1D Convolution

Two kinds of 1D convolutions are illustrated here: linear and circular convolutions.

Circular convolution

Consider the following two real vectors

 $= \begin{bmatrix} \alpha_0 \\ \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{bmatrix}_{A\times 1} \qquad b = b_1$

The circular convolution of \mathbf{Q} and \mathbf{b} results in a third vector \mathbf{W} .

The elements of ω can be schematically computed as follows:

- Keep vector o in a fixed horizontal position position.
 - ntal position position.

 Define a temporary vector by repeating the elements of to in a reversed order.
 - b3 b2 b4 b0 b3 b2 b4 b0
 - Place the temporary vector right below so that bo is aligned with ...

Select the elements of the temporary vector that are aligned with . In our example, they are represented in red and the remaining elements in gray.

Compute the first element of w by multiplying and adding the aligned elements:

The red elements shown above form a

circulant matrix 🔼

- Wo = bo. ao + bz. az + b1. az
- (6) The succeeding elements of W are computed by sliding the temporary vector to right and repeating the steps above:

This iterative scheme used to compute the elements of **W** is equivalent to the following matrix-vector product:

unused elements $\omega = C A$ $\Delta b_2 \quad b_3 \quad b_2 \quad b_4 \quad b_6 \quad b_6 \quad b_6 \quad b_7 \quad b_8 \quad b$

 $D_3 \quad D_2 \quad D_4 \quad D_0 \quad D_3 \quad D_2 \quad D_4 \quad D_0 \longrightarrow W_3$

Kij = b(i-j)modN

Linear convolution

Consider the following two real vectors

The linear convolution of $oldsymbol{\circ}$ and $oldsymbol{\circ}$ results in a third vector $oldsymbol{\omega}$.

