Given functions $\alpha: A \longrightarrow B$, $\beta: B \longrightarrow C$, and $\gamma: C \longrightarrow D$, then

1. $\gamma (\beta \alpha) = (\gamma \beta) \alpha$ (associativity).

Let $a \in A$. Then $(\gamma(\beta \alpha))(a) = \gamma((\beta \alpha)(a)) = \gamma(\beta(\alpha(a)))$.

On the other hand, $((\gamma \beta)\alpha)(a) = (\gamma \beta)(\alpha(a)) = \gamma(\beta(\alpha(a)))$.

So, $\gamma (\beta \alpha) = (\gamma \beta) \alpha$.

2. If α and β are one-to-one, then β α is one-to-one.

Let α and β be one-to-one.

Suppose β α is not one-to-one.

Then, $\exists c \in C$ and $a_1, a_2 \in A$ such that $a_1 \neq a_2, \beta(\alpha(a_1)) = c$, and $\beta(\alpha(a_2)) = c$.

Since β is one-to-one, β (α (a₁)) = c and β (α (a₂)) = c implies α (a₁) = α (a₂).

Since α is one-to-one, α (a₁) = α (a₂) implies a₁ = a₂, a contradiction.

Hence, $\beta \alpha$ is one-to-one.

3. If α and β are onto, then β α is onto.

Let α and β be onto.

Suppose $\beta \alpha$ is not onto.

Then $\exists c \in C$ such that $\forall a \in A, \beta (\alpha (a)) \neq c$.

Since β is onto, \exists b \in B such that β (b) = c.

Since α is onto, \exists a \in A such that α (a) = b.

But, β (α (a)) = c. A contradiction.

Hence, $\beta \alpha$ is onto.

4. If α is one-to-one and onto, then there is a function α^{-1} from B onto A such that $(\alpha^{-1}\alpha)$ $(a) = a, \forall a \in A \text{ and } (\alpha \alpha^{-1})(b) = b, \forall b \in B.$

Part 1:

Let α be one-to-one and onto function from A to B.

Assume α (a) is defined \forall a \in A.

Let $a \in A$ and let α (a) = b.

Since α is one-to-one, b is only mapped to by a.

Since α is onto, every element in B is mapped to by an element in A.

Notice also that every element in B is mapped to only once, since α is one-to-one as well.

Thus, $\forall a \in A$, there exists a unique α (a), and for each unique α (a), \exists a unique a.

Hence, \exists a function α^{-1} such that $(\alpha^{-1}\alpha)(a) = a, \forall a \in A$

Part 2:

Let α be one-to-one and onto function from A to B.

Let $b \in B$.

Since α is onto, \exists a \in A such that α (a) = b.

Since α is one-to-one, the only element that maps to b is a.

Thus, any $b \in B$ can only map backwards to one $a \in A$, and that a can only map forwards to b.

Hence, \exists a function α^{-1} such that $(\alpha \alpha^{-1})(b) = b, \forall b \in B$