Universidade de Brasília Departamento de Estatística

Lista de Exercícios 3 – Estatística Matemática

R. Vila

1. Sejam X e Y variáveis aleatórias independentes com distribuição uniforme em $[\theta-0.5,\theta+0.5]$, $\theta\in\mathbb{R}$. Verifique que a distribuição de X-Y não depende de θ , encontrando sua densidade.

Rpt.
$$f_{X-Y}(z) = \begin{cases} 1+z, & -1 \leqslant z < 0; \\ 1-z, & 0 \leqslant z < 1; \\ 0, & \text{caso contrário.} \end{cases}$$

- 2. Seja X uma variável aleatória cuja função de distribuição F é contínua e invertível na reta. Verifique que a distribuição de Y=F(X) é U[0,1].
- 3. Sejam $X \sim \text{Poisson}(\alpha_1)$ e $Y \sim \text{Poisson}(\alpha_2)$ variáveis aleatórias independentes. Verifique que $X + Y \sim \text{Poisson}(\alpha_1 + \alpha_2)$.
- 4. Sejam $X \sim N(\mu_1, \sigma_1^2)$ e $Y \sim N(\mu_2, \sigma_2^2)$ variáveis aleatórias independentes. Verifique que $X + Y \sim N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$.
- 5. Seja *G* o seguinte triângulo:

Suponha que X e Y tenham densidade conjunta $f(x,y) = c\mathbb{1}_G(x,y)$.

(a) Determine o valor da constante c.

- (b) Calcule a distribuição de X, a de Y e a de Z = X + Y.
- (c) X e Y são independentes? Porque?

Rpt. (a) c=2, (b)
$$f_X(x) = \begin{cases} 2(1-x), & 0 < x < 1; \\ 0, & \text{caso contrário}, \end{cases}$$
 $f_Y(y) = \begin{cases} 2(1-y), & 0 < y < 1; \\ 0, & \text{caso contrário}. \end{cases}$

$$F_Z(z) = \begin{cases} 0, & z < 0; \\ z^2, & 0 \leqslant z < 1; \\ 1, & z \geqslant 1, \end{cases}$$
 (c) X e Y não são independentes.

6. Se X e Y são as coordenadas de um ponto selecionado, ao acaso, do círculo unitário $\{(x,y): x^2+y^2\leqslant 1\}$, qual a distribuição da variável aleatória $Z=X^2+Y^2$?

Rpt.
$$F_Z(z) = \begin{cases} 0, & z < 0; \\ z, & 0 \le z < 1; \\ 1, & z \ge 1. \end{cases}$$

7. Sejam $X \sim \text{Poisson}(5)$ e $Y \sim U[0,1]$ variáveis aleatórias independentes. Ache a densidade de Z = X + Y.

Rpt.
$$f_Z(z) = \begin{cases} 0, & z < 0; \\ \frac{e^{-5}5^{\lfloor z \rfloor}}{\lfloor z \rfloor!}, & z \geqslant 0. \end{cases}$$

- 8. Sejam $X \sim N(0,1)$ e $Y \sim N(0,1)$ variáveis aleatórias independentes. Verifique que $U = (X+Y)/\sqrt{2}$ e $V = (X-Y)/\sqrt{2}$ também são independentes e N(0,1).
- 9. Sejam $X \sim U[0,1]$ e $Y \sim U[0,1]$ variáveis aleatórias independentes.
 - (a) Ache a densidade conjunta de W = X + Y e Z = X Y.
 - (b) As variáveis W e Z são independentes?

Rpt. (a)
$$f_{W,Z}(w,z)=egin{cases} rac{1}{2}, & (w,z)\in G; \\ 0, & {
m caso\ contrário}, \end{cases}$$
 onde

$$G = \{(w, z) : 0 < w < 1, -w < z < w \text{ ou } 1 < w < 2, w - 2 < z < 2 - w\}.$$

- (b) As variáveis W e Z não são independentes.
- 10. Suponha que $X \sim U[0,1]$. Calcule a densidade de $Y = X^4$ e a de Z = 1/X. As variáveis Y e Z possuem densidade conjunta? Por quê?

Rpt. Veja que
$$f_{Y,Z}(y,z) = 0, \ \forall (y,z) \in \mathbb{R}^2$$
.

11. Seja X uma variável aleatória possuindo densidade f(x). Ache a densidade de Y = |X|.

Rpt.
$$f_Y(y) = \begin{cases} f_X(y) + f_X(-y), & y > 0; \\ 0, & \text{caso contrário.} \end{cases}$$

12. Sejam $X \sim \exp(\lambda)$ e $Y \sim \exp(\lambda)$ variáveis aleatórias independentes. Verifique que $Z = X/(X+Y) \sim U[0,1]$.

