→91: cclnsEx#[0, 0, 0, 0], k[2.0, -2.0, -1.0, 1.0, 0.0], t(1, 1)=0.0 →97: Gin Dyn#[0, 0, 0, 0], k[0.0, 0.0, 0.0, 1.0, 0.0], t(3, 4)=0.0 102: $\Gamma_3 \uparrow \downarrow \#[0, 0, 0, 0], t(3, 4, 4) = 0.0 = \otimes$ 105: $\Gamma_3 \circ G_3 \# [0, 0, 0, 0] = 0.0 = \otimes$ 98: Gout Dyn#[0, 0, 0, 0], k[1.0, -1.0, 0.0, 1.0, 0.0], t(4, 3)=0.0 -90: cclnsDi#[0, 0, 0, 0], k[1.0, -1.0, 0.0, 0.0, 0.0], t(1, 1)·-1.0=0.0 **1**04: G₃ Dyn#[0, 0, 0, 0], k[0.0, 0.0, 1.0, 0.0, 0.0], t(4, 2)=0.0 **--121**: G₁ Dyn#[0, 0, 1, 0], k[0.0, 1.0, 0.0, 0.0, 0.0], t(3, 2)=0.0 →108: g0 Dyn#[0, 0, 0, 0], k[-1.0, 1.0, 1.0, 0.0, 0.0], t(2, 5)=0.0 124: #[0, 0, 0, 0]= $0.0=\otimes$ 120: G₂ Dyn#[0, 0, 0, 0], k[-1.0, 1.0, 1.0, 0.0, 0.0], t(2, 4)= $0.0=\otimes$ 114: Σ Ins#[0, 0, 0, 0], t(5, 5)=0.0=2.0 \otimes _-113: Gfock Dyn#[0, 0, 0, 0], k[0.0, 0.0, 0.0, 0.0, 1.0], t(5, 5)=0.0 →109: cclnsDi#[0, 0, 0, 0], k[-1.0, 1.0, 1.0, 0.0, -1.0], t(1, 1)·-1.0=0.0 116: Σ Ins#[0, 0, 0, 0], t(5, 5)=0.0=-1.0 \otimes _-113: Gfock Dyn#[0, 0, 0, 0], k[0.0, 0.0, 0.0, 0.0, 1.0], t(5, 5)=0.0 119: $\Sigma G (t = (5, 4),) \# [0, 0, 0, 0] = 0.0 = \otimes$ →109: cclnsDi#[0, 0, 0, 0], k[-1.0, 1.0, 1.0, 0.0, -1.0], t(1, 1)·-1.0=0.0 →118: G Dyn#[0, 0, 0, 0], k[-1.0, 1.0, 1.0, 0.0, 0.0], t(5, 4)=0.0 -122: V₁ cclnsDi#[0, 0, 0, 0], k[-1.0, 1.0, 0.0, 0.0, 0.0], t(3, 3)=0.0 123: V₂ cclnsDi#[0, 0, 0, 1], k[-1.0, 0.0, 1.0, 0.0, 0.0], t(2, 2)=0.0 -97: Gin Dyn#[0, 0, 0, 0], k[0.0, 0.0, 0.0, 1.0, 0.0], t(3, 4)=0.0 134: $\Gamma_3 \uparrow \uparrow \#[0, 0, 0, 0], t(3, 4, 4) = 0.0 =$ 98: Gout Dyn#[0, 0, 0, 0], k[1.0, -1.0, 0.0, 1.0, 0.0], t(4, 3) = 0.0131: $\uparrow \uparrow lns \# [0, 0, 0, 0], t(4, 4, 4, 4) = 0.0 = \bigcirc \bigcirc 90: cclnsDi \# [0, 0, 0, 0], k[1.0, -1.0, 0.0, 0.0, 0.0], t(1, 1) -1.0 = 0.0$ 138: $(3, 4, 4) \# [0, 0, 0, 0] = 0.0 = \bigoplus$ →91: cclnsEx#[0, 0, 0, 0], k[2.0, -2.0, -1.0, 1.0, 0.0], t(1, 1)=0.0 →97: Gin Dyn#[0, 0, 0, 0], k[0.0, 0.0, 0.0, 1.0, 0.0], t(3, 4)=0.0 |137: $\Gamma_3 \uparrow \downarrow \#[0, 0, 0, 0], t(3, 4, 4) = 0.0 = \otimes$ 98: Gout Dyn#[0, 0, 0, 0], k[1.0, -1.0, 0.0, 1.0, 0.0], t(4, 3)=0.0 152: $\Gamma_3 \circ G_3 \# [0, 0, 0, 0] = 0.0 = \otimes$ →90: cclnsDi#[0, 0, 0, 0], k[1.0, -1.0, 0.0, 0.0, 0.0], t(1, 