Package 'nCopula'

August 2, 2017

Type Package

Version 0.1.0

Title Copula Construction Tools

Description Construct and use hiearchical Archimedean copulas with multivariate compound distributions	
Depends R ($>= 3.3$), copula	
Imports Deriv, gtools, mgcv, stringr, stringi, compiler, gsl, Ryacas, methods, Matrix, stabledist, beepr	
License GPL (>= 2)	
LazyData FALSE	
RoxygenNote 6.0.1	
Suggests knitr, rmarkdown	
VignetteBuilder knitr	
Author Simon-Pierre Gadoury [aut, cre]	
Maintainer Simon-Pierre Gadoury <spgadou@me.com></spgadou@me.com>	
Maintainer Simon-Fierre Gadoury Spgadodeine Comp	
R topics documented:	
addNode	2
AMH	3
Clayton	3
Frank	4
GAMMA	5
GeneticCodes	5
GEO	6
Gumbel	7
InvLap	7
Lap	8
LOG	9
	10
r	11
rr	11
1 1	12 13
	13 14
rStruc	14
Index	15

2 addNode

addNode Add a Distribution

Description

The function addNode is used to create and add a class of type "Mother" and/or "Child" in the global environment.

Usage

```
addNode(type, pp, name_short, name_long, Laplace, LaplaceInv, PGF = NULL,
    PGFInv = NULL, simul, cop = NULL, cop_name = "The copula")
```

Arguments

the type of the node (either 'Mother', 'Child' or 'Both') type the parameter of the distribution used in the character strings pp the short name of the distribution (ex.: 'log' for the logarithmic distribution) name_short the long name of the distribution (ex.: 'logarithmic' for the logarithmic distribuname_long the LST of the distribution (character), where Laplace LaplaceInv the inverse LST of the distribution (character) **PGF** the pgf of the distribution (character), if type is 'Mother' or 'Both' **PGFInv** the inverse pgf of the distribution (character), if type is 'Mother' or 'Both' function to sample from the distribution simul function to create a corresponding Archimedean copula class (ex.: for a GEO, it cop is an AMH copula), can be NULL the name used for the corresponding Archimedean copula (generated with cop) cop_name

Author(s)

Simon-Pierre Gadoury

AMH 3

AMH

Construction of an Archimedean Copula Class Object.

Description

Constructs a AMH Archimedean copula object with a given parameter and dimension.

Usage

```
AMH(param, dim = 2L, density = FALSE)
```

Arguments

param parameter of the copula.

dim dimension of the copula (>= 2), which is, by default, 2. density compute the expression of the density of the copulas.

Details

Constructs an AMH Archimedean copula object with a given parameter and dimension.

Value

An archm S4 class object.

Author(s)

Simon-Pierre Gadoury

Clayton

Construction of an Archimedean Copula Class Object

Description

Constructs a Clayton Archimedean copula object with a given parameter and dimension.

Usage

```
Clayton(param, dim = 2L, density = FALSE)
```

4 Frank

Arguments

param the parameter of the copula.

dim the dimension of the copula (\geq 2), which is, by default, 2.

density logical. Should the expression of the density of the copula be computed?

Value

An archm S4 class object.

Author(s)

Simon-Pierre Gadoury

Frank

Construction of an Archimedean Copula Class Object

Description

Constructs a Frank Archimedean copula object with a given parameter and dimension.

Usage

```
Frank(param, dim = 2L, density = FALSE)
```

Arguments

param parameter of the copula.

dim dimension of the copula (>= 2), which is, by default, 2. density compute the expression of the density of the copulas.

Details

Constructs Frank Archimedean copula object with a given parameter and dimension.

Value

An archm S4 class object.

Author(s)

Simon-Pierre Gadoury

GAMMA 5

GAMMA

Construction of a GAMMA Child Class Object

Description

The function GAMMA constructs a gamma Child class object for a given parameter and arguments.

Usage

```
GAMMA(par, unif, struc = NULL)
```

Arguments

par Dimension of the distribution

unif Uniform structure, a numeric vector of grouped numbers.

i.e. c(1,2,3) is translated as being c(u1, u2, u3).

struc Nesting structure of the form

X(par1, c(i,...), list(Y(par2, c(j,...), NULL), Z(par3, c(k,...), NULL))),

where X, Y, and Z are compatible functions (see 'details'). It is to note that if struc is NULL, the function will automatically be of class Child. For continuous

distributions (i.e. GAMMA), struc is always NULL.

Author(s)

Simon-Pierre Gadoury

See Also

Other mother.or.child.class.objects: GEO, LOG

Examples

GeneticCodes

Obtain the Genetic Codes of a Structure

Description

Function to obtain the list of all genetic codes of a structure.

