PERINCUO DE EXPLOITS DIRICIPOS IN BRIVERS VUUNERIBUES EN ENTORIOS WINDOWS

CRONOGRAMA DE EJECUCIÓN

Análisis del driver capcom.sys

Análisis de las estructuras del kernel

Creación de shellcode y exploit para el robo del token a SYSTEM

ENTORNO DE EXPLOTACIÓN

- Windows 10 1909 64bits
- Ensamblador NASM
- Enlazador
- Visual Studio 2022-2019
- Driver Capcom.sys
- IDA
- WinDBG preview

ANÁLISIS DEL DRIVER CAPCOM.SYS

 Necesitaremos el manejador para realizar la llamada a través de CreateFile, ese manejador esta codificado, lo obtendremos después de usar la decodificación interna que contiene el driver ya que lo almacena en una variable y se ejecuta en DriverEntry.

ANÁLISIS DEL DRIVER CAPCOM.SYS

UCAM

• Para interactuar con el driver tendremos que obtener el IOCTL correspondiente que nos permitirá "activar" el envío de la dirección de memoria del buffer donde reside nuestro shellcode.

ANÁLISIS DEL DRIVER CAPCOM.SYS

- El controlador nos va a brindar la ejecución en ring 0 a través de una función que toma un puntero hacia un buffer declarado en ring 3.
- Antes de realizar la ejecución del código deshabilitara SMEP para después volver a activarlo.

QUE ES SMEP¿?

- Es una mitigación que impide que el código que se ejecuta en modo supervisor ejecute código que reside en páginas marcadas como de usuario.
- Está habilitada por el registro CR4 en su bit 20, sin embargo, no es el encargado de implementarlo.

CR4 -> 0x3506F8

00000000 00000000 00000000 00000000 001 1 0101 00000110 11111000

21

QUE ES SMEP¿?

QUE ES SMEP¿?

- SMEP se CUMPLE a través de la entrada de la tabla de páginas (PTE) de una página de memoria en forma de "flags".
- Recordar que una tabla de páginas es lo que contiene información sobre qué parte de la memoria física se asigna a la memoria virtual.

SHELLCODE PARA EL ROBO DE TOKEN A SYSTEM

- El proceso SYSTEM, PID de 4, alberga la mayoría de los subprocesos del sistema en modo kernel.
- Los subprocesos almacenados en el proceso del SYSTEM solo se ejecutan en el contexto del modo kernel.
- Recordar que un proceso es una especie de "contenedor" para subprocesos.

ESTRCUTURA EPROCESS

- Un objeto es una estructura creada dinámicamente es decir en tiempo de ejecución.
- Cada objeto de proceso se conoce como EPROCESS y este contiene entre otras cosas un token de acceso, el cual va a determinar el contexto de seguridad de un hilo o un proceso.
- De tal forma que, si el proceso SYSTEM alberga la ejecución del código en modo kernel, su contexto de seguridad requerirá privilegios administrativos o de SYSTEM.

OBTENER EL VALOR DE LA LISTA ENLAZADA TOKEN DE EPROCESS SYSTEM

CREACIÓN DE SHELLCODE PARA EL ROBO DEL TOKEN A SYSTEM

- Guardar los registros del procesador que usaremos en el stack
- Obtener EPROCESS del proceso SYSTEM y de CMD (que es donde ejecutaremos el exploit).
- Extraer el valor de token en su desplazamiento sobre EPROCESS.
- Copiarlo a nuestro proceso.
- Devolver el valor original a los registros del procesador previamente almacenados en el stack.

MITIGACIONES DE WINDOWS A LA HORA DE EXPLOTAR

- kASLR (kernel address space layout randomization)
- PML4 Self-Reference Entry Rasndomization
- kCFG (kernel control Flow guard)
- Kernel Virtual Address Shadow
- VBS/HVCI (por defecto en Windows 11)

ALGUNOS DRIVERS ACTUALES EXPLOTABLES

- AODDriver.sys
- IoAccess.sys

rtif.sys

- ComputerZ.sys
- ngiodriver.sys

rtport.sys

dellbios.sys

nvoclock.sys

stdcdrv64.sys

- GEDevDrv.sys
- PDFWKRNL.sys
- TdkLib64.sys

- GtcKmdfBs.sys
- RadHwMgr.sys

https://www.mcafee.com/blogs/other-blogs/mcafee-labs/smbghost-analysis-of-cve-2020-0796/

CONTINUAR EN TEMAS DE EXPLOTACIÓN DEL KERNEL

- https://fuzzysecurity.com/tutorials/expDev/14.html
- https://networkintelligence.ai/windows-kernel-exploitation/
- https://klue.github.io/blog/2017/09/hevd_stack_gs/
- https://mdanilor.github.io/posts/hevd-0/
- Extreme Vulnerable Driver HEVD

