Best Available Copy

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World-Intellectual Property Organization @International Bureau

(43) International Publication Date 30 October 2003 (30.10.2003)

(51) International Patent Classification7:

C12N

(10) International Publication Number WO 03/089583 A2

(21) International Application Number:	PCT/US03/11497

(22) International Filing Date: 15 April 2003 (15.04.2003)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data: 60/372,669 16 April 2002 (16.04.2002) US 60/374,823 24 April 2002 (24.04.2002) US 60/376,558 1 May 2002 (01.05.2002) US 60/381,366 20 May 2002 (20.05.2002) US 60/403,648 16 August 2002 (16.08.2002) US 60/411.882 20 September 2002 (20.09.2002) US 60/424,336 7 November 2002 (07.11.2002) US

(71) Applicant (for all designated States except US): ORI-GENE TECHNOLOGIES, INC. [US/US]; Suite 100, 6 Taft Court. Rockville, MD 20850 (US).

- (72) Inventors; and
- (75) Inventors/Applicants (for US only): JAY, Gilbert [US/US]; 5801 Nicholson Lane, North Bethesda, MD 20852 (US). LEBOVITZ, Richard, M. [US/US]: 3800 North Fairfax Drive, Arlington, VA 22203 (US). LIU, Xuan [US/US]; 14213 Day Road, Rockville, MD 20850 (US). SHU, Youmin [US/US]; 2508 Chilham Place, Potomac, MD 20854 (US). SUN, Zairen [CN/US]; 1083 Copperstone Court, Rockville, MD 20852 (US), WU, Meng [PG/US]; 18016 Rockingham Place, Germantown, MD 20874 (US).
- (74) Agent: LEBOVITZ, Richard, M.; Origene Technologies, Inc., Suite 100, 6 Taft Court, Rockville, MD 20850 (US).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU. AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US. UZ, VC, VN, YU, ZA, ZM, ZW.

[Continued on next page]

(54) Title: TISSUE SPECIFIC GENES AND GENE CLUSTERS

(57) Abstract: The present invention relates to genes and genes clusters which are expressed in a tissue specific manner. For example, the invention relates to a group of genes encoding GPCR-like receptors that are involved in the function and activity of the immune system. These genes are organized into a discrete cluster at chromosomal location 1q22 (the "immune gene complex") and span about 700 kb of DNA. The region closest to the centromere comprises genes that are expressed predominantly in the thymus, while the distal region comprises genes which are expressed predominantly in the bone marrow and other hematopoietic cells. Another cluster of GPCR genes is located at chromosomal band 11q24. These genes are expressed predominantly in pancreatic tissue, establishing this region of chromosome 11 as a unique gene complex involved in

pancreatic function. A cluster of transmembrane and GPCR-type receptor genes is also located at chromosomal band 11q12.2. These genes are expressed predominantly in the spleen (hence, "spleen gene" cluster), as well as other tissues of the immune and reticuloendothelial system (RES), indicating that establishing this region of the chromosome is involved is spleen, lymphoid, and/or reticuloendothelial function. Finally, genes coding for membrane proteins have been identified which are expressed selectively in bone marrow, kidney, pancreas, and retina.

BNSDOCID: <WO ...__ 03089583A2_I >

(84) Designated States (regional): ARIPO patent (GH. GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

as to applicant's entitlement to apply for and be granted a patent (Rule 4.17(ii)) for the following designations AE. AG. AL. AM. AT. AU. AZ. BA. BB. BG. BR. BY. BZ. CA. CH. CN. CO. CR. CU. CZ. DE. DK. DM. DZ. EC. EE. ES. FI. GB. GD. GE. GH. GM. HR. HU. ID. IL. IN. IS, JP. KE. KG. KP. KR. KZ. LC. LK. LR. LS. LT. LU. LV. MA. MD. MG. MK. MN. MW. MX. MZ. NI. NO. NZ. OM. PH. PL. PT. RO. RU. SC. SD. SE. SG. SK. SL. TJ. TM. TN. TR. TT. TZ. UA. UG. UZ. VC. VN. YU. ZA. ZM. ZW. ARIPO patent (GH. GM. KE. LS. MW. MZ. SD. SL. SZ. TZ. UG. ZM. ZW.). Eurasian patent (AM. AZ. BY. KG. KZ. MD. RU. TJ. TM.). European patent (AT. BE. BG. CH. CY. CZ. DE. DK. EE. ES. FI. FR. GB. GR. HU. IE. IT. LU. MC. NL. PT. RO. SE. SI. SK. TR). OAPI patent (BF. BJ. CF. CG. CI. CM. GA. GN. GQ. GW. ML. MR. NE. SN. TD. TG)

- as to the applicant's entilement to claim the priority of the earlier application (Rule 4.17(iii)) for the following designations AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, F1, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VC, VN, YU, ZA, ZM, ZW, ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW). Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM). European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, F1, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR). OAP1 patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG)
- of inventorship (Rule 4.17(iv)) for US only

Published:

 without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

10

15

20

25

30

TISSUE SPECIFIC GENES AND GENE CLUSTERS

This application claims the benefit of U.S. Application Serial Nos. 60/372,669 April 16, 2002, 60/374,823 filed April 24, 2002, 60/376,558 filed May 1, 2002, 60/381,366 filed May 20, 2002, 60/403,648 filed August 16, 2002, 60/411,882 filed September 20, 2002, and 60/424,336 filed November 7, 2002, which are hereby incorporated by reference in their entirety.

DESCRIPTION OF THE DRAWINGS

Figs. 1 and 2 show a physical map of the immune system gene complex. Sequence-tagged site ("STS") markers are used to characterize the chromosomal regions. An STS is defined by two short synthetic sequences (typically 20 to 25 bases each) that have been designed from a region of sequence that appears as a single-copy in the human genome (the reference numbers, and the sequences which they represent, are hereby incorporated by reference in their entirety). These sequences can be used as primers in a polymerase chain reaction (PCR) assay to determine whether the site is present or absent from a DNA sample.

Fig. 3 shows the expression pattern of transmembrane proteins homologous to the olfactory G-protein-coupled receptor ("GPCR") family in human tissues. To detect gene expression, PCR was carried out on aliquots of the normalized tissue samples using a forward and reverse gene-specific primers. Table 5 indicates the SEQ ID NO for each primer ("FOR" is the forward primer and "REV" is the reverse primer).

Fig. 4 shows the expression pattern of two olfactory G-protein-coupled receptor ("GPCR") family members in human tissues. To detect gene expression, PCR was carried out on aliquots of the normalized tissue samples using a forward and reverse gene-specific primers. Table 6 indicates the SEQ ID NO for each primer ("FOR" is the forward primer and "REV" is the reverse primer).

Figs. 5 (a and b) and 6 show the expression pattern in human tissues of genes selectively expressed in kidney tissue. To detect gene expression, PCR was carried out on aliquots of the normalized tissue samples using a forward and reverse gene-specific primers. Table 11 indicates the SEQ ID NO for each primer ("FOR" is the forward primer and "REV" is the reverse primer).

Fig. 7 (a-b) show organization of pancreatic gene complex on chromosome 11q24.

Fig. 8 is a schematic drawing of five of the pancreatic olfactory G-protein-coupled receptor ("GPCR") family members located in the gene complex showing regions of overlap. The numbering underneath the lines indicates amino acid position.

Fig. 9 (a and b) show the expression pattern of TMD0986, XM_061780 (TMD0987), XM_061781 (TMD0353), XM_061784 (TMD0989), and XM_061785 (TMD058) in human tissues. To detect gene expression, PCR was carried out on aliquots of the normalized tissue samples using a forward and reverse gene-specific primers. Table 12 indicates the SEQ ID NO for each primer ("FOR" is the forward primer and "REV" is the reverse primer).

Fig. 10 shows the expression pattern of TMD1030 (XM_166853), TMD1029 (XM_166854), TMD1028 (XM_166855), and TMD0621 (XM_166205) in human tissues. To detect gene expression, PCR was carried out on aliquots of the normalized tissue samples using a forward and reverse gene-specific primers. Table 17 indicates the SEQ ID NO for each primer ("F-oligo" is the forward primer and "R-oligo" is the reverse primer).

Fig. 11 shows the organization of the spleen gene complex on chromosome 11q12.2.

Fig. 12 (a-c) shows the expression of the pancreas genes in human tissues. To detect gene expression, PCR was carried out on aliquots of the normalized tissue samples using a forward and reverse gene-specific primers. Table 23 indicates the SEQ ID NO for each primer ("FOR" is the forward primer and "REV" is the reverse primer).

Expression patterns were analyzed as described below. A twenty-four tissue panel was used (lanes from left to right): 1, adrenal gland; 2, bone marrow; 3, brain; 4, colon; 5, heart; 6, intestine; 7, pancreas; 8, liver; 9, lung; 10, lymph node; 11, lymphocytes; 12, mammary gland; 13, muscle; 14, ovary; 15, pancreas; 16, pituitary; 17, prostate; 18, skin; 19, spleen; 20, stomach; 21, testis; 22, thymus; 23, thyroid; 24, uterus. The lane at the far left of each panel contains molecular weight standards. Polyadenylated mRNA was isolated from tissue samples, and used as a template for first-strand cDNA synthesis. The resulting cDNA samples were normalized using beta-actin as a standard. For the normalization procedure, PCR was performed on aliquots of the first-strand cDNA using beta-actin specific primers. The PCR products were visualized on an ethidium bromide stained agarose gel to estimate the quantity of beta-actin cDNA present in each sample. Based on these estimates, each sample was diluted with buffer until each contained the same quantity of beta-actin cDNA per unit volume. PCR was carried out using the primers described above, and reaction

5

10

15

20

25

10

15

20

products were loaded on to an agarose (e.g., 1.5-2%) gel and separated electrophoretically.

DESCRIPTION OF THE INVENTION

The present invention relates to tissue-selective genes and tissue-selective gene clusters. The polynucleotides and polypeptides are useful in variety of ways, including, but not limited to, as molecular markers, as drug targets, and for detecting, diagnosing, staging, monitoring, prognosticating, preventing or treating, determining predisposition to, etc., diseases and conditions, associated with genes of the present invention. The identification of specific genes, and groups of genes, expressed in pathways physiologically relevant to particular tissues, permits the definition of functional and disease pathways, and the delineation of targets in these pathways which are useful in diagnostic, therapeutic, and clinical applications. The present invention also relates to methods of using the polynucleotides and related products (proteins, antibodies, etc.) in business and computer-related methods, e.g., advertising, displaying, offering, selling, etc., such products for sale, commercial use, licensing, etc.

Immune Gene Complex

The present invention relates to a group of genes involved in the function and activity of the immune system. These genes are organized into a discrete cluster at chromosomal location 1q22 (the "immune gene complex") and span hundreds of kb of DNA, e.g., about 700 kb of DNA. See, Figs. 1 and 2. The region closest to the centromere comprises genes that are expressed predominantly in the thymus, while the distal region comprises genes which are expressed predominantly in the bone marrow and other hematopoietic cells.

The present invention relates to a composition consisting essentially of the 1q22

immune gene complex, comprising TMD0024 (XM_060945), TMD1779 (XM_060946),

TMD0884 (XM_060947), TMD0025 (XM_060948), TMD1780 (XM_089422), TMD1781

(XM_089421), TMD0304 (XM_060956), TMD0888 (XM_060957), and TMD0890

(XM_060959) genes, or a fragment thereof comprising at least two said genes. As discussed in more detail, the composition can comprise or consist essentially of the chromosome region between STS markers that define the genomic DNA, e.g., between SHGC-81033 and SHGC-145403, or a fragment thereof comprising at least two said genes.

10

15

20

25

30

The CD1 family, a cluster of genes previously identified as coding for proteins involved in antigen presentation (Sugita and Brenner, Seminars in Immunology, 12:511-516, 2000), are located at the proximal boundary of the immune gene complex. The expression of CD1a, b, and c genes are restricted to professional antigen-presenting cells, including dendritic cells and some B-cell subsets (Sugita and Brenner, ibid). CD1d is present on other cell types, in addition to hematopoietic cells, such as intestinal cells (Sugita and Brenner, ibid).

Adjacent to the CD1 family, is a cluster of genes coding for transmembrane proteins homologous to the olfactory G-protein-coupled receptor ("GPCR") family. These genes include XM_060945 (TMD0024), XM_060346 (TMD1779), XM_060947 (TMD0884), and XM_060948 (TMD0025), and are expressed predominantly in thymus tissues (e.g., thymocytes). XM_089421 (TMD1781) is also expressed in thymus, but it is present in much higher amounts in lymphocytes ("PBL"). This chromosomal region can be defined by STS markers, e.g., between SHGC-81033 and D1S3249, G15944, GDB:191077, GDB:196442, RH68459, RH102597, RH69635, or RH65132, or fragments thereof, such as fragments which comprise two or more genes.

The gene for human erythroid alpha spectrin (SPTA1) is distal to the GPCR thymus-restricted family. It is expressed in bone marrow cells, and is localized to the red cell membrane (Wilmotte et al., Blood, 90(10):4188-96, 1997). Next to it, is another cluster of genes coding for proteins that resemble the olfactory GPCR family. These include XM_060956 (TMD0304), XM_060957 (TMD0888), and XM_060959 (TMD089), and are expressed predominantly in the bone marrow, although other sites of expression are observed as well. See, e.g., Table 1. This chromosomal region can be defined by STS markers, e.g., between GDB:181583 or RH118729, and D1S2577 or SHGC-145403.

The gene for myeloid cell nuclear differentiation antigen ("MNDA") is next. MNDA is also expressed in bone marrow cells, particularly in normal and neoplastic myelomonocytic cells and a subset of normal and neoplastic B lymphocytes (Miranda et al., Hum. Pathol., 30(9):1040-9, 1999).

The phrase "immune system" indicates any processes and cells which are involved in generating and carrying out an immune response. Immune system cells includes, but are not limited to, e.g., stem cells, pluripotent stem cell, myeloid progenitor, lymphoid progenitor,

-5-

lymphocytes, B-lymphocytes, T-lymphocytes (e.g., naive, effector, memory, cytotoxic, etc.), thymocytes, natural killer, erythroid, megakaryocyte, basophil, eosinophil, granulocytemonocyte, accessory cells (e.g., cells that participate in initiating lymphocyte responses to antigens), antigen-presenting cells ("APC"), mononuclear phagocytes, dendritic cells, macrophages, alveolar macrophages, etc., and any precursors, progenitors, or mature stages thereof.

Table 1 is a summary of the genes and their expression patterns in accordance with the present invention. The genes and the polypeptides they encode can be used as diagnostic, prognostic, therapeutic, and research tools for any conditions, diseases, disorders, or applications associated with the tissues and cells in which they are expressed.

When expression is described as being "predominantly" in a given tissue, this indicates that the gene's mRNAs levels are highest in this tissue as compared to the other tissues in which it was measured. Expression can also be "selective," where expression is observed. By the phrase "selectively expressed," it is meant that a nucleic acid molecule comprising the defined sequence of nucleotides, when produced as a transcript, is characteristic of the tissue or cell-type in which it is made. This can mean that the transcript is expressed only in that tissue and in no other tissue-type, or it can mean that the transcript is expressed preferentially, differentially, and more abundantly (e.g., at least 5-fold, 10-fold, etc., or more) in that tissue when compared to other tissue-types.

In view of their selectivity and display on the cell surface, the olfactory GPCR family members of the present invention are a useful target for histological, diagnostic, and therapeutic applications relating to the cells in which they are expressed. Antibodies and other protein binding partners (e.g., ligands, aptamers, small peptides, etc.) can be used to selectively target agents to a tissue for any purpose, included, but not limited to, imaging, therapeutic, diagnostic, drug delivery, gene therapy, etc. For example, binding partners, such as antibodies, can be used to treat carcinomas in analogy to how c-erbB-2 antibodies are used to breast cancer. They can also be used to detect metastatic cells, in biopsies to identify bone marrow and thymus tissue, etc. The genes and polypeptides encoded thereby can also be used in tissue engineering to identify tissues as they appear during the differentiation process, to target tissues, to modulate tissue growth (e.g., from starting stem cell populations), etc.

Useful antibodies or other binding partners include those that are specific for parts of the

5

10

15

20

25

PCT/US03/11497

WO 03/089583

5

10

15

20

25

30

polypeptide which are exposed extracellularly as indicated in Table 2. Any of the methods described above and below can be accomplished in vivo, in vitro, or ex vivo (e.g., bone marrow cells or peripheral blood lymphocytes can be treated ex vivo and then returned to the body).

The expression patterns of the selectively expressed polynucleotides disclosed herein can be described as a "fingerprint" in that they are a distinctive pattern displayed by a tissue. Just as with a fingerprint, an expression pattern can be used as a unique identifier to characterize the status of a tissue sample. The list of expressed sequences disclosed herein provides an example of such a tissue expression profile. It can be used as a point of reference to compare and characterize samples. Tissue fingerprints can be used in many ways, e.g., to classify an unknown tissue, to determine the origin of metastatic cells, to assess the physiological status of a tissue, to determine the effect of a particular treatment regime on a tissue, to evaluate the toxicity of a compound on a tissue of interest, etc.

For example, the tissue-selective polynucleotides disclosed herein represent the configuration of genes expressed by a normal tissue. To determine the effect of a toxin on a tissue, a sample of tissue can be obtained prior to toxin exposure ("control") and then at one or more time points after toxin exposure ("experimental"). An array of tissue-selective probes can be used to assess the expression patterns for both the control and experimental samples. As discussed in more detail below, any suitable method can be used. For instance, a DNA microarray can be prepared having a set of tissue-selective genes arranged on to a small surface area in fixed and addressable positions. RNA isolated from samples can be labeled using reverse transcriptase and radioactive nucleotides, hybridized to the array, and then expression levels determined using a detection system. Several kinds of information can be extracted: presence or absence of expression, and the corresponding expression levels. The normal tissue would be expected to express substantially all the genes represented by the tissue-selective probes. The various experimental conditions can be compared to it to determine whether a gene is expressed, and how its levels match up to the normal control.

While the expression profile of the complete gene set represented by the sequences disclosed here may be most informative, a fingerprint containing expression information from less than the full collection can be useful, as well. In the same way that an incomplete fingerprint may contain enough of the pattern of whorls, arches, loops, and ridges, to identify

10

15

20

25

30

the individual, a cell expression fingerprint containing less than the full complement may be adequate to provide useful and unique identifying and other information about the sample. Moreover, because of heterogeneity of the population, as well differences in the particular physiological state of the tissue, a tissue's "normal" expression profile is expected to differ between samples, albeit in ways that do not change the overall expression pattern. As a result of these individual differences, each gene although expressed selectively in spleen, may not on its own 100% of the time be adequately enough expressed to distinguish said tissue. Thus, the genes can be used in any of the methods and processes mentioned above and below as a group, or one at a time.

Binding partners can also be used as to specifically deliver therapeutic agents to a tissue of interest. For example, a gene to be delivered to a tissue can be conjugated to a binding partner (directly or through a polymer, etc.), in liposomes comprising cell surface, and then administered as appropriate to the subject who is to be treated. Additionally, cytotoxic, cytostatic, and other therapeutic agents can be delivered specifically to the tissue to treat and/or prevent any of the conditions associated with the tissue of interest.

The present invention relates to methods of detecting immune system cells, comprising one or more of the following steps, e.g., contacting a sample comprising cells with a polynucleotide specific for a gene selected from Table 1, or a mammalian homolog thereof, under conditions effective for said polynucleotide to hybridize specifically to said gene, and detecting specific hybridization. Detecting can be accomplished by any suitable method and technology, including, e.g., any of those mentioned and discussed below, such as Northern blot and PCR. Specific polynucleotides include SEQ ID NOS 3, 4, 8, 9, 14, 15, 22, 23, 27, 28, 35, 36, 42, 43, 49, 50, 57, and 58 (see, Table 5), and complements thereto.

Detection can also be achieved using binding partners, such as antibodies (e.g., monoclonal or polyclonal antibodies) that specifically recognize polypeptides coded for by genes of the present invention. Thus, the present invention relates to methods of detecting an immune system cell, comprising, one or more the following steps, e.g. contacting a sample comprising cells with a binding partner (e.g. an antibody, an Fab fragment, a single-chain antibody, an aptamer) specific for a polypeptide coded for by gene selected from Table 1, or a mammalian homolog thereof, under conditions effective for said binding partner bind specifically to said polypeptide, and detecting specific binding. Protein binding assays can be

10

15

20

25

30

accomplished routinely, e.g., using immunocytochemistry, ELISA format, Western blots, etc. Useful epitopes include those exposed to the surface as indicated in Table 2.

As indicated above, binding partners can be used to deliver agents specifically to the immune system, e.g., for diagnostic, therapeutic, and prognostic purposes. Methods of delivering an agent to an immune cell can comprise, e.g., contacting an immune cell with an agent coupled to binding partner specific for a gene selected from Table 1 (i.e., TMD0024 (XM_060945), TMD1779 (XM_060946), TMD0884 (XM_060947), TMD0025 (XM 060948), TMD1780 (XM_089422), TMD1781 (XM_089421), TMD0304 (XM_060956), TMD0888 (XM_060957), and TMD0890 (XM_060959)), whereby said agent is delivered to said cell. Any type of agent can be used, including, therapeutic and imaging agents. Contact with the immune system can be achieved in any effective manner, including by administering effective amounts of the agent to a host orally, parentally, locally, systemically, intravenously, etc. The phrase "an agent coupled to binding partner" indicates that the agent is associated with the binding partner in such a manner that it can be carried specifically to the target site. Coupling includes, chemical bonding, covalent bonding, noncovalent bonding (where such bonding is sufficient to carry the agent to the target), present in a liposome or in a lipid membrane, associated with a carrier, such as a polymeric carrier, etc. The agent can be directly linked to the binding partner, or via chemical linkers or spacers.

Imaging of specific organs can be facilitated using tissue selective antibodies and other binding partners that selectively target contrast agents to a specific site in the body. Various imaging techniques have been used in this context, including, e.g., X-ray, CT, CAT, MRI, ultrasound, PET, SPECT, and scintographic. A reporter agent can be conjugated or associated routinely with a binding partner. Ultrasound contrast agents combined with binding partners, such as antibodies, are described in, e.g., U.S. Pat. Nos, 6,264,917, 6,254,852, 6,245,318, and 6,139,819. MRI contrast agents, such as metal chelators, radionucleotides, paramagnetic ions, etc., combined with selective targeting agents are also described in the literature, e.g., in U.S. Pat. Nos. 6,280,706 and 6,221,334. The methods described therein can be used generally to associate a partner with an agent for any desired purpose.

The maturation of the immune system can also be modulated in accordance with the

WO 03/089583

PCT/US03/11497

present invention, e.g., by methods of modulating the maturation of an immune system cell, comprising, e.g., contacting said cell with an agent effective to modulate a gene, or polypeptide encoded thereby, selected from Table 1, or a mammalian homolog thereof, whereby the maturation of an immune cell is modulated. Modulation as used throughout includes, e.g., stimulating, increasing, agonizing, activating, amplifying, blocking, inhibiting, reducing, antagonizing, preventing, decreasing, diminishing, etc.

-9-

The phrase "immune system cell maturation" includes indirect or direct effects on immune system cell maturation, i.e., where modulating the gene directly effects the maturational process by modulating a gene in a immune system cell, or less directly, e.g., where the gene is expressed in a cell-type that delivers a maturational signal to the immune system cell. Immune system maturation includes B-cell maturation, T-cell maturation, such as positive selection, negative selection, apoptosis, recombination, expression of T-cell receptor genes, CD4 and CD8 receptors, antigen recognition, MHC recognition, tolerization, RAG expression, differentiation, TCR expression, antigen expression, etc. See also below and, e.g., Abbas et al., *Cellular and Molecular Immunology*, 4th Edition, W.B. Saunders Company, 2000, e.g., Pages 149-160. Process include reception of a signal, such as cytokinin or other GPCR ligand. Any suitable agent can be used, e.g., agents that block the maturation, such as an antibody to a GPCR of Table 1, or other GPCR antagonist.

The interactions between lymphoid and non-lymphoid immune system cells can also be modulated comprising, e.g., contacting said cells with an agent effective to modulate a gene, or polypeptide encoded thereby, selected from Table 1, or a mammalian homolog thereof, whereby the interaction is modulated. Lymphoid cells, includes, e.g., lymphocytes (T- and B-), natural killer cells, and other progeny of a lymphoid progenitor cell. Non-lymphoid cells include accessory cells, such as antigen presenting cells, macrophages, mononuclear phagocytes dendritic cells, non-lymphoid thymocytes, and other cell types which do not normally arise from lymphoid progenitors. Interactions that can be modulated included, e.g., antigen presentation, positive selection, negative selection, progenitor cell differentiation, antigen expression, tolerization, TCR expression, apoptosis. See, also above and below, for other immune system processes.

Promoter sequences obtained from GPCR genes of the present invention can be utilized to selectively express heterologous genes in immune system cells. Methods of

5

10

15

20

25

expressing a heterologous polynucleotide in immune system cells can comprise, e.g., expressing a nucleic acid construct in immune system cells, said construct comprising a promoter sequence operably linked to said heterologous polynucleotide, wherein said promoter sequence is selected from Table 5. In addition to the cell lines mentioned below, the construct can be expressed in primary cells, such as thymocytes, bone marrow cells, stem cells, lymphoid progenitor cells, myeloid progenitor cells, monocytes, antigen presenting cells, macrophages, and cell lines derived therefom, cell lines such as JHK3 (CRL-10991), KG-1 (CCL-246), KG-1a (CCL-246.1), U-937 (CRL-1593.2), VA-ES-BJ (CRL-2138), TUR (CRL-2367), ELI (CRL-9854), 28SC (CRL-9855), KMA (CRL-9856), THP-1 (TIB-2002), WEHI-274.1 (CRL-1679), M-NFS-60 (CRL-1838), MH-S (CRL-2019), SR-4987 (CRL-2028), NCTC 3749 (CCL-461), AMJ2-C8 (CRL 2455), AMJ2-C11 (CRL2456), PMJ2-PC (CRL-2457), EOC2 (CRL-2467), as well as any primary and established immune system cell lines.

15 Thymus

5

10

20

25

30

The thymus is the site of T-cell lymphocyte maturation. Immature lymphocytes migrate into the thymus from the bone marrow and other organs in which they are generated. The selection process that shape the antigen repertoire of T-cells takes place in the thymus organ. Both positive and negative selection processes take place. For a review, see, e.g., Abbas et al., Cellular and Molecular Immunology, 4th Edition, W.B. Saunders Company, 2000, e.g., Pages 126-130 and 149-160.

There are various diseases and disorders related to thymus tissue, including, but not limited to, thymic carcinoma, thymoma, Omenn syndrome, autoimmune diseases, allergy, Graves disease, Myasthenia gravis, thymic hyperplasia, DiGeorge syndrome, Good syndrome, promoting immune system regeneration after bone marrow transplantation, immuno-responsiveness, etc. The thymic selective genes and polypeptides encoded thereby can be use to treat or diagnose any thymic condition. For instance, chemotherapeutic and cytotoxic agents can be conjugated to thymic selective antibodies and used to ablate a thymoma or carcinoma. They can be used alone or in combination with other treatments. See, e.g., Graeber and Tamin, Semin. Thorac. Cardiovasc. Surg., 12:268-277, 2000; Loehrer, Ann. Med., 31 Suppl. 2:73-79, 1999.

Bone marrow

5

10

15

20

25

30

All circulating blood cells in the adult, including all immature lymphocytes, are produced in the bone marrow. In addition, the bone marrow is also the site of B-cell maturation. The marrow consists of a spongelike reticular framework located between long trabeculae. It is filled with fat cells, stromal cells, and precursor hematopoietic cells. The precursors mature and exit through the vascular sinuses

All the blood cells are believed to arise from a common stem cell. Lineages that develop from this common stem cell include, e.g., myeloid and lymphoid progenitor cells. The myeloid progenitor develops into, erythrocytes (erythroid), platelets (megokaryocytic), basophils, eosinophils, granulocytes, neutrophils, and monocytes. The lymphoid progenitor is the precursor to B-lymphocytes, T-lymphocytes, and natural killer cells.

There are various diseases and disorders related to bone marrow, including, not limited to, e.g., red cell diseases, aplastic anemia (e.g., where there is a defect in the myeloid stem cell), pure red cell aplasia, white cell diseases, leukopenia, neutropenia, reactive (inflammatory) proliferation of white cells and nodes such as leukocytosis and lymphadenitis, neoplastic proliferation of white cells, malignant lymphoma, Non-Hodgkin's Lymphomas, Hodgkins disease, acute leukemias (e.g., acute lymphoblastic leukemia, acute myeloblastic leukemia, myelodysplatic snydrome), chromic myeloid leukemia, chronic leukemia. hairy cell leukemia, myeloproliferative disorders, plasma cell disorders, multiple myeloma, histiocytoses, etc.

Immune System Selective Genes

The present invention relates to genes involved in the function and activity of the immune system. XM_062147 (TMD0088) and XM_061676 (TMD0045) code for seven membrane spanning polypeptides which are homologous to members of the olfactory G-protein-coupled receptor ("GPCR") family. XM_062147 is expressed predominantly in bone marrow tissue, with no detectable expression in other tissues. XM_061676 is also expressed predominantly in bone marrow tissue, but it is detected in peripheral blood lymphocytes, as well. As discussed in more detail below, XM_062147 (TMD0088), XM_061676 (TMD0045), and the polypeptides they encode, can be used as diagnostic, prognostic, therapeutic, and research tools for any conditions, diseases, disorders, or applications

-12-

associated with the immune system and the cells in which they are expressed.

In view of their selectivity and display on the cell surface, the GPCR family members of the present invention are useful targets for histological, diagnostic, and therapeutic applications relating to the cells (e.g., B-cells and B-cell progenitors) in which they are expressed. Antibodies and other protein binding partners (e.g., ligands, aptamers, small peptides, etc.) can be used to selectively target agents to a tissue for any purpose, included, but not limited to, imaging, therapeutic, diagnostic, drug delivery, gene therapy, etc. For example, binding partners, such as antibodies, can be used to treat carcinomas in analogy to how c-erbB-2 antibodies are used to breast cancer. They can also be used to detect metastatic cells, in biopsies to identify bone marrow, lymphocytes, etc. The genes and polypeptides encoded thereby can also be used in tissue engineering to identify tissues as they appear during the differentiation process, to target tissues, to modulate tissue growth (e.g., from starting stem cell populations), etc. Useful antibodies or other binding partners include those that are specific for parts of the polypeptide which are exposed extracellularly as indicated in Table 2. Any of the methods described above and below can be accomplished in vivo, in vitro, or ex vivo (e.g., bone marrow cells or peripheral blood lymphocytes can be treated ex vivo and then returned to the body). Ex vivo methods can be used to eliminate cancerous cells from the bone marrow, to modulate bone marrow cells, to prime bone marrow cells for an immune response, to expand a particular class of cells expressing XM_062147 (TMD0088) or XM 061676 (TMD0045), to transfer genes into said cells (e.g., Banerjee and Bertino, Lancet Oncol., 3:154-158, 2002), etc.

When expression is described as being "predominantly" in a given tissue, this indicates that the gene's mRNAs levels are highest in this tissue as compared to the other tissues in which it was measured. Expression can also be "selective," where expression is observed. By the phrase "selectively expressed," it is meant that a nucleic acid molecule comprising the defined sequence of nucleotides, when produced as a transcript, is characteristic of the tissue or cell-type in which it is made. This can mean that the transcript is expressed only in that tissue and in no other tissue-type, or it can mean that the transcript is expressed preferentially, differentially, and more abundantly (e.g., at least 5-fold, 10-fold, etc., or more) in that tissue when compared to other tissue-types.

The phrase "immune system" indicates any processes and cells which are involved in

5

10

15

20

25

-13-

generating and carrying out an immune response. Immune system cells includes, but are not limited to, e.g., stem cells, pluripotent stem cell, myeloid progenitor, lymphoid progenitor, lymphocytes, B-lymphocytes, T-lymphocytes (e.g., naive, effector, memory, cytotoxic, etc.), thymocytes, natural killer, erythroid, megakaryocyte, basophil, eosinophil, granulocytemonocyte, accessory cells (e.g., cells that participate in initiating lymphocyte responses to antigens), antigen-presenting cells ("APC"), mononuclear phagocytes, dendritic cells, macrophages, etc., and any precursors, progenitors, or mature stages thereof.

XM_062147 contains seven transmembrane segments. It is located on chromosomal band 11q12 within proximity to the locus for an inherited form of atopic hypersenstivity (OMIM 147050, e.g., associated with asthma, hay fever, and eczema). It has been suggested that the condition is a result of defect in the regulation of immunoglobulin E. XM_061676 also is seven membrane spanning polypeptide. The chromosomal locus, 11p15, to which it maps is rich in genes associated with immune disorders, including Fanconi anemia, nucleoporin, myeloid leukemia, and T-cell lymphoblastic leukemia. Arthrogryposis multiplex congenita (distal type IIB) also maps closely to this chromosomal location.

The present invention relates to methods of detecting immune system cells, comprising one or more of the following steps, e.g., contacting a sample comprising cells with a polynucleotide specific for a gene selected from Table 6, or a mammalian homolog thereof, under conditions effective for said polynucleotide to hybridize specifically to said gene, and detecting specific hybridization. Detecting can be accomplished by any suitable method and technology, including, e.g., any of those mentioned and discussed below, such as Northern blot and PCR. Specific polynucleotides include SEQ ID NOS 67, 68, 76, and 77 (see, Table 6), and complements thereto.

Detection can also be achieved using binding partners, such as antibodies (e.g., monoclonal or polyclonal antibodies) that specifically recognize polypeptides coded for by genes of the present invention. Thus, the present invention relates to methods of detecting an immune system cell, comprising, one or more the following steps, e.g. contacting a sample comprising cells with a binding partner (e.g. an antibody, an Fab fragment, a single-chain antibody, an aptamer) specific for a polypeptide coded for by gene selected from Table 6, or a mammalian homolog thereof, under conditions effective for said binding partner bind specifically to said polypeptide, and detecting specific binding. Protein binding assays can be

5

10

15

20

25

10

15

20

25

30

accomplished routinely, e.g., using immunocytochemistry, ELISA format, Western blots, etc. Useful epitopes include those exposed to the surface as indicated in Table 7.

As indicated above, binding partners can be used to deliver agents specifically to the immune system, e.g., for diagnostic, therapeutic, and prognostic purposes. Methods of delivering an agent to an immune cell can comprise, e.g., contacting an immune cell with an agent coupled to binding partner specific for a gene selected from Table 6, whereby said agent is delivered to said cell. Any type of agent can be used, including, therapeutic and imaging agents. Contact with the immune system can be achieved in any effective manner, including by administering effective amounts of the agent to a host orally, parentally, locally, systemically, intravenously, etc. The phrase "an agent coupled to binding partner" indicates that the agent is associated with the binding partner in such a manner that it can be carried specifically to the target site. Coupling includes, chemical bonding, covalent bonding, noncovalent bonding (where such bonding is sufficient to carry the agent to the target), present in a liposome or in a lipid membrane, associated with a carrier, such as a polymeric carrier, etc. The agent can be directly linked to the binding partner, or via chemical linkers or spacers.

Imaging of specific organs can be facilitated using tissue selective antibodies and other binding partners that selectively target contrast agents to a specific site in the body. Various imaging techniques have been used in this context, including, e.g., X-ray, CT, CAT, MRI, ultrasound, PET, SPECT, and scintographic. A reporter agent can be conjugated or associated routinely with a binding partner. Ultrasound contrast agents combined with binding partners, such as antibodies, are described in, e.g., U.S. Pat. Nos. 6,264,917, 6,254,852, 6,245,318, and 6,139,819. MRI contrast agents, such as metal chelators, radionucleotides, paramagnetic ions, etc., combined with selective targeting agents are also described in the literature, e.g., in U.S. Pat. Nos. 6,280,706 and 6,221,334. The methods described therein can be used generally to associate a partner with an agent for any desired purpose.

The maturation of the immune system can also be modulated in accordance with the present invention, e.g., by methods of modulating the maturation of an immune system cell, comprising, e.g., contacting said cell with an agent effective to modulate a gene, or polypeptide encoded thereby, selected from Table 6, or a mammalian homolog thereof,

-15-

whereby the maturation of an immune cell is modulated. Modulation as used throughout includes, e.g., stimulating, increasing, agonizing, activating, amplifying, blocking, inhibiting, reducing, antagonizing, preventing, decreasing, diminishing, etc.

The phrase "immune system cell maturation" includes indirect or direct effects on immune system cell maturation, i.e., where modulating the gene directly effects the maturational process by modulating a gene in a immune system cell, or less directly, e.g., where the gene is expressed in a cell-type that delivers a maturational signal to the immune system cell. Immune system maturation includes B-cell maturation, T-cell maturation, such as positive selection, negative selection, apoptosis, recombination, expression of T-cell receptor genes, CD4 and CD8 receptors, antigen recognition, MHC recognition, tolerization, RAG expression, differentiation, TCR expression, antigen expression, etc. See also below and, e.g., Abbas et al., *Cellular and Molecular Immunology*, 4th Edition, W.B. Saunders Company, 2000, e.g., Pages 149-160. Processes include reception of a signal, such as cytokinin or other GPCR ligand. Any suitable agent can be used, e.g., agents that block the maturation, such as an antibody to a GPCR of Table 6, or other GPCR antagonist.

The interactions between lymphoid and non-lymphoid immune system cells can also be modulated comprising, e.g., contacting said cells with an agent effective to modulate a gene, or polypeptide encoded thereby, selected from Table 6, or a mammalian homolog thereof, whereby the interaction is modulated. Lymphoid cells, includes, e.g., lymphocytes (T- and B-), natural killer cells, and other progeny of a lymphoid progenitor cell. Non-lymphoid cells include accessory cells, such as antigen presenting cells, macrophages, mononuclear phagocytes dendritic cells, non-lymphoid thymocytes, and other cell types which do not normally arise from lymphoid progenitors. Interactions that can be modulated included, e.g., antigen presentation, positive selection, negative selection, progenitor cell differentiation, antigen expression, tolerization, TCR expression, apoptosis. See, also above and below, for other immune system processes.

Promoter sequences obtained from GPCR genes of the present invention can be utilized to selectively express heterologous genes in immune system cells. Methods of expressing a heterologous polynucleotide in immune system cells can comprise, e.g., expressing a nucleic acid construct in immune system cells, said construct comprising a promoter sequence operably linked to said heterologous polynucleotide, wherein said

5

10

15

20

25

promoter sequence is selected from Table 6. In addition to the cell lines mentioned below, the construct can be expressed in primary cells, such as thymocytes, bone marrow cells, stem cells, lymphoid progenitor cells, myeloid progenitor cells, monocytes, B-cells, antigen presenting cells, macrophages, and cell lines derived therefrom.

5

10

15

20

Kidney Selective Genes

The present invention relates to genes and polypeptides which are selectively expressed in kidney tissues: TMD0049 (XM 057351), TMD0190 (XM_087157), TMD0242 (XM_088369), TMD0335 (XM_089960), TMD0371, TMD0374, TMD0469 (XM_038736), TMD0719 (XM 059548), TMD0731 (XM 059703), TMD0785 (XM_060310), TMD0841 (XM_060623), TMD1114 (NM_019841), and/or TMD 1148 (XM_087108). These genes and polypeptides are expressed predominantly in kidney tissues, making them, and the polypeptides they encode, useful as selective markers for kidney tissue and function, as well as diagnostic, prognostic, therapeutic, and research tools for any conditions, diseases, disorders, or applications associated with the kidney and the cells in which they are expressed. TMD0049 (XM_057351), TMD0190 (XM_087157), TMD0242 (XM_088369), TMD0335 (XM 089960), TMD0371, TMD0374, TMD0469 (XM_038736), TMD0719 (XM 059548), TMD0731 (XM 059703), TMD0785 (XM_060310), TMD0841 (XM 060623), TMD1114 (NM 019841), and/or TMD 1148 (XM 087108) includes both human and mammalian homologs of it. SEQ ID NOS 78-103 represent particular alleles, but the present invention relates to other alleles, including naturally-occurring polymorphisms (i.e., a polymorphism in the nucleotide sequence which is identified in populations of mammals) and homologs thereof. More information on these genes is summarized in Tables 8-11.

25

30

In view of their selectivity and display on the cell surface, the polypeptides and polynucleotides of the present invention are useful targets for histological, diagnostic, and therapeutic applications relating to the cells (e.g., juxtaglomerular cells which secrete renin, peritubular cells, endothelial cells, e.g., of the cortex and outer medulla, mesangial cells which secrete inflammatory mediators including NO and products of cyclooxygenase, visceral epithelial cells, parietal epithelial cells, podocytes, early proximal tubule cells which secrete, e.g., angiotensin converting enzyme and neutral endopeptidase, late distal tubule

-17-

cells that produce, e.g., prolyl endopeptidase, serine endopeptidase, carboxypeptidase, and neutral endopeptidase, renomedullary interstitial cells, etc) in which they are expressed. Antibodies and other protein binding partners (e.g., ligands, aptamers, small peptides, etc.) can be used to selectively target agents to a tissue for any purpose, included, but not limited to, imaging, therapeutic, diagnostic, drug delivery, gene therapy, etc. For example, binding partners, such as antibodies, can be used to treat carcinomas in analogy to how c-erbB-2 antibodies are used to breast cancer. They can also be used to detect metastatic cells, in biopsies, to identify kidney, etc. The genes and polypeptides encoded thereby can also be used in tissue engineering to identify tissues as they appear during the differentiation process, to target tissues, to modulate tissue growth (e.g., from starting stem cell populations), etc. Useful antibodies or other binding partners include those that are specific for parts of the polypeptide which are exposed extracellularly as indicated in Table 9. Any of the methods described above and below can be accomplished in vivo, in vitro, or ex vivo.

When expression is described as being "predominantly" in a given tissue, this indicates that the gene's mRNAs levels are highest in this tissue as compared to the other tissues in which it was measured. Expression can also be "selective," where expression is observed. By the phrase "selectively expressed," it is meant that a nucleic acid molecule comprising the defined sequence of nucleotides, when produced as a transcript, is characteristic of the tissue or cell-type in which it is made. This can mean that the transcript is expressed only in that tissue and in no other tissue-type, or it can mean that the transcript is expressed preferentially, differentially, and more abundantly (e.g., at least 5-fold, 10-fold, etc., or more) in that tissue when compared to other tissue-types.

The present invention relates to methods of detecting kidney cells, comprising one or more of the following steps, e.g., contacting a sample comprising cells with a polynucleotide specific for TMD0049 (XM_057351), TMD0190 (XM_087157), TMD0242 (XM_088369), TMD0335 (XM_089960), TMD0371, TMD0374, TMD0469 (XM_038736), TMD0719 (XM_059548), TMD0731 (XM_059703), TMD0785 (XM_060310), TMD0841 (XM_060623), TMD1114 (NM_019841), and/or TMD 1148 (XM_087108), or a mammalian homolog thereof, under conditions effective for said polynucleotide to hybridize specifically to said gene, and detecting specific hybridization. Detecting can be accomplished by any suitable method and technology, including, e.g., any of those mentioned and discussed below,

5

10

15

20

25

10

15

20

25

30

such as Northern blot and PCR. Specific polynucleotides include SEQ ID NOS 104, 105, 107, 108, 111, 112, 115, 116, 119, 120, 122, 123, 126, 127, 131, 132, 135, 136, 138, 139, 142, 143, 145, 146, 149, 150, and complements thereto.

Detection can also be achieved using binding partners, such as antibodies (e.g., monoclonal or polyclonal antibodies) that specifically recognize polypeptides coded for by genes of the present invention. Thus, the present invention relates to methods of detecting a kidney cell, comprising, one or more the following steps, e.g. contacting a sample comprising cells with a binding partner (e.g. an antibody, an Fab fragment, a single-chain antibody, an aptamer) specific for a polypeptide coded for by TMD0049 (XM_057351), TMD0190 (XM_087157), TMD0242 (XM_088369), TMD0335 (XM_089960), TMD0371, TMD0374, TMD0469 (XM_038736), TMD0719 (XM_059548), TMD0731 (XM_059703), TMD0785 (XM_060310), TMD0841 (XM_060623), TMD1114 (NM_019841), and/or TMD 1148 (XM_087108), or a mammalian homolog thereof, under conditions effective for said binding partner bind specifically to said polypeptide, and detecting specific binding. Protein binding assays can be accomplished routinely, e.g., using immunocytochemistry, ELISA format, Western blots, etc. Useful epitopes include those exposed to the surface as indicated in Table 9.

As indicated above, binding partners can be used to deliver agents specifically to the kidney, e.g., for diagnostic, therapeutic, and prognostic purposes. Methods of delivering an agent to a kidney cell can comprise, e.g., contacting a kidney cell with an agent coupled to binding partner specific for TMD0049 (XM_057351), TMD0190 (XM_087157), TMD0242 (XM_088369), TMD0335 (XM_089960), TMD0371, TMD0374, TMD0469 (XM_038736), TMD0719 (XM_059548), TMD0731 (XM_059703), TMD0785 (XM_060310), TMD0841 (XM_060623), TMD1114 (NM_019841), and/or TMD 1148 (XM_087108), whereby said agent is delivered to said cell. Any type of agent can be used, including, therapeutic and imaging agents. Contact with the kidney can be achieved in any effective manner, including by administering effective amounts of the agent to a host orally, parentally, locally, systemically, intravenously, etc. The phrase "an agent coupled to binding partner" indicates that the agent is associated with the binding partner in such a manner that it can be carried specifically to the target site. Coupling includes, chemical bonding, covalent bonding, noncovalent bonding (where such bonding is sufficient to carry the agent to the target),

10

15

20

25

30

present in a liposome or in a lipid membrane, associated with a carrier, such as a polymeric carrier, etc. The agent can be directly linked to the binding partner, or via chemical linkers or spacers. Any cell expressing a polypeptide coded for by TMD0049 (XM_057351), TMD0190 (XM_087157), TMD0242 (XM_088369), TMD0335 (XM_089960), TMD0371, TMD0374, TMD0469 (XM_038736), TMD0719 (XM_059548), TMD0731 (XM_059703), TMD0785 (XM_060310), TMD0841 (XM_060623), TMD1114 (NM_019841), and/or TMD 1148 (XM_087108) can be targeted, including, e.g., juxtaglomerular, peritubular, endothelial, mesangial, visceral epithelial, parietal epithelial, podocytes, early proximal tubule, late distal tubule, renomedullary interstitial, etc.

Imaging of specific organs can be facilitated using tissue selective antibodies and other binding partners that selectively target contrast agents to a specific site in the body. Various imaging techniques have been used in this context, including, e.g., X-ray, CT, CAT, MRI, ultrasound, PET, SPECT, and scintographic. A reporter agent can be conjugated or associated routinely with a binding partner. Ultrasound contrast agents combined with binding partners, such as antibodies, are described in, e.g., U.S. Pat. Nos, 6,264,917, 6,254,852, 6,245,318, and 6,139,819. MRI contrast agents, such as metal chelators, radionucleotides, paramagnetic ions, etc., combined with selective targeting agents are also described in the literature, e.g., in U.S. Pat. Nos. 6,280,706 and 6,221,334. The methods described therein can be used generally to associate a partner with an agent for any desired purpose.

A kidney cell (see above for examples of kidney cell types) can also be modulated in accordance with the present invention, e.g., by methods of modulating a kidney cell, comprising, e.g., contacting said cell with an agent effective to modulate TMD0049 (XM_057351), TMD0190 (XM_087157), TMD0242 (XM_088369), TMD0335 (XM_089960), TMD0371, TMD0374, TMD0469 (XM_038736), TMD0719 (XM_059548), TMD0731 (XM_059703), TMD0785 (XM_060310), TMD0841 (XM_060623), TMD1114 (NM_019841), and/or TMD 1148 (XM_087108), or the biological activity of a polypeptide encoded thereby, or a mammalian homolog thereof, whereby said kidney cell is modulated. Modulation as used throughout includes, e.g., stimulating, increasing, agonizing, activating, amplifying, blocking, inhibiting, reducing, antagonizing, preventing, decreasing, diminishing, etc.

-20-

An activity or function of the kidney cell can be modulated, including, e.g., glomerular filtration rate, filtration pressure, renal autoregulation (including via myogenic mechanism and tubuloglomerular feedback mechanism), tubular reabsorption, tubular secretion, and renal clearance. In addition, the transcription, translation, synthesis, degradation, expression, etc., of any secretory or polypeptide produced by a kidney cell can be modulated, including, but not limited to, renin-angiotensin activity, production and secretion of prostaglandins, nitric oxide, kallikrein, adenosine, endothelin, erythropoietin, and other hormones, enzymes, and other secretory and intracellular factors. The response of a kidney cell to stimuli can also be modulated, including, but not limited to, ligands to TMD0049 (XM_057351), TMD0190 (XM_087157), TMD0242 (XM_088369), TMD0335 (XM_089960), TMD0371, TMD0374, TMD0469 (XM_038736), TMD0719 (XM_059548), TMD0731 (XM_059703), TMD0785 (XM_060310), TMD0841 (XM_060623), TMD1114 (NM_019841), and/or TMD 1148 (XM_087108), oxygen levels, blood pressure, etc.

