(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 6 December 2001 (06.12.2001)

PCT

(10) International Publication Number WO 01/92003 A1

AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ. EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN. IS, JP, KE, KG, KP, KR, KZ, LC, LK.

LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL,

TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.

(51) International Patent Classification⁷: 5/22, 27/02, 31/08, D04H 1/46

(30) Priority Data:

B32B 5/16, (81) Designated States (national): AE, AG, AL, AM, AT, AU,

(21) International Application Number: PCT/US01/14630

(22) International Filing Date: 4 May 2001 (04.05.2001)

(25) Filing Language: English

(26) Publication Language: English

09/587,419 1 June 2000 (01.06.2000) US

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

(71) Applicant: POLYMER GROUP, INC. [US/US]; 4838 Published:

Jenkins Avenue, North Charleston, SC 29406 (US). with i

with international search report

(72) Inventors: PUTNAM, Michael, J.; 7105 Niblick Court, Fuquay-Varina, NC 27526 (US). GILBERT, Cindy, K.; 200 South Dawson Street, Raleigh, NC 27601 (US).

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(74) Agent: GEIMER, Stephen, D.; Rockey, Milnamow & Katz, Ltd., Two Prudential Plaza, Suite 4700, 180 North Stetson Avenue, Chicago, IL 60601 (US).

(54) Title: PROCESS TO PRODUCE IMAGED SCRIM COMPOSITE NONWOVEN AND PRODUCT THEREOF

(57) Abstract: A nonwoven composite fabric having first and second fibrous layers reinforced by an intermediate scrim layer (16). The first fibrous layer (12) may be an entangled fabric formed of staple length fibers or continuous filaments, and the second fibrous layer (20) may be thermally point-bonded fabric formed of staple length fibers or continuous filaments. The second fibrous layer bonds the scrim to the first fibrous layer and will mask the scrim in the finished product. The composite fabric is produced by placing the scrim in face-to-face juxtaposition with the first and second fibrous layers, and subjecting the resulting composite to the forces of high pressure fluid jets (26) to break the bonds in the second fibrous layer and to cause the fibers or filaments of that fibrous layer to pass through the openings in the scrim and become entangled with the fibers or filaments of the first fibrous layer.

O 01/92003 $^{\,}\!\!\!\!/$

PROCESS TO PRODUCE IMAGED SCRIM COMPOSITE NONWOVEN AND PRODUCT THEREOF

Background Of The Invention

It has long been desired to produce nonwoven fabrics that combine the low cost of nonwoven manufacturing process with the durability of traditional knit and woven textiles to multiple uses and repeated launderings. However, to date, expedients that have been proposed for increasing the durability of nonwoven fabrics have achieved only partial success in terms of performance enhancements. Further, such approaches have been costly and have resulted in detrimental effects on tactile and drape properties, to render the modified fabrics no longer suitable for their intended end use.

The use of open mesh nets, or scrims, has been proposed in the past for altering certain physical characteristics of nonwoven fabrics, such as tensile strength and durability. Scrims are produced by numerous methods including weaving, extrusion casting, cross-laying threads or filaments and bonding at their intersections. U.S. Patent Nos. 4,775,579; 5,334,446; 5,393,599; 5,431,991; and 5,874,159 all disclose nonwoven fabrics having an open mesh net member incorporated therein. A scrim layer is typically bonded between fibrous layers to form a nonwoven product to suit a particular application. Scrim layers have been proposed as a stiffener, for strengthening reinforcement, to make non-elastic or highly elastic products; and for a variety of other purposes.

