# MATHÉMATIQUES EN BUT INFO

Présentation S1 et S2

marie.bruyere@iutbayonne.univ-pau.fr

#### MATHÉMATIQUES EN BUT INFO S1

- R1-06 Mathématiques discrètes
  - ✓ Ensembles, dénombrements
  - ✓ Arithmétique
  - ✓ Logique
- R1-07 Outils mathématiques fondamentaux
  - ✓ Calcul matriciel
  - ✓ Systèmes linéaires
  - ✓ Distances

#### Mathématiques en BUT INFO - S1

| Semaine de<br>Formation | Semaine<br>Civile | R1-06 Maths Discrètes | R1-07 Outils<br>mathématiques<br>fondamentaux |  |  |  |  |
|-------------------------|-------------------|-----------------------|-----------------------------------------------|--|--|--|--|
| 1                       | 35                |                       |                                               |  |  |  |  |
| 2                       | 36                | Ensembles,            |                                               |  |  |  |  |
| 3                       | 37                | dénombrements         |                                               |  |  |  |  |
| 4                       | 38                | 3h/sem                |                                               |  |  |  |  |
| 5                       | 39                |                       |                                               |  |  |  |  |
| 6                       | 40                |                       |                                               |  |  |  |  |
| 7                       | 41                | Arithmétique          |                                               |  |  |  |  |
| 8                       | 42                | 3h/sem                |                                               |  |  |  |  |
| 9                       | 43                |                       |                                               |  |  |  |  |
| Vacances Toussai        | int               |                       |                                               |  |  |  |  |
| 10                      | 45                |                       | Calcul matriciel                              |  |  |  |  |
| 11                      | 46                |                       | Systèmes linéaires                            |  |  |  |  |
| 12                      | 47                |                       | Distance                                      |  |  |  |  |
| 13                      | 48                |                       | 3h/sem                                        |  |  |  |  |
| 14                      | 49                | Logique               |                                               |  |  |  |  |
| 15                      | 50                | 1h30/sem              |                                               |  |  |  |  |
| Vacances Noël           | Vacances Noël     |                       |                                               |  |  |  |  |
| 16                      | 1                 |                       |                                               |  |  |  |  |
| 17                      | 2                 |                       |                                               |  |  |  |  |

#### Mathématiques en BUT INFO - S2

| Semaine de<br>Formation | Semaine<br>Civile | R2-07<br>Graphes | <b>SAE</b><br>S2.02 | R2-08 Outils<br>Numériques pour<br>les statistiques<br>descriptives | <b>SAE</b><br>S2.04 | R2-09<br>Méthodes<br>Numériques |
|-------------------------|-------------------|------------------|---------------------|---------------------------------------------------------------------|---------------------|---------------------------------|
| 18                      | 4                 |                  |                     |                                                                     |                     |                                 |
| 19                      | 5                 |                  |                     |                                                                     |                     |                                 |
| 20                      | 6                 |                  |                     | Statistique                                                         |                     |                                 |
| 21                      |                   |                  |                     | 3h/sem                                                              |                     |                                 |
| Vacances Hi             |                   | _                |                     |                                                                     |                     |                                 |
| 22                      |                   | *.               |                     |                                                                     |                     |                                 |
| 23                      |                   |                  |                     | П                                                                   |                     |                                 |
| 24                      |                   | d'optimisations  |                     |                                                                     | $\Longrightarrow$   |                                 |
| 25                      |                   | Ť                |                     |                                                                     |                     |                                 |
| 26                      |                   |                  |                     |                                                                     | Exploitation        |                                 |
| 27                      |                   |                  | $\Rightarrow$       |                                                                     | d'une base          |                                 |
| 28                      |                   |                  |                     |                                                                     | de données          |                                 |
| Vacances Pr<br>29       | _                 |                  | Exploration         |                                                                     |                     | Analyse                         |
| 30                      |                   |                  | algorithmique       |                                                                     |                     | Suites et                       |
| 31                      |                   |                  | d'un problème       |                                                                     |                     | fonctions                       |
| 32                      |                   |                  | a ari probicille    |                                                                     |                     | 10110010113                     |
| 33                      |                   |                  |                     |                                                                     |                     |                                 |
| 34                      |                   |                  |                     |                                                                     |                     |                                 |
| J <del>4</del>          | 25                |                  |                     |                                                                     |                     |                                 |

#### Les maths à l'IUT...

■ C'est aussi le début d'un parcours universitaire scientifique.

