Package 'epanet2toolkit'

May 27, 2024

```
Type Package
Title Call 'EPANET' Functions to Simulate Pipe Networks
Version 1.0.5
Date 2024-05-27
Maintainer Bradley Eck <br/> strad@bradeck.net>
Suggests testthat, epanetReader
Description Enables simulation of water piping networks using 'EPANET'.
     The package provides functions from the 'EPANET' programmer's toolkit as R
     functions so that basic or customized simulations can be carried out from R.
     The package uses 'EPANET' version 2.2 from Open Water Analytics
     <https://github.com/OpenWaterAnalytics/EPANET/releases/tag/v2.2>.
License MIT + file LICENSE
Copyright COPYRIGHTS
URL https://github.com/bradleyjeck/epanet2toolkit
RoxygenNote 7.2.3
NeedsCompilation yes
Author Ernesto Arandia [aut],
     Bradley Eck [aut, cre],
     Lew Rossman [aut],
     Michael Tryby [ctb],
     Sam Hatchett [ctb],
     Feng Shang [ctb],
     James Uber [ctb],
     Tom Taxon [ctb],
     Hyoungmin Woo [ctb],
     Jinduan Chen [ctb],
     Yunier Soad [ctb],
     Mike Kane [ctb],
```

Demetrios Eliades [ctb], Will Furnass [ctb], Steffen Macke [ctb], Marios Kyriakou [ctb],

Elad Salomons [ctb],
Maurizio Cingi [ctb],
Bryant McDonnell [ctb],
Angela Marchi [ctb],
Markus Sunela [ctb],
Milad Ghiami [ctb],
IBM Corp. [cph],
Open Water Analytics [cph]

Repository CRAN

Date/Publication 2024-05-26 23:10:03 UTC

R topics documented:

ENaddcontrol
ENaddcurve
ENadddemand
ENaddlink
ENaddnode
ENaddpattern
ENaddrule
ENclearreport
ENclose
ENcloseH
ENcloseQ
ENcopyreport
ENdeletecontrol
ENdeletecurve
ENdeletedemand
ENdeletelink
ENdeletenode
ENdeletepattern
ENdeleterule
ENepanet
ENgetaveragepatternvalue
ENgetbasedemand
ENgetcontrol
ENgetcoord
ENgetcount
ENgetcurveid
ENgetcurveindex
ENgetcurvelen
ENgetcurvetype
ENgetcurvevalue
ENgetdemandindex
ENgetdemandmodel
ENgetdemandname
ENgetdemandpattern

ENgetelseaction	
ENgeterror	 24
ENgetflowunits	 24
ENgetheadcurveindex	 25
ENgetlinkid	 26
ENgetlinkindex	 26
ENgetlinknodes	 27
ENgetlinktype	
ENgetlinkvalue	
ENgetnodeid	
ENgetnodeindex	
ENgetnodetype	
ENgetnodevalue	
ENgetnumdemands	
ENgetoption	
ENgetpatternid	
ENgetpatternindex	
ENgetpatternlen	
ENgetpatternvalue	
ENgetpremise	
ENgetpumptype	
ENgetqualinfo	
ENgetqualtype	
ENgetresultindex	
ENgetrule	
ENgetruleID	
ENgetstatistic	
ENgetthenaction	
ENgettimeparam	
ENgettitle	
ENgetversion	
ENgetvertex	
ENgetvertexcount	
ENinit	
ENinitH	
ENinitQ	
ENnextH	49
ENnextQ	5C
ENopen	51
ENopenH	52
ENopenQ	53
ENreport	53
ENresetreport	54
ENrunH	55
ENrunQ	56
ENfunQ	56
ENsavehydfile	57
ENsaveingfile	5 i
	 JC

Index

	83
epanet2toolkit	82
ENusehydfile	81
ENstepQ	81
ENsolveQ	80
ENsolveH	79
ENsetvertices	79
ENsettimeparam	78
ENsetthenaction	77
ENsettankdata	77
ENsetstatusreport	76
ENsetrulepriority	76
ENsetreport	75
ENsetqualtype	74
ENsetpremisevalue	74
ENsetpremisestatus	73
ENsetpremiseindex	73
ENsetpremise	72
ENsetpatternvalue	71
ENsetpatternid	71
ENsetpattern	70
ENsetoption	69
ENsetnodevalue	68
ENsetnodeid	68
ENsetlinkvalue	67
ENsetlinktype	66
ENsetlinknodes	66
ENsetlinkid	65
ENsetjuncdata	65
ENsetheadcurveindex	64
ENsetflowunits	64
ENsetelseaction	63
ENsetdemandpattern	63
ENsetdemandname	62
ENsetdemandmodel	62
ENsetcurvevalue	61
ENsetcurveid	61
ENsetcoord	60
ENsetcontrol	59
ENsetbasedemand	58

ENaddcontrol 5

ENaddcontrol Add a new simple control

Description

Add a new simple control

Usage

ENaddcontrol(type, linkIndex, setting, nodeIndex, level)

Arguments

type the type of control to add (see details)

linkIndex the index of a link to control (starting from 1)

setting control setting applied to the link

nodeIndex index of the node used to control the link (0 for EN_TIMER and EN_TIMEOFDAY

controls).

level action level (tank level, junction pressure, or time in seconds) that triggers the

control.

Value

index index of the new control.

ENaddcurve

Adds a new data curve to a project.

Description

Adds a new data curve to a project.

Usage

ENaddcurve(id)

Arguments

id

The ID name of the curve to be added.

Details

The new curve contains a single data point (1.0, 1.0).

Value

null invisibly

6 ENaddlink

_					- 1
Ηſ	Nad	เตต	em	าลท	าต

Appends a new demand to a junction node demands list.

Description

Appends a new demand to a junction node demands list.

Usage

```
ENadddemand(nodeindex, base_demand, demand_pattern, demand_name)
```

Arguments

nodeindex the index of a node (starting from 1).

base_demand the demand's base value.

demand_pattern the name of a time pattern used by the demand

demand_name the name of the demand's category

ENaddlink

Add a link to the network

Description

Add a link to the network

Usage

```
ENaddlink(id, type, from_node, to_node)
```

Arguments

id name of new link

type of new link, see details

from_node id of source node for this link
to_node id of target node for this link

ENaddnode 7

Details

A new pipe is assigned a diameter of 10 inches (254 mm) and a length of 330 feet (~ 100 meters). Its roughness coefficient depends on the head loss formula in effect as follows: - Hazen-Williams formula: 130 - Darcy-Weisbach formula: 0.5 millifeet (0.15 mm) - Chezy-Manning formula: 0.01

All other pipe properties are set to 0.

A new pump has a status of EN_OPEN, a speed setting of 1, and has no pump curve or power rating assigned to it.

A new valve has a diameter of 10 inches (254 mm) and all other properties set to 0.

Type must be one of: EN_CVPIPE, EN_PIPE, EN_PUMP, EN_PRV, EN_PSV, EN_PBV, EN_FCV, EN_TCV, EN_GPV

Value

index of new link

ENaddnode

Adds a new node

Description

Adds a new node

Usage

ENaddnode(nodeid, nodetype)

Arguments

nodeid name of the node to be added

nodetype the type of node being added. One of: EN_JUNCTION, EN_RESERVOIR,

EN_TANK

Details

When a new node is created all of its properties are set to 0.

Value

index the index of the newly added node

8 ENaddrule

 ${\sf ENaddpattern}$

Add a new time pattern

Description

Add a new time pattern

Usage

ENaddpattern(patternid)

Arguments

patternid

the ID name of the pattern to add.

Details

The new pattern contains a single time period whose factor is 1.0.

Value

invisible NULL

ENaddrule

Adds a new rule-based control to a project

Description

Adds a new rule-based control to a project

Usage

ENaddrule(rule)

Arguments

rule

text of the rule following the format used in an EPANET input file.

Value

null

ENclearreport 9

ENclearreport

Clears the contents of a project's report file.

Description

Clears the contents of a project's report file.

Usage

ENclearreport()

Value

Returns NULL invisibly; called for side effect

ENclose

Close down the EPANET Toolkit system.

Description

ENclose closes the EPANET Toolkit system (including all files being processed).

Usage

ENclose()

Value

Returns NULL invisibly; called for the side effect of closing EPANET.

Note

ENclose must be called when all processing has been completed, even if an error condition was encountered.

See Also

ENopen

Examples

```
# path to Net1.inp example file included with this package
inp <- file.path( find.package("epanet2toolkit"), "extdata","Net1.inp")
ENopen( inp, "Net1.rpt")
ENclose()</pre>
```

10 ENcloseQ

ENcloseH

close hydraulics engine

Description

ENcloseH closes the hydraulic analysis system, freeing all allocated memory

Usage

ENcloseH()

Details

Call ENcloseH after all hydraulics analyses have been made using ENinitH-ENrunH-ENnextH. Do not call this function if ENsolveH is being used.

Value

Returns NULL invisibly; called for side effect

See Also

ENopenH, ENinitH, ENrunH, ENnextH

ENcloseQ

Close water quality analysis and free allocated memory

Description

Close water quality analysis and free allocated memory

Usage

ENcloseQ()

Details

Do not call this function if ENsolveQ is being used.

Value

Returns NULL invisibly; called for side effect

ENcopyreport 11

ENcopyreport

Copies the current contents of a project's report file to another file

Description

Copies the current contents of a project's report file to another file

Usage

```
ENcopyreport(rptFile)
```

Arguments

rptFile

destination file

Details

This function allows toolkit clients to retrieve the contents of a project's report file while the project is still open.

Value

```
Returns NULL invisibly; called for side effect
Returns NULL invisibly; called for side effect
```

ENdeletecontrol

Deletes an existing simple control

Description

Deletes an existing simple control

Usage

```
ENdeletecontrol(controlIndex)
```

Arguments

controlIndex the

the index of the control to delete (starting from 1).

