Løsningsforslag Øving 1

TEP4100 Fluidmekanikk, Vår 2013

Oppgave 1-52

Løsning Luftstrømmen gjennom en vindturbin er analysert. Basert på en dimensjonsanalyse er et uttrykk for massestrømmen gjennom turbinarealet funnet.

Antagelser Vinden angriper turbinbladene med en uniform hastighet.

Analyse Massestrømmen er avhengig av tettheten til luft, gjennomsnittlig vindhastighet og tverrsnittsarealet som avhenger av bladdiameteren. Enheten til massestrømmen \dot{m} er kg/s. De ulike størrelsene skal ordnes slik at vi ender opp med de riktige enhetene. Vi har følgende informasjon

$$\dot{m}$$
 [kg/s] er en funksjon av ρ [kg/m³], D [m] og V [m/s]

Den eneste måten å ende opp med enheten kg/s for massestrømmen er å multiplisere størrelsene ρ og V med kvadratet av D. Vi får $\frac{\text{kg}}{\text{m}^3} \cdot \frac{\text{m}}{\text{s}} \cdot \text{m}^2 = \frac{\text{kg}}{\text{s}}$. Proporsjonalitetsforholdet er derfor

 \dot{m} er proporsjonal med $\rho V D^2$

eller

$$\dot{m} = C \rho V D^2$$

hvor proporsjonalitetskonstanten er $C = \pi/4$ slik at $\dot{m} = \rho V(\pi D^2/4)$.

Diskusjon Merk at den dimensjonsløse proporsjonalitetskonstanten ikke kan bestemmes ved hjelp av denne tilnærmingen. Vi skal finne denne i kapittel 5-2.

Oppgave 1-56

Løsning Luftmotstanden som virker på en bil er uttrykt ved hjelp av drag-koeffisienten, tettheten til luft, bilens hastighet og frontalarealet til bilen.

Analyse Drag-kraften (luftmotstanden) er avhengig av en dimensjonsløs drag-koeffisient, luftens tetthet, bilens hastighet og frontalarealet. Enheten for kraften F er newton N, som er ekvivalent med kg·m/s². De ulike størrelsene må derfor ordnes slik at vi ender opp med enheten kg·m/s² for drag-kraften. Vi har følgende informasjon

$$F_D [kg \cdot m/s^2] \leftrightarrow C_D [], A_{front} [m^2], \rho [kg/m^3] \text{ og } V [m/s]$$

Den eneste måten å ende opp med enheten $kg \cdot m/s^2$ for drag-kraften er å multiplisere tettheten med kvadratet av hastigheten og frontalarealet. Vi velger å la drag-koeffisienten delt på 2 være proporsjonalitetskonstanten. Da får vi følgende uttrykk

$$F_D = \frac{C_D}{2} \rho V^2 A_{\text{front}}$$

Diskusjon Begrunnelsen for at proporsjonalitetskonstanten er drag-koeffisienten delt på 2 kan ikke utledes fra dimensjonsanalysen, men vil bli gjennomgått i kapittel 11-2.

Oppgave 2-12

Løsning

Et bildekk er fylt med luft. Vi skal finne ut hvor mye trykket øker når luftens temperatur øker. Vi skal også finne mengden luft som må slippes ut for å gjenopprette trykket vi hadde før oppvarmingen. For løsning av MatLab-delen av oppgaven, se MatLab-LF.m på It'sLearning

Antagelser 1 Luft har egenskaper som en ideell gass. 2 Dekkets volum \mathcal{V} er konstant.

Egenskaper Gasskonstanten til luft er $R=287\,\frac{\rm J}{\rm kg\cdot K}=287\,\frac{\rm Pa\cdot m^3}{\rm kg\cdot K}$. Atmosfæretrykket er oppgitt som $P_{atm}=100\,\rm kPa$.

