CLAIMS

What is claimed is:

A process of making a composite article comprising:
providing a trilayer structure comprising:

a first electrode layer,

an electrolyte layer

a second electrode layer,

sintering the trilayer structure

2. A process of making a composite article as claimed in claim 1, wherein the first electrode layer comprises one or more electronic and/or MIEC and an ionic conductor or MIEC, the electrolyte layer comprises predominately an ionically conducting electrolyte material, and the second electrode layer comprising one or more electronic and/or MIEC and an ionic conductor or MIEC.

- 3. A process of making a composite article as claimed in claim 2, wherein the MIEC is non-reactive with the electrolyte layer material at the sintering temperature of the composite article.
- 4. A process of making a composite article as claimed in claim 1, wherein the first and/or second electrode comprise particles that are larger than about .25 μ m but less than about 10 μ m.
- 5. A process of making a composite article as claimed in claim 1, wherein

- 6. A process of making a composite article as claimed in claim 1, wherein the electrode layers have a porosity of greater than 20 % but less than about 60%.
- 7. A process of making a composite article as claimed in claim 1, wherein the trilayer structure is affixed to a substrate.
- 8. A process of making a composite article as claimed in claim 7, wherein the substrate comprises a porous non-noble transition metal, a porous non-noble transition metal alloy or a porous cermet incorporating one or more of a non-noble non-nickel transition metal and a non-noble transition metal alloy.
- 9. A process of making a composite article as claimed in claim 1, wherein the sintering is conducted at a temperature sufficient to substantially sinter and densify the electrolyte layer without melting the electrodes.
- 10. A process of making a composite article as claimed in either of claims 1 or 9, wherein the sintering is conducted at about 1000 °C to about 1500 °C.
- 11. A process of making a composite article as claimed in claim 10, wherein the sintering is conducted at about 1200 °C to about 1400 °C.
- 12. A process of making a composite article as claimed in claim 11, wherein the sintering is conducted at about 1250 °C to about 1350 °C.
- 13. A process of making a composite article as claimed in claim 1, wherein the sintered electrolyte layer is gas-tight and greater than about 90% densified.
- 14. A process of making a composite article as claimed in claim 1, wherein the sintered electrolyte layer is gas-tight and greater than about 95% densified.

- 15. A process of making a composite article as claimed in claim 1, wherein the sintered electrolyte layer is no more than 2% porous.
- 16. A process of making a composite article as claimed in claim 1, wherein the sintered electrolyte layer is about 1 to 50 microns thick.
- 17. A process of making a composite article as claimed in claim 16, wherein the sintered electrolyte layer is about 3 to 30 microns thick.
- 18. A process of making a composite article as claimed in claim 17, wherein the sintered electrolyte layer is about 5 to 20 microns thick.
- 19. A process of making a composite article as claimed in claim 1, wherein said trilayer structure is planar.
- 20. A process of making a composite article as claimed in claim 1, wherein said trilayer structure is tubular.
- 21. A process of making a composite article as claimed in claim 1, wherein said trilayer structure is hexagonal.
- 22. A process of making a composite article as claimed in claim 7, wherein said substrate is an alloy selected from the group consisting of a low-chromium ferritic steel, an intermediate-chromium ferritic steel, a high-chromium ferritic steel, a chrome-based alloy, and chrome-containing nickel-based Inconel alloy.
- 23. A process of making a composite article as claimed in claim 22, wherein said alloy is selected from the group consisting of Cr5Fe1Y and Inconel 600.

