Variational Inference: The Foundations

Philip Schulz and Wilker Aziz

VI Tutorial @ Host

This class is about approximate inference

- probabilistic models with latent variables often have intractable marginal and posterior
- inference in a probabilistic context means computation, it involves computing/inferring quantities by manipulation of probability calculus
- we will discuss one class of approximate inference algorithms known as variational inference (VI)

- Generative Models
- 2 Examples
- Variational Inference
 - Deriving VI with Jensen's Inequality
 - Deriving VI from KL Divergence
 - Relationship to EM
- Mean Field Inference

Let X and Z be random variables. A generative model is any model that defines a joint distribution over these variables.

Let X and Z be random variables. A generative model is any model that defines a joint distribution over these variables.

3 Examples of Generative Models

Let X and Z be random variables. A generative model is any model that defines a joint distribution over these variables.

3 Examples of Generative Models

Let X and Z be random variables. A generative model is any model that defines a joint distribution over these variables.

3 Examples of Generative Models

- p(x,z) = p(x)p(z|x)

Likelihood and prior

From here on, x is our observed data. On the other hand, z is an unobserved outcome.

- p(x|z) is the **likelihood**
- p(z) is the **prior** over Z

Notice: both distributions may depend on a non-random quantity α , we write e.g. $p(z|\alpha)$ and call α a hyperparameter.

$$p(z|x) = \frac{p(x|z)p(z)}{p(x)}$$

$$p(z|x) = \frac{\overbrace{p(x|z)}^{\text{likelihood prior}} \overbrace{p(x)}^{\text{prior}}}{p(x)}$$

$$\underbrace{p(z|x)}_{\text{posterior}} = \underbrace{\frac{p(x|z)}{p(x)}}_{\text{pix}} \underbrace{\frac{prior}{p(z)}}_{\text{pix}}$$

$$\underbrace{p(z|x)}_{\text{posterior}} = \underbrace{\frac{p(x|z)}{p(x)}}_{\substack{p(x) \\ \text{marginal likelihood/evidence}}} \underbrace{\frac{p(x)}{p(z)}}_{\substack{p(x) \\ \text{marginal likelihood/evidence}}}$$

The Basic Problem

We want to compute the posterior over latent variables p(z|x). This involves computing the marginal likelihood

$$p(x) = \int p(x, z) dz$$

which is often **intractable**. This problem motivates the use of **approximate inference** techniques.

Bayesian Inference

The evidence becomes even harder to compute because θ is often high-dimensional (just think of neural nets!).

- $p(x|\theta) = \int p(x, z|\theta) dz$ (frequentist)
- $p(x) = \int \int p(x, z, \theta) dz d\theta$ (Bayesian)

Bayesian Inference

The evidence becomes even harder to compute because θ is often high-dimensional (just think of neural nets!).

- $p(x|\theta) = \int p(x,z|\theta) dz$ (frequentist)
- $p(x) = \int \int p(x, z, \theta) dz d\theta$ (Bayesian)

Today we will mostly focus on the frequentist case!

- Generative Models
- Examples
- Variational Inference
 - Deriving VI with Jensen's Inequality
 - Deriving VI from KL Divergence
 - Relationship to EM
- Mean Field Inference

We cannot compute the posterior when

- The functional form of the posterior is unknown (we don't know which parameters to infer)
- The functional form is known but the computation is intractable

Bayesian Log-Linear Model

$$p(y|x, \mu, \Sigma) = \int \frac{\exp(w_y^\top x)}{\sum_c \exp(w_c^\top x)} \mathcal{N}(w|\mu, \Sigma) dw$$

$$\mu \qquad \qquad \Sigma$$

The Normal distribution is not conjugate to the Categorical distribution. The form of the posterior is unknown.

Bayesian Log-Linear Model

Intuition

Simply assume that the posterior is Gaussian.

Inference network for FHMMs.

- M Markov chains over latent variables.
- L outcomes per latent variable.
- Sequence of length T.
- Complexity of inference: $\mathcal{O}(L^{2M}T)$.

FHMMs have several Markov chains over latent variables.

- M Markov chains over latent variables.
- L outcomes per latent variable.
- Sequence of length T.
- Complexity of inference: $\mathcal{O}(L^{2M}T)$.

Intractable

Exponential dependency on the number of hidden Markov chains.

Intuition

Simply assume that the posterior consists of independent Markov chains.

Joint distribution: latent variables are marginally independent a priori

for example, K = 3, N = 4

Joint distribution: latent variables are marginally independent a priori

for example,
$$K = 3$$
, $N = 4$

Posterior: latent variables are conditionally dependent

Latent binary variables that together produce an output.

