Aprendizaje por refuerzo

Bandits

Antonio Manjavacas Lucas

manjavacas@ugr.es

Índice

- 1. Bandits
- 2. Exploración vs. explotación
- 3. Estimación de action-values
- 4. Cálculo incremental de action-values
- 5. Valores iniciales
- 6. Upper-confidence-bound
- 7. Trabajo propuesto

Motivación

• Ya conocemos las diferencias entre aprendizaje instructivo y evaluativo.

Motivación

- Ya conocemos las diferencias entre aprendizaje instructivo y evaluativo.
- También hemos visto que el aprendizaje evaluativo es la base del aprendizaje por refuerzo.

Motivación

- Ya conocemos las diferencias entre aprendizaje instructivo y evaluativo.
- También hemos visto que el aprendizaje evaluativo es la base del aprendizaje por refuerzo.

OBJETIVO: profundizar sobre el *aprendizaje evaluativo* en un entorno simplificado, en el cual no es necesario aprender a actuar en más de una situación.

- Es una simplificación de los problemas de reinforcement learning completos.
- Esto nos permitirá introducir algunos conceptos básicos.

Bandits

Entornos no asociativos

- Los problemas de RL pueden entenderse como problemas de toma de decisiones.
 - Un agente recibe información del entorno y decide qué acción realizar.
- En un problema de RL **completo**, consideramos múltiples estados, así como diferentes acciones a realizar dependiendo de qué estado perciba el agente.
 - Las acciones pueden afectar el estado del entorno y, por tanto, influir en las recompensas futuras.
- Antes de abordar problemas de RL complejos, estudiaremos un problema simplificado donde el concepto de *estado* no es tan relevante, y únicamente se tienen en cuenta las *acciones* a realizar por el agente.
 - ▶ Es lo que llamos un entorno no asociativo.

Bandits

- K-armed bandits, también llamado multi-armed bandit problem o "problema de las tragaperras multi-brazo" (3).
- Problema clásico en RL y teoría de la probabilidad.
- Extrapolable a campos tan variados como ensayos clínicos, gestión empresarial, economía, marketing...
- Existen muchas variantes, pero nos centraremos en la versión más básica del problema.

Armed bandit

Tenemos un número arbitrario (K) de máquinas tragaperras.

- En cada instante de tiempo t, accionamos una máquina y recibimos una recompensa (\otimes).
- Cada máquina puede comportarse de forma diferente.
- Desconocemos la distribución de recompensas de cada máquina.

OBJETIVO: obtener la mayor cantidad de dinero posible (recompensa acumulada).

3-armed bandits

$$b_1 : \mu = 10, \sigma = 2$$

 $b_2 : \mu = 10, \sigma = 4$
 $b_3 : \mu = 7, \sigma = 2$

Distribuciones de recompensas: medias y desviaciones típicas

Buscamos maximizar la recompensa acumulada concentrando nuestras acciones en las mejores acciones.

- Las recompensas medias de b_1 y b_2 son similares. No obstante, b_2 es más conservador (menor $\sigma \to \text{valores más}$ próximos a la media).
- Jugar b_2 es más arriesgado (mayor σ), porque puede darnos mejores recompensas que b_2 y b_3 , pero también recompensas mucho peores.
- Jugar b₃ no parece una buena idea...

Espacio de acciones:

$$\mathcal{A} = \left\{ a_1, a_2, a_3 \right\}$$

Espacio de acciones:

$$A = \{a_1, a_2, a_3\}$$

El valor de una acción (action-value) es la recompensa que esperamos obtener al realizarla:

$$q_*(a) = \mathbb{E}[R_t \mid A_t = a]$$

El valor de una acción (action-value) es la recompensa que esperamos obtener al realizarla:

$$q_*(a) = \mathbb{E}[R_t \mid A_t = a]$$
Valor de la acción

Recompensa esperada al realizar dicha acción

E representa el valor esperado:

$$\mathbb{E}(x) = \sum x P(X = x)$$

- Suma ponderada de los posibles valores de x por sus probabilidades.
- Relevante en problemas estocásticos donde R, viene dada por una distribución de probabilidad.

