Module: INT102 Assignment 1

1. Assessment

The tasks contribute 10% to the overall assessment of INT102

2. Submission

Please complete the assessment tasks using Microsoft Word and submit it in PDF via Learning.

3. Deadline

19-April- 2021, Monday 17:30.

Name: Lincheng Shi (施林呈)

Student ID: 1927978

1. $f(n) = 3n + n^2 + 2n \log n + 2\sqrt{n}$ is $O(n^2)$.

2. Since $n \le n^2$, $\sqrt{n} \le n^2$ and $\log n \le n$ for all $n \ge 1$,

we have n log $n \le n^2$ and

$$3n + n^2 + 2n \log n + 2\sqrt{n} \le 3n^2 + n^2 + 2n^2 + 2n^2 = 8n^2$$
 for all $n \ge 1$.

Therefore, by definition, $f(n) = 3n + n^2 + 2n \log n + 2\sqrt{n}$ is $O(n^2)$.

Question 2

Question 3

3 4 5 3 <u>4 5</u>

3 4 5 <u>3 4</u> 5

3 4 <u>3 5</u> 4 5

3 3 4 5 4 5

<u>33</u>4545

3 3 4 5 <u>4 5</u>

3 3 4 <u>4 5</u> 5

3 3 <u>4 4</u> 5 5

3 <u>3 4</u> 4 5 5

3 3 4 4 <u>5 5</u>

3 3 4 <u>4</u> 5 5

3 3 <u>4 4</u> 5 5

3 3 4 4 5 5

3 3 4 4 5 5

3 3 4 4 5 5

- 1. The number of swapping operations is 3.
- 2. 5+4+3+2+1=15

The number of key comparisons is 15.

Question 4

$$\begin{split} 1. \ f_1[j] = & a_{1,1} + t_{0,1} &, \text{ if } j = 1 \\ & \min(f_1[j-1] + a_{1,j}, \ f_2[j-1] + t_{2,j-1} + a_{1,j}), \text{ if } j > 1 \\ & f_2[j] = & a_{2,1} + t_{0,2} &, \text{ if } j = 1 \\ & \min(f_2[j-1] + a_{2,j}, \ f_1[j-1] + t_{1,j-1} + a_{2,j}), \text{ if } j > 1 \\ & f^* = \min(f_1[n] + t_{1,n}, \ f_2[n] + t_{2,n}) \end{split}$$

2.

j	<i>f</i> ₁ [<i>j</i>]	<i>f</i> ₂ [<i>j</i>]
1	4	6
2	12	8
3	11	14
4	16	13

$$3.set \ f_1[1] = a_{1,1} + t_{0,1} \\ set \ f_2[1] = a_{2,1} + t_{0,2} \\ for \ j = 2 \ to \ n \ do \\ begin \\ set \ f_1[j] = min(f_1[j-1] + a_{1,j}, \ f_2[j-1] + t_{2,j-1} + a_{1,j}) \\ set \ f_2[j] = min(f_2[j-1] + a_{2,j}, \ f_1[j-1] + t_{1,j-1} + a_{2,j}) \\ end \\ set \ f^* = min(f_1[n] + t_{1,n}, \ f_2[n] + t_{2,n}) \\ Time \ complexity \ is \ O(n). \\ 3. \ start: \ \textcircled{12} \ \textcircled{23} \\ S_{1,1} : \ 2 + 2 \\ S_{2,1} : \ 3 + 3 \\$$

S_{1,2}: ①4+8 ②6+1+8 ①<②

S_{2,2}: ①3+3+4 ②4+4 ①>②

 $S_{1,3}$: ①12+2 ②8+1+2 ①>②

S_{2,3}: ①12+6 ②8+6 ①>②

S_{1,4}: ①11+5 ②14+1+5 ①<②

S_{2,4}: ①11+1+1 ②14+1 ①<②

end: 116+3 213+1 11>2

 $start \rightarrow S_{1,1} \rightarrow S_{1,1} \rightarrow S_{2,2} \rightarrow S_{1,3} \rightarrow S_{2,4} \rightarrow end$

1.

Order	a(0,-)	b(-,∞)	c(-,∞)	d(-,∞)	e(-,∞)	f(-,∞)	g(-,∞)
selected							
a(0,-)		b(-,∞)	c(-,∞)	d(a,9)	e(a,1)	f(a,4)	g(-,∞)
e(a,1)		b(-,∞)	c(-,∞)	d(a,9)		f(a,4)	g(-,∞)
f(a,4)		b(f,3)	c(f,10)	d(a,9)			g(-,∞)
b(f,3)			c(b,6)	d(a,9)			g(-,∞)
c(b,6)				d(a,9)			g(c,1)
g(c,1)				d(g,1)			
d(g,1)							

2.

(a,e)	1/
(c,g)	1/
(d,g)	1/
(b,f)	3/
(a,f)	4/
(b,c)	6/
(a,d)	9
(c,f)	10

Order	a(0,-)	b(-,∞)	c(-,∞)	d(-,∞)	e(-,∞)	f(-,∞)	g(-,∞)
selected							
a(0,-)		b(-,∞)	c(-,∞)	d(a,9)	e(a,1)	f(a,4)	g(-,∞)
e(a,1)		b(-,∞)	c(-,∞)	d(a,9)		f(a,4)	g(-,∞)
f(a,4)		b(f,7)	c(f,14)	d(a,9)			g(-,∞)
b(f,7)			c(b,13)	d(a,9)			g(-,∞)
d(a,9)			c(b,13)				g(d,10)
g(d,10)			c(g,11)				
c(g,11)							


```
1. Algorithm: Exponentiation
//compute an where n is a positive integer
//Input: a number a and a positive integer n
//Output: the reult of an
    IF n is even
        a^n = a^{n/2} * a^{n/2}
    IF n is odd
        a^n = a^{(n-1)/2} * a^{(n-1)/2} * a
     RETURN a<sup>n</sup>
2. T(n)=1
                    , n=1
         T(n/2)+1, n>1
   Assume that n=2^k
   T(n)=T(n/2)+1
     = T(n/2^2)+1+1
     = T(n/2^3)+1+1+1
     = T(n/2^k)+1+...+1+1+1
     = T(1)+k
     = 1 + \log n
```

3. The time complexity of this algorithm is $O(\log n)$, but the time complexity of brute-force algorithm is O(n). Because $O(\log n) < O(n)$, divide-and conquer algorithm is more efficient.

1. The definition of line i and the j-th point is arr[i][j]. There are n lines in total. To find out the minimum value of arr[1][1], we need to compare arr[2][1] and arr[2][2] which is smaller. To get the minimum value of arr[i][j], we need to compare arr[i+1][j] and arr[i+1][j+1] which is smaller.

Thus, the smallest sum of the above minimum-sum descent problem is 13.