Année Universitaire 2015-2016

Corrigé de l'Examen de Rattrapage de Programmation Linéaire

Exercice 1 (12 points) Considérons le problème linéaire suivant :

$$\max \quad Z = 3x_1 + x_2 - 2x_3$$

$$x_1 + 2x_2 \ge 10$$

$$3x_1 - x_2 + x_3 = 7$$

$$x_1 + 3x_3 \le 8$$

$$x_3 \le 2$$

$$x_2, x_3 > 0$$
(1)

- 1. Écrire le problème (1) sous forme standard
- 2. Résoudre le problème (1)
- 3. Écrire le problème Dual noté (D) du problème (1).
- 4. Déduire la solution Optimale du problème (D) si elle existe.

Corrigé de l'exercice 1

1. Comme la variable $x_1 \in \mathbb{R}$, alors on fait le changement de variable suivant :

$$x_1 = z_1 - z_2, \quad z_1 \ge 0, \quad z_2 \ge 0.$$

Le problème (1) s'écrit alors sous la forme

$$\max \quad Z = 3z_1 - 3z_2 + x_2 - 2x_3$$

$$z_1 - z_2 + 2x_2 \ge 10$$

$$3z_1 - 3z_2 - x_2 + x_3 = 7$$

$$z_1 - z_2 + 3x_3 \le 8$$

$$x_3 \le 2$$

$$z_1, z_2, x_2, x_3 \ge 0$$

$$(2)$$

Le problème standard associé au problème (2) est

$$\max \quad Z = 3z_1 - 3z_2 + x_2 - 2x_3$$

$$z_1 - z_2 + 2x_2 - x_4 = 10$$

$$3z_1 - 3z_2 - x_2 + x_3 = 7$$

$$z_1 - z_2 + 3x_3 + x_5 = 8$$

$$x_3 + x_6 = 2$$

$$z_1, z_2, x_2, x_3, x_4, x_5, x_6 \ge 0$$
(3)

2. On peut résoudre le problème (1) par la méthode des deux phases. La forme auxiliaire associée au problème (3) est :

$$\max \quad Z = -x_7 - x_8$$

$$z_1 - z_2 + 2x_2 - x_4 + x_7 = 10$$

$$3z_1 - 3z_2 - x_2 + x_3 + x_8 = 7$$

$$z_1 - z_2 + 3x_3 + x_5 = 8$$

$$x_3 + x_6 = 2$$

$$z_1, z_2, x_2, x_3, x_4, x_5, x_6 \ge 0$$

$$(4)$$

Phase I

Itération 1

		c	0	0	0	0	0	0	0	-1	-1		
		X	z_1	z_2	x_2	x_3	x_4	x_5	x_6	x_7	x_8		
c_B^T	Base	b	a_1	a_2	a_3	a_4	a_5	a_6	a_7	a_8	a_9	θ	
-1	a_8	10	1	-1	2	0	-1	0	0	1	0	10	
-1	a_9	7	3	-3	-1	1	0	0	0	0	1	7/3	\rightarrow
0	a_6	8	1	-1	0	3	0	1	0	0	0	8	
0	a_7	2	0	0	0	1	0	0	1	0	0	/	
Z=	z=-17		-4	4	-1	-1	1	0	0	0	0		
,													•

Itération 2

		С	0	0	0	0	0	0	0	-1	-1		
		X	z_1	z_2	x_2	x_3	x_4	x_5	x_6	x_7	x_8		
c_B^T	Base	b	a_1	a_2	a_3	a_4	a_5	a_6	a_7	a_8	a_9	θ	
-1	a_8	23/3	0	0	7/3	-1/3	-1	0	0	1	-1/3	23/7	-
0	a_1	7/3	1	-1	-1/3	1/3	0	0	0	0	1/3	/	
0	a_6	17/3	0	0	1/3	8/3	0	1	0	0	-1/3	17	
0	a_7	2	0	0	0	1	0	0	1	0	0	/	
z=	-23/3	Е	0	0	-7/3	1/3	1	0	0	0	7/3		
					1								-

Itération 3

		c	0	0	0	0	0	0	0	-1	-1
		X	z_1	z_2	x_2	x_3	x_4	x_5	x_6	x_7	x_8
c_B^T	Base	b	a_1	a_2	a_3	a_4	a_5	a_6	a_7	a_8	a_9
0	a_3	23/3	0	0	1	-1/7	-3/7	0	0	3/7	-1/7
0	a_1	24/7	1	-1	0	2/7	-1/7	0	0	1/7	2/7
0	a_6	32/7	0	0	0	19/7	1/7	1	0	-1/7	-2/7
0	a_7	2	0	0	0	1	0	0	1	0	0
Z	=0	Е	0	0	0	0	0	0	0	1	1

Le critère d'optimalité est vérifié, la solution courante $x=(\frac{24}{7},0,\frac{23}{7},0,0,\frac{32}{7},2)$ est une solution optimale pour le problème (4), avec Z=0. On utilise alors cette solution dans la phase II.