The present invention also relates to polypeptide detection methods for assessing kidney function, e.g., methods of assessing kidney function, comprising, detecting a 15 polypeptide coded for by TMD0049 (XM_057351), TMD0190 (XM_087157), TMD0242 (XM_088369), TMD0335 (XM_089960), TMD0371, TMD0374, TMD0469 (XM_038736), TMD0719 (XM_059548), TMD0731 (XM_059703), TMD0785 (XM_060310), TMD0841 (XM_060623), TMD1114 (NM_019841), and/or TMD 1148 (XM_087108), fragments thereof, polymorphisms thereof, in a body fluid, whereby the level of said polypeptide in said 20 fluid is a measure of kidney function. Kidney function tests are usually performed to determine whether the kidney is functioning normally as a way of diagnosing kidney disease. Various tests are commonly used, including, e.g., BUN (blood urea nitrogen), serum creatinine, estimated GFR, ability to concentrate urine, BUN/creatine ratio, urine sodium and other electrolytes, urine NAG (N-acetyl-beta-glucosaminidase, adenosine deaminase, urinary 25 alkaline phosphatase, serum and urine beta-2-microglobulin, serum uric acid, isotope scans, Doppler sonogram, positron emission tomography, specific gravity of urine, microalbumin, total protein, etc. Detection of TMD0049 (XM_057351), TMD0190 (XM_087157), TMD0242 (XM_088369), TMD0335 (XM_089960), TMD0371, TMD0374, TMD0469 (XM_038736), TMD0719 (XM_059548), TMD0731 (XM_059703), TMD0785 30 (XM_060310), TMD0841 (XM_060623), TMD1114 (NM_019841), and/or TMD 1148

5

-21-

(XM_087108) provides an additional assessment tool, especially in diseases such as chromic renal failure, urinary tract infections, kidney stones, nephrotic syndrome, nephritic syndrome, kidney disease due to diabetes or high blood pressure, etc., As with the other tests, elevated levels of said polypeptide in blood, or other fluids, can indicate impaired kidney function. Values can be determined routinely, as they are for other kidney function markers, such as those mentioned above. Detecting can be performed routinely (see below), e.g., using an antibody which is specific for said polypeptide, by RIA, ELISA, or Western blot, etc.

Promoter sequences obtained from genes of the present invention can be utilized to selectively express heterologous genes in kidney cells. Methods of expressing a heterologous polynucleotide in kidney cells can comprise, e.g., expressing a nucleic acid construct in kidney cells, said construct comprising a promoter sequence operably linked to said heterologous polynucleotide, wherein said promoter sequence is selected SEQ ID NOS 106, 109, 110, 113, 114, 117, 118, 121, 124, 125, 128-130, 133, 134, 137, 140, 141, 144, 147, 148, and 151. In addition to the cell lines mentioned below, the construct can be expressed in primary cells or in established cell lines.

Kidney

5

10

15

20

25

30

The kidney maintains the constancy of fluids in an organism's internal environment, and is therefore of great importance in maintaining health and vitality. Each day, the kidney filters the blood, removing and concentrating toxins, metabolic wastes, and excess ions, allowing them to be excreted by the body in the form of urine. The excretory function of the kidney is performed by over one million blood units called nephrons, each a miniature blood filtering and processing unit. A nephron consists of a glomerulus, a tuft of capillaries, and a renal tubule. In addition to their excretory function, kidneys produce a number of different hormones, enzymes, and other secreted molecules, including the enzyme renin and the hormone erythropoietin. The kidney also is responsible for metabolizing vitamin D into its active form, calcitriol. For a full description of the kidney's function and structure, see, e.g., *Human Anatomy and Physiology*, Marieb, E.N., 3rd Edition, Benjamin/Cummings Publishing Company, Inc., 1995, pp 896-923.

The glomerulus is a high pressure capillary bed which filters out most substances smaller than large plasma proteins across the fenestrated glomerular epithelium, the

-22-

intervening basement membrane, and the podocyte-containing visceral membrane of the glomerulus capsule. The external layer of the glomerulus is called the parietal layer, consisting predominally of a squamous epithelium. This layer is structural. Underneath it, is the visceral layer which consists of the modified branching epithelial cells called podocytes. These sit on top of the fenestratrated glomerular endothelium. The glomerulus is connected to the renal tubule, a highly differentiated and long tube, having three major elements: the proximal convoluted tubule, the loop of Henel, and the distal convoluted tubule. Different regions of the tubule have different functions in absorption and secretion.

Renal cells produce a variety of different hormones and chemicals, including, prostaglandins, nitric oxide, kallikrein family, adenosine, endothelin family, renin, erythropoietin, aldosterone, antidiuretic hormone (vasopressin), natriuretic hormones, etc. Renin is involved in modulating blood pressure. It cleaves angiotensinogen, a plasma peptide, splitting off a fragment containing 10 amino acids called angiotensin I. Angiotensin I is cleaved by a peptidase secreted by blood vessels called angiotensin converting enzyme (ACE), producing angiotensin II, which contains 8 amino acids. Angiotensin II has many direct effects on blood pressure. Erythropoietin stimulates red blood cell production in the bone marrow.

TMD0049 (XM_057351), TMD0190 (XM_087157), TMD0242 (XM_088369), TMD0335 (XM_089960), TMD0371, TMD0374, TMD0469 (XM_038736), TMD0719 (XM_059548), TMD0731 (XM_059703), TMD0785 (XM_060310), TMD0841 (XM_060623), TMD1114 (NM_019841), and/or TMD 1148 (XM_087108) can be used to identify, detect, stage, determine the presence of, prognosticate, treat, study, etc., diseases and conditions of the kidney. These include, but are not limited to, diseases that affect the four basic morphologic components, glomeruli, tubules, interstitium, and blood vessels. Diseases include, e.g., acute nephritic syndrome, nephritic syndrome, renal failure, urinary tract infections, renal stones, cystic diseases of the kidney, e.g., cystic renal dysplasia, polycystic disease (autosomal dominant and recessive types), medullary cystic disease, acquired cystic disease, renal cysts, parenchymal cysts, perihilar renal cysts (pyelocalyceal cysts, hilar lymphangitic cysts), glomerular diseases, diseases of tubules, tubulointerstitial diseases, tumors of the kidney, such as benign tumors (cortical adenoma, renal fibroma, renomedullary interstitial cell tumor), malignant tumors (renal cell carcinoma, hypernephroma,

5

10

15

20

25

adenocarcinoma of kidney, Wilms' tumor, nephroblastoma, urothelial carcinoma), renal coloboma, nephorblastoma, clear cell sarcoma of kidney (CCSK), rhabdoid tumor of kidney (RTK), von Hippel-Lindau disease, oncocytoid renal cell carcinoma (RCC), renal leiomyoblastoma, etc. TMD0049 (XM_057351), TMD0190 (XM_087157), TMD0242 (XM_088369), TMD0335 (XM_089960), TMD0371, TMD0374, TMD0469 (XM_038736), TMD0719 (XM_059548), TMD0731 (XM_059703), TMD0785 (XM_060310), TMD0841 (XM_060623), TMD1114 (NM_019841), and/or TMD 1148 (XM_087108) can also be used for staging and classifying conditions and diseases of the present invention, alone, or in combination with conventional staging and classification schemes.

10

15

20

25

30

5

Pancreatic Gene Complex

The present invention relates to a cluster of olfactory GPCR (G-protein coupled) receptor genes located at chromosomal band 11q24. These genes are expressed predominantly in pancreatic tissue, establishing this region of chromosome 11 as a unique gene complex involved in pancreatic function. See, Table 12. Because of their exquisite selectivity for pancreatic tissues, the pancreatic gene complex ("PGC"), and the genes which comprise it, are useful to assess pancreas tissue and function for diagnostic, prognostic, therapeutic, and research purposes.

The spatial organization of the pancreatic gene complex ("PGC") is illustrated in Fig. 7. It spans several hundred kilobases of chromosome 11, e.g., from about LOC160205 to LOC119954, from about LOC119944-LOC119954, and any part thereof. Within this region, is a cluster of genes coding for polypeptides which share sequence identity with the olfactory GPCR family. These include, but are not limited to, TMD0986, XM_061780 (TMD0987), XM_061781 (TMD0353), XM_061784 (TMD0989), XM_061785 (TMD058). Fig. 8 illustrates the relationship between the lengths of the different coding sequences. As shown in the figure, XM_061784 is shorter at its C-terminus than the other family members.

As members of the GPCR family, the PGC genes all share a degree of amino acid sequence identity and similarity. See, Table 14 for values (% sequence identity is the first place; % sequence similarity is in parenthesis in the second place; calculations were performed using the publicly-available BLASTP pair-wise alignment program). TMD0986, XM_061780, XM_061781, and XM_061785 each share about 40% sequence identity.

10

15

20

30

BLAST searching of publicly available sequences indicates that these polypeptides share less amino acid sequence identity with each other than they do with other olfactory GPCR homologs located elsewhere in the genome. Significantly higher amino acid sequence identity – 81% – is observed between the adjacent genes XM_061784 and XM_061785. These genes appear to be part of a sub-cluster within PGC that share high polypeptide similarity between them.

The phrase "a gene of Table 12" which is used throughout the description include the specific sequences for the listed XM numbers as well as other human alleles, and mammalian homologs, such as murine homologs. For example, Table 14 lists several of the mouse homologs that are included in the present invention. While SEQ ID NOS. 152, 153, 162, 163, 167, 168, 171, 172, 175, and 176 may represent particular alleles, the present invention relates to other alleles, as well, including naturally-occurring polymorphisms (i.e., a polymorphism in a nucleotide sequence which is identified in populations of mammals).

TMD0986 (SEQ ID NO 152 and 153) is a full-length sequence of the previously identified XM_061779. It contains an additional 117 amino acids not present in XM_061779. The present invention relates to nucleic acids comprising or consisting essentially of this sequence in its entirety (e.g., amino acids 1-314), comprising or consisting essentially of nucleic acids coding for amino acids 1-117, and comprising or consisting essentially of fragments of nucleic acids coding for amino acids 1-117. Polypeptides encoded by these nucleic acids are also claimed, including polypeptide fragments of 1-117, such as 1-23, 79-97, 164-198, 261-274, and other extracellularly exposed peptides. In addition, the present invention relates to binding partners, such as antibodies, that bind to epitopes within amino acids 1-117 (e.g., SEQ ID NO 153).

25 Pancreas

Diabetes and other pancreatic disorders are a major health concern. Worldwide, it is estimated that 5-10% of the population suffers from some form of diabetes. Pancreatic cancer is the fifth leading cause of cancer-related mortality. In 2002, it was estimated that about 30,000 Americans would be diagnosed with pancreatic cancer, and 90% would die within 12 months. Despite the prevalence of pancreatic disease, the genetics and physiology of normal pancreatic function and pancreatic disease is still poorly understood.

-25-

The pancreas is a mixed gland comprised of exocrine and endocrine tissues. The exocrine portion comprises about 80-85% of the organ. It is divided into lobes by connective tissue septa, and each lobe is divided into several lobules. These lobules are composed of grape-like clusters of secretory cells that form sacs known as acini. An acinus is a functional unit of the pancreatic exocrine gland. All acini drain into interlobular ducts which merge to form the main pancreatic duct. It, in turn, joins together with the bile duct from the liver to form the common bile duct that empties into the duodenum. Pancreatic acinar cells make up more than 80% of the total volume of the pancreas and function in the secretion of the various enzymes that assist digestion in the gastrointestinal tract. Scattered among the acinar cells are approximately a million pancreatic islets ("islets of Langerhans") that secrete the pancreatic endocrine hormones. These dispersed islets comprise approximately 2% of the total volume of the pancreas.

The basic function of the pancreatic endocrine cells is to secrete certain hormones that participate in the metabolism of proteins, carbohydrates, and fats. The hormones secreted by the islets include, e.g., insulin, glucagon, somatostatin, pancreatic polypeptide, amylin, adrenomedullin, gastrin, secretin, and peptide-YY. See, also, Shimizu et al., *Endocrin.*, 139:389-396, 1998. The islets contain about four major and two minor cell types. The major cell types are alpha (glucagon producing), beta (insulin and amylin producing), delta (somatostatin producing which suppresses both insulin and glucagon release), and F (pancreatic polypeptide and adrenomedullin producing) cells. The minor cell types are D1 (produce vasoactive intestinal peptide or VIP) and enterochromaffin (produce serotonin) cells. The cells can be distinguished, e.g., by their morphology, hormonal content, and polynucleotide expression patterns.

The ability of the pancreas to respond to a wide variety of metabolic signals is conferred by an expression profile comprising a rich assortment of receptor proteins. G-protein coupled receptors have been previously identified in the pancreas, including, e.g., receptors for glucagon, secretin, CCK (e.g., Roettger et al., *J. Cell Biol.*, 130:579-590, 1995), purines (e.g., P2 purinoreceptors), gastrin, KiSS-1 peptides (e.g., Kotani et al., *J. Biol. Chem.*, 276:34631-6, 2001), adrenomedullin (Martinez et al., *Endocrin.*, 141:406, 2000), and interleukins. G-protein subunits have also been localized to the pancreas, including G-proteins which were previously associated with the olfactory epithelium. See, e.g., Zigman et

5

10

15

20

25

-26-

al., *Endocrin.*, 133:2508-2514, 1993. In addition, pancreatic cells express neurotropin, neurotensin, and interleukin receptors.

As mentioned, the pancreas is sensitive to a variety of metabolic, soluble and hormonal signals involved in regulating blood sugar, modulating synthesis and release of pancreatic digestive enzymes, and other physiologically important processes involved in pancreas function. In analogy to the ability of olfactory receptors to detect odors and pheromones in the environment, the pancreatic GPCRs of the present invention can be used to "sniff" out and respond to various ligands in the blood which pass through the pancreas, including peptides, metabolites, and other biologically-active molecules. Biological activities include, but are not limited to, e.g., regulation of blood sugar, modulation of all aspects of the various secreted polypeptides (hormones, enzymes, etc.) produced by the pancreas, ligand-binding, exocytosis, amylase (and any of the other 20 or so digestive enzymes produced by the pancreas) secretion, autocrine responses, apoptosis (e.g., in the survival of beta-islet cells), zymogen granule processing, G-protein coupling activity, etc.

The polynucleotides, polypeptides, and ligands thereto, of the present invention can be used to identify, detect, stage, determine the presence of, prognosticate, treat, study, etc., diseases and conditions of pancreas. These include, but are not limited to, e.g., disorders associated with loss or mutation to 11q24, such as Jacobsen syndrome (OMIM #147791), cystic fibrosis, acute and chronic pancreatitis, pancreatic abscess, pancreatic pseudocyst, nonalcoholic pancreatitis, alcoholic pancreatitis, classic acute hemorrhagic pancreatitis, chronic calcifying pancreatitis, familial hereditary pancreatitis, carcinomas of the pancreas, primary (idiopathic) diabetes (e.g., Type I (insulin dependent diabetes mellitus, IDDM) [insulin deficiency, beta cell depletion], Type II (non-insulin dependent diabetes mellitus, NIDDM) [insulin resistance, relative insulin deficiency, mild beta cell depletion]), nonobese NIDDM, obese NIDDM, maturity-onset diabetes of the young (MODY), islet cell tumors, diffuse hyperplasia of the islets of Langerhans, benign adenomas, malignant islet tumors, hyperfunction of the islets of Langerhans, hyperinsulinism and hypoglycemia, Zollinger-Ellison syndrome, beta cell tumors (insulinoma), alpha cell tumors (glucagonoma), delta cell tumors (somatostatinoma), vipoma (diarrheogenic islet cell tumor), pancreatic cancers, pancreatic carcinoid tumors, multihormonal tumors, multiple endocrine neoplasia (MEN), MEN I (Wermer syndrome), MEN II (Sipple syndrome), MEN III or IIb, pancreatic endocrine

5

10

15

20

25

tumors, etc.

10

15

20

25

30

In view of its selectivity and display on the cell surface, the olfactory GPCR family members of the present invention are useful targets for histological, diagnostic, and therapeutic applications relating to the cells (e.g., pancreatic progenitor, exocrine, endocrine, 5 acinar, islet, alpha, beta, delta, F, D1, enterochromaffin, etc.) in which they are expressed. Antibodies and other protein binding partners (e.g., ligands, aptamers, small peptides, etc.) can be used to selectively target agents to a tissue for any purpose, included, but not limited to, imaging, therapeutic, diagnostic, drug delivery, gene therapy, etc. For example, binding partners, such as antibodies, can be used to treat carcinomas in analogy to how c-erbB-2 antibodies are used to breast cancer. They can also be used to detect metastatic cells, in biopsies to identify bone marrow, lymphocytes, etc. The genes and polypeptides encoded thereby can also be used in tissue engineering to identify tissues as they appear during the differentiation process, to target tissues, to modulate tissue growth (e.g., from starting stem cell populations), etc. Useful antibodies or other binding partners include those that are specific for parts of the polypeptide which are exposed extracellularly as indicated in Table 14. Any of the methods described above and below can be accomplished in vivo, in vitro, or ex vivo.

When expression is described as being "predominantly" in a given tissue, this indicates that the gene's mRNAs levels are highest in this tissue as compared to the other tissues in which it was measured. Expression can also be "selective," where expression is observed. By the phrase "selectively expressed," it is meant that a nucleic acid molecule comprising the defined sequence of nucleotides, when produced as a transcript, is characteristic of the tissue or cell-type in which it is made. This can mean that the transcript is expressed only in that tissue and in no other tissue-type, or it can mean that the transcript is expressed preferentially, differentially, and more abundantly (e.g., at least 5-fold, 10-fold, etc., or more) in that tissue when compared to other tissue-types.

The present invention relates to methods of detecting pancreas cells, comprising one or more of the following steps, e.g., contacting a sample comprising cells with a polynucleotide specific for a gene of Table 12, or a mammalian homolog thereof, under conditions effective for said polynucleotide to hybridize specifically to said gene, and detecting specific hybridization. Detecting can be accomplished by any suitable method and

-28-

technology, including, e.g., any of those mentioned and discussed below, such as Northern blot and PCR. Specific polynucleotides include SEQ ID NOS 154, 155, 164, 165, 169, 170, 173, 174, 177, and 178, and complements thereto.

Detection can also be achieved using binding partners, such as antibodies (e.g., monoclonal or polyclonal antibodies) that specifically recognize polypeptides coded for by genes of the present invention. Thus, the present invention relates to methods of detecting a pancreas cell, comprising, one or more the following steps, e.g. contacting a sample comprising cells with a binding partner (e.g. an antibody, an Fab fragment, a single-chain antibody, an aptamer) specific for a polypeptide coded for by a polypeptide of Table 12, or a mammalian homolog thereof, under conditions effective for said binding partner bind specifically to said polypeptide, and detecting specific binding. Protein binding assays can be accomplished routinely, e.g., using immunocytochemistry, ELISA format, Western blots, etc. Useful epitopes include those exposed to the surface as indicated in Table 14.

As indicated above, binding partners can be used to deliver agents specifically to the pancreas, e.g., for diagnostic, therapeutic, and prognostic purposes. Methods of delivering an agent to a pancreas cell can comprise, e.g., contacting a pancreas cell with an agent coupled to a binding partner specific for a polypeptide coding for a gene of Table 12, whereby said agent is delivered to said cell. Any type of agent can be used, including, therapeutic and imaging agents. Contact with the pancreas can be achieved in any effective manner, including by administering effective amounts of the agent to a host orally, parentally, locally, systemically, intravenously, etc. The phrase "an agent coupled to binding partner" indicates that the agent is associated with the binding partner in such a manner that it can be carried specifically to the target site. Coupling includes, chemical bonding, covalent bonding, noncovalent bonding (where such bonding is sufficient to carry the agent to the target), present in a liposome or in a lipid membrane, associated with a carrier, such as a polymeric carrier, etc. The agent can be directly linked to the binding partner, or via chemical linkers or spacers. Any cell expressing a polypeptide coded for by a gene of Table 12 can be targeted, including, e.g., pancreatic progenitor, exocrine, endocrine, secretory, acinar, islet, alpha, beta, delta, F, D1, enterochromaffin, etc.

Imaging of specific organs can be facilitated using tissue selective antibodies and other binding partners that selectively target contrast agents to a specific site in the body.

5

10

15

20

25

Various imaging techniques have been used in this context, including, e.g., X-ray, CT, CAT, MRI, ultrasound, PET, SPECT, and scintographic. A reporter agent can be conjugated or associated routinely with a binding partner. Ultrasound contrast agents combined with binding partners, such as antibodies, are described in, e.g., U.S. Pat. Nos, 6,264,917, 6,254,852, 6,245,318, and 6,139,819. MRI contrast agents, such as metal chelators, radionucleotides, paramagnetic ions, etc., combined with selective targeting agents are also described in the literature, e.g., in U.S. Pat. Nos. 6,280,706 and 6,221,334. The methods described therein can be used generally to associate a partner with an agent for any desired purpose. See, Bruehlmeier et al., *Nucl. Med. Biol.*, 29:321-327, 2002, for imaging pancreas using labeled receptor ligands. Antibodies and other ligands to receptors of the present invention can be used analogously.

A pancreas cell (see above for examples of pancreas cell types) can also be modulated in accordance with the present invention, e.g., by methods of modulating a pancreas cell, comprising, e.g., contacting said cell with an agent effective to modulate a gene of Table 12, or the biological activity of a polypeptide encoded thereby (e.g., SEQ ID NO 153, 163, 168, 172, or 176), or a mammalian homolog thereof, whereby said pancreas cell is modulated. Modulation as used throughout includes, e.g., stimulating, increasing, agonizing, activating, amplifying, blocking, inhibiting, reducing, antagonizing, preventing, decreasing, diminishing, etc.

An activity or function of the pancreas cell can be modulated, including, e.g., regulation of blood sugar, modulation of all aspects of the various secreted polypeptides (hormones, enzymes, etc.) produced by the pancreas, ligand-binding, exocytosis, amylase (and any of the other 20 or so digestive enzymes produced by the pancreas) secretion, autocrine responses, apoptosis (e.g., in the survival of beta-islet cells), etc.

The present invention also relates to polypeptide detection methods for assessing pancreas function, e.g., methods of assessing pancreas function, comprising, detecting a polypeptide coded for by a gene of Table 12, fragments thereof, polymorphisms thereof, in a body fluid, whereby the level of said polypeptide in said fluid is a measure of pancreas function. Pancreas function tests are usually performed to determine whether the pancreas is functioning normally as a way of diagnosing pancreas disease. Various tests are commonly used, including, e.g., assays for the presence of pancreatic enzymes in body fluids (e.g.,

10

15

20

25

WO 03/089583

-30-

amylase, serum lipase, serum trypsin-like immuoreactivity), studies of pancreatic structure (e.g., using x-ray, sonography, CT-scan, angiography, endoscopic retrograde cholangiopancreatography), and tests for pancreatic function (e.g., secretin-pancreozymin (CCK) tst, Lundh meal test, Bz-Ty-PABA test, chymotrypsin in feces, etc). Detection of a polypeptide coded for by a gene of Table 12 provides an additional assessment tool, especially in diseases such as pancreatitis and pancreatic cancer where pancreatic markers can appear in the blood, stool, urine, and other body fluids. As with the other tests, elevated levels of said polypeptide in blood, or other fluids, can indicate impaired pancreas function. Values can be determined routinely, as they are for other markers, such as those mentioned above. Detecting can be performed routinely (see below), e.g., using an antibody which is specific for said polypeptide, by RIA, ELISA, or Western blot, etc., in analogy to the tests for pancreatic enzymes in body fluids.

Promoter sequences obtained from GPCR genes of the present invention can be utilized to selectively express heterologous genes in pancreas cells. Methods of expressing a heterologous polynucleotide in pancreas cells can comprise, e.g., expressing a nucleic acid construct in pancreas cells, said construct comprising a promoter sequence operably linked to said heterologous polynucleotide, wherein said promoter sequence is selected SEQ ID NOS 156-161, 166, 179, or 180. In addition to the cell lines mentioned below, the construct can be expressed in primary cells or in established cell lines.

The genes and polypeptides of Table 12 can be used to identify, detect, stage, determine the presence of, prognosticate, treat, study, etc., diseases and conditions of the pancreas as mentioned above. The present invention relates to methods of identifying a pancreatic disease or pancreatic disease-susceptibility, comprising, e.g., determining the association of a pancreatic disease or pancreatic disease-susceptibility with a nucleotide sequence present within the pancreatic gene complex. An association between a pancreas disease or disease-susceptibility and nucleotide sequence includes, e.g., establishing (or finding) a correlation (or relationship) between a DNA marker (e.g., gene, VNTR, polymorphism, EST, etc.) and a particular disease state. Once a relationship is identified, the DNA marker can be utilized in diagnostic tests and as a drug target.

Any region of the pancreatic gene complex can be used as a source of the DNA marker (e.g., a nucleotide sequence present with PGC), including, e.g., TMD0986,

5

10

15

20

25

WO 03/089583 PCT/US03/11497 -31-

XM_061780 (TMD0987), XM_061781 (TMD0353), XM_061784 (TMD0989), XM_061785 (TMD058), and any part thereof, introns, intergenic regions, any DNA from about 29160-29310 kb of 11q24, NT 009215, etc.

Human linkage maps can be constructed to establish a relationship between a region within 11q24 and a pancreatic disease or condition. Typically, polymorphic molecular markers (e.g., STRP's, SNP's, RFLP's, VNTR's) are identified within the region, linkage and map distance between the markers is then established, and then linkage is established between phenotype and the various individual molecular markers. Maps can be produced individual family, selected populations, patient populations, etc. In general, these methods involve identifying a marker associated with the disease (e.g., identifying a polymorphism in a family which is linked to the disease) and then analyzing the surrounding DNA to identity the gene responsible for the phenotype.

Retina Selective Gene

5

10

15

20

25

30

The present invention relates to NM 013941 (GPCR181 or OR10C1), a multiple transmembrane spanning polypeptide which shares sequence identity with the olfactory Gprotein coupled receptor (GPCR) family. Like other GPCR, NM 013941 has seven transmembrane domains, at about amino acid positions 20-42, 54-76, 91-113, 134-156, 190-212, 233-255, and 265-287, of SEQ ID NO 182. It is located at about chromosomal band 6p21.31-22.2. There are several other GPCRs located nearby (e.g., OR2B3, AL022727; OR2J3, AL022727). NM 013941 is highly expressed in brain tissue, at lower levels in heart, pituitary, and skin, and at minimally detectable levels in colon, small intestine, kidney, lymphocytes, and mammary gland. In the neuronal tissue, it was selectively expressed in the retina, but was not detected in any other brain tissue regions. The selective expression of NM 013941 in the retina makes it useful as a marker for retinal tissue, e.g., in stem cell cultures and biopsy samples, as well as a diagnostic, prognostic, therapeutic, and research tool for any conditions, diseases, disorders, or applications associated with the retina and the cells in which it is expressed. NM 013941 includes both human and mammalian homologs of it (e.g., mouse XM 111729 which is similar to olfactory receptor MOR263-6). SEQ ID NOS. 181 and 182 represent a particular allele of NM 013941; the present invention relates to other alleles, as well, including naturally-occurring polymorphisms (i.e., a polymorphism in the nucleotide sequence which is identified in populations of mammals).

The chromosomal region within which NM_013941 is located comprises a number of genes involved in retinal function. These include, e.g., retinal cone dystrophy (OMIM 602093) which appears to be a result of mutation in guanylate cyclase activator-1A (e.g., Payne et al., *Human Molec. Genet.*, 7:273-277, 1998), retinal degeneration slow (OMIM 179605) which appears to be a defect in specific retinal protein homologous to rod outer segment protein-1, retinitis pigmentosa-7, retinitis pigmentosa-14 (OMIM 600132) which is associated with a mutation in the tubby-like protein TULP1 (e.g., Banerjee et al., *Nature Genet.*, 18:177-179, 1998; Hagstrom et al., *Nature Genet.*, 18:174-176, 1998), and others. Thus, this region appears to be important in eye function.

In view of its selectivity and display on the cell surface, the olfactory GPCR family members of the present invention are useful targets for histological, diagnostic, and therapeutic applications relating to retinal cells. Antibodies and other protein binding partners (e.g., ligands, aptamers, small peptides, etc.) can be used to selectively target agents to a tissue for any purpose, included, but not limited to, imaging, therapeutic, diagnostic, drug delivery, gene therapy, etc. For example, binding partners, such as antibodies, can be used to treat retinal carcinomas (e.g., retinoblastoma) in analogy to how c-erbB-2 antibodies are used to breast cancer. See, e.g., Hayashi et al., *Invest. Ophthalmol. Vis. Sci.*, 40:265-72, 1999 for an example treating retinoblastoma using HSV-TK. Transfer of the gene into the retinal cells can be achieved by incorporating the gene into liposomes which have been made cell-selective by incorporating a NM_013941 specific antibody into its bilayer. See, also, Wu and Wu, *J. Biol. Chem.*, 262: 4429-4432, 1987.

The genes and polypeptides encoded thereby can also be used in tissue engineering to identify tissues as they appear during the differentiation process, to target tissues, to modulate tissue growth (e.g., from starting stem cell populations), etc. Useful antibodies or other binding partners include those that are specific for parts of the polypeptide which are exposed extracellularly. Any of the methods described above and below can be accomplished in vivo, in vitro, or ex vivo.

When expression is described as being "predominantly" in a given tissue, this indicates that the gene's mRNAs levels are highest in this tissue as compared to the other tissues in which it was measured. Expression can also be "selective," where expression is observed. By the phrase "selectively expressed," it is meant that a nucleic acid molecule

5

10

15

20

25

10

15

20

25

30

comprising the defined sequence of nucleotides, when produced as a transcript, is characteristic of the tissue or cell-type in which it is made. This can mean that the transcript is expressed only in that tissue and in no other tissue-type, or it can mean that the transcript is expressed preferentially, differentially, and more abundantly (e.g., at least 5-fold, 10-fold, etc., or more) in that tissue when compared to other tissue-types.

The present invention relates to methods of detecting retinal cells, comprising one or more of the following steps, e.g., contacting a sample comprising cells with a polynucleotide specific for NM_013941 (e.g., SEQ ID NOS 181), or a mammalian homolog thereof, under conditions effective for said polynucleotide to hybridize specifically to said gene, and detecting specific hybridization. Detecting can be accomplished by any suitable method and technology, including, e.g., any of those mentioned and discussed below, such as Northern blot and PCR. Specific polynucleotides include SEQ ID NOS 183 and 184, and complements thereto.

Detection can also be achieved using binding partners, such as antibodies (e.g., monoclonal or polyclonal antibodies) that specifically recognize polypeptides coded for by genes of the present invention. Thus, the present invention relates to methods of detecting a retinal cell, comprising, one or more the following steps, e.g. contacting a sample comprising cells with a binding partner (e.g. an antibody, an Fab fragment, a single-chain antibody, an aptamer) specific for a polypeptide coded for by NM_013941 (e.g., SEQ ID NO 182), or a mammalian homolog thereof, under conditions effective for said binding partner bind specifically to said polypeptide, and detecting specific binding. Protein binding assays can be accomplished routinely, e.g., using immunocytochemistry, ELISA format, Western blots, etc. Useful epitopes include those exposed to the surface.

As indicated above, binding partners can be used to deliver agents specifically to the retina, e.g., for diagnostic, therapeutic, and prognostic purposes. Methods of delivering an agent to a retinal cell can comprise, e.g., contacting a retinal cell with an agent coupled to binding partner specific for NM_013941 (SEQ ID NO 182), whereby said agent is delivered to said cell. Any type of agent can be used, including, therapeutic and imaging agents. Contact with the retinal can be achieved in any effective manner, including by administering effective amounts of the agent to a host orally, parentally, locally, systemically, intravenously, etc. The phrase "an agent coupled to binding partner" indicates that the agent

-34-

is associated with the binding partner in such a manner that it can be carried specifically to the target site. Coupling includes, chemical bonding, covalent bonding, noncovalent bonding (where such bonding is sufficient to carry the agent to the target), present in a liposome or in a lipid membrane, associated with a carrier, such as a polymeric carrier, etc. The agent can be directly linked to the binding partner, or via chemical linkers or spacers. Any cell expressing a polypeptide coded for by NM_013941 can be targeted, including, e.g., pigmented epithelial cells, photoreceptor cells, cones, rods, bipolar cells, ganglion cells, etc.

Imaging of specific organs can be facilitated using tissue selective antibodies and other binding partners that selectively target contrast agents to a specific site in the body. Various imaging techniques have been used in this context, including, e.g., X-ray, CT, CAT, MRI, ultrasound, PET, SPECT, and scintographic. A reporter agent can be conjugated or associated routinely with a binding partner. Ultrasound contrast agents combined with binding partners, such as antibodies, are described in, e.g., U.S. Pat. Nos, 6,264,917, 6,254,852, 6,245,318, and 6,139,819. MRI contrast agents, such as metal chelators, radionucleotides, paramagnetic ions, etc., combined with selective targeting agents are also described in the literature, e.g., in U.S. Pat. Nos. 6,280,706 and 6,221,334. The methods described therein can be used generally to associate a partner with an agent for any desired purpose.

A retinal cell (see above for examples of retinal cell types) can also be modulated in accordance with the present invention, e.g., by methods of modulating a retinal cell, comprising, e.g., contacting said cell with an agent effective to modulate NM_013941, or the biological activity of a polypeptide encoded thereby (e.g., SEQ ID NO 182), or a mammalian homolog thereof, whereby said retinal cell is modulated. Modulation as used throughout includes, e.g., stimulating, increasing, agonizing, activating, amplifying, blocking, inhibiting, reducing, antagonizing, preventing, decreasing, diminishing, etc.

Any activity or function of the retinal cell can be modulated, including, e.g., light reception, phototransduction, excitation of rods, excitation of cones, metabolism of vitamin A, retinal, rhodopsin, and other functional molecules, cGMP binding and hydrolysis, sodium channel flux, membrane potential, phosphodiesterase activity, G-protein activity and coupling, vitamin A processing, sodium pump activity, calcium flux, etc. The response of a retinal cell to stimuli can also be modulated, including, but not limited to, ligands to

5

10

15

20

25

NM 013941, light, ion levels, second messenger levels, etc.

Promoter sequences can be utilized to selectively express heterologous genes in retinal cells. Methods of expressing a heterologous polynucleotide in retinal cells can comprise, e.g., expressing a nucleic acid construct in retinal cells, said construct comprising a promoter sequence operably linked to said heterologous polynucleotide, wherein said promoter sequence is obtained from NM_01394, e.g., on genomic NT_007592. In addition to the cell lines mentioned below, the construct can be expressed in primary cells or in established cell lines.

10 Retina

5

15

20

25

30

The retina is a two-layered structure located on the back of the eye. It is the primary organ responsible for vision. The outer pigmented layer is comprised of pigmented epithelial cells that absorb light, preventing it from scattering in the eye, and store vitamin A needed by the photoreceptor cells. The inner neural layer is comprised of three main cell types: photoreceptor cells, bipolar cells, and ganglion cells. The local currents generated by a light stimulus spreads from the photoreceptor cells to the bipolar cells, and then on to the innermost ganglion cells. The optic disc is the exit site of the retinal ganglion axons which then bundle into the optic nerve

Photoreceptors consist of rods and cones which are the photosensitive cells of the retina. Each rod and cone elaborates a specialized cilium, called the outer segment, that contains the phototransduction machinery. The rods contain a specific light-absorbing visual pigment, rhodopsin. In humans, there are three classes of cones, each characterized by the expression of distinct visual pigments: the blue cone, green cone and red cone pigments. Each type of visual pigment protein is tuned to absorb light maximally at different wavelengths. The rod rhodopsin mediates scotopic vision (in dim light), whereas the cone pigments are responsible for photopic vision (in bright light). The red, blue and green pigments also form the basis of color vision.

NM_013941 can be used to identify, detect, stage, determine the presence of, prognosticate, treat, study, etc., diseases and conditions of the retinal. These include, but are not limited to, diseases that affect the basic morphologic components as mentioned above, e.g., the outer and inner cell layers, and the optic nerve the retina. Diseases include, e.g.,

-36-

retinal degeneration, retinal degenerations such as retinitis pigmentosa, Bardet-Biedl syndrome, Bassen-Kornzweig syndrome (abetalipoproteinemia), Best disease (vitelliform dystrophy), choroidemia, gyrate atrophy, congenital amaurosis, Refsum syndrome, Stargardt disease, Usher syndrome, macular degeneration (dry and wet forms), diabetic retinopathy, peripheral vitreoretinopathies, photic retinopathies, surgery-induced retinopathies, viral retinopathies (such as HIV retinopathy related to AIDS), ischemic retinopathies, retinal detachment, traumatic retinopathy, optic neuropathy, optic neuritis, ischemic optic neuropathy, Leber optic neuropathy, diseases of Bruch's membrane, glaucoma, cancer, retinoblastoma, cancer- associated retinopathy syndrome (CAR syndrome), melanoma-associated retinopathy (MAR), etc. NM_013941 can also be used for staging and classifying conditions and diseases of the present invention, alone, or in combination with conventional staging and classification schemes.

Spleen Gene Cluster

5

10

15

20

25

30

The present invention relates to a cluster of transmembrane and GPCR-type receptor genes located at chromosomal band 11q12.2. The genes of the present invention are expressed predominantly in the spleen (e.g., Fig. 10, lane 19) (hence, "spleen gene" cluster), as well as other tissues of the immune and reticuloendothelial system (RES), establishing this region of the chromosome as a unique gene complex involved in spleen, lymphoid, and/or reticuloendothelial function. TMD1030 and TMD0621 are highly expressed in spleen tissue, with insignificant levels in other tissues. In addition to spleen. TMD1029 and TMD1029 show significant expression in the liver and lymphocytes, as well. Because of their selectivity for spleen, lymphoid, and/or reticuloendothelial tissues, the gene complex, and the chromosomal region which comprises it, are useful to assess spleen, lymphoid, and/or reticuloendothelial tissue function and for diagnostic, prognostic, therapeutic, and research purposes. Information on the genes is summarized in Tables 15-19.

The spatial organization of the gene complex is illustrated in Fig. 11. The complex spans about at least 100 kb, from about EST markers G62658, SHGC-82134, etc. (located at the end closest to the centromere and TMD1030) to SHGC-154002, SHGC-9433, etc. (located at the end furthest from the centromere and TMD0621). All the genes have the same orientation of transcription. TMD1799 (XM_166849) (SEQ ID NO 193-194), located at the

-37-

upper region, shows very high expression in lymphocytes, but only marginal expression in spleen, indicating that expression in lymphocytes may predominate at the boundaries of the gene complex. In the lower region, TMD1027 (XM_166856) (SEQ ID NO 195-196), spleen expression virtually disappears, while lymph node expression becomes very high. The present invention includes this entire region, and any parts thereof. For instance, the present invention includes any DNA fragments within it which confer the observed tissue specificities described herein.

The gene complex is involved in spleen, immune, and RES functions. The spleen is located in the left upper region of the abdomen. In the adult, it weights about 90-180 grams, and is about 15 by 7.5 cm in size. The spleen is anatomically and functionally compartmentalized into two distinct regions, the red and white pulp. The red pulp comprises blood vessels interwoven with connective tissue ("pulp cords") that is lined with reticuloendothelial cells. It possesses a blood filtering function, removing opsonized cells and trapping abnormal red blood cells. It also is a storage reservoir for platelets and other blood cells. In the fetus, the red pulp has a hematopoietic function. Inside the red pulp, is lymphoid tissue know as the white pulp. Antibodies are made inside the white pulp. Similar to other lymphatic tissues, B- and T-cell's mature inside the white pulp, where they are involved in antigen presentation and lymphocyte maturation. The white pulp is clustered around the periarteriolar lymphoid sheath, and is comprised of follicles and marginal zone.

Naive B-cells are located in the primary follicle, memory cells, macrophages, and dendritic cells in the secondary follicle, and macrophages and B-cells in the marginal zone. The integrins LFA-1 and alpha4-beta1 are involved in localization of the B-cells to the marginal zone of the white pulp (Lu and Cyster, *Science*, 297:409, 2002).

The reticuloendothelial system (RES) is a multi-organ phagocytic system involved in removing particulates from the blood. It is comprised of the spleen and liver. It has the ability to sequester inert particles and dyes. Cells of the RES system include, macrophages, liver Kuppfer cells, endothelial cells lining the sinusoids of the liver, spleen, and bone marrow, and reticular cells of lymphatic and bone marrow tissues.

The polynucleotides, polypeptides, and ligands thereto, of the present invention can be used to identify, detect, stage, determine the presence of, prognosticate, treat, study, etc., diseases and conditions of spleen, lymphoid, and/or reticuloendothelial tissues. These include, but are not limited to, splenomegaly, hypersplenism, hemolytic anemis, hereditary

5

10

15

20

25

spherocytosis, hereditary eliptocytosis, thalassemia minor and major, autoimmune hemolytic anemia, thrombocytopenia, idiopathic thrombocytopenic purpura, immunologic thrombocytopenia associated with chronic lymphocytic leukemia or systemic lupus erythematosis, TTP, leukemia, lymphoma, primary and metastatic tumors, splenic cysts, infection, inflammatory diseases, anemias, blood cancers, etc. See, Table 19 for other examples.

In view of their selectivity and display on the cell surface, the genes of the present invention are useful targets for histological, diagnostic, and therapeutic applications relating to the cells (e.g., reticuloendothelial cells, macrophages, Kupffer cells, monocytes, B-lymphocytes, T-lymphocytes, etc) in which they are expressed. Antibodies and other protein binding partners (e.g., ligands, aptamers, small peptides, etc.) can be used to selectively target agents to a tissue for any purpose, included, but not limited to, imaging, therapeutic, diagnostic, drug delivery, gene therapy, etc. For example, binding partners, such as antibodies, can be used to treat carcinomas in analogy to how c-erbB-2 antibodies are used to treat breast cancer. They can also be used to detect metastatic cells in biopsies. The genes and polypeptides encoded thereby can also be used in tissue engineering to identify tissues as they appear during the differentiation process, to target tissues, to modulate tissue growth (e.g., from starting stem cell populations), etc. Useful antibodies or other binding partners include those that are specific for parts of the polypeptide which are exposed extracellularly. See, Table 16. Any of the methods described above and below can be accomplished in vivo, in vitro, or ex vivo.

When expression is described as being "predominantly" in a given tissue, this indicates that the gene's mRNAs levels are highest in this tissue as compared to the other tissues in which it was measured. Expression can also be "selective," where expression is observed. By the phrase "selectively expressed," it is meant that a nucleic acid molecule comprising the defined sequence of nucleotides, when produced as a transcript, is characteristic of the tissue or cell-type in which it is made. This can mean that the transcript is expressed only in that tissue and in no other tissue-type, or it can mean that the transcript is expressed preferentially, differentially, and more abundantly (e.g., at least 5-fold, 10-fold, etc., or more) in that tissue when compared to other tissue-types. TMD1030 and TMD0621 are predominantly and selectively expressed in spleen tissue.

5

10

15

20

25

The expression patterns of the selectively expressed polynucleotides disclosed herein can be described as a "fingerprint" in that they are a distinctive pattern displayed by a tissue. Just as with a fingerprint, an expression pattern can be used as a unique identifier to characterize the status of a tissue sample. The list of expressed sequences disclosed herein provides an example of such a tissue expression profile. It can be used as a point of reference to compare and characterize samples. Tissue fingerprints can be used in many ways, e.g., to classify an unknown tissue, to determine the origin of metastatic cells, to assess the physiological status of a tissue, to determine the effect of a particular treatment regime on a tissue, to evaluate the toxicity of a compound on a tissue of interest, etc.

For example, the tissue-selective polynucleotides disclosed herein represent the configuration of genes expressed by a normal tissue. To determine the effect of a toxin on a tissue, a sample of tissue can be obtained prior to toxin exposure ("control") and then at one or more time points after toxin exposure ("experimental"). An array of tissue-selective probes can be used to assess the expression patterns for both the control and experimental samples. As discussed in more detail below, any suitable method can be used. For instance, a DNA microarray can be prepared having a set of tissue-selective genes arranged on to a small surface area in fixed and addressable positions. RNA isolated from samples can be labeled using reverse transcriptase and radioactive nucleotides, hybridized to the array, and then expression levels determined using a detection system. Several kinds of information can be extracted: presence or absence of expression, and the corresponding expression levels. The normal tissue would be expected to express substantially all the genes represented by the tissue-selective probes. The various experimental conditions can be compared to it to determine whether a gene is expressed, and how its levels match up to the normal control.

While the expression profile of the complete gene set represented by the sequences disclosed here may be most informative, a fingerprint containing expression information from less than the full collection can be useful, as well. In the same way that an incomplete fingerprint may contain enough of the pattern of whorls, arches, loops, and ridges, to identify the individual, a cell expression fingerprint containing less than the full complement may be adequate to provide useful and unique identifying and other information about the sample. Moreover, because of heterogeneity of the population, as well differences in the particular physiological state of the tissue, a tissue's "normal" expression profile is expected to differ

5

10

15

20

25

-40-

between samples, albeit in ways that do not change the overall expression pattern. As a result of these individual differences, each gene although expressed selectively in spleen, may not on its own 100% of the time be adequately enough expressed to distinguish said tissue. Thus, the genes can be used in any of the methods and processes mentioned above and below as a group, or one at a time.

The present invention relates to methods of detecting spleen, lymphoid, and/or reticuloendothelial cells, comprising one or more of the following steps, e.g., contacting a sample comprising cells with a polynucleotide specific for TMD1030 (XM_166853), TMD1029 (XM_166854), TMD1028 (XM_166855), or TMD0621 (XM_166205), or a mammalian homolog thereof, under conditions effective for said polynucleotide to hybridize specifically to said gene, and detecting specific hybridization. Detecting can be accomplished by any suitable method and technology, including, e.g., any of those mentioned and discussed below, such as Northern blot and PCR. Specific polynucleotides include SEQ ID NOS 197-204 listed in Table 17, and complements thereto.

Detection can also be achieved using binding partners, such as antibodies (e.g., monoclonal or polyclonal antibodies) that specifically recognize polypeptides coded for by genes of the present invention. Thus, the present invention relates to methods of detecting a spleen, lymphoid, and/or reticuloendothelial cell, comprising, one or more the following steps, e.g. contacting a sample comprising cells with a binding partner (e.g. an antibody, an Fab fragment, a single-chain antibody, an aptamer) specific for a polypeptide coded for by a polypeptide of the present invention, or a mammalian homolog thereof, under conditions effective for said binding partner bind specifically to said polypeptide, and detecting specific binding. Protein binding assays can be accomplished routinely, e.g., using immunocytochemistry, ELISA format, Western blots, etc. Useful epitopes include those exposed to the surface. Detection can be useful for assessing spleen integrity, e.g., when it is suspected that the spleen is damaged and undergoing deterioration. The appearance of polypeptides of the present invention in body fluids, such as blood, can indicate spleen damage, including neoplastic and/or apoptotic changes.

As indicated above, binding partners can be used to deliver agents specifically to the spleen, lymphoid, and/or reticuloendothelial tissues, e.g., for diagnostic, therapeutic, and prognostic purposes. Methods of delivering an agent to a spleen, lymphoid, and/or

5

10

15

20

25

10

15

20

reticuloendothelial cell can comprise, e.g., contacting a spleen, lymphoid, and/or reticuloendothelial cell with an agent coupled to a binding partner specific for a polypeptide coding for TMD1030 (XM 166853), TMD1029 (XM 166854), TMD1028 (XM 166855), or TMD0621 (XM_166205), whereby said agent is delivered to said cell. Any type of agent can be used, including, therapeutic and imaging agents. Contact with the spleen, lymphoid, and/or reticuloendothelial tissue can be achieved in any effective manner, including by administering effective amounts of the agent to a host orally, parenterally, locally, systemically, intravenously, etc. The phrase "an agent coupled to binding partner" indicates that the agent is associated with the binding partner in such a manner that it can be carried specifically to the target site. Coupling includes, chemical bonding, covalent bonding, noncovalent bonding (where such bonding is sufficient to carry the agent to the target), present in a liposome or in a lipid membrane, associated with a carrier, such as a polymeric carrier, etc. The agent can be directly linked to the binding partner, or via chemical linkers or spacers. Any cell expressing a polypeptide coded for by TMD1030 (XM 166853), TMD1029 (XM_166854), TMD1028 (XM 166855), or TMD0621 (XM 166205) can be targeted, including, e.g., reticuloendothelial cells, macrophages, Kupffer cells, lymphocytes, B-lymphocytes, T-lymphocytes, etc.

Antibodies (alone or conjugated to active agents) can be used to ablate spleen and other tissues. For instance, in diseases where splenectomy is indicated (e.g., immune thrombocytopenic purpura, autoimmune hemolytic anemia, blood cell disorders, myeloproliferative disorders, tumors, hypersplenism, etc.), antibodies to TMD1030 and TMD0621 can be used to ablate spleen tissue, or block spleen function.

Imaging of specific organs can be facilitated using tissue selective antibodies and other binding partners that selectively target contrast agents to a specific site in the body.

Various imaging techniques have been used in this context, including, e.g., X-ray, CT, CAT, MRI, ultrasound, PET, SPECT, and scintiographic imaging. A reporter agent can be conjugated or associated routinely with a binding partner. Ultrasound contrast agents combined with binding partners, such as antibodies, are described in, e.g., U.S. Pat. Nos, 6,264,917, 6,254,852, 6,245,318, and 6,139,819. MRI contrast agents, such as metal chelators, radionucleotides, paramagnetic ions, etc., combined with selective targeting agents are also described in the literature, e.g., in U.S. Pat. Nos. 6,280,706 and 6,221,334. The

methods described therein can be used generally to associate a partner with an agent for any desired purpose. See, Bruehlmeier et al., *Nucl. Med. Biol.*, 29:321-327, 2002, for imaging

using labeled receptor ligands. Antibodies and other ligands to receptors of the present

invention can be used analogously.

