Cours 7

Martingale et temps d'arrêt

Une martingale et caractérisée par l'égalité $\mathbb{E}(X_m \mid \mathcal{F}_n) = X_{m \wedge n}$. Il est naturel de se demander si cette égalité est encore valable pour deux temps d'arrêt T et S au lieu de deux constantes m et n. Le théorème d'arrêt de Doob répond à cette question sous certaines conditions.

On se donne un espace de probabilité filtré $(\Omega, \mathcal{F}, \mathbb{F}, P)$ où $\mathbb{F} = (\mathcal{F}_n)_{n \in \mathbb{N}}$.

Définition 1 Soit $(X_n)_{n\in\mathbb{N}}$ un processus \mathbb{F} -adapté et T un \mathbb{F} -temps d'arrêt. On note X_T l'application définie pour chaque $\omega \in \Omega$ par $X_T(\omega) = X_{T(\omega)}(\omega)$.

Lemme 2 L'application X_T et \mathcal{F}_T -mesurable.

Preuve. Soit $B \in \mathcal{B}(\mathbb{R})$ et n un entier naturel

$$\{X_T \in B\} \cap \{T = n\} = \{X_n \in B\} \cap \{T = n\} \in \mathcal{F}_n$$

qui entraı̂ne $\{X_T \in B\} \in \mathcal{F}_T$ et donc X_T est \mathcal{F}_T -mesurable.

Proposition 3 Soit $(X_n)_{n\in\mathbb{N}}$ une \mathbb{F} -martingale et T un \mathbb{F} -temps d'arrêt borné par $m\in\mathbb{N}$. Alors X_T est intégrable et $\mathbb{E}(X_T)=\mathbb{E}(X_0)$.

Preuve. Vu que $T \leq m$, alors $\{T \leq m\} = \Omega$ et donc $X_T = \sum_{k=0}^m X_k \mathbb{1}_{\{T=k\}}$ et donc

$$\mathbb{E}\left(|X_T|\right) \le \sum_{k=0}^m \mathbb{E}\left(|X_k|\right) \mathbb{I}_{\{T=k\}} \le \sum_{k=0}^m \mathbb{E}\left(|X_k|\right) < +\infty,$$

ce qui achève l'intégrabilité de X_T . Montrons que $\mathbb{E}(X_T) = \mathbb{E}(X_0)$.

$$\mathbb{E}(X_T) = \sum_{k=0}^m \mathbb{E}\left(\mathbb{I}_{\{T=k\}} X_k\right)$$

$$= \sum_{k=0}^m \mathbb{E}\left(\mathbb{I}_{\{T=k\}} \mathbb{E}(X_m \mid \mathcal{F}_k)\right)$$

$$= \sum_{k=0}^m \mathbb{E}\left(\mathbb{E}\left(\mathbb{I}_{\{T=k\}} X_m \mid \mathcal{F}_k\right)\right)$$

$$= \sum_{k=0}^m \mathbb{E}\left(X_m \mathbb{I}_{\{T=k\}}\right)$$

$$= \mathbb{E}(X_m)$$

$$= \mathbb{E}(X_0).$$

Théor \blacksquare **4** (d'arrêt de Doob :cas fini) Soient $(X_n)_{n\in\mathbb{N}}$ une \mathbb{F} -martingale, S et T un \mathbb{F} -temps d'arrêt bornés par une constante $m\in\mathbb{N}$ et tels que $S\leq T$. Alors $\mathbb{E}(X_T\mid\mathcal{F}_S)=X_S$ p.s.

Preuve. Soit A un élément de \mathcal{F}_S . On définit la variable aléatoire R comme suit

$$R = S \mathbb{1}_A + T \mathbb{1}_{A^c}.$$

Cette variable aléatoire est un \mathbb{F} -temps d'arrêt borné par m. En effet,

$$\{R = n\} = \{S \mathbb{I}_A = n\} \cup \{T \mathbb{I}_{A^c} = n\} = (A \cap \{S = n\}) \cup (A^c \cap \{T = n\}) \in \mathcal{F}_n$$

Car : $A \cap \{S = n\} \in \mathcal{F}_n$ par la définition de \mathcal{F}_S et $A^c \cap \{T = n\} \in \mathcal{F}_n$ puisque $A^c \in \mathcal{F}_S \subset \mathcal{F}_T$.

