Glu Leu Val Glu Leu Asp Glu Leu Met Ser Arg Ser Asp Phe Val Thr 50 55 60

- Ile His Leu Pro Lys Thr Lys Glu Thr Ala Gly Met Phe Asp Ala His 65 70 75 80
- Leu Leu Ala Lys Ser Lys Lys Gly Gln Ile Ile Ile Asn Ala Arg 85 90 95
- Gly Gly Leu Val Asp Glu Gln Ala Leu Ala Asp Ala Ile Glu Ser Gly
 100 105 110
- His Ile Arg Gly Ala Gly Phe Asp Val Tyr Ser Thr Glu Pro Cys Thr 115 120 125
- Asp Ser Pro Leu Phe Lys Leu Pro Gln Val Val Thr Pro His Leu 130 135 140
- Gly Ala Ser Thr Glu Glu Ala Gln Asp Arg Ala Gly Thr Asp Ile Ala 145 150 155 160
- Asp Ser Val Leu Lys Ala Leu Ala 165
- <210> 169
- <211> 1458
- <212> DNA
- <213> Corynebacterium glutamicum
- <220>
- <221> CDS
- <222> (101)..(1435)
- <223> RXN00969
- <400> 169
- ctatagtggc taggtaccct ttttgttttg gacacatgta gggtggccga aacaaagtaa 60
- taggacaaca acgctcgacc gcgattattt ttggagaatc atg acc tca gca tct 115

 Met Thr Ser Ala Ser

 1
- gcc cca agc ttt aac ccc ggc aag ggt ccc ggc tca gca gtc gga att 163
 Ala Pro Ser Phe Asn Pro Gly Lys Gly Pro Gly Ser Ala Val Gly Ile
 10 15 20
- gcc ctt tta gga ttc gga aca gtc ggc act gag gtg atg cgt ctg atg $\,$ 211 Ala Leu Leu Gly Phe Gly Thr Val Gly Thr Glu Val Met Arg Leu Met $\,$ 25 $\,$ 30 $\,$ 35
- acc gag tac ggt gat gaa ctt gcg cac cgc att ggt ggc cca ctg gag 259
 Thr Glu Tyr Gly Asp Glu Leu Ala His Arg Ile Gly Gly Pro Leu Glu
 40 45 50
- gtt cgt ggc att gct gtt tct gat atc tca aag cca cgt gaa ggc gtt 307 Val Arg Gly Ile Ala Val Ser Asp Ile Ser Lys Pro Arg Glu Gly Val 55 60 65
- gca cct gag ctg ctc act gag gac gct ttt gca ctc atc gag cgc gag 355
 Ala Pro Glu Leu Leu Thr Glu Asp Ala Phe Ala Leu Ile Glu Arg Glu
 70 75 80 85

gat Asp	gtt Val	gac Asp	atc Ile	gtc Val 90	gtt Val	gag Glu	gtt Val	atc Ile	ggc Gly 95	ggc Gly	att Ile	gag Glu	tac Tyr	cca Pro 100	cgt Arg	403
gag Glu	gta Val	gtt Val	ctc Leu 105	gca Ala	gct Ala	ctg Leu	aag Lys	gcc Ala 110	ggc Gly	aag Lys	tct Ser	gtt Val	gtt Val 115	acc Thr	gcc Ala	451
aat Asn	aag Lys	gct Ala 120	ctt Leu	gtt Val	gca Ala	gct Ala	cac His 125	tct Ser	gct Ala	gag Glu	ctt Leu	gct Ala 130	gat Asp	gca Ala	gcg Ala	499
gaa Glu	gcc Ala 135	gca Ala	aac Asn	gtt Val	gac Asp	ctg Leu 140	tac Tyr	ttc Phe	gag Glu	gct Ala	gct Ala 145	gtt Val	gca Ala	tgc Cys	gca Ala	547
att Ile 150	cca Pro	gtg Val	gtt Val	ggc Gly	cca Pro 155	ctg Leu	cgt Arg	cgc Arg	tcc Ser	ctg Leu 160	gct Ala	ggc Gly	gat Asp	cag Gln	atc Ile 165	595
cag Gln	tct Ser	gtg Val	atg Met	ggc Gly 170	atc Ile	gtt Val	aac Asn	ggc Gly	acc Thr 175	acc Thr	aac Asn	ttc Phe	atc Ile	ttg Leu 180	gac Asp	643
gcc Ala	atg Met	gat Asp	tcc Ser 185	acc Thr	ggc Gly	gct Ala	gac Asp	tat Tyr 190	gca Ala	gat Asp	tct Ser	ttg Leu	gct Ala 195	gag Glu	gca Ala	691
act Thr	cgt Arg	ttg Leu 200	ggt Gly	tac Tyr	gcc Ala	gaa Glu	gct Ala 205	gat Asp	cca Pro	act Thr	gca Ala	aac Asn 210	gtc Val	gaa Glu	ggc Gly	739
cat His	gac Asp 215	gcc Ala	gca Ala	tcc Ser	aag Lys	gct Ala 220	gca Ala	att Ile	ttg Leu	gca Ala	tgc Cys 225	atc Ile	gct Ala	ttc Phe	cac His	787
acc Thr 230	cgt Arg	gtt Val	acc Thr	gcg Ala	gat Asp 235	gat Asp	gtg Val	tac Tyr	tgc Cys	gaa Glu 240	ggt Gly	att Ile	agg Arg	aac Asn	atc Ile 245	835
aac Asn	gct Ala	gcc Ala	gac Asp	att Ile 250	Glu	gca Ala	gca Ala	cag Gln	cag Gln 255		ggc	cac His	acc Thr	atc Ile 260	Lys	883
ttg Leu	ttg Leu	gcc Ala	atc Ile 265	Cys	gag Glu	aag Lys	ttc Phe	acc Thr 270	Asn	aag Lys	gaa Glu	gga Gly	aag Lys 275	Ser	gct Ala	931
att	tct Ser	gct Ala 280	Arg	gtg Val	cac His	ccg Pro	act Thr 285	Leu	tta Leu	cct Pro	gtg Val	tcc Ser 290	His	cca Pro	ctg Leu	979
gcg 102		gta	aac	aag	tcc	ttt	aat	gca	atc	ttt	gtt	gaa	gca	gaa	gca	
Ala	Ser 295					300					305				Ala	
107	5														acc	
Ala	Gly	' Arg	Lev	Met	Phe	Туг	Gly	Asn	Gly	Ala	Gly	Gly	Ala	Pro	Thr	

310 315 320 325 gcg tot gct gtg ott ggc gac gtc gtt ggt gcc gca cga aac aag gtq 1123 Ala Ser Ala Val Leu Gly Asp Val Val Gly Ala Ala Arg Asn Lys Val cac ggt ggc cgt gct cca ggt gag tcc acc tac gct aac ctg ccg atc 1171 His Gly Gly Arg Ala Pro Gly Glu Ser Thr Tyr Ala Asn Leu Pro Ile 345 gct gat ttc ggt gag acc acc act cgt tac cac ctc gac atg gat gtg 1219 Ala Asp Phe Gly Glu Thr Thr Thr Arg Tyr His Leu Asp Met Asp Val gaa gat cgc gtg ggg gtt ttg gct gaa ttg gct agc ctg ttc tct gag 1267 Glu Asp Arg Val Gly Val Leu Ala Glu Leu Ala Ser Leu Phe Ser Glu 375 380 caa gga atc tcc ctg cgt aca atc cga cag gaa gag cgc gat gat gat Gln Gly Ile Ser Leu Arg Thr Ile Arg Gln Glu Glu Arg Asp Asp Asp gca cgt ctg atc gtg gtc acc cac tct gcg ctg gaa tct gat ctt tcc 1363 Ala Arg Leu Ile Val Val Thr His Ser Ala Leu Glu Ser Asp Leu Ser 410 415 cgc acc gtt gaa ctg ctg aag gct aag cct gtt gtt aag gca atc aac 1411 Arg Thr Val Glu Leu Leu Lys Ala Lys Pro Val Val Lys Ala Ile Asn agt gtg atc cgc ctc gaa agg gac taattttact gacatggcaa ttg Ser Val Ile Arg Leu Glu Arg Asp 440 <210> 170 <211> 445 <212> PRT <213> Corynebacterium glutamicum <400> 170 Met Thr Ser Ala Ser Ala Pro Ser Phe Asn Pro Gly Lys Gly Pro Gly Ser Ala Val Gly Ile Ala Leu Leu Gly Phe Gly Thr Val Gly Thr Glu 25 Val Met Arg Leu Met Thr Glu Tyr Gly Asp Glu Leu Ala His Arg Ile 35 Gly Gly Pro Leu Glu Val Arg Gly Ile Ala Val Ser Asp Ile Ser Lys 55 60

Pro Arg Glu Gly Val Ala Pro Glu Leu Leu Thr Glu Asp Ala Phe Ala Leu Ile Glu Arg Glu Asp Val Asp Ile Val Val Glu Val Ile Gly Gly 90 Ile Glu Tyr Pro Arg Glu Val Val Leu Ala Ala Leu Lys Ala Gly Lys Ser Val Val Thr Ala Asn Lys Ala Leu Val Ala Ala His Ser Ala Glu Leu Ala Asp Ala Ala Glu Ala Ala Asn Val Asp Leu Tyr Phe Glu Ala 135 Ala Val Ala Cys Ala Ile Pro Val Val Gly Pro Leu Arg Arg Ser Leu 150 Ala Gly Asp Gln Ile Gln Ser Val Met Gly Ile Val Asn Gly Thr Thr 170 Asn Phe Ile Leu Asp Ala Met Asp Ser Thr Gly Ala Asp Tyr Ala Asp Ser Leu Ala Glu Ala Thr Arg Leu Gly Tyr Ala Glu Ala Asp Pro Thr 200 Ala Asn Val Glu Gly His Asp Ala Ala Ser Lys Ala Ala Ile Leu Ala Cys Ile Ala Phe His Thr Arg Val Thr Ala Asp Asp Val Tyr Cys Glu 235 Gly Ile Arg Asn Ile Asn Ala Ala Asp Ile Glu Ala Ala Gln Gln Ala Gly His Thr Ile Lys Leu Leu Ala Ile Cys Glu Lys Phe Thr Asn Lys Glu Gly Lys Ser Ala Ile Ser Ala Arg Val His Pro Thr Leu Leu Pro 275 Val Ser His Pro Leu Ala Ser Val Asn Lys Ser Phe Asn Ala Ile Phe 295 Val Glu Ala Glu Ala Ala Gly Arg Leu Met Phe Tyr Gly Asn Gly Ala 315 310 305 Gly Gly Ala Pro Thr Ala Ser Ala Val Leu Gly Asp Val Val Gly Ala 325 330 Ala Arg Asn Lys Val His Gly Gly Arg Ala Pro Gly Glu Ser Thr Tyr 345 Ala Asn Leu Pro Ile Ala Asp Phe Gly Glu Thr Thr Thr Arg Tyr His Leu Asp Met Asp Val Glu Asp Arg Val Gly Val Leu Ala Glu Leu Ala 375 Ser Leu Phe Ser Glu Gln Gly Ile Ser Leu Arg Thr Ile Arg Gln Glu

390 395 385 400 Glu Arg Asp Asp Ala Arg Leu Ile Val Val Thr His Ser Ala Leu 405 410 Glu Ser Asp Leu Ser Arg Thr Val Glu Leu Leu Lys Ala Lys Pro Val 420 425 Val Lys Ala Ile Asn Ser Val Ile Arg Leu Glu Arg Asp 440 <210> 171 <211> 493 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(493) <223> FRXA00974 ctataqtqqc taqqtaccct ttttgttttg gacacatgta gggtggccga aacaaagtaa 60 taggacaaca acgctcgacc gcgattattt ttggagaatc atg acc tca gca tct Met Thr Ser Ala Ser gcc cca agc ttt aac ccc ggc aag ggt ccc ggc tca gca gtc gga att 163 Ala Pro Ser Phe Asn Pro Gly Lys Gly Pro Gly Ser Ala Val Gly Ile 15 gcc ctt tta gga ttc gga aca gtc ggc act gag gtg atg cgt ctg atg 211 Ala Leu Leu Gly Phe Gly Thr Val Gly Thr Glu Val Met Arg Leu Met 30 acc gag tac ggt gat gaa ctt gcg cac cgc att ggt ggc cca ctg gag 259 Thr Glu Tyr Gly Asp Glu Leu Ala His Arg Ile Gly Gly Pro Leu Glu 45 gtt cgt ggc att gct gtt tct gat atc tca aag cca cgt gaa ggc gtt 307 Val Arg Gly Ile Ala Val Ser Asp Ile Ser Lys Pro Arg Glu Gly Val 60 gca cct gag ctg ctc act gag gac gct ttt gca ctc atc gag cgc gag 355 Ala Pro Glu Leu Leu Thr Glu Asp Ala Phe Ala Leu Ile Glu Arg Glu 75 gat gtt gac atc gtc gtt gag gtt atc ggc ggc att gag tac cca cgt 403 Asp Val Asp Ile Val Val Glu Val Ile Gly Gly Ile Glu Tyr Pro Arg 90 95 gag gta gtt ctc gca gct ctg aag gcc ggc aag tct gtt gtt acc gcc Glu Val Val Leu Ala Ala Leu Lys Ala Gly Lys Ser Val Val Thr Ala 110 aat aag gct ctt gtt gca gct cac tct gct gag ctt gct gat 493 Asn Lys Ala Leu Val Ala Ala His Ser Ala Glu Leu Ala Asp 120 125

<210> 172 <211> 131 <212> PRT <213> Corynebacterium glutamicum <400> 172 Met Thr Ser Ala Ser Ala Pro Ser Phe Asn Pro Gly Lys Gly Pro Gly Ser Ala Val Gly Ile Ala Leu Leu Gly Phe Gly Thr Val Gly Thr Glu 25 Val Met Arg Leu Met Thr Glu Tyr Gly Asp Glu Leu Ala His Arg Ile Gly Gly Pro Leu Glu Val Arg Gly Ile Ala Val Ser Asp Ile Ser Lys Pro Arg Glu Gly Val Ala Pro Glu Leu Leu Thr Glu Asp Ala Phe Ala Leu Ile Glu Arg Glu Asp Val Asp Ile Val Val Glu Val Ile Gly Gly Ile Glu Tyr Pro Arg Glu Val Val Leu Ala Ala Leu Lys Ala Gly Lys 100 Ser Val Val Thr Ala Asn Lys Ala Leu Val Ala Ala His Ser Ala Glu 120 115 Leu Ala Asp 130 <210> 173 <211> 1050 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(1027) <223> RXA00970 <400> 173 gaatctgatc tttcccgcac cgttgaactg ctgaaggcta agcctgttgt taaggcaatc 60 aacagtgtga tccgcctcga aagggactaa ttttactgac atg gca att gaa ctg Met Ala Ile Glu Leu aac gtc ggt cgt aag gtt acc gtc acg gta cct gga tct tct gca aac Asn Val Gly Arg Lys Val Thr Val Thr Val Pro Gly Ser Ser Ala Asn 10 ctc gga cct ggc ttt gac act tta ggt ttg gca ctg tcg gta tac gac Leu Gly Pro Gly Phe Asp Thr Leu Gly Leu Ala Leu Ser Val Tyr Asp 30 act gtc gaa gtg gaa att att cca tct ggc ttg gaa gtg gaa gtt ttt

BNSDOCID: -WO_ 0100843A2 1 5

Thr	Val	. Glu 40		Glu	ılle	: Ile	Pro 45		Gly	/ Let	ı Glu	Val		ı Vai	l Phe	
ggc Gly	gaa Glu 55	ı Gly	caa Gln	ggc Gly	gaa Glu	gtc Val	Pro	ctt Lev	gat Asp	ggc Gly	tcc Ser 65	His	cto Lei	g gto ı Val	g gtt l Val	307
aaa Lys 70	Ala	att	cgt Arg	gct Ala	ggc Gly 75	Leu	aag Lys	gca Ala	gct Ala	gac Asp 80	Ala	gaa Glu	gtt Val	cct Pro	gga Gly 85	355
ttg Leu	cga Arg	gtg Val	gtg Val	tgc Cys 90	His	aac Asn	aac Asn	att Ile	ccg Pro	Gln	tct Ser	cgt Arg	ggt Gly	ctt Leu 100	ggc Gly	403
tcc Ser	tct Ser	gct Ala	gca Ala 105	Ala	gcg Ala	gtt Val	gct Ala	ggt Gly 110	Val	gct Ala	gca Ala	gct Ala	aat Asn 115	Gly	: ttg ' Leu	451
gcg Ala	gat Asp	ttc Phe 120	Pro	ctg Leu	act Thr	caa Gln	gag Glu 125	cag Gln	att	gtt Val	cag Gln	ttg Leu 130	Ser	tct Ser	gcc Ala	499
ttt Phe	gaa Glu 135	ggc	cac His	cca Pro	gat Asp	aat Asn 140	gct Ala	gcg Ala	gct Ala	tct Ser	gtg Val 145	ctg Leu	ggt Gly	gga Gly	gca Ala	547
gtg Val 150	gtg Val	tcg Ser	tgg Trp	aca Thr	aat Asn 155	ctg Leu	tct Ser	atc Ile	gac Asp	ggc Gly 160	aag Lys	agc Ser	cag Gln	cca Pro	cag Gln 165	595
tat Tyr	gct Ala	gct Ala	gta Val	cca Pro 170	ctt Leu	gag Glu	gtg Val	cag Gln	gac Asp 175	aat Asn	att Ile	cgt Arg	gcg Ala	act Thr 180	gcg Ala	643
ctg Leu	gtt Val	cct Pro	aat Asn 185	ttc Phe	cac His	gca Ala	tcc Ser	acc Thr 190	gaa Glu	gct Ala	gtg Val	cgc Arg	cga Arg 195	gtc Val	ctt Leu	691
ccc Pro	act Thr	gaa Glu 200	Val	act Thr	cac His	atc Ile	gat Asp 205	Ala	cga Arg	ttt Phe	aac Asn	gtg Val 210	Ser	cgc Arg	gtt Val	739
gca Ala	gtg Val 215	atg Met	atc Ile	gtt Val	gcg Ala	ttg Leu 220	cag Gln	cag Gln	cgt Arg	cct Pro	gat Asp 225	ttg Leu	ctg Leu	tgg Trp	gag Glu	787
ggt Gly 230	act Thr	cgt Arg	gac Asp	cgt Arg	ctg Leu 235	cac His	cag Gln	cct Pro	tat Tyr	cgt Arg 240	gca Ala	gaa Glu	gtg Val	ttg Leu	cct Pro 245	835
att Ile	acc Thr	tct Ser	gag Glu	tgg Trp 250	gta Val	aac Asn	cgc Arg	ctg Leu	cgc Arg 255	aac Asn	cgt Arg	ggc Gly	tac Tyr	gcg Ala 260	gca Ala	883
tac Tyr	ctt Leu	tcc Ser	ggt Gly 265	gcc Ala	ggc Gly	cca Pro	acc Thr	gcc Ala 270	atg Met	gtg Val	ctg Leu	tcc Ser	act Thr 275	gag Glu	cca Pro	931
att [le	cca Pro	gac Asp	aag Lys	gtt Val	ttg Leu	gaa Glu	gat Asp	gct Ala	cgt Arg	gag Glu	tct	ggc	att	aag	gtg Val	979

280 285 290

ctt gag ctt gag gtt gcg gga cca gtc aag gtt gaa gtt aac caa cct 1027

Leu Glu Leu Glu Val Ala Gly Pro Val Lys Val Glu Val Asn Gln Pro 295 300 305

taggcccaac aaggaaggcc ccc

<210> 174

<211> 309

<212> PRT

<213> Corynebacterium glutamicum

<400> 174

Met Ala Ile Glu Leu Asn Val Gly Arg Lys Val Thr Val Thr Val Pro

1 10 15

Gly Ser Ser Ala Asn Leu Gly Pro Gly Phe Asp Thr Leu Gly Leu Ala 20 25 30

Leu Ser Val Tyr Asp Thr Val Glu Val Glu Ile Ile Pro Ser Gly Leu 35 40 45

Glu Val Glu Val Phe Gly Glu Gly Glu Gly Glu Val Pro Leu Asp Gly 50 55 60

Ser His Leu Val Val Lys Ala Ile Arg Ala Gly Leu Lys Ala Ala Asp 65 70 75 80

Ala Glu Val Pro Gly Leu Arg Val Val Cys His Asn Asn Ile Pro Gln 85 90 95

Ser Arg Gly Leu Gly Ser Ser Ala Ala Ala Ala Val Ala Gly Val Ala 100 105 110

Ala Ala Asn Gly Leu Ala Asp Phe Pro Leu Thr Gln Glu Gln Ile Val 115 120 125

Gln Leu Ser Ser Ala Phe Glu Gly His Pro Asp Asn Ala Ala Ala Ser 130 135 140

Val Leu Gly Gly Ala Val Val Ser Trp Thr Asn Leu Ser Ile Asp Gly 145 150 155 160

Lys Ser Gln Pro Gln Tyr Ala Ala Val Pro Leu Glu Val Gln Asp Asn 165 170 175

Ile Arg Ala Thr Ala Leu Val Pro Asn Phe His Ala Ser Thr Glu Ala 180 185 190

Val Arg Arg Val Leu Pro Thr Glu Val Thr His Ile Asp Ala Arg Phe 195 200 205

Asn Val Ser Arg Val Ala Val Met Ile Val Ala Leu Gln Gln Arg Pro 210 215 220

Asp Leu Leu Trp Glu Gly Thr Arg Asp Arg Leu His Gln Pro Tyr Arg 225 230 235 240

Ala Glu Val Leu Pro Ile Thr Ser Glu Trp Val Asn Arg Leu Arg Asn 245 250 Arg Gly Tyr Ala Ala Tyr Leu Ser Gly Ala Gly Pro Thr Ala Met Val 265 Leu Ser Thr Glu Pro Ile Pro Asp Lys Val Leu Glu Asp Ala Arg Glu 275 280 Ser Gly Ile Lys Val Leu Glu Leu Glu Val Ala Gly Pro Val Lys Val 295 Glu Val Asn Gln Pro 305 <210> 175 <211> 1566 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101) . . (1543) <223> RXA00330 <400> 175 gcaacacttt agggtatcgc gtgggcgaag tcaccttttt caacatattt gagacggtgt 60 gggggagtat tgtgtcaccc cttgggatag ggttatatcc gtg gac tac att tcg 115 Val Asp Tyr Ile Ser acg cgt gat gcc agc cgt acc cct gcc cgc ttc agt gat att ttg ctg 163 Thr Arg Asp Ala Ser Arg Thr Pro Ala Arg Phe Ser Asp Ile Leu Leu 10 ggc ggt cta gca cca gac ggc gga ctg tac ctg cct gca acc tac cct 211 Gly Gly Leu Ala Pro Asp Gly Gly Leu Tyr Leu Pro Ala Thr Tyr Pro 25 caa cta gat gat gcc cag ctg agt aaa tgg cgt gag gta tta gcc aac 259 Gln Leu Asp Asp Ala Gln Leu Ser Lys Trp Arg Glu Val Leu Ala Asn 40 gaa gga tac gca gct ttg gct gct gaa gtt atc tcc ctg ttt gtt gat 307 Glu Gly Tyr Ala Ala Leu Ala Ala Glu Val Ile Ser Leu Phe Val Asp 55 gac atc cca gta gaa gac atc aag gcg atc acc gca cgc gcc tac acc 355 Asp Ile Pro Val Glu Asp Ile Lys Ala Ile Thr Ala Arg Ala Tyr Thr 70 75 80 tac ccg aag ttc aac agc gaa gac atc gtt cct gtc acc gaa ctc gag 403 Tyr Pro Lys Phe Asn Ser Glu Asp Ile Val Pro Val Thr Glu Leu Glu 90 95 gac aac att tac ctg ggc cac ctt tcc gaa ggc cca acc gct gca ttc 451 Asp Asn Ile Tyr Leu Gly His Leu Ser Glu Gly Pro Thr Ala Ala Phe 105 110 115

aaa Lys	gac Asp	atg Met 120	gcc Ala	atg Met	cag Gln	ctg Leu	ctc Leu 125	ggc Gly	gaa Glu	ctt Leu	ttc Phe	gaa Glu 130	tac Tyr	gag Glu	ctt Leu	499
cgc Arg	cgc Arg 135	cgc Arg	aac Asn	gaa Glu	acc Thr	atc Ile 140	aac Asn	atc Ile	ctg Leu	ggc Gly	gct Ala 145	acc Thr	tct Ser	ggc Gly	gat Asp	547
acc Thr 150	ggc Gly	tcc Ser	tct Ser	gcg Ala	gaa Glu 155	tac Tyr	gcc Ala	atg Met	cgc Arg	ggc Gly 160	cgc Arg	gag Glu	gga Gly	atc Ile	cgc Arg 165	595
gta Val	ttc Phe	atg Met	ctg Leu	acc Thr 170	cca Pro	gct Ala	ggc Gly	cgc Arg	atg Met 175	acc Thr	cca Pro	ttc Phe	cag Gln	caa Gln 180	gca Ala	643
cag Gln	atg Met	ttt Phe	ggc Gly 185	ctt Leu	gac Asp	gat Asp	cca Pro	aac Asn 190	atc Ile	ttc Phe	aac Asn	atc Ile	gcc Ala 195	ctc Leu	gac Asp	691
ggc Gly	gtt Val	ttc Phe 200	gac Àsp	gat Asp	tgc Cys	caa Gln	gac Asp 205	gta Val	gtc Val	aag Lys	gct Ala	gtc Val 210	tcc Ser	gcc Ala	gac Asp	739
gca Ala	gaa Glu 215	ttc Phe	aaa Lys	aaa Lys	gac Asp	aac Asn 220	cgc Arg	atc Ile	ggt Gly	gcc Ala	gtg Val 225	aac Asn	tcc Ser	atc Ile	aac Asn	787
tgg Trp 230	gca Ala	cgc Arg	ctt Leu	atg Met	gca Ala 235	cag Gln	gtt Val	gtg Val	tac Tyr	tac Tyr 240	gtt Val	tcc Ser	tca Ser	tgg Trp	atc Ile 245	835
cgc Arg	acc Thr	aca Thr	acc Thr	agc Ser 250	aat Asn	gac Asp	caa Gln	aag Lys	gtc Val 255	agc Ser	ttc Phe	tcc Ser	gta Val	cca Pro 260	acc Thr	883
ggc Gly	aac Asn	ttc Phe	ggt Gly 265	gac Asp	att Ile	tgc Cys	gca Ala	ggc Gly 270	cac His	atc Ile	gcc Ala	cgc Arg	caa Gln 275	atg Met	gga Gly	931
ctt Leu	ccc Pro	atc Ile 280	gat Asp	cgc Arg	ctc Leu	atc Ile	gtg Val 285	gcc Ala	acc Thr	aac Asn	gaa Glu	aac Asn 290	gat Asp	gtg Val	ctc Leu	979
gac 102		ttc	ttc	cgt	acc	ggc	gac	tac	cga	gtc	cgc	agc	tcc	gca	gac	
			Phe	Arg	Thr	Gly 300	Asp	Tyr	Arg	Val	Arg 305	Ser	Ser	Ala	Asp	
acc 107		gag	acc	tcc	tca	cct	tcg	atg	gat	atc	tcc	cgc	gcc	tcc	aac	
	His	Glu	Thr	Ser	Ser 315		Ser	Met	Asp	11e 320		Arg	Ala	Ser	Asn 325	
ttc 112		cgt	ttc	atc	ttc	gac	ctg	ctc	ggc	cgc	gac	gcc	acc	cgc	gtc	
		Arg	Phe	Ile 330		Asp	Leu	Leu	Gly 335		Asp	Ala	Thr	Arg 340	Val	

aac gat cta ttt ggt acc cag gtt cgc caa ggc gga ttc tca ctg gct 1171

Asn Asp Leu Phe Gly Thr Gln Val Arg Gln Gly Gly Phe Ser Leu Ala 345 350 355

gat gac gcc aac ttt gag aag gct gca gca gaa tac ggt ttc gcc tcc 1219

Asp Asp Ala Asn Phe Glu Lys Ala Ala Ala Glu Tyr Gly Phe Ala Ser 360 365 370

gga cga tcc acc cat gct gac cgt gtg gca acc atc gct gac gtg cat 1267

Gly Arg Ser Thr His Ala Asp Arg Val Ala Thr Ile Ala Asp Val His 375 380 385

tcc cgc ctc gac gta cta atc gat ccc cac acc gcc gac ggc gtt cac 1315

Ser Arg Leu Asp Val Leu Ile Asp Pro His Thr Ala Asp Gly Val His 390 400 405

gtg gca cgc cag tgg agg gac gag gtc aac acc cca atc atc gtc cta 1363

Val Ala Arg Gln Trp Arg Asp Glu Val Asn Thr Pro Ile Ile Val Leu 410 415 420

gaa act gca ctc cca gtg aaa ttt gcc gac acc atc gtc gaa gca att 1411

Glu Thr Ala Leu Pro Val Lys Phe Ala Asp Thr Ile Val Glu Ala Ile 425 430 435

ggt gaa gca cct caa act cca gag cgt ttc gcc gcg atc atg gat gct 1459

Gly Glu Ala Pro Gln Thr Pro Glu Arg Phe Ala Ala Ile Met Asp Ala 440 445 450

cca ttc aag gtt tcc gac cta cca aac gac acc gat gca gtt aag cag 1507

Pro Phe Lys Val Ser Asp Leu Pro Asn Asp Thr Asp Ala Val Lys Gln 455 460 465

tac ata gtc gat gcg att gca aac act tcc gtg aag taacttgctt 1553

Tyr Ile Val Asp Ala Ile Ala Asn Thr Ser Val Lys
470 475 480

tacgccaagg cct 1566

<210> 176

<211> 481

<212> PRT

<213> Corynebacterium glutamicum

<400> 176

Ser Asp Ile Leu Leu Gly Gly Leu Ala Pro Asp Gly Gly Leu Tyr Leu 20 25 30

Pro Ala Thr Tyr Pro Gln Leu Asp Asp Ala Gln Leu Ser Lys Trp Arg Glu Val Leu Ala Asn Glu Gly Tyr Ala Ala Leu Ala Ala Glu Val Ile Ser Leu Phe Val Asp Asp Ile Pro Val Glu Asp Ile Lys Ala Ile Thr Ala Arg Ala Tyr Thr Tyr Pro Lys Phe Asn Ser Glu Asp Ile Val Pro Val Thr Glu Leu Glu Asp Asn Ile Tyr Leu Gly His Leu Ser Glu Gly 105 Pro Thr Ala Ala Phe Lys Asp Met Ala Met Gln Leu Leu Gly Glu Leu Phe Glu Tyr Glu Leu Arg Arg Arg Asn Glu Thr Ile Asn Ile Leu Gly Ala Thr Ser Gly Asp Thr Gly Ser Ser Ala Glu Tyr Ala Met Arg Gly 150 Arg Glu Gly Ile Arg Val Phe Met Leu Thr Pro Ala Gly Arg Met Thr Pro Phe Gln Gln Ala Gln Met Phe Gly Leu Asp Asp Pro Asn Ile Phe 180 185 Asn Ile Ala Leu Asp Gly Val Phe Asp Asp Cys Gln Asp Val Val Lys 200 Ala Val Ser Ala Asp Ala Glu Phe Lys Lys Asp Asn Arg Ile Gly Ala 210 Val Asn Ser Ile Asn Trp Ala Arg Leu Met Ala Gln Val Val Tyr Tyr 230 235 Val Ser Ser Trp Ile Arg Thr Thr Thr Ser Asn Asp Gln Lys Val Ser 245 Phe Ser Val Pro Thr Gly Asn Phe Gly Asp Ile Cys Ala Gly His Ile 265 Ala Arg Gln Met Gly Leu Pro Ile Asp Arg Leu Ile Val Ala Thr Asn 280 Glu Asn Asp Val Leu Asp Glu Phe Phe Arg Thr Gly Asp Tyr Arg Val Arg Ser Ser Ala Asp Thr His Glu Thr Ser Ser Pro Ser Met Asp Ile 310 Ser Arg Ala Ser Asn Phe Glu Arg Phe Ile Phe Asp Leu Leu Gly Arg 330 325 Asp Ala Thr Arg Val Asn Asp Leu Phe Gly Thr Gln Val Arg Gln Gly 345 Gly Phe Ser Leu Ala Asp Asp Ala Asn Phe Glu Lys Ala Ala Glu

RNSOCCIO: <WO

01008434215

355 360 365 Tyr Gly Phe Ala Ser Gly Arg Ser Thr His Ala Asp Arg Val Ala Thr 375 Ile Ala Asp Val His Ser Arg Leu Asp Val Leu Ile Asp Pro His Thr 395 400 Ala Asp Gly Val His Val Ala Arg Gln Trp Arg Asp Glu Val Asn Thr 405 410 Pro Ile Ile Val Leu Glu Thr Ala Leu Pro Val Lys Phe Ala Asp Thr 420 425 Ile Val Glu Ala Ile Gly Glu Ala Pro Gln Thr Pro Glu Arg Phe Ala 440 Ala Ile Met Asp Ala Pro Phe Lys Val Ser Asp Leu Pro Asn Asp Thr 450 455 Asp Ala Val Lys Gln Tyr Ile Val Asp Ala Ile Ala Asn Thr Ser Val 470 475 Lys <210> 177 <211> 1254 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(1231) <223> RXN00403 <400> 177 tttttcagac tcgtgagaat gcaaactaga ctagacagag ctgtccatat acactggacg 60 aagttttagt cttgtccacc cagaacaggc ggttattttc atg ccc acc ctc gcg Met Pro Thr Leu Ala 1 cct tca ggt caa ctt gaa atc caa gcg atc ggt gat gtc tcc acc gaa Pro Ser Gly Gln Leu Glu Ile Gln Ala Ile Gly Asp Val Ser Thr Glu 10 gcc gga gca atc att aca aac gct gaa atc gcc tat cac cgc tgg ggt 211 Ala Gly Ala Ile Ile Thr Asn Ala Glu Ile Ala Tyr His Arg Trp Gly 25

gaa tac cgc gta gat aaa gaa gga cgc agc aat gtc gtt ctc atc gaa 259 Glu Tyr Arg Val Asp Lys Glu Gly Arg Ser Asn Val Val Leu Ile Glu 40 45 50

cac gcc ctc act gga gat tcc aac gca gcc gat tgg tgg gct gac ttg 307 His Ala Leu Thr Gly Asp Ser Asn Ala Ala Asp Trp Trp Ala Asp Leu 55 60 65

ctc ggt ccc ggc aaa gcc atc aac act gat att tac tgc gtg atc tgt 355

Leu 70	Gly	Pro	Gly	Lys	Ala 75	Ile	Asn	Thr	Asp	Ile 80	Tyr	Суѕ	Val	Ile	Cys 85	
acc Thr	aac Asn	gtc Val	atc Ile	ggt Gly 90	ggt Gly	tgc Cys	aac Asn	ggt Gly	tcc Ser 95	acc Thr	gga Gly	cct Pro	ggc Gly	tcc Ser 100	atg Met	403
cat His	cca Pro	gat Asp	gga Gly 105	aat Asn	ttc Phe	tgg Trp	ggt Gly	aat Asn 110	cgc Arg	ttc Phe	ccc Pro	gcc Ala	acg Thr 115	tcc Ser	att Ile	451
cgt Arg	gat Asp	cag Gln 120	gta Val	aac Asn	gcc Ala	gaa Glu	aaa Lys 125	caa Gln	ttc Phe	ctc Leu	gac Asp	gca Ala 130	ctc Leu	ggc	atc Ile	499
			gcc Ala													547
cta Leu 150	gag Glu	tgg Trp	gcc Ala	gca Ala	atg Met 155	tac Tyr	cca Pro	gaa Glu	act Thr	gtt Val 160	ggc Gly	gca Ala	gct Ala	gct Ala	gtt Val 165	595
ctt Leu	gca Ala	gtt Val	tct Ser	gca Ala 170	cgc Arg	gcc Ala	agc Ser	gcc Ala	tgg Trp 175	caa Gln	atc Ile	ggc Gly	att Ile	caa Gln 180	tcc Ser	643
gcc Ala	caa Gln	att Ile	aag Lys 185	gcg Ala	att Ile	gaa Glu	aac Asn	gac Asp 190	cac His	cac His	tgg Trp	cac His	gaa Glu 195	ggc Gly	aac Asn	691
tac Tyr	tac Tyr	gaa Glu 200	tcc Ser	ggc Gly	tgc Cys	aac Asn	cca Pro 205	gcc Ala	acc Thr	gga Gly	ctc Leu	ggc Gly 210	gcc Ala	gcc Ala	cga Arg	739
cgc Arg	atc Ile 215	gcc Ala	cac His	ctc Leu	acc Thr	tac Tyr 220	cgt Arg	ggc Gly	gaa Glu	cta Leu	gaa Glu 225	atc Ile	gac Asp	gaa Glu	cgc Arg	787
ttc Phe 230	ggc Gly	acc Thr	aaa Lys	Ala	caa Gln 235	Lys	aac Asn	Glu	aac Asn	Pro	Leu	ggt Gly	ccc Pro	tac Tyr	cgc Arg 245	835
aag Lys	ccc Pro	gac Asp	cag Gln	cgc Arg 250	ttc Phe	gcc Ala	gtg Val	gaa Glu	tcc Ser 255	tac Tyr	ttg Leu	gac Asp	tac Tyr	caa Gln 260	gca Ala	883
			gta Val 265													931
gac Asp	gcc Ala	ctc Leu 280	aac Asn	cgc Arg	cac His	gac Asp	att Ile 285	ggt Gly	cgc Arg	gac Asp	cgc Arg	gga Gly 290	ggc Gly	ctc Leu	aac Asn	979
aag 102		ctc	gaa	tcc	atc	aaa	gtt	cca	gtc	ctt	gtc	gca	ggc	gta	gat	
		Leu	Glu	Ser	Ile	Lys 300	Val	Pro	Val	Leu	Val 305	Ala	Gly	Val	Asp	

acc gat att ttg tac ccc tac cac cag caa gaa cac ctc tcc aga aac 1075

Thr Asp Ile Leu Tyr Pro Tyr His Gln Gln Glu His Leu Ser Arg Asn 310 325

ctg gga aat cta ctg gca atg gca aaa atc gta tcc cct gtc ggc cac 1123

Leu Gly Asn Leu Leu Ala Met Ala Lys Ile Val Ser Pro Val Gly His $330 \hspace{1cm} 335 \hspace{1cm} 340$

gat gct ttc ctc acc gaa agc cgc caa atg gat cgc atc gtg agg aac 1171

Asp Ala Phe Leu Thr Glu Ser Arg Gln Met Asp Arg Ile Val Arg Asn 345 350 355

ttc ttc agc ctc atc tcc cca gac gaa gac aac cct tcg acc tac atc 1219

Phe Phe Ser Leu Ile Ser Pro Asp Glu Asp Asn Pro Ser Thr Tyr Ile 360 365 370

gag ttc tac atc taataggtat ttacgacaaa tag 1254 Glu Phe Tyr Ile

<210> 178

375

<211> 377

<212> PRT

<213> Corynebacterium glutamicum

<400> 178

Met Pro Thr Leu Ala Pro Ser Gly Gln Leu Glu Ile Gln Ala Ile Gly 1 5 10 15

Asp Val Ser Thr Glu Ala Gly Ala Ile Ile Thr Asn Ala Glu Ile Ala
20 25 30

Tyr His Arg Trp Gly Glu Tyr Arg Val Asp Lys Glu Gly Arg Ser Asn 35 40 45

Val Val Leu Ile Glu His Ala Leu Thr Gly Asp Ser Asn Ala Ala Asp 50 55 60

Trp Trp Ala Asp Leu Leu Gly Pro Gly Lys Ala Ile Asn Thr Asp Ile
65 70 75 80

Tyr Cys Val Ile Cys Thr Asn Val Ile Gly Gly Cys Asn Gly Ser Thr 85 90 95

Gly Pro Gly Ser Met His Pro Asp Gly Asn Phe Trp Gly Asn Arg Phe
100 105 110

Pro Ala Thr Ser Ile Arg Asp Gln Val Asn Ala Glu Lys Gln Phe Leu 115 120 125

Asp Ala Leu Gly Ile Thr Thr Val Ala Ala Val Leu Gly Gly Ser Met 130 135 140

Gly Gly Ala Arg Thr Leu Glu Trp Ala Ala Met Tyr Pro Glu Thr Val 145 150 155 160

Gly Ala Ala Val Leu Ala Val Ser Ala Arg Ala Ser Ala Trp Gln 170 Ile Gly Ile Gln Ser Ala Gln Ile Lys Ala Ile Glu Asn Asp His His Trp His Glu Gly Asn Tyr Tyr Glu Ser Gly Cys Asn Pro Ala Thr Gly 200 Leu Gly Ala Ala Arg Arg Ile Ala His Leu Thr Tyr Arg Gly Glu Leu 215 Glu Ile Asp Glu Arg Phe Gly Thr Lys Ala Gln Lys Asn Glu Asn Pro Leu Gly Pro Tyr Arg Lys Pro Asp Gln Arg Phe Ala Val Glu Ser Tyr 250 Leu Asp Tyr Gln Ala Asp Lys Leu Val Gln Arg Phe Asp Ala Gly Ser Tyr Val Leu Leu Thr Asp Ala Leu Asn Arg His Asp Ile Gly Arg Asp Arg Gly Gly Leu Asn Lys Ala Leu Glu Ser Ile Lys Val Pro Val Leu 290 Val Ala Gly Val Asp Thr Asp Ile Leu Tyr Pro Tyr His Gln Glu His Leu Ser Arg Asn Leu Gly Asn Leu Leu Ala Met Ala Lys Ile Val Ser Pro Val Gly His Asp Ala Phe Leu Thr Glu Ser Arg Gln Met Asp Arg Ile Val Arg Asn Phe Phe Ser Leu Ile Ser Pro Asp Glu Asp Asn 360 355 Pro Ser Thr Tyr Ile Glu Phe Tyr Ile 375 370 <210> 179 <211> 1210 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101) .. (1210) <223> FRXA00403 <400> 179 tttttcagac tcgtgagaat gcaaactaga ctagacagag ctgtccatat acactggacg 60 aagttttagt cttgtccacc cagaacaggc ggttattttc atg ccc acc ctc gcg Met Pro Thr Leu Ala 1

BNSDOCID: <WO 0100843A2 L >

											ggt Gly						163
											gcc Ala						211
											aat Asn						259
		_				_			-	_	gat Asp			-	_	_	307
L	tc eu 70	ggt Gly	ccc Pro	ggc Gly	aaa Lys	gcc Ala 75	atc Ile	aac Asn	act Thr	gat Asp	att Ile 80	tac Tyr	tgc Cys	gtg Val	atc Ile	tgt Cys 85	355
			_				-				acc Thr						403
											ttc Phe						451
											ctc Leu						499
											atg Met						547
L											gtt Val 160						595
											caa Gln						643
											cac His						691
			-			_			_		gga Gly						739
											cta Leu						787
P					-						cca Pro 240						835
a	ag	ccc	gac	cag	cgc	ttc	gcc	gtg	gaa	tcc	tac	ttg	gac	tac	caa	gca	883

Lys Pro Asp Gln Arg Phe Ala Val Glu Ser Tyr Leu Asp Tyr Gln Ala 250 255 gac aag cta gta cag cgt ttc gac gcc ggc tcc tac gtc ttg ctc acc 931 Asp Lys Leu Val Gln Arg Phe Asp Ala Gly Ser Tyr Val Leu Leu Thr 979 gac gcc ctc aac cgc cac gac att ggt cgc gac cgc gga ggc ctc aac Asp Ala Leu Asn Arg His Asp Ile Gly Arg Asp Arg Gly Gly Leu Asn aag gca ctc gaa tcc atc aaa gtt cca gtc ctt gtc gca ggc gta gat 1027 Lys Ala Leu Glu Ser Ile Lys Val Pro Val Leu Val Ala Gly Val Asp 300 acc gat att ttg tac ccc tac cac cag caa gaa cac ctc tcc aga aac Thr Asp Ile Leu Tyr Pro Tyr His Gln Glu His Leu Ser Arg Asn ctg gga aat cta ctg gca atg gca aaa atc gta tcc cct gtc ggc cac 1123 Leu Gly Asn Leu Leu Ala Met Ala Lys Ile Val Ser Pro Val Gly His 330 gat gct ttc ctc acc gaa agc cgc caa atg gat cgc atc gtg agg aac 1171 Asp Ala Phe Leu Thr Glu Ser Arg Gln Met Asp Arg Ile Val Arg Asn 345 ttc ttc agc ctc atc tcc cca gac gaa gac aac cct tcg 1210 Phe Phe Ser Leu Ile Ser Pro Asp Glu Asp Asn Pro Ser 365 360 <210> 180 <211> 370 <212> PRT <213> Corynebacterium glutamicum <400> 180 Met Pro Thr Leu Ala Pro Ser Gly Gln Leu Glu Ile Gln Ala Ile Gly 1 5 15 Asp Val Ser Thr Glu Ala Gly Ala Ile Ile Thr Asn Ala Glu Ile Ala Tyr His Arg Trp Gly Glu Tyr Arg Val Asp Lys Glu Gly Arg Ser Asn Val Val Leu Ile Glu His Ala Leu Thr Gly Asp Ser Asn Ala Ala Asp Trp Trp Ala Asp Leu Leu Gly Pro Gly Lys Ala Ile Asn Thr Asp Ile Tyr Cys Val Ile Cys Thr Asn Val Ile Gly Gly Cys Asn Gly Ser Thr 90 85

Gly Pro Gly Ser Met His Pro Asp Gly Asn Phe Trp Gly Asn Arg Phe 105 Pro Ala Thr Ser Ile Arg Asp Gln Val Asn Ala Glu Lys Gln Phe Leu 120 Asp Ala Leu Gly Ile Thr Thr Val Ala Ala Val Leu Gly Gly Ser Met 135 Gly Gly Ala Arg Thr Leu Glu Trp Ala Ala Met Tyr Pro Glu Thr Val 155 Gly Ala Ala Val Leu Ala Val Ser Ala Arg Ala Ser Ala Trp Gln Ile Gly Ile Gln Ser Ala Gln Ile Lys Ala Ile Glu Asn Asp His His Trp His Glu Gly Asn Tyr Tyr Glu Ser Gly Cys Asn Pro Ala Thr Gly 200 Leu Gly Ala Ala Arg Arg Ile Ala His Leu Thr Tyr Arg Gly Glu Leu Glu Ile Asp Glu Arg Phe Gly Thr Lys Ala Gln Lys Asn Glu Asn Pro 230 Leu Gly Pro Tyr Arg Lys Pro Asp Gln Arg Phe Ala Val Glu Ser Tyr Leu Asp Tyr Gln Ala Asp Lys Leu Val Gln Arg Phe Asp Ala Gly Ser Tyr Val Leu Leu Thr Asp Ala Leu Asn Arg His Asp Ile Gly Arg Asp Arg Gly Gly Leu Asn Lys Ala Leu Glu Ser Ile Lys Val Pro Val Leu 295 Val Ala Gly Val Asp Thr Asp Ile Leu Tyr Pro Tyr His Gln Glu Glu His Leu Ser Arg Asn Leu Gly Asn Leu Leu Ala Met Ala Lys Ile Val Ser Pro Val Gly His Asp Ala Phe Leu Thr Glu Ser Arg Gln Met Asp Arg Ile Val Arg Asn Phe Phe Ser Leu Ile Ser Pro Asp Glu Asp Asn Pro Ser 370

<210> 181

<211> 771

<212> DNA

<213> Corynebacterium glutamicum

<220>

<221> CDS <222> (101)..(748) <223> RXC01207

<223> RXC01207 <400> 181 cttcatgatc tcaccggcag agcgcgtttt gttacagcgc gtaaactgtg actttgaaaa 60 atttttgaac aatccgtaca ccaacttcag gagaaaaaca gtg agc aga atc tat Val Ser Arg Ile Tyr gac tgt gcc gac caa gac tcc cgt gca gca ggc cta aag gcg gct gtc 163 Asp Cys Ala Asp Gln Asp Ser Arg Ala Ala Gly Leu Lys Ala Ala Val gat gca gtc aaa gcc ggt cag ctc gtt gtc ctt ccc acg gat acc ctt 211 Asp Ala Val Lys Ala Gly Gln Leu Val Val Leu Pro Thr Asp Thr Leu 259 tat gga ctc ggc tgc gac gct ttc aac aac gag gca gta gcc aac ctt Tyr Gly Leu Gly Cys Asp Ala Phe Asn Asn Glu Ala Val Ala Asn Leu 307 ctg gcc acc aaa cac cgt ggc ccc gat atg ccc gtt cca gtg ctc gtc Leu Ala Thr Lys His Arg Gly Pro Asp Met Pro Val Pro Val Leu Val 60 ggc agc tgg gac acc att caa gga ctt gtg cac tcc tat tct gcg cag 355 Gly Ser Trp Asp Thr Ile Gln Gly Leu Val His Ser Tyr Ser Ala Gln 80 gca aaa gcg ctt gtg gag gcg ttc tgg cct ggt gga ctg tcc atc atc 403 Ala Lys Ala Leu Val Glu Ala Phe Trp Pro Gly Gly Leu Ser Ile Ile 95 gtt ccg cag gca cca agc ctt ccg tgg aac ctt ggc gat acc cgt ggc 451 Val Pro Gln Ala Pro Ser Leu Pro Trp Asn Leu Gly Asp Thr Arg Gly acc gta atg ctg cgc atg cca ctg cac cca gtt gcc att gaa ttg ctg 499 Thr Val Met Leu Arg Met Pro Leu His Pro Val Ala Ile Glu Leu Leu 120 cgc caa acc gga cca atg gct gtc tcc tcc gcc aac atc tcc gga cat 547 Arg Gln Thr Gly Pro Met Ala Val Ser Ser Ala Asn Ile Ser Gly His 140 135 595 act cct cca acc acc gtg ctg gag gct cgt cag cag ctc aac caa aat Thr Pro Pro Thr Thr Val Leu Glu Ala Arg Gln Gln Leu Asn Gln Asn 150 155 160 643 gte get gte tae ete gat ggt gge gaa tge geg etg gee aec eet tea Val Ala Val Tyr Leu Asp Gly Gly Glu Cys Ala Leu Ala Thr Pro Ser 170 175 acc atc gtg gat att tca ggc ccc gca cca aag att ttg cgt gag ggt 691 Thr Ile Val Asp Ile Ser Gly Pro Ala Pro Lys Ile Leu Arg Glu Gly 185 190 gcc atc agc gca gaa cgc gtt ggc gaa gta ctt gga gtg tcg gca gaa 739

Ala Ile Ser Ala Glu Arg Val Gly Glu Val Leu Gly Val Ser Ala Glu

771

200 205 210

agc ctg cgc taaatgggag tcggtttcgc ggg Ser Leu Arg

215

<210> 182

<211> 216

<212> PRT

<213> Corynebacterium glutamicum

<400> 182

Val Ser Arg Ile Tyr Asp Cys Ala Asp Gln Asp Ser Arg Ala Ala Gly
1 5 10 15

Leu Lys Ala Ala Val Asp Ala Val Lys Ala Gly Gln Leu Val Val Leu 20 25 30

Pro Thr Asp Thr Leu Tyr Gly Leu Gly Cys Asp Ala Phe Asn Asn Glu 35 40

Ala Val Ala Asn Leu Leu Ala Thr Lys His Arg Gly Pro Asp Met Pro 50 55 60

Val Pro Val Leu Val Gly Ser Trp Asp Thr Ile Gln Gly Leu Val His 65 70 75 80

Ser Tyr Ser Ala Gln Ala Lys Ala Leu Val Glu Ala Phe Trp Pro Gly
85 90 95

Gly Leu Ser Ile Ile Val Pro Gln Ala Pro Ser Leu Pro Trp Asn Leu 100 105 110

Gly Asp Thr Arg Gly Thr Val Met Leu Arg Met Pro Leu His Pro Val 115 120 125

Ala Ile Glu Leu Leu Arg Gln Thr Gly Pro Met Ala Val Ser Ser Ala 130 135 140

Asn Ile Ser Gly His Thr Pro Pro Thr Thr Val Leu Glu Ala Arg Gln 145 150 155 160

Gln Leu Asn Gln Asn Val Ala Val Tyr Leu Asp Gly Gly Glu Cys Ala 165 170 175

Leu Ala Thr Pro Ser Thr Ile Val Asp Ile Ser Gly Pro Ala Pro Lys
180 185 190

Ile Leu Arg Glu Gly Ala Ile Ser Ala Glu Arg Val Gly Glu Val Leu 195 200 205

Gly Val Ser Ala Glu Ser Leu Arg 210 215

<210> 183

<211> 1419

<212> DNA

<213> Corynebacterium glutamicum

<220> <221> CDS <222> (101)..(1396) <223> RXC00152 <400> 183 gtcattgata tccaaggcac gaccgcgatt gtatggaaag aagcctaaat ttttaacaat 60 caaatagtac tggccattcc caactaaaac tggagtaacg atg aca gga cta atc Met Thr Gly Leu Ile 163 Leu Ala Ile Val Phe Leu Val Phe Val Ala Val Val Ile Lys Ser 10 211 ata gcc ctg att ccc cag ggt gaa gcc gcc gtc att gaa cgc ctt ggt Ile Ala Leu Ile Pro Gln Gly Glu Ala Ala Val Ile Glu Arg Leu Gly 25 259 age tac acc cgc acc gtt tca ggt ggc ctg acc ctg ctg gtt cca ttc Ser Tyr Thr Arg Thr Val Ser Gly Gly Leu Thr Leu Leu Val Pro Phe 40 307 gtg gac cga gta cgc gca agg atc gac acc cgt gag cgc gtg gtc tca Val Asp Arg Val Arg Ala Arg Ile Asp Thr Arg Glu Arg Val Val Ser 55 60 ttc cca ccq caq gct gtt att acc caa gac aac ctg acc gtg gcc atc 355 Phe Pro Pro Gln Ala Val Ile Thr Gln Asp Asn Leu Thr Val Ala Ile 75 gat atc gtg gtg acc ttc caa atc aac gaa cca gag cgc gcc atc tac 403 Asp Ile Val Val Thr Phe Gln Ile Asn Glu Pro Glu Arg Ala Ile Tyr ggc gtg gac aac tac atc gtc ggt gtg gag cag att tct gta gca aca Gly Val Asp Asn Tyr Ile Val Gly Val Glu Gln Ile Ser Val Ala Thr 105 ctt cga gac gtt gtc ggt ggc atg acc ctg gaa gaa acc ctc act tca Leu Arg Asp Val Val Gly Gly Met Thr Leu Glu Glu Thr Leu Thr Ser 120 547 cgt gac gtg atc aac cgc cgc ctc cgt ggc gag ctc gat gca gca acc Arg Asp Val Ile Asn Arg Arg Leu Arg Gly Glu Leu Asp Ala Ala Thr 135 acc aaa tgg ggc ctg cgc atc agc cgt gtg gaa cta aag gca att gat 595 Thr Lys Trp Gly Leu Arg Ile Ser Arg Val Glu Leu Lys Ala Ile Asp 150 155 160 ccg cca cca tcc atc cag caa tcg atg gaa aag cag atg aag gca gac 643 Pro Pro Pro Ser Ile Gln Gln Ser Met Glu Lys Gln Met Lys Ala Asp 170 180 cgt gaa aag cgc gcc acc att ttg acc gca gaa ggt cag cgc gaa gcc 691 Arg Glu Lys Arg Ala Thr Ile Leu Thr Ala Glu Gly Gln Arg Glu Ala 185 190 gac atc aaa act gcc gaa ggt gaa aag caa gcc aag atc ctc caa gct 739

Asp	Ile	200		c Ala	a Glu	ı Gly	/ Glu 205		5 Glr	n Ala	a Lys	s Ile 210		ı Glı	n Ala	
gag Glu	ggt Gly 215	/ Gli	a aag 1 Lys	g cad s His	gca Ala	tco Ser 220	Ile	cto Lev	g aac ı Asr	gca n Ala	a gaa a Glu 225	ı Ala	ı gaa ı Glı	a cgo ı Arç	caa g Gln	787
gcg Ala 230	Met	ato : Ile	c cto	g cgc ı Arg	gco Ala 235	ı Glu	ı ggt ı Gly	gaa Glu	e cgc . Arg	gca Ala 240	ı Ala	cgc Arg	tac Tyr	cto Leu	c cag Gln 245	835
gcg Ala	cag Gln	ggt Gly	gaa Glu	a gcc a Ala 250	Arg	gca Ala	atc Ile	caa Gln	aag Lys 255	Val	aac Asn	gca Ala	gca Ala	ato 11e 260	aag Lys	883
tct Ser	gcc Ala	aag Lys	ttg Leu 265	Thr	cca Pro	gag Glu	gtt Val	ctt Leu 270	Ala	tat Tyr	caa Gln	tac Tyr	Cto Leu 275	Glu	aag Lys	931
ctt Leu	cct Pro	aag Lys 280	Ile	gca Ala	gag Glu	ggc Gly	aac Asn 285	gcc Ala	tcc Ser	aag Lys	atg Met	tgg Trp 290	Val	ato	cca Pro	979
agc 102	cag	ttc	tcc	gat	tct	ctg	gaa	ggt	ttt	gcg	aag	cag	ttc	ggc	gca	
		Phe	Ser	Asp	Ser	Leu 300		Gly	Phe	Ala	Lys 305	Gln	Phe	Gly	Ala	
aag 1075	gat	gca	gaa	ggt	gtc	ttc	cgc	tac	gaa	cca	aac	acc	gtg	gat	gaa	
		Ala	Glu	Gly	Val 315	Phe	Arg	Tyr	Glu	Pro 320	Asn	Thr	Val	Asp	Glu 325	
gaa 1123	acc	cgc	gac	atc	gca	aac	gcc	gac	aac	gtg	gaa	gac	tgg	ttc	tcc	
		Arg	Asp	Ile 330	Ala	Asn	Ala	Asp	Asn 335	Val	Glu	Asp	Trp	Phe 340	Ser	
acc 1171	gaa	tca	gac	cct	gaa	atc	gca	gca	gca	gtc	gcc	gca	gca	aac	gcc	
		Ser	Asp 345		Glu	Ile	Ala	Ala 350		Val	Ala	Ala	Ala 355	Asn	Ala	
gtg 1219	gcc	aac	aag	cca	gtc	gat	cca	gaa	ccc	ggt	gag	atc	ctt	tcc	aag	
		Asn 360	Lys	Pro	Val	Asp	Pro 365	Glu	Pro	Gly	Glu	Ile 370	Leu	Ser	Lys	
aag 1267	acc	gca	cga	cgc	gtt	gaa	cct	gaa	gca	gta	ttg	gag	gct	ttg	caa	
Lys		Ala	Arg	Arg	Val	Glu 380	Pro	Glu	Ala	Val	Leu 385	Glu	Ala	Leu	Gln	
aac 1315	gga	acc	act	aca	caa	cct	gag	gtt	gag	gca	gca	cct	cct	acc	gca	
_		Thr	Thr	Thr	Gln 395	Pro	Glu	Val	Glu	Ala 400	Ala	Pro	Pro	Thr	Ala 405	
aac 1363	ttc	gcc	caa	gaa	ttc	cct	gca	cca	cag	gca	aac	cct	gaa	gat	tac	
		Ala	Gln	Glu	Phe	Pro	Ala	Pro	Gln	Ala	Asn	Pro	Glu	Asp	Tyr	

410 415 420

tcc gac caa cac cga gag aat cct tac gga aac taatcaggca taagaaaagg 1416 Ser Asp Gln His Arg Glu Asn Pro Tyr Gly Asn

cgg 1419

<210> 184

<211> 432

<212> PRT

<213> Corynebacterium glutamicum

425

<400> 184

Met Thr Gly Leu Ile Leu Ala Ile Val Phe Leu Val Phe Val Ala Val 1 5 10 15

Val Val Ile Lys Ser Ile Ala Leu Ile Pro Gln Gly Glu Ala Ala Val 20 25 30

Ile Glu Arg Leu Gly Ser Tyr Thr Arg Thr Val Ser Gly Gly Leu Thr 35 40 45

Leu Leu Val Pro Phe Val Asp Arg Val Arg Ala Arg Ile Asp Thr Arg 50 55 60

Glu Arg Val Val Ser Phe Pro Pro Gln Ala Val Ile Thr Gln Asp Asn 65 70 75 80

Leu Thr Val Ala Ile Asp Ile Val Val Thr Phe Gln Ile Asn Glu Pro
85 90 95

Glu Arg Ala Ile Tyr Gly Val Asp Asn Tyr Ile Val Gly Val Glu Gln 100 105 110

Ile Ser Val Ala Thr Leu Arg Asp Val Val Gly Met Thr Leu Glu 115 120 125

Glu Thr Leu Thr Ser Arg Asp Val Ile Asn Arg Arg Leu Arg Gly Glu 130 135 140

Leu Asp Ala Ala Thr Thr Lys Trp Gly Leu Arg Ile Ser Arg Val Glu 145 150 155 160

Leu Lys Ala Ile Asp Pro Pro Pro Ser Ile Gln Gln Ser Met Glu Lys 165 170 175

Gln Met Lys Ala Asp Arg Glu Lys Arg Ala Thr Ile Leu Thr Ala Glu 180 185 190

Gly Gln Arg Glu Ala Asp Ile Lys Thr Ala Glu Gly Glu Lys Gln Ala 195 200 205

Lys Ile Leu Gln Ala Glu Gly Glu Lys His Ala Ser Ile Leu Asn Ala 210 215 220

Glu Ala Glu Arg Gln Ala Met Ile Leu Arg Ala Glu Gly Glu Arg Ala 225 230 235 240

Ala Arg Tyr Leu Gln Ala Gln Gly Glu Ala Arg Ala Ile Gln Lys Val Asn Ala Ala Ile Lys Ser Ala Lys Leu Thr Pro Glu Val Leu Ala Tyr 265 Gln Tyr Leu Glu Lys Leu Pro Lys Ile Ala Glu Gly Asn Ala Ser Lys 280 Met Trp Val Ile Pro Ser Gln Phe Ser Asp Ser Leu Glu Gly Phe Ala Lys Gln Phe Gly Ala Lys Asp Ala Glu Gly Val Phe Arg Tyr Glu Pro 315 Asn Thr Val Asp Glu Glu Thr Arg Asp Ile Ala Asn Ala Asp Asn Val 330 Glu Asp Trp Phe Ser Thr Glu Ser Asp Pro Glu Ile Ala Ala Val 345 Ala Ala Ala Asn Ala Val Ala Asn Lys Pro Val Asp Pro Glu Pro Gly 360 Glu Ile Leu Ser Lys Lys Thr Ala Arg Arg Val Glu Pro Glu Ala Val 375 Leu Glu Ala Leu Gln Asn Gly Thr Thr Thr Gln Pro Glu Val Glu Ala 390 395 Ala Pro Pro Thr Ala Asn Phe Ala Gln Glu Phe Pro Ala Pro Gln Ala 405 Asn Pro Glu Asp Tyr Ser Asp Gln His Arg Glu Asn Pro Tyr Gly Asn 420 425 430

<210> 185 <211> 1170 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101) .. (1147) <223> RXA00115 <400> 185 tggattctcg agtctgtaca cccttgatca aagcccgagt gttccgtaga ttaactttgt 60

cgtatattgt gacctacacc ccatactgtt aggagttttc atg ctc gac aat agt Met Leu Asp Asn Ser 1 ttt tac acc gca gag gtt cag ggc cca tac gaa acc gct tcc att ggc

Phe Tyr Thr Ala Glu Val Gln Gly Pro Tyr Glu Thr Ala Ser Ile Gly 15

		_		_	-	 			 _	-	tgg Trp 35	-	_	211
											gcc Ala			259
											cag Gln			307
			_		-						atc Ile			355
						 _	-	-		_	aac Asn	_	_	403
-	_	_		_	_	_		_		_	att Ile 115		_	451
_	_	_	_	_	_		_	-			ggt Gly			499
-			_	_	_	 	_	_	 	_	caa Gln			547
			_	_		-		_	_	-	gct Ala			595
											acc Thr			643
											ggc Gly 195			691
											tcg Ser			739
											gag Glu			787
											gac Asp			835
											aac Asn			883

tgg aag tgg cag cat ggc gat gtc tct cgc cac acc ggc ggc gac ttg 931
Trp Lys Trp Gln His Gly Asp Val Ser Arg His Thr Gly Gly Asp Leu
265 270 275

gca gcg gct ctt ggc cga gtg aag gct aag acc ttc gtt atg ccc atc 979
Ala Ala Ala Leu Gly Arg Val Lys Ala Lys Thr Phe Val Met Pro Ile
280 285 290

age gag gae atg tte ttt eet gtt egt gae tgt gee gea gaa eaa gea 1027

Ser Glu Asp Met Phe Phe Pro Val Arg Asp Cys Ala Ala Glu Gln Ala 295 300 305

ctc atc cca ggc agc gag ctt cga gtg atc gaa gac atc gcc ggt cac 1075

Leu Ile Pro Gly Ser Glu Leu Arg Val Ile Glu Asp Ile Ala Gly His 310 315 320 325

ctt ggg ctt ttt aac gtc tct gag aat tac atc cca cag atc gac aaa 1123

Leu Gly Leu Phe Asn Val Ser Glu Asn Tyr Ile Pro Gln Ile Asp Lys 330 335 340

aat ctg aaa gag ctg ttc gag agc taaacactga tgtcaaagag cct 1170

Asn Leu Lys Glu Leu Phe Glu Ser 345

<210> 186

<211> 349

<212> PRT

<213> Corynebacterium glutamicum

<400> 186

Met Leu Asp Asn Ser Phe Tyr Thr Ala Glu Val Gln Gly Pro Tyr Glu
1 5 10 15

Thr Ala Ser Ile Gly Arg Leu Glu Leu Glu Glu Gly Gly Val Ile Glu
20 25 30

Asp Cys Trp Leu Ala Tyr Ala Thr Ala Gly Thr Leu Asn Glu Asp Lys 35 40 45

Ser Asn Ala Ile Leu Ile Pro Thr Trp Tyr Ser Gly Thr His Gln Thr 50 55 60

Trp Phe Gln Gln Tyr Ile Gly Thr Asp His Ala Leu Asp Pro Ser Lys 65 70 75 80

Tyr Phe Ile Ile Ser Ile Asn Gln Ile Gly Asn Gly Leu Ser Val Ser 85 90 95

Pro Ala Asn Thr Ala Asp Asp Ser Ile Ser Met Ser Lys Phe Pro Asn 100 105 110

Val Arg Ile Gly Asp Asp Val Val Ala Gln Asp Arg Leu Leu Arg Gln
115 120 125

Glu Phe Gly Ile Thr Glu Leu Phe Ala Val Val Gly Gly Ser Met Gly 130 135 140

Ala Gln Gln Thr Tyr Glu Trp Ile Val Arg Phe Pro Asp Gln Val His 150 155 Arg Ala Ala Pro Ile Ala Gly Thr Ala Lys Asn Thr Pro His Asp Phe 170 Ile Phe Thr Gln Thr Leu Asn Glu Thr Val Glu Ala Asp Pro Gly Phe 180 Asn Gly Gly Glu Tyr Ser Ser His Glu Glu Val Ala Asp Gly Leu Arg 200 Arg Gln Ser His Leu Trp Ala Ala Met Gly Phe Ser Thr Glu Phe Trp 210 Lys Gln Glu Ala Trp Arg Arg Leu Gly Leu Glu Ser Lys Glu Ser Val 230 235 Leu Ala Asp Phe Leu Asp Pro Leu Phe Met Ser Met Asp Pro Asn Thr 245 250 Leu Leu Asn Asn Ala Trp Lys Trp Gln His Gly Asp Val Ser Arg His 265 Thr Gly Gly Asp Leu Ala Ala Leu Gly Arg Val Lys Ala Lys Thr 280 Phe Val Met Pro Ile Ser Glu Asp Met Phe Pro Val Arg Asp Cys 295 Ala Ala Glu Gln Ala Leu Ile Pro Gly Ser Glu Leu Arg Val Ile Glu Asp Ile Ala Gly His Leu Gly Leu Phe Asn Val Ser Glu Asn Tyr Ile 330 Pro Gln Ile Asp Lys Asn Leu Lys Glu Leu Phe Glu Ser <210> 187 <211> 1254 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101) ... (1231) <223> RXN00403 <400> 187 tttttcagac tcgtgagaat gcaaactaga ctagacagag ctgtccatat acactggacg 60 aagttttagt cttgtccacc cagaacaggc ggttattttc atg ccc acc ctc gcg Met Pro Thr Leu Ala cct tca ggt caa ctt gaa atc caa gcg atc ggt gat gtc tcc acc gaa 163 Pro Ser Gly Gln Leu Glu Ile Gln Ala Ile Gly Asp Val Ser Thr Glu 10

RNSDOCID: <WO 0100843A2 1 >

gcc Ala	gga Gly	gca Ala	ato Ile 25	: Ile	aca Thr	aac Asn	gct Ala	gaa Glu 30	Ile	gcc Ala	tat Tyr	cac His	cgc Arc	Tr	ggt Gly	211
gaa Glu	tac Tyr	cgc Arg 40	Val	gat Asp	aaa Lys	gaa Glu	gga Gly 45	Arg	ago Ser	aat Asn	gtc Val	gtt Val	Let	ato Ile	gaa Glu	259
cac His	gcc Ala 55	Leu	act Thr	gga Gly	gat Asp	tcc Ser 60	Asn	gca Ala	gcc Ala	gat Asp	tgg Trp 65	Trp	gct Ala	gac Asp	ttg Leu	307
ctc Leu 70	Gly	ccc Pro	ggc Gly	aaa Lys	gcc Ala 75	atc Ile	aac Asn	act Thr	gat Asp	att Ile 80	tac Tyr	tgc Cys	gtg Val	atc	tgt Cys 85	355
acc Thr	aac Asn	gtc Val	atc Ile	ggt Gly 90	ggt Gly	tgc Cys	aac Asn	ggt Gly	tcc Ser 95	Thr	gga Gly	cct Pro	ggc	tcc Ser 100	atg Met	403
cat His	cca Pro	gat Asp	gga Gly 105	aat Asn	ttc Phe	tgg Trp	ggt Gly	aat Asn 110	cgc Arg	ttc Phe	ccc Pro	gcc Ala	acg Thr 115	tcc Ser	att Ile	451
cgt Arg	gat Asp	cag Gln 120	gta Val	aac Asn	gcc Ala	gaa Glu	aaa Lys 125	caa Gln	ttc Phe	ctc Leu	gac Asp	gca Ala 130	ctc Leu	ggc	atc Ile	499
acc Thr	acg Thr 135	gtc Val	gcc Ala	gca Ala	gta Val	ctt Leu 140	ggt Gly	ggt Gly	tcc Ser	atg Met	ggt Gly 145	ggt Gly	gcc Ala	cgc Arg	acc Thr	547
cta Leu 150	gag Glu	tgg Trp	gcc Ala	gca Ala	atg Met 155	tac Tyr	cca Pro	gaa Glu	act Thr	gtt Val 160	ggc Gly	gca Ala	gct Ala	gct Ala	gtt Val 165	595
ctt Leu	gca Ala	gtt Val	tct Ser	gca Ala 170	cgc Arg	gcc Ala	agc Ser	gcc Ala	tgg Trp 175	caa Gln	atc Ile	ggc Gly	att Ile	caa Gln 180	tcc Ser	643
gcc Ala	caa Gln	att Ile	aag Lys 185	gcg Ala	att Ile	gaa Glu	aac Asn	gac Asp 190	cac His	cac His	tgg Trp	cac His	gaa Glu 195	ggc Gly	aac Asn	691
tac Tyr	tac Tyr	gaa Glu 200	tcc Ser	ggc Gly	tgc Cys	aac Asn	cca Pro 205	gcc Ala	acc Thr	gga Gly	ctc Leu	ggc Gly 210	gcc Ala	gcc Ala	cga Arg	739
cgc Arg	atc Ile 215	gcc Ala	cac His	ctc Leu	acc Thr	tac Tyr 220	cgt Arg	ggc Gly	gaa Glu	cta Leu	gaa Glu 225	atc Ile	gac Asp	gaa Glu	cgc Arg	787
ttc Phe 230	ggc Gly	acc Thr	aaa Lys	gcc Ala	caa Gln 235	aag Lys	aac Asn	gaa Glu	aac Asn	cca Pro 240	ctc Leu	ggt Gly	ccc Pro	tac Tyr	cgc Arg 245	835
aag Lys	ccc Pro	gac Asp	cag Gln	cgc Arg 250	ttc Phe	gcc Ala	gtg Val	gaa Glu	tcc Ser 255	tac Tyr	ttg Leu	gac Asp	tac Tyr	caa Gln 260	gca Ala	883

gac aag cta gta cag cgt ttc gac gcc ggc tcc tac gtc ttg ctc acc 931 Asp Lys Leu Val Gln Arg Phe Asp Ala Gly Ser Tyr Val Leu Leu Thr 270 265 gac gcc ctc aac cgc cac gac att ggt cgc gac cgc gga ggc ctc aac 979 Asp Ala Leu Asn Arg His Asp Ile Gly Arg Asp Arg Gly Gly Leu Asn 290 285 aag gca ctc gaa tcc atc aaa gtt cca gtc ctt gtc gca ggc gta gat Lys Ala Leu Glu Ser Ile Lys Val Pro Val Leu Val Ala Gly Val Asp acc gat att ttg tac ccc tac cac cag caa gaa cac ctc tcc aga aac 1075 Thr Asp Ile Leu Tyr Pro Tyr His Gln Glu His Leu Ser Arg Asn 315 320 ctg gga aat cta ctg gca atg gca aaa atc gta tcc cct gtc ggc cac 1123 Leu Gly Asn Leu Leu Ala Met Ala Lys Ile Val Ser Pro Val Gly His gat gct ttc ctc acc gaa agc cgc caa atg gat cgc atc gtg agg aac 1171 Asp Ala Phe Leu Thr Glu Ser Arg Gln Met Asp Arg Ile Val Arg Asn 345 350 ttc ttc agc ctc atc tcc cca gac gaa gac aac cct tcg acc tac atc Phe Phe Ser Leu Ile Ser Pro Asp Glu Asp Asn Pro Ser Thr Tyr Ile 365 gag ttc tac atc taataggtat ttacgacaaa tag 1254 Glu Phe Tyr Ile 375 <210> 188 <211> 377 <212> PRT <213> Corynebacterium glutamicum <400> 188 Met Pro Thr Leu Ala Pro Ser Gly Gln Leu Glu Ile Gln Ala Ile Gly Asp Val Ser Thr Glu Ala Gly Ala Ile Ile Thr Asn Ala Glu Ile Ala Tyr His Arg Trp Gly Glu Tyr Arg Val Asp Lys Glu Gly Arg Ser Asn 45 35 40 Val Val Leu Ile Glu His Ala Leu Thr Gly Asp Ser Asn Ala Ala Asp Trp Trp Ala Asp Leu Leu Gly Pro Gly Lys Ala Ile Asn Thr Asp Ile 75

Tyr Cys Val Ile Cys Thr Asn Val Ile Gly Gly Cys Asn Gly Ser Thr

85 90 95

Gly Pro Gly Ser Met His Pro Asp Gly Asn Phe Trp Gly Asn Arg Phe 100 105 110

Pro Ala Thr Ser Ile Arg Asp Gln Val Asn Ala Glu Lys Gln Phe Leu 115 120 125

Asp Ala Leu Gly Ile Thr Thr Val Ala Ala Val Leu Gly Gly Ser Met 130 135 140

Gly Gly Ala Arg Thr Leu Glu Trp Ala Ala Met Tyr Pro Glu Thr Val 145 150 155 160

Gly Ala Ala Val Leu Ala Val Ser Ala Arg Ala Ser Ala Trp Gln 165 170 175

Ile Gly Ile Gln Ser Ala Gln Ile Lys Ala Ile Glu Asn Asp His His
180 185 190

Trp His Glu Gly Asn Tyr Tyr Glu Ser Gly Cys Asn Pro Ala Thr Gly
195 200 205

Leu Gly Ala Ala Arg Arg Ile Ala His Leu Thr Tyr Arg Gly Glu Leu 210 215 220

Glu Ile Asp Glu Arg Phe Gly Thr Lys Ala Gln Lys Asn Glu Asn Pro 225 230 235 240

Leu Gly Pro Tyr Arg Lys Pro Asp Gln Arg Phe Ala Val Glu Ser Tyr 245 250 255

Leu Asp Tyr Gln Ala Asp Lys Leu Val Gln Arg Phe Asp Ala Gly Ser 260 265 270

Tyr Val Leu Leu Thr Asp Ala Leu Asn Arg His Asp Ile Gly Arg Asp 275 280 285

Arg Gly Gly Leu Asn Lys Ala Leu Glu Ser Ile Lys Val Pro Val Leu 290 295 300

Val Ala Gly Val Asp Thr Asp Ile Leu Tyr Pro Tyr His Gln Glu 305 310 315 320

His Leu Ser Arg Asn Leu Gly Asn Leu Leu Ala Met Ala Lys Ile Val 325 330 335

Ser Pro Val Gly His Asp Ala Phe Leu Thr Glu Ser Arg Gln Met Asp 340 345 350

Arg Ile Val Arg Asn Phe Phe Ser Leu Ile Ser Pro Asp Glu Asp Asn 355 360 365

Pro Ser Thr Tyr Ile Glu Phe Tyr Ile

<210> 189

<211> 1210

<212> DNA

<213> Corynebacterium glutamicum

<220> <221> CDS <222> (101)..(1210) <223> FRXA00403 <400> 189 tttttcagac tcgtgagaat gcaaactaga ctagacagag ctgtccatat acactggacg 60 aagttttagt cttgtccacc cagaacaggc ggttattttc atg ccc acc ctc gcg Met Pro Thr Leu Ala 163 cct tca ggt caa ctt gaa atc caa gcg atc ggt gat gtc tcc acc gaa Pro Ser Gly Gln Leu Glu Ile Gln Ala Ile Gly Asp Val Ser Thr Glu gcc gga gca atc att aca aac gct gaa atc gcc tat cac cgc tgg ggt 211 Ala Gly Ala Ile Ile Thr Asn Ala Glu Ile Ala Tyr His Arg Trp Gly 30 259 gaa tac cgc gta gat aaa gaa gga cgc agc aat gtc gtt ctc atc gaa Glu Tyr Arg Val Asp Lys Glu Gly Arg Ser Asn Val Val Leu Ile Glu 45 307 cac gcc ctc act gga gat tcc aac gca gcc gat tgg tgg gct gac ttg His Ala Leu Thr Gly Asp Ser Asn Ala Ala Asp Trp Trp Ala Asp Leu 60 ctc qqt ccc qqc aaa qcc atc aac act gat att tac tgc gtg atc tgt 355 Leu Gly Pro Gly Lys Ala Ile Asn Thr Asp Ile Tyr Cys Val Ile Cys 80 acc aac gtc atc ggt ggt tgc aac ggt tcc acc gga cct ggc tcc atg 403 Thr Asn Val Ile Gly Gly Cys Asn Gly Ser Thr Gly Pro Gly Ser Met 90 95 cat cca gat gga aat ttc tgg ggt aat cgc ttc ccc gcc acg tcc att 451 His Pro Asp Gly Asn Phe Trp Gly Asn Arg Phe Pro Ala Thr Ser Ile cgt gat cag gta aac gcc gaa aaa caa ttc ctc gac gca ctc ggc atc 499 Arg Asp Gln Val Asn Ala Glu Lys Gln Phe Leu Asp Ala Leu Gly Ile 120 547 acc acg gtc gcc gca gta ctt ggt ggt tcc atg ggt ggc ggc acc Thr Thr Val Ala Ala Val Leu Gly Gly Ser Met Gly Gly Ala Arg Thr 140 135 595 cta gag tgg gcc gca atg tac cca gaa act gtt ggc gca gct gct gtt Leu Glu Trp Ala Ala Met Tyr Pro Glu Thr Val Gly Ala Ala Ala Val 160 150 155 ctt gca gtt tct gca cgc gcc agc gcc tgg caa atc ggc att caa tcc 643 Leu Ala Val Ser Ala Arg Ala Ser Ala Trp Gln Ile Gly Ile Gln Ser 170 175 gcc caa att aag gcg att gaa aac gac cac cac tgg cac gaa ggc aac Ala Gln Ile Lys Ala Ile Glu Asn Asp His His Trp His Glu Gly Asn 185 190

tac Tyr	tac Tyr	gaa Glu 200	Ser	ggc Gly	tgc Cys	aac Asn	cca Pro 205	Ala	acc Thr	gga Gly	ctc Leu	ggc Gly 210	Ala	gcc Ala	cga Arg	739
cgc Arg	atc Ile 215	gcc Ala	cac His	ctc Leu	acc Thr	tac Tyr 220	cgt Arg	ggc	gaa Glu	cta Leu	gaa Glu 225	atc Ile	gac Asp	gaa Glu	cgc Arg	787
ttc Phe 230	ggc Gly	acc Thr	aaa Lys	gcc Ala	caa Gln 235	aag Lys	aac Asn	gaa Glu	aac Asn	cca Pro 240	Leu	ggt Gly	ccc Pro	tac Tyr	cgc Arg 245	835
aag Lys	ccc Pro	gac Asp	cag Gln	cgc Arg 250	ttc Phe	gcc Ala	gtg Val	gaa Glu	tcc Ser 255	tac Tyr	ttg Leu	gac Asp	tac Tyr	caa Gln 260	gca Ala	883
gac Asp	aag Lys	cta Leu	gta Val 265	cag Gln	cgt Arg	ttc Phe	gac Asp	gcc Ala 270	ggc	tcc Ser	tac Tyr	gtc Val	ttg Leu 275	ctc Leu	acc Thr	931
gac Asp	gcc Ala	ctc Leu 280	aac Asn	cgc Arg	cac His	gac Asp	att Ile 285	ggt Gly	cgc Arg	gac Asp	cgc Arg	gga Gly 290	ggc Gly	ctc Leu	aac Asn	979
aag 1027	gca	ctc	gaa	tcc	atc	aaa	gtt	cca	gtc	ctt	gtc	gca	ggc	gta	gat	
Lys	Ala 295	Leu	Glu	Ser	Ile	Lys 300	Val	Pro	Val	Leu	Val 305	Ala	Gly	Val	Asp	
acc 1075	gat	att	ttg	tac	CCC	tac	cac	cag	caa	gaa	cac	ctc	tcc	aga	aac	
Thr 310	Asp	Ile	Leu	Tyr	Pro 315	Tyr	His	Gln	Gln	Glu 320	His	Leu	Ser	Arg	Asn 325	
ctg 1123	gga	aat	cta	ctg	gca	atg	gca	aaa	atc	gta	tcc	cct	gtc	ggc	cac	
Leu	Gly	Asn	Leu	Leu 330	Ala	Met	Ala	Lys	Ile 335	Val	Ser	Pro	Val	Gly 340	His	
gat 1171	gct	ttc	ctc	acc	gaa	agc	cgc	caa	atg	gat	cgc	atc	gtg	agg	aac	
Asp	Ala	Phe	Leu 345	Thr	Glu	Ser	Arg	Gln 350	Met	Asp	Arg	Ile	Val 355	Arg	Asn	
ttc 1210	ttc	agc	ctc	atc	tcc	cca	gac	gaa	gac	aac	cct	tcg				
	Phe	Ser 360	Leu	Ile	Ser		Asp 365	G1u	Asp	Asn	Pro	Ser 370				
<210 <211																

<211> 370

<212> PRT

<213> Corynebacterium glutamicum

<400> 190

Met Pro Thr Leu Ala Pro Ser Gly Gln Leu Glu Ile Gln Ala Ile Gly

Asp Val Ser Thr Glu Ala Gly Ala Ile Ile Thr Asn Ala Glu Ile Ala 20 30

Tyr His Arg Trp Gly Glu Tyr Arg Val Asp Lys Glu Gly Arg Ser Asn Val Val Leu Ile Glu His Ala Leu Thr Gly Asp Ser Asn Ala Ala Asp Trp Trp Ala Asp Leu Leu Gly Pro Gly Lys Ala Ile Asn Thr Asp Ile Tyr Cys Val Ile Cys Thr Asn Val Ile Gly Gly Cys Asn Gly Ser Thr Gly Pro Gly Ser Met His Pro Asp Gly Asn Phe Trp Gly Asn Arg Phe Pro Ala Thr Ser Ile Arg Asp Gln Val Asn Ala Glu Lys Gln Phe Leu 120 Asp Ala Leu Gly Ile Thr Thr Val Ala Ala Val Leu Gly Gly Ser Met Gly Gly Ala Arg Thr Leu Glu Trp Ala Ala Met Tyr Pro Glu Thr Val 150 155 Gly Ala Ala Ala Val Leu Ala Val Ser Ala Arg Ala Ser Ala Trp Gln Ile Gly Ile Gln Ser Ala Gln Ile Lys Ala Ile Glu Asn Asp His His 185 Trp His Glu Gly Asn Tyr Tyr Glu Ser Gly Cys Asn Pro Ala Thr Gly Leu Gly Ala Ala Arg Arg Ile Ala His Leu Thr Tyr Arg Gly Glu Leu Glu Ile Asp Glu Arg Phe Gly Thr Lys Ala Gln Lys Asn Glu Asn Pro 225 Leu Gly Pro Tyr Arg Lys Pro Asp Gln Arg Phe Ala Val Glu Ser Tyr 250 Leu Asp Tyr Gln Ala Asp Lys Leu Val Gln Arg Phe Asp Ala Gly Ser 260 Tyr Val Leu Leu Thr Asp Ala Leu Asn Arg His Asp Ile Gly Arg Asp 280 Arg Gly Gly Leu Asn Lys Ala Leu Glu Ser Ile Lys Val Pro Val Leu 290 295 Val Ala Gly Val Asp Thr Asp Ile Leu Tyr Pro Tyr His Gln Gln Glu His Leu Ser Arg Asn Leu Gly Asn Leu Leu Ala Met Ala Lys Ile Val Ser Pro Val Gly His Asp Ala Phe Leu Thr Glu Ser Arg Gln Met Asp 340 345

Arg Ile Val Arg Asn Phe Phe Ser Leu Ile Ser Pro Asp Glu Asp Asn 355 360 Pro Ser 370 <210> 191 <211> 687 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(664) <223> RXS03158 <400> 191 caaagctcac cgaaggcacc aacgccaagt tggttgttga caacaccttg gcatccccat 60 acctgcagca gccactaaaa ctcggcgcac acgcaagtcc ttg cac tcc acc Leu His Ser Thr Thr aag tac atc gaa gga cac tcc gac gtt gtt ggc ggc ctt gtg ggt acc Lys Tyr Ile Glu Gly His Ser Asp Val Val Gly Gly Leu Val Gly Thr 10 aac gac cag gaa atg gac gaa gaa ctg ctg ttc atg cag ggc ggc atc 211 Asn Asp Gln Glu Met Asp Glu Glu Leu Leu Phe Met Gln Gly Gly Ile 25 gga ccg atc cca tca gtt ttc gat gca tac ctg acc gcc cgt ggc ctc 259 Gly Pro Ile Pro Ser Val Phe Asp Ala Tyr Leu Thr Ala Arg Gly Leu 40 aag acc ctt gca gtg cgc atg gat cgc cac tgc gac aac gca gaa aag 307 Lys Thr Leu Ala Val Arg Met Asp Arg His Cys Asp Asn Ala Glu Lys 55 atc gcg gaa ttc ctg gac tcc cgc cca gag gtc tcc acc gtg ctc tac 355 Ile Ala Glu Phe Leu Asp Ser Arg Pro Glu Val Ser Thr Val Leu Tyr 70 75 cca ggt ctg aag aac cac cca ggc cac gaa gtc gca gcg aag cag atg 403 Pro Gly Leu Lys Asn His Pro Gly His Glu Val Ala Ala Lys Gln Met 90 aag cgc ttc ggc ggc atg atc tcc gtc cgt ttc gca ggc ggc gaa gaa 451 Lys Arg Phe Gly Gly Met Ile Ser Val Arg Phe Ala Gly Gly Glu Glu 105 gca gct aag aag ttc tgt acc tcc acc aaa ctg atc tgt ctg gcc gag 499 Ala Ala Lys Lys Phe Cys Thr Ser Thr Lys Leu Ile Cys Leu Ala Glu 120 125 130 tee etc ggt ggc gtg gaa tee etc etg gag cae eca gea ace atg ace 547 Ser Leu Gly Gly Val Glu Ser Leu Leu Glu His Pro Ala Thr Met Thr 135 140 cac cag tca gct gcc ggc tct cag ctc gag gtt ccc cgc gac ctc gtg 595

PCT/IB00/00923 WO 01/00843

His Gln Ser Ala Ala Gly Ser Gln Leu Glu Val Pro Arg Asp Leu Val cgc atc tcc att ggt att gaa gac att gaa gac ctg ctc gca gat gtc 643 Arg Ile Ser Ile Gly Ile Glu Asp Ile Glu Asp Leu Leu Ala Asp Val 170 687 gag cag gcc ctc aat aac ctt tagaaactat ttggcggcaa gca Glu Gln Ala Leu Asn Asn Leu 185 <210> 192

<211> 188

<212> PRT

<213> Corynebacterium glutamicum

<400> 192

Leu His Ser Thr Thr Lys Tyr Ile Glu Gly His Ser Asp Val Val Gly

Gly Leu Val Gly Thr Asn Asp Gln Glu Met Asp Glu Glu Leu Leu Phe

Met Gln Gly Gly Ile Gly Pro Ile Pro Ser Val Phe Asp Ala Tyr Leu

Thr Ala Arg Gly Leu Lys Thr Leu Ala Val Arg Met Asp Arg His Cys 55

Asp Asn Ala Glu Lys Ile Ala Glu Phe Leu Asp Ser Arg Pro Glu Val

Ser Thr Val Leu Tyr Pro Gly Leu Lys Asn His Pro Gly His Glu Val 85

Ala Ala Lys Gln Met Lys Arg Phe Gly Gly Met Ile Ser Val Arg Phe 105

Ala Gly Gly Glu Glu Ala Ala Lys Lys Phe Cys Thr Ser Thr Lys Leu 120

Ile Cys Leu Ala Glu Ser Leu Gly Gly Val Glu Ser Leu Leu Glu His 135

Pro Ala Thr Met Thr His Gln Ser Ala Ala Gly Ser Gln Leu Glu Val 155

Pro Arg Asp Leu Val Arg Ile Ser Ile Gly Ile Glu Asp Ile Glu Asp 170

Leu Leu Ala Asp Val Glu Gln Ala Leu Asn Asn Leu 180

<210> 193

<211> 617

<212> DNA

<213> Corynebacterium glutamicum

<220>

<221> CDS <222> (1)..(594) <223> FRXA00254 <400> 193 cag cca cta aaa ctc ggc gca cac gca gtc ttg cac tcc acc acc aag Gln Pro Leu Lys Leu Gly Ala His Ala Val Leu His Ser Thr Thr Lys tac atc gga gga cac tcc gac gtt gtt ggc ggc ctt gtg gtt acc aac 96 Tyr Ile Gly Gly His Ser Asp Val Val Gly Gly Leu Val Val Thr Asn gac cag gaa atg gac gaa gaa ctg ctg ttc atg cag ggc ggc atc gga 144 Asp Gln Glu Met Asp Glu Glu Leu Leu Phe Met Gln Gly Gly Ile Gly ccg atc cca tca gtt ttc gat gca tac ctg acc gcc cgt ggc ctc aag 192 Pro Ile Pro Ser Val Phe Asp Ala Tyr Leu Thr Ala Arg Gly Leu Lys 55 acc ctt gca gtg cgc atg gat cgc cac tgc gac aac gca gaa aag atc 240 Thr Leu Ala Val Arg Met Asp Arg His Cys Asp Asn Ala Glu Lys Ile gcg gaa ttc ctg gac tcc cgc cca gag gtc tcc acc gtg ctc tac cca 288 Ala Glu Phe Leu Asp Ser Arg Pro Glu Val Ser Thr Val Leu Tyr Pro 85 ggt ctg aag aac cac cca ggc cac gaa gtc gca gcg aag cag atg aag 336 Gly Leu Lys Asn His Pro Gly His Glu Val Ala Ala Lys Gln Met Lys cgc ttc ggc ggc atg atc tcc gtc cgt ttc gca ggc ggc gaa gaa gca 384 Arg Phe Gly Gly Met Ile Ser Val Arg Phe Ala Gly Gly Glu Glu Ala 120 gct aag aag ttc tgt acc tcc acc aaa ctg atc tgt ctg gcc gag tcc 432 Ala Lys Lys Phe Cys Thr Ser Thr Lys Leu Ile Cys Leu Ala Glu Ser ctc ggt ggc gtg gaa tcc ctc ctg gag cac cca gca acc atg acc cac 480 Leu Gly Gly Val Glu Ser Leu Leu Glu His Pro Ala Thr Met Thr His 150 155 cag tca gct gcc ggc tct cag ctc gag gtt ccc cgc gac ctc gtg cgc 528 Gln Ser Ala Ala Gly Ser Gln Leu Glu Val Pro Arg Asp Leu Val Arg 170 atc tcc att ggt att gaa gac att gaa gac ctg ctc gca gat gtc gag 576 Ile Ser Ile Gly Ile Glu Asp Ile Glu Asp Leu Leu Ala Asp Val Glu cag gcc ctc aat aac ctt tagaaactat ttggcggcaa gca 617 Gln Ala Leu Asn Asn Leu 195

<210> 194

<211> 198

<212> PRT

<213> Corynebacterium glutamicum

<400> 194

Gln Pro Leu Lys Leu Gly Ala His Ala Val Leu His Ser Thr Thr Lys

1 10 15

Tyr Ile Gly Gly His Ser Asp Val Val Gly Gly Leu Val Val Thr Asn 20 25 30

Asp Gln Glu Met Asp Glu Glu Leu Leu Phe Met Gln Gly Gly Ile Gly 35 40 45

Pro Ile Pro Ser Val Phe Asp Ala Tyr Leu Thr Ala Arg Gly Leu Lys 50 55 60

Thr Leu Ala Val Arg Met Asp Arg His Cys Asp Asn Ala Glu Lys Ile 65 70 75 80

Ala Glu Phe Leu Asp Ser Arg Pro Glu Val Ser Thr Val Leu Tyr Pro 85 90 95

Gly Leu Lys Asn His Pro Gly His Glu Val Ala Ala Lys Gln Met Lys
100 105 110

Arg Phe Gly Gly Met Ile Ser Val Arg Phe Ala Gly Gly Glu Glu Ala 115 120 125

Ala Lys Lys Phe Cys Thr Ser Thr Lys Leu Ile Cys Leu Ala Glu Ser 130 140

Leu Gly Gly Val Glu Ser Leu Leu Glu His Pro Ala Thr Met Thr His . 145 155 160

Gln Ser Ala Ala Gly Ser Gln Leu Glu Val Pro Arg Asp Leu Val Arg 165 170 175

Ile Ser Ile Gly Ile Glu Asp Ile Glu Asp Leu Leu Ala Asp Val Glu 180 185 190

Gln Ala Leu Asn Asn Leu 195

<210> 195

<211> 1170

<212> DNA

<213> Corynebacterium glutamicum

<220>

<221> CDS

<222> (101)..(1147)

<223> RXA02532

<400> 195

gatgaatttt tacccaccat ctgtacctat taaccctgcg tggcgtccac ccacagtaac 60

tgtgcaagcg ggacggccag ccagaactcc tggtgcgccg atg aac cca cct atc 115

Met Asn Pro Pro Ile

1

acg ttg tcc agc act tat gtt cat gat tca gaa aaa gct tat ggg cgc 163

Thr	Leu	Ser	Ser	Thr 10	Tyr	Val	His	Asp	Ser 15	Glu	Lys	Ala	Tyr	Gly 20	Arg	
_							gca Ala		-							211
							tat Tyr 45									259
							act Thr									307
-	_				_		aat Asn			_		_				355
			_				gtt Val									403
							gat Asp									451
							gat Asp 125									499
cgt	aaa	ctt	aga	att	t.t.a	act	atc	att	cac	aca	act	ttc	~~=	~		E 47
Arg							Val									547
ctt	Gly 135 cgt	Leu caa	Gly cgt	Val cca	Leu ttg	Thr 140 gaa		Val ggt	Asp gct	Ala gat	Thr 145 att	Phe gtg	Ala	Thr	Pro tcg	595
ctt Leu 150	Gly 135 cgt Arg	Leu caa Gln aaa Lys	cgt Arg ctt Leu	cca Pro	ttg Leu 155 ggt Gly	Thr 140 gaa Glu gga Gly	Val ctt	yal ggt Gly tct Ser	gct Ala gat Asp	gat Asp 160 ctt Leu	Thr 145 att Ile ctt Leu	Phe gtg Val ctt Leu	Ala ctt Leu gga Gly	Thr tac Tyr	tcg Ser 165	
ctt Leu 150 gca Ala	Gly 135 cgt Arg acc Thr	Leu caa Gln aaa Lys	Gly cgt Arg ctt Leu tct	Val cca Pro atc Ile 170	ttg Leu 155 ggt Gly	Thr 140 gaa Glu gga Gly	ctt Leu cac	yal ggt Gly tct Ser	gct Ala gat Asp 175	gat Asp 160 ctt Leu	Thr 145 att Ile ctt Leu	Phe gtg Val ctt Leu	Ala ctt Leu gga Gly cac	Thr tac Tyr gtc Val 180 cgt	tcg Ser 165 gca Ala	595
ctt Leu 150 gca Ala gtg Val	Gly 135 cgt Arg acc Thr tgc Cys	Leu caa Gln aaa Lys aag Lys	cgt Arg ctt Leu tct Ser 185	CCa Pro atc Ile 170 gag Glu	ttg Leu 155 ggt Gly cac His	Thr 140 gaa Glu gga Gly cat His	Val ctt Leu cac His	yal ggt Gly tct Ser cag Gln 190	gct Ala gat Asp 175 ttt Phe	gat Asp 160 ctt Leu ctt Leu	Thr 145 att Ile ctt Leu gcc Ala	Phe gtg Val ctt Leu act Thr	Ala ctt Leu gga Gly cac His 195 gct	tac Tyr gtc Val 180 cgt Arg	tcg Ser 165 gca Ala cat His	595 643
ctt Leu 150 gca Ala gtg Val gat Asp	Gly 135 cgt Arg acc Thr tgc Cys cat His	Leu caa Gln aaa Lys aag Lys ggt Gly 200 tat	cgt Arg ctt Leu tct Ser 185 tca Ser	CCa Pro atc Ile 170 gag Glu gtg Val	ttg Leu 155 ggt Gly cac His ccg Pro	Thr 140 gaa Glu gga Gly cat His gga Gly	Ctt Leu cac His gcg Ala	yal ggt Gly tct Ser cag Gln 190 ctt Leu ctt	gct Ala gat Asp 175 ttt Phe gaa Glu	gat Asp 160 ctt Leu ctt Leu gcg Ala	Thr 145 att Ile ctt Leu gcc Ala ttt Phe	Phe gtg Val ctt Leu act Thr ctt Leu 210 gaa	Ala ctt Leu gga Gly cac His 195 gct Ala	tac Tyr gtc Val 180 cgt Arg ctc Leu	tcg Ser 165 gca Ala cat His	595 643 691
ctt Leu 150 gca Ala gtg Val gat Asp	Gly 135 cgt Arg acc Thr tgc Cys cat His ttg Leu 215	caa Gln aaa Lys aag Lys ggt Gly 200 tat Tyr	cgt Arg ctt Leu tct Ser 185 tca Ser tcc Ser	CCA Pro atc Ile 170 gag Glu gtg Val ttg Leu	ttg Leu 155 ggt Gly cac His ccg Pro	Thr 140 gaa Glu gga Gly cat His gga Gly gtg Val 220	Ctt Leu cac His gcg Ala ggt Gly 205	yal ggt Gly tct Ser cag Gln 190 ctt Leu ctt Leu	gct Ala gat Asp 175 ttt Phe gaa Glu gat Asp	gat Asp 160 ctt Leu ctt Leu gcg Ala cga Arg	Thr 145 att Ile ctt Leu gcc Ala ttt Phe gca Ala 225 tcg	Phe gtg Val ctt Leu act Thr ctt Leu 210 gaa Glu gtt	Ala ctt Leu gga Gly cac His 195 gct Ala tcc Ser acc	tac Tyr gtc Val 180 cgt Arg ctc Leu aac Asn	tcg Ser 165 gca Ala cat His cgt Arg	595643691739

250 255 260 gtc cta ccc tct gga tgt gga aac atg ttg tca ttt gag ctt gat gca 931 Val Leu Pro Ser Gly Cys Gly Asn Met Leu Ser Phe Glu Leu Asp Ala 270 265 aca cct gaa cga act gat gag att ctc gaa agc ctg tca ctt tta acc 979 Thr Pro Glu Arg Thr Asp Glu Ile Leu Glu Ser Leu Ser Leu Leu Thr 285 cac gcg acc agt tgg gga ggt gtg gaa aca gcc att gaa cgt cgc acc His Ala Thr Ser Trp Gly Gly Val Glu Thr Ala Ile Glu Arg Arg Thr agg cgg gat gct gaa gtg gtg gca gaa gta ccg atg act ctt tgc cgc Arg Arg Asp Ala Glu Val Val Ala Glu Val Pro Met Thr Leu Cys Arg 320 315 gtt tcc gta gga att gaa gac gtt gaa gat cta tgg gaa gac ctc aac Val Ser Val Gly Ile Glu Asp Val Glu Asp Leu Trp Glu Asp Leu Asn gcc tca atc gac aaa gtt ctg ggt tagaactcgt agccagtaac cag Ala Ser Ile Asp Lys Val Leu Gly 345 <210> 196 <211> 349 <212> PRT <213> Corynebacterium glutamicum Met Asn Pro Pro Ile Thr Leu Ser Ser Thr Tyr Val His Asp Ser Glu 5 Lys Ala Tyr Gly Arg Asp Gly Asn Asp Gly Trp Gly Ala Phe Glu Ala 25 Ala Met Gly Thr Leu Asp Gly Gly Phe Ala Val Ser Tyr Ser Ser Gly 35 Leu Ala Ala Ala Thr Ser Ile Ala Asp Leu Val Pro Thr Gly Gly Thr Val Val Leu Pro Lys Ala Ala Tyr Tyr Gly Val Thr Asn Ile Phe Ala

Asn Thr Glu Glu Val Ile Ala Ala Ala Gln Gly Ala Asp Val Val Trp
100 105 110

Val Glu Ser Ile Ala Asn Pro Thr Met Val Val Ala Asp Ile Pro Ala

Arg Met Glu Ala Arg Gly Arg Leu Lys Val Arg Thr Val Asp Ala Asp

Ile Val Asp Gly Val Arg Gly Leu Gly Val Leu Thr Val Val Asp Ala 130 135 Thr Phe Ala Thr Pro Leu Arg Gln Arg Pro Leu Glu Leu Gly Ala Asp 150 155 Ile Val Leu Tyr Ser Ala Thr Lys Leu Ile Gly Gly His Ser Asp Leu Leu Leu Gly Val Ala Val Cys Lys Ser Glu His His Ala Gln Phe Leu Ala Thr His Arg His Asp His Gly Ser Val Pro Gly Gly Leu Glu Ala Phe Leu Ala Leu Arg Gly Leu Tyr Ser Leu Ala Val Arg Leu Asp Arg 215

Ala Glu Ser Asn Ala Ala Glu Leu Ser Arg Arg Leu Asn Ala His Pro

230 235

Ser Val Thr Arg Val Asn Tyr Pro Gly Leu Pro Asp Asp Pro Gln His 245 250

Glu Lys Ala Val Arg Val Leu Pro Ser Gly Cys Gly Asn Met Leu Ser 265

Phe Glu Leu Asp Ala Thr Pro Glu Arg Thr Asp Glu Ile Leu Glu Ser 275 280

Leu Ser Leu Leu Thr His Ala Thr Ser Trp Gly Gly Val Glu Thr Ala 295

Ile Glu Arg Arg Thr Arg Arg Asp Ala Glu Val Val Ala Glu Val Pro 310

Met Thr Leu Cys Arg Val Ser Val Gly Ile Glu Asp Val Glu Asp Leu 325

Trp Glu Asp Leu Asn Ala Ser Ile Asp Lys Val Leu Gly 340

<210> 197

<211> 861

<212> DNA

<213> Corynebacterium glutamicum

<220>

<221> CDS

<222> (101)..(838)

<223> RXS03159

<400> 197

aggggctagt tttacacaaa agtggacagc ttggtctatc attgccagaa gaccggtcct 60

tttagggcca tagaattctg attacaggag ttgatctacc ttg tct ttt gac cca Leu Ser Phe Asp Pro

aac acc cag ggt ttc tcc act gca tcg att cac gct ggg tat gag cca

Asn	Thr	Gln	Gly	Phe 10	Ser	Thr	Ala	Ser	Ile 15	His	Ala	Gly	Tyr	Glu 20	Pro	
										atc Ile						211
										aaa Lys						259
										gag Glu						307
										tcc Ser 80						355
										ccg Pro						403
										cgc Arg						451
										gtt Val						499
										acc Thr						547
										acc Thr 160						595
								Ala		ttg Leu					Thr	643
ttg Leu	gca Ala	tcc Ser	cca Pro 185	tac Tyr	ctg Leu	cag Gln	cag Gln	cca Pro 190	cta Leu	aaa Lys	ctc Leu	ggc Gly	gca Ala 195	cac His	gca Ala	691
agt Ser	cct Pro	tgc Cys 200	act Thr	cca Pro	cca Pro	cca Pro	agt Ser 205	aca Thr	tcg Ser	aag Lys	gac Asp	act Thr 210	ccg Pro	acg Thr	ttg Leu	739
										aaa Lys						787
tgt Cys 230	Ser	tgc Cys	agg Arg	gcg Ala	gca Ala 235	tcg Ser	gac Asp	cga Arg	tcc Ser	cat His 240	cag Gln	ttt Phe	tcg Ser	atg Met	cat His 245	835
acc Thr	_	ccgc	ccg	tggc	ctca	ag a	cc									861

RNSDOCID: <WO 0100843A2 1 >

<210> 198 <211> 246

<212> PRT

<213> Corynebacterium glutamicum

<400> 198

Leu Ser Phe Asp Pro Asn Thr Gln Gly Phe Ser Thr Ala Ser Ile His 1 5 10 15

Ala Gly Tyr Glu Pro Asp Asp Tyr Tyr Gly Ser Ile Asn Thr Pro Ile 20 25 30

Tyr Ala Ser Thr Thr Phe Ala Gln Asn Ala Pro Asn Glu Leu Arg Lys
35 40 45

Gly Tyr Glu Tyr Thr Arg Val Gly Asn Pro Thr Ile Val Ala Leu Glu
50 55 60

Gln Thr Val Ala Ala Leu Glu Gly Ala Lys Tyr Gly Arg Ala Phe Ser 65 70 75 80

Ser Gly Met Ala Ala Thr Asp Ile Leu Phe Arg Ile Ile Leu Lys Pro 85 90 95

Gly Asp His Ile Val Leu Gly Asn Asp Ala Tyr Gly Gly Thr Tyr Arg 100 105 110

Leu Ile Asp Thr Val Phe Thr Ala Trp Gly Val Glu Tyr Thr Val Val 115 120 125

Asp Thr Ser Val Val Glu Glu Val Lys Ala Ala Ile Lys Asp Asn Thr 130 135 140

Lys Leu Ile Trp Val Glu Thr Pro Thr Asn Pro Ala Leu Gly Ile Thr 145 150 155 160

Asp Ile Glu Ala Val Ala Lys Leu Thr Glu Gly Thr Asn Ala Lys Leu 165 170 175

Val Val Asp Asn Thr Leu Ala Ser Pro Tyr Leu Gln Gln Pro Leu Lys 180 185 190

Leu Gly Ala His Ala Ser Pro Cys Thr Pro Pro Pro Ser Thr Ser Lys
195 200 205

Asp Thr Pro Thr Leu Leu Ala Ala Leu Trp Val Pro Thr Thr Arg Lys 210 215 220

Trp Thr Lys Asn Cys Cys Ser Cys Arg Ala Ala Ser Asp Arg Ser His 225 230 235 240

Gln Phe Ser Met His Thr 245

<210> 199

<211> 703

<212> DNA

<213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(703) <223> FRXA02768 <400> 199 aggggctagt tttacacaaa agtggacagc ttggtctatc attgccagaa gaccggtcct 60 tttagggcca tagaattctg attacaggag ttgatctacc ttg tct ttt gac cca Leu Ser Phe Asp Pro aac acc cag ggt ttc tcc act gca tcg att cac gct ggg tat gag cca 163 Asn Thr Gln Gly Phe Ser Thr Ala Ser Ile His Ala Gly Tyr Glu Pro 10 gac gac tac tac ggt tcg att aac acc cca atc tat gcc tcc acc acc 211 Asp Asp Tyr Tyr Gly Ser Ile Asn Thr Pro Ile Tyr Ala Ser Thr Thr 25 ttc gcg cag aac gct cca aac gaa ctg cgc aaa ggc tac gag tac acc 259 Phe Ala Gln Asn Ala Pro Asn Glu Leu Arg Lys Gly Tyr Glu Tyr Thr cgt gtg ggc aac ccc acc atc gtg gca tta gag cag acc gtc gca gca 307 Arg Val Gly Asn Pro Thr Ile Val Ala Leu Glu Gln Thr Val Ala Ala 55 ctc gaa ggc gca aag tat ggc cgc gca ttc tcc tcc ggc atg gct gca Leu Glu Gly Ala Lys Tyr Gly Arg Ala Phe Ser Ser Gly Met Ala Ala 70 acc gac atc ctg ttc cgc atc atc ctc aag ccg ggc gat cac atc gtc Thr Asp Ile Leu Phe Arg Ile Ile Leu Lys Pro Gly Asp His Ile Val 90 ctc ggc aac gat gct tac ggc gga acc tac cgc ctg atc gac acc gta Leu Gly Asn Asp Ala Tyr Gly Gly Thr Tyr Arg Leu Ile Asp Thr Val 105 ttc acc gca tgg ggc gtc gaa tac acc gtt gtt gat acc tcc gtc gtg 499 Phe Thr Ala Trp Gly Val Glu Tyr Thr Val Val Asp Thr Ser Val Val 125 120 gaa gag gtc aag gca gcg atc aag gac aac acc aag gct gat ctt ggt 547 Glu Glu Val Lys Ala Ala Ile Lys Asp Asn Thr Lys Ala Asp Leu Gly 135 140 595 qqa aac ccc aac caa ccc agc act ttg gca tta ccc gac atc gaa gca Gly Asn Pro Asn Gln Pro Ser Thr Leu Ala Leu Pro Asp Ile Glu Ala 150 155 gtn tgc aaa act tca ccc gaa agg cac caa ccc caa gct tgt tgt ttg 643 Val Cys Lys Thr Ser Pro Glu Arg His Gln Pro Gln Ala Cys Cys Leu 170 175 aca aca cct tcg cat tcc cca tac ctg cag can cca ctt aaa ant tnn 691 Thr Thr Pro Ser His Ser Pro Tyr Leu Gln Xaa Pro Leu Lys Xaa Xaa 185 190

PRISCOUCH - WO_ -010084342_I_S

gng cac acg cag
Xaa His Thr Gln
200

<210> 200

<210> 200 <211> 201 <212> PRT <213> Corynebacterium glutamicum

Ala Gly Tyr Glu Pro Asp Asp Tyr Tyr Gly Ser Ile Asn Thr Pro Ile
20 25 30

Tyr Ala Ser Thr Thr Phe Ala Gln Asn Ala Pro Asn Glu Leu Arg Lys 35 40 45

Gly Tyr Glu Tyr Thr Arg Val Gly Asn Pro Thr Ile Val Ala Leu Glu
50 60

Gln Thr Val Ala Ala Leu Glu Gly Ala Lys Tyr Gly Arg Ala Phe Ser 65 70 75 80

Ser Gly Met Ala Ala Thr Asp Ile Leu Phe Arg Ile Ile Leu Lys Pro 85 90 95

Gly Asp His Ile Val Leu Gly Asn Asp Ala Tyr Gly Gly Thr Tyr Arg 100 105 110

Leu Ile Asp Thr Val Phe Thr Ala Trp Gly Val Glu Tyr Thr Val Val
115 120 125

Asp Thr Ser Val Val Glu Glu Val Lys Ala Ala Ile Lys Asp Asn Thr 130 135 140

Lýs Ala Asp Leu Gly Gly Asn Pro Asn Gln Pro Ser Thr Leu Ala Leu 145 150 155 160

Pro Asp Ile Glu Ala Val Cys Lys Thr Ser Pro Glu Arg His Gln Pro 165 170 175

Gln Ala Cys Cys Leu Thr Thr Pro Ser His Ser Pro Tyr Leu Gln Xaa 180 185 190

Pro Leu Lys Xaa Xaa Xaa His Thr Gln 195 200

<210> 201 <211> 1113 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(1090)

<223> RXA00216

<400> 201 gtgttgctcg cggccaggca gcagtgctgt acctgcctga cgcggatggt gacatcgttc 60 ttggatcagg caccatctgc cacacggagt cttaagaaaa ttg ggc gct tat ggt Leu Gly Ala Tyr Gly tta ggt gag ctt cct gga aaa tcc gcc gcg gaa gcc gcc gac att att Leu Gly Glu Leu Pro Gly Lys Ser Ala Ala Glu Ala Ala Asp Ile Ile cag ggt gaa acg ggc gat ctt ctc cat att cct cag ctt ccg gcg cga 211 Gln Gly Glu Thr Gly Asp Leu Leu His Ile Pro Gln Leu Pro Ala Arg 259 ggt ttg ggt gct gat ctg atc ggt cga acc gtc ggt ctg ctg gac atg Gly Leu Gly Ala Asp Leu Ile Gly Arg Thr Val Gly Leu Leu Asp Met ·40 307 atc aac gtt gat cgc ggg gcc cga tct tgg gtg atg agc aca cgc ccc Ile Asn Val Asp Arg Gly Ala Arg Ser Trp Val Met Ser Thr Arg Pro age aga ttg acg cac ctg acc ggc gat ttc ctt gac atg gat ttg gat 355 Ser Arg Leu Thr His Leu Thr Gly Asp Phe Leu Asp Met Asp Leu Asp 70 gcg tgc gag gaa acc tgg gga acg ggc gtc gac aag cta aaa atc caa 403 Ala Cys Glu Glu Thr Trp Gly Thr Gly Val Asp Lys Leu Lys Ile Gln gtt gct ggt ccc tgg act tta ggt gcg cgc att gag ttg gcc aat ggc 451 Val Ala Gly Pro Trp Thr Leu Gly Ala Arg Ile Glu Leu Ala Asn Gly 105 cat cgc gtt ttg tct gat cgc ggt gcg atg cgt gat ctc acg cag gcg 499 His Arg Val Leu Ser Asp Arg Gly Ala Met Arg Asp Leu Thr Gln Ala 120 ctg atc gcc ggc atc gat gcg cat gca cgc aag gtt gct ggg cga ttt Leu Ile Ala Gly Ile Asp Ala His Ala Arg Lys Val Ala Gly Arg Phe 135 cgc gcc gaa gtg cag gtg caa att gat gag ccg gag ctg aaa tcg ctt 595 Arg Ala Glu Val Gln Val Gln Ile Asp Glu Pro Glu Leu Lys Ser Leu 150 155 atc gac ggc tcc ctc cct ggc act tcc acc ttt gac att att cct gcg Ile Asp Gly Ser Leu Pro Gly Thr Ser Thr Phe Asp Ile Ile Pro Ala 180 170 gtg aat gtc gct gat gcc agt gaa cgt ttg cag cag gtc ttt agc tcg 691 Val Asn Val Ala Asp Ala Ser Glu Arg Leu Gln Gln Val Phe Ser Ser 185 att gag ggg ccg aca tat ctc aac ctc acc ggc cag att cct act tgg 739 Ile Glu Gly Pro Thr Tyr Leu Asn Leu Thr Gly Gln Ile Pro Thr Trp 200 205 gat gtg gct cgg ggt gcg gcc gat act gtg cag att tcc atg gat 787

Asp Val Ala Arg Gly Ala Gly Ala Asp Thr Val Gln Ile Ser Met Asp caa gtc cgt gga aat gaa cat ttg gat ggt ttt ggt gaa acc atc acc Gln Val Arg Gly Asn Glu His Leu Asp Gly Phe Gly Glu Thr Ile Thr agt gga att cgt ctt ggt ttg ggc att acg aca gga aaa gat gtc gta Ser Gly Ile Arg Leu Gly Leu Gly Ile Thr Thr Gly Lys Asp Val Val gat gaa ctg ctc gag cga ccg cgg caa aag gcc gtt gag gta gca cgc 931 Asp Glu Leu Leu Glu Arg Pro Arg Gln Lys Ala Val Glu Val Ala Arg 270 ttt ttt gat cgt tta ggt gtg ggc cga aac tat ctc gtg gat gct gtt 979 Phe Phe Asp Arg Leu Gly Val Gly Arg Asn Tyr Leu Val Asp Ala Val 285 gat att cat ccg ggt gag gat ttg gtg cag ggg acc atc acc gag gcc Asp Ile His Pro Gly Glu Asp Leu Val Gln Gly Thr Ile Thr Glu Ala 300 gcg cag gct tat cgc atg gcc cgg gtg atg tcg gag atg ttg tcg aag Ala Gln Ala Tyr Arg Met Ala Arg Val Met Ser Glu Met Leu Ser Lys gat tca tgc gac ctt taaggcttta ccggcgctgg gtg 1113 Asp Ser Cys Asp Leu 330 <210> 202 <211> 330 <212> PRT <213> Corynebacterium glutamicum <400> 202 Leu Gly Ala Tyr Gly Leu Gly Glu Leu Pro Gly Lys Ser Ala Ala Glu Ala Ala Asp Ile Ile Gln Gly Glu Thr Gly Asp Leu Leu His Ile Pro 25 Gln Leu Pro Ala Arg Gly Leu Gly Ala Asp Leu Ile Gly Arg Thr Val Gly Leu Leu Asp Met Ile Asn Val Asp Arg Gly Ala Arg Ser Trp Val 55 Met Ser Thr Arg Pro Ser Arg Leu Thr His Leu Thr Gly Asp Phe Leu 70 Asp Met Asp Leu Asp Ala Cys Glu Glu Thr Trp Gly Thr Gly Val Asp 90 Lys Leu Lys Ile Gln Val Ala Gly Pro Trp Thr Leu Gly Ala Arg Ile 105

1

Glu Leu Ala Asn Gly His Arg Val Leu Ser Asp Arg Gly Ala Met Arg 120 Asp Leu Thr Gln Ala Leu Ile Ala Gly Ile Asp Ala His Ala Arg Lys Val Ala Gly Arg Phe Arg Ala Glu Val Gln Val Gln Ile Asp Glu Pro 150 Glu Leu Lys Ser Leu Ile Asp Gly Ser Leu Pro Gly Thr Ser Thr Phe 170 165 Asp Ile Ile Pro Ala Val Asn Val Ala Asp Ala Ser Glu Arg Leu Gln 185 Gln Val Phe Ser Ser Ile Glu Gly Pro Thr Tyr Leu Asn Leu Thr Gly 200 Gln Ile Pro Thr Trp Asp Val Ala Arg Gly Ala Gly Ala Asp Thr Val Gln Ile Ser Met Asp Gln Val Arg Gly Asn Glu His Leu Asp Gly Phe 235 Gly Glu Thr Ile Thr Ser Gly Ile Arg Leu Gly Leu Gly Ile Thr Thr Gly Lys Asp Val Val Asp Glu Leu Leu Glu Arg Pro Arg Gln Lys Ala Val Glu Val Ala Arg Phe Phe Asp Arg Leu Gly Val Gly Arg Asn Tyr Leu Val Asp Ala Val Asp Ile His Pro Gly Glu Asp Leu Val Gln Gly 295 Thr Ile Thr Glu Ala Ala Gln Ala Tyr Arg Met Ala Arg Val Met Ser 310 305 Glu Met Leu Ser Lys Asp Ser Cys Asp Leu 325 <210> 203 <211> 623 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (1)..(600) <223> RXN00402 <400> 203 act gac gaa aag gat gga aag cca gta ttg ccc tac ttc gtc act cca 48 Thr Asp Glu Lys Asp Gly Lys Pro Val Leu Pro Tyr Phe Val Thr Pro gat gct gct tac cac gga ttg aag tac gca gac ctt ggt gca cca gcc Asp Ala Ala Tyr His Gly Leu Lys Tyr Ala Asp Leu Gly Ala Pro Ala

20 25 30 ttc ggc ctc aag gtt cgc gtt ggc ctt cta cgc gac acc ggc tcc acc Phe Gly Leu Lys Val Arg Val Gly Leu Leu Arg Asp Thr Gly Ser Thr ctc tcc gca ttc aac gca tgg gct gca gtc cag ggc atc gac acc ctt Leu Ser Ala Phe Asn Ala Trp Ala Ala Val Gln Gly Ile Asp Thr Leu tcc ctg cgc ctg gag cgc cac aac gaa aac gcc atc aag gtt gca gaa Ser Leu Arg Leu Glu Arg His Asn Glu Asn Ala Ile Lys Val Ala Glu ttc ctc aac aac cac gag aag gtg gaa aag gtt aac ttc gca ggc ctg Phe Leu Asn Asn His Glu Lys Val Glu Lys Val Asn Phe Ala Gly Leu aag gat tcc cct tgg tac gca acc aag gaa aag ctt ggc ctg aag tac 336 Lys Asp Ser Pro Trp Tyr Ala Thr Lys Glu Lys Leu Gly Leu Lys Tyr 100 acc ggc tcc gtt ctc acc ttc gag atc aag ggc ggc aag gat gag gct 384 Thr Gly Ser Val Leu Thr Phe Glu Ile Lys Gly Gly Lys Asp Glu Ala 115 120 tgg gca ttt atc gac gcc ctg aag cta cac tcc aac ctt gca aac atc 432 Trp Ala Phe Ile Asp Ala Leu Lys Leu His Ser Asn Leu Ala Asn Ile 135 130 ggc gat gtt cgc tcc ctc gtt gtt cac cca gca acc acc acc cat tca Gly Asp Val Arg Ser Leu Val Val His Pro Ala Thr Thr His Ser 145 150 cag tcc gac gaa gct ggc ctg gca cgc gcg ggc gtt acc cag tcc acc Gln Ser Asp Glu Ala Gly Leu Ala Arg Ala Gly Val Thr Gln Ser Thr 165 gtc cgc ctg tcc gtt ggc atc gag acc att gat gat atc atc gct gac Val Arg Leu Ser Val Gly Ile Glu Thr Ile Asp Asp Ile Ile Ala Asp 180 ctc gaa ggc ggc ttt gct gca atc tagctttaaa tagactcacc cca 623 Leu Glu Gly Gly Phe Ala Ala Ile <210> 204 <211> 200 <212> PRT <213> Corynebacterium glutamicum <400> 204 Thr Asp Glu Lys Asp Gly Lys Pro Val Leu Pro Tyr Phe Val Thr Pro Asp Ala Ala Tyr His Gly Leu Lys Tyr Ala Asp Leu Gly Ala Pro Ala

Phe Gly Leu Lys Val Arg Val Gly Leu Leu Arg Asp Thr Gly Ser Thr
35 40 45

Leu Ser Ala Phe Asn Ala Trp Ala Ala Val Gln Gly Ile Asp Thr Leu 55 Ser Leu Arg Leu Glu Arg His Asn Glu Asn Ala Ile Lys Val Ala Glu 70 75 Phe Leu Asn Asn His Glu Lys Val Glu Lys Val Asn Phe Ala Gly Leu Lys Asp Ser Pro Trp Tyr Ala Thr Lys Glu Lys Leu Gly Leu Lys Tyr Thr Gly Ser Val Leu Thr Phe Glu Ile Lys Gly Gly Lys Asp Glu Ala 120 115 Trp Ala Phe Ile Asp Ala Leu Lys Leu His Ser Asn Leu Ala Asn Ile 135 Gly Asp Val Arg Ser Leu Val Val His Pro Ala Thr Thr His Ser 150 Gln Ser Asp Glu Ala Gly Leu Ala Arg Ala Gly Val Thr Gln Ser Thr 170 Val Arg Leu Ser Val Gly Ile Glu Thr Ile Asp Asp Ile Ile Ala Asp 185 Leu Glu Gly Gly Phe Ala Ala Ile <210> 205 <211> 599 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (1)..(576) <223> FRXA00402 <400> 205 gta ttg ccc tac ttc gtc act cca gat gct gct tac cac gga ttg aag 48 Val Leu Pro Tyr Phe Val Thr Pro Asp Ala Ala Tyr His Gly Leu Lys tac gca gac ctt ggt gca cca gcc ttc ggc ctc aag gtt cgc gtt ggc 96 Tyr Ala Asp Leu Gly Ala Pro Ala Phe Gly Leu Lys Val Arg Val Gly 25 144 ctt cta cgc gac acc ggc tcc acc ctc tcc gca ttc aac gca tgg gct Leu Leu Arg Asp Thr Gly Ser Thr Leu Ser Ala Phe Asn Ala Trp Ala 192 gca gtc cag ggc atc gac acc ctt tcc ctg cgc ctg gag cgc cac aac Ala Val Gln Gly Ile Asp Thr Leu Ser Leu Arg Leu Glu Arg His Asn 60 50 240 gaa aac gcc atc aag gtt gca gaa ttc ctc aac aac cac gag aag gtg Glu Asn Ala Ile Lys Val Ala Glu Phe Leu Asn Asn His Glu Lys Val

65	5				7()				7	5				80	
gaa Glu	a aag 1 Lys	g gtt s Val	aad L Asi	tto n Phe 85	Ala	a ggo	c cto / Lei	g aag Lys	g gat s Asp 90	Sei	c cct r Pro	tgg Trp	g tac Tyr	gca Ala	a acc a Thr	288
aag Lys	gaa Glu	a aag 1 Lys	g ctt s Lei 100	ı Gly	cto Leu	g aag 1 Lys	g tac Tyr	Thr	Gly	tco Sei	gtt Val	cto Leu	acc Thr	Phe	gag Glu	336
ato Ile	aag Lys	ggg Gly 115	, Gl	aag Lys	gat Asp	gag Glu	gct Ala 120	Trp	gca Ala	ttt Phe	ato lle	gac Asp 125	Ala	cto Leu	g aag 1 Lys	384
cta Leu	cac His	Ser	aac Asn	ctt Leu	gca Ala	aac Asn 135	Ile	ggc	gat Asp	gtt Val	cgc Arg 140	Ser	ctc Leu	gtt Val	gtt Val	432
cac His 145	Pro	gca Ala	acc Thr	acc Thr	acc Thr 150	His	tca Ser	cag Gln	tcc Ser	gac Asp 155	Glu	gct Ala	ggc	ctg Leu	gca Ala 160	480
cgc Arg	gcg Ala	ggc	gtt Val	acc Thr 165	cag Gln	tcc Ser	acc Thr	gtc Val	cgc Arg 170	ctg Leu	tcc Ser	gtt Val	ggc Gly	atc Ile 175	gag Glu	528
acc Thr	att Ile	gat Asp	gat Asp 180	Ile	atc Ile	gct Ala	gac Asp	ctc Leu 185	gaa Glu	ggc Gly	Gly	ttt Phe	gct Ala 190	gca Ala	atc	576
tag	cttt	aaa	taga	ctca	cc c	ca										599
<21 <21	0 > 2 1 > 1 2 > P 3 > C	92 RT	ebac	teri	nw g	lutaı	micu	n								
	0> 2 Leu		Tyr	Phe 5	Val	Thr	Pro	Asp	Ala 10	Ala	Tyr	His	Gly		Lys	
	Ala	Asp	Leu 20		Ala	Pro	Ala	Phe 25		Leu	Lys	Val	Arg 30	15 Val	Gly	
Leu	Leu	Arg 35	Asp	Thr	Gly	Ser	Thr 40	Leu	Ser	Ala	Phe	Asn 45	Ala	Trp	Ala	
Ala	Val 50	Gln	Gly	Ile	Asp	Thr 55	Leu	Ser	Leu	Arg	Leu 60	Glu	Arg	His	Asn	
Glu 65	Asn	Ala	Ile	Lys	Val 70	Ala	Glu	Phe	Leu	Asn 75	Asn	His	Glu	Lys	Val 80	
Glu	Lys	Val	Asn	Phe 85	Ala	Gly	Leu	Lys	Asp 90	Ser	Pro	Trp	Tyr	Ala 95	Thr	
Lys	Glu	Lys	Leu 100	Gly	Leu	Lys	Tyr	Thr 105	Gly	Ser	Val	Leu	Thr 110	Phe	Glu	
Ile	Lys	Gly	Gly	Lys	Asp	Glu	Ala	Trp	Ala	Phe	Ile	Asp	Ala	Leu	Lvs	

Leu His 130 Ser Asn Leu Ala Asn Ile Gly Asp Val Arg Ser Leu Val Val 140 His 130 Thr Thr Thr Thr His Ser Gln Ser Asp Glu Ala Gly Leu Ala 160 Arg Ala Gly Val Thr Gln Ser Thr Val Arg Leu Ser Val Gly Ile Glu 175 Thr Ile Asp Asp Ile Ile Ala Asp Leu Glu Gly Gly Phe Ala Ala Ile 180

<210> 207 <211> 613 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101) .. (613) <223> RXA00405 agaataaatt tataccacac agtctattgc aatagaccaa gctgttcagt agggtgcatg 60 ggagaagaat ttcctaataa aaactcttaa ggacctccaa atg cca aag tac gac 115 Met Pro Lys Tyr Asp 163 aat tcc aat gct gac cag tgg ggc ttt gaa acc cgc tcc att cac gca Asn Ser Asn Ala Asp Gln Trp Gly Phe Glu Thr Arg Ser Ile His Ala ggc cag tca gta gac gca cag acc agc gca cga aac ctt ccg atc tac 211 Gly Gln Ser Val Asp Ala Gln Thr Ser Ala Arg Asn Leu Pro Ile Tyr 259 caa tcc acc gct ttc gtg ttc gac tcc gct gag cac gcc aag cag cgt Gln Ser Thr Ala Phe Val Phe Asp Ser Ala Glu His Ala Lys Gln Arg 307 ttc gca ctt gag gat cta ggc cct gtt tac tcc cgc ctc acc aac cca Phe Ala Leu Glu Asp Leu Gly Pro Val Tyr Ser Arg Leu Thr Asn Pro 60 acc gtt gag gct ttg gaa aac cgc atc gct tcc ctc gaa ggt ggc gtc 355 Thr Val Glu Ala Leu Glu Asn Arg Ile Ala Ser Leu Glu Gly Gly Val 75 80 70 cac gct gta gcg ttc tcc tcc gga cag gcc gca acc acc aac gcc att 403 His Ala Val Ala Phe Ser Ser Gly Gln Ala Ala Thr Thr Asn Ala Ile ttg aac ctg gca gga gcg ggc gac cac atc gtc acc tcc cca cgc ctc Leu Asn Leu Ala Gly Ala Gly Asp His Ile Val Thr Ser Pro Arg Leu

499

547

595

613

105 110 115 tac ggt ggc acc gag act cta ttc ctt atc act ctt aac cgc ctg ggt Tyr Gly Gly Thr Glu Thr Leu Phe Leu Ile Thr Leu Asn Arg Leu Gly 125 atc gat gtt tcc ttc gtg gaa aac ccc gac gac cct gag tcc tgg cag Ile Asp Val Ser Phe Val Glu Asn Pro Asp Asp Pro Glu Ser Trp Gln 140 gca gcc gtt cag cca aac acc aaa gca ttc ttc ggc gag act ttc gcc Ala Ala Val Gln Pro Asn Thr Lys Ala Phe Phe Gly Glu Thr Phe Ala 155 160 aac cca cag gca gac gtc Asn Pro Gln Ala Asp Val 170 <210> 208 <211> 171 <212> PRT <213> Corynebacterium glutamicum <400> 208 Met Pro Lys Tyr Asp Asn Ser Asn Ala Asp Gln Trp Gly Phe Glu Thr Arg Ser Ile His Ala Gly Gln Ser Val Asp Ala Gln Thr Ser Ala Arg 25 Asn Leu Pro Ile Tyr Gln Ser Thr Ala Phe Val Phe Asp Ser Ala Glu His Ala Lys Gln Arg Phe Ala Leu Glu Asp Leu Gly Pro Val Tyr Ser Arg Leu Thr Asn Pro Thr Val Glu Ala Leu Glu Asn Arg Ile Ala Ser 70 Leu Glu Gly Gly Val His Ala Val Ala Phe Ser Ser Gly Gln Ala Ala Thr Thr Asn Ala Ile Leu Asn Leu Ala Gly Ala Gly Asp His Ile Val Thr Ser Pro Arg Leu Tyr Gly Gly Thr Glu Thr Leu Phe Leu Ile Thr 120 Leu Asn Arg Leu Gly Ile Asp Val Ser Phe Val Glu Asn Pro Asp Asp 130 Pro Glu Ser Trp Gln Ala Ala Val Gln Pro Asn Thr Lys Ala Phe Phe 150 Gly Glu Thr Phe Ala Asn Pro Gln Ala Asp Val 165

<210> 209 <211> 551

<212> DNA <213> Corynebacterium glutamicum															
<222	L> CI	.) ((528) L97												
gcc	_	cgc	atg Met	-		_			_	_	_	_			48
			gcg Ala 20												96
			gac Asp												144
			ttc Phe												192
			gtt Val												240
			cac His			_					_	-			288
		_	gct Ala 100	_		_		-	_	_		-		_	336
			cgc Arg												384
_	_	_	gac Asp	-	-	_	_		_	_				 _	432
			gag Glu												480
			ttt Phe												528
taad	cacct	tt g	gagag	gggaa	aa ac	et									551

<210> 210

<211> 176 <212> PRT

<213> Corynebacterium glutamicum

<400> 210 Ala Glu Arg Met Arg Phe Ser Phe Pro Arg Gln Gln Arg Gly Arg Phe Leu Cys Ile Ala Asp Phe Ile Arg Pro Arg Glu Gln Ala Val Lys Asp Gly Gln Val Asp Val Met Pro Phe Gln Leu Val Thr Met Gly Asn Pro Ile Ala Asp Phe Ala Asn Glu Leu Phe Ala Ala Asn Glu Tyr Arg Glu 55 Tyr Leu Glu Val His Gly Ile Gly Val Gln Leu Thr Glu Ala Leu Ala Glu Tyr Trp His Ser Arg Val Arg Ser Glu Leu Lys Leu Asn Asp Gly Gly Ser Val Ala Asp Phe Asp Pro Glu Asp Lys Thr Lys Phe Phe Asp 105 Leu Asp Tyr Arg Gly Ala Arg Phe Ser Phe Gly Tyr Gly Ser Cys Pro 120 Asp Leu Glu Asp Arg Ala Lys Leu Val Glu Leu Glu Pro Gly Arg 135 Ile Gly Val Glu Leu Ser Glu Glu Leu Gln Leu His Pro Glu Gln Ser 155 Thr Asp Ala Phe Val Leu Tyr His Pro Glu Ala Lys Tyr Phe Asn Val 165 170

```
<210> 211
<211> 2599
<212> DNA
<213> Corynebacterium glutamicum
<220>
<221> CDS
<222> (101)..(2599)
<223> RXN02198
<400> 211
agactagtgg cgctttgcct gtgttgctta ggcggcgttg aaaatgaact acgaatgaaa 60
agttcgggaa ttgtctaatc cgtactaagc tgtctacaca atg tct act tca.gtt
                                                                  115
                                            Met Ser Thr Ser Val
act tca cca gcc cac aac gca cat tcc tcc gaa ttt ttg gat gcg
Thr Ser Pro Ala His Asn Asn Ala His Ser Ser Glu Phe Leu Asp Ala
ttg gca aac cat gtg ttg atc ggc gac ggc gcc atg ggc acc cag ctc
Leu Ala Asn His Val Leu Ile Gly Asp Gly Ala Met Gly Thr Gln Leu
```

			25					30					35			
											ctt Leu					259
											gtg Val 65					307
											gtt Val					355
ttt Phe	ggt Gly	tgc Cys	aac Asn	ctg Leu 90	ccg Pro	aac Asn	ttg Leu	gcg Ala	gat Asp 95	tat Tyr	gac Asp	atc Ile	gct Ala	gat Asp 100	cgt Arg	403
											gct Ala					451
											cgt Arg					499
											ggc Gly 145					547
											ctt Leu					595
											cag Gln					643
											atg Met					691
aca Thr	ttc Phe	ttg Leu 200	ccc Pro	att Ile	att Ile	tgc Cys	cac His 205	gtc Val	acc Thr	gta Val	gag Glu	acc Thr 210	acc Thr	ggc Gly	acc Thr	739
atg Met	ctc Leu 215	atg Met	ggt Gly	tct Ser	gag Glu	atc Ile 220	ggt Gly	gcc Ala	gcg Ala	ttg Leu	aca Thr 225	gcg Ala	ctg Leu	cag Gln	cca Pro	787
ctg Leu 230	ggt Gly	atc Ile	gac Asp	atg Met	att Ile 235	ggt Gly	ctg Leu	aac Asn	tgc Cys	gcc Ala 240	acc Thr	ggc Gly	cca Pro	gat Asp	gag Glu 245	835
atg Met	agc Ser	gag Glu	cac His	ctg Leu 250	cgt Arg	tac Tyr	ctg Leu	tcc Ser	aag Lys 255	cac His	gcc Ala	gat Asp	att Ile	cct Pro 260	gtg Val	883
tcg Ser	gtg Val	atg Met	cct Pro 265	aac Asn	gca Ala	ggt Gly	ctt Leu	cct Pro 270	gtc Val	ctg Leu	ggt Gly	aaa Lys	aac Asn 275	ggt Gly	gca Ala	931

gaa tac cca ctt gag gct gag gat ttg gcg cag gcg ctg gct gga ttc 979 Glu Tyr Pro Leu Glu Ala Glu Asp Leu Ala Gln Ala Leu Ala Gly Phe 280 gtc tcc gaa tat ggc ctg tcc atg gtg ggt tgt tgt tgt ggc acc aca Val Ser Glu Tyr Gly Leu Ser Met Val Gly Gly Cys Cys Gly Thr Thr 295 300 cct gag cac atc cgt gcg gtc cgc gat gcg gtg gtt ggt gtt cca gag Pro Glu His Ile Arg Ala Val Arg Asp Ala Val Val Gly Val Pro Glu cag gaa acc tcc aca ctg acc aag atc cct gca ggc cct gtt gag cag 1123 Gln Glu Thr Ser Thr Leu Thr Lys Ile Pro Ala Gly Pro Val Glu Gln 330 335 gcc tcc cgc gag gtg gag aaa gag gac tcc gtc gcg tcg ctg tac acc 1171 Ala Ser Arg Glu Val Glu Lys Glu Asp Ser Val Ala Ser Leu Tyr Thr 350 tcg gtg cca ttg tcc cag gaa acc ggc att tcc atg atc ggt gag cgc 1219 Ser Val Pro Leu Ser Gln Glu Thr Gly Ile Ser Met Ile Gly Glu Arg 360 ace aac tee aac ggt tee aag gea tte egt gag gea atg etg tet gge Thr Asn Ser Asn Gly Ser Lys Ala Phe Arg Glu Ala Met Leu Ser Gly 375 380 gat tgg gaa aag tgt gtg gat att gcc aag cag caa acc cgc gat ggt Asp Trp Glu Lys Cys Val Asp Ile Ala Lys Gln Gln Thr Arg Asp Gly 390 395 400 405 gca cac atg ctg gat ctt tgt gtg gat tac gtg gga cga gac ggc acc Ala His Met Leu Asp Leu Cys Val Asp Tyr Val Gly Arg Asp Gly Thr 410 415 gcc gat atg gcg acc ttg gca gca ctt ctt gct acc agc tcc act ttg 1411 Ala Asp Met Ala Thr Leu Ala Ala Leu Leu Ala Thr Ser Ser Thr Leu 425 430 cca atc atg att gac tcc acc gag cca gag gtt att cgc aca ggc ctt Pro Ile Met Ile Asp Ser Thr Glu Pro Glu Val Ile Arg Thr Gly Leu 440 445 gag cac ttg ggt gga cga agc atc gtt aac tcc gtc aac ttt gaa gac Glu His Leu Gly Gly Arg Ser Ile Val Asn Ser Val Asn Phe Glu Asp 460 465 455

PNSDOCID: WO 010084343 I >

ggc gat ggc cct gag tcc cgc tac cag cgc atc atg aaa ctg gta aag 1555 Gly Asp Gly Pro Glu Ser Arg Tyr Gln Arg Ile Met Lys Leu Val Lys 470 480 cag cac ggt gcg gcc gtg gtt gcg ctg acc att gat gag gaa ggc cag Gln His Gly Ala Ala Val Val Ala Leu Thr Ile Asp Glu Glu Gly Gln 490 495 gca cgt acc gct gag cac aag gtg cgc att gct aaa cga ctg att gac 1651 Ala Arg Thr Ala Glu His Lys Val Arg Ile Ala Lys Arg Leu Ile Asp gat atc acc ggc agc tac ggc ctg gat atc aaa gac atc gtt gtg gac 1699 Asp Ile Thr Gly Ser Tyr Gly Leu Asp Ile Lys Asp Ile Val Val Asp 520 525 530 tgc ctg acc ttc ccg atc tct act ggc cag gaa gaa acc agg cga gat 1747 Cys Leu Thr Phe Pro Ile Ser Thr Gly Gln Glu Glu Thr Arg Arg Asp ggc att gaa acc atc gaa gcc atc cgc gag ctg aag aag ctc tac cca 1795 Gly Ile Glu Thr Ile Glu Ala Ile Arg Glu Leu Lys Lys Leu Tyr Pro 550 555 560 565 gaa atc cac acc ctg ggt ctg tcc aat att tcc ttc ggc ctg aac Glu Ile His Thr Thr Leu Gly Leu Ser Asn Ile Ser Phe Gly Leu Asn cct gct gca cgc cag gtt ctt aac tct gtg ttc ctc aat gag tgc att 1891 Pro Ala Ala Arg Gln Val Leu Asn Ser Val Phe Leu Asn Glu Cys Ile 585 590 595 gag gct ggt ctg gac tct gcg att gcg cac agc tcc aag att ttg ccg Glu Ala Gly Leu Asp Ser Ala Ile Ala His Ser Ser Lys Ile Leu Pro 600 605 atg aac cgc att gat ggt cgc cag cgc gaa gtg gcg ttg gat atg gtc 1987 Met Asn Arg Ile Asp Asp Arg Gln Arg Glu Val Ala Leu Asp Met Val 615 620 tat gat cgc cgc acc gag gat tac gat ccg ctg cag gaa ttc atg cag 2035 Tyr Asp Arg Arg Thr Glu Asp Tyr Asp Pro Leu Gln Glu Phe Met Gln 635 ctg ttt gag ggc gtt tct gct gcc gat gcc aag gat gct cgc gct gaa Leu Phe Glu Gly Val Ser Ala Ala Asp Ala Lys Asp Ala Arg Ala Glu 650 655

cag ctg gcc gct atg cct ttg ttt gag cgt ttg gca cag cgc atc atc 2131 Gln Leu Ala Ala Met Pro Leu Phe Glu Arg Leu Ala Gln Arg Ile Ile 665 670 gac ggc gat aag aat ggc ctt gag gat gat ctg gaa gca ggc atg aag 2179 Asp Gly Asp Lys Asn Gly Leu Glu Asp Asp Leu Glu Ala Gly Met Lys 685 gag aag tot oot att gog atc atc aac gag gac ott otc aac ggc atg 2227 Glu Lys Ser Pro Ile Ala Ile Ile Asn Glu Asp Leu Leu Asn Gly Met aag acc gtg ggt gag ctg ttt ggt tcc gga cag atg cag ctg cca ttc Lys Thr Val Gly Glu Leu Phe Gly Ser Gly Gln Met Gln Leu Pro Phe 710 715 720 gtg ctg caa tcg gca gaa acc atg aaa act gcg gtg gcc tat ttg gaa 2323 Val Leu Gln Ser Ala Glu Thr Met Lys Thr Ala Val Ala Tyr Leu Glu 730 735 ccg ttc atg gaa gag gaa gca gaa gct acc gga tct gcg cag gca gag Pro Phe Met Glu Glu Glu Ala Glu Ala Thr Gly Ser Ala Gln Ala Glu 745 750 ggc aag ggc aaa atc gtc gtg gcc acc gtc aag ggt gac gtg cac gat 2419 Gly Lys Gly Lys Ile Val Val Ala Thr Val Lys Gly Asp Val His Asp atc ggc aag aac ttg gtg gac atc att ttg tcc aac aac ggt tac gac Ile Gly Lys Asn Leu Val Asp Ile Ile Leu Ser Asn Asn Gly Tyr Asp 775 780 gtg gtg aac ttg ggc atc aag cag cca ctg tcc gcc atg ttg gaa gca 2515 Val Val Asn Leu Gly Ile Lys Gln Pro Leu Ser Ala Met Leu Glu Ala 790 gcg gaa gaa cac aaa gca gac gtc atc ggc atg tcg gga ctt ctt gtg 2563 Ala Glu Glu His Lys Ala Asp Val Ile Gly Met Ser Gly Leu Leu Val 810 815 820 aag tcc acc gtg gtg atg aag caa acc atc agc gac 2599 Lys Ser Thr Val Val Met Lys Gln Thr Ile Ser Asp 825 830

<210> 212

<211> 833

<212> PRT

<213> Corynebacterium glutamicum

<400> 212 Met Ser Thr Ser Val Thr Ser Pro Ala His Asn Asn Ala His Ser Ser Glu Phe Leu Asp Ala Leu Ala Asn His Val Leu Ile Gly Asp Gly Ala 25 Met Gly Thr Gln Leu Gln Gly Phe Asp Leu Asp Val Glu Lys Asp Phe Leu Asp Leu Glu Gly Cys Asn Glu Ile Leu Asn Asp Thr Arg Pro Asp Val Leu Arg Gln Ile His Arg Ala Tyr Phe Glu Ala Gly Ala Asp Leu Val Glu Thr Asn Thr Phe Gly Cys Asn Leu Pro Asn Leu Ala Asp Tyr Asp Ile Ala Asp Arg Cys Arg Glu Leu Ala Tyr Lys Gly Thr Ala Val Ala Arg Glu Val Ala Asp Glu Met Gly Pro Gly Arg Asn Gly Met Arg 120 Arg Phe Val Val Gly Ser Leu Gly Pro Gly Thr Lys Leu Pro Ser Leu Gly His Ala Pro Tyr Ala Asp Leu Arg Gly His Tyr Lys Glu Ala Ala 150 155 Leu Gly Ile Ile Asp Gly Gly Gly Asp Ala Phe Leu Ile Glu Thr Ala Gln Asp Leu Gln Val Lys Ala Ala Val His Gly Val Gln Asp Ala 185 Met Ala Glu Leu Asp Thr Phe Leu Pro Ile Ile Cys His Val Thr Val 195 Glu Thr Thr Gly Thr Met Leu Met Gly Ser Glu Ile Gly Ala Ala Leu 215 Thr Ala Leu Gln Pro Leu Gly Ile Asp Met Ile Gly Leu Asn Cys Ala 225 Thr Gly Pro Asp Glu Met Ser Glu His Leu Arg Tyr Leu Ser Lys His Ala Asp Ile Pro Val Ser Val Met Pro Asn Ala Gly Leu Pro Val Leu Gly Lys Asn Gly Ala Glu Tyr Pro Leu Glu Ala Glu Asp Leu Ala Gln 280 Ala Leu Ala Gly Phe Val Ser Glu Tyr Gly Leu Ser Met Val Gly Gly 295 Cys Cys Gly Thr Thr Pro Glu His Ile Arg Ala Val Arg Asp Ala Val 310 305 315 320

Val Gly Val Pro Glu Gln Glu Thr Ser Thr Leu Thr Lys Ile Pro Ala 330 Gly Pro Val Glu Gln Ala Ser Arg Glu Val Glu Lys Glu Asp Ser Val 345 Ala Ser Leu Tyr Thr Ser Val Pro Leu Ser Gln Glu Thr Gly Ile Ser 360 Met Ile Gly Glu Arg Thr Asn Ser Asn Gly Ser Lys Ala Phe Arg Glu 375 Ala Met Leu Ser Gly Asp Trp Glu Lys Cys Val Asp Ile Ala Lys Gln 395 Gln Thr Arg Asp Gly Ala His Met Leu Asp Leu Cys Val Asp Tyr Val Gly Arg Asp Gly Thr Ala Asp Met Ala Thr Leu Ala Ala Leu Leu Ala 425 Thr Ser Ser Thr Leu Pro Ile Met Ile Asp Ser Thr Glu Pro Glu Val 440 Ile Arg Thr Gly Leu Glu His Leu Gly Gly Arg Ser Ile Val Asn Ser 455 460 Val Asn Phe Glu Asp Gly Asp Gly Pro Glu Ser Arg Tyr Gln Arg Ile 470 475 Met Lys Leu Val Lys Gln His Gly Ala Ala Val Val Ala Leu Thr Ile 490 Asp Glu Glu Gly Gln Ala Arg Thr Ala Glu His Lys Val Arg Ile Ala 500 505 Lys Arg Leu Ile Asp Asp Ile Thr Gly Ser Tyr Gly Leu Asp Ile Lys 520 Asp Ile Val Val Asp Cys Leu Thr Phe Pro Ile Ser Thr Gly Gln Glu 530 . 535 Glu Thr Arg Arg Asp Gly Ile Glu Thr Ile Glu Ala Ile Arg Glu Leu 550 Lys Lys Leu Tyr Pro Glu Ile His Thr Thr Leu Gly Leu Ser Asn Ile Ser Phe Gly Leu Asn Pro Ala Ala Arg Gln Val Leu Asn Ser Val Phe Leu Asn Glu Cys Ile Glu Ala Gly Leu Asp Ser Ala Ile Ala His Ser 595 Ser Lys Ile Leu Pro Met Asn Arg Ile Asp Asp Arg Gln Arg Glu Val 615 Ala Leu Asp Met Val Tyr Asp Arg Arg Thr Glu Asp Tyr Asp Pro Leu 625 630 Gln Glu Phe Met Gln Leu Phe Glu Gly Val Ser Ala Ala Asp Ala Lys

				645					650					655		
Asp	Ala	Arg	Ala 660	Glu	Gln	Leu	Ala	Ala 665	Met	Pro	Leu	Phe	Glu 670	Arg	Leu	
Ala	Gln	Arg 675	Ile	Ile	Asp	Gly	Asp 680	Lys	Asn	Gly	Leu	Glu 685	Asp	Asp	Leu	
Glu	Ala 690	Gly	Met	Lys	Glu	Lys 695	Ser	Pro	Ile	Ala	Ile 700	Ile	Asn	Glu	Asp	
Leu 705	Leu	Asn	Gly	Met	Lys 710	Thr	Val	Gly	Glu	Leu 715	Phe	Gly	Ser	Gly	Gln 720	
Met	Gln	Leu	Pro	Phe 725	Val	Leu	Gln	Ser	Ala 730	Glu	Thr	Met	Lys	Thr 735	Ala	
Val	Ala	Tyr	Leu 740	Glu	Pro	Phe	Met	Glu 745	Glu	Glu	Ala	Glu	Ala 750	Thr	Gly	
Ser	Ala	Gln 755	Ala	Glu	Gly	Lys	Gly 760	Lys	Ile	Val	Val	Ala 765	Thr	Val	Lys	
Gly	Asp 770	Val	His	Asp	Ile	Gly 775	Lys	Asn	Leu	Val	Asp 780	Ile	Ile	Leu	Ser	
Asn 785	Asn	Gly	Tyr	Asp	Val 790	Val	Asn	Leu	Gly	Ile 795	Lys	Gln	Pro	Leu	Ser 800	
Ala	Met	Leu	Glu	Ala 805	Ala	Glu	Glu	His	Lys 810	Ala	Asp	Val	Ile	Gly 815	Met	
Ser	Gly	Leu	Leu 820	Val	Lys	Ser	Thr	Val 825	Val	Met	Lys	Gln	Thr 830	Ile	Ser	
Asp																
<211 <212)> 21 L> 25 2> DN B> Co	578 IA	ebact	eriu	ım gl	utan	nicum	n								
<222)> L> CE ?> (1 }> FF	01).		578)												
)> 21 ctagt		gett	tgcc	et gt	gttg	getta	a ggo	ggcg	gttg	aaaa	tgaa	act a	cgaa	ıtgaaa	60
agtt	cggg	gaa t	tgto	ctaat	c cg	gtact	aago	tgt	ctac	caca	_		act Thr		_	115
													ttg Leu			163
ttg	gca	aac	cat	gtg	ttg	atc	ggc	gac	ggc	gcc	atg	ggc	acc	cag	ctc	211

Leu	Ala	Asn	His 25	Val	Leu	Ile	Gly	Asp 30	Gly	Ala	Met	Gly	Thr 35		Leu	
			Asp					Lys					Leu		Gly	259
												Leu			att Ile	307
cac His 70	cgc Arg	gcc Ala	tac Tyr	ttt Phe	gag Glu 75	gcg Ala	gga Gly	gct Ala	gac Asp	ttg Leu 80	Val	gag Glu	acc Thr	aat Asn	act Thr 85	355
										Tyr	gac Asp				cgt Arg	403
tgc Cys	cgt Arg	gag Glu	ctt Leu 105	gcc Ala	tac Tyr	aag Lys	ggc Gly	act Thr 110	gca Ala	gtg Val	gct Ala	agg Arg	gaa Glu 115	gtg Val	gct Ala	451
gat Asp	gag Glu	atg Met 120	Gly	ccg Pro	ggc	cga Arg	aac Asn 125	ggc Gly	atg Met	cgg Arg	cgt Arg	ttc Phe 130	gtg Val	gtt Val	ggt Gly	499
tcc Ser	ctg Leu 135	gga Gly	cct Pro	gga Gly	acg Thr	aag Lys 140	ctt Leu	cca Pro	tcg Ser	ctg Leu	ggc Gly 145	cat His	gca Ala	ccg Pro	tat Tyr	547
gca Ala 150	gat Asp	ttg Leu	cgt Arg	ggg Gly	cac His 155	tac Tyr	aag Lys	gaa Glu	gca Ala	gcg Ala 160	ctt Leu	ggc Gly	atc Ile	atc Ile	gac Asp 165	595
											cag Gln					643
gtc Val	aag Lys	gct Ala	gcg Ala 185	gtt Val	cac His	ggc Gly	gtt Val	caa Gln 190	gat Asp	gcc Ala	atg Met	gct Ala	gaa Glu 195	ctt Leu	gat Asp	691
aca Thr	ttc Phe	ttg Leu 200	ccc Pro	att Ile	att Ile	tgc Cys	cac His 205	gtc Val	acc Thr	gta Val	gag Glu	acc Thr 210	acc Thr	ggc Gly	acc Thr	739
atg Met	ctc Leu 215	atg Met	ggt Gly	tct Ser	gag Glu	atc Ile 220	ggt Gly	gcc Ala	gcg Ala	ttg Leu	aca Thr 225	gcg Ala	ctg Leu	cag Gln	cca Pro	787
ctg Leu 230	ggt Gly	atc Ile	gac Asp	atg Met	att Ile 235	ggt Gly	ctg Leu	aac Asn	tgc Cys	gcc Ala 240	acc Thr	ggc Gly	cca Pro	gat Asp	gag Glu 245	835
atg Met	agc Ser	gag Glu	cac His	ctg Leu 250	cgt Arg	tac Tyr	ctg Leu	Ser	aag Lys 255	cac His	gcc Ala	gat Asp	att Ile	cct Pro 260	gtg Val	883
tcg Ser	gtg Val	atg Met	cct Pro	aac Asn	gca Ala	ggt Gly	ctt Leu	cct Pro	gtc Val	ctg Leu	ggt Gly	aaa Lys	aac Asn	ggt Gly	gca Ala	931

	265			270					275			
gaa tac cca Glu Tyr Pro 280	Leu Gli											979
gtc tcc gaa 1027	tat gg	ctg t	cc atg	gtg	ggt	ggt	tgt	tgt	ggc	acc	aca	
Val Ser Glu 295	Tyr Gly		er Met 00	Val	Gly	Gly	Cys 305	Cys	Gly	Thr	Thr	
cct gag cac 1075	atc cg	gcg g	tc cgc	gat	gcg	gtg	gtt	ggt	gtt	cca	gag	
Pro Glu His 310	Ile Ar	315	al Arg	Asp	Ala	Val 320	Val	Gly	Val	Pro	Glu 325	
cag gaa acc 1123	tcc aca	a ctg a	cc aag	atc	cct	gca	ggc	cct	gtt	gag	cag	
Gln Glu Thr	Ser Th		hr Lys	Ile	Pro 335	Ala	Gly	Pro	Val	Glu 340	Gln	
gcc tcc cgc 1171	gag gt	g gag a	aa gag	gac	tcc	gtc	gcg	tcg	ctg	tac	acc	
Ala Ser Arg	Glu Val	l Glu L	ys Glu	Asp 350	Ser	Val	Ala	Ser	Leu 355	Tyr	Thr	
tcg gtg cca 1219	ttg tc	cag g	aa acc	ggc	att	tcc	atg	atc	ggt	gag	cgc	
Ser Val Pro 360	Leu Se	Gln G	lu Thr 365	Gly	Ile	Ser	Met	11e 370	Gly	Glu	Arg	
acc aac tcc 1267	aac ggt	tcc a	ag gca	ttc	cgt	gag	gca	atg	ctg	tct	ggc	
Thr Asn Ser 375	Asn Gly		ys Ala 80	Phe	Arg	Glu	Ala 385	Met	Leu	Ser	Gly	
gat tgg gaa 1315	aag tg	gtg g	at att	gcc	aag	cag	caa	acc	cgc	gat	ggt	
Asp Trp Glu 390	Lys Cys	395	sp Ile	Ala	Lys	Gln 400	Gln	Thr	Arg	Asp	Gly 405	
gca cac atg 1363	ctg gat	ctt t	gt gtg	gat	tac	gtg	gga	cga	gac	ggc	acc	
Ala His Met	Leu Ası 410		ys Val	Asp	Tyr 415	Val	Gly	Arg	Asp	Gly 420	Thr	
gcc gat atg 1411	gcg acc	ttg g	ca gca	ctt	ctt	gct	acc	agc	tcc	act	ttg	
Ala Asp Met	Ala Thi	Leu A	la Ala	Leu 430	Leu	Ala	Thr	Ser	Ser 435	Thr	Leu	
cca atc atg 1459	att gad	tcc a	cc gag	cca	gag	gtt	att	cgc	aca	ggc	ctt	
Pro Ile Met 440	Ile Asp	Ser T	hr Glu 445	Pro	Glu	Val	Ile	Arg 450	Thr	Gly	Leu	
gag cac ttg 1507	ggt gga	a cga a	gc atc	gtt	aac	tcc	gtc	aac	ttt	gaa	gac	
Glu His Leu 455	Gly Gly		er Ile 60	Val	Asn	Ser	Val 465	Asn	Phe	Glu	Asp	

ggc gat ggc cct gag tcc cgc tac cag cgc atc atg aaa ctg gta aag Gly Asp Gly Pro Glu Ser Arg Tyr Gln Arg Ile Met Lys Leu Val Lys 470 cag cac ggt gcg gcc gtg gtt gcg ctg acc att gat gag gaa ggc cag Gln His Gly Ala Ala Val Val Ala Leu Thr Ile Asp Glu Glu Gly Gln 490 495 gca cgt acc gct gag cac aag gtg cgc att gct aaa cga ctg att gac 1651 Ala Arg Thr Ala Glu His Lys Val Arg Ile Ala Lys Arg Leu Ile Asp 510 gat atc acc ggc agc tac ggc ctg gat atc aaa gac atc gtt gtg gac 1699 Asp Ile Thr Gly Ser Tyr Gly Leu Asp Ile Lys Asp Ile Val Val Asp 520 525 tgc ctg acc ttc ccg atc tct act ggc cag gaa gaa acc agg cga gat 1747 Cys Leu Thr Phe Pro Ile Ser Thr Gly Gln Glu Glu Thr Arg Arg Asp 535 ggc att gaa acc atc gaa gcc atc cgc gag ctg aag aag ctc tac cca 1795 Gly Ile Glu Thr Ile Glu Ala Ile Arg Glu Leu Lys Lys Leu Tyr Pro 560 550 555 gaa atc cac acc ctg ggt ctg tcc aat att tcc ttc ggc ctg aac 1843 Glu Ile His Thr Thr Leu Gly Leu Ser Asn Ile Ser Phe Gly Leu Asn 570 cct gct gca cgc cag gtt ctt aac tct gtg ttc ctc aat gag tgc att 1891 Pro Ala Ala Arg Gln Val Leu Asn Ser Val Phe Leu Asn Glu Cys Ile 590 585 gag get ggt etg gae tet geg att geg eac age tee aag att ttg eeg 1939 Glu Ala Gly Leu Asp Ser Ala Ile Ala His Ser Ser Lys Ile Leu Pro 605 atg aac cgc att gat gat cgc cag cgc gaa gtg gcg ttg gat atg gtc 1987 Met Asn Arg Ile Asp Asp Arg Gln Arg Glu Val Ala Leu Asp Met Val 615 620 tat gat cgc cgc acc gag gat tac gat ccg ctg cag gaa ttc atg cag Tyr Asp Arg Arg Thr Glu Asp Tyr Asp Pro Leu Gln Glu Phe Met Gln 630 635 ctg ttt gag ggc gtt tct gct gcc gat gcc aag gat gct cgc gct gaa 2083 Leu Phe Glu Gly Val Ser Ala Ala Asp Ala Lys Asp Ala Arg Ala Glu 650 655

cag ctg gcc gct atg cct ttg ttt gag cgt ttg gca cag cgc atc atc 2131 Gln Leu Ala Ala Met Pro Leu Phe Glu Arg Leu Ala Gln Arg Ile Ile gac ggc gat aag aat ggc ctt gag gat gat ctg gaa gca ggc atg aag 2179 Asp Gly Asp Lys Asn Gly Leu Glu Asp Asp Leu Glu Ala Gly Met Lys 685 gag aag tot cot att gog atc atc aac gag gac ott otc aac ggc atg 2227 Glu Lys Ser Pro Ile Ala Ile Ile Asn Glu Asp Leu Leu Asn Gly Met aag acc gtg ggt gag ctg ttt ggt tcc gga cag atg cag ctg cca ttc Lys Thr Val Gly Glu Leu Phe Gly Ser Gly Gln Met Gln Leu Pro Phe 710 715 720 725 gtg ctg caa tcg gca gaa acc atg aaa act gcg gtg gcc tat ttg gaa 2323 Val Leu Gln Ser Ala Glu Thr Met Lys Thr Ala Val Ala Tyr Leu Glu ccg ttc atg gaa gag gaa gca gaa gct acc gga tct gcg cag gca gag 2371 Pro Phe Met Glu Glu Glu Ala Glu Ala Thr Gly Ser Ala Gln Ala Glu 745 750 755 ggc aag ggc aaa atc gtc gtg gcc acc gtc aag ggt gac gtg cac gat 2419 Gly Lys Gly Lys Ile Val Val Ala Thr Val Lys Gly Asp Val His Asp 760 765 atc ggc aag aac ttg gtg gac atc att ttg tcc aac aac ggt tac gac 2467 Ile Gly Lys Asn Leu Val Asp Ile Ile Leu Ser Asn Asn Gly Tyr Asp 780 785 775 gtg gtg aac ttg ggc atc aag cag cca ctg tcc gcc atg ttg gaa gca 2515 Val Val Asn Leu Gly Ile Lys Gln Pro Leu Ser Ala Met Leu Glu Ala 795 800 gcg gaa gaa cac aaa gca gac gtc atc ggc atg tcg gga ctt ctt gtg 2563 Ala Glu Glu His Lys Ala Asp Val Ile Gly Met Ser Gly Leu Leu Val 810 815 820 aag tcc acc gtg gtg

2578

Lys Ser Thr Val Val 825

<210> 214

<211> 826

<212> PRT

<213> Corynebacterium glutamicum

<400> 214 Met Ser Thr Ser Val Thr Ser Pro Ala His Asn Asn Ala His Ser Ser 10 Glu Phe Leu Asp Ala Leu Ala Asn His Val Leu Ile Gly Asp Gly Ala Met Gly Thr Gln Leu Gln Gly Phe Asp Leu Asp Val Glu Lys Asp Phe Leu Asp Leu Glu Gly Cys Asn Glu Ile Leu Asn Asp Thr Arg Pro Asp Val Leu Arg Gln Ile His Arg Ala Tyr Phe Glu Ala Gly Ala Asp Leu Val Glu Thr Asn Thr Phe Gly Cys Asn Leu Pro Asn Leu Ala Asp Tyr Asp Ile Ala Asp Arg Cys Arg Glu Leu Ala Tyr Lys Gly Thr Ala Val 105 Ala Arg Glu Val Ala Asp Glu Met Gly Pro Gly Arg Asn Gly Met Arg 120 Arg Phe Val Val Gly Ser Leu Gly Pro Gly Thr Lys Leu Pro Ser Leu 130 Gly His Ala Pro Tyr Ala Asp Leu Arg Gly His Tyr Lys Glu Ala Ala 155 Leu Gly Ile Ile Asp Gly Gly Gly Asp Ala Phe Leu Ile Glu Thr Ala Gln Asp Leu Leu Gln Val Lys Ala Ala Val His Gly Val Gln Asp Ala 185 Met Ala Glu Leu Asp Thr Phe Leu Pro Ile Ile Cys His Val Thr Val Glu Thr Thr Gly Thr Met Leu Met Gly Ser Glu Ile Gly Ala Ala Leu 215 Thr Ala Leu Gln Pro Leu Gly Ile Asp Met Ile Gly Leu Asn Cys Ala 225 Thr Gly Pro Asp Glu Met Ser Glu His Leu Arg Tyr Leu Ser Lys His Ala Asp Ile Pro Val Ser Val Met Pro Asn Ala Gly Leu Pro Val Leu 265 260 Gly Lys Asn Gly Ala Glu Tyr Pro Leu Glu Ala Glu Asp Leu Ala Gln 280 Ala Leu Ala Gly Phe Val Ser Glu Tyr Gly Leu Ser Met Val Gly Gly 300 Cys Cys Gly Thr Thr Pro Glu His Ile Arg Ala Val Arg Asp Ala Val 320 310

Val Gly Val Pro Glu Gln Glu Thr Ser Thr Leu Thr Lys Ile Pro Ala 330 Gly Pro Val Glu Gln Ala Ser Arg Glu Val Glu Lys Glu Asp Ser Val 345 Ala Ser Leu Tyr Thr Ser Val Pro Leu Ser Gln Glu Thr Gly Ile Ser 360 Met Ile Gly Glu Arg Thr Asn Ser Asn Gly Ser Lys Ala Phe Arg Glu 375 Ala Met Leu Ser Gly Asp Trp Glu Lys Cys Val Asp Ile Ala Lys Gln 390 395 Gln Thr Arg Asp Gly Ala His Met Leu Asp Leu Cys Val Asp Tyr Val Gly Arg Asp Gly Thr Ala Asp Met Ala Thr Leu Ala Ala Leu Leu Ala 425 Thr Ser Ser Thr Leu Pro Ile Met Ile Asp Ser Thr Glu Pro Glu Val 435 Ile Arg Thr Gly Leu Glu His Leu Gly Gly Arg Ser Ile Val Asn Ser 455 Val Asn Phe Glu Asp Gly Asp Gly Pro Glu Ser Arg Tyr Gln Arg Ile Met Lys Leu Val Lys Gln His Gly Ala Ala Val Val Ala Leu Thr Ile 490 . Asp Glu Glu Gly Gln Ala Arg Thr Ala Glu His Lys Val Arg Ile Ala Lys Arg Leu Ile Asp Asp Ile Thr Gly Ser Tyr Gly Leu Asp Ile Lys 520 Asp Ile Val Val Asp Cys Leu Thr Phe Pro Ile Ser Thr Gly Gln Glu Glu Thr Arg Arg Asp Gly Ile Glu Thr Ile Glu Ala Ile Arg Glu Leu Lys Lys Leu Tyr Pro Glu Ile His Thr Thr Leu Gly Leu Ser Asn Ile Ser Phe Gly Leu Asn Pro Ala Ala Arg Gln Val Leu Asn Ser Val Phe 585 Leu Asn Glu Cys Ile Glu Ala Gly Leu Asp Ser Ala Ile Ala His Ser Ser Lys Ile Leu Pro Met Asn Arg Ile Asp Asp Arg Gln Arg Glu Val 615 Ala Leu Asp Met Val Tyr Asp Arg Thr Glu Asp Tyr Asp Pro Leu 625 635 Gln Glu Phe Met Gln Leu Phe Glu Gly Val Ser Ala Ala Asp Ala Lys

655 645 650 Asp Ala Arg Ala Glu Gln Leu Ala Ala Met Pro Leu Phe Glu Arg Leu 665 Ala Gln Arg Ile Ile Asp Gly Asp Lys Asn Gly Leu Glu Asp Asp Leu Glu Ala Gly Met Lys Glu Lys Ser Pro Ile Ala Ile Ile Asn Glu Asp 695 Leu Leu Asn Gly Met Lys Thr Val Gly Glu Leu Phe Gly Ser Gly Gln Met Gln Leu Pro Phe Val Leu Gln Ser Ala Glu Thr Met Lys Thr Ala Val Ala Tyr Leu Glu Pro Phe Met Glu Glu Glu Ala Glu Ala Thr Gly 740 745 Ser Ala Gln Ala Glu Gly Lys Gly Lys Ile Val Val Ala Thr Val Lys 760 Gly Asp Val His Asp Ile Gly Lys Asn Leu Val Asp Ile Ile Leu Ser 775 Asn Asn Gly Tyr Asp Val Val Asn Leu Gly Ile Lys Gln Pro Leu Ser 795 Ala Met Leu Glu Ala Ala Glu Glu His Lys Ala Asp Val Ile Gly Met 815 805 Ser Gly Leu Leu Val Lys Ser Thr Val Val 820 <210> 215 <211> 621 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(598) <223> RXN03074 <400> 215 tttgtgggca atctggtttt ttcgtaattg tgtgggatga atctcttaaa aattcacatt 60 tagcaggaca agcatactgt tttagttcta tgctgtgggc atg act caa agt gct Met Thr Gln Ser Ala cca gaa ttc att gcc acc gca gac ctc gta gac atc atc ggc gac aac 163 Pro Glu Phe Ile Ala Thr Ala Asp Leu Val Asp Ile Ile Gly Asp Asn 10 gcg caa tca tgc gac act cag ttt caa aac ctt gga ggt gcc aca gaa Ala Gln Ser Cys Asp Thr Gln Phe Gln Asn Leu Gly Gly Ala Thr Glu 30 25

								_		caa Gln	_		_		259
-				_	-	_	-			gga Gly 65		_	-		307
-		-	_						_	ggc Gly	_			_	355
				_					•	att Ile	_			_	403
	_	-		_	_			_		ttt Phe		_		-	451
				_						ggt Gly			_	_	499
_	_		_	_		• •		-		att Ile 145				tac Tyr	547
_			-		_			-		gag Glu				_	595
cag Gln	taat	ttgt	ctt t	gace	gacgo	ca gt	a								621

<210> 216

<211> 166

<212> PRT

<213> Corynebacterium glutamicum

<400> 216

Met Thr Gln Ser Ala Pro Glu Phe Ile Ala Thr Ala Asp Leu Val Asp 1 5 10 15

Ile Ile Gly Asp Asn Ala Gln Ser Cys Asp Thr Gln Phe Gln Asn Leu 20 25 30

Gly Gly Ala Thr Glu Phe His Gly Ile Ile Thr Thr Val Lys Cys Phe 35 40 45

Gln Asp Asn Ala Leu Leu Lys Ser Ile Leu Ser Glu Asp Asn Pro Gly 50 55 60

Gly Val Leu Val Ile Asp Gly Asp Ala Ser Val His Thr Ala Leu Val 65 70 75 80

Gly Asp Ile Ile Ala Gly Leu Gly Lys Asp His Gly Trp Ser Gly Val 85 90 95

Ile Val Asn Gly Ala Ile Arg Asp Ser Ala Val Ile Gly Thr Met Thr 105 Phe Gly Cys Lys Ala Leu Gly Thr Asn Pro Arg Lys Ser Thr Lys Thr 120 Gly Ser Gly Glu Arg Asp Val Val Val Ser Ile Gly Gly Ile Asp Phe 135 Ile Pro Gly His Tyr Val Tyr Ala Asp Ser Asp Gly Ile Ile Val Thr 150 155 Glu Ala Pro Ile Lys Gln <210> 217 <211> 621 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(598) <223> FRXA02906 <400> 217 tttgtgggca atctggtttt ttcgtaattg tgtgggatga atctcttaaa aattcacatt 60 tagcaggaca agcatactgt tttagttcta tgctgtgggc atg act caa agt gct Met Thr Gln Ser Ala cca gaa ttc att gcc acc gca gac ctc gta gac atc atc ggc gac aac 163 Pro Glu Phe Ile Ala Thr Ala Asp Leu Val Asp Ile Ile Gly Asp Asn 10 gcg caa tca tgc gac act cag ttt caa aac ctt gga ggt gcc aca gaa 211 Ala Gln Ser Cys Asp Thr Gln Phe Gln Asn Leu Gly Gly Ala Thr Glu 30 ttc cac gga ata ata acc acc gtg aaa tgc ttc caa gac aac gcc ctc 259 Phe His Gly Ile Ile Thr Thr Val Lys Cys Phe Gln Asp Asn Ala Leu 307 ctg aaa tcc atc ctg agc gag gat aat cct ggg gga gtg ctg gtt atc Leu Lys Ser Ile Leu Ser Glu Asp Asn Pro Gly Gly Val Leu Val Ile 60 gat ggc gac gca tcc gtg cac acc gcg cta gtt ggc gac atc att gca 355 Asp Gly Asp Ala Ser Val His Thr Ala Leu Val Gly Asp Ile Ile Ala gga ctt gga aaa gat cat ggt tgg tcc gga gta att gtc aac gga gca 403 Gly Leu Gly Lys Asp His Gly Trp Ser Gly Val Ile Val Asn Gly Ala att cga gac tcc gca gtc atc ggc acc atg acc ttt ggt tgt aaa gcc 451 Ile Arg Asp Ser Ala Val Ile Gly Thr Met Thr Phe Gly Cys Lys Ala 105 110 115

