Lawrence Livermore National Laboratory 7000 East Avenue, L-103 Livermore, CA 94550 Office: (925) 423-5146 Email: zelinka1@llnl.gov https://markdzelinka.wordpress.com

RESEARCH INTERESTS

Climate sensitivity, cloud feedback, radiative forcing

EDUCATION

Ph.D., Atmospheric Sciences, University of Washington, Dec 2010 (Advisor: D. L. Hartmann)

M.S., Atmospheric Sciences, University of Washington, Dec 2007 (Advisor: D. L. Hartmann)

B.S., Meteorology, Pennsylvania State University, May 2004

Professional Experience

Research scientist, Lawrence Livermore National Laboratory, Apr 2013 - present.

Post-doctoral research scholar, Lawrence Livermore National Laboratory, Jan 2011 - Mar 2013.

Graduate research assistant, Dept. of Atmospheric Sciences, Univ. of Washington, Sep 2004 - Dec 2010.

SUBMITTED WORK

Hausfather, Z. K. Marvel, G. Schmidt, J. Nielsen-Gammon, and M. D. Zelinka, 2022: Consistent and Credible Climate Model Projections, submitted.

Santer, B. D, et al. including **M. D. Zelinka**, 2022: Robust anthropogenic signal identified in the seasonal cycle of tropospheric temperature, *J. Climate*, submitted.

Published Work

- 71. Samset, B., C. Zhou, J. Fuglestvedt, M. Lund, J. Marotzke, **M. D. Zelinka**, 2022: Earlier emergence of a temperature response to mitigation by filtering annual variability, *Nat Commun.*, 13, 1578, doi:10.1038/s41467-022-29247-y.
- 70. McCoy, D. M. et al. including **M. D. Zelinka**, 2022: Extratropical shortwave cloud feedbacks in the context of the global circulation and hydrological cycle, *Geophys. Res. Lett.*, 49, doi:10.1029/2021GL097154.
- 69. Ma, P.-L., et al. including **M. D. Zelinka**, 2022: Better calibration of cloud parameterizations and subgrid effects increases the fidelity of E₃SM Atmosphere Model version 1, *Geosci. Model Dev.*, 15, 2881-2916, doi:10.5194/gmd-15-2881-2022.
- 68. Qin, Y., M. D. Zelinka, and S. A. Klein, 2022: On the Correspondence between Atmosphere-Only and Coupled Simulations for Radiative Feedbacks and Forcing from CO₂, *J. Geophys. Res.*, 127, doi:10.1029/2021JD035460.
- 67. **Zelinka, M. D.**, S. A. Klein, Y. Qin, and T. A. Myers, 2022: Evaluating climate models' cloud feedbacks against expert judgement, *J. Geophys. Res.*, 127, doi:10.1029/2021JD035198.

