PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5: C12N 15/10, 15/38, 15/86 A61K 39/245, 39/12, 39/21 A61K 39/285

(11) International Publication Number:

WO 90/01547

(43) International Publication Date:

22 February 1990 (22.02.90)

(21) International Application Number:

PCT/US89/03289

A1

(22) International Filing Date:

2 August 1989 (02.08.89)

(30) Priority data:

230,158 379,041

8 August 1988 (08.08.88) 12 July 1989 (12.07.89)

US

(60) Parent Application or Grant (63) Related by Continuation

US

379,041 (CIP) 12 July 1989 (12.07.89) Filed on

(71) Applicants (for all designated States except US): THE UP-JOHN COMPANY [US/US]; 301 Henrietta Street, Kal-amazoo, MI 49001 (US). CETUS CORPORATION [US/US]; 1400 Fifty-third Street, Emeryville, CA 94608 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): POST, Leonard, E. [US/US]; 6129 Old Log Trail, Oshtemo, MI 49077 (US). COMPTON, Teresa [US/US]; 7086 Sayre Drive, Oakland, CA 94618 (US). NUNBERG, Jack, H. [US/US]; 5933 Chabot Road, Oakland, CA 94618 (US). PETROVSKIS, Erik, A. [US/US]; 318 Prospect Place, Kalamazoo, MI 49001 (US).

(74) Agent: WILLIAMS, Sidney, B.; Patent Law Department, The Upjohn Company, Kalamazoo, MI 49001 (US).

(81) Designated States: AT (European patent), AU, BE (European patent), CH (European patent), DE (European patent), DK, FI, FR (European patent), GB (European patent), HU, IT (European patent), JP, KR, LU (European patent), NL (European patent), NO, SE (European patent) tent), SU, US.

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: METHODS FOR ISOLATING HERPES VIRUS THYMIDINE KINASE-ENCODING DNA

(57) Abstract

Methods for isolating thymidine kinase-encoding DNA of a herpes virus are described. These methods utilize degenerate primers based on regions of relatively conserved amino acid sequence in herpes virus thymidine kinase proteins to initiate a polymerase chain reaction which yields large amounts of the thymidine kinase-encoding DNA. The methods are illustrated in the isolation of the thymidine kinase gene of feline herpes virus, which can be used to construct recombinant thymidine kinase-negative feline herpes viruses for purposes of constructing live vaccines and expression vectors. In addition, the regulatory elements of the feline herpes virus thymidine kinase gene are useful in the construction of recombinant DNA vectors.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	ES	Spain	MG	Madagascar
	Australia	F	Finland	ML	Mali
	Rarbados	FR	France	MR	Mauritania
		GA	Gabon	MW	Malawi
		GB	United Kingdom	NL	Netherlands
			_	NO	Norway
				RO	Romania
_			=	SD	Sudan
	-			SE	Sweden
				SN	Senegal
		KR		SU	Soviet Union
			•	TD	Chad
		_		TG	Тодо
					United States of America
	•			~	
	AT AU BB BE BF BG BI BR CA CF CG CH CM DE	AU Australia BB Barbados BE Belgium BF Burkina Fasso BG Bulgaria BI Benin BR Brazil CA Canada CF Central African Republic CG Congo CH Switzerland CM Cameroon DE Germany, Federal Republic of	AU Australia FI BB Barbados FR BE Belgium GA BF Burkina Fasso GB BG Bulgaria HU BI Benin III BR Brazil JP CA Canada KP CF Central African Republic CG Congo KR CH Switzerland UI CM Cameroon LK DE Germany, Federal Republic of	AU Australia FI Finland BB Barbados FR France BE Belgium GA Gabon BF Burkina Fasso GB United Kingdom BG Bulgaria HU Hungary BI Benin IT Italy BR Brazil JP Japan CA Canada KP Democratic People's Republic of Korea CF Central African Republic of KR Republic of Korea CH Switzerland LJ Liechtenstein CM Cameroon LK Sri Lanka DE Germany, Federal Republic of LU Luxembourg	AT Austria ES Spain MG AU Australia FI Finland ML BB Barbados FR France MR BE Belgium GA Gabon MW BF Burkina Fasso GB United Kingdom NL BG Bulgaria HU Hungary NO BI Benin IT Italy RO BR Brazil JP Japan SD CA Canada KP Democratic People's Republic SE CF Central African Republic of Korea SN CG Congo KR Republic of Korea SU CH Switzerland LI Liechtenstein TD CM Cameroon LK Sri Lanka TG DE Germany, Federal Republic of LU Luxembourg

-1-

METHODS FOR ISOLATING HERPES VIRUS THYMIDINE KINASE-ENCODING DNA

SUMMARY OF THE INVENTION

In one aspect, the present invention provides methods for isolating and cloning thymidine kinase-encoding DNA from members of the herpesvirus family. These methods comprise mixing thymidine kinase-encoding DNA of a herpes virus with a mixture of primers, said mixture of primers containing primers that encode, in all variations possible due to the degeneracy of the genetic code, all variations of a first sequence of relatively conserved amino acids of herpes virus thymidine kinase proteins, and primers that encode, in all variations . possible due to the degeneracy of the genetic code, sequences complementary to sequences that encode all variations of a second sequence of relatively conserved amino acids of herpes thymidine kinase protein; amplifying the thymidine kinase-encoding DNA by the polymerase chain reaction; and isolating the amplified DNA. invention also provides mixtures of primers useful in practicing the method.

10

15

20

25

30

In a second aspect, the invention provides DNA compounds that encode the thymidine kinase (TK) of feline herpes virus (FHV), also known as feline viral rhinotracheitis virus. These DNA compounds, which include recombinant DNA vectors that comprise TK-encoding DNA, are particularly useful in generating recombinant FHVs that can be used as vaccines and expression vectors. As used herein, "TK-encoding DNA" refers to DNA that encodes a portion of the amino acid residue sequence of a herpes thymidine kinase and can include sequences that flank such DNA on a herpes virus genome.

In a third aspect, the invention provides methods for constructing thymidine kinase negative FHVs. These methods comprise constructing a recombinant DNA vector that encodes a non-functional FHV TK gene; transfecting an FHV-permissive host cell with a mixture of TK-positive FHV and the plasmid that encodes a non-functional TK gene; isolating the progeny virus; infecting an FHV-permissive host cell with said progeny virus to produce thymidine kinase-negative virus; and isolating said replicating TK-negative virus. The virus can be isolated by methods well known in the art, for example, by culturing the infected host cells under conditions where only thymidine kinase negative virus replicates. A portion of these TK-

5

10

15

20

30

35

-2-

minus viruses will contain the plasmid TK-minus-encoding DNA recombined into the viral genome. The recombinant FHVs produced by the method are also an important aspect of the present invention.

Thymidine kinase negative herpesviruses can also be isolated by drug selection, e.g., 100 µg/ml thymidine orabinoside in the culture These mutations can be spontaneous or mutagen induced. Preferably these mutations involve deletions and are made via recombinant DNA.

Thus, in a fourth aspect, the present invention provides FMVs that do not contain a functional TK gene, and so are referred to as "TK-negative" and "TK-minus" FHVs. Such TK-minus FHVs are useful as vaccines, because in comparison to wild-type FHV, a TK-minus FHV is attenuated in its ability to render an infected animal ill yet can still elicit an immune response that protects against further infections by wild-type FHV. In addition, the invention provides recombinant TK-negative FHVs that comprise an expression cassette inserted into the TK gene sequence of the FHV. Such an insertion renders the FHV TK-negative but, more importantly, also renders the FHV into an expression vector. As used herein, "expression cassette" refers to a recombinant DNA sequence that encodes a promoter operably linked to a coding sequence, such that when the expression cassette is present in an FHV-infected host cell, the promoter can drive transcription of an mRNA (e.g., that encoding feline leukemia virus (FeLV) envelope protein) that is capable of being translated into 25 protein by the cell.

Figure 1: Restriction Endonuclease Analysis of Recombinant FHV.

- (A) EcoRI restriction endonuclease digestion of parental FHV UT88-1729 (1) and recombinant araT-resistant FHV-113 (2).
- (B) The EcoRI-digested DNA visualized in panel transferred to nitrocellulose and tk sequences were identified by using a nick-translated hybridization probe comprising the 3' portion of the FHV tk gene. The tk-containing 6.6 kb EcoRI fragment in the parental virus(1) is reduced by approximately 345 bp in the deletioncontaining virus FHV-113 (2). Molecular size markers (HindIII-λ DNA) are indicated. Several other EcoRI fragments which also do not comigrate in both viral DNAs map to the repeat regions of FHV (44); variation in the molecular size of these regions has been noted in unrelated experiments in which FHV is plaque-purified from a

-3-

population.

10

15

20

25

30

35

Figure 2: Results of Assay of tk Enzymatic Activity.

DETAILED DESCRIPTION OF THE INVENTION

The present invention provides a method for isolating any thymidine kinase-encoding DNA of any herpes virus. These methods comprise (a) mixing herpes virus DNA with a mixture of primers, said mixture of primers containing primers that encode, in all variations possible due to the degeneracy of the genetic code, all variations of a first sequence of relatively conserved amino acids of herpes virus thymidine kinase proteins, and primers that encode, in all variations possible due to the degeneracy of the genetic code, sequences complementary to sequences that encode all variations of a second sequence of relatively conserved amino acids of herpes thymidine kinase protein; (b) amplifying the thymidine kinase-encoding DNA by the polymerase chain reaction; and (c) isolating the amplified DNA.