Value

null invisibly

12 ENdeletedemand

ENdeletecurve

Deletes a data curve from a project

Description

Deletes a data curve from a project

Usage

ENdeletecurve(index)

Arguments

index

the data curve's index (starting from 1).

Value

null invisibly

ENdeletedemand

Delete a demand from a junction node

Description

Delete a demand from a junction node

Usage

ENdeletedemand(nodeindex, demandindex)

Arguments

nodeindex the index of a

the index of a node (starting from 1).

demandindex

the position of the demand in the node's demands list (starting from 1).

ENdeletelink 13

ENdeletelink Delete a link from the project.
--

Description

Delete a link from the project.

Usage

```
ENdeletelink(index, action = "EN_UNCONDITIONAL")
```

Arguments

index the index of the link to be deleted.

action The action taken if any control contains the link.

Details

If actionCode is EN_UNCONDITIONAL then the link and all simple and rule-based controls that contain it are deleted. If set to EN_CONDITIONAL then the link is not deleted if it appears in any control and error 261 is returned.

ENdeletenode	Deletes a node	

Description

Deletes a node

Usage

ENdeletenode(nodeindex, actionCode)

Arguments

nodeindex the index of the node to be deleted.

actionCode the action taken if any control contains the node and its links: EN_UNCONDITIONAL

or EN_CONDITIONAL.

Details

If 'actionCode' is EN_UNCONDITIONAL then the node, its incident links and all simple and rule-based controls that contain them are deleted. If set to EN_CONDITIONAL then the node is not deleted if it or its incident links appear in any controls and error code 261 is returned.

14 ENdeleterule

ENdeletepattern

Delete a new time pattern

Description

Delete a new time pattern

Usage

ENdeletepattern(index)

Arguments

index

of the pattern to delete

Value

invisible NULL

ENdeleterule

Deletes an existing rule-based control

Description

Deletes an existing rule-based control

Usage

ENdeleterule(index)

Arguments

index

the index of the rule to be deleted (starting from 1).

Value

null

ENepanet 15

ENepanet ENepanet

Description

runs a complete EPANET simulation

Usage

```
ENepanet(inpFile, rptFile, binOutFile = "")
```

Arguments

inpFile name of input file

rptFile name of report file (to be created)
binOutFile name of optional binary output file

Value

Returns NULL invisibly; called for side effect

Examples

```
# path to Net1.inp example file included with this package
inp <- file.path( find.package("epanet2toolkit"), "extdata","Net1.inp")
print(inp)
ENepanet( inp, "Net1.rpt")
# try opening Net1.rpt in a text editor or reading it back
# into R with the read.rpt() function in package epanetReader
myRpt <- epanetReader::read.rpt("Net1.rpt")
summary(myRpt)
# clean-up the created file
file.remove("Net1.rpt")</pre>
```

ENgetaveragepatternvalue

Get average of all time factors in a pattern

Description

Get average of all time factors in a pattern

Usage

ENgetaveragepatternvalue(index)

Arguments

index a time pattern index (starting from 1).

Value

the average value

ENgetbasedemand

Gets the base demand for one of a node's demand categories.

Description

Gets the base demand for one of a node's demand categories.

Usage

```
ENgetbasedemand(nodeindex, demand_index = 1)
```

Arguments

nodeindex a node's index (starting from 1).

demand_index the index of a demand category for the node (starting from 1).

Value

the category's base demand.

ENgetcontrol

ENgetcontrol

Description

Retrieve the parameters of a simple control statement.

Usage

```
ENgetcontrol(controlindex)
```

Arguments

controlindex An integer specifying the control statement index.

Value

list of parameters of the control statement: ctype, lindex, setting, nindex, level

ENgetcoord 17

Note

Controls are indexed starting from 1 in the order in which they were entered into the [CONTROLS] section of the EPANET input file.

See Also

ENsetcontrol

Examples

```
# path to Net1.inp example file included with this package
inp <- file.path( find.package("epanet2toolkit"), "extdata","Net1.inp")
ENopen( inp, "Net1.rpt")
ENgetcontrol(1)
ENclose()</pre>
```

ENgetcoord

Get coordinates for a node

Description

Get coordinates for a node

Usage

ENgetcoord(nodeindex)

Arguments

nodeindex

of node

Value

vector of x,y coordinate

Examples

```
# path to Net1.inp example file included with this package
inp <- file.path( find.package("epanet2toolkit"), "extdata","Net1.inp")
ENopen( inp, "Net1.rpt")
ENgetcoord(3)
ENclose()</pre>
```

18 ENgetcount

|--|

Description

ENgetcount retrieves the number of network components of a specific type.

Usage

```
ENgetcount(compcode)
```

Arguments

compcode

A character string, integer or numeric specifying the component code(s) (see below).

Details

Component codes consist of the following:

EN_NODECOUNT	0	Nodes
EN_TANKCOUNT	1	Reservoirs and tank nodes
EN_LINKCOUNT	2	Links
EN_PATCOUNT	3	Time patterns
EN_CURVECOUNT	4	Curves
EN_CONTROLCOUNT	5	Simple controls
EN RULECOUNT	5	Simple controls

The number of junctions in a network equals the number of nodes minus the number of tanks and reservoirs.

Value

The number of network components.

Examples

```
# path to Net1.inp example file included with this package
inp <- file.path( find.package("epanet2toolkit"), "extdata","Net1.inp")
ENopen( inp, "Net1.rpt")
ENgetcount(0)
ENgetcount("EN_NODECOUNT")
ENclose()</pre>
```

ENgetcurveid 19

ENgetcurveid

Retrieves the ID name of a curve given its index.

Description

Retrieves the ID name of a curve given its index.

Usage

```
ENgetcurveid(index)
```

Arguments

index

a curve's index (starting from 1).

Value

the curve's ID name.

 ${\tt ENgetcurveindex}$

Retrieves the index of a curve given its ID name.

Description

Retrieves the index of a curve given its ID name.

Usage

ENgetcurveindex(id)

Arguments

id

the ID name of a curve.

Value

The curve's index (starting from 1).

20 ENgetcurvetype

ENgetcurvelen

Retrieves the number of points in a curve.

Description

Retrieves the number of points in a curve.

Usage

```
ENgetcurvelen(index)
```

Arguments

index

a curve's index (starting from 1).

Value

The number of data points assigned to the curve.

ENgetcurvetype

Retrieves a curve's type

Description

Retrieves a curve's type

Usage

```
ENgetcurvetype(index)
```

Arguments

index

a curve's index (starting from 1).

Value

the curve's type

ENgetcurvevalue 21

ENgetcurvevalue

Retrieves the value of a single data point for a curve.

Description

Retrieves the value of a single data point for a curve.

Usage

ENgetcurvevalue(curveIndex, pointIndex)

Arguments

curveIndex a

a curve's index (starting from 1).

pointIndex

the index of a point on the curve (starting from 1).

Value

list with the point's x-value and y-value

ENgetdemandindex

Retrieves the index of a node's named demand category

Description

Retrieves the index of a node's named demand category

Usage

ENgetdemandindex(nodeindex, demand_name)

Arguments

nodeindex the index of a node (starting from 1).

demand_name the name of the demand's category

Value

demand category index

22 ENgetdemandname

 ${\sf ENgetdemand model}$

Get type of demand model in use and its parameters

Description

Get type of demand model in use and its parameters

Usage

```
ENgetdemandmodel()
```

Value

named list with parameters of the demand model

ENgetdemandname

Retrieves the name of a node's demand category.

Description

Retrieves the name of a node's demand category.

Usage

```
ENgetdemandname(nodeindex, demand_index = 1)
```

Arguments

nodeindex a node's index (starting from 1).

demand_index the index of one of the node's demand categories (starting from 1).

Value

The name of the selected category.

ENgetdemandpattern 23

ENgetdemandpattern

Gets the base demand for one of a node's demand categories.

Description

Gets the base demand for one of a node's demand categories.

Usage

```
ENgetdemandpattern(nodeindex, demand_index = 1)
```

Arguments

nodeindex the node's index (starting from 1).

demand_index the index of a demand category for the node (starting from 1).

Details

A returned pattern index of 0 indicates that no time pattern has been assigned to the demand category.

Value

the category's base demand.

Retrieves index of a time pattern assigned to one of a node's demand categories.

patIndex the index of the category's time pattern.

ENgetelseaction

Gets the properties of an ELSE action in a rule-based control.

Description

Gets the properties of an ELSE action in a rule-based control.

Usage

```
ENgetelseaction(ruleIndex, actionIndex)
```

Arguments

ruleIndex the rule's index (starting from 1).

actionIndex the index of the ELSE action to retrieve (starting from 1).

24 ENgetflowunits

Value

list with the following components:

linkIndex the index of the link in the actionstatus the status assigned to the linksetting the value assigned to the link's setting

ENgeterror

Returns the text of an error message generated by an error code

Description

Returns the text of an error message generated by an error code

Usage

ENgeterror(errcode)

Arguments

errcode

an error code.

Value

error message

 ${\tt ENgetflowunits}$

Retrieve a code number indicating the units used to express all flow rates.

Description

ENgetflowunits retrieves a code number indicating the units used to express all flow rates.

Usage

ENgetflowunits()

Value

An integer, the code number indicating the flow units.

Note

Flow units codes are as follows:

ENgetheadcurveindex 25

```
0 = EN_CFS
                cubic feet per second
                gallons per minute
1 = EN_GPM
2 = EN\_MGD
                million gallons per day
3 = EN_IMGD
                Imperial mgd
4 = EN_AFD
                acre-feet per day
5 = EN_LPS
                liters per second
                liters per minute
6 = EN_LPM
7 = EN_MLD
                million liters per day
8
   = EN_CMH
                cubic meters per hour
   = EN\_CMD
                cubic meters per day
```

Flow units are specified in the <code>[OPTIONS]</code> section of the EPANET Input file.

Flow units in liters or cubic meters implies that metric units are used for all other quantities in addition to flow. Otherwise US units are employed. (See Units of Measurement).

