DM N°5 (pour le 22/11/2013)

— Ne traiter que les parties I à III. —

Dans tout le problème, $a=(a_n)_{n\in\mathbb{N}}$ désigne une suite de complexes et $\sum a_nz^n$ la série entière associée, dont le rayon de convergence R_a est supposé non nul et fini.

On note C_a l'ensemble des complexes z de module R_a tels que $\sum a_n z^n$ est convergente.

On appelle cercle unité l'ensemble des complexes de module 1 : un complexe z appartient au cercle unité si et seulement s'il existe un réel x appartenant à l'intervalle $I =]-\pi, \pi]$ tel que $z = e^{ix}$.

D'autre part on note : $2\pi\mathbb{Z} = \{2k\pi \mid k \in \mathbb{Z}\}$, et [[p,q]] désigne l'ensemble des entiers naturels k vérifiant : $p \le k \le q$.

On étudie différentes séries entières pour les quelles l'ensemble C_a prend différentes formes.

Dans le cas où C_a est un cercle, on propose d'observer différents comportements de la fonction somme de la série entière sur ce cercle.

Partie I - Calculs préliminaires

Les résultats de cette partie sont destinés à préparer les démonstrations des parties suivantes.

I.A Montrer les inégalités :

$$\forall x \in [0, \pi], \ 0 \le \sin x \le x \quad \text{et} \quad \forall x \in [0, \pi/2], \ \sin x \ge \frac{2}{\pi}x.$$

I.B Montrer que pour tout x qui appartient à $\mathbb{R} \setminus 2\pi\mathbb{Z}$ et pour tout couple d'entiers naturels (p,q) tel que $p \leq q$:

$$\left| \sum_{k=p}^{q} e^{ikx} \right| \le \left| \frac{1}{\sin\left(\frac{x}{2}\right)} \right|.$$

I.C Soient $(u_n)_{n\in\mathbb{N}^*}$ et $(v_n)_{n\in\mathbb{N}^*}$ deux suites complexes.

On note $(V_n)_{n \in \mathbb{N}^*}$ la suite des sommes partielles de la série $\sum_{n \ge 1} v_n$:

pour tout
$$n \in \mathbb{N}^*$$
, $V_n = \sum_{k=1}^n v_k$.

I.C.1 Montrer que pour tout couple d'entiers naturels (p,q) tel que $1 \le p < q-1$, on a :

$$\sum_{k=p+1}^{q} u_k v_k = \sum_{k=p+1}^{q-1} (u_k - u_{k+1}) V_k + u_q V_q - u_{p+1} V_p.$$

I.C.2 On suppose que la suite $(V_n)_{n\in\mathbb{N}^*}$ est bornée, que la suite $(u_n)_{n\in\mathbb{N}^*}$ converge vers 0, et que la série $\sum_{k\geqslant 1}|u_k-u_{k+1}|$ est convergente.

Montrer que la série $\sum_{n\geq 1} u_n v_n$ est convergente.

I.C.3 On suppose que la suite $(V_n)_{n\in\mathbb{N}^*}$ est bornée et que la suite $(u_n)_{n\in\mathbb{N}^*}$ est décroissante, convergente et de limite nulle.

Montrer que la série $\sum_{n\geqslant 1} u_n v_n$ est convergente.

I.D Déduire des questions précédentes que pour tout x qui appartient à $\mathbb{R} \setminus 2\pi\mathbb{Z}$, les séries $\sum_{k \ge 1} \frac{\cos(kx)}{k}$

et $\sum_{k \ge 1} \frac{\sin(kx)}{k}$ sont convergentes.

Que dire pour un réel x qui appartient à $2\pi\mathbb{Z}$?

Partie II - Quelques exemples d'ensembles Ca

On se place dans le cadre des notations de l'introduction.

II.A Soit $(b_n)_{n\in\mathbb{N}}$ définie pour tout $n\in\mathbb{N}$ par : $b_n=a_n(\mathbf{R}_a)^n$. Montrer que le rayon de convergence de la série entière $\sum b_n z^n$ est $\mathbf{R}_b=1$ et qu'un complexe z appartient à \mathbf{C}_a si et seulement si $\frac{z}{\mathbf{R}_a}$ appartient à \mathbf{C}_b .

On se ramène ainsi à l'étude de séries entières de rayon de convergence égal à 1.

