注: 试题含答题纸共6页,满分100分

- 一、 选择题(将正确答案的字母填写在答题纸的相应位置,每小题 3 分,共 30 分)
- 1. 质量相等的两个物体甲和乙,并排静止在光滑水平面上(如图所示). 现用一 水平恒力 \vec{F} 作用在物体甲上,同时给物体乙一个与 \vec{F} 同方向的瞬时冲量 \vec{I} ,使 两物体沿同一方向运动,则两物体再次达到并排的位置时所经过的时间为:

学号

(A) I/F.

(B) 2I/F.

(C) 2 F/I.

(D) F/I.

俯视图

2. 质量为m的小孩站在半径为R的水平平台边缘上,平台可以绕通过其中心的竖直光滑固定 轴自由转动,转动惯量为 J. 平台和小孩开始时均静止, 当小孩突然以相对于地面为 v 的速率 在台边缘沿逆时针转向走动时,则此平台相对地面旋转的角速度和旋转方向分别为:

(A)
$$\omega = \frac{mR^2}{J} \left(\frac{v}{R} \right)$$
,顺时针.

(A)
$$\omega = \frac{mR^2}{J} \left(\frac{\upsilon}{R}\right)$$
,順时针. (B) $\omega = \frac{mR^2}{J} \left(\frac{\upsilon}{R}\right)$,逆时针.

(C)
$$\omega = \frac{mR^2}{J + mR^2} \left(\frac{v}{R}\right)$$
, 順时针. (D) $\omega = \frac{mR^2}{J + mR^2} \left(\frac{v}{R}\right)$, 逆时针.

(D)
$$\omega = \frac{mR^2}{J + mR^2} \left(\frac{v}{R}\right)$$
, 逆时针.

3. 质量为 m 的质点在外力作用下,其运动方程为: $\vec{r} = A\cos\omega t \ \vec{i} + B\sin\omega t \ \vec{j}$ 式中A、B、 ω 都是正的常量. 由此可知外力在t=0到 $t=\pi/(2\omega)$ 这段时间内所作的功为:

(A)
$$\frac{1}{2}m\omega^2(A^2+B^2)$$
.

(B)
$$m\omega^2(A^2 + B^2)$$
.

(C)
$$\frac{1}{2}m\omega^2(A^2-B^2)$$
.

(D)
$$\frac{1}{2}m\omega^2(B^2-A^2)$$
.

- 4. 当一平面简谐机械波在弹性媒质中传播时,下述各结论哪个是正确的?
- (A) 媒质质元的振动动能增大时, 其弹性势能减小, 总机械能守恒.
- (B) 媒质质元的振动动能和弹性势能都作周期性变化,但二者的相位不相同.
- (C) 媒质质元的振动动能和弹性势能的相位在任一时刻都相同,但二者的数值不相等.
- (D) 媒质质元在其平衡位置处弹性势能最大.

7

5. 一火箭初质量为 M_0 , 每秒喷出的质量(-dM/dt)恒定, 喷气相对火箭的速率恒定为u. 设火 箭竖直向上发射,不计空气阻力,重力加速度 \vec{g} 恒定,则t=0时火箭加速度 \vec{a} 在竖直方向(向 上为正)的投影式为:

(A)
$$a = \frac{u}{M_0} \left(-\frac{\mathrm{d} M}{\mathrm{d} t} \right) - g.$$

(B)
$$a = \frac{u}{M_0} \left(\frac{\mathrm{d}M}{\mathrm{d}t} \right) + g.$$

(C)
$$a = \frac{u}{M_0} \left(-\frac{\mathrm{d} M}{\mathrm{d} t} \right)$$
.

(D)
$$a = \frac{u}{M_0} \left(\frac{\mathrm{d}M}{\mathrm{d}t}\right) - g$$
.

 $Q \bullet$

q .