Usage

```
GeneticCodes(str)
```

6 GEO

Arguments

str

an object of class Mother (the structure)

Value

A list of the structure's genetic codes.

Author(s)

Simon-Pierre Gadoury

Examples

```
## Create the structure  \begin{array}{c} \text{str} <- \text{ GEO}(0.5, \text{ NULL}, \text{ list}(\text{GAMMA}(1/30, \text{ c}(5,6), \text{ NULL}), \\ & \text{ GEO}(0.1, \text{ NULL}, \text{ list}(\text{GAMMA}(1/30, \text{ c}(1,2), \text{ NULL}), \\ & \text{ GAMMA}(1/30, \text{ c}(3,4), \text{ NULL}))))) \\ \text{## Get the genetic codes} \\ \text{GeneticCodes}(\text{str}) \\ \end{array}
```

GE₀

Construction of a GEO Mother or Child Class Object

Description

Constructs either a GEO Mother or Child class object for a given parameter, arguments, and nesting structure.

Usage

```
GEO(par, unif, struc)
```

Arguments

par Dimension of the distribution

unif Uniform structure, a numeric vector of grouped numbers.

i.e. c(1,2,3) is translated as being c(u1, u2, u3).

struc Nesting structure of the form

X(par1, c(i,...), list(Y(par2, c(j,...), NULL), Z(par3, c(k,...), NULL))),

where X, Y, and Z are compatible functions (see 'details'). It is to note that if struc is NULL, the function will automatically be of class Child. For continuous

distributions (i.e. GAMMA), struc is always NULL.

Author(s)

Simon-Pierre Gadoury

See Also

Other mother.or.child.class.objects: GAMMA, LOG

Gumbel 7

Examples

Gumbel

Construction of an Archimedean Copula Class Object

Description

Constructs a Gumbel Archimedean copula object with a given parameter and dimension

Usage

```
Gumbel(param, dim = 2L)
```

Arguments

param Parameter of the copula

dim Dimension of the copula (>= 2), which is, by default, 2

Value

An archm S4 class object

Author(s)

Simon-Pierre Gadoury

InvLap

Inverse LST of a Node

Description

With a specific path and a predefined structure (S4 class of a type 'Mother'), returns the inverse Laplace-Stieltjes Transform expression of the corresponding node with a specific variable.

Usage

```
InvLap(code, str, tt = "z", par = "value")
```

Arguments

code	the genetic code (numeric vector) of the node (can be a leaf i.e. end by 0)
str	an object of class Mother (the structure)
tt	the output variable to be used ('z' by default)
par	logical. Should the parameters be values ('value') or variables ('variable')?

8 Lap

Details

For mother nodes, parameters are always called 'gamma' and for child nodes, parameters are always called 'alpha'. Furthermore, to recognize the parameters, the path is inserted at the end. For exemple, a child node with path (0,2,1) will have the parameter 'alpha021'.

Value

A character string giving the inverse LST of the specified node.

Author(s)

Simon-Pierre Gadoury

See Also

Lap

Examples

```
str <- GEO(0.1, NULL, list(GAMMA(0.1, 1:2, NULL), GAMMA(0.2, 3:4, NULL)))

InvLap(c(0,2), str, tt = 'z', par = 'value')
```

Lap

LST of a Node

Description

With a specific path and a predefined structure (S4 class of a type 'Mother'), returns the Laplace-Stieltjes Transform expression of the corresponding node with a specific variable.

Usage

```
Lap(code, str, tt = "z", par = "value")
```

Arguments

code	Genetic code (numeric vector) of the node (can be a leaf i.e. end by 0)
str	Object of class Mother (the structure)
tt	Output variable to be used ('z' by default)
par	Should the parameters be values ('value') or variables ('variable')?

Details

For mother nodes, parameters are always called 'gamma' and for child nodes, parameters are always called 'alpha'. Furthermore, to recognize the parameters, the path is inserted at the end. For exemple, a child node with path (0,2,1) will have the parameter 'alpha021'.

LOG 9

Value

A character string giving the LST of the specified node.

Author(s)

Simon-Pierre Gadoury

See Also

InvLap

Examples

LOG

Construction of a LOG Mother or Child Class Object

Description

Constructs either a LOG Mother or Child class object for a given parameter, arguments, and nesting structure.

Usage

```
LOG(par, unif, struc)
```

Arguments

par Dimension of the distribution

unif Uniform structure, a numeric vector of grouped numbers.

i.e. c(1,2,3) is translated as being c(u1, u2, u3).

struc Nesting structure of the form

X(par1,c(i,...),list(Y(par2,c(j,...),NULL),Z(par3,c(k,...),NULL))),

where X, Y, and Z are compatible functions (see 'details'). It is to note that if struc is NULL, the function will automatically be of class Child. For continuous

distributions (i.e. GAMMA), struc is always NULL.