5

10

15

20

25

30

A cell (see above for examples of spleen, lymphoid, and/or reticuloendothelial cell types) can also be modulated in accordance with the present invention, e.g., by methods of modulating a spleen, lymphoid, and/or reticuloendothelial cell, comprising, e.g., contacting said cell with an agent effective to modulate TMD1030 (XM_166853), TMD1029 (XM_166854), TMD1028 (XM_166855), or TMD0621 (XM_166205), or the biological activity of a polypeptide encoded thereby (e.g., SEQ ID NOS 185-192), or a mammalian homolog thereof, whereby said spleen, lymphoid, and/or reticuloendothelial cell is modulated. Modulation as used throughout includes, e.g., stimulating, increasing, agonizing, activating, amplifying, blocking, inhibiting, reducing, antagonizing, preventing, decreasing, diminishing, etc.

Any activity or function of the spleen, lymphoid, and/or reticuloendothelial tissues can be modulated, including, e.g., immune modulation (e.g., modulating antigen presentation, antibody production and secretion, humoral and cellular responses, etc.), sequestration and removal of red blood cells, clearance of microorganisms and particular antigens from blood, migration into the marginal zone or other immune and RES compartments, etc.

The present invention also relates to polypeptide detection methods for assessing spleen, lymphoid, and/or reticuloendothelial tissue function, e.g., methods of assessing spleen, lymphoid, and/or reticuloendothelial function, comprising, detecting a polypeptide coded for by TMD1030 (XM_166853), TMD1029 (XM_166854), TMD1028 (XM_166855), or TMD0621 (XM_166205), fragments thereof, polymorphisms thereof, in a body fluid, whereby the level of said polypeptide in said fluid is a measure of spleen, lymphoid, and/or reticuloendothelial function. spleen, lymphoid, and/or reticuloendothelial function tests are usually performed to determine whether the spleen, lymphoid, and/or reticuloendothelial tissue is functioning normally as a way of diagnosing spleen, lymphoid, and/or reticuloendothelial disease. Various tests are commonly used, including, e.g., 99Tc-colloid liver-spleen scan, computed tomography, ultrasound scanning of left upper quandrant, MRI,

liver enzymes, etc.

10

15

20

25

30

Detection of a polypeptide coded for by TMD1030 (XM_166853), TMD1029 (XM_166854), TMD1028 (XM_166855), or TMD0621 (XM_166205), provides an additional assessment tool, especially in diseases or disorders, such as splenomegaly, hypersplenism, or ruptured spleen, where said polypeptides can appear in the blood, stool, urine, and other body fluids. As with the other tests, elevated levels of said polypeptide in blood, or other fluids, can indicate impaired spleen, lymphoid, and/or reticuloendothelial function. Values can be determined routinely, as they are for other markers, such as those mentioned above. Detecting can be performed routinely (see below), e.g., using an antibody which is specific for said polypeptide, by RIA, ELISA, or Western blot, etc., in analogy to the tests for enzymes and other proteins in body fluids.

Promoter sequences obtained from genes of the present invention can be utilized to selectively express heterologous genes in cells. Methods of expressing a heterologous polynucleotide in cells, e.g., spleen, lymphoid, and/or reticuloendothelial cells can comprise, e.g., expressing a nucleic acid construct in spleen, lymphoid, and/or reticuloendothelial cells, said construct comprising a promoter sequence operably linked to said heterologous polynucleotide, wherein said promoter sequence is selected SEQ ID NOS 205-213. In addition to the cell lines mentioned below, the construct can be expressed in primary cells or in established cell lines.

The genes and polypeptides of the present invention can be used to identify, detect, stage, determine the presence of, prognosticate, treat, study, etc., diseases and conditions of the spleen, lymphoid, and/or reticuloendothelial tissues mentioned above. The present invention relates to methods of identifying a genetic basis for a disease or disease-susceptibility, comprising, e.g., determining the association of a spleen, lymphoid, and/or reticuloendothelial disease or spleen, lymphoid, and/or reticuloendothelial disease-susceptibility with the gene complex of the present invention, e.g., a nucleotide sequence present in the gene complex at 11q12.2. An association between a spleen, lymphoid, and/or reticuloendothelial disease or disease-susceptibility and nucleotide sequence includes, e.g., establishing (or finding) a correlation (or relationship) between a DNA marker (e.g., gene, VNTR, polymorphism, EST, etc.) and a particular disease state. Once a relationship is identified, the DNA marker can be utilized in diagnostic tests and as a drug target.

Any region of the gene can be used as a source of the DNA marker, exons, introns,

PCT/US03/11497

5

10

15

20

25

30

intergenic regions, or any DNA from the gene cluster of the present invention at chromosomal region 11q12.2, etc.

Human linkage maps can be constructed to establish a relationship between a gene and a spleen, lymphoid, and/or reticuloendothelial disease or condition. Typically, polymorphic molecular markers (e.g., STRP's, SNP's, RFLP's, VNTR's) are identified within the region, linkage and map distance between the markers is then established, and then linkage is established between phenotype and the various individual molecular markers. Maps can be produced for an individual family, selected populations, patient populations, etc. In general, these methods involve identifying a marker associated with the disease (e.g., identifying a polymorphism in a family which is linked to the disease) and then analyzing the surrounding DNA to identity the gene responsible for the phenotype.

The present invention also relates to methods of expressing a polynucleotide in spleen, lymphoid, and/or reticuloendothelial tissue, comprising, e.g., inserting a polynucleotide, which is operably linked to an expression control sequence, into the spleen, lymphoid, and/or reticuloendothelial gene complex at chromosomal location 11q12.2 of a target cell, and growing said cell under conditions effective to express said polynucleotide.

The polynucleotide of interest can be inserted into the target chromosomal region by any suitable method, including, e.g., by gene targeting methods, such as homologous recombination, or by random insertion methods where transformed cells are subsequently screened for insertion into the desired chromosomal site. Chromosome engineering methods are discussed in more detail below, e.g., in the section on transgenic animals. By the phrase "spleen, lymphoid, and/or reticuloendothelial gene complex," it is meant the region of the chromosome in which the cluster of genes, e.g., TMD1030 (XM_166853), TMD1029 (XM_166854), TMD1028 (XM_166855), and TMD0621 (XM_166205), of the present invention are located. Inserting an expressible polynucleotide (e.g., a polynucleotide operably linked to a promoter sequence) into this region confers the tissue expression selectivity which is characteristic of the gene cluster. Any polynucleotide of interest can be inserted into the chromosomal region, including, e.g., polynucleotides encoding polypeptides, antisense polynucleotides, etc.

A cell comprising a polynucleotide inserted into the target chromosomal location can be utilized in vitro or in vivo, e.g., in a transgenic animal. The cell is grown under conditions

10

15

20

25

30

which are suitable to achieve polynucleotide expression. These conditions depend upon the cell's environment, e.g., tissue culture cell, or in the form of a transgenic animal.

Pancreas membrane protein genes

The present invention relates to all facets of pancreas membrane protein genes, polypeptides encoded by them, antibodies and specific binding partners thereto, and their applications to research, diagnosis, drug discovery, therapy, clinical medicine, forensic science and medicine, etc. The polynucleotides and polypeptides are useful in variety of ways, including, but not limited to, as molecular markers, as drug targets, and for detecting, diagnosing, staging, monitoring, prognosticating, preventing or treating, determining predisposition to, etc., diseases and conditions, such as pancreatic cancer, diabetes, pancreatitis, and other disorders especially relating to the pancreas and the functions its performs. The identification of specific genes, and groups of genes, expressed in pathways physiologically relevant to pancreas tissue permits the definition of functional and disease pathways, and the delineation of targets in these pathways which are useful in diagnostic, therapeutic, and clinical applications. The present invention also relates to methods of using the polynucleotides and related products (proteins, antibodies, etc.) in business and computer-related methods, e.g., advertising, displaying, offering, selling, etc., such products for sale, commercial use, licensing, etc.

The function, structure, and diseases of the pancreas were described previously. The polynucleotides, polypeptides, and ligands thereto, of the present invention can be used to identify, detect, stage, determine the presence of, prognosticate, treat, study, etc., diseases and conditions of pancreas. These include, but are not limited to, e.g., acute and chronic pancreatitis, pancreatic abscess, pancreatic pseudocyst, nonalcoholic pancreatitis, alcoholic pancreatitis, classic acute hemorrhagic pancreatitis, chronic calcifying pancreatitis, familial hereditary pancreatitis, carcinomas of the pancreas, primary (idiopathic) diabetes (e.g., Type I (insulin dependent diabetes mellitus, IDDM) [insulin deficiency, beta cell depletion], Type II (non-insulin dependent diabetes mellitus, NIDDM) [insulin resistance, relative insulin deficiency, mild beta cell depletion]), nonobese NIDDM, obese NIDDM, maturity-onset diabetes of the young (MODY), islet cell tumors, diffuse hyperplasia of the islets of Langerhans, benign adenomas, malignant islet tumors, hyperfunction of the islets of Langerhans, hyperinsulinism and hypoglycemia, Zollinger-Ellison syndrome, beta cell

10

15

20

25

30

tumors (insulinoma), alpha cell tumors (glucagonoma), delta cell tumors (somatostatinoma), vipoma (diarrheogenic islet cell tumor), pancreatic cancers, pancreatic carcinoid tumors, multihormonal tumors, multiple endocrine neoplasia (MEN), MEN I (Wermer syndrome), MEN II (Sipple syndrome), MEN III or IIb, pancreatic endocrine tumors, etc.

For example, five different pancreatic tumor samples were examined (Nos. 1, 2, 3, 4, and 5). TMD0639 was up-regulated in about 1/5 pancreatic cancers (No. 4), TMD0645 was up-regulated in about 3/5 pancreatic cancers (Nos. 2, 3, and 5), and TMD1127 was up-regulated in about 2/5 pancreatic cancers (Nos. 1 and 4). These results indicate that the probes can be used in combination in order to maximize the detection of different types of pancreatic cancers and tumors. Thus, a sample from a patient can be assesses for expression of both TMD0645 and TMD1127 to increase the probability that the pancreas cancer will be detected.

In view of their selectivity and display on the cell surface, the membrane proteins of the present invention are useful targets for histological, diagnostic, and therapeutic applications relating to the cells (e.g., pancreatic progenitor, exocrine, endocrine, acinar, islet, alpha, beta, delta, F, D1, enterochromaffin, etc.) in which they are expressed. Antibodies and other protein binding partners (e.g., ligands, aptamers, small peptides, etc.) can be used to selectively target agents to a tissue for any purpose, included, but not limited to, imaging, therapeutic, diagnostic, drug delivery, gene therapy, etc. For example, binding partners, such as antibodies, can be used to treat carcinomas in analogy to how c-erbB-2 antibodies are used to breast cancer. They can also be used to detect metastatic cells in biopsies and other tissue samples. The genes and polypeptides encoded thereby can also be used in tissue engineering to identify tissues as they appear during the differentiation process, to target tissues, to modulate tissue growth (e.g., from starting stem cell populations), etc. Useful antibodies or other binding partners include those that are specific for parts of the polypeptide which are exposed extracellularly as indicated in Table 21. Any of the methods described above and below can be accomplished in vivo, in vitro, or ex vivo.

When expression is described as being "predominantly" in a given tissue, this indicates that the gene's mRNAs levels are highest in this tissue as compared to the other tissues in which it was measured. Expression can also be "selective," where expression is observed. By the phrase "selectively expressed," it is meant that a nucleic acid molecule

comprising the defined sequence of nucleotides, when produced as a transcript, is characteristic of the tissue or cell-type in which it is made. This can mean that the transcript is expressed only in that tissue and in no other tissue-type, or it can mean that the transcript is expressed preferentially, differentially, and more abundantly (e.g., at least 5-fold, 10-fold, etc., or more) in that tissue when compared to other tissue-types.

Table 20 is a summary of the genes of the present invention which are expressed selectively and/or predominantly in pancreas tissue. Fig. 12 is an illustration of these expression patterns. Each gene is associated with a Clone ID and Accession Number ("ACCN"). The Clone ID is an arbitrary identification number for the clone, and the accession number is the number by which it is listed in GenBank. Although specific sequences are disclosed herein, and listed in GenBank by an accession number), the present invention includes all forms of the gene, including polymorphisms, allelic variations, SNPs, splice variants, and any full-length versions when the disclosed or Genbank version is partial. For convenience, these genes, and their homologs in other species, are referred to throughout the disclosure in shorthand as "the genes of Table 20," "a gene of Table 20," "polynucleotides of Table 20," "polypeptides of Table 20," etc..., because Table 20 contains a listing of the genes by accession number and clone ID.

The expression patterns of the selectively and/or predominantly expressed polynucleotides disclosed herein can be described as a "fingerprint" in that they are a distinctive pattern displayed by pancreas tissue. Just as with a fingerprint, an expression pattern can be used as a unique identifier to characterize the status of a tissue sample. The list of expressed sequences disclosed herein provides an example of such a tissue expression profile. It can be used as a point of reference to compare and characterize samples. Tissue fingerprints can be used in many ways, e.g., to classify an unknown tissue, to determine the origin of metastatic cells, to assess the physiological status of a tissue, to determine the effect of a particular treatment regime on a tissue, to evaluate the toxicity of a compound on a tissue of interest, etc.

For example, the pancreas-selective polynucleotides disclosed herein represent the configuration of genes expressed by a normal pancreas tissue. To determine the effect of a toxin on a tissue, a sample of tissue can be obtained prior to toxin exposure ("control") and then at one or more time points after toxin exposure ("experimental"). An array of pancreas-

5

10

15

20

25

-48-

selective probes can be used to assess the expression patterns for both the control and experimental samples. As discussed in more detail below, any suitable method can be used. For instance, a DNA microarray can be prepared having a set of pancreas-selective genes arranged on to a small surface area in fixed and addressable positions. RNA isolated from samples can be labeled using reverse transcriptase and radioactive nucleotides, hybridized to the array, and then expression levels determined using a detection system. Several kinds of information can be extracted: presence or absence of expression, and the corresponding expression levels. The normal tissue would be expected to express substantially all the genes represented by the tissue-selective probes. The various experimental conditions can be compared to it to determine whether a gene is expressed, and how its levels match up to the normal control.

While the expression profile of the complete gene set represented by the sequences disclosed here may be most informative, a fingerprint containing expression information from less than the full collection can be useful, as well. In the same way that an incomplete fingerprint may contain enough of the pattern of whorls, arches, loops, and ridges, to identify the individual, a cell expression fingerprint containing less than the full complement may be adequate to provide useful and unique identifying and other information about the sample. Moreover, because of heterogeneity of the population, as well differences in the particular physiological state of the tissue, a tissue's "normal" expression profile is expected to differ between samples, albeit in ways that do not change the overall expression pattern. As a result, a complete match with a particular tissue expression profile, as shown herein, is not necessary.

The present invention relates to methods of detecting pancreas cells, comprising one or more of the following steps, e.g., contacting a sample comprising cells with a polynucleotide specific for a gene of Table 20, or a mammalian homolog thereof, under conditions effective for said polynucleotide to hybridize specifically to said gene, and detecting specific hybridization. Detecting can be accomplished by any suitable method and technology, including, e.g., any of those mentioned and discussed below, such as Northern blot and PCR. Specific polynucleotides include the primer sequences shown in Table 23, and complements thereto.

Detection can also be achieved using binding partners, such as antibodies (e.g.,

5

10

15

20

25

monoclonal or polyclonal antibodies) that specifically recognize polypeptides coded for by genes of the present invention. Thus, the present invention relates to methods of detecting a pancreas cell, comprising, one or more the following steps, e.g. contacting a sample comprising cells with a binding partner (e.g. an antibody, an Fab fragment, a single-chain antibody, an aptamer) specific for a polypeptide coded for by a polypeptide of Table 20, or a mammalian homolog thereof, under conditions effective for said binding partner bind specifically to said polypeptide, and detecting specific binding. Protein binding assays can be accomplished routinely, e.g., using immunocytochemistry, ELISA format, Western blots, etc. Useful epitopes include those exposed to the surface.

As indicated above, binding partners can be used to deliver agents specifically to the pancreas, e.g., for diagnostic, therapeutic, and prognostic purposes. Methods of delivering an agent to a pancreas cell can comprise, e.g., contacting a pancreas cell with an agent coupled to a binding partner specific for a polypeptide coding for a gene of Table 20, whereby said agent is delivered to said cell. Any type of agent can be used, including, therapeutic and imaging agents. Contact with the pancreas can be achieved in any effective manner, including by administering effective amounts of the agent to a host orally, parentally, locally, systemically, intravenously, etc. The phrase "an agent coupled to binding partner" indicates that the agent is associated with the binding partner in such a manner that it can be carried specifically to the target site. Coupling includes, chemical bonding, covalent bonding, noncovalent bonding (where such bonding is sufficient to carry the agent to the target), present in a liposome or in a lipid membrane, associated with a carrier, such as a polymeric carrier, etc. The agent can be directly linked to the binding partner, or via chemical linkers or spacers. Any cell expressing a polypeptide coded for by a gene of Table 20 can be targeted, including, e.g., pancreatic progenitor, exocrine, endocrine, secretory, acinar, islet, alpha, beta, delta, F, D1, enterochromaffin, etc.

Imaging of specific organs can be facilitated using tissue selective antibodies and other binding partners that selectively target contrast agents to a specific site in the body. Various imaging techniques have been used in this context, including, e.g., X-ray, CT, CAT, MRI, ultrasound, PET, SPECT, and scintographic. A reporter agent can be conjugated or associated routinely with a binding partner. Ultrasound contrast agents combined with binding partners, such as antibodies, are described in, e.g., U.S. Pat. Nos, 6,264,917,

5

10

15

20

25

10

15

20

25

30

6,254,852, 6,245,318, and 6,139,819. MRI contrast agents, such as metal chelators, radionucleotides, paramagnetic ions, etc., combined with selective targeting agents are also described in the literature, e.g., in U.S. Pat. Nos. 6,280,706 and 6,221,334. The methods described therein can be used generally to associate a partner with an agent for any desired purpose. See, Bruehlmeier et al., *Nucl. Med. Biol.*, 29:321-327, 2002, for imaging pancreas using labeled receptor ligands. Antibodies and other ligands to receptors of the present invention can be used analogously.

A pancreas cell (see above for examples of pancreas cell types) can also be modulated in accordance with the present invention, e.g., by methods of modulating a pancreas cell, comprising, e.g., contacting said cell with an agent effective to modulate a gene of Table 20, or the biological activity of a polypeptide encoded thereby (e.g., SEQ ID NO 215, 217, 219, 221, 223, 225, 227, 229, 231, 233, 235, 237, 239, 241, 243, 245, 247, 249, 251, 253, and 255), or a mammalian homolog thereof, whereby said pancreas cell is modulated. Modulation as used throughout includes, e.g., stimulating, increasing, agonizing, activating, amplifying, blocking, inhibiting, reducing, antagonizing, preventing, decreasing, diminishing, etc.

An activity or function of the pancreas cell can be modulated, including, e.g., regulation of blood sugar, modulation of all aspects of the various secreted polypeptides (hormones, enzymes, etc.) produced by the pancreas, ligand-binding, exocytosis, amylase (and any of the other 20 or so digestive enzymes produced by the pancreas) secretion, autocrine responses, apoptosis (e.g., in the survival of beta-islet cells), etc.

The present invention also relates to polypeptide detection methods for assessing pancreas function, e.g., methods of assessing pancreas function, comprising, detecting a polypeptide coded for by a gene of Table 20, fragments thereof, polymorphisms thereof, in a body fluid, whereby the level of said polypeptide in said fluid is a measure of pancreas function. Pancreas function tests are usually performed to determine whether the pancreas is functioning normally as a way of diagnosing pancreas disease. Various tests are commonly used, including, e.g., assays for the presence of pancreatic enzymes in body fluids (e.g., amylase, serum lipase, serum trypsin-like immuoreactivity), studies of pancreatic structure (e.g., using x-ray, sonography, CT-scan, angiography, endoscopic retrograde cholangiopancreatography), and tests for pancreatic function (e.g., secretin-pancreozymin

10

15

20

25

30

(CCK) tst, Lundh meal test, Bz-Ty-PABA test, chymotrypsin in feces, etc). Detection of a polypeptide coded for by a gene of Table 20 provides an additional assessment tool, especially in diseases such as pancreatitis and pancreatic cancer where pancreatic markers can appear in the blood, stool, urine, and other body fluids. As with the other tests, elevated levels of said polypeptide in blood, or other fluids, can indicate impaired pancreas function. Values can be determined routinely, as they are for other markers, such as those mentioned above. Detecting can be performed routinely (see below), e.g., using an antibody which is specific for said polypeptide, by RIA, ELISA, or Western blot, etc., in analogy to the tests for pancreatic enzymes in body fluids.

Promoter sequences obtained from genes of the present invention can be utilized to selectively express heterologous genes in pancreas cells. Methods of expressing a heterologous polynucleotide in pancreas cells can comprise, e.g., expressing a nucleic acid construct in pancreas cells, said construct comprising a promoter sequence operably linked to said heterologous polynucleotide, wherein said promoter sequence is selected SEQ ID NO 258, 261, 262, 265-267, 270-272, 275, 278, 279, 282-284, 287, 290-293, 296, 297, 303, 306, 309-314, 317-320, 323-326, 329, 332-333, 336-338, 341, and 344 as shown in Table 23. In addition to the cell lines mentioned below, the construct can be expressed in primary cells or in established cell lines.

The genes and polypeptides of Table 20 can be used to identify, detect, stage, determine the presence of, prognosticate, treat, study, etc., diseases and conditions of the pancreas as mentioned above. The present invention relates to methods of identifying a pancreatic disease or pancreatic disease-susceptibility, comprising, e.g., determining the association of a pancreatic disease or pancreatic disease-susceptibility with a nucleotide sequence present within the pancreatic gene complex. An association between a pancreas disease or disease-susceptibility and nucleotide sequence includes, e.g., establishing (or finding) a correlation (or relationship) between a DNA marker (e.g., gene, VNTR, polymorphism, EST, etc.) and a particular disease state. Once a relationship is identified, the DNA marker can be utilized in diagnostic tests and as a drug target.

Human linkage maps can be constructed to establish a relationship between the cytogenetic locus as shown in Table 22 and a pancreatic disease or condition. Typically, polymorphic molecular markers (e.g., STRP's, SNP's, RFLP's, VNTR's) are identified

-52-

within the region, linkage and map distance between the markers is then established, and then linkage is established between phenotype and the various individual molecular markers. Maps can be produced individual family, selected populations, patient populations, etc. In general, these methods involve identifying a marker associated with the disease (e.g., identifying a polymorphism in a family which is linked to the disease) and then analyzing the surrounding DNA to identity the gene responsible for the phenotype.

Nucleic acids

5

10

15

20

25

30

A mammalian polynucleotide, or fragment thereof, of the present invention is a polynucleotide having a nucleotide sequence obtainable from a natural source. When the species name is used, e.g., a human, it indicates that the polynucleotide or polypeptide is obtainable from a natural source. It therefore includes naturally-occurring normal, naturally-occurring mutant, and naturally-occurring polymorphic alleles (e.g., SNPs), differentially-spliced transcripts, splice-variants, etc. By the term "naturally-occurring," it is meant that the polynucleotide is obtainable from a natural source, e.g., animal tissue and cells, body fluids, tissue culture cells, forensic samples. Natural sources include, e.g., living cells obtained from tissues and whole organisms, tumors, cultured cell lines, including primary and immortalized cell lines. Naturally-occurring mutations can include deletions (e.g., a truncated amino- or carboxy-terminus), substitutions, inversions, or additions of nucleotide sequence. These genes can be detected and isolated by polynucleotide hybridization according to methods which one skilled in the art would know, e.g., as discussed below.

A polynucleotide according to the present invention can be obtained from a variety of different sources. It can be obtained from DNA or RNA, such as polyadenylated mRNA or total RNA, e.g., isolated from tissues, cells, or whole organism. The polynucleotide can be obtained directly from DNA or RNA, from a cDNA library, from a genomic library, etc. The polynucleotide can be obtained from a cell or tissue (e.g., from an embryonic or adult tissues) at a particular stage of development, having a desired genotype, phenotype, disease status, etc.

The polynucleotides described herein can be partial sequences that correspond to full-length, naturally-occurring transcripts. The present invention includes, as well, full-length polynucleotides that comprise these partial sequences, e.g., genomic DNAs and polynucleotides comprising a start and stop codon, a start codon and a polyA tail, a

transcription start and a polyA tail, etc. These sequences can be obtained by any suitable method, e.g., using a partial sequence as a probe to select a full-length cDNA from a library containing full-length inserts. A polynucleotide which "codes without interruption" refers to a polynucleotide having a continuous open reading frame ("ORF") as compared to an ORF which is interrupted by introns or other noncoding sequences.

Polynucleotides and polypeptides can be excluded as compositions from the present invention if, e.g., listed in a publicly available databases on the day this application was filed and/or disclosed in a patent application having an earlier filing or priority date than this application and/or conceived and/or reduced to practice earlier than a polynucleotide in this application.

As described herein, the phrase "an isolated polynucleotide which is SEQ ID NO," or "an isolated polynucleotide which is selected from SEQ ID NO," refers to an isolated nucleic acid molecule from which the recited sequence was derived (e.g., a cDNA derived from mRNA; cDNA derived from genomic DNA). Because of sequencing errors, typographical errors, etc., the actual naturally-occurring sequence may differ from a SEQ ID listed herein. Thus, the phrase indicates the specific molecule from which the sequence was derived, rather than a molecule having that exact recited nucleotide sequence, analogously to how a culture depository number refers to a specific cloned fragment in a cryotube.

As explained in more detail below, a polynucleotide sequence of the invention can contain the complete sequence as shown herein, degenerate sequences thereof, anti-sense, muteins thereof, genes comprising said sequences, full-length cDNAs comprising said sequences, complete genomic sequences, fragments thereof, homologs, primers, nucleic acid molecules which hybridize thereto, derivatives thereof, etc.

25 Genomic

5

10

15

20

30

The present invention also relates genomic DNA from which the polynucleotides of the present invention can be derived. A genomic DNA coding for a human, mouse, or other mammalian polynucleotide, can be obtained routinely, for example, by screening a genomic library (e.g., a YAC library) with a polynucleotide of the present invention, or by searching nucleotide databases, such as GenBank and EMBL, for matches. Promoter and other regulatory regions (including both 5' and 3' regions, as well introns) can be identified

WO 03/089583

PCT/US03/11497

upstream or downstream of coding and expressed RNAs, and assayed routinely for activity, e.g., by joining to a reporter gene (e.g., CAT, GFP, alkaline phosphatase, luciferase, galatosidase). A promoter obtained from a tissue selective gene can be used, e.g., in gene therapy to obtain tissue-specific expression of a heterologous gene (e.g., coding for a therapeutic product or cytotoxin). 5' and 3' sequences (including, UTRs and introns) can be used to modulate or regulate stability, transcription, and translation of nucleic acids, including the sequence to which is attached in nature, as well as heterologous nucleic acids.

-54-

Constructs

5

10

15

20

25

30

A polynucleotide of the present invention can comprise additional polynucleotide sequences, e.g., sequences to enhance expression, detection, uptake, cataloging, tagging, etc. A polynucleotide can include only coding sequence; a coding sequence and additional non-naturally occurring or heterologous coding sequence (e.g., sequences coding for leader, signal, secretory, targeting, enzymatic, fluorescent, antibiotic resistance, and other functional or diagnostic peptides); coding sequences and non-coding sequences, e.g., untranslated sequences at either a 5' or 3' end, or dispersed in the coding sequence, e.g., introns.

A polynucleotide according to the present invention also can comprise an expression control sequence operably linked to a polynucleotide as described above. The phrase "expression control sequence" means a polynucleotide sequence that regulates expression of a polypeptide coded for by a polynucleotide to which it is functionally ("operably") linked. Expression can be regulated at the level of the mRNA or polypeptide. Thus, the expression control sequence includes mRNA-related elements and protein-related elements. Such elements include promoters, enhancers (viral or cellular), ribosome binding sequences, transcriptional terminators, etc. An expression control sequence is operably linked to a nucleotide coding sequence when the expression control sequence is positioned in such a manner to effect or achieve expression of the coding sequence. For example, when a promoter is operably linked 5' to a coding sequence, expression of the coding sequence is driven by the promoter. Expression control sequences can include an initiation codon and additional nucleotides to place a partial nucleotide sequence of the present invention in-frame in order to produce a polypeptide (e.g., pET vectors from Promega have been designed to permit a molecule to be inserted into all three reading frames to identify the one that results

10

15

25

30

in polypeptide expression). Expression control sequences can be heterologous or endogenous to the normal gene.

A polynucleotide of the present invention can also comprise nucleic acid vector sequences, e.g., for cloning, expression, amplification, selection, etc. Any effective vector can be used. A vector is, e.g., a polynucleotide molecule which can replicate autonomously in a host cell, e.g., containing an origin of replication. Vectors can be useful to perform manipulations, to propagate, and/or obtain large quantities of the recombinant molecule in a desired host. A skilled worker can select a vector depending on the purpose desired, e.g., to propagate the recombinant molecule in bacteria, yeast, insect, or mammalian cells. The following vectors are provided by way of example. Bacterial: pQE70, pQE60, pQE-9 (Qiagen), pBS, pD10, Phagescript, phiX174, pBK Phagemid, pNH8A, pNH16a, pNH18Z, pNH46A (Stratagene); Bluescript KS+II (Stratagene); ptrc99a, pKK223-3, pKK233-3, pDR54 0, pRIT5 (Pharmacia). Eukaryotic: PWLNEO, pSV2CAT, pOG44, pXT1, pSG (Stratagene), pSVK3, PBPV, PMSG, pSVL (Pharmacia), pCR2.1/TOPO, pCRII/TOPO. pCR4/TOPO, pTrcHisB, pCMV6-XL4, etc. However, any other vector, e.g., plasmids, viruses, or parts thereof, may be used as long as they are replicable and viable in the desired host. The vector can also comprise sequences which enable it to replicate in the host whose genome is to be modified.

20 Hybridization

Polynucleotide hybridization, as discussed in more detail below, is useful in a variety of applications, including, in gene detection methods, for identifying mutations, for making mutations, to identify homologs in the same and different species, to identify related members of the same gene family, in diagnostic and prognostic assays, in therapeutic applications (e.g., where an antisense polynucleotide is used to inhibit expression), etc.

The ability of two single-stranded polynucleotide preparations to hybridize together is a measure of their nucleotide sequence complementarity, e.g., base-pairing between nucleotides, such as A-T, G-C, etc. The invention thus also relates to polynucleotides, and their complements, which hybridize to a polynucleotide comprising a nucleotide sequence as set forth herein and genomic sequences thereof. A nucleotide sequence hybridizing to the latter sequence will have a complementary polynucleotide strand, or act as a template for one

-56-

in the presence of a polymerase (i.e., an appropriate polynucleotide synthesizing enzyme). The present invention includes both strands of polynucleotide, e.g., a sense strand and an anti-sense strand.

Hybridization conditions can be chosen to select polynucleotides which have a desired amount of nucleotide complementarity with the nucleotide sequences set forth in herein and genomic sequences thereof. A polynucleotide capable of hybridizing to such sequence, preferably, possesses, e.g., about 70%, 75%, 80%, 85%, 87%, 90%, 92%, 95%, 97%, 99%, or 100% complementarity, between the sequences. The present invention particularly relates to polynucleotide sequences which hybridize to the nucleotide sequences set forth in the attached sequence disclosure or genomic sequences thereof, under low or high stringency conditions. These conditions can be used, e.g., to select corresponding homologs in non-human species.

Polynucleotides which hybridize to polynucleotides of the present invention can be selected in various ways. Filter-type blots (i.e., matrices containing polynucleotide, such as nitrocellulose), glass chips, and other matrices and substrates comprising polynucleotides (short or long) of interest, can be incubated in a prehybridization solution (e.g., 6X SSC, 0.5% SDS, 100 μg/ml denatured salmon sperm DNA, 5X Denhardt's solution, and 50% formamide), at 22-68°C, overnight, and then hybridized with a detectable polynucleotide probe under conditions appropriate to achieve the desired stringency. In general, when high homology or sequence identity is desired, a high temperature can be used (e.g., 65 °C). As the homology drops, lower washing temperatures are used. For salt concentrations, the lower the salt concentration, the higher the stringency. The length of the probe is another consideration. Very short probes (e.g., less than 100 base pairs) are washed at lower temperatures, even if the homology is high. With short probes, formamide can be omitted. See, e.g., *Current Protocols in Molecular Biology*, Chapter 6, Screening of Recombinant Libraries; Sambrook et al., *Molecular Cloning*, 1989, Chapter 9.

For instance, high stringency conditions can be achieved by incubating the blot overnight (e.g., at least 12 hours) with a polynucleotide probe in a hybridization solution containing, e.g., about 5X SSC, 0.1-0.5% SDS, 100 µg/ml denatured salmon sperm DNA and 50% formamide, at 42°C, or hybridizing at 42°C in 5X SSPE, 0.1-0.5% SDS, and 50%

5

10

15

20

25

10

15

20

25

30

formamide, 100 μ g/ml denatured salmon sperm DNA, and washing at 65°C in 0.1% SSC and 0.1% SDS.

Blots can be washed at high stringency conditions that allow, e.g., for less than 5% bp mismatch (e.g., wash twice in 0.1% SSC and 0.1% SDS for 30 min at 65°C), i.e., selecting sequences having 95% or greater sequence identity.

Other non-limiting examples of high stringency conditions includes a final wash at 65°C in aqueous buffer containing 30 mM NaCl and 0.5% SDS. Another example of high stringent conditions is hybridization in 7% SDS, 0.5 M NaPO₄, pH 7, 1 mM EDTA at 50°C, e.g., overnight, followed by one or more washes with a 1% SDS solution at 42°C.

Whereas high stringency washes can allow for, e.g., less than 10%, less than 5% mismatch, etc., reduced or low stringency conditions can permit up to 20% nucleotide mismatch. Hybridization at low stringency can be accomplished as above, but using lower formamide conditions, lower temperatures and/or lower salt concentrations, as well as longer periods of incubation time.

Hybridization can also be based on a calculation of melting temperature (Tm) of the hybrid formed between the probe and its target, as described in Sambrook et al.. Generally, the temperature Tm at which a short oligonucleotide (containing 18 nucleotides or fewer) will melt from its target sequence is given by the following equation: Tm = (number of A's and T's) x 2°C + (number of C's and G's) x 4°C. For longer molecules, Tm = 81.5 + 16.6 log₁₀[Na⁺] + 0.41(%GC) - 600/N where [Na⁺] is the molar concentration of sodium ions, %GC is the percentage of GC base pairs in the probe, and N is the length. Hybridization can be carried out at several degrees below this temperature to ensure that the probe and target can hybridize. Mismatches can be allowed for by lowering the temperature even further.

Stringent conditions can be selected to isolate sequences, and their complements, which have, e.g., at least about 90%, 95%, or 97%, nucleotide complementarity between the probe (e.g., a short polynucleotide of the sequences disclosed herein or genomic sequences thereof) and a target polynucleotide.

Other homologs of polynucleotides of the present invention can be obtained from mammalian and non-mammalian sources according to various methods. For example, hybridization with a polynucleotide can be employed to select homologs, e.g., as described in Sambrook et al., *Molecular Cloning*, Chapter 11, 1989. Such homologs can have varying

WO 03/089583

-58-

PCT/US03/11497

amounts of nucleotide and amino acid sequence identity and similarity to such polynucleotides of the present invention. Mammalian organisms include, e.g., mice, rats, monkeys, pigs, cows, etc. Non-mammalian organisms include, e.g., vertebrates, invertebrates, zebra fish, chicken, Drosophila, C. elegans, Xenopus, yeast such as S. pombe, S. cerevisiae, roundworms, prokaryotes, plants, Arabidopsis, artemia, viruses, etc. The degree of nucleotide sequence identity between human and mouse can be about, e.g. 70% or more, 85% or more for open reading frames, etc.

Alignment

5

10

15

20

25

30

Alignments can be accomplished by using any effective algorithm. For pairwise alignments of DNA sequences, the methods described by Wilbur-Lipman (e.g., Wilbur and Lipman, Proc. Natl. Acad. Sci., 80:726-730, 1983) or Martinez/Needleman-Wunsch (e.g., Martinez, Nucleic Acid Res., 11:4629-4634, 1983) can be used. For instance, if the Martinez/Needleman-Wunsch DNA alignment is applied, the minimum match can be set at 9, gap penalty at 1.10, and gap length penalty at 0.33. The results can be calculated as a similarity index, equal to the sum of the matching residues divided by the sum of all residues and gap characters, and then multiplied by 100 to express as a percent. Similarity index for related genes at the nucleotide level in accordance with the present invention can be greater than 70%, 80%, 85%, 90%, 95%, 99%, or more. Pairs of protein sequences can be aligned by the Lipman-Pearson method (e.g., Lipman and Pearson, Science, 227:1435-1441, 1985) with k-tuple set at 2, gap penalty set at 4, and gap length penalty set at 12. Results can be expressed as percent similarity index, where related genes at the amino acid level in accordance with the present invention can be greater than 65%, 70%, 75%, 80%, 85%, 90%, 95%, 99%, or more. Various commercial and free sources of alignment programs are available, e.g., MegAlign by DNA Star, BLAST (National Center for Biotechnology Information), BCM (Baylor College of Medicine) Launcher, etc. BLAST can be used to calculate amino acid sequence identity, amino acid sequence homology, and nucleotide sequence identity. These calculations can be made along the entire length of each of the target sequences which are to be compared.

After two sequences have been aligned, a "percent sequence identity" can be determined. For these purposes, it is convenient to refer to a Reference Sequence and a

10

15

20

25

30

Compared Sequence, where the Compared Sequence is *compared* to the Reference Sequence. Percent sequence identity can be determined according to the following formula: Percent Identity = 100 [1-(C/R)], wherein C is the number of differences between the Reference Sequence and the Compared Sequence over the length of alignment between the Reference Sequence and the Compared Sequence where (i) each base or amino acid in the Reference Sequence that does not have a corresponding aligned base or amino acid in the Compared Sequence, (ii) each gap in the Reference Sequence, (iii) each aligned base or amino acid in the Reference Sequence that is different from an aligned base or amino acid in the Compared Sequence, constitutes a difference; and R is the number of bases or amino acids in the Reference Sequence over the length of the alignment with the Compared Sequence with any gap created in the Reference Sequence also being counted as a base or amino acid.

Percent sequence identity can also be determined by other conventional methods, e.g., as described in Altschul et al., *Bull. Math. Bio.* 48: 603-616, 1986 and Henikoff and Henikoff, *Proc. Natl. Acad. Sci.* USA 89:10915-10919, 1992.

Specific polynucleotide probes

A polynucleotide of the present invention can comprise any continuous nucleotide sequence described herein, sequences which share sequence identity thereto, or complements thereof. The term "probe" refers to any substance that can be used to detect, identify, isolate, etc., another substance. A polynucleotide probe is comprised of nucleic acid can be used to detect, identify, etc., other nucleic acids, such as DNA and RNA.

These polynucleotides can be of any desired size that is effective to achieve the specificity desired. For example, a probe can be from about 7 or 8 nucleotides to several thousand nucleotides, depending upon its use and purpose. For instance, a probe used as a primer PCR can be shorter than a probe used in an ordered array of polynucleotide probes. Probe sizes vary, and the invention is not limited in any way by their size, e.g., probes can be from about 7-2000 nucleotides, 7-1000, 8-700, 8-600, 8-500, 8-400, 8-300, 8-150, 8-100, 8-75, 7-50, 10-25, 14-16, at least about 8, at least about 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, or more, etc. The polynucleotides can have non-naturally-occurring nucleotides, e.g., inosine, AZT, 3TC, etc. The polynucleotides can have 100% sequence identity or complementarity to a sequence disclosed herein, or it can have mismatches or

-60-

nucleotide substitutions, e.g., 1, 2, 3, 4, or 5 substitutions. The probes can be single-stranded or double-stranded.

In accordance with the present invention, a polynucleotide can be present in a kit, where the kit includes, e.g., one or more polynucleotides, a desired buffer (e.g., phosphate, tris, etc.), detection compositions, RNA or cDNA from different tissues to be used as controls, libraries, etc. The polynucleotide can be labeled or unlabeled, with radioactive or non-radioactive labels as known in the art. Kits can comprise one or more pairs of polynucleotides for amplifying nucleic acids specific for tissue selective genes, e.g., comprising a forward and reverse primer effective in PCR. These include both sense and anti-sense orientations. For instance, in PCR-based methods (such as RT-PCR), a pair of primers are typically used, one having a sense sequence and the other having an antisense sequence.

Another aspect of the present invention is a nucleotide sequence that is specific to, or for, a selective polynucleotide. The phrases "specific for" or "specific to" a polynucleotide have a functional meaning that the polynucleotide can be used to identify the presence of one or more target genes in a sample and distinguish them from non-target genes. It is specific in the sense that it can be used to detect polynucleotides above background noise ("non-specific binding"). A specific sequence is a defined order of nucleotides (or amino acid sequences, if it is a polypeptide sequence) which occurs in the polynucleotide, e.g., in the nucleotide sequences of the present invention, and which is characteristic of that target sequence, and substantially no non-target sequences. A probe or mixture of probes can comprise a sequence or sequences that are specific to a plurality of target sequences, e.g., where the sequence is a consensus sequence, a functional domain, etc., e.g., capable of recognizing a family of related genes. Such sequences can be used as probes in any of the methods described herein or incorporated by reference. Both sense and antisense nucleotide sequences are included. A specific polynucleotide according to the present invention can be determined routinely.

A polynucleotide comprising a specific sequence can be used as a hybridization probe to identify the presence of, e.g., human or mouse polynucleotide, in a sample comprising a mixture of polynucleotides, e.g., on a Northern blot. Hybridization can be performed under high stringent conditions (see, above) to select polynucleotides (and their complements which

5

10

15

20

25

-61-

can contain the coding sequence) having at least 90%, 95%, 99%, etc., identity (i.e., complementarity) to the probe, but less stringent conditions can also be used. A specific polynucleotide sequence can also be fused in-frame, at either its 5' or 3' end, to various nucleotide sequences as mentioned throughout the patent, including coding sequences for enzymes, detectable markers, GFP, etc, expression control sequences, etc.

A polynucleotide probe, especially one that is specific to a polynucleotide of the present invention, can be used in gene detection and hybridization methods as already described. In one embodiment, a specific polynucleotide probe can be used to detect whether a particular tissue or cell-type is present in a target sample. To carry out such a method, a selective polynucleotide can be chosen which is characteristic of the desired target tissue. Such polynucleotide is preferably chosen so that it is expressed or displayed in the target tissue, but not in other tissues which are present in the sample. For instance, if detection of pancreas, or kidney, it may not matter whether the selective polynucleotide is expressed in other tissues, as long as it is not expressed in cells normally present in blood, e.g., peripheral blood mononuclear cells. Starting from the selective polynucleotide, a specific polynucleotide probe can be designed which hybridizes (if hybridization is the basis of the assay) under the hybridization conditions to the selective polynucleotide, whereby the presence of the selective polynucleotide can be determined.

Probes which are specific for polynucleotides of the present invention can also be prepared using involve transcription-based systems, e.g., incorporating an RNA polymerase promoter into a selective polynucleotide of the present invention, and then transcribing antisense RNA using the polynucleotide as a template. See, e.g., U.S. Pat. No. 5,545,522.

Polynucleotide composition

A polynucleotide according to the present invention can comprise, e.g., DNA, RNA, synthetic polynucleotide, peptide polynucleotide, modified nucleotides, dsDNA, ssDNA, ssRNA, dsRNA, and mixtures thereof. A polynucleotide can be single- or double-stranded, triplex, DNA:RNA, duplexes, comprise hairpins, and other secondary structures, etc. Nucleotides comprising a polynucleotide can be joined via various known linkages, e.g., ester, sulfamate, sulfamide, phosphorothioate, phosphoramidate, methylphosphonate, carbamate, etc., depending on the desired purpose, e.g., resistance to nucleases, such as

5

10

15

20

25

RNAse H, improved in vivo stability, etc. See, e.g., U.S. Pat. No. 5,378,825. Any desired nucleotide or nucleotide analog can be incorporated, e.g., 6-mercaptoguanine, 8-oxo-guanine, etc.

Various modifications can be made to the polynucleotides, such as attaching detectable markers (avidin, biotin, radioactive elements, fluorescent tags and dyes, energy transfer labels, energy-emitting labels, binding partners, etc.) or moieties which improve hybridization, detection, and/or stability. The polynucleotides can also be attached to solid supports, e.g., nitrocellulose, magnetic or paramagnetic microspheres (e.g., as described in U.S. Pat. No. 5,411,863; U.S. Pat. No. 5,543,289; for instance, comprising ferromagnetic, supermagnetic, paramagnetic, superparamagnetic, iron oxide and polysaccharide), nylon, agarose, diazotized cellulose, latex solid microspheres, polyacrylamides, etc., according to a desired method. See, e.g., U.S. Pat. Nos. 5,470,967, 5,476,925, and 5,478,893.

Polynucleotide according to the present invention can be labeled according to any desired method. The polynucleotide can be labeled using radioactive tracers such as ³²P, ³⁵S, ³H, or ¹⁴C, to mention some commonly used tracers. The radioactive labeling can be carried out according to any method, such as, for example, terminal labeling at the 3' or 5' end using a radiolabeled nucleotide, polynucleotide kinase (with or without dephosphorylation with a phosphatase) or a ligase (depending on the end to be labeled). A non-radioactive labeling can also be used, combining a polynucleotide of the present invention with residues having immunological properties (antigens, haptens), a specific affinity for certain reagents (ligands), properties enabling detectable enzyme reactions to be completed (enzymes or coenzymes, enzyme substrates, or other substances involved in an enzymatic reaction), or characteristic physical properties, such as fluorescence or the emission or absorption of light at a desired wavelength, etc.

25

30

5

10

15

20

Nucleic acid detection methods

Another aspect of the present invention relates to methods and processes for detecting tissue selective genes. Detection methods have a variety of applications, including for diagnostic, prognostic, forensic, and research applications. To accomplish gene detection, a polynucleotide in accordance with the present invention can be used as a "probe." The term "probe" or "polynucleotide probe" has its customary meaning in the art, e.g., a polynucleotide

10

15

20

25

30

which is effective to identify (e.g., by hybridization), when used in an appropriate process, the presence of a target polynucleotide to which it is designed. Identification can involve simply determining presence or absence, or it can be quantitative, e.g., in assessing amounts of a gene or gene transcript present in a sample. Probes can be useful in a variety of ways, such as for diagnostic purposes, to identify homologs, and to detect, quantitate, or isolate a polynucleotide of the present invention in a test sample.

Assays can be utilized which permit quantification and/or presence/absence detection of a target nucleic acid in a sample. Assays can be performed at the single-cell level, or in a sample comprising many cells, where the assay is "averaging" expression over the entire collection of cells and tissue present in the sample. Any suitable assay format can be used, including, but not limited to, e.g., Southern blot analysis, Northern blot analysis, polymerase chain reaction ("PCR") (e.g., Saiki et al., Science, 241:53, 1988; U.S. Pat. Nos. 4,683,195, 4,683,202, and 6,040,166; PCR Protocols: A Guide to Methods and Applications, Innis et al., eds., Academic Press, New York, 1990), reverse transcriptase polymerase chain reaction ("RT-PCR"), anchored PCR, rapid amplification of cDNA ends ("RACE") (e.g., Schaefer in Gene Cloning and Analysis: Current Innovations, Pages 99-115, 1997), ligase chain reaction ("LCR") (EP 320 308), one-sided PCR (Ohara et al., Proc. Natl. Acad. Sci., 86:5673-5677, 1989), indexing methods (e.g., U.S. Pat. No. 5,508,169), in situ hybridization, differential display (e.g., Liang et al., Nucl. Acid. Res., 21:3269-3275, 1993; U.S. Pat. Nos. 5,262,311, 5,599,672 and 5,965,409; WO97/18454; Prashar and Weissman, Proc. Natl. Acad. Sci., 93:659-663, and U.S. Pat. Nos. 6,010,850 and 5,712,126; Welsh et al., Nucleic Acid Res., 20:4965-4970, 1992, and U.S. Pat. No. 5,487,985) and other RNA fingerprinting techniques, nucleic acid sequence based amplification ("NASBA") and other transcription based amplification systems (e.g., U.S. Pat. Nos. 5,409,818 and 5,554,527; WO 88/10315), polynucleotide arrays (e.g., U.S. Pat. Nos. 5,143,854, 5,424,186; 5,700,637, 5,874,219, and 6,054,270; PCT WO 92/10092; PCT WO 90/15070), Qbeta Replicase (PCT/US87/00880), Strand Displacement Amplification ("SDA"), Repair Chain Reaction ("RCR"), nuclease protection assays, subtraction-based methods, Rapid-Scan™, etc. Additional useful methods include, but are not limited to, e.g., template-based amplification methods, competitive PCR (e.g., U.S. Pat. No. 5,747,251), redox-based assays (e.g., U.S. Pat. No. 5,871,918), Taqmanbased assays (e.g., Holland et al., Proc. Natl. Acad, Sci., 88:7276-7280, 1991; U.S. Pat. Nos.