The first step in these methods involves mixing herpes virus DNA with a mixture of primers. "Primers," as used herein, refers to oligonucleotides that can be extended by the action of a DNA polymerase in the polymerase chain reaction. The design of the primers useful in the methods of the present invention is dictated by two factors: (i) the primers must be amenable to use in the polymerase chain reaction; and (ii) the primers must be able to hybridize to a single-stranded DNA that either encodes thymidine kinase or is the complement to a single-stranded DNA that encodes thymidine kinase. Each of these factors is discussed in detail below.

The polymerase chain reaction is a well known technique, described in U.S. Patent 4,683,202 and other applications and patents for amplifying DNA. Primers for use in the polymerase chain reaction are designed to be able to hybridize with at least one strand of the double-stranded target DNA sequence to be amplified. Briefly stated, the polymerase chain reaction involves the following steps. First, the double-stranded target sequence is denatured. Second, a first primer is annealed to one strand of the denatured target DNA while a second primer is annealed to the other strand of the denatured target DNA. The two primers anneal to the target DNA at sequences removed from one another and in orientations such that the extension product of one primer, when separated from its complement, can hybridize to

-4-

the other primer. Once a given primer hybridizes to the target sequence, the primer is extended by the action of DNA polymerase. The extension product is then denatured from the target sequence, and the process is repeated.

In successive cycles of this process, the extension products produced in earlier cycles also serve as sites for DNA synthesis. Beginning in the second cycle, the product of amplification begins to accumulate at a logarithmic rate. This product is a double-stranded DNA molecule, one strand of which contains the sequence of the first primer, which is followed by the sequence of one strand of the target DNA, which, in turn, is followed by a sequence complementary to the sequence of the second primer. The other strand of the product is complementary to the first strand just described.

15

20

25

30

35

Several aspects of the polymerase chain reaction are important to note for purposes of the present invention. First, primers can be designed with convenient restriction enzyme recognition sequences located at or near the 5' end of the primer. In the formation of extension products in the polymerase chain reaction, new nucleotides are added beginning at the 3' end of the primer. nucleotides are added only if the 3' end of the primer is hydrogenbonded to the target sequence, so the sequences that encode the restriction enzyme recognition sequence must be located at or near the 5' end of the primer. For example, one primer might contain a BamHI restriction enzyme recognition sequence at its 5' end, while the other primer might contain an EcoRI restriction enzyme recognition sequence at its 5' end. After amplification, the product would be digested with BamHI and EcoRI restriction enzymes and cloned into an appropriately cleaved cloning vector. The presence of such restriction enzyme recognition sites in the product greatly facilitates cloning.

Second, the target of amplification can be single-stranded DNA. Although the polymerase chain reaction procedure described above involved the assumption that the target was double-stranded, a single-stranded target sequence can serve as well in the amplification process. After the first cycle of amplification of a single-stranded target, the reaction mixture essentially contains a double-stranded target molecule consisting of the single-stranded target and its complementary strand, so successive cycles of

30

amplification proceed as described above.

The second important factor in designing the mixture of primers used in the methods of the present invention is that the primers must be able to hybridize to DNA that encodes the thymidine kinase of any herpes virus. The thymidine kinase genes of known herpes viruses are quite diverged and contain only very short and interspersed regions amino acid identity (see Kit, 1985, Microbiol. 2:369-375). For instance, pairwise comparison of the HSV1 TK (McKnight, 1980, Nuc. Acid Res. 8:5949) protein with that of pseudorabies virus (PrV, see U.S. Patent No. 4,514,497) or varicella 10 zoster virus (VZV, see Davison et al., 1986, J. Gen. Virol. 67:1759-1816) reveals only 7 colinear regions in which all 4 amino acids within any stretch of 4 amino acids are identical between pairs. The points of identity are not necessarily conserved between pairwise comparisons. Additional herpes virus TK genes that further 15 illustrate this divergence include HSV-2 (Swain et al., 1983, J. <u>Virol</u>. 46:1045-1050), MaHV (Otsuka et al., 1984, <u>Virol</u>. 135:316-330), Efforts to isolate the FHV TK gene via and IBR (EPO 226,029). standard hybridization methods using the known TK genes as probes were not fruitful, because the divergence of TK proteins and the 20 degeneracy of the genetic code renders such hybridization techniques too nonspecific.

The methods of the present invention, however, provide a way to isolate and clone any herpes thymidine kinase-encoding DNA. methods utilize oligonucleotide primers that encode, in all variations possible due to the degeneracy of the genetic code, all variations of the very small regions of amino acid sequence homology between known herpes virus thymidine kinases. Although the number of primers in an amplification reaction designed to isolate TK-encoding DNA is quite large, only those primers that hybridize are amplified in the reaction. Thus, the methods of the present invention are quite specific in that the use of short, highly-degenerate oligonucleotides that encode (or are complementary to DNA that encodes) short, moderately conserved amino acid sequences requires that (i) two primers anneal; (ii) to opposite strands; and (iii) yield a product of the size expected. The methods of the invention are illustrated by the isolation of the feline rhinotracheitis virus TK gene. This virus, referred to herein as feline herpes virus (FHV)

contains a TK gene never before isolated or characterized. The FHV TK gene was obtained using short, highly-degenerate oligonucleotide primers by the methods of the present invention.

Although the present invention is not limited to particular primers, because other regions of conserved amino acid sequence than those exemplified herein exist, the invention does provide preferred primers for use in the method for isolating TK-encoding DNA. Because these primers can contain non-homologous DNA at the 5' end of the primer (i.e., restriction enzyme recognition site-encoding DNA, as described above), and because the primers encode a relatively conserved amino acid sequence, the preferred primers of the invention are defined as comprising a coding sequence (or the complement thereof) for a relatively conserved amino acid sequence.

10

15

20

25

It should be noted that a given "conserved amino acid sequence" can consist of two or more sequences, and thus the methods of the invention refer to "all variations of a conserved amino acid For example, residues 55-60 (numbering of amino acid sequence." residues for purposes of designating conserved regions refers to the HSV 1 TK amino acid sequence) are relatively conserved within the herpes virus thymidine kinases, i.e., this region is not identical in every herpes virus thymidine kinase at each position in the sequence but is still recognizable as a region of homology. In constructing primers for such a conserved region for purposes of the present invention, however, one need only design the primers to encode, in every variation possible due to the degeneracy of the genetic code, each variation of the conserved sequence. The preferred primers of the invention are depicted in Table 1, below, by reference to the conserved amino acid sequences, some of which are variant as just described. The amino acid sequences are given in one-letter code, described in Table 2. The position of the amino terminal residue in the conserved sequence (relative to the HSV-1 TK) is indicated on the first line of Table 1. The virus in which a particular conserved sequence is found is indicated at the left side of each line. Because of the degeneracy of the genetic code, and because the method of the invention utilizes primers that encode all possible coding sequences for a conserved amino acid sequence (and the complementary strands of such coding sequences), the actual number of primers used in the method that encode a given conserved amino acid sequence is

indicated in the line entitled "primer degeneracy." Finally, Table 1 also depicts the actual length of the portion of the primer that In some cases, due to the encodes the conserved sequence. variability of the nucleotide in the third position of a codon, this 5 length can be one nucleotide shorter than the calculated three nucleotides per conserved amino acid.

		<u>Table 1</u>				
		Primers	s for Isol	ating TK-e	ncoding DN	<u>'A</u>
10		55	61	164	220	287
	HSV-1	DGPHG	GKTT	DRHP	RPGE	DTLF
	VZV	DGAYG	GKTT	DRHP	RPGE	DTLF
	PrV	DGAYG	GKST	DRHP	RAGE	DTLF
	MaHV	DGPHG	GKST	DRHA	RPGE	
15	Primer					
	length	14	11	11	11	12
	Primer					
	degeneracy	256	112	48	196	96

20	2	<u> Cable 2</u>	
	Amino Aci	d Abbreviations	
	Amino acid	Three-letter	One-letter
		abbreviation	abbreviation
25	Alanine	Ala	A
•	Arginine	Arg	R
	Asparagine	Asn	N
	Aspartic acid	Asp	D
	Cysteine	Cys	C
30	Glutamine	Gln	Q
	Glutamic acid	Glu	E
	Glycine	Gly	G
	Histidine	His	н
	Isoleucine	Ile	I
35 .	Leucine	Leu	L
	Lysine	Lys	K
	Methionine	Met	М
	Phenylalanine	Phe	F

-8-

Proline	Pro	• P
Serine	Ser	S
Threonine	Thr	T
Tryptophan	Trp	W
Tyrosine	Tyr	Y
Valine	Val	v

5

10

15

20

25

30

35

The primers shown in Table 1 are used in pair wise combinations. For example, one could isolate a TK-encoding DNA by amplifying with a primer pair in which the first primer encodes the conserved amino acid sequence beginning at position 55 (as shown in Table 1, this first primer would be a mixture of primers that comprise sequences that encode DPGHG and sequences that encode DGAYG in all variations possible due to the degeneracy of the genetic code) and in which the second primer comprises sequences that are complementary to sequences that encode the conserved amino acid sequence beginning at position 220 (as shown in Table 1, this second primer is a mixture of primers that comprise sequences complementary to sequences that encode RPGE and sequences that encode RAGE in all variations possible due to the degeneracy of the genetic code). The expected size of the product of amplification would be about 495 base pairs (bp) in length (220 - 55 = 165, 165 x 3 = 495). The amplification reactions can be carried out on a Perkin-Elmer Cetus Instruments Thermal Cycler using the thermostable DNA polymerase of Thermus aquaticus in accordance with the manufacturer's protocol. In addition, reaction protocols for the polymerase chain reaction using a thermostable polymerase are described U.S. Patents 4,683,195 and 4,683,202 and U.S. patent applications S.Nos. 063,647 (filed June 17, 1987) and 899,513 (filed August 22, 1986), all of which are incorporated herein by reference. In addition, methods for amplifying DNA using the DNA polymerase of I. aquaticus are described in Saiki et al., 1988, Science 239:487-491.