Author(s)

Simon-Pierre Gadoury

See Also

Other mother.or.child.class.objects: GAMMA, GEO

Node

Examples

```
 \begin{array}{c} LOG(0.5,\ NULL,\ list(GAMMA(1/30,\ c(5,6),\ NULL),\\ LOG(0.1,\ NULL,\ list(GAMMA(1/30,\ c(1.2),\ NULL),\\ GAMMA(1/30,\ c(3,4),\ NULL))))) \end{array}
```

Node

Obtain a node in mother class object

Description

Use a path (numeric vector) to obtain a subgroup of a structure (mother class object).

Usage

```
Node(path, str)
```

Arguments

path the path of the node (numeric vector).

str a mother class object (S4).

Details

Every node of a mother object (structure) can be identified with a numeric vector that indicates the path used from the root to the node. The vector is the 'path' argument and is used to find specific nodes of a given structure. For a complete explanation, we refer to Cossette et al. (2017).

Value

Either a child or mother class object.

Author(s)

Simon-Pierre Gadoury

```
# We directly give the path of the desired node.  \begin{tabular}{ll} \begin{tabular
```

pCompCop 11

	_			_	
n	\sim	m	n	Co	n
יט	·ι	וווע	v	·υ	u

Distribution function of Mother class objects

Description

Distribution function of a Mother class object.

Usage

```
pCompCop(str, vector = FALSE, express = TRUE)
```

Arguments

str Object of class Mother

vector logical. If false, returns a function or a character string with (u_1, u_2, ...) as

arguments, else, just (u).

express logical. If false, returns a function, else, a character string.

Value

The distribution function in the form of either a function or a character string.

Examples

pCop

Distribution function of archm class objects

Description

Distribution function of an Archimedean copula (archm) class object.

Usage

```
pCop(copula, vector = FALSE, express = TRUE)
```

12 rCompCop

Arguments

copula an Archimedean copula (archm) class object.

vector logical. If false, returns a function or a character string with (u_1, u_2, ...,

u_dim) as arguments, else, just (u).

express logical. If false, returns a function, else, a character string.

Value

The distribution function in the form of either a function or a character string.

Author(s)

Simon-Pierre Gadoury

See Also

```
rCop, Clayton, AMH, Gumbel, Frank
```

Examples

```
cop <- Clayton(5, 2)
pCop(cop, vector = TRUE, express = TRUE)
pCop(cop, vector = FALSE, express = TRUE)</pre>
```

rCompCop

Density, Cdf, and Random Number Generator for Copulas Constructed Through Compounding

Description

Random number generator for copulas constructed through compounding.

Usage

```
rCompCop(n, str)
```

Arguments

n the number of realisations str an object of class Mother

Value

A numeric matrix of sampled data from the structure

Author(s)

Simon-Pierre Gadoury

rCop

Examples

rCop

Random number generator for Archimedean copula class objects

Description

Random number generator for archm class objects.

Usage

```
rCop(n, copula)
```

Arguments

n Number of realisations

copula An Archimedean copula (archm) class object

Details

For bivariate archm copula objects, the function uses the conditional approach. As for dimensions higher than 2, the Marshall-Olkin (1988) approach is chosen instead.

Value

A numeric matrix containing the samples.

Author(s)

Simon-Pierre Gadoury

See Also

```
pCop, Clayton, AMH, Frank, Gumbel
```

```
## Create the trivariate archm copula object
cop <- Clayton(5, 3)

## Generate the samples
res <- rCop(10000, cop)

## Plot the values
pairs(res, pch = 16, cex = 0.7)</pre>
```

14 rStruc

rStruc

Sampling From Compound Random Variables

Description

Generate n samples from a structure of compound rvs.

Usage

```
rStruc(n, str)
```

Arguments

n the number of realisations

str a S4 object of class Mother (the structure)

Value

A numeric matrix of sampled values from the specified structure. For every child node, the sampled values are repeated d times, where d is the length of the node's 'unif' argument.

Author(s)

Simon-Pierre Gadoury

```
rStruc(10000, GEO(0.5, NULL, list(GAMMA(1/30, c(1), NULL), GEO(0.1, NULL, list(GAMMA(1/30, c(2), NULL), GAMMA(1/30, c(3), NULL))))))
```

Index

```
addNode, 2
AMH, 3, 12, 13
Clayton, 3, 12, 13
Frank, 4, 12, 13
GAMMA, 5, 6, 9
GeneticCodes, 5
GEO, 5, 6, 9
Gumbel, 7, 12, 13
InvLap, 7, 9
Lap, 8, 8
LOG, 5, 6, 9
Node, 10
pCompCop, 11
pCop, 11, 13
rCompCop, 12
rCop, 12, 13
rStruc, 14
```