Package 'clustNet'

February 14, 2024

1 Columny 14, 2024
Type Package
Title Network-Based Clustering
Version 1.2.0
Description Network-based clustering using a Bayesian network mixture model with optional covariate adjustment.
Depends R (>= 3.5.0)
Encoding UTF-8
License GPL-3
RoxygenNote 7.2.3
Suggests knitr, rmarkdown, ggraph, ggpubr, ggplot2, grDevices, reshape2, car, ks, testthat (>= 3.0.0)
VignetteBuilder knitr
Imports BiDAG (>= 2.0.2), pcalg, RBGL, parallel, clue, methods, graph, igraph
Config/testthat/edition 3
NeedsCompilation no
Author Fritz Bayer [aut, cre, cph], Jack Kuipers [ctb]
Maintainer Fritz Bayer <frbayer@ethz.ch></frbayer@ethz.ch>
Repository CRAN
Date/Publication 2024-02-14 15:20:02 UTC
B topics documented: bestAICsearch density_plot get_classification get_clusters get_clusters get_clusters_bernoulli nice_DAG_plot plot_clusters sampleData

2 bestAICsearch

Index 10

bestAICsearch bestAICsearch

Description

best AIC search

Usage

```
bestAICsearch(
  binaryMatrix,
  minK = 2,
  maxK = 5,
  chiVec = c(0.001, 0.5, 1, 2, 3),
  startseed = 100,
  nIterations = 50,
  AICrange = 100,
  plot_heatmap = TRUE
)
```

Arguments

binaryMatrix Data to be clustered
minK Min number of clusters
maxK Max number of clusters
chiVec Vector of chi values
startseed Seed
nIterations Number of iterations

AICrange AIC range

plot_heatmap TRUE if plotting directly

Value

list of AIC scrores

density_plot 3

ensity_plot density_plot
plot aensity_plot

Description

Create 2d dimensionality reduction of sample fit to Bayesian network clusters

Usage

```
density_plot(cluster_results, var_selection = NULL, colourys = NULL)
```

Arguments

```
cluster_results

Cluster results from function get_clusters
```

var_selection Selected variables to consider, e.g. c(1:5) for first five only colourys A vector specifying the colors of each cluster (optional)

Value

A density plot of class recordedplot.

Examples

```
# Simulate data
sampled_data <- sampleData(n_vars = 15, n_samples = c(200,200,200))$sampled_data
# Learn clusters
cluster_results <- get_clusters(sampled_data)
# Load additional pacakges to create a 2d dimensionality reduction
library(car)
library(ks)
library(ggplot2)
library(graphics)
library(stats)
# Plot a 2d dimensionality reduction
density_plot(cluster_results)</pre>
```

get_clusters

 $get_classification$ $get_classification$

Description

Classification based on clustering

Usage

```
get_classification(cluster_results, data_classify)
```

Arguments

```
cluster_results
```

Output from get_clusters()

data_classify

Data that should be classified; colnames need to match the ones of cluster_results\$data; missing cols are allowed

Value

a list containing the classification as "clustermembership" and the probabilities of belonging to the clusters as "allrelativeprobabs"

Examples

```
# choose data
sampled_data <- sampleData(n_vars = 15, n_samples = c(300,300,300))$sampled_data
# learn clusters
cluster_results <- get_clusters(sampled_data)
# visualize the networks
classification_results <- get_classification(cluster_results, sampled_data)</pre>
```

get_clusters

get_clusters

Description

Network-based clustering

5 get_clusters

Usage

```
get_clusters(
  myData,
  k_{clust} = 3,
  n_bg = 0,
  quick = TRUE,
  EMseeds = 1,
  edgepmat = NULL,
  blacklist = NULL,
  bdepar = list(chi = 0.5, edgepf = 8),
  newallrelativeprobabs = NULL
)
```

Arguments

myData

	(with levels "0"/"1"/"2"/)
k_clust	Number of clusters
n_bg	Number of covariates to be adjusted for; the position of the covariates must be in the last column of the myData matrix
quick	if TRUE, then the runtime is quick but accuracy is lower
EMseeds	Seeds