Many different expedients have been proposed for bonding a scrim layer into a multi-layer nonwoven product. Thermal bonding, adhesive bonding, stitch bonding, and high-pressure water jet entanglement are typical methods for constructing scrim reinforces laminates. None of these expedients has been completely successful. Adhesive bonding involves specialized equipment, adds a processing step, and adhesive itself is expensive. Thermal bonding results in stiffening of the fabric due to the stiffness of the bond points themselves, which results in an undesirable tactile quality in many durable good end uses. Stitch

25

5

10

15

bonding, while aesthetically pleasing, is slow by comparison to most other nonwoven bonding methods and includes the cost of expensive yarns, thereby negating the economic benefits of the original nonwoven substrate. Bonding by high-pressure water jets typically requires the use of layers of unbonded staple fibers to conceal the scrim as an interior layer in the fabric. Hydroentangled staple layers tend to lack the type of durability and pill resistance required for highly durable, multi-use fabrics without the inclusion of expensive finishes, which also add cost and have negative effects on hand and drape.

Thus, there remains an unfilled need for the production of a highly durable nonwoven product with the high strength performance that can be reliably and economically manufactured.

Summary Of The Invention

The present invention comprises a composite nonwoven fabric based on a multi-layered construction utilizing a scrim as an interior strength bearing member with nonwoven fabrics as the outer layers of a fabric that may be first consolidated by the use of high pressure water jets and then imaged using water jets and a three dimensional forming surface.

In accordance with one aspect of the present invention the scrim layer is positioned between a thermally point-bonded nonwoven substrate fabric formed of polymeric staple length fibers or essentially continuous filaments, and a secondary substrate fabrics of entangled polymeric staple length fibers or essentially continuous filaments. This precursor composite is then directed to an imaging device which is subjected to the action of high pressure water jets to consolidate the layers of the precursor composite to one another and to impart an image therein corresponding to the image of the imaging device. U.S. Patent Nos. 5,882,883 and 5,827,597 disclose processes and equipment that are suitable for use in forming imaged laminated nonwoven fabrics of the present invention, and such patents are hereby incorporated herein in their entireties by this reference.

5

10

15

20

The reliance upon a thermally point bonded nonwoven substrate as one of the layers of the composite contributes to the abrasion resistance and overall durability of the composite fabric. The inclusion of an entangled fabric of predominantly staple length fibers provides added bulk, coverage, and imparts a good hand to the composite fabric. The resulting composite construction offers excellent strength, uniformity, opacity, durability and aesthetic properties in a nonwoven fabric.

In accordance with another aspect of the present invention, prior to imaging, the entangled nonwoven substrate layer is comprised of staple length fibers or continuous filaments that are held together by knotting or mechanical friction as a result of needling or water jet entangling. Such fabrics are produced, for example, by cross-lapping a carded fibrous layer of randomized 0.8 to 3.5 denier staple length fibers. The carded web is subsequently entangled using commercial processes, most preferentially hydroentanglement systems, as exemplified by Perfojet Jetlace 2000 or Fleissner Aquajet system. When continuous filament fabrics are used, thermoplastic continuous filaments of 0.8 to 3.5 denier, comprised of thermoplastic polymers such as polyester, polyamide, polypropylene or polyethylene, are preferred. Such fibrous layers have a basis weight in the range of 15 to 100 grams per square meter (gsm). Various prior art patents disclose techniques for manufacturing nonwoven fabrics by hydroentanglement of staple length fibers, including U.S. Patent No. 3,485,706, the disclosure of which is hereby incorporated herein by this reference. While having achieved substantial commercial success, it is well known that such fabrics have relatively low tensile strength and poor elongation properties. However, it has been discovered that when such fabrics are incorporated into a composite that includes a scrim reinforcing layer, and a thermally point-bonded layer, and that composite is imaged by the high pressure water jets, the physical properties of the resulting lamine's are greatly enhanced.

In accordance with another aspect of the invention, the thermally pointbonded fabric performs a number of functions; to increase the basis weight of

5

10

15

20

25

the composite fabric, to bond the entangled fibrous layer to the scrim, and to further conceal the interior scrim layer. As the coarseness of the scrim increases, correspondingly, the basis weight of the thermal bond layer will be increased. Basis weights in the range of 20 to 100 gsm are generally sufficient to bond the substrate layers of the composite fabric and to mask the internal scrim layer. Suitable deniers for the fibers or filaments are in the range of 0.8 to 4.0.

