

Реализация алгоритмов с использованием MPI

Эдуард Храмченков

- Вычисление числа π с помощью метода Монте-Карло
- Генерация случайных точек и проверка сколько из них попадают в окружность радиуса 1

$$\pi = 4 \frac{count}{n}$$

 Точность зависит от числа испытаний и выбранного ГПСЧ

- Самый очевидный из параллельных вариантов – каждый процесс проводит свою часть испытаний
- Для сбора количества попаданий в окружность используется редукция с суммированием
- За счет параллелизации цикла и небольшого числа коммуникаций ускорение близко к линейному

- Решето Эратосфена алгоритм поиска простых чисел $\leq n$
- Перебор массива с маркировкой элементов
- Очевидная оптимизация поиск только в нечетных числах
- Оптимизация с сокращением предела внешнего цикла до \sqrt{n} не дает ощутимого эффекта за счет возникновения дополнительного цикла

- Параллелизация по данным
- Разбиение массива чисел от 2 до *п* на несколько частей(блоков), каждая часть обрабатывается своим процессом
- Одинаковый размер блоков для каждого из процессов дает лучшую производительность
- Последовательно берем каждое простое число *prime* и отмечаем *2*prime*, *3*prime*... как составные

- Начало и конец диапазона чисел для каждого потока регулируется величинами low_value и high_value
- Булевый массив помеченных составных чисел у каждого процесса свой
- Соответствие между индексами этих массивов и реальными числами вычисляются при помощи prime, low_value и high_value

- Задача построение таблицы кратчайших маршрутов из пункта А в пункт В
- Карту пунктов можно представить как взвешенный ориентированный граф
- Алгоритм Флойда динамический алгоритм для нахождения кратчайших расстояний между всеми парами вершин взвешенного ориентированного графа

Матрица смежности

	0	1	2	3	4	5
0	0	2	5	∞	∞	∞
1	∞	0	7	1	∞	8
2	∞	∞	0	4	∞	∞
3	∞	∞	∞	0	3	∞
4	∞	∞	2	∞	0	3
5	∞	5	∞	2	4	0

Решение задачи

	0	1	2	3	4	5
0	0	2	5	3	6	9
1	∞	0	6	1	4	7
2	∞	15	0	4	7	10
3	∞	11	5	0	3	6
4	∞	8	2	5	0	3
5	∞	5	6	2	4	0

Решение задачи

	0	1	2	3	4	5
0	0	2	5	3	6	9
1	∞	0	6	1	4	7
2	∞	15	0	4	7	10
3	∞	11	5	0	3	6
4	∞	8	2	5	0	3
5	∞	5	6	2	4	0

- Параллелизация по данным
- Каждое обновление элемента a[i][j] требует доступа к элементам a[i][k] и a[k][j]
- На k-ой итерации каждый элемент в k-ом строке/столбце транслируется всем процессам обрабатывающим данные в строке/столбце
- Есть возможность для каждой итерации внешнего цикла k обновлять элементы матрицы параллельно

- Перемножение матриц
- Параллелизация по данным каждый процесс обрабатывает свои столбцы/строки
- Возможные модификации блочные алгоритмы Фокса и Кэннона
- Требуют создания карты блоков более сложные в реализации
- Блочные алгоритмы более эффективны на очень больших матрицах

- Сортировка больших массивов
- Массив распределяется по процессам
- Каждый из меньших массивов сортируется последовательно
- Затем пошаговое слияние подмассивов
- Большие расходы на изменение размеров массивов и передачу данных
- Возможные оптимизация паралеллизация алгоритма слияния

Вопросы

ekhramch@kpfu.ru