1 Linear Regression

- 1. T/F: Let r be the correlation coefficient between $\vec{x} = (x_1, \dots, x_n)$ and $\vec{y} = (y_1, \dots, y_n)$. Then $\arccos r$ is the angle between the vectors $\vec{x} \bar{x}$ and $\vec{y} \bar{y}$.
- 2. Recall that the CBS inequality gives us

$$|\vec{v} \cdot \vec{w}| \le |\vec{v}| \cdot |\vec{w}|. \tag{1}$$

- (a) What does (1) tell us about the angle between \vec{v} and \vec{w} ?
- (b) Let $\vec{x} = (x_1, ..., x_n)$, and $\vec{y} = (y_1, ..., y_n)$. Let $\vec{v} = (x_1 - \bar{x}, ..., x_n - \bar{x})$, and $\vec{w} = (y_1 - \bar{y}, ..., y_n - \bar{y})$.

What does (1) tell us about the correlation coefficient r between \vec{x} and \vec{y} ?

(c) For what kind of vectors \vec{v} and \vec{w} is equality attained, when \vec{v} and \vec{w} are vectors with two components?

2 Needleman-Wunsch Algorithm

Move	$\stackrel{ o}{\chi}$	+	X	X	
	_	Χ	Y	X	
Score	0	0	0	1	

- 1. T/F:
 - (a) A diagonal move is the only move that could increase the total score.
 - (b) Any diagonal move can increase the total score.
- 2. Translate the following alignment into a path. What's its score?

3. Translate the following path into an alignment. What's its score?

	G	T	С	G
T	\rightarrow	×		
Α			×	
G				×
С				+

- 4. (HW37 # 2 partial) Consider the following new scoring system in Table 1. Compare the two alignments. Which one is better?
- 5. (HW37 # 3 partial)

new gap	gap extension	match	mismatch
-5	-1	1	-1

Table 1: New scoring system

G	A	A	Α	A	Α	A	T	G	A	A	A	A	A	A	T
G			A		Α		T	G	Α	Α					T

- (a) Besides being square, what type of matrix is the similarity matrix in table 2?
- (b) Write the similarity matrix for the alphabet below, and then compute its eigenvalues and eigenvectors.
 - i. Alphabet "AC".
 - ii. (Challenge) Alphabet "ACG".

	A	С	G	T
Α	1	-1	-1	-1
С	-1	1	-1	-1
G	-1	-1	1	-1
Т	-1	-1	-1	1

Table 2: Similarity matrix