Alignment and Object Instance Recognition

Dr. Sander Ali Khowaja,

Assistant Professor, Department of Telecommunication Engineering Faculty of Engineering and Technology, University of Sindh, Pakistan Senior Member, IEEE – Member, ACM

https://sander-ali.github.io

Computer Vision & Image Processing

Previous Class

- Hypothesize and test
 - Generalized Hough transform
 - RANSAC

Least Square Line Fitting

- •Data: $(x_1, y_1), ..., (x_n, y_n)$
- •Line equation: $y_i = m x_i + b$
- •Find (*m*, *b*) to minimize

$$E = \sum_{i=1}^{n} (y_i - mx_i - b)^2$$

$$E = \sum_{i=1}^{n} \left[\begin{bmatrix} x_i & 1 \end{bmatrix} \begin{bmatrix} m \\ b \end{bmatrix} - y_i \right]^2 = \begin{bmatrix} x_1 & 1 \\ \vdots & \vdots \\ x_n & 1 \end{bmatrix} \begin{bmatrix} m \\ b \end{bmatrix} - \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} \end{bmatrix}^2 = \|\mathbf{A}\mathbf{p} - \mathbf{y}\|^2$$

$$= \mathbf{y}^T \mathbf{y} - 2(\mathbf{A}\mathbf{p})^T \mathbf{y} + (\mathbf{A}\mathbf{p})^T (\mathbf{A}\mathbf{p})$$

$$\frac{dE}{dp} = 2\mathbf{A}^T \mathbf{A} \mathbf{p} - 2\mathbf{A}^T \mathbf{y} = 0$$

$$\mathbf{A}^T \mathbf{A} \mathbf{p} = \mathbf{A}^T \mathbf{y} \Longrightarrow \mathbf{p} = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \mathbf{y}$$

Matlab: $p = A \setminus y$;

Least Squares Line Fitting

```
function [m, b] = lsqfit(x, y)
% y = mx + b
% find line that best predicts y given x
% minimize sum i (m*x i + b - y i).^2
A = [x(:) ones(numel(x), 1)];
b = y(:);
p = A \setminus b;
m = p(1);
b = p(2);
```


Hough Transform

P.V.C. Hough, *Machine Analysis of Bubble Chamber Pictures*, Proc. Int. Conf. High Energy Accelerators and Instrumentation, 1959

Use a polar representation for the parameter space

$$x \cos \theta + y \sin \theta = \rho$$

Hough Transform

```
function [m, b] = houghfit(x, y)
% y = mx + b
% x*\cos(theta) + y*\sin(theta) = r
% find line that best predicts y given x
% minimize sum i (m*x i + b - y i).^2
thetas = (-pi+pi/50):(pi/100):pi;
costhetas = cos(thetas);
sinthetas = sin(thetas);
minr = 0; stepr = 0.005; maxr = 1;
% count hough votes
counts = zeros(numel(thetas), (maxr-minr)/stepr+1);
for k = 1:numel(x)
    r = x(k) * costhetas + y(k) * sinthetas;
  % only count parameters within the range of r
  inrange = find(r >= minr & r <= maxr);</pre>
  rnum = round((r(inrange)-minr)/stepr)+1;
  ind = sub2ind(size(counts), inrange, rnum);
  counts(ind) = counts(ind) + 1;
```

```
% smooth the bin counts
counts = imfilter(counts,
fspecial('gaussian', 5, 0.75));

% get best theta, rho and show counts
[maxval, maxind] = max(counts(:));
[thetaind, rind] = ind2sub(size(counts),
maxind);
theta = thetas(thetaind);
r = minr + stepr*(rind-1);

% convert to slope-intercept
b = r/sin(theta);
m = -cos(theta)/sin(theta);
```


RANSAC

Algorithm:

- 1. Sample (randomly) the number of points required to fit the model (#=2)
- 2. **Solve** for model parameters using samples
- 3. **Score** by the fraction of inliers within a preset threshold of the model

RANSAC

```
function [m, b] = ransacfit(x, y)
% y = mx + b
N = 200;
thresh = 0.03;
bestcount = 0;
for k = 1:N
    rp = randperm(numel(x));
    tx = x(rp(1:2));
    ty = y(rp(1:2));
    m = (ty(2)-ty(1)) ./ (tx(2)-tx(1));
    b = ty(2) - m*tx(2);
    nin = sum(abs(y-m*x-b) < thresh);
    if nin > bestcount
        bestcount = nin;
        inliers = (abs(y - m*x - b) < thresh);
    end
end
% total least square fitting on inliers
[m, b] = total_lsqfit(x(inliers), y(inliers));
```


Which algorithm should I use?

