HW4

Shane Drafahl

18 September ,2017

1. Use the pumping lemma to prove that L = { $ww : w \in \{0,1\}^*$ } is nonregular.

We will prove this by proof of contradition and assume that L is a regular language. So therefore for L, $\exists_n \in N$ such that $\forall_x \in L$, if $|x| \geq n$, then x can be decomposed into three strings $\exists_{x,y,z} \in \{0,1\}^*$. Where x = xyz. $|xy| \leq n, |y| > 0$ such that $\forall_k \in N, xy^kz \in L$.

We know that the length of L is 2*|w|. We will say the pumping length will be n so the language must be w^nw^n . We will split w_1w_2 into $w_1w_2 = xyz$ where $xy = w_1$ and $w_2 = z$. We know that y^i where y is some value i > 0 and it represents elements from w_1 . If $xy^0z = w^{n-i}w^n$. This word should exist in the language L but is a contradiction because one w is greater than the other. So therefore L is not regular.

2. Prove that $L = \{ w \in \{ a, b \}^* : |w|_a \neq |w|_b \}$ is not regular.

We will prove this by proof of contradition and assume that L is a regular language. So therefore for L, $\exists_n \in N$ such that $\forall_x \in L$, if $|x| \geq n$, then x can be decomposed into three strings $\exists_{x,y,z} \in \{0,1\}^*$. Where x = xyz. $|xy| \leq n, |y| > 0$ such that $\forall_k \in N, xy^kz \in L$.

Consider a^nb^n , this say that $x=a^ib^j$ for some i,j greater than 0. Then we will do $xy^2z=a^{i+n}b^{j+n}$. To be valid j and i need to be greater than 0 so either $a^{1+n}b^{2+n}$ or $a^{2+n}b^{1+n}$ are valid but one has a greater number of b's or a's for two strings that