

Gruppenmitglied 01: Holtermann, Lukas

Gruppenmitglied 02: Duc Nguyen, Nam

Gruppenmitglied 03: Lünsmann, Mario

e-Mail 01: Lukas.Holtermann@gmx.de

e-Mail 02:

Tutor: None

e-Mail 01: mr.ml.fwm@t-online.de

Übungsblattnummer: Hausübungsblatt 03

Status: Lösung 01

Punkte/Prozente:

Anmerkungen/Verbesserungsvorschläge:

Logik und Formale Systeme

Hausübungsblatt 03 - Abgabetermin 20.05.2019

1 Hausübungen

1.1 Aufgabe 1

1.1.1 (a)

Zeigen der Erfüllbarkeit durch Hornformeln und Markierungsalgorithmus:

Es gilt:
$$\varphi_1 := (P_1 \wedge P_3 \to 0) \wedge (1 \to P_1) \wedge (P_4 \wedge P_3 \to P_2) \wedge (P_1 \wedge P_2 \to P_3) \wedge (P_1 \wedge P_4 \to P_2) \wedge (1 \to P_4)$$

Es gilt Markierungsalgorithmus:

Programmschritt	\Im_{P_1}	\Im_{P_2}	\Im_{P_3}	\Im_{P_4}
Initialzustand	1	0	0	1
1. Durchlauf	1	1	0	1
2. Durchlauf	1	1	1	1
Ergebnis	1	1	1	1

Tabelle 1: Markierungsalgorithmus zu φ_1

Ausgabe: nicht "Erfüllbar".

Somit gilt:
$$\mathfrak{I}_{p_1} = \mathfrak{I}_{p_2} = \mathfrak{I}_{p_3} = \mathfrak{I}_{p_4} = 1$$
 und aber $(P_1 \land P_3 \to 0)$

Daher gilt: $\mathfrak{I}_{p_n} \not\models \varphi_1$

1.1.2 (b)

Zeigen der Erfüllbarkeit durch Hornformeln und Markierungsalgorithmus:

Es gilt:
$$\varphi_2 := (P_1 \wedge P_2 \rightarrow P_3) \wedge (P_3 \rightarrow P_1) \wedge (P_2 \rightarrow P_1)$$

Es gilt Markierungsalgorithmus:

Programmschritt	\Im_{P_1}	\Im_{P_2}	\Im_{P_3}
Initialzustand	0	0	0
Ausgabe	0	0	0

Tabelle 2: Markierungsalgorithmus zu φ_2

Ausgabe: "Erfüllbar".

Somit gilt:
$$\mathfrak{I}_{p_1} = \mathfrak{I}_{p_2} = \mathfrak{I}_{p_3} = 0$$
 aber $P_2 \to P_1 = 1$ und nicht 0.

Daher gilt: $\mathfrak{I}_{p_n} \models \varphi_2$

Tutor: None

1.1.3 (c)

Zeigen der Erfüllbarkeit durch Hornformeln und Markierungsalgorithmus:

Es gilt:
$$\varphi_3 := (1 \to P_4) \land (P_4 \to P_1) \land (P_4 \to P_3) \land (P_1 \land P_5 \to 0) \land (P_3 \land P_4 \to P_1) \land (P_2 \to P_4) \land (P_4 \to P_2)$$

Es gilt Markierungsalgorithmus:

Programmschritt	\Im_{P_1}	\Im_{P_2}	\Im_{P_3}	\Im_{P_4}	\Im_{P_5}
Initialzustand	0	0	0	1	0
1. Durchlauf	1	0	0	1	0
2. Durchlauf	1	0	1	1	0
3. Durchlauf	1	1	1	1	0
Ausgabe	1	1	1	1	0

Tabelle 3: Markierungsalgorithmus zu φ_3

Ausgabe: "Erfüllbar".

Somit gilt:
$$\Im_{p_1} = \Im_{p_2} = \Im_{p_3} = \Im_{p_4} = 1$$
 und aber $(P_1 \land P_5 \to 0) = 1$

Daher gilt: $\mathfrak{I}_{p_n} \models \varphi_3$

1.2 Aufgabe 2

1.2.1 (a)

Es gilt:
$$\theta_1 := \neg(\neg P_1 \land \neg P_1) \land (\neg P_5 \land P_2 \rightarrow \neg P_3) \land P_3 \land (P_1 \land \neg P_2 \rightarrow \neg P_3) \land (P_1 \rightarrow \neg P_4) \land (P_2 \rightarrow \neg P_3)$$

Zu erst äquivalente Hornformel in Implikationsschreibweise:

Äquivalente Hornformel in KNF:

$$(P_1) \wedge (P_5 \vee \neg P_2 \vee \neg P_3) \wedge (\neg P_1 \vee P_2 \vee \neg P_3) \wedge P_3 \wedge (\neg P_1 \vee \neg P_4) \wedge (\neg P_2 \vee \neg P_3)$$

Jetzt gilt: Implikationsschreibweise:

$$(1 \to P_1) \land (P_2 \land P_3 \to P_5) \land (P_1 \land P_3 \to P_2) \land (1 \to P_3) \land (P_4 \land P_1 \to 0) \land (P_2 \land P_3 \to 0)$$

Jetzt gilt: Klauseln

$$\{\{P_1\}, \{\neg P_2, \neg P_3, P_5\}, \{\neg P_1, P_2, \neg P_3\}, \{P_3\}, \{\neg P_4, \neg P_1\}, \{\neg P_3, \neg P_2\}\}$$

1.2.2 (b)

Es gilt:
$$\theta_2 := (P_2 \rightarrow \neg (P_1 \land \neg P_3)) \land ((\neg P_1 \lor P_4) \rightarrow P_1 \land P_5) \land ((P_2 \lor \neg P_2) \rightarrow P_4) \land (\neg P_2 \rightarrow \neg P_5) \land (P_3 \rightarrow \neg P_6) \land (P_5 \land P_6 \rightarrow \neg P_4)$$

Zu erst äquivalente Hornformel in Implikationsschreibweise:

Äquivalente Hornformel in KNF:

Tutor: None

$$(\neg P_{2} \vee \neg P_{1} \vee P_{3}) \wedge P_{1} \wedge (\neg P_{4} \vee P_{5}) \wedge \underbrace{(\neg (P_{2} \vee \neg P_{2}) \wedge P_{4})}_{wird\ zu\ P_{4}} \wedge (P_{2} \vee \neg P_{5}) \wedge (\neg P_{3} \vee \neg P_{6}) \wedge (\neg P_{5} \vee \neg P_{6} \vee \neg P_{6}) \wedge (\neg P_{5} \vee \neg P_{6} \vee \neg P_{6})$$

Jetzt gilt: Implikationsschreibweise:

$$(1 \rightarrow P_1) \land (P_1 \land P_2 \rightarrow P_3) \land (P_4 \rightarrow P_5) \land (1 \rightarrow P_4) \land (P_5 \rightarrow P_2) \land (P_3 \land P_6 \rightarrow 0) \land (P_5 \land P_6 \land P_4 \rightarrow 0)$$

Jetzt gilt: Klauseln

$$\{\{P_1\}, \{\neg P_1, \neg P_2, P_3\}, \{\neg P_4, P_5\}, \{P_4\}, \{P_2, \neg P_5\}, \{\neg P_3, \neg P_6\}, \{\neg P_5, \neg P_6, \neg P_4\}\}$$