1)·-1.0=0.0 **--1**39: g0 Dyn#[0, 0, 0, 0], k[0.0, 0.0, 1.0, 0.0, 0.0], t(4, 5)=0.0 145: Σ Ins#[0, 0, 0, 0], t(5, 5)=0.0=2.0 \otimes _-113: Gfock Dyn#[0, 0, 0, 0], k[0.0, 0.0, 0.0, 0.0, 1.0], t(5, 5)=0.0 151: G₃ Dyn#[0, 0, 0, 0], k[0.0, 0.0, 1.0, 0.0, 0.0], t(4, 2)=0.0=148: $\Sigma Ins \# [0, 0, 0, 0], t(5, 5) = 0.0 = \bigoplus$ →140: cclnsDi#[0, 0, 0, 0], k[0.0, 0.0, 1.0, 0.0, -1.0], t(1, 1)·-1.0=0.0 147: Σ Ins#[0, 0, 0, 0], t(5, 5)=0.0=-1.0 \otimes _-113: Gfock Dyn#[0, 0, 0, 0], k[0.0, 0.0, 0.0, 0.0, 1.0], t(5, 5)=0.0 150: $\Sigma G (t = (5, 2),) \# [0, 0, 0, 0] = 0.0 = \otimes$ **159**: #[0, 0, 0, 0]=0.0=⊗ →140: cclnsDi#[0, 0, 0, 0], k[0.0, 0.0, 1.0, 0.0, -1.0], t(1, 1)·-1.0=0.0 →149: G Dyn#[0, 0, 0, 0], k[0.0, 0.0, 1.0, 0.0, 0.0], t(5, 2)=0.0 -121: G₁ Dyn#[0, 0, 1, 0], k[0.0, 1.0, 0.0, 0.0, 0.0], t(3, 2)=0.0 **-•1**55: G₂ Dyn#[0, 0, 0, 0], k[-1.0, 1.0, 1.0, 0.0, 0.0], t(2, 4)=0.0 -122: V₁ cclnsDi#[0, 0, 0, 0], k[-1.0, 1.0, 0.0, 0.0, 0.0], t(3, 3)=0.0 ¹23: V₂ cclnsDi#[0, 0, 0, 1], k[-1.0, 0.0, 1.0, 0.0, 0.0], t(2, 2)=0.0 **-1**67: g0 Dyn#[0, 0, 0, 0], k[0.0, 0.0, 0.0, 1.0, 0.0], t(3, 5)=0.0 173: Σ Ins#[0, 0, 0, 0], t(5, 5)=0.0=2.0 \otimes _-113: Gfock Dyn#[0, 0, 0, 0], k[0.0, 0.0, 0.0, 0.0, 1.0], t(5, 5)=0.0 179: Gin Dyn#[0, 0, 0, 0], k[0.0, 0.0, 0.0, 1.0, 0.0], t(3, 4)=0.0=® 176: $\Sigma \ln \#[0, 0, 0, 0], t(5, 5) = 0.0 = \bigoplus$ **-1**68: cclnsDi#[0, 0, 0, 0], k[0.0, 0.0, 0.0, 1.0, -1.0], t(1, 1)·-1.0=0.0 175: Σ Ins#[0, 0, 0, 0], t(5, 5)=0.0=-1.0 \otimes _-113: Gfock Dyn#[0, 0, 0, 0], k[0.0, 0.0, 0.0, 0.0, 1.0], t(5, 5)=0.0 178: $\Sigma G (t = (5, 4),) \# [0, 0, 0, 0] = 0.0 = \otimes$ →168: cclnsDi#[0, 0, 0, 0], k[0.0, 0.0, 0.0, 1.0, -1.0], t(1, 1)·-1.0=0.0 181: $\Gamma_3 \uparrow \uparrow \#[0, 0, 0, 0], t(3, 4, 4) = 0.0 = \otimes$ **177**: G Dyn#[0, 0, 0, 0], k[0.0, 0.0, 0.0, 1.0, 0.0], t(5, 4)=0.0 -180: Gout Dyn#[0, 0, 0, 0], k[1.0, -1.0, 0.0, 1.0, 0.0], t(4, 3)=0.0 166: $\uparrow \uparrow lns \# [0, 0, 0, 0], t(4, 4, 4, 4) = 0.0 = \oplus 90$: cclnsDi#[0, 0, 0, 0], k[1.0, -1.0, 0.0, 0.0, 0.0], t(1, 1)-1.0=0.0 →91: cclnsEx#[0, 0, 0, 0], k[2.0, -2.0, -1.0, 1.0, 0.0], t(1, 1)=0.0 →285: Gin Dyn#[0, 0, 0, 0], k[0.0, 0.0, 0.0, 1.0, 0.0], t(3, 5)=0.0 →283: Gout Dyn#[0, 0, 0, 