RPS - Zadania przygotowawcze

Z1 Wiadomo, że P(A)=0,20, P(B)=0,50, a prawdopodobieństwo, że A i B zachodzą jednocześnie wynosi 0,1.

- 1. Oblicz prawdopodobieństwo, że żadne z tych zdarzeń nie zajdzie.
- 2. Jeśli A zachodzi, jakie jest prawdopodobieństwo, że B też zajdzie?
- 3. Jakie jest prawdopodobieństwo, że zajdzie B, ale nie zajdzie A?

Z2 Prawdopodobieństwo wypadku na autostradzie A1 wynosi 0,1, a na autostradzie A2 - 0,05. Prawdopodobieństwo tego, że na obu autostradach jednocześnie dochodzi do wypadku wynosi 0,01.

- 1. Oblicz prawdopodobieństwo, że na żadnej z autostrad nie ma wypadku.
- 2. Jeśli na A1 wydarzył się wypadek, jakie jest prawdopodobieństwo, że A2 będzie przejezdna, to znaczy nie będzie na niej wypadku?
- 3. Czy wypadek na A1 i wypadek na A2 są zdarzeniami niezależnymi?

Z3 Wiadomo, że P(A)=0,70, P(B)=0,50, a prawdopodobieństwo, że A i B zachodzą jednocześnie wynosi 0,2.

- 1. Oblicz prawdopodobieństwo, że zajdzie co najwyżej jedno z tych zdarzeń.
- 2. Jeśli A zachodzi, jakie jest prawdopodobieństwo, że B nie zajdzie?
- 3. Jakie jest prawdopodobieństwo, że zajdzie tylko jedno z nich?

Z4 Oblicz prawdopodobieństwo przekazania sygnału przez poniższy układ składający się z niezależnie działających przekaźników, wiedząc że prawdopodobieństwa działania poszczególnych przekaźników są takie same i wynoszą 0.9.

Z5 Janek ma do wyboru trzy trasy rowerowe z domu do miejsca pracy. Pierwszą z nich w 80% przypadków pokonuje do 20min, drugą w 70% przypadków pokonuje do 20min, a trzecią pokonuje w tym czasie tylko w 50% przypadków. Janek wybrał losowo trasę i dojechał do pracy w ciągu 20 minut. Jakie jest prawdopodobieństwo, że jechał drugą trasą?

Z6 Pewne towarzystwo ubezpieczeniowe klasyfikuje kierowców do trzech grup ryzyka: wysokiego, przeciętnego i małego. Przynależność do danej grupy ryzyka zależy od przypisanego kierowcy prawdopodobieństwa spowodowania przez niego wypadku w ciągu roku, które wynosi, odpowiednio, 0.3, 0.15 bądź 0.05. Do grupy wysokiego ryzyka należy 30% kierowców, 50% należy do grupy przeciętnego ryzyka, a pozostałe 20% do grupy małego ryzyka. Jakie jest prawdopodobieństwo tego, że osoba ubezpieczona w tym towarzystwie, która nie spowodowała w ostatnim roku wypadku, należy do grupy małego ryzyka?

Z7 Pewien tancerz może wziąć udział tylko w jednym z trzech konkursów rozgrywanych w Warszawie, Krakowie i Katowicach. Prawdopodobieństwo znalezienia się w pierwszej trójce najlepszych tancerzy w konkursie rozgrywanym w Warszawie wynosi 0,25, w Krakowie - 0,8 a w Katowicach - 0,6. Tancerz losowo wybrał konkurs i zajął w nim drugie miejsce. Jakie jest prawdopodobieństwo, że brał udział w konkursie rozgrywanym w Katowicach?

Z8 Wytwórnia słodyczy produkuje 4 rodzaje cukierków: krówki, irysy, landrynki i kukułki. Miesięczna produkcja wynosi, odpowiednio, 6, 5, 9, 10 ton. Przez pomyłkę wypuszczono partię towaru, w której zamiast cukru użyto soli. Szacuje się, że prawdopodobieństwo znalezienia słonej krówki wynosi 12%, irysa - 10%, landrynki -21%, zaś kukułki - 5%. Mama kupiła cukierki i dała jeden dziecku. Okazało się, że był słony. Jakie jest prawdopodobieństwo, że była to kukułka?

Z9 Zmienna losowa X ma rozkład o gęstości

$$f(x) = \begin{cases} x & 0 \le x < 1 \\ k - x & 1 \le x < 2 \\ 0 & x < 0, x \ge 2 \end{cases}$$

- a) Wyznacz stałą k (2pkt).
- b) Wyznacz dystrybuantę zmiennej losowej X (3pkt).
- c) Wyznacz EX i VarX (2pkt).
- d) Znajdź kwantyl rzędu 0,4 (3pkt).

Z10 Zmienna losowa X ma rozkład o gęstości

$$f(x) = \begin{cases} 3x^2 - a & 0 \le x < 1\\ 0 & x < 0, x \ge 1 \end{cases}$$

- a) Wyznacz stałą a (2pkt).
- b) Wyznacz dystrybuantę zmiennej losowej X (3pkt).
- c) Oblicz wartość oczekiwaną EX i wariancję VarX (2pkt).
- d) Oblicz kwantyl rzędu 0.9 zmiennej X (3pkt).

Z11 Odsetek wyrobów wadliwych w pewnej fabryce wynosi 2%. Korzystając z przybliżenia Poissona, oszacuj prawdopodobieństwo tego, że w poddanej kontroli próbce losowej liczącej 200 sztuk, znajdzie się co najmniej 1, ale nie więcej niż 3 sztuki wadliwe (5pkt).

Z12 Do 10% osób rejonu zamieszkiwanego przez 100 osób dociera reklama miejscowej restauracji. Spośród mieszkańców tego rejonu wybrano losowo 10 osób. Jakie jest prawdopodobieństwo, że do co najwyżej 5 z nich dotrze reklama tej restauracji? (5pkt)

Z13 Prawdopodobieństwo, że doświadczenie zakończy się oczekiwanym wynikiem wynosi 0,6. Doświadczenie powtarza się do czasu, aż osiągnie się oczekiwany wynik. Jakie jest prawdopodobieństwo, że dopiero za 4-tym razem doświadczenie zakończy się oczekiwanym wynikiem? (5pkt).

Wskazówka: Podaj czym jest zmienna losowa, dla której ma być policzone prawdopodobieństwo, jaki ma ona rozkład i dlaczego. Wykonaj dla niej odpowiednie obliczenia.

CTG, zmienna dwuwymiarowa – Zestaw zadań nr 5 – rozwiązania w pliku RPS-zestaw-5-odpowiedzi.pdf w UBI