BNSDOCID: WO 010084342 L

				-		aaa Lys					-	_	499
						ggt Gly 140							547
_						gga Gly						_	595
cag Gln	taat	ttgt	tt t	gac	gacgo	ca gt	a						621

<210> 218

<211> 166

<212> PRT

<213> Corynebacterium glutamicum

<400> 218

Met Thr Gln Ser Ala Pro Glu Phe Ile Ala Thr Ala Asp Leu Val Asp

1 10 15

Ile Ile Gly Asp Asn Ala Gln Ser Cys Asp Thr Gln Phe Gln Asn Leu 20 25 30

Gly Gly Ala Thr Glu Phe His Gly Ile Ile Thr Thr Val Lys Cys Phe $35 \hspace{1.5cm} 40 \hspace{1.5cm} 45$

Gln Asp Asn Ala Leu Leu Lys Ser Ile Leu Ser Glu Asp Asn Pro Gly 50 55 60

Gly Val Leu Val Ile Asp Gly Asp Ala Ser Val His Thr Ala Leu Val 65 70 75 80

Gly Asp Ile Ile Ala Gly Leu Gly Lys Asp His Gly Trp Ser Gly Val 85 90 95

Ile Val Asn Gly Ala Ile Arg Asp Ser Ala Val Ile Gly Thr Met Thr 100 105 110

Phe Gly Cys Lys Ala Leu Gly Thr Asn Pro Arg Lys Ser Thr Lys Thr 115 120 125

Gly Ser Gly Glu Arg Asp Val Val Val Ser Ile Gly Gly Ile Asp Phe 130 135 140

Ile Pro Gly His Tyr Val Tyr Ala Asp Ser Asp Gly Ile Ile Val Thr 145 150 155 160

Glu Ala Pro Ile Lys Gln 165

<210> 219

<211> 1557

<212> DNA

<213> Corynebacterium glutamicum

<220> <221> CDS <222> (101)..(1534) <223> RXN00132 <400> 219 aacagcttca atcaattcgg tgtccactcc aacatgtaga gtggtgcgcg ttaaaaaagt 60 tttcctaatt ttcattttct taaaaggagc tcgccaggac atg gca cag gtt atg Met Ala Gln Val Met gac ttc aag gtt gcc gat ctt tca cta gca gag gca gga cgt cac cag Asp Phe Lys Val Ala Asp Leu Ser Leu Ala Glu Ala Gly Arg His Gln att cgt ctt gca gag tat gag atg cca ggt ctc atg cag ttg cgc aag 211 Ile Arg Leu Ala Glu Tyr Glu Met Pro Gly Leu Met Gln Leu Arg Lys gaa ttc gca gac gag cct ttg aag ggc gcc cga att gct ggt tct 259 Glu Phe Ala Asp Glu Gln Pro Leu Lys Gly Ala Arg Ile Ala Gly Ser atc cac atg acg gtc cag acc gcc gtg ctt att gag acc ctc act gct 307 Ile His Met Thr Val Gln Thr Ala Val Leu Ile Glu Thr Leu Thr Ala ttg ggc gct gag gtt cgt tgg gct tcc tgc aac att ttc tcc acc cag 355 Leu Gly Ala Glu Val Arg Trp Ala Ser Cys Asn Ile Phe Ser Thr Gln 80 gat gag gct gca gcg gct atc gtt gtc ggc tcc ggc acc gtc gaa gag 403 Asp Glu Ala Ala Ala Ile Val Val Gly Ser Gly Thr Val Glu Glu 90 cca gct ggt gtt cca gta ttc gcg tgg aag ggt gag tca ctg gag gag 451 Pro Ala Gly Val Pro Val Phe Ala Trp Lys Gly Glu Ser Leu Glu Glu 110 tac tgg tgg tgc atc aac cag atc ttc agc tgg ggc gat gag ctg cca 499 Tyr Trp Trp Cys Ile Asn Gln Ile Phe Ser Trp Gly Asp Glu Leu Pro aac atg atc ctc gac gac ggt gac gcc acc atg gct gtt att cgc Asn Met Ile Leu Asp Asp Gly Gly Asp Ala Thr Met Ala Val Ile Arg 140 ggt cgc gaa tac gag cag gct ggt ctg gtt cca cca gca gag gcc aac Gly Arg Glu Tyr Glu Gln Ala Gly Leu Val Pro Pro Ala Glu Ala Asn gat tcc gat gag tac atc gca ttc ttg ggc atg ctg cgt gag gtt ctt 643 Asp Ser Asp Glu Tyr Ile Ala Phe Leu Gly Met Leu Arg Glu Val Leu 170 175 gct gca gag cct ggc aag tgg ggc aag atc gct gag gcc gtt aag ggt 691 Ala Ala Glu Pro Gly Lys Trp Gly Lys Ile Ala Glu Ala Val Lys Gly 185 190 195

gtc acc gag Val Thr Gl	. Glu Thr			Va1								739
gaa gaa gg Glu Glu Gl 215			e Pro									787
acc aag to Thr Lys Se 230												835
gac ggc ato Asp Gly Ilo		Ala Th										883
ctt gtc tgo Leu Val Cys	_		-		-		_	_		_		931
gac ggc cag Asp Gly Gli 280	n Gly Ala											979
gct ctt cag	g gct ctg	atg ga	t ggc	tac	tct	gtg	gtc	acc	gtt	gat	gag	
Ala Leu Gli 295	n Ala Leu	Met As	_	Tyr	Ser	Val	Val 305	Thr	Val	Asp	Glu	
gcc atc gag	g gac gcc	gac at	gtg	atc	acc	gcg	acc	ggc	aac	aag	gac	
1075 Ala Ile Glu 310	ı Asp Ala	Asp Il	e Val	Ile	Thr	Ala 320	Thr	Gly	Asn	Lys	Asp 325	
atc att tco	ttc gag	cag at	g ctc	aag	atg	aag	gat	cac	gct	ctg	ctg	
1123 Ile Ile Se	Phe Glu 330		t Leu	Lys	Met 335	Lys	Asp	His	Ala	Leu 340	Leu	
ggc aac ato	ggt cac	ttt ga	c aat	gag	atc	gat	atg	cat	tcc	ctg	ttg	
Gly Asn Ile	Gly His	Phe As	o Asn	Glu 350	Ile	Asp	Met	His	Ser 355	Leu	Leu	
cac cgc gad	gac gtc	acc cg	c acc	acg	atc	aag	cca	cag	gtc	gac	gag	
1219 His Arg Asp 360		Thr Ar	7 Thr 365	Thr	Ile	Lys	Pro	Gln 370	Val	Asp	G1u	
ttc acc ttc	tcc acc	ggt cg	c tcc	atc	atc	gtc	ctg	tcc	gaa	ggt	cgc	
1267 Phe Thr Phe 375	e Ser Thr	Gly Ar		Ile	Ile	Val	Leu 385	Ser	Glu	Gly	Arg	
ctg ttg aad	ctt ggc	aac gc	c acc	gga	cac	сса	tca	ttt	gtc	atg	tcc	
1315 Leu Leu Asr 390	Leu Gly	Asn Ala	a Thr	Gly	His	Pro 400	Ser	Phe	Val	Met	Ser 405	
aac tct ttc 1363	gcc gat	cag ac	c att	gcg	cag	atc	gaa	ctg	ttc	caa	aac	

Asn Ser Phe Ala Asp Gln Thr Ile Ala Gln Ile Glu Leu Phe Gln Asn 410 415 420

gaa gga cag tac gag aac gag gtc tac cgt ctg cct aag gtt ctc gac 1411

Glu Gly Gln Tyr Glu Asn Glu Val Tyr Arg Leu Pro Lys Val Leu Asp 425 430 435

gaa aag gtg gca cgc atc cac gtt gag gct ctc ggc ggt cag ctc acc 1459

Glu Lys Val Ala Arg Ile His Val Glu Ala Leu Gly Gly Gln Leu Thr 440 445 450

gaa ctg acc aag gag cag gct gag tac atc ggc gtt gac gtt gca ggc 1507

Glu Leu Thr Lys Glu Gln Ala Glu Tyr Ile Gly Val Asp Val Ala Gly
455 460 465

cca ttc aag ccg gag cac tac cgc tac taatgattgt cagcattgag 1554

Pro Phe Lys Pro Glu His Tyr Arg Tyr 470 475

gga 1557

<210> 220

<211> 478

<212> PRT

<213> Corynebacterium glutamicum

<400> 220

Met Ala Gln Val Met Asp Phe Lys Val Ala Asp Leu Ser Leu Ala Glu 1 5 10 15

Ala Gly Arg His Gln Ile Arg Leu Ala Glu Tyr Glu Met Pro Gly Leu 20 25 30

Met Gln Leu Arg Lys Glu Phe Ala Asp Glu Gln Pro Leu Lys Gly Ala 35 40 45

Arg Ile Ala Gly Ser Ile His Met Thr Val Gln Thr Ala Val Leu Ile 50 55 60

Glu Thr Leu Thr Ala Leu Gly Ala Glu Val Arg Trp Ala Ser Cys Asn 65 70 75 80

Ile Phe Ser Thr Gln Asp Glu Ala Ala Ala Ile Val Val Gly Ser 85 90 95

Gly Thr Val Glu Glu Pro Ala Gly Val Pro Val Phe Ala Trp Lys Gly
100 105 110

Glu Ser Leu Glu Glu Tyr Trp Trp Cys Ile Asn Gln Ile Phe Ser Trp
115 120 125

Gly Asp Glu Leu Pro Asn Met Ile Leu Asp Asp Gly Gly Asp Ala Thr 130 135 140

Met Ala Val Ile Arg Gly Arg Glu Tyr Glu Gln Ala Gly Leu Val Pro

145					150					155					160
Pro	Ala	Gl u	Ala	Asn 165	Asp	Ser	Asp	Glu	Tyr 170	Ile	Ala	Phe	Leu	Gly 175	Met
Leu	Arg	Glu	Val 180	Leu	Ala	Ala	Glu	Pro 185	Gly	Lys	Trp	Gly	Lys 190	Ile	Ala
Glu	Ala	Val 195	Lys	Gly	Val	Thr	Glu 200	Glu	Thr	Thr	Thr	Gly 205	Val	His	Arg
Leu	ту́г 210	His	Phe	Ala	Glu	Glu 215	Gly	Val	Leu	Pro	Phe 220	Pro	Ala	Met	Asn
Val 225	Asn	Asp	Ala	Val	Thr 230	Lys	Ser	Lys	Phe	Asp 235	Asn	Lys	Tyr	Gly	Thr 240
Arg	His	Ser	Leu	Ile 245	Asp	Gly	Ile	Asn	Arg 250	Ala	Thr	Asp	Met	Leu 255	Met
Gly	Gly	Lys	Asn 260	Val	Leu	Val	Cys	Gly 265	Tyr	Gly	Asp	Val	Gly 270	Lys	Gly
Cys	Ala	Glu 275	Ala	Phe	Asp	Gly	Gln 280	Gly	Ala	Arg	Val	Lys 285	Val	Thr	Glu
Ala	Asp 290	Pro	Ile	Asn	Ala	Leu 295	Gln	Ala	Leu	Met	Asp 300	Gly	Tyr	Ser	Val
Val 305	Thr	Val	Asp	Glu	Ala 310	Ile	Glu	Asp	Ala	Asp 315	Ile	Val	Ile	Thr	Ala 320
Thr	Gly	Asn	Lys	Asp 325	Ile	Ile	Ser	Phe	Glu 330	Gln	Met	Leu	Lys	Met 335	Lys
Asp	His	Ala	Leu 340	Leu	Gly	Asn	Ile	Gly 345	His	Phe	Asp	Asn	Glu 350	Ile	Asp
		355	Leu				360					365			_
Pro	Gln 370	Val	Asp	Glu	Phe	Thr 375	Phe	Ser	Thr	Gly	Arg 380	Ser	Ile	Ile	Val
Leu 385	Ser	Glu	Gly	Arg	Leu 390	Leu	Asn	Leu	Gly	Asn 395	Ala	Thr	Gly	His	Pro 400
Ser	Phe	Val	Met	Ser 405	Asn	Ser	Phe	Ala	Asp 410	Gln	Thr	Ile	Ala	Gln 415	Ile
Glu	Leu	Phe	Gln 420	Asn	Glu	Gly	Gln	Tyr 425	Glu	Asn	Glu	Val	Tyr 430	Arg	Leu
Pro	Lys	Val 435	Leu	Asp	Glu	Lys	Val 440	Ala	Arg	Ile	His	Val 445	Glu	Ala	Leu
Gly	Gly 450	Gln	Leu	Thr	Glu	Leu 455	Thr	Lys	Glu	Gln	Ala 460	Glu	Tyr	Ile	Gly
Val 465	Asp	Val	Ala	Gly	Pro 470	Phe	Lys	Pro	Glu	His 475	Tyr	Arg	Tyr		

```
<210> 221
<211> 128
<212> DNA
<213> Corynebacterium glutamicum
<220>
<221> CDS
<222> (1)..(105)
<223> FRXA00132
<400> 221
cac gtt gag gct ctc ggc ggt cag ctc acc gaa ctg acc aag gag cag
                                                                   48
His Val Glu Ala Leu Gly Gly Gln Leu Thr Glu Leu Thr Lys Glu Gln
gct gag tac atc ggc gtt gac gtt gca ggc cca ttc aag ccg gag cac
                                                                   96
Ala Glu Tyr Ile Gly Val Asp Val Ala Gly Pro Phe Lys Pro Glu His
             20
                                 25
                                                                   128
tac cgc tac taatgattgt cagcattgag gga
Tyr Arg Tyr
<210> 222
<211> 35
<212> PRT
<213> -Corynebacterium glutamicum
<400> 222
His Val Glu Ala Leu Gly Gly Gln Leu Thr Glu Leu Thr Lys Glu Gln
Ala Glu Tyr Ile Gly Val Asp Val Ala Gly Pro Phe Lys Pro Glu His
                                 25
             20
Tyr Arg Tyr
<210> 223
<211> 1396
<212> DNA
<213> Corynebacterium glutamicum
<220>
<221> CDS
<222> (101)..(1396)
<223> FRXA01371
<400> 223
aacagcttca atcaattcgg tgtccactcc aacatgtaga gtggtgcgcg ttaaaaaaagt 60
tttcctaatt ttcattttct taaaaggagc tcgccaggac atg gca cag gtt atg
                                             Met Ala Gln Val Met
gac ttc aag gtt gcc gat ctt tca cta gca gag gca gga cgt cac cag
Asp Phe Lys Val Ala Asp Leu Ser Leu Ala Glu Ala Gly Arg His Gln
```

				10					15					20		
	_		_	_			atg Met				_	-	_	_	_	211
~		_	_		_		ttg Leu 45	_		_	_		_			259
							gcc Ala									307
							gct Ala									355
-		-	_		-		gtt Val	-					_	_	- •	403
							gcg Ala	_		-			_			451
			_			_	atc Ile 125		_			_		_		499
	_			-			ggt Gly				_	-	_		_	547
	_	-			_		ggt Gly	_	-			_		_		595
_		-				_	ttc Phe	_		-	_	_		_		643
_		_					ggc Gly			-	-	-	-	_		691
							ggt Gly 205									739
							cca Pro									787
	_		_		-		aag Lys				_			_		835
							gac Asp								-	883

ctt gtc tgc ggt tac ggc gat gtc ggc aag ggc tgc gct gag gct ttc 931 Leu Val Cys Gly Tyr Gly Asp Val Gly Lys Gly Cys Ala Glu Ala Phe 270 275 265 gac ggc cag ggc gct cgc gtc aag gtc acc gaa gct gac cca atc aac 979 Asp Gly Gln Gly Ala Arg Val Lys Val Thr Glu Ala Asp Pro Ile Asn 285 290 get ett cag get etg atg gat gge tae tet gtg gte ace gtt gat gag Ala Leu Gln Ala Leu Met Asp Gly Tyr Ser Val Val Thr Val Asp Glu 300 qcc atc gag gac gcc gac atc gtg atc acc gcg acc ggc aac aag gac Ala Ile Glu Asp Ala Asp Ile Val Ile Thr Ala Thr Gly Asn Lys Asp atc att tcc ttc gag cag atg ctc aag atg aag gat cac gct ctg ctg 1123 Ile Ile Ser Phe Glu Gln Met Leu Lys Met Lys Asp His Ala Leu Leu 335 330 ggc aac atc ggt cac ttt gat aat gag atc gat atg cat tcc ctg ttg 1171 Gly Asn Ile Gly His Phe Asp Asn Glu Ile Asp Met His Ser Leu Leu 350 cac cgc gac gac gtc acc cgc acc acg atc aag cca cag gtc gac gag 1219 His Arg Asp Asp Val Thr Arg Thr Thr Ile Lys Pro Gln Val Asp Glu 360 365 ttc acc ttc tcc acc ggt cgc tcc atc atc gtc ctg tcc gaa ggt cgc Phe Thr Phe Ser Thr Gly Arg Ser Ile Ile Val Leu Ser Glu Gly Arg 380 ctg ttg aac ctt ggc aac gcc acc gga cac cca tca ttt gtc atg tcc Leu Leu Asn Leu Gly Asn Ala Thr Gly His Pro Ser Phe Val Met Ser 395 400 aac tot tto goo gat cag acc att gog cag atc gaa ctg tto caa aac Asn Ser Phe Ala Asp Gln Thr Ile Ala Gln Ile Glu Leu Phe Gln Asn 410 gaa gga cag tac gag aac gag gtc tac cgt ctg 1396 Glu Gly Gln Tyr Glu Asn Glu Val Tyr Arg Leu 425 430

<210> 224

<211> 432

<212> PRT

<213> Corynebacterium glutamicum

<400> 224

Met Ala Gln Val Met Asp Phe Lys Val Ala Asp Leu Ser Leu Ala Glu 1 5 10 15

- Ala Gly Arg His Gln Ile Arg Leu Ala Glu Tyr Glu Met Pro Gly Leu 20 25 30
- Met Gln Leu Arg Lys Glu Phe Ala Asp Glu Gln Pro Leu Lys Gly Ala 35 40 45
- Arg Ile Ala Gly Ser Ile His Met Thr Val Gln Thr Ala Val Leu Ile 50 60
- Glu Thr Leu Thr Ala Leu Gly Ala Glu Val Arg Trp Ala Ser Cys Asn 65 70 75 80
- Ile Phe Ser Thr Gln Asp Glu Ala Ala Ala Ile Val Val Gly Ser
 85 90 95
- Gly Thr Val Glu Glu Pro Ala Gly Val Pro Val Phe Ala Trp Lys Gly
 100 105 110
- Glu Ser Leu Glu Glu Tyr Trp Trp Cys Ile Asn Gln Ile Phe Ser Trp
 115 120 125
- Gly Asp Glu Leu Pro Asn Met Ile Leu Asp Asp Gly Gly Asp Ala Thr 130 135 140
- Met Ala Val Ile Arg Gly Arg Glu Tyr Glu Gln Ala Gly Leu Val Pro
 145 150 155 160
- Pro Ala Glu Ala Asn Asp Ser Asp Glu Tyr Ile Ala Phe Leu Gly Met 165 170 175
- Leu Arg Glu Val Leu Ala Ala Glu Pro Gly Lys Trp Gly Lys Ile Ala 180 185 190
- Glu Ala Val Lys Gly Val Thr Glu Glu Thr Thr Thr Gly Val His Arg
 195 200 205
- Leu Tyr His Phe Ala Glu Glu Gly Val Leu Pro Phe Pro Ala Met Asn 210 215 220
- Val Asn Asp Ala Val Thr Lys Ser Lys Phe Asp Asn Lys Tyr Gly Thr 225 230 235 240
- Arg His Ser Leu Ile Asp Gly Ile Asn Arg Ala Thr Asp Met Leu Met 245 250 255
- Gly Gly Lys Asn Val Leu Val Cys Gly Tyr Gly Asp Val Gly Lys Gly 260 265 270
- Cys Ala Glu Ala Phe Asp Gly Gln Gly Ala Arg Val Lys Val Thr Glu 275 280 285
- Ala Asp Pro Ile Asn Ala Leu Gln Ala Leu Met Asp Gly Tyr Ser Val 290 295 300
- Val Thr Val Asp Glu Ala Ile Glu Asp Ala Asp Ile Val Ile Thr Ala 305 310 315 320
- Thr Gly Asn Lys Asp Ile Ile Ser Phe Glu Gln Met Leu Lys Met Lys

335 330 325 Asp His Ala Leu Leu Gly Asn Ile Gly His Phe Asp Asn Glu Ile Asp 345 340 Met His Ser Leu Leu His Arg Asp Asp Val Thr Arg Thr Thr Ile Lys 360 Pro Gln Val Asp Glu Phe Thr Phe Ser Thr Gly Arg Ser Ile Ile Val 375 Leu Ser Glu Gly Arg Leu Leu Asn Leu Gly Asn Ala Thr Gly His Pro 390 Ser Phe Val Met Ser Asn Ser Phe Ala Asp Gln Thr Ile Ala Gln Ile 410 Glu Leu Phe Gln Asn Glu Gly Gln Tyr Glu Asn Glu Val Tyr Arg Leu 420 425

<210> 225 <211> 2358 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(2335) <223> RXN02085 <400> 225 cacceggtga tttcgcgaac cttgaaacat cgtcagaaga ttgccgtgcg tcctagccgg 60 gatccgcacg ttcggctcaa gcagaaagtc tttaactcac atg act tcc aac ttt Met Thr Ser Asn Phe 163 tct tcc act gtc gct ggt ctt cct cgc atc gga gcg aag cgt gaa ctg Ser Ser Thr Val Ala Gly Leu Pro Arg Ile Gly Ala Lys Arg Glu Leu 211 aag ttc gcg ctc gaa ggc tac tgg aat gga tca att gaa ggt cgc gaa Lys Phe Ala Leu Glu Gly Tyr Trp Asn Gly Ser Ile Glu Gly Arg Glu ctt gcg cag acc gcc cgc caa ttg gtc aac act gca tcg gat tct ttg 259 Leu Ala Gln Thr Ala Arg Gln Leu Val Asn Thr Ala Ser Asp Ser Leu 40 tct gga ttg gat tcc gtt ccg ttt gca gga cgt tcc tac tac gac gca 307 Ser Gly Leu Asp Ser Val Pro Phe Ala Gly Arg Ser Tyr Tyr Asp Ala 60 atg ctc gat acc gcc gct att ttg ggt gtg ctg ccg gag cgt ttt gat 355 Met Leu Asp Thr Ala Ala Ile Leu Gly Val Leu Pro Glu Arg Phe Asp 80 70 75

										cca Pro						403
		-	-	_	-					ctg Leu		_	_	-	_	451
	_			-						ctc Leu		_	-	_		499
	-		_		_	_	_			gcg Ala	_			_	•	547
-	-	_	_	-	-		-		-	cgc Arg 160		•	_	_		595
										act Thr						643
_	_		_							tac Tyr		-			_	691
										gag Glu						739
										cgc Arg						787
_	-	-	_	_				_		act Thr 240						835
										ggc Gly						883
										ctt Leu						931
										ggt Gly						979
acc 1027	~	ctg	tgt	gct	gct	ctt	gct	tcc	ctg	aag	cgc	ctg	gca	gct	cgc	
Thr	Asp 295					300				Lys	305				-	
ggc 1075		atc	gca	gtg	tct	acc	tct	tgt	tca	ctg	ctg	cac	gtt	cct	tac	
Gly 310	Pro	Ile	Ala	Val	Ser 315	Thr	Ser	Cys	Ser	Leu 320	Leu	His	Val	Pro	Tyr 325	

RNSDOCID: <WO___010084342_L ~

acc ctc gag gct gag aac att gag cct gag gtc cgc gac tgg ctt gcc 1123 Thr Leu Glu Ala Glu Asn Ile Glu Pro Glu Val Arg Asp Trp Leu Ala 335 ttc ggc tcg gag aag atc acc gag gtc aag ctg ctt gcc gac gcc cta 1171 Phe Gly Ser Glu Lys Ile Thr Glu Val Lys Leu Leu Ala Asp Ala Leu 345 350 gcc ggc aac atc gac gcg gct gcg ttc gat gcg gcg tcc gca gca att 1219 Ala Gly Asn Ile Asp Ala Ala Ala Phe Asp Ala Ala Ser Ala Ala Ile 365 gct tct cga cgc acc tcc cca cgc acc gca cca atc acg cag gaa ctc 1267 Ala Ser Arg Arg Thr Ser Pro Arg Thr Ala Pro Ile Thr Gln Glu Leu 375 cct ggc cgt agc cgt gga tcc ttc gac act cgt gtt acg ctg cag gag Pro Gly Arg Ser Arg Gly Ser Phe Asp Thr Arg Val Thr Leu Gln Glu 400 405 aag tca ctg gag ctt cca gct ctg cca acc acc acc att ggt tct ttc 1363 Lys Ser Leu Glu Leu Pro Ala Leu Pro Thr Thr Thr Ile Gly Ser Phe 410 415 cca cag acc cca tcc att cgt tct gct cgc gct cgt ctg cgc aag gaa Pro Gln Thr Pro Ser Ile Arg Ser Ala Arg Ala Arg Leu Arg Lys Glu 425 430 tcc atc act ttg gag cag tac gaa gag gca atg cgc gaa gaa atc gat 1459 Ser Ile Thr Leu Glu Gln Tyr Glu Glu Ala Met Arg Glu Glu Ile Asp ctg gtc atc gcc aag cag gaa gaa ctt ggt ctt gat gtg ttg gtt cac 1507 Leu Val Ile Ala Lys Gln Glu Glu Leu Gly Leu Asp Val Leu Val His 455 460 465 ggt gag cca gag cgc aac gac atg gtt cag tac ttc tct gaa ctt ctc 1555 Gly Glu Pro Glu Arg Asn Asp Met Val Gln Tyr Phe Ser Glu Leu Leu 475 gac ggt ttc ctc tca acc gcc aac ggc tgg gtc caa agc tac ggc tcc 1603 Asp Gly Phe Leu Ser Thr Ala Asn Gly Trp Val Gln Ser Tyr Gly Ser 490 495 500 cgc tgt gtt cgt cct cca gtg ttg ttc gga aac gtt tcc cgc cca gcg 1651 Arg Cys Val Arg Pro Pro Val Leu Phe Gly Asn Val Ser Arg Pro Ala 505 510 515

cca atg act gtc aag tgg ttc cag tac gca cag agc ctg acc cag aag Pro Met Thr Val Lys Trp Phe Gln Tyr Ala Gln Ser Leu Thr Gln Lys cat gtc aag gga atg ctc acc ggt cca gtc acc atc ctt gca tgg tcc His Val Lys Gly Met Leu Thr Gly Pro Val Thr Ile Leu Ala Trp Ser 540 535 tte gtt ege gat gat eag eeg etg get ace act get gae eag gtt gea 1795 Phe Val Arg Asp Asp Gln Pro Leu Ala Thr Thr Ala Asp Gln Val Ala ctg gca ctg cgc gat gaa att aac gat ctc atc gag gct ggc gcg aag Leu Ala Leu Arg Asp Glu Ile Asn Asp Leu Ile Glu Ala Gly Ala Lys 570 atc atc cag gtg gat gag cct gcg att cgt gaa ctg ttg ccg cta cga Ile Ile Gln Val Asp Glu Pro Ala Ile Arg Glu Leu Leu Pro Leu Arg gac gtc gat aag cct gcc tac ctg cag tgg tcc gtg gac tcc ttc cgc 1939 Asp Val Asp Lys Pro Ala Tyr Leu Gln Trp Ser Val Asp Ser Phe Arg 600 605 610 ctg gcg act gcc ggc gca ccc gac gtc caa atc cac acc cac atg 1987 Leu Ala Thr Ala Gly Ala Pro Asp Asp Val Gln Ile His Thr His Met tgc tac tcc gag ttc aac gaa gtg atc tcc tcg gtc atc gcg ttg gat 2035 Cys Tyr Ser Glu Phe Asn Glu Val Ile Ser Ser Val Ile Ala Leu Asp 635 640 645 gcc gat gtc acc acc atc gaa gca gca cgt tcc gac atg cag gtc ctc 2083 Ala Asp Val Thr Thr Ile Glu Ala Ala Arg Ser Asp Met Gln Val Leu gct gct ctg aaa tct tcc ggc ttc gag ctc ggc gtc gga cct ggt gtg 2131 Ala Ala Leu Lys Ser Ser Gly Phe Glu Leu Gly Val Gly Pro Gly Val 665 670 675 tgg gat atc cac tcc ccg cgc gtt cct tcc gcg cag aaa gtg gac ggt Trp Asp Ile His Ser Pro Arg Val Pro Ser Ala Gln Lys Val Asp Gly ctc ctc gag gct gca ctg cag tcc gtg gat cct cgc cag ctg tgg gtc 2227 Leu Leu Glu Ala Ala Leu Gln Ser Val Asp Pro Arg Gln Leu Trp Val 695 700

BNSDOCID: -M/Q __010094242 1 ~

aac cca gac tgt ggt ctg aag acc cgt gga tgg cca gaa gtg gaa gct 2275

Asn Pro Asp Cys Gly Leu Lys Thr Arg Gly Trp Pro Glu Val Glu Ala 710 725 720 725

tcc cta aag gtt ctc gtt gag tcc gct aag cag gct cgt gag aaa atc 2323

Ser Leu Lys Val Leu Val Glu Ser Ala Lys Gln Ala Arg Glu Lys Ile 730 735 740

gga gca act atc taaattgggt taccgctagg aac 2358

Gly Ala Thr Ile 745

<210> 226

<211> 745

<212> PRT

<213> Corynebacterium glutamicum

<400> 226

Met Thr Ser Asn Phe Ser Ser Thr Val Ala Gly Leu Pro Arg Ile Gly
1 5 10 15

Ala Lys Arg Glu Leu Lys Phe Ala Leu Glu Gly Tyr Trp Asn Gly Ser 20 25 30

Ile Glu Gly Arg Glu Leu Ala Gln Thr Ala Arg Gln Leu Val Asn Thr 35 40 45

Ala Ser Asp Ser Leu Ser Gly Leu Asp Ser Val Pro Phe Ala Gly Arg
50 55 60

Ser Tyr Tyr Asp Ala Met Leu Asp Thr Ala Ala Ile Leu Gly Val Leu 65 70 75 80

Pro Glu Arg Phe Asp Asp Ile Ala Asp His Glu Asn Asp Gly Leu Pro 85 90 95

Leu Trp Ile Asp Arg Tyr Phe Gly Ala Ala Arg Gly Thr Glu Thr Leu 100 105 110

Pro Ala Gln Ala Met Thr Lys Trp Phe Asp Thr Asn Tyr His Tyr Leu 115 120 125

Val Pro Glu Leu Ser Ala Asp Thr Arg Phe Val Leu Asp Ala Ser Ala 130 135 140

Leu Ile Glu Asp Leu Arg Cys Gln Gln Val Arg Gly Val Asn Ala Arg 145 150 155 160

Pro Val Leu Val Gly Pro Leu Thr Phe Leu Ser Leu Ala Arg Thr Thr 165 170 175

Asp Gly Ser Asn Pro Leu Asp His Leu Pro Ala Leu Phe Glu Val Tyr 180 185 190

Glu Arg Leu Ile Lys Ser Phe Asp Thr Glu Trp Val Gln Ile Asp Glu 195 200 205

Pro Ala Leu Val Thr Asp Val Ala Pro Glu Val Leu Glu Gln Val Arg Ala Gly Tyr Thr Thr Leu Ala Lys Arg Asp Gly Val Phe Val Asn Thr 230 Tyr Phe Gly Ser Gly Asp Gln Ala Leu Asn Thr Leu Ala Gly Ile Gly Leu Gly Ala Ile Gly Val Asp Leu Val Thr His Gly Val Thr Glu Leu Ala Ala Trp Lys Gly Glu Glu Leu Leu Val Ala Gly Ile Val Asp Gly 280 Arg Asn Ile Trp Arg Thr Asp Leu Cys Ala Ala Leu Ala Ser Leu Lys 295 Arg Leu Ala Ala Arg Gly Pro Ile Ala Val Ser Thr Ser Cys Ser Leu 310 315 Leu His Val Pro Tyr Thr Leu Glu Ala Glu Asn Ile Glu Pro Glu Val 330 Arg Asp Trp Leu Ala Phe Gly Ser Glu Lys Ile Thr Glu Val Lys Leu 345 Leu Ala Asp Ala Leu Ala Gly Asn Ile Asp Ala Ala Ala Phe Asp Ala 360 Ala Ser Ala Ala Ile Ala Ser Arg Arg Thr Ser Pro Arg Thr Ala Pro 375 Ile Thr Gln Glu Leu Pro Gly Arg Ser Arg Gly Ser Phe Asp Thr Arg 390 Val Thr Leu Gln Glu Lys Ser Leu Glu Leu Pro Ala Leu Pro Thr Thr 410 Thr Ile Gly Ser Phe Pro Gln Thr Pro Ser Ile Arg Ser Ala Arg Ala Arg Leu Arg Lys Glu Ser Ile Thr Leu Glu Gln Tyr Glu Glu Ala Met 440 Arg Glu Glu Ile Asp Leu Val Ile Ala Lys Gln Glu Glu Leu Gly Leu 450 Asp Val Leu Val His Gly Glu Pro Glu Arg Asn Asp Met Val Gln Tyr 470 475 Phe Ser Glu Leu Leu Asp Gly Phe Leu Ser Thr Ala Asn Gly Trp Val 485 Gln Ser Tyr Gly Ser Arg Cys Val Arg Pro Pro Val Leu Phe Gly Asn Val Ser Arg Pro Ala Pro Met Thr Val Lys Trp Phe Gln Tyr Ala Gln 515 Ser Leu Thr Gln Lys His Val Lys Gly Met Leu Thr Gly Pro Val Thr

530 535 540 Ile Leu Ala Trp Ser Phe Val Arg Asp Asp Gln Pro Leu Ala Thr Thr 550 555 545 Ala Asp Gln Val Ala Leu Ala Leu Arg Asp Glu Ile Asn Asp Leu Ile 570 Glu Ala Gly Ala Lys Ile Ile Gln Val Asp Glu Pro Ala Ile Arg Glu 580 585 Leu Leu Pro Leu Arg Asp Val Asp Lys Pro Ala Tyr Leu Gln Trp Ser 600 Val Asp Ser Phe Arg Leu Ala Thr Ala Gly Ala Pro Asp Asp Val Gln Ile His Thr His Met Cys Tyr Ser Glu Phe Asn Glu Val Ile Ser Ser 630 635 Val Ile Ala Leu Asp Ala Asp Val Thr Thr Ile Glu Ala Ala Arg Ser Asp Met Gln Val Leu Ala Ala Leu Lys Ser Ser Gly Phe Glu Leu Gly 660 665 Val Gly Pro Gly Val Trp Asp Ile His Ser Pro Arg Val Pro Ser Ala 680 Gln Lys Val Asp Gly Leu Leu Glu Ala Ala Leu Gln Ser Val Asp Pro 690 695 Arg Gln Leu Trp Val Asn Pro Asp Cys Gly Leu Lys Thr Arg Gly Trp 710 715 Pro Glu Val Glu Ala Ser Leu Lys Val Leu Val Glu Ser Ala Lys Gln 725 730 Ala Arg Glu Lys Ile Gly Ala Thr Ile <210> 227 <211> 1923 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(1900) <223> FRXA02085 . <400> 227 cacceggtga tttegegaac ettgaaacat egteagaaga ttgeegtgeg teetageegg 60 gateegeacg tteggeteaa geagaaagte tttaaeteae atg act tee aac ttt Met Thr Ser Asn Phe tct tcc act gtc gct ggt ctt cct cgc atc gga gcg aag cgt gaa ctg Ser Ser Thr Val Ala Gly Leu Pro Arg Ile Gly Ala Lys Arg Glu Leu

10	15	20
----	----	----

aag Lys	ttc Phe	gcg Ala	ctc Leu 25	Glu	ggc	tac Tyr	tgg Trp	aat Asn 30	Gly	tca Ser	att Ile	gaa Glu	ggt Gly 35	Arg	gaa Glu	211
ctt Leu	gcg Ala	cag Gln 40	Thr	gcc Ala	cgc Arg	caa Gln	ttg Leu 45	gtc Val	aac Asn	act Thr	gca Ala	tcg Ser 50	Asp	tct Ser	ttg Leu	259
tct Ser	gga Gly 55	Leu	gat Asp	tcc Ser	gtt Val	ccg Pro 60	ttt Phe	gca Ala	gga Gly	cgt Arg	tcc Ser 65	Tyr	tac Tyr	gac Asp	gca Ala	307
atg Met 70	ctc Leu	gat Asp	acc Thr	gcc Ala	gct Ala 75	att Ile	ttg Leu	ggt Gly	gtg Val	ctg Leu 80	ccg Pro	gag Glu	cgt Arg	ttt Phe	gat Asp 85	355
gac Asp	atc Ile	gct Ala	gat Asp	cat His 90	gaa Glu	aac Asn	gat Asp	ggt Gly	ctc Leu 95	cca Pro	ctg Leu	tgg Trp	att Ile	gac Asp 100	cgc Arg	403
tac Tyr	ttt Phe	ggc Gly	gct Ala 105	gct Ala	cgc Arg	ggt Gly	act Thr	gag Glu 110	acc Thr	ctg Leu	cct Pro	gca Ala	cag Gln 115	gca Ala	atg Met	451
acc Thr	aag Lys	tgg Trp 120	ttt Phe	gat Asp	acc Thr	aac Asn	tac Tyr 125	cac His	tac Tyr	ctc Leu	gtg Val	ccg Pro 130	gag Glu	ttg Leu	tct Ser	499
gcg Ala	gat Asp 135	aca Thr	cgt Arg	ttc Phe	gtt Val	ttg Leu 140	gat Asp	gcg Ala	tcc Ser	gcg Ala	ctg Leu 145	att Ile	gag Glu	gat Asp	ctc Leu	547
cgt Arg 150	tgc Cys	cag Gln	cag Gln	gtt Val	cgt Arg 155	ggc Gly	gtt Val	aat Asn	gcc Ala	cgc Arg 160	cct Pro	gtt Val	ctg Leu	gtt Val	ggt Gly 165	595
cca Pro	ctg Leu	act Thr	ttc Phe	ctt Leu 170	tcc Ser	ctt Leu	gct Ala	cgc Arg	acc Thr 175	act Thr	gat Asp	ggt Gly	tcc Ser	aat Asn 180	cct Pro	643
ttg Leu	gat Asp	cac His	ctg Leu 185	cct Pro	gca Ala	ctg Leu	ttt Phe	gag Glu 190	gtc Val	tac Tyr	gag Glu	cgc Arg	ctc Leu 195	atc Ile	aag Lys	691
tct Ser	ttc Phe	gat Asp 200	act Thr	gag Glu	tgg Trp	gtt Val	cag Gln 205	atc Ile	gat Asp	gag Glu	cct Pro	gcg Ala 210	ttg Leu	gtc Val	acc Thr	739
gat Asp	gtt Val 215	gct Ala	cct Pro	gag Glu	gtt Val	ttg Leu 220	gag Glu	cag Gln	gtc Val	cgc Arg	gct Ala 225	ggt Gly	tac Tyr	acc Thr	act Thr	787
ttg Leu 230	gct Ala	aag Lys	cgc Arg	gat Asp	ggc Gly 235	gtg Val	ttt Phe	gtc Val	aat Asn	act Thr 240	tac Tyr	ttc Phe	ggc Gly	tct Ser	ggc Gly 245	835
gat Asp	cag Gln	gcg Ala	ctg Leu	aac Asn 250	act Thr	ctt Leu	gcg Ala	ggc Gly	atc Ile 255	ggc Gly	ctt Leu	ggc Gly	gcg Ala	att Ile 260	ggc Gly	883

gtt gac Val Asp	ttg Leu	gtc Val 265	acc Thr	cat His	ggc Gly	gtc Val	act Thr 270	gag Glu	ctt Leu	gct Ala	gcg Ala	tgg Trp 275	aag Lys	ggt Gly	931
gag gag Glu Glu	ctg Leu 280	ctg Leu	gtt Val	gcg Ala	ggc	atc Ile 285	gtt Val	gat Asp	ggt Gly	cgt Arg	aac Asn 290	att Ile	tgg Trp	cgc Arg	979
acc gac 1027	ctg	tgt	gct	gct	ctt	gct	tcc	ctg	aag	cgc	ctg	gca	gct	cgc	
Thr Asp 295	Leu	Cys	Ala	Ala	Leu 300	Ala	Ser	Leu	Lys	Arg 305	Leu	Ala	Ala	Arg	
ggc cca 1075	atc	gca	gtg	tct	acc	tct	tgt	tca	ctg	ctg	cac	gtt	cct	tac	
Gly Pro 310	Ile	Ala	Val	Ser 315	Thr	Ser	Cys	Ser	Leu 320	Leu	His	Val	Pro	Tyr 325	
acc ctc 1123	gag	gct	gag	aac	att	gag	cct	gag	gtc	cgc	gac	tgg	ctt	gcc	
Thr Leu	Glu	Ala	Glu 330	Asn	Ile	Glu	Pro	Glu 335	Val	Arg	Asp	Trp	Leu 340	Ala	
ttc ggc 1171															
Phe Gly	Ser	Glu 3 45	Lys	Ile	Thr	Glu	Val 350	Lys	Leu	Leu	Ala	Asp 355	Ala	Leu	
gcc ggc 1219	aac	atc	gac	gcg	gct	gcg	ttc	gat	gcg	gcg	tcc	gca	gca	att	
Ala Gly	Asn 360	Ile	Asp	Ala	Ala	Ala 365	Phe	Asp	Ala	Ala	Ser 370	Ala	Ala	Ile	
gct tct 1267															
Ala Ser 375	Arg	Arg	Thr	Ser	Pro 380	Arg	Thr	Ala	Pro	Ile 385	Thr	Gln	Glu	Leu	
cct ggc 1315	cgt	agc	cgt	gga	tcc	ttc	gac	act	cgt	gtt	acg	ctg	cag	gag	
Pro Gly 390	Arg	Ser	Arg	Gly 395	Ser	Phe	Asp	Thr	Arg 400	Val	Thr	Leu	Gln	Glu 405	
aag tca 1363															
Lys Ser	Leu	Glu	Leu 410	Pro	Ala	Leu	Pro	Thr 415	Thr	Thr	Ile	Gly	Ser 420	Phe	
cca cag 1411	acc	cca	tcc	att	cgt	tct	gct	cgc	gct	cgt	ctg	cgc	aag	gaa	
Pro Gln	Thr	Pro 425	Ser	Ile	Arg	Ser	Ala 430	Arg	Ala	Arg	Leu	Arg 435	Lys	Glu	
tcc atc 1459	act	ttg	gag	cag	tac	gaa	gag	gca	atg	cgc	gaa	gaa	atc	gat	
Ser Ile	Thr 440		Glu	Gln	Tyr	Glu 445		Ala	Met	Arg	Glu 450	Glu	Ile	Asp	
ctg gtc 1507	atc	gcc	aag	cag	gaa	gaa	ctt	ggt	ctt	gat	gtg	ttg	gtt	cac	

Leu Val Ile Ala Lys Gln Glu Glu Leu Gly Leu Asp Val Leu Val His ggt gag cca gag cgc aac gac atg gtt cag tac ttc tct gaa ctt ctc Gly Glu Pro Glu Arg Asn Asp Met Val Gln Tyr Phe Ser Glu Leu Leu 475 470 480 gac ggt ttc ctc tca acc gcc aac ggc tgg gtc caa agc tac ggc tcc 1603 Asp Gly Phe Leu Ser Thr Ala Asn Gly Trp Val Gln Ser Tyr Gly Ser cgc tgt gtt cgt cct cca gtg ttg ttc gga aac gtt tcc cgc cca gcg Arg Cys Val Arg Pro Pro Val Leu Phe Gly Asn Val Ser Arg Pro Ala 505 510 cca atg act gtc aag tgg ttc cag tac gca cag agc ctg acc cag aag Pro Met Thr Val Lys Trp Phe Gln Tyr Ala Gln Ser Leu Thr Gln Lys cat gtc aag gga atg ctc acc ggt cca gtc acc atc ctt gca tgg tcc 1747 His Val Lys Gly Met Leu Thr Gly Pro Val Thr Ile Leu Ala Trp Ser 540 ttc gtt cgc gat gat cag ccg ctg gct acc act gct gac cag gtt gca Phe Val Arg Asp Asp Gln Pro Leu Ala Thr Thr Ala Asp Gln Val Ala 555 ctg gca ctg cgc gat gaa att aac gat ctc atc gag gct ggc gcg aag 1843 Leu Ala Leu Arg Asp Glu Ile Asn Asp Leu Ile Glu Ala Gly Ala Lys 575 580 570 atc atc cag gtg gat gag cct gcg att cgt gaa ctg ttg ccc gct acg Ile Ile Gln Val Asp Glu Pro Ala Ile Arg Glu Leu Leu Pro Ala Thr 585 aga cgt cga taagcctgcc tacctgcagt ggt 1923 Arg Arg Arg 600 <210> 228 <211> 600 <212> PRT <213> Corynebacterium glutamicum · <400> 228 Met Thr Ser Asn Phe Ser Ser Thr Val Ala Gly Leu Pro Arg Ile Gly Ala Lys Arg Glu Leu Lys Phe Ala Leu Glu Gly Tyr Trp Asn Gly Ser 20 25

BNSDOCID: <WO

U1UUB43757-

Ile Glu Gly Arg Glu Leu Ala Gln Thr Ala Arg Gln Leu Val Asn Thr Ala Ser Asp Ser Leu Ser Gly Leu Asp Ser Val Pro Phe Ala Gly Arg Ser Tyr Tyr Asp Ala Met Leu Asp Thr Ala Ala Ile Leu Gly Val Leu Pro Glu Arg Phe Asp Asp Ile Ala Asp His Glu Asn Asp Gly Leu Pro Leu Trp Ile Asp Arg Tyr Phe Gly Ala Ala Arg Gly Thr Glu Thr Leu Pro Ala Gln Ala Met Thr Lys Trp Phe Asp Thr Asn Tyr His Tyr Leu 120 Val Pro Glu Leu Ser Ala Asp Thr Arg Phe Val Leu Asp Ala Ser Ala 135 Leu Ile Glu Asp Leu Arg Cys Gln Gln Val Arg Gly Val Asn Ala Arg 150 Pro Val Leu Val Gly Pro Leu Thr Phe Leu Ser Leu Ala Arg Thr Thr Asp Gly Ser Asn Pro Leu Asp His Leu Pro Ala Leu Phe Glu Val Tyr 180 Glu Arg Leu Ile Lys Ser Phe Asp Thr Glu Trp Val Gln Ile Asp Glu 200 Pro Ala Leu Val Thr Asp Val Ala Pro Glu Val Leu Glu Gln Val Arg 215 210 Ala Gly Tyr Thr Thr Leu Ala Lys Arg Asp Gly Val Phe Val Asn Thr 230 235 Tyr Phe Gly Ser Gly Asp Gln Ala Leu Asn Thr Leu Ala Gly Ile Gly Leu Gly Ala Ile Gly Val Asp Leu Val Thr His Gly Val Thr Glu Leu 265 Ala Ala Trp Lys Gly Glu Glu Leu Leu Val Ala Gly Ile Val Asp Gly Arg Asn Ile Trp Arg Thr Asp Leu Cys Ala Ala Leu Ala Ser Leu Lys 295 300 Arg Leu Ala Ala Arg Gly Pro Ile Ala Val Ser Thr Ser Cys Ser Leu Leu His Val Pro Tyr Thr Leu Glu Ala Glu Asn Ile Glu Pro Glu Val 330 Arg Asp Trp Leu Ala Phe Gly Ser Glu Lys Ile Thr Glu Val Lys Leu 345 340 350 Leu Ala Asp Ala Leu Ala Gly Asn Ile Asp Ala Ala Ala Phe Asp Ala

ENERGOOD -WO 010094343 L

355 360 365

Ala Ser Ala Ala Ile Ala Ser Arg Arg Thr Ser Pro Arg Thr Ala Pro 370 375 380

Ile Thr Gln Glu Leu Pro Gly Arg Ser Arg Gly Ser Phe Asp Thr Arg 385 390 395 400

Val Thr Leu Gln Glu Lys Ser Leu Glu Leu Pro Ala Leu Pro Thr Thr 405 410 415

Thr Ile Gly Ser Phe Pro Gln Thr Pro Ser Ile Arg Ser Ala Arg Ala
420 425 430

Arg Leu Arg Lys Glu Ser Ile Thr Leu Glu Gln Tyr Glu Glu Ala Met 435 440 445

Arg Glu Glu Ile Asp Leu Val Ile Ala Lys Gln Glu Glu Leu Gly Leu 450 455 460

Asp Val Leu Val His Gly Glu Pro Glu Arg Asn Asp Met Val Gln Tyr 465 470 475 480

Phe Ser Glu Leu Leu Asp Gly Phe Leu Ser Thr Ala Asn Gly Trp Val 485 490 495

Gln Ser Tyr Gly Ser Arg Cys Val Arg Pro Pro Val Leu Phe Gly Asn 500 505 510

Val Ser Arg Pro Ala Pro Met Thr Val Lys Trp Phe Gln Tyr Ala Gln 515 520 525

Ser Leu Thr Gln Lys His Val Lys Gly Met Leu Thr Gly Pro Val Thr 530 535 540

Ile Leu Ala Trp Ser Phe Val Arg Asp Asp Gln Pro Leu Ala Thr Thr 545 550 555 560

Ala Asp Gln Val Ala Leu Ala Leu Arg Asp Glu Ile Asn Asp Leu Ile 565 570 575

Glu Ala Gly Ala Lys Ile Ile Gln Val Asp Glu Pro Ala Ile Arg Glu 580 585 590

Leu Leu Pro Ala Thr Arg Arg Arg 595 600

<210> 229

<211> 603

<212> DNA

<213> Corynebacterium glutamicum

<220>

<221> CDS

<222> (101)..(580)

<223> FRXA02086

<400> 229

gatgatcagc cgctggctac cactgctgac caggttgcac tggcactgcg cgatgaaatt 60

aacgatctca tcgaggct	gg cgcgaagatc atccaggtgg	atg agc ctg cga ttc 115 Met Ser Leu Arg Phe 1 5
	cta cga gac gtc gat aag Leu Arg Asp Val Asp Lys 15	
	ttc cgc ctg gcg act gcc Phe Arg Leu Ala Thr Ala 30	
_	cac atg tgc tac tcc gag His Met Cys Tyr Ser Glu 45	
	ttg gat gcc gat gtc acc Leu Asp Ala Asp Val Thr 60	
	gtc ctc gct gct ctg aaa Val Leu Ala Ala Leu Lys 75 80	
	ggt gtg tgg gat atc cac Gly Val Trp Asp Ile His 95	
	gac ggt ctc ctc gag gct Asp Gly Leu Leu Glu Ala 110	
	tgg gtc aac cca gac tgt Trp Val Asn Pro Asp Cys 125	
	gaa gct tcc cta aag gtt Glu Ala Ser Leu Lys Val 140	
	aaa atc gga gca act atc Lys Ile Gly Ala Thr Ile 155 160	taaattgggt taccgctagg 600
aac		603
<210> 230 <211> 160 <212> PRT <213> Corynebacteria	um glutamicum	
_	Val Asn Cys Cys Pro Leu	
Pro Ala Tyr Leu Gln	Trp Ser Val Asp Ser Phe	Arg Leu Ala Thr Ala
	Val Gln Ile His Thr His	

Phe Asn Glu Val Ile Ser Ser Val Ile Ala Leu Asp Ala Asp Val Thr 50

Thr Jle Glu Ala Ala Arg 70

Ser Asp Met Gln Val Leu Ala Leu Ala Leu Lys 80

Ser Ser Gly Phe Glu Leu Gly Val Gly Pro Gly Val Trp Asp Ile His 95

Ser Pro Arg Val Pro Ser Ala Gln Lys Val Asp Gly Leu Leu Glu Ala 110

Ala Leu Gln Ser Val Asp Pro Arg 120

Gly Leu Trp Val Asn Pro Asp Cys 135

Gly Leu Lys Thr Arg Gly Trp Pro Glu Val Glu Ala Ser Leu Lys Val 130

Leu Val Glu Ser Ala Lys Gln Ala Arg Glu Lys Ile Gly Ala Thr Ile 145

Leu Val Glu Ser Ala Lys Gln Ala Arg Glu Lys Ile Gly Ala Thr Ile 160

<210> 231

<211> 1326

<212> DNA

<213> Corynebacterium glutamicum

<220>

<221> CDS

<222> (101)..(1303)

<223> RXN02648

<400> 231

atgaataaaa ttccgggtgc agtgaccgta ggtgaggtaa acgcggttag agtcgaatga 60

gagtttgata ctttctttcg acttttagat tggattttca atg agc cag aac cgc 115

Met Ser Gln Asn Arg

1 5

atc agg acc act cac gtt ggt tcc ttg ccc cgt acc cca gag cta ctt 163

Ile Arg Thr Thr His Val Gly Ser Leu Pro Arg Thr Pro Glu Leu Leu

10 15 20

gat gca aac atc aag cgt tct aac ggt gag att ggg gag gag gaa ttc $\,$ 211 Asp Ala Asn Ile Lys Arg Ser Asn Gly Glu Ile Gly Glu Glu Glu Phe $\,$ 25 $\,$ 30 $\,$ 35

ttc cag att ctg cag tct tct gta gat gac gtg atc aag cgc cag gtt 259
Phe Gln Ile Leu Gln Ser Ser Val Asp Asp Val Ile Lys Arg Gln Val

gac ctg ggt atc gac atc ctt aac gag ggc gaa tac ggc cac gtc acc 307 Asp Leu Gly Ile Asp Ile Leu Asn Glu Gly Glu Tyr Gly His Val Thr 55 60 65

tcc ggt gca gtt gac ttc ggt gca tgg tgg aac tac tcc ttc acc cgc 355 Ser Gly Ala Val Asp Phe Gly Ala Trp Trp Asn Tyr Ser Phe Thr Arg

70					75					80					85	
ctg Leu	ggc Gly	gga Gly	ctg Leu	acc Thr 90	atg Met	acc Thr	gat Asp	acc Thr	gac Asp 95	cgt Arg	tgg Trp	gca Ala	agc Ser	cag Gln 100	gaa Glu	403
gca Ala	gtg Val	cgt Arg	tcc Ser 105	acc Thr	cct Pro	ggc Gly	aac Asn	atc Ile 110	gag Glu	ctg Leu	acc Thr	agc Ser	ttc Phe 115	tct Ser	gat Asp	451
cgt Arg	cgc Arg	gac Asp 120	cgc Arg	gca Ala	ttg Leu	ttc Phe	agc Ser 125	gaa Glu	gca Ala	tac Tyr	gag Glu	gat Asp 130	cca Pro	gta Val	tct Ser	499
ggc Gly	atc Ile 135	ttc Phe	acc Thr	ggt Gly	cgc Arg	gct Ala 140	tct Ser	gtg Val	ggc Gly	aac Asn	cca Pro 145	gag Glu	ttc Phé	acc Thr	gga Gly	547
cct Pro 150	att Ile	acc Thr	tac Tyr	att Ile	ggc Gly 155	cag Gln	gaa Glu	gaa Glu	act Thr	cag Gln 160	acg Thr	gat Asp	gtt Val	gat Asp	ctg Leu 165	595
ctg Leu	aag Lys	aag Lys	ggc Gly	atg Met 170	aac Asn	gca Ala	gcg Ala	gga Gly	gct Ala 175	acc Thr	gac Asp	ggc Gly	ttc Phe	gtt Val 180	gca Ala	643
gca Ala	cta Leu	tcc Ser	cca Pro 185	gga Gly	tct Ser	gca Ala	gct Ala	cga Arg 190	ttg Leu	acc Thr	aac Asn	aag Lys	ttc Phe 195	tac Tyr	gac Asp	691
act Thr	gat Asp	gaa Glu 200	gaa Glu	gtc Val	gtc Val	gca Ala	gca Ala 205	tgt Cys	gct Ala	gat Asp	gcg Ala	ctt Leu 210	tcc Ser	cag Gln	gaa Glu	739
tac Tyr	aag Lys 215	atc Ile	atc Ile	acc Thr	gat Asp	gca Ala 220	ggt Gly	ctg Leu	acc Thr	gtt Val	cag Gln 225	ctc Leu	gac Asp	gca Ala	ccg Pro	787
Asp	Leu	gca Ala	Glu	Ala	Trp	Asp	Gln	atc Ile	Asn	cca Pro 240	Glu	cca Pro	agc Ser	gtg Val	aag Lys 245	835
gat Asp	tac Tyr	ttg Leu	gac Asp	tgg Trp 250	atc Ile	ggt Gly	aca Thr	cgc Arg	atc Ile 255	gat Asp	gcc Ala	atc Ile	aac Asn	agt Ser 260	gca Ala	883
gtg Val	aag Lys	ggc	ctt Leu 265	Pro	aag Lys	gaa Glu	cag Gln	acc Thr 270	Arg	ctg Leu	cac His	atc Ile	tgc Cys 275	Trp	ggc Gly	931
tct Ser	tgg Trp	cac His 280	Gly	cca Pro	cac His	gtc Val	act Thr 285	Asp	atc Ile	cca Pro	ttc Phe	ggt Gly 290	gac Asp	atc Ile	att Ile	979
ggt 102		atc	ctg	cgc	gca	gag	gtc	ggt	ggc	ttc	tcc	ttc	gaa	ggc	gca	
Gly	Glu 295		Leu	Arg	Ala	Glu 300		Gly	Gly	Phe	Ser 305	Phe	Glu	Gly	Ala	
tct 107		cgt	cac	gca	cac	gag	tgg	cgt	gta	. tgg	gaa	gaa	aac	aag	ctt	

Ser Pro Arg His Ala His Glu Trp Arg Val Trp Glu Glu Asn Lys Leu 310 320 325

cct gaa ggc tct gtt atc tac cct ggt gtt gtg tct cac tcc atc aac 1123

Pro Glu Gly Ser Val Ile Tyr Pro Gly Val Val Ser His Ser Ile Asn 330 335 340

gct gtg gag cac cca cgc ctg gtt gct gat cgt atc gtt cag ttc gcc 1171

Ala Val Glu His Pro Arg Leu Val Ala Asp Arg Ile Val Gln Phe Ala 345 350 355

aag ctt gtt ggc cct gag aac gtc att gcg tcc act gac tgt ggt ctg 1219

Lys Leu Val Gly Pro Glu Asn Val Ile Ala Ser Thr Asp Cys Gly Leu 360 365 370

ggc gga cgt ctg cat tcc cag atc gca tgg gca aag ctg gag tcc cta 1267

Gly Gly Arg Leu His Ser Gln Ile Ala Trp Ala Lys Leu Glu Ser Leu 375 380 385

gta gag ggc gct cgc att gca tca aag gaa ctg ttc taagctagac 1313

Val Glu Gly Ala Arg Ile Ala Ser Lys Glu Leu Phe 390 395 400

aacgagggtt gct
1326

<210> 232

<211> 401

<212> PRT

<213> Corynebacterium glutamicum

<400> 232

Met Ser Gln Asn Arg Ile Arg Thr Thr His Val Gly Ser Leu Pro Arg
1 5 10 15

Thr Pro Glu Leu Leu Asp Ala Asn Ile Lys Arg Ser Asn Gly Glu Ile 20 25 30

Gly Glu Glu Phe Phe Gln Ile Leu Gln Ser Ser Val Asp Asp Val
35 40 45

Ile Lys Arg Gln Val Asp Leu Gly Ile Asp Ile Leu Asn Glu Gly Glu
50 60

Tyr Gly His Val Thr Ser Gly Ala Val Asp Phe Gly Ala Trp Trp Asn 65 70 75 80

Tyr Ser Phe Thr Arg Leu Gly Gly Leu Thr Met Thr Asp Thr Asp Arg
85 90 95

Trp Ala Ser Gln Glu Ala Val Arg Ser Thr Pro Gly Asn Ile Glu Leu
100 105 110

Thr Ser Phe Ser Asp Arg Arg Asp Arg Ala Leu Phe Ser Glu Ala Tyr 115 120 125

Glu Asp Pro Val Ser Gly Ile Phe Thr Gly Arg Ala Ser Val Gly Asn 135 Pro Glu Phe Thr Gly Pro Ile Thr Tyr Ile Gly Gln Glu Glu Thr Gln 150 Thr Asp Val Asp Leu Leu Lys Lys Gly Met Asn Ala Ala Gly Ala Thr 170 Asp Gly Phe Val Ala Ala Leu Ser Pro Gly Ser Ala Ala Arg Leu Thr Asn Lys Phe Tyr Asp Thr Asp Glu Glu Val Val Ala Ala Cys Ala Asp 200 Ala Leu Ser Gln Glu Tyr Lys Ile Ile Thr Asp Ala Gly Leu Thr Val 215 Gln Leu Asp Ala Pro Asp Leu Ala Glu Ala Trp Asp Gln Ile Asn Pro 230 Glu Pro Ser Val Lys Asp Tyr Leu Asp Trp Ile Gly Thr Arg Ile Asp 250 Ala Ile Asn Ser Ala Val Lys Gly Leu Pro Lys Glu Gln Thr Arg Leu His Ile Cys Trp Gly Ser Trp His Gly Pro His Val Thr Asp Ile Pro Phe Gly Asp Ile Ile Gly Glu Ile Leu Arg Ala Glu Val Gly Gly Phe Ser Phe Glu Gly Ala Ser Pro Arg His Ala His Glu Trp Arg Val Trp 315 310 Glu Glu Asn Lys Leu Pro Glu Gly Ser Val Ile Tyr Pro Gly Val Val Ser His Ser Ile Asn Ala Val Glu His Pro Arg Leu Val Ala Asp Arg 345 Ile Val Gln Phe Ala Lys Leu Val Gly Pro Glu Asn Val Ile Ala Ser Thr Asp Cys Gly Leu Gly Gly Arg Leu His Ser Gln Ile Ala Trp Ala Lys Leu Glu Ser Leu Val Glu Gly Ala Arg Ile Ala Ser Lys Glu Leu 395 390

Phe

<210> 233

<211> 548

<212> DNA

<213> Corynebacterium glutamicum

<220> <221> CDS <222> (1)..(525) <223> FRXA02648 <400> 233 gac gca ccg gac ttg gca gaa gca tgg gat cag atc aac cca gag cca Asp Ala Pro Asp Leu Ala Glu Ala Trp Asp Gln Ile Asn Pro Glu Pro age gtg aag gat tae ttg gae tgg ate ggt aca ege ate gat gee ate Ser Val Lys Asp Tyr Leu Asp Trp Ile Gly Thr Arg Ile Asp Ala Ile 20 aac agt gca gtg aag ggc ctt cca aag gaa cag acc cgc ctg cac atc Asn Ser Ala Val Lys Gly Leu Pro Lys Glu Gln Thr Arg Leu His Ile 35 tgc tgg ggc tct tgg cac gga cca cac gtc act gac atc cca ttc ggt 192 Cys Trp Gly Ser Trp His Gly Pro His Val Thr Asp Ile Pro Phe Gly 50 55 gac atc att ggt gag atc ctg cgc gca gag gtc ggt ggc ttc tcc ttc 240 Asp Ile Ile Gly Glu Ile Leu Arg Ala Glu Val Gly Gly Phe Ser Phe 65 gaa ggc gca tct cct cgt cac gca cac gag tgg cgt gta tgg gaa gaa Glu Gly Ala Ser Pro Arg His Ala His Glu Trp Arg Val Trp Glu Glu 85 90 aac aag ctt cct gaa ggc tct gtt atc tac cct ggt gtt gtg tct cac Asn Lys Leu Pro Glu Gly Ser Val Ile Tyr Pro Gly Val Val Ser His 100 tcc atc aac gct gtg gag cac cca cgc ctg gtt gct gat cgt atc gtt Ser Ile Asn Ala Val Glu His Pro Arg Leu Val Ala Asp Arg Ile Val 115 cag ttc gcc aag ctt gtt ggc cct gag aac gtc att gcg tcc act gac Gln Phe Ala Lys Leu Val Gly Pro Glu Asn Val Ile Ala Ser Thr Asp 130 tgt ggt ctg ggc gga cgt ctg cat tcc cag atc gca tgg gca aag ctg Cys Gly Leu Gly Gly Arg Leu His Ser Gln Ile Ala Trp Ala Lys Leu 145 gag tcc cta gta gag ggc gct cgc att gca tca aag gaa ctg ttc 525 Glu Ser Leu Val Glu Gly Ala Arg Ile Ala Ser Lys Glu Leu Phe 165 548 taagctagac aacgagggtt gct <210> 234 <211> 175 <212> PRT <213> Corynebacterium glutamicum <400> 234 Asp Ala Pro Asp Leu Ala Glu Ala Trp Asp Gln Ile Asn Pro Glu Pro 5 10

BNSDCCID- >WC ____010094342 | +

Ser Val Lys Asp Tyr Leu Asp Trp Ile Gly Thr Arg Ile Asp Ala Ile 25 Asn Ser Ala Val Lys Gly Leu Pro Lys Glu Gln Thr Arg Leu His Ile 40 Cys Trp Gly Ser Trp His Gly Pro His Val Thr Asp Ile Pro Phe Gly Asp Ile Ile Gly Glu Ile Leu Arg Ala Glu Val Gly Gly Phe Ser Phe Glu Gly Ala Ser Pro Arg His Ala His Glu Trp Arg Val Trp Glu Glu Asn Lys Leu Pro Glu Gly Ser Val Ile Tyr Pro Gly Val Val Ser His 105 Ser Ile Asn Ala Val Glu His Pro Arg Leu Val Ala Asp Arg Ile Val Gln Phe Ala Lys Leu Val Gly Pro Glu Asn Val Ile Ala Ser Thr Asp 135 Cys Gly Leu Gly Gly Arg Leu His Ser Gln Ile Ala Trp Ala Lys Leu 145 150 160 Glu Ser Leu Val Glu Gly Ala Arg Ile Ala Ser Lys Glu Leu Phe 165 170 <210> 235 <211> 784 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(784) <223> FRXA02658 <400> 235 atgaataaaa ttccgggtgc agtgaccgta ggtgaggtaa acgcggttag agtcgaatga 60 gagtttgata ctttctttcg acttttagat tggattttca atg agc cag aac cgc Met Ser Gln Asn Arg atc agg acc act cac gtt ggt tcc ttg ccc cgt acc cca gag cta ctt Ile Arg Thr Thr His Val Gly Ser Leu Pro Arg Thr Pro Glu Leu Leu 15 10 gat gca aac atc aag cgt tct aac ggt gag att ggg gag gag gaa ttc 211 Asp Ala Asn Ile Lys Arg Ser Asn Gly Glu Ile Gly Glu Glu Phe 30 ttc cag att ctg cag tct tct gta gat gac gtg atc aag cgc cag gtt Phe Gln Ile Leu Gln Ser Ser Val Asp Asp Val Ile Lys Arg Gln Val 40 45 50

ONE GISSOSSIA

gac Asp	ctg Leu 55	ggt Gly	atc Ile	gac Asp	atc Ile	ctt Leu 60	aac Asn	gag Glu	ggc Gly	gaa Glu	tac Tyr 65	ggc Gly	cac His	gtc Val	acc Thr	307
tcc Ser 70	ggt Gly	gca Ala	gtt Val	gac Asp	ttc Phe 75	ggt Gly	gca Ala	tgg Trp	tgg Trp	aac Asn 80	tac Tyr	tcc Ser	ttc Phe	acc Thr	cgc Arg 85	355
ctg Leu	ggc Gly	gga Gly	ctg Leu	acc Thr 90	atg Met	acc Thr	gat Asp	acc Thr	gac Asp 95	cgt Arg	tgg Trp	gca Ala	agc Ser	cag Gln 100	gaa Glu	403
gca Ala	gtg Val	cgt Arg	tcc Ser 105	acc Thr	cct Pro	ggc Gly	aac Asn	atc Ile 110	gag Glu	ctg Leu	acc Thr	agc Ser	ttc Phe 115	tct Ser	gat Asp	451
cgt Arg	cgc Arg	gac Asp 120	cgc Arg	gca Ala	ttg Leu	ttc Phe	agc Ser 125	gaa Glu	gca Ala	tac Tyr	gag Glu	gat Asp 130	cca Pro	gta Val	tct Ser	499
ggc	atc Ile 135	ttc Phe	acc Thr	ggt Gly	cgc Arg	gct Ala 140	tct Ser	gtg Val	ggc Gly	aac Asn	cca Pro 145	gag Glu	ttc Phe	acc Thr	gga Gly	547
					ggc Gly 155											595
ctg Leu	aag Lys	aag Lys	ggc Gly	atg Met 170	aac Asn	gca Ala	gcg Ala	gga Gly	gct Ala 175	acc Thr	gac Asp	ggc Gly	ttc Phe	gtt Val 180	gca Ala	643
					tct Ser											691
					gtc Val											739
tac Tyr	aag Lys 215	atc Ile	atc Ile	acc Thr	gat Asp	gca Ala 220	ggt Gly	ctg Leu	acc Thr	gtt Val	cag Gln 225	ctc Leu	gac Asp	gca Ala		784
<210 <211 <212 <213	> 22 > PF	8 T	bact	eriu.	ım gl	utan	nicum	ı								
<400	> 23	6														
1				5	Ile				10					15		
Thr	Pro	Glu	Leu 20	Leu	Asp	Ala	Asn	Ile 25	Lys	Arg	Ser	Asn	Gly 30	Glu	Ile	
Gly	Glu	Glu 35	Glu	Phe	Phe	Gln	Ile 40	Leu	Gln	Ser	Ser	Val 45	Asp	Asp	Val	

Ile Lys Arg Gln Val Asp Leu Gly Ile Asp Ile Leu Asn Glu Gly Glu

60 55 50 Tyr Gly His Val Thr Ser Gly Ala Val Asp Phe Gly Ala Trp Trp Asn 75 70 Tyr Ser Phe Thr Arg Leu Gly Gly Leu Thr Met Thr Asp Thr Asp Arg Trp Ala Ser Gln Glu Ala Val Arg Ser Thr Pro Gly Asn Ile Glu Leu Thr Ser Phe Ser Asp Arg Arg Asp Arg Ala Leu Phe Ser Glu Ala Tyr 120 Glu Asp Pro Val Ser Gly Ile Phe Thr Gly Arg Ala Ser Val Gly Asn Pro Glu Phe Thr Gly Pro Ile Thr Tyr Ile Gly Gln Glu Glu Thr Gln 150 Thr Asp Val Asp Leu Leu Lys Lys Gly Met Asn Ala Ala Gly Ala Thr 170 165 Asp Gly Phe Val Ala Ala Leu Ser Pro Gly Ser Ala Ala Arg Leu Thr 185 Asn Lys Phe Tyr Asp Thr Asp Glu Glu Val Val Ala Ala Cys Ala Asp 200 Ala Leu Ser Gln Glu Tyr Lys Ile Ile Thr Asp Ala Gly Leu Thr Val 215 220 210 Gln Leu Asp Ala 225 <210> 237 <211> 408 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(385) <223> RXC02238 <400> 237 ggcgcttagc caaaacatag agcggtaggg tatgcttatc cgattgagca acctttcccg 60 ctcttaacac tactgtccat atacttttga aaaggtgtca gtg acc aac gtg agc Val Thr Asn Val Ser aac gag acc aac gcc acc aag gcc gtc ttc gat ccg cca gtg ggc att 163 Asn Glu Thr Asn Ala Thr Lys Ala Val Phe Asp Pro Pro Val Gly Ile 10 acc gct cct ccg atc gat gaa ctg ctg gat aag gtc act tcc aag tac Thr Ala Pro Pro Ile Asp Glu Leu Leu Asp Lys Val Thr Ser Lys Tyr 35 25 30

gcc ctc gtg atc ttc gca gcc aag cgt gcg cgc cag atc aac agc ttc Ala Leu Val Ile Phe Ala Ala Lys Arg Ala Arg Gln Ile Asn Ser Phe 40 tac cat cag gca gat gag gga gta ttc gag ttc atc gga cca ttg qtt Tyr His Gln Ala Asp Glu Gly Val Phe Glu Phe Ile Gly Pro Leu Val 55 60 act ccg cag cca ggc gaa aag cca ctt tct att gct ctg cgt gag atc 355 Thr Pro Gln Pro Gly Glu Lys Pro Leu Ser Ile Ala Leu Arg Glu Ile 75 aat gca ggt ctg ttg gac cac gag gaa ggt taaaagacct tataacttca 405 Asn Ala Gly Leu Leu Asp His Glu Glu Gly cac 408 <210> 238 <211> 95 <212> PRT <213> Corynebacterium glutamicum Val Thr Asn Val Ser Asn Glu Thr Asn Ala Thr Lys Ala Val Phe Asp Pro Pro Val Gly Ile Thr Ala Pro Pro Ile Asp Glu Leu Leu Asp Lys Val Thr Ser Lys Tyr Ala Leu Val Ile Phe Ala Ala Lys Arg Ala Arg Gln Ile Asn Ser Phe Tyr His Gln Ala Asp Glu Gly Val Phe Glu Phe Ile Gly Pro Leu Val Thr Pro Gln Pro Gly Glu Lys Pro Leu Ser Ile Ala Leu Arg Glu Ile Asn Ala Gly Leu Leu Asp His Glu Glu Gly <210> 239 <211> 1827 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(1804) <223> RXC00128 <400> 239 ccattttccg tttggtcttg cctaaagaac cgcatggaaa ttatcgtgaa gcaccgatcc 60 cgttgatcgc tccagagaca ccgtgggaag gggagcagca gtg agt aaa att tcg Val Ser Lys Ile Ser 1

BNSDCCID: -WO___0100949A2 | +

				gcc Ala 10												163
gct Ala	Gly ggg	tgt Cys	tcc Ser 25	acg Thr	ctt Leu	ccg Pro	cag Gln	aac Asn 30	acg Thr	gat Asp	ccg Pro	caa Gln	gtg Val 35	ctg Leu	cgc Arg	211
tca Ser	ttt Phe	tcc Ser 40	Gly ggg	tcc Ser	caa Gln	agc Ser	aca Thr 45	caa Gln	gag Glu	ata Ile	gca Ala	ggg 50	ccg Pro	acc Thr	ccg Pro	259
aat Asn	caa Gln 55	gat Asp	ccg Pro	gat Asp	ttg Leu	ttg Leu 60	atc Ile	cgc Arg	ggc Gly	ttc Phe	ttc Phe 65	agc Ser	gca Ala	ggt Gly	gcg Ala	307
				cag Gln												355
				tgg Trp 90												403
				act Thr												451
gcg Ala	atc Ile	cgt Arg 120	gga Gly	acg Thr	cag Gln	gtc Val	gga Gly 125	acg Thr	ttg Leu	ctc Leu	agc Ser	ggt Gly 130	ggc Gly	gtg Val	tat Tyr	499
cag Gln	ccg Pro 135	gag Glu	aat Asn	gcg Ala	gag Glu	ttt Phe 140	gaa Glu	gct Ala	gag Glu	atc Ile	acg Thr 145	atg Met	cgt Arg	cgg Arg	gaa Glu	547
				cgt Arg												595
				cgg Arg 170												643
gat Asp	cct Pro	tct Ser	ggc Gly 185	cag Gln	gtg Val	ttg Leu	gtg Val	ggg Gly 190	gat Asp	cgg Arg	cgt Arg	tgg Trp	ttg Leu 195	ttc Phe	aat Asn	691
				atg Met												739
				att Ile												787
gcg Ala 230	tcg Ser	ttc Phe	gtg Val	Gly ggg	ttc Phe 235	aat Asn	gat Asp	ggg Gly	gag Glu	tat Tyr 240	cag Gln	ttc Phe	act Thr	ggt Gly	ttg Leu 245	835
gga	aat	ttg	gat	gat	gat	gcg	cgt	ttg	cgt	ttc	gcc	gcc	cag	gcc	gtg	883

Gly Asn Leu Asp Asp Asp Ala Arg Leu Arg Phe Ala Ala Gln Ala Val 255 tgg acg ttg gcg cat gct gat gtc gca ggc ccc tac act ttg gtc gct 931 Trp Thr Leu Ala His Ala Asp Val Ala Gly Pro Tyr Thr Leu Val Ala 270 gac ggc gcg ccg ttg ctg tcg gag ttc cca acg ctc acc acc gat gac 979 Asp Gly Ala Pro Leu Leu Ser Glu Phe Pro Thr Leu Thr Thr Asp Asp 285 ctc gcc gaa tac aac cca gag gct tac acc aac acg gtg tcc acg ttg 1027 Leu Ala Glu Tyr Asn Pro Glu Ala Tyr Thr Asn Thr Val Ser Thr Leu 295 300 ttt gcg ttg cag gat gga tcg ttg tcg agg gtc agt tcc ggc aat gtg 1075 Phe Ala Leu Gln Asp Gly Ser Leu Ser Arg Val Ser Ser Gly Asn Val 315 320 agt cca cta cag ggc att tgg agc ggt gga gat atc gat tct gca gcg 1123 Ser Pro Leu Gln Gly Ile Trp Ser Gly Gly Asp Ile Asp Ser Ala Ala 330 335 att tcc tcc gcc aat gtg gtg gca gcg gta cgc cac gaa aac aac 1171 Ile Ser Ser Ala Asn Val Val Ala Ala Val Arg His Glu Asn Asn 345 350 gag gca gtg ctt act gtt ggc tcc atg gaa ggc gtg act tca gat gcg 1219 Glu Ala Val Leu Thr Val Gly Ser Met Glu Gly Val Thr Ser Asp Ala 360 365 370 ttg agg agt gaa acg atc act cgt ccc acc ttt gaa tac gcg tcg agt 1267 Leu Arg Ser Glu Thr Ile Thr Arg Pro Thr Phe Glu Tyr Ala Ser Ser 375 385 ggg ttg tgg gct gtg gtg gat ggg gag acg cct gtc cga gtc gca cga 1315 Gly Leu Trp Ala Val Val Asp Gly Glu Thr Pro Val Arg Val Ala Arg 390 395 400 405 tcg gca aca acc ggt gag ctc gtc cag acg gag gcg gag att gtg ctg Ser Ala Thr Thr Gly Glu Leu Val Gln Thr Glu Ala Glu Ile Val Leu 410 415 cca agg gat gtg acg ggt ccg atc tct gaa ttc caa ctg tca cga act 1411 Pro Arg Asp Val Thr Gly Pro Ile Ser Glu Phe Gln Leu Ser Arg Thr 425 430 ggg gtc cgg gcc gcc atg atc att gaa ggc aag gtg tac gtg ggc gtc Gly Val Arg Ala Ala Met Ile Ile Glu Gly Lys Val Tyr Val Gly Val 440 445 450

gta acg cgt cct ggt ccg ggc gag cgc gtg aca aat atc acg gag 1507

Val Thr Arg Pro Gly Pro Gly Gly Arg Arg Val Thr Asp Tle Thr Gly

Val Thr Arg Pro Gly Pro Gly Glu Arg Arg Val Thr Asn Ile Thr Glu 455 460 465

gtg gcg ccg agc ttg ggc gag gcg ctg tcg atc aac tgg cgc cca 1555

Val Ala Pro Ser Leu Gly Glu Ala Ala Leu Ser Ile Asn Trp Arg Pro 470 475 480 485

gac ggc att ttg ctt gtg ggc acg tca att cca gag acg ccg ctg tgg 1603

Asp Gly Ile Leu Leu Val Gly Thr Ser Ile Pro Glu Thr Pro Leu Trp
490 495 500

cgc gtc gag cag gac gga tcg gcg att tcg tcg atg ccg agc ggg aat 1651

Arg Val Glu Gln Asp Gly Ser Ala Ile Ser Ser Met Pro Ser Gly Asn 505 510 515

ctc agc gcg gcg gtg gcg gtg gca agt tcc gcg acg gcg tac 1699

Leu Ser Ala Pro Val Val Ala Val Ala Ser Ser Ala Thr Thr Val Tyr 520 530

gtc act gat tcg cat gcg atg ctt cag ctg ccg act gcc gat aat gat 1747

Val Thr Asp Ser His Ala Met Leu Gln Leu Pro Thr Ala Asp Asn Asp 535 540 545

att tgg cgc gag gtg ccc ggt ttg ctg ggc acg cgt gcg gcg ccg gtg 1795

Ile Trp Arg Glu Val Pro Gly Leu Leu Gly Thr Arg Ala Ala Pro Val 550 565

gtt gcg tac tgatggagct gttcttcccg cgc 1827 Val Ala Tyr

<210> 240

<211> 568

<212> PRT

<213> Corynebacterium glutamicum

<400> 240

Val Ser Lys Ile Ser Thr Lys Leu Lys Ala Leu Thr Ala Val Leu Ser 1 5 10 15

Val Thr Thr Leu Val Ala Gly Cys Ser Thr Leu Pro Gln Asn Thr Asp 20 25 30

Pro Gln Val Leu Arg Ser Phe Ser Gly Ser Gln Ser Thr Gln Glu Ile 35 40 45

Ala Gly Pro Thr Pro Asn Gln Asp Pro Asp Leu Leu Ile Arg Gly Phe
50 55 60

Phe Ser Ala Gly Ala Tyr Pro Thr Gln Gln Tyr Glu Ala Ala Lys Ala 65 70 75 80

Tyr Leu Thr Glu Gly Thr Arg Ser Thr Trp Asn Pro Ala Ala Ser Thr Arg Ile Leu Asp Arg Ile Asp Leu Asn Thr Leu Pro Gly Ser Thr Asn 100 105 110 Ala Glu Arg Thr Ile Ala Ile Arg Gly Thr Gln Val Gly Thr Leu Leu Ser Gly Gly Val Tyr Gln Pro Glu Asn Ala Glu Phe Glu Ala Glu Ile 135 Thr Met Arg Arg Glu Asp Gly Glu Trp Arg Ile Asp Ala Leu Pro Asp Gly Ile Leu Leu Glu Arg Asn Asp Leu Arg Asn His Tyr Thr Pro His Asp Val Tyr Phe Phe Asp Pro Ser Gly Gln Val Leu Val Gly Asp Arg Arg Trp Leu Phe Asn Glu Ser Gln Ser Met Ser Thr Val Leu Met Ala 200 Leu Leu Val Asn Gly Pro Ser Pro Ala Ile Ser Pro Gly Val Val Asn 210 215 Gln Leu Ser Thr Asp Ala Ser Phe Val Gly Phe Asn Asp Gly Glu Tyr 230 235 Gln Phe Thr Gly Leu Gly Asn Leu Asp Asp Asp Ala Arg Leu Arg Phe 245 Ala Ala Gln Ala Val Trp Thr Leu Ala His Ala Asp Val Ala Gly Pro Tyr Thr Leu Val Ala Asp Gly Ala Pro Leu Leu Ser Glu Phe Pro Thr 275 Leu Thr Thr Asp Asp Leu Ala Glu Tyr Asn Pro Glu Ala Tyr Thr Asn 295 Thr Val Ser Thr Leu Phe Ala Leu Gln Asp Gly Ser Leu Ser Arg Val 305 310 315 Ser Ser Gly Asn Val Ser Pro Leu Gln Gly Ile Trp Ser Gly Gly Asp Ile Asp Ser Ala Ala Ile Ser Ser Ser Ala Asn Val Val Ala Ala Val 340 345 Arg His Glu Asn Asn Glu Ala Val Leu Thr Val Gly Ser Met Glu Gly 355 360 Val Thr Ser Asp Ala Leu Arg Ser Glu Thr Ile Thr Arg Pro Thr Phe 380 Glu Tyr Ala Ser Ser Gly Leu Trp Ala Val Val Asp Gly Glu Thr Pro 395

Val Arg Val Ala Arg Ser Ala Thr Thr Gly Glu Leu Val Gln Thr Glu 405 410 Ala Glu Ile Val Leu Pro Arg Asp Val Thr Gly Pro Ile Ser Glu Phe 425 Gln Leu Ser Arg Thr Gly Val Arg Ala Ala Met Ile Ile Glu Gly Lys 440 Val Tyr Val Gly Val Val Thr Arg Pro Gly Pro Gly Glu Arg Arg Val 455 Thr Asn Ile Thr Glu Val Ala Pro Ser Leu Gly Glu Ala Ala Leu Ser 470 475 Ile Asn Trp Arg Pro Asp Gly Ile Leu Leu Val Gly Thr Ser Ile Pro 490 Glu Thr Pro Leu Trp Arg Val Glu Gln Asp Gly Ser Ala Ile Ser Ser 505 Met Pro Ser Gly Asn Leu Ser Ala Pro Val Val Ala Val Ala Ser Ser 520 525 Ala Thr Thr Val Tyr Val Thr Asp Ser His Ala Met Leu Gln Leu Pro 535 Thr Ala Asp Asn Asp Ile Trp Arg Glu Val Pro Gly Leu Leu Gly Thr 545 550 Arg Ala Ala Pro Val Val Ala Tyr 565 <210> 241 <211> 1344 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(1321) <223> RXA02240 <400> 241 cagctagacc actgacattg cagttttaga cagcttggtc tatattggtt ttttgtattt 60 aagactattt attctcaact tcttcgaaag aagggtattt gtg gct cag cca acc 115 Val Ala Gln Pro Thr gcc gtc cgt ttg ttc acc agt gaa tct gta act gag gga cat cca gac 163 Ala Val Arg Leu Phe Thr Ser Glu Ser Val Thr Glu Gly His Pro Asp 10 aaa ata tgt gat gct att tcc gat acc att ttg gac gcg ctg ctc gaa 211 Lys Ile Cys Asp Ala Ile Ser Asp Thr Ile Leu Asp Ala Leu Leu Glu 25 35 aaa gat ccg cag tcg cgc gtc gca gtg gaa act gtg gtc acc acc gga 259 Lys Asp Pro Gln Ser Arg Val Ala Val Glu Thr Val Val Thr Thr Gly

40 45 50

	_		gtt Val	_		-		-		-	-		_			307
			gtc Val	-		_										355
			ttc Phe													403
	_		cag Gln 105	_		_	-			_			_	_	_	451
_			ggc Gly	-		-		-	-	_	_		_		_	499
_		_	atg Met				_			-		_			_	547
			atc Ile		_			_	_		_	-	_		_	595
_	-		gag Glu			-			_	_		_				643
			ttc Phe 185													691
	-	-	atc Ile					_		_		-	_	_		739
			caa Gln													787
			gag Glu													835
			tcc Ser													883
	-		aag Lys 265				_					-	-	_		931
			gca Ala													979

TWO BEEN -WE BIRRO ---

gct gca tac gcc atg cgt tgg gta gca aag aac atc gtg gca gca ggc 1027
Ala Ala Tyr Ala Met Arg Trp Val Ala Lys Asn Ile Val Ala Ala Gly 295 300 305

ctt gct gat cgc gct gaa gtt cag gtt gca tac gcc att gga cgc gca 1075

Leu Ala Asp Arg Ala Glu Val Gln Val Ala Tyr Ala Ile Gly Arg Ala 310 315 320 325

aag cca gtc gga ctt tac gtt gaa acc ttt gac acc aac aag gaa ggc 1123

Lys Pro Val Gly Leu Tyr Val Glu Thr Phe Asp Thr Asn Lys Glu Gly 330 335 340

ctg agc gac gag cag att cag gct gcc gtg ttg gag gtc ttt gac ctg 1171

Leu Ser Asp Glu Gln Ile Gln Ala Ala Val Leu Glu Val Phe Asp Leu 345 350 355

cgt cca gca gca att atc cgt gag ctt gat ctg ctt cgt ccg atc tac 1219

Arg Pro Ala Ala Ile Ile Arg Glu Leu Asp Leu Leu Arg Pro Ile Tyr 360 365 370

gct gac act gct gcc tac ggc cac ttt ggt cgc act gat ttg gac ctt 1267

Ala Asp Thr Ala Ala Tyr Gly His Phe Gly Arg Thr Asp Leu Asp Leu 375 380 385

cct tgg gag gct atc gac cgc gtt gat gaa ctt cgc gca gcc ctc aag 1315

Pro Trp Glu Ala Ile Asp Arg Val Asp Glu Leu Arg Ala Ala Leu Lys 390 395 400 405

ttg gcc taaaaatctg atgtagtatc ttc 1344 Leu Ala

<210> 242

<211> 407

<212> PRT

<213> Corynebacterium glutamicum

<400> 242

Val Ala Gln Pro Thr Ala Val Arg Leu Phe Thr Ser Glu Ser Val Thr 1 5 10 15

Glu Gly His Pro Asp Lys Ile Cys Asp Ala Ile Ser Asp Thr Ile Leu $20 \hspace{1cm} 25 \hspace{1cm} 30$

Asp Ala Leu Leu Glu Lys Asp Pro Gln Ser Arg Val Ala Val Glu Thr

Val Val Thr Thr Gly Ile Val His Val Val Gly Glu Val Arg Thr Ser 50 55 60

Ala Tyr Val Glu Ile Pro Gln Leu Val Arg Asn Lys Leu Ile Glu Ile

65	;				70					75					80
Gly	Phe	e Asr	ser	Ser 85		Val	. Gly	Phe	Asp 90		Arg	Thr	Cys	Gly 95	Val
Ser	Va]	. Ser	11e	: Gly	Glu	Gln	Ser	Gln 105		Ile	Ala	Asp	Gly 110		Asp
Asn	. Ser	Asp 115	Glu	Ala	Arg	Thr	Asn 120		Asp	Val	Glu	Glu 125	Asp	Asp	Arg
Ala	Gly 130	Ala	Gly	Asp	Gln	Gly 135		Met	Phe	Gly	Туг 140	Ala	Thr	Asn	Glu
Thr 145	Glu	Glu	Tyr	Met	Pro 150	Leu	Pro	Ile	Ala	Leu 155	Ala	His	Arg	Leu	Ser 160
Arg	Arg	Leu	Thr	Gln 165	Val	Arg	Lys	Glu	Gly 170	Ile	Val	Pro	His	Leu 175	Arg
Pro	Asp	Gly	Lys 180	Thr	Gln	Val	Thr	Phe 185	Ala	Tyr	Asp	Ala	Gln 190	Asp	Arg
Pro	Ser	His 195	Leu	Asp	Thr	Val	Val 200	Ile	Ser	Thr	Gln	His 205	Asp	Pro	Glu
Val	Asp 210	Arg	Ala	Trp	Leu	Glu 215	Thr	Gln	Leu	Arg	Glu 220	His	Val	Ile	Asp
Trp 225	Val	Ile	Lys	Asp	Ala 230	Gly	Ile	Glu	Asp	Leu 235	Ala	Thr	Gly	Glu	Ile 240
Thr	Val	Leu	Ile	Asn 245	Pro	Ser	Gly	Ser	Phe 250	Ile	Leu	Gly	Gly	Pro 255	Met
Gly	Asp	Ala	Gly 260	Leu	Thr	Gly	Arg	Lys 265	Ile	Ile	Val	Asp	Thr 270	Tyr	Gly
Gly	Met	Ala 275	Arg	His	Gly	Gly	Gly 280	Ala	Phe	Ser	Gly	Lys 285	Asp	Pro	Ser
Lys	Val 290	Asp	Arg	Ser	Ala	Ala 295	Tyr	Ala	Met	Arg	Trp 300	Val	Ala	Lys	Asn
Ile 305	Val	Ala	Ala	Gly	Leu 310	Ala	Asp	Arg	Ala	Glu 315	Val	Gln	Val	Ala	Tyr 320
Ala	Ile	Gly	Arg	Ala 325	Lys	Pro	Val	Gly	Leu 330	Tyr	Val	Glu	Thr	Phe 335	Asp
Thr	Asn	Lys	Glu 340	Gly	Leu	Ser	Asp	Glu 345	Gln	Ile	Gln	Ala	Ala 350	Val	Leu
Glu	Val	Phe 355	Asp	Leu	Arg	Pro	Ala 360	Ala	Ile	Ile	Arg	Glu 365	Leu	Asp	Leu
Leu	Arg 370	Pro	Ile	Tyr	Ala	Asp 375	Thr	Ala	Ala	Tyr	Gly 380	His	Phe	Gly	Arg
Thr 385	Asp	Leu	Asp	Leu	Pro 390	Trp	Glu	Ala		Asp 395	Arg	Val	Asp		Leu 400

Arg Ala Ala Leu Lys Leu Ala 405

<210> 243 <211> 669 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(646) <223> RXA00780 <400> 243 ccttttaagt ccttctttgc ccgtgaataa ttctctggat agtttccacg tgcagttaag 60 tcacgctgtt agacttgcct gcatgctctc gacaataaaa atg atc cgt gaa gat 115 Met Ile Arg Glu Asp ctc gca aac gct cgt gaa cac gat cca gca gcc cga ggc gat tta gaa 163 Leu Ala Asn Ala Arg Glu His Asp Pro Ala Ala Arg Gly Asp Leu Glu aac gca gtg gtt tac tcc gga ctc cac gcc atc tgg gca cat cga gtt Asn Ala Val Val Tyr Ser Gly Leu His Ala Ile Trp Ala His Arg Val 25 30 gcc aac agc tgg tgg aaa tcc ggt ttc cgc ggc ccc gcc cgc gta tta 259 Ala Asn Ser Trp Trp Lys Ser Gly Phe Arg Gly Pro Ala Arg Val Leu 40 45 307 gcc caa ttc acc cga ttc ctc acc ggc att gaa att cac ccc ggt gcc Ala Gln Phe Thr Arg Phe Leu Thr Gly Ile Glu Ile His Pro Gly Ala 55 60 acc att ggt cgt cgc ttt ttt att gac cac gga atg gga atc gtc atc 355 Thr Ile Gly Arg Arg Phe Phe Ile Asp His Gly Met Gly Ile Val Ile ggc gaa acc gct gaa atc ggc gaa ggc gtc atg ctc tac cac ggc gtc Gly Glu Thr Ala Glu Ile Gly Glu Gly Val Met Leu Tyr His Gly Val acc ctc ggc gga cag gtt ctc acc caa acc aag cgc cac ccc acg ctc 451 Thr Leu Gly Gly Gln Val Leu Thr Gln Thr Lys Arg His Pro Thr Leu 115 105 tgc gac aac gtg aca gtc ggc gcg ggc gca aaa atc tta ggt ccc atc 499 Cys Asp Asn Val Thr Val Gly Ala Gly Ala Lys Ile Leu Gly Pro Ile 120 acc atc ggc gaa ggc tcc gca att ggc gcc aat gca gtt gtc acc aaa 547 Thr Ile Gly Glu Gly Ser Ala Ile Gly Ala Asn Ala Val Val Thr Lys 135 gac gtg ccg gca gaa cac atc gca gtc gga att cct gcg gta gca cgc 595 Asp Val Pro Ala Glu His Ile Ala Val Gly Ile Pro Ala Val Ala Arg 150 155 160

669

cca cgt ggc aag aca gag aag atc aag ctc gtc gat ccg gac tat tac Pro Arg Gly Lys Thr Glu Lys Ile Lys Leu Val Asp Pro Asp Tyr Tyr 170 att taagaacagt tagcgcccta cct Ile <210> 244 <211> 182 <212> PRT <213> Corynebacterium glutamicum <400> 244 Met Ile Arg Glu Asp Leu Ala Asn Ala Arg Glu His Asp Pro Ala Ala Arg Gly Asp Leu Glu Asn Ala Val Val Tyr Ser Gly Leu His Ala Ile 20 Trp Ala His Arg Val Ala Asn Ser Trp Trp Lys Ser Gly Phe Arg Gly Pro Ala Arg Val Leu Ala Gln Phe Thr Arg Phe Leu Thr Gly Ile Glu Ile His Pro Gly Ala Thr Ile Gly Arg Arg Phe Phe Ile Asp His Gly Met Gly Ile Val Ile Gly Glu Thr Ala Glu Ile Gly Glu Gly Val Met Leu Tyr His Gly Val Thr Leu Gly Gly Gln Val Leu Thr Gln Thr Lys Arg His Pro Thr Leu Cys Asp Asn Val Thr Val Gly Ala Gly Ala Lys 125 Ile Leu Gly Pro Ile Thr Ile Gly Glu Gly Ser Ala Ile Gly Ala Asn Ala Val Val Thr Lys Asp Val Pro Ala Glu His Ile Ala Val Gly Ile 150 155 160 Pro Ala Val Ala Arg Pro Arg Gly Lys Thr Glu Lys Ile Lys Leu Val 170 Asp Pro Asp Tyr Tyr Ile 180 <210> 245 <211> 1056 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(1033)

DUODAGIA- WA 01000

<223> RXA00779

<400> 245 cagaggccac ttcaagtaga tgtttcgtaa ttgtttacag cgtttacgca agcggtcgac 60 caacaaaaac agcacttcaa tgattggagc accacccgac atg ggc aat gtg tac Met Gly Asn Val Tyr aac aac atc acc gaa acc atc ggc cac acc cca ctg gta aag ctg aac 163 Asn Asn Ile Thr Glu Thr Ile Gly His Thr Pro Leu Val Lys Leu Asn aag ctc acc gaa ggc ctc gac gca act gtc ctg gtc aag ctt gag tca 211 Lys Leu Thr Glu Gly Leu Asp Ala Thr Val Leu Val Lys Leu Glu Ser ttc aac cca gca aac tcc gtc aag gac cgt atc ggt ctg gcc atc gtt 259 Phe Asn Pro Ala Asn Ser Val Lys Asp Arg Ile Gly Leu Ala Ile Val 307 gaa gat gca gag aag tcc ggt gca ctg aag cca ggc ggc acc atc gtt Glu Asp Ala Glu Lys Ser Gly Ala Leu Lys Pro Gly Gly Thr Ile Val 60 gaa gca acc tcc ggc aac acc ggt atc gca ctg gca atg gtc ggc gct 355 Glu Ala Thr Ser Gly Asn Thr Gly Ile Ala Leu Ala Met Val Gly Ala 80 403 gca cgc gga tac aac gtt gtt ctc acc atg ccg gag acc atg tcc aac Ala Arg Gly Tyr Asn Val Val Leu Thr Met Pro Glu Thr Met Ser Asn gag cgt cgc gtt ctc ctc cgc gct tac ggt gca gag atc gtt ctt acc 451 Glu Arg Arg Val Leu Leu Arg Ala Tyr Gly Ala Glu Ile Val Leu Thr 110 cca ggt gca gca ggc atg cag ggt gca aag gac aag gca gac gaa atc 499 Pro Gly Ala Ala Gly Met Gln Gly Ala Lys Asp Lys Ala Asp Glu Ile 125 547 gtc gct gaa cgc gaa aac gca gtc ctt gct cgc cag ttc gag aac gag Val Ala Glu Arg Glu Asn Ala Val Leu Ala Arg Gln Phe Glu Asn Glu 140 135 gca aac cca cgc gtc aac cgc gac acc acc gcg aag gaa atc ctc gaa 595 Ala Asn Pro Arg Val Asn Arg Asp Thr Thr Ala Lys Glu Ile Leu Glu 155 150 643 gac acc gac ggc acc gtt gat atc ttc gtt gca agc ttc ggc acc ggc Asp Thr Asp Gly Thr Val Asp Ile Phe Val Ala Ser Phe Gly Thr Gly 175 170 gga acc gtc acc ggc gtt ggc cag gtc ctg aag gaa aac aac gca gac 691 Gly Thr Val Thr Gly Val Gly Gln Val Leu Lys Glu Asn Asn Ala Asp 185 190 gta cag gtc tac acc gtc gag cca gaa gcg tcc cca ctt ctg acc gct Val Gln Val Tyr Thr Val Glu Pro Glu Ala Ser Pro Leu Leu Thr Ala 200 205 210

ggc	aag Lys 215	gct Ala	ggt Gly	cca Pro	cac His	aag Lys 220	atc Ile	cag Gln	ggc	atc	ggc Gly 225	gca Ala	aac Asn	ttc Phe	atc Ile	787
ccc Pro 230	Glu	gtc Val	ctg Leu	gac Asp	cgc Arg 235	aag Lys	gtt Val	ctc Leu	gac Asp	gac Asp 240	gtg Val	ctg Leu	acc Thr	gtc Val	tcc Ser 245	835
aac Asn	gaa Glu	gac Asp	gca Ala	atc Ile 250	gca Ala	ttc Phe	tcc Ser	cgc Arg	aag Lys 255	ctc Leu	gct Ala	acc Thr	gaa Glu	gag Glu 260	ggc Gly	883
atc Ile	ctc Leu	ggc	ggt Gly 265	atc Ile	tcc Ser	acc Thr	ggc Gly	gca Ala 270	aac Asn	atc Ile	aag Lys	gca Ala	gct Ala 275	ctt Leu	gac Asp	931
ctt Leu	gca Ala	gca Ala 280	aag Lys	cca Pro	gag Glu	aac Asn	gct Ala 285	ggc Gly	aaa Lys	acc Thr	atc Ile	gtc Val 290	acc Thr	gtt Val	gtc Val	979
acc 102	gac 7	ttc	ggc	gag	cgc	tac	gtc	tcc	acc	gtt	ctt	tac	gaa	gac	atc	
Thr	Asp 295	Phe	Gly	Glu	Arg	Tyr 300	Val	Ser	Thr	Val	Leu 305	Tyr	Glu	Asp	Ile	
105		taat	tett	ag (cgact	gtta	aa co	ca								
<21: <21: <21:		l1 RT oryne	ebact	eriu	ım gl	.utam	nicum	ı						.1		
<21: <21: <21: <400	1> 3: 2> PH 3> Co	l1 RT oryne							Glu 10	Thr	Ile	Gly	His	Thr 15	Pro	
<21: <21: <21: <400 Met	1> 3: 2> PH 3> Co 0> 24 Gly	11 RT oryne 16	Val Leu	Tyr 5 Asn	Asn	Asn Leu	Ile Thr	Thr Glu	10 Gly					15		
<21: <21: <21: <400 Met 1	1> 3: 2> PF 3> Co 0> 24 Gly Val	11 RT oryne 16 Asn	Val Leu 20	Tyr 5 Asn	Asn Lys	Asn Leu	Ile Thr	Thr Glu 25	10 Gly	Leu	Asp	Ala	Thr 30	15 Val	Leu	
<21: <21: <21: <400 Met 1 Leu Val	1> 3: 2> PI 3> Co 0> 24 Gly Val	11 RT oryne 16 Asn Lys	Val Leu 20 Glu	Tyr 5 Asn Ser	Asn Lys Phe	Asn Leu Asn	Thr Pro	Thr Glu 25 Ala	10 Gly Asn	Leu Ser	Asp Val	Ala Lys 45	Thr 30 Asp	15 Val Arg	Leu Ile	
<21: <21: <21: <400 Met 1 Leu Val	1> 3: 2> PI 3> Co 0> 24 Gly Val Lys Leu 50	11 RT oryne 16 Asn Lys Leu 35	Val Leu 20 Glu Ile	Tyr 5 Asn Ser Val	Asn Lys Phe Glu	Asn Leu Asn Asp 55	Thr Pro 40	Thr Glu 25 Ala Glu	10 Gly Asn Lys	Leu Ser Ser	Asp Val Gly 60	Ala Lys 45 Ala	Thr 30 Asp Leu	15 Val Arg Lys	Leu Ile Pro	
<21: <21: <21: <400 Met 1 Leu Val Gly 65	1> 3: 2> PI 3> Co 0> 24 Gly Val Lys Leu 50	11 RT oryne 16 Asn Lys Leu 35	Val Leu 20 Glu Ile	Tyr 5 Asn Ser Val	Asn Lys Phe Glu Glu 70	Asn Leu Asn Asp 55	Thr Pro 40 Ala	Thr Glu 25 Ala Glu Ser	10 Gly Asn Lys Gly	Leu Ser Ser Asn 75	Asp Val Gly 60 Thr	Ala Lys 45 Ala Gly	Thr 30 Asp Leu	15 Val Arg Lys Ala	Leu Ile Pro Leu 80	
<21: <21: <21: <400 Met 1 Leu Val Gly 65 Ala	1> 3: 2> PI 3> Co 0> 24 Gly Val Lys Leu 50 Gly	11 RT Dryne 16 Asn Lys Leu 35 Ala Thr	Val Leu 20 Glu Ile Ile	Tyr 5 Asn Ser Val Val	Asn Lys Phe Glu 70 Ala	Asn Leu Asn Asp 55 Ala	Thr Pro 40 Ala Thr Gly	Thr Glu 25 Ala Glu Ser	Gly Asn Lys Gly Asn 90	Leu Ser Ser Asn 75	Asp Val Gly 60 Thr	Ala Lys 45 Ala Gly Leu	Thr 30 Asp Leu Ile	15 Val Arg Lys Ala Met 95	Leu Ile Pro Leu 80 Pro	

ENGEROUS ENG. GLOOMS

Lys Ala Asp Glu Ile Val Ala Glu Arg Glu Asn Ala Val Leu Ala Arg 135 Gln Phe Glu Asn Glu Ala Asn Pro Arg Val Asn Arg Asp Thr Thr Ala 155 Lys Glu Ile Leu Glu Asp Thr Asp Gly Thr Val Asp Ile Phe Val Ala 165 170 Ser Phe Gly Thr Gly Gly Thr Val Thr Gly Val Gly Gln Val Leu Lys 185 Glu Asn Asn Ala Asp Val Gln Val Tyr Thr Val Glu Pro Glu Ala Ser 195 Pro Leu Leu Thr Ala Gly Lys Ala Gly Pro His Lys Ile Gln Gly Ile Gly Ala Asn Phe Ile Pro Glu Val Leu Asp Arg Lys Val Leu Asp Asp 230 235 Val Leu Thr Val Ser Asn Glu Asp Ala Ile Ala Phe Ser Arg Lys Leu Ala Thr Glu Glu Gly Ile Leu Gly Gly Ile Ser Thr Gly Ala Asn Ile 265 Lys Ala Ala Leu Asp Leu Ala Ala Lys Pro Glu Asn Ala Gly Lys Thr 280 Ile Val Thr Val Val Thr Asp Phe Gly Glu Arg Tyr Val Ser Thr Val 295 300 Leu Tyr Glu Asp Ile Arg Asp 310 <210> 247 <211> 623 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (1)..(600) <223> RXN00402 <400> 247 act gac gaa aag gat gga aag cca gta ttg ccc tac ttc gtc act cca 48 Thr Asp Glu Lys Asp Gly Lys Pro Val Leu Pro Tyr Phe Val Thr Pro gat gct gct tac cac gga ttg aag tac gca gac ctt ggt gca cca gcc 96 Asp Ala Ala Tyr His Gly Leu Lys Tyr Ala Asp Leu Gly Ala Pro Ala 20 25 ttc ggc ctc aag gtt cgc gtt ggc ctt cta cgc gac acc ggc tcc acc 144 Phe Gly Leu Lys Val Arg Val Gly Leu Leu Arg Asp Thr Gly Ser Thr 35 40

192

ctc tcc gca ttc aac gca tgg gct gca gtc cag ggc atc gac acc ctt

Leu	Ser 50	Ala	Phe	Asn	Ala	Trp 55	Ala	Ala	Val	Gln	Gly 60	Ile	Asp	Thr	Leu	
										gcc Ala 75						240
						-		_	_	gtt Val			_		_	288
										aag Lys						336
										ggc Gly						384
	_			_	-	_	_			tcc Ser			_			432
										gca Ala 155						480
-										ggc						528
										gat Asp						576
	-				gct Ala	_		tago	cttta	aaa t	cagad	ctcad	cc co	ca		623
<212 <212	0> 24 1> 20 2> PI 3> Co	00 RT	ebact	ceri	um gl	lutar	nicur	n								
	0> 24 Asp		Lys	Asp 5	Gly	Lys	Pro	Val	Leu 10	Pro	Туr	Phe	Val	Thr 15	Pro	
Asp	Ala	Ala	Tyr 20	His	Gly	Leu	Lys	Туг 25	Ala	Asp	Leu	Gly	Ala 30	Pro	Ala	
Phe	Gly	Leu 35	Lys	Val	Arg	Val	Gly 40	Leu	Leu	Arg	Asp	Thr 45	Gly	Ser	Thr	
Leu	Ser 50	Ala	Phe	Asn	Ala	Trp 55	Ala	Ala	Val	Gln	Gly 60	Ile	Asp	Thr	Leu	

361

Ser Leu Arg Leu Glu Arg His Asn Glu Asn Ala Ile Lys Val Ala Glu 65 70 75 80

Phe Leu Asn Asn His Glu Lys Val Glu Lys Val Asn Phe Ala Gly Leu 90 Lys Asp Ser Pro Trp Tyr Ala Thr Lys Glu Lys Leu Gly Leu Lys Tyr Thr Gly Ser Val Leu Thr Phe Glu Ile Lys Gly Gly Lys Asp Glu Ala 125 Trp Ala Phe Ile Asp Ala Leu Lys Leu His Ser Asn Leu Ala Asn Ile 135 Gly Asp Val Arg Ser Leu Val Val His Pro Ala Thr Thr His Ser 150 155 Gln Ser Asp Glu Ala Gly Leu Ala Arg Ala Gly Val Thr Gln Ser Thr 170 Val Arg Leu Ser Val Gly Ile Glu Thr Ile Asp Asp Ile Ile Ala Asp 185 Leu Glu Gly Gly Phe Ala Ala Ile 195 <210> 249 <211> 599 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (1)..(576) <223> FRXA00402 <400> 249 gta ttg ccc tac ttc gtc act cca gat gct gct tac cac gga ttg aag Val Leu Pro Tyr Phe Val Thr Pro Asp Ala Ala Tyr His Gly Leu Lys 10 tac gca gac ctt ggt gca cca gcc ttc ggc ctc aag gtt cgc gtt ggc 96 Tyr Ala Asp Leu Gly Ala Pro Ala Phe Gly Leu Lys Val Arg Val Gly 20 25 ctt cta cgc gac acc ggc tcc acc ctc tcc gca ttc aac gca tgg gct 144 Leu Leu Arg Asp Thr Gly Ser Thr Leu Ser Ala Phe Asn Ala Trp Ala 35 gca gtc cag ggc atc gac acc ctt tcc ctg cgc ctg gag cgc cac aac 192 Ala Val Gln Gly Ile Asp Thr Leu Ser Leu Arg Leu Glu Arg His Asn 50 55 gaa aac gcc atc aag gtt gca gaa ttc ctc aac aac cac gag aag gtg 240 Glu Asn Ala Ile Lys Val Ala Glu Phe Leu Asn Asn His Glu Lys Val 65 70 gaa aag gtt aac ttc gca ggc ctg aag gat tcc cct tgg tac gca acc 288 Glu Lys Val Asn Phe Ala Gly Leu Lys Asp Ser Pro Trp Tyr Ala Thr 90 aag gaa aag ctt ggc ctg aag tac acc ggc tcc gtt ctc acc ttc gag 336

BUSDOCIO: 4MO - DISCRISTO

	Leu Gly 100	Leu Lys	Tyr	Thr 105	Gly	Ser	Val	Leu	Thr 110	Phe	Glu	
atc aag ggc Ile Lys Gly 115												384
cta cac tcc Leu His Ser 130			Ile									432
cac cca gca His Pro Ala 145				_		_	-	_		_	_	480
cgc gcg ggc Arg Ala Gly												528
acc att gat Thr Ile Asp	_	_	_		_				_	_		576
tagctttaaa	tagactcad	cc cca										599
<210> 250 <211> 192 <212> PRT <213> Coryn	ebacteriı	ım gluta	micur	n								
<400> 250 Val Leu Pro 1	Tyr Phe 5	Val Thr	Pro	Asp	Ala 10	Ala	Tyr	His	Gly	Leu 15	Lys	
Val Leu Pro	5				10					15		
Val Leu Pro 1	5 Leu Gly 20	Ala Pro	Ala	Phe 25	10 Gly	Leu	Lys	Val	Arg 30	15 Val	Gly	
Val Leu Pro 1 Tyr Ala Asp	Leu Gly 20 Asp Thr	Ala Pro	Thr 40	Phe 25 Leu	10 Gly Ser	Leu Ala	Lys Phe	Val Asn 45	Arg 30 Ala	15 Val Trp	Gly Ala	
Val Leu Pro 1 Tyr Ala Asp Leu Leu Arg 35 Ala Val Gln	Leu Gly 20 Asp Thr	Ala Pro Gly Ser Asp Thr	Thr 40	Phe 25 Leu Ser	10 Gly Ser Leu	Leu Ala Arg	Lys Phe Leu 60	Val Asn 45 Glu	Arg 30 Ala Arg	15 Val Trp His	Gly Ala Asn	
Val Leu Pro 1 Tyr Ala Asp Leu Leu Arg 35 Ala Val Gln 50 Glu Asn Ala	Leu Gly 20 Asp Thr Gly Ile Ile Lys	Ala Pro Gly Ser Asp Thr 55 Val Ala 70	Thr 40	Phe 25 Leu Ser	10 Gly Ser Leu	Leu Ala Arg Asn 75	Lys Phe Leu 60 Asn	Val Asn 45 Glu His	Arg 30 Ala Arg Glu	15 Val Trp His Lys	Gly Ala Asn Val	
Val Leu Pro 1 Tyr Ala Asp Leu Leu Arg 35 Ala Val Gln 50 Glu Asn Ala 65	Leu Gly 20 Asp Thr Gly Ile Ile Lys Asn Phe 85	Ala Pro Gly Ser Asp Thr 55 Val Ala 70 Ala Gly	Thr 40	Phe 25 Leu Ser Phe	10 Gly Ser Leu Leu Asp 90	Leu Ala Arg Asn 75 Ser	Lys Phe Leu 60 Asn Pro	Val Asn 45 Glu His	Arg 30 Ala Arg Glu	15 Val Trp His Lys	Gly Ala Asn Val 80	
Val Leu Pro 1 Tyr Ala Asp Leu Leu Arg 35 Ala Val Gln 50 Glu Asn Ala 65 Glu Lys Val	Leu Gly 20 Asp Thr Gly Ile Ile Lys Asn Phe 85 Leu Gly 100	Ala Pro Gly Ser Asp Thr 55 Val Ala 70 Ala Gly Leu Lys	Ala Thr 40 Leu Glu Leu	Phe 25 Leu Ser Phe Lys Thr	10 Gly Ser Leu Leu Asp 90 Gly	Leu Ala Arg Asn 75 Ser	Lys Phe Leu 60 Asn Pro Val	Val Asn 45 Glu His Trp Leu	Arg 30 Ala Arg Glu Tyr Thr 110	15 Val Trp His Lys Ala 95 Phe	Gly Ala Asn Val 80 Thr	
Val Leu Pro 1 Tyr Ala Asp Leu Leu Arg 35 Ala Val Gln 50 Glu Asn Ala 65 Glu Lys Val Lys Glu Lys Ile Lys Gly	Leu Gly 20 Asp Thr Gly Ile Ile Lys Asn Phe 85 Leu Gly 100 Gly Lys	Ala Pro Gly Ser Asp Thr 55 Val Ala 70 Ala Gly Leu Lys Asp Glu	Ala Thr 40 Leu Glu Leu Tyr Ala 120 Ile	Phe 25 Leu Ser Phe Lys Thr 105	10 Gly Ser Leu Leu Asp 90 Gly Ala	Leu Ala Arg Asn 75 Ser Ser	Lys Phe Leu 60 Asn Pro Val	Val Asn 45 Glu His Trp Leu Asp 125	Arg 30 Ala Arg Glu Tyr Thr 110 Ala	15 Val Trp His Lys Ala 95 Phe Leu	Gly Ala Asn Val 80 Thr Glu Lys	

Arg Ala Gly Val Thr Gln Ser Thr Val Arg Leu Ser Val Gly Ile Glu 170

Thr Ile Asp Asp Ile Ile Ala Asp Leu Glu Gly Gly Phe Ala Ala Ile 180 185

<210> 251 <211> 613 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(613) <223> RXS00405 <400> 251 agaataaatt tataccacac agtctattgc aatagaccaa gctgttcagt agggtgcatg 60 ggagaagaat ttcctaataa aaactcttaa ggacctccaa atg cca aag tac gac Met Pro Lys Tyr Asp aat too aat got gac cag tgg ggc ttt gaa acc cgc too att cac gca 163 Asn Ser Asn Ala Asp Gln Trp Gly Phe Glu Thr Arg Ser Ile His Ala 10 ggc cag tca gta gac gca cag acc agc gca cga aac ctt ccg atc tac 211 Gly Gln Ser Val Asp Ala Gln Thr Ser Ala Arg Asn Leu Pro Ile Tyr 25 caa tee ace get tte gtg tte gac tee get gag cae gee aag eag egt 259 Gln Ser Thr Ala Phe Val Phe Asp Ser Ala Glu His Ala Lys Gln Arg 40 45 ttc gca ctt gag gat cta ggc cct gtt tac tcc cgc ctc acc aac cca 307 Phe Ala Leu Glu Asp Leu Gly Pro Val Tyr Ser Arg Leu Thr Asn Pro acc gtt gag gct ttg gaa aac cgc atc gct tcc ctc gaa ggt ggc gtc 355 Thr Val Glu Ala Leu Glu Asn Arg Ile Ala Ser Leu Glu Gly Gly Val 70 75 cac gct gta gcg ttc tcc tcc gga cag gcc gca acc acc aac gcc att 403 His Ala Val Ala Phe Ser Ser Gly Gln Ala Ala Thr Thr Asn Ala Ile 90 100 ttg aac ctg gca gga gcg ggc gac cac atc gtc acc tcc cca cgc ctc 451 Leu Asn Leu Ala Gly Ala Gly Asp His Ile Val Thr Ser Pro Arg Leu 105 110 tac ggt ggc acc gag act cta ttc ctt atc act ctt aac cgc ctg ggt 499 Tyr Gly Gly Thr Glu Thr Leu Phe Leu Ile Thr Leu Asn Arg Leu Gly 120 125 atc gat gtt tcc ttc gtg gaa aac ccc gac gac cct gag tcc tgg cag

547

Ile Asp Val Ser Phe Val Glu Asn Pro Asp Asp Pro Glu Ser Trp Gln gca gcc gtt cag cca aac acc aaa gca ttc ttc ggc gag act ttc gcc 595 Ala Ala Val Gln Pro Asn Thr Lys Ala Phe Phe Gly Glu Thr Phe Ala 155 160 613 aac cca cag gca gac gtc Asn Pro Gln Ala Asp Val 170 <210> 252 <211> 171 <212> PRT <213> Corynebacterium glutamicum <400> 252 Met Pro Lys Tyr Asp Asn Ser Asn Ala Asp Gln Trp Gly Phe Glu Thr Arg Ser Ile His Ala Gly Gln Ser Val Asp Ala Gln Thr Ser Ala Arg Asn Leu Pro Ile Tyr Gln Ser Thr Ala Phe Val Phe Asp Ser Ala Glu 40 His Ala Lys Gln Arg Phe Ala Leu Glu Asp Leu Gly Pro Val Tyr Ser Arg Leu Thr Asn Pro Thr Val Glu Ala Leu Glu Asn Arg Ile Ala Ser 70 Leu Glu Gly Gly Val His Ala Val Ala Phe Ser Ser Gly Gln Ala Ala Thr Thr Asn Ala Ile Leu Asn Leu Ala Gly Ala Gly Asp His Ile Val 105 Thr Ser Pro Arg Leu Tyr Gly Gly Thr Glu Thr Leu Phe Leu Ile Thr Leu Asn Arg Leu Gly Ile Asp Val Ser Phe Val Glu Asn Pro Asp Asp 135 Pro Glu Ser Trp Gln Ala Ala Val Gln Pro Asn Thr Lys Ala Phe Phe 145 Gly Glu Thr Phe Ala Asn Pro Gln Ala Asp Val 165 <210> 253 <211> 1812 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(1789) <223> RXC00164

MANDONIN -WA BIRROANAR I -

<400> 253 ctgctttgcg ggaggttatg aaatgagtgg ggagacgtcg aaaagcatgc gctttccgtt 60 ggccagcctg ccgcaagtgc ggcgcgaggt ggcccggcag gtg ggt cgt att ccg 115 Val Gly Arg Ile Pro cgg gcg aag tgg tgg ttt tta ggc gcg ctg gtg ttg ctg agt gcg ggc 163 Arg Ala Lys Trp Trp Phe Leu Gly Ala Leu Val Leu Ser Ala Gly 10 gct tat gcg tcg gtg ctg gtg ccg cag gtg ctg ggg cgg att gtg gat 211 Ala Tyr Ala Ser Val Leu Val Pro Gln Val Leu Gly Arg Ile Val Asp 30 ctg gtg tcc gat ggc gcg cag atg cgt gat ttt gtt gag ctc agt gtg 259 Leu Val Ser Asp Gly Ala Gln Met Arg Asp Phe Val Glu Leu Ser Val 45 att etc att geg gtg gea att gee gge geg gtg etc agt geg tge ggg 307 Ile Leu Ile Ala Val Ala Ile Ala Gly Ala Val Leu Ser Ala Cys Gly ttc tat gtg gtg tcg cgg att tct gag aag att atc gcc aat ttg agg 355 Phe Tyr Val Val Ser Arg Ile Ser Glu Lys Ile Ile Ala Asn Leu Arg 75 80 gaa gat atg gtg ggc acc gcg ctt ggg ttg ccc acg cac cag gtg gaa 403 Glu Asp Met Val Gly Thr Ala Leu Gly Leu Pro Thr His Gln Val Glu . 90 95 100 gat gcg ggc tct ggc gat ttg gtg agc cgc tcc acc gat gat gtc tcc Asp Ala Gly Ser Gly Asp Leu Val Ser Arg Ser Thr Asp Asp Val Ser 105 110 gag cta tcc gca gcg gtg aca gag acc gtc ccg att tta agt tcc tca 499 Glu Leu Ser Ala Ala Val Thr Glu Thr Val Pro Ile Leu Ser Ser Ser 120 ctg ttt acc att gcc gcg acg atc att gcg ctg ttt tct ttg gac tgg 547 Leu Phe Thr Ile Ala Ala Thr Ile Ile Ala Leu Phe Ser Leu Asp Trp 135 caa ttt gtg ctc att cct gtc gtg gtg gcg ccg gtg tac tac ttc gcg 595 Gln Phe Val Leu Ile Pro Val Val Val Ala Pro Val Tyr Tyr Phe Ala 150 155 tcc aag cac tat ttg agc aag gcg ccg gat cgg tat gcg gca gaa cgc 643 Ser Lys His Tyr Leu Ser Lys Ala Pro Asp Arg Tyr Ala Ala Glu Arg 170 gcg gcg atg gcg gag cgt gcg cga aag gta ctt gag gct att cgc ggg 691 Ala Ala Met Ala Glu Arg Ala Arg Lys Val Leu Glu Ala Ile Arg Gly 185 190 cgt gca act gtg cgg gcg tat tcc atg gaa gat gcc atg cat aat cag 739 Arg Ala Thr Val Arg Ala Tyr Ser Met Glu Asp Ala Met His Asn Gln 200 205 att gat cag gcg tcg tgg tct gtg gtg gtc aag ggt att cgt gcg cgc 787

Ile Asp 215		Ala	Ser	Trp	Ser 220	Val	Val	Val	Lys	Gly 225	Ile	Arg	Ala	Arg	
acc acc Thr Thr 230	atg Met	ttg Leu	att Ile	ttg Leu 235	aac Asn	atg Met	tgg Trp	atg Met	ctg Leu 240	ttt Phe	gcg Ala	gaa Glu	ttc Phe	ctc Leu 245	835
atg ctc Met Leu															·883
gcg ctg Ala Leu															931
ctg cgt Leu Arg															979
tcc ggc 1027	tat	gcg	tcg	ctg	gcg	cgc	atc	gtg	gga	gtt	gtt	gcg	gat	ccg	
Ser Gly 295		Ala	Ser	Leu	Ala 300	Arg	Ile	Val	Gly	Val 305	Val	Ala	Asp	Pro	
ccg att 1075	cct	gtg	ccc	gac	agc	ggt	gtg	aaa	gca	cct	cag	ggc	aaa	gtg	
Pro Ile 310	Pro	Val	Pro	Asp 315	Ser	Gly	Val	Lys	Ala 320	Pro	Gln	Gly	Lys	Val 325	
gaa ttg 1123	cgc	aac	gtc	agc	ttt	agc	tat	ggc	gat	tcc	tgg	gcg	gtg	aaa	
Glu Leu	Arg	Asn	Val 330	Ser	Phe	Ser	Tyr	Gly 335	Asp	Ser	Trp	Ala	Val 340	Lys	
gac atc 1171	gac	atc	acg	atc	aat	tcc	ggc	gaa	act	gtc	gcg	ctc	gtg	ggc	
Asp Ile	Asp	11e 345	Thr	Ile	Asn	Ser	Gly 350	Glu	Thr	Val	Ala	Leu 355	Val	Gly	
gca tct 1219	ggc	gca	ggt	aag	acg	acg	gtc	gcc	gcc	ttg	ctg	gcg	ggc	ttg	
Ala Ser	Gly 360	Ala	Gly	Lys	Thr	Thr 365	Val	Ala	Ala	Leu	Leu 370	Ala	Gly	Leu	
cgg gtg 1267	cca	gat	caa	ggg	caa	gtg	ctt	gtc	gac	gac	ttc	ccc	gtc	tct	
Arg Val 375	Pro	Asp	Gln	Gly	Gln 380	Val	Leu	Val	Asp	Asp 385	Phe	Pro	Val	Ser	
cac ctc 1315	tct	gac	cgc	gag	cgt	atc	gcc	cgc	ttg	gcc	atg	gtc	agc	cag	
His Leu 390	Ser	Asp	Arg	Glu 395	Arg	Ile	Ala	Arg	Leu 400	Ala	Met	Val	Ser	Gln 405	
gag gtt 1363	cat	gtt	ttc	tcc	ggc	acg	ctg	cgc	cag	gat	ctc	acc	ttg	gct	
Glu Val	His	Val	Phe 410	Ser	Gly	Thr	Leu	Arg 415	Gln	Asp	Leu	Thr	Leu 420	Ala	
aaa cca 1411	gat	gcc	tcc	gat	gag	gaa	tta	gcg	cat	gct	ctt	ggg	caa	gtt	

Lys Pro Asp Ala Ser Asp Glu Glu Leu Ala His Ala Leu Gly Gln Val 425 430 435 aat gcc ctt gac tgg ttg gag agt ctt cca gaa gga ctg gac acg gtc 1459 Asn Ala Leu Asp Trp Leu Glu Ser Leu Pro Glu Gly Leu Asp Thr Val 445 gtt ggt gcg cga gga atc cag cta gaa cca gtg gtg gct cag cag ttg 1507 Val Gly Ala Arg Gly Ile Gln Leu Glu Pro Val Val Ala Gln Gln Leu 455 gcg ttg gcc cgg gtg ttg ttg ctc aat ccg gcg atc gtc atc atg gat Ala Leu Ala Arg Val Leu Leu Leu Asn Pro Ala Ile Val Ile Met Asp 470 475 gaa gcc acg gca gaa gca gga tcg gcg ggt gcc agc gca ctg gaa gag Glu Ala Thr Ala Glu Ala Gly Ser Ala Gly Ala Ser Ala Leu Glu Glu gct gca gat gca gtg agc aag aac cgt tcc gca ttg gtg gtg gcg cac Ala Ala Asp Ala Val Ser Lys Asn Arg Ser Ala Leu Val Val Ala His 505 510 cgg ttg gat cag gca tcg cgg gct gat cag att ctg gtg atg gat aag 1699 Arg Leu Asp Gln Ala Ser Arg Ala Asp Gln Ile Leu Val Met Asp Lys ggg gag gtt gtg gaa tcc ggt act cac cag gag tta ttg gat cac ggg 1747 Gly Glu Val Val Glu Ser Gly Thr His Gln Glu Leu Leu Asp His Gly 535 540 ggt att tat cag cgt ctg tgg act gcg tgg agt gtc gga aga Gly Ile Tyr Gln Arg Leu Trp Thr Ala Trp Ser Val Gly Arg tagttgactg ttcaatgcgt tga 1812 <210> 254 <211> 563 <212> PRT <213> Corynebacterium glutamicum

<400> 254 Val Gly Arg Ile Pro Arg Ala Lys Trp Trp Phe Leu Gly Ala Leu Val 1 5 10

Leu Leu Ser Ala Gly Ala Tyr Ala Ser Val Leu Val Pro Gln Val Leu

Gly Arg Ile Val Asp Leu Val Ser Asp Gly Ala Gln Met Arg Asp Phe 40

Val Glu Leu Ser Val Ile Leu Ile Ala Val Ala Ile Ala Gly Ala Val Leu Ser Ala Cys Gly Phe Tyr Val Val Ser Arg Ile Ser Glu Lys Ile Ile Ala Asn Leu Arg Glu Asp Met Val Gly Thr Ala Leu Gly Leu Pro Thr His Gln Val Glu Asp Ala Gly Ser Gly Asp Leu Val Ser Arg Ser 105 Thr Asp Asp Val Ser Glu Leu Ser Ala Ala Val Thr Glu Thr Val Pro 125 Ile Leu Ser Ser Ser Leu Phe Thr Ile Ala Ala Thr Ile Ile Ala Leu 135 140 Phe Ser Leu Asp Trp Gln Phe Val Leu Ile Pro Val Val Ala Pro 150 155 Val Tyr Tyr Phe Ala Ser Lys His Tyr Leu Ser Lys Ala Pro Asp Arg 170 Tyr Ala Ala Glu Arg Ala Ala Met Ala Glu Arg Ala Arg Lys Val Leu 180 185 Glu Ala Ile Arg Gly Arg Ala Thr Val Arg Ala Tyr Ser Met Glu Asp Ala Met His Asn Gln Ile Asp Gln Ala Ser Trp Ser Val Val Lys 210 Gly Ile Arg Ala Arg Thr Thr Met Leu Ile Leu Asn Met Trp Met Leu 230 235 Phe Ala Glu Phe Leu Met Leu Ala Val Ala Leu Val Ile Gly Tyr Lys Leu Val Ile Asp Asn Ala Leu Thr Ile Gly Ala Val Thr Gly Ala Val 265 Leu Met Ile Ile Arg Leu Arg Gly Pro Met Asn Met Phe Met Arg Val 275 280 Leu Asp Thr Ile Gln Ser Gly Tyr Ala Ser Leu Ala Arg Ile Val Gly 295 Val Val Ala Asp Pro Pro Ile Pro Val Pro Asp Ser Gly Val Lys Ala 310 Pro Gln Gly Lys Val Glu Leu Arg Asn Val Ser Phe Ser Tyr Gly Asp 325 Ser Trp Ala Val Lys Asp Ile Asp Ile Thr Ile Asn Ser Gly Glu Thr 340 345

Val Ala Leu Val Gly Ala Ser Gly Ala Gly Lys Thr Thr Val Ala Ala

360

355

AW. -GISSGSLAS

Leu Leu Ala Gly Leu Arg Val Pro Asp Gln Gly Gln Val Leu Val Asp 375 Asp Phe Pro Val Ser His Leu Ser Asp Arg Glu Arg Ile Ala Arg Leu Ala Met Val Ser Gln Glu Val His Val Phe Ser Gly Thr Leu Arg Gln 410 Asp Leu Thr Leu Ala Lys Pro Asp Ala Ser Asp Glu Glu Leu Ala His 420 425 Ala Leu Gly Gln Val Asn Ala Leu Asp Trp Leu Glu Ser Leu Pro Glu 435 Gly Leu Asp Thr Val Val Gly Ala Arg Gly Ile Gln Leu Glu Pro Val Val Ala Gln Gln Leu Ala Leu Ala Arg Val Leu Leu Leu Asn Pro Ala 475 Ile Val Ile Met Asp Glu Ala Thr Ala Glu Ala Gly Ser Ala Gly Ala Ser Ala Leu Glu Glu Ala Ala Asp Ala Val Ser Lys Asn Arg Ser Ala 505 Leu Val Val Ala His Arg Leu Asp Gln Ala Ser Arg Ala Asp Gln Ile Leu Val Met Asp Lys Gly Glu Val Val Glu Ser Gly Thr His Gln Glu 535 Leu Leu Asp His Gly Gly Ile Tyr Gln Arg Leu Trp Thr Ala Trp Ser 545 550 555 560 Val Gly Arg <210> 255 <211> 1713 <212> DNA

<213> Corynebacterium glutamicum

<220>

ひまらしつして こまら

<221> CDS

<222> (101)..(1690)

<223> RXC01191

<400> 255

cgctgctttc acgcaactga aaccgcaccg gatcaagtta tttggggttg ttctttgtgg 60

cgtgttggtg gccgtcgcgg ggttggtagg gccctgggcg gtg ggt gga ctc gtc Val Gly Gly Leu Val

gat aag ctc ctt gca acc ccg agc atg cgc gac gtt gta gtg ttc gcg Asp Lys Leu Leu Ala Thr Pro Ser Met Arg Asp Val Val Phe Ala 10 15 20

										agc Ser						211
										ccg Pro						259
										ttg Leu						307
										cgt Arg 80						355
cgg Arg	gag Glu	gtg Val	tcc Ser	act Thr 90	gcg Ala	gcg Ala	agc Ser	acc Thr	gtg Val 95	gtg Val	ccg Pro	ctg Leu	atg Met	gtg Val 100	cag Gln	403
										ggc Gly						451
										atc Ile						499
										ccg Pro						547
										ctt Leu 160						595
										gaa Glu						643
	_		_	_		_				gac Asp						691
										aac Asn						739
atc Ile	acc Thr 215	ctc Leu	gtg Val	ctc Leu	atc Ile	ttg Leu 220	ggc Gly	acc Thr	ggc	ttt Phe	tac Tyr 225	ctg Leu	gtc Val	aac Asn	atc Ile	787
										gcc Ala 240						835
										ggc Gly						883
caa	tcc	gcc	agc	gca	tcg	ctg	atc	cgc	atg	gtg	ggc	gtt	att	aac	gcg	931

Gln Ser Ala Ser Ala Ser Leu Ile Arg Met Val Gly Val Ile Asn Ala 265 270 gca teg aac cag gtc agc ggc acc teg eeg geg tet gec agc acc get 979 Ala Ser Asn Gln Val Ser Gly Thr Ser Pro Ala Ser Ala Ser Thr Ala 280 285 tta acg ctt ttc gac gtc tcc cac cac tat cac act gca ccc gtc atc 1027 Leu Thr Leu Phe Asp Val Ser His His Tyr His Thr Ala Pro Val Ile 295 305 aag aat gca tcc gtg cag ctg gaa cca ggg gaa cac atc gcc att gtg Lys Asn Ala Ser Val Gln Leu Glu Pro Gly Glu His Ile Ala Ile Val 310 ggt gcg acc ggc gct ggt aaa agc acg ctc gcc ctc att gcg gca ggc 1123 Gly Ala Thr Gly Ala Gly Lys Ser Thr Leu Ala Leu Ile Ala Ala Gly 335 ctg ctc agc cca act tcc ggg cag gtg gct ctc ggc gga tcg agt ttt 1171 Leu Leu Ser Pro Thr Ser Gly Gln Val Ala Leu Gly Gly Ser Ser Phe 345 350 tct aac gtc gaa ccg gaa gca ttg cgc cag aag atc gcg atg gtc agc Ser Asn Val Glu Pro Glu Ala Leu Arg Gln Lys Ile Ala Met Val Ser 360 365 caa gaa atc cac tgc ttc cga gga tct gtt tta gat aat ctt cgt atc Gln Glu Ile His Cys Phe Arg Gly Ser Val Leu Asp Asn Leu Arg Ile gca cgc ccc gaa gcc acc gat gcg gac atc cac gcc gtt ctc gcc gat Ala Arg Pro Glu Ala Thr Asp Ala Asp Ile His Ala Val Leu Ala Asp 395 400 405 att ggt gat tcc tgg ttg gag cgc tta ccg caa ggc ata gac acc atc Ile Gly Asp Ser Trp Leu Glu Arg Leu Pro Gln Gly Ile Asp Thr Ile 410 gtg ggt gat ggc gct ttc cgt tta acc tct gtg gaa aac cag atc atg 1411 Val Gly Asp Gly Ala Phe Arg Leu Thr Ser Val Glu Asn Gln Ile Met 425 430 gcg ctt gct cgc gta cat ttg gcc gac cta gca atc gtc atc ctt gat 1459 Ala Leu Ala Arg Val His Leu Ala Asp Leu Ala Ile Val Ile Leu Asp 440 445 gaa gca acg gct gaa tca ggc tct gat cat gca aaa cag ctt gaa gat 1507 Glu Ala Thr Ala Glu Ser Gly Ser Asp His Ala Lys Gln Leu Glu Asp 455 460

gca gcc ctt aaa gtc act gaa aac aga tca gcc atc atc gtg gct cac 1555 Ala Ala Leu Lys Val Thr Glu Asn Arg Ser Ala Ile Ile Val Ala His 475 480 cgc ctc aac caa gcg aaa acc gcc gat cgc atc atc gtc atg gac tcc 1603 Arg Leu Asn Gln Ala Lys Thr Ala Asp Arg Ile Ile Val Met Asp Ser gga gaa atc ata gaa tct gga acc cat gaa gag ctt cga gcg atc ggc 1651 Gly Glu Ile Ile Glu Ser Gly Thr His Glu Glu Leu Arg Ala Ile Gly 505 510 ggc cga tat gaa caa ctg tgg act gcg tgg tct gcg cgc taattagcca 1700 Gly Arg Tyr Glu Gln Leu Trp Thr Ala Trp Ser Ala Arg 520 525 cccaagacca cgc 1713 <210> 256 <211> 530 <212> PRT <213> Corynebacterium glutamicum <400> 256 Val Gly Gly Leu Val Asp Lys Leu Leu Ala Thr Pro Ser Met Arg Asp 5 15 Val Val Phe Ala Leu Leu Ile Val Ala Gly Gly Val Val Ser Ser 25 Leu Gly Thr Trp Trp Gly Ser Ala Leu Met Ala Arg Ala Leu Glu Pro Ala Ile Ala Gly Leu Arg Glu Asp Val Leu Arg Ala Ala Val Ser Leu Asp Ala Asn Thr Ile Glu Thr Ala Gly Arg Gly Asp Val Ile Ser Arg 75 65 Ile Ala Asp Asp Ser Arg Glu Val Ser Thr Ala Ala Ser Thr Val Val Pro Leu Met Val Gln Ala Gly Phe Thr Val Val Ile Ser Ala Phe Gly 100 110 Met Ala Ala Val Asp Trp Arg Leu Gly Leu Val Gly Leu Val Ala Ile 115 120 Pro Leu Tyr Trp Thr Thr Leu Arg Val Tyr Leu Pro Arg Ser Gly Pro 130 Leu Tyr Thr Arg Glu Arg Glu Ala Phe Gly Val Arg Thr Gln Arg Leu 145 150 155

+ 1 SACT 2001 AWO OW - 1 -

Val Gly Ala Val Glu Gly Ala Glu Thr Leu Arg Ala Phe Arg Ala Glu 165 170 175

- Asp Thr Glu Leu Lys Arg Ile Asp Ala Ala Ser Gly Glu Ala Arg Asp 180 185 190
- Ile Ser Ile Ser Val Phe Arg Phe Leu Thr Trp Ala Phe Ser Arg Asn 195 200 205
- Asn Arg Ala Glu Cys Ile Thr Leu Val Leu Ile Leu Gly Thr Gly Phe 210 215 220
- Tyr Leu Val Asn Ile Asp Leu Val Thr Val Gly Ala Val Ser Thr Ala 225 230 235 240
- Ala Leu Ile Phe His Arg Leu Phe Gly Pro Ile Gly Thr Leu Val Gly
 245 250 255
- Met Phe Ser Asp Ile Gln Ser Ala Ser Ala Ser Leu Ile Arg Met Val 260 265 270
- Gly Val Ile Asn Ala Ala Ser Asn Gln Val Ser Gly Thr Ser Pro Ala 275 280 285
- Ser Ala Ser Thr Ala Leu Thr Leu Phe Asp Val Ser His His Tyr His 290 295 300
- Thr Ala Pro Val Ile Lys Asn Ala Ser Val Gln Leu Glu Pro Gly Glu 305 310 315 320
- His Ile Ala Ile Val Gly Ala Thr Gly Ala Gly Lys Ser Thr Leu Ala 325 330 335
- Leu Ile Ala Ala Gly Leu Leu Ser Pro Thr Ser Gly Gln Val Ala Leu 340 345 350
- Gly Gly Ser Ser Phe Ser Asn Val Glu Pro Glu Ala Leu Arg Gln Lys 355 360 365
- Ile Ala Met Val Ser Gln Glu Ile His Cys Phe Arg Gly Ser Val Leu 370 380
- Asp Asn Leu Arg Ile Ala Arg Pro Glu Ala Thr Asp Ala Asp Ile His 385 390 395 400
- Ala Val Leu Ala Asp Ile Gly Asp Ser Trp Leu Glu Arg Leu Pro Gln
 405 410 415
- Gly Ile Asp Thr Ile Val Gly Asp Gly Ala Phe Arg Leu Thr Ser Val 420 425 430
- Glu Asn Gln Ile Met Ala Leu Ala Arg Val His Leu Ala Asp Leu Ala 435 440 445
- Ile Val Ile Leu Asp Glu Ala Thr Ala Glu Ser Gly Ser Asp His Ala 450 455 460
- Lys Gln Leu Glu Asp Ala Ala Leu Lys Val Thr Glu Asn Arg Ser Ala 465 470 475 480
- Ile Ile Val Ala His Arg Leu Asn Gln Ala Lys Thr Ala Asp Arg Ile

485 490 495 Ile Val Met Asp Ser Gly Glu Ile Ile Glu Ser Gly Thr His Glu Glu 505 Leu Arg Ala Ile Gly Gly Arg Tyr Glu Gln Leu Trp Thr Ala Trp Ser 520 Ala Arg 530 <210> 257 <211> 1392 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(1369) <223> RXA02646 <400> 257 ttggaaataa aacctatgcc aaagtaggtg caattctagg agaagattac actagtcaac 60 catgagtgaa acatacgtgt ctgagaaaag tccaggagtg atg gct agc gga gcg Met Ala Ser Gly Ala gag ctg att cgt gcc gcc gac att caa acg gcg cag gca cga att tcc Glu Leu Ile Arg Ala Ala Asp Ile Gln Thr Ala Gln Ala Arg Ile Ser tcc gtc att gca cca act cca ttg cag tat tgc cct cgt ctt tct gag 211 Ser Val Ile Ala Pro Thr Pro Leu Gln Tyr Cys Pro Arg Leu Ser Glu 259 gaa acc gga gcg gaa atc tac ctt aag cgt gag gat ctg cag gat gtt Glu Thr Gly Ala Glu Ile Tyr Leu Lys Arg Glu Asp Leu Gln Asp Val cgt tcc tac aag atc cgc ggt gcg ctg aac tct gga gcg cag ctc acc 307 Arg Ser Tyr Lys Ile Arg Gly Ala Leu Asn Ser Gly Ala Gln Leu Thr 60 355 caa gag cag cgc gat gca ggt atc gtt gcc gca tct gca ggt aac cat Gln Glu Gln Arg Asp Ala Gly Ile Val Ala Ala Ser Ala Gly Asn His gcc cag ggc gtg gcc tat gtg tgc aag tcc ttg ggc gtt cag gga cgc 403 Ala Gln Gly Val Ala Tyr Val Cys Lys Ser Leu Gly Val Gln Gly Arg 90 atc tat gtt cct gtg cag act cca aag caa aag cgt gac cgc atc atg Ile Tyr Val Pro Val Gln Thr Pro Lys Gln Lys Arg Asp Arg Ile Met 110 105 gtt cac ggc gga gag ttt gtc tcc ttg gtg gtc act ggc aat aac ttc Val His Gly Glu Phe Val Ser Leu Val Val Thr Gly Asn Asn Phe

130

125

120

DESTRUCTION -WO

gac Asp	gaa Glu 135	Ala	tcg Ser	gct Ala	gca Ala	gcg Ala 140	His	gaa Glu	gat Asp	gca Ala	gag Glu 145	Arc	acc Thr	ggc Gly	gca Ala	547
acg Thr 150	Leu	ato	gag Glu	cct Pro	Phe	Asp	gct Ala	cgc Arg	aac Asn	acc Thr 160	Val	ato	ggt Gly	cag Gln	ggc Gly 165	595
acc Thr	gtg Val	gct Ala	gct Ala	gag Glu 170	atc Ile	ttg Leu	tcg Ser	cag Gln	ctg Leu 175	Thr	tcc Ser	atg Met	ggc Gly	aag Lys 180	agt Ser	643
gca Ala	gat Asp	cac His	gtg Val 185	atg Met	gtt Val	cca Pro	gtc Val	ggc Gly 190	ggt Gly	ggc	gga Gly	ctt Leu	ctt Leu 195	gca Ala	ggt Gly	691
gtg Val	gtc Val	agc Ser 200	tac Tyr	atg Met	gct Ala	gat Asp	atg Met 205	gca Ala	cct Pro	cgc Arg	act Thr	gcg Ala 210	Ile	gtt Val	ggt Gly	739
atc Ile	gaa Glu 215	cca Pro	gcg Ala	gga Gly	gca Ala	gca Ala 220	tcc Ser	atg Met	cag Gln	gct Ala	gca Ala 225	ttg Leu	cac His	aat Asn	ggt Gly	787
gga Gly 230	cca Pro	atc Ile	act Thr	ttg Leu	gag Glu 235	act Thr	gtt Val	gat Asp	ccc Pro	ttt Phe 240	gtg Val	gac Asp	ggc Gly	gca Ala	gca Ala 245	835
gtc Val	aaa Lys	cgt Arg	gtc Val	gga Gly 250	gat Asp	ctc Leu	aac Asn	tac Tyr	acc Thr 255	atc Ile	gtg Val	gag Glu	aag Lys	aac Asn 260	cag Gln	883
ggt Gly	cgc Arg	gtg Val	cac His 265	atg Met	atg Met	agc Ser	gcg Ala	acc Thr 270	gag Glu	ggc Gly	gct Ala	gtg Val	tgt Cys 275	act Thr	gag Glu	931
atg Met	ctc Leu	gat Asp 280	ctt Leu	tac Tyr	caa Gln	aac Asn	gaa Glu 285	ggc Gly	atc Ile	atc Ile	gcg Ala	gag Glu 290	cct Pro	gct Ala	ggc Gly	979
gcg 1027	ctg	tct	atc	gct	ggg	ttg	aag	gaa	atg	tcc	ttt	gca	gct	cgc	tct	
		Ser	Ile	Ala	Gly	Leu 300	Lys	Glu	Met	Ser	Phe 305	Ala	Ala	Arg	Ser	
gtc 1075	gtg	gtg	tgc	atc	atc	tct	ggt	ggc	aac	aac	gat	gtg	ctg	cgt	tat	
Val 310	Val	Val	Cys	Ile	Ile 315	Ser	Gly	Gly	Asn	Asn 320	Asp	Val	Leu	Arg	Tyr 325	
gcg 1123	gaa	atc	gct	gag	cgc	tcc	ttg	gtg	cgc	cgc	ggt	tta	aag	cac	tac	
		Ile		Glu 330	Arg	Ser	Leu		Arg 335	Arg	Gly	Leu	Lys	His 340	Tyr	
ttc 1171	ttg	gtg	aac	ttc	ccg	caa	aag	cct	ggt	cag	ttg	cgt	cac	ttc	ctg	
Phe :	Leu		Asn 345	Phe	Pro	Gln		Pro 350	Gly	Gln	Leu	Arg	His 355	Phe :	Leu	

gaa gat atc ctg gga ccg gat gat gac atc acg ctg ttt gag tac ctc 1219

Glu Asp Ile Leu Gly Pro Asp Asp Ile Thr Leu Phe Glu Tyr Leu 360 365 370

aag cgc aac cgt gag acc ggt act gcg ttg gtg ggt att cac ttg 1267

Lys Arg Asn Asn Arg Glu Thr Gly Thr Ala Leu Val Gly Ile His Leu 375 380 385

agt gaa gca tca gga ttg gat tct ttg ctg gaa cgt atg gag gaa tcg 1315

Ser Glu Ala Ser Gly Leu Asp Ser Leu Leu Glu Arg Met Glu Glu Ser 390 395 400 405

gca att gat tee egt ege ete gag eeg gge ace eet gag tae gaa tae 1363

Ala Ile Asp Ser Arg Arg Leu Glu Pro Gly Thr Pro Glu Tyr Glu Tyr 410 415 420

ttg acc taaacatagc tgaaggccac ctc 1392 Leu Thr

<210> 258

<211> 423

<212> PRT

<213> Corynebacterium glutamicum

<400> 258

Met Ala Ser Gly Ala Glu Leu Ile Arg Ala Ala Asp Ile Gln Thr Ala 1 5 10 15

Gln Ala Arg Ile Ser Ser Val Ile Ala Pro Thr Pro Leu Gln Tyr Cys 20 25 30

Pro Arg Leu Ser Glu Glu Thr Gly Ala Glu Ile Tyr Leu Lys Arg Glu 35 40 45

Asp Leu Gln Asp Val Arg Ser Tyr Lys Ile Arg Gly Ala Leu Asn Ser 50 60

Gly Ala Gln Leu Thr Gln Glu Gln Arg Asp Ala Gly Ile Val Ala Ala 65 70 75 80

Ser Ala Gly Asn His Ala Gln Gly Val Ala Tyr Val Cys Lys Ser Leu 85 90 95

Gly Val Gln Gly Arg Ile Tyr Val Pro Val Gln Thr Pro Lys Gln Lys
100 105 110

Arg Asp Arg Ile Met Val His Gly Glu Phe Val Ser Leu Val Val
115 120 125

Thr Gly Asn Asn Phe Asp Glu Ala Ser Ala Ala Ala His Glu Asp Ala 130 135 140

Glu Arg Thr Gly Ala Thr Leu Ile Glu Pro Phe Asp Ala Arg Asn Thr 145 150 155 160

Val Ile Gly Gln Gly Thr Val Ala Ala Glu Ile Leu Ser Gln Leu Thr Ser Met Gly Lys Ser Ala Asp His Val Met Val Pro Val Gly Gly Gly Gly Leu Leu Ala Gly Val Val Ser Tyr Met Ala Asp Met Ala Pro Arg Thr Ala Ile Val Gly Ile Glu Pro Ala Gly Ala Ala Ser Met Gln Ala 210 215 220 Ala Leu His Asn Gly Gly Pro Ile Thr Leu Glu Thr Val Asp Pro Phe Val Asp Gly Ala Ala Val Lys Arg Val Gly Asp Leu Asn Tyr Thr Ile Val Glu Lys Asn Gln Gly Arg Val His Met Met Ser Ala Thr Glu Gly 265 Ala Val Cys Thr Glu Met Leu Asp Leu Tyr Gln Asn Glu Gly Ile Ile 280 Ala Glu Pro Ala Gly Ala Leu Ser Ile Ala Gly Leu Lys Glu Met Ser Phe Ala Ala Arg Ser Val Val Val Cys Ile Ile Ser Gly Gly Asn Asn 315 Asp Val Leu Arg Tyr Ala Glu Ile Ala Glu Arg Ser Leu Val Arg Arg 325 330 Gly Leu Lys His Tyr Phe Leu Val Asn Phe Pro Gln Lys Pro Gly Gln 345 Leu Arg His Phe Leu Glu Asp Ile Leu Gly Pro Asp Asp Ile Thr 355 360 Leu Phe Glu Tyr Leu Lys Arg Asn Asn Arg Glu Thr Gly Thr Ala Leu 375 Val Gly Ile His Leu Ser Glu Ala Ser Gly Leu Asp Ser Leu Leu Glu Arg Met Glu Glu Ser Ala Ile Asp Ser Arg Arg Leu Glu Pro Gly Thr 410 Pro Glu Tyr Glu Tyr Leu Thr

420

<210> 259

<211> 966

<212> DNA

<213> Corynebacterium glutamicum

<220>

<221> CDS

<222> (101)..(943)

<223> RXA00766

BNSDCCID: -WO 01000 take 1 -

<400> 259 tatggcgctt gaaccacaaa taaagtctgc accgacgccg gtgatcttaa ttgtcgaacc 60 ctacggcggg tccatccggc aacaaaaccc caacctacca atg gtt ttt tgg gac 115 Met Val Phe Trp Asp gat gca gcc tta acc cga ggc gat ggc atc ttt gaa aca ctc ctc atc 163 Asp Ala Ala Leu Thr Arg Gly Asp Gly Ile Phe Glu Thr Leu Leu Ile cgc gac gga cat gcc tgc aac gtg cgc cga cac gga gaa cqc ttc aaa 211 Arg Asp Gly His Ala Cys Asn Val Arg Arg His Gly Glu Arg Phe Lys gca tcg gca gca cta ttg gga ctg cca gag ccg atc ctg gaa gac tgg 259 Ala Ser Ala Ala Leu Leu Gly Leu Pro Glu Pro Ile Leu Glu Asp Trp 40 gaa aaa gcc acc caa atg ggc atc gaa tcc tgg tac tcc cac ccc aac 307 Glu Lys Ala Thr Gln Met Gly Ile Glu Ser Trp Tyr Ser His Pro Asn gca ggc gag gcc tca tgc acc tgg acg ctc agc cga ggt cgt tcc tcc 355 Ala Gly Glu Ala Ser Cys Thr Trp Thr Leu Ser Arg Gly Arg Ser Ser 80 acg ggg ctg gcc tca gga tgg tta acc atc acc cca gtc tcc tcc gac 403 Thr Gly Leu Ala Ser Gly Trp Leu Thr Ile Thr Pro Val Ser Ser Asp aaa ctg gcg caa cgt gaa cac ggt gta tcg gtc atg acc agt tca aga 451 Lys Leu Ala Gln Arg Glu His Gly Val Ser Val Met Thr Ser Ser Arg gga tat tee ate gae ace gge ete eee gga ate gga aaa gee ace ega 499 Gly Tyr Ser Ile Asp Thr Gly Leu Pro Gly Ile Gly Lys Ala Thr Arq ggc gag cta tct aaa gtg gaa cga acc ccc gca cca tgg ctg aca gtc 547 Gly Glu Leu Ser Lys Val Glu Arg Thr Pro Ala Pro Trp Leu Thr Val 140 ggc gcc aaa aca cta gcc tac gca gca aac atg gca gcc ctg cgc tac 595 Gly Ala Lys Thr Leu Ala Tyr Ala Ala Asn Met Ala Ala Leu Arg Tyr 155 gcc aaa tca aac gga ttc gac gat gtg atc ttc acc gat ggc gac cgc 643 Ala Lys Ser Asn Gly Phe Asp Asp Val Ile Phe Thr Asp Gly Asp Arg 170 175 gtt cta gaa ggc gcc acc tcc acc gta gtg agt ttc aaa ggc gac aaa 691 Val Leu Glu Gly Ala Thr Ser Thr Val Val Ser Phe Lys Gly Asp Lys 185 190 atc cgc acc cct tca ccc ggt ggc gac att ctc ccc gga acc acc caa 739 Ile Arg Thr Pro Ser Pro Gly Gly Asp Ile Leu Pro Gly Thr Thr Gln 200 205

gca gca ctc ttt gca cac gca acc gaa aaa gga tgg cga tgt aaa gaa Ala Ala Leu Phe Ala His Ala Thr Glu Lys Gly Trp Arg Cys Lys Glu 215 220 225	787
aaa gac tta agc att gac gat ctt ttc gga gcc gac agc gtg tgg cta Lys Asp Leu Ser Ile Asp Asp Leu Phe Gly Ala Asp Ser Val Trp Leu 230 235 240 245	835
gtg tcc tcc gtc cgc gga cca gtt cgg gtg acc agg ctc gat gga cac Val Ser Ser Val Arg Gly Pro Val Arg Val Thr Arg Leu Asp Gly His 250 255 260	883
aaa tta cgg aaa cca gac aat gaa aaa gaa atc aag gcg ctg att acc Lys Leu Arg Lys Pro Asp Asn Glu Lys Glu Ile Lys Ala Leu Ile Thr 265 270 275	931
aaa gct ctg ggg tagaggctgg cgctgggact tgc Lys Ala Leu Gly 280	966
<210> 260 <211> 281 <212> PRT <213> Corynebacterium glutamicum	
<400> 260 Met Val Phe Trp Asp Asp Ala Ala Leu Thr Arg Gly Asp Gly Ile Phe 1 5 10 15	
Glu Thr Leu Leu Ile Arg Asp Gly His Ala Cys Asn Val Arg Arg His 20 25 30	
Gly Glu Arg Phe Lys Ala Ser Ala Ala Leu Leu Gly Leu Pro Glu Pro 35 40 45	
Ile Leu Glu Asp Trp Glu Lys Ala Thr Gln Met Gly Ile Glu Ser Trp 50 55 60	
Tyr Ser His Pro Asn Ala Gly Glu Ala Ser Cys Thr Trp Thr Leu Ser 65 70 75 80	
Arg Gly Arg Ser Ser Thr Gly Leu Ala Ser Gly Trp Leu Thr Ile Thr 85 90 95	
Pro Val Ser Ser Asp Lys Leu Ala Gln Arg Glu His Gly Val Ser Val	
Met Thr Ser Ser Arg Gly Tyr Ser Ile Asp Thr Gly Leu Pro Gly Ile 115 120 125	
Gly Lys Ala Thr Arg Gly Glu Leu Ser Lys Val Glu Arg Thr Pro Ala 130 135 140	
Pro Trp Leu Thr Val Gly Ala Lys Thr Leu Ala Tyr Ala Ala Asn Met 145 150 155 160	
Ala Ala Leu Arg Tyr Ala Lys Ser Asn Gly Phe Asp Asp Val Ile Phe 165 170 175	
Thr Asp Gly Asp Arg Val Leu Glu Gly Ala Thr Ser Thr Val Val Ser	

180 185 190 Phe Lys Gly Asp Lys Ile Arg Thr Pro Ser Pro Gly Gly Asp Ile Leu 200 205 195 Pro Gly Thr Thr Gln Ala Ala Leu Phe Ala His Ala Thr Glu Lys Gly 215 220 210 Trp Arg Cys Lys Glu Lys Asp Leu Ser Ile Asp Asp Leu Phe Gly Ala 230 235 Asp Ser Val Trp Leu Val Ser Ser Val Arg Gly Pro Val Arg Val Thr 245 250 Arg Leu Asp Gly His Lys Leu Arg Lys Pro Asp Asn Glu Lys Glu Ile 265 Lys Ala Leu Ile Thr Lys Ala Leu Gly 275 <210> 261 <211> 1224 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(1201) <223> RXN01690 <400> 261 cctagccatt cctcaaaacc gtgagacgaa attggctatt catcccataa aatggggctg 60 actagtgtat ctgtcaggta gcaggtgtac cttaaaatcc atg acg tca tta gag Met Thr Ser Leu Glu 1_ ttc aca gta acc cgt acc gaa aat ccg acg tca ccc gat cgt ctg aag 163 Phe Thr Val Thr Arg Thr Glu Asn Pro Thr Ser Pro Asp Arg Leu Lys 10 20 gaa att ctt gcc gca ccg aag ttc ggt aag ttc ttc acc gac cac atg 211 Glu Ile Leu Ala Ala Pro Lys Phe Gly Lys Phe Phe Thr Asp His Met 25 30 35 gtg acc att gac tgg aac gag tcg gaa ggc tgg cac aac gcc caa tta 259 Val Thr Ile Asp Trp Asn Glu Ser Glu Gly Trp His Asn Ala Gln Leu 50 40 gtg cca tac gcg ccg att cct atg gat cct gcc acc gta ttc cac 307 Val Pro Tyr Ala Pro Ile Pro Met Asp Pro Ala Thr Thr Val Phe His 55 60 tac gga cag gca att ttt gag gga att aag gcc tac cgc cat tcg gac 355 Tyr Gly Gln Ala Ile Phe Glu Gly Ile Lys Ala Tyr Arg His Ser Asp 70 75 80 gaa acc atc aag act ttc cgt cct gat gaa aac gcc gag cgt atg cag 403 Glu Thr Ile Lys Thr Phe Arg Pro Asp Glu Asn Ala Glu Arg Met Gln 90 95

WARREND- -WA 01000

			cga Arg												451
			gaa Glu												499
			gaa Glu	_				-	-			_			547
			ttg Leu												595
_	_		cca Pro 170	-		_							_		643
-	_		ctg Leu	_	_	_		-	_	_	-				691
			aaa Lys												739
_	_	_	gcg Ala	_	-		_	-	_	_	_		-	_	787
			aag Lys												835
		_	aac Asn 250		_		-	-		_			-		883
			ctt Leu												931
			gga Gly												979
gag 1027	gaa	gaa	gac	gca	aag	tct	ggc	gcc	atg	acc	gag	gca	ttt	gct	
	Glu	Glu	Asp	Ala	Lys 300	Ser	Gly	Ala	Met	Thr 305	Glu	Ala	Phe	Ala	
tgc 1075	 act	gca	gct	gtt	atc	acc	cct	gtt	ggc	acc	gtg	aaa	tca	gct	
	Thr	Ala	Ala	Val 315	Ile	Thr	Pro	Val	Gly 320	Thr	Val	Lys	Ser	Ala 325	
cac 1123	 acc	ttc	gaa	gtg	aac	aac	aat	gaa	gtc	gga	gaa	atc	acg	atg	

j

His Gly Thr Phe Glu Val Asn Asn Glu Val Gly Glu Ile Thr Met 330 335 340

aag ctt cgt gaa acc ctc acc gga att cag caa gga aac gtt gaa gac 1171

Lys Leu Arg Glu Thr Leu Thr Gly Ile Gln Gln Gly Asn Val Glu Asp 345 350 355

caa aac gga tgg ctt tac cca ctg gtt ggc taaatcaacc ggttttaaga 1221

Gln Asn Gly Trp Leu Tyr Pro Leu Val Gly 360 365

ccc 1224

<210> 262

<211> 367

<212> PRT

<213> Corynebacterium glutamicum

<400> 262

Met Thr Ser Leu Glu Phe Thr Val Thr Arg Thr Glu Asn Pro Thr Ser 1 5 10 15

Pro Asp Arg Leu Lys Glu Ile Leu Ala Ala Pro Lys Phe Gly Lys Phe 20 25 30

Phe Thr Asp His Met Val Thr Ile Asp Trp Asn Glu Ser Glu Gly Trp 35 40 45

His Asn Ala Gln Leu Val Pro Tyr Ala Pro Ile Pro Met Asp Pro Ala 50 55 60

Thr Thr Val Phe His Tyr Gly Gln Ala Ile Phe Glu Gly Ile Lys Ala
65 70 75 80

Tyr Arg His Ser Asp Glu Thr Ile Lys Thr Phe Arg Pro Asp Glu Asn

Ala Glu Arg Met Gln Arg Ser Ala Ala Arg Met Ala Met Pro Gln Leu 100 105 110

Pro Thr Glu Asp Phe Ile Lys Ala Leu Glu Leu Leu Val Asp Ala Asp 115 120 125

Gln Asp Trp Val Pro Glu Tyr Gly Glu Ala Ser Leu Tyr Leu Arg 130 135 140

Pro Phe Met Ile Ser Thr Glu Ile Gly Leu Gly Val Ser Pro Ala Asp 145 150 155 160

Ala Tyr Lys Phe Leu Val Ile Ala Ser Pro Val Gly Ala Tyr Phe Thr 165 170 175

Gly Gly Ile Lys Pro Val Ser Val Trp Leu Ser Glu Asp Tyr Val Arg 180 185 190

Ala Ala Pro Gly Gly Thr Gly Asp Ala Lys Phe Ala Gly Asn Tyr Ala 195 200 205

Ala Ser Leu Leu Ala Gln Ser Gln Ala Ala Glu Lys Gly Cys Asp Gln 215 210 Val Val Trp Leu Asp Ala Ile Glu His Lys Tyr Ile Glu Glu Met Gly 230 Gly Met Asn Leu Gly Phe Ile Tyr Arg Asn Gly Asp Gln Val Lys Leu Val Thr Pro Glu Leu Ser Gly Ser Leu Leu Pro Gly Ile Thr Arg Lys 265 Ser Leu Leu Gln Val Ala Arg Asp Leu Gly Tyr Glu Val Glu Glu Arg Lys Ile Thr Thr Glu Trp Glu Glu Asp Ala Lys Ser Gly Ala Met 295 Thr Glu Ala Phe Ala Cys Gly Thr Ala Ala Val Ile Thr Pro Val Gly 310 315 Thr Val Lys Ser Ala His Gly Thr Phe Glu Val Asn Asn Asn Glu Val 325 330 Gly Glu Ile Thr Met Lys Leu Arg Glu Thr Leu Thr Gly Ile Gln Gln 345 Gly Asn Val Glu Asp Gln Asn Gly Trp Leu Tyr Pro Leu Val Gly 360 <210> 263 <211> 1076 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (1)..(1053) <223> FRXA01690 <400> 263 ccc gat cgt ctg aag gaa att ctt gcc gca ccg aag ttc ggt aag ttc Pro Asp Arg Leu Lys Glu Ile Leu Ala Ala Pro Lys Phe Gly Lys Phe ttc acc gac cac atg gtg acc att gac tgg aac gag tcg gaa ggc tgg Phe Thr Asp His Met Val Thr Ile Asp Trp Asn Glu Ser Glu Gly Trp 25 cac aac gcc caa tta gtg cca tac gcg ccg att cct atg gat cct gcc His Asn Ala Gln Leu Val Pro Tyr Ala Pro Ile Pro Met Asp Pro Ala 35 40 acc acc gta ttc cac tac gga cag gca att ttt gag gga att aag gcc 192 Thr Thr Val Phe His Tyr Gly Gln Ala Ile Phe Glu Gly Ile Lys Ala 50 tac cgc cat tcg gac gaa acc atc aag act ttc cgt cct gat gaa aac Tyr Arg His Ser Asp Glu Thr Ile Lys Thr Phe Arg Pro Asp Glu Asn

٧

					7.0					75					80	
65					70											
gcc Ala	gag Glu	cgt Arg	atg Met	cag Gln 85	cgt Arg	tca Ser	gca Ala	gct Ala	cga Arg 90	atg Met	gca Ala	atg Met	cca Pro	Gln 95	ttg Leu	288
cca Pro	acc Thr	gag Glu	gac Asp 100	ttt Phe	att Ile	aaa Lys	gca Ala	ctt Leu 105	gaa Glu	ctg Leu	ctg Leu	gta Val	gac Asp 110	gcg Ala	gat Asp	336
cag Gln	gat Asp	tgg Trp 115	gtt Val	cct Pro	gag Glu	tac Tyr	ggc Gly 120	gga Gly	gaa Glu	gct Ala	tcc Ser	ctc Leu 125	tac Tyr	ctg Leu	cgc Arg	384
cca Pro	ttc Phe 130	atg Met	atc Ile	tcc Ser	acc Thr	gaa Glu 135	att Ile	ggc Gly	ttg Leu	ggt Gly	gtc Val 140	agc Ser	cca Pro	gct Ala	gat Asp	432
gcc Ala 145	tac Tyr	aag Lys	ttc Phe	ctg Leu	gtc Val 150	atc Ile	gca Ala	tcc Ser	cca Pro	gtc Val 155	ggc Gly	gct Ala	tac Tyr	ttc Phe	acc Thr 160	480
ggt Gly	gga Gly	atc Ile	aag Lys	cct Pro 165	gtt Val	tcc Ser	gtc Val	tgg Trp	ctg Leu 170	agc Ser	gaa Glu	gat Asp	tac Tyr	gtc Val 175	cgc Arg	528
gct Ala	gca Ala	ccc Pro	ggc Gly 180	gga Gly	act Thr	ggt Gly	gac Asp	gcc Ala 185	aaa Lys	ttt Phe	gct Ala	ggc Gly	aac Asn 190	tac Tyr	gcg Ala	576
gct Ala	tct Ser	ttg Leu 195	ctt Leu	gcc Ala	cag Gln	tcc Ser	cag Gln 200	gct Ala	gcg Ala	gaa Glu	aag Lys	ggc Gly 205	tgt Cys	gac Asp	cag Gln	624
gtc Val	gta Val 210	tgg Trp	ttg Leu	gat Asp	gcc Ala	atc Ile 215	gag Glu	cac His	aag Lys	tac Tyr	atc Ile 220	gaa Glu	gaa Glu	atg Met	ggt Gly	672
ggc Gly 225	Met	aac Asn	ctt Leu	GJA aaa	ttc Phe 230	atc Ile	tac Tyr	cgc Arg	aac Asn	ggc Gly 235	Asp	caa Gln	gtc Val	aag Lys	cta Leu 240	720
gtc Val	acc Thr	cct Pro	gaa Glu	ctt Leu 245	tcc Ser	ggc	tca Ser	cta Leu	ctt Leu 250	cca Pro	ggc Gly	atc Ile	acc Thr	cgc Arg 255	aag Lys	768
tca Ser	ctt Leu	cta Leu	caa Gln 260	Val	gca Ala	cgc Arg	gac Asp	ttg Leu 265	Gly	tac Tyr	gaa Glu	gta Val	gaa Glu 270	gag Glu	cga Arg	816
aag Lys	atc Ile	acc Thr 275	Thr	acc Thr	gag Glu	tgg Trp	gaa Glu 280	Glu	gac Asp	gca Ala	aag Lys	tct Ser 285	ggc Gly	gcc Ala	atg Met	864
acc Thr	gag Glu 290	Ala	ttt. Phe	gct Ala	tgc Cys	ggt Gly 295	Thr	gca Ala	gct Ala	gtt Val	atc . Ile 300	Thr	cct	gtt Val	ggc	912
acc Thr 305	· Val	aaa Lys	tca Ser	gct Ala	cac His 310	Gly	acc Thr	tto Phe	gaa Glu	gtg Val	Asn	aac Asn	aat Asn	gaa Glu	gtc Val 320	960

ggc cgc gaa aaa atc cgc gca aaa ttc ggc tgg acc gat gtc tca cgt 1075

Gly Arg Glu Lys Ile Arg Ala Lys Phe Gly Trp Thr Asp Val Ser Arg 310 315 320 325

ttt tca gcc atg gga att cca gcc cta aac ttt ggc gct ggt gat cca 1123

Phe Ser Ala Met Gly Ile Pro Ala Leu Asn Phe Gly Ala Gly Asp Pro 330 335 340

agt ttc gcg cat aaa cgc gac gag cag tgc cca gtg gag caa atc acg 1171

Ser Phe Ala His Lys Arg Asp Glu Gln Cys Pro Val Glu Gln Ile Thr 345 350 355

gat gtg gca gca att ttg aag cag tac ctg agc gag taaccgcatt 1217

Asp Val Ala Ala Ile Leu Lys Gln Tyr Leu Ser Glu 360

cggggttatc gtg 1230

<210> 32

<211> 369

<212> PRT

<213> Corynebacterium glutamicum

<400> 32

Val Asn Ser Glu Leu Lys Pro Gly Leu Asp Leu Leu Gly Asp Pro Ile 1 5 10 15

Val Leu Thr Gln Arg Leu Val Asp Ile Pro Ser Pro Ser Gly Gln Glu 20 25 30

Lys Gln Ile Ala Asp Glu Ile Glu Asp Ala Leu Arg Asn Leu Asn Leu 35 40 45

Pro Gly Val Glu Val Phe Arg Phe Asn Asn Asn Val Leu Ala Arg Thr 50 55 60

Asn Arg Gly Leu Ala Ser Arg Val Met Leu Ala Gly His Ile Asp Thr 65 70 75 80

Val Pro Ile Ala Asp Asn Leu Pro Ser Arg Val Glu Asp Gly Ile Met
85 90 95

Tyr Gly Cys Gly Thr Val Asp Met Lys Ser Gly Leu Ala Val Tyr Leu 100 105 110

His Thr Phe Ala Thr Leu Ala Thr Ser Thr Glu Leu Lys His Asp Leu 115 120 125

Thr Leu Ile Ala Tyr Glu Cys Glu Glu Val Ala Asp His Leu Asn Gly 130 135 140

Leu Gly His Ile Arg Asp Glu His Pro Glu Trp Leu Ala Ala Asp Leu 145 150 155 160

PCT/IB00/00923 WO 01/00843

170

Ala Leu Leu Gly Glu Pro Thr Gly Gly Trp Ile Glu Ala Gly Cys Gln

Gly Asn Leu Arg Ile Lys Val Thr Ala His Gly Val Arg Ala His Ser 180 185 Ala Arg Ser Trp Leu Gly Asp Asn Ala Met His Lys Leu Ser Pro Ile 200 Ile Ser Lys Val Ala Ala Tyr Lys Ala Ala Glu Val Asn Ile Asp Gly Leu Thr Tyr Arg Glu Gly Leu Asn Ile Val Phe Cys Glu Ser Gly Val Ala Asn Asn Val Ile Pro Asp Leu Ala Trp Met Asn Leu Asn Phe Arg Phe Ala Pro Asn Arg Asp Leu Asn Glu Ala Ile Glu His Val Val Glu Thr Leu Glu Leu Asp Gly Gln Asp Gly Ile Glu Trp Ala Val Glu Asp Gly Ala Gly Gly Ala Leu Pro Gly Leu Gly Gln Gln Val Thr Ser Gly Leu Ile Asp Ala Val Gly Arg Glu Lys Ile Arg Ala Lys Phe Gly Trp 315 310 Thr Asp Val Ser Arg Phe Ser Ala Met Gly Ile Pro Ala Leu Asn Phe 325 330 Gly Ala Gly Asp Pro Ser Phe Ala His Lys Arg Asp Glu Gln Cys Pro 345 Val Glu Gln Ile Thr Asp Val Ala Ala Ile Leu Lys Gln Tyr Leu Ser 360 Glu <210> 33 <211> 1059 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(1036) <223> RXA00044 <400> 33 attacctcag ccttccaagc tgatgatgca ttacttaaaa actgcagaca cttgaaaaac 60 ttctcacccg cactcgttcc ctcaacccac aaggagcacc atg gct tcc gca act Met Ala Ser Ala Thr tte ace gge gtg ate cea ece gta atg ace cea ete cae gee gae gge