Phase II

Itération 1

		c	3	-3	1	-2	0	0	0		
		х	z_1	z_2	x_2	x_3	x_4	x_5	x_6		
c_B^T	Base	b	a_1	a_2	a_3	a_4	a_5	a_6	a_7	θ	
1	a_3	23/3	0	0	1	-1/7	-3/7	0	0	/	
3	a_1	24/7	1	-1	0	2/7	-1/7	0	0	/	
0	a_6	32/7	0	0	0	19/7	1/7	1	0	32	_
0	a_7	2	0	0	0	1	0	0	1	/	
z=	95/7	Е	0	0	0	19/7	-6/7	0	0		
											•

Itération 2

		c	3	-3	1	-2	0	0	0
		X	z_1	z_2	x_2	x_3	x_4	x_5	x_6
c_B^T	Base	b	a_1	a_2	a_3	a_4	a_5	a_6	a_7
1	a_3	17	0	0	1	8	0	3	0
3	a_1	8	1	-1	0	3	0	1	0
0	a_5	32	0	0	0	19	1	7	0
0	a_7	2	0	0	0	1	0	0	1
z=41		Е	0	0	0	15	0	6	0

Le critère d'optimalité est vérifié, la solution $(z_1, z_2, x_2, x_3) = (8, 0, 17, 0)$ est une solution optimale pour le problème (2). La solution correspondante pour le problème (1) est alors

$$x = (x_1, x_2, x_3) = (8, 17, 0)$$
 et $Z^* = 41$

3. Le Problème dual du Problème (1) s'ecrit sous la forme :

min
$$W = 10y_1 + 7y_2 + 8y_3 + 2y_4$$

 $y_1 + 3y_2 + y_3 = 3$
 $2y_1 - y_2 \ge 1$
 $y_2 + 3y_3 + y_4 \ge -2$
 $y_1 \le 0, \quad y_2 \in \mathbb{R}, \quad y_3, y_4 \ge 0$ (5)

4. La solution optimale du problème dual (5) existe puisque le problème primal (1) possède une solution optimale finie. Soit $y = (y_1, y_2, y_3, y_4)$ la solution optimale du problème (5).

On a la 1^{ere} et la 4^{eme} contrainte du problème primal (1) ne sont pas saturées, alors la 1^{ere} et la 4^{eme} variables duales sont nulles :

$$y_1 = 0$$
 et $y_4 = 0$.

Et comme la 1^{ere} et la 2^{eme} variables du problème primal (1) à l'optimum sont strictement positives, alors la 1^{ere} et la 2^{eme} contraintes du problème dual (5) sont saturées. On aura alors le système suivant :

$$\left\{ \begin{array}{l} y_1 + 3y_2 + y_3 = 3 \\ 2y_1 - y_2 = 1 \end{array} \right. \Rightarrow \left\{ \begin{array}{l} 3y_2 + y_3 = 3 \\ -y_2 = 1 \end{array} \right. \Rightarrow \left\{ \begin{array}{l} y_2 = -1 \\ y_3 = 6 \end{array} \right.$$

Par conséquent, la solution optimale du problème dual (5) est :

$$y = (y_1, y_2, y_3, y_4) = (0, -1, 6, 0)$$
 et $W^* = 41$

Exercice 2 (8 points) Considérons le problème linéaire suivant :

$$\max c_B^T x_B + c_N^T x_N$$

$$A_B x_B + A_N x_N = b$$

$$x_B, x_N > 0$$
(6)

Soit $x_B \in \mathbb{R}^3$, $x_N \in \mathbb{R}^1$, $b \in \mathbb{R}^3$. La matrice A_B est inversible et vérifie la relation $LA_B = U$,

3

1. Montrer que pour la solution réalisable basique associée à la base A_B , on a $x_B = (3, 2, 4)^T$.

- 2. Montrer que la solution duale associée à la solution précédente est $y = (7, -10, -2)^T$
- 3. Pour quelles valeurs de c_N cette solution est-elle optimale?

Corrigé de l'exercice 2

1. On a

$$A_B x_B = b (7)$$

En multipliant l'equation (7) par L à gauche, on aura :

$$\begin{split} LA_B x_B &= Lb \\ \Rightarrow U x_B &= Lb \\ \Rightarrow \begin{pmatrix} 1 & 3 & -2 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 3 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \\ \Rightarrow \begin{pmatrix} x_1 + 3x_2 - 2x_3 = 1 \\ x_2 - x_3 = -2 \\ x_3 = 4 \\ \Rightarrow \begin{pmatrix} x_1 = 3 \\ x_2 = 2 \\ x_3 = 4 \\ \end{pmatrix} \end{split}$$

Par conséquent, $x_B = (3, 2, 4)^T$.

2. On a:

$$A_B^T y = c_B (8)$$

En posant

$$L^T z = y \tag{9}$$

dans l'equation (8), on aura :

$$A_B^T L^T z = c_B$$

$$\Rightarrow U^T z = c_B$$

$$\Rightarrow \begin{pmatrix} 1 & 0 & 0 \\ 3 & 1 & 0 \\ -2 & -1 & 1 \end{pmatrix} \begin{pmatrix} z_1 \\ z_2 \\ z_3 \end{pmatrix} = \begin{pmatrix} 1 \\ -3 \\ 2 \end{pmatrix}$$

$$\Rightarrow \begin{cases} z_1 = 1 \\ 3z_1 + z_2 = -3 \\ -2z_1 - z_2 + z_3 = 2 \end{cases}$$

Par conséquent, on aura $z^T = (1, -6, -2)^T$ que l'on remplace dans la relation (9) pour avoir :

$$\begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} = \begin{pmatrix} 1 & -2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ -6 \\ -2 \end{pmatrix} = \begin{pmatrix} 7 \\ -10 \\ -2 \end{pmatrix}$$

3. Pour que la solution précédente soit optimale, il faut que la relation suivante soit vérifiée :

$$A_N^T y \ge c_N$$

$$\Rightarrow (1, 0, 2) \begin{pmatrix} 7 \\ -10 \\ -2 \end{pmatrix} \ge c_N$$

$$\Rightarrow c_N \le 3$$