- II.B On suppose dans cette question que $\sum |a_n|$ est convergente et que $R_a = 1$.
 - **II.B.1** Déterminer C_a .
 - **II.B.2** On note pour tout $n \in \mathbb{N}$:

$$f_n: \left\{ \begin{array}{ccc} \mathbf{I} & \to & \mathbb{C} \\ x & \mapsto & a_n \mathbf{e}^{inx} \end{array} \right.$$

Montrer que la série de fonctions $\sum f_n$ converge uniformément sur I vers une fonction continue sur I.

- **II.B.3** Donner un exemple simple de série entière $\sum a_n z^n$ pour laquelle C_a est le cercle unité.
- **II.C** Donner un exemple simple de série entière $\sum a_n z^n$ pour laquelle $R_a = 1$ et C_a est vide.
- **II.D** Construction de quelques cas intermédiaires.
 - **II.D.1** On suppose qu'il existe un complexe z_0 de module 1 tel que $\sum a_n z_0^n$ soit semi-convergente (c'est-à-dire que $\sum a_n z_0^n$ est convergente mais ne converge pas absolument). Montrer qu'alors $R_a=1$.
 - **II.D.2** Soit ξ un complexe de module 1. Si pour tout $n \in \mathbb{N}^*$, $a_n = \frac{1}{n\xi^n}$, montrer que C_a est le cercle unité privé d'un point à déterminer.
 - II.D.3 Soit $p \in \mathbb{N}^*$ et p complexes distincts ξ_1, \ldots, ξ_p , tous de module 1. Construire un exemple de série entière $\sum a_n z^n$ pour laquelle C_a est le cercle unité privé des p points ξ_1, \ldots, ξ_p .

II.D.4 On suppose que, pour tout
$$n \in \mathbb{N}^*$$
, $a_n = \frac{\cos n}{n}$. Déterminer R_a et C_a . La série $\sum_{n \ge 1} |a_n|$ est-elle convergente?

Partie III - Un exemple pour lequel C_a est le cercle unité et $\sum |a_n|$ diverge

Dans cette partie, on définit la suite (a_n) de la façon suivante :

- $a_0 = 0$,
- pour tout naturel p non nul et tout naturel n tel que $p^2 \le n \le (p+1)^2 1$:

$$a_n = \frac{(-1)^p}{p^2} \ .$$

- III.A Montrer que la série $\sum |a_n|$ est divergente. (On pourra par exemple chercher un équivalent de $|a_n|$.)
- **III.B** Soit (A_n) la suite des sommes partielles de la série numérique $\sum a_n$.
 - **III.B.1** Pour $N \in \mathbb{N}^*$, on note P le plus grand entier naturel vérifiant : $P^2 \leq N$. On pose : $R_N = A_N A_{P^2-1}$. Montrer que $|R_N| \leq \frac{2P+1}{P^2}$.
 - III.B.2 En déduire que la série $\sum a_n$ est convergente.
- III.C Soit $z = e^{ix}$ un complexe de module 1, avec x non nul appartenant à I.
 - **III.C.1** Calculer $|a_{n+1}-a_n|$ suivant les valeurs du naturel n, et en déduire que la série $\sum |a_{n+1}-a_n|$ est convergente.
 - III.C.2 Déduire des résultats précédents et de la partie I que la série $\sum a_n z^n$ est convergente.

Partie IV - Un dernier exemple

IV.A On veut montrer qu'il existe une constante réelle C_1 telle que pour tout entier naturel non nul n et tout réel x:

$$\left| \sum_{k=1}^{n} \frac{\sin(kx)}{k} \right| \le C_1.$$

Soient $x \in]0, \pi[$ et k_x le plus grand entier naturel tel que $k_x \cdot x \leq \pi$.

IV.A.1 On suppose que $1 \le n \le k_x$. Montrer que :

$$0 \le \sum_{k=1}^{n} \frac{\sin(kx)}{k} \le \pi.$$

IV.A.2 On suppose que $n > k_x$. Montrer que :

$$\left| \sum_{k=k_x+1}^n \frac{\sin(kx)}{k} \right| \le 2.$$

On pourra notamment utiliser le résultat de la question I.C.1.

IV.A.3 Conclure.

IV.B Soient n et N deux entiers naturels tels que : $1 \le n \le N$. Soit $Q_{n,N}$ le polynôme défini par :

$$Q_{n,N}(X) = \sum_{k=N-n}^{N-1} \frac{1}{N-k} X^k + \sum_{k=N+1}^{N+n} \frac{1}{N-k} X^k.$$

IV.B.1 Soit $x \in \mathbb{R}$. Montrer que :

$$Q_{n,N}(e^{ix}) = -2ie^{iNx} \sum_{k=1}^{n} \frac{\sin(kx)}{k}.$$

IV.B.2 En déduire qu'il existe une constante réelle C_2 telle que, pour tout couple d'entiers naturels (n,N) tel que $1 \le n \le N$ et tout complexe z de module $1: |Q_{n,N}(z)| \le C_2$.

