Advanced FP

Functional Data Structures

Daniil Berezun

Us; Contacts

Daniil Berezun

> danya.berezun@gmail.com

Ekaterina Verbitskaja

- > telegram: @kajigor
- » kajigor@gmail.com

JetBrains Research, Programming Languages and Tools Lab

Telegram: Advanced Functional Programming, CUB fall 2023

Syllabus

- > Functional data structures, persistency (C. Okasaki):
 - RB-trees in functional setting
 - Queues in functional setting:
 - Pure Functional Queue
 - Banker's queue

- Physicist's queue
- Real-time Queue

- Quality assurance; Property-based testing
- Lazy programming; Profiling and debugging of Haskell programs
- Functional concepts and pearls (R. Bird):
 - Smallest missing number
 - · Remove repeats
 - Burrows-Wheeler transform
 - All prefixes

- Knuth-Morris-Pratt algorithm
- Puzzels: rush hour and sudoku
- Hylomorphisms and nexyses
- Code with no cycles
- Effect systems; Using them for logging, error catching, mutability
- Zippers, type algebra, comonads, and Pearl: Scrap Your Zippers
- New Pearls: More Fixpoints!, monoids and 'vector reverse'
- Functional Design Patterns. Design and implementation of DSLs:
 - GADTs
- Existential type

Rank N types

- DSI
- Type level programming in Haskell and beyond. Type families, tagless-final
- Template Haskell, Lens
- > Interfacing with the real world: working with databases, IORef, concurrency

Today: Reminder about Persistency

Main today's concepts

- > Immutable data structures
- > Persistent data structures

Remarks

- » We can use old nodes (share) in new version of the data structure
- > Non-persistent data structures are called ephemeral

Important remark

During this lecture we do not assume our language to be lazy

Linked List

Definition (Linked List)

Who knows?

Linked List

Definition (Linked List)

Who knows?

Definition (List) [One of possible definitions]

A data structure such that from some predefined side (for example, list head) deletion and insertion of element has complexity ${\it O}(1)$

List Concatenation in the Imperative Paradigm

- Destroys argument lists xs and ys (one can't use them further)

Concatenation of lists xs and ys in the imperative paradigm

➤ Complexity: O(1)

Pure Functional Lists Concatenation

Execution of zs = xs ++ ys in functional world

- > xs and ys remain intact
- > we copied **a lot** but the first list only
 - i.e. persistency through copying (memory)
 - shared parts

Pure Functional Lists Concatenation --- 2

How to implement concatenation ++ of lists xs and ys?

- > If xs is empty then ys is the answer
- Otherwise xs consists of h as a head and tl as a tail then the answer is a list with head h and tail tl++ys.

Complexity: O(length(xs))

```
1 (++) [] ys = ys
(++) (h:tl) ys = h : (tl ++ ys)
```

How to update the n-th list element?

```
update [] i y = error "i is greater than list length"
update x:xs 0 y = y : xs
update x:xs i y = x : update xs (i-1) y
```

- $> O(n) \dots \text{ very sad };$
- > We copy the element being modified **and** all elements that have direct or indirect pointers to it

Another example: Trees

> Usually, the number of nodes to be copied is at most $\log_2 n$

On Concatenation Associativity

In theory list concatenation is associative

$$(((a_1 + a_2) + a_3) + ... + a_n) \equiv (a_1 + (a_2 + (a_3 + (... + a_n))))$$

In practise left-had side is much slower than right-hand side

Note for developers

Sometimes, for an efficient implementation one need to redesign algorithms in a way such that shorter lists are concatenated with longer lists; Ideally, always concatenate one element with a list

Pearl: RB-Trees: definition

```
data Colour = R | B
data Tree a = E | T Colour (Tree a) a (Tree a)
```

Invariants

- No red node has a red parent
- Every path from the root to an empty node contains the same number of black nodes

