Løsningsforslag for notatet om basiser MAT1110 vår 06

STEFFEN GRØNNEBERG*

8. februar 2006

Etter forespørsel om løsningsforslag grunnet manglende anledning til å være på forelesningen mandag 6. februar lagde jeg følgende notat. Merk at jeg skriver kolonnevektorer som transponerte radvektorer.

Oppgave 1

Merk at $\vec{b}=[b_1,b_2,\ldots,b_n]^T\in\mathbf{R}^n$ kan skrives som $b_1\vec{e_1}+b_2\vec{e_2}+\ldots+b_n\vec{e_n}$. Dermed utspenner vektorene hele \mathbf{R}^n . Anta så at x_1,\ldots,x_n er tall slik at $x_1\vec{e_1}+x_2\vec{e_2}+\ldots+x_n\vec{e_n}=\vec{0}$. Men $x_1\vec{e_1}+x_2\vec{e_2}+\ldots+x_n\vec{e_n}=[x_1,x_2,\ldots,x_n]^T=\vec{0}$ gir at alle x_1,\ldots,x_n er null.

Oppgave 2

Radreduserer matrisen som har $\vec{v_1}, \vec{v_2}, \vec{v_3}$ og $\vec{v_4}$ som kolonner:

Fra Teorem 1 i notatet er dermed $\vec{v_1}$, $\vec{v_2}$, $\vec{v_3}$ og $\vec{v_4}$ en basis for \mathbb{R}^4 .

Oppgave 3

Radreduserer matrisen som har $\vec{v_1}, \vec{v_2}, \vec{v_3}$ og $\vec{v_4}$ som kolonner:

Fra algoritmen som brukes i beviset av Teorem 3 følger det at $\vec{v_1}$, $\vec{v_2}$ og $\vec{v_3}$ utspenner \mathbf{R}^3 .

^{*}steffeng@math.uio.no

Oppgave 4

La $T: \mathbf{R}^n \to \mathbf{R}^m$ være definert som i slutten av notatet. Anta $\vec{a}, \vec{b} \in \mathbf{R}^n$ og $s, t \in \mathbf{R}$. Da finnes $x_1, \ldots, x_n \in \mathbf{R}$ og $y_1, \ldots, y_n \in \mathbf{R}$ slik at

$$\vec{a} = \sum_{i=1}^{n} x_i \vec{v_i} = x_1 \vec{v_1} + \ldots + x_n \vec{v_n}$$

$$\vec{b} = \sum_{i=1}^{n} y_i \vec{v_i} = y_1 \vec{v_1} + \ldots + y_n \vec{v_n}$$

siden $\{\vec{v_1}, \dots, \vec{v_n}\}$ er en basis for \mathbf{R}^n . Siden \vec{a}, \vec{b} og s, t var vilkårlig valgt er avbildningen T lineær hvis $T(s\vec{a}+t\vec{b})=sT(\vec{a})+tT(\vec{b})$. Dette er sant siden

$$T(s\vec{a}+t\vec{b}) = T\left(s\sum_{i=1}^{n} x_{i}\vec{v_{i}} + t\sum_{i=1}^{n} y_{i}\vec{v_{i}}\right) = T\left(\sum_{i=1}^{n} (sx_{i} + ty_{i})\vec{v_{i}}\right) = \sum_{i=1}^{n} (sx_{i} + ty_{i})\vec{w_{i}} = sT(\vec{a}) + tT(\vec{b}),$$

hvor nest siste likhet følger fra definisjonen til T. Videre er $\vec{v_i} = 0\vec{v_1} + \ldots + 1\vec{v_i} + \ldots + 0\vec{v_n}$, og dermed er $T(\vec{v_i}) = \vec{w_i}$ per definisjon av T.

Oppgave 5

Vektorene $\vec{v_1}$, $\vec{v_2}$, $\vec{v_3}$ er lineært avhengige fra

ans =

Så $\vec{v_3} = \vec{v_1} + 2\vec{v_2}$. Dermed utspenner $\{\vec{v_1}, \vec{v_2}, \vec{v_3}\}$ bare et todimensjonalt plan, og ikke hele \mathbf{R}^3 . Anta at $T: \mathbf{R}^3 \to \mathbf{R}^3$ er en lineæravbildning med

$$T(\vec{v_1}) = w_1 = [1, 1, 1]^T, T(\vec{v_2}) = w_2 = [-1, 3, 4]^T \text{ og } T(\vec{v_3}) = w_3 = [1, 0, -1]^T.$$

Merk at $\vec{w_1}, \vec{w_2}, \vec{w_3}$ er lineært uavhengig. Fra lineariteten til T og den lineære avhengigheten til $\{\vec{v_1}, \vec{v_2}, \vec{v_3}\}$ følger det at

$$T(\vec{v_3}) = T(\vec{v_1} + 2\vec{v_2}) = T(\vec{v_1}) + 2T(\vec{v_2}) = \vec{w_1} + 2\vec{w_2} = [-1, 7, 9]^T \neq \vec{w_3}.$$

Dette er en motsigelse, og dermed må antagelsen om at T er en lineæravbildning være feil.