DURDOND -WA 0100012A2 1 -

163

Phe	Thr	Gly	/ Val	. Ile		Pro	Val	. Met	Thr 15		Leu	His	Ala	Asp 20	Gly	
agt Ser	gtg Val	gat Asp	gta Val 25	. Glu	ago Ser	cto Lev	cgc Arg	aag Lys 30	Leu	gtt Val	gac Asp	cac His	cto Leu 35	Ile	aat Asn	211
ggt Gly	ggc Gly	gtc Val 40	Asp	gga Gly	ctt Leu	tto Phe	gca Ala 45	Leu	ggc	tcc Ser	tca Ser	ggc Gly 50	Glu	gcg Ala	gca Ala	259
ttc Phe	ctc Leu 55	Thr	cgc Arg	gcc Ala	cag Gln	cgc Arg 60	Lys	ctc Leu	gca Ala	ctg Leu	acc Thr 65	Thr	ato	ato	gag Glu	307
cac His 70	acc Thr	gca Ala	ggc Gly	cgc Arg	gtt Val 75	Pro	gta Val	act Thr	gct Ala	ggt Gly 80	Val	att Ile	gaa Glu	acc Thr	acc Thr 85	355
act Thr	gct Ala	cgc Arg	gtg Val	att Ile 90	gag Glu	ctc Leu	gtg Val	gaa Glu	gat Asp 95	Ala	ctg Leu	gag Glu	gct Ala	ggt Gly 100	gcc Ala	403
gaa Glu	Gly	ctc Leu	gtt Val 105	gcc Ala	act Thr	gca Ala	cct Pro	ttc Phe 110	tac Tyr	acc Thr	cgc Arg	acc Thr	cac His 115	gat Asp	gtg Val	451
gaa Glu	att Ile	gaa Glu 120	gaa Glu	cac His	ttc Phe	cgc Arg	aag Lys 125	atc Ile	cac His	gcc Ala	gcc Ala	gct Ala 130	cca Pro	gag Glu	ctt Leu	499
cca Pro	ctg Leu 135	ttt Phe	gcc Ala	tac Tyr	aac Asn	atc Ile 140	cca Pro	gtg Val	tcg Ser	gtg Val	cac His 145	tcc Ser	aac Asn	ctc Leu	aac Asn	547
cca Pro 150	gtc Val	atg Met	ctt Leu	ttg Leu	acg Thr 155	ctg Leu	gcc Ala	aag Lys	gat Asp	ggc Gly 160	gtt Val	ctt Leu	gca Ala	ggc Gly	acc Thr 165	59.5
aag Lys	gat Asp	tcc Ser	Ser	ggc Gly 170	Asn	gat Asp	Gly	gca Ala	Ile	Arg	tca Ser	ctg Leu	atc Ile	gaa Glu 180	Ala	643
cgt Arg	gat Asp	gat Asp	gct Ala 185	gga Gly	ctc Leu	act Thr	gag Glu	cag Gln 190	ttc Phe	aag Lys	atc Ile	ctc Leu	acc Thr 195	ggc Gly	agc Ser	691
gaa Glu	acc Thr	acc Thr 200	gtt Val	gat Asp	ttc Phe	gcc Ala	tac Tyr 205	ctt Leu	gcg Ala	ggt Gly	gcc Ala	gat Asp 210	gga Gly	gtt Val	gtc Val	739
cca Pro	ggc Gly 215	ctg Leu	ggc Gly	aat Asn	gtt Val	gat Asp 220	cct Pro	gca Ala	gca Ala	tac Tyr	gca Ala 225	gct Ala	tta Leu	gca Ala	aaa Lys	787
ctc Leu 230	tgc Cys	ctc Leu	gat Asp	gga Gly	aag Lys 235	tgg Trp	gca Ala	gaa Glu	gct Ala	gct Ala 240	gct Ala	ttg Leu	cag Gln	aag Lys	cgc Arg 245	835
atc [le	aac Asn	cac His	ctc	ttc Phe	cac His	atc	gtc Val	ttc	gtg Val	gga	gac	acc	tcc	cat	atg Mot	883

250 255 260

tcc gga tcc agc gct ggt ttg ggc ggt ttc aag aca gca ctc gca cac 931 Ser Gly Ser Ser Ala Gly Leu Gly Gly Phe Lys Thr Ala Leu Ala His 265 270 275

ctt ggc att att gaa tcc aat gcg atg gca gtt cct cac cag agc ctc 979 Leu Gly Ile Ile Glu Ser Asn Ala Met Ala Val Pro His Gln Ser Leu 280 285 290

agc gac gaa gaa act gct cgc att cac gcc att gtt gat gaa ttc ctg 1027

Ser Asp Glu Glu Thr Ala Arg Ile His Ala Ile Val Asp Glu Phe Leu 295 300 305

tac acc gct taaggcccac acctcatgac tga 1059 Tyr Thr Ala 310

<210> 34

<211> 312

<212> PRT

<213> Corynebacterium glutamicum

<400> 34

Met Ala Ser Ala Thr Phe Thr Gly Val Ile Pro Pro Val Met Thr Pro 1 5 10 15

Leu His Ala Asp Gly Ser Val Asp Val Glu Ser Leu Arg Lys Leu Val 20 25 30

Asp His Leu Ile Asn Gly Gly Val Asp Gly Leu Phe Ala Leu Gly Ser 35 40 45

Ser Gly Glu Ala Ala Phe Leu Thr Arg Ala Gln Arg Lys Leu Ala Leu 50 55 60

Thr Thr Ile Ile Glu His Thr Ala Gly Arg Val Pro Val Thr Ala Gly 65 70 75 80

Val Ile Glu Thr Thr Ala Arg Val Ile Glu Leu Val Glu Asp Ala 85 90 95

Leu Glu Ala Gly Ala Glu Gly Leu Val Ala Thr Ala Pro Phe Tyr Thr
100 105 110

Arg Thr His Asp Val Glu Ile Glu Glu His Phe Arg Lys Ile His Ala 115 120 125

Ala Ala Pro Glu Leu Pro Leu Phe Ala Tyr Asn Ile Pro Val Ser Val 130 135 140

His Ser Asn Leu Asn Pro Val Met Leu Leu Thr Leu Ala Lys Asp Gly 145 150 155 160

Val Leu Ala Gly Thr Lys Asp Ser Ser Gly Asn Asp Gly Ala Ile Arg 165 170 175

Ser Leu Ile Glu Ala Arg Asp Asp Ala Gly Leu Thr Glu Gln Phe Lys

			180					185					190			
Ile	Leu	Thr 195	Gly	Ser	Glu	Thr	Thr 200		Asp	Phe	Ala	туr 205		Ala	Gly	
Ala	Asp 210	Gly	Val	Val	Pro	Gly 215	Leu	Gly	Asn	Val	Asp 220		Ala	Ala	Tyr	
Ala 225	Ala	Leu	Ala	Lys	Leu 230	Cys	Leu	Asp	Gly	Lys 235		Ala	Glu	Ala	Ala 240	
Ala	Leu	Gln	Lys	Arg 245	Ile	Asn	His	Leu	Phe 250		Ile	Val	Phe	Val 255	Gly	
Asp	Thr	Ser	His 260	Met	Ser	Gly	Ser	Ser 265	Ala	Gly	Leu	Gly	Gly 270	Phe	Lys	
Thr	Ala	Leu 275	Ala	His	Leu	Gly	Ile 280	Ile	Glu	Ser	Asn	Ala 285	Met	Ala	Val	
	His 290	Gln	Ser	Leu	Ser	Asp 295	Glu	Glu	Thr	Ala	Arg 300	Ile	His	Ala	Ile	
Val 305	Asp	Glu	Phe	Leu	Туг 310	Thr	Ala						·			
<211 <212 <213 <220 <221 <222 <223	> DN > Co > > CD > (1 > RX	NA Pryne PS 01).	. (84		ım gl	.utar	micur	n								
<400: aacg			aggt	atgg	na ta	tcag	gcaco	c tto	etgaa	ecgg	gtad	gtct	cag a	actg	gtgggc	60
gttt	gaaa	aa c	tctt	.cgcc	c ca	cgaa	aato	g aag	gago	ata	atg Met 1	gga Gly	atc Ile	aag Lys	gtt Val 5	115
ggc (Gly 1	gtt Val	ctc Leu	gga Gly	gcc Ala 10	aaa Lys	ggc Gly	cgt Arg	gtt Val	ggt Gly 15	caa Gln	act Thr	att Ile	gtg Val	gca Ala 20	gca Ala	163
gtc a Val 1	aat Asn	gag Glu	tcc Ser 25	gac Asp	gat Asp	ctg Leu	gag Glu	ctt Leu 30	gtt Val	gca Ala	gag Glu	atc Ile	ggc Gly 35	gtc Val	gac Asp	211
yat q Asp <i>H</i>	gat Asp	ttg Leu 40	agc Ser	ctt Leu	ctg Leu	gta Val	gac Asp 45	aac Asn	ggc Gly	gct Ala	gaa Glu	gtt Val 50	gtc Val	gtt Val	gac Asp	259
itc a Phe 1	acc Thr '	act Thr	cct Pro	aac Asn	gct Ala	gtg Val 60	atg Met	ggc Gly	aac Asn	ctg Leu	gag Glu 65	ttc Phe	tgc Cys	atc Ile	aac Asn	307

aac ggc att tct gcg gtt gtt gga acc acg ggc ttc gat gct cgt 355

```
Asn Gly Ile Ser Ala Val Val Gly Thr Thr Gly Phe Asp Asp Ala Arg
                                          80
                                                                   403
ttg gag cag gtt cgc gac tgg ctt gaa gga aaa gac aat gtc ggt gtt
Leu Glu Gln Val Arg Asp Trp Leu Glu Gly Lys Asp Asn Val Gly Val
                 90
                                      95
ctg atc gca cct aac ttt gct atc tct gcg gtg ttg acc atg gtc ttt
                                                                   451
Leu Ile Ala Pro Asn Phe Ala Ile Ser Ala Val Leu Thr Met Val Phe
                                 110
            105
tcc aag cag gct gcc cgc ttc ttc gaa tca gct gaa gtt att gag ctg
                                                                    499
Ser Lys Gln Ala Ala Arg Phe Phe Glu Ser Ala Glu Val Ile Glu Leu
                                                 130
                             125
cac cac ccc aac aag ctg gat gca cct tca ggc acc gcg atc cac act
                                                                    547
His His Pro Asn Lys Leu Asp Ala Pro Ser Gly Thr Ala Ile His Thr
                         140
gct cag ggc att gct gcg gca cgc aaa gaa gca ggc atg gac gca cag
                                                                    595
Ala Gln Gly Ile Ala Ala Ala Arg Lys Glu Ala Gly Met Asp Ala Gln
                                         160
                    155
cca gat gcg acc gag cag gca ctt gag ggt tcc cgt ggc gca agc gta
                                                                    643
Pro Asp Ala Thr Glu Gln Ala Leu Glu Gly Ser Arg Gly Ala Ser Val
                170
                                     175
                                                                    691
gat gga atc ccg gtt cat gca gtc cgc atg tcc ggc atg gtt gct cac
Asp Gly Ile Pro Val His Ala Val Arg Met Ser Gly Met Val Ala His
                                 190
                                                                    739
gag caa gtt atc ttt ggc acc cag ggt cag acc ttg acc atc aag cag
Glu Gln Val Ile Phe Gly Thr Gln Gly Gln Thr Leu Thr Ile Lys Gln
                                                 210
                             205
        200
gac tcc tat gat cgc aac tca ttt gca cca ggt gtc ttg gtg ggt gtg
                                                                    787
Asp Ser Tyr Asp Arg Asn Ser Phe Ala Pro Gly Val Leu Val Gly Val
                         220
    215
cgc aac att gca cag cac cca ggc cta gtc gta gga ctt gag cat tac
                                                                    835
Arg Asn Ile Ala Gln His Pro Gly Leu Val Val Gly Leu Glu His Tyr
                                                              245
                     235
230
                                                                    867
cta ggc ctg taaaggctca tttcagcagc ggg
Leu Gly Leu
```

<210> 36

<211> 248

<212> PRT

<213> Corynebacterium glutamicum

<400> 36

Met Gly Ile Lys Val Gly Val Leu Gly Ala Lys Gly Arg Val Gly Gln
1 5 10 15

Thr Ile Val Ala Ala Val Asn Glu Ser Asp Asp Leu Glu Leu Val Ala 20 25 30

Glu Ile Gly Val Asp Asp Leu Ser Leu Leu Val Asp Asn Gly Ala

35 40 45
Glu Val Val Asp Phe Thr Thr Pro Asn Ala Val Met (

Glu Val Val Val Asp Phe Thr Thr Pro Asn Ala Val Met Gly Asn Leu 50 60

Glu Phe Cys Ile Asn Asn Gly Ile Ser Ala Val Val Gly Thr Thr Gly 65 70 75 80

Phe Asp Asp Ala Arg Leu Glu Gln Val Arg Asp Trp Leu Glu Gly Lys
85 90 95

Asp Asn Val Gly Val Leu Ile Ala Pro Asn Phe Ala Ile Ser Ala Val 100 105 110

Leu Thr Met Val Phe Ser Lys Gln Ala Ala Arg Phe Phe Glu Ser Ala 115 120 125

Glu Val Ile Glu Leu His His Pro Asn Lys Leu Asp Ala Pro Ser Gly 130 135 140

Thr Ala Ile His Thr Ala Gln Gly Ile Ala Ala Ala Arg Lys Glu Ala 145 150 155 160

Gly Met Asp Ala Gln Pro Asp Ala Thr Glu Gln Ala Leu Glu Gly Ser 165 170 175

Arg Gly Ala Ser Val Asp Gly Ile Pro Val His Ala Val Arg Met Ser 180 185 190

Gly Met Val Ala His Glu Gln Val Ile Phe Gly Thr Gln Gly Gln Thr 195 200 205

Leu Thr Ile Lys Gln Asp Ser Tyr Asp Arg Asn Ser Phe Ala Pro Gly 210 215 220

Val Leu Val Gly Val Arg Asn Ile Ala Gln His Pro Gly Leu Val Val 225 230 235 240

Gly Leu Glu His Tyr Leu Gly Leu 245

<210> 37

<211> 873

<212> DNA

<213> Corynebacterium glutamicum

<220>

<221> CDS

<222> (101)..(850)

<223> RXA00864

<400> 37

acagcaccca ggcctagtcg taggacttga gcattaccta ggcctgtaaa ggctcatttc 60

agcagcgggt ggaattttt aaaaggagcg tttaaaggct gtg gcc gaa caa gtt 115 Val Ala Glu Gln Val 1 5

aaa ttg agc gtg gag ttg ata gcg tgc agt tct ttt act cca ccc gct 163 Lys Leu Ser Val Glu Leu Ile Ala Cys Ser Ser Phe Thr Pro Pro Ala

				10					15					20		
			tgg Trp 25													211
			cgt Arg													259
			aat Asn													307
			ctt Leu													355
			gcg Ala													403
			tct Ser 105													451
			ctc Leu													499
			gat Asp													547
			aaa Lys													595
			caa Gln													643
aga Arg	atc Ile	gtg Val	gtg Val 185	tct Ser	gga Gly	aac Asn	ttc Phe	cgc Arg 190	acc Thr	tgg Trp	agg Arg	cat His	ttc Phe 195	att Ile	ggc Gly	691
			agt Ser													739
gaa Glu	tgt Cys 215	tta Leu	aga Arg	aag Lys	ctg Leu	cag Gln 220	gta Val	gca Ala	gcg Ala	cca Pro	act Thr 225	gtt Val	ttc Phe	ggt Gly	gat Asp	787
			gaa Glu													835
			gac Asp			cgca	aag	ctca	cacc	ca c	ga					873

```
<210> 38
```

<212> PRT

<213> Corynebacterium glutamicum

<400> 38

Val Ala Glu Gln Val Lys Leu Ser Val Glu Leu Ile Ala Cys Ser Ser 1 5 10 15

Phe Thr Pro Pro Ala Asp Val Glu Trp Ser Thr Asp Val Glu Gly Ala
20 25 30

Glu Ala Leu Val Glu Phe Ala Gly Arg Ala Cys Tyr Glu Thr Phe Asp $35 \hspace{1cm} 40 \hspace{1cm} 45$

Lys Pro Asn Pro Arg Thr Ala Ser Asn Ala Ala Tyr Leu Arg His Ile 50 55 60

Met Glu Val Gly His Thr Ala Leu Leu Glu His Ala Asn Ala Thr Met 65 70 75 80

Tyr Ile Arg Gly Ile Ser Arg Ser Ala Thr His Glu Leu Val Arg His
85 90 95

Arg His Phe Ser Phe Ser Gln Leu Ser Gln Arg Phe Val His Ser Gly 100 105 110

Glu Ser Glu Val Val Pro Thr Leu Ile Asp Glu Asp Pro Gln Leu 115 120 125

Arg Glu Leu Phe Met His Ala Met Asp Glu Ser Arg Phe Ala Phe Asn 130 135 140

Glu Leu Leu Asn Ala Leu Glu Glu Lys Leu Gly Asp Glu Pro Asn Ala 145 150 155 160

Leu Leu Arg Lys Lys Gln Ala Arg Gln Ala Ala Arg Ala Val Leu Pro 165 170 175

Asn Ala Thr Glu Ser Arg Ile Val Val Ser Gly Asn Phe Arg Thr Trp 180 185 190

Arg His Phe Ile Gly Met Arg Ala Ser Glu His Ala Asp Val Glu Ile 195 200 205

Arg Glu Val Ala Val Glu Cys Leu Arg Lys Leu Gln Val Ala Ala Pro 210 215 220

Thr Val Phe Gly Asp Phe Glu Ile Glu Thr Leu Ala Asp Gly Ser Gln 225 230 235 240

Met Ala Thr Ser Pro Tyr Val Met Asp Phe 245 250

<211> 250

<210> 39

<211> 608

<212> DNA

<213> Corynebacterium glutamicum

```
<220>
<221> CDS
<222> (69)..(608)
<223> RXA02843
<400> 39
cccattgcgc ggaggtcgca ccccttccga cttgaactga taggccgata gaaattattc 60
tggacgtcatg act act gct tcc gca acc gga att gca aca ctg acc tcc
                                                                   110
        Met Thr Thr Ala Ser Ala Thr Gly Ile Ala Thr Leu Thr Ser
                                                                   158
acc ggc gac gtc ctg gac gtg tgg tat cca gaa atc ggg tcc acc gac
Thr Gly Asp Val Leu Asp Val Trp Tyr Pro Glu Ile Gly Ser Thr Asp
                                                                   206
cag tcc gcg ctc aca cct cta gaa ggc gtc gat gaa gat cga aac gtc
Gln Ser Ala Leu Thr Pro Leu Glu Gly Val Asp Glu Asp Arg Asn Val
                 35
                                                                   254
acc cgc aaa atc gtg acg aca act atc gac acc gac gca gcc ccc acc
Thr Arg Lys Ile Val Thr Thr Ile Asp Thr Asp Ala Ala Pro Thr
                                 55
gac acc tac gat gca tgg ctg cgc ctt cac ctc ctc tcc cac cgc gtt
                                                                   302
Asp Thr Tyr Asp Ala Trp Leu Arg Leu His Leu Leu Ser His Arg Val
                                                                   350
ttc cgc cct cac acc atc aac cta gac ggc att ttc ggc ctc ctc aac
Phe Arg Pro His Thr Ile Asn Leu Asp Gly Ile Phe Gly Leu Leu Asn
                         85
                                                                   398
aat gtc gtg tgg acc aac ttc gga ccg tgc gca gtt gac ggt ttc gca
Asn Val Val Trp Thr Asn Phe Gly Pro Cys Ala Val Asp Gly Phe Ala
                    100
 95
ctc acc cgc gcg cgc ctg tca cgc cga ggc caa gtt acg gtt tat agc
                                                                   446
Leu Thr Arg Ala Arg Leu Ser Arg Arg Gly Gln Val Thr Val Tyr Ser .
                115
                                    120
                                                                   494
qtc qac aag ttc cca cgc atg gtc gac tat gtg gtt ccc tcg ggc gtg
Val Asp Lys Phe Pro Arg Met Val Asp Tyr Val Val Pro Ser Gly Val
            130
cgc atc ggt gac gcc gac cgc gtc cga ctt ggc gcg tac ctg gca gat
                                                                   542
Arg Ile Gly Asp Ala Asp Arg Val Arg Leu Gly Ala Tyr Leu Ala Asp
        145
                            150
ggc acc acc gtg atg cat gag ggc ttc gtg aac ttc aac gct ggc acg
                                                                   590
Gly Thr Thr Val Met His Glu Gly Phe Val Asn Phe Asn Ala Gly Thr
    160
                        165
                                                                   608
ctc ggc gct tcc atg gtt
Leu Gly Ala Ser Met Val
                    180
175
```

<211> 180 <212> PRT

<210> 40

<213> Corynebacterium glutamicum

<400> 40

Met Thr Thr Ala Ser Ala Thr Gly Ile Ala Thr Leu Thr Ser Thr Gly
1 5 10 15

Asp Val Leu Asp Val Trp Tyr Pro Glu Ile Gly Ser Thr Asp Gln Ser 20 25 30

Ala Leu Thr Pro Leu Glu Gly Val Asp Glu Asp Arg Asn Val Thr Arg 35 40 45

Lys Ile Val Thr Thr Thr Ile Asp Thr Asp Ala Ala Pro Thr Asp Thr 50 55 60

Tyr Asp Ala Trp Leu Arg Leu His Leu Leu Ser His Arg Val Phe Arg 65 70 75 80

Pro His Thr Ile Asn Leu Asp Gly Ile Phe Gly Leu Leu Asn Asn Val 85 90 95

Val Trp Thr Asn Phe Gly Pro Cys Ala Val Asp Gly Phe Ala Leu Thr
100 105 110

Arg Ala Arg Leu Ser Arg Arg Gly Gln Val Thr Val Tyr Ser Val Asp 115 120 125

Lys Phe Pro Arg Met Val Asp Tyr Val Val Pro Ser Gly Val Arg Ile 130 135 140

Gly Asp Ala Asp Arg Val Arg Leu Gly Ala Tyr Leu Ala Asp Gly Thr 145 150 155 160

Thr Val Met His Glu Gly Phe Val Asn Phe Asn Ala Gly Thr Leu Gly 165 170 175

Ala Ser Met Val 180

<210> 41

<211> 1143

<212> DNA

<213> Corynebacterium glutamicum

<220>

<221> CDS

<222> (101)..(1120)

<223> RXN00355

<400> 41

aatagatcag cgcatccgtg gtggaaccaa aaggctcaac aatacgaaac gttcgctttc 60

ggtcctgatg aaagagatgt ccctgaatca tcatctaagt atg cat ctc ggt aag 115

Met His Leu Gly Lys

1 5

ctc gac cag gac agt gcc acc aca att ttg gag gat tac aag aac atg 163 Leu Asp Gln Asp Ser Ala Thr Thr Ile Leu Glu Asp Tyr Lys Asn Met 10 15 20

acc Thr	aac Asn	atc Ile	cgc Arg 25	gta Val	gct Ala	atc Ile	gtg Val	ggc Gly 30	tac Tyr	gga Gly	aac Asn	ctg Leu	gga Gly 35	cgc Arg	agc Ser	211
gtc Val	gaa Glu	aag Lys 40	ctt Leu	att Ile	gcc Ala	aag Lys	cag Gln 45	ccc Pro	gac Asp	atg Met	gac Asp	ctt Leu 50	gta Val	gga Gly	atc Ile	259
ttc Phe	tcg Ser 55	cgc Arg	cgg Arg	gcc Ala	acc Thr	ctc Leu 60	gac Asp	aca Thr	aag Lys	acg Thr	cca Pro 65	gtc Val	ttt Phe	gat Asp	gtc Val	307
gcc Ala 70	gac Asp	gtg Val	gac Asp	aag Lys	cac His 75	gcc Ala	gac Asp	gac Asp	gtg Val	gac Asp 80	gtg Val	ctg Leu	ttc Phe	ctg Leu	tgc Cys 85	355
atg Met	ggc Gly	tcc Ser	gcc Ala	acc Thr 90	gac Asp	atc Ile	cct Pro	gag Glu	cag Gln 95	gca Ala	cca Pro	aag Lys	ttc Phe	gcg Ala 100	cag Gln	403
	gcc Ala															451
cac His	cgc Arg	cag Gln 120	gtc Val	atg Met	aac Asn	gaa Glu	gcc Ala 125	gcc Ala	acc Thr	gca Ala	gcc Ala	ggc Gly 130	aac Asn	gtt Val	gca Ala	499
ctg Leu	gtc Val 135	tct Ser	acc Thr	ggc Gly	tgg Trp	gat Asp 140	cca Pro	gga Gly	atg Met	ttc Phe	tcc Ser 145	atc Ile	aac Asn	cgc Arg	gtc Val	547
tac Tyr 150	gca Ala	gcg Ala	gca Ala	gtc Val	tta Leu 155	gcc Ala	gag Glu	cac His	cag Gln	cag Gln 160	cac His	acc Thr	ttc Phe	tgg Trp	ggc Gly 165	595
cca Pro	ggt Gly	ttg Leu	tca Ser	cag Gln 170	ggc Gly	cac His	tcc Ser	gat Asp	gct Ala 175	ttg Leu	cga Arg	cgc Arg	atc Ile	cct Pro 180	ggc Gly	643
gtt Val	caa Gln	aag Lys	gca Ala 185	gtc Val	cag Gln	tac Tyr	acc Thr	ctc Leu 190	cca Pro	tcc Ser	gaa Glu	gac Asp	gcc Ala 195	ctg Leu	gaa Glu	691
aag Lys	gcc Ala	cgc Arg 200	cgc Arg	ggc	gaa Glu	gcc Ala	ggc Gly 205	gac Asp	ctt Leu	acc Thr	gga Gly	aag Lys 210	caa Gln	acc Thr	cac His	739
	cgc Arg 215															787
gaa Glu 230	aac Asn	gac Asp	atc Ile	cgc Arg	acc Thr 235	atg Met	cct Pro	gat Asp	tac Tyr	ttc Phe 240	Val	ggc	tac Tyr	gaa Glu	gtc Val 245	835
gaa Glu	gtc Val	aac Asn	ttc Phe	atc Ile 250	gac Asp	gaa Glu	gca Ala	acc Thr	ttc Phe 255	Asp	tcc Ser	gag Glu	cac His	acc Thr 260	Gly	883
atg	сса	cac	ggt	ggc	cac	gtg	att	acc	acc	ggc	gac	acc	ggt	ggc	ttc	931

Met Pro His Gly Gly His Val Ile Thr Thr Gly Asp Thr Gly Gly Phe 265 270 275

aac cac acc gtg gaa tac atc ctc aag ctg gac cga aac cca gat ttc 979
Asn His Thr Val Glu Tyr Ile Leu Lys Leu Asp Arg Asn Pro Asp Phe
280
285

acc gct tcc tca cag atc gct ttc ggt cgc gca gct cac cgc atg aag 1027

Thr Ala Ser Ser Gln Ile Ala Phe Gly Arg Ala Ala His Arg Met Lys 295 300 305

cag cag ggc caa agc gga gct ttc acc gtc ctc gaa gtt gct cca tac 1075

Gln Gln Gly Gln Ser Gly Ala Phe Thr Val Leu Glu Val Ala Pro Tyr 310 315 320 325

ctg ctc tcc cca gag aac ttg gac gat ctg atc gca cgc gac gtc 1120

Leu Leu Ser Pro Glu Asn Leu Asp Asp Leu Ile Ala Arg Asp Val 330 335 340

taatttagct cgaggggcaa gga 1143

<210> 42

<211> 340

<212> PRT

<213> Corynebacterium glutamicum

<400> 42

Met His Leu Gly Lys Leu Asp Gln Asp Ser Ala Thr Thr Ile Leu Glu 1 5 10 15

Asp Tyr Lys Asn Met Thr Asn Ile Arg Val Ala Ile Val Gly Tyr Gly
20 25 30

Asn Leu Gly Arg Ser Val Glu Lys Leu Ile Ala Lys Gln Pro Asp Met 35 40 45

Asp Leu Val Gly Ile Phe Ser Arg Arg Ala Thr Leu Asp Thr Lys Thr 50 55 60

Pro Val Phe Asp Val Ala Asp Val Asp Lys His Ala Asp Asp Val Asp 65 70 75 80

Val Leu Phe Leu Cys Met Gly Ser Ala Thr Asp Ile Pro Glu Gln Ala 85 90 95

Pro Lys Phe Ala Gln Phe Ala Cys Thr Val Asp Thr Tyr Asp Asn His
100 105 110

Arg Asp Ile Pro Arg His Arg Gln Val Met Asn Glu Ala Ala Thr Ala 115 120 125

Ala Gly Asn Val Ala Leu Val Ser Thr Gly Trp Asp Pro Gly Met Phe 130 135 140

Ser Ile Asn Arg Val Tyr Ala Ala Ala Val Leu Ala Glu His Gln Gln 145 150 155 160

His	Thr	Phe	Trp	Gly 165	Pro	Gly	Leu	Ser	Gln 170	Gly	His	Ser	Asp	Ala 175	Leu	
Arg	Arg	Ile	Pro 180	Gly	Val	Gln	Lys	Ala 185	Val	Gln	Tyr	Thr	Leu 190	Pro	Ser	
Glu	Asp	Ala 195	Leu	Glu	Lys	Ala	Arg 200	Arg	Gly	Glu	Ala	Gly 205	Asp	Leu	Thr	
Gly	Lys 210	Gln	Thr	His	Lys	Arg 215	Gln	Cys	Phe	Val	Val 220	Ala	Asp	Ala	Ala	
Asp 225	His	Glu	Arg	Ile	Glu 230	Asn	Asp	Ile	Arg	Thr 235	Met	Pro	qaA	Tyr	Phe 240	
Val	Gly	туr	Glu	Val 245	Glu	Val	Asn	Phe	11e 250	Asp	Glu	Ala	Thr	Phe 255	Asp	
Ser	Glu	His	Thr 260	Gly	Met	Pro	His	Gly 265	Gly	His	Val	Ile	Thr 270	Thr	Gly	
Asp	Thr	Gly 275	Gly	Phe	Asn	His	Thr 280	Val	Glu	Туr	Ile	Leu 285	Lys	Leu	Asp	
Arg	Asn 290	Pro	Asp	Phe	Thr	Ala 295	Ser	Ser	Gln	Ile	Ala 300	Phe	Gly	Arg	Ala	
Ala 305	His	Arg	Met	Lys	Gln 310	Gln	Gly	Gln	Ser	Gly 315	Ala	Phe	Thr	Val	Leu 320	
Glu	Val	Ala	Pro	Tyr 325	Leu	Leu	Ser	Pro	Glu 330	Asn	Leu	Asp	Asp	Leu 335	Ile	
Ala	Arg	Asp	Val 340													
<21	0> 4: 1> 9:	58														
	2> Di 3> C		ebac	teri	um g	luta	micu	m								
<22	1> C 2> (DS 101) RXA0		58)												
	0> 4 agat		cgca	tccg	tg g	tgga	acca	a aa	ggct	caac	aat	acga	aac	gttc	gctttc	60
ggt	cctg	atg	aaag	agat	gt c	cctg	aatc	a tc	atct	aagt			ctc Leu			115
					Ala					gag Glu						163
acc Thr	aac Asn	atc	cgc Arg	gta Val	gct Ala	atc	gtg Val	ggc	tac Tyr	gga Gly	aac Asn	ctg Leu	gga Gly	cgc Arg	agc Ser	211

			25					30	,				35	5		
gtc Val	gaa Glu	aag Lys 40	Leu	att	gcc Ala	aag Lys	cag Gln 45	Pro	gac Asp	atg Met	gac Asp	ctt Leu 50	Val	gga Gly	atc	259
		Arg									cca Pro 65					307
gcc Ala 70	gac Asp	gtg Val	gac Asp	aag Lys	cac His 75	gcc Ala	gac Asp	gac Asp	gtg Val	gac Asp 80	gtg Val	ctg Leu	ttc Phe	ctg Leu	tgc Cys 85	355
atg Met	ggc Gly	tcc Ser	gcc Ala	acc Thr 90	Asp	atc Ile	cct Pro	gag Glu	cag Gln 95	gca Ala	cca Pro	aag Lys	ttc Phe	gcg Ala 100	cag Gln	403
ttc Phe	gcc Ala	tgc Cys	acc Thr 105	gta Val	gac Asp	acc Thr	tac Tyr	gac Asp 110	aac Asn	cac His	cgc Arg	gac Asp	atc Ile 115	cca Pro	cgc Arg	451
cac His	cgc Arg	cag Gln 120	gtc Val	atg Met	aac Asn	gaa Glu	gcc Ala 125	gcc Ala	acc Thr	gca Ala	gcc Ala	ggc Gly 130	aac Asn	gtt Val	gca Ala	499
ctg Leu	gtc Val 135	tct Ser	acc Thr	ggc Gly	tgg Trp	gat Asp 140	cca Pro	gga Gly	atg Met	ttc Phe	tcc Ser 145	atc Ile	aac Asn	cgc Arg	gtc Val	547
tac Tyr 150	gca Ala	gcg Ala	gca Ala	gtc Val	tta Leu 155	gcc Ala	gag Glu	cac His	cag Gln	cag Gln 160	cac His	acc Thr	ttc Phe	tgg Trp	ggc Gly 165	595
cca Pro	ggt Gly	ttg Leu	tca Ser	cag Gln 170	ggc Gly	cac His	tcc Ser	gat Asp	gct Ala 175	ttg Leu	cga Arg	cgc Arg	atc Ile	cct Pro 180	ggc Gly	643
gtt Val	caa Gln	aag Lys	gca Ala 185	gtc Val	cag Gln	tac Tyr	acc Thr	ctc Leu 190	cca Pro	tcc Ser	gaa Glu	gac Asp	gcc Ala 195	ctg Leu	gaa Glu	691
aag Lys	gcc Ala	cgc Arg 200	cgc Arg	ggc Gly	gaa Glu	gcc Ala	ggc Gly 205	gac Asp	ctt Leu	acc Thr	gga Gly	aag Lys 210	caa Gln	acc Thr	cac His	739
aag Lys	cgc Arg 215	caa Gln	tgc Cys	ttc Phe	gtg Val	gtt Val 220	gcc Ala	gac Asp	gcg Ala	gcc Ala	gat Asp 225	cac His	gag Glu	cgc Arg	atc Ile	787
gaa Glu 230	aac Asn	gac Asp	atc Ile	cgc Arg	acc Thr 235	atg Met	cct Pro	gat Asp	tac Tyr	ttc Phe 240	gtt Val	ggc Gly	tac Tyr	gaa Glu	gtc Val 245	835
gaa Glu	gtc Val	aac Asn	ttc Phe	atc Ile 250	gac Asp	gaa Glu	gca Ala	acc Thr	ttc Phe 255	gac Asp	tcc Ser	gag Glu	cac His	acc Thr 260	ggc Gly	883
atg Met	cca Pro	cac His	ggt Gly 265	ggc Gly	cac His	gtg Val	att Ile	acc Thr 270	acc Thr	ggc Gly	gac Asp	acc Thr	ggt Gly 275	ggc Gly	ttc Phe	931

PCT/IB00/00923 WO 01/00843

aac cac acc gtg gaa tac atc ctc aag Asn His Thr Val Glu Tyr Ile Leu Lys 285 280

958

<210> 44 <211> 286 <212> PRT <213> Corynebacterium glutamicum <400> 44 Met His Leu Gly Lys Leu Asp Gln Asp Ser Ala Thr Thr Ile Leu Glu

Asp Tyr Lys Asn Met Thr Asn Ile Arg Val Ala Ile Val Gly Tyr Gly

Asn Leu Gly Arg Ser Val Glu Lys Leu Ile Ala Lys Gln Pro Asp Met

Asp Leu Val Gly Ile Phe Ser Arg Arg Ala Thr Leu Asp Thr Lys Thr

Pro Val Phe Asp Val Ala Asp Val Asp Lys His Ala Asp Asp Val Asp

Val Leu Phe Leu Cys Met Gly Ser Ala Thr Asp Ile Pro Glu Gln Ala

Pro Lys Phe Ala Gln Phe Ala Cys Thr Val Asp Thr Tyr Asp Asn His

Arg Asp Ile Pro Arg His Arg Gln Val Met Asn Glu Ala Ala Thr Ala

Ala Gly Asn Val Ala Leu Val Ser Thr Gly Trp Asp Pro Gly Met Phe

Ser Ile Asn Arg Val Tyr Ala Ala Ala Val Leu Ala Glu His Gln Gln

His Thr Phe Trp Gly Pro Gly Leu Ser Gln Gly His Ser Asp Ala Leu 165

Arg Arg Ile Pro Gly Val Gln Lys Ala Val Gln Tyr Thr Leu Pro Ser 185

Glu Asp Ala Leu Glu Lys Ala Arg Arg Gly Glu Ala Gly Asp Leu Thr 195

Gly Lys Gln Thr His Lys Arg Gln Cys Phe Val Val Ala Asp Ala Ala 220

Asp His Glu Arg Ile Glu Asn Asp Ile Arg Thr Met Pro Asp Tyr Phe 235 225

Val Gly Tyr Glu Val Glu Val Asn Phe Ile Asp Glu Ala Thr Phe Asp 250

Ser Glu His Thr Gly Met Pro His Gly Gly His Val Ile Thr Thr Gly

260 265 270
Asp Thr Gly Gly Phe Asp His Thr yel Cly Tyr Ile Ley Lye

Asp Thr Gly Gly Phe Asn His Thr Val Glu Tyr Ile Leu Lys 275 280 285

<210> 45
<211> 1400
<212> DNA
<213> Corynebacterium glutamicum
<220>
<221> CDS
<222> (1)..(1377)
<223> RXA00972
<400> 45
cct gca cct ggt tgg cgt ttc cgc a
Pro Ala Pro Gly Trp Arg Phe Arg T

cct gca cct ggt tgg cgt ttc cgc acc gga gaa gat gta aca atg gct $$ 48 Pro Ala Pro Gly Trp Arg Phe Arg Thr Gly Glu Asp Val Thr Met Ala $$ 1 $$ 5 $$ 10 $$ 15

aca gtt gaa aat ttc aat gaa ctt ccc gca cac gta tgg cca cgc aat 96
Thr Val Glu Asn Phe Asn Glu Leu Pro Ala His Val Trp Pro Arg Asn
20 25 30

gcc gtg cgc caa gaa gac ggc gtt gtc acc gtc gct ggt gtg cct ctg 144 Ala Val Arg Gln Glu Asp Gly Val Val Thr Val Ala Gly Val Pro Leu 35 40 45

cct gac ctc gct gaa gaa tac gga acc cca ctg ttc gta gtc gac gag 192 Pro Asp Leu Ala Glu Glu Tyr Gly Thr Pro Leu Phe Val Val Asp Glu 50 55 60

gac gat ttc cgt tcc cgc tgt cgc gac atg gct acc gca ttc ggt gga 240 Asp Asp Phe Arg Ser Arg Cys Arg Asp Met Ala Thr Ala Phe Gly Gly 65 70 75 80

cca ggc aat gtg cac tac gca tct aaa gcg ttc ctg acc aag acc att 288
Pro Gly Asn Val His Tyr Ala Ser Lys Ala Phe Leu Thr Lys Thr Ile
85

gca cgt tgg gtt gat gaa gag ggg ctg gca ctg gac att gca tcc atc 336 Ala Arg Trp Val Asp Glu Glu Gly Leu Ala Leu Asp Ile Ala Ser Ile 100 105 110

aac gaa ctg ggc att gcc ctg gcc gct ggt ttc ccc gcc agc cgt atc 384
Asn Glu Leu Gly Ile Ala Leu Ala Ala Gly Phe Pro Ala Ser Arg Ile
115 120 125

acc gcg cac ggc aac aac aaa ggc gta gag ttc ctg cgc gcg ttg gtt 432
Thr Ala His Gly Asn Asn Lys Gly Val Glu Phe Leu Arg Ala Leu Val
130 135 140

caa aac ggt gtg gga cac gtg gtg ctg gac tcc gca cag gaa cta gaa 480 Gln Asn Gly Val Gly His Val Val Leu Asp Ser Ala Gln Glu Leu Glu 145 150 160

ctg ttg gat tac gtt gcc gct ggt gaa ggc aag att cag gac gtg ttg 528 Leu Leu Asp Tyr Val Ala Ala Gly Glu Gly Lys Ile Gln Asp Val Leu 165 170 175

atc cgc g Ile Arg V	ta aag al Lys 180	cca ggc Pro Gly	atc Ile	Glu	gca Ala 185	cac His	acc Thr	cac His	gag Glu	ttc Phe 190	atc Ile	gcc Ala	576
act agc c Thr Ser H 1	ac gaa is Glu 95	gac cag Asp Gln	aag Lys	ttc Phe 200	gga Gly	ttc Phe	tcc Ser	ctg Leu	gca Ala 205	tcc Ser	ggt Gly	tcc Ser	624
gca ttc g Ala Phe G 210	gaa gca Slu Ala	gca aaa Ala Lys	gcc Ala 215	gcc Ala	aac Asn	aac Asn	gca Ala	gaa Glu 220	aac Asn	ctg Leu	aac Asn	ctg Leu	672
gtt ggc c Val Gly L 225	tg cac eu His	tgc cac Cys His 230	gtt Val	ggt Gly	tcc Ser	cag Gln	gtg Val 235	ttc Phe	gac Asp	gcc Ala	gaa Glu	ggc Gly 240	720
ttc aag c Phe Lys L	ctg gca Leu Ala	gca gaa Ala Glu 245	cgc Arg	gtg Val	ttg Leu	ggc Gly 250	ctg Leu	tac Tyr	tca Ser	cag Gln	atc Ile 255	cac His	768
agc gaa c Ser Glu L	etg ggc Leu Gly 260	gtt gcc Val Ala	ctt Leu	cct Pro	gaa Glu 265	ctg Leu	gat Asp	ctc Leu	ggt Gly	ggc Gly 270	gga Gly	tac Tyr	816
ggc att g Gly Ile A 2	gcc tat Ala Tyr 275	acc gca Thr Ala	gct Ala	gaa Glu 280	gaa Glu	cca Pro	ctc Leu	aac Asn	gtc Val 285	gca Ala	gaa Glu	gtt Val	864
gcc tcc g Ala Ser A 290	gac ctg Asp Leu	ctc acc Leu Thr	gca Ala 295	gtc Val	gga Gly	aaa Lys	atg Met	gca Ala 300	gcg Ala	gaa Glu	cta Leu	ggc Gly	912
atc gac g Ile Asp A 305	gca cca Ala Pro	acc gtg Thr Val 310	ctt Leu	gtt Val	gag Glu	ccc Pro	ggc Gly 315	cgc Arg	gct Ala	atc Ile	gca Ala	ggc Gly 320	960
ccc tcc a	acc gtg	acc atc	tac	gaa	gtc	ggc	acc	acc	aaa	gac	gtc	cac	
Pro Ser T	Thr Val	Thr Ile 325	Tyr	Glu	Val	Gly 330	Thr	Thr	Lys	Asp	Val 335	His	
gta gac g 1056	gac gac	aaa acc	cgc	cgt	tac	atc	gcc	gtg	gac	gga	ggc	atg	
Val Asp A	Asp Asp 340	Lys Thr	Arg	Arg	Tyr 345	Ile	Ala	Val	Asp	Gly 350	Gly	Met	
tcc gac a	aac atc	cgc cca	gca	ctc	tac	ggg	tcc	gaa	tac	gac	gcc	cgc	
Ser Asp A	Asn Ile 355	Arg Pro	Ala	Leu 360	Tyr	Gly	Ser	Glu	Туr 365	Asp	Ala	Arg	
gta gta t	tcc cgc	ttc gcc	gaa	gga	gac	cca	gta	agc	acc	cgc	atc	gtg	
1152 Val Val 9 370	Ser Arg	Phe Ala	Glu 375	Gly	Asp	Pro	Val	Ser 380		Arg	Ile	Val	
ggc tcc (cac tgc	gaa tcc	ggc	gat	atc	ctg	atc	aac	gat	gaa	atc	tac	
Gly Ser I 385	His Cys	Glu Ser 390		Asp	Ile	Leu	Ile 395		Asp	Glu	Ile	Tyr 400	

cca tct gac atc acc agc ggc gac ttc ctt gca ctc gca gcc acc ggc 1248

Pro Ser Asp Ile Thr Ser Gly Asp Phe Leu Ala Leu Ala Ala Thr Gly 405 410 415

gca tac tgc tac gcc atg agc tcc cgc tac aac gcc ttc aca cgg ccc 1296

Ala Tyr Cys Tyr Ala Met Ser Ser Arg Tyr Asn Ala Phe Thr Arg Pro 420 425 430

gcc gtc gtg tcc gtc cgc gct ggc agc tcc cgc ctc atg ctg cgc cgc 1344

Ala Val Val Ser Val Arg Ala Gly Ser Ser Arg Leu Met Leu Arg Arg 435 440 445

gaa acg ctc gac gac atc ctc tca cta gag gca taacgctttt cgacgcctga 1397

Glu Thr Leu Asp Asp Ile Leu Ser Leu Glu Ala 450 455

ccc 1400

<210> 46

<211> 459

<212> PRT

<213> Corynebacterium glutamicum

<400> 46

Pro Ala Pro Gly Trp Arg Phe Arg Thr Gly Glu Asp Val Thr Met Ala 1 5 10 15

Thr Val Glu Asn Phe Asn Glu Leu Pro Ala His Val Trp Pro Arg Asn 20 25 30

Ala Val Arg Gln Glu Asp Gly Val Val Thr Val Ala Gly Val Pro Leu 35 40 45

Pro Asp Leu Ala Glu Glu Tyr Gly Thr Pro Leu Phe Val Val Asp Glu 50 55 60

Asp Asp Phe Arg Ser Arg Cys Arg Asp Met Ala Thr Ala Phe Gly Gly 65 70 75 80

Pro Gly Asn Val His Tyr Ala Ser Lys Ala Phe Leu Thr Lys Thr Ile 85 90 95

Ala Arg Trp Val Asp Glu Glu Gly Leu Ala Leu Asp Ile Ala Ser Ile 100 105

Asn Glu Leu Gly Ile Ala Leu Ala Ala Gly Phe Pro Ala Ser Arg Ile 115 120 125

Thr Ala His Gly Asn Asn Lys Gly Val Glu Phe Leu Arg Ala Leu Val 130 135 140

Gln Asn Gly Val Gly His Val Val Leu Asp Ser Ala Gln Glu Leu Glu 145 150 155 160

Leu Leu Asp Tyr Val Ala Ala Gly Glu Gly Lys Ile Gln Asp Val Leu

PCT/IB00/00923 WO 01/00843

170 175 165 Ile Arg Val Lys Pro Gly Ile Glu Ala His Thr His Glu Phe Ile Ala 185 Thr Ser His Glu Asp Gln Lys Phe Gly Phe Ser Leu Ala Ser Gly Ser 200 Ala Phe Glu Ala Ala Lys Ala Ala Asn Asn Ala Glu Asn Leu Asn Leu Val Gly Leu His Cys His Val Gly Ser Gln Val Phe Asp Ala Glu Gly Phe Lys Leu Ala Ala Glu Arg Val Leu Gly Leu Tyr Ser Gln Ile His Ser Glu Leu Gly Val Ala Leu Pro Glu Leu Asp Leu Gly Gly Tyr Gly Ile Ala Tyr Thr Ala Ala Glu Glu Pro Leu Asn Val Ala Glu Val Ala Ser Asp Leu Leu Thr Ala Val Gly Lys Met Ala Ala Glu Leu Gly Ile Asp Ala Pro Thr Val Leu Val Glu Pro Gly Arg Ala Ile Ala Gly Pro Ser Thr Val Thr Ile Tyr Glu Val Gly Thr Thr Lys Asp Val His Val Asp Asp Asp Lys Thr Arg Arg Tyr Ile Ala Val Asp Gly Met 345 Ser Asp Asn Ile Arg Pro Ala Leu Tyr Gly Ser Glu Tyr Asp Ala Arg Val Val Ser Arg Phe Ala Glu Gly Asp Pro Val Ser Thr Arg Ile Val 370 Gly Ser His Cys Glu Ser Gly Asp Ile Leu Ile Asn Asp Glu Ile Tyr 395 Pro Ser Asp Ile Thr Ser Gly Asp Phe Leu Ala Leu Ala Ala Thr Gly 405 Ala Tyr Cys Tyr Ala Met Ser Ser Arg Tyr Asn Ala Phe Thr Arg Pro 425 420 Ala Val Val Ser Val Arg Ala Gly Ser Ser Arg Leu Met Leu Arg Arg 435 440 445 Glu Thr Leu Asp Asp Ile Leu Ser Leu Glu Ala 455

450

DINOCOLD -WO GLOODIANE I -

<210> 47

<211> 2121

<212> DNA

<213> Corynebacterium glutamicum

<220> <221> CDS <222> (101)..(2098) <223> RXA02653 <400> 47 agacagagtg ttagtgcgtg gggcagctct cactttcatc gacatcactc gagtatgctc 60 accggccgta ttcattccaa taacccgcac agggaaacta atg ata ccg aag ccc 115 Met Ile Pro Lys Pro gac gtg acc gac tta tat tta gag gac ctc tta aat gag ggt tcg gaa 163 Asp Val Thr Asp Leu Tyr Leu Glu Asp Leu Leu Asn Glu Gly Ser Glu aag att cgg tcc gcc aag gat ctt tcc gaa ctt agg aca gtt cta aaa Lys Ile Arg Ser Ala Lys Asp Leu Ser Glu Leu Arg Thr Val Leu Lys gag gtt tcc tcc caa att cag gaa cga gct ggg aaa aaa gat gaa gaa 259 Glu Val Ser Ser Gln Ile Gln Glu Arg Ala Gly Lys Lys Asp Glu Glu 45 tgg gga atg ggg gcc act tgg cgg gag ctg tac ccc agc atc gtg gaa 307 Trp Gly Met Gly Ala Thr Trp Arg Glu Leu Tyr Pro Ser Ile Val Glu 60 cgc gct tcc tac gaa ggg cgt gac agc cta atc gga ttt gat cac tta 355 Arg Ala Ser Tyr Glu Gly Arg Asp Ser Leu Ile Gly Phe Asp His Leu gcc cgg gaa atg gaa aga tta gcc ttc ggc cca cca tcc gaa agt ttt Ala Arg Glu Met Glu Arg Leu Ala Phe Gly Pro Pro Ser Glu Ser Phe 95 gaa tac ctc caa gaa ctc gta aaa tcc gga gtg gta gac atc act cac 451 Glu Tyr Leu Gln Glu Leu Val Lys Ser Gly Val Val Asp Ile Thr His 105 110 ctg cat cgt ggc cgg gaa cca ctg aca gat tta gtt cgt gaa ctt gaa 499 Leu His Arg Gly Arg Glu Pro Leu Thr Asp Leu Val Arg Glu Leu Glu 120 125 ata act gtg gtg ata gac gct gtt ctt ccc ccg ccg gga gta gtg cca 547 Ile Thr Val Val Ile Asp Ala Val Leu Pro Pro Pro Gly Val Val Pro 135 ggc aca ttg gtg cac aat ttg gta aaa gag gga tat gcc aga atg cgt 595 Gly Thr Leu Val His Asn Leu Val Lys Glu Gly Tyr Ala Arg Met Arg 150 155 160 cct ggg act cgg ggg tta gat gta gcg gct gac ggc acc gtt caa ggg 643 Pro Gly Thr Arg Gly Leu Asp Val Ala Ala Asp Gly Thr Val Gln Gly 170 caa cga cat ttg gct gca gtc gga cgg atg acg gaa gat gtg gtt ttg Gln Arg His Leu Ala Ala Val Gly Arg Met Thr Glu Asp Val Val Leu 185

ggt Gly	aat Asn	gac Asp 200	aca Thr	ttg Leu	tcg Ser	cga Arg	tca Ser 205	tta Leu	cat His	gac Asp	ata Ile	atc Ile 210	ccg Pro	aag Lys	tgg Trp	739
gct Ala	cgt Arg 215	cga Arg	gtt Val	atc Ile	cgc Arg	gac Asp 220	gcg Ala	agc Ser	acg Thr	tat Tyr	ccc Pro 225	gat Asp	agg Arg	gta Val	cat His	787
ggt Gly 230	act Thr	cca Pro	ccg Pro	ctt Leu	ccg Pro 235	gca Ala	cgg Arg	ttg Leu	gaa Glu	ccc Pro 240	tgg Trp	gcg Ala	gaa Glu	aag Lys	ctc Leu 245	835
act Thr	tca Ser	gat Asp	ccg Pro	gcc Ala 250	aca Thr	tgc Cys	cgc Arg	cac His	ctg Leu 255	att Ile	gaa Glu	gaa Glu	ttc Phe	ggg Gly 260	agt Ser	883
cct Pro	gtg Val	aat Asn	gta Val 265	ctc Leu	cat His	tca Ser	ggt Gly	tct Ser 270	atg Met	cct Pro	cgt Arg	aat Asn	ata Ile 275	aat Asn	gag Glu	931
ttg Leu	gtt Val	gac Asp 280	gcc Ala	ggc Gly	att Ile	cag Gln	atg Met 285	ggg Gly	gtg Val	gat Asp	act Thr	cga Arg 290	ata Ile	ttt Phe	ttt Phe	979
		aaa	gcg	aat	aag	ggt	ctt	acc	ttc	gtt	gat	gcc	gtt	aaa	gac	
1027 Ala		Lys	Ala	Asn	Lys	Gly 300	Leu	Thr	Phe	Val	Asp 305	Ala	Val	Lys	Asp	
		cat	ggt	gta	gat	gta	gcc	agt	gaa	cga	gag	tta	tct	cag	gtg	
1075 Thr 310		His	Gly	Val	Asp 315	Val	Ala	Ser	Glu	Arg 320	Glu	Leu	Ser	Gln	Val 325	
ctt 1123		cgt	gga	gtc	cca	gga	gag	cgg	atc	att	cta	tcc	gca	gct	atc	
		Arg	Gly	Val 330	Pro	Gly	Glu	Arg	Ile 335	Ile	Leu	Ser	Ala	Ala 340	Ile	
		gac	aga	cta	ttg	gca	tta	gcg	atc	gaa	aat	ggc	gtg	atc	atc	
117: Lys	Pro	Asp	Arg 345	Leu	Leu	Ala	Leu	Ala 350		Glu	Asn	Gly	Val 355	Ile	Ile	
		gat	tcg	cgt	gat	gaa	tta	gat	cgc	att	tcg	gct	ttg	gtt	ggt	
1219 Ser		Asp 360		Arg	Asp	Glu	Leu 365	Asp	Arg	Ile	Ser	Ala 370	Leu	Val	Gly	
		gtt	gca	cga	gtt	gcg	cct	aga	gta	gct	cca	gat	cct	gca	gtc	
126' Asp			Ala	Arg	Val	Ala 380		Arg	Val	Ala	Pro 385		Pro	Ala	Val	
		cca	act	aga	ttt	ggt	gag	cgt	gct	gca	gac	tgg	ggt	aat	cgg	
131 Leu 390	Pro	Pro	Thr	Arg	Phe		Glu	Arg	Ala	Ala 400		Trp	Gly	Asn	Arg 405	
ctt 136		gag	gtg	ata	ccc	ggc	gtg	gat	att	gtg	ggt	ctt	cac	gtt	cac	

Leu Thr Glu Val Ile Pro Gly Val Asp Ile Val Gly Leu His Val His 415 ctc cat ggc tat gct gca aaa gac cgt gct ctg gct ctg cag gaa tgt Leu His Gly Tyr Ala Ala Lys Asp Arg Ala Leu Ala Leu Gln Glu Cys 425 430 tgc caa ctc gtc gat tct ctc aga gaa tgc ggg cat tcc cca cag ttt 1459 Cys Gln Leu Val Asp Ser Leu Arg Glu Cys Gly His Ser Pro Gln Phe att gac ctt gga ggg gtg cct atg agc tac att gaa tct gag gaa Ile Asp Leu Gly Gly Gly Val Pro Met Ser Tyr Ile Glu Ser Glu Glu 460 gat tgg atc cgt tat caa tcc gct aaa tct gcg act tca gcc ggg tat Asp Trp Ile Arg Tyr Gln Ser Ala Lys Ser Ala Thr Ser Ala Gly Tyr 480 gcc gaa tcc ttt acg tgg aaa gac gat ccg tta tct aat acg tac ccg Ala Glu Ser Phe Thr Trp Lys Asp Asp Pro Leu Ser Asn Thr Tyr Pro 490 495 ttc tat cag acc cca gtg cgc ggt aat tgg ttg aaa gac gtg ctt tct 1651 Phe Tyr Gln Thr Pro Val Arg Gly Asn Trp Leu Lys Asp Val Leu Ser 505 510 aag ggg gta gct cag atg ctc att gac cgg gga ttg cgg tta cac ata 1699 Lys Gly Val Ala Gln Met Leu Ile Asp Arg Gly Leu Arg Leu His Ile 520 gag cct ggt cga agt tta cta gat ggg tgt ggc gtc act ctt gcc gaa 1747 Glu Pro Gly Arg Ser Leu Leu Asp Gly Cys Gly Val Thr Leu Ala Glu 540 gtt gct ttt gtg aaa acc cga agt gac ggg ttg cct cta gtg gga ctg 1795 Val Ala Phe Val Lys Thr Arg Ser Asp Gly Leu Pro Leu Val Gly Leu 550 gct atg aac cga acg cag tgc cgg act aca tcc gat gat ttt ctc att Ala Met Asn Arg Thr Gln Cys Arg Thr Thr Ser Asp Asp Phe Leu Ile 570 575 gat ccc ctg cat atc act gac ggt gat gta ggc gag gaa atc gaa gca Asp Pro Leu His Ile Thr Asp Gly Asp Val Gly Glu Glu Ile Glu Ala 585 590 tat cta gtg ggt gcc tac tgc atc gaa gat gag ctg att tta cgc cgg 1939 Tyr Leu Val Gly Ala Tyr Cys Ile Glu Asp Glu Leu Ile Leu Arg Arg

600 605 610

cga atc cgc ttc ccg aga gga gtc aaa cca gga gat atc atc gga att 1987

Arg Ile Arg Phe Pro Arg Gly Val Lys Pro Gly Asp Ile Ile Gly Ile 615 620 625

cct aac acc gca gga tac ttc atg cat atc ttg gaa agt gca tcg cac 2035

Pro Asn Thr Ala Gly Tyr Phe Met His Ile Leu Glu Ser Ala Ser His 630 635 640 645

caa atc ccg ttg gcg aaa aat gta gtg tgg ccg gag ggg cag tta gac 2083

Gln Ile Pro Leu Ala Lys Asn Val Val Trp Pro Glu Gly Gln Leu Asp 650 655 660

gat atc gat gcg gat taagacataa ccattcgcta atc 2121

Asp Ile Asp Ala Asp 665

<210> 48

<211> 666

<212> PRT

<213> Corynebacterium glutamicum

<400> 48

Met Ile Pro Lys Pro Asp Val Thr Asp Leu Tyr Leu Glu Asp Leu Leu 1 5 10 15

Asn Glu Gly Ser Glu Lys Ile Arg Ser Ala Lys Asp Leu Ser Glu Leu 20 25 30

Arg Thr Val Leu Lys Glu Val Ser Ser Gln Ile Gln Glu Arg Ala Gly 35 40 45

Lys Lys Asp Glu Glu Trp Gly Met Gly Ala Thr Trp Arg Glu Leu Tyr 50 55 60

Pro Ser Ile Val Glu Arg Ala Ser Tyr Glu Gly Arg Asp Ser Leu Ile 65 70 75 80

Gly Phe Asp His Leu Ala Arg Glu Met Glu Arg Leu Ala Phe Gly Pro

Pro Ser Glu Ser Phe Glu Tyr Leu Gln Glu Leu Val Lys Ser Gly Val

Val Asp Ile Thr His Leu His Arg Gly Arg Glu Pro Leu Thr Asp Leu 115 120 125

Val Arg Glu Leu Glu Ile Thr Val Val Ile Asp Ala Val Leu Pro Pro 130 135 140

Pro Gly Val Val Pro Gly Thr Leu Val His Asn Leu Val Lys Glu Gly 145 150 155 160

Tyr Ala Arg Met Arg Pro Gly Thr Arg Gly Leu Asp Val Ala Ala Asp 165 170 175

Gly Thr Val Gln Gly Gln Arg His Leu Ala Ala Val Gly Arg Met Thr Glu Asp Val Val Leu Gly Asn Asp Thr Leu Ser Arg Ser Leu His Asp Ile Ile Pro Lys Trp Ala Arg Arg Val Ile Arg Asp Ala Ser Thr Tyr 215 Pro Asp Arg Val His Gly Thr Pro Pro Leu Pro Ala Arg Leu Glu Pro 230 235 Trp Ala Glu Lys Leu Thr Ser Asp Pro Ala Thr Cys Arg His Leu Ile 245 250 Glu Glu Phe Gly Ser Pro Val Asn Val Leu His Ser Gly Ser Met Pro Arg Asn Ile Asn Glu Leu Val Asp Ala Gly Ile Gln Met Gly Val Asp Thr Arg Ile Phe Phe Ala Arg Lys Ala Asn Lys Gly Leu Thr Phe Val Asp Ala Val Lys Asp Thr Gly His Gly Val Asp Val Ala Ser Glu Arg Glu Leu Ser Gln Val Leu Asn Arg Gly Val Pro Gly Glu Arg Ile Ile 330 Leu Ser Ala Ala Ile Lys Pro Asp Arg Leu Ala Leu Ala Ile Glu Asn Gly Val Ile Ile Ser Val Asp Ser Arg Asp Glu Leu Asp Arg Ile 360 Ser Ala Leu Val Gly Asp Arg Val Ala Arg Val Ala Pro Arg Val Ala Pro Asp Pro Ala Val Leu Pro Pro Thr Arg Phe Gly Glu Arg Ala Ala Asp Trp Gly Asn Arg Leu Thr Glu Val Ile Pro Gly Val Asp Ile Val 410 Gly Leu His Val His Leu His Gly Tyr Ala Ala Lys Asp Arg Ala Leu 420 Ala Leu Gln Glu Cys Cys Gln Leu Val Asp Ser Leu Arg Glu Cys Gly His Ser Pro Gln Phe Ile Asp Leu Gly Gly Val Pro Met Ser Tyr 455 450 Ile Glu Ser Glu Glu Asp Trp Ile Arg Tyr Gln Ser Ala Lys Ser Ala 470 475 Thr Ser Ala Gly Tyr Ala Glu Ser Phe Thr Trp Lys Asp Asp Pro Leu 485 490

Ser Asn Thr Tyr Pro Phe Tyr Gln Thr Pro Val Arg Gly Asn Trp Leu Lys Asp Val Leu Ser Lys Gly Val Ala Gln Met Leu Ile Asp Arg Gly 515 520 Leu Arg Leu His Ile Glu Pro Gly Arg Ser Leu Leu Asp Gly Cys Gly Val Thr Leu Ala Glu Val Ala Phe Val Lys Thr Arg Ser Asp Gly Leu 550 Pro Leu Val Gly Leu Ala Met Asn Arg Thr Gln Cys Arg Thr Thr Ser Asp Asp Phe Leu Ile Asp Pro Leu His Ile Thr Asp Gly Asp Val Gly 585 590 Glu Glu Ile Glu Ala Tyr Leu Val Gly Ala Tyr Cys Ile Glu Asp Glu Leu Ile Leu Arg Arg Arg Ile Arg Phe Pro Arg Gly Val Lys Pro Gly Asp Ile Ile Gly Ile Pro Asn Thr Ala Gly Tyr Phe Met His Ile Leu 635 630 Glu Ser Ala Ser His Gln Ile Pro Leu Ala Lys Asn Val Val Trp Pro 650 655 Glu Gly Gln Leu Asp Asp Ile Asp Ala Asp 660 <210> 49 <211> 993 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(970) <223> RXA01393 <400> 49 caaaagcaga cctgtaatga agatttccat gatcaccatc gtgacctatg gaagtactta 60 agtaaaatga ttggttctta acatggttta atatagcttc atg aac ccc att caa 115 Met Asn Pro Ile Gln ctg gac act ttg ctc tca atc att gat gaa ggc agc ttc gaa ggc gcc 163 Leu Asp Thr Leu Leu Ser Ile Ile Asp Glu Gly Ser Phe Glu Gly Ala 15 10 tcc tta gcc ctt tcc att tcc ccc tcg gcg gtg agt cag cgc gtt aaa Ser Leu Ala Leu Ser Ile Ser Pro Ser Ala Val Ser Gln Arg Val Lys 35 25 30 gct ctc gag cat cac gtg ggt cga gtg ttg gta tcg cgc acc caa ccg 259 Ala Leu Glu His His Val Gly Arg Val Leu Val Ser Arg Thr Gln Pro

		40)				45	5				50)			
gcc Ala	aaa Lys 55	Ala	acc Thr	gaa Glu	gcg Ala	ggt Gly 60	Glu	gto Val	ctt Leu	gtg Val	g caa Gln 65	Ala	gcg Ala	g cgg Arg	aaa Lys	307
atg Met 70	Val	ttg Leu	ctg Leu	caa Gln	gca Ala 75	Glu	act Thr	aaa Lys	gcg Ala	caa Gln 80	cta Leu	tct Ser	gga Gly	cgc Arg	ctt Leu 85	355
gct Ala	gaa Glu	atc Ile	ccg Pro	tta Leu 90	Thr	atc Ile	gcc Ala	atc Ile	aac Asn 95	Ala	gat Asp	tcg Ser	cta Leu	ser 100	Thr	403
tgg Trp	ttt Phe	cct Pro	ccc Pro 105	gtg Val	ttc Phe	aac Asn	gag Glu	gta Val 110	Ala	tct Ser	tgg Trp	ggt Gly	gga Gly 115	Ala	acg Thr	451
ctc Leu	acg Thr	ctg Leu 120	cgc Arg	ttg Leu	gaa Glu	gat Asp	gaa Glu 125	gcg Ala	cac His	aca Thr	tta Leu	tcc Ser 130	ttg Leu	ctg Leu	cgg Arg	499
cgt Arg	gga Gly 135	gat Asp	gtt Val	tta Leu	gga Gly	gcg Ala 140	gta Val	acc Thr	cgt Arg	gaa Glu	gct Ala 145	aat Asn	ccc Pro	gtg Val	gcg Ala	547
gga Gly 150	tgt Cys	gaa Glu	gta Val	gta Val	gaa Glu 155	ctt Leu	gga Gly	acc Thr	atg Met	cgc Arg 160	cac His	ttg Leu	gcc Ala	att Ile	gca Ala 165	595
acc Thr	ccc Pro	tca Ser	ttg Leu	cgg Arg 170	gat Asp	gcc Ala	tac Tyr	atg Met	gtt Val 175	gat Asp	Gly	aaa Lys	cta Leu	gat Asp 180	tgg Trp	643
gct Ala	gcg Ala	atg Met	ccc Pro 185	gtc Val	tta Leu	cgc Arg	ttc Phe	ggt Gly 190	ccc Pro	aaa Lys	gat Asp	gtg Val	ctt Leu 195	caa Gln	gac Asp	691
cgt Arg	gac Asp	ctg Leu 200	gac Asp	GJÀ aaa	cgc Arg	gtc Val	gat Asp 205	ggt Gly	cct Pro	gtg Val	Gly ggg	cgc Arg 210	agg Arg	cgc Arg	gta Val	739
tcc Ser	att Ile 215	gtc Val	ccg Pro	tcg Ser	gcg Ala	gaa Glu 220	ggt Gly	ttt Phe	ggt Gly	gag Glu	gca Ala 225	att Ile	cgc Arg	cga Arg	ggc Gly	787
ctt Leu 230	ggt Gly	tgg Trp	gga Gly	ctt Leu	ctt Leu 235	ccc Pro	gaa Glu	acc Thr	caa Gln	gct Ala 240	gct Ala	ccc Pro	atg Met	cta Leu	aaa Lys 245	835
gca Ala	gga Gly	gaa Glu	Val	atc Ile 250	ctc Leu	ctc Leu	gat Asp	gag Glu	ata Ile 255	ccc Pro	att Ile	gac Asp	aca Thr	ccg Pro 260	atg Met	883
tat Tyr	tgg Trp	caa Gln	cga Arg 265	tgg Trp	cgc Arg	ctg Leu	gaa Glu	tct Ser 270	aga Arg	tct Ser	cta Leu	gct Ala	aga Arg 275	ctc Leu	aca Thr	931
gac Asp	Ala	gtc Val 280	gtt Val	gat Asp	gca Ala	Ala	atc Ile	gag Glu	gga Gly	ttg Leu	cgg Arg	cct Pro	tagt	tact	tc	980

tgaaaaggtt cag 993

<210> 50

<211> 290

<212> PRT

<213> Corynebacterium glutamicum

<400> 50

Met Asn Pro Ile Gln Leu Asp Thr Leu Leu Ser Ile Ile Asp Glu Gly
1 5 10 15

Ser Phe Glu Gly Ala Ser Leu Ala Leu Ser Ile Ser Pro Ser Ala Val 20 25 30

Ser Gln Arg Val Lys Ala Leu Glu His His Val Gly Arg Val Leu Val 35 40 45

Ser Arg Thr Gln Pro Ala Lys Ala Thr Glu Ala Gly Glu Val Leu Val 50 60

Gln Ala Ala Arg Lys Met Val Leu Leu Gln Ala Glu Thr Lys Ala Gln 65 70 75 80

Leu Ser Gly Arg Leu Ala Glu Ile Pro Leu Thr Ile Ala Ile Asn Ala 85 90 95

Asp Ser Leu Ser Thr Trp Phe Pro Pro Val Phe Asn Glu Val Ala Ser 100 105 110

Trp Gly Gly Ala Thr Leu Thr Leu Arg Leu Glu Asp Glu Ala His Thr
115 120 125

Leu Ser Leu Leu Arg Arg Gly Asp Val Leu Gly Ala Val Thr Arg Glu

Ala Asn Pro Val Ala Gly Cys Glu Val Val Glu Leu Gly Thr Met Arg 145 150 155 160

His Leu Ala Ile Ala Thr Pro Ser Leu Arg Asp Ala Tyr Met Val Asp 165 170 175

Gly Lys Leu Asp Trp Ala Ala Met Pro Val Leu Arg Phe Gly Pro Lys 180 185 190

Asp Val Leu Gln Asp Arg Asp Leu Asp Gly Arg Val Asp Gly Pro Val 195 200 205

Gly Arg Arg Val Ser Ile Val Pro Ser Ala Glu Gly Phe Gly Glu 210 215 220

Ala Ile Arg Arg Gly Leu Gly Trp Gly Leu Leu Pro Glu Thr Gln Ala 225 230 235 240

Ala Pro Met Leu Lys Ala Gly Glu Val Ile Leu Leu Asp Glu Ile Pro 245 250 255

Ile Asp Thr Pro Met Tyr Trp Gln Arg Trp Arg Leu Glu Ser Arg Ser 260 265 270

Leu Ala Arg Leu Thr Asp Ala Val Val Asp Ala Ala Ile Glu Gly Leu Arg Pro 290 <210> 51 <211> 1626 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(1603) <223> RXA00241 <400> 51 ggtctccagc ctttctaaac aattcatctg cacttgatta attggcccca agattacgcg 60 aagtttagcg acttcgccgt acgtcaacta cgttaaatga gtg aat act caa tca Val Asn Thr Gln Ser gat tot gcg ggg tot caa ggt gca gcg gcc aca agt cgt act gta tot Asp Ser Ala Gly Ser Gln Gly Ala Ala Ala Thr Ser Arg Thr Val Ser 10 att aga acc ctc atc gcg ctg atc atc gga tcg acc gtc ggc gcg gga 211 Ile Arg Thr Leu Ile Ala Leu Ile Gly Ser Thr Val Gly Ala Gly 25 30 att ttc tcc atc cct caa aac atc ggc tca gtc gca ggt ccc ggc gcg 259 Ile Phe Ser Ile Pro Gln Asn Ile Gly Ser Val Ala Gly Pro Gly Ala 40 atg ctc atc ggc tgg ctg atc gcc ggt gtg ggc atg ttg tcc gta gcg 307 Met Leu Ile Gly Trp Leu Ile Ala Gly Val Gly Met Leu Ser Val Ala 55 60 tte gtg tte cat gtt ett gee egt aaa eet eae ete gat tet gge Phe Val Phe His Val Leu Ala Arg Arg Lys Pro His Leu Asp Ser Gly 70 75 gtc tac gca tat gcg cgt gtt gga ttg ggc gat tat gta ggt ttc tcc Val Tyr Ala Tyr Ala Arg Val Gly Leu Gly Asp Tyr Val Gly Phe Ser tcc gct tgg ggt tat tgg ctg ggt tca gtc atc gcc caa gtt ggc tac 451 Ser Ala Trp Gly Tyr Trp Leu Gly Ser Val Ile Ala Gln Val Gly Tyr 105 gca acg tta ttt ttc tcc acg ttg ggc cac tac gta ccg ctg ttt tcc 499 Ala Thr Leu Phe Phe Ser Thr Leu Gly His Tyr Val Pro Leu Phe Ser 125 caa gat cat cca ttt gtg tca gcg ttg gca gtt agc gct ttg acc tgg 547 Gln Asp His Pro Phe Val Ser Ala Leu Ala Val Ser Ala Leu Thr Trp 140 ctg gtg ttt gga gtt gtt tcc cga gga att agc caa gct gct ttc ttg 595

Leu Val Phe 150	e Gly Val	Val Ser 155	Arg Gl	y Ile	Ser 160	Gln	Ala	Ala	Phe	Leu 165	
aca acg gto Thr Thr Va											643
atc ctt gtt Ile Leu Va				r Trp							691
tta tgg gcg Leu Trp Ala 200	a Arg Asp										739
ggc atc atc Gly Ile Me			Trp Va								787
tcg gta ta Ser Val Ty: 230	tcc cgc Ser Arg	cag gca Gln Ala 235	cgc tc Arg Se	a cgc r Arg	agt Ser 240	gat Asp	gtc Val	agc Ser	cga Arg	gct Ala 245	835
acc gtg at Thr Val Il	ggt ttt Gly Phe 250	Val Ala	gtt ct Val Le	c ctt u Leu 255	ttg Leu	ctg Leu	gtg Val	tcg Ser	att Ile 260	tct Ser	883
tcg ctg ag Ser Leu Se	ttc ggt Phe Gly 265	gta ctg Val Leu	acc ca Thr Gl 27	n Gln	gag Glu	ctc Leu	gct Ala	gcg Ala 275	tta Leu	cca Pro	931
gat aat to Asp Asn Se 28	r Met Ala	tcg gtg Ser Val	ctc ga Leu Gl 285	a gct u Ala	gtt Val	gtt Val	ggt Gly 290	cca Pro	tgg Trp	ggt Gly	979
gcc gca tt	g att tcg	ttg ggt	ctg tg	t ctt	tcg	gtt	ctt	ggg	gcc	tat	
Ala Ala Le 295	u Ile Ser	Leu Gly		's Leu	Ser	Val 305	Leu	Gly	Ala	Tyr	
gtg tcc tg 1075	g cag atg	ctc tgc	gca ga	a cca	ctg	gcg	ttg	atg	gca	atg	
Val Ser Tr 310	p Gln Met	Leu Cys 315	Ala Gl	u Pro	Leu 320	Ala	Leu	Met	Ala	Met 325	
gat ggc ct 1123	c att cca	agc aaa	atc gg	ia acc	atc	aac	agc	cgc	ggt	gct	
Asp Gly Le	u Ile Pro 330		Ile Gl	y Ala 335	Ile	Asn	Ser	Arg	Gly 340	Ala	
gcc tgg at 1171	g gct cag	ctg ato	tcc ac	c atc	gtg	att	cag	att	ttc	atc	
Ala Trp Me	t Ala Gln 345	Leu Ile	Ser Th		Val	Ile	Gln	11e 355	Phe	Ile	
atc att tt 1219	c ttc ctc	aac gag	acc ac	c tac	gtc	tcc	atg	gtg	caa	ttg	
Ile Ile Ph		ı Asn Glu	Thr Th	r Tyr	Val	Ser	Met 370	Val	Gln	Leu	

get ace aac cta tac ttg gtg cet tac ctg ttc tet gec ttt tat ctg 1267 Ala Thr Asn Leu Tyr Leu Val Pro Tyr Leu Phe Ser Ala Phe Tyr Leu gtc atg ctg gca aca cgt gga aaa gga atc acc cac cca cat gcc ggc Val Met Leu Ala Thr Arg Gly Lys Gly Ile Thr His Pro His Ala Gly 390 395 400 aca cgt ttt gat gat tcc ggt cca gag ata tcc cgc cga gaa aac cgc 1363 Thr Arg Phe Asp Asp Ser Gly Pro Glu Ile Ser Arg Arg Glu Asn Arg 410 aaa cac ctc atc gtc ggt tta gta gca acg gtg tat tca gtg tgg ctg 1411 Lys His Leu Ile Val Gly Leu Val Ala Thr Val Tyr Ser Val Trp Leu 425 430 ttt tac gct gca gaa ccg cag ttt gtc ctc ttc gga gcc atg gcg atg 1459 Phe Tyr Ala Ala Glu Pro Gln Phe Val Leu Phe Gly Ala Met Ala Met 440 445 ctt ccc ggc tta atc ccc tat gtg tgg aca agg att tat cgt ggc gaa Leu Pro Gly Leu Ile Pro Tyr Val Trp Thr Arg Ile Tyr Arg Gly Glu 460 cag gtg ttt aac cgc ttt gaa atc ggc gtg gtt gtt gtc ctg gtc gtt 1555 Gln Val Phe Asn Arg Phe Glu Ile Gly Val Val Val Leu Val Val 470 475 480 gct gcc agc gcg ggc gtt att ggt ttg gtc aac gga tca cta tcg ctt 1603

taaacaccga aaccttcctg cta 1626

<210> 52

<211> 501

<212> PRT

<213> Corynebacterium glutamicum

490

<400> 52

Val Asn Thr Gln Ser Asp Ser Ala Gly Ser Gln Gly Ala Ala Ala Thr
1 5 10 15

Ala Ala Ser Ala Gly Val Ile Gly Leu Val Asn Gly Ser Leu Ser Leu

Ser Arg Thr Val Ser Ile Arg Thr Leu Ile Ala Leu Ile Ile Gly Ser 20 25 30

Thr Val Gly Ala Gly Ile Phe Ser Ile Pro Gln Asn Ile Gly Ser Val 35 40 45

Ala Gly Pro Gly Ala Met Leu Ile Gly Trp Leu Ile Ala Gly Val Gly 50 55 60

Met Leu Ser Val Ala Phe Val Phe His Val Leu Ala Arg Arg Lys Pro His Leu Asp Ser Gly Val Tyr Ala Tyr Ala Arg Val Gly Leu Gly Asp Tyr Val Gly Phe Ser Ser Ala Trp Gly Tyr Trp Leu Gly Ser Val Ile Ala Gln Val Gly Tyr Ala Thr Leu Phe Phe Ser Thr Leu Gly His Tyr 120 Val Pro Leu Phe Ser Gln Asp His Pro Phe Val Ser Ala Leu Ala Val 135 Ser Ala Leu Thr Trp Leu Val Phe Gly Val Val Ser Arg Gly Ile Ser Gln Ala Ala Phe Leu Thr Thr Val Thr Thr Val Ala Lys Ile Leu Pro Leu Leu Cys Phe Ile Ile Leu Val Ala Phe Leu Gly Phe Ser Trp Glu 1.80 Lys Phe Thr Val Asp Leu Trp Ala Arg Asp Gly Gly Val Gly Ser Ile Phe Asp Gln Val Arg Gly Ile Met Val Tyr Thr Val Trp Val Phe Ile Gly Ile Glu Gly Ala Ser Val Tyr Ser Arg Gln Ala Arg Ser Arg Ser 230 Asp Val Ser Arg Ala Thr Val Ile Gly Phe Val Ala Val Leu Leu 245 Leu Val Ser Ile Ser Ser Leu Ser Phe Gly Val Leu Thr Gln Glu 265 260 Leu Ala Ala Leu Pro Asp Asn Ser Met Ala Ser Val Leu Glu Ala Val 280 275 Val Gly Pro Trp Gly Ala Ala Leu Ile Ser Leu Gly Leu Cys Leu Ser 295 Val Leu Gly Ala Tyr Val Ser Trp Gln Met Leu Cys Ala Glu Pro Leu 315 310 Ala Leu Met Ala Met Asp Gly Leu Ile Pro Ser Lys Ile Gly Ala Ile 330 Asn Ser Arg Gly Ala Ala Trp Met Ala Gln Leu Ile Ser Thr Ile Val 340 Ile Gln Ile Phe Ile Ile Phe Phe Leu Asn Glu Thr Thr Tyr Vál 360 Ser Met Val Gln Leu Ala Thr Asn Leu Tyr Leu Val Pro Tyr Leu Phe 375 380 370

Ser Ala Phe Tyr Leu Val Met Leu Ala Thr Arg Gly Lys Gly Ile Thr 390 His Pro His Ala Gly Thr Arg Phe Asp Asp Ser Gly Pro Glu Ile Ser 405 410 Arg Arg Glu Asn Arg Lys His Leu Ile Val Gly Leu Val Ala Thr Val 425 420 Tyr Ser Val Trp Leu Phe Tyr Ala Ala Glu Pro Gln Phe Val Leu Phe 435 440 Gly Ala Met Ala Met Leu Pro Gly Leu Ile Pro Tyr Val Trp Thr Arg 455 450 Ile Tyr Arg Gly Glu Gln Val Phe Asn Arg Phe Glu Ile Gly Val Val 470 475 Val Val Leu Val Val Ala Ala Ser Ala Gly Val Ile Gly Leu Val Asn 485 490 Gly Ser Leu Ser Leu 500 <210> 53 <211> 822 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(799) <223> RXA01394 <400> 53 gagcaaagtg tccagttgaa tggggttcat gaagctatat taaaccatgt taagaaccaa 60 tcattttact taagtacttc cataggtcac gatggtgatc atg gaa atc ttc att Met Glu Ile Phe Ile aca ggt ctg ctt ttg ggg gcc agt ctt tta ctg tcc atc gga ccg cag Thr Gly Leu Leu Gly Ala Ser Leu Leu Ser Ile Gly Pro Gln aat gta ctg gtg att aaa caa gga att aag cgc gaa gga ctc att gcg 211 Asn Val Leu Val Ile Lys Gln Gly Ile Lys Arg Glu Gly Leu Ile Ala gtt ctt ctc gtg tgt tta att tct gac gtc ttt ttg ttc atc gcc ggc 259 Val Leu Leu Val Cys Leu Ile Ser Asp Val Phe Leu Phe Ile Ala Gly 40 45 acc ttg ggc gtt gat ctt ttg tcc aat gcc gcg ccg atc gtg ctc gat 307 Thr Leu Gly Val Asp Leu Leu Ser Asn Ala Ala Pro Ile Val Leu Asp 55 60 att atg cgc tgg ggt ggc atc gct tac ctg tta tgg ttt gcc gtc atg Ile Met Arg Trp Gly Gly Ile Ala Tyr Leu Leu Trp Phe Ala Val Met 70 75 80

gca gcg Ala Ala	aaa ga Lys As	c gcc p Ala 90	atg Met	aca Thr	aac Asn	aag Lys	gtg Val 95	gaa Glu	gcg Ala	cca Pro	cag Gln	atc Ile 100	att Ile	403
gaa gaa Glu Glu	aca ga Thr Gl 10	u Pro	acc Thr	gtg Val	ccc Pro	gat Asp 110	gac Asp	acg Thr	cct Pro	ttg Leu	ggc Gly 115	ggt Gly	tcg Ser	451
gcg gtg Ala Val	gcc ac Ala Th 120	t gac r Asp	acg Thr	cgc Arg	aac Asn 125	cgg Arg	gtg Val	cgg Arg	gtg Val	gag Glu 130	gtg Val	agc Ser	gtc Val	499
gat aag Asp Lys 135	cag cg Gln Ar	g gtt g Val	tgg Trp	gta Val 140	aag Lys	ccc Pro	atg Met	ttg Leu	atg Met 145	gca Ala	atc Ile	gtg Val	ctg Leu	547
acc tgg Thr Trp 150	ttg aa Leu As	c ccg n Pro	aat Asn 155	gcg Ala	tat Tyr	ttg Leu	gac Asp	gcg Ala 160	ttt Phe	gtg Val	ttt Phe	atc Ile	ggc Gly 165	595
ggc gtc Gly Val	ggc gc Gly Al	g caa a Gln 170	tac Tyr	ggc Gly	gac Asp	acc Thr	gga Gly 175	cgg Arg	tgg Trp	att Ile	ttc Phe	gcc Ala 180	gct Ala	643
ggc gcg Gly Ala	ttc go Phe Al	a Ala	agc Ser	ctg Leu	atc Ile	tgg Trp 190	ttc Phe	ccg Pro	ctg Leu	gtg Val	ggt Gly 195	ttc Phe	ggc Gly	691
gca gca Ala Ala	gca tt Ala Le 200	g tca eu Ser	cgc Arg	ccg Pro	ctg Leu 205	tcc Ser	agc Ser	ccc Pro	aag Lys	gtg Val 210	tgg Trp	cgc Arg	tgg Trp	739
atc aac Ile Asn 215	gtc gt Val Va	c gtg al Val	gca Ala	gtt Val 220	gtg Val	atg Met	acc Thr	gca Ala	ttg Leu 225	gcc Ala	atc Ile	aaa Lys	ctg Leu	787
atg ttg Met Leu 230			tttt	cgc	gggt	tttg	ga a	tc						822
<210> 5 <211> 2 <212> P <213> C	33 RT	acteri	um g	luta	micu	m								
<400> 5 Met Glu 1		ne Ile		Gly	Leu	Leu	Leu 10		Ala	Ser	Leu	Leu 15		
Ser Ile		ro Glr 20	Asn	. Val	Leu	Val 25		Lys	Gln	Gly	Ile 30		Arg	
Glu Gly	Leu I	le Ala	. Val	Leu	Leu 40		Cys	Leu	Ile	Ser 45		Val	Phe	
Leu Phe		la Gly	Thr	Leu 55		· Val	Asp	Leu	Leu 60		Asn	Ala	Ala	
Pro Ile	. Val L	eu Ası	o Ile	e Met	. Arg	Trp	Gly	Gly	Ile	Ala	Tyr	Leu	Leu	

65					70					75					80	
Trp	Phe	Ala	Val	Met 85	Ala	Ala	Lys	Asp	Ala 90	Met	Thr	Asn	Lys	Val 95	Glu	
Ala	Pro	Gln	Ile 100	Ile	Glu	Glu	Thr	Glu 105	Pro	Thr	Val	Pro	Asp 110	Asp	Thr	
Pro	Leu	Gly 115	Gly	Ser	Ala	Val	Ala 120	Thr	Asp	Thr	Arg	Asn 125	Arg	Val	Arg	
Val	Glu 130	Val	Ser	Val	Asp	Lys 135	Gln	Arg	Val	Trp	Val 140	Lys	Pro	Met	Leu	
Met 145	Ala	Ile	Val	Leu	Thr 150	Trp	Leu	Asn	Pro	Asn 155	Ala	Tyr	Leu	Asp	Ala 160	
Phe	Val	Phe	Ile	Gly 165	Gly	Val	Gly	Ala	Gln 170	Tyr	Gly	Asp	Thr	Gly 175	Arg	
Trp	Ile	Phe	Ala 180	Ala	Gly	Ala	Phe	Ala 185	Ala	Ser	Leu	Ile	Trp 190	Phe	Pro	
Leu	Val	Gly 195	Phe	Gly	Ala	Ala	Ala 200	Leu	Ser	Arg	Pro	Leu 205	Ser	Ser	Pro	
Lys	Val 210	Trp	Arg	Trp	Ile	Asn 215	Val	Val	Val	Ala	Val 220	Val	Met	Thr	Ala	
Leu 225	Ala	Ile	Lys	Leu	Met 230	Leu	Met	Gly								
<213 <212)> 55 l> 10 ?> DN B> Co)26 JA	ebact	eri	ım g]	lutar	nicum	n								
<222 <223	L> CI ?> (1 ß> RX	.01). KA008	. (10 365	03)												
ttat		at g								-					ggttg	60
ttta	acco	cc a	aato	gaggg	ga ag	gaagg	gtaac	ctt	gaac	tct		agc Ser		_		115
												gga Gly				163
												gct Ala				211
		_	-		_	_	_	_		_	_	tct Ser 50	_	_		259

gcg Ala	ggc Gly 55	acc Thr	act Thr	ggt Gly	gaa Glu	tcc Ser 60	cca Pro	acg Thr	aca Thr	acc Thr	gcc Ala 65	gct Ala	gaa Glu	aaa Lys	cta Leu	307
gaa Glu 70	ctg Leu	ctc Leu	aag Lys	gcc Ala	gtt Val 75	cgt Arg	gag Glu	gaa Glu	gtt Val	80 Gly aga	gat Asp	cgg Arg	gcg Ala	aag Lys	ctc Leu 85	355
atc Ile	gcc Ala	ggt Gly	gtc Val	gga Gly 90	acc Thr	aac Asn	aac Asn	acg Thr	cgg Arg 95	aca Thr	tct Ser	gtg Val	gaa Glu	ctt Leu 100	gcg Ala	403
gaa Glu	gct Ala	gct Ala	gct Ala 105	tct Ser	gct Ala	ggc Gly	gca Ala	gac Asp 110	ggc Gly	ctt Leu	tta Leu	gtt Val	gta Val 115	act Thr	cct Pro	451
tat Tyr	tac Tyr	tcc Ser 120	aag Lys	ccg Pro	agc Ser	caa Gln	gag Glu 125	gga Gly	ttg Leu	ctg Leu	gcg Ala	cac His 130	ttc Phe	ggt Gly	gca Ala	499
att Ile	gct Ala 135	gca Ala	gca Ala	aca Thr	gag Glu	gtt Val 140	cca Pro	att Ile	tgt Cys	ctc Leu	tat Tyr 145	gac Asp	att Ile	cct Pro	ggt Gly	547
cgg Arg 150	tca Ser	ggt Gly	att Ile	cca Pro	att Ile 155	gag Glu	tct Ser	gat Asp	acc Thr	atg Met 160	aga Arg	cgc Arg	ctg Leu	agt Ser	gaa Glu 165	595
tta Leu	cct Pro	acg Thr	att Ile	ttg Leu 170	gcg Ala	gtc Val	aag Lys	gac Asp	gcc Ala 175	aag Lys	ggt Gly	gac Asp	ctc Leu	gtt Val 180	gca Ala	643
gcc Ala	acg Thr	tca Ser	ttg Leu 185	atc Ile	aaa Lys	gaa Glu	acg Thr	gga Gly 190	ctt Leu	gcc Ala	tgg Trp	tat Tyr	tca Ser 195	ggc Gly	gat Asp	691
gac Asp	cca Pro	cta Leu 200	aac Asn	ctt Leu	gtt Val	tgg Trp	ctt Leu 205	gct Ala	ttg Leu	ggc	gga Gly	tca Ser 210	ggt Gly	ttc Phe	att Ile	739
tcc Ser	gta Val 215	Ile	gga Gly	cat His	gca Ala	gcc Ala 220	ccc Pro	aca Thr	gca Ala	tta Leu	cgt Arg 225	gag Glu	ttg Leu	tac Tyr	aca Thr	787
agc Ser 230	Phe	gag Glu	gaa Glu	ggc Gly	gac Asp 235	ctc Leu	gtc Val	cgt Arg	gcg Ala	cgg Arg 240	gaa Glu	atc Ile	aac Asn	gcc Ala	aaa Lys 245	835
cta Leu	tca Ser	ccg Pro	ctg Leu	gta Val 250	Ala	gcc Ala	caa Gln	ggt Gly	cgc Arg 255	Leu	ggt Gly	gga Gly	gtc Val	agc Ser 260	ttg Leu	883
gca Ala	aaa Lys	gct Ala	gct Ala 265	Leu	cgt Arg	ctg Leu	cag Gln	ggc Gly 270	Ile	aac Asn	gta Val	gga Gly	gat Asp 275	Pro	cga Arg	931
ctt Lev	cca Pro	att 11e 280	Met	gct Ala	cca Pro	aat Asn	gag Glu 285	Gln	gaa Glu	ctt Lev	gag Glu	gct Ala 290	Leu	cga Arg	gaa Glu	979

gac atg aaa aaa gct gga gtt cta taaatatgaa tgattcccga aat 1026 Asp Met Lys Lys Ala Gly Val Leu 295 300

<210> 56

<211> 301

<212> PRT

<213> Corynebacterium glutamicum

<400> 56

Met Ser Thr Gly Leu Thr Ala Lys Thr Gly Val Glu His Phe Gly Thr 1 5 10 15

Val Gly Val Ala Met Val Thr Pro Phe Thr Glu Ser Gly Asp Ile Asp 20 25 30

Ile Ala Ala Gly Arg Glu Val Ala Ala Tyr Leu Val Asp Lys Gly Leu 35 40 45

Asp Ser Leu Val Leu Ala Gly Thr Thr Gly Glu Ser Pro Thr Thr Thr 50 55 60

Ala Ala Glu Lys Leu Glu Leu Lys Ala Val Arg Glu Glu Val Gly 65 70 75 80

Asp Arg Ala Lys Leu Ile Ala Gly Val Gly Thr Asn Asn Thr Arg Thr 85 90 95

Ser Val Glu Leu Ala Glu Ala Ala Ala Ser Ala Gly Ala Asp Gly Leu 100 105 110

Leu Val Val Thr Pro Tyr Tyr Ser Lys Pro Ser Gln Glu Gly Leu Leu 115 120 125

Ala His Phe Gly Ala Ile Ala Ala Thr Glu Val Pro Ile Cys Leu 130 135 140

Tyr Asp Ile Pro Gly Arg Ser Gly Ile Pro Ile Glu Ser Asp Thr Met 145 150 155 160

Arg Arg Leu Ser Glu Leu Pro Thr Ile Leu Ala Val Lys Asp Ala Lys
165 170 175

Gly Asp Leu Val Ala Ala Thr Ser Leu Ile Lys Glu Thr Gly Leu Ala 180 185 190

Trp Tyr Ser Gly Asp Asp Pro Leu Asn Leu Val Trp Leu Ala Leu Gly
195 200 205

Gly Ser Gly Phe Ile Ser Val Ile Gly His Ala Ala Pro Thr Ala Leu 210 220

Arg Glu Leu Tyr Thr Ser Phe Glu Glu Gly Asp Leu Val Arg Ala Arg 225 230 235 240

Glu Ile Asn Ala Lys Leu Ser Pro Leu Val Ala Ala Gln Gly Arg Leu 245 250 255

Gly Gly Val Ser Leu Ala Lys Ala Ala Leu Arg Leu Gln Gly Ile Asn

270 260 265 Val Gly Asp Pro Arg Leu Pro Ile Met Ala Pro Asn Glu Gln Glu Leu Glu Ala Leu Arg Glu Asp Met Lys Lys Ala Gly Val Leu <210> 57 <211> 1071 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(1048) <223> RXS02021 <400> 57 ttgggtcgcc gaggagatct aatcctggtt tgagttcaga gttcacaggt ttaagcctac 60 aaaccttagt taaaacatga tggaagcggt cgattaaaaa atg agt gaa aac att Met Ser Glu Asn Ile 1 cgc gga gcc caa gca gtt gga atc gca aat atc gcc atg gac ggg acc 163 Arg Gly Ala Gln Ala Val Gly Ile Ala Asn Ile Ala Met Asp Gly Thr 20 atc ctg gac acg tgg tac cca gaa ccc caa att ttc aac ccg gat cag 211 Ile Leu Asp Thr Trp Tyr Pro Glu Pro Gln Ile Phe Asn Pro Asp Gln 25 tgg gct gaa cgc tac cca ttg gaa gtg ggc acc aca cgc ctc gga gca 259 Trp Ala Glu Arg Tyr Pro Leu Glu Val Gly Thr Thr Arg Leu Gly Ala 40 307 aac qaa ctc acc cca cgg atg ctg cag ttg gta aaa ctg gac caa gat Asn Glu Leu Thr Pro Arg Met Leu Gln Leu Val Lys Leu Asp Gln Asp 55 cgc ctc gtc gaa cag gta gca gtc cgc acc gtt atc ccc gat ctg tct Arg Leu Val Glu Gln Val Ala Val Arg Thr Val Ile Pro Asp Leu Ser 75 403 caa cct cca gta gac gcg cac gat gtt tac ctg cgc ctc cac ctg ctt Gln Pro Pro Val Asp Ala His Asp Val Tyr Leu Arg Leu His Leu Leu 90 95 tcc cac cgg ctg gtc cgc ccc cac gaa atg cac atg caa aac acc ttg 451 Ser His Arg Leu Val Arg Pro His Glu Met His Met Gln Asn Thr Leu 105 gag ctg ctg tcc gac gtg gtg tgg aca aac aag ggc cct tgc ctt cct 499 Glu Leu Leu Ser Asp Val Val Trp Thr Asn Lys Gly Pro Cys Leu Pro 125 gaa aac ttt gag tgg gtg cgt ggt gct ctg cgg tcc cgc gga ctc atc Glu Asn Phe Glu Trp Val Arg Gly Ala Leu Arg Ser Arg Gly Leu Ile

140

cac His 150	gtc Val	tac Tyr	tgt Cys	gtg Val	gac Asp 155	cgt Arg	ctt Leu	ccc Pro	cgc Arg	atg Met 160	Val	gac Asp	tat Tyr	gtg Val	gtt Val 165	595
ccc Pro	cct Pro	gga Gly	gtc Val	cgc Arg 170	Ile	tcc Ser	gaa Glu	gca Ala	gaa Glu 175	Arg	gtg Val	cgc Arg	cta Leu	ggt Gly 180	gca Ala	643
tac Tyr	ctt Leu	gct Ala	ccg Pro 185	ggt Gly	acc Thr	tct Ser	gtg Val	ctg Leu 190	cgt Arg	gaa Glu	ggt Gly	ttc Phe	gtg Val 195	tct Ser	ttc Phe	691
aac Asn	tcc Ser	ggc Gly 200	acc Thr	ttg Leu	ggt Gly	gcc Ala	gca Ala 205	aag Lys	gtg Val	gaa Glu	ggc	cgc Arg 210	ctg Leu	agt Ser	tcc Ser	739
ggt Gly	gtg Val 215	gtc Val	atc Ile	ggt Gly	gaa Glu	ggt Gly 220	tcc Ser	gag Glu	att Ile	gga Gly	ctg Leu 225	tct Ser	tct Ser	act Thr	att Ile	787
cag Gln 230	tcc Ser	ccg Pro	aga Arg	gat Asp	gaa Glu 235	cag Gln	cgc Arg	cgc Arg	cgt Arg	ttg Leu 240	ccg Pro	ttg Leu	agc Ser	atc Ile	ggc Gly 245	835
caa Gln	aac Asn	tgc Cys	aac Asn	ttt Phe 250	ggt Gly	gtc Val	agc Ser	tcc Ser	gga Gly 255	atc Ile	atc Ile	gga Gly	gtc Val	agt Ser 260	ctg Leu	883
gga Gly	gac Asp	aat Asn	tgc Cys 265	gac Asp	atc Ile	gga Gly	aat Asn	aac Asn 270	att Ile	gtc Val	ttg Leu	gat Asp	gga Gly 275	gat Asp	acc Thr	931
ccc Pro	att Ile	tgg Trp 280	ttc Phe	gca Ala	gcc Ala	gat Asp	gag Glu 285	gag Glu	tta Leu	cgc Arg	act Thr	atc Ile 290	gac Asp	tcc Ser	atc Ile	979
gaa 1027	ggc	caa	gca	aat	tgg	tca	atç	aag	cgt	gaa	tcc	ggc	ttc	cat	gag	
	Gly 295	Gln	Ala	Asn	Trp	Ser 300	Ile	Lys	Arg	Glu	Ser 305	Gly	Phe	His	Glu	
сса 1071	gtt	gcc	cgc	ctc	aaa	gct	tgac	ccat	tt t	cata	acca	ıg tç	ic			
	Val	Ala	Arg	Leu	Lys 315	Ala										
<211 <212	<210> 58 <211> 316 <212> PRT <213> Corynebacterium glutamicum															
	> 58 Ser		Asn	Ile 5	Arg	Gly	Ala	Gln .	Ala 10	Val	Gly	Ile	Ala	Asn 15	Ile	
Ala	Met .	Asp	Gly 20	Thr	Ile :	Leu .	Asp	Thr '	Trp	Tyr	Pro	Glu	Pro 30	Gln	Ile	

Phe Asn Pro Asp Gln Trp Ala Glu Arg Tyr Pro Leu Glu Val Gly Thr

PCT/IB00/00923 WO 01/00843

45

40 35 Thr Arg Leu Gly Ala Asn Glu Leu Thr Pro Arg Met Leu Gln Leu Val Lys Leu Asp Gln Asp Arg Leu Val Glu Gln Val Ala Val Arg Thr Val

Ile Pro Asp Leu Ser Gln Pro Pro Val Asp Ala His Asp Val Tyr Leu

Arg Leu His Leu Leu Ser His Arg Leu Val Arg Pro His Glu Met His

Met Gln Asn Thr Leu Glu Leu Leu Ser Asp Val Val Trp Thr Asn Lys 120

Gly Pro Cys Leu Pro Glu Asn Phe Glu Trp Val Arg Gly Ala Leu Arg 135

Ser Arg Gly Leu Ile His Val Tyr Cys Val Asp Arg Leu Pro Arg Met

Val Asp Tyr Val Val Pro Pro Gly Val Arg Ile Ser Glu Ala Glu Arg 170

Val Arg Leu Gly Ala Tyr Leu Ala Pro Gly Thr Ser Val Leu Arg Glu

Gly Phe Val Ser Phe Asn Ser Gly Thr Leu Gly Ala Ala Lys Val Glu

Gly Arg Leu Ser Ser Gly Val Val Ile Gly Glu Gly Ser Glu Ile Gly

Leu Ser Ser Thr Ile Gln Ser Pro Arg Asp Glu Gln Arg Arg Leu 235

Pro Leu Ser Ile Gly Gln Asn Cys Asn Phe Gly Val Ser Ser Gly Ile 245

Ile Gly Val Ser Leu Gly Asp Asn Cys Asp Ile Gly Asn Asn Ile Val 265

Leu Asp Gly Asp Thr Pro Ile Trp Phe Ala Ala Asp Glu Glu Leu Arg 280 275

Thr Ile Asp Ser Ile Glu Gly Gln Ala Asn Trp Ser Ile Lys Arg Glu 300 295

Ser Gly Phe His Glu Pro Val Ala Arg Leu Lys Ala 310 315

<210> 59

<211> 1296

<212> DNA

<213> Corynebacterium glutamicum

<220>

<221> CDS

<222> (101)..(1273) <223> RXS02157

<400> 59

qqqtqqaatt qqcacqatqq tqctqccqqa tqtttttqat cqqqaqaatt atcctqaaqq 60

caccgttttt agaaaagacg acaaggatgg ggaactgtaa atg agc acg ctg gaa Met Ser Thr Leu Glu act tgg cca cag gtc att att aat acg tac ggc acc cca cca gtt gag Thr Trp Pro Gln Val Ile Ile Asn Thr Tyr Gly Thr Pro Pro Val Glu 10 ctg gtg tcc ggc aag ggc gca acc gtc act gat gac cag ggc aat gtc Leu Val Ser Gly Lys Gly Ala Thr Val Thr Asp Asp Gln Gly Asn Val 25 tac atc gac ttg ctc gcg ggc atc gca gtc aac gcg ttg ggc cac gcc Tyr Ile Asp Leu Leu Ala Gly Ile Ala Val Asn Ala Leu Gly His Ala 40 cac ccg gcg atc atc gag gcg gtc acc aac cag atc ggc caa ctt ggt His Pro Ala Ile Ile Glu Ala Val Thr Asn Gln Ile Gly Gln Leu Gly 55 cac gtc tca aac ttg ttc gca tcc agg ccc gtc gtc gag gtc gcc gag His Val Ser Asn Leu Phe Ala Ser Arg Pro Val Val Glu Val Ala Glu gag ctc atc aag cgt ttt tcg ctt gac gac gcc acc ctc gcc gcg caa Glu Leu Ile Lys Arg Phe Ser Leu Asp Asp Ala Thr Leu Ala Ala Gln acc cgg gtt ttc ttc tgc aac tcg ggc gcc gaa gca aac gag gct gct 451 Thr Arg Val Phe Phe Cys Asn Ser Gly Ala Glu Ala Asn Glu Ala Ala ttc aag att gca cgc ttg act ggt cgt tcc cgg att ctg gct gca gtt 499 Phe Lys Ile Ala Arg Leu Thr Gly Arg Ser Arg Ile Leu Ala Ala Val 125 cat ggt ttc cac ggc cgc acc atg ggt tcc ctc gcg ctg act ggc cag 547 His Gly Phe His Gly Arg Thr Met Gly Ser Leu Ala Leu Thr Gly Gln

ggc gtt gtt cca gca cct gaa gga ttc ctc aag gca gtg cgc gag ctg 73 Gly Val Val Pro Ala Pro Glu Gly Phe Leu Lys Ala Val Arg Glu Leu 200 205 210

175

cca gac aag cgt gaa gcg ttc ctg cca atg cca agc ggt gtg gag ttc

Pro Asp Lys Arg Glu Ala Phe Leu Pro Met Pro Ser Gly Val Glu Phe

tac cct tac ggc gac acc gat tac ttg cgc aaa atg gta gaa acc aac Tyr Pro Tyr Gly Asp Thr Asp Tyr Leu Arg Lys Met Val Glu Thr Asn

cca acg gat gtg gct gct atc ttc ctc gag cca atc cag ggt gaa acg Pro Thr Asp Val Ala Ala Ile Phe Leu Glu Pro Ile Gln Gly Glu Thr 185 595

PCT/IB00/00923 WO 01/00843

```
787
tgc gat gag tac ggc atc ttg atg atc acc gat gaa gtc cag act ggc
Cys Asp Glu Tyr Gly Ile Leu Met Ile Thr Asp Glu Val Gln Thr Gly
                        220
    215
gtt ggc cgt acc ggc gat ttc ttt gca cat cag cac gat ggc gtt gtt
                                                                   835
Val Gly Arg Thr Gly Asp Phe Phe Ala His Gln His Asp Gly Val Val
                                        240
                    235
ccc gat gtg gtg acc atg gcc aag gga ctt ggc ggc ggt ctt ccc atc
                                                                   883
Pro Asp Val Val Thr Met Ala Lys Gly Leu Gly Gly Leu Pro Ile
                                    255
                250
                                                                   931
ggt gct tgt ttg gcc act ggc cgt gca gct gaa ttg atg acc cca ggc
Gly Ala Cys Leu Ala Thr Gly Arg Ala Ala Glu Leu Met Thr Pro Gly
                                270
                                                                   979
aag cac ggc acc act ttc ggt ggc aac cca gtt gct tgt gca gct gcc
Lys His Gly Thr Thr Phe Gly Gly Asn Pro Val Ala Cys Ala Ala Ala
                            285
                                                290
aag gca gtg ctg tct gtt gtc gat gac gct ttc tgc gca gaa gtt gcc
Lys Ala Val Leu Ser Val Val Asp Asp Ala Phe Cys Ala Glu Val Ala
cgc aag ggc gag ctg ttc aag gaa ctt ctt gcc aag gtt gac ggc gtt
Arg Lys Gly Glu Leu Phe Lys Glu Leu Leu Ala Lys Val Asp Gly Val
                    315
310
gta gac gtc cgt ggc agg ggc ttg atg ttg ggc gtg gtg ctg gag cgc
1123
Val Asp Val Arg Gly Arg Gly Leu Met Leu Gly Val Val Leu Glu Arg
                330
gac gtc gca aag caa gct gtt ctt gat ggt ttt aag cac ggc gtt att
1171
Asp Val Ala Lys Gln Ala Val Leu Asp Gly Phe Lys His Gly Val Ile
                                 350
            345
ttg aat gca ccg gcg gac aac att atc cgt ttg acc ccg ccg ctg gtg
1219
Leu Asn Ala Pro Ala Asp Asn Ile Ile Arg Leu Thr Pro Pro Leu Val
                             365
atc acc gac gaa gaa atc gca gac gca gtc aag gct att gcc gag aca
1267
Ile Thr Asp Glu Glu Ile Ala Asp Ala Val Lys Ala Ile Ala Glu Thr
                         380
                                             385
    375
atc gca taaaggactc aaacttatga ctt
1296
Ile Ala
390
<210> 60
<211> 391
```

<212> PRT

<213> Corynebacterium glutamicum

<400> 60 Met Ser Thr Leu Glu Thr Trp Pro Gln Val Ile Ile Asn Thr Tyr Gly Thr Pro Pro Val Glu Leu Val Ser Gly Lys Gly Ala Thr Val Thr Asp Asp Gln Gly Asn Val Tyr Ile Asp Leu Leu Ala Gly Ile Ala Val Asn Ala Leu Gly His Ala His Pro Ala Ile Ile Glu Ala Val Thr Asn Gln Ile Gly Gln Leu Gly His Val Ser Asn Leu Phe Ala Ser Arg Pro Val 75 Val Glu Val Ala Glu Glu Leu Ile Lys Arg Phe Ser Leu Asp Asp Ala Thr Leu Ala Ala Gln Thr Arg Val Phe Phe Cys Asn Ser Gly Ala Glu Ala Asn Glu Ala Ala Phe Lys Ile Ala Arg Leu Thr Gly Arg Ser Arg Ile Leu Ala Ala Val His Gly Phe His Gly Arg Thr Met Gly Ser Leu Ala Leu Thr Gly Gln Pro Asp Lys Arg Glu Ala Phe Leu Pro Met Pro 145 150 Ser Gly Val Glu Phe Tyr Pro Tyr Gly Asp Thr Asp Tyr Leu Arg Lys 170 Met Val Glu Thr Asn Pro Thr Asp Val Ala Ala Ile Phe Leu Glu Pro 185 Ile Gln Gly Glu Thr Gly Val Val Pro Ala Pro Glu Gly Phe Leu Lys 200 Ala Val Arg Glu Leu Cys Asp Glu Tyr Gly Ile Leu Met Ile Thr Asp 210 215 Glu Val Gln Thr Gly Val Gly Arg Thr Gly Asp Phe Phe Ala His Gln His Asp Gly Val Val Pro Asp Val Val Thr Met Ala Lys Gly Leu Gly Gly Gly Leu Pro Ile Gly Ala Cys Leu Ala Thr Gly Arg Ala Ala Glu Leu Met Thr Pro Gly Lys His Gly Thr Thr Phe Gly Gly Asn Pro Val 280 Ala Cys Ala Ala Ala Lys Ala Val Leu Ser Val Val Asp Asp Ala Phe Cys Ala Glu Val Ala Arg Lys Gly Glu Leu Phe Lys Glu Leu Leu Ala 315 310

Lys Val Asp Gly Val Val Asp Val Arg Gly Arg Gly Leu Met Leu Gly 325 330 Val Val Leu Glu Arg Asp Val Ala Lys Gln Ala Val Leu Asp Gly Phe Lys His Gly Val Ile Leu Asn Ala Pro Ala Asp Asn Ile Ile Arg Leu Thr Pro Pro Leu Val Ile Thr Asp Glu Glu Ile Ala Asp Ala Val Lys Ala Ile Ala Glu Thr Ile Ala <210> 61 <211> 1008 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(985) <223> RXC00733 <400> 61 acggcgaggt tgtcggtatt ggaacgcaca cgaatttgct gaacacgtgc ggtacctacc 60 gtgaaattgt tgaatcccaa gagactgcgc aggcgcaatc atg agt aat act gca Met Ser Asn Thr Ala 163 ggc ccc cgc ggg cgt tcc cat cag gca gac gcc gcg ccg aat caa aag Gly Pro Arg Gly Arg Ser His Gln Ala Asp Ala Ala Pro Asn Gln Lys 10 gca cag aat ttc gga cca tct gcc aaa agg ctt ttc gga att cta ggc 211 Ala Gln Asn Phe Gly Pro Ser Ala Lys Arg Leu Phe Gly Ile Leu Gly 30 cat gac cgt aac acc tta att ttt gtt atc ttc cta gcc gtc ctg agc 259 His Asp Arg Asn Thr Leu Ile Phe Val Ile Phe Leu Ala Val Leu Ser 40 45 307 gtt gga ctt acc gtc ttg ggc cca tgg ttg ctg ggt aaa gcc acc aac Val Gly Leu Thr Val Leu Gly Pro Trp Leu Leu Gly Lys Ala Thr Asn 60 355 gtg gtg ttt gaa gga ttc cta tct aag cgc atg ccg gct ggt gcg tca Val Val Phe Glu Gly Phe Leu Ser Lys Arg Met Pro Ala Gly Ala Ser 75 80 403 aag gaa gat atc atc gcg cag ttg cag gct gca ggt aaa cat aat cag Lys Glu Asp Ile Ile Ala Gln Leu Gln Ala Ala Gly Lys His Asn Gln gct tcc atg atg gaa gac atg aac ctt gtt cca ggc tca ggc att gat 451 Ala Ser Met Met Glu Asp Met Asn Leu Val Pro Gly Ser Gly Ile Asp 105 110

```
ttt gaa aaa tta gcc atg atc ctc gga ctg gtg atc ggt gct tat ctc
                                                                   499
Phe Glu Lys Leu Ala Met Ile Leu Gly Leu Val Ile Gly Ala Tyr Leu
                            125
ate ggt age etg ttg teg ttg tte cag geg egg atg etc aac ege ate
                                                                   547
Ile Gly Ser Leu Leu Ser Leu Phe Gln Ala Arg Met Leu Asn Arg Ile
gtg caa agt gcc atg cac cgg ctg cgc atg gag gtg gag gaa aaa atc
Val Gln Ser Ala Met His Arg Leu Arg Met Glu Val Glu Glu Lys Ile
                    155
                                         160
cac cgc cta ccg ctg agc tat ttc gat tcc atc aaa cgt ggt gat ctg
                                                                   643
His Arg Leu Pro Leu Ser Tyr Phe Asp Ser Ile Lys Arg Gly Asp Leu
                                    175
                170
ctt agc cgt gtg acc aac gat gtg gat aat atc ggt caa tcc ctg caa
                                                                   691
Leu Ser Arg Val Thr Asn Asp Val Asp Asn Ile Gly Gln Ser Leu Gln
            185
                                190
                                                                   739
caa acc ttg tca cag gcg atc act tcc cta ctg acc gtc atc ggt gtg
Gln Thr Leu Ser Gln Ala Ile Thr Ser Leu Leu Thr Val Ile Gly Val
        200
                            205
                                                 210
ttg gtg atg atg ttt atc atc tcc cca ctg ctc gca ctc gtg gcg ctg
                                                                   787
Leu Val Met Met Phe Ile Ile Ser Pro Leu Leu Ala Leu Val Ala Leu
                        220
gta tcc att ccg gtc acc atc gtg gtc act gtg gtg gtt gcg agc cgt
                                                                   835
Val Ser Ile Pro Val Thr Ile Val Val Thr Val Val Val Ala Ser Arg
                    235
                                         240
tcc cag aaa ctc ttt gcg gaa cag tgg aag cag acc ggt att ttg aat
                                                                   883
Ser Gln Lys Leu Phe Ala Glu Gln Trp Lys Gln Thr Gly Ile Leu Asn
                250
                                    255
geg ege etg gag gaa ace tae tet gge eac gee gtg gtt aag gtt tte
Ala Arg Leu Glu Glu Thr Tyr Ser Gly His Ala Val Val Lys Val Phe
                                270
gga cac caa aag gat gtt caa gaa gca ttc gag gaa gaa aat caa gct
Gly His Gln Lys Asp Val Gln Glu Ala Phe Glu Glu Glu Asn Gln Ala
                            285
                                                 290
tgt gta taaggccagc tttggtgccc agt
1008
Cys Val
    295
<210> 62
<211> 295
<212> PRT
<213> Corynebacterium glutamicum
<400> 62
Met Ser Asn Thr Ala Gly Pro Arg Gly Arg Ser His Gln Ala Asp Ala
                                     10
```

Ala Pro Asn Gln Lys Ala Gln Asn Phe Gly Pro Ser Ala Lys Arg Leu

20 25 30

Phe Gly Ile Leu Gly His Asp Arg Asn Thr Leu Ile Phe Val Ile Phe 35 40 45

Leu Ala Val Leu Ser Val Gly Leu Thr Val Leu Gly Pro Trp Leu Leu 50 55 60

Gly Lys Ala Thr Asn Val Val Phe Glu Gly Phe Leu Ser Lys Arg Met
65 70 75 80

Pro Ala Gly Ala Ser Lys Glu Asp Ile Ile Ala Gln Leu Gln Ala Ala 85 90 95

Gly Lys His Asn Gln Ala Ser Met Met Glu Asp Met Asn Leu Val Pro 100 105 110

Gly Ser Gly Ile Asp Phe Glu Lys Leu Ala Met Ile Leu Gly Leu Val 115 120 125

Ile Gly Ala Tyr Leu Ile Gly Ser Leu Leu Ser Leu Phe Gln Ala Arg 130 135 140

Met Leu Asn Arg Ile Val Gln Ser Ala Met His Arg Leu Arg Met Glu 145 150 155 160

Val Glu Glu Lys Ile His Arg Leu Pro Leu Ser Tyr Phe Asp Ser Ile
165 170 175

Lys Arg Gly Asp Leu Leu Ser Arg Val Thr Asn Asp Val Asp Asn Ile 180 185 190

Gly Gln Ser Leu Gln Gln Thr Leu Ser Gln Ala Ile Thr Ser Leu Leu 195 200 205

Thr Val Ile Gly Val Leu Val Met Met Phe Ile Ile Ser Pro Leu Leu 210 215 220

Ala Leu Val Ala Leu Val Ser Ile Pro Val Thr Ile Val Val Thr Val
225 230 235 240

Val Val Ala Ser Arg Ser Gln Lys Leu Phe Ala Glu Gln Trp Lys Gln 245 250 255

Thr Gly Ile Leu Asn Ala Arg Leu Glu Glu Thr Tyr Ser Gly His Ala 260 265 270

Val Val Lys Val Phe Gly His Gln Lys Asp Val Gln Glu Ala Phe Glu 275 280 285

Glu Glu Asn Gln Ala Cys Val 290 295

<210> 63

<211> 426

<212> DNA

<213> Corynebacterium glutamicum

<220>

<221> CDS

<222> (1)..(426) <223> RXC00861 <400> 63 atg gct cct cac aag gtc atg ctg att acc act ggt act cag ggt gag Met Ala Pro His Lys Val Met Leu Ile Thr Thr Gly Thr Gln Gly Glu cct atg gct gcg ctg tct cgc atg gcg cgt cgt gag cac cga cag atc Pro Met Ala Ala Leu Ser Arg Met Ala Arg Arg Glu His Arg Gln Ile act gtc cgt gat gga gac ttg att atc ctt tct tcc tcc ctg gtt cca Thr Val Arg Asp Gly Asp Leu Ile Ile Leu Ser Ser Leu Val Pro 35 ggt aac gaa gaa gca gtg ttc ggt gtc atc aac atg ctg gct cag atc Gly Asn Glu Glu Ala Val Phe Gly Val Ile Asn Met Leu Ala Gln Ile 50 55 ggt gca act gtt gtt acc ggt cgc gac gcc aag gtg cac acc tcg ggc Gly Ala Thr Val Val Thr Gly Arg Asp Ala Lys Val His Thr Ser Gly 65 70 cac ggc tac tcc gga gag ctg ttg ttc ttg tac aac gcc gct cgt ccg His Gly Tyr Ser Gly Glu Leu Leu Phe Leu Tyr Asn Ala Ala Arg Pro 85 aag aac gct atg cct gtc cac ggc gag tgg cgc cac ctg cgc gcc aac Lys Asn Ala Met Pro Val His Gly Glu Trp Arg His Leu Arg Ala Asn 100 aag gaa ctg gct atc tcc act ggt gtt aac cgc gac aac gtt gtg ctt Lys Glu Leu Ala Ile Ser Thr Gly Val Asn Arg Asp Asn Val Val Leu 115 gca caa aac ggt gtt gtg gtt gat atg gtc aac ggt cgc gca 426 Ala Gln Asn Gly Val Val Asp Met Val Asn Gly Arg Ala <210> 64 <211> 142 <212> PRT <213> Corynebacterium glutamicum <400> 64 Met Ala Pro His Lys Val Met Leu Ile Thr Thr Gly Thr Gln Gly Glu Pro Met Ala Ala Leu Ser Arg Met Ala Arg Arg Glu His Arg Gln Ile 20

Gly Ala Thr Val Val Thr Gly Arg Asp Ala Lys Val His Thr Ser Gly 65 70 75 80

Thr Val Arg Asp Gly Asp Leu Ile Ile Leu Ser Ser Leu Val Pro

Gly Asn Glu Glu Ala Val Phe Gly Val Ile Asn Met Leu Ala Gln Ile

His Gly Tyr Ser Gly Glu Leu Leu Phe Leu Tyr Asn Ala Ala Arg Pro 85 Lys Asn Ala Met Pro Val His Gly Glu Trp Arg His Leu Arg Ala Asn Lys Glu Leu Ala Ile Ser Thr Gly Val Asn Arg Asp Asn Val Val Leu 125 120 115 Ala Gln Asn Gly Val Val Val Asp Met Val Asn Gly Arg Ala 130 135 <210> 65 <211> 1066 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(1066) <223> RXC00866 <400> 65 gcatcaacgt aggagatect egacttecaa ttatggetee aaatgageag gaacttgagg 60 ctctccgaga agacatgaaa aaagctggag ttctataaat atg aat gat tcc cga 115 Met Asn Asp Ser Arg aat cgc ggc cgg aag gtt acc cgc aag gcg ggc cca cca gaa gct ggt 163 Asn Arg Gly Arg Lys Val Thr Arg Lys Ala Gly Pro Pro Glu Ala Gly 10 15 cag gaa aac cat ctg gat acc cct gtc ttt cag gca cca gat gct tcc 211 Gln Glu Asn His Leu Asp Thr Pro Val Phe Gln Ala Pro Asp Ala Ser 30 25 tct aac cag agc gct gta aaa gct gag acc gcc gga aac gac aat cgg 259 Ser Asn Gln Ser Ala Val Lys Ala Glu Thr Ala Gly Asn Asp Asn Arg 45 40 307 gat gct gcg caa ggt gct caa gga tcc caa gat tct cag ggt tcc cag Asp Ala Ala Gln Gly Ala Gln Gly Ser Gln Asp Ser Gln Gly Ser Gln 60 65 aac gct caa ggt tcc cag aac cgc gag tcc gga aac aac aac cgc aac 355 Asn Ala Gln Gly Ser Gln Asn Arg Glu Ser Gly Asn Asn Asn Arg Asn 80 70 cgt tcc aac aac cgt cgc ggt ggt cgt gga cgt cgt gga tcc gga 403 Arg Ser Asn Asn Arg Arg Gly Gly Arg Gly Arg Gly Ser Gly 90 95 aac gcc aat gag ggc gcg aac aac agc ggt aac cag aac cgt cag 451 Asn Ala Asn Glu Gly Ala Asn Asn Asn Ser Gly Asn Gln Asn Arg Gln 115 105 110 499 ggc gga aac cgt ggc aac cgc ggt ggc gga cgc cga aac gtt gtt aag Gly Gly Asn Arg Gly Asn Arg Gly Gly Gly Arg Arg Asn Val Lys

1	20			125					130				
tcg atg c Ser Met G 135			_		_	_	_					_	547
gca ccg g Ala Pro A 150			-			_						-	595
atc ggt c		-			_				-	_			643
gtg gac to Val Asp C												-	691
ctg att c Leu Ile L													739
gat gca t Asp Ala Lo 215		-				_	_				_		787
ccc tgg c Pro Trp Lo 230													835
ttc acc to		-	_	_	_	_	_	-		_	_	_	883
ccg aag c Pro Lys Le	-				_				_	_		_	931
ttc aac at Phe Asn II 28											-		979
ggt ctt go	ct atc	aag act	cct	gct	ggt	ttg	gtc	atc	cac	acc	ggt	gac	
Gly Leu Al 295	la Ile	Lys Thr	Pro 300	Ala	Gly	Leu	Val	Ile 305	His	Thr	Gly	Asp	
atc aag ct 1066	tg gat	cag act	cct	cct	gat	gga	cgc	cca	act				
Ile Lys Le	eu Asp	Gln Thr 315	Pro	Pro	Asp	Gly	Arg 320	Pro	Thr				
<210> 66													

<210> 66

<211> 322

<212> PRT

<213> Corynebacterium glutamicum

<400> 66

Met Asn Asp Ser Arg Asn Arg Gly Arg Lys Val Thr Arg Lys Ala Gly 1 5 10 15

Pro	Pro	Glu	Ala 20	Gly	Gln	Glu	Asn	His 25	Leu	Asp	Thr	Pro	Val 30	Phe	Gln
Ala	Pro	Asp 35	Ala	Ser	Ser	Asn	Gln 40	Ser	Ala	Val	Lys	Ala 45	Glu	Thr	Ala
Gly	Asn 50	Asp	Asn	Arg	Asp	Ala 55	Ala	Gln	Gly	Ala	Gln 60	Gly	Ser	Gln	Asp
Ser 65	Gln	Gly	Ser	Gln	Asn 70	Ala	Gln	Gly	Ser	Gln 75	Asn	Arg	Glu	Ser	Glу 80
Asn	Asn	Asn	Arg	Asn 85	Arg	Ser	Asn	Asn	Asn 90	Arg	Arg	Gly	Gly	Arg 95	Gly
Arg	Arg	Gly	Ser 100	Gly	Asn	Ala	Asn	Glu 105	Gly	Ala	Asn	Asn	Asn 110	Ser	Gly
Asn	Gln	Asn 115	Arg	Gln	Gly	Gly	Asn 120	Arg	Gly	Asn	Arg	Gly 125	Gly	Gly	Arg
Arg	Asn 130	Val	Val	Lys	Ser	Met 135	Gln	Gly	Ala	Asp	Leu 140	Thr	Gln	Arg	Leu
Pro 145	Glu	Pro	Pro	Lys	Ala 150	Pro	Ala	Asn	Gly	Leu 155	Arg	Ile	Tyr	Ala	Leu 160
Gly	Gly	Ile	Ser	Glu 165	Ile	Gly	Arg	Asn	Met 170	Thr	Val	Phe	Glu	Tyr 175	Asn
Asn	Arg	Leu	Leu 180	Ile	Val	Asp	Cys	Gly 185	Val	Leu	Phe	Pro	Ser 190	Ser	Gly
		195					Leu 200					205			
	210					215	Leu				220				
225					230		Leu	•		235					240
Ile	Leu	Ala	Ser	Arg 245	Phe	Thr	Leu	Ala	Leu 250	Ile	Ala	Ala	Lys	Cys 255	Lys
Glu	His	Arg	Gln 260	Arg	Pro	Lys	Leu	Ile 265	Glu	Val	Asn	Glu	Gln 270	Ser	Asn
Glu	Asp	Arg 275	Gly	Pro	Phe	Asn	Ile 280	Arg	Phe	Trp	Ala	Val 285	Asn	His	Ser
Ile	Pro 290	Asp	Cys	Leu	Gly	Leu 295	Ala	Ile	Lys	Thr	Pro 300	Ala	Gly	Leu	Val
Ile 305	His	Thr	Gly	Asp	Ile 310	Lys	Leu	Asp	Gln	Thr 315	Pro	Pro	Asp	Gly	Arg 320
Pro	Thr														

<21 <21	.0> 6 .1> 1 .2> 1 .3> 0	.527 DNA	nebad	cteri	ium o	gluta	amicu	ım								
<22 <22 <22	<220> <221> CDS <222> (101)(1504) <223> RXC02095 <400> 67															
		-	ccto	tccc	ca c	ccat	tttt	a ag	rtact	caag	, acc	cttc	caa	caga	ıaaggal	60
tac	tccc	cca	acag	igcto	aa a	aata	ctga	a aç	gete	acgo		Lys				115
tcc Ser	caa Gln	aaa Lys	gca Ala	caa Gln 10	Leu	gcc Ala	cct Pro	aag Lys	aaa Lys 15	Ala	cct Pro	gaa Glu	aag Lys	cca Pro 20	Gln	163
cgc Arg	atc Ile	cgc Arg	Caa Gln 25	ctt Leu	att Ile	tcc Ser	gtg Val	gcg Ala 30	tgg Trp	cag Gln	cga Arg	cct Pro	tgg Trp 35	Leu	acc Thr	211
tca Ser	ttc Phe	acc Thr 40	Val	atc Ile	agc Ser	gct Ala	tta Leu 45	gct Ala	gca Ala	acg Thr	ttg Leu	ttt Phe 50	gaa Glu	ctt Leu	aca Thr	259
ctt Leu	cct Pro 55	ctt Leu	ttg Leu	acc Thr	ggt Gly	ggc Gly 60	gcc Ala	atc Ile	gat Asp	atc Ile	gcg Ala 65	ctc Leu	gga Gly	aat Asn	acc Thr	307
gga Gly 70	gat Asp	act Thr	tta Leu	acc Thr	act Thr 75	gac Asp	ctg Leu	ctg Leu	gac Asp	cgg Arg 80	ttc Phe	act Thr	ccg Pro	agt Ser	gga Gly 85	355
tta Leu	agc Ser	gtg Val	ttg Leu	acc Thr 90	agc Ser	gtc Val	att Ile	gcc Ala	ctt Leu 95	atc Ile	gtg Val	ctt Leu	ctc Leu	gcg Ala 100	ttg Leu	403
ctt Leu	cgc Arg	tat Tyr	gcc Ala 105	agt Ser	caa Gln	ttt Phe	gga Gly	cgg Arg 110	cga Arg	tac Tyr	acc Thr	gca Ala	ggc Gly 115	aag Lys	ctc Leu	451
agc Ser	atg Met	ggg Gly 120	gta Val	cag Gln	cat His	gat Asp	gtc Val 125	cgg Arg	ctt Leu	aaa Lys	acg Thr	atg Met 130	cgc Arg	tca Ser	ttg Leu	499
Gln	aac Asn 135	ctc Leu	gat Asp	gly ggg	cca Pro	ggt Gly 140	cag Gln	gac Asp	tct Ser	att Ile	cgc Arg 145	aca Thr	ggc Gly	caa Gln	gta Val	547
gtc Val 150	agt Ser	cgg Arg	tcc Ser	att Ile	tcg Ser 155	gat Asp	atc Ile	aac Asn	atg Met	gtg Val 160	caa Gln	agc Ser	ctt Leu	gtg Val	gcg Ala 165	595
atg Met	ttg Leu	ccg Pro	atg Met	ttg Leu 170	atc Ile	gga Gly	aat Asn	gtg Val	gtc Val 175	aag Lys	ctt Leu	gtg Val	ctc Leu	act Thr 180	ttg Leu	643

gtg Val	atc Ile	atg Met	ctg Leu 185	gct Ala	att Ile	tcc Ser	ccg Pro	ccg Pro 190	ctg Leu	acc Thr	atc Ile	atc Ile	gct Ala 195	gca Ala	gtg Val	691
ttg Leu	gtg Val	cct Pro 200	ttg Leu	ctg Leu	ttg Leu	tgg Trp	gcc Ala 205	gtg Val	gcc Ala	tat Tyr	tcg Ser	cga Arg 210	aaa Lys	gcg Ala	ctt Leu	739
ttt Phe	gcg Ala 215	tcc Ser	acg Thr	tgg Trp	tcg Ser	gcc Ala 220	cag Gln	caa Gln	aag Lys	gct Ala	gcg Ala 225	gat Asp	ctg Leu	acc Thr	act Thr	787
cat His 230	gtg Val	gaa Glu	gaa Glu	act Thr	gtc Val 235	acg Thr	ggt Gly	atc Ile	cgc Arg	gtg Val 240	gtc Val	aag Lys	gca Ala	ttt Phe	gcg Ala 245	835
cag Gln	gaa Glu	gac Asp	cgc Arg	gag Glu 250	acc Thr	gac Asp	aaa Lys	ttg Leu	gat Asp 255	ctc Leu	acc Thr	gca Ala	cgt Arg	gag Glu 260	tta Leu	883
ttt Phe	gcc Ala	cag Gln	cgc Arg 265	atg Met	cgc Arg	act Thr	gca Ala	cgt Arg 270	ctg Leu	acg Thr	gca Ala	aag Lys	ttc Phe 275	atc Ile	ccc Pro	931
atg Met	gtt Val	gag Glu 280	cag Gln	ctt Leu	ccg Pro	cag Gln	ctt Leu 285	gct Ala	ttg Leu	gtg Val	gtc Val	aac Asn 290	att Ile	gtt Val	ggc Gly	979
ggt 102		tat	ttg	gcc	atg	act	ggt	cac	atc	acg	gtg	ggc	acg	ttt	gtg	
		Tyr	Leu	Ala	Met	Thr 300	Gly	His	Ile	Thr	Val 305	Gly	Thr	Phe	Val	
gcg 107!		tct	tcc	tat	ctc	act	agc	ttg	tcg	gcg	gtg	gct	agg	tcc	ctg	
		Ser	Ser	Tyr	Leu 315	Thr	Ser	Leu	Ser	Ala 320	Val	Ala	Arg	Ser	Leu 325	
tcg 112		atg	ctc	atg	cgc	gtg	cag	ttg	gcg	ctg	tct	tct	gtg	gag	cgc	
		Met	Leu	Met 330	Arg	Val	Gln	Leu	Ala 335	Leu	Ser	Ser	Val	Glu 340		
atc 117		gaa	gtc	att	gat	ctt	cag	cct	gaa	cgc	acc	gat	cct	gca	cac	
		Glu	Val 345	Ile	Asp	Leu	Gln	Pro 350	Glu	Arg	Thr	Asp	Pro 355	Ala	His	
ccc 121	-	tca	ctt	၁၁၁	gac	act	ccc	ctg	ggt	ctg	tcg	ttc	aac	aac	gta	
		Ser 360		Pro	Asp	Thr	Pro 365		Gly	Leu	Ser	Phe 370	Asn	Asn	Val	
gat 126		cgt	ggg	att	ctc	aac	ggt	ttt	gag	ctg	ggt	gtt	cag	gcc	ggt	
		Arg	Gly	Ile	Leu	Asn 380		Phe	Glu	Leu	Gly 385		Gln	Ala	Gly	
gaa 131		gtt	gtg	ttg	gtg	ggc	cct	cca	ggt	tca	ggc	aag	acc	atg	gct	

Glu Thr Val Val Leu Val Gly Pro Pro Gly Ser Gly Lys Thr Met Ala 390 395 400 400

gtg cag ctt gct gga aac ttt tat caa cca gac agc ggc cac atc gcc 1363

Val Gln Leu Ala Gly Asn Phe Tyr Gln Pro Asp Ser Gly His Ile Ala 410 415 420

ttt gat agc aac ggc cat cgc act cgc ttc gac gac ctc acc cac agc 1411

Phe Asp Ser Asn Gly His Arg Thr Arg Phe Asp Asp Leu Thr His Ser 425 430 435

gat atc cgc agg aat ctc atc gcg gtt ttt gat gag ccg ttc ttg tac 1459

Asp Ile Arg Arg Asn Leu Ile Ala Val Phe Asp Glu Pro Phe Leu Tyr 440 445 450

tcc tcc tcc ata ccg cga gaa cat ctc gat ggg ttt gga tgt cag 1504

Ser Ser Ser Ile Pro Arg Glu His Leu Asp Gly Phe Gly Cys Gln 455 460 465

tgatgagcag atcgaacacg cag 1527

<210> 68

<211> 468

<212> PRT

<213> Corynebacterium glutamicum

<400> 68

Met Lys Thr Glu Gln Ser Gln Lys Ala Gln Leu Ala Pro Lys Lys Ala 1 5 10 15

Pro Glu Lys Pro Gln Arg Ile Arg Gln Leu Ile Ser Val Ala Trp Gln 20 25 30

Arg Pro Trp Leu Thr Ser Phe Thr Val Ile Ser Ala Leu Ala Ala Thr 35 40 45

Leu Phe Glu Leu Thr Leu Pro Leu Leu Thr Gly Gly Ala Ile Asp Ile 50 55 60

Ala Leu Gly Asn Thr Gly Asp Thr Leu Thr Thr Asp Leu Leu Asp Arg 65 70 75 80

Phe Thr Pro Ser Gly Leu Ser Val Leu Thr Ser Val Ile Ala Leu Ile 85 90 95

Val Leu Leu Ala Leu Leu Arg Tyr Ala Ser Gln Phe Gly Arg Arg Tyr
100 105 110

Thr Ala Gly Lys Leu Ser Met Gly Val Gln His Asp Val Arg Leu Lys 115 120 125

Thr Met Arg Ser Leu Gln Asn Leu Asp Gly Pro Gly Gln Asp Ser Ile 130 135 140

Arg Thr Gly Gln Val Val Ser Arg Ser Ile Ser Asp Ile Asn Met Val

145					150					155					160
Gln	Ser	Leu	Val	Ala 165	Met	Leu	Pro	Met	Leu 170	Ile	Gly	Asn	Val	Val 175	Lys
Leu	Val	Leu	Thr 180	Leu	Val	Ile	Met	Leu 185	Ala	Ile	Ser	Pro	Pro 190	Leu	Thr
Ile	Ile	Ala 195	Ala	Val	Leu	Val	Pro 200	Leu	Leu	Leu	Trp	Ala 205	Val	Ala	Tyr
Ser	Arg 210	Lys	Ala	Leu	Phe	Ala 215	Ser	Thr	Trp	Ser	Ala 220	Gln	Gln	Lys	Ala
Ala 225	Asp	Leu	Thr	Thr	His 230	Val	Glu	Glu	Thr	Val 235	Thr	Gly	Ile	Arg	Val 240
Val	Lys	Ala	Phe	Ala 245	Gln	Glu	Asp	Arg	Glu 250	Thr	Asp	Lys	Leu	Asp 255	Leu
Thr	Ala	Arg	Glu 260	Leu	Phe	Ala	Gln	Arg 265	Met	Arg	Thr	Ala	Arg 270	Leu	Thr
Ala	Lys	Phe 275	Ile	Pro	Met	Val	Glu 280	Gln	Leu	Pro	Gln	Leu 285	Ala	Leu	Val
	290					295			Ala		300				
305					310				Tyr	315					320
				325					Met 330					335	
			340					345	Ile				350		
		355					360		Pro			365			
Ser	Phe 370	Asn	Asn	Val	Asp	Phe 375	Arg	Gly	Ile	Leu	Asn 380	Gly	Phe	Glu	Leu
Gly 385	Val	Gln	Ala	Gly	Glu 390	Thr	Val	Val	Leu	Val 395		Pro	Pro	Gly	Ser 400
Gly	Lys	Thr	Met	Ala 405		Gln	Leu	Ala	Gly 410	Asn	Phe	Tyr	Gln	Pro 415	Asp
Ser	Gly	His	Ile 420		Phe	Asp	Ser	Asn 425	Gly	His	Arg	Thr	Arg 430	Phe	Asp
Asp	Leu	Thr 435		Ser	Asp	Ile	Arg 440		Asn	Leu	Ile	Ala 445		Phe	Asp
Glu	Pro 450		Leu	Tyr	Ser	Ser 455		Ile	Pro	Arg	Glu 460		Leu	Asp	Gly
Phe	_	Cys	Gln	L											

```
<210> 69
<211> 295
<212> DNA
<213> Corynebacterium glutamicum
<220>
<221> CDS
<222> (84)..(272)
<223> RXC03185
<400> 69
agegeceaac egtteagace ageggtttet etgaggatge aaagteeatg atgggtnagg 60
tcactgaget gtccgaaacc accatg aat gat ett gea get gaa ggt gaa aac
                         Met Asn Asp Leu Ala Ala Glu Gly Glu Asn
gat cct tac cgc atg gtt cag cag ctg cgc cgc aag ctc tct cgc ttc
Asp Pro Tyr Arg Met Val Gln Gln Leu Arg Arg Lys Leu Ser Arg Phe
                                                                   209
gtc gag cag aag tgg aag cgc cag ccg gtc atc atg cca acc gtc att
Val Glu Gln Lys Trp Lys Arg Gln Pro Val Ile Met Pro Thr Val Ile
                                 35
ccg atg act gcg gaa acc acg cac atc ggt gac gat gag gtt cgc gct
                                                                   257
Pro Met Thr Ala Glu Thr Thr His Ile Gly Asp Asp Glu Val Arg Ala
tca cgc gag tcc ctg taaaagcatt tcgcttttcg acg
                                                                   295
Ser Arg Glu Ser Leu
     60
<210> 70
<211> 63
<212> PRT
<213> Corynebacterium glutamicum
Met Asn Asp Leu Ala Ala Glu Gly Glu Asn Asp Pro Tyr Arg Met Val
Gln Gln Leu Arg Arg Lys Leu Ser Arg Phe Val Glu Gln Lys Trp Lys
             20
                                 25
                                                      30
Arg Gln Pro Val Ile Met Pro Thr Val Ile Pro Met Thr Ala Glu Thr
Thr His Ile Gly Asp Asp Glu Val Arg Ala Ser Arg Glu Ser Leu
                         55
<210> 71
<211> 4653
<212> DNA
<213> Corynebacterium glutamicum
<220>
```

100

BNSDOCID: <WO 0100843A2 I >

<221> CDS <222> (101)..(4630) <223> RXN00367 <400> 71 atcgaaagta accettttgt tacttgegtt geaggtagtg teeetgattt tettattate 60 gaacgattga tagaaacagg attaaagtga ggtatcccgc atg aaa cca caa gga 115 Met Lys Pro Gln Gly ctc tac aac cct gcg cat gaa cat gac gcc tgc ggt gtg gcg ttt att 163 Leu Tyr Asn Pro Ala His Glu His Asp Ala Cys Gly Val Ala Phe Ile 211 gcg gat atc cac ggt cga ccc agc cgc agc att gtt gat cgt gca ctt Ala Asp Ile His Gly Arg Pro Ser Arg Ser Ile Val Asp Arg Ala Leu 259 gag gcg ctt cgc aac att gac cac cga ggt gcc gcc ggt gca gag aag Glu Ala Leu Arg Asn Ile Asp His Arg Gly Ala Ala Gly Ala Glu Lys 45 aac act ggc gat ggg ggc atc ctc atg cag att ccg gac ggc ttt 307 Asn Thr Gly Asp Gly Ala Gly Ile Leu Met Gln Ile Pro Asp Gly Phe 60 355 tat cqt gaa gta tct ggc att gag ctt cct gag gca ggg gag tat gcc Tyr Arg Glu Val Ser Gly Ile Glu Leu Pro Glu Ala Gly Glu Tyr Ala 80 act ggt att gcg ttc ttg cct cgc ggt cgc atg gcg atg gat gct 403 Thr Gly Ile Ala Phe Leu Pro Arg Gly Arg Met Ala Met Met Asp Ala cag aag gaa att gag cgc atc gca aag caa gaa ggt gcc gat gtg ctt 451 Gln Lys Glu Ile Glu Arg Ile Ala Lys Gln Glu Gly Ala Asp Val Leu 105 ggt tgg cgc atg gtt cct ttt gat tct cgt gat ttg ggt tcc atg gct 499 Gly Trp Arg Met Val Pro Phe Asp Ser Arg Asp Leu Gly Ser Met Ala 120 125 gag gag gcg atg cct agt ttc gcg cag att ttc ctt act gtg cct gga 547 Glu Glu Ala Met Pro Ser Phe Ala Gln Ile Phe Leu Thr Val Pro Gly 140 135 aaa tot ggt gaa gat ott gac ogt gtg atg tto ttt atc ogt aag ogt 595 Lys Ser Gly Glu Asp Leu Asp Arg Val Met Phe Phe Ile Arg Lys Arg 160 165 150 155 tgt gag cgt gag ctg ggc acc acc aat ggt cgc gat acg gtg tat ttc Cys Glu Arg Glu Leu Gly Thr Thr Asn Gly Arg Asp Thr Val Tyr Phe 170 180 ccg tcg cta tct tca cgc acc atc att tac aaa ggc atg ttg acc act 691 Pro Ser Leu Ser Ser Arg Thr Ile Ile Tyr Lys Gly Met Leu Thr Thr 185 ctg cag ctt gag ggc ttc ttt gag gat ctg ggt gat gct cgc ctg gag Leu Gln Leu Glu Gly Phe Phe Glu Asp Leu Gly Asp Ala Arg Leu Glu

200 205 210 teg gee att get att gtg eac teg egt tte tee aeg aac act tte eea 787 Ser Ala Ile Ala Ile Val His Ser Arg Phe Ser Thr Asn Thr Phe Pro 215 220 age tgg ccg ctg gcg cac ccg tac cgt ttc gtt gcc cac aac ggt gag Ser Trp Pro Leu Ala His Pro Tyr Arg Phe Val Ala His Asn Gly Glu 230 atc aac act gtg cgt ggc aat gaa aac tgg atg cgc gcc cgc gag gcg Ile Asn Thr Val Arg Gly Asn Glu Asn Trp Met Arg Ala Arg Glu Ala 250 255 260 ctt atc aaa aac gac aag ctg ggc aat ttg agc agc gtg ctg cct atc 931 Leu Ile Lys Asn Asp Lys Leu Gly Asn Leu Ser Ser Val Leu Pro Ile 265 270 275 tgc acc ccg gag ggc tcg gat acc gcg cgt ttc gac gag gct ttg gag 979 Cys Thr Pro Glu Gly Ser Asp Thr Ala Arg Phe Asp Glu Ala Leu Glu 280 285 290 ctt ttg cac ctg ggc gga tac tca ctt ccg cat gct gtt gcg atg atg Leu Leu His Leu Gly Gly Tyr Ser Leu Pro His Ala Val Ala Met Met 300 atc cct cag gcg tgg gaa cac aac aag acg ctg agc cct gag ctg cgt Ile Pro Gln Ala Trp Glu His Asn Lys Thr Leu Ser Pro Glu Leu Arg 310 • 315 320 gat ttc tac gaa tac cac tct tgt ctg atg gag cca tgg gat ggt cct 1123 Asp Phe Tyr Glu Tyr His Ser Cys Leu Met Glu Pro Trp Asp Gly Pro 330 335 gca gcg ctg gca ttt act gac ggt cgt ttt gtg ggt gcc gtg ctg gac 1171 Ala Ala Leu Ala Phe Thr Asp Gly Arg Phe Val Gly Ala Val Leu Asp 345 350 cgt aat ggc ctg cga cct ggg cga atc acc att act gat tcg ggt ttg Arg Asn Gly Leu Arg Pro Gly Arg Ile Thr Ile Thr Asp Ser Gly Leu 360 365 gtt gtg atg gct tct gaa tcg gga gtg ttg gac ttg agg gag gag agc 1267 Val Val Met Ala Ser Glu Ser Gly Val Leu Asp Leu Arg Glu Glu Ser 380 gtc gta aag cgt act cgc gta cag cct gga cgc atg ttc ctt gtt gac Val Val Lys Arg Thr Arg Val Gln Pro Gly Arg Met Phe Leu Val Asp 390 395 act gcc gag ggc cgc atc gtt gaa gac gag gaa atc aag cag aaa tta Thr Ala Glu Gly Arg Ile Val Glu Asp Glu Glu Ile Lys Gln Lys Leu

415

420

410

age gaa geg cag eea tat ggt gag tgg att ege gat aat tit gig eat 1411 Ser Glu Ala Gln Pro Tyr Gly Glu Trp Ile Arg Asp Asn Phe Val His 425 ctg gat cgt ctg cct cag aca cgc tac aac tac atg gcg cac tct cgt 1459 Leu Asp Arg Leu Pro Gln Thr Arg Tyr Asn Tyr Met Ala His Ser Arg 440 gct gtg ttg cgt cag cgt gtt ttc gga atc act gaa gaa gat gtg gat 1507 Ala Val Leu Arg Gln Arg Val Phe Gly Ile Thr Glu Glu Asp Val Asp 455 460 ttg ttg ctg ctg ccg atg gcc cgc cag ggt gct gag gcg att ggt tcc 1555 Leu Leu Leu Pro Met Ala Arg Gln Gly Ala Glu Ala Ile Gly Ser 480 470 atg ggt tcg gat acg cca att gcg gcg cta tcc cag cga cca cgc atg 1603 Met Gly Ser Asp Thr Pro Ile Ala Ala Leu Ser Gln Arg Pro Arg Met 495 500 490 ctt tat gat ttc ttc gcg cag cgc ttt gct cag gtg aca aac cca ccg 1651 Leu Tyr Asp Phe Phe Ala Gln Arg Phe Ala Gln Val Thr Asn Pro Pro 505 ttg gac tct atc cgc gaa aag cct gtg acc agc atg ttc act ttg ttg 1699 Leu Asp Ser Ile Arg Glu Lys Pro Val Thr Ser Met Phe Thr Leu Leu 520 525 ggt gcg cag tct gac gtg ctc aat ccg ggt cct gat gcg gcg cga cgt 1747 Gly Ala Gln Ser Asp Val Leu Asn Pro Gly Pro Asp Ala Ala Arg Arg 540 535 atc cgt ttg gaa tcg ccg atc att gat aac cat gag ctg gcc acc ttg Ile Arg Leu Glu Ser Pro Ile Ile Asp Asn His Glu Leu Ala Thr Leu atc aat gcc aac gcg cat ggt gag tgg gat tcc ttt ggt gct gct gta Ile Asn Ala Asn Ala His Gly Glu Trp Asp Ser Phe Gly Ala Ala Val 575 570 att tct ggt ttg tac cca gtg gct cac cat ggt gcc ggc atg aag gct 1891 Ile Ser Gly Leu Tyr Pro Val Ala His His Gly Ala Gly Met Lys Ala 585 590 gcg att gct cgt gtg cgc cgc gag gtt tct gaa gca atc cgc aat ggc 1939 Ala Ile Ala Arg Val Arg Arg Glu Val Ser Glu Ala Ile Arg Asn Gly 610 605 600

aag acg ttg atc gtg ctg tcg gat cgt gaa tct gat gag cgc atg gca 1987 Lys Thr Leu Ile Val Leu Ser Asp Arg Glu Ser Asp Glu Arg Met Ala 620 cct atc cct gcg ctg ctg act tcc gct gtg cat cag tac ttg gtg Pro Ile Pro Ala Leu Leu Thr Ser Ala Val His Gln Tyr Leu Val cag caa cgt acc cgt acc cag tgc tcc ctg gtg gtg gaa tcc ggc gat 2083 Gln Gln Arg Thr Arg Thr Gln Cys Ser Leu Val Val Glu Ser Gly Asp gcc cgc gag gtt cat cac ctg gcg atg ctc att ggt ttt ggt gcc gat 2131 Ala Arg Glu Val His His Leu Ala Met Leu Ile Gly Phe Gly Ala Asp 665 670 gcg atc aac ccg tac atg gca ttt gaa acc atc gat gag ctg cgc atg 2179 Ala Ile Asn Pro Tyr Met Ala Phe Glu Thr Ile Asp Glu Leu Arg Met aag ggt cag ttg ggt gat ctt tct ttg gat gag gca tcc cga aac tac Lys Gly Gln Leu Gly Asp Leu Ser Leu Asp Glu Ala Ser Arg Asn Tyr 700 695 atc aag gca gcc acc act ggt gtg ctg aag gtg atg tcc aag atg ggc Ile Lys Ala Ala Thr Thr Gly Val Leu Lys Val Met Ser Lys Met Gly 715 att gca acg gtg tct tcg tac cgt ggc gcg cag ctt gcc gat gtc act 2323 Ile Ala Thr Val Ser Ser Tyr Arg Gly Ala Gln Leu Ala Asp Val Thr 730 735 740 ggt ctg cac cag gat ctc ctg gac aac tac ttc ggt ggt att gct tca 2371 Gly Leu His Gln Asp Leu Leu Asp Asn Tyr Phe Gly Gly Ile Ala Ser 745 750 cca att tct ggc atc ggt ctg gat gaa gtt gca gct gac gta gaa gct 2419 Pro Ile Ser Gly Ile Gly Leu Asp Glu Val Ala Ala Asp Val Glu Ala 760 765 770 cgt cac cgc agc gca ttt ttg cca cgc cct gaa gag cac gct cac cgt Arg His Arg Ser Ala Phe Leu Pro Arg Pro Glu Glu His Ala His Arg 775 780 785 gaa ttg gat ttg ggt ggt gaa tac aag tgg cgc cgc gaa ggt gaa tac 2515 Glu Leu Asp Leu Gly Gly Glu Tyr Lys Trp Arg Arg Glu Gly Glu Tyr 790 795 800 805

cac ctg ttc aac cca gaa acc atc ttc aag ctg cag cat gca acg cgt 2563 His Leu Phe Asn Pro Glu Thr Ile Phe Lys Leu Gln His Ala Thr Arg 810 tct ggc agc tac gag att ttc aag gat tac acc cgc aag gtt gat gat 2611 Ser Gly Ser Tyr Glu Ile Phe Lys Asp Tyr Thr Arg Lys Val Asp Asp 825 830 caa too act ogo ttg ggt act att ogt gga ctg ttt gag tto ago acg 2659 Gln Ser Thr Arg Leu Gly Thr Ile Arg Gly Leu Phe Glu Phe Ser Thr gac cgc aag cca att tcg gtg tct gag gtg gag ccg gtc agt gag atc 2707 Asp Arg Lys Pro Ile Ser Val Ser Glu Val Glu Pro Val Ser Glu Ile 865 855 gtg aag cgt ttc tcc act ggt gcg atg tct tat ggc tcg att tct gct 2755 Val Lys Arg Phe Ser Thr Gly Ala Met Ser Tyr Gly Ser Ile Ser Ala 880 875 gaa gcc cat gag gtc ttg gcc atc gcc atg aac cga ctg ggc ggt atg 2803 Glu Ala His Glu Val Leu Ala Ile Ala Met Asn Arg Leu Gly Gly Met 900 890 tec aac tee gge gaa ggt gge gag gae gee ege ega tit gat gtg gaa Ser Asn Ser Gly Glu Gly Glu Asp Ala Arg Arg Phe Asp Val Glu 910 905 ccc aac ggt gac tgg aag cgc tct gcc att aag cag gtg gcc tcg gga Pro Asn Gly Asp Trp Lys Arg Ser Ala Ile Lys Gln Val Ala Ser Gly cqt ttc ggc gtg acc agc cac tac ttg aac aac tgc acc gat att cag Arg Phe Gly Val Thr Ser His Tyr Leu Asn Asn Cys Thr Asp Ile Gln 935 940 atc aag atg gca cag ggc gca aag ccc ggt gaa ggt ggc cag ctg cca Ile Lys Met Ala Gln Gly Ala Lys Pro Gly Glu Gly Gln Leu Pro 955 cca aac aag gtg tac cca tgg gtt gca gaa gtc cgc atc acc cca 3043 Pro Asn Lys Val Tyr Pro Trp Val Ala Glu Val Arg Ile Thr Thr Pro 975 970 ggc gtt ggt ctg att tcc cct cca cca cac cac gat att tac tcc att 3091 Gly Val Gly Leu Ile Ser Pro Pro Pro His His Asp Ile Tyr Ser Ile 995 985 990

gag gat ctg gct cag ctg atc cac gac ctg aag aac gct aac cca cgc 3139

- Glu Asp Leu Ala Gln Leu Ile His Asp Leu Lys Asn Ala Asn Pro Arg 1000 1005 1010
- gca cga atc cac gtg aag cta gtg gca gaa caa ggc gtg ggc acc gtt 3187
- Ala Arg Ile His Val Lys Leu Val Ala Glu Gln Gly Val Gly Thr Val 1015 1020 1025
- gcc gca ggt gtg tcc aaa gca cac gct gat gtg gtg ctt att tcc ggc 3235
- Ala Ala Gly Val Ser Lys Ala His Ala Asp Val Val Leu Ile Ser Gly 1030 1040 1045
- cac gat ggc gga act ggc gca tct cct ttg acc tcc ctg aag cat gcc 3283
- His Asp Gly Gly Thr Gly Ala Ser Pro Leu Thr Ser Leu Lys His Ala 1050 1055 1060
- ggt ggt cca tgg gag ttg ggc ttg gct gaa acc cag caa acg ttg ctg 3331
- Gly Gly Pro Trp Glu Leu Gly Leu Ala Glu Thr Gln Gln Thr Leu Leu 1065 1070 1075
- ctc aac ggc ctg cgc gat cgt att cgc gtg cag tgc gat ggt cag ctg 3379
- Leu Asn Gly Leu Arg Asp Arg Ile Arg Val Gln Cys Asp Gly Gln Leu 1080 1085 1090
- aaa act ggc cga gac gtg gtt atc gca gct ctt ctc ggt gcc gaa gaa 3427
- Lys Thr Gly Arg Asp Val Val Ile Ala Ala Leu Leu Gly Ala Glu Glu 1095 1100 1105
- ttc ggt ttt gcc acc gca ccg ctg gtg gtt gaa ggc tgc atc atg atg 3475
- Phe Gly Phe Ala Thr Ala Pro Leu Val Val Glu Gly Cys Ile Met Met 1110 1125 1120 1125
- cgc gtc tgc cac ctg gac acc tgc ccg gtg ggt atc gct acc cag aac 3523
- Arg Val Cys His Leu Asp Thr Cys Pro Val Gly Ile Ala Thr Gln Asn 1130 1135 1140
- ccg gat ttg cgt tcc aag ttc acc ggc aag gct gaa cac gtg gtc aac 3571
- Pro Asp Leu Arg Ser Lys Phe Thr Gly Lys Ala Glu His Val Val Asn 1145 1150 1155
- ttc ttc acc ttc atc gcc cag gaa gtc cgt gag tac ttg gca cag ctt 3619
- Phe Phe Thr Phe Ile Ala Gln Glu Val Arg Glu Tyr Leu Ala Gln Leu 1160 1165 1170
- ggt ttc cgc tct att gat gaa gcc gtc gga caa gcc cag gtg ctg cgc
- Gly Phe Arg Ser Ile Asp Glu Ala Val Gly Gln Ala Gln Val Leu Arg 1175 1180 1185

aag cgt tcc gga atc cca gct gat tcc cgc gca gca cac ctg gat ttg 3715 Lys Arg Ser Gly Ile Pro Ala Asp Ser Arg Ala Ala His Leu Asp Leu 1195 1200 1190 agc cca att ttc cat cgc cca gaa act cca cac ttc cca act cag gat 3763 Ser Pro Ile Phe His Arg Pro Glu Thr Pro His Phe Pro Thr Gln Asp 1220 1210 1215 gtg cgt tgc acc aag acc cag gaa cac agc cta gaa aaa gcc ctg gac 3811 Val Arg Cys Thr Lys Thr Gln Glu His Ser Leu Glu Lys Ala Leu Asp 1230 1225 aac gca ttt att gat aag gct tcg gac acg atc acc cgt gcc gca gcg 3859 Asn Ala Phe Ile Asp Lys Ala Ser Asp Thr Ile Thr Arg Ala Ala Ala 1250 1240 ggt gtg gaa acc agc att gtt att gat agc tcc atc agc aac gtc aac 3907 Gly Val Glu Thr Ser Ile Val Ile Asp Ser Ser Ile Ser Asn Val Asn 1260 1255 cgt tca gtt ggc acg atg ctg ggt tct gca gtc agc cgc gtg gct ggt Arg Ser Val Gly Thr Met Leu Gly Ser Ala Val Ser Arg Val Ala Gly 1285 1270 gcc caa ggt ttg cca gac ggc acc atc acc ttg aat ctt caa ggc tgc Ala Gln Gly Leu Pro Asp Gly Thr Ile Thr Leu Asn Leu Gln Gly Cys 1295 1290 gcc ggt aac tcc ttt ggc gcg ttc atc cca cga ggc atc acc atc aac Ala Gly Asn Ser Phe Gly Ala Phe Ile Pro Arg Gly Ile Thr Ile Asn 1305 ctc acc ggc gat gcc aat gac ttt gtg ggc aag gga tta tct ggc gga Leu Thr Gly Asp Ala Asn Asp Phe Val Gly Lys Gly Leu Ser Gly Gly 1320 1325 aag att gtg atc aag cct tcc gct cag gct ccg aag cag ctg aag aac Lys Ile Val Ile Lys Pro Ser Ala Gln Ala Pro Lys Gln Leu Lys Asn aat cca aat atc att gcc gga aac gtg ctt gga tac ggc gca acc agt Asn Pro Asn Ile Ile Ala Gly Asn Val Leu Gly Tyr Gly Ala Thr Ser 1360 1365 1355 1350 ggt gaa ttg ttc att cgt ggc cag gtc ggc gaa cgt ttc tgc gtc cgt

1375

1380

Gly Glu Leu Phe Ile Arg Gly Gln Val Gly Glu Arg Phe Cys Val Arg

1370

aac tot ggc gcc acc gca gtg gtt gaa ggt atc gga aac cac ggt tgt 4291

Asn Ser Gly Ala Thr Ala Val Val Glu Gly Ile Gly Asn His Gly Cys 1385 1390 1395

gag tac atg act ggc ggc cga gtc ctg gtt ttg ggc ccg gtt ggt gag 4339

Glu Tyr Met Thr Gly Gly Arg Val Leu Val Leu Gly Pro Val Gly Glu 1400 1405 1410

aac ttt ggt gcc ggc atg tct ggt ggc att gca tac ctg gct aat tcc 4387

Asn Phe Gly Ala Gly Met Ser Gly Gly Ile Ala Tyr Leu Ala Asn Ser 1415 1420 1425

ccg gac cta aac cag aag atc aat ggc gaa ttg gtg gat gtt gtt cca 4435

Pro Asp Leu Asn Gln Lys Ile Asn Gly Glu Leu Val Asp Val Val Pro 1430 1445 1440 1445

ctg agc gct gac gat ctg acg tgg gct gat gag ctc att gct cgc cac 4483

Leu Ser Ala Asp Asp Leu Thr Trp Ala Asp Glu Leu Ile Ala Arg His
1450 1455 1460

cgc gaa ctc acc gga tcc gag acc aag ctg cgt gca caa gat ttg gtg 4531

Arg Glu Leu Thr Gly Ser Glu Thr Lys Leu Arg Ala Gln Asp Leu Val 1465 1470 1475

aaa atc atg ccg cgc gat ttc caa aaa gta ctc aac atc atc gaa acg 4579

Lys Ile Met Pro Arg Asp Phe Gln Lys Val Leu Asn Ile Ile Glu Thr 1480 1485 1490

gcc cac gct gag ggc caa gac cca gca atc aag atc atg gag gca gtg 4627

Ala His Ala Glu Gly Gln Asp Pro Ala Ile Lys Ile Met Glu Ala Val 1495 1500 1505

agc taatggccga cccacaagga ttc

4653

Ser

1510

<210> 72

<211> 1510

<212> PRT

<213> Corynebacterium glutamicum

<400> 72

Met Lys Pro Gln Gly Leu Tyr Asn Pro Ala His Glu His Asp Ala Cys

1 5 10 15

Gly Val Ala Phe Ile Ala Asp Ile His Gly Arg Pro Ser Arg Ser Ile 20 25 30

Val Asp Arg Ala Leu Glu Ala Leu Arg Asn Ile Asp His Arg Gly Ala 35 40 45

Ala Gly Ala Glu Lys Asn Thr Gly Asp Gly Ala Gly Ile Leu Met Gln Ile Pro Asp Gly Phe Tyr Arg Glu Val Ser Gly Ile Glu Leu Pro Glu Ala Gly Glu Tyr Ala Thr Gly Ile Ala Phe Leu Pro Arg Gly Arg Met Ala Met Met Asp Ala Gin Lys Glu Ile Glu Arg Ile Ala Lys Gln Glu Gly Ala Asp Val Leu Gly Trp Arg Met Val Pro Phe Asp Ser Arg Asp 120 Leu Gly Ser Met Ala Glu Glu Ala Met Pro Ser Phe Ala Gln Ile Phe Leu Thr Val Pro Gly Lys Ser Gly Glu Asp Leu Asp Arg Val Met Phe Phe Ile Arg Lys Arg Cys Glu Arg Glu Leu Gly Thr Thr Asn Gly Arg Asp Thr Val Tyr Phe Pro Ser Leu Ser Ser Arg Thr Ile Ile Tyr Lys Gly Met Leu Thr Thr Leu Gln Leu Glu Gly Phe Phe Glu Asp Leu Gly Asp Ala Arg Leu Glu Ser Ala Ile Ala Ile Val His Ser Arg Phe Ser Thr Asn Thr Phe Pro Ser Trp Pro Leu Ala His Pro Tyr Arg Phe Val Ala His Asn Gly Glu Ile Asn Thr Val Arg Gly Asn Glu Asn Trp Met 250 Arg Ala Arg Glu Ala Leu Ile Lys Asn Asp Lys Leu Gly Asn Leu Ser 265 Ser Val Leu Pro Ile Cys Thr Pro Glu Gly Ser Asp Thr Ala Arg Phe Asp Glu Ala Leu Glu Leu Leu His Leu Gly Gly Tyr Ser Leu Pro His Ala Val Ala Met Met Ile Pro Gln Ala Trp Glu His Asn Lys Thr Leu 310 305 Ser Pro Glu Leu Arg Asp Phe Tyr Glu Tyr His Ser Cys Leu Met Glu 330 Pro Trp Asp Gly Pro Ala Ala Leu Ala Phe Thr Asp Gly Arg Phe Val 340 345 Gly Ala Val Leu Asp Arg Asn Gly Leu Arg Pro Gly Arg Ile Thr Ile Thr Asp Ser Gly Leu Val Val Met Ala Ser Glu Ser Gly Val Leu Asp

370 375 380

Leu Arg Glu Glu Ser Val Val Lys Arg Thr Arg Val Gln Pro Gly Arg Met Phe Leu Val Asp Thr Ala Glu Gly Arg Ile Val Glu Asp Glu Glu Ile Lys Gln Lys Leu Ser Glu Ala Gln Pro Tyr Gly Glu Trp Ile Arg Asp Asn Phe Val His Leu Asp Arg Leu Pro Gln Thr Arg Tyr Asn Tyr 435 440 Met Ala His Ser Arg Ala Val Leu Arg Gln Arg Val Phe Gly Ile Thr Glu Glu Asp Val Asp Leu Leu Leu Pro Met Ala Arg Gln Gly Ala 470 Glu Ala Ile Gly Ser Met Gly Ser Asp Thr Pro Ile Ala Ala Leu Ser Gln Arg Pro Arg Met Leu Tyr Asp Phe Phe Ala Gln Arg Phe Ala Gln Val Thr Asn Pro Pro Leu Asp Ser Ile Arg Glu Lys Pro Val Thr Ser Met Phe Thr Leu Leu Gly Ala Gln Ser Asp Val Leu Asn Pro Gly Pro Asp Ala Ala Arg Arg Ile Arg Leu Glu Ser Pro Ile Ile Asp Asn His Glu Leu Ala Thr Leu Ile Asn Ala Asn Ala His Gly Glu Trp Asp Ser Phe Gly Ala Ala Val Ile Ser Gly Leu Tyr Pro Val Ala His His Gly Ala Gly Met Lys Ala Ala Ile Ala Arg Val Arg Glu Val Ser Glu Ala Ile Arg Asn Gly Lys Thr Leu Ile Val Leu Ser Asp Arg Glu Ser Asp Glu Arg Met Ala Pro Ile Pro Ala Leu Leu Leu Thr Ser Ala Val 635 His Gln Tyr Leu Val Gln Gln Arg Thr Arg Thr Gln Cys Ser Leu Val 650 Val Glu Ser Gly Asp Ala Arg Glu Val His His Leu Ala Met Leu Ile 665 Gly Phe Gly Ala Asp Ala Ile Asn Pro Tyr Met Ala Phe Glu Thr Ile 675 680 Asp Glu Leu Arg Met Lys Gly Gln Leu Gly Asp Leu Ser Leu Asp Glu

700

695

Ala Ser Arg Asn Tyr Ile Lys Ala Ala Thr Thr Gly Val Leu Lys Val 710 Met Ser Lys Met Gly Ile Ala Thr Val Ser Ser Tyr Arg Gly Ala Gln 730 Leu Ala Asp Val Thr Gly Leu His Gln Asp Leu Leu Asp Asn Tyr Phe 745 Gly Gly Ile Ala Ser Pro Ile Ser Gly Ile Gly Leu Asp Glu Val Ala Ala Asp Val Glu Ala Arg His Arg Ser Ala Phe Leu Pro Arg Pro Glu Glu His Ala His Arg Glu Leu Asp Leu Gly Gly Glu Tyr Lys Trp Arg Arg Glu Gly Glu Tyr His Leu Phe Asn Pro Glu Thr Ile Phe Lys Leu Gln His Ala Thr Arg Ser Gly Ser Tyr Glu Ile Phe Lys Asp Tyr Thr Arg Lys Val Asp Asp Gln Ser Thr Arg Leu Gly Thr Ile Arg Gly Leu Phe Glu Phe Ser Thr Asp Arg Lys Pro Ile Ser Val Ser Glu Val Glu 855 Pro Val Ser Glu Ile Val Lys Arg Phe Ser Thr Gly Ala Met Ser Tyr 875 Gly Ser Ile Ser Ala Glu Ala His Glu Val Leu Ala Ile Ala Met Asn 890 Arg Leu Gly Gly Met Ser Asn Ser Gly Glu Gly Glu Asp Ala Arg 905 Arg Phe Asp Val Glu Pro Asn Gly Asp Trp Lys Arg Ser Ala Ile Lys 915 Gln Val Ala Ser Gly Arg Phe Gly Val Thr Ser His Tyr Leu Asn Asn 935 Cys Thr Asp Ile Gln Ile Lys Met Ala Gln Gly Ala Lys Pro Gly Glu 950 945 Gly Gly Gln Leu Pro Pro Asn Lys Val Tyr Pro Trp Val Ala Glu Val 970 965 Arg Ile Thr Thr Pro Gly Val Gly Leu Ile Ser Pro Pro Pro His His 980 985 Asp Ile Tyr Ser Ile Glu Asp Leu Ala Gln Leu Ile His Asp Leu Lys 1000 Asn Ala Asn Pro Arg Ala Arg Ile His Val Lys Leu Val Ala Glu Gln 1010 1015

Gly Val Gly Thr Val Ala Ala Gly Val Ser Lys Ala His Ala Asp Val 1025 1030 1035 1040

- Val Leu Ile Ser Gly His Asp Gly Gly Thr Gly Ala Ser Pro Leu Thr 1045 1050 1055
- Ser Leu Lys His Ala Gly Gly Pro Trp Glu Leu Gly Leu Ala Glu Thr 1060 1065 1070
- Gln Gln Thr Leu Leu Leu Asn Gly Leu Arg Asp Arg Ile Arg Val Gln 1075 1080 1085
- Cys Asp Gly Gln Leu Lys Thr Gly Arg Asp Val Val Ile Ala Ala Leu 1090 1095 1100
- Leu Gly Ala Glu Glu Phe Gly Phe Ala Thr Ala Pro Leu Val Val Glu 1105 1110 1115 1120
- Gly Cys Ile Met Met Arg Val Cys His Leu Asp Thr Cys Pro Val Gly
 1125 1130 1135
- Ile Ala Thr Gln Asn Pro Asp Leu Arg Ser Lys Phe Thr Gly Lys Ala 1140 1145 1150
- Glu His Val Val Asn Phe Phe Thr Phe Ile Ala Gln Glu Val Arg Glu
 1155 1160 1165
- Tyr Leu Ala Gln Leu Gly Phe Arg Ser Ile Asp Glu Ala Val Gly Gln 1170 1175 1180
- Ala Gln Val Leu Arg Lys Arg Ser Gly Ile Pro Ala Asp Ser Arg Ala 1185 1190 1195 1200
- Ala His Leu Asp Leu Ser Pro Ile Phe His Arg Pro Glu Thr Pro His 1205 1210 1215
- Phe Pro Thr Gln Asp Val Arg Cys Thr Lys Thr Gln Glu His Ser Leu 1220 1225 1230
- Glu Lys Ala Leu Asp Asn Ala Phe Ile Asp Lys Ala Ser Asp Thr Ile 1235 1240 1245
- Thr Arg Ala Ala Ala Gly Val Glu Thr Ser Ile Val Ile Asp Ser Ser 1250 1255 1260
- Ile Ser Asn Val Asn Arg Ser Val Gly Thr Met Leu Gly Ser Ala Val 1265 1270 1275 1280
- Ser Arg Val Ala Gly Ala Gln Gly Leu Pro Asp Gly Thr Ile Thr Leu 1285 1290 1295
- Asn Leu Gln Gly Cys Ala Gly Asn Ser Phe Gly Ala Phe Ile Pro Arg 1300 1305 1310
- Gly Ile Thr Ile Asn Leu Thr Gly Asp Ala Asn Asp Phe Val Gly Lys 1315 1320 1325
- Gly Leu Ser Gly Gly Lys Ile Val Ile Lys Pro Ser Ala Gln Ala Pro 1330 1335 1340
- Lys Gln Leu Lys Asn Asn Pro Asn Ile Ile Ala Gly Asn Val Leu Gly

