(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号 特開2002-234940 (P2002-234940A)

(43)公開日 平成14年8月23日(2002.8.23)

(51) Int.Cl.7

裁別記号

FI

テーマコート*(参考) 4 J 0 0 5

C 0 8 G 65/321

C 0 8 G 65/32

審査請求 未請求 請求項の数5 OL (全 10 頁)

(21)出顯番号	特顧2001-35018(P2001-35018)	(71) 出額人 000006264
		三菱マテリアル株式会社
(22)出顧日	平成13年2月13日(2001.2.13)	東京都千代田区大手町1丁目5番1号
		(72)発明者 白石 真也
		埼玉県大宮市北袋町1丁目297番地 三菱
		マテリアル株式会社総合研究所内
		(72)発明者 林 年治
		埼玉県大宮市北袋町1丁目297番地 三菱
		マテリアル株式会社総合研究所内
		(74)代理人 100085372
		弁理士 須田 正義
		Fターム(参考) 41005 AA04 BD05 BD08

(54) 【発明の名称】 ポリプロピレングリコール系化合物及びこの化合物を用いた分散剤

(57)【要約】

【課題】 分散媒の種類によりそれぞれ分散剤の選定を 行うことなく分散効果に優れ、耐熱性を有し、凝集の生 じない化合物及び分散剤を提供する。 【解決手段】 プロピレンオキシドを主骨格とし、アミノ基及び水酸基の加わった式(1)に示されるポリプロピレングリコール系化合物である。 【化11】

$$\begin{array}{c|c}
W \\
\downarrow \\
X_{5}-S_{1}+O-S_{1}+O+S_{2}+N-\{OC_{3}H_{5}\}_{Q}OH\}_{T} & ----- (1) \\
\downarrow & \downarrow & \downarrow \\
Y_{3-5} & U & H
\end{array}$$

但し、Xは炭素数1~10のアルコキシド基、ハロゲン 又はフェノキシド基、Yは水素、炭素数1~20のアル キル基又はフェニル基、W及びUは炭素数1~10のア ルコキシド基、ハロゲン、フェノキシド基、水素、炭素 数1~20のアルキル基又はフェニル基、pは0~10 の整数、qは5~400の整数、rは2~100の整 数、sは1~3の整数、tは0~10の整数である。

【特許請求の範囲】

【請求項1】 プロピレンオキシドを主骨格とした化合物であって、

前記プロピレンオキシドにアミノ基及び水酸基の加わっ

た次の式(1)に示されるポリプロピレングリコール系 化合物。

【化1】

但し、Xは炭素数1~10のアルコキシド基、ハロゲン 又はフェノキシド基、Yは水素、炭素数1~20のアル キル基又はフェニル基、W及びUは炭素数1~10のア ルコキシド基、ハロゲン、フェノキシド基、水素、炭素 数1~20のアルキル基又はフェニル基、pは0~10 の整数、qは5~400の整数、rは2~100の整 数、sは1~3の整数、tは0~10の整数である。 【請求項2】 プロピレンオキシドを主骨格とした化合物であって、

前記プロピレンオキシドにアミノ基及び水酸基の加わった次の式(2)に示されるポリプロピレングリコール系化合物。

【化2】

$$\begin{array}{c|c}
W & | \\
X - Si - (O - Si) + (CH_2) - (O - Z - N - (O C_3 H_6)_Q O H)_r & ----- (2) \\
V_{3-1} & U & H
\end{array}$$

但し、Xは炭素数1~10のアルコキシド基、ハロゲン 又はフェノキシド基、Yは水素、炭素数1~20のアル キル基又はフェニル基、W及びUは炭素数1~10のア ルコキシド基、ハロゲン、フェノキシド基、水素、炭素 数1~20のアルキル基又はフェニル基、pは0~10 の整数、gは5~400の整数、rは2~100の整

