

Vorlesung Fahrzeugmechanik (Kap. 9: Luftwiderstand)

Hochschule Ulm, WS 2017/18

Theodor Großmann

Hochschule Ulm

Vorlesungsinhalte Fahrzeugmechanik

Kapitel:

- 1. Einführung Fahrzeugmechanik
- 2. Reifen
- 3. Federn, Dämpfer,...
- 4. Einmassenschwinger
- 5. Achsen
- 6. Lenkung
- 7. Regelsysteme
- 8. Längsdynamik
- 9. Luftwiderstand
- 10. Querdynamik
- 11. Vertikaldynamik&Strassen
- 12. Fahrzeugmodelle
- 13. Gesamtfahrzeug
- 14. menschliche Wahrnehmung /Sitze
- 15. Sleeping Policeman/Schlagloch
- 16. Fahrzeugentwicklung mit DPT

Hochschule Ulm

Einsatzgebiete der Aerodynamik im Fahrzeug

<u>Luftkräfte:</u> Längsdynamik Querdynamik Vertikaldynamik

Verschmutzung: Frontbereich Heckbereich Außenspiegel

Motor: Landungswechselberechnung

Bauteilkühlung: Motorraumkühlung Bremsenkühlung

Geräusche: Innengeräusche Außengeräusche

Innenraum: Kühlung Heizung

Aerodynamik

Für die Aerodynamik von Kraftfahrzeugen sind zwei Effekte wichtig:

- •Bernoulische Effekt: ideales Gas mit unterschiedlichen statischen Drücken
- •Wirbelbildung und dadurch Arbeitsverrichtung, d.h. das reale Gas erzeugt ebenfalls unterschiedliche statische Drücke

Längsdynamik:

⇒niedriger Luftwiderstand

⇒gute Fahrleistung

Querdynamik:

- ⇒niedriger Vor- und Hinterachsauftrieb
- ⇒gute Fahrstabilität
- ⇒niedrige Giermomenten- und Seitenkraftbeiwerte
- ⇒geringe Seitenwindempfindlichkeit

Umströmung eines Personenwagens: Strömungsablösung

Umströmung eines Fahrzeuges:

Die Umströmung von Autos wird von Ablösungen der Strömung geprägt. Überall dort, wo sich der Strömung ein zu steiler Druck entgegenstellt, löst sie wegen dem Energieverlust infolge Reibung von der Kontur ab und geht ihre eigenen Wege.

Aufgabe des Fahrzeug-Aerodynamiker:

Die Fahrzeugablösungen, wenn sie schon nicht vermeidbar sind, dann doch so zu beeinflussen, dass sie die Strömung nicht "stören". Dabei steht "stören" für Widerstand generieren, Windgeräusche anregen, Schmutz oder Wassertropfen ablagern.

Umströmung

Der aus den reibungslosen Außenströmung resultierende Druck ist der wandnahen Grenzschicht aufgeprägt. In der Grenzschicht fällt die Geschwindigkeit vom Wert in der Außenströmung auf Null an der Wand ab.

Im hinteren Bereich des Fahrzeuges löst sich die Strömung ab. Es entstehen Rückströmgebiete und <u>Totwasserzonen</u>. In diesem Bereichen des Strömungsfeldes ist dann der gesamte Strömungsverlauf durch die Reibungseffekte bestimmt.

Die Aufteilung des Strömungsfeldes in eine <u>reibungslose Außenströmung</u> und eine <u>reibungsbehaftete</u> <u>wandnahe Strömung</u> ist nur möglich, wenn für die dimensionale Kennzahl <u>Reynolds-Zahl</u> "Re" gilt:

$$Re = \frac{V_{\infty} \cdot l}{V} \ \rangle \ 10^4 \ v$$
: kinematische Zähigkeit

Strömungen um geometrisch ähnliche Körper heißen mechanisch ähnlich, wenn die "Re" für verschiedene Körperlängen I, Anströmungsgeschwindigkeit v_{∞} der Stoffeigenschaften v den gleichen Zahlenwert besitzt.

kleiner aerodynamischer Exkurs

Ein inkompressibles Medium erhöht bei Durchströmung eines verengten Rohrquerschnittes die Durchflußgeschwindigkeit und veringert den statischen Druck p. Für die potentielle und kinetische Arbeit W gilt: (Erhöhung der kinetischen Energie und Verringerung der potentiellenEnergie):

$$\mathbf{W}_{kin} = \frac{1}{2} \cdot \mathbf{m} \left(\mathbf{v}_{2}^{2} - \mathbf{v}_{1}^{2} \right)$$

$$\mathbf{W}_{pot} = \left(\mathbf{p}_{1} - \mathbf{p}_{2} \right) \cdot \mathbf{V}$$

$$\mathbf{W}_{\text{pot}} = (\mathbf{p}_1 - \mathbf{p}_2) \cdot \mathbf{V}$$

Aufgrund der Enrgieerhaltung für dieses ideale Medium müssen beide Energieänderungen gleich groß sein und es ergibt sich daraus das Gesetz von Bernoulli:

ideale Strömung: in den gezeigten Fällen entsteht keine Wiederstandskraft.

