```
In [3]:
                                                                          H
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings("ignore")
                                                                          H
In [4]:
house_data = pd.read_csv("bengaluru_house_data.csv")
In [5]:
                                                                          H
house_data.shape
Out[5]:
(13320, 9)
In [6]:
                                                                          H
house_data.columns
Out[6]:
dtype='object')
In [7]:
                                                                          H
house_data.head()
```

Out[7]:

	area_type	availability	location	size	society	total_sqft	bath	balcony	pric
0	Super built-up Area	19-Dec	Electronic City Phase II	2 BHK	Coomee	1056	2.0	1.0	39.0
1	Plot Area	Ready To Move	Chikka Tirupathi	4 Bedroom	Theanmp	2600	5.0	3.0	120.0
2	Built-up Area	Ready To Move	Uttarahalli	3 BHK	NaN	1440	2.0	3.0	62.0
3	Super built-up Area	Ready To Move	Lingadheeranahalli	3 BHK	Soiewre	1521	3.0	1.0	95.0
4	Super built-up Area	Ready To Move	Kothanur	2 BHK	NaN	1200	2.0	1.0	51.0
4									

In [6]:

```
house_data.tail()
```

Out[6]:

	area_type	availability	location	size	society	total_sqft	bath	balcony	pr
13315	Built-up Area	Ready To Move	Whitefield	5 Bedroom	ArsiaEx	3453	4.0	0.0	23
13316	Super built-up Area	Ready To Move	Richards Town	4 BHK	NaN	3600	5.0	NaN	40
13317	Built-up Area	Ready To Move	Raja Rajeshwari Nagar	2 BHK	Mahla T	1141	2.0	1.0	6
13318	Super built-up Area	18-Jun	Padmanabhanagar	4 BHK	SollyCl	4689	4.0	1.0	48
13319	Super built-up Area	Ready To Move	Doddathoguru	1 BHK	NaN	550	1.0	1.0	1
4									•

In [8]: ▶

house_data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 13320 entries, 0 to 13319
Data columns (total 9 columns):

Non-Null Count Dtype # Column 0 area_type 13320 non-null object 1 availability 13320 non-null object 2 location 13319 non-null object 13304 non-null object 3 size 4 society 7818 non-null object 5 total_sqft 13320 non-null object 6 bath 13247 non-null float64 7 balcony 12711 non-null float64

13320 non-null

float64

dtypes: float64(3), object(6)

memory usage: 936.7+ KB

price

8

In [9]: ▶

```
house_data.describe()
```

Out[9]:

	bath	balcony	price
count	13247.000000	12711.000000	13320.000000
mean	2.692610	1.584376	112.565627
std	1.341458	0.817263	148.971674
min	1.000000	0.000000	8.000000
25%	2.000000	1.000000	50.000000
50%	2.000000	2.000000	72.000000
75%	3.000000	2.000000	120.000000
max	40.000000	3.000000	3600.000000

In [10]: ▶

```
house_data.isnull().sum()
```

Out[10]:

```
area_type
                    0
availability
                    0
location
                    1
size
                   16
society
                 5502
total_sqft
                    0
bath
                   73
                  609
balcony
price
                    0
dtype: int64
```

In [11]:

```
In [12]:
house_data.head()
```

Out[12]:

	location	size	total_sqft	bath	price
0	Electronic City Phase II	2 BHK	1056	2.0	39.07
1	Chikka Tirupathi	4 Bedroom	2600	5.0	120.00
2	Uttarahalli	3 BHK	1440	2.0	62.00
3	Lingadheeranahalli	3 BHK	1521	3.0	95.00
4	Kothanur	2 BHK	1200	2.0	51.00

```
In [13]:
```

```
house_data.isnull().sum()
```

Out[13]:

location 1
size 16
total_sqft 0
bath 73
price 0
dtype: int64

```
In [14]: ▶
```

```
house_data = house_data.dropna()
```

```
In [15]: ▶
```

```
house_data.shape
```

Out[15]:

(13246, 5)

```
In [16]:
```

```
house_data['BHK']=house_data['size'].apply(lambda x: int(x.split(' ')[0]))
```

In [17]: ▶

```
house_data.head()
```

Out[17]:

	location	size	total_sqft	bath	price	BHK
0	Electronic City Phase II	2 BHK	1056	2.0	39.07	2
1	Chikka Tirupathi	4 Bedroom	2600	5.0	120.00	4
2	Uttarahalli	3 BHK	1440	2.0	62.00	3
3	Lingadheeranahalli	3 BHK	1521	3.0	95.00	3
4	Kothanur	2 BHK	1200	2.0	51.00	2

```
In [18]: ▶
```

```
house_data['BHK'].unique()
```

