Hemanth Hariharan

Applying to: PhD in Civil and Environmental Engineering, Stanford University

Link to portfolio website: hemanthhariharan.github.io

Program	Institution	%/CGPA	Year of Graduation
MS in Sustainable Design and Construction	Stanford University	4.036/4.3	2024
B. Tech in Civil Engineering	Indian Institute of Technology Madras, Chennai	9.17/10	2020
AISSCE (12th grade)	Bala Vidya Mandir, Adyar, Chennai	97.2%	2016

RELEVANT COURSEWORK						
Carbon Capture and Sequestration		100% Clean, Renewable Energy and Storage for Everything		Convex Optimization **		
Global Project Finance		Machine Learning *		Urban Systems Engineering		
Skill Set	Python		MATLAB	Machine Learning	Data Analytics	Systems Modeling
PROJECTS AND PROFESSIONAL EXPERIENCE						
Machine Learning for Wind Turbine Output Prediction Dr. Andrew Ng	Sep 23' - ongoing	•	 comprising features including wind speed, direction and energy generated. Used an ensemble machine learning method comprising linear regression, gradient boosting, and long short-term memory (LSTM) networks to perform time-series forecasting of wind energy. 			
Crane Data Analysis Dr. Martin Fischer	Sep 23' – ongoing	•	 projects in Honolulu. Determined production rates and cycle times for key activities and assessed productivities for both projects. 			
ERCOT Interconnection Queue Analytics Intern @ Cypress Creek Renewables	Jun 23' - Sep 23'	•	from ERCOT interconnection queue. • Predicting screening and interconnection study times and project outcomes using various machine learning models.			

24/7 Carbon-Free Charging Project <i>Dr. Ram</i> <i>Rajagopal</i>	Apr 23' – Jun 23'	 Applied California's Low Carbon Fuel Standards (LCFS) to calculate potential monetary benefits for Stanford Transportation in both charging and capacity pathways. Application of data analytics to identify trends in charging patterns, electricity costs incurred (energy and demand costs) and grid-related emissions. Overall goal of simultaneously minimizing costs and emissions by solving a large optimization problem for routing and charging.
Developing a roadmap for a 100% WWS California Dr. Mark Jacobson	Apr 23' – Jun 23'	 Quantified end-use demand in California and converted to WWS (Wind-Water-Solar) energy. Resource allocation of rooftop and utility-scale solar, onshore, and offshore wind, and existing geothermal and hydroelectric power. Resource sizing (number of devices) and proposal of a final energy mix for California.
Urban Systems Modelling Dr. Rishee Jain	Apr 23' – Jun 23'	 Completed literature review and peer review of papers on systems engineering. Developed a systems model to manage growth and pollution of a city. Performed sensitivity analyses and formulated policy interventions to minimize pollution and maximize urban growth. Designed an Urban Systems Sustainability Index (USSI) as a weighted average composite of indices such as Gini Index, Air Quality Index, National Risk Index etc. to perform a holistic assessment of the sustainability of a city.
Global Infrastructure Policy Research <i>Dr. Michael</i> <i>Bennon</i>	Apr 23' – ongoing	 Assisted in writing sections on the rise of Industrial Policy and World Trade Organization for a paper exploring the failure of the global neoliberal project. Compiled industry-wise statistics of Industrial Policy based on historical instances of government intervention and support. Currently researching import substitution industrialization (ISI) and local content regulations.
Renewable Energy Financial Modeling <i>Dr. Mike Bennon</i>	Jan 23' - Mar 23'	 Built a financial model of an undersea HVDC cable project to utilize excess renewable energy capacity. Performed sensitivity analyses based on exchange rate, inflation, schedule delays and outages to test resilience of model. Prepared an investment recommendation consisting of targeted shareholding, valuation, and shaped debt to achieve target IRR and ROE.
Life Cycle Assessment (LCA) comparison Dr. Michael Lepech	Sep 22' - Dec 22'	 Conducted an LCA comparison of a carbon nanotube (CNT) building with US average building. Performed Life Cycle Inventory analysis, Life Cycle Impact Assessment and Life Cycle Cost estimate for both alternatives. Proposed recommendations to enhance the benefits of utilizing CNT as a building material.
Net-Zero Building Design (Renewable Energy Lab) Dr. Gil Masters	Sep 22' - Dec 22'	 Redesigned an existing summer home (Wolfeboro, NH) into an NZE building using passive solar design strategies, rooftop solar and geothermal heat pump. Used an iterative process to optimize R-value of building envelope and minimize shading losses. Achieved NPV of savings of ~\$30k over 20 years. Performed experiments on characterizing solar PV performance, blower door testing, heat recovery ventilators, infiltration, and heat pumps.

Energy @ Stanford & SLAC Precourt Institute of Energy	Sep 22'	 Attended summer conference (week-long multidisciplinary session on Energy) and presented solutions for a < 2°C future. Measures proposed included a combination of carbon taxes, building and industrial energy efficiency, and carbon capture, sequestration, and storage.
Machine learning to predict masonry spandrel strength (Undergraduate Thesis) Dr. Arun Menon	Aug 19' - Aug 20'	 Developed tool for parametric study of existing masonry strength formulations. Characterized the lateral resistance of a masonry wall based on geometry, boundary conditions, strength, and stiffness. Parametric analysis done through non-linear FE modeling on TNO-DIANA. Formulated predictive equation using Machine Learning toolbox of MATLAB.
Inelastic Buckling of Concrete Filled Tubes (CFTs) Dr. Amit Varma	May 19' - July 19'	 Developed a Graphical User Interface (GUI) on MATLAB with a pre-processor and a post-processor for an existing MATLAB code to analyze CFT columns. Column curves and interaction curves were generated iteratively. Used higher order interpolation to develop a tool that provides column designs. Worked on Bowen Lab Floor, Purdue University in setting up test specimen of composite walls.

EXTRA CURRICULARS - INDIAN PERCUSSION DRUM (TABLA)

- Completed graduation concert in July 2017 at Krishna Gana Sabha, Chennai.
- Two-time winner of the Classical Arts Percussion competition held at IIT Madras in 2016 and 2017.
- Currently conducting online and offline classes for beginner and intermediate students and performing with senior musicians in the Bay Area.

* Currently doing the course

** Will be taken in the upcoming
quarter