To isolate the FHV TK-encoding DNA of the present invention, primer pairs as shown in Table 1 and including 5' extensions containing restriction endonuclease recognition sites (to facilitate subsequent cloning of the product of amplification) were used in the method of the present invention. The amplification reactions were carried out on a Perkin-Elmer Cetus Instruments Thermal Cycler using

20

25

30

the thermostable DNA polymerase of <u>Thermus aquaticus</u> in substantial accordance with the manufacturer's protocol, except as follows. From 30 ng to 1 μ g of FHV DNA (UC-D strain of FHV, obtained from Niels Pedersen, University of California Veterinary School, Davis, Ca) and 100 to 800 pmol of degenerate primers were used in each 50 μ l reaction. The thermal cycling included an initial 5 cycles with an annealing step at 37°C.

One pairwise combination of primers yielded the expected product. This primer pair was designed to amplify the region between and containing the conserved sequences beginning at position 55 and 164 as depicted in Table 1. Thus, the primer pairs had the following sequences. The first primer was:

5'-TCAAAGCTTGAYGGNSCNYAYGG-3'

The second primer contained equal parts of the following primers:

15 5'-CTCGAATTCGSRTGNCGRTC-3' and

5'-CTCGAATTCGSRTGYCTRTC-3',

In the sequence of the primers shown above, A is a deoxyadenine residue, T is a thymidine residue, C is a deoxycytidine residue, G is a deoxyguanine residue, N represents that the primer is a mixture of primers in which each of the four nucleotides can occur at the position indicated, R represents that the primer is a mixture of primers in which either of the two purine nucleotides (G and A) can occur at the position indicated, Y represents that the primer is a mixture of primers in which either of the two pyrimidine nucleotides (C and T) can occur at the position indicated, S represents that the primer is a mixture of primers in which either a G or C nucleotide can occur at the position indicated. Those skilled in the art will note that the first primer encodes a <u>HindIII</u> restriction enzyme recognition sequence (5'-AAGCTT-3') near the 5' end and that the second primer encodes an <u>EcoRI</u> restriction site (5'-GAATTC-3') at the 5' end.

The expected product from the primer pair described above had a length of about 350 bp (164 - 55 = 109, 109 x 3 = 327), and after the amplification reaction mixture was digested with restriction enzymes <u>EcoRI</u> and <u>HindIII</u>, the reaction mixture was loaded onto an acrylamide gel and subjected to electrophoresis. The approximately 350 bp product was excised from the gel and ligated with <u>EcoRI-HindIII-digested</u> BlueScript plasmid vectors (BlueScript is a tradename of

Stratagene Corporation, 3770 Tansey Street, San Diego, CA 92121, and the vectors were used in substantial accordance with the manufacturer's protocol). The recombinant plasmids were sequenced to confirm that the approximately 350 bp EcoRI-HindIII restriction fragment encoded FHV thymidine kinase. This determination was made by comparing the amino acid sequence encoded by the coding sequence to that of other known herpes virus thymidine kinase proteins, which, although too divergent for cloning by hybridization are similar enough that such a determination is practicable. The approximately 350 bp fragment was then used to isolate the entire FHV TK gene from genomic libraries of FHV by labeling the 350 bp fragment, contacting the labeled fragment with the library under hybridizing conditions, and isolating the clones in the library that hybridized to the In this manner, the entire TK gene was isolated on two fragment. plasmids. The first, designated pTK3.8 is a 3.8 kb <u>SalI-HindIII</u> restriction fragment of FHV strain UC-D cloned into a Bluescript vector (purchased from Stratagene, La Jolla, Ca), and the second, designated pTK5.4deltaBam is a 1.7 kb <u>Hin</u>dIII-<u>Bam</u>HI restriction fragment of FHV strain UC-D cloned into a Bluescript vector.

10

15

20 The DNA sequence of the FHV TK gene was determined and is set forth below, Those skilled in the art recognize that there can be difficulty in interpreting DNA sequencing gels and that the sequence depicted below may differ from the actual sequence in a few nucleotide positions. However, by using the methods of the 25 invention, one can isolate any herpes virus TK-encoding DNA sequence. In addition, the present invention allows the position of the TK gene to be identified to a particular restriction fragment of the feline herpes virus genome. Rota et al., 1986, Virol. 154:168-179, reported a restriction map of a feline herpes virus that contains a SalI restriction fragment about 20 kilobases (kb) in length. 30 restriction fragment, termed the Sal A fragment, contains the feline herpes virus TK gene. Most feline herpes viruses are substantially homologous to this reported virus, which enables one of skill in the art to isolate the TK-encoding DNA compounds of the present invention merely by cloning the appropriate restriction fragment. The sequence 35 is numbered to facilitate description of the sequence; the numbers appear at the left-hand side of the sequence. Only the coding strand of the sequence is depicted. Underlined portions of the sequence are

described on the line above. "N" represents that the nucleotide in the designated position might be either A, G, T, or C.

Nucleotide Sequence of the Thymidine Kinase Gene of Feline Herpes Virus, Strain UC-D

1 5'-GTATAACCAC AGATCTGTAT GTTCAACCTC ACGACGTTGA TGTCTTACTA 51 GTGTATCCAT ATTTTGAAAA CGACACGTTT TCAGCTCAAT TAGAAAACAT ATACCACCCC CTTCTCCCTC AAATTGTATA GTACATACAC AATCAGTCGG 101 151 CGACGACCCA AGTTAACCTC ACATGCTAGG TACACGCCCT TAGCCTTTTT CAAT box 10 201 AAGAGACTCT GCGGATACAG AGCCGCCCAA TAAACACTCG AGTCGGTCGG TATA box 251 TATATACTCC ACTCGCAGAG GTCGAGGATA TATCGCGCTT GAGGACAGCA 301 TAAAAGCGAT TGTGGNATCG AATTCCAGCC CGGAGCCTCA ATCCGACACT start of coding sequence 15 351 GCGTCGTTGT TCACGTTTCA TCATACACAG ATCAGACGAT GGCGAGTGGA ACCATCCCCG TTCAGAATGA AGAGATTATT AAATCACAGG TGAATACTGT 401 451 CCGCATTTAC ATAGATGGTG CCTATGGAAT AGGTAAGAGT TTAACGGCGA 501 AGTACCTGGT CAGAGCGGAT GAAAATCGAC CGGGATATAC TTACTACTTC CCAGAACCAA TGCTATACTG GCGTAGTCTC TTTGAAACTG ATGTTGTCGG 551 601 TGGTATCTAT GCCGTCCAGG ACCGGAAACG ACGTGGTGAA TTATCAGCTG 20 651 AAGATGCTGC CTATATCACC GCCCACTATC AAGCAAGATT TGCCGCACCA 701 TACCTTCTTT TACATTCCAG ACTATCCACA ATAACAGGAT ATCAGAAAGT 751 TGTATGTGAG GAACACCCCG ACGTGACCCT AATCATAGAT AGACACCCTC 801 TCGCCTCTCT GGTCTGTTTC CCACTCGCAA GATATTTTGT GGGTGATATG 25 851 ACTCTTGGGT CTGTACTTAG TCTAATGGCA ACACTTCCAC GAGAACCTCC 901 TGGTGGAAAT CTAGTTGTAA CAACCTTGAA TATCGAGGAA CATTTGAAGC 951 GTCTCAGGGG ACGCTCAAGA ACCGGAGAAC AGATAGACAT GAAGCTAATT 1001 CACGCACTAC GCAATGTATA TATGATGTTG GTACATACTA AGAAATTTTT 1051 AACAAAAAT ACTAGTTGGC GTGATGGGTG GGGGAAGCTT AAAATTTTCT CCCACTATGA ACGGAATAGG CTCGTGGAAA CTACAATAGT TTCCGATTCG 30 1101 1151 ACGGAGTCAG ATTTATGTGA CACATTATTC AGTGTTTTCA AAGCCCGGGA GCTCTCCGAC CAAAATGGAG ATCTACTTGA CATGCATGCA TGGGTCCTCG 1201 1251 ATGGACTTAT GGAAACCCTC CAAAATTTAC AGATCTTTAC TTTAAATCTG 1301 GAAGGAACCC CTGATGAATG TGCCGCCGCC TTGGGAGCAC TGAGACAAGA TATGGATATG ACATTTATAG CCGCATGTGA TATGCACCGT ATAAGTGAAG 35 1351 end of coding sequence CCTTGACGAT ATACCATTAA ACATTAGTGG TGTTCCCTAT TACCCCCCTG 1401 TGGTGAATGT GTGGAGGTCA GGGGATAATT GTATAATGAC CATCGTTTCA 1451

