## HoTT Chapter 2 Exercises

October 17, 2014

```
{-# OPTIONS --without-K #-}
module Ch2 where
open import Base
open import Ch1
```

## 1

**Lemma** (2.1.2). For every type A and every x, y, z : A there is a function  $(x = y) \to (y = z) \to (x = z)$  written  $p \to q \to p \cdot q$ , such that  $\operatorname{refl}_x \cdot \operatorname{refl}_x \equiv \operatorname{refl}_x$  for any x : A.

We call  $p \cdot q$  the concatenation or composite of p and q.

Exercise 2.1 Show that the three obvious proofs of Lemma 2.1.2 are pairwise equal.

*Proof.* (this justifies denoting "the" concatenation function as •)

First, we need a type to inhabit. The type of any concatenation operator is

$$\prod_{x,y,z:A} \prod_{p:x=y} \prod_{q:y=z} (x=z)$$

Thus far, the only tool we have to inhabit such a type is path induction. So, we first write down a family

$$D_1(x,y,p): \prod_{z:A} (y=z) \to (x=z)$$

That is, given x, y : A and a path from x to y, we want a function that takes paths from y to z to paths from x to z.

Path induction dictates that we now need a

$$d_1: \prod_{x:A} D(x,x,\mathsf{refl}_x)$$

hence

$$d_1(x): \prod_{z:A} (x=z) \to (x=z)$$

So, given a path from x to z, we want a path from x to z. We'll take the easy way out on this one!

For another construction, we do path induction in "the other direction". That is, we will define

$$D_2: \prod_{y,z:A} \prod_{q:y=z} (x=y) \to (x=z)$$

In other words, given y and z and a path from y to z, we want a function that takes paths from x to y to paths from x to z.

Just like the previous proof, we need a

$$d_2(y): (y=z) \to (y=z)$$

This is a bit trickier in Agda, because we really want to define a curried function

$$(\bullet_2 q) p = p \bullet q$$

However, we also want the type to be exactly the same as the types of the other constructions. Hence, we will use a twist map.

Note that these two constructions use path induction to reduce one side or the other to the "identity" path (in the first case  $\mathsf{refl}_x$  and in the second case  $\mathsf{refl}_y$ ). We can also do double induction to reduce both p and q to the  $\mathsf{refl}_x$  and  $\mathsf{refl}_y$ .

We begin with the same type family as the first proof:

$$D_1: \prod_{x,y:A} \prod_{p:x=y} (y=z) \to (x=z)$$

but we now wish to find a different inhabitant

$$d'_1(x): (x=z) \to (x=z)$$

We will use path induction to construct  $d'_1$ . We introduce a family:

$$E: \prod_{x,z:A} \prod_{q:x=z} (x=z)$$

we now need

$$e(x):(x=x)$$

which is gotten quite easily:

$$e(x) = refl_x$$

We now want to show that these constructions are pairwise equal. By this, we mean "propositional equality" - hence we must find paths between each pair of constructions.

In each case, we perform a double induction on paths, first reducing p to refl, and then reducing q to refl.

```
\bullet_1 = \bullet_2 : \forall \{i\} \{A : Type i\} \{x y z : A\}
      (p : x == y) (q : y == z) \rightarrow p \cdot_1 q == p \cdot_2 q
_1=_2 {i} {A} {_} {_} {z} = ind== D d where
     D : (x y : A) \rightarrow x == y \rightarrow Type i
     D - y p = (q : y == z) \rightarrow p \cdot_1 q == p \cdot_2 q
     d : (x : A) \rightarrow D \times x \text{ refl}
     d _ = ind== E e where
        E : (y_1 z_1 : A) \rightarrow y_1 == z_1 \rightarrow Type i
        E \_ q = refl \cdot_1 q == refl \cdot_2 q
        e : (x_1 : A) 
ightarrow E x_1 x_1 refl
        e_r = refl
\bullet_2 = \bullet_3 : \forall \{i\} \{A : Type i\} \{x y z : A\}
      (p : x == y) (q : y == z) \rightarrow p \cdot_2 q == p \cdot_3 q
_2=_3 {i} {A} {x} {y} {z} = ind== D d where
     D : (x y : A) \rightarrow x == y \rightarrow Type i
     D - y p = (q : y == z) \rightarrow p \cdot_2 q == p \cdot_3 q
     d : (x : A) \rightarrow D x x refl
     d x = ind == E e where
        E : (y_1 z_1 : A) 
ightarrow y_1 == z_1 
ightarrow Type i
        E \_ q = refl \cdot q = refl \cdot q
        e : (x_1 : A) \rightarrow E x_1 x_1 refl
        e _ = refl -- : concat2' refl refl == concat3' refl refl
ullet_1=ullet_3: orall {i} {A : Type i} {x y z : A} (p : x == y) (q : y == z) 
ightarrow p ullet_1 q == p ullet_3 q
_1=_3 {i} {A} {_} {_} {z} = ind== D d where
     D : (x y : A) \rightarrow x == y \rightarrow Type i
     D x y p = (q : y == z) \rightarrow p \cdot_1 q == p \cdot_3 q
     \texttt{d} \; : \; (\texttt{x} \; : \; \texttt{A}) \; \rightarrow \; \texttt{D} \; \; \texttt{x} \; \; \texttt{refl}
     d _ = ind== E e where
        E : (y z : A) \rightarrow (q : y == z) \rightarrow Type i
        E _ q = refl _1 q == refl _3 q
        e : (y : A) \rightarrow E y y refl
        e _ = refl -- : concat1' refl refl == concat3' refl refl
```

