基于自旋量子传感的纳米尺度离子探测方法

答辩人: 黄 晨

指导老师: 蔡建明教授

2022年5月25日

目录

① 金刚石NV色心的退相干传感

- ▶量子传感与量子传感器
- ▶金刚石NV色心的退相干传感
- ▶利用量子退相干测量溶液中的自旋

2 交流电压下溶液离子分布计算

- ▶表面力仪(SFA)与PNP方程
- ▶表面力仪的一维模型
- ▶一维模型的解析解
- 6 总结与展望

2022年5月25日

① 金刚石NV色心的退相干传感

- ▶量子传感与量子传感器
- ▶金刚石NV色心的退相干传感
- ▶利用量子退相干测量溶液中的自旋
- 2 交流电压下溶液离子分布计算
 - ▶表面力仪(SFA)与PNP方程
 - 表面力仪的一维模型
 - 一维模型的解析解
- 6 总结与展望

量子传感与量子传感器

"量子传感"指利用量子系统、量子特性或量子现象对物理量进行测量

- (I) 利用具有量子化能级的系统测量经典或量子物理量;
- (II) 利用量子相干性测量物理量;
- (III)利用量子纠缠提升测量的灵敏度或精度。

图:一个最基础的二能级量子系统。 $|0\rangle$ 为系统中的较低能态, $|1\rangle$ 为较高能态。量子传感通过跃迁频率 ω_0 或跃迁速率 Γ 的变化来感知外部信号V。

量子传感与量子传感器

执行		量子比特	测量量	初始化	读出	类型
中性原子	原子蒸气	原子自旋	磁场、旋转、 时间/频率	光场	光场	II-III
	冷云	原子自旋	磁场、加速度、 时间/频率	光场	光场	II-III
离子阱		长寿命电子态	时间/频率 旋转	光场	光场	II-III
		振动模式	电场、力	光场	光场	II
里德堡原子		里德堡态	电场	光场	光场	II-III
固态自旋(系综)	NMR 传感器	核自旋	磁场	热场	拾波线圈	II
	NV 色心系综	电子自旋	磁场、电场、 温度、压力、旋转	光场	光场	II
固态自旋 (单个自旋)	Si 中的 P 供体	电子自旋	磁场	热场	电场	II
	半导体量子点	电子自旋	磁场、电场	电场、光场	电场、光场	I-II
	单个 NV 色心	电子自旋	磁场、电场、 温度、压强、旋转	光场	光场	II
超导电路	SQUID	超导电流	磁场	热场	电场	I-II
	磁通量子比特	环形电流	磁场	热场	电场	II
	电荷量子比特	电荷本征态	电场	热场	电场	II

量子传感与量子传感器

执行		量子比特	测量量	初始化	读出	类型
中性原子	原子蒸气	原子自旋	磁场、旋转、 时间/频率	光场	光场	II-III
	冷云	原子自旋	磁场、加速度、 时间/频率	光场	光场	II-III
离子阱		长寿命电子态	时间/频率 旋转	光场	光场	II-III II
		振动模式	电场、力	光场	光场	II
里德堡原子		里德堡态	电场	光场	光场	II-III
固态自旋(系综)	NMR 传感器	核自旋	磁场	热场	拾波线圈	II
	NV 色心系综	电子自旋	磁场、电场、 温度、压力、旋转	光场	光场	II
固态自旋 (单个自旋)	Si 中的 P 供体	电子自旋	磁场	热场	电场	II
	半导体量子点	电子自旋	磁场、电场	电场、光场	电场、光场	I-II
	单个 NV 色心	电子自旋	磁场、电场、 温度、压强、旋转	光场	光场	II
超导电路	SQUID	超导电流	磁场	热场	电场	I-II
	磁通量子比特	环形电流	磁场	热场	电场	II
	电荷量子比特	电荷本征态	电场	热场	电场	II

金刚石NV色心的结构

- 图: 金刚石NV(Nitrogen-Vacancy, 氮空位)色心的结构。
 - (a) 金刚石NV晶胞结构。
 - (b) 室温下金刚石NV色心电子能级结构(未显示超精细能级结构)。

金刚石NV色心的退相干传感

核自旋与电子自旋的耦合 \rightarrow 电子自旋中的退相干 \rightarrow T_2^* 1~10 ns 核自旋之间的直接相互作用 \rightarrow T_2 1~10 μ s