-12-

poly A

1501 TGAATAAAAT AACCGTGTGT GATGTGGATG TATTCATTAA TTGAATTTCT

1551 CTTCCGGTTT TAGATCTTTA TAAGCGTAAA ACTGGTGTTT TAAATCCAAG

1601 AGCCGGGTTC TTTGGAGGTT GGTCACATCA TCGCCACAGC CCGTGGATTC

1651 AAGCAATCTT ATGATGTGTT TGATAATATA CCTATCGATA TTCCTGATCA

1701 TTGTATCGAG GATGTTGACT GGTTACCGAT GATGGATAGA CCTGATGAGG

1751 TGGCTGG-3'

5

10

25

35

The TK-encoding DNA sequence shown above, although isolated by the method of the present invention, can be constructed by synthetic means, i.e., by use of an automated DNA synthesizer, well known in the art. This TK-encoding DNA sequence is an important aspect of the present invention, as well as recombinant DNA vectors that comprise the sequence. In addition, the TK gene sequence shown above will be homologous to other TK-encoding DNA sequences of other FHVs, if other FHVs with a different TK-encoding DNA sequence exist. There may be a number of different FHV strains that may differ from one another only in a minor way. These FHV variants may encode thymidine kinase proteins that differ from the FHV TK protein encoded by the TK gene of the present invention in some way; however, such variations will 20 occur in less than 10% of the amino acid residue positions. variant genes can be readily located by a variety of methods, including hybridization with the TK-encoding DNA of the present invention and comparison of genetic maps to locate analogous TKencoding regions. Thus, the present invention provides TK-encoding DNA from any FHV.

The TK gene sequence depicted above contains a promoter (a sequence that includes a CAAT region and TATA box, which can include sequences upstream of the CAAT region and downstream to about the start of the coding sequence), coding sequence, and poly A signal. The promoter and poly A signal are important regulatory elements that, through the use of recombinant DNA technology, can be used to construct recombinant genes that drive expression of any desired gene product. Thus, the promoter and poly A portions of the FHV TK gene are also important aspects of the present invention.

The coding sequence of the TK gene encodes a thymidine kinase with the following amino acid residue sequence shown below. sequence is listed from amino to carboxy terminus.

1 MASGTIPVQN EEIIKSQVNT VRIYIDGAYG IGKSLTAKYL VRADENRPGY

-13-

- 51 TYYFPEPMLY WRSLFETDVV GGIYAVQDRK RRGELSAEDA AYITAHYQAR
- 101 FAAPYLLIHS RLSTITGYQK VVCEEHPDVT LIIDRHPLAS LVCFPLARYF
- 151 VGDMTLGSVL SLMATLPREP PGGNLVVTTL NIEEHLKRLR GRSRTGEQID
- 201 MKLIHALRNV YMMLVHTKKF LTKNTSWRDG WGKLKIFSHY ERNRLVETTI
- 251 VSDSTESDLC DTLFSVFKAR ELSDQNGDLL DMHAWVLDGL METLQNLQIF
 - 301 TLNLEGTPDE CAAALGALRQ DMDMTFIAAC DMHRISEALT IYH

10

20

25

30

Those skilled in the art recognize that due to the degeneracy of the genetic code, a very large number of DNA sequences can be constructed that encode the thymidine kinase of the structure shown above. These DNA sequences are equivalent to the FHV TK-encoding DNA of the present invention.

The FHV TK gene is useful in the construction of infectious TK-minus FHV for use as attenuated FHV (feline rhinotracheitis virus) invention provides methods for constructing vaccines. The recombinant FHVs that comprise constructing a recombinant DNA vector that encodes a non-functional FHV TK gene; transfecting an FHVpermissive host cell with a mixture of TK-positive FHV and the plasmid that encodes a non-functional TK gene; isolating the progeny virus; infecting a feline herpes virus-permissive host cell with said progeny virus to produce thymidine kinase-negative virus; and isolating said replicating TK-negative virus. The resulting TKnegative virus will contain a mixture of virus, only a portion of which are rendered TK-negative as a result of recombination with the plasmid-borne TK sequences. The remaining portion of TK-minus viruses is a result of spontaneous mutation to the TK-minus state. The recombinant FHVs produced by the method are also an important aspect of the present invention.

A number of TK-minus herpes viruses are known that show reduced virulence and so can be used as attenuated virus vaccines (see, e.g., European Patent Publication 226 029; and U.S. Patent 4,703,011 which describe bovine herpesviruses type 1 which fail to produce any functional tymidine kinase as a result of a deletion in the thymidine kinase gene. Also this patent refers to other herpes viruses). Before the present invention it was not known whether it was possible to make a viable thymidine kinase negative feline herpesvirus, how to make such a virus, whether such a virus would be virulent or avirulent in cats, or whether such a virus would produce a protective immune response in cats. The fact that the negative pseudorabies

-14-

virus is virulent in cats teaches against the idea that tk negative herpesviruses are avirulent in cats. It is only as a result of the instant invention that it has in fact been demonstrated that tk minus FHVs are avirulent and are protective vaccines. To obtain such an FHV TK-minus vaccine to immunize cats and other susceptible animals against infection by wild-type FHV, one need construct a recombinant vector that encodes a non-functional FHV TK-gene but retains sufficient homology to the wild-type FHV TK gene and flanking sequences for recombination. Then, the non-functional TK gene is recombined with TK-positive FHV DNA and TK-negative recombinants are It is important to note that a "non-functional" TK gene includes a segment of FHV genomic DNA that is colinear with the FHV genome except for a deletion or insertion (e.g., insertion of an expression cassette, as described below) or point mutation that renders the TK gene inoperative.

10

15

20

25

30

35

In a variation on this theme, the non-functional TK gene is modified to also include an expression cassette. In the preferred embodiment, this expression cassette will drive expression, when present in the animal immunized with the recombinant virus, of a protein that will induce immunity to other infectious agents. instance, feline leukemia virus (FeLV) is an infectious agent for which immunizing vaccines are needed. The FHV TK-minus recombinant viruses of the present invention are readily modified to encode FeLV proteins, such as the envelope, pol, or gag proteins, that, when expressed in the immunized animal, will render the animal resistant to FeLV. Of course, the infectious recombinant FHVs of the present invention can express other genes for use in cats, cat cells, or other cells or animals susceptible to FHV infection. For example, the recombinant TK-minus FHVs can be used as vaccines against feline infectious peritonitis (FIP) virus, calicivirus, rabies virus, feline immunodeficiency virus (FIV), feline parvovirus (panleukopenia virus), and feline Chlamydia; and as generalized expression vectors, i.e., to correct genetic defects or to provide additional growth, merely by choice of the appropriate expression cassette.

To obtain recombination and insertion of foreign sequences within the FHV genome, it is necessary to flank the inserted sequence with FHV sequences; in the case of targetted insertion within the FHV TK gene, it is necessary to insert the foreign gene or expression

10

15

20

25

ŋ

cassette into the FHV TK gene and to flank this insert with (50 -5000 bp) colinear sequence including and/or surrounding the FHV TK gene. Insertion of an expression cassette within the FHV TK gene will generate a recombinant TK-minus FHV suitable as an attenuated live FHV vaccine.

The plasmids described below contain expression cassettes that can be inserted into the TK gene of the present invention; the resulting construct can be recombined with FHV to yield an FHV TKminus recombinant virus illustrative of the invention. expression cassettes demonstrate the ability of a variety of herpes virus promoters to drive expression of any protein, as illustrated by a beta-galactosidase marker protein, which is easily detected by chromogenic assays, in FHV-infected cells. Such promoters include the herpes simplex alpha-4 promoter (a4), which can be isolated from plasmid pRB403, described by Roizman et al., 1982, Proc. Natl. Acad. 79:4917-4921, on a PvuII-BamHI restriction fragment; the cytomegalovirus immediate early promoter (CMVIE), which can be isolated from plasmid pCMV5027, described by Schaffner et al., 1985, Cell 41:521-530, on a Sal I-Sac II restriction fragment with minor repair (the Sal I site is from vector polylinker in pCMV5027, and is where a Pst I site exists upstream from the CMV promoter); and the FHV TK promoter described above, which can be isolated on a Sal I-EcoRI restriction fragment (the EcoRI site is about 100 bp upstream of the ATG that starts the coding sequence).

Each of these promoters were cloned into appropriate sites in the beta-galactosidase-encoding but promoter-less plasmid pON1, described by Spaete et al., 1985, J. Virol. 56:135-143. Transfection and assay for beta-galactosidase expression in FHV-infected CRFK cells (available from the American Type Culture Collection, 12301 Parklawn Drive, Rockville, Maryland 20852-1776, under the accession number ATCC CCL 94) or HSV1-infected Vero cells from the ATCC were essentially as described by Spaete et al., 1985, J. Virol. 56:135-143, incorporated herein by reference. The results are depicted in Table 3, below.

-16-Table 3

		Beta-Galactosidase	Specific Activ	vity (nmol/	min/mg)
	Virus	None	HSV	None	FHV
	Promoter	α4 .	α 4	a 4	a 4
5	Cell	Vero	Vero	CRFK	CRFK
	Activity	5.1	31	10.3	28
	Virus	None	HSV	None	FHV
	Promoter	FHVtk	FHVtk	FHVtk	FHVtk
10	Cell	Vero	Vero	CRFK	CRFK
	Activity	not tested	not tested	1.2	2.8
	Virus	None	нѕѵ	None	FHV
	Promoter	CMVIE	CMVIE	CMVIE	CMVIE
15	Cell	Vero	Vero	CRFK	CRFK
	Activity	32	106	35	100

Thus, all expression cassettes are believed to be active in FHV-infected cat CRFK cells, and the highest expression of β -galactosidase was from the CMV IE promoter. The highest activity reported in mock-transfected cells was 0.6 nmol/min/mg. Replacement of the beta-galactosidase coding sequence with, e.g., the FeLV envelope protein coding sequence, will produce an expression cassette that can be used as described above to construct an attenuated virus of the present invention that is suitable for use in vaccination against FHV and FeLV.