Examples

```
# path to Net1.inp example file included with this package
inp <- file.path( find.package("epanet2toolkit"), "extdata","Net1.inp")
ENopen( inp, "Net1.rpt")
ENgetflowunits()
ENclose()</pre>
```

ENgetheadcurveindex

Retrieves index of head curve used by a pump

Description

Retrieves index of head curve used by a pump

Usage

ENgetheadcurveindex(linkindex)

Arguments

linkindex index of the pump

Value

index of head curve

26 ENgetlinkindex

ENgetlinkid

Retrieve the ID label of a link

Description

ENgetlinkid retrieves the ID label of the link given its index.

Usage

```
ENgetlinkid(linkindex)
```

Arguments

linkindex integer specifying the link index.

Value

character ID

Note

Link indexes are consecutive integers starting from 1.

See Also

ENgetlinkindex

Examples

```
# path to Net1.inp example file included with this package
inp <- file.path( find.package("epanet2toolkit"), "extdata","Net1.inp")
ENopen( inp, "Net1.rpt")
ENgetlinkid(1)
ENgetlinkid(12)
ENclose()</pre>
```

ENgetlinkindex

Retrieve the index of a link

Description

ENgetlinkindex retrieves the index of a link with specified ID.

Usage

```
ENgetlinkindex(linkid)
```

ENgetlinknodes 27

Arguments

linkid character

Value

integer index of requested link

Note

Link indexes are consecutive integers starting from 1.

See Also

```
ENgetlinkid
```

Examples

```
# path to Net1.inp example file included with this package
inp <- file.path( find.package("epanet2toolkit"), "extdata","Net1.inp")
ENopen( inp, "Net1.rpt")
ENgetlinkindex("22")
ENclose()</pre>
```

ENgetlinknodes

Retrieve the index of the end nodes of a link

Description

Retrieve the index of the end nodes of a link

Usage

```
ENgetlinknodes(linkindex)
```

Arguments

linkindex integer specifying the link index

Value

integer vector of node indices for this link

Note

Node and link indexes are consecutive integers starting from 1.

The From and To nodes are as defined for the link in the EPANET input file. The actual direction of flow in the link is not considered.

28 ENgetlinktype

See Also

ENgetlinkindex

Examples

```
# path to Net1.inp example file included with this package
inp <- file.path( find.package("epanet2toolkit"), "extdata","Net1.inp")
ENopen( inp, "Net1.rpt")
ENgetlinknodes(1)
ENgetlinknodes(11)
ENclose()</pre>
```

ENgetlinktype

Retrieve the type code for a link

Description

Retrieve the type code for a link

Usage

```
ENgetlinktype(linkindex)
```

Arguments

linkindex

for which type code is requested

Value

integer type-code of the link

Note

Link indexes are consecutive integers starting from 1. Link type codes consist of the following constants:

EN_CVPIPE	0	Pipe with Check Valve
EN_PIPE	1	Pipe
EN_PUMP	2	Pump
EN_PRV	3	Pressure Reducing Valve
EN_PSV	4	Pressure Sustaining Valve
EN_PBV	5	Pressure Breaker Valve
EN_FCV	6	Flow Control Valve
EN_TCV	7	Throttle Control Valve
EN_GPV	8	General Purpose Valve

ENgetlinkvalue 29

See Also

ENgetlinkindex

Examples

```
# path to Net1.inp example file included with this package
inp <- file.path( find.package("epanet2toolkit"), "extdata","Net1.inp")
ENopen( inp, "Net1.rpt")
ENgetlinktype(1)
ENgetlinktype(12)
ENclose()</pre>
```

ENgetlinkvalue

Retrieve parameter value for a link

Description

ENgetlinkvalue retrieves the value of a specific link parameter for a link.

Usage

ENgetlinkvalue(linkindex, paramcode)

Arguments

linkindex index of the link

paramcode requested parameter type either as name or number

Value

The parameter value of a specified link.

Note

Link indexes are consecutive integers starting from 1. Link parameter codes consist of the following constants:

EN_DIAMETER	0	Diameter
EN_LENGTH	1	Length
EN_ROUGHNESS	2	Roughness coeff.
EN_MINORLOSS	3	Minor loss coeff.
EN_INITSTATUS	4	Initial link status ($0 = closed$, $1 = open$)
EN_INITSETTING	5	Initial pipe roughness
		Initial pump speed
		Initial valve setting
EN_KBULK	6	Bulk reaction coeff.
EN_KWALL	7	Wall reaction coeff.
EN_FLOW	8	Flow rate

ENgetnodeid

Parameters 8 - 13 (EN_FLOW through EN_ENERGY) are computed values. The others are design parameters.

Flow rate is positive if the direction of flow is from the designated start node of the link to its designated end node, and negative otherwise.

Values are returned in units which depend on the units used for flow rate in the EPANET input file.

See Also

ENgetlinkindex ENgetflowunits

Examples

```
# path to Net1.inp example file included with this package
inp <- file.path( find.package("epanet2toolkit"), "extdata","Net1.inp")
ENopen(inp, "Net1.rpt")
ENgetlinkvalue(1, "EN_DIAMETER")
ENgetlinkvalue(1, "EN_LENGTH")
ENgetlinkvalue(8, "EN_DIAMETER")
ENgetlinkvalue(8, "EN_LENGTH")
ENgetlinkvalue(8, "EN_LENGTH")
ENclose()</pre>
```

ENgetnodeid

Retrieve the ID label a node.

Description

ENgetnodeid retrieves the ID label a node from its index

Usage

ENgetnodeid(nodeindex)

Arguments

nodeindex An integer node index

Value

A character string, the ID label of the specified node.

ENgetnodeindex 31

Note

Node indexes are consecutive integers starting from 1.

See Also

ENgetnodeindex

Examples

```
# path to Net1.inp example file included with this package
inp <- file.path( find.package("epanet2toolkit"), "extdata","Net1.inp")
ENopen( inp, "Net1.rpt")
ENgetnodeid(1)
ENgetnodeid(5)
ENgetnodeid(9)
ENclose()</pre>
```

ENgetnodeindex

Retrieve the index of a node

Description

Retrieve the index of a node

Usage

ENgetnodeindex(nodeid)

Arguments

nodeid

A character string specifying the node ID.

Value

An integer index of the specified node.

Note

Node indexes are consecutive integers starting from 1.

See Also

ENgetnodeid

32 ENgetnodetype

Examples

```
# path to Net1.inp example file included with this package
inp <- file.path( find.package("epanet2toolkit"), "extdata","Net1.inp")
ENopen( inp, "Net1.rpt")
ENgetnodeindex("10")
ENgetnodeindex("23")
ENclose()</pre>
```

ENgetnodetype

Retrieve the node-type code

Description

ENgetnodetype retrieves the node-type code

Usage

ENgetnodetype(nodeindex)

Arguments

nodeindex

An integer specifying the node index.

Value

integer type-code of the node.

Note

Node indexes are consecutive integers starting from 1.

Node type codes consist of the following constants:

EN_JUNCTION 0 Junction node
EN_RESERVOIR 1 Reservoir node
EN_TANK 2 Tank node

Examples

```
# path to Net1.inp example file included with this package
inp <- file.path( find.package("epanet2toolkit"), "extdata","Net1.inp")
ENopen( inp, "Net1.rpt")
ENgetnodetype(1)
ENgetnodetype(10)
ENgetnodetype(11)
ENclose()</pre>
```

ENgetnodevalue 33

ENgetnodevalue Retrieve node parameter value.

Description

Engetnodevalue retrieves the values of specific node parameters.

Usage

ENgetnodevalue(nodeindex, paramcode)

Arguments

nodeindex An integer vector specifying the node index.

paramcode An integer or character string, the parameter codes (see below).

Value

parameter value

Note

Node indexes are consecutive integers starting from 1.

Node parameter codes consist of the following constants:

Elevation **EN_ELEVATION** 0 EN_BASEDEMAND 1 Base demand EN_PATTERN 2 Demand pattern index Emitter coeff. EN_EMITTER 4 Initial quality EN_INITQUAL Source quality EN_SOURCEQUAL 5 6 Source pattern index EN_SOURCEPAT EN_SOURCETYPE 7 Source type (see note below) 8 Initial water level in tank EN_TANKLEVEL 9 EN_DEMAND Actual demand 10 Hydraulic head **EN_HEAD** EN_PRESSURE 11 Pressure EN_QUALITY 12 Actual quality Mass flow rate per minute of a chemical source EN_SOURCEMASS 13

Parameters 9 - 13 (EN_DEMAND through EN_SOURCEMASS) are computed values. The others are input design parameters.

Source types are identified with the following constants:

EN_CONCEN 0 EN_MASS 1 34 ENgetnumdemands

EN_SETPOINT 2 EN_FLOWPACED 3

See [SOURCES] for a description of these source types.

Values are returned in units which depend on the units used for flow rate in the EPANET input file (see Units of Measurement).

Examples

```
# path to Net1.inp example file included with this package
inp <- file.path( find.package("epanet2toolkit"), "extdata","Net1.inp")
ENopen( inp, "Net1.rpt")
ENgetnodevalue(1, "EN_ELEVATION")
ENgetnodevalue(5, "EN_BASEDEMAND")
ENclose()</pre>
```

ENgetnumdemands

Get number of demands for a junction node

Description

Get number of demands for a junction node

Usage

ENgetnumdemands(nodeindex)

Arguments

nodeindex the index of a node (starting from 1).

Value

number of demands

ENgetpatternid 35

ENgetoption

Retrieve the value of an analysis option.

Description

Engetoption retrieves the value of one or more particular analysis options.

Usage

```
ENgetoption(optioncode)
```

Arguments

optioncode

A character or integer specifying the option code (see below).

Details

Option codes consist of the following constants:

```
EN_TRIALS 0
EN_ACCURACY 1
EN_TOLERANCE 2
EN_EMITEXPON 3
EN_DEMANDMULT 4
```

Value

numeric value of the specified analysis option(s).