- N output variables (e.g. pixels, words, sentences).
- K binary factors (usually much less than N).
- Complexity of inference: $\mathcal{O}(2^K)$.

Intuition

Simply assume that the posterior consists of independent Bernoulli variables.

Intuition

Simply assume that the posterior consists of independent Bernoulli variables.

Rule of Thumb

Simply assume that the posterior is in the same family as the prior.

- Generative Models
- 2 Examples
- Variational Inference
 - Deriving VI with Jensen's Inequality
 - Deriving VI from KL Divergence
 - Relationship to EM
- Mean Field Inference

The Goal

Assume p(z|x) is not computable.

The Goal

Assume p(z|x) is not computable.

Idea

Let's approximate it by an auxiliary distribution q(z) that is computable!

The Goal

Assume p(z|x) is not computable.

Idea

Let's approximate it by an auxiliary distribution q(z) that is computable!

Requirement

Choose q(z) as close as possible to p(z|x) to obtain a faithful approximation.

•
$$\mathsf{KL}\left(q(z)\mid\mid p(z|x)\right) = \mathbb{E}_{q(z)}\left[\log\frac{q(z)}{p(z|x)}\right]$$

- KL $(q(z) \mid\mid p(z|x)) = \mathbb{E}_{q(z)} \left[\log \frac{q(z)}{p(z|x)}\right]$
- KL $(q(z) \mid\mid p(z|x)) = \int q(z) \log \frac{q(z)}{p(z|x)} dz$ (continuous)

- KL $(q(z) \mid\mid p(z|x)) = \mathbb{E}_{q(z)} \left[\log \frac{q(z)}{p(z|x)}\right]$
- KL $(q(z) \mid\mid p(z|x)) = \int q(z) \log \frac{q(z)}{p(z|x)} dz$ (continuous)
- KL $(q(z) \mid\mid p(z|x)) = \sum_{z} q(z) \log \frac{q(z)}{p(z|x)}$ (discrete)

Properties

• KL $(q(z) || p(z|x)) \ge 0$ with equality iff q(z) = p(z|x).

Properties

- KL $(q(z) || p(z|x)) \ge 0$ with equality iff q(z) = p(z|x).
- $\mathsf{KL}\left(q(z) \mid\mid p(z|x)\right) = \mathbb{E}_{q(z)}\left[\log \frac{p(z|x)}{q(z)}\right] \leq 0.$

Properties

- KL $(q(z) || p(z|x)) \ge 0$ with equality iff q(z) = p(z|x).
- $-\mathsf{KL}\left(q(z)\mid\mid p(z|x)\right) = \mathbb{E}_{q(z)}\left[\log\frac{p(z|x)}{q(z)}\right] \leq 0.$
- We want: $supp(q) \subseteq supp(p)$; otherwise $KL(q(z) || p(z|x)) = \infty$

$$\log p(x) = \log \left(\int p(x,z) dz \right)$$

VI Tutorial @ Host VI 27 / 49

$$\log p(x) = \log \left(\int p(x, z) dz \right)$$
$$= \log \left(\int \frac{q(z)}{q(z)} \frac{p(x, z)}{q(z)} dz \right)$$

