UNSW School of Mathematics and Statistics

MATH5825 Measure, Integration and Probability

Semester 2/2014

Homework Week 3

- 1. In much the same way as done in class, Lebesgue measure can be defined in \mathbb{R}^d , for d > 1; see the remark at the end of Lecture notes, week 2. Show that every straight line has measure zero.
- 2. Let (X, \mathcal{F}, μ) be a finite measure space. Assume that $\mathcal{F} = \sigma(\mathcal{A})$ for a certain algebra \mathcal{A} of subsets of X.
 - (a) Recall the symmetric set difference $A\Delta B = (A \setminus B) \cup (B \setminus A)$. Verify that $A^{\complement}\Delta B^{\complement} = A\Delta B$ and $A\Delta C \subset (A\Delta B) \cup (B\Delta C)$.
 - (b) Define

$$\mathcal{G} := \{ B \in \mathcal{F} : \forall \varepsilon > 0 \,\exists B_{\varepsilon} \in \mathcal{A} \text{ such that } \mu(B_{\varepsilon} \Delta B) < \varepsilon \}$$

Show that $B \in \mathcal{G} \Leftrightarrow B^{\complement} \in \mathcal{G}$

- (c) Let $A_1 \subset A_2 \subset \ldots$ be an increasing sequence of sets in \mathcal{G} . Show that $\forall \varepsilon > 0$, there is an $N \in \mathbb{N}$ such that $\mu(A\Delta A_N) < \varepsilon$.
- (d) Show that $A = \bigcup_n A_n \in \mathcal{G}$.
- (e) Deduce that $G = \mathcal{F}$ using the monotone class theorem.

Hence any set B from a σ -algebra \mathcal{F} can be "approximated" by a member B_{ε} of an algebra \mathcal{A} which generates \mathcal{F} .

- 3. Let (X, \mathcal{A}, μ) be a measure space, and let \mathcal{A}_{μ} and $\bar{\mu}$ be defined as in lecture. Prove that
 - (a) \mathcal{A}_{μ} is a σ -algebra on X
 - (b) $\bar{\mu}$ is a measure on (X, A_{μ})
 - (c) The restriction of $\bar{\mu}$ from A_{μ} to A is μ .
 - (d) The measure space $(X, A_{\mu}, \bar{\mu})$ is complete.

(Compare Proposition 1.30.)