Problemas deteministas y estocásticos

Problema determinista

Toda acción $a \in A$ siempre tiene las mismas consecuencias.

Problema estocástico

Realizar una acción $a \in A$ puede conducirnos a diferentes recompensas o estados a partir de situaciones similares.

Si desarrollamos la fórmula:

$$q_*(a) = \mathbb{E}[R_t \mid A_t = a] = \sum_r r p(r|a)$$

Si desarrollamos la fórmula:

$$q_*(a) = \mathbb{E}[R_t \mid A_t = a] = \sum_r r \, p(r|a)$$

Suma ponderada de las recompensas por sus probabilidades

$$q_*(a) = 0 \cdot 0.25 + 10 \cdot 0.25 + \cdot (-1) \cdot 0.5$$

= 0 + 2.5 - 0.5 = **2**

Como, a priori, no conocemos los valores reales de cada acción, consideramos valores estimados:

$$Q_t(a) \approx q_*(a)$$

Estos valores se irán aproximando a los reales a medida que ampliemos nuestra **experiencia**.

Pero...

¿Cómo aproximamos progresivamente los valores de las acciones?

Consideremos el siguiente caso:

- Tenemos 3 bandits y, por tanto, 3 posibles acciones.
- Inicialmente, desconocemos el valor de cada acción: $q_*(a) = 0, \forall a \in A$.
- Por tanto, comenzamos eligiendo una acción arbitraria. Es decir, exploramos.

- El agente elige a_1 y recibe una recompensa r_1 = 1.
- Posteriormente, convendrá explorar a_2 y a_3 para comprobar si son mejores opciones.

Explorar implica sacrificar recompensas inmediatas conocidas para probar alternativas hasta el momento no contempladas.

Esta inversión podría llevarnos a obtener mayores recompensas *a largo plazo*.

- Es una idea similar a elegir entre un **restaurante** de confianza o uno que no has visitado nunca...
- ...o entre tu género de **películas** favorito y otro que no sueles ver... 🙈
- ...o entre un **producto** que sueles comprar y otro que podría interesarte... 📜

¿Intuyes las posibles aplicaciones?

- Es una idea similar a elegir entre un **restaurante** de confianza o uno que no has visitado nunca...
- ...o entre tu género de **películas** favorito y otro que no sueles ver... 🕾
- ...o entre un **producto** que sueles comprar y otro que podría interesarte... 💘

¿Intuyes las posibles aplicaciones?

• El agente elige a_2 y recibe una recompensa r_2 = 10.

• El agente elige a_3 y recibe una recompensa r_3 = 5.

En t = 3 hemos realizado todas las acciones posibles y recibidas sus correspondientes recompensas.

A partir de aquí podemos:

- a) Actuar de forma *greedy* ("voraz"), explotando indefinidamente la mejor acción (a_2) .
- **b)** Mantener un comportamiento aleatorio, **explorando** continuamente las distribuciones de recompensa asociadas a cada acción.

No es posible **explorar** y **explotar** a la vez, lo que conduce a un **conflicto**.

• Exploration-exploitation trade-off

Elegir una estrategia u otra dependerá de diferentes factores: incertidumbre, estimaciones, tiempo restante...

Trataremos de buscar un **balance** entre exploración y explotación, siguiendo un comportamiento ε -greedy.

arepsilon-greedyert

La estrategia ε -greedy consiste en:

- Explotar (ser greedy con respecto a la mejor acción) con probabilidad 1 – ε.
- Explorar (elegir una acción aleatoria) con probabilidad ε.

ε-greedy

- Para poder actuar de forma *greedy* necesitamos saber qué acción es la mejor.
- Pero una acción puede no darnos siempre la misma recompensa...

¿Cómo determinamos el valor de una acción?

