

Теория вероятностей и математическая статистика

Лекция 6. **Элементы теории оценок и проверки гипотез**

Понятие оценки параметров

Пусть изучается случайная величина X с законом распределения, зависящим от одного или нескольких параметров. Hanpumep, это параметр a в распределении Пуассона $\left(P\{X=m\}=\frac{a^m\cdot e^{-a}}{m!}\right)$ или параметры a и σ для нормального закона распределения.

Требуется по выборке X_1, X_2, \ldots, X_n , полученной в результате n наблюдений (опытов), оценить неизвестный параметр θ .

Напомним, что X_1, X_2, \ldots, X_n — случайные величины: X_1 — результат первого наблюдения, X_2 — второго и т.д., причем с.в. X_t , $i=1,2,\ldots,n$, имеют такое же распределение, что и с. в. X; конкретная выборка x_1,x_2,\ldots,x_n — это значения (реализация) независимых с. в. X_1,X_2,\ldots,X_n .

Статистической оценкой $\tilde{\theta}_n$ (далее просто — оценкой $\tilde{\theta}$) параметра θ теоретического распределения называют его приближенное значение, зависящее от данных выбора.

Понятие оценки параметров

Очевидно, что оценка θ есть значение некоторой функции результатов наблюдений над случайной величиной, т. е.

$$\widetilde{\theta} = \widetilde{\theta}(X_1, X_2, \ldots, X_n)$$

Функцию результатов наблюдений (т. е. функцию выборки) называют статистикой.

Можно сказать, что $ouenka \hat{\theta}$ параметра θ есть статистика, которая в определенном смысле близка к истинному значению θ .

Так, $F^*(x)$ есть оценка $F_X(x)$, гистограмма — плотности f(x).

Оценка $\tilde{\theta}$ является случайной величиной, так как является функцией независимых с. в. X_1, X_2, \ldots, X_n ; если произвести другую выборку, то функция примет, вообще говоря, другое значение.

Если число опытов (наблюдений) невелико, то замена неизвестного параметра θ его оценкой $\tilde{\theta}$, например математического ожидания средним арифметическим, приводит к ошибке. Это ошибка в среднем тем больше, чем меньше число опытов.

Качество оценки определяют, проверяя, обладает ли она свойствами несмещенности, состоятельности, эффективности.

Оценка $\widetilde{\theta}$ параметра θ называется несмещенной, если $M\widetilde{\theta}=\theta$.

Если $M\widetilde{ heta} \neq heta$, то оценка $\widetilde{ heta}$ называется смещенной.

Чтобы оценка $\tilde{\theta}$ не давала систематической ошибки (ошибки одного знака) в сторону завышения $(M\tilde{\theta}>\theta)$ или занижения $(M\tilde{\theta}<\theta)$, надо потребовать, чтобы «математическое ожидание оценки было равно оцениваемому параметру».

Если $M\widetilde{ heta}_n o heta$, то оценка $\widetilde{ heta}_n$ называется асимптотически несмещенной.

Требование несмещенности особенно важно при малом числе наблюдений (опытов).

Оценка $\tilde{\theta}_n$ параметра θ называется состоятельной, если она сходится по вероятности к оцениваемому параметру:

$$\widetilde{\theta}_n \xrightarrow[n\to\infty]{p} \theta$$
,

т. е. для любого $\varepsilon > 0$ выполнено

$$\lim_{n\to\infty} p\left\{ |\widetilde{\theta}_n - \theta| < \varepsilon \right\} = 1.$$

Это означает, что с увеличением объема выборки мы все ближе приближаемся к истинному значению параметра θ , т. е. практически достоверно $\widetilde{\theta}_n \approx \theta$.

Свойство состоятельности обязательно для любого правила оценивания (несостоятельные оценки не используются).

Состоятельность оценки $\widetilde{\theta}_n$ часто может быть установлена с помощью следующей теоремы.

Теорема Если оценка $\widetilde{\theta}_n$ параметра θ является несмещенной и $D\widetilde{\theta}_n \to 0$ при $n \to \infty$, то $\widetilde{\theta}_n$ — состоятельная оценка.

 \square Запишем неравенство Чебыщева для с. в. $\widetilde{\theta}_n$ для любого $\varepsilon > 0$:

$$P(|\widetilde{\theta}_n - \theta| < \varepsilon) \geqslant 1 - \frac{D\widetilde{\theta}_n}{\varepsilon^2}.$$

Так как по условию $\lim_{n\to\infty} D\widetilde{\theta}_n = 0$, то $\lim_{n\to\infty} P(|\widetilde{\theta}_n - \theta| < \varepsilon) \geqslant 1$. Но вероятность любого события не превышает 1 и, следовательно,

$$P(|\widetilde{\theta}_n - \theta| < \varepsilon) = 1,$$

т. е. $\widetilde{\theta}_n$ — состоятельная оценка параметра θ .

Несмещенная оценка $\tilde{\theta}_n$ параметра θ называется эффективной, если она имеет наименьшую дисперсию среди всех возможных несмещенных оценок параметра θ , т. е. оценка $\tilde{\theta}_n$ эффективна, если ее дисперсия минимальна.

