The ClueWeb09 Dataset

Jamie Callan¹, Mark Hoy¹, Changkuk Yoo², & Le Zhao¹

¹Language Technologies Institute ² Daum Communications Corp School of Computer Science Carnegie Mellon University

Republic of South Korea

Why Build a New Web Dataset?

There are not many web datasets available for research

• wt10g: 1.7 million pages from 1997

• gov2: 25 million pages from 2004

• uk-2006: A partial crawl of the .uk domain

– Available from Yahoo! Research (?)

wt10g and gov2 are the most widely available

... but are not very representative of the web

Why Build a New Web Dataset?

The NSF / Google / IBM CluE cluster was available

- Many machines
- Lightly loaded in late 2008 / early 2009
- Willing to temporarily provide a fast network connection

Craswell & Fetterly's breadth-first crawl (SIGIR '08)

- 700 million pages (later extended to 1 billion)
- Inspirational

How We Built It: An Initial Plan + Community Input

Initial plan: A <u>best-first</u> crawl of 700 million – 1 billion pages

- Approximate 'Tier 1' of a commercial search engine
- Complement the Craswell & Fetterly crawl

A white paper was circulated and revised several times

A broad community commented

- Colleagues in the research community
- Google, Microsoft, Yahoo
- NIST

How We Built It: Key Ideas That Shaped the Dataset

Scope

- Be big enough to be credible
 - 500M to 1B web pages
- Unfiltered content
 - Give researchers the real web
 - » Spam, pornography, ...
- Avoid temporal skew
 - Complete the crawl quickly

How We Built It: Key Ideas That Shaped the Dataset

Languages

- 50% English
 - Provide high coverage of one language
- 50% the next 9 most important languages on the web
 - Chinese, Japanese, Korean
 - Spanish, French, German, Portuguese, Italian
 - Arabic

6

How We Built It: Key Ideas That Shaped the Dataset

Include the full English wikipedia

- A last minute addition
 - ... thanks to the Wikimedia Foundation for enabling this

How We Built It: The Crawler

We used a modified version of the Nutch crawler

- Open source, written in Java
- Runs under Hadoop
- Crawl ordered by OPIC (an approximation of PageRank)

Major modifications

- Added language id
- Improved OPIC propagation for redirected links
- Many modifications to improve crawler speed
- Modifications to improve crawler reliability

How We Built It: Basic Crawler Architecture

• Get N urls

- Initially from the seed file
- Later selected by OPIC from the web graph
- Send urls to multi-node / multi-threaded download processes
 - Download urls, trying to be nice, spread the load, etc
 - Each process ran for about 2 hours
- Process downloaded pages
 - Extract urls, language id, update web graph, ...
- Repeat

How We Built It: Crawl Seeds

There were two types of seed URLs

- urls from an earlier 200 million page crawl
 - Urls that had high OPIC scores
- urls returned by commercial search engines
 - Submit query, add top N results to the seed file
 - Search engines: Google, Yahoo, MSN, Baidu (Chinese)

How We Built It: Crawl Seeds From Commercial Search Engines

Queries were generated in a variety of ways

- Selected from the AOL query log
 - 1,050 most frequent queries + 1,050 random queries
 - Translated to other languages by Google Translate
- Generated from DMOZ category names
 - 2,000 queries from largest categories (up to depth 3)
 - E.g., "Northern Mariana Islands", "Snowbiking"
 - Translated to other languages by Google Translate
- Provided by Yahoo: 1,000 most frequent queries × 9 languages
- Provided by Sogou: 1,000 most frequent queries (Chinese)

The Crawl

Language Distribution

		Internet	Crawl	Crawl	Crawl
Rank	Language	Users (%)	Goal (%)	Actual (%)	Actual (Million Pages)
1	English	29.40%	50.00%	48.41%	503.9
2	Chinese	18.90%	17.00%	17.05%	177.5
3	Spanish	8.50%	7.70%	7.62%	79.3
4	Japanese	6.40%	5.80%	6.47%	67.3
5	French	4.70%	4.20%	4.89%	50.9
6	German	4.20%	3.80%	4.79%	49.8
7	Arabic	4.10%	3.70%	2.80%	29.2
8	Portuguese	4.00%	3.60%	3.61%	37.6
9	Korean	2.40%	2.10%	1.74%	18.1
10	Italian	2.40%	2.10%	2.62%	27.3
Rest	Others	15.10%	0.00%	0.00%	
			13		© 2009 Jamie Callan

13

A Blunder

- Information about url redirection was discarded
 - A major problem for people who care about web graphs
- During the summer, we recreated redirect information for the Category B subset of the data
 - Available on the wiki

Summary of the ClueWeb09 Dataset (Category A)

- Size (count): 1.04 billion web pages
- Size (TB): 25 Terabytes (uncompressed)
- Crawl period: January & February, 2009
- Crawl order: OPIC (an approximation of PageRank)
- 7,944,351,835 outlinks
 - -4,780,950,903 unique urls

The Category B Subset

The Category B subset was defined to make it easier for groups not yet ready to scale up to 1 billion documents

Size: 50 million documents

- About 2x the gov2 dataset
- 454,075,638 outlinks
 - 428,136,613 unique urls

There were no strong opinions about how to define the subset

• So ... we picked something convenient

The Category B Subset

What does it consist of?

• English crawl seeds: 2.5 million

• Crawled pages: 41.8 million

English wikipedia: 6.0 million

This might be an unusual subset of the web ... or not

- Highly ranked pages for reasonable (?) queries
- Pages closely linked to those pages
- English wikipedia

ClueWeb09-Image Dataset

Some research requires text + graphics data

• E.g., user studies

ClueWeb09-Image Dataset

Some research requires text + graphics data

• E.g., user studies

After the text crawl was complete, we crawled the image data

- Size (count): 870 million images
- Size (TB): 23 Terabytes (mostly uncompressable)
- Crawl period: May July, 2009

Currently being transferred back to CMU

Dataset Related Services

Carnegie Mellon hosts a variety of dataset-related services

- The ClueWeb09 wiki
 - Language id, web graph, redirects, working with warc, ...
- Derived data (e.g., PageRank data)
- Indri search engine for Category A (English) and Category B

Page rendering service

What We Wish We Had Done Differently

In order of importance...

- 1. Save redirect information
 - Deleted accidentally due to miscommunication
- 2. Complete the crawl in 30 days, instead of 60 days
 - An original goal, not achieved
- 3. Include wikipedias for each of the 10 languages
 - Wikipedia was a (very) late dataset requirement
- 4. Gather text + images, rather than text followed by images
 - We had the software, but not the bandwidth or disk

21

What Next?

We hope that there will be more large web datasets

- It was an interesting experience
 - We learned a lot, we would do it again
- The research community needs more good web datasets

Should the next big web dataset use the same approach?

- The IR community should debate what it wants next
 - Redo ClueWeb09 one year later?
 - Weekly crawls of important / fast changing sites?

– ...

22

We Couldn't Have Done It Without A Whole Lot of Help

Nick Craswell
Dennis Fetterly
Jim French
Don Metzler
Ian Soboroff
... and many others

Microsoft[®]