Can the suicidal intentions of young people be predicted using the language analysis of Reddit posts?

I. Problem Description

The dataset is "Reddit dataset for Multi-task NLP" on Kaggle with 226953 samples.

1. Summary of input data and output data

Input features for four models (KNN, Logistic Regression, SGD, and RNN) are word embeddings derived from the preprocessed textual data. The models learn from these embeddings to perform the binary classification task (suicidal or non-suicidal) on new, unseen text data. The output of each model is the predicted label for each input instance, which indicates whether the text is classified as suicidal (1) or non-suicidal (0).

2. Attributes of key features for analysis/prediction

Model	Key features
K-Nearest Neighbors (KNN)	 The prediction for a data point is based on the majority class of its K nearest neighbors. Key features are words that are commonly present in the posts of the K nearest neighbors.
Logistic Regression (LR)	 LR coefficients represent the weight assigned to each feature (word) in predicting the output. Key features are words with higher absolute weights
Stochastic Gradient Descent (SGD) Classifier	 SGD assigns weights to each feature (word) based on their importance in predicting the output. Key features are words with higher absolute weights
Recursive Neural Network (RNN)	 RNN uses the attention mechanism to indicate the relevance of each word to the final prediction. Key features are words with higher attention weights

Table 1: Data features and description

II. Data Preprocessing

Data preprocessing cleans and standardizes the text data, remove noise, handle missing values, and convert text into numerical representations using word embeddings.

1. Imputation

The 'Post' column in the dataset contains missing values. These missing values are filled with the string 'default_text' to ensure all instances have valid data.

2. Feature removal

re.sub('[^a-z]±', ' ', phrase, flags	Remove all non-alphabetic characters,
= re.IGNORECASE)	keeping only alphabetic characters in
	lowercase: focus solely on the semantic meaning of words
<u>re.sub('(\s+)', ' ', phrase)</u>	Replace extra whitespaces with a single
	whitespace: ensure uniformity and
	consistency in the text data, preventing
	issues with tokenization and word
	embeddings
re.sub('http\S+', ' ', phrase)	Remove URLs: eliminate non-essential
	information
lower()	Convert the text to lowercase: preventing
	case-specific distinctions in language
list(stopwords.words()) +	Remove stop words: reduce noise and
['filler']	unnecessary words that do not carry
	significant meaning

Table 2: Feature removal processing and description

3. Pre-processing transformations

- Word embedding and word averaging: Pre-trained FastText model converts a sequence of words into a fixed-size vector. It calculates the mean vector of all word vectors in a text to obtain a single vector representation for the input text. The advantage of this step is capture the overall context and semantics of the text by considering the combined influence of all the words present in the text, rather than just focusing on individual words.
- Tokenization: When tokenizing text with NLTK library, the input text is split into separate words, removing any punctuation, special characters, or spaces.

III. Model Selection

Table 3 and 4 figure out the strengths and weaknesses of each model. Overall, KNN and Logistic Regression are classic models known for their simplicity and effectiveness, making them suitable for the initial exploration of the data. SCD classifier works better with non-linear relationship in the data compared to KNN and Logistic Regression. The RNN model, on the other hand, is a more sophisticated approach that can effectively capture the contextual information present in text data.

Model	Strength	Weakness
K-Nearest Neighbors	- KNN is one of the simplest	- KNN needs to compute
(KNN)	algorithms and easy to	distances to all data points in the
	understand.	training set, making it time-
	- KNN does not assume any	consuming for large datasets.
	specific data distribution, and	- KNN can be affected by
	not requiring complex	noisy data points and boundaries
	preprocessing.	of classes, leading to inaccurate
		classification decisions.
Logistic Regression	- LR is simple and easy to	- LR cannot handle complex
(LR)	implement. It does not require	and nonlinear relationships
	many computational resources,	between features and the output,
	saving time in training and	leading to inaccurate
	often gives good results for	predictions.
	binary classification tasks.	- Outliers can significantly
	- LR provides coefficients for	affect the LR model, reducing
	each feature, helping	its stability and generalization
	understand the impact of each	ability.
	feature on the classification	
	result.	

