Organização Básica de computadores e linguagem de montagem

Prof. Edson Borin

2° Semestre de 2015

Representação de Informações no Computador

- Como representar informações em um computador
 - Números inteiros?
 - Texto?
 - Registros?
 - Vetores?

- Informações são representadas através de dígitos binários, ou BITs (**BI**nary digi**T**s).
- Dígitos 0 e I
- Quantos estados (ou números) distintos podemos representar com 3 dígitos da base binária?

- Informações são representadas através de dígitos binários, ou BITs (**BI**nary digi**T**s).
- Dígitos 0 e I
- Quantos estados (ou números) distintos podemos representar com 3 dígitos da base binária?
 - 8 estados se utilizarmos notação posicional
 - 4 estados se utilizarmos notação não posicional

```
• I: 001,010,100 (um bit I e dois bits 0)
```

• 2: 110, 101, 011 (um bit 0 e dois bits 1)

• 3: 000 (três bits 0)

• 4: | | | (três bits |)

- Notação posicional: valor do dígito depende da sua posição.
- Exemplo: Número decimal 132
 - Valor do dígito 2 = 2
 - Valor do dígito 3 = 30
 - Valor do dígito I = 100

- Notação posicional: valor do dígito depende da sua posição.
- Exemplo: Número decimal 132
 - Valor do dígito 2 = 2
 - Valor do dígito 3 = 30
 - Valor do dígito I = 100
- "Informações no computador são representadas através de números, codificados na base binária com notação posicional"

- A quantidade de dígitos distintos define a base numérica. Exemplos
 - Base 2, ou binária => 2 dígitos distintos: 0 e 1
 - Base 8, ou octal => 8 dítigos distintos: 0, 1, ..., 7
 - Base 10, ou decimal => 10 dígitos distintos: 0, ..., 9
 - •
- Quais são os dígitos utilizados na base 16?

- A quantidade de dígitos distintos define a base numérica. Exemplos
 - Base 2, ou binária => 2 dígitos distintos: 0 e 1
 - Base 8, ou octal => 8 dítigos distintos: 0, 1, ..., 7
 - Base 10, ou decimal => 10 dígitos distintos: 0, ..., 9
 - •
- Quais são os dígitos utilizados na base 16?
 - Dígitos da base hexadecimal: 0, I, ..., 9, A, B, C, D, E, F

- Qual é a base dos números abaixo?
 - FE03
 - 8230
 - 9210
 - 1001

- Qual é a base dos números abaixo?
 - FE03
 - 8230
 - 9210
 - 1001
- Para distinguir temos que anotar o número com a base. Exemplos:
 - FE03₁₆
 - 1001₁₀
 - 1001₂

- Qual é o valor de cada dígito nos números abaixo?
 - 9210₁₀
 - 1001₂

- Qual é o valor de cada dígito nos números abaixo?
 - 9210₁₀
 - 1001₂
- O valor de um dígito **d** em um número na base **t** é dado por:
 - d x t posição
- Onde a posição é dada pela seguinte convenção:

- Qual é o valor de cada número abaixo em decimal?
 - 100₁₂
 - FF₁₆

- Qual é o valor de cada número abaixo em decimal?
 - 1001₂
 - FF₁₆
- O valor de um número na base t com n dígitos é o somatório dos valores dos dígitos:

$$N_{10} = \sum_{i=0}^{n-1} \mathbf{d}_i \times \mathbf{t}^i$$

• onde **d**i é o dígito na posição i.

• Qual é o valor de cada número abaixo em decimal?

•
$$|00|_2 = |x^2| + 0x^2| + |x^2| = 9_{10}$$

•
$$FF_{16}$$
 = $Fx16^1 + Fx16^0 = 15x16 + 15x1 = 255_{10}$

 O valor de um número na base t com n dígitos é o somatório dos valores dos dígitos:

$$N_{10} = \sum_{i=0}^{n-1} \mathbf{d}_i \times \mathbf{t}^i$$

• onde **d**i é o dígito na posição i.

