População e Amostra

- População (ou universo): todos os N membros de uma classe ou grupo.
 - Ex.: todos os processos executados numa máquina durante o período que esteve ativa.

- Amostra é uma parte da população, denotada por n.
 - Ex.: todos processos executados pela máquina em 18/03/2005

A interpretação da frequência e a distribuição da amostra

- Quando se faz inferências estatísticas do ponto de vista da frequência, nós assumimos que nossos dados são amostras de uma população inteira.
- A população é descrita pela média e variância da população que são desconhecidas.
- A amostra é descrita pela média e variância da amostra.
 - A média e variância da amostra proveêm estimativas sobre a média e variância da população inteira.
 - As estimativas são conhecidas com um grau de incerteza.

Variável Aleatória

- Variável que assume valores de acordo com uma certa probabilidade.
- Variável usualmente denotada por letras maiúsculas, e valores particulares por letra minúscula.
- Exemplos:
 - Atraso numa rede
 - Tempo de execução de uma transação de consulta

Função de Distribuição Cumulativa (CDF cumulative ndistribution function)

 Mapeia um valor para uma probabilidade cujo resultado é menor ou igual a a:

$$F_{x}(a) = P(x \le a)$$

- Válida para variaveis contínuas e discretas
- Monotonicamente crescente
- Fácil de especificar, calcular, medir...

Exemplos

Jogada de uma moeda (T = 1, H = 2):

Tempo entre chegadas de pacotes Exponencial:

Função de Densidade de Probabilidade (pdf)

Derivada da CDF (contínua):

$$f(x) = \frac{dF(x)}{dx}$$

 Útil para determinar intervalos de probabilidades :

$$P(x_1 < x \le x_2) = F(x_2) - F(x_1)$$
$$= \int_{x_1}^{x_2} f(x) dx$$

Exemplos de pdf

Tempo entrechegadas exponential:

Distribuição Normal (Gauss):

CDF's and PDF's

$$\mathbf{P}(X \in I) = \int_{a}^{b} f(y)dy = F(b) - F(a)$$

Função de Massa de Probabilidade (pmf)

- CDF não são diferenciáveis para variáveis aleatórias discretas
- pmf serve com substituto: $f(x_i) = p_i$ onde p_i é a probabilidade que x irá assumir o valor x_i

$$P(x_1 \le x \le x_2) = F(x_2) - F(x_1)$$

$$= \sum_{x_1 < x_i \le x_2} p_i$$

Exemplos de pmf

• Jogada de moeda: 1 0.5

Tamanho típico de uma turma de Pós:

Expectância, Média ou Esperança Matemática

Média

$$\mu = E(x) = \sum_{i=1}^{n} p_i x_i = \int_{-\infty}^{\infty} x f(x) dx$$

- Somatório se discreto
- Integral se contínuo

Variância & Desvio Padrão

• Var(x) =
$$E[(x - \mu)^2] = \sum_{i=1}^n p_i (x_i - \mu)^2$$

= $\int_{-\infty}^{+\infty} (x_i - \mu)^2 f(x) dx$

- Usualmente denotada por σ^2
- Raíz quadrada σ é chamado de $\emph{desvio padrão}$

Coeficiente de Variação (C.V.)

Quociente do desvio padrão pela média:

$$C.V. = \frac{\sigma}{\mu}$$

 Indica quão bem a média representa a variável

Covariância

• Dados x, y com médias μ_x e μ_y , sua covariância é:

Cov
$$(x, y) = \sigma_{xy}^2 = E[(x - \mu_x)(y - \mu_y)]$$

= $E(xy) - E(x)E(y)$

 Alta covariância implica que y afasta da média sempre que x também o faz.