Simple set operations

```
empty = E -- we assume them to be black

member x E = False
member x (T _ a y b)

| x < y = member x a
| x > y = member x b
| otherwise = True
```

Pearl: RB-Trees: Insersions

Pearl: RB-Trees: Possible Invariant Violations

RB-Trees: Balance (1/4)

```
balance :: Colour -> Tree a -> a -> Tree a
balance B (T R (T R a x b) y c) z d
T R (T B a x b) y (T B c z d)
```


RB-Trees: Balance (2/4)

RB-Trees: Balance (3/4)

```
balance :: Colour -> Tree a -> a -> Tree a -> Tree a balance B a x (T R (T R b y c) z d) = T R (T B a x b) y (T B c z d)
```


RB-Trees: Balance (4/4)

```
balance :: Colour -> Tree a -> a -> Tree a -> Tree a balance B a x (T R b y (T R c z d))

T R (T B a x b) y (T B c z d)
```


Pearl: RB-Trees: All together

3

5

8

10

Pearl: RB-Trees: All together

```
balance :: Colour -> Tree a -> a -> Tree a -> Tree a
balance B (T R (T R a x b) y c) z d
   = TR (TBaxb) y (TBczd)
balance B (T R a x (T R b y c)) z d
   = T R (T B a x b) y (T B c z d)
balance B a x (T R (T R b y c) z d)
   = T R (T B a x b) y (T B c z d)
balance B a x (T R b y (T R c z d))
   = T R (T B a x b) y (T B c z d)
balance c t1 a t2 = T c t1 a t2
```

8

10

2

3

5

```
balance :: Colour -> Tree a -> a -> Tree a -> Tree
balance B (T R (T R a x b) y c) z d
         \mathbf{B} (\mathbf{T} \mathbf{R} a x (\mathbf{T} \mathbf{R} b y c)) z d
     | | Bax (TR (TRbyc)zd)
      | | Bax (TRby (TRczd))
    = T R (T B a x b) y (T B c z d)
balance c t1 a t2 = \mathbf{T} c t1 a t2
```

Pearl: RB-Trees: What happened to all the mess?

In imperative world we usually consider more cases (like uncle's colour) trying to minimize assignes

While in FP we construct new tree anyway

Pearl: RB-Trees: Alternative imperative-like

4

10

11

12

13

14

15

Single Rotation; * a red; ** c red

Double Rotation

```
-- color flips
balance B (T R a@(T R _ _ ) x b) y (T R c z d)
|| B (T R a x b@(T R _ _ _)) y (T R c z d)
|| B (T R a x b) y (T R c@(T R _ _ _) z d)
|| B (T R a x b) y (T R c@(T R _ _ _) z d)
|| B (T R a x b) y (T R c z d@(T R _ _ _))
= T R (T B a x b) y (T B c z d)
-- single rotations
balance B (T R a@(T R _ _ _) x b) y c = T B a x (T R b y c)
balance B a x (T R b y c@(T R _ _ _)) = T B (T R a x b) y c
-- double rotations
balance B (T R a x (T R b y c)) z d
|| B a x (T R (T R b y c) z d)
= T B (T R a x b) y (T R c z d)
-- no balancing necessary
balance color a x b = T color a x b
```

Next for Today

> Reminder about amortized methods

> Persistent + amortization + laziness on FIFO queue example

On Amortized Time Analysis

Standard complexity notation $O(\cdot)$ -- worst case estimation

But actually, we may have more freedom:

- > Let's perform n+1 action
- > Most of actions will be ``cheap": O(1)
- > One ``expensive" action: for example, O(n)
- > Standard assymptotic compexity: O(n)
- > Average complexity of performing n actions (amortized time complexity) can be O(1) for an action

$$a = \frac{\sum_{i=1}^{n} t_i}{n}$$

This additional freedom degree sometimes allows a simpler and more efficient implementation to be designed

Banker's Method

Definition (Accumulated Savings)