Data to be clustered, must be either binary (with levels "0"/"1") or categorical

edgepmat Matrix of penalized edges in the search space blacklist Matrix of forbidden edges in the search space Hyperparameters for structure learning (BDE score) bdepar

newallrelativeprobabs

relative probability of cluster assignment of each sample

Value

a list containing the clusterMemberships and "assignprogress"

Examples

```
# choose data
sampled_data \leftarrow sampleData(n_vars = 15, n_samples = c(300,300,300))sampled_data
# learn clusters
cluster_results <- get_clusters(sampled_data)</pre>
# visualize the networks
library(ggplot2)
library(ggraph)
library(igraph)
library(ggpubr)
plot_clusters(cluster_results)
```

nice_DAG_plot

```
get_clusters_bernoulli

get_clusters_bernoulli
```

Description

Categorical version of Bernoulli mixture model (binary clustering function BBMMclusterEM)

Usage

```
get_clusters_bernoulli(
  binaryMatrix,
  chi = 0.5,
  k_clust = 5,
  startseed = 100,
  nIterations = 10,
  verbose = FALSE
)
```

Arguments

 $\begin{array}{ll} \mbox{binaryMatrix} & \mbox{Data to be clustered} \\ \mbox{chi} & \mbox{hyperparameter chi} \\ \mbox{k_clust} & \mbox{Number of clusters} \end{array}$

startseed Start seed

nIterations number of iterations

verbose set TRUE to display progress

Value

a list containing the clusterMemberships

nice_DAG_plot nice_DAG_plot

Description

DAG visualization

plot_clusters 7

Usage

```
nice_DAG_plot(
  my_DAG,
  print_direct = TRUE,
  node_size = NULL,
  CPDAG = TRUE,
  node_colours = "#fdae61",
  directed = TRUE
)
```

Arguments

my_DAG DAG

CPDAG if TRUE, then plot CPDAG instead of DAG

node_colours node colours

directed TRUE if nodes should be directed

Value

A plot of the DAG of class c("gg", "ggplot").

Description

Plot clusters

Usage

```
plot_clusters(
   cluster_results,
   node_colours = "#fdae61",
   scale_entropy = FALSE,
   directed = TRUE
)
```

Arguments

cluster_results

Cluster results

node_colours node colours

scale_entropy if true, entropy measure will be used to determine size of the nodes

directed TRUE if nodes should be directed

8 sampleData

Value

A summary plot of all cluster networks of class c("gg", "ggplot", "ggarrange").

Examples

```
# Simulate data
sampled_data <- sampleData(n_vars = 15, n_bg = 0)$sampled_data
# learn clusters
cluster_results <- get_clusters(sampled_data)
# Load additional pacakges to visualize the networks
library(ggplot2)
library(ggraph)
library(igraph)
library(ggpubr)
# Visualize networks
plot_clusters(cluster_results)</pre>
```

sampleData

sampleData

Description

Sample binary data from different Bayes nets

Usage

```
sampleData(
  k_clust = 3,
  n_vars = 20,
  n_bg = 0,
  n_samples = NULL,
  bgedges = "different",
  equal_cpt_bg = TRUE
)
```

Arguments

 $\begin{array}{ll} k_clust & Number of clusters \\ n_vars & Number of variables \end{array}$

n_bg number of conditioned covariates

n_samples number of samples

bgedges type of background edges

equal_cpt_bg specify if conditional probability table of the background edges is constant across

clusters

sampleData 9

Value

sampled binary data

Examples

```
# sample data
simulation_data <- sampleData(k_clust = 3, n_vars = 15, n_samples = c(200,200,200))
sampled_data <- simulation_data$sampled_data
head(sampled_data)</pre>
```

Index

```
bestAICsearch, 2
density_plot, 3
get_classification, 4
get_clusters, 4
get_clusters_bernoulli, 6
nice_DAG_plot, 6
plot_clusters, 7
sampleData, 8
```