HA NOI UNIVERSITY Faculty of Information Technology

FINAL EXAM (SET 2)

Subject: K20 Calculus **Duration: 75 minutes**

ı	Multi	nle	Choice	Questions	(5	noints)	۱
١.	wulli	שוע	CHOICE	QUESTIONS	w	poma	,

	ipio Giloloo Quootiolio (d	pointo,				
1.	(0.25 point) Which of the A. x_1+4 $x_2 +1=x_3$	ot a linear equation? B. $x_1=3$				
	C. $x_1 + 4 x_2 - \sqrt{3}x_3 = \sqrt{5}$		D. $x_1 + 4 x_1 x_2 - \sqrt{3} x_3 = $	$\sqrt{5}$		
2. (0.25 point) Cramer's rule leads easily to a general formula for						
	A. the inverse of n x n ma	trix A	B. the adjugate of a	an matrix A		
3.	(0.25 point) The transpos A. Lower triangular matrix		riangular matrix is B. Upper triangular matrix			
4.	A) = 21, then					
	det (2A)					
	A. 168	B. 186	C. 21	D. 126		
5.	(0.25 point) The product of A. lower triangular matrix		gular matrices is per triangular matrix			

- C. diagonal matrix
- 6. (0.25 point) Find the dimensions of the null spcae and the column space of the given matrix

$$A = \begin{bmatrix} 1 & 5 & 1 & 3 & 0 \\ -2 & -4 & -5 & -4 & 1 \end{bmatrix}.$$

A. dim Nul A = 3, dim Col A = 2

B. dim Nul A = 3, dim Col A = 3

C. dim Nul A = 2, dim Col A = 3

D. dim Nul A = 4, dim Col A = 1

7. (0.25 point) For the given matrix A, find k such that Nul A is a subspace of R^k and find m such that Col A is a subspace of R^m

$$A = \begin{bmatrix} 1 & -2 \\ 0 & 6 \\ -4 & 5 \\ -1 & -3 \\ 3 & -5 \end{bmatrix}.$$

A.
$$k = 2, m = 5$$

C.
$$k = 5$$
, $m = 5$

B.
$$k = 5, m = 2$$

D.
$$k = 2, m = 2$$

8. (0.25 point) Solve using Cramer's rule

$$\begin{cases} 3x_1 + 3x_2 = 9 \\ 2x_1 + x_2 = 1 \end{cases}$$
B. $(-2,5)$ C. $(5,-2)$ D. $(2,-5)$

A.
$$(-5,-2)$$

B.
$$(-2,5)$$

C.
$$(5,-2)$$

D.
$$(2,-5)$$

9. (0.25 point) Find an explicit description of the null space of matrix A by listing vectors that span the null space

$$A = \begin{bmatrix} 1 & -2 & -2 & -2 \\ 0 & 1 & 3 & 4 \end{bmatrix}.$$

A.
$$\begin{bmatrix} 2 \\ -3 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ -4 \\ 0 \\ 1 \end{bmatrix}$$

B.
$$\begin{bmatrix} 2\\1\\0\\0 \end{bmatrix}, \begin{bmatrix} 2\\-3\\1\\0 \end{bmatrix}, \begin{bmatrix} 2\\-4\\0\\1 \end{bmatrix}$$

$$C. \begin{bmatrix} -4 \\ -3 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -6 \\ -4 \\ 0 \\ 1 \end{bmatrix}$$

D.
$$\begin{bmatrix} 2 \\ 1 \\ 0 \\ 0 \end{bmatrix}$$
, $\begin{bmatrix} -4 \\ -3 \\ 1 \\ 0 \end{bmatrix}$, $\begin{bmatrix} -6 \\ -4 \\ 0 \\ 1 \end{bmatrix}$

10. (0.25 point) Determine the values of the parameters for which the system has unique solution

$$\begin{cases} 5x_1 + 9x_2 = -3 \\ 5x_1 + sx_2 = 4 \end{cases}$$

$$c. \ s \neq \pm 5$$

A.
$$s \neq \pm 3$$

B.
$$s \neq 3$$

$$C$$
. $s \neq \pm \frac{1}{2}$

D.
$$s \neq \pm 9$$

- 11. (0.25 point) If for a linear transformation the equation T(x) = 0 has only the trivial solution then T is
 - A. One-to-one

- B. Onto
- **12. (0.25 point)** If A is invertible, then $det(A)det(A^{-1})=1$.

13. (0.25 point) The horizontal asymptote of the curve $f(x) = \frac{\sqrt{x^2+4}}{x}$ is

$$A. y = 2$$

B.
$$y = 1$$

C.
$$y = -4$$

D.
$$y = 0$$

14. (0.25 point) Find the limit $\lim_{h\to 0} \frac{(x+h)^2 - x^2}{h}$. A. 2x B. -2x C. 2h

B.
$$-2x$$

D.
$$h + 1$$

15. (0.25 point) Find the second derivative of the function $f(x) = \left(\frac{1+3x}{3x}\right)(3-x)$.

A.
$$2x^{3}$$

B.
$$3x^2$$

C.
$$2x^3 + 1$$

D.
$$2x^{-3}$$

16. (0.25 point) Evaluate the given integrals. $\int_{-1}^{1} |2x - 1| dx$.

17. (0.25 point) Integrate the function $\int \frac{dx}{\sqrt{x_3}\sqrt{x}}$.

A.
$$2(x-2)^2 + C$$

B.
$$-2(x-2)^3 + C$$

D. $-2(x-2)^4 + C$

A.
$$2(x-2)^2 + C$$

C. $-2(x-2)^2 + C$

D.
$$-2(x-2)^4 + 6$$

18. (0.25 point) Solve the initial value problem

$$\frac{dy}{dx} = \cos x, \ y(0) = 1.$$

A.
$$y = cosx + 1$$

$$C. y = \sin x - 1$$

$$B. y = sinx + 1$$

$$D. y = cosx - 1$$

19. (0.25 point) The equation of the tangent line to the graph of y = lnx at $x = e^2$

A.
$$y = \frac{x}{2e^2} + 1$$

C. $y = \frac{x}{e^2} + 1$

C.
$$y = \frac{2e^2}{e^2} + 1$$

B.
$$y = \frac{x}{2a^2} + 1$$

B.
$$y = \frac{x}{3e^2} + 1$$

D. $y = \frac{x}{4e^2} + 1$

20. (0.25 point) If $\int_{-2}^{5} f(x)dx = 6$, $\int_{-2}^{5} g(x)dx = 2$, what is the values of $\int_{-2}^{5} \left(\frac{f(x) + g(x)}{5} \right) dx ?$

A.
$$\frac{8}{5}$$

B.
$$\frac{5}{8}$$

C.
$$\frac{3}{5}$$

D.
$$-\frac{5}{8}$$

II. Short answer Question (5 points)

- 1. (1.0 point) Find the limit $\lim_{x \to \infty} x^{1/x}$.
- **2.** (1.0 point) For what values of a and b will

$$f(x) = \begin{cases} ax, & x < 2\\ ax^2 - bx + 3, & x \ge 2 \end{cases}$$

be differentiable for all values of x?

- 3. (1.0 point) Evaluate $\int \frac{2x+4}{x^3-2x^2} dx$. 4. (1.0 point) Find the area of the region enclosed by the parabola $y=2-x^2$
- and the line y = -x. **5.** (1.0 point) Evaluate $\int_0^{+\infty} \frac{dx}{1+x^2}$.