Reference Tables for Thermocouples of Iridium-Rhodium Alloys Versus Iridium

G. F. Blackburn and F. R. Caldwell

(September 11, 1963)

The program at the National Bureau of Standards to establish reference tables of temperature versus emf for thermocouples of iridium-rhodium alloys versus iridium has been extended to cover all three of the currently used thermocouples of this type. In addition extended to cover all three of the currently used thermocouples of this type. In addition to the values published in 1962 for the 40 Ir-60 Rh versus Ir thermocouples, tables now are available for thermocouples of 60 Ir-40 Rh and 50 Ir-50 Rh versus Ir. These tables give emfs for temperatures in degrees Celsius from 0 to 2150 °C and in degrees Fahrenheit from 32 to 3900 °F, and temperatures in these units with emf in millivolts as the argument.

In addition to the reference tables for these thermocouples, temperature-emf relationships are presented for other alloys containing 10, 25, 75, and 90 percent iridium versus iridium. It appears from the information obtained on all of the alloy versus iridium combinations to the table of the 50 Ir 50 Rh elley versus iridium circum the enterty of the state of the table of the state of the table of the state of the table of the state of th

nations tested that the 50 Ir-50 Rh alloy versus iridium gives about the maximum thermal emf (12.2 millivolts at 2150 $^{\circ}$ C), and as a result may provide the optimum thermocouple combination of this type.

1. Introduction

A program to establish reference tables of thermal emf of a number of alloys of iridium and rhodium versus iridium has been in progress at the National Bureau of Standards for several years. Tables for 40 percent iridium-60 percent rhodium versus iridium were published in 1962 [1].¹ The present paper includes tables for all the other alloys of the series studied at NBS viz, 10, 25, 40, 50, 75, and 90 percent rhodium.²

2. Apparatus and Procedure

The apparatus and procedure have been described previously [1]. Briefly, measurements of thermal emf were made at temperatures up to 2500 °F ³ (2000 °F in a few cases) using a conventional platinum-wound furnace. Temperatures in the furance were measured with a platinum-10 percent rhodium versus platinum thermocouple. Temperatures above the limit of this furnace were obtained in an iridium blackbody heated by electrical induction. A conventional optical pyrometer, modified to permit finer adjustment of current through the lamp filament, was used to measure temperature. The calibration of the pyrometer gave temperature as a function of lamp current.

Each thermocouple wire was annealed before testing by heating it electrically in air for about 1 min at approximately 400 °F below its melting point. The junction was welded in an oxyacetylene flame.

3. Thermocouples

Table 1 is a list of the thermocouples used, in order of increasing percentage of rhodium in the alloy leg. The letter in a thermocouple number designates the lot from which the wire was taken, and refers to a particular shipment received from the manufacturer. The first digit refers to the composition of the alloy as follows: 1 signifies 10 percent; 2, 25 percent; 4, 40 percent; 5, 50 percent; 7, 75 percent; and 9, 90 percent rhodium. The last two digits are the wire diameter in thousandths of an inch. Three lots of wire (A, D, and F) were supplied by the Sigmund Cohn Corporation, and two (C and G) by Engelhard Industries, Inc. Since lot D consisted of alloy wire only, iridium to pair with alloy wires from this lot was taken from other lots.

Table 1. Description of thermocouples

Percent Rh	Thermocouple No.	Diameter of wire in.	Manufacturer
10	A135	0. 035	Sigmund Cohn
	G120	. 020	Engelhard
25	A 235	. 035	Sigmund Cohn
	G 220	. 020	Engelhard
40	A 435	. 035	Sigmund Cohn
	C 420	. 020	Engelhard
	¹ D 420C	. 020	Sigmund Cohn
	² D 435B	. 035	Sigmund Cohn
50	A 535	. 035	Sigmund Cohn
	F 530	. 030	Sigmund Cohn
	F 520	. 020	Sigmund Cohn
75	A735	. 035	Sigmund Cohn
	G720	. 020	Engelhard
90	A 935	. 035	Sigmund Cohn
	G 920	. 020	Engelhard

¹ Iridium wire from lot C

² Iridium wire from lot B (comprising 60 Rh and Ir wire).

¹ Figures in brackets indicate the literature references at the end of this paper, ² For brevity, the expression "25 percent Rh," for example, will be used to indicate a thermocouple in which the positive leg is 75 percent Ir-25 percent Rh, and the negative is iridium.

³ Degrees F (Fahrenheit) are based on the International Temperature Scale

of 1948.

4. Computations

For each alloy tested, the emf at a given temperature was taken as the average of the emfs of the different lots of that alloy. However, if a lot contained wires of more than 1 diam, the emf of each size wire was used as if it represented a different lot. For example, the emf for the 40 percent Rh thermocouple was taken as the average of the emfs of four: lot A, lot C, and the two wire sizes of lot D. With one exception each lot was represented by one thermocouple of a given alloy. Two thermocouples were used from lot C, and the mean of the emfs was taken as the emf for the lot.

The data for the alloys 25, 40, 50, and 75 percent rhodium were processed by the Computation Section of the NBS Applied Mathematics Division. An IBM 7090 Computer, employing programing procedures called OMNITAB [2], was used. With the object of finding a functional relation between emf and temperature such that tables could be generated entirely by a digital computer, trials were made in fitting polynominals of various degrees to the observed emfs for the 40 percent Rh thermocouple. It was determined that the data could be adequately represented by two equations, one of fourth degree for the range 32 °F to 1000 °F, the second of fifth degree for the range 1000 to 3900 °F. In computing the equation for the high range, the data from 1000 to 2500 °F were weighted 10 times those above 2500 °F, to take account of the higher precision that could be achieved at the lower temperatures.

The emf given for 32 °F by the equation for the lower range was less than 1 µv, and the difference between the emfs given by the two equations at the range juncture was also less than 1 μv . Deviations from observed emfs were randomly distributed, and were small—less than 5 μ v at temperatures up to about 3000 °F, and only a few were over 10µv at the highest temperatures. Evidently, the equations as computed represented the observed data adequately, and could be used to generate the desired tables. However, it seemed desirable that the equation yield zero emf at 32 °F; and since this could be accomplished by changing the constant term by a fraction of a microvolt, this change was made. Similarly, the equation for the upper range was made to yield the same emf at the juncture of the two ranges as the modified equation for the lower range by changing the constant term slightly.

The procedure followed for the 40 percent Rh was found equally suitable for the 25, 50, and 75 percent Rh thermocouples. No change was as great as 1 μv except that for the 75 percent Rh thermocouple, which was 1.4 μv at 1000 °F.

The equations for the upper and lower ranges did not give the same value of dE/dT at the juncture for any of the thermocouples. However, they were so nearly the same that the equations yielded the same emf to within 1 μ v at temperatures up to 20 °F on either side of the juncture.

5. Results

The derived polynominal equations were used to generate tables of emf with °F as the argument (values in tables 4–A, 8–A, and for the alloys 25 and 75 percent Rh in table 9–A). The coefficients of these equations are listed in table 2. For the 40 percent Rh and 50 percent Rh, the tables are fully developed, giving temperature in °C and °F with emf in 0.01-mv increments as the argument, and emf with °C and °F as the argument, in 10-deg increments. The computer techniques involved conversion from °C to °F and interpolation.

Table 9–A gives emfs for the 10, 25, 75, and 90 percent Rh thermocouples in 100 °F increments.

Electromotive force versus temperature curves for the alloys considered in this study are shown in figure 1. Figure 2 is a plot of dE/dT, derived by machine computation except for the 10 and 90 percent Rh thermocouples. Figure 3 shows the variation of emf with composition of the alloy leg for temperatures 2000, 2500, 3000, and 3500 °F. The emf at 2000 °F for 100 percent Rh is found from data by Caldwell [3] for Rh versus Pt27, together with a table of emfs for Ir versus Pt27 given in reference [1]. The point at 2500 °F is an extrapolation of Caldwell's data.

If the cold junction is at a temperature higher than 32 °F, the appropriate correction can be found by interpolating in the tables, or by the use of the corresponding equation. For the case where copper lead wires are used with the 40 or 50 percent Rh thermocouple the correction can be obtained from table 10–A, which gives the emfs of these alloys and iridium

Figure 1. Thermal emf of iridium-rhodium alloys against iridium.

 $^{^4}$ It is feasible to use a computer program which performs the curve fitting in such a way that the conditions to be satisfied include zero emf at 32 $^\circ\mathrm{F}$ and equality of both the emfs and the first derivatives at the juncture of the ranges.

Table 2. Values of coefficients in the equation

$$E = A + BT + CT^2 + DT^3 + ET^4 + FT^5$$

for four IrRh versus Ir thermocouples*

	J =			
Coefficient	60 Ir-	40 Rh	50 Ir-	50 Rh
	32 °F to 1000 °F	1000 °F to 3900	32 °F to 1100 °F	1100 °F to 3900
A B C D E F	-0.052816 1.581377·10 ⁻³ 2.196393·10 ⁻⁶ -1.136843·10 ⁻⁹ -0.204061·10 ⁻¹²	$\begin{array}{c} -0.353350 \\ 2.406678 \cdot 10^{-3} \\ 1.366226 \cdot 10^{-6} \\ -0.791802 \cdot 10^{-9} \\ .178246 \cdot 10^{-12} \\013826 \cdot 10^{-15} \end{array}$	$\begin{array}{c} -0.054717 \\ 1.640880 \cdot 10^{-3} \\ 2.193392 \cdot 10^{-6} \\ -1.127263 \cdot 10^{-9} \\ -0.202907 \cdot 10^{-12} \end{array}$	$\begin{array}{c} -0.143581 \\ 1.877703 \cdot 10^{-3} \\ 1.981642 \cdot 10^{-6} \\ -1.091919 \cdot 10^{-9} \\ 0.251008 \cdot 10^{-12} \\020415 \cdot 10^{-15} \end{array}$
	75 Ir-	25 Rh	25 Ir-7	75 Rh
	32°F to 1000°F	1000 °F to 4000 °F	32 °F to 1000 °F	1000 °F to 3700 °F
A	$\begin{array}{c} 2.\ 079622 \cdot 10^{-6} \\ -1.\ 090633 \cdot 10^{-9} \end{array}$	$\begin{array}{c} -0.110871 \\ 1.449150 \cdot 10^{-3} \\ 1.954721 \cdot 10^{-6} \\ -1.097890 \cdot 10^{-9} \\ 0.249149 \cdot 10^{-12} \\020193 \cdot 10^{-15} \end{array}$	-0.036808 1.191287·10 ⁻³ 1.552051·10 ⁻⁶ -0.683930·10 ⁻⁹ .092373·10 ⁻¹²	$\begin{array}{c} -0.031682 \\ .979634\cdot 10^{-3} \\ 1.879813\cdot 10^{-6} \\ -1.042899\cdot 10^{-9} \\ 0.263564\cdot 10^{-12} \\023458\cdot 10^{-15} \end{array}$

^{*}E is emf in millivolts; T is temperature in degrees Fahrenheit.

Figure 2. Thermoelectric power of iridium-rhodium alloys against iridium.

versus copper for temperatures to 500 °F. This table is particularly useful when the two reference junctions of the thermocouple are at different temperatures.

6. Discussion

The maximum difference in emf between thermocouples of a given alloy occurred at the highest temperature associated with each alloy. This maximum for any alloy was that for the 40 percent Rh thermocouple, about $120~\mu v$. This is comparable to

Figure 3. Variation at constant temperature of thermal emf with percent rhodium in the alloy legs of iridium-rhodium versus iridium thermocouples.

Figure 4. Emf differences between the lots of 40 percent rhodium and the corresponding table values.

(Thermocouple minus table values.)

the difference observed earlier for the 60 percent Rh, and is not considered unduly large. The emf differences for the four 40 percent Rh lots are plotted in figure 4. For comparison of thermal emfs from other sources, table 3 gives emfs from the present work and those of Zysk [4], and of Sine [5] as reported by Caldwell [6]. The largest difference is about 250 μ v at approximately 1800 °F between Sine's and the NBS values. This corresponds to a temperature difference of about 80 °F, which is about twice the difference found between lots at NBS.

Table 3. Emf of 60 percent Ir-40 percent Rh versus Ir thermocouples

Temperature	NBS	Zysk	Sine
\circ_F	Millivolts	Millivolts	Millivolts
000	0.342		0.3
:0000	. 864		.8
500	1.468		1.3
800	2.119	2. 101	2.0
.000	2.792	2.764	2.6
200	3, 469	3, 433	3. 2
400	4. 131	4. 102	3. 9
600	4, 775	4.741	4. 5
1800	5, 397	5. 357	5. 1
2000	6.000	5. 956	5. 7
2200	6, 586	6. 540	6. 3
2400	7.159	7.106	6. 9
2600	7.726		7. 5
2800	8. 291		8. 1
3000	8. 862		8.7
3200	9, 444		9. 4
3400	40.040		10. 0
3600	40 000		10. 7
3800	11 004		2011

For the 50 percent Rh thermocouple the maximum difference between lots was about 80 μ v. The deviations from the table values were more regular than those for the 40 percent Rh thermocouples and increased to as much as 40 μ v at 3900 °F. The deviations of lot A and those of the 0.030-in. wire of lot F were numerically about equal, and of opposite sign, while the emf of 0.020-in. wire of lot G was within 6 μ v of the table values throughout the range.

As has been mentioned in a previous section and indicated in table 1, the alloys 10, 25, 75, and 90 percent Rh were each represented by two lots of wire. The maximum differences between their thermal emfs and the equivalent temperature differences are listed in table 4. For the 10 and 25 percent Rh the maximum differences occurred at a temperature under 2000 °F, lot A producing a higher output than lot G. With increasing temperature the differences diminished, until equal outputs were obtained from the two lots, at about 3350 °F for both compositions. For the 75 and 90 percent Rh the emf of lot G was lower than that of lot A at all temperatures, as indicated by the negative signs in table 4.

