## Multilayer Perceptron (MLP)

Rowel Atienza

rowel@eee.upd.edu.ph

University of the Philippines

Updated: 19 Sept 2020

## Problem Definition (Supervised Learning)

Given a dataset  $\mathcal{D} = (x, y)$ , find a function  $f: x \in \mathbb{R}^N \to y \in \mathbb{R}^M$ 



$$\boldsymbol{x} \in \mathbb{R}^{28 \times 28 \times 1}$$

## What is $f(\cdot)$ ?

 $f(\cdot)$  is generally a non-linear function that maps an input distribution  $x \sim p(x)$  to an output distribution y = p(y|x):

$$y = f(x) = p(y|x)$$

 $f(\cdot)$  is an estimator of density p(y|x)

## **General Function Approximator**

Theorem: Any function  $f(\cdot)$  can be approximated by a composition of several smaller functions  $f_i$ :

$$\mathbf{y} = f(\mathbf{x}) \approx f_n \circ f_{n-1} \circ f_{n-2} \circ \cdots \circ f_1 (\mathbf{x})$$

$$\exists f_0 = x, n \in \mathbb{Z}$$

# $f_i$ : Dense Layer (tf.keras) or Fully-Connected Layer (PyTorch)

$$f_i(f_{i-1}; \theta_{i-1}) = \sigma_i(W_{i-1}f_{i-1} + b_{i-1})$$



Weights:  $W = \{W_0, W_1, ..., W_{n-1}\}$  Biases:  $b = \{b_0, b_1, ..., b_{n-1}\}$ 

Weights, Biases := Parameters:  $\theta = \{\theta_0, \theta_1, ..., \theta_{n-1}\}$   $\theta_{i-1} = \{W_{i-1}, b_{i-1}\}$ 

Activation function:  $\sigma(\cdot)$ 

## MLP: Function Approximator Implementation



$$\mathbf{y} = f(\mathbf{x}) \approx f_n \circ f_{n-1} \circ f_{n-2} \circ \cdots \circ f_1(\mathbf{x})$$
  
 $\exists f_0 = \mathbf{x}, n \in \mathbb{Z}$ 

## Input Layer $b_{00}$ $b_{10}$ Flatten $\chi_1$ $\boldsymbol{x} \in \mathbb{R}^N \ or \ \boldsymbol{x} \in \mathbb{R}^4$ $k \in \mathbb{Z}$ $f_1(\mathbf{x};\;\boldsymbol{\theta}_0) = \sigma_1(\mathbf{W}_0\mathbf{x} + \boldsymbol{b}_0)$ $f_1(\mathbf{x}; \; \boldsymbol{\theta}_0) = \sigma_1 \left( \begin{bmatrix} W_{00} & \cdots & W_{03} \\ \vdots & \ddots & \vdots \\ W_{k0} & \cdots & W_{k3} \end{bmatrix} \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} b_{00} \\ \vdots \\ b_{k0} \end{bmatrix} \right)$ $b_{k0}$

Perceptron



$$f_{i}(f_{i-1}; \boldsymbol{\theta}_{i-1}) = \sigma_{i} \begin{pmatrix} \begin{bmatrix} W_{00} & \cdots & W_{0k} \\ \vdots & \ddots & \vdots \\ W_{j0} & \cdots & W_{jk} \end{bmatrix} \begin{bmatrix} f_{0(i-1)} \\ f_{1(i-1)} \\ \vdots \\ f_{k(i-1)} \end{bmatrix} + \begin{bmatrix} b_{0(i-1)} \\ \vdots \\ b_{j(i-1)} \end{bmatrix} \end{pmatrix}$$



$$f_{n}(f_{n-1}; \boldsymbol{\theta}_{n-1}) = \sigma_{n} \left( \begin{bmatrix} W_{00} & \cdots & W_{0j} \\ \vdots & \ddots & \vdots \\ W_{M0} & \cdots & W_{Mj} \end{bmatrix} \begin{bmatrix} f_{0(n-1)} \\ f_{1(n-1)} \\ \vdots \\ f_{j(n-1)} \end{bmatrix} + \begin{bmatrix} b_{0(n-1)} \\ \vdots \\ b_{M(n-1)} \end{bmatrix} \right)$$

