Radio Mobile: Projeto de um Sistema Wireless entre a UFPI e o BEC

Marcos Antonio¹ e Vandirleya Barbosa¹

¹Universidade Federal de Piauí (UFPI)

{marcos.brito, vandirleya.barbosa}@ufpi.edu.br

1. Projeto

Este projeto visa avaliar a viabilidade de estabelecer uma conexão wireless entre dois pontos distintos. Inicialmente, foram definidos os pontos para a conexão, sendo o ambiente proposto na UFPI o primeiro ponto e o BEC o segundo ponto, ambos localizados em Picos-PI. A escolha da frequência para a conexão foi determinada conforme as especificações pré-estabelecidas, conforme apresentado na Tabela 1. É relevante destacar que a distância selecionada foi deliberadamente estabelecida em alguns quilômetros para introduzir desafios no projeto.

Tabela 1. Especificações iniciais.

Ponto A	Ponto B	Distancia	Frequência
UFPI	BEC	2,77 km	2.4Gz

Os pontos foram escolhidos aleatoriamente, e informações sobre suas localizações foram obtidas através do Google Earth para garantir precisão nos dados, incluindo latitude, longitude e possíveis obstáculos, como morros entre os locais. Uma vez que, a cidade de Picos apresenta elevações variadas em determinados pontos, o que pode representar um desafio adicional na elaboração do projeto. A Figura 1 exibe a imagem da localização entre os pontos A e B.

Figura 1. Imagem do Google Earth entre os pontos A e B.

2. Radio Mobile

Para este projeto, também foi empregado o Radio Mobile¹, uma ferramenta de software destinada ao planejamento e análise de redes de comunicação sem fio. O Radio Mobile facilita a modelagem de enlaces de rádio, levando em consideração vários parâmetros, como potência de transmissão, obstáculos, ganhos de antenas e características do terreno. Dessa forma, foi viabilizada a realização do enlace wireless entre os pontos A e B, permitindo uma avaliação mais precisa da viabilidade dessa conexão. A Tabela 2 apresenta informações relevantes sobre o receptor e transmissor utilizadas no software para simular o enlace e verificar suas propriedades.

Tabela 2. Informações do Transmissor (Tx) e Receptor (Rx).

Local do Transmissor (Tx)	UFPI (Função: Mestre)	
Local do Receptor (Rx)	BEC (Função: Escravo)	
Altura da Antena (Tx)	15 metros	
Altura da Antena (Rx)	15 metros	

A partir disso, foram preenchidas as informações das propriedades da rede. Realizou-se um estudo na literatura para obter informações sobre o tipo de antena para a conexão ponto a ponto, assim como ganhos e perdas de antenas. Essas informações foram então inseridas no software para calcular os ganhos e perdas do projeto. A Tabela 3 apresenta alguns dados relevantes obtidos na ferramenta.

Tabela 3. Parâmetros do Sistema de Transmissão.

Nome do Sistema Transmissor (Tx)	YAGI	
Nome do Sistema Receptor (Rx)	YAGI	
Potência do Transmissor (Tx)	50 dBm	
Ganho da Antena Tx	24 dBi (21,85 dBd)	
Ganho da Antena Rx	24 dBi	
Potência Radiada Efetiva Isotrópica (EIRP)	22,39 kW	
Potência Efetiva na Antena (ERP)	0,72 kW	
Perda de Linha	0,5 dB	
Sensibilidade do Receptor (Rx)	-107 dBm	
Frequência de Operação	2461 MHz a 2483 MHz	

Por fim, após a definição de todas as informações de propriedades e a posse dos dados de transmissão, torna-se possível verificar algumas informações sobre o enlace e o ambiente entre os dois pontos de transmissão. Esses dados funcionam como um guia para avaliar condições específicas, como a atenuação por obstáculos na rede, entre outras considerações. A Tabela 4 apresenta os demais dados obtidos no enlace deste projeto.