25

30

35

Other promoters that drive expression in FHV-infected cells can also be used in the construction of expression cassettes for use in the recombinant FHVs of the present invention. These include promoters derived from other herpes viruses, especially strongly-expressed promoters, as well as those derived from FHV, especially the major capsid protein gene promoter and the glycoprotein promoters (e.g., gB or gC homologues).

A number of plasmids containing the expression cassettes described in Table 3 inserted into the FHV TK gene of the present invention were constructed. These plasmids are referred to as insertion vectors, because when recombined with TK-positive FHV, the plasmids will insert the expression cassette-containing TK gene into

15

20

25

the TK-positive FHV to yield a TK-minus FHV that contains the expression cassette. Thus, insertion vector pTC4 contains an expression cassete composed of the CMV IE promoter positioned to drive expression of beta-galactosidase.

Insertion plasmid pTC4 was transfected, together with infectious FHV genomic DNA, into CRFK cells using methods similar to those developed by Roizman et al. in the herpes simplex virus system (see Roizman et al., 1981, Cell 25:227-232; Roizman et al., 1981, Cell 24:555-565; Roizman et al., 1980, Cell 22:243-255; Roizman et al., 1982, Dev. Biol. Standardization 52:287-304; European Patent Publication 074,808; Roizman et al., 1985, Science 229:1208-1214) and by Lowe et al., 1987, Proc. Natl. Acad. Sci. 84:3896-3900, in the varicella zoster virus system.

Infectious FHV DNA can be generated by infecting subconfluent monolayers of CRFK cells with FHV at low multiplicity of infections. Cells are harvested when the cytopathic effect (CPE) has reached maximum. Cytoplasmic viral DNA is obtained by first removing cell nuclei by NP-40 extraction and treating the cytoplasmic fraction with $100~\mu g/ml$ proteinase K and 0.2% SDS (sodium dodecyl sulfate) for two hours at 37° C. The viral DNA is purified by sodium iodide density ultracentrifugation. The DNA is then dialyzed and used directly in transfections to generate recombinants.

To generate virus recombinants, the plasmid containing the expression cassette inserted into the TK gene is cotransfected with FHV DNA using the calcium phosphate precipitation method (Graham and vander Eb, 1973). 1 μg of plasmid DNA and 3 μg of FHV DNA are coprecipitated in 125 mM CaCl, and 1X Hepes buffered saline (HBS) at room temperature for 30 minutes. This precipitate is added to a 25 cm² subconfluent dish of CRFK cells with 5 ml of DMEM medium supplemented with 10% fetal calf serum (FCS). After four hours, the cells are washed with DMEM (10% FCS) and incubated in 15% glycerol, 1X HBS for six minutes. The cells are washed and incubated in DMEM (10% FCS) until complete CPE is detected. The virus stock is harvested by freeze-thawing and sonication. Plaques are isolated by incubation in Medium 199 supplemented with 0.5% agarose, 1% FCS, 100 $\mu g/ml$ thymine arabinoside (araT). X-gal is added (300 $\mu g/ml$) after 48 hours if beta-galactosidase activity is to be detected. plaques develop three days post infection and are picked, transferred

to 1 ml of Medium 199 (1% FCS), sonicated and used to infect monolayers of CRFK cells. This process of plaque purification is repeated three times to generate a homogenous viral stock.

Progeny virus were harvested and plaqued on CRFK cells in the 5 presence of 100 ug/ml araT, a thymidine analogue that selects for TK-minus virus. Plaques were stained for beta-galactosidase activity by including the chromogenic indicator X-gal (5-bromo-4-chloro-3indoyl-beta-D-galactopyranoside) in the agar overlay, as described by Spaete et al., 1987, Proc. Natl. Acad. Sci. 84:7213-7217. 10 Approximately five percent (5%) of the araT-resistant, TK-minus FHV plaques stained for beta-galactosidase expression developed the blue color indicative of the presence of beta-galactosidase activity on Xgal indicator plates. These viruses are plaque-purified as described above. These viruses express both the araT-resistant (TK-minus) and beta-galactosidase-positive phenotypes. The insertion of the CMV IE 15 promoter/beta-galactosidase expression cassette within the TK gene of the FHV genome is confirmed by Southern analysis of FHV genomic DNA. This virus can be used as an attenuated FHV vaccine (and betagalactosidase expression vector) for cats. Replacement of the beta-20 galactosidase gene with the envelope gene of FeLV subgroup A within a TK-based insertion plasmid will yield, via similar methods. a recombinant TK-minus FHV of the present invention that can drive expression of the FeLV envelope gene product in cats. Such a recombinant FHV can be used as a vaccine for FeLV and FHV.

Convenient methods other than TK-minus selection to select the desired recombinant virus are feasible as a result of work described in this application. As has been done with recombinant vaccinia virus vectors (Chakrabarti <u>et al.</u>, 1985, Mol. Cell. 5:3403-3409), a cassette capable of driving expression of betagalactosidase can be co-inserted with another heterologous protein expression cassette into, for example, the TK gene, and these two genes can be together transferred into the viral genome. Recombinant viruses are then readily screened by virtue of their staining with the beta-galactosidase specific chromogenic reagent X-gal. Thus, for example, the CMV IE promoter/beta-galactosidase expression cassette can be inserted along with the FHV TK promoter/FeLV envelope gene product expression cassette into the FHV TK gene as described above, and recombinant viruses could be isolated by staining with X-gal.

25

30

35

If a TK-positive phenotype is desired in a recombinant TK-minus virus in which the heterologous expression cassette is inserted within the TK gene, then a functional FHV TK gene can be inserted elsewhere in the genome. As current anti-herpes virus therapy acts through a functional TK gene, it may be desirable to include a functional TK gene in the vaccine strain. This has not been done in the case of currently approved recombinant TK-minus pseudorables virus vaccines (TechAmerica, Omni-Vac PRV). Attenuation by virtue of the TK-minus phenotype can be obtained by interrupting the FHV TK gene, regardless of the site of integration of the expression cassette. In addition, the parental FHV virus can itself be attenuated through other means, independent of the TK gene. Conventionally produced attenuated FHV viruses are in current use as FHV vaccines.

10

15

20

25

30

The use of FHV as a vector for vaccination in cats is preferred to any other virus, including vaccinia virus. FHV replicates well in cats, and attenuated viruses are in current use in vaccination. Furthermore, the virus host-range is restricted to felines - - this virus is not presently known to infect other animals and humans and thus does not pose the same public health concerns as vaccinia virus (which is considered a class 2 pathogen, because vaccination with the virus for smallpox immunization was ceased several years ago).

Recombinant virus construction: A bacterial plasmid containing a deletion in the identified FHV tk gene was constructed using standard molecular cloning techniques. This plasmid and FHV strain UT88-1729 DNA were cotransfected into CRFK cells by using the calcium phosphate precipitation method described by Graham, F.L. and A.J. vander Eb., 1973, "A New Technique for the Assay of Infectivity of adenovirus 5 DNA", Virology 52: 446-467. Progeny virus was harvested when full cytopathic effect was evident and recombinant FHV plaques were isolated in the presence of araT. The desired recombinant virus was identified by restriction endonuclease analysis.

Construction of recombinant tk-FHV:

20

25

30

35

40

FeLV Envelope Insertion

TK PCMV FeLV gp85

The diagram above represents an FHV-gp85 recombinant virus (FHV114). The sequence from the EcoRV site to the HindIII site in the thymidine kinase gene has been deleted, attenuating the virus. An expression cassette including the FeLV gp85 gene has been inserted. The promoter in this cassette is from the CMV immediate early gene (Thomsen et al, PNAS <u>81</u>:659-663)1984). The polyadenylation signal was isolated from pONI [Spaete and Mocarski, J. Virol. <u>56</u>:135-143 (1985)]. CRFK cells infected with this virus synthesize FeLV gp85.

To obtain genetic and biochemical confirmation that the identified tk gene encodes FHV tk, we constructed a recombinant FHV in which the tk coding sequence had been modified to delete the nucleoside binding domain of the deduced tk protein.

The bacterial plasmid ptkAEcoRV-HindIII (pGC113) contains the entire FHV tk gene and flanking regions (from the Sall site to the proximal BamHI site), but lacks coding sequences between the EcoRV and HindIII sites. A synthetic oligonucleotide polylinker was used to join these sites in the plasmid construction. The resulting protein is predicted to contain a novel serine residue inserted at the site of the glycine117 to lysine234 deletion.

This mutation was introduced into FHV by using calcium phosphate co-precipitation techniques to obtain homologous recombination between plasmid and herpesvirus genomic sequences. The plasmid pt Δ EcoRV-HindIII and FHV strain UT88-1729 genomic DNA were cotransfered into CRFK cells and progeny virus was harvested and plaqued onto CRFK cells in the presence of 100 μ g/ml thymidine arabinoside (araT) to select for recombinant tk virus. Previous studies had shown this thymidine analogue to provide stringent selection against the replication of tk FHV, R.F. Schinazi, C.C.