VI Tutorial @ Host VI 27 / 49

$$\log p(x) = \log \left(\int p(x, z) dz \right)$$

$$= \log \left(\int \frac{q(z)}{q(z)} \frac{p(x, z)}{q(z)} dz \right)$$

$$= \log \left(\mathbb{E}_{q(z)} \left[\frac{p(x, z)}{q(z)} \right] \right)$$

$$\log p(x) = \log \left(\int p(x, z) dz \right)$$

$$= \log \left(\int \frac{q(z)}{q(z)} \frac{p(x, z)}{q(z)} dz \right)$$

$$= \log \left(\mathbb{E}_{q(z)} \left[\frac{p(x, z)}{q(z)} \right] \right)$$

$$\geq \mathbb{E}_{q(z)} \left[\log \frac{p(x, z)}{q(z)} \right]$$

VI Tutorial @ Host VI 27 / 49

$$\log p(x) = \log \left(\int p(x, z) dz \right)$$

$$= \log \left(\int \frac{q(z)}{q(z)} \frac{p(x, z)}{q(z)} dz \right)$$

$$= \log \left(\mathbb{E}_{q(z)} \left[\frac{p(x, z)}{q(z)} \right] \right)$$

$$\geq \mathbb{E}_{q(z)} \left[\log \frac{p(x, z)}{q(z)} \right]$$

$$= \mathbb{E}_{q(z)} \left[\log \frac{p(z|x)p(x)}{q(z)} \right]$$

VI Tutorial @ Host VI 27 / 49

$$\log p(x) \ge \mathbb{E}_{q(z|x)} \left[\log \frac{p(z|x)p(x)}{q(z)} \right]$$

 VI Tutorial @ Host
 VI
 28 / 49

$$egin{aligned} \log p(x) &\geq \mathbb{E}_{q(z|x)} \left[\log rac{p(z|x)p(x)}{q(z)}
ight] \ &= \int q(z) \log rac{p(z|x)}{q(z)} \mathrm{d}z + \log p(x) \end{aligned}$$

 VI Tutorial @ Host
 VI
 28 / 49

$$egin{aligned} \log p(x) &\geq \mathbb{E}_{q(z|x)} \left[\log rac{p(z|x)p(x)}{q(z)}
ight] \ &= \int q(z) \log rac{p(z|x)}{q(z)} \mathrm{d}z + \log p(x) \ &= - \operatorname{\mathsf{KL}} \left(q(z) \mid\mid p(z|x)
ight) + \log p(x) \end{aligned}$$

VI Tutorial @ Host VI 28 / 49

$$egin{aligned} \log p(x) &\geq \mathbb{E}_{q(z|x)} \left[\log rac{p(z|x)p(x)}{q(z)}
ight] \ &= \int q(z) \log rac{p(z|x)}{q(z)} \mathrm{d}z + \log p(x) \ &= - \operatorname{\mathsf{KL}} \left(q(z) \mid\mid p(z|x)
ight) + \log p(x) \end{aligned}$$

We have derived a lower bound on the log-evidence whose gap is exactly KL(q(z) || p(z|x)).

VI Tutorial @ Host VI 28 / 49

Recall that we want to find q(z) such that KL(q(z) || p(z|x)) is small.

 VI Tutorial @ Host
 VI
 29 / 49

Recall that we want to find q(z) such that KL(q(z) || p(z|x)) is small.

Formal Objective

$$\underset{q(z)}{\operatorname{arg \, min}} \ \operatorname{KL}\left(q(z) \mid\mid p(z|x)\right)$$

 VI Tutorial @ Host
 VI
 29 / 49

Recall that we want to find q(z) such that KL(q(z) || p(z|x)) is small.

Formal Objective

$$\underset{q(z)}{\operatorname{arg \, min}} \ \operatorname{KL}\left(q(z) \mid\mid p(z|x)\right)$$

$$= \underset{q(z)}{\operatorname{arg \, max}} - \operatorname{KL}\left(q(z) \mid\mid p(z|x)\right)$$

 VI Tutorial @ Host
 VI
 29 / 49

$$\underset{q(z)}{\operatorname{arg max}} - \operatorname{KL}\left(q(z) \mid\mid p(z|x)\right)$$

$$\arg \max_{q(z)} - KL (q(z) || p(z|x))$$

$$= \arg \max_{q(z)} \int q(z) \log \frac{p(z|x)}{q(z)} dz$$

$$\begin{aligned} & \operatorname*{arg\,max} - \mathsf{KL}\left(q(z) \mid\mid p(z|x)\right) \\ &= \operatorname*{arg\,max} \int q(z) \log \frac{p(z|x)}{q(z)} \mathrm{d}z \\ &= \operatorname*{arg\,max} \int q(z) \log \frac{p(z,x)}{p(x)q(z)} \mathrm{d}z \end{aligned}$$

VI Tutorial @ Host VI 30 / 49

$$\begin{aligned} & \arg\max_{q(z)} - \mathsf{KL}\left(q(z) \mid\mid p(z|x)\right) \\ &= \arg\max_{q(z)} \int q(z) \log \frac{p(z|x)}{q(z)} \mathrm{d}z \\ &= \arg\max_{q(z)} \int q(z) \log \frac{p(z,x)}{p(x)q(z)} \mathrm{d}z \\ &= \arg\max_{q(z)} \int q(z) \log p(z,x) \mathrm{d}z - \int q(z) \log q(z) \mathrm{d}z - \overbrace{\log p(x)}^{constant} \end{aligned}$$

