Non-Regular Languages

David Robinson

Pigeonhole Principle

If n items are put into m containers with n > m, at least one container contains more than one item.

Pumping Lemma

If A is a regular language, then there is a number p, the pumping length, so that if s is a string in A with length of at least p, then s = xyz, so that

- 1. xy^iz is a string in A for all $i \geq 0$, where y^i is y concatenated to itself i times
- 2. |y| > 0
- $3. |xy| \leq p$

Proof

Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA recognizing language A, and let p = |Q|.

- Consider $s \in A$ so that |s| = n, with $n \ge p$.
- Show that s = xyz so that xy^iz is a string in A for all $i \ge 0$, with |y| > 0 and $|xy| \le p$.

Let $s = s_1 s_2 \cdots s_n$ be a string accepted by M, with $n \geq p$.

Let $r_1r_2\cdots r_{n+1}$ be the sequence of states that M enters while computing S. Observe that:

- The state sequence has length n+1, which is at least p+1
- Within the first p+1 states in the sequence, two different points in the sequence have to be the same state, by the pigeonhole principle
- Call the first one r_i and the second one r_k

Now let $x = s_1 \cdots s_{j-1}$, $y = s_j \cdots s_{k-1}$, and $z = s_k \cdots s_n$.

Observe that:

- x takes M from r_1 to r_j
- y takes M from r_i to r_k
- z takes M from r_k to r_{n+1}
- Therefore, M must accept xy^iz for all $i \geq 0$

Observe that:

• Since $j \neq k, |y| > 0$

Finally, observe that:

• Since $k \le p+1, |xy| \le p$

We have shown that all three conditions of the pumping lemma hold.