Package 'BioRssay'

October 12, 2022

```
Type Package
Title Analyze Bioassays and Probit Graphs
Version 1.1.0
Maintainer Piyal Karunarathne <piyalkarumail@yahoo.com>
Description A robust framework for analyzing mortality data from bioassays for one or sev-
      eral strains/lines/populations.
License AGPL (>= 3)
Imports colorspace
Encoding UTF-8
LazyData true
RoxygenNote 7.1.2
Depends R (>= 3.5)
Suggests markdown, rmarkdown, knitr, testthat (>= 2.0.0), covr
VignetteBuilder knitr
URL https://milesilab.github.io/BioRssay/,
      https://cran.r-project.org/package=BioRssay
BugReports https://github.com/milesilab/BioRssay/issues/
Config/testthat/edition 2
NeedsCompilation no
Author Piyal Karunarathne [aut, cre] (<a href="https://orcid.org/0000-0002-1934-145X">https://orcid.org/0000-0002-1934-145X</a>),
      Pascal Milesi [aut] (<a href="https://orcid.org/0000-0001-8580-4291">https://orcid.org/0000-0001-8580-4291</a>),
      Pierrick Labbé [aut] (<a href="https://orcid.org/0000-0003-0806-1919">https://orcid.org/0000-0003-0806-1919</a>)
Repository CRAN
Date/Publication 2022-08-09 14:40:10 UTC
```

2 model.signif

R topics documented:

bioassay	•	•	•	•	•	•	•		•	•			•	•	•	•	•	•		•				•	•	•	•	•		4
model.signif																														4
mort.plot																														1
probit.trans																														4
resist.ratio .							•									•														4

Index 8

bioassay

Example bioassay data set

Description

Example bioassay data set

Usage

data(bioassay)

Format

An object of class list of length 2.

Examples

```
data(bioassay)
head(bioassay$assay1)
```

model.signif

Test the significance of dose-mortality response differences

Description

This function is used when comparing at least two strains. It tests whether the mortality-dose regressions are similar for different strains, using a likelihood ratio test (LRT). If there are more than two strains, it also computes pairwise tests, using sequential Bonferroni correction (Hommel, 1988) to account for multiple testing.

Usage

```
model.signif(data)
```

Arguments

data

a data frame of probit transformed mortality data using the function probit.trans

mort.plot 3

Details

A global LRT test assesses a strain's effect, by comparing two models, one with and one without this effect (i.e. comparing a model with several strains to a model where all the data originate from a single strain). If there are more than two strains, pairwise tests are computed, and p-values of significance are assessed using sequential Bonferroni correction (Hommel, 1988) to account for multiple testing.

Warning: We strongly encourage users to not use this function when the dose-mortality response for at least one strain significantly deviates from linearity (see resist.ratio() function for more details): in such cases the test cannot be interpreted.

Value

a list with model outputs: a chi-square test if there are only two strains or if there are more than two strains, first an overall model assessment (i.e. one strain vs. all) and given overall model is significant, then a bonferroni test of significance from a pairwise model comparison.

Author(s)

Pascal Milesi, Piyal Karunarathne, Pierrick Labbé

Examples

```
data(bioassay)
transd<-probit.trans(bioassay$assay2)
data<-transd$tr.data
model.signif(data)</pre>
```

mort.plot

Plot dose-mortality response for each strain

Description

This function plots the probit-transformed mortalities (probit.trans() function) as a function of the log10 of the dose, the regressions predicted by the resist.ratio() function, with or without confidence levels, if the dose-mortality responses are linear (option).

Usage

```
mort.plot(
  data,
  strains = NULL,
  plot.conf = TRUE,
  conf.level = 0.95,
  LD.value = c(25, 50, 95),
  test.validity = TRUE,
  legend.par = c("bottomleft"),
  ...
)
```

4 probit.trans

Arguments

data a data frame of probit transformed mortality data using the function probit.trans() character. list of test strains to be plotted. If not provided, the function will plot strains all the strains in the data set. plot.conf logical. Whether to plot the confidence intervals for each strain, default TRUE conf.level numerical. The confidence interval to be plotted LD.value numerical. Level of lethal dose to be tested. default=c(25,50,95) test.validity logical. When TRUE (default), if a strain mortality-dose response fails the chisquare test for linearity in the resist.ratio() function, no regression will be plotted, only the observed data. legend.par multi-type. Arguments to be passed to the legend as in legend. default position bottomleft. If no legend desired use FALSE. Note: if pch, lty, and col are passed to the plot, they don't need to be passed to legend() parameters to be passed on to graphics for the plot (e.g. col, pch)

Value

A plot of dose-mortality responses for bioassays

Author(s)

Piyal Karunarathne, Pascal Milesi, Pierrick Labbé

Examples

data(bioassay)
transd<-probit.trans(bioassay\$assay2)
data<-transd\$tr.data
strains<-levels(data\$strain)
mort.plot(data,strains)</pre>

probit.trans

Probit-transform the data and apply Abbott's correction

Description

This function applies probit transformation to the data, after applying Abbott's correction (see reference) when control groups (e.g. unexposed susceptible strain) show non-negligible mortality.