The thermally bonded substrate layer is produced on a conventional manufacturing line, such as a card line or spunbond line as is well known. The consolidation step in the process may be any of the known methods of thermal bonding, including through-air bonding and thermal point bonding, with the latter being most preferred. The degree of bonding in such commercial processes is generally sufficient to provide the strength and durability required by the intended end use, as well as that required by the intermediate operations, such as winding, slitting and other converting steps. In accordance with the present invention, the degree of bonding must be such that the fabric can be processed through the required intermediate steps but labile enough to break under the action of the high-pressure water jets. This is required so that the fibers or filaments entangle with the fibers of the entangled fibrous layer by extending through the scrim layer. This is achieved during the imaging step and serves to consolidate the layers of the composite while producing the final desired aesthetics of the fabric of the invention.

The present invention contemplates that different forms of scrim materials may be used, depending on the anticipated end use of the laminated nonwoven fabric. The stiffness of the composite can be controlled by the properties of the scrim layer where a heavy, coarse polypropylene scrim will produce a stiff composite fabric. Metallic scrims produce composite fabrics that have substantial bending memory and high electrical conductivity. Cast lightweight polyester scrims can be used to produce non-elastic imaged products suitable for jet dyeing. Elastic scrims can be used when some degree of stretch

30

5

10

15

20

and recovery is desired in the final fabric. The required fabric properties for a given end use application will be considered when selecting the type of scrim used in the composite fabric designs of the present invention.

The above description sets forth rather broadly the more important features of the present invention so that the detailed description that follows may be better understood, and so that the present contributions to the art my be better appreciated. It is to be understood that there are additional features of the disclosure that will be described hereinafter which will form the subject matter of the claims appended hereto. In this respect, before explaining the several embodiments of the disclosure in detail, it is to be understood that the disclosure is not limited in its application to the details of the construction and the arrangements set forth in the following description or illustrated drawings. The present invention is capable of other embodiments, of being practiced, and carried out in various ways, as will be appreciated by those skilled in the art. In addition, it is to be understood that the phraseology and terminology employed herein are for description and not limitation.

Brief Description Of The Drawings

FIGURE 1 is a schematic view of one embodiment of the invention; FIGURE 2 is a schematic view of another embodiment of the invention;

FIGURE 3 is a diagrammatic view of a three-dimensional imaging device;

FIGURE 3A is a cross-section view taken generally along line A-A of Figure 3;

FIGURE 3B is a cross-sectional view taken generally along line B-B of FIGURE 3;

FIGURE 3C is a perspective view of the three-dimensional imaging device shown in FIGURE 3;

FIGURE 4 is a diagrammatic view of another form of a three-dimensional imaging device;

5

10

15

20

FIGURE 4a is a cross-sectional view taken generally along line A-A of FIGURE 4;

FIGURE 5 is a cross-section photomicrograph of a composite fabric of the invention, showing black filaments from a thermally bonded substrate layer penetrating the scrim to entangle with fibers from a entangled substrate layer after imaging; and

FIGURE 6 is a top plan view of a composite fabric of the invention, as shown in FIGURE 5, where the black fibers from a thermally bonded layer have penetrated to the opposite surface of the composite fabric after imaging.

Detailed Description

Turning now to the drawings, FIGURE 1 illustrates a first embodiment of the process of the present invention, wherein an image transfer device 10 of the type illustrated and described in detail in U.S. Patent Nos. 5,822,833 and 5,827,597 is shown. An entangled fibrous layer 12 from roll 14 is fed to image transfer device 10 in contact with the outer surface thereof. A scrim layer 16 from roll 18 is fed to image transfer device 10 in contact with entangled fibrous layer 12. A thermally bonded fibrous layer 20 from roll 22 is fed to image transfer device 10 in contact with the outwardly directed surface of scrim layer 16.

