

PROGRAMMIERUNG

ÜBUNG 1: EINLEITUNG

Eric Kunze

eric.kunze@mailbox.tu-dresden.de

TU Dresden, 13. April 2021

WER BIN ICH?

- ► Eric Kunze
- ► E-Mail: eric.kunze@mailbox.tu-dresden.de
- ► Telegram: @oakoneric
- ► Fragen, Wünsche, Vorschläge, ... gern jederzeit über alle möglichen Wege

EIN WEITERES ONLINE-SEMESTER

- ► Vorlesungsvideo und Übungsblatt jeden Freitag im **OPAL-Kurs**
- ► Lehrveranstaltungswebsite: www.orchid.inf.tu-dresden.de/teaching/2021ss/prog/

EIN WEITERES ONLINE-SEMESTER

- ► Vorlesungsvideo und Übungsblatt jeden Freitag im **OPAL-Kurs**
- ► Lehrveranstaltungswebsite: www.orchid.inf.tu-dresden.de/teaching/2021ss/prog/

▶ Übungen

EIN WEITERES ONLINE-SEMESTER

- ► Vorlesungsvideo und Übungsblatt jeden Freitag im **OPAL-Kurs**
- ► Lehrveranstaltungswebsite:
 www.orchid.inf.tu-dresden.de/teaching/2021ss/prog/

▶ Übungen

meine Website:

```
https://oakoneric.github.io
```

- Übung als Videoaufzeichnung (passwortgeschützt)
- □ Github: https://github.com/oakoneric/programmierung-ss21
- ▶ kein Anspruch auf Vollständigkeit & Korrektheit

HINWEISE

Literatur

- ► Learn You a Haskell For Great Good!
- ► Real World Haskell
 - sehr gut, wesentlich mehr Inhalte als benötigt

beide Bücher als Online-Versionen verfügbar (siehe Website)

HINWEISE

Literatur

- ► Learn You a Haskell For Great Good!
- ► Real World Haskell
 - > sehr gut, wesentlich mehr Inhalte als benötigt

beide Bücher als Online-Versionen verfügbar (siehe Website)

Altklausuren

- ► FTP-Server des iFSR: https://ftp.ifsr.de/klausuren/Grundstudium/Programmierung/
- VPN-Verbindung notwendig

Einführung in Haskell

HASKELL & FUNKTIONALE PROGRAMMIERUNG

 ${\sf Haskell} = {\sf funktionale\ Programmiers prache}$

Wir programmieren nicht *wie* berechnet wird, sondern *was* berechnet wird.

HASKELL & FUNKTIONALE PROGRAMMIERUNG

 $Haskell = funktionale \ Programmiers prache$

Wir programmieren nicht *wie* berechnet wird, sondern *was* berechnet wird.

Mathe: Wir kennen Funktionen bereits aus dem Mathe-Unterricht und den Mathe-Vorlesungen. Zum Beispiel ist

$$f: \mathbb{N} \to \mathbb{N}$$
$$f(x) = x + 3$$

eine Funktion, die natürliche Zahlen auf natürliche Zahlen abbildet.

HASKELL & FUNKTIONALE PROGRAMMIERUNG

 $Haskell = funktionale \ Programmiers prache$

Wir programmieren nicht *wie* berechnet wird, sondern *was* berechnet wird.

Mathe: Wir kennen Funktionen bereits aus dem Mathe-Unterricht und den Mathe-Vorlesungen. Zum Beispiel ist

$$f \colon \mathbb{N} \to \mathbb{N}$$
$$f(x) = x + 3$$

eine Funktion, die natürliche Zahlen auf natürliche Zahlen abbildet.

Haskell: Diese würde in Haskell wie folgt aussehen:

```
f :: Int -> Int
f x = x + 3
```

EIN WEITERES BEISPIEL

Um zu verdeutlichen, wie ähnlich sich mathematische Funktionen und Haskell-Funktionen sind, betrachten wir folgendes Beispiel. Wir können Funktionen auf ihren Argumenten definieren, d.h.

$$g: \mathbb{N} \to \mathbb{N}$$

$$g(0) = 1$$

$$g(x) = x^2$$

bzw. in Haskell

$$g \ 0 = 1$$

$$g x = x * x$$

EIN WEITERES BEISPIEL

Wir können auch deutlich wichtigere und kompliziertere Funktionen programmieren. Zum Beispiel lässt sich die Addition n+m auch als Funktion schreiben.

definieren.

