Sobolev Models Homework

Machine Learning Theory

1 Introduction

This week, we'll bound the gaussian width of a neighborhood in a Sobolev model. This one.

$$\mathcal{M}^{p} = \left\{ m(x) = \sum_{j=0}^{\infty} m_{j} \phi_{j}(x) : \rho_{-\Delta^{p}}(m) \leq B \right\}$$
where $\rho_{-\Delta^{p}} \left(\sum_{j=0}^{\infty} m_{j} \phi_{j} \right) = \sqrt{\sum_{j=0}^{\infty} \lambda_{j}^{p} m_{j}^{2}} \leq B^{2}$

$$(1)$$

for
$$\phi_j(x) = \sqrt{2}\cos(\pi jx)$$
 and $\lambda_j = \pi^2 j^2$.

We'll use this to bound the error $\|\hat{\mu} - \mu\|_{L_2(P)}$ of this least squares estimator.

$$\hat{\mu} = \underset{m \in \mathcal{M}^p}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^n \{Y_i - m(X_i)\}^2$$
 (2)

2 The Simplified Case

2.1 The whole thing.

We'll start with a simple version of the problem. We'll bound the gaussian width of this Sobolev-like model. The whole thing—not a neighborhood in it.

$$\mathcal{M} = \left\{ m(x) = \sum_{j=0}^{\infty} m_j \phi_j(x) : \sum_{j=0}^{\infty} \lambda_j m_j^2 \le B^2 \right\}$$
where $\langle \phi_j, \phi_j \rangle_{L_2(P)} = \begin{cases} 1 & \text{for } i = j \\ 0 & \text{otherwise} \end{cases}$
(3)

The Sobolev model described in (1) is a model like this when our covariate X_i has a uniform distribution on [0, 1], as in that case the inner product $\langle u,v\rangle_{L_2(P)}$ agrees with the inner product $\langle u,v\rangle_{L_2}$ for which our cosine basis is orthonormal.

Rather than bounding gaussian width itself, we'll bound a related quantity.

$$\mathbf{w}_2(\mathcal{M}) = \sqrt{\mathbf{E} \max_{m \in \mathcal{M}} \langle g, m \rangle_{L_2(\mathbf{P_n})}^2} \quad \text{where} \quad g_i \stackrel{iid}{\sim} N(0, 1).$$

We know this is larger than gaussian width. In terms of $Z = \max_{m \in \mathcal{M}} \langle g, m \rangle_{L_2(\mathbb{P}_n)}$,

$$w(\mathcal{M}) = E Z$$
 and $w_2(\mathcal{M}) = \sqrt{E Z^2} = \sqrt{(E Z)^2 + Var(Z)}$.

Exercise 1 Bound the gaussian width of the model (3). To do this, bound

$$\mathbf{w}_2(\mathcal{M}) = \sqrt{\mathbf{E}\left(\max_{m \in \mathcal{M}} \frac{1}{n} \sum_{i=1}^n g_i \left\{\sum_{j=0}^{\infty} m_j \phi_j(X_i)\right\}\right)^2}.$$

Your bound should depend on the sequence λ_i .

Hint. Reordering the sums, what we get is a dot product between the sequence of coefficients m_j and a gaussian-weighted average of the evaluated basis functions $\phi_j(X_i)$. That is,

$$\sum_{i=1}^{n} g_i \left\{ \sum_{j=0}^{\infty} m_j \phi_j(X_i) \right\} = \sum_{j=0}^{\infty} \left\{ \sum_{i=1}^{n} g_i \phi_j(X_i) \right\} m_j$$

What does the Cauchy-Schwarz inequality for the inner product $\langle u, v \rangle = \sum_{j=0}^{\infty} u_j v_j$ and the constraint $\sum_j \lambda_j m_j^2 \leq B^2$ tell us about this? It helps to multiply each term by a fancy version of 1: $\sqrt{\lambda_j}/\sqrt{\lambda_j} = 1$.

2.2 A Neighborhood

Now let's think about a neighborhood of zero in this model. Because our basis is orthonormal, it's very easy to express our neighborhood constraint in terms of the coefficients m_i .

$$\mathcal{M}_{s} = \{ m \in \mathcal{M} : \|m\|_{L_{2}(P)} \leq s \}$$

$$= \left\{ m(x) = \sum_{j=0}^{\infty} m_{j} \phi_{j}(x) : \sum_{j=0}^{\infty} \lambda_{j} m_{j}^{2} / B^{2} \leq 1 \text{ and } \sum_{j=0}^{\infty} m_{j}^{2} / s^{2} \leq 1 \right\}.$$

$$(4)$$

Exercise 2 Explain why the two lines of (4) describe the same set.

Now we're ready to bound the width of this neighborhood.

