Cairo University
Faculty of Computers & Artificial Intelligence
Theory of Computations

Lab#6

Description

- 1- Construct DFA for a given language problem.
- 2- Construct a NFA for a given language problem.
- 3- Convert NFA to DFA problem.

TA's will revise topic and let Students solve the questions

Problem 1

 Construct a DFA recognizing the language {x | the number of 1's is divisible by 2, and 0'sby 3} over an alphabet ∑={0,1}

The given language L={ x | the number of 1's is divisible by 2, and 0's by 3} over an alphabet Σ ={0,1}.

The language is divided into two parts, first we need to find the number of 1's divisible by 2 and second find out the number of 0's divisible by 3, finally combine the two parts to generate a result.

Step 1 – DFA for the first part, number of 1's divisible by 2.

Step 2 – DFA for the second part, number of 0's divisible by 3.

Step 3 – The final DFA is: DFA first part X DFA second part.

-	-	-
States	0	1
{q0q0'}	{q0q1'}	{q1q0'}
{q0q1'}	{q0q2'}	{q1q1'}
{q0q2'}	{q0q0'}	{q1q2'}
{q1q0'}	{q1q1'}	{q0q0'}
{q1q1'}	{q1q2'}	{q0q1'}
{q1q2'}	{q1q0'}	{q0q2'}

Transition diagram

The transition diagram for the DFA is as follows –

Problem 2

2. Construct an NFA to recognize the following language, where $\Sigma = \{a, b, c\}$ L2 = $\{w : w \text{ contains an even number of a's or contains the pattern 'aa'}\}$

Answer:

Problem 3

Convert the given NFA to DFA.

Solution: For the given transition diagram we will first construct the transition table.

State	0	1
→q0	q0	q1
q1	{q1, q2}	q1
*q2	q2	{q1, q2}

Now we will obtain δ' transition for state q0.

- 1. $\delta'([q0], 0) = [q0]$
- 2. $\delta'([q0], 1) = [q1]$

The δ' transition for state q1 is obtained as:

- 1. $\delta'([q1], 0) = [q1, q2]$ (new state generated)
- 2. $\delta'([q1], 1) = [q1]$

Now we will obtain δ^{\prime} transition on [q1, q2].

1.
$$\delta'([q1, q2], 0) = \delta(q1, 0) \cup \delta(q2, 0)$$

2.
$$= \{q1, q2\} \cup \{q2\}$$

3. $= [q1, q2]$

4.
$$\delta'([q1, q2], 1) = \delta(q1, 1) \cup \delta(q2, 1)$$

5.
$$= \{q1\} \cup \{q1, q2\}$$

6.
$$= \{q1, q2\}$$

7.
$$= [q1, q2]$$

The state [q1, q2] is the final state as well because it contains a final state q2. The transition table for the constructed DFA will be:

State	0	1
→[q0]	[q0]	[q1]
[q1]	[q1, q2]	[q1]
*[q1, q2]	[q1, q2]	[q1, q2]

The Transition diagram will be:

Problem 4

Convert the NFA with ϵ into its equivalent DFA.

Solution:

Let us obtain ϵ -closure of each state.

- 1. ϵ -closure {q0} = {q0, q1, q2}
- 2. ϵ -closure $\{q1\} = \{q1\}$
- 3. ϵ -closure $\{q2\} = \{q2\}$
- 4. ϵ -closure {q3} = {q3}
- 5. ϵ -closure $\{q4\} = \{q4\}$

Now, let ϵ -closure $\{q0\}$ = $\{q0, q1, q2\}$ be state A.

Hence

$$\begin{split} \delta'(A,0) &= \epsilon\text{-closure} \, \{\delta((q0,\,q1,\,q2),\,0) \,\} \\ &= \epsilon\text{-closure} \, \{\delta(q0,\,0) \, \cup \, \delta(q1,\,0) \, \cup \, \delta(q2,\,0) \,\} \\ &= \epsilon\text{-closure} \, \{q3\} \\ &= \{q3\} \qquad \qquad \textbf{call it as state B}. \end{split}$$

$$\begin{split} \delta'(A,1) &= \epsilon\text{-closure} \left\{ \delta((q0,q1,q2),1) \right\} \\ &= \epsilon\text{-closure} \left\{ \delta((q0,1) \cup \delta(q1,1) \cup \delta(q2,1) \right\} \\ &= \epsilon\text{-closure} \left\{ q3 \right\} \\ &= \left\{ q3 \right\} = B. \end{split}$$

The partial DFA will be

Now,

$$\delta'(B, 0) = \epsilon\text{-closure } \{\delta(q3, 0)\}$$

$$= \varphi$$

$$\delta'(B, 1) = \epsilon\text{-closure } \{\delta(q3, 1)\}$$

$$= \epsilon\text{-closure } \{q4\}$$

$$= \{q4\}$$
i.e. state C

For state C:

1.
$$\delta'(C, 0) = \epsilon$$
-closure $\{\delta(q4, 0)\}$

3.
$$\delta'(C, 1) = \epsilon$$
-closure $\{\delta(q4, 1)\}$

The DFA will be,