1345	i				135	0				13	55				13	60
туr	Gly	Ala	Thr	Ser 1365		Glu	Leu	Phe	11e 137		Gly	Gln	Val	Gly (Glu 7 5	
Arg	Phe	Cys	Val 1380		Asn	Ser	Gly	Ala 138		Ala	Val	Val		Gly 90	Ile	
Gly	Asn	His 1395		Cys	Glu	Tyr	Met 140		Gly	Gly	Arg	Val 14	Leu 05	Val	Leu	
Gly	Pro 1410		Gly	Glu	Asn	Phe 141		Ala	Gly	Met		Gly 120	Gly	Ile	Ala	
Tyr 1425		Ala	Asn	Ser	Pro 143		Leu	Asn	Gln		Ile 135	Asn	Gly	Glu	Leu 14	140
Val	Asp	Val	Val	Pro 1445		Ser	Ala	Asp	Asp 145		Thr	Trp	Ala	Asp 14	Glu 55	
Leu	Ile	Ala	Arg 146		Arg	Glu	Leu	Thr 146		Ser	Glu	Thr		Leu 170	Arg	
Ala	Gln	Asp 147		Val	Lys	Ile	Met 148		Arg	Asp	Phe		Lys 185	Val	Leu	
Asn	Ile 149		Glu	Thr	Ala	His 14		Glu	Gly	Gln		Pro 500	Ala	Ile	Lys	
Ile 150		Glu	Ala	Val	Ser 15	10										
<21 <21	0> 7 1> 1 2> D 3> C	906 NA	ebac	teri	um g	luta	micu	m								
<22	1> C 2> (101)	(1 0007													
	0> 7 gaaa		accc	tttt	gt t	actt	gcgt	t gc	aggt	agtg	tcc	ctga	ttt	tctta	attat	c 60
gaa	cgat	tga	taga	aaca	gg a	ttaa	agtg	a gg	tatc	ccgc	atg Met 1	aaa Lys	cca Pro	caa Gln	gga Gly 5	115
ctc Leu	tac Tyr	aac Asn	cct	gcg Ala 10	His	gaa Glu	cat His	gac Asp	gcc Ala 15	Cys	ggt Gly	gtg Val	gcg Ala	ttt Phe 20	att Ile	163
gcg Ala	gat Asp	ato Ile	cac His	Gly	cga Arg	ccc	agc Ser	cgc Arg 30	Ser	att	gtt Val	gat Asp	cgt Arg 35	gca Ala	ctt Leu	211
gag Glu	gcg Ala	r ctt Leu 40	arg	aac Asn	att	gac Asp	cac His	Arg	ggt Gly	gcc Ala	gcc Ala	ggt Gly 50	Ala	gag Glu	aag Lys	259

			_						atg Met	_		_	_			307
	_	-	-				_		cct Pro		_				-	355
									cgc Arg 95							403
_		_					_	_	caa Gln	_		_	-			451
		_	-	_					cgt Arg	_	_				_	499
			_		_			_	att Ile							547
			-	_		-	_		atg Met				-	-	_	595
		_		_					ggt Gly 175	_						643
-	_				_				tac Tyr			_	_			691
_	_							_	ctg Leu		-	-	_	_		739
-	_		_				_	_	ttc Phe		_					787
_		_	-			_		-	ttc Phe	_	_					835
									tgg Trp 255							883
									ttg Leu							931
_			-		-	_			cgt Arg		_		-	_		979

ctt ttg cac ctg ggc gga tac tca ctt ccg cat gct gtt gcg atg atg 1027 Leu Leu His Leu Gly Gly Tyr Ser Leu Pro His Ala Val Ala Met Met 300 atc cct cag gcg tgg gaa cac aac aag acg ctg agc cct gag ctg cgt Ile Pro Gln Ala Trp Glu His Asn Lys Thr Leu Ser Pro Glu Leu Arg 325 315 320 gat ttc tac gaa tac cac tct tgt ctg atg gag cca tgg gat ggt cct Asp Phe Tyr Glu Tyr His Ser Cys Leu Met Glu Pro Trp Asp Gly Pro 335 330 gca gcg ctg gca ttt act gac ggt cgt ttt gtg ggt gcc gtg ctg gac 1171 Ala Ala Leu Ala Phe Thr Asp Gly Arg Phe Val Gly Ala Val Leu Asp 350 cgt aat ggc ctg cga cct ggg cga atc acc att act gat tcg ggt ttg 1219 Arg Asn Gly Leu Arg Pro Gly Arg Ile Thr Ile Thr Asp Ser Gly Leu 365 360 gtt gtg atg gct tct gaa tcg gga gtg ttg gac ttg agg gag gag agc 1267 Val Val Met Ala Ser Glu Ser Gly Val Leu Asp Leu Arg Glu Glu Ser 375 gtc gta aag cgt act cgc gta cag cct gga cgc atg ttc ctt gtt gac 1315 Val Val Lys Arg Thr Arg Val Gln Pro Gly Arg Met Phe Leu Val Asp 400 395 390 act gcc gag ggc cgc atc gtt gaa gac gag gaa atc aag cag aaa tta 1363 Thr Ala Glu Gly Arg Ile Val Glu Asp Glu Glu Ile Lys Gln Lys Leu 410 agc gaa gcg cag cca tat ggt gag tgg att cgc gat aat ttt gtg cat 1411 Ser Glu Ala Gln Pro Tyr Gly Glu Trp Ile Arg Asp Asn Phe Val His 430 425 ctg gat cgt ctg cct cag aca cgc tac aac tac atg gcg cac tct cgt 1459 Leu Asp Arg Leu Pro Gln Thr Arg Tyr Asn Tyr Met Ala His Ser Arg 445 gct gtg ttg cgt cag cgt gtt ttc gga atc act gaa gaa gat gtg gat 1507 Ala Val Leu Arg Gln Arg Val Phe Gly Ile Thr Glu Glu Asp Val Asp 465 455 460 ttg ttg ctg ctg ccg atg gcc cgc cag ggt gct gag gcg att ggt tcc 1555 Leu Leu Leu Pro Met Ala Arg Gln Gly Ala Glu Ala Ile Gly Ser 475 480 485 470

atg ggt tcg gat acg cca att gcg gcg cta tcc cag cga cca cgc atg 1603

Met Gly Ser Asp Thr Pro Ile Ala Ala Leu Ser Gln Arg Pro Arg Met 490 495 500

ctt tat gat ttc ttc gcg cag cgc ttt gct cag gtg aca aac cca ccg

Leu Tyr Asp Phe Phe Ala Gln Arg Phe Ala Gln Val Thr Asn Pro Pro 505 510 515

ttg gac tct atc cgc gaa aag cct gtg acc agc atg ttc act ttg ttg 1699

Leu Asp Ser Ile Arg Glu Lys Pro Val Thr Ser Met Phe Thr Leu Leu 520 525 530

ggt gcg cag tct gac gtg ctc aat ccg ggt cct gat gcg gcg cga cgt 1747

Gly Ala Gln Ser Asp Val Leu Asn Pro Gly Pro Asp Ala Ala Arg Arg 535 540 545

att cgt ttg gaa tcg ccg atc att gat aac cat gag ctg gcc acc ttg 1795

Ile Arg Leu Glu Ser Pro Ile Ile Asp Asn His Glu Leu Ala Thr Leu 550 565 560 565

atc aat gcc aac gcg cat ggt gag tgg gat tcc ttt ggt gct gct gta 1843

Ile Asn Ala Asn Ala His Gly Glu Trp Asp Ser Phe Gly Ala Ala Val 570 575 580

att tot ggt ttg tac cca gtg gct cac cat ggt gcc ggc atg aag gct 1891

Ile Ser Gly Leu Tyr Pro Val Ala His His Gly Ala Gly Met Lys Ala
585 590 595

gcg att gct cgt gtg 1906 Ala Ile Ala Arg Val 600

<210> 74

<211> 602

<212> PRT

<213> Corynebacterium glutamicum

<400> 74

Met Lys Pro Gln Gly Leu Tyr Asn Pro Ala His Glu His Asp Ala Cys

1 10 15

Gly Val Ala Phe Ile Ala Asp Ile His Gly Arg Pro Ser Arg Ser Ile 20 25 30

Val Asp Arg Ala Leu Glu Ala Leu Arg Asn Ile Asp His Arg Gly Ala 35 40 45

Ala Gly Ala Glu Lys Asn Thr Gly Asp Gly Ala Gly Ile Leu Met Gln 50 60

Ile Pro Asp Gly Phe Tyr Arg Glu Val Ser Gly Ile Glu Leu Pro Glu 65 70 75 80

1

Ala Gly Glu Tyr Ala Thr Gly Ile Ala Phe Leu Pro Arg Gly Arg Met Ala Met Met Asp Ala Gln Lys Glu Ile Glu Arg Ile Ala Lys Gln Glu 105 Gly Ala Asp Val Leu Gly Trp Arg Met Val Pro Phe Asp Ser Arg Asp 120 Leu Gly Ser Met Ala Glu Glu Ala Met Pro Ser Phe Ala Gln Ile Phe Leu Thr Val Pro Gly Lys Ser Gly Glu Asp Leu Asp Arg Val Met Phe 155 Phe Ile Arg Lys Arg Cys Glu Arg Glu Leu Gly Thr Thr Asn Gly Arg 170 Asp Thr Val Tyr Phe Pro Ser Leu Ser Ser Arg Thr Ile Ile Tyr Lys Gly Met Leu Thr Thr Leu Gln Leu Glu Gly Phe Phe Glu Asp Leu Gly 200 Asp Ala Arg Leu Glu Ser Ala Ile Ala Ile Val His Ser Arg Phe Ser 215 Thr Asn Thr Phe Pro Ser Trp Pro Leu Ala His Pro Tyr Arg Phe Val 230 Ala His Asn Gly Glu Ile Asn Thr Val Arg Gly Asn Glu Asn Trp Met Arg Ala Arg Glu Ala Leu Ile Lys Asn Asp Lys Leu Gly Asn Leu Ser Ser Val Leu Pro Ile Cys Thr Pro Glu Gly Ser Asp Thr Ala Arg Phe Asp Glu Ala Leu Glu Leu Leu His Leu Gly Gly Tyr Ser Leu Pro His 295 Ala Val Ala Met Met Ile Pro Gln Ala Trp Glu His Asn Lys Thr Leu 315 Ser Pro Glu Leu Arg Asp Phe Tyr Glu Tyr His Ser Cys Leu Met Glu Pro Trp Asp Gly Pro Ala Ala Leu Ala Phe Thr Asp Gly Arg Phe Val 345 Gly Ala Val Leu Asp Arg Asn Gly Leu Arg Pro Gly Arg Ile Thr Ile 355 360 Thr Asp Ser Gly Leu Val Val Met Ala Ser Glu Ser Gly Val Leu Asp 375 380 Leu Arg Glu Glu Ser Val Val Lys Arg Thr Arg Val Gln Pro Gly Arg 400 395 390

Met Phe Leu Val Asp Thr Ala Glu Gly Arg Ile Val Glu Asp Glu Glu 405 410 415

Ile Lys Gln Lys Leu Ser Glu Ala Gln Pro Tyr Gly Glu Trp Ile Arg
420 425 430

Asp Asn Phe Val His Leu Asp Arg Leu Pro Gln Thr Arg Tyr Asn Tyr 435 440 445

Met Ala His Ser Arg Ala Val Leu Arg Gln Arg Val Phe Gly Ile Thr 450 455 460

Glu Glu Asp Val Asp Leu Leu Leu Pro Met Ala Arg Gln Gly Ala 465 470 475 480

Glu Ala Ile Gly Ser Met Gly Ser Asp Thr Pro Ile Ala Ala Leu Ser 485 490 495

Gln Arg Pro Arg Met Leu Tyr Asp Phe Phe Ala Gln Arg Phe Ala Gln 500 505 510

Val Thr Asn Pro Pro Leu Asp Ser Ile Arg Glu Lys Pro Val Thr Ser 515 520 525

Met Phe Thr Leu Leu Gly Ala Gln Ser Asp Val Leu Asn Pro Gly Pro 530 540

Asp Ala Ala Arg Arg Ile Arg Leu Glu Ser Pro Ile Ile Asp Asn His 545 550 555 560

Glu Leu Ala Thr Leu Ile Asn Ala Asn Ala His Gly Glu Trp Asp Ser 565 570 575

Phe Gly Ala Ala Val Ile Ser Gly Leu Tyr Pro Val Ala His His Gly 580 585 590

Ala Gly Met Lys Ala Ala Ile Ala Arg Val 595 600

<210> 75

<211> 1362

<212> DNA

<213> Corynebacterium glutamicum

<220>

<221> CDS

<222> (70)..(1362)

<223> FRXA00364

<400> 75

accaatttct ggcatcggtc tggatgaagt tgcagctgac gtagaaagct cgtcaccgca 60

gcgcattttttg cca cgc cct gaa gag cac gct cac cgt gaa ttg gat ttg 111

Leu Pro Arg Pro Glu Glu His Ala His Arg Glu Leu Asp Leu

1 5 10

ggt ggt gaa tac aag tgg cgc cgc gaa ggt gaa tac cac ctg ttc aac

Gly Gly Glu Tyr Lys Trp Arg Arg Glu Gly Glu Tyr His Leu Phe Asn

15 20 25 30

													ggc Gly			207
gag Glu	att Ile	ttc Phe	aag Lys 50	gat Asp	tac Tyr	acc Thr	cgc Arg	aag Lys 55	gtt Val	gat Asp	gat Asp	caa Gln	tcc Ser 60	act Thr	cgc Arg	255
ttg Leu	ggt Gly	act Thr 65	att Ile	cgt Arg	gga Gly	ctg Leu	ttt Phe 70	gag Glu	ttc Phe	agc Ser	acg Thr	gac Asp 75	cgc Arg	aag Lys	cca Pro	303
att Ile	tcg Ser 80	gtg Val	tct Ser	gag Glu	gtg Val	gag Glu 85	ccg Pro	gtc Val	agt Ser	gag Glu	atc Ile 90	gtg Val	aag Lys	cgt Arg	ttc Phe	351
tcc Ser 95	act Thr	ggt Gly	gcg Ala	atg Met	tct Ser 100	tat Tyr	ggc Gly	tcg Ser	att Ile	tct Ser 105	gct Ala	gaa Glu	gcc Ala	cat His	gag Glu 110	399
													aac Asn			447
gaa Glu	ggt Gly	ggc Gly	gag Glu 130	gac Asp	gcc Ala	cgc Arg	cga Arg	ttt Phe 135	gat Asp	gtg Val	gaa Glu	ccc Pro	aac Asn 140	ggt Gly	gac Asp	495
													ttc Phe			543
													aag Lys			591
													aac Asn			639
													gtt Val			687
													gat Asp 220			735
													cga Arg			783
													gca Ala			831
tcc Ser 255	aaa Lys	gca Ala	cac His	gct Ala	gat Asp 260	gtg Val	gtg Val	ctt Leu	att Ile	tcc Ser 265	Gly	cac His	gat Asp	ggc	gga Gly 270	879
act	ggc	gca	tct	cct	ttg	acc	tcc	ctg	aag	cat	gcc	ggt	ggt	cca	tgg	927

Thr Gly Ala Ser Pro Leu Thr Ser Leu Lys His Ala Gly Gly Pro Trp 275 975 gag ttg ggc ttg gct gaa acc cag caa acg ttg ctg ctc aac ggc ctg Glu Leu Gly Leu Ala Glu Thr Gln Gln Thr Leu Leu Leu Asn Gly Leu cgc gat cgt att cgc gtg cag tgc gat ggt cag ctg aaa act ggc cga 1023 Arg Asp Arg Ile Arg Val Gln Cys Asp Gly Gln Leu Lys Thr Gly Arg 305 310 gac gtg gtt atc gca gct ctt ctc ggt gcc gaa gaa ttc ggt ttt gcc 1071 Asp Val Val Ile Ala Ala Leu Leu Gly Ala Glu Glu Phe Gly Phe Ala 320 acc gca ccg ctg gtg gtt gaa ggc tgc atc atg atg cgc gtc tgc cac 1119 Thr Ala Pro Leu Val Val Glu Gly Cys Ile Met Met Arg Val Cys His 340 345 335 ctg gac acc tgc ccg gtg ggt atc gct acc cag aac ccg gat ttg cgt 1167 Leu Asp Thr Cys Pro Val Gly Ile Ala Thr Gln Asn Pro Asp Leu Arg 355 tcc aag ttc acc ggc aag gct gaa cac gtg gtc aac ttc ttc acc ttc 1215 Ser Lys Phe Thr Gly Lys Ala Glu His Val Val Asn Phe Phe Thr Phe 370 375 380 atc gcc cag gaa gtc cgt gag tac ttg gca cag ctt ggt ttc cgc tct 1263 Ile Ala Gln Glu Val Arg Glu Tyr Leu Ala Gln Leu Gly Phe Arg Ser 385 390 att qat qaa qcc qtc gga caa qcc cag gtg ctg cgc aag cgt tcc gga 1311 Ile Asp Glu Ala Val Gly Gln Ala Gln Val Leu Arg Lys Arg Ser Gly 405 atc cca gct gat tcc cgc gca gca cac ctg gat ttg agc cca att ttc 1359 Ile Pro Ala Asp Ser Arg Ala Ala His Leu Asp Leu Ser Pro Ile Phe 415 420 425 atc 1362 Ile <210> 76 <211> 431 <212> PRT <213> Corynebacterium glutamicum <400> 76 Leu Pro Arg Pro Glu Glu His Ala His Arg Glu Leu Asp Leu Gly Gly

RNSDOCID: <WO 010084342 1 >

Glu Tyr Lys Trp Arg Arg Glu Gly Glu Tyr His Leu Phe Asn Pro Glu 25 Thr Ile Phe Lys Leu Gln His Ala Thr Arg Ser Gly Ser Tyr Glu Ile Phe Lys Asp Tyr Thr Arg Lys Val Asp Asp Gln Ser Thr Arg Leu Gly Thr Ile Arg Gly Leu Phe Glu Phe Ser Thr Asp Arg Lys Pro Ile Ser Val Ser Glu Val Glu Pro Val Ser Glu Ile Val Lys Arg Phe Ser Thr Gly Ala Met Ser Tyr Gly Ser Ile Ser Ala Glu Ala His Glu Val Leu 105 Ala Ile Ala Met Asn Arg Leu Gly Gly Met Ser Asn Ser Gly Glu Gly 120 Gly Glu Asp Ala Arg Arg Phe Asp Val Glu Pro Asn Gly Asp Trp Lys Arg Ser Ala Ile Lys Gln Val Ala Ser Gly Arg Phe Gly Val Thr Ser 155 His Tyr Leu Asn Asn Cys Thr Asp Ile Gln Ile Lys Met Ala Gln Gly Ala Lys Pro Gly Glu Gly Gly Gln Leu Pro Pro Asn Lys Val Tyr Pro Trp Val Ala Glu Val Arg Ile Thr Thr Pro Gly Val Gly Leu Ile Ser Pro Pro Pro His His Asp Ile Tyr Ser Ile Glu Asp Leu Ala Gln Leu 215 Ile His Asp Leu Lys Asn Ala Asn Pro Arg Ala Arg Ile His Val Lys Leu Val Ala Glu Gln Gly Val Gly Thr Val Ala Ala Gly Val Ser Lys Ala His Ala Asp Val Val Leu Ile Ser Gly His Asp Gly Gly Thr Gly Ala Ser Pro Leu Thr Ser Leu Lys His Ala Gly Gly Pro Trp Glu Leu 280 Gly Leu Ala Glu Thr Gln Gln Thr Leu Leu Leu Asn Gly Leu Arg Asp 290 295 Arg Ile Arg Val Gln Cys Asp Gly Gln Leu Lys Thr Gly Arg Asp Val 315 310 Val Ile Ala Ala Leu Leu Gly Ala Glu Glu Phe Gly Phe Ala Thr Ala 325 330

Pro Leu Val Val Glu Gly Cys Ile Met Met Arg Val Cys His Leu Asp Thr Cys Pro Val Gly Ile Ala Thr Gln Asn Pro Asp Leu Arg Ser Lys Phe Thr Gly Lys Ala Glu His Val Val Asn Phe Phe Thr Phe Ile Ala 375 Gln Glu Val Arg Glu Tyr Leu Ala Gln Leu Gly Phe Arg Ser Ile Asp Glu Ala Val Gly Gln Ala Gln Val Leu Arg Lys Arg Ser Gly Ile Pro 405 410 Ala Asp Ser Arg Ala Ala His Leu Asp Leu Ser Pro Ile Phe Ile 420 425 <210> 77 <211> 866 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (1)..(843) <223> FRXA00367 <400> 77 cac agc cta gaa aaa gcc ctg gac aac gca ttt att gat aag gct tcg His Ser Leu Glu Lys Ala Leu Asp Asn Ala Phe Ile Asp Lys Ala Ser 5 gac acg atc acc cgt gcc gca gcg ggt gtg gaa acc agc att gtt att Asp Thr Ile Thr Arg Ala Ala Ala Gly Val Glu Thr Ser Ile Val Ile 20 gat agc tcc atc agc aac gtc aac cgt tca gtt ggc acg atg ctg ggt Asp Ser Ser Ile Ser Asn Val Asn Arg Ser Val Gly Thr Met Leu Gly 35 tet gea gte age ege gtg get ggt gce caa ggt ttg eea gae gge ace Ser Ala Val Ser Arg Val Ala Gly Ala Gln Gly Leu Pro Asp Gly Thr 50 55 atc acc ttg aat ctt caa ggc tgc gcc ggt aac tcc ttt ggc gcg ttc Ile Thr Leu Asn Leu Gln Gly Cys Ala Gly Asn Ser Phe Gly Ala Phe 65 70 atc cca cga ggc atc acc atc aac ctc acc ggc gat gcc aat gac ttt 288 Ile Pro Arg Gly Ile Thr Ile Asn Leu Thr Gly Asp Ala Asn Asp Phe gtg ggc aag gga tta tct ggc gga aag att gtg atc aag cct tcc gct 336 Val Gly Lys Gly Leu Ser Gly Gly Lys Ile Val Ile Lys Pro Ser Ala 100 105 cag gct ccg aag cag ctg aag aac aat cca aat atc att gcc gga aac Gln Ala Pro Lys Gln Leu Lys Asn Asn Pro Asn Ile Ile Ala Gly Asn 120

gtg ctt gga tac ggc gca acc agt ggt gaa ttg ttc att cgt ggc cag Val Leu Gly Tyr Gly Ala Thr Ser Gly Glu Leu Phe Ile Arg Gly Gln 130 135 140	432
gtc ggc gaa cgt ttc tgc gtc cgt aac tct ggc gcc acc gca gtg gtt Val Gly Glu Arg Phe Cys Val Arg Asn Ser Gly Ala Thr Ala Val Val 145 150 150 160	480
gaa ggt atc gga aac cac ggt tgt gag tac atg act ggc ggc cga gtc Glu Gly Ile Gly Asn His Gly Cys Glu Tyr Met Thr Gly Gly Arg Val 165 170 175	528
ctg gtt ttg ggc ccg gtt ggt gag aac ttt ggt gcc ggc atg tct ggt Leu Val Leu Gly Pro Val Gly Glu Asn Phe Gly Ala Gly Met Ser Gly 180 185 190	576
ggc att gca tac ctg gct aat tcc ccg gac cta aac cag aag atc aat Gly Ile Ala Tyr Leu Ala Asn Ser Pro Asp Leu Asn Gln Lys Ile Asn 195 200 205	624
ggc gaa ttg gtg gat gtt gtt cca ctg agc gct gac gat ctg acg tgg Gly Glu Leu Val Asp Val Val Pro Leu Ser Ala Asp Asp Leu Thr Trp 210 215 220	672
gct gat gag ctc att gct cgc cac cgc gaa ctc acc gga tcc gag acc Ala Asp Glu Leu Ile Ala Arg His Arg Glu Leu Thr Gly Ser Glu Thr 225 230 235 240	720
aag ctg cgt gca caa gat ttg gtg aaa atc atg ccg cgc gat ttc caa Lys Leu Arg Ala Gln Asp Leu Val Lys Ile Met Pro Arg Asp Phe Gln 245 250 255	768
aaa gta ctc aac atc atc gaa acg gcc cac gct gag ggc caa gac cca Lys Val Leu Asn Ile Ile Glu Thr Ala His Ala Glu Gly Gln Asp Pro 260 265 270	816
gca atc aag atc atg gag gca gtg agc taatggccga cccacaagga Ala Ile Lys Ile Met Glu Ala Val Ser 275 280	863
ttc	866
<210> 78 <211> 281 <212> PRT <213> Corynebacterium glutamicum	
<pre><400> 78 His Ser Leu Glu Lys Ala Leu Asp Asn Ala Phe Ile Asp Lys Ala Ser 1 5 10 15</pre>	
Asp Thr Ile Thr Arg Ala Ala Ala Gly Val Glu Thr Ser Ile Val Ile 20 25 30	
Asp Ser Ser Ile Ser Asn Val Asn Arg Ser Val Gly Thr Met Leu Gly 35 40 45	
Ser Ala Val Ser Arg Val Ala Gly Ala Gln Gly Leu Pro Asp Gly Thr 50 55 60	

Ile Thr Leu Asn Leu Gln Gly Cys Ala Gly Asn Ser Phe Gly Ala Phe Ile Pro Arg Gly Ile Thr Ile Asn Leu Thr Gly Asp Ala Asn Asp Phe 85 Val Gly Lys Gly Leu Ser Gly Gly Lys Ile Val Ile Lys Pro Ser Ala 100 Gln Ala Pro Lys Gln Leu Lys Asn Asn Pro Asn Ile Ile Ala Gly Asn 120 Val Leu Gly Tyr Gly Ala Thr Ser Gly Glu Leu Phe Ile Arg Gly Gln 135 Val Gly Glu Arg Phe Cys Val Arg Asn Ser Gly Ala Thr Ala Val Val 155 Glu Gly Ile Gly Asn His Gly Cys Glu Tyr Met Thr Gly Gly Arg Val 170 175 Leu Val Leu Gly Pro Val Gly Glu Asn Phe Gly Ala Gly Met Ser Gly 185 Gly Ile Ala Tyr Leu Ala Asn Ser Pro Asp Leu Asn Gln Lys Ile Asn 195 200 Gly Glu Leu Val Asp Val Val Pro Leu Ser Ala Asp Asp Leu Thr Trp Ala Asp Glu Leu Ile Ala Arg His Arg Glu Leu Thr Gly Ser Glu Thr 225 230 Lys Leu Arg Ala Gln Asp Leu Val Lys Ile Met Pro Arg Asp Phe Gln Lys Val Leu Asn Ile Ile Glu Thr Ala His Ala Glu Gly Gln Asp Pro Ala Ile Lys Ile Met Glu Ala Val Ser 275 <210> 79 <211> 1494 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(1471) <223> RXN00076 <400> 79 tctaggagtg ttaaacagcc tggacttgaa acacctttaa ctacttgatt ttcacaccct 60 tgtttccata aaagggctca cgaaaggcaa cttcaaacac atg aca act ccc ctg Met Thr Thr Pro Leu 1

cgc Arg	gta Val	gcc Ala	gtc Val	atc Ile 10	gga Gly	gct Ala	ggc Gly	cct Pro	gct Ala 15	ggc Gly	att Ile	tac Tyr	gca Ala	tcc Ser 20	gac Asp	163
ctc Leu	ctc Leu	atc Ile	cgc Arg 25	aat Asn	gaa Glu	gag Glu	cgc Arg	gaa Glu 30	gtg Val	ttc Phe	gtt Val	gac Asp	ctt Leu 35	ttc Phe	gag Glu	211
caa Gln	atg Met	cct Pro 40	gca Ala	ccg Pro	ttc Phe	gga Gly	ctc Leu 45	atc Ile	cgt Arg	tac Tyr	ggc Gly	gtt Val 50	gct Ala	cca Pro	gac Asp	259
						atc Ile 60										307
aag Lys 70	cca Pro	cgc Arg	ctg Leu	cgc Arg	ctg Leu 75	ctc Leu	ggt Gly	aac Asn	att Ile	gaa Glu 80	atc Ile	ggc Gly	aaa Lys	gac Asp	atc Ile 85	355
						gac Asp										403
ggc Gly	gca Ala	gtt Val	gca Ala 105	gac Asp	cgc Arg	gac Asp	ctc Leu	aac Asn 110	atc Ile	ccc Pro	gga Gly	att Ile	gaa Glu 115	gca Ala	gaa Glu	451
ggc Gly	tcc Ser	ttc Phe 120	ggt Gly	gcc Ala	ggc Gly	gag Glu	ttc Phe 125	gtt Val	ggc Gly	ttc Phe	tac Tyr	gac Asp 130	ggc Gly	aac Asn	cca Pro	499
						gat Asp 140										547
ggc Gly 150	gtt Val	ggt Gly	aac Asn	gtc Val	ggc Gly 155	ctc Leu	gac Asp	gta Val	gcc Ala	cgc Arg 160	atc Ile	ctg Leu	gct Ala	aag Lys	aca Thr 165	595
ggc Gly	gac Asp	gag Glu	ctc Leu	aaa Lys 170	gtc Val	acc Thr	gaa Glu	att Ile	tcc Ser 175	gac Asp	aac Asn	gtc Val	tac Tyr	gac Asp 180	tcc Ser	643
ctc Leu	aaa Lys	gaa Glu	aac Asn 185	aag Lys	gcc Ala	act Thr	gaa Glu	gtg Val 190	cac His	gtt Val	ttc Phe	gga Gly	cgt Arg 195	cgt Arg	ggc Gly	691
						acc Thr										739
tcc Ser	ccc Pro 215	acc Thr	atc Ile	aac Asn	gtg Val	gtt Val 220	gtt Val	gat Asp	cca Pro	gaa Glu	gac Asp 225	Ile	gac Asp	tac Tyr	gac Asp	787
ggc Gly 230	Ala	tct Ser	gaa Glu	gaa Glu	gcc Ala 235	cgc Arg	cgc Arg	gca Ala	tcc Ser	aag Lys 240	tcc Ser	cag Gln	gac Asp	ctg Leu	gtc Val 245	835
tgc	cag	atc	ctg	gaa	cag	tac	gca	atc	cgc	gag	cca	aag	gac	gct	ccg	883

Cys Gln Ile Leu Glu Gln Tyr Ala Ile Arg Glu Pro Lys Asp Ala Pro 250 cac acc ctg cag atc cac ctc ttt gaa aac cca gtt gag gtt ctt caa 931 His Thr Leu Gln Ile His Leu Phe Glu Asn Pro Val Glu Val Leu Gln aag gac ggc aag gtt gtt ggc ctg cgc acc gaa cgc acc tca ctt gat Lys Asp Gly Lys Val Val Gly Leu Arg Thr Glu Arg Thr Ser Leu Asp ggc aac ggc ggc gta aac gga acc ggc gaa ttc aag gac tgg cca gtc 1027 Gly Asn Gly Gly Val Asn Gly Thr Gly Glu Phe Lys Asp Trp Pro Val cag gct gtc tac cgc gca gtc ggc tac aag tcc gac ccc atc gac ggc Gln Ala Val Tyr Arg Ala Val Gly Tyr Lys Ser Asp Pro Ile Asp Gly 320 gtc cca ttc gat gag aac aag cac gtc atc cct aat gac ggc gga cat 1123 Val Pro Phe Asp Glu Asn Lys His Val Ile Pro Asn Asp Gly Gly His 330 gtc ctc acc gct cca ggc gca gaa cca gta cca ggc ctc tat gca acc 1171 Val Leu Thr Ala Pro Gly Ala Glu Pro Val Pro Gly Leu Tyr Ala Thr ggc tgg atc aag cgt gga cca atc ggt cta atc ggc aac acc aag tcc 1219 Gly Trp Ile Lys Arg Gly Pro Ile Gly Leu Ile Gly Asn Thr Lys Ser 360 gac gcc aag gaa acc acc gac atc ctc atc aag gat gcc gtc gcc ggt 1267 Asp Ala Lys Glu Thr Thr Asp Ile Leu Ile Lys Asp Ala Val Ala Gly 380 375 gta ctt gaa gct cca aag cac cag ggc gaa gaa gcc atc atc gag ctt 1315 Val Leu Glu Ala Pro Lys His Gln Gly Glu Glu Ala Ile Ile Glu Leu 390 395 400 405 ctc gat tcc cgc aac atc cca ttc acc acc tgg gaa ggc tgg tac aaa 1363 Leu Asp Ser Arg Asn Ile Pro Phe Thr Trp Glu Gly Trp Tyr Lys 410 ctc gac gca gca gag cgc gca ctc ggt gaa gcc gaa ggc cgc gag cgc 1411 Leu Asp Ala Ala Glu Arg Ala Leu Gly Glu Ala Glu Gly Arg Glu Arg 425 aag aag att gtt gat tgg gaa gaa atg gtc cgc cag gcc cgc gaa gct Lys Lys Ile Val Asp Trp Glu Glu Met Val Arg Gln Ala Arg Glu Ala 440 445 450

cca gca att gtc taaattgttt taacgcgtga agc
1494
Pro Ala Ile Val
 455

<210> 80

<211> 457

<212> PRT

<213> Corynebacterium glutamicum

<400> 80

OWODOOID -WO 0188848AP I -

Met Thr Thr Pro Leu Arg Val Ala Val Ile Gly Ala Gly Pro Ala Gly
1 5 10 15

Ile Tyr Ala Ser Asp Leu Leu Ile Arg Asn Glu Glu Arg Glu Val Phe 20 25 30

Val Asp Leu Phe Glu Gln Met Pro Ala Pro Phe Gly Leu Ile Arg Tyr 35 40 45

Gly Val Ala Pro Asp His Pro Arg Ile Lys Gly Ile Val Lys Ser Leu 50 60

His Asn Val Leu Asp Lys Pro Arg Leu Arg Leu Gly Asn Ile Glu 65 70 75 80

Ile Gly Lys Asp Ile Thr Val Glu Glu Leu Arg Asp Tyr Tyr Asp Ala 85 90 95

Val Val Phe Ser Thr Gly Ala Val Ala Asp Arg Asp Leu Asn Ile Pro 100 105 110

Gly Ile Glu Ala Glu Gly Ser Phe Gly Ala Gly Glu Phe Val Gly Phe 115 120 125

Tyr Asp Gly Asn Pro Arg Phe Glu Arg Ser Trp Asp Leu Ser Ala Gln 130 135 140

Ser Val Ala Val Ile Gly Val Gly Asn Val Gly Leu Asp Val Ala Arg 145 150 155 160

Ile Leu Ala Lys Thr Gly Asp Glu Leu Lys Val Thr Glu Ile Ser Asp 165 170 175

Asn Val Tyr Asp Ser Leu Lys Glu Asn Lys Ala Thr Glu Val His Val
180 185 190

Phe Gly Arg Arg Gly Pro Ala Gln Val Lys Phe Thr Pro Gln Glu Leu 195 200 205

Lys Glu Leu Asp His Ser Pro Thr Ile Asn Val Val Asp Pro Glu 210 215 220

Asp Ile Asp Tyr Asp Gly Ala Ser Glu Glu Ala Arg Arg Ala Ser Lys 225 230 235 240

Ser Gln Asp Leu Val Cys Gln Ile Leu Glu Gln Tyr Ala Ile Arg Glu 245 250 255

Pro Lys Asp Ala Pro His Thr Leu Gln Ile His Leu Phe Glu Asn Pro

Val Glu Val Leu Gln Lys Asp Gly Lys Val Val Gly Leu Arg Thr Glu 285 Arg Thr Ser Leu Asp Gly Asn Gly Gly Val Asn Gly Thr Gly Glu Phe 290 300 Lys Asp Trp Pro Val Gln Ala Val Tyr Arg Ala Val Gly Tyr Lys Ser 315 Ass Asp Pro Ile Asp Gly Val Pro Phe Asp Glu Asn Lys His Val Ile Pro 325 Ass Asp Gly Gly His Val Leu Thr Ala Pro Gly Ala Glu Pro Val Pro 340 Gly Leu Tyr Ala Thr Gly Trp Ile Lys Arg Gly Pro Ile Gly Leu Ile 355 Gly Asn Thr Lys Ser Asp Ala Lys Glu Thr Thr Asp Ile Leu Ile Lys 370 Asp Ala Val Ala Gly Val Leu Glu Ala Pro Lys His Gln Gly Glu Glu 335 Asn Asp Ala Val Ala Gly Val Leu Glu Ala Pro Lys His Gln Gly Glu Glu 335 Gly Asn Thr Lys Ser Asp Ala Lys Glu Thr Thr Asp Ile Leu Ile Lys 370 Asp Ala Val Ala Gly Val Leu Glu Ala Pro Lys His Gln Gly Glu Glu 335 Glu Gly Trp Tyr Lys Leu Asp Ser Arg Asn Ile Pro Phe Thr Thr Trp 405 Glu Gly Trp Tyr Lys Leu Asp Ala Ala Glu Arg Ala Leu Gly Glu Ala 420 Glu Gly Arg Glu Arg Lys Lys Ile Val Asp Trp Glu Glu Met Val Arg 445 Gln Ala Arg Glu Ala Pro Ala Ile Val 455 445 Asp Ala Arg Glu Ala Pro Ala Ile Val 455 Asp Ala Arg Glu Ala Pro Ala Ile Val 455 Asp Ala Arg Glu Arg Lys Lys Ile Val Asp Trp Glu Glu Met Val Arg 450 Asp Ala Arg Glu Ala Pro Ala Ile Val 455 Asp Ala Arg Glu Arg Lys Lys Ile Val Asp Trp Glu Glu Met Val Arg 450 Asp Ala Arg Glu Ala Pro Ala Ile Val 455 Asp Ala Arg Glu Ala Pro Ala Ile Val 455 Asp Ala Arg Glu Arg Lys Lys Ile Val Asp Trp Glu Glu Met Val Arg 450 Asp Ala Arg Glu Ala Pro Ala Ile Val 455 Asp Ala Arg Glu Arg Lys Lys Ile Val Asp Trp Glu Glu Met Val Arg 450 Asp Ala Arg Glu Ala Pro Ala Ile Gly Trp Trp Glu Glu Met Val Arg 450 Asp Ala Arg Glu Ala Pro Ala Ile Gly Trp Trp Glu Glu Met Val Arg 450 Asp Ala Arg Glu Ala Pro Ala Ile Gly Trp Trp Trp Glu Glu Met Val Arg 450 Arg Val Ala Val Ala Gly Pro Ala Gly Tro Ala Gly Ile Tyr Ala Ser Asp Met Thr Thr Pro Leu Ile Try Ala Ser Asp Ala Trp Glu Ala Val Ala Val Ile Gly Arg Gly Pro Ala Gly Ile Tyr Ala Ser Asp Ala Val Ala Val Ile Gly Ala Val Val Ala Gly Pro Ala Gly Ile Tyr Ala Ser Asp Ala Val Ala Val Ala Gly Pro A																	
Arg Thr Ser Leu Asp Gly Asn Gly Gly Val Asn Gly Thr Gly Glu Phe 295 Lys Asp Trp Pro Val Gln Ala Val Tyr Arg Ala Val Gly Tyr Lys Ser 310 Asp Pro Ile Asp Gly Val Pro Phe Asp Glu Asn Lys His Val Ile Pro 325 Asn Asp Gly Gly His Val Leu Thr Ala Pro Gly Ala Glu Pro Val Pro 335 Asn Asp Gly Gly His Val Leu Thr Ala Pro Gly Ala Glu Pro Val Pro 355 Asn Asp Gly Gly His Val Leu Glu Thr Thr Asp Ile Cly Leu Ile 355 Gly Asn Thr Lys Ser Asp Ala Lys Glu Thr Thr Asp Ile Leu Ile Lys 370 Asp Ala Val Ala Gly Val Leu Glu Ala Pro Lys His Gln Gly Glu Glu Asp Ala Val Ile Ile Glu Leu Leu Asp Ser Arg Asn Ile Pro Phe Thr Thr Trp 405 Glu Gly Trp Tyr Lys Leu Asp Ala Ala Glu Arg Ala Leu Gly Glu Ala 425 Glu Gly Arg Glu Arg Lys Lys Ile Val Asp Trp Glu Glu Met Val Arg 445 Gln Ala Arg Glu Ala Pro Ala Ile Val 445 Callo 81 Callo 81 Callo 81 Callo 8222> (1011)(763) Callo 81 Callo 8222> (1011)(763) Callo 81 Callo 824 aca aca cac cac cac cac cac cac cac ca				260					265					270			
290	Val	Glu		Leu	Gln	Lys	Asp		Lys	Val	Val	Gly			Thr	Glu	
310 310 310 3110 315 320 Asp Pro Ile Asp Gly Val Pro Phe Asp Glu Asn Lys His Val Ile Pro 325 Asn Asp Gly Gly His Val Leu Thr Ala Pro Gly Ala Glu Pro Val Pro 340 340 Gly Leu Tyr Ala Thr Gly Trp Ile Lys Arg Gly Pro Ile Gly Leu Ile 355 Gly Asn Thr Lys Ser Asp Ala Lys Glu Thr Thr Asp Ile Leu Ile Lys 370 Asp Ala Val Ala Gly Val Leu Glu Ala Pro Lys His Gln Gly Glu Glu 385 Asp Ala Val Ala Gly Val Leu Asp Ser Arg Asn Ile Pro Phe Thr Thr Trp 405 Ala Ile Ile Glu Leu Leu Asp Ser Arg Asn Ile Pro Phe Thr Thr Trp 410 Glu Gly Trp Tyr Lys Leu Asp Ala Ala Glu Arg Ala Leu Gly Glu Ala 420 Glu Gly Arg Glu Arg Lys Lys Ile Val Asp Trp Glu Glu Met Val Arg 435 Glin Ala Arg Glu Ala Pro Ala Ile Val 445 455 Glin Ala Arg Glu Ala Pro Ala Ile Val 455 4210> 81 4211> 786 4212> DNA 4213> Corynebacterium glutamicum 4220> 4221> CDS 4221> CDS 4221> CDS 4221> CDS 4222> (101) (763) 4223> FRXA00075 4400> 81 Ectaggagtg ttaaacagcc tggacttgaa acacctttaa ctacttgatt ttcacaccct 60 Egtttccata aaagggctca cgaaaggcaa cttcaaacac atg aca act ccc ctg Met Thr Thr Pro Leu 1 5 Egg gta gcc gtc atc gga gct ggc cct gct ggc att tac gca tcc gac 163 Arg Val Ala Val Ile Gly Ala Gly Pro Ala Gly Ile Tyr Ala Ser Asp	Arg	Thr 290	Ser	Leu	Asp	Gly		Gly	Gly	Val	Asn		Thr	Gly	Glu	Phe	
Asn Asp Gly Gly His Val Leu Thr Ala Pro Gly Ala Glu Pro Val Pro 345 Gly Leu Tyr Ala Thr Gly Trp Ile Lys Arg Gly Pro Ile Gly Leu Ile 355 Gly Asn Thr Lys Ser Asp Ala Lys Glu Thr Thr Asp Ile Leu Ile Lys 370 Asp Ala Val Ala Gly Val Leu Glu Ala Pro Lys His Gln Gly Glu Glu 385 Asp Ala Val Ala Gly Val Leu Asp Ser Arg Asn Ile Pro Phe Thr Thr Trp 405 Ala Ile Ile Glu Leu Leu Asp Ser Arg Asn Ile Pro Phe Thr Thr Trp 405 Glu Gly Trp Tyr Lys Leu Asp Ala Ala Glu Arg Ala Leu Gly Glu Ala 420 Glu Gly Arg Glu Arg Lys Lys Ile Val Asp Trp Glu Glu Met Val Arg 435 Gln Ala Arg Glu Ala Pro Ala Ile Val 455 C210> 81 C220> C220> C221> CDS C222> (101)(763) C222> (101)(763) C223> FRXA00075 C400> 81 Ccttaggagtg ttaaacagcc tggacttgaa acacctttaa ctacttgatt ttcacaccct 60 Cgtttccata aaagggctca cgaaaggcaa cttcaaacac atg aca act ccc ctg Met Thr Thr Pro Leu 1 Seg Gta gcc gtc atc gga gct ggc cct gct ggc att tac gca tcc gac 163 Arg Val Ala Val Ile Gly Ala Gly Pro Ala Gly Ile Tyr Ala Ser Asp		Asp	Trp	Pro	Val		Ala	Val	Tyr	Arg	_	Val	Gly	Tyr	Lys		
340 Gly Leu Tyr Ala Thr Gly Trp Ile Lys Arg Gly Pro Ile Gly Leu Ile 365 Gly Asn Thr Lys Ser Asp Ala Lys Glu Thr Thr Asp Ile Leu Ile Lys 370 Asp Ala Val Ala Gly Val Leu Glu Ala Pro Lys His Gln Gly Glu Glu 400 Ala Ile Ile Glu Leu Leu Asp Ser Arg Asn Ile Pro Phe Thr Thr Trp 415 Glu Gly Trp Tyr Lys Leu Asp Ala Ala Glu Arg Ala Leu Gly Glu Ala 420 Glu Gly Arg Glu Arg Lys Lys Ile Val Asp Trp Glu Glu Met Val Arg 435 Gln Ala Arg Glu Ala Pro Ala Ile Val 455 Gln Ala Arg Glu Ala Pro Ala Ile Val 450 <pre> </pre> <a href<="" td=""><td>Asp</td><td>Pro</td><td>Ile</td><td>Asp</td><td>Gly 325</td><td>Val</td><td>Pro</td><td>Phe</td><td>Asp</td><td></td><td>Asn</td><td>Lys</td><td>His</td><td>Val</td><td></td><td></td><td></td>	Asp	Pro	Ile	Asp	Gly 325	Val	Pro	Phe	Asp		Asn	Lys	His	Val			
355 Gly Asn Thr Lys Ser Asp Ala Lys Glu Thr Thr Asp Ile Leu Ile Lys 370 Asp Ala Val Ala Gly Val Leu Glu Ala Pro Lys His Gln Gly Glu Glu 385 Asp Ala Val Ala Gly Val Leu Asp Ser Arg Asn Ile Pro Phe Thr Thr Trp 405 Ala Ile Ile Glu Leu Leu Asp Ser Arg Asn Ile Pro Phe Thr Thr Trp 415 Glu Gly Trp Tyr Lys Leu Asp Ala Ala Glu Arg Ala Leu Gly Glu Ala 425 Glu Gly Arg Glu Arg Lys Lys Ile Val Asp Trp Glu Glu Met Val Arg 435 Gln Ala Arg Glu Ala Pro Ala Ile Val 455 Gln Ala Arg Glu Ala Pro Ala Ile Val 455 C210> 81 C211> 786 C212> DNA C213> Corynebacterium glutamicum C220> C221> CDS C221> CDS C221> CDS C222> (101)(763) C222> FRXA00075 C400> 81 Cttaggagtg ttaaacagcc tggacttgaa acacctttaa ctacttgatt ttcacaccct 60 Cgtttccata aaagggctca cgaaaggcaa cttcaaacac atg aca act ccc ctg 115 Met Thr Pro Leu 1 Seg gta gcc gtc atc gga gct ggc cct gct ggc att tac gca tcc gac 163 Arg Val Ala Val Ile Gly Ala Gly Pro Ala Gly Ile Tyr Ala Ser Asp	Asn	Asp	Gly	Gly 340	His	Val	Leu	Thr		Pro	Gly	Ala	Glu		Val	Pro	
Asp Ala Val Ala Gly Val Leu Glu Ala Pro Lys His Gln Gly Glu Glu 385 Asp Ala Val Ala Gly Val Leu Glu Ala Pro Lys His Gln Gly Glu Glu 385 Ala Ile Ile Glu Leu Leu Asp Ser Arg Asn Ile Pro Phe Thr Thr Trp 405 Glu Gly Trp Tyr Lys Leu Asp Ala Ala Glu Arg Ala Leu Gly Glu Ala 420 Glu Gly Arg Glu Arg Lys Lys Ile Val Asp Trp Glu Glu Met Val Arg 435 Gln Ala Arg Glu Ala Pro Ala Ile Val 455 Gln Ala Arg Glu Ala Pro Ala Ile Val 455 <pre> </pre> <pre> <pre> </pre> <pre> </pre> <pre> <pre> <pre> </pre> <pre> <pre> <pre> <pre> </pre> <pre> <pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre>	Gly	Leu	Tyr 355	Ala	Thr	Gly	Trp		Lys	Arg	Gly	Pro		Gly	Leu	Ile	
Ala Ile Ile Glu Leu Leu Asp Ser Arg Asn Ile Pro Phe Thr Thr Trp 405 Glu Gly Trp Tyr Lys Leu Asp Ala Ala Glu Arg Ala Leu Gly Glu Ala 420 Glu Gly Arg Glu Arg Lys Lys Ile Val Asp Trp Glu Glu Met Val Arg 435 Gln Ala Arg Glu Ala Pro Ala Ile Val 450 <pre> </pre> <pre> </pre> <pre> <pre> </pre> <pre> <pr< td=""><td>Gly</td><td>Asn 370</td><td>Thr</td><td>Lys</td><td>Ser</td><td>Asp</td><td></td><td>Lys</td><td>Glu</td><td>Thr</td><td>Thr</td><td></td><td>Ile</td><td>Leu</td><td>Ile</td><td>Lys</td><td></td></pr<></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre>	Gly	Asn 370	Thr	Lys	Ser	Asp		Lys	Glu	Thr	Thr		Ile	Leu	Ile	Lys	
Glu Gly Trp Tyr Lys Leu Asp Ala Ala Glu Arg Ala Leu Gly Glu Ala 420 Glu Gly Arg Glu Arg Lys Lys Ile Val Asp Trp Glu Glu Met Val Arg 435 Gln Ala Arg Glu Ala Pro Ala Ile Val 455 455 455 460 470 470 470 470 470 470 470	Asp 385	Ala	Val	Ala	Gly		Leu	Glu	Ala	Pro		His	Gln	Gly	Glu		
Glu Gly Arg Glu Arg Lys Lys Ile Val Asp Trp Glu Glu Met Val Arg 435 Gln Ala Arg Glu Ala Pro Ala Ile Val 450 <pre> </pre> <pre> </pre> <pre> </pre> <pre> <pre> <pre> <pre> </pre> <pre> <pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre>	Ala	Ile	Ile	Glu		Leu	Asp	Ser	Arg		Ile	Pro	Phe	Thr		Trp	
435 Gln Ala Arg Glu Ala Pro Ala Ile Val 450 <210> 81 <221> 786 <212> DNA <221> Corynebacterium glutamicum <220> <221> CDS <222> (101)(763) <223> FRXA00075 <4400> 81 tctaggagtg ttaaacagcc tggacttgaa acacctttaa ctacttgatt ttcacacct 60 tgtttccata aaagggctca cgaaaggcaa cttcaaacac atg aca act ccc ctg 115 Met Thr Thr Pro Leu 1 5 Ggc gta gcc gtc atc gga gct ggc cct gct ggc att tac gca tcc gac Arg Val Ala Val Ile Gly Ala Gly Pro Ala Gly Ile Tyr Ala Ser Asp	Glu	Gly	Trp		Lys	Leu	Asp	Ala		Glu	Arg	Ala	Leu		Glu	Ala	
<pre>450</pre>	Glu	Gly		Glu	Arg	Lys	Lys		Val	Asp	Trp	Glu		Met	Val	Arg	
<pre><211> 786 <212> DNA <213> Corynebacterium glutamicum </pre> <220> <221> CDS <222> (101)(763) <223> FRXA00075 <400> 81 tctaggagtg ttaaacagcc tggacttgaa acacctttaa ctacttgatt ttcacaccct 60 tgtttccata aaagggctca cgaaaggcaa cttcaaacac atg aca act ccc ctg 115			Arg	Glu	Ala	Pro		Ile	Val								
<pre><221> CDS <222> (101)(763) <223> FRXA00075 <400> 81 tctaggagtg ttaaacagcc tggacttgaa acacctttaa ctacttgatt ttcacaccct 60 tgtttccata aaagggctca cgaaaggcaa cttcaaacac atg aca act ccc ctg 115</pre>	<211 <212	> 78 > DN	6 A	bact	eriu	m gl	utam	icum									
totaggagtg ttaaacagcc tggacttgaa acacctttaa ctacttgatt ttcacaccct 60 tgtttccata aaagggctca cgaaaggcaa cttcaaacac atg aca act ccc ctg 115 Met Thr Thr Pro Leu 1 5 tgc gta gcc gtc atc gga gct ggc cct gct ggc att tac gca tcc gac 163 Arg Val Ala Val Ile Gly Ala Gly Pro Ala Gly Ile Tyr Ala Ser Asp	<221 <222	> CD > (1	01).		3)												
Met Thr Thr Pro Leu 1 5 Ggc gta gcc gtc atc gga gct ggc cct gct ggc att tac gca tcc gac Arg Val Ala Val Ile Gly Ala Gly Pro Ala Gly Ile Tyr Ala Ser Asp			tg t	taaa	cagc	c tg	gact	tgaa	aca	cctt	taa	ctac	ttga	tt t	tcac	accct	60
Arg Val Ala Val Ile Gly Ala Gly Pro Ala Gly Ile Tyr Ala Ser Asp											cac	atg Met	aca	act	ccc	ctg Leu	115
	ege (Arg V	gta (Val	gcc q Ala V	gtc a Val :	Ile	gga Gly	gct (Ala (ggc (Gly)	cct (Pro <i>i</i>	Ala	ggc Gly	att Ile '	tac Tyr	gca Ala	Ser	gac Asp	163

ctc ctc atc cgc aat gaa gag cgc gaa gtg ttc gtt gac ctt ttc gag 211

Leu I	Ŀeu	Ile	Arg 25	Asn	Glu	Glu	Arg	Glu 30	Val	Phe	Val	Asp	Leu 35	Phe	Glu	
caa a Gln M																259
cac o	cca Pro 55	cgc Arg	atc Ile	aag Lys	ggc Gly	atc Ile 60	gtt Val	aag Lys	tcc Ser	ctg Leu	cac His 65	aac Asn	gtg Val	ttg Leu	gac Asp	307
aag d Lys I 70	cca Pro	cgc Arg	ctg Leu	cgc Arg	ctg Leu 75	ctc Leu	ggt Gly	aac Asn	att Ile	gaa Glu 80	atc Ile	ggc Gly	aaa Lys	gac Asp	atc Ile 85	355
acc o																403
ggc g Gly A																451
ggc t Gly s	tcc Ser	ttc Phe 120	ggt Gly	gcc Ala	ggc Gly	gag Glu	ttc Phe 125	gtt Val	ggc Gly	ttc Phe	tac Tyr	gac Asp 130	ggc Gly	aac Asn	cca Pro	499
cgc t Arg l	ttc Phe 135	gag Glu	cgc Arg	tcc Ser	tgg Trp	gat Asp 140	ctg Leu	tct Ser	gca Ala	cag Gln	tcc Ser 145	gtc Val	gct Ala	gtt Val	atc Ile	547
ggc (Gly V 150	gtt Val	ggt Gly	aac Asn	gtc Val	ggc Gly 155	ctc Leu	gac Asp	gta Val	gcc Ala	cgc Arg 160	atc Ile	ctg Leu	gct Ala	aag Lys	aca Thr 165	595
ggc (gac Asp	gag Glu	ctc Leu	aaa Lys 170	gtc Val	acc Thr	gaa Glu	att Ile	tcc Ser 175	gac Asp	aac Asn	gtc Val	tac Tyr	gac Asp 180	tcc Ser	643
ctc a	aaa Lys	gaa Glu	aac Asn 185	aag Lys	gyc Xaa	wct Xaa	gaa Glu	gtg Val 190	cac His	gtt Val	ttc Phe	gga Gly	cgt Arg 195	cgg Arg	tgg Trp	691
ccc a	agc Ser	aca Thr 200	ggt Gly	caa Gln	gtt Val	cac His	ccc Pro 205	aca Thr	gga Gly	act Thr	maa Xaa	aga Arg 210	act Thr	cgr Xaa	cca Pro	739
ctc Leu								tga	tcca	gaa (gaca	tcga	ct a	cg		786
<210 <211 <212 <213	> 2: > P	21 RT	ebac	teri	um g	luta	micu	m								
<400 Met 1			Pro	Leu 5	Arg	Val	Ala	Val	Ile 10		Ala	Gly	Pro	Ala 15		

Ile Tyr Ala Ser Asp Leu Leu Ile Arg Asn Glu Glu Arg Glu Val Phe Val Asp Leu Phe Glu Gln Met Pro Ala Pro Phe Gly Leu Ile Arg Tyr 40 Gly Val Ala Pro Asp His Pro Arg Ile Lys Gly Ile Val Lys Ser Leu 55 His Asn Val Leu Asp Lys Pro Arg Leu Arg Leu Leu Gly Asn Ile Glu Ile Gly Lys Asp Ile Thr Val Glu Glu Leu Arg Asp Tyr Tyr Asp Ala 90 Val Val Phe Ser Thr Gly Ala Val Ala Asp Arg Asp Leu Asn Ile Pro Gly Ile Glu Ala Glu Gly Ser Phe Gly Ala Gly Glu Phe Val Gly Phe Tyr Asp Gly Asn Pro Arg Phe Glu Arg Ser Trp Asp Leu Ser Ala Gln 140 Ser Val Ala Val Ile Gly Val Gly Asn Val Gly Leu Asp Val Ala Arg 155 Ile Leu Ala Lys Thr Gly Asp Glu Leu Lys Val Thr Glu Ile Ser Asp 165 170 Asn Val Tyr Asp Ser Leu Lys Glu Asn Lys Xaa Xaa Glu Val His Val 180 185 Phe Gly Arg Arg Trp Pro Ser Thr Gly Gln Val His Pro Thr Gly Thr 195 200 Xaa Arg Thr Xaa Pro Leu Pro His His Gln Arg Gly Cys 210 <210> 83 <211> 672 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(649) <223> RXN00198 <400> 83 atgcaggatt agagcagcag caacggagcc agaatcagtc tcccaatttg atatccagcc 60 ccgcgctcct ttccagcgcg ccgattccac tccatggccg atg tac ccc aac ctc Met Tyr Pro Asn Leu ttc cgc acc gca acg gct cac gaa gaa ggc gaa tac atc act ggc Phe Arg Thr Ala Thr Ala His Glu Glu Glu Glu Tyr Ile Ile Thr Gly 10

gat Asp	gaa Glu	tca Ser	gcc Ala 25	gat Asp	gaa Glu	atc Ile	gca Ala	gcc Ala 30	ctg Leu	ggc Gly	ctc Leu	gcc Ala	gaa Glu 35	cgt Arg	gcc Ala	211
gca Ala	ggc Gly	tcc Ser 40	acg Thr	ctt Leu	ggt Gly	gaa Glu	cgt Arg 45	aaa Lys	ttt Phe	gct Ala	gtc Val	aac Asn 50	acc Thr	gtg Val	gaa Glu	259
ttc Phe	cac His 55	ggc Gly	aac Asn	aac Asn	ggc Gly	cac His 60	gtc Val	acc Thr	gga Gly	ctc Leu	acc Thr 65	ggc Gly	aac Asn	caa Gln	atc Ile	307
cga Arg 70	gtt Val	gtc Val	aac Asn	ggc Gly	aaa Lys 75	cgt Arg	gaa Glu	cca Pro	atc Ile	gaa Glu 80	ggc Gly	acc Thr	gaa Glu	ttc Phe	ccc Pro 85	355
										ggc Gly						403
										ggt Gly						451
										ccc Pro						499
tac Tyr	atc Ile 135	gca Ala	ggc Gly	gac Asp	aac Asn	ggc Gly 140	cgt Arg	ggc Gly	cag Gln	tcc Ser	ctg Leu 145	atc Ile	gtg Val	tgg Trp	gca Ala	547
										atc Ile 160						595
										cca Pro						643
_	gtc Val	tag	cttg	ggt .	agaa	aatg	ct a	ga								672

<210> 84

<211> 183

<212> PRT

<213> Corynebacterium glutamicum

<400> 84

Met Tyr Pro Asn Leu Phe Arg Thr Ala Thr Ala His Glu Glu Glu Glu 1 5 10 15

Tyr Ile Ile Thr Gly Asp Glu Ser Ala Asp Glu Ile Ala Ala Leu Gly 20 25 30

Leu Ala Glu Arg Ala Ala Gly Ser Thr Leu Gly Glu Arg Lys Phe Ala 35 40 45

Val Asn Thr Val Glu Phe His Gly Asn Asn Gly His Val Thr Gly Leu

	50)				55	5				60)				
Thr 65	Gly	/ Asr	Glr	ı Ile	Arg		. Val	Asr	ı Gly	7 Lys		σ Glι	ı Pro	o Ile	Glu 80	
Gly	Thr	Glu	Phe	Pro 85		Glu	Ala	a Asp	Leu 90		l Let	ı Val	l Ala	Lev 95	Gly	
Ph∈	Thr	Gly	100		Gln	Gly	Gly	Leu 105		His	s Glu	ı Leı	1 Gly 110		Gly	
Phe	asp	Asp 115	Arg	Gly	Arg	Ile	Leu 120		Asp	Ser	Glu	Tyr 125		ser (Pro	
Thr	130	Ser	Arg	Val	Tyr	Ile 135		Gly	Asp	Asn	Gly 140		ı Gly	Gln	Ser	
Leu 145	Ile	· Val	Trp	Ala	Ile 150	Ala	Glu	Gly	Arg	Ala 155		Ala	Ala	Ala	Ile 160	
Asp	Ala	Asp	Leu	Met 165	Gly	Glu	Thr	Ala	Leu 170		Val	Ala	Val	Ala 175		
Gln	Asp	Val	Pro 180	Leu	Ala	Val										
<21 <21 <21 <22 <22 <22 <22	0> 1> Ci 2> (i	05 NA oryn	(282	teriv	ım g.	lutai	micu	m								
ctc	0> 8! gtt	ctt	gtt	gca	ctt	ggc	ttc	acc	ggc	gca	gaa	caa	ggc	gga	ttg	48
1				5					10					Gly 15		
gca Ala	cac His	gaa Glu	cta Leu 20	ggc Gly	gta Val	ggt Gly	ttc Phe	gac Asp 25	gac Asp	cgg Arg	ggc Gly	cgc Arg	atc Ile 30	ctc Leu	cgc Arg	96
gat Asp	tcc Ser	gaa Glu 35	tac Tyr	cgc Arg	agc Ser	ccc Pro	acc Thr 40	aac Asn	tcc Ser	cgc Arg	gtt Val	tac Tyr 45	atc Ile	gca Ala	ggc Gly	144
gac Asp	aac Asn 50	ggc Gly	cgt Arg	ggc Gly	cag Gln	tcc Ser 55	ctg Leu	atc Ile	gtg Val	tgg Trp	gca Ala 60	atc Ile	gcc Ala	gaa Glu	ggc Gly	192
cgc Arg 65	gca Ala	tgc Cys	gcc Ala	gca Ala	gct Ala 70	atc Ile	gac Asp	gcc Ala	gat Asp	ctc Leu 75	atg Met	ggt Gly	gaa Glu	act Thr	gca Ala 80	240
ctc Leu	cct Pro	gta Val	gca Ala	gtt Val	gca Ala	cca Pro	cag Gln	gac Asp	gtg Val	ccg Pro	ctg Leu	gct Ala	gtc Val			282

90

85

282

305 tagcttgggt agaaaatgct aga <210> 86 <211> 94 <212> PRT <213> Corynebacterium glutamicum Leu Val Leu Val Ala Leu Gly Phe Thr Gly Ala Glu Gln Gly Gly Leu Ala His Glu Leu Gly Val Gly Phe Asp Asp Arg Gly Arg Ile Leu Arg 2.5 Asp Ser Glu Tyr Arg Ser Pro Thr Asn Ser Arg Val Tyr Ile Ala Gly Asp Asn Gly Arg Gly Gln Ser Leu Ile Val Trp Ala Ile Ala Glu Gly Arg Ala Cys Ala Ala Ala Ile Asp Ala Asp Leu Met Gly Glu Thr Ala Leu Pro Val Ala Val Ala Pro Gln Asp Val Pro Leu Ala Val <210> 87 <211> 727 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101) .. (727) <223> RXN00365 <400> 87 gaagcctacg atcgcttgca cgcgaccaac aatttccccg agttcaccgg ccgtttgtgc 60 cccgcaccct gcgaaggcgc ctgcgtgctc ggtatcaacg atg att ctg tca cca Met Ile Leu Ser Pro 163 tca aaa acg ttt gag ctg gaa atc gtc gaa aaa gca ttc cgc gaa ggc Ser Lys Thr Phe Glu Leu Glu Ile Val Glu Lys Ala Phe Arg Glu Gly 10 tgg gtg caa cca gta atc cca tcc atg tct acc ggg ctg tca gtc gcc 211 Trp Val Gln Pro Val Ile Pro Ser Met Ser Thr Gly Leu Ser Val Ala 259 Val Val Gly Ser Gly Pro Ala Gly Leu Ala Ala Ala Gln Gln Leu Thr 40 45 cgc gca ggc cac agc gtt acc gtc ttt gaa cgc gac gac cgc ctc ggc 307 Arg Ala Gly His Ser Val Thr Val Phe Glu Arg Asp Asp Arg Leu Gly 60

			_					_			-			cgc Arg		355
	_	_	_				_	-	_					ttc Phe 100	_	403
-			_	_	_	_	_	_					-	gcg Ala		451
		-						-		_			-	cca Pro	-	499
														gcc Ala		547
														gcc Ala		595
														gac Asp 180		643
	-		-	_	_			_	_		_			ttt Phe	_	691
	-		_	-			_	-	-	gat Asp						727
<211 <212)> 88 l> 20 2> PF 3> Co)9 RT	ebact	eriu	ım gl	Lutam	nicum	n								
-100	1. 00	,														
)> 88 Ile		Ser	Pro 5	Ser	Lys	Thr	Phe	Glu 10	Leu	Glu	Ile	Val	Glu 15	Lys	
Ala	Phe	Arg	Glu 20	Gly	Trp	Val	Gln	Pro 25	Val	Ile	Pro	Ser	Met 30	Ser	Thr	
Gly	Leu	Ser 35	Val	Ala	Val	Val	Gly 40	Ser	Gly	Pro	Ala	Gly 45	Leu	Ala	Ala	
Ala	Gln 50	Gln	Leu	Thr	Arg	Ala 55	Gly	His	Ser	Val	Thr 60	Val	Phe	Glu	Arg	
Asp 65	Asp	Arg	Leu	Gly	Gly 70	Leu	Met	Arg	Tyr	Gly 75	Val	Pro	Glu	Tyr	Lys 80	
Met	Glu	Asn	Arg	Trp 85	Ile	Asp	Arg	Arg	Ile 90	Glu	Gln	Met	Glu	Ala 95	Glu	

Gly Thr Thr Phe Gln Val Gly Thr Ser Pro Arg Ala Ala Glu Leu Ala 100 105 Leu Phe Asp Ala Ile Leu Leu Ala Thr Gly Thr Pro Val Ala Arg Glu 120 Leu Ser Val Pro Gly His Asp Leu Asn Gly Ile His Ala Ala Met Asp Tyr Leu Thr Ala Gln Asn Arg Ile Asn Glu Gly Asp Gly Glu Val Ser Pro Ile Asn Ala Lys Gly Lys Lys Val Val Ile Ile Gly Gly Asp 165 170 Thr Gly Thr Asp Cys Phe Gly Thr Ala Leu Arg Gln Gly Ala Glu Ser 185 Val Thr Gln Phe Asp Ile Arg Pro Arg Ala Pro Phe Gln Arg Ala Asp 200 Ser <210> 89 <211> 727 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(727) <223> FRXA00365 <400> 89 qaaqcctacq atcqcttqca cgcgaccaac aatttccccg agttcaccgg ccgtttgtgc 60 cccgcaccct gcgaaggcgc ctgcgtgctc ggtatcaacg atg att ctg tca cca 115 Met Ile Leu Ser Pro tca aaa acg ttt gag ctg gaa atc gtc gaa aaa gca ttc cgc gaa ggc 163 Ser Lys Thr Phe Glu Leu Glu Ile Val Glu Lys Ala Phe Arg Glu Gly 10 211 tgg gtg caa cca gta atc cca tcc atg tct acc ggg ctg tca gtc gcc Trp Val Gln Pro Val Ile Pro Ser Met Ser Thr Gly Leu Ser Val Ala 25 30 259 Val Val Gly Ser Gly Pro Ala Gly Leu Ala Ala Ala Gln Gln Leu Thr 40 45 307 cgc gca ggc cac agc gtt acc gtc ttt gaa cgc gac gac cgc ctc ggc Arg Ala Gly His Ser Val Thr Val Phe Glu Arg Asp Asp Arg Leu Gly 55 60 ggc ctc atg cgc tac ggc gtg cca gaa tac aaa atg gag aac cgc tgg 355 Gly Leu Met Arg Tyr Gly Val Pro Glu Tyr Lys Met Glu Asn Arg Trp

70	7!	5		80		85
atc gac cgc Ile Asp Arg						
gta ggc acc Val Gly Thr						
ctc ctc gca Leu Leu Ala 120					Val Pro	
cac gat ctc His Asp Leu 135						
aac cgc atc Asn Arg Ile 150		Asp Gly				
ggc aag aaa Gly Lys Lys	-				_	-
ttc ggc acc Phe Gly Thr						
atc cgc ccc Ile Arg Pro 200						727
<210> 90 <211> 209 <212> PRT <213> Coryne	ebacterium (glutamicu	m			
<400> 90 Met Ile Leu	Ser Pro Ser	r Lvs Thr	Phe Glu	Leu Glu Ila	val Glu	Lyc
1	5	. Lyb IIIL	10	Dea Gra II.	15	цуз
Ala Phe Arg	Glu Gly Trp 20	Val Gln	Pro Val 25	Ile Pro Se	Met Ser 30	Thr
Gly Leu Ser 35	Val Ala Val	Val Gly 40	Ser Gly	Pro Ala Gly	_	Ala
Ala Gln Gln 50	Leu Thr Arg	Ala Gly 55	His Ser	Val Thr Val	Phe Glu	Arg
Asp Asp Arg 65	Leu Gly Gly		Arg Tyr	Gly Val Pro 75	Glu Tyr	Lys 80
Met Glu Asn	Arg Trp Ile 85	Asp Arg	Arg Ile 90	Glu Gln Met	Glu Ala 95	Glu
Gly Thr Thr	Phe Gln Val	. Gly Thr	Ser Pro 105	Arg Ala Ala	Glu Leu 110	Ala

Leu Phe Asp Ala Ile Leu Leu Ala Thr Gly Thr Pro Val Ala Arg Glu 115 Leu Ser Val Pro Gly His Asp Leu Asn Gly Ile His Ala Ala Met Asp 135 Tyr Leu Thr Ala Gln Asn Arg Ile Asn Glu Gly Asp Gly Glu Val Ser 150 Pro Ile Asn Ala Lys Gly Lys Lys Val Val Ile Ile Gly Gly Asp 170 Thr Gly Thr Asp Cys Phe Gly Thr Ala Leu Arg Gln Gly Ala Glu Ser Val Thr Gln Phe Asp Ile Arg Pro Arg Ala Pro Phe Gln Arg Ala Asp 200 205 Ser <210> 91 <211> 480 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(457) <223> RXA00366 <400> 91 aaatcatgcc gcgcgatttc caaaaagtac tcaacatcat cgaaacggcc cacgctgagg 60 gccaagaccc agcaatcaag atcatggagg cagtgagcta atg gcc gac cca caa Met Ala Asp Pro Gln gga ttc atc aaa tac tcc cga cgc gag cct gca cac cgc ccg gtc ccg 163 Gly Phe Ile Lys Tyr Ser Arg Arg Glu Pro Ala His Arg Pro Val Pro 10 211 ctg cgc ctc atg gac cac tcc gag gtc tac gaa aag gca ccg gca ggt Leu Arg Leu Met Asp His Ser Glu Val Tyr Glu Lys Ala Pro Ala Gly 30 cag atc gag gaa cag gct gcc cgc tgc atg gat tgc ggt gtc ccg ttc 259 Gln Ile Glu Glu Gln Ala Ala Arg Cys Met Asp Cys Gly Val Pro Phe tgc cac gaa ggc tgc cca ctg ggc aac atc atc cct gag tgg aat gat 307 Cys His Glu Gly Cys Pro Leu Gly Asn Ile Ile Pro Glu Trp Asn Asp 60 ctg gta cgc caa ggt cgg tgg aag gaa gcc tac gat cgc ttg cac gcg 355 Leu Val Arg Gln Gly Arg Trp Lys Glu Ala Tyr Asp Arg Leu His Ala 80

403

acc aac aat ttc ccc gag ttc acc ggc cgt ttg tgc ccc gca ccc tgc

Thr Asn Asn Phe Pro Glu Phe Thr Gly Arg Leu Cys Pro Ala Pro Cys 95 gaa ggc gcc tgc gtg ctc ggt atc aac gat gat tct gtc acc atc aaa 451 Glu Gly Ala Cys Val Leu Gly Ile Asn Asp Asp Ser Val Thr Ile Lys 110 480 aac gtt tgagctggaa atcgtcgaaa aag Asn Val <210> 92 <211> 119 <212> PRT <213> Corynebacterium glutamicum <400> 92 Met Ala Asp Pro Gln Gly Phe Ile Lys Tyr Ser Arg Arg Glu Pro Ala His Arg Pro Val Pro Leu Arg Leu Met Asp His Ser Glu Val Tyr Glu 20 Lys Ala Pro Ala Gly Gln Ile Glu Glu Gln Ala Ala Arg Cys Met Asp Cys Gly Val Pro Phe Cys His Glu Gly Cys Pro Leu Gly Asn Ile Ile 50 55 Pro Glu Trp Asn Asp Leu Val Arg Gln Gly Arg Trp Lys Glu Ala Tyr Asp Arg Leu His Ala Thr Asn Asn Phe Pro Glu Phe Thr Gly Arg Leu Cys Pro Ala Pro Cys Glu Gly Ala Cys Val Leu Gly Ile Asn Asp Asp 100 105 Ser Val Thr Ile Lys Asn Val 115 <210> 93 <211> 1464 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(1441) <223> RXA02072 <400> 93 tacatggtgc cctcaatggg aaccaccaac atcactaaat ggcccaggta cacactttaa 60 aatcgtgcgc gcatgcagcc gagatgggaa cgaggaaatc atg aca gtt gat gag Met Thr Val Asp Glu

cag gtc tct aac tat tac gac atg ctt ctg aag cgc aat gct ggc gag 163

Gln	Val	Ser	Asn	Tyr 10	Tyr	Asp	Met	Leu	Leu 15	Lys	Arg	Asn	Ala	Gly 20	Glu	
cct Pro	gaa Glu	ttt Phe	cac His 25	cag Gln	gca Ala	gtg Val	gca Ala	gag Glu 30	gtt Val	ttg Leu	gaa Glu	tct Ser	ttg Leu 35	aag Lys	atc Ile	211
gtc Val	ctg Leu	gaa Glu 40	aag Lys	gac Asp	cct Pro	cat His	tac Tyr 45	gct Ala	gat Asp	tac Tyr	ggt Gly	ctc Leu 50	atc Ile	cag Gln	cgc Arg	259
ctg Leu	tgc Cys 55	gag Glu	cct Pro	gag Glu	cgt Arg	cag Gln 60	ctc Leu	atc Ile	ttc Phe	cgt Arg	gtg Val 65	cct Pro	tgg Trp	gtt Val	gat Asp	307
gac Asp 70	cag Gln	ggc Gly	cag Gln	gtc Val	cac His 75	gtc Val	aac Asn	cgt Arg	ggt Gly	ttc Phe 80	cgc Arg	gtg Val	cag Gln	ttc Phe	aac Asn 85	355
tct Ser	gca Ala	ctt Leu	gga Gly	cca Pro 90	tac Tyr	aag Lys	ggc Gly	ggc Gly	ctg Leu 95	cgc Arg	ttc Phe	cac His	cca Pro	tct Ser 100	gta Val	403
aac Asn	ctg Leu	ggc Gly	att Ile 105	gtg Val	aag Lys	ttc Phe	ctg Leu	ggc Gly 110	ttt Phe	gag Glu	cag Gln	atc Ile	ttt Phe 115	aaa Lys	aac Asn	451
					cca Pro											499
gac Asp	cct Pro 135	aag Lys	ggc Gly	aag Lys	tcc Ser	gat Asp 140	ctg Leu	gaa Glu	atc Ile	atg Met	cgt Arg 145	ttc Phe	tgc Cys	cag Gln	tcc Ser	547
					cac His 155											595
gca Ala	ggt Gly	aac Asn	Ile	gga Gly 170	gtt Val	Gly	Gly	His	Glu	Ile	ggt Gly	Tyr	Leu	Phe	Gly	643
cac His	tac Tyr	cgt Arg	cgc Arg 185	atg Met	gct Ala	aac Asn	cag Gln	cac His 190	gag Glu	tcc Ser	ggc Gly	gtt Val	ttg Leu 195	acc Thr	ggt Gly	691
aag Lys	ggc Gly	ctg Leu 200	acc Thr	tgg Trp	ggt Gly	gga Gly	tcc Ser 205	ctg Leu	gtc Val	cgc Arg	acc Thr	gag Glu 210	gca Ala	act Thr	ggc	739
					ttc Phe											787
agc Ser 230	Ile	agc Ser	ggc Gly	cag Gln	aag Lys 235	atc Ile	atc Ile	gtt Val	tcc Ser	ggt Gly 240	tcc Ser	ggc Gly	aac Asn	gta Val	gca Ala 245	835
acc Thr	tac Tyr	gcg Ala	att Ile	gaa Glu	aag Lys	gct Ala	cag Gln	gaa Glu	ctc Leu	ggc	gca Ala	acc Thr	gtt Val	att Ile	ggt Gly	883

			250					255					260		
ttc tcc Phe Ser	gat Asp	tcc Ser 265	agc Ser	ggt Gly	tgg Trp	gtt Val	cat His 270	Thr	cct Pro	aac Asn	ggc Gly	gtt Val 275	Asp	gtg Val	931
gct aag Ala Lys	ctc Leu 280	cgc Arg	gaa Glu	atc Ile	aag Lys	gaa Glu 285	gtt Val	cgt Arg	cgc Arg	gca Ala	cgc Arg 290	Val	tcc Ser	gtg Val	979
tac gcc 1027	gac	gaa	gtt	gaa	ggc	gca	acc	tac	cac	acc	gac	ggt	tcc	atc	
Tyr Ala 295	Asp	Glu	Val	Glu	Gly 300	Ala	Thr	Tyr	His	Thr 305	Asp	Gly	Ser	Ile	
tgg gat 1075	ctc	aag	tgc	gat	atc	gct	ctt	cct	tgt	gca	act	cag	aac	gag	
Trp Asp 310	Leu	Lys	Cys	Asp 315	Ile	Ala	Leu	Pro	Суs 320	Ala	Thr	Gln	Asn	Glu 325	
ctc aac 1123	ggc	gag	aac	gct	aag	act	ctt	gca	gac	aac	ggc	tgc	cgt	ttc	
Leu Asn	Gly	Glu	Asn 330	Ala	Lys	Thr	Leu	Ala 335	Asp	Asn	Gly	Cys	Arg 340	Phe	
gtt gct 1171	gaa	ggc	gcg	aac	atg	cct	tcc	acc	cct	gag	gct	gtt	gag	gtc	
Val Ala	Glu	Gly 345	Ala	Asn	Met	Pro	Ser 350	Thr	Pro	Glu	Ala	Val 355	Glu	Val	
ttc cgt 1219	gag	cgc	gac	atc	cgc	ttc	gga	cca	ggc	aag	gca	gct	aac	gct	
Phe Arg	Glu 360	Arg	Asp	Ile	Arg	Phe 365	Gly	Pro	Gly	Lys	Ala 370	Ala	Asn	Ala	
ggt ggc 1267	gtt	gca	acc	tcc	gct	ctg	gag	atg	cag	cag	aac	gct	tcg	cgc	
Gly Gly 375	Val	Ala	Thr	Ser	Ala 380	Leu	Glu	Met	Gln	Gln 385	Asn	Ala	Ser	Arg	
gat tcc 1315	tgg	agc	ttc	gag	tac	acc	gac	gag	cgc	ctc	cag	gtg	atc	atg	
Asp Ser 390	Trp	Ser	Phe	Glu 395	Tyr	Thr	Asp	Glu	Arg 400	Leu	Gln	Val	Ile	Met 405	
aag aac 1363															
Lys Asn	Ile	Phe	Lys 410	Thr	Cys	Ala	Glu	Thr 415	Ala	Ala	Glu	туr	Gly 420	His	
gag aac 1411	gat	tac	gtt	gtc	ggc	gct	aac	att	gct	ggc	ttc	aag	aag	gta	
Glu Asn		Tyr 425	Val	Val	Gly	Ala	Asn 430	Ile	Ala	Gly	Phe	Lys 435	Lys	Val	
gct gac 1461	gcg	atg	ctg	gca	cag	ggc	gtc	atc	taag	accc	ct g	cgct	ttac	t	
Ala Asp	Ala :	Met	Leu	Ala		Gly 445	Val	Ile							

taa 1464

<210> 94

<211> 447

<212> PRT

<213> Corynebacterium glutamicum

<400> 94

Met Thr Val Asp Glu Gln Val Ser Asn Tyr Tyr Asp Met Leu Leu Lys

1 10 15

Arg Asn Ala Gly Glu Pro Glu Phe His Gln Ala Val Ala Glu Val Leu 20 25 30

Glu Ser Leu Lys Ile Val Leu Glu Lys Asp Pro His Tyr Ala Asp Tyr 35 40 45

Gly Leu Ile Gln Arg Leu Cys Glu Pro Glu Arg Gln Leu Ile Phe Arg
50 55 60

Val Pro Trp Val Asp Asp Gln Gly Gln Val His Val Asn Arg Gly Phe 65 70 75 80

Arg Val Gln Phe Asn Ser Ala Leu Gly Pro Tyr Lys Gly Gly Leu Arg 85 90 95

Phe His Pro Ser Val Asn Leu Gly Ile Val Lys Phe Leu Gly Phe Glu 100 105 110

Gln Ile Phe Lys Asn Ser Leu Thr Gly Leu Pro Ile Gly Gly Gly Lys 115 120 125

Gly Gly Ser Asp Phe Asp Pro Lys Gly Lys Ser Asp Leu Glu Ile Met 130 135 140

Arg Phe Cys Gln Ser Phe Met Thr Glu Leu His Arg His Ile Gly Glu 145 150 155 160

Tyr Arg Asp Val Pro Ala Gly Asn Ile Gly Val Gly Gly His Glu Ile 165 170 175

Gly Tyr Leu Phe Gly His Tyr Arg Arg Met Ala Asn Gln His Glu Ser 180 185 190

Gly Val Leu Thr Gly Lys Gly Leu Thr Trp Gly Gly Ser Leu Val Arg 195 200 205

Thr Glu Ala Thr Gly Tyr Gly Cys Val Tyr Phe Val Ser Glu Met Ile 210 215 220

Lys Ala Lys Gly Glu Ser Ile Ser Gly Gln Lys Ile Ile Val Ser Gly 225 230 235 240

Ser Gly Asn Val Ala Thr Tyr Ala Ile Glu Lys Ala Gln Glu Leu Gly 245 250 255

Ala Thr Val Ile Gly Phe Ser Asp Ser Ser Gly Trp Val His Thr Pro 260 265 270

Asn Gly Val Asp Val Ala Lys Leu Arg Glu Ile Lys Glu Val Arg Arg Ala Arg Val Ser Val Tyr Ala Asp Glu Val Glu Gly Ala Thr Tyr His Thr Asp Gly Ser Ile Trp Asp Leu Lys Cys Asp Ile Ala Leu Pro Cys 315 Ala Thr Gln Asn Glu Leu Asn Gly Glu Asn Ala Lys Thr Leu Ala Asp 325 330 Asn Gly Cys Arg Phe Val Ala Glu Gly Ala Asn Met Pro Ser Thr Pro 340 Glu Ala Val Glu Val Phe Arg Glu Arg Asp Ile Arg Phe Gly Pro Gly Lys Ala Ala Asn Ala Gly Gly Val Ala Thr Ser Ala Leu Glu Met Gln 375 380 Gln Asn Ala Ser Arg Asp Ser Trp Ser Phe Glu Tyr Thr Asp Glu Arg 390 Leu Gln Val Ile Met Lys Asn Ile Phe Lys Thr Cys Ala Glu Thr Ala 405 Ala Glu Tyr Gly His Glu Asn Asp Tyr Val Val Gly Ala Asn Ile Ala 420 Gly Phe Lys Lys Val Ala Asp Ala Met Leu Ala Gln Gly Val Ile 435 440 <210> 95 <211> 1461 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(1438) <223> RXA00323 <400> 95 cgcgacatcc ttgagtaact ctgagaaaaa ctaccccga tgggagtata aaagtggcaa 60 atgcgcagtc gatgtcccat cgctgcgtag attagttttc atg aac agc gaa cag Met Asn Ser Glu Gln gaa ttt gta ctc agc gcc att gaa gaa cgc gac att aag ttt gtg cgt Glu Phe Val Leu Ser Ala Ile Glu Glu Arg Asp Ile Lys Phe Val Arg 10 cta tgg ttc act gac att ctt ggc cac ttg aag tca gtg gtt gtg gct Leu Trp Phe Thr Asp Ile Leu Gly His Leu Lys Ser Val Val Ala 30 35 cct gca gaa cta gag tct gcg ttg gaa gaa ggc atc gga ttc gat ggc Pro Ala Glu Leu Glu Ser Ala Leu Glu Glu Gly Ile Gly Phe Asp Gly

45 50 40 tca qcc att gag ggc tac gcg cgt atc tcg gaa gcg gac acc att gcc 307 Ser Ala Ile Glu Gly Tyr Ala Arg Ile Ser Glu Ala Asp Thr Ile Ala 60 cgc cca gat cca tcg aca ttc cag gtc ctc cca cta gaa gcg ggc atc Arg Pro Asp Pro Ser Thr Phe Gln Val Leu Pro Leu Glu Ala Gly Ile tca aaa ctg cag gca gca cgc ctg ttt tgc gat gtc acg atg cca gac 403 Ser Lys Leu Gln Ala Ala Arg Leu Phe Cys Asp Val Thr Met Pro Asp 90 gga cag cca tct ttt tct gac ccg cgc caa gtg ctg cgc agg cag gtc 451 Gly Gln Pro Ser Phe Ser Asp Pro Arg Gln Val Leu Arg Arg Gln Val 105 caa cta gct gca gat gaa ggc ttg acc tgc atg atc tca cca gag att 499 Gln Leu Ala Ala Asp Glu Gly Leu Thr Cys Met Ile Ser Pro Glu Ile 120 gag ttc tat ttg gtg caa agc ctt cgc acc aac gga ctg cca cct gtg 547 Glu Phe Tyr Leu Val Gln Ser Leu Arg Thr Asn Gly Leu Pro Pro Val 135 140 ccc act gac aac ggc gga tat ttc gac caa gcc aca ttc aat gag gcg Pro Thr Asp Asn Gly Gly Tyr Phe Asp Gln Ala Thr Phe Asn Glu Ala $\ensuremath{\text{ccg}}$ aat ttc cgt cga aac gcg atg gta gcg ctg gag gaa ctc ggc atc . Pro Asn Phe Arg Arg Asn Ala Met Val Ala Leu Glu Glu Leu Gly Ile cct gtc gag ttc tcc cac cat gaa act gca cct ggc cag caa gaa atc 691 Pro Val Glu Phe Ser His His Glu Thr Ala Pro Gly Gln Gln Glu Ile 185 gat tta cgc cat gcg gat gcg ctc acc atg gcc gac aac atc atg acc 739 Asp Leu Arg His Ala Asp Ala Leu Thr Met Ala Asp Asn Ile Met Thr 200 787 ttc cgc tac atc atg aaa cag gtg gca agg gac caa ggc gtc ggg gca Phe Arg Tyr Ile Met Lys Gln Val Ala Arg Asp Gln Gly Val Gly Ala 215 tca ttt atg ccc aag cca ttc caa gaa cat gca ggc tcc gcc atg cac 835 Ser Phe Met Pro Lys Pro Phe Gln Glu His Ala Gly Ser Ala Met His 235 acg cac atg tcc tta ttt gag ggc gat acc aac gcg ttc cac gat cca 883 Thr His Met Ser Leu Phe Glu Gly Asp Thr Asn Ala Phe His Asp Pro gac gat tot tac atg ctg toc aaa acc gca aaa cag ttc atc gct gga 931 Asp Asp Ser Tyr Met Leu Ser Lys Thr Ala Lys Gln Phe Ile Ala Gly 270 atc ttg cat cac gct cca gaa ttc acc gct gtg acc aac cag tgg gtc 979 Ile Leu His His Ala Pro Glu Phe Thr Ala Val Thr Asn Gln Trp Val 285

aat tcc tac aaa cgc atc gtg tac gga aac gaa gct cca act gcg gca 1027 Asn Ser Tyr Lys Arg Ile Val Tyr Gly Asn Glu Ala Pro Thr Ala Ala 300 acc tgg ggt gta tct aat cgt tct gcg ctg gtt cgt gtt cct acc tac Thr Trp Gly Val Ser Asn Arg Ser Ala Leu Val Arg Val Pro Thr Tyr 325 cgt ttg aat aag gag gag tcg cgc cgg gtg gag gtg cgt ctt cct gat 1123 Arg Leu Asn Lys Glu Glu Ser Arg Val Glu Val Arg Leu Pro Asp 330 335 acc gct tgt aac cca tat ttg gcg ttt tca gtg atg ctc ggc gct ggt 1171 Thr Ala Cys Asn Pro Tyr Leu Ala Phe Ser Val Met Leu Gly Ala Gly ttg aaa ggc att aaa gaa ggt tat gag ctc gac gag cca gct gag gac 1219 Leu Lys Gly Ile Lys Glu Gly Tyr Glu Leu Asp Glu Pro Ala Glu Asp 360 365 gat atc tcc aac ttg agc ttc cgg gaa cgt cgc gcc atg ggc tac aac 1267 Asp Ile Ser Asn Leu Ser Phe Arg Glu Arg Arg Ala Met Gly Tyr Asn 380 gat ctg cca agc agc ctt gat cag gca ctg cgc caa atg gaa aag tca Asp Leu Pro Ser Ser Leu Asp Gln Ala Leu Arg Gln Met Glu Lys Ser 395 400 405 gag ctt gtt gct gac atc ctc ggt gag cac gtt ttt gag ttt ttc ttg Glu Leu Val Ala Asp Ile Leu Gly Glu His Val Phe Glu Phe Phe Leu 410 415 cgc aat aag tgg cgt gaa tgg cgt gac tac caa gag cag atc act ccg 1411 Arg Asn Lys Trp Arg Glu Trp Arg Asp Tyr Gln Glu Gln Ile Thr Pro 425 430 435 tgg gag ctc cga aac aat ctt gat tac tagacttttg cactccaatg Trp Glu Leu Arg Asn Asn Leu Asp Tyr 440 gaa 1461

<210> 96

<211> 446

<212> PRT

<213> Corynebacterium glutamicum

<400> 96

ENGRADED SIMO DIRECTORS

Met Asn Ser Glu Gln Glu Phe Val Leu Ser Ala Ile Glu Glu Arg Asp Ile Lys Phe Val Arg Leu Trp Phe Thr Asp Ile Leu Gly His Leu Lys Ser Val Val Val Ala Pro Ala Glu Leu Glu Ser Ala Leu Glu Glu Gly Ile Gly Phe Asp Gly Ser Ala Ile Glu Gly Tyr Ala Arg Ile Ser Glu Ala Asp Thr Ile Ala Arg Pro Asp Pro Ser Thr Phe Gln Val Leu Pro Leu Glu Ala Gly Ile Ser Lys Leu Gln Ala Ala Arg Leu Phe Cys Asp Val Thr Met Pro Asp Gly Gln Pro Ser Phe Ser Asp Pro Arg Gln Val 105 Leu Arg Arg Gln Val Gln Leu Ala Ala Asp Glu Gly Leu Thr Cys Met 115 Ile Ser Pro Glu Ile Glu Phe Tyr Leu Val Gln Ser Leu Arg Thr Asn 135 Gly Leu Pro Pro Val Pro Thr Asp Asn Gly Gly Tyr Phe Asp Gln Ala 150 Thr Phe Asn Glu Ala Pro Asn Phe Arg Arg Asn Ala Met Val Ala Leu 170 Glu Glu Leu Gly Ile Pro Val Glu Phe Ser His His Glu Thr Ala Pro 180 Gly Gln Gln Glu Ile Asp Leu Arg His Ala Asp Ala Leu Thr Met Ala Asp Asn Ile Met Thr Phe Arg Tyr Ile Met Lys Gln Val Ala Arg Asp Gln Gly Val Gly Ala Ser Phe Met Pro Lys Pro Phe Gln Glu His Ala 230 Gly Ser Ala Met His Thr His Met Ser Leu Phe Glu Gly Asp Thr Asn 250 Ala Phe His Asp Pro Asp Asp Ser Tyr Met Leu Ser Lys Thr Ala Lys 260 Gln Phe Ile Ala Gly Ile Leu His His Ala Pro Glu Phe Thr Ala Val Thr Asn Gln Trp Val Asn Ser Tyr Lys Arg Ile Val Tyr Gly Asn Glu 295 Ala Pro Thr Ala Ala Thr Trp Gly Val Ser Asn Arg Ser Ala Leu Val 310 315 Arg Val Pro Thr Tyr Arg Leu Asn Lys Glu Glu Ser Arg Arg Val Glu

BNCDOCID: -WO 01000 10AP 1

				325					330					335		
Val	Arg	Leu	Pro 340	Asp	Thr	Ala	Cys	Asn 345	Pro	Tyr	Leu	Ala	Phe 350	Ser	Val	
Met	Leu	Gly 355	Ala	Gly	Leu	Lys	Gly 360	Ile	Lys	Glu	Gly	Туг 365	Glu	Leu	Asp	
Glu	Pro 370	Ala	Glu	Asp	Asp	Ile 375	Ser	Asn	Leu	Ser	Phe 380	Arg	Glu	Arg	Arg	
Ala 385	Met	Gly	Tyr	Asn	Asp 390	Leu	Pro	Ser	Ser	Leu 395	Asp	Gln	Ala	Leu	Arg 400	
Gln	Met	Glu	Lys	Ser 405	Glu	Leu	Val	Ala	Asp 410	Ile	Leu	Gly	Glu	His 415	Val	
Phe	Glu	Phe	Phe 420	Leu	Arg	Asn	Lys	Trp 425	Arg	Glu	Trp	Arg	Asp 430	Tyr	Gln	
Glu	Gln	Ile 435	Thr	Pro	Trp	Glu	Leu 440	Arg	Asn	Asn	Leu	Asp 445	Tyr			
<212 <213 <220 <221 <222 <223	1> 15 2> DN 3> Cc 3> Cc 1> CI 2> (1 3> RX	NA oryne OS .01). XA003	.(15		um gl	Lutar	nicur	n								
			agcc	aagt	c ta	ctac	ettga	tct	tcaa	aagg	tcaç	gcaat	tg t	gaad	caaagc	60
taca	aata	iaa c	cgtt	ccgc	c ca	itgto	aato	g agg	gagto	cacc		gcg Ala				115
ccg Pro	gaa Glu	gaa Glu	att Ile	gtc Val 10	aag Lys	ttc Phe	atc Ile	aag Lys	gat Asp 15	gaa Glu	aac Asn	gtc Val	gag Glu	ttc Phe 20	gtt Val	163
gac Asp	gtt Val	cga Arg	ttc Phe 25	acc Thr	gac Asp	ctt Leu	ccc Pro	ggc Gly 30	acc Thr	gag Glu	cag Gln	cac His	ttc Phe 35	agc Ser	atc Ile	211
cca Pro	gct Ala	gcc Ala 40	agc Ser	ttc Phe	gat Asp	gca Ala	gat Asp 45	aca Thr	atc Ile	gaa Glu	gaa Glu	ggt Gly 50	ctc Leu	gca Ala	ttc Phe	259
gac Asp	gga Gly 55	tcc Ser	tcg Ser	atc Ile	cgt Arg	Gly 60	ttc Phe	acc Thr	acg Thr	atc Ile	gac Asp 65	gaa Glu	tct Ser	gac Asp	atg Met	307
aat Asn 70	ctc Leu	ctg Leu	cca Pro	gac Asp	ctc Leu 75	gga Gly	acg Thr	gcc Ala	acc Thr	ctt Leu 80	gat Asp	cca Pro	ttc Phe	cgc Arg	aag Lys 85	355

gca Ala	_		_		_	_			_		_				_	403
gag Glu	_			_	_		-		gtg Val	_	_	_	_	~ ~	_	451
tac Tyr	-	_						-	acc Thr	_				_		499
gct Ala						-		-	cgc Arg				-	_		547
									gaa Glu							595
aag Lys	_				_							_	_		_	643
gtc Val	_						_	_			_			_	_	691
gtg Val	_	_	_	_	_	_			-	_				_	ctt Leu	739
gag Glu	_				_	_			gga Gly	_	_	-				787
cgc Arg 230				_				_	gat Asp	_		_			_	835
			_			_	_		cac His 255		_	_	_			883
atg Met																931
cag Gln																979
tac 1027	-	ggc	ctg	tcc	gac	atc	gcc	cgc	tac	tac	atc	ggc	ggc	atc	ctg	
Tyr	Ala 295					300					305					
cac 1075	•															
His 310	His	Ala	Gly	Ala	Val 315	Leu	Ala	Phe	Thr	Asn 320	Ala	Thr	Leu	Asn	Ser 325	

tac cac cgt ctg gtt cca ggc ttc gag gct cca atc aac ctg gtg tac Tyr His Arg Leu Val Pro Gly Phe Glu Ala Pro Ile Asn Leu Val Tyr 335 tca cag cgc aac cgt tcc gct gcc cgt atc cca atc acc gga tcc 1171 Ser Gln Arg Asn Arg Ser Ala Ala Val Arg Ile Pro Ile Thr Gly Ser 345 aac ccg aag gca aag cgc atc gaa ttc cgc gct cca gac cca tca ggc 1219 Asn Pro Lys Ala Lys Arg Ile Glu Phe Arg Ala Pro Asp Pro Ser Gly 370 360 365 aac cca tac ctg ggc ttt gca gcg atg atg atg gcc ggc ctc gac ggc Asn Pro Tyr Leu Gly Phe Ala Ala Met Met Ala Gly Leu Asp Gly 375 atc aag aac cgc atc gag cca cac gct cca gtg gac aag gac ctc tac 1315 Ile Lys Asn Arg Ile Glu Pro His Ala Pro Val Asp Lys Asp Leu Tyr 400 405 390 395 qua cta cca cca gag gaa gct gca tcc att cca cag gca cca acc tcc Glu Leu Pro Pro Glu Glu Ala Ala Ser Ile Pro Gln Ala Pro Thr Ser 410 415 ctg gaa gca tcc ctg aag gca ctg cag gaa gac acc gac ttc ctc acc 1411 Leu Glu Ala Ser Leu Lys Ala Leu Gln Glu Asp Thr Asp Phe Leu Thr 430 435 425 gag tot gac gtc ttc acc gag gat otc atc gag gcg tac atc cag tac 1459 Glu Ser Asp Val Phe Thr Glu Asp Leu Ile Glu Ala Tyr Ile Gln Tyr aag tac gac aac gag atc tcc cca gtt cgc ctg cgc cca acc ccg cag 1507 Lys Tyr Asp Asn Glu Ile Ser Pro Val Arg Leu Arg Pro Thr Pro Gln 465 455 460 qaa ttc gaa ttg tac ttc gac tgc taattcactt agctagccga tag 1554 Glu Phe Glu Leu Tyr Phe Asp Cys 475 470 <210> 98 <211> 477 <212> PRT <213> Corynebacterium glutamicum Val Ala Phe Glu Thr Pro Glu Glu Ile Val Lys Phe Ile Lys Asp Glu 5 10

Asn Val Glu Phe Val Asp Val Arg Phe Thr Asp Leu Pro Gly Thr Glu Gln His Phe Ser Ile Pro Ala Ala Ser Phe Asp Ala Asp Thr Ile Glu Glu Gly Leu Ala Phe Asp Gly Ser Ser Ile Arg Gly Phe Thr Thr Ile Asp Glu Ser Asp Met Asn Leu Leu Pro Asp Leu Gly Thr Ala Thr Leu 70 Asp Pro Phe Arg Lys Ala Lys Thr Leu Asn Val Lys Phe Phe Val His Asp Pro Phe Thr Arg Glu Ala Phe Ser Arg Asp Pro Arg Asn Val Ala Arg Lys Ala Glu Gln Tyr Leu Ala Ser Thr Gly Ile Ala Asp Thr Cys 120 Asn Phe Gly Ala Glu Ala Glu Phe Tyr Leu Phe Asp Ser Val Arg Tyr Ser Thr Glu Met Asn Ser Gly Phe Tyr Glu Val Asp Thr Glu Glu Gly Trp Trp Asn Arg Gly Lys Glu Thr Asn Leu Asp Gly Thr Pro Asn Leu Gly Ala Lys Asn Arg Val Lys Gly Gly Tyr Phe Pro Val Ala Pro Tyr Asp Gln Thr Val Asp Val Arg Asp Asp Met Val Arg Asn Leu Ala Ala 200 Ser Gly Phe Ala Leu Glu Arg Phe His His Glu Val Gly Gly Gln Gln Glu Ile Asn Tyr Arg Phe Asn Thr Met Leu His Ala Ala Asp Asp 230 235 Ile Gln Thr Phe Lys Tyr Ile Ile Lys Asn Thr Ala Arg Leu His Gly 250 Lys Ala Ala Thr Phe Met Pro Lys Pro Leu Ala Gly Asp Asn Gly Ser 265 Gly Met His Ala His Gln Ser Leu Trp Lys Asp Gly Lys Pro Leu Phe 280 His Asp Glu Ser Gly Tyr Ala Gly Leu Ser Asp Ile Ala Arg Tyr Tyr 295 Ile Gly Gly Ile Leu His His Ala Gly Ala Val Leu Ala Phe Thr Asn 310 Ala Thr Leu Asn Ser Tyr His Arg Leu Val Pro Gly Phe Glu Ala Pro 325 330 Ile Asn Leu Val Tyr Ser Gln Arg Asn Arg Ser Ala Ala Val Arg Ile

			340	ı				345	,				350)		
Pro	Ile	Thr 355	Gly	Ser	Asn	Pro	Lys 360		Lys	Arg	Ile	Glu 365		e Arg	, Ala	
Pro	Asp 370	Pro	Ser	Gly	Asn	Pro 375		Leu	Gly	Phe	Ala 380		Met	Met	Met	
Ala 385	Gly	Leu	Asp	Gly	Ile 390		Asn	Arg	Ile	Glu 395		His	Ala	Pro	Val 400	
Asp	Lys	Asp	Leu	Туг 405		Leu	Pro	Pro	Glu 410	Glu	Ala	Ala	Ser	1le 415	Pro	
G1n	Ala	Pro	Thr 420		Leu	Glu	Ala	Ser 425		Lys	Ala	Leu	Gln 430		Asp	
Thr	Asp	Phe 435	Leu	Thr	Glu	Ser	Asp 440	Val	Phe	Thr	Glu	Asp 445		Ile	Glu	
Ala	Туг 450	Ile	Gln	Tyr	Lys	Tyr 455	Asp	Asn	Glu	Ile	Ser 460	Pro	Val	Arg	Leu	
Arg 465	Pro	Thr	Pro	Gln	Glu 470	Phe	Glu	Leu	Tyr	Phe 475	Asp	Cys				
<210> 99 <211> 3258 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)(3235) <223> RXA00324																
<400> 99 tccgtgggag ctccgaaaca atcttgatta ctagactttt gcactccaat ggaaacccta 60														60		
cgg	cgaco	cca a	attgo	egaco	cc ga	atgaa	ıggaç	a aad	gagaa	igct				ccg Pro		115
aga Arg	agt Ser	gaa Glu	cgt Arg	aaa Lys 10	gtc Val	gtt Val	ggc Gly	ttt Phe	gtc Val 15	aga Arg	gac Asp	cca Pro	ctg Leu	cca Pro 20	aaa Lys	163
gtt Val	ggt Gly	tct Ser	tta Leu 25	tcg Ser	ctg Leu	aaa Lys	tct Ser	gag Glu 30	cat His	gcc Ala	caa Gln	gca Ala	gat Asp 35	cta Leu	gag Glu	211
cat His	ttg Leu	ggt Gly 40	tgg Trp	cgc Arg	aat Asn	gtt Val	gag Glu 45	tct Ser	ttg Leu	gat Asp	ttg Leu	ttg Leu 50	tgg Trp	ggc Gly	ttg Leu	259
tca Ser	ggt Gly 55	gca Ala	ggc	gat Asp	ccc Pro	gat Asp 60	gtc Val	gcg Ala	ctg Leu	aac Asn	ctt Leu 65	ctt Leu	att Ile	cgg Arg	ctg Leu	307
tat	cag	gca	ctt	gaa	gca	atc	ggc	gag	gat	gct	cga	aac	gag	ctt	gat	355

Tyr 70	Gln	Ala	Leu	Glu	Ala 75	Ile	Gly	Glu	Ąsp	Ala 80	Arg	Asn	Glu	Leu	Asp 85	
caa Gln	gag Glu	att Ile	cgc Arg	cag Gln 90	gat Asp	gaa Glu	aaa Lys	cta Leu	cga Arg 95	gtc Val	cgc Arg	ctt Leu	ttt Phe	gca Ala 100	ttg Leu	403
	ggt Gly															451
	tgg Trp															499
cag Gln	gcg Ala 135	ctg Leu	ctg Leu	gaa Glu	tct Ser	gtg Val 140	aaa Lys	gct Ala	cag Gln	cct Pro	gct Ala 145	gtg Val	ctt Leu	gag Glu	gtt Val	547
	gat Asp															595
cct Pro	ggt Gly	ttt Phe	tac Tyr	acg Thr 170	gct Ala	agt Ser	gtt Val	acc Thr	ggg Gly 175	cct Pro	gaa Glu	gca Ala	gag Glu	cga Arg 180	gtc Val	643
	aaa Lys															691
	gcg Ala															739
	ccg Pro 215															787
	ttg Leu			Ala		Ala			Ile		Asn			Gly		835
	ccg Pro															883
	cag Gln															931
	ccg Pro															979
atc 102	ggt 7	agc	aac	tcg	ttc	ttt	gag	gtg	gat	gca	gca	ctt	cgc	cca	gaa	
	Gly 295	Ser	Asn	Ser	Phe	Phe 300	Glu	Val	Asp	Ala	Ala 305	Leu	Arg	Pro	Glu	

ggt aaa agt ggc gct ctt gtg cgc tct ttg gat tcc cat atg gcg tat 1075 Gly Lys Ser Gly Ala Leu Val Arg Ser Leu Asp Ser His Met Ala Tyr 310 325 tac aag cgc tgg gcg gaa acc tgg gag ttt cag gca ctg ctg aaa gct Tyr Lys Arg Trp Ala Glu Thr Trp Glu Phe Gln Ala Leu Leu Lys Ala 330 335 cgt ccc atg acg ggt gat att aac ctt ggg cag tcc tat gtg gat gct 1171 Arg Pro Met Thr Gly Asp Ile Asn Leu Gly Gln Ser Tyr Val Asp Ala ctt tca ccg ttg att tgg acg gct agc cag cgg gaa tca ttt gtc aca Leu Ser Pro Leu Ile Trp Thr Ala Ser Gln Arg Glu Ser Phe Val Thr 360 365 gat gtc caa gct atg cgc cgt cga gtg ttg gac aat gtt ccg gaa gac Asp Val Gln Ala Met Arg Arg Val Leu Asp Asn Val Pro Glu Asp 375 380 ttg cgt gat cgt gag ctg aag ctt ggt cgc ggt ggt ttg agg gat gtg Leu Arg Asp Arg Glu Leu Lys Leu Gly Arg Gly Leu Arg Asp Val 395 400 gag ttt gct gtc cag ctc ctt cag atg gtg cat ggt cgc att gat gag Glu Phe Ala Val Gln Leu Leu Gln Met Val His Gly Arg Ile Asp Glu 415 acg ttg cgg gtt cgg tca acg gta aat gct ttg cat gtg ttg gtt gat 1411 Thr Leu Arg Val Arg Ser Thr Val Asn Ala Leu His Val Leu Val Asp 425 430 435 cag gga tat gtg ggt cgt gaa gac ggg cat aat ctc att gag tcg tat 1459 Gln Gly Tyr Val Gly Arg Glu Asp Gly His Asn Leu Ile Glu Ser Tyr 440 445 gag ttt ttg cgt ctg ttg gag cat cgc ctt caa ttg gag cgg atc aag Glu Phe Leu Arg Leu Leu Glu His Arg Leu Gln Leu Glu Arg Ile Lys cgc act cac ttg tta ccg aaa cct gat gac cga atg aat atg cgc tgg 1555 Arg Thr His Leu Leu Pro Lys Pro Asp Asp Arg Met Asn Met Arg Trp 470 475 480 485 ttg gcg cgc gct tct ggg ttt act ggt tcg atg gag caa agt tcg gcc Leu Ala Arg Ala Ser Gly Phe Thr Gly Ser Met Glu Gln Ser Ser Ala 490 495

פינינינים ח חושה בותרפיאב

aaa gct atg gaa cgg cat ttg cgt aag gtt cgt ttg cag att cag tcg Lys Ala Met Glu Arg His Leu Arg Lys Val Arg Leu Gln Ile Gln Ser ttg cat agt cag ctg ttt tat cgg cca ctg ctg aac tct gtg gtc aac 1699 Leu His Ser Gln Leu Phe Tyr Arg Pro Leu Leu Asn Ser Val Val Asn 520 525 530 ttg agc gcg gat gcc atc agg ttg tct ccg gat gct gca aag cta caa 1747 Leu Ser Ala Asp Ala Ile Arg Leu Ser Pro Asp Ala Ala Lys Leu Gln 535 540 ttg gcg gca ttg gga tac ctg cat cca tca cgt gct tat gaa cac ctg Leu Ala Ala Leu Gly Tyr Leu His Pro Ser Arg Ala Tyr Glu His Leu 555 560 565 act gct ctt gca tca gga gct agc cgt aaa gcc aag att cag gcg atg Thr Ala Leu Ala Ser Gly Ala Ser Arg Lys Ala Lys Ile Gln Ala Met ttg ctg ccc acg ttg atg gag tgg ctg tct caa aca gct gaa cca gat 1891 Leu Leu Pro Thr Leu Met Glu Trp Leu Ser Gln Thr Ala Glu Pro Asp 585 gcg gga ttg ctg aat tac cgc aag ctt tct gat gct tcc tat gat cgc 1939 Ala Gly Leu Leu Asn Tyr Arg Lys Leu Ser Asp Ala Ser Tyr Asp Arg 605 agc tgg ttt ttg cgc atg ctg cgt gat gag ggc gta gtg ggg cag cgg 1987 Ser Trp Phe Leu Arg Met Leu Arg Asp Glu Gly Val Val Gly Gln Arg 615 620 ttg atg cgt att ttg gga aat tct ccc tat att tct gaa ctg att atc 2035 Leu Met Arg Ile Leu Gly Asn Ser Pro Tyr Ile Ser Glu Leu Ile Ile 630 635 tcc act ccg gac ttt atg aaa cag ctg ggt gat gcg gcg tct ggt cct 2083 Ser Thr Pro Asp Phe Met Lys Gln Leu Gly Asp Ala Ala Ser Gly Pro aaa ttg ctt gct act gca ccg act cag gtt gtg aaa gca atc aag gca Lys Leu Leu Ala Thr Ala Pro Thr Gln Val Val Lys Ala Ile Lys Ala 665 670 675 acg gtg teg egt cat gag tea eet gat egg geg ate eag get gea ega 2179 Thr Val Ser Arg His Glu Ser Pro Asp Arg Ala Ile Gln Ala Ala Arg 680 685 690

RNEDOCID: -WO 01888-18AP 1 -

tcg ctg agg agg cag gag ctg gca cgc att gcc tct gct gat ttg ctc 2227 Ser Leu Arg Arg Gln Glu Leu Ala Arg Ile Ala Ser Ala Asp Leu Leu aac atg ctc act gtt cag gaa gta tgc caa agc ttg tca cta gtc tgg Asn Met Leu Thr Val Gln Glu Val Cys Gln Ser Leu Ser Leu Val Trp 715 720 725 gat gcg gtg ttg gat gct gcc ttg gat gcg gaa atc cgt gct gca ctt 2323 Asp Ala Val Leu Asp Ala Ala Leu Asp Ala Glu Ile Arg Ala Ala Leu aac gat cca cag aaa cca gat cag cct ctg gcc aat att tct gtg atc 2371 Asn Asp Pro Gln Lys Pro Asp Gln Pro Leu Ala Asn Ile Ser Val Ile 745 750 ggc atg ggc cgt ttg ggt gga gca gaa ctt gga tac ggt tct qat qcc 2419 Gly Met Gly Arg Leu Gly Gly Ala Glu Leu Gly Tyr Gly Ser Asp Ala 760 gat gtg atg ttt gta tgc gag ccg gta gcc ggt gtg gaa gag cat gag Asp Val Met Phe Val Cys Glu Pro Val Ala Gly Val Glu Glu His Glu 780 785 gcc gtc aca tgg tct att gct atc tgt gat tcc atg cgg tcg agg ctt 2515 Ala Val Thr Trp Ser Ile Ala Ile Cys Asp Ser Met Arg Ser Arg Leu 795 800 gcg cag cct tcc ggt gat cca cct ttg gag gtg gat ctg ggg ctg cgt 2563 Ala Gln Pro Ser Gly Asp Pro Pro Leu Glu Val Asp Leu Gly Leu Arg 810 815 cct gaa ggg aga tct ggt gcg att gtg cgc acc gtt gat tcc tat gtg Pro Glu Gly Arg Ser Gly Ala Ile Val Arg Thr Val Asp Ser Tyr Val 825 aag tac tac gaa aag tgg ggt gaa act tgg gag att cag gcg ctg ctg 2659 Lys Tyr Tyr Glu Lys Trp Gly Glu Thr Trp Glu Ile Gln Ala Leu Leu agg gct gcg tgg gtt gct ggt gat cgt gag ctg ggt att aag ttc ttq Arg Ala Ala Trp Val Ala Gly Asp Arg Glu Leu Gly Ile Lys Phe Leu 855 860 gag tcg att gat cgt ttc cgc tac cca gtt gac ggg gca acg cag gcg Glu Ser Ile Asp Arg Phe Arg Tyr Pro Val Asp Gly Ala Thr Gln Ala 870 875 880

cag ctt cgt gaa gtt cgt cga att aag gcg agg gtg gat aat gag agg 2803 Gln Leu Arg Glu Val Arg Arg Ile Lys Ala Arg Val Asp Asn Glu Arg 895 ctt ccg cgc ggg gct gat cga aat acc cat acc aag ctg ggt cgg gga Leu Pro Arg Gly Ala Asp Arg Asn Thr His Thr Lys Leu Gly Arg Gly 905 910 gcg tta act gac atc gag tgg act gtg cag ttg ttg acc atg atg cat Ala Leu Thr Asp Ile Glu Trp Thr Val Gln Leu Leu Thr Met His 920 gct cat gag att ccg gag ctg cac aat acg tcg acg ttg gaa gtt ctt 2947 Ala His Glu Ile Pro Glu Leu His Asn Thr Ser Thr Leu Glu Val Leu 935 940 945 gaa gtg ctg gaa aag cat cag att att aac cct gtg cag gtg cag acg 2995 Glu Val Leu Glu Lys His Gln Ile Ile Asn Pro Val Gln Val Gln Thr 950 960 ctt cgg gaa gcg tgg ctg acg gca acg gct gct agg aat gcg ctt gtg 3043 Leu Arg Glu Ala Trp Leu Thr Ala Thr Ala Ala Arg Asn Ala Leu Val 970 975 980 ctg gtc agg ggt aag aga tta gat cag tta cct act cct ggt ccg cac 3091 Leu Val Arg Gly Lys Arg Leu Asp Gln Leu Pro Thr Pro Gly Pro'His 985 990 ctt gcg cag gtg gct ggt gcg tct ggt tgg gat cca aat gag tac cag 3139 Leu Ala Gln Val Ala Gly Ala Ser Gly Trp Asp Pro Asn Glu Tyr Gln 1000 gag tat ttg gaa aac tat ctg aaa gtg acc agg aag agt cgt cag gtt 3187 Glu Tyr Leu Glu Asn Tyr Leu Lys Val Thr Arg Lys Ser Arg Gln Val 1015 1020 gtt gat gaa gtc ttc tgg ggt gtg gac tct atg gag caa cgt gag ttt Val Asp Glu Val Phe Trp Gly Val Asp Ser Met Glu Gln Arg Glu Phe 1030 1035 1040 1045 taggtaggtg gtgggagccc caa

taggtaggtg gtgggagccc caa 3258

<210> 100

<211> 1045

<212> PRT

<213> Corynebacterium glutamicum

<400> 100

BYISDUCID: -MU_0100843Y571--

Met Ser Gly Pro Leu Arg Ser Glu Arg Lys Val Val Gly Phe Val Arg

5 10 1 15 Asp Pro Leu Pro Lys Val Gly Ser Leu Ser Leu Lys Ser Glu His Ala 25 • Gln Ala Asp Leu Glu His Leu Gly Trp Arg Asn Val Glu Ser Leu Asp Leu Leu Trp Gly Leu Ser Gly Ala Gly Asp Pro Asp Val Ala Leu Asn Leu Leu Ile Arg Leu Tyr Gln Ala Leu Glu Ala Ile Gly Glu Asp Ala Arg Asn Glu Leu Asp Gln Glu Ile Arg Gln Asp Glu Lys Leu Arg Val Arg Leu Phe Ala Leu Leu Gly Gly Ser Ser Ala Val Gly Asp His Leu Val Ala Asn Pro Leu Gln Trp Lys Leu Leu Lys Leu Asp Ala Pro Ser 120 Arg Glu Glu Met Phe Gln Ala Leu Leu Glu Ser Val Lys Ala Gln Pro 130 135 Ala Val Leu Glu Val Glu Asp Phe Ser Asp Ala His Asn Ile Ala Arg 150 155 Asp Asp Leu Ser Thr Pro Gly Phe Tyr Thr Ala Ser Val Thr Gly Pro Glu Ala Glu Arg Val Leu Lys Trp Thr Tyr Arg Thr Leu Leu Thr Arg 185 Ile Ala Ala His Asp Leu Ala Gly Thr Tyr Pro Thr Asp Met Arg Arg 205 Lys Gly Gly Asp Pro Val Pro Phe Ser Thr Val Thr Met Gln Leu Ser Asp Leu Ala Asp Ala Ala Leu Thr Ala Ala Leu Ala Val Ala Ile Ala 230 235 Asn Val Tyr Gly Glu Lys Pro Val Asp Ser Ala Leu Ser Val Ile Ala Met Gly Lys Cys Gly Ala Gln Glu Leu Asn Tyr Ile Ser Asp Val Asp Val Val Phe Val Ala Glu Pro Ala Asn Ser Lys Ser Thr Arg Thr Ala 280 Ala Glu Leu Ile Arg Ile Gly Ser Asn Ser Phe Phe Glu Val Asp Ala Ala Leu Arg Pro Glu Gly Lys Ser Gly Ala Leu Val Arg Ser Leu Asp 310 Ser His Met Ala Tyr Tyr Lys Arg Trp Ala Glu Thr Trp Glu Phe Gln 325 330

Ala Leu Leu Lys Ala Arg Pro Met Thr Gly Asp Ile Asn Leu Gly Gln 345 Ser Tyr Val Asp Ala Leu Ser Pro Leu Ile Trp Thr Ala Ser Gln Arg 360 Glu Ser Phe Val Thr Asp Val Gln Ala Met Arg Arg Arg Val Leu Asp 370 375 380 Asn Val Pro Glu Asp Leu Arg Asp Arg Glu Leu Lys Leu Gly Arg Gly Gly Leu Arg Asp Val Glu Phe Ala Val Gln Leu Leu Gln Met Val His Gly Arg Ile Asp Glu Thr Leu Arg Val Arg Ser Thr Val Asn Ala Leu His Val Leu Val Asp Gln Gly Tyr Val Gly Arg Glu Asp Gly His Asn Leu Ile Glu Ser Tyr Glu Phe Leu Arg Leu Leu Glu His Arg Leu Gln Leu Glu Arg Ile Lys Arg Thr His Leu Leu Pro Lys Pro Asp Asp Arg 475 Met Asn Met Arg Trp Leu Ala Arg Ala Ser Gly Phe Thr Gly Ser Met 490 Glu Gln Ser Ser Ala Lys Ala Met Glu Arg His Leu Arg Lys Val Arg Leu Gln Ile Gln Ser Leu His Ser Gln Leu Phe Tyr Arg Pro Leu Leu 520 Asn Ser Val Val Asn Leu Ser Ala Asp Ala Ile Arg Leu Ser Pro Asp Ala Ala Lys Leu Gln Leu Ala Ala Leu Gly Tyr Leu His Pro Ser Arg 550 Ala Tyr Glu His Leu Thr Ala Leu Ala Ser Gly Ala Ser Arg Lys Ala Lys Ile Gln Ala Met Leu Leu Pro Thr Leu Met Glu Trp Leu Ser Gln 580 Thr Ala Glu Pro Asp Ala Gly Leu Leu Asn Tyr Arg Lys Leu Ser Asp 600 Ala Ser Tyr Asp Arg Ser Trp Phe Leu Arg Met Leu Arg Asp Glu Gly 615 Val Val Gly Gln Arg Leu Met Arg Ile Leu Gly Asn Ser Pro Tyr Ile 630 635 Ser Glu Leu Ile Ile Ser Thr Pro Asp Phe Met Lys Gln Leu Gly Asp 645 650

Ala Ser Gly Pro Lys Leu Leu Ala Thr Ala Pro Thr Gln Val Val 665 Lys Ala Ile Lys Ala Thr Val Ser Arg His Glu Ser Pro Asp Arg Ala 680 Ile Gln Ala Ala Arg Ser Leu Arg Arg Gln Glu Leu Ala Arg Ile Ala 695 Ser Ala Asp Leu Leu Asn Met Leu Thr Val Gln Glu Val Cys Gln Ser 715 Leu Ser Leu Val Trp Asp Ala Val Leu Asp Ala Ala Leu Asp Ala Glu Ile Arg Ala Ala Leu Asn Asp Pro Gln Lys Pro Asp Gln Pro Leu Ala Asn Ile Ser Val Ile Gly Met Gly Arg Leu Gly Gly Ala Glu Leu Gly 760 Tyr Gly Ser Asp Ala Asp Val Met Phe Val Cys Glu Pro Val Ala Gly Val Glu Glu His Glu Ala Val Thr Trp Ser Ile Ala Ile Cys Asp Ser Met Arg Ser Arg Leu Ala Gln Pro Ser Gly Asp Pro Pro Leu Glu Val 805 810 Asp Leu Gly Leu Arg Pro Glu Gly Arg Ser Gly Ala Ile Val Arg Thr 825 Val Asp Ser Tyr Val Lys Tyr Tyr Glu Lys Trp Gly Glu Thr Trp Glu 840 835 Ile Gln Ala Leu Leu Arg Ala Ala Trp Val Ala Gly Asp Arg Glu Leu 855 Gly Ile Lys Phe Leu Glu Ser Ile Asp Arg Phe Arg Tyr Pro Val Asp 875 880 Gly Ala Thr Gln Ala Gln Leu Arg Glu Val Arg Arg Ile Lys Ala Arg Val Asp Asn Glu Arg Leu Pro Arg Gly Ala Asp Arg Asn Thr His Thr 905 Lys Leu Gly Arg Gly Ala Leu Thr Asp Ile Glu Trp Thr Val Gln Leu Leu Thr Met Met His Ala His Glu Ile Pro Glu Leu His Asn Thr Ser 935 Thr Leu Glu Val Leu Glu Val Leu Glu Lys His Gln Ile Ile Asn Pro 950 955 Val Gln Val Gln Thr Leu Arg Glu Ala Trp Leu Thr Ala Thr Ala Ala 970 Arg Asn Ala Leu Val Leu Val Arg Gly Lys Arg Leu Asp Gln Leu Pro

980 985 990 Thr Pro Gly Pro His Leu Ala Gln Val Ala Gly Ala Ser Gly Trp Asp 1000 Pro Asn Glu Tyr Gln Glu Tyr Leu Glu Asn Tyr Leu Lys Val Thr Arg 1010 1015 Lys Ser Arg Gln Val Val Asp Glu Val Phe Trp Gly Val Asp Ser Met 1025 1035 1040 Glu Gln Arg Glu Phe 1045 <210> 101 <211> 861 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (1)..(861) <223> RXN03176 <400> 101 gag ttg gcc gat tac atc ccg gaa cta aaa tct gcg gac cca aac ccg 48 Glu Leu Ala Asp Tyr Ile Pro Glu Leu Lys Ser Ala Asp Pro Asn Pro 5 ctg gca gta gcc ctg tgc acc gtt aac gga cac atc tac agc gca ggc 96 Leu Ala Val Ala Leu Cys Thr Val Asn Gly His Ile Tyr Ser Ala Gly 20 gat gac gac atc gaa ttc acc atg caa agt att tcc aag cca ttt gcc 144 Asp Asp Asp Ile Glu Phe Thr Met Gln Ser Ile Ser Lys Pro Phe Ala 35 tac gca ctc gca ctc caa gaa tgc ggc ttt gat gag gtc tct gca tcc 192 Tyr Ala Leu Ala Leu Gln Glu Cys Gly Phe Asp Glu Val Ser Ala Ser 55 gtg gcc ttg gag ccc tcc ggt gag gcc ttc aac gaa ctt tcc ctc gac 240 Val Ala Leu Glu Pro Ser Gly Glu Ala Phe Asn Glu Leu Ser Leu Asp 75 ggc gaa aac cgc ccc atg aac ccc atg atc aac gcc ggc gcg atc gcc 288 Gly Glu Asn Arg Pro Met Asn Pro Met Ile Asn Ala Gly Ala Ile Ala 85 90 atc aac cag ctg atc aac ggc tcc gat tcc acc gtg gaa gac cgc gtg 336 Ile Asn Gln Leu Ile Asn Gly Ser Asp Ser Thr Val Glu Asp Arg Val

atc gac cgc gtg ctt gcc gaa tcc gaa ctc gcc ggc gcc gac cgc aac 432
Ile Asp Arg Val Leu Ala Glu Ser Glu Leu Ala Gly Ala Asp Arg Asn
130 135 140

384

105

gaa aaa atc cga cac tac ttc tct gaa ctt gct gga cgc gaa ctc acc

Glu Lys Ile Arg His Tyr Phe Ser Glu Leu Ala Gly Arg Glu Leu Thr 115 120 125

100

			_		_	_	_				gtc Val		-	_	_	480
											tgc Cys					528
											ctc Leu					576
											gcc Ala					624
				_	_	_		_			tac Tyr 220	_		_		672
											tca Ser					720
											atc Ile					768
	_	_						-		-	ggc Gly	_				816
				-							atg Met					861
<212 <212	0> 10 l> 28 2> PF 3> Co	37 RT	ebact	eri	ım gl	Lutar	nicum	n								
)> 1(Leu		Asp	Tyr 5	Ile	Pro	Glu	Leu	Lys 10	Ser	Ala	Asp	Pro	Asn 15	Pro	
Leu	Ala	Val	Ala 20	Leu	Cys	Thr	Val	Asn 25	Gly	His	Ile	Tyr	Ser 30	Ala	Gly	
Asp	Asp	Asp 35	Ile	Glu	Phe	Thr	Met 40	Gln	Ser	Ile	Ser	Lys 45	Pro	Phe	Ala	
Tyr	Ala 50	Leu	Ala	Leu	Gln	Glu 55	Cys	Gly	Phe	Asp	Glu 60	Val	Ser	Ala	Ser	
Val 65	Ala	Leu	Glu	Pro	Ser 70	Gly	Glu	Ala	Phe	Asn 75	Glu	Leu	Ser	Leu	Asp 80	

Gly Glu Asn Arg Pro Met Asn Pro Met Ile Asn Ala Gly Ala Ile Ala 85 90 95

Ile Asn Gln Leu Ile Asn Gly Ser Asp Ser Thr Val Glu Asp Arg Val 100 105 Glu Lys Ile Arg His Tyr Phe Ser Glu Leu Ala Gly Arg Glu Leu Thr 120 Ile Asp Arg Val Leu Ala Glu Ser Glu Leu Ala Gly Ala Asp Arg Asn 130 135 Leu Ser Ile Ala His Met Leu Arg Asn Tyr Gly Val Ile Glu Asp Glu 150 Ala His Asp Ala Val Leu Ser Tyr Thr Leu Gln Cys Ala Ile Lys Val 170 Thr Thr Arg Asp Leu Ala Val Met Thr Ala Thr Leu Ala Ala Gly Gly 185 Thr His Pro Ile Thr Gly Lys Lys Leu Leu Asp Ala Arg Val Cys Arg Leu Thr Leu Ser Val Met Ala Ser Ala Gly Met Tyr Asp Glu Ala Gly Gln Trp Leu Ser Thr Val Gly Ile Pro Ala Lys Ser Gly Val Ala Gly 230 Gly Leu Ile Gly Ile Leu Pro Gly Gln Leu Gly Ile Ala Thr Phe Ser Pro Arg Leu Asn Pro Lys Gly Asn Ser Val Arg Gly Val Lys Ile Phe 265 Lys Gln Leu Ser Asp Asp Met Gly Leu His Leu Met Ser Thr Glu 275 280 <210> 103 <211> 861 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (1)..(861) <223> FRXA02879 <400> 103 gag ttg gcc gat tac atc ccg gaa cta aaa tct gcg gac cca aac ccg 48 Glu Leu Ala Asp Tyr Ile Pro Glu Leu Lys Ser Ala Asp Pro Asn Pro 10 1 ctg gca gta gcc ctg tgc acc gtt aac gga cac atc tac agc gca ggc 96 Leu Ala Val Ala Leu Cys Thr Val Asn Gly His Ile Tyr Ser Ala Gly 20 25 gat gac gac atc gaa ttc acc atg caa agt att tcc aag cca ttt gcc Asp Asp Asp Ile Glu Phe Thr Met Gln Ser Ile Ser Lys Pro Phe Ala 45 35 40

						gaa Glu 55										192
	_	_				ggt Gly										240
						aac Asn										288
		_	_			ggc Gly		-				-	_	_		336
_			_			ttc Phe		_		_		_	_			384
	_	-			_	gaa Glu 135		_		_		_	-			432
			-		_	ctg Leu	_				_		-	-	_	480
_		•	_	_		agc Ser		_	_		_	_			-	528
	~	_	_		-	gtc Val	_		_	_		_	_			576
						aag Lys	_			_		_	_	_	_	624
						gct Ala 215										672
_					-	ggc Gly							-	_		720
						cca Pro										768
	-	_				ggc Gly		-		_		-				816
	_			_	_	atg Met					_					861

<210> 104

<211> 287

<212> PRT

<213> Corynebacterium glutamicum

<400> 104

Glu Leu Ala Asp Tyr Ile Pro Glu Leu Lys Ser Ala Asp Pro Asn Pro 1 5 10 15

Leu Ala Val Ala Leu Cys Thr Val Asn Gly His Ile Tyr Ser Ala Gly 20 25 30

Asp Asp Ile Glu Phe Thr Met Gln Ser Ile Ser Lys Pro Phe Ala 35 40 45

Tyr Ala Leu Ala Leu Gln Glu Cys Gly Phe Asp Glu Val Ser Ala Ser 50 55 60

Val Ala Leu Glu Pro Ser Gly Glu Ala Phe Asn Glu Leu Ser Leu Asp 65 70 75 80

Gly Glu Asn Arg Pro Met Asn Pro Met Ile Asn Ala Gly Ala Ile Ala 85 90 95

Ile Asn Gln Leu Ile Asn Gly Ser Asp Ser Thr Val Glu Asp Arg Val
100 105 110

Glu Lys Ile Arg His Tyr Phe Ser Glu Leu Ala Gly Arg Glu Leu Thr 115 120 125

Ile Asp Arg Val Leu Ala Glu Ser Glu Leu Ala Gly Ala Asp Arg Asn 130 135 140

Leu Ser Ile Ala His Met Leu Arg Asn Tyr Gly Val Ile Glu Asp Glu 145 150 155 160

Ala His Asp Ala Val Leu Ser Tyr Thr Leu Gln Cys Ala Ile Lys Val 165 170 175

Thr Thr Arg Asp Leu Ala Val Met Thr Ala Thr Leu Ala Ala Gly Gly
180 185 190

Thr His Pro Ile Thr Gly Lys Lys Leu Leu Asp Ala Arg Val Cys Arg 195 200 205

Leu Thr Leu Ser Val Met Ala Ser Ala Gly Met Tyr Asp Glu Ala Gly 210 215 220

Gln Trp Leu Ser Thr Val Gly Ile Pro Ala Lys Ser Gly Val Ala Gly 225 230 235 240

Gly Leu Ile Gly Ile Leu Pro Gly Gln Leu Gly Ile Ala Thr Phe Ser 245 250 255

Pro Arg Leu Asn Pro Lys Gly Asn Ser Val Arg Gly Val Lys Ile Phe 260 265 270

Lys Gln Leu Ser Asp Asp Met Gly Leu His Leu Met Ser Thr Glu 275 280 285

<210> 105 <211> 1155 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(1132) <223> RXA00278 <400> 105 ggccacggag ttggtgtccg tcatggtgat gattctgtct gtcgtttctg tgttggcttt 60 gtgggtcggc atccgcccc gtttgcagga gtacttataa atg cac gct ttt cga Met His Ala Phe Arg cgc ccc cct cca ctc acc acg cga gtc ggc gct gca ttg ctg gcc gca 163 Arg Pro Pro Pro Leu Thr Thr Arg Val Gly Ala Ala Leu Leu Ala Ala acg ctg ctt gct tcc tgc act cca aca cct gtg gaa ccg gca gaa acc 211 Thr Leu Leu Ala Ser Cys Thr Pro Thr Pro Val Glu Pro Ala Glu Thr 3.0 ttg act gct ttg gat ccc gat gcc ggt cca cca ctg cca ccg gat tct 259 Leu Thr Ala Leu Asp Pro Asp Ala Gly Pro Pro Leu Pro Pro Asp Ser tcg att gaa gct ccc ggt gaa aaa gag ccc att gtg gaa gta ata gag 307 Ser Ile Glu Ala Pro Gly Glu Lys Glu Pro Ile Val Glu Val Ile Glu aat tgg cca ggt tct tta cgc ccg gat gat ctg acc cct gag gag cgg 355 Asn Trp Pro Gly Ser Leu Arg Pro Asp Asp Leu Thr Pro Glu Glu Arg gta cct ggc atc gtc aac cgg ggt cgc atc att gtg ggt gtg gat caa 403 Val Pro Gly Ile Val Asn Arg Gly Arg Ile Ile Val Gly Val Asp Gln 95 100 90 tcg caa aac ttg ctc agt ttc cgt gat ccg gtg act ggt gag ctg cgc 451 Ser Gln Asn Leu Leu Ser Phe Arg Asp Pro Val Thr Gly Glu Leu Arg 110 ggt ttt gaa gtg gaa tta gcg agg gaa att tcc cgc gac att ttc ggt 499 Gly Phe Glu Val Glu Leu Ala Arg Glu Ile Ser Arg Asp Ile Phe Gly 120 125 gac ccc aat aag gtg gat ttc cga ttc gtc ggc tcg tcc gac cgt ctg 547 Asp Pro Asn Lys Val Asp Phe Arg Phe Val Gly Ser Ser Asp Arg Leu 135 140 cgt tcc ctt gac caa ggt gat gta gat att gtg att cgt tcc gtc acg 595 Arg Ser Leu Asp Gln Gly Asp Val Asp Ile Val Ile Arg Ser Val Thr 150 155 165 atc acc gac gaa cgc gcc aaa ttg gtg gaa ttt tcc aca ccg tac ctg Ile Thr Asp Glu Arg Ala Lys Leu Val Glu Phe Ser Thr Pro Tyr Leu 170 175

```
cgc acc caa acc cgc atg ttg acc atg gaa tct tca gga atc acg tcc
Arg Thr Gln Thr Arg Met Leu Thr Met Glu Ser Ser Gly Ile Thr Ser
             185
                                 190
atc gca gat cta ccc ggc cac acc att tgt gtc acc gat ggc tcc act
                                                                    739
Ile Ala Asp Leu Pro Gly His Thr Ile Cys Val Thr Asp Gly Ser Thr
         200
                             205
tca ttg cag cga gcc cgc acc att gcg ccg gag gcc tca atc tta aaa
                                                                    787 -
Ser Leu Gln Arg Ala Arg Thr Ile Ala Pro Glu Ala Ser Ile Leu Lys
    215
                         220
act cgc aat tgg tcc gat tgt ctc atg gcg ttg cag cag cat cag gct
                                                                    835
Thr Arg Asn Trp Ser Asp Cys Leu Met Ala Leu Gln Gln His Gln Ala
230
                     235
                                         240
cag gtc att ttg ggc gat gat gtc att ttg tcc ggc atc gca gca cag
                                                                    883
Gln Val Ile Leu Gly Asp Asp Val Ile Leu Ser Gly Ile Ala Ala Gln
                 250
                                                         260
gat ccc tac acc gag att ctt gat acc tcc ctc gat tcc cat tcc tat
                                                                   931
Asp Pro Tyr Thr Glu Ile Leu Asp Thr Ser Leu Asp Ser His Ser Tyr
            265
                                 270
gga gtg gca gcg gca tcg acc act gct gaa aca gac tct tcg ggg ttg
                                                                   979
Gly Val Ala Ala Ser Thr Thr Ala Glu Thr Asp Ser Ser Gly Leu
        280
                             285
                                                 290
att cgg cag gta aac tac aca att gaa cgg atc cgc aca gac cgc atg
Ile Arg Gln Val Asn Tyr Thr Ile Glu Arg Ile Arg Thr Asp Arg Met
                         300
tgg tgg aca atg ttc gac gat tgg ttc gga cct tat ctc tgg tcc tac
Trp Trp Thr Met Phe Asp Asp Trp Phe Gly Pro Tyr Leu Trp Ser Tyr
310
                    315
                                         320
ggt cca cca cag ctg cag tac atg cca gag gaa gaa ggg aca gaa aac
1123
Gly Pro Pro Gln Leu Gln Tyr Met Pro Glu Glu Glu Gly Thr Glu Asn
                330
gat gaa gga taatgaagat ttcgatccag att
1155
Asp Glu Gly
<210> 106
<211> 344
<212> PRT
<213> Corynebacterium glutamicum
<400> 106
Met His Ala Phe Arg Arg Pro Pro Pro Leu Thr Thr Arg Val Gly Ala
```

30

Ala Leu Leu Ala Ala Thr Leu Leu Ala Ser Cys Thr Pro Thr Pro Val

20

Glu Pro Ala Glu Thr Leu Thr Ala Leu Asp Pro Asp Ala Gly Pro Pro Leu Pro Pro Asp Ser Ser Ile Glu Ala Pro Gly Glu Lys Glu Pro Ile Val Glu Val Ile Glu Asn Trp Pro Gly Ser Leu Arg Pro Asp Asp Leu Thr Pro Glu Glu Arg Val Pro Gly Ile Val Asn Arg Gly Arg Ile Ile Val Gly Val Asp Gln Ser Gln Asn Leu Leu Ser Phe Arg Asp Pro Val 105 Thr Gly Glu Leu Arg Gly Phe Glu Val Glu Leu Ala Arg Glu Ile Ser Arg Asp Ile Phe Gly Asp Pro Asn Lys Val Asp Phe Arg Phe Val Gly 135 Ser Ser Asp Arg Leu Arg Ser Leu Asp Gln Gly Asp Val Asp Ile Val 150 Ile Arg Ser Val Thr Ile Thr Asp Glu Arg Ala Lys Leu Val Glu Phe 170 Ser Thr Pro Tyr Leu Arg Thr Gln Thr Arg Met Leu Thr Met Glu Ser Ser Gly Ile Thr Ser Ile Ala Asp Leu Pro Gly His Thr Ile Cys Val Thr Asp Gly Ser Thr Ser Leu Gln Arg Ala Arg Thr Ile Ala Pro Glu 215 210 Ala Ser Ile Leu Lys Thr Arg Asn Trp Ser Asp Cys Leu Met Ala Leu 235 Gln Gln His Gln Ala Gln Val Ile Leu Gly Asp Asp Val Ile Leu Ser 250 Gly Ile Ala Ala Gln Asp Pro Tyr Thr Glu Ile Leu Asp Thr Ser Leu 265 Asp Ser His Ser Tyr Gly Val Ala Ala Ala Ser Thr Thr Ala Glu Thr Asp Ser Ser Gly Leu Ile Arg Gln Val Asn Tyr Thr Ile Glu Arg Ile Arg Thr Asp Arg Met Trp Trp Thr Met Phe Asp Asp Trp Phe Gly Pro 315 310 Tyr Leu Trp Ser Tyr Gly Pro Pro Gln Leu Gln Tyr Met Pro Glu Glu Glu Gly Thr Glu Asn Asp Glu Gly 340

<21 <21	0 > 1 1 > 1 2 > E 3 > C	.035	ebac	teri	.um g	luta	micu	ım								
<22	1> C 2> (DS 101) XA00		012)												
	0> 1 ttgc		atgg	cagg	ta g	tatt	ttgc	с са	tgat	tgag	agt	ttca	ccc	gatt	gcgaat	60
ttc	gcag	aca	ccgc	ctct	ga a	acgg	ctac	t gc	atag	cact		Arg			aaa Lys 5	115
atc Ile	ccc Pro	aag Lys	cgc Arg	gct Ala 10	Val	gcg Ala	gcg Ala	acc Thr	gtc Val 15	ggc Gly	atc Ile	gtg Val	gca Ala	acc Thr 20	tca Ser	163
ttc Phe	acc Thr	ttg Leu	gct Ala 25	tct Ser	tgt Cys	gtc Val	acc Thr	aat Asn 30	gag Glu	gag Glu	cag Gln	ggc	aac Asn 35	cca Pro	gat Asp	211
ggc Gly	tgg Trp	gag Glu 40	cag Gln	atc Ile	gtt Val	cca Pro	gat Asp 45	cct Pro	gta Val	ccg Pro	gag Glu	att Ile 50	cag Gln	gcg Ala	atg Met	259
gtt Val	ccc Pro 55	gaa Glu	gct Ala	ctg Leu	gct Ala	cag Gln 60	cgc Arg	ggt Gly	gtg Val	ctc Leu	acc Thr 65	gcc Ala	ggt Gly	gcc Ala	aac Asn	307
cca Pro 70	cct Pro	ttc Phe	cca Pro	ccg Pro	ttt Phe 75	gag Glu	ttt Phe	aaa Lys	gat Asp	tcc Ser 80	gat Asp	ggt Gly	cag Gln	att Ile	atc Ile 85	355
ggt Gly	gtg Val	gaa Glu	atg Met	gac Asp 90	ctc Leu	gtg Val	cgt Arg	gca Ala	atg Met 95	gcg Ala	GJÀ aaa	gtg Val	atg Met	ggc Gly 100	ttg Leu	403
gag Glu	ttc Phe	agc Ser	cct Pro 105	cag Gln	gag Glu	cag Gln	gat Asp	ttc Phe 110	tcc Ser	ctc Leu	atc Ile	ctt Leu	cca Pro 115	tcg Ser	gtt Val	451
caa Gln	gct Ala	ggc Gly 120	acc Thr	ctt Leu	gat Asp	atc Ile	gga Gly 125	gcc Ala	tct Ser	ggc Gly	ttc Phe	act Thr 130	gac Asp	aac Asn	gag Glu	499
gaa Glu	cgc Arg 135	cgc Arg	gag Glu	aac Asn	ttt Phe	gat Asp 140	ttc Phe	atc Ile	gat Asp	ttc Phe	ctc Leu 145	ttc Phe	gca Ala	ggt Gly	gtg Val	547
cag Gln 150	tgg Trp	gcg Ala	cag Gln	gca Ala	act Thr 155	gat Asp	cgt Arg	gaa Glu	acc Thr	cca Pro 160	atc Ile	gat Asp	ccg Pro	gaa Glu	aac Asn 165	595
gcc Ala	tgt Cys	ggt Gly	ctc Leu	acc Thr 170	gtt Val	gct Ala	gta Val	cag Gln	cgc Arg 175	aca Thr	acc Thr	gtg Val	gca Ala	gag Glu 180	acc Thr	643

gac Asp	gat Asp	gtc Val	cgt Arg 185	Pro	cgc Arg	tca Ser	gct	caa Gln 190	Суз	gaa Glu	gcc Ala	gaa Glu	ggc Gly 195	' Lys	gag Glu	691
pro	ato Ile	acc Thr 200	Ile	ttg Leu	tct Ser	tat Tyr	gaa Glu 205	Thr	gca Ala	gat Asp	act Thr	gca Ala 210	Ala	acc Thr	gca Ala	739
ttg Leu	atc Ile 215	Leu	gga Gly	cgc Arg	gca Ala	gac Asp 220	gca Ala	ctt Leu	gct Ala	gcg Ala	gac Asp 225	Ser	cct	gtt Val	tca Ser	787
gct Ala 230	Trp	gct Ala	gca Ala	gag Glu	cgc Arg 235	tcc Ser	gaa Glu	ggc	cgc Arg	atc Ile 240	gaa Glu	gtt Val	gtg Val	ggc	gat Asp 245	835
atg Met	tac Tyr	ttg Leu	gct Ala	gcg Ala 250	cca Pro	ttt Phe	ggt Gly	ttc Phe	gca Ala 255	ttc Phe	ccg Pro	ttg Leu	gaa Glu	tct Ser 260	gac Asp	883
ctc Leu	acc Thr	cca Pro	gca Ala 265	gca Ala	gct Ala	gcg Ala	gcg Ala	ttc Phe 270	caa Gln	cac His	ttg Leu	att Ile	gac Asp 275	acc Thr	ggc Gly	931
gat Asp	tac Tyr	cag Gln 280	cgc Arg	atc Ile	atg Met	gcg Ala	caa Gln 285	tgg Trp	ggc Gly	att Ile	gaa Glu	gaa Glu 290	ggc Gly	ctt Leu	ctt Leu	979
gat 103		gcc	ctg	atc	aac	gaa	cag	cca	ctc	aac	taga	agcct	ttc (cagc	aactaa	
Asp	Glu 295	Ala	Leu	Ile	Asn	Glu 300	Gln	Pro	Leu	Asn						
aaa 103																
<21:	0> 10 1> 30 2> PF 3> Co	04 RT	ebact	eriu	ım gl	.utan	nicur	n								
<400)> 10	8														
1				5					10			Ala		15		
Ile	Val	Ala	Thr 20	Ser	Phe	Thr	Leu	Ala 25	Ser	Суѕ	Va1	Thr	Asn 30	Glu	Glu	
Gln	Gly	Asn 35	Pro	Asp	Gly	Trp	Glu 40	Gln	Ile	Val	Pro	Asp 45	Pro	Val	Pro	
Glu	Ile 50	Gln	Ala	Met	Val	Pro 55	Glu	Ala	Leu	Ala	Gln 60	Arg	Gly	Val	Leu	
Thr 65	Ala	Gly	Ala	Asn	Pro 70	Pro	Phe	Pro	Pro	Phe 75	Glu	Phe	Lys	Asp	Ser 80	
Asp	Gly	Gln	Ile	Ile 85	Gly	Val	Glu	Met	Asp 90	Leu	Val	Arg	Ala	Met 95	Ala	

BNSDOCID: <WO 010084342 L >

```
Gly Val Met Gly Leu Glu Phe Ser Pro Gln Glu Gln Asp Phe Ser Leu
Ile Leu Pro Ser Val Gln Ala Gly Thr Leu Asp Ile Gly Ala Ser Gly
                                                 125
        115
Phe Thr Asp Asn Glu Glu Arg Arg Glu Asn Phe Asp Phe Ile Asp Phe
Leu Phe Ala Gly Val Gln Trp Ala Gln Ala Thr Asp Arg Glu Thr Pro
145
                    150
Ile Asp Pro Glu Asn Ala Cys Gly Leu Thr Val Ala Val Gln Arg Thr
                                    170
Thr Val Ala Glu Thr Asp Asp Val Arg Pro Arg Ser Ala Gln Cys Glu
                                185
Ala Glu Gly Lys Glu Pro Ile Thr Ile Leu Ser Tyr Glu Thr Ala Asp
                            200
Thr Ala Ala Thr Ala Leu Ile Leu Gly Arg Ala Asp Ala Leu Ala Ala
Asp Ser Pro Val Ser Ala Trp Ala Ala Glu Arg Ser Glu Gly Arg Ile
Glu Val Val Gly Asp Met Tyr Leu Ala Ala Pro Phe Gly Phe Ala Phe
Pro Leu Glu Ser Asp Leu Thr Pro Ala Ala Ala Ala Ala Phe Gln His
Leu Ile Asp Thr Gly Asp Tyr Gln Arg Ile Met Ala Gln Trp Gly Ile
Glu Glu Gly Leu Leu Asp Glu Ala Leu Ile Asn Glu Gln Pro Leu Asn
                        295
    290
```

Pro	Asp	Asp	Ala	Gly 10	Thr	Trp	His	Asp	Ala 15	Asp	Ala	Ala	Phe	Gly 20	Phe	
				atc Ile												211
				gat Asp												259
gag Glu	atc Ile 55	tac Tyr	aac Asn	tac Tyr	gtt Val	gag Glu 60	ctg Leu	cgt Arg	aaa Lys	gag Glu	ctc Leu 65	tcg Ser	gat Asp	ttg Leu	gga Gly	307
				act Thr												355
cac His	cac His	tgg Trp	ggc Gly	gag Glu 90	tcc Ser	gtg Val	gtc Val	gag Glu	cat His 95	ctc Leu	cgc Arg	gga Gly	atg Met	ttc Phe 100	ggc Gly	403
				gat Asp												451
				aag Lys												499
gtg Val	ttc Phe 135	tcc Ser	tca Ser	gag Glu	aag Lys	aag Lys 140	acc Thr	atc Ile	ttg Leu	gag Glu	atg Met 145	gcc Ala	gag Glu	gag Glu	atg Met	547
				ggc Gly												595
ttg Leu	cag Gln	tac Tyr	gtg Val	ccc Pro 170	gag Glu	cca Pro	gat Asp	acc Thr	ctt Leu 175	cac His	gcg Ala	cag Gln	att Ile	tcc Ser 180	cgc Arg	643
ttg Leu	gag Glu	tca Ser	ggc Gly 185	tgc Cys	acc Thr	gca Ala	aca Thr	gtt Val 190	cgt Arg	ccg Pro	ggc Gly	ggc Gly	aag Lys 195	ctg Leu	gaa Glu	691
cag Gln	aag Lys	cgt Arg 200	tac Tyr	ttc Phe	aag Lys	cct Pro	cag Gln 205	ttc Phe	cca Pro	gta Val	cag Gln	aag Lys 210	gtc Val	gta Val	aag Lys	739
ggt Gly	aag Lys 215	gag Glu	cag Gln	gac Asp	ctc Leu	ttc Phe 220	gat Asp	cgc Arg	att Ile	gcc Ala	cag Gln 225	gtg Val	ttg Leu	gag Glu	gat Asp	787
				cat His												835
				gac Asp												883

				250)				259	5				260)	
aac Asn	Pro	gac Asp	ctg Leu 265	Leu	acc Thr	tto Phe	acc Thr	acc Thr 270	Gl ₃	tto Phe	c gag e Glu	g cgt ı Arg	gaa Glu 275	ս Glչ	tac Tyr	931
tcg Ser	gag Glu	gtc Val 280	Asp	gtg Val	gct Ala	gcg Ala	gag Glu 285	Ser	gcc Ala	gct Ala	gcg Ala	att Ile 290	: Gly	gct Ala	gag Glu	979
cac 1027	atc	gtg	aag	att	gtc	tcg	cct	gag	gaa	tac	gcc	aac	gcg	att	cct	
		Val	Lys	Ile	· Val	Ser 300		Glu	Glu	Туг	Ala 305		Ala	ılle	Pro	
aag 1075	atc	atg	tgg	tac	ttg	gat	gat	cct	gta	gct	gac	cca	tca	ttg	gtc	
		Met	Trp	Tyr	Leu 315		Asp	Pro	Val	Ala 320		Pro	Ser	Leu	Val 325	
ccg 1123	ctg	tac	ttc	gtg	gca	gcg	gaa	gca	cgt	aag	cac	gtc	aag	gtt	gtg	
Pro	Leu	Tyr	Phe	Val 330		Ala	Glu	Ala	Arg 335		His	Val	Lys	Val 340		
ctg 1171	tct	ggc	gag	ggc	gca	gat	gag	ctg	ttc	ggt	gga	tac	acc	att	tac	
Leu		Gly	Glu 345	Gly	Ala	Asp	Glu	Leu 350	Phe	Gly	Gly	Tyr	Thr 355	Ile	Tyr	
aag 1219	gag	ccg	cta	tcg	ctt	gct	cca	ttt	gag	aag	atc	cct	tcc	cca	cta	
Lys	Glu	Pro 360	Leu	Ser	Leu	Ala	Pro 365	Phe	Glu	Lys	Ile	Pro 370	Ser	Pro	Leu	
cgt 1267	aaa	ggc	ctg	gga	aag	ctc	agc	aag	gtt	ctg	cca	gac	ggc	atg	aag	
Arg	Lys 375	Gly	Leu	Gly	Lys	Leu 380	Ser	Lys	Val	Leu	Pro 385	Asp	Gly	Met	Lys	
ggc 1315	aag	tcc	ctt	ctt	gag	cgt	ggc	tcc	atg	acc	atg	gaa	gag	cgc	tac	
Gly : 390	Lys	Ser	Leu	Leu	Glu 395	Arg	Gly	Ser	Met	Thr 400	Met	Glu	Glu	Arg	Tyr 405	
tac (ggc	aac	gct	cgc	tcc	ttc	aat	ttc	gag	cag	atg	caa	cgc	gtt	att	
Tyr (Gly	Asn	Ala	Arg 410	Ser	Phe	Asn	Phe	Glu 415	Gln	Met	Gln	Arg	Val 420	Ile	
сса 1411	tgg	gca	aag	cgc	gaa	tgg	gac	cac	cgc	gaa	gtc	act	gcg	ccg	atc	
Pro '	Trp	Ala	Lys 425	Arg	Glu	Trp	Asp	His 430	Arg	Glu	Val	Thr	Ala 435	Pro	Ile	
tac (1459	gca	cag	tcc	cgc	aac	ttt	gat	cca	gta	gcc	cgc	atg	caa	cac	ctg	
Tyr A	Ala	Gln 440	Ser	Arg	Asn	Phe	Asp 445	Pro	Val	Ala	Arg	Met 450	Gln	His	Leu	

gat ctg ttc acc tgg atg cgc ggc gac atc ctg gtc aag gct gac aag 1507 Asp Leu Phe Thr Trp Met Arg Gly Asp Ile Leu Val Lys Ala Asp Lys atc aac atg gcg aac tcc ctt gag ctg cga gtt cca ttc ttg gat aag Ile Asn Met Ala Asn Ser Leu Glu Leu Arg Val Pro Phe Leu Asp Lys 475 480 gaa gtt ttc aag gtt gca gag acc att cct tac gac ctg aag att gcc 1603 Glu Val Phe Lys Val Ala Glu Thr Ile Pro Tyr Asp Leu Lys Ile Ala 490 aac ggt acc acc aag tac gcg ctg cgc agg gca ctc gag cag att gtt Asn Gly Thr Thr Lys Tyr Ala Leu Arg Arg Ala Leu Glu Gln Ile Val 505 510 ccg cct cac gtt ttg cac cgc aag aag ctg ggc ttc cct gtt ccc atg 1699 Pro Pro His Val Leu His Arg Lys Leu Gly Phe Pro Val Pro Met cgc cac tgg ctt gcc ggc gat gag ctg ttc ggt tgg gcg cag gac acc Arg His Trp Leu Ala Gly Asp Glu Leu Phe Gly Trp Ala Gln Asp Thr 535 540 545 atc aag gaa tcc ggt act gaa gat atc ttc aac aag cag gct gtg ctg Ile Lys Glu Ser Gly Thr Glu Asp Ile Phe Asn Lys Gln Ala Val Leu 555 560 gat atg ctg aac gag cac cgc gat ggc gtg tca gat cat tcc cgt cga 1843 Asp Met Leu Asn Glu His Arg Asp Gly Val Ser Asp His Ser Arg Arg 570 575 580 ctg tgg act gtt ctg tca ttt atg gtg tgg cac ggc att ttt gtg gaa 1891 Leu Trp Thr Val Leu Ser Phe Met Val Trp His Gly Ile Phe Val Glu 585 aac cgc att gat cca cag att gag gac cgc tcc tac cca gtc gag ctt 1939 Asn Arg Ile Asp Pro Gln Ile Glu Asp Arg Ser Tyr Pro Val Glu Leu 605

taagtettaa ageetaaace eec 1962

<210> 110

<211> 613

<212> PRT

<213> Corynebacterium glutamicum

<400> 110

Met Arg His Arg Gly Pro Asp Asp Ala Gly Thr Trp His Asp Ala Asp

1				5					10					15	
Ala	Ala	Phe	Gly 20	Phe	Asn	Arg	Leu	Ser 25	Ile	Ile	Asp	Ile	Ala 30	His	Ser
His	Gln	Pro 35	Leu	Arg	Trp	Gly	Pro 40	Ala	Asp	Glu	Pro	Asp 45	Arg	Tyr	Ala
Met	Thr 50	Phe	Asn	Gly	Glu	Ile 55	Tyr	Asn	Tyr	Val	Glu 60	Leu	Arg	Lys	Glu
Leu 65	Ser	Asp	Leu	Gly	Туг 70	Ala	Phe	Asn	Thr	Ser 75	Gly	Asp	Gly	Glu	Pro 80
Ile	Val	Val	Gly	Phe 85	His	His	Trp	Gly	Glu 90	Ser	Val	Val	Glu	His 95	Leu
Arg	Gly	Met	Phe 100	Gly	Ile	Ala	Ile	Trp 105	Asp	Thr	Lys	Glu	Lys 110	Ser	Leu
Phe	Leu	Ala 115	Arg	Asp	Gln	Phe	Gly 120	Ile	Lys	Pro	Leu	Phe 125	Tyr	Ala	Thr
Thr	Glu 130	His	Gly	Thr	Val	Phe 135	Ser	Ser	Glu	Lys	Lys 140	Thr	Ile	Leu	Glu
Met 145	Ala	Glu	Glu	Met	Asn 150	Leu	Asp	Leu	Gly	Leu 155	Asp	Lys	Arg	Thr	Ile 160
Glu	His	Tyr	Val	Asp 165	Leu	Gln	Tyr	Val	Pro 170	Glu	Pro	Asp	Thr	Leu 175	His
Ala	Gln	Ile	Ser 180	Arg	Leu	Glu	Ser	Gly 185	Cys	Thr	Ala	Thr	Val 190	Arg	Pro
Gly	Gly	Lys 195	Leu	Glu	Gln	Lys	Arg 200	Tyr	Phe	Lys	Pro	Gln 205	Phe	Pro	Val
Gln	Lys 210	Val	Val	Lys	Gly	Lys 215	Glu	Gln	Asp	Leu	Phe 220	Asp	Arg	Ile	Ala
Gln 225	Val	Leu	Glu	Asp	Ser 230	Val	Glu	Lys	His	Met 235	Arg	Ala	Asp	Val	Thr 240
Val	Gly	Ser	Phe	Leu 245	Phe	Gly	Gly	Ile	Asp 250	Ser	Thr	Ala	Ile	Ala 255	Ala
Leu	Ala	Lys	Arg 260	His	Asn	Pro	Asp	Leu 265	Leu	Thr	Phe	Thr	Thr 270	Gly	Phe
Glu	Arg	Glu 275	Gly	Tyr	Ser	Glu	Val 280	Asp	Val	Ala	Ala	Glu 285	Ser	Ala	Ala
Ala	Ile 290	Gly	Ala	Glu	His	Ile 295	Val	Lys	Ile	Val	Ser 300	Pro	Glu	Glu	Tyr
Ala 305	Asn	Ala	Ile	Pro	Lys 310	Ile	Met	Trp	Tyr	Leu 315	Asp	Asp	Pro	Val	Ala 320
Asp	Pro	Ser	Leu	Val 325	Pro	Leu	Tyr	Phe	Val 330	Ala	Ala	Glu	Ala	Arg 335	Lys

His Val Lys Val Val Leu Ser Gly Glu Gly Ala Asp Glu Leu Phe Gly 340 345 350

Gly Tyr Thr Ile Tyr Lys Glu Pro Leu Ser Leu Ala Pro Phe Glu Lys 355 360 365

Ile Pro Ser Pro Leu Arg Lys Gly Leu Gly Lys Leu Ser Lys Val Leu 370 375 380

Pro Asp Gly Met Lys Gly Lys Ser Leu Leu Glu Arg Gly Ser Met Thr 385 390 395 400

Met Glu Glu Arg Tyr Tyr Gly Asn Ala Arg Ser Phe Asn Phe Glu Gln 405 410 415

Met Gln Arg Val Ile Pro Trp Ala Lys Arg Glu Trp Asp His Arg Glu 420 425 430

Val Thr Ala Pro Ile Tyr Ala Gln Ser Arg Asn Phe Asp Pro Val Ala 435 440 445

Arg Met Gln His Leu Asp Leu Phe Thr Trp Met Arg Gly Asp Ile Leu 450 460

Val Lys Ala Asp Lys Ile Asn Met Ala Asn Ser Leu Glu Leu Arg Val 465 470 475 480

Pro Phe Leu Asp Lys Glu Val Phe Lys Val Ala Glu Thr Ile Pro Tyr 485. 490 495

Asp Leu Lys Ile Ala Asn Gly Thr Thr Lys Tyr Ala Leu Arg Arg Ala 500 505 510

Leu Glu Gln Ile Val Pro Pro His Val Leu His Arg Lys Lys Leu Gly 515 520 525

Phe Pro Val Pro Met Arg His Trp Leu Ala Gly Asp Glu Leu Phe Gly 530 535 540

Trp Ala Gln Asp Thr Ile Lys Glu Ser Gly Thr Glu Asp Ile Phe Asn 545 550 555 560

Lys Gln Ala Val Leu Asp Met Leu Asn Glu His Arg Asp Gly Val Ser 565 570 575

Asp His Ser Arg Arg Leu Trp Thr Val Leu Ser Phe Met Val Trp His 580 585 590

Gly Ile Phe Val Glu Asn Arg Ile Asp Pro Gln Ile Glu Asp Arg Ser 595 600 605

Tyr Pro Val Glu Leu 610

<210> 111

<211> 1284

<212> DNA

<213> Corynebacterium glutamicum

<220> <221> CDS <222> (101)..(1261) <223> RXN00116 <400> 111 cgcggcacgc acgctggggg caagcgtcga caagcacaaa ctttttgctt aattgaatcc 60 tttgcgcacc aatcaatggg ggatcaaata tagtagctgc atg agt aat gac ttc Met Ser Asn Asp Phe gtc gtt tct agg ctt aga ccc ttt ggt gaa acg att ttt gca acc atg 163 Val Val Ser Arg Leu Arg Pro Phe Gly Glu Thr Ile Phe Ala Thr Met 10 acc cag cga gct gtt gag gcg ggt gca atc aat ctt ggt cag ggc ttt 211 Thr Gln Arg Ala Val Glu Ala Gly Ala Ile Asn Leu Gly Gln Gly Phe cct gat gag gat ggt cct cgt cgg atg tta gag atc gcg tcg gag cag 259 Pro Asp Glu Asp Gly Pro Arg Arg Met Leu Glu Ile Ala Ser Glu Gln att ctc ggg gga aat aat cag tat tcg gcg ggg cgt ggg gat gct tcg 307 Ile Leu Gly Gly Asn Asn Gln Tyr Ser Ala Gly Arg Gly Asp Ala Ser ttg agg gca gct gtg gct cgt gat cat ttg gag agg ttt gat ctg gag 355 Leu Arg Ala Ala Val Ala Arg Asp His Leu Glu Arg Phe Asp Leu Glu 403 tac aac cct gat tcg gag gtg ttg atc acg gtg ggg gcc act gag gcg Tyr Asn Pro Asp Ser Glu Val Leu Ile Thr Val Gly Ala Thr Glu Ala att acg gcg act gtg ttg ggt ttg gtg gag cct ggg gat gaa gtg atc 451 Ile Thr Ala Thr Val Leu Gly Leu Val Glu Pro Gly Asp Glu Val Ile 105 gtt ttg gaa ccg tat tac gat gcg tat gcg gcg gct att gcg ttg gcg 499 Val Leu Glu Pro Tyr Tyr Asp Ala Tyr Ala Ala Ile Ala Leu Ala 125 120 ggg gcg acg cgg gtg gcg gtt cct ttg cag gag gtg gag aac tcg tgg 547 Gly Ala Thr Arg Val Ala Val Pro Leu Gln Glu Val Glu Asn Ser Trp 135 gat gtg gat gtc gat aag ttg cat gcg gcg gtg act aag aag acg cgg 595 Asp Val Asp Val Asp Lys Leu His Ala Ala Val Thr Lys Lys Thr Arg 155 atg att atc gtt aat tcg ccg cat aat ccg acg ggt tcg gtg ttt tct 643 Met Ile Ile Val Asn Ser Pro His Asn Pro Thr Gly Ser Val Phe Ser 175 aag aag gcg ttg aag cag ttg gcg ggt gtt gct cgt gcg tat gac ttg 691 Lys Lys Ala Leu Lys Gln Leu Ala Gly Val Ala Arg Ala Tyr Asp Leu 190 ttg gtg ttg tca gat gag gtg tat gag cat ctt gtt ttt gat gat cag 739

Leu Val Leu Ser Asp Glu Val Tyr Glu His Leu Val Phe Asp Asp Gln 200 205 aag cat gtg agt gtc gcg aag ctg ccc ggt atg tgg gat cgc acg gtg 787 Lys His Val Ser Val Ala Lys Leu Pro Gly Met Trp Asp Arg Thr Val acg gtg tcg tcg gcg gcg aaa acg ttc aat gtg act ggt tgg aag acg 835 Thr Val Ser Ser Ala Ala Lys Thr Phe Asn Val Thr Gly Trp Lys Thr 235 ggg tgg gcg ttg gca ccg gag ccg ttg ttg gag gcg gtg ttg aag gcg 883 Gly Trp Ala Leu Ala Pro Glu Pro Leu Leu Glu Ala Val Leu Lys Ala 250 aag cag ttt atg tct tat gtg ggg gct aca cct ttt cag ccg gct gtg 931 Lys Gln Phe Met Ser Tyr Val Gly Ala Thr Pro Phe Gln Pro Ala Val 270 gcg cat gcg att gaa cat gag cag aag tgg gtg tca aag atg tct aag 979 Ala His Ala Ile Glu His Glu Gln Lys Trp Val Ser Lys Met Ser Lys 285 ggg ctt gag ctc aag cgg gat att ttg cgt act gcg tta gat aag gcg 1027 Gly Leu Glu Leu Lys Arg Asp Ile Leu Arg Thr Ala Leu Asp Lys Ala 300 305 ggg ctg aag act cat gac agt atg ggc acg tat ttc atc gtt gcg gat Gly Leu Lys Thr His Asp Ser Met Gly Thr Tyr Phe Ile Val Ala Asp 315 320 att ggg gat cgt gat ggg gag ttc tgt ttt gag ttg att gag aag Ile Gly Asp Arg Asp Gly Ala Glu Phe Cys Phe Glu Leu Ile Glu Lys 330 335 gtt ggg gtg gcg gcg att ccg gtg cag gcg ttt gtg gat cat ccg aag 1171 Val Gly Val Ala Ala Ile Pro Val Gln Ala Phe Val Asp His Pro Lys 345 aag tgg tcg tcg aag gtt cgt ttt gcg ttt tgc aaa aaa gaa gag acg 1219 Lys Trp Ser Ser Lys Val Arg Phe Ala Phe Cys Lys Lys Glu Glu Thr 360 365 ctc cgc gaa gct gcg gag cgt ctc aag ggg att aag aaa cta Leu Arg Glu Ala Ala Glu Arg Leu Lys Gly Ile Lys Lys Leu 375 tagtttgaac aggttgttgg ggg

1284

<210> 112

<211> 387

<212> PRT

<213> Corynebacterium glutamicum

<400> 112 Met Ser Asn Asp Phe Val Val Ser Arg Leu Arg Pro Phe Gly Glu Thr Ile Phe Ala Thr Met Thr Gln Arg Ala Val Glu Ala Gly Ala Ile Asn 25 Leu Gly Gln Gly Phe Pro Asp Glu Asp Gly Pro Arg Arg Met Leu Glu Ile Ala Ser Glu Gln Ile Leu Gly Gly Asn Asn Gln Tyr Ser Ala Gly Arg Gly Asp Ala Ser Leu Arg Ala Ala Val Ala Arg Asp His Leu Glu 75 Arg Phe Asp Leu Glu Tyr Asn Pro Asp Ser Glu Val Leu Ile Thr Val Gly Ala Thr Glu Ala Ile Thr Ala Thr Val Leu Gly Leu Val Glu Pro Gly Asp Glu Val Ile Val Leu Glu Pro Tyr Tyr Asp Ala Tyr Ala Ala Ala Ile Ala Leu Ala Gly Ala Thr Arg Val Ala Val Pro Leu Gln Glu Val Glu Asn Ser Trp Asp Val Asp Val Asp Lys Leu His Ala Ala Val 150 155 Thr Lys Lys Thr Arg Met Ile Ile Val Asn Ser Pro His Asn Pro Thr 170 Gly Ser Val Phe Ser Lys Lys Ala Leu Lys Gln Leu Ala Gly Val Ala 185 190 Arg Ala Tyr Asp Leu Leu Val Leu Ser Asp Glu Val Tyr Glu His Leu Val Phe Asp Asp Gln Lys His Val Ser Val Ala Lys Leu Pro Gly Met 215 Trp Asp Arg Thr Val Thr Val Ser Ser Ala Ala Lys Thr Phe Asn Val 230 Thr Gly Trp Lys Thr Gly Trp Ala Leu Ala Pro Glu Pro Leu Leu Glu Ala Val Leu Lys Ala Lys Gln Phe Met Ser Tyr Val Gly Ala Thr Pro 265 260 Phe Gln Pro Ala Val Ala His Ala Ile Glu His Glu Gln Lys Trp Val 280 Ser Lys Met Ser Lys Gly Leu Glu Leu Lys Arg Asp Ile Leu Arg Thr 290 Ala Leu Asp Lys Ala Gly Leu Lys Thr His Asp Ser Met Gly Thr Tyr 310 315

Phe Ile Val Ala Asp Ile Gly Asp Arg Asp Gly Ala Glu Phe Cys Phe 325 Glu Leu Ile Glu Lys Val Gly Val Ala Ala Ile Pro Val Gln Ala Phe 345 Val Asp His Pro Lys Lys Trp Ser Ser Lys Val Arg Phe Ala Phe Cys 360 355 Lys Lys Glu Glu Thr Leu Arg Glu Ala Ala Glu Arg Leu Lys Gly Ile 375 Lys Lys Leu 385 <210> 113 <211> 607 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(607) <223> FRXA00116 <400> 113 tttgcgcacc aatcaatggg ggatcaaata tagtagctgc atgagtaatg acttcgtcgt 60 ttctaggctt agaccctttg gtgaaacgat ttttgcaacc atg acc cag cga gct Met Thr Gln Arg Ala gtt gag gcg ggt gca atc aat ctt ggt cag ggc ttt cct gat gag gat Val Glu Ala Gly Ala Ile Asn Leu Gly Gln Gly Phe Pro Asp Glu Asp 10 ggt cct cgt cgg atg tta gag atc gcg tcg gag cag att ctc ggg gga 211 Gly Pro Arg Arg Met Leu Glu Ile Ala Ser Glu Gln Ile Leu Gly Gly 25 aat aat cag tat tcg gcg ggg cgt ggg gat gct tcg ttg agg gca gct 259 Asn Asn Gln Tyr Ser Ala Gly Arg Gly Asp Ala Ser Leu Arg Ala Ala 40 gtg gct cgt gat cat ttg gag agg ttt gat ctg gag tac aac cct gat Val Ala Arg Asp His Leu Glu Arg Phe Asp Leu Glu Tyr Asn Pro Asp tcg gag gtg ttg atc acg gtg ggg gcc act gag gcg att acg gcg act 355 Ser Glu Val Leu Ile Thr Val Gly Ala Thr Glu Ala Ile Thr Ala Thr 75 gtg ttg ggt ttg gtg gag cct ggg gat gaa gtg atc gtt ttg gaa ccg 403 Val Leu Gly Leu Val Glu Pro Gly Asp Glu Val Ile Val Leu Glu Pro tat tac gat gcg tat gcg gcg gct att gcg ttg gcg gcg gcg acg cgg Tyr Tyr Asp Ala Tyr Ala Ala Ile Ala Leu Ala Gly Ala Thr Arg 110

gtg Val	gcg Ala	gtt Val 120	cct Pro	ttg Leu	cag Gln	gag Glu	gtg Val 125	gag Glu	aac Asn	tcg Ser	tgg Trp	gat Asp 130	gtg Val	gat Asp	gtc Val	499
										acg Thr					gtt Val	547
										ttt Phe 160						595
_	_	ttg Leu														607
<211 <212)> 13 l> 16 2> PF 3> Co	59	ebact	eriu	ım gl	Lutam	nicum	n								