Out[18]:

```
array([ 2, 4, 3, 6, 1, 8, 7, 5, 11, 9, 27, 10, 19, 16, 43, 14, 12, 13, 18], dtype=int64)
```

```
In [19]: ▶
```

```
house_data['BHK'].value_counts()
```

Out[19]:

```
2
       5527
3
       4832
4
       1395
1
        649
5
        353
6
        221
7
        100
8
         89
9
         54
10
         14
11
          4
27
          1
19
          1
16
          1
          1
43
```

Name: BHK, dtype: int64

In [20]:

```
plt.figure(figsize=(15,6))
sns.countplot('BHK', data = house_data, palette='hls')
plt.xticks(rotation = 90)
plt.show()
```


In [21]: ▶

house_data['bath'].unique()

Out[21]:

```
array([ 2., 5., 3., 4., 6., 1., 9., 8., 7., 11., 10., 14., 27., 12., 16., 40., 15., 13., 18.])
```

In [22]: ▶

```
house_data['bath'].value_counts()
```

Out[22]:

```
2.0
         6908
3.0
         3285
4.0
         1226
1.0
          788
          524
5.0
          273
6.0
7.0
          102
           64
8.0
9.0
           43
           13
10.0
12.0
            7
            3
13.0
11.0
            3
16.0
            2
27.0
            1
40.0
            1
15.0
            1
14.0
            1
18.0
            1
```

Name: bath, dtype: int64

```
In [23]: ▶
```

```
plt.figure(figsize=(15,6))
sns.countplot('bath', data = house_data, palette='hls')
plt.xticks(rotation = 90)
plt.show()
```


In [24]: ▶

```
house_data[house_data.BHK>15]
```

Out[24]:

	location	size	total_sqft	bath	price	BHK
1718	2Electronic City Phase II	27 BHK	8000	27.0	230.0	27
3379	1Hanuman Nagar	19 BHK	2000	16.0	490.0	19
3609	Koramangala Industrial Layout	16 BHK	10000	16.0	550.0	16
4684	Munnekollal	43 Bedroom	2400	40.0	660.0	43
11559	1Kasavanhalli	18 Bedroom	1200	18.0	200.0	18

```
In [25]: ▶
```

```
def isfloat(x):
    try:
        float(x)
    except:
        return False
    return True
```

```
In [26]:
```

house_data[~house_data['total_sqft'].apply(isfloat)]

Out[26]:

BHK	price	bath	total_sqft	size	location	
4	186.000	4.0	2100 - 2850	4 BHK	Yelahanka	30
4	477.000	4.0	3067 - 8156	4 BHK	Hebbal	122
2	54.005	2.0	1042 - 1105	2 BHK	8th Phase JP Nagar	137
2	43.490	2.0	1145 - 1340	2 BHK	Sarjapur	165
2	56.800	2.0	1015 - 1540	2 BHK	KR Puram	188
2	38.190	2.0	850 - 1060	2 BHK	Whitefield	12975
3	122.000	3.0	1804 - 2273	3 BHK	Talaghattapura	12990
2	72.760	2.0	1200 - 1470	2 BHK	Harlur	13059
2	59.135	2.0	1133 - 1384	2 BHK	Hoodi	13265
4	154.500	5.0	2830 - 2882	4 BHK	Whitefield	13299

190 rows × 6 columns

```
In [27]:

def convert_sqft_tonum(x):
    token=x.split('-')
    if len(token)==2:
        return (float(token[0])+float(token[1]))/2
    try:
        return float(x)
    except:
        return None
```

```
In [28]:
```

```
house_data=house_data.copy()
house_data['total_sqft']=house_data['total_sqft'].apply(convert_sqft_tonum)
```

```
In [29]:
```

```
house_data.head()
```

Out[29]:

	location	size	total_sqft	bath	price	BHK
0	Electronic City Phase II	2 BHK	1056.0	2.0	39.07	2
1	Chikka Tirupathi	4 Bedroom	2600.0	5.0	120.00	4
2	Uttarahalli	3 BHK	1440.0	2.0	62.00	3
3	Lingadheeranahalli	3 BHK	1521.0	3.0	95.00	3
4	Kothanur	2 BHK	1200.0	2.0	51.00	2

```
In [30]: ▶
```

```
house_data.loc[20]
```