0], k[1.0, -1.0, 0.0, 1.0, 0.0], t(5, 3)=0.0 --211: G0 Dyn#[0, 0, 0, 0], k[0.0, 0.0, 0.0, 0.0, 1.0], t(4, 5)=0.0 290: $\Gamma_3 \uparrow \uparrow \#[0, 0, 0, 0], t(3, 4, 4) = 0.0 = \otimes$ -212: Gx Dyn#[0, 0, 0, 0], k[-1.0, 1.0, 0.0, 0.0, 1.0], t(5, 4)=0.0 →198: cclnsEx#[0, 0, 0, 0], k[1.0, -1.0, -1.0, 0.0, 1.0], t(1, 1)=0.0 337: $\Gamma_3 \uparrow \uparrow \#[0, 0, 0, 0], t(3, 4, 4) = 0.0 = \bigoplus$ 210: $\Gamma \uparrow \uparrow \ln \#[0, 0, 0, 0], t(5, 5, 5, 5) = 0.0 = \oplus 204$: C = 204: C = 2277: $\uparrow \uparrow Dyn #[0, 0, 0, 0], t(4, 4, 5, 5) = 0.0 = \bigoplus$ -205: cclnsEx#[0, 0, 0, 0], k[1.0, -1.0, 0.0, 1.0, -1.0], t(1, 1)=0.0 --211: G0 Dyn#[0, 0, 0, 0], k[0.0, 0.0, 0.0, 0.0, 1.0], t(4, 5)=0.0 222: $\uparrow \downarrow x \uparrow \downarrow \rightarrow PHr$, PHr $\uparrow \uparrow Dyn \#[0, 0, 0, 0]$, $t(4, 4, 5, 5) = 0.0 = -1.0 \otimes \longrightarrow 212$: Gx Dyn#[0, 0, 0, 0], k[-1.0, 1.0, 0.0, 0.0, 1.0], t(5, 4) = 0.0**→1**97: cclnsDi#[0, 0, 0, 0], k[1.0, -1.0, 0.0, 0.0, 0.0], t(1, 1)·-1.0=0.0 -204: cclnsDi#[0, 0, 0, 0], k[1.0, -1.0, 0.0, 0.0, 0.0], t(1, 1)-1.0=0.0 →97: Gin Dyn#[0, 0, 0, 0], k[0.0, 0.0, 0.0, 1.0, 0.0], t(3, 4)=0.0 -308: g0 Dyn#[0, 0, 0, 0], k[1.0, -1.0, 0.0, 1.0, 0.0], t(4, 5)=0.0 314: Σ Ins#[0, 0, 0, 0], t(5, 5)=0.0=2.0 \otimes _-113: Gfock Dyn#[0, 0, 0, 0], k[0.0, 0.0, 0.0, 0.0, 1.0], t(5, 5)=0.0 320: Gout Dyn#[0, 0, 0, 0], k[1.0, -1.0, 0.0, 1.0, 0.0], $t(4, 3)=0.0=\otimes$ -309: cclnsDi#[0, 0, 0, 0], k[1.0, -1.0, 0.0, 1.0, -1.0], t(1, 1)-1.0=0.0 317: Σ Ins#[0, 0, 0, 0], $t(5, 5)=0.0=\oplus$ 321: $\Gamma_3 \uparrow \uparrow \#[0, 0, 0, 0], t(3, 4, 4) = 0.0 = \otimes$ 316: Σ Ins#[0, 0, 0, 0], t(5, 5)=0.0=-1.0 \otimes _-113: Gfock Dyn#[0, 0, 0, 0], k[0.0, 0.0, 0.0, 0.0, 1.0], t(5, 5)=0.0 319: $\Sigma G (t = (5, 3),) \# [0, 0, 0, 0] = 0.0 = \otimes$ -309: cclnsDi#[0, 0, 0, 0], k[1.0, -1.0, 0.0, 1.0, -1.0], t(1, 1)·-1.0=0.0 →283: Gout Dyn#[0, 0, 0, 0], k[1.0, -1.0, 0.0, 1.0, 0.0], t(5, 3)=0.0 306: $\uparrow \uparrow lns \# [0, 0, 0, 0], t(4, 4, 4, 4) = 0.0 = \bigoplus_{i=0}^{n} 90: cclnsDi \# [0, 0, 0, 0], k[1.0, -1.0, 0.0, 0.0, 0.0], t(1, 1) -1.0 = 0.0$ $341: (3, 4, 4) \# [0, 0, 0, 0] = 0.0 = \bigoplus$ -91: cclnsEx#[0, 0, 0, 0], k[2.0, -2.0, -1.0, 