Estimación de action-values

Estimación de action-values

Existen diferentes formas de estimar el valor de una acción.

Un método a considerar es la media muestral (sample-average method):

$$Q_t(a) = \frac{\sum_{i=1}^{t-1} R_{i,a}}{\sum_{i=1}^{t-1} n_{i,a}}$$

$$t \to \infty$$
, $Q_t(a) = q_*(a)$

- El valor estimado de una acción es la suma de las recompensas ofrecidas hasta el momento entre el número de veces que se ha elegido.
- Si t tiende a ∞ , el valor estimado $Q_t(a)$ convergerá en el valor real $q_*(a)$.

Acciones greedy

¿Cómo emplear el valor estimado para elegir una acción?

Selección de acciones greedy:

$$A_t = \operatorname{argmax}_a Q_t(a)$$

- · Seleccionar la acción con el mayor valor estimado.
- Si varias acciones tienen el mismo valor, podemos fijar un criterio (ej. selección aleatoria, la primera, etc.).

Acciones ε -greedy

¿Cómo emplear el valor estimado para elegir una acción?

 ε -greedy combina la estrategia greedy con la probabilidad ε de explorar:

$$A_t = \begin{cases} \operatorname{argmax}_a Q_t(a) & \text{con prob. } 1-\varepsilon \\ a \sim \operatorname{Uniform}(\{a_1, a_2, \dots a_k\}) & \text{con prob. } \varepsilon \end{cases}$$

- Cuanto menor sea ε , más tardaremos en converger en los valores reales.
- Es posible ir reduciendo ε con el paso del tiempo (a medida que los valores convergen).

Ejemplo

Consideremos el espacio de acciones: $A = \{a_1, a_2\}$

¿Cuál es la probabilidad de elegir a_2 siguiendo una estrategia ε -greedy con ε = 0.5?

Ejemplo

Consideremos el espacio de acciones: $A = \{a_1, a_2\}$

¿Cuál es la probabilidad de elegir a_2 siguiendo una estrategia ε -greedy con ε = 0.5?

$$P(a_2) = 0.5 \cdot 0.5 = \mathbf{0.25}$$

Ejemplo

Consideremos el espacio de acciones: $A = \{a_1, a_2\}$

¿Cuál es la probabilidad de elegir a_2 siguiendo una estrategia ε -greedy con ε = 0.5?

$$P(a_2) = \underbrace{0.5}_{\text{Probabilidad de explorar}} \cdot \underbrace{0.5}_{\text{Probabilidad de que la acción elegida sea } a_2} = 0.25$$

¿Qué método elegir?

Podemos asumir que la elección de un método u otro se realizará cuando todas las acciones hayan sido probadas, al menos, una vez.

- Si las recompensas son valores únicos (σ = 0), elegiremos siempre la acción con mejores resultados.
 - ► En este caso, *greedy* es mejor.

¿Qué método elegir?

Podemos asumir que la elección de un método u otro se realizará cuando todas las acciones hayan sido probadas, al menos, una vez.

- Si las recompensas son valores únicos (σ = 0), elegiremos siempre la acción con mejores resultados.
 - ► En este caso, *greedy* es mejor.
- Si las recompensas se corresponden con una distribución de probabilidad (σ > 0), nos interesa no perder la posibilidad de explorar.
 - Por tanto, es mejor ε-greedy.
 - ► Especialmente en problemas con noisier rewards → mayor varianza de las distribuciones.

No estacionareidad

Problema no estacionario

Decimos que un problema de decisión es no estacionario si las distribuciones de recompensa varían con el tiempo.

- Una acción, *a priori*, mala puede mejorar con el tiempo, y viceversa.
- Es un fenómeno muy común en aprendizaje por refuerzo.

En este tipo de problemas, la mejor estrategia es ε -greedy, porque nunca se descarta la posibilidad de explorar y, por tanto, de reaprender las distribuciones de recompensa.

