Massively Scalable Filesystems

Lustre Parallel Filesystem

Copyright (c) Alces Software Ltd. 2010

Agenda

- Lustre Architecture
- Lustre at Sussex University
- Administrating Lustre
- Using and Troubleshooting Lustre

Thinking about your files

- Lustre provides an object storage service
- Files have metadata and data objects which are stored separately for maximum performance
- File metadata includes all file attributes
 - > File name, size, permissions, ownership
 - Pointers to data objects
 - Metadata is useless without its file objects
- File objects hold the actual contents of the file
 - > Objects may be any size, shape, compression level
 - Objects may be stored on any server
 - > Objects are useless without their metadata

Relative file sections

Metadata

Lustre Servers

Separate servers for meta data and object data

Lustre Architecture

observe reuse of many modules

Lustre file transactions

Stand-alone servers

- Basic server with attached storage
- Need reasonably powerful servers
 - > Dual 2.4Ghz quad-core CPUs; 5520 chipset preferred
 - At least 12GB RAM
 - > Redundant power supplies
 - Network/interconnect card
- Plenty of bandwidth to storage
 - > No more than 24 disks per SAS card
 - Can use SATA or SAS drives
 - > Remember boot drives, parity and spare disks

High availability servers

- Lustre does not provide file level redundancy
- High availability achieved using two servers
 - > Both servers must be identical
 - Both servers must have dedicated boot drives
 - Lustre storage must be dual attached to both servers
 - Requires SAS disk drives or disk array
 - HW RAID cards in servers CANNOT be used
 - Metadata servers: active/passive mode only
 - > Object storage servers: active/active possible

OSS unit scaling

- Capacity scales linearly as OSS are added
- Performance scales near-linearly as OSS added
- Interconnect bandwidth can limit scaling

Lustre Network Performance

Results per OSS (dual xeon/x86_64 server):

- GIGE: 118 MB/sec, 20k RPC/sec
- Trunked 4 x gigE: 400MB/sec, 30k RPC/
- Myrinet: 200 MB/sec, 35k RPC/sec
- 10gigE: 600-800MB/sec, 45k RPC/sec
- Infiniband: 700-1800MB/sec, 60k RPC/sec

Memory cache significantly helps performance

- OSS read cache
- Disk drive and controller cache
- Client side cache

Typical Lustre bottlenecks

Storage volumes

- Disk drive data bandwidth and IOPS
- Disk controllers saturation

Interconnect performance

- Ethernet collisions
- Infiniband oversubcription
- Interaction with other traffic

Per-server thread limits

- OSS thread limitations (~2GB/s)
- MDS thread limitations (~15,000 RPC/s)
- Client limitations (~1GB/s)

Sussex Uni Lustre Solution

Lustre filesystem solution

Metadata server (MDS) pair

- High availability MDS pair
- 2 x Dell R610 1U servers
 - Dual 2.4Ghz processors
 - 12GB RAM
 - RAID1 system disks
 - Qlogic 7340 HCA
- Shared metadata target (MDT)
 - Dell PowerVault MD3200 SAS array
 - Multi-path dual controller connection
 - 8 x 300GB SAS disks (300M files)

Lustre filesystem solution

Object storage servers (OSS)

- Three identical standalone OSS machines
- Dell R510 2U servers
 - Dual 2.4Ghz processors, 24GB RAM
 - RAID1 system disks
 - Qlogic 7340 HCA
- Three OST volumes
 - > ost1 = PERC H700 + 12 x 2TB SATA drives
 - > ost2 = PERC H800 + 12 x 2TB SAS drives
 - > ost3 = PERC H800 + 12 x 2TB SAS drives
- Two connected MD1200 arrays per OSS

Physical cabling

Parallel storage rack

	power	weight
layout	(watt)	(kg)

42			
41			
40 39			
38			
37			
36			
35			
34 33			
32			
31			
30			
29			
28 27			
26			
25			
24			
23	R610 MDS server 1	385	18
22 21	R010 MDS server 1	385	18
20			
19	MD3200 array (MDT)	150	25
18 17	R510 OSS1 (01)	420	30
16 15	MD1200 array 1 (O1A1)	150	22
14 13	MD1200 array 2 (O1A2)	150	22
12 11	R510 OSS2 (O2)	420	30
10 9	MD1200 array 1 (O2A1)	150	22
8 7	MD1200 array 1 (O2A2)	150	22
5 5	R510 OSS3 (O3)	420	30
4 3	MD1200 array 1 (O3A1)	150	22
2 1	MD1200 array 1 (O3A2)	150	22