Table 4. Maximum difference in thermal emf between thermocouples of lots A and G

	Perce	nt Rh	
10	25	75	90
236 166 1900	108 42 1700	$-180 \\ -52 \\ 3700$	$-195 \\ -65 \\ 3500$

The output of 40 percent Rh is the same as that of the 60 percent Rh at about 3000 °F. Below that temperature the 40 percent Rh has a higher emf than the 60 percent Rh; above 3000 °F its emf is less.

As the slopes of the emf-temperature curves for these two alloys do not differ greatly, the temperature at which equal emfs are observed may vary considerably from one thermocouple to another of the same nominal composition.

As was noted in the discussion of the work on the 60 percent Rh [1], several sources of error make increasingly large contributions to the uncertainty of the emfs obtained at temperatures above about 3500 °F. They combine to produce an uncertainty estimated not to exceed ± 12 °F at the highest temperature.

The alloys of most interest from the standpoint of usefulness are the 40, 50, and 60 percent Rh. While the present work has not yielded results on which a definite preference can be based, the 50 percent Rh would seem to be a logical choice, inasmuch as its emf is higher than that of either the 40 or 60 percent Rh. If conditions of use were such as to bring about a change in composition at and near the measuring junction, as for example by preferential volatilization of one of the constituents of the alloy leg, the thermal emf would be changed relatively little over a range of several percent change of composition in the 50 percent Rh thermocouple. It is quite likely that extensive use of these thermocouples in different environments will indicate the superiority of one alloy over another, or different alloys may be best suited for different purposes. Even the alloys having less than 40 and more than 60 percent rhodium may have desirable properties.

The question of tolerances on composition has not been considered in this work, since the behavior of the thermocouples has indicated that other factors, some of them not identifiable, have predominated in causing differences or changes in thermocouple output.

It can be concluded from this study that a thermocouple of nominal composition 40, 50, or 60 percent Rh versus Ir can be used for measuring temperatures up to 3900 °F 5 to an accuracy of ± 40 °F if the temperature of the thermocouple is determined from the appropriate table. Higher accuracy can be achieved by calibrating the particular thermocouple in question. A convenient method of performing such a calibration is to measure the emf of each thermoelement of the test thermocouple against the corresponding element of a thermocouple of known thermal emf. A higher degree of accuracy can be obtained above 1900 °F by using an optical pyrometer and a blackbody with the method described earlier. If the emf of a thermocouple is to be determined at temperatures between calibration points, a curve of deviations from the appropriate reference table can be constructed and used as described in reference 7.

 $^{^5}$ The temperature versus emf tables for the 60 percent Rh thermocouple extends to 3800 $^{\circ} F_{\star}$

7. Appendix

Table 1-A. Sixty percent iridium-forty percent rhodium versus iridium thermocouples

Flectromotive force in absolute millivolts. Temperatures in degrees C (Int. 1948). Reference junctions at 0 °C.

Milli- volts	.000	.010	.020	.030	.040	.050	.060	.070	.080	.090	.100	Milli- volts
voits					D	egrees (2					voits
0.000	0.0	3.2	6.4	9.5	12.6	15.6	18.7	21.6	24.6	27.5		
0.100	30.4	33.2	36.1	38.9	41.6	44.4	47.1	49.8	52.5	55.1	57.8	
0.200	57.8	60.4	63.0	65.5	68.1	70.6	73.2	75.7	78.1	80.6	83.1	0.20
0.300	83.1	85.5	87.9	90.3	92.7	95.1	97.5	99.8	102.2	104.5	106.8	
0.400	106.8	109.1	111.4	113.7	116.0	118.2	120.5	122.7	124.9	127.1	129.4	0.40
0.500	129.4	131.6	133.8	135.9	138.1	140.3	142.4	144.6	146.7	148.8	151.0	
0.600	151.0	153.1	155.2	157.3	159.4	161.5	163.5	165.6	167.7	169.7	171.8	0.6
0.700	171.8	173.8	175.8	177.9	179.9	181.9	183.9	185.9	187.9	189.9	191.9	0.7
0.800	191.9	193.9	195.9	197.9	199.8	201.8	203.7	205.7	207.6	209.6	211.5	0.8
0.900	211.5	213.4	215.4	217.3	219.2	221.1	223.0	224.9	226.8	228.7	230.6	0.9
.000	230.6	$232.5 \\ 251.2$	$234.4 \\ 253.1$	236.3 254.9	238.2	240.1	241.9	243.8	245.7	247.5	249.4	
.100	249.4	269.6		254.9 273.2	256.8	258.6 276.8	260.4	262.3	264.1	265.9	267.7	
.300	$267.7 \\ 285.8$	287.6	$271.4 \\ 289.4$	273.2	$275.0 \\ 293.0$	276.8	278.6	280.4	282.2	284.0	285.8	
.400	303.6	305.4	307.2	308.9	310.7	312.5	296.6	298.3	300.1	301.9	303.6	
.500	321.2	323.0	324.7	326.5	328.2	$312.5 \\ 329.9$	$314.2 \\ 331.7$	$316.0 \\ 333.4$	$317.7 \\ 335.2$	319.5 336.9	321.2 338.6	
.600	338.6	340.3	342.1	343.8	345.5	347.2	349.0	350.7	352.4	354.1	355.8	1.6
.700	355.8	357.6	359.3	361.0	362.7	364.4	366.1	367.8	369.5	371.2	372.9	1.7
.800	372.9	374.6	376.3	378.0	379.7	381.4	383.1	384.8	386.5	388.2	389.8	1.8
.900	389.8	391.5	393.2	394.9	396.6	398.3	399.9	401.6	403.3	405.0	406.7	
.000	406.7	408.4	410.0	411.7	413.4	415.1	416.7	418.4	420.1	421.7	423.4	2.0
.100	423.4	425.1	426.7	428.4	430.1	431.7	433.4	435.1	436.7	438.4	440.1	2.1
.200	440.1	441.7	443.4	445.1	446.7	448.4	450.0	451.7	453.4	455.0	456.7	
.300	456.7	458.3	460.0	461.6	463.3	464.9	466.6	468.2	469.9	471.6	473.2	2.3
.400	473.2	474.9	476.5	478.2	479.8	481.5	483.1	484.8	486.4	488.1	489.7	2.4
.500	489.7	491.4	493.0	494.6	496.3	497.9	499.6	501.2	502.9	504.5	506.2	2.5
.600	506.2	507.8	509.5	511.1	512.8	514.4	516.1	517.7	519.3	521.0	522.6	2.6
2.700	522.6	524.3	525.9	527.6	529.2	530.8	532.5	534.1	535.8	537.4	539.1	2.7
.800	539.1	540.7	542.3	544.0	545.6	547.2	548.8	550.5	552.1	553.7	555.4	
.900	555.4	557.0	558.6	560.3	561.9	563.5	565.2	566.8	568.4	570.1	571.7	2.9
.000	571.7	573.4	575.0	576.6	578.3	579.9	581.5	583.2	584.8	586.5	588.1	3.0
.100	588.1	589.7	591.4	593.0	594.7	596.3	597.9	599.6	601.2	602.9	604.5	3.1
.200	604.5	606.1.	607.8	609.4	611.1	612.7	614.4	616.0	617.7	619.3	621.0	3.2
.300	621.0	622.6	624.3	625.9	627.6	629.2	630.9	632.5	634.2	635.8	637.5	3.3
.400	637.5	639.1	640.8	642.4	644.1	645.7	647.4	649.1	650.7	652.4	654.0	3.4
.500	654.0	655.7	657.3	659.0	660.7	662.3	664.0	665.6	667.3	669.0	670.6	3.5
.600	670.6	672.3	674.0	675.6	677.3	679.0	680.6	682.3	684.0	685.6	687.3	3.6
.700	687.3	689.0	690.7	692.3	694.0	695.7	697.3	699.0	700.7	702.4	704.0	3.7
.800	704.0	705.7	707.4	709.1	710.8	712.4	714.1	715.8	717.5	719.2	720.8	3.8
.900	720.8	722.5	724.2	725.9	727.6	729.3	730.9	732.6	734.3	736.0	737.7	3.9
.000	737.7	739.4	741.1	742.8	744.5	746.2	747.9	749.6	751.3	753.0	754.6	
.100	754.6	756.3	758.0	759.7	761.4	763.1	764.9	766.6	768.3	770.0	771.7	
.200	771.7	773.4	775.1	776.8	788.5	780.2	781.9	783.6	785.3	787.1	788.8	
.300	788.8	790.5	792.2	793.9	795.6	797.4	799.1	8.008	802.5	804.2	806.0	
.400	806.0	807.7	809.4	811.1	812.8	814.6	816.3	818.0	819.8	821.5	823.2	
.500	823.2	824.9	826.7	828.4	830.1	831.9	833.6	835.3	837.1	838.8	840.6	
.600	840.6	842.3	844.0	845.8	847.5	849.3	851.0	852.8	854.5	856.3	858.0	
.700	858.0	859.8	861.5	863.3	865.0	866.8	868.5	870.3	872.0	873.8	875.5	4.7
.800	875.5	877.3	879.0	8.088	882.6	884.3	886.1	887.9	889.6	891.4	893.2	
.900	893.2	894.9	896.7	898.5	900.2	902.0	903.8	905.5	907.3	909.1	910.9	4.9

Table 1-A. Sixty percent iridium-forty percent rhodium versus iridium thermocouples — Continued Electromotive force in absolute millivolts. Temperatures in degrees C (Int. 1948). Reference junctions at 0 °C.

Milli- volts	.000	.010	.020	.030	.040	.050	.060	.070	.080	.090	.100	Milli- volts
voits						Degrees	С					voits
5.000	910.9	912.6	914.4	916.2	918.0	919.8	921.5	923.3	925.1	926.9	928.7	5.000
5.100	928.7	930.5	932.3	934.0	935.8	937.6	939.4	941.2	943.0	944.8	946.6	5.100
5.200	946.6	948.4	950.2	952.0	953.8	955.6	957.4	959.2	961.0	962.8	964.6	5.200
5.300	964.6	966.4	968.2	970.0	971.8	973.6	975.4	977.3	979.1	980.9	982.7	5.300
5.400	982.7	984.5	986.3	988.1	990.0	991.8	993.6	995.4	997.2	999.1	1000.9	5.400
	1000.9	1002.7	1004.5	1006.4	1008.2	1010.0		1013.7	1015.5	1017.4	1019.2	5.500
	1019.2	1021.0	1022.9	1024.7	1026.5	1028.4	1030.2	1032.1	1033.9	1035.7	1037.6	5.600
	1037.6	1039.4	1041.3	1043.1	1045.0	1046.8	1048.7	1050.5	1052.4	1054.2	1056.1	5.700
	1056.1	1057.9	1059.8	1061.6	1063.5	1065.3	1067.2	1069.1	1070.9	1072.8	1074.7	5.800
5.900	1074.7	1076.5	1078.4	1080.2	1082.1	1084.0	1085.8	1087.7	1089.6	1091.5	1093.3	5.900
6.000	1 09 3.3 1112.1	1095.2 1114.0	1097.1 1115.9	1098.9 1117.7	1100.8 1119.6	1102.7 1121.5	1104.6 1123.4	1106.5 1125.3	1108.3 1127.2	1110.2 1129.1	1112.1 1130.9	6.000
6.100	1112.1	1114.0	1113.9	1117.7	1119.6	1121.5	1123.4	1123.3	1127.2	1129.1	1130.9	6.20
	1130.9	1151.8	1154.7	1155.6	1157.5	1159.4	1161.3	1163.2	1165.1	1167.0	1168.9	6.300
	1149.9	1170.8	1172.7	1174.6	1176.5	1178.5	1180.4	1182.3	1184.2	1186.1	1188.0	6.400
	1188.0	1189.9	1191.8	1193.8	1170.3	1197.6	1199.5	1201.4	1203.3	1205.3	1207.2	6.500
	1207.2	1209.1	1211.0	1212.9	1214.9	1216.8	1218.7	1220.6	1222.6	1224.5	1226.4	6.600
6.700	1226.4	1228.4	1230.3	1232.2	1234.1	1236.1	1238.0	1239.9	1241.9	1243.8	1245.7	6.700
	1245.7	1247.7	1249.6	1251.5	1253.5	1255.4	1257.3	1259.3	1261.2	1263.2	1265.1	6.800
	1265.1	1267.0	1269.0	1270.9	1272.9	1274.8	1276.8	1278.7	1280.6	1282.6	1284.5	6.900
7.000	1284.5	1286.5	1288.4	1290.4	1292.3	1294.3	1296.2	1298.2	1300.1	1302.1	1304.0	7.000
	1304.0	1306.0	1307.9	1309.9	1311.8	1313.8	1315.7	1317.7	1319.6	1321.6	1323.5	7.100
7.200	1323.5	1325.5	1327.4	1329.4	1331.3	1333.3	1335.3	1337.2	1339.2	1341.1	1343.1	7.200
7.300	1343.1	1345.1	1347.0	1349.0	1350.9	1352.9	1354.9	1356.8	1358.8	1360.7	1362.7	7.300
	1362.7	1364.7	1366.6	1368.6	1370.5	1372.5	1374.5	1376.4	1378.4	1380.4	1382.3	7.400
7.500	1382.3	1384.3	1386.2	1388.2	1390.2	1392.1	1394.1	1396.1	1398.0	1400.0	1402.0	7.500
	1402.0	1403.9	1405.9	1407.9	1409.8	1411.8	1413.8	1415.7	1417.7	1419.6	1421.6	7.600
7.700	1421.6	1423.6	1425.5	1427.5	1429.5	1431.4	1433.4	1435.4	1437.3	1439.3	1441.3	7.700
	1441.3 1460.9	1443.2 1462.9	1445.2 1464.9	1447.2 1466.8	1449.1 1468.8	1451.1 1470.8	1453.1 1472.7	1455.0 1474.7	1457.0 1476.7	1459.0 1478.6	1460.9 1480.6	7.800 7.900
8.000	1480.6	1482.6	1484.5	1486.5	1488.4	1490.4	1492.4	1494.3	1496.3	1498.3	1500.2	8.000
	1500.2	1502.2	1504.2	1506.1	1508.1	1510.0	1512.0	1514.0	1515.9	1517.9	1519.9	8.100
	1519.9	1521.8	1523.8	1525.7	1527.7	1529.7	1531.6	1533.6	1535.5	1537.5	1539.5	8.200
8.300	1539.5	1541.4	1543.4	1545.3	1547.3	1549.2	1551.2	1553.2	1555.1	1557.1	1559.0	8.300
	1559.0	1561.0	1562.9	1564.9	1566.8	1568.8	1570.7	1572.7	1574.6	1576.6	1578.5	8.400
	1578.5	1580.5	1582.4	1584.4	1586.3	1588.3	1590.2	1592.2	1594.1	1596.1	1598.0	8.500
	1598.0	1600.0	1601.9	1603.9	1605.8	1607.7	1609.7	1611.6	1613.6	1615.5	1617.5	8.600
	1617.5	1619.4	1621.3	1623.3	1625.2	1627.2	1629.1	1631.0	1633.0	1634.9	1636.8	8.700
	1636.8	1638.8	1640.7	1642.6	1644.6	1646.5	1648.4	1650.4	1652.3	1654.2	1656.2	8.80
	1656.2	1658.1	1660.0	1661.9	1663.9	1665.8	1667.7	1669.7	1671.6	1673.5	1675.4	8.900
	1675.4	1677.3	1679.3	1681.2	1683.1	1685.0	1687.0	1688.9	1690.8	1692.7	1694.6	9.000
	1694.6	1696.5	1698.4	1700.3	1702.3	1704.2	1706.1	1708.0	1709.9	1711.8	1713.7	9.100
	1713.7	1715.6	1717.5	1719.4	1721.4	1723.3	1725.2	1727.1	1729.0	1730.9	1732.8	9.200
	1732.8	1734.7	1736.6	1738.5	1740.4	1742.3	1744.2	1746.1	1748.0	1749.8	1751.7	9.300
	1751.7	1753.6	1755.5	1757.4	1759.3	1761.2	1763.1	1765.0	1766.9	1768.7	1770.6	9.400
	1770.6	1772.5	1774.4	1776.3	1778.2	1780.0	1781.9	1783.8	1785.7	1787.6	1789.4	9.500
	1789.4	1791.3	1793.2	1795.1	1796.9	1798.8	1800.7	1802.5	1804.4	1806.3	1808.2	9.600
	1808.2	1810.0	1811.9	1813.8	1815.6	1817.5	1819.3	1821.2	1823.1	1824.9	1826.8	9.700
	1826.8	1828.6	1830.5	1832.4	1834.2	1836.1	1837.9	1839.8	1841.6	1843.5	1845.3	9.800
	1845.3	1847.2	1849.0	1850.9	1852.7	1854.6	1856.4	1858.3	1860.1	1862.0	1863.8	9.900