Эффективную оценку в ряде случаев можно найти, используя неравенство Рао-Крамера:

$$D\widetilde{\theta}_n \geqslant \frac{1}{n \cdot I}$$
,

где $I = I(\theta)$ — информация Фишера, определяемая в дискретном случае формулой

$$I = M \left[\frac{\partial}{\partial \theta} \ln p(X, \theta) \right]^2 = \sum_{i=1}^m \left[\frac{p'_{\theta}(x_i, \theta)}{p(x_i, \theta)} \right]^2 \cdot p(x_i, \theta),$$

где $p(x,\theta)=p\{X=x\}$, а в непрерывном — формулой

$$I = M \left[\frac{\partial}{\partial \theta} \ln f(X, \theta) \right]^2 = \int_{-\infty}^{\infty} \left[\frac{f'_{\theta}(x, \theta)}{f(x, \theta)} \right]^2 \cdot f(x, \theta) dx,$$

где $f(x,\theta)$ — плотность распределения н.с.в. X.

Эффективность оценки определяется отношением

$$\text{eff } \widetilde{\theta}_n = \frac{D\widetilde{\theta}_n^{\mathfrak{d}}}{D\widetilde{\theta}_n},$$

где $\widetilde{\theta}_n^{\mathfrak{H}}$ — эффективная оценка. Чем ближе eff $\widetilde{\theta}_n$ к 1, тем эффективнее оценка $\widetilde{\theta}_n$. Если eff $\widetilde{\theta}_n \to 1$ при $n \to \infty$, то оценка называется асимптотически эффективной.

Отметим, что на практике не всегда удается удовлетворить всем перечисленным выше требованиям (несмещенность, состоятельность, эффективность), и поэтому приходится довольствоваться оценками, не обладающими сразу всеми тремя свойствами. Все же три свойства, как правило, выделяют оценку однозначно.

Пусть изучается с. в. X с математическим ожиданием a=MX и дисперсией DX; оба параметра неизвестны.

Статистика, используемая в качестве приближенного значения неизвестного параметра генеральной совокупности, называется ее точечной оценкой. То есть точечная оценка характеристики генеральной совокупности — это число, определяемое по выборке.

Пусть x_1, x_2, \ldots, x_n — выборка, полученная в результате проведения n независимых наблюдений за с. в. X. Чтобы подчеркнуть случайный характер величин x_1, x_2, \ldots, x_n , перепишем их в виде X_1, X_2, \ldots, X_n , т.е. под X_i будем понимать значение с. в. X в i-м опыте. Случайные величины X_1, X_2, \ldots, X_n можно рассматривать как n независимых «экземпляров» величины X. Поэтому $MX_1 = MX_2 = \ldots = MX_n = MX_n = MX_1 = 0$, $DX_1 = DX_2 = \ldots = DX_n = DX$.

Теорема Пусть X_1, X_2, \ldots, X_n — выборка из генеральной совокупности и $MX_i = MX = a, DX_i = DX$ $(i = \overline{1,n}).$ Тогда выборочное среднее $\overline{X}_B = \frac{1}{n} \sum_{i=1}^n X_i$ — несмещенная и состоятельная оценка математического ожидания MX.

lacksquare Найдем м. о. оценки $\overline{X}_{\mathfrak{s}}$:

$$M\overline{X}_{\mathtt{B}} = M\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}\right) = \frac{1}{n}M\left(\sum_{i=1}^{n}X_{i}\right) = \frac{1}{n}\sum_{i=1}^{n}MX_{i} = \frac{1}{n}\cdot n\cdot a.$$

Отсюда по определению получаем, что $\overline{X}_{\mathtt{B}}$ — несмещенная оценка MX.

Далее, согласно теореме Чебыщева $\,$, для любого $\varepsilon > 0$ имеет

место равенство

$$\lim_{n\to\infty} P\left\{ \left| \frac{1}{n} \sum_{i=1}^n X_i - \frac{1}{n} \sum_{i=1}^n M X_i \right| < \varepsilon \right\} = 1,$$

которое, согласно условию теоремы, можно переписать так:

$$\lim_{n\to\infty} P\left\{|\overline{X}_{\mathtt{B}} - MX| < \varepsilon\right\} = 1$$

или, что то же самое, $\lim_{n\to\infty} p\left\{|\overline{\theta}-\theta|<\varepsilon\right\}=1$. Согласно определению получаем, что \overline{X}_n — состоятельная оценка MX.

Можно показать, что при нормальном распределении с. в. X эта оценка, т. е. $\overline{X}_{\rm B}$, будет и эффективной. На практике во всех случаях в качестве оценки математического ожидания используется среднее арифметическое, т. е. $\overline{X}_{\rm B}$.

В статистике оценку математического ожидания принято обозначать через \overline{X} или $\overline{X}_{\rm B}$, а не \widetilde{X} .

Можно показать, что

$$MD_{\mathtt{B}} = \frac{n-1}{n}DX.$$

Из равенства следует, что $MD_{\rm B} \neq DX$, т. е. выборочная дисперсия является смещенной оценкой дисперсии DX. Поэтому выборочную дисперсию исправляют, умножив ее на $\frac{n}{n-1}$, получая формулу

$$S^2 = \frac{n}{n-1}D_{\mathrm{B}}$$

2 называется исправленной выборочной дисперсией

Теорема Пусть X_1, X_2, \ldots, X_n — выборка из генеральной совокупности и $MX_i = MX = a$, $DX_i = DX$ $(i = \overline{1,n})$. Тогда исправленная выборочная дисперсия $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2 = \frac{n}{n-1} \cdot D_{\rm B}$ — несмещенная состоятельная оценка дисперсии DX.

