21 - Token Passing

Tuesday, 1 May 2018

Ablauf:

- 1. Ein "Frei-Token" kreist im Netz (von Station zu Station)
- Sobald das Token an einer sendewilligen Station angekommen ist, wird es in ein "Belegt-Token" umgewandelt und die zu sendenen Daten werden angehängt.
- 3. Kommt das Token nun an einer "fremden" Station an, an die die Daten nicht adressiert sind, wird es einfach weitergeleitet.
- 4. Erreicht das Token die Ziel-Station, werden die Daten ausgelesen und das Token mit einer Empfangsbestätigung markiert.
- 5. Kommt das Token nun an einer "fremden" Station an, an die die Daten nicht adressiert sind, wird es einfach weitergeleitet.
- 6. Kommt das Token schließlich wieder an der Ursprungsstation an, wird es wieder in ein Frei-Token umgewandelt. (Auch, wenn Fehler auftreten)

Vorteile

Durch die Regelmäßigkeit des Sendevorgangs und des Datentransfers kann man die Zeit der Datenübertragung sehr einfach berechnen.
-> Perfekt für Echtzeit-Anwendungen

Token PassingEin Token (Bitmuster) wird von Client zu Client in einer Ringstruktur weitergereicht.
Token Passing kann man sich vorstellen wie die Kommunikation via einer "Datenlokomotive".

Wiederholung: Ringstruktur

Hier wirkt jedes Gerät als Verstärker und kann die volle Bandbreite nutzen. Die Ring-Topologie hat eine hohe Ausfallsicherheit.

22 - Fthernet Frame

Tuesday, 1 May 2018 11:43

Aufbau

Ziel MAC	Quell MAC	Typen Feld	Daten	CRC
6 Byte	6 Byte	2 Byte	46 – 1500 Byte	4 Byte

- [6B] Ziel-MAC-Adresse
 - MAC: Layer 2 (Sicherungsschicht)
- [6B] Quell-MAC-Adresse
- [2B] Typenfeld
 - Beschreibt das nächsthöhere Protokoll
- [46 1500B] Daten
 - o Inkl. Header der höheren Schichten
- [4B] CRC
 - o Prüfsumme (Cyclic Redundancy Check)
 - o Hiermit prüft der Empfänger, ob das Paket korrekt versandt wurde

MAC - Adressen

- 6 Byte groß
- Weltweit einzigartig
 - o Doppelte MAC-Adresse im Netzwerk führt zu undefinierten Problemen
- Früher "fest eingebrannt", heute softwäremäßig editierbar

Aufbau von MAC-Adressen

00-26-18-B0-CE-9F

OUI

wählbare Nummern innerhalb der OUI

- Firmen / Organisationen
 - o Erste 3 Bytes: OUI
 - OUI: Organizationally Unique Identifier
 - Wird von der IEEE vergeben
 - Restliche Bytes vom Hersteller frei wählbar
- Privatpersonen / kleine Organisationen
 - o IAB (umfasst 4096 Adressen)
 - IAB: Individual Address Block

Padding

Aufgrund des CSMA/CD-Verfahrens hat jedes Ethernet-Paket eine minimale Länge. Das sogenannte "Padding" füllt, falls das Paket zu kurz ist, auf die notwendigen 64 Bytes Paketlänge auf.

Minimalgröße: 64 Byte

Padding füllt auf die Minimalgröße auf

Typenfeld

• kennzeichnet das nächsthöhere Protokoll, das nach diesem Ethernet-Frame kommt

	0x0800	IP4
0	0x0806	ARP
	0x809B	AppleTalk

Daten

- Ein Ethernet-Paket kann insgesamt max. 1518 Bytes lang sein
 - o Quell + Ziel-MAC + Typenfeld + CRC = 18 Bytes
 - o Daher maximal 1500 Bytes für Daten (MTU)
 - MTU: Maximum Transmission Unit

Tuesday, 1 May 2018 11:43

Was ist das ARP?