VI Tutorial @ Host VI 30 / 49

$$\begin{aligned} & \operatorname*{arg\,max} - \mathsf{KL}\left(q(z) \mid\mid p(z|x)\right) \\ &= \operatorname*{arg\,max} \int q(z) \log \frac{p(z|x)}{q(z)} \mathrm{d}z \\ &= \operatorname*{arg\,max} \int q(z) \log \frac{p(z,x)}{p(x)q(z)} \mathrm{d}z \\ &= \operatorname*{arg\,max} \int q(z) \log p(z,x) \mathrm{d}z - \int q(z) \log q(z) \mathrm{d}z - \overbrace{\log p(x)}^{constant} \\ &= \operatorname*{arg\,max} \int_{q(z)} \left[\log p(x,z) \right] + \mathbb{H}\left(q(z)\right) \end{aligned}$$

As before, we have derived a lower bound on the log-evidence. This evidence lower bound or ELBO is our optimisation objective.

FI BO

$$rg \max_{q(z)} \mathbb{E}_{q(z)} \left[\log p(x,z)
ight] + \mathbb{H} \left(q(z)
ight)$$

Variational Objective

$$rg \max_{q(z)} \mathbb{E}_{q(z)} \left[\log p(x,z) \right] + \mathbb{H} \left(q(z) \right)$$

This finds us the best posterior approximation for a given model.

VI Tutorial @ Host VI 32 / 49

Variational Objective

$$\operatorname{arg\,max} \mathbb{E}_{q(z)} \left[\log p(x, z) \right] + \mathbb{H} \left(q(z) \right)$$

This finds us the best posterior approximation for a given model.

Also optimize the model!

$$\operatorname{arg\,max}_{q(z),p(x,z)} \mathbb{E}_{q(z)} \left[\log p(x,z) \right] + \mathbb{H} \left(q(z) \right)$$

VI Tutorial @ Host VI 32 / 49

VI in its basic form can be performed via coordinate ascent. This can be done as a 2-step procedure.

VI Tutorial @ Host VI 33 / 49

VI in its basic form can be performed via coordinate ascent. This can be done as a 2-step procedure.

Maximize (regularised) expected log-density.

$$rg \max_{q(z)} \mathbb{E}_{q(z)} \left[\log p(x,z) \right] + \mathbb{H} \left(q(z) \right)$$

VI Tutorial @ Host VI 33 / 49

VI in its basic form can be performed via coordinate ascent. This can be done as a 2-step procedure.

Maximize (regularised) expected log-density.

$$rg \max_{q(z)} \mathbb{E}_{q(z)} \left[\log p(x,z) \right] + \mathbb{H} \left(q(z) \right)$$

Optimise generative model.

$$\underset{p(x,z)}{\operatorname{arg max}} \mathbb{E}_{q(z)} \left[\log p(x,z) \right] + \underbrace{\mathbb{H} \left(q(z) \right)}_{\text{constant}}$$

VI Tutorial @ Host VI 33 / 49

Unconstrained (exact) optimisation

What's the solution to the following?

$$rg \max_{q(z) \in \mathcal{Q}} \mathbb{E}_{q(z)} \left[\log p(x,z) \right] + \mathbb{H} \left(q(z) \right)$$

(assume Q is large enough a family)

VI Tutorial @ Host VI 34 / 49

Unconstrained (exact) optimisation

What's the solution to the following?

$$rg \max_{q(z) \in \mathcal{Q}} \mathbb{E}_{q(z)} \left[\log p(x, z) \right] + \mathbb{H} \left(q(z) \right)$$

(assume Q is large enough a family)

The true posterior p(z|x)! Exactly because

$$\operatorname*{arg\;max}_{q(z) \in \mathcal{Q}} \operatorname{ELBO} = \operatorname*{arg\;min}_{q(z) \in \mathcal{Q}} \operatorname{KL}\left(q(z) \mid\mid p(z|x)\right)$$

and KL is never negative and 0 iff q(z) = p(z|x).

VI Tutorial @ Host VI 34 / 49

Recap: EM Algorithm

E-step
$$\arg \max_{q(z)} \mathbb{E}_{q(z)} [\log p(x, z)] + \mathbb{H}(p(z|x))$$

= $p(z|x)$

VI Tutorial @ Host VI 35 / 49

Recap: EM Algorithm

E-step
$$\max_{q(z)} \mathbb{E}_{q(z)} [\log p(x, z)] + \mathbb{H}(p(z|x))$$

$$= p(z|x)$$
M-step $\max_{p(x,z)} \mathbb{E}_{p(z|x)} [\log p(x,z)] + \underbrace{\mathbb{H}(p(z|x))}_{\text{constant}}$