- 66. Hahn L. C., K. C. Armour, M. D. Zelinka, C. M. Bitz, and A. Donohoe, 2021: Contributions to Polar Amplification in CMIP5 and CMIP6 Models. *Front. Earth Sci.*, doi: 10.3389/feart.2021.710036.
- 65. Muelmenstaedt, J., M. Salzmann, J. E. Kay, M. D. Zelinka, P. L. Ma, S. Hornig, and J. Quaas, 2021: An underestimated negative cloud feedback from cloud lifetime changes, *Nature Clim. Change*, 11, 508-513, doi:10.1038/s41558-021-01038-1.
- 64. Santer, B. D., et al. including **M. D. Zelinka**, 2021: Using climate model simulations to constrain observations, *J. Climate*, doi:10.1175/JCLI-D-20-0768.1.
- 63. Myers, T. A., R. C. Scott, M. D. Zelinka, S. A. Klein, J. R. Norris, and P. M. Caldwell, 2021: Observational Constraints on Low Cloud Feedback Reduce Uncertainty of Climate Sensitivity, *Nature Clim. Change*, doi:10.1038/s41558-021-01039-0.
- 62. Thackeray, C. W., A. Hall, **M. D. Zelinka**, and C. G. Fletcher, 2021: Assessing prior emergent constraints on surface albedo feedback in CMIP6, *J. Climate*, 34(10), 3889-3905, doi:10.1175/JCLI-D-20-0703.1.
- 61. Po-Chedley, S., B. D. Santer, S. Fueglistaler, M. D. Zelinka, P. J. Cameron-Smith, J. F. Painter, and Q. Fu, 2021: Natural variability can explain model-satellite differences in tropical tropospheric warming, *Proc. Natl. Acad. Sci.*, doi:10.1073/pnas.2020962118.
- 60. Pihl, E., et al. including **M. D. Zelinka**, 2021: 10 New Insights in Climate Science 2021 a Horizon Scan, *Global Sustainability*, 1-65, doi:10.1017/sus.2021.2.
- 59. Zhou, C., M. D. Zelinka, A. E. Dessler, and M. Wang, 2021: Greater committed warming after accounting for the SST pattern effect, *Nature Clim. Change*, 11, 132-136, doi:10.1038/s41558-020-00955-x.
- 58. Ma, H.-Y., et al. including **M. D. Zelinka**, 2021: A multi-year short-range hindcast experiment with CESM1 for evaluating climate model moist processes from diurnal to interannual timescales, *Geosci. Model Dev.*, 14, 73-90, doi:10.5194/gmd-14-73-2021.
- 57. McCoy, D. M., P. Field, A. Bodas-Salcedo, G. S. Elsaesser, and **M. D. Zelinka**, 2020: A regime-oriented approach to observationally constraining extratropical shortwave cloud feedbacks, *J. Climate*, doi:10.1175/JCLI-D-19-0987.1.
- 56. Sherwood, S., et al. including **M. D. Zelinka**, 2020: A combined assessment of EarthâĂŹs climate sensitivity, *Rev. Geophys.*, 58, doi:10.1029/2019RG000678.
- 55. Scott, R. C., T. A. Myers, J. R. Norris, **M. D. Zelinka**, S. A. Klein, M. Sun, and D. R. Doelling, 2020: Observed Sensitivity of Low-Cloud Radiative Effects to Meteorological Perturbations over the Global Oceans. *J. Climate*, 33, 7717-7734, doi:10.1175/JCLI-D-19-1028.1.
- 54. Dong, Y. K. C. Armour, **M. D. Zelinka**, C. Proistosescu, D. S. Battisti, C. Zhou, and T. Andrews, 2020: Intermodel Spread in the Pattern Effect and Its Contribution to Climate Sensitivity in CMIP5 and CMIP6 Models. *J. Climate*, 33, 7755-7775, doi:10.1175/JCLI-D-19-1011.1.
- 53. **Zelinka, M. D.**, T. A. Myers, D. T. McCoy, S. Po-Chedley, P. M. Caldwell, P. Ceppi, S. A. Klein, and K. E. Taylor, 2020: Causes of higher climate sensitivity in CMIP6 models, *Geophys. Res. Lett.*, 47, doi:10.1029/2019GL085782.
- 52. Zhou, C., Y. Hu, J. Lu, and **M. D. Zelinka**, 2020: Responses of the Hadley Circulation to regional sea surface temperature changes, *J. Climate*, 33, 429-441, doi:10.1175/JCLI-D-19-0315.1.
- 51. Po-Chedley, S., **M. D. Zelinka**, N. Jeevanjee, T. J. Thorsen, and B. D. Santer, 2019: Climatology explains intermodel spread in upper tropospheric cloud and relative humidity response to greenhouse warming, *Geophys. Res. Lett.*, 46, doi:10.1029/2019GL084786.
- 50. Santer, B. D., et al. including **M. D. Zelinka**, 2019: Quantifying stochastic uncertainty in detection time of human-caused climate signals, *Proc. Natl. Acad. Sci.*, 116 (40) 19821-19827, doi:10.1073/pnas.1904586116.