EIN WEITERES BEISPIEL

Wir können auch deutlich wichtigere und kompliziertere Funktionen programmieren. Zum Beispiel lässt sich die Addition n+m auch als Funktion schreiben.

$$\operatorname{\mathsf{add}} \colon \mathbb{N} \times \mathbb{N} \to \mathbb{N}, \quad \operatorname{\mathsf{add}}(n,m) = n + m = \begin{cases} n & m = 0 \\ 1 + \operatorname{\mathsf{add}}(n,m-1) & \operatorname{\mathsf{sonst}} \end{cases}$$

definieren.

Als Haskell-Funktion sieht das dann so aus:

```
add :: Int -> Int -> Int add n (m-1)
```

Aufgabe 1

Haskell installieren und compilieren

AUFGABE 1

Gegeben sei eine Haskell-Funktion

```
sum3 :: Int -> Int -> Int -> Int \\sum3 x y z = x + y + z
```

AUFGABE 1

Gegeben sei eine Haskell-Funktion

sum3 ::
$$\overline{\text{Int}} \rightarrow \overline{\text{Int}} \rightarrow \overline{\text{Int}} \rightarrow \overline{\text{Int}}$$
 sum3 x y z = x + y + z

Die entspricht der mathematische Funktion

sum3:
$$\mathbb{N} \times \mathbb{N} \times \mathbb{N} \to \mathbb{N}$$
 mit sum3 $(x, y, z) = x + y + z$

Glasgow Haskell Compiler (ghc(i)):

https://www.haskell.org/ghc/

Glasgow Haskell Compiler (ghc(i)): https://www.haskell.org/ghc/

- ► Terminal: ghci <modulname>
- ▶ Module laden: :load <modulname> oder :l
- ▶ Module neu laden: :reload oder :r
- ► Hilfe: :? oder :help
- ► Interpreter verlassen: :quit oder :q

Glasgow Haskell Compiler (ghc(i)):

https://www.haskell.org/ghc/

- ► Terminal: ghci <modulname>
- ▶ Module laden: :load <modulname> oder :l
- ► Module neu laden: :reload oder :r
- ► Hilfe: :? oder :help
- ► Interpreter verlassen: :quit oder :q
- ► :type <exp> Typ des Ausdrucks <exp> bestimmen
- ▶ :info <fkt> kurze Dokumentation für <fkt>
- ► :browse alle geladenen Funktionen anzeigen

Glasgow Haskell Compiler (ghc(i)): https://www.haskell.org/ghc/

- ► Terminal: ghci <modulname>
- ▶ Module laden: :load <modulname> oder :l
- ▶ Module neu laden: :reload oder :r
- ► Hilfe: :? oder :help
- ▶ Interpreter verlassen: :quit oder :q
- ▶ :type <exp> Typ des Ausdrucks <exp> bestimmen
- ▶ :info <fkt> kurze Dokumentation für <fkt>
- ► :browse alle geladenen Funktionen anzeigen
- ► einzeilige Kommentare mit --
- ► mehrzeilige Kommentare mit {- ... -}

Aufgabe 2

Rekursion, Pattern Matching & Conditionals

DAS PRINZIP DER REKURSION

Ein wichtiges Prinzip in der funktionalen Programmierung ist das Prinzip der Rekursion.

▶ Rekursionsfall

▶ Basisfall

DAS PRINZIP DER REKURSION

Ein wichtiges Prinzip in der funktionalen Programmierung ist das Prinzip der Rekursion.

▶ Rekursionsfall

- \triangleright Int-Funktionen: Reduktion von *n* auf *n* 1
- ▷ Liste: Reduktion durch Abspaltung eines Listenelements

Basisfall

DAS PRINZIP DER REKURSION

Ein wichtiges Prinzip in der funktionalen Programmierung ist das Prinzip der Rekursion.