25

30

Williams, M.E.Fritz and A.J. Nahmias, in the Human Herpesviruses, Elsevier, New York, 1981, pp. 681-682, and we have used this selection method to isolate spontaneous tk FHV. AraT-resistant viruses were screened by restriction endonuclease analysis for the presence of the EcoRV-HindIII deletion. All araT-resistant viruses examined contained the expected deletion. One virus was further plaque purified and was designated FHV-113. As expected, the 6.6 kb EcoRI fragment containing the FHV tk gene is reduced in size by approximately 345 bp in FHV-113 (Fig. 1).

The araT-resistant phenotype of FHV-113 was shown to be attributable to a defect in tk by direct enzymatic assay of tk Results of these assays activity in extracts of infected cells. (Fig. 2) confirm the araT-resistant FHV-113 to be deficient in tk enzymatic activity. Thus, genetic and biochemical analysis supports the assignment based on the deduced amino acid sequence, and 15 establishes that the identified gene encodes FHV tk.

Construction of a tk deletion of FHV-1 Example 1

pTK 3.8. The FHVAll3 virus was constructed as follows. described above, contains the 3.8 kb Sall/HindIII fragment containing the N-terminal coding sequences of the tk gene. A derivative of this plasmid, tk3.8 \(\text{EcoRI} \) was obtained by deletion of sequences between the EcoRI site in the TK promoter and in the Blue Script KS polylinker.

The plasmid pTK5.4, described earlier, contains the 5.4 kb HindII/EcoRI fragment containing the C-terminal coding region of the tk gene and the glycoprotein H gene. . p5.4\DamHI was constructed by deletion of the sequences from the BamHI site just downstream from tk to the BamHI site in the Blue Script SK polylinker.

pGCIII was assembled by ligating the ApaI/EcoRI fragment from ptk3.8 DEcoRI containing the region upstream from the tk gene, plus the HindIII/AApaI fragment from ptk5.4\DamHI, using a synthetic oligonucleotide to link the HindIII and EcoRI cleavage sites. resulting sequence between the EcoRI and HindIII sites is GAATTCGCGGCCGCAAGCTT.

The insertion vector pGC113 was derived from pGCIII by inserting an EcoRI/EcoRV fragment containing the 5'-end of the tk gene (bases 321-740 in the above DNA sequence), between the EcoRI and HindIII sites of pGCIII, using a synthetic oligonucleotide to linker the

EcoRV and HindIII sites. The resulting sequence between the EcoRV and HindIII sites was GGATCCAAGCTT, to regenerate the HindIII site and create a novel BamHI site.

The parent of the tk deletion virus was a highly virulent strain, UT88-1729 (obtained from Malcolm Martin, University of Tennessee Veterinary Teaching Hospital, Knoxville, Tennessee). Viral DNA was prepared from sodium dodecyl sulfate-proteinase K treated cytoplasmic nucleocapsids by the method of Walboomers and Scheggett (Virology, 74, 256-258, 1976), and described above. Using the transfection protocol described above, FHV DNA plus pGC113 DNA was transfected into CRFK cells. A thymidine kinase negative plaque was isolated by thymidine arabinoside selection.

The resulting virus, designated FHV-113, contains a tk deletion. Its DNA, analyzed by restriction enzyme EcoRI, is shown in Fig. 1 and its tk phenotype is demonstrated in Fig. 2.

Example 2 Construction of a FHV expressing FeLV gp85

10

15

20

25

30

35

The plasmid pON1 contains an E. coli beta galactosidase gene and SV40 polyadenylation signal (Spaete, et al., J. Virol., 56, 135-143, 1985) and was obtained from Ed Mocarski, Stanford University. pON-CMVIE, described earlier, contains the PstI/SocII fragment of the human cytomegalovirus major immediate early promoter in pON1.

Sequences from the feline leukemia virus A subgroup (strain Glasgow-1 genome are cloned in the plasmid pFGA-5, obtained from Dr. James Neil, University of Glasgow. The construction of this clone, its restriction enzyme cleavage map, and relevant DNA sequence is described in Stewart, et al., J. Virol., 58, 825-834, 1986. The env gene was isolated as a PstI/PstI fragment, inserted into pUC19 (Pharmacia, Piscataway, N.J.) to obtain convenient flanking restriction sites (XbaI on the 5'-end, SphI, which can be made blunt with T4 DNA polymerase, on the 3'-end). Plasmid pCMVIE-FeLVenv was made by replacing the beta-galactosidase gene of pON-IECMV with FeLV env.

The CMV promoter - FeLV env expression cassette was removed from pCMVIE-FeLVenv and inserted into the tk insertion vector pGCll3 (Example 1) to give plasmid pGCll4. This plasmid contains the env transcription unit in the same orientation as the FHV tk gene. This plasmid was co-transfected with FHV UT88-1729 DNA into CRFK cells, and araT resistant plaques selected, as described above. The

-23-

resulting virus was called FHV-114. FHV 114 directs expression of FeLV gp85 in infected CRFK cells, as determined by Western blotting or immunoprecipitation with various anti-FeLV monoclonal or polyclonal antisera (obtained from Dr. Niels Pedersen, U. California, Davis). Intranasal administration of this virus to cats was found to induce antibodies to FeLV.

Example 3 Vaccination of cats with recombinant FHV vaccine

10

15

20

25

FHVAll3 as unformulated material, i.e., medium from cells infected with FHVAll3, was administered to cats by intranasal inoculation. Unlike the parent virus UT88-1729, which caused severe or even/lethal disease, the FHVAll3-inoculated cats did not show signs of illness. These cats developed antibodies that neutralized FHV. When these cats were challenged with virulent FHV strains, they did not develop respiratory symptoms as did unvaccinated cats. This demonstrates that thymidine kinase negative FHVs are avirulent and raise a protective immune response, neither of which was known before this invention.

Those skilled in the art will recognize, in light of the present disclosure, that the methods of the claimed invention can be carried out in a variety of ways. The exemplifications of the invention described above merely illustrate the invention and in no way limit the scope of the accompanying claims. Other modifications of the above-described embodiments of the invention that are obvious to those skilled in the art are intended to be within the scope of the following claims. Particularly well known are methods for formulating and administering vaccines comprising live attenuated viruses such as those of the instant invention.

-24-

CLAIMS

1. A method for isolating thymidine kinase-encoding DNA from a herpes virus that comprises:

.

- (a) mixing thymidine kinase-encoding DNA of a herpes virus with a mixture of primers, said mixture of primers containing primers that encode, in all variations possible due to the degeneracy of the genetic code, all variations of a first sequence of conserved amino acids of herpes virus thymidine kinase proteins, and primers that encode, in all variations possible due to the degeneracy of the genetic code, sequences complementary to sequences that encode all variations of a second sequence of conserved amino acids of herpes thymidine kinase proteins;
- (b) amplifying the thymidine kinase-encoding DNA by the polymerase chain reaction; and
- 15 (c) isolating the amplified DNA.
 - 2. The method of Claim 1 that further comprises:
 - (a) hybridizing said amplified DNA to a herpes virus genomic library that comprises recombinant DNA vectors that comprise herpes virus genomic DNA; and
 - (b) isolating said vectors that hybridize.
 - 3. The method of Claim 1, wherein said sequences of conserved amino acids are selected from the group consisting of DGPHG and DGAYG, GKTT and GKST, DRHP and DRHA, RPGE and RAGE, and DTLF, wherein A is alanine, D is aspartic acid, E is glutamic acid, F is phenylalanine, G is glycine, H is histidine, K is lysine, L is leucine, P is proline, R is arginine, S is serine, T is threonine, and Y is tyrosine.

30

25

20

10

- 4. The method of Claim 1, wherein said variations of a first sequence of conserved amino acids are DGPHG and DGAYG and said variations of a second sequence of conserved amino acids are DRHP and DRHA, and wherein A is alanine, D is aspartic acid, G is glycine, H is histidine, P is proline, R is arginine, and Y is tyrosine.
- 5. A herpes virus thymidine kinase-encoding DNA isolated by the method of Claim 1.

- 6. A recombinant DNA molecule comprising a feline herpes virus thymidine kinase-encoding DNA.
- 5 7. The recombinant DNA molecule of claim 6 wherein the thymidine kinase-encoding DNA comprises the following DNA sequence:

5'-AT GGCGAGTGGA ACCATCCCCG TTCAGAATGA AGAGATTATT AAATCACAGG TGAATACTGT 10 CCGCATTTAC ATAGATGGTG CCTATGGAAT AGGTAAGAGT TTAACGGCGA AGTACCTGGT CAGAGCGGAT GAAAATCGAC CGGGATATAC TTACTACTTC CCAGAACCAA TGCTATACTG GCGTAGTCTC TTTGAAACTG ATGTTGTCGG TGGTATCTAT GCCGTCCAGG ACCGGAAACG ACGTGGTGAA TTATCAGCTG AAGATGCTGC CTATATCACC GCCCACTATC AAGCAAGATT TGCCGCACCA 15 TACCTTCTTT TACATTCCAG ACTATCCACA ATAACAGGAT ATCAGAAAGT TGTATGTGAG GAACACCCCG ACGTGACCCT AATCATAGAT AGACACCCTC TCGCCTCTCT GGTCTGTTTC CCACTCGCAA GATATTTTGT GGGTGATATG ACTCTTGGGT CTGTACTTAG TCTAATGGCA ACACTTCCAC GAGAACCTCC TGGTGGAAAT CTAGTTGTAA CAACCTTGAA TATCGAGGAA CATTTGAAGC 20 GTCTCAGGGG ACGCTCAAGA ACCGGAGAAC AGATAGACAT GAAGCTAATT CACGCACTAC GCAATGTATA TATGATGTTG GTACATACTA AGAAATTTTT AACAAAAAT ACTAGTTGGC GTGATGGGTG GGGGAAGCTT AAAATTTTCT CCCACTATGA ACGGAATAGG CTCGTGGAAA CTACAATAGT TTCCGATTCG ACGGAGTCAG ATTTATGTGA CACATTATTC AGTGTTTTCA AAGCCCGGGA 25 GCTCTCCGAC CAAAATGGAG ATCTACTTGA CATGCATGCA TGGGTCCTCG ATGGACTTAT GGAAACCCTC CAAAATTTAC AGATCTTTAC TTTAAATCTG GAAGGAACCC CTGATGAATG TGCCGCCGCC TTGGGAGCAC TGAGACAAGA TATGGATATG ACATTTATAG CCGCATGTGA TATGCACCGT ATAAGTGAAG CCTTGACGAT ATACCATTAA-3'