Conversão de bases numéricas

Tipo de conversão	Procedimento
Decimal => Binário	Divisões sucessivas por 2 até se obter zero no quociente. Leitura dos dígitos binários no resto de baixo para cima.
Binário => Decimal	Soma de potências de 2 cujo expoente é a posição do bit e cujo coeficiente é o próprio bit.
Hexadecimal => Binário	Expandir cada dígito hexa em quatro dígitos binários segundo seu valor.
Binário => Hexadecimal	Compactar cada quatro dígitos binários em um único dígito hexa segundo seu valor.
Decimal => Hexadecimal	Divisões sucessivas por 16 até se obter zero no quociente. Converter restos p/ dígitos hexadecimais. Leitura dos dígitos de baixo para cima.
Hexadecimal => Decimal	Soma de potências de 16 cujo expoente é a posição do dígito e cujo coeficiente é o valor do próprio dígito hexa.

Bases numéricas - Exercícios

- Qual o valor em binário dos seguintes números
 - 15₁₆
 - 139₁₀
- Qual o valor em hexadecimal dos seguintes números
 - 101001₂
 - 16₁₀
 - 240₁₀
 - 20₈

Números Sem Sinal

- Na representação sem sinal, todos os bits são utilizados como dígitos do número.
- Exemplo: Registradores com 3 bits podem representar 8 números distintos: 0 a 7

$$000 = 0_{10}$$
 $001 = I_{10}$
 $010 = 2_{10}$
 $011 = 3_{10}$
 $100 = 4_{10}$
 $101 = 5_{10}$
 $111 = 7_{10}$

Números Com Sinal

- Três tipos de codificação mais conhecidas
 - Sinal e magnitude
 - Complemento de I
 - Complemento de 2

Sinal e Magnitude

- Na representação "sinal e magnitude" o bit mais a esquerda (o mais significativo) representa o sinal do número e os outros bits representam a magnitude.
- Qual é o valor dos números abaixo na representação "sinal e magnitude" e sem sinal?
 - a) 0001 0101₂
 - b) 1000 1010₂

Sinal e Magnitude

- Na representação "sinal e magnitude" o bit mais a esquerda (o mais significativo) representa o sinal do número e os outros bits representam a magnitude.
- Qual é o valor dos números abaixo na representação "sinal e magnitude" e sem sinal?
 - a) 0001 0101₂
 - b) 1000 1010₂
- E estes números?
 - a) 0000 0000₂
 - b) 1000 0000₂

Sinal e Magnitude

Número	Sem sinal	Sinal e Mag.
000	0	0
001	[I
010	2	2
011	3	3
100	4	-0
101	5	-1
110	6	-2
111	7	-3

 Na representação "complemento de I" o bit mais à esquerda também indica o sinal, entretanto a magnitude é representada de maneira diferente.

Número	Sem sinal	Sinal e Mag.	Comp. de I
000	0	0	0
001			
010	2	2	2
011	3	3	3
100	4	-0	?
101	5	-	?
110	6	-2	?
111	7	-3	?

 Na representação "complemento de I" o bit mais à esquerda também indica o sinal, entretanto a magnitude é representada de maneira diferente.

Número	Sem sinal	Sinal e Mag.	Comp. de I
000	0	0	0
001			
010	2	2	2
011	3	3	3
100	4	-0	-3
101	5	-	-2
110	6	-2	-1
111	7	-3	-0

- Na representação "complemento de I" o bit mais à esquerda também indica o sinal, entretanto a magnitude é representada de maneira diferente.
- Primeiro bit 0 => o número é positivo e o valor pode ser obtido da mesma maneira que na representação sem sinal
- Primeiro bit I => o número é negativo. Para descobrir a magnitude, basta inverter todos os bits e computar o valor na representação sem sinal.
- Qual é o valor de 10010₂?