Covariância

Para variáveis independentes,

$$E(xy) = E(x)E(y)$$

então $Cov(x,y) = 0$

- Reverso não é verdade: Cov(x,y) = 0 não implica em independência.
- Se y = x, covariância reduz-se à variância

Coeficiente de Correlação

Covariância normalizada:

Correlação
$$(x, y) = \rho_{xy} = \frac{\sigma_{xy}^2}{\sigma_x \sigma_y}$$

- Sempre varia entre -1 e 1
- Sempre varia entre -1 e 1
 Correlação de 1 ⇒ x ~ y, -1 ⇒ x ~ 1

Média e Variância de Somas

Para qq variável aleatória,

$$E(a_1x_1 + a_2x_2 + \dots + a_kx_k)$$

$$= a_1E(x_1) + a_2E(x_2) + \dots + a_kE(x_k)$$

Para variáveis independentes,

$$Var(a_1x_1 + a_2x_2 + \dots + a_kx_k)$$

$$= a_1^2 Var(x_1) + a_2^2 Var(x_2) + \dots + a_k^2 Var(x_k)$$

Quantil

• Valor de x no qual a CDF assume um valor α é chamado a-quantil or 100α -percentil, denoted by x_{α} .

$$P(x \le x_{\alpha}) = F(x_{\alpha}) = \alpha$$

 Se 90-esimo percentil score no GRE foi 1500, então 90% da população obteve 1500 ou menos.

Mediana

- 50-percentil (0.5-quantil) de uma variável aleatória
- Alternativa a média
- Por definição, 50% da população é submediana, 50% super-mediana
 - Muitos queries rápidos (lentos)
 - Muitas pessoas ricas (pobres)?

Moda

- Valor mais provável, i.e., x_i com a maior probabilidade p_i, or x no qual pdf/pmf é maximo
- Não necessariamente definido (empate)
- Algumas distribuições são bi-modais (ex: altura dos humanos tem uma moda para homens e uma moda para mulheres.)

Exemplos de Moda

• Dois dados:

Distribuição Normal (Gaussiana)

- Distribuição mais comum na análise de dados
- pdf is:

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{\frac{-(x-\mu)^2}{2\sigma^2}}$$

- $-\infty \le X \le +\infty$
- Média é μ , desvio padrão σ

Notação para Distribuições Gaussianas

- Geralmente denotada $N(\mu, \sigma)$
- Normal unitária é N(0,1)
- Se x tem $N(\mu, \sigma)$, $\frac{x \mu}{\sigma}$ tem N(0, 1)
- O α-quantil de uma normal unitária z ~ N(0,1) é denotado por z_α tal que

$$\left\{ P(\frac{x - \mu}{\sigma} \le z_{\alpha}) \right\} = \left\{ P(x \le \mu + z_{\alpha}\sigma) \right\} = \alpha$$

Por que uma Distribuição de Gauss é tão Popular?

- Se $x_i \sim N(\mu_i, \sigma_i)$ e todos x_i independentes, então $\Sigma \alpha_i x_i$ é normal com média $\Sigma \alpha_i \mu_i$ e variância $\sigma^2 = \Sigma \alpha_i^2 \sigma_i^2$
- A soma/media de um número grande de observações independentes de qualquer distribuição é uma distribuição normal (Teorema Central do Limite)
 - ⇒Erros experimentais, tipicamente a soma de varios componentes, podem ser modelados como uma distribuição normal.

• Sum of 2 coin flips (H=1, T=0):

Sum of 8 coin flips:

 Se A e uma amostra de tamanho n de uma população, com distribuição arbitraria, mas media μ e desvio padrão σ:

A distribuicao da media amostral e aproximadamente Normal com media μ e desvio padrao σ/Γ

Duas distribuicoes arbitrarias

Distribuicao da media de uma amostra de 2 elementos

Distribuicao da media de uma amostra de 5 elementos

Distribuicao da media de uma amostra de 10 elementos

Medias populacionais sao 5 e 3

Measured Data

But, we don't know F(x) – all we have is a bunch of observed values – a sample.

What is a sample?

