Swapnil Meshram

+1(480) 919-5621 • sbmeshra@asu.edu • LinkedIn • Portfolio

EDUCATION

Master of Science, Robotics and Autonomous Systems (Electrical Engineering)

Expected December 2024

Arizona State University, Tempe, AZ

GPA: 3.64/4.00

Relevant Coursework: Introduction to Deep Neural Networks, Embedded Machine Learning, Power Electronics & Power Management, Connected and Automated Vehicles, Realtime DSP

Bachelor of Engineering, Electronics Engineering

May 2020

K. K. Wagh Institute of Engineering Education and Research, Nashik, India

CGPA: 6.48/10

Relevant Coursework: Electronic Devices & Circuits, Advanced Power Electronics, Automotive Electronics, Embedded Processors, Electromagnetics & Wave Propagation

TECHNICAL SKILLS

Hardware and Software Development Tools: Altium Designer, Autodesk Eagle, KiCAD, LTspice, Simulink, Ansys Maxwell, Google Colab, Anaconda, Jupyter Notebook, Visual Studio Code, Git

Programming Languages: Python, C, Embedded C, MATLAB

Libraries & Frameworks: NumPy, Pandas, Matplotlib, Seaborn, Scikit-learn, PyTorch, TensorFlow, ROS

EXPERIENCE

Miniaturized and Advanced Power Electronics Laboratory: Research Aide

February 2023 – September 2023

Arizona State University

Tempe, Arizona

- Developed Printed Circuit Boards for planar transformers with medium-voltage isolation ratings of 26kV, 35kV, and 48kV.
- Engineered multi-layer PCB designs (2, 4, 6, 10, 12, 14 layers), optimizing for project specifications.
- Collaborated with Ph.D. students to evaluate and optimize designs, ensuring alignment with project goals.
- Diagnosed and resolved technical challenges in PCB design, contributing to successful project completions.

Aerospace Engineers Private Limited: Electrical & Electronics Engineer

June 2021 - December 2022

Autonomous & Undersea Systems Division

Tamil Nadu, India

- Led R&D for unmanned marine robotic vehicles (AUVs, ROVs, ASVs), designing electrical architectures for 300-meter depth AUVs and achieving 15% cost reduction through optimized designs and efficient project management practices.
- Designed embedded electronics systems from concept to prototype, covering hardware selection, schematic design, PCB layout, and system integration.
- Designed the Power Distribution and Sensor Suite for unmanned marine vehicles (AUVs, ROVs, ASVs), increasing endurance by 10% and compacting wiring length by 30%.
- Created the Thruster Control Board for a Micro class submarine, **increasing endurance by 5%** and eliminating active cooling requirements.

ACADEMIC PROJECTS

Deep Learning Approaches to Audio Classification

January 2024 – April 2024

Arizona State University

Tempe, Arizona

- Explored multiple neural network architectures (CNNs, LSTMs, ResNet18, SVMs, Transformers) for classifying musical instruments, with CNNs achieving the **highest accuracy of 63.75%** on spectrogram data.
- Focused on preprocessing steps like generating spectrograms and extracting MFCC features to ensure the models effectively captured the spatial and temporal characteristics of audio signals.

Comparative Analysis of SLAM Algorithms

January 2024 - April 2024

Arizona State University

Tempe, Arizona

- Compared Cartographer and GMapping SLAM algorithms using RPLIDAR, evaluating mapping accuracy with metrics like

 MSE and MAE
- Demonstrated that GMapping performed better in simpler environments, while Cartographer excelled in more complex layouts with obstacles.

EdgeVision: User-Defined Object Counting Using Raspberry Pi

August 2023 – December 2023

Arizona State University

Tempe, Arizona

- Designed and implemented a real-time object detection and tracking system using the Faster R-CNN ResNet-50 model on Raspberry Pi 4, achieving **95.6% accuracy in bright conditions** and **82.5% in low-light conditions**.
- Developed modules like the LineSegmentCounter for user-defined object counting and CentroidTracker for reliable tracking, ensuring the system was optimized for resource-constrained embedded platforms.