Backward Stochastic Differential Equation

Derivative Method: Analysis

Majdi Rabia

1 Introduction

Simulations on American Options Pricing in high dimensions work well as they do not involve a noisy process in regression step. This is the case in our bid-ask problem, following the BSDE:

$$-dY_t = f(t, Y_t, Z_t)dt - Z_t dW_t \tag{1}$$

where

$$\begin{cases} f(t, Y_t, Z_t) = -\theta Z_t - rY + (R - r)(Y - \frac{Z_t}{\sigma})^- \\ Z_t = \sigma \sum_{i=1}^p \Phi_t^i \\ \theta = \frac{\mu - r}{\sigma} \end{cases}$$

Let's compare our results to Gobet's simulation with the following parameter

2 Regression

$$Z_{t_i} = \frac{1}{\Delta t_i} \mathbb{E}[Y_{t_{i+1}} \Delta B_{t_i} | \mathcal{F}_{t_i}]$$

$$Y_{t_i} = \mathbb{E}[Y_{t_{i+1}}|\mathcal{F}_{t_i}] + f(t_i, S_{t_i}, Y_{t_{i+1}}, Z_{t_i})\Delta t_i$$

3 Derivative Iteration

This method uses the fact $Z_t = \sigma S_t \frac{\partial w}{\partial S}$ where $Y_t = w(t,S_t)$

- $\forall t_i$ we compute once the regression using for example a RandomForest (in high dimensions), or a least square estimator on polynomial basis (one dimension).
- Assumption : $Y_{t_i} = \hat{f}(S_{t_i})$

Gaussian approximation : $\hat{f}(x) = \sum_{i=1}^{N} \frac{\omega(x,x_i)}{\sum_{j=1}^{N} \omega(x,x_j)} Y_i$ where i denotes the

i'th simulation

where the weight $\omega(x, x_i) = e^{-\frac{(x-x_i)^2}{2l^2}}$

l being a parameter depending on the scale of the given data (the smaller, the better)

- \bullet Once \hat{f} is computed, as it was chosen derivable on purpose, we compute the derivative \hat{f}'
- We set $Z_{t_i} = \sigma S_{t_i} \hat{f}'(S_{t_i})$

We iterate this method at every step, to get the smoother Z possible.

4 Simulations

4.1 1st: Price convergence

N_{-} particles	m_{-} discretization	N_run	n_picard	nearest_neighbors	l
1000	12	20	3	100	1.0

Theoretical Price: 7.15

Table 1: Simulation

Run Numb		er Time in seconds		Price		
_	run 1	3.591	7.	42865338	$\overline{4}$	
	$\operatorname{run} 2$	4.751	7.0	04232182	7	
$\operatorname{run} 3$		3.932	7.5	7.257010564		
$\operatorname{run} 4$		3.618 6.917118799			9	
$\operatorname{run} 5$		3.223	7.	7.171610637		
	run 6	4.307	7.0	09080048	9	
$\operatorname{run} 7$		3.75	7.5	7.206036474		
run 8		3.97	6.	6.952620543		
	run 9	3.494	7.	64840495	8	
	run 10	4.907	6.	74178751	6	
	run 11	4.204	7.	69655354	2	
	run 12	4.136	6.8	81850217	8	
	run 13	4.403	7.	77523240	7	
	run 14	4.081	6.	78086682	9	
	$\operatorname{run} 15$	4.013	7.	18021378	3	
	run 16	3.572	7.4	48518661	4	
$\operatorname{run} 17$		4.204	7.5	25874576	4	
run 18		4.473	7.5	27098440	2	
run 19		3.673	6.8	80014930	2	
$\operatorname{run} 20$		3.942	7.0	03548784	9	
mean	std	95% confidence in	nterval	min	max	
7.1779	9 0.3088	[7.1476, 7.2082]		6.7418	7.7752	

Remark Even with a smoother Z, we can notice a high variance. Of course, the number of 1000 particles being limited, it might be a cause. I am working on getting the same result with a bigger N_particles

4.1.1 Analysis of the number of neighbors on the Price

Remarks Given the variance of one run with n_neighbors, this simulation has been made with several runs (5) for each point ... The results are not the one we would have expected, as a number of neighbours increasing seem to be less precise. My assumption is that given the small difference between r and R (0.06 – 0.04), Z_t might not be so important in this computation.

4.2 Analysis of the parameter l

Remarks As before, given the variance of one run, this simulation has been made with 5 runs for each point. A value near 0 for 1 parameter gives for every point i (at each step t) a very small weight. That explains the values we have around 0.

We should observe for big values of 1 a bigger error (as for 1 near 0), but we do not. Indeed, when 1 is bigger than $(x - x_i)$, the weight ω should be almost equal to 1! Giving then the same weight for each point Y_i and we would have a simple Monte-Carlo.

My assumption is that we get $\mathbb{E}[Y_{t_i}] \forall t_i$ instead of Y_{t_i} , which does not seem to be much different, and would explain why bigger l do not give worse values.

4.3 Plotting the noisy Process Z against the Stock Price X

Figure 1: Z against X for a 12 steps discretization

4.4 Time analysis

Remark I plotted here an Nlog(N) behaviour against a number of neighbours increasing, along with the time taken for each number of NN. We can notice how the two functions seem to behave samely here .