A difference between total current amortized cost and total current fair value

- > NB: accumulated savings must be non-negative
- » I.e. ``expensive'' operations may take place iff accumulated savings are enough to cover theis additional cost

$$a_i = t_i + c_i - \bar{c}_i$$

where t_i --- fair cost, c_i --- credit amount allocated by action i, \bar{c}_i --- amount of credit spent by action i

- > Each credit unit must be allocated before being spent
- > Credit cannot be used twice
- $> \sum c_i \ge \sum \bar{c}_i \Rightarrow \sum a_i \ge \sum t_i$
- > Amortized compexity is $n * O(f(n,m)) \Leftrightarrow \forall n.a_i = O(f(n,m))$ $\Rightarrow a = \frac{\sum_{i=1}^{n} a_i}{n} = \frac{n*O(f(n,m))}{n} = O(f(n,m))$

Physicist's Method

$$\Phi: Object(d) \rightarrow Potential$$

Usually, initial potential is zero and is always non-negative

$$a_i = t_i + \Phi(d_i) - \Phi(d_{i-1})$$

$$\begin{array}{rcl} \sum_{i=1}^{j} t_{i} & = & \sum_{i=1}^{j} (a_{i} + \Phi(d_{i-1}) - \Phi(d_{i})) \\ & = & \sum_{i=1}^{j} a_{i} + \sum_{i=1}^{j} (\Phi(d_{i-1}) - \Phi(d_{i})) \\ & = & \sum_{i=1}^{j} a_{i} + \Phi(d_{0}) - \Phi(d_{j}) \end{array}$$

TODO: diff between methods

Pure Functional Queues

Interface:

```
> empty: queue -> bool
> enqueue: queue * int
    -> queue
> head: queue -> int
> tail: queue -> queue
```

Pure Functional Queues

Interface:

- > empty: queue -> bool
 > enqueue: queue * int
 -> queue
- > head: queue -> int
- > tail: queue -> queue

Simplest implementation

Via a pair of lists, f and r

- f (front) contains the head elements of the queue in the initial (correct) order,
- r (reversed) consist of tail elements in reverse order

For example, queue =[1;2;3;4;5;6] can be represented as two lists f=[1;2;3] and r=[6;5;4]

Question: When to move elements from the front to reversed list?

Batched (Naïve) Queue

Definition (Queue Invariant)

List f may become empty iff list r is also empty (i.e., the queue is empty)

```
enqueue ([], _) x = ([x], []) --- 0(1)
enqueue (f , r) x = (f , x:r) --- 0(1)
tail ([x], r) = (rev r, []) --- 0(n); 0*(1)
tail (x:f, r) = (f , r) --- 0(1)
```

Thus, head and enqueue are O(1) instead of O(n), but tail is still O(n)

Batched and Banker's method

Definition (Invariant)

Each element in the tail list is associated with one credit unit

- Each enqueue call performs the only real computational step and emits additional credit unit for an element in the tail list amortized complexity is 2
- > tail, if no list inversion happend, preforms one step and spends no credit units

amortized complexity is 1

> tail, if list reverse happends, performs (m+1) steps, where m is a tail list length, and spends m credit units amortized complexity is m+1-m=1

Batched and Banker's method

Definition (Invariant)

Each element in the tail list is associated with one credit unit

- Each enqueue call performs the only real computational step and emits additional credit unit for an element in the tail list amortized complexity is 2
- > tail, if no list inversion happend, preforms one step and spends no credit units

amortized complexity is 1

> tail, if list reverse happends, performs (m+1) steps, where m is a tail list length, and spends m credit units amortized complexity is m+1-m=1

Physicist's method: just let Φ be rear list length

Conclusion

» In case of purely functional queue, function tail worst case complexity is O(n) and amortized --- O(1)

> Good if one do not need persistency, and amortized performance is good enough for the problem

- > Bad news: we have implicitly assumed that we use queues ephemerally i.e. in persistent setting still O(n)
- Next) Lazy evaluations + amortized compexity = persistent queues with a very good amortized complexity