Valor estimado de una acción

Previamente hemos propuesto estimar el valor de las acciones de la siguiente forma:

$$Q_t(a) = \frac{\sum_{i=1}^{t-1} R_{i,a}}{\sum_{i=1}^{t-1} n_{i,a}}$$

El problema de este cálculo es que requiere mantener en **memoria** todas las recompensas obtenidas para cada acción en el tiempo.

• En problemas con un gran espacio de acciones, o prolongados en el tiempo, este método es inviable en términos de escalabilidad.

SOLUCIÓN: cálculo incremental de la media.

Si desarrollamos la fórmula para el cálculo del *action-value* medio, podemos conseguir que este cálculo sea incremental.

No depende de todas las recompensas anteriores, sino únicamente del *action-value* actual y de la última recompensa obtenida.

$$Q_{n+1} = \frac{1}{n} \sum_{i=1}^{n} R_{i}$$

$$= \frac{1}{n} \left(R_{n} + \sum_{i=1}^{n-1} R_{i} \right)$$

$$= \frac{1}{n} \left(R_{n} + (n-1) \frac{1}{n-1} \sum_{i=1}^{n-1} R_{i} \right)$$

$$= \frac{1}{n} \left(R_{n} + (n-1)Q_{n} \right)$$

$$= \frac{1}{n} \left(R_{n} + nQ_{n} - Q_{n} \right)$$

$$= Q_{n} + \frac{1}{n} \left(R_{n} - Q_{n} \right)$$

$$Q_{n+1} = \frac{1}{n} \sum_{i=1}^{n} R_i = Q_n + \frac{1}{n} (R_n - Q_n)$$

Se trata de una regla de actualización incremental (incremental update rule) bastante frecuente en RL:

nuevoValor ← valorActual + stepSize(objetivo - valorActual)

O bien:

$$v_t \leftarrow v_t + \alpha [G_t - v_t], \ \alpha \in (0, 1]$$

$$Q(A) \leftarrow Q(A) + \frac{1}{N(A)} \cdot \begin{bmatrix} R - Q(A) \\ \text{objetivo} \end{bmatrix}$$
estimación actual
error de estimación

- El error de estimación se reduce a medida que las estimaciones se acercan al objetivo.
- Indica la diferencia entre la recompensa obtenida y el valor actual.
 - Determina cuánto nos hemos equivocado en nuestra estimación más reciente.

$$Q(A) \leftarrow Q(A) + \frac{1}{N(A)} \cdot \left[\begin{array}{c} R & - Q(A) \\ \text{objetivo} & \text{estimación} \\ \text{actual} \end{array} \right]$$

- El step-size pondera la importancia que damos al error de estimación.
 - Determina el peso de la nueva información recibida.
- Lo que hacemos es añadir un pequeño ajuste al valor anterior de la acción, que depende de la diferencia entre la recompensa obtenida y nuestra estimación anterior del valor de la acción.

Ejemplo: piedra, papel, tijeras

R = +1 si se gana R = 0 si se pierde o empata
$$\alpha = \frac{1}{N}$$

t	Yo	Rival	Recompensa	Actualización	Q(tijeras)
0	1	1	-	-	0
1			0	Q(tijeras) = 0 + 1(0 - 0)	0
2	0,0		+1	$Q(tijeras) = 0 + \frac{1}{2}(1 - 0)$	0.1
3	0,0		0	$Q(\text{tijeras}) = 0.5 + \frac{1}{3}(0 - 0.5)$	0.09
4	0,0	0,0	0	$Q(\text{tijeras}) = 0.335 + \frac{1}{4}(0 - 0.335)$	0.081
•••	•••	• • •	•••	•••	•••
N-1	-	-	-	-	0.33

