

İzmir Institute of Technology

Introduction to Robot Technology ME460

Project #2

Forward & Inverse Kinematic Analyses of Serial RRP Manipulator

Mert Emrem - 250203015

Mechanical Engineering

Summer 2021

Contents

1	Introduction	2					
	1.1 Workspace of the manipulator	3					
2	Position and Velocity-Level Kinematics	4					
3	Acceleration-Level Kinematics	7					
4	Trajectory & Motion Profile	8					
5	Discussion - Conclusion	11					
A	Appendix						
	A.1 Equations	13					
	A.2 Data	13					
	A.3 MATLAB Code	14					

Introduction

The manipulator architecture is identical to the one used in project #1 [1], namely, $spherical\ arm\ (RRP)$, with dimensional parameter d_1 , and joint parameters θ_1 , θ_2 , s_3 as shown in figure 1.1 below.

Figure 1.1: Kinematic diagram of the RRP manipulator [1].

Starting dimensions and constraints are as follows:

from project 1:

 $d_1 = 125 \text{ mm}, s_{3,\text{max}} = 125 \text{ mm},$

Student number: 250203015

 $v_{\text{max}} = 5 + 10 = 16 \text{ mm/s}$,

$$a_{\text{max}} = \frac{(25 + 50)}{2} = 37.5 \text{ mm/s}^2$$
, additionally, $s_{3,\text{min}} = 0$.

Reference frame is at the base point, O (also the first revolute joint, R_1), with z axis coinciding with the rotation axis of R_1 , as shown in fig. 1.1.

In the first project, forward and inverse kinematics relations of the manipulator were derived, and were applied on an x - y - z composite path. In this project, said path is to be the trajectory on which the end-effector travels.

Home position is defined by $\theta_1 = 0$, $\theta_2 = 0$, and $s_3 = 125$ mm.

This report for the project consists of velocity-level and acceleration-level analyses, in addition to the previously conducted position-level analysis in part 1.

1.1 Workspace of the manipulator

Figure 1.2: Geogebra [2] render of manipulator workspace

As shown in fig. 1.2 above, the workspace of the manipulator, under no angular constraints, is one that is perfectly spherical, with a line of singularity passing through the z axis, which is explained in the later sections.

Position and Velocity-Level Kinematics

Forward kinematics equations developed for the manipulator are:

$$P_x = s_3 \cos \theta_2 \cos \theta_1 \tag{2.1}$$

$$P_{\nu} = s_3 \cos \theta_2 \sin \theta_1 \tag{2.2}$$

$$P_z = d_1 + s_3 \sin \theta_2 \tag{2.3}$$

...Tip point *P* being a function of θ_1 , θ_2 , and s_3 . The relation of task space velocities to joint space velocities is as follows:

$$\bar{v} = \mathbf{J}_e \dot{\bar{q}} \tag{2.4}$$

$$\bar{v} = \begin{bmatrix} v_x \\ v_y \\ v_z \end{bmatrix} \qquad (2.5) \qquad \dot{\bar{q}} = \begin{bmatrix} \dot{\theta_2} \\ \dot{\theta_2} \\ \dot{s_3} \end{bmatrix} \qquad (2.6)$$

Where \bar{v} is the vector of absolute velocities, and $\dot{\bar{q}}$ is the vector of joint space velocities.

The Jacobian matrix J_e of the manipulator is obtained as follows:

$$\mathbf{J}_{e} = \begin{bmatrix} \frac{\partial P_{x}}{\partial \theta_{1}} & \frac{\partial P_{x}}{\partial \theta_{2}} & \frac{\partial P_{x}}{\partial s_{3}} \\ \frac{\partial P_{y}}{\partial \theta_{1}} & \frac{\partial P_{y}}{\partial \theta_{2}} & \frac{\partial P_{y}}{\partial s_{3}} \\ \frac{\partial P_{z}}{\partial \theta_{1}} & \frac{\partial P_{z}}{\partial \theta_{2}} & \frac{\partial P_{z}}{\partial s_{3}} \end{bmatrix}_{3 \times 3}$$