数、sは1~3の整数、tは0~10の整数であり、Zは次の式(3)及び式(4)で表される官能基である。なお、 Z_1 ~ Z_4 は水素又は炭素数1~20のアルキル基であり、iは1~10の整数、jは1~10の整数である。

【化3】

(化4)

$$\begin{pmatrix}
Z_2 \\
| \\
C - C \\
| \\
Z_1 & O
\end{pmatrix}_1 \begin{pmatrix}
Z_4 \\
| \\
C - \\
| \\
Z_3
\end{pmatrix}$$

----- (4

【請求項3】 プロピレンオキシドを主骨格とした化合物であって、

前記プロピレンオキシドにアミノ基及び水酸基の加わっ

た次の式(5)に示されるポリプロピレングリコール系 化合物。

【化5】

但し、Xは炭素数1~10のアルコキシド基、ハロゲン 又はフェノキシド基、Yは水素、炭素数1~20のアル キル基又はフェニル基、W及びUは炭素数1~10のア ルコキシド基、ハロゲン、フェノキシド基、水素、炭素 数1~20のアルキル基又はフェニル基、pは0~10 の整数、qは5~400の整数、rは2~100の整 数、sは1~3の整数、tは0~10の整数である。

【請求項4】 分子量が900~2000である請求 項1ないし3いずれか記載のポリプロピレングリコール 系化合物。

【請求項5】 請求項1ないし4いずれか記載のポリプロピレングリコール系化合物を用いた分散剤。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、電子材料分野等に使用される塗料、インキ、ペーストの原料として用いられるポリプロピレングリコール系化合物及びこの化合物を用いた分散剤に関する。更に詳しくは、樹脂ブラックマトリックス用黒色分散液、帯電防止ローラー用黒色分散液、ブラウン管用帯電防止塗料、電磁波遮蔽塗料、スクリーン印刷用ペースト、インクジェット用塗料等の原料として用いられるボリプロピレングリコール系化合物及びこの化合物を用いた分散剤に関するものである。【0002】

【従来の技術】電子材料分野では塗料、インキ、ペーストは主に、樹脂ブラックマトリックス用黒色分散液、帯電防止ローラー用黒色分散液、ブラウン管用帯電防止塗料、磁気波遮蔽塗料、スクリーン印刷用ペースト、インクジェット用塗料等として使用されている。例えば、樹脂ブラックマトリックス用黒色分散液は液晶表示素子において駆動電極間からの光の漏れを防ぐために用いられ、フォトリソグラフィー法、印刷法、電着法等を用いてストライプ状や格子状のパターンのブラックマトリックスが形成される。液晶表示素子となるカラーフィルターはガラス又はプラスチックシート等の透明基板上に、規定のパターンにブラックマトリックスを形成し、そのブラックマトリックスの上に赤(R)、緑(G)、青

【0003】樹脂ブラックマトリックス用黒色分散液は着色成分として例えば、低次酸化チタン(チタンブラック)やカーボンブラック等の粉末が分散媒に添加混合され、この粉末を分散媒中に分散させて調製されたものが用いられている。通常、このような分散液には、分散剤が粉末とともに添加されている。分散剤を分散液中に添加する理由としては粉末の分散能を更に向上させるためであり、各粉末間の反発力を大きくとることにより粉末の凝集を防ぐ効果を有する。

(B) の3色の画素を所定の位置に形成した後、透明電

極を形成し、その上には配向膜を形成し、その配向膜を

ラビングすることにより得られる。

[0004]

