CrowdFlowDetection

Table of contents

- General Info
- Team Members
- To-Do(s)
- Tools Used
- Contributing
- Refrences

General Info

We segment every frame of the video into regions of different motions based on the similarity of the neighborir streaklines correspond to similar trajectories of particles passing from neighboring pixels over a period of time. affinity of current and previous motions at these pixels. First, frame by frame optical flow of the video is computed to compute a streak flow (not yet implement used to compute similarity in a 8-connectivity neighborhood. For every pair of pixels i and j, the similarity is constructed that the streak flow (only streaklines for now).

Team Members

- Ravi Rahar (19/11/EC/014)
- Asad Nizami (19/11/EC/013)
- Umesh (19/11/EC/015)
- Harsh (19/11/EC/016)
- Nitish (19/11/EC/012)

TO-DO

Implement	Streakflow
☐ Give weigh	tage to streakflow in similarity

- Make separate class
- Implement similarity
- Implement watershed
- Implement Streaklines
- Use Optical Flow

Tools Used

- Python
- OpenCV
- Numpy

Contributing

Setting up environment (for ubuntu)

Install Python

```
sudo apt install python3 && sudo apt install python-is-python3
```

Install Pip

```
sudo apt install python3-pip
```

Install OpenCV and Numpy

sudo pip install opencv-contrib-python numpy

Running for first time

git clone https://github.com/RaviRahar/CrowdFlowDetection && cd CrowdFlowDetection python main.py

NOTE: Do not foget to change video file path in main.py to video you want to run it on.

References

Implementing crowd flow detection using steaklines. Based on:

A Streakline Representation of Flow in Crowded Scenes by Ramin Mehrant, Brian E. Mooret, Mubara