厦门大学《计算机组成原理》 课程期末试卷

软件学院 软件工程系 2016 级 软件工程专业 主考教师: 曾文华 张海英 试卷类型: (A卷)

15 小题,每小

	、 选择题(请从 A、B、C、D 中选择唯一的一个正确答案, 15 小题, 题 1 分, 共 15 分; 在答题纸填写答案时请写上每小题的对应编号)
1.	在 CPU 中跟踪指令后续地址的寄存器是。
	A. MAR B. IR
	C. MDR D. PC
2.	有些计算机将一部分软件永恒地存于只读存储器中,称之为
	A. 硬件 B. 软件
	C. 固件 D. 辅助存储器
3.	计算机中负责指令译码。
	A. 算术逻辑单元 B. 控制单元
	C. 存储器译码电路 D. 输入输出译码电路
4.	在三种集中式总线控制中,方式对电路故障最敏感。
	A. 链式查询 B. 计数器定时查询
	C. 独立请求 D. 链式查询和独立请求
5.	在三种异步通信方式中,方式速度最快。
	A. 全互锁 B. 半互锁
	C. 不互锁 D. 全互锁和半互锁
6.	在同步通信中,一个总线周期的传输过程是。
	A. 先传输数据,再传输地址 B. 只传输数据
	C. 先传输地址,再传输数据 D. 只传输地址
7.	所谓三总线结构的计算机是指。
	A. 地址总线、数据总线、控制总线 B. I/O 总线、主存总线、DMA 总线
	C. I/O 总线、主存总线、系统总线 D. 片内总线、系统总线、通信总线
8.	存取周期是指。
	A. 存储器的写入时间 B. 存储器进行连续写操作允许的最短间隔时间
	C. 存储器的读入时间 D. 存储器进行连续读或写操作允许的最短间隔时间
9.	主机和 I/O 设备传送数据时,采用,主机与 I/O 设备是串行工作的。

D. 以上三种都是

A. 程序查询方式 B. 中断方式

C. DMA 方式

10.	. 中断友生时,程序计数器(PC) A. 硬件自动	
11.	. 在小数定点机中,下述说法正确 A. 补码能表示-1	
	. 在程序的执行过程中,Cache 与 A. 操作系统来管理的 C. 硬件自动完成的	f主存的地址映射是由。 B. 程序员调度的 D. 编译器完成的
13.	. 设[x] _* =1.x ₁ x ₂ x ₃ x ₄ ,当满足下列 __ A. x ₁ 必须为 0,x ₂ ~x ₄ 至少有一 B. x ₁ 必须为 0,x ₂ ~x ₄ 任意 C. x ₁ 必须为 1,x ₂ ~x ₄ 至少有一 D. x ₁ 必须为 1,x ₂ ~x ₄ 任意	· 个为 1
14.	. 在浮点机中,判断补码规格化形A. 尾数的最高有效位为1,符B. 尾数的最高有效位为0,符C. 尾数的符号位与最高有效位D. 尾数的符号位与最高有效位	号位任意 号位任意 位相同
15.	. 为了缩短指令中地址码的位数,A. 立即数寻址B. 间C. 直接寻址D. 省	可接寻址
<u> </u>	、 填空题(10 个空,每 个空格的对应编号)	一空1分,共10分;在答题纸填写答案时请写上每
1,	基于原理的冯●诺依	该曼计算机工作方式的基本特点是按地址访问并顺序执行指令。
2,	层次化存储器结构设计的依据是	程序访问的原理。
3、	动态 RAM 依据电容存储电荷的	原理存储信息,因此一般在时间内必须刷新一次。
4、	在 DMA 方式中,CPU 与 DMA 存、、DMA 与 (控制器通常采用三种方法来分时使用主存,分别是停止 CPU 访问主CPU 交替访问主存。