【発明が解決しようとする課題】しかし、従来の分散剤 では、分散媒の種類によって分散剤を選定をする必要が あった。具体的には、例えば分散剤が極性の高いアルコ ール類を主溶媒とした分散媒に溶解する場合、この分散 媒中に粉末を均一に混合することは可能であるが、主溶 媒がケトン類の場合であると、粉末が凝集してしまい分 散媒中に均一に分散することができない不具合があっ た。特に、分散剤がエタノール、メタノール等の低級ア ルコールを主溶媒とした分散媒に溶解する場合は、この 分散媒中に粉末を均一に分散することができても、プロ ピレングリコールモノメチルエーテルアセテート (以 下、PGMEAという。) 等のエステル類や、メチルエ チルケトン(以下、MEKという。)等のケトン類を主 溶媒とした場合には粉末を均一に分散できなかった。逆 にPGMEAを主溶媒とした分散媒に溶解する分散剤 は、この分散媒中に粉末を均一に混合分散できても、エ タノールを主溶媒とした分散媒には分散できない等、分 散媒の種類によってその都度分散剤を選択しなければな らない問題があった。

【0005】本発明の目的は、分散媒の種類によりそれぞれ分散剤の選定を行うことなく、かつ分散効果に優れるポリプロピレングリコール系化合物及びこの化合物を用いた分散剤を提供することにある。本発明の別の目的は、耐熱性を有し、凝集の生じないポリプロピレングリコール系化合物及びこの化合物を用いた分散剤を提供することにある。

[0006]

【課題を解決するための手段】請求項1に係る発明は、 プロピレンオキシドを主骨格とした化合物であって、プロピレンオキシドにアミノ基及び水酸基の加わった次の式(1)に示されるポリプロピレングリコール系化合物である。

【0007】 【化6】

【0008】但し、Xは炭素数1~10のアルコキシド基、ハロゲン又はフェノキシド基、Yは水素、炭素数1~20のアルキル基又はフェニル基、W及びUは炭素数1~10のアルコキシド基、ハロゲン、フェノキシド基、水素、炭素数1~20のアルキル基又はフェニル基、pは0~10の整数、qは5~400の整数、rは2~100の整数、sは1~3の整数、tは0~10の

整数である。

【0009】請求項2に係る発明は、プロピレンオキシドを主骨格とした化合物であって、プロピレンオキシドにアミノ基及び水酸基の加わった次の式(2)に示されるポリプロピレングリコール系化合物である。

【0010】 【化7】

【0011】但し、Xは炭素数1~10のアルコキシド基、ハロゲン又はフェノキシド基、Yは水素、炭素数1~20のアルキル基又はフェニル基、W及びUは炭素数1~10のアルコキシド基、ハロゲン、フェノキシド基、水素、炭素数1~20のアルキル基又はフェニル基、pは0~10の整数、qは5~400の整数、rは2~100の整数、sは1~3の整数、tは0~10の

$$\begin{pmatrix}
Z_2 \\
| \\
C \\
| \\
Z_1
\end{pmatrix}
=
\begin{pmatrix}
Z_4 \\
| \\
C \\
| \\
Z_3
\end{pmatrix}
=
\begin{pmatrix}
Z_4 \\
| \\
C \\
| \\
Z_3
\end{pmatrix}
=
\begin{pmatrix}
Z_4 \\
Z_4
\end{pmatrix}
=
\begin{pmatrix}
Z_4 \\
Z_3
\end{pmatrix}
=
\begin{pmatrix}
Z_4 \\
Z_4
\end{pmatrix}
=
\begin{pmatrix}
Z_4 \\$$

整数であり、Zは次の式(3)及び式(4)で表される 官能基である。なお、 $Z_1 \sim Z_4$ は水素又は炭素数 $1 \sim 2$ 0のアルキル基であり、iは $1 \sim 1$ 0の整数、jは $1 \sim 1$ 0の整数である。

【0012】 【化8】

[0013]

$$\begin{array}{c|c}
 & Z_2 \\
 & | \\
 & C - C \\
 & | & | \\
 & Z_1 & O
\end{array}
\right\}_{1} Z_3$$