L'occasion de compléter votre culture mathématique et vous faire acquérir du vocabulaire et des concepts de base. De progresser dans l'utilisation du formalisme mathématique (expressions algébriques, logiques, équations...)

■ En S1, il ne faut pas forcément attendre « les applications en informatique », elles arriveront plus tard.

# R1-06 MATHÉMATIQUES DISCRÈTES

DUT INFO S1 R1-06

marie.bruyere@iutbayonne.univ-pau.fr

#### R1-06 Mathématiques discrètes

| Semaine de<br>Formation | Semaine<br>Civile  | R1-06 Maths Discrètes |  |  |  |  |  |
|-------------------------|--------------------|-----------------------|--|--|--|--|--|
| 1                       | 35                 |                       |  |  |  |  |  |
| 2                       | 36                 | Ensembles,            |  |  |  |  |  |
| 3                       | 37                 | dénombrements         |  |  |  |  |  |
| 4                       | 38                 | 3h/sem                |  |  |  |  |  |
| 5                       | 39                 |                       |  |  |  |  |  |
| 6                       | 40                 |                       |  |  |  |  |  |
| 7                       | 41                 | Arithmétique          |  |  |  |  |  |
| 8                       | 42                 | 3h/sem                |  |  |  |  |  |
| 9                       | 43                 |                       |  |  |  |  |  |
| Vacances Toussaint      | Vacances Toussaint |                       |  |  |  |  |  |
| 10                      | 45                 |                       |  |  |  |  |  |
| 11                      | 46                 |                       |  |  |  |  |  |
| 12                      | 47                 |                       |  |  |  |  |  |
| 13                      | 48                 |                       |  |  |  |  |  |
| 14                      | 49                 | Logique               |  |  |  |  |  |
| 15                      | 50                 | 1h30/sem              |  |  |  |  |  |
| Vacances Noël           |                    |                       |  |  |  |  |  |
| 16                      | 1                  |                       |  |  |  |  |  |
| 17                      | 2                  |                       |  |  |  |  |  |
|                         |                    |                       |  |  |  |  |  |

#### R1-06 Mathématiques discrètes



# RAPPELS SUR LES ENSEMBLES

Vocabulaire
Opérations sur les ensembles
Cardinal d'un ensemble







Claire et Paul sont des **éléments** de l'ensemble E lls **appartiennent** à E :

Claire ∈ E (« Claire appartient à E ») Paul ∈ E



### E={Claire, Paul, Pierre, Jacques...}

**Accolades**: pas d'ordre (ensemble) {2,6,1}={6,1,2}

**Parenthèse**: ordre (liste, suite) (2,6,1)≠(1,6,2)

Claire et Paul sont des **éléments** de l'ensemble E lls **appartiennent** à E :

Claire ∈ E (« Claire appartient à E »)
Paul ∈ E



#### Sous - ensemble



#### Sous - ensemble



- {Claire, Paul} est un ensemble
- {Claire, Paul} est un sous-ensemble de E car tous les éléments de {Claire, Paul} appartiennent à E
- Notation :  $\{Claire, Paul\} \subset E$

$$\begin{cases}
Claire \in E \\
Paul \in E
\end{cases} \Rightarrow \{Claire, Paul\} \subset E$$

- {Claire, Paul} est un ensemble
- {Claire, Paul} est un sous-ensemble de E car tous les éléments de {Claire, Paul} appartiennent à E
- Notation :  $\{Claire, Paul\} \subset E$

$$\begin{cases}
Claire \in E \\
Paul \in E
\end{cases} \Rightarrow \{Claire, Paul\} \subset E$$

#### Définition

 $A \subset B$  si tout élément de A est aussi élément de B.

appartienno...

• Notation :  $\{Claire, Paul\} \subset E$ 

#### Autres exemples

Ensemble E

F: sous-ensemble des filles

G: sous-ensemble des

garçons

V sous-ensemble des « Violets »

 $F \subset E$   $G \subset E$   $V \subset E$ 



#### Quelques ensembles particuliers

- Ø: ensemble vide
  - $\varnothing$  est sous-ensemble de tout ensemble :  $\emptyset \subset E$
- {*Claire*}: singleton
- {Claire, Paul}: paire

Remarque : un « couple » serait ordonné (Claire, Paul) est un couple et (Claire, Paul)  $\neq$  (Paul, Claire)

P(E): ensemble des parties (sous-ensembles) de E

# ENSEMBLE DES PARTIES D'UN ENSEMBLE

#### P(E)

Ensemble des parties (sous-ensembles) de E

$$E = \{1,2\} \implies P(E) = \{\emptyset, \{1\}, \{2\}, E\}$$

$$E = \{1,2,3\} \implies$$
  
 $P(E) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{2,3\}, \{1,3\}, E\}$ 

#### P(E)

Ensemble des parties (sous-ensembles) de E

$$E = \{1,2,3\} \implies$$
  
 $P(E) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{2,3\}, \{1,3\}, E\}$ 

$$\Rightarrow \begin{cases} \emptyset \in P(E) \\ \{1\} \in P(E) \\ \dots \\ \{1,3\} \in P(E) \\ E \in P(E) \end{cases}$$

Un ensemble peut appartenir à un autre ensemble!