 \square Примем без доказательства состоятельность оценки S^2 . Докажем ее несмещенность.

Имеем

$$MS^2 = M\left(\frac{n}{n-1}D_{\mathtt{B}}\right) = \frac{n}{n-1} \cdot MD_{\mathtt{B}} = \frac{n}{n-1} \cdot \frac{n-1}{n}DX = DX,$$

т. е. $MS^2 = DX$. Отсюда по определению получаем, что S^2 — несмещенная оценка DX.

Отметим, что при больших значениях n разница между $D_{\rm B}$ и S^2 очень мала и они практически равны, поэтому оценку S^2 используют для оценки дисперсии при малых выборках, обычно при $n\leqslant 30$.

Имеют место следующие теоремы.

Теорема Относительная частота $\frac{n_A}{n}$ появления события A в n независимых испытаниях является несмещенной состоятельной и эффективной оценкой неизвестной вероятности p = P(A) этого события (p - B) вероятность наступления события A в каждом испытании).

Теорема Эмпирическая функция распределения выборки $F^*(x)$ является несмещенной состоятельной оценкой функции распределения F(x) случайной величины X.

Методы нахождения точечных оценок

Метод моментов

Метод моментов для нахождения точечных оценок неизвестных параметров заданного распределения состоит в приравнивании теоретических моментов распределения соответствующим эмпирическим моментам, найденных по выборке.

Так, если распределение зависит от одного параметра θ (например, задан вид плотности распределения $f(x,\theta)$), то для нахождения его оценки надо решить относительно θ одно уравнение:

$$MX = \overline{X}_{B}$$

$$(MX = \int\limits_{-\infty}^{\infty} x \cdot f(x, \theta) \, dx = \varphi(\theta)$$
 есть функция от θ).

Если распределение зависит от двух параметров (например, вид плотности распределения $f(x, \theta_1, \theta_2))$ — надо решить относительно θ_1 и θ_2 систему уравнений:

$$\begin{cases} MX = \overline{X}_{B}, \\ DX = D_{B}. \end{cases}$$

Метод моментов

И, наконец, если надо оценить n параметров $\theta_1, \theta_2, \dots, \theta_n$ — надо решить одну из систем вида:

$$\begin{cases} MX = \frac{1}{n} \sum_{i=1}^{n} X_{i}, \\ MX^{2} = \frac{1}{n} \sum_{i=1}^{n} X_{i}^{2}, \\ \dots \\ MX^{k} = \frac{1}{n} \sum_{i=1}^{n} X_{i}^{k}; \end{cases} \qquad \text{или} \qquad \begin{cases} MX = \overline{X}, \\ DX = D_{\text{B}}, \\ \dots \\ M(X - MX)^{k} = \frac{1}{n} \sum_{i=1}^{n} (X_{i} - \overline{X}_{\text{B}})^{k}. \end{cases}$$

Метод моментов является наиболее простым методом оценки параметров. Он был предложен в 1894 г. Пирсоном. Оценки метода моментов обычно состоятельны, однако их эффективность часто значительно меньше единицы.

Метод моментов

Пример Найти оценки параметров нормального распределения с. в. X методом моментов.

О Требуется по выборке x_1, x_2, \ldots, x_n найти точечные оценки неизвестных параметров $a = MX = \theta_1$ и $\sigma^2 = DX = \theta_2$.

По методу моментов приравниваем их, соответственно, к выборочному среднему и выборочной дисперсии ($\alpha_1 = MX$ — начальный момент I порядка, $\mu_2 = DX$ — центральный момент II порядка). Получаем

$$\begin{cases} MX = \overline{x}_{\scriptscriptstyle \mathrm{B}}, \\ DX = D_{\scriptscriptstyle \mathrm{B}}, \end{cases}$$

T. e.

$$\left\{ egin{aligned} a &= \overline{x}_{\mathtt{B}}, \ & \ \sigma^2 &= D_{\mathtt{B}}. \end{aligned}
ight.$$

Итак, искомые оценки параметров нормального распределения: $\widetilde{\theta}_1=x_{\rm B}$ и $\widetilde{\theta}_2=\sqrt{D_{\rm B}}.$

Пусть x_1, x_2, \ldots, x_n — выборка, полученная в результате проведения n независимых наблюдений за с. в. X. И пусть вид закона распределения величины X, например, вид плотности $f(x, \theta)$, известен, но неизвестен параметр θ , которым определяется этот закон. Требуется по выборке оценить параметр θ .

В основе метода максимального правдоподобия (ММП), предложенного Р. Фишером, лежит понятие функции правдоподобия.

