Computational Microelectronics Lecture 5 Diffusion

Sung-Min Hong (smhong@gist.ac.kr)
Semiconductor Device Simulation Laboratory
School of Electrical Engineering and Computer Science
Gwangju Institute of Science and Technology

Diffusion – Boundary Condition

Zero flux at top surface

- Let us assume the flux at the top surface vanishes.
 - -Then, the first row is modified.

$$\frac{1}{t_k - t_{k-1}} \begin{bmatrix} C(x_0, t_k) \\ C(x_1, t_k) \\ \vdots \\ C(x_{N-1}, t_k) \end{bmatrix} - \frac{1}{t_k - t_{k-1}} \begin{bmatrix} C(x_0, t_{k-1}) \\ C(x_1, t_{k-1}) \\ \vdots \\ C(x_{N-1}, t_{k-1}) \end{bmatrix}$$

$$= \frac{D}{(\Delta x)^2} \begin{bmatrix} -2 & 2 & \cdots & 0 \\ 1 & -2 & 1 & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 \end{bmatrix} \begin{bmatrix} C(x_0, t_k) \\ C(x_1, t_k) \\ \vdots \\ C(x_{N-1}, t_k) \end{bmatrix}$$

Integrated form

Original equation

$$\frac{\partial C}{\partial t} = D \frac{\partial^2 C}{\partial x^2}$$

- Integrated equation
 - Integrated over a certain range, $[x_-, x_+]$

$$\frac{\partial}{\partial t} \int_{x}^{x_{+}} C dx = D \frac{\partial C}{\partial x} \bigg|_{x_{+}} - D \frac{\partial C}{\partial x} \bigg|_{x_{-}}$$

Simulation results

- A similar problem for a half domain
 - Initially, a Dirac-delta-like boron profile with a dose of 1 X 10¹³ cm⁻²
 - -Thermal diffusion for 60 min at 1100 °C (D is 1.42 X 10⁻¹³ cm² sec⁻¹.)

HW#5

- Due: AM08:00, September 13
- Problem#1
 - Reproduce the graph in the last slide.

Diffusion – Multiple Species

Multiple dopants

- For example, boron and arsenic
 - We may have two approaches.
 - -1) Calculate each of them, individually.
 - -2) Calculate both of them, simultaneously.
 - In the second approach, the solution vector becomes twice larger.
- Arranging the unknown variables
 - -One possible implementation $[C_B(x_0)C_{AS}(x_0)C_B(x_1)C_{AS}(x_1) \dots C_B(x_{N-1})C_{AS}(x_{N-1})]^T$
 - -Another possible implementation $[C_B(x_0)C_B(x_1)...C_B(x_{N-1})C_{AS}(x_0)C_{AS}(x_1)...C_{AS}(x_{N-1})]^T$

Example) Boron & arsenic

- Initially, Gaussian profiles. Simulate 60-min-long anneal.
 - B: Peak at 0.5 μ m. Peak density is 1.0 X 10^{19} cm⁻³. Standard deviation is 50 nm. Diffusivity of 1.40 X 10^{-14} cm² sec⁻¹
 - As: Peak at 0.2 μ m. Peak density is 2.0 X 10^{20} cm⁻³. Standard deviation is 250 nm. Diffusivity of 1.43 X 10^{-15} cm² sec⁻¹

HW#5

- Problem#2
 - Draw the final dopant profiles in the linear-linear scale.
 - Draw the same dopant profiles in the semi-logarithmic scale.

Diffusion – Electric Field

Drift

- Up to now, we have considered only the diffusion term.
 - -The flux was written as (# cm⁻² sec⁻¹)

$$\mathbf{F}_C = -D\nabla C$$

 If we consider a charged dopant ion, the drift should be also considered.

$$\mathbf{F}_C = -D\nabla C + C\mathbf{v}$$

The drift velocity of a positively charged dopant ion is given as $\mathbf{v} = \mu \mathbf{E}$. (μ is the mobility.) For a negatively charged one, $\mathbf{v} = -\mu \mathbf{E}$.

Alternative form

- Manipulation for combining two terms
 - -The flux is now given as

$$\mathbf{F}_C = -D\nabla C \pm \mu C\mathbf{E}$$

–Also, with the electrostatic potential, $\phi(\mathbf{r})$, it can be written as $\mathbf{E} = -\nabla \phi$

- Morever, we adopt the Einstein relation, $D=V_T\mu$. (V_T is the thermal voltage.)
- -Then,

$$\mathbf{F}_C = -D\left(\nabla C \pm \frac{1}{V_T}C\nabla\phi\right)$$

– It looks good, but how can we calculate ϕ ?

Approximation for ϕ

- At equilibrium, (How can we assume the equilibrium?)
 - We can express the electron density, n, as

$$n = n_{int} \exp \frac{\phi}{V_T}$$

-In other words, $\phi=V_T\log\frac{n}{n_{int}}$. Then, $abla\phi=V_T V\left(\log\frac{n}{n_{int}}\right)$

$$abla \phi = V_T \nabla \left(\log \frac{n}{n_{int}} \right)$$

- By using the above expression, we have

$$\mathbf{F}_{C} = -D \left[\nabla C \pm C \nabla \left(\log \frac{n}{n_{int}} \right) \right]$$

Approximation for ϕ

• Finally,

$$\mathbf{F}_C = -DC \left[\nabla \log C \pm \nabla \left(\log \frac{n}{n_{int}} \right) \right]$$

- Well, instead of ϕ , now we have n.
- In a rigorous sense, we must calculate n. (However, it costs.)
- Under the charge neutrality at equilibrium,

$$N_D^+ + p = N_A^- + n$$
$$np = n_{int}^2$$

Thank you!