3. Ganhos e perdas do projeto

Com o enlace realizado na ferramente, agora vamos mostrar se este projeto é viável, calculando seus ganhos e perdas através das informações obtidas para que se possa realizar

¹https://www.ve2dbe.com/english1.html

Tabela 4. Parâmetros do Enlace e do Local.

Campo E Requerido	93,4 dBV/m
Atenuação por Obstáculos	114,4 dB
Atenuação por Fresnel	25,8 F1
Atenuação por Floresta	0 dB
Distância do Enlace	2,77 km
Obstrução	1,2 dB TR
Estatísticas do Enlace	$4,2 \text{ dB}, FRxrelativo} = 56,9 \text{ dB}$
Ângulo de Elevação	0,540°
Espaço Livre	1,3 Km

uma análise de viabilidade do projeto. Primeiro, vamos calcular a potência efetiva irradiada isotropicamente (EIRP), que é a potência total emitida pela antena em todas as direções. A Equação 1 calcula a fórmula da EIRP.

$$EIRP = P_t + G_t - L_t \tag{1}$$

Onde:

 P_t é a potência de transmissão do transmissor (Tx) em dBm (50 dBm).

 G_t é o ganho da antena de transmissão (Tx) em dB (24 dBi).

 L_t é a perda de linha de transmissão em dB (0.5 dB).

Substituindo os valores, temos:

$$EIRP = 50 \,\mathrm{dBm} + 24 \,\mathrm{dBi} - 0.5 \,\mathrm{dB}$$

$$EIRP = 73.5 \,\mathrm{dBm}$$

Agora para calcular a potência recebida utilizamos a Equação 2.

$$PRx = EIRP - L_n - L_a \tag{2}$$

Onde:

 L_p é a perda total de propagação em dB (114.4 dB).

 L_a é a atenuação adicional (considerando obstáculos, Fresnel, etc.).

Atenuação Adicional = Atenuação por Obstáculos + Atenuação por Fresnel + Estatísticas do Enlace

Substituindo os valores fornecidos:

Atenuação Adicional = $1.2 \,\mathrm{dB} + 25.8 \,\mathrm{dB} + 4.2 \,\mathrm{dB} = 31.2 \,\mathrm{dB}$

Agora, podemos substituir os valores calculados para obter a PRx:

$$PRx = 73.5 \, \text{dBm} - 114.4 \, \text{dB} - 31.2 \, \text{dB} = -72.1 \, \text{dBm}$$
 (3)

A Equação 4 serve para calcular a Margem de Sinal:

Onde:

A Sensibilidade do Receptor (Rx) é -107 dBm.

 $\begin{aligned} & \text{Margem de Sinal} = \text{PRx} - (-107\,\text{dBm}) \\ & \text{Margem de Sinal} = -72.1\,\text{dBm} - (-107\,\text{dBm}) \\ & \text{Margem de Sinal} = 34.9\,\text{dB} \end{aligned}$

Este conjunto de cálculos fornece uma compreensão abrangente dos ganhos e perdas associados ao sistema, permitindo uma avaliação criteriosa de sua viabilidade. A margem de sinal de 34.9 dB é uma indicação positiva. Normalmente, uma margem de sinal acima de 20 dB é considerada boa. Portanto, com base nestes cálculos, o projeto parece ser viável.

4. Equipamentos e orçamento

A implementação de um sistema wireless eficiente requer um levantamento detalhado dos custos associados aos equipamentos essenciais. Na Tabela 5, apresentamos o preço dos componentes utilizados no projeto, considerando o Sistema Transmissor (Tx) e o Sistema Receptor (Rx) identificados como YAGI. Os valores monetários são apresentados em dólares americanos (USD).

Equipamento	Preço	Frequência
Antena TL-ANT2424B [ant a]	\$58.50	2.4 GHz
Torre [tor b]	\$122.28	_
Protetor contra surtos [pro a]	\$13.61	_
Cabo de extensão (6m) [cab b]	\$39	_
Cabo Pigtail Antena Wireless (50cm) [cab a]	\$6.58	_
Roteador [rot b]	\$96,43	_

Tabela 5. Preço dos equipamentos utilizados no projeto.