Montrons maintenant que $\mathbb{E}(X_T \mid \mathcal{F}_S) = X_S$ p.s.

Grace à la proposition précidente on a

$$\mathbb{E}(X_R) = \mathbb{E}(X_0) = \mathbb{E}(X_T).$$

et on a aussi

$$\mathbb{E}(X_T) = \mathbb{E}(X_T \mathbb{I}_A + X_T \mathbb{I}_{A^c}) = \mathbb{E}(X_T \mathbb{I}_A) + \mathbb{E}(X_T \mathbb{I}_{A^c})$$

$$\mathbb{E}(X_R) = \mathbb{E}(X_S \mathbb{I}_A + X_T \mathbb{I}_{A^c}) = \mathbb{E}(X_S \mathbb{I}_A) + \mathbb{E}(X_T \mathbb{I}_{A^c})$$

D'où $\mathbb{E}(X_S \mathbb{I}_A) = \mathbb{E}(X_T \mathbb{I}_A)$ ce qui signifie que $\mathbb{E}(X_T \mid \mathcal{F}_S) = X_S$ p.s.

Définition 5 Soit $(X_n)_{n\in\mathbb{N}}$ un processus stochastique et $(T_n)_{n\in\mathbb{N}}$ une suite croissante de temps d'arrêt finis. La suite $(X_{T_n})_{n\in\mathbb{N}}$ est appelée un échantillonnagede $(X_n)_{n\in\mathbb{N}}$.

Le théorème suivant (admis) montre que si la suite $(T_n)_{n\in\mathbb{N}}$ est croisssante, alors l'échantillonnage $(X_{T_n})_{n\in\mathbb{N}}$ de la mrtingale $(X_n)_{n\in\mathbb{N}}$ est encore une martingale sous certaines conditions.

Théor 6 (d'échantillonnage) Soit $(X_n)_{n\in\mathbb{N}}$ une \mathbb{F} -martingale (resp. sous-martingale, sur-martingale). Si $(X_{T_n})_{n\in\mathbb{N}}$ est un échantillonnage de $(X_n)_{n\in\mathbb{N}}$ tel que :

- $i) \ \forall n \in \mathbb{N}, \ \mathbb{E}(|X_{T_n}|) < \infty,$
- $ii) \lim \sup_{N} \mathbb{E}\left(|X_n| \mathbb{1}_{\{T_n > N\}}\right) = 0, \ n \in \mathbb{N},$

alors $(X_{T_n})_{n\in\mathbb{N}}$ est une \mathbb{F} -martingale (resp. sous-martingale, sur-martingale).

Proposition 7 Sous chacune des conditions suivantes :

- 1) $\exists k \in \mathbb{R}_+^* \ tel \ que \ |X_n| \le k \ p.s., \ n \in \mathbb{N}.$
- 2) $\forall n \in \mathbb{N}, \exists k_n \in \mathbb{N} \ tel \ que \ T_n \leq k_n \ p.s.,$

les hypothèses du théorème d'échantillonnage sont vérifiées.

Preuve. 1) Supposons que la condition 1) de la proposition précidente est vérifiée. On a

$$\{|X_{T_n}| > k\} = \bigcup_{i \in \mathbb{N}} (\{T_n = i\} \cap \{|X_i| > k\}) \subset \bigcup_{i \in \mathbb{N}} \{|X_i| > k\},$$

donc $0 \leq P(\{|X_{T_n}| > k\}) \leq \bigcup_{i \in \mathbb{N}} P(\{|X_i| > k\}) = 0$, ceci implique que $|X_{T_n}| \leq k$ p.s., d'où la prmière conditions du théorème d'échantillonnage $\mathbb{E}(|X_{T_n}|) \leq k < \infty$. On va maintenant prouver la deuxième condition. Or la suite d'évenements $(\{T_n > N\})_{N \in \mathbb{N}}$ converge en décroissant vers $\{T_n = +\infty\}$ donc

$$\lim_{N\to+\infty} P\left\{T_n > N\right\} = P\left(\bigcap_{N\in\mathbb{N}} \left\{T_n > N\right\}\right) = P\left(\left\{T_n = +\infty\right\}\right) = 0,$$

puisque T_n est fini p.s., et $0 \le \lim_{N \to +\infty} \mathbb{E}\left(|X_n| \mathbb{I}_{\{T_n > N\}}\right) \le k \lim_{N \to +\infty} P\left\{T_n > N\right\} = 0$, d'où $\limsup_N \mathbb{E}\left(|X_n| \mathbb{I}_{\{T_n > N\}}\right) = 0$, qui est la deuxième conditions du théorème d'échantillonnage.