<213> Corynebacterium glutamicum

<400> 114

Met Thr Gln Arg Ala Val Glu Ala Gly Ala Ile Asn Leu Gly Gln Gly

Phe Pro Asp Glu Asp Gly Pro Arg Arg Met Leu Glu Ile Ala Ser Glu

Gin Ile Leu Gly Gly Asn Asn Gln Tyr Ser Ala Gly Arg Gly Asp Ala

Ser Leu Arg Ala Ala Val Ala Arg Asp His Leu Glu Arg Phe Asp Leu

Glu Tyr Asn Pro Asp Ser Glu Val Leu Ile Thr Val Gly Ala Thr Glu

Ala Ile Thr Ala Thr Val Leu Gly Leu Val Glu Pro Gly Asp Glu Val

Ile Val Leu Glu Pro Tyr Tyr Asp Ala Tyr Ala Ala Ile Ala Leu

Ala Gly Ala Thr Arg Val Ala Val Pro Leu Gln Glu Val Glu Asn Ser 120

Trp Asp Val Asp Val Asp Lys Leu His Ala Ala Val Thr Lys Lys Thr 130 135

Arg Met Ile Ile Val Asn Ser Pro His Asn Pro Thr Gly Ser Val Phe 150 155

Ser Lys Lys Ala Leu Lys Gln Leu Ala 165

<210> 115 <211> 1230 <212> DNA

<213> Corynebacterium glutamicum <220> <221> CDS <222> (101) .. (1207) <223> RXN00618 <400> 115 gctgcattag agggtcgtat ctcgatctaa aagcagtacg cagataggct tgtctcttat 60 gaagccaagc actagaagca atgttcagcc gtttcgcgtc atg cag atg ttg gac Met Gln Met Leu Asp cga gtc cac cgt cgc agg cgc gaa ggc aaa gac acc tta atg ttc tgc 163 Arg Val His Arg Arg Arg Glu Gly Lys Asp Thr Leu Met Phe Cys 10 15 gct ggc cag ccg tca act ggt gcg cca gaa gca gtc atc gaa gaa gca Ala Gly Gln Pro Ser Thr Gly Ala Pro Glu Ala Val Ile Glu Glu Ala 25 gag atc gct ctt cgc tcg ggt cct ttg gga tac acc gag gtg att ggt 259 Glu Ile Ala Leu Arg Ser Gly Pro Leu Gly Tyr Thr Glu Val Ile Gly gat cgt gag ttc cgt gaa cgc atc gcc gat tgg cac tct gct act tat 307 Asp Arg Glu Phe Arg Glu Arg Ile Ala Asp Trp His Ser Ala Thr Tyr gac gta gac acc aac cct gac aat gtt att gtc acc acc ggt tct tca 355 Asp Val Asp Thr Asn Pro Asp Asn Val Ile Val Thr Thr Gly Ser Ser 70 ggt gga ttc gtg gca tcg ttt atc gcc acc ttg gat cac ggg gat tat Gly Gly Phe Val Ala Ser Phe Ile Ala Thr Leu Asp His Gly Asp Tyr 90 gtg gca atg cct acc ccg ggg tac ccg gca tat cgc aat att ctg gaa 451 Val Ala Met Pro Thr Pro Gly Tyr Pro Ala Tyr Arg Asn Ile Leu Glu 105 tet ttg ggg geg aag gtt etg aac etg ege tgt aet gea gag aet egt 499 Ser Leu Gly Ala Lys Val Leu Asn Leu Arg Cys Thr Ala Glu Thr Arg 120 ttc cag cca acc gct caa atg ttg gag gaa ctg cca cac aag ccg aag 547 Phe Gln Pro Thr Ala Gln Met Leu Glu Glu Leu Pro His Lys Pro Lys 135 140 get gtt att gte ace age eea gga aac eea aeg gge ace ate att gat 595 Ala Val Ile Val Thr Ser Pro Gly Asn Pro Thr Gly Thr Ile Ile Asp 150 ccg gaa gag cta gag cgc atc gcc aag tgg tgc gat gac aat gat gct 643 Pro Glu Glu Leu Glu Arg Ile Ala Lys Trp Cys Asp Asp Asn Asp Ala 170 175 gtt ctt atc tct gat gag gac tac cac ggc atg agc ttt ggt cgt ccg 691 Val Leu Ile Ser Asp Glu Asp Tyr His Gly Met Ser Phe Gly Arg Pro

190

185

```
ctg gca act gcg cat cag ttt tcc aag aac gcc atc gtg gtg ggt acc
                                                                   739
Leu Ala Thr Ala His Gln Phe Ser Lys Asn Ala Ile Val Val Gly Thr
ttg tcc aag tac ttc tcc atg acg ggt tgg cgc gtg ggt tgg atc atc
                                                                   787
Leu Ser Lys Tyr Phe Ser Met Thr Gly Trp Arg Val Gly Trp Ile Ile
    215
                        220
gtt cca gat gag ctg gtc aca ccg att gaa aac ctg cag gct tct ctt
                                                                   835
Val Pro Asp Glu Leu Val Thr Pro Ile Glu Asn Leu Gln Ala Ser Leu
                    235
tcc ttg tgt gct cct gcc atc ggg cag gct gcg gga cgc gca gcc ttc
                                                                   883
Ser Leu Cys Ala Pro Ala Ile Gly Gln Ala Ala Gly Arg Ala Ala Phe
act ttg gag gct ggg gcc gaa ctt gat gcc cac gtt gaa gcg tat cgc
                                                                   931
Thr Leu Glu Ala Gly Ala Glu Leu Asp Ala His Val Glu Ala Tyr Arg
                                270
gag gcc cgg gag gtg ttc gtc gat aag ctc cct gaa atc ggg ctt ggc
                                                                   979
Glu Ala Arg Glu Val Phe Val Asp Lys Leu Pro Glu Ile Gly Leu Gly
                            285
act ttc gcc gac ccg gat ggc ggc ctg tat ttg tgg gtc gat gtt tct
Thr Phe Ala Asp Pro Asp Gly Gly Leu Tyr Leu Trp Val Asp Val Ser
                        300
                                             305
gca tac acc gat gat tca gag gaa tgg gca ttg cgt ttg ctc gat gaa
1075
Ala Tyr Thr Asp Asp Ser Glu Glu Trp Ala Leu Arg Leu Leu Asp Glu
                    315
                                         320
geg ggc gtg gcc gtc gcg ccg ggt gtt gat ttt gat cct gag gaa ggc
1123
Ala Gly Val Ala Val Ala Pro Gly Val Asp Phe Asp Pro Glu Glu Gly
                330
                                    335
cac aag tgg att cgt ttg agc ctg tgc gcg tca aag gaa gac acc att
1171
His Lys Trp Ile Arg Leu Ser Leu Cys Ala Ser Lys Glu Asp Thr Ile
            345
                                350
gaa ggt gtg cgc aaa atc gga gaa ttc atc aaa aaa tagcagcgac
1217
Glu Gly Val Arg Lys Ile Gly Glu Phe Ile Lys Lys
taggttagtt tcg
1230
<210> 116
<211> 369
<212> PRT
<213> Corynebacterium glutamicum
<400> 116
```

Met Gln Met Leu Asp Arg Val His Arg Arg Arg Glu Gly Lys Asp

5 10 15 Thr Leu Met Phe Cys Ala Gly Gln Pro Ser Thr Gly Ala Pro Glu Ala Val Ile Glu Glu Ala Glu Ile Ala Leu Arg Ser Gly Pro Leu Gly Tyr Thr Glu Val Ile Gly Asp Arg Glu Phe Arg Glu Arg Ile Ala Asp Trp His Ser Ala Thr Tyr Asp Val Asp Thr Asn Pro Asp Asn Val Ile Val Thr Thr Gly Ser Ser Gly Gly Phe Val Ala Ser Phe Ile Ala Thr Leu Asp His Gly Asp Tyr Val Ala Met Pro Thr Pro Gly Tyr Pro Ala Tyr Arg Asn Ile Leu Glu Ser Leu Gly Ala Lys Val Leu Asn Leu Arg Cys Thr Ala Glu Thr Arg Phe Gln Pro Thr Ala Gln Met Leu Glu Glu Leu Pro His Lys Pro Lys Ala Val Ile Val Thr Ser Pro Gly Asn Pro Thr Gly Thr Ile Ile Asp Pro Glu Glu Leu Glu Arg Ile Ala Lys Trp Cys Asp Asp Asn Asp Ala Val Leu Ile Ser Asp Glu Asp Tyr His Gly Met 185 Ser Phe Gly Arg Pro Leu Ala Thr Ala His Gln Phe Ser Lys Asn Ala 205 Ile Val Val Gly Thr Leu Ser Lys Tyr Phe Ser Met Thr Gly Trp Arg Val Gly Trp Ile Ile Val Pro Asp Glu Leu Val Thr Pro Ile Glu Asn Leu Gln Ala Ser Leu Ser Leu Cys Ala Pro Ala Ile Gly Gln Ala Ala Gly Arg Ala Ala Phe Thr Leu Glu Ala Gly Ala Glu Leu Asp Ala His 265 Val Glu Ala Tyr Arg Glu Ala Arg Glu Val Phe Val Asp Lys Leu Pro Glu Ile Gly Leu Gly Thr Phe Ala Asp Pro Asp Gly Gly Leu Tyr Leu 295 Trp Val Asp Val Ser Ala Tyr Thr Asp Asp Ser Glu Glu Trp Ala Leu 305 310 Arg Leu Leu Asp Glu Ala Gly Val Ala Val Ala Pro Gly Val Asp Phe 325 330

Asp Pro Glu Glu Gly His Lys Trp Ile Arg Leu Ser Leu Cys Ala Ser 345 Lys Glu Asp Thr Ile Glu Gly Val Arg Lys Ile Gly Glu Phe Ile Lys 360 Lys <210> 117 <211> 657 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(634) <223> FRXA00618 <400> 117 cccaacgggc accatcattg atccggaaga gctagagcgc atcgccaagt ggtgcgatga 60 caatgatgct gttcttatct ctgatgagga ctaccacggc atg agc ttt ggt cgt Met Ser Phe Gly Arg 1 ccg ctg gca act gcg cat cag ttt tcc aag aac gcc atc gtg gtg ggt 163 Pro Leu Ala Thr Ala His Gln Phe Ser Lys Asn Ala Ile Val Val Gly 10 acc ttg tcc aag tac ttc tcc atg acg ggt tgg cgc gtg ggt tgg atc 211 Thr Leu Ser Lys Tyr Phe Ser Met Thr Gly Trp Arg Val Gly Trp Ile 25 atc gtt cca gat gag ctg gtc aca ccg att gaa aac ctg cag gct tct 259 Ile Val Pro Asp Glu Leu Val Thr Pro Ile Glu Asn Leu Gln Ala Ser 40 : ctt tee ttg tgt get eet gee ate ggg eag get geg gga ege gea gee 307 Leu Ser Leu Cys Ala Pro Ala Ile Gly Gln Ala Ala Gly Arg Ala Ala 55 ttc act ttg gag gct ggg gcc gaa ctt gat gcc cac gtt gaa gcg tat 355 Phe Thr Leu Glu Ala Gly Ala Glu Leu Asp Ala His Val Glu Ala Tyr cgc gag gcc cgg gag gtg ttc gtc gat aag ctc cct gaa atc ggg ctt 403 Arg Glu Ala Arg Glu Val Phe Val Asp Lys Leu Pro Glu Ile Gly Leu 90 95 ggc act ttc gcc gac ccg gat ggc ggc ctg tat ttg tgg gtc gat gtt Gly Thr Phe Ala Asp Pro Asp Gly Gly Leu Tyr Leu Trp Val Asp Val 105 110 tct gca tac acc gat gat tca gag gaa tgg gca ttg cgt ttg ctc gat 499 Ser Ala Tyr Thr Asp Asp Ser Glu Glu Trp Ala Leu Arg Leu Leu Asp 125 gaa gcg ggc gtg gcc gtc gcg ccg ggt gtt gat ttt gat cct gag gaa 547

Glu Ala Gly Val Ala Val Ala Pro Gly Val Asp Phe Asp Pro 135 140 145	o Glu Glu
ggc cac aag tgg att cgt ttg agc ctg tgc gcg tca aag ga Gly His Lys Trp Ile Arg Leu Ser Leu Cys Ala Ser Lys Gl 150 155 160	
att gaa ggt gtg cgc aaa atc gga gaa ttc atc aaa aaa ta Ile Glu Gly Val Arg Lys Ile Gly Glu Phe Ile Lys Lys 170 175	gcagcgac 644
taggttagtt tcg	657
<210> 118 <211> 178 <212> PRT <213> Corynebacterium glutamicum	
<400> 118 Met Ser Phe Gly Arg Pro Leu Ala Thr Ala His Gln Phe Ser	r Lve Aen
1 5 10	15
Ala Ile Val Val Gly Thr Leu Ser Lys Tyr Phe Ser Met Thr 20 25 30	
Arg Val Gly Trp Ile Ile Val Pro Asp Glu Leu Val Thr Pro 35 40 45	o Ile Glu
Asn Leu Gln Ala Ser Leu Ser Leu Cys Ala Pro Ala Ile Gly 50 60	y Gln Ala
Ala Gly Arg Ala Ala Phe Thr Leu Glu Ala Gly Ala Glu Leu 65 70 75	ı Asp Ala 80
His Val Glu Ala Tyr Arg Glu Ala Arg Glu Val Phe Val Asg 85 90	95
Pro Glu Ile Gly Leu Gly Thr Phe Ala Asp Pro Asp Gly Gly 100 105 110	-
Leu Trp Val Asp Val Ser Ala Tyr Thr Asp Asp Ser Glu Glu 115 120 125	ı Trp Ala
Leu Arg Leu Leu Asp Glu Ala Gly Val Ala Val Ala Pro Gly 130 135 140	Val Asp
Phe Asp Pro Glu Glu Gly His Lys Trp Ile Arg Leu Ser Leu 145 150 155	ı Cys Ala 160
Ser Lys Glu Asp Thr Ile Glu Gly Val Arg Lys Ile Gly Glu 165 170	n Phe Ile 175
Lys Lys	

<210> 119

<211> 385 <212> DNA

<213> Corynebacterium glutamicum

<220> <221> CDS <222> (101) .. (385) <223> FRXA00627 <400> 119 gctgcattag agggtcgtat ctcgatctaa aagcagtacg cagataggct tgtctcttat 60 gaagccaagc actagaagca atgttcagcc gtttcgcgtc atg cag atg ttg gac 115 Met Gln Met Leu Asp cga gtc cac cgt cgc agg cgc gaa ggc aaa gac acc tta atg ttc tgc 163 Arg Val His Arg Arg Arg Glu Gly Lys Asp Thr Leu Met Phe Cys 10 gct ggc cag ccg tca act ggt gcg cca gaa gca gtc atc gaa gaa gca 211 Ala Gly Gln Pro Ser Thr Gly Ala Pro Glu Ala Val Ile Glu Glu Ala 30 gag atc gct ctt cgc tcg ggt cct ttg gga tac acc gag gtg att ggt 259 Glu Ile Ala Leu Arg Ser Gly Pro Leu Gly Tyr Thr Glu Val Ile Gly 50 gat cgt gag ttc cgt gaa cgc atc gcc gat tgg cac tct gct act tat 307 Asp Arg Glu Phe Arg Glu Arg Ile Ala Asp Trp His Ser Ala Thr Tyr 60 gac gta gac acc aac cct gac aat gtt att gtc acc acc ggt tct tca 355 Asp Val Asp Thr Asn Pro Asp Asn Val Ile Val Thr Thr Gly Ser Ser 75 80 ggt gga ttc gtg gca tcg ttt atc gcc acc 385 Gly Gly Phe Val Ala Ser Phe Ile Ala Thr 90 <210> 120 <211> 95 <212> PRT <213> Corynebacterium glutamicum <400> 120 Met Gln Met Leu Asp Arg Val His Arg Arg Arg Glu Gly Lys Asp Thr Leu Met Phe Cys Ala Gly Gln Pro Ser Thr Gly Ala Pro Glu Ala 25 Val Ile Glu Glu Ala Glu Ile Ala Leu Arg Ser Gly Pro Leu Gly Tyr 35 Thr Glu Val Ile Gly Asp Arg Glu Phe Arg Glu Arg Ile Ala Asp Trp 55 His Ser Ala Thr Tyr Asp Val Asp Thr Asn Pro Asp Asn Val Ile Val 65 Thr Thr Gly Ser Ser Gly Gly Phe Val Ala Ser Phe Ile Ala Thr 90 85

<21 <21	0> 1 1> 1 2> D 3> C	434 NA	ebac	teri	um g	luta	micu	m								
<22	0> 1> C 2> (3> R	101)		411)												
	0> 1 ctta		agcc	gtgg	ga t	taca	ccct	t tt	agag	ctag	aac	agta	aaa	attc	acccaa	60
tag	cttt	caa	ctac	gcac	ac a	aagt	ggca	a ca	ttga	gcgg	_	_	_	gac Asp		115
cgc Arg	aaa Lys	acc Thr	tct Ser	aag Lys 10	acc Thr	acc Thr	gac Asp	acc Thr	gcc Ala 15	aac Asn	aag Lys	gct Ala	gtg Val	ggc Gly 20	gcg Ala	163
														ttc Phe		211
														ccg Pro		259
														tta Leu		307
														gac Asp		355
														tat Tyr 100		403
acc Thr	tcc Ser	aaa Lys	ggc Gly 105	att Ile	att Ile	ccg Pro	gcc Ala	cgg Arg 110	cga Arg	gca Ala	gtg Val	gtc Val	acc Thr 115	cgc Arg	tac Tyr	451
														ttc Phe		499
														ctc Leu		547
														ctg Leu		595
														ctc		643

	170	:	175	180	
gat gag gaa gat Asp Glu Glu Asp 189	Asp Trp Asn				691
atc tca gag aaa Ile Ser Glu Lys 200			Val Ile Asn P		739
acg gga gct gto Thr Gly Ala Val 215		Arg Val			787
gca cgc gag cat Ala Arg Glu His 230				5	835
att ctc tac gat Ile Leu Tyr Asp		His Ile		_	883
gat ctc ctt tgc Asp Leu Leu Cys 265	: Ile Thr Tyr				931
gca gga tac cga Ala Gly Tyr Arg 280			Leu Thr Gly P		979
gca cgt gga ttt 1027	att gag ggc	ctc gaa	ctc ctc gca g	gc act cga ctc	
Ala Arg Gly Phe 295	e Ile Glu Gly 300	Leu Glu 1	Leu Leu Ala G 305	ly Thr Arg Leu	
tgc cca aat gto 1075	cca gct cag	cac gct a	att cag gta go	ct ctg ggt gga	
Cys Pro Asn Val	Pro Ala Gln 315	His Ala I	Ile Gln Val A 320	la Leu Gly Gly 325	
cgc cag tcc ato	tac gac ctc	act ggc	gaa cac ggc co	ga ctc ctg gaa	
Arg Gln Ser Ile	e Tyr Asp Leu 330		Glu His Gly An 335	g Leu Leu Glu 340	
cag cgc aac ato	g gca tgg acg	aaa ctc a	aac gaa atc co	ca ggt gtc agc	
Gln Arg Asn Met		Lys Leu 2 350	Asn Glu Ile Pi	co Gly Val Ser 355	
tgt gtg aaa cca 1219	atg gga gct	cta tac (gcg ttc ccc aa	ag ctc gac ccc	
Cys Val Lys Pro	Met Gly Ala	Leu Tyr 2 365		vs Leu Asp Pro 70	
aac gtg tac gaa 1267	atc cac gac	gac acc	caa ctc atg c	g gat ctt ctc	
Asn Val Tyr Glu 375	ı Ile His Asp 380		Gln Leu Met Le 385	eu Asp Leu Leu	

cgt gcc gag aaa atc ctc atg gtt cag ggc act ggc ttc aac tgg cca 1315

Arg Ala Glu Lys Ile Leu Met Val Gln Gly Thr Gly Phe Asn Trp Pro 390 395 400 405

cat cac gat cac ttc cga gtg gtc acc ctg cca tgg gca tcc cag ttg 1363

His His Asp His Phe Arg Val Val Thr Leu Pro Trp Ala Ser Gln Leu 410 415 420

gaa aac gca att gag cgc ctg ggt aac ttc ctg tcc act tac aag cag 1411

Glu Asn Ala Ile Glu Arg Leu Gly Asn Phe Leu Ser Thr Tyr Lys Gln 425 430 435

tagtagttgt taggattcac cac 1434

<210> 122

<211> 437

<212> PRT

<213> Corynebacterium glutamicum

<400> 122

Val Thr Thr Asp Lys Arg Lys Thr Ser Lys Thr Thr Asp Thr Ala Asn 1 5 10 15

Lys Ala Val Gly Ala Asp Gln Ala Ala Arg Pro Thr Arg Arg Thr Thr 20 25 30

Arg Arg Ile Phe Asp Gln Ser Glu Lys Met Lys Asp Val Leu Tyr Glu 35 40 45

Ile Arg Gly Pro Val Ala Ala Glu Ala Glu Arg Met Glu Leu Asp Gly 50 55 60

His Asn Ile Leu Lys Leu Asn Thr Gly Asn Pro Ala Val Phe Gly Phe 65 70 75 80

Asp Ala Pro Asp Val Ile Met Arg Asp Met Ile Ala Asn Leu Pro Thr 85 90 95

Ser Gln Gly Tyr Ser Thr Ser Lys Gly Ile Ile Pro Ala Arg Arg Ala 100 105 110

Val Val Thr Arg Tyr Glu Val Val Pro Gly Phe Pro His Phe Asp Val 115 120 125

Asp Asp Val Phe Leu Gly Asn Gly Val Ser Glu Leu Ile Thr Met Thr 130 140

Thr Gln Ala Leu Leu Asn Asp Gly Asp Glu Val Leu Ile Pro Ala Pro 145 150 155 160

Asp Tyr Pro Leu Trp Thr Ala Ala Thr Ser Leu Ala Gly Gly Lys Pro
165 170 175

Val His Tyr Leu Cys Asp Glu Glu Asp Asp Trp Asn Pro Ser Ile Glu 180 185 190

Asp Ile Lys Ser Lys Ile Ser Glu Lys Thr Lys Ala Ile Val Val Ile 200 Asn Pro Asn Asn Pro Thr Gly Ala Val Tyr Pro Arg Arg Val Leu Glu 215 Gln Ile Val Glu Ile Ala Arg Glu His Asp Leu Leu Ile Leu Ala Asp 235 Glu Ile Tyr Asp Arg Ile Leu Tyr Asp Asp Ala Glu His Ile Ser Leu Ala Thr Leu Ala Pro Asp Leu Leu Cys Ile Thr Tyr Asn Gly Leu Ser 265 Lys Ala Tyr Arg Val Ala Gly Tyr Arg Ala Gly Trp Met Val Leu Thr 275 280 285 Gly Pro Lys Gln Tyr Ala Arg Gly Phe Ile Glu Gly Leu Glu Leu Leu 295 Ala Gly Thr Arg Leu Cys Pro Asn Val Pro Ala Gln His Ala Ile Gln 305 310 315 Val Ala Leu Gly Gly Arg Gln Ser Ile Tyr Asp Leu Thr Gly Glu His 330 Gly Arg Leu Leu Glu Gln Arg Asn Met Ala Trp Thr Lys Leu Asn Glu 345 Ile Pro Gly Val Ser Cys Val Lys Pro Met Gly Ala Leu Tyr Ala Phe Pro Lys Leu Asp Pro Asn Val Tyr Glu Ile His Asp Asp Thr Gln Leu 375 380 Met Leu Asp Leu Leu Arg Ala Glu Lys Ile Leu Met Val Gln Gly Thr 395 Gly Phe Asn Trp Pro His His Asp His Phe Arg Val Val Thr Leu Pro Trp Ala Ser Gln Leu Glu Asn Ala Ile Glu Arg Leu Gly Asn Phe Leu 420 425 430 Ser Thr Tyr Lys Gln 435

<210> 123

<211> 1701

<212> DNA

<213> Corynebacterium glutamicum

<220>

<221> CDS

<222> (101)..(1678)

<223> RXA02193

<400> 123

cccccgaaaa tgtagtgggt agttccacac tgcctcttac aagtacgtag gataatccac 60

agcaccattg tgatttcctt caacttgtga gaggcagtac atg tct aag ac Met Ser Lys Th 1	-
aac aag tot toa goa gao toa aag aat gao goa aaa goo gaa ga Asn Lys Ser Ser Ala Asp Ser Lys Asn Asp Ala Lys Ala Glu As 10 15 2	
gtg aac ggc gag aac caa atc gcc acg aat gag tcg cag tct tc Val Asn Gly Glu Asn Gln Ile Ala Thr Asn Glu Ser Gln Ser Se 25 30 35	_
agc gct gca gtt tcg gaa cgt gtc gtc gaa cca aaa acc acg gt Ser Ala Ala Val Ser Glu Arg Val Val Glu Pro Lys Thr Thr Va 40 45 50	_
aaa aag ttc cga atc gaa tcg gat ctg ctt ggt gaa ctt cag at Lys Lys Phe Arg Ile Glu Ser Asp Leu Leu Gly Glu Leu Gln Il 55 60 65	
tcc cac gca tat tac ggg gtg cac acc ctt cgt gcg gtg gac aa Ser His Ala Tyr Tyr Gly Val His Thr Leu Arg Ala Val Asp As 70 75 80	
caa atc tca cga acc acc atc aac cac gtc cca gat ttc att cg Gln Ile Ser Arg Thr Thr Ile Asn His Val Pro Asp Phe Ile Ar 90 95 10	g Gly
atg gtc cag gtg aaa aag gcc gca gct tta gca aac cgc cga ct Met Val Gln Val Lys Lys Ala Ala Ala Leu Ala Asn Arg Arg Le 105 110 115	_
aca ctt cca gca caa aaa gca gaa gca att gtc tgg gct tgt ga Thr Leu Pro Ala Gln Lys Ala Glu Ala Ile Val Trp Ala Cys As 120 125 130	-
atc ctc att gag gaa cgc tgt atg gat cag ttc ccc atc gat gt Ile Leu Ile Glu Glu Arg Cys Met Asp Gln Phe Pro Ile Asp Va 135 140 145	_
cag ggt ggc gca ggt acc tca ctg aac atg aac acc aac gag gt Gln Gly Gly Ala Gly Thr Ser Leu Asn Met Asn Thr Asn Glu Va 150 155 160	-
gcc aac ctt gca ctt gag ttc tta ggc cat gaa aag ggc gag ta Ala Asn Leu Ala Leu Glu Phe Leu Gly His Glu Lys Gly Glu Ty 170 175 18	r His
atc ctg cac ccc atg gat gat gtg aac atg tcc cag tcc acc aa Ile Leu His Pro Met Asp Asp Val Asn Met Ser Gln Ser Thr As 185 190 195	
tcc tac cca act ggt ttc cgc ctg ggc att tac gct gga ctg ca Ser Tyr Pro Thr Gly Phe Arg Leu Gly Ile Tyr Ala Gly Leu Gl 200 205 210	
ctc atc gct gaa att gat gag ctt cag gtt gcg ttc cgc cac aa Leu Ile Ala Glu Ile Asp Glu Leu Gln Val Ala Phe Arg His Ly 215 220 225	

aat Asn 230	gag Glu	ttt Phe	gtc Val	gac Asp	atc Ile 235	atc Ile	aag Lys	atg Met	ggc Gly	cgc Arg 240	acc Thr	cag Gln	ttg Leu	cag Gln	gat Asp 245	835
		ccc Pro														883
		gaa Glu														931
		aat Asn 280					-									979
gca 102		tac	cgc	cac	cag	gtt	gtc	gct	gct	ctg	tct	gag	gtc	acc	gga	
Ala	Gly 295	Tyr	Arg	His	Gln	Val 300	Val	Ala	Ala	Leu	Ser 305	Glu	Val	Thr	Gly	
ctg 1075		cta	aag	tcc	gca	cgt	gat	ctc	atc	gag	gct	acc	tct	gac	acc	
		Leu	Lys	Ser	Ala 315	Arg	Asp	Leu	Ile	Glu 320	Ala	Thr	Ser	Asp	Thr 325	
ggt 1123		tat	gtt	cat	gcg	cac	tcc	gca	atc	aag	cgt	gca	gcc	atg	aaa	
Gly	Ala	Tyr	Val	His 330	Ala	His	Ser	Ala	Ile 335	Lys	Arg	Ala	Ala	Met 340	Lys	
ctg 117:		aag	atc	tgt	aac	gat	cta	cgt	ctg	ctg	tct	tct	ggt	cct	cgt	
Leu	Ser	Lys	Ile 345	Cys	Asn	Asp	Leu	Arg 350	Leu	Leu	Ser	Ser	Gly 355	Pro	Arg	
gct 1219		ttg	aac	gaa	atc	aac	ctg	сса	cca	cgc	cag	gct	ggt	tcc	tcc	
Ala	Gly	Leu 360	Asn	Glu	Ile	Asn	Leu 365	Pro	Pro	Arg	Gln	Ala 370	Gly	Ser	Ser	
atc 1267		cca	gcc	aag	gtc	aac	cca	gtg	atc	cca	gaa	gtg	gtc	aac	cag	
Ile	Met 375	Pro	Ala	Lys	Val	Asn 380	Pro	Val	Ile	Pro	Glu 385	Val	Val	Asn	Gln	
gtc 1315		ttc	aag	gtc	ttc	ggt	aac	gat	ctc	acc	gtc	acc	atg	gct	gcg	
Val 390	Cys	Phe	Lys	Val	Phe 395	Gly	Asn	Asp	Leu	Thr 400	Val	Thr	Met	Ala	Ala 405	
gaa 1363		ggc	cag	ttg	cag	ctc	aac	gtc	atg	gag	cca	gtc	att	ggc	gaa	
Glu	Ala	Gly	Gln	Leu 410	Gln	Leu	Asn	Val	Met 415	Glu	Pro	Val	Ile	Gly 420	Glu	
tcc 1411		ttc	cag	tca	ctg	cgc	atc	ctg	ggc	aat	gca	gcc	aag	act	ttg	
Ser	Leu	Phe	Gln 425	Ser	Leu	Arg	Ile	Leu 430	Gly	Asn	Ala	Ala	Lys 435	Thr	Leu	

cgt gag aag tgc gtc gta gga atc acc gcc aac gct gat gtt tgc cgt 1459

Arg Glu Lys Cys Val Val Gly Ile Thr Ala Asn Ala Asp Val Cys Arg 440 445 450

gct tac gtt gat aac tcc atc ggg att atc act tac ctg aac cca ttc 1507

Ala Tyr Val Asp Asn Ser Ile Gly Ile Ile Thr Tyr Leu Asn Pro Phe 455 460 465

ctg ggc cac gac att gga gat cag atc ggt aag gaa gca gcc gaa act 1555

Leu Gly His Asp Ile Gly Asp Gln Ile Gly Lys Glu Ala Ala Glu Thr 470 475 480 485

ggt cga cca gtg cgt gaa ctc atc ctg gaa aag aag ctc atg gat gaa 1603

Gly Arg Pro Val Arg Glu Leu Ile Leu Glu Lys Lys Leu Met Asp Glu 490 495 500

aag acg ctc gag gca gtc ctg tcc aag gag aac ctc atg cac cca atg 1651

Lys Thr Leu Glu Ala Val Leu Ser Lys Glu Asn Leu Met His Pro Met 505 510 515

ttc cgc gga agg ctc tac ttg gag aac taatccaaga tctcgtctga 1698

Phe Arg Gly Arg Leu Tyr Leu Glu Asn 520 525

tac 1701

<210> 124

<211> 526

<212> PRT

<213> Corynebacterium glutamicum

<400> 124

Met Ser Lys Thr Ser Asn Lys Ser Ser Ala Asp Ser Lys Asn Asp Ala

1 5 10 15

Lys Ala Glu Asp Ile Val Asn Gly Glu Asn Gln Ile Ala Thr Asn Glu 20 25 30

Ser Gln Ser Ser Asp Ser Ala Ala Val Ser Glu Arg Val Val Glu Pro
35 40 45

Lys Thr Thr Val Gln Lys Lys Phe Arg Ile Glu Ser Asp Leu Leu Gly 50 55 60

Glu Leu Gln Ile Pro Ser His Ala Tyr Tyr Gly Val His Thr Leu Arg
65 70 75 80

Ala Val Asp Asn Phe Gln Ile Ser Arg Thr Thr Ile Asn His Val Pro 85 90 95

Asp Phe Ile Arg Gly Met Val Gln Val Lys Lys Ala Ala Ala Leu Ala 100 105 110

Asn Arg Arg Leu His Thr Leu Pro Ala Gln Lys Ala Glu Ala Ile Val 115 Trp Ala Cys Asp Gln Ile Leu Ile Glu Glu Arg Cys Met Asp Gln Phe 135 Pro Ile Asp Val Phe Gln Gly Gly Ala Gly Thr Ser Leu Asn Met Asn 155 Thr Asn Glu Val Val Ala Asn Leu Ala Leu Glu Phe Leu Gly His Glu Lys Gly Glu Tyr His Ile Leu His Pro Met Asp Asp Val Asn Met Ser 185 Gln Ser Thr Asn Asp Ser Tyr Pro Thr Gly Phe Arg Leu Gly Ile Tyr Ala Gly Leu Gln Thr Leu Ile Ala Glu Ile Asp Glu Leu Gln Val Ala Phe Arg His Lys Gly Asn Glu Phe Val Asp Ile Ile Lys Met Gly Arg Thr Gln Leu Gln Asp Ala Val Pro Met Ser Leu Gly Glu Glu Phe Arg Ala Phe Ala His Asn Leu Ala Glu Glu Gln Thr Val Leu Arg Glu Ala 260 -265 Ala Asn Arg Leu Leu Glu Val Asn Leu Gly Ala Thr Ala Ile Gly Thr 280 Gly Val Asn Thr Pro Ala Gly Tyr Arg His Gln Val Val Ala Ala Leu 295 Ser Glu Val Thr Gly Leu Glu Leu Lys Ser Ala Arg Asp Leu Ile Glu Ala Thr Ser Asp Thr Gly Ala Tyr Val His Ala His Ser Ala Ile Lys Arg Ala Ala Met Lys Leu Ser Lys Ile Cys Asn Asp Leu Arg Leu Leu Ser Ser Gly Pro Arg Ala Gly Leu Asn Glu Ile Asn Leu Pro Pro Arg 360 Gln Ala Gly Ser Ser Ile Met Pro Ala Lys Val Asn Pro Val Ile Pro 370 Glu Val Val Asn Gln Val Cys Phe Lys Val Phe Gly Asn Asp Leu Thr 395 390 Val Thr Met Ala Ala Glu Ala Gly Gln Leu Gln Leu Asn Val Met Glu 405 410 Pro Val Ile Gly Glu Ser Leu Phe Gln Ser Leu Arg Ile Leu Gly Asn Ala Ala Lys Thr Leu Arg Glu Lys Cys Val Val Gly Ile Thr Ala Asn

		435					440					445				
Ala	Asp 450		Cys	Arg	Ala	Tyr 455		Asp	Asn	Ser	Ile 460	Gly	Ile	lle	Thr	
Tyr 465		Asn	Pro	Phe	Leu 470		His	Asp	Ile	Gly 475	Asp	Gln	Ile	Gly	Lys 480	
Glu	Ala	Ala	Glu	Thr 485	Gly	Arg	Pro	Val	Arg 490		Leu	Ile	Leu	Glu 495	_	
Lys	Leu	Met	Asp 500		Lys	Thr	Leu	Glu 505		Val	Leu	Ser	Lys 510		Asn	
Leu	Met	His 515		Met	Phe	Arg	Gly 520	Arg	Leu	Туr	Leu	Glu 525	Asn			
<21 <21 <21 <22 <22 <22 <22 <40	0> 1> CI 2> (: 3> RI 0> 12	098 NA oryno OS 101) KA024	(10 432	075)		lutar										60
cac	gtgai	ttc a	attt	gtga	cc aa	acaa	ccga	a ac	tgag	ccag	aaga	actg	tca a	atcc	cctgct	60
gtg	cacat	caa (caact	tgca	gc ta	agtto	gatad	c gc	taga	gcgc	atg Met 1			cag Gln		115
tcc Ser	aca Thr	cca Pro	tta Leu	aac Asn 10	aat Asn	gat Asp	gaa Glu	gaa Glu	cac His 15	act Thr	tcc Ser	gct Ala	cct Pro	caa Gln 20	aag Lys	163
											tgt Cys					211
											gac Asp					259
											ttc Phe 65					307
											gag Glu					355
atc [le	atc Ile	gcc Ala	acg Thr	gtt Val 90	cat His	aag Lys	gtg Val	ttg Leu	gag Glu 95	gat Asp	ccg Pro	gat Asp	gtt Val	gtt Val 100	ggc Gly	403
jta		gtt				acc	gat	tcc	atg	gaa	gag	tcc	gcc	atc	gcc	451

1	05	110)	115	
		-	c cca gtc att to g Pro Val Ile Pl 1:	-	9
	_		gac ggc cca aa A Asp Gly Pro A 145		₽ 7
			e tee get ege ge Ser Ala Arg G 160)5
_			c cct gct cgc gg Pro Ala Arg G 175		13
Trp His Thr S			gca acc aac go Ala Thr Asn G		1
			a gct aaa ttg go . Ala Lys Leu Al 23		9
			gec acc ggc gg Ala Thr Gly Al 225		;7
			ctt gta gtg ga Leu Val Val G 240		5
			gat gcc cta gg Asp Ala Leu G 255		3
Asp Ala Gly I			: act agg gtt co : Thr Arg Val Pi		.1
			gga ggt gcg ac Gly Gly Ala Th	ır Leu Ala Ala	9
aag ggc gct g	tg gga tct	cgc tac tto	aga gct ggt ca	ng gca cgt att	
	al Gly Ser	Arg Tyr Phe 300	e Arg Ala Gly Gl 305	n Ala Arg Ile	
ttg ctc gcg at 1075	tt gcc att	gcg acg ggc	gca cat ccg gt	g acg ctt tac	
Leu Leu Ala I 310	le Ala Ile 315	Ala Thr Gly	Ala His Pro Va 320	al Thr Leu Tyr 325	

taatttcgcc cttggtcttg cat 1098

<210> 126

<211> 325

<212> PRT

<213> Corynebacterium glutamicum

<400> 126

Met Ser Lys Gln His Ser Thr Pro Leu Asn Asn Asp Glu Glu His Thr 1 5 10 15

Ser Ala Pro Gln Lys Val Ala Val Ile Thr Thr Gly Gly Thr Ile Ala 20 25 30

Cys Thr Ser Asp Ala Asn Gly His Leu Leu Pro Thr Val Ser Gly Ala 35 40 45

Asp Leu Leu Ala Pro Ile Ala Pro Arg Phe Asn Gly Ala Gln Ile Ala 50 55 60

Phe Glu Ile His Glu Ile Asn Arg Leu Asp Ser Ser Ser Met Thr Phe 65 70 75 80

Glu Asp Leu Asp Ser Ile Ile Ala Thr Val His Lys Val Leu Glu Asp 85 90 95

Pro Asp Val Val Gly Val Val Val Thr His Gly Thr Asp Ser Met Glu
100 105 110

Glu Ser Ala Ile Ala Val Asp Thr Phe Leu Asp Asp Pro Arg Pro Val

Ile Phe Thr Gly Ala Gln Lys Pro Phe Asp His Pro Glu Ala Asp Gly 130 135 140

Pro Asn Asn Leu Phe Glu Ala Cys Leu Ile Ala Ser Asp Pro Ser Ala 145 150 155 160

Arg Gly Ile Gly Ala Leu Ile Val Phe Gly His Ala Val Ile Pro Ala 165 170 175

Arg Gly Cys Val Lys Trp His Thr Ser Asp Glu Leu Ala Phe Ala Thr 180 185 190

Asn Gly Pro Glu Glu Pro Glu Arg Pro Asp Ala Leu Pro Val Ala Lys 195 200 205

Leu Ala Asp Val Ser Val Glu Ile Ile Pro Ala Tyr Pro Gly Ala Thr 210 215 220

Gly Ala Met Val Glu Ala Ala Ile Ala Ala Gly Ala Gln Gly Leu Val 225 230 235 240

Val Glu Ala Met Gly Ser Gly Asn Val Gly Ser Arg Met Gly Asp Ala 245 250 255

Leu Gly Lys Ala Leu Asp Ala Gly Ile Pro Val Val Met Ser Thr Arg 260 265 270

Val Pro Arg Gly Glu Val Ser Gly Val Tyr Gly Gly Ala Gly Gly Gly 275 280 285

Ala Thr Leu Ala Ala Lys Gly Ala Val Gly Ser Arg Tyr Phe Arg Ala 290 295 300

Gly Gln Ala Arg Ile Leu Leu Ala Ile Ala Ile Ala Thr Gly Ala His 315 310 305 Pro Val Thr Leu Tyr 325 <210> 127 <211> 775 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(775) <223> RXN03003 <400> 127 tcgatgatct gggctcccca ggtggtgcgg ctaagcttgg accacaagat tttgatcacc 60 caatgatege tgegetgeeg ceteaggeat aatetaaege atg ace tet ege ace Met Thr Ser Arg Thr ccg ctt gtt tct gtt ctt cct gat ttt ccg tgg gat tcg ctc gct tcc 163 Pro Leu Val Ser Val Leu Pro Asp Phe Pro Trp Asp Ser Leu Ala Ser 10 gca aaa gcc aaa gct gcg tct cac ccg gat ggg atc gtg aat ctt tct 211 Ala Lys Ala Lys Ala Ala Ser His Pro Asp Gly Ile Val Asn Leu Ser 35 30 259 gtt ggc act ccg gtt gat ccg gtc gcg ccc agc att cag atc gcg ttg Val Gly Thr Pro Val Asp Pro Val Ala Pro Ser Ile Gln Ile Ala Leu 45 307 gca gaa gca gcg ggg ttt tcg ggt tac cct caa acc atc ggc acc ccg Ala Glu Ala Ala Gly Phe Ser Gly Tyr Pro Gln Thr Ile Gly Thr Pro 60 gaa ctc cgc gca gcc atc agg ggc gcg ctt gag cgg cgc tac aac atg 355 Glu Leu Arg Ala Ala Ile Arg Gly Ala Leu Glu Arg Arg Tyr Asn Met 70 403 aca aag ctt gtc gac gcc tcc ctc ctc ccc gtc gtg ggt acc aag gag Thr Lys Leu Val Asp Ala Ser Leu Leu Pro Val Val Gly Thr Lys Glu 90 gca att gcc ctt ctt cca ttc gcg ttg ggt att tcc ggc acc gtt gtc 451 Ala Ile Ala Leu Leu Pro Phe Ala Leu Gly Ile Ser Gly Thr Val Val 105 110 atc cca gag att gcg tac cca acc tac gaa gtc gct gtc gtg gcc gca 499 Ile Pro Glu Ile Ala Tyr Pro Thr Tyr Glu Val Ala Val Val Ala Ala 130 120 125 gga tgc acc gtg ttg cgt tct gat tcg ctg ttt aag ctc ggc ccg cag 547 Gly Cys Thr Val Leu Arg Ser Asp Ser Leu Phe Lys Leu Gly Pro Gln 145 135

95

atc ccg tcg Ile Pro Ser 150								
gtt ctg ggc Val Leu Gly								.n Glu
aac aac gtg Asn Asn Val				u Cys				
gac gat gaa Asp Asp Glu 200								
ggc gac cac Gly Asp His 215					Ser L			
<210> 128 <211> 225 <212> PRT <213> Coryne	ebacteri	um glutar	micum					
<400> 128 Met Thr Ser 1	Arg Thr	Pro Leu	Val Se	r Val 10	Leu P	ro Asp		o Trp 5
Asp Ser Leu	Ala Ser 20	Ala Lys	Ala Ly		Ala S	er His	Pro As	p Gly
Ile Val Asn 35	Leu Ser	Val Gly	Thr Pro	o Val	Asp P	ro Val 45	Ala Pr	o Ser
Ile Gln Ile 50	Ala Leu	Ala Glu 55	Ala Ala	a Gly		er Gly 60	Tyr Pr	o Gln
Thr Ile Gly	Thr Pro	Glu Leu 70	Arg Ala	a Ala	Ile A 75	rg Gly	Ala Le	eu Glu 80
Arg Arg Tyr	Asn Met 85	Thr Lys	Leu Va	l Asp 90	Ala S	er Leu		o Val
Val Gly Thr	Lys Glu 100	Ala Ile	Ala Le		Pro P	he Ala	Leu Gl 110	y Ile
Ser Gly Thr 115	Val Val	Ile Pro	Glu Ile 120	e Ala	Tyr P	ro Thr 125	Tyr Gl	u Val
Ala Val Val 130	Ala Ala	Gly Cys 135	Thr Va	L Leu	_	er Asp 40	Ser Le	eu Phe
Lys Leu Gly 145	Pro Gln	Ile Pro 150	Ser Me		Phe I 155	le Asn	Ser Pr	o Ser 160
Asn Pro Thr	Gly Lys 165	Val Leu	Gly Ile	Pro 170	His L	eu Arg	Lys Va	
Lys Trp Ala	Gln Glu	Asn Asn	Val Ile	e Leu	Ala A	la Asp	Glu Cy	s Tyr

190 185 180 Leu Gly Leu Gly Trp Asp Asp Glu Asn Pro Pro Ile Ser Ile Leu Asp 200 Pro Arg Val Cys Asp Gly Asp His Thr Asn Leu Ile Ala Ile His Ser 215 Leu 225 <210> 129 <211> 1206 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101) .. (1183) <223> RXN00508 <400> 129 agccacgtgt ttaaggatag ttgaaagcgt ggggcaatac tggcactaac cccggcacca 60 atcgtatttc tgtccgcggt tggtggcaca atagttcaac atg aac ttg ctg acc Met Asn Leu Leu Thr 163 acc aaa att gac ctg gat gcc atc gcc cat aac acg agg gtg ctt aaa Thr Lys Ile Asp Leu Asp Ala Ile Ala His Asn Thr Arg Val Leu Lys 211 caa atg gcg ggt ccg gcg aag ctg atg gcg gtg gtg aag gcg aat gca Gln Met Ala Gly Pro Ala Lys Leu Met Ala Val Val Lys Ala Asn Ala 30 259 tat aac cat ggc gta gag aag gtc gct ccg gtt att gct gct cat ggt Tyr Asn His Gly Val Glu Lys Val Ala Pro Val Ile Ala Ala His Gly gcg gat gcg ttt ggt gtg gca act ctt gcg gag gct atg cag ttg cgt 307 Ala Asp Ala Phe Gly Val Ala Thr Leu Ala Glu Ala Met Gln Leu Arg 55 60 gat atc ggc atc agc caa gag gtt ttg tgt tgg att tgg aca ccg gag 355 Asp Ile Gly Ile Ser Gln Glu Val Leu Cys Trp Ile Trp Thr Pro Glu 75 70 403 cag gat ttc cgc gcc gcc att gat cgc aat att gat ttg gct gtt att Gln Asp Phe Arg Ala Ala Ile Asp Arg Asn Ile Asp Leu Ala Val Ile 100 95 90 451 tct ccc gcg cat gcc aaa gcc ttg atc gaa act gat gcg gag cat att Ser Pro Ala His Ala Lys Ala Leu Ile Glu Thr Asp Ala Glu His Ile 115 105 110 cgg gtg tcc atc aag att gat tct ggg ttg cat cgt tcg ggt gtg gat 499 Arg Val Ser Ile Lys Ile Asp Ser Gly Leu His Arg Ser Gly Val Asp 130 120

gag Glu	cag Gln 135	Glu	tgg Trp	gag Glu	ggc Gly	gtg Val	. Phe	agc Ser	gcg	, ttg Leu	gct Ala 145	Ala	gco Ala	ccg Pro	cac His	547
att Ile 150	Glu	gtc Val	acg Thr	Gly	atg Met 155	Phe	acg Thr	cac His	ttg Leu	gcg Ala 160	Суѕ	gcg Ala	gat Asp	gag Glu	cca Pro 165	595
gag Glu	aat Asn	ccg Pro	gaa Glu	act Thr 170	Asp	cgc Arg	caa Gln	att Ile	att Ile 175	Ala	ttt Phe	cga Arg	cgc Arg	gcc Ala 180	ctt Leu	643
gcg Ala	ctc Leu	gcc Ala	cgc Arg 185	aag Lys	cac His	Gly	ctt Leu	gag Glu 190	tgc Cys	ccg Pro	gtc Val	aac Asn	cac His 195	gta Val	tgc Cys	691
aac Asn	tca Ser	cct Pro 200	gca Ala	ttc Phe	ttg Leu	act Thr	cga Arg 205	tct Ser	gat Asp	tta Leu	cac His	atg Met 210	gag Glu	atg Met	gtc Val	739
cga Arg	ccg Pro 215	ggt Gly	ttg Leu	gcc Ala	ttt Phe	tat Tyr 220	ggg	ttg Leu	gaa Glu	ccc Pro	gtg Val 225	gcg Ala	gga Gly	ctg Leu	gag Glu	787
cat His 230	ggt Gly	ttg Leu	aag Lys	ccg Pro	gcg Ala 235	atg Met	acg Thr	tgg Trp	gag Glu	gcg Ala 240	aag Lys	gtg Val	agc Ser	gtc Val	gta Val 245	835
aag Lys	caa Gln	att Ile	gaa Glu	gct Ala 250	gga Gly	caa Gln	ggc Gly	act Thr	tcc Ser 255	tat Tyr	ggc Gly	ctg Leu	acc Thr	tgg Trp 260	cgc Arg	883
gct Ala	gag Glu	gat Asp	cgc Arg 265	ggc Gly	ttt Phe	gtg Val	gct Ala	gtg Val 270	gtg Val	cct Pro	gcg Ala	ggc Gly	tat Tyr 275	gcc Ala	gat Asp	931
ggc Gly	atg Met	ccg Pro 280	cgg Arg	cat His	gcc Ala	cag Gln	ggg Gly 285	aaa Lys	ttc Phe	tcc Ser	gtc Val	acg Thr 290	att Ile	gat Asp	ggc Gly	979
ctg 1027		tat	ccg	cag	gtt	ggg	cgc	gta	tgc	atg	gat	cag	ttc	gtt	att	
		Tyr	Pro	Gln	Val	Gly 300	Arg	Val	Суѕ	Met	Asp 305	Gln	Phe	Val	Ile	
tct 1075	ttg	ggc	gac	aat	cca	cac	ggc	gtg	gaa	gct	ggg	gcg	aag	gcc	gtg	
Ser 310	Leu	Gly	Asp	Asn	Pro 315	His	Gly	Val	Glu	Ala 320	Gly	Ala	Lys	Ala	Val 325	
ata 1123	ttc	ggt	gag	aat	ggg	cat	gac	gca	act	gat	ttt	gcg	gag	cgt	tta	
		Gly		Asn 330	Gly	His	Asp		Thr 335	Asp	Phe	Ala	Glu	Arg 340	Leu	
gac 1171	acc	att	aac	tat	gag	gta	gtg	tgc	cga	cca	acc	ggc	cga	act	gtc	
		Ile	Asn 345	Tyr	Glu	Val		Cys 350	Arg	Pro	Thr		Arg 355	Thr	Val	

cgc gca tat gtt taagtgaata cgtttaagga gca 1206 Arg Ala Tyr Val 360

<210> 130

<211> 361

<212> PRT

<213> Corynebacterium glutamicum

<400> 130

Met Asn Leu Leu Thr Thr Lys Ile Asp Leu Asp Ala Ile Ala His Asn 1 5 10 15

Thr Arg Val Leu Lys Gln Met Ala Gly Pro Ala Lys Leu Met Ala Val 20 25 30

Val Lys Ala Asn Ala Tyr Asn His Gly Val Glu Lys Val Ala Pro Val
35 40 45

Ile Ala Ala His Gly Ala Asp Ala Phe Gly Val Ala Thr Leu Ala Glu 50 55 60

Ala Met Gln Leu Arg Asp Ile Gly Ile Ser Gln Glu Val Leu Cys Trp 65 70 75 80

Ile Trp Thr Pro Glu Gln Asp Phe Arg Ala Ala Ile Asp Arg Asn Ile 85 90 95

Asp Leu Ala Val Ile Ser Pro Ala His Ala Lys Ala Leu Ile Glu Thr 100 105 110

Asp Ala Glu His Ile Arg Val Ser Ile Lys Ile Asp Ser Gly Leu His 115 120 125

Arg Ser Gly Val Asp Glu Gln Glu Trp Glu Gly Val Phe Ser Ala Leu 130 135 140

Ala Ala Pro His Ile Glu Val Thr Gly Met Phe Thr His Leu Ala
145 150 155 160

Cys Ala Asp Glu Pro Glu Asn Pro Glu Thr Asp Arg Gln Ile Ile Ala 165 170 175

Phe Arg Arg Ala Leu Ala Leu Ala Arg Lys His Gly Leu Glu Cys Pro 180 185 190

Val Asn His Val Cys Asn Ser Pro Ala Phe Leu Thr Arg Ser Asp Leu 195 200 205

His Met Glu Met Val Arg Pro Gly Leu Ala Phe Tyr Gly Leu Glu Pro 210 215 220

Val Ala Gly Leu Glu His Gly Leu Lys Pro Ala Met Thr Trp Glu Ala 225 230 235 240

Lys Val Ser Val Val Lys Gln Ile Glu Ala Gly Gln Gly Thr Ser Tyr 245 250 255

Gly Leu Thr Trp Arg Ala Glu Asp Arg Gly Phe Val Ala Val Val Pro

			260					265					270			
Ala	Gly	Tyr 275		Asp	Gly	Met	Pro 280		His	Ala	Gln	Gly 285		Phe	Ser	
Val	Thr 290	Ile	Asp	Gly	Leu	Asp 295		Pro	Gln	Val	Gly 300	Arg	Val	Cys	Met	
Asp 305		Phe	Val	Ile	Ser 310	Leu	Gly	Asp	Asn	Pro 315		Gly	Val	Glu	Ala 320	
Gly	Ala	Lys	Ala	Val 325	Ile	Phe	Gly	Glu	Asn 330	Gly	His	Asp	Ala	Thr 335	Asp	
Phe	Ala	Glu	Arg 340	Leu	Asp	Thr	Ile	Asn 345		Glu	Val	Val	Суs 350	Arg	Pro	
Thr	Gly	Arg 355	Thr	Val	Arg	Ala	Tyr 360	Val								
<21 <21	0> 1 1> 1 2> D 3> C	152	ebact	eri	ım g]	lutar	micur	m								
<22	1> C1 2> (1	DS 101) XN006		L29)												
	0> 1: =ggg		cagca	aggo	g go	caco	ccgaa	a cco	gtcti	tgg	tgga	aggaç	gta ç	ggage	gatga	60
tca	ggg	att o									atg	atg	att		aca	60 115
tca	ggg	ggc o	ctc	cgaa	c at	aagg cgc	gaata gag	a tto	cctad	act	atg Met	atg Met aac	att Ile att	gat Asp	aca Thr 5	
tcar tcga cct Pro	gct Ala	ggc ogtt Val	ctc Leu cac	att Ile 10	gac Asp	cgc Arg	gag Glu cat	cgc Arg	tta Leu 15	act Thr	atg Met 1	atg Met aac Asn	att Ile att Ile	gat Asp tcc Ser 20	aca Thr 5 agg Arg	115
tcas tcgs cct Pro atg Met	gct Ala gca Ala acg	ggc ogtt Val	ctc Leu cac His 25	att Ile 10 gcc Ala	gac Asp ggt Gly	cgc Arg gcc Ala	gag Glu cat His	cgc Arg gag Glu 30	tta Leu 15 att Ile	act Thr gcc Ala	atg Met 1 gcc Ala	atg Met aac Asn cgt Arg	att Ile att Ile ccg Pro 35	gat Asp tcc Ser 20 cat His	aca Thr 5 agg Arg Val	115
tcas tcgs cct Pro atg Met aaa Lys	gct Ala gca Ala acg Thr	ggc ogtt Val gct Ala cac His 40	ctc Leu cac His 25 aaa Lys	att Ile 10 gcc Ala atc Ile	gac Asp ggt Gly att Ile	cgc Arg gcc Ala gaa Glu gca	gag Glu cat His att Ile 45	cgc Arg gag Glu 30 gcg Ala	tta Leu 15 att Ile cag Gln	act Thr gcc Ala atg Met	atg Met 1 gcc Ala ctg Leu	atg Met aac Asn cgt Arg gtc Val 50 gaa	att Ile att Ile ccg Pro 35 gac Asp	gat Asp tcc Ser 20 cat His gcc Ala	aca Thr 5 agg Arg Gtg Val ggt Gly	115163211
cct Pro atg Met aaa Lys gcc Ala	gct Ala gca Ala acg Thr cga Arg 55	ggc of gtt Val gct Ala cac His 40 ggg Gly	ctc Leu cac His 25 aaa Lys atc Ile	att Ile 10 gcc Ala atc Ile acc Thr	gac Asp ggt Gly att Ile tgc Cys	cgc Arg gcc Ala gaa Glu gca Ala 60	gag Glu cat His att Ile 45 acc Thr	cgc Arg gag Glu 30 gcg Ala att	tta Leu 15 att Ile cag Gln ggc Gly	act Thr gcc Ala atg Met gag Glu	atg Met 1 gcc Ala ctg Leu cag Gln	atg Met aac Asn cgt Arg gtc Val 50 gaa Glu	att Ile att Ile ccg Pro 35 gac Asp att Ile	gat Asp tcc Ser 20 cat His gcc Ala ttt Phe	aca Thr 5 agg Arg Gtg Val ggt Gly gcc Ala	115163211259

ggc g Gly V																451
gat a Asp I	1e :															499
gtc ac Val Ti				-			_	_	_		_			_		547
agc ag Ser A																595
gga a				_	-	_	_	-			_	_				643
agc gr Ser Va					_			_						_	_	691
tct go Ser A	la (_	_		_		-	_					739
gtg ti Val Pl 2:																787
cag gr Gln Va 230																835
gat co																883
aaa co Lys Pi		Ala														931
gcc co	rg]	atc Ile 280	tct Ser	gct Ala	ttg Leu	tcg Ser	gag Glu 285	cat His	cac His	gca Ala	acc Thr	att Ile 290	ttc Phe	tgg Trp	cca Pro	979
gat aa 1027	aa q	gtg	cta	ctt	cca	gta	atc	ggg	gag	cag	ctc	aac	atc	gtg	ccc	
Asp Ly	ys 1 95	Val	Leu	Leu	Pro	Val 300	Ile	Gly	Glu	Gln	Leu 305	Asn	Ile	Val	Pro	
aac ca 1075	at (gcc	tgc	aac	gtg	att	aat	ttg	gtg	gat	gag	gtc	tac	gtt	cgg	
Asn Hi	is A	Ala	Cys	Asn	Val 315	Ile	Asn	Leu	Val	Asp 320	Glu	Val	Tyr	Val	Arg 325	
gaa go 1123	cc g	gat	ggc	act	ttc	cgt	acc	tgg	aag	gta	gtt	gcc	cgc	ggc	aga	

Glu Ala Asp Gly Thr Phe Arg Thr Trp Lys Val Val Ala Arg Gly Arg 330 335 340

aac aat tagggaaacc tettgacett cac 1152 Asn Asn

<210> 132

<211> 343

<212> PRT

<213> Corynebacterium glutamicum

<400> 132

Met Met Ile Asp Thr Pro Ala Val Leu Ile Asp Arg Glu Arg Leu Thr
1 5 10 15

Ala Asn Ile Ser Arg Met Ala Ala His Ala Gly Ala His Glu Ile Ala 20 25 30

Leu Arg Pro His Val Lys Thr His Lys Ile Ile Glu Ile Ala Gln Met 35 40 45

Gln Val Asp Ala Gly Ala Arg Gly Ile Thr Cys Ala Thr Ile Gly Glu
50 55 60

Ala Glu Ile Phe Ala Gly Ala Gly Phe Thr Asp Ile Phe Ile Ala Tyr 65 70 75 80

Pro Leu Tyr Leu Thr Asp His Ala Val Gln Arg Leu Asn Ala Ile Pro 85 90 95

Gly Glu Ile Ser Ile Gly Val Asp Ser Val Glu Met Ala Gln Ala Thr 100 105 110

Ala Gly Leu Arg Glu Asp Ile Lys Ala Leu Ile Glu Val Asp Ser Gly 115 120 125

His Arg Arg Ser Gly Val Thr Ala Thr Ala Ser Glu Leu Ser Gln Ile 130 135 140

Arg Glu Ala Leu Gly Ser Arg Tyr Ala Gly Val Phe Thr Phe Pro Gly 145 150 155 160

His Ser Tyr Gly Pro Gly Asn Gly Glu Gln Ala Ala Ala Asp Glu Leu 165 170 175

Gln Ala Leu Asn Asn Ser Val Gln Arg Leu Ala Gly Gly Leu Thr Ser 180 185 190

Gly Gly Ser Ser Pro Ser Ala Gln Phe Thr Asp Ala Ile Asp Glu Met 195 200 205

Arg Pro Gly Val Tyr Val Phe Asn Asp Ser Gln Gln Ile Thr Ser Gly 210 215 220

Ala Cys Thr Glu Lys Gln Val Ala Met Thr Val Leu Ser Thr Val Val 225 230 235 240

Ser Arg Asn Val Ser Asp Arg Ile Ile Leu Asp Ala Gly Ser Lys

245 250 255 Ile Leu Ser Thr Asp Lys Pro Ala Trp Ile Asp Gly Asn Gly Phe Val 265 Leu Gly Asn Pro Glu Ala Arg Ile Ser Ala Leu Ser Glu His His Ala 275 Thr Ile Phe Trp Pro Asp Lys Val Leu Pro Val Ile Gly Glu Gln 295 Leu Asn Ile Val Pro Asn His Ala Cys Asn Val Ile Asn Leu Val Asp 315 310 Glu Val Tyr Val Arg Glu Ala Asp Gly Thr Phe Arg Thr Trp Lys Val 330 325 335 Val Ala Arg Gly Arg Asn Asn 340 <210> 133 <211> 879 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(856) <223> RXA02536 <400> 133 aagaagtgat cacgcgaacc tgtgtataac ttgcctcaaa gcgcctaggc tgtggattat 60 gcgtattgcc ttgcttcaga tctcgacgaa ttccgataag atg gac aac ttc gcc Met Asp Asn Phe Ala ctg ctg cgt gat gct gct gaa aaa gct gcg gaa cag ggg gct cgg gtg Leu Leu Arg Asp Ala Ala Glu Lys Ala Ala Glu Gln Gly Ala Arg Val ttg gtg ttt ccg gag gcg act tcg caa agc ttt ggt acg gga agg ctt Leu Val Phe Pro Glu Ala Thr Ser Gln Ser Phe Gly Thr Gly Arg Leu gat act cag gcg gag gag ctc gat ggc gaa ttc tcc acc gcg gta cga Asp Thr Gln Ala Glu Glu Leu Asp Gly Glu Phe Ser Thr Ala Val Arg 40 aaa tta gcc gat gag ctg gac gtt gtc atc gtt gcg ggc atg ttc acc Lys Leu Ala Asp Glu Leu Asp Val Val Ile Val Ala Gly Met Phe Thr 55 60 cct gct gac acc gtg cag cgc ggt gaa aaa acg atc tcg cgc gtc aac Pro Ala Asp Thr Val Gln Arg Gly Glu Lys Thr Ile Ser Arg Val Asn 70 aac acc gtg ctg att agt ggc gct gga ttg cat cag gga tac aac aaa 403 . Asn Thr Val Leu Ile Ser Gly Ala Gly Leu His Gln Gly Tyr Asn Lys

att Ile	cac His	aca Thr	tat Tyr 105	gac Asp	gcg Ala	ttc Phe	ggt Gly	tat Tyr 110	agg Arg	gaa Glu	tcc Ser	gac Asp	act Thr 115	gtg Val	aaa Lys	451
ccg Pro	ggc Gly	gat Asp 120	gag Glu	ctg Leu	gtt Val	gta Val	ttc Phe 125	gag Glu	gtc Val	gac Asp	gat Asp	att Ile 130	aaa Lys	ttt Phe	ggt Gly	499
gtg Val	gcg Ala 135	aca Thr	tgc Cys	tac Tyr	gat Asp	att Ile 140	cga Arg	ttc Phe	cca Pro	gaa Glu	cag Gln 145	ttc Phe	aaa Lys	gac Asp	ctc Leu	547
gcc Ala 150	cgc Arg	aac Asn	ggt Gly	gca Ala	cag Gln 155	ata Ile	att Ile	gtg Val	gtt Val	ccc Pro 160	acg Thr	tcg Ser	tgg Trp	caa Gln	gac Asp 165	595
ggt Gly	cct Pro	gga Gly	aaa Lys	tta Leu 170	gaa Glu	caa Gln	tgg Trp	gaa Glu	gtc Val 175	ctc Leu	cct Pro	cgc Arg	gcg Ala	cgt Arg 180	gca Ala	643
ctg Leu	gat Asp	tcc Ser	acc Thr 185	tgc Cys	tgg Trp	atc Ile	gta Val	gcg Ala 190	tgt Cys	GJÀ aaa	caa Gln	gcg Ala	cga Arg 195	ctt Leu	cca Pro	691
				gat Asp												739
				cca Pro												787
cca Pro 230	gaa Glu	atg Met	ttg Leu	atc Ile	gcg Ala 235	gat Asp	att Ile	gat Asp	gtc Val	agc Ser 240	ggt Gly	ttg Leu	gcc Ala	aaa Lys	att Ile 245	835
			-	cct Pro 250			taad	ccac	tgt (ctaaç	ggaal	cc ad	ct			879
<210)> 1:	34														
<211	L> 2!	52														

<211> 252

<212> PRT

<213> Corynebacterium glutamicum

<400> 134

Met Asp Asn Phe Ala Leu Leu Arg Asp Ala Ala Glu Lys Ala Ala Glu 1 5 10 15

Gln Gly Ala Arg Val Leu Val Phe Pro Glu Ala Thr Ser Gln Ser Phe 20 25 30

Gly Thr Gly Arg Leu Asp Thr Gln Ala Glu Glu Leu Asp Gly Glu Phe 35 40 45

Ser Thr Ala Val Arg Lys Leu Ala Asp Glu Leu Asp Val Val Ile Val

Ala Gly Met Phe Thr Pro Ala Asp Thr Val Gln Arg Gly Glu Lys Thr

65					70					75					80	
Ile	Ser	Arg	Val	Asn 85		Thr	Val	Leu	Ile 90	Ser	Gly	Ala	Gly	Leu 95	His	
Gln	Gly	Tyr	Asn 100		Ile	His	Thr	Туr 105		Ala	Phe	Gly	Туг 110		Glu	
Ser	Asp	Thr 115	Val	Lys	Pro	Gly	Asp 120		Leu	Val	Val	Phe 125		Val	Asp	
Asp	Ile 130	Lys	Phe	Gly	Val	Ala 135	Thr	Cys	Tyr	Asp	Ile 140	Arg	Phe	Pro	Glu	
Gln 145	Phe	Lys	Asp	Leu	Ala 150	Arg	Asn	Gly	Ala	Gln 155	Ile	Ile	Val	Val	Pro 160	
Thr	Ser	Trp	Gln	Asp 165	Gly	Pro	Gly	Lys	Leu 170	Glu	Gln	Trp	Glu	Val 175	Leu	
Pro	Arg	Ala	Arg 180	Ala	Leu	Asp	Ser	Thr 185	Cys	Trp	Ile	Val	Ala 190	Cys	Gly	
Gln	Ala	Arg 195	Leu	Pro	Glu	Glu	Leu 200	Arg	Asp	Glu	Arg	Lys 205	Gly	Pro	Thr	
Gly	Ile 210	Gly	His	Ser	Met	Val 215	Thr	Asn	Pro	His	Gly 220	Glu	Val	Ile	Ala	
Ser 225	Ala	Gly	Tyr	Glu	Pro 230	Glu	Met	Leu	Ile	Ala 235	Asp	Ile	Asp	Val	Ser 240	
Gly	Leu	Ala	Lys	Ile 245	Arg	Glu	Ala	Leu	Pro 250	Val	Leu					
<210 <211 <212 <213	> 16 > DN	35 A	ebact	eri	ım gl	.utan	nicum	n								
<220 <221 <222 <223	> CD > (1	01).		512)												
<400 caag			tgtc	gccg	ıc cg	ctgt	tgat	acc	gcag	cgc	gact	tgtt	ca c	acag	gatatt	60
caac	aatt	ca c	ttcg	rcaga	ıg ca	ttta	agga	att	taca	cac			gaa Glu			115
acc Thr	atc Ile	tcg Ser	cac His	tgg Trp 10	att Ile	gac Asp	ggc Gly	gcg Ala	att Ile 15	tcc Ser	cca Pro	tcc Ser	act Thr	tcc Ser 20	ggc Gly	163
aag Lys '	acc o	gct Ala	ect Pro 25	gtc Val	tac Tyr	aat Asn	cct Pro	gca Ala 30	act Thr	ggc Gly	cag Gln	gtc Val	acc Thr 35	gcc Ala	aat Asn	211

_		_	-	_	_	-			gat Asp	-			-		_	259
	_	_	•	_	-		-		ctg Leu			_	_	_		307
_	-					_		_	ctg Leu		-	_	_			355
_						_			ggc Gly 95	_	-	_		-	_	403
									gtc Val							451
			_			_			aac Asn			-				499
									ctg Leu							547
-	_					-			ccg Pro	-						595
			_	-		_	-		ttg Leu 175	_				_	-	643
									atc Ile							691
									ggc Gly							739
		-		_		-	-		gcg Ala							787
									act Thr							835
-	_	_		_				_	aac Asn 255		_	_		_		883
									cag Gln							931
ggc	gct	gcc	ggt	gag	cgt	tgc	atg	gct	gtt	tct	gtg	gtc	ttg	gct	att	979

Gly Ala Ala Gly Glu Arg Cys Met Ala Val Ser Val Val Leu Ala Ile 280 285 gaa tot gtt gcc gac gag ctc att gag aag atc aag gag cgc atc gac 1027 Glu Ser Val Ala Asp Glu Leu Ile Glu Lys Ile Lys Glu Arg Ile Asp 300 305 acc ctg cgc atc ggc aac ggt gcc ggc gag cag ggc gag ccg cac 1075 Thr Leu Arg Ile Gly Asn Gly Ala Gly Asp Glu Gln Gly Glu Pro His 320 310 ctg ggc cca cta atc acc gac gtc cac cgc gac aag gtc gct tct tat 1123 Leu Gly Pro Leu Ile Thr Asp Val His Arg Asp Lys Val Ala Ser Tyr 335 340 330 gtc gac atc gct gag gcc gac ggc gcc aag atc atc gtg gac ggg cgt 1171 Val Asp Ile Ala Glu Ala Asp Gly Ala Lys Ile Ile Val Asp Gly Arg 345 350 aac tgc gcc gta gac ggg cac gag gag ggc ttc ttc ttc ggc cct acg 1219 Asn Cys Ala Val Asp Gly His Glu Glu Gly Phe Phe Gly Pro Thr 365 370 360 ctt atc gac gac atc cca ctc acg ttc cgc gcc tac acc gaa gaa atc Leu Ile Asp Asp Ile Pro Leu Thr Phe Arg Ala Tyr Thr Glu Glu Ile 380 385 ttc ggc ccg gtc ctc tct gtc gtt cgt gtc gca tcc ttc gac gag gca Phe Gly Pro Val Leu Ser Val Val Arg Val Ala Ser Phe Asp Glu Ala 405 390 395 400 att gag ctg atc aac tcc ggt gaa ttc ggc aac gga acc gca atc ttc Ile Glu Leu Ile Asn Ser Gly Glu Phe Gly Asn Gly Thr Ala Ile Phe 410 415 acc aac gat ggt gga gcg gca cgc cgc ttc cag cat gag atc gaa gtg 1411 Thr Asn Asp Gly Gly Ala Ala Arg Arg Phe Gln His Glu Ile Glu Val 435 425 430 ggc atg atc ggc atc aac gta cca atc cca gtg cct gtt gcg tac cac Gly Met Ile Gly Ile Asn Val Pro Ile Pro Val Pro Val Ala Tyr His 440 445 450 tcc ttc ggt ggt tgg aag aac tcc ctc ttc ggt gac gcc aag gca tat 1507 Ser Phe Gly Gly Trp Lys Asn Ser Leu Phe Gly Asp Ala Lys Ala Tyr 465 460 ggc act caa ggt ttt gat ttc ttc acc agg gaa aag gcg atc acc agc Gly Thr Gln Gly Phe Asp Phe Phe Thr Arg Glu Lys Ala Ile Thr Ser

470 475 480 485

cgt tgg ctc gac cca gca acc cac ggt ggc att aac ctc ggt ttc cca 1603

Arg Trp Leu Asp Pro Ala Thr His Gly Gly Ile Asn Leu Gly Phe Pro 490 495 500

cag aac gat taattgaagg agagcacagg act 1635 Gln Asn Asp

<210> 136

<211> 504

<212> PRT

<213> Corynebacterium glutamicum

<400> 136

Met Ser Glu Pro Gln Thr Ile Ser His Trp Ile Asp Gly Ala Ile Ser 1 5 10 15

Pro Ser Thr Ser Gly Lys Thr Ala Pro Val Tyr Asn Pro Ala Thr Gly 20 25 30

Gln Val Thr Ala Asn Val Ala Leu Ala Ser Gln Glu Glu Ile Asp Ala 35 40 45

Thr Ile Ala Ser Ala Thr Lys Ala Ala Lys Thr Trp Gly Asn Leu Ser 50 55 60

Ile Ala Lys Arg Gln Ala Val Leu Phe Asn Phe Arg Glu Leu Leu Asn 65 70 75 80

Ala Arg Lys Gly Glu Leu Ala Glu Ile Ile Thr Ala Glu His Gly Lys 85 90 95

Val Leu Ser Asp Ala Met Gly Glu Ile Leu Arg Gly Gln Glu Val Val 100 105 110

Glu Leu Ala Thr Gly Phe Pro His Leu Leu Lys Gly Ala Phe Asn Glu 115 120 125

Asn Val Ser Thr Gly Ile Asp Val Tyr Ser Leu Lys Gln Pro Leu Gly 130 135 140

Val Val Gly Ile Ile Ser Pro Phe Asn Phe Pro Ala Met Val Pro Met 145 150 155 160

Trp Phe Phe Pro Ile Ala Ile Ala Ala Gly Asn Ala Val Ile Leu Lys
165 170 175

Pro Ser Glu Lys Asp Pro Ser Ala Ala Leu Trp Met Ala Gln Ile Trp 180 185 190

Lys Glu Ala Gly Leu Pro Asp Gly Val Phe Asn Val Leu Gln Gly Asp 195 200 205

Lys Leu Ala Val Asp Gly Leu Leu Asn Ser Pro Asp Val Ser Ala Ile 210 215 220

Ser Phe Val Gly Ser Thr Pro Ile Ala Lys Tyr Ile Tyr Glu Thr Ser 235 230 Ala Lys Asn Gly Lys Arg Val Gln Ala Leu Gly Gly Ala Lys Asn His 245 250 Met Leu Val Leu Pro Asp Ala Asp Leu Asp Leu Val Ala Asp Gln Ala Ile Asn Ala Gly Tyr Gly Ala Ala Gly Glu Arg Cys Met Ala Val Ser Val Val Leu Ala Ile Glu Ser Val Ala Asp Glu Leu Ile Glu Lys Ile Lys Glu Arg Ile Asp Thr Leu Arg Ile Gly Asn Gly Ala Gly Asp Glu 310 Gln Gly Glu Pro His Leu Gly Pro Leu Ile Thr Asp Val His Arg Asp 330 Lys Val Ala Ser Tyr Val Asp Ile Ala Glu Ala Asp Gly Ala Lys Ile Ile Val Asp Gly Arg Asn Cys Ala Val Asp Gly His Glu Glu Gly Phe Phe Phe Gly Pro Thr Leu Ile Asp Asp Ile Pro Leu Thr Phe Arg Ala Tyr Thr Glu Glu Ile Phe Gly Pro Val Leu Ser Val Val Arg Val Ala Ser Phe Asp Glu Ala Ile Glu Leu Ile Asn Ser Gly Glu Phe Gly Asn 410 Gly Thr Ala Ile Phe Thr Asn Asp Gly Gly Ala Ala Arg Arg Phe Gln His Glu Ile Glu Val Gly Met Ile Gly Ile Asn Val Pro Ile Pro Val Pro Val Ala Tyr His Ser Phe Gly Gly Trp Lys Asn Ser Leu Phe Gly Asp Ala Lys Ala Tyr Gly Thr Gln Gly Phe Asp Phe Phe Thr Arg Glu 475 Lys Ala Ile Thr Ser Arg Trp Leu Asp Pro Ala Thr His Gly Gly Ile 490 Asn Leu Gly Phe Pro Gln Asn Asp 500

<220>

<210> 137

<211> 531

<212> DNA

<213> Corynebacterium glutamicum

PCT/IB00/00923 WO 01/00843

<221> CDS <222> (101)..(508) <223> RXS02299 <400> 137 acgcgggggt tgttgccgga tcgaaatatt cctttccttg tcatctcacg ctatgatttc 60 taaaacttgc aggacaaccc ccataaggac accacaggac atg ctg cgc acc atc Met Leu Arg Thr Ile ctc gga agt aag att cac cga gcc act gtc act caa gct gat cta gat 163 Leu Gly Ser Lys Ile His Arg Ala Thr Val Thr Gln Ala Asp Leu Asp tat gtt ggc tct gta acc atc gac gcc gac ctg gtt cac gcc gca gga 211 Tyr Val Gly Ser Val Thr Ile Asp Ala Asp Leu Val His Ala Ala Gly ttg atc gaa ggc gaa aaa gtt gcc atc gta gac atc acc aac ggc gct 259 Leu Ile Glu Gly Glu Lys Val Ala Ile Val Asp Ile Thr Asn Gly Ala cgt ctg gaa act tat gtc att gtg ggc gac gcc gga acg ggc aat att 307 Arg Leu Glu Thr Tyr Val Ile Val Gly Asp Ala Gly Thr Gly Asn Ile tgc atc aat ggt gcc gct gca cac ctt att aat cct ggc gat ctt gtg 355 Cys Ile Asn Gly Ala Ala Ala His Leu Ile Asn Pro Gly Asp Leu Val atc atc atg agc tac ctt cag gca act gat gcg gaa gcc aag gcg tat 403 Ile Ile Met Ser Tyr Leu Gln Ala Thr Asp Ala Glu Ala Lys Ala Tyr gag cca aag att gtg cac gtg gac gcc gac aac cgc atc gtt gcg ctc 451 Glu Pro Lys Ile Val His Val Asp Ala Asp Asn Arg Ile Val Ala Leu 105 110 ggc aac gat ctt gcg gaa gca cta cct gga tcc ggg ctt ttg acg tcg 499 Gly Asn Asp Leu Ala Glu Ala Leu Pro Gly Ser Gly Leu Leu Thr Ser 120 125 531 aga agc att tagcgtttta gctcgccaat att Arg Ser Ile 135 <210> 138 <211> 136 <212> PRT <213> Corynebacterium glutamicum <400> 138 Met Leu Arg Thr Ile Leu Gly Ser Lys Ile His Arg Ala Thr Val Thr Gln Ala Asp Leu Asp Tyr Val Gly Ser Val Thr Ile Asp Ala Asp Leu

Val His Ala Ala Gly Leu Ile Glu Gly Glu Lys Val Ala Ile Val Asp

		35					40					45				
Ile	Thr 50	Asn	Gly	Ala	Arg	Leu 55	Glu	Thr	Tyr	Val	Ile 60	Val	Gly	Asp	Ala	
Gly 65	Thr	Gly	Asn	Ile	Cys 70	Ile	Asn	Gly	Ala	Ala 75	Ala	His	Leu	Ile	Asn 80	
Pro	Gly	Asp	Leu	Val 85	Ile	Ile	Met	Ser	Tyr 90	Leu	Gln	Ala	Thr	Asp 95	Ala	
Glu	Ala	Lys	Ala 100	Tyr	Glu	Pro	Lys	Ile 105	Val	His	Val	Asp	Ala 110	Asp	Asn	
Arg	Ile	Val 115	Ala	Leu	Gly	Asn	Asp 120	Leu	Ala	Glu	Ala	Leu 125	Pro	Gly	Ser	
Gly	Leu 130	Leu	Thr	Ser	Arg	Ser 135	Ile									
<211 <212	0> 13 l> 10 2> DN 3> Co)53 NA	ebact	eri	ım g]	Lutar	nicum	n								
<222	l> CI 2> (1	OS 101). KA015)30)												
)> 13 ccaq		attct	gett	g ca	actca	accca	a ago	ccgtt	tag	caaa	attga	aac o	ctcad	cgttca	60
taat	aato	gtt d	catt	tcat	c ga	agtto	ctaga	a aaa	acaca	aggc				ctc Leu		115
_	_			_			cga Arg		_			_	_	_	-	163
							atc								aaa Lys	211
Pro	Dou	1116	Glu 25	Ala	ASD	FIO	116	30	GIÀ	Thr	GIN	116	35		_	
gca	gag	ttc	25 ctc	caa	aag	tgc	ggc Gly 45	30 gtg	ttc	aaa	acg	cgt	35 gga	gca	ttc	259
gca Ala aac	gag Glu cgc	ttc Phe 40 cag	25 ctc Leu ctc	caa Gln gca	aag Lys gct	tgc Cys tcg	ggc Gly	30 gtg Val	ttc Phe gga	aaa Lys cta	acg Thr	cgt Arg 50 gac	35 gga Gly cca	gca Ala acg	ttc Phe gtt	259 307
gca Ala aac Asn	gag Glu cgc Arg 55	ttc Phe 40 cag Gln	25 ctc Leu ctc Leu	caa Gln gca Ala	aag Lys gct Ala	tgc Cys tcg Ser 60	ggc Gly 45 gaa	30 gtg Val aac Asn	ttc Phe gga Gly	aaa Lys cta Leu	acg Thr ctc Leu 65	cgt Arg 50 gac Asp	35 gga Gly cca Pro	gca Ala acg Thr	ttc Phe gtt Val	

								ctc Leu 110								451
								gaa Glu								499
								ttt Phe								547
								att Ile								595
								gtt Val								643
								gca Ala 190								691
								acc Thr							-	739
								tct Ser								787
								gcc Ala								835
								gat Asp								883
								atc Ile 270								931
								gga Gly								979
gaa 1027		gtg	gca	gtc	att	gtg	tgc	gga	gcg	aac	act	gac	ctc	aca	aca	
		Val	Ala	Val	Ile	Val 300	Cys	Gly	Ala	Asn	Thr 305	Asp	Leu	Thr	Thr	
ctg 1053		gtga	tt t	caaa	cgat	c ac	a									
Leu 310	•															

<210> 140

- <211> 310
- <212> PRT
- <213> Corynebacterium glutamicum

<400> 140

- Met Leu Thr Leu Asn Asp Val Ile Thr Ala Gln Gln Arg Thr Ala Pro

 1 10 15
- His Val Arg Arg Thr Pro Leu Phe Glu Ala Asp Pro Ile Asp Gly Thr
 20 25 30
- Gln Ile Trp Ile Lys Ala Glu Phe Leu Gln Lys Cys Gly Val Phe Lys
- Thr Arg Gly Ala Phe Asn Arg Gln Leu Ala Ala Ser Glu Asn Gly Leu 50 55 60
- Leu Asp Pro Thr Val Gly Ile Val Ala Ala Ser Gly Gly Asn Ala Gly 65 70 75 80
- Leu Ala Asn Ala Phe Ala Ala Ala Ser Leu Ser Val Pro Ala Thr Val 85 90 95
- Leu Val Pro Glu Thr Ala Pro Gln Val Lys Val Asp Arg Leu Lys Gln 100 105 110
- Tyr Gly Ala Thr Val Gln Gln Ile Gly Ser Glu Tyr Ala Glu Ala Phe 115 120 125
- Glu Ala Ala Gln Thr Phe Glu Ser Glu Thr Gly Ala Leu Phe Cys His 130 135 140
- Ala Tyr Asp Gln Pro Asp Ile Ala Ala Gly Ala Gly Val Ile Gly Leu 145 150 155 160
- Glu Ile Val Glu Asp Leu Pro Asp Val Asp Thr Ile Val Val Ala Val
 165 170 175
- Gly Gly Gly Leu Tyr Ala Gly Ile Ala Ala Val Val Ala Ala His 180 185 190
- Asp Ile Lys Val Val Ala Val Glu Pro Ser Lys Ile Pro Thr Leu His 195 200 205
- Asn Ser Leu Ile Ala Gly Gln Pro Val Asp Val Asn Val Ser Gly Ile 210 215 220
- Ala Ala Asp Ser Leu Gly Ala Arg Gln Ile Gly Arg Glu Ala Phe Asp 225 230 235 240
- Ile Ala Thr Ala His Pro Pro Ile Gly Val Leu Val Asp Asp Glu Ala 245 250 255
- Ile Ile Ala Ala Arg Arg His Leu Trp Asp Asn Tyr Arg Ile Pro Ala 260 265 270
- Glu His Gly Ala Ala Ala Leu Ala Ser Leu Thr Ser Gly Ala Tyr 275 280 285
- Lys Pro Ala Ala Asp Glu Lys Val Ala Val Ile Val Cys Gly Ala Asn 290 295 300

Thr Asp Leu Thr Thr Leu 305 310 <210> 141 <211> 1470 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(1447) <223> RXA01850 <400> 141 ttcgtgcaac ttcagactct tacggaggcg atggaccaaa aacaactaca atcaagcaga 60 teacettgta caccaccaga gaaaaggeee acceteagee atg get ate agt gtt Met Ala Ile Ser Val gtt gat cta ttt agc atc ggt atc gga cca tca tcc tca cat acc gtc Val Asp Leu Phe Ser Ile Gly Ile Gly Pro Ser Ser Ser His Thr Val 10 15 ggc ccc atg aga gcc gcc ctc acg tat atc tct gaa ttt ccc agc tcg Gly Pro Met Arg Ala Ala Leu Thr Tyr Ile Ser Glu Phe Pro Ser Ser 25 30 cat gtc gat atc acg ttg cac gga tcc ctt gcc gcc acc ggt aaa ggc 259 His Val Asp Ile Thr Leu His Gly Ser Leu Ala Ala Thr Gly Lys Gly 40 cac tgc act gac cgg gcg gta tta ctg ggt ctg gtg gga tgg gaa cca 307 His Cys Thr Asp Arg Ala Val Leu Leu Gly Leu Val Gly Trp Glu Pro 55 acg ata gtt ccc att gat gct gca ccc tca ccc ggc gcg ccg att cct Thr Ile Val Pro Ile Asp Ala Ala Pro Ser Pro Gly Ala Pro Ile Pro 70 75 80 gcg aaa ggt tct gtg aac ggg cca aag gga acg gtg tcg tat tcc ctg 403 Ala Lys Gly Ser Val Asn Gly Pro Lys Gly Thr Val Ser Tyr Ser Leu 90 acg ttt gat cct cat cct ctt cca gaa cac ccc aat gcc gtt acc ttt 451 Thr Phe Asp Pro His Pro Leu Pro Glu His Pro Asn Ala Val Thr Phe 105 aaa gga tca acc aca agg act tat ttg tcg gtg ggt ggt ggg ttc att 499 Lys Gly Ser Thr Thr Arg Thr Tyr Leu Ser Val Gly Gly Phe Ile 120 125 atg acg ttg gag gat ttc cgg aag ctg gac gat atc gga tca ggt gtg 547 Met Thr Leu Glu Asp Phe Arg Lys Leu Asp Asp Ile Gly Ser Gly Val 140 tea acc att cat cca gag gca gag gtg cct tgt cct ttt cag aag agt 595 Ser Thr Ile His Pro Glu Ala Glu Val Pro Cys Pro Phe Gln Lys Ser 155 160

													atg Met			643
													gcc Ala 195		-	691
				_		-	_		_		_		ggc Gly		-	739
													cgg Arg		-	787
													ctg Leu			835
													gcg Ala			883
													act Thr 275			931
													gat Asp			979
aca 1027		ttt	ggg	gcg	gag	cag	gcg	cgg	acg	ttt	ttg	tat	acc	gcg	ggt	
		Phe	Gly	Ala	Glu	Gln 300	Ala	Arg	Thr	Phe	Leu 305	Tyr	Thr	Ala	Gly	
gcg 1075		ggc	atc	atc	att	aag	gaa	aat	gcc	tcg	atc	tct	ggc	gcg	gag	
		Gly	Ile	Ile	Ile 315	Lys	Glu	Asn	Ala	Ser 320	Ile	Ser	Gly	Ala	Glu 325	
gtg 1123		tgt	cag	ggt	gag	gtt	ggt	tca	gcg	tcc	gcg	atg	gcg	gct	gcc	
		Cys	Gln	Gly 330	Glu	Val	Gly	Ser	Ala 335	Ser	Ala	Met	Ala	Ala 340	Ala	
ggg 1171		tgt	gca	gtc	tta	ggt	ggt	tct	ccg	caa	cag	gtg	gaa	aac	gcc	
	-	Cys	Ala 345	Val	Leu	Gly	Gly	Ser 350	Pro	Gln	Gln	Val	Glu 355	Asn	Ala	
		att	gcg	ttg	gag	cac	aat	ttg	gga	ttg	acg	tgc	gat	ccg	gtg	
1219 Ala		Ile 360	Ala	Leu	Glu	His	Asn 365	Leu	Gly	Leu	Thr	Cys 370	Asp	Pro	Val	
ggc 1267		tta	gtg	cag	att	ccg	tgt	att	gaa	cgc	aac	gct	att	gct	gcc	
Gly		Leu	Val	Gln	Ile	Pro	Cys	Ile	Glu	Arg	Asn	Ala	Ile	Ala	Ala	

375 380 385

atg aag tcc atc aat gcg gca agg ctt gcc cgg att ggt gat ggc aac 1315

Met Lys Ser Ile Asn Ala Ala Arg Leu Ala Arg Ile Gly Asp Gly Asn 390 395 400 405

aat cgc gtg agt ttg gat gtg gtg gtc acg atg gct gcc acc ggc 1363

Asn Arg Val Ser Leu Asp Asp Val Val Val Thr Met Ala Ala Thr Gly 410 415 420

cgg gac atg ctg acc aaa tat aag gaa acg tcc ctt ggt ggt ttg gca 1411

Arg Asp Met Leu Thr Lys Tyr Lys Glu Thr Ser Leu Gly Gly Leu Ala
425 430 435

acc acc ttg ggc ttc ccg gtg tcg atg acg gag tgt tagcggtacg 1457

Thr Thr Leu Gly Phe Pro Val Ser Met Thr Glu Cys 440 445

gctttaacac ggc 1470

<210> 142

<211> 449

<212> PRT

<213> Corynebacterium glutamicum

<400> 142

Met Ala Ile Ser Val Val Asp Leu Phe Ser Ile Gly Ile Gly Pro Ser 1 5 10 15

Ser Ser His Thr Val Gly Pro Met Arg Ala Ala Leu Thr Tyr Ile Ser 20 25 30

Glu Phe Pro Ser Ser His Val Asp Ile Thr Leu His Gly Ser Leu Ala 35 40 45

Ala Thr Gly Lys Gly His Cys Thr Asp Arg Ala Val Leu Leu Gly Leu 50 60

Val Gly Trp Glu Pro Thr Ile Val Pro Ile Asp Ala Ala Pro Ser Pro 65 70 75 80

Gly Ala Pro Ile Pro Ala Lys Gly Ser Val Asn Gly Pro Lys Gly Thr 85 90 95

Val Ser Tyr Ser Leu Thr Phe Asp Pro His Pro Leu Pro Glu His Pro 100 105 110

Asn Ala Val Thr Phe Lys Gly Ser Thr Thr Arg Thr Tyr Leu Ser Val 115 120 125

Gly Gly Gly Phe Ile Met Thr Leu Glu Asp Phe Arg Lys Leu Asp Asp 130 135 140

Ile Gly Ser Gly Val Ser Thr Ile His Pro Glu Ala Glu Val Pro Cys 145 150 155 160

Pro	Phe	Gln	Lys	Ser 165	Ser	Gln	Leu	Leu	Ala 170	Tyr	Gly	Arg	Asp	Phe 175	Ala
Glu	Val	Met	Lys 180	Asp	Asn	Glu	Arg	Leu 185	Ile	His	Gly	Asp	Leu 190	Gly	Thr
Val	Asp	Ala 195	His	Leu	Asp	Arg	Val 200	Trp	Gln	Ile	Met	Gln 205	Glu	Cys	Val
Ala	Gln 210	Gly	Ile	Ala	Thr	Pro 215	Gly	Ile	Leu	Pro	Gly 220	Gly	Leu	Asn	Val
Gln 225	Arg	Arg	Ala	Pro	Gln 230	Val	His	Ala	Leu	11e 235	Ser	Asn	Gly	Asp	Thr 240
Cys	Glu	Leu	Gly	Ala 245	Asp	Leu	Asp	Ala	Val 250	Glu	Trp	Val	Asn	Leu 255	Tyr
Ala	Leu	Ala	Val 260	Asn	Glu	Glu	Asn	Ala 265	Ala	Gly	Gly	Arg	Val 270	Val	Thr
Ala	Pro	Thr 275	Asn	Gly	Ala	Ala	Gly 280	Ile	Ile	Pro	Ala	Val 285	Met	His	Tyr
Ala	Arg 290	Asp	Phe	Leu	Thr	Gly 295	Phe	Gly	Ala	Glu	Gln 300	Ala	Arg	Thr	Phe
Leu 305	Tyr	Thr	Ala	Gly	Ala 310	Val	Gly	Ile	Ile	11e 315	Lys	Glu	Asn	Ala	Ser 320
Ile	Ser	Gly	Ala	Glu 325	Val	Gly	Cys	Gln	Gly 330	Glu	Val	Gly	Ser	Ala 335	Ser
			340			Leu		345					350		
		355				Glu	360					365			
Thr	Cys 370	Asp	Pro	Val	Gly	Gly 375	Leu	Val	Gln	Ile	9ro 380	Суѕ	Ile	Glu	Arg
385					390	Lys				395					400
	_	_	_	405		Arg			410	_				415	
			420			Asp		425					430		
Leu	Gly	Gly 435	Leu	Ala	Thr	Thr	Leu 440	Gly	Phe	Pro	Val	Ser 445	Met	Thr	Glu
Cys															

Cys

<210> 143 <211> 1425

<212> DNA <213> Corynebacterium glutamicum <221> CDS <222> (101)..(1402) <223> RXA00580 <400> 143 ttttatatat gggtatcggc ggtctatgct tgtgggcgta cctgtcccgc gagtgaggtc 60 ttacgcgcgg gattcgtctt gtgaaaggtt agctgacctg atg acc gat gcc cac Met Thr Asp Ala His caa gcg gac gat gtc cgt tac cag cca ctg aac gag ctt gat cct gag 163 Gln Ala Asp Asp Val Arg Tyr Gln Pro Leu Asn Glu Leu Asp Pro Glu 15 gtg gct gct gcc atc gct ggg gaa ctt gcc cgt caa cgc gat aca tta 211 Val Ala Ala Ala Ile Ala Gly Glu Leu Ala Arg Gln Arg Asp Thr Leu 30 gag atg atc gcg tct gag aac ttc gtt ccc cgt tct gtt ttg cag gcg 259 Glu Met Ile Ala Ser Glu Asn Phe Val Pro Arg Ser Val Leu Gln Ala cag ggt tct gtt ctt acc aat aag tat gcc gag ggt tac cct ggc cgc 307 Gln Gly Ser Val Leu Thr Asn Lys Tyr Ala Glu Gly Tyr Pro Gly Arg 55 60 cgt tac tac ggt ggt tgc gaa caa gtt gac atc att gag gat ctt gca 355 Arg Tyr Tyr Gly Gly Cys Glu Gln Val Asp Ile Ile Glu Asp Leu Ala 75 cgt gat cgt gcg aag gct ctc ttc ggt gca gag ttc gcc aat gtt cag 403 Arg Asp Arg Ala Lys Ala Leu Phe Gly Ala Glu Phe Ala Asn Val Gln cct cac tct ggc gca cag gct aat gct gtg ctg atg act ttg gct 451 Pro His Ser Gly Ala Gln Ala Asn Ala Ala Val Leu Met Thr Leu Ala 105 gag cca ggc gac aag atc atg ggt ctg tct ttg gct cat ggt ggt cac 499 Glu Pro Gly Asp Lys Ile Met Gly Leu Ser Leu Ala His Gly Gly His 125 ttg acc cac gga atg aag ttg aac ttc tcc gga aag ctg tac gag gtt 547 Leu Thr His Gly Met Lys Leu Asn Phe Ser Gly Lys Leu Tyr Glu Val 140 gtt gcg tac ggt gtt gat cct gag acc atg cgt gtt gat atg gat cag 595 Val Ala Tyr Gly Val Asp Pro Glu Thr Met Arg Val Asp Met Asp Gln gtt cgt gag att gct ctg aag gag cag cca aag gta att atc gct ggc 643 Val Arg Glu Ile Ala Leu Lys Glu Gln Pro Lys Val Ile Ile Ala Gly

691

tgg tct gca tac cct cgc cac ctt gat ttc gag gct ttc cag tct att

Trp Ser Ala Tyr Pro Arg His Leu Asp Phe Glu Ala Phe Gln Ser Ile

185		190		195	
gct gcg gaa gtt g Ala Ala Glu Val (200	Gly Ala Lys I				
ggt ctt gtt gct g Gly Leu Val Ala 2 215					
gtt gtt tct tcc a Val Val Ser Ser 5 230				Arg Ser (
atc att ctg gct a Ile Ile Leu Ala I					
ttc cca ggt cag of Phe Pro Gly Gln (265					
gct act tct ttg a Ala Thr Ser Leu 1 280	Lys Ile Ala G				
gct cgc acg ttg q	gag ggt gct o	cgc att ctt	gct gag cgt	ctg act (gct
Ala Arg Thr Leu (295	Glu Gly Ala A 300	Arg Ile Leu	Ala Glu Arg 305	Leu Thr	Ala
tct gat gcg aag g	gcc gct ggc g	gtg gat gtc	ttg acc ggt	ggc act (gat
Ser Asp Ala Lys A	Ala Ala Gly V 315	Val Asp Val	Leu Thr Gly 320	_	Asp 325
gtg cac ttg gtt t	ttg gct gat o	ctg cgt aac	tcc cag atg	gat ggc	cag
Val His Leu Val I	Leu Ala Asp I 330	Leu Arg Asn 335	Ser Gln Met	Asp Gly (Gln
cag gcg gaa gat o	ctg ctg cac g	gag gtt ggt	atc act gtg	aac cgt	aac
Gln Ala Glu Asp 1 345	Leu Leu His G	Glu Val Gly . 350	Ile Thr Val	Asn Arg A 355	Asn
gcg gtt cct ttc g	gat cct cgt c	cca cca atg	gtt act tct	ggt ctg	egt
Ala Val Pro Phe A		Pro Pro Met 365	Val Thr Ser 370	Gly Leu A	Arg
att ggt act cet g	gcg ctg gct a	acc cgt ggt	ttc gat att	cct gca	ttc
Ile Gly Thr Pro A	Ala Leu Ala T 380	Thr Arg Gly	Phe Asp Ile 385	Pro Ala 1	Phe
act gag gtt gca g	gac atc att c	ggt act gct	ttg gct aat	ggt aag	tcc
Thr Glu Val Ala A	Asp Ile Ile 0 395	Gly Thr Ala	Leu Ala Asn 400		Ser 405

gca gac att gag tet etg egt gge egt gta gca aag ett get gea gat 1363

Ala Asp Ile Glu Ser Leu Arg Gly Arg Val Ala Lys Leu Ala Ala Asp 410 415 420

tac cca ctg tat gag ggc ttg gaa gac tgg acc atc gtc taagtttttc 1412

Tyr Pro Leu Tyr Glu Gly Leu Glu Asp Trp Thr Ile Val 425 430

tttgagtttt cat 1425

<210> 144

<211> 434

<212> PRT

<213> Corynebacterium glutamicum

<400> 144

Met Thr Asp Ala His Gln Ala Asp Asp Val Arg Tyr Gln Pro Leu Asn 1 5 10 15

Glu Leu Asp Pro Glu Val Ala Ala Ile Ala Gly Glu Leu Ala Arg
20 25 30

Gln Arg Asp Thr Leu Glu Met Ile Ala Ser Glu Asn Phe Val Pro Arg 35 40 45

Ser Val Leu Gln Ala Gln Gly Ser Val Leu Thr Asn Lys Tyr Ala Glu 50 55 60

Gly Tyr Pro Gly Arg Arg Tyr Tyr Gly Gly Cys Glu Gln Val Asp Ile 65 70 75 80

Ile Glu Asp Leu Ala Arg Asp Arg Ala Lys Ala Leu Phe Gly Ala Glu 85 90 95

Phe Ala Asn Val Gln Pro His Ser Gly Ala Gln Ala Asn Ala Ala Val 100 105 110

Leu Met Thr Leu Ala Glu Pro Gly Asp Lys Ile Met Gly Leu Ser Leu 115 120 125

Ala His Gly Gly His Leu Thr His Gly Met Lys Leu Asn Phe Ser Gly 130 135 140

Lys Leu Tyr Glu Val Val Ala Tyr Gly Val Asp Pro Glu Thr Met Arg 145 150 155 160

Val Asp Met Asp Gln Val Arg Glu Ile Ala Leu Lys Glu Gln Pro Lys 165 170 175

Val Ile Ile Ala Gly Trp Ser Ala Tyr Pro Arg His Leu Asp Phe Glu 180 185 190

Ala Phe Gln Ser Ile Ala Ala Glu Val Gly Ala Lys Leu Trp Val Asp 195 200 205

Met Ala His Phe Ala Gly Leu Val Ala Ala Gly Leu His Pro Ser Pro 210 215 220

235

Val Pro Tyr Ser Asp Val Val Ser Ser Thr Val His Lys Thr Leu Gly

230

225

Gly Pro Arg Ser Gly Ile Ile Leu Ala Lys Gln Glu Tyr Ala Lys Lys 250 Leu Asn Ser Ser Val Phe Pro Gly Gln Gln Gly Pro Leu Met His Ala Val Ala Ala Lys Ala Thr Ser Leu Lys Ile Ala Gly Thr Glu Gln 280 Phe Arg Asp Arg Gln Ala Arg Thr Leu Glu Gly Ala Arg Ile Leu Ala Glu Arg Leu Thr Ala Ser Asp Ala Lys Ala Ala Gly Val Asp Val Leu Thr Gly Gly Thr Asp Val His Leu Val Leu Ala Asp Leu Arg Asn Ser Gln Met Asp Gly Gln Gln Ala Glu Asp Leu Leu His Glu Val Gly Ile 345 Thr Val Asn Arg Asn Ala Val Pro Phe Asp Pro Arg Pro Pro Met Val Thr Ser Gly Leu Arg Ile Gly Thr Pro Ala Leu Ala Thr Arg Gly Phe 375 Asp Ile Pro Ala Phe Thr Glu Val Ala Asp Ile Ile Gly Thr Ala Leu 385 390 395 Ala Asn Gly Lys Ser Ala Asp Ile Glu Ser Leu Arg Gly Arg Val Ala 405 Lys Leu Ala Ala Asp Tyr Pro Leu Tyr Glu Gly Leu Glu Asp Trp Thr 425 430 Ile Val <210> 145 <211> 401 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (1)..(378) <223> RXA01821 <400> 145 cga aac agc caa ggc aaa tgg tgc cca agt acg Cga tca cca aaa aat Arg Asn Ser Gln Gly Lys Trp Cys Pro Ser Thr Arg Ser Pro Lys Asn acc agc atc gaa gac aac ggc gat cac gta gtc atc caa gca ggc gaa Thr Ser Ile Glu Asp Asn Gly Asp His Val Val Ile Gln Ala Gly Glu

20 25 gaa acc aca atc gtg gac cgc gtt atc gtc acc acc ggc agc tgg aca Glu Thr Thr Ile Val Asp Arg Val Ile Val Thr Thr Gly Ser Trp Thr 35 45 age gag etc gtg ecc tec atc geg eca etg ett gaa gtg ega ege eta 192 Ser Glu Leu Val Pro Ser Ile Ala Pro Leu Leu Glu Val Arg Arg Leu 50 55 gtg ctc acc tgg ttc ctg ccc aac aat cca gtg gac ttc caa ccg gaa 240 Val Leu Thr Trp Phe Leu Pro Asn Asn Pro Val Asp Phe Gln Pro Glu 65 aac ctg cca tgc ttc atc cgt gac cgt gat ggc ttc cac gta ttt gga 288 Asn Leu Pro Cys Phe Ile Arg Asp Arg Asp Gly Phe His Val Phe Gly 85 gca cca tgc gtc gat ggg tac agc atc aaa att gcc gga ttg gat gag 336 Ala Pro Cys Val Asp Gly Tyr Ser Ile Lys Ile Ala Gly Leu Asp Glu 100 tgg ggc gtt cca tta agc ctc gat cca ccg atg tgc cct cgg 378 Trp Gly Val Pro Leu Ser Leu Asp Pro Pro Met Cys Pro Arg 115 401 tgatgtcctg atcccggttc cgg <210> 146 <211> 126 <212> PRT <213> Corynebacterium glutamicum <400> 146 Arg Asn Ser Gln Gly Lys Trp Cys Pro Ser Thr Arg Ser Pro Lys Asn Thr Ser Ile Glu Asp Asn Gly Asp His Val Val Ile Gln Ala Gly Glu 25 Glu Thr Thr Ile Val Asp Arg Val Ile Val Thr Thr Gly Ser Trp Thr 40 45 Ser Glu Leu Val Pro Ser Ile Ala Pro Leu Glu Val Arg Arg Leu 55 Val Leu Thr Trp Phe Leu Pro Asn Asn Pro Val Asp Phe Gln Pro Glu 70 Asn Leu Pro Cys Phe Ile Arg Asp Arg Asp Gly Phe His Val Phe Gly Ala Pro Cys Val Asp Gly Tyr Ser Ile Lys Ile Ala Gly Leu Asp Glu 100 105

<210> 147

Trp Gly Val Pro Leu Ser Leu Asp Pro Pro Met Cys Pro Arg
115 120 125

<211> 488 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(478) <223> RXN02263 <400> 147 cctgggcaac ccaagtgtat gaaaacgccc tggaaaaagg cgtcggcacc acattgaacc 60 tgtgggaatc acccgcactg gcttgagaga agaaacaaca atg aaa att gcg gta Met Lys Ile Ala Val atc ggc ctt gga tca acc ggc tcc atg gca ctg tgg cac tta agt aac Ile Gly Leu Gly Ser Thr Gly Ser Met Ala Leu Trp His Leu Ser Asn atc cca ggt gta gag gcc atc ggc ttt gaa caa ttc ggc atc tcc cat Ile Pro Gly Val Glu Ala Ile Gly Phe Glu Gln Phe Gly Ile Ser His ggc tac ggc gca ttc aca ggg gag tcc cga ctg ttt cgc atg gcc tac Gly Tyr Gly Ala Phe Thr Gly Glu Ser Arg Leu Phe Arg Met Ala Tyr 40 cac gaa ggc agc acc tac gtt ccg ttg ctc aaa cgc gca cga gca cta His Glu Gly Ser Thr Tyr Val Pro Leu Leu Lys Arg Ala Arg Ala Leu 55 60 tgg tca tca ctg agc gag att tcc gga cgc gaa ctc ttc cac aac ttc Trp Ser Ser Leu Ser Glu Ile Ser Gly Arg Glu Leu Phe His Asn Phe 70 75 ggt gtc tta agc acc ggc aag gaa gac gaa gca ccc ttc caa cgc ctg Gly Val Leu Ser Thr Gly Lys Glu Asp Glu Ala Pro Phe Gln Arg Leu gtg gaa tca gtg gaa cgt tat gag ctg cca cat gaa cga ctt acc gcc Val Glu Ser Val Glu Arg Tyr Glu Leu Pro His Glu Arg Leu Thr Ala 105 110 gcg cag atg cgc agc gtt acc cag gtc tagacttccg 488 Ala Gln Met Arg Ser Val Thr Gln Val 120 <210> 148 <211> 126 <212> PRT <213> Corynebacterium glutamicum <400> 148 Met Lys Ile Ala Val Ile Gly Leu Gly Ser Thr Gly Ser Met Ala Leu Trp His Leu Ser Asn Ile Pro Gly Val Glu Ala Ile Gly Phe Glu Gln

25

20

Phe Gly Ile Ser His Gly Tyr Gly Ala Phe Thr Gly Glu Ser Arg Leu 35 40 45

Phe Arg Met Ala Tyr His Glu Gly Ser Thr Tyr Val Pro Leu Leu Lys
50 55 60

Arg Ala Arg Ala Leu Trp Ser Ser Leu Ser Glu Ile Ser Gly Arg Glu 65 70 75 80

Leu Phe His Asn Phe Gly Val Leu Ser Thr Gly Lys Glu Asp Glu Ala 85 90 95

Pro Phe Gln Arg Leu Val Glu Ser Val Glu Arg Tyr Glu Leu Pro His 100 105 110

Glu Arg Leu Thr Ala Ala Gln Met Arg Ser Val Thr Gln Val 115 120 125

<210> 149

<211> 460

<212> DNA

<213> Corynebacterium glutamicum

<220>

<221> CDS

<222> (101)..(460)

<223> FRXA02263

<400> 149

cctgggcaac ccaagtgtat gaaaacgccc tggaaaaagg cgtcggcacc acattgaacc 60

- tgtgggaatc acccgcactg gcttgagaga agaaacaaca atg aaa att gcg gta 115

 Met Lys Ile Ala Val

 1 5
- atc ggc ctt gga tca acc ggc tcc atg gca ctg tgg cac tta agt aac 163

 Ile Gly Leu Gly Ser Thr Gly Ser Met Ala Leu Trp His Leu Ser Asn

 10 15 20
- atc cca ggt gta gag gcc atc ggc ttt gaa caa ttc ggc atc tcc cat 211 Ile Pro Gly Val Glu Ala Ile Gly Phe Glu Gln Phe Gly Ile Ser His 25 30 35
- ggc tac ggc gca ttc aca ggg gag tcc cga ctg ttt cgc atg gcc tac 259 Gly Tyr Gly Ala Phe Thr Gly Glu Ser Arg Leu Phe Arg Met Ala Tyr 40 45 50
- cac gaa ggc agc acc tac gtt ccg ttg ctc aaa cgc gca cga gca cta 307 His Glu Gly Ser Thr Tyr Val Pro Leu Leu Lys Arg Ala Arg Ala Leu 55 60 65
- tgg tca tca ctg agc gag att tcc gga cgc gaa ctc ttc cac aac ttc 355
 Trp Ser Ser Leu Ser Glu Ile Ser Gly Arg Glu Leu Phe His Asn Phe
 70 80 85
- ggt gtc tta agc acc ggc aag gaa gac gaa gca ccc ttc caa cgc ctg 403 Gly Val Leu Ser Thr Gly Lys Glu Asp Glu Ala Pro Phe Gln Arg Leu 90 95 100
- gtg gaa tca gtg gaa cgt tat gag ctg cca cat gaa cga ctt acc gcc 451

Val Glu Ser Val Glu Arg Tyr Glu Leu Pro His Glu Arg Leu Thr Ala 110 460 gcg cag atg Ala Gln Met 120 <210> 150 <211> 120 <212> PRT <213> Corynebacterium glutamicum Met Lys Ile Ala Val Ile Gly Leu Gly Ser Thr Gly Ser Met Ala Leu Trp His Leu Ser Asn Ile Pro Gly Val Glu Ala Ile Gly Phe Glu Gln 20 Phe Gly Ile Ser His Gly Tyr Gly Ala Phe Thr Gly Glu Ser Arg Leu Phe Arg Met Ala Tyr His Glu Gly Ser Thr Tyr Val Pro Leu Leu Lys 50 Arg Ala Arg Ala Leu Trp Ser Ser Leu Ser Glu Ile Ser Gly Arg Glu Leu Phe His Asn Phe Gly Val Leu Ser Thr Gly Lys Glu Asp Glu Ala 85 Pro Phe Gln Arg Leu Val Glu Ser Val Glu Arg Tyr Glu Leu Pro His 100 105 Glu Arg Leu Thr Ala Ala Gln Met 115 <210> 151 <211> 1251 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(1228) <223> RXA02176 <400> 151 gggtgctagg aactgacagc ttcagggtta tagttgttgg gtcagatcgt taacgatccc 60 tggccctttt acttccaagc gcagaaagtt gcccgaagac atg acc gac ttc ccc Met Thr Asp Phe Pro 1 acc ctg ccc tct gag ttc atc cct ggc gac ggc cgt ttc ggc tgc gga Thr Leu Pro Ser Glu Phe Ile Pro Gly Asp Gly Arg Phe Gly Cys Gly 10 20 cct tcc aag gtt cga cca gaa cag att cag gct att gtc gac gga tcc

Pro	Ser	Lys	Val 25	Arg	Pro	Glu	Gln	Ile 30	Gln	Ala	Ile	Val	Asp 35	Gly	Ser	
-		-						_	_	_		gta Val 50			_	259
				-					_			tcc Ser			_	307
												gca Ala			_	355
												cac His				403
					-		-	_	_		_	ctt Leu	_			451
	-					_		-	-			gac Asp 130			-	499
	_	_		-		-	-	_		_		gca Ala			_	547
			-	_	_			_		_		gaa Glu			-	595
		_	_	_		-	_				-	ggt Gly		-		643
-	-	Ile	_	Asn		Asp	Val	Tyr	Tyr			cca Pro	-	Lys	-	691
												agc Ser 210				739
		_			-						-	ttc Phe				787
			_	_		-	-	_			_	aag Lys		_		835
				-	-	-		-	-	_	_	gac Asp		_	_	883
												gtt Val				931

265 270 275

aca gca agc tcc tcc gcc ctg tac aac tgg gct gag gct cgc gag gag 97:
Thr Ala Ser Ser Ser Ala Leu Tyr Asn Trp Ala Glu Ala Arg Glu Glu
280 285 290

gca tcc cca tac gtg gca gat gca gct aag cgc tcc ctc gtt gtc ggc 1027

Ala Ser Pro Tyr Val Ala Asp Ala Ala Lys Arg Ser Leu Val Val Gly 295 300 305

acc atc gac ttc gat gac tcc atc gac gca gtg atc gct aag ata 1075

Thr Ile Asp Phe Asp Asp Ser Ile Asp Ala Ala Val Ile Ala Lys Ile 310 315 320 325

ctg cgc gca aac ggc atc ctg gac acc gag cct tac cgc aag ctg gga 1123

Leu Arg Ala Asn Gly Ile Leu Asp Thr Glu Pro Tyr Arg Lys Leu Gly 330 335 340

 $\ensuremath{\mathsf{cgc}}$ aac $\ensuremath{\mathsf{cag}}$ ctg $\ensuremath{\mathsf{cgc}}$ atc $\ensuremath{\mathsf{ggt}}$ atc $\ensuremath{\mathsf{ggt}}$ atc $\ensuremath{\mathsf{gat}}$ tcc acc $\ensuremath{\mathsf{gat}}$ 1171

Arg Asn Gln Leu Arg Ile Gly Met Phe Pro Ala Ile Asp Ser Thr Asp 345 350 355

gtg gaa aag ctc acc gga gca atc gac ttc atc ctc gat ggc ggt ttt 1219

Val Glu Lys Leu Thr Gly Ala Ile Asp Phe Ile Leu Asp Gly Gly Phe 360 365 370

gca agg aag taatacccc actttgaaaa aca 1251 Ala Arg Lys 375

<210> 152

<211> 376

<212> PRT

<213> Corynebacterium glutamicum

<400> 152

Met Thr Asp Phe Pro Thr Leu Pro Ser Glu Phe Ile Pro Gly Asp Gly
1 5 10 15

Arg Phe Gly Cys Gly Pro Ser Lys Val Arg Pro Glu Gln Ile Gln Ala
20 25 30

Ile Val Asp Gly Ser Ala Ser Val Ile Gly Thr Ser His Arg Gln Pro
35 40 45

Ala Val Lys Asn Val Val Gly Ser Ile Arg Glu Gly Leu Ser Asp Leu 50 55 60

Phe Ser Leu Pro Glu Gly Tyr Glu Ile Ile Leu Ser Leu Gly Gly Ala 65 70 75 80

Thr Ala Phe Trp Asp Ala Ala Thr Phe Gly Leu Ile Glu Lys Lys Ser 85 90 95

Gly His Leu Ser Phe Gly Glu Phe Ser Ser Lys Phe Ala Lys Ala Ser 100 105 110

Lys Leu Ala Pro Trp Leu Asp Glu Pro Glu Ile Val Thr Ala Glu Thr 115 120 125

Gly Asp Ser Pro Ala Pro Gln Ala Phe Glu Gly Ala Asp Val Ile Ala 130 135 140

Trp Ala His Asn Glu Thr Ser Thr Gly Ala Met Val Pro Val Leu Arg 145 150 155 160

Pro Glu Gly Ser Glu Gly Ser Leu Val Ala Ile Asp Ala Thr Ser Gly 165 170 175

Ala Gly Gly Leu Pro Val Asp Ile Lys Asn Ser Asp Val Tyr Tyr Phe 180 185 190

Ser Pro Gln Lys Cys Phe Ala Ser Asp Gly Gly Leu Trp Leu Ala Ala 195 200 205

Met Ser Pro Ala Ala Leu Glu Arg Ile Glu Lys Ile Asn Ala Ser Asp 210 215 220

Arg Phe Ile Pro Glu Phe Leu Asn Leu Gln Thr Ala Val Asp Asn Ser 225 230 235 240

Leu Lys Asn Gln Thr Tyr Asn Thr Pro Ala Val Ala Thr Leu Leu Met 245 250 255

Leu Asp Asn Gln Val Lys Trp Met Asn Ser Asn Gly Gly Leu Asp Gly 260 265 270

Met Val Ala Arg Thr Thr Ala Ser Ser Ser Ala Leu Tyr Asn Trp Ala 275 280 285

Glu Ala Arg Glu Glu Ala Ser Pro Tyr Val Ala Asp Ala Ala Lys Arg 290 295 300

Ser Leu Val Val Gly Thr Ile Asp Phe Asp Asp Ser Ile Asp Ala Ala 305 310 315 320

Val Ile Ala Lys Ile Leu Arg Ala Asn Gly Ile Leu Asp Thr Glu Pro 325 330 335

Tyr Arg Lys Leu Gly Arg Asn Gln Leu Arg Ile Gly Met Phe Pro Ala 340 345 350

Ile Asp Ser Thr Asp Val Glu Lys Leu Thr Gly Ala Ile Asp Phe Ile 355 360 365

Leu Asp Gly Gly Phe Ala Arg Lys 370 375

<210> 153

<211> 1422

<212> DNA

<213> Corynebacterium glutamicum

<220>

<221> CDS <222> (101)..(1399) <223> RXN02758

<400> 153

atacatetea eccaatteee cataactaga caattgeeca geaacgaetg ataagtetee 60

aatgtcgtgt tccgcgctca gacatgagac aattgttgcc gtg act gaa ctc atc 115

Val Thr Glu Leu Ile

1 5

cag aat gaa tcc caa gaa atc gct gag ctg gaa gcc ggc cag cag gtt $\,$ 163 Gln Asn Glu Ser Gln Glu Ile Ala Glu Leu Glu Ala Gly Gln Gln Val $\,$ 10 $\,$ 15 $\,$ 20

gca ttg cgt gaa ggt tat ctt cct gcg gtg atc aca gtg agc ggt aaa $$ 211 Ala Leu Arg Glu Gly Tyr Leu Pro Ala Val Ile Thr Val Ser Gly Lys $$ 25 $$ 30 $$ 35

gac cgc cca ggt gtg act gcc gcg ttc ttt agg gtc ttg tcc gct aat 259 Asp Arg Pro Gly Val Thr Ala Ala Phe Phe Arg Val Leu Ser Ala Asn 40 45 50

cag gtt cag gtc ttg gac gtt gag cag tca atg ttc cgt ggc ttt ttg 307
Gln Val Gln Val Leu Asp Val Glu Gln Ser Met Phe Arg Gly Phe Leu
55 60 65

aac ttg gcg gcg ttt gtg ggt atc gca cct gag cgt gtc gag acc gtc 355 Asn Leu Ala Ala Phe Val Gly Ile Ala Pro Glu Arg Val Glu Thr Val 70 75 80 85

acc aca ggc ctg act gac acc ctc aag gtg cat gga cag tcc gtg gtg 403 Thr Thr Gly Leu Thr Asp Thr Leu Lys Val His Gly Gln Ser Val Val 90 95 100

gtg gag ctg cag gaa act gtg cag tcg tcc cgt cct cgt tct tcc cat 451 Val Glu Leu Gln Glu Thr Val Gln Ser Ser Arg Pro Arg Ser Ser His 105 110 115

gtt gtt gtg gtg ttg ggt gat ccg gtt gat gcg ttg gat att tcc cgc 499 Val Val Val Leu Gly Asp Pro Val Asp Ala Leu Asp Ile Ser Arg 120 125 130

att ggt cag acc ctg gcg gat tac gat gcc aac att gac acc att cgt 547 Ile Gly Gln Thr Leu Ala Asp Tyr Asp Ala Asn Ile Asp Thr Ile Arg 135 140 145

ggt att tcg gat tac cct gtg acc ggc ctg gag ctg aag gtg act gtg 595 Gly Ile Ser Asp Tyr Pro Val Thr Gly Leu Glu Leu Lys Val Thr Val 150 165

ccg gat gtc agc cct ggt ggt ggt gaa gcg atg cgt aag gcg ctt gct 643 Pro Asp Val Ser Pro Gly Gly Gly Glu Ala Met Arg Lys Ala Leu Ala 170 175 180

gct ctt acc tct gag ctg aat gtg gat att gcg att gag cgt tct ggt 691 Ala Leu Thr Ser Glu Leu Asn Val Asp Ile Ala Ile Glu Arg Ser Gly 185 190 195

ttg ctg cgt cgt tct aag cgt ctg gtg tgc ttc gat tgt gat tcc acg 739 Leu Leu Arg Arg Ser Lys Arg Leu Val Cys Phe Asp Cys Asp Ser Thr

ttg atc act ggt gag gtc att gag atg ctg gcg gct cac gcg ggc aag Leu Ile Thr Gly Glu Val Ile Glu Met Leu Ala Ala His Ala Gly Lys gaa gct gaa gtt gcg gca gtt act gag cgt gcg atg cgc ggt gag ctc Glu Ala Glu Val Ala Ala Val Thr Glu Arg Ala Met Arg Gly Glu Leu gat ttc gag gag tct ctg cgt gag cgt gtg aag gcg ttg gct ggt ttg Asp Phe Glu Glu Ser Leu Arg Glu Arg Val Lys Ala Leu Ala Gly Leu gat gcg tcg gtg atc gat gag gtc gct gcc gct att gag ctg acc cct Asp Ala Ser Val Ile Asp Glu Val Ala Ala Ala Ile Glu Leu Thr Pro ggt gcg cgc acc acg atc cgt acg ctg aac cgc atg ggt tac cag acc Gly Ala Arg Thr Thr Ile Arg Thr Leu Asn Arg Met Gly Tyr Gln Thr get gtt gtt tee ggt ggt tte ate eag gtg ttg gaa ggt ttg get gag Ala Val Val Ser Gly Gly Phe Ile Gln Val Leu Glu Gly Leu Ala Glu gag ttg gag ttg gat tat gtc cgc gcc aac act ttg gaa atc gtt gat Glu Leu Glu Leu Asp Tyr Val Arg Ala Asn Thr Leu Glu Ile Val Asp ggc aag ctg acc ggc aac gtc acc gga aag atc gtt gac cgc gct gcg Gly Lys Leu Thr Gly Asn Val Thr Gly Lys Ile Val Asp Arg Ala Ala aag get gag tte ete egt gag tte get geg gat tet gge etg aag atg Lys Ala Glu Phe Leu Arg Glu Phe Ala Ala Asp Ser Gly Leu Lys Met tac cag act gtc gct gtc ggt gat ggc gct aat gac atc gat atg ctc Tyr Gln Thr Val Ala Val Gly Asp Gly Ala Asn Asp Ile Asp Met Leu tcc gct gcg ggt ctg ggt gtt gct ttc aac gcg aag cct gcg ctg aag Ser Ala Ala Gly Leu Gly Val Ala Phe Asn Ala Lys Pro Ala Leu Lys gag att gcg gat act tcc gtg aac cac cca ttc ctc gac gag gtt ttg Glu Ile Ala Asp Thr Ser Val Asn His Pro Phe Leu Asp Glu Val Leu cac atc atg ggc att tcc cgc gac gag atc gat ctg gcg gat cag gaa His Ile Met Gly Ile Ser Arg Asp Glu Ile Asp Leu Ala Asp Gln Glu

gac ggc act ttc cac cgc gtt cca ttg acc aat gcc taaagattcg 1409

Asp Gly Thr Phe His Arg Val Pro Leu Thr Asn Ala 425 430

tttctcgacg ccc 1422

<210> 154

<211> 433

<212> PRT

<213> Corynebacterium glutamicum

<400> 154

Val Thr Glu Leu Ile Gln Asn Glu Ser Gln Glu Ile Ala Glu Leu Glu 1 5 10 15

Ala Gly Gln Gln Val Ala Leu Arg Glu Gly Tyr Leu Pro Ala Val Ile 20 25 30

Thr Val Ser Gly Lys Asp Arg Pro Gly Val Thr Ala Ala Phe Phe Arg 35 40 45

Val Leu Ser Ala Asn Gln Val Gln Val Leu Asp Val Glu Gln Ser Met
50 55 60

Phe Arg Gly Phe Leu Asn Leu Ala Ala Phe Val Gly Ile Ala Pro Glu 65 70 75 80

Arg Val Glu Thr Val Thr Gly Leu Thr Asp Thr Leu Lys Val His
85 90 95

Gly Gln Ser Val Val Glu Leu Gln Glu Thr Val Gln Ser Ser Arg

Pro Arg Ser Ser His Val Val Val Leu Gly Asp Pro Val Asp Ala 115 120 125

Leu Asp Ile Ser Arg Ile Gly Gln Thr Leu Ala Asp Tyr Asp Ala Asn 130 135 140

Ile Asp Thr Ile Arg Gly Ile Ser Asp Tyr Pro Val Thr Gly Leu Glu145150155160

Leu Lys Val Thr Val Pro Asp Val Ser Pro Gly Gly Gly Glu Ala Met 165 170 175

Arg Lys Ala Leu Ala Ala Leu Thr Ser Glu Leu Asn Val Asp Ile Ala 180 185 190

Ile Glu Arg Ser Gly Leu Leu Arg Arg Ser Lys Arg Leu Val Cys Phe 195 200 205

Asp Cys Asp Ser Thr Leu Ile Thr Gly Glu Val Ile Glu Met Leu Ala 210 215 220

Ala His Ala Gly Lys Glu Ala Glu Val Ala Ala Val Thr Glu Arg Ala 225 230 235 240

Met Arg Gly Glu Leu Asp Phe Glu Glu Ser Leu Arg Glu Arg Val Lys 245 250 Ala Leu Ala Gly Leu Asp Ala Ser Val Ile Asp Glu Val Ala Ala Ala 260 265 270 Ile Glu Leu Thr Pro Gly Ala Arg Thr Thr Ile Arg Thr Leu Asn Arg 280 Met Gly Tyr Gln Thr Ala Val Val Ser Gly Gly Phe Ile Gln Val Leu 290 295 Glu Gly Leu Ala Glu Glu Leu Glu Leu Asp Tyr Val Arg Ala Asn Thr 310 Leu Glu Ile Val Asp Gly Lys Leu Thr Gly Asn Val Thr Gly Lys Ile 325 330 335 Val Asp Arg Ala Ala Lys Ala Glu Phe Leu Arg Glu Phe Ala Ala Asp 345 Ser Gly Leu Lys Met Tyr Gln Thr Val Ala Val Gly Asp Gly Ala Asn 355 365 360 Asp Ile Asp Met Leu Ser Ala Ala Gly Leu Gly Val Ala Phe Asn Ala Lys Pro Ala Leu Lys Glu Ile Ala Asp Thr Ser Val Asn His Pro Phe 385 395 Leu Asp Glu Val Leu His Ile Met Gly Ile Ser Arg Asp Glu Ile Asp 410 Leu Ala Asp Gln Glu Asp Gly Thr Phe His Arg Val Pro Leu Thr Asn Ala <210> 155 <211> 490 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(490) <223> FRXA02479 <400> 155 atacatetea eccaatteee cataactaga caattgeeca geaacgaetg ataagtetee 60 aatgtcgtgt tccgcgctca gacatgagac aattgttgcc gtg act gaa ctc atc Val Thr Glu Leu Ile cag aat gaa tcc caa gaa atc gct gag ctg gaa gcc ggc cag cag gtt Gln Asn Glu Ser Gln Glu Ile Ala Glu Leu Glu Ala Gly Gln Gln Val 10 15

	ttg	cgt	gaa	ggt	tat	ctt	cct	gcg	gtg	atc	aca	gtg	agc	ggt	aaa	211
			Glu 25													
-	-		ggt Gly			_										259
			gtc Val													307
			gcg Ala													355
			ctg Leu													403
			cag Gln 105													451
			gtg Val													490
<210> 156 <211> 130 <212> PRT <213> Corynebacterium glutamicum																
<21 <21	1> 13 2> Pl	30 RT	ebact	ceriu	um g]	lutar	nicur	n								
<21 <21 <21 <40	1> 1: 2> PI 3> Co 0> 1:	30 RT oryne 56	ebact Leu						Gln 10	Glu	Ile	Ala	Glu	Leu 15	Glu	
<21 <21 <21 <40 Val	1> 1: 2> PI 3> Co 0> 1: Thr	30 RT oryne 56 Glu		Ile 5	Gln	Asn	Glu	Ser	10					15		
<21 <21 <21 <40 Val 1	1> 1: 2> PI 3> Co 0> 1: Thr	30 RT oryne 56 Glu Gln	Leu	Ile 5 Val	Gln	Asn Leu	Glu Arg	Ser Glu 25	10 Gly	Tyr	Leu	Pro	Ala 30	15 Val	Ile	
<21 <21 <40 Val 1 Ala	1> 1: 2> Pl 3> Co 0> 1! Thr Gly	30 RT Oryne 56 Glu Gln Ser 35	Leu Gln 20	Ile 5 Val Lys	Gln Ala Asp	Asn Leu Arg	Glu Arg Pro 40	Ser Glu 25 Gly	10 Gly Val	Tyr Thr	Leu Ala	Pro Ala 45	Ala 30 Phe	15 Val Phe	Ile Arg	
<21 <21 <21 <40 Val Ala Thr	1> 1: 2> PI 3> Co 0> 1: Thr Gly Val	30 RT Dryne 56 Glu Gln Ser 35	Leu Gln 20 Gly	Ile 5 Val Lys Asn	Gln Ala Asp	Asn Leu Arg Val	Glu Arg Pro 40 Gln	Ser Glu 25 Gly Val	10 Gly Val Leu	Tyr Thr Asp	Leu Ala Val 60	Pro Ala 45 Glu	Ala 30 Phe Gln	15 Val Phe Ser	Ile Arg Met	
<21 <21 <40 Val 1 Ala Thr Val Phe 65	1> 1: 2> PI 3> Co 0> 1: Thr Gly Val Leu 50	30 RT Dryne 56 Glu Gln Ser 35 Ser	Leu Gln 20 Gly Ala	Ile 5 Val Lys Asn	Gln Ala Asp Gln Asn 70	Asn Leu Arg Val 55 Leu	Glu Arg Pro 40 Gln Ala	Ser Glu 25 Gly Val	10 Gly Val Leu Phe	Tyr Thr Asp Val 75	Leu Ala Val 60 Gly	Pro Ala 45 Glu	Ala 30 Phe Gln Ala	15 Val Phe Ser Pro	Ile Arg Met Glu 80	
<21 <21 <40 Val Ala Thr Val Phe 65 Arg	1> 1: 2> PI 3> Co 0> 1: Thr Gly Val Leu 50 Arg	30 RT Dryne 56 Glu Gln Ser 35 Ser Gly	Leu Gln 20 Gly Ala Phe	Ile 5 Val Lys Asn Leu Val 85	Gln Ala Asp Gln Asn 70 Thr	Asn Leu Arg Val 55 Leu	Glu Arg Pro 40 Gln Ala	Ser Glu 25 Gly Val Ala Leu	10 Gly Val Leu Phe Thr 90	Tyr Thr Asp Val 75 Asp	Leu Ala Val 60 Gly	Pro Ala 45 Glu Ile Leu	Ala 30 Phe Gln Ala Lys	15 Val Phe Ser Pro Val 95	Ile Arg Met Glu 80	

Leu Asp 130

<210> 157 <211> 558 <212> DNA <213> Coryn	<211> 558														
<400> 157 aaggcgttgg ctggtttgga tgcgtcggtg atcgatgagg tcgctgccgc tattgagctg															
accettggtg	cgcgcacc	_		tac Tyr	_		115								
gct gtt gtt Ala Val Val	tcc ggt Ser Gly 10	Gly Phe	atc (cag gte Gln Va 1	l Leu	gaa Glu	ggt Gly	ttg Leu	gct Ala 20	gag Glu	163				
gag ttg gag Glu Leu Glu											211				
ggc aag ctg Gly Lys Leu 40											259				
aag gct gag Lys Ala Glu 55			Phe A								307				
tac cag act Tyr Gln Thr 70											355				
tcc gct gcg Ser Ala Ala			_		n Ala	-			-	-	403				
gag att gcg Glu Ile Ala			Asn H								451				
cac atc atg His Ile Met 120											499				
gac ggc act Asp Gly Thr 135							taaa	ıgatt	cg		545				
tttctcgacg	ccc										558				
<210> 158 <211> 145 <212> PRT															

<213> Corynebacterium glutamicum

<400> 158

Met Gly Tyr Gln Thr Ala Val Val Ser Gly Gly Phe Ile Gln Val Leu
1 10 15

Glu Gly Leu Ala Glu Glu Leu Glu Leu Asp Tyr Val Arg Ala Asn Thr 20 25 30

Leu Glu Ile Val Asp Gly Lys Leu Thr Gly Asn Val Thr Gly Lys Ile 35 40 45

Val Asp Arg Ala Ala Lys Ala Glu Phe Leu Arg Glu Phe Ala Ala Asp 50 55 60

Ser Gly Leu Lys Met Tyr Gln Thr Val Ala Val Gly Asp Gly Ala Asn 65 70 75 80

Asp Ile Asp Met Leu Ser Ala Ala Gly Leu Gly Val Ala Phe Asn Ala 85 90 95

Lys Pro Ala Leu Lys Glu Ile Ala Asp Thr Ser Val Asn His Pro Phe 100 105 110

Leu Asp Glu Val Leu His Ile Met Gly Ile Ser Arg Asp Glu Ile Asp 115 120 125

Leu Ala Asp Gln Glu Asp Gly Thr Phe His Arg Val Pro Leu Thr Asn 130 135 140

Ala 145

<210> 159

<211> 205

<212> DNA

<213> Corynebacterium glutamicum

<220>

<221> CDS

<222> (72)..(182)

<223> FRXA02759

<400> 159

tettaettet aagetgaatg tgatattgeg attaagegtt etggtttget gegtegttet 60

aagcgtctgg tgtg ctt cga ttg tat ccc acg ttg atc act ggt gag gtc 110

Val Leu Arg Leu Tyr Pro Thr Leu Ile Thr Gly Glu Val

1 5 10

att gag atg ctg gcg gct cac gcg ggc aag gaa gct aaa gtt gcg gca 158 Ile Glu Met Leu Ala Ala His Ala Gly Lys Glu Ala Lys Val Ala Ala 15 20 25

gtt act gag cgt gcg atg cgc ggg tgagctcgat ttcgaggagt ctc 205
Val Thr Glu Arg Ala Met Arg Gly
30 35

<210> 160

<211> 37

```
<212> PRT
<213> Corynebacterium glutamicum
Val Leu Arg Leu Tyr Pro Thr Leu Ile Thr Gly Glu Val Ile Glu Met
Leu Ala Ala His Ala Gly Lys Glu Ala Lys Val Ala Ala Val Thr Glu
Arg Ala Met Arg Gly
         35
<210> 161
<211> 1188
<212> DNA
<213> Corynebacterium glutamicum
<220>
<221> CDS
<222> (101)..(1165)
<223> RXA02501
<400> 161
cgccccgaaa gctttaccat ggatacgata ctcaatggag atatccatta tcggtttggc 60
gtctgtgcgc tcatgaacca ggaaggtttt tgtttgtctc atg agc tct gaa gga
                                            Met Ser Ser Glu Gly
aga aac cac aac tgg gac tac gcc gcc atc ggc acc cca gag gat ttc
Arg Asn His Asn Trp Asp Tyr Ala Ala Ile Gly Thr Pro Glu Asp Phe
                 10
ctc gcc agc tgg agc gca tcc cgc gga aat cta cga cgc ttt ttc gaa
                                                                   211
Leu Ala Ser Trp Ser Ala Ser Arg Gly Asn Leu Arg Arg Phe Phe Glu
            25
                                 30
gac cac gca gcc gcc ccc ata aac gat gcc gcc cag cgc caa gca ggt
                                                                   259
Asp His Ala Ala Ala Pro Ile Asn Asp Ala Ala Gln Arg Gln Ala Gly
         40
                             45
gaa gcc gca gca acc caa gcc gtc gca gcg atc tac ggc atg gag ctc
                                                                   307
Glu Ala Ala Ala Thr Gln Ala Val Ala Ile Tyr Gly Met Glu Leu
     55
                         60
aac gaa ttc aac gca ggt gtc gac gcc gtc gcc ggc gcc atc gaa tct
                                                                   355
Asn Glu Phe Asn Ala Gly Val Asp Ala Val Ala Gly Ala Ile Glu Ser
70
gcc ggc gcc atc cac gtc agc atc ccc gat ccc gat gtc ccc caa gat
                                                                   403
Ala Gly Ala Ile His Val Ser Ile Pro Asp Pro Asp Val Pro Gln Asp
                 90
                                                        100
gtc gga gcc gca gca ttt ttc gac gtc gac aac acc ctc atc caa ggc
                                                                   451
Val Gly Ala Ala Ala Phe Phe Asp Val Asp Asn Thr Leu Ile Gln Gly
           105
                                110
tee tee etc ate gtt tte gee caa gga etc tte egg aag aaa tte tte
                                                                   499
```

																•
Ser	Ser	Leu 120	Ile	Val	Phe	Ala	Gln 125	Gly	Leu	Phe	Arg	Lys 130	Lys	Phe	Phe	
	atc Ile 135															547
	acc Thr															595
	ctc Leu															643
-	gaa Glu	-		_	_		_			-						691
	aaa Lys			_	_	_			_	_						739
	gtc Val 215		_			_			_			_	_		_	787
	ggc Gly								-	_	_	_				835
_	ttc Phe			_		_		-								883
_	cac His	_	-	-	-		_			-			_			931
_	tgc Cys		_		Ser	_	Ser	Ile	Asn	Asp	Leu		Met			979
_	gtc	ggc	acc	gcc	gtc	gca	gta	aac	ccc	gac	tcc	aaa	ctc	cgc	aaa	
102 Met	Val 295	Gly	Thr	Ala	Val	Ala 300	Val	Asn	Pro	Asp	Ser 305	Lys	Leu	Arg	Lys	
gaa 107	gcc 5	gaa	acc	cga	ggc	tgg	gac	gtc	cgc	gat	ttc	cga	agc	atc	cgc	
	Ala	Glu	Thr	Arg	Gly 315	Trp	Asp	Val	Arg	Asp 320	Phe	Arg	Ser	Ile	Arg 325	
aaa 112	gcc 3	acc	cgc	gaa	tac	gga	atc	ccc	gcc	ctg	gtc	acc	gcc	gca	ttc	
	Ala	Thr	Arg	Glu 330	Туr	Gly	Ile	Pro	Ala 335	Leu	Val	Thr	Ala	Ala 340	Phe	
agt	gtc 5	gcc	ggc	tgg	agt	cta	cgc	cgc	cga	tgg	aga	aaa	caa			
	Val	Ala	Gly	Trp	Ser	Leu	Arg	Arg	Arg	Trp	Arg	Lys	Gln			

345 350 355

taacgcacag gagccgtttt aag 1188

<210> 162

<211> 355

<212> PRT

<213> Corynebacterium glutamicum

<400> 162

Met Ser Ser Glu Gly Arg Asn His Asn Trp Asp Tyr Ala Ala Ile Gly

1 15

Thr Pro Glu Asp Phe Leu Ala Ser Trp Ser Ala Ser Arg Gly Asn Leu 20 25 30

Arg Arg Phe Phe Glu Asp His Ala Ala Ala Pro Ile Asn Asp Ala Ala 35 40 45

Gln Arg Gln Ala Gly Glu Ala Ala Ala Thr Gln Ala Val Ala Ala Ile $50 \hspace{1cm} 55 \hspace{1cm} 60$

Tyr Gly Met Glu Leu Asn Glu Phe Asn Ala Gly Val Asp Ala Val Ala 65 70 75 80

Gly Ala Ile Glu Ser Ala Gly Ala Ile His Val Ser Ile Pro Asp Pro 85 90 95

Asp Val Pro Gln Asp Val Gly Ala Ala Ala Phe Phe Asp Val Asp Asn 100 105 110

Thr Leu Ile Gln Gly Ser Ser Leu Ile Val Phe Ala Gln Gly Leu Phe 115 120 125

Arg Lys Lys Phe Phe Thr Ile Lys Glu Ile Leu Pro Val Val Trp Lys 130 135 140

Gln Val Lys Phe Lys Leu Thr Gly Ser Glu Asn Ala Asp Asp Val Ser 145 150 155 160

Arg Gly Arg Glu Gln Ala Leu Glu Phe Ile Lys Gly Arg Pro Val Gln 165 170 175

Glu Leu Val Asp Leu Cys Glu Glu Ile Val Asp Gln Arg Met Ala Asp 180 185 190

Lys Met Trp Pro Gly Thr Lys Gln Leu Ala Asp Met His Ile Ala Ala 195 200 205

Gly His Gln Val Trp Leu Val Ser Ala Thr Pro Val Gln Leu Ala Gln 210 215 220

Ile Leu Ala Gln Arg Leu Gly Phe Thr Gly Ala Ile Gly Thr Val Ala 225 235 240

Glu Ala Lys Asp Gly Val Phe Thr Gly Arg Leu Val Gly Asp Ile Leu 245 250 255

His Gly Pro Gly Lys Arg His Ala Val Ala Ala Leu Ala Ser Ile Glu

260 265 270 Gln Leu Asp Leu Thr Arg Cys Thr Ala Tyr Ser Asp Ser Ile Asn Asp Leu Pro Met Leu Ser Met Val Gly Thr Ala Val Ala Val Asn Pro Asp 295 Ser Lys Leu Arg Lys Glu Ala Glu Thr Arg Gly Trp Asp Val Arg Asp 310 315 Phe Arg Ser Ile Arg Lys Ala Thr Arg Glu Tyr Gly Ile Pro Ala Leu 325 330 Val Thr Ala Ala Phe Ser Val Ala Gly Trp Ser Leu Arg Arg Trp 340 345 Arg Lys Gln 355 <210> 163 <211> 558 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(535) <223> RXN03105 <400> 163 ggttggggtc atcaaaggat gcggacatcg ctgtggggtt gtgtaataat tgcacctgtg 60 aggtgccttt ctggcaggtg aatcaggact ctaagcaagc ttg att ctt cca gtt Leu Ile Leu Pro Val 1 cag gag ggc att tcc tat ttt ccc acg ccg tta cac ctg aat cac atc Gln Glu Gly Ile Ser Tyr Phe Pro Thr Pro Leu His Leu Asn His Ile 10 ggt gga tcc agg tta agc gca cat gta gaa gat gaa gat ctc cgc ctc Gly Gly Ser Arg Leu Ser Ala His Val Glu Asp Glu Asp Leu Arg Leu 25 gac cgg gac gca gtc tct gaa ttt ggt cgg aaa acc cac gaa ctc ttc Asp Arg Asp Ala Val Ser Glu Phe Gly Arg Lys Thr His Glu Leu Phe 40 ccc ggg gtc aac cca gag ccc aac cgt ttc agc gtc cac tat gac acc 307 Pro Gly Val Asn Pro Glu Pro Asn Arg Phe Ser Val His Tyr Asp Thr 55 60 tac act gca gac aaa tct cca att atc gac gcg gtt gac aat gtc att 355 Tyr Thr Ala Asp Lys Ser Pro Ile Ile Asp Ala Val Asp Asn Val Ile 70 75 80 gtg ctc acc gga gga tcc gga cac gcc ttc aag ctc tct cca gct tat Val Leu Thr Gly Gly Ser Gly His Ala Phe Lys Leu Ser Pro Ala Tyr

95

100

```
ggc gaa ctc gca gca caa cga gcg gtc gga aac acc tcg ccg ctg tac
Gly Glu Leu Ala Ala Gln Arg Ala Val Gly Asn Thr Ser Pro Leu Tyr
            105
                                 110
                                                     115
agc gaa gac ttt cgg atc gcc tcg cat gaa cca atc aaa gag cgg tgc
                                                                    499
Ser Glu Asp Phe Arg Ile Ala Ser His Glu Pro Ile Lys Glu Arg Cys
        120
                            125
                                                 130
acg tat aga aag cta acc ttt tta agt gcg cgg ttt tagggtgaga
                                                                    545
Thr Tyr Arg Lys Leu Thr Phe Leu Ser Ala Arg Phe
    135
                        140
atctaacgct gag
                                                                    558
<210> 164
<211> 145
<212> PRT
<213> Corynebacterium glutamicum
<400> 164
Leu Ile Leu Pro Val Gln Glu Gly Ile Ser Tyr Phe Pro Thr Pro Leu
His Leu Asn His Ile Gly Gly Ser Arg Leu Ser Ala His Val Glu Asp
                                 25
Glu Asp Leu Arg Leu Asp Arg Asp Ala Val Ser Glu Phe Gly Arg Lys
Thr His Glu Leu Phe Pro Gly Val Asn Pro Glu Pro Asn Arg Phe Ser
     50
Val His Tyr Asp Thr Tyr Thr Ala Asp Lys Ser Pro Ile Ile Asp Ala
Val Asp Asn Val Ile Val Leu Thr Gly Gly Ser Gly His Ala Phe Lys
Leu Ser Pro Ala Tyr Gly Glu Leu Ala Ala Gln Arg Ala Val Gly Asn
                                105
Thr Ser Pro Leu Tyr Ser Glu Asp Phe Arg Ile Ala Ser His Glu Pro
        115
Ile Lys Glu Arg Cys Thr Tyr Arg Lys Leu Thr Phe Leu Ser Ala Arg
                        135
                                             140
Phe
145
<210> 165
<211> 687
<212> DNA
<213> Corynebacterium glutamicum
<220>
<221> CDS
<222> (62)..(664)
```

<223> RXS01130

<400> 165 agttcgtggc ggatgctgtg aacgtttccg gtggtcgcgt gggcgaagag gttctgtgtg 60 gatg gat ctg gct cgc aag ctt ggt ctt ctt gct ggc aag ctt gtc gac Met Asp Leu Ala Arg Lys Leu Gly Leu Leu Ala Gly Lys Leu Val Asp 10 157 gcc gcc cca gtc tcc att gag gtt gag gct cga ggc gag ctt tct tcc Ala Ala Pro Val Ser Ile Glu Val Glu Ala Arg Gly Glu Leu Ser Ser 20 25 205 gag cag gtc aat gca ctt ggt ttg tcc gct gtt cgt ggt ttg ttc tcc Glu Gln Val Asn Ala Leu Gly Leu Ser Ala Val Arg Gly Leu Phe Ser 253 gga att atc gaa gag tcc gtt act ttc gtc aac gct cct cgc att gct Gly Ile Ile Glu Glu Ser Val Thr Phe Val Asn Ala Pro Arg Ile Ala 55 301 gaa gag cgt ggc ctg gac atc tcc gtg aag acc aac tct gag tct gtt Glu Glu Arg Gly Leu Asp Ile Ser Val Lys Thr Asn Ser Glu Ser Val 349 act cac cgt tcc gtc ctg cag gtc aag gtc att act ggc agc gcg Thr His Arg Ser Val Leu Gln Val Lys Val Ile Thr Gly Ser Gly Ala age gea act gtt gtt ggt gee etg act ggt ett gag ege gtt gag aag 397 Ser Ala Thr Val Val Gly Ala Leu Thr Gly Leu Glu Arg Val Glu Lys 105 atc acc cgc atc aat ggc cgt ggc ctg gat ctg cgc gca gag ggt ctg 445 Ile Thr Arg Ile Asn Gly Arg Gly Leu Asp Leu Arg Ala Glu Gly Leu 120 aac ctc ttc ctq caq tac act gac gct cct qqt gca ctg ggt acc gtt 493 Asn Leu Phe Leu Gln Tyr Thr Asp Ala Pro Gly Ala Leu Gly Thr Val 135 ggt acc aag ctg ggt gct gct ggc atc aac atc gag gct gct gcg ttg 541 Gly Thr Lys Leu Gly Ala Ala Gly Ile Asn Ile Glu Ala Ala Ala Leu 145 150 155 act cag gct gag aag ggt gac ggc gct gtc ctg atc ctg cgt gtt gag 589 Thr Gln Ala Glu Lys Gly Asp Gly Ala Val Leu Ile Leu Arg Val Glu 165 170 tee get gte tet gaa gag etg gaa get gaa ate aae get gag ttg ggt 637 Ser Ala Val Ser Glu Glu Leu Glu Ala Glu Ile Asn Ala Glu Leu Gly 180 185 190 684 gct act tcc ttc cag gtt gat ctt gac taattagaga tccatttgct Ala Thr Ser Phe Gln Val Asp Leu Asp 195 200 687 tga

<210> 166

<211> 201 <212> PRT <213> Corynebacterium glutamicum <400> 166 Met Asp Leu Ala Arg Lys Leu Gly Leu Leu Ala Gly Lys Leu Val Asp 5 Ala Ala Pro Val Ser Ile Glu Val Glu Ala Arg Gly Glu Leu Ser Ser Glu Gln Val Asn Ala Leu Gly Leu Ser Ala Val Arg Gly Leu Phe Ser 40 Gly Ile Ile Glu Glu Ser Val Thr Phe Val Asn Ala Pro Arg Ile Ala Glu Glu Arg Gly Leu Asp Ile Ser Val Lys Thr Asn Ser Glu Ser Val 70 Thr His Arg Ser Val Leu Gln Val Lys Val Ile Thr Gly Ser Gly Ala 85 Ser Ala Thr Val Val Gly Ala Leu Thr Gly Leu Glu Arg Val Glu Lys 105 110 Ile Thr Arg Ile Asn Gly Arg Gly Leu Asp Leu Arg Ala Glu Gly Leu 120 Asn Leu Phe Leu Gln Tyr Thr Asp Ala Pro Gly Ala Leu Gly Thr Val 135 Gly Thr Lys Leu Gly Ala Ala Gly Ile Asn Ile Glu Ala Ala Leu 155 Thr Gln Ala Glu Lys Gly Asp Gly Ala Val Leu Ile Leu Arg Val Glu 170 Ser Ala Val Ser Glu Glu Leu Glu Ala Glu Ile Asn Ala Glu Leu Gly Ala Thr Ser Phe Gln Val Asp Leu Asp 200 <210> 167 <211> 604 <212> DNA <213> Corynebacterium glutamicum

- <220>
- <221> CDS
- <222> (101)..(604)
- <223> RXS03112
- <400> 167
- gtgagcacgc aatttetttg etgetgteta etgetegeca gateetgetg etgatgegae 60
- gctgcgtgag ggcgagtgga agcggtcttc tttcaacggt gtg gaa att ttc gga Val Glu Ile Phe Gly

											ttg Leu		163
_	_		-					-	-		gat Asp 35		211
											gtt Val		259
_		_	_	_	_	_					ctt Leu	_	307
											gct Ala		355
											ctt Leu		403
											cgt Arg 115		451
											cct Pro		499
	_		_	_	_			-		_	tct Ser	_	547`
	-		_	_			-	-	-		gtg Val	_	595
	ctg Leu	-											604

```
<210> 168
```

<400> 168

Val Glu Ile Phe Gly Lys Thr Val Gly Ile Val Gly Phe Gly His Ile 1 5 10 15

Gly Gln Leu Phe Ala Gln Arg Leu Ala Ala Phe Glu Thr Thr Ile Val $20 \hspace{1cm} 25 \hspace{1cm} 30$

Ala Tyr Asp Pro Tyr Ala Asn Pro Ala Arg Ala Ala Gln Leu Asn Val\$35\$

<211> 168

<212> PRT

<213> Corynebacterium glutamicum

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 4 January 2001 (04.01.2001)

PCT

(10) International Publication Number WO 01/00843 A2

	(51)	International Paten		C12N 1			199 33 004.2	•	1999 (14.07.1999)	DE
		15/61, 1/21, 9/90, CO	07K 14/34, C12P 13/0	08, C12Q 1	/68		199 33 005.0		1999 (14.07.1999)	DE
							199 33 006.9	14 July	1999 (14.07.1999)	DE
	(21)	International Appli	cation Number: I	PCT/IB00/0	00923		60/148,613	12 August	1999 (12.08.1999)	US
							199 40 764.9	27 August	1999 (27.08.1999)	DE
	(22)	International Filing	Date: 23 June 20	000 (23.06.:	2000)		199 40 765.7	27 August	1999 (27.08.1999)	DE
							199 40 766.5	27 August	1999 (27.08.1999)	DE
	(25)	Filing Language:		Eı	nglish		199 40 832.7	27 August	1999 (27.08.1999)	DE
							199 41 378.9	31 August	1999 (31.08.1999)	DE
	(26)	Publication Langua	ge:	Eı	ıglish		199 41 379.7	31 August	1999 (31.08.1999)	DE
							199 41 394.0	31 August	1999 (31.08.1999)	DE
	(30)	Priority Data:					199 41 396.7	31 August	1999 (31.08.1999)	DE
		60/141,031	25 June 1999 (25		US		199 41 380.0	31 August	1999 (31.08.1999)	DE
		199 30 476.9	1 July 1999 (01		DE		199 42 077.7	3 September	1999 (03.09.1999)	DE
		60/142,101	2 July 1999 (02		US		199 42 129.3	3 September	1999 (03.09.1999)	DE
		199 31 415.2	8 July 1999 (08		DE		199 42 076.9	3 September	1999 (03.09.1999)	DE
		199 31 418.7	8 July 1999 (08	3.07.1999)	DE		199 42 079.3	3 September	1999 (03.09.1999)	DE
		199 31 419.5	8 July 1999 (08		DE		199 42 086.6	3 September	1999 (03.09.1999)	DE
		199 31 420.9	8 July 1999 (08	3.07.1999)	DE		199 42 087.4	3 September	1999 (03.09.1999)	DE
_		199 31 424.1	8 July 1999 (08		DE		199 42 088.2	3 September	1999 (03.09.1999)	DE
		199 31 428.4	8 July 1999 (08	,	DE		199 42 095.5	3 September	1999 (03.09.1999)	DE
		199 31 434.9	8 July 1999 (08		DE		199 42 124.2	3 September	1999 (03.09.1999)	DE
		199 31 435.7	8 July 1999 (08	,	DE		60/187,970	9 March	2000 (09.03.2000)	US
		199 31 443.8	8 July 1999 (08	,	DE					
		199 31 453.5	8 July 1999 (08	•	DE	(71)	Applicant:		TIENGESELLSCH	LAFT
### ### ### ### ### ### ### ### ### ##		199 31 457.8	8 July 1999 (08		DE		[DE/DE]; D-6705	6 Ludwigshafe	en (DE).	
		199 31 465.9	8 July 1999 (08		DE					
≣		199 31 478.0	8 July 1999 (08		DE	(72)		•	arkus; Wenjenstr.	21,
		199 31 510.8	8 July 1999 (08		DE			, ,	RÖGER, Burkhard	
		199 31 541.8	8 July 1999 (08	,	DE		•		hof (DE). SCHRÖ	,
		199 31 573.6	8 July 1999 (08		DE		Hartwig; Goeth	•	-69226 Nussloch	` '
₹		199 31 592.2	8 July 1999 (08	•	DE				tr. 27, D-67346 S	
≣		199 31 632.5	8 July 1999 (08		DE				r; Moselstr. 42, D-6	57117
≣		199 31 634.1	8 July 1999 (08		DE		Limburgerhof (DI	Ξ).		
		199 31 636.8	8 July 1999 (08	,	DE					
≣		199 32 125.6	9 July 1999 (09		DE	(81)	_		E, AG, AL, AM, AT	
		199 32 126.4	9 July 1999 (09		DE				CA, CH, CN, CR, CU	
		199 32 130.2	9 July 1999 (09		DE				B, GD, GE, GH, GM	-
		199 32 186.8	9 July 1999 (09		DE				KP, KR, KZ, LC, LK	
=		199 32 206.6	9 July 1999 (09	,	DE				MK, MN, MW, MX	
≣		199 32 227.9	9 July 1999 (09	•	DE				E, SG, SI, SK, SL, TJ	, TM,
		199 32 228.7	9 July 1999 (09	,	DE		TR, TT, TZ, UA,	UG, UZ, VN, `	YU, ZA, ZW.	
		199 32 229.5	9 July 1999 (09	,	DE					
		199 32 230.9	9 July 1999 (09		DE	(84)		, ,	ARIPO patent (GH,	
7		199 32 922.2	14 July 1999 (14		DE				, TZ, UG, ZW), Ew	
₹		199 32 926.5	14 July 1999 (14		DE		•		D, RU, TJ, TM), Euro	-
7		199 32 928.1	14 July 1999 (14	.07.1999)	DE		patent (AT, BE, C	H, CY, DE, DK	L, ES, FI, FR, GB, G	R, IE,
3									[Continued on next]	nagel
45										

(54) Title: CORYNEBACTERIUM GLUTAMICUM GENES ENCODING METABOLIC PATHWAY PROTEINS

(57) Abstract: Isolated nucleic acid molecules, designated MP nucleic acid molecules, which encode novel MP proteins from Corynebacterium glutamicum are described. The invention also provides antisense nucleic acid molecules, recombinant expression vectors containing MP nucleic acid molecules, and host cells into which the expression vectors have been introduced. The invention still further provides isolated MP proteins, mutated MP proteins, fusion proteins, antigenic peptides and methods for the improvement of production of a desired compound from C. glutamicum based on genetic engineering of MP genes in this organism.

IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

Published:

 Without international search report and to be republished upon receipt of that report.

- 1 -

PCT/IB00/00923

CORYNEBACTERIUM GLUTAMICUM GENES ENCODING METABOLIC PATHWAY PROTEINS

Related Applications

WO 01/00843

The present application claims priority to prior filed U.S. Provisional Patent Application Serial No. 60/141031, filed June 25, 1999, U.S. Provisional Patent Application Serial No. 60/142101, filed July 2, 1999, U.S. Provisional Patent Application Serial No. 60/148613, filed August 12, 1999, and also to U.S. Provisional Patent Application Serial No. 60/187970, filed March 9, 2000. The present application also claims priority to prior filed German Patent Application No. 19930476.9, filed July 1, 1999, German Patent Application No. 19931415.2, filed July 8, 1999, German Patent Application No. 19931418.7, filed July 8, 1999, German Patent Application No. 19931419.5, filed July 8, 1999, German Patent Application No. 19931420.9, filed July 8, 1999, German Patent Application No. 19931424.1, filed July 8, 1999, German Patent Application No. 19931428.4, filed July 8, 1999, German Patent Application No. 19931434.9, filed July 8, 1999, German Patent Application No. 19931435.7, filed July 8, 1999, German Patent Application No. 19931443.8, filed July 8, 1999, German Patent Application No. 19931453.5, filed July 8, 1999, German Patent Application No. 19931457.8, filed July 8, 1999, German Patent Application No. 19931465.9, filed July 8, 1999, German Patent Application No. 19931478.0, filed July 8, 1999, German Patent 20 Application No. 19931510.8, filed July 8, 1999, German Patent Application No. 19931541.8, filed July 8, 1999, German Patent Application No. 19931573.6, filed July 8, 1999, German Patent Application No. 19931592.2, filed July 8, 1999, German Patent Application No. 19931632.5, filed July 8, 1999, German Patent Application No. 19931634.1, filed July 8, 1999, German Patent Application No. 19931636.8, filed July 25 8, 1999, German Patent Application No. 19932125.6, filed July 9, 1999, German Patent Application No. 19932126.4, filed July 9, 1999, German Patent Application No. 19932130.2, filed July 9, 1999, German Patent Application No. 19932186.8, filed July 9, 1999, German Patent Application No. 19932206.6, filed July 9, 1999, German Patent Application No. 19932227.9, filed July 9, 1999, German Patent Application No. 30 19932228.7, filed July 9, 1999, German Patent Application No. 19932229.5, filed July 9, 1999, German Patent Application No. 19932230.9, filed July 9, 1999, German Patent

Application No. 19932922.2, filed July 14, 1999, German Patent Application No.

19932926.5, filed July 14, 1999, German Patent Application No. 19932928.1, filed July 14, 1999, German Patent Application No. 19933004.2, filed July 14, 1999, German Patent Application No. 19933005.0, filed July 14, 1999, German Patent Application No. 19933006.9, filed July 14, 1999, German Patent Application No. 19940764.9, filed August 27, 1999, German Patent Application No. 19940765.7, filed August 27, 1999, 5 German Patent Application No. 19940766.5, filed August 27, 1999, German Patent Application No. 19940832.7, filed August 27, 1999, German Patent Application No. 19941378.9, filed August 31, 1999, German Patent Application No. 19941379.7, filed August 31, 1999, German Patent Application No. 19941380.0, filed August 31, 1999, German Patent Application No. 19941394.0, filed August 31, 1999, German Patent 10 Application No. 19941396.7, filed August 31, 1999, German Patent Application No. 19942076.9, filed September 3, 1999, German Patent Application No. 19942077.7, filed September 3, 1999, German Patent Application No. 19942079.3, filed September 3, 1999, German Patent Application No. 19942086.6, filed September 3, 1999, German Patent Application No. 19942087.4, filed September 3, 1999, German Patent 15 Application No. 19942088.2, filed September 3, 1999, German Patent Application No. 19942095.5, filed September 3, 1999, German Patent Application No. 19942124.2, filed September 3, 1999, and German Patent Application No. 19942129.3, filed September 3, 1999. The entire contents of all of the aforementioned applications are hereby expressly incorporated herein by this reference. 20

Background of the Invention

Certain products and by-products of naturally-occurring metabolic processes in cells have utility in a wide array of industries, including the food, feed, cosmetics, and pharmaceutical industries. These molecules, collectively termed 'fine chemicals', include organic acids, both proteinogenic and non-proteinogenic amino acids, nucleotides and nucleosides, lipids and fatty acids, diols, carbohydrates, aromatic compounds, vitamins and cofactors, and enzymes. Their production is most conveniently performed through large-scale culture of bacteria developed to produce and secrete large quantities of a particular desired molecule. One particularly useful organism for this purpose is *Corynebacterium glutamicum*, a gram positive, nonpathogenic bacterium. Through strain selection, a number of mutant strains have

- 3 -

been developed which produce an array of desirable compounds. However, selection of strains improved for the production of a particular molecule is a time-consuming and difficult process.

5 Summary of the Invention

The invention provides novel bacterial nucleic acid molecules which have a variety of uses. These uses include the identification of microorganisms which can be used to produce fine chemicals, the modulation of fine chemical production in C. glutamicum or related bacteria, the typing or identification of C. glutamicum or related bacteria, as reference points for mapping the C. glutamicum genome, and as markers for transformation. These novel nucleic acid molecules encode proteins, referred to herein as metabolic pathway (MP) proteins.

C. glutamicum is a gram positive, aerobic bacterium which is commonly used in industry for the large-scale production of a variety of fine chemicals, and also for the degradation of hydrocarbons (such as in petroleum spills) and for the oxidation of terpenoids. The MP nucleic acid molecules of the invention, therefore, can be used to identify microorganisms which can be used to produce fine chemicals, e.g., by fermentation processes. Modulation of the expression of the MP nucleic acids of the invention, or modification of the sequence of the MP nucleic acid molecules of the invention, can be used to modulate the production of one or more fine chemicals from a microorganism (e.g., to improve the yield or production of one or more fine chemicals from a Corynebacterium or Brevibacterium species).

The MP nucleic acids of the invention may also be used to identify an organism as being *Corynebacterium glutamicum* or a close relative thereof, or to identify the presence of *C. glutamicum* or a relative thereof in a mixed population of microorganisms. The invention provides the nucleic acid sequences of a number of *C. glutamicum* genes; by probing the extracted genomic DNA of a culture of a unique or mixed population of microorganisms under stringent conditions with a probe spanning a region of a *C. glutamicum* gene which is unique to this organism, one can ascertain whether this organism is present. Although *Corynebacterium glutamicum* itself is nonpathogenic, it is related to species pathogenic in humans, such as *Corynebacterium*

15

20

25

diphtheriae (the causative agent of diphtheria); the detection of such organisms is of significant clinical relevance.

The MP nucleic acid molecules of the invention may also serve as reference points for mapping of the C. glutamicum genome, or of genomes of related organisms. Similarly, these molecules, or variants or portions thereof, may serve as markers for 5 genetically engineered Corynebacterium or Brevibacterium species. The MP proteins encoded by the novel nucleic acid molecules of the invention are capable of, for example, performing an enzymatic step involved in the metabolism of certain fine chemicals, including amino acids, vitamins, cofactors, nutraceuticals, nucleotides, nucleosides, and trehalose. Given the availability of cloning vectors for use 10 in Corynebacterium glutamicum, such as those disclosed in Sinskey et al., U.S. Patent No. 4,649,119, and techniques for genetic manipulation of C. glutamicum and the related Brevibacterium species (e.g., lactofermentum) (Yoshihama et al, J. Bacteriol. 162: 591-597 (1985); Katsumata et al., J. Bacteriol. 159: 306-311 (1984); and Santamaria et al., J. Gen. Microbiol. 130: 2237-2246 (1984)), the nucleic acid molecules 15 of the invention may be utilized in the genetic engineering of this organism to make it a better or more efficient producer of one or more fine chemicals.

This improved production or efficiency of production of a fine chemical may be due to a direct effect of manipulation of a gene of the invention, or it may be due to an 20 indirect effect of such manipulation. Specifically, alterations in C. glutamicum metabolic pathways for amino acids, vitamins, cofactors, nucleotides, and trehalose may have a direct impact on the overall production of one or more of these desired compounds from this organism. For example, optimizing the activity of a lysine biosynthetic pathway protein or decreasing the activity of a lysine degradative pathway protein may result in an increase in the yield or efficiency of production of lysine from such an engineered organism. Alterations in the proteins involved in these metabolic pathways may also have an indirect impact on the production or efficiency of production of a desired fine chemical. For example, a reaction which is in competition for an intermediate necessary for the production of a desired molecule may be eliminated, or a 30 pathway necessary for the production of a particular intermediate for a desired compound may be optimized. Further, modulations in the biosynthesis or degradation of, for example, an amino acid, a vitamin, or a nucleotide may increase the overall

- 5 -

ability of the microorganism to rapidly grow and divide, thus increasing the number and/or production capacities of the microorganism in culture and thereby increasing the possible yield of the desired fine chemical.

The nucleic acid and protein molecules of the invention may be utilized to directly improve the production or efficiency of production of one or more desired fine chemicals from *Corynebacterium glutamicum*. Using recombinant genetic techniques well known in the art, one or more of the biosynthetic or degradative enzymes of the invention for amino acids, vitamins, cofactors, nutraceuticals, nucleotides, nucleosides, or trehalose may be manipulated such that its function is modulated. For example, a biosynthetic enzyme may be improved in efficiency, or its allosteric control region destroyed such that feedback inhibition of production of the compound is prevented. Similarly, a degradative enzyme may be deleted or modified by substitution, deletion, or addition such that its degradative activity is lessened for the desired compound without impairing the viability of the cell. In each case, the overall yield or rate of production of the desired fine chemical may be increased.

It is also possible that such alterations in the protein and nucleotide molecules of the invention may improve the production of other fine chemicals besides the amino acids, vitamins, cofactors, nutraceuticals, nucleotides, nucleosides, and trehalose through indirect mechanisms. Metabolism of any one compound is necessarily intertwined with other biosynthetic and degradative pathways within the cell, and necessary cofactors, intermediates, or substrates in one pathway are likely supplied or limited by another such pathway. Therefore, by modulating the activity of one or more of the proteins of the invention, the production or efficiency of activity of another fine chemical biosynthetic or degradative pathway may be impacted. For example, amino acids serve as the structural units of all proteins, yet may be present intracellularly in levels which are limiting for protein synthesis; therefore, by increasing the efficiency of production or the yields of one or more amino acids within the cell, proteins, such as biosynthetic or degradative proteins, may be more readily synthesized. Likewise, an alteration in a metabolic pathway enzyme such that a particular side reaction becomes more or less favored may result in the over- or under-production of one or more compounds which are utilized as intermediates or substrates for the production of a desired fine chemical.

5

10

15

20

25

This invention provides novel nucleic acid molecules which encode proteins, referred to herein as metabolic pathway proteins (MP), which are capable of, for example, performing an enzymatic step involved in the metabolism of molecules important for the normal functioning of cells, such as amino acids, vitamins, cofactors, nucleotides and nucleosides, or trehalose. Nucleic acid molecules encoding an MP protein are referred to herein as MP nucleic acid molecules. In a preferred embodiment, the MP protein performs an enzymatic step related to the metabolism of one or more of the following: amino acids, vitamins, cofactors, nutraceuticals, nucleotides, nucleosides, and trehalose. Examples of such proteins include those encoded by the genes set forth in Table 1.

10

15

20

25

30

THE OTHER WHEN I SHEET THE TANK THE TANK I WE SHEET THE TANK I WE

Accordingly, one aspect of the invention pertains to isolated nucleic acid molecules (e.g., cDNAs, DNAs, or RNAs) comprising a nucleotide sequence encoding an MP protein or biologically active portions thereof, as well as nucleic acid fragments suitable as primers or hybridization probes for the detection or amplification of MPencoding nucleic acid (e.g., DNA or mRNA). In particularly preferred embodiments, the isolated nucleic acid molecule comprises one of the nucleotide sequences set forth as the odd-numbered SEQ ID NOs in the Sequence Listing (e.g., SEQ ID NO:1, SEQ ID NO:3, SEO ID NO:5, SEO ID NO:7...), or the coding region or a complement thereof of one of these nucleotide sequences. In other particularly preferred embodiments, the isolated nucleic acid molecule of the invention comprises a nucleotide sequence which hybridizes to or is at least about 50%, preferably at least about 60%, more preferably at least about 70%, 80% or 90%, and even more preferably at least about 95%, 96%, 97%, 98%, 99% or more homologous to a nucleotide sequence set forth as an odd-numbered SEQ ID NO in the Sequence Listing (e.g., SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7....), or a portion thereof. In other preferred embodiments, the isolated nucleic acid molecule encodes one of the amino acid sequences set forth as an evennumbered SEQ ID NO in the Sequence Listing (e.g., SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8....). The preferred MP proteins of the present invention also preferably possess at least one of the MP activities described herein.

In another embodiment, the isolated nucleic acid molecule encodes a protein or portion thereof wherein the protein or portion thereof includes an amino acid sequence which is sufficiently homologous to an amino acid sequence of the invention (e.g., a

- 7 -

sequence having an even-numbered SEQ ID NO: in the Sequence Listing), e.g., sufficiently homologous to an amino acid sequence of the invention such that the protein or portion thereof maintains an MP activity. Preferably, the protein or portion thereof encoded by the nucleic acid molecule maintains the ability to perform an enzymatic reaction in a amino acid, vitamin, cofactor, nutraceutical, nucleotide, nucleoside, or trehalose metabolic pathway. In one embodiment, the protein encoded by the nucleic acid molecule is at least about 50%, preferably at least about 60%, and more preferably at least about 70%, 80%, or 90% and most preferably at least about 95%, 96%, 97%, 98%, or 99% or more homologous to an amino acid sequence of the invention (e.g., an entire amino acid sequence selected from those having an even-numbered SEQ ID NO in the Sequence Listing). In another preferred embodiment, the protein is a full length C. glutamicum protein which is substantially homologous to an entire amino acid sequence of the invention (encoded by an open reading frame shown in the corresponding odd-numbered SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7....).

