Practice Problems 9

• Uniform convergence We say that a sequence of functions $\{f_n\}$, n = 1, 2, 3, ..., converges uniformly on E to a function f if for every $\epsilon > 0$ there is an integer N such that $n \geq N$ implies

$$|f_n(x) - f(x)| \le \epsilon \tag{1}$$

for all $x \in E$, i.e. $\sup_{x \in E} |f_n(x) - f(x)| \le \epsilon$

- It is clear that every unifromly convergnet sequence is pointwise convergent. Quite explicitly, the difference between the two concepts is this: If $\{f_n\}$ converges pointwise on E, then there exists a function f such that, for every $\epsilon > 0$, and for every $x \in E$, there is an integer N, depending on ϵ and on x, such that (1) holds if $n \geq N$; if $\{f_n\}$ converges uniformly on E, it is possible, for each $\epsilon > 0$, to find one integer N which will do for all $x \in E$.
 - 1. Show that the sequence of functions f_n with $f_n:[0,1]\to[0,1]$ defined by $f_n(x)=x^n$ converges to a function f pointwise but not uniformly where f is given as

$$f(x) = \left\{ \begin{array}{ll} 0, & \text{if } 0 \le x < 1 \\ 1, & \text{for } x = 1 \end{array} \right\}$$

2. Let

$$f_n(x) = \begin{cases} 0, & \text{if } x < \frac{1}{n+1} \\ \sin^2 \frac{\pi}{x}, & \text{if } \frac{1}{n+1} \le x \le \frac{1}{n} \\ 0, & \text{if } \frac{1}{n} < x \end{cases}$$

Show that $\{f_n\}$ converges to a continuous function, but not uniformly.

- Supporting Hyperplane Theoem Let $A \subset \mathbb{R}^n$ be a convex set. Then we can find a $p \in \mathbb{R}^n, \gamma \in \mathbb{R}$ such that $p \cdot a \leq \gamma$ and $p \cdot a_0 = \gamma \forall a \in A$ and a_0 at the boundary of A.
 - 3. Show that there is a solution to the problem of minimizing the function $f: \mathbb{R}^2_+ \to \mathbb{R}$, with f(x,y) = x + y on the space $xy \geq 2$.
 - 4. Show that there is a vector $p \in R^2$ such that for given $(x_0, y_0) = (\sqrt{2}, \sqrt{2}), p \cdot (x_0, y_0) \le p \cdot (x, y)$ for all $(x, y) \in \{(x, y) | xy \ge 2\}$. Can you derive p?
 - 5. Show that there is a vector $p \in R^2$ such that for given $(x_0, y_0) = (\sqrt{2}, \sqrt{2}), p \cdot (x_0, y_0) \ge p \cdot (x, y)$ for all $(x, y) \in \{(x, y) | x^2 + y^2 \le 4, x, y \ge 0\}$. Can you derive p?
- Linear Programming (Duality)

Primal Problem) Max
$$c \cdot x \, s.t. \, A \cdot x \leq b$$
,
Dual Problem) Min $b \cdot y \, s.t. \, A \cdot y \geq c$

• Quasi-linear Utility

- 4. Christian, a consumer of x-rays and yachts has utility $u(x, y) = \log(x) + y$. The prices of the goods are p_x and 1, and she has a budget of m. Assume that consumption of x and y must be non-negative.
 - (a) For what values of m is one or more of the non-negative constrains active? In this range use the envelope theorem to find the change in utility with an increase in m.
 - (b) How does your answer above changes, when the non-negative constrains are not active