Out[30]:

location	Kengeri
size	1 BHK
total_sqf	t 600.0
bath	1.0
price	15.0
ВНК	1
Name: 20,	dtype: object

```
In [31]:
```

```
data1=house_data.copy()
data1['price_per_sqft']=data1['price']*1000000/data1['total_sqft']
data1.head()
```

Out[31]:

	location	size	total_sqft	bath	price	BHK	price_per_sqft
0	Electronic City Phase II	2 BHK	1056.0	2.0	39.07	2	36998.106061
1	Chikka Tirupathi	4 Bedroom	2600.0	5.0	120.00	4	46153.846154
2	Uttarahalli	3 BHK	1440.0	2.0	62.00	3	43055.555556
3	Lingadheeranahalli	3 BHK	1521.0	3.0	95.00	3	62458.908613
4	Kothanur	2 BHK	1200.0	2.0	51.00	2	42500.000000

```
In [32]:
```

```
len(data1.location.unique())
```

Out[32]:

1304

```
In [33]: ▶
```

```
data1.location=data1.location.apply(lambda x: x.strip())
location_stats=data1.groupby('location')['location'].agg('count').sort_values(ascending:
location_stats
```

Out[33]:

```
location
Whitefield
                          535
Sarjapur Road
                          392
Electronic City
                          304
Kanakpura Road
                          266
Thanisandra
                          236
1 Giri Nagar
                            1
Kanakapura Road,
                            1
Kanakapura main Road
                            1
Karnataka Shabarimala
                            1
whitefiled
                            1
Name: location, Length: 1293, dtype: int64
```

```
In [34]:
                                                                                           M
len(location_stats[location_stats<=10])</pre>
Out[34]:
1052
In [35]:
                                                                                           H
locationlessthan10=location_stats[location_stats<=10]</pre>
locationlessthan10
Out[35]:
location
Basapura
                          10
1st Block Koramangala
                          10
Gunjur Palya
                          10
Kalkere
                          10
Sector 1 HSR Layout
                          10
1 Giri Nagar
                           1
Kanakapura Road,
                           1
Kanakapura main Road
                           1
Karnataka Shabarimala
                           1
whitefiled
Name: location, Length: 1052, dtype: int64
In [36]:
                                                                                           H
len(data1.location.unique())
Out[36]:
1293
In [37]:
                                                                                           M
data1.location=data1.location.apply(lambda x: 'other' if x in locationlessthan10 else x)
len(data1.location.unique())
Out[37]:
```

242

In [38]:

data1.head()

Out[38]:

	location	size	total_sqft	bath	price	BHK	price_per_sqft
0	Electronic City Phase II	2 BHK	1056.0	2.0	39.07	2	36998.106061
1	Chikka Tirupathi	4 Bedroom	2600.0	5.0	120.00	4	46153.846154
2	Uttarahalli	3 BHK	1440.0	2.0	62.00	3	43055.555556
3	Lingadheeranahalli	3 BHK	1521.0	3.0	95.00	3	62458.908613
4	Kothanur	2 BHK	1200.0	2.0	51.00	2	42500.000000

In [39]:

data1[data1.total_sqft/data1.BHK<300].head()</pre>

Out[39]:

	location	size	total_sqft	bath	price	BHK	price_per_sqft
9	other	6 Bedroom	1020.0	6.0	370.0	6	362745.098039
45	HSR Layout	8 Bedroom	600.0	9.0	200.0	8	333333.333333
58	Murugeshpalya	6 Bedroom	1407.0	4.0	150.0	6	106609.808102
68	Devarachikkanahalli	8 Bedroom	1350.0	7.0	85.0	8	62962.962963
70	other	3 Bedroom	500.0	3.0	100.0	3	200000.000000

In [40]:

data2=data1[~(data1.total_sqft/data1.BHK<300)]
data2.head()</pre>

Out[40]:

	location	size	total_sqft	bath	price	BHK	price_per_sqft
0	Electronic City Phase II	2 BHK	1056.0	2.0	39.07	2	36998.106061
1	Chikka Tirupathi	4 Bedroom	2600.0	5.0	120.00	4	46153.846154
2	Uttarahalli	3 BHK	1440.0	2.0	62.00	3	43055.555556
3	Lingadheeranahalli	3 BHK	1521.0	3.0	95.00	3	62458.908613
4	Kothanur	2 BHK	1200.0	2.0	51.00	2	42500.000000

```
In [41]:
data2.shape

Out[41]:
(12502, 7)

In [42]:

data2["price_per_sqft"].describe().apply(lambda x:format(x,'f'))
```