【化9】

【0014】請求項3に係る発明は、プロピレンオキシドを主骨格とした化合物であって、プロピレンオキシドにアミノ基及び水酸基の加わった次の式(5)に示され

るポリプロピレングリコール系化合物である。 【0015】 【化10】

【0016】但し、Xは炭素数1~10のアルコキシド基、ハロゲン又はフェノキシド基、Yは水素、炭素数1~20のアルキル基又はフェニル基、W及びUは炭素数1~10のアルコキシド基、ハロゲン、フェノキシド基、水素、炭素数1~20のアルキル基又はフェニル基、pは0~10の整数、qは5~400の整数、rは2~100の整数、sは1~3の整数、tは0~10の整数である。

【0017】請求項1ないし3いずれかに係る発明では、上記化合物は構造中にポリプロピレングリコール系化合物を有するため100℃前後までの耐熱性を有し、80℃で2時間加熱しても溶液中で凝集が生じない。【0018】請求項4に係る発明は、請求項1ないし3いずれかに係る発明であって、分子量が900~20000であるポリプロピレングリコール系化合物である。請求項4に係る発明では、分子量は900~2000である。好ましくは1000~10000である。分子量が900未満では十分な分散性や耐熱性が得られず、分子量が20000を越えると、溶媒への溶解が困難となる。

【0019】請求項5に係る発明は、請求項1ないし4いずれか記載のポリプロピレングリコール系化合物を用いた分散剤である。請求項5に係る発明では、請求項1ないし4いずれか記載のポリプロピレングリコール系化合物を分散剤として用いるとアルコール類、ケトン類、

エステル類など分散媒の種類によりそれぞれ分散剤の選定を行うことなく分散させることができる。

[0020]

【発明の実施の形態】本発明のポリプロピレングリコール系化合物は分子量が900~2000の常温で液状の化合物であり、前述した一般式(1)、式(2)及び式(5)に示される構造を有する。ポリプロピレングリコール系化合物を主骨格とするため、極性の高い溶媒から極性の低い溶媒まで溶解することが可能である。そのため分散剤としても各種溶媒に添加しても凝集を生じない。

【0021】本発明のポリプロピレングリコール系化合物を製造する方法としては、プロピレンオキシドを主骨格とした化合物に対してアミンを付加し、続いてケイ素化合物との反応を行う。これにより本発明の化合物を製造することができる。プロピレンオキシドを主骨格とした化合物としてはポリプロピレングリコールが挙げられる。アミン化合物としてはエタノールアミン、トリメチルアミン、アリルアミン等が挙げられる。ケイ素化合物としてはシリコーンオイル、シラン等が挙げられる。【0022】このようにして製造されたポリプロピレングリコール系化合物は耐熱性に優れ、またこの化合物は、アルコール類、ケトン類、エステル類、エーテル類など様々な溶媒に溶解できるため、分散剤として用いることが好ましい。分散液の配合割合としては粉末100

重量%に対して分散剤を0.1~80重量%の割合で添 加する。特に分散剤を10~30重量%の割合で添加す るのが好ましい。分散剤の添加量が0.1重量%未満で は分散剤を添加した効果が発揮されず、分散剤の添加量 が80重量%を越えると高粘度になる等の不具合を生じ る。更に分散液中に含まれる粉末の濃度が5~85重量 %となるように分散媒を添加することにより混合液が得 られる。ここでの粉末の濃度の下限値は特に限定されな い。但し、上限値を越えると高粘度となり、分散液の回 収率が悪化する等の不具合を生じるため、粉末の濃度は 85重量%以下が望ましい。より好ましい条件としては 70重量%以下である。この混合液を容器中に回転する インペラを備えたボールミルの一種であるアトライタ (Attritor)装置の容器に小球体とともに装入し、一定 時間、例えば約2時間インペラを回転させて、小球体を 放散及び回転させることにより粉末が均一に分散した分

