IndProp: Inductively Defined Propositions (IndProp.v)

Keywords

• Inductive Inductive declaration, where each constructor corresponds to an inference rule

Tactics

- inversion E as [| n' E'].
- inversion
 - applied to equalities: discriminate and injection (also does necessary intros + rewrite)
 - applied to analyze evidence for inductively defined propositions
- induction E as [|n'|E'|IH]. induction on E which is an inductively defined proposition
- Calling destruct has the effect of replacing all occurrences of the property argument by the values that correspond to each constructor.
- rewrite H in *: *

Defintions and Theorems

Inductively Defined Propositions

- Inductive even : nat -> Prop := | ev_0 : even 0 | ev_SS (n : nat) (H : even n) : even (S (S n)).
- Theorem even_4 : even 4. Use apply with the rule names
- Theorem even_4': even 4. Use function application syntax
- Theorem ev_plus4 : forall n, even n -> even (4 + n).

https://stackedit.io/app# 1/4

• Theorem ev_double : forall n, even (double n).

Using Evidence in Proofs

- Theorem ev_inversion : forall (n : nat), even n -> (n = 0) \/ (exists n', n = S(S n') /\ even n').
- Theorem ev_minus2 : forall n, even n -> even (pred (pred n)).
- Theorem evSS_ev : forall n, even (S (S n)) -> even n.
- Theorem evSS_ev' : forall n, even (S (S n)) -> even n.
- Theorem one_not_even : ~ even 1.
- Theorem one_not_even' : ~ even 1.
- Theorem SSSSev_even : forall n, even $(S(S(S(S)))) \rightarrow even n$.
- Theorem even5_nonsense : even $5 \rightarrow 2 + 2 = 9$.

Induction on Evidence

- Lemma ev_even : forall n, even n -> exists k, n = double k.
- Theorem ev_even_iff : forall n, even n <-> exists k, n = double k.
- Theorem ev_sum : forall n m, even n -> even m -> even (n + m).
- Inductive even' : nat -> Prop :=
- Theorem even'_ev : forall n, even' n <-> even n.
- Theorem ev_ev__ev : forall n m, even (n + m) -> even n -> even m.
- Theorem ev_plus_plus : forall n m p, even (n + m) -> even (n + p) -> even (m + p).

Inductive Relations

- Module Playground.
- Inductive le : nat -> nat -> Prop := | le_n n : le n n | le_S n m (H: le n m) : le n (S m).
- Notation "m <= n" := (le m n).
- End Playground.
- Definition lt (n m:nat) := le (S n) m.
- Notation "m < n" := (lt m n).
- Inductive square_of : nat -> nat -> Prop := | sq n : square_of n (n * n).

https://stackedit.io/app# 2/4

- Inductive next_nat : nat -> nat -> Prop := | nn n : next_nat n (S n).
- Inductive next_even : nat -> nat -> Prop := \mid ne_1 n : even (S n) -> next_even n (S n) \mid ne_2 n (H : even (S (S n))) : next_even n (S (S n)).
- Lemma le_trans : forall m n o, m <= n -> n <= o -> m <= o.
- Theorem O_le_n : forall n, 0 <= n.
- Theorem n_le_m_Sn_le_Sm : forall n m, n <= m -> S n <= S m.
- Theorem Sn_le_Sm__n_le_m : forall n m, S n <= S m -> n <= m.
- Theorem le_plus_1 : forall a b, a <= a + b.
- Theorem plus_lt : forall n1 n2 m, n1 + n2 < m -> n1 < m $/\$ n2 < m.
- Theorem lt_S : forall n m, n < m -> n < S m.
- Theorem leb_complete : forall n m, n <=? m = true -> n <= m.
- Theorme leb_correct : forall n m, n <= m -> n <=? m = true.
- Theorem leb_true_trans : forall n m o, n <=? m = true -> m <=? o = true -> n <=? o = true.
- Theorem leb_iff : forall n m, n <=? m = true <-> n <= m.
- Module R.
- Inductive R : nat -> nat -> Prop
- Theorem R_equiv_fR : forall m n o, R m n o <-> fR m n = o.
- End R.
- Inductive subseq : list nat -> list nat -> Prop := | ss0 l : subseq [] l
 | ss1 h t1 t2 (H: subseq t1 t2) : subseq (h::t1) (h::t2) | ss2 l1 h2 t2
 (Ht: subseq l1 t2) : subseq l1 (h2::t2).
- Theorem subseq_refl : forall (1 : list nat), subseq 1 1.
- Theorem subseq_app : forall (11 12 13 : list nat), subseq 11 12 -> subseq 11 (12 ++ 13).
- Theorem subseq_trans : forall (11 12 13 : natlist), subseq 11 12 -> subseq 12 13 -> subseq 11 13.

Case Study: Regular Expression

- inductive reg_exp {T : Type} : Type := | EmptySet | EmptyStr | Char (t : T) | App (r1 r2 : reg_exp) | Union (r1 r2 : reg_exp) | Star (r : reg_exp).
- induction exp_match {T : Type} : list T -> reg_exp -> Prop
- Notation "s =~ re" := (exp_match s re) (at level 80).
- Example reg_exp_ex1 : [1] =~ Char 1.
- Example reg_exp_ex2 : [1; 2] =~ App (Char 1) (Char 2).

https://stackedit.io/app# 3/4

• Example reg_exp_ex3 : ~ ([1; 2] =~ Char 1). Using inversion, we can show that certain strings do not match a regular expression.

- Fixpoint reg_exp_of_list {T} (1 : list T)
- Lemma MStar1 : forall T s (re : @reg_exp T), s =~ re -> s =~ Star re.
- Lemma empty_is_empty : forall T (s : list T), ~ (s =~ EmptySet).
- Lemma MUnion': forall T (s : list T) (re1 re2 : @reg_exp T), s =~ re1 \/
 s =~ re2 -> s =~ Union re1 re2.
- Lemma MStar': forall T (ss: list (list T)) (re: reg_exp), (forall s,
 In s ss -> s =~ re) -> fold app ss [] =~ Star re.
- Lemma reg_exp_of_list_spec : forall T (s1 s2 : list T), s1 =~
 reg_exp_of_list s2 <-> s1 = s2.
- Fixpoint re_chars {T} (re : reg_exp) : list T
- Theorem in_re_match : forall T (s : list T) (re : reg_exp) (x : T), s =~
 re -> In x s -> In x (re_chars re).
- Fixpoint re_not_empty {T : Type} (re : @reg_exp T) : bool

Problems

- Theorem ev_ev_ev : forall n m, even(n + m) -> even n -> even m. induction En as [| n' Hn' IHn'] Why is IHn' : even(n' + m) -> even m?
- Theorem plus_lt : forall n1 n2 m, n1 + n2 < m -> n1 < m /\ n2 < m. Easy proof?</p>
- Theorem leb_complete : forall n m, n <=? m = true -> n <= m. Explain it.
- Theorem subseq_trans : forall (11 12 13 : natlist), subseq 11 12 -> subseq 12 13 -> subseq 11 13. How to prove it?

Written with StackEdit.

https://stackedit.io/app# 4/4