2) Supposons maintenant que la condition 2) est vérifiée. D'abord, il suffit de remarquer que $X_{T_n} \leq \sum_{i=0}^{k_n} X_i \mathbb{I}_{\{T_n=i\}}$ et donc $|X_{T_n}| \leq \sum_{i=0}^{k_n} |X_i|$ et $\mathbb{E}(|X_{T_n}|) \leq \sum_{i=0}^{k_n} \mathbb{E}(|X_i|) < +\infty$. Et enfin, pour $N \geq k_n$ on a bien $\mathbb{E}(|X_n| \mathbb{I}_{\{T_n > N\}}) = 0$, ce qui

termine la preuve de la proposition.

Corollaire 8 Soit T un \mathbb{F} -temps d'arrêt. Si $(X_n)_{n\in\mathbb{N}}$ est une \mathbb{F} -martingale (resp. sous-martingale, sur-martingale), alors le processus arrêté au temps T, soit $(X_{T\wedge n})_{n\in\mathbb{N}}$ est une \mathbb{F} -martingale (resp. sous-martingale, sur-martingale).

Preuve. On a déjà vu que chaque variable aléatoire $T \wedge n$ est un temps d'arrêt borné par n, et comme la condition 2) de la proposition précidente est vérifiée avec $k_n = n$, le théorème d'échantillonnage donne la conclusion.

Cours 8.

Convergence des martingales Inégalités remarquables

Différentes inégalités remarquables sont utilisées dans l'étude des resultats de convergence de martingales. En voici quelques-unes.

Lemme 9 (première inégalité maximale de Doob) Si X est une sousmartingale et $\lambda > 0$, on a

$$\lambda P\left(\sup_{k\leq n} X_k \geq \lambda\right) \leq \mathbb{E}\left(X_n \mathbb{1}_{\left\{\sup_{k\leq n} X_k \geq \lambda\right\}}\right).$$

Preuve. On pose $A = \{\sup_{k \le n} X_k \ge \lambda\}$, $A_0 = \{X_0 \ge \lambda\}$ et pour chaque $0 < k \le n$, $A_k = \{X_0 < \lambda, ..., X_{k-1} < \lambda, X_k \ge \lambda\}$. Il est facile de voir que $A_k \in \mathcal{F}_k$ et donc $\forall \ 0 < k \le n$,

$$\mathbb{E}\left(X_{n}\mathbb{1}_{A_{k}}\right) \geq \mathbb{E}\left(X_{k}\mathbb{1}_{A_{k}}\right) \geq \lambda P\left(A_{k}\right).$$

et comme $A = \bigcup_{k=0}^{n} A_k$, on a finalement

$$\mathbb{E}\left(X_{n}\mathbb{I}_{A}\right) = \sum_{k=0}^{n} \mathbb{E}\left(X_{n}\mathbb{I}_{A_{k}}\right) \ge \lambda \sum_{k=0}^{n} P\left(A_{k}\right) = \lambda P\left(A\right)$$

c'est-à-dire

$$\lambda P\left(\sup_{k \le n} X_k \ge \lambda\right) \le \mathbb{E}\left(X_n \mathbb{1}_{\left\{\sup_{k \le n} X_k \ge \lambda\right\}}\right).$$

La preuve du lemme est terminée.

Lemme 10 (technique) Si X et Y sont deux variables aléatoires positives telles que $\forall \lambda > 0$, $\lambda P(X \ge \lambda) \le \mathbb{E}\left(Y \mathbb{I}_{\{X \ge \lambda\}}\right)$. Alors $\forall p > 1$ et $q = \frac{p}{p-1}$, on a $\|X\|_p \le q \|Y\|_p (i.e \left[\mathbb{E}\left(X^p\right)\right]^{\frac{1}{p}} \le q \left[\mathbb{E}\left(Y^p\right)\right]^{\frac{1}{p}})$.