散液を調製することができる。

【0023】分散媒にはアルコール類、ケトン類、エス テル類、エーテル等が挙げられる。アルコール類として はエタノール、メタノール、ジアセトンアルコール(以 下、DAAという。)等が例示される。ケトン類として はMEK、2-ペンタノン、4-ヘプタノン、シクロヘ キサノン等が例示される。エステル類としてはPGME A、酢酸エステル、酢酸ブチル等が例示される。エーテ ル類としては2-エトキシエタノール (以下、E/Cと いう。)、2-メトキシエタノール等が例示される。粉 末には酸化物粉末、金属粉末等が挙げられ、酸化物粉末 としてはアルミナ($A1_2O_3$)、チタニア(TiO₂)、錫インジウム複合酸化物(ITO)、アンチモ ン錫複合酸化物(ATO)、酸化亜鉛(ZnO)又は酸 化ルテニウム (RuO)等が、金属粉末としてはAg、 Pd、Ru、Au等がそれぞれ例示される。また低次酸 化チタン(チタンブラック、以下、TBという。)、カ ーボンブラック(以下、CBという。)等がそれぞれ例 示される。

【0024】本発明のポリプロピレングリコール系化合物を分散剤として用いることにより、アルコール類、ケトン類、エステル類など分散媒の種類を問わず、粉末を均一に分散させた分散液を調製することができる。また、この分散液を加熱しても、分散液は凝集を生じない。

[0025]

【実施例】次に本発明の実施例を説明する。

<実施例1>分散剤に図1(A)に示す化合物(以下、化合物Aという。)を、粉末にTBを、分散媒にMEKをそれぞれ用意した。先ず粉末に粉末100重量%に対して分散剤を20重量%の割合で添加し、更に分散液中に含まれる粉末の濃度が40重量%となるように分散媒を添加して混合液を得た。次にこの混合液を小球体とともに湿式アトライタ装置の容器に装入し、約2時間イン