图: NV色心在不同浸润条件下的退相干特性和处于溶液中的Mn²⁺自旋。

① 金刚石NV色心的退相干传感

- 量子传感与量子传感器
- 金刚石NV色心的退相干传感
- 利用量子退相干测量溶液中的自旋

2 交流电压下溶液离子分布计算

- ▶表面力仪(SFA)与PNP方程
- ▶表面力仪的一维模型
- ▶一维模型的解析解
- 6 总结与展望

图:表面力仪(SFA)示意图

黄晨

图:表面力仪(SFA)示意图

图:表面力仪(SFA)示意图

表面力仪的一维模型

图: 表面力仪腔体模型的几何特征。

- (a) 两个半径为 a 的交叉圆柱体表面。
- (b) 在 $H + 2c \ll a$ 情况下,交叉圆柱可近似为两个半径为 2a 的球体。
- (c) $\alpha \lambda_D \ll H$ 情况下,两个半径为 2a 的球体可进一步近似为距离为 2L 的两平行板。

2022年5月25日

表面力仪的一维模型

图: 表面力仪腔体模型的几何特征。

- (a) 两个半径为 a 的交叉圆柱体表面。
- (b) 在 $H + 2c \ll a$ 情况下,交叉圆柱可近似为两个半径为 2a 的球体。
- (c) $\alpha \lambda_D \ll H$ 情况下,两个半径为 2a 的球体可进一步近似为距离为 2L 的两平行板。

2022年5月25日

表面力仪的一维模型

- 图: 表面力仪腔体模型的几何特征。
- (a) 两个半径为 a 的交叉圆柱体表面。
- (b) 在 $H + 2c \ll a$ 情况下,交叉圆柱可近似为两个半径为2a的球体。
- (c) 在 $\lambda_D \ll H$ 情况下,两个半径为 2a 的球体可进一步近似为距离为 2L 的两平行板。

一维模型的解析解

一维PNP方程

$$\frac{\partial n_{\sigma}}{\partial t} = -\frac{\partial j_{\sigma}}{\partial x} = D \left[\frac{\partial^{2} n_{\sigma}}{\partial x^{2}} + \sigma \frac{e}{k_{B}T} \frac{\partial}{\partial x} \left(n_{\sigma} \frac{\partial \phi}{\partial x} \right) \right]$$

$$\varepsilon \frac{\partial^2 \phi}{\partial x^2} = -e(n_+ - n_-)$$

2022年5月25日

一维模型的解析解

一维PNP方程

$$\frac{\partial n_{\sigma}}{\partial t} = -\frac{\partial j_{\sigma}}{\partial x} = D \left[\frac{\partial^2 n_{\sigma}}{\partial x^2} + \sigma \frac{e}{k_B T} \frac{\partial}{\partial x} \left(n_{\sigma} \frac{\partial \phi}{\partial x} \right) \right]$$

$$\varepsilon \frac{\partial^2 \phi}{\partial x^2} = -e(n_+ - n_-)$$

边界条件

在平行板处施加交流电压

$$\phi(x = \pm L, t) = \pm V_0 \cos \omega t$$

$$\phi(x=0,t)=0$$

$$\sigma(x = \pm L, t) = -D \left(\frac{\partial n_{\sigma}}{\partial x} + \sigma \frac{e}{k_{B}T} n_{\sigma} \frac{\partial \phi}{\partial x} \right) = 0$$

一维模型的解析解无量纲化

- $\triangleright x$ 代表位置 x 与半腔长度 L 的比值,即 $\frac{x}{L} \to x$
- $^{\triangleright}\phi$ (或 $^{\circ}\mathcal{V}$) 代表电势 ϕ (或电压V) 与电子热电压 $\frac{k_BT}{e}$ 的比值,即 $\frac{\phi(\text{or }V)}{k_BT/e} \to \phi(\text{or }\mathcal{V})$
- $\triangleright n_{\sigma}$ 代表离子浓度 n_{σ} 与施加电压前的单粒子离子浓度 n_{0} 的比值,即 $\frac{n_{\sigma}}{n_{0}} \rightarrow n_{\sigma}$
- ightharpoonup t 代表时间 t 与Debye层充电的RC时间参数 $\frac{\lambda_D L}{D}$ 的比值,即 $\frac{t}{\lambda_D L/D} \to t$
- $\triangleright \omega$ 代表角频率 ω 与RC角频率 $\frac{D}{\lambda_D L}$ 的比值,即 $\frac{\omega}{D/\lambda_D L} \to \omega$

