

Sesión N° 10

Ensayo de Cavitación

Laboratorio de Máquinas (ICM 557)

Segundo Semestre 2020

Profesores: Cristóbal Galleguillos

Tomas Herrera

Ayudante: Ignacio Ramos

Paralelo: 3

Nombre: 8501

Fecha: 11 de diciembre del 2020

1 Resumen

Se presenta un resumen de las conclusiones del análisis obtenido del ensayo de cavitación.

- Al analizar los valores calculados se ratifica que se estudia una bomba Francis Helicoidal.
- El NPSH de una bomba centrífuga es generalmente estable en el lado izquierdo del eje, donde una bomba produce la presión más alta y el caudal más bajo.
- Después del Punto de mejor eficiencia, la curva NPSH aumenta constantemente antes de aumentar bruscamente al final de la curva de rendimiento donde la bomba cavitará si se opera.

2 Índice

Contenido

1 Resumen	2
2 Índice	3
3 Introducción	4
4 Objetivos	5
5 Metodología/Procedimientos	6
6 Resultados	8
6.1 Altura vs Caudal	8
6.2 Curvas de N, Ne, ngl y CN	SPD9
6.3 CNSPR vs Caudal	
7 Conclusión	12
8 Referencias	
9 Anexo	14
9.1 Formulas:	14
9.1.1 Velocidad:	14
9.1.2 Columna neta de suc	ión positiva disponible, CNSPD:14
9.1.3 Columna neta de suc	ión positiva disponible, CNSPR:14
9.1.4Error experimental (2)	14
9.2 Tablas	
9.2.1 Datos del ensayo de	na bomba centrifuga 15
9.2.2 Datos calculados	
9.2.3 Gráfico del venturíme	ro19

3 Introducción

En el presente informe se estudiará el punto en el cual se genera la cavitación de una bomba centrifuga a partir de la grafica CNSPR.

4 Objetivos

Determinar la curva de columna neta de succión positiva requerida, CNSPR, de una bomba centrífuga.

Preguntas a responder:

- Con los valores del ensayo anterior, trace la curva característica de la bomba para la velocidad ensayada y sobreponga los nuevos valores de altura y caudal obtenidos.
- ¿Qué significan las desviaciones que se producen?
- Trace tantos gráficos como series de mediciones se hayan realizado. En la ordenada
 H, Ne en [%] respecto al valor sin cavitación y ηgl, y en la abscisa la CNSPD.
- ¿Cómo determina la CNSPD crítica y qué representa?
- Grafique la CNSPR en función del caudal
 - o ¿La curva obtenida tiene la forma característica?
 - ¿De acuerdo a la velocidad específica de esta bomba los valores de la CNSPR son apropiados?

5 Metodología/Procedimientos.

Para la realización de la experiencia se siguieron los siguientes pasos:

Revisar y poner en marcha la instalación, con las válvulas de aspiración y descarga

totalmente abiertas. Regular la velocidad a la indicada por el profesor.

Luego de inspeccionar los instrumentos y su operación, esperar un tiempo prudente

para que se estabilice la operación de la bomba, estrangular, parcialmente, la descarga

para situarse en un punto de la curva característica de la bomba ligeramente separada

de su extremo derecho. A continuación, tome las siguientes medidas:

nx: velocidad de la bomba [rpm]

pax%: presión de aspiración [%]

pdx%: presión de descarga [%]

 Δ hx: caudal de la bomba, presión diferencial en el venturímetro [mm_{Hq}]

Fx: fuerza medidas en la balanza [Kp]

t_a: temperatura de agua en el estanque[°C]

 P_{atm} : presión atmosférica [mm_{Hq}]

Finalizada esta, estrangular la válvula de aspiración haciendo disminuir la presión de

aspiración y el caudal en un valor indicado por el profesor. A continuación, restablecer el

caudal al valor original abriendo la válvula de descarga. Y se realizan las mediciones

efectuadas anteriormente.

El procedimiento se repite tantas veces como sea necesario hasta alcanzar plena

cavitación.

Terminado lo anterior, se procede de igual manera para otros puntos de curva

convenientemente seleccionados.