Analyse Totaltrykket før oppvarmingen er

$$P_1 = P_g + P_{atm} = 210 \,\mathrm{kPa} + 100 \,\mathrm{kPa} = 3.1 \cdot 10^5 \,\mathrm{Pa}$$

Ved å behandle luft som en ideell gass og ved å anta at dekket har konstant masse og volum, finner vi totaltrykket etter oppvarmingen ved hjelp av ideell gass-lov PV = mRT

$$\frac{P_1 \mathcal{V}_1}{T_1} = \frac{P_2 \mathcal{V}_2}{T_2} \rightarrow P_2 = \frac{T_2}{T_1} P_1 = \frac{323 \, \mathrm{K}}{298 \, \mathrm{K}} (3.1 \cdot 10^5 \, \mathrm{Pa}) = 3.36 \cdot 10^5 \, \mathrm{Pa} = 336 \, \mathrm{kPa}$$

Trykkøkningen er altså

$$\Delta P = P_2 - P_1 = 336 \,\mathrm{kPa} - 310 \,\mathrm{kPa} = \mathbf{26.0 \,kPa}$$

Mengden luft som må slippes ut for å gjenopprette trykket er

$$m_1 = \frac{P_1 \mathcal{V}}{RT_1} = \frac{(3.1 \cdot 10^5 \,\mathrm{Pa})(0.025 \,\mathrm{m}^3)}{(287 \,\mathrm{Pa} \cdot \mathrm{m}^3/\mathrm{kg} \cdot \mathrm{K})(298 \,\mathrm{K})} = 0.0906 \,\mathrm{kg}$$

$$m_2 = \frac{P_1 \mathcal{V}}{RT_2} = \frac{(3.1 \cdot 10^5 \,\mathrm{Pa})(0.025 \,\mathrm{m}^3)}{(287 \,\mathrm{Pa} \cdot \mathrm{m}^3/\mathrm{kg} \cdot \mathrm{K})(323 \,\mathrm{K})} = 0.0836 \,\mathrm{kg}$$

$$\Delta m = m_1 - m_2 = 0.0906 \,\mathrm{kg} - 0.0836 \,\mathrm{kg} = \mathbf{0.0070} \,\mathrm{kg}$$

Diskusjon Merk at totaltrykket, ikke overtrykket, må benyttes når vi regner med ideell gass-lov.

Oppgave 2-20

Løsning Det minste tillatte trykket i et rørsystem for å unngå kavitasjon skal bestemmes.

Egenskaper Damptrykket til vann ved 35°C er 5.63 kPa, se "saturation pressure" i tabell A-3 med tre signifikante sifre.

Analyse For å unngå kavitasjon må trykket overalt i strømningen være større enn damptrykket (eller metningstrykket) ved den gitte temperaturen. Dermed får vi

$$P_{\min} = P_{\text{sat@35}^{\circ}\text{C}} = 5.63 \text{ kPa}$$

Derfor må trykket holdes over 5.63 kPa overalt i strømningen.

Diskusjon Merk at damptrykket øker med økende temperatur, og dermed er risikoen for kavitasjon større ved høyere temperaturer.

Oppgave 2-70

Løsning En kloss dyttes opp et skråplan med konstant hastighet. Kraften som virker i horisontal retning når klossen er tørr, samt den prosentvise kraftreduksjonen når en oljefilm legges mellom klossen og skråplanet, er funnet.

Antagelser 1 Skråplanet er helt flatt, men tiltet. 2 Friksjonskoeffisienten og oljefilmtykkelsen er uniforme. 3 Vekten av oljelaget er neglisjerbart.

Egenskaper Den dynamiske viskositeten av oljen er $\mu = 0.012 \,\mathrm{Pa \cdot s} = 0.012 \,\mathrm{N \cdot s/m^2}.$

Analyse

(a) Hastigheten til klossen er konstant, dermed er akselerasjonen og resultantkraften som virker på klossen lik 0. Et fritt legeme diagram av klossen er vist i figuren. Kraftbalansen gir

$$\sum F_x = 0: \quad F_1 - F_f \cos 20^\circ - F_{N_1} \sin 20^\circ = 0 \tag{1}$$

$$\sum F_y = 0: \quad F_{N1} \cos 20^\circ - F_f \sin 20^\circ - W = 0 \tag{2}$$

Friksjonskraft:
$$F_f = fF_{N1}$$
 (3)

Ved å substituerere (3) inn i (2) og løse for F_{N1} får vi

$$F_{N1} = \frac{W}{\cos 20^{\circ} - f \sin 20^{\circ}} = \frac{150 \text{ N}}{\cos 20^{\circ} - 0.27 \sin 20^{\circ}} = 177.0 \text{ N}$$

Deretter bruker vi (1) til å finne F_1

$$F_1 = F_f \cos 20^\circ + F_{N1} \sin 20^\circ = (0.27 \cdot 177 \,\mathrm{N}) \cos 20^\circ + (177 \,\mathrm{N}) \sin 20^\circ = \mathbf{105.5} \,\mathbf{N}$$