2

13. Se X possui densidade

$$f_X(x) = \begin{cases} f(x), & -\pi/2 < x < \pi/2; \\ 0, & \text{caso contrário.} \end{cases}$$

Qual a densidade de Y = cos(X)?

$$\textbf{Rpt.} \ f_Y(y) = \begin{cases} \frac{1}{\sqrt{1-y^2}} [f(-\arccos(x)) + f(\arccos(x))], & 0 < y < 1; \\ 0, & \text{caso contrário.} \end{cases}$$

14. Se X a variável aleatória com a densidade

$$f(x) = \begin{cases} \frac{2x}{\pi^2}, & 0 < x < \pi; \\ 0, & \text{caso contrário.} \end{cases}$$

Qual a densidade de $Y = \sin(X)$?

Rpt.
$$f_Y(y) = \begin{cases} \frac{2}{\pi \sqrt{1-y^2}}, & 0 < y < 1; \\ 0, & \text{caso contrário.} \end{cases}$$

- 15. Sejam $X \sim U[0,1]$ e $Y \sim U[0,1]$ variáveis aleatórias independentes, e sejam $R = \sqrt{2\log(1/(1-X))}$ e $\Theta = \pi(2Y-1)$.
 - (a) Verifique que $\Theta \sim U[-\pi,\pi]$ e que R tem distribuição de Rayleigh com densidade

$$f(r) = \begin{cases} re^{-r^2/2}, & r > 0; \\ 0, & r \le 0. \end{cases}$$

- (b) Verifique que $Z=R\cos(\theta)$ e $W=R\sin(\theta)$ são independentes com distribuição comum N(0,1).
- 16. Sejam $X \sim \text{Gama}(\alpha_1, 1)$ e $Y \sim \text{Gama}(\alpha_2, 1)$ variáveis aleatórias independentes, com $\alpha_1 > 0$ e $\alpha_2 > 0$. Verifique que X + Y e X/Y são independentes e ache as suas distribuições.

Rpt. Se U = X + Y e V = X/Y, veja que $U \sim \text{Gama}(\alpha_1 + \alpha_2, 1)$ e V tem densidade dada por:

$$f_V(v) = \begin{cases} \frac{1}{\mathrm{B}(\alpha_1,\alpha_2)} v^{\alpha_1-1} (v+1)^{-(\alpha_1+\alpha_2)}, & v>0; \\ 0, & \text{caso contrário}, \end{cases} \text{ onde } \mathrm{B}(\alpha_1,\alpha_2) = \frac{\Gamma(\alpha_1)\Gamma(\alpha_2)}{\Gamma(\alpha_1+\alpha_2)}.$$

17. Seja (X,Y) o vetor aleatório com distribuição uniforme sobre o triângulo $\{(x,y)\in\mathbb{R}^2:0\leqslant x\leqslant y\leqslant 1\}$; isto é, (X,Y) tem função de densidade conjunta

3

$$f(x,y) = \begin{cases} 2, & 0 \leqslant x \leqslant y \leqslant 1; \\ 0, & \text{caso contrário.} \end{cases}$$

Determine a densidade de Z = X + Y.

Rpt.
$$f_z(z) = \begin{cases} z, & 0 \leqslant z \leqslant 1; \\ 2-z, & 1 \leqslant z \leqslant 2; \\ 0, & \text{caso contrário.} \end{cases}$$

18. Suponha que o vetor aleatório (X,Y) tem função de densidade conjunta

$$f(x,y) = \begin{cases} \mathrm{e}^{-x}, & 0 \leqslant y \leqslant x < \infty; \\ 0, & \text{caso contrário.} \end{cases}$$

- (a) Determine a densidade conjunta de W = X + Y e Z = X Y.
- (b) Determine as densidades marginais de W e Z.

