CS 730/730W/830: Intro AI

Adversarial Search

2 handouts: slides, asst 1 solution asst 1 due

EOLQs

Adversarial Search

- Another Type
- Minimax
- Tic-tac-toe
- **■** Improvements
- Break
- $\blacksquare \alpha$ - β Pruning
- $\blacksquare \alpha$ - β Pseudo-code
- Why α - β ?
- Progress
- \blacksquare EOLQs

Another Twist on Search

Adversarial Search

■ Another Type

- Minimax
- Tic-tac-toe
- **■** Improvements
- Break
- $\blacksquare \alpha$ - β Pruning
- $\blacksquare \alpha$ - β Pseudo-code
- Why α - β ?
- Progress
- EOLQs

- Shortest-path (M&C, vacuum, tile puzzle)
 - want least-cost path to goal at unkown depth
- \blacksquare Constraint satisfaction (map coloring, n-queens)
 - any goal that satisfies constraints (fixed depth)
- Combinatorial optimization (TSP, max-CSP)
 - want least-cost goal (fixed depth)
- Decisions with an adversary (chess, tic-tac-toe)
 - adversary might prevent path to best goal
 - want best assured outcome

Adversarial Search: Minimax

Adversarial Search

Another Type

Minimax

Tic-tac-toe

Improvements

Break α - β Pruning α - β Pseudo-code

Why α - β ?

Progress

EOLQs

Each *ply* corresponds to half a *move*.

Terminal states are labeled with value.

Can also bound depth and use a *static evaluation function* on non-terminal states.

Evaluation for Tic-tac-toe

Adversarial Search

- Another Type
- Minimax

■ Tic-tac-toe

- **■** Improvements
- Break
- $\blacksquare \alpha$ - β Pruning
- $\blacksquare \alpha$ - β Pseudo-code
- Why α - β ?
- Progress
- EOLQs

```
A 3-length is a complete row, column, or diagonal.
```

value of position $= \infty$ if win for me,

or $= -\infty$ if a win for you,

otherwise = # 3-lengths open for me -

3-lengths open for you

Tic-tac-toe: two-ply search

- Another Type
- Minimax
- Tic-tac-toe
- **■** Improvements
- Break
- $\blacksquare \alpha$ - β Pruning
- $\blacksquare \alpha$ - β Pseudo-code
- Why α - β ?
- Progress
- **■** EOLQs

Fig. 3.8 Minimax applied to tic-tac-toe (stage 1).

Tic-tac-toe: second move

Adversarial Search

- Another Type
- Minimax

■ Tic-tac-toe

- **■** Improvements
- Break
- $\blacksquare \alpha$ - β Pruning
- $\blacksquare \alpha$ - β Pseudo-code
- Why α - β ?
- Progress
- EOLQs

Fig. 3.9 Minimax applied to tic-tac-toe (stage 2).

Tic-tac-toe: third move

Adversarial Search

- Another Type
- Minimax

■ Tic-tac-toe

- **■** Improvements
- Break
- $\blacksquare \alpha$ - β Pruning
- $\blacksquare \alpha$ - β Pseudo-code
- Why α - β ?
- Progress
- EOLQs

Fig. 3.10 Minimax applied to tic-tac-toe (stage 3).

Improving the Search

- Another Type
- Minimax
- Tic-tac-toe
- Improvements
- Break
- $\blacksquare \alpha$ - β Pruning
- $\blacksquare \alpha$ - β Pseudo-code
- Why α - β ?
- Progress
- EOLQs

- partial expansion, SEF
- symmetry ('transposition tables')
- search more ply as we have time (De Groot figure)
- avoid unnecessary evaluations

Break

- Another Type
- Minimax
- Tic-tac-toe
- **■** Improvements
- Break
- $\blacksquare \alpha$ - β Pruning
- $\blacksquare \alpha$ - β Pseudo-code
- Why α - β ?
- Progress
- EOLQs

- asst 1 was due
- book
- asst 2 (theorem prover) going out on Wed. parse simple CFG.
- exams are during common exam time
- have web access? a clicker?

Which Values are Necessary?

- Another Type
- Minimax
- Tic-tac-toe
- **■** Improvements
- Break
- $\blacksquare \alpha$ - β Pruning
- $\blacksquare \alpha$ - β Pseudo-code
- Why α - β ?
- Progress
- \blacksquare EOLQs

α - β Pruning

Adversarial Search

- Another Type
- Minimax
- Tic-tac-toe
- **■** Improvements
- Break

\square α - β Pruning

- $\blacksquare \alpha$ - β Pseudo-code
- Why α - β ?
- Progress
- EOLQs

- α best outcome Max can force at previous decision on this path (init to $-\infty$)
- eta best outcome Min can force at previous decision on this path (init to ∞)

 α and β values are copied down the tree (but not up). Minmax values are passed up the tree, as usual.

Adversarial Search

- Another Type
- Minimax
- Tic-tac-toe
- Improvements
- Break
- $\blacksquare \alpha$ - β Pruning

$\square \alpha$ - β Pseudo-code

- Why α - β ?
- Progress
- EOLQs

```
Max-value (state, \alpha, \beta): when depth-cutoff (state), return SEF(state) for each child of state \alpha \leftarrow \max(\alpha, \text{ Min-value (child, } \alpha, \beta)) when \alpha \geq \beta, return \alpha return \alpha
```

```
Min-value (state, \alpha, \beta):
when depth-cutoff (state), return SEF(state)
for each child of state
\beta \leftarrow \min(\beta, \text{Max-value (child, } \alpha, \beta))when \beta \leq \alpha, return \beta
return \beta
```


- Another Type
- Minimax
- Tic-tac-toe
- Improvements
- Break
- $\blacksquare \alpha$ - β Pruning
- $\square \alpha$ - β Pseudo- α
- Why α - β ?
- Progress
- EOLQs

Fig. 3.12 An example illustrating the alpha-beta search procedure.

Adversarial Search

■ Another Type

■ Minimax

■ Tic-tac-toe

■ Improvements

■ Break

 $\blacksquare \alpha$ - β Pruning

 $\blacksquare \alpha$ - β Pseudo-code

 \blacksquare Why α - β ?

■ Progress

■ EOLQs

Time complexity of α - β is about $O(b^{d/2})$

Progress on Games

Adversarial Search

■ Another Type

■ Minimax

■ Tic-tac-toe

■ Improvements

■ Break

 $\blacksquare \alpha$ - β Pruning

 $\blacksquare \alpha$ - β Pseudo-code

■ Why α - β ?

■ Progress

■ EOLQs

Computers best: chess, checkers, Othello, backgammon,

Scrabble

Computers competitive: bridge, crosswords, poker, small Go

Computers amateur: full Go

EOLQs

Adversarial Search

- Another Type
- Minimax
- Tic-tac-toe
- **■** Improvements
- Break
- $\blacksquare \alpha$ - β Pruning
- $\blacksquare \alpha$ - β Pseudo-code
- Why α - β ?
- Progress
- EOLQs

Please write down the most pressing question you have about the course material covered so far and put it in the box on your way out.

Thanks!