4

**Lemma** (2.2.1). The three equalities of proofs constructed in the previous exercise form a commutative triangle. In other words, if the three definitions of concatenation are denoted by  $(p \cdot 1q)$ ,  $(p \cdot 2q)$ , and  $(p \cdot 3q)$ , then the concatenated equality

$$(p \cdot {}_1q) = (p \cdot {}_2q) = (p \cdot {}_3q)$$

is equal to the equality

$$(p \cdot {}_1q) = (p \cdot {}_3q)$$

*Proof.* Despite the fact that we're working with the somewhat myserious type of "equalities of equalities", this remains a statement about the propositional equality of two paths. The only tool we have for establishing such an equality is path induction.

First, we fix the definition of concatenation:

\_•\_ = \_•<sub>1</sub>\_

We must now show that, for all paths p, q, the proof that  $p \cdot _1 q$  is equal to  $p \cdot _2 q$  followed by the proof that  $p \cdot _2 q$  is equal to  $p \cdot _3 q$  is equal to the proof that  $p \cdot _1 q$  is equal to  $p \cdot _3 q$ .

This is exactly expressed in the following type signature:

Since the theorem is quantified over two paths, we shall do double path induction. So, it really just boils down to the theorem being true when both p and q are the identity.

At this point, it might be helpful to review the definitions of the different concatenation functions. In particular, refl. refl  $\equiv$  refl where  $\cdot$  is any of  $\cdot_1$ ,  $\cdot_2$ , or  $\cdot_3$ .

3

## 4

Let's try to do it one stage at a time:

- a 0-path is a point in A.
- a 1-path is a path between 0-paths.

The boundary of a 0-path is somewhat mysterious, so we shall leave it undefined.

We now would like to define a 2-path as a path between 1-paths. However, two arbitrary 1-paths look like this:

$$a \xrightarrow{p} b$$

$$a' \xrightarrow{q} b'$$

That is, p and q are paths between different points. Hence, a path between p and q doesn't make sense. That is, it's not well typed.

However, suppose we have paths x, y as follows:

$$\begin{array}{ccc}
a & \xrightarrow{p} & b \\
\downarrow^{x} & \downarrow^{y} \\
a' & \xrightarrow{q} & b'
\end{array}$$

It would certainly make sense to ask for a path of type  $p \cdot y = x \cdot q$ .

So, it seems that to define 2-paths, we need pairs of 1-paths together with vertical paths like x and y above. So we'll define it as a  $\Sigma$ -type:

$$\Sigma_{p,q:1-\text{paths}}\Sigma_{x:\text{src }p=\text{ src }q}\Sigma_{\text{dst }p=\text{ dst }q}p \cdot y = x \cdot q$$