Rpt. (a)
$$f_{W,Z}(w,z) = \begin{cases} \frac{1}{2} \mathrm{e}^{-(w+z)/2}, & 0 \leqslant z \leqslant w < \infty; \\ 0, & \text{caso contrário.} \end{cases}$$

Rpt. (a)
$$f_{W,Z}(w,z) = \begin{cases} \frac{1}{2} \mathrm{e}^{-(w+z)/2}, & 0 \leqslant z \leqslant w < \infty; \\ 0, & \text{caso contrário.} \end{cases}$$
 (b) $f_W(w) = \begin{cases} \mathrm{e}^{-w/2}(1 - \mathrm{e}^{-w/2}), & w \geqslant 0; \\ 0, & \text{caso contrário} \end{cases}$ e $f_Z(z) = \begin{cases} \mathrm{e}^{-z}, & z \geqslant 0; \\ 0, & \text{caso contrário,} \end{cases}$

19. A variável aleatória X tem distribuição de Weibull se possui densidade

$$f(x) = \begin{cases} \lambda \alpha x^{\alpha - 1} e^{-\lambda x^{\alpha}}, & x > 0; \\ 0, & x \leq 0. \end{cases}$$

Determine $\mathbb{E}(X)$.

Rpt.
$$\mathbb{E}(X) = \Gamma(1+\frac{1}{\alpha})/\lambda^{1/\alpha}$$
.

20. Sejam $X \sim U[0,1]$ e $Y \sim U[0,1]$ variáveis aleatórias independentes. Calcule $\mathbb{E}(Z)$ e $\mathbb{E}(W)$, onde $Z = \min\{X, Y\}$ e $W = \max\{X, Y\}$.

Rpt.
$$\mathbb{E}(Z) = 1/3 \text{ e } \mathbb{E}(W) = 2/3.$$

- 21. Um jogador vai lançando uma moeda honesta. Ele para depois de lançar ou duas caras sucessivas ou duas coroas sucessivas. Seja X o número de lançamentos.
 - (a) Encontre a distribuição de X.
 - (b) Determine $\mathbb{E}(X)$.

Rpt. (a)
$$p_X(k) = 1/2^{k-1}$$
, $k = 2, 3, ...$, (b) $\mathbb{E}(X) = 3$.

- 22. Uma urna contém 3 bolas numeradas 1,2,3. Uma pessoa tira uma bola e a devolve, tira outra e a devolve, continuando até tirar uma bola pela segunda vez. Seja X o número total de retiradas necessárias para obter essa repetição.
 - (a) Encontre a distribuição de X.
 - (b) Determine $\mathbb{E}(X)$.

Rpt. (a)
$$p_X(2) = 3/9$$
, $p_X(3) = 4/9$, $p_X(4) = 2/9$, (b) $\mathbb{E}(X) = 26/9$.

23. Suponha que a variável aleatória X tenha a seguinte densidade triangular:

$$f(x) = \begin{cases} 1+x, & -1 \le x \le 0; \\ 1-x, & 0 < x \le 1; \\ 0, & x < -1 \text{ ou } x > 1. \end{cases}$$

Calcule $\mathbb{E}(X)$ e Var(X).

Rpt.
$$\mathbb{E}(X) = 0$$
 e $Var(X) = 1/6$.

24. Encontre as variâncias de Z e W no Exercício 20.

Rpt.
$$Var(Z) = Var(W) = 1/18$$
.

25. Através de experimentos estatísticos, determina-se que a duração de um certo tipo de chamada telefônica satisfaz a relação $\mathbb{P}(T>t)=a\mathrm{e}^{-\lambda t}+(1-a)\mathrm{e}^{-\xi t},\ t\geqslant 0,\ \mathrm{com}\ 0\leqslant a\leqslant 1,\ \lambda>0,\ \xi>0.$ Encontre a média e a variância de T.

Rpt.
$$\mathbb{E}(X) = (\frac{a}{\lambda} + \frac{1-a}{\xi}) \text{ e } Var(X) = 2[\frac{a}{\lambda^2} + \frac{1-a}{\xi^2}] - [\frac{a^2}{\lambda^2} + \frac{(1-a)^2}{\xi^2}] - 2(\frac{a}{\lambda})(\frac{1-a}{\xi}).$$

Observação. Seja X uma variável aleatória seguindo uma distribuição binomial(n,p). Então X tem a mesma distribuição que $X_1+\cdots+X_n$, onde as X_i são variáveis aleatórias independentes e identicamente distribuídas que assumem apenas os valores 0 e 1.

- 26. Calcule a esperança e a variância da variável aleatória X, com
 - (a) $X \sim \text{Poisson}(\lambda)$, onde $\lambda > 0$.
 - (b) $X \sim \text{binomial}(n, p)$, onde $p \in (0, 1)$.
 - (c) $X \sim N(\mu, \sigma^2)$, onde $\mu \in \mathbb{R}$ e $\sigma^2 > 0$.
 - (d) $X \sim \text{Gama}(\alpha, \beta)$, onde $\alpha > 0$ e $\beta > 0$.
 - (e) $X \sim U[a, b]$, onde a < b.