Out[42]:

```
12456.000000
count
mean
           63085.028260
           41681.273385
std
min
            2678.298133
           42105.263158
25%
           52941.176471
50%
75%
           69166.666667
         1764705.882353
max
```

Name: price_per_sqft, dtype: object

```
In [43]: ▶
```

```
plt.figure(figsize=(15,6))
sns.boxplot('price_per_sqft', data = data2, palette='hls')
plt.xticks(rotation = 90)
plt.show()
```


In [44]:

```
def remove_pps_outliers(df):
    df_out=pd.DataFrame()
    for key,subdf in df.groupby('location'):
        m=np.mean(subdf.price_per_sqft)
        st=np.std(subdf.price_per_sqft)
        reduced_df=subdf[(subdf.price_per_sqft>(m-st))& (subdf.price_per_sqft<(m+st))]
        df_out=pd.concat([df_out,reduced_df],ignore_index=True)
        return df_out
data3=remove_pps_outliers(data2)
data3.shape</pre>
```

Out[44]:

(10241, 7)

```
In [45]: ▶
```

```
import matplotlib.pyplot as plt
def plot_scatter_chart(df,location):
    bhk2=df[(df.location==location)&(df.BHK==2)]
    bhk3=df[(df.location==location)&(df.BHK==3)]
    plt.rcParams['figure.figsize']=(15,10)
    plt.scatter(bhk2.total_sqft,bhk2.price,color='Blue',label='2 BHK',s=50)
    plt.scatter(bhk3.total_sqft,bhk3.price,color='green',marker='+',label='3 BHK',s=50)
    plt.xlabel('Total Square Foot')
    plt.ylabel('Price')
    plt.title(location)
    plt.legend()
plot_scatter_chart(data3,"Rajaji Nagar")
```


In [50]: ▶

```
plt.figure(figsize=(15,6))
sns.boxplot('BHK', data = data3, palette='hls')
plt.xticks(rotation = 90)
plt.show()
```



```
In [51]: ▶
```

```
def remove bhk outliers(df):
    exclude_indices=np.array([])
    for location, location_df in df.groupby('location'):
        bhk_sats={}
        for BHK,BHK_df in location_df.groupby('BHK'):
            bhk_sats[BHK]={
                'mean':np.mean(BHK_df.price_per_sqft),
                'std':np.std(BHK_df.price_per_sqft),
                'count':BHK_df.shape[0]
        for BHK,BHK_df in location_df.groupby('BHK'):
            stats=bhk_sats.get(BHK-1)
            if stats and stats['count']>5:
                exclude_indices=np.append(exclude_indices,BHK_df[BHK_df.price_per_sqft
    return df.drop(exclude_indices,axis='index')
data4=remove_bhk_outliers(data3)
data4.shape
```

Out[51]:

(7329, 7)

In [52]: ▶

plot_scatter_chart(data4,"Rajaji Nagar")

In [53]: ▶

```
plt.rcParams['figure.figsize']=(20,15)
plt.hist(data4.price_per_sqft,rwidth=0.6)
plt.xlabel("Price Per Square Foor")
plt.ylabel("Count")
```

Out[53]:

Text(0, 0.5, 'Count')

In [54]:

data4.bath.unique()

Out[54]:

array([4., 3., 2., 5., 8., 1., 6., 7., 9., 12., 16., 13.])

In [55]: ▶

data4[data4.bath>10]

Out[55]:

	location	size	total_sqft	bath	price	BHK	price_per_sqft
5277	Neeladri Nagar	10 BHK	4000.0	12.0	160.0	10	40000.00000
8486	other	10 BHK	12000.0	12.0	525.0	10	43750.00000
8575	other	16 BHK	10000.0	16.0	550.0	16	55000.00000
9308	other	11 BHK	6000.0	12.0	150.0	11	25000.00000
9639	other	13 BHK	5425.0	13.0	275.0	13	50691.24424

In [56]: ▶

```
plt.rcParams['figure.figsize']=(20,15)
plt.hist(data4.bath,rwidth=0.6)
plt.xlabel("Number Of Bathroom")
plt.ylabel("Count")
```

Out[56]:

Text(0, 0.5, 'Count')

In [63]: ▶

data4[data4.bath>data4.BHK+2]