- Example: How tall is a human?
 - Could measure every person in the world (actually even that's a sample)
 - Or could measure every person in this room
- Population has parameters: fixed, typically unknown
- Sample has statistics
 - Drawn from population
 - Inherently erroneous

Central Tendency

- Sample mean $-\bar{x}$ (arithmetic mean)
 - Take sum of all observations and divide by the number of observations
- Sample median
 - Sort the observations in increasing order and take the observation in the middle of the series
- Sample mode
 - Plot a histogram of the observations and choose the midpoint of the bucket where the histogram peaks

Indices of Dispersion

- Measures of how much a data set varies
 - Range
 - Sample variance

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}$$

- And derived from sample variance:
 - Square root -- standard deviation, s
 - Ratio of sample mean and standard deviation CV s/\bar{x}
- Percentiles
 - Specification of how observations fall into buckets

Interquartile Range

- Yet another measure of dispersion
- The difference between Q3 and Q1
- Semi-interquartile range -

$$SIQR = \frac{Q_3 - Q_1}{2}$$

 Often interesting measure of what's going on in the middle of the range

Determining a Distribution for a Data Set

- If a data set has a common distribution, that's the best way to summarize it
 - Saying a data set is uniformly distributed is more informative than just giving its sample mean and standard deviation
- So how do you determine if your data set fits a distribution?
 - Plot a histogram
 - Quantile-quantile plot
 - Statistical methods

Quantile-Quantile Plots

- Most suitable for small data sets
- Basically -- guess a distribution
- Plot where quantiles of data should fall in that distribution
 - Against where they actually fall in the sample
- If plot is close to linear, data closely matches that distribution

Obtaining Theoretical Quantiles

- We need to determine where the quantiles should fall for a particular distribution
- Requires inverting the CDF for that distribution

$$q_i = F(x_i) x_i = F^{-1}(q_i)$$

- Then determining quantiles for observed points
- Then plugging in quantiles to inverted CDF

Inverting a Distribution

- Many common distributions have already been inverted (how convenient...)
- For others that are hard to invert, tables and approximations are often available (nearly as convenient)

Is Our Example Data Set Normally Distributed?

- Our example data set was
- -17, -10, -4.8, 2, 5.4, 27, 84.3, 92, 445, 2056
- Does this match the normal distribution?
- The normal distribution doesn't invert nicely
 - But there is an approximation for N(0,1):

$$x_i = 4.91 q_i^{0.14} - (1 - q_i)^{0.14}$$

- Or invert numerically

Data For Example Normal Quantile-Quantile Plot

i	$q_{i} = 10$	00(i-0.5)/n	Уi	Xi
1	0.05	<u> </u>	-17	-1.64684
2	0.15		-10	-1.03481
3	0.25	0 1 -	-4.8	-0.67234
4	0.35	Sample	2	-0.38375
5	0.45	quantile	5.4	-0.1251
6	0.55	quartino	27	0.1251
7	0.65		84.3	0.383753
8	0.75		92	0.672345
9	0.85		445	1.034812
10	0.95		2056	1.646839

Example Normal Quantile-Quantile Plot

Is Our Example Data Set Normally Distributed?

 As diferenças entre os valores medidos de um sistema e os preditos por um modelo (erros) foram quantificadas para 8 predições.

Os valores encontrados foram:

-0.04, -0.19, 0.14, -0.09, -0.14, 0.19, 0.04, 0.09

Estes erros são normalmente distribuídos?

Is Our Example Data Set Normally Distributed?

i	$q_i = \frac{i-0.5}{n}$	y_i	x_i
1	0.0625	-0.19	-1.535
2	0.1875	-0.14	-0.885
3	0.3125	-0.09	-0.487
4	0.4375	-0.04	-0.157
5	0.5625	0.04	0.157
6	0.6875	0.09	0.487
7	0.8125	0.14	0.885
8	0.9375	0.19	1.535