20

25

30

5

10

15

High pressure water from line 24 is fed to circumferentially spaced high pressure water jets 26 spaced radially outwardly from image transfer device 10 and from the outer surface of thermally bonded fibrous layer 20. Five rows of high pressure water jets 26 are illustrated, and the high pressure water streams 28 emanating from jets 26 are directed radially inwardly, so as to pass through layers 20, 16, and 12, and inwardly of image transfer device 10 through the foraminous image forming surface thereof. It should be noted that the specific number of rows of jets is not critical to the present invention, nor is it necessary that each row of jets discharge the water at the same pressure. The water passes from image transfer device 10 through line 30, and is subsequently processed and recycled.

It should be understood that the pressure of jet streams may be progressively increased from jet row to jet row, so that layers 20, 16, and 12 are exposed to constantly increasing water pressure. Alternatively, groups (one through four) of rows of jets may have the same water pressure, but the last jet or groups of rows of jets will have a higher water pressure than the first row of jets or groups of rows of jets.

As the high pressure steams pass through layers 20, 16 and 12, a substantial number of the thermal bond points of the thermally bonded fibrous layer 20 are split. The free fibers are then forced, by the pressure of the water jets, into and through the openings in the interior scrim layer 16. These fibers then entangle and become interlocked with fibers and filaments of the entangled fibrous layer 12 on the opposite side of the scrim 16. As a result of such mechanical disruption of the bond sites in the thermal bond layer 20, the remaining portion of the bond sites are rendered indistinct in the final composite, while still providing some residual stability to the thermal bond layer 20. The scrim layer 16 is mechanically held in place by the fiber and filament lengths driven through the scrim and finally engaged in an interlocking relationship with fibers in the entangled fibrous layer. Further, the high pressure water jet streams force the entangled fabric layer 12 against the surface of the imaging device 10 so that the image is imparted to at least the surface layer 12. In some combinations of layers, the image is imparted to the entire composite, such that all three layers assume a new dimensional configuration influenced by the design on the imaging device 10.

The thus-formed composite fabric 32 is passed to a dewatering station 34, where vacuum from line 36 is applied to one or both sides of the composite to remove excess water therefrom. The dried composite fabric 32 then passes to a post-treatment station, where chemical(s) from line 40 may be applied to one or both sides of the composite fabric. The dried and chemic ally treated composite then passes to station 42, where further finishing steps, such as drying, curing,

5

10

15

20

heat-setting, etc. may be performed. The finished laminated product is then wound upon roll 44 for subsequent storage and shipment.

Referring now to FIGURE 2, another embodiment of the process of the invention is illustrated therein. Primed reference numerals have been used in FIGURE 2 to designate elements that correspond to common elements of the embodiment of FIGURE 1, and the description of such common elements will not be repeated herein. The arrangement of FIGURE 1 is particularly useful for polyester scrims; where post-treatments such as dying, heat setting, etc. are desirable or necessary. Polyester scrims ranging from about 1 mesh to about 12 mesh (equivalent deniers from about 10 to about 500) can be processed in accordance with the arrangement of FIGURE 1. For coarser scrims (higher deniers) the arrangement of FIGURE 2 is preferred.

In accordance with the arrangement of FIGURE 2, high pressure water from line 24' is fed to the rows of high pressure water jets 26' to impart the image of imaging device 10' into entangled layer 12'. By feeding entangled layer 12' to the imaging device 10' upstream of scrim layer 16' and thermally bonded layer 20', the scrim will not interfere with the imaging of entangled layer 12' so that the imaged entangled layer 12' will be effective in hiding or masking the scrim in the final composite product.

