Homework 02

Exercise 1

Use the following lemma to generate 500 samples from a Binomial(30, 0.5) distribution in pyro. Plot the resulting distribution using sns.distplot function.

Lemma Let X_1,\ldots,X_n be independent Bernoulli(p) random variables, then $X=X_1+\ldots+X_n$ is a random variable with Binomial(n, p) distribution.

Exercise 2

1. (**theory**) Consider the Gamma distribution $\frac{1}{1}$ Gamma (α,β) with p.d.f. $\frac{\beta^{\alpha}}{\Gamma(\alpha)}x^{\alpha-1}e^{-\beta x}$

$$\frac{\hat{\beta}^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\beta x}$$

and the Poisson distribution $Poisson(\lambda)$ with p.m.f.

$$\frac{\lambda^k e^{-\lambda}}{k!}.$$

Given the generative model

$$\lambda \sim \text{Gamma}(\alpha, \beta)$$

 $x \sim \text{Poisson}(\lambda)$

prove that the Gamma distribution is a conjugate prior² for the Poisson likelihood.

- 2. (**code**) Set the parameters of the Gamma distribution to $\alpha = 1$ and $\beta = 2$. Write the pyro code to sample λ and x, extract 300samples from the distributions of both random variables and plot their histograms.
- 3. (**code**) Suppose you observe some data x = [3, 10, 2, 5, 6, 7]. Plot 300 samples from the posterior distribution of λ as the number of observed data points from x increases:

$$x = [3, 10]$$

 $x = [3, 10, 2, 5]$
 $x = [3, 10, 2, 5, 6, 7].$

¹Section "Probability distributions" in notebook 01.

²Section "Conjugate priors" in notebook 02.