Metode za brojanje ljudi u slici

Luka Novak

Sadržaj

- Uvod
- Računalni vid
- Detekcija objekata prije konvolucijskih modela
- Viola Jones algoritam
- Detekcija objekata konvolucijskim modelima
- YOLO
- Rezultati
- Zaključak

1. Računalni vid

Vidjeti, prepoznati, razumjeti

- Čovjek prima 2/3 informacija osjetilom vida
- > 13 milisekundi potrebno da prepozna što je na slici
- > 3 milisekunde da čovjek prepozna majku

Kategorije

- ▶ Lokalizacija
- > Praćenje
- Super-resolution

2.

Detekcija objekata prije konvolucijskih modela

Pristupi kroz povijest

- > Poravnanje
- > Modeli temeljeni na izgledu
- Klizeći prozor
- > Parts-and-shapes modeli

3. Viola Jones algoritam

Algoritam

- > Paul Viola i Michael Jones
- Rapid object detection using a boosted cascade of simple features, 2001
- D Temeljen na klizećem prozoru
- Koristi kaskade Haarovih značajki

Haarove značajke

Izračun na razini piksela

$$\Delta = dark - white = \frac{1}{n} \sum_{n=1}^{n} I_{dark}(x) - \frac{1}{n} \sum_{n=1}^{n} I_{light}(x)$$

(a) Idealne vrijednosti piksela

(b) Stvarne vrijednosti piksela

Slika 3.2: Izračun za linijske Haarove značajke

Haarove kaskade

Postavke algoritma

- > 160000 značajki
- Neke odgovaraju više ovisno o domeni
- > 200 značajki za točnost od 95%
- D U prosjeku, oko 10 značajki evaluirano po slici

4.

Detekcija objekata konvolucijskim modelima

Konvolucija

Struktura konvolucijske neuronske mreže

5. YOLO

You Only Look Once

- > Redmon et al., 2015
- Full-YOLO veća točnost i preciznost
- D Jedan prolaz kroz mrežu
- Lokalizacija i klasifikacija u jednoj mreži

Podjela slike na čelije

- > CxC ćelija
- Za svaku ćeliju algoritam predviđa:
 - B okvira i pouzdanost za svaki od njih
 - Samo 1 objekt
 - P vjerojatnosti po jednu za svaku klasu K
- U implementaciji 13x13 ćelija, 5 okvira predviđenih po ćeliji

Podjela slike na ćelije

Arhitektura mreže

Ime sloja	Filteri	Korak	Dimenzije na ulazu	Dimenzije na izlazu
Conv1	3 x 3 x 32	1 x 1	416 x 416 x 3	416 x 416 x 32
MaxPool1	2 x 2	2 x 2	416 x 416 x 32	208 x 208 x 32
Conv2	3 x 3 x 64	1 x 1	208 x 208 x 32	208 x 208 x 64
MaxPool2	2 x 2	2 x 2	208 x 208 x 64	104 x 104 x 64
Conv3	3 x 3 x 128	1 x 1	104 x 104 x 64	104 x 104 x 128
Conv4	1 x 1 x 64	1 x 1	104 x 104 x 128	104 x 104 x 64
Conv5	3 x 3 x 128	1 x 1	104 x 104 x 64	104 x 104 x 128
MaxPool2	2 x 2	2 x 2	104 x 104 x 128	52 x 52 x 128
Conv6	3 x 3 x 256	1 x 1	52 x 52 x 128	52 x 52 x 256
Conv7	1 x 1 x 128	1 x 1	52 x 52 x 256	52 x 52 x 128
Conv8	3 x 3 x 256	1 x 1	52 x 52 x 128	52 x 52 x 256
MaxPool3	2 x 2	2 x 2	52 x 52 x 256	26 x 26 x 256
Conv9	3 x 3 x 512	1 x 1	26 x 26 x 256	26 x 26 x 512
Conv10	1 x 1 x 256	1 x 1	26 x 26 x 512	26 x 26 x 256
Conv11	3 x 3 x 512	1 x 1	26 x 26 x 256	26 x 26 x 512
Conv12	1 x 1 x 256	1 x 1	26 x 26 x 512	26 x 26 x 256
Conv13	3 x 3 x 512	1 x 1	26 x 26 x 256	26 x 26 x 512
MaxPool4	2 x 2	2 x 2	26 x 26 x 512	13 x 13 x 512
Conv14	3 x 3 x 1024	1 x 1	13 x 13 x 512	13 x 13 x 1024
Conv15	1 x 1 x 512	1 x 1	13 x 13 x 1024	13 x 13 x 512
Conv16	3 x 3 x 1024	1 x 1	13 x 13 x 512	13 x 13 x 1024
Conv17	1 x 1 x 512	1 x 1	13 x 13 x 1024	13 x 13 x 512
Conv18	3 x 3 x 1024	1 x 1	13 x 13 x 512	13 x 13 x 1024
Conv19	3 x 3 x 1024	1 x 1	13 x 13 x 1024	13 x 13 x 1024
Conv20	3 x 3 x 1024	1 x 1	13 x 13 x 1024	13 x 13 x 1024
Route	from	Conv13		
Conv21	1 x 1 x 64	1 x 1	26 x 26 x 512	26 x 26 x 64
Space2Depth	reshape			
Concatenate	Route from Conv20	and	Space2Depth	
Conv22	3 x 3 x 1024	1 x 1	13 x 13 x 1280	13 x 13 x 1024
Conv23	1 x 1 x 425	1 x 1	13 x 13 x 1024	13 x 13 x 425