Examples

```
# path to Net1.inp example file included with this package
inp <- file.path( find.package("epanet2toolkit"), "extdata","Net1.inp")
ENopen( inp, "Net1.rpt")
ENgetoption(0)
ENgetoption("EN_TRIALS")
ENclose()</pre>
```

 ${\tt ENgetpatternid}$

Retrieve the ID label a time pattern

Description

ENgetpatternid retrieves the ID label of a particular time pattern.

36 ENgetpatternindex

Usage

```
ENgetpatternid(patternindex)
```

Arguments

patternindex An integer specifying the time pattern index.

Value

A character string, the pattern ID label of the specified time pattern.

Note

Pattern indexes are consecutive integers starting from 1.

Examples

```
# path to Net1.inp example file included with this package
inp <- file.path( find.package("epanet2toolkit"), "extdata","Net1.inp")
ENopen( inp, "Net1.rpt")
ENgetpatternid(1)
ENclose()</pre>
```

ENgetpatternindex

Retrieve the index a time pattern.

Description

ENgetpatternindex retrieves the index of a time pattern.

Usage

```
ENgetpatternindex(patternid)
```

Arguments

patternid

A character string specifying the pattern ID

Value

An integer, the index of the specified time pattern.

Note

Pattern indexes are consecutive integers starting from 1.

ENgetpatternlen 37

Examples

```
# path to Net1.inp example file included with this package
inp <- file.path( find.package("epanet2toolkit"), "extdata","Net1.inp")
ENopen( inp, "Net1.rpt")
ENgetpatternindex("1")
ENclose()</pre>
```

ENgetpatternlen

Retrieve the number of time periods in a time pattern.

Description

ENgetpatternlen retrieves the number of time periods in a specific time pattern.

Usage

ENgetpatternlen(patternindex)

Arguments

patternindex An integer specifying a time pattern index.

Value

An integer, the time pattern length.

Note

Pattern indexes are consecutive integers starting from 1.

Examples

```
# path to Net1.inp example file included with this package
inp <- file.path( find.package("epanet2toolkit"), "extdata","Net1.inp")
ENopen( inp, "Net1.rpt")
ENgetpatternlen(1)
ENclose()</pre>
```

38 ENgetpatternvalue

ENgetpatternvalue

Retrieve the multiplier factor for a specific time period

Description

ENgetpatternvalue retrieves the multiplier factor for specific time periods in a pattern.

Usage

```
ENgetpatternvalue(index, period)
```

Arguments

index An integer specifying the time pattern index.

period An integer or integer vector of the periods within the time pattern.

Value

A numeric or numeric vector, the multiplier factor for the specific time pattern and period.

Note

Pattern indexes and periods are consecutive integers starting from 1.

See Also

 ${\tt ENgetpatternindex}, {\tt ENgetpatternlen}, {\tt ENsetpatternvalue}$

Examples

```
# path to Net1.inp example file included with this package
inp <- file.path( find.package("epanet2toolkit"), "extdata","Net1.inp")
ENopen( inp, "Net1.rpt")
ENgetpatternvalue(1,1)
ENgetpatternvalue(1,2)
ENgetpatternvalue(1,3)
ENclose()</pre>
```

ENgetpremise 39

ENgetpremise Gets the properties of a premise in a rule-based control.

Description

Gets the properties of a premise in a rule-based control.

Usage

```
ENgetpremise(ruleIndex, premiseIndex)
```

Arguments

ruleIndex the rule's index (starting from 1).

premiseIndex the position of the premise in the rule's list of premises (starting from 1).

Value

list with components:

logop the premise's logical operator (IF = 1, AND = 2, OR = 3)

object the type of object the premise refers to

objIndex the index of the object (e.g. the index of a tank)

variable the object's variable being compared

relop the premise's comparison operator

status the status that the object's status is compared to

value the value that the object's variable is compared to

ENgetpumptype

Retrieves type of head curve used by a pump

Description

Retrieves type of head curve used by a pump

Usage

ENgetpumptype(linkindex)

Arguments

linkindex index of the pump

Value

type of head curve

ENgetqualtype

ENgetqualinfo

Get quality analysis information

Description

Get quality analysis information

Usage

```
ENgetqualinfo()
```

Value

list with elements: qualcode, chemname, chemunits, tracenode

Examples

```
inp <- file.path( find.package("epanet2toolkit"), "extdata","Net1.inp")
ENopen( inp, "Net1.rpt")
ENgetqualinfo()
ENclose()
# clean-up the created files
file.remove("Net1.rpt")</pre>
```

ENgetqualtype

Retrieve the type of water quality analysis called for.

Description

ENgetqualtype retrieves the type of water quality analysis called for.

Usage

```
ENgetqualtype()
ENgetqualtype()
```

Value

A named integer vector, the water quality analysis code (see below) and the index of node traced in a source tracing analysis.

list of qualcode and trace node

Note

Water quality analysis codes are as follows:

ENgetresultindex 41

EN_NONE 0 No quality analysis
EN_CHEM 1 Chemical analysis
EN_AGE 2 Water age analysis
EN_TRACE 3 Source tracing

The tracenode value will be 0 when the quality code is not EN_TRACE.

See Also

ENsetqualtype

Examples

```
# path to Net1.inp example file included with this package
inp <- file.path( find.package("epanet2toolkit"), "extdata","Net1.inp")
ENopen( inp, "Net1.rpt")
ENgetqualtype()
ENclose()
inp <- file.path( find.package("epanet2toolkit"), "extdata","Net1.inp")
ENopen( inp, "Net1.rpt")
ENgetqualtype()
ENclose()
# clean-up the created files
file.remove("Net1.rpt")</pre>
```

ENgetresultindex

Retrieves the order in which a node or link appears in an output file.

Description

Retrieves the order in which a node or link appears in an output file.

Usage

```
ENgetresultindex(type, index)
```

Arguments

```
type a type of element (either EN_NODE or EN_LINK). index the element's current index (starting from 1).
```

Details

If the element does not appear in the file then its result index is 0.

This function can be used to correctly retrieve results from an EPANET binary output file after the order of nodes or links in a network's database has been changed due to editing operations.

Value

the order in which the element's results were written to file.

42 ENgetruleID

ENgetrule

Retrieves summary information about a rule-based control.

Description

Retrieves summary information about a rule-based control.

Usage

```
ENgetrule(index)
```

Arguments

index

the rule's index (starting from 1).

Value

list with components: nPremises number of premises in the rule's IF section; nThenActions number of actions in the rule's THEN section; nElseActions number of actions in the rule's ELSE section; priority the rule's priority value.

ENgetruleID

Gets the ID name of a rule-based control given its index.

Description

Gets the ID name of a rule-based control given its index.

Usage

```
ENgetruleID(index)
```

Arguments

index

the rule's index (starting from 1).

Value

rule's ID name.

ENgetthenaction 43

ENgetstatistic	Analysis convergence statistics.
Linguistationic	Tirenty Bib control genee Bientibites.

Description

Analysis convergence statistics.

Usage

```
ENgetstatistic(stat)
```

Arguments

stat one of the statistics tabulated below

Details

These statistics report the convergence criteria for the most current hydraulic analysis and the cumulative water quality mass balance error at the current simulation time.

EN_ITERATIONS Number of hydraulic iterations taken.
EN_RELATIVEERROR Sum of link flow changes / sum of link flows.

EN_MAXHEADERROR Largest head loss error for links.
EN_MAXFLOWCHANGE Largest flow change in links.

EN_MASSBALANCE Cumulative water quality mass balance ratio.

EN_DEMANDREDUCTION

Value

value of the stat

ENgetthenaction	Gets properties of THEN action in rule-based control	
-----------------	--	--

Description

Gets properties of THEN action in rule-based control

Usage

```
ENgetthenaction(ruleIndex, actionIndex)
```

Arguments

ruleIndex the rule's index (starting from 1).

actionIndex the index of the THEN action to retrieve (starting from 1).

44 ENgettimeparam

Value

list with components: * linkIndex the index of the link in the action (starting from 1) * status the status assigned to the link * setting the value assigned to the link's setting

ENgettimeparam Get the value of one or more s

Get the value of one or more specific analysis time parameters.

Description

Engettimeparam retrieves the value of one or more specific analysis time parameters.

Usage

ENgettimeparam(paramcode)

Arguments

paramcode A character string or integer specifying the parameter code (see below).

Details

Time parameter codes consist of the following constants:

EN_DURATION Simulation duration ${\sf EN_HYDSTEP}$ Hydraulic time step 1 Water quality time step **EN_QUALSTEP** EN_PATTERNSTEP 3 Time pattern time step EN_PATTERNSTART 4 Time pattern start time EN_REPORTSTEP 5 Reporting time step Report starting time EN_REPORTSTART 6 7 Time step for evaluating rule-based controls **EN_RULESTEP** 8 Type of time series post-processing used: **EN STATISTIC** 0 = none1 = averaged2 = minimums3 = maximums4 = rangesEN_PERIODS 9 Number of reporting periods saved to binary output file

Value

A named integer with the value of the specified time parameter.

Examples

```
# path to Net1.inp example file included with this package
inp <- file.path( find.package("epanet2toolkit"), "extdata","Net1.inp")</pre>
```

ENgettitle 45

```
ENopen(inp, "Net1.rpt")
ENgettimeparam("EN_DURATION")
ENgettimeparam("EN_HYDSTEP")
ENclose()
```

 ${\tt ENgettitle}$

ENgettitle

Description

Retrieves the title lines of the project

Usage

ENgettitle()

Value

character vector of title lines

ENgetversion

Retrieve the current version number of the EPANET Toolkit.

Description

ENgetversion retrieves the current version number of the EPANET Toolkit.

Usage

ENgetversion()

Value

An integer, the Toolkit version number.

Note

The version number is a 5-digit integer that increases sequentially from 20001 with each new update of the Toolkit.

