

Balancing Robot

Gabriel Mendes, Jessé Alves and Matheus Villela

Physical Part of the Robot Finished!

Before:

Fig 1 - Chassis Parts

Source: Own

Total Robot Assembly Completed!

After:

Fig 2 - Battery module

Source: Own

Fig 3 - Chassis Assembly

Source: Own

Fig 4 - Electrical connection

Source: Own

Communication With the MPU6050 Sensor

- I2C Communication
- Composed of an Accelerometer, Gyroscope and Temperature Sensor
- Element responsible for inserting feedback into the project
- Need for calibration

Source: Own

Activating Motors With the L298N Module

- Motor drive using PWM for speed adjustment
- Power supply through a battery module connected to the H Bridge, which will turn on the motors and, through a voltage regulator, turn on the Arduino.
- Use of motors with reduction gearboxes to maximize torque at the expense of speed

Source: RoboCore

Source: FilipeFlop

Sensor reading finished

- Testing each variable provided by the MPU6050 sensor: AccX, AccY, AccZ, GyroX, GyroY and GyroZ;
- Theta angle calculated and estimated using a Kalman Filter library on Arduino;

Source: Alex Pisciotta

Estimation Results

Control System Structure

Discrete PID control code implemented

$$u(t_k) = u(t_{k-1}) + \left(K_p + K_i \Delta t + \frac{K_d}{\Delta t}\right) e(t_k) + \left(-K_p - \frac{2K_d}{\Delta t}\right) e(t_{k-1}) + \frac{K_d}{\Delta t} e(t_{k-2})$$
(24)

Source: Own

```
/*Calculo do Erro*/
e2 = e1;
e1 = e0;
e0 = SetPoint - input;

/* Calculo dos Termos do Controle Discreto*/
double A0 = kp + ki*deltaTime + kd/deltaTime;
double A1 = -kp - 2*kd/deltaTime;
double A2 = kd/deltaTime;

/* Calculo do PID Discreto*/
output = output + A0*e0 + A1*e1 + A2*e2;
```

Source: Own

```
const int OUTA = 3;
const int OUTB = 9;
const int OUTC = 5;
const int OUTD = 11;
void int motores(){
 pinMode (OUTA, OUTPUT);
 pinMode(OUTB, OUTPUT);
 pinMode(OUTC, OUTPUT);
 pinMode (OUTD, OUTPUT);
void PWMControleMotores(double comando) {
 if(comando > 10){
   analogWrite(OUTA, 0); // Motor da direita p/ trás
   analogWrite(OUTB, abs(comando)); // Motor da direita p/ frente
   analogWrite(OUTC, 0); // Motor da esquerda p/ trás
   analogWrite(OUTD, abs(comando)); // Motor da esquerda p/ frente
 }else{
   analogWrite(OUTA, abs(comando)); // Motor da direita p/ trás
    analogWrite(OUTB, 0); // Motor da direita p/ frente
    analogWrite(OUTC, abs(comando)); // Motor da esquerda p/ trás
   analogWrite (OUTD, 0); // Motor da esquerda p/ frente
```

Robot Modeling

Fig 1 - Balancing Robot

Source: kpacitor.teachable.com

Fig 2 - Free Body Model

Source: Hanna Hellman & Henrik

Sunnerman

Mathematical Model: Pendulum and Wheel

• From the free-body model of the pendulum in Figures 3 and 4, applying the equations of linear and angular motion, we will obtain the forces and the moment of inertia on the pendulum and from them we will arrive at the following equation:

$$F_{x} = m_{c} * \frac{d^{2}x}{dt^{2}} + m_{c} * l * \frac{d^{2}\psi}{dt^{2}} * \cos(\psi) - m_{c} * l * (\frac{d\psi}{dt})^{2} * \sin(\psi)$$

$$F_{y} = m_{c} * g + m_{c} * l * \frac{d^{2}\psi}{dt^{2}} * \sin(\psi) + m_{c} * l * (\frac{d\psi}{dt})^{2} * \cos(\psi)$$

$$\int_{C} * \frac{d^{2}\psi}{dt^{2}} = -F_{y} * l * \sin(\psi) - F_{x} * l * \cos(\psi)$$

$$\psi = \pi + \phi$$
(4)

Fig 3 - Pendulum

Mathematical Model: Pendulum and Wheel

• From the free-body model of the pendulum in Figures 3 and 4, applying the equations of linear and angular motion, we will obtain the forces and the moment of inertia on the pendulum and from them we will arrive at the following equation:

Fig 4 - Wheel

Mathematical Model: DC Motor

• From the free-body model of the pendulum in Figure 3, applying the equations of linear and angular motion, we will obtain the forces and the moment of inertia on the pendulum and from them we will arrive at the following equation:

Fig 5 - DC Motor Circuit

Source: https://journals.sagepub.com/

Model Linearization

• To linearize the model, the following considerations were made:

$$\begin{cases} \phi \approx 0 \\ \psi = \pi + \phi \\ \sin(\psi) = \sin(\pi + \phi) \approx -\phi \\ \cos(\psi) = \cos(\pi + \phi) \approx -1 \end{cases}$$
(1)
$$\begin{cases} \cos(\psi) = \sin(\pi + \phi) \approx -\phi \\ \cos(\psi) = \cos(\pi + \phi) \approx -1 \end{cases}$$
(3)
$$\phi^2 \approx 0$$
(5)
$$\phi * \frac{d^2\phi}{dt^2} \approx 0$$
(6)
$$(\frac{d\phi}{dt})^2 \approx 0$$
(7)

Fig 6 - Robot Angles

Source: https://www.instructables.com/

State Space Model

With the equations presented previously and linearization applied, we defined the following model:

$$\begin{bmatrix} \dot{x} \\ \ddot{x} \\ \dot{\phi} \\ \dot{\phi} \end{bmatrix} \approx \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & -\frac{(J_c + m_c * l^2) * n^2 * K^2}{R_a * q} & \frac{n * r^2 * m_c^2 * g * l^2}{q} & 0 \\ 0 & 1 & 0 & 1 \\ 0 & -\frac{n^2 * K^2 * m_c * l}{R_a * q} & \frac{m_c * g * l * p}{q} & 0 \end{bmatrix} \begin{bmatrix} x \\ \dot{x} \\ \phi \\ \dot{\phi} \end{bmatrix}$$

$$+ \begin{bmatrix} 0 & 1 & 0 & 0 \\ \frac{(J_c + m_c * l^2) * n^2 * r * K}{R_a * q} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} V \\ \frac{n^2 * r * K * m_c * l}{R_a * q} \end{bmatrix} [V]$$

$$\lceil y \rceil = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ \dot{x} \\ \phi \\ \dot{\phi} \end{bmatrix}$$

Open Loop System Step Response

Applying a voltage step of 1V to the system.

PID project

PID project by root location

Applying a Discrete PID Controller

• PID controller with Kp = 18.43, Ki = 533.40, Kd = 0.1451 and $\Delta t = 3$ ms.

Fig 8 - Closed Loop System

Source: Own Authorship

Practical Application

• Result obtained with the application of the PID Controller designed with the help of Matlab's PID Tuner.

Fig 9 - Side View

Source: Own Authorship

Fig 10 - Front View

Source: Own Authorship

Questions and suggestions

attention

Thank you for your