

Online Clustered Codebook

Chuanxia Zheng, Andrea Vedaldi Vietnam Visual Geometry Group, University of Oxford

Motivation

Goal: Learn a visual codebook for tasks such as generation with full codevectors utilisation.

Issue:

- 1.Codebook collapse. Only a small subset of active codebook entries are optimized
- 2. Stop-gradient operator. Loss can only back propagate to the selected entries.

Green Points: "Dead" Codebook Entries

How to ensure the embedded features and codebook entries closely adhere to the same distribution?

Stage-1: Perceptual Compression

Contribution: Online Clustered Codebook Optimisation

Stage-1: Ablation Study on Image Quantization

5.0 - VQ-VAE SQ-VAE	
4.5 🛊 CVQ-VAE (Ours)	
4.0	
₽ 3.5	
And the same of th	
3.0	
2.5	
2.0	
0 20 40	60 80 100 120
0 20 40	Dimensionality
45.0 A	
- 1 / I	
42.5	
40.0	
37.5	▲ VQ-VAE
€ 35.0	SQ-VAE
	★ QVQ-WAE (Our
The second secon	
32.5	
30.0	
30.0	60 80 100 120 Dimensionality

(b) Codebook dimensionality. The blob's size refers to the dimensionality of codebook vectors {4,8,16,32,64,128}. The higher dimensionality does not ensure a better representation.

random		3.20	2.27
unique	MNIST	2.84	2.24
probability		2.78	2.23
closest		2.51	2.59
random		34.49	26.04
unique	CIFAR10	36.99	26.02
probability		31.10	26.62
closest		32.31	25.99

Dataset

rFID↓

(offline) (online)

 $e_k^{(t)} = e_k^{(t-1)} \cdot (1 - \alpha_k^{(t)}) + \hat{z}_k^{(t)} \cdot \alpha_k^{(t)}$

Method

(c) Anchor sampling methods. The choice of anchor sampling method has a significant impact on offline (one-time) feature initialization, while the online clustered method is robust for various samplings.

CIFAR10 (32×32) MNIST (28×28) FFHQ (256×256) Methods SSIM↑ LPIPS↓ rFID↓ SSIM↑ LPIPS↓ rFID↓ $SSIM \uparrow LPIPS \downarrow rFID \downarrow$ near codevectors [39] 0.25530.72820.10854.31 3.17 0.8553 41.08hard encoded features [8] 0.9814 0.0243 0.197829.160.7646 0.08703.91 0.9823 0.0236 0.8991 0.1897 26.62 0.8193 0.0603 running average (ours)

(d) Codebook reinitialization methods. In previous works [39, 8], each code entry is associated only with a single feature.

Stage-2: High-Fidelity Image Generation

Unconditional Generation on LSUN

Class-conditional Generation on ImageNet

Quantitative Results on Image Generation

Methods	FID↓		
Methods	Churches	Bedrooms	
StyleGAN [19]	4.21	2.35	
DDPM [16]	7.89	4.90	
ImageBART [10]	7.32	5.51	
Projected-GAN [35]	1.59	1.52	
LDM [32]-8*	4.02	_	
LDM [32]-4	-	2.95	
LDM [32]-8 (reproduced)	4.15	3.57	
CVQ-VAE-LDM [32]-8	3.86	3.02	

Model	FFHQ		ImageNet	
	Steps	FID↓	Steps	FID↓
RQVAE [22] _{CVPR'2022}	256	10.38	1024	7.55
MoVQ [44] _{NeurIPS'2022}	1024	8.52	1024	7.13
SQ-VAE [33] _{ICML'2022}	200	5.17	250	9.31
LDM-4 [31] _{CVPR'2022}	200	4.98	250	10.56
CVQ-VAE (ours)	200	4.46	250	6.87

Other prior related works

- 1. Zheng, C., Vuong, T. L., Cai, J., & Phung, D. Movq: Modulating quantized vectors for high-fidelity image generation. NeurIPS, 2022... (MoVQ was reported means a lot to Kandinsky2.1., Github)
- 2. Vuong, T. L., Le, T., Zhao, H., Zheng, C., Harandi, M., Cai, J., & Phung, D. Vector Quantized Wasserstein Auto-Encoder. ICML 2023.