► Rekursionsfall

- \triangleright Int-Funktionen: Reduktion von *n* auf *n* 1
- ▷ Liste: Reduktion durch Abspaltung eines Listenelements

▶ Basisfall

- ⊳ kleinste Probleme einfach zu lösen
- ▷ Int-Funktionen: rechte Seite hängt nicht von n ab

PATTERN MATCHING

Mit Pattern Matching kann man prüfen, ob Funktionsargumente eine bestimmte Form aufweisen.

Damit kann man verschiedene Fälle in einfacher Form nacheinander abgreifen, z.B. Basis- und Rekursionsfall. Vergleiche dazu auch das Beispiel mit der add-Funktion:

- ► Der Aufruf add 5 0 matched mit Zeile 2, also berechnen wir add 5 0 = 5.
- ▶ Der Aufruf add 5 1 matched nicht auf Zeile 2, also probieren wir Zeile 3. Das matched mit n = 5 und m = 1 und wir berechnen

Beachte, dass dabei von oben nach unten getestet wird!

Fakultät

$$n! = \prod_{i=1}^{n} i = n \cdot \prod_{i=1}^{n-1} i$$

$$n! = n \cdot (n-1) \cdot \dots \cdot 2 \cdot 1$$

$$2! = 2$$

Fakultät

$$n! = \prod_{i=1}^{n} i$$

Rekursionsvorschrift: $n \rightsquigarrow n-1$

Fakultät

$$n! = \prod_{i=1}^{n} i$$

Rekursionsvorschrift: $n \rightsquigarrow n-1$

$$n! = \mathbf{n} * \prod_{i=1}^{n-1} i = n * (n-1)!$$

- ► links: n! hängt von n ab
- ▶ rechts: (n-1)! hängt nur von n-1 ab

Fakultät

$$n! = \prod_{i=1}^{n} i$$

Rekursionsvorschrift: $n \rightsquigarrow n-1$

$$n! = n * \prod_{i=1}^{n-1} i = n * (n-1)!$$

- ▶ links: n! hängt von n ab
- ▶ rechts: (n-1)! hängt nur von n-1 ab

Um die Rekursion vollständig zu definieren, benötigen wir einen *Basisfall*. Wann können wir also die Rekursion der Fakultät abbrechen?

$$0!=1 \qquad 1!=1 \qquad 2!=2 \qquad \cdots$$

 \Rightarrow Welcher Basisfall ist sinnvoll? 0! = 1

AUFGABE 2A - LÖSUNG

```
fac :: Int -> Int
fac 0 = 1
fac n = n * fac (n-1)
```

Hinweis: In der Musterlösung werden noch undefined-Fälle angegeben. Das ist für uns erst einmal optional, aber natürlich schöner.

CONDITIONALS

Um Bedingungen zu testen, gibt es die Möglichkeit auf if-then-else zu verzichten und sogenannte *guards* mit *pipes* zu verwenden. Das sieht dann wieder so aus, wie eine geschweifte Klammer in mathematischen Fallunterscheidungen.

$$h(x) = \begin{cases} x^2 & \text{für } x < 0 \\ 0.5 * x & \text{für } x \ge 0 \end{cases}$$

CONDITIONALS

Um Bedingungen zu testen, gibt es die Möglichkeit auf if-then-else zu verzichten und sogenannte *guards* mit *pipes* zu verwenden. Das sieht dann wieder so aus, wie eine geschweifte Klammer in mathematischen Fallunterscheidungen.

$$h(x) = \begin{cases} x^2 & \text{für } x < 0\\ 0.5 * x & \text{für } x \ge 0 \text{ sonst} \end{cases}$$

```
h :: Int -> Int
h x
| x < 0 = x^2
| otherwise = 0.5 * x
```

Wie auch in Mathe sollte man bei gegensätzlichen Bedingungen ein "sonst" bzw. otherwise verwenden.