1.0, 0.0], t(1, 1)=0.0 →167: g0 Dyn#[0, 0, 0, 0], k[0.0, 0.0, 0.0, 1.0, 0.0], t(3, 5)=0.0 188: Σ Ins#[0, 0, 0, 0], t(5, 5)=0.0=2.0 \otimes \longrightarrow 113: Gfock Dyn#[0, 0, 0, 0], k[0.0, 0.0, 0.0, 0.0, 1.0], t(5, 5)=0.0 194: Gin Dyn#[0, 0, 0, 0], k[0.0, 0.0, 0.0, 1.0, 0.0], t(3, 4)=0.0=® 191: $\Sigma Ins \# [0, 0, 0, 0], t(5, 5) = 0.0 = \bigoplus$ **-1**68: cclnsDi#[0, 0, 0, 0], k[0.0, 0.0, 0.0, 1.0, -1.0], t(1, 1)·-1.0=0.0 190: Σ Ins#[0, 0, 0, 0], t(5, 5)=0.0=-1.0 \otimes _-113: Gfock Dyn#[0, 0, 0, 0], k[0.0, 0.0, 0.0, 0.0, 1.0], t(5, 5)=0.0 193: $\Sigma G (t = (5, 4),) \# [0, 0, 0, 0] = 0.0 = \otimes$ 196: $\Gamma_3 \uparrow \downarrow \#[0, 0, 0, 0], t(3, 4, 4) = 0.0 = \otimes$ →168: cclnsDi#[0, 0, 0, 0], k[0.0, 0.0, 0.0, 1.0, -1.0], t(1, 1)·-1.0=0.0 →177: G Dyn#[0, 0, 0, 0], k[0.0, 0.0, 0.0, 1.0, 0.0], t(5, 4)=0.0 354: $C^{(1b)L}[G, V, \Gamma_3 > \Gamma_0]$ Dyn#[0, 0, 0, 0], $t(3, 2)=0.0=\bigoplus$ →180: Gout Dyn#[0, 0, 0, 0], k[1.0, -1.0, 0.0, 1.0, 0.0], t(4, 3)=0.0 →90: cclnsDi#[0, 0, 0, 0], k[1.0, -1.0, 0.0, 0.0, 0.0], t(1, 1)·-1.0=0.0 -•285: Gin Dyn#[0, 0, 0, 0], k[0.0, 0.0, 0.0, 1.0, 0.0], t(3, 5)=0.0 →283: Gout Dyn#[0, 0, 0, 0], k[1.0, -1.0, 0.0, 1.0, 0.0], t(5, 3)=0.0 --211: G0 Dyn#[0, 0, 0, 0], k[0.0, 0.0, 0.0, 0.0, 1.0], t(4, 5)=0.0 299: $\Gamma_3 \uparrow \downarrow \#[0, 0, 0, 0], t(3, 4, 4) = 0.0 = \otimes$ -212: Gx Dyn#[0, 0, 0, 0], k[-1.0, 1.0, 0.0, 0.0, 1.0], t(5, 4)=0.0 216: $\uparrow \uparrow x \uparrow \downarrow \rightarrow PHr$, PHr $\uparrow \downarrow Dyn\#[0, 0, 0, 0], t(4, 4, 5, 5)=0.0=-1.0<math>\otimes$ •203: Γ i ↑ ↑ Ins#[0, 0, 0, 0], t(4, 4, 4, 4)=0.0= \bigoplus 197: cclnsDi#[0, 0, 0, 0], k[1.0, -1.0, 0.0, 0.0, 0.0], t(1, 1)-1.0=0.0 →198: cclnsEx#[0, 0, 0, 0], k[1.0, -1.0, -1.0, 0.0, 1.0], t(1, 1)=0.0 344: $\Gamma_3 \circ G_3 \# [0, 0, 0, 0] = 0.0 = \otimes$ 339: Γ_3 ↑ ↓ #[0, 0, 0, 0],t(3, 4, 4)=0.0=⊕ 279: $\uparrow \downarrow Dyn #[0, 0, 0, 0], t(4, 4, 5, 5) = 0.0 = \bigoplus$ →204: cclnsDi#[0, 0, 0, 0], k[1.0, -1.0, 0.0, 0.0, 0.0], t(1, 1)·-1.0=0.0 --211: G0 Dyn#[0, 0, 0, 0], k[0.0, 0.0, 0.0, 0.0, 1.0], t(4, 5)=0.0 --212: Gx Dyn#[0, 0, 0, 0], k[-1.0, 1.0, 0.0, 0.0, 1.0], t(5, 4)=0.0 219: $\uparrow \downarrow x \uparrow \uparrow \rightarrow