Table 1-A. Sixty percent iridium-forty percent rhodium versus iridium thermocouples—Continued Electromotive force in absolute millivolts. Temperatures in degrees C (Int. 1948). Reference junctions at 0°C.

Milli- volts	.000	.010	.020	.030	.040	.050	.060	.070	.080	.090	.100	Milli- volts
					I	Degrees (С					
10.000	1863.8	1865.6	1867.5	1869.3	1871.2	1873.0	1874.8	1876.7	1878.5	1880.3	1882.2	10.000
10.100	1882.2	1884.0	1885.8	1887.7	1889.5	1891.3	1893.1	1895.0	1896.8	1898.6	1900.4	10.100
10.200	1900.4	1902.3	1904.1	1905.9	1907.7	1909.6	1911.4	1913.2	1915.0	1916.8	1918.6	10.200
10.300	1918.6	1920.5	1922.3	1924.1	1925.9	1927.7	1929.5	1931.3	1933.1	1934.9	1936.7	10.300
10.400	1936.7	1938.6	1940.4	1942.2	1944.0	1945.8	1947.6	1949.4	1951.2	1953.0	1954.8	10.400
10.500	1954.8	1956.6	1958.4	1960.2	1962.0	1963.7	1965.5	1967.3	1969.1	1970.9	1972.7	10.500
10.600	1972.7	1974.5	1976.3	1978.1	1979.9	1981.6	1983.4	1985.2	1987.0	1988.8	1990.6	10.600
10.700	1990.6	1992.4	1994.1	1995.9	1997.7	1999.5	2001.2	2003.0	2004.8	2006.6	2008.3	10.700
10.800	2008.3	2010.1	2011.9	2013.6	2015.4	2017.2	2019.0	2020.7	2022.5	2024.3	2026.0	10.800
10.900	2026.0	2027.8	2029.6	2031.3	2033.1	2034.8	2036.6	2038.4	2040.1	2041.9	2043.6	10.900
11.000	2043.6	2045.4	2047.2	2048.9	2050.7	2052.4	2054.2	2055.9	2057.7	2059.4	2061.2	11.000
11.100	2061.2	2062.9	2064.7	2066.4	2068.2	2069.9	2071.7	2073.4	2075.2	2076.9	2078.6	11.100
11.200	2078.6	2080.4	2082.1	2083.9	2085.6	2087.4	2089.1	2090.8	2092.6	2094.3	2096.0	11.200
11.300	2096.0	2097.8	2099.5	2101.2	2103.0	2104.7	2106.4	2108.2	2109.9	2111.6	2113.4	11.300
11.400	2113.4	2115.1	2116.8	2118.6	2120.3	2122.0	2123.7	2125.5	2127.2	2128.9	2130.6	11.400
11.500	2130.6	2132.4	2134.1	2135.8	2137.5	2139.3	2141.0	2142.7	2144.4	2146.1	2147.9	11.500
11.600	2147.9	2149.6										11.600

Table 2-A. Sixty percent iridium-forty percent rhodium versus iridium thermocouples

Electromotive force in absolute millivolts. Temperatures in degrees C (Int. 1948). Reference junctions at 0 °C. 0 10 20 30 40 50 60 70 80 90 100 °C °C Millivolts 0 0.0000.032 0.064 0.099 0.134 0.1710.209 0.247 0.287 0.329 0.371 0.549 100 0.371 0.414 0.458 0.503 0.595 0.643 0.691 0.7400.790 0.841 100 0.841 0.892 0.944 200 0.997 1.050 1.103 1.158 1.212 1.268 1.323 1.379 200 300 1.379 1.436 1.493 1.550 1.608 1.666 1.724 1.783 1.842 1.901 1.960 300 1.960 2.200 2.020 2.080 2.139 2.320 400 2.260 2.381 2.441 2.502 2.562 400 500 2.562 2.623 2.684 2.745 2.806 2.867 2.928 2.989 3.051 3.112 3.173 500 600 3.1733.233 3.294 3.355 3.476 3.536 3.596 600 3.415 3.656 3.716 3.776 700 3.776 3.895 3.835 3.954 4.0144.0734.131 4.1904.249 4.307 4.365 700 800 4.365 4.423 4.481 4.539 4.597 4.825 4.882 4.654 4.711 4.768 4.939 800 4.939 4.995 900 5.051 5.107 5.163 5.219 5.274 5.330 5.385 5.440 5.495 900 1000 5.495 5.550 5.604 5.659 5.713 5.767 5.821 5.875 5.929 5.982 6.036 1000 6.036 1100 6.089 6.142 6.1956.2486.301 6.3536.406 6.458 6.510 6.563 1100 6.874 1200 6.563 6.615 6.667 6.718 6.770 6.822 6.925 6.977 7.0287.079 1200 1300 7.079 7.1827.233 7.284 7.1317.3357.386 7.437 7.4887.539 7.590 1300 1400 7.590 7.641 7.692 7.743 7.793 7.844 7.895 7.946 7.997 8.048 8.099 1400 8.303 1500 8.099 8.150 8.201 8.252 8.354 8.405 8.456 8.507 8.559 8.610 1500 1600 8.610 8.662 8.713 8.765 8.816 8.868 8.920 8.972 9.024 9.076 9.128 1600 1700 9.128 9.180 9.233 9.285 9.338 9.391 9.444 9.497 9.550 9.603 9.656 1700 9.763 1800 9.656 9.710 9.817 9.871 9.925 9.979 10.034 10.08810.14310.198 1800 1900 10.198 10.252 10.307 10.363 10.418 10.473 10.529 10.585 10.641 10.697 10.753 1900 2000 10.753 10.809 10.866 10.922 10.979 11.036 11.093 11.150 11.208 11.265 11.323 2000 2100 11.323 11.380 11.438 11.496 11.554 11.612 2100

Table 3-A. Sixty percent iridium-forty percent rhodium versus iridium thermocouples Electromotive force in absolute millivolts. Temperatures in degrees F*. Reference junctions at 32 °F.

Milli- volts	.000	.010	.020	.030	.040	.050	.060	.070	.080	.090	.100	Milli- volts
voits						Degrees	F					VOILS
0.000	32.0 86.7	37.8 91.8	43.5 96.9	49.1 101.9	54.7 106.9	60.2 111.9	65.6 116.7	70.9 121.6	76.2 126.5	81.5 131.2	86.7 136.0	0.000
0.100	86.7		96.9	101.9 150.0	106.9 154.6	111.9	116.7 163.7	121.6	126.5	131.2	136.0	0.10
0.200 0.300	$136.0 \\ 181.5$	$140.7 \\ 185.9$	145.3 190.3	194.6	198.9	203.2	207.5	168.2 211.7	172.6 215.9	$177.1 \\ 220.1$	181.5 224.3	0.20
).400	224.3	228.4	232.5	236.6	240.7	244.8	248.9	252.9	256.9	260.9	264.9	0.40
0.500	264.9	268.8	272.8	276.7	280.6	284.5	288.4	292.2	296.1	299.9	303.7	0.50
0.600	303.7	307.5	311.3	315.1	318.9	322.6	326.4	330.1	333.8	337.5	341.2	0.60
0.700	341.2	344.9	348.5	352.2	355.8	359.5	363.1	366.7	370.3	373.9	377.5	0.70
.800	377.5	381.0	384.6	388.1	391.7	395.2	398.7	402.2	405.7	409.2	412.7	0.80
0.900	412.7	416.2	419.7	423.1	426.6	430.0	433.5	436.9	440.3	443.8	447.2	0.90
1.000	447.2	450.6	453.9	457.3	460.7	464.1	467.5	470.8	474.2	477.5	480.9	1.00
1.100	480.9	484.2	487.5	490.9	494.2	497.5	500.8	504.1	507.4	510.7	513.9	1.10
1.200	513.9	517.2	520.5	523.8	527.0	530.3	533.5	536.8	540.0	543.3	546.5	1.20
1.300	546.5	549.7	552.9	556.1	559.4	562.6	565.8	569.0	572.2	575.4	578.6	1.30
1,400	578.6	581.7	584.9	588.1	591.3	594.4	597.6	600.8	603.9	607.1	610.2	1.40
l.500 l.600	$610.2 \\ 641.5$	613.4 644.6	616.5 647.7	619.7 650.8	622.8 654.0	625.9 657.1	629.0 660.2	632.2 663.2	635.3 666.3	638.4 669.4	641.5 672.5	1.50 1.60
1.700	672.5	675.6	678.7	681.8	684.8	687.9	691.0	694.1	697.1	700.2	703.2	1.70
1.800	703.2	706.3	709.4	712.4	715.5	718.5	721.6	724.6	727.6	730.7	733.7	1.80
1.900	733.7	736.8	739.8	742.8	745.9	748.9	751.9	754.9	758.0	761.0	764.0	1.90
2.000	764.0	767.0	770.1	773.1	776.1	779.1	782.1	785.1	788.1	791.1	794.1	2.00
2.100	794.1	797.1	800.2	803.2	806.2	809.2	812.2	815.1	818.1	821.1	824.1	2.10
2.200	824.1	827.1	830.1	833.1	836.1	839.1	842.1	845.1	848.0	851.0	854.0	2.20
2.300	854.0	857.0	860.0	862.9	865.9	868.9	. 871.9	874.9	877.8	880.8	883.8	2.30
2.400	883.8	886.7	889.7	892.7	895.7	898.6	901.6	904.6	907.5	910.5	913.5	2.40
.500	913.5	916.4	919.4	922.4	925.3	928.3	931.3	934.2	937.2	940.1	943.1	2.50
2.600	943.1	946.1	949.0	952.0	955.0	957.9	960.9	963.8	966.8	969.8	972.7	2.60
2.700	972.7	975.7	978.6	981.6	984.6	987.5	990.5	993.5	996.4	999.4	1002.3	2.70
	1002.3 1031.7	1005.2 1034.6	1008.2 1037.6	1011.1 1040.5	$1014.0 \\ 1043.4$	1017.0 1046.4	1019.9 1049.3	1022.9 1052.3	1025.8 1055.2	1028.7 1058.1	1031.7 1061.1	2.80 2.90
3.000	1061.1	1064.0	1067.0	1069.9	1072.9	1075.8	1078.8	1081.7	1084.7	1087.6	1090.6	3.00
	1090.6	1093.5	1096.5	1099.4	1102.4	1105.3	1108.3	1111.3	1114.2	1117.2	1120.1	3.10
	1120.1	1123.1	1126.0	1129.0	1131.9	1134.9	1137.9	1140.8	1143.8	1146.8	1149.7	3.20
3.300	1149.7	1152.7	1155.7	1158.6	1161.6	1164.6	1167.5	1170.5	1173.5	1176.5	1179.4	3.30
3.400	1179.4	1182.4	1185.4	1188.4	1191.4	1194.3	1197.3	1200.3	1203.3	1206.3	1209.3	3.40
3.500	1209.3	1212.2	1215.2	1218.2	1221.2	1224.2	$1227.2 \\ 1257.1$	1230.1	1233.1	1236.1	1239.1	3.50
	1239.1	1242.1	1245.1	1248.1	1251.1	1254.1	1257.1	1260.1	1263.1	1266.2	1269.2	3.60
3.700	1269.2	1272.2	1275.2	1278.2	1281.2	1284.2	1287.2	1290.2	1293.2	1296.3	1299.3	3.70
	1299.3	1302.3	1305.3	1308.3	1311.4	1314.4	.1317.4	1320.4	1323.5	1326.5	1329.5	3.80
3.900	1329.5	1332.5	1335.6	1338.6	1341.6	1344.7	1347.7	1350.8	1353.8	1356.8	1359.9	3.90
	1359.9	1362.9	1366.0	1369.0	1372.1	1375.1	1378.2	1381.2	1384.3	1387.3	1390.4	4.00
	1390.4	1393.4	1396.5	1399.5	1402.6	1405.7	1408.7	1411.8	1414.9	1417.9	1421.0	4.10
	1421.0	1424.1 1454.9	$1427.2 \\ 1458.0$	$1430.2 \\ 1461.0$	1433.3 1464.1	1436.4	$1439.5 \\ 1470.3$	1442.5 1473.4	1445.6	1448.7 1479.6	1451.8	4.20 4.30
	1451.8 1482.7	1454.9	1458.0 1488.9	1461.0 1492.0	1464.1 1495.1	1467.2 1498.2	1470.3 1501.3	1473.4 1504.4	1476.5 1507.5	1479.6	1482.7 1513.8	4.40
	1482.7 1513.8	1485.8	1488.9	1523.1	1495.1	1498.2 1529.4	1501.3	1504.4	1507.5	1510.7 1541.9	1513.8	4.40
	1515.8	1548.1	1520.0	1554.4	1520.2	1529.4	1563.8	1567.0	1538.7	1541.9	1576.4	4.60
	1576.4	1579.6	1582.7	1585.9	1589.0	1592.2	1595.3	1598.5	1601.6	1604.8	1608.0	4.70
	1608.0	1611.1	1614.3	1617.5	1620.6	1623.8	1627.0	1630.2	1633.3	1636.5	1639.7	4.80
	1639.7	1642.9	1646.1	1649.2	1652.4	1655.6	1658.8	1662.0	1665.2	1668.4	1671.6	4.900
	1007.1	1012.7	1010.1	1017.2	1002.4	1000.0	1000.0	1002.0	1000.2	1000.4	1011.0	1.70