Preuve. Posons $G = \int_{0}^{+\infty} p\lambda^{p-1}P(X \ge \lambda) d\lambda$ et $D = \int_{0}^{+\infty} p\lambda^{p-2}\mathbb{E}\left(X\mathbb{I}_{\{X \ge \lambda\}}\right) d\lambda$. L'hypothèse $\lambda P(X \ge \lambda) \le \mathbb{E}\left(Y\mathbb{I}_{\{X \ge \lambda\}}\right)$ implique que $G \le D$. Comme

$$G = \int_{0}^{+\infty} p\lambda^{p-1} \left(\int_{\Omega} \mathbb{1}_{\{X \ge \lambda\}} dP \right) d\lambda = \int_{\Omega} dP \int_{0}^{X} p\lambda^{p-1} d\lambda = \int_{\Omega} X^{p} dP$$

et

$$D = \int_{0}^{+\infty} p \lambda^{p-2} \left(\int_{\Omega} Y \mathbb{1}_{\{X \ge \lambda\}} dP \right) d\lambda = \int_{\Omega} Y dP \int_{0}^{X} p \lambda^{p-2} d\lambda = \int_{\Omega} Y q X^{p-1} dP$$

L'inégalité $G \leq D$ s'écrit donc $\int\limits_{\Omega} X^p dP \leq \int\limits_{\Omega} Y q X^{p-1} dP$. D'où

$$\mathbb{E}\left(X^{p}\right) \leq q \mathbb{E}\left(YX^{p-1}\right) \leq q \left\|Y\right\|_{p} \left\|X^{p-1}\right\|_{q} = q \left\|Y\right\|_{p} \left(\mathbb{E}\left(X^{p-1}\right)\right)^{\frac{1}{q}}.$$

Donc $(\mathbb{E}(X^p))^{1-\frac{1}{q}} \le q \|Y\|_p$. Finalement, $\|X\|_p = (\mathbb{E}(X^p))^{\frac{1}{p}} = (\mathbb{E}(X^p))^{1-\frac{1}{q}} \le q \|Y\|_p$. ■

Proposition 11 (Inégalité maximale de Doob dans L^p). Si X est une sousmartingale positive, pour p > 1, et $q = \frac{p}{p-1}$, soit $\frac{1}{p} + \frac{1}{q} = 1$, on $a : \|\sup_{k \le n} X_k\|_p \le q \|X_n\|_p$.

Preuve. Si X est une sous-martingale et $\lambda>0,$ on a d'après la première inégalité maximale de Doob

$$\lambda P\left(\sup_{k\leq n} X_k \geq \lambda\right) \leq \mathbb{E}\left(X_n \mathbb{1}_{\left\{\sup_{k\leq n} X_k \geq \lambda\right\}}\right).$$

Posons $X = \sup_{k \le n} X_k$ et $Y = X_n$, l'inégalité précidente s'écrit $\lambda P\left(X \ge \lambda\right) \le \mathbb{E}\left(Y1\!\!1_{\{X \ge \lambda\}}\right)$. Le lemme technique implique alors que $\|X\|_p \le q \|Y\|_p$, c'est-à-dire $\left\|\sup_{k \le n} X_k\right\|_p \le q \|X_n\|_p$ ce qui termine la preuve.

Théor ne 12 (Inégalité de Kolmogorov) $Si(X_n)_{n\in\mathbb{N}^*}$ est une \mathbb{F} -martingale de carré intégrable et $\lambda > 0$, on a pour tout $n \geq 1$:

$$P\left(\sup_{1\leq k\leq n}|X_k|\geq\lambda\right)\leq \frac{1}{\lambda}\mathbb{E}\left(X_n^2\right).$$

Preuve. Il suffit de remarque que $(X_n^2)_{n\in\mathbb{N}^*}$ est une sous-martingale positive et que

$$P\left(\sup_{1\leq k\leq n} X_k^2 \geq \lambda^2\right) = P\left(\sup_{1\leq k\leq n} |X_k| \geq \lambda\right)$$

on obtient donc compte tenu la première inégalité maximale de Doob

$$P\left(\sup_{1\leq k\leq n}|X_k|\geq \lambda\right) = P\left(\sup_{1\leq k\leq n}X_k^2\geq \lambda^2\right)$$

$$\leq \frac{1}{\lambda^2}\mathbb{E}\left(X_n^2\mathbb{I}_{\left\{\sup_{k\leq n}X_k^2\geq \lambda\right\}}\right)$$

$$\leq \frac{1}{\lambda^2}\mathbb{E}\left(X_n^2\right).$$

ce qui termine la preuve.

