# SUCESIONES DE VARIABLES ALEATORIAS II

Julio César Galindo López

Facultad de Ciencias

5 de mayo de 2020

### $\mathbb{P} \Leftrightarrow \text{SUB SUB C.S.}$

#### **PROPOSICIÓN**

 $X_n \to X$  en probabilidad si y sólo si para toda subsucesión  $(X_{N(n)})$  podemos extraer una subsubsucesión  $(X_{N(M(n))})$  que converge a X casi seguramente.

### DEMOSTRACIÓN.

Si  $X_n \to X$  en probabilidad, entonces  $X_{N(n)} \to X$  en probabilidad. Por la proposición precedente, existe una subsucesión  $(X_{N(M(n))})$  que converge hacia X casi seguramente. Recíprocamente, supongamos que para toda subsucesión  $(X_{N(n)})$ , podemos extraer una subsubsucesión  $(X_{N(M(n))})$  que converge a X casi seguramente. Sea  $\varepsilon > 0$  fijo, y sea  $a_n := \mathbb{P}(|X_n - X| > \varepsilon)$ . Para toda subsucesión  $(a_{N(n)})$  podemos extraer una subsucesión  $(a_{N(M(n))})$  que converge a 0. Esto equivale a que  $a_n \to 0$   $(n \to \infty)$ . Es decir,  $X_n \to X$  en probabilidad.

#### CONVERGENCIA EN PROBABILIDAD

### **PROPOSICIÓN**

Si  $X_n \to X$  en probabilidad, y si f es una función continua sobre  $\mathbb{R}$ , entonces  $f(X_n) \to f(X)$  en probabilidad.

### DEMOSTRACIÓN.

Sea  $(f(X_{N(n)}))$  una subsucesión cualquiera. Por la proposición anterior, existe una subsucesión  $(X_{N(M(n))})$  que converge a X casi seguramente, por lo que  $(f(X_{N(M(n))}))$  converge a f(X) casi seguramente. Nuevamente, por la proposición anterior,  $f(X_n) \to f(X)$  en probabilidad.

# Convergencia en $L^p$

### **DEFINICIÓN**

Para toda  $p\geq 1$ , decimos que una sucesión de variables aleatorias  $\{X_n\}_{n\geq 1}$  converge en  $L^p(\Omega,\mathcal{F},\mathbb{P})$  hacia una variable aleatoria  $X\in L^p(\Omega,\mathcal{F},\mathbb{P})$  si

$$\lim_{n \to \infty} \mathbb{E}[|X_n - X|^p] = 0.$$

#### **NOTA**

- 1. Si  $X_n \to X$  en  $L^p$ , y si  $1 \le q < p$ , entonces la convergencia se da en  $L^q$ .
- 2. Si  $X_n \to X$  en  $L^p$ , entonces  $|X_n| \to |X|$  en  $L^p$ .
- 3. Si  $X_n \to X$  en  $L^p$ , y si p > 1, entonces  $\mathbb{E}[X_n^p] \to \mathbb{E}[X^p]$ .



# Convergencia en $L^p$

#### **EJEMPLO**

Sea  $\{X_n\}_{n\geq 1}$  una sucesión de variables aleatorias que siguen la misma ley. Supongamos que  $X_1\in L^1$ . Sea  $Y_n=\frac{X_n}{n}$ . Estudiemos sus modos de convergencia hacia la variable aleatoria constante 0.

1. Convergencia en  $L^1$ :

$$\mathbb{E}[|Y_n - 0|] = \frac{\mathbb{E}[|X_1|]}{n} \to 0 \qquad Y_n \to 0 \text{ en } L^1.$$

2. Convergencia c.s.: Sea k > 0 un real fijo. Nótemos que

$$\sum_{n=1}^{\infty} \mathbb{P}(|Y_n| > 1/k) = \sum_{n=1}^{\infty} \mathbb{P}(k|X_1| \ge n) = \mathbb{E}[k|X_1|] < \infty.$$

Sea  $A_k=\{\limsup_{n\to\infty}|Y_n|<1/k\}$ . Por el lema de Borel-Cantelli,  $\mathbb{P}(A_k)=1$ . Así,  $Y_n\to 0$  c.s.



$$L^p \Rightarrow \mathbb{P}$$

# **PROPOSICIÓN**

Si  $X_n \to X$  en  $L^p$ , entonces la convergencia se da en probabilidad.

# DEMOSTRACIÓN.

Fijemos  $\varepsilon > 0$ . Por la desigualdad de Markov,

$$\mathbb{P}(|X - X_n| > \varepsilon) \le \frac{\mathbb{E}[|X - X_n|^p]}{\varepsilon^p} \to 0, \quad n \to \infty.$$



Sea  $\{X_n\}$  una sucesión de v.a. reales tales que

$$\mathbb{P}(X_n = n) = \frac{1}{\ln n}$$
  $\mathsf{y}$   $\mathbb{P}(X_n = 0) = 1 - \frac{1}{\ln n}$ .