Функцией правдоподобия, построенной по выборке x_1, x_2, \dots, x_n , называется функция аргумента θ вида

$$L(x_1, x_2, \ldots, x_n; \theta) = f(x_1, \theta) \cdot f(x_2, \theta) \cdot \ldots \cdot f(x_n, \theta)$$

или

$$L(x,\theta) = \prod_{i=1}^{n} f(x_i,\theta),$$

где $f(x,\theta)$ — плотность распределения с. в. X в случае, если X — непрерывная. Если X — дискретная с. в., то функция правдоподобия имеет вид

$$L(x,\theta) = p(x_1,\theta) \cdot p(x_2,\theta) \cdot \ldots \cdot p(x_n,\theta) = \prod_{i=1}^n p(x_i,\theta),$$

где
$$p(x_i, \theta) = p\{X = x_i, \theta\}.$$

Из определения следует, что чем больше значение функции $L(x,\theta)$, тем более вероятно (правдоподобнее) появление (при фиксированном θ) в результате наблюдений чисел x_1, x_2, \ldots, x_n .

За точечную оценку параметра θ , согласно ММП, берут такое его значение θ , при котором функция правдоподобия достигает максимума.

Эта оценка, называемая оценкой максимального правдоподобия, является решением уравнения

$$\frac{dL(x,\theta)}{d\theta} = 0.$$

Так как функции $L(x,\theta)$ и $\ln L(x,\theta)$ достигают максимума при одном и том же значении θ , то вместо отыскания максимума функции $L(x,\theta)$ ищут (что проще) максимум функции $\ln L(x,\theta)$.

Таким образом, для нахождения оценки максимального правдоподобия надо:

1. решить уравнение правдоподобия

$$\frac{d(\ln L(x,\theta))}{d\theta} = 0;$$

2. отобрать то решение, которое обращает функцию $\ln L(x,\theta)$ в максимум (удобно использовать вторую производную: если

$$\left. \frac{d^2 \ln L(x,\theta)}{d\theta} \right|_{\theta = \widetilde{\theta}} < 0,$$

то $\theta = \widetilde{\theta}$ — точка максимума).

Если оценке подлежат несколько параметров $\theta_1, \theta_2, \dots, \theta_n$ распределения, то оценки $\widetilde{\theta}_1, \dots, \widetilde{\theta}_n$ определяются решением системы уравнений правдоподобия:

$$\begin{cases} \frac{\partial(\ln L)}{\partial\theta_1} = 0, \\ \dots, \\ \frac{\partial(\ln L)}{\partial\theta_n} = 0. \end{cases}$$

Метод моментов для нахождения точечных оценок

Задача Найти оценку параметра а распределения Пуассона методом максимального правдоподобия.

 \bigcirc В данном случае $p\{X=m\}=rac{a^m\cdot e^{-a}}{m!}.$ Поэтому

$$p(x_i, \theta) = p\{X = x_i, \theta\} = \frac{\theta^{x_i} \cdot e^{-\theta}}{x_i!}$$

при $x_i \in \mathbb{N}$. Составляем функцию правдоподобия (для дискретной с. в. X):

$$L(x,\theta) = \frac{\theta^{x_1} \cdot e^{-\theta}}{x_1!} \cdot \frac{\theta^{x_2} \cdot e^{-\theta}}{x_2!} \cdot \ldots \cdot \frac{\theta^{x_n} \cdot e^{-\theta}}{x_n!} = e^{-\theta n} \cdot \theta^{\sum_{i=1}^n x_i} \cdot \frac{1}{x_1! \cdot \ldots \cdot x_n!}.$$

Тогда

$$\ln L(x,\theta) = -n \cdot \theta + \sum_{i=1}^{n} x_i \cdot \ln \theta - \ln(x_1! \cdot x_2! \cdot \ldots \cdot x_n!)$$

И

$$\frac{d\ln L(x,\theta)}{d\theta} = -n + \frac{1}{\theta} \cdot \sum_{i=1}^{n} x_{i}.$$

Метод моментов для нахождения точечных оценок

Задача Найти оценку параметра а распределения Пуассона методом максимального правдоподобия.

Уравнение правдоподобия имеет вид:

$$\left(-n+\frac{1}{\theta}\cdot\sum_{i=1}^n x_i\right)\Big|_{\theta=\tilde{\theta}}=0.$$

Отсюда находим

$$\widetilde{\theta} = \frac{1}{n} \sum_{i=1}^{n} x_i = \overline{x}_{\mathrm{B}}.$$

А так как

$$\frac{d^2 \ln L(x,\theta)}{d\theta^2}\Big|_{\theta=\widetilde{\theta}} = -\frac{1}{\theta^2} \sum_{i=1}^n x_i < 0,$$

то оценка $\widetilde{\theta}=\overline{x}_{\rm B}$ является оценкой максимального правдоподобия. Итак, $\widetilde{\theta}=\widetilde{a}=\overline{x}_{\rm B}$.

Метод наименьших квадратов

Метод нахождения оценки $\tilde{\theta}$ неизвестного параметра θ , основанный на минимизации суммы квадратов отклонений выборочных данных от определяемой (искомой) оценки θ , называется методом наименьших квадратов (коротко: МНК).

Другими словами, в МНК требуется найти такое значение $\hat{\theta}$, которое минимизировало бы сумму

$$F(\theta) = \sum_{i=1}^{n} (X_i - \theta)^2 \to \min.$$

Отметим, что МНК является наиболее простым методом нахождения оценок параметра θ .