Examples

ENgetversion()

46 ENgetvertexcount

 ${\tt ENgetvertex}$

Get vertex coordinates

Description

Get vertex coordinates

Usage

```
ENgetvertex(index, vertex)
```

Arguments

index a link's index (starting from 1).

vertex index of vertex for getting coords

Value

list with elements x and y

ENgetvertexcount

Get number of vertices for a link

Description

Get number of vertices for a link

Usage

ENgetvertexcount(index)

Arguments

index a link's index (starting from 1).

Value

number of indices

ENinit 47

ENTITE Brown

Description

Initializes an empty EPANET network

Usage

```
ENinit(rptFile, outFile, unitsType, headLossType)
```

Arguments

rptFile the name of a report file to be created (or "" if not needed).

outFile the name of a binary output file to be created (or "" if not needed).

unitsType the choice of flow units. One of: "EN_CFS", "EN_GPM", "EN_MGD", "EN_IMGD",

"EN_AFD", "EN_LPS", "EN_LPM", "EN_MLD", "EN_CMH", "EN_CMD"

headLossType the choice of head loss formula. One of: EN_HW, EN_DW, EN_CM

Details

This function should be called to create an empty EPANET project without an EPANET-formatted input file. If the project receives it's network data from an input file then there is no need to call this function; use ENopen instead.

Value

Returns NULL invisibly; called for side effect

ENinitH	Initialize hydraulic engine

Description

ENinitH Initializes storage tank levels, link status and settings, and the simulation clock time prior to running a hydraulic analysis.

Usage

ENinitH(flag)

Arguments

flag A two-digit flag indicating if hydraulic results will be saved to the hydraulics

file (rightmost digit) and if link flows should be re-initialized.

48 ENinitQ

Details

Call ENinitH prior to running a hydraulic analysis using ENrunH and ENnextH.ENopenH must have been called prior to calling ENinitH. Do not call ENinitH if a complete hydraulic analysis is being made with a call to ENsolveH. Values of flag have the following meanings:

- 00 do not re-initialize flows, do not save results to file
- 01 do not re-initialize flows, save results to file
- 10 re-initialize flows, do not save results to file
- 11 re-initialize flows, save results to file

Set flag to 1 (or 11) if you will be making a subsequent water quality run, using ENreport to generate a report, or using ENsavehydfile to save the binary hydraulics file.

Value

Returns NULL invisibly; called for side effect

See Also

ENopenH, ENrunH, ENnextH, ENcloseH

Examples

```
# path to Net1.inp example file included with this package
inp <- file.path( find.package("epanet2toolkit"), "extdata","Net1.inp")
ENopen( inp, "Net1.rpt")
ENopenH()
ENinitH(0)
ENrunH()
ENcloseH()
ENclose()
# clean-up the created files
file.remove("Net1.rpt")</pre>
```

ENinitQ

Initialize water quality analysis

Description

Initialize water quality analysis

Usage

```
ENinitQ(saveFlag)
```

Arguments

saveFlag

boolean or integer indicating whether to save quality results to a file

ENnextH 49

Details

Call ENinitQ before running quality analysis using ENrunQ with ENnextQ or ENstepQ. ENopenQ must have been called prior to calling ENinitQ. Do not call ENinitQ with ENsolveQ.

Value

Returns NULL invisibly on success or throws an error or warning

Examples

```
inp <- file.path( find.package("epanet2toolkit"), "extdata","Net1.inp")
ENopen( inp, "Net1.rpt")
ENsolveH()
ENsetqualtype("EN_CHEM", "Chlorine", "mg/L", "")
ENopenQ()
ENinitQ(0)
ENrunQ()
ENcloseQ()
ENclose()
# clean-up the created files
file.remove("Net1.rpt")</pre>
```

ENnextH

determine the next hydraulic step

Description

ENnextH determines the length of time until the next hydraulic event occurs in an extended period simulation.

Usage

ENnextH()

Details

This function is used in conjunction with ENrunH to perform an extended period hydraulic analysis (see example below).

The return value is automatically computed as the smaller of:

- the time interval until the next hydraulic time step begins
- the time interval until the next reporting time step begins
- the time interval until the next change in demands occurs
- the time interval until a tank becomes full or empty
- the time interval until a control or rule fires

50 ENnextQ

Value

An integer, the time (in seconds) until next hydraulic event occurs or 0 if at the end of the simulation period.

See Also

ENopenH, ENinitH, ENrunH, ENcloseH, ENsettimeparam

Examples

```
# path to Net1.inp example file included with this package
inp <- file.path( find.package("epanet2toolkit"), "extdata","Net1.inp")</pre>
ENopen( inp, "Net1.rpt")
  # store simulation times
  t = NULL
  ENopenH()
  ENinitH(11)
  repeat {
    t <- c(t, ENrunH())
    tstep <- ENnextH()</pre>
    if (tstep == 0) {
      break
    }
  }
  ENcloseH()
  ENclose()
# clean-up the created files
file.remove("Net1.rpt")
```

ENnextQ

Advances WQ simulation to start of the next hydraulic time period.

Description

Advances WQ simulation to start of the next hydraulic time period.

Usage

ENnextQ()

Value

seconds until next hydraulic event occurs or 0 if at the end of the simulation period.

ENopen 51

Examples

```
inp <- file.path( find.package("epanet2toolkit"), "extdata","Net1.inp")
ENopen( inp, "Net1.rpt")
ENsolveH()
ENsetqualtype("EN_CHEM", "Chlorine", "mg/L", "")
ENopenQ()
ENinitQ(0)
ENrunQ()
ENrunQ()
ENrunQ()
ENcloseQ()
ENcloseQ()
Enclose()
# clean-up the created files
file.remove("Net1.rpt")</pre>
```

ENopen

Open the EPANET Toolkit.

Description

ENopen opens the EPANET Toolkit to analyze a particular water distribution system.

Usage

```
ENopen(inpFileName, rptFileName, outFileName)
```

Arguments

inpFileName A string, the name of the EPANET Input file.rptFileName A string, the name of the EPANET Report file.outFileName A string, the name of an optional binary Output file.

Value

returns NULL invisibly on success or raises an error or warning.

Note

If there is no need to save an EPANET's binary Output file, then outFileName can be an empty string ("").

If rptFileName is an empty string, reporting will be made to the operating system stdout device (which is usually the console/terminal).

enOpen must be called before any of the other toolkit functions are used. The only exception is enEpanet.

See Also

ENclose

52 ENopenH

Examples

```
# path to Net1.inp example file included with this package
inp <- file.path( find.package("epanet2toolkit"), "extdata","Net1.inp")
ENopen( inp, "Net1.rpt")
ENclose()</pre>
```

ENopenH

Open hydraulics analysis system.

Description

ENopenH opens the EPANET hydraulics analysis system.

Usage

ENopenH()

Details

Call ENopenH prior to running the first hydraulic analysis using the ENinitH-ENrunH-ENnextH sequence. Multiple analyses can be made before calling ENcloseH to close the hydraulic analysis system.

Do not call this function if ENsolveH is being used to run a complete hydraulic analysis.

Value

Returns NULL invisibly; called for side effect

See Also

ENinitH, ENrunH, ENnextH, ENcloseH

Examples

```
# path to Net1.inp example file included with this package
inp <- file.path( find.package("epanet2toolkit"), "extdata","Net1.inp")
ENopen( inp, "Net1.rpt")
ENopenH()
ENinitH(0)
ENrunH()
ENcloseH()
ENclose()
# clean-up the created files
file.remove("Net1.rpt")</pre>
```

ENopenQ 53

ENopenQ

Sets up for Water Quality analysis

Description

Sets up for Water Quality analysis

Usage

ENopenQ()

Value

Returns NULL invisibly on success or throws an error or warning

Examples

```
inp <- file.path( find.package("epanet2toolkit"), "extdata","Net1.inp")
ENopen( inp, "Net1.rpt")
ENsolveH()
ENsetqualtype("EN_CHEM", "Chlorine", "mg/L", "")
ENopenQ()
ENinitQ(0)
ENrunQ()
ENcloseQ()
ENclose()
# clean-up the created files
file.remove("Net1.rpt")</pre>
```

ENreport

Write simulation report to the report file

Description

Write simulation report to the report file

Usage

ENreport()

Value

Returns NULL invisibly; called for side effect

54 ENresetreport

Examples

```
# path to Net1.inp example file included with this package
inp <- file.path( find.package("epanet2toolkit"), "extdata","Net1.inp")
ENopen( inp, "Net1.rpt", "Net1.bin")
ENsolveH()
ENsolveQ()
ENreport()
ENclose()
# clean up the created files
file.remove("Net1.rpt")
file.remove("Net1.bin")</pre>
```

ENresetreport

Resets a project's report options to their default values.

Description

Resets a project's report options to their default values.

Usage

ENresetreport()

Details

After calling this function the default reporting options are in effect. These are:

- · no status report
- no energy report
- · no nodes reported on
- no links reported on
- node variables reported to 2 decimal places
- link variables reported to 2 decimal places (3 for friction factor)
- node variables reported are elevation, head, pressure, and quality
- link variables reported are flow, velocity, and head loss.

Value

Returns NULL invisibly; called for side effect

ENrunH 55

ENrunH

run hydraulics engine

Description

ENrunH Runs a single period hydraulic analysis, retrieving the current simulation clock time t.

Usage

ENrunH()

Details

Use ENrunH along with ENnextH in a while loop to analyze hydraulics in each period of an extended period simulation. This process automatically updates the simulation clock time so treat t as a read-only variable.

ENinitH must have been called prior to running the ENrunH-ENnextH loop.

See ENnextH for an example of using this function.

Value

Returns NULL invisibly; called for side effect

See Also

ENopenH, ENinitH, ENnextH, ENcloseH

Examples

```
# path to Net1.inp example file included with this package
inp <- file.path( find.package("epanet2toolkit"), "extdata","Net1.inp")
ENopen( inp, "Net1.rpt")
ENopenH()
ENinitH(0)
ENrunH()
ENcloseH()
ENclose()
# clean-up the created files
file.remove("Net1.rpt")</pre>
```

56 ENsaveH

ENrunQ

Computs WQ results at current time.