^{*}Based on the International Temperature Scale of 1948.

Table 3-A. Sixty percent iridium-forty percent rhodium versus iridium thermocouples—Continued Electromotive force in absolute millivolts. Temperatures in degrees F*. Reference junctions at 32 °F.

Milli- volts	.000	.010	.020	.030	.040	.050	060	.070	.080	.090	.100	Milli- volts
						Degrees	F					VOIL3
5.000	1671.6	1674.8	1678.0	1681.2	1684.4	1687.6	1690.8	1694.0	1697.2	1700.4	1703.6	5.00
5.100	1703.6	1706.8	1710.1	1713.3	1716.5	1719.7	1723.0	1726.2	1729.4	1732.6	1735.9	5.10
5.200	1735.9	1739.1	1742.3	1745.6	1748.8	1752.0	1755.3	1758.5	1761.8	1765.0	1768.3	5.20
5.300	1768.3	1771.5	1774.8	1778.0	1781.3	1784.6	1787.8	1791.1	1794.3	1797.6	1800.9	5.30
5.400	1800.9	1804.1	1807.4	1810.7	1814.0	1817.2	1820.5	1823.8	1827.0	1830.3	1833.6	5.40
5.500	1833.6	1836.9	1840.2	1843.5	1846.8	1850.1	1853.4	1856.7	1860.0	1863.3	1866.6	5.50
5.600	1866.6	1869.9	1873.2	1876.5	1879.8	1883.1	1886.4	1889.7	1893.0	1896.4	1899.7	5.60
5.700	1899.7	1903.0	1906.3	1909.6	1912.9	1916.3	1919.6	1922.9	1926.3	1929.6	1932.9	5.70
5.800	1932.9	1936.3	1939.6	1943.0	1946.3	1949.7	1953.0	1956.3	1959.7	1963.0	1966.4	5.80
5.900	1966.4	1969.8	1973.1	1976.5	1979.8	1983.2	1986.5	1989.9	1993.3	1996.6	2000.0	5.90
6.000	2000.0	2003.4	2006.7	2010.1	2013.5	2016.9	2020.2	2023.6	2027.0	2030.4	2033.8	6.00
6.100	2033.8	2037.1	2040.5	2043.9	2047.3	2050.7	2054.1	2057.5	2060.9	2064.3	2067.7	6.10
6.200	2067.7	2071.1	2074.5	2077.9	2081.3	2084.7	2088.1	2091.6	2095.0	2098.4	2101.8	6.20
6.300	2101.8	2105.2	2108.6	2112.0	2115.5	2118.9	2122.3	2125.7	2129.2	2132.6	2136.0	6.30
	2136.0	2139.5	2142.9	2146.3	2149.8	2153.2	2156.6	2160.1	2163.5	2167.0	2170.4	6.40
6.500	2170.4	2173.9	2177.3	2180.7	2184.2	2187.6	2191.1	2194.5	2198.0	2201.5	2204.9	6.50
6.600	2204.9	2208.4	2211.8	2215.3	2218.8	2222.2	2225.7	2229.1	2232.6	2236.1	2239.5	6.60
	2239.5	2243.0	2246.5	2250.0	2253.4	2256.9	2260.4	2263.9	2267.4	2270.8	2274.3	6.70
	2274.3	2277.8	2281.3	2284.8	2288.2	2291.7	2295.2	2298.7	2302.2	2305.7	2309.2	6.80
6.900	2309.2	2312.7	2316.2	2319.7	2323.2	2326.7	2330.2	2333.7	2337.1	2340.6	2344.1	6.90
7.000	2344.1	2347.7	2351.2	2354.7	2358.2	2361.7	2365.2	2368.7	2372.2	2375.7	2379.2	7.00
7.100	2379.2	2382.8	2386.3	2389.8	2393.3	2396.8	2400.3	2403.8	2407.3	2410.9	2414.4	7.10
7.200	2414.4	2417.9	2421.4	2424.9	2428.4	2432.0	2435.5	2439.0	2442.5	2446.1	2449.6	7.20
7.300	2449.6	2453.1	2456.6	2460.2	2463.7	2467.2	2470.7	2474.3	2477.8	2481.3	2484.9	7.30
7.400	2484.9	2488.4	2491.9	2495.4	2499.0	2502.5	2506.0	2509.6	2513.1	2516.6	2520.2	7.40
7.500	2520.2	2523.7	2527.2	2530.8	2534.3	2537.8	2541.4	2544.9	2548.4	2552.0	2555.5	7.50
7.600	2555.5	2559.1	2562.6	2566.1	2569.7	2573.2	2576.8	2580.3	2583.8	2587.4	2590.9	7.60
7.700	2590.9	2594.4	2598.0	2601.5	2605.1	2608.6	2612.1	2615.7	2619.2	2622.8	2626.3	7.70
7.800 7.900	2626.3 2661.7	2629.8 2665.2	2633.4 2668.8	2636.9 2672.3	2640.4 2675.8	2644.0 2679.4	2647.5 2682.9	2651.1 2686.5	2654.6 2690.0	2658.1 2693.5	2661.7 2697.1	7.80 7.90
0.000	2607.1	2700 6	9704 1	2707.7	9711 9	2714.7	0710 2	2721.0	9795 9	2720 0	0729.4	0.00
8.000 8.100	2697.1 2732.4	2700.6 2735.9	2704.1 2739.5	$2707.7 \\ 2743.0$	2711.2 2746.5	2750.1	2718.3 2753.6	2721.8 2757.1	2725.3 2760.7	2728.9 2764.2	2732.4 2767.7	8.00 8.10
8.200	2767.7	2771.3	2774.8	2778.3	2781.9	2785.4	2788.9	2792.5	2796.0	2799.5	2803.0	8.20
8.300	2803.0	2806.6	2810.1	2813.6	2817.1	2820.6	2824.1	2827.7	2831.2	2834.7	2838.2	8.30
8.400	2838.2	2841.7	2845.3	2848.8	2852.3	2855.8	2859.3	2862.8	2866.3	2869.9	2873.4	8.40
8.500	2873.4	2876.9	2880.4	2883.9	2887.4	2890.9	2894.4	2897.9	2901.4	2904.9	2908.4	8.50
8.600	2908.4	2911.9	2915.4	2918.9	2922.4	2925.9	2929.4	2932.9	2936.4	2939.9	2943.4	8.60
8.700	2943.4	2946.9	2950.4	2953.9	2957.4	2960.9	2964.4	2967.9	2971.4	2974.8	2978.3	8.70
8.800	2978.3	2981.8	2985.3	2988.8	2992.2	2995.7	2999.2	3002.7	3006.2	3009.6	3013.1	8.80
8.900	3013.1	3016.6	3020.0	3023.5	3027.0	3030.5	3033.9	3037.4	3040.8	3044.3	3047.8	8.90
9.000	3047.8	3051.2	3054.7	3058.1	3061.6	3065.0	3068.5	3071.9	3075.4	3078.8	3082.3	9.00
9.100	3082.3	3085.7	3089.2	3092.6	3096.1	3099.5	3102.9	3106.4	3109.8	3113.3	3116.7	9.10
9.200	3116.7	3120.1	3123.6	3127.0	3130.4	3133.9	3137.3	3140.7	3144.1	3147.6	3151.0	9.20
9.300	3151.0	3154.4	3157.8	3161.3	3164.7	3168.1	3171.5	3174.9	3178.3	3181.7	3185.1	9.30
9.400	3185.1	3188.5	3191.9	3195.4	3198.8	3202.2	3205.5	3208.9	3212.3	3215.7	3219.1	9.40
9.500	3219.1	3222.5	3225.9	3229.3	3232.7	3236.1	3239.5	3242.8	3246.2	3249.6	3253.0	9.50
9.600	3253.0	3256.3	3259.7	3263.1	3266.5	3269.8	3273.2	3276.6	3279.9	3283.3	3286.7	9.60
9.700	3286.7	3290.0	3293.4	3296.7	3300.1	3303.5	3306.8	3310.2	3313.5	3316.8	3320.2	9.70
9.800	3320.2	3323.5	3326.9	3330.2	3333.6	3336.9	3340.3	3343.6	3346.9	3350.3	3353.6	9.80
	3353.6	3356.9	3360.3	3363.6	3366.9	3370.2	3373.5	3376.9	3380.2	3383.5	3386.8	9.90
9.900												

^{*}Based on the International Temperature Scale of 1948.

Table 3-A. Sixty percent iridium-forty percent rhodium versus iridium thermocouples—Continued Electromotive force in absolute millivolts. Temperatures in degrees F*. Reference junctions at 32 °F.

Milli- volts	.000	.010	.020	.030	.040	.050	.060	.070	.080	.090	.100	Milli- volts
					I	Degrees 1	f' 					
10.000 10.100 10.200 10.300 10.400 10.500 10.600 10.700 10.800 10.900	3386.8 3419.9 3452.8 3485.6 3518.2 3550.6 3582.9 3615.0 3647.0 3678.9	3390.1 3423.2 3456.1 3488.8 3521.4 3553.8 3586.1 3618.2 3650.2 3682.0	3393.5 3426.5 3459.4 3492.1 3524.7 3557.0 3589.3 3621.4 3653.4 3685.2	3396.8 3429.8 3462.6 3495.4 3527.9 3560.3 3592.5 3624.6 3656.6 3688.4	3400.1 3433.1 3465.9 3498.6 3531.2 3563.5 3595.8 3627.8 3659.7 3691.6	3403.4 3436.4 3469.2 3501.9 3534.4 3566.7 3599.0 3631.0 3662.9 3694.7	3406.7 3439.6 3472.5 3505.1 3537.6 3570.0 3602.2 3634.2 3666.1 3697.9	3410.0 3442.9 3475.7 3508.4 3540.9 3573.2 3605.4 3637.4 3669.3 3701.1	3413.3 3446.2 3479.0 3511.7 3544.1 3576.4 3608.6 3640.6 3672.5 3704.2	3416.6 3449.5 3482.3 3514.9 3547.3 3579.7 3611.8 3643.8 3675.7 3707.4	3419.9 3452.8 3485.6 3518.2 3550.6 3582.9 3615.0 3647.0 3678.9 3710.5	10.000 10.100 10.200 10.300 10.400 10.500 10.600 10.700 10.800 10.900
11.000 11.100 11.200 11.300 11.400 11.500 11.600	3710.5 3742.1 3773.6 3804.9 3836.1 3867.2 3898.1	3713.7 3745.3 3776.7 3808.0 3839.2 3870.3 3901.2	3716.9 3748.4 3779.8 3811.1 3842.3 3873.4	3720.0 3751.6 3783.0 3814.3 3845.4 3876.5	3723.2 3754.7 3786.1 3817.4 3848.5 3879.6	3726.3 3757.9 3789.2 3820.5 3851.6 3882.7	3729.5 3761.0 3792.4 3823.6 3854.8 3885.8	3732.7 3764.2 3795.5 3826.7 3857.9 3888.9	3735.8 3767.3 3798.6 3829.8 3861.0 3892.0	3739.0 3770.4 3801.8 3833.0 3864.1 3895.0	3742.1 3773.6 3804.9 3836.1 3867.2 3898.1	11.000 11.100 11.200 11.300 11.400 11.500 11.600

^{*}Based on the International Temperature Scale of 1948.

