UNIDAD Nº 1

LOGICA PROPOSICIONAL

Proposición:

Es un enunciado, dado en cierto lenguaje, del cual puede establecerse un valor de verdad, es decir se puede determinar si es verdadero o si es falso. Se suelen simbolizar con letras imprenta minúsculas: **p**, **q**, ...

Negación: Dada una proposición **p**, siempre es posible determinar otra proposición negándola. Se simboliza – **p** o bien ~ **p**, y se lee "no p"

Nota: Una proposición **p** y su negación no tienen el mismo valor de verdad, si **p** es verdadera, ~**p** es falsa y viceversa.

<u>Tablas de verdad</u>: las tablas de verdad son cuadros que permiten visualizar todos los posibles valores de verdad de una proposición.

Ejemplo:

Es posible a través del uso de conectivos como por ejemplo: $\land (y), \lor (o), \Rightarrow (si, ...)$ entonces), $\Leftrightarrow (si y sólo si)$ obtener proposiciones denominadas compuestas:

Conjunción: la conjunción de dos proposiciones p, q, es otra proposición y se anota:

 $p \wedge q$

Disyunción: la disyunción de dos proposiciones p, q, es otra proposición y se anota:

 $p \vee q$

▶ <u>Implicación simple o condicional simple</u>: la implicación de las proposiciones p, q,

es

la proposición que se anota: $\mathbf{p}\Rightarrow\mathbf{q}$, en este caso la proposición \mathbf{p} recibe el nombre de antecedente y la proposición \mathbf{q} de consecuente.

➤ <u>Doble implicación o bicondicional</u>: la doble implicación de las proposiciones p, q, es

otra proposición que se anota: $\mathbf{p} \Leftrightarrow \mathbf{q}$

Las tablas de verdad que corresponden a estas proposiciones compuestas son las siguientes:

conjunción				
p	^	q		
V	V	V		
V	f	f		
f	f	V		
f	f	f		

disyunción					
p	V	q			
V	V	V			
V	V	f			
f	V	V			
f	f	f			

simple						
p	⇒ q					
V	V	V				
V	f	f				
f	V	V				
f	V	f				

implicación

implicación					
p	\$	q			
V	V	V			
V	f	f			
f	f	V			
f	V	f			

doble

Nota:

➤ La **conjunción** de dos proposiciones es verdadera sólo cuando ambas son verdaderas.

La disyunción de dos proposiciones es falsa sólo cuando ambas son falsas.

➤ La **implicación simple** de dos proposiciones es falsa sólo cuando el antecedente es verdadero y el consecuente es falso.

➤ La **doble implicación** de dos proposiciones es verdadera sólo cuando ambas tienen el mismo valor de verdad.

La **implicación simple** de dos proposiciones p, q, es equivalente a la disyunción del antecedente negado con el consecuente: $p \Rightarrow q \Leftrightarrow \sim p \vee q$

Si realizamos la tabla de verdad correspondiente:

P	\Rightarrow	Q	\$	~p	V	q
V	V	V	V	f	V	v
V	f	F	V	f	f	f
F	V	V	V	V	V	V
F	V	F	V	V	V	f

Observamos que todos los valores de verdad son verdaderos, es una verdad absoluta, en lógica esto se denomina una **tautología**.

Cuando todos los valores de verdad obtenidos son falsos se denomina una contradicción.

La **doble implicación** de dos proposiciones \mathbf{p} , \mathbf{q} , es equivalente a la conjunción de dos implicaciones simples en las cuales se intercambian el antecedente y el consecuente respectivamente: $\mathbf{p} \Leftrightarrow \mathbf{q} \Leftrightarrow [\mathbf{p} \Rightarrow \mathbf{q} \land \mathbf{q} \Rightarrow \mathbf{p}]$

Si realizamos la tabla de verdad correspondiente:

p	\$	q	⇔
V	V	V	V
V	f	f	V
f	f	V	V
f	V	f	V

p	\Rightarrow	q	^	q	\Rightarrow	p
V	V	V	V	V	V	V
V	f	f	f	f	V	V
f	v	V	f	V	f	f
f	v	f	V	f	V	f

Nuevamente estamos frente a una tautología, o bien una verdad absoluta

LEYES Y PRINCIPIOS LÓGICOS:

<u>Involución</u>: la negación de una proposición negada es equivalente a la proposición.

$$\sim (\sim p) \Leftrightarrow p$$

<u>Complemento</u>: La disyunción de una proposición y su negación es una verdad absoluta. La conjunción de una proposición y su negación es una falsedad absoluta.