Table 3: Comparison of strength and weakness of KNN and logistic regression

1	T a	4
Model	Strength	Weakness
Stochastic Gradient	- SGD is an optimization	SGD model cannot capture or
Descent (SGD)	algorithm that updates model	mimic sequential relationships in
Classifier	weights based on individual	text data as an RNN model does,
	data points quickly and work	resulting in missing relevant
	on large datasets with good	contextual information and word
	performance.	order within sentences or text.
	SGD can handle non-linear	
	relationships between features	
	and the output.	
Recursive Neural	- RNN handles sequential	RNN requires large and diverse
Network (RNN)	data like text and retain	data to effectively learn complex
	information from previous	patterns. Insufficient or
	parts and use it to predict the	insufficiently diverse data can
	next parts, capturing the	lead to overfitting.
	sequential relationship	
	between words or sentences,	
	the meaning of words in the	
	context of suicide texts.	
	- RNN learns complex	
	patterns in data, especially	
	when there are long-term	
	dependencies between words	
	or sentences in the text.	

Table 4: Comparison of strength and weakness of SGD classifier and RNN

IV. Model Refinement

1. Feature engineering

The FastText pre-trained word embeddings converts the text data into numerical vectors and the word averaging technique to calculate the mean of word embeddings for each text post.

2. Sample splitting

- Training Set: 60% of the original data (used for training the model).
- Validation Set: 20% of the original data (used for hyperparameter tuning and model evaluation during training).
- Test Set: 20% of the original data (used for final evaluation of the trained model's performance).

3. Hyperparameter adjusting

Model	Hyperparameters		
K-Nearest	- "n neighbors" in [3, 5, 7, 10]: the number of neighbors		
Neighbors (KNN)	- "weights" in ['uniform', 'distance']: test the contribution of		
	members of the neighborhood via different weightings (weights)		
Logistic	- "c" in [0.001, 0.01, 0.1, 1, 10, 100]: control the amount of		
Regression	regularization applied to the model		
	- "solver" in ['newton-cg', 'lbfgs', 'liblinear', 'sag', 'saga']:		
	determine the optimization algorithm		
Stochastic Gradient	- "alpha" in [0.000001, 0.00001, 0.0001, 0.001, 0.01]: the learning		
Descent (SGD)	rate towards the optimal solution		
Classifier	- "penalty" in ['12', '11', 'elasticnet']: the type of regularization		
Recursive Neural	- Dense Layer Size: a dense layer with 64 neurons		
Network (RNN)	- Activation function: <u>ReLU</u> introduces non-linearity and helps the		
	model learn complex relationships between input and output. The		
	model uses a binary classification setup, so a single neuron with		
	sigmoid activation is used for the output layer.		
	- Dropout rate: 0.5 (50% of the neurons will be randomly dropped		
	out during training)		
	- Epochs and batch size: 100 epochs with a batch size of 32		
	- Early stopping <u>callback</u> : the training will stop and restore the		
	weights with the best validation score after 5 consecutive epochs not		
	improved		

Table 5: Hyperparameters of the models and description

4. Model building and cross-validation

- GridSearchCV is the hyperparameter tuning method for KNN, logistic regression and SGD.
- GridSearchCV performs 5-fold cross-validation to find the best combination of hyperparameters that optimize the model's performance.
- Training an RNN model with GridSearchCV is computationally intensive and time-consuming. Instead, we manually choose specific hyperparameters and use KFold cross validation for the RNN model.

5. Evaluation

 Recall metric is used as evaluation metrics to measure the model's overall performance and its ability to correctly classify both classes (suicidal and nonsuicidal).

6. Model refinement

- Text preprocessing: experiment using lemmatization and stemming
- Word embedding models: use different models like Word2Vec, GloVe
- Hyperparameter adjusting:
 - + K-Nearest Neighbors (KNN): Add "metric" in ['euclidean', 'manhattan', 'minkowski'] to test different distance metrics (metric) for choosing the composition of the neighborhood
 - + Logistic regression: Try different regularization techniques "penalty" in ['none', '11', '12', 'elasticnet'] to work with parameter "c"
 - + SGD: try different learning rate schedules (e.g., 'constant', 'adaptive')
 - + RNN: try different dropout rate at 0.2, add more layers and use the hyperparameter tuning method
- Evaluation metrics: consider the balanced precision and recall trade-off

V. Performance Description

For four models, the evaluation metric used is the "Recall" metric. Recall is the proportion of actual positive cases correctly identified by the model out of all true positive cases.