- 49. Chen, Y.-J., Y.-T. Hwang, **M. D. Zelinka**, and C. Zhou, 2019: Distinct patterns of cloud changes associated with decadal variability and their contribution to observed cloud cover trends, *J. Climate*, 32, 7281-7301, doi:10.1175/JCLI-D-18-0443.1.
- 48. Zhang, Y., et al. including **M. D. Zelinka**, 2019: Evaluation of Clouds in Version 1 of the E₃SM Atmosphere Model with Satellite Simulators, *J. Adv. Model. Earth Syst.*, 11, 1253-1268, doi:10.1029/2018MS001562.
- 47. Golaz, J.-C., et al. including **M. D. Zelinka**, 2019: The DOE E3SM coupled model version 1: Overview and evaluation at standard resolution, *J. Adv. Model. Earth Syst.*, 11, doi:10.1029/2018MS001603.
- 46. Santer, B. D., et al. including **M. D. Zelinka**, 2019: Celebrating the anniversary of three key events in climate change science, *Nature Clim. Change*, 9, 180-182, doi:10.1038/s41558-019-0424-x.
- 45. Terai, C. R., Y. Zhang, S. A. Klein, **M. D. Zelinka**, J. C. Chiu, and Q. Min, 2019: Mechanisms behind the extratropical stratiform low-cloud optical depth response to temperature in ARM site observations, *J. Geophys. Res.*, 124, doi:10.1029/2018JD029359.
- 44. McCoy, D. T., et al. including **M. D. Zelinka**, 2019: Cloud feedbacks in extratropical cyclones: insight from long-term satellite data and high-resolution global simulations, *Atmos. Chem. Phys.*, 19, 1147-1172, doi:10.5194/acp-19-1147-2019.
- 43. Colman, R., J. R. Brown, C. Franklin, L. Hanson, H. Ye, and M. D. Zelinka, 2019: Evaluating cloud feedbacks and rapid responses in the ACCESS model, *J. Geophys. Res.*, 124, doi:10.1029/2018JD029189.
- 42. **Zelinka, M. D.**, K. M. Grise, S. A. Klein, C. Zhou, A. M. DeAngelis, and M. W. Christensen, 2018: Drivers of the Low Cloud Response to Poleward Jet Shifts in the North Pacific in Observations and Models, *J. Climate*, 31, 7925-7947, doi:10.1175/JCLI-D-18-0114.1.
- 41. Santer, B. D., et al. including **M. D. Zelinka**, 2018: Human influence on the seasonal cycle of tropospheric temperature, *Science*, 361, doi:10.1126/science.aas8806.
- 40. Caldwell, P. M., M. D. Zelinka, and S. A. Klein, 2018: Evaluating Emergent Constraints on Equilibrium Climate Sensitivity, *J. Climate*, 31, 3921-3942, doi:10.1175/JCLI-D-17-0631.1.
- 39. Po-Chedley, S., et al. including **M. D. Zelinka**, 2018: Sources of intermodel spread in the lapse rate and water vapor feedbacks, *J. Climate*, 31, 3187-3206, doi:10.1175/JCLI-D-17-0674.1.
- 38. Qu, X., A. Hall, A. M. DeAngelis, M. D. Zelinka, S. A. Klein, H. Su, B. Tian, and C. Zhai, 2018: On proposed emergent constraints of climate sensitivity, *J. Climate*, 31, 863-875, doi:10.1175/JCLI-D-17-0482.1.
- 37. Tsushima, Y., et al. including **M. D. Zelinka**, 2017: The Cloud Feedback Model Intercomparison Project (CFMIP) Diagnostic Codes Catalogue metrics, diagnostics and methodologies to evaluate, understand and improve the representation of clouds and cloud feedbacks in climate models, *Geosci. Model Dev.*, 10, 4285-4305, doi:10.5194/gmd-10-4285-2017.
- 36. **Zelinka M. D.**, D. A. Randall, M. J. Webb, and S. A. Klein, 2017: Clearing clouds of uncertainty, *Nature Clim. Change* 7, 674-678 doi:10.1038/nclimate3402.
- 35. Zhou, C., M. D. Zelinka, and S. A. Klein, 2017: Analyzing the dependence of global cloud feedback on the spatial pattern of sea surface temperature change with a Green's Function approach, *J. Adv. Model. Earth Syst.*, 9, 2174-2189, doi:10.1002/2017MS001096.
- 34. C. Bonfils, et al. including **M. D. Zelinka**, 2017: Competing influences of anthropogenic warming, ENSO, and plant physiology on future terrestrial aridity, *J. Climate*, 30, 6883-6904, doi:10.1175/JCLI-D-17-0005.1.
- 33. Ceppi, P., F. Brient, M. D. Zelinka, and D. L. Hartmann, 2017: Cloud feedback mechanisms and their representation in global climate models, WIREs Climate Change, e465, doi:10.1002/wcc.465.
- 32. Zhou, C., M. D. Zelinka, and S. A. Klein, 2016: Impact of decadal cloud variations on the Earth's energy budget, *Nature Geoscience*, 9, 871-874, doi:10.1038/ngeo2828.