reale Strömung: es entstehen Wirbel durch Arbeitsverrichtung, und damit ein Strömungswiderstand

kleiner aerodynamischer Exkurs

Die Reduktion der Wirbelbildung hat eine Verringerung des aerodynamischen Widerstandes zur Folge.

Für diese Optimierungen werden insbesondere im hinteren Teil der Form Optimierungen durch geführt

(siehe Abbildung für die reale Strömung).

Widerstandskraft nimmt ab 0 0 0

Gesamtkräfte und -momente

Bei symmetrischer Anströmung (β =0) ergibt sich:

- Widerstandskraft F_W in Längsrichtung
- Auftriebskraft F_A in Vertikalrichtung
- Nickmoment M_M um die Querachse

Bei schräger Anströmung (β #0) ergibt sich:

- Seitenkraft F_s senkrecht zur Radebene
- Rollmoment M_R um die Längsrichtung
- Giermoment M_N um die Hochachse
- Durch die sechs Komponenten F_W , F_A , M_M und F_s , M_R , M_N ist die resultierende Luftkraft nach Größe und Angriffspunkt festgelegt

 Bei bekannter Lage des Momentanbezugspunktes in der Bodenebene, jeweils in der Mitte des Radstandes und des Achsabstandes, lassen sich dann auch die aus der Umströmung resultierenden Belastungsänderungen an vier Räder ermitteln.

Aerodynamische Beiwerte

Windkanalmessungen:

 F_W , F_A , M_M und F_s , M_R , M_N lassen sich im Windkanal durch direkte Kraftmessungen an Fahrzeug oder an verkleinerten Modellen ermitteln.

Für die Übertragbarkeit der Versuchergebnisse ist wieder wesentlich, dass die Reynolds-Zahl des Modelles und des realen Fahrzeuges gleich ist.

Von den Abmessungen bildet man dimensionslose Beiwerte:

Auftriebsbeiwert: $\mathbf{c}_{\mathbf{A}} = \frac{\mathbf{F}_{\mathbf{A}}}{\frac{\mathbf{\rho}}{2} \cdot \mathbf{v}_{\infty}^{2} \cdot \mathbf{A}}$	Widerstandsbeiwert: $\mathbf{c}_{\mathbf{W}} = \frac{\mathbf{F}_{\mathbf{W}}}{\frac{\mathbf{\rho}}{2} \cdot \mathbf{v}_{\infty}^{2} \cdot \mathbf{A}}$
Nickmomentenbeiwert:	Seitenkraftbeiwert:
$\mathbf{c}_{\mathbf{M}} = \frac{\mathbf{M}_{\mathbf{M}}}{\frac{\mathbf{\rho}}{2} \cdot \mathbf{V}_{\infty}^{2} \cdot \mathbf{A} \cdot \mathbf{l}}$	$\mathbf{c}_{\mathbf{s}} = \frac{\mathbf{F}_{\mathbf{s}}}{\frac{\mathbf{\rho}}{2} \cdot \mathbf{v}_{\infty}^{2} \cdot \mathbf{A}}$
Rollmomentenbeiwert:	Giermomentenbeiwert:
$\mathbf{c}_{\mathbf{R}} = \frac{\mathbf{M}_{\mathbf{R}}}{\frac{\mathbf{\rho}}{2} \cdot \mathbf{v}_{\infty}^{2} \cdot \mathbf{A} \cdot \mathbf{l}}$	$\mathbf{c}_{\mathbf{N}} = \frac{\mathbf{M}_{\mathbf{N}}}{\frac{\mathbf{\rho}}{2} \cdot \mathbf{V}_{\infty}^{2} \cdot \mathbf{A} \cdot \mathbf{l}}$

p: Dichte

Stirnfläche

Bezugslänge

M_M: Nickmoment

M_R: Rollmoment M_N: Giermoment

F_W: Widerstandskraft

F_s: Seitenkraft F_A: Auftriebskraft

Windkanalmessungen: Modell-Untersuchung

Im Modellwindkanal wird der aerodynamische Feinschliff an der Karosserie ausgeführt.