$\stackrel{ ext{Convergence des martingales L}_2}{ ext{Convergence des martingales L}_2}$

On va exposer dans la suite différents résultats de convergence de martingales

Théor me 13 Soit $(X_n)_{n\in\mathbb{N}^*}$ est une \mathbb{F} -martingale de carré intégrable (i.e. $X_n \in L^2, \forall n \in \mathbb{N}^*$). Si $\sup_{n\in\mathbb{N}^*} \mathbb{E}(X_n^2) < +\infty$, alors $(X_n)_{n\in\mathbb{N}^*}$ converge dans L^2 et p.s. vers une variable aléatoire X de carré intégrable. De plus pour tout $n \geq 1$, on a $X_n = \mathbb{E}(X \mid \mathcal{F}_n)$.

Preuve. Remarquons d'abord que $(X_n^2)_{n\in\mathbb{N}^*}$ est une sous-martingale et donc la suite des réels $(\mathbb{E}(X_n^2))_{n\in\mathbb{N}^*}$ est croissante et majorée par $x^* = \sup_{n\in\mathbb{N}^*} \mathbb{E}(X_n^2)$ et donc elle converge dans \mathbb{R} vers x^* . Puisque

$$\mathbb{E}\left[X_{n+k}X_n\right] = \mathbb{E}\left(\mathbb{E}\left[X_{n+k}X_n \mid \mathcal{F}_n\right]\right) = \mathbb{E}\left(X_n\mathbb{E}\left[X_{n+k} \mid \mathcal{F}_n\right]\right) = \mathbb{E}\left(X_n^2\right)$$

on a $\mathbb{E}\left[(X_{n+k}-X_n)^2\right]=\mathbb{E}\left[X_{n+k}^2\right]-\mathbb{E}\left[X_n^2\right]$, ainsi $\mathbb{E}\left[(X_{n+k}-X_n)^2\right]\leq x^*-\mathbb{E}\left[X_n^2\right]$, d'où $\sup_k\mathbb{E}\left[(X_{n+k}-X_n)^2\right]$ converge vers 0 quand n tend vers $+\infty$. Ce qui montre que $(X_n)_{n\in\mathbb{N}^*}$ est une suite de Cauchy dans L^2 et donc X_n converge dans L^2 . Soit X sa limite.

Montrons que X_n converge presque sûrement vers X. On applique l'inégalité de Kolmogorov à la martingale $(X_{m+k} - X_m)_{k \in \mathbb{N}^*}$, on obtient

$$P\left(\sup_{1\leq k\leq n}|X_{m+k}-X_m|\geq \lambda\right)\leq \frac{1}{\lambda^2}\mathbb{E}\left[\left(X_{m+k}-X_m\right)^2\right]$$
$$=\frac{1}{\lambda^2}\left[\mathbb{E}\left(X_{m+k}^2\right)+\mathbb{E}\left(X_m^2\right)\right]$$

et comme $\mathbb{E}(X_n^2)$ converge vers $\mathbb{E}(X^2)$, alors pour tout $\varepsilon > 0$, il existe $n_0 \in \mathbb{N}^*$ tel que pour tout $m \geq n_0$, on a

$$P\left(\sup_{1\leq k\leq n}|X_{m+k}-X_m|\geq\lambda\right)\leq\frac{\varepsilon}{\lambda^2},$$

et par suite,

$$P\left(\sup_{k>1}|X_{m+k}-X_m|\geq\lambda\right)\leq\frac{\varepsilon}{\lambda^2}.$$

Ce qui nous assure que $P(\{\omega \in \Omega : X_n \text{ diverge}\}) = 0$, et par conséquent la suite $(X_n)_{n \in \mathbb{N}^*}$ converge presque sûrement et sa limite ne peut être que X.

Il nous reste à montrer que $X_n = \mathbb{E}(X \mid \mathcal{F}_n) \ p.s.$.