Table 4-A. Sixty percent iridium-forty percent rhodium versus iridium thermocouples Electromotive force in absolute millivolts. Temperatures in degrees F*. Reference junctions at 32 °F.

or	0	10	20	30	40	50	60	70	80	90	100	or
°F						Millivolt	s					°F
0					0.014	0.032	0.050	0.068	0.087	0.106	0.126	0
100	0.126	0.146	0.167	0.187	0.209	0.230	0.252	0.274	0.297	0.319	0.342	100
200	0.342	0.366	0.390	0.414	0.438	0.463	0.488	0.513	0.538	0.564	0.590	200
300	0.590	0.616	0.643	0.670	0.697	0.724	0.751	0.779	0.807	0.835	0.864	300
400	0.864	0.892	0.921	0.950	0.979	1.008	1.038	1.067	1.097	1.127	1.158	400
500	1.158	1.188	1.218	1.249	1.280	1.311	1.342	1.373	1.404	1.436	1.468	500
600	1.468	1.499	1.531	1.563	1.595	1.627	1.659	1.692	1.724	1.757	1.789	600
700	1.789	1.822	1.855	1.888	1.921	1.954	1.987	2.020	2.053	2.086	2.119	700
800	2.119	2.153	2.186	2.220	2.253	2.287	2.320	2.354	2.387	2.421	2.455	800
900	2.455	2.488	2.522	2.556	2.589	2.623	2.657	2.691	2.725	2.758	2.792	900
1000	2.792	2.826	2.860	2.894	2.928	2.962	2.996	3.030	3.064	3.098	3.132	1000
1100	3.132	3.166	3.200	3.233	3.267	3.301	3.335	3.368	3.402	3.435	3.469	1100
1200	3.469	3.502	3.536	3.569	3.603	3.636	3.669	3.703	3.736	3.769	3.802	1200
1300	3.802	3.835	3.869	3.902	3.935	3.967	4.000	4.033	4.066	4.099	4.131	1300
1400	4.131	4.164	4.197	4.229	4.262	4.294	4.327	4.359	4.391	4.423	4.456	1400
1500	4.456	4.488	4.520	4.552	4.584	4.616	4.648	4.680	4.711	4.743	4.775	1500
1600	4.775	4.806	4.838	4.869	4.901	4.932	4.964	4.995	5.026	5.057	5.089	1600
1700	5.089	5.120	5.151	5.182	5.213	5.244	5.274	5.305	5.336	5.367	5.397	1700
1800	5.397	5.428	5.458	5.489	5.519	5.550	5.580	5.610	5.641	5.671	5.701	1800
1900	5.701	5.731	5.761	5.791	5.821	5.851	5.881	5.911	5.941	5.970	6.000	1900
2000	6.000	6.030	6.059	6.089	6.118	6.148	6.177	6.207	6.236	6.265	6.295	2000
2100	6.295	6.324	6.353	6.382	6.412	6.441	6.470	6.499	6.528	6.557	6.586	2100
2200	6.586	6.615	6.644	6.672	6.701	6.730	6.759	6.788	6.816	6.845	6.874	2200
2300	6.874	6.902	6.931	6.959	6.988	7.017	7.045	7.074	7.102	7.131	7.159	2300
2400	7.159	7.188	7.216	7.244	7.273	7.301	7.330	7.358	7.386	7.415	7.443	2400
2500	7.443	7.471	7.499	7.528	7.556	7.584	7.613	7.641	7.669	7.697	7.726	2500
2600	7.726	7.754	7.782	7.810	7.839	7.867	7.895	7.923	7.952	7.980	8.008	2600
2700	8.008	8.037	8.065	8.093	8.121	8.150	8.178	8.206	8.235	8.263	8.291	2700
2800	8.291	8.320	8.348	8.377	8.405	8.433	8.462	8.490	8.519	8.547	8.576	2800
2900	8.576	8.604	8.633	8.662	8.690	8.719	8.747	8.776	8.805	8.834	8.862	2900
3000	8.862	8.891	8.920	8.949	8.978	9.006	9.035	9.064	9.093	9.122	9.151	3000
3100	9.151	9.180	9.210	9.239	9.268	9.297	9.326	9.356	9.385	9.414	9.444	3100
3200	9.444	9.473	9.503	9.532	9.562	9.591	9.621	9.650	9.680	9.710	9.740	3200
3300	9.740	9.769	9.799	9.829	9.859	9.889	9.919	9.949	9.979	10.010	10.040	3300
3400	10.040	10.070	10.100	10.131	10.161	10.191	10.222	10.252	10.283	10.314	10.344	3400
3500	10.344	10.375	10.406	10.436	10.467	10.498	10.529	10.560	10.591	10.622	10.653	3500
3600	10.653	10.684	10.715	10.747	10.778	10.809	10.841	10.872	10.904	10.935	10.967	3600
3700	10.967	10.998	11.030	11.061	11.093	11.125	11.157	11.189	11.220	11.252	11.284	3700
3800	11.284	11.316	11.348	11.380	11.413	11.445	11.477	11.509	11.541	11.574	11.606	3800
3900	11.606											3900

^{*}Based on the International Temperature Scale of 1948.

Table 5-A. Fifty percent iridium-fifty percent rhodium versus iridium thermocouples Electromotive force in absolute millivolts. Temperatures in degrees C (Int. 1948). Reference junctions at 0 °C.

Milli- volts	.000	.010	.020	.030	.040	.050	.060	.070	.080	.090	.100	Milli- volts
voits					I	egrees (2					voits
0.000	0.0	3.1	6.2	9.2	12.2	15.1	18.1	21.0	23.8	26.7	29.5	0.00
0.100	29.5	32.2	35.0	37.7	40.4	43.1	45.8	48.4	51.0	53.6	56.2	0.10
0.200	56.2	58.7	61.3	63.8	66.3	68.8	71.2	73.7	76.1	78.5	80.9	0.20
0.300	80.9	83.3	85.7	88.1	90.4	92.8	95.1	97.4	99.7	102.0	104.2	0.30
0.400	104.2	106.5	108.8	111.0	113.2	115.4	117.6	119.8	122.0	124.2	126.4	0.40
0.500	126.4	128.5	130.7	132.8	135.0	137.1	139.2	141.3	143.4	145.5	147.6	0.50
0.600	147.6	149.7	151.8	153.8	155.9	157.9	160.0	162.0	164.0	166.1	168.1	0.6
0.700	168.1	170.1	172.1	174.1	176.1	178.1	180.0	182.0	184.0	185.9	187.9	0.70
0.800	187.9	189.8	191.8	193.7	195.7	197.6	199.5	201.5	203.4	205.3	207.2	0.80
).900	207.2	209.1	211.0	212.9	214.8	216.7	218.5	220.4	222.3	224.2	226.0	0.90
.000	226.0	227.9	229.7	231.6	233.4	235.3	237.1	239.0	240.8	242.6	244.4	1.0
.100	244.4	246.3	248.1	249.9 267.9	251.7	253.5	255.3	257.1	258.9	260.7	262.5	1.10
1.200	262.5	264.3	266.1		269.7	271.5	273.3	275.0	276.8	278.6	280.3	1.2
1.300	280.3	282.1	283.9 301.3	$285.6 \\ 303.1$	$287.4 \\ 304.8$	289.1 306.5	290.9 308.3	$292.6 \\ 310.0$	294.4	296.1	297.9	1.3
1.400	297.9 315.2	299.6 316.9	318.6	320.3	$304.8 \\ 322.0$	323.7	325.5	327.2	311.7 328.9	313.4 330.6	315.2 332.3	1.40
1.500	332.3	334.0	335.7	$320.3 \\ 337.4$	339.1	340.8	342.5	344.1	345.8		349.2	1.5
1.600 1.700	349.2	350.9	352.6	354.3	355.9	357.6	359.3	361.0	362.6	347.5 364.3	366.0	1.6
1.800	366.0	367.7	369.3	371.0	372.7	374.3	376.0	377.6	379.3	381.0	382.6	1.8
.900	382.6	384.3	385.9	387.6	389.2	390.9	392.6	394.2	395.9	397.5	399.2	1.9
2.000	399.2	400.8	402.4	404.1	405.7	407.4	409.0	410.7	412.3	413.9	415.6	2.0
2.100	415.6	417.2	418.9	420.5	422.1	423.8	425.4	427.0	428.7	430.3	431.9	2.1
2.200	431.9	433.6	435.2	436.8	438.4	440.1	441.7	443.3	445.0	446.6	448.2	2.2
2.300	448.2	449.8	451.5	453.1	454.7	456.3	457.9	459.6	461.2	462.8	464.4	2.3
2.400	464.4	466.0	467.7	469.3	470.9	472.5	474.1	475.7	477.4	479.0	480.6	2.4
2.500	480.6	482.2	483.8	485.4	487.0	488.7	490.3	491.9	493.5	495.1	496.7	2.5
2.600	496.7	498.3	499.9	501.5	503.2	504.8	506.4	508.0	509.6	511.2	512.8	2.6
2.700	512.8	514.4	516.0	517.6	519.2	520.9	522.5	524.1	525.7	527.3	528.9	2.7
2.800	528.9	530.5	532.1	533.7	535.3	536.9	538.5	540.1	541.7	543.4	545.0	2.8
2.900	545.0	546.6	548.2	549.8	551.4	553.0	554.6	556.2	557.8	559.4	561.0	2.9
3.000	561.0	562.6	564.2	565.8	567.4	569.1	570.7	572.3	573.9	575.5	577.1	3.0
3.100	577.1	578.7	580.3	581.9	583.5	585.1	586.7	588.3	589.9	591.6	593.2	3.1
	593.2	594.8	596.4	598.0	599.6	601.2	602.8	604.4	606.0	607.6	609.2	3.2
3.300	609.2	610.9	612.5	614.1	615.7	617.3	618.9	620.5	622.1	623.8	625.4	3.3
3.400	625.4	627.0	628.6	630.2	631.8	633.4	635.0	636.7	638.3	639.9	641.5	3.4
3.500	641.5	643.1	644.7	646.3	647.9	649.5	651.1	652.7	654.3	656.0	657.6	3.5
3.600	657.6	659.2	660.8	662.4	664.0	665.7	667.3	668.9	670.5	672.1	673.8	3.6
3.700	673.8	675.4	677.0	678.6	680.2	681.9	683.5	685.1	686.7	688.4	690.0	3.7
3.800	690.0	691.6	693.2	694.9	696.5	698.1	699.8	701.4	703.0	704.6	706.3	3.8
3.900	706.3	707.9	709.5	711.2	712.8	714.4	716.1	717.7	719.3	721.0	722.6	3.9
1.000	722.6	724.2	725.9	727.5	729.1	730.8	732.4	734.1	735.7	737.3	739.0	4.0
1.100	739.0	740.6	742.3	743.9	745.6	747.2	748.8	750.5	752.1	753.8	755.4	4.1
1.200	755.4	757.1	758.7	760.4	762.0	763.7	765.3	767.0	768.6	770.3	771.9	4.2
1.300	771.9	773.6	775.2	776.9	778.5	780.2	781.9	783.5	785.2	786.8	788.5	4.3
1.400	788.5	790.1	791.8	793.5	795.1	796.8	798.5	800.1	801.8	803.5	805.1	4.4
1.500	805.1	806.8	808.5	810.1	811.8	813.5	815.1	816.8	818.5	820.1	821.8	4.5
1.600	821.8	823.5	825.2	826.8	828.5	830.2	831.9	833.5	835.2	836.9	838.6	4.6
1.700	838.6	840.3	841.9	843.6	845.3	847.0	848.7	850.4	852.1	853.7	855.4	4.7
1.800	855.4	857.1	858.8	860.5	862.2	863.9	865.6	867.3	869.0	870.7	872.3	4.8
1.900	872.3	874.0	875.7	877.4	879.1	880.8	882.5	884.2	885.9	887.6	889.3	4.9

TABLE 5-A. Fifty percent iridium-fifty percent rhodium versus iridium thermocouples - Continued

Electromotive force in absolute millivolts. Temperatures in degrees C (Int. 1948). Reference junctions at 0 °C.