- 31. **Zelinka, M. D.**, C. Zhou, and S. A. Klein, 2016: Insights from a Refined Decomposition of Cloud Feedbacks, *Geophys. Res. Lett.*, 43, 9259-9269, doi:10.1002/2016GL069917.
- 30. Terai, C., S. A. Klein, and **M. D. Zelinka**, 2016: Constraining the low-cloud optical depth feedback at middle and high latitudes using satellite observations, *J. Geophys. Res.*, 121, 9696-9716, doi:10.1002/2016JD025233.
- 29. Norris, J. R., R. J. Allen, A. T. Evan, M. D. Zelinka, C. W. O'Dell, and S. A. Klein, 2016: Evidence for Climate Change in the Satellite Cloud Record, *Nature*, 536, 72-75, doi:10.1038/nature18273.
- 28. McCoy, D. T., I. Tan, D. L. Hartmann, M. D. Zelinka, T. Storelvmo, 2016: On the relationships among cloud cover, mixed-phase partitioning, and planetary albedo in GCMs, *J. Adv. Model. Earth Syst.*, 8, 650-668, doi:10.1002/2015MS000589.
- 27. Tan, I., T. Storelvmo, and **M. D. Zelinka**, 2016: Observational constrains on mixed-phase clouds imply higher climate sensitivity, *Science*, 352, 6282, 224-227, doi:10.1126/science.aad5300.
- 26. Yuan, T., L. Oreopoulos, **M. D. Zelinka**, H. Yu, J. Norris, M. Chin, S. Platnick, and K. Meyer, 2016: Positive low cloud and dust feedbacks amplify tropical North Atlantic multidecadal oscillation, *Geophys. Res. Lett.*, 43, 1349-1356, doi:10.1002/2016GL067679.
- 25. Caldwell, P. M., **M. D. Zelinka**, K. E. Taylor, and K. Marvel, 2016: Quantifying the Sources of Inter-Model Spread in Equilibrium Climate Sensitivity, *J. Climate*, 29, 513-524, doi:10.1175/JCLI-D-15-0352.1.
- 24. Santer, B. D., S. Solomon, D. Ridley, J. Fyfe, F. Beltran, C. Bonfils, J. Painter, and M. D. Zelinka, 2016: Volcanic effects on climate, *Nature Clim. Change*, 6, 3-4, doi:10.1038/nclimate2859.
- 23. Zhou, C., M. D. Zelinka, A. E. Dessler, S. A. Klein, 2015, The relationship between inter-annual and long-term cloud feedbacks, *Geophys. Res. Lett.*, 42, 10,463-10,469, doi:10.1002/2015GL066698.
- 22. DeAngelis, A. M., X. Qu, **M. D. Zelinka**, and A. Hall, 2015: An observational radiative constraint on hydrologic cycle intensification, *Nature*, 528, 249-253, doi:10.1038/nature15770.
- 21. McCoy, D. T., et al. including **M. D. Zelinka**, 2015: Mixed-phase cloud physics and Southern Ocean cloud feedback in climate models, *J. Geophys. Res.*, 120, 9539-9554, doi: 10.1002/2015JD023603.
- 20. Marvel, K. et al. including **M. D. Zelinka**, 2014: External influences on modeled and observed cloud trends, *J. Climate*, 28, 4820-4840, doi:10.1175/JCLI-D-14-00734.1.
- 19. Santer, B. D., et al. including **M. D. Zelinka**, 2015: Observed multi-variable signals of late 20th and early 21st century volcanic activity, *Geophys. Res. Lett.*, 42, 500-509, doi:10.1002/2014GL062366.
- 18. Zhou, C., A. E. Dessler, M. D. Zelinka, P. Yang, and T. Wang, 2014: Cirrus feedback on inter-annual climate fluctuations, *Geophys. Res. Lett.*, 41, doi: 10.1002/2014GL062095.
- 17. Johnston, M. S., et al. including **M. D. Zelinka**, 2014: Diagnosing the average spatio-temporal impact of convective systems Part 2: A model intercomparison using satellite data, *Atmos. Chem. Phys.*, 14, 8701-8721, doi:10.5194/acp-14-8701-2014.
- 16. **Zelinka, M. D.**, T. Andrews, P. M. Forster, and K. E. Taylor, 2014: Quantifying Components of Aerosol-Cloud-Radiation Interactions in Climate Models, *J. Geophys. Res.*, 119, 7599-7615, doi:10.1002x/2014JD021710.
- 15. Ceppi, P., M. D. Zelinka, and D. L. Hartmann, 2014: The Response of the Southern Hemispheric Eddy-Driven Jet to Future Changes in Shortwave Radiation in CMIP5, *Geophys. Res. Lett.*, 41, 3244-3250, doi:10.1002/2014GL060043.
- 14. Caldwell, P. M., et al. including **M. D. Zelinka**, 2014: Statistical Significance of Climate Sensitivity Predictors Obtained by Data Mining, *Geophys. Res. Lett.*, 41, 1803-1808, doi:10.1002/2014GL059205.