10

15

20

25

30

5,210,015 and 5,994,063), real-time fluorescence-based monitoring (e.g., U.S. Pat. 5,928,907), molecular energy transfer labels (e.g., U.S. Pat. Nos. 5,348,853, 5,532,129, 5,565,322, 6,030,787, and 6,117,635; Tyagi and Kramer, *Nature Biotech.*, 14:303-309, 1996). Any method suitable for single cell analysis of gene or protein expression can be used, including in situ hybridization, immunocytochemistry, MACS, FACS, flow cytometry, etc. For single cell assays, expression products can be measured using antibodies, PCR, or other types of nucleic acid amplification (e.g., Brady et al., *Methods Mol. & Cell. Biol.* 2, 17-25, 1990; Eberwine et al., 1992, *Proc. Natl. Acad. Sci.*, 89, 3010-3014, 1992; U.S. Pat. No. 5,723,290). These and other methods can be carried out conventionally, e.g., as described in the mentioned publications.

Many of such methods may require that the polynucleotide is labeled, or comprises a particular nucleotide type useful for detection. The present invention includes such modified polynucleotides that are necessary to carry out such methods. Thus, polynucleotides can be DNA, RNA, DNA:RNA hybrids, PNA, etc., and can comprise any modification or substituent which is effective to achieve detection.

Detection can be desirable for a variety of different purposes, including research, diagnostic, prognostic, and forensic. For diagnostic purposes, it may be desirable to identify the presence or quantity of a polynucleotide sequence in a sample, where the sample is obtained from tissue, cells, body fluids, etc. In a preferred method as described in more detail below, the present invention relates to a method of detecting a polynucleotide comprising, contacting a target polynucleotide in a test sample with a polynucleotide probe under conditions effective to achieve hybridization between the target and probe; and detecting hybridization.

Any test sample in which it is desired to identify a polynucleotide or polypeptide thereof can be used, including, e.g., blood, urine, saliva, stool (for extracting nucleic acid, see, e.g., U.S. Pat. No. 6,177,251), swabs comprising tissue, biopsied tissue, tissue sections, cultured cells, etc.

Detection can be accomplished in combination with polynucleotide probes for other genes, e.g., genes which are expressed in other disease states, tissues, cells, such as brain, heart, kidney, spleen, thymus, liver, stomach, small intestine, colon, muscle, lung, testis, placenta, pituitary, thyroid, skin, adrenal gland, pancreas, salivary gland, uterus, ovary,

WO 03/089583

-65-

PCT/US03/11497

prostate gland, peripheral blood cells (T-cells, lymphocytes, etc.), embryo, breast, fat, adult and embryonic stem cells, etc.

Polynucleotides can be used in wide range of methods and compositions, including for detecting, diagnosing, staging, grading, assessing, prognosticating, etc. diseases and disorders associated with tissue selective genes, for monitoring or assessing therapeutic and/or preventative measures, in ordered arrays, etc. Any method of detecting genes and polynucleotides can be used; certainly, the present invention is not to be limited how such methods are implemented.

Along these lines, the present invention relates to methods of detecting polynucleotides of the present invention in a sample comprising nucleic acid. Such methods can comprise one or more the following steps in any effective order, e.g., contacting said sample with a polynucleotide probe under conditions effective for said probe to hybridize specifically to nucleic acid in said sample, and detecting the presence or absence of probe hybridized to nucleic acid in said sample, wherein said probe is a polynucleotide which is described herein, a polynucleotide having, e.g., about 70%, 80%, 85%, 90%, 95%, 99%, or more sequence identity thereto, effective or specific fragments thereof, or complements thereto. The detection method can be applied to any sample, e.g., cultured primary, secondary, or established cell lines, tissue biopsy, blood, urine, stool, cerebral spinal fluid, and other bodily fluids, for any purpose.

Contacting the sample with probe can be carried out by any effective means in any effective environment. It can be accomplished in a solid, liquid, frozen, gaseous, amorphous, solidified, coagulated, colloid, etc., mixtures thereof, matrix. For instance, a probe in an aqueous medium can be contacted with a sample which is also in an aqueous medium, or which is affixed to a solid matrix, or vice-versa.

Generally, as used throughout the specification, the term "effective conditions" means, e.g., the particular milieu in which the desired effect is achieved. Such a milieu, includes, e.g., appropriate buffers, oxidizing agents, reducing agents, pH, co-factors, temperature, ion concentrations, suitable age and/or stage of cell (such as, in particular part of the cell cycle, or at a particular stage where particular genes are being expressed) where cells are being used, culture conditions (including substrate, oxygen, carbon dioxide, etc.). When hybridization is the chosen means of achieving detection, the probe and sample can be

5

10

15

20

25

combined such that the resulting conditions are functional for said probe to hybridize specifically to nucleic acid in said sample.

The phrase "hybridize specifically" indicates that the hybridization between single-stranded polynucleotides is based on nucleotide sequence complementarity. The effective conditions are selected such that the probe hybridizes to a preselected and/or definite target nucleic acid in the sample. For instance, if detection of a polynucleotide set forth herein is desired, a probe can be selected which can hybridize to such target gene under high stringent conditions, without significant hybridization to other genes in the sample. To detect homologs of a polynucleotide set forth in herein, the effective hybridization conditions can be less stringent, and/or the probe can comprise codon degeneracy, such that a homolog is detected in the sample.

As already mentioned, the methods can be carried out by any effective process, e.g., by Northern blot analysis, polymerase chain reaction (PCR), reverse transcriptase PCR, RACE PCR, in situ hybridization, etc., as indicated above. When PCR based techniques are used, two or more probes are generally used. One probe can be specific for a defined sequence which is characteristic of a selective polynucleotide, but the other probe can be specific for the selective polynucleotide, or specific for a more general sequence, e.g., a sequence such as polyA which is characteristic of mRNA, a sequence which is specific for a promoter, ribosome binding site, or other transcriptional features, a consensus sequence (e.g., representing a functional domain). For the former aspects, 5' and 3' probes (e.g., polyA, Kozak, etc.) are preferred which are capable of specifically hybridizing to the ends of transcripts. When PCR is utilized, the probes can also be referred to as "primers" in that they can prime a DNA polymerase reaction.

In addition to testing for the presence or absence of polynucleotides, the present invention also relates to determining the amounts at which polynucleotides of the present invention are expressed in sample and determining the differential expression of such polynucleotides in samples.. Such methods can involve substantially the same steps as described above for presence/absence detection, e.g., contacting with probe, hybridizing, and detecting hybridized probe, but using more quantitative methods and/or comparisons to standards.

5

10

15

20

25

-67-

The amount of hybridization between the probe and target can be determined by any suitable methods, e.g., PCR, RT-PCR, RACE PCR, Northern blot, polynucleotide microarrays, Rapid-Scan, etc., and includes both quantitative and qualitative measurements. For further details, see the hybridization methods described above and below. Determining by such hybridization whether the target is differentially expressed (e.g., up-regulated or down-regulated) in the sample can also be accomplished by any effective means. For instance, the target's expression pattern in the sample can be compared to its pattern in a known standard, such as in a normal tissue, or it can be compared to another gene in the same sample. When a second sample is utilized for the comparison, it can be a sample of normal tissue that is known not to contain diseased cells. The comparison can be performed on samples which contain the same amount of RNA (such as polyadenylated RNA or total RNA), or, on RNA extracted from the same amounts of starting tissue. Such a second sample can also be referred to as a control or standard. Hybridization can also be compared to a second target in the same tissue sample. Experiments can be performed that determine a ratio between the target nucleic acid and a second nucleic acid (a standard or control), e.g., in a normal tissue. When the ratio between the target and control are substantially the same in a normal and sample, the sample is determined or diagnosed not to contain cells. However, if the ratio is different between the normal and sample tissues, the sample is determined to contain, e.g., kidney, pancreas, or immune cells. The approaches can be combined, and one or more second samples, or second targets can be used. Any second target nucleic acid can be used as a comparison, including "housekeeping" genes, such as beta-actin, alcohol dehydrogenase, or any other gene whose expression does not vary depending upon the disease status of the cell.

25 Methods of identifying polymorphisms, mutations, etc.

Polynucleotides of the present invention can also be utilized to identify mutant alleles, SNPs, gene rearrangements and modifications, and other polymorphisms of the wild-type gene. Mutant alleles, polymorphisms, SNPs, etc., can be identified and isolated from subjects with diseases that are known, or suspected to have, a genetic component. Identification of such genes can be carried out routinely (see, above for more guidance), e.g., using PCR, hybridization techniques, direct sequencing, mismatch reactions (see, e.g.,

5

10

15

20

10

15

20

25

30

above), RFLP analysis, SSCP (e.g., Orita et al., Proc. Natl. Acad. Sci., 86:2766, 1992), etc., where a polynucleotide having a sequence selected from the polynucleotides of the present invention is used as a probe. The selected mutant alleles, SNPs, polymorphisms, etc., can be used diagnostically to determine whether a subject has, or is susceptible to a disorder associated with tissue selective genes disclosed herein, as well as to design therapies and predict the outcome of the disorder. Methods involve, e.g., diagnosing a disorder or determining susceptibility to a disorder, comprising, detecting the presence of a mutation in a gene represented by a polynucleotide selected from the sequences disclosed herein. The detecting can be carried out by any effective method, e.g., obtaining cells from a subject, determining the gene sequence or structure of a target gene (using, e.g., mRNA, cDNA, genomic DNA, etc), comparing the sequence or structure of the target gene to the structure of the normal gene, whereby a difference in sequence or structure indicates a mutation in the gene in the subject. Polynucleotides can also be used to test for mutations, SNPs, polymorphisms, etc., e.g., using mismatch DNA repair technology as described in U.S. Pat. No. 5,683,877; U.S. Pat. No. 5,656,430; Wu et al., Proc. Natl. Acad. Sci., 89:8779-8783, 1992.

The present invention also relates to methods of detecting polymorphisms in tissue selective genes, comprising, e.g., comparing the structure of: genomic DNA comprising all or part of a tissue selective gene, mRNA comprising all or part of a tissue selective gene, cDNA comprising all or part of a tissue selective gene, or a polypeptide comprising all or part of a tissue selective gene, with the structure the polynucleotides set forth herein. The methods can be carried out on a sample from any source, e.g., cells, tissues, body fluids, blood, urine, stool, hair, egg, sperm, cerebral spinal fluid, biopy samples, serum, etc.

These methods can be implemented in many different ways. For example, "comparing the structure" steps include, but are not limited to, comparing restriction maps, nucleotide sequences, amino acid sequences, RFLPs, Dnase sites, DNA methylation fingerprints (e.g., U.S. Pat. No. 6,214,556), protein cleavage sites, molecular weights, electrophoretic mobilities, charges, ion mobility, etc., between standard and a test genes. The term "structure" can refer to any physical characteristics or configurations which can be used to distinguish between nucleic acids and polypeptides. The methods and instruments used to accomplish the comparing step depends upon the physical characteristics which are to be

compared. Thus, various techniques are contemplated, including, e.g., sequencing machines (both amino acid and polynucleotide), electrophoresis, mass spectrometer (U.S. Pat. Nos. 6,093,541, 6,002,127), liquid chromatography, HPLC, etc.

To carry out such methods, "all or part" of the gene or polypeptide can be compared. For example, if nucleotide sequencing is utilized, the entire gene can be sequenced, including promoter, introns, and exons, or only parts of it can be sequenced and compared, e.g., exon 1, exon 2, etc.

Mutagenesis

5

10

15

20

25

30

Mutated polynucleotide sequences of the present invention are useful for various purposes, e.g., to create mutations of the polypeptides they encode, to identify functional regions of genomic DNA, to produce probes for screening libraries, etc. Mutagenesis can be carried out routinely according to any effective method, e.g., oligonucleotide-directed (Smith, M., Ann. Rev. Genet. 19:423-463, 1985), degenerate oligonucleotide-directed (Hill et al., Method Enzymology, 155:558-568, 1987), region-specific (Myers et al., Science, 229:242-246, 1985; Derbyshire et al., Gene, 46:145, 1986; Ner et al., DNA, 7:127, 1988), linkerscanning (McKnight and Kingsbury, Science, 217:316-324, 1982), directed using PCR, recursive ensemble mutagenesis (Arkin and Yourvan, Proc. Natl. Acad. Sci., 89:7811-7815, 1992), random mutagenesis (e.g., U.S. Pat. Nos. 5,096,815; 5,198,346; and 5,223,409), sitedirected mutagenesis (e.g., Walder et al., Gene, 42:133, 1986; Bauer et al., Gene, 37:73, 1985; Craik, Bio Techniques, January 1985, 12-19; Smith et al., Genetic Engineering: Principles and Methods, Plenum Press, 1981), phage display (e.g., Lowman et al., Biochem. 30:10832-10837, 1991; Ladner et al., U.S. Pat. No. 5,223,409; Huse, WIPO Publication WO 92/06204), etc. Desired sequences can also be produced by the assembly of target sequences using mutually priming oligonucleotides (Uhlmann, Gene, 71:29-40, 1988). For directed mutagenesis methods, analysis of the three-dimensional structure of the polypeptide can be used to guide and facilitate making mutants which effect polypeptide activity. Sites of substrate-enzyme interaction or other biological activities can also be determined by analysis of crystal structure as determined by such techniques as nuclear magnetic resonance, crystallography or photoaffinity labeling. See, for example, de Vos et al., Science 255:306-312, 1992; Smith et al., J. Mol. Biol. 224:899-904, 1992; Wlodaver et al., FEBS Lett.

-70-

309:59-64, 1992.

5

10

15

20

25

30

In addition, libraries of genes and fragments thereof can be used for screening and selection of genes variants. For instance, a library of coding sequences can be generated by treating a double-stranded DNA with a nuclease under conditions where the nicking occurs, e.g., only once per molecule, denaturing the double-stranded DNA, renaturing it to for double-stranded DNA that can include sense/antisense pairs from different nicked products, removing single-stranded portions from reformed duplexes by treatment with S1 nuclease, and ligating the resulting DNAs into an expression vector. By this method, expression libraries can be made comprising "mutagenized" tissue selective genes. The entire coding sequence or parts thereof can be used.

Polynucleotide expression, polypeptides produced thereby, and specific-binding partners thereto.

A polynucleotide according to the present invention can be expressed in a variety of different systems, in vitro and in vivo, according to the desired purpose. For example, a polynucleotide can be inserted into an expression vector, introduced into a desired host, and cultured under conditions effective to achieve expression of a polypeptide coded for by the polynucleotide, to search for specific binding partners. Effective conditions include any culture conditions which are suitable for achieving production of the polypeptide by the host cell, including effective temperatures, pH, medium, additives to the media in which the host cell is cultured (e.g., additives which amplify or induce expression such as butyrate, or methotrexate if the coding polynucleotide is adjacent to a dhfr gene), cycloheximide, cell densities, culture dishes, etc. A polynucleotide can be introduced into the cell by any effective method including, e.g., naked DNA, calcium phosphate precipitation, electroporation, injection, DEAE-Dextran mediated transfection, fusion with liposomes, association with agents which enhance its uptake into cells, viral transfection. A cell into which a polynucleotide of the present invention has been introduced is a transformed host cell. The polynucleotide can be extrachromosomal or integrated into a chromosome(s) of the host cell. It can be stable or transient. An expression vector is selected for its compatibility with the host cell. Host cells include, mammalian cells, e.g., COS, CV1, BHK, CHO, HeLa, LTK, NIH 3T3, insect cells, such as Sf9 (S. frugipeda) and Drosophila, bacteria, such as E.

WO 03/089583

-71-

PCT/US03/11497

coli, Streptococcus, bacillus, yeast, such as Sacharomyces, S. cerevisiae, fungal cells, plant cells, embryonic or adult stem cells (e.g., mammalian, such as mouse or human),

immune system cell lines, HH (ATCC CRL 2105), MOLT-4 (ATCC CRL 1582), MJ (ATCC CRL-8294), SK7 (ATCC HB-8584), SK8 (ATCC HB-8585), HM1 (HB-8586), H9 (ATCC HTB-176), HuT 78 (ATCC TIB-161), HuT 102 (ATCC TIB-162), Jurkat,

B-cell lines, B-cell precursor lines, NALM-36, B-cell and other lymphocyte lines immortalized with Epstein-Barr virus (transformed B lymphoblastoid), stromal cell lines, myelomas, HBM-Noda, WEHI231,

reticuloendothelial cells, endothelial cells, white blood cells, macrophages, antigenresenting cells, lymphocytes, GDM-1 (ATCC CRL-2627), THP-1 (ATCC TIB-202), HL-60 (ATCC CCL-240), and derivatives thereof, including primary and established cell lines thereof,

kidney cell lines, 293, G-402 (ATCC CRL-1440), ACHN (ATCC CRL-1611), Vero (ATCC CCL-81), 786-O (ATCC CRL-1932), 769-P (ATCC CRL-1933), CCD 1103 KIDTr (ATCC CRL-2304), CCD 1105 KIDTr (ATCC CRL-2305), Hs 835.T (ATCC CRL-7569), Hs 926.T (ATCC CRL-7678), Caki-1 (ATCC HTB-46), Caki-2 (ATCC HTB-47), SW 839 (ATCC HTB-49), LLC-MK2 (ATCC CCL-7), BHK-21 (ATCC CCL-10), MDCK, CV-1, (ATCC CRL-1573), KNRK (ATCC CRL-1569), NRK-49F (ATCC CRL-1570), A-704 (ATCC HTB-45), etc., established and primary kidney cells,

pancreas cell lines, , insulinoma cell lines, INS-H1, MIN6N8, RIN 1046-38, RIN-5AH, RIN-A12, RINm5F, capan-1, capan-2, MIA PaCa-2 (ATCC CRL-1420), PANC-1 (ATCC CRL-1469), AsPC-1 (ATCC CRL-1682), SU-86.86 (ATCC CRL-1837), CFPAC-1 (ATCC CRL-1918), HPAF-II (ATCC CRL-1937), TGP61 (ATCC CRL-2135) and other TGP lines, SW 1990 (ATCC CRL-2172), Mpanc-96 (ATCC CRL-2380), MS1 VEGF (ATCC CRL-2460), Beta-TC-6 (ATCC CRL-11506), LTPA (ATCC CRL-2389), 266-6 (ATCC CRL-2151), MS1 (ATCC CRL-2779), SVR (ATCC CRL-2280), NIT-2 (ATCC CRL-2364), alphaTC1 Clone 9 (ATCC CRL-2350), ATCC CRL-1492, BxPC-3 (ATCC CRL-1687), HPAC (ATCC CRL-2119), U.S. Pat. Nos. 6,110743, 5,928,942, 5,888,816, 5,888,705, and 5,723,333, etc., established and primary pancreas cells (e.g., according to Hellerstrom et al., *Diabetes*, 28:769-76, 1979),

5

10

15

20

25

5

10

15

20

25

30

retinal cell lines, RF/6A (CRL 1780), ARPE-19 (CRL-2302), ARPE-19/HPV-16 (CRL-2502), Y79 (HTB-18), WERI-Rb-1 (HTB-169), RPE-J (CRL-2240), SO-Rb50 (retinoblastoma cell line), RBL, HER-Xho1-CC2, WERI-Rb24 (Sery et al., *J. Pediatr. Ophthalmol. Strabismus*, 4:212-217, 1990), WERI-Rb27 (Sery et al., *J. Pediatr. Ophthalmol. Strabismus*, 4:212-217, 1990), HXO-Rb44, fetal retina cells, retinoblastoma cells, choroidal endothelial cells (e.g., Chor 55), etc., established and primary retinal cells (For other cell lines and methods thereof, see, also, Griege et al, *Differentiation*, 45:250-7, 1990; Bernstein et al., *Invest. Ophthalmol. Vis. Sci.*, 35:3931-3937, 1994; Howes et al., *Invest. Ophthalmol. Vis. Sci.*, 35:342-351, 1994).

Expression control sequences are similarly selected for host compatibility and a desired purpose, e.g., high copy number, high amounts, induction, amplification, controlled expression. Other sequences which can be employed include enhancers such as from SV40, CMV, RSV, inducible promoters, cell-type specific elements, or sequences which allow selective or specific cell expression. Promoters that can be used to drive its expression, include, e.g., the endogenous promoter, MMTV, SV40, trp, lac, tac, or T7 promoters for bacterial hosts; or alpha factor, alcohol oxidase, or PGH promoters for yeast. RNA promoters can be used to produced RNA transcripts, such as T7 or SP6. See, e.g., Melton et al., *Polynucleotide Res.*, 12(18):7035-7056, 1984; Dunn and Studier. *J. Mol. Bio.*, 166:477-435, 1984; U.S. Pat. No. 5,891,636; Studier et al., *Gene Expression Technology, Methods in Enzymology*, 85:60-89, 1987. In addition, as discussed above, translational signals (including in-frame insertions) can be included.

When a polynucleotide is expressed as a heterologous gene in a transfected cell line, the gene is introduced into a cell as described above, under effective conditions in which the gene is expressed. The term "heterologous" means that the gene has been introduced into the cell line by the "hand-of-man." Introduction of a gene into a cell line is discussed above. The transfected (or transformed) cell expressing the gene can be lysed or the cell line can be used intact.

For expression and other purposes, a polynucleotide can contain codons found in a naturally-occurring gene, transcript, or cDNA, for example, e.g., as set forth in herein or it can contain degenerate codons coding for the same amino acid sequences. For instance,

-73-

it may be desirable to change the codons in the sequence to optimize the sequence for expression in a desired host. See, e.g., U.S. Pat. Nos. 5,567,600 and 5,567,862.

A polypeptide according to the present invention can be recovered from natural sources, transformed host cells (culture medium or cells) according to the usual methods, including, detergent extraction (e.g., non-ionic detergent, Triton X-100, CHAPS, octylglucoside, Igepal CA-630), ammonium sulfate or ethanol precipitation, acid extraction, anion or cation exchange chromatography, phosphocellulose chromatography, hydrophobic interaction chromatography, hydroxyapatite chromatography, lectin chromatography, gel electrophoresis. Protein refolding steps can be used, as necessary, in completing the configuration of the mature protein. Finally, high performance liquid chromatography (HPLC) can be employed for purification steps. Another approach is express the polypeptide recombinantly with an affinity tag (Flag epitope, HA epitope, myc epitope, 6xHis, maltose binding protein, chitinase, etc) and then purify by anti-tag antibody-conjugated affinity chromatography.

The present invention also relates to specific-binding partners. These include antibodies which are specific for polypeptides encoded by polynucleotides of the present invention, as well as other binding-partners which interact with polynucleotides and polypeptides of the present invention. Protein-protein interactions between polypeptides and binding partners can be identified using any suitable methods, e.g., protein binding assays (e.g., filtration assays, chromatography, etc.), yeast two-hybrid system (Fields and Song, *Nature*, 340: 245-247, 1989), protein arrays, gel-shift assays, FRET (fluorescence resonance energy transfer) assays, etc. Nucleic acid interactions (e.g., protein-DNA or protein-RNA) can be assessed using gel-shift assays, e.g., as carried out in U.S. Pat. No. 6,333,407 and 5,789,538.

Antibodies, e.g., polyclonal, monoclonal, recombinant, chimeric, humanized, single-chain, Fab, and fragments thereof, can be prepared according to any desired method.

Antibodies, and immune responses, can also be generated by administering naked DNA See, e.g., U.S. Pat. Nos. 5,703,055; 5,589,466; 5,580,859. Antibodies can be used from any source, including, goat, rabbit, mouse, chicken (e.g., IgY; see, Duan, W0/029444 for methods of making antibodies in avian hosts, and harvesting the antibodies from the eggs). An antibody specific for a polypeptide means that the antibody recognizes a defined sequence of

5

10

15

20

25

WO 03/089583

-74-

PCT/US03/11497

amino acids within or including the polypeptide. Other specific binding partners include, e.g., aptamers and PNA. Antibodies can be prepared against specific epitopes or domains.

Antibodies can also be humanized, e.g., where they are to be used therapeutically. Methods for obtaining human antibodies, e.g., from transgenic mice are described, e.g., in Green et al., Nature Genet. 7:13 (1994); Lonberg et al., Nature 368:856 (1994); and Taylor et al., Int. Immunol. 6:579 (1994). Antibody fragments of the present invention can be prepared by any suitable method, Fab and Fc fragments. sinbgle-chain antibodies can also be used. Another form of an antibody fragment is a peptide coding for a single complementarity-determining region (CDR). CDR peptides ("minimal recognition units") can be obtained by constructing genes encoding the CDR of an antibody of interest.

The term "antibody" as used herein includes intact molecules as well as fragments thereof, such as Fab, F(ab')2, and Fv which are capable of binding to an epitopic determinant present in Bin1 polypeptide. Such antibody fragments retain some ability to selectively bind with its antigen or receptor. The term "epitope" refers to an antigenic determinant on an antigen to which the paratope of an antibody binds. Epitopic determinants usually consist of chemically active surface groupings of molecules such as amino acids or sugar side chains and usually have specific three dimensional structural characteristics, as well as specific charge characteristics. Antibodies can be prepared against specific epitopes or polypeptide domains.

Antibodies which bind to polypeptides of the present invention can be prepared using an intact polypeptide or fragments containing small peptides of interest as the immunizing antigen. For example, it may be desirable to produce antibodies that specifically bind to the N- or C-terminal domains of the tissue selective polypeptides of the present invention. The polypeptide or peptide used to immunize an animal which is derived from translated cDNA or chemically synthesized which can be conjugated to a carrier protein, if desired. Such commonly used carriers which are chemically coupled to the immunizing peptide include keyhole limpet hemocyanin (KLH), thyroglobulin, bovine serum albumin (BSA), and tetanus toxoid.

30 Methods of detecting polypeptides

5

10

15

20

-75-

Polypeptides coded for by genes of the present invention can be detected, visualized, determined, quantitated, etc. according to any effective method. useful methods include, e.g., but are not limited to, immunoassays, RIA (radioimmunassay), ELISA, (enzyme-linked-immunosorbent assay), immunoflourescence, flow cytometry, histology, electron microscopy, light microscopy, in situ assays, immunoprecipitation, Western blot, etc.

Immunoassays may be carried in liquid or on biological support. For instance, a sample (e.g., blood, serum, stool, urine, cells, tissue, cerebral spinal fluid, body fluids, etc.) can be brought in contact with and immobilized onto a solid phase support or carrier such as nitrocellulose, or other solid support that is capable of immobilizing cells, cell particles or soluble proteins. The support may then be washed with suitable buffers followed by treatment with the detectably labeled specific antibody. The solid phase support can then be washed with a buffer a second time to remove unbound antibody. The amount of bound label on solid support may then be detected by conventional means.

A "solid phase support or carrier" includes any support capable of binding an antigen, antibody, or other specific binding partner. Supports or carriers include glass, polystyrene, polypropylene, polyethylene, dextran, nylon, amylases, natural and modified celluloses, polyacrylamides, and magnetite. A support material can have any structural or physical configuration. Thus, the support configuration may be spherical, as in a bead, or cylindrical, as in the inside surface of a test tube, or the external surface of a rod. Alternatively, the surface may be flat such as a sheet, test strip, etc. Preferred supports include polystyrene beads

One of the many ways in which gene peptide-specific antibody can be detectably labeled is by linking it to an enzyme and using it in an enzyme immunoassay (EIA). See, e.g., Voller, A., "The Enzyme Linked Immunosorbent Assay (ELISA)," 1978, Diagnostic Horizons 2, 1-7, Microbiological Associates Quarterly Publication, Walkersville, Md.); Voller, A. et al., 1978, J. Clin. Pathol. 31, 507-520; Butler, J. E., 1981, Meth. Enzymol. 73, 482-523; Maggio, E. (ed.), 1980, Enzyme Immunoassay, CRC Press, Boca Raton, Fla.. The enzyme which is bound to the antibody will react with an appropriate substrate, preferably a chromogenic substrate, in such a manner as to produce a chemical moiety that can be detected, for example, by spectrophotometric, fluorimetric or by visual means. Enzymes that can be used to detectably label the antibody include, but are not limited to, malate

5

10

15

20

25

PCT/US03/11497

5

10

15

20

25

30

dehydrogenase, staphylococcal nuclease, delta-5-steroid isomerase, yeast alcohol dehydrogenase, .alpha.-glycerophosphate, dehydrogenase, triose phosphate isomerase, horseradish peroxidase, alkaline phosphatase, asparaginase, glucose oxidase, .beta.-galactosidase, ribonuclease, urease, catalase, glucose-6-phosphate dehydrogenase, glucoamylase and acetylcholinesterase. The detection can be accomplished by colorimetric methods that employ a chromogenic substrate for the enzyme. Detection may also be accomplished by visual comparison of the extent of enzymatic reaction of a substrate in comparison with similarly prepared standards.

Detection may also be accomplished using any of a variety of other immunoassays. For example, by radioactively labeling the antibodies or antibody fragments, it is possible to detect peptides through the use of a radioimmunoassay (RIA). See, e.g., Weintraub, B., Principles of Radioimmunoassays, Seventh Training Course on Radioligand Assay Techniques, The Endocrine Society, March, 1986. The radioactive isotope can be detected by such means as the use of a gamma counter or a scintillation counter or by autoradiography.

It is also possible to label the antibody with a fluorescent compound. When the fluorescently labeled antibody is exposed to light of the proper wave length, its presence can then be detected due to fluorescence. Among the most commonly used fluorescent labeling compounds are fluorescein isothiocyanate, rhodamine, phycoerythrin, phycocyanin, allophycocyanin, o-phthaldehyde and fluorescamine. The antibody can also be detectably labeled using fluorescence emitting metals such as those in the lanthanide series. These metals can be attached to the antibody using such metal chelating groups as diethylenetriaminepentacetic acid (DTPA) or ethylenediaminetetraacetic acid (EDTA).

The antibody also can be detectably labeled by coupling it to a chemiluminescent compound. The presence of the chemiluminescent-tagged antibody is then determined by detecting the presence of luminescence that arises during the course of a chemical reaction. Examples of useful chemiluminescent labeling compounds are luminol, isoluminol, theromatic acridinium ester, imidazole, acridinium salt and oxalate ester.

Likewise, a bioluminescent compound may be used to label the antibody of the present invention. Bioluminescence is a type of chemiluminescence found in biological systems in which a catalytic protein increases the efficiency of the chemiluminescent reaction. The presence of a bioluminescent protein is determined by detecting the presence of

WO 03/089583

luminescence. Important bioluminescent compounds for purposes of labeling are luciferin, luciferase and aequorin.

-77-

PCT/US03/11497

Diagnostic

5

10

15

20

25

30

The present invention also relates to methods and compositions for diagnosing a disorder, or determining susceptibility to a disorder, using polynucleotides, polypeptides, and specific-binding partners of the present invention to detect, assess, determine, etc., a tissue selective gene. In such methods, the gene can serve as a marker for the disorder, e.g., where the gene, when mutant, is a direct cause of the disorder; where the gene is affected by another gene(s) which is directly responsible for the disorder, e.g., when the gene is part of the same signaling pathway as the directly responsible gene; and, where the gene is chromosomally linked to the gene(s) directly responsible for the disorder, and segregates with it. Many other situations are possible. To detect, assess, determine, etc., a probe specific for the gene can be employed as described above and below. Any method of detecting and/or assessing the gene can be used, including detecting expression of the gene using polynucleotides, antibodies, or other specific-binding partners.

The phrase "diagnosing" indicates that it is determined whether the sample has the disorder. A "disorder" means, e.g., any abnormal condition as in a disease or malady. "Determining a subject's susceptibility to a disease or disorder" indicates that the subject is assessed for whether s/he is predisposed to get such a disease or disorder, where the predisposition is indicated by abnormal expression of the gene (e.g., gene mutation, gene expression pattern is not normal, etc.). Predisposition or susceptibility to a disease may result when a such disease is influenced by epigenetic, environmental, etc., factors. Diagnosing includes prenatal screening where samples from the fetus or embryo (e.g., via amniocentesis or CV sampling) are analyzed for the expression of the gene.

By the phrase "assessing expression of a gene or polynucleotide," it is meant that the functional status of the gene is evaluated. This includes, but is not limited to, measuring expression levels of said gene, determining the genomic structure of said gene, determining the mRNA structure of transcripts from said gene, or measuring the expression levels of polypeptide coded for by said gene. Thus, the term "assessing expression" includes evaluating the all aspects of the transcriptional and translational machinery of the gene. For

PCT/US03/11497

WO 03/089583

5

10

15

20

25

30

instance, if a promoter defect causes, or is suspected of causing, the disorder, then a sample can be evaluated (i.e., "assessed") by looking (e.g., sequencing or restriction mapping) at the promoter sequence in the gene, by detecting transcription products (e.g., RNA), by detecting translation product (e.g., polypeptide). Any measure of whether the gene is functional can be used, including, polypeptide, polynucleotide, and functional assays for the gene's biological activity.

In making the assessment, it can be useful to compare the results to a normal gene, e.g., a gene which is not associated with the disorder. The nature of the comparison can be determined routinely, depending upon how the assessing is accomplished. If, for example, the mRNA levels of a sample is detected, then the mRNA levels of a normal can serve as a comparison, or a gene which is known not to be affected by the disorder. Methods of detecting mRNA are well known, and discussed above, e.g., but not limited to, Northern blot analysis, polymerase chain reaction (PCR), reverse transcriptase PCR, RACE PCR, etc. Similarly, if polypeptide production is used to evaluate the gene, then the polypeptide in a normal tissue sample can be used as a comparison, or, polypeptide from a different gene whose expression is known not to be affected by the disorder. These are only examples of how such a method could be carried out.

The genes and polypeptides of the present invention can be used to identify, detect, stage, determine the presence of, prognosticate, treat, study, etc., diseases and conditions as mentioned above. The present invention relates to methods of identifying a genetic basis for a disease or disease-susceptibility, comprising, e.g., determining the association of a disease or disease-susceptibility with a gene of the present invention. An association between a disease or disease-susceptibility and nucleotide sequence includes, e.g., establishing (or finding) a correlation (or relationship) between a DNA marker (e.g., gene, VNTR, polymorphism, EST, etc.) and a particular disease state. Once a relationship is identified, the DNA marker can be utilized in diagnostic tests and as a drug target. Any region of the gene can be used as a source of the DNA marker, exons, introns, intergenic regions, etc.

Human linkage maps can be constructed to establish a relationship between a gene and a disease or condition. Typically, polymorphic molecular markers (e.g., STRP's, SNP's, RFLP's, VNTR's) are identified within the region, linkage and map distance between the markers is then established, and then linkage is established between phenotype and the

-79-

various individual molecular markers. Maps can be produced for an individual family, selected populations, patient populations, etc. In general, these methods involve identifying a marker associated with the disease (e.g., identifying a polymorphism in a family which is linked to the disease) and then analyzing the surrounding DNA to identity the gene responsible for the phenotype. See, e.g., Kruglyak et al., Am. J. Hum. Genet., 58, 1347-1363, 1996; Matise et al., Nat. Genet., 6(4):384-90, 1994.

Assessing the effects of therapeutic and preventative interventions (e.g., administration of a drug, chemotherapy, radiation, etc.) on disorders is a major effort in drug discovery, clinical medicine, and pharmacogenomics. The evaluation of therapeutic and preventative measures, whether experimental or already in clinical use, has broad applicability, e.g., in clinical trials, for monitoring the status of a patient, for analyzing and assessing animal models, and in any scenario involving disease treatment and prevention. Analyzing the expression profiles of polynucleotides of the present invention can be utilized as a parameter by which interventions are judged and measured. Treatment of a disorder can change the expression profile in some manner which is prognostic or indicative of the drug's effect on it. Changes in the profile can indicate, e.g., drug toxicity, return to a normal level, etc. Accordingly, the present invention also relates to methods of monitoring or assessing a therapeutic or preventative measure (e.g., chemotherapy, radiation, anti-neoplastic drugs, antibodies, etc.) in a subject having a disorder, or, susceptible to such a disorder, comprising, e.g., detecting the expression levels of one or more tissue selective genes. A subject can be a cell-based assay system, non-human animal model, human patient, etc. Detecting can be accomplished as described for the methods above and below. By "therapeutic or preventative intervention," it is meant, e.g., a drug administered to a patient, surgery, radiation, chemotherapy, and other measures taken to prevent, treat, or diagnose a disorder.

The present invention also relates to methods of using binding partners, such as antibodies, to deliver active agents to the tissue (e.g., kidney or pancreas or an immune cells) for a variety of different purposes, including, e.g., for diagnostic, therapeutic, and research purposes. Methods can involve delivering or administering an active agent to the tissue, comprising, e.g., administering to a subject in need thereof, an effective amount of an active agent coupled to a binding partner specific for a tissue selective polypeptide, wherein said binding partner is effective to deliver said active agent specifically to the target tissue.

5

10

15

20

25

-80-

Any type of active agent can be used in combination with it, including, therapeutic, cytotoxic, cytostatic, chemotherapeutic, anti-neoplastic, anti-proliferative, anti-biotic, etc., agents. A chemotherapeutic agent can be, e.g., DNA-interactive agent, alkylating agent, antimetabolite, tubulin-interactive agent, hormonal agent, hydroxyurea, Cisplatin, Cyclophosphamide, Altretamine, Bleomycin, Dactinomycin, Doxorubicin, Etoposide, Teniposide, paclitaxel, cytoxan, 2-methoxy-carbonyl-amino-benzimidazole, Plicamycin, Methotrexate, Fluorouracil, Fluorodeoxyuridin, CB3717, Azacitidine, Floxuridine, Mercapyopurine, 6-Thioguanine, Pentostatin, Cytarabine, Fludarabine, etc. Agents can also be contrast agents useful in imaging technology, e.g., X-ray, CT, CAT, MRI, ultrasound, PET, SPECT, and scintographic.

An active agent can be associated in any manner with a binding partner which is effective to achieve its delivery specifically to the target. Specific delivery or targeting indicates that the agent is provided to the tissue, without being substantially provided to other tissues. This is useful especially where an agent is toxic, and specific targeting to the tissue enables the majority of the toxicity to be aimed at the tissue, with as small as possible effect on other tissues in the body. The association of the active agent and the binding partner ("coupling") can be direct, e.g., through chemical bonds between the binding partner and the agent, or, via a linking agent, or the association can be less direct, e.g., where the active agent is in a liposome, or other carrier, and the binding partner is associated with the liposome surface. In such case, the binding partner can be oriented in such a way that it is able to bind to tissue selective polypeptide, e.g., exposed on the cell surface. Methods for delivery of DNA via a cell-surface receptor is described, e.g., in U.S. Pat. No. 6,339,139.

Identifying agent methods

The present invention also relates to methods of identifying agents, and the agents themselves, which modulate tissue selective genes. These agents can be used to modulate the biological activity of the polypeptide encoded for the gene, or the gene, itself. Agents which regulate the gene or its product are useful in variety of different environments, including as medicinal agents to treat or prevent disorders associated with genes and as research reagents to modify the function of tissues and cell.

5

10

15

20

25

WO 03/089583

5

10

15

20

25

30

Methods of identifying agents generally comprise steps in which an agent is placed in contact with the gene, its transcription product, its translation product, or other target, and then a determination is performed to assess whether the agent "modulates" the target. The specific method utilized will depend upon a number of factors, including, e.g., the target (i.e., is it the gene or polypeptide encoded by it), the environment (e.g., in vitro or in vivo), the composition of the agent, etc.

For modulating the expression of tissue selective genes, a method can comprise, in any effective order, one or more of the following steps, e.g., contacting a gene (e.g., in a cell population) with a test agent under conditions effective for said test agent to modulate the expression of tissue selective genes, and determining whether said test agent modulates said genes. An agent can modulate expression of a tissue selective gene at any level, including transcription (e.g., by modulating the promoter), translation, and/or perdurance of the nucleic acid (e.g., degradation, stability, etc.) in the cell.

For modulating the biological activity of polypeptides, a method can comprise, in any effective order, one or more of the following steps, e.g., contacting a polypeptide (e.g., in a cell, lysate, or isolated) with a test agent under conditions effective for said test agent to modulate the biological activity of said polypeptide, and determining whether said test agent modulates said biological activity.

Contacting a gene or polypeptide with the test agent can be accomplished by any suitable method and/or means that places the agent in a position to functionally control expression or biological activity. Functional control indicates that the agent can exert its physiological effect through whatever mechanism it works. The choice of the method and/or means can depend upon the nature of the agent and the condition and type of environment in which the gene or polypeptide is presented, e.g., lysate, isolated, or in a cell population (such as, in vivo, in vitro, organ explants, etc.). For instance, if the cell population is an in vitro cell culture, the agent can be contacted with the cells by adding it directly into the culture medium. If the agent cannot dissolve readily in an aqueous medium, it can be incorporated into liposomes, or another lipophilic carrier, and then administered to the cell culture. Contact can also be facilitated by incorporation of agent with carriers and delivery molecules and complexes, by injection, by infusion, etc.

Agents can be directed to, or targeted to, any part of the polypeptide which is

-82-

effective for modulating it. For example, agents, such as antibodies and small molecules, can be targeted to cell-surface, exposed, extracellular, ligand binding, functional, etc., domains of the polypeptide. Agents can also be directed to intracellular regions and domains, e.g., regions where the polypeptide couples or interacts with intracellular or intramembrane binding partners.

After the agent has been administered in such a way that it can gain access, it can be determined whether the test agent modulates expression or biological activity. Modulation can be of any type, quality, or quantity, e.g., increase, facilitate, enhance, up-regulate, stimulate, activate, amplify, augment, induce, decrease, down-regulate, diminish, lessen, reduce, etc. The modulatory quantity can also encompass any value, e.g., 1%, 5%, 10%, 50%, 75%, 1-fold, 2-fold, 5-fold, 10-fold, 100-fold, etc. To modulate expression means, e.g., that the test agent has an effect on its expression, e.g., to effect the amount of transcription, to effect RNA splicing, to effect translation of the RNA into polypeptide, to effect RNA or polypeptide stability, to effect polyadenylation or other processing of the RNA, to effect post-transcriptional or post-translational processing, etc. To modulate biological activity means, e.g., that a functional activity of the polypeptide is changed in comparison to its normal activity in the absence of the agent. This effect includes, increase, decrease, block, inhibit, enhance, etc.

A test agent can be of any molecular composition, e.g., chemical compounds, biomolecules, such as polypeptides, lipids, nucleic acids (e.g., antisense), carbohydrates, antibodies, ribozymes, double-stranded RNA, aptamers, etc. For example, if a polypeptide to be modulated is a cell-surface molecule, a test agent can be an antibody that specifically recognizes it and, e.g., causes the polypeptide to be internalized, leading to its down regulation on the surface of the cell. Such an effect does not have to be permanent, but can require the presence of the antibody to continue the down-regulatory effect. Antibodies can also be used to modulate the biological activity of a polypeptide in a lysate or other cell-free form.

Additional cell-based test systems suitable for the analysis of GPCR polypeptides are summarized in Marchese et al. (1999, Trends in Pharmacol. Sci. 20: 370-375) and comprise so-called "ligand screening assays." For example in yeast cells the pheromon receptor can be replaced by a GPCR according to the invention. The effect of test substances on the receptor

5

10

15

20

25

. -83-

can be determined upon modulation of histidine synthesis, i.e. by growing in histidine-free medium. In addition using cells transfected with nucleic acids according to the invention it can be analyzed whether test substances mediate translocation of a detectable arrestins, for example of a arrestin-GFP-fusion protein. Moreover, it can be analyzed whether test substances mediate GPCR-mediated dispersion or aggregation of Xenopus laevis melanophores. Another test system utilizes the universal adapter G-protein G alphal6, which mobilizes Ca.sup.2+. Other screening test systems are described in Lemer et al., supra; WO96/41169; U.S. Pat. No. 5,482,835; WO99/06535; EP 0 939 902; WO99/66326; WO98/34948; EP 0 863 214; U.S. Pat. No. 5,882,944 and U.S. Pat. No. 5,891,641.

10 Therapeutics

5

15

20

25

30

Selective polynucleotides, polypeptides, and specific-binding partners thereto, can be utilized in therapeutic applications, especially to treat diseases and conditions described herein. Useful methods include, but are not limited to, immunotherapy (e.g., using specific-binding partners to polypeptides), vaccination (e.g., using a selective polypeptide or a naked DNA encoding such polypeptide), protein or polypeptide replacement therapy, gene therapy (e.g., germ-line correction, antisense), etc.

Various immunotherapeutic approaches can be used. For instance, unlabeled antibody that specifically recognizes a tissue-specific antigen can be used to stimulate the body to destroy or attack a cancer or other diseased tissue, to cause down-regulation, to produce complement-mediated lysis, to inhibit cell growth, etc., of target cells which display the antigen, e.g., analogously to how c-erbB-2 antibodies are used to treat breast cancer. In addition, antibody can be labeled or conjugated to enhance its deleterious effect, e.g., with radionuclides and other energy emitting entitities, toxins, such as ricin, exotoxin A (ETA), and diphtheria, cytotoxic or cytostatic agents, immunomodulators, chemotherapeutic agents, etc. See, e.g., U.S. Pat. No. 6,107,090.

An antibody or other specific-binding partner can be conjugated to a second molecule, such as a cytotoxic agent, and used for targeting the second molecule to a tissue-antigen positive cell (Vitetta, E. S. et al., 1993, Immunotoxin therapy, in DeVita, Jr., V. T. et al., eds, Cancer: Principles and Practice of Oncology, 4th ed., J. B. Lippincott Co., Philadelphia, 2624-2636). Examples of cytotoxic agents include, but are not limited to, antimetabolites, alkylating agents, anthracyclines, antibiotics, anti-mitotic agents, radioisotopes and

chemotherapeutic agents. Further examples of cytotoxic agents include, but are not limited to ricin, doxorubicin, daunorubicin, taxol, ethidium bromide, mitomycin, etoposide, tenoposide, vincristine, vinblastine, colchicine, dihydroxy anthracin dione, actinomycin D, 1-dehydrotestosterone, diptheria toxin, Pseudomonas exotoxin (PE) A, PE40, abrin, elongation factor-2 and glucocorticoid. Techniques for conjugating therapeutic agents to antibodies are

In addition to immunotherapy, polynucleotides and polypeptides can be used as targets for non-immunotherapeutic applications, e.g., using compounds which interfere with function, expression (e.g., antisense as a therapeutic agent), assembly, etc. RNA interference can be used in vitro and in vivo to silence a gene when its expression contributes to a disease (but also for other purposes, e.g., to identify the gene's function to change a developmental pathway of a cell, etc.). See, e.g., Sharp and Zamore, *Science*, 287:2431-2433, 2001; Grishok et al., *Science*, 287:2494, 2001.

Delivery of therapeutic agents can be achieved according to any effective method, including, liposomes, viruses, plasmid vectors, bacterial delivery systems, orally, systemically, etc. Therapeutic agents of the present invention can be administered in any form by any effective route, including, e.g., oral, parenteral, enteral, intraperitoneal, topical, transdermal (e.g., using any standard patch), intravenously, ophthalmic, nasally, local, non-oral, such as aerosal, inhalation, subcutaneous, intramuscular, buccal, sublingual, rectal, vaginal, intra-arterial, and intrathecal, etc. They can be administered alone, or in combination with any ingredient(s), active or inactive.

In addition to therapeutics, per se, the present invention also relates to methods of treating a disease showing altered expression of a tissue selective gene, comprising, e.g., administering to a subject in need thereof a therapeutic agent which is effective for regulating expression of said gene and/or which is effective in treating said disease. The term "treating" is used conventionally, e.g., the management or care of a subject for the purpose of combating, alleviating, reducing, relieving, improving the condition of, etc., of a disease or disorder. By the phrase "altered expression," it is meant that the disease is associated with a mutation in the gene, or any modification to the gene (or corresponding product) which affects its normal function. Thus, expression refers to, e.g., transcription, translation, splicing, stability of the mRNA or protein product, activity of the gene product, differential

5

10

15

20

25

30

well.

-85-

expression, etc.

Any agent which "treats" the disease can be used. Such an agent can be one which regulates the expression of a tissue selective gene. Expression refers to the same acts already mentioned, e.g. transcription, translation, splicing, stability of the mRNA or protein product, activity of the gene product, differential expression, etc. For instance, if the condition was a result of a complete deficiency of the gene product, administration of gene product to a patient would be said to treat the disease and regulate the gene's expression. Many other possible situations are possible, e.g., where the gene is aberrantly expressed, and the therapeutic agent regulates the aberrant expression by restoring its normal expression pattern.

10

15

20

25

30

5

Antisense

Antisense polynucleotide (e.g., RNA) can also be prepared from a polynucleotide according to the present invention. Antisense polynucleotide can be used in various ways, such as to regulate or modulate expression of the polypeptides they encode, e.g., inhibit their expression, for in situ hybridization, for therapeutic purposes, for making targeted mutations (in vivo, triplex, etc.) etc. For guidance on administering and designing anti-sense, see, e.g., U.S. Pat. Nos. 6,200,960, 6,200,807, 6,197,584, 6,190,869, 6,190,661, 6,187,587, 6,168,950, 6,153,595, 6,150,162, 6,133,246, 6,117,847, 6,096,722, 6,087,343, 6,040,296, 6,005,095, 5,998,383, 5,994,230, 5,891,725, 5,885,970, and 5,840,708. An antisense polynucleotides can be operably linked to an expression control sequence. A total length of about 35 bp can be used in cell culture with cationic liposomes to facilitate cellular uptake, but for *in vivo* use, preferably shorter oligonucleotides are administered, e.g. 25 nucleotides.

