Funkce	Derivace	D_f	$D_{f'}$	Poznámka
$(x+a)^n$	$n(x+a)^{n-1}$	\mathbb{R}	\mathbb{R}	$a \in \mathbb{C}$
x^{α}	$\alpha x^{\alpha-1}$	$ \begin{array}{c} (\mathbb{R} \setminus \{-a\} \text{ pro } n < 0) \\ \mathbb{R}^+ \end{array} $	$ \begin{array}{c c} (\mathbb{R} \setminus \{-a\} \text{ pro } n < 0) \\ \mathbb{R}^+ \end{array} $	$n \in \mathbb{Z}$ $\alpha \in \mathbb{R}$
e^{ax}	ae^{ax}	\mathbb{R}	\mathbb{R}	$a \in \mathbb{C}$
$\ln x$	$\frac{1}{x}$	\mathbb{R}^+	\mathbb{R}^+	
\mathbf{a}^x	$a^x \ln a$	\mathbb{R}	\mathbb{R}	a > 0
$\log_a x$	$\frac{1}{x \ln a}$	\mathbb{R}^+	\mathbb{R}^+	$a \in (0,1)$ $a \in (1,\infty)$
$\sin x$	$\cos x$	\mathbb{R}	\mathbb{R}	$a \in (1,\infty)$
$\cos x$	$-\sin x$	\mathbb{R}	\mathbb{R}	
$\operatorname{tg} x$	$\frac{1}{\cos^2 x}$	$((2k-1)\frac{\pi}{2},(2k+1)\frac{\pi}{2}),$ $k \in \mathbb{Z}$	$((2k-1)\frac{\pi}{2},(2k+1)\frac{\pi}{2}),$ $k \in \mathbb{Z}$	
$\cot x$	$\frac{-1}{\sin^2 x}$	$(k\pi, (k+1)\pi),$ $k \in \mathbb{Z}$	$ k\pi, (k+1)\pi, $ $k \in \mathbb{Z} $	
$\arcsin x$	$\frac{1}{\sqrt{1-x^2}}$	[-1, 1]	(-1,1)	
$\arccos x$	$\frac{-1}{\sqrt{1-x^2}}$	[-1, 1]	(-1,1)	
$\operatorname{arctg} x$	$\frac{1}{1+x^2}$	\mathbb{R}	\mathbb{R}	
$\operatorname{arccotg} x$	$\frac{-1}{1+x^2}$	\mathbb{R}	\mathbb{R}	
$\sinh x$	$\cosh x$	\mathbb{R}	\mathbb{R}	
$\cosh x$	$\sinh x$	\mathbb{R}	\mathbb{R}	
$\operatorname{tgh} x$	$\frac{1}{\cosh^2 x}$	\mathbb{R}	\mathbb{R}	
$\operatorname{cotgh} x$	$\frac{-1}{\sinh^2 x}$	$\mathbb{R}\setminus\{0\}$	$\mathbb{R}\setminus\{0\}$	
$\operatorname{argsinh} x$	$\frac{1}{\sqrt{1+x^2}}$	\mathbb{R}	\mathbb{R}	
$\operatorname{argcosh} x$	$\frac{1}{\sqrt{x^2 - 1}}$	$[1,\infty)$	$(1,\infty)$	
$\operatorname{argtgh} x$	$\frac{1}{1-x^2}$	(-1,1)	(-1,1)	
$\operatorname{argcotgh} x$	$\frac{1}{1-x^2}$	$\mathbb{R}\setminus [-1,1]$	$\mathbb{R}\setminus [-1,1]$	

Primitivní funkce	Definiční obor	Poznámka
$\int (x+a)^n dx = \frac{(x+a)^{n+1}}{n+1} + C$	$\mathbb{R} \setminus \{-a\}, n < 0$	
$\int x^{\alpha} \mathrm{dx} = \frac{x^{\alpha+1}}{\alpha+1} + C$	\mathbb{R}^+	$\alpha \in \mathbb{R} \setminus \{-1\}$
$\int \frac{1}{x+a} \mathrm{d}\mathbf{x} = \ln x+a + C$	$\mathbb{R}\setminus\{-a\}$	$a \in \mathbb{R}$
$\int e^{ax} dx = \frac{1}{a}e^{ax} + C$	R	$a \in \mathbb{C}, a \neq 0$
$\int \cos x \mathrm{d}\mathbf{x} = \sin x + C$	\mathbb{R}	
$\int \sin x \mathrm{d} x = -\cos x + C$	\mathbb{R}	
$\int \frac{1}{\cos^2 x} \mathrm{d}\mathbf{x} = \operatorname{tg} x + C$	$ \left \begin{array}{l} \left((2k-1)\frac{\pi}{2}, (2k+1)\frac{\pi}{2} \right), \\ k \in \mathbb{Z} \end{array} \right $	
$\int \frac{1}{\sin^2 x} \mathrm{d}\mathbf{x} = -\cot g x + C$	$\left(k\pi,(k+1)\pi\right),\ k\in\mathbb{Z}$	
$\int \frac{1}{1+x^2} \mathrm{dx} = \arctan x + C_1$	\mathbb{R}	
$=-\operatorname{arccotg} x + C_2$		
$\int \frac{1}{\sqrt{1-x^2}} \mathrm{d}\mathbf{x} = \arcsin x + C_1$	(-1,1)	
$=-\arccos x+C_2$		
$\int \frac{1}{\sqrt{1+x^2}} \mathrm{dx} = \operatorname{argsinh} x + C$	\mathbb{R}	
$= \ln(x + \sqrt{x^2 + 1}) + C$		
$\int \frac{1}{\sqrt{x^2 - 1}} \mathrm{dx} = \operatorname{argcosh} x \cdot \operatorname{sign} x + C$	$\mathbb{R}\setminus[-1,1]$	
$= \ln(x + \sqrt{x^2 - 1}) \cdot \operatorname{sign} x + C$		
$\int \cosh x \mathrm{d}\mathbf{x} = \sinh x + C$	R	
$\int \sinh x \mathrm{d}\mathbf{x} = \cosh x + C$	\mathbb{R}	