Out[63]:

	location	size	total_sqft	bath	price	внк	price_per_sqft
1626	Chikkabanavar	4 Bedroom	2460.0	7.0	80.0	4	32520.325203
5238	Nagasandra	4 Bedroom	7000.0	8.0	450.0	4	64285.714286
6711	Thanisandra	3 BHK	1806.0	6.0	116.0	3	64230.343300
8411	other	6 BHK	11338.0	9.0	1000.0	6	88198.976892

In [64]:

data5=data4[data4.bath<data4.BHK+2]
data5.shape</pre>

Out[64]:

(7251, 7)

In [65]:

data6=data5.drop(['size','price_per_sqft'],axis='columns')
data6

Out[65]:

	location	total_sqft	bath	price	BHK
0	1st Block Jayanagar	2850.0	4.0	428.0	4
1	1st Block Jayanagar	1630.0	3.0	194.0	3
2	1st Block Jayanagar	1875.0	2.0	235.0	3
3	1st Block Jayanagar	1200.0	2.0	130.0	3
4	1st Block Jayanagar	1235.0	2.0	148.0	2
10232	other	1200.0	2.0	70.0	2
10233	other	1800.0	1.0	200.0	1
10236	other	1353.0	2.0	110.0	2
10237	other	812.0	1.0	26.0	1
10240	other	3600.0	5.0	400.0	4

7251 rows × 5 columns

In [66]: ▶

dummies=pd.get_dummies(data6.location)
dummies.head(10)

Out[66]:

	1st Block Jayanagar	1st Phase JP Nagar	2nd Phase Judicial Layout	2nd Stage Nagarbhavi	5th Block Hbr Layout	5th Phase JP Nagar	6th Phase JP Nagar	7th Phase JP Nagar	8th Phase JP Nagar	9th Phase JP Nagar	 v
0	1	0	0	0	0	0	0	0	0	0	
1	1	0	0	0	0	0	0	0	0	0	
2	1	0	0	0	0	0	0	0	0	0	
3	1	0	0	0	0	0	0	0	0	0	
4	1	0	0	0	0	0	0	0	0	0	
5	1	0	0	0	0	0	0	0	0	0	
6	1	0	0	0	0	0	0	0	0	0	
8	0	1	0	0	0	0	0	0	0	0	
9	0	1	0	0	0	0	0	0	0	0	
10	0	1	0	0	0	0	0	0	0	0	

10 rows × 242 columns

In [67]: ▶

```
data7=pd.concat([data6,dummies.drop('other',axis='columns')],axis='columns')
data7.head()
```

Out[67]:

	location	total_sqft	bath	price	ВНК	1st Block Jayanagar	1st Phase JP Nagar	2nd Phase Judicial Layout	2nd Stage Nagarbhavi	5th Block Hbr Layout	 `
0	1st Block Jayanagar	2850.0	4.0	428.0	4	1	0	0	0	0	
1	1st Block Jayanagar	1630.0	3.0	194.0	3	1	0	0	0	0	
2	1st Block Jayanagar	1875.0	2.0	235.0	3	1	0	0	0	0	
3	1st Block Jayanagar	1200.0	2.0	130.0	3	1	0	0	0	0	
4	1st Block Jayanagar	1235.0	2.0	148.0	2	1	0	0	0	0	

5 rows × 246 columns

In [68]: ▶

data8=data7.drop('location',axis='columns')
data8.head()

Out[68]:

	total_sqft	bath	price	внк	1st Block Jayanagar	1st Phase JP Nagar	2nd Phase Judicial Layout	2nd Stage Nagarbhavi	5th Block Hbr Layout	5th Phase JP Nagar	•••	Vija _j
0	2850.0	4.0	428.0	4	1	0	0	0	0	0		
1	1630.0	3.0	194.0	3	1	0	0	0	0	0		
2	1875.0	2.0	235.0	3	1	0	0	0	0	0		
3	1200.0	2.0	130.0	3	1	0	0	0	0	0		
4	1235.0	2.0	148.0	2	1	0	0	0	0	0		

