Complex Functions

Lecture 2, Monday July 17, 2023 Ari Feiglin

Recall the following definition

Definition 2.1:

If (M, ρ) and (X, σ) are two metric spaces, a function

$$f: M \longrightarrow X$$

is an isometry if $\rho(x,y) = \sigma(f(x),f(y))$ for every $x,y \in M$. M and X are called isometric.

It is obvious that isometries are injective (if f(x) = f(y) then $\rho(x, y) = 0$ so x = y).

If X is a normed vector space, and A is an orthogonal transformation then recall ||Ax|| = ||x||, so

$$||Ax - Ay|| = ||A(x - y)|| = ||x - y||$$

so A is an isometry.

Definition 2.2:

If X is a normed vector space, and a is a unit vector then define

$$S_a(x) = x - 2\langle x, a \rangle \cdot a$$

This is the reflection about $\{a\}^{\perp}$.

Recall that $x - \langle x, a \rangle a \in \{a\}^{\perp}$, since

$$\langle x - \langle x, a \rangle a, a \rangle = \langle x, a \rangle - \langle \langle x, a \rangle a, a \rangle = \langle x, a \rangle - \langle x, a \rangle \langle a, a \rangle = \langle x, a \rangle - \langle x, a \rangle = 0$$

Now notice that

- If $x \in a^{\perp}$ then $S_a(x) = x$.
- \bullet $S_a(a) = -a.$
- $\bullet \quad S_a^2(x) = S_a(x-2\langle x,a\rangle a) = x-2\langle x,a\rangle a 2\langle x-2\langle x,a\rangle a,a\rangle = x-2\langle x,a\rangle a + 2\langle x,a\rangle = x. \text{ So } S_a^2(x) = x.$
- $S_a(x+y) = S_a(x) + S_a(y)$ and $S_a(\lambda x) = \lambda S_a(x)$, so S_a is a linear transformation.

Also notice that $\langle x, a \rangle a = a \langle x, a \rangle = a a^T x$, thus

$$S_a(x) = (I - 2aa^T)x$$

this is another proof that S_a is a linear transformation, as $S_a(x) = Ax$ where $A = I - 2aa^T$. Now notice that $A^T = A$, we have that A is orthogonal, so S_a is an isometry.

Proposition 2.3:

If $f: \mathbb{R}^n \longrightarrow \mathbb{R}^n$ is an isometry which preserves the origin, ie. f(0) = 0, then f is an orthogonal linear transformation.

Proof:

Notice that f preserves norms, since ||x|| = ||x - 0|| = ||f(x) - f(0)|| = ||f(x)||. And so f preserves the inner product since

$$||x - y||^2 = \langle x - y, x - y \rangle = ||x||^2 - 2\langle x, y \rangle + ||y||^2$$

And thus

$$2\langle x, y \rangle = ||x||^2 - ||x - y||^2 + ||y||^2$$

So

$$2\langle x, y \rangle = \|f(x)\|^2 - \|f(x) - f(y)\|^2 + \|f(y)\|^2$$

But the equality is true for any x, y and so

$$2\langle f(x), f(y) \rangle = \|f(x)\|^2 - \|f(x) - f(y)\|^2 + \|f(y)\|^2$$

Thus $\langle x, y \rangle = \langle f(x), f(y) \rangle$ as required.

Let us define

$$A = \begin{pmatrix} | & | \\ f(e_1) & \cdots & f(e_n) \\ | & | \end{pmatrix}$$

Now recall that

$$\langle e_i, e_j \rangle = \delta_{ij} = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$$

And so $\langle f(e_i), f(e_j) \rangle = \delta_{ij}$. Thus the rows of A form an orthogonal basis, meaning A is an orthogonal matrix. Now let us define

$$g(x) = A^{-1}f(x)$$

and we will prove that g(x) = x, which means that f(x) = Ax. Notice that

$$g(e_i) = A^{-1}f(e_i) = A^{-1}C_i(A) = C_i(A^{-1}A) = e_i$$

Now, if g were a linear transformation, we could finish here. Since g(0) = 0, g is an isometry (as the composition of isometries) which preserves the origin, so it preserves inner products.

Now let $x \in \mathbb{R}^n$ have coefficients x_i , meaning $\langle x, e_i \rangle = x_i$, now let g(x) = y with coefficients y_i . So

$$x_i = \langle x, e_i \rangle = \langle g(x), g(e_i) \rangle = \langle y, e_i \rangle = y_i$$

Thus x = y, so g(x) = x and thus f(x) = Ax, so f is indeed an orthogonal transformation.