$$\mathbf{J}_{e} = \begin{bmatrix} -s_{3}\cos\theta_{2}\sin\theta_{1} & -s_{3}\sin\theta_{2}\cos\theta_{1} & \cos\theta_{2}\cos\theta_{1} \\ s_{3}\cos\theta_{2}\cos\theta_{1} & -s_{3}\sin\theta_{2}\sin\theta_{1} & \cos\theta_{2}\sin\theta_{1} \\ 0 & s_{3}\cos\theta_{2} & \sin\theta_{2} \end{bmatrix}_{3\times3}$$

Subscript e relates to the end-effector. Velocity-level singularities occur when the determinant of $J_e = 0$, the full expression (see appendix A.1) is unwieldy, and is therefore left to MATLAB to simplify. The simplified determinant is

$$\det(\mathbf{J}_e) = s_3^2 \cos \theta_2 = 0 \tag{2.7}$$

Above equation is only satisfied when $s_3=0$, which is not possible in practice, and when $\theta_2=-\frac{\pi}{2},\,\frac{\pi}{2}$, which are the fully extended and folded states, wherein θ_1 is indeterminate, as shown in fig 2.1, which represents $\theta_2=\frac{\pi}{2}$. It can be observed that side-to-side (parallel to the rotation axis of R_2) movement is restricted in said configurations. This position leads to singularity regardless of the s_3 value.

Figure 2.1: Geogebra [2] render of manipulator at home position with the destination point.

Inverse kinematics equations developed for the manipulator are:

$$\theta_1 = \arctan 2(P_x, P_y) \tag{2.8}$$

$$\theta_2 = \arctan 2(r, l)$$
 (2.9)

$$s_3 = |(\sigma)\sqrt{r^2 + l^2}| \tag{2.10}$$

where $l = z - d_1$ and $r = |(\sigma)\sqrt{x^2 + y^2}|$, and σ represents sign ambiguity arising from taking the square root of the equation. Values s_3 and r are absolute lengths, and therefore the negative values can be discarded. From 2.10, s_3 has a double solution for -l and +l,

From eqs. 2.8 and 2.9, a double solution is apparent, which is for any P, $P(\theta_1, \theta_2, s_3) = P((\theta_1 + \pi), (\pi - \theta_2), s_3)$. A position-level singularity can be inferred from the relation for θ_2 , with r = 0, for which singularity requires that x = 0, y = 0. It is worth noting that the double solution for θ_1 entails a change of θ_2 also.

Going in the opposite direction from 3.1, to obtain joint space velocities from task space velocities, inverse of Jacobian J_e is computed:

$$\dot{\overline{q}} = \mathbf{J}_{\rho}^{-1} \overline{v} \tag{2.11}$$

$$\mathbf{J}_{e}^{-1} = \begin{bmatrix} -\sin(\theta_{1})/(s_{3}\cos(\theta_{2})) & \cos(\theta_{1})/(s_{3}\cos(\theta_{2})) & 0 \\ -(\cos(\theta_{1})\sin(\theta_{2}))/s_{3} & -(\sin(\theta_{1})\sin(\theta_{2}))/s_{3} & \cos(\theta_{2})/s_{3} \\ \cos(\theta_{1})\cos(\theta_{2}) & \cos(\theta_{2})\sin(\theta_{1}) & \sin(\theta_{2}) \end{bmatrix}_{3\times3}$$

Equation 2.11 is applied for every timestep of the trajectory, and the values are arranged into an array (see appendix A.2).