Ao avaliar alternativas para o sistema wireless, é crucial analisar as vantagens e desvantagens de diferentes conjuntos de equipamentos. A Tabela 6 apresenta o preço de equipamentos alternativos que poderiam ser utilizados no projeto, fornecendo uma visão abrangente das opções disponíveis. As frequências dos equipamentos são mantidas consistentes com a Tabela 5, sendo 2.4 GHz. Ademais, optar por duas antenas Yagi para aprimorar a conectividade WiFi apresenta vantagens notáveis, como maior alcance, qualidade e estabilidade do sinal, além da redução de interferências. No entanto, o custo mais elevado e a instalação mais complexa, devido à direcionalidade do sinal, requerem considerações cuidadosas. Uma abordagem equilibrada, considerando as necessidades específicas e planejando adequadamente a instalação, é crucial para maximizar os benefícios e superar os desafios associados a esse investimento.

Tabela 6. Preço dos equipamentos alternativos que poderiam serem utilizados no projeto.

Equipamento Alternativo	Preço	Frequência
Antena TL-ANT2424B [ant b]	\$44.50	2.4 GHz
Torre [tor a]	\$121.27	_
Protetor contra surtos [pro b]	\$11.11	_
Cabo de extensão (6m) [cab b]	\$28.97	_
Cabo Pigtail Antena Wireless (50cm) [cab a]	\$6.58	_
Roteador [rot a]	\$28,78	_

5. Conclusão

O projeto de estabelecer uma conexão wireless entre a UFPI e o BEC foi cuidadosamente planejado, considerando desafios realistas e utilizando ferramentas como o Radio Mobile. Os cálculos realizados indicaram uma margem de sinal positiva de 34.9 dB, sinalizando a viabilidade técnica do projeto. A análise financeira revelou os custos dos equipamentos, apresentando alternativas. Em resumo, os resultados sugerem que o projeto é viável tanto tecnicamente quanto financeiramente, proporcionando uma base sólida para o projeto do sistema de comunicação sem fio.

Referências

Access point tplink + wireless 150mbps lite tl-wa701nd. https://encurtador.com.br/kxGN0. Accessed on 02/01/2024 at 17:42.

Antenna 2.4 ghz tl-ant2424b tp-link. https://axuse.com/antenna-2-4-ghz-tl-ant2424b-tp-link.html. Accessed on 02/01/2024 at 17:29.

Cabo pigtail antena wireless wifi tp-link tl-ant24pt 50cm. https://encurtador.com.br/clnM9. Accessed on 02/01/2024 at 17:18.

Roteador tp-link load balance router multi-wan vpn tl-er605. https://encurtador.com.br/qwGNT. Accessed on 02/01/2024 at 17:40.

Tl-ant2424b 2.4ghz 24dbi grid parabolic antenna. https://encurtador.com.br/nvPX7. Accessed on 02/01/2024 at 13:51.

Torre telescopica com base e estrelinhas para antena(15m). https://encurtador.com.br/lKXZ1. Accessed on 02/01/2024 at 17:36.

Torre telescópica para antenas com suporte cavalete 15mts. https://encurtador.com.br/vCLWX. Accessed on 02/01/2024 at 17:35.

Tp-link low loss antenna extension cable 2.4ghz 6 meters n-type m/f. https://www.centrecom.com.au/tp-link-low-loss-antenna-extension-cable-24ghz-6-meters-n-type-m-fm. Accessed on 02/01/2024 at 17:18.

Tp-link tl-ant24sp surge protector. https://encurtador.com.br/goP49. Accessed on 02/01/2024 at 17:09.

Tp-link tl-ant24sp surge protector 2.4ghz n-type female connector. https://www.ciudadwireless.com/tp-link_tl-ant24sp_surge_protector-_2-4ghz-_n-type_female_connector-p-2591.html. Accessed on 02/01/2024 at 17:38.