Milli- volts	.000	.010	.020	.030	.040	.050	.060	.070	.080	.090	.100	Milli- volts
						Degrees	С					
5.000	889.3	891.0	892.7	894.5	896.2	897.9	899.6	901.3	903.0	904.7	906.4	5.00
5.100	906.4	908.1	909.8	911.5	913.3	915.0	916.7	918.4	920.1	921.8	923.6	5.10
.200	923.6	925.3	927.0	928.7	930.4	932.2	933.9	935.6	937.3	939.0	940.8	5.20
.300	940.8	942.5	944.2	946.0	947.7	949.4	951.1	952.9	954.6	956.3	958.1	5.30
0.400 0.500	958.1 975.5	959.8 977.2	961.5 978.9	963.3 980.7	965.0 982.4	966.8 984.2	968.5 985.9	970.2 987.7	972.0 989.4	973.7 991.2	975.5 992.9	5.40
.600	975.5	977.2	976.9	-998.2	999.9	1001.7	1003.4	1005.2	1006.9	1008.7	1010.4	5.50 5.60
	1010.4	1012.2	1014.0	1015.7	1017.5	1001.7	1003.4 1021.0	1003.2 1022.8	1000.9	1006.7	1010.4 1028.1	5.70
	1028.1	1029.8	1031.6	1033.4	1035.1	1036.9	1038.7	1040.4	1042.2	1020.3	1025.1	5.80
	1045.7	1047.5	1049.3	1051.1	1052.8	1054.6	1056.4	1058.2	1059.9	1061.7	1063.5	5.90
0.000	1063.5	1065.3	1067.1	1068.8	1070.6	1072.4	1074.2	1076.0	1077.7	1079.5	1081.3	6.00
5.100	1081.3	1083.1	1084.9	1086.7	1088.5	1090.3	1092.0	1093.8	1095.6	1097.4	1099.2	6.10
.200	1099.2	1101.0	1102.8	1104.6	1106.4	1108.2	1110.0	1111.8	1113.6	1115.4	1117.2	6.20
	1117.2	1119.0	1120.8	1122.6	1124.4	1126.2	1128.0	1129.8	1131.6	1133.4	1135.2	6.30
	1135.2	1137.0	1138.8	1140.6	1142.4	1144.2	1146.0	1147.8	1149.6	1151.5	1153.3	6.40
	1153.3	1155.1	1156.9	1158.7	1160.5	1162.3	1164.1	1166.0	1167.8	1169.6	1171.4	6.50
.600	1171.4	1173.2	1175.0	1176.8	1178.7	1180.5	1182.3	1184.1	1185.9	1187.8	1189.6	6.60
	1189.6	1191.4	1193.2	1195.0	1196.9	1198.7	1200.5	1202.3	1204.2	1206.0	1207.8	6.70
	1207.8	1209.6	1211.5	1213.3	1215.1	1216.9	1218.8	1220.6	1222.4	1224.2	1226.1	6.80
5.900	1226.1	1227.9	1229.7	1231.6	1233.4	1235.2	1237.1	1238.9	1240.7	1242.6	1244.4	6.90
	1244.4	1246.2	1248.0	1249.9	1251.7	1253.5	1255.4	1257.2	1259.1	1260.9	1262.7	7.00
7.100	1262.7	1264.6	1266.4	1268.2	1270.1	1271.9	1273.7	1275.6	1277.4	1279.2	1281.1	7.10
	1281.1	1282.9	1284.8	1286.6	1288.4	1290.3	1292.1	1294.0	1295.8	1297.6	1299.5	7.20
7.300	1299.5 1317.9	1301.3 1319.7	1303.1 1321.5	1305.0 1323.4	1306.8	1308.7 1327.1	1310.5	1312.3 1330.8	1314.2 1332.6	1316.0	1317.9	7.30
	1336.3	1338.1	1321.5 1340.0	1341.8	1325.2 1343.6	1327.1 1345.5	1328.9 1347.3	1349.2	1352.0 1351.0	1334.4 1352.8	1336.3 1354.7	7.40 7.50
	1354.7	1356.5	1358.4	1360.2	1343.0 1362.0	1363.9	1347.3 1365.7	1367.6	1369.4	1371.3	1373.1	7.60
	1373.1	1374.9	1376.8	1378.6	1380.5	1382.3	1384.1	1386.0	1387.8	1389.7	1391.5	7.70
	1391.5	1393.3	1395.2	1397.0	1398.9	1400.7	1402.5	1404.4	1406.2	1408.0	1409.9	7.80
	1409.9	1411.7	1413.6	1415.4	1417.2	1419.1	1420.9	1422.7	1424.6	1426.4	1428.2	7.90
3.000	1428.2	1430.1	1431.9	1433.8	1435.6	1437.4	1439.3	1441.1	1442.9	1444.8	1446.6	8.00
	1446.6	1448.4	1450.3	1452.1	1453.9	1455.8	1457.6	1459.4	1461.2	1463.1	1464.9	8.10
3.200	1464.9	1466.7	1468.6	1470.4	1472.2	1474.1	1475.9	1477.7	1479.5	1481.4	1483.2	8.20
	1483.2	1485.0	1486.8	1488.7	1490.5	1492.3	1494.1	1496.0	1497.8	1499.6	1501.4	8.30
	1501.4	1503.2	1505.1	1506.9	1508.7	1510.5	1512.3	1514.2	1516.0	1517.8	1519.6	8.40
	1519.6	1521.4	1523.2	1525.1	1526.9	1528.7	1530.5	1532.3	1534.1	1535.9	1537.8	8.50
	1537.8	1539.6	1541.4	1543.2	1545.0	1546.8	1548.6	1550.4	1552.2	1554.0	1555.8	8.60
	1555.8	1557.7	1559.5	1561.3	1563.1	1564.9	1566.7	1568.5	1570.3	1572.1	1573.9	8.70
	1573.9 1591.9	1575.7 1593.6	1577.5 1595.4	1579.3 1597.2	1581.1 1599.0	1582.9 1600.8	1584.7 1602.6	1586.5 1604.4	1588.3 1606.2	1590.1 1608.0	1591.9 1609.8	8.80 8.90
.900	1391.9	1393.0	1393.4	1397.2	1399.0	1000.6	1002.0	1004.4	1000.2	1006.0	1009.8	0.90
	1609.8 1627.6	1611.5 1629.4	1613.3 1631.2	1615.1 1632.9	1616.9 1634.7	$1618.7 \\ 1636.5$	$1620.5 \\ 1638.3$	1622.3 1640.0	1624.0 1641.8	1625.8 1643.6	1627.6 1645.4	9.00 9.10
	1645.4	1629.4	1631.2	1650.7	1652.5	1654.2	1656.0	1657.8	1641.8 1659.5	1643.6	1663.1	9.10
	1663.1	1664.8	1666.6	1668.4	1632.3 1670.1	1671.9	1673.6	1675.4	1677.2	1678.9	1680.7	9.20
	1680.7	1682.4	1684.2	1686.0	1687.7	1689.5	1691.2	1693.0	1694.7	1696.5	1698.2	9.30
	1698.2	1700.0	1701.7	1703.5	1705.2	1707.0	1708.7	1710.5	1712.2	1714.0	1715.7	9.50
	1715.7	1717.4	1719.2	1720.9	1722.7	1724.4	1726.1	1727.9	1729.6	1731.4	1733.1	9.60
	1733.1	1734.8	1736.6	1738.3	1740.0	1741.8	1743.5	1745.2	1747.0	1748.7	1750.4	9.70
	1750.4	1752.1	1753.9	1755.6	1757.3	1759.0	1760.8	1762.5	1764.2	1765.9	1767.6	9.80
	1767.6	1769.4	1771.1	1772.8	1774.5	1776.2	1778.0	1779.7	1781.4	1783.1	1784.8	9.90

Table 5-A. Fifty percent iridium-fifty percent rhodium versus iridium thermocouples - Continued Electromotive force in absolute millivolts. Temperatures in degrees C (Int. 1948). Reference junctions at 0 °C.

Milli- volts	.000	.010	.020	.030	.040	.050	.060	.070	.080	.090	.100	Milli- volts
voits					I	Degrees (C 7					voits
10.000	1784.8	1786.5	1788.2	1789.9	1791.6	1793.4	1795.1	1796.8	1798.5	1800.2	1801.9	10.000
10.100	1801.9	1803.6	1805.3	1807.0	1808.7	1810.4	1812.1	1813.8	1815.5	1817.2	1818.9	10.100
10.200	1818.9 1835.8	1820.6 1837.5	1822.3 1839.2	1824.0 1840.9	1825.7 1842.6	1827.4 1844.3	1829.1 1845.9	1830.7 1847.6	1832.4	1834.1	1835.8	10.200
10.300 10.400	1852.7	1854.4	1856.0	1840.9	1842.6	1861.1	1845.9	1864.4	1849.3 1866.1	1851.0 1867.8	1852.7 1869.4	10.300 10.400
10.400	1869.4	1871.1	1872.8	1874.5	1876.1	1877.8	1879.5	1881.1	1882.8	1884.5	1886.2	10.400
10.600	1886.2	1887.8	1889.5	1891.2	1892.8	1894.5	1896.1	1897.8	1899.5	1901.1	1902.8	10.600
10.700	1902.8	1904.5	1906.1	1907.8	1909.4	1911.1	1912.7	1914.4	1916.1	1917.7	1919.4	10.700
10.800	1919.4	1921.0	1922.7	1924.3	1926.0	1927.6	1929.3	1930.9	1932.6	1934.2	1935.9	10.800
10.900	1935.9	1937.5	1939.2	1940.8	1942.4	1944.1	1945.7	1947.4	1949.0	1950.7	1952.3	10.900
11.000	1952.3	1953.9	1955.6	1957.2	1958.9	1960.5	1962.1	1963.8	1965.4	1967.1	1968.7	11.000
11.100	1968.7	1970.3	1972.0	1973.6	1975.2	1976.9	1978.5	1980.1	1981.8	1983.4	1985.0	11.100
11.200	1985.0	1986.6	1988.3	1989.9	1991.5	1993.2	1994.8	1996.4	1998.0	1999.7	2001.3	11.200
11.300	2001.3	2002.9	2004.5	2006.2	2007.8	2009.4	2011.0	2012.7	2014.3	2015.9	2017.5	11.300
11.400	2017.5	2019.1	2020.8	2022.4	2024.0	2025.6	2027.2	2028.8	2030.5	2032.1	2033.7	11.400
11.500	2033.7	2035.3	2036.9	2038.5	2040.2	2041.8	2043.4	2045.0	2046.6	2048.2	2049.8	11.500
11.600	2049.8	2051.4	2053.1	2054.7	2056.3	2057.9	2059.5	2061.1	2062.7	2064.3	2065.9	11.600
11.700	2065.9	2067.6	2069.2	2070.8	2072.4	2074.0	2075.6	2077.2	2078.8	2080.4	2082.0	11.700
11.800	2082.0	2083.6	2085.2	2086.8	2088.4	2090.0	2091.6	2093.2	2094.9	2096.5	2098.1	11.800
11.900	2098.1	2099.7	2101.3	2102.9	2104.5	2106.1	2107.7	2109.3	2110.9	2112.5	2114.1	11.900
12.000	2114.1	2115.7	2117.3	2118.9	2120.5	2122.1	2123.7	2125.3	2126.9	2128.5	2130.1	12.000
12.100	2130.1	2131.7	2133.3	2134.9	2136.5	2138.1	2139.7	2141.3	2142.9	2144.5	2146.1	12.100
12.200	2146.1	2147.7	2149.3									12.200

Table 6-A. Fifty percent iridium-fifty percent rhodium versus iridium thermocouples Electromotive force in absolute millivolts. Temperatures in degrees C (Int. 1948). Reference junctions at 0 °C.

	0	10	20	30	40	50	60	70	80	90	100	
°C						Millivolt	s					°C
0	0.000	0.033	0.067	0.102	0.138	0.176	0.215	0.255	0.296	0.338	0.381	0
100	0.381	0.426	0.471	0.517	0.564	0.612	0.660	0.710	0.760	0.811	0.862	100
200	0.862	0.915	0.968	1.021	1.076	1.130	1.186	1.242	1.298	1.355	1.412	200
300	1.412	1.470	1.528	1.587	1.646	1.705	1.764	1.824	1.884	1.945	2.005	300
400	2.005	2.066	2.127	2.188	2.250	2.311	2.373	2.434	2.496	2.558	2.620	400
500	2.620	2.683	2.745	2.807	2.869	2.931	2.994	3.056	3.118	3.180	3.243	500
600	3.243	3.305	3.367	3.429	3.491	3.553	3.615	3.677	3.738	3.800	3.862	600
700	3.862	3.923	3.984	4.045	4.106	4.167	4.228	4.288	4.349	4.409	4.469	700.
800	4.469	4.529	4.589	4.649	4.708	4.768	4.827	4.886	4.945	5.004	5.063	800
900	5.063	5.121	5.179	5.237	5.296	5.353	5.411	5.469	5.526	5.583	5.640	900
1000	5.640	5.697	5.754	5.811	5.868	5.924	5.980	6.037	6.093	6.149	6.204	1000
1100	6.204	6.260	6.316	6.371	6.427	6.482	6.537	6.592	6.647	6.702	6.757	1100
1200	6.757	6.812	6.867	6.921	6.976	7.031	7.085	7.140	7.194	7.249	7.303	1200
1300	7.303	7.357	7.412	7.466	7.520	7.575	7.629	7.683	7.738	7.792	7.846	1300
1400	7.846	7.901	7.955	8.010	8.064	8.119	8.173	8.228	8.283	8.337	8.392	1400
1500	8.392	8.447	8.502	8.557	8.612	8.668	8.723	8.778	8.834	8.890	8.945	1500
1600	8.945	9.001	9.057	9.114	9.170	9.226	9.283	9.339	9.396	9.453	9.510	1600
1700	9.510	9.567	9.625	9.682	9.740	9.798	9.856	9.914	9.972	10.030	10.089	1700
1800	10.089	10.148	10.207	10.266	10.325	10.384	10.444	10.503	10.563	10.623	10.683	1800
1900	10.683	10.743	10.804	10.864	10.925	10.986	11.047	11.108	11.169	11.231	11.292	1900
2000	11.292	11.354	11.415	11.477	11.539	11.601	11.663	11.725	11.787	11.850	11.912	2000
2100	11.912	11.974	12.037	12.099	12.162	12.224						2100

Table 7-A. Fifty percent iridium-fifty percent rhodium versus iridium thermocouples Electromotive force in absolute millivolts. Temperatures in degrees F*. Reference junctions at 32 °F.