SAS cabling targets				LAN cabling targets				
SAS COPO	SAS COP1	SAS C1P0	SAS C1P1	H	eth0	eth1	eth2	eth3
MDTC0P0	MDTC1P0							
MDTC0P0	MDTC1P1				Cluster LAN Cluster LAN	IPMI LAN	-	heartbeat LAN heartbeat LAN
O1A1C0	O1A1C1	O1A2C0	O1A2C1		Cluster LAN	-		
O2A1C0	O2A1C1	O2A2C0	O2A2C1		Cluster LAN	-		
O3A1C0	O3A1C1	O3A2C0	O3A2C1		Cluster LAN	-		

T. I. I	2.000	422
Rack weight		150

Mounting Lustre

Start-up and shut-down procedures

- Lustre now integrated with mountconf
- MDS and OSS server control
- Client mounts
- Start-up order
 - OSS machines first
 - MDS machines second
 - Clients last
- Shut-down order
 - Unmount clients first
 - Shutdown MDS second
 - Shutdown OSS last

Authentication and user control

Integration with Cluster services

- IPoIB addressing for Lustre
- DNS and host name integration
- User authentication
 - LDAP integration for users
 - Critical for Lustre to work properly
- Logging in to the systems
 - Standard users cannot log in
 - Admin login as privileged user
 - Call-home service for support

Managing system security

Passwords and data access

- Lustre uses standard Linux authentication
- POSIX access restrictions apply
- User permissions from LDAP
- norootsquash by default
- Passwords should be changed regularly
 - Remember to update heartbeat fail-over configuration for MDS servers when changing passwords

High availability services

Configured for Metadata server on mds1/mds2

- Lustre MDS service is automatically started and stopped via heartbeat
- Heartbeat will fail to start if Lustre is mounted manually
- STONITH configured via Dell BMC
- Be extra careful when performing system administration to avoid accidental failover
- heartbeat service does not start automatically at boot; after failure, check servers over first before re-enabling
- MDS service is sticky

High availability services

Administration with graphical user interface

Use the heartbeat-gui package for administration:

RAID volumes

Configuration, monitoring and administration

- Metadata servers
 - system disks monitored via checkraid command
 - MD3200 monitored via Dell storage manager
- Object storage servers
 - disks monitored via MegaCLI utility
 - check-lustre-oss command quickly confirms status of all RAID volumes
- All groups are RAID1/RAID6 protected
 - Disk failures reported by these commands
 - Replace failed disks as soon as possible
 - If in doubt, email <u>support@alces-software.com</u>

Managing multi-path disk devices

Metadata server shared storage array targets

- Dell MD3200 supports Linux multi-path drivers
- One controller owns volume
- Second controller presents ghost device, but does not allow I/O
- On failure of the primary controller, secondary controller takes over
- Use multipath command to view status:

```
headnode:/ # multipath -11
mpath1 (36842b2b00018fcf421000026623e722f62) dm-0 DELL,MD32xx
[size=1.4T][features=3 queue_if_no_path pg_init_retries 50][hwhandler=1 rdac]
[rw]
\_ round-robin 0 [prio=100][active]
\_ 0:0:1:0 sdc 8:32 [active][ready]
\_ round-robin 0 [prio=0][enabled]
\_ 0:0:0:0 sda 8:0 [active][ghost]
headnode:/ #
```


RAID volumes

Configuration, monitoring and administration

- Object storage servers
 - check-lustre-oss command confirms status of Lustre OST filesystems:

- Application monitors for change from knowngood configuration
- Will detect disk volume and controller changes
- Will notice if server system changes significantly
- Reset configuration after server maintenance

Troubleshooting Lustre

Lustre filesystem usage

How to use a Lustre filesystem

- Lustre is mounted on nodes and headnode system like a normal POSIX filesystem
- Save files, read them, set permissions as normal
- Mount information added into /etc/fstab just like a normal network filesystem
- Can be used without special knowledge
 - Administrators can determine default storage policies
 - When unavailable, Lustre mount will hang like a hard-mounted NFS server
 - Best practice is not to mount in root fs

Lustre file striping

Where files are stored

- Lustre has a default file storage policy
 - New files are **not** striped over OSTs
 - New blocks allocated on the best OST
- Default policy can be modified for individual files, directories or entire tree
 - Target OST pool (by name)
 - Stripe count (how many OSTs to use)
 - Stripe size (how much data per OST)
- Existing files are unaffected
 - Support script available to redistribute filesystem contents

Lustre file striping

Why stripe?