Medición de los valores siguientes:

o cpax: altura piezométrica del manómetro de aspiración respecto del eje de la bomba,

en [mm].

o cpdx: altura piezométrica del manómetro de descarga respecto del eje de la bomba,

en [mm].

6

Para los cálculos correspondientes se utilizaron las fórmulas del anexo 9.1 y las tablas del anexo 9.2.

6 Resultados.

En esta sección se presentarán los resultados obtenidos del ensayo realizado a una bomba centrifuga sometida a distintas condiciones de operación.

6.1 Altura vs Caudal.

En el Grafico1 se representan la Altura vs Caudal₁ para distintos valores de rpm.

Se observan desviaciones en los diferentes puntos analizados, esto se debe a perdidas de potencia debido a cavitaciones. Las secciones donde la presión absoluta son muy bajas generan una vaporización instantánea del fluido de trabajo, seguida rápidamente por una condensación. Las burbujas que se crean por este suceso terminan erosionando el interior afectando a las partes mecánicas debido a las altas presiones.

Se observa que las cavitaciones surgen a medida que se sigue estrangulando la válvula de descarga. Este estrangulamiento genera inestabilidad en el caudal propiciando el inicio de la cavitación.

Grafico1: Representación de valores calculados en el ensayo anterior y los valores sobrepuestos de altura vs caudal.

6.2 Curvas de N, Ne, ngl y CNSPD

En los Grafico 2, 3 y 4 se representan el porcentaje de N, Ne, ngl vs CNSPD para cada punto estudiado.

Se observan los puntos de inflexión en donde el caudal deja de ser contante para cada medición realizada. Estos puntos señalan el valor limite de cada caso para evitar la cavitación.

Se observa en los gráficos estudiados que el cambio de dirección marca CSPD crítico.

Grafico2: Representación en % de N, Ne, ngl vs CNSPD en el punto 1.

Grafico3: Representación en % de N, Ne, ngl vs CNSPD en el punto 2.

Grafico4: Representación en % de N, Ne, ngl vs CNSPD en el punto 3.

6.3 CNSPR vs Caudal

En la Grafico5 se representan CNSPR vs Caudal para cada punto estudiado.

Valores de CNSPR para cada punto:

Punto 1: valor de CNSPR de 2,888[-]

Punto 2: valor de CNSPR de 3,949[-]

Punto 3: valor de CNSPR de 4,052[-]

Se observa la forma característica ascendente de este tipo de bombas.

Se observa un aumento drástico al final de la curva de rendimiento donde la bomba cavitará si se opera al comparar con los datos del ensayo anterior.

Se observa que la curva NPSH de la bomba, muestra la presión neta de succión positiva requerida en metros para poder alcanzar el punto de trabajo y al sobrepasar este punto optimo se genera la cavitación.

Se observa que los valores de velocidad específica al compararlos con los obtenidos para CNSPR son apropiados para un ensayo de bomba centrifuga

Grafico5: Representación CNSPR vs Caudal.

7 Conclusión.

- Al analizar los valores calculados se ratifica que se estudia una bomba Francis Helicoidal.
- El NPSH de una bomba centrífuga es generalmente estable en el lado izquierdo del eje, donde una bomba produce la presión más alta y el caudal más bajo.
- Después del Punto de mejor eficiencia, la curva NPSH aumenta constantemente antes de aumentar bruscamente al final de la curva de rendimiento donde la bomba cavitará si se opera.
- La curva NPSH es más relevante para las bombas centrífugas rotativas y menos relevante para las bombas de desplazamiento positivo puesto que estas tienen menos probabilidades de operar al final de la curva y cavitar.
- El NPSH aumenta significativamente al final de la curva.

8 Referencias.

- Determinación de los coeficientes de carga y capacidad para bombas centrífugas que manipulan fluidos con propiedades diferentes a las del agua << Universidad Autónoma del Estado de México México>>
- Curva característica de la bomba centrífuga
 - https://www.debem.com/es/curva-caracteristica-de-bomba-centrifuga/
 - https://www.northridgepumps.com/article-261_como-leer-la-curva-de-rendimientode-una-bomba
- Texto guía:
 - > Termodinámica 6th edición, Yunus A. Cengel.