- 13. Santer, B. D., et al. including **M. D. Zelinka**, 2014: Volcanic Contribution to Decadal Changes in Tropospheric Temperature, *Nature Geoscience*, doi:10.1038/nge02098.
- 12. Johnston, M. S., et al. including **M. D. Zelinka**, 2013: Diagnosing the average spatio-temporal impact of convective systems Part 1: A methodology for evaluating climate models, *Atmos. Chem. Phys.*, **13**, 12043-12058, doi:10.5194/acp-13-12043-2013.
- 11. Grise, K.M., L.M. Polvani, G. Tselioudis, Y. Wu, and **M.D. Zelinka**, 2013: The ozone hole indirect effect: Cloud-radiative anomalies accompanying the poleward shift of the eddy-driven jet in the Southern Hemisphere. *Geophys. Res. Lett.*, **40**, 1-5, doi:10.1002/grl.50675.
- 10. Zelinka, M.D., S.A. Klein, K.E. Taylor, T. Andrews, M.J. Webb, J.M. Gregory, and P.M. Forster, 2013: Contributions of Different Cloud Types to Feedbacks and Rapid Adjustments in CMIP5. *J. Climate.* 26, 5007-5027. doi: 10.1175/JCLI-D-12-00555.1.
- 9. Zhou, C., M.D. Zelinka, A.E. Dessler, P. Yang, 2013: An analysis of the short-term cloud feedback using MODIS data. *J. Climate.* 26, 4803-4815. doi: 10.1175/JCLI-D-12-00547.1.
- 8. Klein, S.A., et al. including **M. D. Zelinka**, 2013: Are climate model simulations of clouds improving? An evaluation using the ISCCP simulator. *J. Geophys. Res.* **118**, 1329-1342. doi: 10.1002/jgrd.50141.
- 7. Forster, P.M., et al. including **M. D. Zelinka**, 2013: Evaluating adjusted forcing and model spread for historical and future scenarios in the CMIP5 generation of climate models. *J. Geophys. Res.* **118**, 1139-1150. doi: 10.1002/jgrd.50174.
- Zelinka, M.D., S.A. Klein, and D.L. Hartmann, 2012: Computing and Partitioning Cloud Feedbacks Using Cloud Property Histograms. Part I: Cloud Radiative Kernels. J. Climate, 25, 3715-3735. doi:10.1175/JCLI-D-11-00248.1.
- 5. **Zelinka, M.D.**, S.A. Klein, and D.L. Hartmann, 2012: Computing and Partitioning Cloud Feedbacks Using Cloud Property Histograms. Part II: Attribution to Changes in Cloud Amount, Altitude, and Optical Depth. *J. Climate*, 25, 3736-3754. doi:10.1175/JCLI-D-11-00249.1.
- 4. **Zelinka, M.D.** and D.L. Hartmann, 2012: Climate Feedbacks and their Implications for Poleward Energy Flux Changes in a Warming Climate. *J. Climate*, **25**, 608-624, doi:10.1175/JCLI-D-11-00096.1.
- 3. **Zelinka, M.D.** and D.L. Hartmann, 2011: The Observed Sensitivity of High Clouds to Mean Surface Temperature Anomalies in the Tropics. *J. Geophys. Res.*, **116**, D23103, doi:10.1029/2011JD016459.
- 2. **Zelinka, M.D.** and D.L. Hartmann, 2010: Why is Longwave Cloud Feedback Positive? *J. Geophys. Res.*, 115, D16117, doi:10.1029/2010JD013817.
- 1. **Zelinka, M.D.** and D.L. Hartmann, 2009: Response of Humidity and Clouds to Tropical Deep Convection. *J. Climate*, 22, 2389-2404. doi:10.1175/2008JCLI2452.1.