20

25

30

5

10

15

The scrim layer 16' and thermally bonded layer 20' are fed to image transfer device 10' downstream of the rows of high pressure water jets 26' and are laminated to the already imaged entangled layer 12' by high pressure water fed from line 24" to the rows of high pressure water jets 26". While two such rows of high pressure water jets 26" are illustrated in FIGURE 2, the number may vary, so long as the rows of high pressure water streams are effective in driving fibers or filaments of the thermally bonded layer through the mesh openings in scrim 16' and into mechanical interlocking relationship with the previously imaged layer 12'. By using the arrangement of FIGURE 2, the scrim layer 16' will not interfere with the imaging of entangled fiber layer 12' and the scrim layer will not be readily visible in the finished product.

-8-

The imaging device 10, 10' may be a cylindrical drum, as shown, or the flat run of an imaging belt trained over two spaced apart guide rolls. The imaging surface may be formed in accordance with the teachings of U.S. Patent Nos. 5,098,764, 5,244,711, 5,674,587, and 5,674,591, incorporated herein by this reference. Alternatively, the imaging device 10, 10' may have the "octagon/square" pattern illustrated in FIGURES 3 and 3A-3C, or the "herringbone" pattern illustrated in FIGURES 4A and 4B and described in detail in U.S. Patent No. 5,736,210. also incorporated herein by this reference.

EXAMPLE 1

10

5

A composite nonwoven fabric was formed with the arrangement of FIGURE 1, wherein the imaging device 10 had an "octagon/square" imaging surface such as is illustrated in FIGURES 3 and 3A-3C. The entangled layer 12 was produced using 1.5 denier polyester staple fibers at 1.5 inch staple length which were carded, crosslapped and entangled using a Perfojet 2000 Jetlace entangler. The PET scrim layer 16 was a 7 x 5 mesh, 70 denier scrim available from Conwed Plastics of Minneapolis, Minnesota. A thermally bonded, 2.0 denier polyester thermally bonded fibrous layer was used as the bonded layer 20, with a 50 gsm target basis weight.

20

15

The fibrous layers were unwound at 40 feet per minute and impinged with three successive rows of jets 26 each operating at 4000-psi pressure. Each row of jets 26 had 120-micron diameter orifices spaced at 42.3 orifices per inch.

25

The image was imparted to the entire composite structure such that the thermally bonded substrate and the entangled substrate were bonded to each other through the scrim layer and could not be delaminated. The extent of such inter-layer entanglement is depicted in FIGURE 5. The penetration of the black spunbond filaments through the opposing entangled fibrous layer can be observed in the photomicrograph of the cross-section of the fabric provided in FIGURE 5.

EXAMPLE 2

In example 2, another composite fabric was produced as described for Example 1 except that a 5 x 5 mesh, 70-denier scrim also from Conwed was used. As for example 1, the entire composite exhibits the image obtained from the image transfer device and again the layers cannot be delaminated without destroying the fully integrated structure of the composite. Additional evidence of the degree of entanglement of the opposing fibrous layers is observed in FIGURE 6, wherein lengths of black filaments from the thermally bonded fibrous layer can be observed at the surface of the entangled layer.

10

WHAT IS CLAIMED IS:

1. A method of forming a nonwoven laminate comprising the steps of:

providing an image transfer device having a three-dimensional imaging surface; providing an entangled fibrous layer against the three-dimensional imaging surface of said image transfer device; supplying an open mesh scrim to said image transfer device adjacent said entangled fibrous layer; supplying a thermally bonded fibrous layer to said image transfer device adjacent said open mesh scrim; and applying high pressure fluid jets to said thermally bonded fibrous layer at said image transfer device; said high pressure fluid jets providing consolidation of the laminate by resulting in the entangling of at least 35 percent of the fibers or filaments of the thermally bonded fibrous layer with fibers of the entangled fibrous layer through the open mesh scrim layer; said high pressure fluid jets further imparting the image of said imaging transfer device.