5 rows × 245 columns

```
In [69]:
                                                                                                         M
data8.shape
Out[69]:
(7251, 245)
In [70]:
                                                                                                         H
X=data8.drop('price',axis='columns')
X.head()
Out[70]:
                                               2nd
                                                                          5th
                                       1st
                                                                   5th
                                                                                 6th
                                                                              Phase
                          1st Block Phase
                                            Phase
                                                     2nd Stage
                                                                Block
                                                                       Phase
                                                                                      ... Vija
   total_sqft bath BHK
                                                                                  JΡ
                         Jayanagar
                                       JP
                                           Judicial
                                                    Nagarbhavi
                                                                  Hbr
                                                                          JP
                                    Nagar
                                            Layout
                                                               Layout
                                                                       Nagar
                                                                               Nagar
      2850.0
 0
                                 1
                                                 0
                                                            0
               4.0
                      4
                                        0
                                                                    0
                                                                           0
                                                                                   0
      1630.0
 1
               3.0
                      3
                                 1
                                        0
                                                 0
                                                            0
                                                                                   0
 2
      1875.0
               2.0
                      3
                                 1
                                        0
                                                 0
                                                            0
                                                                    0
                                                                                   0
 3
      1200.0
                                                                                   0 ...
               2.0
                      3
                                 1
                                        0
                                                 0
                                                            0
                                                                    0
                                                                           0
      1235.0
               2.0
                      2
                                 1
                                        0
                                                 0
                                                            0
                                                                    0
                                                                           0
 4
                                                                                   0 ...
5 rows × 244 columns
In [71]:
                                                                                                         H
y=data8.price
In [72]:
                                                                                                         M
X_{train} = X.iloc[:5802]
In [73]:
y_{train} = y.iloc[:5802]
In [74]:
                                                                                                         H
X_{\text{test}} = X.iloc[5802:7252]
In [75]:
y_{test} = y.iloc[5802:7252]
```

In [76]: ▶

```
from sklearn.linear_model import LinearRegression
model=LinearRegression()
model.fit(X_train,y_train)
model.score(X_test,y_test)
```

Out[76]:

0.755747331402168

In [77]: ▶

```
from sklearn.model_selection import ShuffleSplit
from sklearn.model_selection import cross_val_score

cv = ShuffleSplit(n_splits=5, test_size=0.2, random_state=0)

cross_val_score(LinearRegression(), X, y, cv=cv)
```

Out[77]:

array([0.82430186, 0.77166234, 0.85089567, 0.80837764, 0.83653286])

In [78]:

```
from sklearn.model selection import GridSearchCV
from sklearn.linear_model import Lasso
from sklearn.tree import DecisionTreeRegressor
def find_best_model_using_gridsearchcv(X,y):
    algos = {
        'linear_regression' : {
            'model': LinearRegression(),
            'params': {
                'normalize': [True, False]
        },
        'lasso': {
            'model': Lasso(),
            'params': {
                'alpha': [1,2],
                'selection': ['random', 'cyclic']
            }
        },
        'decision_tree': {
            'model': DecisionTreeRegressor(),
            'params': {
                'criterion' : ['mse','friedman_mse'],
                'splitter': ['best','random']
            }
        }
    }
    scores = []
    cv = ShuffleSplit(n_splits=5, test_size=0.2, random_state=0)
    for algo_name, config in algos.items():
        gs = GridSearchCV(config['model'], config['params'], cv=cv, return_train_score
        gs.fit(X,y)
        scores.append({
            'model': algo_name,
            'best_score': gs.best_score_,
            'best_params': gs.best_params_
        })
    return pd.DataFrame(scores,columns=['model','best_score','best_params'])
find_best_model_using_gridsearchcv(X,y)
```

Out[78]:

best_params	best_score	model	
{'normalize': True}	0.818354	linear_regression	0
{'alpha': 1, 'selection': 'cyclic'}	0.687429	lasso	1
{'criterion': 'mse', 'splitter': 'random'}	0.718892	decision tree	2

```
In [79]:
                                                                                         M
def price_predict(location,sqft,bath,BHK):
    loc_index=np.where(X.columns==location)[0][0]
    x=np.zeros(len(X.columns))
    x[0]=sqft
    x[1]=bath
    x[2]=BHK
    if loc_index >=0:
        x[loc_index]=1
    return model.predict([x])[0]
In [80]:
                                                                                         H
price_predict('1st Phase JP Nagar',1000,2,2)
Out[80]:
86.50537337722247
In [81]:
                                                                                         H
price_predict('1st Phase JP Nagar',1000,2,3)
Out[81]:
81.9696568636569
In [82]:
                                                                                         H
price_predict('5th Phase JP Nagar',1000,2,2)
Out[82]:
38.93415026548578
In [83]:
                                                                                         M
price_predict('Indira Nagar',1000,2,2)
Out[83]:
```

180.82820686320383