Rpt. (a)
$$\mathbb{E}(X) = \operatorname{Var}(X) = \lambda$$
,

- (b) $\mathbb{E}(X) = np \ e \ Var(X) = np(1-p),$
- (c) $\mathbb{E}(X) = \mu \text{ e } Var(X) = \sigma^2$.
- (d) $\mathbb{E}(X) = \alpha/\beta$ e $Var(X) = \alpha/\beta^2$,
- (e) $\mathbb{E}(X) = (a+b)/2$ e $Var(X) = (b-a)^2/12$.
- 27. Sejam $X \in \{0,1\}$ e $Y \in \{0,1\}$ duas variáveis aleatórias dicotômicas. Se $\mathbb{E}(XY) = \mathbb{E}(X)\mathbb{E}(Y)$, então X e Y são independentes?

Rpt. Sim.

Observação. Em geral, a resposta do Exercício 27 é válida, também, para variáveis aleatórias X e Y da forma: $X \in \{a,b\}$ e $Y \in \{c,d\}$; pois $\frac{X-a}{b-a} \in \{0,1\}$ e $\frac{Y-c}{d-c} \in \{0,1\}$.

- 28. Seja $X \sim \text{Bernoulli}(p), Y = 1 X$ e Z = XY.
 - (a) Encontre as seguintes funções de probabilidade conjunta: $\mathbb{P}(X=x,Y=y)$ e $\mathbb{P}(X=x,Z=z)$, para cada x,y,z.
 - (b) X e Y são independentes?
 - (c) X e Z são independentes?

Rpt. (a)

$X \setminus Y$	0	1
0	0	1-p
1	p	0

$$\begin{array}{c|cc}
X \setminus Z & 0 \\
\hline
0 & 1-p \\
1 & p
\end{array}$$

- (b) Não, (c) Sim.
- 29. Seja (X,Y) uniformemente distribuído na região G dada na seguinte figura:

- (a) Encontre as densidades marginais de X e Y.
- (b) Ache Cov(X, Y).

$$\textbf{Rpt. (a)} \ f_X(x) = \begin{cases} \frac{2+x}{3}, & -1 < x \leqslant 0; \\ \frac{2-x}{3}, & 0 < x < 1; \\ 0, & \text{caso contrário}, \end{cases} \quad f_Y(y) = \begin{cases} \frac{2(y+1)}{3}, & -1 < y \leqslant 0; \\ \frac{2}{3}, & 0 < y < 1; \\ 0, & \text{caso contrário}. \end{cases}$$

- (b) Cov(X, Y) = 0.
- 30. Sejam $X \sim U[0,1]$ e $Y \sim U[0,1]$ variáveis aleatórias independentes, e sejam $X_{(1)} = \min\{X,Y\}$, $X_{(n)} = \max\{X,Y\}$. Determine o coeficiente de correlação $\rho_{X_{(1)},X_{(n)}}$.

Rpt.
$$\rho_{X_{(1)},X_{(n)}} = 1/2$$
.

31. Sejam X,Y e Z variáveis aleatórias independentes com distribuição comum U[0,1]. Determine a esperança e a variância de W=(X+Y)Z.

Rpt.
$$\mathbb{E}(W) = 1/2 \text{ e Var}(W) = 5/36.$$

32. Seja ρ o coeficiente de correlação entre as variáveis aleatórias X e Y. Se Z=aX+b e W=cY+d, com $a\neq 0$ e $b\neq 0$, calcule $\rho_{Z,W}$.

Rpt.
$$\rho_{Z,W} = \rho$$
.

33. Sejam U, T e X três variáveis aleatórias (absolutamente) contínuas e não negativas. Denote por G_U e f_T às correspondentes funções de distribuição acumulada e de densidade para U e T. Para X defina a função real F_X como segue:

$$F_X(x) = \begin{cases} 0, & x < 0; \\ \int_0^{\frac{G_U(x)}{1 - G_U(x)}} f_T(t) dt, & x \geqslant 0. \end{cases}$$

- (a) Verifique que F_X é a função de distribuição acumulada de X.
- (b) Se além do mais, $\mathbb{E}(T) < \infty$, $\mathbb{E}(U^p) < \infty$, $\forall p > 0$, e existe a > 0 tal que $G_U(a) > 0$, verifique que $\mathbb{E}(X^p) < \infty$.

Rpt. (b) Use a Desigualdade de Markov.