2021 春大物 C 复习

一、填空题
1. 切向加速度表示质点速度变化的快慢;法向加速度表示质点速度
变化的快慢。
2. 切向加速度和法向加速度是坐标系中质点加速度的两个分量。
3. 质点的运动方程为 $\vec{r} = a\cos\omega t \vec{i} + b\sin\omega t \vec{j}$, 式中 $a \times b$ 和 ω 均是正常数,则该
质点的加速度为 \vec{a} =。
4. 速度是对时间的一阶导数, 是矢量。
5. 质点沿如题 5 图所示的曲线 s 运动,已知在点 P 的速度 \vec{v} p \vec{a} \vec{a}
与加速度 ā 的夹角为 α ,则此时轨迹的曲率半径 s
<i>ρ</i> =。
6. 速率是对时间的一阶导数,是标量。
7. 质点运动时,若 $a_{t} \equiv 0, a_{n} \equiv 0, v \neq 0$,则质点做
8. 某物体从 $t=0$ 起,在沿 x 方向的力 $F=(3+4t)$ N 的作用下运动了 3 s,则作用
力的冲量为N·s。
9. 如题 9 图所示,质量为 m 的质点以速率 v 绕坐标原点 O 沿逆时针方向作半径
为 R 的匀速率圆周运动,从点 $A(R,0)$ 运动到点 $B(0,R)$ 这一过程
中动量的变化 $\Delta \vec{p} =$ 。
10. 质量为 m 的质点在 Oxy 平面内运动, 其运动方程为
$\vec{r} = A\cos\omega t \vec{i} + B\sin\omega t \vec{j}$,式中 A 、 B 和 ω 均为正常数,则任一时
刻,质点的动量 \vec{p} =。
11. 质量 $m = 2$ kg 的质点的运动方程为 $\vec{r} = [(6t^2 - 1)\vec{i} + (3t^2 + 3t - 1)\vec{j}]$ m, 则该质点
所受的力 \vec{F} = N。
12. 系统内质点间相互作用的内力之矢量和为。

13. 一弹簧悬挂质量为2kg的砝码时伸长4.9cm,如要将该弹簧拉长9.8cm,则 需对它做功_____J。 14. 质点在几个作用力下的位移 $\Delta \vec{r} = (4\vec{i} - 5\vec{j} + 6\vec{k})$ m , 其中一个力为恒力 $\vec{F} = (-3\vec{i} - 5\vec{j} + 9\vec{k})$ N ,则这个力在此位移过程中所做的功为 J 。 15. 地球半径为 $R_{\rm F}$,质量为 $M_{\rm F}$,万有引力常数为G。一颗质量为m的陨石从可 视为无穷远的外空落到地球上,则引力所做的功为。 。 16. 芭蕾舞演员开始自转时的角速度为 ω_0 ,转动惯量为J,当他将手臂收回时, 其转动惯量减少为 $\frac{1}{2}J$,在忽略所有阻力矩的情况下,角速度将变为____。 17. 某滑冰者转动的角速度原为 ω_0 , 转动惯量为J, 被另一滑冰者作用, 角速度变 为 $\omega = \sqrt{2\omega_0}$,则另一滑冰者对他施加的力矩所做的功为_____。 18. 系统内质点间相互作用的内力对任一定轴的力矩的矢量和为。 19. 刚体绕定轴做匀加速转动,刚体上质点的切向加速度的大小____;法向 加速度的大小____。(两空均选"增大"、"减小"或"不变"填写)。 20. 质量为m的质点在Oxv平面内运动,其运动方程为 $\vec{r} = A\cos\omega t\vec{i} + B\sin\omega t\vec{i}$, 21. 如题 21 图所示, 光滑的水平面上有一质量为 m $0.5r_{\star}$ 的质点,拴在一根穿过圆盘中心光滑小孔0的轻绳 上。开始时,质点离中心距离为r,并以角速度 ω 转 动,现以变力 \vec{F} 向下拉绳,将质点拉至离中心0.5r \vec{F} 题 21 图 时, 质点转动的角速度变为 。 22. 已知 f(v) 是麦克斯韦速率分布函数,则处于平衡态的理想气体中,速率不大 于 v_{p} 的分子数占总分子数的比率可表示为 _____。 23. 已知f(v)是麦克斯韦速率分布函数,则 $\int_0^\infty f(v) dv$ 等于_____。 24. 绝热过程中,系统的内能减小了950J,那么系统对外做功为 J。 25. 若单原子分子理想气体在等压过程中内能增加了1000J, 那么吸收的热量为

26..理想气体等温膨胀时,气体从单一热源吸收的热量全部用来对外做功,这___ 热力学第二定律的开尔文表述。(选"违反"、"不违反"填写) 27.致冷机中热量从低温物体传向高温物体,这______热力学第二定律的克劳 修斯表述。(选"违反"、"不违反"填写)

- 28. 一个弹簧振子的振幅增大到两倍时,振子的最大速度为原来的 倍。
- 29. 一个弹簧振子的振幅增大到两倍时,振子的最大加速度为原来的倍。
- 30. 周期为T、最大摆角为 θ_0 (θ_0 < 0.1 \mathbf{rad})的单摆在t=0时处于如题 6 图所示的位置。若取顺时针方向为角位移正方向,则其初相位 ϕ_0 = ______。

