Auxiliary Sections > Integral Transforms > Tables of Inverse Laplace Transforms > Inverse Laplace Transforms: Expressions with Hyperbolic Functions

Inverse Laplace Transforms: Expressions with Hyperbolic Functions

No	Laplace transform, $\widetilde{f}(p)$	Inverse transform, $f(x) = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} e^{px} \widetilde{f}(p) dp$
1	$\frac{1}{p\sinh(ap)}, a > 0$	f(x) = 2n if $a(2n-1) < x < a(2n+1)$; n = 0, 1, 2, $(x > 0)$
2	$\frac{1}{p^2\sinh(ap)}, a > 0$	f(x) = 2n(x - an) if a(2n - 1) < x < a(2n + 1); $n = 0, 1, 2, \dots (x > 0)$
3	$\frac{\sinh(a/p)}{\sqrt{p}}$	$\frac{1}{2\sqrt{\pi x}} \left[\cosh\left(2\sqrt{ax}\right) - \cos\left(2\sqrt{ax}\right) \right]$
4	$\frac{\sinh(a/p)}{p\sqrt{p}}$	$\frac{1}{2\sqrt{\pi a}} \left[\sinh\left(2\sqrt{ax}\right) - \sin\left(2\sqrt{ax}\right) \right]$
5	$p^{-\nu-1}\sinh(a/p), \nu > -2$	$\frac{1}{2}(x/a)^{\nu/2} \left[I_{\nu} \left(2\sqrt{ax} \right) - J_{\nu} \left(2\sqrt{ax} \right) \right]$
6	$\frac{1}{p\cosh(ap)}, a > 0$	$f(x) = \begin{cases} 0 & \text{if } a(4n-1) < x < a(4n+1), \\ 2 & \text{if } a(4n+1) < x < a(4n+3), \\ n = 0, 1, 2, \dots & (x > 0) \end{cases}$
7	$\frac{1}{p^2 \cosh(ap)}, a > 0$	$x - (-1)^n(x - 2an)$ if $2n - 1 < x/a < 2n + 1$; $n = 0, 1, 2, \dots (x > 0)$
8	$\frac{\cosh(a/p)}{\sqrt{p}}$	$\frac{1}{2\sqrt{\pi x}}\left[\cosh(2\sqrt{ax}) + \cos(2\sqrt{ax})\right]$
9	$\frac{\cosh(a/p)}{p\sqrt{p}}$	$\frac{1}{2\sqrt{\pi a}} \left[\sinh\left(2\sqrt{ax}\right) + \sin\left(2\sqrt{ax}\right) \right]$
10	$p^{-\nu-1}\cosh(a/p), \nu > -1$	$\frac{1}{2}(x/a)^{\nu/2} \left[I_{\nu} \left(2\sqrt{ax} \right) + J_{\nu} \left(2\sqrt{ax} \right) \right]$
11	$\frac{1}{p}\tanh(ap), a > 0$	$f(x) = (-1)^{n-1}$ if $2a(n-1) < x < 2an$; n = 1, 2,
12	$\frac{1}{p}\coth(ap), a > 0$	f(x) = (2n-1) if $2a(n-1) < x < 2an$; n = 1, 2,

Notation: $J_{\nu}(z)$ is the Bessel function of the first kind, $I_{\nu}(z)$ is the modified Bessel function of the first kind.

References

Bateman, H. and Erdélyi, A., *Tables of Integral Transforms. Vols. 1 and 2*, McGraw-Hill Book Co., New York, 1954. Doetsch, G., *Einführung in Theorie und Anwendung der Laplace-Transformation*, Birkhäuser Verlag, Basel–Stuttgart, 1958. Ditkin, V. A. and Prudnikov, A. P., *Integral Transforms and Operational Calculus*, Pergamon Press, New York, 1965. Polyanin, A. D. and Manzhirov, A. V., *Handbook of Integral Equations*, CRC Press, Boca Raton, 1998.

Inverse Laplace Transforms: Expressions with Hyperbolic Functions