Acceleration-Level Kinematics

Adding on to the previous section, one can further differentiate the task-space parameters, $\bar{\nu}$ into $\dot{\bar{\nu}}$, as follows

$$\bar{v} = \mathbf{J}_e \dot{\bar{q}} \tag{3.1}$$

$$\dot{\bar{v}} = \bar{a} = \mathbf{J}_e \ddot{\bar{q}} + \dot{\mathbf{J}}_e \bar{q} \tag{3.2}$$

And from eq 2.11, we know that

$$\dot{\overline{q}} = \mathbf{J}_e^{-1} \overline{v} \tag{3.3}$$

therefore multiplying both sides of 3.2, we obtain

$$\ddot{\overline{q}} = \mathbf{J}_e^{-1} \left(\overline{a} - \dot{\mathbf{J}}_e \dot{\overline{q}} \right) \tag{3.4}$$

The derivative of the Jacobian, with simplification steps omitted is shown below, with c and s representing cosine and sine respectively.

$$\dot{\mathbf{j}}_e = \begin{bmatrix} s_3 s(\theta_1) s(\theta_2) - s_3 c(\theta_1) c(\theta_2) - c(\theta_2) s(\theta_1) & s_3 s(\theta_1) s(\theta_2) - s_3 c(\theta_1) c(\theta_2) - c(\theta_1) s(\theta_2) & -s(\theta_1 + \theta_2) \\ c(\theta_1) c(\theta_2) - s_3 c(\theta_1) s(\theta_2) - s_3 c(\theta_2) s(\theta_1) & -s(\theta_1) s(\theta_2) - s_3 c(\theta_1) s(\theta_2) - s_3 c(\theta_2) s(\theta_1) & c(\theta_1 + \theta_2) \\ 0 & (\theta_2) - s_3 s(\theta_2) & c(\theta_2) \end{bmatrix}_{3 \times 3}$$

Equation 3.4 is applied for every timestep of the trajectory, and the values are arranged into an array (see appendix).

Trajectory & Motion Profile

From project 1, path length is determined to be 31.25 mm.

The path direction is arbitrarily chosen to be orthogonal to the axis y = -x, as shown in fig 4.3 below. Destination point and path are mathematically defined in Geogebra.

Figure 4.1: Geogebra render of manipulator at home position with the destination point (x axis in green, y axis in red).

The trajectory is sampled at a rate of 10 Hz (per 0.1 seconds) from t = 0 and t = T. Total travel time T is calculated from the minimum time it takes for the tip point to travel from point P_0 to P_1 .

Where P is the displacement vector, T is the total time of travel, subscripts 0 and 1 denote initial and final.

Acceleration during trapezoidal motion profile is as follows:

$$\begin{cases} a & 0 \le t \le t_1 \\ 0 & t_1 < t \le t_2 \\ -a & t_2 < t \le T \end{cases}$$

Velocity and subsequently displacement can be derived from the above piecewise function via integration or equations of motion.

Figure 4.2: Graph of acceleration (mm/s^2) , velocity (mm/s) and displacement (mm) versus time (s).

The graph above shows the trapezoidal motion profile, with points of infinite jerk at t_1 and t_2 .

Figure 4.3: Graph of θ_1 (°), θ_2 (°) and s_3 (mm) versus time (s).

Figure 4.4: MATLAB output graphs of \bar{q} , $\dot{\bar{q}}$ versus time (s).

Discussion - Conclusion

Adding to the position-level analyses of project 1, this project included the calculations for velocity-level and acceleration-level analyses, in both forward and inverse kinematics. In addition, the workspace is shown, though it would have been preferable to show it in terms of a grid of points of the end-effector for a more rigorous picture, which is overkill for this specific type of arm.

Trapezoidal motion profile is employed to plan the trajectory of the end-effector, therefore the givens are the task-space variables from which joint-space variables are derived.

References

- [1] EMREM, Mert. Forward & Inverse Kinematic Analyses of Serial RRP Manipulator. Project Report, 2021. In: İzmir Institute of Technology
- [2] HOHENWARTER, Markus, Michael BORCHERDS, Gabor ANCSIN, Balazs BENCZE and Mathieu BLOSSIER. GeoGebra Classic. computer software. 2021
- [3] BIAGIOTTI, Luigi and Claudio MELCHIORRI. Trajectory planning for automatic machines and robots. Berlin: Springer, 2010.

