1. 4.6

Base case (A nonempty tree which height is 2):

#full node is 1

#leaves is 2

$$1 + 1 = 2$$

Induction case;

Assume there are two nonempty tree t_1 , t_2 , for some #leaves and #full nodes of t_1 are i,j and #leaves and #full nodes of t_2 are k,l, which i=j+1 and k=l+1.

Add t_1 , t_2 and two children of a new root.

Then #full node of new tree is j + l + 1, #leaves of new tree is i + kBecause i + k = j + 1 + l + 1 = j + l + 2, i + k = (j + l + 1) + 1 (by IH)

So $\#leaves = \#full\ nodes + 1$

2. 4.8

- I. Prefix
 - a. -**ab+cde
 - b. -
- Predecessor null
- Successor *
- c. c
 - Predecessor +
 - Successor d
- II. infix
- a. a * b * c + d e
- b.
- Predecessor d
- Successor e
- c. c
 - Predecessor *
 - Successor +
- III. Postfix
 - a. ab*cd+*e-
 - b. -
- Predecessor e
- Successor null
- c. c
 - Predecessor *
 - Successor d

3. 4.9

a.

b. Remove 3

Put 4 with his right child as new root and right child

Put original left child as new left child

2.1.4.5, 2.3.6,7