B

6. 电荷面密度为 $+\sigma$ 和 $-\sigma$ 的两块"无限大"均匀带电的平行平板,放在与平面相垂直的 x 轴上的+a 和-a 位置上,如图所示. 设坐标原点 O 处电势为零,则在-a < x < +a 区域的电势分布曲线为:

7

- 7. 点电荷 Q 被曲面 S 所包围,从无穷远处引入另一点电荷 q 至曲面外一点,如图所示,则引入前后:
- (A) 曲面 S 的电场强度通量不变, 曲面上各点场强不变.
- (B) 曲面 S 的电场强度通量变化, 曲面上各点场强不变.
- (C) 曲面 S 的电场强度通量变化,曲面上各点场强变化.
- (D) 曲面 S 的电场强度通量不变, 曲面上各点场强变化.

8. 有两个线圈, 线圈 1 对线圈 2 的互感系数为 M_{21} , 而线圈 2 对线圈 1 的互感系数为 M_{12} . 若它们分别流过 i_1 和 i_2 的变化电流,且 $\left|\frac{\mathrm{d}\,i_1}{\mathrm{d}\,t}\right| > \left|\frac{\mathrm{d}\,i_2}{\mathrm{d}\,t}\right|$, 并设由 i_2 变化在线圈 1 中产生的互感电动

势为 $\boldsymbol{\varepsilon}_{12}$,由 i_1 变化在线圈 2 中产生的互感电动势为 $\boldsymbol{\varepsilon}_{21}$,判断下述哪个论断正确.

- (A) $M_{12} = M_{21}$, $\varepsilon_{21} = \varepsilon_{12}$.
- (B) $M_{12} \neq M_{21}$, $\varepsilon_{21} \neq \varepsilon_{12}$.
- (C) $M_{12} = M_{21}$, $\varepsilon_{21} \ge \varepsilon_{12}$.
- (D) $M_{12} = M_{21}$, $\varepsilon_{21} < \varepsilon_{12}$.

]

9. 用导线围成如图所示的回路(以 O 点为心的圆, 加一直径), 放在轴线通过 O 点垂直于图面的圆柱形均匀磁场中, 如磁场方向垂直图面向里, 其大小随时间减小, 则感应电流的流向为:

-L

- 10. 如图, 边长为 a 的正方形的四个角上固定有四个电荷均为 q 的点电荷. 此正方形以角速度 ω 绕 AC 轴旋转时,在中心 O 点产生的磁感强度大小为 B_1 ; 此正方形以同样角速度 ω 绕过 O 点垂直于正方形平面的轴旋转时,在 O 点产生的磁感强度的大小为 B_2 ,则 B_1 与 B_2 间的关系 为:
- (A) $B_1 = B_2$.

(B) $B_1 = 2B_2$.

(C) $B_1 = \frac{1}{2}B_2$.

(D) $B_1 = B_2/4$

[]

班级	学号	姓名	В
二、 填空题(将正确答案填	写在答题纸的相应位置	,每小题3分,共3)分)
1. 下列物理量: 质量、动量	、冲量、动能、势能、 (不考虑相x		有关的物理量是
2. 一质点在平面上作曲线运	动,其速率 $ oldsymbol{ u} $ 与路程 $ oldsymbol{S} $	的关系为: v=1+	S²(SI) ,则切向加速
度以路程 S 来表示的表达式为	$\Im a_{r} = \underline{\hspace{1cm}}$	(SI).	
3. 设沿弦线传播的一入射波	的表达式为: $y_1 = A$	$\cos[2\pi(\frac{t}{T} - \frac{x}{\lambda}) + \phi]$,
波在 $x=L$ 处(B 点)发生反射 过程中振幅不变,则反射波的	射,反射点为固定端() 勺表达式为	如图). 设波在传播和 ·	I反射 $O \leftarrow L \rightarrow$
4. 一质点作简谐振动, 其振	动方程为 x = 0.24 cos(-	$\frac{1}{2}\pi t + \frac{1}{3}\pi$) (SI), \boxplus	初始状态(t=0的状
态)运动到 x = −0.12 m, v <		2 9	
5. 质量为 <i>m</i> 、横截面半径为 的中心轴线方向不变,且其 ,动能等于	其质心以速度 υ 作水	平匀速运动,则圆	主体的动量的大小为
6. 两个空气电容器 1 和 2, 有一块各向同性均匀电介质标	近缓慢地插入电容器 1 ·	中,则电容器组的总	电荷将 💹 🛨 🔭
7. 带有电荷 q 、半径为 r_A 的	金属球 A,与一原先不	带电、内外半径分别	为 r _B 和
$r_{\rm C}$ 的金属球壳 B 同心放置如	图.则图中 P 点的电场	强度 E =	A
如果用导线将 A、B 连接起关 无穷远处电势为零)	k,则 <i>A</i> 球的电势 <i>U</i> =		(设 B r _c
8. 空气平行板电容器的两板均匀的. 设两极板分别带有			
9. 磁换能器常用来检测微小N 匝的矩形线圈,线圈的一律为 x=Acosωt,线圈随	部分在匀强磁场 \bar{B} 中,	设杆的微小振动规	\times
N 匝的矩形线圈,线圈的一	部分在匀强磁场 \ddot{B} 中,杆 振 动 时 , 线 圈 中	设杆的微小振动规的 感应 电动势为	\times \bar{B} \times b \times