2022年5月25日

一维模型的解析解无量纲化

一维PNP方程

$$\frac{\partial n_{\sigma}}{\partial t} = \epsilon \left[\frac{\partial^2 n_{\sigma}}{\partial x^2} + \sigma \frac{\partial}{\partial x} \left(n_{\sigma} \frac{\partial \phi}{\partial x} \right) \right]$$

$$\frac{\partial^2 \phi}{\partial x^2} = -\frac{n_+ - n_-}{2\epsilon^2}$$

其中
$$\epsilon = \lambda_D/L$$

边界条件

$$\phi(x = \pm 1, t) = \pm \mathcal{V}_0 \cos \omega t, \qquad \phi(x = 0, t) = 0$$

$$\left(\frac{\partial n_{\sigma}}{\partial x} + \sigma n_{\sigma} \frac{\partial \phi}{\partial x}\right) \bigg|_{x=\pm 1} = 0, \qquad n_{\sigma}(x=0,t) = 1$$

Fourier展开

当 \mathcal{V}_0 < 10 时,即 V_0 < 0.26V 时 (在室温(300K)状态下,热电压 $k_BT/e \approx 26$ mV),展开到二阶即可较好拟合 [1]

$$\phi(x,t) = \phi_0^{(0)} + \mathcal{V}_0 \left(\phi_1^{(1)} e^{i\omega t} + \phi_{-1}^{(1)} e^{-i\omega t} \right) + \mathcal{V}_0^2 \left(\phi_2^{(2)} e^{2i\omega t} + \phi_0^{(2)} + \phi_{-2}^{(2)} e^{-2i\omega t} \right) + \mathcal{O}(\mathcal{V}_0^3)$$

$$n_{\sigma}(x,t) = n_{\sigma,0}^{(0)} + \mathcal{V}_0 \left(n_{\sigma,1}^{(1)} e^{i\omega t} + n_{\sigma,-1}^{(1)} e^{-i\omega t} \right) + \mathcal{V}_0^2 \left(n_{\sigma,2}^{(2)} e^{2i\omega t} + n_{\sigma,0}^{(2)} + n_{\sigma,-2}^{(2)} e^{-2i\omega t} \right) + \mathcal{O}(\mathcal{V}_0^3)$$

求解一阶电势及离子分布

图: $\omega = 0.01$, $\epsilon = 0.025$, t = 0 时,静电势 ϕ 和离子密度 n_{σ} 的一阶分布。
(a) $\phi(x)$ 的一阶分布。(b) n_{σ} 的一阶分布。

求解二阶电势及离子分布

图: $\omega = 0.01$, $\epsilon = 0.025$, t = 0时, n_{σ} 的二阶分布。
(a) 静态分布。(b) 动态分布。

一维模型的解析解

$$\phi(x,t) = \phi_0^{(0)} + \mathcal{V}_0 \left[2\Re \left(\phi_1^{(1)} e^{i\omega t} \right) \right] + \mathcal{V}_0^2 \left[2\Re \left(\phi_2^{(2)} e^{2i\omega t} \right) + \phi_0^{(2)} \right]$$

$$n_{\sigma}(x,t) = n_{\sigma,0}^{(0)} + \mathcal{V}_0 \left[2\Re\left(n_{\sigma,1}^{(1)}e^{i\omega t}\right) \right] + \mathcal{V}_0^2 \left[2\Re\left(n_{\sigma,2}^{(2)}e^{2i\omega t}\right) + n_{\sigma,0}^{(2)} \right]$$

2022年5月25日

一维模型的解析解

图: 在 $\mathcal{V}_0 = 1$, $\epsilon = 0.025$, t = 0时, 正离子浓度分布 n_+ 在不同交流电频率 $\omega = 0.01$, $\omega = 1$, $\omega = 10$ 下的分布。

① 金刚石NV色心的退相干传感

- 量子传感与量子传感器
- 金刚石NV色心的退相干传感
- 利用量子退相干测量溶液中的自旋

2 交流电压下溶液离子分布计算

- ▶表面力仪(SFA)与PNP方程
- 表面力仪的一维模型
- 一维模型的解析解
- 3 总结与展望

总结与展望

- 金刚石NV色心的退相干传感
- 溶液离子浓度分布及电势分布计算

2022年5月25日

总结与展望

- 金刚石NV色心的退相干传感
- 溶液离子浓度分布及电势分布计算

离子浓度分布

NV附近电磁场

NV自旋

黄晨

总结与展望

量子传感

量子技术

- 更长的相干时间
- 更高效的输出过程
- 更高的灵敏度

2022年5月25日

