Before we can formulate the second lemma we have to fix some notation:

<u>Definition</u> 2.2.(a) Given $h \in C_O(X)$ such that $h(x) \neq 0$ for all $x \in X$ then the operator S_h is defined to be the multiplication operator with sign h, i.e.,

(2.3)
$$s_h f = h |h|^{-1} f \quad (f \in C_O(X))$$
.

(b) For
$$f \in C_{\Omega}(X)$$
, $n \in \mathbb{Z}$ we define $f^{[n]} \in C_{\Omega}(X)$ by

(2.4)
$$f^{[n]}(x) = \begin{cases} (f(x)/|f(x)|)^{n-1} \cdot f(x) & \text{if } f(x) \neq 0 \\ 0 & \text{if } f(x) = 0 \end{cases}$$

The following assertions are immediate consequences of the definition. They will be used frequently in the following.

- (2.5) S_h is a linear isometry satisfying $|S_hf|=|f|$, its inverse being $S_{\overline{h}}$ where \overline{h} is the complex conjugate of h.
- (2.6) $f^{[1]} = f$, $f^{[0]} = |f|$, $f^{[-1]} = \overline{f}$, $|f^{[n]}| = |f|$ for every $n \in \mathbb{Z}$.
- (2.7) If $h(x) \neq 0$ for all $x \in X$, then $h^{[n]} = S_h^n |h| = S_h^{n-1} h$.

<u>Lemma</u> 2.3. Let T and R be bounded linear operators on $C_{O}(X)$ and assume that $h \in C_{O}(X)$ has no zeros. Suppose we have

(2.8)
$$Rh = h$$
, $T|h| = |h|$ and $|Rf| \le T|f|$ for every $f \in C_O(X)$.

Then R and T are similar, more precisely, $\mathbf{T} = \mathbf{S}_h^{-1} \mathbf{R} \mathbf{S}_h$. In particular, the spectra (and point spectra resp.) of T and R coincide.

<u>Proof.</u> We first note that the assertion $|Rf| \le T|f|$ ($f \in E$) implies that T is a positive operator. Therefore T|h| = |h| implies that the principal ideal $E_h = \{f \in C_O(X) : |f| \le n|h| \text{ for some } n \in \mathbb{N}\}$ is an invariant subspace for T and for R as well. E_h is isomorphic to $C^b(X) \cong C(\beta X)$ (βX denotes the Stone-Cech compactification of X), an isomorphism is given by $f \to f|h|$. Considering the restrictions $T|E_h$ and $R|E_h$ as operators on $C(\beta X)$ and denoting them T and T respectively, we have

(2.9) $\widetilde{R}\widetilde{h} = \widetilde{h}$, $\widetilde{T}1 = 1$, $\widetilde{T} \ge 0$, $|\widetilde{R}f| \le \widetilde{T}|f|$ for all f.