Thus if f is an isometry, let g(x) = f(x) - f(0), then g is also an isometry which preserves the origin and so g(x) = Ax where A is orthogonal. And so f(x) = Ax + f(0).

Theorem 2.4 (Cartan-Dieudonne Theorem):

If $f: \mathbb{R}^n \longrightarrow \mathbb{R}^n$ is an isometry, then

$$f = T \circ S_1 \circ \cdots S_m$$

where T is a shift, and S_i are reflections, and $m \leq n$.

Proof:

We will prove this by induction on n. For n = 1, then we know that f(x) = Ax + c where A is orthogonal, and in \mathbb{R} that means that $A = \pm 1$. So $f(x) = \pm x + c$. The +c is a shift, and -x is a reflection about 1.

Now, for the inductive step let g(x) = f(x) - f(0) so g(x) = Ax where A is orthogonal. If A = id, then f(x) = x + c which is just a shift, and we have finished. Otherwise there exists an $a \in \mathbb{R}^n$ such that $g(a) \neq a$. Now, we want a $b \in \operatorname{span} a, g(a)$ such that ||b|| = 1 and $S_b(a) = g(a)$. Let

$$d = \frac{a}{\|a\|} + \frac{g(a)}{\|g(a)\|}$$

And let b be the unit normal to d in span a, g(a). Then $S_b(a)$ is the reflection of a about d, which gives g(a). Now let

$$h = S_b \circ g$$

then h is the composition of two orthogonal transformations, and is therefore also an orthogonal transformation. Let $\hat{a} = \frac{a}{\|a\|}$, and let us extend this to an orthogonal basis

$$B = \{\hat{a}, b_2, \cdots, b_n\}$$

And since h is orthogonal, h(B) is also an orthogonal basis. And $h(a) = S_b(g(a)) = S_b(S_b(a)) = a$, and so $h(\hat{a}) = \hat{a}$. Thus

$$h(\{b_2,\ldots,b_n\})\perp \hat{a}$$

And so $h(\{b_2,\ldots,b_n\})$ is an orthogonal basis of $V=\hat{a}^{\perp}$, which has a dimension of n-1. And so $h|_V:V\to V$ is an orthogonal transformation, since $\{b_2,\ldots,b_n\}$ is an orthogonal basis of V, and so is its image. So by our inductive assumption,

$$h|_{V} = S_2 \circ \cdots \circ S_m$$

where S_i are reflections with respect to $u^{\perp} \subseteq V$, and $m \leq n$.

Let $\ell = \operatorname{span} \hat{a}$, and $h|_{\ell} = \operatorname{id}$, and since h is linear

$$h = S_2 \circ \cdots \circ S_m$$

where S_i is a reflection with respect to $u^{\perp} \subseteq \mathbb{R}^n$. And since $h = S_b \circ g$, and $f = T \circ g$, where T is a shift (adding f(0)), we have

$$T = T \circ S_b \circ S_2 \circ \cdots \circ S_m$$

where $m \leq n$ as required.

Definition 2.5:

A curve is a continuous function

$$\gamma \colon [a,b] \longrightarrow \mathbb{R}^n$$

A curve is smooth if it is differentiable, and it is regular if its derivative is never zero. If $\gamma'(t) = 0$ then t is called a singularity of γ .

Definition 2.6:

Suppose $\alpha \colon [a,b] \longrightarrow \mathbb{R}^n$ is a curve, and $\varphi \colon [c,d] \longrightarrow [a,b]$ is differentiable and $\varphi' > 0$, then we define $\beta \colon [c,d] \longrightarrow \mathbb{R}^n$ by $\beta = \alpha \circ \varphi$. This is called a **reparametrization** of α .

Proposition 2.7:

"x is a reparametrization of y" is an equivalence relation.

Proof:

Obviously this is reflexive (take φ to be the identity function). And it is transitive since if $\beta = \alpha \circ \varphi$ and $\gamma = \beta \circ \psi$ then $\gamma = \alpha \circ (\varphi \circ \psi)$ (the derivative of the composition is still positive). restrict the definition, this still works). Now suppose $\beta = \alpha \circ \varphi$, then since $\varphi' > 0$, we know that φ is strictly increasing (and therefore injective). And so we can also assume that φ is surjective, since $\varphi([a,b]) = [\varphi(a), \varphi(b)]$. So φ is bijective and so $\alpha = \beta \circ \varphi^{-1}$, and $(\varphi^{-1})' > 0$ (since it is equal to the inverse of φ' of some point).