三、 计算题 (每小题 10 分, 共 40 分)

- 1. 一个转盘绕通过盘心的固定竖直轴旋转,将一半径为 R、质量为 m 的均匀圆盘轻放到转盘上,其圆心通过转盘的竖直转轴. 此后圆盘将受转盘的摩擦力作用而随转盘转动. 设圆盘和转盘之间的滑动摩擦系数为 μ ,且转盘始终以原来的角速度 ω 匀速转动. 求
- (1) 圆盘刚放到转盘上时所受的摩擦力矩;
- (2) 从圆盘放到转盘上开始到圆盘达到角速度 ω 需要多长时间.(圆盘的转动惯量 $J=\frac{1}{2}mR^2$)

- 2. 一物体质量为 0.25 kg,在弹性力作用下作简谐振动,弹簧的劲度系数 $k=25~{\rm N\cdot m}^{-1}$,如果起始振动时具有势能 0.06 J 和动能 0.02 J,求
- (1) 振幅;
- (2) 动能恰等于势能时的位移;
- (3) 经过平衡位置时物体的速度.

3. 一无限长圆柱形铜导体(磁导率 μ_0),半径为 R,通有均匀分布的电流 I. 今取一矩形平面 S (长为 1 m,宽为 2 R),位置如右图中画斜线部分所示,求通过该矩形平面的磁通量.

学号

- 4. 真空中,半径为 R 的两块圆板,构成平行板电容器。今给该电容器充电,使电容器的两极板间电场的变化率为 $\frac{dE}{dI}$ 。忽略边缘效应, 求:
- (1) 电容器两极板间的位移电流;
- (2) 电容器内与两板中心连线的距离为 r 处的磁感应强度的大小.

一、 选择题(每题3分, 共30分)

- 1. (B) 2. (A) 3. (C) 4. (D) 5. (A) 6. (C) 7. (D) 8. (C) 9. (B) 10. (C)
- 二、 填空题(每题3分,共30分,注:单位错误总共扣1分,数量级错误扣1分)
- 1. 动量、动能、功

3分(多写全扣,少写每缺一个扣1分)

2. $2S^3 + 2S$

- 3分
- 3. $A\cos\left[2\pi\left(\frac{t}{T} + \frac{x}{\lambda}\right) + (\phi + \pi 2\pi\frac{2L}{\lambda})\right]$ 或 $A\cos\left[2\pi\left(\frac{t}{T} + \frac{x}{\lambda}\right) + (\phi \pi 2\pi\frac{2L}{\lambda})\right]$ 3分
- 4. 0.667 s 或 (2/3)s

3分

5. mv

1分

 $3mv^2/4$

1分

 $\frac{1}{2}mRv$

1分

6. 增大

1分

增大

- 2分
- 7. $q\bar{r}/(4\pi\varepsilon_0 r^3)$ 或 $q\bar{r}^0/(4\pi\varepsilon_0 r^2)$ 2分(无矢量符号扣1分)
 - $q/(4\pi\varepsilon_0 r_c)$

1分

8. $Q^2/(2\varepsilon_0S)$

- 3分
- 9. $\varepsilon = NbB \, dx/dt = NbB\omega A \cos(\omega t + \pi/2)$ $\vec{\omega}$ $\varepsilon = NBbA \omega \sin \omega t$
- 3分

