ECS152A Computer Networks - Fall 2002

HW 5 Solutions Posted: 11/12/2002 Due: 11/19/2002 by 4pm Homework Box: Room 86

- 1. (10 pts) Consider the following questions for Stop-and-Wait ARQ:
 - (a) What does it mean when the receiver receives a segment with the wrong sequence number?

Solution

The receiver receives a duplicate frame. The frame is a retransmission, which means the previous ACK is lost.

- 2. (20 pts) Consider the following questions for Stop-and-Wait ARQ:
 - (a) What is the disadvantage of having a premature-timeout?

Solution

Redundant retransmissions.

(b) What is the disadvantage of having too long of a timeout interval?

Solution

Slow reaction to packet loss.

(c) Suppose the sender has premature-timeout values. Sketch the sequence of frame exchanges that transpire between two stations when station A sends 5 frames to station B. Assume no losses and errors occur during the transmission.

Solution

Sender sends every frame twice.

Note: Depending on how you arranged for the premature timeout, there are other solutions including: Sender sends every frame X times, etc.

(diagram)

- 3. (20 pts) Consider the following questions for Go-Back-N ARQ:
 - (a) Can you make Go-Back-N ARQ to work like Stop-and-Wait ARQ? If so, how? If not, explain.

Solution

Stop-and-Wait = Go-Back-1

- (b) Suppose the entire (including all data and headers) object size, O, of 12,000 bytes is to be transmitted in an error-free and loss-free link. The object is split into multiple frames for transmission. Here are the characteristics of the transmission:
 - The window size, W, is 4.
 - The frame size, *S*, is 1000 bytes each.
 - The data rate of the link, *R*, is 64,000 bits/second.
 - The receiver sends an ACK for each frame received. The time it takes for the ACK to arrive at the sender is 2 seconds.

Assume propagation delay, processing delay, and queuing delay are negligible, and no connection establishment is needed. What is the total time for the receiver to receive the entire object?

Solution

Total number of frames = O/S = 12

Total number of windows needed = (O/S) / W = 12 / 4 = 3

Time to send each frame = time for receiver to get each frame = S/R = 0.125 sec

Time it takes to send the first 4 frames = $W^*(S/R) = 4 * 0.125 = 0.5$ second

Time it takes for the receiver to receive the 1^{st} frame = S/R = 0.125 second Time it takes for the sender to receive the 1^{st} ACK = (S/R) + 2 = 2.125 seconds

Stall time of sender = 2.125 - 0.5 = 1.625 seconds

Total time needed = (time to send the first 4 frames + stall time) + (time to send the second 4 frames + stall time) + (time to send the third 4 frames)

$$= (2.125) + (2.125) + (0.5) = 4.75$$
 seconds

- 4. (30 pts) In the figure below, all frames are generated at node A and sent to node C through node B. Determine the minimum transmission rate required between nodes B and C so that the buffers of node B are not flooded, based on the following:
 - The data rate between A and B is 100 kilobits/s.
 - The propagation delay is 5 µs/km for both lines.
 - There are full-duplex lines between the nodes.
 - All data frames are 1000 bits long; ACK frames are separate frames of negligible length.
 - Between A and B, a sliding-window flow control with a window size of 3 is used.
 - Between B and C, stop-and-wait flow control is used.
 - There are no errors.

Hint: In order not to flood the buffers of B, the average number of frames entering and leaving B must be the same over a long interval.

SOLUTION:

Since the size of an ACK is negligible, we assume that $t_{ACK} = t_{prop}$

 $t_{ab} = Time to send one frame and recieve its ACK between nodes A and B$

$$= 2t_{prop(A,B)} + \frac{L_{frame}}{R_{AB}}$$

$$= 2\left(\frac{5x10^{-6}s}{1km} * 4000km\right) + \frac{1000bits}{100x10^{3}bits/s}$$

$$= 0.04s + 0.01s = 0.05s$$

Since the link between node A and B uses Sliding-window flow control, the average rate that data is sent (data arriving at B) is (see p. 297-298):

$$E[rate_{AB}] = \frac{W_s}{t_{ab}} = \frac{3 frames}{0.05 s} = 60 frames / s$$

Thus, in order to not flood B's buffer,

$$E[rate_{AB}] \le E[rate_{BC}]$$

 $60 frames / s \le E[rate_{BC}] = \frac{W_s}{t_{BC}}$

Since the Stop-and-Wait flow control protocol is simply the Sliding Window protocol with $W_s = 1$:

$$60 frames / s \le \frac{W_s}{t_{BC}} = \frac{Ws}{t_{prop(B,C)} + L_{frame} / R_{BC}}$$

Finding the bit-rate between node B and C, R_{BC}:

$$60 \, frames \, / \, s \leq \frac{W_s}{t_{BC}} = \frac{Ws}{t_{prop(B,C)} + L_{frame} \, / \, R_{BC}}$$

$$\leq \frac{1}{2*\left(\frac{5x10^{-6} \, s}{1km}\right) * 1000km + \frac{1000bits}{R_{BC}}}$$

$$1/(60 \, frames \, / \, s) \leq 2*\left(\frac{5x10^{-6} \, s}{1km}\right) * 1000km + \frac{1000bits}{R_{BC}}$$

$$0.01667 \, s \, / \, frame \leq 0.01 \, s + \frac{1000bits}{R_{BC}}$$

$$0.01667 \, s - 0.01 \, s \leq \frac{1000bits}{R_{BC}}$$

$$\frac{1000bits}{6.6667 \, x10^{-3} \, s} \leq R_{BC}$$

$$149999.999bps \leq R_{BC}$$

$$R_{BC} \geq 150 kilobits \, / \, s$$