Ulaz i izlaz iz mreže

- - Okviri: (13x13, 5, 4) raspoređenih kao (x_{top}, y_{top}, x_{bottom}, y_{bottom})
 - Pouzdanost postojanja objekta u okviru: (13x13, 5, 1)
 - Vjerojatnost klasa za okvire kao vektor (13x13, 5, 80)

Pogreška klasifikacije

$$\sum_{i=1}^{S\times S} 1_i^{obj} \sum_{c\in klase} (p_i(c) - \hat{p}_i(c))^2$$

- $1_i^{obj} = 1$ ako se objekt pojavljuje u čeliji i, inače 0
- $\hat{p}_i(c)$ označava uvjetnu vjerojatnost klase c u čeliji i

Pogreška lokalizacije

$$\lambda_{coord} \sum_{i=0}^{S^2} \sum_{j=0}^{B} 1_{ij}^{obj} [(x_i - \hat{x}_i)^2 + (y_i - \hat{y}_i)^2] + \lambda_{coord} \sum_{i=0}^{S^2} \sum_{j=0}^{B} 1_{ij}^{obj} [(\sqrt{w_i} - \sqrt{\hat{w}_i})^2 + (\sqrt{h_i} - \sqrt{\hat{h}_i})^2]$$

- $1_{ij}^{obj} = 1$ ako se objekt nalazi u j-tom okviru i-te ćelije, inače 0
- λ_{coord} parametar za ugađanje težine za pogrešku u koordinatama okvira

Pogreška pouzdanosti

1. Objekt je detektiran u okviru

$$\sum_{i=0}^{S^2} \sum_{j=0}^{B} 1_{ij}^{obj} (C_i - \hat{C}_i)^2$$

- $1_{ij}^{obj} = 1$ ako se objekt nalazi u j-tom okviru i-te ćelije, inače 0
- \hat{C}_i jest iznos pouzdanosti za okvir j u čeliji i

Pogreška pouzdanosti

2. Objekt nije detektiran u okviru

$$\lambda_{no-obj} \sum_{i=0}^{S^2} \sum_{j=0}^{B} 1_{ij}^{no-obj} (C_i - \hat{C}_i)^2$$

- 1_{ij}^{no-obj} jest komplement gornjeg izraza 1_{ij}^{obj}
- \hat{C}_i jest iznos pouzdanosti za okvir j u čeliji i
- λ_{no-obj} je faktor kojim se smanjuje iznos gubitka pri detekciji pozadine

Anchor boxes

- > n najčešćih okvira
- D iz skupova COCO i VOC2007

Predviđanje

- Non-Maximal Suppression za odabiranje okvira
- > Koristi Intersection over Union

Before non-max suppression

Non-Max Suppression

After non-max suppression

6. Rezultati

Viola Jones algoritam

- > Vrlo brz algoritam
- U većini slučajeva dovoljno točan
- Puzdan i jednostavan za implementaciju – OpenCV

Broj vidljivih osoba po slici	5.67
Broj detekcija po slici videa	4.91
True Positivea po slici	3.59
False Positivea po slici	1.32
Preciznost (precision)	73.11%

Detekcija

False positives

YOLO

- D U izvornom obliku implementacija je u C-u
- Display Brzine 45 do 90 FPS
- ▶ Implementacija Python + Keras
- D Brzina ~ 60-75 FPS

Obrada slike	3.9219 s
Stvaranje modela	2.717 s
Predviđanje sa slike	1.201 s
Postprocesiranje	0.0003 s
Iscrtavanje okvira	0.0002 s

Detekcija

- Puno manje false positivea nego kod Viola Jones algoritma
- ▶ Puno sporiji na CPU

Broj vidljivih osoba po slici	5.67
Broj detekcija po slici videa	5.16
True Positivea po slici	4.53
False Positivea po slici	0.32
Preciznost (precision)	87.79%

Dodane opcije za detekciju

- Opcija za preskakanje frameova
- Non-MaximalSuppressionprag za crtanjeokvira

Praćenje objekata

- ▶ Intersection over Union
- D Između 2 vremenska trenutka

Problem kretanja uz kameru

Postavljen prag na veličinu okvira

7. Zaključak

- D Oba algoritma zadovoljavajuća
- ➤ Viola Jones
 - o Brži
 - Više false positivea
- > YOLO
 - Sporiji
 - o Točniji
 - Za uspješno praćenje u stvarnom vremenu, potrebna je GPU
- Odabir ovisi o danom problemu i resursima

Pitanja

Hvala na pažnji