15

10

5

2. The method of claim 1 in which said entangled fibrous layer is supplied to said imaging surface upstream of said scrim and said thermally bonded fibrous layer, and wherein high pressure fluid jets are applied to said entangled fibrous layer to impart an image, followed by juxtaposition of said scrim and said thermally bonded fibrous layer and application of a second set of high pressure fluid jets are to the combined layers to produce the composite structure.

25

20

3. The method of claim 1 in which said entangled fibrous layer, scrim and thermally bonded fibrous layer are fed to said imaging surface at a common location, and wherein said high pressure fluid jets are applied to said entangled fibrous layer, scrim and thermally bonded fibrous layer simultaneously at said common location.

4. A method of forming a nonwoven laminate comprising the steps of:
providing an image transfer device having a three-dimensional imaging surface;
providing an entangled fibrous layer against the three-dimensional imaging

surface of said image transfer device; supplying an open mesh scrim to said image transfer device adjacent said entangled fibrous layer; supplying a thermally bonded fibrous layer to said image transfer device adjacent said open mesh scrim; and applying high pressure fluid jets to said thermally bonded layer at said image transfer device; said high pressure fluid jets providing consolidation of the composite by causing the co-mingling and entangling of at least 35 percent of the fibers or filaments of the bonded layer with fibers of the entangled layer through the open mesh scrim layer such that open mesh scrim layer is mechanically retained between said entangled fibrous layer and said bonded fibrous layer.

10

5

- 5. The method of claim 4 wherein said bonded fibrous layer is thermally bonded.
- 6. The method of claim 5 wherein said thermally bonded fibrous layer is formed of thermoplastic fibers.

15

The method of claim 5 wherein said thermally bonded fibrous 7. layer is formed of thermoplastic filaments.

20

8. A composite nonwoven fabric comprising: an open mesh scrim; a thermally bonded fibrous layer at one side of said open mesh scrim; a entangled fibrous layer at the side of said open mesh scrim opposite said thermally bonded fibrous layer; said thermally bonded fibrous layer being joined to said entangled fibrous layer by entangled fibers extending through openings in said open mesh scrim.

9. The fabric of claim 8 wherein said thermally bonded fibrous layer is formed of thermoplastic fibers.

25

10. The fabric of claim 8 wherein a three-dimensional image is formed in at least the entangled fibrous layer of said composite laminated nonwoven fabric.

30

11. A composite nonwoven fabric comprising: an open mesh scrim; a thermally bonded nonwoven fibrous layer at one side of said open mesh scrim; a entangled fibrous layer at the side of said open mesh scrim opposite said

thermally bonded nonwoven fibrous layer; said thermally bonded fibrous layer being joined to said entangled fibrous layer by fibers or filaments from said thermally bonded fibrous layer extending through openings in said open mesh scrim and mechanically interlocked with said entangled fibrous layer; and said fabric having a three-dimensional image formed therein.

FIG.3A

SECT. A-A

FIG. 3B

SECT. B-B

FIG. 4A

FIG. 4B

Cross cut photomicrograph of MP-0202-1 showing black spunbond fibers penetrating through web.

FIG.5

File: cross1

Photomicrograph showing black spunbond fibers penetrating through the white web.

FIG.6

File white!