9 Anexo

9.1 Formulas:

9.1.1 Velocidad:

$$V = \frac{4Q}{3600^* \pi^* D_A^2} \left[\frac{m}{s} \right]$$

Donde:

D_A: 0,1023 [m]

9.1.2 Columna neta de succión positiva disponible, CNSPD:

CNSPD = pax +
$$\frac{13,54*P_{atm}}{1000}$$
 + $\frac{V^2}{2*g}$ -Pv [m_{ca}]

Donde:

Pv: Presión de vapor del líquido bombeado en [m_{ca}]

9.1.3 Columna neta de succión positiva disponible, CNSPR:

$$CNSPD = CNSPD_{critica}$$

9.1.4Error experimental (2):

Para el cálculo de errores experimentales se utilizó la siguiente formula:

$$Error = \frac{valor\ experimental - valor\ teorico}{valor\ teorico} * 100$$

9.2 Tablas

9.2.1 Datos del ensayo de una bomba centrifuga.

					3070	[rpm]				
	n	срах	cpdx	nx	pax	pdx	∆hx	Fx	Т	Patm
	[rpm]	[m]	[m]	[rpm]	[%]	[%]	[mm _{Hg}]	[kp]	[°C]	[mm _{Hg}]
1	3070	115	165	3075	89,5	6,5	146	1,54	16	758,7
2	3070	115	165	3076	92	13,6	133	1,68	16	758,7
3	3070	115	165	3076	94,8	19,4	118	1,79	16	758,7
4	3070	115	165	3076	97	24,5	104	1,85	16	758,7
5	3070	115	165	3077	99,4	29,1	91	1,89	16	758,7
6	3070	115	165	3078	101,7	34,4	76	1,91	16	758,7
7	3070	115	165	3078	105,2	41,3	59	1,92	16	758,7
8	3070	115	165	3078	107,6	46,2	45	1,89	16	758,7
9	3070	115	165	3078	110	49,2	32	1,83	16	758,7
10	3070	115	165	3077	112,5	54,4	17	1,69	16	758,7
11	3070	115	165	3078	114,3	56,9	9	1,55	16	758,7
12	3070	115	165	3078	120,5	62,1	0	1,13	16	758,7

					2900	[rpm]				
	n	срах	cpdx	nx	рах	pdx	∆hx	Fx	Т	P _{atm}
	[rpm]	[m]	[m]	[rpm]	[%]	[%]	[mm _{Hg}]	[kp]	[°C]	[mm _{Hg}]
1	2900	115	165	2903	91,5	6,2	134	1,37	16	758,7
2	2900	115	165	2903	93,9	12,7	121	1,47	16,5	758,7
3	2900	115	165	2903	96,3	16,4	109	1,55	16,5	758,7
4	2900	115	165	2903	98,7	21,4	95	1,62	17	758,7
5	2900	115	165	2903	100,5	26,1	82	1,65	17	758,7
6	2900	115	165	2902	103,4	30,5	70	1,68	17	758,7
7	2900	115	165	2904	105,6	35,5	56	1,69	17	758,7
8	2900	115	165	2902	108,1	40,2	43	1,68	17	758,7
9	2900	115	165	2903	110	44,3	30	1,6	17	758,7
10	2900	115	165	2903	112,3	48,1	17	1,49	17	758,7
11	2900	115	165	2904	114,6	51,2	8	1,37	17	758,7
12	2900	115	165	2904	119,5	56,1	0	0,94	17	758,7

					2700	[rpm]				
	n	срах	cpdx	nx	рах	pdx	∆hx	Fx	Т	Patm
	[rpm]	[mm]	[mm]	[rpm]	[%]	[%]	[mm _{Hg}]	[kp]	[°C]	[mm _{Hg}]
1	2700	115	165	2702	94,3	5,8	118	1,16	17	758,7
2	2700	115	165	2703	96,8	10,5	106	1,24	17	758,7
3	2700	115	165	2703	98,5	14,5	95	1,3	17	758,7
4	2700	115	165	2703	100	18,1	84	1,34	17	758,7
5	2700	115	165	2702	102,4	22,6	72	1,38	17	758,7
6	2700	115	165	2703	104,8	26,9	60	1,4	17	758,7
7	2700	115	165	2703	107,1	32,1	47	1,4	17	758,7
8	2700	115	165	2702	109,1	36,1	35	1,38	17	758,7
9	2700	115	165	2702	111,3	39,9	23	1,3	17	758,7
10	2700	115	165	2703	113,6	43,5	11	1,18	17	758,7
11	2700	115	165	2703	114,9	45,3	5	1,05	17	758,7
12	2700	115	165	2703	119,6	49,1	0	0,78	17	758,7

