2023 K-NET ML/DL Study

인공신경망과 그 학습

발표자 소개

송승호 | Seungho Song

Interested in Server, DevOps and NLP

- 광운대학교 소프트웨어학부 4학년 재학
- CNS Lab (김진우 교수님 연구실) 학부 연구생
- K-NET 22년도에 입부해놓고 동방 1번 가 봄..(그것도 뭐 싸인하래서..)
- 딥러닝 3월에 처음 해봄.

Contact

E-mail: songseungho9258@gmail.com

Github : SeungHo0422 Instagram : seungho422

오늘 가져가셔야 할 것들!

- 딥러닝이 뭔데?
- 단층 퍼셉트론과 다층 퍼셉트론?
- 인공 신경망의 학습 과정 (feat. 순전파와 역전파)
- 활성화 함수...?
- 뭐..? 갑자기 기울기가 왜 없어져..? (기울기 소실 문제)

Machine Learning? Deep Learning?

Perceptron

다수의 입력으로부터 **하나의 결과**를 내보내는 알고리즘.

Percept : 수용하다. 받아들이다.

Perceptron - 단층 퍼셉트론

(Single-Layer Perceptron)

Perceptron - 단층 퍼셉트론

(Single-Layer Perceptron)

XOR gate

O(1,1)

Perceptron - 단층 퍼셉트론

(Single-Layer Perceptron)

이걸로 뭘 할 수 있는데..? 출력값들을 분류할 수 있지! $x_1w_1 + x_2w_2 + ... + x_nw_n \ge \text{Threshold}(임계치)$

OR gate

Multi-Layer Perceptron (MLP, 다층 퍼셉트론)

: 퍼셉트론으로 이루어진 층(layer) 여러개를 순차적으로 붙여놓은 형태

-> <mark>은닉층의 존재</mark>가 Single-Layer Perceptron과의 차이!

Deep Neural Network (DNN, 심층 신경망)

: 은닉층이 2개 이상인 신경망

-> MLP 뿐만이 아닌 여러 변형된 다양한 신경망들 또한 은닉층이 2개 이상만 되면 DNN!

인공신경망과 그 학습

심층(Deep) 신경망을 학습시킨다(Learning) -> Deep-Learning!

Artificial Neural Network (ANN, 인공 신경망)

: 인공 뉴런들로 구성된 신경망을 전반적으로 아우르는 용어.

용어 정리

Feed-Forward Neural Network, FFNN

: 입력층 -> 출력층 방향으로만 연산이 전개되는 신경망.

전결합층 (Fully-connected layer, FC, Dense layer)

어떤 층의 모든 뉴런이 이전 층의 모든 뉴런과 연결되어 있는 층

활성화 함수 (Activation Function)

: 은닉층과 출력층의 뉴런에서 출력값을 결정하는 함수.

입력층에서 출력층 방향으로 예측값의 연산이 진행되는 과정

이해를 해봅시다.

입력 차원:3 출력 차원: 2

Y = XW + B

이해를 해봅시다.

입력 차원 : 3

출력 차원 : 2

$$h_1 = x_1 w_1 + x_2 w_2 + x_3 w_3$$
 $h_2 = x_1 w_4 + x_2 w_5 + x_3 w_6$
 $[y_1, y_2] = softmax([h_1, h_2])$
활성화 함수

이해를 해봅시다.

입력 차원 : 3 출력 차원 : 2

병렬 연산도 가능!

인공 신경망이 다수의 샘플을 동시에 처리하는 연산 = '배치 연산'

batch

미국·영국[bætʃ] 〇》 영국식 〇》

명사

1 (일괄적으로 처리되는) 집단[무리]

Each summer a new **batch** of students tries to find work. 디⁾ 매년 여름 일단의 새로운 학생들이 일자리를 찾는다.

2 한 회분(한 번에 만들어 내는 음식기계 등의 양)

a **batch** of cookies ☐》 한 번에 구워 내는 쿠키의 양

동사

1 (일괄 처리를 위해) 함께 묶다

The service will be improved by batching and sorting enquiries. 디카 문의 사항들을 함께 묶어 분류를 하면 서비스가 개선될 것이다.

영어사전 결과 더보기

이해를 해봅시다.

입력 차원 : 3 출력 차원 : 2

병렬 연산도 가능!

인공 신경망이 다수의 샘플을 동시에 처리하는 연산 = '배치 연산'

1 (일괄 저리늘 위해) 암께 묶나

The service will be improved by batching and sorting enquiries. ☐ 문의 사항들을 함께 묶어 분류를 하면 서비스가 개선될 것이다.