- ✓ If we know which points belong to the line, how do we find the "optimal" line parameters?
 - ✓ Least squares
- ✓ What if there are outliers?
 - ✓ Robust fitting, RANSAC
- What if there are many lines?
 - Voting methods: RANSAC, Hough transform

Alignment vs Fitting

• Previous lectures: fitting a model to features in one image M

Find model *M* that minimizes

$$\sum_{i} \operatorname{residual}(x_{i}, M)$$

 Alignment: fitting a model to a transformation between pairs of features (matches) in two images

Find transformation *T* that minimizes

$$\sum_{i} \operatorname{residual}(T(x_i), x_i')$$

What if you want to align but have no prior matched pairs

Hough transform and RANSAC not applicable

Important applications

Medical imaging: match brain scans or contours

Robotics: match point clouds

Iterative Closest Points (ICP) Algorithm

Goal: estimate transform between two dense sets of points

- 1. Initialize transformation (e.g., compute difference in means and scale)
- 2. Assign each point in {Set 1} to its nearest neighbor in {Set 2}
- 3. Estimate transformation parameters
 - e.g., least squares or robust least squares
- **4. Transform** the points in {Set 1} using estimated parameters
- 5. Repeat steps 2-4 until change is very small

Given matched points in {A} and {B}, estimate the translation of the object

$$\begin{bmatrix} x_i^B \\ y_i^B \end{bmatrix} = \begin{bmatrix} x_i^A \\ y_i^A \end{bmatrix} + \begin{bmatrix} t_x \\ t_y \end{bmatrix}$$

Least squares solution

- 1. Write down objective function
- 2. Derived solution
 - a) Compute derivative
 - b) Compute solution
- 3. Computational solution
 - a) Write in form Ax=b
 - o) Solve using pseudo-inverse or eigenvalue decomposition

 Dr. Sander Ali Khowaja

$$\begin{bmatrix} x_i^B \\ y_i^B \end{bmatrix} = \begin{bmatrix} x_i^A \\ y_i^A \end{bmatrix} + \begin{bmatrix} t_x \\ t_y \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \\ \vdots & \vdots \\ 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} t_x \\ t_y \end{bmatrix} = \begin{bmatrix} x_1^B - x_1^A \\ y_1^B - y_1^A \\ \vdots \\ x_n^B - x_n^A \\ y_n^B - y_n^A \end{bmatrix}$$

Problem: outliers

RANSAC solution

- 1. Sample a set of matching points (1 pair)
- 2. Solve for transformation parameters
- 3. Score parameters with number of inliers
- 4. Repeat steps 1-3 N times

$$\begin{bmatrix} x_i^B \\ y_i^B \end{bmatrix} = \begin{bmatrix} x_i^A \\ y_i^A \end{bmatrix} + \begin{bmatrix} t_x \\ t_y \end{bmatrix}$$

Problem: outliers, multiple objects, and/or many-to-one matches

Hough transform solution

- 1. Initialize a grid of parameter values
- 2. Each matched pair casts a vote for consistent values
- 3. Find the parameters with the most votes
- 4. Solve using least squares with inliers

$$\begin{bmatrix} x_i^B \\ y_i^B \end{bmatrix} = \begin{bmatrix} x_i^A \\ y_i^A \end{bmatrix} + \begin{bmatrix} t_x \\ t_y \end{bmatrix}$$