Appendix

A.1 Equations

 \rightarrow Unsimplified determinant of Jacobian \mathbf{J}_e

$$\det(\mathbf{J}_e) = s_3^2 \cos(\theta_1)^2 \cos(\theta_2)^3 + s_3^2 \cos(\theta_1)^2 \cos(\theta_2) \sin(\theta_2)^2 + s_3^2 \cos(\theta_2)^3 \sin(\theta_1)^2 + s_3^2 \cos(\theta_2) \sin(\theta_1)^2 \sin(\theta_2)^2$$

A.2 Data

θ_1 (rad)	θ_2 (rad)	<i>s</i> ₃ (mm)	$\dot{\theta_1}$ (rad/s)	$\dot{\theta_2}$ (rad/s)	\vec{s}_3 (mm/s)	$\ddot{\theta_1}$ (rad/s ²)	$\ddot{\theta_2}$ (rad/s ²)	\ddot{s}_3 (mm/s ²)
0.000	0.000	125.000	0.000	0.000	0.000	-0.122	-0.245	-15.306
-0.001	-0.001	124.924	-0.012	-0.025	-1.526	-0.141	-0.264	-17.583
-0.002	-0.005	124.696	-0.025	-0.049	-3.024	-0.196	-0.320	-24.182
-0.006	-0.011	124.321	-0.037	-0.074	-4.464	-0.285	-0.409	-34.424
-0.010	-0.020	123.806	-0.050	-0.100	-5.818	-0.400	-0.527	-47.219
-0.011	-0.023	123.646	-0.053	-0.107	-6.161	-0.434	-0.562	-50.887
-0.015	-0.030	123.199	-0.054	-0.108	-6.031	-0.298	-0.302	-34.488
-0.021	-0.041	122.604	-0.054	-0.109	-5.851	-0.283	-0.289	-31.893
-0.026	-0.052	122.028	-0.055	-0.110	-5.669	-0.269	-0.275	-29.393
-0.032	-0.063	121.471	-0.056	-0.111	-5.484	-0.254	-0.261	-26.989
-0.037	-0.074	120.931	-0.056	-0.112	-5.297	-0.240	-0.246	-24.685
-0.043	-0.085	120.411	-0.057	-0.113	-5.107	-0.225	-0.232	-22.484
-0.049	-0.097	119.910	-0.057	-0.113	-4.915	-0.211	-0.218	-20.386
-0.054	-0.108	119.428	-0.058	-0.114	-4.721	-0.196	-0.203	-18.394
-0.060	-0.120	118.965	-0.059	-0.115	-4.524	-0.182	-0.189	-16.510
-0.066	-0.131	118.523	-0.059	-0.116	-4.325	-0.168	-0.175	-14.734
-0.072	-0.143	118.100	-0.060	-0.117	-4.124	-0.154	-0.160	-13.068
-0.078	-0.155	117.698	-0.060	-0.117	-3.920	-0.141	-0.146	-11.511
-0.084	-0.166	117.316	-0.061	-0.118	-3.715	-0.128	-0.133	-10.064
-0.090	-0.178	116.955	-0.062	-0.119	-3.508	-0.115	-0.120	-8.726
-0.096	-0.190	116.615	-0.062	-0.120	-3.298	-0.103	-0.107	-7.496
-0.100	-0.196	116.442	-0.063	-0.120	-3.186	-0.097	-0.100	-6.886
-0.102	-0.201	116.332	-0.048	-0.092	-2.383	0.093	0.225	3.473
-0.107	-0.211	116.070	-0.042	-0.079	-1.920	0.113	0.246	4.445
-0.111	-0.218	115.916	-0.027	-0.051	-1.186	0.136	0.269	5.686
-0.113	-0.221	115.831	-0.012	-0.023	-0.514	0.147	0.281	6.272
-0.113	-0.222	115.811	0.000	0.000	0.000	0.150	0.283	6.404