Exercise 3 Bound the gaussian width of this neighborhood \mathcal{M}_s . Your bound should depend on the radius s and the sequence λ_j .

Tip. You should be able to lean on your argument from Exercise 1. Note that if a sequence of coefficients m_j satisfies the constraints $\sum_j a_j m_j^2 \leq 1$ and $\sum_j b_j m_j^2 \leq 1$, it satisfies the sum of those constraints, $\sum_j (a_j + b_j) m_j^2 \leq 2$.

2.3 Error Bounds for Least Squares

Now let's use this to calculate a high probability bound on the error of the least squares estimator.

Exercise 4 Calculate a bound of the form $\|\hat{\mu}-\mu^*\|_{L_2(P)} \leq s$ for the least squares estimator $\hat{\mu}$ that holds with high probability when $\mu=0$. First, express this in terms of the sequence λ_j . Then, assuming that X_i is uniformly distributed on [0,1], do it specifically for the model (1) and simplify as much as possible. Try to get a bound proportional to $n^{-\beta}$ for β depending on p.

Tip. When bounding sums like $\sum_{j=0}^{\infty} f(j)$, it's often helpful to use the integral approximation $\int_{0}^{\infty} f(x)dx$.

3 Getting Practical Conclusions

In Exercise 4, we established a bound on the error of the least squares estimator in (1) when some simplifying assumptions are satisfied. It's almost useful, but our simplifying assumptions really limit its applicability.

- 1. It's valid only when $\mu = 0$. That's because our approach to bounding $\|\hat{\mu} \mu^*\|_{L_2(P)}$ depends on the gaussian width of a neighborhood of μ^* . We've only bounded the width of a neighborhood of zero, so our bound works only when $\mu^* = 0$.
- 2. It's valid only when X_i is uniformly distributed on [0,1]. That's because we've assumed that our basis functions ϕ_0, ϕ_1, \ldots are orthonormal for the inner product $\langle u, v \rangle_{L_2(P)}$. The cosine basis functions from (1) are orthonormal for the inner product $\langle u, v \rangle_{L_2}$, which is the same as $\langle u, v \rangle_{L_2(P)}$ if and only if X_i has that uniform distribution.

These are both easy to fix. What we need to do is bound the gaussian width of the neighborhood $\mathcal{M}_s = \{m : \rho_{-\Delta^p}(m) \leq B \text{ and } \|m - \mu^\star\|_{L_2(P)} \leq s\}$. Or, because gaussian width is translation invariant, the width of the centered neighborhood $\mathcal{M}_s - \mu^\star$. And because $\mathrm{w}(\mathcal{V}) \leq \mathrm{w}(\mathcal{V}^+)$ if $\mathcal{V} \subseteq \mathcal{V}^+$ for any curve m, we can use our result from Exercise 4 to do this if we can show that $\mathcal{M}_s - \mu^\star$ is contained in a set \mathcal{M}_s^+ like the neighborhoods we'd consider under our simplifying assumptions. That is, we can use that result if we can show that for some budget B_+ and radius s_+ ,

$$\mathcal{M}_s - \mu^* \subseteq \mathcal{M}_s^+$$
 where $\mathcal{M}_s^+ = \{ m_+ \in \mathcal{M}^p : \rho_{-\Delta^p}(m_+) \leq B_+ \text{ and } \|m_+\|_{L_2} \leq s_+ \}.$

Exercise 5

This one is optional.

- 1. Show that if our covariates X_i are in [0,1] with a probability density function f_X , then $\mathcal{M}_s \mu^* \subseteq \mathcal{M}_s^+$ for $B_+ = 2B$ and $s_+ = s\sqrt{M}$ for $M = \max_{x \in [0,1]} f_X(x)$.
- 2. Use this to bound $w(\mathcal{M}_s)$ by a multiple of the width we calculated under our simplifying assumptions. That is, find α so that $w(\mathcal{M}_s) \leq \alpha w(\mathcal{M}_s^{simple})$ where $\mathcal{M}_s^{simple} = \{m : \rho_{-\Delta^p}(m) \leq B \text{ and } ||m||_{L_2} \leq s\}.$
- 3. Calculate a bound of the form $\|\hat{\mu} \mu^*\|_{L_2(P)} \leq s$ for the least squares estimator $\hat{\mu}$ that holds with high probability. How much bigger is it than the bound you calculated in Exercise 4?

Hint.
$$w(\mathcal{M}_s) = w(\mathcal{M}_s - \mu^*)$$
 and $\rho(m - \mu^*) \leq \rho(m) + \rho(\mu^*)$.

Hint. Review the stuff on generalization at the beginning of the population least squares lecture.

Hint.
$$w(\alpha V) = \alpha w(V)$$
 for $\alpha V = {\alpha v : v \in V}$.