Problem: no initial guesses for correspondence

ICP solution

- 1. Find nearest neighbors for each point
- 2. Compute transform using matches
- 3. Move points using transform
- 4. Repeat steps 1-3 until convergence

$$\begin{bmatrix} x_i^B \\ y_i^B \end{bmatrix} = \begin{bmatrix} x_i^A \\ y_i^A \end{bmatrix} + \begin{bmatrix} t_x \\ t_y \end{bmatrix}$$

Algorithm Summary

- Least Squares Fit
 - closed form solution
 - robust to noise
 - not robust to outliers
- Robust Least Squares
 - improves robustness to noise
 - requires iterative optimization
- Hough transform
 - robust to noise and outliers
 - can fit multiple models
 - only works for a few parameters (1-4 typically)
- RANSAC
 - robust to noise and outliers
 - works with a moderate number of parameters (e.g, 1-8)
- Iterative Closest Point (ICP)
 - For local alignment only: does not require initial correspondences

Alignment

 Alignment: find parameters of model that maps one set of points to another

 Typically want to solve for a global transformation that accounts for most true correspondences

- Difficulties
 - Noise (typically 1-3 pixels)
 - Outliers (often 30-50%)
 - Many-to-one matches or multiple objects

Parametric Global Warping

Transformation T is a coordinate-changing machine:

$$p' = T(p)$$

What does it mean that *T* is global?

- Is the same for any point p
- can be described by just a few numbers (parameters)

For linear transformations, we can represent T as a matrix

$$p' = Tp$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \mathbf{T} \begin{bmatrix} x \\ y \end{bmatrix}$$

Common Transformations

original

Transformed

translation

rotation

aspect

affine

perspective

Slide credit (next few slides): A. Efros and/or S. Seitz

Scaling

- *Scaling* a coordinate means multiplying each of its components by a scalar
- *Uniform scaling* means this scalar is the same for all components:

Scaling

• *Non-uniform scaling*: different scalars per component:

Scaling

• Scaling operation:

$$x' = ax$$

$$y' = by$$

• Or, in matrix form:

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$
scaling matrix S

Basic 2D Transformations

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} s_x & 0 \\ 0 & s_y \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$
Scale

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos\Theta & -\sin\Theta \\ \sin\Theta & \cos\Theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$
Rotate
$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$
Affine

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} 1 & \alpha_x \\ \alpha_y & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$
Shear

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$
Translate

 $\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix} \begin{vmatrix} x \\ y \\ 1 \end{vmatrix}$ Affine is any combination of translation, scale, rotation, shear

Affine Transformations

- **Translations**

Affine transformations are combinations of
• Linear transformations, and
• Translations
$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

or

Properties of affine transformations:

- Lines map to lines
- Parallel lines remain parallel
- Ratios are preserved
- Closed under composition

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Projective Transformations

Projective transformations are combos of

- Affine transformations, and
- Projective warps

$$\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

Properties of projective transformations:

- Lines map to lines
- Parallel lines do not necessarily remain parallel
- Ratios are not preserved
- Closed under composition
- Models change of basis
- Projective matrix is defined up to a scale (8 DOF)

Projective Transformations (homography)

The transformation between two views of a planar surface

 The transformation between images from two cameras that share the same center

Application: Panorama Stitching

Application: Document Scanning

Object Instance Recognition

1. Match keypoints to object model

2. Solve for affine transformation parameters

3. Score by inliers and choose solutions with score above threshold

Overview of Keypoint Matching

K. Grauman, B. Leibe

- 1. Find a set of distinctive keypoints
- 2. Define a region around each keypoint
- 3. Extract and normalize the region content
- 4. Compute a local descriptor from the normalized region
- 5. Match local descriptors

Finding the objects (overview)

Stored Image

- 1. Match interest points from input image to database image
- 2. Matched points vote for rough position/orientation/scale of object
- 3. Find position/orientation/scales that have at least three votes
- 4. Compute affine registration and matches using iterative least squares with outlier check
- 5. Report object if there are at least T matched points

Matching Keypoints

- Want to match keypoints between:
 - 1. Query image
 - 2. Stored image containing the object
- Given descriptor x_0 , find two nearest neighbors x_1 , x_2 with distances d_1 , d_2
- x_1 matches x_0 if $d_1/d_2 < 0.8$
 - This gets rid of 90% false matches, 5% of true matches in Lowe's study