30

- 8. The recombinant DNA molecule of Claim 7 wherein the DNA sequence is:
- 5'-GTATAACCAC AGATCTGTAT GTTCAACCTC ACGACGTTGA TGTCTTACTA
 GTGTATCCAT ATTTTGAAAA CGACACGTTT TCAGCTCAAT TAGAAAACAT

 ATACCACCCC CTTCTCCCTC AAATTGTATA GTACATACAC AATCAGTCGG
 CGACGACCCA AGTTAACCTC ACATGCTAGG TACACGCCCT TAGCCTTTTT
 AAGAGACTCT GCGGATACAG AGCCGCCCAA TAAACACTCG AGTCGGTCGG
 TATATACTCC ACTCGCAGAG GTCGAGGATA TATCGCGCTT GAGGACAGCA

-26-

TAAAAGCGAT TGTGGNATCG AATTCCAGCC CGGAGCCTCA ATCCGACACT GCGTCGTTGT TCACGTTTCA TCATACACAG ATCAGACGAT GGCGAGTGGA ACCATCCCCG TTCAGAATGA AGAGATTATT AAATCACAGG TGAATACTGT CCGCATTTAC ATAGATGGTG CCTATGGAAT AGGTAAGAGT TTAACGGCGA AGTACCTGGT CAGAGCGGAT GAAAATCGAC CGGGATATAC TTACTACTTC 5 CCAGAACCAA TGCTATACTG GCGTAGTCTC TTTGAAACTG ATGTTGTCGG TGGTATCTAT GCCGTCCAGG ACCGGAAACG ACGTGGTGAA TTATCAGCTG AAGATGCTGC CTATATCACC GCCCACTATC AAGCAAGATT TGCCGCACCA TACCTTCTTT TACATTCCAG ACTATCCACA ATAACAGGAT ATCAGAAAGT TGTATGTGAG GAACACCCCG ACGTGACCCT AATCATAGAT AGACACCCTC 10 TCGCCTCTCT GGTCTGTTTC CCACTCGCAA GATATTTTGT GGGTGATATG ACTCTTGGGT CTGTACTTAG TCTAATGGCA ACACTTCCAC GAGAAGCTCC TGGTGGAAAT CTAGTTGTAA CAACCTTGAA TATCGAGGAA CATTTGAAGC GTCTCAGGGG ACGCTCAAGA ACCGGAGAAC AGATAGACAT GAAGCTAATT CACGCACTAC GCAATGTATA TATGATGTTG GTACATACTA AGAAATTTTT 15 AACAAAAAT ACTAGTTGGC GTGATGGGTG GGGGAAGCTT AAAATTTTCT CCCACTATGA ACGGAATAGG CTCGTGGAAA CTACAATAGT TTCCGATTCG ACGGAGTCAG ATTTATGTGA CACATTATTC AGTGTTTTCA AAGCCCGGGA GCTCTCCGAC CAAAATGGAG ATCTACTTGA CATGCATGCA TGGGTCCTCG 20 ATGGACTTAT GGAAACCCTC CAAAATTTAC AGATCTTTAC TTTAAATCTG GAAGGAACCC CTGATGAATG TGCCGCCGCC TTGGGAGCAC TGAGACAAGA TATGGATATG ACATITATAG CCGCATGTGA TATGCACCGT ATAAGTGAAG CCTTGACGAT ATACCATTAA ACATTAGTGG TGTTCCCTAT TACCCCCCTG TGGTGAATGT GTGGAGGTCA GGGGATAATT GTATAATGAC CATCGTTTCA 25 TGAATAAAAT AACCGTGTGT GATGTGGATG TATTCATTAA TTGAATTTCT CTTCCGGTTT TAGATCTTTA TAAGCGTAAA ACTGGTGTTT TAAATCCAAG AGCCGGGTTC TTTGGAGGTT GGTCACATCA TCGCCACAGC CCGTGGATTC AAGCAATCTT ATGATGTGTT TGATAATATA CCTATCGATA TTCCTGATCA TTGTATCGAG GATGTTGACT GGTTACCGAT GATGGATAGA CCTGATGAGG 30 TGGCTGG-3

A feline herpes virus thymidine kinase-encoding DNA sequence that encodes the amino acid residue sequence, depicted from the amino to carboxy terminus:

35 MASGTIPVQN EEIIKSQVNT VRIYIDGAYG IGKSLTAKYL VRADENRPGY TYYFPEPMLY WRSLFETDVV GGIYAVQDRK RRGELSAEDA AYITAHYQAR FAAPYLLIHS RISTITGYQK VVCEEHPDVT LIIDRHPLAS LVCFPLARYF VGDMTLGSVL SLMATLPREP PGGNLVVTTL NIEEHLKRLR GRSRTGEQID

MKLIHALRNV YMMLVHTKKF LTKNTSWRDG WGKLKIFSHY ERNRLVETTI VSDSTESDLC DTLFSVFKAR ELSDQNGDLL DMHAWVLDGL METLQNLQIF TLNLEGTPDE CAAALGALRQ DMDMTFIAAC DMHRISEALT IYH

wherein, Alanine is A, Arginine is R, Asparagine is N, Aspartic acid is D, Cysteine is C, Glutamine is Q, Glutamic acid is E, Glycine is G, Histidine is H, Isoleucine is I, Leucine is L, Lysine is K, Methionine is M, Phenylalanine is F, Proline is P, Serine is S, Threonine is T, Tryptophan is W, Tyrosine is Y, and Valine is V.

- 10 10. A method for constructing recombinant thymidine kinase-negative feline herpes viruses that comprises:
 - (a) constructing a recombinant DNA vector that encodes a non-functional feline herpes virus thymidine kinase gene;
- (b) transfecting a feline herpes virus-permissive host cell with a mixture of thymidine kinase-positive feline herpes virus and said vector that encodes a non-functional thymidine kinase gene;
 - (c) isolating the progeny virus;
 - (d) infecting a feline herpes virus-permissive host cell with said progeny virus to produce thymidine kinase-negative virus; and
- 20 (e) isolating said thymidine kinase-negative virus.
 - 11. The method of Claim 10, wherein said amplifying step comprises culturing said infected host cells in the presence of araT.
- 25 12. The method of Claim 10, wherein said non-functional thymidine kinase comprises a portion of the DNA sequence:

WO 90/01547

TGGTATCTAT GCCGTCCAGG ACCGGAAACG ACGTGGTGAA TTATCAGCTG AAGATGCTGC CTATATCACC GCCCACTATC AAGCAAGATT TGCCGCACCA TACCTTCTTT TACATTCCAG ACTATCCACA ATAACAGGAT ATCAGAAAGT TGTATGTGAG GAACACCCCG ACGTGACCCT AATCATAGAT AGACACCCTC 5 TCGCCTCTCT GGTCTGTTTC CCACTCGCAA GATATTTTGT GGGTGATATG ACTCTTGGGT CTGTACTTAG TCTAATGGCA ACACTTCCAC GAGAACCTCC TGGTGGAAAT CTAGTTGTAA CAACCTTGAA TATCGAGGAA CATTTGAAGC GTCTCAGGGG ACGCTCAAGA ACCGGAGAAC AGATAGACAT GAAGCTAATT CACGCACTAC GCAATGTATA TATGATGTTG GTACATACTA AGAAATTTTT 10 AACAAAAAT ACTAGTTGGC GTGATGGGTG GGGGAAGCTT AAAATTTTCT CCCACTATGA ACGGAATAGG CTCGTGGAAA CTACAATAGT TTCCGATTCG ACGGAGTCAG ATTTATGTGA CACATTATTC AGTGTTTTCA AAGCCCGGGA GCTCTCCGAC CAAAATGGAG ATCTACTTGA CATGCATGCA TGGGTCCTCG ATGGACTTAT GGAAACCCTC CAAAATTTAC AGATCTTTAC TTTAAATCTG GAAGGAACCC CTGATGAATG TGCCGCCGCC TTGGGAGCAC TGAGACAAGA 15 TATGGATATG ACATTTATAG CCGCATGTGA TATGCACCGT ATAAGTGAAG CCTTGACGAT ATACCATTAA ACATTAGTGG TGTTCCCTAT TACCCCCCTG TGGTGAATGT GTGGAGGTCA GGGGATAATT GTATAATGAC CATCGTTTCA TGAATAAAAT AACCGTGTGT GATGTGGATG TATTCATTAA TTGAATTTCT 20 CTTCCGGTTT TAGATCTTTA TAAGCGTAAA ACTGGTGTTT TAAATCCAAG AGCCGGGTTC TTTGGAGGTT GGTCACATCA TCGCCACAGC CCGTGGATTC AAGCAATCTT ATGATGTGTT TGATAATATA CCTATCGATA TTCCTGATCA TTGTATCGAG GATGTTGACT GGTTACCGAT GATGGATAGA CCTGATGAGG TGGCTGG-3

25

13. The method of Claim 10, wherein said non-functional thymidine kinase gene is a segment of colinear feline herpes virus genomic DNA from which DNA necessary for the expression of thymidine kinase has been deleted.