ペラを回転させて、小球体を放散及び回転させ、粉末が 均一に分散した分散液を調製した。

【0026】<実施例2>分散剤に図1(B)に示す化合物(以下、化合物Bという。)を用いた以外は実施例1と同様に分散液を調製した。

<実施例3>分散剤に図1(C)に示す化合物(以下、化合物Cという。)を用いた以外は実施例1と同様に分散液を調製した。

<実施例4>分散剤に図1(D)に示す化合物(以下、化合物Dという。)を用いた以外は実施例1と同様に分散液を調製した。

<実施例5>分散剤に図1(E)に示す化合物(以下、化合物Eという。)を用いた以外は実施例1と同様に分散液を調製した。

<実施例6>分散剤に図1(F)に示す化合物(以下、化合物Fという。)を用いた以外は実施例1と同様に分散液を調製した。

<実施例7>分散剤に図1(G)に示す化合物(以下、化合物Gという。)を用いた以外は実施例1と同様に分散液を調製した。

【0027】<実施例8>粉末100重量%に対して分 散剤を1重量%の割合で添加した以外は実施例1と同様 に分散液を調製した。

<実施例9>粉末100重量%に対して分散剤を70重量%の割合で添加した以外は実施例1と同様に分散液を調製した。

<実施例10>分散媒にエタノールを用いた以外は実施例1と同様に分散液を調製した。

<実施例11>分散媒にPGMEAを用いた以外は実施例1と同様に分散液を調製した。

<実施例12>分散媒にDAAを用いた以外は実施例1 と同様に分散液を調製した。

<実施例13>分散媒にE/Cを用いた以外は実施例1 と同様に分散液を調製した。

【0028】<実施例14~19>分散剤に化合物Bを用いた以外は実施例8~13と同様に分散液をそれぞれ調製した。

<実施例20~25>分散剤に化合物Cを用いた以外は 実施例8~13と同様に分散液をそれぞれ調製した。

<実施例26~31>分散剤に化合物Dを用いた以外は 実施例8~13と同様に分散液をそれぞれ調製した。

<実施例32~37>分散剤に化合物Eを用いた以外は 実施例8~13と同様に分散液をそれぞれ調製した。

<実施例38~43>分散剤に化合物Fを用いた以外は 実施例8~13と同様に分散液をそれぞれ調製した。

<実施例44~49>分散剤に化合物Gを用いた以外は 実施例8~13と同様に分散液をそれぞれ調製した。

【0029】<実施例50>分散剤に化合物Aと化合物Bとを重量比で1:1の割合で混合したものを用いた以外は実施例11と同様に分散液を調製した。

<実施例51>分散剤に化合物Aと化合物Cとを重量比で1:1の割合で混合したものを用いた以外は実施例1 1と同様に分散液を調製した。

<実施例52>分散剤に化合物Aと化合物Dとを重量比で1:1の割合で混合したものを用いた以外は実施例1 1と同様に分散液を調製した。

<実施例53>分散剤に化合物Aと化合物Eとを重量比で1:1の割合で混合したものを用いた以外は実施例11と同様に分散液を調製した。

【0030】<実施例54>分散剤に化合物Bと化合物 Cとを重量比で1:1の割合で混合したものを用いた以 外は実施例11と同様に分散液を調製した。

<実施例55>粉末100重量%に対して分散剤を30 重量%の割合で添加し、分散剤液中に含まれる粉末の濃度を35重量%にした以外は実施例18と同様に分散液を調製した。

<実施例56>粉末100重量%に対して分散剤を30 重量%の割合で添加し、分散剤液中に含まれる粉末の濃度を35重量%にした以外は実施例24と同様に分散液を調製した。

【0031】<実施例57>粉末にTBとCBとを重量 比で6:4の割合で混合したもの用い、分散剤に化合物 Aと化合物Bとを重量比で1:1の割合で混合したもの 用い、更に粉末100重量%に対して分散剤を25重量 %の割合で添加した以外は実施例1と同様に分散液を調 製した。

<実施例58>粉末に $A1_2O_3$ を用いた以外は実施例22と同様に分散液を調製した。

<実施例59>粉末に TiO_2 を用い、分散剤に化合物 Aと化合物Bとを重量比で1:1の割合で混合したもの を用いた以外は実施例10と同様に分散液を調製した。

<実施例60>粉末にATOを用い、分散剤液中に含まれる粉末の濃度を50重量%にした以外は実施例59と同様に分散液を調製した。

<実施例61>粉末にITOを用いた以外は実施例59 と同様に分散液を調製した。

【0032】 <比較例1>分散剤に図2(H)に示す化合物(ポリオキシアルキレンアルキルエーテルリン酸エステル、以下、化合物Hという。)を用いた以外は実施例10と同様に分散液を調製した。

<比較例2>分散剤に化合物Hを用いた以外は実施例1 1と同様に分散液を調製した。

<比較例3>分散剤に図2(I)に示す化合物(脂肪酸ジエタノールアミド、以下、化合物 I という。)を用いた以外は実施例10と同様に分散液を調製した。

<比較例4>分散剤に化合物 I を用いた以外は実施例1 1と同様に分散液を調製した。

【0033】 <比較評価>実施例1~61及び比較例1~4で調製した分散液の分散粒子径を、サブミクロン粒度分布測定装置(COULTER社製、COULTER N4 Plus)を用いて測定した。また分散液をそれぞれ2つに分け、一方を温度20℃で1週間静置し、他方を温度80℃で2時間加熱した。これら分散液中の分散粒子径も同様に上記サブミクロン粒度分布測定装置を用いて測定した。実施例1~25を表1に、実施例26~50を表2に、実施例51~61及び比較例1~4を表3にそれぞれ示す。なお、表1~3中の経時変化は温度20℃で1週間静置した液、加熱後の変化は温度80℃で2時間加熱した液の分散粒子径をそれぞれ示す。

[0034]