5、虚	找存储器由主存和两级组成。
	E Cache 的写操作时,对 Cache 与主存单元同时修改的方法称为法;若每次只暂时写入 ache,直到替换时才写入主存的方法称为法。
	O 的编址方式可以分为独立编址和统一编址两大类,前者需有独立的 I/O 指令,后者可通 t指令和 I/O 设备交换信息。
	PU 在时刻查询中断请求信号(在开中断情况下),而在时刻查询 DMA 的 线请求信号。
三、	判断题(下列表述正确的打√,错误的打×,10 小题,每小题 1 分,共10 分;在答题纸填写答案时请写上每小题的对应编号)
1,	连接计算机与计算机之间的总线属于系统总线。()
2,	三种集中式总线控制方式(链式查询、计数器定时查询、独立请求)中,独立请求方式响应时间最快。()
3,	DRAM 的刷新是采用"读出"方式进行刷新。()
4、	采用流水线技术的机器一定是 RISC 计算机 。 ()
5、	采用微程序控制器的处理器称为微处理器。()
6,	一个更高级别的中断请求一定可以中断另一个中断处理程序的执行。()
7、	任何十进制小数都可以用二进制数精确表示。()
8,	指令操作数所需的数据不可能来自控制存储器。()
9,	寄存器间接寻址方式中,操作数在寄存器中。()
10、花	E微指令编码中,编码效率最低的是直接编码方式。 ()
四、	名词解释(请写出下列英文缩写的中文全称,10 小题,每 1 小题 1 分, 共 10 分;在答题纸填写答案时请写上每小题的对应编号)

2, AGP

1, PCI

3, MIPS 4, FLOPS

5, LRU 6, CPI

7. DDR SDRAM 8. SCSI

9、RAID 10、VLIW

- 五、 问答题(5 小题,每小题 3 分,共 15 分;在答题纸填写答案时请写上每小题的对应编号)
- 1、 冯•诺依曼计算机的主要特点是什么?
- 2、 简要说明提高访问存储器速度的主要措施。
- 3、 请比较 RISC 计算机和 CISC 计算机。
- 4、 请比较组合逻辑设计和微程序设计。
- 5、 请比较水平型微指令和垂直型微指令。
- 六、 设计题(4 小题, 共 40 分; 在答题纸填写答案时请写上每小题的对应编号)
- 1、(8分)、设某计算机采用 8 路组相联映射的 Cache,已知主存容量为 4MB, Cache 容量为 4KB,字块长度为 4 个字,每个字 32 位。要求:
- (1) 画出 Cache 地址各字段分配框图,画出反映主存与 Cache 映射关系的主存地址各字段分配框图,并说明每个字段的名称及位数。
- (2) 设 Cache 初态为空,若 CPU 依次从主存第 0, 1,...,99 号单元读出 100 个字(主存一次读出一个字),并重复按此次序读 10 次,问 Cache 的命中率是多少?
- (3) 如果 Cache 的存取时间是 20ns, 主存的存取时间是 200ns, 根据(2) 求出的命中率, 求平均存取时间。
- (4) 计算 Cache-主存系统的效率。

注:因为考场不允许带计算器,在计算命中率、平均存取时间、效率时,可以只写出有数字的计算式子, 不必算出具体的数值。

- 2、(10 分)已知某 CPU 共有 16 根地址线、8 根数据线,并用 IO/-M 作为访问存储器与 I/O 的控制线(高电平访问 I/O, 低电平访问存储器),用-WR 作为读/写控制信号(高电平为读,低电平为写)。要求设计一个容量为 32KB 的 RAM,RAM 的起始地址为 0000H,RAM 采用低位交叉编址的四体并行结构。现有 2KB、4KB、8KB、16KB 的 RAM 芯片若干(RAM 芯片除了数据线、地址线外,还有输出允许-OE、写允许-WE 控制信号,片选信号-CS,均为低电平有效),3-8 译码器(74LS138)芯片、门电路芯片若干。
- (1) 请画出 CPU 与存储器芯片完整的连接线路图。
- (2) 写出图中每个存储器芯片的地址范围 (用 16 进制表示)。
- 3、(10 分)已知 X = 14.75,Y = 26.4375,请采用浮点加减法运算的方法,完成"X Y = ?"的运算。要求: 先将 X 和 Y 用规格化的浮点数表示,再进行浮点数的加减法运算,运算结果也要用规格化浮点数表示。浮点数的格式为: 阶码为 5 位(含 1 位符号位),尾数为 11 位(含 1 位符号位);阶码采用移码表示,尾数采用补码表示。
- 4、(12分)已知 TD-CMA 实验系统在简单模型机方式下的数据通路图如图 1 所示,ALU 的逻辑功能表如表 1 所示。该简单模型机有 5 条指令,指令的助记符、机器码和说明如下:

助记符	指令机器码	说明
IN R0	0010 0000	IN -> R0
ADD R0,R0	0000 0000	$R0 + R0 \rightarrow R0$
OUT R0	0011 0000	R0 -> OUT
JMP addr	1110 0000 ******	addr -> PC
HLT	0101 0000	停机

该简单模型机的微指令格式如表 2 所示,5 条指令的微程序流程图如图 2 所示,微指令的代码如表 3 所示。请问:

(1) 该简单模型机的微指令采用什么编码方式(控制方式)? 微指令的操作控制字段和顺序控制字段各

有几位?