Recall is an essential metric for the task of suicide risk prediction because it measures the model's ability to correctly identify individuals who are actually at risk of suicide. Maximizing recall ensures that the model can detect positive cases (individuals at risk) and minimizes the risk of missing potential suicide cases.

The model that achieves the highest recall on the test set is considered the best performing model. However, achieving high recall might come at the cost of reduced precision, as the model may be more prone to making false positive predictions, so we must consider the balanced precision and recall trade-off to fairly compare chosen models.

VI. Results Interpretation

K-Nearest Neighbors (KNN)	<pre>Best Recall: 0.826203 using {'n_neighbors': 10, 'wei ghts': 'uniform'}</pre>
Logistic Regression	<pre>Best Recall: 0.896724 using {'C': 100, 'solver': 'ne wton-cg'}</pre>
Stochastic Gradient Descent (SGD) Classifier	Best Recall: 0.897947 using {'alpha': 1e-05, 'penalt y': '11'}
Recursive Neural Network (RNN)	<pre>Recall: 91.71% using {'Dense': (64, input shape=(300,), 'Activation': 'relu', 'Dropout': 0.5, 'Dense': (1, activation=' sigmoid'), 'loss': 'binary crossentropy', 'optimi zer': 'adam', 'early stopping'}</pre>

Table 6: Recall scores of the models with the best parameters

Based on the recall metric, the RNN model is the most appropriate for selection because it has the highest recall score outperforming the other models in correctly identifying individuals at risk of suicide.

Hyperparameters including a single hidden layer containing 64 neurons using the ReLU activation function, the sigmoid activation for the output layer, a dropout rate of 0.5, 100 epochs with a batch size of 32 are good choices for RNN.

About intrinsic model qualities, RNN effectively captures the sequential nature of textual data, the context and meaning of words in a sentence to understand the nuances of language used in suicide-related posts and identify signs of suicide risk accurately.

Based on the precision score from the classification reports (figure 1 and 2), RNN is still the most appropriate choice. It achieves the highest recall score while maintaining a balanced precision and recall trade-off.

KNN				
	precision	recall	f1-score	support
0	0.94	0.70	0.80	22684
1	0.76	0.96	0.85	22707
accuracy			0.83	45391
macro avg	0.85	0.83	0.83	45391
weighted avg	0.85	0.83	0.83	45391
Logistic Regr	ession			
	precision	recall	f1-score	support
0	0.91	0.88	0.90	22684
1	0.89	0.92	0.90	22707
accuracy			0.90	45391
macro avg	0.90	0.90	0.90	45391
weighted avg	0.90	0.90	0.90	45391

Figure 1: Classification reports of KNN and logistic regression

SGD Classifie	er			_
	precision	recall	f1-score	support
	0.01	0.00	0.00	22604
0	0.91	0.89	0.90	22684
1	0.89	0.91	0.90	22707
accuracy			0.90	45391
macro avg	0.90	0.90	0.90	45391
weighted avg	0.90	0.90	0.90	45391

RNN				
	precision	recall	f1-score	support
0	0.91	0.93	0.92	22684
1	0.93	0.91	0.92	22707
accuracy			0.92	45391
macro avg	0.92	0.92	0.92	45391
weighted avg	0.92	0.92	0.92	45391

Figure 2: Classification reports of SGD classifier and RNN

Reference list:

- 1. Goyal, A 2021, *Reddit dataset for Multi-task NLP*, kaggle, 21 June, viewed 12 June 2023, https://www.kaggle.com/datasets/amangoyl/reddit-dataset-for-multi-task-nlp?select=Dataset_Suicidal_Sentiment.csv.
- 2. Komati, N 2021, *Suicide and Depression Detection*, kaggle, 19 May, viewed 12 June 2023, https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch.
- 3. Yadhu, A 2022, *Predicting Suicide and Word Analysis*, kaggle, 2 July, viewed 4 July 2023, https://www.kaggle.com/code/yadhua/predicting-suicide-and-word-analysis.