Метод наименьших квадратов

Пример Найти оценку параметра *а* распределения Пуассона методом наименьших квадратов.

igoplus Hайдем точку минимума функции $F(heta) = \sum_{i=1} (X_i - heta)^2$:

$$F'(\theta) = \left(F = \sum_{i=1}^{n} (X_i - \theta)^2\right)'_{\theta} = \sum_{i=1}^{n} 2(X_i - \theta) \cdot (-1);$$

из уравнения $F'(\theta) = 0$ находим критическую точку: $-2\sum_{i=1}(X_i - \theta) = 0$,

T. e.
$$\sum_{i=1}^{n} X_i - \sum_{i=1}^{n} \theta = 0$$
, T. e. $\sum_{i=1}^{n} X_i = n\theta$, $\theta_{\kappa p} = \frac{1}{n} \sum_{i=1}^{n} X_i$.

Метод наименьших квадратов

Пример Найти оценку параметра а распределения Пуассона методом наименьших квадратов.

A Tak kak
$$F''(\theta_{\text{kp}}) = \left(-2\sum_{i=1}^{n}(X_i - \theta)\right)_{\theta}' = -2\sum_{i=1}^{n}(-1) = 2n > 0$$

при любом значении heta, то $heta_{\mathrm{kp}} = \frac{1}{n} \sum_{i=1}^n X_i$ — точка минимума функ-

ции $F(\theta)$. Таким образом, оценкой параметра a в распределении Пуассона $P(m;a) = \frac{a^m \cdot e^{-a}}{m!}, \ m = 0,1,2,\dots$ согласно МНК, является

$$\widetilde{\theta} = \frac{1}{n} \sum_{i=1}^{n} X_i.$$

Можно доказать, что:

$$M(\widetilde{\theta}) = \theta = a, \quad D(\widetilde{\theta}) = \frac{\theta}{n}.$$

Интервальное оценивание параметров

Точечные оценки неизвестного параметра θ хороши в качестве первоначальных результатов обработки наблюдений. Их недостаток в том, что неизвестно, с какой точностью они дают оцениваемый параметр.

Для выборок небольшого объема вопрос о точности оценок очень существенен, так как между θ и $\widetilde{\theta}$ может быть большое расхождение в этом случае. Кроме того, при решении практических задач часто требуется определить и надежность этих оценок. Тогда и возникает задача о приближении параметра θ не одним числом, а целым интервалом $(\widetilde{\theta}_1,\widetilde{\theta}_2)$.

Оценка неизвестного параметра называется *интервальной*, если она определяется двумя числами — концами интервала.

Задачу интервального оценивания можно сформулировать так: по данным выборки построить числовой интервал $(\hat{\theta}_1, \tilde{\theta}_2)$, относительно которого с заранее выбранной вероятностью γ можно сказать, что внутри этого интервала находится точное значение оцениваемого параметра

Интервальное оценивание параметров

Интервал $(\tilde{\theta}_1, \tilde{\theta}_2)$, накрывающий с вероятностью γ истинное значение параметра θ , называется доверительным интервалом, а вероятность γ — надежностью оценки или доверительной вероятностью.

Очень часто (но не всегда) доверительный интервал выбирается симметричным относительно несмещенной точечной оценки $\widetilde{\theta}$, т. е. выбирается интервал вида $(\widetilde{\theta}-\varepsilon,\widetilde{\theta}+\varepsilon)$ такой, что

$$p\left\{\theta\in(\widetilde{\theta}-\varepsilon,\widetilde{\theta}+\varepsilon)\right\}=p\left\{|\theta-\widetilde{\theta}|<\varepsilon\right\}=\gamma.$$

Число $\varepsilon > 0$ характеризует точность оценки: чем меньше разность $|\theta - \widetilde{\theta}|$, тем точнее оценка.

Интервальное оценивание параметров

Величина γ выбирается заранее, ее выбор зависит от конкретно решаемой задачи. Так, степень доверия авиапассажира к надежности самолета, очевидно, должна быть выше степени доверия покупателя к надежности телевизора, лампочки, игрушки... Надежность γ принято выбирать равной 0,9; 0,95; 0,99 или 0,999. Тогда практически достоверно нахождение параметра θ в доверительном интервале $(\widetilde{\theta}-\varepsilon,\widetilde{\theta}+\varepsilon)$.

Доверительные интервалы для параметров нормального распределения

Построим доверительные интервалы для параметров нормального распределения, т.е. когда выборка производится из генеральной совокупности, имеющей нормальное распределение с параметрами a и σ^2 .

Пусть с. в. $X \sim N(a, \sigma); \ \sigma$ — известна, доверительная вероятность (надежность) γ — задана.

Пусть x_1, x_2, \ldots, x_n — выборка, полученная в результате проведения n независимых наблюдений за с. в. X. Чтобы подчеркнуть случайный характер величин x_1, x_2, \ldots, x_n , перепишем их в виде X_1, X_2, \ldots, X_n , т. е. под X_i будем понимать значение с. в. X в i-м опыте. Случайные величины X_1, X_2, \ldots, X_n — независимы, закон распределения любой из них совпадает с законом распределения с. в. X (т. е. $X_i \sim N(a,\sigma)$). А это значит, что $MX_1 = MX_2 = \ldots = MX_n = MX = a$, $DX_1 = DX_2 = \ldots = DX_n = DX$.

