Wägetechnik mit frequenzanalogen Sensoren

Zusammenstellung des Vortrags anlässlich der Abschlusspräsentation am 21.12.92

BIZERBA

TE-MS

Kraftaufnehmer mit Resonatoren als Sensorelemente

- 1. Grundsätzliche Betrachtungen
- 2. Verfahren der Messwertverarbeitung
- 3. Versuche mit Quarzresonatoren
- 4. Versuche mit Siliziumresonatoren
- 5. Weitere Anwendungen
- 6. Funktionsmuster

BIZERBA

Grundsätzlicher Zusammenhang

- Auflösung (Schrittigkeit)
- Messzeit

BIZERBA

Auflösung und Viesszeit 7/2 7/

Die Anderung 23 rich

$$d^{2} = \frac{\partial^{2}}{\partial R} dR = -\frac{R}{2 \cdot R^{2}} dR \qquad (2)$$

Mit den Empfind Eilheit

$$5 = \frac{1}{R} \cdot \frac{dR}{dG} \qquad \text{folgt} \qquad (3)$$

Auflösung und Messzeit eines Aufnehmers Zahlenbeispiel für Resonator-Kraftaufnehmer

Vorgaben

- Taktfrequenz

- Max. Spannung : 30 N/qmm

: 10 MHz

- Dloke in Schwingunger. : 0.2 mm

- Dioke senkrecht dazu : 0.5 mm

- Länge : 10 mm

Eigenschaften

- Grundfrequenz : 18.7 kHz

- Empfindlichkeit : 0.0035 mm²/N

- Messzeit : 0.2 sec

- Auflösung : 100000

- Max. Kraft : 3 N

Verfahren der Messwertverarbeitung

- 1. Linearisierung -
- 2. Automatische Nullung
- 3. Temperaturgang Nullpunkt
- 4. Temperaturgang Empfindlichk.
- 5. Filterung

BIZERBA

Verfahren zur Linearisierung

1. Ganzrationale Polynome

Koeffizienten aus eindeutig best. Gleichungssystem

Least squares aus überbestimmtem Gleichungssystem

Minimierung der max. Abweichung (Tschebyscheff)

$$y = A + Bx + Cx^2 + Dx^3$$

2. Abschnittaweise Approximation durch Polynome

___Kubische Splinepolynome

$$y_k(x) = A_k + B_k(x-x_k) + C_k(x-x_k)^2 + D_k(x-x_k)^3$$

Stetigkeit von y und y' an Bereichsgrenzen

3. Empirischer Funktionsansatz

$$y(x) = A + Bx + C/x + Dx$$

Approximation durch generationale Polymone

Abschnittsweise Approximation

$$y_{k}(x) = A_{k} + B_{k}(x-x_{k}) + C_{k}(x-x_{k})^{2} + D_{k}(x-x_{k})^{3}$$

I : An, Bn, Cn, On

II: A2, B2, C2, D2

III: A3, B3, C3, D3

Ramolbedingungen
$$-\frac{y''(x_1)}{-y''(x_4)}$$
 itematic bestimmen
$$-\frac{y''(x_4)}{-y''(x_4)}$$

Verfahren zur Filterung

NIchtrekursives FIR-Filter

$$y(m) = \sum_{k=0}^{4} b_k \cdot x(m-k)$$

be ans gewünselter Filterkennlimie

Filtenkennlinie im Funktionsmusten

			
K	bk	K	br
1	-0.03110	11	0.13266
2	-0.00829	12	0.12279
3	-0.00138	13	0.10471
4	0.01211	14	0.08114
5	0.03170	15	0.05566
6	0.05566	16	0.03170
7	0.08114	17	0.01211
8	0,10471	18	-0.00138
9	0.12279	19	-0.00829
10	0.13266	20	-0.03110

Ym = \(\subseteq b_k \cdot x_{m-k} \)

Lastkurve für Aufnehmer RES 2 Mit und ohne Linearisierung

Lastkurve für Aufnehmer RES 2 Linearisiert mit Polynom 2. Grades

* > Vonteile den ebschniblsweisen Ayunaximation

Lastaufnehmer mit Si-Resonator Linearisiert

Weitere Anwendungen

1. Alpha-Temperaturaufnehmer

2. Taupunktfühler (Hygrometer)

BIZERBA

Alpha Thermometer Frequenzänderung über Temperatur

Substrat:

$$Alpha = 22 ppm/C$$

$$E = 70000N/qmm$$

$$= 10 \, \text{mm}$$

$$Q = 20 \text{ qmm}$$

Koppel

$$k = 10000 \text{ N/mm}$$

Resonator

Alpha =
$$13 ppm/C$$

$$E = 87000 \text{ N/qmm}$$

$$= 8 \,\mathrm{mm}$$

$$d = 0.3 \,\mathrm{mm}$$

$$b = 0.3 \,\mathrm{mm}$$