AUFGABE 2B — SUMMIERTE FAKULTÄTEN (1)

$$f(n,m) = \sum_{i=0}^{m} i!$$

$$\sum_{i=1}^{m} i! = \frac{m!}{i!} + \sum_{i=1}^{m-1} i! = \sum_{i=0}^{m} i!$$

$$\begin{array}{cccc}
n & m \\
\sum_{i=n}^{n-1} & = 0 & f(n,m) = 0 \\
i & & & & & & \\
\end{array}$$

AUFGABE 2B — SUMMIERTE FAKULTÄTEN (1)

$$f(n,m)=\sum_{i=n}^m i!$$

Rekursionsfall:

$$f(n,m) = \sum_{i=n}^{m} i! = m! + \sum_{i=n}^{m-1} i! = m! + f(n,m-1)$$

▶ Basisfall: f(n, m) = 0 für n > m

AUFGABE 2B — SUMMIERTE FAKULTÄTEN (1)

$$f(n,m)=\sum_{i=n}^m i!$$

► Rekursionsfall:

$$f(n,m) = \sum_{i=n}^{m} i! = m! + \sum_{i=n}^{m-1} i! = m! + f(n,m-1)$$

▶ Basisfall: f(n,m) = 0 für n > m

Lösung:

AUFGABE 2B — SUMMIERTE FAKULTÄTEN (2)

$$f(n,m)=\sum_{i=n}^m i!$$

AUFGABE 2B — SUMMIERTE FAKULTÄTEN (2)

$$f(n,m)=\sum_{i=n}^m i!$$

► Rekursionsfall:

$$f(n,m) = \sum_{i=n}^{m} i! = n! + \sum_{i=n+1}^{m} i! = n! + f(n+1,m)$$

► Basisfall: f(n, m) = 0 für n > m

AUFGABE 2B — SUMMIERTE FAKULTÄTEN (2)

$$f(n,m)=\sum_{i=n}^m i!$$

► Rekursionsfall:

$$f(n,m) = \sum_{i=n}^{m} i! = n! + \sum_{i=n+1}^{m} i! = n! + f(n+1,m)$$

► Basisfall: f(n, m) = 0 für n > m

Lösung:

Aufgabe 3

AUFGABE 3 – FIBONACCI-ZAHLEN

$$f_n := \begin{cases} 1 & \text{falls } n = 0 \\ 1 & \text{falls } n = 1 \end{cases}$$
 for $f_n := \begin{cases} 1 & \text{falls } n = 0 \\ 1 & \text{falls } n = 1 \end{cases}$ for $f_n := \begin{cases} 1 & \text{falls } n = 0 \\ 1 & \text{falls } n = 1 \end{cases}$ for $f_n := \begin{cases} 1 & \text{falls } n = 0 \\ 1 & \text{falls } n = 1 \end{cases}$

AUFGABE 3 – FIBONACCI-ZAHLEN

$$f_n := \begin{cases} 1 & \text{falls } n = 0 \\ 1 & \text{falls } n = 1 \\ f_{n-1} + f_{n-2} & \text{sonst} \end{cases}$$

 \Rightarrow Rekursionsvorschrift schon gegeben.

Verfahren ohne Rekursion.

AUFGABE 3 – FIBONACCI-ZAHLEN

$$f_n := \begin{cases} 1 & \text{falls } n = 0 \\ 1 & \text{falls } n = 1 \\ f_{n-1} + f_{n-2} & \text{sonst} \end{cases}$$

⇒ Rekursionsvorschrift schon gegeben.

Verfahren ohne Rekursion.

Explizite Formel.

$$f_n = \frac{\Phi^n - \left(-\frac{1}{\Phi}\right)^n}{\sqrt{5}} \text{mit} \Phi = \frac{1 + \sqrt{5}}{2}$$

AUFGABE 3 – LÖSUNG

```
fib :: Int -> Int
fib 0 = 1
fib 1 = 1
fib n = fib (n-1) + fib (n-2)
```

```
fib' :: Int -> Int
fib' n = fib_help 1 1 n

fib_help :: Int -> Int -> Int
fib_help x _ 0 = x
fib_help x y n = fib_help y (x+y) (n-1)
```