Richtungsstabilität durch Fahrtwind

Die durch die Umströmung des Fahrzeuges entstehende Luftkräfte und Momente beeinflussen die Fahrstabilität. Bei hoher Fahrgeschwindigkeit sind deren Auswirkungen auf den Fahrkomfort spürbar, und im Extremfall sind auch Sicherheitsaspekte betroffen.

Der eigene Fahrtwind erzeugt Auftriebskräfte und ein Nickmoment. Daraus resultieren veränderte Radlasten und als Folge davon geänderte Haftbedingungen der Reifen. Das Wechselspiel dieser Kräfte und Momente am Fahrzeug beeinflußt sowohl dessen Richtungsstabilität bei Geradeausfahrt wie auch sein Eigenlenkverhalten bei Fahrtrichtungsänderungen.

Durch den natürlichen Umgebungswind und bei Überholvorgängen wird die Umströmung des Fahrzeuges unsymmetrisch. Es entsteht eine Seitenkraft, ein Gier- und ein Rollmoment, und auch Auftrieb und Nickmoment werden verändert. Dies führt zur Kursabweichungen, die vom Fahrer durch Lenkkorrekturen kompensiert werden müssen.

Geschichtliche Entwicklung der aerodynamischen Beiwerte

Geschichtliche Entwicklung der aerodynamischen Beiwerte

Einfluß der Anbauteile auf die aerodynamische Beiwerte

Beispiel: Widerstands- und Auftriebsbeiwert

Vergleich "A" und "B":

bei annähernd gleich niedrigem Widerstand ist der Auftrieb bei "B" durch Heck-Spoiler weniger als halb so groß als bei "A"

Vergleich "A" und "C":

Auftriebs-- und Widerstandsbeiwerte verändern sich gleichläufig

Vergleich "A" und "D":

Auftriebs-- und Widerstandsbeiwerte verändern sich gegenläufig

Wirkung abgerundeter Kanten auf die Auftriebsbeiwerte

Große Unterschiede zwischen VA- und HA-Auftrieb können zu einer Änderungen des Eigenlenkverhaltens mit steigender Fahrgeschwindigkeit führen. Ist z.B. der Auftrieb an der Hinterachse deutlich größer als an der Vorderachse, so ergibt sich eine Tendenz in Richtung Übersteuern. Leichter beherrschbar bleibt ein Fahrzeug mit ausgeglichener Auftriebsverteilung

Auftrieb bei Geradeausfahrt

Bei ungestörter Geradeausfahrt bis hin zu mittleren Geschwindigkeiten ist der Auftrieb von untergeordneter Bedeutung.

Bei Geschwindigkeiten oberhalb etwa 150 km/h werden die Radlasten durch Auftriebskräfte deutlich verändert.

Aerodynamische Einflüsse auf die Fahrdynamik: Gierverstärkung

- a) Gierverstärkung
- b) Bremsen i.d.Kurve
- c) Seitenwindempfindlichkeit

Bestimmung der Auftriebsbeiwerte-Grenzwerten

Zur Bestimmung der Grenzwerten für die aerodynamischen Auftriebsbeiwerte wird in der Regel das Manöver "Sinuslenken" für die verschiedene Geschwindigkeiten mit der Lenkfrequenz von 0.2 Hz durchgeführt.

Beschreibung des Manövers "Sinuslenken":

Das Manöver Sinuslenken wird mit Konstruktionsbeladung (KO-Beladung) für niedrige Lenkfrequenz (z.B. 0.2 Hz) simuliert oder gefahren. Dabei wird die Fahrgeschwindigkeit zwischen 25 und 250 km/h variiert, wobei die Amplitude des Lenkradwinkels wird jeweils so angepasst, dass sich die Querbeschleunigung von 4 m/s² ergibt.

Gierverstärkung:

$$\left[\left(\frac{\dot{\mathbf{v}}}{\delta} \right)_{\text{stat}} = \frac{\mathbf{v}}{\mathbf{l} + \mathbf{E} \mathbf{G} \cdot \mathbf{v}^2} \right]$$

v_{ch} :charakteristische Geschwindigkeit v_{krit} : kritische Geschwindigkeit US : untersteuerendes Fahrzeug ÜS : übersteuerendes Fahrzeug

Aerodynamische Einflüsse auf die Fahrdynamik: Seitenwindempfindlichkeit

Manöver-Beschreibung:

- a) Gierverstärkung
- b) Bremsen i.d.Kurve
- c) Seitenwindempfindlichkeit
- mit einer Fahrgeschwindigkeit von 140 km/h
- bei einer Windgeschwindigkeit von 75 km/h
- Windwinkel zur Sollbahn 90°