Description

Computs WQ results at current time.

Usage

ENrunQ()

Details

used in a loop with ENnextQ() to run an extended period WQ simulation.

Value

current simulation time in seconds

Examples

```
inp <- file.path( find.package("epanet2toolkit"), "extdata","Net1.inp")
ENopen( inp, "Net1.rpt")
ENsolveH()
ENsetqualtype("EN_CHEM", "Chlorine", "mg/L", "")
ENopenQ()
ENinitQ(0)
ENrunQ()
ENcloseQ()
ENclose()
# clean-up the created files
file.remove("Net1.rpt")</pre>
```

ENsaveH

ENsaveH Saves hydraulic results to binary file

Description

ENsaveH

Saves hydraulic results to binary file

Usage

ENsaveH()

ENsavehydfile 57

Details

Must be called before ENreport() if no WQ simulation has been made. Should not be called if ENsolveQ() will be used.

Value

Returns NULL invisibly; called for side effect

ENsavehydfile

Saves temporary hydraulics file to disk

Description

Saves temporary hydraulics file to disk

Usage

ENsavehydfile(hydfile)

Arguments

hydfile

the name of the file to be created.

Details

Use this function to save the current set of hydraulics results to a file, either for post-processing or to be used at a later time by calling ENusehydfile.

The hydraulics file contains nodal demands and heads and link flows, status, and settings for all hydraulic time steps, even intermediate ones.

Before calling this function hydraulic results must have been generated and saved by having called ENsolveH or the ENinitH - ENrunH - ENnextH sequence with the initflag argument of ENinitH set to EN_SAVE or EN_SAVE_AND_INIT.

Value

Returns NULL invisibly; called for side effect

58 ENsetbasedemand

ENsaveinpfile

ENaveinpfile Saves current data to "INP" formatted text file.

Description

ENaveinpfile

Saves current data to "INP" formatted text file.

Usage

```
ENsaveinpfile(filename)
```

Arguments

filename

The file path to create

Value

Returns NULL invisibly; called for side effect

ENsetbasedemand

Sets the base demand for one of a node's demand categories.

Description

Sets the base demand for one of a node's demand categories.

Usage

ENsetbasedemand(nodeindex, demand_index = 1, base_demand)

Arguments

nodeindex a node's index (starting from 1).

demand_index the index of a demand category for the node (starting from 1).

base_demand the category's base demand.

ENsetcontrol 59

ENsetcontrol	Set the parameters of a simple control statement

Description

Ensetcontrol sets the parameters of a simple control statements.

Usage

```
ENsetcontrol(
  cindex,
  ctype = NULL,
  lindex = NULL,
  setting = NULL,
  nindex = NULL,
  level = NULL
)
```

Arguments

cindex	Integer, control statement index
ctype	Integer or character string, the control type code (see Details below).
lindex	Integer, index of the link being controlled.
setting	Numeric, value of the control setting.
nindex	Integer, the index of the controlling node.
level	value of controlling water level or pressure for level controls or of time of control action (in seconds) for time-based controls

Details

Controls are indexed starting from 1 in the order in which they were entered into the [CONTROLS] section of the EPANET input file. Control type codes consist of the following:

EN_LOWLEVEL	0	Control applied when tank level or node pressure
		drops below specified level
EN_HILEVEL	1	Control applied when tank level or node pressure
		rises above specified level
EN_TIMER	2	Control applied at specific time into simulation
EN_TIMEOFDAY	3	Control applied at specific time of day

For pipes, a setting of 0 means the pipe is closed and 1 means it is open. For a pump, the setting contains the pump's speed, with 0 meaning the pump is closed and 1 meaning it is open at its normal speed. For a valve, the setting refers to the valve's pressure, flow, or loss coefficient, depending on valve type.

For Timer or Time-of-Day controls set the nindex parameter to 0.

60 ENsetcoord

For level controls, if the controlling node nindex is a tank then the level parameter should be a water level above the tank bottom (not an elevation). Otherwise level should be a junction pressure.

To remove a control on a particular link, set the lindex parameter to 0. Values for the other parameters in the function will be ignored.

Value

Returns NULL invisibly on success or raises an error or warning.

See Also

ENsetcontrol

Examples

```
# path to Net1.inp example file included with this package
inp <- file.path( find.package("epanet2toolkit"), "extdata","Net1.inp")
ENopen( inp, "Net1.rpt")
ENgetcontrol(1)
ENsetcontrol(1, ctype=2, lindex=3, setting=1, nindex=0, level=54)
ENgetcontrol(1)
ENclose()</pre>
```

ENsetcoord

Set coordinates for a node

Description

Set coordinates for a node

Usage

```
ENsetcoord(nodeindex, x, y)
```

Arguments

nodeindex index of nodes for which to set coords
x coordinate

y coordinate

Value

returns NULL invisibily on success or raises an error or warning

ENsetcurveid 61

Examples

```
# path to Net1.inp example file included with this package
inp <- file.path( find.package("epanet2toolkit"), "extdata","Net1.inp")
ENopen( inp, "Net1.rpt")
ENgetcoord(3)
ENsetcoord(3,33,44)
ENgetcoord(3)
ENclose()</pre>
```

ENsetcurveid

Changes the ID name of a data curve given its index.

Description

Changes the ID name of a data curve given its index.

Usage

```
ENsetcurveid(index, id)
```

Arguments

index a data curve index (starting from 1).
id the data curve's new ID name.

Value

null invisibly

ENsetcurvevalue

Sets the value of a single data point for a curve.

Description

Sets the value of a single data point for a curve.

Usage

```
ENsetcurvevalue(curveIndex, pointIndex, x, y)
```

Arguments

```
curveIndex a curve's index (starting from 1).
```

pointIndex the index of a point on the curve (starting from 1).

x the point's new x-value.
y the point's new y-value.

62 ENsetdemandname

Value

null invisibly

ENsetdemandmodel

Sets the type of demand model to use and its parameters.

Description

Sets the type of demand model to use and its parameters.

Usage

ENsetdemandmodel(model, pmin, preq, pexp)

Arguments

model Type of demand model. EN_DDA for demand driven analysis or EN_PDA for

pressure driven analysis

pmin Pressure below which there is no demand preq Pressure required to deliver full demand pexp Pressure exponent in demand function

ENsetdemandname

Sets the name of a node's demand category.

Description

Sets the name of a node's demand category.

Usage

ENsetdemandname(nodeindex, demand_index, demand_name)

Arguments

nodeindex a node's index (starting from 1).

demand_index the index of one of the node's demand categories (starting from 1).

demand_name The name of the selected category. No more than 30 characters

ENsetdemandpattern 63

ENsetdemandpattern	Sets the index of a time pattern used for one of a node's demand cate-
	gories.

Description

Sets the index of a time pattern used for one of a node's demand categories.

Usage

ENsetdemandpattern(nodeindex, demand_index, pattern_index)

Arguments

nodeindex a node's index (starting from 1).

demand_index the index of one of the node's demand categories (starting from 1).

pattern_index the index of the time pattern assigned to the category.

Details

Specifying a pattern index of 0 indicates that no time pattern is assigned to the demand category.

ENsetelseaction	Set properties of an ELSE action in a rule-based control
-----------------	--

Description

Set properties of an ELSE action in a rule-based control

Usage

ENsetelseaction(ruleIndex, actionIndex, linkIndex, status, setting)

Arguments

ruleIndex the rule's index (starting from 1).

actionIndex the index of the ELSE action being modified (starting from 1).

linkIndex the index of the link in the action (starting from 1).

status the new status assigned to the link

setting the new value assigned to the link's setting.

Value

null invisibly

64 ENsetheadcurveindex

ENsetflowunits

Sets flow units.

Description

Sets flow units.

Usage

ENsetflowunits(units)

Arguments

units

the choice of flow units. One of: "EN_CFS", "EN_GPM", "EN_MGD", "EN_IMGD", "EN_AFD", "EN_LPS", "EN_LPM", "EN_MLD", "EN_CMH", "EN_CMD"

Details

Flow units in liters or cubic meters implies that SI metric units are used for all other quantities in addition to flow. Otherwise US Customary units are employed.

Value

null invisibly

ENsetheadcurveindex

Sets index of head curve used by a pump

Description

Sets index of head curve used by a pump

Usage

ENsetheadcurveindex(linkindex, curveindex)

Arguments

linkindex

index of the pump

curveindex

index of head curve to assign

Value

null invisibly

ENsetjuncdata 65

ENsetjuncdata

Sets properties for a junction

Description

Sets properties for a junction

Usage

```
ENsetjuncdata(nodeindex, elevation, demand, demand_pattern = "")
```

Arguments

nodeindex a junction node's index (starting from 1).
elevation the value of the junction's elevation.

demand the value of the junction's primary base demand.

demand_pattern the ID name of the demand's time pattern ("" for no pattern)

Details

These properties have units that depend on the units used for flow rate.

ENsetlinkid

Change the ID of a link

Description

Change the ID of a link

Usage

```
ENsetlinkid(index, newid)
```

Arguments

index of the target link

newid new name for the link (no more than 30 characters)

ENsetlinktype

ENsetlinknodes Set the indexes of a link's start- and end-nodes

Description

Set the indexes of a link's start- and end-nodes

Usage

```
ENsetlinknodes(index, node1_index, node2_index)
```

Arguments

index a link's index (starting from 1).

node1_index The index of the link's start node (starting from 1).

node2_index The index of the link's end node (starting from 1).