# QUESTIONS...

Soit les ensembles S, A, B suivants :

$$S = \{1,2,3,4,5,6\}$$
  
 $A = \{1,2,3\}$   
 $B = \{4,6\}$ 

P(S): ensemble des parties de S

Sélectionnez la/les proposition(s)

A. 
$$\{2\} \subset S$$

B. 
$$B \subset P(S)$$

C. 
$$A \in S$$



Soit les ensembles S, A, B suivants :

$$S=\{1,2,3,4,5,6\}$$

$$A=\{1,2,3\}$$

$$B = \{4,6\}$$

P(S): ensemble des parties de S

Sélectionnez la/les proposition(s)

A. 
$$\{2\} \subset P(S)$$

B. 
$$2 \in P(S)$$

C. 
$$\{A, B\} \subset P(S)$$



#### Remarques

$$x \in E$$

$$\iff \{x\} \subset E$$

$$\iff \{x\} \in P(E)$$

$$A \subset \mathbf{E} \text{ et } B \subset \mathbf{E}$$
 $\iff A \in P(E) \text{ et } B \in P(E)$ 
 $\iff \{A, B\} \subset P(E)$ 

# PLUS DE QUESTIONS...

#### Soit S un ensemble, A un sous-ensemble de S et a un élément de A.

Sélectionnez la/les proposition(s)

$$A. A \in S$$

$$B. \quad a \in S$$

C. 
$$a \in P(\{a\})$$

$$D$$
.  $\{a\} \subset P(A)$ 



#### Soit S un ensemble, A un sous-ensemble de S et a un élément de A.

Sélectionnez la/les proposition(s)

$$A$$
.  $A \subset S$ 

$$B. \quad \{A\} \in S$$

C. 
$$\{a\} \subset P(A)$$



#### Remarques

```
A = \{1, 2\}
            \mathbf{P}(A) = \{\emptyset, \{1\}, \{2\}, \{1, 2\}\}\
           \{1\} \in P(A)
           A \in P(A)
           \{\{1\},A\}\subset P(A)
```

# OPÉRATIONS SUR LES ENSEMBLES

Union
Intersection
Partition
Différence
Complémentaire

# INTERSECTION

#### Intersection

```
F = \{F1, ..., F10\}

G = \{G1, ..., G10\}

V = \{F5, F7, F8, G6, G7\}
```



#### Intersection

$$F \cap V = \{F5, F7, F8\}$$
 $F \cap G = \emptyset$ 
 $F \cap E = F$ 
 $G \cap V = \{G6, G7\}$ 

Pour appartenir à l'intersection  $F \cap V$ , il faut appartenir à F et à V.

L'intersection est toujours un ensemble

« plus petit »

# REUNION

### Réunion

```
F = \{F1, ..., F10\}

G = \{G1, ..., G10\}

V = \{F5, F7, F8, G6, G7\}
```



#### **Union**

$$F \cup V = \{F1, ..., F10, G6, G7\}$$
 $F \cup G = E$ 
 $F \cup E = E$ 
 $G \cup V = \{G1, ..., G10, F5, F7, F8\}$ 

Pour appartenir à la réunion  $F \cup V$ , il faut appartenir à F OU à V La réunion (ou l'union) est toujours un ensemble « plus grand »

## COMPLÉMENTAIRE

Complémentaire

```
F = \{F1, ..., F10\}

G = \{G1, ..., G10\}

V = \{F5, F7, F8, G6, G7\}
```

#### Complémentaire

$$\overline{G} = F$$
 $\overline{E} = \emptyset$ 
 $\overline{\emptyset} = E$ 
 $\overline{E} = E$ 
 $\overline{F} = G$ 
 $\overline{G} = G$ 