Aerodynamische Einflüsse auf die Fahrdynamik

Fahrzeugdaten für die Simulation

	Fzg. A	Fzg. B
Gewicht KO [kg]	2050	2020
Radstand [mm]	3040	2960
Spurweite [mm]	1600	1550
Beladung	КО	КО
Stirnfläche [m²]	2,34	2,31
Auftriebsbeiwert VA [-]	0,04	0,09
Auftriebsbeiwert HA [-]	0,09	0,09
Giermomentenbeiwert [-]	0,190	0,170
Seitenkraftbeiwert [-]	0,64	0,61
Reifen	225/60 R16	225/60 R16

→ Fzg. A günstiger: Achslasten, Radstand und Spurweite Fzg. A ungünstiger: Stirnfläche und Giermomentenbeiwert

Aerodynamische Einflüsse auf die Fahrdynamik

Vergleich Fahrzeug A mit Fahrzeug B

→ Stand Fzg. A bezüglich dem Seitenwindverhalten schlechter als Fzg. B

Aerodynamische Einflüsse auf die Fahrdynamik

Zusammenfassung:

Es gelten zur Verbesserung der maximalen Giergeschwindigkeit bei "Vorbeifahrt an Seitenwindgebläse":

- Minimierung des Giermomenten-Beiwertes
- Kleine Stirnfläche
- Reifen mit erhöhter Cornering Stiffness
- Monitoring der Elastokinematik

Fahrzeug-Luftwiderstand

Entwicklung Aerodynamik bei Mercedes-Benz

- Entwicklung Aerodynamik bei Mercedes-Benz
- Luftkraftoptimierung
 - Prozess Luftkraftoptimierung
 - Charakteristika von Luftkraftsimulationen
 - Aerodynamik der aktuellen A-Klasse
- Aeroakustikberechnung
- Digitale Optimierung der Strömung in geöffneten Fahrzeugkabinen
- Zusammenfassung

Aufgabenfelder Aerodynamikentwicklung

Hochschule Ulm

Luftkräfte und Zugfreihaltung werden zu erheblichen Anteilen auf Basis von Strömungsberechnungen optimiert.

Die Aerodynamikentwicklung von Fahrzeugen im Windkanal und in der Simulationen muss unter Modellierung der Strömungssituation bei Straßenfahrt erfolgen

- großflächige verteilte Vorabsaugung bereits in der Düse
- tangentiale Ausblasung vor dem Laufband
- Mittenlaufband mit rauher Beschichtung

Simulation und Versuch ergänzen sich in den verschiedenen Entwicklungsstadien der Aerodynamik-Optimierung

Entwicklungsaufwand

Simulation

- Identifizierung von Ablösegebieten
- Interaktion Front-Stoßfänger mit Radhaus

 Unterstützung von Windkanalmessungen

- Interaktion Front-Stoßfänger/Radhaus/Reifen
- Interaktion Dachspoiler/Seitenwand

- Finden von Kompromissen für alle Derivate

Frühe Entwicklungsphase **Design-**Wettbewerb

Themen-**Auswahl**

Entwicklungsstufen Aero-Hartmodell

Der Simulationsprozess ist standardisiert, Geometrieaufbereitung, Vernetzung sowie Postprocessing sind weitgehend automatisiert

- Über den Vorgänger als Referenz kann der Luftwiderstandsbeiwert c_w neuer Fahrzeug-formen gut prognostiziert werden
- Die Variantenbewertung der Auftriebsbeiwerte c_{av} und c_{ah} gelingt mittels CFD in der Tendenz.
- Die Bauteiloptimierung im Detail (z.B. Rautengittertiefe oder Radspoiler) gelingt heute in enger Verzahnung von Simulation und Windkanal.

Aerodynamik der A-Klasse

Der niedrigste Luftwiderstand in jedem Segment

^{*} BlueEFFICIENCY Edition Modelle

^{**} S 300 BlueTEC HYBRID

Aerodynamikentwicklung bei Mercedes-Benz

Dynamik der Fahrzeugunterströmung

- gute Übereinstimmung zwischen Simulation und Messung
- hohe Simulationszeiten

Zusammenfassung

- Die Aerodynamiksimulation ist heute ein unverzichtbares Werkzeug in der Aerodynamik, dessen Bedeutung mit zunehmender Digitalisierung der Fahrzeugentwicklung weiter wächst
- Eine enge Verzahnung von Simulation und Versuch ermöglichen ein effizientes Erreichen von Bestwerten in der Luftkraftentwicklung
- Die Simulation Aeroakustik ist sehr aufwendig und heute noch im Pilotstadium
- Instationäre Simulationen zur Reduktion von Zugeffekten in geöffneten Kabrios /Roadstern ermöglichen gezielte Optimierungen
- Simulation der Fahrzeugverschmutzung bei Regenfahrt ist noch im Forschungsstadium