- Na representação "complemento de I" o bit mais à esquerda também indica o sinal, entretanto a magnitude é representada de maneira diferente.
- Primeiro bit 0 => o número é positivo e o valor pode ser obtido da mesma maneira que na representação sem sinal
- Primeiro bit I => o número é negativo. Para descobrir o valor, basta inverter todos os bits e computar o valor na representação sem sinal.
- Qual é o valor de 10010₂?
 - $10010_2 => 01101_2 = 13_{10}$. Logo: $10010_2 = -13_{10}$

• Na representação "complemento de 2" o bit mais à esquerda indica o sinal, entretanto a magnitude é representada de maneira diferente.

Número	Sem sinal	Sinal e Mag.	Comp. de I	Comp. de 2
000	0	0	0	0
001				I
010	2	2	2	2
011	3	3	3	3
100	4	- O	-3	?
101	5	-	-2	?
110	6	-2	-	?
111	7	-3	-0	?

• Na representação "complemento de 2" o bit mais à esquerda indica o sinal, entretanto a magnitude é representada de maneira diferente.

Número	Sem sinal	Sinal e Mag.	Comp. de I	Comp. de 2
000	0	0	0	0
001				
010	2	2	2	2
011	3	3	3	3
100	4	-0	-3	-4
101	5	-	-2	-3
110	6	-2	-	-2
111	7	-3	-0	- l

Representação de Números

Número	Sem sinal	Sinal e Mag.	Comp. de I	Comp. de 2
000	0	0	0	0
001	I	-	_	_
010	2	2	2	2
011	3	3	3	3
100	4	-0	-3	-4
101	5	-	-2	-3
110	6	-2	-	-2
111	7	-3	-0	-

- Representações "Sinal e Mag." e "Comp. de I" possuem dois zeros: 0 e -0
- A representação "complemento de 2" é a mais utilizada.

Representação de Números

Número	Sem sinal	Sinal e Mag.	Comp. de I	Comp. de 2
000	0	0	0	0
001	I	_	I	I
010	2	2	2	2
011	3	3	3	3
100	4	-0	-3	-4
101	5	-	-2	-3
110	6	-2	-l	-2
111	7	-3	-0	- l

Maior	7	3	3	3
Menor	0	-3	-3	-4

Representação de Números

Número	Sem sinal	Sinal e Mag.	Comp. de I	Comp. de 2
000	0	0	0	0
001	I	I	I	I
010	2	2	2	2
011	3	3	3	3
100	4	-0	-3	-4
101	5	-l	-2	-3
110	6	-2	-1	-2
111	7	-3	-0	- l

Maior	7	3	3	3
Menor	0	-3	-3	-4

Maior	2 ⁿ -1	2 ⁿ⁻¹ -1	2 ⁿ⁻¹ -1	2 ⁿ⁻¹ -1
Menor	0	-(2 ⁿ⁻¹ -1)	-(2 ⁿ⁻¹ -1)	-(2 ⁿ⁻¹)

Números no Computador

- "Informações no computador são representadas através de números, codificados na base binária com notação posicional"
- Quantos bits o computador usa para codificar cada número?

Números no Computador

- "Informações no computador são representadas através de números, codificados na base binária com notação posicional"
- Quantos bits o computador usa para codificar cada número?
 - O IAS utiliza 40 bits!
 - Palavras da memória possuem 40 bits
 - Registradores da ULA possuem 40 bits.

Números no Computador

- Computadores modernos codificam números com palavras de 8,16,32,64 ou mais bits.
- Geralmente é uma potência de 2.
- Uma arquitetura de 32 bits é uma arquitetura que é capaz de armazenar e realizar operações aritméticas em números com até 32 bits.

• Números sinalizados de 32 bits em Complemento de 2:

```
0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000_2 = 0_{10}
0000 0000 0000 0000 0000 0000 0000 I_2 = + I_{10}
0000 0000 0000 0000 0000 0000 0010_2 = +2_{10}
                                        maxint
1000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000_2 = -2,147,483,648_{10}
1000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0001_2 = -2,147,483,647_{10}
1000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0010_2 = -2,147,483,646_{10}
                                        minint
```

Aritmética Binária: Soma e Subtração

• Como no ensino fundamental: (vai-um/vem-um)

- Subtração em complemento de 2 pode ser feita com uma soma (A – B = A + (-B)).
- Ex: 7 6 = 7 + (-6) 0111 (+7) + 1010 (-6) 0001 (=1)

Aritmética Binária: Overflow

- Overflow: quando o resultado é maior (menor) do que a palavra do computador pode representar.
- Exemplo: Ocorre overflow na operação abaixo?