In another preferred embodiment, the isolated nucleic acid molecule is derived from *C. glutamicum* and encodes a protein (*e.g.*, an MP fusion protein) which includes a biologically active domain which is at least about 50% or more homologous to one of the amino acid sequences of the invention (*e.g.*, a sequence of one of the even-numbered SEQ ID NOs in the Sequence Listing) and is able to catalyze a reaction in a metabolic pathway for an amino acid, vitamin, cofactor, nutraceutical, nucleotide, nucleoside, or trehalose, or one or more of the activities set forth in Table 1, and which also includes heterologous nucleic acid sequences encoding a heterologous polypeptide or regulatory regions.

In another embodiment, the isolated nucleic acid molecule is at least 15 nucleotides in length and hybridizes under stringent conditions to a nucleic acid molecule comprising a nucleotide sequence of the invention (e.g., a sequence of an odd-numbered SEQ ID NO in the Sequence Listing). Preferably, the isolated nucleic acid molecule corresponds to a naturally-occurring nucleic acid molecule. More preferably, the isolated nucleic acid encodes a naturally-occurring C. glutamicum MP protein, or a biologically active portion thereof.

- 8 -

Another aspect of the invention pertains to vectors, e.g., recombinant expression vectors, containing the nucleic acid molecules of the invention, and host cells into which such vectors have been introduced. In one embodiment, such a host cell is used to produce an MP protein by culturing the host cell in a suitable medium. The MP protein can be then isolated from the medium or the host cell.

Yet another aspect of the invention pertains to a genetically altered microorganism in which an MP gene has been introduced or altered. In one embodiment, the genome of the microorganism has been altered by introduction of a nucleic acid molecule of the invention encoding wild-type or mutated MP sequence as a transgene. In another embodiment, an endogenous MP gene within the genome of the microorganism has been altered, e.g., functionally disrupted, by homologous recombination with an altered MP gene. In another embodiment, an endogenous or introduced MP gene in a microorganism has been altered by one or more point mutations, deletions, or inversions, but still encodes a functional MP protein. In still another embodiment, one or more of the regulatory regions (e.g., a promoter, repressor, or inducer) of an MP gene in a microorganism has been altered (e.g., by deletion, truncation, inversion, or point mutation) such that the expression of the MP gene is modulated. In a preferred embodiment, the microorganism belongs to the genus Corynebacterium or Brevibacterium, with Corynebacterium glutamicum being particularly preferred. In a preferred embodiment, the microorganism is also utilized for the production of a desired compound, such as an amino acid, with lysine being particularly preferred.

10

15

20

25

30

In another aspect, the invention provides a method of identifying the presence or activity of *Cornyebacterium diphtheriae* in a subject. This method includes detection of one or more of the nucleic acid or amino acid sequences of the invention (e.g., the sequences set forth in the Sequence Listing as SEQ ID NOs 1 through 1156) in a subject, thereby detecting the presence or activity of *Corynebacterium diphtheriae* in the subject.

Still another aspect of the invention pertains to an isolated MP protein or a portion, e.g., a biologically active portion, thereof. In a preferred embodiment, the isolated MP protein or portion thereof can catalyze an enzymatic reaction involved in one or more pathways for the metabolism of an amino acid, a vitamin, a cofactor, a

-9-

nutraceutical, a nucleotide, a nucleoside, or trehalose. In another preferred embodiment, the isolated MP protein or portion thereof is sufficiently homologous to an amino acid sequence of the invention (e.g., a sequence of an even-numbered SEQ ID NO: in the Sequence Listing) such that the protein or portion thereof maintains the ability to catalyze an enzymatic reaction involved in one or more pathways for the metabolism of an amino acid, a vitamin, a cofactor, a nutraceutical, a nucleotide, a nucleoside, or trehalose.

The invention also provides an isolated preparation of an MP protein. In preferred embodiments, the MP protein comprises an amino acid sequence of the invention (e.g., a sequence of an even-numbered SEQ ID NO: of the Sequence Listing). In another preferred embodiment, the invention pertains to an isolated full length protein which is substantially homologous to an entire amino acid sequence of the invention (e.g., a sequence of an even-numbered SEQ ID NO: of the Sequence Listing) (encoded by an open reading frame set forth in a corresponding odd-numbered SEQ ID NO: of the Sequence Listing). In yet another embodiment, the protein is at least about 50%, preferably at least about 60%, and more preferably at least about 70%, 80%, or 90%, and most preferably at least about 95%, 96%, 97%, 98%, or 99% or more homologous to an entire amino acid sequence of the invention (e.g., a sequence of an even-numbered SEQ ID NO: of the Sequence Listing). In other embodiments, the isolated MP protein comprises an amino acid sequence which is at least about 50% or more homologous to one of the amino acid sequences of the invention (e.g., a sequence of an even-numbered SEQ ID NO: of the Sequence Listing) and is able to catalyze an enzymatic reaction in an amino acid, vitamin, cofactor, nutraceutical, nucleotide, nucleoside, or trehalose metabolic pathway, or has one or more of the activities set forth in Table 1.

Alternatively, the isolated MP protein can comprise an amino acid sequence which is encoded by a nucleotide sequence which hybridizes, e.g., hybridizes under stringent conditions, or is at least about 50%, preferably at least about 60%, more preferably at least about 70%, 80%, or 90%, and even more preferably at least about 95%, 96%, 97%, 98,%, or 99% or more homologous to a nucleotide sequence of one of the even-numbered SEQ ID NOs set forth in the Sequence Listing. It is also preferred that the preferred forms of MP proteins also have one or more of the MP bioactivities described herein.

25

30

5

10

15

20

25

30

The MP polypeptide, or a biologically active portion thereof, can be operatively linked to a non-MP polypeptide to form a fusion protein. In preferred embodiments, this fusion protein has an activity which differs from that of the MP protein alone. In other preferred embodiments, this fusion protein, when introduced into a *C. glutamicum* pathway for the metabolism of an amino acid, vitamin, cofactor, nutraceutical, results in increased yields and/or efficiency of production of a desired fine chemical from *C. glutamicum*. In particularly preferred embodiments, integration of this fusion protein into an amino acid, vitamin, cofactor, nutraceutical, nucleotide, nucleoside, or trehalose metabolic pathway of a host cell modulates production of a desired compound from the cell.

In another aspect, the invention provides methods for screening molecules which modulate the activity of an MP protein, either by interacting with the protein itself or a substrate or binding partner of the MP protein, or by modulating the transcription or translation of an MP nucleic acid molecule of the invention.

Another aspect of the invention pertains to a method for producing a fine chemical. This method involves the culturing of a cell containing a vector directing the expression of an MP nucleic acid molecule of the invention, such that a fine chemical is produced. In a preferred embodiment, this method further includes the step of obtaining a cell containing such a vector, in which a cell is transfected with a vector directing the expression of an MP nucleic acid. In another preferred embodiment, this method further includes the step of recovering the fine chemical from the culture. In a particularly preferred embodiment, the cell is from the genus *Corynebacterium* or *Brevibacterium*, or is selected from those strains set forth in Table 3.

Another aspect of the invention pertains to methods for modulating production of a molecule from a microorganism. Such methods include contacting the cell with an agent which modulates MP protein activity or MP nucleic acid expression such that a cell associated activity is altered relative to this same activity in the absence of the agent. In a preferred embodiment, the cell is modulated for one or more *C. glutamicum* amino acid, vitamin, cofactor, nutraceutical, nucleotide, nucleoside, or trehalose metabolic pathways, such that the yields or rate of production of a desired fine chemical by this microorganism is improved. The agent which modulates MP protein activity can be an agent which stimulates MP protein activity or MP nucleic acid expression.

- 11 -

Examples of agents which stimulate MP protein activity or MP nucleic acid expression include small molecules, active MP proteins, and nucleic acids encoding MP proteins that have been introduced into the cell. Examples of agents which inhibit MP activity or expression include small molecules, and antisense MP nucleic acid molecules.

Another aspect of the invention pertains to methods for modulating yields of a desired compound from a cell, involving the introduction of a wild-type or mutant MP gene into a cell, either maintained on a separate plasmid or integrated into the genome of the host cell. If integrated into the genome, such integration can be random, or it can take place by homologous recombination such that the native gene is replaced by the introduced copy, causing the production of the desired compound from the cell to be modulated. In a preferred embodiment, said yields are increased. In another preferred embodiment, said chemical is a fine chemical. In a particularly preferred embodiment, said fine chemical is an amino acid. In especially preferred embodiments, said amino acid is L-lysine.

15

20

5

10

Detailed Description of the Invention

The present invention provides MP nucleic acid and protein molecules which are involved in the metabolism of certain fine chemicals in *Corynebacterium glutamicum*, including amino acids, vitamins, cofactors, nutraceuticals, nucleotides, nucleosides, and trehalose. The molecules of the invention may be utilized in the modulation of production of fine chemicals from microorganisms, such as *C. glutamicum*, either directly (e.g., where modulation of the activity of a lysine biosynthesis protein has a direct impact on the production or efficiency of production of lysine from that organism), or may have an indirect impact which nonetheless results in an increase of yield or efficiency of production of the desired compound (e.g., where modulation of the activity of a nucleotide biosynthesis protein has an impact on the production of an organic acid or a fatty acid from the bacterium, perhaps due to improved growth or an increased supply of necessary co-factors, energy compounds, or precursor molecules). Aspects of the invention are further explicated below.

30

PCT/IB00/00923

I. Fine Chemicals

The term 'fine chemical' is art-recognized and includes molecules produced by an organism which have applications in various industries, such as, but not limited to, the pharmaceutical, agriculture, and cosmetics industries. Such compounds include organic acids, such as tartaric acid, itaconic acid, and diaminopimelic acid, both 5 proteinogenic and non-proteinogenic amino acids, purine and pyrimidine bases, nucleosides, and nucleotides (as described e.g. in Kuninaka, A. (1996) Nucleotides and related compounds, p. 561-612, in Biotechnology vol. 6, Rehm et al., eds. VCH: Weinheim, and references contained therein), lipids, both saturated and unsaturated fatty acids (e.g., arachidonic acid), diols (e.g., propane diol, and butane diol), carbohydrates 10 (e.g., hyaluronic acid and trehalose), aromatic compounds (e.g., aromatic amines, vanillin, and indigo), vitamins and cofactors (as described in Ullmann's Encyclopedia of Industrial Chemistry, vol. A27, "Vitamins", p. 443-613 (1996) VCH: Weinheim and references therein; and Ong, A.S., Niki, E. & Packer, L. (1995) "Nutrition, Lipids, Health, and Disease" Proceedings of the UNESCO/Confederation of Scientific and 15 Technological Associations in Malaysia, and the Society for Free Radical Research -Asia, held Sept. 1-3, 1994 at Penang, Malaysia, AOCS Press, (1995)), enzymes, polyketides (Cane et al. (1998) Science 282: 63-68), and all other chemicals described in Gutcho (1983) Chemicals by Fermentation, Noyes Data Corporation, ISBN: 0818805086 and references therein. The metabolism and uses of certain of these fine 20 chemicals are further explicated below.

A. Amino Acid Metabolism and Uses

Amino acids comprise the basic structural units of all proteins, and as such are essential for normal cellular functioning in all organisms. The term "amino acid" is artrecognized. The proteinogenic amino acids, of which there are 20 species, serve as structural units for proteins, in which they are linked by peptide bonds, while the nonproteinogenic amino acids (hundreds of which are known) are not normally found in proteins (see Ulmann's Encyclopedia of Industrial Chemistry, vol. A2, p. 57-97 VCH:

Weinheim (1985)). Amino acids may be in the D- or L- optical configuration, though L-amino acids are generally the only type found in naturally-occurring proteins.

Biosynthetic and degradative pathways of each of the 20 proteinogenic amino acids

- 13 -

have been well characterized in both prokaryotic and eukaryotic cells (see, for example, Stryer, L. Biochemistry, 3rd edition, pages 578-590 (1988)). The 'essential' amino acids (histidine, isoleucine, leucine, lysine, methionine, phenylalanine, threonine, tryptophan, and valine), so named because they are generally a nutritional requirement due to the complexity of their biosyntheses, are readily converted by simple biosynthetic pathways to the remaining 11 'nonessential' amino acids (alanine, arginine, asparagine, aspartate, cysteine, glutamate, glutamine, glycine, proline, serine, and tyrosine). Higher animals do retain the ability to synthesize some of these amino acids, but the essential amino acids must be supplied from the diet in order for normal protein synthesis to occur.

Aside from their function in protein biosynthesis, these amino acids are interesting chemicals in their own right, and many have been found to have various applications in the food, feed, chemical, cosmetics, agriculture, and pharmaceutical industries. Lysine is an important amino acid in the nutrition not only of humans, but also of monogastric animals such as poultry and swine. Glutamate is most commonly used as a flavor additive (mono-sodium glutamate, MSG) and is widely used throughout the food industry, as are aspartate, phenylalanine, glycine, and cysteine. Glycine, Lmethionine and tryptophan are all utilized in the pharmaceutical industry. Glutamine, valine, leucine, isoleucine, histidine, arginine, proline, serine and alanine are of use in both the pharmaceutical and cosmetics industries. Threonine, tryptophan, and D/Lmethionine are common feed additives. (Leuchtenberger, W. (1996) Amino aids technical production and use, p. 466-502 in Rehm et al. (eds.) Biotechnology vol. 6, chapter 14a, VCH: Weinheim). Additionally, these amino acids have been found to be useful as precursors for the synthesis of synthetic amino acids and proteins, such as Nacetylcysteine, S-carboxymethyl-L-cysteine, (S)-5-hydroxytryptophan, and others described in Ulmann's Encyclopedia of Industrial Chemistry, vol. A2, p. 57-97, VCH: Weinheim, 1985.

The biosynthesis of these natural amino acids in organisms capable of producing them, such as bacteria, has been well characterized (for review of bacterial amino acid biosynthesis and regulation thereof, see Umbarger, H.E.(1978) *Ann. Rev. Biochem.* 47: 533-606). Glutamate is synthesized by the reductive amination of α-ketoglutarate, an intermediate in the citric acid cycle. Glutamine, proline, and arginine are each subsequently produced from glutamate. The biosynthesis of serine is a three-

10

15

20

25

5

10

15

20

25

step process beginning with 3-phosphoglycerate (an intermediate in glycolysis), and resulting in this amino acid after oxidation, transamination, and hydrolysis steps. Both cysteine and glycine are produced from serine; the former by the condensation of homocysteine with serine, and the latter by the transferal of the side-chain β -carbon atom to tetrahydrofolate, in a reaction catalyzed by serine transhydroxymethylase. Phenylalanine, and tyrosine are synthesized from the glycolytic and pentose phosphate pathway precursors erythrose 4-phosphate and phosphoenolpyruvate in a 9-step biosynthetic pathway that differ only at the final two steps after synthesis of prephenate. Tryptophan is also produced from these two initial molecules, but its synthesis is an 11step pathway. Tyrosine may also be synthesized from phenylalanine, in a reaction catalyzed by phenylalanine hydroxylase. Alanine, valine, and leucine are all biosynthetic products of pyruvate, the final product of glycolysis. Aspartate is formed from oxaloacetate, an intermediate of the citric acid cycle. Asparagine, methionine, threonine, and lysine are each produced by the conversion of aspartate. Isoleucine is formed from threonine. A complex 9-step pathway results in the production of histidine from 5-phosphoribosyl-1-pyrophosphate, an activated sugar.

Amino acids in excess of the protein synthesis needs of the cell cannot be stored, and are instead degraded to provide intermediates for the major metabolic pathways of the cell (for review see Stryer, L. Biochemistry 3rd ed. Ch. 21 "Amino Acid Degradation and the Urea Cycle" p. 495-516 (1988)). Although the cell is able to convert unwanted amino acids into useful metabolic intermediates, amino acid production is costly in terms of energy, precursor molecules, and the enzymes necessary to synthesize them. Thus it is not surprising that amino acid biosynthesis is regulated by feedback inhibition, in which the presence of a particular amino acid serves to slow or entirely stop its own production (for overview of feedback mechanisms in amino acid biosynthetic pathways, see Stryer, L. Biochemistry, 3rd ed. Ch. 24: "Biosynthesis of Amino Acids and Heme" p. 575-600 (1988)). Thus, the output of any particular amino acid is limited by the amount of that amino acid present in the cell.

30 B. Vitamin, Cofactor, and Nutraceutical Metabolism and Uses

Vitamins, cofactors, and nutraceuticals comprise another group of molecules which the higher animals have lost the ability to synthesize and so must ingest, although

- 15 -

they are readily synthesized by other organisms, such as bacteria. These molecules are either bioactive substances themselves, or are precursors of biologically active substances which may serve as electron carriers or intermediates in a variety of metabolic pathways. Aside from their nutritive value, these compounds also have significant industrial value as coloring agents, antioxidants, and catalysts or other processing aids. (For an overview of the structure, activity, and industrial applications of these compounds, see, for example, Ullman's Encyclopedia of Industrial Chemistry, "Vitamins" vol. A27, p. 443-613, VCH: Weinheim, 1996.) The term "vitamin" is artrecognized, and includes nutrients which are required by an organism for normal functioning, but which that organism cannot synthesize by itself. The group of vitamins may encompass cofactors and nutraceutical compounds. The language "cofactor" includes nonproteinaceous compounds required for a normal enzymatic activity to occur. Such compounds may be organic or inorganic; the cofactor molecules of the invention are preferably organic. The term "nutraceutical" includes dietary supplements having health benefits in plants and animals, particularly humans. Examples of such molecules are vitamins, antioxidants, and also certain lipids (e.g., polyunsaturated fatty acids).

The biosynthesis of these molecules in organisms capable of producing them, such as bacteria, has been largely characterized (Ullman's Encyclopedia of Industrial Chemistry, "Vitamins" vol. A27, p. 443-613, VCH: Weinheim, 1996; Michal, G. (1999) Biochemical Pathways: An Atlas of Biochemistry and Molecular Biology, John Wiley & Sons; Ong, A.S., Niki, E. & Packer, L. (1995) "Nutrition, Lipids, Health, and Disease" Proceedings of the UNESCO/Confederation of Scientific and Technological Associations in Malaysia, and the Society for Free Radical Research – Asia, held Sept. 1-3, 1994 at Penang, Malaysia, AOCS Press: Champaign, IL X, 374 S).

Thiamin (vitamin B_1) is produced by the chemical coupling of pyrimidine and thiazole moieties. Riboflavin (vitamin B_2) is synthesized from guanosine-5'-triphosphate (GTP) and ribose-5'-phosphate. Riboflavin, in turn, is utilized for the synthesis of flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD). The family of compounds collectively termed 'vitamin B_6 ' (e.g., pyridoxine, pyridoxamine, pyridoxa-5'-phosphate, and the commercially used pyridoxin hydrochloride) are all derivatives of the common structural unit, 5-hydroxy-6-methylpyridine. Pantothenate (pantothenic

10

20

25

- 16 -

acid, (R)-(+)-N-(2,4-dihydroxy-3,3-dimethyl-1-oxobutyl)-β-alanine) can be produced either by chemical synthesis or by fermentation. The final steps in pantothenate biosynthesis consist of the ATP-driven condensation of β-alanine and pantoic acid. The enzymes responsible for the biosynthesis steps for the conversion to pantoic acid, to β-alanine and for the condensation to panthotenic acid are known. The metabolically active form of pantothenate is Coenzyme A, for which the biosynthesis proceeds in 5 enzymatic steps. Pantothenate, pyridoxal-5'-phosphate, cysteine and ATP are the precursors of Coenzyme A. These enzymes not only catalyze the formation of panthothante, but also the production of (R)-pantoic acid, (R)-pantolacton, (R)-panthenol (provitamin B₅), pantetheine (and its derivatives) and coenzyme A.

5

10

15

20

25

30

Biotin biosynthesis from the precursor molecule pimeloyl-CoA in microorganisms has been studied in detail and several of the genes involved have been identified. Many of the corresponding proteins have been found to also be involved in Fe-cluster synthesis and are members of the nifS class of proteins. Lipoic acid is derived from octanoic acid, and serves as a coenzyme in energy metabolism, where it becomes part of the pyruvate dehydrogenase complex and the α-ketoglutarate dehydrogenase complex. The folates are a group of substances which are all derivatives of folic acid, which is turn is derived from L-glutamic acid, p-amino-benzoic acid and 6-methylpterin. The biosynthesis of folic acid and its derivatives, starting from the metabolism intermediates guanosine-5'-triphosphate (GTP), L-glutamic acid and p-amino-benzoic acid has been studied in detail in certain microorganisms.

Corrinoids (such as the cobalamines and particularly vitamin B₁₂) and porphyrines belong to a group of chemicals characterized by a tetrapyrole ring system. The biosynthesis of vitamin B₁₂ is sufficiently complex that it has not yet been completely characterized, but many of the enzymes and substrates involved are now known. Nicotinic acid (nicotinate), and nicotinamide are pyridine derivatives which are also termed 'niacin'. Niacin is the precursor of the important coenzymes NAD (nicotinamide adenine dinucleotide) and NADP (nicotinamide adenine dinucleotide phosphate) and their reduced forms.

The large-scale production of these compounds has largely relied on cell-free chemical syntheses, though some of these chemicals have also been produced by large-scale culture of microorganisms, such as riboflavin, Vitamin B₆, pantothenate, and

- 17 -

biotin. Only Vitamin B₁₂ is produced solely by fermentation, due to the complexity of its synthesis. *In vitro* methodologies require significant inputs of materials and time, often at great cost.

5 C. Purine, Pyrimidine, Nucleoside and Nucleotide Metabolism and Uses

Purine and pyrimidine metabolism genes and their corresponding proteins are important targets for the therapy of tumor diseases and viral infections. The language "purine" or "pyrimidine" includes the nitrogenous bases which are constituents of nucleic acids, co-enzymes, and nucleotides. The term "nucleotide" includes the basic structural units of nucleic acid molecules, which are comprised of a nitrogenous base, a pentose sugar (in the case of RNA, the sugar is ribose; in the case of DNA, the sugar is D-deoxyribose), and phosphoric acid. The language "nucleoside" includes molecules which serve as precursors to nucleotides, but which are lacking the phosphoric acid moiety that nucleotides possess. By inhibiting the biosynthesis of these molecules, or their mobilization to form nucleic acid molecules, it is possible to inhibit RNA and DNA synthesis; by inhibiting this activity in a fashion targeted to cancerous cells, the ability of tumor cells to divide and replicate may be inhibited. Additionally, there are nucleotides which do not form nucleic acid molecules, but rather serve as energy stores (i.e., AMP) or as coenzymes (i.e., FAD and NAD).

Several publications have described the use of these chemicals for these medical indications, by influencing purine and/or pyrimidine metabolism (e.g. Christopherson, R.I. and Lyons, S.D. (1990) "Potent inhibitors of de novo pyrimidine and purine biosynthesis as chemotherapeutic agents." Med. Res. Reviews 10: 505-548). Studies of enzymes involved in purine and pyrimidine metabolism have been focused on the development of new drugs which can be used, for example, as immunosuppressants or anti-proliferants (Smith, J.L., (1995) "Enzymes in nucleotide synthesis." Curr. Opin. Struct. Biol. 5: 752-757; (1995) Biochem Soc. Transact. 23: 877-902). However, purine and pyrimidine bases, nucleosides and nucleotides have other utilities: as intermediates in the biosynthesis of several fine chemicals (e.g., thiamine, S-adenosyl-methionine, folates, or riboflavin), as energy carriers for the cell (e.g., ATP or GTP), and for chemicals themselves, commonly used as flavor enhancers (e.g., IMP or GMP) or for several medicinal applications (see, for example, Kuninaka, A. (1996) Nucleotides and

Related Compounds in Biotechnology vol. 6, Rehm *et al.*, eds. VCH: Weinheim, p. 561-612). Also, enzymes involved in purine, pyrimidine, nucleoside, or nucleotide metabolism are increasingly serving as targets against which chemicals for crop protection, including fungicides, herbicides and insecticides, are developed.

5 The metabolism of these compounds in bacteria has been characterized (for reviews see, for example, Zalkin, H. and Dixon, J.E. (1992) "de novo purine nucleotide biosynthesis", in: Progress in Nucleic Acid Research and Molecular Biology, vol. 42, Academic Press:, p. 259-287; and Michal, G. (1999) "Nucleotides and Nucleosides", Chapter 8 in: Biochemical Pathways: An Atlas of Biochemistry and Molecular Biology, Wiley: New York). Purine metabolism has been the subject of intensive research, and is 10 essential to the normal functioning of the cell. Impaired purine metabolism in higher animals can cause severe disease, such as gout. Purine nucleotides are synthesized from ribose-5-phosphate, in a series of steps through the intermediate compound inosine-5'phosphate (IMP), resulting in the production of guanosine-5'-monophosphate (GMP) or adenosine-5'-monophosphate (AMP), from which the triphosphate forms utilized as 15 nucleotides are readily formed. These compounds are also utilized as energy stores, so their degradation provides energy for many different biochemical processes in the cell. Pyrimidine biosynthesis proceeds by the formation of uridine-5'-monophosphate (UMP) from ribose-5-phosphate. UMP, in turn, is converted to cytidine-5'-triphosphate (CTP). 20 The deoxy- forms of all of these nucleotides are produced in a one step reduction reaction from the diphosphate ribose form of the nucleotide to the diphosphate deoxyribose form of the nucleotide. Upon phosphorylation, these molecules are able to participate in DNA synthesis.

25 D. Trehalose Metabolism and Uses

30

Trehalose consists of two glucose molecules, bound in α, α-1,1 linkage. It is commonly used in the food industry as a sweetener, an additive for dried or frozen foods, and in beverages. However, it also has applications in the pharmaceutical, cosmetics and biotechnology industries (see, for example, Nishimoto *et al.*, (1998) U.S. Patent No. 5,759,610; Singer, M.A. and Lindquist, S. (1998) *Trends Biotech*. 16: 460-467; Paiva, C.L.A. and Panek, A.D. (1996) *Biotech. Ann. Rev.* 2: 293-314; and Shiosaka, M. (1997) J. Japan 172: 97-102). Trehalose is produced by enzymes from

- 19 -

many microorganisms and is naturally released into the surrounding medium, from which it can be collected using methods known in the art.

II. Elements and Methods of the Invention

5

The present invention is based, at least in part, on the discovery of novel molecules, referred to herein as MP nucleic acid and protein molecules, which play a role in or function in one or more cellular metabolic pathways. In one embodiment, the MP molecules catalyze an enzymatic reaction involving one or more amino acid, vitamin, cofactor, nutraceutical, nucleotide, nucleoside, or trehalose metabolic 10 pathways. In a preferred embodiment, the activity of the MP molecules of the present invention in one or more C. glutamicum metabolic pathways for amino acids, vitamins, cofactors, nutraceuticals, nucleotides, nucleosides or trehalose has an impact on the production of a desired fine chemical by this organism. In a particularly preferred embodiment, the MP molecules of the invention are modulated in activity, such that the C. glutamicum metabolic pathways in which the MP proteins of the invention are involved are modulated in efficiency or output, which either directly or indirectly modulates the production or efficiency of production of a desired fine chemical by C. glutamicum.

The language, "MP protein" or "MP polypeptide" includes proteins which play 20 a role in, e.g., catalyze an enzymatic reaction, in one or more amino acid, vitamin, cofactor, nutraceutical, nucleotide, nucleoside or trehalose metabolic pathways. Examples of MP proteins include those encoded by the MP genes set forth in Table 1 and by the odd-numbered SEQ ID NOs. The terms "MP gene" or "MP nucleic acid sequence" include nucleic acid sequences encoding an MP protein, which consist of a coding region and also corresponding untranslated 5' and 3' sequence regions. Examples of MP genes include those set forth in Table 1. The terms "production" or "productivity" are art-recognized and include the concentration of the fermentation product (for example, the desired fine chemical) formed within a given time and a given fermentation volume (e.g., kg product per hour per liter). The term "efficiency of 30 production" includes the time required for a particular level of production to be achieved (for example, how long it takes for the cell to attain a particular rate of output of a fine chemical). The term "yield" or "product/carbon yield" is art-recognized and includes

5

10

15

20

25

30

the efficiency of the conversion of the carbon source into the product (i.e., fine chemical). This is generally written as, for example, kg product per kg carbon source. By increasing the yield or production of the compound, the quantity of recovered molecules, or of useful recovered molecules of that compound in a given amount of culture over a given amount of time is increased. The terms "biosynthesis" or a "biosynthetic pathway" are art-recognized and include the synthesis of a compound, preferably an organic compound, by a cell from intermediate compounds in what may be a multistep and highly regulated process. The terms "degradation" or a "degradation pathway" are art-recognized and include the breakdown of a compound, preferably an organic compound, by a cell to degradation products (generally speaking, smaller or less complex molecules) in what may be a multistep and highly regulated process. The language "metabolism" is art-recognized and includes the totality of the biochemical reactions that take place in an organism. The metabolism of a particular compound, then, (e.g., the metabolism of an amino acid such as glycine) comprises the overall biosynthetic, modification, and degradation pathways in the cell related to this compound.

In another embodiment, the MP molecules of the invention are capable of modulating the production of a desired molecule, such as a fine chemical, in a microorganism such as *C. glutamicum*. Using recombinant genetic techniques, one or more of the biosynthetic or degradative enzymes of the invention for amino acids, vitamins, cofactors, nutraceuticals, nucleotides, nucleosides, or trehalose may be manipulated such that its function is modulated. For example, a biosynthetic enzyme may be improved in efficiency, or its allosteric control region destroyed such that feedback inhibition of production of the compound is prevented. Similarly, a degradative enzyme may be deleted or modified by substitution, deletion, or addition such that its degradative activity is lessened for the desired compound without impairing the viability of the cell. In each case, the overall yield or rate of production of one of these desired fine chemicals may be increased.

It is also possible that such alterations in the protein and nucleotide molecules of the invention may improve the production of other fine chemicals besides the amino acids, vitamins, cofactors, nutraceuticals, nucleotides, nucleosides, and trehalose. Metabolism of any one compound is necessarily intertwined with other biosynthetic and

- 21 -

degradative pathways within the cell, and necessary cofactors, intermediates, or substrates in one pathway are likely supplied or limited by another such pathway. Therefore, by modulating the activity of one or more of the proteins of the invention, the production or efficiency of activity of another fine chemical biosynthetic or degradative pathway may be impacted. For example, amino acids serve as the structural units of all proteins, yet may be present intracellularly in levels which are limiting for protein synthesis; therefore, by increasing the efficiency of production or the yields of one or more amino acids within the cell, proteins, such as biosynthetic or degradative proteins, may be more readily synthesized. Likewise, an alteration in a metabolic pathway enzyme such that a particular side reaction becomes more or less favored may result in the over- or under-production of one or more compounds which are utilized as intermediates or substrates for the production of a desired fine chemical.

The isolated nucleic acid sequences of the invention are contained within the genome of a Corynebacterium glutamicum strain available through the American Type Culture Collection, given designation ATCC 13032. The nucleotide sequence of the isolated C. glutamicum MP DNAs and the predicted amino acid sequences of the C. glutamicum MP proteins are shown in the Sequence Listing as odd-numbered SEQ ID NOs and even-numbered SEQ ID NOs, respectively. Computational analyses were performed which classified and/or identified these nucleotide sequences as sequences which encode metabolic pathway proteins.

The present invention also pertains to proteins which have an amino acid sequence which is substantially homologous to an amino acid sequence of the invention (e.g., the sequence of an even-numbered SEQ ID NO of the Sequence Listing). As used herein, a protein which has an amino acid sequence which is substantially homologous to a selected amino acid sequence is least about 50% homologous to the selected amino acid sequence, e.g., the entire selected amino acid sequence. A protein which has an amino acid sequence which is substantially homologous to a selected amino acid sequence can also be least about 50-60%, preferably at least about 60-70%, and more preferably at least about 70-80%, 80-90%, or 90-95%, and most preferably at least about 96%, 97%, 98%, 99% or more homologous to the selected amino acid sequence.

The MP protein or a biologically active portion or fragment thereof of the invention can catalyze an enzymatic reaction in one or more amino acid, vitamin,

10

15

20

- 22 -

cofactor, nutraceutical, nucleotide, nucleoside, or trehalose metabolic pathways, or have one or more of the activities set forth in Table 1.

Various aspects of the invention are described in further detail in the following subsections:

5

10

15

20

30

A. Isolated Nucleic Acid Molecules

One aspect of the invention pertains to isolated nucleic acid molecules that encode MP polypeptides or biologically active portions thereof, as well as nucleic acid fragments sufficient for use as hybridization probes or primers for the identification or amplification of MP-encoding nucleic acid (e.g., MP DNA). As used herein, the term "nucleic acid molecule" is intended to include DNA molecules (e.g., cDNA or genomic DNA) and RNA molecules (e.g., mRNA) and analogs of the DNA or RNA generated using nucleotide analogs. This term also encompasses untranslated sequence located at both the 3' and 5' ends of the coding region of the gene: at least about 100 nucleotides of sequence upstream from the 5' end of the coding region and at least about 20 nucleotides of sequence downstream from the 3'end of the coding region of the gene. The nucleic acid molecule can be single-stranded or double-stranded, but preferably is double-stranded DNA. An "isolated" nucleic acid molecule is one which is separated from other nucleic acid molecules which are present in the natural source of the nucleic acid. Preferably, an "isolated" nucleic acid is free of sequences which naturally flank the nucleic acid (i.e., sequences located at the 5' and 3' ends of the nucleic acid) in the genomic DNA of the organism from which the nucleic acid is derived. For example, in various embodiments, the isolated MP nucleic acid molecule can contain less than about 5 kb, 4kb, 3kb, 2kb, 1 kb, 0.5 kb or 0.1 kb of nucleotide sequences which naturally flank the nucleic acid molecule in genomic DNA of the cell from which the nucleic acid is derived (e.g, a C. glutamicum cell). Moreover, an "isolated" nucleic acid molecule, such as a DNA molecule, can be substantially free of other cellular material, or culture medium when produced by recombinant techniques, or chemical precursors or other chemicals when chemically synthesized.

A nucleic acid molecule of the present invention, e.g., a nucleic acid molecule having a nucleotide sequence of an odd-numbered SEQ ID NO of the Sequence Listing, or a portion thereof, can be isolated using standard molecular biology techniques and the

- 23 -

sequence information provided herein. For example, a C. glutamicum MP DNA can be isolated from a C. glutamicum library using all or portion of one of the odd-numbered SEQ ID NO sequences of the Sequence Listing as a hybridization probe and standard hybridization techniques (e.g., as described in Sambrook, J., Fritsh, E. F., and Maniatis, T. Molecular Cloning: A Laboratory Manual. 2nd, ed., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989). Moreover, a nucleic acid molecule encompassing all or a portion of one of the nucleic acid sequences of the invention (e.g., an odd-numbered SEQ ID NO:) can be isolated by the polymerase chain reaction using oligonucleotide primers designed based upon this 10 sequence (e.g., a nucleic acid molecule encompassing all or a portion of one of the nucleic acid sequences of the invention (e.g., an odd-numbered SEQ ID NO of the Sequence Listing) can be isolated by the polymerase chain reaction using oligonucleotide primers designed based upon this same sequence). For example, mRNA can be isolated from normal endothelial cells (e.g., by the guanidinium-thiocyanate 15 extraction procedure of Chirgwin et al. (1979) Biochemistry 18: 5294-5299) and DNA can be prepared using reverse transcriptase (e.g., Moloney MLV reverse transcriptase, available from Gibco/BRL, Bethesda, MD; or AMV reverse transcriptase, available from Seikagaku America, Inc., St. Petersburg, FL). Synthetic oligonucleotide primers for polymerase chain reaction amplification can be designed based upon one of the 20 nucleotide sequences shown in the Sequence Listing. A nucleic acid of the invention can be amplified using cDNA or, alternatively, genomic DNA, as a template and appropriate oligonucleotide primers according to standard PCR amplification techniques. The nucleic acid so amplified can be cloned into an appropriate vector and characterized by DNA sequence analysis. Furthermore, oligonucleotides corresponding 25 to an MP nucleotide sequence can be prepared by standard synthetic techniques, e.g.,

In a preferred embodiment, an isolated nucleic acid molecule of the invention comprises one of the nucleotide sequences shown in the Sequence Listing. The nucleic acid sequences of the invention, as set forth in the Sequence Listing, correspond to the Corynebacterium glutamicum MP DNAs of the invention. This DNA comprises sequences encoding MP proteins (i.e., the "coding region", indicated in each odd-numbered SEQ ID NO: sequence in the Sequence Listing), as well as 5' untranslated

using an automated DNA synthesizer.

- 24 -

sequences and 3' untranslated sequences, also indicated in each odd-numbered SEQ ID NO: in the Sequence Listing. Alternatively, the nucleic acid molecule can comprise only the coding region of any of the nucleic acid sequences of the Sequence Listing.

For the purposes of this application, it will be understood that each of the nucleic acid and amino acid sequences set forth in the Sequence Listing has an identifying RXA, RXN, RXS, or RXC number having the designation "RXA", "RXN", "RXS", or "RXC" followed by 5 digits (i.e., RXA00007, RXN00023, RXS00116, or RXC00128). Each of the nucleic acid sequences comprises up to three parts: a 5' upstream region, a coding region, and a downstream region. Each of these three regions is identified by the same RXA, RXN, RXS, or RXC designation to eliminate confusion. The recitation "one of the odd-numbered sequences of the Sequence Listing", then, refers to any of the nucleic acid sequences in the Sequence Listing, which may also be distinguished by their differing RXA, RXN, RXS, or RXC designations. The coding region of each of these sequences is translated into a corresponding amino acid sequence, which is also set forth in the Sequence Listing, as an even-numbered SEQ ID NO: immediately following the 15 corresponding nucleic acid sequence. For example, the coding region for RXA02229 is set forth in SEO ID NO:1, while the amino acid sequence which it encodes is set forth as SEQ ID NO:2. The sequences of the nucleic acid molecules of the invention are identified by the same RXA, RXN, RXS, or RXC designations as the amino acid 20 molecules which they encode, such that they can be readily correlated. For example, the amino acid sequences designated RXA02229, RX00351, RXS02970, and RXC02390 are translations of the coding regions of the nucleotide sequences of nucleic acid molecules RXA02229, RX00351, RXS02970, and RXC02390, respectively. The correspondence between the RXA, RXN, RXS, and RXC nucleotide and amino acid 25 sequences of the invention and their assigned SEQ ID NOs is set forth in Table 1.

Several of the genes of the invention are "F-designated genes". An F-designated gene includes those genes set forth in Table 1 which have an 'F' in front of the RXA, RXN, RXS, or RXC designation. For example, SEQ ID NO:5, designated, as indicated on Table 1, as "F RXA01009", is an F-designated gene, as are SEQ ID NOs: 73, 75, and 77 (designated on Table 1 as "F RXA00007", "F RXA00364", and "F RXA00367", respectively).

- 25 -

In one embodiment, the nucleic acid molecules of the present invention are not intended to include *C. glutamicum* those compiled in Table 2. In the case of the dapD gene, a sequence for this gene was published in Wehrmann, A., *et al.* (1998) *J. Bacteriol.* 180(12): 3159-3165. However, the sequence obtained by the inventors of the present application is significantly longer than the published version. It is believed that the published version relied on an incorrect start codon, and thus represents only a fragment of the actual coding region.

In another preferred embodiment, an isolated nucleic acid molecule of the invention comprises a nucleic acid molecule which is a complement of one of the nucleotide sequences of the invention (e.g., a sequence of an odd-numbered SEQ ID NO: of the Sequence Listing), or a portion thereof. A nucleic acid molecule which is complementary to one of the nucleotide sequences of the invention is one which is sufficiently complementary to one of the nucleotide sequences shown in the Sequence Listing (e.g., the sequence of an odd-numbered SEQ ID NO:) such that it can hybridize to one of the nucleotide sequences of the invention, thereby forming a stable duplex.

In still another preferred embodiment, an isolated nucleic acid molecule of the invention comprises a nucleotide sequence which is at least about 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, or 60%, preferably at least about 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, or 70%%, more preferably at least about 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, or 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, or 90%, or 91%, 92%, 93%, 94%, and even more preferably at least about 95%, 96%, 97%, 98%, 99% or more homologous to a nucleotide sequence of the invention (e.g., a sequence of an odd-numbered SEQ ID NO: of the Sequence Listing), or a portion thereof. Ranges and identity values intermediate to the above-recited ranges, (e.g., 70-90% identical or 80-95% identical) are also intended to be encompassed by the present invention. For example, ranges of identity values using a combination of any of the above values recited as upper and/or lower limits are intended to be included. In an additional preferred embodiment, an isolated nucleic acid molecule of the invention comprises a nucleotide sequence which hybridizes, e.g., hybridizes under stringent conditions, to one of the nucleotide sequences of the invention, or a portion thereof.

Moreover, the nucleic acid molecule of the invention can comprise only a portion of the coding region of the sequence of one of the odd-numbered SEQ ID NOs

10

15

20

25

- 26 -

of the Sequence Listing, for example a fragment which can be used as a probe or primer or a fragment encoding a biologically active portion of an MP protein. The nucleotide sequences determined from the cloning of the MP genes from C. glutamicum allows for the generation of probes and primers designed for use in identifying and/or cloning MP homologues in other cell types and organisms, as well as MP homologues from other Corynebacteria or related species. The probe/primer typically comprises substantially purified oligonucleotide. The oligonucleotide typically comprises a region of nucleotide sequence that hybridizes under stringent conditions to at least about 12, preferably about 25, more preferably about 40, 50 or 75 consecutive nucleotides of a sense strand of one of the nucleotide sequences of the invention (e.g., a sequence of one of the oddnumbered SEQ ID NOs of the Sequence Listing), an anti-sense sequence of one of these sequences, or naturally occurring mutants thereof. Primers based on a nucleotide sequence of the invention can be used in PCR reactions to clone MP homologues. Probes based on the MP nucleotide sequences can be used to detect transcripts or genomic sequences encoding the same or homologous proteins. In preferred embodiments, the probe further comprises a label group attached thereto, e.g. the label group can be a radioisotope, a fluorescent compound, an enzyme, or an enzyme cofactor. Such probes can be used as a part of a diagnostic test kit for identifying cells which misexpress an MP protein, such as by measuring a level of an MP-encoding nucleic acid in a sample of cells from a subject e.g., detecting MP mRNA levels or determining whether a genomic MP gene has been mutated or deleted.

10

15

20

25

30

In one embodiment, the nucleic acid molecule of the invention encodes a protein or portion thereof which includes an amino acid sequence which is sufficiently homologous to an amino acid sequence of the invention (e.g., a sequence of an even-numbered SEQ ID NO of the Sequence Listing) such that the protein or portion thereof maintains the ability to catalyze an enzymatic reaction in an amino acid, vitamin, cofactor, nutraceutical, nucleotide, nucleoside, or trehalose metabolic pathway. As used herein, the language "sufficiently homologous" refers to proteins or portions thereof which have amino acid sequences which include a minimum number of identical or equivalent (e.g., an amino acid residue which has a similar side chain as an amino acid residue in a sequence of one of the even-numbered SEQ ID NOs of the Sequence Listing) amino acid residues to an amino acid sequence of the invention such that the

- 27 -

protein or portion thereof is able to catalyze an enzymatic reaction in a *C. glutamicum* amino acid, vitamin, cofactor, nutraceutical, nucleotide, nucleoside or trehalose metabolic pathway. Protein members of such metabolic pathways, as described herein, function to catalyze the biosynthesis or degradation of one or more of: amino acids, vitamins, cofactors, nutraceuticals, nucleotides, nucleosides, or trehalose. Examples of such activities are also described herein. Thus, "the function of an MP protein" contributes to the overall functioning of one or more such metabolic pathway and contributes, either directly or indirectly, to the yield, production, and/or efficiency of production of one or more fine chemicals. Examples of MP protein activities are set

In another embodiment, the protein is at least about 50-60%, preferably at least about 60-70%, and more preferably at least about 70-80%, 80-90%, 90-95%, and most preferably at least about 96%, 97%, 98%, 99% or more homologous to an entire amino acid sequence of the invention (e.g., a sequence of an even-numbered SEQ ID NO: of the Sequence Listing).

Portions of proteins encoded by the MP nucleic acid molecules of the invention are preferably biologically active portions of one of the MP proteins. As used herein, the term "biologically active portion of an MP protein" is intended to include a portion, e.g., a domain/motif, of an MP protein that catalyzes an enzymatic reaction in one or more C. glutamicum amino acid, vitamin, cofactor, nutraceutical, nucleotide, nucleoside, or trehalose metabolic pathways, or has an activity as set forth in Table 1. To determine whether an MP protein or a biologically active portion thereof can catalyze an enzymatic reaction in an amino acid, vitamin, cofactor, nutraceutical, nucleotide, nucleoside, or trehalose metabolic pathway, an assay of enzymatic activity may be performed. Such assay methods are well known to those of ordinary skill in the art, as detailed in Example 8 of the Exemplification.

Additional nucleic acid fragments encoding biologically active portions of an MP protein can be prepared by isolating a portion of one of the amino acid sequences of the invention (e.g., a sequence of an even-numbered SEQ ID NO: of the Sequence Listing), expressing the encoded portion of the MP protein or peptide (e.g., by recombinant expression *in vitro*) and assessing the activity of the encoded portion of the MP protein or peptide.

15

20

25

The invention further encompasses nucleic acid molecules that differ from one of the nucleotide sequences of the invention (e.g., a sequence of an odd-numbered SEQ ID NO: of the Sequence Listing) (and portions thereof) due to degeneracy of the genetic code and thus encode the same MP protein as that encoded by the nucleotide sequences of the invention. In another embodiment, an isolated nucleic acid molecule of the invention has a nucleotide sequence encoding a protein having an amino acid sequence shown in the Sequence Listing (e.g., an even-numbered SEQ ID NO:). In a still further embodiment, the nucleic acid molecule of the invention encodes a full length C. glutamicum protein which is substantially homologous to an amino acid sequence of the invention (encoded by an open reading frame shown in an odd-numbered SEQ ID NO: of the Sequence Listing).

It will be understood by one of ordinary skill in the art that in one embodiment the sequences of the invention are not meant to include the sequences of the prior art, such as those Genbank sequences set forth in Tables 2 or 4 which were available prior to the present invention. In one embodiment, the invention includes nucleotide and amino acid sequences having a percent identity to a nucleotide or amino acid sequence of the invention which is greater than that of a sequence of the prior art (e.g., a Genbank sequence (or the protein encoded by such a sequence) set forth in Tables 2 or 4). For example, the invention includes a nucleotide sequence which is greater than and/or at least 40% identical to the nucleotide sequence designated RXA00115 (SEQ ID NO:185), a nucleotide sequence which is greater than and/or at least % identical to the nucleotide sequence designated RXA00131 (SEQ ID NO:991), and a nucleotide sequence which is greater than and/or at least 39% identical to the nucleotide sequence designated RXA00219 (SEQ ID NO:345). One of ordinary skill in the art would be able to calculate the lower threshold of percent identity for any given sequence of the invention by examining the GAP-calculated percent identity scores set forth in Table 4 for each of the three top hits for the given sequence, and by subtracting the highest GAP-calculated percent identity from 100 percent. One of ordinary skill in the art will also appreciate that nucleic acid and amino acid sequences having percent identities greater than the lower threshold so calculated (e.g., at least 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, or 60%, preferably at least about 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, or 70%, more preferably at least about 71%, 72%, 73%,

15

20

25

74%, 75%, 76%, 77%, 78%, 79%, or 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, or 90%, or 91%, 92%, 93%, 94%, and even more preferably at least about 95%, 96%, 97%, 98%, 99% or more identical) are also encompassed by the invention.

In addition to the *C. glutamicum* MP nucleotide sequences set forth in the Sequence Listing as odd-numbered SEQ ID NOs, it will be appreciated by one of ordinary skill in the art that DNA sequence polymorphisms that lead to changes in the amino acid sequences of MP proteins may exist within a population (*e.g.*, the *C. glutamicum* population). Such genetic polymorphism in the MP gene may exist among individuals within a population due to natural variation. As used herein, the terms "gene" and "recombinant gene" refer to nucleic acid molecules comprising an open reading frame encoding an MP protein, preferably a *C. glutamicum* MP protein. Such natural variations can typically result in 1-5% variance in the nucleotide sequence of the MP gene. Any and all such nucleotide variations and resulting amino acid polymorphisms in MP that are the result of natural variation and that do not alter the functional activity of MP proteins are intended to be within the scope of the invention.

Nucleic acid molecules corresponding to natural variants and non-C. glutamicum homologues of the C. glutamicum MP DNA of the invention can be isolated based on their homology to the C. glutamicum MP nucleic acid disclosed herein using the C. glutamicum DNA, or a portion thereof, as a hybridization probe according to standard hybridization techniques under stringent hybridization conditions. Accordingly, in another embodiment, an isolated nucleic acid molecule of the invention is at least 15 nucleotides in length and hybridizes under stringent conditions to the nucleic acid molecule comprising a nucleotide sequence of an odd-numbered SEQ ID NO: of the Sequence Listing. In other embodiments, the nucleic acid is at least 30, 50, 100, 250 or more nucleotides in length. As used herein, the term "hybridizes under stringent conditions" is intended to describe conditions for hybridization and washing under which nucleotide sequences at least 60% homologous to each other typically remain hybridized to each other. Preferably, the conditions are such that sequences at least about 65%, more preferably at least about 70%, and even more preferably at least about 75% or more homologous to each other typically remain hybridized to each other. Such stringent conditions are known to one of ordinary skill in the art and can be found in Current Protocols in Molecular Biology, John Wiley & Sons, N.Y. (1989), 6.3.1-6.3.6.

5

10

15

20

25

- 30 -

A preferred, non-limiting example of stringent hybridization conditions are hybridization in 6X sodium chloride/sodium citrate (SSC) at about 45°C, followed by one or more washes in 0.2 X SSC, 0.1% SDS at 50-65°C. Preferably, an isolated nucleic acid molecule of the invention that hybridizes under stringent conditions to a nucleotide sequence of the invention corresponds to a naturally-occurring nucleic acid molecule. As used herein, a "naturally-occurring" nucleic acid molecule refers to an RNA or DNA molecule having a nucleotide sequence that occurs in nature (e.g., encodes a natural protein). In one embodiment, the nucleic acid encodes a natural C. glutamicum MP protein.

10

20

25

In addition to naturally-occurring variants of the MP sequence that may exist in the population, one of ordinary skill in the art will further appreciate that changes can be introduced by mutation into a nucleotide sequence of the invention, thereby leading to changes in the amino acid sequence of the encoded MP protein, without altering the functional ability of the MP protein. For example, nucleotide substitutions leading to amino acid substitutions at "non-essential" amino acid residues can be made in a nucleotide sequence of the invention. A "non-essential" amino acid residue is a residue that can be altered from the wild-type sequence of one of the MP proteins (e.g., an even-numbered SEQ ID NO: of the Sequence Listing) without altering the activity of said MP protein, whereas an "essential" amino acid residue is required for MP protein activity. Other amino acid residues, however, (e.g., those that are not conserved or only semi-conserved in the domain having MP activity) may not be essential for activity and thus are likely to be amenable to alteration without altering MP activity.

Accordingly, another aspect of the invention pertains to nucleic acid molecules encoding MP proteins that contain changes in amino acid residues that are not essential for MP activity. Such MP proteins differ in amino acid sequence from a sequence of an even-numbered SEQ ID NO: of the Sequence Listing yet retain at least one of the MP activities described herein. In one embodiment, the isolated nucleic acid molecule comprises a nucleotide sequence encoding a protein, wherein the protein comprises an amino acid sequence at least about 50% homologous to an amino acid sequence of the invention and is capable of catalyzing an enzymatic reaction in an amino acid, vitamin, cofactor, nutraceutical, nucleotide, nucleoside, or trehalose metabolic pathway, or has one or more activities set forth in Table 1. Preferably, the protein encoded by the nucleic

- 31 -

acid molecule is at least about 50-60% homologous to the amino acid sequence of one of the odd-numbered SEQ ID NOs of the Sequence Listing, more preferably at least about 60-70% homologous to one of these sequences, even more preferably at least about 70-80%, 80-90%, 90-95% homologous to one of these sequences, and most preferably at least about 96%, 97%, 98%, or 99% homologous to one of the amino acid sequences of the invention.

To determine the percent homology of two amino acid sequences (e.g., one of the amino acid sequences of the invention and a mutant form thereof) or of two nucleic acids, the sequences are aligned for optimal comparison purposes (e.g., gaps can be introduced in the sequence of one protein or nucleic acid for optimal alignment with the other protein or nucleic acid). The amino acid residues or nucleotides at corresponding amino acid positions or nucleotide positions are then compared. When a position in one sequence (e.g., one of the amino acid sequences of the invention) is occupied by the same amino acid residue or nucleotide as the corresponding position in the other sequence (e.g., a mutant form of the amino acid sequence), then the molecules are homologous at that position (i.e., as used herein amino acid or nucleic acid "homology" is equivalent to amino acid or nucleic acid "identity"). The percent homology between the two sequences is a function of the number of identical positions shared by the sequences (i.e., % homology = # of identical positions/total # of positions x 100).

An isolated nucleic acid molecule encoding an MP protein homologous to a protein sequence of the invention (e.g., a sequence of an even-numbered SEQ ID NO: of the Sequence Listing) can be created by introducing one or more nucleotide substitutions, additions or deletions into a nucleotide sequence of the invention such that one or more amino acid substitutions, additions or deletions are introduced into the encoded protein. Mutations can be introduced into one of the nucleotide sequences of the invention by standard techniques, such as site-directed mutagenesis and PCR-mediated mutagenesis. Preferably, conservative amino acid substitutions are made at one or more predicted non-essential amino acid residues. A "conservative amino acid substitution" is one in which the amino acid residue is replaced with an amino acid residue having a similar side chain. Families of amino acid residues having similar side chains have been defined in the art. These families include amino acids with basic side chains (e.g., lysine, arginine, histidine), acidic side chains (e.g., aspartic acid, glutamic

15

20

25

acid), uncharged polar side chains (e.g., glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine), nonpolar side chains (e.g., alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan), beta-branched side chains (e.g., threonine, valine, isoleucine) and aromatic side chains (e.g., tyrosine,
5 phenylalanine, tryptophan, histidine). Thus, a predicted nonessential amino acid residue in an MP protein is preferably replaced with another amino acid residue from the same side chain family. Alternatively, in another embodiment, mutations can be introduced randomly along all or part of an MP coding sequence, such as by saturation mutagenesis, and the resultant mutants can be screened for an MP activity described
10 herein to identify mutants that retain MP activity. Following mutagenesis of the nucleotide sequence of one of the odd-numbered SEQ ID NOs of the Sequence Listing, the encoded protein can be expressed recombinantly and the activity of the protein can be determined using, for example, assays described herein (see Example 8 of the

Exemplification).

15

20

25

30

In addition to the nucleic acid molecules encoding MP proteins described above, another aspect of the invention pertains to isolated nucleic acid molecules which are antisense thereto. An "antisense" nucleic acid comprises a nucleotide sequence which is complementary to a "sense" nucleic acid encoding a protein, e.g., complementary to the coding strand of a double-stranded DNA molecule or complementary to an mRNA sequence. Accordingly, an antisense nucleic acid can hydrogen bond to a sense nucleic acid. The antisense nucleic acid can be complementary to an entire MP coding strand, or to only a portion thereof. In one embodiment, an antisense nucleic acid molecule is antisense to a "coding region" of the coding strand of a nucleotide sequence encoding an MP protein. The term "coding region" refers to the region of the nucleotide sequence comprising codons which are translated into amino acid residues (e.g., the entire coding region of SEQ ID NO. 1 (RXA02229) comprises nucleotides 1 to 825). In another embodiment, the antisense nucleic acid molecule is antisense to a "noncoding region" of the coding strand of a nucleotide sequence encoding MP. The term "noncoding region" refers to 5' and 3' sequences which flank the coding region that are not translated into amino acids (i.e., also referred to as 5' and 3' untranslated regions).

Given the coding strand sequences encoding MP disclosed herein (e.g., the sequences set forth as odd-numbered SEQ ID NOs in the Sequence Listing), antisense

- 33 -

nucleic acids of the invention can be designed according to the rules of Watson and Crick base pairing. The antisense nucleic acid molecule can be complementary to the entire coding region of MP mRNA, but more preferably is an oligonucleotide which is antisense to only a portion of the coding or noncoding region of MP mRNA. For example, the antisense oligonucleotide can be complementary to the region surrounding 5 the translation start site of MP mRNA. An antisense oligonucleotide can be, for example, about 5, 10, 15, 20, 25, 30, 35, 40, 45 or 50 nucleotides in length. An antisense nucleic acid of the invention can be constructed using chemical synthesis and enzymatic ligation reactions using procedures known in the art. For example, an 10 antisense nucleic acid (e.g., an antisense oligonucleotide) can be chemically synthesized using naturally occurring nucleotides or variously modified nucleotides designed to increase the biological stability of the molecules or to increase the physical stability of the duplex formed between the antisense and sense nucleic acids, e.g., phosphorothioate derivatives and acridine substituted nucleotides can be used. Examples of modified nucleotides which can be used to generate the antisense nucleic acid include 5fluorouracil, 5-bromouracil, 5-chlorouracil, 5-iodouracil, hypoxanthine, xanthine, 4acetylcytosine, 5-(carboxyhydroxylmethyl) uracil, 5-carboxymethylaminomethyl-2thiouridine, 5-carboxymethylaminomethyluracil, dihydrouracil, beta-Dgalactosylqueosine, inosine, N6-isopentenyladenine, 1-methylguanine, 1-methylinosine, 20 2,2-dimethylguanine, 2-methyladenine, 2-methylguanine, 3-methylcytosine, 5methylcytosine, N6-adenine, 7-methylguanine, 5-methylaminomethyluracil, 5methoxyaminomethyl-2-thiouracil, beta-D-mannosylqueosine, 5'methoxycarboxymethyluracil, 5-methoxyuracil, 2-methylthio-N6-isopentenyladenine, uracil-5-oxyacetic acid (v), wybutoxosine, pseudouracil, queosine, 2-thiocytosine, 5-25 methyl-2-thiouracil, 2-thiouracil, 4-thiouracil, 5-methyluracil, uracil-5- oxyacetic acid methylester, uracil-5-oxyacetic acid (v), 5-methyl-2-thiouracil, 3-(3-amino-3-N-2carboxypropyl) uracil, (acp3)w, and 2,6-diaminopurine. Alternatively, the antisense nucleic acid can be produced biologically using an expression vector into which a nucleic acid has been subcloned in an antisense orientation (i.e., RNA transcribed from 30 the inserted nucleic acid will be of an antisense orientation to a target nucleic acid of interest, described further in the following subsection).

5

10

15

20

The antisense nucleic acid molecules of the invention are typically administered to a cell or generated *in situ* such that they hybridize with or bind to cellular mRNA and/or genomic DNA encoding an MCT protein to thereby inhibit expression of the protein, *e.g.*, by inhibiting transcription and/or translation. The hybridization can be by conventional nucleotide complementarity to form a stable duplex, or, for example, in the case of an antisense nucleic acid molecule which binds to DNA duplexes, through specific interactions in the major groove of the double helix. The antisense molecule can be modified such that it specifically binds to a receptor or an antigen expressed on a selected cell surface, *e.g.*, by linking the antisense nucleic acid molecule to a peptide or an antibody which binds to a cell surface receptor or antigen. The antisense nucleic acid molecule can also be delivered to cells using the vectors described herein. To achieve sufficient intracellular concentrations of the antisense molecules, vector constructs in which the antisense nucleic acid molecule is placed under the control of a strong prokaryotic, viral, or eukaryotic promoter are preferred.

In yet another embodiment, the antisense nucleic acid molecule of the invention is an α-anomeric nucleic acid molecule. An α-anomeric nucleic acid molecule forms specific double-stranded hybrids with complementary RNA in which, contrary to the usual β-units, the strands run parallel to each other (Gaultier *et al.* (1987) *Nucleic Acids*. *Res.* 15:6625-6641). The antisense nucleic acid molecule can also comprise a 2'-o-methylribonucleotide (Inoue *et al.* (1987) *Nucleic Acids Res.* 15:6131-6148) or a chimeric RNA-DNA analogue (Inoue *et al.* (1987) *FEBS Lett.* 215:327-330).

In still another embodiment, an antisense nucleic acid of the invention is a ribozyme. Ribozymes are catalytic RNA molecules with ribonuclease activity which are capable of cleaving a single-stranded nucleic acid, such as an mRNA, to which they have a complementary region. Thus, ribozymes (e.g., hammerhead ribozymes (described in Haselhoff and Gerlach (1988) Nature 334:585-591)) can be used to catalytically cleave MP mRNA transcripts to thereby inhibit translation of MP mRNA. A ribozyme having specificity for an MP-encoding nucleic acid can be designed based upon the nucleotide sequence of an MP DNA disclosed herein (i.e., SEQ ID NO: 1 (RXA02229). For example, a derivative of a Tetrahymena L-19 IVS RNA can be constructed in which the nucleotide sequence of the active site is complementary to the nucleotide sequence to be cleaved in an MP-encoding mRNA. See, e.g., Cech et al.

- 35 -

U.S. Patent No. 4,987,071 and Cech *et al.* U.S. Patent No. 5,116,742. Alternatively, MP mRNA can be used to select a catalytic RNA having a specific ribonuclease activity from a pool of RNA molecules. See, *e.g.*, Bartel, D. and Szostak, J.W. (1993) *Science* 261:1411-1418.

Alternatively, MP gene expression can be inhibited by targeting nucleotide sequences complementary to the regulatory region of an MP nucleotide sequence (e.g., an MP promoter and/or enhancers) to form triple helical structures that prevent transcription of an MP gene in target cells. See generally, Helene, C. (1991) Anticancer Drug Des. 6(6):569-84; Helene, C. et al. (1992) Ann. N.Y. Acad. Sci. 660:27-36; and Maher, L.J. (1992) Bioassays 14(12):807-15.

B. Recombinant Expression Vectors and Host Cells

Another aspect of the invention pertains to vectors, preferably expression vectors, containing a nucleic acid encoding an MP protein (or a portion thereof). As used herein, the term "vector" refers to a nucleic acid molecule capable of transporting another nucleic acid to which it has been linked. One type of vector is a "plasmid", which refers to a circular double stranded DNA loop into which additional DNA segments can be ligated. Another type of vector is a viral vector, wherein additional DNA segments can be ligated into the viral genome. Certain vectors are capable of autonomous replication in a host cell into which they are introduced (e.g., bacterial vectors having a bacterial origin of replication and episomal mammalian vectors). Other vectors (e.g., non-episomal mammalian vectors) are integrated into the genome of a host cell upon introduction into the host cell, and thereby are replicated along with the host genome. Moreover, certain vectors are capable of directing the expression of genes to which they are operatively linked. Such vectors are referred to herein as "expression vectors". In general, expression vectors of utility in recombinant DNA techniques are often in the form of plasmids. In the present specification, "plasmid" and "vector" can be used interchangeably as the plasmid is the most commonly used form of vector. However, the invention is intended to include such other forms of expression vectors, such as viral vectors (e.g., replication defective retroviruses, adenoviruses and adenoassociated viruses), which serve equivalent functions.

5

10

15

20

25

The recombinant expression vectors of the invention comprise a nucleic acid of the invention in a form suitable for expression of the nucleic acid in a host cell, which means that the recombinant expression vectors include one or more regulatory sequences, selected on the basis of the host cells to be used for expression, which is operatively linked to the nucleic acid sequence to be expressed. Within a recombinant expression vector, "operably linked" is intended to mean that the nucleotide sequence of interest is linked to the regulatory sequence(s) in a manner which allows for expression of the nucleotide sequence (e.g., in an in vitro transcription/translation system or in a host cell when the vector is introduced into the host cell). The term "regulatory sequence" is intended to include promoters, repressor binding sites, activator binding sites, enhancers and other expression control elements (e.g., terminators, polyadenylation signals, or other elements of mRNA secondary structure). Such regulatory sequences are described, for example, in Goeddel; Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, CA (1990). Regulatory sequences include those which direct constitutive expression of a nucleotide 15 sequence in many types of host cell and those which direct expression of the nucleotide sequence only in certain host cells. Preferred regulatory sequences are, for example, promoters such as cos-, tac-, trp-, tet-, trp-tet-, lpp-, lac-, lpp-lac-, lacI^q-, T7-, T5-, T3-, gal-, trc-, ara-, SP6-, arny, SPO2, λ -P_R- or λ P_L, which are used preferably in bacteria. 20 Additional regulatory sequences are, for example, promoters from yeasts and fungi, such as ADC1, MFa, AC, P-60, CYC1, GAPDH, TEF, rp28, ADH, promoters from plants such as CaMV/35S, SSU, OCS, lib4, usp, STLS1, B33, nos or ubiquitin- or phaseolinpromoters. It is also possible to use artificial promoters. It will be appreciated by one of ordinary skill in the art that the design of the expression vector can depend on such factors as the choice of the host cell to be transformed, the level of expression of protein 25 desired, etc. The expression vectors of the invention can be introduced into host cells to thereby produce proteins or peptides, including fusion proteins or peptides, encoded by nucleic acids as described herein (e.g., MP proteins, mutant forms of MP proteins, fusion proteins, etc.).

The recombinant expression vectors of the invention can be designed for expression of MP proteins in prokaryotic or eukaryotic cells. For example, MP genes can be expressed in bacterial cells such as *C. glutamicum*, insect cells (using baculovirus

- 37 -

expression vectors), yeast and other fungal cells (see Romanos, M.A. et al. (1992)
"Foreign gene expression in yeast: a review", Yeast 8: 423-488; van den Hondel,
C.A.M.J.J. et al. (1991) "Heterologous gene expression in filamentous fungi" in: More
Gene Manipulations in Fungi, J.W. Bennet & L.L. Lasure, eds., p. 396-428: Academic
Press: San Diego; and van den Hondel, C.A.M.J.J. & Punt, P.J. (1991) "Gene transfer
systems and vector development for filamentous fungi, in: Applied Molecular Genetics
of Fungi, Peberdy, J.F. et al., eds., p. 1-28, Cambridge University Press: Cambridge),
algae and multicellular plant cells (see Schmidt, R. and Willmitzer, L. (1988) High
efficiency Agrobacterium tumefaciens—mediated transformation of Arabidopsis
thaliana leaf and cotyledon explants" Plant Cell Rep.: 583-586), or mammalian cells.
Suitable host cells are discussed further in Goeddel, Gene Expression Technology:
Methods in Enzymology 185, Academic Press, San Diego, CA (1990). Alternatively, the
recombinant expression vector can be transcribed and translated in vitro, for example
using T7 promoter regulatory sequences and T7 polymerase.

Expression of proteins in prokaryotes is most often carried out with vectors containing constitutive or inducible promoters directing the expression of either fusion or non-fusion proteins. Fusion vectors add a number of amino acids to a protein encoded therein, usually to the amino terminus of the recombinant protein but also to the C-terminus or fused within suitable regions in the proteins. Such fusion vectors typically serve three purposes: 1) to increase expression of recombinant protein; 2) to increase the solubility of the recombinant protein; and 3) to aid in the purification of the recombinant protein by acting as a ligand in affinity purification. Often, in fusion expression vectors, a proteolytic cleavage site is introduced at the junction of the fusion moiety and the recombinant protein to enable separation of the recombinant protein from the fusion moiety subsequent to purification of the fusion protein. Such enzymes, and their cognate recognition sequences, include Factor Xa, thrombin and enterokinase.

Typical fusion expression vectors include pGEX (Pharmacia Biotech Inc; Smith, D.B. and Johnson, K.S. (1988) *Gene* 67:31-40), pMAL (New England Biolabs, Beverly, MA) and pRIT5 (Pharmacia, Piscataway, NJ) which fuse glutathione S-transferase (GST), maltose E binding protein, or protein A, respectively, to the target recombinant protein. In one embodiment, the coding sequence of the MP protein is cloned into a pGEX expression vector to create a vector encoding a fusion protein comprising, from

15

20

25

- 38 -

the N-terminus to the C-terminus, GST-thrombin cleavage site-X protein. The fusion protein can be purified by affinity chromatography using glutathione-agarose resin. Recombinant MP protein unfused to GST can be recovered by cleavage of the fusion protein with thrombin.

5 Examples of suitable inducible non-fusion E. coli expression vectors include pTrc (Amann et al., (1988) Gene 69:301-315) pLG338, pACYC184, pBR322, pUC18, pUC19, pKC30, pRep4, pHS1, pHS2, pPLc236, pMBL24, pLG200, pUR290, pIN-III113-B1, \(\lambda\)gtl 1, pBdCl, and pET 11d (Studier et al., Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, California (1990) 60-89; and Pouwels et al., eds. (1985) Cloning Vectors. Elsevier: New York IBSN 0 444 904018). Target gene expression from the pTrc vector relies on host RNA polymerase transcription from a hybrid trp-lac fusion promoter. Target gene expression from the pET 11d vector relies on transcription from a T7 gn10-lac fusion promoter mediated by a coexpressed viral RNA polymerase (T7 gnl). This viral polymerase is supplied by host strains BL21(DE3) or HMS174(DE3) from a resident λ prophage harboring a T7 15 gn1 gene under the transcriptional control of the lacUV 5 promoter. For transformation of other varieties of bacteria, appropriate vectors may be selected. For example, the plasmids pIJ101, pIJ364, pIJ702 and pIJ361 are known to be useful in transforming Streptomyces, while plasmids pUB110, pC194, or pBD214 are suited for transformation of Bacillus species. Several plasmids of use in the transfer of genetic information into 20 Corynebacterium include pHM1519, pBL1, pSA77, or pAJ667 (Pouwels et al., eds. (1985) Cloning Vectors. Elsevier: New York IBSN 0 444 904018).

One strategy to maximize recombinant protein expression is to express the protein in a host bacteria with an impaired capacity to proteolytically cleave the recombinant protein (Gottesman, S., Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, California (1990) 119-128). Another strategy is to alter the nucleic acid sequence of the nucleic acid to be inserted into an expression vector so that the individual codons for each amino acid are those preferentially utilized in the bacterium chosen for expression, such as C. glutamicum (Wada et al. (1992) Nucleic Acids Res. 20:2111-2118). Such alteration of nucleic acid sequences of the invention can be carried out by standard DNA synthesis techniques.

25

30

THE STEE STREET

- 39 -

In another embodiment, the MP protein expression vector is a yeast expression vector. Examples of vectors for expression in yeast *S. cerevisiae* include pYepSec1 (Baldari, *et al.*, (1987) *Embo J.* 6:229-234), , 2 μ, pAG-1, Yep6, Yep13, pEMBLYe23, pMFa (Kurjan and Herskowitz, (1982) *Cell* 30:933-943), pJRY88 (Schultz *et al.*, (1987) *Gene* 54:113-123), and pYES2 (Invitrogen Corporation, San Diego, CA). Vectors and methods for the construction of vectors appropriate for use in other fungi, such as the filamentous fungi, include those detailed in: van den Hondel, C.A.M.J.J. & Punt, P.J. (1991) "Gene transfer systems and vector development for filamentous fungi, in: Applied Molecular Genetics of Fungi, J.F. Peberdy, *et al.*, eds., p. 1-28, Cambridge University Press: Cambridge, and Pouwels *et al.*, eds. (1985) Cloning Vectors. Elsevier: New York (IBSN 0 444 904018).

Alternatively, the MP proteins of the invention can be expressed in insect cells using baculovirus expression vectors. Baculovirus vectors available for expression of proteins in cultured insect cells (e.g., Sf 9 cells) include the pAc series (Smith et al. (1983) Mol. Cell Biol. 3:2156-2165) and the pVL series (Lucklow and Summers (1989) Virology 170:31-39).

In another embodiment, the MP proteins of the invention may be expressed in unicellular plant cells (such as algae) or in plant cells from higher plants (e.g., the spermatophytes, such as crop plants). Examples of plant expression vectors include those detailed in: Becker, D., Kemper, E., Schell, J. and Masterson, R. (1992) "New plant binary vectors with selectable markers located proximal to the left border", *Plant Mol. Biol.* 20: 1195-1197; and Bevan, M.W. (1984) "Binary *Agrobacterium* vectors for plant transformation", *Nucl. Acid. Res.* 12: 8711-8721, and include pLGV23, pGHlac+, pBIN19, pAK2004, and pDH51 (Pouwels et al., eds. (1985) Cloning Vectors. Elsevier: New York IBSN 0 444 904018).

In yet another embodiment, a nucleic acid of the invention is expressed in mammalian cells using a mammalian expression vector. Examples of mammalian expression vectors include pCDM8 (Seed, B. (1987) *Nature* 329:840) and pMT2PC (Kaufman *et al.* (1987) *EMBO J.* 6:187-195). When used in mammalian cells, the expression vector's control functions are often provided by viral regulatory elements. For example, commonly used promoters are derived from polyoma, Adenovirus 2, cytomegalovirus and Simian Virus 40. For other suitable expression systems for both

15

20

25

prokaryotic and eukaryotic cells see chapters 16 and 17 of Sambrook, J., Fritsh, E. F., and Maniatis, T. *Molecular Cloning: A Laboratory Manual. 2nd, ed., Cold Spring Harbor Laboratory,* Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989.

5 In another embodiment, the recombinant mammalian expression vector is capable of directing expression of the nucleic acid preferentially in a particular cell type (e.g., tissue-specific regulatory elements are used to express the nucleic acid). Tissuespecific regulatory elements are known in the art. Non-limiting examples of suitable tissue-specific promoters include the albumin promoter (liver-specific; Pinkert et al. (1987) Genes Dev. 1:268-277), lymphoid-specific promoters (Calame and Eaton (1988) 10 Adv. Immunol. 43:235-275), in particular promoters of T cell receptors (Winoto and Baltimore (1989) EMBO J. 8:729-733) and immunoglobulins (Banerji et al. (1983) Cell 33:729-740; Queen and Baltimore (1983) Cell 33:741-748), neuron-specific promoters (e.g., the neurofilament promoter; Byrne and Ruddle (1989) PNAS 86:5473-5477), pancreas-specific promoters (Edlund et al. (1985) Science 230:912-916), and mammary 15 gland-specific promoters (e.g., milk whey promoter; U.S. Patent No. 4,873,316 and European Application Publication No. 264,166). Developmentally-regulated promoters are also encompassed, for example the murine hox promoters (Kessel and Gruss (1990) Science 249:374-379) and the α-fetoprotein promoter (Campes and Tilghman (1989) 20 Genes Dev. 3:537-546).

The invention further provides a recombinant expression vector comprising a DNA molecule of the invention cloned into the expression vector in an antisense orientation. That is, the DNA molecule is operatively linked to a regulatory sequence in a manner which allows for expression (by transcription of the DNA molecule) of an RNA molecule which is antisense to MP mRNA. Regulatory sequences operatively linked to a nucleic acid cloned in the antisense orientation can be chosen which direct the continuous expression of the antisense RNA molecule in a variety of cell types, for instance viral promoters and/or enhancers, or regulatory sequences can be chosen which direct constitutive, tissue specific or cell type specific expression of antisense RNA.

The antisense expression vector can be in the form of a recombinant plasmid, phagemid or attenuated virus in which antisense nucleic acids are produced under the control of a high efficiency regulatory region, the activity of which can be determined by the cell

- 41 -

type into which the vector is introduced. For a discussion of the regulation of gene expression using antisense genes see Weintraub, H. et al., Antisense RNA as a molecular tool for genetic analysis, Reviews - Trends in Genetics, Vol. 1(1) 1986.

Another aspect of the invention pertains to host cells into which a recombinant expression vector of the invention has been introduced. The terms "host cell" and "recombinant host cell" are used interchangeably herein. It is understood that such terms refer not only to the particular subject cell but to the progeny or potential progeny of such a cell. Because certain modifications may occur in succeeding generations due to either mutation or environmental influences, such progeny may not, in fact, be identical to the parent cell, but are still included within the scope of the term as used herein.

A host cell can be any prokaryotic or eukaryotic cell. For example, an MP protein can be expressed in bacterial cells such as *C. glutamicum*, insect cells, yeast or mammalian cells (such as Chinese hamster ovary cells (CHO) or COS cells). Other suitable host cells are known to those of ordinary skill in the art. Microorganisms related to *Corynebacterium glutamicum* which may be conveniently used as host cells for the nucleic acid and protein molecules of the invention are set forth in Table 3.

Vector DNA can be introduced into prokaryotic or eukaryotic cells via conventional transformation or transfection techniques. As used herein, the terms "transformation" and "transfection", "conjugation" and "transduction" are intended to refer to a variety of art-recognized techniques for introducing foreign nucleic acid (e.g., linear DNA or RNA (e.g., a linearized vector or a gene construct alone without a vector) or nucleic acid in the form of a vector (e.g., a plasmid, phage, phasmid, phagemid, transposon or other DNA) into a host cell, including calcium phosphate or calcium chloride co-precipitation, DEAE-dextran-mediated transfection, lipofection, natural competence, chemical-mediated transfer, or electroporation. Suitable methods for transforming or transfecting host cells can be found in Sambrook, et al. (Molecular Cloning: A Laboratory Manual. 2nd, ed., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989), and other laboratory manuals.

For stable transfection of mammalian cells, it is known that, depending upon the expression vector and transfection technique used, only a small fraction of cells may integrate the foreign DNA into their genome. In order to identify and select these

5

10

15

20

- 42 -

integrants, a gene that encodes a selectable marker (e.g., resistance to antibiotics) is generally introduced into the host cells along with the gene of interest. Preferred selectable markers include those which confer resistance to drugs, such as G418, hygromycin and methotrexate. Nucleic acid encoding a selectable marker can be introduced into a host cell on the same vector as that encoding an MP protein or can be introduced on a separate vector. Cells stably transfected with the introduced nucleic acid can be identified by drug selection (e.g., cells that have incorporated the selectable marker gene will survive, while the other cells die).

To create a homologous recombinant microorganism, a vector is prepared which 10 contains at least a portion of an MP gene into which a deletion, addition or substitution has been introduced to thereby alter, e.g., functionally disrupt, the MP gene. Preferably, this MP gene is a Corynebacterium glutamicum MP gene, but it can be a homologue from a related bacterium or even from a mammalian, yeast, or insect source. In a preferred embodiment, the vector is designed such that, upon homologous recombination, the endogenous MP gene is functionally disrupted (i.e., no longer 15 encodes a functional protein; also referred to as a "knock out" vector). Alternatively, the vector can be designed such that, upon homologous recombination, the endogenous MP gene is mutated or otherwise altered but still encodes functional protein (e.g., the upstream regulatory region can be altered to thereby alter the expression of the 20 endogenous MP protein). In the homologous recombination vector, the altered portion of the MP gene is flanked at its 5' and 3' ends by additional nucleic acid of the MP gene to allow for homologous recombination to occur between the exogenous MP gene carried by the vector and an endogenous MP gene in a microorganism. The additional flanking MP nucleic acid is of sufficient length for successful homologous recombination with the endogenous gene. Typically, several kilobases of flanking DNA (both at the 5' and 3' ends) are included in the vector (see e.g., Thomas, K.R., and Capecchi, M.R. (1987) Cell 51: 503 for a description of homologous recombination vectors). The vector is introduced into a microorganism (e.g., by electroporation) and cells in which the introduced MP gene has homologously recombined with the 30 endogenous MP gene are selected, using art-known techniques.

In another embodiment, recombinant microorganisms can be produced which contain selected systems which allow for regulated expression of the introduced gene. For example, inclusion of an MP gene on a vector placing it under control of the lac operon permits expression of the MP gene only in the presence of IPTG. Such regulatory systems are well known in the art.

In another embodiment, an endogenous MP gene in a host cell is disrupted (e.g., by homologous recombination or other genetic means known in the art) such that expression of its protein product does not occur. In another embodiment, an endogenous or introduced MP gene in a host cell has been altered by one or more point mutations, deletions, or inversions, but still encodes a functional MP protein. In still another embodiment, one or more of the regulatory regions (e.g., a promoter, repressor, or inducer) of an MP gene in a microorganism has been altered (e.g., by deletion, truncation, inversion, or point mutation) such that the expression of the MP gene is modulated. One of ordinary skill in the art will appreciate that host cells containing more than one of the described MP gene and protein modifications may be readily produced using the methods of the invention, and are meant to be included in the present invention.

A host cell of the invention, such as a prokaryotic or eukaryotic host cell in culture, can be used to produce (*i.e.*, express) an MP protein. Accordingly, the invention further provides methods for producing MP proteins using the host cells of the invention. In one embodiment, the method comprises culturing the host cell of invention (into which a recombinant expression vector encoding an MP protein has been introduced, or into which genome has been introduced a gene encoding a wild-type or altered MP protein) in a suitable medium until MP protein is produced. In another embodiment, the method further comprises isolating MP proteins from the medium or the host cell.

25

30

15

20

C. Isolated MP Proteins

Another aspect of the invention pertains to isolated MP proteins, and biologically active portions thereof. An "isolated" or "purified" protein or biologically active portion thereof is substantially free of cellular material when produced by recombinant DNA techniques, or chemical precursors or other chemicals when chemically synthesized. The language "substantially free of cellular material" includes preparations of MP protein in which the protein is separated from cellular components of the cells in which

5

10

15

20

25

30

it is naturally or recombinantly produced. In one embodiment, the language "substantially free of cellular material" includes preparations of MP protein having less than about 30% (by dry weight) of non-MP protein (also referred to herein as a "contaminating protein"), more preferably less than about 20% of non-MP protein, still more preferably less than about 10% of non-MP protein, and most preferably less than about 5% non-MP protein. When the MP protein or biologically active portion thereof is recombinantly produced, it is also preferably substantially free of culture medium, i.e., culture medium represents less than about 20%, more preferably less than about 10%, and most preferably less than about 5% of the volume of the protein preparation. The language "substantially free of chemical precursors or other chemicals" includes preparations of MP protein in which the protein is separated from chemical precursors or other chemicals which are involved in the synthesis of the protein. In one embodiment, the language "substantially free of chemical precursors or other chemicals" includes preparations of MP protein having less than about 30% (by dry weight) of chemical precursors or non-MP chemicals, more preferably less than about 20% chemical precursors or non-MP chemicals, still more preferably less than about 10% chemical precursors or non-MP chemicals, and most preferably less than about 5% chemical precursors or non-MP chemicals. In preferred embodiments, isolated proteins or biologically active portions thereof lack contaminating proteins from the same organism from which the MP protein is derived. Typically, such proteins are produced by recombinant expression of, for example, a C. glutamicum MP protein in a microorganism such as C. glutamicum.

An isolated MP protein or a portion thereof of the invention can catalyze an enzymatic reaction in an amino acid, vitamin, cofactor, nutraceutical, nucleotide, nucleoside, or trehalose metabolic pathway, or has one or more of the activities set forth in Table 1. In preferred embodiments, the protein or portion thereof comprises an amino acid sequence which is sufficiently homologous to an amino acid sequence of the invention (e.g., a sequence of an even-numbered SEQ ID NO: of the Sequence Listing) such that the protein or portion thereof maintains the ability to catalyze an enzymatic reaction in an amino acid, vitamin, cofactor, nutraceutical, nucleotide, nucleoside, or trehalose metabolic pathway. The portion of the protein is preferably a biologically active portion as described herein. In another preferred embodiment, an MP protein of

- 45 -

the invention has an amino acid sequence set forth as an even-numbered SEQ ID NO: of the Sequence Listing. In yet another preferred embodiment, the MP protein has an amino acid sequence which is encoded by a nucleotide sequence which hybridizes, e.g., hybridizes under stringent conditions, to a nucleotide sequence of the invention (e.g., a sequence of an odd-numbered SEQ ID NO: of the Sequence Listing). In still another preferred embodiment, the MP protein has an amino acid sequence which is encoded by a nucleotide sequence that is at least about 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, or 60%, preferably at least about 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, or 70%, more preferably at least about 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, or 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, or 90%, or 91%, 92%, 93%, 94%, and even more preferably at least about 95%, 96%, 97%, 98%, 99% or more homologous to one of the nucleic acid sequences of the invention, or a portion thereof. Ranges and identity values intermediate to the above-recited values, (e.g., 70-90% identical or 80-95% identical) are also intended to be encompassed by the present invention. For example, ranges of identity values using a combination of any of the above values recited as upper and/or lower limits are intended to be included. The preferred MP proteins of the present invention also preferably possess at least one of the MP activities described herein. For example, a preferred MP protein of the present invention includes an amino acid sequence encoded by a nucleotide sequence which hybridizes, e.g., hybridizes under stringent conditions, to a nucleotide sequence of the invention, and which can catalyze an enzymatic reaction in an amino acid, vitamin, cofactor, nutraceutical, nucleotide, nucleoside, or trehalose metabolic pathway, or which has one or more of the activities set forth in Table 1.

In other embodiments, the MP protein is substantially homologous to an amino acid sequence of the invention (e.g., a sequence of an even-numbered SEQ ID NO: of the Sequence Listing) and retains the functional activity of the protein of one of the amino acid sequences of the invention yet differs in amino acid sequence due to natural variation or mutagenesis, as described in detail in subsection I above. Accordingly, in another embodiment, the MP protein is a protein which comprises an amino acid sequence which is at least about 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, or 60%, preferably at least about 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, or 70%, more preferably at least about 71%, 72%, 73%, 74%, 75%, 76%, 77%,

10

15

- 46 -

78%, 79%, or 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, or 90%, or 91%, 92%, 93%, 94%, and even more preferably at least about 95%, 96%, 97%, 98%, 99% or more homologous to an entire amino acid sequence of the invention and which has at least one of the MP activities described herein. Ranges and identity values intermediate to the above-recited values, (e.g., 70-90% identical or 80-95% identical) are also intended to be encompassed by the present invention. For example, ranges of identity values using a combination of any of the above values recited as upper and/or lower limits are intended to be included. In another embodiment, the invention pertains to a full length *C. glutamicum* protein which is substantially homologous to an entire amino acid sequence of the invention.

10

15

20

25

30

Biologically active portions of an MP protein include peptides comprising amino acid sequences derived from the amino acid sequence of an MP protein, e.g., an amino acid sequence of an even-numbered SEQ ID NO: of the Sequence Listing or the amino acid sequence of a protein homologous to an MP protein, which include fewer amino acids than a full length MP protein or the full length protein which is homologous to an MP protein, and exhibit at least one activity of an MP protein. Typically, biologically active portions (peptides, e.g., peptides which are, for example, 5, 10, 15, 20, 30, 35, 36, 37, 38, 39, 40, 50, 100 or more amino acids in length) comprise a domain or motif with at least one activity of an MP protein. Moreover, other biologically active portions, in which other regions of the protein are deleted, can be prepared by recombinant techniques and evaluated for one or more of the activities described herein. Preferably, the biologically active portions of an MP protein include one or more selected domains/motifs or portions thereof having biological activity.

MP proteins are preferably produced by recombinant DNA techniques. For example, a nucleic acid molecule encoding the protein is cloned into an expression vector (as described above), the expression vector is introduced into a host cell (as described above) and the MP protein is expressed in the host cell. The MP protein can then be isolated from the cells by an appropriate purification scheme using standard protein purification techniques. Alternative to recombinant expression, an MP protein, polypeptide, or peptide can be synthesized chemically using standard peptide synthesis techniques. Moreover, native MP protein can be isolated from cells (e.g., endothelial

- 47 -

cells), for example using an anti-MP antibody, which can be produced by standard techniques utilizing an MP protein or fragment thereof of this invention.

The invention also provides MP chimeric or fusion proteins. As used herein, an MP "chimeric protein" or "fusion protein" comprises an MP polypeptide operatively linked to a non-MP polypeptide. An "MP polypeptide" refers to a polypeptide having an amino acid sequence corresponding to MP, whereas a "non-MP polypeptide" refers to a polypeptide having an amino acid sequence corresponding to a protein which is not substantially homologous to the MP protein, e.g., a protein which is different from the MP protein and which is derived from the same or a different organism. Within the fusion protein, the term "operatively linked" is intended to indicate that the MP polypeptide and the non-MP polypeptide are fused in-frame to each other. The non-MP polypeptide can be fused to the N-terminus or C-terminus of the MP polypeptide. For example, in one embodiment the fusion protein is a GST-MP fusion protein in which the MP sequences are fused to the C-terminus of the GST sequences. Such fusion proteins can facilitate the purification of recombinant MP proteins. In another embodiment, the fusion protein is an MP protein containing a heterologous signal sequence at its Nterminus. In certain host cells (e.g., mammalian host cells), expression and/or secretion of an MP protein can be increased through use of a heterologous signal sequence.

Preferably, an MP chimeric or fusion protein of the invention is produced by standard recombinant DNA techniques. For example, DNA fragments coding for the different polypeptide sequences are ligated together in-frame in accordance with conventional techniques, for example by employing blunt-ended or stagger-ended termini for ligation, restriction enzyme digestion to provide for appropriate termini, filling-in of cohesive ends as appropriate, alkaline phosphatase treatment to avoid undesirable joining, and enzymatic ligation. In another embodiment, the fusion gene can be synthesized by conventional techniques including automated DNA synthesizers. Alternatively, PCR amplification of gene fragments can be carried out using anchor primers which give rise to complementary overhangs between two consecutive gene fragments which can subsequently be annealed and reamplified to generate a chimeric gene sequence (see, for example, *Current Protocols in Molecular Biology*, eds. Ausubel *et al.* John Wiley & Sons: 1992). Moreover, many expression vectors are commercially available that already encode a fusion moiety (*e.g.*, a GST polypeptide). An MP-

10

15

20

25

encoding nucleic acid can be cloned into such an expression vector such that the fusion moiety is linked in-frame to the MP protein.

Homologues of the MP protein can be generated by mutagenesis, e.g., discrete point mutation or truncation of the MP protein. As used herein, the term "homologue" refers to a variant form of the MP protein which acts as an agonist or antagonist of the activity of the MP protein. An agonist of the MP protein can retain substantially the same, or a subset, of the biological activities of the MP protein. An antagonist of the MP protein can inhibit one or more of the activities of the naturally occurring form of the MP protein, by, for example, competitively binding to a downstream or upstream member of the MP cascade which includes the MP protein. Thus, the C. glutamicum MP protein and homologues thereof of the present invention may modulate the activity of one or more metabolic pathways in which MP proteins play a role in this microorganism.

10

-15

20

25

30

In an alternative embodiment, homologues of the MP protein can be identified by screening combinatorial libraries of mutants, e.g., truncation mutants, of the MP protein for MP protein agonist or antagonist activity. In one embodiment, a variegated library of MP variants is generated by combinatorial mutagenesis at the nucleic acid level and is encoded by a variegated gene library. A variegated library of MP variants can be produced by, for example, enzymatically ligating a mixture of synthetic oligonucleotides into gene sequences such that a degenerate set of potential MP sequences is expressible as individual polypeptides, or alternatively, as a set of larger fusion proteins (e.g., for phage display) containing the set of MP sequences therein. There are a variety of methods which can be used to produce libraries of potential MP homologues from a degenerate oligonucleotide sequence. Chemical synthesis of a degenerate gene sequence can be performed in an automatic DNA synthesizer, and the synthetic gene then ligated into an appropriate expression vector. Use of a degenerate set of genes allows for the provision, in one mixture, of all of the sequences encoding the desired set of potential MP sequences. Methods for synthesizing degenerate oligonucleotides are known in the art (see, e.g., Narang, S.A. (1983) Tetrahedron 39:3; Itakura et al. (1984) Annu. Rev. Biochem. 53:323; Itakura et al. (1984) Science 198:1056; Ike et al. (1983) Nucleic Acid Res. 11:477.

- 49 -

In addition, libraries of fragments of the MP protein coding can be used to generate a variegated population of MP fragments for screening and subsequent selection of homologues of an MP protein. In one embodiment, a library of coding sequence fragments can be generated by treating a double stranded PCR fragment of an MP coding sequence with a nuclease under conditions wherein nicking occurs only about once per molecule, denaturing the double stranded DNA, renaturing the DNA to form double stranded DNA which can include sense/antisense pairs from different nicked products, removing single stranded portions from reformed duplexes by treatment with S1 nuclease, and ligating the resulting fragment library into an expression vector. By this method, an expression library can be derived which encodes N-terminal, C-terminal and internal fragments of various sizes of the MP protein.

Several techniques are known in the art for screening gene products of combinatorial libraries made by point mutations or truncation, and for screening cDNA libraries for gene products having a selected property. Such techniques are adaptable for rapid screening of the gene libraries generated by the combinatorial mutagenesis of MP homologues. The most widely used techniques, which are amenable to high through-put analysis, for screening large gene libraries typically include cloning the gene library into replicable expression vectors, transforming appropriate cells with the resulting library of vectors, and expressing the combinatorial genes under conditions in which detection of a desired activity facilitates isolation of the vector encoding the gene whose product was detected. Recursive ensemble mutagenesis (REM), a new technique which enhances the frequency of functional mutants in the libraries, can be used in combination with the screening assays to identify MP homologues (Arkin and Yourvan (1992) *PNAS* 89:7811-7815; Delgrave *et al.* (1993) *Protein Engineering* 6(3):327-331).

In another embodiment, cell based assays can be exploited to analyze a variegated MP library, using methods well known in the art.

D. Uses and Methods of the Invention

The nucleic acid molecules, proteins, protein homologues, fusion proteins, primers, vectors, and host cells described herein can be used in one or more of the following methods: identification of *C. glutamicum* and related organisms; mapping of genomes of organisms related to *C. glutamicum*; identification and localization of *C.*

15

20

25

5

10

15

20

30

glutamicum sequences of interest; evolutionary studies; determination of MP protein regions required for function; modulation of an MP protein activity; modulation of the activity of an MP pathway; and modulation of cellular production of a desired compound, such as a fine chemical.

The MP nucleic acid molecules of the invention have a variety of uses. First, they may be used to identify an organism as being Corynebacterium glutamicum or a close relative thereof. Also, they may be used to identify the presence of C. glutamicum or a relative thereof in a mixed population of microorganisms. The invention provides the nucleic acid sequences of a number of C. glutamicum genes; by probing the extracted genomic DNA of a culture of a unique or mixed population of microorganisms under stringent conditions with a probe spanning a region of a C. glutamicum gene which is unique to this organism, one can ascertain whether this organism is present. Although Corynebacterium glutamicum itself is not pathogenic to humans, it is related to species which are human pathogens, such as Corynebacterium diphtheriae. Corynebacterium diphtheriae is the causative agent of diphtheria, a rapidly developing, acute, febrile infection which involves both local and systemic pathology. In this disease, a local lesion develops in the upper respiratory tract and involves necrotic injury to epithelial cells; the bacilli secrete toxin which is disseminated through this lesion to distal susceptible tissues of the body. Degenerative changes brought about by the inhibition of protein synthesis in these tissues, which include heart, muscle, peripheral nerves, adrenals, kidneys, liver and spleen, result in the systemic pathology of the

disease. Diphtheria continues to have high incidence in many parts of the world, including Africa, Asia, Eastern Europe and the independent states of the former Soviet Union. An ongoing epidemic of diphtheria in the latter two regions has resulted in at least 5,000 deaths since 1990.

In one embodiment, the invention provides a method of identifying the presence or activity of *Cornyebacterium diphtheriae* in a subject. This method includes detection of one or more of the nucleic acid or amino acid sequences of the invention (e.g., the sequences set forth as odd-numbered or even-numbered SEQ ID NOs, respectively, in the Sequence Listing) in a subject, thereby detecting the presence or activity of *Corynebacterium diphtheriae* in the subject. *C. glutamicum* and *C. diphtheriae* are related bacteria, and many of the nucleic acid and protein molecules in *C. glutamicum*

- 51 -

are homologous to *C. diphtheriae* nucleic acid and protein molecules, and can therefore be used to detect *C. diphtheriae* in a subject.

The nucleic acid and protein molecules of the invention may also serve as markers for specific regions of the genome. This has utility not only in the mapping of the genome, but also for functional studies of *C. glutamicum* proteins. For example, to identify the region of the genome to which a particular *C. glutamicum* DNA-binding protein binds, the *C. glutamicum* genome could be digested, and the fragments incubated with the DNA-binding protein. Those which bind the protein may be additionally probed with the nucleic acid molecules of the invention, preferably with readily detectable labels; binding of such a nucleic acid molecule to the genome fragment enables the localization of the fragment to the genome map of *C. glutamicum*, and, when performed multiple times with different enzymes, facilitates a rapid determination of the nucleic acid sequence to which the protein binds. Further, the nucleic acid molecules of the invention may be sufficiently homologous to the sequences of related species such that these nucleic acid molecules may serve as markers for the construction of a genomic map in related bacteria, such as *Brevibacterium lactofermentum*.

The MP nucleic acid molecules of the invention are also useful for evolutionary and protein structural studies. The metabolic processes in which the molecules of the invention participate are utilized by a wide variety of prokaryotic and eukaryotic cells; by comparing the sequences of the nucleic acid molecules of the present invention to those encoding similar enzymes from other organisms, the evolutionary relatedness of the organisms can be assessed. Similarly, such a comparison permits an assessment of which regions of the sequence are conserved and which are not, which may aid in determining those regions of the protein which are essential for the functioning of the enzyme. This type of determination is of value for protein engineering studies and may give an indication of what the protein can tolerate in terms of mutagenesis without losing function.

Manipulation of the MP nucleic acid molecules of the invention may result in the production of MP proteins having functional differences from the wild-type MP proteins. These proteins may be improved in efficiency or activity, may be present in greater numbers in the cell than is usual, or may be decreased in efficiency or activity.

15

20

25

10

15

20

25

30

- 52 -

The invention also provides methods for screening molecules which modulate the activity of an MP protein, either by interacting with the protein itself or a substrate or binding partner of the MP protein, or by modulating the transcription or translation of an MP nucleic acid molecule of the invention. In such methods, a microorganism expressing one or more MP proteins of the invention is contacted with one or more test compounds, and the effect of each test compound on the activity or level of expression of the MP protein is assessed.

When the desired fine chemical to be isolated from large-scale fermentative culture of C. glutamicum is an amino acid, a vitamin, a cofactor, a nutraceutical, a nucleotide, a nucleoside, or trehalose, modulation of the activity or efficiency of activity of one or more of the proteins of the invention by recombinant genetic mechanisms may directly impact the production of one of these fine chemicals. For example, in the case of an enzyme in a biosynthetic pathway for a desired amino acid, improvement in efficiency or activity of the enzyme (including the presence of multiple copies of the gene) should lead to an increased production or efficiency of production of that desired amino acid. In the case of an enzyme in a biosynthetic pathway for an amino acid whose synthesis is in competition with the synthesis of a desired amino acid, any decrease in the efficiency or activity of this enzyme (including deletion of the gene) should result in an increase in production or efficiency of production of the desired amino acid, due to decreased competition for intermediate compounds and/or energy. In the case of an enzyme in a degradation pathway for a desired amino acid, any decrease in efficiency or activity of the enzyme should result in a greater yield or efficiency of production of the desired product due to a decrease in its degradation. Lastly, mutagenesis of an enzyme involved in the biosynthesis of a desired amino acid such that this enzyme is no longer is capable of feedback inhibition should result in increased yields or efficiency of production of the desired amino acid. The same should apply to the biosynthetic and degradative enzymes of the invention involved in the metabolism of vitamins, cofactors, nutraceuticals, nucleotides, nucleosides and trehalose.

Similarly, when the desired fine chemical is not one of the aforementioned compounds, the modulation of activity of one of the proteins of the invention may still impact the yield and/or efficiency of production of the compound from large-scale culture of *C. glutamicum*. The metabolic pathways of any organism are closely

- 53 -

interconnected; the intermediate used by one pathway is often supplied by a different pathway. Enzyme expression and function may be regulated based on the cellular levels of a compound from a different metabolic process, and the cellular levels of molecules necessary for basic growth, such as amino acids and nucleotides, may critically affect the viability of the microorganism in large-scale culture. Thus, modulation of an amino acid biosynthesis enzyme, for example, such that it is no longer responsive to feedback inhibition or such that it is improved in efficiency or turnover may result in increased cellular levels of one or more amino acids. In turn, this increased pool of amino acids provides not only an increased supply of molecules necessary for protein synthesis, but also of molecules which are utilized as intermediates and precursors in a number of other biosynthetic pathways. If a particular amino acid had been limiting in the cell, its increased production might increase the ability of the cell to perform numerous other metabolic reactions, as well as enabling the cell to more efficiently produce proteins of all kinds, possibly increasing the overall growth rate or survival ability of the cell in large scale culture. Increased viability improves the number of cells capable of producing the desired fine chemical in fermentative culture, thereby increasing the yield of this compound. Similar processes are possible by the modulation of activity of a degradative enzyme of the invention such that the enzyme no longer catalyzes, or catalyzes less efficiently, the degradation of a cellular compound which is important for the biosynthesis of a desired compound, or which will enable the cell to grow and reproduce more efficiently in large-scale culture. It should be emphasized that optimizing the degradative activity or decreasing the biosynthetic activity of certain molecules of the invention may also have a beneficial effect on the production of certain fine chemicals from C. glutamicum. For example, by decreasing the efficiency of activity of a biosynthetic enzyme in a pathway which competes with the biosynthetic pathway of a desired compound for one or more intermediates, more of those intermediates should be available for conversion to the desired product. A similar situation may call for the improvement of degradative ability or efficiency of one or more proteins of the invention.

This aforementioned list of mutagenesis strategies for MP proteins to result in increased yields of a desired compound is not meant to be limiting; variations on these mutagenesis strategies will be readily apparent to one of ordinary skill in the art. By

15

20

25

- 54 -

these mechanisms, the nucleic acid and protein molecules of the invention may be utilized to generate *C. glutamicum* or related strains of bacteria expressing mutated MP nucleic acid and protein molecules such that the yield, production, and/or efficiency of production of a desired compound is improved. This desired compound may be any natural product of *C. glutamicum*, which includes the final products of biosynthesis pathways and intermediates of naturally-occurring metabolic pathways, as well as molecules which do not naturally occur in the metabolism of *C. glutamicum*, but which are produced by a *C. glutamicum* strain of the invention.

This invention is further illustrated by the following examples which should not be construed as limiting. The contents of all references, patent applications, patents, published patent applications, Tables, and the sequence listing cited throughout this application are hereby incorporated by reference.

TABLE 1: Included Genes

							5 KD	s KD						RASE					RASE		
Function	DIAMINOPIMELATE EPIMERASE (EC 5.1.1.7) ACETY) ORNITHINE AMINOTDAN SEEDASE (EC 2 8 1 11)	ACETYLORINITHINE AMINOTRANS LEAGE (EC 2.6.1.1) ACETYLORNITHINE AMINOTRANSFERASE (EC 2.6.1.1) MEMBRANE SPANNING PROTEIN INVOLVED IN LYSINE METABOLISM MEMBRANE ASSOCIATED PROTEIN INVOLVED IN LYSINE METABOLISM CYTOSOLIC PROTEIN INVOLVED IN METABOLISM	THREONINE THREONINE	TRANSCRIPTIONAL REGULATOR INVOLVED IN LYSINE METABOLISM CYTOSOLIC PROTEIN INVOLVED IN LYSINE METABOLISM		Function	ALPHA,ALPHA-TREHALOSE-PHOSPHATE SYNTHASE (UDP-FORMING) 56 KD	SUBDINIT (EV. 2.4.7.19) SUBDINIT JEC 2.4.4.1.19) SUBDINIT JEC 2.4.4.15)	SOBONII (EC 2.4.1.15) trehalose synthase (EC 2.4.1) trehalose synthase (EC 2.4.1)		Function	ASPARTOKINASE ALPHA AND BETA SUBUNITS (EC 2.7.2.4)	ASPARTATE-SEMIALDEHYDE DEHYDROGENASE (EC 1.2.1.11)	2,3,4,5-TETRAHYDROPYRIDINE-2-CARBOXYLATE N-SUCCINYLTRANSFERASE (EC 2,3,1,117)	SUCCINYL-DIAMINOPIMELATE DESUCCINYLASE (EC 3.5.1.18)	DIHYDRODIPICOLINATE SYNTHASE (EC 4.2.1.52)	DIHYDRODIPICOLINATE REDUCTASE (EC 1.3.1.26)	probable 2,3-dihydrodipicolinate N-C6-lyase (cyclizing) (EC 4.3.3) - Covmehacterium chitamicum	2,3,4,5-TETRAHYDROPYRIDINE-2-CARBOXYLATE N-SUCCINYLTRANSFERASE	(EC. 2.3.1.117) MESO-DIAMINOPIMELATE D-DEHYDROGENASE MESO-DIAMINOPIMELATE D-DEHYDROGENASE (EC.1.4.1.16)	
NT Stop	3617	5943				NT Stop	38532	2931	758 4		NT Stop	3496	2438	4	3169	4393	1639	2443	4	30961 4	
NT Start	2793	4714				NT Start	37078	1486	3 1005		NT Start	4758	3469	543	2063	3458	896	1694	543	31980 861	
Contig.	GR00653	GR00287				Contig.	VV0135	GR00066	GR00241 GR00243		Contig.	GR00137	GR00137	GR00842	GR00613	GR00007	GR00236	GR00236	GR00842	VV0135 GR00068	
Identification Code	RXA02229 RXS02970	F XXA01009 RXC02390 RXC01796 RXC01207		RXC00557 RXC00552		Identification Code	RXN00351	F RXA00351	RXA00873 RXA00891	<u>s</u>	Identification Code	RXA00534	RXA00533	RXA02843	RXA02022	RXA00044	RXA00863	KXA00864	RXA02843	RXN00355 F RXA00352	
Amino Acid	2 2 2 4	. 9 8 10 10	! ;	14 16	a.	Amino Acid	18	20	22 24	Lysine biosynthesis	Amino Acid SEO ID NO	26	28	30	32	34	36	38	40	42 44	
Nucleic Acid		ov ~ o *	: (15	rehalose	Nucleic Acid		19	23	Lysine bi	Nucleic Acid SEQ ID NO				31	33	35		39	41 43	

Lysine biosynthesis

Table 1 (continued)	Contig. NT Start NT Stop Function	GR00274 3 1379 DIAMINOPIMELATE DECARBOXYLASE (EC 4.1.1.20)	GR00752 5237 7234 DIAMINOPIMELATE DECARBOXYLASE (EC 4.1.1.20)	GR00408 4249 3380 LYSINE EXPORT REGULATOR PROTEIN	GR00036 5443 6945 L-LYSINE TRANSPORT PROTEIN	GR00408 4320 5018 LYSINE EXPORTER PROTEIN	GR00236 2647 3549 DIHYDRODIPICOLINATE SYNTHASE (EC 4.2.1.52)	2,3,4,5-TETRAHYDROPYRIDINE-2-CARBOXYLATE N-SUCCINYLTRANSFERASE	(EC 2.3.1.117)	ACETYLORNITHINE AMINOTRANSFERASE (EC 2.6.1.11)	ABC TRANSPORTER ATP-BINDING PROTEIN INVOLVED IN LYSINE	METABOLISM	PROTEIN INVOLVED IN LYSINE METABOLISM	ZN-DEPENDENT HYDROLASE INVOLVED IN LYSINE METABOLISM	ABC TRANSPORTER ATP-BINDING PROTEIN INVOLVED IN LYSINE	METABOLISM	PROTEIN INVOLVED IN LYSINE METABOLISM	
	Identification Code	RXA00972	RXA02653	RXA01393	RXA00241	RXA01394	RXA00865	RXS02021		RXS02157	RXC00733		RXC00861	RXC00866	RXC02095		RXC03185	
	Amino Acid	46	48	50	52	Z	56	58		90	62		\$	99	89		20	
	Nucleic Acid SEO ID NO	45	47	49	51	53	55	57		29	61		63	65	29		69	

Glutamate and glutamine metabolism

Function	GLUTAMATE SYNTHASE [NADH] PRECURSOR (EC 1.4.1.14)	GLUTAMATE SYNTHASE (NADPH) LARGE CHAIN PRECURSOR (EC 1.4.1.13)	GLUTAMATE SYNTHASE (NADPH) LARGE CHAIN PRECURSOR (EC 1.4.1.13)	GLUTAMATE SYNTHASE (NADPH) LARGE CHAIN PRECURSOR (EC 1.4.1.13)	GLUTAMATE SYNTHASE (NADPH) SMALL CHAIN (EC 1.4.1.13)	GLUTAMATE SYNTHASE [NADPH] SMALL CHAIN (EC 1.4.1.13)	GLUTAMATE SYNTHASE (NADPH) SMALL CHAIN (EC 1.4.1.13)	GLUTAMATE SYNTHASE (NADPH) SMALL CHAIN (EC 1.4.1.13)	NADP-SPECIFIC GLUTAMATE DEHYDROGENASE (EC 1.4.1.4)	GLUTAMINE SYNTHETASE (EC 6.3.1.2)	GLUTAMINE SYNTHETASE (EC 6.3.1.2)	GLUTAMATE-AMMONIA-LIGASE ADENYLYLTRANSFERASE (EC 2.7.7.42)	GLUTAMINASE (EC 3.5.1.2)	GLUTAMINASE (EC 3.5.1.2)	GLUTAMINE-BINDING PROTEIN PRECURSOR	GLUTAMINE-BINDING PERIPLASMIC PROTEIN PRECURSOR			
NT Stop	14273	8912	4	964	4122	3419	7368	283	15233	4	605	2599	5192	17750	8396	862	862	1581	1525
NT Start	9744	7107	1296	1806	2752	2757	7916	7	14607	630	961	1259	3855	19180	5262	7	7	2612	614
Contig.	VV0196	GR00001	GR00074	GR00075	W0154	GR00012	W0181	GR00031	W0196	GR00075	GR00075	GR00628	GR00057	GR00057	GR00057	VV0332	GR10017	GR00043	GR00193
Identification Code	RXN00367	F RXA00007	F RXA00364	F RXA00367	RXN00076	F RXA00075	RXN00198	F RXA00198	RXN00365	F RXA00365	RXA00366	RXA02072	RXA00323	RXA00335	RXA00324	RXN03176	F RXA02879	RXA00278	RXA00727
Amino Acid SEQ ID NO	72	74	9/	78	80	82	84	98	88	06	92	94	96	86	100	102	104	106	108
Nucleic Acid SEQ ID NO	71	73	75	77	79	81	83	85	87	68	91	93	95	26	66	101	103	105	107

Table 1 (continued) Alanine and Asparagine metabolism

Function	ASPARAGINE SYNTHETASE (GLUTAMINE-HYDROLYZING) (EC 6.3.5.4)	ASPARTATE AMINOTRANSFERASE (EC 2.6.1.1)	ASPARTATE AMMONIA-LYASE (EC 4.3.1.1)	L-ASPARAGINASE (EC 3.5.1.1)	ASPARTATE AMINOTRANSFERASE (EC 2.6.1.1)	ALANINE RACEMASE (EC 5.1.1.1)	ALANINE RACEMASE, BIOSYNTHETIC (EC 5.1.1.1)					
NT Stop	4901	25814	4	9182	746	1138	275	365	1695	9	5783	19944
NT Start	6739	26974	510	10288	213	854	1585	1942	2669	089	4701	20972
Contig.	GR00639	VV0100	GR00018	VV0135	GR00163	GR00164	GR00729	GR00645	GR00708	VV0138	00000	W0135
Identification Code	RXA02139	RXN00116	F RXA00116	RXN00618	F RXA00618	F RXA00627	RXA02550	RXA02193	RXA02432	RXN03003	RXN00508	RXN00636
Amino Acid SEQ ID NO	110	112	114	116	118	120	122	124	126	128	130	132
Nucleic Acid SEQ ID NO	109	111	113	115	117	119	121	123	125	127	129	131

beta-Alanine metabolism

Function	BETA-UREIDOPROPIONASE (EC 3.5.1.6)	METHYLMALONATE-SEMIALDEHYDE DEHYDROGENASE (ACYLATING) (EC 1.2.1.27)	ASPARTATE 1-DECARBOXYLASE PRECURSOR (EC 4.1.1.11)
NT Start NT Stop Function	7826		
NT Start	8581		
Contig.	GR00726		
Identification Code	RXA02536	RXS00870	RXS02299
Amino Acid SEQ ID NO	134	136	138
Nucleic Acid SEQ ID NO	133	135	137

Glycine and serine metabolism

ion	-SERINE DEHYDRATASE (EC 4.2.1.13)	SERINE DEHYDRATASE (EC 4.2.1.13)	ERINE HYDROXYMETHYLTRANSFERASE (EC 2.1.2.1)	ARCOSINE OXIDASE (EC 1.5.3.1)	ARCOSINE OXIDASE (EC 1.5.3.1)	ARCOSINE OXIDASE (EC 1.5.3.1)	HOSPHOSERINE AMINOTRANSFERASE (EC 2.6.1.52)	HOSPHOSERINE PHOSPHATASE (EC 3.1.3.3)	HOSPHOSERINE PHOSPHATASE (EC 3.1.3.3)	HOSPHOSERINE PHOSPHATASE (EC 3.1.3.3)	PHOSPHOSERINE PHOSPHATASE (EC 3.1.3.3)	PHOSERINE PHOSPHATASE (EC 3.1.3.3)	ARCOSINE OXIDASE (EC 1.5.3.1)	3-PHOSPHOGLYCERATE DEHYDROGENASE (EC 1.	1-3-PHOSPHOG YCFRATE DEHYDROGENASE (FC 1)
Function	L-SE	L-SE	SERI	SARC	SARC	SARC	PHO	PHÓ	PHO	PHO	PHOS	PHOS	SARC	D-3-P	0.3-0
NT Stop	2042	1827	6042	9876	12160	33813	12581	4648	4	4648	5220	13977	15423		
NT Start	1113	481	7343	10253	11783	33454	11454	5082	393	5082	5330	15041	15857		
Contig.	GR00435	GR00525	GR00156	GR00515	VV0202	GR00654	GR00641	GR00766	GR00717	GR00766	GR00766	GR00720	VV0074		
Identification Code	RXA01561	RXA01850	RXA00580	RXA01821	RXN02263	F RXA02263	RXA02176	RXN02758	F RXA02479	F RXA02758	F RXA02759	RXA02501	RXN03105	RXS01130	RXS03112
Amino Acid	140	142	144	146	148	150	152	154	156	158	160	162	164	166	168
Nucleic Acid	139	141	143	145	147	149	151	153	155	157	159	161	163	165	167

Table 1 (continued)

Threonine metabolism

Function	HOMOSERINE DEHYDROGENASE (EC 1.1.1.3)	HOMOSERINE DEHYDROGENASE (EC 1.1.1.3)	HOMOSERINE KINASE (EC 2.7.1.39)	THREONINE SYNTHASE (EC 4.2.99.2)	HOMOSERINE O-ACETYLTRANSFERASE	HOMOSERINE O-ACETYLTRANSFERASE (EC 2.3.1.11)	CYTOSOLIC PROTEIN INVOLVED IN METABOLISM OF LYSINE AND	THREONINE	MEMBRANE ASSOCIATED PROTEIN INVOLVED IN THREONINE METABOLISM
NT Stop	13387	3015	1087	14410	68911	1832			
NT Start	12053	2623	161	12968	70041	723			
Contig.	-	GR00274	-	_	_	_			
Identification Code	RXN00969	F RXA00974	RXA00970	RXA00330	RXN00403	F RXA00403	RXC01207		RXC00152
Amino Acid SEQ ID NO	170	172	174	176	178	180	182		184
Nucleic Acid SEO ID NO	169	171	173	175	177	179	181		183

Metabolism of methionine and S-adenosyl methionine

Function	HOMOSERINE O-ACETYLTRANSFERASE (EC 2.3.1.31)	HOMOSERINE O-ACETYLTRANSFERASE	HOMOSERINE O-ACETYLTRANSFERASE (EC 2.3.1.11)	CYSTATHIONINE GAMMA-SYNTHASE (EC 4.2.99.9)	5-methyltetrahydrofolate-homocysteine methyltransferase (methionine synthetase)	O-ACETYLHOMOSERINE SULFHYDRYLASE (EC 4.2.99.10) / O-ACETYLSERINE	SULFHYDRYLASE (EC 4.2.99.8)	O-ACETYLHOMOSERINE SULFHYDRYLASE (EC 4.2.99.10) / O-ACETYLSERINE	SULFHYDRYLASE (EC 4.2.99.8)	O-ACETYLHOMOSERINE SULFHYDRYLASE (EC 4.2.99.10) / O-ACETYLSERINE	SULFHYDRYLASE (EC 4.2.99.8)	5-METHYLTETRAHYDROFOLATEHOMOCYSTEINE METHYLTRANSFERASE	(EC 2.1.1.13)	5-METHYLTETRAHYDROFOLATEHOMOCYSTEINE METHYLTRANSFERASE	(EC 2.1.1.13)	5-METHYLTETRAHYDROFOLATEHOMOCYSTEINE METHYLTRANSFERASE	(EC 2.1.1.13)	S-ADENOSYLMETHIONINE:2-DEMETHYLMENAQUINONE	METHYLTRANSFERASE (EC 2.1)	S-ADENOSYLMETHIONINE: 2-DEMETHYLMENAQUINONE	METHYLTRANSFERASE (EC 2.1)	ADENOSYLHOMOCYSTEINASE (EC 3.3.1.1)	ADENOSYLHOMOCYSTEINASE (EC 3.3.1.1)				
NT Stop	4313	68911	1832		1811	2039		2521	15297	70188		976		3801		4025		11726		9		1741		645		5045	7624
NT Start	5359	70041	723		2404	3085		1919	16286	70787		_		3289		4552		9228		2483		2238		1142		3612	7728
Contig.	GR00017	VV0086	GR00088		GR00038	GR00726		GR00770	GR00032	00000		GR00088		GR00089		GR00645		VV0302		GR00646		VV0042		GR10044		VV0124	GR00020
Identification Code	RXA00115	RXN00403	F RXA00403	RXS03158	F RXA00254	RXA02532	RXS03159	F RXA02768	RXA00216	RXN00402		F RXA00402		RXA00405		RXA02197		RXN02198		F RXA02198		RXN03074		F RXA02906		RXN00132	F RXA00132
Amino Acid	186	188	190	192	194	196	198	200	202	204		206		208		210		212		214		216		218		220	222
Nucleic Acid	185	187	189	191	193	195	197	199	201	203		205		207		209		211		213		215		217		219	221

itinued)	Function	ADENOSYLHOMOCYSTEINASE (EC 3.3.1.1) 5-METHYLTETRAHYDROPTEROYLTRIGLUTAMATEHOMOCYSTEINE METHYLTRANSFERASE (EC 2.1.1.14)	5-METHYLTETRAHYDROPTEROYLTRIGLUTAMATEHOMOCYSTEINE METHYLTRANSFERASE (EC 2.1.1.4)	5-METHYLTETRAHYDROPTEROYLTRIGLUTAMATEHOMOCYSTEINE METHYLTRANSFERASE (FC 2 1 1 14)	5-METHYLTETRAHYDROPTEROYLTRIGLUTAMATEHOMOCYSTEINE METHYLTRANSFERASF (FC 2 1 14)	5-METHYLTETRAHYDROPTEROYLTRIGLUTAMATEHOMOCYSTEINE METHYLTRANSFERASE (FC 2 1 1 14)	S-METHYLTETRAHYDROPTEROLITRIC S-HOMOCYSTEINE S-METHY TDANSEEDAGE (FC 2-1-1-14)	PROTEIN CONTROLL STATES (CO. 2.1.1.1.7) PROTEIN CONTROLL IN METABOLISM OF S-ADENOSYLMETHIONINE, PURINES AND DANTOTHEMATE	AND TRANSPORTED PROTEIN INVOLVED IN METABOLISM OF PYRIDIMES AND ADENOSYLHOMOCYSTEINE		Function	S-ADENOSYLMETHIONINE SYNTHETASE (EC 2.5.1.6)		<u>Function</u>	SERINE ACETYLTRANSFERASE (EC 2.3.1.30) CYSTEINE SYNTHASE (EC 4.2.99.8) O-ACETYLHOMOSERINE SULFHYDRYLASE (EC 4.2.99.10) / O-ACETYLSERINE SULFHYDRYI ASE (EC 4.2.90.8)	O-ACETYLHOMOSERIUS 3.2.5.7.7 O-ACETYLHOMOSERIUS SULFHYDRYLASE (EC 4.2.99.10) / O-ACETYLSERINE SUI FHYDRYI ASE (FC 4.2.99.8)	O-ACETYLHOMOSERINE SULFHYDRYLASE (EC 4.2.99.10) / O-ACETYLSERINE SULFHYDRYLASE (FC 4.2.98.8)	ABC TRANSPORTER ATP-BINDING PROTEIN INVOLVED IN CYSTEINE METABOLISM	MECTRANSPORTER ATP-BINDING PROTEIN INVOLVED IN CYSTEINE METABOLISM
Table 1 (continued)	NT Stop	3634	5295	5731		4730	15447				NT Stop	8380		NT Stop	2234 1482 70188	929			
Ta	NT Start	2339	3496	5252		5254	14764			sis	NT Start	7160		NT Start	1689 550 70787	-			
	Contig.	GR00398	GR00629	GR00629		GR00751	GR00752			M) Biosynthesis	Contig.	GR00654		Contig.	GR00206 GR00206 VV0086	GR00088			
	Identification Code	F RXA01371 RXN02085	F RXA02085	F RXA02086	RXN02648	F RXA02648	F RXA02658	RXC02238	RXC00128		Identification Code	RXA02240	Ĕ	Identification Code	RXA00780 RXA00779 RXN00402	F RXA00402	RXS00405	RXC00164	RXC01191
	Amino Acid SEQ ID NO	224	228	230	232	234	236	238	240	S-adenosyl methionine (SA	Amino Acid	242	Cysteine metabolism	Amino Acid	244 246 248	250	252	254	256
	Nucleic Acid SEQ ID NO	223 225	227	529	231	233	235	237	239	S-adenos	Nucleic Acid	241	Cysteine	Nucleic Acid	243 245 247	249	251	253	255

Valine, leucine and isoleucine

Table 1 (continued)

Function	THREONINE DEHYDRATASE BIOSYNTHETIC (EC 4.2.1.16)	BRANCHED-CHAIN AMINO ACID AMINOTRANSFERASE (EC 2.6.1.42)	BRANCHED-CHAIN AMINO ACID AMINOTRANSFERASE (EC 2.6.1.42)	BRANCHED-CHAIN AMINO ACID AMINOTRANSFERASE (EC 2.6.1.42)	3-ISOPROPYLMALATE DEHYDRATASE LARGE SUBUNIT (EC 4.2.1.33)	3-ISOPROPYLMALATE DEHYDRATASE LARGE SUBUNIT (EC 4.2.1.33)	3-ISOPROPYLMALATE DEHYDROGENASE (EC 1.1.1.85)	3-ISOPROPYLMALATE DEHYDROGENASE (EC 1.1.1.85)	2-ISOPROPYLMALATE SYNTHASE (EC 4.1.3.12)	2-ISOPROPYLMALATE SYNTHASE (EC 4.1.3.1)	3-ISOPROPYLMALATE DEHYDRATASE SMALL SUBUNIT (EC 4.2.1.33)	3-METHYL-2-OXOBUTANOATE HYDROXYMETHYLTRANSFERASE (EC 2.1.2.11)	/ DECARBOXYLASE (EC 4.1.1.44)	3-METHYL-2-OXOBUTANOATE HYDROXYMETHYLTRANSFERASE (EC 2.1.2.11)	4"-MYCAROSYL ISOVALERYL-COA TRANSFERASE (EC 2)	KETOL-ACID REDUCTOISOMERASE (EC 1.1.1.86)	KETOL-ACID REDUCTOISOMERASE (EC 1.1.1.86)
NT Stop	2588	4249	196	196	7513	1602	3472	1651	7498	7360	7121	48402		1960	14643		1530
NT Start	3856	5091	1296	1248	9171	_	4491	1349	6128	6128	7711	47590		2766	15584		1075
Contig	GR00751	GR00204	VV0246	GR00473	W0143	GR00294	VV0157	GR00315	W0219	GR00137	VV0143	VV0127		GR00555	VV0122		GR00321
Identification Code	RXA02646	RXA00766	RXN01690	F RXA01690	RXN01026	F RXA01026	RXN01127	F RXA01132	RXN00536	F RXA00536	RXN02965	RXN01929		F RXA01929	RXN01420	RXS01145	F RXA01145
Amino Acid	258	260	262	264	266	268	270	272	274	276	278	280		282	284	286	288
Nucleic Acid																	

Arginine and proline metabolism

Enzymes of proline biosynthesis:

Function	GLUTAMATE 5-KINASE (EC 2.7.2.11) GAMMA-GLUTAMYL PHOSPHATE REDUCTASE (GPR) (EC 1.2.1.41) GAMMA-GLUTAMYL PHOSPHATE REDUCTASE (GPR) (EC 1.2.1.41) GAMMA-GLUTAMYL PHOSPHATE REDUCTASE (GPR) (EC 1.2.1.41) PYRROLINE-5-CARBOXYLATE REDUCTASE (EC 1.5.1.2) ACETYLORNITHINE AMINOTRANSFERASE (EC 2.6.1.11) ACETYLORDITHINE AMINOTRANSFERASE (EC 2.6.1.11) ACETYLORDITHINE AMINOTRANSFERASE (EC 2.6.1.11)	CETYLORNITHINE AMINOTRANSFERASE (EC 2.6.1.11)
•	GAN GAN ACE ACE	ACE
NT Stop	223 3867 16 1894 12692	5943
NT Start	1449 5162 624 2493 11883	4714
Contig.	GR00689 VV0213 GR00690 GR00691 GR00720	GR00287
Identification Code	RXA02375 RXN02382 F RXA02378 F RXA02382 RXA02499 RXS02157 RXS02262	F RXA01009
Amino Acid	292 292 294 298 300 300 300 300	306
Nucleic Acid	289 293 295 297 299 301	305

Table 1 (continued)

Enzymes of proline degradation:

= (PROLINE DEHYDROGENASE (EC 1.5.99.8) / DELTA-1- PYRROLINE-5-	CARBOATLATE DEHTDROGENASE (EC. 1.3.1.1.12) PORDING EDHYDROGENASE (EC. 1.5.98) / DELTA-1- PYRROLINE-5-	CARBOATLAIE DEHTUROGENASE (EC. 1.3.1.12) PROLINE DEHYDROGENASE (EC. 1.5.99.8) / DELTA-1- PYRROLINE-5-	CARBOXTCA IE DEHYDROGENASE (EC.1.5.1.12) PROTEIN INVOLVED IN PROLINE METABOLISM
Function	PROLI	PROLI	PROLI	PROT
NT Start NT Stop Function	64703	454	2	
NT Start	68158	2	3028	
Contig.	VV0127	GR00003	GR00660	
Identification Code	RXN00023	F RXA00023	F RXA02284	RXC02498
Amino Acid	308	310	312	314
Nucleic Acid	307	309	311	313

Synthesis of 3-Hydoxy-proline:

<u>Function</u>	DNA FOR L-PROLINE 3-HYDROXYLASE, COMPLET
Fund	DNA
NT Stop	4687
NT Start	5337
Contig	GR00423
Identification Code	RXA01491
Amino Acid	316
Nucleic Acid	

Enzymes of ornithine, arginine and spermidine metabolism:

	GLUTAMATE N-ACETYLTRANSFERASE (EC 2.3.1.35) / AMINO-ACID ACETYLTRANSFERASE (EC 2.3.1.1)	ACETYLGLUTAMATE KINASE (EC 2.7.2.8)	N-ACETYL-GAMMA-GLUTAMYL-PHOSPHATE REDUCTASE (EC 1.2.1.38)	N-ACETYLGLUTAMATE-5-SEMIALDEHYDE DEHYDROGENASE	N-ACETYLGLUTAMATE-5-SEMIALDEHYDE DEHYDROGENASE	ACETYLORNITHINE AMINOTRANSFERASE (EC 2.6.1.11)	ACETYLORNITHINE AMINOTRANSFERASE (EC 2.6.1.11)	ACETYLORNITHINE AMINOTRANSFERASE (EC 2.6.1.11)	DRNITHINE CARBAMOYLTRANSFERASE (EC 2.1.3.3)	ARGININOSUCCINATE SYNTHASE (EC 6.3.4.5)	ARGININOSUCCINATE LYASE (EC 4.3.2.1)	ARGININOSUCCINATE LYASE (EC 4.3.2.1)	ARGININOSUCCINATE LYASE (EC 4.3.2.1)	DRNITHINE CYCLODEAMINASE (EC 4.3.1.12)	SPERMIDINE SYNTHASE (EC 2.5.1.16)	SPERMIDINE SYNTHASE (EC 2.5.1.16)	PUTRESCINE OXIDASE (EC 1.4.3.10)	ARGININE HYDROXIMATE RESISTANCE PROTEIN	N-ACETYL-GAMMA-GLUTAMYL-PHOSPHATE REDUCTASE (EC 1.2.1.38)	CARBAMOYL-PHOSPHATE SYNTHASE SMALL CHAIN (EC 6.3.5.5)	N-ACYL-L-AMINO ACID AMIDOHYDROLASE (EC 3.5.1.14)	N-ACYL-L-AMINO ACID AMIDOHYDROLASE (EC 3.5.1.14)
Function	GLUTAMA	ACETYLG	N-ACETYL	N-ACETYL	N-ACETYL	ACETYLO	ACETYLO	ACETYLO	ORNITHIN	ARGININO	ARGININO	ARGININO	ARGININO	ORNITHIN	SPERMIDI	SPERMIDI	PUTRESC	ARGININE	N-ACETYL	CARBAMO	N-ACYL-L-	N-ACYL-L-
NT Stop	3076	4075	13327	1536	1826	5251		5943	6224	8116	5253	8962	9611	33436	20230	14190	2142	6743	13037			
NT Start	1913	3125	14106	757	1536	4079		4714	5268	6914	6683	8180	8949	32291	19289	12652	2942	6231	13327			
- •	GR00640	GR00640	VV0122	GR00640	GR00640	GR00640		GR00287	GR00640	GR00640	VV0122	GR00640	GR00640	GR00654	GR00032	GR00424	GR00498	GR00640	VV0122			
Identification Code	RXA02155	RXA02156	RXN02153	F RXA02153	RXA02154	RXA02157	RXS02970	F RXA01009	RXA02158	RXA02160	RXN02162	F RXA02161	F RXA02162	RXA02262	RXA00219	RXA01508	RXA01757	RXA02159	RXN02154	RXS00147	RXS00905	RXS00906
Amino Acid SEQ ID NO	318	320	322	324	326	328	330	332	334	336	338	340	342	344	346	348	350	352	354	356	358	360
Nucleic Acid	31/	319	321	323	325	327	329	331	333	335	337	339	341	343	345	347	349	351	353	355	357	359

ntinued)	Function	N-ACYL-L-AMINO ACID AMIDOHYDROLASE (EC 3.5.1.14) N-ACYL-L-AMINO ACID AMIDOHYDROLASE (EC 3.5.1.14)	N-ACYL-L-AMINO ACID AMIDOHYDROLASE (EC 3.5.1.14) CARBAMOYL-PHOSPHATE SYNTHASE LARGE CHAIN (EC 6.3.5.5)	CARBAMOYL-PHOSPHATE SYNTHASE LARGE CHAIN (EC 6.3.5.5)	N-ACYL-L-AMINO ACID AMIDOHYDROLASE (EC 3.5.1.14) N-ACYL-L-AMINO ACID AMIDOHYDROLASE (EC 3.5.1.14)		Function	ATB BHOSBHORIBOSYI TRANSFERASE (FC 2 4 2 17)	PHOSPHORIBOSYL-ATP PYROPHOSPHOHYDROLASE (EC 3.6.1.31)	PHOSPHORIBOSYL-AMP CYCLOHYDROLASE (EC 3.5.4.19)	PHOSPHORIBOSYLFORMIMINO-5-AMINOIMIDAZOLE CARBOXAMIDE RIBOTIDE ISOMERASE (EC 5.3.1.16)	AMIDOTRANSFERASE HISH (EC 2.4.2)	AMIDOTRANSFERASE HISH (EC 2.4.2)	AMIDOTRANSFERASE HISH (EC 2.4.2)	HISF PROTEIN	IMIDAZOLEGLYCEROL-PHOSPHATE DEHYDRATASE (EC 4.2.1.19)	IMIDAZOLEGLYCEROL-PHOSPHATE DEHYDRATASE (EC 4.2.1.19) /	HIGHIOINOL-PHOSPHATE (EC. 3.1.3.13) HIGHIOINOL-PHOSPHATE AMINOTRANSERRASE (EC. 2.6.1.9)	HISTIDINOL-PHOSPHATE AMINOTRANSEERASE (FC 2.6.1.3)	HIGHDING! DHOODHATE AMINOTRANGERAAN (CO. 2.0.1.2)	HISTIDINOL DEHYDROGENASE (EC. 1.1.23)	PROTEIN INVOLVED IN HISTIDINE METABOLISM	PROTEIN INVOLVED IN HISTIDINE METABOLISM	PROTEIN INVOLVED IN HISTIDINE METABOLISM	MEMBRANE SPANNING PROTEIN INVOLVED IN HISTIDINE METABOLISM		<u>Function</u>	3-PHOSPHOSHIKIMATE 1-CARBOXYVINYI TRANSFERASE (EC 2.5.1.19)	4-AMINO-4-DEOXYCHORISMATE LYASE (EC 4,)	ANTHRANILATE PHOSPHORIBOSYLTRANSFERASE (EC 2.4.2.18)	ANTHRANILATE PHOUPHORIBOOTLIRANSFERASE (EC. 2.4.2.10) ANTHRANILATE SYNTHASE COMPONENT! (EC. 4.1.3.27)	ANTHRANILATE SYNTHASE COMPONENT! (EC 4.1.3.27)
Table 1 (continued)	NT Start NT Stop			3198			NT Stop	2055	2917	4373	6335	7094	39351	2944	4726	6432	10322	23318	525.0	10047	12053						NT Stop	4345	6948	2577	230 2764	1130
<u> </u>	NT Start			-			NT Start	7807	3186	4726	7072	7726	39950	2444	5499	7037	10927	24181	2	12044	13378						NT Start	3056	2806	3197	1211	
	Contig.			GR00654			Contig.	CBOOKAR	GR00645	GR00306	GR00306	GR00306	770010	GR00460	GR00306	VV0059	GR00306	10/0112	CBOOLOR	900000	GROUSOS					spic	Contig.	GR00712	GR00777	VV0247	GR00263	GR00264
	Identification Code	RXS00907 RXS02001	RXS02101 RXS02234	F RXA02234	RXS02565 RXS02937	E,	Identification Code	DV A 0.2104	RXA02195	RXA01097	RXA01100	RXA01101	RXN01657	F RXA01657	RXA01098	RXN01104	F RXA01104	DYNIODAAE	E DY ANNAAR	DVA0110F	RXA01105	RXC00930	RXC01096	RXC01656	RXC01158	natic amino acids	Identification Code	PYANDASR	RXA02790	RXN00954	F KXA00954 RXN00957	F RXA00957
	Amino Acid	362	366 368	370	372 374	metabolism	Amino Acid	376	378	380	382	384	386	388	390	392	394	306	200	200	56	404	406	408	410	Metabolism of aromatic ar	Amino Acid	412	414	416	418	422
	Nucleic Acid	361	365 367	369	371 373	Histidin	Nucleic Acid	375	377	379	381	283	285	387	389	391	393	305	202	160	583	4 4 503	405	407	409	Metaboli	Nucleic Acid	311	413	415	417	421

Table 1 (continued)	Function	CHORISMATE MUTASE (EC 5.4.99.5) / PREPHENATE DEHYDRATASE (EC 4.2.1.51)	CHORISMATE SYNTHASE (EC 4.6.1.4)	CHORISMATE SYNTHASE (EC 4.6.1.4)	INDOLE-3-GLYCEROL PHOSPHATE SYNTHASE (EC 4.1.1.48)	INDOLE-3-GLYCEROL PHOSPHATE SYNTHASE (EC 4.1.1.48) / N-(5'-PHOSPHO- PIBOSYI VANTHRANII ATE ICOMEDACE (EC 6.3.1.34)	ISOCHORISMATE MUTASE	SHIKIMATE 5-DEHYDROGENASE (EC 1.1.1.25)	SHIKIMATE 5-DEHYDROGENASE (EC 1.1,1.25)	SHIKIMATE 5-DEHYDROGENASE (EC 1.1.1.25)	SHIKIMATE KINASE (EC 2.7.1.71)	TRYPTOPHAN SYNTHASE ALPHA CHAIN (EC 4.2.1.20)	TRYPTOPHAN SYNTHASE BETA CHAIN (EC 4.2.1.20)	TRYPTOPHAN SYNTHASE BETA CHAIN (EC 4.2.1.20)	TYROSINE AMINOTRANSFERASE (EC 2.6.1.5)	PREPHENATE DEHYDROGENASE (EC 1.3.1.12)	PREPHENATE DEHYDROGENASE (EC 1.3.1.12)	PREPHENATE DEHYDROGENASE (EC 1.3.1.12)	PHOSPHO-2-DEHYDRO-3-DEOXYHEPTONATE ALDOLASE (EC 4.1.2.15)	PARA-AMINOBENZOATE SYNTHASE COMPONENT I (EC 4.1.3)	PARA-AMINOBENZOATE SYNTHASE GLUTAMINE AMIDOTRANSFERASE	COMPONENT II (EC 4.1.3) / ANTHRANILATE SYNTHASE COMPONENT II (EC	4.1.3.27) ANTIDOMIII ATE SANTUAGE COMPONIENT II (FC 4.4.2.22)	TRYPTODHAN SYNTHASE BETA CHAIN (FO 4.1.5.27)	3-OXOADIPATE COA-TRANSFERASE SURUNIT R (FC 2 8 3 6)	3-OXOADIPATE ENOL-LACTONE HYDROLASE (EC.3.1.1.24) / 4-	CARBOXYMUCONOLACTONE	ASPARTATE AMINOTRANSFERASE (EC 2.6.1.1)	ASPARTATE AMINOTRANSFERASE (EC 2.6.1.1)	O-SUCCINYLBENZOIC ACIDCOA LIGASE (EC 6.2.1.26)	1,4-DIHYDROXY-2-NAPHTHOATE OCTAPRENYLTRANSFERASE (EC 2.5)	1,4-DIHYDROXY-2-NAPHTHOATE OCTAPRENYLTRANSFERASE (EC 2.5)	HISTIDINOL-PHOSPHATE AMINOTRANSFERASE (EC 2.6.1.9)	HISTIDINOL-PHOSPHATE AMINOTRANSFERASE (EC 2.6.1.9)	ASPARTATE AMINOTRANSFERASE (EC 2.6.1.1)	ASPARIATE AMINOTRANSFERASE (EC.2.6.1.1)	ASPARTATE AMINOTRANSFERASE (EC 2.6.1.1)	HISTIDINOL-PHOSPHATE AMINOTRANSFERASE (EC. 2.6.1.9)	2-SUCCINYL-6-HYDROXY-2,4-CYCLOHEXADIENE-1-CARBOXYLATE	STNINASE / Z-OXOGLOTARATE DECARBOATLASE (EC 4.1.1.7) ASPARTATE AMINOTRANSFERASE (FC 76.1.1)	NAPHTHOATE SYNTHASE (EC 4 1.3.36)	O-SUCCINYLBENZOIC ACIDCOA LIGASE (EC.6.2.1.26)	ASPARTATE AMINOTRANSFERASE (EC 2.6.1.1)	3-DEHYDROQUINATE DEHYDRATASE (EC 4.2.1.10)
able 1 (c	NT Stop	12250	12736	991	2821	2002	128	936	13247	7795	1553	936	4	3157	3776	32940	899	1099	10260	4087	1753		9776	25887	6886	11099			4			4911	į	525	Ç	45	1138							
_	NT Start	11306	11507	2	3603	286	598	1715	12444	8969	984	26	1140	2027	2499	33959	ო	854	11384	5946	1130		3410	25447	7497	10347			510			4030	١,	4		213	854							
	Contig.	GR00754	VV0134	GR00477	GR00306	GR00263	GR00795	GR00033	GR00629	GR00777	GR00477	GR00262	VV0247	GR00263	GR00010	W0112	GR00109	GR00110	GR00156	GR00156	GR00264		9000/01	V/0086	VV0182	VV0182			GR00018			GR00086		GR00108	00000	GRUUTES	GR00164							
	Identification Code	RXA02687	RXN01698	F RXA01698	RXA01095	KXAUU955	RXA02814	RXA00229	RXA02093	RXA02791	RXA01699	RXA00952	RXN00956	F RXA00956	RXA00064	RXN00448	F RXA00448	F RXA00452	RXA00584	RXA00579	RXA00958		DYN03007	RXN02918	RXN01116	RXN01115		RXS00116	F RXA00116	RXS00391	RXS00393	F RXA00393	RXS00446	F KXA00446		F FXAUU618	F RXA00627	KXS01105	KX502315	RXS02550	RXS02319	RXS02908	RXS03003	RXS03026
	Amino Acid		426	428	430	432	434	436	438	440	442	444	446	448	450	452	454	456	458	460	462		ABA	466	468	470		472	474	476	478	480	482	484	486	488	490	492	40,4	496	498	200	502	504
	Nucleic Acid	423	425	427	429	154	433	435	437	439	441	443	445	447	449	451	453	455	457	459	461		463	465	467	469		471	473	475	477	479	481	483	485	/84	489	194	200	495	497	499	501	503

Identification Code Contig. RXS03074 RXC01434 RXC02080 RXC02789 RXC02295	Table 1 (continued)	NT Start NT Stop Function	S-ADENOSYLMETHIONINE:2-DEMETHYLMENAQUINONE	MEMBRANE SPANNING PROTEIN INVOLVED IN METABOLISM OF AROMATIC AMINO ACIDS AND RIBOFLAVIN	MEMBRANE SPANNING PROTEIN INVOLVED IN METABOLISM OF AROMATIC AMINO ACIDS	CYTOSOLIC PROTEIN INVOLVED IN METABOLISM OF AROMATIC AMINO ACIDS	MEMBRANE SPANNING PROTEIN INVOLVED IN METABOLISM OF AROMATIC AMINO ACIDS
			RXS03074	RXC01434	RXC02080	RXC02789	RXC02295
		Nucleic Acid SEQ ID NO	505	507	609	511	513

Aminobutyrate metabolism

Function	4-aminobutyrate aminotransferase (EC 2.6.1.19)	ACETYLORNITHINE AMINOTRANSFERASE (EC 2.6.1.11)	ACETYLORNITHINE AMINOTRANSFERASE (EC 2.6.1.11)
NT Stop	1697	6081	5943
NT Start	999	4714	4714
Contig.	VV0035	VV0021	GR00287
Identification Code	RXN03063	RXN02970	F RXA01009
Amino Acid SEQ ID NO	516	518	520
Nucleic Acid	515	517	519

Vitamins, vitamin-like substances (cofactors), nutraceuticals

Thiamine metabolism

Function	THIAMIN BIOSYNTHESIS PROTEIN THIC	THIAMIN-MONOPHOSPHATE KINASE (EC 2.7.4.16)	THIAMIN-PHOSPHATE PYROPHOSPHORYLASE (EC 2.5.1.3)	THIF PROTEIN	THIG PROTEIN	THIG PROTEIN	HYDROXYETHYLTHIAZOLE KINASE (EC 2.7.1.50)	APBA PROTEIN	THIAMIN BIOSYNTHESIS PROTEIN X	PHOSPHOMETHYLPYRIMIDINE KINASE (EC 2.7.4.7)	PYRIDOXINE KINASE (EC 2.7.1.35)	CYTOSOLIC KINASE INVOLVED IN METABOLISM OF SUGARS AND TH				
NT Stop	4819	995	4	2286	4	378	1032	633	2557	2446	2446	27905	22858	616		
NT Start	2945	9	609	3206	162	983	229	1532	1988	1019	1019	27306	22187	7		
Contig.	GR00431	GR00291	GR00393	GR00403	GR00394	GR00394	GR00348	GR00227	GR00699	VV0270	GR00348	VV0050	VV0050	GR00451		
Identification Code	RXA01551	RXA01019	RXA01352	RXA01381	RXA01360	RXA01361	RXA01208	RXA00838	RXA02400	RXN01209	F RXA01209	RXN01413	RXN01617	F RXA01617	RXS01807	RXC01021
Amino Acid SEQ ID NO	522	524	526	528	530	532	534	536	538	540	542	544	546	548	920	552
Nucleic Acid				527												

PYRIDOXINE KINASE (EC 2.7.1.35), pyridoxal/pyridoxine/pyridoxamine kinase

Function

NT Stop 7077

NT Start 7868

Identification Code

Vitamin B6 metabolism

Contig. GR00509

RXA01807

Nucleic Acid SEQ ID NO 595

Table 1 (continued)

Function	diaminohydroxyphosphoribosylaminopyrimidine deaminase (EC 3.5.4.26) / 5-amino- 6 (5-arbosylaminohydrosi) radiidase (EC 1 1 1 103)	RIBG PROTEIN riboflavin-specific deaminase [EC:3.5.4]	RIBOFLAVIN SYNTHASE ALPHA CHAIN (EC 2.5.1.9)	GTP CYCLOHYDROLASE II (EC 3.5.4.25) / 3,4-DIHYDROXY-2-BUTANONE 4-	PHOSPHATE SYNTHASE	RIBA PROTEIN - GTP cyclohydrolase II [EC:3.5.4.25]	6,7-DIMETHYL-8-RIBITYLLUMAZINE SYNTHASE (EC 2.5.1.9)	RIBH PROTEIN - 6,7-dimethyl-8-ribityllumazine synthase (dmrl synthase, lumazine	synthase, riboflavin synthase beta chain) [EC:2.5.1.9]	RIBX PROTEIN	RIBOFLAVIN KINASE (EC 2.7.1.26) / FMN ADENYLYLTRANSFERASE (EC	2.7.7.2)	NICOTINATE-NUCLEOTIDEDIMETHYLBENZIMIDAZOLE	PHOSPHORIBOSYLTRANSFERASE (EC 2.4.2.21)	RIBOFLAVIN KINASE (EC 2.7.1.26) / FMN ADENYLYLTRANSFERASE (EC	2.7.7.2)	RIBOFLAVIN-SPECIFIC DEAMINASE (EC 3.5.4)	RIBOFLAVIN-SPECIFIC DEAMINASE (EC 3.5.4)	ALPHA-RIBAZOLE-5'-PHOSPHATE PHOSPHATASE (EC 3.1.3)	RIBOFLAVIN-SPECIFIC DEAMINASE (EC 3.5.4)	DRAP DEAMINASE	MEMBRANE SPANNING PROTEIN INVOLVED IN RIBOFLAVIN METABOLISM	PROTEIN INVOLVED IN RIBOFLAVIN METABOLISM	Predicted nucleotidyltransferases	CYTOSOLIC PROTEIN INVOLVED IN METABOLISM OF RIBOFLAVIN AND	LIPIDS	MEMBRANE SPANNING PROTEIN INVOLVED IN METABOLISM OF AROMATIC AMINO ACIDS AND RIBOFLAVIN	
NT Stop	5371	15282	15918	7286		17197	7777	17688		18356	2388		1736		2388		8298	2152	629	438	350			56				
NT Start	4388	14299	15286	6021		15932	7301	17212		17778	3410		2809		3410		8993	2652	1386	797	1363			709				
Contig.	VV0130	GR00654	GR00654	VV0130		GR00654	VV0130	GR00654		GR00654	GR00423		GR00639		GR00423		W0191	GR00484	W0213	VV0319	W0109			GR00691				
Identification Code	RXN02246	F RXA02246	RXA02247	RXN02248		F RXA02248	RXN02249	F RXA02249		RXA02250	RXA01489		RXA02135		RXA01489		RXN01712	F RXA01712	RXN02384	RXN01560	RXN00667	RXC01711	RXC02380	F RXA02380	RXC02921		RXC01434	
Amino Acid	554 554	556	558	260		562	564	999		568	570		572		574		576	578	580	582	584	586	588	290	265		594	
Nucleic Acid	553	555	557	559		561	563	565		267	999		571		573		575	577	579	581	583	585	587	589	591		593	

Riboflavin metabolism

continued)	ድ
Table 1 (c	Dand NAL
	ımide, NAC
), nicotinamid
	otinic acid
	tinate (nice

Function	NICOTINATE PHOSPHORIBOSYLTRANSFERASE (EC 2.4.2.11)	NICOTINATE PHOSPHORIBOSYLTRANSFERASE (EC 2.4.2.11)	NICOTINATE PHOSPHORIBOSYLTRANSFERASE (EC 2.4.2.11)	NICOTINATE-NUCLEOTIDE PYROPHOSPHORYLASE (CARBOXYLATING) (EC	2.4.2.19) QUINOLINATE SYNTHETASE A
NT Start NT Stop	23901	4	488	6436	5593
NT Start	22564	774	ო	2600	4310
Contig.	VV0084	GR00701	GR00766	GR00632	GR00632
Identification Code	RXN02754	F RXA02405	F RXA02754	RXA02112	RXA02111
Amino Acid SEQ ID NO	298	009	602	604	909
Nucleic Acid SEQ ID NO	597	599	601	603	605

NAD Biosynthesis

Function	NH(3)-DEPENDENT NAD(+) SYNTHETASE (EC 6.3.5.1) NICOTINATE PHOSPHORIBOSYLTRANSFERASE (EC 2.4.2)
NT Stop	2104 23901
NT Start	1274 22564
Contig.	GR00300 VV0084
Identification Code	RXA01073 RXN02754
Amino Acid	608 610
Nucleic Acid	609

Pantothenate and Coenzyme A (CoA) biosynthesis

ASPARTATE 1-DECARBOXYLASE PRECURSOR (EC 4.1.1.11) PANTOATEBETA-ALANINE LIGASE (EC 6.3.2.1) 3-METHYL-2-OXOBUTANOATE HYDROXYMETHYLTRANSFERASE (EC 2.1.2.11) 3-METHYL-2-OXOBUTANOATE HYDROXYMETHYLTRANSFERASE (EC 2.1.2.11) PANTOATEBETA-ALANINE LIGASE (EC 6.3.2.1) KETOL-ACID REDUCTOISOMERASE (EC 1.1.1.86) DNA/PANTOTHENATE METABOLISM FLAVOPROTEIN PANTOTHENATE KINASE (EC 2.7.1.33) 2-DEHYDROPANTOATE 2-REDUCTASE (EC 1.1.1.169)	AND PANTOTHENATE
NT Stop 10859 1121 48402 1960 25964 1530 7049 8540	
NT Start 10452 1957 47590 2766 25167 1075 5784 7572	
Contig. GR00555 VV0127 GR00555 GR00424 GR00321 GR00321 GR00554	
Identification Code RXA02299 RXA01928 RXN01929 F RXA01521 RXS01145 F RXA01145 F RXA01145 F RXA01145 F RXA01145 PXA02239 RXA00838	KACU2230
Amino Acid SEQ ID NO 612 614 616 616 620 622 624 626 630 630 630	937
Nucleic Acid <u>SEQ ID NO</u> 611 613 615 617 619 621 623 625 627 629	

Biotin metabolism

Function	BIOTIN SYNTHESIS PROTEIN BIOC
NT Stop	8754
NT Start	8272
Contig.	VV0028
Identification Code	RXN03058
Amino Acid	634
Nucleic Acid	633

intinued)	Function	BIOTIN SYNTHESIS PROTEIN BIOC BIOTIN SYNTHESIS PROTEIN BIOC	ADENOSYLMETHIONINE-8-AMINO-7-OXONONANOATE AMINOTRANSFERASE (EC 2.6.1.62)	DETHIOBIOTIN SYNTHETASE (EC 6.3.3.3)	BIOTIN SYNTHASE (EC 2.8.1.6)	NEW PROTEIN	NESS PROTEIN	NIFS PROTEIN	NIFS PROTEIN	NIFS PROTEIN	NIFS PROTEIN			<u>Function</u>	かんき しょうしょう しょうしょく しょうしょく しょうしょく しょく しょうしょく しょうしょく しょうしょく しょうしょく しょうしょく しょく しょく しょく しょく しょく しょく しょく しょく しょく	LIPOIC ACID SYNTHETASE LIPOATE-PROTEIN LIGASE B (EC 6)	LIPOATE-PROTEIN LIGASE A (EC 6)	DIHYDROLIPOAMIDE SUCCINYLTRANSFERASE COMPONENT (E2) OF 2- OXOGI IJTARATE DEHYDROGENASE COMPI EX (EC. 2-3-1-61)	LIPOAMIDE DEHYDROGENASE COMPONENT (E3) OF BRANCHED-CHAIN AI PHA.KETO ACID DEHYDROGENASE COMPONENT (E3) OF BRANCHED-CHAIN	LIPOAMIDE DEHYDROGENASE COMPONENT (E3) OF BRANCHED-CHAIN ALPHA-KETO ACID DEHYDROGENASE COMPLEX (EC 1.8.1.4)		Function	5,10-METHYLENETETRAHYDROFOLATE REDUCTASE (EC 1.7.99.5)	5-FORMYLTETRAHYDROFOLATE CYCLO-LIGASE (EC 6.3.3.2) 5-EORMYLTETRAHYDROFOLATE CYCLO-LIGASE (EC 6.3.3.2)	DIHYDROFOLATE REDUCTASE (EC 1.5.1.3)	FORMYLTETRAHYDROFOLATE DEFORMYLASE (EC 3.5.1.10)	FORMYL I ETRAHYDROFOLATE DEFORMYLASE (EC 3.5.1.10) METHYLENETETRAHYDROFOLATE DEHYDROGENASE (EC 1.5.1.5) /	METHENYLTETRAHYDROFOLATE CYCLOHYDROLASE (EC 3.5.4.9) GTP CYCLOHYDROLASE I (EC 3.5.4.16)	DIHYDRONEOPTERIN ALDOLASE (EC 4.1.2.25)
Table 1 (continued)	NT Stop	12014 4309	2288	1610	4408	15608	897	11209	2949	4	2986	6		NT Stop	0730	3549 2366	1527					NT Stop	17400	1003	17924	9788	559 1279	21509	22749
<u> </u>	NT Start	11532 3650	3556	2281	3407	16681	2002	10037	3563	438	1724	6067		NT Start	9030	2506 1614	472					NT Start	18281	503 500	17469	8868	23 428	20922	22360
	Contig.	GR10040 GR00025	GR00166	GR00166	GR00047	GR00032	GR00040	W0112	GR00100	GR00782	GR00723	G100123		Contig.	3070000	GR00495 GR00495	GR00632					Contig.	GR00758	VV0296	GR00014	VV0082	GR00384 GR00116	GR00424	GR00424
	Identification Code	F RXA02903 RXA00166	RXA00633	RXA00632	RXA00295	RXN00262	F RXA00262	RXN00435	F RXA00435	F RXA02801	RXA02516	100001		Identification Code	0 0 0 0 1 2 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7	RXA01746	RXA02106	RXS01183	RXS01260	RXS01261	Ø	Identification Code	RXA02717	RXN02027 F RXA02027	RXA00106	RXN01321	F KXA01321 RXA00461	RXA01514	RXA01516
	Amino Acid SEQ ID NO		640	642	644 646	648 648	650	652	654	656	658 660	3	cid	Amino Acid	SE 2 10 10	664 664	999		029	672	Folate biosynthesis	Amino Acid	674	676 678	980	682	686 686	688	069
	Nucleic Acid SEQ ID NO	635 637	639	641	643 645	647	649	651	653	655	657	3	Lipoic Acid	Nucleic Acid	554	663	665	299	699	671	Folate bi	Nucleic Acid	673	675 677	679	681	685 685	687	689

Nucleic Acid Amino Acid Identificatio SEQ 1D NO SEQ 1D NO RXA01515 693 RXA01089 RXA01089 694 RXA01010 RXA01517 695 RXA01517 RXA01517 701 702 RXA00579 703 704 RXA00219 707 708 RXA02085 711 712 F RXA0208 713 714 RXN02084 717 718 F RXA0208 721 720 RXN02648 722 724 F RXA0265 723 724 F RXA028 725 726 RXC01942 727 728 RXC01942 728 730 RXA028 731 734 RXA02802
--

			•																	_											
able 1 (continued)	Function	MOLYBDENUM COFACTOR BIOSYNTHESIS PROTEIN CB	MOLYBDOPTERIN CO-FACTOR SYNTHESIS PROTEIN	MOLYBDOPTERIN CO-FACTOR SYNTHESIS PROTEIN	5-METHYLTETRAHYDROPTEROYLTRIGLUTAMATEHOMOCYSTEINE	METHYLTRANSFERASE (EC 2.1.1.14)	DIHYDRONEOPTERIN ALDOLASE (EC 4.1.2.25)	DIHYDROPTEROATE SYNTHASE (EC 2.5.1.15)	DIHYDROPTEROATE SYNTHASE (EC 2.5.1.15)	MOLYBDOPTERIN-GUANINE DINUCLEOTIDE BIOSYNTHESIS PROTEIN A	MOLYBDOPTERIN BIOSYNTHESIS MOEA PROTEIN	MOLYBDOPTERIN BIOSYNTHESIS MOEA PROTEIN	MOLYBDOPTERIN BIOSYNTHESIS MOEA PROTEIN	MOLYBDOPTERIN BIOSYNTHESIS CNX1 PROTEIN	(D90909) pterin-4a-carbinolamine dehydratase [Synechocystis sp.]	2-AMINO-4-HYDROXY-6-HYDROXYMETHYLDIHYDROPTERIDINE	PYROPHOSPHOKINASE (EC 2.7.6.3)	MOLYBDOPTERIN BIOSYNTHESIS MOG PROTEIN	FLAVOHEMOPROTEIN / DIHYDROPTERIDINE REDUCTASE (EC 1.6.99.7)	OXYGEN-INSENSITIVE NAD(P)H NITROREDUCTASE (EC 1) / DIHYDROPTERIDINF REDICTASE (FC1 6 99 7)											
able 1 (cc	NT Stop	654	18779	793			5295		5731				4730		15447		22749	22364	4784	704	1268		1207	069	9962	23228		4934			
	NT Start	196	19942	7			3496		5252				5254		14764		22360	21513	4026	1264	2476		2	1274	9684	22752		4449			
	Contig	GR00104	W0112	GR00105			GR00629		GR00629				GR00751		GR00752		GR00424	GR00424	GR00613	GR00488	GR00488		GR00568	GR00748	GR00665	GR00424		VV0148			
	Identification Code	RXA00440	RXN00441	F RXA00441	RXN02085		F RXA02085		F RXA02086		RXN02648		F RXA02648		F RXA02658		RXA01516	RXA01515	RXA02024	RXA01719	RXA01720	RXS03223	F RXA01970	RXA02629	RXA02318	RXA01517		RXN01304	RXS02556	RXS02560	
	Amino Acid SEQ ID NO	750	752	754	756		758		760		762		764		992		768	270	772	774	776	778	280	782	784	786		788	790	792	
	Nucleic Acid SEQ ID NO	749	751	753	755		757		759		761		763		765		191	169	171	773	775	777	622	781	783	785		787	789	791	

Vitamin B₁₂, porphyrins and heme metabolism

Function	SLUTAMATE-1-SEMIALDEHYDE 2,1-AMINOMUTASE (EC 5.4.3.8) FERROCHELATASE (EC 4.99.1.1)	FERROCHELATASE (EC 4.99.1.1) HEMK PROTEIN	OXYGEN-INDEPENDENT COPROPORPHYRINGGEN III OXIDASE (EC	PORPHOBILINGEN DEAMINASE (EC 4.3.1.8) IDOPODIDADADIO DEAMINASE (EC 4.3.1.8)	PORPHOBILINGEN DEAMINASE (EC 4.3.1.8)
NT Stop F	0-		- 0 11		, u. u.
	145	859(112	17. 17. 17. 17.	23362
NT Start	2752 10509	7910	10137	16906	22805 17379
Contig.	GR00082 GR00023	GR00163	GR00242	GR00720	VV0007 GR00720
Identification Code	RXA00382 RXA00156	RXA00624 RXA00306	RXA00884 RXN02503	F RXA02503	RXN02504 F RXA02504
Amino Acid	794	798	802	80e 80e	810 812
Nucleic Acid	793	797	801	805 805	809 811

(penuju	Function	PRECORRIN-6Y METHYLASE (EC 2.1.1)	PRECORRIN-67 METHYLAGE (EC. 2.1.1) TROBORDHYRIN-III C-METHYLTRANGERRAGE (EC. 2.1.1.102)	UROPORPHYRIN-III C-METHYLTRANSFERASE (EC 2.1.1.107) / UROPORPHYRINOGEN-III SYNTHASE (EC 4.2.1.75)	UROPORPHYRIN-III C-METHYLTRANSFERASE (EC 2.1.1.107) / IIROPORPHYRINOGEN-III SYNTHASE (EC 4.2.1.75)	UROPORPHYRIN-III C-METHYLTRANSFERASE (EC 2.1.1.107) /	PROTOPORPHYRINGGEN OXIDASE (EC 1.3.3.4)	PROTOPORPHYRINOGEN OXIDASE (EC 1.3.3.4)	PROTOPORPHYRINGGEN OXIDASE (EC 1.3.3.4)	COBYRIC ACID SYNTHASE	COBALAMIN (5'-PHOSPHATE) SYNTHASE	NICOTINATE-NUCLEOTIDEDIMETHYLBENZIMIDAZOLE	PHOSPHORIBOSYLTRANSFERASE (EC 2.4.2.21)	COBINAMINE NIVERS (COBINAMINE PROSPINALE GOANTELLINANSFERASE	COBE PROTEIN (EC. 1777)	HEMIN-BINDING PERIPLANMIC PROJEIN HMUT PRECURNOR	NITION AMBE	CYTOSOLIC PROTEIN INVOLVED IN PORPHYRIN METABOLISM		Function		L-GULONOLACTONE OXIDASE (EC 1.1.3.8) L-GULONOLACTONE OXIDASE (EC 1.1.3.8)	L-SOLONOLACTONE OXIDASE (EC. 1.1.3.9) 2,5-DIKETO-D-GLUCONIC ACID REDUCTASE (EC. 1.1.1)	2,5-DIKETO-D-GLUCONIC ACID REDUCTASE (EC 1.1.1)	2,5-DIKETO-D-GLUCONIC ACID REDUCTASE (EC 1.1.1) oxodiutarata samialdativda dehvdrogenase (EC 1.2.1)	ACETOACETYL-COA REDUCTASE (EC 1.1.1.36)	MEMBRANE SPANNING PROTEIN INVOLVED IN METABOLISM OF VITAMIN C PRECURSORS OXIDOREDLICTASE INVOLVED IN METABOLISM OF VITAMIN C PRECURSORS			Function	S-ADENOSYLMETHIONINE:2-DEMETHYLMENAQUINONE METHYLTRANSFERASE (EC 2.1)
Table 1 (continued)	NT Stop	524	740	5973	9	371	2863	9	2863	1787	801	1736	;	784	200	663				NT Stop	•	1048 541	3872	1359	929					NT Stop	
ř.	NT Start	1849	1248	4180	929	1102	4206	287	3876	2536	1721	2809		3362	_ :	1739				NT Start		2511 2	4678	2030	1540					NT Start	
	Contig.	VV0088	GK00330	W0226	GR00078	GR00079	VV0223	GR00081	GR00082	GR00365	GR00639	GR00639		GK00639	88000	VV0082				Contig.		VV0112 GR00096	GK00097 VV0005	GR00185	GR00688					Contig.	
	Identification Code	RXN01162	F RXA01162	RXN00371	F RXA00371	F RXA00374	RXN00383	F RXA00376	F RXA00383	RXA01253	RXA02134	RXA02135		KXA02136	KXN03114	RXN01810	F RXA00306	RXC01715	ors	Identification Code		RXN00420 F RXA00420	F KXA00426 RXN00708	F RXA00708	RXA02373 RX 500389	RXS00419	RXC00416	0077000		Identification Code	RXS03074
	Amino Acid SEO ID NO		816 818	820	822	824	826	828	830	832	834	836	į	838	840	842	844 846	848	Vitamin C precursors	Amino Acid		850 852	856 856	858	860 863	864 864	866 868	9	K 2	Amino Acid	
	Nucleic Acid	813	815	819	821	823	825	827	829	831	833	835		837	838	841	843 845	284	Vitamin	Nucleic Acid	2000	849 851	853 855	857	859	863 863	865	200	Vitamin K2	Nucleic Acid	869 869

Table 1 (continued)	tig. NT Start NT Stop Function	GR10044 1142 645 S-ADENOSYLMETHIONINE:2-DEMETHYLMENAQUINONE	GR00665 8011 6383 2-SUCCINYL-6-HYDROXY-2,4-CYCLOHEXADIENE-1-CARBOXYLATE	SYNTHASE /2-OXOGLUTARATE DECARBOXYLASE (EC 4.1.1.71) GR00665 9977 10933 NAPHTHOATE SYNTHASE (EC 4.1.3.36)	1,4-DIHYDROXY-2-NAPHTHOATE OCTAPRENYLTRANSFERASE (EC 2.5)	GR00086 4030 4911 1,4-DIHYDROXY-2-NAPHTHOATE OCTAPRENYLTRANSFERASE (EC 2.5)	GR00086 2031 2750 O-SUCCINYLBENZOIC ACIDCOA LIGASE (EC 6.2.1.26)	O-SUCCINYLBENZOIC ACIDCOA LIGASE (EC 6.2.1.26)		tig. NT Start NT Stop Function	GR00283 2389 1808 3-DEMETHYLUBIQUINONE-9 3-METHYLTRANSFERASE (EC 2.1.1.64)	GR00642 986 249 3-DEMETHYLUBIQUINONE-9 3-METHYLTRANSFERASE (EC 2.1.1.64)		13299 12547 UBIQUINONE/MENAQUINONE BIOSYNTHESIS METHLYTRANSFERASE UBIE	(EC 2.1.1) COMA OPERON PROTEIN 2	
	Contig.	GR10	GR00	GROO		GR00	GR00			Contig.	GR00	GR00	GR00	VV0135		
	Identification Code	F RXA02906	RXA02315	RXA02319	RXS00393	F RXA00393	RXA00391	RXS02908	nthesis	Identification Code	RXA00997	RXA02189	RXA02311	RXN02912	RXS00998	
	Amino Acid SEQ ID NO		874	876	878	880	882	884	Jbiquinone biosynthesis	Amino Acid SEQ ID NO		888	890	892	894	
	Nucleic Acid SEQ ID NO	871	873	875	877	879	881	883	Ubiquino	Nucleic Acid SEQ ID NO	885	887	688	891	893	

Purines and Pyrimidines and other Nucleotides

Regulation of purine and pyrimidine biosynthesis pathways

Purine metabolism

Purine Biosynthesis

	PRPP synthetase (EC 2.7.6.1)	2.4.2.14)	2.4.2.14)	C 6.3.4.13)	C 6.3.4.13)	3ARS (EC 6.3.4.13)	C 6.3.4.13) /	YCLO-LIGASE (EC 6.3.3.1) /	NSFERASE 2 (EC 2.1.2)
Function	RIBOSE-PHOSPHATE PYROPHOSPHOKINASE, PRPP synthetase (EC 2.7.6.1)	AMIDOPHOSPHORIBOSYLTRANSFERASE (EC 2.4.2.14)	AMIDOPHOSPHORIBOSYLTRANSFERASE (EC 2.4.2.14)	PHOSPHORIBOSYLAMINEGLYCINE LIGASE (EC 6.3.4.13)	PHOSPHORIBOSYLAMINE-GLYCINE LIGASE (EC 6.3.4.13)	PHOSPHORIBOSYLAMINEGLYCINE LIGASE, GARS (EC 6.3.4.13)	PHOSPHORIBOSYLAMINEGLYCINE LIGASE (EC 6.3.4.13) /	PHOSPHORIBOSYLFORMYLGLYCINAMIDINE CYCLO-LIGASE (EC 6.3.3.1) / PHOSPHORIBOSYLGLYCINAMIDE FORMYLTBANGEEDAGE (EC 9.4.2.3.	PHOSPHORIBOSYLGLYCINAMIDE FORMYLTRANSFERASE 2 (EC 2.1.2)
NT Start NT Stop	213	9581	501	10362	1713	780	4285		9054
NT Start	1187	8235	61	11624	1450	-	4875		10277
Contig.	GR00352	VV0103	GR00148	VV0135	GR00165	GR00164	GR00746		GR00418 10277
Identification Code	RXA01215	RXN00558	F RXA00558	RXN00626	F RXA00629	F RXA00626	RXA02623		RXA01442
Amino Acid SEQ ID NO	896	898	006	305	904	906	808		910
Nucleic Acid SEQ ID NO	895	897	668	901	903	905	204		606

Table 1 (continued)	Function	PHOSPHORIBOSYLFORMYLGLYCINAMIDINE SYNTHASE (EC 6.3.5.3)	PHOSPHORIBOSYLAMIDOIMIDAZOLE-SUCCINOCARBOXAMIDE SYNTHASE	(EC 6.3.2.6)	PHOSPHORIBOSYLFORMYLGLYCINAMIDINE CYCLO-LIGASE (EC 6.3.3.1)	PHOSPHORIBOSYLFORMYLGLYCINAMIDINE CYCLO-LIGASE (EC 6.3.3.1)	PHOSPHORIBOSYLFORMYLGLYCINAMIDINE CYCLO-LIGASE (EC 6.3.3.1)	PHOSPHORIBOSYLAMINOIMIDAZOLE CARBOXYLASE ATPASE SUBUNIT (EC	4.1.1.21)	PHOSPHORIBOSYLAMINOIMIDAZOLE CARBOXYLASE ATPASE SUBUNIT (EC	4.1.1.21)	PHOSPHORIBOSYLAMINOIMIDAZOLE CARBOXYLASE CATALYTIC SUBUNIT	(EC 4.1.21)	PHOSPHORIBOSYLAMINOIMIDAZOLE CARBOXYLASE CATALYTIC SUBUNIT	(EC 4.1.1.21)	PHOSPHORIBOSYLAMINOIMIDAZOLE CARBOXYLASE CATALYTIC SUBUNIT	(EC 4.1.1.21)	PHOSPHORIBOSYLAMINOIMIDAZOLE CARBOXYLASE (EC 4.1.1.21)	ADENYLOSUCCINATE LYASE (EC 4.3.2.2)	PHOSPHORIBOSYLAMINOIMIDAZOLECARBOXAMIDE FORMYLTRANSFERASE	(EC 2.1.2.3) / IMP CYCLOHYDROLASE (EC 3.5.4.10)				
able 1 (co	NT Stop	5636	638	269	280	2937	3939		10783	818	7495	5984		725		8863		ro.		911		1373	2220	2715	
Ë	NT Start	3351	54	23	2	2269	3049		9614	15	7809	4788		1534		8369		127		1120		498	793	4274	
	Contig.	VV0103	GR00786	GR00138	GR00150	GR00139	GR00163		VV0103	GR00147	GR00204	VV0078		GR00676		VV0078		GR00677		GR00678		GR00304	GR00163	GR00746	
	Identification Code	RXN00537	F RXA02805	F RXA00537	F RXA00561	RXA00541	RXA00620		RXN00770	F RXA00557	F RXA00770	RXN02345		F RXA02345		RXN02350		F RXA02346		F RXA02350		RXA01087	RXA00619	RXA02622	
	Amino Acid	912	914	916	918	920	922		924	926	928	930		932		934		936		938		940	942	944	
		911							923	925	927	929		931		933		935		937		939	941	943	

GMP, GDP, AMP and ADP synthesis, from inosine-5'-monophosphate (IMP)

tion	NOSINE-5'-MONOPHOSPHATE DEHYDROGENASE (EC 1.1.1.205)	VOSINE-5'-MONOPHOSPHATE DEHYDROGENASE (EC 1.1.1.205)	VOSINE-5'-MONOPHOSPHATE DEHYDROGENASE (EC 1.1.1.205)	NOSINE-5'-MONOPHOSPHATE DEHYDROGENASE (EC 1.1.1.205)	GMP SYNTHASE (GLUTAMINE-HYDROLYZING) (EC 6.3.5.2)	GMP SYNTHASE (EC 6.3.4.1)	GUANYLATE KINASE (EC 2.7.4.8)	DENYLOSUCCINATE SYNTHETASE (EC 6.3.4.4)	DENYLOSUCCINATE LYASE (EC 4.3.2.2)	(DENYLATE KINASE (EC 2.7.4.3)	IUCLEOSIDE DIPHOSPHATE KINASE (EC 2.7.4.6)
Function	ő Z	<u>Š</u>	ğ	ğ	GMF	GMF	GUA	ADE	ADE	ADE	S
NT Stop	20583	1644	534	497	25302	2097	5146	16476	2220	10985	3362
NT Start	19066	1171	-	1927	23734	712	4577	17765	793	10443	3769
Contig.	080000	GR00122	GR00121	GR00715	0000	GR00120	GR00654	GR00418	GR00163	GR00179	GR00040
Identification Code	RXN00488	F RXA00492	F RXA00488	RXA02469	RXN00487	F RXA00487	RXA02237	RXA01446	RXA00619	RXA00688	RXA00266
Amino Acid SEQ ID NO	946	948	950	952	954	926	958	096	962	964	996
Nucleic Acid SEQ ID NO	945	947	949	951	953	955	957	959	961	963	965

GMP/AMP degrading activities

Table 1 (continued)

Function	GMP REDUCTASE (EC 1.6.6.8)	AMP NUCLEOSIDASE (EC 3.2.2.4)	AMP NUCLEOSIDASE (EC 3.2.2.4)
NT Stop	1775	3323	34
NT Start	654	1893	1101
Contig.	GR00121	VV0152	GR00659
Identification Code	RXA00489	RXN02281	F RXA02281
Amino Acid	896	026	972
Nucleic Acid SEQ ID NO	296	696	971