영어사전 결과 더보기

출력층에서 입력층 방향으로 계산하면서 가중치를 업데이트하는 과정

순전파 과정 -> 예측값과 실제값의 오차 계산

역전파 과정 -> 오차를 보고 가중치를 업데이트하러 후진(Back)! (with 경사 하강법)

1. 순전파

$$E_{o1} = rac{1}{2}(target_{o1} - output_{o1})^2 = 0.02193381$$

$$E_{o2} = rac{1}{2}(target_{o2} - output_{o2})^2 = 0.00203809$$

$$E_{total} = E_{o1} + E_{o2} = 0.02397190$$
MSE (평균 제곱 오차) 를 사용한 오차 계산

$$z_1 = w_1 x_1 + w_2 x_2 = 0.3 \times 0.1 + 0.25 \times 0.2 = 0.08$$

$$z_2 = w_3 x_1 + w_4 x_2 = 0.4 \times 0.1 + 0.35 \times 0.2 = 0.11$$

$$h_1=sigmoid(z_1)=0.51998934$$

$$h_2=sigmoid(z_2)=0.52747230$$

$$z_3 = w_5 h_1 + w_6 h_2 = 0.45 \times h_1 + 0.4 \times h_2 = 0.44498412$$

$$z_4 = w_7 h_1 + w_8 h_2 = 0.7 \times h_1 + 0.6 \times h_2 = 0.68047592$$

$$o_1 = sigmoid(z_3) = 0.60944600$$

$$o_2 = sigmoid(z_4) = 0.66384491$$

2. 역전파 1단계 : 출력층과 N층(바로 이전의 은닉층) 사이의 가중치 업데이트

$$w_5$$
 부터 Update 해봅시다. $\dfrac{\partial E_{total}}{\partial w_5}$ (by 경사 하강법)

$$rac{\partial E_{total}}{\partial w_5} = rac{\partial E_{total}}{\partial o_1} imes rac{\partial o_1}{\partial z_3} imes rac{\partial z_3}{\partial w_5}$$

미분의 연쇄 법칙 (Chain Rule)

2. 역전파 1단계 : 출력층과 N층(바로 이전의 은닉층) 사이의 가중치 업데이트

미분의 연쇄 법칙 (Chain Rule)

$$egin{aligned} rac{\partial E_{total}}{\partial w_5} &= rac{\partial E_{total}}{\partial o_1} imes rac{\partial o_1}{\partial z_3} imes rac{\partial z_3}{\partial w_5} \ E_{total} &= rac{1}{2} (target_{o1} - output_{o1})^2 + rac{1}{2} (target_{o2} - output_{o2})^2 \end{aligned}$$

$$egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$$

$$rac{\partial o_1}{\partial z_3} = o_1 imes (1-o_1) = 0.60944600 (1-0.60944600) = 0.23802157$$

Sigmoid 미분 공식
$$f(x){ imes}(1-f(x))$$
'

$$\frac{\partial z_3}{\partial w_5} = h_1 = 0.51998934$$
 순전파: $z_3 = h_1 v_5 + h_2 w_6$

$$\frac{\partial E_{total}}{\partial w_5} = 0.20944600 imes 0.23802157 imes 0.51998934 = 0.02592286$$

2. 역전파 1단계 : 출력층과 N층(바로 이전의 은닉층) 사이의 가중치 업데이트

$$w_5^+ = w_5 - lpha rac{\partial E_{total}}{\partial w_5} = 0.45 - 0.5 imes 0.02592286 = 0.43703857$$

똑같은 방법으로...

$$egin{aligned} rac{\partial E_{total}}{\partial w_6} &= rac{\partial E_{total}}{\partial o_1} imes rac{\partial o_1}{\partial z_3} imes rac{\partial z_3}{\partial w_6}
ightarrow w_6^+ = 0.38685205 \ rac{\partial E_{total}}{\partial w_7} &= rac{\partial E_{total}}{\partial o_2} imes rac{\partial o_2}{\partial z_4} imes rac{\partial z_4}{\partial w_7}
ightarrow w_7^+ = 0.69629578 \ rac{\partial E_{total}}{\partial w_8} &= rac{\partial E_{total}}{\partial o_2} imes rac{\partial o_2}{\partial z_4} imes rac{\partial z_4}{\partial w_8}
ightarrow w_8^+ = 0.59624247 \end{aligned}$$

3. 역전파 2단계: N층과 N-1층(N층 바로 이전의 은닉층) 사이의 가중치 업데이트

똑같은 방법으로...