(b)
Friksjonskraften erstattes nå av en skjærkraft som virker på bunnen av klossen på grunn av oljen. Vi har heftbetingelsen (no-slip condition), som betyr at oljen henger fast i skråplanet i bunn og i klossen på toppen. Da kan skjærkraften uttrykkes slik

$$F_{skjær} = \tau_w A_s = \mu A_s \frac{V}{h}$$
$$= (0.012 \,\mathrm{N \cdot s/m^2})(0.5 \cdot 0.2 \,\mathrm{m^2}) \frac{0.8 \,\mathrm{m/s}}{4 \cdot 10^{-4} \,\mathrm{m}} = 2.4 \,\mathrm{N}$$

Ved å erstatte friksjonskraften med skjærkraften i del (a) får vi

$$\sum F_x = 0: \quad F_2 - F_{skjær} \cos 20^\circ - F_{N_2} \sin 20^\circ = 0 \tag{4}$$

$$\sum F_y = 0: \quad F_{N2} \cos 20^\circ - F_{skjær} \sin 20^\circ - W = 0 \tag{5}$$

(5) gir $F_{N2}=(F_{skj\varpi r}\sin 20^\circ+W)/\cos 20^\circ=[(2.4\,\mathrm{N})\sin 20^\circ+(150\,\mathrm{N})]/\cos 20^\circ=160.4\,\mathrm{N}.$ Ved å substituere dette inn i (4) får vi et uttrykk for den nødvendige horisontalkraften

$$F_2 = F_{skj\varpi r}\cos 20^\circ + F_{N2}\sin 20^\circ = (2.4 \text{ N})\cos 20^\circ + (160.5 \text{ N})\sin 20^\circ = 57.2 \text{ N}$$

Da får vi en prosentvis reduksjon på

$$\frac{F_1 - F_2}{F_1} \cdot 100\% = \frac{105.5 - 57.2}{105.5} \cdot 100\% = \mathbf{45.8\%}$$

Diskusjon Merk at kraften som kreves for å dytte klossen opp skråplanet reduseres markant ved å olje overflaten.

Oppgave 2-99

Løsning En stålkule holder seg flytende i vann på grunn av overflatespenningen. Den største diameteren kulen kan ha og fortsatt holde seg flytende bestemmes, og utregningen gjentas for aluminium.

Antagelser

1 Vannet er rent og har konstant temperatur. 2 Kulen slippes i vannet så sakte at treghetseffekter er neglisjerbare. 3 Kontaktvinkelen er 0° målt i luft, og for maksimal diameter. 4 Oppdrift er ikke tatt med.

Egenskaper Overflatespenningen for vann ved

 20° C er $\sigma_s = 0.073 \,\mathrm{N/m} = 0.073 \,\mathrm{kg/s^2}$, se tabell 2-4. Kontaktvinkelen er 0° målt i luft, og tettheten til henholdsvis stål og aluminium er $\rho_{st} = 7800 \,\mathrm{kg/m^3}$ og $\rho_{Al} = 2700 \,\mathrm{kg/m^3}$.

Analyse Overflatespenningskraften og tyngden til kulen kan uttrykkes som

$$F_s = \pi D \sigma_s \text{ og } W = mg = \rho g \mathcal{V} = \rho g \pi D^3 / 6$$

For at kulen skal flyte må nettokraften i vertikalretning være lik null. Når man setter $F_s = W$ og løser for diamteren D, får man $D = \sqrt{\frac{6\sigma_s}{\rho g}}$. Ved å sette inn for de ulike størrelsene finner man dermed største mulige diameter for henholdsvis stål og aluminium som

$$D_{st} = \sqrt{\frac{6\sigma_s}{\rho g}} = \sqrt{\frac{6(0.073 \,\text{kg/s}^2)}{(7800 \,\text{kg/m}^3)(9.81 \,\text{m/s}^2)}} = 2.4 \cdot 10^{-3} \,\text{m} = \mathbf{2.4 \,\text{mm}}$$
$$D_{Al} = \sqrt{\frac{6\sigma_s}{\rho g}} = \sqrt{\frac{6(0.073 \,\text{kg/s}^2)}{(2700 \,\text{kg/m}^3)(9.81 \,\text{m/s}^2)}} = 4.1 \cdot 10^{-3} \,\text{m} = \mathbf{4.1 \,\text{mm}}$$

Diskusjon Kulens diameter er omvendt proporsjonal med kvadratroten av tetthet. For en gitt tetthet vil derfor mindre kuler lettere flyte.