Homework 6

March 3, 2017

Earle Aguilar (804501476)

Problem 5.3: 1

There are 2^5 bytes $*\frac{1}{4}\frac{word}{Bytes} = \frac{32}{4}$ words = 8 words. **Problem 5.3:** 2

 2^5 entries = 32 entries.

Problem 5.3:

Address	Address Binary	Tag	Index	Offset	HIT/MISS	Replace
0	000000000000000000000000000000000000000	000	00000	00000	MISS	0
4	000000000000000000000000000000000000000	000	00000	10000	HIT	0
16	000000000000000000000000000000000000000	000	00000	10000	HIT	0
132	000000000000000000000000000000000000000	000	00100	00100	MISS	0
232	00000000000000000000000011101000	000	00111	01000	MISS	0
160	000000000000000000000000000000000000000	000	00101	00000	MISS	0
1024	0000000000000000000010000000000	000	00000	00000	MISS	1
30	000000000000000000000000000011110	001	00000	11110	MISS	1
140	00000000000000000000000010001100	000	00100	01100	HIT	0
3100	0000000000000000000110000011100	000	00000	11100	MISS	1
180	000000000000000000000000010110100	011	00101	10100	HIT	0
2180	000000000000000000010001000100	010	00100	00100	MISS	1

Problem 5.3: 4

We replace 4 blocks.

Problem 5.3: 5

Hit ratio = $\frac{4}{12} = \frac{1}{3}$

Problem 5.5: 1

We miss on address 0 and then the next time we miss is on address 32. So we miss every other $\frac{32}{2} = 16$ references so the **miss rate** is $\frac{1}{16}$.

As the cache gets smaller so do the block sizes therefore we have a **higher miss rate**.

We are experiencing **cumpolsury misses** since we are only missing when we reach a block we have not visited before.

Problem 5.5: 2

 2^4 Block Size: Miss every other $\frac{16}{2}$ references so the miss rate is $\frac{1}{8}$. 2^6 Block Size: Miss every other $\frac{64}{2}$ references so the miss rate is $\frac{1}{32}$. 2^7 Block Size: Miss every other $\frac{128}{2}$ references so the miss rate is $\frac{1}{64}$.

We are exposing spatial locality.

Problem 5.6: 2

AMAT for P_1 :

$$0.66 + .08(70) = 6.26 \ ns \tag{5.1}$$

AMAT for P_2 :

$$0.90 + .06(70) = 5.10 \ ns \tag{5.2}$$

Problem 5.6: 4

AMAT for P_1 with L_2 cache:

$$0.66 + .08(5.62 + .95(70)) = 6.43 \ ns \tag{5.3}$$

The AMAT is higher with an L_2 cache therefore it is not helping.

Problem 5.1: Exam

a: AMAT for CPU

$$1 + .30(10 + .20(80)) = 8.8 \ cycles \tag{5.4}$$

b: TCPI

$$BCPI = 1 + .20(.60)(1) + .30(.50)(1)$$
 (5.5)

$$=1.27\tag{5.6}$$

$$MCPI = 1(.10)(10 + .20(80)) + .20(.30)(10 + .20(80))$$
 (5.7)

$$=4.16$$
 (5.8)

$$TCPI = 1.27 + 4.16 = 5.43$$
 (5.9)

 \mathbf{c}

Original
$$EX_{Time_1} = 5.43(10^6)(\frac{10^{-9}}{2}) = 2.72 \times 10^{-3}$$

$${\bf New\ TCPI,\ BCPI,\ MCPI}$$

$$BCPI = 1 + \frac{2}{9}(.60) + \frac{2}{9}(.25)$$
 = 1.18 (5.10)

$$MCPI = 26MR_{Inst} + \frac{2}{9}(.30)(26) = 1.73 + 26MR_{Inst}$$
 (5.11)

$$TCPI = 2.91 + 26MR_{Inst}$$
 (5.12)

$$EX_{Time_2} = 9 \times 10^5 (2.91 + 26MR_{Inst})(\frac{10^{-9}}{2})$$
(5.13)

$$2.72 \times 10^{-3} = 9 \times 10^{5} (2.91 + 26MR_{Inst}) (\frac{10^{-9}}{2})$$
(5.14)

$$MR_{Inst} \le 12.05\%$$
 (5.15)