Lazy Evaluations

Lazy Evaluations

Delays the evaluation of an expression until its value is needed (non-strict evaluation)

ML

We will use \$ denote that evaluation is suspended

Lazy Evaluations

Lazy Evaluations

Delays the evaluation of an expression until its value is needed (non-strict evaluation)

ML

1

```
\begin{array}{c} \textbf{type} \ \alpha \ \text{sup} \\ \textbf{val} \ \text{delay} \ : \ ( \mbox{unit} \ \ -> \ \alpha ) \ \ -> \ \alpha \ \ \text{sup} \\ \textbf{val} \ \ \text{force} \ : \ \alpha \ \ \text{sup} \ \ -> \ \alpha \end{array}
```

We will use \$ denote that evaluation is suspended

Memoization of lazy evaluations

Ones the value of expression is needed, evaluate it and *memoize* (remember, *sharing*) the result; If it will be needed further, just return the memoized result

Lazy Lists (Streams)

Definition (Stream)

is a list but evaluations of sublists are delayed

Example: Stream of all possible natural numbers

Lazy Lists (Streams)

Definition (Stream)

is a list but evaluations of sublists are delayed

Example: Stream of all possible natural numbers

Notation

Add an element x to the tail xs: \$Cons x xs

Empty stream: \$Nil

Delay f: \$f

Remark

Stream may be both finite and infinite; One never knows until the end appears

Streams in Standard ML

```
datatype \alpha SteamCell = Nil | Cons of \alpha \times \alpha Stream
withtype \alpha Stream = \alpha StreamCell susp
(* Stream example *)
$(Cons(1, $Cons(2, $Cons(3, $Nil))))
(* monolitic append aka. suspended list *)
fun s ++ t = \$(force s @ force t)
(* incremental append aka. stream *)
fun s ++ t = scase s of
    $Nil => force t
  | $Cons (x, s') => Cons (x, s' ++ t)
```

1

2

5 6

8

10

11

12

13

Consider function $zip: stream \times stream \rightarrow stream$, which sums streams element by element

Consider function $zip: stream \times stream \rightarrow stream$, which sums streams element by element

$$fibs = Cons(1, Cons(1, zip(fibs, tail(fibs))))$$

1	1		

Consider function $zip: stream \times stream \rightarrow stream$, which sums streams element by element

$$fibs = Cons(1, Cons(1, zip(fibs, tail(fibs))))$$

1	1		
1			

Consider function $zip: stream \times stream \rightarrow stream$, which sums streams element by element

$$fibs = Cons(1, Cons(1, zip(fibs, tail(fibs))))$$

1	1	2	
1			

Consider function $zip: stream \times stream \rightarrow stream$, which sums streams element by element

$$fibs = Cons(1, Cons(1, zip(fibs, tail(fibs))))$$

1	1	2	
1	2		

Consider function $zip: stream \times stream \rightarrow stream$, which sums streams element by element

A stream of Fibonacco numbers:

1	1	2	3	
1	2			

and so on

Persistent Banker's Queue

Remark

This implementation has amortized complexity O(1) and is persistent

- Use streams instead of lists
- Store stream lengths explicitly
- 1 Invariant: $|\mathbf{f}| > |\mathbf{r}|$

If streams f and r have the same length, define f as f + reverse(r)

Why rotate when $|f| \simeq |r|$?

- > reverse is monolithic, hence, it needs |r| steps
- > suspended reverse can be forced only after |f| calls of tail
- > debits instead credits:

each tail call discharges one debit

Why is it persistent?