Pour appartenir au complémentaire

 $\overline{G}$ , il faut ne pas appartenir à G

# DIFFÉRENCE

### Différence

```
F = \{F1, ..., F10\}

G = \{G1, ..., G10\}

V = \{F5, F7, F8, G6, G7\}
```

#### **Différence**

$$V - G = \{F5, F7, F8\}$$
  
 $E - \emptyset = E$   
 $V - E = \emptyset$   
 $F - G = F$ 



Pour appartenir à la *différence*  $oldsymbol{V} - oldsymbol{G}$ , il faut appartenir à  $oldsymbol{V}$  mais pas à  $oldsymbol{G}$ 

$$V - G = V \cap \overline{G}$$

## BILAN OPÉRATIONS

### INTERSECTION



Intersection

$$A \cap B = \{x \in E / x \in A \ et \ x \in B \}$$

- $\blacksquare$   $A \cap B \subset A$  et  $A \cap B \subset B$
- $A \subset B \Leftrightarrow A \cap B = A$
- $\blacksquare$   $A \cap \emptyset = \emptyset, A \cap A = A$
- $\blacksquare$   $A \cap B = B \cap A$  (commutativité)
- $(A \cap B) \cap C = A \cap (B \cap C) = A \cap B \cap C \text{ (associativité)}$

## UNION OU RÉUNION



Intersection

$$A \cap B = \{x \in E / x \in A \text{ ou } x \in B \}$$

- $\blacksquare$   $A \subset A \cup B$  et  $B \subset A \cup B$
- $A \subset B \Leftrightarrow A \cup B = B$
- $\blacksquare$   $A \cup \emptyset = A, A \cup A = A$
- $\blacksquare$   $A \cup B = B \cup A$  (commutativité)
- $(A \cup B) \cup C = A \cup (B \cup C) = A \cup B \cup C \text{ (associativité)}$

## COMPLÉMENTAIRE

Complémentaire :  $\bar{A} = \{x \in E / x \notin A\}$ 



## DIFFÉRENCE

$$A - B = \{x \in E / x \in A \text{ et } x \notin B\}$$
$$A - B = A \cap \overline{B}$$





- $\blacksquare$   $A B \subset A \text{ et } B A \subset B$
- La différence n'est ni commutative, ni associative

## DIFFÉRENCE

$$A - B = \{x \in E / x \in A \text{ et } x \notin B\}$$
$$A - B = A \cap \overline{B}$$





- $\blacksquare$   $A B \subset A \text{ et } B A \subset B$
- La différence n'est ni commutative, ni associative

# NOTION DE PARTITION

Partition, du latín partitio qui signifie partage, división, répartition

### **Partition**

En politique, la partition consiste à établir une frontière à l'intérieur d'un pays ou d'un territoire.



Ainsi si on considère les ensembles :

- *I* : des habitants de l'île,
- $I_S$ : des habitants de l'Irlande du Sud
- $I_N$ : des habitants de l'Irlande du Nord,

nous dirons en mathématique que :

 $\{I_S, I_N\}$  est une partition de I

# Exemples de partitions



{F, G} est une partition de E

 $\{F - V, G - V, V\}$  est une partition de E

# Exemples de partitions

## Autres exemples dans l'ensemble S1 des étudiants de semestre 1 du BUT Info

{TD1, TD2, TD3} est une partition de S1,

{TP1, TP2, TP3, TP4, TP5} est une partition de S1

## PARTITION – Définition mathématique

Soit  $A_1, A_2, \dots, A_n$  n sous-ensembles **non vides** de E.

 $\{A_1, \dots, A_n\}$  est une **partition** de E si :

- $\blacksquare A_1 \cup A_2 \cup \cdots \cup A_n = E$
- $A_i \cap A_j = \emptyset \ \forall i \neq j \ (A_i, 2 \text{ à 2 disjoints})$



## PARTITION – Définition mathématique

Soit  $A_1, A_2, \dots, A_n$  n sous-ensembles **non vides** de E.

 $\{A_1, \dots, A_n\}$  est une **partition** de E si :

- $\blacksquare A_1 \cup A_2 \cup \cdots \cup A_n = E$





## QUESTIONS

# Cochez les partitions de E





- $B. \{A \cup B, \overline{A \cup B}\}$
- C.  $\{A \cap B, A \cap \overline{B}, \overline{A} \cap B, \overline{A \cup B}\}$
- $D. \{A, B, \overline{A \cup B}\}$
- $E. \{A, \overline{A}, C, \overline{C}\}$



## Soit *Q* une partition de *S*

Cochez la/les proposition(s)

A.  $Q \in P(S)$ 

B.  $Q \subset P(S)$ 

C.  $Q \in P(P(S))$ 