PHr$, PHr $\uparrow \downarrow Dyn\#[0, 0, 0, 0], t(4, 4, 5, 5)=0.0=-1.0 <math>\otimes$ -197: cclnsDi#[0, 0, 0, 0], k[1.0, -1.0, 0.0, 0.0, 0.0], t(1, 1)·-1.0=0.0 210: $\Gamma f \uparrow \ln s\#[0, 0, 0, 0], t(5, 5, 5, 5) = 0.0 = \bigoplus_{} 204: cclnsDi\#[0, 0, 0, 0], k[1.0, -1.0, 0.0, 0.0, 0.0], t(1, 1)-1.0=0.0$ →205: cclnsEx#[0, 0, 0, 0], k[1.0, -1.0, 0.0, 1.0, -1.0], t(1, 1)=0.0 →97: Gin Dyn#[0, 0, 0, 0], k[0.0, 0.0, 0.0, 1.0, 0.0], t(3, 4)=0.0 →308: g0 Dyn#[0, 0, 0, 0], k[1.0, -1.0, 0.0, 1.0, 0.0], t(4, 5)=0.0 329: Σ Ins#[0, 0, 0, 0], t(5, 5)=0.0=2.0 \otimes _-113: Gfock Dyn#[0, 0, 0, 0], k[0.0, 0.0, 0.0, 0.0, 1.0], t(5, 5)=0.0 335: Gout Dyn#[0, 0, 0, 0], k[1.0, -1.0, 0.0, 1.0, 0.0], $t(4, 3)=0.0=\otimes$ 336: Γ_3 ↑ ↓ #[0, 0, 0, 0],t(3, 4, 4)=0.0=⊗ 332: Σ Ins#[0, 0, 0, 0], $t(5, 5)=0.0=\oplus$ →309: cclnsDi#[0, 0, 0, 0], k[1.0, -1.0, 0.0, 1.0, -1.0], t(1, 1)·-1.0=0.0 331: Σ Ins#[0, 0, 0, 0], t(5, 5)=0.0=-1.0 \otimes _-113: Gfock Dyn#[0, 0, 0, 0], k[0.0, 0.0, 0.0, 0.0, 1.0], t(5, 5)=0.0 334: $\Sigma G (t = (5, 3),) \# [0, 0, 0, 0] = 0.0 = \otimes$ -309: cclnsDi#[0, 0, 0, 0], k[1.0, -1.0, 0.0, 1.0, -1.0], t(1, 1)·-1.0=0.0 -283: Gout Dyn#[0, 0, 0, 0], k[1.0, -1.0, 0.0, 1.0, 0.0], t(5, 3)=0.0 →90: cclnsDi#[0, 0, 0, 0], k[1.0, -1.0, 0.0, 0.0, 0.0], t(1, 1)·-1.0=0.0 **1**04: G₃ Dyn#[0, 0, 0, 0], k[0.0, 0.0, 1.0, 0.0, 0.0], t(4, 2)=0.0 →282: Gin Dyn#[0, 0, 0, 0], k[0.0, 0.0, 0.0, 1.0, 0.0], t(3, 4)=0.0 →283: Gout Dyn#[0, 0, 0, 0], k[1.0, -1.0, 0.0, 1.0, 0.0], t(5, 3)=0.0 284: $\Gamma_3 \uparrow \uparrow \#[0, 0, 0, 0], t(3, 4, 5) = 0.0 = \emptyset$ --211: G0 Dyn#[0, 0, 0, 0], k[0.0, 0.0, 0.0, 0.0, 1.0], t(4, 5)=0.0 -266: Gx Dyn#[0, 0, 0, 0], k[-1.0, 1.0, 1.0, 1.0, -1.0], t(4, 5)=0.0 267: $\uparrow \uparrow x \uparrow \uparrow \rightarrow PPr$, $PPr \uparrow \uparrow Dyn\#[0, 0, 0, 0], t(4, 5, 4, 5)=0.0=-0.5 \otimes 257$: $\Gamma i \uparrow \uparrow Ins\#[0, 0, 0, 0], t(4, 4, 4, 4)=0.0= \oplus 251$: CInsDi#[0, 0, 0, 0], k[0.0, 0.0, 0.0, -1.0, 1.0], t(1, 1)-1.0=0.0•198: cclnsEx#[0, 0, 0, 0], k[1.0, -1.0, -1.0, 0.0, 1.0], t(1, 1)=0.0 264: $\Gamma f \uparrow \ln \#[0, 0, 0, 0], t(5, 5, 5, 5) = 0.0 = \oplus _258$: CINSDI#[0, 0, 0, 0], k[2.0, -2.0, -1.0, 0.0, 1.0], t(1, 1) -1.0 = 0.0338: $\Gamma_3 \uparrow \uparrow \#[0, 0, 0, 0], t(3, 4, 5) = 0.0 = \bigoplus$ -205: cclnsEx#[0, 0, 0, 0], k[1.0, -1.0, 0.0, 1.0, -1.0], t(1, 1)=0.0 →285: Gin Dyn#[0, 0, 0, 0], k[0.0, 0.0, 0.0, 1.0, 0.0], t(3, 5)=0.0 →180: Gout Dyn#[0, 0, 0, 0], k[1.0, -1.0, 0.0, 1.0, 0.0], t(4, 3)=0.0 -211: G0 Dyn#[0, 0, 0, 0], k[0.0, 0.0, 0.0, 0.0, 1.0], t(4, 5)=0.0 287: $\Gamma_3 \uparrow \uparrow \#[0, 0, 0, 0], t(3, 4, 5) = 0.0 = \otimes$ -238: Gx Dyn#[0, 0, 0, 0], k[2.0, -2.0, -1.0, 1.0, 1.0], t(5, 4)=0.0 347: $\Gamma_3 \circ G_3 \# [0, 0, 0, 0] = 0.0 = \bigoplus$ 239: $\uparrow \uparrow x \uparrow \uparrow \rightarrow PHEr$, $PHEr \uparrow \uparrow Dyn\#[0, 0, 0, 0], t(4, 5, 5, 4)=0.0=$ 229: $\Gamma \uparrow \uparrow Ins\#[0, 0, 0, 0], t(4, 4, 4, 4)=0.0=$ 223: CInsDi#[0, 0, 0, 0], k[-2.0, 2.0, 1.0, -1.0, 0.0], t(1, 1)-1.0=0.0→198: cclnsEx#[0, 0, 0, 0], k[1.0, -1.0, -1.0, 0.0, 1.0], t(1, 1)=0.0 236: $\Gamma f \uparrow \ln \#[0, 0, 0, 0], t(5, 5, 5, 5) = 0.0 = \oplus 230$: $C \ln BD \#[0, 0, 0, 0], k[-2.0, 2.0, 1.0, -1.0, 0.0], t(1, 1) -1.0 = 0.0$ 278: $\uparrow \uparrow Dyn #[0, 0, 0, 0], t(4, 5, 5, 4) = 0.0 = \bigoplus$ -231: cclnsEx#[0, 0, 0, 0], k[-2.0, 2.0, 1.0, 0.0, -1.0], t(1, 1)=0.0 -211: G0 Dyn#[0, 0, 0, 0], k[0.0, 0.0, 0.0, 0.0, 1.0], t(4, 5)=0.0 249: $\uparrow \downarrow x \uparrow \downarrow \rightarrow PHEr$, PHEr $\uparrow \uparrow Dyn \# [0, 0, 0, 0], t(4, 5, 5, 4) = 0.0 = <math>\otimes \longrightarrow 238$: Gx Dyn # [0, 0, 0, 0], k[2.0, -2.0, -1.0, 1.0, 1.0], t(5, 4) = 0.0-223: cclnsDi#[0, 0, 0, 0], k[-2.0, 2.0, 1.0, -1.0, 0.0], t(1, 1)-1.0=0.0 --230: cclnsDi#[0, 0, 0, 0], k[-2.0, 2.0, 1.0, -1.0, 0.0], t(1, 1)·-1.0=0.0 342: (3, 4, 5)#[0, 0, 0, 0]=0.0= \bigoplus →282: Gin Dyn#[0, 0, 0, 0], k[0.0, 0.0, 0.0, 1.0, 0.0], t(3, 4)=0.0 -283: Gout Dyn#[0, 0, 0, 0], k[1.0, -1.0, 0.0, 1.0, 0.0], t(5, 3)=0.0 →211: G0 Dyn#[0, 0, 0, 0], k[0.0, 0.0, 0.0, 0.0, 1.0], t(4, 5)=0.0 **-•**266: Gx Dyn#[0, 0, 0, 0], k[-1.0, 1.0, 1.0, 1.0, -1.0], t(4, 5)=0.0 270: $\uparrow \uparrow x \uparrow \downarrow \rightarrow PPr, PPr \uparrow \downarrow Dyn\#[0, 0, 0, 0], t(4, 5, 4, 5)=0.0=-0.5$ 293: $\Gamma_3 \uparrow \downarrow \#[0, 0, 0, 0], t(3, 4, 5) = 0.0 = \otimes$ 257: Γ i ↑↑Ins#[0, 0, 0, 0],t(4, 4, 4, 