INTERNATIONAL SEARCH REPORT

PCT/US01/14630 CLASSIFICATION OF SUBJECT MATTER IPC(7) B32B 5/16, 5/22, 27/02, 31/08; D04H 1/46 US CL 28/104, 105; 156/148, 177, 179, 181 According to International Patent Classification (IPC) or to both national classification and IPC FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) U.S.: 28/104, 105; 156/148, 177, 179, 180, 181, 324 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched NONE Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) Please See Continuation Sheet C. DOCUMENTS CONSIDERED TO BE RELEVANT Category * Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. US 5,393,599 A (QUANTRILLE ET AL) 28 February 1995, see the document. 1, 3-11 ---Α 2 Y US 5,827,597 A (JAMES ET AL) 27 OCTOBER 1998, see the whole document. 1, 3-11 A 2 Α US 5,253,397 A (NEVEU ET AL) 19 OCTOBER 1993, see figures 1-2. 1-11 Further documents are listed in the continuation of Box C. See patent family annex. Special categories of cited documents: later document published after the international filing date or priority date and not in conflict with the application but cited to understand the document defining the general state of the art which is not considered to be principle or theory underlying the invention of particular relevance "X" document of particular relevance; the claimed invention cannot be "E" earlier application or patent published on or after the international filing date considered novel or cannot be considered to involve an inventive step when the document is taken alone document which may throw doubts on priority claim(s) or which is cited to 470 establish the publication date of another citation or other special reason (as document of particular relevance; the claimed invention cannot be specified) considered to involve an inventive step when the document is combined with one or more other such documents, such combination "O" document referring to an oral disclosure, use, exhibition or other means being obvious to a person skilled in the art document published prior to the international filing date but later than the document member of the same patent family priority date claimed Date of the actual completion of the international search Date of mailing of the international search report 1 ? JUL 2001 22 June 2001 (22.06.2001) Authorized officer Name and mailing address of the ISA/US inf Wallet Commissioner of Patents and Trademarks

Michael W Ball

Telephone No. (703) 308-0651

Interna

application No.

Form PCT/ISA/210 (second sheet) (July 1998)

Washington, D.C. 20231

Box PCT

Facsimile No. (703)305-3230

INTERNATIONAL SEARCH REPORT

Inten al application No.
PCT/US01/14630

Box I Observations where certain claims were found unsearchable (Continuation of Item 1 of first sheet)
This international report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. Claim Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
2. Claim Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
3. Claim Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II Observations where unity of invention is lacking (Continuation of Item 2 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows: Please See Continuation Sheet
1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite
payment of any additional fee. 3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.
ı

Form PCT/ISA/210 (continuation of first sheet(1)) (July 1998)

INTERNATIONAL SEARCH REPORT

Interminal application No.

PCT/US01/14630

BOX II. OBSERVATIONS WHERE UNITY OF INVENTION IS LACKING This application contains the following inventions or groups of inventions which are not so linked as to form a single general inventive concept under PCT Rule 13.1. In order for all inventions to be examined, the appropriate additional examination fees must be paid.

Group I, claim(s) 1-7, drawn to a method of forming a nonwoven laminate.

Group II, claim(s) 8-11, drawn to a composite nonwoven fabric.

The inventions listed as Groups I-II do not relate to a single general inventive concept under PCT Rule 13.1 because, under PCT Rule 13.2, although they share a common special technical feature of (a laminate comprising a three entangled layers of web, wherein the core layer is an open scrim mesh), the special technical feature of these groups does not define a contribution over a prior art. In other words, the special technical feature of these groups is obvious over a prior art as evidence from a teachings of, for example, Quantrille et al (US 5,393,599).

This application contains claims directed to more than one species of the generic invention. These species are deemed to lack unity of invention because they are not so linked as to form a single general inventive concept under PCT Rule 13.1.

In order for more than one species to be examined, the appropriate additional examination fees must be paid. The species are as follows:

Species A: an entangled web is subjected to a separate hydroentangling process prior to being joined with other two layers (figure 2);

Species B: an entangled web is NOT subjected to a separate hydroentangling process prior to be joined to two layers (figure 1).

The claims are deemed to correspond to the species listed above in the following manner:

Claim 2 is directed to species A; and claim 3 is drawn to species B.

The following claim(s) are generic: claim 1.

The species listed above do not relate to a single general inventive concept under PCT Rule 13.1 because, under PCT Rule 13.2, the species lack the same or corresponding special technical features for the following reasons: as noted above and as shown in figures 1-2, species A requires a separate hydroentangling process which is not required in Species B.

Continuation of B. FIELDS SEARCHED Item 3: EAST

search terms: hydroentangling or (water or hydro) entangling or spunlace

Form PCT/ISA/210 (extra sheet) (July 1998)