Выборочное среднее

$$\overline{X}_{\mathtt{B}} = \overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_{i}$$

также будет распределено по нормальному закону (примем без дока зательства)

Параметры распределения \overline{X} таковы: $M(\overline{X})=a,\ D(\overline{X})=\frac{\sigma^2}{n}$. Действительно,

$$M(\overline{X}) = M\left(\frac{1}{n}\sum_{i=1}^{n}X_i\right) = \frac{1}{n}\cdot\sum_{i=1}^{n}MX_i = \frac{1}{n}\cdot\sum_{i=1}^{n}MX = MX = a,$$

$$D(\overline{X}) = D\left(\frac{1}{n}\sum_{i=1}^{n} X_i\right) = \frac{1}{n^2}\sum_{i=1}^{n} DX_i = \frac{1}{n^2}\sum_{i=1}^{n} DX = \frac{1}{n} \cdot DX = \frac{\sigma^2}{n}.$$

Таким образом,
$$\overline{X} \sim N\left(a, \frac{\sigma}{\sqrt{n}}\right)$$
.

Следовательно, пользуясь формулой

$$p\left\{|X-a|< l
ight\}=2\Phi_0\left(rac{l}{\sigma}
ight)=2\Phi\left(rac{l}{\sigma}
ight)-1$$
 можно записать $\gamma=p\{|\overline{X}-a|< arepsilon\}=2\Phi_0\left(rac{arepsilon\cdot\sqrt{n}}{\sigma}
ight)=2\Phi_0(t),$

где $t = \frac{\varepsilon \cdot \sqrt{n}}{\sigma}$. Из последнего равенства находим

$$\varepsilon = \frac{t \cdot \sigma}{\sqrt{n}},$$

поэтому
$$\gamma = p \left\{ |\overline{X} - a| < rac{t \cdot \sigma}{\sqrt{n}}
ight\} = 2\Phi_0(t)$$
 или

$$p\left\{\overline{X}-t\cdot\frac{\sigma}{\sqrt{n}}< a<\overline{X}+t\cdot\frac{\sigma}{\sqrt{n}}\right\}=2\Phi_0(t)=\gamma.$$

В соответствии с определением доверительного интервала получаем, что доверительный интервал для a=MX есть

$$\left(\overline{X} - t \cdot \frac{\sigma}{\sqrt{n}}, \overline{X} + t \cdot \frac{\sigma}{\sqrt{n}}\right),$$

где t определяется из уравнения

$$\Phi_0(t) = \frac{\gamma}{2}$$

(или $\Phi(t) = \frac{1+\gamma}{2}$); при заданном γ по таблице функции Лапласа находим аргумент t.

Распределение функций нормальных случайных величин

Если каждому возможному значению с. в. X по определенному правилу соответствует одно возможное значение с. в. Y, то Y называют функцией случайного аргумента X, записывают $Y = \varphi(X)$.

Если каждой паре возможных значений с. в. X и Y по определенному правилу соответствует одно возможное значение с. в. Z, то Z называют функцией двух случайных аргументов X и Y, записывают $Z = \varphi(X,Y)$.

Рассмотрим распределение некоторых с. в., представляющих функции нормальных величин, используемые в математической статистике.

Распределение χ^2 (хи-квадрат или Пирсона)

 $Pacnpedenenuem\ \chi_n^2\ c\ n\ cmenenum csofodы$ называется распределение суммы квадратов n независимых стандартных случайных величин, т. е.

$$\chi_n^2 = \sum_{i=1}^n X_i^2$$
, где $X_i \sim N(0,1), \quad i=1,2,\ldots,n.$

Плотность вероятности с. в. χ^2 зависит только от числа n, т. е. числа слагаемых. Если n=1, то $\chi^2=X^2$, где $X\sim N(0,1)$,

$$f_X(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}.$$

Плотность распределения с. в. $Y = X^2$ равна

$$g(y) = \frac{1}{2\sqrt{2\pi y}}e^{-\frac{y}{2}}, \quad y > 0.$$

Распределение χ^2 (хи-квадрат или Пирсона)

Плотность распределения χ_n^2 имеет вид

$$f_{\chi^2_{f n}}(x) = egin{cases} rac{1}{2^{rac{n}{2}}\Gamma\left(rac{n}{2}
ight)} x^{rac{n}{2}-1}e^{-rac{x}{2}}, & ext{при } x>0, \ 2^{rac{n}{2}}\Gamma\left(rac{n}{2}
ight)} 0, & ext{при } x\leqslant 0, \end{cases}$$

где
$$\Gamma(p) = \int\limits_0^\infty t^{p-1} e^{-t} \, dt$$
 — гамма-функция Эйлера $(\Gamma(p) = (p-1)!$ для

целых положительных p). С возрастанием числа степеней свободы n распределение χ^2 приближается к нормальному закону распределения (при n > 30 распределение χ^2 практически не отличается от нормального);

$$M\chi_n^2 = n, \quad D\chi_n^2 = 2n.$$

На практике, как правило, используют не плотность вероятности, а квантили распределения χ_n^2 .

Распределение χ^2 (хи-квадрат или Пирсона)

Квантилью распределения χ_n^2 , отвечающей уровню значимости α , называется такое значение $\chi_n^2 = \chi_{\alpha,n}^2$, при котором

$$P\{\chi_n^2 > \chi_{\alpha,n}^2\} = \int_{\chi_{\alpha,n}^2}^{\infty} f_{\chi_n^2}(x) \, dx = \alpha.$$

С геометрической точки зрения нахождение квантили $\chi^2_{\alpha,n}$ заключается в выборе такого значения $\chi^2_n=\chi^2_{\alpha,n}$, чтобы площадь заштрихованной на рис. фигуры была равна α .