We will write down some helper functions and then formalize this:

```
-- Some convenience functions!
src : \forall \{i\} \{A : Type i\} \{a : A\} \{b : A\} \rightarrow a == b \rightarrow A
src {_} {_} {a} {__} p = a
dst : \forall \{i\} \{A : Type i\} \{a : A\} \{b : A\} \rightarrow a == b \rightarrow A
map : \forall {i} {A : Type i} (p : (1-path A)) -> (fst p) == (fst (snd p))
map p = snd (snd p)
2-path : \forall {i} (A : Type i) -> Type i
2-path A = \Sigma (1-path A) \lambda p -> \Sigma (1-path A) \lambda q \rightarrow
  \Sigma ((src (map p)) == (src (map q))) \lambda x \rightarrow \Sigma ((dst (map p)) == (dst (map q))) \lambda y \rightarrow
     x \cdot (map q) == (map p) \cdot y
-- The boundary of a 2 path as a pair of 1 paths
\delta_2 : \forall {i} {A : Type i} -> 2-path A -> (1-path A) \times (1-path A)
\delta_2 {i} {A} (p, (q, (x, (y, \alpha)))) = p, q
   A boundary of a 2-path can be thought of as a loop. We can formalize this:
-- Definition of inverses. This should be put somewhere else.
inverse : \forall {i} {A : Type i} {a : A} {b : A} -> a == b -> b == a
inverse {i} {A} = ind== D d where
  D : (a b : A) (p : a == b) \rightarrow Type i
  Dab_=b==a
  \mathtt{d} \;:\; (\mathtt{x} \;:\; \mathtt{A}) \;\to\; \mathtt{D} \;\; \mathtt{x} \;\; \mathtt{refl}
  d _ = refl
-- Just to be cute - the boundary of a 2 path as a loop
\delta_2-loop : \forall {i} {A : Type i} -> 2-path A -> 1-path A
\delta_2-loop (p , (q , (x , (y , \alpha)))) =
  (src (map p), (src (map p),
     ((x • (map q)) • (inverse y)) • (inverse (map p))))
```

If one tries to continue in this manner, the  $\Sigma$ -types will become rather large! So it would be nice to appeal to some kind of recursion at this point.

Luckily, it turns out that equality of inhabitants of  $\Sigma$ -types contain all the lower dimensional equalities to make this work!

```
n-path : \forall {i} {A : Type i} -> \mathbb{N} -> Type i n-path {i} {A} 0 = A n-path {i} {A} (S n) = \Sigma (n-path {i} {A} n) \lambda p -> \Sigma (n-path {i} {A} n) \lambda q -> p == q \delta : \forall {i} {A : Type i} -> (n : \mathbb{N}) -> (n-path {i} {A} (S n)) -> (n-path {i} {A} n) \lambda q -> p == q \delta n-path {i} {A} (S n) n -> (n-path {i} {A} n) \lambda n p = fst p , fst (snd p)
```

This is not evidently geometric. To make the connection, we need to use some facts about equalities of sigma types.

**Lemma.** If n > 1, then the boundary of an n-path is a closed (n-1)-path.

*Proof.* The following code corresponds to this diagram:

$$\begin{array}{ccc}
a & \xrightarrow{p} b \\
\downarrow^{x} \\
\downarrow^{x} \\
a' & \xrightarrow{p'} b'
\end{array}$$

```
δ' : ∀ {i} {A : Type i} -> {n : N}
    -> (n-path {i} {A} (S (S n))) -> (n-path {i} {A} (S n))
δ' {i} {_} {n} α = a' , ( a' , q • (inverse p') ) where
    -- first, unpack α
    a : n-path n
    a = fst (fst α)
    b : n-path n
    b = fst (snd (fst α))
    p : a == b
    p = snd (snd (fst α))
a' : n-path n
```

```
a' = fst (fst (snd \alpha))
b' : n-path n
b' = fst (snd (fst (snd \alpha)))
q : a' == b'
q = snd (snd (fst (snd <math>\alpha)))
-- Apply first sigma equality
P : n-path n \rightarrow Type i
P p = \Sigma (n-path n) \lambda q -> p == q
t : \Sigma (a == a') \lambda x \rightarrow (transport P x (b , p)) == (b' , q)
t = \Sigma-path-trans (snd (snd \alpha))
x : a == a'
x = fst t
-- Apply second (nested) sigma equality
P': n-path n -> Type i
P' c = a' == c
y': \Sigma (n-path n) \lambda c -> a' == c
y' = transport P x (b , p)
t' : y' == (b', q)
t' = snd t
t'' : \Sigma ((fst y') == b') \lambda y -> (transport P' y (snd y')) == q
t'' = \Sigma-path-trans t'
y : fst y' == b'
y = fst t'
\alpha': (transport P' y (snd y')) == q
\alpha' = snd t''
p' : a' == b'
p' = src \alpha'
```

9