10. $\sqrt{2}BIR$

2分

沿ヶ轴正向

1分

三、 计算题 (每小题 10 分, 共 40 分)

1. 解:在 r 处的宽度为 dr 的环带面积上摩擦力矩为

$$dM = \mu \frac{mg}{\pi R^2} \cdot 2\pi r \cdot r dr$$
 3 \(\frac{\partial}{2}\)

总摩擦力矩
$$M = \int_0^R dM = \frac{2}{3} \mu mgR$$
 2分

圆盘在此力矩作用下作匀加速转动,角加速度为

$$\beta = \frac{M}{J} = \frac{\frac{2}{3} \mu mgR}{\frac{1}{2} mR^2} = \frac{4\mu g}{3R}$$

从圆盘放到转盘上开始到圆盘达到角速度 ω 所需时间为:

$$t = \frac{\omega}{\beta} = \frac{3R\omega}{4\mu g}$$
 2 \(\frac{\partial}{2}\)

2.
$$ME: (1)$$

$$E = E_K + E_P = \frac{1}{2}kA^2$$

$$A = [2(E_K + E_p)/k]^{1/2} = 0.08 \text{ m}$$
 4 分

(2)
$$\frac{1}{2}kx^2 = \frac{1}{2}mv^2$$

$$m\omega^2 x^2 = m\omega^2 A^2 \sin^2(\omega t + \phi)$$

$$x^{2} = A^{2} \sin^{2}(\omega t + \phi) = A^{2}[1 - \cos^{2}(\omega t + \phi)] = A^{2} - x^{2}$$

$$2x^2 = A^2$$
, $x = \pm A/\sqrt{2} = \pm 0.0566$ m 3 分(缺负值扣 1 分)

或直接用
$$\frac{1}{2}mv^2 = \frac{1}{2}kx^2 = \frac{1}{4}kA^2$$
 求解

(3) 过平衡点时, x = 0, 此时动能等于总能量

$$E = E_K + E_p = \frac{1}{2}mv^2$$

$$v = [2(E_K + E_p)/m]^{1/2} = \pm 0.8$$
 m/s

3分(缺负值扣1分)

3. 解:在圆柱体内部与导体中心轴线相距为r处的磁感强度的大小,由安培环路定

律可得:

$$B = \frac{\mu_0 I}{2\pi R^2} r \qquad (r \le R)$$

2分

因而,穿过导体内画斜线部分平面的磁通 ϕ ,为

B. My

$$\Phi_1 = \int \vec{B} \cdot d\vec{S} = \int B dS = \int_0^R \frac{\mu_0 I}{2\pi R^2} r dr = \frac{\mu_0 I}{4\pi}$$

2分

在圆形导体外,与导体中心轴线相距 r 处的磁感强度大小为

$$B = \frac{\mu_0 I}{2\pi r} \qquad (r > R)$$

2分

因而,穿过导体外画斜线部分平面的磁通 ϕ_2 为

$$\Phi_2 = \int \vec{B} \cdot d\vec{S} = \int_{\mu}^{2R} \frac{\mu_0 I}{2\pi r} dr = \frac{\mu_0 I}{2\pi} \ln 2$$

2 分

穿过整个矩形平面的磁通量
$$\Phi = \Phi_1 + \Phi_2 = \frac{\mu_0 I}{4\pi} + \frac{\mu_0 I}{2\pi} \ln 2$$

2分

4. 解: (1) 位移电流
$$I_d = \frac{d\Phi_D}{dt} = \pi R^2 \varepsilon_0 \cdot \frac{dE}{dt}$$

5分

(2) 根据全电流定律:
$$\oint_{L} \vec{H} \cdot d\vec{l} = I_d$$
, 有

3 73

$$H = \frac{1}{2}r\varepsilon_0 \cdot \frac{\mathrm{d}E}{\mathrm{d}t},$$

3 分

$$B_r = \frac{1}{2} r \mu_0 \varepsilon_0 \frac{\mathrm{d} E}{\mathrm{d} t}$$

2分