TMA4165: PROBLEM SHEET III

published 02/02/2020

- 1. Find and classify the fixed points of the following systems and draw their phase portraits.
 - (i) $\dot{x} = x y, \ \dot{y} = x + y 2xy;$
 - (ii) $\dot{x} = 1 xy$, $\dot{y} = (x 1)y$;

 - (iii) $\dot{x} = (1 + x 2y)x$, $\dot{y} = (x 1)y$; (iv) $\dot{x} = x y$, $\dot{y} = x^2 1$; (v) $\dot{x} = -6y + 2xy$, $\dot{y} = y^2 x^2$; (vi) $\dot{x} = \sin(x)\cos(y)$, $\dot{y} = \sin(y)\cos(x)$.
- 2. Use the Lyapunov function $V(x,y,z)=x^2+y^2+z^2$ to show that the origin is an asymptotically stable fixed point of the system

$$\begin{split} \dot{x} &= -y - xy^2 + z^2 - x^3 \\ \dot{y} &= x - y^3 + z^3 \\ \dot{z} &= -xz - x^2z - yz^2 - z^5. \end{split}$$

Show that the trajectories of the linearized system near (x, y, z) = (0, 0, 0) lie on circles in planes perpendicular to (0,0,1), and so the origin is stable but not asymptotically stable for the linearized system.

3. For $\sigma, \rho, \beta > 0$, the Lorenz equations are:

$$\begin{split} \dot{x} &= \sigma(y-x) \\ \dot{y} &= \rho x - y - xz \\ \dot{z} &= -\beta z + xy. \end{split}$$

Determine conditions on the parameters for which the origin is asymptotically stable and conditions for which the origin is unstable.

4. Show that the planar two-body problem can be written as a Hamiltonian system with two degrees of freedom in $\mathbb{R}^4 \setminus \{\mathbf{0}\}$:

$$\ddot{x} = -\frac{x}{(x^2 + y^2)^{3/2}}$$
$$\ddot{y} = -\frac{y}{(x^2 + y^2)^{3/2}}.$$

Find the gradient system orthogonal to this one in \mathbb{R}^4 .