BOOK CHAPTERS

McCoy, D.T., D. L. Hartmann, and **M. D. Zelinka**, 2017, Mixed-Phase Cloud Feedbacks, in Andronache, C. (Ed.), *Mixed-phase Clouds: Observations and Modeling*, Elsevier.

Tan, I., T. Storelvmo, and **M. D. Zelinka**, 2017, The climatic impact of thermodynamic phase partitioning in mixed-phase clouds, in Andronache, C. (Ed.), *Mixed-phase Clouds: Observations and Modeling*, Elsevier.

Dessler, A.E. and M. D. Zelinka, 2015. Climate Feedbacks. In: Gerald R. North (editor-in-chief), John Pyle and Fuqing Zhang (editors). *Encyclopedia of Atmospheric Sciences*, 2nd edition, Vol 2, pp. 18-25.

RECENT HONORS & AWARDS

American Meteorological Society Henry G. Houghton Award, 2022

LLNL Deputy Director's Science & Technology Excellence in Publication Award [Zelinka et al. 2020]

LLNL Deputy Director's Science & Technology Excellence in Publication Award [Sherwood et al. 2020]

Sherwood et al. (2020) named runner-up for Science Magazine's 2020 Breakthrough of the Year

Nature Climate Change Research Highlight for Dong et al. (2020)

LLNL Physical and Life Sciences Directorate Award for Excellence in Publications [Sherwood et al. 2020]

US CLIVAR Research Highlight for Zelinka et al. (2020)

Eos Research Spotlight for Zelinka et al. (2020)

LLNL Outstanding Mentor Award, 2018

LLNL Early and Mid-Career Recognition Program Award, 2018

Eos Research Spotlights for Zhou et al. [2017], Zelinka et al. [2016], and McCoy et al. [2016]

Diablo Magazine 40 Under 40, 2017

LLNL Spot Award for "Excellence in Publications", 2017

LLNL Physical and Life Sciences Directorate Award for Excellence in Publications [Zhou et al. 2016]

LLNL Physical and Life Sciences Directorate Award for Excellence in Publications [Norris et al. 2016]

LLNL Deputy Director for Science & Technology Excellence in Publication Award [Santer et al. 2015]

Professional Activities, Service, & Leadership Roles

AGU Global Environmental Change Fellows Committee, 2022–present

Contributing Author for IPCC 6th Assessment Report, 2019–2021

Convener, Extratropical Cloud Feedbacks Session, 2020 CFMIP Meeting

Discussion Leader, Climate Sensitivity Session, 2019 Gordon Research Conference on Radiation & Climate