VI 35 / 49

Recap: EM Algorithm

E-step
$$\max_{q(z)} \mathbb{E}_{q(z)} [\log p(x, z)] + \mathbb{H}(p(z|x))$$

$$= p(z|x)$$
M-step $\max_{p(x,z)} \mathbb{E}_{p(z|x)} [\log p(x,z)] + \underbrace{\mathbb{H}(p(z|x))}_{\text{constant}}$

EM is variational inference!

$$q(z) = p(z|x)$$

$$KL(q(z) || p(z|x)) = 0$$

VI Tutorial @ Host VI 35 / 49

- Generative Models
- 2 Examples
- Variational Inference
 - Deriving VI with Jensen's Inequality
 - Deriving VI from KL Divergence
 - Relationship to EM
- Mean Field Inference

Designing a tractable approximation

- Recall: The approximation q(z) needs to be tractable.
- Common solution: make **all** latent variables independent under q(z).

Designing a tractable approximation

- Recall: The approximation q(z) needs to be tractable.
- Common solution: make **all** latent variables independent under q(z).
- Formal assumption: $q(z) = \prod_{i=1}^{N} q(z_i)$

Designing a tractable approximation

- Recall: The approximation q(z) needs to be tractable.
- Common solution: make **all** latent variables independent under q(z).
- Formal assumption: $q(z) = \prod_{i=1}^{N} q(z_i)$

This approximation strategy is commonly known as **mean field** approximation.

Original FHMM Inference

Exact posterior p(s, z|x)

Mean field FHMM Inference

Approximate posterior $q(s,z) = \prod_{t=1}^T q(s_t) q(z_t)$

Original Latent Factor Model Inference

Joint distribution: latent variables are marginally independent a priori

for example,
$$K = 3$$
, $N = 4$

Posterior: latent variables are marginally dependent given observations

Mean Field Latent Factor Model Inference

 $Z_i \sim \mathsf{Bernoulli}(\lambda_i)$

Amortised variational inference

Amortise the cost of inference using NNs

$$q(z_1,\ldots,z_K|x)=\prod_{j=1}^K q_\lambda(z_j|x)$$

Amortised variational inference

Amortise the cost of inference using NNs

$$q(z_1,\ldots,z_K|x)=\prod_{j=1}^K q_{\lambda}(z_j|x)$$

still mean field

$$Z_j|x \sim \text{Bernoulli}(b_j)$$

Amortised variational inference

Amortise the cost of inference using NNs

$$q(z_1,\ldots,z_K|x)=\prod_{j=1}^K q_\lambda(z_j|x)$$

still mean field

$$Z_j|x \sim \text{Bernoulli}(b_j)$$

but with a shared set of parameters

• where $b_1^K = NN(x; \lambda)$

Amortised Mean Field Inference for Latent Factor Model

Overview

Posterior

Amortised VI

Summary

- Posterior inference is often **intractable** because the marginal likelihood (or **evidence**) p(x) cannot be computed efficiently.
- Variational inference approximates the posterior p(z|x) with a simpler distribution q(z).

Summary

 The variational objective is the evidence lower bound (ELBO):

$$\mathbb{E}_{q(z)}\left[\log p(x,z)\right] + \mathbb{H}\left(q(z)\right)$$

- The **ELBO** is a lower bound on the log-evidence.
- The solution to the ELBO minimises KL(q(z) || p(z|x))
- When q(z) = p(z|x) we recover EM.

Summary

- We design q(z) to be simple
- A common approximation is the mean field approximation which assumes that all latent variables are independent:

$$q(z) = \prod_{i=1}^{N} q(z_i)$$

Literature I

- David Blei, Andrew Ng, and Michael Jordan. Latent dirichlet allocation. *Journal of Machine Learning Research*, 3(4-5): 993–1022, 2003. doi: 10.1162/jmlr.2003.3.4-5.993. URL http://dx.doi.org/10.1162/jmlr.2003.3.4-5.993.
- David M. Blei, Alp Kucukelbir, and Jon D. McAuliffe. Variational inference: A review for statisticians. 01 2016. URL https://arxiv.org/abs/1601.00670.
- Zoubin Ghahramani and Michael I Jordan. Factorial hidden markov models. In NIPS, pages 472-478, 1996. URL http://papers.nips.cc/paper/1144-factorial-hidden-markov-models.pdf.

Literature II

Radford M Neal and Geoffrey E Hinton. A view of the em algorithm that justifies incremental, sparse, and other variants. In *Learning in graphical models*, pages 355–368. Springer, 1998. URL http://www.cs.toronto.edu/~fritz/absps/emk.pdf.