ENsetlinktype Change a link's type

Description

Change a link's type

Usage

```
ENsetlinktype(index, type, action = "EN_UNCONDITIONAL")
```

Arguments

index of link before type change

type the new type to change the link to (see details)

action the action taken if any controls contain the link (see details)

Details

Link type is one of: EN_CVPIPE, EN_PIPE, EN_PUMP, EN_PRV, EN_PSV, EN_PBV, EN_FCV, EN_TCV, EN_GPV

If actionCode is EN_UNCONDITIONAL then all simple and rule-based controls that contain the link are deleted when the link's type is changed. If set to EN_CONDITIONAL then the type change is cancelled if the link appears in any control and error 261 is returned.

Value

link index after the type change

ENsetlinkvalue 67

|--|

Description

Set a parameter value for a link

Usage

```
ENsetlinkvalue(index, paramcode, value)
```

Arguments

index of the link

paramcode number or name of parameter code, see details

value new value of the parameter.

Details

Links are indexed starting from 1.

Link parameter codes consist of the following constants:

EN_DIAMETER	0	Diameter
EN_LENGTH	1	Length
EN_ROUGHNESS	2	Roughness coeff.
EN_MINORLOSS	3	Minor loss coeff.
EN_INITSTATUS	4	Initial link status ($0 = closed$, $1 = open$)
EN_INITSETTING	5	Pipe roughness
		Initial pump speed
		Initial valve setting
EN_KBULK	6	Bulk reaction coeff.
EN_KWALL	7	Wall reaction coeff.
EN_STATUS	11	Current pump or valve status ($0 = closed$, $1 = open$)
EN_SETTING	12	Current pump speed of valve setting.

Values are supplied in units which depend on the units used for flow rate in the EPANET input file (see Units of Measurement). Use EN_INITSTATUS and EN_INITSETTING to set the design value for a link's status or setting that exists prior to the start of a simulation. Use EN_STATUS and EN_SETTING to change these values while a simulation is being run (within the ENrunH - ENnextH loop).

If a control valve has its status explicitly set to OPEN or CLOSED, then to make it active again during a simulation you must provide a new valve setting value using the EN_SETTING parameter.

For pipes, either EN_ROUGHNESS or EN_INITSETTING can be used to change roughness.

Value

Returns NULL invisibly on success or raises a warning or error.

ENsetnodevalue

Examples

```
# path to Net1.inp example file included with this package
inp <- file.path( find.package("epanet2toolkit"), "extdata","Net1.inp")
ENopen(inp, "Net1.rpt")
ENgetlinkvalue(8, "EN_LENGTH")
ENsetlinkvalue(8, "EN_LENGTH", 3333)
ENgetlinkvalue(8, "EN_DIAMETER")
ENclose()</pre>
```

ENsetnodeid

Changes the ID name of a node

Description

Changes the ID name of a node

Usage

ENsetnodeid(nodeindex, newid)

Arguments

nodeindex index of the node

newid new ID name of the node

ENsetnodevalue Set the parameter value for a node.

Description

ENsetnodevalue sets parameter value for one node.

Usage

```
ENsetnodevalue(index, paramcode = NULL, value = NULL)
```

Arguments

index An integer vector, the node index.

paramcode An integer vector, the parameter code (see Details below).

value A numeric vector, the new value of the parameter.

Details

Nodes are indexed starting from 1 in the order in which they were entered into the [NODES] section of the EPANET input file.

Node parameter codes consist of the following constants:

ENsetoption 69

```
0 Elevation
EN_ELEVATION
                1
                    Base demand
EN_BASEDEMAND
                2 Demand pattern index
EN_PATTERN
                3 Emitter coeff.
EN_EMITTER
EN_INITQUAL
                4
                   Initial quality
EN_SOURCEQUAL 5
                    Source quality
EN_SOURCEPAT
                6
                    Source pattern index
EN_SOURCETYPE
                    Source type (see note below)
               7
EN_TANKLEVEL
                8 Initial water level in tank
```

Source types are identified with the following constants:

```
EN_CONCEN 0
EN_MASS 1
EN_SETPOINT 2
EN_FLOWPACED 3
```

See [SOURCES] for a description of these source types.

Values are supplied in units which depend on the units used for flow rate in the EPANET input file (see Units of Measurement).

Value

returns NULL invisibly on success or raises an error or warning.

Examples

```
# path to Net1.inp example file included with this package
inp <- file.path( find.package("epanet2toolkit"), "extdata","Net1.inp")
ENopen( inp, "Net1.rpt")
ENgetnodevalue(3, "EN_ELEVATION")
ENsetnodevalue(3, "EN_ELEVATION", 777)
ENgetnodevalue(3, "EN_ELEVATION")
ENclose()</pre>
```

ENsetoption

Set the value of a particular analysis option.

Description

Ensetoption sets the value of a particular analysis option.

Usage

```
ENsetoption(optioncode, value)
```

70 ENsetpattern

Arguments

optioncode An integer or character vector specifying the option

value numeric

Details

Option codes consist of the following constants:

EN_TRIALS 0
EN_ACCURACY 1
EN_TOLERANCE 2
EN_EMITEXPON 3
EN_DEMANDMULT 4

Examples

```
# path to Net1.inp example file included with this package
inp <- file.path( find.package("epanet2toolkit"), "extdata","Net1.inp")
ENopen( inp, "Net1.rpt")
ENgetoption("EN_TRIALS")
ENsetoption("EN_TRIALS", 22)
ENgetoption("EN_TRIALS")
ENclose()</pre>
```

ENsetpattern

Set all of the multiplier factors for a specific time pattern.

Description

ENsetpattern sets all of the multiplier factors for a specific time pattern.

Usage

```
ENsetpattern(index, factors)
```

Arguments

index An integer, the pattern index.

factors A numeric vector, the multiplier factors for the entire pattern.

Details

Pattern indexes are consecutive integers starting from 1.

Use this function to redefine (and resize) a time pattern all at once; use ENsetpatternvalue to revise pattern factors in specific time periods of a pattern.

ENsetpatternid 71

See Also

 ${\tt ENgetpatternindex}, {\tt ENgetpatternlen}, {\tt ENgetpatternvalue}, {\tt ENsetpatternvalue}$

Examples

```
# path to Net1.inp example file included with this package
inp <- file.path( find.package("epanet2toolkit"), "extdata","Net1.inp")
ENopen( inp, "Net1.rpt")
ENsetpattern(1, 1:10)
ENgetpatternvalue(1,1)
ENgetpatternvalue(1,10)
ENclose()</pre>
```

ENsetpatternid

Change the ID name of a time pattern given its index.

Description

Change the ID name of a time pattern given its index.

Usage

```
ENsetpatternid(index, id)
```

Arguments

index a time pattern index (starting from 1).
id the time pattern's new ID name.

Value

NULL invisibly

ENsetpatternvalue set pattern value

Description

set pattern value

Usage

```
ENsetpatternvalue(index, period, value)
```

72 ENsetpremise

Arguments

index index of pattern

period time period for setting the value

value value to set

Value

returns NULL inivisbly on success

Examples

```
# path to Net1.inp example file included with this package
inp <- file.path( find.package("epanet2toolkit"), "extdata","Net1.inp")
ENopen( inp, "Net1.rpt")
ENgetpatternvalue(1,3)
ENsetpatternvalue(1,3, 9.876)
ENgetpatternvalue(1,3)
ENclose()</pre>
```

ENsetpremise

Sets the properties of a premise in a rule-based control.

Description

Sets the properties of a premise in a rule-based control.

Usage

```
ENsetpremise(
  ruleIndex,
  premiseIndex,
  logop,
  object,
  objIndex,
  variable,
  relop,
  status,
  value
)
```

Arguments

ruleIndex the rule's index (starting from 1).

premiseIndex the position of the premise in the rule's list of premises. logop the premise's logical operator (IF = 1, AND = 2, OR = 3).

object the type of object the premise refers to

ENsetpremiseindex 73

objIndex the index of the object (e.g. the index of a tank)

variable the object's variable being compared relop the premise's comparison operator

status the status that the object's status is compared to value the value that the object's variable is compared to.

Value

null

ENsetpremiseindex Sets the inde

Sets the index of an object in a premise of a rule-based control

Description

Sets the index of an object in a premise of a rule-based control

Usage

ENsetpremiseindex(ruleIndex, premiseIndex, objIndex)

Arguments

ruleIndex the rule's index (starting from 1).

premiseIndex the premise's index (starting from 1).

objIndex the index of the premise's object (e.g. the index of a tank).

Value

null

ENsetpremisestatus

Sets the status being compared to in a premise of a rule-based control

Description

Sets the status being compared to in a premise of a rule-based control

Usage

ENsetpremisestatus(ruleIndex, premiseIndex, status)

74 ENsetqualtype

Arguments

ruleIndex the rule's index (starting from 1).

premiseIndex the premise's index (starting from 1).

status the status that the premise's object status is compared to (see @ref EN_RuleStatus).

Value

null

ENsetpremisevalue Sets the value in a premise of a rule-based control

Description

Sets the value in a premise of a rule-based control

Usage

ENsetpremisevalue(ruleIndex, premiseIndex, value)

Arguments

ruleIndex the rule's index (staring from 1).

premiseIndex the premise's index (starting from 1).

value The value that the premise's variable is compared to.

Value

null

ENsetqualtype Set the type of water quality analysis called for.

Description

Ensetqualtype sets the type of water quality analysis called for.

Usage

```
ENsetqualtype(qualcode, chemname = "", chemunits = "", tracenode = "")
```

ENsetreport 75

Arguments

qualcode	An integer or a char	racter string, the water	quality analysis	code (see below)
quarcouc	Till lineger of a chai	acter string, the water	quality allarysis	s code (see below).

chemname A character string, the name of the chemical being analyzed.

Chemunits A character string, units that the chemical is measured in.

tracenode A character string, ID of node traced in a source tracing analysis.

Details

Water quality analysis codes are as follows:

EN_NONE 0 No quality analysis
EN_CHEM 1 Chemical analysis
EN_AGE 2 Water age analysis
EN_TRACE 3 Source tracing

Chemical name and units can be an empty string if the analysis is not for a chemical. The same holds for the trace node if the analysis is not for source tracing. Note that the trace node is specified by ID and not by index.