- Striping large files can lead to massive performance increases
- 300MB/sec on unstriped file
 - single OST
 - 12 disks in RAID6
 - one QDR IB adapter
- 4GB/sec on same filesystem for striped files
 - nine OSTs
 - 108 disks in nine separate RAID6 groups
 - three QDR IB adapters
- Benefit from OSS cache, less contention, more controllers

Lustre file striping

Where files are stored

 Use the Ifs getstripe and Ifs setstripe commands to influence policies:

```
headnode:/lustre/examples # 1fs getstripe stripe-all/
OBDS:

0: lustre-OST0000_UUID ACTIVE

1: lustre-OST0001_UUID ACTIVE

2: lustre-OST0002_UUID ACTIVE

3: lustre-OST0003_UUID ACTIVE

4: lustre-OST0004_UUID ACTIVE

5: lustre-OST0005_UUID ACTIVE

6: lustre-OST0006_UUID ACTIVE

7: lustre-OST0007_UUID ACTIVE

stripe-all/
stripe_count: -1 stripe_size: 0 stripe_offset: -1
```

- Forced striped settings can have unexpected results
- File availability considerations
- Extra stripe information stored on MDS

Lustre filesystem administration

Querying filesystem space

- The standard df -h command reports the total available space on the filesystem
- Filesizes are estimates (glimpse method)
- The Ifs df command reports usage per Lustre server:

```
# 1fs df
UUID 1K-blocks Used Available Use% Mounted on
mds-lustre-0_UUID 9174328 1020024 8154304 11% /mnt/lustre[MDT:0]
ost-lustre-0_UUID 94181368 56330708 37850660 59% /mnt/lustre[OST:0]
ost-lustre-1_UUID 94181368 56385748 37795620 59% /mnt/lustre[OST:1]
ost-lustre-2_UUID 94181368 54352012 39829356 57% /mnt/lustre[OST:2]
filesystem summary:282544104167068468 39829356 57% /mnt/lustre

# 1fs df -i
UUID Inodes IUsed IFree IUse% Mounted on
mds-lustre-0_UUID 2211572 41924 2169648 1% /mnt/lustre[MDT:0]
ost-lustre-0_UUID 737280 12183 725097 1% /mnt/lustre[OST:0]
ost-lustre-1_UUID 737280 12232 725048 1% /mnt/lustre[OST:1]
ost-lustre-2_UUID 737280 12214 725066 1% /mnt/lustre[OST:2]
filesystem summary: 2211572 41924 2169648 1% /mnt/lustre[OST:2]
```


What to do when things go wrong

- Filesystem availability requires
 - MDS to be up and working
 - All OSS to be up and working
 - Infiniband networks to be working
 - Ethernet networks to be working
- Problem components cause filesystem hangs
 - Similar to hard-mounted NFS filesytem
 - Jobs will (should) wait on blocked I/O
 - No loss of data will occur during a reboot of
 - Any single Lustre server
 - Client servers
- I/O will resume when filesystem is available

Default recovery actions

- On failover, all clients automatically search for failnode
- Dead/slow/broken clients are evicted after a timeout period and I/Os are rolled back
 - Can be caused by interconnect failures
 - Prevents disruption of other clients
- On OSS reboot, clients cache I/O requests until server is available again
- On MDS reboot, filesystem enters recovery period while clients reconnect
 - 5 minute timeout while all clients reconnect
 - Any missing clients are evicted after timeout

Lustre log files

- Lustre logs to kernel and system log files
 - Lots of status and debugging information
 - Primary method of diagnosing problems
 - Lustre bugs (LBUG) are rare and should be investigated further
- Most issues are not caused by Lustre
 - Interconnect problems
 - Name service unavailable (NIS/LDAP/AD)
 - Storage volume problems
- Contact support for assistance diagnosing problems
 - email support@alces-software.com

Checking a Lustre filesystem

- Lustre uses ext4 backing filesystems
- Storage volumes on MDS and OSS machines can be checked in parallel
- Lots of storage = long check process
- It is almost never necessary to use Ifsck command
 - Checks Lustre filesystem integrity
 - Easy to remove important data by mistake
- Contact support for assistance diagnosing problems
 - email support@alces-software.com

Steps to troubleshooting hanging Lustre filesystem

- 1. Is the problem affecting just one node?
 - Try from another filesystem client; if it works, try restarting the affected node
- 2. Are the MDS and OSS servers all running?
 - Check Lustre is mounted
 - Use the check-lustre-oss command to query status
- 3. Is the Lustre interconnect up?
 - Use the *ping* command to confirm
- 4. Is the local name service working?
 - Use ypcat or getent commands to confirm
- 5. Check the MDS and OSS logs for Lustre errors
- 6. Contact support support@alces-software.com