【表1】

		種類		分散剂 粉漆加量 邊	粉末	分末 分散 長度 粒子径	経時	加熱後 の変化	
		粉末	分散剤	分散媒		粉末度	和于全	変化[0m]	
实道征	列 1	TВ	Α	MEK	20	40	96	97	95
	2	TВ	В	MEK	20	40	93	93	93
•	3	ТВ	С	MBK	20	40	95	98	96
В	4	ТВ	D	MEK	20	40	102	105	106
•	5	ТВ	E	WEK	20	40	120	120	124
"	6	TB	F	MEK	20	40	130	132	135
"	7	ТВ	G	MEK	20	40	150	148	152
•	8	ТВ	Α	MBK	1	40	130	135	~
"	9	ТВ	A	MER	70	40	97	97	-
,,	10	ТВ	Α	I91-1	20	40	86	87	-
,	11	ТВ	Α	PGMEA	20	40	100	100	100
,	12	ТВ	Α	DAA	20	40	120	121	120
#	13	ТВ	A	E/C	20	40	102	102	-
"	14	TВ	В	MEK	1	40	131	131	-
	15	ТВ	В	MEK	70	40	97	97	_
"	16	TB	В	191-h	20	40	85	87	-
"	17	ТВ	В	PGMBA	20	40	95	96	97
,,	18	TВ	В	DAA	20	40	122	121	120
,,	19	TВ	В	E/C	20	40	99	100	-
•	20	ТВ	C	MEK	1	40	125	126	-
	21	ТВ	C	MBK	70	40	95	96	_
	22	ТВ	С	19/-h	20	40	83	83	-
-	23	ТВ	C	PGMEA	20	40	95	96	97
"	24	ТВ	С	DAA	20	40	122	125	121
	25	тв	С	E/C	20	40	100	100	_

[0035]

		極 類		盆散剤 粉	粉素	粉末 分散 濃度 粒子径	经時	加熱後	
_		粉末	分散剤	分散媒	議加量	邀	[12]	空化[加]	の変化
実施(FI 2 6	ТВ	D	XSK	1	40	133	132	-
,	27	TB	D	MEK	70	40	106	107	-
	28	TB	D	191-1	20	40	90	93	-
•	29	ТВ	D	PGMBA	20	40	105	109	108
•	30	ТВ	D	DAA	20	40	132	130	135
	31	TВ	ם	E/C	20	40	105	109	-
	32	ТB	E	MEK	1	40	140	143	_]
•	33	TВ	E	MEK	70	40	135	138	_
	34	ТB	E	エタノール	20	40	107	108	-
	35	ТВ	E	PGMEA	20	40	123	122	122
"	36	TВ	E	DAA	20	40	145	143	143
7	37	ТВ	E	E/C	20	40	129	131	-
	38	ТВ	F	MEK	1	40	141	143	_
"	39	TB	F	MEK	70	40	135	134	-
"	40	ТВ	F	I9/-h	20	40	103	103	-
,	41	TВ	F	PGMBA	20	40	121	122	119
,	42	TB	F	DAA	20	40	141	143	142
, ,	43	TB	F	E/C	20	40	128	128	
"	44	ТВ	G	WEK	1	40	145	149	-
,	45	TB	G	MEK	70	40	143	142	-
,	46	TВ	G	191-1	20	40	122	121	_
"	47	ТВ	G	PGMEA	20	40	131	132	129
,,	48	ТВ	G	DAA	20	40	146	146	149
. #	49	TB	G	B/C	20	40	131	132	-
,	60	ТВ	A + B	PGMEA	20	40	98	99	