#### Identity or Linear:

$$\sigma(x) = x$$

**Rectified Linear Unit:** 

$$\sigma(x) = ReLU(x) = \begin{cases} 0, & x < 0 \\ x, & x \ge 0 \end{cases}$$



### Sigmoid:

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$



Logistic Sigmoid Function



Hyperbolic tangent:

$$\sigma(x) = \tanh x$$

Softplus:

$$\sigma(x) = \ln(1 + e^x)$$







 $\begin{bmatrix} 2.5 \\ 1.5 \\ -1.0 \end{bmatrix} \qquad \sigma_n \begin{pmatrix} \begin{bmatrix} f_{0n} \\ f_{1n} \\ f_{3n} \end{bmatrix} \end{pmatrix} = softmax \begin{pmatrix} \begin{bmatrix} 2.5 \\ 1.5 \\ -1.0 \end{bmatrix} \end{pmatrix} = \begin{bmatrix} 0.71527 \\ 0.26313 \\ 0.02160 \end{bmatrix}$ 

Sum is 1.0

#### Which activation to use?

#### **Input and Hidden Layers**

*Linear* – recommended

ReLU - recommended

Softplus – complex, avoid!!!

#### **Output Layer**

*Linear* – Un-normalized Linear Regression

Sigmoid – Bernoulli Distribution, Normalized Linear Regression

Softmax – Logistic Regression

## How to learn $f(\cdot)$ from data?

Recall: Norms, Metrics, Distances from ML Objective is to reduce the distance of the prediction y = f(x) from the ground truth label  $\widetilde{y}$ This distance, norm, or metric is oftentimes called a **Loss Function** or an **Objective Function** 

| Loss<br>Function                        | Equation                                                                                   |
|-----------------------------------------|--------------------------------------------------------------------------------------------|
| Mean<br>Squared<br>Error (MSE)          | $\frac{1}{categories} \sum_{i=1}^{categories} (y_i^{label} - y_i^{prediction})^2$          |
| Mean<br>Absolute<br>Error (MAE)         | $rac{1}{categories} \sum_{i=1}^{categories} \left  y_i^{label} - y_i^{prediction}  ight $ |
| Categorical<br>Cross<br>Entropy<br>(CE) | $-\sum_{i=1}^{categories} y_i^{label} \log y_i^{prediction}$                               |
| Binary<br>Cross<br>Entropy<br>(BCE)     | $-y_1^{label} \log y_1^{prediction} - \ ig(1-y_1^{label}ig) \logig(1-y_1^{prediction}ig)$  |

## Optimization

Given the dataset  $\mathcal{D} = (x, y) = (\widetilde{x}, \widetilde{y}) = \{(\widetilde{x}_{train}, \widetilde{y}_{train}), (\widetilde{x}_{test}, \widetilde{y}_{test})\} = \{\mathcal{D}_{train}, \mathcal{D}_{test}\}$ , we minimize the loss function on  $\mathcal{D}_{train}$  and we measure the performance on  $\mathcal{D}_{test}$ 

Optimization Algorithm: Stochastic Gradient Descent (SGD)

Variants of SGD: Adam, RMSprop

## SGD Optimization Recipe

Initialize all weights by random values

Biases by zero or small positive values

Better initializers: Glorot, Uniform, Normal, LeCun, He

## Preprocessing of Data

#### Input

Normalize such that  $x_i \in [0., 1.]$ 

Adjust such that inputs has zero mean and unit variance

#### Output

In logistic regression, convert all labels to one-vectors

Example: In MNIST, digit 8 label is  $\tilde{y} = [0,0,0,0,0,0,0,1,0,0]^T$ 

In linear regression, normalize outputs such that such that  $y_i \in [0., 1.]$  or such that  $y_i \in [-1., 1.]$ 

## Hyper-parameters

#### **Tunable network parameters**

Depth or value of n in  $f_n$ 

Width values of k and j in the input and hidden layers

#### **Tunable training parameters**

Learning rate

Learning rate scheduler

Batch size, Epochs

Optimization algorithm

## In Summary

MLP is an implementation of the general function approximator

MLP is made of layers as building blocks

Design choices such as hyperparameters, activation functions, etc



Left: A schematic showing how deep neural networks induce simple input / output maps as they become infinitely wide. Right: As the width of a neural network increases, we see that the distribution of outputs over different random instantiations of the network becomes Gaussian.

https://ai.googleblog.com/2020/03/fast-and-easy-infinitely-wide-networks.html