PadhAl: Variants of Gradient Descent

One Fourth Labs

Intuition behind nesterov accelerated gradient descent

Can we do something to reduce the oscillation in Momentum based GD

- 1. Let us consider the Momentum based Gradient Descent Update Rule
 - a. $v_t = \gamma * v_{t-1} + \eta \nabla \omega_t$
 - b. $\omega_{t+1} = \omega_t v_t$
 - c. $\omega_{t+1} = \omega_t \gamma * \upsilon_{t-1} \eta \nabla \omega_t$
 - d. Here, we can see that the movement occurs in two steps
 - i. The first is with the history-term $\gamma * v_{t-1}$
 - ii. The second is with the weight term $\eta \nabla \omega_t$
 - iii. When moving both steps each time, it is possible to overshoot the minima between the two steps
 - iv. So we can consider first moving with the history term, then calculate the second step from where we were located after the first step (ω_{temp}).
- 2. Using the above intuition, the Nesterov Accelerated Gradient Descent solves the problem of overshooting and multiple oscillations
 - a. $\omega_{temp} = \omega_t \gamma * \upsilon_{t-1}$ compute ω_{temp} based on movement with history
 - b. $\omega_{t+1} = \omega_{temp} \eta \nabla \omega_{temp}$ move further in the direction of the derivative of ω_{temp}
 - c. $v_t = \gamma * v_{t-1} + \eta \nabla \omega_{\textit{temp}}$ update history with movement due to derivative of $\omega_{\textit{temp}}$