Para toda  $\varepsilon > 0$ ,

$$\mathbb{P}(|X_n| > \varepsilon) \le \frac{1}{\ln n} \to 0 \text{ y } X_n \to 0 \text{ en } \mathbb{P}.$$

Por otra parte,

$$\mathbb{E}[|X_n|^p] = \frac{n^p}{\ln n} \to \infty,$$

de donde  $X_n$  no converge a 0 en  $L^p$ .

# $\mathbb{P} \Rightarrow \text{dom } L^p$

### **PROPOSICIÓN**

Si  $X_n \to X$  en probabilidad y si existe una v.a. real  $Y \in L^p$  tal que  $|X_n| \le Y$  para toda n, entonces  $X_n \to X$  en  $L^p$ .

### DEMOSTRACIÓN.

Si  $X_n \to X$  en probabilidad, entonces  $X_{N(n)} \to X$  en probabilidad para cualquier subsucesión. Sabemos que existe uns subsucesión  $\{X_{N(M(n))}\}$  que converge a X c.s. Eel teorema de convergencia dominada afirma que  $X_{N(M(n))} \to X$  en  $L^p$ . De esta manera, de toda subsucesión de  $\{X_n\}$ , podemos extraer una subsubsucesión que converge a X en  $L^p$  y por lo tanto  $X_n \to X$  en  $L^p$ .

 $\mathbb{P} \Rightarrow \text{Dom } L^p$ 

#### **COROLARIO**

Si  $X_n \to X$  en probabilidad y si existe una v.a. real  $Y \in L^1$  tal que  $|X_n| \le Y$  para toda n, entonces  $X_n \to X$  en  $L^1$ . En particular,  $\mathbb{E}[X_n] \to \mathbb{E}[X]$ .

Sea Y una v.a. real definida sobre  $(\Omega, \mathcal{F}, \mathbb{P})$ , uniformemente distribuída sobre [3, 6]. Para toda  $n \geq 1$  y toda  $\omega \in \Omega$ , sea

$$X_n(\omega) = \begin{cases} 5n^2 & 3 \le Y(\omega) \le 3 + (4/n^2), \\ 0 & \text{e.o.c.} \end{cases}$$

- 1. Determinar  $\mathbb{E}[X_n]$  y  $\mathbb{E}[X_n^2]$ ,  $(n \ge 1)$ .
- 2. Calcular  $\mathbb{E}[X_{n+1}X_{n+2}]$ ,  $(n \ge 1)$ .
- 3. Estudiar la convergencia c.s. de  $(X_n)$ .
- 4. Estudiar la convergencia en probabilidad de  $(X_n)$ .
- 5. Estudiar la convergencia en  $L^1$  de  $(X_n)$ .



#### Solución.

- $$\begin{split} 1. \ \ \mathbb{E}[X_n] &= 5n^2\mathbb{P}(3 \leq Y \leq 3 + 4n^{-2}) \text{ y} \\ \mathbb{E}[X_n^2] &= 25n^4\mathbb{P}(3 \leq Y \leq 3 + 4n^{-2}). \text{ Si } n = 1, \mathbb{P}(3 \leq Y \leq 7) = 1, \\ \mathbb{E}[X_1] &= 5 \text{ y } \mathbb{E}[X_1^2] = 25. \text{ Si } n \geq 2, \mathbb{P}(3 \leq Y \leq 3 + 4n^{-2}) = 4n^{-2}/3, \text{ de donde } \mathbb{E}[X_n] &= \frac{20}{3} \text{ y } \mathbb{E}[X_n^2] = \frac{100}{3}n^2. \end{split}$$
- 2.  $X_{n+1}X_{n+2}=25(n+1)^2(n+2)^2\mathbf{1}_{[3,3+4(n+2)^{-2}]}(Y)$ . Esto implica que  $\mathbb{E}[X_{n+1}X_{n+2}]=25(n+1)^2(n+2)^2\mathbb{P}(3\leq Y\leq 3+4(n+2)^{-2})=\frac{100}{3}(n+1)^2$ .
- 3. Sea  $\Omega_0=\{\omega\in\Omega:3< Y(\omega)\leq 6\}$ . Entonces  $\mathbb{P}(\Omega_0)=1$ . Para todo  $\omega\in\Omega_0$ , sea  $n_0=n_0(\omega)=2/\sqrt{Y(\omega)-3}$ . Así,  $Y(\omega)>3+4/n^2$  cuando  $n>n_0$ . En consecuencia,  $\mathbb{P}(\omega\in\Omega:\lim_{n\to\infty}X_n(\omega)=0)=1$ , esto es  $X_n\to0$  c.s.

- 4.  $c.s \Rightarrow \mathbb{P}$ . Estonces,  $X_n \to 0$  en probabilidad.
- 5. Si  $X_n \to 0$  en  $L^1$ , entonces  $\lim_{n \to \infty} \mathbb{E}[X_n] = \mathbb{E}[0] = 0$ . Sin embargo,  $\mathbb{E}[X_n] = \frac{20}{3}$ . En conclusión,  $X_n$  no converge en  $L^1$ .