LLNL Physical and Life Sciences Postdoc Committee, 2017–2020

Section Editor for Current Climate Change Reports Topical Collection on Climate Feedbacks, 2014–2017

Contributor to climatefeedback.org, 2017–present

Co-convener, Climate Sensitivity and Feedbacks Session, 2013–2016 AGU Fall Meetings

Discussion Leader, Cloud Feedbacks Session, 2013 Gordon Research Seminar on Radiation and Climate

Chair, 2011 Gordon Research Seminar on Radiation and Climate

Proposal reviewer for DOE, European Research Council, NASA, and NSF

Reviewer for:

Atmosphere | Atmos. Ocean | Atmos. Chem. Phys. | Atmos. Meas. Tech. | Atmos. Sci. Lett.

B Am Meteorol Soc | Clim. Dynam. | Climatic Change | Earth System Dynamics | Environ. Res. Lett.

Geophys. Res. Lett. | Geosci. Model Dev. | J. Adv. Model. Earth Syst. | J. Appl. Meteorol. Clim.

J. Atmos. Oceanic Technol. | J. Atmos. Sci. | J. Climate | J. Geophys. Res | J. Meteorol. Soc. Jpn. | Nature Nat. Clim. Change | Nat. Commun. | Nat. Geosci. | P. Natl. Acad. Sci. | Sci. Rep. | Surv. Geophys.

RECENT INVITED PRESENTATIONS

Aerosol and Cloud, Convection and Precipitation Webinar Series, 19 Apr 2021

University of Maryland Baltimore County Department of Physics Colloquium, 24 Feb 2021

University of Toronto Physics Colloquium, 28 Jan 2021

American Geophysical Union Fall Meeting: CMIP6 Climate Model Evaluation Session, 8 Dec 2020

The National Academies of Sciences, Engineering, and Medicine Workshop "Data in Motion: New Approaches to Advancing Scientific, Engineering and Medical Progress", 14-15 October 2020

2020 Princeton AOS Summer Workshop, 17-21 Aug 2020

2020 CESM Workshop (Plenary talk), 15 June 2020

ECS & Cloud Feedback Symposia, 28 May 2020

Imperial College London, Atmospheric Physics Group Webinar, 12 May 2020

Global Model Cloud-Aerosol Research Webinar Series, 2 April 2020

UC Davis Department of Land, Air and Water Resources, 16 October 2019

Geophysical Fluid Dynamics Laboratory, 23 May 2019

George Mason University Center for Ocean-Land-Atmosphere Studies, 9 May 2019

University of Washington Program on Climate Change Summer Institute, 13 Sep 2018

CERES Science Team Meeting, 16 May 2018

Last updated: April 7, 2022