Aritmética Binária: Detecção de Overflow

- Não existe overflow quando adicionamos um número positivo e um número negativo
- Não existe overflow quando os sinais dos números são os mesmos na subtração
- Ocorre overflow quando os valores afetam o sinal:
 - Somando dois números positivos dá um número negativo
 - Somando dois números negativos dá um número positivo
 - Subtrai um número negativo de um positivo e dá negativo
 - Subtrai um número positivo de um negativo e dá positivo

Aritmética Binária: Detecção de Overflow

- Exercício: Compute o resultado das operações abaixo e verifique se houve overflow
 - a) 4 + 5 em uma representação com números sinalizados de 8 bits
 - b) 4 + 5 em uma representação com números sinalizados de 4 bits

- Cada caractere é associado a um número distinto.
- Existem diversos padrões.
- Exemplo: Padrão ASCII American Standard Code for Information -- Usa 7 bits, (128 caracteres distintos) – Exemplo:

64	@
65	Α
66	В
67	C
68	D
69	E
70	F
71	G
72	Н
73	I

96	,
97	а
98	b
99	С
100	d
101	е
102	f
103	g
104	h
105	i

48	0
49	1
50	2
51	3
52	4
53	5
54	6
55	7
56	8
57	9

- Cada caractere é associado a um número distinto.
- ASCII Usa 7 bits
- Um texto é armazenado como uma cadeia de caracteres!
- Posições consecutivas da memória

- Cada caractere é associado a um número distinto.
- ASCII Usa 7 bits
- Um texto é armazenado como uma cadeia de caracteres!
- Posições consecutivas da memória

Representação de Cadeias de Caracteres (strings) na memória do computador:

Exemplo: "Maçãs Assadas"

codificação MacOSRoman

31 | 32 | 20 | 4D | 61 | 8D | 8B | 73 | 20 | 41 | 73 | 73 | 61 | 64 | 61 | 73 | 00 |

- No IAS, as palavras da memória possuiam 40 bits!
- A grande maioria das memórias de computadores atuais possuem unidades de armazenamento endereçáveis de um byte (8 bits).
 - No endereço 0 cabe um dado de 1 byte, no endereço 1 cabe um dado de 1 byte e assim por diante.

- No IAS, as palavras da memória possuiam 40 bits!
- A grande maioria das memórias de computadores atuais possuem unidades de armazenamento endereçáveis de um byte (8 bits).
 - No endereço 0 cabe um dado de 1 byte, no endereço 1 cabe um dado de 1 byte e assim por diante.
- Quando armazenamos números de 7 bits em 1 byte nós desperdiçamos bits da memória.

Representação de Números na Memória

- Como fazemos para armazenar um número de 32 bits em uma memória endereçada a byte? Ou seja, em uma memória onde as unidades de armazenamento possuem 1 byte.
- Exemplo: Número de 32 bits (4 bytes)
 1025₁₀ = 00000000 00000000 00000100 00000001₂

Representação de Números na Memória

- Como fazemos para armazenar um número de 32 bits em uma memória endereçada a byte? Ou seja, em uma memória onde as unidades de armazenamento possuem 1 byte.
 - Resposta: Depende do Endianness.
- Exemplo: Número de 32 bits (4 bytes)
 1025₁₀ = 00000000 00000000 00000100 00000001₂

Endereço	Big-Endian
00	0000000
01	0000000
02	0010000
03	0000001

Little-Englan
0000001
00000100
0000000
0000000

ittle Endian

Outras Referências

- Capítulo 8 do livro do Stallings.
- Capítulo 2.4 do livro do Patterson e Hennessy
- Capítulo I da apostila do professor Anido:

http://www.ic.unicamp.br/~ranido/mc404/faiska/capl.pdf