$$p \lor \sim p \Leftrightarrow v$$
 $p \land \sim p \Leftrightarrow f$

<u>Idempotencia</u>: La conjunción, o la disyunción, de una proposición consigo misma es equivalente a dicha proposición.

$$p \lor p \Leftrightarrow p$$
 $p \land p \Leftrightarrow p$

<u>Identidad</u>: La disyunción de una proposición y una falsedad es equivalente a dicha proposición. La conjunción de una proposición y una verdad es equivalente a dicha proposición.

$$p \lor f \Leftrightarrow p$$
 $p \land v \Leftrightarrow p$

Una consecuencia de esta ley es lo siguiente:

$$p \lor v \Leftrightarrow v$$
 $p \land f \Leftrightarrow f$

<u>Conmutatividad</u>: si se cambia el orden de las proposiciones en conjunción, o en disyunción se obtiene una proposición equivalente.

$$p \lor q \Leftrightarrow q \lor p$$
 $p \land q \Leftrightarrow q \land p$

Asociatividad: Cualesquiera sean las proposiciones p, q, r, se verifican las siguientes equivalencias:

$$(p \mathrel{\vee} q) \mathrel{\vee} r \; \Leftrightarrow \; p \mathrel{\vee} (q \mathrel{\vee} r) \\ \hspace*{2cm} (p \mathrel{\wedge} q) \mathrel{\wedge} r \; \Leftrightarrow \; p \mathrel{\wedge} (q \mathrel{\wedge} r)$$

<u>Distributividad</u>: Cualesquiera sean las proposiciones p, q, r, se verifican las siguientes equivalencias:

$$\mathbf{p} \wedge (\mathbf{q} \vee \mathbf{r}) \Leftrightarrow (\mathbf{p} \wedge \mathbf{q}) \vee (\mathbf{p} \wedge \mathbf{r})$$
 $\mathbf{p} \vee (\mathbf{q} \wedge \mathbf{r}) \Leftrightarrow (\mathbf{p} \vee \mathbf{q}) \wedge (\mathbf{p} \vee \mathbf{r})$

Leyes de De Morgan:

La negación de una disyunción es equivalente a la conjunción de las dos proposiciones negadas.

$$\sim (p \lor q) \Leftrightarrow \sim p \land \sim q$$

La negación de una conjunción es equivalente a la disyunción de ambas proposiciones negadas.

$$\sim (p \land q) \Leftrightarrow \sim p \lor \sim q$$

Condición necesaria y suficiente:

Si la implicación simple $\mathbf{p} \Rightarrow \mathbf{q}$ es verdadera, entonces \mathbf{p} es condición suficiente para \mathbf{q} , y \mathbf{q} es condición necesaria para \mathbf{p}

IMPLICACIONES ASOCIADAS:

Dada una implicación simple: $\mathbf{p}\Rightarrow\mathbf{q}$ existen tres implicaciones asociadas a ella que son:

recíproca: q ⇒ p

contraria: ~p ⇒ ~q

contrarecíproca: ~q ⇒ ~p

Nota1: Las implicaciones contrarecíprocas son equivalentes:

 $p \Rightarrow q \Leftrightarrow \sim q \Rightarrow \sim p$

 $\sim p \Rightarrow \sim q \Leftrightarrow q \Rightarrow p$

FUNCIONES O ESQUEMAS PROPOSICIONALES:

Un enunciado en el cual figura al menos una variable, del cual no es posible establecer un valor de verdad, no constituye una proposición, hasta que no se especifique a la misma. Estos enunciados reciben el nombre de **esquemas proposicionales** y se los suele simbolizar así:

$$P(x)$$
, $P(x, y)$, etc.

A partir de **esquemas proposicionales** es posible obtener una proposición mediante un procedimiento denominado **cuantificación**, para ello recurriremos a dos conceptos:

Los cuantificadores, existen dos tipos de cuantificadores:

El cuantificador **existencial**: \exists (se lee existe al menos un ...)

El cuantificador **universal**: \forall (se lee para todo ...)

➤ El conjunto de referencia, es decir el que contiene las posibles especificaciones de la variable.

NEGACIÓN DE UNA PROPOSICIÓNCUANTIFICADA:

Se tiene una proposición obtenida por una función proposicional cuantificada:

por ejemplo
$$(\forall x \in R)$$
: $P(x)$ o $(\exists x \in R)$: $P(x)$

negar dichas proposiciones equivale a negar el cuantificador y la función proposicional respectiva.

Negar un cuantificador universal equivale a obtener un cuantificador existencial y viceversa.