Ejemplo: piedra, papel, tijeras

¿Y si variamos el step size? $\alpha = 0.1$

t	Yo	Rival	Recompensa	Actualización	Q(tijeras)
0	ı	ı	-	1	0
1	0,0		0	Q(tijeras) = 0 + 0.1 (0 - 0)	0
2	0,0		+1	Q(tijeras) = 0 + 0.1 (1 - 0)	0.5
3	0,0		0	Q(tijeras) = 0.5 + 0.1 (0 - 0.5)	0.335
4	0,0		0	Q(tijeras) = 0.335 + 0.1 (0 - 0.335)	0.25125
• • •	•••	• • •	•••	•••	•••
N-1	-	-	-	-	0.33

Elección del step size

La principal diferencia entre step sizes es la velocidad de convergencia:

• $\alpha = \frac{1}{N}$ supone una convergencia más lenta a medida que aumenta N. Esto provoca que actualizaciones más pequeñas y menos impactantes con el paso del tiempo.

Deseable si queremos dar más peso a las experiencias tempranas.

• Si se utiliza un step size constante, $\alpha \in (0,1]$, la estimación del action-value converge más rápido hacia su valor real, pero es más sensible a experiencias recientes.

Más efectivo cuando se desea dar más peso a las experiencias recientes.

Elección del step size

- En problemas estacionarios, los métodos basados en media muestral (average sampling) son apropiados, porque las distribuciones de probabilidad de las recompensas no varían con el tiempo.
 - Es decir, preferimos $\alpha = \frac{1}{N}$
- En problemas no estacionarios, es más importante dar mayor peso a las recompensas recientes.
 - ▶ Por tanto, optamos por $\alpha \in (0, 1]$

Elección del step size

Valores iniciales

Los métodos vistos hasta el momento dependen en gran medida de las estimaciones de los action-values iniciales.

Esto supone un sesgo (bias).

- En el método de la media muestral, si inicialmente todas las acciones tienen valor 0, habrá un sesgo hacia la primera acción de la que se obtenga una recompensa > 0.
- El sesgo desaparece una vez hemos seleccionado todas las acciones posibles.

En métodos con *step size* constante, el sesgo es permanente, aunque decrece con el tiempo:

$$Q_{n+1} = Q_n + \alpha [R_n - Q_n]$$

$$= (1 - \alpha)^n Q_1 + \sum_{i=1}^n \alpha (1 - \alpha)^{n-i} R_i$$

En métodos con *step size* constante, el sesgo es permanente, aunque decrece con el tiempo:

$$Q_{n+1} = Q_n + \alpha [R_n - Q_n]$$

$$= (1 - \alpha)^n Q_1 + \sum_{i=1}^n \alpha (1 - \alpha)^{n-i} R_i$$
A mayor número de experiencias pasadas (n) menor peso tienen las

recompensas anteriores

En la práctica, el sesgo no suele ser un problema y a veces puede resultar muy útil.

- Las estimaciones inciales pueden proporcionar conocimiento previo/experto sobre qué recompensas podemos esperar de cada acción.
- Un inconveniente es que estas estimaciones iniciales se convierten en un conjunto de parámetros que el usuario debe elegir, aunque por defecto pueden ser = 0.

Sesgo como apoyo a la exploración

Podemos utilizar el sesgo para guitar la exploración inicial de nuestro agente. Por ejemplo:

Se asignan falsos valores iniciales de +100 a cada acción, a pesar de que los valores reales estén en [-2, +2].

Se elige una acción en base a su valor estimado inicial. Podría ser la mejor, pero sigue siendo peor que los valores iniciales del resto de acciones.

De esta forma, se aprovecha el sesgo para favorecer naturalmente la **exploración** inicial de todas las acciones posibles.

Sesgo como apoyo a la exploración

Utilizamos el sesgo para provocar la exploración inicial de todas/algunas acciones.

Esto permite que incluso un método greedy explore.

- Se denomina optimistic greedy, porque emplea valores iniciales optimistas.
 - ightharpoonup Puede dar lugar a mejores resultados que un ε -greedy estándar.
- La principal limitación es que la exploración es simplemente inicial (disminuye con el tiempo hasta desaparecer).
 - Esto hace que no sea útil en problemas no estacionarios.

"The beginning of time occurs only once, and thus we should not focus on it too much".