IV.C Pour tout entier naturel non nul j, on pose :

$$n_j = 2^{(j^3)}, \quad N_j = 2^{(j^3+1)}, \quad \text{et} \quad I_j = [[N_j - n_j, N_j + n_j]].$$

Vérifier que les intervalles I_i ainsi définis sont disjoints deux à deux.

Pour toute la suite du problème, on pose pour tout naturel j non nul : $P_j = Q_{n_j,N_j}$, et on définit les suites $(\alpha_k)_{k\in\mathbb{N}}$ et $(a_k)_{k\in\mathbb{N}}$ de la façon suivante :

• s'il existe $j \in \mathbb{N}^*$ tel que $k \in I_j$, et $k \neq N_j$, alors :

$$\alpha_k = \frac{1}{N_j - k}$$
 et $a_k = \frac{e^{(ik)/j}}{j^2(N_j - k)}$;

• sinon $\alpha_k = a_k = 0$.

On étudie la série entière $\sum a_k z^k$.

Pour tout $n \in \mathbb{N}^*$ et $x \in]-\pi,\pi]$, on note

$$A_n(x) = \sum_{k=0}^n a_k e^{ikx} \quad \text{et} \quad B_n(x) = \sum_{j=1}^n \frac{1}{j^2} P_j \left(e^{i\left(x + \frac{1}{j}\right)} \right).$$

IV.D Montrer que la suite de fonctions $(B_n)_{n\in\mathbb{N}^*}$ converge uniformément sur I vers une fonction continue que l'on notera F.

IV.E Montrer que pour tout naturel n non nul et tout x appartenant à I:

$$B_n(x) = A_{3 \cdot 2^{(n^3)}}(x).$$

IV.F On veut montrer que la suite de fonctions $(A_n)_{n\in\mathbb{N}}$ converge également vers F sur I.

IV.E.1 Montrer que pour tout $j \in \mathbb{N}^*$ et $(p,q) \in (I_j)^2$ tels que p < q:

$$\sum_{k=p}^{q-1} |\alpha_k - \alpha_{k+1}| \le 4.$$

IV.F.2 En déduire qu'il existe une constante réelle C_3 telle que pour tout entier naturel j non nul, pour tout couple de naturels $(p,q) \in (I_j)^2$, tels que $p \le q$ et pour tout réel x non nul appartenant à I:

$$\left| \sum_{k=p}^{q} \alpha_k e^{ikx} \right| \leq \frac{C_3}{|x|} .$$

IV.F.3 Soit $x \in I$, $x \neq \pi$. Vérifier que, pour j entier naturel suffisamment grand, on a

$$\left| x + \frac{1}{j} \right| \neq 0$$
 et $x + \frac{1}{j} \in I$.

En déduire que pour n naturel suffisamment grand :

$$|A_n(x) - B_j(x)| \le \frac{1}{j^2} \frac{C_3}{\left|x + \frac{1}{j}\right|},$$

où j est l'entier naturel tel que $2^{(j^3)} \le n < 2^{(j+1)^3}$.

On considère maintenant le cas $x = \pi$. Montrer, avec les mêmes conditions sur j et n, que

$$|A_n(x) - B_j(x)| \le \frac{1}{j^2} \frac{C_3}{\left|\pi - \frac{1}{j}\right|}.$$

IV.F.4 Conclure.

IV.G On note pour tout $n \in \mathbb{N}$:

$$f_n: \left\{ \begin{array}{ccc} \mathrm{I} & \to & \mathbb{C} \\ x & \mapsto & a_n \mathrm{e}^{inx} \end{array} \right.$$

On veut prouver que la série de fonctions $\sum f_n$ ne converge pas uniformément sur I.

IV.G.1 Montrer que, pour tout entier naturel *j* non nul :

$$A_{N_j}\left(-\frac{1}{j}\right) - A_{N_j - n_j - 1}\left(-\frac{1}{j}\right) = \frac{1}{j^2} \sum_{k=1}^{2^{(j^3)}} \frac{1}{k}.$$

IV.G.2 Donner un équivalent simple de cette expression lorsque j tend vers $+\infty$ et conclure.

IV.H Donner R_a et C_a .