Milli- volts	.000	.010	.020	.030	.040	.050	.060	.070	.080	.090	.100	Milli- volts
						Degrees	F					
.000	32.0	37.6	43.1	48.6	53.9	59.3	64.5	69.7	74.9	80.0	85.0	0.00
.100	85.0	90.0	95.0	99.9	104.8	109.6	114.4	119.1	123.8	128.5	133.1	0.10
.200	133.1	137.7	142.3	146.8	151.3	155.8	160.2	164.6	169.0	173.4	177.7	0.20
.300	177.7	182.0	186.3	190.5	194.8	199.0	203.1	207.3	211.4	215.5	219.6	0.30
.400	219.6	223.7	227.8	231.8	235.8	239.8	243.8	247.7	251.7	255.6	259.5	0.40
.500	259.5	263.4	267.3	271.1	275.0	278.8	282.6	286.4	290.2	293.9	297.7	0.50
.600	297.7 334.5	$301.4 \\ 338.1$	$305.2 \\ 341.7$	308.9 345.3	312.6 348.9	$316.3 \\ 352.5$	319.9 356.1	323.6 359.6	$327.3 \\ 363.2$	330.9 366.7	$334.5 \\ 370.2$	0.60
.700 .800	370.2	373.7	377.2	380.7	384.2	387.7	391.2	394.6	398.1	401.5	404.9	0.80
.900	404.9	408.4	411.8	415.2	418.6	422.0	425.4	428.7	432.1	435.5	438.8	0.90
.900	404.7											
.000	438.8	442.2	445.5	448.9	452.2	455.5	458.8	462.1	465.4	468.7	472.0	1.00
.100	472.0	475.3	478.6	481.8	485.1	488.4	491.6	494.9	498.1	501.3	504.6	1.10
.200	504.6	507.8	$511.0 \\ 542.9$	514.2 546.1	517.4 549.3	$520.6 \\ 552.4$	523.8 555.6	527.0	530.2	533.4	536.6	1.20
.300 .400	536.6 568.2	539.8 571.3	574.4	577.5	580.7	583.8	586.9	558.7 590.0	561.9 593.1	565.0 596.2	568.2 599.3	1.40
.500	599.3	602.4	605.5	608.6	611.7	614.7	617.8	620.9	624.0	627.0	630.1	1.5
.600	630.1	633.2	636.2	639.3	642.3	645.4	648.4	651.5	654.5	657.5	660.6	1.6
.700	660.6	663.6	666.6	669.7	672.7	675.7	678.7	681.7	684.7	687.8	690.8	1.7
.800	690.8	693.8	696.8	699.8	702.8	705.8	708.8	711.8	714.7	717.7	720.7	1.8
.900	720.7	723.7	726.7	729.7	732.6	735.6	738.6	741.6	744.5	747.5	750.5	1.9
.000	750.5	753.4	756.4	759.4	762.3	765.3	768.2	771.2	774.1	777.1	780.1	2.0
.100	780.1	783.0	785.9	788.9	791.8	794.8	797.7	800.7	803.6	806.5	809.5	2.1
.200	809.5	812.4	815.3	818.3	821.2	824.1	827.1	830.0	832.9	835.8	838.8	2.2
.300	838.8	841.7	844.6	847.5	850.5	853.4	856.3	859.2	862.1	865.0	868.0	2.3
.400	868.0	870.9	873.8	876.7	879.6	882.5	885.4	888.3	891.2	894.1	897.1	2.4
.500	897.1	900.0	902.9	905.8	908.7	911.6	914.5	917.4	920.3	923.2	926.1	2.5
.600	926.1	929.0	931.9	934.8	937.7	940.6	943.5	946.4	949.3	952.2	955.1	2.6
.700	955.1	958.0	960.9	963.8	966.6	969.5	972.4	975.3	978.2	981.1	984.0	2.7
.800	984.0 1012.9	986.9 1015.8	989.8 1018.7	992.7 1021.6	995.6 1024.5	998.5 1027.4	1001.4 1030.3	1004.3 1033.2	1007.1 1036.1	1010.0 1038.9	1012.9 1041.8	2.8 2.9
.000	1041.8	1044.7	1047.6	1050.5	1053.4	1056.3	1059.2	1062.1	1065.0	1067.9	1070.8	3.0
	1070.8	1073.7	1076.6	1079.4	1033.4	1035.3	1039.2	1002.1	1003.0	1096.8	1099.7	3.1
	1099.7	1102.6	1105.5	1108.4	1111.2	1114.1	1117.0	1119.9	1122.8	1125.7	1128.6	3.2
	1128.6	1131.5	1134.4	1137.3	1140.2	1143.1	1146.0	1148.9	1151.8	1154.7	1157.6	3.3
	1157.6	1160.5	1163.4	1166.3	1169.2	1172.1	1175.0	1177.9	1180.8	1183.7	1186.6	3.4
	1186.6	1189.5	1192.4	1195.3	1198.2	1201.1	1204.0	1206.9	1209.8	1212.7	1215.6	3.5
	1215.6	1218.5	1221.5	1224.4	1227.3	1230.2	1233.1	1236.0	1238.9	1241.9	1244.8	3.6
	1244:8	1247.7	1250.6	1253.5	1256.4	1259.4	1262.3	1265.2	1268.1	1271.1	1274.0	3.7
	1274.0	1276.9	1279.8	1282.8	1285.7	1288.6	1291.6	1294.5	1297.4	1300.4	1303.3	3.8
.900	1303.3	1306.2	1309.2	1312.1	1315.0	1318.0	1320.9	1323.8	1326.8	1329.7	1332.7	3.9
	1332.7	1335.6	1338.6	1341.5	1344.5	1347.4	1350.4	1353.3	1356.3	1359.2	1362.2	4.0
	1362.2	1365.1	1368.1	1371.0	1374.0	1377.0	1379.9	1382.9	1385.8	1388.8	1391.8	4.1
	1391.8	1394.7	1397.7	1400.7	1403.6	1406.6	1409.6	1412.5	1415.5	1418.5	1421.5	4.2
	1421.5	1424.4	1427.4	1430.4	1433.4	1436.4	1439.3	1442.3	1445.3	1448.3	1451.3	4.3
	1451.3	1454.3	1457.3	1460.2	1463.2	1466.2	1469.2	1472.2	1475.2	1478.2	1481.2	4.4
	1481.2	1484.2	1487.2	1490.2	1493.2	1496.2	1499.2	1502.2	1505.2	1508.3	1511.3 1541.5	4.5
	1511.3	1514.3 1544.5	1517.3 1547.5	1520.3 1550.5	1523.3 1553.6	1526.3 1556.6	1529.4 1559.6	1532.4 1562.7	1535.4 1565.7	1538.4 1568.7	1541.5	4.6 4.7
	1541.5	1544.5 1574.8	1547.5	1580.5	1583.6	1587.0	1559.6	1502.7	1505.7	1508.7	1602.2	4.7
COUL	1571.8	1605.3	1608.3	1611.4	1614.4	1617.5	1620.6	1623.6	1626.7	1629.7	1632.3	4.0

^{*}Based on the International Temperature Scale of 1948.

Table 7-A. Fifty percent iridium-fifty percent rhodium versus iridium thermocouples — Continued Electromotive force in absolute millivolts. Temperature in degrees F^* . Reference junctions at 32 °F.

Milli-	.000	.010	.020	.030	.040	.050	.060	.070	.080	.090	.100	Milli-
volts						Degrees	F					volts
.000	1632.8	1635.9	1638.9	1642.0	1645.1	1648.2	1651.2	1654.3	1657.4	1660.5	1663.5	5.00
	1663.5	1666.6	1669.7	1672.8	1675.9	1678.9	1682.0	1685.1	1688.2	1691.3	1694.4	5.10
	1694.4	1697.5	1700.6	1703.7	1706.8	1709.9	1713.0	1716.1	1719.2	1722.3	1725.4	5.20
	1725.4	1728.5	1731.6	1734.7	1737.8	1740.9	1744.1	1747.2	1750.3	1753.4	1756.5	5.30
	1756.5	1759.7	1762.8	1765.9	1769.0	1772.2	1775.3	1778.4	1781.6	1784.7	1787.8	5.40
	1787.8	1791.0	1794.1	1797.2	1800.4	1803.5	1806.7	1809.8	1812.9	1816.1	1819.2	5.50
	1819.2	1822.4	1825.5	1828.7	1831.9	1835.0	1838.2	1841.3	1844.5	1847.6	1850.8	5.60
	1850.8	1854.0	1857.1	1860.3	1863.5	1866.6	1869.8	1873.0	1876.1	1879.3	1882.5	5.70
	1882.5	1885.7	1888.9	1892.0	1895.2	1898.4	1901.6	1904.8	1908.0	1911.1	1914.3	5.8
.900	1914.3	1917.5	1920.7	1923.9	1927.1	1930.3	1933.5	1936.7	1939.9	19 4 3.1	1946.3	5.9
	1946.3	1949.5	1952.7	1955.9	1959.1	1962.3	1965.5	1968.7	1971.9	1975.2	1978.4	6.0
	1978.4	1981.6	1984.8	1988.0	1991.2	1994.5	1997.7	2000.9	2004.1	2007.4	2010.6	6.1
	2010.6	2013.8	2017.0	2020.3	2023.5	2026.7	2030.0	2033.2	2036.4	2039.7	2042.9	6.2
	2042.9	2046.1	2049.4	2052.6	2055.9	2059.1	2062.4	2065.6	2068.8	2072.1	2075.3	6.3
	2075.3	2078.6	2081.8 2114.4	2085.1 2117.7	2088.3	2091.6	2094.9	2098.1	2101.4	2104.6	2107.9	6.4
	2107.9	2111.1 2143.8			2120.9 2153.6	2124.2 2156.9	2127.5 2160.1	2130.7 2163.4	2134.0 2166.7	2137.2	2140.5	6.5
	2140.5 2173.2	2176.5	2147.1 2179.8	2150.3 2183.1	2135.0	2189.6	2192.9	2196.2	2199.5	2170.0 2202.8	2173.2 2206.1	6.6
	2206.1	2209.3	2212.6	2105.1	2219.2	2222.5	2192.9	2229.1	2199.5	2235.7	2238.9	6.7 6.8
	2238.9	2242.2	2245.5	2248.8	2252.1	2255.4	2258.7	2262.0	2265.3	2268.6	2271.9	6.9
	2271.9	2275.2	2278.5	2281.8	2285.1	2288.4	2291.7	2295.0	2298.3	2301.6	2304.9	7.0
	2304.9	2308.2	2311.5	2314.8	2318.1	2321.4	2324.7	2328.0	2331.3	2334.6	2338.0	7.1
	2338.0	2341.3	2344.6	2347.9	2351.2	2354.5	2357.8	2361.1	2364.4	2367.7	2371.0	7.2
	2371.0	2374.4	2377.7	2381.0	2384.3	2387.6	2390.9	2394.2	2397.5	2400.8	2404.2	7.3
	2404.2 2437.3	2407.5 2440.6	2410.8 2443.9	2414.1 2447.2	2417.4 2450.6	$2420.7 \\ 2453.9$	2424.0 2457.2	2427.4 2460.5	2430.7 2463.8	$2434.0 \\ 2467.1$	2437.3 2470.4	7.4 7.5
.600	2470.4	2473.7	2443.9	2480.4	2483.7	2433.9	2490.3	2493.6	2496.9	2500.3	2503.6	7.6
	2503.6	2506.9	2510.2	2513.5	2516.8	2520.1	2523.4	2526.8	2530.1	2533.4	2536.7	7.7
	2536.7	2540.0	2543.3	2546.6	2549.9	2553.2	2556.6	2559.9	2563.2	2566.5	2569.8	7.8
	2569.8	2573.1	2576.4	2579.7	2583.0	2586.3	2589.6	2592.9	2596.2	2599.5	2602.9	7.9
.000	2602.9	2606.2	2609.5	2612.8	2616.1	2619.4	2622.7	2626.0	2629.3	2632.6	2635.9	8.0
.100	2635.9	2639.2	2642.5	2645.8	2649.1	2652.4	2655.7	2658.9	2662.2	2665.5	2668.8	8.1
	2668.8	2672.1	2675.4	2678.7	2682.0	2685.3	2688.6	2691.9	2695.2	2698.4	2701.7	8.2
	2701.7	2705.0	2708.3	2711.6	2714.9	2718.2	2721.4	2724.7	2728.0	2731.3	2734.6	8.3
.400	2734.6	2737.8	2741.1	2744.4	2747.7	2750.9	2754.2	2757.5	2760.8	2764.0	2767.3	8.4
.500	2767.3	2770.6	2773.8	2777.1	2780.4	2783.6	2786.9	2790.2	2793.4	2796.7	2800.0	8.5
.600	2800.0	2803.2	2806.5	2809.7	2813.0	2816.3	2819.5	2822.8	2826.0	2829.3	2832.5	8.6
	2832.5	2835.8	2839.0	2842.3	2845.5	2848.8	2852.0	2855.3	2858.5	2861.7	2865.0°	8.7
	2865.0	2868.2	2871.5	2874.7	2877.9	2881.2	2884.4	2887.6	2890.9	2894.1	2897.3	8.8
.900	2897.3	2900.6	2903.8	2907.0	2910.2	2913.5	2916.7	2919.9	2923.1	2926.3	2929.6	8.9
	2929.6	2932.8	2936.0	2939.2	2942.4	2945.6	2948.8	2952.1	2955.3	2958.5	2961.7	9.0
.100	2961.7	2964.9	2968.1	2971.3	2974.5	2977.7	2980.9	2984.1	2987.3	2990.5	2993.7	9.1
	2993.7	2996.8	3000.0	3003.2	3006.4	3009.6	3012.8	3016.0	3019.2	3022.3	3025.5	9.2
	3025.5	3028.7	3031.9	3035.0	3038,2	3041.4	3044.6	3047.7	3050.9	3054.1	3057.2	9.3
	3057.2	3060.4	3063.6	3066.7	3069.9	3073.0	3076.2	3079.4	3082.5	3085.7	3088.8	9.4
.500	3088.8	3092.0	3095.1	3098.3	3101.4	3104.6	3107.7	3110.8	3114.0	3117.1	3120.3	9.5
.600	3120.3	3123.4	3126.5	3129.7	3132.8	3135.9	3139.1	3142.2	3145.3	3148.5	3151.6	9.6
	3151.6	3154.7	3157.8	3160.9	3164.1	3167.2	3170.3	3173.4	3176.5	3179.6	3182.7	9.7
.800	3182.7	3185.9 3216.9	3189.0 3220.0	3192.1 3223.0	3195.2 3226.1	3198.3 3229.2	$3201.4 \\ 3232.3$	$3204.5 \\ 3235.4$	3207.6	$3210.7 \\ 3241.6$	3213.8 3244.7	9.8 9.9
.900	3213.8								3238.5			

^{*}Based on the International Temperature Scale of 1948.