Tabla1: Los valores medidos en la prueba de ensayo de una bomba centrifuga a distintos rpm.

9.2.2 Datos calculados.

_															_														
	⇒	[-]	0,16315	0,27050	0,35513	0,43064	0,49669	0,57468	0,67453	0,74580	0,78557	0,86196	0,89537	0,95586		ψ	[-]	0,16815	0,27808	0,33584	0,41782	0,49700	0,56586	0,64794	0,72481	0,79185	0,85193	0,89836	8/996′0
	Φ	H	0,13392	0,12495	0,12049	0,11603	0,10707	0,09811	0,08028	0,07136	0,05798	0,04015	0,02676	0,00000		Φ	[-]	0,13713	0,13240	0,12767	0,12294	0,11349	0,09933	0,08509	0,07568	0,06620	0,04256	0,02363	0,00000
	cm ₂	[s/w]	2,90619	2,71157	2,61472	2,51788	2,32344	2,12913	1,74202	1,54846	1,25812	0,87129	0,58067	0,00000		cm ₂	[w/s]	2,81099	2,71406	2,61713	2,52020	2,32634	2,03624	1,74415	1,55142	1,35703	0,87238	0,48449	0,00000
	U ₂	[s/w]	21,70055	21,70055	21,70055	21,70055	21,70055	21,70055	21,70055	21,70055	21,70055	21,70055	21,70055	21,70055		U ₂	[s/m]	20,49889	20,49889	20,49889	20,49889	20,49889	20,49889	20,49889	20,49889	20,49889	20,49889	20,49889	20,49889
	القا	[%]	33,17351	47,07100	55,92958	63,19112	65,87523	69,15770	66,06941	65,96377	58,30494	47,94311	36,21172	0,00000		n _{gl}	[%]	35,07365	52,19290	57,64527	66,07652	71,23412	69,67463	68,02551	85966'29	68,27368	50,70681	32,31867	0000000
	Nh	[kw]	1,14979	1,77864	2,25175	2,62938	2,79851	2,96712	2,84946	2,80045	2,39672	1,82119	1,26079	0000000		Nh	[kw]	1,02278	1,63309	1,90186	2,27848	2,50181	2,49325	2,44536	2,43320	2,32518	1,60818	0,94180	0000000
[md.	Ne	[kw]	3,46600	3,77863	4,02604	4,16099	4,24820	4,29036	4,31282	4,24544	4,11066	3,79865	3,48171	2,53828	[md.	Ne	[kW]	2,91611	3,12896	3,29924	3,44824	3,51210	3,57842	3,59476	3,57842	3,40567	3,17153	2,91410	1,99945
3070 [rpm]	Nex	[kw]	3,48296	3,80083	4,04969	4,18544	4,27732	4,32399	4,34663	4,27871	4,14288	3,82470	3,50900	2,55817	2900 [rpm]	Nex	[kW]	2,92516	3,13868	3,30949	3,45895	3,52301	3,58583	3,60966	3,58583	3,41625	3,18138	2,92617	2,00774
	Ŧ	[m _{ca}]	3,91723	6,49459	8,52664	10,33955	11,92555	13,79799	16,19548	17,90655	18,86157	20,69552	21,49781	22,95023		Н	[m _{ca}]	3,60254	2,95767	7,19511	8,95147	10,64796	12,12327	13,88168	15,52857	16,96488	18,25222	19,24687	20,71282
		[m _{ca}]	3,93	6,52	95'8	10,38	11,98	13,87	16,28	18	18,96	20,79	21,61	23,07		Hx	[m _{ca}]	3,61	5,97	7,21	8,97	10,67	12,14	13,92	15,55	17	18,29	19,3	20,77
	xpd	[m _{ca}]	2,765	2)605	7,925	396'6	11,805	13,925	16,685	18,645	19,845	21,925	22,925	25,005		xpd	[m _{ca}]	2,645	5,245	6,725	8,725	10,605	12,365	14,365	16,245	17,885	19,405	20,645	22,605
	bax	[m _{ca}]	-1,1650	-0,9150	-0,6350	-0,4150	-0,1750	0,0550	0,4050	0,6450	0,8850	1,1350	1,3150	1,9350		рах	[m _{ca}]	-0,965	-0,725	-0,485	-0,245	-0,065	0,225	0,445	0,695	0,885	1,115	1,345	1,835
	Ø	[m³/h]	107,8244	100,6034	97,0104	93,4174	86,2034	78,9942	64,6316	57,4503	46,6784	32,3263	21,5439	00000		Q	[m³/h]	104,292112	100,695832	97,0995522	93,5032725	86,3107131	75,547898	64,7107438	57,5603032	50,3479159	32,3665174	17,9752066	0
	ð	[m³/h]	108	100,8	97,2	93,6	86,4	79,2	64,8	9′25	46,8	32,4	21,6	0		ŏ	[m³/h]	104,4	100,8	97,2	93'6	86,4	75,6	64,8	9'25	50,4	32,4	18	0
			1	2	3	4	5	9	7	8	6	10	11	12				1	2	3	4	5	9	7	8	6	10	11	12