Das ARP (Address Resolution Protocol) "verbindet" IP-Adressen zu den entsprechenden MAC-Adressen.

Wird zB ein ping auf eine IP-Adresse durchgeführt, "fragt" der pingende Client, welche MAC zu dieser IP gehört. Das angepingte Gerät antwortet anschließend mit seiner MAC-Adresse und der ping wird durchgeführt.

Die meisten Geräte speichern ARP-Tabellen (ARP-Caches), in denen IP-Adressen ihren MAC-Adressen zugeordnet sind.

Es gibt dynamische und statische (permanente) Einträge in ARP-Tabellen

ARP-Cache-Einträge selbst setzen

Interfaces anzeigen: netsh int ipv4 show int

ARP-Eintrag setzen: netsh int ipv4 add neighbors "Ethernet" 192.168.0.200 00-0c-29-b2-01-0d

ARP-Eintrag löschen: netsh int ipv4 delete neighbor "Ethernet" 192.168.0.200 00-0c-29-b2-01-0d

ARP-Einträge anzeigen: netsh int ipv4 show neighbors

Videos 21 - 31 Page 4

24 - SwitchBridge

Tuesday, 1 May 2018 11:43

Unterschied Switch - Bridge

Switch = Bridge mit mehreren Anschlüssen. (Bridge ist veraltet)

Wie arbeitet ein Switch?

- OSI Schicht 2
 - o kann somit MAC-Adressen auslesen
- Erstellt eine interne MAC-Tabelle, um Daten gezielt an seine Anschlüsse weiterzuleiten
- Begrenzt die Kollisionsdomäne, nicht die Beoadcastdomäne

Vorgehensweise

- Klar adressierte Datenpakete werden zuerst (der Switch kennt die MAC-Adressen im Netz noch nicht) wie beim Hub an alle Anschlüsse gesendet
- Sobald der Switch die MAC-Adresse kennt, sendet er das Paket an nurnoch an den entsprechenden Anschluss

Arbeitsweisen im Detail

SAT (Source Address Table)

- Beinhaltet die MAC + den zugehörigen Anschluss
- Wird ein Paket versandt, speichert der Switch die MAC des Senders zusammen mit seinem Anschluss
- Funktioniert auch, wenn an einem Anschluss ein weiterer Switch angeschlossen ist
 - Mehrere Einträge werden in der SAT gespeichert
- Hat, je nach Switch, eine begrenzte Größe
 - Wird die Maximalgröße erreicht, wird die SAT komplett gelöscht
 - Angreifer können durch MAC-Spoofing ein solches Löschen provozieren, wodurch (temporär) wieder alle Pakete an alle Anshchlüsse gesendet
- Broadcast- oder Multicast-Adressen werden hier normalerweise nicht gespeichert

Paketsendemodi

- cut-through [sehr schnell]
 - Weiterleitung des Pakets nach Empfang der Ziel-Adresse
- fragment-free
 - Weiterleitung nach Empfang und Überprüfung des Headers
- store-and-forward [langsam]
 - Empfangen und Überprüfen des kompletten Datenpakets (per Prüfsumme)
- adaptive
 - o Herunterschalten der Modi je nach Auftreten von Fehlern im Netz

Schleifenvermeidung

- STP (Spanning Tree Protocol)
 - Sobald ein neues Gerät angeschlossen wird, blockiert der Switch den Netzwerkverkehr, prüft das neue Gerät auf Schleifen und gibt den Datenverkehr anschließend wieder frei.
 - Portfast (von CISCO)
 - Anschluss wird vor der Überprüfung freigeschaltet
 - Portfast ist nur zu verwenden, wenn definitiv nur ein Gerät angeschlossen.

wird

- STP ist mittlerweile veraltet, abgelöst durch
 - RSTP: Rapid Spanning Tree Protocol
 - MSTP: Multiple Spanning Tree Protocol