- 31. 一质点同时参与两个在同一直线上的简谐振动, $x_1 = 0.06\cos(3t + \pi/3)$ m 和 $x_2 = 0.04\cos(3t 2\pi/3)$ m,则其合振动的振幅为_______m;初相为_____。
- 32. 如题 32 图所示为一简谐波在t=0时刻与t=T/4时刻(T为周期)的波形图,则原点处质点的振动初相为_____。
- 33. 一平面简谐波在某时刻的波形如题 33 图所示, 若此时点 p 处介质质元的振动动能在增长, 则该波沿 Ox 轴 方向传播(选"正"、"负"填写)。
- 35. 如果入射波的表达式为 $y_1 = A\cos 2\pi (t/T + x/\lambda)$, 在 x = 0 处发生反射, 反射

后波的强度不变,入射波与反射波形成的驻波在反射点为波腹,则反射波在反射
点 $x = 0$ 处的振动表达式为 $y_{or} =$ 。
36. 如果入射波的表达式为 $y_1 = A\cos 2\pi \left(t/T + x/\lambda\right)$, 在 $x = 0$ 处发生反射, 反射
后波的强度不变,入射波与反射波形成的驻波在反射点为波腹,则反射波的表达
式为 <i>y</i> ₂ =。
37. 一列平面简谐波频率为200Hz,波速为6.0m/s,则波长为m;在波
的传播方向上有两质点的振动相位差为5π/6,则此两质点平衡位置的距离为
m \circ
38. 一列平面简谐波的波动表达式为 $y = 0.2\cos(\pi t - \pi x/2)$ m,则 x 处介质质点的
振动速度 v 的表达式是m/s。
39. 一列平面简谐波的波动表达式为 $y = 0.2\cos(\pi t - \pi x/2)$ m,则 x 处介质质点的
加速度 a 的表达式是m/s ² 。
40. 用波长为 λ 的单色光垂直照射到如题 40 图所示的空气 θ
劈尖上,从反射光中观察干涉条纹,距顶点为 L 处是暗条 L
纹。如使劈尖角 $\theta(\theta-1)$ 连续变大,直到该点处再次出现暗 \mathbb{B}_{40} 图
条纹为止,该点处的空气膜厚的增量 $\Delta e = $ 。
41. 在牛顿环实验中,若平凸透镜沿竖直方向平移,在平移过程中发现某级明条
纹处由最亮逐渐变成最暗,则平凸透镜位移的大小为。
42. 折射率为 n 的均匀透明的平行平面薄膜处于空气中,波长为 λ 的单色光从空
气垂直入射到上面,要使反射光增强,膜的厚度至少应为。
43. 对于空气劈尖, 在棱边处出现条纹, 这成为"半波损失"的证据。
44. 光强分别为 I_1 和 I_2 的两相干光同时传播到 P 点,两列光波引起的振动的相位
差为 $\Delta \phi$,则 P 点的光强 $I=$ 。
45. 在夫琅禾费单缝衍射中,缝宽为 a ,波长为 λ ,则零级亮纹的半角宽度为
0
46. 在夫琅禾费单缝衍射中,接收屏上第三级明条纹所对应的单缝处波面可划分
为个半波带。

47. 在牛顿环实验中,若平凸透镜沿竖直方向平移,在平移过程中发现某级明务
纹处由最亮逐渐变成最暗,则平凸透镜位移的大小为。
48. 一束光入射到两种透明介质的分界面上时,发现只有透射光而无反射光。这
束光是以
于"、"平行于"填写)
49. 当自然光照射在偏振片上时,偏振片只让某一特定方向的光振动通过,这个
方向称为偏振片的。
50. 两偏振片 P_1 和 P_2 平行放置且偏振化方向成 θ 角,光强为 I_0 的自然光垂直入射
在 P_1 上,然后再通过 P_2 ,则通过 P_2 的光强为。

二、计算题

51. 质点沿 x 轴运动,已知加速度 $a=12t^2$ m/s², t=0 时, $\upsilon_0=-4$ m/s , $x_0=10$ m , 求质点的: (1)速度 $\upsilon(t)$; (2)运动方程 x(t) ; (3) 前 3 秒内的位移和路程。

52. 有一质点沿 x 轴作直线运动,运动方程为 $x(t) = (4.5t^2 - 2t^3)$ m 。求质点(1)在第 2 s 内的平均速度 $\overline{\upsilon}$; (2)在第 2 s 末的速度 υ ; (3) 在第 2 s 末的加速度 a ; (4)在第 2 s 内的路程 s 。

53. 质量 $m = 4 \log$ 的物体在力 $F = (4 + 6t^2) N$ 的作用下运动沿 x 轴运动, t = 0 时,速度 $v_0 = -2$ m/s 。求物体(1) 2s 末的速度; (2) 2s 末的加速度; (3)前 2s 内,力 F 对物体所做的功。

