StepuP: Steps against the burden of **P**arkinson's Disease

Jaap van Dieën

Department of Human Movement Sciences Vrije Universiteit Amsterdam, the Netherlands

treadmill training

enforces coordinated stepping to maintain speed and stability

improved sensorimotor integration

decreased beta band activity in motor area increased corticocmuscular coherence improved center of mass state estimation improved foot placement coordination

improved gait efficacy

increased mGES-score

improved gait performance

increased gait speed, stride length reduced variability

improved daily-life gait

increased gait quantity improved gait quality

treadmill training in PD

treadmill training

enforces coordinated stepping to maintain speed and stability

32 trials (n = 823) compared treadmill training with no exercise or sham treatment. Treadmill training improved gait outcomes, with a moderate effect on the 10MWT and a moderately large effect on gait speed.

Radder et al. Neurorehabil Neural Repair 2020

SDTT:

total walking distance 266 (82) m - 726 (93 (P < 0.001). maximum 1.9 (0.75) km/h - 2.61 (0.77) km/h (P < 0.001). Berg Balance Test (P < 0.01) Dynamic Gait Index (P < 0.01) Falls Efficacy Scale (P < 0.01).

warmup 70% CS 5 min V1 80% CS mechanically/ VR-triggered adaptations 5 min recovery, 70% CS 2.5 min V2 mechanically/ VR-triggered adaptations 5 min. recovery, 70% CS 2.5 min V3 mechanically/ VR-triggered adaptations 5 min recovery, 70% CS 2.5 min

Cakit et al. Clin Rehabil 2007

improved sensorimotor integration

- decreased beta band oscillations in sensorimotor areas
- increased corticulmuscular coherence
- improved center of mass state estimation
- improved foot placement coordination

CoM state feedback

position and velocity feedback are needed

control mechanisms

shifting the CoP

changing angular momentum

$$\frac{-(r_{COP} - r_{COM"}) \times F_g + \frac{dH}{dt}}{(r_{COM} - r_{COM"})} = ma_{COM}$$

correlation CoP-CoM and Fhor

shifting the CoP

$$\frac{(r_{COP} - r_{COM"}) \times F_g + \frac{dH}{dt}}{(r_{COM} - r_{COM"})} = ma_{COM}$$

shifting the CoP is the dominant mechanism in the control of the CoM $F \sim (CoP - CoM)$

CoP and foot placement

between-step variance CoP is due to foot placement

$$F \sim (CoP - CoM) \sim (FP - CoM)$$

foot placement coordination, ML

$$FP = \beta_{1s} \cdot P_{COM(MidSwing)} + \beta_2 \cdot V_{COM(MidSwing)} + \varepsilon$$

 β_1 , β_2 = position and velocity feedback gains R^2 and $RMS(\epsilon)$ quantify quality of control

12 healthy young adults preferred speed $R^2 = 0.73$ (SD 0.11)

Arvin et al. Front Physiol 2018 cf. Hurt et al. J Biomech 2010 Wang & Srinivasan Biol Lett 2014

foot placement coordination, AP

foot placement coordination in PD

effects of external mediolateral stabilization

Mahaki et al. PeerJ 2019

Bruijn et al. Front Hum Neurosci 2015

mediolateral foot placement coordination decreases beta oscillations increase (decreased processing)

effects of cueing on beta oscillations in PD

mean stride time variability (in CV, %):

- 2.38 (SD = 0.82, range = 1.41-4.48) normal waling,
- 2.30 (SD = 0.73, range = 1.21–4.16) externally cued all participants reported subjective improvement

decrease in beta oscillations:

- walking vs standing
- cued walking vs walking

cortico-muscular coherence in PD

improved gait efficacy and transfer to daily-life

Thanks for your attention

j.van.dieen@vu.nl

StepuP: Steps against the burden of Parkinson's Disease

Netherlands, Vrije Universiteit Amsterdam

Germany, University Hospital Schleswig-Holstein Kiel

Israel, Tel Aviv Sourasky Medical Center

Australia, University of New South Wales

Switzerland, Swiss Federal Institute of Technology (ETH Zürich)

Italy, IRCCS Istituto delle Scienze Neurologiche di Bologna

- Comparison to no intervention: Initial total walking distance of the training group on treadmill was 266.45 82.14 m and this was progressively increased to 726.36 93.1 m after 16 training session (P < 0.001). Tolerated maximum speed of the training group on treadmill at baseline was 1.9 0.75 km/h and improved to 2.61 0.77 km/h (P < 0.001). Berg Balance Test, Dynamic Gait Index and Falls Efficacy Scale scores of the training group were improved significantly after the training programme (P < 0.01). There was no significant improvement in any of the outcome measurements in the control group (P > 0.05).
- Comparison to cued walking: Immediate within-group training effects revealed significant gains in CGS, 6MWT, and FGA for the RAC group, and in FGS, 6-MinuteWalk Test, and FGA for the SDTT group. Retention effects were found at 3-month follow-up for all gait measures in the RAC group, and for FGS and FGA in the SDTT group.
- Comparison to limited incremental treadmill training, conventional training and rest: STT and LTT improved all basic gait parameters and the double stance duration compared with preintervention values (P<.05). No changes were found after CGT and the control intervention (P<.05). Significantly higher gains were observed in all basic gait parameters after STT and LTT when compared with CGT and the control intervention (P<.05). Additionally, a greater reduction of double stance duration was found after STT than after the control intervention (P<.001). No significant differences in gains were observed between STT and LTT, or between CGT and the control intervention, in all gait parameters.

WP 1

gait improvement obtained with treadmill training

WP 2

biomechanical and neurophysiological mechanisms

WP3

transfer of gait improvements to daily-life gait quantity and quality

WP 4

individual responses to treadmill training

WP 5

management, dissemination and ECR training

center	training intervention	control	duration
Bologna	Speed-dependent treadmill training (SDTT)	placebo	4 weeks
Kiel	SDTT+ anteroposterior perturbations	SDTT	2-3 weeks
Sydney	SDTT+ multi-directional perturbations	SDTT	4 weeks
Tel Aviv	SDTT+ VR-triggered adaptations	SDTT	4 weeks