4)=0.0= \bigoplus _-251: cclnsDi#[0, 0, 0, 0], k[0.0, 0.0, 0.0, -1.0, 1.0], t(1, 1)-1.0=0.0 →198: cclnsEx#[0, 0, 0, 0], k[1.0, -1.0, -1.0, 0.0, 1.0], t(1, 1)=0.0 →258: cclnsDi#[0, 0, 0, 0], k[2.0, -2.0, -1.0, 0.0, 1.0], t(1, 1)·-1.0=0.0 -211: G0 Dyn#[0, 0, 0, 0], k[0.0, 0.0, 0.0, 0.0, 1.0], t(4, 5)=0.0 →266: Gx Dyn#[0, 0, 0, 0], k[-1.0, 1.0, 1.0, 1.0, -1.0], t(4, 5)=0.0 [280: ↑↓Dyn#[0, 0, 0, 0],t(4, 5, 4, 5)=0.0= \oplus [273: ↑↓x↑↑ → PPr, PPr ↑↓Dyn#[0, 0, 0, 0],t(4, 5, 4, 5)=0.0=-0.5⊗ -251: cclnsDi#[0, 0, 0, 0], k[0.0, 0.0, 0.0, -1.0, 1.0], t(1, 1)·-1.0=0.0 264: $\Gamma f \uparrow \uparrow \ln \#[0, 0, 0, 0], t(5, 5, 5, 5) = 0.0 = \oplus 258$: CINSDI#[0, 0, 0, 0], k[2.0, -2.0, -1.0, 0.0, 1.0], t(1, 1) -1.0 = 0.0→205: cclnsEx#[0, 0, 0, 0], k[1.0, -1.0, 0.0, 1.0, -1.0], t(1, 1)=0.0 **-•211**: G0 Dyn#[0, 0, 0, 0], k[0.0, 0.0, 0.0, 0.0, 1.0], t(4, 5)=0.0 340: Γ_3 ↑ ↓ #[0, 0, 0, 0],t(3, 4, 5)=0.0=⊕ 276: ↑↓x↑↓ → PPr, PPr ↑↓Dyn#[0, 0, 0, 0],t(4, 5, 4, 5)=0.0= \otimes -266: Gx Dyn#[0, 0, 0, 0], k[-1.0, 1.0, 1.0, 1.0, -1.0], t(4, 5)=0.0 -251: cclnsDi#[0, 0, 0, 0], k[0.0, 0.0, 0.0, -1.0, 1.0], t(1, 1)·-1.0=0.0 -258: cclnsDi#[0, 0, 0, 0], k[2.0, -2.0, -1.0, 0.0, 1.0], t(1, 1)-1.0=0.0 **-•**285: Gin Dyn#[0, 0, 0, 0], k[0.0, 0.0, 0.0, 1.0, 0.0], t(3, 5)=0.0 353: **#**[0, 0, 0, 0]=0.0=⊗ →180: Gout Dyn#[0, 0, 0, 0], k[1.0, -1.0, 0.0, 1.0, 0.0], t(4, 3)=0.0 →211: G0 Dyn#[0, 0, 0, 0], k[0.0, 0.0, 0.0, 0.0, 1.0], t(4, 5)=0.0 [346: Γ₃ ∘ G₃ #[0, 0, 0, 0]=0.0=⊗]---238: Gx Dyn#[0, 0, 0, 0], k[2.0, -2.0, -1.0, 1.0, 1.0], t(5, 4)=0.0 240: $\uparrow \uparrow x \uparrow \uparrow \rightarrow PHEr$, PHEr, PHEr $\uparrow \downarrow Dyn\#[0, 0, 0, 0], t(4, 5, 5, 4)=0.0=\otimes$ 229: $\Gamma i \uparrow \uparrow Ins\#[0, 0, 0, 0], t(4, 4, 4, 4)=0.0=\bigoplus$ 223: cclnsDi#[0, 0, 0, 0], k[-2.0, 2.0, 1.0, -1.0, 0.0], t(1, 1)-1.0=0.0 →198: cclnsEx#[0, 0, 0, 0], k[1.0, -1.0, -1.0, 0.0, 1.0], t(1, 1)=0.0 296: $\Gamma_3 \uparrow \downarrow \#[0, 0, 0, 0], t(3, 4, 5) = 0.0 = \otimes$ 236: $\Gamma f \uparrow \ln \#[0, 0, 0, 0], t(5, 5, 5, 5) = 0.0 = \oplus 230: cclnsDi \#[0, 0, 0, 0], k[-2.0, 2.0, 1.0, -1.0, 0.0], t(1, 1)-1.0=0.0$ -231: cclnsEx#[0, 0, 0, 0], k[-2.0, 2.0, 1.0, 0.0, -1.0], t(1, 1)=0.0 -211: G0 Dyn#[0, 0, 0, 