🔚 Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction (2nd ed.). MIT press. (p. 35).

Exploración ε -greedy

 ε -greedy fuerza la seleccion de acciones non-greedy de forma indiscriminada:

$$A_{t} = \begin{cases} \operatorname{argmax}_{a} Q_{t}(a) & \text{con prob. 1-} \varepsilon \\ a \sim \operatorname{Uniform}(\{a_{1}, a_{2}, ... a_{k}\}) & \text{con prob. } \varepsilon \end{cases}$$

- Todas tienen la misma probabilidad.
- No hay preferencia por aquellas más cercanas al valor *greedy*, o aquellas menos visitadas/desconocidas.

Sería interesante explorar acciones *non-greedy* de acuerdo a su *potencial* para ser óptimas.

Exploración ε -greedy

Para decidir qué acción explorar, podemos considerar:

- A) La cercanía al valor máximo actual
- El valor de la acción greedy
- B) La incertidumbre en las estimaciones.
- Qué acciones se han realizado menos (n_i)

Si los combinamos...

La técnica del límite superior de confianza, o *Upper-confidence-bound* (UCB), nos permite balancear valor e incertidumbre a la hora de seleccionar acciones:

$$A_t = \operatorname{argmax}_a \left[Q_t(a) + c \sqrt{\frac{\ln t}{N_t(a)}} \right]$$

La técnica del límite superior de confianza, o *Upper-confidence-bound* (UCB), nos permite balancear valor e incertidumbre a la hora de seleccionar acciones:

$$A_t = \operatorname{argmax}_a \left[Q_t(a) + c \sqrt{\frac{\ln t}{N_t(a)}} \right]$$

- c > 0 controla cuánto explorar.
- $N_t(a)$ indica el número de seleccione sprevias de la acción a.
 - Si $N_t(a) = 0$, se considera a como la acción más preferible

$$A_{t} = \operatorname{argmax}_{a} \begin{bmatrix} Q_{t}(a) + c \sqrt{\frac{\ln t}{N_{t}(a)}} \\ valor \\ estimado \end{bmatrix}$$
 incertidumbre

La selección de una acción depende de:

- 1. Su valor estimado hasta el momento.
- 2. La incertidumbre sobre dicha acción.
 - Cada vez que una acción se selecciona, su incertidumbre se reduce.
 - Según pasa el tiempo, la incertidumbre sobre una acción vuelve a aumentar poco a poco.

El coeficiente c pondera la importancia que damos a la exploración.

UCB reduce la exploración con el tiempo (el término de incertidumbre tiende a 0).

Incertidumbre en las estimaciones

Definimos intervalos de confianza dentro de los cuales se encuentran los valores originales de las acciones y, por tanto, sus estimaciones:

Incertidumbre en las estimaciones

Opción 1. Elegir la acción con mayor incertidumbre (**exploración**).

- A mayor incertidumbre, mayor creencia de que es bueno (optimismo en presencia de incertidumbre).
- Elegimos la acción a_1 en base a $c\sqrt{\frac{\ln t}{N_t(a)}}$.

Opción 2. Elegir la acción con mayor valor estimado (**explotación**).

• Elegimos la acción a_2 en base a $Q_t(a)$.

Trabajo propuesto

Trabajo propuesto

- Implementación y comparativa de los métodos greedy, ε -greedy y UCB para un ejemplo con K-armed bandits.
- Thompson sampling
 - Definición y características.
 - Diferencias y similitudes con los métodos vistos.
- Contextual bandits
 - ¿Qué son?
 - ¿Que relación podrían tener con las próximas lecciones?

Recursos interesantes

- https://www.ma.imperial.ac.uk/~cpikebur/trybandits/trybandits.html
- https://rlplaygrounds.com/reinforcement/learning/Bandits.html
- https://youtu.be/bkw6hWvh_3k

Aprendizaje por refuerzo

Bandits

Antonio Manjavacas Lucas

manjavacas@ugr.es