24. A process of making a composite article as claimed in claim 7, wherein said substrate material is a cermet selected from the group consisting of at least one of La_{1-x}Sr_xMn_yO_{3-δ} (1≥x≥0.05) (0.95≤y≤1.15) ("LSM"), La_{1-x}Sr_xCoO_{3-δ} (1≥x≥0.10) ("LSC"), SrCo_{1-x}Fe_xO₃δ (0.30≥x≥0.20), La_{0.6}Sr_{0.4}Co_{0.6}Fe_{0.4}O_{3.δ}, Sr_{0.7}Ce_{0.3}MnO_{3-δ}, LaNi_{0.6}Fe_{0.4}O_{3-δ}, Sm_{0.5}Sr_{0.5}CoO_{3-δ}, yttria stabilized zirconia (YSZ), scandia stabilized zirconia (SSZ), (CeO₂)_{0.8}(Gd₂O₃)_{0.2} (CGO), La_{0.8}Sr_{0.2}Ga_{0.85}Mg_{0.15}O_{2.825} (LSGM20-15), (Bi₂O₃)_{0.25}(Y₂O₃)_{0.25} and alumina, in combination with at least one of transition metals Cr, Fe, Cu, Ag, an alloy thereof, a low-chromium ferritic steel, an intermediate-chromium ferritic steel, a high-chromium ferritic steel, a chrome-based alloy, and chrome-containing nickel-based Inconel alloy.

- 25. A process of making a composite article as claimed in claim 24, wherein the LSM is selected from the group consisting of La_{0.8}Sr_{0.2}MnO_{3-δ}, La_{0.65}Sr_{0.30}MnO_{3-δ}, La_{0.45}Sr_{0.55}MnO_{3-δ}.
- 26. A process of making a composite article as claimed in claim 25, wherein said chrome based alloy is Cr5Fe1Y.
- 27. A process of making a composite article as claimed in claim 1, wherein said electrolyte comprises at least one of yttria stabilized zirconia (YSZ), scandia stabilized zirconia (SSZ), doped cerium oxide including (CeO₂)_{0.8}(Gd₂O₃)_{0.2} (CGO), La_{0.8}Sr_{0.2}Ga_{0.85}Mg_{0.15}O_{2.825} (LSGM20-15) and (Bi₂O₃)_{0.75}(Y₂O₃)_{0.25}.
- 28. A process of making a composite article as claimed in claim 27, wherein said electrolyte is yttria stabilized zirconia.

1

- 29. A process of making a composite article as claimed in claim 28, wherein said yttria stabilized zirconia is $(ZrO_2)_x(Y_2O_3)_y$ where $(.88 \ge X \ge .97)$ and $(.03 \le y \le .12)$.
- 30. A process of making a composite article as claimed in claim 29, wherein said yttria stabilized zirconia is at least one of (ZrO₂)_{0.92}(Y₂O₃)_{0.08} and (ZrO₂)_{0.90}(Y₂O₃)_{0.10}.
- 31. A process of making a composite article according to claim 1, wherein the electrolyte is a mixed ionic electronic conductor.
- 32. A process of making a composite article as claimed in claim 31, wherein said electrolyte comprises at least one of $SrCo_{1.x}Fe_xO_{3.\delta}$ (0.30 \geq X \geq 0.20), $La_{0.x}Sr_{0.4}Co_{0.x}Fe_{0.4}O_{3.\delta}$, $Sm_{0.5}Sr_{0.5}CoO_{3.\delta}$ and $La_{1.x}Sr_xCoO_{3.\delta}$.
- 33. A process of making a composite article as claimed in claim 32, wherein said electrolyte is SrCo_{0.75}Fe_{0.25}O_{3-δ}.
- 34. A process of making a composite article as claimed in claim 1, wherein the composite article has an ohmic area specific resistance from about 0.5 ohm cm² to about .05 ohm cm² during operation of the composite article.
- 35. A composite article made according to the process of claim 1, wherein the composite article has an ohmic area specific resistance of from about 0.5 ohm cm² to about .25 ohm cm² during operation of the composite article.
- 36. A composite article made according to the process of claim 1, wherein the composite article has an ohmic area specific resistance of less than about .05 ohm cm² during operation of the composite article.
- 37. A solid oxide fuel cell made according to the process of claim 1.

38. A process of making a solid oxide fuel cell comprising:

providing a trilayer structure comprising:

a first electrode layer,

an electrolyte layer,

a second electrode layer,

sintering the trilayer\structure.