Usage

```
probit.trans(dataf, conf = 0.05)
```

resist.ratio 5

Arguments

dataf a data frame of mortality data containing four mandatory columns "strain",

"dose", "total", "dead" (not necessarily in that order).

conf numerical. Threshold for the mortality in the controls above which the correc-

tion should be applied (default=0.05)

Value

Returns a list. convrg: with correction values and convergence (NULL if mortality in the controls is below conf.), tr.data: transformed data

Author(s)

Pascal Milesi, Piyal Karunarathne, Pierrick Labbé

References

Abbott, WS (1925). A method of computing the effectiveness of an insecticide. J. Econ. Entomol.;18:265-267.

Examples

```
data(bioassay)
transd<-probit.trans(bioassay)</pre>
```

resist.ratio

Calculate lethal dosage, resistance ratios, and regression coefficients and tests for linearity

Description

Using a generalized linear model (GLM, logit link function), this function computes the lethal doses for 25 of the population (LD25, LD50 and LD95, resp.), and their confidence intervals (LDmax and LDmin, 0.95 by default). See details for more info.

Usage

```
resist.ratio(
  data,
  conf.level = 0.95,
  LD.value = c(25, 50, 95),
  ref.strain = NULL,
  plot = FALSE,
  plot.conf = TRUE,
  test.validity = TRUE,
  legend.par = c("bottomright"),
  ...
)
```

6 resist.ratio

Arguments

data a data frame of probit-transformed mortality data using the function probit.trans() numerical. level for confidence intervals to be applied to the models (default conf.level 0.95) LD.value numerical. Level of lethal dose to be tested. default=c(25,50,95)ref.strain character. name of the reference strain if present (see details) plot logical. Whether to draw the plot. Default FALSE logical. If plot=TRUE, whether to plot the 95 percent confidence intervals. Deplot.conf

fault TRUE

test.validity logical. If plot=TRUE (default), the regression for a strain that failed the linear-

ity test is not plotted

legend.par arguments to be passed on to legend() as in mort.plot()

parameters to be passed on to graphics for the plot (e.g. col, pch) . . .

Details

If a name is provided in ref. strain=, it will be used as the reference to compute the resistance ratios (RR). Alternatively, the function will look for a strain with the suffix "-ref" in the dataset. If this returns NULL, the strain with the lowest LD50 will be considered as reference.

In addition to LD values, the function in a nutshell uses a script modified from Johnson et al (2013), which allows taking the g factor into account ("With almost all good sets of data, g will be substantially smaller than 1.0 and seldom greater than 0.4." Finney, 1971) and the heterogeneity (h) of the data (Finney, 1971) to calculate the confidence intervals (i.e. a larger heterogeneity will increase the confidence intervals). It also computes the corresponding resistance ratios (RR), i.e. the ratios between a given strain and the strain with the lower LD50 and LD95, respectively for RR50 and RR95 (usually, it is the susceptible reference strain), with their 95 Robertson and Preisler (1992). Finally, it also computes the coefficients (slope and intercept, with their standard error) of the linear regressions) and tests for the linearity of the dose-mortality response using a chi-square test (Chi(p)) between the observed dead numbers (data) and the dead numbers predicted by the regression (the test is significant if the data is not linear, e.g. mixed populations).

Value

Returns a data frame with the various estimates mentioned above. If plot=TRUE, plots the mortality on a probit-transformed scale against the log_10 doses.

Author(s)

Pascal Milesi, Piyal Karunarathne, Pierrick Labbé

References

Finney DJ (1971). Probitanalysis. Cambridge: Cambridge University Press. 350p.

Hommel G (1988). A stage wise rejective multiple test procedure based on a modified Bonferroni test. Biometrika 75, 383-6.

resist.ratio 7

Johnson RM, Dahlgren L, Siegfried BD, Ellis MD (2013). Acaricide, fungicide and drug interactions in honeybees (Apis mellifera). PLoSONE8(1): e54092.

Robertson, J. L., and H.K. Preisler.1992. Pesticide bioassays with arthropods. CRC, Boca Raton, FL.

Examples

data(bioassay)
transd<-probit.trans(bioassay\$assay2)
data<-transd\$tr.data
resist.ratio(data,plot=TRUE)</pre>

Index