Stacking

- Daten- und Managementinformation werden durch spezielle Stacking-Kabel übertragen
- Mehrere Switche "verwandeln" sich hierdurch zu einer einzigen logischen Einheit
- Switche müssen meist vom selben Hersteller / der selben Produktreihe sein
- Performanter und besser verwaltbar als "Uplink"
- Ideal, um Anzahl der Anschlüsse und die Ausfallsicherheit zu erhöhen

25 - ConfigSwitch Tuesday, 1 May 2018 11:43

Befehle
Alle Befehlseingaben erfolgen über PuTTY (oder einen beliebigen anderen SSH-Client) auf einem CISCO 2960S-Switch

Grundlegendes

show running-config brief	Zeigt die aktuelle Konfiguration des Switches an ("brief" filter gewisse Informationen aus der Übersicht)
show interface status	Zeigt den Status der Interfaces an
show interface stats	Zeigt die Statistiken der Interfaces an
sh interface	Zeigt Informationen über ein konkretes Interface an
show mac adress-table	Zeigt die MAC-Tabelle des Switches an

Konfiguration ändern

configure terminal	Aktiviert den Konfigurationsmodus (alle nachfolgenden Befehle werden in diesem ausgeführt)
hostname [Name] Ändert den hostnamen des Switches	
interface [Name]	Erstellt ein virtuelles Interface
ip address [IP-Adresse] [Subnet-Mask]	Ordnet dem gerade erstellten Interface eine IP-Adresse zu
exit	Beendet den interface-Modus
no interface [Name]	Löscht das virtuelle Interface mit dem spezifizierten Namen
	hostname [Name] interface [Name] ip address [IP-Adresse] [Subnet-Mask] exit

interface [Interface]	Wechelt in den Interface-Modus eines bestimmten Hardware-Interfaces (zB "Gi1/0/25" als [Interface])
shutdown	Fährt das derzeigt konfigurierte Interface herunter
duplex [Modus]	Ändert den Duplex-Modus (zB "full")
speed [Geschiwndigkeit]	Ändert die Geschwindigkeit (zB "100")
no shutdown	Fährt das Interface wieder hoch
switchport access vlan [Vlan Nr.]	Ändert das Vlan des Interfaces (zb "199")
end	Beendet den interface-Modus
write memory	Änderungen übernehmen
	shutdown duplex [Modus] speed [Geschiwndigkeit] no shutdown switchport access vlan [Vlan Nr.] end

27 - Aufbau von IPv4-Adressen

Tuesday, 1 May 2018 11:43

Eigenschaften von IP-Adressen

• Binärzahl mit einer Länge von 32 Bit

o $2^{32} = 4$ Mrd. IP-Adressen

Schreibweise und Bestandteile

Punktierte Dezimalschreibweise	192.168.100.1		
Binärschreibweise	1100 0000 1010 1000 0110 0100 0000 0001		

Aufteilung in Netzwerk- und Hostanteil zB nnnnnnn.nnnnnnnnnnnnn.hhhhhhhh

Früher wurden der Netz- bzw. der Hostanteil durch das MSB in der IP-Adresse bestimmt. Später entwickelte man die Subnetmaske (1 = Netzwerkanteil, 0 = Hostanteil)

Neuere Notation: CIDR (Classles Interdomain Routing)
Anzahl der Netzwerkbits werden direkt hinter die IP-Adresse geschrieben (zB 192.168.100.2/24)

Spezialfälle

Alle Bits 0	0.0.0.0	reservierte Adresse
Alle Bits 1	1.1.1.1	globale Broadcast-Adresse
Alle Bits im Hostanteil 0	192.168.100.0	Netzwerkadresse (Netz-ID)
Alle Bits im Hostanteil 1	192.168.100.255	Broadcastadresse des Netzwerks