0], k[0.0, 0.0, 0.0, 0.0, 1.0], t(4, 5)=0.0 →238: Gx Dyn#[0, 0, 0, 0], k[2.0, -2.0, -1.0, 1.0, 1.0], t(5, 4)=0.0 243: $\uparrow \uparrow x \uparrow \downarrow \rightarrow PHEr$, PHEr $\uparrow \downarrow Dyn\#[0, 0, 0, 0], t(4, 5, 5, 4)=0.0=-1.0 \otimes$ •229: Γ i ↑ ↑ Ins#[0, 0, 0, 0],t(4, 4, 4, 4)=0.0= \bigoplus 223: cclnsDi#[0, 0, 0, 0], k[-2.0, 2.0, 1.0, -1.0, 0.0], t(1, 1) -1.0=0.0 →198: cclnsEx#[0, 0, 0, 0], k[1.0, -1.0, -1.0, 0.0, 1.0], t(1, 1)=0.0 281: $\uparrow \downarrow Dyn\#[0, 0, 0, 0], t(4, 5, 5, 4)=0.0=\bigoplus$ →230: cclnsDi#[0, 0, 0, 0], k[-2.0, 2.0, 1.0, -1.0, 0.0], t(1, 1)·-1.0=0.0 -211: G0 Dyn#[0, 0, 0, 0], k[0.0, 0.0, 0.0, 0.0, 1.0], t(4, 5)=0.0 246: ↑↓x↑↑ → PHEr, PHEr ↑↓Dyn#[0, 0, 0, 0],t(4, 5, 5, 4)=0.0=-1.0⊗ →238: Gx Dyn#[0, 0, 0, 0], k[2.0, -2.0, -1.0, 1.0, 1.0], t(5, 4)=0.0 --223: cclnsDi#[0, 0, 0, 0], k[-2.0, 2.0, 1.0, -1.0, 0.0], t(1, 1)·-1.0=0.0 236: $\Gamma f \uparrow \ln \#[0, 0, 0, 0], t(5, 5, 5, 5) = 0.0 = \oplus 230$: $C \ln \#[0, 0, 0, 0], k[-2.0, 2.0, 1.0, -1.0, 0.0], t(1, 1) -1.0 = 0.0$ -231: cclnsEx#[0, 0, 0, 0], k[-2.0, 2.0, 1.0, 0.0, -1.0], t(1, 1)=0.0 --211: G0 Dyn#[0, 0, 0, 0], k[0.0, 0.0, 0.0, 0.0, 1.0], t(4, 5)=0.0 250: ↑↓x↑↓ → PHEr, PHEr ↑↓Dyn#[0, 0, 0, 0],t(4, 5, 5, 4)=0.0= \otimes \ \rightarrow238: Gx Dyn#[0, 0, 0, 0], k[2.0, -2.0, -1.0, 1.0, 1.0], t(5, 4)=0.0 →223: cclnsDi#[0, 0, 0, 0], k[-2.0, 2.0, 1.0, -1.0, 0.0], t(1, 1)·-1.0=0.0 ¹ 230: cclnsDi#[0, 0, 0, 0], k[-2.0, 2.0, 1.0, -1.0, 0.0], t(1, 1)·-1.0=0.0 **--1**49: G Dyn#[0, 0, 0, 0], k[0.0, 0.0, 1.0, 0.0, 0.0], t(5, 2)=0.0 -350: G₁ Dyn#[0, 0, 1, 0], k[0.0, 1.0, 0.0, 0.0, 0.0], t(3, 2)=0.0

→97: Gin Dyn#[0, 0, 0, 0], k[0.0, 0.0, 0.0, 1.0, 0.0], t(3, 4)=0.0 99: $\Gamma_3 \uparrow \uparrow \#[0, 0, 0, 0], t(3, 4, 4) = 0.0 =$ 98: Gout Dyn#[0, 0, 0, 0], k[1.0, -1.0, 0.0, 1.0, 0.0], t(4, 3) = 0.096: $\uparrow \uparrow lns \# [0, 0, 0, 0], t(4, 4, 4, 4) = 0.0 = \bigcirc 90$: cclnsDi#[0, 0, 0, 0], k[1.0, -1.0, 0.0, 0.0, 0.0], t(1, 1)-1.0=0.0 103: (3, 4, 4)#[0, 0, 0, 0]=0.0=⊕

> -349: G₂ Dyn#[0, 0, 0, 0], k[-1.0, 1.0, 1.0, 0.0, 0.0], t(2, 4)=0.0 -122: V₁ cclnsDi#[0, 0, 0, 0], k[-1.0, 1.0, 0.0, 0.0, 0.0], t(3, 3)=0.0 123: V₂ cclnsDi#[0, 0, 0, 1], k[-1.0, 0.0, 1.0, 0.0, 0.0], t(2, 2)=0.0

3.33333