FPGA BASIC PRINCIPLES & VHDL INTRODUCTION

□What is FPGA?
 □FPGA basic components
 □FPGA Design Flow.
 □RTL-register transfer level.
 □Parallel processing verse serial processing.
 □Lab 1: VIVADO-using the tools-creating a new project.

החומרים לשימוש פנימי בלבד אין להשתמש או להעביר ללא רשות מפורשת בכתב מניר בלולו

FPGA-introduction

FPGA-filed programmed gate array

LUT –comparator example

10	11	I2	13	14	15	OUT
0	0	0	0	0	0	1
0	0	0	0	0	1	0
0	1	0	0	1	0	1
	•		•	•		
•	•	•	•	•	•	•
						•
1	1	1	1	0	1	0
1	1	1	1	1	0	0
1	1	1	1	1	1	1

LUT- COMPARATOR "LEGO"-

LUT- MULTIPLEXER EXMAPLE

IO(sel1)	I1(sel0)	12	13	14	15	OUT
0	0	0	0	0	0	0
0	1	0	0	1	0	1
1	0	0	1	1	0	0
						•
•			•	•	•	•
			•	•	•	•
1	1	0	1	0	1	0
1	1	0	1	1	0	0
1	1	1	1	1	1	1

FLIP-FLOP

flip-flop has two stable states and thereby is capable of serving as one bit of memory.

A flip-flop is usually controlled by one or two control signals and/or a gate or clock signal

D-FLIP FLOP

The Q output always takes on the state of the D input at the moment of a rising clock edge (or falling edge if the clock input is active low).. The D flip-flop can be interpreted as a primitive memory cell, delay line.

Truth table:

Clock	D	Q
Rising edge	0	0
Rising edge	1	1
Non- Rising	X	Q _p

VHDL

What is Vhdl?

VHDL-VHSIC hardware description language

VHSIC-Very High-Speed Integrated Circuit

ENTITY.

The *entity declaration* represents the external interface to the design entity.

ARCHITECTURE

The architecture body represents the internal description of the design

entity - its behavior, its structure, or a mixture of both. In this example, we want to describe an and-or-invert (AND_OR_INV) gate in VHDL. If we consider the AND_OR_INV gate as a single chip package, it will have four input pins and one output pin.

ENTITY

```
entity my_comp is

Port ( A : in STD_LOGIC_VECTOR (3 downto 0);

B : in STD_LOGIC_VECTOR (3 downto 0);

C : out STD_LOGIC);

end my_comp;
```

B(3:0)

unsigned

B(3:0)

Process

```
architecture my_comp of my_comp is
begin
         Process (A,B)
         begin
         if (A=B) then
           C<='1';
         else
          C<= '0';
         end if;
         end process;
end my_comp;
```

Kranugh map-synthesis

((i0 * i1 * !i2 * !i3) + (!i0 * !i1 * i2 * i3) + (i0 * i1 * i2 * i3) + (!i0 * !i1 * !i2 * !i3))

Kranugh map-synthesis

FPGA-ram based-synthesis

FPGA-ram based -synthesis

Device utilization *Synthesis report*

Device utilization summary:

Selected Device: 3s1600efg320-5

Number of Slices: 2 out of 14752 0%

Number of 4 input LUTs: 3 out of 29504 0%

Number of bonded IOBs: 9 out of 250 3%

Timing -Synthesis report

```
Timing Summary:
```

Delay: 7.587ns (Levels of Logic = 4)

Source: A<1> (PAD)

Destination: C (PAD)

Data Path: A<1> to C

		Gate Net
Cell:in->out	fan-out Delay Delay	Logical Name (Net Name)
IBUF:I->O	1 1.106 0.833	A_1_IBUF (A_1_IBUF)
LUT4:10->O	1 0.612 0.833	C426 (C4_map33)
LUT2:10->0	1 0.612 0.681	C454 (C_OBUF)
OBUF:I->O	2.910	C_OBUF (C)

Total 7.587ns (5.240ns logic, 2.347ns route)

69.1%logic, **30.9%** route

Assign package pin-user constrains

I/O Name	I/O Direction	Loc
A<0>	Input	C4
A<1>	Input	D4
A<2>	Input	C5
A<3>	Input	D5
B<0>	Input	C1
B<1>	Input	D1
B<2>	Input	C2
B<3>	Input	D2
С	Output	C3

Assign package pin-user constrains

mapping

Number of bonded IOBs:

Design Summary Number of errors: Number of warnings: 0 Logic Utilization: Number of 4 input LUTs: 3 out of 29,504 1% Logic Distribution: Number of occupied Slices: 2 out of 14,752 1% Number of Slices containing only related logic: 2 out of 2 100% Number of Slices containing unrelated logic: 2 0% 0 out of See NOTES below for an explanation of the effects of unrelated logic Total Number of 4 input LUTs: 3 out of 29,504 1%

9 out of 250 3%

mapping

```
m<u>y_</u>comp "m<u>y_</u>comp" [910Bs,3FGs]|
 C453 [ FG ] 0:C4_map44 | 10:A_3_IBUF | 11:B_3_IBUF | 12:A_2_IBUF | 13:B_2_IBUF
 C426 [ FG ] 0:C4_map33 | 0:A_1_IBUF | 1:B_1_IBUF | 2:A_0_IBUF | 3:B_0_IBUF
 C454 [ FG ] 0:C_OBUF | 0:C4_map33 | 1:C4_map44
 C [ IOB ] PAD:C O1:C_OBUF
B<3> [ IOB ] PAD:B<3> I:B_3_IBUF
 B<2> [ IOB ] PAD:B<2> I:B_2_IBUF
 B<1> [ IOB ] PAD:B<1> I:B_1_IBUF
B<O> [ IOB ] PAD:B<O> !:B_O_IBUF
A<3> [ IOB ] PAD:A<3> I:A_3_IBUF
A<2> [ IOB ] PAD:A<2> I:A_2_IBUF
A<1> [ IOB ] PAD:A<1> !:A_1_IBUF
A<0> [ IOB ] PAD:A<0> I:A_0_IBUF
```

Placing

Placing

routing

routing

Switching matrix

Switching matrix-optional connections

Switching matrix-optional connections zoom in

Delay report

```
The 20 worst nets by delay are:
+----+
|Max Delay | Net name |
     0.838 A_3_IBUF
     0.794
             A_1_IBUF
     0.770
            B_3_IBUF
     0.653
             B_2_IBUF
     0.551
            A_2_IBUF
     0.538
            A_0_IBUF
     0.513
            C OBUF
     0.491
             B_1_IBUF
     0.372
             C4_map33
     0.328
             B_0_IBUF
             C4_map44
     0.020
```

Routing-zoom in

Routing-zoom in

RTL CODE

```
entity BH_MUX is
    Port ( A : in STD_LOGIC_VECTOR (5 downto 0);
           B : in STD_LOGIC_VECTOR (5 downto 0);
          C : out STD_LOGIC);
end BH_MUX;
architecture Behavioral of BH_MUX is
begin
process(a,b)
 begin
     if a=b then
          c<='1';
     else
         c <='0';
     end if ;
end process;
end Behavioral;
```

Synthesis

RTL –Register Transfer Level

PARALLEL PROCESSING VERSUS SERIAL PROCESSING

Create project

Quick Start Tasks Manage IP > Open Hardware Manager > Xilinx Tcl Store > Learning Center Documentation and Tutorials > Quick Take Videos > Release Notes Guide >

Create project –name & path not in Hebrew!!

Create project –RTL project

Create project –FPGA choosing

Create project –next ...next .next...

Adding source

Create files

Create sources files

Create sources files —Entity Definition

Create sources files —Entity

Using Language templates –stage 1

Using Language templates –stage 2

```
Project Summary x REG_FF.vhd • x
C:/bh_exp/project_6/project_6.srcs/sources_1/new/REG_FF.vhd
     -- Uncomment the following library declaration if instantiating
     -- any Xilinx leaf cells in this code.
     --library UNISIM;
32 -- use UNISIM. VComponents.all;
33
34 🖨 entity REG_FF is
        Port ( RST : in STD_LOGIC;
                CLK : in STD LOGIC;
                DIN : in STD LOGIC VECTOR (7 downto 0);
                DOUT : out STD LOGIC VECTOR (7 downto 0));
39 end REG FF;
     architecture Behavioral of REG FF is
42
43
     begin
     process (<clock>)
      if <clock>'event and <clock>='l' then
           if <reset>='1' then
49
              <output> <= '0';
50
              <output> <= <input>;
           end if;
        end if;
     end process;
     end Behavioral;
```

Using Language templates –stage 3

RUN SYNTHESIS

Schematic

add source simulation

Simulation

Simulation