Value

returns NULL invisibly on success

See Also

ENgetqualtype

Examples

```
inp <- file.path( find.package("epanet2toolkit"), "extdata","Net1.inp")
ENopen( inp, "Net1.rpt")
ENgetqualtype()
ENsetqualtype("EN_CHEM", "Chlorine", "mg/L", "")
ENgetqualtype()
ENclose()
# clean-up the created files
file.remove("Net1.rpt")</pre>
```

ENsetreport

Processes a reporting format command.

Description

Processes a reporting format command.

76 **ENsetstatusreport**

Usage

ENsetreport(format)

Arguments

format

report formatting command: one line from the [REPORT] section of an inp file

ENsetrulepriority

Sets the priority of a rule-based control.

Description

Sets the priority of a rule-based control.

Usage

```
ENsetrulepriority(index, priority)
```

Arguments

index

the rule's index (starting from 1).

priority

the priority value assigned to the rule.

Value

null

ENsetstatusreport

Sets the level of hydraulic status reporting.

Description

Sets the level of hydraulic status reporting.

Usage

```
ENsetstatusreport(level)
```

Arguments

level

one of: EN_NO_REPORT, EN_NORMAL_REPORT, EN_FULL_REPORT

ENsettankdata 77

ENsettankdata Sets properties for a tank

Description

Sets properties for a tank

Usage

```
ENsettankdata(
  nodeindex,
  elevation,
  init_level,
  min_level,
  max_level,
  diameter,
  min_volume,
  volume_curve = ""
)
```

Arguments

nodeindex	tank's node index (starting from 1)
elevation	the tank's bottom elevation.
init_level	the initial water level in the tank.
min_level	the minimum water level for the tank.
max_level	the maximum water level for the tank.
diameter	the tank's diameter (0 if a volume curve is supplied).
min_volume	the volume of the tank at its minimum water level.
volume_curve	the name of the tank's volume curve ("" for no curve)

ENsetthenaction

Set properties of THEN action in a rule-based control

Description

Set properties of THEN action in a rule-based control

Usage

ENsetthenaction(ruleIndex, actionIndex, linkIndex, status, setting)

78 **ENsettimeparam**

Arguments

ruleIndex the rule's index (starting from 1)

the index of the THEN action to modify (starting from 1) actionIndex

the index of the link in the action linkIndex the new status assigned to the link status

setting the new value assigned to the link's setting

Value

null

ENsettimeparam Set the value of a time parameter.

Description

ENsettimeparam sets the value of a time parameter.

Usage

ENsettimeparam(paramcode, timevalue)

Arguments

paramcode An integer or character

timevalue An integer or character value of the time parameters in seconds.

Details

Time parameter codes consist of the following constants:

EN_DURATION Simulation duration Hydraulic time step EN_HYDSTEP 1 Water quality time step **EN_QUALSTEP** Time pattern time step EN_PATTERNSTEP EN_PATTERNSTART Time pattern start time Reporting time step EN_REPORTSTEP 5 Reporting starting time **EN_REPORTSTART** 6 EN_RULESTEP Time step for evaluating rule-based controls 7

EN_STATISTIC Type of time series post-processing to use:

> $EN_NONE(0) = none$ $EN_AVERAGE(1) = averaged$ $EN_MINIMUM(2) = minimums$ $EN_MAXIMUM(3) = maximums$ $EN_RANGE(4) = ranges$

ENsetvertices 79

Do not change time parameters after calling ENinitH in a hydraulic analysis or ENinitQ in a water quality analysis

Examples

```
# path to Net1.inp example file included with this package
inp <- file.path( find.package("epanet2toolkit"), "extdata","Net1.inp")
ENopen(inp, "Net1.rpt")
ENgettimeparam("EN_HYDSTEP")
ENsettimeparam("EN_HYDSTEP", 600)
ENgettimeparam("EN_HYDSTEP")
ENclose()</pre>
```

ENsetvertices

Set a link's vertices

Description

Set a link's vertices

Usage

```
ENsetvertices(index, x, y)
```

Arguments

index	a link's index
Х	numeric vector of x-coordinates
У	numeric vector of y-coordinates

ENsolveH ENsolveH

Description

Solves the network hydraulics for all time periods

Usage

ENsolveH()

Value

Returns NULL invisibly; called for side effect

80 ENsolveQ

Examples

```
# path to Net1.inp example file included with this package
inp <- file.path( find.package("epanet2toolkit"), "extdata","Net1.inp")
ENopen( inp, "Net1.rpt","Net1.bin")
ENsolveH()
ENsolveQ()
ENgetnodevalue(2, "EN_PRESSURE")
ENclose()
# clean-up the created files
file.remove("Net1.rpt")
file.remove("Net1.bin")</pre>
```

ENsolveQ

Solve network water quality for all time periods

Description

Solve network water quality for all time periods

Usage

ENsolveQ()

Value

Returns NULL invisibly on success or throws an error or warning

Examples

```
inp <- file.path( find.package("epanet2toolkit"), "extdata","Net1.inp")
ENopen( inp, "Net1.rpt","Net1.bin")
ENsolveH()
ENsetqualtype("EN_CHEM", "Chlorine", "mg/L", "")
ENsolveQ()
ENclose()
# clean-up the created files
file.remove("Net1.rpt")
file.remove("Net1.bin")</pre>
```

ENstepQ 81

ENstepQ

Advances WQ simulation one water quality time step.

Description

Advances WQ simulation one water quality time step.

Usage

ENstepQ()

Value

time remaining in the overall simulation

ENusehydfile

Uses previously saved binary hydraulics file to supply a project's hydraulics.

Description

Uses previously saved binary hydraulics file to supply a project's hydraulics.

Usage

ENusehydfile(hydfile)

Arguments

hydfile

name of file containing hydraulic results

Details

Call this function to re-use a set of hydraulic analysis results saved previously. This can save computational time if water quality analyses are being made under the same set of hydraulic conditions.

Do not call this function while the hydraulics solver is open.

82 epanet2toolkit

epanet2toolkit epanet2toolkit

Description

Package for using EPANET 2 from R. Run a full EPANET simulation using ENepanet or build a custom simulation starting with toolkit functions like ENopen.

Author(s)

Ernesto Arandia & Bradley J. Eck

Index

ENaddcontrol, 5	ENgetlinkindex, 26, 26, 28, 29
ENaddcurve, 5	ENgetlinknodes, 27
ENadddemand, 6	ENgetlinktype, 28
ENaddlink, 6	ENgetlinkvalue, 29
ENaddnode, 7	ENgetnodeid, 30
ENaddpattern, 8	ENgetnodeindex, 31
ENaddrule, 8	ENgetnodetype, 32
ENclearreport, 9	ENgetnodevalue, 33
ENclose, 9	ENgetnumdemands, 34
ENcloseH, 10	ENgetoption, 35
ENcloseQ, 10	ENgetpatternid, 35
ENcopyreport, 11	ENgetpatternindex, 36
ENdeletecontrol, 11	ENgetpatternlen, 37
ENdeletecurve, 12	ENgetpatternvalue, 38
ENdeletedemand, 12	ENgetpremise, 39
ENdeletelink, 13	ENgetpumptype, 39
ENdeletenode, 13	ENgetqualinfo, 40
ENdeletepattern, 14	ENgetqualtype, 40
ENdeleterule, 14	ENgetresultindex, 41
ENepanet, 15, 82	ENgetrule, 42
ENgetaveragepatternvalue, 15	ENgetruleID, 42
ENgetbasedemand, 16	ENgetstatistic, 43
ENgetcontrol, 16	ENgetthenaction, 43
ENgetcoord, 17	ENgettimeparam, 44
ENgetcount, 18	ENgettitle, 45
ENgetcurveid, 19	ENgetversion, 45
ENgetcurveindex, 19	ENgetvertex, 46
ENgetcurvelen, 20	ENgetvertexcount, 46
ENgetcurvetype, 20	ENinit, 47
ENgetcurvevalue, 21	ENinitH, 47
ENgetdemandindex, 21	ENinitQ, 48
ENgetdemandmodel, 22	ENnextH, 49
ENgetdemandname, 22	ENnextQ, 50
ENgetdemandpattern, 23	ENopen, 9, 51, 82
ENgetelseaction, 23	ENopenH, 52
ENgeterror, 24	ENopenQ, 53
ENgetflowunits, 24, 30	ENreport, 53
ENgetheadcurveindex, 25	ENresetreport, 54
ENgetlinkid, 26, 27	ENrunH, 55

INDEX

Enruny, 36
ENsaveH, 56
ENsavehydfile, 57
ENsaveinpfile, 58
ENsetbasedemand, 58
ENsetcontrol, 17, 59
ENsetcoord, 60
ENsetcurveid, 61
ENsetcurvevalue, 61
ENsetdemandmodel, 62
ENsetdemandname, 62
ENsetdemandpattern, 63
ENsetelseaction, 63
ENsetflowunits, 64
ENsetheadcurveindex, 64
ENsetjuncdata, 65
ENsetlinkid, 65
ENsetlinknodes, 66
ENsetlinktype, 66
ENsetlinkvalue, 67
ENsetnodeid, 68
ENsetnodevalue, 68
ENsetoption, 69
ENsetpattern, 70
ENsetpatternid, 71
ENsetpatternvalue, 71
ENsetpremise, 72
ENsetpremiseindex, 73
ENsetpremisestatus, 73
ENsetpremisevalue, 74
ENsetqualtype, 74
ENsetreport, 75
ENsetrulepriority, 76
ENsetstatusreport, 76
ENsettankdata, 77
ENsetthenaction, 77
ENsettimeparam, 78
ENsetvertices, 79
ENsolveH, 79
ENsolveQ, 80
ENstepQ, 81
ENusehydfile, 81
epanet2toolkit, 82
epanet2toolkit-package
(epanet2toolkit), 82