30

14. The method of Claim 13, wherein said DNA necessary for the expression of thymidine kinase is the thymidine kinase gene.

15. A thymidine kinase-negative feline herpes virus.

35

16. A recombinant thymidine kinase-negative feline herpes virus according to Claim 15.

-29-

- 17. A recombinant thymidine kinase-negative feline herpes virus according to Claim 16 comprising a non-functional thymidine-kinase gene comprising a portion of the DNA sequence of Claim 12.
- 5 18. A vaccine comprising the thymidine kinase-negative feline herpes virus of claim 15.
 - 19. A vaccine comprising the thymidine kinase-negative feline herpes virus of claim 16.

10

- 20. A vaccine comprising the thymidine kinase-negative feline herpes virus of claim 17.
- 21. A recombinant thymidine kinase-negative feline herpes virus produced by the method of Claim 10.
 - 22. The recombinant feline herpes virus of Claim 16 that further comprises an expression cassette that comprises a promoter that can drive expression of a gene product in feline herpes virus-infected cells and a coding sequence positioned for expression from said promoter.
 - 23. The recombinant feline herpes virus of Claim 22, wherein said promoter is a herpes virus promoter.

25

20

24. The recombinant feline herpes virus of Claim 23, wherein said promoter is selected from the group consisting of the herpes simplex alpha-4, cytomegalovirus immediate early, and feline herpes virus thymidine kinase promoters.

30

- 25. The recombinant feline herpes virus of Claim 24, wherein said promoter is the cytomegalovirus immediate early promoter.
- 26. The recombinant feline herpes virus of Claim 22, wherein said coding sequence encodes a viral gene product.
 - 27. The recombinant feline herpes virus of Claim 26 wherein said gene product is selected from the group consisting of feline leukemia

virus, feline infectious peritonitis (FIP) virus, calicivirus, rabies virus, feline immunodeficiency virus (FIV), feline parvovirus (panleukopenia virus), and feline <u>Chlamydia</u>;

- 5 28. The recombinant feline herpes virus of Claim 26, wherein said viral gene product is a gene product of feline leukemia virus.
- 29. The recombinant feline herpes virus of Claim 28, wherein said gene product is selected from the envelope, gag, and pol gene products.
 - 30. The recombinant feline herpes virus of Claim 29 wherein said gene product is a secreted envelope gene product.
- 15 31. A vaccine comprising the recombinant feline herpes virus of claim 22.
 - 32. A vaccine comprising the recombinant feline herpes virus of claim 30.
 - 33. A recombinant DNA molecule that comprises the thymidine kinase gene promoter of feline herpes virus.
- 34. The recombinant DNA molecule of Claim 33 that comprises the DNA sequence:
 - 5'-CAATAAACACTCGAGTCGGTCGGTATATACTCCACTCGCAGAGGTCGAGGATATAT.
 - 35. The recombinant DNA molecule of Claim 34 that comprises the DNA sequence:
- 5'-GTATAACCAC AGATCTGTAT GTTCAACCTC ACGACGTTGA TGTCTTACTA
 GTGTATCCAT ATTTTGAAAA CGACACGTTT TCAGCTCAAT TAGAAAACAT
 ATACCACCCC CTTCTCCCTC AAATTGTATA GTACATACAC AATCAGTCGG
 CGACGACCCA AGTTAACCTC ACATGCTAGG TACACGCCCT TAGCCTTTTT
 AAGAGACTCT GCGGATACAG AGCCGCCCAA TAAACACTCG AGTCGGTCGG
 TATATACTCC ACTCGCAGAG GTCGAGGATA TATCGCGCTT GAGGACAGCA
 TAAAAGCGAT TGTGGNATCG AATTCCAGCC CGGAGCCTCA ATCCGACACT
 GCGTCGTTGT TCACGTTTCA TCATACACAG TCAGACG-3'.

FIGURE 1

FIGURE 2

INTERNATIONAL SEARCH REPORT

International Application No PCT/US 89/03289

I. CLASS	IFICATION OF SUBJECT MATTER (it several classification	on symbols apply, indicate all) *				
According to International Patent Classification (IPC) or to both National Classification and IPC C 12 N 15/10, C 12 N 15/38, C 12 N 15/86, A 61 K 39/245, IPC 39/12, 39/21, 39/285						
II. FIELD	SEARCHED					
	Minimum Documentation	n Searched 7				
Classification	on System Class	ification Symbols				
IPC ⁵	C 12 N, A 61 K		·			
	Documentation Searched other than & to the Extent that such Documents are !					
	MENTS CONSIDERED TO BE RELEVANT		I Parlament to Claim No. 12			
Category *	Citation of Document, 11 with Indication, where appropria	ite, of the relevant passages 12	Relevant to Claim No. 13			
х	EP, A, 0216564 (CETUS CORP. see example 5; claims) 1 April 1987,-	10-32			
¥	WO, A, 87/04463 (SYNTRO COR 30 July 1987, see examp		10-32			
Х	EP, A, 0251534 (MERCK & CO. 1988, see page 6, lines		5			
Α	Proc. Natl. Acad. Sci, USA, September 1984, (US) M.F. Shih et al.: "Expr hepatitis B virus S gen simplex virus type 1 ve alpha- and beta-regulat chimeras", pages 5867-5 see page 5867	ression of ne by herpes ectors carrying red gene				
A	EP, A, 0201184 (CETUS CORP. 1986, see page 5, colum column 8, line 19 (cited in the application)	nn 7, line 48 -	1-4			
"A" doc con "E" earl filin "L" doc whin cita "O" doc oth "P" doc late IV. CERT	ument defining the general state of the art which is not sidered to be of particular relevance er document but published on or after the international g date ument which may throw doubts on priority claim(s) or his cited to establish the publication date of another ition or other special reason (as specified) ument referring to an oral disclosure, use, exhibition or or means under the priority date claimed "" IFICATION Date of the international Search Date	T" later document published after to priority date and not in conficited to understand the principl invention X" document of particular relevant cannot be considered novel or twoive an inventive step Y" document of particular relevant cannot be considered to involve document is combined with one ments, such combination being in the art. A" document member of the same	ct with the application but e or theory underlying the ce; the claimed invention cannot be considered to ce; the claimed invention en inventive step when the or more other such docu- obvious to a person skilled patent family			
	4th November 1989	2 9, 12. 89				
Internation	al Searching Authority EUROPEAN PATENT OFFICE	gnature of Authorized Officer	F.M. VRIJDAG			

ategory *	III. DOCUMENTS CONSIDERED TO BE RELEVANT (CONTINUED FROM THE SECOND SHEET) Lategory 1 Citation of Document, with indication, where appropriate, of the relevant passages Relevant to					
	and appropriate, of the relevant passages	Relevant to Claim N				
A	Chemical Abstracts, vol. 105, no. 23, 8 December 1986, (Columbus, Ohio, US), P.A. Rota et al.: "Physical characteri- zation of the genome of feline herpesvirus-1", see page 136, abstract 203931p & Virology, 1986, 154(1), 168-79					
P X		1				
	Journal of Virology, vol. 63, no. 8, August 1989, American Soc. for Microbiology (US) J.H.Nunberg et al.: "Identification of the thymidine kinase gene of feline herpesvirus: use of degenerate oligo- nucleotides in the polymerase chain reaction to isolate herpesvirus gene homologs", pages 3240-3249, see page 3240	1-32				
ŀ						
	-					
ļ	•					
! !						
i						
į						
1						
ļ						
ļ		•				
	•					
- [•					

Form PCT ISA:210 (extra sheet) (January 1965)

ANNEX TO THE INTERNATIONAL SEARCH REPORT ON INTERNATIONAL PATENT APPLICATION NO.

US 8903289 SA 30853

This annex lists the patent family members relating to the patent documents cited in the above-mentioned international search report. The members are as contained in the European Patent Office EDP file on 19/12/89

The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

Patent document cited in search report	Publication date		Patent family member(s)	
EP-A- 0216564	01-04-87	AU-A- JP-A-	6241686 62151186	12-03-87 06-07 - 87
WO-A- 8704463	30-07-87	AU-A- EP-A- JP-T- FR-A-	7026687 0256092 63502482 2601689	14-08-87 24-02-88 22-09-88 22-01-88
EP-A- 0251534	07-01-88	AU-A- JP-A- ZA-A-	7449287 63012277 8704434	24-12-87 19-01-88 21-12-87
EP-A- 0201184	12-11-86	US-A- AU-B- AU-A- AU-A- CA-A- EP-A- JP-A- JP-A-	4683202 586233 5532286 5532386 1237685 0200362 62000281 61274697	28-07-87 06-07-89 02-10-86 02-10-86 07-06-88 05-11-86 06-01-87 04-12-86

3