$$w_1^+ = w_1 - lpha rac{\partial E_{total}}{\partial w_1} = 0.3 - 0.5 imes 0.00080888 = 0.29959556$$

$$rac{\partial E_{total}}{\partial w_2} = rac{\partial E_{total}}{\partial h_1} imes rac{\partial h_1}{\partial z_1} imes rac{\partial z_1}{\partial w_2}
ightarrow w_2^+ = 0.24919112$$

$$rac{\partial E_{total}}{\partial w_3} = rac{\partial E_{total}}{\partial h_2} imes rac{\partial h_2}{\partial z_2} imes rac{\partial z_2}{\partial w_3}
ightarrow w_3^+ = 0.39964496$$

$$rac{\partial E_{total}}{\partial w_4} = rac{\partial E_{total}}{\partial h_2} imes rac{\partial h_2}{\partial z_2} imes rac{\partial z_2}{\partial w_4}
ightarrow w_4^+ = 0.34928991$$

=> w1 ~ w8 가중치 업데이트 완료!

게임 패치 다해놓고 게임을 안할 수는 없잖아요..?

4. 순전파: 업데이트된 가중치들로 다시 연산

인공 신경망을 학습시킨다

= **오차를 최소화하는 최적의 가중치**들을 찾기 위해 **순전파와 역전파를 반복**하는 과정을 진행한다.

$$z_1=w_1x_1+w_2x_2=0.29959556\times0.1+0.24919112\times0.2=0.07979778$$
 $z_2=w_3x_1+w_4x_2=0.39964496\times0.1+0.34928991\times0.2=0.10982248$ $h_1=sigmoid(z_1)=0.51993887$ $h_2=sigmoid(z_2)=0.52742806$ $z_3=w_5h_1+w_6h_2=0.43703857\times h_1+0.38685205\times h_2=0.43126996$ $z_4=w_7h_1+w_8h_2=0.69629578\times h_1+0.59624247\times h_2=0.67650625$ 으학... 난소프트라고.. $o_1=sigmoid(z_3)=0.60617688$ $o_2=sigmoid(z_4)=0.66295848$ $E_{o1}=\frac{1}{2}(target_{o1}-output_{o1})^2=0.02125445$ $E_{o2}=\frac{1}{2}(target_{o2}-output_{o2})^2=0.00198189$ $E_{total}=E_{o1}+E_{o2}=0.02323634$

처음 순전파 시 전체 오차 : 0.02397190 -> 1번의 역전파로 오차 감소 확인!

오차가 감소된 걸 보고 방금 좋아하셨나요..? 신기해하셨나요..? 그대 대학원으로...

인공 신경망의 학습 과정 정리

떡밥: 역전파는 기울기 가지고 노는 과정이다..!

활성화 함수 (Activation Function) & 기울기 소실 문제 (Gradient Vanishing Problem)

Y값(출력값)의 범위가

-INF ~ INF

활성화 함수 (Activation Function)

은닉층과 출력층의 뉴런에서 출력값을 결정하는 함수.

Feature : 비선형 함수! (Nonlinear Function)

선형 비선형 비선형

선형 함수 (Linear Function)

: 출력이 입력의 상수배만큼 변하는 함수

직선 1개로 그릴 수 있는 함수!

비선형 함수 (Nonlinear Function)

직선 1개로 그릴 수 **없는** 함수!

근데....왜 선형함수는 안돼..?

y = wx 라는 선형 함수를 예로 들면,

$$y = f(f(f(x))) = w(w(wx)) = w^3x = kx$$

=> 작품 설명

: 선형은 은닉층 아무리 둬봐야 선형이다

S자로 관계를 표현할 수 없다.

Edited By Seungho Song (songseungho9258@gmail.com)

1. 계단 함수 (Step Function)

하나의 Threshold를 통해 이진 분류

단순해서 거의 사용되지는 않는다.

2. 시그모이드 함수 (Sigmoid Function) 출력값을 0과 1 사이의 값으로 조정하여 반환한다.

출력값이 0.5 이상이면 1 (True), 0.5 이하면 0 (False)

출력값이 기준치보다 크냐? 작냐?로 구분

2. 시그모이드 함수 (Sigmoid Function)의 한계 – 기울기 소실 (Vanishing Gradient)

2. 시그모이드 함수 (Sigmoid Function)의 한계 – 기울기 소실 (Vanishing Gradient)

역전파 과정 = 가중치와 편향을 업데이트 하는 과정 -> 0에 가까운 값이 누적해서 곱해지게 된다.

2. 시그모이드 함수 (Sigmoid Function)의 한계 – 기울기 소실 (Vanishing Gradient)

역전파 과정 = 가중치와 편향을 업데이트 하는 과정 -> 0에 가까운 값이 누적해서 곱해지게 된다.

2. 시그모이드 함수 (Sigmoid Function)의 한계 – 기울기 소실 (Vanishing Gradient)

역전파 과정 = 가중치와 편향을 업데이트 하는 과정 -> 0에 가까운 값이 누적해서 곱해지게 된다.