54. 如题 54 图所示, 劲度系数为 k 的轻弹簧水平放置, 左端固定, 右端系一质量为 m的物体,物体与水平面间的滑动摩擦系数为 μ 。开始时,弹簧 为原长,现以大于物体与水平面间的最大静摩擦力的水平恒力 \vec{F} 将物体自平衡位置开始向右拉动,求系统的最大弹性势能。

题 54 图

55. 质量为m 的人(视为质点)站在半径为R、质量M=2m 的匀质水平圆台的中心, 人和水平圆台组成的系统以角速度 ω_0 绕通过圆盘中心的竖直固定光滑轴OO'转动。如果人 从圆台的中心走到转台边缘并随转台一起转动,(1)分别写出人在圆台中心时与在边缘时, 系统的转动惯量 J_0 与J;(2)人在圆台中心时,系统角动量 L_0 的大小;(3)人在圆台边缘时, 系统转动的角速度 ω 。

56.1mol 水蒸气在100°C 下分解成氢气和氧气,如将三种气体均视为刚性分子理 想气体,则内能增加了多少?

57. 当温度为 0° C 时,求:(1) N_2 分子的平均平动动能和平均转动动能;(2) $7gN_2$ 气体的内能。[R=8.31 J/(mol K) , $k=1.38\times10^{-23}$ J/K]

58. 1 mol 理想气体在 400 K 和 300 K 两热源之间进行卡诺热机循环。设气体在一次循环过程中从高温热源吸收的热量为 $6.0 \times 10^3 \text{J}$ 。求在一次循环过程中(1)所做的功;(2)向低温热源放出的热量。

59. 一个卡诺热机,当高温热源的温度为 227°C、低温热源的温度为 27°C时,一次循环的净功是 16000J,今维持低温热源的温度和两绝热线均不变,提高高温热源的温度,使其一次循环的净功增为 20000J。求: (1)高温热源温度提高前,热机效率、一次循环吸收的热量、放出的热量; (2) 高温热源温度提高后,一次循环吸收的热量、放出的热量; 热机效率。(吸收的热量、放出的热量按循环过程中的定义计算)。

60. 一列平面余弦波表达式为 $y = 2\cos(3t-4x)$ m 。求: (1) 波的波速 u 、角频率 ω 和波长 λ ; (2) x = 1 m 点的振动表达式; (3) t = 1 s 时的波形表达式; (4) 任一 x 处质点的振动速度表达式。

61. 沿x 轴负方向传播的平面余弦横波的波长 $\lambda = 1 \text{m}$,周期 T = 0.5 s ,已知原点处质点振动图像 y - t 曲线如题 61 图所示。求(1)原点处质点的振动初相;(2)原点处质点的振动表达式;(3)波动表达式。

题 61 图

62. 一油轮漏出折射率为 n_2 的油污染了某海域,在折射率为 n_3 的海水表面形成一层厚度为e的薄薄的油污。设空气的折射率 $n_1=1$,且 $n_3>n_2$,当太阳光垂直入射于油膜上时,(1) 求油膜上、下两界面的两束反射光之间的光程差;(2)如 $e=4400\,\mathrm{\mathring{A}}$, $n_2=1.20$, $n_3=1.33$,太阳光中可见光的波长范围为 $4000\,\mathrm{\mathring{A}}-7600\,\mathrm{\mathring{A}}$,如果潜水员潜入该区域水下向上观察,将看到油层呈什么颜色?(各色光波长范围:红 $6220\,\mathrm{\mathring{A}}-7600\,\mathrm{\mathring{A}}$,橙 $5970\,\mathrm{\mathring{A}}-6220\,\mathrm{\mathring{A}}$,黄 $5770\,\mathrm{\mathring{A}}-5970\,\mathrm{\mathring{A}}$,绿 $4920\,\mathrm{\mathring{A}}-5770\,\mathrm{\mathring{A}}$ 、蓝、靛 $4920\,\mathrm{\mathring{A}}-4550\,\mathrm{\mathring{A}}$,紫 $3500\,\mathrm{\mathring{A}}-4550\,\mathrm{\mathring{A}}$)

63. 两块长度10cm 的平玻璃片,一端互相接触成棱边,另一端用厚度为0.004mm 的纸片隔开,形成空气劈形膜。以波长为500nm 的平行光垂直照射,观察反射光的等厚干涉条纹。求: (1)相邻两明(暗)纹的厚度差与距离; (2)在厚度为 e 处空气膜上、下两界面的两束反射光的光程差; (3)全部10cm 的长度内呈现的明纹数。

64. 一束波长为 λ =5000Å 的平行光垂直照射在一个单缝上。如果所用的单缝的宽度 a=0.5mm,缝后紧挨着的薄透镜焦距 f=1m,求: (1)中央明条纹的角宽度; (2)中央 亮纹的线宽度; (3)第一级暗纹与第二级暗纹的距离。

65. 单缝的宽度 a=0.4mm ,缝后紧挨着的薄透镜焦距为 f=0.8m 。一束波长为 $\lambda=5000$ Å 的平行光垂直照射在该单缝上。求: (1)中央明条纹的角宽度; (2)如两相邻暗 纹中心的距离为1.0mm ,求波长 λ 。