

Navy Case 84568

PATENT

In the Claims:

A complete listing of claims in the instant application is provided below as follows:

1 1. (Currently amended) A system for defining a line of approach,
2 comprising:

3 light sources arranged in an array;

4 means coupled to said light sources for defining a primary
5 field-of-view (FOV) from which all of said light sources are
6 adapted to be visible to a remotely-located viewer positioned
7 therein, wherein less than all of said light sources are adapted
8 to be visible from positions to the viewer when the viewer is
9 positioned outside of said primary FOV, said means further
10 dividing said light sources into a plurality of sections with each
11 of said plurality of sections having a portion of said light
12 sources associated therewith; and

13 a controller coupled to said light sources for controlling
14 operation thereof in accordance with cyclical on/off sequences,
15 each of said cyclical on/off sequences being (i) associated with a
16 corresponding one of said plurality of sections, (ii) identical
17 for said portion of said light sources associated with said
18 corresponding one of said plurality of sections, and (iii) unique
19 for each of said plurality of sections, wherein a primary waveform
20 of light energy is defined by said cyclical on/off sequences

Navy Case 84568

PATENT

21 associated with said plurality of sections and is visible to the
22 viewer from within said primary FOV, and wherein a plurality of
23 secondary waveforms of light energy are defined by said cyclical
24 on/off sequences with a unique one of said plurality of said
25 secondary waveforms being visible from positions to the viewer
26 based on the viewer's position outside of said primary FOV.

1 2. (Original) A system as in claim 1 wherein each of said light
2 sources is a light emitting diode (LED).

1 3. (Original) A system as in claim 1 wherein said means
2 comprises:

3 a frame supporting said light sources such that said array is
4 a two-dimensional planar array; and
5 at least one dividing wall coupled to and extending from said
6 frame to define said plurality of sections of said light sources.

1 4. (Original) A system as in claim 3 wherein each side of each
2 said dividing wall is reflective.

1 5. (Original) A system as in claim 1 wherein said means comprises
2 a frame supporting said light sources such that said array is a
3 three-dimensional array.

Navy Case 84568

PATENT

1 6. (Original) A system as in claim 5 wherein said three-dimensional array has a shape selected from the group consisting of dome shapes and pyramid shapes.

1 7. (Original) A system as in claim 1 wherein one cycle of each of said cyclical on/off sequences includes a pulse of common duration, and wherein said one cycle associated with each of said plurality of sections is distinguishable by the timing of said pulse within said one cycle.

1 8. (Original) A system as in claim 1 wherein one cycle of each of said cyclical on/off sequences includes a pulse, and wherein said one cycle associated with each of said plurality of sections is distinguishable by the duration of said pulse within said one cycle.

1 9. (Original) A system as in claim 1 wherein each of said plurality of sections includes a portion of a periphery of said array, and wherein said controller excludes ones of said light sources at said periphery from said cyclical on/off sequences to reduce a cross-sectional area of said primary FOV.

1 10. (Original) A system as in claim 1 wherein each of said light sources produces light energy having the same wavelength.

SEP-07-2005 10:57 FROM:

TO:

P.006/021

Navy Case 84568

PATENT

1 11. (Original) A system as in claim 1 wherein each of said light
2 sources produces light energy having a wavelength in the range of
3 approximately 390 nanometers to approximately 577 nanometers.

Navy Case 84568

PATENT

1 12. (Currently amended) A system for defining a line of approach,
2 comprising:

3 light sources arranged in an array, each of said light
4 sources producing light energy having the same wavelength when
5 turned on;

6 means coupled to said light sources for defining a primary
7 field-of-view (FOV) from which all of said light sources are
8 adapted to be visible to a remotely-located viewer positioned
9 therein, wherein less than all of said light sources are adapted
10 to be visible from positions to the viewer when the viewer is
11 positioned outside of said primary FOV, said means further
12 dividing said light sources into a plurality of sections with each
13 of said plurality of sections having a portion of said light
14 sources associated therewith;

15 each said portion of said light sources associated with one
16 of said plurality of sections forming a radial slice of said array
17 that extends out to a peripheral portion of said array; and

18 a controller coupled to said light sources for controlling
19 operation thereof in accordance with cyclical on/off sequences,
20 each of said cyclical on/off sequences being (i) associated with a
21 corresponding one of said plurality of sections, (ii) identical
22 for said portion of said light sources associated with said
23 corresponding one of said plurality of sections, and (iii) unique
24 for each of said plurality of sections, wherein a primary waveform

Navy Case 84568

PATENT

25 of light energy is defined by said cyclical on/off sequences
26 associated with said plurality of sections and is visible to the
27 viewer from within said primary FOV, and wherein a plurality of
28 secondary waveforms of light energy are defined by said cyclical
29 on/off sequences with a unique one of said plurality of said
30 secondary waveforms being visible from positions to the viewer
31 based on the viewer's position outside of said primary FOV, said
32 controller excluding ones of said light sources from said cyclical
33 on/off sequences starting at said peripheral portion of said array
34 to reduce a cross-sectional area of said primary FOV.

1 13. (Original) A system as in claim 12 wherein each of said light
2 sources is a light emitting diode (LED).

1 14. (Original) A system as in claim 12 wherein said means
2 comprises:

3 a frame supporting said light sources such that said array is
4 a two-dimensional planar array; and
5 at least one dividing wall coupled to and extending from said
6 frame to define said plurality of sections of said light sources.

1 15. (Original) A system as in claim 14 wherein each side of each
2 said dividing wall is reflective.

Navy Case 84568

PATENT

1 16. (Original) A system as in claim 12 wherein said means
2 comprises a frame supporting said light sources such that said
3 array is a three-dimensional array.

1 17. (Original) A system as in claim 16 wherein said three-
2 dimensional array has a shape selected from the group consisting
3 of dome shapes and pyramid shapes.

1 18. (Original) A system as in claim 12 wherein one cycle of each
2 of said cyclical on/off sequences includes a pulse of common
3 duration, and wherein said one cycle associated with each of said
4 plurality of sections is distinguishable by the timing of said
5 pulse within said one cycle.

1 19. (Original) A system as in claim 12 wherein one cycle of each
2 of said cyclical on/off sequences includes a pulse, and wherein
3 said one cycle associated with each of said plurality of sections
4 is distinguishable by the duration of said pulse within said one
5 cycle.

1 20. (Original) A system as in claim 12 wherein each of said light
2 sources produces light energy having a wavelength in the range of
3 approximately 390 nanometers to approximately 577 nanometers.