28 - Subnetmask

Tuesday, 1 May 2018 11:44

Was macht eine Subnetmask

- Trennt Netzwerk- von Hostanteil (1 = Netzwerkanteil, 0 = Hostanteil)
- Legt fest, ob ein Zielhost lokal oder remote erreichbar ist (lokal: Layer 3-"Vermittlungsgerät" (zB Router) nicht notwendig)
 Unterscheidung durch Verundung der Quell- bzw. Ziel-IP mit der Subnetmask [Timestamp: 3:50]

Früher: Netzklassen

A, B oder C Netzwerk wird aufgrund der Position des MSB (im ersten Oktett) bestimmt

29 - Geschichte der Netzwerkklassen

Tuesday, 1 May 2018 11:44

Netzwerkklassen

Klasse	Netzwerkanteil	Hostanteil	Eigenschaften
А	8 Bit	24 Bit	Wenige, dafür aber sehr große Netze
В	16 Bit	16 Bit	Ausgeglichen
С	24 Bit	8 Bit	Viele, dafür recht kleine Netze
D			"Multicastbereich"
Е			Reserviert

Unterteilung der Netzwerkklassen Einteilung nach dem MSB nnnnnnnnnnnnnnnnnnnnhhhhhhh

Klasse	Position des MSB	
А	0	
В	10	
С	110	
D	1110	
Е	11110	

Bestimmung von Netzwerkklassen

	0				
Klasse	MSB	Minimum Binär	Maximum Binär	Minimum Dezimal	Maximum Dezimal
Α	0	0000 0000.0000 0000.0000 0000. 0000 0000	0111 1111.1111 1111.1111 1111.1111 1111	0.0.0.0	127.255.255.255
В	10	1000 0000.0000 0000.0000 0000. 0000 0000	1011 1111.1111 1111.1111 1111.1111 1111	128.0.0.0	191.255.255.255
С	110	1100 0000.0000 0000.0000 0000. 0000 0000	1101 1111.1111 1111.1111 1111.1111 1111	192.0.0.0	223.255.255.255

30 - Spezielle IP-Adressen

Tuesday, 1 May 2018 11:44

Liste spezieller IP-Adressen

IP-Adresse / IP-Bereich	Anwendungszweck	Anwendungsbereiche (Bsps)	Besonderheiten
127.0.0.1	Loop-Back-Adresse / Localhost	Lokale Webserver, testen der Netzwerktreiber (per ping-Befehl)	Aufgrund der Subentmask (/8) sind rund 16Mlo. Adressen für diesen Zweck verfügbar (zB 127.1.2.3)
0.0.0.0 - 0.255.255.255	Standartroute (Zeigt auf ein Gateway), Request-Adresse für DHCP	Alles ohne Ziel wird an diese IP geschickt	
255.255.255.255	Global Broadcast	Erreicht alle für mich erreichbaren Rechner	
x.x.x.255 (letzte Adresse im Netz)	Netzwerkbroadcast		
x.x.x.0 (Netzwerk-ID)	Reservierte IP (Netzwerk-ID)		
10.0.0.0	Privater IP-Adressbereich	Werden im Internet nicht geroutet -> IP-Adressen für Intranets	
172.16.0.0 - 172.31.255.255	Privater IP-Adressbereich		16er-Maske, privat: nur 12er-Maske
192.168.0.0 - 192.168.255.255	Privater IP-Adressbereich		
169.254.x.x	Zero-Conf-Adresse, APIPA-Adresse	Automatische, private IP-Adresse Wird verwendet, falls der DHCP-Server nicht funktioniert	

31 - Subnetze bilden

Tuesday, 1 May 2018 11:44

Was ist Subnetting?

Beispiel: [Timestamp: 3:00]

Bzw einfach IP-Adressen berechnen wie in der SÜ

Supernetting

Im Gegensatz zum Subnetting wird hier der Netzanteil verändert. Dies kann zu Problemen führen.