$$e \le 1.6 \frac{M_{\rm p,link}}{V_{\rm p,link}}$$
 (if $R < 0.3$)
 $e \le 1.6 \frac{M_{\rm p,link}}{V_{\rm p,link}} (1.15 - 0.5R)$ (if $R \ge 0.3$)

where

$$R = \frac{N_{\rm Ed} t_{\rm w} (d - 2t_{\rm f})}{V_{\rm Ed} A}$$
 (4.17)

in which A is the gross area of the link.

- **4.5.2.7** To achieve a global dissipative behaviour of the structure, it should be checked that the individual values of the ratios Ω_i defined in **4.5.2.1** do not exceed the minimum value Ω resulting from **4.5.2.1** by more than 25% of this minimum value.
- **4.5.2.8** When equal moments develop simultaneously at both ends of the link, links may be classified according to the length e. For I sections, the categories are:

Short links:
$$e \le e_s = 1.6 \frac{M_{p,link}}{V_{p,link}}$$

Long links: $e > e_L = 3.0 \frac{M_{p,link}}{V_{p,link}}$ (4.18)
Intermediate links: $e_s < e < e_L$

4.5.2.9 – When only one plastic hinge develops at one end of the link, the value of the length *e* defines the categories of the links. For I sections the categories are:

Short links:
$$e \le e_{\rm s} = 0.8(1+\alpha) \frac{M_{\rm p,link}}{V_{\rm p,link}}$$

Long links: $e > e_{\rm L} = 1.5(1+\alpha) \frac{M_{\rm p,link}}{V_{\rm p,link}}$ (4.19)
Intermediate links: $e_{\rm s} < e < e_{\rm L}$

where α is the ratio of the smaller bending moments $M_{\rm Ed,A}$ at one end of the link in the seismic design situation, to the greater bending moments $M_{\rm Ed,B}$ at the end where the plastic hinge develops, both moments being taken as absolute values.

4.5.2.10 – The link rotation angle θ_p between the link and the element outside of the link as defined in **4.3.4.3** should be consistent with global deformations. It should not exceed the following values:

Short links:
$$\theta_p \le \theta_{pR} = 0.08 \text{ radian}$$

Long links: $\theta_p \le \theta_{pR} = 0.02 \text{ radian}$ (4.20)
Intermediate links: $\theta_p \le \theta_{pR} = \text{by interpolation}$