은닉층이 깊은 신경망에선 기울기 소실 문제가 발생.

-> 출력층과 가까운 은닉층은 잘 전파되지만, 앞단으로 갈수록 기울기가 제대로 전파 X

결론 : 은닉층에서의 Sigmoid 함수 사용은 지양.

주로 출력층에서 이진 분류를 할 때 사용된다.

입력값을 -1과 1 사이의 값으로 변환.

3. 하이퍼볼릭탄젠트 함수 (Hyperbolic Tangent Function, tanh) : 야 내가 Sigmoid보단 낫다

- 1. 0이 기준치. (sigmoid는 0.5)
- 2. 미분했을 때의 최대값이 1 -> sigmoid(0.25)보다 크다.-> Sigmoid에 비해 상대적으로 기울기 소실 문제 완화. (But, not 해결)

여전히 기울기 소실 문제 존재...

4. 렐루 함수 (ReLU)

음수를 입력하면 0 출력, 양수를 입력하면 입력값 그대로 반환

$$f(x) = \max(0, x)$$

Features

- 1. 출력값이 특정 양수값에 수렴하지 않는다. (Sigmoid는 0~1 / tanh는 -1~1)
- 2. 0 이상의 입력값의 경우 미분값이 항상 1
- 3. 함수가 매우 간단하여 특별한 연산을 필요로 하지 않아 연산 속도가 빠르다. (sigmoid, tanh는 출력값 변환을 위한 특별한 연산과정 필요)
- => 은닉층에서의 성능이 Sigmoid / tanh 보다 훨씬 좋다.

오매....그럼 이게 짱이네..???!!!? 해치웠나?

4. 렐루 함수 (ReLU)의 한계

음수를 입력하면 0 출력, 양수를 입력하면 입력값 그대로 반환

=> 입력값이 음수면 미분값 (=기울기) 도 0이 된다. 이러면 나가린데..? (회생 Hard)

= 죽은 렐루 문제 (dying ReLU Problem)

5. 리키 렐루 (Leaky ReLU) : 우리 렐루 살려내

입력값이 음수일 경우 매우 작은 수(ex. 0.001)를 반환, 입력값이 양수일 경우 입력값 그대로 반환 $f(x) = \max(ax, x)$, a = 0.001

a = 하이퍼파라미터 = Leaky('새는') 정도의 값 = 음수일 때의 기울기 값

6. 소프트맥스 함수 (Softmax Function)

Features

- 1. 주로 출력층에서 사용.
- 2. 3가지 이상의 상호 배타적인 선택지 중 하나를 선택할 때 많이 사용. (MultiClass Classification)

오늘 가져가셔야 할 것들!

- 딥러닝이뭔데? 심층신경망을 학습시키는 과정!
- 단층 퍼셉트론과 다층 퍼셉트론? 은닉층의 존재로 구분. 단층 퍼셉트론은 XOR 연산을 못한다는 단점을 가진다.
- 인공 신경망의 학습 과정 (feat. 순전파와 역전파)

오차를 최소화하는 최적의 가중치들을 찾기 위해 **순전파와 역전파를 반복**하는 과정.

- 활성화 함수...? 은닉층과 출력층의 뉴런에서 출력값을 결정하는 함수. Step / Sigmoid / tanh / ReLU / 변형 ReLU / Softmax ...
- 뭐..? 갑자기 기울기가 왜 없어져..? (기울기 소실 문제)

Sigmoid, tanh에서.. 역전파 과정 = 가중치와 편향을 업데이트 하는 과정 -> 0에 가까운 값이 누적해서 곱해지게 된다.

=> 출력층과 먼 앞단에서는 기울기가 제대로 전파되지 않는 문제

2023 K-NET ML/DL STUDY **인공신경망과 그 학습**

사실 얘기할 것들이 매우매우 많습니다..

배치 경사 하강법, 확률적 경사 하강법, 미니배치 경사 하강법...

내부 공변량 변화...이걸 또 해결하는게 배치 정규화 어쩌구..

실제 코드칠때 많이 보는 Overfitting Solution (정규화 / Dropout / EarlyStopping) ...

하지만 여기까지. 이것만 알아도 만족

References

코드스테이츠: https://www.codestates.com/blog/content/%EB%A8%B8%EC%8B%A0%EB%9F%AC%EB%8B%9D%EB%9F%AC%EB%8B%9D%EB%9F%AC%EB%8B%9D%EA%B0%9C%EB%85%90

딥 러닝을 이용한 자연어 처리 입문 : https://wikidocs.net/book/2155

Thank You