【0036】 【表3】

		租類			分散剂	粉末	分散 粒子径	経時	加熱後
		粉末	分散剤	分散媒	分散剂 添加量 [重数]	粉末度度	[四]	変化[nn]	の変化 [nm]
実施的	451	ТВ	A+C	PGNEA	20	40	93	94	_
•	52	ТВ	A + D	PGMBA	20	40	94	96	_
•	53	ТВ	A + E	PGMEA	20	40	98	97	_
,,	64	ТВ	B + C	PGMEA	20	40	102	103	-
,	55	TB	В	DAA	30	35	110	111	115
"	56	TB	С	DAA	30	35	116	116	-
,	57	TB+CB	A + B	MEK	25	40	105	106	-
	58	A120.	C	19/-h	20	40	120	121	-
n	69	Ti02	A + B	エタノール	20	40	125	130	-
,	60	ATO	A + B	I91-1	20	50	80	81	_
,,	61	110	A + B	I9/-h	20	50	130	132	_
比較例	11	TB	Н	19/-1/	20	40	Seres	_	1
,	2	ТВ	Н	PGMBA	20	40	165	180	凝集
	3	ТВ	I	191-1	20	40	150	160	_
"	4	ТB	I	PGMEA	20	40	BRTET	_	-

【0037】表3より明らかなように、比較例1及び2 で調製した分散液はエステル類からなる分散媒には添加 した粉末を均一に分散できるが、アルコール類からなる 分散媒には分散できず、逆に比較例3及び4で調製した 分散液はアルコール類からなる分散媒には添加した粉末 を均一に分散できるが、エステル類からなる分散媒には 分散できなかった。また、分散媒に粉末を分散できた比 較例2及び3の分散液では温度20℃で1週間静置した 後の分散粒子径は分散直後の粒径より大きくなってい た。これに対して、表1~表3より明らかなように、実 施例1~61ではどの種類の分散媒を用いても添加した 粉末を分散できていた。また温度20℃で1週間静置し た分散液、温度80℃で2時間加熱した分散液はそれぞ れ分散直後の分散液中の粒子径とほぼ同じ粒子径を示し ており、本発明のポリプロピレングリコール系化合物を 分散剤として用いることにより経時変化、耐熱性に優れ

た分散液を調製できることが判る。

[0038]

【発明の効果】以上述べたように、本発明のポリプロピレングリコール系化合物はプロピレンオキシドを主骨格とした化合物であって、プロピレンオキシドにアミノ基及び水酸基の加わった上記式(1)、式(2)及び式(5)に示される化合物である。この化合物は耐熱性を有し、凝集を生じない。またこの化合物を分散剤として用いると、分散媒の種類によりそれぞれ分散剤の選定を行うことなく、かつ分散効果に優れた分散液を調製できて

【図面の簡単な説明】

【図1】実施例の分散剤として用いた化合物を示す化学 式.

【図2】比較例の分散剤として用いた化合物を示す化学 オ

【図2】

(H) $(RO(C_3H_4O)_a\frac{1}{3-x}P=0$ $(OH)_x$

R-CO-N(CH_CH_OH);NH(CH;CH;OH);

但し、Rはアルキル基、nは1~10の整数、 xは1~2の整数である。

【図1】

(A)
$$(RO)_{\overline{3}}Si-(CH_{\underline{3}})_{\overline{2}}N-(OC_{\underline{3}}H_{\underline{6}})_{\underline{4}}OH)$$

(B) $(RO)_{\overline{3}}Si - (CH_{3})_{\overline{3}}S - (OC_{3}H_{4})_{\overline{4}}OH_{\overline{1}}-NH_{1}$

(C)

$$\begin{array}{c} CH_{9} \\ (RO)_{g}-SI-(CH_{g})_{g}-O-CH_{2}-C-C-CH_{f}-N-f(OC_{9}H_{9})_{q}OH), \\ O \\ H \end{array}$$

D) $(RO)_3-SI-(CH_2)_3-O-C-(CH_2)_2-N-(OC_3H_6)_4OH)_1$ OH

(F) $(RO)_{\overline{g}}SI - (CH_{\underline{g}})_{\overline{g}}O - CH_{\underline{g}} - C - CH_{\underline{g}}N - (OC_{\underline{g}}H_{\underline{g}})_{\underline{q}}OH)_{\underline{q}}$ $0 \qquad H$

但し、Rはアルキル基又はフェニル基、pは $1\sim10$ の整数、qは $5\sim400$ の整数、rは $2\sim100$ の整数である。