Definition 2.8:

Let $\alpha \colon [0,T] \to \mathbb{R}^n$ be a curve, let

$$s_{\alpha}(t) = \int_{0}^{t} \|\alpha'(f)\| = \int_{a}^{T} \left(\sum_{k=1}^{n} \alpha'_{k}(f)^{2}\right)^{1/2}$$

 $s_{\infty}(t)$ is the arclength of α

 α' is the componentwise derivative of α , which is equal to the Jacobian of α . We can continue with higher order componentwise derivatives.

The intuition behind the definition of s(t) is that by the definition of integrals (using Riemman sums), we can partition [0,T] into $t_0 = 0 < t_1 < \cdots < t_n = t$, and

$$\alpha'(f) \approx \frac{\alpha(t_{i+1}) - \alpha(t_i)}{\Delta_i} \implies \|\alpha'(f)\| \cdot \Delta_i \approx \|\alpha(t_{i+1}) - \alpha(t_i)\|$$

And $\|\alpha(t_{i+1}) - \alpha(t_i)\|$ approximates the length of α between t_i and t_{i+1} . And as we make the partition finer and finer, these approximations get more and more accurate.

Proposition 2.9:

Arclength is invariant under reparameterization. Meaning if $\alpha \colon [a,b] \longrightarrow \mathbb{R}^n$ and $\beta = \alpha \circ \varphi$ then

$$\int_{a}^{b} \|\alpha'(t)\| = \int_{c}^{d} \|\beta'(t)\|$$

Proof:

Notice that

$$\beta'(t) = \varphi'(t) \cdot \alpha'(\varphi(t))$$

Since $\varphi'(t) > 0$ we have that

$$\int_{c}^{d} \|\beta'(t)\| = \int_{c}^{d} \|\alpha'(\varphi(t))\| \cdot \varphi'(t) dt$$

 $\int_{c} \|\beta'(t)\| = \int_{c} \|\alpha'(\varphi(t))\|$ Let $u = \varphi(t)$ then $\varphi'(t) dt = du$ and since $\varphi(c) = a$ and $\varphi(d) = b$, so

$$= \int_a^b \|\alpha'(u)\| \, du$$

as required.

What we have shown is that $s_{\alpha \circ \varphi}(t) = s_{\alpha}(\varphi(t))$, ie

$$s_{\alpha \circ \varphi} = s_{\alpha} \circ \varphi$$

Notice that $s'_{\alpha}(t) = \|\alpha'(t)\|$. If α is regular then $\alpha'(t) \neq 0$ and so $s'_{\alpha} > 0$ so s_{α} is smooth and strictly increasing, meaning s_{α} is invertible. Now let us define

$$\beta(u) = \alpha \circ s_{\alpha}^{-1}(u) = \alpha(t)$$

where

$$u = \int_0^t \|\alpha'(x)\|$$

So $\beta(u)$ is equal to the value of α after walking u units on the arc α . β is called the *natural parameterization* of α . Notice that if β is a reparameterization of α , then they both have the same natural parameterizations, since if $\beta = \alpha \circ \varphi$ then

$$\beta \circ s_{\beta}^{-1} = \beta \circ s_{\alpha \circ \varphi}^{-1} = \beta \circ (s_{\alpha} \circ \varphi)^{-1} = \alpha \circ \varphi \circ \varphi^{-1} \circ s_{\alpha}^{-1} = \alpha \circ s_{\alpha}^{-1}$$

So the natural parameterization of a regular curve is unique.

Notice that α is a natural parameterization if and only if $s_{\alpha} = \mathrm{id}$. If α is a natural parameterization, then $\alpha = \alpha \circ s_{\alpha}^{-1}$, and so $s_{\alpha} = \mathrm{id}$. And if $s_{\alpha} = \mathrm{id}$, then $\alpha \circ s_{\alpha}^{-1} = \alpha$.

Proposition 2.10:

If α is a curve, it is a natural parameterization if and only if $\|\alpha'\| = 1$.

Proof:

Since

$$s_{\alpha}(t) = \int_0^t \|\alpha'(u)\|$$

so $s'_{\alpha} = \|\alpha'\|$, so if $s_{\alpha} = \text{id}$ then $s'_{\alpha} = \|\alpha'\| = 1$. And if $\|\alpha'\| = 1$ then $s'_{\alpha} = 1$ so $s_{\alpha}(t) = t + c$ and since $s_{\alpha}(0) = 0$, c = 0 as required.