- > Lazy (suspended) evaluation ⇒ delayed until needed
- > Memoization ⇒ each suspension computes only ones

Persistent Physicist's Queue

- > Ψ maps object with potential representing an upper bound on the accumulated debt $\Psi = min(2|W|,|F|-|R|)$
- > We need only *monolithic suspensions*:

use suspended list instead of stream

- > Front devided into two parts:
 - strict non-empty prefix

fun inv-queue g = checkW (checkR g)

datatype α Oueue = Oueue of

1

1

3

8

9 10

11

1

suspended front itself --- the only suspended part

```
(* invariante 1: W is no-empty whenever F is non-empty *)
fun checkW {W = [], F = f, LenF = lenF, R = r, LenR = lenR}) =
   Queue {W = force f, F = f, LenF = lenF, R = r, LenR = lenR})
   | checkW q = Queue q
   (* invariante 2: R is no longer than F *)
fun checkR (q as {W = w, F = f, LenF = lenF, R = r, LenR = lenR}) =
   if lenR <= lenF then q
   else let val w' = force f
   in {W = w', F = $(w' @ rev r), LenF = lenF+lenR, R=[], LenR=0} end
   (* check invariants *)</pre>
```

 $\{W : \alpha \text{ list}, F : \alpha \text{ list susp}, \text{ LenF} : \text{int}, R : \alpha \text{ list}, \text{ LenR} : \text{int}\}$

Amortization no more: Scheduling

Problem Statement

- > We produce n ``cheap'' steps
- > Then, one ``expensive'' step O(n)
- > Thus, we can only state amortized complexity

An Idea: scheduling

Instead of one ``expensive'' step let's perform n smaller steps with constant complexity. Performing each ``cheap'' step, we will also perform one of this ``smaller'' steps.

Real-time Queue

Reminder: banker's queue: we relied on calculation of f + reverse(r)

Now let's instead use a special function rotate

$$rotate(f, r, a) = f + reverse(r) + a$$

Third parameter is an accomulator which stores partially computed result of reverse(r)

Obviously

$$rotate(f, r, \$NiI) = f + reverse(r)$$

When to Reorder the Queue?

Let's reorder queue when |r| = |f| + 1This ratio will be maintained throughout the rebuilding

Let's prove it by induction on the length of front |f|

Base:

$$rotate(\$Nil, \$Cons(y, \$Nil), a) \equiv \$Nil + reverse(\$Cons(y, \$Nil)) + a$$

$$\equiv \$Cons(y, a)$$

Induction step:

Real-time Queue: code

1

2

3 4 5

6

8

9

10 11

12

13

14

15

16 17

18 19 20

21

22

```
(* S is a schedule -- suffix s.t. all nodes before S in F have already
been forced and !memoized! *)
datatype Oueue = Oueue of \{F : \alpha \text{ stream. } R : \alpha \text{ list. } S : \alpha \text{ stream}\}
val empty = Oueue \{F = \$Nil, R = [], S = \$Nil\}
fun isEmpty (Oueue \{F = f, ..., \}) = null f
fun rotate (f, r, a) = scase (f, r) of
  ($Nil , $Cons (y, _ )) => Cons (y, a)
(\$Cons(x, f'), \$Cons(y, r')) \Rightarrow Cons(x, rotate(f', r', \$Cons(y, a)))
(* Invariant: |S| = |F| - |R| *)
fun inv \{F = f, R = r, S = \$Cons(x, s)\} = Queue(F = f, R = r, S = s\}
  | inv \{F = f, R = r, S = \$Nil \} =
    let val f' = rotate (f, r, $Nil) (* create a suspension
    in Queue \{F = f', R = [], S = f'\} end (* store it in both F and S *)
fun enqueue (Queue \{F=f, R=r, S=s\}, x) = inv \{F=f, R=x::r, S=s\}
fun head (Oueue \{F = \$Cons(x, f), ...\}) = x
fun tail (Queue \{F = SCons(x, f), R=r, S=s\}) = inv \{F=f, R=r, S=s\}
```

Conclusion

Queue\ Operation	enqueue	head	tail
Banker's	O(1)*	O(1)*	O(1)*
Physicist's	O(1)*	O(1)*	O(1)*
Real-time	O(1)	0(1)	0(1)

Amortized estimations are marked with *

Questions?