Antisense polynucleotides can comprise modified, nonnaturally-occurring nucleotides and linkages between the nucleotides (e.g., modification of the phosphate-sugar backbone; methyl phosphonate, phosphorothioate, or phosphorodithioate linkages; and 2'-O-methyl ribose sugar units), e.g., to enhance in vivo or in vitro stability, to confer nuclease resistance, to modulate uptake, to modulate cellular distribution and compartmentalization, etc. Any effective nucleotide or modification can be used, including those already mentioned, as known in the art, etc., e.g., disclosed in U.S. Pat. Nos. 6,133,438; 6,127,533; 6,124,445; 6,121,437; 5,218,103 (e.g., nucleoside thiophosphoramidites); 4,973,679; Sproat et al., "2'-O-Methyloligoribonucleotides: synthesis and applications," Oligonucleotides and Analogs A

-86-

Practical Approach, Eckstein (ed.), IRL Press, Oxford, 1991, 49-86; Iribarren et al., "2'O-Alkyl Oligoribonucleotides as Antisense Probes," Proc. Natl. Acad. Sci. USA, 1990, 87, 7747-7751; Cotton et al., "2'-O-methyl, 2'-O-ethyl oligoribonucleotides and phosphorothioate oligodeoxyribonucleotides as inhibitors of the in vitro U7 snRNP-dependent mRNA processing event," Nucl. Acids Res., 1991, 19, 2629-2635.

Arrays

5

10

15

20

30

The present invention also relates to an ordered array of polynucleotide probes and specific-binding partners (e.g., antibodies) for detecting the expression of tissue selective genes or polypeptides encoded thereby, in a sample, comprising, one or more polynucleotide probes or specific binding partners associated with a solid support or in separate receptacles, wherein each probe is specific for a tissue selective gene or a specific-binding partner which is specific for a polypeptide.

The phrase "ordered array" indicates that the probes are arranged in an identifiable or position-addressable pattern, e.g., such as the arrays disclosed in U.S. Pat. Nos. 6,156,501, 6,077,673, 6,054,270, 5,723,320, 5,700,637, WO09919711, WO00023803. The probes are associated with the solid support in any effective way. For instance, the probes can be bound to the solid support, either by polymerizing the probes on the substrate, or by attaching a probe to the substrate. Association can be, covalent, electrostatic, noncovalent, hydrophobic, hydrophilic, noncovalent, coordination, adsorbed, absorbed, polar, etc. When fibers or hollow filaments are utilized for the array, the probes can fill the hollow orifice, be absorbed into the solid filament, be attached to the surface of the orifice, etc. Probes can be of any effective size, sequence identity, composition, etc., as already discussed.

25 Transgenic animals

The present invention also relates to transgenic animals comprising tissue selective genes, and homologs thereof. (Methods of making transgenic animals, and associated recombinant technology, can be accomplished conventionally, e.g., as described in *Transgenic Animal Technology*, Pinkert et al., 2nd Edition, Academic Press, 2002.) Such genes, as discussed in more detail below, include, but are not limited to, functionally-disrupted genes, mutated genes, ectopically or selectively-expressed genes, inducible or

-87-

regulatable genes, etc. These transgenic animals can be produced according to any suitable technique or method, including homologous recombination, mutagenesis (e.g., ENU, Rathkolb et al., *Exp. Physiol.*, 85(6):635-644, 2000), and the tetracycline-regulated gene expression system (e.g., U.S. Pat. No. 6,242,667). The term "gene" as used herein includes any part of a gene, i.e., regulatory sequences, promoters, enhancers, exons, introns, coding sequences, etc. The nucleic acid present in the construct or transgene can be naturally-occurring wild-type, polymorphic, or mutated. Where the animal is a non-human animal, its homolog can be used instead. Transgenic animals can have structural and/or functional defects in any of the tissues described herein, e.g., pancreas, kidney, retina, and immune cells, as well as having or being susceptible to any of the associated disorders or diseases mentioned herein.

Along these lines, polynucleotides of the present invention can be used to create transgenic animals, e.g. a non-human animal, comprising at least one cell whose genome comprises a functional disruption of one or tissue selective genes, or homologs thereof (e.g., a mouse homolog when a mouse is used). By the phrases "functional disruption" or "functionally disrupted," it is meant that the gene does not express a biologically-active product. It can be substantially deficient in at least one functional activity coded for by the gene. Expression of a polypeptide can be substantially absent, i.e., essentially undetectable amounts are made. However, polypeptide can also be made, but which is deficient in activity, e.g., where only an amino-terminal portion of the gene product is produced.

The transgenic animal can comprise one or more cells. When substantially all its cells contain the engineered gene, it can be referred to as a transgenic animal "whose genome comprises" the engineered gene. This indicates that the endogenous gene loci of the animal has been modified and substantially all cells contain such modification.

Functional disruption of the gene can be accomplished in any effective way, including, e.g., introduction of a stop codon into any part of the coding sequence such that the resulting polypeptide is biologically inactive (e.g., because it lacks a catalytic domain, a ligand binding domain, etc.), introduction of a mutation into a promoter or other regulatory sequence that is effective to turn it off, or reduce transcription of the gene, insertion of an exogenous sequence into the gene which inactivates it (e.g., which disrupts the production of a biologically-active polypeptide or which disrupts the promoter or other transcriptional

5

10

15

20

25

WO 03/089583 PCT/US03/11497
-88-

machinery), deletion of sequences from the gene (or homolog thereof), etc. Examples of transgenic animals having functionally disrupted genes are well known, e.g., as described in U.S. Pat. Nos. 6,239,326, 6,225,525, 6,207,878, 6,194,633, 6,187,992, 6,180,849, 6,177,610, 6,100,445, 6,087,555, 6,080,910, 6,069,297, 6,060,642, 6,028,244, 6,013,858, 5,981,830, 5,866,760, 5,859,314, 5,850,004, 5,817,912, 5,789,654, 5,777,195, and 5,569,824. A transgenic animal which comprises the functional disruption can also be referred to as a "knock-out" animal, since the biological activity of its gene has been "knocked-out." Knock-outs can be homozygous or heterozygous.

For creating functionally disrupted genes, and other gene mutations, homologous recombination technology is of special interest since it allows specific regions of the genome to be targeted. Using homologous recombination methods, genes can be specificallyinactivated, specific mutations can be introduced, and exogenous sequences can be introduced at specific sites. These methods are well known in the art, e.g., as described in the patents above. See, also, Robertson, Biol. Reproduc., 44(2):238-245, 1991. Generally, the genetic engineering is performed in an embryonic stem (ES) cell, or other pluripotent cell line (e.g., adult stem cells, EG cells), and that genetically-modified cell (or nucleus) is used to create a whole organism. Nuclear transfer can be used in combination with homologous recombination technologies. For example, a gene locus can be disrupted in mouse ES cells using a positive-negative selection method (e.g., Mansour et al., Nature, 336:348-352, 1988). In this method, a targeting vector can be constructed which comprises a part of the gene to be targeted. A selectable marker, such as neomycin resistance genes, can be inserted into a an exon present in the targeting vector, disrupting it. When the vector recombines with the ES cell genome, it disrupts the function of the gene. The presence in the cell of the vector can be determined by expression of neomycin resistance. See, e.g., U.S. Pat. No. 6,239,326. Cells having at least one functionally disrupted gene can be used to make chimeric and germline animals, e.g., animals having somatic and/or germ cells comprising the engineered gene. Homozygous knock-out animals can be obtained from breeding heterozygous knockout animals. See, e.g., U.S. Pat. No. 6,225,525.

The present invention also relates to non-human, transgenic animal whose genome comprises recombinant tissue selective nuccleic acid (and homologs thereof) operatively linked to an expression control sequence effective to express said coding sequence in a target

5

10

15

20

25

5

10

15

20

25

30

tissue. Such a transgenic animal can also be referred to as a "knock-in" animal since an exogenous gene has been introduced, stably, into its genome. "Operable linkage" has the meaning used through the specification, i.e., placed in a functional relationship with another nucleic acid. When a gene is operably linked to an expression control sequence, as explained above, it indicates that the gene (e.g., coding sequence) is joined to the expression control sequence (e.g., promoter) in such a way that facilitates transcription and translation of the coding sequence. As described above, the phrase "genome" indicates that the genome of the cell has been modified. In this case, the recombinant gene has been stably integrated into the genome of the animal. The nucleic acid (e.g., a coding sequence) in operable linkage with the expression control sequence can also be referred to as a construct or transgene.

Any expression control sequence can be used depending on the purpose. For instance, if selective expression is desired, then expression control sequences which limit its expression can be selected. These include, e.g., tissue or cell-specific promoters, introns, enhancers, etc. For various methods of cell and tissue-specific expression, see, e.g., U.S. Pat. Nos. 6,215,040, 6,210,736, and 6,153,427. These also include the endogenous promoter, i.e., the coding sequence can be operably linked to its own promoter. Inducible and regulatable promoters can also be utilized.

The present invention also relates to a transgenic animal which contains a functionally disrupted and a transgene stably integrated into the animals genome. Such an animal can be constructed using combinations any of the above- and below-mentioned methods. Such animals have any of the aforementioned uses, including permitting the knock-out of the normal gene and its replacement with a mutated gene. Such a transgene can be integrated at the endogenous gene locus so that the functional disruption and "knock-in" are carried out in the same step.

In addition to the methods mentioned above, transgenic animals can be prepared according to known methods, including, e.g., by pronuclear injection of recombinant genes into pronuclei of 1-cell embryos, incorporating an artificial yeast chromosome into embryonic stem cells, gene targeting methods, embryonic stem cell methodology, cloning methods, nuclear transfer methods. See, also, e.g., U.S. Patent Nos. 4,736,866; 4,873,191; 4,873,316; 5,082,779; 5,304,489; 5,174,986; 5,175,384; 5,175,385; 5,221,778; Gordon et al., Proc. Natl. Acad. Sci., 77:7380-7384, 1980; Palmiter et al., Cell, 41:343-345, 1985; Palmiter

et al., Ann. Rev. Genet., 20:465-499, 1986; Askew et al., Mol. Cell. Bio., 13:4115-4124, 1993; Games et al. Nature, 373:523-527, 1995; Valancius and Smithies, Mol. Cell. Bio., 11:1402-1408, 1991; Stacey et al., Mol. Cell. Bio., 14:1009-1016, 1994; Hasty et al., Nature, 350:243-246, 1995; Rubinstein et al., Nucl. Acid Res., 21:2613-2617,1993; Cibelli et al., Science, 280:1256-1258, 1998. For guidance on recombinase excision systems, see, e.g., U.S. Pat. Nos. 5,626,159, 5,527,695, and 5,434,066. See also, Orban, P.C., et al., "Tissueand Site-Specific DNA Recombination in Transgenic Mice," Proc. Natl. Acad. Sci. USA, 89:6861-6865 (1992); O'Gorman, S., et al., "Recombinase-Mediated Gene Activation and Site-Specific Integration in Mammalian Cells," Science, 251:1351-1355 (1991); Sauer, B., et al., "Cre-stimulated recombination at loxP-Containing DNA sequences placed into the mammalian genome," Polynucleotides Research, 17(1):147-161 (1989); Gagneten, S. et al. (1997) Nucl. Acids Res. 25:3326-3331; Xiao and Weaver (1997) Nucl. Acids Res. 25:2985-2991; Agah, R. et al. (1997) J. Clin. Invest. 100:169-179; Barlow, C. et al. (1997) Nucl. Acids Res. 25:2543-2545; Araki, K. et al. (1997) Nucl. Acids Res. 25:868-872; Mortensen, R. N. et al. (1992) Mol. Cell. Biol. 12:2391-2395 (G418 escalation method); Lakhlani, P. P. et al. (1997) Proc. Natl. Acad. Sci. USA 94:9950-9955 ("hit and run"); Westphal and Leder (1997) Curr. Biol. 7:530-533 (transposon-generated "knock-out" and "knock-in"); Templeton, N. S. et al. (1997) Gene Ther. 4:700-709 (methods for efficient gene targeting, allowing for a high frequency of homologous recombination events, e.g., without selectable markers); PCT International Publication WO 93/22443 (functionally-disrupted).

A polynucleotide according to the present invention can be introduced into any non-human animal, including a non-human mammal, mouse (Hogan et al., Manipulating the Mouse Embryo: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 1986), pig (Hammer et al., Nature, 315:343-345, 1985), sheep (Hammer et al., Nature, 315:343-345, 1985), cattle, rat, or primate. See also, e.g., Church, 1987, Trends in Biotech. 5:13-19; Clark et al., Trends in Biotech. 5:20-24, 1987); and DePamphilis et al., BioTechniques, 6:662-680, 1988. Transgenic animals can be produced by the methods described in U.S. Pat. No. 5,994,618, and utilized for any of the utilities described therein.

30 Database

5

10

15

20

25

The present invention also relates to electronic forms of polynucleotides,

-91-

polypeptides, etc., of the present invention, including computer-readable medium (e.g., magnetic, optical, etc., stored in any suitable format, such as flat files or hierarchical files) which comprise such sequences, or fragments thereof, e-commerce-related means, etc. Along these lines, the present invention relates to methods of retrieving nucleic acid and/or polypeptide sequences from a computer-readable medium, comprising, one or more of the following steps in any effective order, e.g., selecting a cell or gene expression profile, e.g., a profile that specifies that said gene is differentially expressed in a tissue as described herein, and retrieving said differentially expressed nucleic acid or polypeptide.

A "gene expression profile" means the list of tissues, cells, etc., in which a defined gene is expressed (i.e, transcribed and/or translated). A "cell expression profile" means the genes which are expressed in the particular cell type. The profile can be a list of the tissues in which the gene is expressed, but can include additional information as well, including level of expression (e.g., a quantity as compared or normalized to a control gene), and information on temporal (e.g., at what point in the cell-cycle or developmental program) and spatial expression. By the phrase "selecting a gene or cell expression profile," it is meant that a user decides what type of gene or cell expression pattern he is interested in retrieving, e.g., he may require that the gene is differentially expressed in a tissue, or he may require that the gene is not expressed in blood, but must be expressed in pancreas. Any pattern of expression preferences may be selected. The selecting can be performed by any effective method. In general, "selecting" refers to the process in which a user forms a query that is used to search a database of gene expression profiles. The step of retrieving involves searching for results in a database that correspond to the query set forth in the selecting step. Any suitable algorithm can be utilized to perform the search query, including algorithms that look for matches, or that perform optimization between query and data. The database is information that has been stored in an appropriate storage medium, having a suitable computer-readable format. Once results are retrieved, they can be displayed in any suitable format, such as HTML.

For instance, the user may be interested in identifying genes that are differentially expressed in a pancreas or kidney. He may not care whether small amounts of expression occur in other tissues, as long as such genes are not expressed in peripheral blood lymphocytes. A query is formed by the user to retrieve the set of genes from the database

5

10

15

20

25

WO 03/089583 -92-

WO 03/089583 PCT/US03/11497

having the desired gene or cell expression profile. Once the query is inputted into the system, a search algorithm is used to interrogate the database, and retrieve results.

Advertising, licensing, etc., methods

The present invention also relates to methods of advertising, licensing, selling, purchasing, brokering, etc., genes, polynucleotides, specific-binding partners, antibodies, etc., of the present invention. Methods can comprises, e.g., displaying tissue selective polynucleotide or polypeptide sequences, or antibody specific thereto, in a printed or computer-readable medium (e.g., on the Web or Internet), accepting an offer to purchase said gene, polypeptide, or antibody.

Other

5

10

15

20

25

30

A polynucleotide, probe, polypeptide, antibody, specific-binding partner, etc., according to the present invention can be isolated. The term "isolated" means that the material is in a form in which it is not found in its original environment or in nature, e.g., more concentrated, more purified, separated from component, etc. An isolated polynucleotide includes, e.g., a polynucleotide having the sequenced separated from the chromosomal DNA found in a living animal, e.g., as the complete gene, a transcript, or a cDNA. This polynucleotide can be part of a vector or inserted into a chromosome (by specific gene-targeting or by random integration at a position other than its normal position) and still be isolated in that it is not in a form that is found in its natural environment. A polynucleotide, polypeptide, etc., of the present invention can also be substantially purified. By substantially purified, it is meant that polynucleotide or polypeptide is separated and is essentially free from other polynucleotides or polypeptides, i.e., the polynucleotide or polypeptide is the primary and active constituent. A polynucleotide can also be a recombinant molecule. By "recombinant," it is meant that the polynucleotide is an arrangement or form which does not occur in nature. For instance, a recombinant molecule comprising a promoter sequence would not encompass the naturally-occurring gene, but would include the promoter operably linked to a coding sequence not associated with it in nature, e.g., a reporter gene, or a truncation of the normal coding sequence.

-93-

The term "marker" is used herein to indicate a means for detecting or labeling a target. A marker can be a polynucleotide (usually referred to as a "probe"), polypeptide (e.g., an antibody conjugated to a detectable label), PNA, or any effective material.

The topic headings set forth above are meant as guidance where certain information can be found in the application, but are not intended to be the only source in the application where information on such topic can be found. Reference materials

For other aspects of the polynucleotides, reference is made to standard textbooks of molecular biology. See, e.g., Hames et al., <u>Polynucleotide Hybridization</u>, IL Press, 1985; Davis et al., <u>Basic Methods in Molecular Biology</u>, Elsevir Sciences Publishing, Inc., New York, 1986; Sambrook et al., <u>Molecular Cloning</u>, CSH Press, 1989; Howe, <u>Gene Cloning and Manipulation</u>, Cambridge University Press, 1995; Ausubel et al., <u>Current Protocols in Molecular Biology</u>, John Wiley & Sons, Inc., 1994-1998.

Without further elaboration, it is believed that one skilled in the art can, using the preceding description, utilize the present invention to its fullest extent. The following preferred specific embodiments are, therefore, to be construed as merely illustrative, and not limitative of the remainder of the disclosure in any way whatsoever. The entire disclosure of all applications, patents and publications, cited above and in the figures are hereby incorporated by reference in their entirety, including U.S. Application Serial Nos. 60/372,669 April 16, 2003, 60/374,823 filed April 24, 2002, 60/376,558 filed May 1, 2002, 60/381,366 filed May 20, 2002, 60/403,648 filed August 16, 2002, 60/411,882 filed September 20, 2002, and 60/424,336 filed November 7, 2002.

5

10

15

TABLE 1

(cton (cton (cton)	ACCIN:	िरद्धां जारे हो स्त्र हो अस्ट स्टार	Olice expression elles	Oxegenege levere
TMD0024	XM_060945	thymus	none	1q22
TMD1779	XM_060946	thymus and PBL	none	1q22
TMD0884	XM_060947	thymus	skin and ovary	1q22
TMD0025	XM_060948	thymus	none	1q22
TMD1780	XM_089422	thymus	none	1q22
TMD1781	XM_089421	PBL	thymus	1q22
TMD0304	XM_060956	bone marrow and muscle	testis	1q22
TMD0888	XM_060957	bone marrow	lung, muscle and testis	1q22
TMD0890	XM_060959	bone marrow	lung and PBL	1q22

5				
	Clone ID (gene code)	ACCN	Protein seq length	Domain Description
10	TMD1779	XM_060946	264	Transmembrane domain: 26 - 48 Transmembrane domain: 55 - 77 Transmembrane domain: 92 - 114 Transmembrane domain: 134 - 156 Transmembrane domain: 197 - 219
15 20	TMD0024	XM_060945	268	Transmembrane domain: 16 - 38 Transmembrane domain: 53 - 75 Transmembrane domain: 96 - 118 Transmembrane domain: 156 - 178 Transmembrane domain: 191 - 213 Transmembrane domain: 228 - 246
25	TMD0025	XM_060948	313	Transmembrane domain: 29 - 51 Transmembrane domain: 58 - 77 Transmembrane domain: 92 - 114 Transmembrane domain: 135 - 157 Transmembrane domain: 197 - 219 Transmembrane domain: 240 - 262 Transmembrane domain: 272 - 294
30 35	TMD0304	XM_060956	319	Transmembrane domain: 28 - 50 Transmembrane domain: 63 - 82 Transmembrane domain: 102 - 124 Transmembrane domain: 144 - 166 Transmembrane domain: 205 - 227 Transmembrane domain: 240 - 262 Transmembrane domain: 272 - 294
40	TMD0884	XM_060947	299	Transmembrane domain: 20 - 42 Transmembrane domain: 54 - 76 Transmembrane domain: 91 - 113 Transmembrane domain: 126 - 148

	WO 03/089583			PCT/US03/1149
			-95-	0
				Transmembrane domain: 183 - 205
		•		Transmembrane domain: 226 - 248
				Transmembrane domain: 258 - 277
5	TMD0888	XM_060957	312	Transmembrane domain: 25 - 47
				Transmembrane domain: 59 - 78
				Transmembrane domain: 98 - 120
				Transmembrane domain: 141 - 163
				Transmembrane domain: 207 - 229
10				Transmembrane domain: 241 - 260
				Transmembrane domain: 270 - 292
	TMD0890	XM_060959	280	Transmembrane domain: 26 - 48
				Transmembrane domain: 122 - 144
15				Transmembrane domain: 180 - 202
				Transmembrane domain: 215 - 237
				Transmembrane domain: 252 - 269
	TMD1780	XM_089422	491	Transmembrane domain: 20 - 42
20		_		Transmembrane domain: 54 - 76
				Transmembrane domain: 91 - 113
				Transmembrane domain: 137 - 159
				Transmembrane domain: 190 - 212
				Transmembrane domain: 231 - 253
25				Transmembrane domain: 266 - 283
				Transmembrane domain: 304 - 326
				Transmembrane domain: 336 - 358
				Transmembrane domain: 379 - 401
				Transmembrane domain: 437 - 459
20				

91

Transmembrane domain: 63 - 85

XM_089421

BNSDOCID: <WO_____03089583A2_I_>

30

35

TMD1781

TMD0888 XM_060957									. jphrei	84%(39nt)
TMD0304 XM_060956									73%(24 lnt)	no significant similarity
TMD1781 XM_089421						A Constitution of the Cons		no significant similarity	no significant similarity	no significant similarity
TMD1780 XM_089422					Section of the sectio		17%(179nt) 82%(46nt)	84%(39nt)	no significant similarity	no significant similarity
TMD0025 XM_060948					80%(84nt)	.	no significant similarity	no significant similarity	84% (38nt)	no significant similarity
TMD0884 XM_060947			······································	83%(54nt)	78%(90nt)	ų	no significant similarity	no significant similarity	no significant similarity	no significant similarity
TMD1779 XM_060946			no significant similarity	90%(605nt)	83%(71nt)		no significant similarity similarity	no significant no significant no significant similarity similarity similarity	no significant similarity	no significant no significant significant similarity similarity similarity
TMD0024 XM_060945		no significant similarity	74%(371nt)	71%(222nt) 80%(73nt)	81%(114nt) 74%(186nt) 79%(113nt) 77%(99nt)		77%(80nt)	no significant similarity	no significant similarity	no significant similarity
	TMD0024 XM_060945	TMD1779 XM_060946	TMD0884 XM_060947	TMD0025 XM_060948	TMD1780 XM_089422	197701361	XM_089421	TMD0304 XM_060956	TMD0888 XM_060957	TMD0890 XM_060959

ABLE 3

~	
9	
_	

TMD0888 XP_060957									46%(196aa)
TMD0304 XP_060956								50%(301aa)	36%(196aa)
TMD1781 XP_089421							34%(89ab)	41%(82aa)	38%(72aa)
TMD1780 XP_089422						51%(93aa) 49%(77aa)	39%(300aa)	45%(304aa) 43%(189aa)	42%(200aa)
TMD0025 XP_060948					52%(300aa)	37%(94aa)	39%(299aa)	40% (305aa)	36%(179aa)
TMD0884 XP_060947				46%(166aa)	55%(165aa) 47%(111aa)	52%(40aa)	36% (163aa)	41%(157aa)	32%(156aa)
TMD1779 XP_060946			36%(92aa)	73%(233aa)	46%(227aa) 46%(169aa)	35%(82aa)	37%(229aa)	37%(239aa)	32%(132aa)
TMD0024 XP_060945		47%(200aa)	62%(171aa)	53%(252aa)	59%(261aa) 59%(181aa)	40%(94aa)	40%(257aa)	49%(251aa)	41%(196)
	TMD0024 XP_060945	TMD1779 XP_060946	TMD0884 XP_060947	TMD0025 XP_060948	TMD1780 XP_089422	TMD1781 XP_089421	TMD0304 XP_060956	TMD0888 XP_060957	TMD0890 XP_060959

FABLE 4

.00

CARGAGO CARGAGO CONTICA ON THAT AND AND ONE CARGAGO CONTICA ONE CARGAGO CONTICA ONE CARGAGO CARG				
79 GOTOTATAGACTOTAGG CIATAGACCAGGIGGAM CITCHTACAGTITTAATGGGCCAGACTTAGTTTATGGGCCAGACTTAGTTTATGGGCCAGACTTAGTTTAATGGGCCAGACTTAGTTTAATGGGCCAGACTTAGTTTAATGGGCCAGACTTAGTTAATGGGCCAGACTTAGTTAATGGGCCAGACTTAGTTAATGGGCCAGACTTATTAATGGGCCAGACTTAATGGCCAGACACTTAATGGCCAGACACTTATGGCCAGACACTTATGGCCAGACACTTAATGGCCAGACTAATGGCCAGACTTAATGGCCAGACACTTAATGGCCAGACACTTAATGGCCAGACACTTAATGGCCAGACACTTAATGGCCAGACACTTAATGGCCAGACACTTAATGGCCAGACACTTAATGGCCAGACACTTAATGGCCAGACACTTAATGGCCAGACACTTAATGGCCAGACACTTAATGGCCAGACACTTAATGGCCAGACACTTAATGGCCAGACACTTAATGGCCAGACACTTAATGGCCAGACACTTAATGGCCAGACACTTAATGGCCAGACACTTAATGGCCAGACACTTAATGGCAATAATAATAATTAAT	ज्ञान्यकालाः •	(A)Simfa's (רובוהופים	CATALOGUE AND CA
185 CCCTGTTCAGAGA GGCACCATATTACCAGGAT 185 CCACCTGCTCCAGAGA GGCACCATATTACCAGGAT 185 CCACCTGCTCCAGAGA GGCACCATTACCAGGAT 185 CCCTGTTCACTCTGGGCA CTGCTTGGAGGAGGTGGAAG 185 CCTGTTCACTCTGGGCA CTGCTTGGAGGAGTGGAAG 186 CCAATGC 186 CCAATGC 186 CAATGCTCAGTTTCACCAGAGCTGGAAGCCTTTCT 187 CTCTATGTTCCCGCATGC GCAAGGTGGAAATCCATGCA 188 GGAACTGGAGCCAGGTA GAGCCAGAGCTTTCT 188 GGAACTGGAGCCAGGTA GAGCCAGAGCATCATCT 189 CACAGATCATCATC 180 CTCTGAATTCTTCACC 180 CTCTGAATCTTCTACAC 180 CTTACACACTT 180 CTTACACTT 180 CTTACACACTT 180 CTTACACACTT 180 CTTACACTT 180 CTTACACTT 180 CTTACACTT 180 CTTACACTT 180 CTTACACTT 180 CTTACACTT	TMD1779	GGTCAATGAGACTGTGG	CTATCACTCCCAGTGTGGAA	CTCTTTCAGATTTAAATGGGCCAGACTTAGTTTTATGTGGTGCAGACATT (SEQ
CCACCTGCTCCAGACA GGCACCATAATTACCAGGAT (SEQ ID NO 8) (SEQ ID NO 9) (SEQ ID NO 14) (SEQ ID NO 15) (SEQ ID NO 14) (SEQ ID NO 22) (SEQ ID NO 22) (SEQ ID NO 27) (SEQ ID NO 28) (SEQ ID NO 27) (SEQ ID NO 28) (SEQ ID NO 27) (SEQ ID NO 28) (SEQ ID NO 36) (SEQ ID NO 36) (SEQ ID NO 36) (SEQ ID NO 36) (SEQ ID NO 42) (SEQ ID NO 43) (SEQ ID NO 43) (SEQ ID NO 44) (SEQ ID NO 49) (SEQ ID NO 49) (SEQ ID NO 57) (SEQ ID NO 49) (SEQ ID NO 48) (SEQ ID NO 48) (SEQ ID NO 57) (SEQ ID NO 57) (SEQ ID NO 48) (SEQ ID NO 48) (SEQ ID NO 57) (SEQ ID NO 58) (SEQ ID NO 58)	1-2)	(SEQ ID NO 3)	(SEQ ID NO 4)	(° ON O
SEQ ID NO 8 SEQ ID NO 9	TMD0024	CCACCTGCTCTCAGACA		GAGTGCCAAATATAAAAGAGGTATGTTCAATGCAACATGTTAAATGCAA
CCCGTTCACTCTGGGCA CTGGTTGGAGGAGTGGAAG BNO CCAATGC GGCAG GCCAG GCCAGGTGGAATCCATGCA ATCTCAG ATCTCAG ATCTCAG ATCTCAG ATCTCAG ATCTCAG SEQ ID NO 23) SEQ ID NO 23) SEQ ID NO 28) CCAGAGCTGCAGCAGGAGCATCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGC	(SEC 10 NO 6-7)	(SEQ ID NO 8)	(SEQ ID NO 9)	(SECLIDINO 10) ACTICCTRATAAAAAAGGGCAGATTTATTAAAGAACCCTGATTTAATCA (SECLIDINO 11)
SEQ ID NO 14) SEQ ID NO 15) SEQ ID NO 15) SEQ ID NO 14) SEQ ID NO 15) SEQ ID NO 15) SEQ ID NO 22) SEQ ID NO 23) ATOTCAG SEQ ID NO 23) ATOTCAG SEQ ID NO 23) SEQ ID NO 23) SEQ ID NO 23) SEQ ID NO 23) SEQ ID NO 24) SEQ ID NO 26) SEQ ID NO 27) SEQ ID NO 26) SEQ ID NO 26) SEQ ID NO 26) SEQ ID NO 27) SEQ ID NO 26) SEQ ID NO 26) SEQ ID NO 27) SEQ ID NO 26) SEQ ID NO 26) SEQ ID NO 27) SEQ ID NO 26) SEQ ID N	TMD0025	АСТСТВВВСА	CTGGTTGGAGGAGTGGAAG	TAATACTATGTAAAAATCCACTGGACTAGAATCAGCTGTCCTCATGTGCC
CTCTATGITCCCGCATGC GCAAGGTGGAAATCCATGCA BA GCACAG GCACAGGTGGT GCACAGGTGGT GCACAGGTGGT GCACAGGCCAGACCTTCT GCACAGGCCAGACCTTCT GCACAGGCCAGGTA GCACAGGCCAGGTA GCACAGGCCAGGTA GCACAGGCCAGGTA GCACAGGCCAGGTA GCACAGGCCAGGTA GCACAGGCCAGGTA GCACACTGGCCCAGGTA GCACACTGGCCCAGGTA GCACACTGGCCCAGGTA GCACACTGGCCCAGGTA GCACACTGCCACTGGCCAG GCACACTGGCACCACTGCC GCACACTGCCACCAGGTA GCACACTGCCACTGCC GCACACTGCCACTGCCAGGTA GCACACTGCCACTGCCAGGCAGCAGCAGCAGGCAGGCAGG	12-13)	(SEQ ID NO 14)	(SEQ ID NO 15)	(SECTION 19) SECTION 19) SECTION 19) SECTION 19) SECTION 19)
CTGTATGTTCCCGCATGC GCAAGGTGGAAATCCATGCA D NO GCACAG (SEQ ID NO 22) (SEQ ID NO 23) (SEQ ID NO 23) SEQ ID NO 28) SEQ ID NO 28) SEQ ID NO 28) SEQ ID NO 28) TCACCACCACTGGAGCCAGGGAGCATCACCCAGAGCCTTTCT (SEQ ID NO 35) TCACCACCACTGGAGCCAGGGAGCAGCAGGAGGATCAGCAGGAGGATCATCATC (SEQ ID NO 35) TCACCACCACTGGGACC SEQ ID NO 42) SEQ ID NO 43) CTGTGAAATCTTCTACAC SEQ ID NO 43) SEQ ID NO 50) (SEQ ID NO 55) (SEQ ID NO 58)				SECTIONO 18) CITCAGAAGTATATAAATGAAGACTGGATACCAGCAAGACATACTGGATG
CTCTATGITCCGCATGC GCAAGGTGGAAATCCATGCA BA GCACAG (SEQ ID NO 22) (SEQ ID NO 22) (SEQ ID NO 28) (SEQ ID NO 27) (SEQ ID NO 28) (SEQ ID NO 28) (SEQ ID NO 28) (SEQ ID NO 28) (SEQ ID NO 38) (SEQ ID NO 42) (SEQ ID NO 43) (SEQ ID NO 43) (SEQ ID NO 44) (SEQ ID NO 45) (SEQ ID NO 45) (SEQ ID NO 45) (SEQ ID NO 48) (SEQ ID NO 50)				(SEQ ID NO 17) CCCTTGGAGATATAAAAAGTTCCCAGTAAATAGATGTGTGCCTCACATCTT (SEQ ID NO 18)
HEAD TGTCAATATCCTGGTGTT CATCTACCCAGAACCTTTCT (SEQ ID NO 28) REGIDNO 27) REGIDNO 27) REGIDNO 28)	TMD0304 (SEQ ID NO 20-21)	CTCTATGTTCCCGCATGC GCACAG (SEQ ID NO 22)	GCAAGGTGGAAATCCATGCA ATCTCAG (SEQ ID NO 23)	AGACAGACGTTAAAAAATGACCAAACCTACAGAAAATATTTCCAGATAAT (SEQ ID NO 24)
(SEQ ID NO 28) (SEQ ID NO 28) (SEQ ID NO 28) (SEQ ID NO 38) (SEQ ID NO 38) (SEQ ID NO 38) (SEQ ID NO 38) (SEQ ID NO 42) (SEQ ID NO 43) (SEQ ID NO 43) (SEQ ID NO 43) (SEQ ID NO 49) (SEQ ID NO 50)	TMD0884	GGTGTT		GTCACTGGTGTATAAGCACGCAGTGCAAAGGAAATATTAAAAACTAGAACC
88 GGAACTGGAGCCAGGTA GGAGCAGAGGATCAGCAGG D NO GCAGATTCATC AAGGTG (SEQ ID NO 35) SEQ ID NO 36) TCACCACCACCACTGGGACC D NO CTACAACCT CAT (SEQ ID NO 42) SEQ ID NO 43) CTCTGAAATCTTCTACAC ATGAGATGGGAAGCACAGGT D NO AACTGTTATTCTGCCCA GGAGAAG (SEQ ID NO 49) SEQ ID NO 57) (SEQ ID NO 58) (SEQ ID NO 58) SEQ ID NO 58)	(35-26) 25-26)		(SEQ ID NO 28)	SECTION 29) TITCHTCATTIATAACATGAGGGGCTTGGCTAGATATTTAACAGCCTGC (SEC) TO 30)
88 GGAACTGGAGCCAGGTA GGAGCACAGGATCAGCAGG D NO GCAGAATTCATC AAGGTG (SEQ ID NO 35) (SEQ ID NO 35) (SEQ ID NO 42) (SEQ ID NO 42) (SEQ ID NO 43) (SEQ ID NO 49) (SEQ ID NO 49) (SEQ ID NO 57) (SEQ ID NO 58)				DE NO. 30)
88 GGAACTGGAGCCAGGTA GGAGCAGAGGATCAGCAGG DNO GCAGAATTCATC (SEQ ID NO 35) TCACCACCACTGGGACC GGCCACACCAATCACTGTGC DNO CTACAACCT (SEQ ID NO 42) SEQ ID NO 42) CTCTGAAATCTTCTACAC ATGAGATGGGAAGCACAGGT BO CTCTGAAATCTTCTACAC ATGAGATGGGAAGCACAGGT SEQ ID NO 49) SEQ ID NO 49) SEQ ID NO 57) ATGACAGTTTATGATTCC TCAGGATGGTGAACAATG (SEQ ID NO 58) (SEQ ID NO 57) (SEQ ID NO 58)				SECTIONO 31) ATTITICACITATOTATATGAGAGACTGGGTACATCACTTTTTACTTGTTTT (SECTION 32)
(SEQ ID NO 35) (SEQ ID NO 35) (SEQ ID NO 35) (SEQ ID NO 35) (SEQ ID NO 42) (SEQ ID NO 42) (SEQ ID NO 43) (SEQ ID NO 49) (SEQ ID NO 49) (SEQ ID NO 49) (SEQ ID NO 57) (SEQ ID NO 58)	TMD0888	GGAACTGGAGCCAGGTA		ACACTGCAGTTATATAGGGTGGCCCAGGTAGTTGAGCTGGTGAAATTTGA
TCACCACCACTGGGACC GGCCACACCAATCACTGTGC DNO CTACAACCT (SEQ ID NO 42) (SEQ ID NO 42) (SEQ ID NO 43) (SEQ ID NO 49) (SEQ ID NO 49) (SEQ ID NO 49) (SEQ ID NO 50) (SEQ ID NO 57) (SEQ ID NO 58)	33-34)	(SEQ ID NO 35)	10 36)	SECTIONO 3/) GCACTGGATTAAAAGGATGGGGCATGGAGGAGAAACTAAAGTTGGAG SECTIONO 38
190 TCACCACCACTGGGACC GGCCACACCAATCACTGTGC D NO CTACAACCT (SEQ ID NO 42) (SEQ ID NO 43) CTCTGAAATCTTCTACAC ATGAGATGGGAAGGTCACGGT D NO AACTGTTATTCTGCCCA GGAGAAG (SEQ ID NO 49) (SEQ ID NO 50) 181 ATGACAGTTTATGATTCC TCAGGATGGTGAACAATG D NO TATGTTGCCATCGC AAGCCATAG (SEQ ID NO 57) (SEQ ID NO 58)	_			ATTCAATTATATATATATTGGTCCAGTACGGTATCAATATTATCAGTA (SEQ (SEQ) (SEQ
(SEQ ID NO 42) (SEQ ID NO 43) 80 CTCTGAAATCTTCTACAC ATGAGATGGGAAGCACAGGT D NO AACTGTTATTCTGCCCA GGAGAAG (SEQ ID NO 49) (SEQ ID NO 50) 81 ATGACAGTTTATGATTCC TCAGGATGGTGAACAATG D NO TATGTTGCCATCTGC AAGCCATAG (SEQ ID NO 57) (SEQ ID NO 58)	TMD0890	CTGGGACC	GGCCACACCAATCACTGTGC	CAATCTGTTATTTATACGGCCTCTACATCCATCCAGTACCTGCTTATGTA (SEG
80 CTCTGAAATCTTCTACAC ATGAGATGGGAAGCACAGGT D NO AACTGTTATTCTGCCCA GGAGAAG (SEQ ID NO 49) (SEQ ID NO 49) (SEQ ID NO 49) ATGACAGTTTATGATTCC TCAGGATGGTGAACAATG (SEQ ID NO 57) (SEQ ID NO 57) (SEQ ID NO 58)	4041) 5041)	(SEQ ID NO 42)		D NO 47) NO 451 D NO 451
80 CTCTGAAATCTTCTACAC ATGAGATGGGAAGCACAGGT D NO AACTGTTATTCTGCCCA GGAGAAG (SEQ ID NO 49) (SEQ ID NO 50) 81 ATGACAGTTTATGATTCC TCAGGATGGTGAACAATG D NO TATGTTGCCATCTGC AAGCCATAG (SEQ ID NO 57) (SEQ ID NO 58)	<u> </u>			GANCATGAAATATAAGTAGGGGAGTATCTTGGGGTAGAAAGGATGCCGAG SEQID NO 46)
(SEQ ID NO 49) (SEQ ID NO 50) (SEQ ID NO 49) (SEQ ID NO 50) ATGACAGITTATGATTCC TCAGGATGGTGTGAACAATG (SEQ ID NO 57) (SEQ ID NO 58)	TMD1780	O	ATGAGATGGGAAGCACAGGT	ATCAATATTGTTAAAATGGCCGTACTGTCAAAAGCAATTTACAGATTCAA
81 ATGACAGITTATGATTCC TCAGGATGGTGTGAACAATG D NO TATGITGCCATCTGC AAGCCATAG (SEQ ID NO 57) (SEQ ID NO 58)	(35'4' ID INO 47.48)		(SEQ ID NO 50)	SEG ID NO 31) ATATGACAAAAAAGCCCTCAAATAGCCCCAAGTAACCCTAAAGAAAAA SEG ID NO 53)
81 ATGACAGTTTATGATTCC TCAGGATGGTGTGAACAATG D NO TATGTTGCCATCTGC AAGCCATAG (SEQ ID NO 57) (SEQ ID NO 58)				COCCCTATTCATAAATGGTGTGGGAATAGCTGGCTAGCCATCTGCAGAA
81 ATGACAGTITATGATICC TCAGGATGGTGTGAACAATG D NO TATGITGCCATCTGC AAGCCATAG (SEQ ID NO 57) (SEQ ID NO 58)				CATAGGGTTTTAAAATTGGGAGAGAGAATCAGAAAGTCAGAAAGAGAGAG
(SEQ ID NO 57) (SEQ ID NO 58)	TMD1781			TTCCCTATTTAATAAATGGTGCTGGGAAAACTGGCTAGCCATATGTAGAA
(SEQ ID NO 61) CCCAGAGGATTATAAAAGTCAGGAAACAACAGGTGCTGGAGGGATGTG (SEQ ID NO 61) CCCAGAGGATTATAAATCATGCTGTAAAGACACATGCCCACGTATGT (SEQ ID NO 62)	55-56)		(SEQ ID NO 58)	ACCATOR OF THE STATE OF THE STA
(SEQ ID NO 61) CCCAGAGGATTATAAATCATGCTGTAAAGACACATGCCCACGTATGT (SEQ ID NO 62)				ATGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG
				SECTIONO 61) CCCAGAGGATTATAAATCATGCTGCTGTAAAGACACATGCCCACGTATGT SEQ ID NO 62)

SEQ	GENE	GENBANK	GENBANK PREDOMINANT PROMOTER	PROMOTER	PRIMER
<u>e</u>	NUMBER	ID NUMBER IDENTIFIER	SITES OF	(SEQ ID NO)	(FOR, REV
ON			EXPRESSION		(SEQ ID NO
63,64	TMD0785	63,64 TMD0785 XM 060310 kidney		89-59	69,70

	XM_062147 XM_061676	XM_061676
outside	1-27	1-28
TM (1)	28-50	29-51
inside	51-61	52-62
TM (2)	62-84	63-85
outside	86-58	66-98
TM (3)	99-121	100-122
inside	122-140	123-133
TM (4)	TM (4) 141-163	134-156
outside	164-203	157-201
TM (5)	204-226	202-224
inside	227-237	225-236
TM (6)	238-260	237-259
outside	261-274	260-273
TM (7)	275-293	274-296
inside	294-313	297-314

] Preவிறாழ்சளி அந்த <i>்</i> ரி	
විටාන[ම](ල්පොමැරුල්	NAGON A	Obno 10 (reno coda) Agen Cenetivame (Description Albert Al	രം (expression	Other expression sites
TMD0049	XM 057351	Homo sapiens similar to organic anion transpoter 4 like protein (LOC116085) mRNA	kidney	none
TMD0190	XM 087157	Homo sapiens similar to sodium-coupled ascorbic acid transporter 2(LOC151295), mRNA.	kidney	colon and liver
TMD0242	XM 088369	Homo sapiens similar to unnamed protein product (LOC157724) mRNA	kidney	none
TMD0335	089960 MX		kidney	adrenal gland, heart, intestine(small), liver, muscle, testis
TMD0371 (new)	XM_089732	Homo sapiens similar to CG8271 gene product (LOC196023), mRNA.	kidney	pancreas and testis
TMD0374 (new)	XM_085595	Homo sapiens similar to unnamed protein product (LOC146802) mRNA	kidney	brain, muscle, ovary, skin, testis
TMD0469	XM_038736	Homo sapiens solute carrier family 4 sodium bicarbonate cotransporter member 9 (SLC4A9) mRNA	kidney	none
TMD0719	XM 059548	Homo sapiens hypothetical gene supported by XM_059548 (LOC131920) mRNA	kidney	none
MD0731	XM 059703	Homo sapiens similar to putative (H. sapiens) (LOC134288) mRNA	kidney	adrenal gland, muscle, thyroid
TMD0785	XM 060310	Homo sapiens similar to olfactory receptor MOR275-2 (LOC127069), mRNA	kidney	none
TMD0841	XM_060623	Homo sapiens similar to KIAA0711 gene product (H. sapiens) (LOC127707) mRNA	kidney	gun
TMD1114	NM 019841	Homo sapiens transient receptor potential cation channel subfamily V member 5 (TRPV5) mRNA	kidney	none
TMD1148	XM 087108	Homo sapiens similar to calcium channel voltage-dependent gamma subunit 6 (LOC151151) mRNA	kidney	none

ABLE 9

্যান্ত্রীয়া প্রতিক্রিয়ার প্রাক্তির প্রতিক্রিয়ার প্রাক্তির প্রতিক্রিয়ার প্রতিক্রিয়া প্রতিক্রেয়া প্রতিক্রিয়া প্রতিক্রিয়া প্রতিক্রিয়া প্রতিক্রিয়া প্রতিক্র	Sugar (and other) transporter: 2 - 302	Transmembrane domain: 12 - 34	Transmembrane domain: 39 - 58	Transmembrane domain: 131 - 153	Transmembrane domain: 157 - 179	Transmembrane domain: 186 - 205	Transmembrane domain: 215 - 237	Permease family: 91 - 224		AA-permease: 27 - 356	Transmembrane domain: 13 - 35	Transmembrane domain: 50 - 72	Transmembrane domain: 93 - 115	Transmembrane domain: 137 - 154	Transmembrane domain: 161 - 183	Transmembrane domain: 207 - 229	Transmembrane domain: 242 - 264	Transmembrane domain: 286 - 308	Transmembrane domain: 335 - 357	Transmembrane domain: 362 - 379	Transmembrane domain: 392 - 414	Transmembrane domain: 420 - 442
	Sugar (an	Transmer	Transmer	Transmer	Transmer	Transmer	Transmer	Permease		AA-perme	Transmer	Transmer	Transmer	Transmer	Transmer	Transmer	Transmer	Transmer	Transmer	Transmer	Transmer	Transmer
ි ි ි	332							243		470												
	7							4		9												
ලිනෙව ලින්ව	TMD0049							TMD0190		TMD0242												

			-103-
TMD0335	8	178	Sodium solute symporter family: 41 - 172
TMD0371	5	516	Transmembrane domain: 45 - 67
			Transmembrane domain: 87 - 109
			Transmembrane domain: 116 - 138
			Transmembrane domain: 143 - 165
			Transmembrane domain: 174 - 196
			Transmembrane domain: 201 - 223
			Transmembrane domain: 283 - 305
			Transmembrane domain: 320 - 339
			Transmembrane domain: 351 - 370
			Transmembrane domain: 375 - 397
			Transmembrane domain: 404 - 426
			Transmembrane domain: 441 - 463
TMD0374	12	566	Transmembrane domain: 31 - 53
			Transmembrane domain: 68 - 90
	, ,		Transmembrane domain: 116 - 138
			Transmembrane domain: 153 - 171
			Transmembrane domain: 184 - 206
	.1		Transmembrane domain: 211 - 233
			Transmembrane domain: 254 - 273
			Transmembrane domain: 288 - 310
			Transmembrane domain: 331 - 353
			Transmembrane domain: 373 - 395
			Transmembrane domain: 404 - 426
			Transmembrane domain: 431 - 453
			Transmembrane domain: 542 - 564

TMD0469	14	983	HCO3- transporter family: 108 - 891
			Transmembrane domain: 413 - 435
			Transmembrane domain: 447 - 469
			Transmembrane domain: 498 - 520
			Transmembrane domain: 532 - 554
			Transmembrane domain: 623 - 645
			Transmembrane domain: 665 - 684
			Transmembrane domain: 712 - 731
			Transmembrane domain: 751 - 773
			Transmembrane domain: 813 - 832
			Transmembrane domain: 839 - 858
			Transmembrane domain: 897 - 919
TMD0719	16	146	Transmembrane domain: 7 - 29
			Transmembrane domain: 49 - 71
TMD0731	18	218	Transmembrane domain: 38 - 60
			Transmembrane domain: 70 - 92
TMD0785	20	312	7 transmembrane receptor (rhodopsin family): 58 - 290
			Transmembrane domain: 29 - 51
			Transmembrane domain: 61 - 83
			Transmembrane domain: 140 - 162
			Transmembrane domain: 197 - 219
			Transmembrane domain: 240 - 262
			Transmembrane domain: 272 - 294
TMD0841	22	1161	Kelch motif: 850 - 895
			Kelch motif: 897 - 938

	1	ı
u	٢)
d		5
-		
	1	ï

		6	5	8	3	2	1	9			
	-	Transmembrane domain: 327 - 349	Transmembrane domain: 383 - 405	Transmembrane domain: 420 - 438	Fransmembrane domain: 451 - 473	Fransmembrane domain: 493 - 512	Transmembrane domain: 519 - 541	Transmembrane domain: 554 - 576	Transmembrane domain: 7 - 24	Fransmembrane domain: 39 - 61	Transmembrane domain: 68 - 90
,		Transmem	Transmem	Transmem	Transmem						
		729							103		
		24							26		
		TMD1114							TMD1148		

