B

nazwisko i imię:	Toucik Aleksander
numer indeksu:	<u> 56269</u>

- 1. Metodę propagacji wstecznej w sieci wielowarstwowej można zastosować, gdy zawarte w niej neurony wykorzystują, na przykład, następującą funkcję aktywacji (1 punkt):
 - a) tangensoidalną,
 - b unipolarna,
 - c) f(x) = |x|,

Dlaczego tak? Dlaczego	nie? (2 punkty)	

2. Zaprojektowano sieć *fuzzy*-ART w taki sposób, aby wszystkie dwuwymiarowe punkty znajdujące się w obrębie prostokątów przedstawionych na poniższym rysunku znajdowały się w jednej z dwóch grup. Ile neuronów ma sieć, ile każdy z nich ma wejść, ile wynoszą wszystkie niezbędne parametry **poza wagami?** Wybierz jeden z dziewięciu punktów znajdujących się na poniższym rysunku i określ jak w przypadku tego punktu będzie wyglądał sygnał wejściowy sieci (5 punkty).

0.2

- 3. Sieci jednowarstwowe mające, między innymi, wspólne, to samo zastosowanie to:
 - (a)) sieć ART,
- b sieć Hopfielda,
 - sieć Kohonena,
 - d) sieć Crisp-ART.
- 4. Wykorzystaj jeden z wektorów (albo dwa): [2, 0], [-2, 0], aby zaprojektować dwa różne perceptrony (każdy o innej funkcji aktywacji), które umożliwią poprawną klasyfikację przedstawionych poniżej zbiorów punktów (5 punktów). Przyjmij następujące ograniczenia:

perceptron A: dla kółek oczekujemy na wyjściu wartości 1;

perceptron B: zastosuj funkcję bipolarną, dla kwadracików oczekujemy 1.

- 5. W sieci Hopfielda zapamiętano wzorzec [1, -1, 1, -1]. Oznacza to, że:
 - a) "pamięta" tylko i wyłącznie ten wzorzec,
 - sieć ma co najmniej cztery wagi w każdym neuronie,
 - w sieci zapamiętano również wzorzec [1, 0, 1, 0],
 - d) w sieci zapamiętano również wzorzec [-1, 1, -1, 1].

6. Oblicz wartości błędów w warstwie wyjściowej (α_1 , α_2) oraz błędy w warstwie ukrytej (β_1 , β_3). Wartości z_1 , z_2 , z_3 to wartości obliczonych wyjść warstwy ukrytej, y_1 , y_2 — wartości wyjść sieci zaś d_1 , d_2 to wartości oczekiwane na wyjściu sieci. W razie potrzeby, dookreśl wszystkie, według Ciebie niezbędne, parametry.