Pyrimidine metabolism

Pyrimidine biosynthesis de novo:

Function	CARBAMOYL-PHOSPHATE SYNTHASE SMALL CHAIN (EC 6.3.5.5) ASPARTATE CARBAMOYI TRANSFERASE CATAI YTIC CHAIN (EC 2.1.3.2)	DIHYDROOROTASE (EC 3.5.2.3)	DIHYDROOROTATE DEHYDROGENASE (EC 1.3.3.1)	OROTATE PHOSPHORIBOSYLTRANSFERASE (EC 2.4.2.10)	OROTIDINE 5'-PHOSPHATE DECARBOXYLASE (EC 4.1.1.23)	URIDYLATE KINASE (EC 2.7.4)	URIDYLATE KINASE (EC 2.7.4)	THYMIDYLATE SYNTHASE (EC 2.1.1.45)	THYMIDYLATE KINASE (EC 2.7.4.9)	NUCLEOSIDE DIPHOSPHATE KINASE (EC 2.7.4.6)	CYTIDYLATE KINASE (EC 2.7.4.14)	CTP SYNTHASE (EC 6.3.4.2)	CARBAMOYL-PHOSPHATE SYNTHASE LARGE CHAIN (EC 6.3.5.5)	CARBAMOYL-PHOSPHATE SYNTHASE LARGE CHAIN (EC 6.3.5.5)	CYTOSINE DEAMINASE (EC 3.5.4.1)	CYTOSINE DEAMINASE (EC 3.5.4.1)	CYTOSINE DEAMINASE (EC 3.5.4.1)	CREATININE DEAMINASE (EC 3.5.4.21)	DEOXYCYTIDINE TRIPHOSPHATE DEAMINASE (EC 3.5.4.13)	THYMIDYLATE SYNTHASE (EC 2.1.1.45)	URACIL PHOSPHORIBOSYLTRANSFERASE (EC 2.4.2.9)	URACIL PHOSPHORIBOSYLTRANSFERASE (EC 2.4.2.9)
NT Stop	10900	9589	1003	1142	4040	3748	775	17346	7013	3362	5283	10441	28046	3198	34814	5	16810	7935	2341	9579	1080	1082
NT Start	9722	8249	2	591	3207	3020	47	16672	7621	3769	4576	8780	24708	-	34491	322	15566	6691	1862	9680	568	920
Contig.	GR00022 GR00022	GR00022	GR00647	GR00462	GR00654	VV0150	GR00542	GR00014	GR00020	GR00040	GR00188	GR00447	VV0134	GR00654	W0112	GR00110	VV0020	GR00655	VV0237	VV0129	VV0328	GR10003
Identification Code	RXA00147 RXA00145	RXA00146	RXA02208	RXA01660	RXA02235	RXN01892	F RXA01892	RXA00105	RXA00131	RXA00266	RXA00718	RXA01599	RXN02234	F RXA02234	RXN00450	F RXA00450	RXN02272	F RXA02272	RXN03004	RXN03137	RXN03171	F RXA02857
Amino Acid	974 976	978	980	982	984	986	986	066	266	994	966	866	1000	1002	1004	1006	1008	1010	1012	1014	1016	1018
Nucleic Acid	973	977	626	981	983	985	287	686	991	993	995	266	666	1001	1003	1005	1007	1009	1011	1013	1015	1017

Table 1 (continued)
Purine and pyrimidine base, nucleoside and nucleotide salvage, interconversion, reduction and degradation:

•	Function	ADENINE PHOSPHORIBOSYLTRANSFERASE (EC 2.4.2.7)	HYPOXANTHINE-GUANINE PHOSPHORIBOSYLTRANSFERASE (EC 2.4.2.8)	XANTHINE-GUANINE PHOSPHORIBOSYLTRANSFERASE (EC 2.4.2.22)	GTP PYROPHOSPHOKINASE (EC 2.7.6.5)	GUANOSINE-3', 5'-BIS(DIPHOSPHATE) 3'-PYROPHOSPHOHYDROLASE (EC	3.1.7.2)	GUANOSINE-3',5'-BIS(DIPHOSPHATE) 3'-PYROPHOSPHOHYDROLASE (EC	3.1.7.2	GUANOSINE-3',5'-BIS(DIPHOSPHATE) 3'-PYROPHOSPHOHYDROLASE (EC	CHANDONE, 2' ELRIC/DIDUCCHATE) 2' DVD/DU/ODV/DD/1 ACE /EC	3.1.7.2)	DEOXYGUANOSINETRIPHOSPHATE TRIPHOSPHOHYDROLASE (EC 3.1.5.1)	DIADENOSINE 5',5"-P1, P4-TETRAPHOSPHATE HYDROLASE (EC 3.6.1.17)	DIADENOSINE 5,5"-P1,P4-TETRAPHOSPHATE HYDROLASE (EC 3,6,1,17)	DIADENOSINE 5',5"-P1,P4-TETRAPHOSPHATE HYDROLASE (EC 3.6.1.17)	DIADENOSINE 5',5"-P1,P4-TETRAPHOSPHATE HYDROLASE (EC 3.6.1.17)	PHOSPHOADENOSINE PHOSPHOSULFATE REDUCTASE (EC 1.8.99.4)	DIMETHYLADENOSINE TRANSFERASE (EC 2.1.1)	AMP NUCLEOSIDASE (EC 3.2.2.4)	AMP NUCLEOSIDASE (EC 3.2.2.4)	GTP PYROPHOSPHOKINASE (EC 2.7.6.5)	GUANOSINE-3',5'-BIS(DIPHOSPHATE) 3'-PYROPHOSPHOHYDROLASE (EC	3.1.7.2)	
	NT Stop	1883	18232	3347	4017	101		2741		2902	1677	Š	18240	6768	2	2347	5126	9	2117	3323	34	29420	2		
	NT Start	1329	17633	3820	3388	2045		1962		2741	21.47	<u> </u>	19511	5761	661	2580	5653	446	1239	1893	1101	30442	1138		
	Contig.	GR00772	GR00424	GR00618	GR00276	W0171		GR00772		GR00772	CD00617	20000	GR00422	VV0143	GR00293	GR00294	GR00425	GR00012	GR00537	VV0152	GR00659	0600//	W0171		
	Identification Code	RXA02771	RXA01512	RXA02031	RXA00981	RXN02772		F RXA02772		F RXA02773	2501040	66910444	RXA01483	RXN01027	F RXA01024	F RXA01027	RXA01528	RXA00072	RXA01878	RXN02281	F RXA02281	RXN01240	RXN02008		
	Amino Acid SEQ ID NO	1020	1022	1024	1026	1028		1030		1032	1034	<u> </u>	1036	1038	1040	1042	1044	1046	1048	1050	1052	1054	1056		
Purines:	Nucleic Acid	1019	1021	1023	1025	1027		1029		1031	4003	220	1035	1037	1039	1041	1043	1045	1047	1049	1051	1053	1055		

Pyrimdine and purine metabolism:

Function	INOSINE-URIDINE PREFERRING NUCLEOSIDE HYDROLASE (EC 3.2.2.1) INOSINE-IRIDINE PREFERRING NUCLEOSIDE HYDROLASE (FC 3.2.2.1)	INOSINE-URIDINE PREFERRING NUCLEOSIDE HYDROLASE (EC 3.2.2.1)	EXOPOLYPHOSPHATASE (EC 3.6.1.11)	RIBONUCLEOSIDE-DIPHOSPHATE REDUCTASE ALPHA CHAIN (EC 1.17.4.1)	RIBONUCLEOSIDE-DIPHOSPHATE REDUCTASE ALPHA CHAIN (EC 1.17.4.1)	RIBONUCLEOSIDE-DIPHOSPHATE REDUCTASE ALPHA CHAIN (EC 1.17.4.1)	RIBONUCLEOSIDE-DIPHOSPHATE REDUCTASE 2 BETA CHAIN (EC 1.17.4.1)	RIBONUCLEOTIDE REDUCTASE SUBUNIT R2F	NRDI PROTEIN	POLYRIBONUCLEOTIDE NUCLEOTIDYLTRANSFERASE (EC 2.7.7.8)	POLYRIBONUCLEOTIDE NUCLEOTIDYLTRANSFERASE (EC 2.7.7.8)	POLYRIBONUCLEOTIDE NUCLEOTIDYLTRANSFERASE (EC 2.7.7.8)
NT Stop	9333	6320	10985	35982	4	2062	31842	806	797	627	631	4
NT Start	10268	5418	10059	38084	693	3402	32843	1321	1240	-	2	099
Contig.	VV0120 GR00557	GR00731	GR00720	VV0084	GR00301	GR00302	VV0084	GR00550	GR00301	GR00237	GR00413	GR00423
Identification Code	RXN01940 F RXA01940	RXA02559	RXA02497	RXN01079	F RXA01079	F RXA01084	RXN01920	F RXA01920	RXA01080	RXA00867	RXA01416	RXA01486
Amino Acid	1058	1062	1064	1066	1068	1070	1072	1074	1076	1078	1080	1082
	1057											

Nucleic Acid A SEQ ID NO S 1083 1083 1084 1091 11091 1109 1109 1109 11109 11109 11119 11119 11119 11121 11121 11121 11129 1129 1129 1129 1129	Amino Acid 1084 1086 1088 1090 1092 1098 1109 1100 1100 1100 1110 1111 1111	Identification Code RXA01678 RXA01679 RXA01679 RXC00540 RXC00540 RXC00560 RXC002665 RXC022238 RXC02238 RXC02238 RXC01946 RXC01946 RXC01946 RXC01946 RXC01946 RXC01946 RXA02857 RXA02857 RXA01894 RXA01894 RXA01209 F RXA011209	Contig. GR00467 GR00467 VV0139 VV0139 VV0328 GR10003 VV0112 GR00117 GR00117 GR00117 GR00117 GR00118	NT Start 7162 7729 39842 7729 39842 568 570 34491 322 337 3617 1622 6581 1019 1019	Table 1 (continued) 7889 2.3CYC 8964 1.8CYTOSIN 1080 URACIL 1082 URACIL 1083 URACIL 1084 URACIL 1085 URACIL 1086 URACIL 1087 URACIL	FUNCTION 2.3CYCLIC-NUCLEOTIDE 2'-PHOSPHODIESTERASE (EC 3.1.4.16) 2.3CYCLIC-NUCLEOTIDE 2'-PHOSPHODIESTERASE (EC 3.1.4.16) 2.3CYCLIC-NUCLEOTIDE 2'-PHOSPHODIESTERASE (EC 3.1.4.16) 1.0CYCLIC-NUCLEOTIDE 2'-PHOSPHODIESTERASE (EC 3.1.4.16) 1.0CYCLIC-NUCLEOTIDE PROTEIN INVOLVED IN PURINE METABOLISM 1.0CYCLIC-NUCLEOTIN METABOLISM 1.0CYCLIC-NUCLEOTIN METABOLISM 1.0CYCLIC-NUCLEOTIN METABOLISM OF S-ADENOSYLMETHIONINE, PURINE 1.0CYCLIC-NUCLEOTIN METABOLISM OF S-ADENOSYLMETHIONINE, PURINE 1.0CYCLIC-NUCLEOTIN METABOLISM OF S-ADENOSYLMETHIONINE, PURINE 1.0CYCLIC-NUCLEOTIN METABOLISM 1.0CYCLIC-NUCLEOTIN NOCLYED IN PURINE 1.0CYCLIC-NUCLEOTIN NOCLYED IN PYRIMIDINE METABOLISM
1131 1133	1132 1134	RXC01622 RXC00128				CYTOSOLIC PROTEIN INVOLVED IN PYRIMIDINE METABOLISM EXPORTED PROTEIN INVOLVED IN METABOLISM OF PYRIDIMES AND ADENOSYI HOMOCYSTEINE
1135 1137	1136 1138	RXC01709 RXC02207				CYTOSOLIC PROTEIN INVOLVED IN PYRIMIDINE METABOLISM EXPORTED PROTEIN INVOLVED IN PYRIMIDINE METABOLISM

Table 1 (continued)

Sugars Trehalose

Function		TREHALOSE-PHOSPHATASE (EC 3.1.3.12)	maltooligosyttrehalose synthase	maltooligosyltrehalose synthase	maltooligosyltrehalose trehalohydrolase	TREHALOSE/MALTOSE BINDING PROTEIN	Hypothetical Trehalose-Binding Protein	Hypothetical Trehalose Transport Protein	TREHALOSE/MALTOSE BINDING PROTEIN	TRANSMEBRANE PROTEIN INVOLVED IN TREHALOSE METABOLISM
NT Stop		1013	30489	7579	2543	4	39017			
NT Start		246	32921	5147	714	735	38532			
Contig.		GR00065	0600/\	GR00358	GR00751	VV0051	VV0135			
Identification Code		RXA00347	RXN01239	F RXA01239	RXA02645	RXN02355	RXN02909	RXS00349	RXS03183	RXC00874
Amino Acid	SEO ID NO	1140	1142	1144	1146	1148	1150	1152	1154	1156
Nucleic Acid	SEO ID NO	1139	1141	1143	1145	1147	1149	1151	1153	1155

		TABLE 2 - Excluded Genes	ded Genes
GenBank TM Accession No.	Gene Name	Gene Function	Reference
A09073	gdd	Phosphoenol pyruvate carboxylase	Bachmann, B. et al. "DNA fragment coding for phosphoenolpyruvat corboxylase, recombinant DNA carrying said fragment, strains carrying the recombinant DNA and method for producing L-aminino acids using said strains," Patent: EP 0358940-A 3 03/21/90
A45579, A45581, A45583, A45585		Threonine dehydratase	Moeckel, B. et al. "Production of L-isoleucine by means of recombinant micro-organisms with deregulated threonine dehydratase," Patent: WO 9519442-A 5 07/20/95
AB003132	murC; ftsQ; ftsZ		Kobayashi, M. et al. "Cloning, sequencing, and characterization of the ftsZ gene from coryneform bacteria," Biochem. Biophys. Res. Commun., 236(2):383-388 (1997)
AB015023	murC; ftsQ		Wachi, M. et al. "A murC gene from Coryneform bacteria," Appl. Microbiol. Biotechnol., 51(2):223-228 (1999)
AB018530	dtsR		Kimura, E. et al. "Molecular cloning of a novel gene, dtsR, which rescues the detergent sensitivity of a mutant derived from <i>Brevibacterium</i> lactofermentum," Biosci. Biotechnol. Biochem., 60(10):1565-1570 (1996)
AB018531	dtsR1; dtsR2		
AB020624	murl	D-glutamate racemase	
AB023377	tkt	transketolase	
AB024708	gltB; gltD	Glutamine 2-oxoglutarate aminotransferase large and small subunits	
AB025424	acn	aconitase	
AB027714	rep	Replication protein	
AB027715	rep; aad	Replication protein; aminoglycoside adenyltransferase	
AF005242	argC	N-acetylglutamate-5-semialdehyde dehydrogenase	
AF005635	glnA	Glutamine synthetase	
AF030405	hisF	cyclase	
AF030520	argG	Argininosuccinate synthetase	
AF031518	argF	Ornithine carbamolytransferase	
AF036932	aroD	3-dehydroquinate dehydratase	
AF038548	pyc	Pyruvate carboxylase	

		Table 2 (continued)	(paned)
AF038651	dciAE; apt; rel	Dipeptide-binding protein; adenine phosphoribosyltransferase; GTP	Wehmeier, L. et al. "The role of the Corynebacterium glutamicum rel gene in (p)ppGpp metabolism," <i>Microbiology</i> , 144:1853-1862 (1998)
		pyrophosphokinase	
AF041436	argR	Arginine repressor	
AF045998	impA	Inositol monophosphate phosphatase	
AF048764	argH	Argininosuccinate lyase	
AF049897	argC; argJ; argB;	N-acetylglutamylphosphate reductase;	
	argU; argF; argK;	ornithine acetyltransterase; N- acetylylitamate kinase: acetylornithine	
		transminase; ornithine	
		carbamoyltransferase; arginine repressor;	
		argininosuccinate synthase;	
A 12050100	\ 41::	argininosuccinate lyase	
Ar030109	liniA	Enoyl-acyl carrier protein reductase	
AF050166	hisG	ATP phosphoribosyltransferase	
AF051846	hisA	Phosphoribosylformimino-5-amino-1-	i
		phosphoribosyl-4-imidazolecarboxamide	
		Isomerase	
AF052652	metA	Homoserine O-acetyltransferase	Park, S. et al. "Isolation and analysis of metA, a methionine biosynthetic gene encoding homoserine acetyltransferase in Corynebacterium plutamicum" Mol
			Cells, 8(3):286-294 (1998)
AF053071	aroB	Dehydroquinate synthetase	
AF060558	hisH	Glutamine amidotransferase	
AF086704	hisE	Phosphoribosyl-ATP- pyrophosphohydrolase	
AF114233	aroA	5-enolpyruvylshikimate 3-phosphate synthase	
AF116184	panD	L-aspartate-alpha-decarboxylase precursor	Dusch, N. et al. "Expression of the Corynebacterium glutamicum panD gene encoding L-aspartate-alpha-decarboxylase leads to pantothenate overproduction in Escherichia coli," <i>Appl. Environ. Microbiol.</i> , 65(4)1530-1539 (1999)
AF124518	aroD; aroE	3-dehydroquinase; shikimate dehydrogenase	
AF124600	aroC; aroK; aroB;	Chorismate synthase; shikimate kinase; 3-	
) dad	dehydroquinate synthase; putative cytoplasmic peptidase	
AF145897	inhA		
AF145898	inhA		

		Table 2 (continued)	(panu
AJ001436	ectP	Transport of ectoine, glycine betaine, proline	Peter, H. et al. "Corynebacterium glutamicum is equipped with four secondary carriers for compatible solutes: Identification, sequencing, and characterization of the proline/ectoine uptake system, ProP, and the ectoine/proline/glycine betaine carrier, EctP," J. Bacteriol., 180(22):6005-6012 (1998)
AJ004934	дарД	Tetrahydrodipicolinate succinylase (incomplete)	Wehrmann, A. et al. "Different modes of diaminopimelate synthesis and their role in cell wall integrity: A study with Corynebacterium glutamicum," J. Bacteriol., 180(12):3159-3165 (1998)
AJ007732	ppc; secG; amt; ocd; soxA	Phosphoenolpyruvate-carboxylase; ?; high affinity ammonium uptake protein; putative ornithine-cyclodecarboxylase; sarcosine oxidase	
AJ010319	fisY, glnB, glnD; srp; amtP	Involved in cell division; PII protein; uridylyltransferase (uridylyl-removing enzmye); signal recognition particle; low affinity ammonium uptake protein	Jakoby, M. et al. "Nitrogen regulation in Corynebacterium glutamicum; Isolation of genes involved in biochemical characterization of corresponding proteins," FEMS Microbiol., 173(2):303-310 (1999)
AJ132968	cat	Chloramphenicol aceteyl transferase	
AJ224946	obu	L-malate: quinone oxidoreductase	Molenaar, D. et al. "Biochemical and genetic characterization of the membrane-associated malate dehydrogenase (acceptor) from Corynebacterium glutamicum," Eur. J. Biochem, 254(2):395-403 (1998)
AJ238250	lpu	NADH dehydrogenase	
AJ238703	porA	Porin	Lichtinger, T. et al. "Biochemical and biophysical characterization of the cell wall porin of Corynebacterium glutamicum: The channel is formed by a low molecular mass polypeptide," <i>Biochemistry</i> , 37(43):15024-15032 (1998)
D17429		Transposable element IS31831	Vertes et al. "Isolation and characterization of IS31831, a transposable element from Corynebacterium glutamicum," Mol. Microbiol., 11(4):739-746 (1994)
D84102	odhA	2-oxoglutarate dehydrogenase	Usuda, Y. et al. "Molecular cloning of the Corynebacterium glutamicum (Brevibacterium lactofermentum AJ12036) odhA gene encoding a novel type of 2-oxoglutarate dehydrogenase," <i>Microbiology</i> , 142:3347-3354 (1996)
E01358	hdh; hk	Homoserine dehydrogenase; homoserine kinase	Katsumata, R. et al. "Production of L-thereonine and L-isoleucine," Patent: JP 1987232392-A 1 10/12/87
E01359		Upstream of the start codon of homoserine kinase gene	Katsumata, R. et al. "Production of L-thereonine and L-isoleucine," Patent: JP 1987232392-A 2 10/12/87
E01375		Tryptophan operon	
E01376	trpL; trpE	Leader peptide; anthranilate synthase	Matsui, K. et al. "Tryptophan operon, peptide and protein coded thereby, utilization of tryptophan operon gene expression and production of tryptophan," Patent: JP 1987244382-A 1 10/24/87

			·						80 -									_
inued)	Matsui, K. et al. "Tryptophan operon, peptide and protein coded thereby, utilization of tryptophan operon gene expression and production of tryptophan," Patent: JP 1987244382-A 1 10/24/87	Hatakeyama, K. et al. "DNA fragment containing gene capable of coding biotin synthetase and its utilization," Patent: JP 1992278088-A 1 10/02/92	Kohama, K. et al. "Gene coding diaminopelargonic acid aminotransferase and desthiobiotin synthetase and its utilization," Patent: JP 1992330284-A 1 11/18/92	Kohama, K. et al. "Gene coding diaminopelargonic acid aminotransferase and desthiobiotin synthetase and its utilization," Patent: JP 1992330284-A 1 11/18/92	Kurusu, Y. et al. "Gene DNA coding aspartase and utilization thereof," Patent: JP 1993030977-A 1 02/09/93	Katsumata, R. et al. "Gene manifestation controlling DNA," Patent: JP 1993056782-A 3 03/09/93	Katsumata, R. et al. "Gene manifestation controlling DNA," Patent: JP 1993056782-A 3 03/09/93	Sotouchi, N. et al. "Production of L-phenylalanine by fermentation," Patent: JP 1993076352-A 2 03/30/93	Fugono, N. et al. "Gene DNA coding Aspartokinase and its use," Patent: JP 1993184366-A 1 07/27/93	Hatakeyama, K. et al. "Gene DNA coding dihydrodipicolinic acid synthetase and its use," Patent: JP 1993184371-A 1 07/27/93	Kobayashi, M. et al. "Gene DNA coding Diaminopimelic acid dehydrogenase and its use," Patent: JP 1993284970-A 1 11/02/93	Kohama, K. et al. "Gene DNA coding threonine synthase and its use," Patent: JP 1993284972-A 1 11/02/93	Kikuchi, T. et al. "Production of L-phenylalanine by fermentation method," Patent: JP 1993344881-A 1 12/27/93	Kikuchi, T. et al. "Production of L-phenylalanine by fermentation method," Patent: JP 1993344881-A 1 12/27/93	Inui, M. et al. "Gene capable of coding Acetohydroxy acid synthetase and its use," Patent: JP 1993344893-A 1 12/27/93	Sugimoto, M. et al. "Mutant aspartokinase gene," patent: JP 1994062866-A 1 03/08/94	Sugimoto, M. et al. "Mutant aspartokinase gene," patent: JP 1994062866-A 1 03/08/94	
Table 2 (continued	Promoter and operator regions of tryptophan operon	Biotin-synthase	Diamino pelargonic acid aminotransferase	Desthiobiotinsynthetase	Flavum aspartase	Isocitric acid lyase	Isocitric acid lyase N-terminal fragment	Prephenate dehydratase	Aspartokinase	Dihydro-dipichorinate synthetase	Diaminopimelic acid dehydrogenase	Threonine synthase	Prephenate dehydratase	Mutated Prephenate dehydratase	Acetohydroxy acid synthetase	Aspartokinase	Mutated aspartokinase alpha subunit	
	E01377	E03937	E04040	E04041	E04307	E04376	E04377	E04484	E05108	E05112	E05776	E05779	E06110	E06111	E06146	E06825	E06826	

E06827 E07701 E08177 E08178, E08179, E08180, E08181, E08182 E08232 E08234	Sec Y	Mutated aspartokinase alpha subunit Sugin Aspartokinase Aspartokinase Sato, feedback inhibition-released Sato, feedback inhibition-rel	Sugimoto, M. et al. "Mutant aspartokinase gene," patent: JP 1994062866-A I 03/08/94 Honno, N. et al. "Gene DNA participating in integration of membraneous protein to membrane," Patent: JP 1994169780-A I 06/21/94 Sato, Y. et al. "Genetic DNA capable of coding Aspartokinase released from feedback inhibition and its utilization," Patent: JP 1994261766-A I 09/20/94 Sato, Y. et al. "Genetic DNA capable of coding Aspartokinase released from feedback inhibition and its utilization," Patent: JP 1994261766-A I 09/20/94 Inui, M. et al. "Gene DNA coding acetohydroxy acid isomeroreductase," Patent: JP 1994277067-A I 10/04/94 Asai, Y. et al. "Gene DNA coding for translocation machinery of protein," Patent: JP 1994277073-A I 10/04/94
E08645 E08646		F 1 aminotransferase and desthiobiotin synthetase promoter region Biotin synthetase	
E08649 E08900		Aspartase Dihydrodipicolinate reductase Diaminopimelic acid decarboxylase	Kohama, K. et al "DNA fragment having promoter function in coryneform bacterium," Patent: JP 1995031478-A 1 02/03/95 Madori, M. et al. "DNA fragment containing gene coding Dihydrodipicolinate acid reductase and utilization thereof," Patent: JP 1995075578-A 1 03/20/95 Madori, M. et al. "DNA fragment containing gene coding Diaminopimelic acid decarboxylase and utilization thereof," Patent: JP 1995075579-A 1 03/20/95
E12594 E12760, E12759, E12758		Serine hydroxymethyltransferase transposase Arginyl-tRNA synthetase; diaminopimelic	Hatakeyama, K. et al. "Production of L-trypophan," Patent: JP 1997028391-A 1 02/04/97 Moriya, M. et al. "Amplification of gene using artificial transposon," Patent: JP 1997070291-A 03/18/97 Moriya, M. et al. "Amplification of gene using artificial transposon," Patent: JP 1997070291-A 03/18/97
E12767 E12770		Dihydrodipicolinic acid synthetase aspartokinase	Moriya, M. et al. "Amplification of gene using artificial transposon," Patent: JP 1997070291-A 03/18/97 Moriya, M. et al. "Amplification of gene using artificial transposon," Patent: JP 1997070291-A 03/18/97
E12773		Dihydrodipicolinic acid reductase	Moriya, M. et al. "Amplification of gene using artificial transposon," Patent: JP 1997070291-A 03/18/97

						- 8	2 -							_
unea	Hatakeyama, K. et al. "Glucose-6-phosphate dehydrogenase and DNA capable of coding the same," Patent: JP 1997224661-A 1 09/02/97	Moeckel, B. et al. "Functional and structural analysis of the threonine dehydratase of Corynebacterium glutamicum," J. Bacteriol., 174:8065-8072 (1992)	Chen, C. et al. "The cloning and nucleotide sequence of Corynebacterium glutamicum 3-deoxy-D-arabinoheptulosonate-7-phosphate synthase gene," FEMS Microbiol. Lett., 107.223-230 (1993)	Keilhauer, C. et al. "Isoleucine synthesis in Corynebacterium glutamicum: molecular analysis of the ilvB-ilvN-ilvC operon," J. Bacteriol., 175(17):5595-5603 (1993)	Fouet, A et al. "Bacillus subtilis sucrose-specific enzyme II of the phosphotransferase system: expression in Escherichia coli and homology to enzymes II from enteric bacteria," PNAS USA, 84(24):8773-8777 (1987); Lee, J.K. et al. "Nucleotide sequence of the gene encoding the Corynebacterium glutamicum mannose enzyme II and analyses of the deduced protein sequence," FEMS Microbiol. Lett., 119(1-2):137-145 (1994)	Lee, H-S. et al. "Molecular characterization of aceB, a gene encoding malate synthase in Corynebacterium glutamicum," J. Microbiol. Biotechnol., 4(4):256-263 (1994)	Jetten, M. S. et al. "Structural and functional analysis of pyruvate kinase from Corynebacterium glutamicum," <i>Appl. Environ. Microbiol.</i> , 60(7):2501-2507 (1994)		Oguiza, J.A. et al. "Molecular cloning, DNA sequence analysis, and characterization of the Corynebacterium diphtheriae dtxR from Brevibacterium lactofermentum," J. Bacteriol,, 177(2):465-467 (1995)	Follettie, M.T. et al. "Molecular cloning and nucleotide sequence of the Corynebacterium glutamicum pheA gene," J. Bacteriol., 167:695-702 (1986)	Park, Y-H. et al. "Phylogenetic analysis of the coryneform bacteria by 56 rRNA sequences," J. Bacteriol., 169:1801-1806 (1987)	Sano, K. et al. "Structure and function of the trp operon control regions of Brevibacterium lactofermentum, a glutamic-acid-producing bacterium," Gene, 52:191-200 (1987)	Sano, K. et al. "Structure and function of the trp operon control regions of Brevibacterium lactofermentum, a glutamic-acid-producing bacterium," Gene, 52:191-200 (1987)	
Table 2 (continued	Glucose-6-phosphate dehydrogenase	Threonine dehydratase	3-deoxy-D-arabinoheptulosonate-7- phosphate synthase	Acetohydroxy acid synthase large subunit; Acetohydroxy acid synthase small subunit; Acetohydroxy acid isomeroreductase	Phosphoenolpyruvate sugar phosphotransferase	Malate synthase	Pyruvate kinase	Isocitrate lyase	Diphtheria toxin repressor	Prephenate dehydratase		Anthranilate synthase, 5' end	Tryptophan synthase, 3'end	
		livA	EC 4.2.1.15	IIvB; iIvN; iIvC	PtsM	aceB		aceA	dtxr		5S rRNA	прЕ	trpA	
	E13655	L01508	L07603	L09232	L18874	L27123	L27126	L28760	L35906	M13774	M16175	M16663	M16664	

		Table 2 (continued	(pant
M25819		Phosphoenolpyruvate carboxylase	O'Regan, M. et al. "Cloning and nucleotide sequence of the Phosphoenolpyruvate carboxylase-coding gene of Corynebacterium glutamicum ATCC13032," Gene, 77(2):237-251 (1989)
M85106		23S rRNA gene insertion sequence	Roller, C. et al. "Gram-positive bacteria with a high DNA G+C content are characterized by a common insertion within their 23S rRNA genes," J. Gen. Microbiol., 138:1167-1175 (1992)
M85107, M85108		23S rRNA gene insertion sequence	Roller, C. et al. "Gram-positive bacteria with a high DNA G+C content are characterized by a common insertion within their 23S rRNA genes," J. Gen. Microbiol., 138:1167-1175 (1992)
M89931	aecD; brnQ; yhbw	Beta C-S lyase; branched-chain amino acid uptake carrier; hypothetical protein yhbw	Rossol, I. et al. "The Corynebacterium glutamicum aecD gene encodes a C-S lyase with alpha, beta-elimination activity that degrades aminoethylcysteine," J. Bacteriol., 174(9):2968-2977 (1992); Tauch, A. et al. "Isoleucine uptake in Corynebacterium glutamicum ATCC 13032 is directed by the brnQ gene product," Arch. Microbiol., 169(4):303-312 (1998)
859299	tгр	Leader gene (promoter)	Herry, D.M. et al. "Cloning of the trp gene cluster from a tryptophan-hyperproducing strain of Corynebacterium glutamicum: identification of a mutation in the trp leader sequence," <i>Appl. Environ. Microbiol.</i> , 59(3):791-799 (1993)
U11545	τр	Anthranilate phosphoribosyltransferase	O'Gara, J.P. and Dunican, L.K. (1994) Complete nucleotide sequence of the Corynebacterium glutamicum ATCC 21850 tpD gene." Thesis, Microbiology Department, University College Galway, Ireland.
U13922	cgliM; cgiIR; clglIR	Putative type II 5-cytosoine methyltransferase; putative type II restriction endonuclease; putative type I or type III restriction endonuclease	Schafer, A. et al. "Cloning and characterization of a DNA region encoding a stress-sensitive restriction system from Corynebacterium glutamicum ATCC 13032 and analysis of its role in intergeneric conjugation with Escherichia coli," J. Bacteriol, 176(23):7309-7319 (1994); Schafer, A. et al. "The Corynebacterium glutamicum cgIIM gene encoding a 5-cytosine in an McrBC-deficient Escherichia coli strain," Gene, 203(2):95-101 (1997)
U31224	recA ppx		Ankri, S. et al. "Mutations in the Corynebacterium glutamicumproline biosynthetic pathway: A natural bypass of the proA step," J. Bacteriol., 178(15):4412-4419 (1996)
<u> </u>	proC	L-proline: NADP+ 5-oxidoreductase	Ankri, S. et al. "Mutations in the Corynebacterium glutamicumproline biosynthetic pathway: A natural bypass of the proA step," J. Bacteriol., 178(15):4412-4419 (1996)
U31230	obg; proB; unkdh	?;gamma glutamyl kinase;similar to D- isomer specific 2-hydroxyacid dehydrogenases	Ankri, S. et al. "Mutations in the Corynebacterium glutamicumproline biosynthetic pathway: A natural bypass of the proA step," J. Bacteriol., 178(15):4412-4419 (1996)

		Table 2 (continued	ned)
U31281	bioB	Biotin synthase	Serebriiskii, I.G., "Two new members of the bio B superfamily: Cloning, sequencing and expression of bio B genes of Methylobacillus flagellatum and Corynebacterium glutamicum," Gene, 175:15-22 (1996)
U35023	thiR; accBC	Thiosulfate sulfurtransferase; acyl CoA carboxylase	Jager, W. et al. "A Corynebacterium glutamicum gene encoding a two-domain protein similar to biotin carboxylases and biotin-carboxyl-carrier proteins," <i>Arch. Microbiol.</i> , 166(2);76-82 (1996)
U43535	cmr	Multidrug resistance protein	Jager, W. et al. "A Corynebacterium glutamicum gene conferring multidrug resistance in the heterologous host Escherichia coli," J. Bacteriol., 179(7):2449-2451 (1997)
U43536	clpB	Heat shock ATP-binding protein	
U53587	aphA-3	3'5"-aminoglycoside phosphotransferase	
U89648		Corynebacterium glutamicum unidentified sequence involved in histidine biosynthesis, partial sequence	
X04960	trpA; trpB; trpC; trpD; trpE; trpG; trpL	Tryptophan operon	Matsui, K. et al. "Complete nucleotide and deduced amino acid sequences of the Brevibacterium lactofermentum tryptophan operon," Nucleic Acids Res., 14(24):10113-10114 (1986)
X07563	lys A	DAP decarboxylase (meso-diaminopimelate decarboxylase, EC 4.1.1.20)	Yeh, P. et al. "Nucleic sequence of the lysA gene of Corynebacterium glutamicum and possible mechanisms for modulation of its expression," Mol. Gen. Genet., 212(1):112-119 (1988)
X14234	EC 4.1.1.31	Phosphoenolpyruvate carboxylase	Eikmanns, B.J. et al. "The Phosphoenolpyruvate carboxylase gene of Corynebacterium glutamicum: Molecular cloning, nucleotide sequence, and expression," <i>Mol. Gen. Genet.</i> , 218(2):330-339 (1989); Lepiniec, L. et al. "Sorghum Phosphoenolpyruvate carboxylase gene family: structure, function and molecular evolution," <i>Plant. Mol. Biol.</i> , 21 (3):487-502 (1993)
X17313	fda	Fructose-bisphosphate aldolase	Von der Osten, C.H. et al. "Molecular cloning, nucleotide sequence and fine- structural analysis of the Corynebacterium glutamicum fda gene: structural comparison of C. glutamicum fructose-1, 6-biphosphate aldolase to class I and class II aldolases," Mol. Microbiol.
X53993	dapA	L-2, 3-dihydrodipicolinate synthetase (EC 4.2.1.52)	Bonnassie, S. et al. "Nucleic sequence of the dapA gene from Corynebacterium glutamicum," Nucleic Acids Res., 18(21):6421 (1990)
X54223		AttB-related site	Cianciotto, N. et al. "DNA sequence homology between att B-related sites of Corynebacterium diphtheriae, Corynebacterium ulcerans, Corynebacterium glutamicum, and the attP site of lambdacorynephage," FEMS. Microbiol, Lett., 66:299-302 (1990)
X54740	argS; lysA	Arginyl-tRNA synthetase; Diaminopimelate decarboxylase	Marcel, T. et al. "Nucleotide sequence and organization of the upstream region of the Corynebacterium glutamicum lysA gene," <i>Mol. Microbiol.</i> , 4(11):1819-1830 (1990)

		Table 2 (continued)	nued)
X55994	trpL; trpE	Putative leader peptide; anthranilate synthase component 1	Heery, D.M. et al. "Nucleotide sequence of the Corynebacterium glutamicum trpE gene," Nucleic Acids Res., 18(23):7138 (1990)
X56037	thrC	Threonine synthase	Han, K.S. et al. "The molecular structure of the Corynebacterium glutamicum threonine synthase gene," Mol. Microbiol., 4(10):1693-1702 (1990)
X56075	attB-related site	Attachment site	Cianciotto, N. et al. "DNA sequence homology between att B-related sites of Corynebacterium diphtheriae, Corynebacterium ulcerans, Corynebacterium glutamicum, and the attP site of lambdacorynephage," FEMS. Microbiol, Lett., 66:299-302 (1990)
X57226	lysC-alpha; lysC-beta; asd	Aspartokinase-alpha subunit; Aspartokinase-beta subunit; aspartate beta semialdehyde dehydrogenase	Kalinowski, J. et al. "Genetic and biochemical analysis of the Aspartokinase from Corynebacterium glutamicum," Mol. Microbiol., 5(5):1197-1204 (1991); Kalinowski, J. et al. "Aspartokinase genes lysC alpha and lysC beta overlap and are adjacent to the aspertate beta-semialdehyde dehydrogenase gene asd in Corynebacterium glutamicum," Mol. Gen. Genet., 224(3):317-324 (1990)
X59403	gap;pgk; tpi	Glyceraldehyde-3-phosphate; phosphoglycerate kinase; triosephosphate isomerase	Eikmanns, B.J. "Identification, sequence analysis, and expression of a Corynebacterium glutamicum gene cluster encoding the three glycolytic enzymes glyceraldehyde-3-phosphate dehydrogenase, 3-phosphoglycerate kinase, and triosephosphate isomeras," J. Bacteriol., 174(19):6076-6086 (1992)
X59404	dbg	Glutamate dehydrogenase	Bormann, E.R. et al. "Molecular analysis of the Corynebacterium glutamicum gdh gene encoding glutamate dehydrogenase," <i>Mol. Microbiol.</i> , 6(3):317-326 (1992)
X60312	lysl	L-lysine permease	Seep-Feldhaus, A.H. et al. "Molecular analysis of the Corynebacterium glutamicum lysl gene involved in lysine uptake," Mol. Microbiol., 5(12):2995-3005 (1991)
X66078	cob)	Ps1 protein	Joliff, G. et al. "Cloning and nucleotide sequence of the csp1 gene encoding PS1, one of the two major secreted proteins of Corynebacterium glutamicum: The deduced N-terminal region of PS1 is similar to the Mycobacterium antigen 85 complex," Mol. Microbiol., 6(16):2349-2362 (1992)
X66112	glt	Citrate synthase	Eikmanns, B.J. et al. "Cloning sequence, expression and transcriptional analysis of the Corynebacterium glutamicum gltA gene encoding citrate synthase," <i>Microbiol.</i> , 140:1817-1828 (1994)
X67737	dapB	Dihydrodipicolinate reductase	
X69103	csp2	Surface layer protein PS2	Peyret, J.L. et al. "Characterization of the cspB gene encoding PS2, an ordered surface-layer protein in Corynebacterium glutamicum," Mol. Microbiol., 9(1):97-109 (1993)
X69104		IS3 related insertion element	Bonamy, C. et al. "Identification of IS1206, a Corynebacterium glutamicum IS3-related insertion sequence and phylogenetic analysis," <i>Mol. Microbiol.</i> , 14(3):571-581 (1994)

		Table 2 (continued)	nued)
X70959	leuA	Isopropylmalate synthase	Patek, M. et al. "Leucine synthesis in Corynebacterium glutamicum: enzyme activities, structure of leuA, and effect of leuA inactivation on lysine synthesis," Appl. Environ. Microbiol., 60(1):133-140 (1994)
X71489	icd	Isocitrate dehydrogenase (NADP+)	Eikmanns, B.J. et al. "Cloning sequence analysis, expression, and inactivation of the Corynebacterium glutamicum icd gene encoding isocitrate dehydrogenase and biochemical characterization of the enzyme," J. Bacteriol., 177(3):774-782 (1995)
X72855	GDHA	Glutamate dehydrogenase (NADP+)	
X75083, X70584	mtrA	5-methyltryptophan resistance	Heery, D.M. et al. "A sequence from a tryptophan-hyperproducing strain of Corynebacterium glutamicum encoding resistance to 5-methyltryptophan," <i>Biochem. Biochem. Res. Commun.</i> , 201(3):1255-1262 (1994)
X75085	recA		Fitzpatrick, R. et al. "Construction and characterization of recA mutant strains of Corynebacterium glutamicum and Brevibacterium lactofermentum," Appl. Microbiol. Biotechnol., 42(4):575-580 (1994)
X75504	aceA; thiX	Partial Isocitrate Iyase; ?	Reinscheid, D.J. et al. "Characterization of the isocitrate lyase gene from Corynebacterium glutamicum and biochemical analysis of the enzyme," J. Bacteriol., 176(12):3474-3483 (1994)
X76875		ATPase beta-subunit	Ludwig, W. et al. "Phylogenetic relationships of bacteria based on comparative sequence analysis of elongation factor Tu and ATP-synthase beta-subunit genes," <i>Antonie Van Leeuwenhoek</i> , 64:285-305 (1993)
X77034	tuf	Elongation factor Tu	l on comparative eta-subunit
X77384	recA		Biliman-Jacobe, H. "Nucleotide sequence of a recA gene from Corynebacterium glutamicum," DNA Seq., 4(6):403-404 (1994)
X78491	aceB	Malate synthase	Reinscheid, D.J. et al. "Malate synthase from Corynebacterium glutamicum pta-ack operon encoding phosphotransacetylase: sequence analysis," <i>Microbiology</i> , 140:3099-3108 (1994)
X80629	16S rDNA	16S ribosomal RNA	Rainey, F.A. et al. "Phylogenetic analysis of the genera Rhodococcus and Norcardia and evidence for the evolutionary origin of the genus Norcardia from within the radiation of Rhodococcus species," <i>Microbiol.</i> , 141:523-528 (1995)
X81191	gluA; gluB; gluC; gluD	Glutamate uptake system	Kronemeyer, W. et al. "Structure of the gluABCD cluster encoding the glutamate uptake system of Corynebacterium glutamicum," J. Bacteriol., 177(5):1152-1158 (1995)
X81379	дарЕ	Succinyldiaminopimelate desuccinylase	Wehrmann, A. et al. "Analysis of different DNA fragments of Corynebacterium glutamicum complementing dapE of Escherichia coli," <i>Microbiology</i> , 40:3349-56 (1994)

Table 2 (continued)	A 16S ribosomal RNA	asd; lysC Aspartate-semialdehyde dehydrogenase; ? Serebrijski, I. et al. "Multicopy suppression by asd gene and osmotic stress-dependent complementation by heterologous proA in proA mutants," J. Bacteriol., 177(24):7255-7260 (1995)	proA Gamma-glutamyl phosphate reductase Serebrijski, I. et al. "Multicopy suppression by asd gene and osmotic stress-dependent complementation by heterologous proA mutants," J. Bacteriol., 177(24):7255-7260 (1995)	16S rDNA 16S ribosomal RNA Pascual, C. et al. "Phylogenetic analysis of the genus Corynebacterium based on 16S rRNA gene sequences," Int. J. Syst. Bacteriol., 45(4):724-728 (1995)	aroP; dapE Aromatic amino acid permease; ? Wehrmann et al. "Functional analysis of sequences adjacent to dapE of C. glutamicum proline reveals the presence of aroP, which encodes the aromatic amino acid transporter," J. Bacteriol., 177(20):5991-5993 (1995)	C; argD; Acetylglutamate kinase; N-acetyl-gamma-glutamyl-phosphate reductase; acetylornithine aminotransferase; ornithine carbamoyltransferase; glutamate N-acetyltransferase	pta; ackA Phosphate acetyltransferase; acetate kinase of the Corynebacterium glutamicum pta-ack operon encoding phosphotransacetylase and acetate kinase," Microbiology, 145:503-513 (1999)	attB Attachment site Le Marrec, C. et al. "Genetic characterization of site-specific integration functions of phi AAU2 infecting "Arthrobacter aureus C70," J. Bacteriol., 178(7):1996-2004 (1996)	Promoter fragment F1 Patek, M. et al. "Promoters from Corynebacterium glutamicum: cloning, molecular analysis and search for a consensus motif," <i>Microbiology</i> , 142:1297-1309 (1996)	Promoter fragment F2 Patek, M. et al. "Promoters from Corynebacterium glutamicum: cloning, molecular analysis and search for a consensus motif," <i>Microbiology</i> , 142:1297-1309 (1996)	Promoter fragment F10 Patek, M. et al. "Promoters from Corynebacterium glutamicum: cloning, molecular analysis and search for a consensus motif," Microbiology, 142:1297-1309 (1996)	Promoter fragment F13 Patek, M. et al. "Promoters from Corynebacterium glutamicum: cloning, molecular analysis and search for a consensus motif," <i>Microbiology</i> , 142:1297-1309 (1996)
			Х82929 рг		X85965 arc				X90356	X90357	X90358	X90359

Promoter fragment F22
Promoter fragment F34
Promoter fragment F37
Promoter fragment F45
Promoter fragment F64
Promoter fragment F75
Promoter fragment PF10
Promoter fragment PF104
Promoter fragment PF109
Ammonium transport system
Glycine betaine transport system
Lysine exporter protein; Lysine export regulator protein

		Table 2 (continued)	(panul
X96580	panB; panC; xylB	3-methyl-2-oxobutanoate hydroxymethyltransferase; pantoate-beta-alanine ligase; xylulokinase	Sahm, H. et al. "D-pantothenate synthesis in Corynebacterium glutamicum and use of panBC and genes encoding L-valine synthesis for D-pantothenate overproduction," Appl. Environ. Microbiol., 65(5):1973-1979 (1999)
X96962		Insertion sequence IS1207 and transposase	
X99289		Elongation factor P	Ramos, A. et al. "Cloning, sequencing and expression of the gene encoding elongation factor P in the amino-acid producer Brevibacterium lactofermentum (Corynebacterium glutamicum ATCC 13869)." Gene 198-217-222 (1997)
Y00140	thrB	Homoserine kinase	Mateos, L.M. et al. "Nucleotide sequence of the homoserine kinase (thrB) gene of the Brevibacterium lactofermentum." <i>Nucleic Acids Res.</i> 15(9): 3922 (1987)
Y00151	ddh	Meso-diaminopimelate D-dehydrogenase (EC 1.4.1.16)	Ishino, S. et al. "Nucleotide sequence of the meso-diaminopimelate D-dehydrogenase gene from Corynebacterium glutamicum," <i>Nucleic Acids Res.</i> , 15(9):3917 (1987)
Y00476	thrA	Homoserine dehydrogenase	Mateos, L.M. et al. "Nucleotide sequence of the homoserine dehydrogenase (thrA) gene of the Brevibacterium lactofermentum," Nucleic Acids Res., 15(24):10598 (1987)
Y00546	hom; thrB	Homoserine dehydrogenase; homoserine kinase	Peoples, O.P. et al. "Nucleotide sequence and fine structural analysis of the Corynebacterium glutamicum hom-thrB operon," <i>Mol. Microbiol.</i> , 2(1):63-72 (1988)
Y08964	murC; ftsQ/divD; ftsZ	UPD-N-acetylmuramate-alanine ligase; division initiation protein or cell division protein; cell division protein	Honrubia, M.P. et al. "Identification, characterization, and chromosomal organization of the ftsZ gene from Brevibacterium lactofermentum," Mol. Gen. Genet. 259(1):97-104 (1998)
Y09163	putP	High affinity proline transport system	Peter, H. et al. "Isolation of the putP gene of Corynebacterium glutamicumproline and characterization of a low-affinity uptake system for compatible solutes," <i>Arch. Microbiol.</i> , 168(2):143-151 (1997)
Y09548	pyc	Pyruvate carboxylase	Peters-Wendisch, P.G. et al. "Pyruvate carboxylase from Corynebacterium glutamicum: characterization, expression and inactivation of the pyc gene," <i>Microbiology</i> , 144:915-927 (1998)
Y09578	leuB	3-isopropylmalate dehydrogenase	Patek, M. et al. "Analysis of the leuB gene from Corynebacterium glutamicum," Appl. Microbiol. Biotechnol., 50(1):42-47 (1998)
Y12472		Attachment site bacteriophage Phi-16	Moreau, S. et al. "Site-specific integration of corynephage Phi-16: The construction of an integration vector." Microbiol., 145:539-548 (1999)
Y12537	proP	Proline/ectoine uptake system protein	Peter, H. et al. "Corynebacterium glutamicum is equipped with four secondary carriers for compatible solutes: Identification, sequencing, and characterization
			of the proline/ectoine uptake system, ProP, and the ectoine/proline/glycine betaine carrier, EctP," J. Bacteriol., 180(22):6005-6012 (1998)

		Table 2 (continued)	ned)
Y13221	glnA	Glutamine synthetase I	Jakoby, M. et al. "Isolation of Corynebacterium glutamicum glnA gene encoding glutamine synthetase I," FEMS Microbiol. Lett., 154(1):81-88 (1997)
Y16642	pdı	Dihydrolipoamide dehydrogenase	
Y18059		Attachment site Corynephage 304L	Moreau, S. et al. "Analysis of the integration functions of φ304L: An integrase module among corynephages," Virology, 255(1):150-159 (1999)
Z21501	argS; lysA	Arginyl-tRNA synthetase; diaminopimelate decarboxylase (partial)	Oguiza, J.A. et al. "A gene encoding arginyl-tRNA synthetase is located in the upstream region of the lysA gene in Brevibacterium lactofermentum: Regulation of argS-lysA cluster expression by arginine," J. Bacteriol, 175(22):7356-7362 (1993)
221502	dapA; dapB	Dihydrodipicolinate synthase; dihydrodipicolinate reductase	Pisabarro, A. et al. "A cluster of three genes (dapA, orf2, and dapB) of Brevibacterium lactofermentum encodes dihydrodipicolinate reductase, and a third polypeptide of unknown function," J. Bacteriol., 175(9):2743-2749 (1993)
Z29563	thrC	Threonine synthase	Malumbres, M. et al. "Analysis and expression of the thrC gene of the encoded threonine synthase," <i>Appl. Environ. Microbiol.</i> , 60(7)2209-2219 (1994)
Z46753	16S rDNA	Gene for 16S ribosomal RNA	
Z49822	sigA	SigA sigma factor	Oguiza, J.A. et al "Multiple sigma factor genes in Brevibacterium lactofermentum: Characterization of sigA and sigB," <i>J. Bacteriol.</i> , 178(2):550-553 (1996)
Z49823	galE; dtxR	Catalytic activity UDP-galactose 4- epimerase; diphtheria toxin regulatory protein	Oguiza, J.A. et al "The galE gene encoding the UDP-galactose 4-epimerase of Brevibacterium lactofermentum is coupled transcriptionally to the dmdR gene," Gene, 177:103-107 (1996)
Z49824	orfl; sigB	?; SigB sigma factor	Oguiza, J.A. et al "Multiple sigma factor genes in Brevibacterium lactofermentum: Characterization of sigA and sigB," J. Bacteriol., 178(2):550-553 (1996)
Z66534		Transposase	Correia, A. et al. "Cloning and characterization of an IS-like element present in the genome of Brevibacterium lactofermentum ATCC 13869," <i>Gene</i> , 170(1):91-94 (1996)
A sequence for the published ve	A sequence for this gene was published in the indicate the published version. It is believed that the published	the indicated reference. However, the sequence published version relied on an incorrect start c	A sequence for this gene was published in the indicated reference. However, the sequence obtained by the inventors of the present application is significantly longer than he published version. It is believed that the published version relied on an incorrect start codon, and thus represents only a fragment of the actual coding region.

TABLE 3: Corynebacterium and Brevibacterium Strains Which May be Used in the Practice of the Invention

Genus ^y	species	ATCC	FERM	NRRL	CECT	NCIMB	CBS	NCTE	DSMZ
Brevibacterium	ammoniagenes	21054					7,000		,
Brevibacterium	ammoniagenes	19350		,	l	h			
Brevibacterium	ammoniagenes	19351			<u> </u>				
Brevibacterium	ammoniagenes	19352							
Brevibacterium	ammoniagenes	19353	T						
Brevibacterium	ammoniagenes	19354							
Brevibacterium	ammoniagenes	19355							
Brevibacterium	ammoniagenes	19356							
Brevibacterium	ammoniagenes	21055							
Brevibacterium	ammoniagenes	21077							
Brevibacterium	ammoniagenes	21553							
Brevibacterium	ammoniagenes	21580		-					
Brevibacterium	ammoniagenes	39101							
Brevibacterium	butanicum	21196							
Brevibacterium	divaricatum	21792	P928						
Brevibacterium	flavum	21474							
Brevibacterium	flavum	21129							
Brevibacterium	flavum	21518							
Brevibacterium	flavum			B11474					
Brevibacterium	flavum			B11472					
Brevibacterium	flavum	21127							
Brevibacterium	flavum	21128							
Brevibacterium	flavum	21427							
Brevibacterium	flavum	21475				-			
Brevibacterium	flavum	21517							
	flavum	21528							
Brevibacterium	flavum	21529							
	flavum			B11477					
	flavum			B11478					
	flavum	21127							
	flavum			B11474					
	healii	15527							
	ketoglutamicum	21004							
	ketoglutamicum	21089							
	ketosoreductum	21914							
Brevibacterium	lactofermentum				70				
	lactofermentum				74				
	lactofermentum				77				
Brevibacterium	lactofermentum	21798							
Brevibacterium	lactofermentum	21799							
Brevibacterium	lactofermentum	21800							
Brevibacterium	lactofermentum	21801							
Brevibacterium	lactofermentum			B11470					
Brevibacterium	lactofermentum			B11471					

Genus	spečies	ATCC	FERM	NRRL	CECT	NEIMB	CBS	NCTC	DSMZ
Brevibacterium	lactofermentum	21086						-	
Brevibacterium	lactofermentum	21420							
Brevibacterium	lactofermentum	21086							
Brevibacterium	lactofermentum	31269							
Brevibacterium	linens	9174							
Brevibacterium	linens	19391							
Brevibacterium	linens	8377							
Brevibacterium	paraffinolyticum					11160			
Brevibacterium	spec.						717.73		
Brevibacterium	spec.						717.73		
Brevibacterium	spec.	14604							
Brevibacterium	spec.	21860							
Brevibacterium	spec.	21864							
Brevibacterium	spec.	21865							
Brevibacterium	spec.	21866							
Brevibacterium	spec.	19240							
Corynebacterium	acetoacidophilum	21476							
Corynebacterium	acetoacidophilum	13870							
Corynebacterium	acetoglutamicum			B11473					
Corynebacterium	acetoglutamicum			B11475					
Corynebacterium	acetoglutamicum	15806							
Corynebacterium	acetoglutamicum	21491							
Corynebacterium	acetoglutamicum	31270							
Corynebacterium	acetophilum			B3671					
Corynebacterium	ammoniagenes	6872						2399	
Corynebacterium	ammoniagenes	15511							
Corynebacterium	fujiokense	21496							
Corynebacterium	glutamicum	14067							
Corynebacterium	glutamicum	39137							
Corynebacterium	glutamicum	21254							
Corynebacterium	glutamicum	21255							
Corynebacterium	glutamicum	31830							
Corynebacterium	glutamicum	13032							
Corynebacterium	glutamicum	14305							
Corynebacterium	glutamicum	15455							
Corynebacterium	glutamicum	13058							
Corynebacterium	glutamicum	13059							
Corynebacterium	glutamicum	13060							
Corynebacterium	glutamicum	21492							
Corynebacterium	glutamicum	21513							
Corynebacterium	glutamicum	21526							
Corynebacterium	glutamicum	21543							
Corynebacterium	glutamicum	13287							
Corynebacterium	glutamicum	21851							
Corynebacterium	glutamicum	21253							
Corynebacterium	glutamicum	21514							
Corynebacterium	glutamicum	21516							
Corynebacterium	glutamicum	21299					<u></u>		

WO 01/00843 PCT/IB00/00923

Genus	species	ATCC	FERM	NRRI	CECT	NGIMB	CBS	NCTC	DSM7
C 7 3 1 1 1 1 1 1	glutamicum	21300	LEIGIVA	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	CLCI	1,6,1112	., CD 5 ₃₅ ,	1,010	POIVE
Corynebacterium	glutamicum	39684	 						
Corynebacterium			 						
Corynebacterium	glutamicum	21488			·				
Corynebacterium	glutamicum	21649	ļ						
Corynebacterium	glutamicum	21650							
Corynebacterium	glutamicum	19223							
Corynebacterium	glutamicum	13869							
Corynebacterium	glutamicum	21157							
Corynebacterium	glutamicum	21158							
Corynebacterium	glutamicum	21159							
Corynebacterium	glutamicum	21355							
Corynebacterium	glutamicum	31808							
Corynebacterium	glutamicum	21674							
Corynebacterium	glutamicum	21562							
Corynebacterium	glutamicum	21563							
Corynebacterium	glutamicum	21564							
Corynebacterium	glutamicum	21565							
Corynebacterium	glutamicum	21566							
Corynebacterium	glutamicum	21567							
Corynebacterium	glutamicum	21568							
Corynebacterium	glutamicum	21569							
Corynebacterium	glutamicum	21570							
Corynebacterium	glutamicum	21571							
Corynebacterium	glutamicum	21572							
Corynebacterium	glutamicum	21573							
Corynebacterium	glutamicum	21579							
Corynebacterium	glutamicum	19049	1						
Corynebacterium	glutamicum	19050							
Corynebacterium	glutamicum	19051							
Corynebacterium	glutamicum	19052							
Corynebacterium	glutamicum	19053							
Corynebacterium	glutamicum	19054							
Corynebacterium	glutamicum	19055							
Corynebacterium	glutamicum	19056							
Corynebacterium	glutamicum	19057	<u> </u>						
Corynebacterium	glutamicum	19058							
Corynebacterium	glutamicum	19059							
Corynebacterium	glutamicum	19060	 						
Corynebacterium	glutamicum	19185							
Corynebacterium	glutamicum	13286						 	
Corynebacterium	glutamicum	21515							
Corynebacterium	glutamicum	21527	 		-				
Corynebacterium	glutamicum	21544	 		·			 	
Corynebacterium	glutamicum	21492						-	
Corynebacterium	glutamicum	2 1 -T / L	-	B8183				 	
Corynebacterium	glutamicum			B8182					
Corynebacterium	glutamicum			B12416					
			 	B12417				 	
Corynebacterium	glutamicum		L	612417	L		L	L	

Genus 🔆 🔭	species	ATCC.	FERM	"NRRL	CECT	NCIMB	CBS	NCTC	DSMZ
Corynebacterium	glutamicum		2.7.6.	B12418	oci iyaabaa		7.5334		· Continue of marine
Corynebacterium	glutamicum			B11476					
Corynebacterium	glutamicum	21608					·		
Corynebacterium	lilium		P973						
Corynebacterium	nitrilophilus	21419				11594			
Corynebacterium	spec.		P4445						
Corynebacterium	spec.		P4446					l	
Corynebacterium	spec.	31088						·	
Corynebacterium	spec.	31089							
Corynebacterium	spec.	31090							·
Corynebacterium	spec.	31090							
Corynebacterium	spec.	31090							
Corynebacterium	spec.	15954							20145
Corynebacterium	spec.	21857							
Corynebacterium	spec.	21862							
Corynebacterium	spec.	21863							·

ATCC: American Type Culture Collection, Rockville, MD, USA

FERM: Fermentation Research Institute, Chiba, Japan

NRRL: ARS Culture Collection, Northern Regional Research Laboratory, Peoria, IL, USA

CECT: Coleccion Espanola de Cultivos Tipo, Valencia, Spain

NCIMB: National Collection of Industrial and Marine Bacteria Ltd., Aberdeen, UK

CBS: Centraalbureau voor Schimmelcultures, Baarn, NL

NCTC: National Collection of Type Cultures, London, UK

DSMZ: Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Germany

For reference see Sugawara, H. et al. (1993) World directory of collections of cultures of microorganisms: Bacteria, fungi and yeasts (4th edn), World federation for culture collections world data center on microorganisms, Saimata, Japen.

Date of Deposit	29-Jun-99 29-Jun-99	08-OCT- 1997 (Rel.	52, Created) 07-OCT- 1906	17-DEC-	1993 28-Jul-99	2-Aug-99 G	2-Aug-99		17-Jun-98	14-Jan-97	12-Nov-98	20-Aug-97	6-deS-6	29-Sep-99	30-MAR-	1999	2-Sep-99	2-Sep-99	
% homology_Date_of (GAP)	40,956 40,956	42,979	42,979	39,097	95,429	31,111	31,111		37,753	35,669	35,669	42,896	40,210	41,176	36,783		40,296	40,296	
Source of Genbank Hit	Lycopersicon esculentum Lycopersicon esculentum	Corynebacterium glutamicum	Unknown.	Escherichia coli	Corynebacterium	Drosophila melanogaster	Drosophila melanogaster		Mycobacterium tuberculosis	Escherichia coli	Escherichia coli	Homo sapiens	Corynebacterium	uipninenae Unknown.	Homo sapiens		Homo sapiens	Homo sapiens	
Table 4: Alignment Results Length Accession Name of Genbank Hit	EST257217 tomato resistant, Cornell Lycopersicon esculentum cDNA clone cLER17D3, mRNA sequence. EST257217 tomato resistant, Cornell Lycopersicon esculentum cDNA clone cl ER17D3, mRNA sequence.	Base sequence of sucrase gene.	Sequence 4 from patent US 5556776.	E. coli chromosomal region from 89.2 to 92.8 minutes.	gDNA encoding aspartate transferase (AAT).		Drosophila melanogaster chromosome 3 clone BACR02003 (D797) RPCI-98 Drosophila melanogaster 02.0.3 map 99B-99B strain y, cn bw sp, *** SEQUENCING IN PROGRESS*** 113 unordered pieces		Mycobacterium tuberculosis H37Rv complete genome; segment 122/162.	Escherichia coli K-12 genome; approximately 63 to 64 minutes.	Escherichia coli K-12 MG1655 section 256 of 400 of the complete genome.	ingostud.s.f NCI_CCAP_Fro nomo sapiens cunA cione IMAGE:94140/ similar to SW:DYR_LACCA P00381 DIHYDROFOLATE REDUCTASE ;; mRNA sequence.	Corynebacterium diphtheriae histidine kinase ChrS (chrS) and response	Sequence 4 from patent US 5811286.	Homo sapiens chromosome 17, clone hRPK.472_J_18, complete sequence.		Homo sapiens chromosome 19 clone CII-HSPC_490E21, *** SEQUENCING Homo sapiens IN PROGRESS ***, 93 unordered pieces.	Homo sapiens chromosome 19 clone CIT-HSPC_490E21, *** SEQUENCING Homo sapiens IN PROGRESS ***, 93 unordered pieces.	
Accession	AI776129 AI776129	E11760	126124	176195 U00006	E16763	AC007892	AC007892		AL008967	U29581	AE000366	NA49423/	AF161327	AR041189	AC007110	A C.	1700su Acoudass/	AC008537	
Length	. 483	6911	6911	176195	2517	134257	134257		56414	71128	10405) S	2021	654	148336	40000	000/	170030	
Genbank Hit	GB_EST33:AI776129 483 GB_EST33:AI776129 483	EM_PAT:E11760	GB_PAT:126124	GB_BA2:ECOUW89	GB_PAT:E16763	GB_HTG2:AC007892 134257	GB_HTG2:AC007892 134257 AC007892		GB_BA1:MTV002	GB_BA1:ECU29581	GB_BAZ:AE000366 104	G0_E0115.704494257	GB_BA2:AF161327	GB_PAT:AR041189	GB_PR4:AC007110	CE UTC2.AC000627	/sconoos/	GB_HTG3:AC008537 170030 AC008537	
length (NT)	3579	1059			1401				798		670	e e			1170				
# <u> </u>	ка00023	rxa00044			rxa00064			rxa00072	гха00105			000000			rxa00115				

19-0CT- 1999	07-OCT- 1996	8-Apr-99	17-Jun-98	15-Jun-99 17-Jun-98	17-Jun-98	31-0CT-	1996 22-Nov-99 6	18-Jun-98	26-Jul-93	29-Apr-97	18-Jun-98	17-Jun-98	03-DEC-	1996 18-Jun-98	15-Jun-96	23-DEC- 1996	10-Feb-99
36,235	36,821	38,124	43,571	41,116	36,788	61,914	51,325	63,365	56,080	47,514	60,714	39,229	36,618	61,527	59,538	55,396	52,666
Caulobacter crescentus	Unknown.	Oryza sativa	Mycobacterium	tuberculosis Streptomyces argillaceus Mycobacterium	tuberculosis Mycobacterium	tuberculosis Trichomonas vaginalis	Drosophila melanogaster	Mycobacterium	ruperculosis Pseudomonas aeruginosa	Lactobacillus leichmannii	Mycobacterium tuberculosis	Mycobacterium	tuberculosis Mycobacterium	tuberculosis Mycobacterium	Mycobacterium leprae	Pseudomonas aeruginosa	Streptomyces coelicolor
Table 4 (continued) Caulobacter crescentus Sst1 (sst1), S-layer protein subunit (rsaA), ABC transporter (rsaD), membrane forming unit (rsaE), putative GDP-mannose-4,6-dehydratase (lpsA), putative acetyltransferase (lpsB), putative perosamine synthetase (lpsC), putative mannosyltransferase (lpsE), outer membrane protein (rsaF), and putative perosamine transferase (lpsE) genes, complete cds	Sequence 6 from patent US 5500353.	nbxb0062D16r CUGI Rice BAC Library Oryza sativa genomic clone	Mycobacterium tuberculosis H37Rv complete genome; segment 139/162.	Streptomyces argillaceus mithramycin biosynthetic genes. Mycobacterium tuberculosis H37Rv complete genome; segment 139/162.	Mycobacterium tuberculosis H37Rv complete genome; segment 139/162.	Trichomonas vaginalis S-adenosyl-L-homocysteine hydrolase gene, complete	cds. Drosophila melanogaster chromosome X clone BACR36D15 (D887) RPCI-98 36.D.15 map 13C-13E strain y; cn bw sp, *** SEQUENCING IN PROGRESS *** 74 inordered pieces	Mycobacterium tuberculosis H37Rv complete genome; segment 61/162.	Pseudomonas aeruginosa aspartate transcarbamoylase (pyrB) and dihydroorotase-like (pyrX) genes, complete cds's.	L. leichmannii pyrB gene.	Mycobacterium tuberculosis H37Rv complete genome; segment 61/162.	Mycobacterium tuberculosis H37Rv complete genome; segment 121/162.	Mycobacterium tuberculosis sequence from clone y154.	Mycobacterium tuberculosis H37Rv complete genome; segment 61/162.	Mycobacterium leprae cosmid B937 DNA sequence.	Pseudomonas aeruginosa dihydrodipicolinate reductase (dapB) gene, partial cds, carbamoylphosphate synthetase small subunit (carA) and carbamoylphosphate synthetase large subunit (carB) genes, complete cds.	and FtsJ homolog (ftsJ) gene, partial cds. Streptomyces coelicolor cosmid 9B10.
AF062345	118647	AQ446197	295121	AJ007932 295121	295121	U40872	AC010706	Z81011	L19649	X84262	281011	Z98209	AD000002	Z81011	L78820	U81259	AL009204
16458	3300	751	36330	15176 36330	36330	1882	169265	20431	2273	1468	20431	13935	40221	20431	38914	7285	33320
GB_BA2:AF062345	GB_PAT:118647	GB_GSS13:AQ44619	GB_BA1:MTY20B11	GB_BA1:SAR7932 GB_BA1:MTY20B11	GB_BA1:MTY20B11	GB_IN2:TVU40872	GB_HTG6:AC010706 169265 AC010706	GB_BA1:MTCY2B12 20431	GB_BA1:PSEPYRBX	GB_BA1:LLPYRBDNA 1468	GB_BA1:MTCY2B12	GB_BA1:MTCY154	GB_BA1:MSGY154	GB_BA1:MTCY2B12	GB_BA1:MSGB937C	GB_BA1:PAU81259	GB_BA1:SC9B10
1284			732		1557			1059			1464			1302			1233
אמ00116			rxa00131		rxa00132			rxa00145			rxa00146			rxa00147			rxa00156

96

PCT/IB00/00923

									Ş	97									, ,	J I / I	DV.	0 /0	103		
26-MAR- 1998	6-Feb-99	21-Aug-99	21-Aug-99	16-OCT- 1999	13-MAR-	1999	1999	31-Jan-99	03-DEC-	1999	03-DEC-	11-Nov-99	00 moly 00	86-NON-77	22-Nov-98	22-Nov-98		2-Aug-96	22-MAK- 1999	16-OCT-	18-MAY.	1999	18-Apr-98	26-Feb-99	30-Jan-92
54,191	46,667	37,451	37,451	38,627	92,113	03 702	30,106	34,221	37,965		508,75	38,796	766 96	777'00	38,227	38,227			40,135	39,527	98.237		36,616	37,095	100,000
Mycobacterium avium	Propionibacterium freudenreichii	Homo sapiens	Homo sapiens	Drosophila melanogaster	Corynebacterium	glutamicum Corvnebacterium	glutamicum	Rattus sp.	Homo sapiens		riono sapiens	3 Homo sapiens	Homo socioca	iono sapiens	Homo sapiens	Homo sapiens		Enterobacter agglomerans	Micocoaciei capsulatus	Drosophila melanogaster	Corynebacterium	glutamicum		', Caenorhabditis elegans	Corynebacterium
Table 4 (continued) Mycobacterium avium strain GIR10 transcriptional regulator (mav81) gene, partial cds, aconitase (acn), invasin 1 (inv1), invasin 2 (inv2), transcriptional regulator (moxR), ketoacyl-reductase (fabG), enoyl-reductase (inhA) and ferrochelatase (mav272) genes, complete cds.	Propionibacterium freudenreichii hemY, hemH, hemB, hemX, hemR and hemL genes, complete cds.	Homo sapiens clone NH0172O13, *** SEQUENCING IN PROGRESS ***, 7 unordered pieces.	Homo sapiens clone NH0172O13, *** SEQUENCING IN PROGRESS ***, 7 unordered pieces.	Drosophila melanogaster chromosome 3L/62B1 clone RPCI98-10D15, *** SEQUENCING IN PROGRESS ***, 51 unordered pieces.	Corynebacterium glutamicum gltB and gltD genes for glutamine 2-	oxogiutarate aminotransterase large and small subunits, complete cds. Corynebacterium glutamicum gltB and gltD genes for glutamine 2.	oxoglutarate aminofransferase large and small subunits, complete cds.	EST229390 Normalized rat kidney, Bento Soares Rattus sp. cDNA clone RKICF35 3' end. mRNA sequence	Homo sapiens chromosome 20 clone RP5-850E9, *** SEQUENCING IN	PROGRESS ***, in unordered pieces. Homo saniens chromosome 20 clone RDs, 850E0 *** SECULENCING IN	PROGRESS ***, in unordered pieces.	Human chromosome 14 DNA sequence *** IN PROGRESS *** BAC R-412H8 Homo sapiens of RPCI-11 library from chromosome 14 of Homo sapiens (Human), complete	sequence. Homo sapiens clone RG252P22. *** SEQUENCING IN PROGRESS *** 3	unordered pieces.	Homo sapiens clone RG252P22, *** SEQUENCING IN PROGRESS ***, 3 unordered pieces.	Homo sapiens clone RG252P22, *** SEQUENCING IN PROGRESS *** 3	Unordered pieces.	Plasmid pEA3 nitrogen fixation genes. Rhodobacter cansulatis molyhdeniim cofactor hiosynthetic gene clienter	partial sequence.	Drosophila melanogaster chromosome 3L/70C1 clone RPCI98-9B18, *** SEQUENCING IN PROGRESS ***, 64 unordered pieces.	Corynebacterium glutamicum 3-dehydroquinase (aroD) and shikimate	dehydrogenase (aroE) genes, complete cds.	Homo sapiens PAC clone DJ0964C11 from 7p14-p15, complete sequence.	Caenorhabditis elegans clone Y76B12, *** SEQUENCING IN PROGRESS ***, 25 unordered pieces.	C.glutamicum lysl gene for L-lysine permease.
AF002133		AC008167	AC008167	AC010118	AB024708	AB024708	0	AI632/02	AL121758	AL 121758		AL121766	AC005079		AC005079	AC005079	¥0900X	A53034 AF128444		AC010111	AF124518		AC004593	AC006907	X60312
15437	7984	174223	174223	80605	8734	8734	ć	970	117353	117353		159400	110000		110000	110000	10774	2477		138938	1758		150221	7/6891	4232
GB_BA2:AF002133	GB_BA1:D85417	GB_HTG3:AC008167 174223	GB_HTG3:AC008167 174223	GB_HTG4:AC010118 80605	GB_BA1:AB024708	GB_BA1:AB024708	COLCOCIA LACTOR	OB_E3124.A1232702	GB_HTG2:HSDJ850E 117353	9 GB HTG2:HSDJ850E 117353	l o	GB_PR2:CNS01DSA 159400 AL121766	GB_HTG2:AC005079 110000 AC005079	0	GB_HTG2:AC005079 110000 AC005079 _1	GB_HTG2:AC005079 110000 AC005079	CB BA1-DDCA3NIC	GB BA2:AF128444		GB_H1G4:AC010111 138938	GB_BA2:AF124518		GB_PR3:AC004593	65_H162:AC00690/	GB_BA1:CGLYSI
		783		ļ	672				1113				1065				1212	7171			803				1626
		rxa00166		:	rxa00198				rxa00216				rxa00219				ra0023	C770084			rxa00229				rxa00241

PCT/IB00/00923

WO 01	/008	343									98	3							P	СТ	/ IB 0	0/009	23	
11-Aug-99	ss-finy-11	23-MAY- 1997	23-MAY- 1997	9-Feb-99	08-OC1- 1997 (Rel. 52 Created)	29-Sep-97	6-Jan-98	9-Apr-97	20-Aug-96	21-Nov-96		3-Feb-99	29-Sep-97		24-Jun-99	15-Jun-96	24-Jun-99	15-Jun-96	24-Jun-99	27-Apr-93	17-Jun-97	02-DEC- 1994	20-Sep-95	28-Aug-97
34,947	24,347	36,496	37,544	41,856	34,741	34,741	36,943	36,658	38.190	99,111		98,489	98,207		35,615	60,917	44,606	52,516	38,079	39,351	808'66	99,617	99,170	100,000
Plasmodium falciparum Dlasmodium falcinarum	riasiiiodidii iaicibaidii	Entamoeba histolytica	Entamoeba histolytica	Mus musculus	Bacillus sp.	Bacillus sp.	Caenorhabditis elegans	Corynebacterium	giutamicum Rattus norvegicus	Corynebacterium	glutamicum	Corynebacterium glutamicum	Corynebacterium	glutamicum	Mycobacterium tuberculosis	Mycobacterium leprae	Mycobacterium	Mycobacterium leprae	Mycobacterium tuberculosis	Bos taurus	Corynebacterium qlutamicum	Unknown.	Corynebacterium qlutamicum	Corynebacterium glutamicum
Table 4 (continued) Plasmodium falciparum chromosome 13 strain 3D7, *** SEQUENCING IN PROGRESS ***, in unordered pieces. Plasmodium falcinarum chromosome 13 strain 3D7 *** SEQUENCING IN	PROGRESS *** in unordered pieces.	Entamoeba histolytica unconventional myosin IB mRNA, complete cds.	Entamoeba histolytica unconventional myosin IB mRNA, complete cds.	Mus musculus connexin-36 (Cx36) gene, complete cds.	UNA encoding precursor protein of alkaline cellulase.	gDNA encoding alkaline cellulase.	Caenorhabditis elegans cosmid K05F6.	Corynebacterium glutamicum multidrug resistance protein (cmr) gene,	complete cos. Rattus norvegicus clone N27 mRNA.	Corynebacterium glutamicum biotin synthase (bioB) gene, complete cds.		Brevibacterium flavum gene for biotin synthetase, complete cds.	DNA sequence encoding Brevibacterium flavum biotin-synthase.		Niycobacterium tuberculosis H3/KV complete genome; segment 99/162.	Mycobacterium leprae cosmid B32 DNA sequence.	Mycobacterium tuberculosis H37Rv complete genome; segment 99/162.	Mycobacterium leprae cosmid B32 DNA sequence.	Mycobacterium tuberculosis H37Rv complete genome; segment 99/162.	Bovine elastin a mRNA, complete cds.	Corynebacterium glutamicum thrC gene for threonine synthase (EC 4.2.99.2).	Sequence 4 from Patent WO 8809819.	Brevibacterium lactofermentum; ATCC 13869;; DNA (genomic);.	Corynebacterium glutamicum glnA gene.
AL049180		U89655	U89655	AF016190	8- - /80- - 80- -	E02133	AF040653	U43535	U30789	U31281		D14084	E03937	1000	769077	L78818	Z 70692	L78818	270692	J02717	X56037	8/0601	Z29563	Y13221
192581	0570	3219	3219	2939	cocc	3494	36912	2531	3510	1614	!	1647	1005	0,100	38110	36404	38110	36404	38110	3242	3120	3146	1892	3686
GB_HTG1:PFMAL13P 192581 AL049180 1 GB HTG1:PFMAL13P 192581 AL049180	1	GB_IN2:EHU89655	GB_IN2:EHU89655	GB_RO:AF016190	EN _ FO FO 19	GB_PAT:E02133	GB_IN1:CELK05F6	GB_BA1:CGU43535	GB RO:RNU30789	GB_BA2:CGU31281		GB_BA1:BRLBIOBA	GB_PAT:E03937	F0770H8.790	65_6A1:M10.142/	GB_BA1:MSGB32CS	GB_BA1:MTCY427	GB_BA1:MSGB32CS	GB_BA1:MTCY427	GB_OM:BOVELA	GB_BA1:CGTHRC	GB_PAT:109078	GB_BA1:BLTHRESY N	GB_BA1:CGGLNA
		1197		531			1155			1125				7,77	04			3258			1566			1554
		rxa00262		xa00266			rxa00278			rxa00295				0000	rxa00323			rxa00324			гха00330			rxa00335

rxa00347

rxa00351

rxa00365

rxa00366

rxa00367

rxa00371

WO 0	1/0()843									10	0									1	PC'	T/I .	B 0(0/00)92	23
24-MAR- 1995	17-OCT- 1996	15-Jul-99	18-DEC- 1995	17-Jun-98	03-DEC-	27-Aug-99	10-Jun-99	22-MAY- 1999	10-Sep-99		29-Sep-99	2-Aug-99		17-Jun-98	030	1996	24-Jun-97	19-MAR-	1998	8-Jun-99	6	100-UEC-	19-MAR-	1998	23-Jun-99	;	31-Aug-98
36,832	39,603	36,728	54,175	61,143	61,143	43,981	35,444	34,821	40,472		38,586	38,509		36,308	20.202	20,505	39,228	99,672		40,830		20,161	99.920	•	52,898		37,565
Caulobacter crescentus	Emericella nidulans	Homo sapiens	Pseudomonas aeruginosa	Mycobacterium tuberculosis	Mycobacterium	Mycobacterium leprae	Homo sapiens	Homo sapiens	Schistosoma mansoni		Unknown.	F Kaposi's sarcoma-	associated herpesvirus	Mycobacterium	tuberculosis	tuberculosis	Mycobacterium leprae	Conynebacterium	glutamicum	Corynebacterium	alphrheriae	rseudomonas aicaligenes	Corvnebacterium	glutamicum	Mycobacterium	tuberculosis	V-Onchocerca volvulus
Table 4 (continued) Caulobacter crescentus uroporphyrinogen decarboxylase homolog (hemE) gene, partial cds.	A.nidulans sD gene.		P.aeruginosa hemL gene.	Mycobacterium tuberculosis H37Rv complete genome; segment 28/162.	Mycobacterium tuberculosis sequence from clone y224.	Mycobacterium leprae cosmid B1222.	Homo sapiens chromosome 17 clone hRPK.515_E_23 map 17, *** SEQUENCING IN PROGRESS ***, 2 ordered pieces.	Homo sapiens chromosome 17 clone hRPK.515_O_17 map 17, *** SEQUENCING IN PROGRESS ***, 8 unordered pieces.		Schistosoma mansoni cDNA clone SMMAS14 5' end, mRNA sequence.	Sequence 20 from patent US 5849564.	Kaposi's sarcoma-associated herpesvirus ORF 68 gene, partial cds; and ORF Kaposi's sarcoma-	69, kaposin, v-FLIP, v-cyclin, latent nuclear antigen, ORF K14, v-GPCR, putative phosphoribosytformylglycinamidine synthase, and LAMP (LAMP) genes, complete cds.	Mycobacterium tuberculosis H37Rv complete genome; segment 28/162.	Monthactarium tutaraulacio campana from and markariam tuta	יין לכנים כלכן שנו השבכו לפוססים כלקשלווה כל חבוד מכונים לבדי.	Mycobacterium leprae cosmid B1306 DNA.	Corynebacterium glutamicum homoserine O-acetyltransferase (metA) gene,	complete cds.	Corynebacterium diphtheriae heme uptake locus, complete sequence.	× × × × × × × × × × × × × × × × × × ×	rseudonionas aicangenes outer membrane Acp-secretion system gene	Convnebacterium qutamicum homoserine O-acetyltransferase (metA) gene.	complete cds.	Mycobacterium tuberculosis H37Rv complete genome; segment 143/162.		SWOVAMICAUUSAUSSK Onchocerca volvulus adult male culvA (SAWSBMLW-Onchocerca volvulus OvAM) Onchocerca volvulus cDNA clone SWOvAMCAQ02A05 5', mRNA sequence.
U13664	Y08866	AQ730303	X82072	Z95558	AD000004	AL049491	AC006269	AC007638	AW017053		AR065852	AF148805	٠	Z 95558	A DOOD A		Y13803	AF052652		AF109162	0.000	AL092910	AF052652		AL021841	0007777	AI 11288
1678	1299	483	4444	40838	40051	34714	167171	178053	613		32207	28559		40838	10051	3	7762	2096		4514	02700	SO / 20	2096		53662	1	06
GB_BA1:CCU13664	GB_PL1:ANSDGENE	GB_GSS4:AQ730303	GB_BA1:PAHEML	GB_BA1:MTY25D10	GB_BA1:MSGY224	GB_BA1:MLCB1222	GB_HTG2:AC006269	GB_HTG2:AC007638	B_EST38:AW01705	3	GB_PAT:AR065852	GB_VI:AF148805		GB_BA1:MTY25D10	CR BA1-MCCV22A		GB_BA1:MLB1306	GB_BA2:AF052652		GB_BA2:AF109162	0.000014.00001		GB BA2:AF052652		GB_BA1:MTV016	2007777	GB_ES123.AIT11288 730
1245			1425			1467			843					1017				623					1254				
xa00377			rxa00382			rxa00383			rxa00391					rxa00393				rxa00402					rxa00403				

BUSDOCID, WA A1889-19AP I -

lable 4 (continued)					
n tuberculosis H37Rv complete genome; segment 143/162.	Mycobacterium tuberculosis	57,259	23-Jun-99	wo	
 Xp22-166-169 GSHB-523A23 (Genome Systems Human BAC ete sequence. 	Homo sapiens	34,179	08-DEC- 1998	01/0	
n tuberculosis H37Rv complete genome; segment 143/162.	Mycobacterium tuberculosis	40,169	23-Jun-99	00843	
n tuberculosis H37Rv complete genome, segment 156/162.	Mycobacterium tuberculosis	62,031	17-Jun-98	3	
n tuberculosis sequence from clone y126.	Mycobacterium tuberculosis	61,902	10-DEC- 1996		
n leprae cosmid B971 DNA sequence.	Mycobacterium leprae	39,651	15-Jun-96		
utrophus chromsomal transketolase (cbbTc) and late phosphatase (cbbZc) genes, complete cds.	Ralstonia eutropha	38,677	27-Jul-94		
s chromosome 7, *** SEQUENCING IN PROGRESS ***, 25 ces.	Homo sapiens	36,335	12-OCT- 1999		
s chromosome 7, *** SEQUENCING IN PROGRESS ***, 25 ces.	Homo sapiens	36,335	12-OCT- 1999		
s chromosome 17, clone hRPK.372_K_20, complete sequence.	Homo sapiens	31,738	18-Nov-98		
coelicolor cosmid 2A11.	Streptomyces coelicolor	43,262	5-Aug-98 10	0.1	
s chromosome 17, clone hRPK.372_K_20, complete sequence.	Homo sapiens	37,647	18-Nov-98		
n tuberculosis H37Rv complete genome; segment 143/162.	Mycobacterium tuberculosis	37,088	23-Jun-99		
sa expansin (EXP3) gene, partial cds. schromosome 16 clone RPCI-11_484E3, *** SEQUENCING IN	Rumex acetosa Homo sapiens	46,538 43,276	17-Aug-99 3-Aug-99		
, 34 undraered preces. Iividans rpsP, trmD, rpIS, sipW, sipX, sipX, mutT genes	Streptomyces lividans	43.080	27-0CT-		
ading frames.			1999		
coelicolor cosmid 2E1.	Streptomyces coelicolor	42,931	4-Jun-98		
coelicolor cosmid 2E1.	Streptomyces coelicolor	36,702	4-Jun-98		
sequence from clone 173D1 on chromosome 1p36.21- s ESTs, STSs and GSSs, complete sequence.	Homo sapiens	38,027	23-Nov-99]	
s chromosome X clone RP4-719K3 map q21.1-21.31, *** 3 IN PROGRESS ***, in unordered pieces.	Homo sapiens	34,521	03-DEC- 1999	PCT/	
s chromosome X clone RP4-719K3 map q21.1-21.31, *** 3 IN PROGRESS ***, in unordered pieces.	Homo sapiens	34,521	03-DEC- 1999	I B0 0	
coelicolor cosmid D78.	Streptomyces coelicolor	56,410	26-Nov-98	/00	
elanogaster chromosome 3L/76A2 clone RPCl98-48B15, ***	Drosophila melanogaster	34,959	16-OCT-	923	
S IN PROGRESS "", 44 unordered pieces.			1999	3	

16-OCT-

1999

34,959 34,959 Drosophila melanogaster Drosophila melanogaster Drosophila melanogaster chromosome 3L/76A2 clone RPC198-48B15, *** Drosophila melanogaster chromosome 3L/76A2 clone RPC198-48B15, *** SEQUENCING IN PROGRESS ***, 44 unordered pieces. SEQUENCING IN PROGRESS ***, 44 unordered pieces. Table 4 (continued) Streptomyces o Streptomyces c PROGRESS ** Streptomyces c Human DNA se SEQUENCING 53662 AL021841 Mycobacterium library) complet Mycobacterium Mycobacterium AD000012 Mycobacterium Mycobacterium Alcaligenes eut phosphoglycola unordered piece unordered piec Mycobacterium Rumex acetosa Streptomyces li and 4 open rea Streptomyces c 36.33. Contains SEQUENCING Homo sapiens Homo sapiens Homo sapiens Homo sapiens Homo sapiens 143678 AC005145 Homo sapiens Homo sapiens Homo sapiens 155450 AC005951 AL021841 AL021841 AF167358 GB_HTG4:AC009541 169583 AC009541 GB_HTG4:AC009541 169583 AC009541 155450 AC005951 AL031184 AC009120 GB_HTG4:AC009367 226055 AC009367 GB_HTG4:AC009367 226055 AC009367 GB_HTG2:HSDJ719K 267114 AL109931 AL034355 AL023797 AL023797 AL031984 GB_HTG2:HSDJ719K 267114 AL109931 M68904 280343 286111 L78821 269445 117338 22789 36224 37085 37164 53662 38962 53662 GB_BA1:MSGB971C 37566 38962 1022 7860 GB_BA1:AFACBBTZ 2760 GB_HTG3:AC009120 GB_BA1:MTY13D12 GB_PR4:AC005145 GB_PR4:AC005951 GB_BA1:MSGY126 GB_PL2:AF167358 GB_BA2:SKZ86111 GB_PR4:AC005951 GB_PR2:HS173D1 GB_BA1:MTV016 GB_BA1:MTV016 GB_BA1:MTV016 GB_BA1:SC2A11 GB BA1:SCD78 GB_BA1:SC2E1 GB_BA1:SC2E1 1296 1587 1287 613 579 582 987 591 rxa00446 rxa00420 rxa00435 rxa00405 rxa00439 rxa00440 rxa00437 rxa00441

	,								
rxa00448	- - - - -	GB_PRS:ACOUSO/U	88840	AC0036/0	nomo sapiens 1zq13.1 PAC RPCI1-130F5 (Roswell Park Cancer Institute Human PAC library) complete sequence.	Homo sapiens	35,682	86-Jun-8	
		GB_HTG2:AF029367 148676 AF029367	148676	AF029367	2CI-1 130F5 map 12q13.1, ***	Homo sapiens	31,373	18-0CT-	
		GR HTG2.AF029367		148676 AF029367	12013.1 ***	Homo caniene	21 273	18-OCT-	
							5	1997	
rxa00450	424	GB_HTG2:AC007824 133361 AC007824	133361	AC007824	Drosophila melanogaster chromosome 3 done BACR02L16 (D715) RPCI-98 02.L.16 map 89E-90A strain y; cn bw sp, *** SEQUENCING IN PROGRESS *** 91 unordered pieces.	Drosophila melanogaster	40,000	2-Aug-99	
		GB_HTG2:AC007824 133361 AC007824	133361	AC007824	sophila melanogaster chromosome 3 clone BACR02L16 (D715) RPCI-9816 map 89E-90A strain y; cn bw sp, *** SEQUENCING IN PROGRESS 91 unordered pieces.	Drosophila melanogaster	40,000	2-Aug-99	
		GB_EST35:AI818057	412	AI818057	wk14a08.x1 NCI_CGAP_Lym12 Homo sapiens cDNA clone IMAGE:2412278 Homo sapiens 3' similar to gb:Y00764 UBIQUINOL-CYTOCHROME C REDUCTASE 11 KD PROTEIN (HUMAN);, mRNA sequence.	Homo sapiens	35,714	24-Aug-99	
rxa00461	975		43254 29352	Z98271 AL021086	86E4.	Mycobacterium leprae Drosophila melanogaster	39,308	8-Aug-97 27-Apr-99	
		32	467	AQ640325	enomic clone 927P1-2H3,	Trypanosoma brucei	38,116	8-Jul-99	
rxa00465								10	10
rxa00487	1692	∢	3866	Y10499	B.ammoniagenes guaA gene.	Corynebacterium ammoniagenes	74,259	8-Jan-98	2
		GB_BA2:U00015	42325	U00015	Mycobacterium leprae cosmid B1620.	Mycobacterium leprae	37,248	01-MAR- 1994	
		GB_BA1:MTCY78	33818	Z77165	Mycobacterium tuberculosis H37Rv complete genome; segment 145/162.	Mycobacterium tuberculosis	39,725	17-Jun-98	
rxa00488	1641		33818	Z77165	Mycobacterium tuberculosis H37Rv complete genome; segment 145/162.	Mycobacterium tuberculosis	39,451	17-Jun-98	
			42325	U00015	Mycobacterium leprae cosmid B1620.	Mycobacterium leprae	39,178	01-MAR- 1994	
00700	1246	901	4692	AJ010601	or whiD and whiK loci.	Streptomyces coelicolor	60,835	17-Sep-98	
rxa00469	1243	GB_BAZ:000013		610000	Mycobacterium reprae cosmid b 1020.	Mycobacterium leprae	38,041	01-MAK- 1994	
		GB_HTG2:HS225E12 126464	126464	AL031772	Homo sapiens chromosome 6 done RP1-225E12 map q24, *** SEQUENCING IN PROGRESS ***, in unordered pieces.	Homo sapiens	36,756	03-DEC- 1999	
		GB_HTG2:HS225E12 126464 AL031772	126464	AL031772	Homo sapiens chromosome 6 clone RP1-225E12 map q24, *** SEQUENCING IN PROGRESS ***, in unordered pieces.	Homo sapiens	36,756	03-DEC- 1999	
rxa00533	1155	GB_BA1:CGLYS	2803	X57226	C. glutamicum lysC-alpha, lysC-beta and asd genes for aspartokinase-alpha and -beta subunits, and aspartate beta semialdehyde dehydrogenase, respectively (EC 2.7.2.4; EC 1.2.1.11).	Corynebacterium glutamicum	99,913	17-Feb-97	

																10)3															
	17-Feb-97	30-Jul-93	17-Feb-97		11-Jun-93		28-Jul-99	10-Feb-99	24. Jun 90		26-Feb-97		21-Sep-99	17-Jun-98		28-Jan-97		01-DEC-	24-Jun-97	17-Jun-98		5-Jun-97	0	1995	17-Jun-98		05-DEC-	1998 08-OCT-	1997 (Rel.	52, Created)	24-Jun-98	24-Jun-98
	99,221	99,391	99,856		98,701		98,773	100,000	68 003		68,185		63,187	62,401		62,205	1	98,359	62,468	60,814		66,095	64 245	2,40	64,863	0	98,810	98,810			98,810	898'66
	Corynebacterium glutamicum	synthetic construct	Corynebacterium glutamicum		Corynebacterium	flavescens	Corynebacterium	Corynebacterium	glutamicum	tuberculosis	Mycobacterium	tuberculosis	Streptomyces coelicolor A3(2)	Mycobacterium	tuberculosis	Mycobacterium	tuberculosis	Unknown.	Mycobacterium leprae	Mycobacterium	tubercufosis	Corynebacterium	ammoniagenes Mucobacterium lograd	al consected and a spine	Mycobacterium	tuberculosis	ONKROWN.	Corynebacterium	glutamicum		Corynebacterium	glutaniicum Corynebacterium glutamicum
Table 4 (continued)	C.glutamicum aspartate-semialdehyde dehydrogenase gene	Recombinant DNA fragment (PstI-Xhol)	C. glutamicum lysC-alpha, lysC-beta and asd genes for aspartokinase-alpha and -beta subunits, and aspartate beta semialdehyde dehydrogenase,	respectively (EC 2.7.2.4, EC 1.2.1.11).	Corynebacterium flavum aspartokinase (ask), and aspartate-semialdehyde	uenydrogenase (asd) genes, complete cas.	DIAN ELLOQUING DIEVIDACIETUM ASPANORIMASE.	C.glutamicum gene leuA for isopropylmalate synthase.	Mycobacterium tuberculosis H378y complete genome: segment 155/162		Mycobacterium tuberculosis putative alpha-isopropyl malate synthase (leuA)	gene, complete cds. Stratomicos acclinates accepted Date		Mycobacterium tuberculosis H37Rv complete genome; segment 39/162.	:	Mycobacterium tuberculosis phosphoribosylformylglycinamidine synthase	(purt.) gene, complete cds.	Sequence 19 from patent US 5/26299.	Mycobacterium leprae cosmid B5.	Mycobacterium tuberculosis H37Rv complete genome; segment 36/162.		B.ammoniagenes purf. gene.	Mycobacterium leprae cosmid 82266		Mycobacterium tuberculosis H37Rv complete genome; segment 39/162.	Seminary of from national 11S 5775740		DNA encoding serine hydroxymethyl transferase.			DNA encoding serine hydroxymethyltransferase from Brevibacterium flavum.	DNA encoding serine hydroxymethyltransferase from Brevibacterium flavum.
	X82928	A07546	X57226		L16848	E14514	1	X70959	121125 AL022121		U88526	AI 11851A		295618		U34956	630601	700761	295151	280226		X91252	U15182		295618	AR016483		E11273			E12594	E12594
	1591	2112	2803		782/	1643	3	3492	121125		2412	41622	41066	10451	9	2462	2446	017	38109	36850		882	40123		10451	2104	2	2104		č	2104	2104
	GB_BA1:CGCYSCAS 1591 D	GB_PAT:A07546	GB_BA1:CGLYS		GB_BA1:COKASKD	GR DAT F14514	101111111	GB_BA1:CGLEUA	GB_BA1:MTV025		GB_BA1:MTU88526	GR RAP-SCN25		GB_BA1:MTCY7H7A		GB_BA1:M1034956	CACCOLT-TOO GO	90 ⁻ FAL.192052	GB_BA1:MLCB5	GB_BA1:MTCY369	40.00	פם_פאו:פארטאר	GB BA1:MLU15182	ı	GB_BA1:MTCY7H7A	GB PAT-AR016483		EM_PAT:E11273			GB_PA1.E12394	GB_PAT:E12594
			1386					1494				2409	3				707	70			777	54				1983	2					1425
			rxa00534					rxa00536				rxa00537					1000cm	10000			01100	Ixaoooo				rxa00579						rxa00580

WO 01/00843	PCT/IB00/00923

	ပ္ပဲ	Ķ	(Rel.	52, Created)	n-98	CT.	1997 (Rel.	יבים וכחי	}	r-93	!	A ጉ	66-	25-Nov-98		04 <u>k</u>	-95	86-u	79-n	AR.	66-	n-93	66-6	-66	r-97	-66	n-98	n-97	AR.
	05-DEC-	08-OCT-	1997 (Rel.	52, C	24-Jun-98	08-OCT	1997 (Rel.	05.01EG	1998	26-Apr-93		29-MAR- 1999	7-Feb-99	25-Nc	18,1100.	1999	8-Nov-95	17-Jun-98	24-Jun-97	06-MAR- 1998	5-Jan-99	12-Jun-93	3-Aug-99	2-Sep-99	21-Apr-97	2-Sep-99	17-Jun-98	24-Jun-97	09-MAR- 1995
	89,368	99.368	<u> </u>		37,071	37,071		37.071	5	98,236		54,553	53,312	39,928	41 136		34,398	62,776	61,831	61,785	41,060	37,126	40,020	36,986	38,378	37,694	57,971	58,806	38,007
	Unknown.	Corvnebacterium	glutamicum		Corynebacterium glutamicum	Corynebacterium	glutamicum	Hokowa		Corynebacterium	giutalillicuill	Amycolatopsis orientalis	Escherichia coli	Drosophila melanogaster	Orosophila metanogaster		Drosophila melanogaster	Mycobacterium tuberculosis	Mycobacterium leprae	unidentified	Pneumocystis carinii f. sp. ratti	Streptomyces lividans	Homo sapiens	Caenorhabditis elegans	Homo sapiens	Caenorhabditis elegans	Mycobacterium tuberculosis	Mycobacterium leprae	Mycobacterium leprae
Table 4 (continued)	Sequence 1 from patent US 5776740.	DNA encoding serine hydroxymethyl transferase.			DNA encoding serine hydroxymethyltransferase from Brevibacterium flavum.	DNA encoding serine hydroxymethyl transferase.		Sequence 1 from patent IIS 5775740		Corynebacterium glutamicum 3-deoxy-D-arabinoheptulosonate-7-phosphate	syllinase gene, compiere cos.	Amycolatopsis orientalis cosmid PCZA361.	Escherichia coli genomic DNA. (16.8 - 17.1 min).	GM06236.5prime GM Drosophila melanogaster ovary BlueScript Drosophila melanogaster cDNA clone GM06236 5prime, mRNA sequence.	SD02186 Savima SD Drocophila majanonastar Schnaidar I 2 cell cultura nOT2 Orocophila majanonastar	Drosophila melanogaster cDNA clone SD07186 Sprime similar to X89858: Ani FBgn0011558 PID:g927407 SPTREMBL:Q24240, mRNA sequence.	D.melanogaster mRNA for anillin protein.	Mycobacterium tuberculosis H37Rv complete genome; segment 36/162.	Mycobacterium leprae cosmid B5.	Sequence 5 from Patent WO9708323.	Pneumocystis carinii f. sp. ratti enolase mRNA, complete cds.	Streptomyces lividans aminopeptidase P (PepP) gene, complete cds.	Homo sapiens chromosome 19 clone CITB-E1_3214H19, *** SEQUENCING IN PROGRESS ***, 21 unordered pieces.	Caenorhabditis elegans cosmid Y41E3, complete sequence.	EST71561 Macrophage I Homo sapiens cDNA 5' end, mRNA sequence.	Caenorhabditis elegans cosmid Y41E3, complete sequence.	Mycobacterium tuberculosis H37Rv complete genome; segment 36/162.	Mycobacterium leprae cosmid B5.	Mycobacterium leprae cosmid L296.
	AR016483	E11273			E12594	E11273		AR016483		L07603		AJ223998	D90714	AA802737	A1534381		X89858	Z 80226	Z95151	A60305	AF063247	M91546	AC008763	Z 95559	AA362167	Z95559	280226	295151	U15187
	2104	2104			2104	2104		2104	5	2570		37941	14358	7 280	581		4029	36850	38109	1845	1450	5069	214575	150641	7 372	150641	36850	38109	36138
	GB_PAT:AR016483	EM PAT:E11273	•		GB_PAT:E12594	EM_PAT:E11273		GR PAT-AR016483		GB_BA1:CORAHPS		GB_BA1:AOPCZA361 37941	GB_BA1:D90714	GB_EST19:AA802737 280	CB FCT28.A1534381		GB_IN1:DMANILLIN	GB_BA1:MTCY369	GB_BA1:MLCB5	GB_PAT:A60305	GB_PL2:AF063247	GB_BA1:STMAPP	GB_HTG3:AC008763	GB_IN1:CEY41E3	GB_EST13:AA362167 372	GB_IN1:CEY41E3	GB_BA1:MTCY369	GB_BA1:MLCB5	GB_BA1:MLU15187
					1092					1248				1230				1551			1014			810			1386		
					rxa00581					rxa00584				rxa00618				rxa00619			rxa00620			rxa00624			rxa00626		

																10)5															
3-Feb-99	29-Sep-97		/e-dec-e7	3-Feb-99		29-Sep-97		4-Nov-96	. !	1/-Jun-98	3-Feb-99		27-Jan-99				66-InC-9	21-MAY-	1993	29-Sep-97	3-Apr-98	01-DEC-	1998	17-Jun-98		17-Jun-98	17-Jun-98	23-MAR-	1999	6-Aug-99	00 000	66-60V-0
97,358	98,074	03 814	500	95,690		95,755		55,564		60,030	99,563		60,030				39,116	47,419		47,419	37,814	37,814		50,647		55,228	40,300	35,750	<u>.</u>	40,634	40.634	† 60,00
: Corynebacterium	glutamicum Corynebacterium	glutamicum	glutamicum	· Corynebacterium	glutamicum	Corynebacterium	glutamicum	Erwinia herbicola		Mycobacterium tuberculosis	Corynebacterium	glutamicum	Mycobacterium bovis			i	Zymomonas mobilis	Unknown.		unidentified	Unknown.	Unknown.		Mycobacterium	tuberculosis	Mycobacterium tubercutosis	Mycobacterium tuberculosis	Homo sapiens	_	Drosophila melanogaster	Orosophila malanogastar	
Table 4 (continued) Brevibacterium flavum genes for 7,8-diaminopelargonic acid aminotransferase Corynebacterium	and dethiobiotin synthetase, complete cds. DNA sequence coding for desthiobiotinsynthetase.	DNA sequence coding for diamino belamonic acid aminotransferase		Brevibacterium flavum genes for 7,8-diaminopelargonic acid aminotransferase Corynebacterium	and dethiobiotin synthetase, complete cds.	DNA sequence coding for diamino pelargonic acid aminotransferase.		Erwinia nerbicola adenosylmetnionine-6-amino-7-oxononanoate transaminase Erwinia herbicola المنافعة ا		Mycobacterium tuberculosis n3/ KV complete genome, segment 35/162.	Brevibacterium flavum gene for SecY protein (complete cds) and gene or	adenylate kinase (partial cds).	Mycobacterium bovis MBE50a gene, partial cds; and MBE50b, MBE50c,	preprotein translocase SecY subunit (secY), adenylate kinase (adk),	methionine aminopeptidase (map), RNA polymerase ECF sigma factor			Sequence 1 from Patent US 4758514.		DNA coding of 2,5-diketogluconic acid reductase.	Sequence 9 from patent US 5693781.	Sequence 9 from patent US 5726299.		Mycobacterium tuberculosis H37Rv complete genome; segment 76/162.		Mycobacterium tuberculosis H3/Rv complete genome; segment 76/162.	Mycobacterium tuberculosis H37Rv complete genome; segment 76/162.	RPCI-11-168G18.TJ RPCI-11 Homo sapiens genomic clone RPCI-11-		-	***, 78 unordered pieces. Drosophija melanogaster chromosome 2 clone RACR48D10 (D867) RPCI-98 Drosomhija melanogaster	
D14083	E04041	E04040		D14083		E04040	0.000	61000	0101050	ALV2 1930	D14162		U77912			AE167403	AF 13/493	100836		E00311	178753	192042		298268		897967	Z98268	AQ420755		AC008332	AC008332	
2272	675	1272		2272	9	7.7.7	5	067	20000	07007	1516		7163			25.45.4	10101	1853		1853	1187	1187		37432		3/432	37432	671		118545	118545	
GB_BA1:BRLBIOAD	GB_PAT:E04041	GB PAT:E04040		GB_BA1:BRLBIOAD		GB_PA1:E04040	0.000	gp_pAz.ENU36319	100/TW:101		GB_BA1:BRLSECY		GB_BA2:MBU77912			CB BA2.AE157403	GB_BAZ.AF 13/493	GB_PA1:100836		GB_PAT:E00311	GB_PAT:178753	GB_PAT:192042		GB_BA1:MTCI125		GB_BA1:M101123	GB_BA1:MTCI125	GB_GSS12:AQ42075 671	S	GB_HTG3:AC008332 118545 AC008332	GB HTG3:AC008332 118545 AC008332	
795				1392					999	3						020	200				1083				Š	2				1035		
rxa00632				rxa00633					9990000							80700cm	2000			!	rxa00717				0.100	1,49007.10				rxa00727		

		GB HTG3:AC008332 118545 AC008332	118545	AC008332	Table 4 (continued) Dosophila melanogaster chromosome 2 clone BACR48D10 (D867) RPCI-98 Dosophila melanogaster	Orosophila melanosaster	33.888	6.4.0.00
		1			48.D.10 map 34A-34A strain y; cn bw sp, *** SEQUENCING IN PROGRESS***, 78 unordered pieces.			
гха00766	996	GB_HTG2:AC006789 83823	83823	AC006789	Caenorhabditis elegans clone Y49F6, *** SEQUENCING IN PROGRESS ***, 2 unordered pieces.	Caenorhabditis elegans	36,737	25-Feb-99
		GB_HTG2:AC006789	83823	AC006789	*** SEQUENCING IN PROGRESS ***,	Caenorhabditis elegans	36,737	25-Feb-99
		GB_BA1:D90810	20476	D90810	coli genomic DNA, Kohara clone #319(37.4-37.8 min.).	Escherichia coli	36,526	29-MAY- 1997
wa00770	1293		68848		Mycobacterium tuberculosis H37Rv complete genome; segment 40/162.	Mycobacterium tuberculosis	66,193	24-Jun-99
		GB_BA1:MLU15182	40123	U15182	Mycobacterium leprae cosmid B2266.	Mycobacterium leprae	61,443	09-MAR- 1995
		GB_BA2:SCD25	41622	AL118514		Streptomyces coelicolor A3(2)	59,938	21-Sep-99
rxa00779	1056	GB_HTG1:CER08A5	51920	Z82281		Caenorhabditis elegans	64,896	14-OCT- 1998
		GB_HTG1:CER08A5	51920	Z82281	Caenorhabditis elegans chromosome V clone R08A5, *** SEQUENCING IN C PROGRESS *** in unordered pieces.	Caenorhabditis elegans	64,896	14-OCT-
		GB_PL2:AF078693	1492	AF078693		Chlamydomonas reinhardtii 57,970	076,73	3-Nov-99
rxa00780	699	GB_BA1:MTCY98		Z83860	i	Mycobacterium tuberculosis	54,410	17-Jun-98
		GB_BA1:AVINIFREG 7099		M60090	Azotobacter chroococcum nifU, nifS, nifV, nifP, nifW, nifZ and nifM genes, complete cds.	Ë	51,729	26-Apr-93
		0	6701	AF001780	Cyanothece PCC 8801 NifP (nifP), nitrogenase (nifB), FdxN (fdxN), NifS (nifS) Cyanothece PCC8801 and NifU (nifU) genes, complete cds, and NifH (nifH) gene, partial cds.	Cyanothece PCC8801	36,309	08-MAR- 1999
rxa00838	1023	GB_EST1:Z30506	329	Z30506		Arabidopsis thaliana	44,308	11-MAR- 1994
		GB_PL2:AC006258	110469	110469 AC006258	Arabidopsis thaliana BAC F18G18 from chromosome V near 60.5 cM, complete sequence.	Arabidopsis thaliana	35,571	28-DEC- 1998
		0	455	o	701545695 A. thaliana, Columbia Col-0, rosette-2 Arabidopsis thaliana cDNA Arabidopsis thaliana clone 701545695, mRNA sequence.	Arabidopsis thaliana	36,044	8-Sep-99
xa00863	867	9	3572		B.lactofermentum dapA and dapB genes for dihydrodipicolinate synthase and C dihydrodipicolinate reductase.	Corynebacterium glutamicum	99,539	16-Aug-93
			2001			Corynebacterium glutamicum	99,539	28-Jul-99
			2001	E14520	DNA encoding Brevibacterium dihydrodipicolinic acid synthase. 9	Corynebacterium glutamicum	99,539	28-Jul-99
rxa00864	873			Z21502	B.lactofermentum dapA and dapB genes for dihydrodipicolinate synthase and C dihydrodipicolinate reductase.	Corynebacterium glutamicum	99,885	16-Aug-93
		GB_BA1:CGDAPB	1902	X67737		Corynebacterium glutamicum	100,000	1-Apr-93

107

PCT/IB00/00923

glutamicum

20000	705	1817 ACC10100-CAB 400		1131225	Table 4 (continued) Connebatesium distantisme Landing-NADD+ 5-oxidoreductase (nnC) gene Connebacterium	Corvnehacterium	40 841	2-Aug-96
1Xacces 1	3	67716000.500		00166	complete cds.	glutamicum	<u>.</u>	, ,
		GB_HTG1:CEY39C12 282838 AL009026	282838	AL009026	Caenorhabditis elegans chromosome IV clone Y39C12, *** SEQUENCING IN Caenorhabditis elegans	Caenorhabditis elegans	36,416	26-OCT-
								666
				Z69634		Caenornabditis elegans	35,415	2-Sep-99
rxa01019	1110	GB_HTG2:AC005052	144734	AC005052	Homo sapiens clone RG038K21, *** SEQUENCING IN PROGRESS ***, 3 unordered pieces.	nomo sapiens	39,172	12-Jun-98
		GB_HTG2:AC005052 144734 AC005052	144734	AC005052	ine RG038K21, *** SEQUENCING IN PROGRESS ***; 3	Homo sapiens	39,172	12-Jun-98
								000
		GB_GSS9:AQ171808 512		AQ171808		Homo sapiens	34,661	17-0CI-
					Homo sapiens genomic clone Plate=3179 Col=3 Now=IM, genomic survey sequence.			088
rxa01026	1782		42210	AL031124	ces coelicolor cosmid 1C2.	Streptomyces coelicolor	68,275	15-Jan-99
		GB_BA1:ATLEUCD		X84647	A.teichomyceticus leuC and leuD genes.	Actinoplanes	65,935	04-OCT-
						teichomyceticus		1995
		GB_BA1:MTV012	70287	AL021287	Mycobacterium tuberculosis H37Rv complete genome; segment 132/162.	Mycobacterium tuberculosis	40,454	23-Jun-99
xa01027	1131		44882	Z99263	Mycobacterium leprae cosmid B637.	Mycobacterium leprae	38,636	17-Sep-97
		GB_BA1:MTCY349	43523	Z83018	complete genome; segment 131/162.	Mycobacterium	51,989	17-Jun-98
		•				tuberculosis		
		GB_BA1:SPUNGMUT 1172	1172	Z21702	S.pneumoniae ung gene and mutX genes encoding uracil-DNA glycosylase	Streptococcus pneumoniae 38,088	38,088	15-Jun-94
		×						
rxa01073	954	GB_BA1:BACOUTB	1004	M15811	Bacillus subtilis outB gene encoding a sporulation protein, complete cds.	Bacillus subtilis	53,723	26-Apr-93
			167237	AC007938		Homo sapiens	34,322	1-Jul-99
		GB_PL2:ATAC006282 92577	92577	AC006282	chromosome II BAC F13K3 genomic sequence,	Arabidopsis thaliana	36,181	13-MAR-
								1999
rxa01079	2226	GB_BA2:AF112535	4363	AF112535	(nrdl),	Corynebacterium	99,820	5-Aug-99
					ite ods.	glutamicum		
		GB_BA1:CANRDFGE 6054	6054	Y09572	Corynebacterium ammoniagenes nrdH, nrdI, nrdE, nrdF genes.	Corynebacterium	75,966	18-Apr-98
						ammoniagenes		
		GB_BA1:MTV012	70287	AL021287	Mycobacterium tuberculosis H37Rv complete genome; segment 132/162.	Mycobacterium tuberculosis	38,296	23-Jun-88
rxa01080	267	GB_BA2:AF112535	4363	AF112535	Corynebacterium glutamicum putative glutaredoxin NrdH (nrdH), NrdI (nrdI),	Corynebacterium	100,000	5-Aug-99
•					and ribonucleotide reductase alpha-chain (nrdE) genes, complete cds.	glutamicum		
		GB_BA1:CANRDFGE 6054	6054	Y09572	Corynebacterium ammoniagenes nrdH, nrdI, nrdE, nrdF genes.	Corynebacterium	65,511	18-Apr-98
		Z				ammoniagenes		
		GB_BA1:STNRD	4894	X73226	S.typhimurium nrdEF operon.	Salmonella typhimurium	52,477	03-MAR-
						•	•	1997
rxa01087	666	GB_IN2:AF063412	1093	AF063412	Limnadia lenticularis elongation factor 1-alpha mRNA, partial cds.	Limnadia lenticularis	43,750	29-MAR- 1999 .
		GB_PR3:HS24M15	134539	134539 Z94055	Human DNA sequence from PAC 24M15 on chromosome 1. Contains	Homo sapiens	37,475	23-Nov-99
								د
		GB_IN2:ARU85702	1240	U85702	Anathix ralla elongation factor-1 alpha (EF-1a) gene, partial cds.	Anathix ralla	37,319	16-Jul-97

rxa01095	857	GB_BA1:MTCY01B2	35938	295554	Table 4 (continued) Mycobacterium tuberculosis H37Rv complete genome; segment 72/162.	Mycobacterium	43,243	17-Jun-98
		GB HTG5-4C011632 175917	175917	AC011632	Homo capiens clone RD11-3N13 WORKING DRAFT SEQUENCE 9	tubercutosis Homo sapiens	36 471	19-VON-91
					unordered pieces.			
		GB_HTG5:AC011632 175917 AC011632	175917		Homo sapiens clone RP11-3N13, WORKING DRAFT SEQUENCE, 9 unordered pieces.	Homo sapiens	36,836	19-Nov-99
rxa01097	477	GB_BA2:AF030405	774	AF030405	Corynebacterium glutamicum cyclase (hisF) gene, complete cds.	Corynebacterium qlutamicum	100,000	13-Nov-97
		GB_BA2.AF030405	774	AF030405	Corynebacterium glutamicum cyclase (hisF) gene, complete cds.	Corynebacterium glutamicum	41,206	13-Nov-97
rxa01098	897	GB_BA2:AF030405	774	AF030405	Corynebacterium glutamicum cyclase (hisF) gene, complete cds.	Corynebacterium clutamicum	97,933	13-Nov-97
		GB_BA1:MSGY223	42061	AD000019	Mycobacterium tuberculosis sequence from clone y223.	Mycobacterium tuberculosis	40,972	10-DEC- 1996
		GB BA1:MLCB1610	40055	AL049913	Mycobacterium leprae cosmid B1610.	Mycobacterium leprae	61,366	27-Aug-99
rxa01100	861		738		Corynebacterium glutamicum phosphoribosylformimino-5-amino-1-	Corynebacterium	97,154	12-MAR-
•					phosphoribosyl-4- imidazolecarboxamide isomerase (hisA) gene, complete cds.	glutamicum		1998
		GB_BA2:AF060558	636		Corynebacterium glutamicum glutamine amidotransferase (hisH) gene, complete cds.	Corynebacterium glutamicum	95,455	29-Apr-98
		GB_HTG1:HSDJ140A 221755 AL109917 9	221755	AL109917	Homo sapiens chromosome 1 clone RP1-140A9, *** SEQUENCING IN PROGRESS ***, in unordered pieces.	Homo sapiens	30,523	23-Nov-99
xa01101	952	GB_BA2:AF060558	636	AF060558	Corynebacterium glutamicum glutamine amidotransferase (hisH) gene,	Corynebacterium	94,462	29-Apr-98
		GB_BA1:SC4G6	36917	AL096884	complete cus. Streptomyces coelicolor cosmid 4G6.	Streptomyces coelicolor A3(2)	38,378	23-Jul-99
		GB_BA1:STMHISOPA 3981	3981	M31628	S.coelicolor histidine biosynthesis operon encoding hisD, partial cds., and hisC. hisB. hisH. and hisA genes, complete cds.	Streptomyces coelicolor	60,053	26-Apr-93
rxa01104	729	GB_BA1:STMHISOPA 3981	3981	M31628	S.coelicolor histidine biosynthesis operon encoding hisD, partial cds., and hisC, hisB, hisH, and hisA genes, complete cds.	Streptomyces coelicolor	58,333	26-Apr-93
		GB_BA1:SC4G6	36917	AL096884	Streptomyces coelicolor cosmid 4G6.	Streptomyces coelicolor A3(2)	39,045	23-Jul-99
		GB_BA1:MTCY336	32437	295586	Mycobacterium tuberculosis H37Rv complete genome; segment 70/162.	Mycobacterium tuberculosis	60,364	24-Jun-99
rxa01105	1221	GB_BA1:MTCY336	32437	Z95586	Mycobacterium tuberculosis H37Rv complete genome; segment 70/162.	Mycobacterium tuberculosis	60,931	24-Jun-99
		GB_BA1:MSGY223	42061	AD000019	Mycobacterium tuberculosis sequence from clone y223.	Mycobacterium tuberculosis	36,851	10-DEC- 1996
rxa01106	1449	GB_BA1:MLCB1610 GB_BA1:MSGY223	40055 42061	AL049913 AD000019	Mycobacterium teprae cosmid B1610. Mycobacterium teberculosis sequence from clone y223.	Mycobacterium leprae Mycobacterium tuberculosis	60,902 37,233	

WO 01/00843	CT/IB00/00923
-------------	---------------

W	0 0	1/00	543										1 1										P(CT	/ IB 00/	0092	23		
30	ce-mar-oc	24-Jun-99	23-Feb-95	3-Feb-99	29-Sep-97	06-MAR-	1998	23-Nov-99	6-Jul-98	12-Jun-98	12-Jun-98	1-Feb-99 H	11 07-0CT	1999	07-OCT-	6661	20-Nov-99		17-Jun-98	7-Jun-93	;	59-Nov-99	17-Jun-98	4-Aug-99	28-Aug-98	23-DEC-	1998 - 23-DEC-	1998	30-Nov-95
	1 00°111	58,420	100,000	095'66	99,803	38,675		36,204	38,363	36,058	36,058	37,269	40,000		40,000		36,803		37,047	50,738		38,135	38,139	39,394	41,408	36,118	35,574		38,560
	intycopacterium smeginal	Mycobacterium tuberculosis	Corynebacterium dutamicum	Corynebacterium	glutamicum Corynebacterium	glutamicum Aspergillus niger		Homo sapiens	Homo sapiens	Homo sapiens	Homo sapiens	Triticum aestivum	Homo sapiens		Homo sapiens	:	Arabidopsis thaliana		Mycobacterium tubercutosis	Leishmania donovani		nomo sapiens	Mycobacterium tuberculosis	Homo sapiens	Homo sapiens	Arabidopsis thaliana	Arabidopsis thaliana		Caenorhabditis elegans
Table 4 (continued)	misnicymans genes inso and inso for institution deriyatogenase and institution-mycobacterium smegmans ob, in in phosphate aminotransferase, respectively.	Mycobacterium tuberculosis H37Rv complete genome; segment 70/162.	Corynebacterium glutamicum acetohydroxy acid synthase (ilvB) and (ilvN) penes and applohydroxy acid isomeroraductase (ilvC) gene complete cds	Brevibacterium flavum ilvC gene for acetohydroxy acid isomeroreductase,	complete cds. DNA encoding acetohydroxy-acid isomeroreductase.	Sequence 18 from Patent WO9706261.		Human DNA sequence from Fosmid 24E5 on chromosome 22q11.2-qter contains parvalbumin, ESTs, STS.	Homo sapiens chromosome 19, cosmid F19750, complete sequence.	Homo sapiens clone DJ1106H14, *** SEQUENCING IN PROGRESS ***, 42 unordered pieces.		Triticum aestivum heat shock protein 80 mRNA, complete cds.	Homo sapiens chromosome 19 clone CIT-HSPC_475D23, *** SEQUENCING Homo sapiens		Homo sapiens chromosome 19 clone CIT-HSPC_475023, *** SEQUENCING Homo sapiens	IN PROGRESS 31 unordered preces.	Arabidopsis thaliana genomic DNA, chromosome 5, P1 clone: MYH19,	complete sequence.	Mycobacterium tuberculosis H37Rv complete genome; segment 47/162.	Leishmania donovani phosphoribosylpyrophosphate synthetase gene,	complete cds.	Homo sapiens criomosome 1 clone KP4-/99U16 map p34.3-36.1, *** SEQUENCING IN PROGRESS ***, in unordered pieces.	Mycobacterium tuberculosis H37Rv complete genome; segment 69/162.	Homo sapiens mRNA for KIAA1109 protein, partial cds.	HS_3098_A1_C03_T7 CIT Approved Human Genomic Sperm Library D Homo sapiens genomic clone Plate=3098 Col=5 Row=E, genomic survey	sequence. Arabidopsis thaliana chromosome 1 BAC F5O8 sequence, complete	sequence. Arabidopsis thaliana chromosome 1 BAC F5O8 sequence, complete	sequence.	Caenorhabditis elegans cosmid C06G1.
2	740004	295586	L09232	D14551	E08232	A60299		282185	AC005265	AC004965	AC004965	U55859	AC011469		AC011469		AB010077		292539	M76553		AL050344	Z 74020	AB029032	AQ107201	AC005990	AC005990		U41014
900	0677	32437	4705	1364	1017	2869		35506	43900	323792	323792	2397	113436		113436	0	//380		38970	1887		130149	35377	6377	355	99923	99923		31205
	COCILICIA: IVATOD.	GB_BA1:MTCY336	GB_BA1:CORAIA	GB_BA1:BRLILVCA	GB_PAT:E08232	GB_PAT:A60299		GB_PR3:HS24E5	GB_PR3:AC005265	GB_HTG2:AC004965	GB_HTG2:AC004965 323792 AC004965	GB_PL2:TAU55859	GB_HTG3:AC011469 113436 AC011469		GB_HTG3:AC011469 113436 AC011469		GB_PL1:AB010077		GB_BA1:MTCY10G2	GB_IN1:LEIPRPP		GB_H1G2:HSJ799D1 130149 AL050344 6	GB_BA1:MTCY48	GB_PR2:AB029032	GB_GSS9:AQ107201	GB_PL2:F508	GB_PL2:F508	1	GB_IN1:CELC06G1
			1137			1449				846			1528						1098				2556			873			
			xa01145			xa01162				xa01208			rxa01209						rxa01215				rxa01239			rxa01253			

05-MAY-	2-Aug-99	26-OCT- 1999	15-OCT-	12-Apr-99	01-OCT-	11-Jun-99	23-Nov-99	66-Jul-99	28-Sep-99	9-Jul-98	23-Nov-97	20-Nov-99	28-Jul-99	24-Jun-99	24-Feb-97	27-Jul-98 9-Jul-98	24-Feb-97	28-Jul-99
41,121	40,634	38,290	34,311	34,311	37,722	38,492	39,738	46,237	45,574	44,097	41,316	36,606	37,916	37,419	34,831	35,138 37,277	100,000	38,400
Homo sapiens	Drosophila melanogaster	Drosophila melanogaster	Arabidopsis thaliana	Arabidopsis thaliana	Homo sapiens	Gossypium hirsutum	Homo sapiens	Mus musculus	Mus musculus	Mus musculus	Mus musculus	Arabidopsis thaliana	Homo sapiens	Mycobacterium	Corynebacterium	glutamicum Streptomyces coelicolor Homo sapiens	Corynebacterium	giutamicum Homo sapiens
Table 4 (continued) HS_5106_A1_D10_SP6E RPCI-11 Human Male BAC Library Homo sapiens genomic clone Plate=682 Col=19 Row=6, genomic survey sequence.	Drosophila melanogaster chromosome 2 clone BACR38D12 (D590) RPCI-98 38.D. 12 map 48A-48B strain y; on bw sp, *** SEQUENCING IN PROGRESS *** 60 unordered pieces	Drosophila melanogaster chromosome 2 clone BACR35F01 (D1156) RPCI-98 Drosophila melanogaster 35.F.1 map 48A-48C strain y; cn bw sp, *** SEQUENCING IN PROGRESS ***, 108 unordered pieces.	Arabidopsis thaliana chromosome II BAC F12A24 genomic sequence, complete sequence.	Arabidopsis thaliana chromosome II BAC T24121 genomic sequence,	complete sequence. Homo sapiens clone 4_K_17, LOW-PASS SEQUENCE SAMPLING.	BNLGHi12371 Six-day Cotton fiber Gossypium hirsutum cDNA 5' similar to (U86081) root hair defective 3 [Arabidopsis thaliana], mRNA sequence.	Human DNA sequence from PAC 227P17, between markers DXS6791 andDXS8038 on chromosome X contains CpG island, EST.	AV171099 Mus musculus head C57BL/6J 14, 17 day embryo Mus musculus cDNA clone 3200002M11, mRNA sequence.	Mus musculus mGpi1 gene, exon 1.	ucasd10.y1 Sugano mouse kidney mkia Mus musculus cDNA clone IMAGE:1432243 5' similar to TR:035120 035120 MGPI1P.; mRNA	sequence. Mus musculus mRNA for mGpi1p, complete cds.	Arabidopsis thaliana genomic DNA, chromosome 5, P1 clone: MJJ3,complete Arabidopsis thaliana	sequence. HS_2026_A2_C09_T7C CIT Approved Human Genomic Sperm Library D Homo sapiens genomic clone Plate=2026 Col=18 Row=E, genomic survey	Mycobacterium tuberculosis H37Rv complete genome; segment 40/162.	C.glutamicum lysE and lysG genes.	Streptomyces coelicolor cosmid 5A7. Homo sapiens chromosome 4 clone B220G8 map 4q21, complete sequence.	C.glutamicum lysE and lysG genes.	HS_3155_B2_G10_T7C CIT Approved Human Genomic Sperm Library D Homo sapiens genomic clone Plate=3155 Col=20 Row=N, genomic survey sequence.
AQ518843	AC007473	AC011696	AC005167	AC005825	AC011150	AI725583	Z81007	AV171099	AB008915	A1050532	AB008895	AB005237	AQ766840	AL022004	X96471	AL031107 AC004054	X96471	AQ769223
1 441	194859	115847	7 83260	5 97380	127222	728	82951	9 173		293	3062	87835	491	68848	2374	40337 112184	2374	200
GB_GSS14:AQ51884 441 3	GB_HTG2:AC007473 194859 AC007473	GB_HTG4:AC011696 115847 AC011696	GB_PL2:ATAC005167 83260	GB_PL2:ATAC005825 97380	GB_HTG3:AC011150 127222 AC011150	GB_EST32:AI725583 728	GB_PR2:HS227P17	GB_EST34;AV171099 173	GB_RO:AB008915S1	GB_ES 1 22:A1030532	GB_RO:AB008895	GB_PL1:AB005237	GB_GSS5:AQ766840 491	GB_BA1:MTV043	GB_BA1:CGLYSEG	GB_BA1:SC5A7 GB_PR3:AC004054	GB_BA1:CGLYSEG	GB_GSS5:AQ769223 500
1044			206			259			629			944			993		822	
ка01321			rxa01352			rxa01360			rxa01361			rxa01381			xa01393		rxa01394	

WO 01/00843		PCT/IB00/00923
	113	

	24-Feb-97		10-Aug-98	72-Aug-97		21-MAR-	7	21-MAR-	L 1	12-Nov-98	04-MAY-	2	06-1177-7-1	27-Aug-99	17-Jun-98	15-Jun-96	16-Jan-98	11	പ് 86-unC-21		22-Aug-97	10-Aug-98	8-Feb-99		22-Aug-97	6-Jun-99	17-Jun-98	21-Apr-97	ŀ	-100-61 1995	23-Nov-98	23-Nov-98	19-MAY-	05-MAR- 1997
	24-F	,	2 2 2 3	17.	-	21-1	1997	21-1	1997	12-1	04-M/	1 6	<u> </u>	27-1	17.	15	. 6		4		22-	₽	8-F		22-	<u>ა</u>	17.	21-	,	1995	23-	23-	19-MA	05-M/
	33,665		92,720	35,139	2, 5	58,517		56,151		56,021	39,037	6	40,130	37,752	39,057	54,382	52,941		40,941		38,451	61,194	58,021		38,414	36,930	37,062	37,647	0	20,209	37,984	38,469	39,021	57,521
	Corynebacterium	glutamicum	Streptomyces coelicolor	Mycobacterium reprae	tuberculosis	Escherichia coli		Escherichia coli		Escherichia coli	Streptomyces coelicolor		Mycobacterium tuberculosis	Mycobacterium leprae	Mycobacterium tuberculosis	Mycobacterium leprae	Mycobacterium smegmatis 52,941		Mycobacterium	tuberculosis	Mycobacterium leprae	Streptomyces coelicolor	Corynebacterium	ammoniagenes	Mycobacterium leprae	Streptomyces coelicolor	Mycobacterium	Homo sapiens		iliapia mossambica	Caenorhabditis elegans	Caenorhabditis elegans	Streptomyces coelicolor	Mycobacterium avium
Table 4 (continued)	C.glutamicum lysE and lysG genes.		Streptomyces coelicolor cosmid 3C3.	Mycobacterium leprae cosmio 642. Mycobacterium tubateviloric U375v. complete genome: segment 133/163	Mycobacienum tuberculosis nozrav complete genome, segment 144 104.	E.coli genomic DNA, Kohara clone #336(41.2-41.6 min.).		E.coli genomic DNA, Kohara clone #336gap(41.6-41.9 min.).		Escherichia coli K-12 MG1655 section 169 of 400 of the complete genome.	Streptomyces coelicolor cosmid H10.		Mycobacterum tuberculosis H3/KV complete genome; segment 16/102.	Mycobacterium leprae cosmid B4.	Mycobacterium tuberculosis H37Rv complete genome; segment 103/162.	Mycobacterium leprae cosmid B1229 DNA sequence.	Mycobacterium smegmatis dGTPase (dgt), and primase (dnaG) genes,	complete cds; tRNA-Asn gene, complete sequence.	Mycobacterium tuberculosis H37Rv complete genome; segment 122/162.		Mycobacterium leprae cosmid B22.	Streptomyces coelicolor cosmid 3C3.	Corynebacterium ammoniagenes gene for FAD synthetase, complete cds.		Mycobacterium leprae cosmid B22.	Streptomyces coelicolor cosmid 10A7.	Mycobacterium tuberculosis H37Rv complete genome; segment 122/162.	EST65614 Jurkat T-cells III Homo sapiens cDNA 5' end, mRNA sequence.		O.mossambicus prolactin I gene.	Caenorhabditis elegans cosmid F28C12, complete seguence.	Caenorhabditis elegans cosmid F28C12, complete sequence.	Streptomyces coelicolor cosmid E9.	Mycobacterium avium hypoxanthine-guanine phosphoribosyl transferase gene, complete cds.
	X96471		AL031231	298/41	ALUU0907	D90827		D90828		AE000279	AL049754		2 95324	AL023514	Z83860	L78812	AF027507		AL008967		298741	AL031231	D37967		Z98741	AL078618	AL008967	AA356956		X92380	793380	Z93380	AL049841	U88875
	2374		31382	40281	204 4	18886		14590		10855	39524		35019	36310	31225	30670	5168		56414		40281				40281	39739	56414	6 255	!	1327	14653	14653	37730	840
	GB_BA1:CGLYSEG	1	GB_BA1:SC3C3	GB_BA1:MLCB22	GB_BA1:M1V002	GB BA1-D90827		GB BA1:D90828	•	GB_BA2:AE000279	GB_BA1:SCH10		GB_BA1:MIY13E10	GB BA1:MLCB4	GB_BA1:MTCY98	GB_BA1:MSGB1229C 30670 S	GB_BA2:AF027507		GB_BA1:MTV002	1	GB_BA1:MLCB22	GB_BA1:SC3C3	GB_BA1:CORFADS	ı	GB_BA1:MLCB22	GB_BA1:SC10A7	GB_BA1:MTV002	GB_EST13:AA356956 255		GB_OV:OMDNAPROI 7327	CE INT-CEE28C12	GB_IN1:CEF28C12	GB_BA1:SCE9	GB_BA1:MAU88875
			630			1347	:				1413				1395				757				1146				774				1662	200	723	
			rxa01416			rya01442					rxa01446				rxa01483	-			rxa01486				rxa01489				rxa01491				201508	0000	rxa01512	

					Table 4 (continued)				
		GB_BA1:MTY15C10	33050	Z95436	Mycobacterium tuberculosis H37Rv complete genome; segment 154/162.	Mycobacterium tuberculosis	40,086	17-Jun-98	
rxa01514	111	GB_BA1:MTCY7H7B	24244	Z95557	Mycobacterium tuberculosis H37Rv complete genome; segment 153/162.	Mycobacterium tuberculosis	43,343	18-Jun-98	
			38916	AL023093	Mycobacterium leprae cosmid B2548.	Mycobacterium leprae	38,177	27-Aug-99	
		GB_PL1:EGGTPCHI	242	249757	E.gracilis mRNA for GTP cyclohydrolase I (core region).	Euglena gracilis	64,876	20-OCT- 1995	
xa01515	975	GB BA1:ECOUW93	338534	U14003	Escherichia coli K-12 chromosomal region from 92.8 to 00.1 minutes.	Escherichia coli	38,943	17-Apr-96	
			338534	U14003	Escherichia coli K-12 chromosomal region from 92.8 to 00.1 minutes.	Escherichia coli	37,500	17-Apr-96	
			39430		Mycobacterium tuberculosis H37Rv complete genome; segment 93/162.	Mycobacterium tuberculosis	38,010	24-Jun-99	
rxa01516	513	GB_IN1:DME238847	5419	AJ238847	Drosophila melanogaster mRNA for drosophila dodeca-satellite protein 1 (DDP-1).	Drosophila melanogaster	36,346	13-Aug-99	
		GB_HTG3:AC009210 103814 AC009210	103814	AC009210	ila melanogaster chromosome 2 clone BACR01106 (D1054) RPCI-98 ap 55D-55D strain y; cn bw sp, *** SEQUENCING IN PROGRESS nordered pieces.	Drosophila melanogaster	37,897	20-Aug-99	
		GB IN2:AF132179	4842	AF132179	Drosophila melanogaster clone LD21677 unknown mRNA.	Drosophila melanogaster	36,149	3-Jun-99	
rxa01517	009	GB_PL2:F6H8	82596	AF178045	Arabidopsis thaliana BAC F6H8.	Arabidopsis thaliana	35,846	19-Aug-99	1
		GB_PL2:AF038831	647	AF038831	Sorosporium saponariae internal transcribed spacer 1, 5.8S ribosomal RNA	Sorosporium saponariae	40,566	13-Apr-99	11/
					gene; and internal transcribed spacer 2, complete sequence.				4
		GB_PL2:ATAC005957 108355	108355	AC005957	Arabidopsis thaliana chromosome II BAC T15J14 genomic sequence,	Arabidopsis thaliana	38,095	7-Jan-99	
rxa01521	921	GB_BA1:ANANIFBH	5936	J05111	complete sequence. Anabaena sp. (clone AnH20.1) nitrogen fixation operon nifB, fdxN, nifS, nifU,	Anabaena sp.	.38,206	26-Apr-93	
					and nifH genes, complete cds.				
		GB_PR2:AC002461	197273		Human BAC clone RG204I16 from 7q31, complete sequence.	Homo sapiens	36,623	20-Aug-97	
		GB_PR2:AC002461	197273		Human BAC clone RG204116 from 7q31, complete sequence.	Homo sapiens	34,719	20-Aug-97	
xa01528	651	GB_RO:MM437P9	165901	AL049866	Mus musculus chromosome X, clone 437P9.	Mus musculus	37,500	29-Jun-99	
		GB_PR3:AC005740	186780	AC005740	Homo sapiens chromosome 5p, BAC clone 50g21 (LBNL H154), complete	Homo sapiens	37,031	01-OCT-	
					sednence.			1998	
		GB_PR3:AC005740	186780	186780 AC005740	Homo sapiens chromosome 5p, BAC clone 50g21 (LBNL H154), complete	Homo sapiens	38,035	01-0CI-	
cxa01551	1998	GB BA1:MTCY22G10 35420	35420	Z84724	sequerice. Mycobacterium tuberculosis H37Rv complete genome; segment 21/162.	Mycobacterium	38,371	17-Jun-98	
		ı				tuberculosis			
		GB_BA2:ECOUW89	176195	900000	E. coli chromosomal region from 89.2 to 92.8 minutes.	Escherichia coli	38,064	17-DEC-	
								1993	
		GB_BA1:SCQ11	15441	AL096823	Streptomyces coelicolor cosmid Q11.	Streptomyces coelicolor	60,775	8-Jul-99	
rxa01561	1053	GB_IN1:CEY62H9A	47396	AL032630	Caenorhabditis elegans cosmid Y62H9A, complete sequence.	Caenorhabditis elegans	38,514	2-Sep-99	
		GB_PR4:HSU51003	3202	U51003	Homo sapiens DLX-2 (DLX-2) gene, complete cds.	Homo sapiens	37,730	07-DEC- 1999	
			900	841044	and a supplied to the supplied of the supplied	Cue ecrofa	30 340	27. Apr. 03	
		GB_OM:PIGDAO1	CSS .	M18444	rig D-amino acid oxidase (DAO) gene, exon 1.	ous sciola	09,040	56-IdH-12	
rxa01599	1785	GB_BA1:MTCI125	37432	Z98268	Mycobacterium tuberculosis H3/Rv complete genome; segment /6/162.	Mycobacterium tuberculosis	63,300	17-Jun-98	
		GB_BA1:U00021	39193	U00021	Mycobacterium leprae cosmid L247.	Mycobacterium leprae	36,756	29-Sep-94	

24-Jun-97 5-Jul-99 23-Nov-99	5-Jul-99 17-Jun-98 9-Feb-96	17-MAY- 1999 17-Jun-98 29-Aug-96	28-OCT- 1997 28-OCT- 1997 1997 28-OCT- 28-OCT-	1997 29-Nov-95 14-Jun-96 1-Jun-99	15-Jan-99 24-Nov-98 2-Jul-99 3-Jun-98 27-Apr-93	14-Jul-95 04-MAY- 1999
36,756 40,811 38,768	39,018 40,656 44,262	40,709 40,986 35,364	39,576	39,157 39,157 38,910	60,644 38,037 36,122 48,079 37,093	37,093 100,000 36,323
Mycobacterium leprae Homo sapiens Homo sapiens	Homo sapiens Mycobacterium tuberculosis Homo sapiens	Thiobacillus ferrooxidans Mycobacterium tuberculosis Mus musculus	rius cirus Tula virus Tula virus Tula virus	Homo sapiens Homo sapiens Gossypium robinsonii	Streptomyces coelicolor Drosophila melanogaster Drosophila melanogaster Lactobacillus reuteri Rattus norvegicus	Rattus sp. Corynebacterium glutamicum Mycobacterium tuberculosis
Mycobacterium leprae cosmid B1351. Human chromosome Xq28, cosmid clones 7H3, 14D7, C1230, 11E7, F1096, A12197, 12G8, A09100; complete sequence bases 1. 217657. Homo sapiens DNA sequence from PAC 13D10 on chromosome 6p22.3-23.	Contains CpG Island. Human chromosome Xq28, cosmid clones 7H3, 14D7, C1230, 11E7, F1096, A12197, 12G8, A09100; complete sequence bases 1217657. Mycobacterium tuberculosis H37Rv complete genome; segment 117/162. HUM213D06B Human aorta polyA+ (TFujiwara) Homo sapiens cDNA clone	GEN-213D06 5, mKNA sequence. Thiobacillus ferrooxidans carboxysome operon, complete cds. Mycobacterium tuberculosis H37Rv complete genome; segment 134/162. M.musculus retrovirus restriction gene Fv1.	Sequence 1 nontratent woos 43410. Tula virus O54 nucleocapsid protein gene, partial cds. Tula virus O52 nucleocapsid protein gene, partial cds. Tula virus O24 nucleocapsid protein gene, partial cds.	ys81e01.s1 Soares retina N2b4HR Homo sapiens cDNA clone IMAGE:221208 3' similar to gb:X63749_rna1 GUANINE NUCLEOTIDE-BINDING PROTEIN G(T), ALPHA-1 (HUMAN);, mRNA sequence. human STS SHGC-30023, sequence tagged site. Gossypium robinsonii CelA2 pseudogene, partial sequence.		Rat mRNA for heavy neurofilament polypeptide NF-H C-terminus. Corynebacterium glutamicum chorismate synthase (aroC), shikimate kinase (aroK), and 3-dehydroquinate synthase (aroB) genes, complete cds; and putative cytoplasmic peptidase (pepQ) gene, partial cds. Mycobacterium tuberculosis H37Rv complete genome; segment 111/162.
295117 AL034384 AL021407	AL034384 Z95387 D79278	AF129925 AL021309 X97719	V95303 U95303 U95302	H91843 G26925 AF139451	AL031124 Al064232 AF117896 AF067123 M37227	X13804 AF124600 Z83863
38936 217657 153147	217657 25949 392	10243	600 600		42210 493 1020 1034	3085 4115 33818
GB_BA1:MLCB1351 GB_PR2:HSMTM0 GB_PR2:HS13D10	GB_BA1:MTCY1A10 GB_EST6:D79278	GB_BA2:AF129925 GB_BA1:MTV013 GB_RO:MMFV1	GB_VI:TVU95309 GB_VI:TVU95303 GB_VI:TVU95302	GB_EST5:H91843 GB_STS:G26925 GB_PL2:AF139451	GB_BA1:SC1C2 GB_EST22:AI064232 GB_IN2:AF117896 GB_BA2:AF067123 GB_RO:RATNFHPEP	GB_RO:RSNFH GB_BA2:AF124600 GB_BA1:MTCY159
795	723	675	651	1359	122 4 873	1353
жа01617	rxa01657	rxa01660	жа01678	rxa01679	ка01690 ка01692	ка01698

		GB_BA1:MSGB937C	38914	L78820	Table 4 (continued) Mycobacterium leprae cosmid B937 DNA sequence.	Mycobacterium leprae	62,780	15-Jun-96
xa01699	693	S GB_BA2:AF124600	4115	AF124600), shikimate kinase implete cds; and	Corynebacterium glutamicum	100,000	04-MAY- 1999
		GB_BA2:AF016585	41097	AF016585	Streptomyces caelestis cytochrome P-450 hydroxylase homolog (nidi) gene, spartial cds; polyketide synthase modules 1 through 7 (nidA) genes, complete caelestis cytochrome hadnown and Namethyltransferase homolog gene nadial cds.	Streptomyces caelestis	40,260	07-DEC- 1997
		GB_EST9:C19712	399	C19712	C19712 Rice panicle at ripening stage Oryza sativa cDNA clone E10821_1A, Oryza sativa mRNA sequence.	Oryza sativa	45,425	24-OCT- 1996
xa01712	805	GB_EST21:AA952466 278	5 278	AA952466	TENS1404 T. cruzi epimastigote normalized cDNA Library Trypanosoma cruzi Trypanosoma cruzi cDNA clone 1404 5', mRNA sequence.	Trypanosoma cruzi	40,876	29-OCT- 1998
		GB_EST21:AA952466 278	5 278	AA952466	TENS1404 T. cruzi epimastigote normalized cDNA Library Trypanosoma cruzi Trypanosoma cruzi CDNA clone 1404 5', mRNA sequence.	Trypanosoma cruzi	41,367	29-OCT- 1998
rxa01719	684	GB_HTG1:HSDJ534K 154416 AL109925	154416	AL109925	Homo saplens chromosome 1 clone RP4-534K7, *** SEQUENCING IN PROGRESS *** in unordered nieres	Homo sapiens	35,651	23-Nov-99
		GB_HTG1:HSDJ534K 154416 AL109925	154416	AL109925		Họmo sapiens	35,651	23-Nov-99
		GB_EST27:AI447108 431	431	AI447108	(#937316) Mus musculus.cDNA clone	Mus musculus	39,671	09-MAR- 1999
rxa01720	1332	GB_PR4:AC006322	179640	179640 AC006322	11 from 7q11.23-q21.1, complete	Homo sapiens	35,817	18-MAR-
		GB_PL2:TM018A10 GB_PR4:AC006322	106184 179640	106184 AF013294 179640 AC006322	is thaliana BAC TM018A10. iens PAC clone DJ1060B11 from 7q11.23-q21.1, complete	Arabidopsis thaliana Homo sapiens	35,698 37,243	12-Jul-97 18-MAR-
rxa01746	876	GB_EST3:R46227	443	R46227		Homo sapiens	42,812	1999 22-MAY-
		GB_EST3:R46227	443	R46227	IMAGE:36000 3', mRNA sequence. yg52a03.s1 Soares infant brain 1NIB Homo sapiens cDNA clone IMAGE:36000 3', mRNA sequence.	Homo sapiens	42,655	1995 22-MAY- 1995
rxa01747	1167	GB_BA1:MTCY190	34150	Z70283	Mycobacterium tuberculosis H37Rv complete genome; segment 98/162.	Mycobacterium	59,294	17-Jun-98
		GB_BA1:MLCB22 GB_BA1:SC5F7	40281 40024	298741 AL096872	Mycobacterium leprae cosmid B22. Streptomyces coelicolor cosmid 5F7.	Mycobacterium leprae Streptomyces coelicolor A3(2)	57,584 61,810	22-Aug-97 22-Jul-99
rxa01757	924	GB_EST21:AA918454 416	4 416	AA918454	om38c02.s1 Soares_NFL_T_GBC_S1 Homo sapiens cDNA clone IMAGE:1543298 3' similar to WP:F28F8.3 CE09757 SMALL NUCLEAR processing to Popporters and sequence	Homo sapiens	39,655	23-Jun-98
		GB_EST4:H34042	345	H34042	reated (9 days) Rattus sp. cDNA clone	Rattus sp.	35,942	2-Apr.98
		GB_EST20:AA899038 450	8 450	AA899038	RPNBIST 5' end, mKNA sequence. NCP6G8T7 Perithecial Neurospora crassa cDNA clone NP6G8 3' end, mRNA Neurospora crassa sequence.	Neurospora crassa	40,000	12-Apr-98

rxa01807	915		185300		Aeropyrum pernix genomic DNA, section 6/7.	Aeropyrum pernix Droconkila melanogaster	40,067	22-Jun-99
		GB_H1G4:AC010b94	11585/1	AC010694	Drosopnila metanogaster cione krolso-onz, secocencino in PROGRESS ***, 75 unordered pieces.	Drosopinia meianogaster	35,450	1999
		GB_HTG4:AC010694 115857	115857	AC010694	Drosophila melanogaster clone RPCI98-6H2, *** SEQUENCING IN PROGRESS ***, 75 unordered pieces.	Drosophila melanogaster	35,450	16-OCT- 1999
rxa01821	401	GB_BA1:CGL007732 4	4460	AJ007732	Corynebacterium glutamicum 3' ppc gene, secG gene, amt gene, ocd gene	Corynebacterium dutamicum	100,000	7-Jan-99
		GB_RO:RATALGL	7601	M24108	Rattus norvegicus (clone A2U42) alpha2u globulin gene, exons 1-7.	Rattus norvegicus	38,692	15-DEC-
		GB OV:APIGY2	1381	X78272	Anas platyrhynchos (Super M) IgY upsilon heavy chain gene, exon 2.	Anas platyrhynchos	36.962	1994 15-Feb-99
rxa01835	654	9479	353	AI629479	486101D10.x1 486 - leaf primordia cDNA library from Hake lab Zea mays cDNA mRNA sequence	Zea mays	38,109	26-Apr-99
		GB_STS:G48245	515	G48245	SHGC-62915 Human Homo sapiens STS genomic, sequence tagged site.	Homo sapiens	37,021	26-MAR- 1999
		GB_GSS3:B49052	515	B49052	RPCI11-4112.TV RPCI-11 Homo sapiens genomic clone RPCI-11-4112,	Homo sapiens	37,021	8-Apr-99
rxa01850	1470	GB_BA2:ECOUW67_ 0	110000	U18997	genomic survey sequence. Escherichia coli K-12 chromosomal region from 67.4 to 76.0 minutes.	Escherichia coli	37,196	U18997
		35	10345	AE000392	Escherichia coli K-12 MG1655 section 282 of 400 of the complete genome.	Escherichia coli	38,021	12-Nov-98
		GB_BA2:U32715	13136	U32715	Haemophilus influenzae Rd section 30 of 163 of the complete genome.	Haemophilus influenzae Rd	39,860	29-MAY- 7 1998
rxa01878	1002	GB_HTG1:CEY64F11 177748	177748	299776	Caenorhabditis elegans chromosome IV clone Y64F11, *** SEQUENCING IN PROGRESS ***, in unordered pieces.	Caenorhabditis elegans	37,564	14-OCT- 1998
		GB_HTG1:CEY64F11 177748	177748	299776	Caenorhabditis elegans chromosome IV clone Y64F11, *** SEQUENCING IN PROGRESS *** in unordered pieces.	Caenorhabditis elegans	37,564	14-OCT- 1998
		GB_HTG1:CEY64F11 177748	177748	299776	Caenorhabditis elegans chromosome IV clone Y64F11, *** SEQUENCING IN Caenorhabditis elegans PROGRESS ***, in unordered pieces.	Caenorhabditis elegans	37,576	14-OCT- 1998
rxa01892	852	GB_BA1:MTCY274	39991	274024	Mycobacterium tuberculosis H37Rv complete genome; segment 126/162.	Mycobacterium tuberculosis	35,910	19-Jun-98
		GB_BA1:MLCB250	40603	297369	Mycobacterium leprae cosmid B250.	Mycobacterium leprae	64,260	27-Aug-99
		GB_BA1:MSGB1529C 36985 S	36985	L78824	Mycobacterium leprae cosmid B1529 DNA sequence.	Mycobacterium leprae	64,260	15-Jun-96
rxa01894	978		39991	274024	Mycobacterium tuberculosis H37Rv complete genome; segment 126/162.	Mycobacterium tuberculosis	37,229	19-Jun-98
		GB_IN1:CELF46H5 GB_HTG3:AC009204	38886 115633	U41543 AC009204	Caenorhabditis elegans cosmid F46H5. Drosophila melanogaster chromosome 2 clone BACR03E19 (D1033) RPCI-98 Drosophila melanogaster 03.E.19 map 36E-37C strain y; cn bw sp, *** SEQUENCING IN PROGRESS ***, 94 unordered pieces.	Caenorhabditis elegans Drosophila melanogaster	38,525 31,579	29-Nov-96 18-Aug-99
rxa01920	1125	GB_BA2:AF112536	1798	AF112536	Corynebacterium glutamicum ribonucleotide reductase beta-chain (nrdF) oene, complete cds.	Corynebacterium glutamicum	99,733	5-Aug-99
		GB_BA1:CANRDFGE 6054 N	6054	Y09572	Corynebacterium ammoniagenes nrdH, nrdI, nrdE, nrdF genes.	Corynebacterium ammoniagenes	70,321	18-Apr-98

					lable 4 (continued)				
		GB_BA2:AF050168	1228	AF050168	AF050168 Corynebacterium ammoniagenes ribonucleoside diphosphate reductase small Corynebacterium	Corynebacterium	72,082	23-Apr-98	
					subunit (nrdF) gene, complete cds.	ammoniagenes			
rxa01928	960	GB_BA1:CGPAN	2164	X96580	C.glutamicum panB, panC & xylB genes.	Corynebacterium	100,000	11-MAY-	
		ı				glutamicum		1999	
		GB_PL1:AP000423	154478	154478 AP000423	Arabidopsis thaliana chloroplast genomic DNA, complete sequence,	Chloroplast Arabidopsis	35,917	15-Sep-99	
					strain:Columbia.	tnallana			
		GB_PL1:AP000423	154478	AP000423	Arabidopsis thaliana chloroplast genomic DNA, complete sequence,	Chloroplast Arabidopsis	33,925	15-Sep-99	
					strain:Columbia.	thaliana			
rxa01929	936	GB_BA1:CGPAN	2164	X96580	C.glutamicum panB, panC & xylB genes.	Corynebacterium	100,000	11-MAY-	
		:				glutamicum	•	1999	
		GB_BA1:XCU33548	8429	U33548	Xanthomonas campestris hrpB pathogenicity locus proteins HrpB1, HrpB2, HrpB3. HrpB4, and ORF62	Xanthomonas campestris pv. vesicatoria	38,749	19-Sep-96	
					genes, complete cds.				
		GB_BA1:XANHRPB6	1329	M99174	Xanthomonas campestris hrpB6 gene, complete cds.	Xanthomonas campestris	39,305	14-Sep-93	
rxa01940	1059	GB_IN2:CFU43371	1060	U43371	Crithidia fasciculata inosine-uridine preferring nucleoside hydrolase (IUNH)	Crithidia fasciculata	61,417	18-Jun-96	
		1			gene, complete cds.				
		GB_BA2:AE001467	11601	AE001467	Helicobacter pylori, strain J99 section 28 of 132 of the complete genome.	Helicobacter pylori J99	38,560	20-Jan-99	
		GB_RO:AF175967	3492	AF175967	Homo sapiens Leman coiled-coil protein (LCCP) mRNA, complete cds.	Mus musculus	40,275	26-Sep-99	
xa02022	1230	GB_BA1:CGDAPE	1966	X81379	C.glutamicum dapE gene and orf2.	Corynebacterium glutamicum	100,000	8-Aug-95	118
		GB_BA1:CGDNAARO 2612	2612	X85965	C.glutamicum ORF3 and aroP gene.	Corynebacterium glutamicum	38,889	30-Nov-97	3 .
		GB_BA1:APU47055	6469	U47055	Anabaena PCC7120 nitrogen fixation proteins (nifE, nifN, nifX, nifM) genes,	Anabaena PCC7120	36,647	17-Feb-96	
		1			complete cds, and nitrogenase (nifK) and hesA genes, partial cds.				
rxa02024	829	GB_BA1:MTCI364	29540	293777	Mycobacterium tuberculosis H37Rv complete genome; segment 52/162.	Mycobacterium tuberculosis	59,415	17-Jun-98	
		GB_BA1:MSGB1912C 38503	38503	L01536	M. leprae genomic dna sequence, cosmid b1912.	Mycobacterium leprae	57,093	14-Jun-96	
		GB_BA1:MLU15180	38675	U15180	Mycobacterium leprae cosmid B1756.	Mycobacterium leprae	57,210	09-MAR- 1995	
rxa02027									
rxa02031									
xa02072	1464	GB_BA1:CGGDHA	2037	X72855	C.glutamicum GDHA gene.	Corynebacterium	99,317	24-MAY-	
		GB_BA1:CGGDH	2037	X59404	Corynebacterium glutamicum, gdh gen for glutamate dehydrogenase.	Corynebacterium	94,387	30-Jul-99	
		GB_BA1:PAE18494	1628	Y18494	Pseudomonas aeruginosa gdhA gene, strain PAC1.	glutamicum Pseudomonas aeruginosa	62,247	6-Feb-99	

SYSUUCIO HAD DECISO

	17-Jun-98	24-Jun-97	29-MAY- 1995	3	4-Jun-97	27-OCT-	1997	6-Nov-97	13-Jan-99	31-DEC- 1998	18-MAY-	1995	24-MAR- 1999	01-MAR-		24-Jun-99	24-Sep-99		14-MAY-	1997 24-Sep-99	-	02-MAR- 1998	11-Jun-99	02-MAR-	1998	23-NOV-99	9-Jun-99	26-Jun-98
	17.	24	29 29 20 20 20 20 20 20 20 20 20 20 20 20 20	2	4	27.	19	6	5	31	5	9	4 5 6	2.5	2 (24	24		4 0	24		02 19	=	05	2 6	3	<u>ရ</u>	
	38,442	56,486	52,127		34,163	35,586		31,917	35,818	34,274	41,162		50,791	37,563		39,504	37,909		37,843	37,909		36,533	33,451	36,756		34,365	34,325	33,874
	Mycobacterium tuberculosis	Mycobacterium leprae	Escherichia coli		Homo sapiens	Homo sapiens		Homo sapiens	Streptomyces coelicolor	Homo sapiens	Homo sapiens		Streptomyces coelicolor	Mycobacterium leprae		Mycobacterium tuberculosis	8 Drosophila melanogaster		Arabidopsis thaliana	8 Drosophila melanogaster		Streptomyces coelicolor	Gossypium hirsutum	Streptomyces coelicolor		nomo sapiens	Arabidopsis thaliana	Arabidopsis thaliana
Table 4 (continued)	Mycobacterium tuberculosis H37Rv complete genome; segment 49/162.	Mycobacterium leprae cosmid B33.	E. coli genomic sequence of the region from 84.5 to 86.5 minutes.		zw8zh01.r1 Soares_testis_NH1 Homo sapiens cDNA cione IMAGE:/82/3/5/ mRNA sequence.	ns18b10.r1 NCI_CGAP_GCB1 Homo sapiens cDNA clone IMAGE:1183963	5', mRNA sequence.	Human PAC clone DJ0596009 from 7p15, complete sequence.	Streptomyces coelicolor cosmid 1A6.	Homo sapiens chromosome 17, clone hRPK.112_J_9, complete sequence.	yg71g10.r1 Soares infant brain 1NIB Homo sapiens cDNA clone	IMAGE:38768 5' similar to gb:V00567 BETA-2-MICROGLOBULIN PRECURSOR (HUMAN);, mRNA sequence.	Streptomyces coelicolor cosmid 6G10.	Mycobacterium leprae cosmid B1170.		Mycobacterium tuberculosis H3/RV complete genome; segment /U/162.	Drosophila melanogaster chromosome 3 clone BACR09D08 (D1101) RPCI-98 Drosophila melanogaster 09.D.8 map 96F-96F strain y; cn bw sp, *** SEQUENCING IN PROGRESS	***, 121 unordered pieces.	T12A12-Sp6 TAMU Arabidopsis thaliana genomic clone T12A12, genomic	survey sequence. Drosophila melanogaster chromosome 3 clone BACR09D08 (D1101) RPCI-98 Drosophila melanogaster	09.D.8 map 96F-96F strain y; on bw sp, *** SEQUENCING IN PROGRESS ***, 121 unordered pieces.	S. coelicolor secY locus DNA.	BNLGHi10185 Six-day Cotton fiber Gossypium hirsutum cDNA 5' similar to (AC004005) putative ribosomal protein L7 [Arabidopsis thailana], mRNA sequence.	S.coelicolor secY locus DNA.		ruman DNA sequence from clone RP3-525Lb on chromosome bpzz.3-z3 Contains CA repeat. STSs. GSSs and a CpG Island, complete sequence.	Arabidopsis thaliana DNA chromosome 4, BAC clone F21P8 (ESSA project).	Arabidopsis thaliana BAC T7123, complete sequence.
	295585	294723	M87049		AA448146	AA641937		AC003074	AL023496	AC005553	R49746		AL049497	U00010	1	792286	AC010579		B09839	AC010579		X83011	AI731596	X83011	100000	158111 ALU23807	AL022347	U89959
	22550	42224	91414	•	452	444		143029	37620	179651	397		36734	41171		3243/	157658		1191	157658		6154	268	6154	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1581	85785	106973
	GB_BA1:MTCY22G8 22550		GB_BA1:ECOUW85		GB_ES114:AA448146 452	GB_EST17:AA641937 444		GB_PR3:AC003074			GB_EST3:R49746		GB_BA1:SC6G10	GB_BA1:U00010		GB_BA1:MICY336	GB_HTG3:AC010579 157658		GB_GSS3:B09839	GB HTG3:AC010579 157658 AC010579	ı	GB_BA1:SCSECYDN 6154 A	GB_EST32:AI731596 568	GB_BA1:SCSECYDN 6154	A	GB_PK3:HS525Lb	GB_PL2:ATF21P8	GB_PL2:U89959
	2358				92/				1179				1407				096					1044			,	119/		
	rxa02085				rxa02093				rxa02106			,	rxa02111				xa02112					rxa02134			0000	rxa02135		

3-Nov-98	7-Nov-98	26-Jun-98 17-Jun-98	15-Jun-96	15-Jun-96	1-Jul-98	2-Jul-97	25-Jul-96	1-Jul-98	2-Jul-97	25-Jul-96	25-Jul-96	1-Jul-98	15-Jun-96	96-Inc-1
34,123	31,260	34,281 62,904	36,648	36,648	99,104	99,224	100,000	98,551	98,477	100,000	99,767	99,378	55,504	100,000
Arabidopsis thaliana	Arabidopsis thaliana	Arabidopsis thaliana Mycobacterium tuberculosis	Mycobacterium leprae	Mycobacterium leprae	Corynebacterium glutamicum	Corynebacterium glutamicum	Corynebacterium glutamicum	Corynebacterium glutamicum	Corynebacterium glutamicum	Corynebacterium glutamicum	Corynebacterium glutamicum	Corynebacterium glutamicum	Mycobacterium leprae	Corynebacterium glutamicum
Table 4 (continued) Arabidopsis thaliana chromosome II BAC T3A4 genomic sequence, complete Arabidopsis thaliana	sequence. Arabidopsis thaliana chromosome 1 BAC F15K9 sequence, complete sequence.	Arabidopsis thaliana BAC T7123, complete sequence. Mycobacterium tuberculosis H37Rv complete genome; segment 98/162.	Mycobacterium leprae cosmid B1554 DNA sequence.	Mycobacterium leprae cosmid B1551 DNA sequence.	Corynebacterium glutamicum N-acetylglutamylphosphate reductase (argC), ornithine acetyltransferase (argJ), N-acetylglutamate kinase (argB), acetylomithine transaminase (argD), ornithine carbamoyltransferase (argF), arginine repressor (argR), argininosuccinate synthase (argG), and penes complete cris	Corynebacterium glutamicum N-acetylglutamate-5-semialdehyde dehydrogenase (argC) gene, complete cds.	C.glutamicum argC, argJ, argB, argD, and argF genes.	Corynebacterium glutamicum N-acetylglutamylphosphate reductase (argC), ornithine acetyltransferase (argJ), N-acetylglutamate kinase (argB), acetylornithine transaminase (argD), ornithine carbamoyltransferase (argF), arginino succinate synthase (argG), and argininosuccinate lyase (argH) genes, complete cds.	Corynebacterium glutamicum N-acetylglutamate-5-semialdehyde dehydrogenase (araC) gene, complete cds.	C.glutamicum argC, argJ, argB, argD, and argF genes.	C.glutamicum argC, argJ, argB, argD, and argF genes.	Corynebacterium glutamicum N-acetylglutamylphosphate reductase (argC), ornithine acetyltransferase (argJ), N-acetylglutamate kinase (argB), acetylornithine transaminase (argD), ornithine carbamoyltransferase (argF), argininosuccinate synthase (argG), and argininosuccinate lyase (argH) genes, complete cds.	Mycobacterium leprae cosmid B1133 DNA sequence.	Corynebacterium glutamicum N-acetylglutamylphosphate reductase (argC), ornithine acetyltransferase (argJ), N-acetylglutamate kinase (argB), acetylornithine transaminase (argD), ornithine carbamoyltransferase (argF), arginine repressor (argR), argininosuccinate synthase (argG), and argininosuccinate lyase (argH) genes, complete cds.
AC005819	AC005278	U89959 Z70283	L78814	L78813	AF049897	AF005242	X86157	AF049897	AF005242	X86157	X86157	AF049897	L78811	AF049897
9 57752	71097	106973 34150	C 36548	C 36548	9196	1044	3 4355	9196	1044	3 4355	3 4355	9196	C 42106	9196
GB_PL2:ATAC005819 57752	GB_PL2:F15K9	GB_PL2:U89959 GB_BA1:MTCY190	GB_BA1:MSGB1554C 36548	GB_BA1:MSGB1551C 36548	GB_BA2:AF049897	GB_BA1:AF005242	GB_BA1:CGARGCJB 4355 D	GB_BA2:AF049897	GB_BA1:AF005242	GB_BA1:CGARGCJB 4355 D	GB_BA1:CGARGCJB 4355	GB_BA2:AF049897	GB_BA1:MSGB1133C 42106	GB_BA2:AF049897
645		1962			903			414			1287			1074
rxa02136		rxa02139			ка02153			rxa02154			xa02155			rxa02156

	25-Jul-96	2-Jun-99	1-Jul-98	25-Jul-96	17-Jun-98	1-Jul-98	5-Jan-99	25-Jul-96	1-Jul-98	5-Jan-99	5-Jan-99	1-Jul-98	19-Nov-97	22-Apr-96 1-Jul-98
	100,000	50,238	99,612	99,612	57,278	100,000	868'66	100,000	99,843	88,679	100,000	99,774	99,834	65,913 88,524
	Corynebacterium glutamicum	Thermotoga maritima	Corynebacterium glutamicum	Corynebacterium glutamicum	Mycobacterium tuberculosis	Corynebacterium glutamicum	Corynebacterium glutamicum	Corynebacterium glutamicum	Corynebacterium glutamicum	Corynebacterium glutamicum	Corynebacterium glutamicum	Corynebacterium glutamicum	Corynebacterium glutamicum	Streptomyces clavuligerus Corynebacterium glutamicum
Table 4 (continued)	C.glutamicum argC, argJ, argB, argD, and argF genes.	Thermotoga maritima section 128 of 136 of the complete genome.	Corynebacterium glutamicum N-acetylglutamylphosphate reductase (argC), ornithine acetyltransferase (argJ), N-acetylglutamate kinase (argB), acetylornithine transaminase (argD), ornithine carbamoyltransferase (argF), arginine repressor (argR), argininosuccinate synthase (argG), and argininosuccinate tyase (argH) genes, complete cds.	C.glutamicum argC, argJ, argB, argD, and argF genes.	Mycobacterium tuberculosis H37Rv complete genome; segment 73/162.	Corynebacterium glutamicum N-acetylglutamylphosphate reductase (argC), ornithine acetyltransferase (argJ), N-acetylglutamate kinase (argB), acetylornithine transaminase (argD), ornithine carbamoyltransferase (argF), arginine repressor (argR), argininosuccinate synthase (argG), and argininosuccinate lyase (argH) genes, complete cds.	Corynebacterium glutamicum ornithine carbamolytransferase (argF) gene, complete cds.	C.glutamicum argC, argJ, argB, argD, and argF genes.	Corynebacterium glutamicum N-acetylglutamylphosphate reductase (argC), ornithine acetyltransferase (argJ), N-acetylglutamate kinase (argB), acetylornithine transaminase (argD), ornithine carbamoyltransferase (argF), arginino repressor (argR), argininosuccinate synthase (argG), and argininosuccinate lyase (argH) genes, complete cds.	Corynebacterium glutamicum ornithine carbamolytransferase (argF) gene, complete cds.	Corynebacterium glutamicum arginine repressor (argR) gene, complete cds.	Corynebacterium glutamicum N-acetylglutamylphosphate reductase (argC), ornithine acetyltransferase (argJ), N-acetylglutamate kinase (argB), acetylornithine transaminase (argD), ornithine carbamoyltransferase (argF), arginine repressor (argR), argininosuccinate synthase (argG), and argininosuccinate lyase (argH) genes, complete cds.	Corynebacterium glutamicum argininosuccinate synthetase (argG) gene, complete cds.	S.clavuligerus argG gene and argH gene (partial). Corynebacterium glutamicum N-acetylglutamylphosphate reductase (argC), ornithine acetyltransferase (argJ), N-acetylglutamate kinase (argB), acetylornithine transaminase (argD), ornithine carbamoyltransferase (argF), arginine repressor (argR), argininosuccinate synthase (argG), and argininosuccinate lyase (argH) genes, complete cds.
	X86157	AE001816	AF049897	X86157	Z85982	AF049897	AF031518	X86157	AF049897	AF031518	AF041436	AF049897	AF030520	Z49111 AF049897
	4355	10001	9196	4355	38000	9196	2045	4355	9196	2045	516	9196	1206	1909 9196
	GB_BA1:CGARGCJB 4355 D	GB_BA2:AE001816	GB_BA2:AF049897	GB_BA1:CGARGCJB 4355 D	GB_BA1:MTCY06H11 38000	GB_BA2:AF049897	GB_BA2:AF031518	GB_BA1:CGARGCJB 4355 D	GB_BA2:AF049897	GB_BA2:AF031518	GB_BA2:AF041436	GB_BA2:AF049897	GB_BA2:AF030520	GB_BA1:SCARGGH GB_BA2:AF049897
			1296			1080			636			1326		1554
			rxa02157			rxa02158			rxa02159			rxa02160		ма02162

•	WO	01/0	0843										1	22											P	CT/	IB00	/0(923		
	1-Jul-98	17-Jun-98	17-Jun-98	17-Feb-95		19-Jul-97	16-Sep-98	15-Jun-96	16-Sep-98	6-Feb-99	70 00	/6-dac-67	17-Apr-96		90 407	66-091-0	29-Sep-97	9	66-0aL-0	5-Aug-98		28-Feb-95	17-Jun-98	00 Aug 00	66-bnV-72	1994	01-MAR- 1994	27-Aug-99	17-Jun-98	01-MAR-	1994 22-Jun-99
	87,561	64,732	36,998	39.910		38,474	35,941	40,286	33,689	99,353	00	700,88	37,651	98,214	909 60	93,000	100,000	000	000,000	39,075		35,542	33,938		00,00	36,770	38,674	65,465	37,577	59,823	39,442
	Corynebacterium	glutamicum Mycobacterium	tuberculosis Mycobacterium	tuberculosis Corynebacterium	glutamicum	basidiomycete CECT 20197	Homo sapiens	Mycobacterium leprae	Homo sapiens	Corynebacterium	glutamicum	Corynepacterium	giutamicum Escherichia coli	Corynebacterium	glutamicum	Colynebacterium	glutamicum Corynebacterium	glutamicum	Corynebacterium	Eubacterium	acidaminophilum	Drosophila melanogaster	Mycobacterium	tuberculosis	Mycobaciellulii leplae	Mycobacterium leprae	Mycobacterium leprae	Mycobacterium leprae	Mycobacterium tuberculosis	Mycobacterium leprae	Aeropyrum pernix
Table 4 (continued)	Corynebacterium glutamicum argininosuccinate lyase (argH) gene, complete	cds. Mycobacterium tuberculosis H37Rv complete genome; segment 73/162.	Mycobacterium tuberculosis H37Rv complete genome; segment 41/162.	Colutamicum all gene for citrate synthase and ORF.		Basidiomycete CECT 20197 phenoloxidase (pox1) gene, complete cds.	Human Chromosome 15q26.1 PAC clone pDJ417d7, complete sequence.	Mycobacterium leprae cosmid B1970 DNA sequence.	Hyman Chromosome 15q26.1 PAC clone pDJ417d7, complete sequence.	Brevibacterium flavum aspA gene for aspartase, complete cds.		UNA encoding brevibacterium flavum aspartase.	Escherichia coli K-12 chromosomal region from 92.8 to 00.1 minutes.	Corynebacterium glutamicum ATP phosphoribosyltransferase (hisG) gene,	complete cds.	Brevibacienum navum aspA gene ior aspantase, complete cus.	DNA encoding part of aspartase from coryneform bacteria.	CLV (Control of the	Cotyneoacterium glutamicum prosphorioosyr-A i P-pyrophosprionydroiase (hisE) gana complete cds	Eubacterium acidaminophilum grdR, grdl, grdH genes and partial ldc, grdT	genes.	fruit fly STS Dm1930 clone DS06959 T7.	Mycobacterium tuberculosis H37Rv complete genome; segment 95/162.	COSCO Filmond County and I am I a	Mycobacterium replae costillo p2555.	Mycobacterium leprae cosmid BZ126.	Mycobacterium leprae cosmid B2126.	Mycobacterium leprae cosmid B2533.	Mycobacterium tuberculosis H37Rv complete genome; segment 95/162.	Mycobacterium leprae cosmid B2126.	185300 AP000063 Aeropyrum pernix genomic DNA, section 6/7.
	AF048764	Z85982	273101	X66112		U65399	AC002468	L78815	AC002468	025316		E0430/	U14003		200	U25316	E08649		AFU86/04	Y17145		G01195	Z97559	A1005240	ALUSSS 10	000017	U00017	AL035310	297559	U00017	AP000063
	1437	38000	37630	3013		2700	115888	39399	115888	1987	Ş	1581	338534	840	1004	1981	188	Ş	707	6019		332	27322	27.007	40243	42157	42157	40245	27322	42157	185300
	GB_BA2:AF048764	GB_BA1:MTCY06H11 38000	GB_BA1:MTCY31	GB BA1:CGGLTG	•	GB_PL2:PGU65399	GB_PR3.AC002468	GB_BA1:MSGB1970C 39399	S GB PR3:AC002468	GB_BA1:BRLASPA		GB_PA1:E04307	GB BA1:ECOUW93	GB_BA2:AF050166		GB_BAT:BKLASPA	GB_PAT:E08649		GB_BAZ:AF086704	GB_BA1:EAY17145		GB_STS:G01195	GB_BA1:MTCY261		GB_BA1:MLCB2333	GB_BA1:U00017	GB_BA1:U00017	GB_BA1:MLCB2533	GB_BA1:MTCY261	GB_BA1:U00017	GB_BA1:AP000063
			1251				861			1701				996				;	393				551				2599			1025	
			xa02176				rxa02189			rxa02193				rxa02194					rxa02195				rxa02197				xa02198			xa02208 1025	