	U_2 cm ₂ Φ Ψ	[-] [-] [s/w] [s/w]		19,08518 2,71485 0,14225 0,17044	19,08518 2,61693 0,13712 0,25789	19,08518 2,52000 0,13204 0,33472	19,08518 2,42308 0,12696 0,40403	19,08518 2,23006 0,11685 0,48820	19,08518 2,03539 0,10665 0,56736	19,08518 1,74462 0,09141 0,66675	19,08518 1,55135 0,08129 0,74252	19,08518 1,35743 0,07112 0,81242	19,08518 1,16308 0,06094 0,87683	19,08518 0,67846 0,03555 0,90853	19,08518 0,00000 0,00000 0,96494
	Ngl	[%]		37,73265	51,52057	61,42079	69,15927	74,62643	78,08229	78,65269	78,95736	80,24301	81,81195	55,57119	000000
	Nh [kW] 0,86792		0,86792	1,26586	1,58212	1,83627	2,04209	2,16602	2,18184	2,16060	2,06849	1,91285	1,15617	000000	
2700 [rpm]	Ne	[kW]		2,30018	2,45699	2,57588	2,65514	2,73642	2,77402	2,77402	2,73642	2,57778	2,33810	2,08052	1,54553
270	Nex	[kw]		2,30529	2,46519	2,58447	2,66400	2,74250	2,78328	2,78328	2,74250	2,58352	2,34591	2,08746	1.55068
	Н	[⁸ w]		3,16531	4,78935	6,21618	7,50332	95990'6	10,53657	12,38247	13,78956	15,08764	16,28379	16,87248	9106621
	쒸	[m _{ca}]		3,17	4,8	6,23	7,52	80'6	10,56	12,41	13,81	15,11	16,32	16,91	17.96
	xpd	[m _{ca}]		2,485	4,365	2)662	7,405	9,205	10,925	13,005	14,605	16,125	17,565	18,285	19.805
	рах	[m _a]		-0,685	-0,435	-0,265	-0,115	0,125	0,365	0,595	0,795	1,015	1,245	1,375	1.845
	Q	[m ³ /h]		100,725389	97,0921199	93,4961154	89,900111	82,7387121	75,5160932	64,7280799	57,5573649	50,3626943	43,1520533	25,1720311	0
	ď	[m ³ /h]		100,8	97,2	93'6	06	82,8	75,6	64,8	57,6	50,4	43,2	25,2	0
				1	2	3	4	5	9	7	8	6	10	11	12

Tabla2: Datos calculados que representan los distintos valores con sus respectivas normalizaciones.

9.2.3 Gráfico del venturímetro.

Grafico4: Diferencia de alturas vs caudal.