Oppgave 6

Anta at $T: \mathbf{R}^n \to \mathbf{R}^m$ er en lineæravbildning gitt av dens verdier på punktene $\vec{v_1}, \ldots, \vec{v_p}$ som er lineært avhengige. Velg så verdiene $\vec{w_1} = T(\vec{v_1}), \ldots, \vec{w_p} = T(\vec{v_p})$ slik at de er lineært uavhengige, (f.eks ved enhetsvektorene fra oppgave 1). Siden $\vec{v_1}, \ldots, \vec{v_p}$ er lineært uavhengige finnes ikke-nulle $x_1, \ldots, x_p \in \mathbf{R}^n$ slik at $\sum_{i=1}^p x_i \vec{v_i} = \vec{0}$. Fra den antatte lineariteten til T er dermed også $\sum_{i=1}^p x_i \vec{w_i} = \vec{0}$, som motsetter at $\vec{w_1}, \ldots, \vec{w_p}$ er lineært uavhengige.

Alternativ: Anta at $T: \mathbf{R}^n \to \mathbf{R}^m$ er en lineæravbildning gitt av dens verdier på punktene $\vec{v_1}, \dots, \vec{v_p}$. Hvis $\vec{v_1}, \dots, \vec{v_p}$ er lineært avhengige følger fra Teorem 7 i Lay at minst en av vektorene er en lineærkombinasjon av de andre. Dermed finnes en $1 \geq i \geq p$ slik at $\vec{v_i} = \sum_{k \neq i} x_k \vec{v_k}$ for skalarer x_k . Fra den antatte lineariteten til T er dermed $T(\vec{v_i}) = \sum_{k \neq i} x_k \vec{w_k}$. Velg dermed $\vec{w_i}$ forskjellig fra denne summen, og man får en motsetning.

Alternativ (muligens litt mer konstruktivt, men bruker bare teknikken til beviset av Teorem 7): Anta at $T: \mathbf{R}^n \to \mathbf{R}^m$ er en lineæravbildning gitt av dens verdier på punktene $\vec{v_1}, \dots, \vec{v_p}$. Hvis $\vec{v_1}, \dots, \vec{v_p}$ er lineært avhengige vil det eksistere $x_1, \dots, x_p \in \mathbf{R}$ som ikke alle er null, slik at $x_1 \vec{v_1} + \dots + x_p \vec{v_p} = \vec{0}$. Anta at $x_1 \neq 0$ (og re-indekser elementene hvis dette ikke er sant). Da er $\vec{v_1} = -\sum_{i=2}^p \frac{x_i}{x_1} \vec{v_i}$. La $T(\vec{v_i}) = \vec{v_i} \in \mathbf{R}^m$ være vilkårlige og gitt for $1 \leq i \leq n$. Fra den antatte lineariteten til $1 \leq n$, er

$$T(v_1) = T(-\sum_{i=2}^{p} \frac{x_i}{x_1} \vec{v_i}) = -\sum_{i=2}^{p} \frac{x_i}{x_1} \vec{w_i}.$$

Velg dermed $\vec{w_1}$ forskjellig fra denne summen, for eksempel $T(\vec{v_1}) = \vec{w_1} = -\sum_{i=2}^p (\frac{x_i}{x_1} + 1)\vec{w_i}$. Dette er en motsigelse, og dermed må antagelsen om at T er en lineæravbildning være feil.

Oppgave 7

Skriv A_p på redusert trappeform. Siden søylene er lineært uavhengige, er det et pivotelement i hver søyle, og den reduserte trappematrisen har derfor 1'ere på hoveddiagonalen. Fyll ut med søyler slik at den reduserte trappematrisen blir identitetsmatrisen. Bruk trappeoperasjonene i revers. Utvidelsen du nå har fått av A_p gir deg vektorene du er på jakt etter.

Alternativ: Anta $A_p = \{\vec{v_1}, \dots, \vec{v_p}\}$ er en lineært uavhengig mengde i \mathbf{R}^n . Hvis den utspenner \mathbf{R}^n er dette en basis. Anta dermed at dette ikke er tilfellet. Siden $\{\vec{v_1}, \dots, \vec{v_p}\}$ ikke utspenner \mathbf{R}^n kan man finne en vektor $\vec{v_{p+1}}$ som er lineært uavhengig av A_p . Definér $A_{p+1} = \{\vec{v_1}, \dots, \vec{v_p}, \vec{v_{p+1}}\}$, og sjekk om denne mengden utspenner \mathbf{R}^n (f.eks via radredusering). Hvis A_{p+1} ikke utspenner \mathbf{R}^n , fortsett rekursivt. Kall hver iterasjon A_{p+m} .

Prosessen må være endelig og slutte når p+m=n: Den lineære uavhengigheten gir pivotelementer til den radreduserte matrisen i hver søyle, og dermed blir denne radreduserte matrisen nettopp identitetsmatrisen når p+m=n. Tallet n kalles dimensjonen til \mathbf{R}^n , og er unikt nettopp av det foregående argumentet.

Oppgave 8

Anta at $\vec{v_1},\dots,\vec{v_p}$ er lineært uavhengige vektorer i \mathbf{R}^n , og la $\vec{w_1},\dots,\vec{w_p} \in \mathbf{R}^m$. Vil finne en $T:\mathbf{R}^n \to \mathbf{R}^m$ slik at T er en lineær avbildning og $T(\vec{v_1}) = \vec{w_1},\dots,T(\vec{v_n}) = \vec{w_n}$. Utvid samlingen med lineært uavhengig vektorer $\{\vec{v_1},\dots,\vec{v_p}\}$ til en basis for \mathbf{R}^n , hvis mulighet ble bevist i forrige oppgave. Kaller disse (eventuelle) nye elementene $\vec{v_{p+1}},\dots,\vec{v_n}$. Velg så vilkårlige elementer i \mathbf{R}^m som avbildningen T skal føre disse nye elementene til. Fra oppgave 4 vet vi at dette er en lineær avbildning med de ønskede egenskapene.