On a pour toute variable aléatoire Z de carrée intégrable

$$\int_{\Omega} ZX_n dP \to \int_{\Omega} ZX dP \text{ quand } n \text{ tend vers } +\infty.$$

En effet

$$||ZX_n - ZX|| \le ||Z||^2 ||X_n - X|| \to 0 \text{ lorsque } n \to +\infty.$$

En particulier, si on prend $Z=\mathbb{1}_A$ où $A\in\mathcal{F}_n$, on arrive à

$$\int_A X_n dP \to \int_A X dP \text{ quand } n \to +\infty.$$

et pour tout $k \geq 1$, on a

$$\int_{A} X_{n+k} dP = \int_{A} \mathbb{E} (X_{n+k} \mid \mathcal{F}_n) dP = \int_{A} X_n dP$$

d'où, on fait tendre k vers $+\infty$

$$\int_{A} X_{n} dP = \int_{A} X dP = \int_{A} \mathbb{E} (X \mid \mathcal{F}_{n}) dP$$

Cette dernière inégalité étant vraie pour tout $A \in \mathcal{F}_n$, on en déduit $X_n = \mathbb{E}(X \mid \mathcal{F}_n) P - p.s.$

Cours 9.

Convergence des martingales L^1 Nombre de traversées ascendantes d'un processus stochatique à travers le segments [a,b].

Soient a et b deux nombres réels avec a < b et $(X_n)_{n \in \mathbb{N}^*}$ un processus stochastique. Pour chaque réalisation ω ($\omega \in \Omega$), on pose T_0 (ω) = inf $\{n \in \mathbb{N}^* : X_n$ (ω) $\leq a\}$ et on définit alors,

$$T_{1}(\omega) = \inf \left\{ n \in \mathbb{N}^{*} : X_{n}(\omega) \leq a \right\},$$

$$T_{2}(\omega) = \inf \left\{ n \in \mathbb{N}^{*} : n > T_{1}(\omega) \text{ et } X_{n}(\omega) \geq b \right\},$$

$$\dots$$

$$T_{2k-1}(\omega) = \inf \left\{ n \in \mathbb{N}^{*} : n > T_{2k-2}(\omega) \text{ et } X_{n}(\omega) \leq a \right\},$$

$$T_{2k}(\omega) = \inf \left\{ n \in \mathbb{N}^{*} : n > T_{2k-1}(\omega) \text{ et } X_{n}(\omega) \geq b \right\}, \text{ etc....}$$

Notons que la suite des temps d'arrêt $(T_k)_{k\in\mathbb{N}}$ est la suite des temps successifs où la suite $(X_n)_{n\in\mathbb{N}^*}$ croise l'intervalle [a,b], appelées passage au niveau (a,b). Le temps d'arrêt T_k peut être infini, $T_k = +\infty$ s'il n'existe pas de $n > T_{k-1}$ et tel que $X_n \le a$ où $X_n(\omega) \ge b$. Il est claire que la suite $(T_k)_{k\in\mathbb{N}}$ est croissante et satisfait $T_k \ge k$ pour chaque $k \in \mathbb{N}$.

Définissons pour $m \geq 1$, la suite des nombres de passage au niveau (a, b) de $(X_n)_{n \in \mathbb{N}^*}$, soit

$$U_m(a,b) = card(\{n \in \mathbb{N}^* : n \text{ et impair et } T_n \leq m\}).$$

c'est-à-dire que $2U_m\left(a,b\right)$ variable de la suite $\left(T_n\right)_{n\in\mathbb{N}}$ sont dans $\left[0,m\right]$, précisement les variables $T_0,T_1,...,T_{2U_m\left(a,b\right)-1}$.

Notons que la variable aléatoire $U_m(a,b)$ représente alors le nombre de traversée ascendantes de $(X_n)_{n\in\mathbb{N}^*}$ et la suite $(U_m(a,b))_{m\in\mathbb{N}^*}$ est une suite croissante.

Théor ne 14 (de passage à niveau de Doob) Soient a et b deux nombres réels avec a < b et $(X_n)_{n \in \mathbb{N}^*}$ un processus stochastique. Pour tout entier m non nul :

1) Si $(X_n)_{n\in\mathbb{N}^*}$ est une sous-martingale, alors

$$(b-a) \mathbb{E} (U_m(a,b)) \leq \mathbb{E} (X_m-a)^+$$
.

2) Si $(X_n)_{n\in\mathbb{N}^*}$ est une sur-martingale, alors

$$(b-a)\mathbb{E}(U_m(a,b)) \leq \mathbb{E}(X_m-a)^-$$
.