PRACA DOMOWA 5

ASC - 02 czerwca 2014r.

MARTA SOMMER - BSMAD - 237503

Rozważamy pomiary pewnej skwantowanej wielkości tzn. pomiary pochodzące z modelu:

$$x_i = M_i \cdot q + \varepsilon_i$$

gdzie $M_i \in \mathbb{N}$, ε_i to błędy pomiaru, a q jest szukaną jednostką (wartością kwantu). Chcemy wyznaczyć estymator \hat{q} przy pomocy kwantogramu danego wzorem:

$$\varphi(\tau) = \sum_{i=1}^{n} \cos(2\pi\tau \cdot x_i)$$

Wczytujemy dane i tworzymy funkcję kwantogramu zależną od τ . Następnie tworzymy siatkę wartości τ i tworzymy wykres:

Zróbmy małe przeliczenie:

$$\varphi(\tau) = \sum_{i=1}^{n} \cos(2\pi\tau \cdot x_i) = \sum_{i=1}^{n} \cos(2\pi\tau \cdot (M_i \cdot q + \varepsilon_i)) = \sum_{i=1}^{n} \cos(2\pi\tau \cdot M_i \cdot q + 2\pi\tau\varepsilon_i)$$

Jeśli przyjmiemy $q = \frac{1}{\tau}$, to otrzymamy:

$$\varphi(\tau) = \sum_{i=1}^{n} \cos(2\pi \cdot M_i + \frac{2\pi}{q} \varepsilon_i)$$

Jeśli błędy są niewielkie (a według założeń tak właśnie być powinno), to człon $\frac{2\pi}{q}\varepsilon_i$ dąży do zera. Wtedy:

$$\varphi(\tau) \sim \sum_{i=1}^{n} \cos(2\pi \cdot M_i)$$

Ale $M_i \in \mathbb{N}$, więc $\cos(2\pi \cdot M_i) = 1$, czyli:

$$\varphi(\tau) \sim \sum_{i=1}^{n} 1 = n$$

Czyli w punkcie $\tau=\frac{1}{q}$ powinniśmy otrzymać jakąś dużą wartość (taki pik). Największa wartość w naszym szeregu (co też łatwo widać na wykresie) jest dla τ równego 0,58, co przekłada się na q=1,72. Zatem estymatorem naszego q będzie właśnie ta wartość.