ලිල්කමා[ම(ලෙකමලෙන්ම) සල්ලා	AGGN	Oylogenetic locus	Ovogeneticlocus idisease, linkaga Sover - 1882 Sover - 18
TMD0049	XM_057351	11912.1	osteoporosis-pseudoglioma syndrome; spastic paraplegia 1.7
TMD0190	XM_087157	2q36.2	none
TMD0242	XM_088369	8q21.2	Puou
TMD0335	09660 MX	11p14.2	none
TMD0371A	XM_089732	10q23.33	epilepsy, partial, with auditory features; spastic paraplegia 9, autosomal dominant
TMD0374	XM 085595	17p11.2	smith-magenis syndrome
TMD0469	XM_038736	5q31	paget disease of bone 4
TMD0719	XM_059548	3q29	9000
TMD0731	XM_059703	5q13.2	spastic paraplegia 11, autosomal recessive; corpus callosum, agenesis of, with neuronopathy
TMD0785	XM_060310	1944-tel	familial cold urticaria (FCU); Muckle-Wells syndrome (MWS); prostate cancer susceptibility
TMD0841	XM_060623	1p36.13	breast cancer, ductal, 2; prostate cancer/brain cancer susceptibility; melanoma, cutaneous
TMD1114	NM 019841	7935	glaucoma 1, open angle, f
TMD1148	XM 087108	2q14.1	motor neuronopathy, distal hereditary, with vocal cord paralysis; cardiomyopathy, dilated, 1h

ABLE 10

(60013 (1536) (10) (10)	Stendinguel	に PAGOの形式 (SPO IDA IXO)
TMD0049	GCGCTTCCGGACCTGTATCTCCAC (104)	AAAGAGCCTCTAAAGAAGGGTTCCAGACTACCAGGAGCTCACTGGAAATA (106)
(18, 79)	CAAGCTCTGGGTCTCGGGCAGAAG (105)	
TMD0190	ACCATCCTGCAAACTTGGATGGGC (107)	GCTTTATGTATATGAAAACCCTGTTTATCTGAGCCTAGAACTGTCTTTGC (109)
(80,81)	AAGGAGCCGGAAGACAGGGAGGG (108)	agtgatagttttaaatgggagggaataaagtctgcaaaatttccccatat (110)
TMD0242	GAGTCTCCCTGTGCGTTTGGGCTG (111)	agtcccagcttaaaaagagacagacagacagagagagaga
(82,83)	AAGTGTAAAGCATGCCCGCCTGA (112)	TTAGTGATTTAAAAAATGTGAAGAAGAGAGAGCCAGTAAAAGGA (114)
TMD0335	GTTCGCTATGCTGCCACGGTCATC (115)	GATACAAATAATTAAAAGCCCAGGTTAAGGTAAATATTAAAGACCAAG (117)
(84,85)	AGTCCTGGCAGTCCTGGCATTGTG (116)	ATCTCACGAATTAAAATGCTGAGGTGGTAAATTGTTATCAATTCTATGT (118)
TMD0371	CAGGATTACGCACAAACGGCATGG (119)	CTAGACTATTTAAAAAACCCCTGGCTTGCACAGTGGCTCAAGCCTGTAA (121)
(86,87)	TGGGAGGCAGAGATAGCAGAGCCC (120)	
TMD0374	CTGGTCCTGGGCACCCTGATAAGC (122)	AGCTGTCCTCATTAAAAGTGACCTGGAGTGAATGGATTCTTCTGCCTAT (124)
(88,89)	cccassrcrstrscastscrcrc (123)	CCAATTCTTCTGAAAAACGGGAGTCACTGTGGGCACCATCACGCCCGGGT (125)
TMD0469	CTGAGGTGTCCCTCCCAAGCAGGT (126)	TAAACAAATACATAAATGAGGCAGTTACTAGTAGTGGTAACTGCTAGGAA (128)
(90,91)	TACGGCCGAGAGCACTGGAGATG (127)	ACTAAAAATATAAAAATCAGCCAGGCGTGGTGGCACATGTCTGTAATCTC (129)
		GGGATGCATTATAAATGCAACCAGCCCAGAGGCCCCTGGCTTCAGAACCT (130)
TMD0719	GTCACCTCAGCGATCTCAACGATAGGG (131)	ATATACCTIGITTAAAAGAGGGGTATTATCACAATAAAACAAGGAAAGCT (133)
(92,93)	TGGAGCAGGAACAGGATATAGGTCAGGG (132)	ACCCCTACTTTTAAAGGCCTTGACAAACAGTGCTAAAGTTCTCACCTTAA (134)
TMD0731	GGGTGGGAAGGAAGCAGGGAAGAG (135)	TIATIGGGCATAAAAATAIGAAGAGGICCCCAGAGAGICCCTAGGIICT (137)
(94,95)	CCAGCTAGTTCATGCTTGGCGCAG (136)	
TMD0785 (96,97)	CTGTTGGGAATCTTCAGCCAGATCTCACAC (138) ATGGAGGTTTCTGCACGCTCAGCA (139)	AAGCAATTTGTTAAAAACTGGCATTACTTTACTCTTATGCTTTCTGTGTC (140) ACTTTAATTTTATAAAGAAGGTTCACATCAAGAAATTCCAAGTGAGGTTC (141)
TMD0841	GGGCCACTTCCACAGACAGGAAGC (142)	AAGGCTTCTTCAAAAAAGGGGGCTTGTTCTGGGCCAGAAAATCAGAGTG (144)
(66'86)	(143)	
TMD1114	CTCCTTTCTGGTCAGAGACAAGACTGGGAC (145)	CAGGGAGGCAGAAAATGTCCCACAAGTTGAGCCCTCCCCACTCCCAGTG (147)
(100, 101)	GTGATGTCTCGAGAATGAGTGCGGTTG (146)	TAATATAAAATATATAAAATAGTGCAACATTACTTATTCCTCCTGGTGTT (148)
TMD1148	GCAGATGACCCGACCTGACTGTTCTTC (149)	GCCAGAGAGTTTAAATGAAGCCCTACTTTGGGGCAGGAGCGGGAGGAAAC (151)
(102, 103)	TGGCTGTGCAGCTAGCTACCAG (150)	

TABLE 11

-108

SEQ	GENE	GENBANK	PREDOMINANT	OTHER	PROMOTER	PRIMER
	NUMBER	IDENTIFIER	SITES	SITES OF	(SEQ ID NO)	(FOR, REV)
NO			OF EXPRESSION	EXPRESSION		(SEQ ID NO)
152,	TMD0986	XM_061779	pancreas	low levels in	156-161	154,155
133				testis		
162,	TMD0987	XM_061780	pancreas	low levels in	166	164,165
163				testis		
167,	TMD0353	XM_061781	pancreas			169,170
168						
171,	6860QWL	XM 061784	pancreas			173,174
172						`
175,	TMD058	XM_061785	pancreas	low levels in	179,180	177,178
176				testis		

TABLE 12

	XM_061779	XM_061779 XM_061780 XM_061781 XM_061784 XM_061785	XM_061781	XM_061784	XM_061785
outside	1-23	1-25	1-22		1-24
TM (1) 24-46	24-46	26-48	23-45		25-47
inside	47-58	49-60	46-65		48-59
TM (2)	59-78	61-83	88-99		60-82
outside 79-97	76-62	84-97	26-68		83-96
TM (3)	TM (3) 98-120	98-120	98-120		97-119
inside	121-140	121-139	121-140		120-139
TM (4)	141-163	140-162	141-163		140-162
outside	outside 164-198	163-202	164-203		163-201
TM (5)	TM (5) 199-221	203-25	204-226		202-224
inside	222-240	226-237	227-237		225-236
(9) MI	241-260	238-260	238-260		237-259
outside	outside 261-274	261-269	261-272		260-268
TM (7)	75-292	270-289	273-292		269-291
inside	293-314	290-318	293-323		292-311

FABLE 1:

GENBANK	MOUSE	061779	061780	061781	061784	061785	
IDENTIFIER	HOMOLOG						
XM_061779			42% (63%) 36% (57%)	36% (57%)	43% (64%) 40% (61%)	40% (61%)	
XM_061780	MOR239-6 (AY073489) 90% (93%)	42% (63%)		41% (60%)	44% (62%) 46% (67%)	46% (67%)	
XM_061781		36% (57%) 41% (60%)	41% (60%)		43% (63%) 40% (61%)	40% (61%)	

XM_061784	MOR223 ~>85%	43% (64%)	44% (62%)	43% (63%)		81% (87%)
XM_061785	MOR223 ~>85%	40% (61%)	46% (67%)	40% (61%)	81% (87%)	

TABLE 14
TABLE 15

ලිකෙ (ලිකෙ කණ)	ACCN F	Fredeminenti silize of expression,	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	Cylogenellocus
TMD1030 (SEQ ID NO 185- 186)	XM_166853	spleen	liver	11q12.2
TMD1029 (SEQ ID NO 187- XM_166854 188)		spleen, lymphocytes, liver	brain, heart, lung, lymph node 11q12.2	11q12.2
TMD1028 (SEQ ID NO 189- XM_166855 190)		spleen, lymphocytes	liver	11912.2
TMD0621 (SEQ ID NO 191- XM_166205 192)	- 1	spleen	brain, heart, liver, lung and pancreas	11q12.2

TABLE 16

	Protein length (res)	්ර්මාණවෝක වෙමේක්වැල්මක. ැඹ්ය නැදු
IMD1030 XM_166853 2	298	Transmembrane domain; 27 - 49 Transmembrane domain; 98 - 120
		Transmembrane domain: 140 - 162
		Transmembrane domain: 175 - 197
		Transmembrane domain: 207 - 226

	_
•	-
_	
•	
-	
	ł

			Transmembrane domain: 238 - 260 Transmembrane domain: 275 - 292	
AD 1029	XM_16684	308	Transmembrane domain: 26 - 48 Transmembrane domain: 61 - 78 Transmembrane domain: 98 - 120 Transmembrane domain: 140 - 162 Transmembrane domain: 138 - 218 Transmembrane domain: 238 - 260 Transmembrane domain: 275 - 292	
D1028	AD1028 XM_166855	173	Transmembrane domain: 18 - 40 Transmembrane domain: 61 - 83 Transmembrane domain: 103 - 125 Transmembrane domain: 137 - 156	
AD0621	XM_166205	109	Transmembrane domain: 9-31 Transmembrane domain: 69 - 91	

LABLE 17

<u> </u>				
	GAGTTGGA		ATCCCAC	TGTAAGAGAG
अक्टिला जिल्हा	GAGCCTATAATATGAGCCAGCTACGAGTTGGA (SEQ ID NO 198)	AAACCIGITIGIACAGAGGCATITATIGAGCC (SEQ ID NO 200)	CTCCAACCCAGTGAACATCAAGTTAAATCCCAC (SEQ ID NO 202)	CTCATTAATACGATGGCATACATACATGTAAGAGAG (SEQ ID NO 204)
	GAGCCTATAATATAT (SEQ ID NO 198)	AAACCTGTTTGTACA (SEQ ID NO 200)	CICCAACCCAGIGAA (SEQ ID NO 202)	CTCATTAATACGATG (SEQ ID NO 204)
1881 (4·	ATTCA	GATTIGGIGC	ATACAATTATTGG	NGTCATGGGTTTCC
ां क्षिक्र	IMD1030 XM_166853 GGGATTTGGTGTCCAACACGAATTTCA (SEQ ID NO 197)	IMDI029 XM_166854 GTCACTGAATTCTATCTTCTGGATTTGGTGC (SEQ ID NO 199)	MD1028 XM_166855 GATATCATTTTGGGGCTGCATGATACAATTATTGG (SEQ ID NO 201)	IMD0621 XM_166205 TTAAGCTATTAGTTAGTTCATATGGGTTTCC CTCATTAATAGGATGGCATAGATACATGTAAG
WGGN	XM_166853 C	XM_166854 C	XM_166855_0	XM_166205 1
ලිලාවෙලි	TMD1030	FMD1029	FMD1028	FMD0621

ABLE 1

	205) 206)	207)	208) 209)
藩	0 0	8	0 0 2 0
	a a	GI CI	ឧឧ
ā.ē	(SEQ (SEQ	(SEQ	03S)
	(0.94) (0.95)	(0.98)	(0.94) (0.95)
From Carence (Madhara)	TMD1030 XM_166853 ATGTTCCATCTAAATGAAGGGTTAATATACTTGTAAAGAATAGCACCTAGA (0.94) (SEQ ID NO 206) ACATCCATTATAACAGGGTTAATAACTTGTAAAGAATAGCACCTAGA (0.95) (SEQ ID NO 206)	TMD1029 KM_166854 AAATGTATAAATTCTGCATGAAATTGGGGGTGGGGCTTGTACTTTTG (0.98) (SEQ ID NO 207)	TMDI028 KM_166855 ATGTTCCATCTAAATGAAGGGTTAATATACCCAGCACTACCCACTTGTTAG (0.94) (SEQ ID NO 208) ACATCCATTATAACAGGGTTAATAACTTGTAAAGAATAGCACCTAGA (0.95) (SEQ ID NO 209)
	atgttccatctaaatgagg acatccattatataacaggg	AAATGTATAAATTCTGCATG	ATGTTCCATCTAAATGAAGG ACATCCATTATATAACAGGG
KECIN	хм_166853	XM_166854	XM_166855
Slone ID	TMD1030	TMD1029	TMD1028

113-

TMD0621	XM 166205	INDO621 XM 166205 AAATATATATTTTAAATTGGCCAGGCGGTGGCTCACGCCTATAATCCC (U.99) (SEQ ID NO 210)) (66.0	SEC	z	بر ص	2	
•••••••••••••••••••••••••••••••••••••••	!	GGCTCACGCCTATAATCCCAGCACTTTGGGAGGCCGAGGCAGGTGGATCA (0.97) (SEQ ID NO 211)) (76.0	SEQ I	z	2	7	
• • • • • • • • • • • • • • • • • • • •	*	TCCCAAATATATATATATACACACACACACACACACACA	1.00) (SEQ I	20	0 2:	[2]	
*****************************		CACACACATATATATACACACATATATTTATAATCATTTAACAAC	0.91) (SEQ I	20	0.5	13)	

BNSDOCID: <WO_ 03089583A2 1 >

TABLE 19
(from Principles of Internal Medicine, Volume 1, Page 357, 12th Edition, McGraw-Hill Inc.)

BNSDOCID: <WO _ ____03089583A2 1 >

WO 03/089583

PCT/US03/11497

.116-

Table 2

Selisiudissiloxeurilo	brain, heart and kidney	none	skin and testis	colon, stomach and testis	adrenal gland, bone marrow, colon, heart, intestine(small), kidney, liver, pituitary, prostate, skin, stomach and thyroid	PBL, prostate, thymus and uterus	none	brain, kidney, lung, lymph node, PBL, mammary gland, pituitary, stomach, testis and thyroid	pituitary	stomach	liver, PBL and prostate	bone marrow, brain, heart, kidney, liver, lung, lymph node, PBL, muscle, pituitary, prostate, skin, spleen, stomach and thymus	brain, pituitary, prostate and stomach	prostate and stomach	prostate and stomach	adrenal gland, brain, prostate and stomach	stomach	liver, lung, mammary gland, ovary, pituitary, prostate and stomach	none	none	none
Predominantsitesoff expression	pancreas and testis	pancreas	pancreas	pancreas	pancreas and testis	pancreas and testis	pancreas and testis	pancreas	brain and pancreas	pancreas and testis	pancreas and testis	pancreas and testis	pancreas and testis	pancreas and testis	pancreas and testis	pancreas and testis	pancreas and testis	pancreas and testis	pancreas and testis	pancreas and testis	pancreas and testis
Gene Nama/Dascription	Homo sapiens olfactory receptor MOR212-1 (LOC219956), mRNA.	Homo sapiens similar to olfactory receptor (LOC135941) mRNA	Homo sapiens similar to olfactory receptor (LOC139478) mRNA	Homo sapiens similar to beta-2 adrenergic receptor (LOC139760) mRNA	Homo sapiens similar to CG5281 gene product (LOC159371) mRNA	Homo sapiens similar to odorant receptor S18 gene (LOC120010) mRNA	Homo sapiens similar to unnamed protein product (LOC130644) mRNA	Homo sapiens hypothetical protein DKFZp564A1164 (DKFZP564A1164) mRNA	Homo sapiens KIAA1910 protein (KIAA1910) mRNA	Homo sapiens similar to putative (H. sapiens) (LOC118670) mRNA	Homo sapiens similar to data source:MGD, source key:MGI:96073, evidence:ISS-hexosaminidase A-putative (LOC204249), mRNA.	Homo sapiens LOC146225 (LOC146225), mRNA.	Homo sapiens similar to RIKEN cDNA 4930549C01 gene (LOC127309) mRNA	Homo sapiens similar to putative (H. sapiens) (LOC127348) mRNA	Homo sapiens similar to dJ39G22.2 (novel protein) (H. sapiens) (LOC127391) mRNA	Homo sapiens similar to hypothetical protein (H. sapiens) (LOC133309) mRNA	Homo sapiens similar to testis-specific transporter TST1 (H. sapiens) (LOC133482) mRNA	Homo sapiens similar to putative (H. sapiens) (LOC135886) mRNA	Homo sapiens similar to putative (H. sapiens) (LOC138240) mRNA	Homo sapiens polycystic kidney disease 2-like 2 (PKD2L2) mRNA	Homo sapiens putative ion channel protein CATSPER2 (CATSPER2), mRNA.
AGGN	XM_166914	XM_069616	XM_066725	XM_066873	XM_089550	XM_061815	XM_065813	XM_048304	XM_055514	XM_058332	069850_MX	XM_085376	XM_059132	XM_059134	XM_059140	XM_059639	XM_059654	XM_059812	XM_059954	NM_014386	NM_054020
්ල්ණවැම	TMD0077	TMD0233	TMD0256	TMD0258	TMD0267	TMD0271	TMD0290	TMD0530	TMD0574	TMD0608	TMD0639	TMD0645	TMD0674	TMD0675	TMD0677	TMD0726	TMD0727	TMD0739	TMD0753	TMD1111	TMD1127

Table 21

Come (D	ACCI	Protein seq lenglin (ca))	Downin description
TMD0077	XM_166914	310	7 transmembrane receptor (rhodopsin family)
			Transmembrane domains: 27 - 49
			Transmembrane domains: 61 - 83
			Transmembrane domains: 98 - 120
			Transmembrane domains: 141 - 163
			Transmembrane domains: 202 - 224
			Transmembrane domains: 237 - 259
			Transmembrane domains: 274 - 291
TMD0233	XM_069616	310	7 transmembrane receptor (rhodopsin family)
			Transmembrane domain: 26 - 48
			Transmembrane domain: 60 - 77
			Transmembrane domain: 97 - 119
			Transmembrane domain: 140 - 162
			Transmembrane domain: 196 - 218
			Transmembrane domain: 239 - 261
			Transmembrane domain: 272 - 291
TMD0256	XM_066725	308	7 transmembrane receptor (rhodopsin family)
			Transmembrane domain: 27 - 49
			Transmembrane domain: 61 - 83
			Transmembrane domain: 98 - 120
			Transmembrane domain: 140 - 162
			Transmembrane domain: 196 - 218
			Transmembrane domain: 239 - 258
			Transmembrane domain: 273 - 291
TMD0258	XM_066873	335	7 transmembrane receptor (rhodopsin family)
			Transmembrane domain: 10 - 32
			Transmembrane domain: 39 - 61
			Transmembrane domain: 79 - 101
			Transmembrane domain: 121 - 143
			Transmembrane domain: 163 - 185
			Transmembrane domain: 226 - 248
			Transmembrane domain: 263 - 282
TMD0267	XM_089550	324	Integral membrane protein DUF6: 49-161
			Transmembrane domain: 59 - 78
			Transmembrane domain: 91 - 110
			Transmembrane domain: 115 - 137
			Transmembrane domain: 146 - 168
			Transmembrane domain: 183 - 201
			Transmembrane domain: 214 - 236
			Transmembrane domain: 246 - 265

			Transmembrane domain: 270 - 292
			Transmembrane domain: 297 - 316
TMD0271	XM_061815	291	7 transmembrane receptor (rhodopsin family)
			Transmembrane domain: 29 - 51
			Transmembrane domain: 56 - 78
			Transmembrane domain: 83 - 105
			Transmembrane domain: 120 - 142
			Transmembrane domain: 163 - 185
			Transmembrane domain: 190 - 207
			Transmembrane domain: 220 - 239
			Transmembrane domain: 249 - 271
<u> </u>			
TMD0290	XM_065813	245	Transmembrane domain: 24 - 46
			Transmembrane domain: 61 - 83
			Transmembrane domain: 96 - 118
			Transmembrane domain: 128 - 150
			Transmembrane domain: 162 - 184
			Transmembrane domain: 221 - 243
TMDOESO	VA4 040204	700	In the state of th
1 100000	XM_048304	708	Immunoglobulin domain: 139-206
			Immunoglobulin domain: 326-377 Transmembrane domain: 511 - 533
	 		Transmembrane domain. 311 - 333
TMD0574	XM_055514	696	Leucine rich repeat C-terminal domain: 212-262
			Leucine rich repeat C-terminal domain: 529-579
			Transmembrane domain: 621 - 643
TMDOCOO	V44 050000	405	7
IMDU608	XM_058332	105	Transmembrane domain: 13 - 35
TMD0639	XM 058690	127	Transmembrane domain: 12 - 34
			Transmembrane domain: 44 - 66
TMD0645	XM_085376	248	Transmembrane domain: 113 - 135
			Transmembrane domain: 150 - 169
:			Transmembrane domain: 176 - 198
TMD0674	VM 050122	124	Transmembrane demain: 5 22
1100074	XM_059132	134	Transmembrane domain: 5 - 22
TMD0675	XM 059134	206	Transmembrane domain: 15 - 37
TMD0677	XM_059140	182	Transmembrane: 49 - 71
	<u> </u>		
TMD0726	XM_059639	96	Transmembrane domain: 13 - 35
	 		Transmembrane domain: 50 - 72
TMD0727	related to XM 059654	719	Transmembrane domain: 108 - 130

		Transmembrane domain: 145 - 164
		Transmembrane domain: 171 - 193
		Transmembrane domain: 229 - 251
		Transmembrane domain: 264 - 286
		Transmembrane domain: 314 - 336
		Transmembrane domain: 421 - 443
		Transmembrane domain: 453 - 475
		Transmembrane domain: 580 - 602
		Transmembrane domain: 668 - 690
		Organic Anion Transporter Polypeptide (OATP) family, C-terminus: 125-473
		Organic Anion Transporter Polypeptide (OATP) family, N-terminus: 558-717
XM 059812	265	Transmembrane domain: 126 - 148
		Transmembrane domain: 185 - 207
XM_059954	161	Transmembrane domain: 26 - 48
		· · · · · · · · · · · · · · · · · · ·
NM_014386	609	lon transporter domain: 284-490
		Transmembrane domain: 34 - 56
		Transmembrane domain: 274 - 296
		Transmembrane domain: 315 - 337
		Transmembrane domain: 364 - 386
		Transmembrane domain: 407 - 429
		Transmembrane domain: 469 - 491
NM 054020	528	lon transporter domain: 172-340
14141_054020	320	Transmembrane domain: 113 - 132
		Transmembrane domain: 147 - 169
		Transmembrane domain: 176 - 198
 		Transmembrane domain: 241 - 263
		Transmembrane domain: 276 - 295
		Transmembrane domain: 270 - 233
	XM_059954	XM_059954 161 NM_014386 609

Table 22

(Il) end	ACCN	arcolofience) (Sylvenetic locus	अनुस्ता स्वरङ्गी
TMD0077	XM_166914	11q12.2	angioedema, hereditary; spastic paraplegia 17; osteoporosis- pseudoglioma syndrome; pancreatic tumor
TMD0233	XM_069616	7q35	glaucoma 1, open angle, f;
TMD0256	XM_066725	Xq26.1	x inactivation, familial skewed, 2; panhypopituitarism; thoracoabdominal syndrome; dandy-walker malformation with mental retardation, basal ganglia disease, and seizures; split-hand/foot malformation 2; mental retardation with optic atrophy, deafness
TMD0258	XM_066873	Xq26.1	x inactivation, familial skewed, 2; panhypopituitarism; thoracoabdominal syndrome; dandy-walker malformation with mental retardation, basal ganglia disease, and seizures; split-hand/foot malformation 2; mental retardation with optic atrophy, deafness
TMD0267	XM_089550	10q24.1	comeal dystrophy of bowman layer, type ii; alzheimer disease 6
TMD0271	XM_061815	11p15.4	charcot-marie-tooth disease, type 4b, form 2; deafness, neurosensory, autosomal recessive 18;
TMD0290	XM_065813	2p23.1	none
TMD0530	XM_048304	19q13.13	hypocalciuric hypercalcemia, familial, type iii; deafness, autosomal dominant nonsyndromic sensorineural 4;
			microcephaly, primary autosomal recessive, 2
TMD0574	XM_055514	13q31.1	microcoria, congenital; schizophrenia 7;
TMD0608	XM_058332	10q26.3	endometrial carcinoma
TMD0639	XM_058690	15q22.32	cataract, central saccular, with sutural opacities; obesity syndrome
TMD0645	XM_085376	16q23.1	dehydrated hereditary stomatocytosis; pancreatic acinar cancer
TMD0674	XM_059132	1p36.11	breast cancer, ductal, 2; prostate cancer/brain cancer susceptibility, melanoma, cutaneous malignant; inflammatory bowel disease 7;
TMD0675	XM_059134	1p33	carcinoma of pancreas
TMD0677	XM_059140	1p34.2	deafness, autosomal dominant nonsyndromic sensorineural 2; porphyria cutanea tarda; hypercholesterolemia, familial, ptosis, hereditary congenital 1 ;
TMD0726	XM_059639	10q11.22	none
TMD0727	related to XM_059654	5q21.1	anemia, dyserythropoietic congenital, type iii; dyslexia, specific, 1; colorectal cancer, hereditary nonpolyposis, type 7; cataract, central saccular, with sutural opacities
TMD0739	XM_059812	7q11.23	autism, susceptibility to, 1; muscular dystrophy, limb-girdle, type 1d; aneurysm, intracrania I
TMD0753	XM_059954	9q21.12	hemophagocytic lymphohistiocytosis, familial, 1; amyotrophic lateral sclerosis with frontotemporal dementia
TMD1111	NM_014386	5q31	none
TMD1127	NM_054020	15q13-q15	nanophthalmos 2; spastic paraplegia 11, autosomal recessive; corpus callosum, agenesis of, with neuronopathy; pancreatic acinar carcinoma

122-

		CA SILVAI	
CODE	ACCN	PRIMERS	PROMOTER
TMD0077 (SEQ ID NO 214- 215)	XM_166914	TCATGGATCACCAGCTCCACGCTC (Forward) (SEQ ID NO 256) CACCAAGATCACCACGCAGGAGGA (Reverse) (SEQ ID NO 257)	GGATTCAGGCCTTTTAAACCCCACTCAGTGGGTGCATGGCAGGGCTTTGA (0.88) (SEQ ID NO 258)
TMD0233 (SEQ ID NO 216- 217)	XM_069616	TGCTGACGAATCTTATGAACCAGG (Forward) (SEQ ID NO259) TCACGTCAGCCTCTCCTTCCTCAGTG (Reverse) (SEQ ID NO 260)	TCACAAATCATATAAATTAGGGGAAAGAGAGAGGGCAGGTATACTCTAAAA (0.96) (SEQ ID NO 261) AATTTCTTATTTAAAAGACCTCAGAAATGTCACCATGCTTAGTTATTTA (0.95) (SEQ ID NO 262)
TMD0256 (SEQ ID NO 218- 219)	XM_066725	GGCCATGGACAATGTCACAGCAG (Forward) (SEQ ID NO 263) AGCAGACACATACTGGCCCATTCATAACCAC (Reverse) (SEQ ID NO 264)	GGTACTATTCTATATTTTGGGCACACAGCAATGAAGAAACAGAAAAACC (0.93) (SEQ ID NO 265) CTGGGTTTCATAAATATGGAGCAGAAAGTTTTTACAAATATAGAACAGCA (0.92) (SEQ ID NO 266) TAGAATGTGTTATAAAAAATGAAGCAGGCTAGGGGAAAGAGATGCTGTA (0.91) (SEQ ID NO 267)
TMD0258 (SEQ ID NO 220- 221)	XM_066873	CCTCATTGGCTTCCTCCCACTCG (Forward) (SEQ ID NO 268) GCCATCAAACTCTGAGCTGGAGATAGTGAC (Reverse) (SEQ ID NO 269)	CCAAGGAACTITTAAAACTCCCATTGCACAGTTACCACCCAGAATAATTA (0.97) (SEQ ID NO 270 CATCCTGGAATATTTGCGTCCAACTCTGCACCTTGCTCTATTCCCT (0.96) (SEQ ID NO 271 CTGGGGCCCCTCAAAAAGCTCACCTTCCCACTTCCCACTTCAACTGAT (0.91) (SEQ ID NO 272)
TMD0267 (SEQ ID NO 222- 223)	XM_089550	TGGCCTCGTTGAAAGTGTCATCATCC (Forward) (SEQ ID NO 213 TTGGTACCATTTACGAATGGCCGC (Reverse) (SEQ ID NO 274)	AAACGGCATTITAAAAATGCAGGTTTAAATTGTTATCCTCATCTATGGTT (0.98) (SEQ ID NO 275)
TMD0271 (SEQ ID NO 224- 225)	XM_061815	CTGGACTTGAGCAGTACCACGTCTGGATC (Forward) (SEQ ID NO 276) CATATTCCCACAGCAATTTTGACAATGG (Reverse) (SEQ ID NO 271)	ATTTIGGTTATATAGAGGAGTCTAGGAAAAGACTCGTGGGTCTGATTC (0.97) (SEQ ID NO 278) TACTCATATTTATATAGCAGCAACTTACATTGACCCAGGGAGAACTCAGT (0.94) (SEQ ID NO 279)
TMD0290 (SEQ ID NO 226- 227)	XM_065813	GTTACCCACCCAACCGTCACGACC (Forward) (SEQ ID NO 280) CAGGCGATGCCAGAGAAGACGATG (Reverse) (SEQ ID NO 281)	CTAGAATTTÄCATAAAAAGGACTGGAGGAGCTTTTGCAGCAACTTTGCAT (0.97) (SEQ ID NO 282) TTTTCTTCTTTTAAAAAACACGCTTTCACTCTCAAAACAGCAGAGAATGAA (0.98) (SEQ ID NO 283) AACTGGGGTCTATAAGAGAGCCAGGGCACTTATTCATCCAAGGGCAGATG (0.99) (SEQ ID NO 284)
TMD0530 (SEQ ID NO 228- 229)	XM_048304	CTATGACTTCAACCCACACCTGGGCA (Forward) (SEQ ID NO 285) AAGGTCGCCAACTTGTCCTGGCTC (Reverse) (SEQ ID NO 286)	GGGCGGGAGTAAAAGGCAGAGTCCAATTCCACCGGCCCCCAGTGTGGGTG (0.86) (SEQ ID NO 287)

CODE	ACCN	PRIMERS	PROMOTER
TMD0574 (SEQ ID NO 230- 231)	XM_055514	TCAATGCCATGCCCAAACTGAGGA (Forward) (SEQ ID NO 288) CAACACCGAGATGGACACCCTGCT (Reverse) (SEQ ID NO 289)	CTITITAAGGITAAAAA1G1GGGITITIAGATGATTGICCTTICTAAACAGC (0.99) (SEQ ID NO 290) TCAGGATGICTAAAAAAGATCTCTCTAGTGTACACACGTGCACACACAC
TMD0608 (SEQ ID NO 232- 233)	XM_058332	CTCAGGACGAAGATCATGATCGGCATC (Forward) (SEQ ID NO 294) GAAGATTTTTGTGCCCAGCTTTCCCAAG (Reverse) (SEQ ID NO 295)	TATICTCACTTATAAGTGGGAGCTAAGCCATGAGGGCACCAAGGCATAAG (0.99) (SEQ ID NO 296) TTACATATGTATACATGTGCCATGCTGGTGTGCTGCACCATTAACTCGT (0.96) (SEQ ID NO 297)
TMD0639 (SEQ ID NO 234- 235)	088690 XM_058690	TCCATGCTCAGCTTCATCTCAGCTACC (Forward) (SEQ ID NO 298) TCCATCTCAGACCTTGGCCCTTCA (Reverse) (SEQ ID NO 299)	AAATAACCCCATTAAAAAGTGGGCAAAGGGCATGAACACTTTTCAAAAGA (1.00) (SEQ ID NO 300)
TMD0645 (SEQ ID NO 236- 237)	XM_085376	AGGACGGTAAGGAGCCATCGGACA (Forward) (SEQ ID NO 301) CTTGCCAGGTTCTGGTGGCTTGG (Reverse) (SEQ ID NO 302)	TCTTTTGTCTATAAATAGGACTTTGATTTTCTGGACTAGAGAATTGTAT (0.94) (SEQ ID NO 303)
TMD0674 (SEQ ID NO 238- 239)	XM_059132	ACGACTCCAAGAACAGCCAGGCCG (Forward) (SEQ ID NO 304) AAGGTAACATCGGCAGAGGCCAGC (Reverse) (SEQ ID NO 305)	GCTAGCATTTTTAAAAGCTGATGTCTTCACTGGGCACGGGGACTCACAC (0.94) (SEQ ID NO 306)
TMD0675 (SEQ ID NO 240- 241)	XM_059134	CGGCCAGGTACCAAAGCTCAGCTG (Forward) (SEQ ID NO 307) GCCAGATTCAGGAGGGAATGGAAGAGAAC (Reverse) (SEQ ID NO 308)	TGATCTACTTTTTAAAAGGATCATGCTGGTGGTGGTGTTTAGGATA (0.91) (SEQ ID NO 309) TGATAGTGATAAAAAAAGTGGCCAGATTTTGGTTATTTTTGAAATAAA (0.99) (SEQ ID NO 310) TATAGTGATATTTAAAGCCAGGGGTCTGGGTGAGATAACTGATGGAATGA (0.93) (SEQ ID NO 311) ATTGGAGGACTATAAAAGGGGGTCTAAAATGGTGCTAAGAAGCTGA (0.96) (SEQ ID NO 312) AGAGGGACTATAAAATGGTGCTAAGAAGCTGAGCAGTGGT (0.97) (SEQ ID NO 313) GACATTCCACCCAAAAAATGCCACTGGATGAAGTCCCTTCCATTAA (0.92) (SEQ ID NO 313)

CODE	ACCN	PRIMERS	PROMOTER
TMD0677 (SEQ ID NO 242-	XM_059140	TTGGGAGAGACTAGTGCACCTCAGCA (Forward) (SEQ ID NO 315)	AAAAGTGCTTTTAAACAGGGGGGGGGTGGAGGGGCTTATGAGAAGGGGACCA (1.00) (SEQ ID NO 317)
243)		GAGCAATCCCTCTTCGTGGCAGGT (Reverse) (SEQ ID NO 316)	CCATTICTACTAAAAATGCAGAGATCAGCCAGGCGTGGCACGTGCCTGTA (0.95) (SEQ ID NO 318)
			AAAAAAAAAAAAAAAAAAAGCCCTGTTTATATCCTACCTCCTTGCTGGGTGC (0.98)
			AAAATAAAAAATAAAAAATCCCATCTCCTCACATTTCCATTCAACCTCAAT (0.93) (SEQ ID NO 320)
TMD0726	WX_059639	ACTICCAAACATCTACAACTCCTCAGAGTCTCATT (Forward)	TTTTTTAAACTATAAAAGTGGGGATCAGAAAACAGGTCATAAGGGAAA (0.97)
(35c) IN (324)		(SEC ID NO 321) (SEC ID NO 321) (SEC ID NO 321) (SEC ID NO 321)	(3EQ ID. NO. 322) GEATATGATATATATATCAGGATTCACTTTAATGGCATTGAGTTCCAGGA (0.98)
		(SEC ID NO 322)	(SEC ID NO 324) ARAAACATTAAAAATTAGCCCACCATGGTGGTACACACCTGTCGTTCT (0.99)
			(3EQ ID NO 326) (SEQ ID NO 326)
TMD0727 (SEQ ID NO 246- 247)	XM_059654 (related to)	CCAAGAAGCCGGGAGAAGTGGATG (Forward) (SEQ ID NO 327) TGACAGAGCTAGGCATATGAGCACTGGA (Reverse) (SEQ ID NO 328)	CTAAAGAGCTTATATATCAGCCTAAGAAAAGAAAACCAATAAGAAGTTGC (0.96) (SEQ ID NO 329)
TMD0739 (SEO ID NO 248-	XM_059812	GCAGTTGGTTCAGAACCGAGATCACC (Forward) (SEO ID NO 330)	ACTAAAAATACAAAAAGTAGCCGGGTATGGTGGTAGGCGCCTATAATCC (0.93) (SEO ID NO 332)
249)	,	GGCAGATGGGGATACATTTATTCTCTGGG (Reverse) (SEQ ID NO 331)	GGTAGGCGCCTATAATCCCAGCTACTTGGGAGGCTGAGGCAGGAGAATTG (0.92) (SEQ ID NO 333)
TMD0753 (SEO ID NO 250-	XM_059954	TCGGCTTGGAAATCAGAATGAGAAGG (Forward) (SEO ID NO 334)	AAAAGGCTTATAAAAAGGGTTTTGTTTTGTTTTGAGACGGAGTT (0.97) (SEO ID NO 336)
251)	-	TOCACAAGAATGATTGCAGCAGTGAGTAG (Reverse)	GGCCAACTTATAAAAAGGTTTATGTTTTTGTTCTGATAATTTCGTTTCT (0.91)
			AAGTTAAAGTTTTAAAAAGAACAGGCTACAAAGTTATAGCTATGGGGTGAT (0.96) (SEQ ID NO 338)
TMDIIII (SEQ ID NO 252- 253)	NM_014386	GGGCGGTGTAGTGCAGGTCCG (Forward) (SEQ ID NO 339) CCTCCAGTTGCAGGAATTCTGCC (Reverse) (SEQ ID NO 340)	AATTCAAAATTTAAAACGGACTGTCTCCTTCACAAAAGTCTAGATCT (0.92) (SEQ ID NO 341)
TMD1127 (SEQ ID NO 254- 255)	NM_054020	GGCTGTTGAGCAGCTTCATGTGC (Forward) (SEQ ID NO 342) CTCCTCTGGATGATCTGCCGCTTG (Reverse) (SEQ ID NO 343)	ATTGGGTGCATATATTTAGGATAGTTAGCTCTTCTTGTTGAATTGATC (0.89) (SEQ ID NO 344)

125-

CLAIMS:

5

- A method of detecting an immune system cell, comprising:
 contacting a sample comprising cells with a polynucleotide specific for TMD0024
 (XM_060945), TMD1779 (XM_060946), TMD0884 (XM_060947), TMD0025
 (XM_060948), TMD1780 (XM_089422), TMD1781 (XM_089421), TMD0304
 (XM_060956), TMD0888 (XM_060957), or TMD0890 (XM_060959) of claim 28, under conditions effective for said polynucleotide to hybridize specifically to said gene, and detecting specific hybridization.
- A method of claim 1, wherein said detecting is performed by:
 Northern blot analysis, polymerase chain reaction (PCR), reverse transcriptase PCR,
 RACE PCR, or in situ hybridization.
 - 3. A method of detecting an immune system cell, comprising:
- contacting a sample comprising cells with a binding partner specific for a polypeptide coded for by TMD0024 (XM_060945), TMD1779 (XM_060946), TMD0884 (XM_060947), TMD0025 (XM_060948), TMD1780 (XM_089422), TMD1781 (XM_089421), TMD0304 (XM_060956), TMD0888 (XM_060957), or TMD0890 (XM_060959) of claim 28, under conditions effective for said binding partner bind specifically to said polypeptide, and detecting specific binding.
 - 4. A method of claim 3, wherein said detecting is performed by: immunocytochemistry, immunoprecipitation, or Western blot.
- 5. A method of delivering an agent to an immune cell, comprising: contacting an immune cell with an agent coupled to binding partner specific for a polypeptide coded for by TMD0024 (XM_060945), TMD1779 (XM_060946), TMD0884

(XM_060947), TMD0025 (XM_060948), TMD1780 (XM_089422), TMD1781 (XM_089421), TMD0304 (XM_060956), TMD0888 (XM_060957), or TMD0890

- 30 (XM_060959) of claim 28, whereby said agent is delivered to said cell.
 - 6. A method of claim 5, wherein the agent is a therapeutic agent or an imaging agent.

- 7. A method of claim 5, wherein the agent is cytotoxic.
- 8. A method of claim 5, wherein the binding partner is an antibody.

10

15

- A method of modulating the maturation of an immune system cell, comprising:
 contacting said cell with an agent effective to modulate a gene, or polypeptide
 encoded thereby, selected from TMD0024 (XM_060945), TMD1779 (XM_060946),
 TMD0884 (XM_060947), TMD0025 (XM_060948), TMD1780 (XM_089422), TMD1781
 (XM_089421), TMD0304 (XM_060956), TMD0888 (XM_060957), and TMD0890
 (XM_060959) of claim 28, whereby the maturation of an immune cell is modulated.
- 10. A method of modulating interactions between lymphoid and non-lymphoid immune system cells, comprising:

contacting said cells with an agent effective to modulate a gene, or polypeptide encoded thereby, selected from TMD0024 (XM_060945), TMD1779 (XM_060946), TMD0884 (XM_060947), TMD0025 (XM_060948), TMD1780 (XM_089422), TMD1781 (XM_089421), TMD0304 (XM_060956), TMD0888 (XM_060957), and TMD0890 (XM_060959) of claim 28, whereby the interaction is modulated.

20

25

30

11. A method of expressing a heterologous polynucleotide in immune system cells, comprising:

expressing a nucleic acid construct in immune system cells, said construct comprising a promoter sequence operably linked to said heterologous polynucleotide, wherein said promoter sequence is selected from SEQ ID NOS 5, 10, 11, 16-19, 29-32, 37-39, 44-46, 51-54, and 59-62.

12. A method of treating an immune system disease, comprising:

administering to a subject in need thereof a therapeutic agent which is effective for regulating expression of a gene, or polypeptide encoded thereby, selected from TMD0024 (XM_060945), TMD1779 (XM_060946), TMD0884 (XM_060947), TMD0025

(XM_060948), TMD1780 (XM_089422), TMD1781 (XM_089421), TMD0304 (XM_060956), TMD0888 (XM_060957), and TMD0890 (XM_060959) of claim 28.

- 13. A method of claim 12, wherein said agent is an antibody or an antisense which is effective to inhibit translation of said gene.
 - 14. A method of diagnosing an immune disease associated with abnormal gene expression, or determining a subject's susceptibility to such disease, comprising:

assessing the expression of a gene, or polypeptide encoded thereby, selected from TMD0024 (XM_060945), TMD1779 (XM_060946), TMD0884 (XM_060947), TMD0025 (XM_060948), TMD1780 (XM_089422), TMD1781 (XM_089421), TMD0304 (XM_060956), TMD0888 (XM_060957), and TMD0890 (XM_060959) of claim 28 in a tissue sample comprising immune system cells.

15 15. A method of claim 14, wherein assessing is:

measuring expression levels of said gene, determining the genomic structure of said gene, determining the mRNA structure of transcripts from said gene, or measuring the expression levels of polypeptide coded for by said gene.

20 16. A method of claim 14, wherein said assessing detecting is performed by:

Northern blot analysis, polymerase chain reaction (PCR), reverse transcriptase PCR, RACE PCR, or *in situ* hybridization, and

using a polynucleotide probe having a sequence selected from TMD0024 (XM_060945), TMD1779 (XM_060946), TMD0884 (XM_060947), TMD0025 (XM_060948), TMD1780 (XM_089422), TMD1781 (XM_089421), TMD0304 (XM_060956), TMD0888 (XM_060957), and TMD0890 (XM_060959) of claim 28, or a polynucleotide probe having 95% sequence identity or more to a sequence set forth in SEQ ID NOS 1, 6, 12, 20, 25, 33, 40, 47, or 55, effective specific fragments thereof, or complements thereto.

17. A method of assessing a therapeutic or preventative intervention in a subject having an

25

10

15

20

30

immune system disease, comprising,

determining the expression levels of a gene, or polypeptide encoded thereby, selected from TMD0024 (XM_060945), TMD1779 (XM_060946), TMD0884 (XM_060947), TMD0025 (XM_060948), TMD1780 (XM_089422), TMD1781 (XM_089421), TMD0304 (XM_060956), TMD0888 (XM_060957), and TMD0890 (XM_060959) of claim 28 in a tissue sample comprising immune system cells.

- 18. A method of claim 17, further comprising assessing the expression levels of a plurality of said genes or polypeptides.
- 19. A method for identifying an agent that modulates the expression of a gene or polypeptide in the immune system gene complex, comprising,

contacting an immune system cell with a test agent under conditions effective for said

test agent to modulate the expression of a gene selected from TMD0024 (XM_060945), TMD1779 (XM_060946), TMD0884 (XM_060947), TMD0025 (XM_060948), TMD1780 (XM_089422), TMD1781 (XM_089421), TMD0304 (XM_060956), TMD0888 (XM_060957), and TMD0890 (XM_060959) of claim 28, or the biological activity of a polypeptide encoded thereby, in said immune system cell, and

determining whether said test agent modulates said gene or polypeptide.

- 20. A method of claim 19, wherein said agent is an antisense polynucleotide which is effective to inhibit translation of said gene or an antibody specific for said polypeptide.
- 21. A method of detecting polymorphisms in a gene in the immune system gene complex, comprising: comparing the structure of:

genomic DNA or RNA or cDNA or a polypeptide comprising all or part of a gene selected from TMD0024 (XM_060945), TMD1779 (XM_060946), TMD0884 (XM_060947), TMD0025 (XM_060948), TMD1780 (XM_089422), TMD1781 (XM_089421), TMD0304 (XM_060956), TMD0888 (XM_060957), and TMD0890 (XM_060959) of claim 28 with the structure of SEQ ID NOS 1, 6, 12, 20, 25, 33, 40, 47, or 55.

- 22. A method of claim 20, wherein said polymorphism is a nucleotide deletion, substitution, inversion, or transposition.
- 5 23. A method of identifying a genetic basis for an immune disease or disease-susceptibility, comprising:

determining the association of an immune disease or disease-susceptibility with a nucleotide sequence present in a genome comprising the gene complex of claim 28.

- 10 24. A method of claim 23, wherein determining is performed by producing a human-linkage map of said complex.
 - 25. A method of claim 23, wherein determining is performed by comparing the nucleotide sequences between normal subjects and subjects having an immune system disease.
 - 26. A non-human, transgenic mammal, or a cell thereof, whose genome comprises a functional disruption of a gene selected from TMD0024 (XM_060945), TMD1779 (XM_060946), TMD0884 (XM_060947), TMD0025 (XM_060948), TMD1780 (XM_089422), TMD1781 (XM_089421), TMD0304 (XM_060956), TMD0888
- 20 (XM_060957), and TMD0890 (XM_060959) of claim 28, or a mouse homolog thereof, and which has a defect in immune system function.
 - 27. A method of selecting a gene predominantly expressed in immune system cells from a database comprising polynucleotide sequences for genes, comprising:

displaying, in a computer-readable medium, a polynucleotide sequence or polypeptide sequence for a gene selected from TMD0024 (XM_060945), TMD1779 (XM_060946), TMD0884 (XM_060947), TMD0025 (XM_060948), TMD1780 (XM_089422), TMD1781 (XM_089421), TMD0304 (XM_060956), TMD0888 (XM_060957), and TMD0890 (XM_060959), or complements to the polynucleotides sequence,

wherein said displayed sequences have been retrieved from said database upon selection by a user.

- 28. A composition consisting essentially of the 1q22 immune gene complex, comprising

 TMD0024 (XM_060945), TMD1779 (XM_060946), TMD0884 (XM_060947),

 TMD0025 (XM_060948), TMD1780 (XM_089422), TMD1781 (XM_089421), TMD0304

 (XM_060956), TMD0888 (XM_060957), and TMD0890 (XM_060959) genes, or a fragment thereof comprising at least two said genes.
- 29. A composition of claim 28, wherein said complex consists essentially of the chromosome region between STS markers SHGC-81033 and SHGC-145403, or a fragment thereof comprising at least two said genes.
- 30. A composition of claim 28, wherein said complex consists essentially of the
 20 chromosome region between STS markers SHGC-81033 and D1S3249, G15944,
 GDB:191077, or GDB:196442, or a fragment thereof comprising at least two said genes.
 - 31. A composition of claim 28, wherein said complex consists essentially of the chromosome region between STS markers RH118729 and D1S2577 or SHGC-145403, or a fragment thereof comprising at least two said genes.
- 32. A method of detecting an immune system cell, comprising:
 contacting a sample comprising cells with a polynucleotide specific for a XM_062147
 (SEQ ID NO 63) or XM_061676 (SEQ ID NO 69) of claim 59 under conditions effective for said polynucleotide to hybridize specifically to said gene, and detecting specific hybridization.