- (2) 下面 8 条微指令, 该简单模型机的控制器发出什么控制信号? (请分别列出)
 - ① PC->AR, PC加1
 - $2 \text{ MEM} \rightarrow \text{IR}, P < 1 >$
 - $3 R0 \rightarrow A$
 - **4** $R0 \rightarrow B$
 - ⑤ A加B->R0
 - 6 IN -> R0
 - \bigcirc R0 -> OUT
 - \otimes MEM -> PC
- (3) 要求设计一条新的指令,代替原有 5 条指令中的"HLT"指令。该新指令完成"R0 加 1"的功能,即"R0+1-> R0",其助记符为"INC R0"。请对图 2 的微程序流程图进行修改,对表 3 的微指令代码表进行修改,使该简单模型机具有新指令"R0 加 1"的功能(代替原有的"HLT"指令)。注:只需给出图 2 的修改部分,表 3 的修改部分。

图 1 简单模型机的数据通路图

表 1 简单模型机 ALU 的逻辑功能表

运算类型	S3 S2 S1 S0	CN	功 能
	0000	X	F=A (直通)
	0001	X	F=B (直通)
逻辑运算	0010	X	F=AB (FZ)
	0011	X	F=A+B (FZ)
	0100	X	F=/A (FZ)
	0101	X	F=A 不带进位循环右移 B (取低 3 位) 位 (FZ)
	0110	0	F=A 逻辑右移一位 (FZ)
移位运算		1	F=A 带进位循环右移一位 (FC, FZ)
	0111	0	F=A 逻辑左移一位 (FZ)
		1	F=A 带进位循环左移一位 (FC, FZ)
	1000	X	置 FC=CN (FC)
	1001	X	F=A 加 B (FC, FZ)
	1010	X	F=A加B加FC (FC, FZ)
算术运算	1011	X	F=A 减 B (FC, FZ)
异小 / 异	1100	X	F=A 減 1 (FC, FZ)
	1101	X	F=A 加 1 (FC, FZ)
	1110	X	(保留)
	1111	X	(保留)

^{*}表中"X"为任意态,下同

表 2 简单模型机微指令的格式

23	22	21	20	19	18-15	14-12	11-9	8-6	5-0
M23	M22	WR	RD	IOM	S3-S0	A字段	B字段	C字段	MA5-MA0

A字段	
-----	--

14	13	12	选择
0	0	0	NOP
0	0	1	LDA
0	1	0	LDB
0	1	1	LDRO
1	0	0	保留
1	0	1	LOAD
1	1	0	LDAR
1	1	1	LDIR

11	10	9	选择
0	0	0	NOP
0	0	1	ALU_B
0	1	0	RO_B
0	1	1	保留
1	0	0	保留
1	0	1	保留
1	1	0	PC_B
1	1	1	保留

B字段 C字段

8	7	6	选择
0	0	0	NOP
0	0	1	P<1>
0	1	0	保留
0	1	1	保留
1	0	0	保留
1	0	1	LDPC
1	1	0	保留
1	1	1	保留

图 2 简单模型机微程序流程图

表 3 简单模型机微指令的代码

地址	十六进制	高五位	S3-S0	A 字段	B 字段	C 字段	MA5-MA0
00	00 00 01	00000	0000	000	000	000	000001
01	00 6D 43	00000	0000	110	110	101	000011
03	10 70 70	00010	0000	111	000	001	110000
04	00 24 05	00000	0000	010	010	000	000101
05	04 B2 01	00000	1001	011	001	000	000001
1D	10 51 41	00010	0000	101	000	101	000001
30	00 14 04	00000	0000	001	010	000	000100
32	18 30 01	00011	0000	011	000	000	000001
33	28 04 01	00101	0000	000	010	000	000001
35	00 00 35	00000	0000	000	000	000	110101
3C	00 6D 5D	00000	0000	110	110	101	011101