Значения квантилей приводятся в специальных таблицах-приложениях.

Для стандартного нормального распределения квантили уровня α обозначаются через $\pm u_{\alpha}$, причем u_{α} является решением уравнения $\Phi(u_{\alpha}) = \frac{1-\alpha}{2}$.

Распределение Стьюдента

Распределением Стьюдента (или t-распределением) с п степенями свободы называется распределение с. в.

$$T_n = \frac{Z}{\sqrt{\frac{1}{n}\chi_n^2}},$$

где $Z \sim N(0,1)$ — стандартная нормальная величина, независимая от χ_n^2 -распределения.

Плотность вероятности распределения Стьюдента имеет вид

$$f_{T_n}(t) = \frac{\Gamma\left(\frac{n+1}{2}\right)}{\Gamma\left(\frac{n}{2}\right)\sqrt{\pi n}} \left(1 + \frac{t^2}{n}\right)^{-\frac{n+1}{2}}; \quad t \in (-\infty; \infty).$$

При $n \to \infty$ распределение Стьюдента приближается (уже при n > 30 почти совпадает) к нормальному;

$$MT_n=0, \qquad DT_n=\frac{n}{n-2}, \quad n>2.$$

Распределение Стьюдента

На практике используют квантили t-распределения: такое значение $t=t_{\frac{\alpha}{2},n},$ что

$$P\{|t| > t_{\frac{\alpha}{2},n}\} = 2\int_{t_{\frac{\alpha}{2},n}}^{\infty} f(t) dt = \alpha.$$

С геометрической точки зрения нахождение квантилей заключается в выборе такого значения $t = t_{\frac{\alpha}{2},n}$, чтобы площадь заштрихованной на рис. фигуры была равна α .

Распределение Фишера-Снедекора

Распределением Фишера-Снедекора (или F-распределением) с т и п степенями свободы называется распределение с. в.

$$F = \frac{\frac{1}{m}\chi_m^2}{\frac{1}{n}\chi_n^2},$$

где χ_m^2 и χ_n^2 — независимые с. в., имеющие χ^2 -распределение соответственно с m и n степенями свободы.

При $n \to \infty$ F-распределение стремится к нормальному закону.

$$MF = \frac{n}{n-2}, \quad n > 2, \qquad DF = \frac{2n^2(m+n-2)}{m(n-2)^2(n-4)}, \quad n > 4.$$

На практике обычно используют квантили распределения: такое значение $F = F_{\alpha,m,n}$, что

$$P\{F > F_{\alpha,m,n}\} = \int_{F_{\alpha,m,n}}^{\infty} f(F) dF = \alpha.$$

Распределение Фишера-Снедекора

С геометрической точки зрения нахождение квантили заключается в выборе такого значения $F = F_{\alpha,m,n}$, чтобы площадь заштрихованной на рис. фигуры была равна α .

Пусть с. в. $X \sim N(a,\sigma),\,\sigma$ — неизвестна, γ — задана. Найдем такое число ε , чтобы выполнялось соотношение $p\{\overline{X}-\varepsilon< a<\overline{X}+\varepsilon\}=\gamma$ или

$$p\{|\overline{X} - a| < \varepsilon\} = \gamma. \tag{*}$$

Введем случайную величину

$$T = \frac{\overline{X} - a}{\frac{S}{\sqrt{n}}},$$

где S — исправленное среднее квадратическое отклонение с. в. X, вычисленное по выборке:

$$S = \sqrt{\frac{1}{n-1} \cdot \sum_{i=1}^{n} (X_i - \overline{X})^2}.$$

Доказывается, что с. в. T имеет распределение Стьюдента с n-1 степенью свободы. Плотность этого распределения имеет вид:

$$f_T(t,n-1) = \frac{\Gamma(\frac{n}{2})}{\sqrt{\pi(n-1)} \cdot \Gamma\left(\frac{n-1}{2}\right)} \cdot \left(1 + \frac{t^2}{n-1}\right)^{-\frac{n}{2}},$$

где $\Gamma(p) = \int\limits_0^\infty u^{p-1} \cdot e^{-u} du$ — гамма-функция; $f_T(t,n-1)$ — четная функция.

Перейдем в левой части равенства (*) от с. в. \overline{X} к с. в. T:

$$p\left\{\frac{|\overline{X}-a|}{\frac{S}{\sqrt{n}}} < \frac{\varepsilon}{\frac{S}{\sqrt{n}}}\right\} = \gamma$$

или
$$p\left\{|T|<rac{arepsilon\sqrt{n}}{S}
ight\}=\gamma$$
 или $p\{|T|< t_\gamma\}=\gamma$, где $t_\gamma=rac{arepsilon\cdot\sqrt{n}}{S}.$ (**)

Величина t_{γ} находится из условия

$$p\{|T| < t_{\gamma}\} = \int\limits_{-t_{\gamma}}^{t_{\gamma}} f_T(t, n-1) dt = 2 \cdot \int\limits_{0}^{t_{\gamma}} f_T(t, n-1) dt = \gamma,$$

т. е. из равенства

$$2\cdot\int\limits_0^{t\gamma}f_T(t,n-1)\,dt=\gamma.$$

Пользуясь таблицей квантилей распределения Стьюдента находим значение t_{γ} в зависимости от доверительной вероятности γ и числа степеней свободы n-1 (t_{γ} — квантиль уровня $1-\gamma$).