25

PCT/US03/11497 -132-

- 33. A method of claim 32, wherein said detecting is performed by: Northern blot analysis, polymerase chain reaction (PCR), reverse transcriptase PCR, RACE PCR, or in situ hybridization.
- 5 34. A method of detecting an immune system cell, comprising: contacting a sample comprising cells with a binding partner specific for a polypeptide coded for XM 062147 (SEQ ID NO 64) or XM 061676 (SEQ ID NO 70) of claim 59 under conditions effective for said binding partner bind specifically to said polypeptide, and detecting specific binding.

35. A method of claim 34, wherein said detecting is performed by: immunocytochemistry, immunoprecipitation, or Western blot.

- 36. A method of delivering an agent to an immune cell, comprising: contacting an immune cell with an agent coupled to binding partner specific for XM_062147 (SEQ ID NO 64) or XM 061676 (SEQ ID NO 70) of claim 59, whereby said agent is delivered to said cell.
 - 37. A method of claim 36, wherein the agent is a therapeutic agent or an imaging agent.
 - 38. A method of claim 36, wherein the agent is cytotoxic.
 - 39. A method of claim 36, wherein the binding partner is an antibody.
- 25 40. A method of modulating the maturation of an immune system cell, comprising: contacting said cell with an agent effective to modulate a gene, or polypeptide encoded thereby, selected from XM 062147 (SEQ ID NO 63 or 64) or XM 061676 (SEQ ID NO 69 or 70) of claim 59, whereby the maturation of an immune cell is modulated.
- 30 41. A method of modulating interactions between lymphoid and non-lymphoid immune system cells, comprising:

10

15

contacting said cells with an agent effective to modulate a gene, or polypeptide encoded thereby, selected from XM_062147 (SEQ ID NO 63 or 64) or XM_061676 (SEQ ID NO 69 or 70) of claim 59, whereby the interaction is modulated.

5 42. A method of expressing a heterologous polynucleotide in immune system cells, comprising:

expressing a nucleic acid construct in immune system cells, said construct comprising a promoter sequence operably linked to said heterologous polynucleotide, wherein said promoter sequence is SEQ ID NOS 65, 66, 72, 73, 74, or 75.

10

43. A method of treating an immune system disease, comprising:

administering to a subject in need thereof a therapeutic agent which is effective for regulating expression of a gene, or polypeptide encoded thereby, selected from XM_062147 (SEQ ID NO 63 or 64) or XM_061676 (SEQ ID NO 69 or 70) of claim 59.

15

20

- 44. A method of claim 43, wherein said agent is an antibody or an antisense which is effective to inhibit translation of said gene.
- 45. A method of diagnosing an immune disease associated with abnormal gene expression, or determining a subject's susceptibility to such disease, comprising:

assessing the expression of a gene, or polypeptide encoded thereby, selected from XM_062147 (SEQ ID NO 63 or 64) or XM_061676 (SEQ ID NO 69 or 70) of claim 59 in a tissue sample comprising immune system cells.

25 46. A method of claim 45, wherein assessing is:

measuring expression levels of said gene, determining the genomic structure of said gene, determining the mRNA structure of transcripts from said gene, or measuring the expression levels of polypeptide coded for by said gene.

30 47. A method of claim 45, wherein said assessing detecting is performed by:
Northern blot analysis, polymerase chain reaction (PCR), reverse transcriptase PCR,

RACE PCR, or in situ hybridization, and

using a polynucleotide probe having a sequence selected from SEQ ID NOS 67, 68, 76, and 77.

5 48. A method of assessing a therapeutic or preventative intervention in a subject having an immune system disease, comprising,

determining the expression levels of a gene, or polypeptide encoded thereby, selected from XM_062147 (SEQ ID NO 63 or 64) or XM_061676 (SEQ ID NO 69 or 70) of claim 59 in a tissue sample comprising immune system cells.

- 10
- 49. A method of claim 48, further comprising assessing the expression levels of a plurality of said genes or polypeptides.
- 50. A method for identifying an agent that modulates the expression of a gene or polypeptide in the immune system gene complex, comprising,

contacting an immune system cell with a test agent under conditions effective for said test agent to modulate the expression of XM_062147 (SEQ ID NO 63 or 64) or XM_061676 (SEQ ID NO 69 or 70) of claim 59, or a polypeptide encoded thereby, in said immune system cell, and

- determining whether said test agent modulates said gene.
 - 51. A method of claim 50, wherein said agent is an antisense polynucleotide to a target polynucleotide sequence selected from SEQ ID NOS 63 or 69 and which is effective to inhibit translation of said gene.

25

52. A method of detecting polymorphisms in a gene in the immune system gene complex, comprising:

comparing the structure of: genomic DNA or RNA or cDNA comprising all or part of an allele of XM 062147 or XM 061676 with SEQ ID NOS 63 or 69 of claim 59.

30

53. A method of claim 52, wherein said polymorphism is a nucleotide deletion, substitution,

15

20

inversion, or transposition.

- 54. A non-human, transgenic mammal whose genome comprises a functional disruption of a gene represented by XM_062147 (SEQ ID NO 63) or XM_061676 (SEQ ID NO 69) of claim 59, and which has a defect in immune system function.
- 55. A mammalian immune system cell whose genome comprises a functional disruption of a gene represented by XM_062147 (SEQ ID NO 63) or XM_061676 (SEQ ID NO 69) of claim 59, and which has a defect in immune system function.
- 56. A mammalian cell of claim 55, wherein said cell is a mouse cell.
- 57. A non-human, transgenic mammal, or a cell thereof, comprising a gene operatively linked to an expression control sequence effective to express said gene in immune system, wherein said sequence is SEQ ID NOS 65, 66, 71, 72, 73, 74, or 75.
- 58. A method of selecting a gene predominantly expressed in immune system cells from a database comprising polynucleotide sequences for genes, comprising:

displaying, in a computer-readable medium, a polynucleotide sequence or polypeptide sequence for XM_062147 (SEQ ID NO 63 or 64) or XM_061676 (SEQ ID NO 69 or 70) of claim 59, or complements to the polynucleotides sequence,

wherein said displayed sequences have been retrieved from said database upon selection by a user.

25 59. A composition comprising:

bone marrow specific genes consisting essentially of XM_062147 (SEQ ID NO 63 or 64) and XM_061676 (SEQ ID NO 69 or 70), or polypeptides thereof.

60. A method of detecting a kidney cell, comprising:

contacting a sample comprising cells with a polynucleotide specific for a polynucleotide, or a naturally-occurring polymorphisms thereof, of claim 81 under conditions effective for said polynucleotide to hybridize specifically to said gene, and

detecting specific hybridization.

- 61. A method of claim 60, wherein said detecting is performed by:
- Northern blot analysis, polymerase chain reaction (PCR), reverse transcriptase PCR,
- 5 RACE PCR, or in situ hybridization.
 - 62. A method of detecting an kidney cell, comprising:

contacting a sample comprising cells with a binding partner specific for a polypeptide coded for by a polynucleotide of claim 81, or a naturally-occurring polymorphism thereof, under conditions effective for said binding partner bind specifically to said polypeptide, and detecting specific binding.

- 63. A method of claim 62, wherein said detecting is performed by: immunocytochemistry, immunoprecipitation, or Western blot.
- 64. A method of delivering an agent to a kidney cell, comprising:

contacting a kidney cell with an agent coupled to binding partner specific for polypeptide coded for by a polynucleotide of claim 81, or a naturally-occurring polymorphism thereof, whereby said agent is delivered to said cell.

20

15

10

- 65. A method of claim 64, wherein the agent is a therapeutic agent, a cytotoxic agent, or an imaging agent.
- 66. A method of claim 64, wherein the binding partner is an antibody.

25

67. A method of modulating a kidney cell, comprising:

contacting said cell with an agent effective to modulate a polynucleotide, or polypeptide encoded thereby, or a naturally-occurring polymorphism thereof, of claim 81, whereby the kidney cell is modulated.

30

68. A method of assessing kidney function, comprising:

15

25

detecting a polypeptide coded for by a polynucleotide of claim 81, or a naturallyoccurring polymorphism thereof, or fragments thereof, in a body fluid, whereby the amount of said polypeptide in said fluid is a measure of kidney function.

- 5 69. A method of claim 68, wherein said detecting is performed using an antibody which is specific for said polypeptide.
 - 70. A method of claim 69, wherein said detecting is performed by RIA, ELISA, or Western blot.
 - 71. A method of expressing a heterologous polynucleotide in kidney cells, comprising: expressing a nucleic acid construct in kidney cells, said construct comprising a promoter sequence operably linked to said heterologous polynucleotide, wherein said promoter sequence is selected from SEQ ID NOS. 106, 109, 110, 113, 114, 117, 118, 121, 124, 125, 128-130, 133, 134, 137, 140, 141, 144, 147, 148, and 151.
 - 72. A method of diagnosing a kidney disease associated with abnormal gene expression, or determining a subject's susceptibility to such disease, comprising:
- assessing the expression of a polynucleotide of claim 81, or a polypeptide encoded thereby, or naturally-occurring polymorphisms thereof, in a tissue sample comprising kidney cells.
 - 73. A method of claim 72, wherein assessing is:
 - measuring expression levels of said gene, determining the genomic structure of said gene, determining the mRNA structure of transcripts from said gene, or measuring the expression levels of polypeptide coded for by said gene.
 - 74. A method of assessing a therapeutic or preventative intervention in a subject having a kidney disease, comprising,
- determining the expression levels of a polynucleotide of claim 81, a naturallyoccurring polymorphism thereof, or polypeptide encoded thereby, in a tissue sample

comprising kidney cells.

75. A method of claim 74, further comprising assessing the expression levels of a plurality of said genes or polypeptides.

5

10

20

76. A method for identifying an agent that modulates the expression of a polynucleotide or polypeptide selectively expressed in kidney cells, comprising,

contacting an kidney cell with a test agent under conditions effective for said test agent to modulate the expression of a polynucleotide of claim 81, or a naturally-occurring polymorphism thereof, or the biological activity of a polypeptide encoded thereby, in said kidney cell, and

determining whether said test agent modulates said gene or polypeptide.

- 77. A non-human, transgenic mammal whose genome comprises a functional disruption of a
 gene represented by a polynucleotide of claim 81, or a homolog thereof, and which has a defect in kidney function.
 - 78. A mammalian kidney cell whose genome comprises a functional disruption of a gene represented by a polynucleotide of claim 81, or a homolog thereof, and which has a defect in kidney function.
 - 79. A mammalian cell of claim 78, wherein said cell is a mouse cell.
- 80. A method of selecting a gene predominantly expressed in kidney cells from a database comprising polynucleotide sequences for genes, comprising:

displaying, in a computer-readable medium, a polynucleotide sequence, or a polypeptide encoded thereby, of claim 81, or complements to the polynucleotides sequence, wherein said displayed sequences have been retrieved from said database upon selection by a user.

5

10

15

81. A composition comprising two or more of the following polynucleotides expressed / selectively in kidney:

TMD0049 (XM_057351), TMD0190 (XM_087157), TMD0242 (XM_088369), TMD0335 (XM_089960), TMD0371, TMD0374, TMD0469 (XM_038736), TMD0719 (XM_059548), TMD0731 (XM_059703), TMD0785 (XM_060310), TMD0841 (XM_060623), TMD1114 (NM_019841), and/or TMD 1148 (XM_087108).

82. A method of detecting a pancreas cell, comprising:

contacting a sample comprising cells with a polynucleotide specific for TMD0986, XM_061780, XM_061781, XM_061784, or XM_061785, of claim 113 under conditions effective for said polynucleotide to hybridize specifically to said gene, and detecting specific hybridization.

- 83. A method of claim 82, wherein said detecting is performed by:
- Northern blot analysis, polymerase chain reaction (PCR), reverse transcriptase PCR, RACE PCR, or *in situ* hybridization.
 - 84. A method of detecting a pancreas cell, comprising:

contacting a sample comprising cells with a binding partner specific for a polypeptide coded for by TMD0986, XM_061780, XM_061781, XM_061784, or XM_061785, of claim 113 under conditions effective for said binding partner bind specifically to said polypeptide, and, detecting specific binding.

85. A method of claim 84, wherein said detecting is performed by: immunocytochemistry, immunoprecipitation, or Western blot.

30

25

86. A method of delivering an agent to a pancreas cell, comprising:

contacting a pancreas cell with an agent coupled to binding partner specific for

TMD0986, XM_061780, XM_061781, XM_061784, or XM_061785, of claim 113, whereby said agent is delivered to said cell.

- 87. A method of claim 86, wherein the agent is a therapeutic agent or an imaging agent.
- 88. A method of claim 86, wherein the agent is cytotoxic.
- 89. A method of claim 86, wherein the binding partner is an antibody.
- 90. A method of modulating a pancreas cell, comprising: contacting said cell with an agent effective to modulate TMD0986, XM_061780, XM_061781, XM_061784, or XM_061785, or the biological activity of a polypeptide encoded thereby, of claim 113, whereby the pancreas cell is modulated.
- 91. A method of assessing pancreas function, comprising: detecting a polypeptide coded for TMD0986, XM_061780, XM_061781, XM_061784, or XM_061785, or fragments thereof, in a body fluid, whereby the amount of said polypeptide in said fluid is a measure of pancreas function.
- 92. A method of claim 91, wherein said detecting is performed using an antibody which is specific for said polypeptide.
 - 93. A method of claim 91, wherein said detecting is performed by RIA, ELISA, or Western blot.
 - 94. A method of expressing a heterologous polynucleotide in pancreas cells, comprising: expressing a nucleic acid construct in pancreas cells, said construct comprising a promoter sequence operably linked to said heterologous polynucleotide, wherein said promoter sequence is SEQ ID NOS 156-161, 166, 179, or 180.
 - 95. A method of diagnosing a pancreas disease associated with abnormal gene expression,

25

or determining a subject's susceptibility to such disease, comprising:

assessing the expression of TMD0986, XM_061780, XM_061781, XM_061784, or XM_061785, or polypeptide encoded thereby, of claim 113 in a tissue sample comprising pancreas cells.

5

96. A method of claim 95, wherein assessing is:

measuring expression levels of said gene, determining the genomic structure of said gene, determining the mRNA structure of transcripts from said gene, or measuring the expression levels of polypeptide coded for by said gene.

10

15

20

97. A method of claim 95, wherein said assessing is performed by:

Northern blot analysis, polymerase chain reaction (PCR), reverse transcriptase PCR, RACE PCR, or *in situ* hybridization, and

using a polynucleotide probe having a sequence selected from SEQ ID NOS 154, 155, 164, 165, 169, 170, 173, 174, 177, 178, or a complement thereto.

98. A method of assessing a therapeutic or preventative intervention in a subject having a pancreas disease, comprising,

determining the expression levels of TMD0986, XM_061780, XM_061781, XM_061784, or XM_061785, or a polypeptide encoded thereby, of claim 113 in a tissue sample comprising pancreas cells.

99. A method of claim 98, further comprising assessing the expression levels of a plurality of said genes or polypeptides.

25

30

100. A method for identifying an agent that modulates the expression of TMD0986, XM_061780, XM_061781, XM_061784, or XM_061785, or the biological activity of a polypeptide encoded thereby, comprising,

contacting a pancreas cell with a test agent under conditions effective for said test agent to modulate the expression of TMD0986, XM_061780, XM_061781, XM_061784, or XM_061785 of claim 113, or the biological activity of a polypeptide encoded thereby, in said

pancreas cell, and

determining whether said test agent modulates said gene or polypeptide.

- 101. A method of claim 100, wherein said agent is an antisense polynucleotide to a target
 polynucleotide sequence selected from SEQ ID NO 152, 162, 167, 171, or 175 and which is effective to inhibit translation of said gene.
 - 102. A method of detecting polymorphisms in TMD0986, XM_061780, XM_061781, XM_061784, or XM_061785, comprising,
- comparing the structure of: genomic DNA or RNA or cDNA comprising all or part of an allele of TMD0986, XM_061780, XM_061781, XM_061784, or XM_061785, with SEQ ID NOS 152, 153, 162, 163, 167, 168, 171, 172, 175, or 176 of claim 113.
- 103. A method of claim 102, wherein said polymorphism is a nucleotide deletion,substitution, inversion, or transposition.
 - 104. A method of identifying a pancreatic disease or pancreatic disease-susceptibility, comprising:
- determining the association of a pancreatic disease or pancreatic disease-susceptibility
 with a nucleotide sequence present within the pancreatic gene complex of claim 113.
 - 105. A method of claim 104, wherein the pancreatic gene complex is from LOC160025-LOC119954.
- 106. A method of claim 104, wherein determining is performed by producing a human-linkage map of said complex.
 - 107. A method of claim 104, wherein determining is performed by comparing the nucleotide sequences between normal subjects and subjects having a pancreas disorder.
- 108. A non-human, transgenic mammal whose genome comprises a functional disruption of a gene represented by TMD0986, XM_061780, XM_061781, XM_061784, or XM_061785

20

of claim 113, and which has a defect in pancreas function.

- 109. A mammalian pancreas cell whose genome comprises a functional disruption of a gene represented by TMD0986, XM_061780, XM_061781, XM_061784, or XM_061785 of claim 113, and which has a defect in pancreas function.
- 110. A mammalian cell of claim 109, wherein said cell is a mouse cell.
- 111. A pancreas cell, comprising a gene operatively linked to an expression control sequence
 effective to express said gene in pancreas, wherein said sequence is SEQ ID NOS 156-161,
 179, or 180.
 - 112. A method of selecting a gene predominantly expressed in pancreas cells from a database comprising polynucleotide sequences for genes, comprising:
- displaying, in a computer-readable medium, a polynucleotide sequence or polypeptide sequence for TMD0986, XM_061780, XM_061781, XM_061784, or XM_061785 of claim 113, or complements to the polynucleotides sequence,

wherein said displayed sequences have been retrieved from said database upon selection by a user.

- 113. A composition comprising: a pancreas specific gene consisting essentially of TMD0986, XM_061780, XM_061781, XM_061784, and/or XM_061785, or a polypeptide encoded thereby.
- 25 114. An isolated polynucleotide comprising a polynucleotide sequence which codes without interruption for a human TMD0986 having an amino acid sequence set forth in SEQ ID NO 153, or a complement thereto.
 - 115. An isolated polynucleotide comprising,
- a human TMD0986 polynucleotide sequence having 90% or more nucleotide sequence identity to the polynucleotide sequence set forth in SEQ ID NO 152 along its entire

length, which codes without interruption for human TMD0986, or a complement thereto, and which has G-protein coupling activity.

- 116. An isolated humansTMD0986 polypeptide comprising the amino acid sequence of a human TMD0986 as set forth in SEQ ID NO 153.
 - 117. An isolated human TMD0986 polypeptide consisting essentially of amino acids 1-117 of a human TMD0986 as set forth in SEQ ID NO 153.
- 118. An isolated polypeptide which is human TMD0986 having 90% or more amino acid sequence identity to the amino acid sequence set forth in SEQ ID NO 153, and which has protein binding activity.
 - 119. An antibody specific for an epitope selected from the polypeptide of claim 117.
 - 120. A method of detecting an retinal cell, comprising:

contacting a sample comprising cells with a polynucleotide specific for NM_013941 (SEQ ID NO 181), or a naturally-occurring polymorphisms thereof, of claim 142 under conditions effective for said polynucleotide to hybridize specifically to said gene, and detecting specific hybridization.

121. A method of claim 120, wherein said detecting is performed by:

Northern blot analysis, polymerase chain reaction (PCR), reverse transcriptase PCR, RACE PCR, or *in situ* hybridization.

25

30

5

15

20

122. A method of detecting an retinal cell, comprising:

contacting a sample comprising cells with a binding partner specific for a polypeptide coded for by NM_013941 (SEQ ID NO 182), or a naturally-occurring polymorphism thereof, of claim 142 under conditions effective for said binding partner bind specifically to said polypeptide, and

detecting specific binding.

10

- 123. A method of claim 122, wherein said detecting is performed by: immunocytochemistry, immunoprecipitation, or Western blot.
- 124. A method of delivering an agent to a retinal cell, comprising:
- contacting a retinal cell with an agent coupled to binding partner specific for by NM_013941 (SEQ ID NO 182), or naturally-occurring polymorphism thereof, of claim 142, whereby said agent is delivered to said cell.
 - 125. A method of claim 124, wherein the agent is a therapeutic agent or an imaging agent.
 - 126. A method of claim 124, wherein the agent is cytotoxic.
 - 127. A method of claim 124, wherein the binding partner is an antibody.
- 15 128. A method of modulating a retinal cell, comprising:

contacting said cell with an agent effective to modulate NM_013941 (SEQ ID NO 181 or 182), or the biological activity of a polypeptide encoded thereby, of claim 142, whereby the retinal cell is modulated.

20 129. A method of diagnosing a retinal disease associated with abnormal gene expression, or determining a subject's susceptibility to such disease, comprising:

assessing the expression of NM_013941, a polymorphism thereof, or polypeptide encoded thereby, of claim 142 in a tissue sample comprising retinal cells.

- 25 130. A method of claim 129, wherein assessing is:
 - measuring expression levels of said gene, determining the genomic structure of said gene, determining the mRNA structure of transcripts from said gene, or measuring the expression levels of polypeptide coded for by said gene.
- 30 131. A method of claim 129, wherein said assessing detecting is performed by:

 Northern blot analysis, polymerase chain reaction (PCR), reverse transcriptase PCR,

WO 03/089583

PCT/US03/11497

-146-

RACE PCR, or in situ hybridization, and

using a polynucleotide probe having a sequence selected from SEQ ID NOS 183 or 184, or a complement thereto.

5 132. A method of assessing a therapeutic or preventative intervention in a subject having an retinal disease, comprising,

determining the expression levels of NM_013941, a polymorphism thereof, or polypeptide encoded thereby, of claim 142 in a tissue sample comprising retinal cells.

- 133. A method of claim 132, further comprising assessing the expression levels of a plurality of said genes or polypeptides.
- 134. A method for identifying an agent that modulates the expression of NM_013941 or the biological activity of a polypeptide encoded thereby, comprising,

contacting an retinal cell with a test agent under conditions effective for said test agent to modulate the expression of NM_013941 or a polymorphism thereof, of claim 142, or the biological activity of a polypeptide encoded thereby, in said retinal cell, and determining whether said test agent modulates said gene or polypeptide.

- 135. A method of claim 134, wherein said agent is an antisense polynucleotide to a target polynucleotide sequence selected from SEQ ID NO 181 and which is effective to inhibit translation of said gene.
- 136. A method of detecting polymorphisms in NM_013941, comprising:
 comparing the structure of: genomic DNA or RNA or cDNA comprising all or part
 of an allele of NM 013941, with SEQ ID NOS 181 or 182 of claim 142.
 - 137. A method of claim 136, wherein said polymorphism is a nucleotide deletion, substitution, inversion, or transposition.
- 30 138. A non-human, transgenic mammal whose genome comprises a functional disruption of a gene represented by NM 013941 (SEQ ID NO 181) of claim 142, and which has a defect in

10

retinal function.

- 139. A mammalian retinal cell whose genome comprises a functional disruption of a gene represented by NM_013941 (SEQ ID NO 181) of claim 142, and which has a defect in retinal function.
- 140. A mammalian cell of claim 139, wherein said cell is a mouse cell.
- 141. A method of selecting a gene predominantly expressed in retinal cells from a database comprising polynucleotide sequences for genes, comprising:

displaying, in a computer-readable medium, a polynucleotide sequence or polypeptide sequence for NM_013941 (SEQ ID NO 181 or 182) of claim 142, or complements to the polynucleotides sequence,

wherein said displayed sequences have been retrieved from said database upon selection by a user.

142. A composition comprising:

a retinal specific gene consisting essentially of NM_013941 (SEQ ID NO 181 or 182), or a polypeptide encoded thereby.

20

25

5

10

15

143. A method of detecting a spleen cell, comprising:

contacting a sample comprising cells with a polynucleotide specific for TMD1030 (XM_166853) or TMD0621 (XM_166205) of claim 170 under conditions effective for said polynucleotide to hybridize specifically to said gene, and

detecting specific hybridization.

144. A method of claim 143, wherein said detecting is performed by:

Northern blot analysis, polymerase chain reaction (PCR), reverse transcriptase PCR, RACE PCR, or *in situ* hybridization.

30

145. A method of detecting a spleen cell, comprising:

contacting a sample comprising cells with a binding partner specific for a polypeptide

coded for by TMD1030 (XM_166853) or TMD0621 (XM_166205) of claim 170 under conditions effective for said binding partner bind specifically to said polypeptide, and detecting specific binding.

- 5 146. A method of claim 145, wherein said detecting is performed by: immunocytochemistry, immunoprecipitation, or Western blot.
- 147. A method of delivering an agent to a spleen cell, comprising:
 contacting a spleen with an agent coupled to binding partner specific for TMD1030
 10 (XM_166853) or TMD0621 (XM_166205) of claim 170, whereby said agent is delivered to said cell.
 - 148. A method of claim 147, wherein the agent is a therapeutic agent or an imaging agent.
- 15 149. A method of claim 148, wherein the agent is cytotoxic.
 - 150. A method of claim 147, wherein the binding partner is an antibody.
- 151. A method of modulating a spleen, immune, or reticuloendothelial cell, comprising:

 20 contacting said cell with an agent effective to modulate TMD1030 (XM_166853),

 TMD1029 (XM_166854), TMD1028 (XM_166855), or TMD0621 (XM_166205), or the

 biological activity of a polypeptide encoded thereby, of claim 170, whereby the cell is

 modulated.
- 25 152. A method of assessing spleen function, comprising: detecting a polypeptide coded for by TMD1030 (XM_166853) or TMD0621 (XM_166205) of claim 170, or fragments thereof, in a body fluid, whereby the amount of said polypeptide in said fluid is a measure of spleen function.
- 30 153. A method of claim 152, wherein said detecting is performed using an antibody which is specific for said polypeptide.

- 154. A method of claim 152, wherein said detecting is performed by RIA, ELISA, or Western blot.
- 5 155. A method of expressing a heterologous polynucleotide in spleen cells, comprising: expressing a nucleic acid construct in spleen cell, said construct comprising a promoter sequence operably linked to said heterologous polynucleotide, wherein said promoter sequence is SEQ ID NO 205-213.
- 10 156. A method of assessing a therapeutic or preventative intervention in a subject having a spleen or lymphoid disease, comprising,

determining the expression levels of TMD1030 (XM_166853), TMD1029 (XM_166854), TMD1028 (XM_166855), or TMD0621 (XM_166205), or a polypeptide encoded thereby, of claim 170 in a tissue sample comprising spleen, lymphoid, or reticuloendothelial cells.

- 157. A method of claim 156, further comprising assessing the expression levels of a plurality of said genes or polypeptides.
- 158. A method for identifying an agent that modulates the expression of TMD1030 (XM_166853), TMD1029 (XM_166854), TMD1028 (XM_166855), or TMD0621 (XM_166205), comprising,

contacting a spleen, lymphoid, or reticuloendothelial cell, with a test agent under conditions effective for said test agent to modulate the expression of TMD1030

25 (XM_166853), TMD1029 (XM_166854), TMD1028 (XM_166855), or TMD0621 (XM_166205), of claim 170, and

determining whether said test agent modulates said gene.

159. A method of claim 158, wherein said agent is an antisense which is effective to inhibit translation of said gene.

- 160. A method for identifying an agent that modulates the expression of a polypeptide coded for by TMD1030 (XM_166853), TMD1029 (XM_166854), TMD1028 (XM_166855), or TMD0621 (XM_166205), comprising,
- contacting a polypeptide coded for by TMD1030 (XM_166853), TMD1029

 (XM_166854), TMD1028 (XM_166855), or TMD0621 (XM_166205) of claim 170, with a test agent under conditions effective for said test agent to modulate said polypeptide, and determining whether said test agent modulates said polypeptide.
- 161. A method of detecting polymorphisms in comprising, comparing the structure of:

 10 genomic DNA or RNA or cDNA comprising all or part of an allele of TMD1030

 (XM_166853), TMD1029 (XM_166854), TMD1028 (XM_166855), or TMD0621

 (XM_166205), with SEQ ID NOS 185, 187, 189, or 191 of claim 170.
 - 162. A method of claim 161, wherein said polymorphism is a nucleotide deletion, substitution, inversion, or transposition.
 - 163. A method of identifying a genetic basis for a spleen, lymphoid, and/or reticuloendothelial disease or disease-susceptibility, comprising: determining the association of a spleen, lymphoid, and/or reticuloendothelial disease or disease-susceptibility with a nucleotide sequence present in the gene complex of claim 170.
 - 164. A method of claim 163, wherein determining is performed by producing a humanlinkage map of said complex.
- 25 165. A method of claim 163, wherein determining is performed by comparing the nucleotide sequences between normal subjects and subjects having a spleen, lymphoid, and/or reticuloendothelial disease.
- 166. A non-human, transgenic mammal, or a cell thereof. whose genome comprises a functional disruption of a gene represented by TMD1030 (XM_166853), TMD1029 (XM_166854), TMD1028 (XM_166855), or TMD0621 (XM_166205) of claim 170, and

15

20

which has a defect in spleen, lymphoid, and/or reticuloendothelial disease function.

- 167. A mammalian cell of claim 166, wherein said cell is a mouse cell.
- 168. A spleen, lymphoid, and/or reticuloendothelial cell, comprising a gene operatively linked to an expression control sequence effective to express said gene in spleen, lymphoid, and/or reticuloendothelial, wherein said sequence is SEQ ID NO 205-213.
 - 169. A method of selecting a gene predominantly expressed in spleen, lymphoid, and/or reticuloendothelial cells from a database comprising polynucleotide sequences for genes, comprising:

displaying, in a computer-readable medium, a polynucleotide sequence or polypeptide sequence for TMD1030 (XM_166853), TMD1029 (XM_166854), TMD1028 (XM_166855), or TMD0621 (XM_166205) of claim 170, or complements to the polynucleotides sequence, wherein said displayed sequences have been retrieved from said database upon selection by a user.

- 170. A composition consisting essentially of the 11q12.2 spleen gene complex, comprising TMD1030 (XM_166853), TMD1029 (XM_166854), TMD1028 (XM_166855), and TMD0621 (XM_166205).
- 171. A composition of claim 170, wherein said complex consists essentially of the chromosome region between STS markers G62658 and SHGC-154002.
- 172. A method of detecting a pancreas cell, comprising:
 contacting a sample comprising cells with a polynucleotide specific TMD0077,
 TMD0233, TMD0256, TMD0258, TMD0267, TMD0271, TMD0290, TMD0530,
 TMD0574, TMD0608, TMD0639, TMD0645, TMD0674, TMD0675, TMD0677,
 TMD0726, TMD0727, TMD0739, TMD0753, TMD1111, and/or TMD1127 of claim 199
 under conditions effective for said polynucleotide to hybridize specifically to said gene, and detecting specific hybridization.

-152-

- 173. A method of claim 172, wherein said detecting is performed by:

 Northern blot analysis, polymerase chain reaction (PCR), reverse transcriptase PCR,
 RACE PCR, or *in situ* hybridization.
- 5 174. A method of detecting a pancreas cell, comprising:

contacting a sample comprising cells with a binding partner specific for a polypeptide coded for by TMD0077, TMD0233, TMD0256, TMD0258, TMD0267, TMD0271, TMD0290, TMD0530, TMD0574, TMD0608, TMD0639, TMD0645, TMD0674, TMD0675, TMD0677, TMD0726, TMD0727, TMD0739, TMD0753, TMD1111, and/or

10 TMD1127

of claim 199 under conditions effective for said binding partner bind specifically to said polypeptide, and

detecting specific binding.

- 15 175. A method of claim 174, wherein said detecting is performed by: immunocytochemistry, immunoprecipitation, or Western blot.
- 176. A method of delivering an agent to a pancreas cell, comprising:
 contacting a pancreas with an agent coupled to binding partner specific for
 20 TMD0077, TMD0233, TMD0256, TMD0258, TMD0267, TMD0271, TMD0290,
 TMD0530, TMD0574, TMD0608, TMD0639, TMD0645, TMD0674, TMD0675,
 TMD0677, TMD0726, TMD0727, TMD0739, TMD0753, TMD1111, and/or TMD1127 of claim 199, whereby said agent is delivered to said cell.
- 25 177. A method of claim 176, wherein the agent is a therapeutic agent or an imaging agent.
 - 178. A method of claim 176, wherein the agent is cytotoxic.
 - 179. A method of claim 176, wherein the binding partner is an antibody.
 - 180. A method of modulating a pancreas, immune, or reticuloendothelial cell, comprising:

contacting said cell with an agent effective to modulate TMD0077, TMD0233, TMD0256, TMD0258, TMD0267, TMD0271, TMD0290, TMD0530, TMD0574, TMD0608, TMD0639, TMD0645, TMD0674, TMD0675, TMD0677, TMD0726. TMD0727, TMD0739, TMD0753, TMD1111, and/or TMD1127, or the biological activity of a polypeptide encoded thereby, of claim 199, whereby the cell is modulated.

181. A method of assessing pancreas function, comprising:

detecting a polypeptide coded for by TMD0077, TMD0233, TMD0256, TMD0258, TMD0267, TMD0271, TMD0290, TMD0530, TMD0574, TMD0608, TMD0639. TMD0645, TMD0674, TMD0675, TMD0677, TMD0726, TMD0727, TMD0739. TMD0753, TMD1111, and/or TMD1127 of claim 199, or fragments thereof, in a body fluid. whereby the amount of said polypeptide in said fluid is a measure of pancreas function. 182. A method of claim 181, wherein said detecting is performed using an antibody which is specific for said polypeptide.

15

20

10

5

183. A method of claim 181, wherein said detecting is performed by RIA, ELISA, or Western blot.

184. A method of expressing a heterologous polynucleotide in pancreas cells, comprising: expressing a nucleic acid construct in pancreas cell, said construct comprising a promoter sequence operably linked to said heterologous polynucleotide, wherein said promoter sequence is selected SEQ ID NO 258, 261, 262, 265-267, 270-272, 275, 278, 279, 282-284, 287, 290-293, 296, 297, 300, 303, 306, 309-314, 317-320, 323-326, 329, 332-333, 336-338, 341, and 344.

25

30

185. A method of assessing a therapeutic or preventative intervention in a subject having a pancreas or lymphoid disease, comprising,

determining the expression levels of TMD0077, TMD0233, TMD0256, TMD0258, TMD0267, TMD0271, TMD0290, TMD0530, TMD0574, TMD0608, TMD0639, TMD0645, TMD0674, TMD0675, TMD0677, TMD0726, TMD0727, TMD0739, TMD0753, TMD1111, and/or TMD1127, or a polypeptide encoded thereby, of claim 199 in a tissue sample comprising pancreas, lymphoid, or reticuloendothelial cells.

186. A method of claim 185, further comprising assessing the expression levels of a plurality of said genes or polypeptides.

5

187. A method for identifying an agent that modulates the expression of TMD0077, TMD0233, TMD0256, TMD0258, TMD0267, TMD0271, TMD0290, TMD0530, TMD0574, TMD0608, TMD0639, TMD0645, TMD0674, TMD0675, TMD0677, TMD0726, TMD0727, TMD0739, TMD0753, TMD1111, and/or TMD1127, comprising,

10

contacting a pancreas, lymphoid, or reticuloendothelial cell, with a test agent under conditions effective for said test agent to modulate the expression of TMD0077, TMD0233, TMD0256, TMD0258, TMD0267, TMD0271, TMD0290, TMD0530, TMD0574, TMD0608, TMD0639, TMD0645, TMD0674, TMD0675, TMD0677, TMD0726, TMD0727, TMD0739, TMD0753, TMD1111, and/or TMD1127, of claim 199, and

15

188. A method of claim 187, wherein said agent is an antisense which is effective to inhibit translation of said gene.

determining whether said test agent modulates said gene.

20

189. A method for identifying an agent that modulates the expression of a polypeptide coded for by TMD0077, TMD0233, TMD0256, TMD0258, TMD0267, TMD0271, TMD0290, TMD0530, TMD0574, TMD0608, TMD0639, TMD0645, TMD0674, TMD0675, TMD0677, TMD0726, TMD0727, TMD0739, TMD0753, TMD1111, and/or TMD1127, comprising,

25

contacting a polypeptide coded for by TMD0077, TMD0233, TMD0256, TMD0258, TMD0267, TMD0271, TMD0290, TMD0530, TMD0574, TMD0608, TMD0639, TMD0645, TMD0674, TMD0675, TMD0677, TMD0726, TMD0727, TMD0739, TMD0753, TMD1111, and/or TMD1127 of claim 199, with a test agent under conditions effective for said test agent to modulate said polypeptide, and

30

determining whether said test agent modulates said polypeptide.

- 190. A method of claim 189, wherein said test agent is an antibody.
- 191. A method of detecting polymorphisms in comprising, comparing the structure of: genomic DNA or RNA or cDNA comprising all or part of an allele of TMD0077, TMD0233, TMD0256, TMD0258, TMD0267, TMD0271, TMD0290, TMD0530, TMD0574, TMD0608, TMD0639, TMD0645, TMD0674, TMD0675,
- TMD0530, TMD0574, TMD0608, TMD0639, TMD0645, TMD0674, TMD0675, TMD0677, TMD0726, TMD0727, TMD0739, TMD0753, TMD1111, and/or TMD1127, with SEQ ID NOS of Table 23 of claim 199.
- 10 192. A method of claim 191, wherein said polymorphism is a nucleotide deletion, substitution, inversion, or transposition.
 - 193. A method of identifying a genetic basis for a pancreas disease or disease-susceptibility, comprising: determining the association of a pancreas disease or disease-susceptibility with a gene of claim 199.
 - 194. A method of claim 193, wherein determining is performed by producing a human-linkage map of said gene.
- 20 195. A method of claim 193, wherein determining is performed by comparing the nucleotide sequences between normal subjects and subjects having a pancreas disease.
 - 196. A non-human, transgenic mammal, or a cell thereof. whose genome comprises a functional disruption of a gene represented by TMD0077, TMD0233, TMD0256, TMD0258,
- TMD0267, TMD0271, TMD0290, TMD0530, TMD0574, TMD0608, TMD0639, TMD0645, TMD0674, TMD0675, TMD0677, TMD0726, TMD0727, TMD0739, TMD0753, TMD1111, and/or TMD1127, of claim 199, and which has a defect in pancreas, lymphoid, and/or reticuloendothelial disease function.
- 197. A mammalian cell of claim 196, wherein said cell is a mouse cell.198. A method of selecting a gene predominantly expressed in pancreas tissue from a

-156-

database comprising polynucleotide and amino acid sequences for genes, comprising:

displaying, in a computer-readable medium, a polynucleotide sequence or polypeptide
sequence for TMD0077, TMD0233, TMD0256, TMD0258, TMD0267, TMD0271,

TMD0290, TMD0530, TMD0574, TMD0608, TMD0639, TMD0645, TMD0674,
 TMD0675, TMD0677, TMD0726, TMD0727, TMD0739, TMD0753, TMD1111, and/or TMD1127, of claim 199, or complements to the polynucleotides sequence, wherein said displayed sequences have been retrieved from said database upon selection by a user.

199. A composition comprising genes and/or polypeptide which are expressed predominantly in pancreas tissue comprising:

TMD0077, TMD0233, TMD0256, TMD0258, TMD0267, TMD0271, TMD0290, TMD0530, TMD0574, TMD0608, TMD0639, TMD0645, TMD0674, TMD0675, TMD0677, TMD0726, TMD0727, TMD0739, TMD0753, TMD1111, and/or TMD1127.

STS	.	RNA 🏹	Accn	locus	Gene code	<i>:</i>
55520 K	RH79988 15 SHGC-54518	5920K	XM_173381	LOC254079		
55940K	: RH93840 T RH93840 T RH04X45 15 E SHGC-82756 T D183312	5940K	XM_086610	CDID		
55960 K 55970 K	WILDOOF O I	55960K				
55980 K 55990 K	•	55980K 55990K				
56000K- 56010K-	RH12051715		XM 048792	CDIA		• •
560 20 K-	RH11438	56020K	-			
56040K 56050K 56060K	.01 53356 1	56040K 56050K 56060K	NM_001765.1	CDIC		
56070K-	. Buczego 1!	56070K 56030K				
56190K	- SHGC-12791		NM_001764.1	CDIB		
56110K 56120K	AL 0 0 95281 = RH70621 1 RH46983	56120K	NM_030893.1	CDIE		
561 30K 561 40K	1	56130K 56140K	VN4 060046	1.00128360	TMD0024	
561 50K	•	56160K	XM_060945	LOC128360		
561 76 K	1	56170K 56180K 56190A	XM_060946	LOC128361	TMD1779	
561 90K- 5620 (K- 5621 0K-	1	56200K	_ XM_060947	LOC128362	TMD0884	
56220K-	SHGC-1558	58220K	XM_060948	LOC128363	TMD0025	
5624+K- 5625+K-	:	56240K	XM_089422	LOC164169	TMD1780	Fig. 1
5626•K- 56270K-	1	56260K	XM_089421	LOC149631	TMD1781	
56280K- 56290K-	1	56290K	XM_060949	LOC128364		
56300K 56310K 56320K	1	56300K4 56310K4 56320K4	XM_089420	LOC128245		
56230 K	1	56330K- 179	XM_060950	LOC128365		
56350K 56360K	D153249 1 G15944 G0B:19101	156350K	XM_060951	LOC128366		
56370K 56380K	GDB 1 9641 = RH68459 = RH1025971 = RH69635	156380K	XM_060952	1.OC128367		
55390K- 56400K	RH65132	156390K	XM 060953	LOC 128368		
56410K- 56420K- 56430K-		156410K 156420K 156430K	NM_003126.1	SPTA1		
56440K-	÷-GDB:1815	156440K				
56460K- 56470K-	- RH118729	156460K	XM_060954	LOC128369		
56+80K 56+90K		156480K 1 156490K	XM_060955	LOC128370		
56500K		156500K 156510K	XM_060956	LOC128371	TMD0304	
56520K	•	156530К	 XM_060957	LOC128372	TMD0888	
56540K 56550K 56560K	· ·	156540K 156550K . 156560K	XM 060958	LOC128373		
36570K		156570K-	XM_060959	LOC128374	TMD0890	
36590K	SHGC-145	156590K-	NM_002432.1	MNDA	<i>:</i>	
5661 0 K	RH17742 0152383	13002413	.1111_002.124.1	;		
56630K		156630K				
36650K 36660K 36670K		156650K- 156660K- 156670K-	 VM 000410	LOC149629		
5668•K		156680K	XM_089418	LOC 147029		
56700K		156700K				
56720K	-G16240	156720K				

WO 03/089583

Fig. 3

XM_062147

XM_061676

FIG. 4

Fig. 5t

Fig. 6

FigIA

FigitB

	Fig. 8
	311
XM 061785	
XM_061784	149
10/100 TNIV	323
081180_MX	
XM_061779	314

BNSDOCID: <WO____03089583A2_1_>

Fig. 9A

Fig. 9B

Fig. 10

FIG. 12

	24		24		24		24		24		24		. 42
	23 2	•	23		23	• ;	23	:	23		23	-	33
	22 2		22		22		22		22		22		22
	21 2		21	; •	21		21		21		21		77
	20 2		20 2	,	70		70		20		20		20
	19 2	1 3 2 3 3 3 3 3	19 2		19		19		19		19	· · · · · · · · · · · · · · · · · · ·	19
	18 1			•	18		81		18		18	· · · · <u>· :</u>	∞ ≃
ı	17 1		17 18		17		17		17		15 16 17 18		12
j					16		16		16		16		16
4	15 16		15 16		15		15		15		15	1	13
	14 1		14 1		14		14	1	4				14
		2. 7.	13 1		13		13		13	X.	13 14		13 13
	11 12 13				12		12		12				12
	1		11 12						-		1 12		
		10	10 11		10		10		10 1		10 11		10 · 11
	9 10)				Ì						A E
	8		6		6.		6		6		6		်
	7		∞		∞ .		∞ .		00		00		. ∞
	9		2 9		7		_		7		7		7
	\$		8		5 6		9 :	·	9		9 :		9
à	-	ý	-		-		\ \frac{1}{2}		ν.		•		; v i
	γ (C)		ω ,		7		4	r i	4		4		. प
ni.	7	•	7				8		(C)		m		m
				. 3	7	. \	7		7		7		7
111	į	116 1 :					² 1 2		. ••••••		 .	1111	
					į.		1 ,,,					1111	
TMD0077		TMD0233		TMD0256		TMD0258	, ,	TMD0267		TMD0271		TMD0290	
<u>ŏ</u>		D07		D0,) D0,		D0.		D0,		D0.	
<u> </u>		$\sum_{i=1}^{n}$		\mathbf{Z}		\mathbf{X}		\mathbf{Z}		Ξ		Ĭ.	
										[<u></u>	

FIG. 12B

TMD0530										V											2			
TMD0574	MIII	-	2	3	4	5	9	∞ /	6		10 1	1 12	2 13	3 14	15	16	17	7 18	19	20	21	22	23	24
TMD0608	DII	7	8	4	5	9.	7	∞ .	6	01		12	13	7	15	16	17	8 0 1 0 3 0	19	20	21	72	23	24
	e s work does		7	9	4	2	9	∞ ;	6	12		1	2 13	7	12	19	17	18	19	20	77	22	23	24
TMD0639		• •								٠		•				•		•	: :	:	5	, ! # e	· : :	41
			7	c	4	2	9	7 8	9		10 1	1 12	2	3 14		15 16		17 18	19	20	21	22	23	24
TMD0645	111		. [1				·				1	;	1			1 :	
	o chance water.		7	m	4		7	∞ ;	:	6	10	1	12 1	orio Const	4	. S 1(16 17	7 18	19	20	21	22	23	24
TMD0674										19					•	B ;:	ť		ï			4	i	
] _	. 7	m	4	5	9		∞ ∞	6	10	-	12 1	13 1	14 1	15 1	16 1	17 1	18 19		20 21	1 22	2 23	24
TMD0675		۶ د د	r				:				! • ` `.						5 .							
	•	_	. 7	3	4	S	. 9	~	· 55		10	1 1	2 1	13 1	14 1	2	16	17 1	18	19 20	0	7	22 23	24

16U 200 PCT FINAL.ST25 · SEQUENCE LISTING

SEQUENCE DISTING	
<110> OriGene Technologies, Inc	
<120> TISSUE SPECIFIC GENES AND GENE CLUSTERS	
<130> 16U 200 PCT	
<150> US 60/372,669 <151> 2002-04-16	
<150> US 60/411,882 <151> 2002-09-20	
<150> US 60/424,336 <151> 2002-11-07	
<150> US 60/374,823 <151> 2002-04-24	
<150> US 60/376,558 <151> 2002-05-01	
<150> US 60/381,366 <151> 2002-05-20	
<150> US 60/403,648 <151> 2002-08-16	
<160> 344	
<170> PatentIn version 3.1	
<210> 1	
<211> 795 <212> DNA <213> Homo sapiens	
<220>	
<221> CDS <222> (1)(795)	
<223>	
<400> 1 atg gag cgg gtc aat gag act gtg gtg aga gag gtc atc ttc ctc ggc	48
Met Glu Arg Val Asn Glu Thr Val Val Arg Glu Val Ile Phe Leu Gly 1 5 10	
tte tea tee etg gee agg etg eag etg ete ttt gtt ate tte etg	96
Phe Ser Ser Leu Ala Arg Leu Gln Gln Leu Leu Phe Val Ile Phe Leu 20 25 30	
ctc ctc tac ctg ttc act ctg ggc acc aat gca atc atc att tcc acc	144
Leu Leu Tyr Leu Phe Thr Leu Gly Thr Asn Ala Ile Ile Ile Ser Thr 35 40 45	
att gtc ctg gac agg gcc ctt cat atc ccc atg tac ttc ttc ctt gcc	192
Ile Val Leu Asp Arg Ala Leu His Ile Pro Met Tyr Phe Phe Leu Ala 50 55 60	
ato oto tot tgo tot gag att tgo tao aco tto ato att gta coo aag	240
11e Leu Ser Cys Ser Glu 11e Cys Tyr Thr Phe Ile Ile Val Pro Lys 65 70 75 80	
ato cto ott dac cto cto too cao aad add acc att tot tto cto goo	288
Met Leu Val Asp Leu Leu Ser Gln Lys Lys Thr Ile Ser Phe Leu Gly 85 90 95	
tgt gcc atc caa atg ttt tcc ttc ctc ttc ctt ggc tgc tct cac tcc	336
Cys Ala Ile Gln Met Phe Ser Phe Leu Phe Leu Gly Cys Ser His Ser 100 105 110	
ttt ctg ctg gca gtc atg ggt tat gat cgt tac ata gcc atc tgt aac	384
Phe Leu Leu Ala Val Met Gly Tyr Asp Arg Tyr Ile Ala Ile Cys Asn 115 120 125	
cca ctg cgc tac tca gtg cta atg gga cat ggg gtg tgt atg gga cta	432
Pro Leu Arg Tyr Ser Val Leu Met Gly His Gly Val Cys Met Gly Leu 130 135 140	