Affine Object Model

 Accounts for 3D rotation of a surface under orthographic projection

Fitting an Affine Transformation

• Assume we know the correspondences, how do we get the transformation?

$$\begin{bmatrix} x_i' \\ y_i' \end{bmatrix} = \begin{bmatrix} m_1 & m_2 \\ m_3 & m_4 \end{bmatrix} \begin{bmatrix} x_i \\ y_i \end{bmatrix} + \begin{bmatrix} t_1 \\ t_2 \end{bmatrix}$$

$$\mathbf{x}_i' = \mathbf{M}\mathbf{x}_i + \mathbf{t}$$

Want to find M, t to minimize

$$\sum_{i=1}^{n} ||\mathbf{x}_{i}' - \mathbf{M}\mathbf{x}_{i} - \mathbf{t}||^{2}$$

Finding the objects (in detail)

- 1. Match interest points from input image to database image
- 2. Get location/scale/orientation using Hough voting
 - In training, each point has known position/scale/orientation wrt whole object
 - Matched points vote for the position, scale, and orientation of the entire object
 - Bins for x, y, scale, orientation
 - Wide bins (0.25 object length in position, 2x scale, 30 degrees orientation)
 - Vote for two closest bin centers in each direction (16 votes total)
- Geometric verification
 - For each bin with at least 3 keypoints
 - Iterate between least squares fit and checking for inliers and outliers
- 4. Report object if > T inliers (T is typically 3, can be computed to match some probabilistic threshold)

Examples of Recognized Objects

View Interpolation

Training

- Given images of different viewpoints
- Cluster similar viewpoints using feature matches
- Link features in adjacent views

Recognition

- Feature matches may be spread over several training viewpoints
- ⇒ Use the known links to "transfer votes" to other viewpoints

[Lowe01]

Slide credit: David Lowe

Applications

 Sony Aibo (Evolution Robotics)

- SIFT usage
 - Recognize docking station
 - Communicate with visual cards
- Other uses
 - Place recognition
 - Loop closure in SLAM

Location Recognition

[Lowe04]

Category Recognition

Goal: identify what type of object is in the image

Approach: align to known objects and choose

category with best match

"Shape matching and object recognition using low distortion correspondence", Berg et al., CVPR 2005: http://www.cnbc.cmu.edu/cns/papers/berg-cvpr05.pdf

Summary of Algorithm

- Input: query q and exemplar e
- For each: sample edge points and create "geometric blur" descriptor
- Compute match cost c to match points in q to each point in e
- Compute deformation cost H that penalizes change in orientation and scale for pairs of matched points
- Solve a binary quadratic program to get correspondence that minimizes c and H, using thin-plate spline deformation
- Record total cost for e, repeat for all exemplars, choose exemplar with

Geometric Blur

Feature Points

Correspondences

Dr. Sander Ali Khowaja

Example of Matches

Dr. Sander Ali Khowaja

Examples of Matches

Other ideas worth being aware of

Thin-plate splines: combines global affine warp with smooth local deformation

Robust non-rigid point matching: <u>A new point</u>
 <u>matching algorithm for non-rigid registration</u>, CVIU
 2003 (includes code, demo, paper)

Things to Remember

- Alignment
 - Hough transform
 - RANSAC
 - ICP

- Object instance recognition
 - Find keypoints, compute descriptors
 - Match descriptors
 - Vote for / fit affine parameters
 - Return object if # inliers > T

Dr. Sander Ali Khowaja

What have we learned

Interest points

- Find *distinct* and *repeatable* points in images
- Harris-> corners, DoG -> blobs
- SIFT -> feature descriptor

Feature tracking and optical flow

- Find motion of a keypoint/pixel over time
- Lucas-Kanade:
 - brightness consistency, small motion, spatial coherence
- Handle large motion:
 - iterative update + pyramid search

Fitting and alignment

• find the transformation parameters that best align matched points

Object instance recognition

Keypoint-based object instance recognition and search