Определив значение t_{γ} из равенства (**) , находим значение ε : $\varepsilon = t_{\gamma} \cdot \frac{S}{\sqrt{n}}$. Следовательно, равенство (*) принимает вид

$$p\left\{\overline{X}-t_{\gamma}\cdot\frac{S}{\sqrt{n}}< a<\overline{X}+t_{\gamma}\cdot\frac{S}{\sqrt{n}}\right\}=\gamma.$$

А это значит, что интервал

$$\left(\overline{X} - t_{\gamma} \cdot \frac{S}{\sqrt{n}}, \overline{X} + t_{\gamma} \cdot \frac{S}{\sqrt{n}}\right)$$

покрывает a = MX с вероятностью γ , т. е. является доверительным интервалом для неизвестного математического ожидания с. в. X.

Доверительный интервал для среднего квадратического отклонения нормального распределения

Пусть с. в. $X \sim N(a, \sigma)$, σ — неизвестно, γ — задано. Можно показать, что $ecnu\ MX = a\ usecmno$, то доверительный интервал для среднего квадратического отклонения σ имеет вид:

$$\left(\frac{\sqrt{n}\cdot S_0}{\chi_2}, \frac{\sqrt{n}\cdot S_0}{\chi_1}\right)$$
,

где n — объем выборки, $S_0^2 = \frac{1}{n} \sum_{i=1}^n (X_i - a)^2$, а

$$\chi_1^2 = \chi_{\frac{1+\gamma}{2},n}^2; \quad \chi_2^2 = \chi_{\frac{1-\gamma}{2};n}^2$$

являются квантилями χ^2 -распределения с n степенями свободы (см. п. 4.3), определяемые по таблице квантилей $\chi^2_{\alpha,n}$ распределения χ^2_n (см. приложение 3

Приложение 3. Квантили $\chi^2_{\alpha,k}$ распределения χ^2_k (k — число степеней свободы)

	Уровень значимости α					
k [0,01	0,025	0,05	0,95	0,975	0,99
1	6,6	5,0	3,8	0,0039	0,00098	0,00016
2	9,2	7,4	6,0	0,103	0,051	0,020
3	11,3	9,4	7,8	0,352	0,216	0,115
4	13,3	11,1	9,5	0,711	0,484	0,297
5	15,1	12,8	11,1	1,15	0,831	0,554
6	16,8	14,4	12,6	1,64	1,24	0,872
7	18,5	16,0	14,1	2,17	1,69	1,24
8	20,1	17,5	15,5	2,73	2,18	1,65
9	21,7	19,0	16,9	3,33	2,70	2,09
10	23,2	20,5	18,3	3,94	3,25	2,56
11	24,7	21,9	19,7	4,57	3,82	3,05
12	26,2	23,3	21,0	5,23	4,40	3,57
13	27,7	24,7	22,4	5,89	5,01	4,11
14	29,1	26,1	23,7	6,57	5,63	4,66
15	30,6	27,5	25,0	7,26	6,26	5,23
16	32,0	28,8	26,3	7,96	6,91	5,81
17	33,4	30,2	27,6	8,67	7,56	6,41
18	34,8	31,5	28,9	9,39	8,23	7,01
19	36,2	32,9	30,1	10,1	8,91	7,63
20	37,6	34,2	31,4	10,9	9,59	8,26
21	38,9	35,5	32,7	11,6	10,3	8,26
22	40,3	36,8	33,9	12,3	11,0	9,54
23	41,6	38,1	35,2	13,1	11,7	10,2
24	43,0	39,4	36,4	13,8	12,4	10,9
25	44,3	40,6	37,7	14,6	13,1	11,5
26	45,6	41,9	38,9	15,4	13,8	12,2
27	47,0	43,3	40,1	16,2	14,6	12,9
28	48,3	44,5	41,3	16,9	15,3	13,6
29	49,6	45,7	42,6	17.7	16,0	14,3
30	50,9	47,0	43,8	18,5	16,8	15,0

Доверительный интервал для среднего квадратического отклонения нормального распределения

Если a=MX неизвестно, то доверительный интервал для неизвестного σ имеет вид:

$$\left(\frac{\sqrt{n-1}\cdot S}{\chi_2}, \frac{\sqrt{n-1}\cdot S}{\chi_1}\right)$$

где n — объем выборки, $S^2=\frac{1}{n-1}\cdot\sum_{i=1}^n(X_i-\overline{X})^2$ — исправленное среднее квадратическое отклонение, квантили

$$\chi_1^2 = \chi_{\frac{1+\gamma}{2};n-1}^2, \quad \chi_2^2 = \chi_{\frac{1-\gamma}{2};n-1}^2$$

определяются по таблице $\chi^2_{\alpha,k}$ при k=n-1 и $\alpha=\frac{1+\gamma}{2}$ и $\alpha=\frac{1-\gamma}{2}$ соответственно.