A.3 MATLAB Code

```
Mert Emrem - 250203015
                                                                                                                               CE301 - Assignment #3
 5 clc; clear all
 7 syms f(theta1,theta2,s3) d1
 J(\text{theta1}, \text{theta2}, \text{s3}) = \text{jacobian}([\text{s3}*\cos(\text{theta2})*\cos(\text{theta1}), \text{s3}*\cos(\text{s3}))
            theta2)*sin(theta1), ...
              d1 + s3*sin(theta2)], [theta1, theta2, s3])
12 DJ(theta1,theta2,s3) = simplify(diff(J,theta1) + diff(J,theta2) + diff(
            J,s3))
Jdet(theta1,theta2,s3) = simplify(det(J))
16 Jinv(theta1,theta2,s3) = simplify(inv(J))
18 h = 31.25; amax = 37.5; vmax = 16; t_1 = vmax/amax; sampling = 0.1;
h_1 = (amax*t_1^2)/2;
t_{1} = (31.25 - h_{1}*2)/16 + 2*t_{1};
21 t_2 = t_full - t_1;
t_1 = t_1 = t_2 = t_1 = t_2 = t_1 = t_2 = t_2 = t_2 = t_1 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 = t_2 
24 time = xlsread('250203015_Project2.xlsx','AC5:AC31');
25 a_p = xlsread('250203015_Project2.xlsx','AD5:AD31');
v_p = xlsread('250203015_Project2.xlsx','AE5:AE31');
27 theta_1 = xlsread('250203015_Project2.xlsx','AL5:AL31');
28 theta_2 = xlsread('250203015_Project2.xlsx','AM5:AM31');
29 s_3 = xlsread('250203015_Project2.xlsx','AP5:AP31');
graph q = [theta_1 theta_2 s_3]';
x_{coeff} = 0.5/1.225; y_{coeff} = 0.5/1.225; z_{coeff} = 1/1.225;
v_px = x_coeff*v_p; v_py = y_coeff*v_p; v_pz = z_coeff*v_p;
a_px = x_coeff*a_p; a_py = y_coeff*a_p; a_pz = z_coeff*a_p;
v_{mat} = [-v_{px} - v_{py} - v_{pz}]';
38 a_mat = [-a_px -a_py -a_pz]';
40 q_dot = [];
42 for i = 1:length(v_mat)
```

```
Jinp = Jinv(q(1,i),q(2,i),q(3,i));
                      conc = double(Jinp * v_mat(1:3,i));
                       q_dot = [q_dot conc];
48 end
51 q_ddot = [];
for i = 1:length(v_mat)
                      Jinp = Jinv(q(1,i),q(2,i),q(3,i));
                      conc = double(Jinp * (a_mat(1:3,i)-Jdet(q_dot(1,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_dot(2,i),q_
                    (3,i)));
                      q_ddot = [q_ddot conc]
59 end
64 subplot (2,1,1);
65 plot(time, q_dot(1, 1:27))
67 hold on
69 plot(time, q_dot(2, 1:27))
70 yyaxis right
71 plot(time, q_dot(3, 1:27))
73 xlabel('time (s)', 'interpreter', 'latex')
76 leg1 = legend('$\dot{\theta}_1$','$\dot{\theta}_2$','$\dot{s}_3$');
set(leg1, 'Interpreter', 'latex');
78 set(leg1, 'FontSize', 17);
80 hold off
82 subplot(2,1,2);
plot(time, q_ddot(1, 1:27))
84 hold on
plot(time, q_ddot(2, 1:27))
86 yyaxis right
plot(time, q_ddot(3, 1:27))
89
```

```
1 leg1 = legend('$\ddot{\theta}_1$','$\ddot{\theta}_2$','$\ddot{s}_3$');
1 set(leg1,'Interpreter','latex');
2 set(leg1,'FontSize',17);
3 hold off
```