Table 7-A. Fifty percent iridium-fifty percent rhodium versus iridium thermocouples - Continued Electromotive force in absolute millivolts. Temperature in degrees F*. Reference junctions at 32°F.

Milli- volts	.000	.010	.020	.030	.040	.050	.060	.070	.080	.090	.100	Milli- volts
]	Degrees	F					
10.000	3244.7	3247.7	3250.8	3253.9	3257.0	3260.0	3263.1	3266.2	3269.3	3272.3	3275.4	10.000
10.100	3275.4	3278.5	3281.5	3284.6	3287.7	3290.7	3293.8	3296.8	3299.9	3302.9	3306.0	10.100
10.200	3306.0	3309.1	3312.1	3315.2	3318.2	3321.3	3324.3	3327.3	3330.4	3333.4	3336.5	10.200
10.300	3336.5	3339.5	3342.5	3345.6	3348.6	3351.7	3354.7	3357.7	3360.7	3363.8	3366.8	10.300
10.400	3366.8	3369.8	3372.9	3375.9	3378.9	3381.9	3384.9	3388.0	3391.0	3394.0	3397.0	10.400
10.500	3397.0	3400.0	3403.0	3406.0	3409.0	3412.1	3415.1	3418.1	3421.1	3424.1	3427.1	10.500
10.600	3427.1	3430.1	3433.1	3436.1	3439.1	3442.1	3445.1	3448.0	3451.0	3454.0	3457.0	10.600
10.700	3457.0	3460.0	3463.0	3466.0	3469.0	3471.9	3474.9	3477.9	3480.9	3483.9	3486.8	10.700
10.800	3486.8	3489.8	3492.8	3495.8	3498.7	3501.7	3504.7	3507.7	3510.6	3513.6	3516.6	10.800
10.900	3516.6	3519.5	3522.5	3525.4	3528.4	3531.4	3534.3	3537.3	3540.2	3543.2	3546.1	10.900
11.000	3546.1	3549.1	3552.1	3555.0	3558.0	3560.9	3563.9	3566.8	3569.8	3572.7	3575.6	11.000
11.100	3575.6	3578.6	3581.5	3584.5	3587.4	3590.3	3593.3	3596.2	3599.2	3602.1	3605.0	11.100
11.200	3605.0	3608.0	3610.9	3613.8	3616.8	3619.7	3622.6	3625.5	3628.5	3631.4	3634.3	11.200
11.300	3634.3	3637.2	3640.2	3643.1	3646.0	3648.9	3651.9	3654.8	3657.7	3660.6	3663.5	11.300
11.400	3663.5	3666.4	3669.4	3672.3	3675.2	3678.1	3681.0	3683.9	3686.8	3689.7	3692.7	11.400
11.500	3692.7	3695.6	3698.5	3701.4	3704.3	3707.2	3710.1	3713.0	3715.9	3718.8	3721.7	11.500
11.600	3721.7	3724.6	3727.5	3730.4	3733.3	3736.2	3739.1	3742.0	3744.9	3747.8	3750.7	11.600
11.700	3750.7	3753.6	3756.5	3759.4	3762.3	3765.2	3768.1	3771.0	3773.8	3776.7	3779.6	11.700
11.800	3779.6	3782.5	3785.4	3788.3	3791.2	3794.1	3797.0	3799.8	3802.7	3805.6	3808.5	11.800
11.900	3808.5	3811.4	3814.3	3817.2	3820.0	3822.9	3825.8	3828.7	3831.6	3834.5	3837.4	11.900
12.000	3837.4	3840.2	3843.1	3846.0	3848.9	3851.8	3854.6	3857.5	3860.4	3863.3	3866.2	12.000
12.100	3866.2	3869.1	3871.9	3874.8	3877.7	3880.6	3883.5	3886.3	3889.2	3892.1	3895.0	12.100
12.200	3895.0	3897.8	3900.7									12.200

^{*}Based on the International Temperature Scale of 1948.

Table 8-A. Fifty percent iridium-fifty percent rhodium versus iridium thermocouples Electromotive force in absolute millivolts. Temperature in degrees F^* . Reference junctions at 32 °F.

0.7-	0	10	20	30	40	50	60	70	80	90	100	
°F		-				Millivolts	3					°F
0					0.014	0.033	0.051	0.071	0.090	0.110	0.130	0
100	0.130	0.151	0.172	0.193	0.215	0.237	0.259	0.282	0.305	0.329	0.352	100
200	0.352	0.377	0.401	0.426	0.451	0.476	0.501	0.527	0.553	0.580	0.606	200
300	0.606	0.633	0.660	0.688	0.715	0.743	0.771	0.799	0.828	0.857	0.886	300
400	0.886	0.915	0.944	0.974	1.003	1.033	1.064	1.094	1.124	1.155	1.186	400
500	1.186	1.217	1.248	1.279	1.311	1.342	1.374	1.406	1.438	1.470	1.502	500
600	1.502	1.535	1.567	1.600	1.632	1.665	1.698	1.731	1.764	1.797	1.831	600
700	1.831	1.864	1.898	1.931	1.965	1.998	2.032	2.066	2.100	2.134	2.168	700
800	2.168	2.202	2.236	2.270	2.304	2.338	2.373	2.407	2.441	2.476	2.510	800
900	2.510	2.545	2.579	2.613	2.648	2.683	2.717	2.752	2.786	2.821	2.855	900
1000	2.855	2.890	2.924	2.959	2.994	3.028	3.063	3.097	3.132	3.167	3.201	1000
1100	3.201	3.236	3.270	3.305	3.339	3.374	3.408	3.443	3.477	3.512	3.546	1100
1200	3.546	3.581	3.615	3.649	3.684	3.718	3.752	3.786	3.821	3.855	3.889	1200
1300	3.889	3.923	3.957	3.991	4.025	4.059	4.093	4.127	4.160	4.194	4.228	1300
1400	4.228	4.261	4.295	4.329	4.362	4.396	4.429	4.463	4.496	4.529	4.563	1400
1500	4.563	4.596	4.629	4.662	4.695	4.728	4.761	4.794	4.827	4.860	4.893	1500
1600	4.893	4.925	4.958	4.991	5.023	5.056	5.089	5.121	5.153	5.186	5.218	1600
1700	5.218	5.250	5.283	5.315	5.347	5.379	5.411	5.443	5.475	5.507	5.539	1700
1800	5.539	5.571	5.602	5.634	5.666	5.697	5.729	5.761	5.792	5.824	5.855	1800
1900	5.855	5.886	5.918	5.949	5.980	6.012	6.043	6.074	6.105	6.136	6.167	1900
2000	6.167	6.198	6.229	6.260	6.291	6.322	6.353	6.384	6.414	6.445	6.476	2000
2100	6.476	6.507	6.537	6.568	6.598	6.629	6.660	6.690	6.721	6.751	6.782	2100
2200	6.782	6.812	6.842	6.873	6.903	6.934	6.964	6.994	7.025	7.055	7.085	2200
2300	7.085	7.115	7.146	7.176	7.206	7.236	7.267	7.297	7.327	7.357	7.387	2300
2400	7.387	7.418	7.448	7.478	7.508	7.538	7.569	7.599	7.629	7.659	7.689	2400
2500	7.689	7.719	7.750	7.780	7.810	7.840	7.870	7.901	7.931	7.961	7.991	2500
2600	7.991	8.022	8.052	8.082	8.113	8.143	8.173	8.204	8.234	8.264	8.295	2600
2700	8.295	8.325	8.356	8.386	8.417	8.447	8.478	8.508	8.539	8.569	8.600	2700
2800	8.600	8.631	8.661	8.692	8.723	8.754	8.785	8.815	8.846	8.877	8.908	2800
2900	8.908	8.939	8.970	9.001	9.032	9.064	9.095	9.126	9.157	9.189	9.220	2900
3000	9.220	9.251	9.283	9.314	9.346	9.377	9.409	9.440	9.472	9.504	9.535	3000
3100	9.535	9.567	9.599	9.631	9.663	9.695	9.727	9.759	9.791	9.823	9.856	3100
3200	9.856	9.888	9.920	9.952	9.985	10.017	10.050	10.082	10.115	10.148	10.180	3200
3300	10.180	10.213	10.246	10.279	10.312	10.345	10.378	10.411	10.444	10.477	10.510	3300
3400	10.510	10.543	10.576	10.610	10.643	10.677	10.710	10.743	10.777	10.811	10.844	3400
3500	10.844	10.878	10.912	10.945	10.979	11.013	11.047	11.081	11.115	11.149	11.183	3500
3600	11.183	11.217	11.251	11.285	11.319	11.354	11.388	11.422	11.457	11.491	11.525	3600
3700	11.525	11.560	11.594	11.629	11.663	11.698	11.732	11.767	11.801	11.836	11.871	3700
3800	11.871	11.905	11.940	11.974	12.009	12.044	12.079	12.113	12.148	12.183	12.217	3800
3900	12.217											3900

^{*}Based on the International Temperature Scale of 1948.

Table 9-A. Iridium-rhodium versus iridium thermocouples Electromotive force in absolute millivolts

Temperatures in degrees F. Reference junctions at 32° F.

Temperature	10% Rh	25% Rh	75% Rh	90% Rh
°F	Millivolts	$\begin{array}{c} Millivolts \\ 0 \end{array}$	Millivolts	Millivolts
100	. 052	. 105	. 088	. 031
200	. 146	. 289	. 240	. 09:
800	. 260	. 502	. 416	. 168
400	. 392	. 739	. 611	. 260
500	. 536	. 995	. 822	. 366
300	. 690	1.266	1.047	. 48
700	. 852	1.548	1. 282	. 610
800	1.019	1.836	1. 525	. 74
900	1.188	2.130	1.774	. 889
1000	1.360	2.424	2.025	1.038
100	1.530	2.719	2.280	1. 195
200	1.700	3.012	2. 537	1. 349
1300	1.868	3.301	2.793	1. 510
1400	2.032	3. 585	3.049	1. 675
1500	2. 192	3.864	3.304	1. 836
1600	2.349	4.136	3. 558	2.003
1700	2. 501	4.402	3. 811	2. 170
1800	2.649	4.662	4.064	2. 345
1900	2. 793 2. 935	4. 916 5. 163	4. 316	2. 517
	2. 900	5. 105	4. 570	2, 693
2100	3.076	5.406	4.825	2. 86.
2200	3. 212	5.644	5. 082	3.040
2300	3.343	5. 877	5. 342	3. 23
2400	3.472	6. 107	5. 607	3. 43
2500	3.600	6.335	5. 876	3, 646
2600	3.724	6. 561	6. 150	3. 868
2700 2800	3.846	6. 785	6. 431	4. 098
2900	3. 962 4. 086	7. 010 7. 234	6.718	4. 335
3000	4. 086	7. 234 7. 460	7. 013 7. 316	4. 570 4. 830
		7.400	7. 510	4. 50
3100	4.320	7.687	7.626	5. 69
3200	4.438	7.917	7.944	5. 373
3300	4.556	8. 148	8. 270	5. 65
3400	4. 676	8. 381	8. 602	5. 947
3500	4.799	8.617	8. 941	6, 26
3600	4.926	8.854	9. 284	
3700	5.055	9.092	9.631	
3800	5. 185	9.330		
3900	5. 316	9. 567		
4000	5.450	9.805		

Table 10-A. Emf of 50 percent iridium-50 percent rhodium and 60 percent iridium-40 percent rhodium alloys and iridium relative to copper*

Temperature	50% Ir-50% Rh vs Cu	60% Ir-40% Rh vs Cu	Cu vs Ir
$^{\circ}$ $_{F}$	Millivolts	Millivolts	Millivolts
32	0.000	0.000	0.000
50	. 027	. 026	. 006
75	. 067	. 064	. 014
100	. 107	. 103	. 023
125	. 147	. 142	. 035
150	. 188	. 181	. 049
175	. 228	. 220	. 065
200	. 268	. 258	. 084
225	. 308	. 296	. 105
250	. 347	. 334	. 129
275	. 385	. 371	. 155
300	. 422	. 406	. 184
350	. 496	. 477	. 247
400	. 571	. 549	. 315
450	. 638	. 613	. 395
500	.701	. 673	. 485

^{*}These alloys are thermoelectrically positive to copper. Copper is positive to

8. References

- [1] G. F. Blackburn and F. R. Caldwell, Reference tables for 40 percent iridium-60 percent rhodium versus iridium thermocouples, J. Res. NBS **66C** (Engr. and Instr.)
 No. 1, 1–12 (Jan.–Mar. 1962); Temperature—Its
 Measurement and Control in Science and Industry **3**,
 Part 2 (Reinhold Pub. Corp., New York, N.Y., 1962).

 [2] J. Hilsenrath, G. G. Ziegler, C. G. Messina, and P. J.
 Walsh, OMNITAB, a general purpose machine program
- for the calculation of tables of functions and statistical and numerical analysis of tabular data, to be issued as
- an NBS publication.
 [3] F. R. Caldwell, Thermoelectric properties of platinum-rhodium alloys, BS J. Research 10, 373 (1933) RP537.
- E. D. Zysk, Private communication, January 20, 1960. [5] J. D. Sine, Pyrometer Supplies Division, Minneapolis-Honeywell Regulator Company, Philadelphia, Pa., private communication to F. R. Caldwell (July 1960).
 [6] F. R. Caldwell, Thermocouple materials, NBS Mono. 40, March 1, 1962; Temperature—Its Measurement and
- Control in Science and Industry 3, part 2 (Reinhold Pub. Corp., New York, N.Y., 1962).

 [7] W. F. Roeser and S. T. Lonberger, Methods of testing thermocouples and thermocouple materials, NBS Cir. 590 (1958) supersedes RP768).

(Paper 68C1-151)