PCT/IB00/00923

WO 0	1/008	343						1:	23						PCT/	IB0 0,	/0092	3
29-DEC- 1998	03-DEC- 1996	17-Jun-98	01-MAR- 1994	15-Jun-96	18-Jun-98	22-DEC- 1993	22-MAR- 1997	1-Sep-99	1-Sep-99	23-Jun-98	5-Nov-98 19-OCT- 1998	23-Jun-98	21-Sep-99	21-Sep-99	07-OCT- 1997 (Rel. 52. Created)	05-MAR- 1997	31-MAR- 1999	03-OCT- 1997 (Ref. 52, Creäted)
37,191	53,541	40,407	40,541	66,027	71,723	67,101	60,870	37,994	37,994	55,844	41,185 38,616	56,282	36,772	36,772	99,515	63,568	000'59	52,909
Homo sapiens	Mycobacterium tuberculosis	Mycobacterium tuberculosis	Mycobacterium leprae	Mycobacterium leprae	Mycobacterium tuberculosis) Mycobacterium bovis	Mycobacterium smegmatis 60,870	Homo sapiens	Homo sapiens	Mycobacterium tuberculosis	Rhodococcus equi Mus musculus	Mycobacterium tuberculosis		Homo sapiens	Corynebacterium glutamicum	Streptomyces pristinges	nd Streptomyces spectabilis	Corynebacterium ammoniagenes
Table 4 (continued) 127593 AC006236 Homo sapiens chromosome 17, clone hCIT.162_E_12, complete sequence.	Mycobacterium tuberculosis sequence from clone y154.	Mycobacterium tuberculosis H37Rv complete genome; segment 121/162.	Mycobacterium leprae cosmid B2235.	Mycobacterium leprae cosmid B937 DNA sequence.	Mycobacterium tuberculosis H37Rv complete genome; segment 61/162.	Mycobacterium bovis BCG orotidine-5'-monophosphate decarboxylase (uraA) Mycobacterium bovis	Sons: Mycobacterium smegmatis carbamoyl phosphate synthetase (pyrAB) gene, partial cds and orotidine 5'-monophosphate decarboxylase (pyrF) gene, pomplete ode	Complete was. Homo sapiens chromosome 7, *** SEQUENCING IN PROGRESS ***, 57	Homo sapiens chromosome 7, *** SEQUENCING IN PROGRESS ***, 57 unordered pieces.	Mycobacterium tuberculosis H37Rv complete genome; segment 62/162.	Rhodococcus equi strain 103 plasmid RE-VP1 fragment f. AU017763 Mouse two-cell stage embryo cDNA Mus musculus cDNA clone	Mycobacterium tuberculosis H37Rv complete genome; segment 62/162.	Homo sapiens clone NH0549D18, *** SEQUENCING IN PROGRESS ***, 30 unordered pieces.	Homo sapiens clone NH0549D18, *** SEQUENCING IN PROGRESS ***, 30 unordered pieces.	gDNA encoding S-adenosylmethionine synthetase.	Sequence 1 from Patent WO9408014.	Streptomyces spectabilis flavoprotein homolog Dfp (dfp) gene, partial cds; and Streptomyces spectabilis Stadenosylmethionine synthetase (metK) gene, complete cds.	-
AC006236	AD000002	298209	U00019	L78820	Z81011	U01072	U91572	AC009364	AC009364	280108	AF077324 AU017763	Z80108	AC010745	AC010745	E09855	A37831	AF117274	AB003693
127593	40221	13935	36033	38914	20431	4393	096	192791	192791	39150	5228 586	39150	193862	193862	1239	5392	2303	5589
GB_PR4:AC006236	GB_BA1:MSGY154	GB_BA1:MTCY154	GB_BA1:U00019	GB_BA1:MSGB937C	GB_BA1:MTCY2B12	GB_BA2:U01072	GB_BA1:MSU91572	GB_HTG3:AC009364 192791 AC009364	GB_HTG3:AC009364 192791 AC009364	GB_BA1:MTCY21B4	GB_BA2:AF077324 5220 GB_EST22:AU017763 586	GB_BA1:MTCY21B4 39150	GB_HTG3:AC010745 193862	GB_HTG3:AC010745 193862	EM_PAT:E09855	GB_PAT:A37831	GB_BA2:AF117274	EM_BA1:AB003693
	948			3462			727			693		1389			1344			1107
	rxa02229			rxa02234			rxa02235			rxa02237		rxa02239			rxa02240			гха02246 1107

WO 01/00843	wo	01/00843
--------------------	----	----------

PCT/IB00/00923

1	2	1
1	_	4

																			1	24	•																
	29-Sep-97	i L	6-Feb-07	03-OCT-	1997 (Rel.	52, Created)	6-Feb-97	6-Feb-97	03-OCT-	1997 (Rel.	52, Created)	16-dan-67	29-Sep-97		6-Feb-97	6-Feb-97	29-Sep-97		6-Feb-97	03-OCT	1997 (Rel.	52, Created)	7-Jan-99		29-MAY-	1996	7-Jan-99		7-Jan-99		08-OCT-	1997 (Ref. 52 Created)	7-Aug-98	20-Feb-99	17-MAR-	::: 666 L	:
Table 4 (continued)	52,909	000	57 937	57,937			57,937	61,843	61,843		61 843		64,346		64,346	64.346	56,318	•	56,318	56,318			100,000		100,000	38 651	100,001		37,526		96,928		96,781	36,264	36,197		
	n Corynebacterium	ammoniagenes	Unknown.	Corynebacterium	ammoniagenes		Unknown.	Unknown.	Corynebacterium	ammoniagenes	Corvnehacterium	ammoniadenee		ammoniagenes	Unknown.		_		Unknown.	Corynebacterium	ammoniagenes		Corynebacterium	glutamicum	Corynebacterium	giotamicum human hernesvirus 5	Corynebacterium	glutamicum	Corynebacterium		Bacillus sp.		Bacillus sp.	Homo sapiens	Homo sapiens		
	coding at least o	Symmese. Sequence 1 from patent US 5589355.	Sequence 2 from patent US 5589355.	Corynebacterium ammoniagenes DNA for rib operon, complete cds.			Sequence I from patent US 5589355.	Sequence 1 from patent US 5589355.	Corynebacterium ammoniagenes DNA for rib operon, complete cds.		gDNA encoding at least guanosine triphosphate cyclohydrolase and riboflavin Corynehacterium	synthase.	gDNA encoding at least guanosine triphosphate cyclohydrolase and riboflavin	synthase.	Sequence 1 from patent US 5589355.	Sequence 2 from patent US 5589355.	gDNA encoding at least guanosine triphosphate cyclohydrolase and riboflavin	synthase.	Sequence 1 from patent US 5589355.	Corynebacterium ammoniagenes DNA for rib operon, complete cds.			Colynebacterium glutamicum 3' ppc gene, secG gene, amt gene, ocd gene	and 5 soxA gene.	C.glutarnicum amt gene.	Human cytomegalovirus strain AD169 complete genome.	Corynebacterium glutamicum 3' ppc gene, secG gene, amt gene, ocd gene	and 5' soxA gene.	Cotynebacterium glutamicum 3' ppc gene, secG gene, amt gene, ocd gene and 5' soxA gene.		Creatinine deiminase gene.		Bacillus sp. gene for creatinine deaminase, complete cds.	Homo sapiens, *** SEQUENCING IN PROGRESS ***, 4 unordered pieces.	HS_∠25/_B1_HUZ_MR CIT Approved Human Genomic Sperm Library D Homo sapiens genomic clone Plate=2257 Col≅3 Row≕P nenomic survey	sequence.	
	E07957	132742	132743	AB003693		1227.43	24/201	132742 AB003603	Abornoas		E07957		E07957		132742	132743	E07957	!	132742	AB003693		0044001	A30007 32	Y02512	61666	X17403	AJ007732	4 1001	AJ007732		E09373		D38505	AC006595	441010		
	5589	5589	2689	5589		5580	0000	0000	6000		5589		5589		5589	2689	5589		5589	5589		0077	20	2008	0707	229354	4460	0077	4400	į	1591		1591	146070	-		
	GB_PAT:E07957	GB_PAT:132742	GB_PAT:132743	EM_BA1:AB003693		GR DAT-132742	CATCELLISTAZ	EM BA1-ABARAS	دوموممطد. المورانياء		GB_PAT:E07957		GB_PAT:E07957		GB_PAT:132742	GB_PAT:132743	GB_PAT:E07957		GB_PA1:132742	EM_BA1:AB003693		GB BA1:CCI 002733 4450	GB_BAT.CGLUUT 32	GR RAT-CGAMTGEN 2028	E E	GB_VI:HEHCMVCG	GB_BA1:CGL007732		GB_BAT:CGL00/732	1	EM_PA1:E093/3		GB_BA1:D38505	GB_H1GZ:AC006595	0		
			756				1380						009.			;	643					1260	6031				488			000	1368			1646	2		
			rxa02247				N202248						rxa02249				rxa02250					200000	70770				rxa02263			0	rxa02272			1920000			

05-OCT- 1998 16-MAR- 1999 02-MAY- 1999 16-OCT-	3-Sep-96 27-0CT- 1999 27-0CT-	155	03-DEC- 1996 17-Jun-98 03-DEC-	06-0CT- 1999 06-0CT- 1999 06-0CT-	03-DEC- 1996 17-Jun-98
37,017 33,988 100,000 37,278	40,288 36,454 36,454	37,828	49,418 49,360 38,150	35,821 35,821 36,181	37,792 37,792 35,084
Homo sapiens Arabidopsis thaliana Corynebacterium glutamicum Homo sapiens	murine herpesvirus 68 Drosophila melanogaster Drosophila melanogaster	Rhodospirillum rubrum	Mycobacterium tuberculosis Mycobacterium tuberculosis Mycobacterium Mycobacterium	Homo sapiens Homo sapiens Homo sapiens	Mycobacterium tuberculosis Mycobacterium tuberculosis Mus musculus
qa62c01.s1 Soares_fetal_heart_NbHH19W Homo sapiens cDNA clone Homo sapiens IMAGE:1691328 3', mRNA sequence. Arabidopsis thaliana chromosome II BAC F7D8 genomic sequence, complete Arabidopsis thaliana sequence. Corynebacterium glutamicum L-aspartate-alpha-decarboxylase precursor (panD) gene, complete cds. HS_2171_A2_E01_MR CIT Approved Human Genomic Sperm Library D Homo sapiens Homo sapiens genomic clone Plate=2171 Col=2 Row=1, genomic survey	Sequence. Murine herpesvirus type 68 thymidine kinase and glycoprotein H genes. Murine herpesvirus type 68 thymidine kinase and glycoprotein H genes. Drosophila melanogaster chromosome 3 clone BACR48G05 (D475) RPCI-98 PROGRESS ***, 4 unordered piecas. Drosophila melanogaster chromosome 3 clone BACR48G05 (D475) RPCI-98 Drosophila melanogaster chromosome 3 clone BACR48G05 (D475) RPCI-98 PROGRESS *** 4 unordered pieces. PROGRESS **** 4 unordered pieces.	Rhodospirillum rubrum CO-induced hydrogenase operon (cooM, cooK, cooL, cooX, cooL, cooH) genes, iron sulfur protein (cooF) gene, carbon monoxide dehydrogenase (cooS) gene, carbon monoxide dehydrogenase accessory proteins (cooC, cooT, cooJ) genes, putative transcriptional activator (cooA) gene, nicotinate-nucleotide pyrophosphorylase (nadC) gene, complete cds, L-aspartate oxidase (nadB) gene, and alkyl hydroperoxide reductase (ahpC) gene, partial cds.	AD000004 Mycobacterium tuberculosis sequence from clone y224. Z95558 Mycobacterium tuberculosis H37Rv complete genome; segment 28/162. AD000004 Mycobacterium tuberculosis sequence from clone y224.	Homo sapiens chromosome 5 clone CIT-HSPC_303E13, *** SEQUENCING IN PROGRESS ***, 3 ordered pieces. Homo sapiens chromosome 5 clone CIT-HSPC_303E13, *** SEQUENCING IN PROGRESS ***, 3 ordered pieces. Homo sapiens chromosome 5 clone CIT978SKB_81K21, *** SEQUENCING IN PROGRESS ***, 3 ordered pieces.	Mycobacterium tuberculosis sequence from clone y224. Mycobacterium tuberculosis H37Rv complete genome; segment 28/162. ub83h02.r1 Soares 2NbMT Mus musculus cDNA clone IMAGE:1395123 5',mRNA sequence.
AI128623 AC007019 AF116184 AQ164310	X93468 AC006091 AC006091	U65510	AD000004 295558 AD000004	AC011348 AC011348 AC011412	AD000004 295558 AI117213
363) 102335 540 507	4557 176878 176878	16259	40051 40838 40051	111083 111083 89234	40051 40838 476
GB_EST23:AI128623 363 AI128623 GB_PL2:ATAC007019 102335 AC007019 GB_BA2:AF116184 540 AF116184 GB_GSS9:AQ164310 507 AQ164310	GB_VI:MH68TKH 4557 X93468 GB_HTG4:AC006091 176878 AC006091 GB_HTG4:AC006091 176878 AC006091	GB_BA2:RRU65510	GB_BA1:MSGY224 GB_BA1:MTY25D10 GB_BA1:MSGY224	GB_HTG3:AC011348 111083 AC011348 GB_HTG3:AC011348 111083 AC011348 GB_HTG3:AC011412 89234 AC011412	GB_BA1:MSGY224 40051 GB_BA1:MTY25D10 40838 GB_ESTZ3:Al117213 476
531	. 813		1752	402	1080
жа02299	ка02311		ка02315	ка02318.	ка02319

14-Jan-97		10-Feb-99	10-Feb-99	14-Jan-97	15-Jul-97	1-Nov-95	29-Sep-97 02-DEC-	1994 21-MAY-	1993 2-Aug-96	126 66-dəs-8	8-Sep-99	17-Jun-98	16-OCT-	16-OCT- 1999	23-Jan-97	17-Jun-98	2-Aug-96	9-Sep-94	10-Jun-98	26-Sep-95	
61 731		39,624	39,847	64,286	36,617	36,617	56,123 56,220	56,220	99,332	36,115	36,115	38,088	35,817	35,817	98,802	38,054	98,529	100,000	v		
Corvnebacterium	ammoniagenes	Mycobacterium tuberculosis	Mycobacterium tuberculosis	Corynebacterium	ammoniagenes Saccharomyces cerevisiae 36,617	Saccharomyces cerevisiae	unidentified Unknown.	Unknown.	Corynebacterium glutamicum	Homo sapiens	Homo sapiens	Mycobacterium	Drosophila melanogaster	Drosophila melanogaster	Corynebacterium	glutamicum Mycobacterium tuberculosis	Corynebacterium glutamicum	Corynebacterium glutamicum	Unknown.	Unknown. Homo saniens	
	B.ammoniagenes purK and purE genes.	Mycobacterium tuberculosis H37Rv complete genome; segment 141/162.	Mycobacterium tuberculosis H37Rv complete genome; segment 141/162.	B.ammoniagenes purK and purE genes.	S.cerevisiae 130kb DNA fragment from chromosome XV.	S.cerevisiae DNA of 51 Kb from chromosome XV right arm.	DNA coding of 2,5-diketogluconic acid reductase. Sequence 4 from Patent EP 0305608.	Sequence 1 from Patent US 4758514.	Corynebacterium glutamicum Obg protein homolog gene, partial cds, gamma glutamyl kinase (proB) gene, complete cds, and (unkdh) gene, complete cds.	Homo sapiens clone NH0012C17, *** SEQUENCING IN PROGRESS ***, 1		unordered pieces. Mycobacterium tuberculosis H37Rv complete genome; segment 106/162.	Drosophila melanogaster chromosome 3L/5C1 clone RPCl98-3B20, *** SEQUENCING IN PROGRESS ***, 78 unordered pieces.		C.glutamicum proA gene.	Mycobacterium tuberculosis H37Rv complete genome; segment 107/162.	Corynebacterium glutamicum Obg protein homolog gene, partial cds, gamma glutamyl kinase (proB) gene, complete cds, and (unkdh) gene, complete cds.	C.glutamicum aceA gene and thiX genes (partial).	Sequence 3 from patent US 5700661.	Sequence 3 from patent US 5439822. HS FADA B2 FO7 T7A RDCL11 Human Male RAC Library Homo canions	ge 's
X91189	3	292771	292771	X91189	X94335	X90518	E00311 106030	100836	U31230	AC009946	AC009946	281368	AC010658	AC010658	X82929	Z81451	U31230	X75504	186191	113693 AOGOGR42	760000
2582		42729	42729	2582	129528	50984	1853 1853	1853	3005	169072	169072	41230	120754	120754	1783	26914	3005	2427	2135	2135 574	
GB_BA1:BAPURKE		GB_BA1:MTCY71	GB_BA1:MTCY71	GB_BA1:BAPURKE	GB_PL1:SC130KBXV 129528 X94335	GB_PL1:SCXVORFS	GB_PAT:E00311 GB_PAT:106030	GB_PAT:100836	GB_BA2:CGU31230	GB_HTG3:AC009946 169072 AC009946	GB_HTG3:AC009946 169072	GB_BA1:MTCY253	GB_HTG4:AC010658 120754 AC010658	GB_HTG4:AC010658 120754	GB_BA1:CGPROAGE 1783	N GB_BA1:MTCY428	GB_BA2:CGU31230	GB_BA1:CGACEA	GB_PAT:186191	GB_PAT:113693	2 2
4000	1320			618			1038		1350			777			1419			693		1008	960
	rxa02345			rxa02350			rxa02373		rxa02375			.xa02380			rxa02382			rxa02400		2432	76470PX

					Table 4 (continued)			:
		GB_EST1:T05804	406	105804	EST03693 Fetal brain, Stratagene (cat#936205) Homo saplens cUNA clone HFBDG63 similar to EST containing Alu repeat, mRNA sequence.	nomo sapiens	37.97	30-Jun-93
		GB_PL1:AB006699	77363	AB006699	genomic DNA, chromosome 5, P1 clone: MDJ22,	Arabidopsis thaliana	35,526	20-Nov-99
						-		
rxa02458	1413	GB_BA2:AF114233	1852	AF114233	Corynebacterium glutamicum 5-enolpyruvylshikimate 3-phosphate synthase (faroA) gene complete cds.	Corynebacterium olutamicum	100,000	7-Feb-99
•		GB_EST37:AW01306	578	AW013061	ovary Pleuronectes americanus cDNA clone ODT- SE-BISPHOSPHATE ALDOLASE B (LIVER),	Pleuronectes americanus	39,175	10-Sep-99
		GB_GSS15:AQ65002 728	728	AQ650027	Sheared DNA-5L2.TF Sheared DNA Trypanosoma brucei genomic clone Sheared DNA-5L2, genomic survey sequence.	Trypanosoma brucei	39,281	22-Jun-99
rxa02469	1554	GB_BA1:MTCY359	36021	283859	genome; segment 84/162.	Mycobacterium	39,634	17-Jun-98
				00000014		Micobactorium Ionno	E0 242	97 Aug 00
		GB_BAT:MLCB1/88	39220		Nycobacterium lepiae costillo B i 700. Stantomyces conficular A 3/2) DNA for whiD and whiK loci	Strentomynes coelinglor	29,343 48,899	17-Sep-98
rxa02497	1050		422	U31224		Corynebacterium	96,445	2-Aug-96
						glutamicum		
		GB_BA1:MTCY20G9	37218	277162	Mycobacterium tuberculosis H37Rv complete genome; segment 25/162.	Mycobacterium tuberculosis	59,429	17-Jun-98
		GB_BA1:SCE7	16911	AL049819	Streptomyces coelicolor cosmid E7.	Streptomyces coelicolor	39,510	10-MAY- 1999
rxa02499	933	GB BA2:CGU31225	1817	U31225	Corynebacterium glutamicum L-proline:NADP+ 5-oxidoreductase (proC) gene, Corynebacterium	Corynebacterium	97,749	2-Aug-96
	}				complete cds.	glutamicum		•
		GB_BA1:NG17PILA	1920	X13965		Neisseria gonorrhoeae	43,249	30-Sep-93
		4	129715	AC007984	some 3 clone BACR05C10 (D781) RPCI-98 1 bw sp, *** SEQUENCING IN PROGRESS	Drosophila melanogaster	33,406	2-Aug-99
1030000	4 4 0 0	OCOCYCTAN-LAG GO	2721B	777162	, o/ unoldered preces. Mycobacterium tuberculosis H37Ry complete genome: segment 25/162	Mycobacterium	39.357	17-, hin-98
1480430	2			70		tuberculosis		
		GB_BA1:U00018	42991	U00018	Mycobacterium leprae cosmid B2168.	Mycobacterium leprae	51,768	01-MAR-
								1994
			152261	X14112	Herpes simplex virus (HSV) type 1 complete genome.	human herpesvirus 1	39,378	17-Apr-97
rxa02503	522		35414	AC005328	Homo sapiens chromosome 19, cosmid RZ6560, complete sequence.	Homo sapiens	39,922	28-Jul-98
			43514	AC005545	Homo sapiens chromosome 19, cosmid K26634, complete sequence.	Homo sapiens	39,922	3-vep-98
		GB_PR3:AC005328	35414	AC005328	Homo sapiens chromosome 19, cosmid K26550, complete sequence.	Homo sapiens	34,911	28-JUI-92
rxa02504	681	GB_BA1:MTCY20G9	37218	277162	Mycobacterium tuberculosis H3/RV complete genome; segment 23/162.	Mycobacterium tuberculosis	54,940	17-Jun-98
		GB_PR3:AC005328	35414	AC005328	Homo sapiens chromosome 19, cosmid R26660, complete sequence.	Homo sapiens	41,265	28-Jul-98
		GB_PR3:AC005545	43514	AC005545	Homo sapiens chromosome 19, cosmid R26634, complete sequence.	Homo sapiens	41,265	3-Sep-98
rxa02516	1386	GB_BA1:MLCL536	36224	Z 99125	Mycobacterium leprae cosmid L536.	Mycobacterium leprae	37,723	04-DEC- 1998
		GB_BA1:U00013	35881	U00013	Mycobacterium leprae cosmid B1496.	Mycobacterium leprae	37,723	01-MAR- 1994

	17-Jun-98	04-DEC-	01-MAR-	1994 12-,lul-99	7-Sep-99	29-Apr-99	17-Feb-98	21-MAR- 1999	21-MAR- 1999	24-Feb-99	17-Jun-98	15-Jun-96	19-OCT- 1999	18-Jun-98	6-Feb-97 26-Sep-95	2-Jun-99	17-Aug-99	17-Aug-99	26-Aug-99	19-Nov-99	27-Aug:99
	61,335	37,018	37,018	37 071	36,853	41,860	42,353	40,754	40,754	35,063	37,773	39,024	37,906	47,358	39,138 39,138	44,914	39,732	36,703	38,801	35,714	39,146
	Mycobacterium tuberculosis	Mycobacterium leprae	Mycobacterium leprae	Streptomyces coelicolor	Amia calva	Mus musculus	Mus musculus	Homo sapiens	Homo sapiens	Arabidopsis thaliana	Mycobacterium tuberculosis	Mycobacterium leprae	Streptomyces coelicolor A3(2)	Mycobacterium tuberculosis	Unknown. Mycobacterium tuberculosis	Thermotoga maritima	Fugu rubripes	Fugu rubripes	Homo sapiens	Homo sapiens	Homo sapiens
Table 4 (continued)	Mycobacterium tuberculosis H37Rv complete genome; segment 64/162.	Mycobacterium leprae cosmid L536.	Mycobacterium leprae cosmid B1496.	Streatamyces coelicolor cosmid C22	Amia calva mixed lineage leukemia-like protein (MII) gene, partial cds.	vs52a10.y1 Stratagene mouse Tcell 937311 Mus musculus cDNA clone IMAGE-1149882 5, mRNA sequence	vs52a10.r1 Stratagene mouse Toell 937311 Mus musculus cDNA clone IMAGE:1149882 5', mRNA sequence.	Homo sapiens chromosome 8 clone PAC 172N13 map 8q24, *** SEQUENCING IN PROGRESS *** in unordered pieces.	Homo sapiens chromosome 8 clone PAC 172N13 map 8q24, *** SEQUENCING IN PROGRESS ***, in unordered pieces.	Arabidopsis thaliana DNA chromosome 4, BAC clone T12J5 (ESSAII project). Arabidopsis thaliana	Mycobacterium tuberculosis H37Rv complete genome; segment 17/162.	Mycobacterium leprae cosmid B1970 DNA sequence.	Streptomyces coelicolor cosmid 2H4.	Mycobacterium tuberculosis H37Rv complete genome; segment 144/162.	Sequence 1 from patent US 5573915. Mycobacterium tuberculosis cyclopropane mycolic acid synthase (cma1) gene, complete cds.	Thermotoga maritima section 92 of 136 of the complete genome.	Fugu rubripes neurofibromatosis type 1 (NF1), A-kinase anchor protein (AKAP84), BAW protein (BAW), and WSB1 protein (WSB1) genes, complete cds.	Fugu rubripes neurofibromatosis type 1 (NF1), A-kinase anchor protein (AKAP84), BAW protein (BAW), and WSB1 protein (WSB1) genes, complete cds.	HS_5268_A1_G09_SP6E RPCI-11 Human Male BAC Library Homo sapiens genomic clone Plate=844 Col=17 Row=M, genomic survey sequence.	Homo sapiens chromosome 9 clone RP11-111M7 map 9, WORKING DRAFT Homo sapiens SEQUENCE, 51 unordered pieces.	HS_5014_A2_C12_T7A RPCI-11 Human Male BAC Library Homo sapiens genomic clone Plate=590 Col=24 Row=E, genomic survey sequence.
	AL021184	Z99125	U00013	AI 096839	AF137219	AI645057	AA822595	AF130866	AF130866	AL035522	297991	L78815	AL031514	AL009198	128684 U27357	AE001780	AF064564	AF064564	AQ818728	AC011083	AQ826948
	32806	36224	35881	22115	831	301	429	118874	118874	84499	9150	39399	25970	69350	5100 5100	11997	49254	49254	444	198586	544
	GB_BA1:MTV007	GB_BA1:MLCL536	GB_BA1:U00013	GB BA1-SCC22	GB_OV:AF137219	GB_EST30:AI645057	GB_EST20:AA822595 429	GB_HTG2:AF130866 118874	GB_HTG2:AF130866 118874	GB_PL1:ATT12J5	GB_BA1:MTCY279	GB_BA1:MSGB1970C 39399 S	GB_BA2:SC2H4	GB_BA1:MTV004	GB_PAT:128684 GB_BA1:MTU27357	GB_BA2:AE001780	GB_OV:AF064564	GB_OV:AF064564	GB_GSS5:AQ818728 444	GB_HTG5:AC011083 198586 AC011083	GB_GSS6:AQ826948 544
		920			1170			879			1434			1026		1683			714		
		rxa02517			rxa02532			rxa02536			rxa02550			rxa02559		rxa02622			rxa02623		

					130												
2-Aug-99		10-Feb-99	5-Nov-99	5-Nov-99	20-Jan-99	14-Sep-98	04-DEC- 1996	22-Jul-99	14-Sep-98	17-Jun-98	01-MAR- 1994	17-Jun-98	3-Jun-99	3-Jun-99	17-Jun-98	28-Apr-93	27-OCT- 1998
32.757		37,838	35,331	33,807	36,929	99,852	43,836	48,588	99,914	38,339	38,996	37,640	37,906	35,280	39,765	38,937	40,828
Drosophila melanogaster		Mycobacterium tuberculosis	Homo sapiens	Homo sapiens	Burkholderia pseudomallei	Corynebacterium glutamicum	Caenorhabditis elegans	Caenorhabditis elegans	Corynebacterium glutamicum	Mycobacterium tuberculosis	Mycobacterium leprae	Mycobacterium tuberculosis	Homo sapiens	Homo sapiens	Mycobacterium tuberculosis	Gallus gallus	Homo sapiens
Table 4 (continued) Drosophila melanogaster chromosome 3 clone BACR16118 (D815) RPCI-98	16.1.18 map 95A-95A strain y; cn bw sp, *** SEQUENCING IN PROGRESS ***, 101 unordered pieces.	Mycobacterium tuberculosis H37Rv complete genome; segment 141/162.	Homo sapiens clone 14_B_7, *** SEQUENCING IN PROGRESS ***, 20 unordered pieces.	Homo sapiens clone 14_B_7, *** SEQUENCING IN PROGRESS ***, 20 unordered nieces.	Burkholderia pseudomallei putative dihydroorotase (pyrC) gene, partial cds; putative 1-acyl-sn-glycerol-3-phosphate acyltransferase (plsC), putative diadenosine tetraphosphatase (apaH), complete cds; type II O-antigen biosynthesis gene cluster, complete sequence; putative undecaprenyl phosphate N-acetylglucosaminyltransferase, and putative UDP-glucose 4-epimerase genes, complete cds; and putative galactosyl transferase gene,	partial cds. Corynebacterium glutamicum dipeptide-binding protein (dciAE) gene, partial cds; adenine phosphoribosyltransferase (apt) and GTP pyrophosphokinase (rel) names.	Caenorhabditis elegans cosmid T19B4.	AV193572 Yuji Kohara unpublished cDNA:Strain N2 hermaphrodite embryo Caenorhabditis elegans cDNA clone yk618h8 5', mRNA sequence.	Corynebacterium glutamicum dipeptide-binding protein (dciAE) gene, partial cds; adenine phosphoribosyltransferase (apt) and GTP pyrophosphokinase (rel) genes, complete cds; and unknown gene.	Mycobacterium tuberculosis H37Rv complete genome; segment 114/162.	Mycobacterium leprae cosmid B1177.	Mycobacterium tuberculosis H37Rv complete genome; segment 111/162.	Homo sapiens 12p21 BAC RPCI11-259018 (Roswell Park Cancer Institute Human BAC Library) complete sequence.	Homo sapiens 12p21 BAC RPC111-259O18 (Roswell Park Cancer Institute Human BAC Library) complete sequence.	Mycobacterium tuberculosis H37Rv complete genome; segment 111/162.	Chicken tyrosine kinase (cek2) mRNA, complete cds. Memormatic and ackaning and ackaning cone	aga48g01.x1 Soares_testis_NHT Homo sapiens cDNA clone IMAGE:1838448 Homo sapiens 3's similar to WP:C25D7.8 CE08394; mRNA sequence.
AC008223		292771	AC011678	AC011678	AF064070	AF038651	U80438	AV193572	AF038651	277724	U00011	Z83863	AC006581	172931 AC006581	Z83863	M35195 717372	A1223401
130212		42729	171967	171967	23183	4077	37121	360	4077	35946	40429	33818	172931	172931	33818	3694	169
GB_HTG2:AC008223 130212 AC008223	•	GB_BA1:MTCY71	GB_HTG5:AC011678 171967 AC011678	GB_HTG5:AC011678 171967	GB_BA2:AF064070	GB_BA2:AF038651	GB_IN1:CELT19B4	GB_EST36:AV193572 360	GB_BA2:AF038651	GB_BA1:MTCY227	GB_BA1:U00011	GB_BA1:MTCY159	GB_PR4:AC006581	GB_PR4:AC006581	GB_BA1:MTCY159	GB_OV:CHKCEK2	GB_EST24:Al223401 169
			1422			829			1158			1266			951		1194
			xa02758			ха02771			rxa02772			rxa02790			rxa02791		xa02802 1194

	Homo sapiens 40,828 27-OCT- 1998	Mycobacterium 58,418 17-Jun-98 tuberculosis	Mycobacterium 40,496 17-Jun-98 tuberculosis	Homo sapiens 39,826 8-Jan-98 Connebacterium 100,000 17-Jun-98		tuberculosis Mycobacterium leprae 39,626 09-MAR-	1995	ım glutamicum88,854	Mus musculus 41,489 27-MAY-	;	Mus musculus 38,005 30-Sep-98	Leishmania major 39,869 15-DEC- 1999	Homo sapiens 34,930 17-DEC-1999	Homo sapiens 34,634 17-DEC- 1999
Table 4 (continued)	qg48g01.x1 Soares_testis_NHT Homo sapiens cDNA clone IMAGE:1838448 Homo sapiens 3' similar to WP:C25D7.8 CE08394;, mRNA sequence.	Mycobacterium tuberculosis H37Rv complete genome; segment 138/162.	Mycobacterium tuberculosis H37Rv complete genome; segment 138/162.	Homo sapiens mRNA for hB-FABP.	Mycobacterium fuberculosis H37By complete genome: segment 52/162.	Mycobacterium lebrae cosmid B1756.		B.lactofermentum orf1 gene and sigB gene.	ua32a12.r1 Soares_mammary_gland_NbMMG Mus musculus cDNA clone IMAGE:1348414 5' similar to TR:Q61025 Q61025 HYPOTHETICAL 15.2 KD	PROTEIN. ,, mRNA sequence.	ud27c05.r1 Soares_thymus_2NbMT Mus musculus cDNA clone IMAGE:1447112 5' mRNA sequence.	Leishmania major Friedlin chromosome 4 cosmid L2743.	Human DNA sequence from clone RP1-61B2 on chromosome 6p11.2-12.3 Contains isoforms 1 and 3 of BPAG1 (bullous pemphigoid antigen 1 (230/240kD), an exon of a gene similar to murine MACF cytoskeletal protein,	STSs and GSSs, complete sequence. Human DNA sequence from clone RP1-61B2 on chromosome 6p11.2-12.3 Contains isoforms 1 and 3 of BPAG1 (bullous pemphigoid antigen 1 (230/240kD), an exon of a gene similar to murine MACF cytoskeletal protein,
	AI223401	295120	295120	AJ002962	7447897	115180	8	Z49824	AA980237		AI158316	AL031910	119666 AL096710	119666 AL096710
	169	22070	22070	778	29540	38675		2906	7 377		371	38368	119666	119666
	GB_EST24:Al223401 169	GB_BA1:MTCY7D11 22070	GB_BA1:MTCY7D11	GB_PR1:HSAJ2962	POSTONIA DE LA CONTROL DE LA C	_		GB_BA1:BLSIGBGN	GB_EST21:AA980237 377		GB_EST23:AI158316 371	GB_IN1:LMFL2743	GB_PR3:HSDJ61B2	GB_PR3:HSDJ61B2
		494		ć	900			963				1237		
		rxa02814			1X80Z043			xs03205				rxs03223		

Exemplification

Example 1: Preparation of total genomic DNA of Corynebacterium glutamicum ATCC 13032

5 A culture of Corynebacterium glutamicum (ATCC 13032) was grown overnight at 30°C with vigorous shaking in BHI medium (Difco). The cells were harvested by centrifugation, the supernatant was discarded and the cells were resuspended in 5 ml buffer-I (5% of the original volume of the culture — all indicated volumes have been calculated for 100 ml of culture volume). Composition of buffer-I: 140.34 g/l sucrose. 10 .2.46 g/l MgSO₄ x 7H₂O, 10 ml/l KH₂PO₄ solution (100 g/l, adjusted to pH 6.7 with KOH), 50 ml/l M12 concentrate (10 g/l (NH₄)₂SO₄, 1 g/l NaCl, 2 g/l MgSO₄ x 7H₂O, 0.2 g/l CaCl₂, 0.5 g/l yeast extract (Difco), 10 ml/l trace-elements-mix (200 mg/l FeSO₄ x H₂O, 10 mg/l ZnSO₄ x 7 H₂O, 3 mg/l MnCl₂ x 4 H₂O, 30 mg/l H₃BO₃ 20 mg/l CoCl₂ x 6 H₂O, 1 mg/l NiCl₂ x 6 H₂O, 3 mg/l Na₂MoO₄ x 2 H₂O, 500 mg/l complexing agent (EDTA or critic acid), 100 ml/l vitamins-mix (0.2 mg/l biotin, 0.2 mg/l folic acid, 20 15 mg/l p-amino benzoic acid, 20 mg/l riboflavin, 40 mg/l ca-panthothenate, 140 mg/l nicotinic acid, 40 mg/l pyridoxole hydrochloride, 200 mg/l myo-inositol). Lysozyme was added to the suspension to a final concentration of 2.5 mg/ml. After an approximately 4 h incubation at 37°C, the cell wall was degraded and the resulting 20 protoplasts are harvested by centrifugation. The pellet was washed once with 5 ml buffer-I and once with 5 ml TE-buffer (10 mM Tris-HCl, I mM EDTA, pH 8). The pellet was resuspended in 4 ml TE-buffer and 0.5 ml SDS solution (10%) and 0.5 ml NaCl solution (5 M) are added. After adding of proteinase K to a final concentration of 200 μg/ml, the suspension is incubated for ca.18 h at 37°C. The DNA was purified by 25 extraction with phenol, phenol-chloroform-isoamylalcohol and chloroformisoamylalcohol using standard procedures. Then, the DNA was precipitated by adding 1/50 volume of 3 M sodium acetate and 2 volumes of ethanol, followed by a 30 min incubation at -20°C and a 30 min centrifugation at 12,000 rpm in a high speed centrifuge using a SS34 rotor (Sorvall). The DNA was dissolved in 1 ml TE-buffer containing 20 30 μg/ml RNaseA and dialysed at 4°C against 1000 ml TE-buffer for at least 3 hours. During this time, the buffer was exchanged 3 times. To aliquots of 0.4 ml of the dialysed DNA solution, 0.4 ml of 2 M LiCl and 0.8 ml of ethanol are added. After a 30

min incubation at -20°C, the DNA was collected by centrifugation (13,000 rpm, Biofuge Fresco, Heraeus, Hanau, Germany). The DNA pellet was dissolved in TE-buffer. DNA prepared by this procedure could be used for all purposes, including southern blotting or construction of genomic libraries.

5

10

15

Example 2: Construction of genomic libraries in *Escherichia coli* of *Corynebacterium glutamicum* ATCC13032.

Using DNA prepared as described in Example 1, cosmid and plasmid libraries were constructed according to known and well established methods (*see e.g.*, Sambrook, J. *et al.* (1989) "Molecular Cloning: A Laboratory Manual", Cold Spring Harbor Laboratory Press, or Ausubel, F.M. *et al.* (1994) "Current Protocols in Molecular Biology", John Wiley & Sons.)

Any plasmid or cosmid could be used. Of particular use were the plasmids pBR322 (Sutcliffe, J.G. (1979) *Proc. Natl. Acad. Sci. USA*, 75:3737-3741); pACYC177 (Change & Cohen (1978) *J. Bacteriol* 134:1141-1156), plasmids of the pBS series (pBSSK+, pBSSK- and others; Stratagene, LaJolla, USA), or cosmids as SuperCos1 (Stratagene, LaJolla, USA) or Lorist6 (Gibson, T.J., Rosenthal A. and Waterson, R.H. (1987) *Gene* 53:283-286. Gene libraries specifically for use in *C. glutamicum* may be constructed using plasmid pSL109 (Lee, H.-S. and A. J. Sinskey (1994) *J. Microbiol. Biotechnol.* 4: 256-263).

20

25

Example 3: DNA Sequencing and Computational Functional Analysis

Genomic libraries as described in Example 2 were used for DNA sequencing according to standard methods, in particular by the chain termination method using ABI377 sequencing machines (see *e.g.*, Fleischman, R.D. *et al.* (1995) "Whole-genome Random Sequencing and Assembly of Haemophilus Influenzae Rd., *Science*, 269:496-512). Sequencing primers with the following nucleotide sequences were used: 5'-GGAAACAGTATGACCATG-3' or 5'-GTAAAACGACGGCCAGT-3'.

Example 4: In vivo Mutagenesis

30 In vivo mutagenesis of Corynebacterium glutamicum can be performed by passage of plasmid (or other vector) DNA through E. coli or other microorganisms (e.g. Bacillus spp. or yeasts such as Saccharomyces cerevisiae) which are impaired in their capabilities to maintain

the integrity of their genetic information. Typical mutator strains have mutations in the genes for the DNA repair system (e.g., mutHLS, mutD, mutT, etc.; for reference, see Rupp, W.D. (1996) DNA repair mechanisms, in: *Escherichia col*i and *Salmonella*, p. 2277-2294, ASM: Washington.) Such strains are well known to those of ordinary skill in the art. The use of such strains is illustrated, for example, in Greener, A. and Callahan, M. (1994) *Strategies* 7: 32-34.

Example 5: DNA Transfer Between *Escherichia coli* and *Corynebacterium glutamicum*

Several Corynebacterium and Brevibacterium species contain endogenous plasmids (as e.g., pHM1519 or pBL1) which replicate autonomously (for review see, e.g., 10 Martin, J.F. et al. (1987) Biotechnology, 5:137-146). Shuttle vectors for Escherichia coli and Corynebacterium glutamicum can be readily constructed by using standard vectors for E. coli (Sambrook, J. et al. (1989), "Molecular Cloning: A Laboratory Manual", Cold Spring Harbor Laboratory Press or Ausubel, F.M. et al. (1994) "Current Protocols in Molecular Biology", John Wiley & Sons) to which a origin or replication for and a 15 suitable marker from Corynebacterium glutamicum is added. Such origins of replication are preferably taken from endogenous plasmids isolated from Corynebacterium and Brevibacterium species. Of particular use as transformation markers for these species are genes for kanamycin resistance (such as those derived from the Tn5 or Tn903 transposons) or chloramphenicol (Winnacker, E.L. (1987) "From Genes to Clones — 20 Introduction to Gene Technology, VCH, Weinheim). There are numerous examples in the literature of the construction of a wide variety of shuttle vectors which replicate in both E. coli and C. glutamicum, and which can be used for several purposes, including gene overexpression (for reference, see e.g., Yoshihama, M. et al. (1985) J. Bacteriol. 162:591-597, 25 Martin J.F. et al. (1987) Biotechnology, 5:137-146 and Eikmanns, B.J. et al. (1991) Gene, 102:93-98).

Using standard methods, it is possible to clone a gene of interest into one of the shuttle vectors described above and to introduce such a hybrid vectors into strains of *Corynebacterium glutamicum*. Transformation of *C. glutamicum* can be achieved by protoplast transformation (Kastsumata, R. et al. (1984) *J. Bacteriol*. 159306-311), electroporation (Liebl, E. et al. (1989) *FEMS Microbiol*. Letters, 53:399-303) and in cases where special vectors are used, also by conjugation (as described e.g. in Schäfer, A et al.

30

5

WO 01/00843

5

10

15

20

25

30

(1990) J. Bacteriol. 172:1663-1666). It is also possible to transfer the shuttle vectors for C. glutamicum to E. coli by preparing plasmid DNA from C. glutamicum (using standard methods well-known in the art) and transforming it into E. coli. This transformation step can be performed using standard methods, but it is advantageous to use an Mcr-deficient E. coli strain, such as NM522 (Gough & Murray (1983) J. Mol. Biol. 166:1-19).

- 135 -

Genes may be overexpressed in *C. glutamicum* strains using plasmids which comprise pCG1 (U.S. Patent No. 4,617,267) or fragments thereof, and optionally the gene for kanamycin resistance from TN903 (Grindley, N.D. and Joyce, C.M. (1980) *Proc. Natl. Acad. Sci. USA* 77(12): 7176-7180). In addition, genes may be overexpressed in *C. glutamicum* strains using plasmid pSL109 (Lee, H.-S. and A. J. Sinskey (1994) *J. Microbiol. Biotechnol.* 4: 256-263).

Aside from the use of replicative plasmids, gene overexpression can also be achieved by integration into the genome. Genomic integration in *C. glutamicum* or other Corynebacterium or Brevibacterium species may be accomplished by well-known methods, such as homologous recombination with genomic region(s), restriction endonuclease mediated integration (REMI) (see, *e.g.*, DE Patent 19823834), or through the use of transposons. It is also possible to modulate the activity of a gene of interest by modifying the regulatory regions (*e.g.*, a promoter, a repressor, and/or an enhancer) by sequence modification, insertion, or deletion using site-directed methods (such as homologous recombination) or methods based on random events (such as transposon mutagenesis or REMI). Nucleic acid sequences which function as transcriptional terminators may also be inserted 3' to the coding region of one or more genes of the invention; such terminators are well-known in the art and are described, for example, in Winnacker, E.L. (1987) From Genes to Clones – Introduction to Gene Technology. VCH: Weinheim.

Example 6: Assessment of the Expression of the Mutant Protein

Observations of the activity of a mutated protein in a transformed host cell rely on the fact that the mutant protein is expressed in a similar fashion and in a similar quantity to that of the wild-type protein. A useful method to ascertain the level of transcription of the mutant gene (an indicator of the amount of mRNA available for translation to the gene product) is to perform a Northern blot (for reference see, for example, Ausubel *et al.*

5

10

15

(1988) Current Protocols in Molecular Biology, Wiley: New York), in which a primer designed to bind to the gene of interest is labeled with a detectable tag (usually radioactive or chemiluminescent), such that when the total RNA of a culture of the organism is extracted, run on gel, transferred to a stable matrix and incubated with this probe, the binding and quantity of binding of the probe indicates the presence and also the quantity of mRNA for this gene. This information is evidence of the degree of transcription of the mutant gene. Total cellular RNA can be prepared from *Corynebacterium glutamicum* by several methods, all well-known in the art, such as that described in Bormann, E.R. *et al.* (1992) *Mol. Microbiol.* 6: 317-326.

To assess the presence or relative quantity of protein translated from this mRNA, standard techniques, such as a Western blot, may be employed (see, for example, Ausubel et al. (1988) Current Protocols in Molecular Biology, Wiley: New York). In this process, total cellular proteins are extracted, separated by gel electrophoresis, transferred to a matrix such as nitrocellulose, and incubated with a probe, such as an antibody, which specifically binds to the desired protein. This probe is generally tagged with a chemiluminescent or colorimetric label which may be readily detected. The presence and quantity of label observed indicates the presence and quantity of the desired mutant protein present in the cell.

20 Example 7: Growth of Genetically Modified Corynebacterium glutamicum — Media and Culture Conditions

Genetically modified *Corynebacteria* are cultured in synthetic or natural growth media. A number of different growth media for Corynebacteria are both well-known and readily available (Lieb *et al.* (1989) *Appl. Microbiol. Biotechnol.*, 32:205-210; von der

25 Osten *et al.* (1998) Biotechnology Letters, 11:11-16; Patent DE 4,120,867; Liebl (1992)
"The Genus *Corynebacterium*, in: The Procaryotes, Volume II, Balows, A. *et al.*, eds. Springer-Verlag). These media consist of one or more carbon sources, nitrogen sources, inorganic salts, vitamins and trace elements. Preferred carbon sources are sugars, such as mono-, di-, or polysaccharides. For example, glucose, fructose, mannose, galactose, ribose, sorbose, ribulose, lactose, maltose, sucrose, raffinose, starch or cellulose serve as very good carbon sources. It is also possible to supply sugar to the media via complex compounds such as molasses or other by-products from sugar refinement. It can also be

10

15

20

25

- 137 -

advantageous to supply mixtures of different carbon sources. Other possible carbon sources are alcohols and organic acids, such as methanol, ethanol, acetic acid or lactic acid. Nitrogen sources are usually organic or inorganic nitrogen compounds, or materials which contain these compounds. Exemplary nitrogen sources include ammonia gas or ammonia salts, such as NH₄Cl or (NH₄)₂SO₄, NH₄OH, nitrates, urea, amino acids or complex nitrogen sources like corn steep liquor, soy bean flour, soy bean protein, yeast extract, meat extract and others.

Inorganic salt compounds which may be included in the media include the chloride-, phosphorous- or sulfate- salts of calcium, magnesium, sodium, cobalt, molybdenum, potassium, manganese, zinc, copper and iron. Chelating compounds can be added to the medium to keep the metal ions in solution. Particularly useful chelating compounds include dihydroxyphenols, like catechol or protocatechuate, or organic acids, such as citric acid. It is typical for the media to also contain other growth factors, such as vitamins or growth promoters, examples of which include biotin, riboflavin, thiamin, folic acid, nicotinic acid, pantothenate and pyridoxin. Growth factors and salts frequently originate from complex media components such as yeast extract, molasses, corn steep liquor and others. The exact composition of the media compounds depends strongly on the immediate experiment and is individually decided for each specific case. Information about media optimization is available in the textbook "Applied Microbiol. Physiology, A Practical Approach (eds. P.M. Rhodes, P.F. Stanbury, IRL Press (1997) pp. 53-73, ISBN 0 19 963577 3). It is also possible to select growth media from commercial suppliers, like standard 1 (Merck) or BHI (grain heart infusion, DIFCO) or others.

All medium components are sterilized, either by heat (20 minutes at 1.5 bar and 121°C) or by sterile filtration. The components can either be sterilized together or, if necessary, separately. All media components can be present at the beginning of growth, or they can optionally be added continuously or batchwise.

Culture conditions are defined separately for each experiment. The temperature should be in a range between 15°C and 45°C. The temperature can be kept constant or can be altered during the experiment. The pH of the medium should be in the range of 5 to 8.5, preferably around 7.0, and can be maintained by the addition of buffers to the media. An exemplary buffer for this purpose is a potassium phosphate buffer. Synthetic buffers such as MOPS, HEPES, ACES and others can alternatively or simultaneously be used. It

5

is also possible to maintain a constant culture pH through the addition of NaOH or NH₄OH during growth. If complex medium components such as yeast extract are utilized, the necessity for additional buffers may be reduced, due to the fact that many complex compounds have high buffer capacities. If a fermentor is utilized for culturing the microorganisms, the pH can also be controlled using gaseous ammonia.

The incubation time is usually in a range from several hours to several days. This time is selected in order to permit the maximal amount of product to accumulate in the broth. The disclosed growth experiments can be carried out in a variety of vessels, such as microtiter plates, glass tubes, glass flasks or glass or metal fermentors of different sizes. For screening a large number of clones, the microorganisms should be cultured in microtiter plates, glass tubes or shake flasks, either with or without baffles. Preferably 100 ml shake flasks are used, filled with 10% (by volume) of the required growth medium. The flasks should be shaken on a rotary shaker (amplitude 25 mm) using a speed-range of 100 – 300 rpm. Evaporation losses can be diminished by the maintenance of a humid atmosphere; alternatively, a mathematical correction for evaporation losses should be performed.

If genetically modified clones are tested, an unmodified control clone or a control clone containing the basic plasmid without any insert should also be tested. The medium is inoculated to an OD₆₀₀ of O.5 – 1.5 using cells grown on agar plates, such as CM plates (10 g/l glucose, 2,5 g/l NaCl, 2 g/l urea, 10 g/l polypeptone, 5 g/l yeast extract, 5 g/l meat extract, 22 g/l NaCl, 2 g/l urea, 10 g/l polypeptone, 5 g/l yeast extract, 5 g/l meat extract, 22 g/l agar, pH 6.8 with 2M NaOH) that had been incubated at 30°C. Inoculation of the media is accomplished by either introduction of a saline suspension of *C. glutamicum* cells from CM plates or addition of a liquid preculture of this bacterium.

25

30

20

15

Example 8 - In vitro Analysis of the Function of Mutant Proteins

The determination of activities and kinetic parameters of enzymes is well established in the art. Experiments to determine the activity of any given altered enzyme must be tailored to the specific activity of the wild-type enzyme, which is well within the ability of one of ordinary skill in the art. Overviews about enzymes in general, as well as specific details concerning structure, kinetics, principles, methods, applications and examples for the determination of many enzyme activities may be

- 139 -

found, for example, in the following references: Dixon, M., and Webb, E.C., (1979)
Enzymes. Longmans: London; Fersht, (1985) Enzyme Structure and Mechanism.
Freeman: New York; Walsh, (1979) Enzymatic Reaction Mechanisms. Freeman: San Francisco; Price, N.C., Stevens, L. (1982) Fundamentals of Enzymology. Oxford Univ.
Press: Oxford; Boyer, P.D., ed. (1983) The Enzymes, 3rd ed. Academic Press: New York; Bisswanger, H., (1994) Enzymkinetik, 2nd ed. VCH: Weinheim (ISBN 3527300325); Bergmeyer, H.U., Bergmeyer, J., Graßl, M., eds. (1983-1986) Methods of Enzymatic Analysis, 3rd ed., vol. I-XII, Verlag Chemie: Weinheim; and Ullmann's Encyclopedia of Industrial Chemistry (1987) vol. A9, "Enzymes". VCH: Weinheim, p. 352-363.

The activity of proteins which bind to DNA can be measured by several well-established methods, such as DNA band-shift assays (also called gel retardation assays). The effect of such proteins on the expression of other molecules can be measured using reporter gene assays (such as that described in Kolmar, H. et al. (1995) <u>EMBO J.</u> 14: 3895-3904 and references cited therein). Reporter gene test systems are well known and established for applications in both pro- and eukaryotic cells, using enzymes such as beta-galactosidase, green fluorescent protein, and several others.

15

20

The determination of activity of membrane-transport proteins can be performed according to techniques such as those described in Gennis, R.B. (1989) "Pores, Channels and Transporters", in Biomembranes, Molecular Structure and Function, Springer: Heidelberg, p. 85-137; 199-234; and 270-322.

Example 9: Analysis of Impact of Mutant Protein on the Production of the Desired Product

The effect of the genetic modification in *C. glutamicum* on production of a desired compound (such as an amino acid) can be assessed by growing the modified microorganism under suitable conditions (such as those described above) and analyzing the medium and/or the cellular component for increased production of the desired product (*i.e.*, an amino acid). Such analysis techniques are well known to one of ordinary skill in the art, and include spectroscopy, thin layer chromatography, staining methods of various kinds, enzymatic and microbiological methods, and analytical chromatography such as high performance liquid chromatography (see, for example,

Ullman, Encyclopedia of Industrial Chemistry, vol. A2, p. 89-90 and p. 443-613, VCH: Weinheim (1985); Fallon, A. *et al.*, (1987) "Applications of HPLC in Biochemistry" in: Laboratory Techniques in Biochemistry and Molecular Biology, vol. 17; Rehm *et al.* (1993) Biotechnology, vol. 3, Chapter III: "Product recovery and purification", page 469-714, VCH: Weinheim; Belter, P.A. *et al.* (1988) Bioseparations: downstream processing for biotechnology, John Wiley and Sons; Kennedy, J.F. and Cabral, J.M.S. (1992) Recovery processes for biological materials, John Wiley and Sons; Shaeiwitz, J.A. and Henry, J.D. (1988) Biochemical separations, in: Ulmann's Encyclopedia of Industrial Chemistry, vol. B3, Chapter 11, page 1-27, VCH: Weinheim; and Dechow, F.J. (1989) Separation and purification techniques in biotechnology, Noyes Publications.)

5

20

In addition to the measurement of the final product of fermentation, it is also possible to analyze other components of the metabolic pathways utilized for the production of the desired compound, such as intermediates and side-products, to determine the overall efficiency of production of the compound. Analysis methods include measurements of nutrient levels in the medium (e.g., sugars, hydrocarbons, nitrogen sources, phosphate, and other ions), measurements of biomass composition and growth, analysis of the production of common metabolites of biosynthetic pathways, and measurement of gasses produced during fermentation. Standard methods for these measurements are outlined in Applied Microbial Physiology, A Practical Approach, P.M. Rhodes and P.F. Stanbury, eds., IRL Press, p. 103-129; 131-163; and 165-192 (ISBN: 0199635773) and references cited therein.

Example 10: Purification of the Desired Product from C. glutamicum Culture

Recovery of the desired product from the *C. glutamicum* cells or supernatant of the above-described culture can be performed by various methods well known in the art. If the desired product is not secreted from the cells, the cells can be harvested from the culture by low-speed centrifugation, the cells can be lysed by standard techniques, such as mechanical force or sonication. The cellular debris is removed by centrifugation, and the supernatant fraction containing the soluble proteins is retained for further purification of the desired compound. If the product is secreted from the *C. glutamicum*

5

10

15

20

25

cells, then the cells are removed from the culture by low-speed centrifugation, and the supernate fraction is retained for further purification.

The supernatant fraction from either purification method is subjected to chromatography with a suitable resin, in which the desired molecule is either retained on a chromatography resin while many of the impurities in the sample are not, or where the impurities are retained by the resin while the sample is not. Such chromatography steps may be repeated as necessary, using the same or different chromatography resins. One of ordinary skill in the art would be well-versed in the selection of appropriate chromatography resins and in their most efficacious application for a particular molecule to be purified. The purified product may be concentrated by filtration or ultrafiltration, and stored at a temperature at which the stability of the product is maximized.

There are a wide array of purification methods known to the art and the preceding method of purification is not meant to be limiting. Such purification techniques are described, for example, in Bailey, J.E. & Ollis, D.F. Biochemical Engineering Fundamentals, McGraw-Hill: New York (1986).

The identity and purity of the isolated compounds may be assessed by techniques standard in the art. These include high-performance liquid chromatography (HPLC), spectroscopic methods, staining methods, thin layer chromatography, NIRS, enzymatic assay, or microbiologically. Such analysis methods are reviewed in: Patek *et al.* (1994) *Appl. Environ. Microbiol.* 60: 133-140; Malakhova *et al.* (1996) *Biotekhnologiya* 11: 27-32; and Schmidt *et al.* (1998) *Bioprocess Engineer.* 19: 67-70. Ulmann's Encyclopedia of Industrial Chemistry, (1996) vol. A27, VCH: Weinheim, p. 89-90, p. 521-540, p. 540-547, p. 559-566, 575-581 and p. 581-587; Michal, G. (1999) Biochemical Pathways: An Atlas of Biochemistry and Molecular Biology, John Wiley and Sons; Fallon, A. *et al.* (1987) Applications of HPLC in Biochemistry in: Laboratory Techniques in Biochemistry and Molecular Biology, vol. 17.

Example 11: Analysis of the Gene Sequences of the Invention

The comparison of sequences and determination of percent homology between two sequences are art-known techniques, and can be accomplished using a mathematical algorithm, such as the algorithm of Karlin and Altschul (1990) *Proc. Natl. Acad. Sci.*USA 87:2264-68, modified as in Karlin and Altschul (1993) *Proc. Natl. Acad. Sci.* USA

5

10

25

- 142 -

90:5873-77. Such an algorithm is incorporated into the NBLAST and XBLAST programs (version 2.0) of Altschul, et al. (1990) J. Mol. Biol. 215:403-10. BLAST nucleotide searches can be performed with the NBLAST program, score = 100, wordlength = 12 to obtain nucleotide sequences homologous to MP nucleic acid molecules of the invention. BLAST protein searches can be performed with the XBLAST program, score = 50, wordlength = 3 to obtain amino acid sequences homologous to MP protein molecules of the invention. To obtain gapped alignments for comparison purposes, Gapped BLAST can be utilized as described in Altschul et al., (1997) Nucleic Acids Res. 25(17):3389-3402. When utilizing BLAST and Gapped BLAST programs, one of ordinary skill in the art will know how to optimize the parameters of the program (e.g., XBLAST and NBLAST) for the specific sequence being analyzed.

Another example of a mathematical algorithm utilized for the comparison of sequences is the algorithm of Meyers and Miller ((1988) Comput. Appl. Biosci. 4: 11-17). Such an algorithm is incorporated into the ALIGN program (version 2.0) which is part of the GCG sequence alignment software package. When utilizing the ALIGN program for comparing amino acid sequences, a PAM120 weight residue table, a gap length penalty of 12, and a gap penalty of 4 can be used. Additional algorithms for sequence analysis are known in the art, and include ADVANCE and ADAM. described in Torelli and Robotti (1994) Comput. Appl. Biosci. 10:3-5; and FASTA, described in Pearson and Lipman (1988) P.N.A.S. 85:2444-8.

The percent homology between two amino acid sequences can also be accomplished using the GAP program in the GCG software package (available at http://www.gcg.com), using either a Blosum 62 matrix or a PAM250 matrix, and a gap weight of 12, 10, 8, 6, or 4 and a length weight of 2, 3, or 4. The percent homology between two nucleic acid sequences can be accomplished using the GAP program in the GCG software package, using standard parameters, such as a gap weight of 50 and a length weight of 3.

A comparative analysis of the gene sequences of the invention with those present in Genbank has been performed using techniques known in the art (see, e.g., Bexevanis and Ouellette, eds. (1998) Bioinformatics: A Practical Guide to the Analysis of Genes and Proteins. John Wiley and Sons: New York). The gene sequences of the invention

were compared to genes present in Genbank in a three-step process. In a first step, a BLASTN analysis (e.g., a local alignment analysis) was performed for each of the sequences of the invention against the nucleotide sequences present in Genbank, and the top 500 hits were retained for further analysis. A subsequent FASTA search (e.g., a combined local and global alignment analysis, in which limited regions of the sequences are aligned) was performed on these 500 hits. Each gene sequence of the invention was subsequently globally aligned to each of the top three FASTA hits, using the GAP program in the GCG software package (using standard parameters). In order to obtain correct results, the length of the sequences extracted from Genbank were adjusted to the length of the query sequences by methods well-known in the art. The results of this analysis are set forth in Table 4. The resulting data is identical to that which would have been obtained had a GAP (global) analysis alone been performed on each of the genes of the invention in comparison with each of the references in Genbank, but required significantly reduced computational time as compared to such a database-wide GAP (global) analysis. Sequences of the invention for which no alignments above the cutoff values were obtained are indicated on Table 4 by the absence of alignment information. It will further be understood by one of ordinary skill in the art that the GAP alignment homology percentages set forth in Table 4 under the heading "% homology (GAP)" are listed in the European numerical format, wherein a ',' represents a decimal point. For example, a value of "40,345" in this column represents "40.345%".

Example 12: Construction and Operation of DNA Microarrays

10

15

20

25

The sequences of the invention may additionally be used in the construction and application of DNA microarrays (the design, methodology, and uses of DNA arrays are well known in the art, and are described, for example, in Schena, M. et al. (1995) Science 270: 467-470; Wodicka, L. et al. (1997) Nature Biotechnology 15: 1359-1367; DeSaizieu, A. et al. (1998) Nature Biotechnology 16: 45-48; and DeRisi, J.L. et al. (1997) Science 278: 680-686).

DNA microarrays are solid or flexible supports consisting of nitrocellulose,

nylon, glass, silicone, or other materials. Nucleic acid molecules may be attached to the
surface in an ordered manner. After appropriate labeling, other nucleic acids or nucleic
acid mixtures can be hybridized to the immobilized nucleic acid molecules, and the label

5

10

15

20

30

- 144 -

may be used to monitor and measure the individual signal intensities of the hybridized molecules at defined regions. This methodology allows the simultaneous quantification of the relative or absolute amount of all or selected nucleic acids in the applied nucleic acid sample or mixture. DNA microarrays, therefore, permit an analysis of the expression of multiple (as many as 6800 or more) nucleic acids in parallel (see, e.g., Schena, M. (1996) BioEssays 18(5): 427-431).

The sequences of the invention may be used to design oligonucleotide primers which are able to amplify defined regions of one or more C. glutamicum genes by a nucleic acid amplification reaction such as the polymerase chain reaction. The choice and design of the 5' or 3' oligonucleotide primers or of appropriate linkers allows the covalent attachment of the resulting PCR products to the surface of a support medium described above (and also described, for example, Schena, M. et al. (1995) Science 270: 467-470).

Nucleic acid microarrays may also be constructed by in situ oligonucleotide synthesis as described by Wodicka, L. et al. (1997) Nature Biotechnology 15: 1359-1367. By photolithographic methods, precisely defined regions of the matrix are exposed to light. Protective groups which are photolabile are thereby activated and undergo nucleotide addition, whereas regions that are masked from light do not undergo any modification. Subsequent cycles of protection and light activation permit the synthesis of different oligonucleotides at defined positions. Small, defined regions of the genes of the invention may be synthesized on microarrays by solid phase oligonucleotide synthesis.

The nucleic acid molecules of the invention present in a sample or mixture of nucleotides may be hybridized to the microarrays. These nucleic acid molecules can be labeled according to standard methods. In brief, nucleic acid molecules (e.g., mRNA 25 molecules or DNA molecules) are labeled by the incorporation of isotopically or fluorescently labeled nucleotides, e.g., during reverse transcription or DNA synthesis. Hybridization of labeled nucleic acids to microarrays is described (e.g., in Schena, M. et al. (1995) supra; Wodicka, L. et al. (1997), supra; and DeSaizieu A. et al. (1998), supra). The detection and quantification of the hybridized molecule are tailored to the specific incorporated label. Radioactive labels can be detected, for example, as

- 145 -

described in Schena, M. et al. (1995) supra) and fluorescent labels may be detected, for example, by the method of Shalon et al. (1996) Genome Research 6: 639-645).

The application of the sequences of the invention to DNA microarray technology, as described above, permits comparative analyses of different strains of *C. glutamicum* or other Corynebacteria. For example, studies of inter-strain variations based on individual transcript profiles and the identification of genes that are important for specific and/or desired strain properties such as pathogenicity, productivity and stress tolerance are facilitated by nucleic acid array methodologies. Also, comparisons of the profile of expression of genes of the invention during the course of a fermentation reaction are possible using nucleic acid array technology.

Example 13: Analysis of the Dynamics of Cellular Protein Populations (Proteomics)

10

15

20

25

30

The genes, compositions, and methods of the invention may be applied to study the interactions and dynamics of populations of proteins, termed 'proteomics'. Protein populations of interest include, but are not limited to, the total protein population of *C*. *glutamicum* (*e.g.*, in comparison with the protein populations of other organisms), those proteins which are active under specific environmental or metabolic conditions (*e.g.*, during fermentation, at high or low temperature, or at high or low pH), or those proteins which are active during specific phases of growth and development.

Protein populations can be analyzed by various well-known techniques, such as gel electrophoresis. Cellular proteins may be obtained, for example, by lysis or extraction, and may be separated from one another using a variety of electrophoretic techniques. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) separates proteins largely on the basis of their molecular weight. Isoelectric focusing polyacrylamide gel electrophoresis (IEF-PAGE) separates proteins by their isoelectric point (which reflects not only the amino acid sequence but also posttranslational modifications of the protein). Another, more preferred method of protein analysis is the consecutive combination of both IEF-PAGE and SDS-PAGE, known as 2-D-gel electrophoresis (described, for example, in Hermann *et al.* (1998) *Electrophoresis* 19: 3217-3221; Fountoulakis *et al.* (1998) *Electrophoresis* 19: 1193-1202; Langen *et al.* (1997) *Electrophoresis* 18: 1184-1192; Antelmann *et al.* (1997) *Electrophoresis* 18:

WO 01/00843

5

10

15

20

25

30

1451-1463). Other separation techniques may also be utilized for protein separation, such as capillary gel electrophoresis; such techniques are well known in the art.

Proteins separated by these methodologies can be visualized by standard techniques, such as by staining or labeling. Suitable stains are known in the art, and include Coomassie Brilliant Blue, silver stain, or fluorescent dyes such as Sypro Ruby (Molecular Probes). The inclusion of radioactively labeled amino acids or other protein precursors (e.g., ³⁵S-methionine, ³⁵S-cysteine, ¹⁴C-labelled amino acids, ¹⁵N-amino acids, ¹⁵NO₃ or ¹⁵NH₄⁺ or ¹³C-labelled amino acids) in the medium of *C. glutamicum* permits the labeling of proteins from these cells prior to their separation. Similarly, fluorescent labels may be employed. These labeled proteins can be extracted, isolated and separated according to the previously described techniques.

Proteins visualized by these techniques can be further analyzed by measuring the amount of dye or label used. The amount of a given protein can be determined quantitatively using, for example, optical methods and can be compared to the amount of other proteins in the same gel or in other gels. Comparisons of proteins on gels can be made, for example, by optical comparison, by spectroscopy, by image scanning and analysis of gels, or through the use of photographic films and screens. Such techniques are well-known in the art.

To determine the identity of any given protein, direct sequencing or other standard techniques may be employed. For example, N- and/or C-terminal amino acid sequencing (such as Edman degradation) may be used, as may mass spectrometry (in particular MALDI or ESI techniques (see, e.g., Langen et al. (1997) Electrophoresis 18: 1184-1192)). The protein sequences provided herein can be used for the identification of C. glutamicum proteins by these techniques.

The information obtained by these methods can be used to compare patterns of protein presence, activity, or modification between different samples from various biological conditions (e.g., different organisms, time points of fermentation, media conditions, or different biotopes, among others). Data obtained from such experiments alone, or in combination with other techniques, can be used for various applications, such as to compare the behavior of various organisms in a given (e.g., metabolic) situation, to increase the productivity of strains which produce fine chemicals or to increase the efficiency of the production of fine chemicals.

- 147 -

Equivalents

5

Those of ordinary skill in the art will recognize, or will be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments of the invention described herein. Such equivalents are intended to be encompassed by the following claims.

What is claimed:

10

20

- An isolated nucleic acid molecule from Corynebacterium glutamicum encoding a
 metabolic pathway protein, or a portion thereof, provided that the nucleic acid molecule does not consist of any of the F-designated genes set forth in Table 1.
 - 2. The isolated nucleic acid molecule of claim 1, wherein said metabolic pathway protein is selected from the group consisting of proteins involved in the metabolism of an amino acid, a vitamin, a cofactor, a nutraceutical, a nucleotide, a nucleoside, or trehalose.
- An isolated Corynebacterium glutamicum nucleic acid molecule selected from the group consisting of those sequences set forth as odd-numbered SEQ ID NOs of the
 Sequence Listing, or a portion thereof, provided that the nucleic acid molecule does not consist of any of the F-designated genes set forth in Table 1.
 - 4. An isolated nucleic acid molecule which encodes a polypeptide sequence selected from the group consisting of those sequences set forth as even-numbered SEQ ID NOs of the Sequence Listing, provided that the nucleic acid molecule does not consist of any of the F-designated genes set forth in Table 1.
- 5. An isolated nucleic acid molecule which encodes a naturally occurring allelic variant of a polypeptide selected from the group of amino acid sequences consisting of those sequences set forth as even-numbered SEQ ID NOs of the Sequence Listing, provided that the nucleic acid molecule does not consist of any of the F-designated genes set forth in Table 1.
- 6. An isolated nucleic acid molecule comprising a nucleotide sequence which is at least
 50% homologous to a nucleotide sequence selected from the group consisting of those sequences set forth as odd-numbered SEQ ID NOs of the Sequence Listing, or

a portion thereof, provided that the nucleic acid molecule does not consist of any of the F-designated genes set forth in Table 1.

- 7. An isolated nucleic acid molecule comprising a fragment of at least 15 nucleotides of a nucleic acid comprising a nucleotide sequence selected from the group consisting of those sequences set forth as odd-numbered SEQ ID NOs of the Sequence Listing, provided that the nucleic acid molecule does not consist of any of the F-designated genes set forth in Table 1.
- 10 8. An isolated nucleic acid molecule which hybridizes to the nucleic acid molecule of any one of claims 1-7 under stringent conditions.
 - An isolated nucleic acid molecule comprising the nucleic acid molecule of any one
 of claims 1-8 or a portion thereof and a nucleotide sequence encoding a heterologous
 polypeptide.
 - 10. A vector comprising the nucleic acid molecule of any one of claims 1-9.
 - 11. The vector of claim 10, which is an expression vector.

20

30

15

- 12. A host cell transfected with the expression vector of claim 11.
- 13. The host cell of claim 12, wherein said cell is a microorganism.
- 25 14. The host cell of claim 13, wherein said cell belongs to the genus *Corynebacterium* or *Brevibacterium*.
 - 15. The host cell of claim 12, wherein the expression of said nucleic acid molecule results in the modulation in production of a fine chemical from said cell.
 - 16. The host cell of claim 15, wherein said fine chemical is selected from the group consisting of: organic acids, nonproteinogenic amino acids, purine and pyrimidine

bases, nucleosides, nucleotides, lipids, saturated and unsaturated fatty acids, diols, carbohydrates, aromatic compounds, vitamins, cofactors, polyketides, and enzymes.

- 17. A method of producing a polypeptide comprising culturing the host cell of claim 12
 in an appropriate culture medium to, thereby, produce the polypeptide.
 - 18. An isolated metabolic pathway polypeptide from *Corynebacterium glutamicum*, or a portion thereof.
- 19. The protein of claim 18, wherein said polypeptide is selected from the group of metabolic pathway proteins which participate in the metabolism of an amino acid, a vitamin, a cofactor, a nutraceutical, a nucleotide, a nucleoside, or trehalose.
- 20. An isolated polypeptide comprising an amino acid sequence selected from the group consisting of those sequences set forth as even-numbered SEQ ID NOs of the Sequence Listing, provided that the amino acid sequence is not encoded by any of the F-designated genes set forth in Table 1.
- 21. An isolated polypeptide comprising a naturally occurring allelic variant of a polypeptide comprising an amino acid sequence selected from the group consisting of those sequences set forth as even-numbered SEQ ID NOs of the Sequence Listing, or a portion thereof, provided that the amino acid sequence is not encoded by any of the F-designated genes set forth in Table 1.
- 25 22. The isolated polypeptide of any of claims 18-21, further comprising heterologous amino acid sequences.
- 23. An isolated polypeptide which is encoded by a nucleic acid molecule comprising a nucleotide sequence which is at least 50% homologous to a nucleic acid selected
 30 from the group consisting of those sequences set forth as odd-numbered SEQ ID NOs of the Sequence Listing, provided that the nucleic acid molecule does not consist of any of the F-designated nucleic acid molecules set forth in Table 1.

- 24. An isolated polypeptide comprising an amino acid sequence which is at least 50% homologous to an amino acid sequence selected from the group consisting of those sequences set forth as even-numbered SEQ ID NOs of the Sequence Listing, provided that the amino acid sequence is not encoded by any of the F-designated genes set forth in Table 1.
- 25. A method for producing a fine chemical, comprising culturing a cell containing a vector of claim 12 such that the fine chemical is produced.

10

5

- 26. The method of claim 25, wherein said method further comprises the step of recovering the fine chemical from said culture.
- 27. The method of claim 25, wherein said method further comprises the step of
 transfecting said cell with the vector of claim 11 to result in a cell containing said vector.
 - 28. The method of claim 25, wherein said cell belongs to the genus *Corynebacterium* or *Brevibacterium*.

20

29. The method of claim 25, wherein said cell is selected from the group consisting of:
 Corynebacterium glutamicum, Corynebacterium herculis, Corynebacterium, lilium,
 Corynebacterium acetoacidophilum, Corynebacterium acetoglutamicum,
 Corynebacterium acetophilum, Corynebacterium ammoniagenes, Corynebacterium
 fujiokense, Corynebacterium nitrilophilus, Brevibacterium ammoniagenes,
 Brevibacterium butanicum, Brevibacterium divaricatum, Brevibacterium flavum,
 Brevibacterium healii, Brevibacterium ketoglutamicum, Brevibacterium
 ketosoreductum, Brevibacterium lactofermentum, Brevibacterium linens,
 Brevibacterium paraffinolyticum, and those strains set forth in Table 3.

30

30. The method of claim 25, wherein expression of the nucleic acid molecule from said vector results in modulation of production of said fine chemical.

- 152 -

- 31. The method of claim 25, wherein said fine chemical is selected from the group consisting of: organic acids, nonproteinogenic amino acids, purine and pyrimidine bases, nucleosides, nucleotides, lipids, saturated and unsaturated fatty acids, diols, carbohydrates, aromatic compounds, vitamins, cofactors, polyketides, and enzymes.
- 32. The method of claim 25, wherein said fine chemical is an amino acid.

5

- 33. The method of claim 32, wherein said amino acid is drawn from the group consisting of: lysine, glutamate, glutamine, alanine, aspartate, glycine, serine, threonine, methionine, cysteine, valine, leucine, isoleucine, arginine, proline, histidine, tyrosine, phenylalanine, and tryptophan.
- 34. A method for producing a fine chemical, comprising culturing a cell whose genomic
 DNA has been altered by the inclusion of a nucleic acid molecule of any one of claims 1-9.
- 35. A method for diagnosing the presence or activity of Corynebacterium diphtheriae in a subject, comprising detecting the presence of one or more of SEQ ID NOs 1
 20 through 1156 of the Sequence Listing in the subject, provided that the sequences are not or are not encoded by any of the F-designated sequences set forth in Table 1, thereby diagnosing the presence or activity of Corynebacterium diphtheriae in the subject.
- 36. A host cell comprising a nucleic acid molecule selected from the group consisting of the nucleic acid molecules set forth as odd-numbered SEQ ID NOs of the Sequence Listing, wherein the nucleic acid molecule is disrupted.
- 37. A host cell comprising a nucleic acid molecule selected from the group consisting of
 30 the nucleic acid molecules set forth as odd-numbered SEQ ID NOs in the Sequence
 Listing, wherein the nucleic acid molecule comprises one or more nucleic acid

- 153 -

modifications from the sequence set forth as odd-numbered SEQ ID NOs of the Sequence Listing s.

38. A host cell comprising a nucleic acid molecule selected from the group consisting of
 the nucleic acid molecules set forth as odd-numbered SEQ ID NOs of the Sequence
 Listing, wherein the regulatory region of the nucleic acid molecule is modified
 relative to the wild-type regulatory region of the molecule.

10

SEQUENCE LISTING

<110> BASF Aktiengesellschaft <120> CORYNEBACTERIUM GLUTAMICUM GENES ENCODING METABOLIC PATHWAY PROTEINS <130> BGI-121CPPC <140> <141> <160> 1156 <210> 1 <211> 948 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(925) <223> RXA02229 <400> 1 gctggttcaa cagagaccac cgcgtgtcct gggtcgacgc ctctggcgat cccaccgcac 60 aagcettgga gattttgggt ctacaatage gagggtgaat ttg ace ate cee ttt Leu Thr Ile Pro Phe gcc aaa ggc cac gcc acc gaa aac gac ttc atc atc acc ccc gat gag 163 Ala Lys Gly His Ala Thr Glu Asn Asp Phe Ile Ile Pro Asp Glu gat gcg cgc cta gat tta act cca gaa atg gtg gtc acg ctg tgt gac 211 Asp Ala Arg Leu Asp Leu Thr Pro Glu Met Val Val Thr Leu Cys Asp 30 cgc cgc gcc ggg atc ggt gct gat ggt atc ctc cgc gtg gtt aaa gct 259 Arg Arg Ala Gly Ile Gly Ala Asp Gly Ile Leu Arg Val Val Lys Ala 40 45 307 gca gac gta gaa ggc tcc acg gtc gac cca tcg ctg tgg ttc atg gat Ala Asp Val Glu Gly Ser Thr Val Asp Pro Ser Leu Trp Phe Met Asp 55 tac ege aac gee gat gga tet ttg get gaa atg tge gge aat ggt gtg 355 Tyr Arg Asn Ala Asp Gly Ser Leu Ala Glu Met Cys Gly Asn Gly Val 75 ege etg tte geg cae tgg etg tae tee ege ggt ett gtt gat aat aeg 403 Arg Leu Phe Ala His Trp Leu Tyr Ser Arg Gly Leu Val Asp Asn Thr 90 ago tit gat ato ggt aco ogo goo ggt gto ogo cao git gat att tig Ser Phe Asp Ile Gly Thr Arg Ala Gly Val Arg His Val Asp Ile Leu 105 110 115 cag gca gat caa cat tot gcg cag gtc cgc gtt gat atg ggc atc cct 499 Gln Ala Asp Gln His Ser Ala Gln Val Arg Val Asp Met Gly Ile Pro 120 125 gac gtc acg gga tta tcc acc tgc gac atc aac ggc caa gta ttc gct Asp Val Thr Gly Leu Ser Thr Cys Asp Ile Asn Gly Gln Val Phe Ala

	135					140					145					
			-	-	_			cca Pro				_	_		_	595
								gat Asp								643
								ggt Gly 190								691
								atg Met								739
					-			gga Gly		_	_	_		_	_	787
-		_	_	_		_		gaa Glu			_			_	-	835
	_		-		_	-	-	atc Ile		-	_					883
				-			_	ctc Leu 270				_				925
taag	gatto	gc g	gatto	gtagt	t cg	aa										948
<212	0> 2 L> 27 2> PF 3> Co	RΤ	ebact	ceriu	um g]	lutan	nicur	n								
<400)> 2															
Leu 1	Thr	Ile	Pro	Phe 5	Ala	Lys	Gly	His	Ala 10	Thr	Glu	Asn	Asp	Phe 15	Ile	
Ile	Ile	Pro	Asp 20	Glu	Asp	Ala	Arg	Leu 25	Asp	Leu	Thr	Pro	Glu 30	Met	Val	
Val	Thr	Leu 35	Cys	Asp	Arg	Arg	Ala 40	Gly	Ile	Gly	Ala	Asp 45	Gly	Ile	Leu	
Arg	Val 50	Val	Lys	Ala	Ala	Asp 55	Val	Glu	Gly	Ser	Thr 60	Val	qzA	Pro	Ser	
Leu 65	Trp	Phe	Met	Asp	Tyr 70	Arg	Asn	Ala	Asp	Gly 75	Ser	Leu	Ala	Glu	Met 80	
Cys	Gly	Asn	Gly	Val 85	Arg	Leu	Phe	Ala	His 90	Trp	Leu	Tyr	Ser	Arg 95	Gly	

Leu Val Asp Asn Thr Ser Phe Asp Ile Gly Thr Arg Ala Gly Val Arg His Val Asp Ile Leu Gln Ala Asp Gln His Ser Ala Gln Val Arg Val 115 120 Asp Met Gly Ile Pro Asp Val Thr Gly Leu Ser Thr Cys Asp Ile Asn Gly Gln Val Phe Ala Gly Leu Gly Val Asp Met Gly Asn Pro His Leu 145 150 Ala Cys Val Val Pro Gly Leu Ser Ala Ser Ala Leu Ala Asp Met Glu 170 Leu Arg Ala Pro Thr Phe Asp Gln Glu Phe Phe Pro His Gly Val Asn 180 185 190 Val Glu Ile Val Thr Glu Leu Glu Asp Asp Ala Val Ser Met Arg Val 200 Trp Glu Arg Gly Val Gly Glu Thr Arg Ser Cys Gly Thr Gly Thr Val 210 215 220 Ala Ala Ala Cys Ala Ala Leu Ala Asp Ala Gly Leu Gly Glu Gly Thr Ala Lys Val Cys Val Pro Arg Gly Glu Val Glu Val Gln Ile Phe Asp 245 250 Asp Gly Ser Thr Leu Thr Gly Pro Ser Ala Ile Ile Ala Leu Gly Glu 265 Val Gln Ile 275 <210> 3 <211> 1491 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(1468) <223> RXS02970 <400>3ttatttaaag acttcataat attttgggga gtgaactggt ttg gca ttg aag ggt 115 Leu Ala Leu Lys Gly 1 tac acc aac ttt gac ggt gaa ttc atc gaa ttc gga tct gtg caa gca Tyr Thr Asn Phe Asp Gly Glu Phe Ile Glu Phe Gly Ser Val Gln Ala 10 aaa gaa gag gaa aaa cgg gca ttc gac aac gat cgc gcg cac gtt ttc Lys Glu Glu Glu Lys Arg Ala Phe Asp Asn Asp Arg Ala His Val Phe 25 30

					_	_	aaa Lys 45					_		_	_	259
-	_			_	_		gac Asp		-			_			_	307
_					_	_	gca Ala								_	355
	_				-	_	caa Gln	_			_					403
_	-				_		cgc Arg		_	_	_	_	_			451
							tcc Ser 125									499
-	-	-					atc Ile	_	-	-	-	_				547
-				_		_	tac Tyr	_	_			_				595
		_	_				gaa Glu		-		_					643
	-		-				ttc Phe		-			_				691
							gaa Glu 205									739
							ttt Phe									787
	-	_					gga Gly						_			835
					_		cgc Arg			-						883
			-	_	_	_	atg Met	-				_				931

ctg ttt get tac gag cat get gge gae gat tte cag cea gae atg ate Leu Phe Ala Tyr Glu His Ala Gly Asp Asp Phe Gln Pro Asp Met Ile 280 285 290 acc ttc gcc aag ggt gtt aac gca ggt tac gcc cca ctc ggt ggc atc Thr Phe Ala Lys Gly Val Asn Ala Gly Tyr Ala Pro Leu Gly Gly Ile gtg atg acc caa tca atc cgc gat acc ttc gga tca gag gca tac tcc 1075 Val Met Thr Gln Ser Ile Arg Asp Thr Phe Gly Ser Glu Ala Tyr Ser 310 315 320 gge gga etc ace tae tee gga cae eca ett gea gta gea ece gee aag 1123 Gly Gly Leu Thr Tyr Ser Gly His Pro Leu Ala Val Ala Pro Ala Lys 330 335 gca gcg ctg gag att tac gcg gaa gga gag atc att cca cgc gta gct 1171 Ala Ala Leu Glu Ile Tyr Ala Glu Gly Glu Ile Ile Pro Arg Val Ala 345 350 355 cga ctt ggc gct gaa ctg atc gaa cct cgc ctt cgt gaa cta gcg gaa 1219 Arg Leu Gly Ala Glu Leu Ile Glu Pro Arg Leu Arg Glu Leu Ala Glu gaa aac gta gcg atc gct gac gtg cgg ggc atc gga ttc ttc tgg gca 1267 Glu Asn Val Ala Ile Ala Asp Val Arg Gly Ile Gly Phe Phe Trp Ala 380 385 gtg gag ttc aat gca gac gcc act gcc atg gct gcc ggt gct gca gaa 1315 Val Glu Phe Asn Ala Asp Ala Thr Ala Met Ala Gly Ala Ala Glu 390 395 ttc aag gaa cgc ggc gtg tgg ccg atg atc tcc ggc aac cga ttc cac 1363 Phe Lys Glu Arg Gly Val Trp Pro Met Ile Ser Gly Asn Arg Phe His 410 420 atc gcg ccg ccg ctg acc acc act gat gac gaa ttg gta gca ctg ctg 1411 Ile Ala Pro Pro Leu Thr Thr Asp Asp Glu Leu Val Ala Leu Leu 425 430 gae geg gtg gaa get gea gee caa get gte gag etg ace tte get ggg 1459 Asp Ala Val Glu Ala Ala Gln Ala Val Glu Leu Thr Phe Ala Gly 440 gcg ttg ttc taagttttct agataacaag gcc 1491 Ala Leu Phe 455

<210> 4

CHETTER WITH THE THE PERSON THE PARTY NAMED IN

<211> 456

<212> PRT

<213> Corynebacterium glutamicum

<400> 4

Leu Ala Leu Lys Gly Tyr Thr Asn Phe Asp Gly Glu Phe Ile Glu Phe 1 5 10 15

Gly Ser Val Gln Ala Lys Glu Glu Glu Lys Arg Ala Phe Asp Asn Asp 20 25 30

Arg Ala His Val Phe His Ser Trp Ser Ala Gln Asp Lys Ile Ser Pro 35 40 45

Lys Val Trp Ala Ala Ala Glu Gly Ser Thr Leu Tyr Asp Phe Asp Gly 50 55 60

Asn Ala Phe Ile Asp Met Gly Ser Gln Leu Val Ser Ala Asn Leu Gly 65 70 75 80

His Asn Asn Pro Arg Leu Val Glu Ala Ile Gln Arg Gln Ala Ala Arg 85 90 95

Leu Thr Asn Ile Asn Pro Ala Phe Gly Asn Asp Val Arg Ser Asp Val
100 105 110

Ala Ala Lys Ile Val Ser Met Ala Arg Gly Glu Phe Ser His Val Phe 115 120 125

Phe Thr Asn Gly Gly Ala Asp Ala Ile Glu His Ser Ile Arg Met Ala 130 135 140

Arg Leu His Thr Gly Arg Asn Lys Ile Leu Ser Ala Tyr Arg Ser Tyr 145 150 155 160

His Gly Ala Thr Gly Ser Ala Met Met Leu Thr Gly Glu His Arg Arg 165 170 175

Leu Gly Asn Pro Thr Thr Asp Pro Asp Ile Tyr His Phe Trp Ala Pro
180 185 190

Phe Leu His His Ser Ser Phe Phe Ala Thr Thr Gln Glu Glu Cys 195 200 205

Glu Arg Ala Leu Lys His Leu Glu Asp Val Ile Ala Phe Glu Gly Ala 210 215 220

Gly Met Ile Ala Ala Ile Val Leu Glu Pro Val Val Gly Ser Ser Gly 225 230 235 240

Ile Ile Leu Pro Pro Ala Gly Tyr Leu Asn Gly Val Arg Glu Leu Cys 245 250 255

Asn Lys His Gly Ile Leu Phe Ile Ala Asp Glu Val Met Val Gly Phe 260 265 270

Gly Arg Thr Gly Lys Leu Phe Ala Tyr Glu His Ala Gly Asp Asp Phe 275 280 285

Gln Pro Asp Met Ile Thr Phe Ala Lys Gly Val Asn Ala Gly Tyr Ala 290 295 300

Pro Leu Gly Gly Ile Val Met Thr Gln Ser Ile Arg Asp Thr Phe Gly 305 Ser Glu Ala Tyr Ser Gly Gly Leu Thr Tyr Ser Gly His Pro Leu Ala 330 Val Ala Pro Ala Lys Ala Ala Leu Glu Ile Tyr Ala Glu Gly Glu Ile 340 345 Ile Pro Arg Val Ala Arg Leu Gly Ala Glu Leu Ile Glu Pro Arg Leu Arg Glu Leu Ala Glu Glu Asn Val Ala Ile Ala Asp Val Arg Gly Ile 375 Gly Phe Phe Trp Ala Val Glu Phe Asn Ala Asp Ala Thr Ala Met Ala Ala Gly Ala Ala Glu Phe Lys Glu Arg Gly Val Trp Pro Met Ile Ser 410 Gly Asn Arg Phe His Ile Ala Pro Pro Leu Thr Thr Asp Asp Glu 425 Leu Val Ala Leu Leu Asp Ala Val Glu Ala Ala Ala Gln Ala Val Glu Leu Thr Phe Ala Gly Ala Leu Phe 450 <210> 5 <211> 1330 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(1330) <223> FRXA01009 <400> 5 ttatttaaag acttcataat attttgggga gtgaactggt ttg gca ttg aag ggt 115 Leu Ala Leu Lys Gly tac acc aac ttt gac ggt gaa ttc atc gaa ttc gga tct gtg caa gca 163 Tyr Thr Asn Phe Asp Gly Glu Phe Ile Glu Phe Gly Ser Val Gln Ala 10 15 aaa gaa gag gaa aaa cgg gca ttc gac aac gat cgc gcg cac gtt ttc 211 Lys Glu Glu Lys Arg Ala Phe Asp Asn Asp Arg Ala His Val Phe 25 30 cac tcc tgg tcc gcg cag gac aaa atc agc ccc aaa gta tgg gca gct 259 His Ser Trp Ser Ala Gln Asp Lys Ile Ser Pro Lys Val Trp Ala Ala 40 45

7

STREET, SHEET STREET, STREET,

_	_	ggt Gly		_	_		_		_						-	307
	Gly	tcc Ser														355
		gag Glu														403
	_	ttc Phe			_		_		_	_			_			451
	-	gcc Ala 120	-		_									-		499
_	•	gcc Ala		_				-	-	-	_	_				547
_		aaa Lys		_		_		-	-				-			595
		atg Met														643
	-	cca Pro	_						_							691
		ttt Phe 200	-						-	_	-					739
	_	gaa Glu	_	-				_		_		_		_	_	787
		ctg Leu														835
_		tac Tyr				-		_								883
		atc Ile														931
		gct Ala 280														979

acc ttc gcc aag ggt gtt aac gca ggt tac gcc cca ctc ggt ggc atc 1027

Thr Phe Ala Lys Gly Val Asn Ala Gly Tyr Ala Pro Leu Gly Gly Ile 295 300 305

gtg atg acc caa tca atc cgc gat acc ttc gga tca gag gca tac tcc 1075

Val Met Thr Gln Ser Ile Arg Asp Thr Phe Gly Ser Glu Ala Tyr Ser 310 325

ggc gga ctc acc tac tcc gga cac cca ctt gca gta gca ccc gcc aag 1123

Gly Gly Leu Thr Tyr Ser Gly His Pro Leu Ala Val Ala Pro Ala Lys 330 335 340

gca gcg ctg gag att tac gcg gaa gga gag atc att cca cgc gta gct 1171

Ala Ala Leu Glu Ile Tyr Ala Glu Gly Glu Ile Ile Pro Arg Val Ala 345 350 355

cga ctt ggc gct gaa ctg atc gaa cct cgc ctt cgt gaa cta gcg gaa 1219

Arg Leu Gly Ala Glu Leu Ile Glu Pro Arg Leu Arg Glu Leu Ala Glu 360 365 370

gaa aac gta gcg atc gct gac gtg cgg ggc atc gga ttc ttc tgg gca 1267

Glu Asn Val Ala Ile Ala Asp Val Arg Gly Ile Gly Phe Phe Trp Ala 375 380 385

gtg gag ttc aat gea gac gec act gec atg get gec ggt get gea gaa 1315

Val Glu Phe Asn Ala Asp Ala Thr Ala Met Ala Ala Gly Ala Ala Glu 390 395 400 405

ttc aag gaa cgc ggc 1330

Phe Lys Glu Arg Gly

410

<210> 6

<211> 410

<212> PRT

<213> Corynebacterium glutamicum

<400> 6

Leu Ala Leu Lys Gly Tyr Thr Asn Phe Asp Gly Glu Phe Ile Glu Phe 1 5 10 15

Gly Ser Val Gln Ala Lys Glu Glu Glu Lys Arg Ala Phe Asp Asn Asp 20 25 30

Arg Ala His Val Phe His Ser Trp Ser Ala Gln Asp Lys Ile Ser Pro
35 40 45

Lys Val Trp Ala Ala Ala Glu Gly Ser Thr Leu Tyr Asp Phe Asp Gly 50 55 60

Asn Ala Phe Ile Asp Met Gly Ser Gln Leu Val Ser Ala Asn Leu Gly 65 70 75 80

His Asn Asn Pro Arg Leu Val Glu Ala Ile Gln Arg Gln Ala Ala Arg 85 Leu Thr Asn Ile Asn Pro Ala Phe Gly Asn Asp Val Arg Ser Asp Val 105 Ala Ala Lys Ile Val Ser Met Ala Arg Gly Glu Phe Ser His Val Phe 115 120 125 Phe Thr Asn Gly Gly Ala Asp Ala Ile Glu His Ser Ile Arg Met Ala 135 Arg Leu His Thr Gly Arg Asn Lys Ile Leu Ser Ala Tyr Arg Ser Tyr 145 150 His Gly Ala Thr Gly Ser Ala Met Met Leu Thr Gly Glu His Arg Arg 165 170 Leu Gly Asn Pro Thr Thr Asp Pro Asp Ile Tyr His Phe Trp Ala Pro 180 185 190 Phe Leu His His Ser Ser Phe Phe Ala Thr Thr Gln Glu Glu Cys 200 Glu Arg Ala Leu Lys His Leu Glu Asp Val Ile Ala Phe Glu Gly Ala 215 220 210 Gly Met Ile Ala Ala Ile Val Leu Glu Pro Val Val Gly Ser Ser Gly 230 235 Ile Ile Leu Pro Pro Ala Gly Tyr Leu Asn Gly Val Arg Glu Leu Cys 245 Asn Lys His Gly Ile Leu Phe Ile Ala Asp Glu Val Met Val Gly Phe Gly Arg Thr Gly Lys Leu Phe Ala Tyr Glu His Ala Gly Asp Asp Phe Gln Pro Asp Met Ile Thr Phe Ala Lys Gly Val Asn Ala Gly Tyr Ala Pro Leu Gly Gly Ile Val Met Thr Gln Ser Ile Arg Asp Thr Phe Gly Ser Glu Ala Tyr Ser Gly Gly Leu Thr Tyr Ser Gly His Pro Leu Ala Val Ala Pro Ala Lys Ala Ala Leu Glu Ile Tyr Ala Glu Gly Glu Ile Ile Pro Arg Val Ala Arg Leu Gly Ala Glu Leu Ile Glu Pro Arg Leu Arg Glu Leu Ala Glu Glu Asn Val Ala Ile Ala Asp Val Arg Gly Ile Gly Phe Phe Trp Ala Val Glu Phe Asn Ala Asp Ala Thr Ala Met Ala 390 395

Ala Gly Ala Ala Glu Phe Lys Glu Arg Gly 405 410

<210> 7 <211> 792 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(769) <223> RXC02390 <400> 7 gctggtggtg ctgacccata cgctggaact ccaactgctg ttgataccgc caagatgttt 60 ggeegegagg atetegtage tegettegag teataggeeg gtg gag tgg ace get 115 Val Glu Trp Thr Ala ttt ggc acc ctg att ctg ctc aat ttg gtg ggc agt tta tcc ccg ggg 163 Phe Gly Thr Leu Ile Leu Leu Asn Leu Val Gly Ser Leu Ser Pro Gly 10 cet gat acc ttt ttc ctc ctc cgc tta gcc acc cgc tcc aga gcg cac 211 Pro Asp Thr Phe Phe Leu Leu Arg Leu Ala Thr Arg Ser Arg Ala His 25 gcg atc gct ggc gtc gcc ggc atc gtc acc gga ctc acg gtg tgg gtg 259 Ala Ile Ala Gly Val Ala Gly Ile Val Thr Gly Leu Thr Val Trp Val 307 acg ctg acg gtc gtg gga gca gcg gcg ctg ctc acc act tat ccg tcg Thr Leu Thr Val Val Gly Ala Ala Leu Leu Thr Thr Tyr Pro Ser 55 att ctc gga atc atc cag ctc gtc ggc ggc acg tac cta agc ttc att 355 Ile Leu Gly Ile Ile Gln Leu Val Gly Gly Thr Tyr Leu Ser Phe Ile 70 403 ggg tac aag ttg ctg cgc tcg gcg tcg aga gag ctt atc gac gcc cgc Gly Tyr Lys Leu Leu Arg Ser Ala Ser Arg Glu Leu Ile Asp Ala Arg 90 cag ttc cgt ttc aac gcc gat gcc cga cct atc ccg gat gcg gta gaa 451 Gln Phe Arg Phe Asn Ala Asp Ala Arg Pro Ile Pro Asp Ala Val Glu 105 110 115 gca ctg gga acc cgc act cag gta tat cga caa ggt ttg gcc acc aac 499 Ala Leu Gly Thr Arg Thr Gln Val Tyr Arg Gln Gly Leu Ala Thr Asn 125 130 120 ctg tca aac cct aaa gtt gtc atg tac ttc gcg gca att ctg gct ccg 547 Leu Ser Asn Pro Lys Val Val Met Tyr Phe Ala Ala Ile Leu Ala Pro 135 140 145 595 ttg atg cca gcg cac cca tca ccg gtg ctg gcg ttc tct atc atc gtg Leu Met Pro Ala His Pro Ser Pro Val Leu Ala Phe Ser Ile Ile Val 165 150 155 160

gcg att tta gtg cag acc ttt gtt acc ttc tct gct gtg tgc ctc att Ala Ile Leu Val Gln Thr Phe Val Thr Phe Ser Ala Val Cys Leu Ile 170 175
gtc tct acg gag cgt gtg cgc aaa gca atg ctg cgt gca ggt ccc tgg Val Ser Thr Glu Arg Val Arg Lys Ala Met Leu Arg Ala Gly Pro Trp 185 190 195
ttt gac ctg ctt gct ggc gtt gtc ttc ctc gtt gtg ggt gtg act ctg Phe Asp Leu Leu Ala Gly Val Val Phe Leu Val Val Gly Val Thr Leu 200 205 210
ctg tat gaa ggc ctg acc ggt tta ctc ggg taaaggcata aaaaatggct Leu Tyr Glu Gly Leu Thr Gly Leu Leu Gly 215 220
tcc
<210> 8 <211> 223 <212> PRT <213> Corynebacterium glutamicum
<400> 8 Val Glu Tro Thr Ala Pho Clu The Factor To The Tro The Ala Pho Clu The Factor Tro
Val Glu Trp Thr Ala Phe Gly Thr Leu Ile Leu Leu Asn Leu Val Gly 1 5 10 15
Ser Leu Ser Pro Gly Pro Asp Thr Phe Phe Leu Leu Arg Leu Ala Thr 20 25 30
Arg Ser Arg Ala His Ala Ile Ala Gly Val Ala Gly Ile Val Thr Gly 35 40 45
Leu Thr Val Trp Val Thr Leu Thr Val Val Gly Ala Ala Ala Leu Leu 50 55 60
Thr Thr Tyr Pro Ser Ile Leu Gly Ile Ile Gln Leu Val Gly Gly Thr 65 70 75 80
Tyr Leu Ser Phe Ile Gly Tyr Lys Leu Leu Arg Ser Ala Ser Arg Glu 85 90 95
Leu Ile Asp Ala Arg Gln Phe Arg Phe Asn Ala Asp Ala Arg Pro Ile 100 105 110
Pro Asp Ala Val Glu Ala Leu Gly Thr Arg Thr Gln Val Tyr Arg Gln 115 120 125
Gly Leu Ala Thr Asn Leu Ser Asn Pro Lys Val Val Met Tyr Phe Ala 130 135 140
Ala Ile Leu Ala Pro Leu Met Pro Ala His Pro Ser Pro Val Leu Ala 145 150 155 160
Phe Ser Ile Ile Val Ala Ile Leu Val Gln Thr Phe Val Thr Phe Ser 165 170 175
Ala Val Cys Leu Ile Val Ser Thr Glu Arg Val Arg Lys Ala Met Leu 180 185 190

Arg Ala Gly Pro Trp Phe Asp Leu Leu Ala Gly Val Val Phe Leu Val 200 Val Gly Val Thr Leu Leu Tyr Glu Gly Leu Thr Gly Leu Leu Gly 215 <210> 9 <211> 897 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(874) <223> RXC01796 <400> 9 atgtaactcg atcaggtgga aatgcccgca aaagtggcgg cggtggccga gggatggccg 60 ttggtgcggc atcggtggcc tgctactagt cgggctcttc ttg ctc ctt ggc ggt 115 Leu Leu Leu Gly Gly 1 aac cct gcc gag atc gac cag gtt tta ggt ggc gat caa acc cag atc 163 Asn Pro Ala Glu Ile Asp Gln Val Leu Gly Gly Asp Gln Thr Gln Ile 10 gag tot gga gag toc acc gga gcc ggc gac ttt gat cac tgc caa acc 211 Glu Ser Gly Glu Ser Thr Gly Ala Gly Asp Phe Asp His Cys Gln Thr ggc gca gat gcc aac gcc agt gat tgt cgc ctt tac tac acc tca 259 Gly Ala Asp Ala Asn Ala Ser Asp Asp Cys Arg Leu Tyr Tyr Thr Ser 40 45 ttc tcc gtc aat gaa atg tgg cag act ttg ctt cca gct cag gct ggt 307 Phe Ser Val Asn Glu Met Trp Gln Thr Leu Leu Pro Ala Gln Ala Gly 55 atc gaa tac acc gag ccg aca ttg act ctt ttc aaa aac tcc acc caa 355 Ile Glu Tyr Thr Glu Pro Thr Leu Thr Leu Phe Lys Asn Ser Thr Gln acc ggc tgc ggt ttc gct tct gcg tcc act ggg ccg ttt tac tgt ccg 403 Thr Gly Cys Gly Phe Ala Ser Ala Ser Thr Gly Pro Phe Tyr Cys Pro tca gac caa gat gct tat ttt gac ttg act ttc ttc gat cag atg cgt 451 Ser Asp Gln Asp Ala Tyr Phe Asp Leu Thr Phe Phe Asp Gln Met Arg cag ttc ggt gca gaa aac gcc ccg ctt gcc cag atg tac atc gtg gcg 499 Gln Phe Gly Ala Glu Asn Ala Pro Leu Ala Gln Met Tyr Ile Val Ala 120 125 cac gag tac ggc cac cac gtc caa aac ctc gag ggc aca ctc gga ctg 547 His Glu Tyr Gly His His Val Gln Asn Leu Glu Gly Thr Leu Gly Leu 140 135 tcc aat tac aac gat ccg ggc gct gat tcc aac gcc gtc aag atc gag 595

Ser 150	Asn	Tyr	Asn	Asp	Pro 155	Gly	Ala	Asp	Ser	Asn 160	Ala	Val	Lys	Ile	Glu 165	
			gat Asp													643
	_	-	ccg Pro 185							_				_		691
			gct Ala													739
			gat Asp													787
			gac Asp													835
gcc Ala	tgc Cys	gac Asp	ttc Phe	ctc Leu 250	ggc	cgg Arg	ggc Gly	gtc Val	tac Tyr 255	aac Asn	gac Asp	gct Ala	taaa	agcai	ttg	884
ctt	tega	acg t	tct													897
<213	0> 10 l> 25 2> PF 3> Co	88 RT	ebact	eri	um gl	Lutar	nicur	n								
<400)> 10)														
			Gly	Gly 5	Asn	Pro	Ala	Glu	Ile 10	Asp	Gln	Val	Leu	Gly 15	Gly	
Asp	Gln	Thr	Gln 20	Ile	Glu	Ser	Gly	G1u 25	Ser	Thr	Gly	Ala	Gly 30	Asp	Phe	
Asp	His	Cys 35	Gln	Thr	Gly	Ala	Asp 40	Ala	Asn	Ala	Ser	Asp 45	Asp	Cys	Arg	
Leu	Туr 50	Tyr	Thr	Ser	Phe	Ser 55	Val	Asn	Glu	Met	Trp 60	Gln	Thr	Leu	Leu	
Pro 65	Ala	Gln	Ala	Gly	Ile 70	Glu	Tyr	Thr	Glu	Pro 75	Thr	Leu	Thr	Leu	Phe 80	
Lys	Asn	Ser	Thr	Gln 85	Thr	Gly	Cys	Gly	Phe 90	Ala	Ser	Ala	Ser	Thr 95	Gly	
Pro	Phe	Tyr	Суs 100	Pro	Ser	Asp	Gln	Asp 105	Ala	Tyr	Phe	Asp	Leu 110	Thr	Phe	
Phe	Asp	Gln 115	Met	Arg	Gln	Phe	Gly 120	Ala	Glu	Asn	Ala	Pro 125	Leu	Ala	Gln	
Met	Tyr	Ile	Val	Ala	His	Glu	Tyr	Gly	His	His	Val	Gln	Asn	Leu	Glu	

140 130 135 Gly Thr Leu Gly Leu Ser Asn Tyr Asn Asp Pro Gly Ala Asp Ser Asn 155 150 Ala Val Lys Ile Glu Leu Gln Ala Asp Cys Tyr Ala Gly Ile Trp Ala 170 Asn His Ser Ser Glu Gly Pro Asp Pro Leu Leu Gln Pro Ile Thr Glu Ser Glu Leu Asp Ser Ala Leu Leu Ala Ala Ser Ala Val Gly Asp Asp 200 Asn Ile Gln Gln Arg Ser Gly Gly Asp Val Asn Pro Glu Ser Trp Thr His Gly Ser Ser Gln Gln Arg Lys Asp Ala Phe Leu Ala Gly Tyr Asn 235 Thr Gly Gln Met Ser Ala Cys Asp Phe Leu Gly Arg Gly Val Tyr Asn 250 Asp Ala <210> 11 <211> 771 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(748) <223> RXC01207 <400> 11 cttcatgatc tcaccggcag agcgcgtttt gttacagcgc gtaaactgtg actttgaaaa 60 atttttgaac aatccgtaca ccaacttcag gagaaaaaca gtg agc aga atc tat Val Ser Arg Ile Tyr gac tgt gcc gac caa gac tcc cgt gca gca ggc cta aag gcg gct gtc 163 Asp Cys Ala Asp Gln Asp Ser Arg Ala Ala Gly Leu Lys Ala Ala Val 10 gat gca gtc aaa gcc ggt cag ctc gtt gtc ctt ccc acg gat acc ctt 211 Asp Ala Val Lys Ala Gly Gln Leu Val Val Leu Pro Thr Asp Thr Leu 25 tat gga ctc ggc tgc gac gct ttc aac aac gag gca gta gcc aac ctt 259 Tyr Gly Leu Gly Cys Asp Ala Phe Asn Asn Glu Ala Val Ala Asn Leu 45 ctg gcc acc aaa cac cgt ggc ccc gat atg ccc gtt cca gtg ctc gtc 307 Leu Ala Thr Lys His Arg Gly Pro Asp Met Pro Val Pro Val Leu Val 60 355 ggc agc tgg gac acc att caa gga ctt gtg cac tcc tat tct gcg cag

Gly 70	Ser	Trp	Asp °	Thr	Ile 75	Gln	Gly	Leu	Val	His 80	Ser	Tyr	Ser	Ala	Gln 85	
							ttc Phe									403
					_		ccg Pro					_		_		451
							ctg Leu 125									499
							gtc Val			-						547
							gag Glu									595
							ggc Gly									643
							ccc Pro									691
							ggc Gly 205									739
-	ctg Leu 215	_	taaa	atggg	gag t	cggt	tteg	ac ač	ıg							771
<212 <212)> 12 l> 21 2> PF 3> Co	L6 RT	ebact	eriu	ım g]	lutan	nicum	n								
)> 12 Ser		Ile	Tyr 5	Asp	Cys	Ala	Asp	Gln 10	Asp	Ser	Arg	Ala	Ala 15	Gly	
Leu	Lys	Ala	Ala 20	Val	qaA	Ala	Val	Lys 25	Ala	Gly	Gln	Leu	Val 30	Val	Leu	
Pro	Thr	Asp 35	Thr	Leu	Tyr	Gly	Leu 40	Gly	Cys	Asp	Ala	Phe 45	Asn	Asn	Glu	
Ala	Val 50	Ala	Asn	Leu	Leu	Ala 55	Thr	Lys	His	Arg	Gly 60	Pro	Asp	Met	Pro	
Val 65	Pro	Val	Leu	Val	Gly 70	Ser	Trp	Asp	Thr	Ile 75	Gln	Gly	Leu	Val	His 80	

Ser Tyr Ser Ala Gln Ala Lys Ala Leu Val Glu Ala Phe Trp Pro Gly Gly Leu Ser Ile Ile Val Pro Gln Ala Pro Ser Leu Pro Trp Asn Leu 105 Gly Asp Thr Arg Gly Thr Val Met Leu Arg Met Pro Leu His Pro Val 120 Ala Ile Glu Leu Leu Arg Gln Thr Gly Pro Met Ala Val Ser Ser Ala Asn Ile Ser Gly His Thr Pro Pro Thr Thr Val Leu Glu Ala Arg Gln Gln Leu Asn Gln Asn Val Ala Val Tyr Leu Asp Gly Gly Glu Cys Ala 170 Leu Ala Thr Pro Ser Thr Ile Val Asp Ile Ser Gly Pro Ala Pro Lys 185 Ile Leu Arg Glu Gly Ala Ile Ser Ala Glu Arg Val Gly Glu Val Leu 200 Gly Val Ser Ala Glu Ser Leu Arg <210> 13 <211> 1026 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(1003) <223> RXC00657 <400> 13 gtgcggatcg ggtatccgcg ctacacttag aggtgttaga gatcatgagt ttccacgaac 60 tgtaacgcag gattcaccaa tcaatgaaag gtcgaccgac atg agc act gaa gac Met Ser Thr Glu Asp 163 att gtc gtc gta gca gta gat ggc tcg gac gcc tca aaa caa gct gtt Ile Val Val Val Ala Val Asp Gly Ser Asp Ala Ser Lys Gln Ala Val 15 10 cgg tgg gct gca aat acc gcc aac aaa cgt ggc att cca ctt cgc ttg 211 Arg Trp Ala Ala Asn Thr Ala Asn Lys Arg Gly Ile Pro Leu Arg Leu 25 30 259 gct tcc agc tac acc atg cct cag ttc ctc tac gca gag gga atg gtt Ala Ser Ser Tyr Thr Met Pro Gln Phe Leu Tyr Ala Glu Gly Met Val 40 45 307 cca cca caa gag ctt ttc gat gac ctc cag gcc gaa gcc ctg gaa aag Pro Pro Gln Glu Leu Phe Asp Asp Leu Gln Ala Glu Ala Leu Glu Lys 55 60 65

								cat His								355
								agt Ser								403
								gtc Val 110								451
				_	•	-		tcc Ser	_					-	-	499
								gtc Val								547
-	-	-	_				_	gtc Val	_			-				595
								gca Ala								643
								acc Thr 190								691
_			_			_	_	gct Ala		_	_		-	_		739
_	-	_			_	_	-	atc Ile	_	_		_		-		787
gaa Glu 230	aag Lys	tac Tyr	cca Pro	agt Ser	gta Val 235	acc Thr	gtc Val	aag Lys	aag Lys	atc Ile 240	atc Ile	acc Thr	cgt Arg	gac Asp	cgc Arg 245	835
								tct Ser								883
-				_	_			ttt Phe 270								931
								gca Ala					Met			979
1026	5							tagt	ttct	ctt t	aagt	tteg	ga to	gc		
Arg	Pro 295	Pro	Glu	Lys	Ile	Lys 300	Lys									

<210> 14

<211> 301

<212> PRT

<213> Corynebacterium glutamicum

<400> 14

Met Ser Thr Glu Asp Ile Val Val Val Ala Val Asp Gly Ser Asp Ala 1 5 10 15

Ser Lys Gln Ala Val Arg Trp Ala Ala Asn Thr Ala Asn Lys Arg Gly 20 25 30

Ile Pro Leu Arg Leu Ala Ser Ser Tyr Thr Met Pro Gln Phe Leu Tyr 35 40 45

Ala Glu Gly Met Val Pro Pro Gln Glu Leu Phe Asp Asp Leu Gln Ala 50 55 60

Glu Ala Leu Glu Lys Ile Asn Glu Ala Arg Asp Ile Ala His Glu Val 65 70 75 80

Ala Pro Glu Ile Lys Ile Gly His Thr Ile Ala Glu Gly Ser Pro Ile 85 90 95

Asp Met Leu Glu Met Ser Pro Asp Ala Thr Met Ile Val Met Gly 100 105 110

Ser Arg Gly Leu Gly Gly Leu Ser Gly Met Val Met Gly Ser Val Ser 115 120 125

Gly Ala Val Val Ser His Ala Lys Cys Pro Val Val Val Arg Glu 130 135 140

Asp Ser Ala Val Asn Glu Asp Ser Lys Tyr Gly Pro Val Val Gly 145 150 155 160

Val Asp Gly Ser Glu Val Ser Gln Gln Ala Thr Glu Tyr Ala Phe Ala 165 170 175

Glu Ala Glu Ala Arg Gly Ala Glu Leu Val Ala Val His Thr Trp Met
180 185 190

Asp Met Gln Val Gln Ala Ser Leu Ala Gly Leu Ala Ala Ala Gln Gln 195 200 205

Gln Trp Asp Glu Val Glu Arg Gln Gln Thr Asp Met Leu Ile Glu Arg 210 215 220

Leu Ala Pro Leu Val Glu Lys Tyr Pro Ser Val Thr Val Lys Lys Ile 225 230 235 240

Ile Thr Arg Asp Arg Pro Val Arg Ala Leu Ala Glu Ala Ser Glu Asn 245 250 255

Ala Gln Leu Leu Val Val Gly Ser His Gly Arg Gly Gly Phe Lys Gly 260 265 270

Met Leu Gly Ser Thr Ser Arg Ala Leu Leu Gln Ser Ala Pro Cys 275 280 285

Pro Met Met Val Val Arg Pro Pro Glu Lys Ile Lys Lys 290 295 300

<210> 15 <211> 1059 <212> DNA <213> Corynebacterium glutamicum <220>

<221> CDS <222> (101)

<222> (101)..(1036)

<223> RXC00552

<400> 15

ccgccaacaa ggcagcaaag ctcgatccaa ttgacgcctt gcgttatgag taaaagcctc 60

gtttttaagg tagccacaca tcgcactaga ctgaagaact gtg gct acc tca aaa 115 . Val Ala Thr Ser Lys 1 5

att ctt ctt tat tac gca ttc acc ccg ctc tct gac cct aaa gcg gtt $$ 163 Ile Leu Leu Tyr Tyr Ala Phe Thr Pro Leu Ser Asp Pro Lys Ala Val $$ 10 $$ 15 $$ 20

cag ctg tgg cag cgt gag ctc tgc gag tca ctg aat ctt cgt ggc cgc $\,$ 211 Gln Leu Trp Gln Arg Glu Leu Cys Glu Ser Leu Asn Leu Arg Gly Arg $\,$ 25 $\,$ 30 $\,$ 35

atc ctg atc tcc act cac ggc atc aat gga acc gtg ggc gga gat att 259

Ile Leu Ile Ser Thr His Gly Ile Asn Gly Thr Val Gly Gly Asp Ile

40 45 50

gat gat tgc aag gcg tac att aaa aag acc cgc gag tac cca ggt ttc 307 Asp Asp Cys Lys Ala Tyr Ile Lys Lys Thr Arg Glu Tyr Pro Gly Phe 55 60 65

aac cgc atg cag ttt aag tgg tcc gag ggt ggc gct gag gat ttc cca 355
Asn Arg Met Gln Phe Lys Trp Ser Glu Gly Gly Ala Glu Asp Phe Pro
70 75 80 85

aag ctc agt gtc aaa gtc cgc gat gag atc gtt gcc ttc ggc gct cca 403 Lys Leu Ser Val Lys Val Arg Asp Glu Ile Val Ala Phe Gly Ala Pro 90 95 100

gat gag ctc aaa gtg gat gaa aac ggc gtc gtc ggt ggc ggc gtt cac 451 Asp Glu Leu Lys Val Asp Glu Asn Gly Val Val Gly Gly Val His 105 110 115

ctg aaa cca cag cag gtc aat gag ctt gtg gaa gcc cgt ggc gat gaa 499 Leu Lys Pro Gln Gln Val Asn Glu Leu Val Glu Ala Arg Gly Asp Glu

gtt gtg ttc ttt gac ggc cgc aac gca atg gaa gcc cag atc ggc aag 547 Val Val Phe Phe Asp Gly Arg Asn Ala Met Glu Ala Gln Ile Gly Lys 135 140 145

ttc aag gac gct gtt gtc cct gac gta gaa acc act cat gat ttc atc 595
Phe Lys Asp Ala Val Val Pro Asp Val Glu Thr Thr His Asp Phe Ile
150 155 160 165

gca gaa att gag tot gga aaa tac gac gat oto aaa gac aag oot gtg Ala Glu Ile Glu Ser Gly Lys Tyr Asp Asp Leu Lys Asp Lys Pro Val 170 175 gtc acc tac tgc acc ggc gga att cgt tgt gag atc ctg agt tca ctc Val Thr Tyr Cys Thr Gly Gly Ile Arg Cys Glu Ile Leu Ser Ser Leu 185 190 atg atc aac cgt ggt ttc aaa gag gtc tac caa atc gat ggc ggc atc Met Ile Asn Arg Gly Phe Lys Glu Val Tyr Gln Ile Asp Gly Gly Ile 200 gtt cgc tac ggc gag cag ttt ggc aac aag ggc ctg tgg gaa ggc tcc 787 Val Arg Tyr Gly Glu Gln Phe Gly Asn Lys Gly Leu Trp Glu Gly Ser 215 ctc tac gtt ttc gat aag cgc atg cat atg gaa ttc ggc gag gat tac Leu Tyr Val Phe Asp Lys Arg Met His Met Glu Phe Gly Glu Asp Tyr 230 aaa gag gtc gga cac tgc atc cat tgc gat act ccc acc aac aaa ttt 883 Lys Glu Val Gly His Cys Ile His Cys Asp Thr Pro Thr Asn Lys Phe gag cac tgc ctc aac gaa gat gat tgc cgc gag ctc gtg ttg atg tgc Glu His Cys Leu Asn Glu Asp Asp Cys Arg Glu Leu Val Leu Met Cys cct gat tgc ttc gcc aat gtt gag acc cgt cat tgc aag cgc gaa cgc Pro Asp Cys Phe Ala Asn Val Glu Thr Arg His Cys Lys Arg Glu Arg 280 tgt gca gca att gct gcg gat ttc gct gag caa gga att gat ccg ctc Cys Ala Ala Ile Ala Ala Asp Phe Ala Glu Gln Gly Ile Asp Pro Leu 300 gtt act tct taaaaagggt atggtggctg ggt 1059 Val Thr Ser 310 <210> 16 <211> 312 <212> PRT <213> Corynebacterium glutamicum <400> 16 Val Ala Thr Ser Lys Ile Leu Leu Tyr Tyr Ala Phe Thr Pro Leu Ser Asp Pro Lys Ala Val Gln Leu Trp Gln Arg Glu Leu Cys Glu Ser Leu Asn Leu Arg Gly Arg Ile Leu Ile Ser Thr His Gly Ile Asn Gly Thr Val Gly Gly Asp Ile Asp Asp Cys Lys Ala Tyr Ile Lys Lys Thr Arg 50 55

Glu Tyr Pro Gly Phe Asn Arg Met Gln Phe Lys Trp Ser Glu Gly Gly Ala Glu Asp Phe Pro Lys Leu Ser Val Lys Val Arg Asp Glu Ile Val 85 90 Ala Phe Gly Ala Pro Asp Glu Leu Lys Val Asp Glu Asn Gly Val Val 105 Gly Gly Val His Leu Lys Pro Gln Gln Val Asn Glu Leu Val Glu 115 120 Ala Arg Gly Asp Glu Val Val Phe Phe Asp Gly Arg Asn Ala Met Glu 135 Ala Gln Ile Gly Lys Phe Lys Asp Ala Val Val Pro Asp Val Glu Thr 145 150 155 Thr His Asp Phe Ile Ala Glu Ile Glu Ser Gly Lys Tyr Asp Asp Leu 165 170 Lys Asp Lys Pro Val Val Thr Tyr Cys Thr Gly Gly Ile Arg Cys Glu 180 185 Ile Leu Ser Ser Leu Met Ile Asn Arg Gly Phe Lys Glu Val Tyr Gln 200 Ile Asp Gly Gly Ile Val Arg Tyr Gly Glu Gln Phe Gly Asn Lys Gly 210 215 Leu Trp Glu Gly Ser Leu Tyr Val Phe Asp Lys Arg Met His Met Glu 235 Phe Gly Glu Asp Tyr Lys Glu Val Gly His Cys Ile His Cys Asp Thr 245 250 Pro Thr Asn Lys Phe Glu His Cys Leu Asn Glu Asp Asp Cys Arg Glu 265 Leu Val Leu Met Cys Pro Asp Cys Phe Ala Asn Val Glu Thr Arg His 275 280 Cys Lys Arg Glu Arg Cys Ala Ala Ile Ala Ala Asp Phe Ala Glu Gln 295 300 Gly Ile Asp Pro Leu Val Thr Ser 310 <210> 17 <211> 1578 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS

<222> (101)..(1555)

<223> RXN00351

<400> 17

gaaggctgct gctaagaaaa cgaccaagaa gaccactaag aaaactacta aaaagaccac 60

(

cgcaaagaag acca	caaaga agtctta	agc cggatcttat	atg gat gat Met Asp Asp 1	
agc ttt gta gtt Ser Phe Val Val	-		-	_
cca gat ggt agc Pro Asp Gly Ser 25	•	•		•
ggg ctt tcc ccc Gly Leu Ser Pro 40				
cct gga act gta Pro Gly Thr Val 55		-	-	*
gtt ttg ctg cac Val Leu Leu His 70			Asp Tyr Glu	• •
tac gag ggc ttt Tyr Glu Gly Phe	_			- •
att gtt act ccg Ile Val Thr Pro 105				
gta aac ctc aag Val Asn Leu Lys 120	Phe Ala Glu A			
gcc act gtg tgg Ala Thr Val Trp 135				
ttg cgc cag atg Leu Arg Gln Met 150			Phe Phe Leu	
ccc ttc cct tcc Pro Phe Pro Ser	-			
att gtt cga ggc Ile Val Arg Gly 185				Leu Val
caa aac gca gaa Gln Asn Ala Glu 200	Asn Phe Leu A			
gcc ggg tct cat Ala Gly Ser His 215				

gca ttg gtg cgt gag att ggc gct cat gtt gaa acc gct gac gga agg 835 Ala Leu Val Arg Glu Ile Gly Ala His Val Glu Thr Ala Asp Gly Arg 230 235 240 cga gtt agc gtc ggg gcg ttc ccg atc tcg att gat gtt gaa atg ttt 883 Arg Val Ser Val Gly Ala Phe Pro Ile Ser Ile Asp Val Glu Met Phe 250 255 260 ggg gag gcg tcg aaa agc gcc gtt ctt gat ctt tta aaa acg ctc gac 931 Gly Glu Ala Ser Lys Ser Ala Val Leu Asp Leu Leu Lys Thr Leu Asp 265 270 gag ccg gaa acc gta ttc ctg ggc gtt gac cga ctg gac tac acc aag Glu Pro Glu Thr Val Phe Leu Gly Val Asp Arg Leu Asp Tyr Thr Lys 280 285 290 ggc att ttg cag cgc ctg ctt gcg ttt gag gaa ctg ctg gaa tcc ggc 1027 Gly Ile Leu Gln Arg Leu Leu Ala Phe Glu Glu Leu Leu Glu Ser Gly 300 gcg ttg gag gcc gac aaa gct gtg ttg ctg cag gtc gcg acg cct tcg 1075 Ala Leu Glu Ala Asp Lys Ala Val Leu Leu Gln Val Ala Thr Pro Ser 315 320 cgt gag cgc att gat cac tat cgt gtg tcg cgt tcg cag gtc gag gaa Arg Glu Arg Ile Asp His Tyr Arg Val Ser Arg Ser Gln Val Glu Glu 330 335 gcc gtc ggc cgt atc aat ggt cgt ttc ggt cgc atg ggg cgt ccc gtg 1171 Ala Val Gly Arg Ile Asn Gly Arg Phe Gly Arg Met Gly Arg Pro Val 345 gtg cat tat cta cac agg tca ttg agc aaa aat gat ctc cag gtg ctg Val His Tyr Leu His Arg Ser Leu Ser Lys Asn Asp Leu Gln Val Leu 360 365 tat acc gca gcc gat gtc atg ctg gtt acg cct ttt aaa gac ggt atg Tyr Thr Ala Ala Asp Val Met Leu Val Thr Pro Phe Lys Asp Gly Met aac ttg gtg gct aaa gaa ttc gtg gcc aac cac cgc gac ggc act ggt Asn Leu Val Ala Lys Glu Phe Val Ala Asn His Arg Asp Gly Thr Gly 390 395 400 405 gct ttg gtg ctg tcc gaa ttt gcc ggc gcg gcc act gag ctg acc ggt 1363 Ala Leu Val Leu Ser Glu Phe Ala Gly Ala Ala Thr Glu Leu Thr Gly 410 415 gcg tat tta tgc aac cca ttt gat gtg gaa tcc atc aaa cgg caa atg 1411 Ala Tyr Leu Cys Asn Pro Phe Asp Val Glu Ser Ile Lys Arg Gln Met 425 430 435

Ł

1

1

gtg gca gct gtc cat gat ttg aag cac aat ccg gaa tct gcg gca acg

Val Ala Ala Val His Asp Leu Lys His Asn Pro Glu Ser Ala Ala Thr 440 445 450

cga atg aaa acg aac agc gag cag gtc tat acc cac gac gtc aac gtg 1507

Arg Met Lys Thr Asn Ser Glu Gln Val Tyr Thr His Asp Val Asn Val 455 460 465

tgg gct aat agt ttc ctg gat tgt ttg gca cag tcg gga gaa aac tca . 1555

Trp Ala Asn Ser Phe Leu Asp Cys Leu Ala Gln Ser Gly Glu Asn Ser 470 480 485

tgaaccgcgc acgaatcgcg acc 1578

<210> 18

<211> 485

<212> PRT

<213> Corynebacterium glutamicum

<400> 18

Met Asp Asp Ser Asn Ser Phe Val Val Val Ala Asn Arg Leu Pro Val 1 5 10 15

Asp Met Thr Val His Pro Asp Gly Ser Tyr Ser Ile Ser Pro Ser Pro 20 25 30

Gly Gly Leu Val Thr Gly Leu Ser Pro Val Leu Glu Gln His Arg Gly 35 40 45

Cys Trp Val Gly Trp Pro Gly Thr Val Asp Val Ala Pro Glu Pro Phe 50 60

Arg Thr Asp Thr Gly Val Leu Leu His Pro Val Val Leu Thr Ala Ser 65 70 75 80

Asp Tyr Glu Gly Phe Tyr Glu Gly Phe Ser Asn Ala Thr Leu Trp Pro 85 90 95

Leu Phe His Asp Leu Ile Val Thr Pro Val Tyr Asn Thr Asp Trp Trp 100 105 110

His Ala Phe Arg Glu Val Asn Leu Lys Phe Ala Glu Ala Val Ser Gln 115 120 125

Val Ala Ala His Gly Ala Thr Val Trp Val Gln Asp Tyr Gln Leu Leu 130 135 140

Leu Val Pro Gly Ile Leu Arg Gln Met Arg Pro Asp Leu Lys Ile Gly 145 150 155 160

Phe Phe Leu His Ile Pro Phe Pro Ser Pro Asp Leu Phe Arg Gln Leu 165 170 175

Pro Trp Arg Glu Glu Ile Val Arg Gly Met Leu Gly Ala Asp Leu Val 180 185 190

Gly Phe His Leu Val Gln Asn Ala Glu Asn Phe Leu Ala Leu Thr Gln Gln Val Ala Gly Thr Ala Gly Ser His Val Gly Gln Pro Asp Thr Leu 215 Gln Val Ser Gly Glu Ala Leu Val Arg Glu Ile Gly Ala His Val Glu 230 235 Thr Ala Asp Gly Arg Arg Val Ser Val Gly Ala Phe Pro Ile Ser Ile 245 Asp Val Glu Met Phe Gly Glu Ala Ser Lys Ser Ala Val Leu Asp Leu 265 Leu Lys Thr Leu Asp Glu Pro Glu Thr Val Phe Leu Gly Val Asp Arg Leu Asp Tyr Thr Lys Gly Ile Leu Gln Arg Leu Leu Ala Phe Glu Glu 295 300 Leu Leu Glu Ser Gly Ala Leu Glu Ala Asp Lys Ala Val Leu Leu Gln 305 Val Ala Thr Pro Ser Arg Glu Arg Ile Asp His Tyr Arg Val Ser Arg Ser Gln Val Glu Glu Ala Val Gly Arg Ile Asn Gly Arg Phe Gly Arg 345 340 Met Gly Arg Pro Val Val His Tyr Leu His Arg Ser Leu Ser Lys Asn 360 Asp Leu Gln Val Leu Tyr Thr Ala Ala Asp Val Met Leu Val Thr Pro 375 Phe Lys Asp Gly Met Asn Leu Val Ala Lys Glu Phe Val Ala Asn His 390 395 Arg Asp Gly Thr Gly Ala Leu Val Leu Ser Glu Phe Ala Gly Ala Ala 410 415 Thr Glu Leu Thr Gly Ala Tyr Leu Cys Asn Pro Phe Asp Val Glu Ser Ile Lys Arg Gln Met Val Ala Ala Val His Asp Leu Lys His Asn Pro Glu Ser Ala Ala Thr Arg Met Lys Thr Asn Ser Glu Gln Val Tyr Thr 450 His Asp Val Asn Val Trp Ala Asn Ser Phe Leu Asp Cys Leu Ala Gln 470 475 Ser Gly Glu Asn Ser 485

<210> 19 <211> 1546

7

<212> DNA

<213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(1546) <223> FRXA00351 <400> 19 gaaggctgct gctaagaaa cgaccaagaa gaccactaag aaaactacta aaaagaccac 60 cgcaaagaag accacaaaga agtcttaagc cggatcttat atg gat gat tcc aat Met Asp Asp Ser Asn age ttt gta gtt gtt get aac egt etg eca gtg gat atg act gte eac 163 Ser Phe Val Val Val Ala Asn Arg Leu Pro Val Asp Met Thr Val His 10 cca gat ggt agc tat agc atc tcc ccc agc ccc ggt ggc ctt gtc acg 211 Pro Asp Gly Ser Tyr Ser Ile Ser Pro Ser Pro Gly Gly Leu Val Thr 25 ggg ctt tcc ccc gtt ctg gaa caa cat cgt gga tgt tgg gtc gga tgg 259 Gly Leu Ser Pro Val Leu Glu Gln His Arg Gly Cys Trp Val Gly Trp 40 cct gga act gta gat gtt gca ccc gaa cca ttt cga aca gat acg ggt 307 Pro Gly Thr Val Asp Val Ala Pro Glu Pro Phe Arg Thr Asp Thr Gly 55 gtt ttg ctg cac cct gtt gtc ctc act gca agt gac tat gaa ggc ttc 355 Val Leu Leu His Pro Val Val Leu Thr Ala Ser Asp Tyr Glu Gly Phe tac gag ggc ttt tca aac gca acg ctg tgg cct ctt ttc cac gat ctg 403 Tyr Glu Gly Phe Ser Asn Ala Thr Leu Trp Pro Leu Phe His Asp Leu 90 att gtt act ccg gtg tac aac acc gat tgg tgg cat gcg ttt cgg gag 451 Ile Val Thr Pro Val Tyr Asn Thr Asp Trp Trp His Ala Phe Arg Glu 110 gta aac ctc aag ttc gct gaa gcc gtg agc caa gtg gcg gca cac ggt 499 Val Asn Leu Lys Phe Ala Glu Ala Val Ser Gln Val Ala Ala His Gly 125 gcc act gtg tgg gtg cag gac tat cag ctg ttg ctg gtt cct ggc att 547 Ala Thr Val Trp Val Gln Asp Tyr Gln Leu Leu Val Pro Gly Ile 140 ttg cgc cag atg cgc cct gat ttg aag atc ggt ttc ttc ctc cac att 595 Leu Arg Gln Met Arg Pro Asp Leu Lys Ile Gly Phe Phe Leu His Ile 155 ccc ttc cct tcc cct gat ctg ttc cgt cag ctg ccg tgg cgt gaa gag 643 Pro Phe Pro Ser Pro Asp Leu Phe Arg Gln Leu Pro Trp Arg Glu Glu 170 175 att gtt cga ggc atg ctg ggc gca gat ttg gtg gga ttc cat ttg gtt Ile Val Arg Gly Met Leu Gly Ala Asp Leu Val Gly Phe His Leu Val 185 190

caa Gln	aac Asn	gca Ala 200	gaa Glu	aac Asn	ttc Phe	ctt Leu	gcg Ala 205	tta Leu	acc Thr	cag Gln	cag Gln	gtt Val 210	gcc Ala	ggc Gly	act Thr	739
gcc Ala	ggg Gly 215	tct Ser	cat His	gtg Val	ggt Gly	cag Gln 220	ccg Pro	gac Asp	acc Thr	ttg Leu	cag Gln 225	gtc Val	agt Ser	ggt Gly	gaa Glu	787
gca Ala 230	ttg Leu	gtg Val	cgt Arg	gag Glu	att Ile 235	ggc Gly	gct Ala	cat His	gtt Val	gaa Glu 240	acc Thr	gct Ala	gac Asp	gga Gly	agg Arg 245	835
cga Arg	gtt Val	agc Ser	gtc Val	ggg Gly 250	gcg Ala	ttc Phe	ccg Pro	atc Ile	tcg Ser 255	att Ile	gat Asp	gtt Val	gaa Glu	atg Met 260	ttt Phe	883
Gly	gag Glu	gcg Ala	tcg Ser 265	aaa Lys	agc Ser	gcc Ala	gtt Val	ctt Leu 270	gat Asp	ctt Leu	tta Leu	aaa Lys	acg Thr 275	ctc Leu	gac Asp	931
gag Glu	ccg Pro	gaa Glu 280	acc Thr	gta Val	ttc Phe	ctg Leu	ggc Gly 285	gtt Val	gac Asp	cga Arg	ctg Leu	gac Asp 290	tac Tyr	acc Thr	aag Lys	979
ggc 1027	att	ttg	cag	cgc	ctg	ctt	gcg	ttt	gag	gaa	ctg	ctg	gaa	tcc	ggc	
		Leu	Gln	Arg	Leu	Leu 300	Ala	Phe	Glu	Glu	Leu 305	Leu	Glu	Ser	Gly	
gcg 1075		gag	gcc	gac	aaa	gct	gtg	ttg	ctg	cag	gtc	gcg	acg	cct	tcg	
		Glu	Ala	Asp	Lys 315	Ala	Val	Leu	Leu	Gln 320	Val	Ala	Thr	Pro	Ser 325	
cgt 1123	gag	cgc	att	gat	cac	tat	cgt	gtg	tcg	cgt	tcg	cag	gtc	gag	gaa	
Arg	Glu	Arg	Ile	Asp 330	His	Tyr	Arg	Val	Ser 335	Arg	Ser	Gln	Val	Glu 340	Glu	
gcc 1171		ggc	cgt	atc	aat	ggt	cgt	ttc	ggt	cgc	atg	ggg	cgt	ccc	gtg	
		Gly	Arg 345	Ile	Asn	Gly	Arg	Phe 350	Gly	Arg	Met	Gly	Arg 355	Pro	Val	
gtg 1219	cat	tat	cta	cac	agg	tca	ttg	agc	aaa	aat	gat	ctc	cag	gtg	ctg	
		туr 360	Leu	His	Arg	Ser	Leu 365	Ser	Lys	Asn	Asp	Leu 370	Gln	Val	Leu	
tat 1267		gca	gcc	gat	gtc	atg	ctg	gtt	acg	cct	ttt	aaa	gac	ggt	atg	
		Ala	Ala	Asp	Val	Met 380	Leu	Val	Thr	Pro	Phe 385	Lys	Asp	Gly	Met	
aac 1315		gtg	gct	aaa	gaa	ttc	gtg	gcc	aac	cac	cgc	gac	ggc	act	ggt	
		Val	Ala	Lys	Glu 395	Phe	Val	Ala	Asn	His 400	Arg	Asp	Gly	Thr	Gly 405	

gct ttg gtg ctg tcc gaa ttt gcc ggc gcg gcc act gag ctg acc ggt 1363

Ala Leu Val Leu Ser Glu Phe Ala Gly Ala Ala Thr Glu Leu Thr Gly
410 415 420

gcg tat tta tgc aac cca ttt gat gtg gaa tcc atc aaa cgg caa atg 1411

Ala Tyr Leu Cys Asn Pro Phe Asp Val Glu Ser Ile Lys Arg Gln Met
425 430 435

gtg gca gct gtc cat gat ttg aag cac aat ccg gaa tct gcg gca acg 1459

Val Ala Ala Val His Asp Leu Lys His Asn Pro Glu Ser Ala Ala Thr 440 445 450

cga atg aaa acg aac agc gag cag gtc tat acc cac gac gtc aac gtg 1507

Arg Met Lys Thr Asn Ser Glu Gln Val Tyr Thr His Asp Val Asn Val 455 460 465

tgg gct aat agt ttc ctg gat tgt ttg gca cag tcg gga 1546

Trp Ala Asn Ser Phe Leu Asp Cys Leu Ala Gln Ser Gly 470 475 480

<210> 20

<211> 482

<212> PRT

<213> Corynebacterium glutamicum

<400> 20

Met Asp Asp Ser Asn Ser Phe Val Val Val Ala Asn Arg Leu Pro Val

1 5 10 15

Asp Met Thr Val His Pro Asp Gly Ser Tyr Ser Ile Ser Pro Ser Pro 20 25 30

Gly Gly Leu Val Thr Gly Leu Ser Pro Val Leu Glu Gln His Arg Gly 35 40 45

Cys Trp Val Gly Trp Pro Gly Thr Val Asp Val Ala Pro Glu Pro Phe 50 60

Arg Thr Asp Thr Gly Val Leu Leu His Pro Val Val Leu Thr Ala Ser 65 70 75 80

Asp Tyr Glu Gly Phe Tyr Glu Gly Phe Ser Asn Ala Thr Leu Trp Pro 85 90 95

Leu Phe His Asp Leu Ile Val Thr Pro Val Tyr Asn Thr Asp Trp Trp 100 105 110

His Ala Phe Arg Glu Val Asn Leu Lys Phe Ala Glu Ala Val Ser Gln 115 120 125

Val Ala Ala His Gly Ala Thr Val Trp Val Gln Asp Tyr Gln Leu Leu 130 135 140

Leu Val Pro Gly Ile Leu Arg Gln Met Arg Pro Asp Leu Lys Ile Gly 145 150 155 160

Phe Phe Leu His Ile Pro Phe Pro Ser Pro Asp Leu Phe Arg Gln Leu 170 165 Pro Trp Arg Glu Glu Ile Val Arg Gly Met Leu Gly Ala Asp Leu Val 185 Gly Phe His Leu Val Gln Asn Ala Glu Asn Phe Leu Ala Leu Thr Gln Gln Val Ala Gly Thr Ala Gly Ser His Val Gly Gln Pro Asp Thr Leu Gln Val Ser Gly Glu Ala Leu Val Arg Glu Ile Gly Ala His Val Glu 230 235 225 Thr Ala Asp Gly Arg Arg Val Ser Val Gly Ala Phe Pro Ile Ser Ile 250 Asp Val Glu Met Phe Gly Glu Ala Ser Lys Ser Ala Val Leu Asp Leu 260 265 Leu Lys Thr Leu Asp Glu Pro Glu Thr Val Phe Leu Gly Val Asp Arg 280 Leu Asp Tyr Thr Lys Gly Ile Leu Gln Arg Leu Leu Ala Phe Glu Glu Leu Leu Glu Ser Gly Ala Leu Glu Ala Asp Lys Ala Val Leu Leu Gln 310 315 Val Ala Thr Pro Ser Arg Glu Arg Ile Asp His Tyr Arg Val Ser Arg 330 325 Ser Gln Val Glu Glu Ala Val Gly Arg Ile Asn Gly Arg Phe Gly Arg Met Gly Arg Pro Val Val His Tyr Leu His Arg Ser Leu Ser Lys Asn 355 Asp Leu Gln Val Leu Tyr Thr Ala Ala Asp Val Met Leu Val Thr Pro 375 Phe Lys Asp Gly Met Asn Leu Val Ala Lys Glu Phe Val Ala Asn His Arg Asp Gly Thr Gly Ala Leu Val Leu Ser Glu Phe Ala Gly Ala Ala 410 Thr Glu Leu Thr Gly Ala Tyr Leu Cys Asn Pro Phe Asp Val Glu Ser 425 Ile Lys Arg Gln Met Val Ala Ala Val His Asp Leu Lys His Asn Pro 440 Glu Ser Ala Ala Thr Arg Met Lys Thr Asn Ser Glu Gln Val Tyr Thr 455 His Asp Val Asn Val Trp Ala Asn Ser Phe Leu Asp Cys Leu Ala Gln 475 465 470

Ser Gly

<211 <212)> 21 l> 77 l> DN l> Co	79 NA	ebact	teri	ım gl	lutar	nicu	n							
<222	l> CI !> (1	OS L)(KA008)											
act	_	caa			att Ile		_	-		_	-				48
-	-	-			gag Glu	_		-	_					_	96
					cgc Arg										144
					gac Asp										192
					ggc Gly 70										240
					atc Ile										288
	_	-			aac Asn		_		 				_	_	336
	-	_			ctt Leu					-					384
-		-			gaa Glu				-	-			_	-	432
-			-		caa Gln 150				_	-		_	-		480
	-				cgt Arg						_				528
			_	_	cac His					_	_	_			576

624

180 185 190 atg agc aaa tat cct cag gca gtc tcg ctt gat ttg cgt gaa ttt gca Met Ser Lys Tyr Pro Gln Ala Val Ser Leu Asp Leu Arg Glu Phe Ala 195 200 gga cac acc cct cga gag atg tcg ggc ggg cag ctg ttc cct acc att 672 Gly His Thr Pro Arg Glu Met Ser Gly Gly Gln Leu Phe Pro Thr Ile 210 215 gct gaa cgg gag tgg att gtc act tta gcc cct cac gga ttc ttc tgg Ala Glu Arg Glu Trp Ile Val Thr Leu Ala Pro His Gly Phe Phe Trp 230 235 ttt gat ctc acc gcc gat gaa aag gac gat atg gaa tgagcattgg 766 Phe Asp Leu Thr Ala Asp Glu Lys Asp Asp Met Glu 245 ccaacacatc atc 779 <210> 22 <211> 252 <212> PRT <213> Corynebacterium glutamicum Thr Ala Gln Trp Gly Ile Phe Leu Arg Asn His Asp Glu Leu Thr Leu Glu Met Val Ser Asp Glu Glu Arg Ser Tyr Met Tyr Ser Gln Phe Ala Ser Glu Pro Arg Met Arg Ala Asn Val Gly Ile Arg Arg Leu Ser Pro Leu Leu Glu Gly Asp Arg Asn Gln Leu Glu Leu His Gly Leu Leu Leu Ser Leu Pro Gly Ser Pro Val Leu Tyr Tyr Gly Asp Glu Ile Gly Met Gly Asp Asn Ile Trp Leu His Asp Arg Asp Gly Val Arg Thr Pro Met Gln Trp Ser Asn Asp Arg Asn Gly Gly Phe Ser Lys Ala Asp Pro Glu Arg Leu Tyr Leu Pro Ala Ile Gln Asn Asp Gln Tyr Gly Tyr 115 Ala Gln Val Asn Val Glu Ser Gln Leu Asn Arg Glu Asn Ser Leu Leu 135 140 Arg Trp Leu Arg Asn Gln Ile Leu Ile Arg Lys Gln Tyr Arg Ala Phe 145 150 Gly Ala Gly Thr Tyr Arg Glu Val Ser Ser Thr Asn Glu Ser Val Leu 170 Thr Phe Leu Arg Glu His Lys Gly Gln Thr Ile Leu Cys Val Asn Asn

190 180 185 Met Ser Lys Tyr Pro Gln Ala Val Ser Leu Asp Leu Arg Glu Phe Ala 200 Gly His Thr Pro Arg Glu Met Ser Gly Gly Gln Leu Phe Pro Thr Ile Ala Glu Arg Glu Trp Ile Val Thr Leu Ala Pro His Gly Phe Phe Trp 230 235 Phe Asp Leu Thr Ala Asp Glu Lys Asp Asp Met Glu 245 <210> 23 <211> 1102 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(1102) <223> RXA00891 <400> 23 tcaatattcc gaagaaaacc gcgcagctct ctcactagtc tcaggtgagg cgaaagtggt 60 gaaagacccg ctacgcatgg tgcgcctggc tttttagaat gtg ctg caa acc tcc Val Leu Gln Thr Ser 1 tgg cat ttc tct atc ctg gca ggc atg act gat acc tct ccg ttg aat Trp His Phe Ser Ile Leu Ala Gly Met Thr Asp Thr Ser Pro Leu Asn 10 tct cag ccg agt gca gat cac cac cct gat cac gcg gct cgc cca gtt 211 Ser Gln Pro Ser Ala Asp His His Pro Asp His Ala Ala Arg Pro Val 259 ctt gat gcc cac ggc ttg atc gtt gag cac gaa tcg gaa gag ttt cca Leu Asp Ala His Gly Leu Ile Val Glu His Glu Ser Glu Glu Phe Pro 40 gtc ccc gca ccc gct ccc ggt gaa cag ccc tgg gag aag aaa aac cgc 307 Val Pro Ala Pro Ala Pro Gly Glu Gln Pro Trp Glu Lys Lys Asn Arg 55 355 gag tgg tac aaa gac gcc gtt ttc tac gaa gtg ctg gtt cgt gcc ttc Glu Trp Tyr Lys Asp Ala Val Phe Tyr Glu Val Leu Val Arg Ala Phe 75 403 tac gat cca gaa ggc aac gga gtc gga tcg ttg aaa ggc ctg acc gaa Tyr Asp Pro Glu Gly Asn Gly Val Gly Ser Leu Lys Gly Leu Thr Glu 90 95 451 aaa ctg gat tac atc cag tgg ctc ggc gtg gat tgc att tgg atc cca Lys Leu Asp Tyr Ile Gln Trp Leu Gly Val Asp Cys Ile Trp Ile Pro 105

499

ccg ttt tat gat tcc cca ctg cgc gac ggc ggt tac gat atc cgc aac

BNABBAR -WA BIRBARAR I -

Pro	Phe	Туг 120	Asp	Ser	Pro	Leu	Arg 125	Asp	Gly	Gly	Tyr	Asp 130	Ile	Arg	Asn	
	-	-		_	ccc Pro	-				_	_	_		-	-	547
	-	-		_	cac His 155	-	-		-	_	-			-	_	595
-	_				tcc Ser	_	-									643
					ccc Pro									-	-	691
		_			gaa Glu	_	_				_	-		-	•	739
		-			gat Asp	_	-	-		-					_	787
					cca Pro 235	_				-			_	_		835
					gtc Val											883
		_			gcc Ala											931
		-			aaa Lys	_			_				-	_	_	979
tct 1027	_	att	gag	aag	gaa	tac	ccc	ggc	cga	atc	ctg	ctc	gca	gaa	gcc	
		Ile	Glu	Lys	Glu	Tyr 300	Pro	Gly	Arg	Ile	Leu 305	Leu	Ala	Glu	Ala	
aac 1075		tgg	CCC	caa	gat	gtg	gtc	gaa	tac	ttc	ggt	gaa	aaa	gac	aaa	
		Trp	Pro	Gln	Asp 315	Val	Val	Glu	Tyr	Phe 320	Gly	Glu	Lys	Asp	Lys 325	
ggc 1102	_	gaa	tgc	cac	atg	gcc	ttc	cac								
		Glu	Cys	His 330	Met	Ala	Phe	His								

<210> 24 <211> 334

<212> PRT

<213> Corynebacterium glutamicum

<400> 24

DESCRIPTION FOR CONTRACTOR CONTRA

Val Leu Gln Thr Ser Trp His Phe Ser Ile Leu Ala Gly Met Thr Asp 1 5 10 15

Thr Ser Pro Leu Asn Ser Gln Pro Ser Ala Asp His His Pro Asp His 20 25 30

Ala Ala Arg Pro Val Leu Asp Ala His Gly Leu Ile Val Glu His Glu
35 40 45

Ser Glu Glu Phe Pro Val Pro Ala Pro Ala Pro Gly Glu Gln Pro Trp 50 55 60

Glu Lys Lys Asn Arg Glu Trp Tyr Lys Asp Ala Val Phe Tyr Glu Val 65 70 75 80

Leu Val Arg Ala Phe Tyr Asp Pro Glu Gly Asn Gly Val Gly Ser Leu 85 90 95

Lys Gly Leu Thr Glu Lys Leu Asp Tyr Ile Gln Trp Leu Gly Val Asp
100 105 110

Cys Ile Trp Ile Pro Pro Phe Tyr Asp Ser Pro Leu Arg Asp Gly Gly
115 120 125

Tyr Asp Ile Arg Asn Phe Arg Glu Ile Leu Pro Glu Phe Gly Thr Val 130 135 140

Asp Asp Phe Val Glu Leu Val Asp His Ala His Arg Arg Gly Leu Arg 145 150 155 160

Val Ile Thr Asp Leu Val Met Asn His Thr Ser Asp Gln His Ala Trp 165 170 175

Phe Gln Glu Ser Arg Arg Asp Pro Thr Gly Pro Tyr Gly Asp Phe Tyr 180 185 190

Val Trp Ser Asp Asp Pro Thr Leu Tyr Asn Glu Ala Arg Ile Ile Phe 195 200 205

Val Asp Thr Glu Glu Ser Asn Trp Thr Tyr Asp Pro Val Arg Gly Gln 210 215 220

Tyr Phe Trp His Arg Phe Phe Ser His Gln Pro Asp Leu Asn Tyr Asp 225 230 235 240

Asn Pro Ala Val Gln Glu Ala Met Leu Asp Val Leu Arg Phe Trp Leu 245 250 255

Asp Leu Gly Leu Asp Gly Phe Arg Leu Asp Ala Val Pro Tyr Leu Phe 260 265 270

Glu Arg Glu Gly Thr Asn Gly Glu Asn Leu Lys Glu Thr His Asp Phe 275 280 285

Leu Lys Leu Cys Arg Ser Val Ile Glu Lys Glu Tyr Pro Gly Arg Ile 290 295 300

Leu Leu Ala Glu Ala Asn Gln Trp Pro Gln Asp Val Val Glu Tyr Phe 305 310 315 320

Gly Glu Lys Asp Lys Gly Asp Glu Cys His Met Ala Phe His 325 330

<210> 25 <211> 1386 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS · <222> (101)..(1363) <223> RXA00534 <400> 25 ctgtgcagaa agaaaacact cctctggcta ggtagacaca gtttataaag gtagagttga 60 gcgggtaact gtcagcacgt agatcgaaag gtgcacaaag gtg gcc ctg gtc gta Val Ala Leu Val Val 1 cag aaa tat ggc ggt tcc tcg ctt gag agt gcg gaa cgc att aga aac Gln Lys Tyr Gly Gly Ser Ser Leu Glu Ser Ala Glu Arg Ile Arg Asn 10 gtc gct gaa cgg atc gtt gcc acc aag aag gct gga aat gat gtc gtg Val Ala Glu Arg Ile Val Ala Thr Lys Lys Ala Gly Asn Asp Val Val 25 3.0 gtt gtc tgc tcc gca atg gga gac acc acg gat gaa ctt cta gaa ctt 259 Val Val Cys Ser Ala Met Gly Asp Thr Thr Asp Glu Leu Leu Glu Leu 40 gca gcg gca gtg aat ccc gtt ccg cca gct cgt gaa atg gat atg ctc 307 Ala Ala Val Asn Pro Val Pro Pro Ala Arg Glu Met Asp Met Leu 55 60 ctg act gct ggt gag cgt att tct aac gct ctc gcc gcc atg gct att 355 Leu Thr Ala Gly Glu Arg Ile Ser Asn Ala Leu Val Ala Met Ala Ile 70 gag tee ett gge gea gaa gee eaa tet tte aeg gge tet eag get ggt Glu Ser Leu Gly Ala Glu Ala Gln Ser Phe Thr Gly Ser Gln Ala Gly 90 gtg ctc acc acc gag cgc cac gga aac gca cgc att gtt gat gtc act 451 Val Leu Thr Thr Glu Arg His Gly Asn Ala Arg Ile Val Asp Val Thr 105 110 115 cca ggt cgt gtg cgt gaa gca ctc gat gag ggc aag atc tgc att gtt Pro Gly Arg Val Arg Glu Ala Leu Asp Glu Gly Lys Ile Cys Ile Val 120 gct ggt ttc cag ggt gtt aat aaa gaa acc cgc gat gtc acc acg ttg

Ala Gly Phe Gln Gly Val Asn Lys Glu Thr Arg Asp Val Thr Thr Leu

ggt cgt ggt ggt tct gac acc act gca gtt gcg ttg gca gct gct ttg

140

135

Gly Arg 150	Gly	Gly	Ser	Asp 155	Thr	Thr	Ala	Val	Ala 160	Leu	Ala	Ala	Ala	Leu 165	
aac gct Asn Ala															643
gct gac Ala Asp	Pro	_		_			-	_	_	_	-	_		_	691
ttc gaa Phe Glu															739
ctg cgc Leu Arg 215	_	_	_		-	-	_						-	-	787
cgc tcg Arg Ser 230			-		_				_		_			_	835
gag gat Glu Asp				_	_	_	_				-	_		_	883
aag tcc Lys Ser	Glu			-			_	-			_				931
gag gct Glu Ala															979
gac atg 1027	gtt	ctg	cag	aac	gtc	tct	tct	gta	gaa	gac	ggc	acc	acc	gac	
Asp Met 295	Val	Leu	Gln	Asn	Val 300	Ser	Ser	Val	Glu	Asp 305	Gly	Thr	Thr	Asp	
atc acc 1075	ttc	acc	tgc	cct	cgt	tcc	gac	ggc	cgc	cgc	gcg	atg	gag	atc	
Ile Thr	Phe	Thr	Cys	Pro 315	Arg	Ser	Asp	Gly	Arg 320	Arg	Ala	Met	Glu	Ile 325	
ttg aag 1123	aag	ctt	cag	gtt	cag	ggc	aac	tgg	acc	aat	gtg	ctt	tac	gac	
Leu Lys	Lys	Leu	Gln 330	Val	Gln	Gly	Asn	Trp 335	Thr	Asn	Val	Leu	Tyr 340	Asp	
gac cag 1171	gtc	ggc	aaa	gtc	tcc	ctc	gtg	ggt	gct	ggc	atg	aag	tct	cac	
Asp Gln		Gly 345	Lys	Val	Ser	Leu	Val 350	Gly	Ala	Gly	Met	Lys 355	Ser	His	
cca ggt 1219	gtt	acc	gca	gag	ttc	atg	gaa	gct	ctg	cgc	gat	gtc	aac	gtg	
Pro Gly	Val 360	Thr	Ala	Glu	Phe	Met 365	Glu	Ala	Leu	Arg	Asp 370	Val	Asn	Val	

MINIMERSON STREET STREET

aac atc gaa ttg att tcc acc tct gag att cgt att tcc gtg ctg atc 1267

Asn Ile Glu Leu Ile Ser Thr Ser Glu Ile Arg Ile Ser Val Leu Ile 375 380 385

cgt gaa gat gat ctg gat gct gca cgt gca ttg cat gag cag ttc 1315

Arg Glu Asp Asp Leu Asp Ala Ala Ala Arg Ala Leu His Glu Gln Phe 390 395 400 405

cag ctg. ggc ggc gaa gac gaa gcc gtc gtt tat gca ggc acc gga cgc 1363

Gln Leu Gly Glu Asp Glu Ala Val Val Tyr Ala Gly Thr Gly Arg
410 415 420

taaagtttta aaggagtagt ttt 1386

<210> 26

<211> 421

<212> PRT

<213> Corynebacterium glutamicum

<400> 26

Val Ala Leu Val Val Gln Lys Tyr Gly Gly Ser Ser Leu Glu Ser Ala 1 5 10 15

Glu Arg Ile Arg Asn Val Ala Glu Arg Ile Val Ala Thr Lys Lys Ala 20 25 30

Gly Asn Asp Val Val Val Cys Ser Ala Met Gly Asp Thr Thr Asp 35 40 45

Glu Leu Leu Glu Leu Ala Ala Ala Val Asn Pro Val Pro Pro Ala Arg 50 55 60

Glu Met Asp Met Leu Leu Thr Ala Gly Glu Arg Ile Ser Asn Ala Leu 65 70 75 80

Val Ala Met Ala Ile Glu Ser Leu Gly Ala Glu Ala Gln Ser Phe Thr 85 90 95

Gly Ser Gln Ala Gly Val Leu Thr Thr Glu Arg His Gly Asn Ala Arg 100 105 110

Ile Val Asp Val Thr Pro Gly Arg Val Arg Glu Ala Leu Asp Glu Gly 115 120 125

Lys Ile Cys Ile Val Ala Gly Phe Gln Gly Val Asn Lys Glu Thr Arg 130 135 140

Asp Val Thr Thr Leu Gly Arg Gly Gly Ser Asp Thr Thr Ala Val Ala 145 150 155 160

Leu Ala Ala Leu Asn Ala Asp Val Cys Glu Ile Tyr Ser Asp Val
165 170 175

Asp Gly Val Tyr Thr Ala Asp Pro Arg Ile Val Pro Asn Ala Gln Lys 180 185 190

Leu Glu Lys Leu Ser Phe Glu Glu Met Leu Glu Leu Ala Ala Val Gly 200 Ser Lys Ile Leu Val Leu Arg Ser Val Glu Tyr Ala Arg Ala Phe Asn 210 215 Val Pro Leu Arg Val Arg Ser Ser Tyr Ser Asn Asp Pro Gly Thr Leu 230 235 Ile Ala Gly Ser Met Glu Asp Ile Pro Val Glu Glu Ala Val Leu Thr 250 245 Gly Val Ala Thr Asp Lys Ser Glu Ala Lys Val Thr Val Leu Gly Ile 265 Ser Asp Lys Pro Gly Glu Ala Ala Lys Val Phe Arg Ala Leu Ala Asp 275 280 Ala Glu Ile Asn Ile Asp Met Val Leu Gln Asn Val Ser Ser Val Glu 295 300 Asp Gly Thr Thr Asp Ile Thr Phe Thr Cys Pro Arg Ser Asp Gly Arg 305 310 315 320 Arg Ala Met Glu Ile Leu Lys Lys Leu Gln Val Gln Gly Asn Trp Thr 325 330 Asn Val Leu Tyr Asp Asp Gln Val Gly Lys Val Ser Leu Val Gly Ala 340 345 Gly Met Lys Ser His Pro Gly Val Thr Ala Glu Phe Met Glu Ala Leu 355 360 365 Arg Asp Val Asn Val Asn Ile Glu Leu Ile Ser Thr Ser Glu Ile Arg 370 375 380 Ile Ser Val Leu Ile Arg Glu Asp Asp Leu Asp Ala Ala Ala Arg Ala 390 395 Leu His Glu Gln Phe Gln Leu Gly Gly Glu Asp Glu Ala Val Tyr 405

Ala Gly Thr Gly Arg 420

<210> 27

<211> 1155

<212> DNA

<213> Corynebacterium glutamicum

<220>

<221> CDS

<222> (101)..(1132)

<223> RXA00533

<400> 27

ctgcacgtgc attgcatgag cagttccagc tgggcggcga agacgaagcc gtcgtttatg 60

caggcaccgg acgctaaagt tttaaaggag tagttttaca atg acc acc atc gca 115 Met Thr Thr Ile Ala

5 gtt gtt ggt gca acc ggc cag gtc ggc cag gtt atg cgc acc ctt ttg Val Val Gly Ala Thr Gly Gln Val Gly Gln Val Met Arg Thr Leu Leu 10 gaa gag cgc aat ttc cca gct gac act gtt cgt ttc ttt gct tcc cca Glu Glu Arg Asn Phe Pro Ala Asp Thr Val Arg Phe Phe Ala Ser Pro 25 30 cgt tcc gca ggc cgt aag att gaa ttc cgt ggc acg gaa atc gag gta Arg Ser Ala Gly Arg Lys Ile Glu Phe Arg Gly Thr Glu Ile Glu Val 40 45 gaa gac att act cag gca acc gag gag tcc ctc aag gac atc gac gtt Glu Asp Ile Thr Gln Ala Thr Glu Glu Ser Leu Lys Asp Ile Asp Val 55 gcg ttg ttc tcc gct gga ggc acc gct tcc aag cag tac gct cca ctg Ala Leu Phe Ser Ala Gly Gly Thr Ala Ser Lys Gln Tyr Ala Pro Leu 70 75 ttc gct gct gca ggc gcg act gtt gtg gat aac tct tct gct tgg cgc Phe Ala Ala Ala Gly Ala Thr Val Val Asp Asn Ser Ser Ala Trp Arg 90 95 aag gac gac gag gtt cca cta atc gtc tct gag gtg aac cct tcc gac Lys Asp Asp Glu Val Pro Leu Ile Val Ser Glu Val Asn Pro Ser Asp 105 aag gat too otg gto aag ggo att att gog aac oot aac tgo acc acc Lys Asp Ser Leu Val Lys Gly Ile Ile Ala Asn Pro Asn Cys Thr Thr 120 125 atg gct gcg atg cca gtg ctg aag cca ctt cac gat gcc gct ggt ctt Met Ala Ala Met Pro Val Leu Lys Pro Leu His Asp Ala Ala Gly Leu 135 140 gta aag ctt cac gtt tcc tct tac cag gct gtt tcc ggt tct ggt ctt Val Lys Leu His Val Ser Ser Tyr Gln Ala Val Ser Gly Ser Gly Leu 150 155 gca ggt gtg gaa acc ttg gca aag cag gtt gct gca gtt gga gac cac Ala Gly Val Glu Thr Leu Ala Lys Gln Val Ala Ala Val Gly Asp His 170 180 aac gtt gag ttc gtc cat gat gga cag gct gct gac gca ggc gat gtc Asn Val Glu Phe Val His Asp Gly Gln Ala Ala Asp Ala Gly Asp Val 185 190 gga cct tat gtt tca cca atc gct tac aac gtg ctg cca ttc gcc gga Gly Pro Tyr Val Ser Pro Ile Ala Tyr Asn Val Leu Pro Phe Ala Gly 200 205 aac ctc gtc gat gac ggc acc ttc gaa acc gat gaa gag cag aag ctq Asn Leu Val Asp Asp Gly Thr Phe Glu Thr Asp Glu Glu Gln Lys Leu 215 220 cgc aac gaa tcc cgc aag att ctc ggt ctc cca gac ctc aag gtc tca Arg Asn Glu Ser Arg Lys Ile Leu Gly Leu Pro Asp Leu Lys Val Ser 230 235

PCT/IB00/00923 WO 01/00843

883

ggc acc tgc gtc cgc gtg ccg gtt ttc acc ggc cac acg ctg acc att Gly Thr Cys Val Arg Val Pro Val Phe Thr Gly His Thr Leu Thr Ile 250 255 cac gcc gaa ttc gac aag gca atc acc gtg gac cag gcg cag gag atc 931 His Ala Glu Phe Asp Lys Ala Ile Thr Val Asp Gln Ala Gln Glu Ile 270 ttg ggt gcc gct tca ggc gtc aag ctt gtc gac gtc cca acc cca ctt Leu Gly Ala Ala Ser Gly Val Lys Leu Val Asp Val Pro Thr Pro Leu 285 gca gct gcc ggc att gac gaa tcc ctc gtt gga cgc atc cgt cag gac 1027 Ala Ala Ala Gly Ile Asp Glu Ser Leu Val Gly Arg Ile Arg Gln Asp tcc act gtc gac gat aac cgc ggt ctg gtt ctc gtc gta tct ggc gac Ser Thr Val Asp Asp Asn Arg Gly Leu Val Leu Val Val Ser Gly Asp 315 320 aac ctc cgc aag ggt gct gcg cta aac acc atc cag atc gct gag ctg 1123 Asn Leu Arg Lys Gly Ala Ala Leu Asn Thr Ile Gln Ile Ala Glu Leu 330 ctg gtt aag taaaaacccg ccattaaaaa ctc 1155 Leu Val Lys <210> 28 <211> 344 <212> PRT <213> Corynebacterium glutamicum <400> 28 Met Thr Thr Ile Ala Val Val Gly Ala Thr Gly Gln Val Gly Gln Val Met Arg Thr Leu Leu Glu Glu Arg Asn Phe Pro Ala Asp Thr Val Arg 25 Phe Phe Ala Ser Pro Arg Ser Ala Gly Arg Lys Ile Glu Phe Arg Gly Thr Glu Ile Glu Val Glu Asp Ile Thr Gln Ala Thr Glu Glu Ser Leu Lys Asp Ile Asp Val Ala Leu Phe Ser Ala Gly Gly Thr Ala Ser Lys

90

Gln Tyr Ala Pro Leu Phe Ala Ala Ala Gly Ala Thr Val Val Asp Asn

Ser Ser Ala Trp Arg Lys Asp Asp Glu Val Pro Leu Ile Val Ser Glu 105

65

BOOKERS OF STREET AND STREET AND STREET

100

Val Asn Pro Ser Asp Lys Asp Ser Leu Val Lys Gly Ile Ile Ala Asn Pro Asn Cys Thr Thr Met Ala Ala Met Pro Val Leu Lys Pro Leu His 135 Asp Ala Ala Gly Leu Val Lys Leu His Val Ser Ser Tyr Gln Ala Val Ser Gly Ser Gly Leu Ala Gly Val Glu Thr Leu Ala Lys Gln Val Ala Ala Val Gly Asp His Asn Val Glu Phe Val His Asp Gly Gln Ala Ala 185 Asp Ala Gly Asp Val Gly Pro Tyr Val Ser Pro Ile Ala Tyr Asn Val 200 Leu Pro Phe Ala Gly Asn Leu Val Asp Asp Gly Thr Phe Glu Thr Asp 215 Glu Glu Gln Lys Leu Arg Asn Glu Ser Arg Lys Ile Leu Gly Leu Pro 225 230 235 Asp Leu Lys Val Ser Gly Thr Cys Val Arg Val Pro Val Phe Thr Gly

His Thr Leu Thr Ile His Ala Glu Phe Asp Lys Ala Ile Thr Val Asp

Gln Ala Gln Glu Ile Leu Gly Ala Ala Ser Gly Val Lys Leu Val Asp 275 280 285

Val Pro Thr Pro Leu Ala Ala Gly Ile Asp Glu Ser Leu Val Gly 290 295 300

Arg Ile Arg Gln Asp Ser Thr Val Asp Asp Asn Arg Gly Leu Val Leu 305 310 315 320

Val Val Ser Gly Asp Asn Leu Arg Lys Gly Ala Ala Leu Asn Thr Ile 325 330 335

Gln Ile Ala Glu Leu Leu Val Lys 340

<210> 29

<211> 608

<212> DNA

<213> Corynebacterium glutamicum

<220>

<221> CDS

<222> (69)..(608)

<223> RXA02843

<400> 29

cccattgcgc ggaggtcgca ccccttccga cttgaactga taggccgata gaaattattc 60

tggacgtcatg act act gct tcc gca acc gga att gca aca ctg acc tcc 110
Met Thr Thr Ala Ser Ala Thr Gly Ile Ala Thr Leu Thr Ser

		1				5					10					
		gac Asp														158
_		gcg Ala														206
	-	aaa Lys			_											254
-		tac Tyr 65	_	_		-	_							_		302
		cct Pro														350
		gtg Val														398
		cgc Arg														446
_	_	aag Lys			_	_	-	_		_			_		_	494
_		ggt Gly 145	-	_	-	-	-	_			-			_	_	542
		acc Thr														590
		gct Ala														608
<211 <212)> 3(l> 18 2> PF 3> Co	30	ebact	teri	um gi	lutar	micur	n								
)> 3(-			~ 3	~~ ~		 '				en.	0.3	
Met 1	Thr	Thr	Ala	Ser 5	Ala	Thr	GIA	ITë	Ala 10	Thr	Leu	Thr	ser	Thr 15	GIY	
Asp	Val	Leu	Asp 20	Val	Trp	Tyr	Pro	Glu 25	Ile	Gly	Ser	Thr	Asp 30	Gln	Ser	
Ala	Leu	Thr	Pro	Leu	Glu	Gly	Val	Asp	Glu	Asp	Arg	Asn 45	Val	Thr	Arg	

Lys Ile Val Thr Thr Thr Ile Asp Thr Asp Ala Ala Pro Thr Asp Thr 50 55 Tyr Asp Ala Trp Leu Arg Leu His Leu Leu Ser His Arg Val Phe Arg Pro His Thr Ile Asn Leu Asp Gly Ile Phe Gly Leu Leu Asn Asn Val 85 Val Trp Thr Asn Phe Gly Pro Cys Ala Val Asp Gly Phe Ala Leu Thr 105 Arg Ala Arg Leu Ser Arg Arg Gly Gln Val Thr Val Tyr Ser Val Asp 115 120 Lys Phe Pro Arg Met Val Asp Tyr Val Val Pro Ser Gly Val Arg Ile 135 Gly Asp Ala Asp Arg Val Arg Leu Gly Ala Tyr Leu Ala Asp Gly Thr 145 150 155 Thr Val Met His Glu Gly Phe Val Asn Phe Asn Ala Gly Thr Leu Gly 165 170 Ala Ser Met Val 180 <210> 31 <211> 1230 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(1207) <223> RXA02022 <400> 31 tatttgcgat tccaactgct tgggctccgc gaatgttttc actcattttt taatcgaccg 60 cttccatcat gttttaacta aggtttgtag gcttaaacct gtg aac tct gaa ctc Val Asn Ser Glu Leu 1 aaa cca gga tta gat ctc ctc ggc gac cca att gtc ctt act caa cgt Lys Pro Gly Leu Asp Leu Leu Gly Asp Pro Ile Val Leu Thr Gln Arg 10 ttg gta gat ata ccg agt ccg tcg ggt cag gaa aag cag att gct gat Leu Val Asp Ile Pro Ser Pro Ser Gly Gln Glu Lys Gln Ile Ala Asp 25 30 35 gaa att gaa gat gcc ctt cgg aac ctt aat cta cct ggt gta gag gtc Glu Ile Glu Asp Ala Leu Arg Asn Leu Asn Leu Pro Gly Val Glu Val 40 45 50 ttc cgc ttc aac aac gtt ctt gct cgc acg aac agg gga ttg gcc 307 Phe Arg Phe Asn Asn Asn Val Leu Ala Arg Thr Asn Arg Gly Leu Ala 55 60

										aca Thr 80						355
										atg Met						403
-	-	_				_				ttg Leu				_		451
_	_	_	_						-	ctg Leu	_	_				499
										ggt Gly						547
										ttg Leu 160						595
										cag Gln						643
										tcg Ser						691
	-									atc Ile						739
		_	_	_	-	-			_	ggc Gly	_					787
										gtg Val 240						835
										cgt Arg						883
										gaa Glu						931
		_			_		-	_	_	gac Asp		_				979
ctt 102		ggc	ttg	ggg	cag	cag	gtg	aca	agc	ggg	ctt	atc	gac	gcc	gtc	
		Gly	Leu	Gly	Gln	Gln 300	Val	Thr	Ser	Gly	Leu 305	Ile	Asp	Ala	Val	