16U 200 PCT FINAL.ST25

								ttc Phe								480
								tat Tyr								528
								ctc Leu 185								576
								atg Met								624
								tcc Ser								672
								gga Gly								720
								tat Tyr								768
					ctg Leu			taa								795
<210 <211 <212	l> 2 ?> I	2 264 PRT	sapi	iens												
<212	3> I	101110	Jup.													
			Jup.													
<213)> 2	2	-		Glu	Thr	Val	Val	Arg 10	Glu	Val	Ile	Phe	Leu 15	Gly	
<211 <400 Met 1)> 2 Glu	? Arg	Val	Asn 5				Val Gln 25	10					15		
<211 <400 Met 1)> 2 Glu Ser	Arg Ser	Val Leu 20	Asn 5 Ala	Arg	Leu	Gln	Gln	10	Leu	Phe	Val	11e 30	15 Phe	Leu	
<211 <400 Met 1 Phe	Glu Ser Leu	Arg Ser Tyr 35	Val Leu 20	Asn 5 Ala Phe	Arg	Leu Leu	Gln Gly 40	Gln 25	10 Leu Asn	Leu Ala	Phe	Val Ile 45	Ile 30	15 Phe Ser	Leu	
<400 Met 1 Phe Leu	Ser Leu Val	Arg Ser Tyr 35	Val Leu 20 Leu	Asn 5 Ala Phe	Arg Thr Ala	Leu Leu Leu 55	Gln Gly 40 His	Gln 25 Thr	Leu Asn Pro	Leu Ala Met	Phe Ile Tyr 60	Val Ile 45 Phe	Ile 30 Ile Phe	15 Phe Ser Leu	Leu Thr	
<400 Met 1 Phe Leu Ile	Glu Ser Leu Val 50	Arg Ser Tyr 35 Leu	Val Leu 20 Leu Asp	Asn 5 Ala Phe Arg	Arg Thr Ala Glu 70	Leu Leu Leu 55	Gln Gly 40 His	Gln 25 Thr	Leu Asn Pro	Leu Ala Met Phe 75	Phe Ile Tyr 60	Val Ile 45 Phe Ile	Ile 30 Ile Phe Val	Phe Ser Leu	Leu Thr Ala Lys	
<400 Met 1 Phe Leu Ile 65 Met	Ser Leu Val 50 Leu Leu	2 Arg Ser Tyr 35 Leu Ser	Val Leu 20 Leu Asp Cys	Asn 5 Ala Phe Arg Ser Leu 85	Arg Thr Ala Glu 70 Leu	Leu Leu S5	Gln Gly 40 His Cys	Gln 25 Thr Ile	Leu Asn Pro Thr	Leu Ala Met Phe 75	Phe Ile Tyr 60 Ile	Val Ile 45 Phe Ile	Ile 30 Ile Phe Val	Phe Ser Leu Pro Leu 95	Leu Thr Ala Lys 80	
<400 Met 1 Phe Leu Ile 65 Met	O)> 2 Glu Ser Leu Val 50 Leu Leu	2 Arg Ser Tyr 35 Leu Ser Val	Val Leu 20 Leu Asp Cys Asp	Asn 5 Ala Phe Arg Ser Leu 85	Thr Ala Glu 70 Leu	Leu Leu S55 Ile Ser	Gln Gly 40 His Cys	Gln 25 Thr Ile Tyr Lys	Leu Asn Pro Thr Lys 90	Leu Ala Met Phe 75 Thr	Tyr 60 Ile Ile	Val Ile 45 Phe Ile Ser	Ile 30 Ile Phe Val Phe Ser 110	Phe Ser Leu Pro Leu 95 His	Leu Thr Ala Lys 80 Gly Ser	
<400 Met 1 Phe Leu Ile 65 Met Cys	O> 2 Glu Ser Leu Val 50 Leu Leu	2 Arg Ser Tyr 35 Leu Ser Val	Val Leu 20 Leu Asp Cys Asp Gln 100	Asn 5 Ala Phe Arg Ser Leu 85 Met	Arg Thr Ala Glu 70 Leu Phe	Leu Leu S55 Ile Ser Gly	Gln Gly 40 His Cys Gln Phe	Gln 25 Thr Ile Tyr Lys	Leu Asn Pro Thr Lys 90 Phe	Leu Ala Met Phe 75 Thr Leu	Tyr 60 Ile Ile Ile	Val Ile 45 Phe Ile Ser Cys Alaa	Ile 30 Ile Phe Val Phe Ser 110	Phe Ser Leu Pro Leu 95	Leu Thr Ala Lys 80 Gly Ser	

96

16U 200 PCT FINAL.ST25

Ser Leu Val Phe His Leu Pro Phe Tyr Ser Ser Asn Gln Leu His His 175

Phe Phe Cys Asp 11e Ala Pro Val Leu Lys Leu Ala Ser His His Asn 180

His Phe Ser Gln Ile Val Ile Phe Met Leu Cys Thr Leu Val Leu Ala 205

Ile Pro Leu Leu Leu Ile Leu Val Ser Tyr Val His Ile Leu Ser Ala 210 215 220

Ile Leu Gln Phe ProSer Thr Leu Gly Val Ile Ala Lys Arg Lys Phe225230235240

His Asn Ser Asp Asp Phe Ser His Tyr Asn Ser Phe Gln Asp Pro Pro 245 250 255

Val Asn Lys Ser Leu Leu Ile Asp

<210> 3 <211> 32 <212> DNA <213> Homo sapiens <400> 3

ggtcaatgag actgtggtga gagaggtcat ct

<210> 4 <211> 31 <212> DNA <213> Homo sapiens <400> 4 ctatcactcc cagtgtggaa ggaaactgaa g

tatcactcc cagtgtggaa ggaaactgaa g 31

<210> 5 <211> 50 <212> DNA <213> Homo sapiens

ctctttcaga tttaaatggg ccagacttag ttttatgtgg tgcagacatt 50

<210> 6 <211> 807 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (1)..(807) <223> <400> 6

48

At gec gtt att ege tte age tgg act ete cae act eee atg tat gge 48

Met Ala Val Ile Arg Phe Ser Trp Thr Leu His Thr Pro Met Tyr Gly

1 10 15

ttt cta ttc atc ctt tca ttt tct gag tcc tgc tac act ttt gtc atc Phe Leu Phe Ile Leu Ser Phe Ser Glu Ser Cys Tyr Thr Phe Val Ile 20 25 30

atc cct cag ctg ctg gtc cac ctg ctc tca gac acc aag acc atc tcc 14 Ile Pro Gln Leu Leu Val His Leu Leu Ser Asp Thr Lys Thr Ile Ser 35 40 45

16U 200 PCT FINAL.ST25

										100	200				~ ~	
						cag Gln 55										192
acc Thr 65	aac Asn	tgc Cys	ctc Leu	ctc Leu	att Ile 70	gct Ala	gtg Val	atg Met	gga Gly	tat Tyr 75	gat Asp	cgc Arg	tat Tyr	gta Val	gca Ala 80	240
						tac Tyr										288
						tca Ser										336
						tgt Cys										384
						gac Asp 135										432
						gag Glu										480
						ctg Leu										528
						atc Ile										576
						ctc Leu										624
						cgg Arg 215										672
						acc Thr										720
						agg Arg										768
						gtg Val	Ala					taa				807
<210 <210 <210 <210 <400	1> : 2> : 3> :	7 268 PRT Homo	sap	iens												
Met 1	Ala	Val	Ile	Arg 5	Phe	Ser	Trp	Thr	Leu 10	His	Thr	Pro	Met	Tyr 15	Gly	
Phe	Leu	Phe	11e 20	Leu	Ser	Phe	Ser	Glu 25	Ser	Cys	Туг	Thr	Phe 30	ı	1	
Ile	Pro	Gln 35	Leu	Leu	Val	His	Leu 40	Leu	Ser	Asp	Thr	Lys 45	Thr		Ser	
Phe	Met 50	Ala	Cys	Ala	Thr	Gln 55	Leu	Phe	Phe	Phe	Leu 60	Gly	Phe	Ala	Cys	

16U 200 PCT FINAL.ST25

Thr 65	Asn	Cys	Leu	Leu	Ile 70	Ala	Val	Met	Gly	Tyr 75	Asp	Arg	Tyr	Val	Ala 80	
Ile	Cys	His	Pro	Leu 85	Arg	Tyr	Thr	Leu	Ile 90	Ile	Asn	Lys	Arg	Leu 95	Gly	
Leu	Glu	Leu	11e 100	Ser	Leu	Ser	Gly	Ala 105	Thr	Gly	Phe	Phe	Ile 110	Ala	Leu	
Val	Ala	Thr 115	Asn	Leu	Ile	Cys	Asp 120	Met	Arg	Phe	Cys	Gly 125	Pro	Asn	Arg	
Val	Asn 130	His	Tyr	Phe	Cys	Asp 135	Met	Ala	Pro	Val	11e 140	Lys	Leu	Ala	Cys	
Thr 145	Asp	Thr	His	Val	Lys 150	Glu	Leu	Ala	Leu	Phe 155	Ser	Leu	Ser	Ile	Leu 160	
Val	Ile	Met	Val	Pro 165	Phe	Leu	Leu	Ile	Leu 170	Ile	Ser	Туr	Gly	Phe 175	Ile	
Val	Asn	Thr	Ile 180		Lys	Ile	Pro	Ser 185	Ala	Glu	Gly	Lys	Lys 190	Ala	Phe	
Val	Thr	Cys 195		Ser	His	Leu	Thr 200	Val	Val	Phe	Val	His 205	Tyr	Gly	Cys	
Ala	Ser 210		Ile	Tyr	Leu	Arg 215		Lys	Ser	Lys	Ser 220	Ala	Ser	Asp	Lys	
Asp 225		Leu	Val	Ala	Val 230	Thr	Tyr	Thr	Val	Val 235	Thr	Pro	Leu	Leu	Asn 240	
Pro	Leu	Val	Tyr	Ser 245		Arg	Asn	Lys	Glu 250	Val	Lys	Thr	Ala	255	Lys	
Arg	Val	Leu	Gly 260		Pro	Val	Ala	Thr 265		Met	Ser					
<21 <21 <21	1 > 2 >	8 25 DNA														
<21 <40		Homo 8	sap	iens	•											
cca	cct	ictc	tcaç	jacad	ca a	igaco	:									25
<21	.0> .1> .2> .3>	9 27 DNA Homo	sar	oiens	3											
	00> cacca	9 ataa	ttac	ccag	gat q	gctga	agg									. 2
<21 <21	10> 11> 12> 13>	10 50 DNA Homo	o sar	pien:	5											
<40 gad)0> gtgc	10 caaa	tata	ataa	aga (ggtai	tgtt	ca at	tgca	acat	g tt	aaat	gcaa			5
<i>y</i>					y- :		,		-				je 5			

<210> 11 <211> 50 <212> DNA <213> Hom	i No sapiens					
<400> 11 actccttaga	a taaaaaaggg	cagatttatt	aaagaaccct	gatttaatca		50
<210> 12 <211> 498 <212> DNA <213> Hom						
<220> <221> CDS <222> (20 <223>	;)19)(2960)					
<400> 12 gtactccttc	agaatcagag	aattccagct	tccatggttt	acattattca	tcatattcag	60
tcaagtgagg	gcctagtggc	ggttaaaggt	tgattagttg	aaagaagatt	caaatgaaag	120
tcttttggga	aagcaatgag	gcaaggctaa	gcaatgacca	taagtttaga	tttcctcatt	180
gttttgaata	gacaggaaat	catttgtcca	gaaggaggta	ttatgtaggg	aaacttttac	240
ctttctgtat	ataaaaacat	ataactaata	cacacacact	catacacaaa	tatcaatgga	300
ggtatacatt	gtgtttactt	tttctatgtt	tatgtacaat	agtaatatct	ttatagttat	360
actaacgtta	ttaaaataag	taattatatt	aactaagttt	aggaccagtt	tctagtaagt	420
aagaaagaaa	aaaaatcatc	tccaaattct	atgaatagat	ataatgaatt	tcaagaatgc	480
ctgatgaatt	aacttaggat	tcaggaaaca	aaaaaagttg	ctattgaata	gaaaaatgga	540
aaagtaacag	caacaaaatt	ctggtagcag	atgccaataa	tttcccaaga	caaaatgatg	600
tagtaactto	agaagtatat	aaatgaagac	tggataccag	caagacatac	tggatgattt	660
tgtatccaga	tagtgctttt	tttacttatt	aggttgggtt	attgaaaaat	gttccagtga	720
aaaaaattag	gcctaagatg	attttagaaa	taatttgtaa	tggcagtttg	caaaatattt	780
ttagtggcag	aatgttcaaa	agaaatctta	ttaacataac	aacatacaaa	agatacaaag	840
cctatggttt	acagcaggag	aggggaaact	ggcaaaattc	ccaagtgtgc	cattctctct	900
cacactctgt	agcaagctct	gtcatttcta	caaaactctt	atttctctga	gtttctccaa	960
gttagctcag	catggaaaag	tgaagtgtgt	tacaaaatgc	cacaaagtca	gtcatctctc	1020
tttaccaccc	tggtgactat	tctcttcctg	aaagaagaat	ttttttcttt	atactaatgc	1080
actaatgtta	tttattttta	ttttatttta	tttatttatt	tttgagacag	attctcactg	1140
tgtcacccag	tctggagtgc	agaggcacaa	tcttggctca	ctgcaacctc	cgcctcccgg	1200
gctcaagtga	atctcatgcc	tcagcctccc	gagtagctgg	gattacaggt	gtgtgctgcc	1260
atacctggct	aatttttgta	cttttagtaa	agaccaggtt	ttgccatgtt	gccgaggctg	1320
gtcttgaacc	cctggcctca	agcaatccac	ccaccttggc	ttctcaaagt	gctgggatta	1380
caggtgtgag	ccaccacatc	tggctaatgt	tattttttgt	ttcactgttg	actcaatgtt	1440
tcaacttgtg	gaacttccaa	tagtatttct	tattgttccc	ttggagatat	aaaaagttcc	1500
	atgtgtgctc					1560
	ggttggataa					1620
	attctgatca					1680
	tgggtttata					1740

gaaaa	acta	tt a	gcaa	attt	c ct	aatc	cttg	gtc	agag	aga	taac	ctgt	tc t	tcac	attag	1800
agaa	ggcc	tc c	aaac	tggc	t at	cagt	tatt	ctt	ttgc	ata	tttt	gcct	aa t	tctt	ctttt	1860
agca	ggca	tt t	taat	gggg	g aa	tgaa	gaat	tcc	atca	aat	atct	ggaa	at g	cctg	ccacc	1920
tgca	aact	tt g	tgtg	aaat	t tc	ccgt	acat	ttc	cact	ctc	cttt	ctgg	at c	ctgg	tttct	1980
acct	ctgt	cc c	tgac	tctc	c tt	tata	gaag	tgc	tctc	c at Me l	g ga t Gl	g ca u Gl	agt nVa	c aa 1 As 5	t aag n Lys	2036
act (gtg Val	gtg Val	aga Arg 10	gag Glu	ttc Phe	gtc Val	gtc Val	ctc Leu 15	ggc Gly	ttc Phe	tca Ser	tcc Ser	ctg Leu 20	gcc Ala	agg Arg	2084
ctg Leu	Gln	cag Gln 25	ctg Leu	ctc Leu	ttt Phe	gtt Val	atc Ile 30	ttc Phe	ctg Leu	ctc Leu	ctc Leu	tac Tyr 35	ctg Leu	ttc Phe	act Thr	2132
ctg Leu	ggc Gly 40	acc Thr	aat Asn	gca Ala	atc Ile	atc Ile 45	att Ile	tcc Ser	acc Thr	att Ile	gtg Val 50	ctg Leu	gac Asp	aga Arg	gcc Ala	2180
ctt Leu 55	cat His	act Thr	ccc Pro	atg Met	tac Tyr 60	ttc Phe	ttc Phe	ctt Leu	gcc Ala	atc Ile 65	ctt Leu	tct Ser	tgc Cys	tct Ser	gag Glu 70	2228
att Ile	tgc Cys	tat Tyr	acc Thr	ttt Phe 75	gtc Val	att Ile	gta Val	ccc Pro	aag Lys 80	atg Met	ctg Leu	gtt Val	gac Asp	ctg Leu 85	ctg Leu	2276
tcc Ser	cag Gln	aag Lys	aag Lys 90	acc Thr	att Ile	tct Ser	ttc Phe	ctg Leu 95	ggc Gly	tgt Cys	gcc Ala	atc Ile	caa Gln 100	atg Met	ttt Phe	2324
tcc Ser	ttc Phe	ctc Leu 105	ttc Phe	ttt Phe	ggc Gly	tcc Ser	tct Ser 110	cac His	tcc Ser	ttc Phe	ctg Leu	ctg Leu 115	gca Ala	gcc Ala	atg Met	2372
ggc Gly	tat Tyr 120	gat Asp	cgc Arg	tat Tyr	atg Met	gcc Ala 125	atc Ile	tgt Cys	aac Asn	cca Pro	ctg Leu 130	cgc Arg	tac Tyr	tca Ser	gtg Val	2420
ctc Leu 135	atg Met	gga Gly	cat His	ggg G1 y	gtg Val 140	tgt Cys	atg Met	gga Gly	cta Leu	atg Met 145	gct Ala	gct Ala	gcc Ala	tgt Cys	gcc Ala 150	2468
tgt Cys	G) y	ttc Phe	act Thr	gtc Val 155	tcc Ser	ctg Leu	gtc Val	acc Thr	acc Thr 160	tcc Ser	cta Leu	gta Val	ttt Phe	cat His 165	ctg Leu	2516
ccc Pro	ttc Phe	cac His	tcc Ser 170	tcc Ser	aac Asn	cag Gln	ctc Leu	cat His 175	cac His	ttc Phe	ttc Phe	tgt Cys	gac Asp 180	atc Ile	tcc Ser	2564
cct Pro	gtc Val	ctt Leu 185	aaa Lys	ctg Leu	gca Ala	tct Ser	cag Gln 190	cac His	tcc Ser	ggc	ttc Phe	agt Ser 195	cag Gln	ctg Leu	gtc Val	2612
ata Ile	ttc Phe 200	atg Met	ctt Leu	ggt Gly	gta Val	ttt Phe 205	gcc Ala	ttg Leu	gtc Val	att Ile	cct Pro 210	ctg Leu	cta Leu	ctt Leu	atc Ile	2660
cta Leu 215	gtc Val	tcc Ser	tac Tyr	atc Ile	cgc Arg 220	atc Ile	atc Ile	tct Ser	gcc Ala	att Ile 225	cta Leu	aaa Lys	atc Ile	cct Pro	tcc Ser 230	2708
tcc Ser	gtt Val	gga Gly	aga Arg	tac Tyr 235	aag Lys	acc Thr	ttc Phe	tcc Ser	acc Thr 240	tgt Cys	gcc Ala	tcc Ser	cat His	ctc Leu 245	att Ile	2756
gtg Val	gta Val	act Thr	gtt Val 250	cac His	tac Tyr	agt Ser	tgt Cys	gcc Ala 255	Ser	ttc Phe	atc Ile	tac Tyr	tta Leu 260	Arg	CCC Pro	2804
aag Lys	act Thr	aat Asn	tac Tyr	act Thr	tca Ser	agc Ser	caa Gln	gac Asp	acc	cta Leu	ata Ile	tct Ser	gtg Val	tca Ser	tac Tyr	2852

16U 200 PCT FINAL.ST25 265 270 acc atc ctt acc cca ttg ttc aat cca atg att tat agt ctg aga aat Thr Ile Leu Thr Pro Leu Phe Asn Pro Met Ile Tyr Ser Leu Arg Asn 2900 aag gaa tto aaa toa goo ota oga aga aca ato ggo caa act tto tat Lys Glu Phe Lys Ser Ala Leu Arg Arg Thr Ile Gly Gln Thr Phe Tyr 2948 cct ctt agt taa agagctattt tttaaactac taatgcctag tacatgccag 3000 Pro Leu Ser gcagaacgtg tgttttatac atttttttc atttaattgt ccagctccac tgtaacataa 3060 gaacatttta catatgagaa gaatgaggct cacagaagtt aagacagtct ggctttctac 3120 totocatgat actttaacaa gactaatcag atatgggaac agagcacaca gttocataac 3180 aaatttaatt atattttact gotttaaata ttgotaattt aaaaactaat atgagagoaa 3240 agatgcatct aaactgatga gagctgtgtc ttgaagtaga gagcttggat acatcaggaa 3300 3360 aggaaatcca tetateegta ettitetitt eetaaagaca acagaaaact tiggteecae 3420 3480 acattetget acaaatettg gtggteettt ttgteeccaa tteattteet taacetacat attgaaatat cttggccttt acttggggtt gttttgttct tcctttgttt gaggtggaac 3540 cactttatgg ttctcttcct gatgcacatg tatgtccttc acatactagt gtgtcttagc 3600 ccccacattt gttcctgaga caccatacta atttgctctc ttcaaggaag ctactagcat 3660 3720 tgcctacttg ctgaaatatc tcaagtaatt ccaagcaaag ggcttgagtt aatattaata 3780 gaaggctaga ttcctagaat gaccagaaaa ctcatggaaa accctccagt gactcccttt gccctacaag ataatgccaa gggtccttca ttgtcatgaa tctatcatct agtttccacc 3840 tacctcttca gtattatcat ttctaatttt gttattctcc attttctata tgccttttgt 3900 acactetgaa getaaceaac tatttgettg tittaaaaca aataaatgig atgaacaaaa 3960 taaatgtggt ctctgccctc ataggcctta ttgcctggtt caagatagtc ccagtaaaca 4020 gaaaaatgag ggaaaatacc ttaccagttt aagttgattc tctgaagaaa aagtgcatgc 4080 aggcgataga ggagagaata ctaagataaa cctaatttag atcgaatggc atagggttgg 4140 tttcccagag aaactgagag ttaacctgca tgtaacctga agggtaatta aaagtcttca 4200 ggtaaagggg atatccttta ggacagaaga aacaatgtgt acaaaacccc tgaagcaaga 4260 actggatgag ttggagacaa gcaaagaagg cctgtataaa tgctgtttta aaaatgcttt 4320 4380 tcaattgaca aaattatata tatttatggt gtaaaacatg atattttctc ccatcctgta ggttgcctgt tcactctgat ggtattttct tttgctgtgc agaagctctt tagtttaatt 4440 agatoccatt tgtcaatttt ggottttgtt gccattgcct ttggtgttta gacatgaagg 4500 ccttgcccat gcctatgccc tgaatggtac tgcctaggtt ttcttctagg gtttttatgg 4560 4620 ttttaggtct aacatgtaag tcttttatcc atctggaata aatttttgta taaggtgtaa 4680 ggaagggatc cagtttcagc tttctacata tggctagcca gttttcccag caccatttat 4740 taaataggga atcettteee cattlettgt ttttgteaga caaagggeta atateeagaa 4800 tctacaatga actcaaacaa atttacaaga aaaaaacaaa caaccccatc aaaaagtggg caaaggatat gaacagacac ttctcaaaag aagacattta tgcagccaga aaacacatga 4860 4920 aaaaatgctc atcactggcc atcagagaaa tgcaaatcaa aaccacaatg agataccatc tcacaccagt tagaatggcg atcattaaaa agtcaggaaa caacaggtgc gggagaagat 4980

ò

4982

16U 200 PCT FINAL.ST25

gt
<210> 13 <211> 313 <212> PRT <213> Homo sapiens
<400> 13
Met Glu Gln Val Asn Lys Thr Val Val Arg Glu Phe Val Val Leu Gly 1 5 10 15
Phe Ser Ser Leu Ala Arg Leu Gln Gln Leu Leu Phe Val Ile Phe Leu 20 25 30
Leu Leu Tyr Leu Phe Thr Leu Gly Thr Asn Ala Ile Ile Ile Ser Thr 35 40 45
Ile Val Leu Asp Arg Ala Leu His Thr Pro Met Tyr Phe Phe Leu Ala 50 60
Ile Leu Ser Cys Ser Glu Ile Cys Tyr Thr Phe Val Ile Val Pro Lys 65 70 75 80
Met Leu Val Asp Leu Leu Ser Gln Lys Lys Thr Ile Ser Phe Leu Gly 85 90 95
Cys Ala Ile Gln Met Phe Ser Phe Leu Phe Phe Gly Ser Ser His Ser 100 105 110
Phe Leu Leu Ala Ala Met Gly Tyr Asp Arg Tyr Met Ala Ile Cys Asn 115 120 125
Pro Leu Arg Tyr Ser Val Leu Met Gly His Gly Val Cys Met Gly Leu 130 135 140
Met Ala Ala Cys Ala Cys Gly Phe Thr Val Ser Leu Val Thr Thr 145 150 155 160
Ser Leu Val Phe His Leu Pro Phe His Ser Ser Asn Gln Leu His His 165 170 175
Phe Phe Cys Asp Ile Ser Pro Val Leu Lys Leu Ala Ser Gln His Ser 180 185 190
Gly Phe Ser Gln Leu Val Ile Phe Met Leu Gly Val Phe Ala Leu Val 195 200 205
Ile Pro Leu Leu Leu Ile Leu Val Ser Tyr Ile Arg Ile Ile Ser Ala 210 215 220
Ile Leu Lys Ile Pro Ser Ser Val Gly Arg Tyr Lys Thr Phe Ser Thr 225 230 235 240
Cys Ala Ser His Leu Ile Val Val Thr Val His Tyr Ser Cys Ala Ser 245 250 255
Phe Ile Tyr Leu Arg Pro Lys Thr Asn Tyr Thr Ser Ser Gln Asp Thr 260 265 270

```
16U 200 PCT FINAL.ST25
Leu Ile Ser Val Ser Tyr Thr Ile Leu Thr Pro Leu Phe Asn Pro Met
                              280
                                                    285
Ile Tyr Ser Leu Arg Asn Lys Glu Phe Lys Ser Ala Leu Arg Arg Thr
                          295
                                                300
Ile Gly Gln Thr Phe Tyr Pro Leu Ser
<210>
        14
<211> 24
<212> DNA
<213> Homo sapiens
<400> 14
cctgttcact ctgggcacca atgc
                                                                             24
<210> 15
<211> 24
<212> DNA
<213> Homo sapiens
<400> 15
ctggttggag gagtggaagg gcag
                                                                             24
<210>
       16
<211>
        50
<212>
      DNA
<213>
      Homo sapiens
tacctttctg tatataaaaa catataacta atacacaca actcatacac
                                                                             50
<210> 17
<211> 50
<212> DNA
<213> Homo sapiens
<400> 17
cttcagaagt atataaatga agactggata ccagcaagac atactggatg
                                                                             50
<210> 18
<211> 50
<212>
       DNA
<213>
      Homo sapiens
<400> 18
cccttggaga tataaaaagt tcccagtaaa tagatgtgtg ctcacatctt
                                                                             50
<210> 19
<211> 50
<212>
      DNA
<213>
       Homo sapiens
taatactatg taaaaatcca ctggactaga atcagctgtc ctcatgtgcc
                                                                             50
<210> 20
<211> 960
<212> DNA
<213> Homo sapiens
<221> CDS
<222>
       (1)..(960)
<223>
<400> 20
atg aca cag ttg acg gcc agt ggg aat cag aca atg gtg act gag ttc Met Thr Gln Leu Thr Ala Ser Gly Asn Gln Thr Met Val Thr Glu Phe \,
                                                                             48
```

1				5					10	160	200	PCT	FINA	L.ST 15	25	
ctc Leu	ttc Phe	tct Ser	atg Met 20	ttc Phe	ccg Pro	cat His	gcg Ala	cac His 25	aga Arg	ggt Gly	ggc Gly	ctc Leu	tta Leu 30	ttc Phe	ttt Phe	96
att Ile	ccc Pro	ttg Leu 35	ctt Leu	ctc Leu	atc Ile	tac Tyr	gga Gly 40	ttt Phe	atc Ile	cta Leu	act Thr	gga Gly 45	aac Asn	cta L eu	ata Ile	144
atg Met	ttc Phe 50	att Ile	gtc Val	atc Ile	cag Gln	gtg Val 55	ggc Gly	atg Met	gcc Ala	ctg Leu	cac His 60	acc Thr	cct Pro	ttg Leu	tat Tyr	192
ttc Phe 65	ttt Phe	atc Ile	agt Ser	gtc Val	ctc Leu 70	tcc Ser	ttc Phe	ctg Leu	gag Glu	atc Ile 75	tgc Cys	tat Tyr	acc Thr	aca Thr	acc Thr 80	240
acc Thr	atc Ile	ccc Pro	aag Lys	atg Met 85	ctg Leu	tcc Ser	tgc Cys	cta Leu	atc Ile 90	agt Ser	gag Glu	cag Gln	aag Lys	agc Ser 95	att Ile	288
tcc Ser	gtg Val	gct Ala	ggc Gly 100	tgc Cys	ctc Leu	ctg Leu	cag Gln	atg Met 105	tac Tyr	ttt Phe	ttc Phe	cac His	tca Ser 110	ctt Leu	ggt Gly	336
atc Ile	aca Thr	gaa Glu 115	agc Ser	tgt Cys	gtc Val	ctg Leu	aca Thr 120	gca Ala	atg Met	gcc Ala	att Ile	gac Asp 125	agg Arg	tac Tyr	ata Ile	384
gct Ala	atc Ile 130	tgc Cys	aat Asn	cca Pro	ctc Leu	cgt Arg 135	tac Tyr	cca Pro	acc Thr	atc Ile	atg Met 140	att Ile	ccc Pro	aaa Lys	ctt Leu	432
tgt Cys 145	atc Ile	cag Gln	ctg Leu	aca Thr	gtt Val 150	gga Gly	tcc Ser	tgc Cys	ttt Phe	tgt Cys 155	ggc Gly	ttc Phe	ctc Leu	ctt Leu	gtg Val 160	480
ctt Leu	cct Pro	gag Glu	att Ile	gca Ala 165	tgg Trp	att Ile	tcc Ser	acc Thr	ttg Leu 170	cct Pro	ttc Phe	tgt Cys	ggc Gly	tcc Ser 175	aac Asn	528
cag Gln	atc Ile	cac His	cag Gln 180	ata Ile	ttc Phe	tgt Cys	gat Asp	ttc Phe 185	aca Thr	cct Pro	gtg Val	ctg Leu	agc Ser 190	ttg Leu	gcc Ala	576
tgc Cys	aca Thr	gat Asp 195	Thr	ttc Phe	cta Leu	gtg Val	gtc Val 200	att Ile	gtg Val	gat Asp	gcc Ala	atc Ile 205	cat His	gca Ala	gcg Ala	624
gaa Glu	att Ile 210	Val	gcc Ala	tcc Ser	ttc Phe	ctg Leu 215	gtc Val	att Ile	gct Ala	cta Leu	ser 220	tac Tyr	atc Ile	cgg Arg	att Ile	672
att Ile 225	Ile	gtg Val	att Ile	ctg Leu	gga Gly 230	atg Met	cac His	tca Ser	gct Ala	gaa Glu 235	ggt Gly	cat His	cac His	aag Lys	gcc Ala 240	720
ttt Phe	tcc Ser	acc	tgt Cys	gct Ala 245	Ala	cac His	ctt Leu	gct Ala	gtg Val 250	Phe	ttg Leu	cta Leu	ttt Phe	ttt Phe 255	ggc Gly	768
agt Ser	gtg Val	gct Ala	gtc Val 260	Met	tat Tyr	ttg Leu	aga Arg	ttc Phe 265	Ser	gcc Ala	acc Thr	tac Tyr	Ser 270	Val	ttt Phe	816
tgg Trp	gac Asp	aca Thr 275	Ala	att Ile	gct Ala	gtc Val	act Thr 280	Phe	gtt Val	ato	ctt Leu	gct Ala 285	Pro	ttt Phe	ttc Phe	864
aac Asn	ccc Pro 290	Ile	atc	tat Tyr	agc Ser	ctg Leu 295	Lys	aac Asn	aag Lys	gac Asp	ato Met 300	: Lys	gag Glu	gcț Ala	att	912
gga G1y 305	Arg	ctt Leu	ttc Phe	cac His	tat Tyr 310	Gln	aag Lys	agg Arg	gct Ala	ggt Gly 315	Trp	g gct Ala	999 Gly	aaa Lys	tag	960

<210> 21

(211> 319

<212> PRT

<213> Homo sapiens

<400> 21

Met Thr Gln Leu Thr Ala Ser Gly Asn Gln Thr Met Val Thr Glu Phe 1 5 10 15

Leu Phe Ser Met Phe Pro His Ala His Arg Gly Gly Leu Leu Phe Phe 20 30

Ile Pro Leu Leu Ile Tyr Gly Phe Ile Leu Thr Gly Asn Leu Ile 35 40 45

Met Phe Ile Val Ile Gln Val Gly Met Ala Leu His Thr Pro Leu Tyr 50 60

Phe Phe Ile Ser Val Leu Ser Phe Leu Glu Ile Cys Tyr Thr Thr 65 70 75 80

Thr Ile Pro Lys Met Leu Ser Cys Leu Ile Ser Glu Gln Lys Ser Ile 85 90 95

Ser Val Ala Gly Cys Leu Leu Gln Met Tyr Phe Phe His Ser Leu Gly 100 105 110

Ile Thr Glu Ser Cys Val Leu Thr Ala Met Ala Ile Asp Arg Tyr Ile 115 120 125

Ala Ile Cys Asn Pro Leu Arg Tyr Pro Thr Ile Met Ile Pro Lys Leu 130 135 140

Cys Ile Gln Leu Thr Val Gly Ser Cys Phe Cys Gly Phe Leu Leu Val 145 150 160

Leu Pro Glu Ile Ala Trp Ile Ser Thr Leu Pro Phe Cys Gly Ser Asn 165 170 175

Gln Ile His Gln Ile Phe Cys Asp Phe Thr Pro Val Leu Ser Leu Ala . 180 185 190

Cys Thr Asp Thr Phe Leu Val Val 1le Val Asp Ala Ile His Ala Ala 195 200 205

Glu Ile Val Ala Ser Phe Leu Val Ile Ala Leu Ser Tyr Ile Arg Ile 210 215 220

Ile Ile Val Ile Leu Gly Met His Ser Ala Glu Gly His His Lys Ala 225 230 240

Phe Ser Thr Cys Ala Ala His Leu Ala Val Phe Leu Leu Phe Phe Gly

Ser Val Ala Val Met Tyr Leu Arg Phe Ser Ala Thr Tyr Ser Val Phe 260 265 270

Trp Asp Thr Ala Ile Ala Val Thr Phe Val Ile Leu Ala Pro Phe Phe 275 280 285

Asn Pro Ile Ile Tyr Ser Leu Lys Asn Lys Asp Met Lys Glu Ala Ile 290 295 300	
Gly Arg Leu Phe His Tyr Gln Lys Arg Ala Gly Trp Ala Gly Lys 305 310 315	
<210> 22 <211> 24 <212> DNA <213> Homo sapiens	
<400> 22 ctctatgttc ccgcatgcgc acag	24
<210> 23 <211> 27 <212> DNA <213> Homo sapiens	
<400> 23 gcaaggtgga aatccatgca atctcag	27
<210> 24 <211> 50 <212> DNA <213> Homo sapiens	
<400> 24 agacagacgt taaaaaatga ccaaacctac agaaaatatt tccagataat	50
<210> 25 <211> 900 <212> DNA <213> Homo sapiens	
<220> <221> CDS <222> (1)(900) <223>	
<400> 25 atg atc acc gag ttc atc ctt ata ggc ttc tca aac ctg ggg gat ctg Met Ile Thr Glu Phe Ile Leu Ile Gly Phe Ser Asn Leu Gly Asp Leu 1 5 10 15	48
cag atc ctt ctc ttc ttt atc ttc cta tta gtc tac ctg acc act ctg Gln Ile Leu Leu Phe Phe Ile Phe Leu Leu Val Tyr Leu Thr Thr Leu 20 25 30	96
atg gcc aac acc acc atc atg aca gtc att cac ctg gac agg gct ttg Met Ala Asn Thr Thr Ile Met Thr Val Ile His Leu Asp Arg Ala Leu 35 40 45	144
Cac act cct atg tac ttc ttc ctc ttt gtc ctt tca tgt tct gaa acc His Thr Pro Met Tyr Phe Phe Leu Phe Val Leu Ser Cys Ser Glu Thr 50 60	192
tgc tac acc ttg gtc att gta ccc aaa atg ctt acc aac ctg cta tcc Cys Tyr Thr Leu Val Ile Val Pro Lys Met Leu Thr Asn Leu Leu Ser 65 70 75 80	240
gca att cca act att tct ttc tct gga tgt gtg gtc cag ctc tat tta Ala Ilė Pro Thr Ile Ser Phe Ser Gly Cys Val Val Gln Leu Tyr Leu 85 90 95	288
ttt gtg ggc ttg gct tgt acc aac tgt ttt ctc att gct gtg atg ggc Phe Val Gly Leu Ala Cys Thr Asn Cys Phe Leu Ile Ala Val Met Gly 100 105 110	∵ 336
tac gat cgc tat gtt gcc atc tgc aac ccc ctt aac tac aca ctc att Tyr Asp Arg Tyr Val Ala Ile Cys Asn Pro Leu Asn Tyr Thr Leu Ile 115 120 125	384
ctg gtt cta gcc tcc agc ttt tgt ggc ttc ctg act tct gtg att gtc Page 13	432

Leu		Leu	Ala	Ser	Ser	Phe	Cys	Gly	Phe	Leu	200 Thr 140	PCT Ser	FINA Val	L.ST Ile	25 Val	
aat Asn	130 atc Ile	ctg Leu	gtg Val	ttc Phe	agt Ser	135 gtg Val	ctc Leu	ctc Leu	tgt Cys	gcc Ala	tcc	aat Asn	cgg Arg	atc Ile	ASII	480
145					150					155					160	5.20
cac His	ttt Phe	ttc Phe	tgt Cys	gac Asp 165	att Ile	tcc Ser	cct Pro	gtc Val	ata Ile 170	aaa Lys	ctg Leu	Gly Gly	tgc Cys	aca Thr 175	gac Asp	528
acc Thr	aac Asn	ctg Leu	aag Lys 180	gag Glu	atg Met	gtc Val	atc Ile	ttt Phe 185	ttc Phe	ctc Leu	agc Ser	att Ile	ctg Leu 190	gta Val	ttg Leu	576
ctg Leu	gtt Val	ccc Pro 195	ctt Leu	gtg Val	ttg Leu	ata Ile	ttc Phe 200	atc Ile	tcc Ser	tac Tyr	atc Ile	ttc Phe 205	ata Ile	gtt Val	tcc Ser	624
acc Thr	atc Ile 210	Leu	aag Lys	atc Ile	tcc Ser	tca Ser 215	gtg Val	gaa Glu	gga Gly	cag Gln	tgc Cys 220	Lys	gcc Ala	ttc Phe	gcc Ala	672
acc Thr 225	Cys	gct Ala	tcc Ser	cac His	ctc Leu 230	aca Thr	gtg Val	gtc Val	gtc Val	gtc Val 235	cac His	tat Tyr	ggc Gly	tgt Cys	gct Ala 240	720
tro		atc Ile	tac Tyr	ttg Leu 245	agg Arg	ccc Pro	aca Thr	tcc Ser	ctg Leu 250	tac Tyr	tct Ser	tca Ser	gat Asp	aag Lys 255	gac Asp	768
cgg Arg	cto Leu	gtg Val	gca Ala 260	Val	act Thr	tat Tyr	act Thr	gtg Val 265	11e	act Thr	cca Pro	cta Leu	ctc Leu 270	ASII	ccc Pro	816
ct t Le i	gto Val	tat Tyr 275	Thr	ctg Leu	aga Arg	aat Asn	aaa Lys 280	Glu	gta Val	aag Lys	atg Met	gct Ala 285	Leu	aga Arg	aag Lys	864
gt t Val	ctç Lei 290	ı Gly	aga / Arg	tgc Cys	tta Leu	aat Asn 295	Ser	aaa Lys	act Thr	gta Val	tga	ı				900
<2: <2:	10> 11> 12> 13>	26 299 PRT Homo	o sap	oiens	;											
<4	<00>	26														
Me 1	t Il	e Th	r Glu	ı Phe 5	e Ile	e Leu	Il€	e G13	7 Phe 10	e Ser	ASI	n Lei	ı Gly	/ Asp 15	Leu	
Gl	n Il	e Lei	u L et 20	ı Phe	e Phe	e Ile	Phe	Let 25) Lei	ı Val	Ту	r Le	30	Th	r Leu	
Ме	t Al	a Ası 35	n Th	r Th	r Ile	e Met	Th:	r Val	1 116	e His	s Le	u As 45	p Aro	g Ala	a Leu	
Hi	s Th 50		о ме	t Ty	r Phe	e Phe 55	e Le	u Pho	e Val	l Lev	se 60	r Cy	s Sei	r Gl	u Thr	
Су 65		r Th	r Le	u Va	1 I1 70	e Val	l Pr	o Ly	s Me	t Lei 75	u Th	r As	n Lei		u Ser 80	
Al	a Il	e Pr	o Th	r Il 85	e Se	r Phe	e Se	r Gl	у Су: 90	s Vai	l Va	1 G1	n Le		r Leu	
Ph	ie Va	1 G1	y L e 10	u Al	a Cy	s Th	r As	n Cy 10	s Ph 5	e Le	u Il	e Al	a Va 11	1 Me 0	t Gly	

Tyr	Asp	Arg 115	Tyr	Val	Ala	Ile	Cys 120	Asn	Pro	Leu	Asn	Tyr 125	Thr	Leu	Ile	
Leu	Val 130	Leu	Ala	Ser	Ser	Phe 135	Cys	Gly	Phe	Leu	Thr 140	Ser	Val	Ile	Val	
Asn 145	Ile	Leu	Val	Phe	Ser 150	Val	Leu	Leu	Cys	Ala 155	Ser	Asn	Arg	lle	Asn 160	
His	Phe	Phe	Cys	Asp 165	Ile	Ser	Pro	Val	Ile 170	Lys	Leu	Gly	Cys	Thr 175	Asp	
Thr	Asn	Leu	Lys 180		Met	Val	Ile	Phe 185	Phe	Leu	Ser	lle	Leu 190	Val	Leu	
Leu	Val	Pro 195		Val	Leu	Ile	Phe 200	lle	Ser	Tyr	Ile	Phe 205	Ile	Val	Ser	
Thr	11e 210		Lys	Ile	Ser	Ser 215	Val	Glu	Gly	Gln	Cys 220	Lys	Ala	Phe	Ala	
Thr 225		Ala	Ser	His	Leu 230		Val	Val	Val	Val 235	His	Туr	Gly	Cys	Ala 240	
Ser	Phe	Ile	Tyr	Leu 245		Pro	Thr	Ser	Leu 250	Tyr	Ser	Ser	Asp	Lys 255	Asp	
Arg	Leu	. Val	Ala 260		Thr	Туг	Thr	Val 265	Ile	Thr	Pro	Leu	270	Asn	Pro	
Leu	Val	Tyr 275		. Leu	Arg	Asr	Lys 280	s Glu	val	Lys	Met	Ala 285	a Lev	a Arg	, Lys	
Val	Leu 290		/ Arç	g Cys	Leu	Asr 295		r Lys	Thr	va]	l					
<21 <21 <21 <21	.2>	29 DNA	o saj	piens	;											
		27 atc	ctg	gtgti	ca (gtgt(gctc	с								29
<2: <2:	10> 11> 12> 13>	28 30 DNA Home	o sa	pien:	5											
	00> cctad	28 ccca	gaa	cctt	tct (caga	gcca	tc								3(
<2 <2	10> 11> 12> 13>	29 50 DNA Hom		pien	5											
<4 gt	00> cact	29 ggtg	tat	aagc	acg	cagt	gcaa	ag g	aaat	atta	a aa	ctag	aacc			5
<2 <2	10> 11> 12> 13>	30 50 DNA Hom		pien	s											

<400> 30 tttcttcatt tataacatga gggggcttgg ctagatattt aacagcctgc	50
<210> 31 <211> 50 <212> DNA <213> Homo sapiens	
<400> 31	
gctagatatt taacagcctg cctgtattga ccacttatgc atcaggaaat	50
<210> 32 <211> 50 <212> DNA <213> Homo sapiens	
<400> 32 atttgagtta tgtatatgag agactgggta catcactttt tacttgtttt	50
<210> 33 <211> 5086 <212> DNA <213> Homo sapiens <220> <221> CDS	
<222> (2034)(2972) <223>	
<400> 33 tatccaaatg gtgaaagaga ttctagaaca aggaaagagc tacagcaaag gttttaaatg	60
atatgtcact gaacacattt gatcgatgga aacgcagaac ctaatttaga atttaacagg	120
atcactctgg tgtgttgaga tgaggctaca agtgaacaaa tgcaagtagg gagatctgtt	180
aggagtcaat tacagtaaga ggggagagat aaaagtgact tggaccgagg tggtcaaaca	240
tagtcagttc ctggatatat gagagaaaga tagaaacaag gatgactgca ggagtttagc	300
ttgtcagttg aaagattgca attgccatca tttgtgatgg ggaagactag gggtagagac	360
cccaggagtt cagtttgaga tggctcttcg actcccaaga ggagatgtga gtaggcagtg	420
aaatatatga gtctggagta gcagagaaaa atatcgcctg agatatggat ttagatgtct	480
tcaacacatt tatagtgttt aaagctctgg tattggatgg tatagagcag aggagttgag	540
tttatataga agagaaaaaa aaaagattaa acactgacca tgggcactgt gacattaaaa	600
ggatggggca tggaggagaa actaaagttg gagaatgaga aggaatgact aataagatag	660
aaagtaacca aaagtatagt accccgagaa tcaagtcaag	720
ataaatcaat actgtcaaga aacagatagt ccaagtaagc tgaggaatga gaaatgacca	780
ttggatccag gaaatcttag ataattaatg tctatgagaa aggaggtttt aatggagtgg	840
tggtagtata aatctaatta gagtgggttt aagaagaaac ttaaagagag gcattaaagg	900
caatgcgtat agccgactct tggaagagtt ttcttttagg gacatagaaa gaaatagagc	960
agtggctgtg ggatgagtaa agagaaagaa tttaaggctc ttgcttttt gtttgtttag	1020
tagatgagaa taatagcatg tttttacatt gatagagtat tccatgaaag agctgtataa	1080
tagttagttg tttctctata ctctgtatta caatattagt ttgttaacat caggtgccac	1140
attttatttg tttagtccct gttctaagta taatgcccag agtactgaaa ataatcaatt	1200
attgttacat tgacctcaac acagtagagc atgtatattt aatatctaca gaagcaataa	1260
accagaaaag agcatttgaa gttgatagag ggggaaatgg caggaagaac tgatgaagtg	1320
gccacagtct gaagttgaaa tgcagaaaga tagatttgcc tcctgtcttt ctttggcttt	1380

									_							
tttat	ttac	t ct	aacc	ttct	tat	ttt	gac	tgga	gcto	tc a	accag	tgto	c aa	aaga	aggtc	1440
taaat	tctg	ja cc	taca	tgcc	cct	gaaa	gat	gcta	agcaç	ac (ctgag	ttct	c at	aaaq	ggaat	1500
aggaç	ggaç	jc ag	aagg	gaaa	aca	attg	att	cttt	ggta	igc (cagaa	agtt	cg aa	gaaq	gaaaa	1560
caaat	taaa	aa to	jagaa	atta	gaa	aata	ata	ttca	aaatt	at	atata	ttt	gg to	cagi	tacgg	1620
tatca	aatai	ta tt	atca	igtat	aaa	tgat	gat	ttt	tacct	ta (gatga	acaa	at at	gta	taaat	1680
gttaa	atata	at ac	ctt	ggatt	aga	aata	cct	aaa	tttc	aa	aatct	atai	ta ga	ttc	tattg	1740
agaaa	agtc	aa ct	gggt	taca	gga	tggā	itta	gga	aggco	caa	aaato	gage	tg to	gtta	atcag	1800
ggaa	gact	aa ad	cata	aaggt	gaa	tagt	ctg	aag	gagge	etg	ttgad	agg	aa go	ggca	gggag	1860
ggat	ggaa	tt ga	aaat	gttga	cct	ctca	aaag	cat	ttac	tta	gagg	gctt	ta c	tctg	gaggt	1920
gaga	gaag	gg a	gggc	aataq	g taa	attt	gagg	gtt	gcct	tct	tgtta	agaa	cc c	tata	gttca	1980
actt	tctt	tc c	tatc	cttco	c aca	actto	caca	tct	aggg	aca	tgaai	tggt	ga go	ca a M 1	eı	2036
gac Asp	aca Thr	Gly	aac Asn 5	Trp :	agc (Ser (cag (Gln '	Val	gca Ala 10	gaa Glu	ttc Phe	atc (пе	ttg Leu 15	ggc Gly	ttc Phe	2084
ccc Pro	cat His	ctc Leu 20	cag Gln	ggt (Gly)	gtc (Val (Gln	att Ile 25	tat Tyr	ctc Leu	ttc Phe	ctc Leu	ttg Leu 30	ttg Leu	ctt Leu	ctc Leu	2132
att Ile	tac Tyr 35	ctc Leu	atg Met	act Thr	Val	ttg Leu 40	gga Gly	aac Asn	ctg Leu	ctg Leu	ata Ile 45	ttc Phe	ctg Leu	gtg Val	gtc Val	2180
tgc Cys 50	ctg Leu	gac Asp	tcc Ser	Arg	ctt Leu 55	cac His	aca Thr	ccc Pro	atg Met	tac Tyr 60	cac His	ttt Phe	gtc Val	agc Ser	att Ile 65	2228
ctc Leu	tcc Ser	ttc Phe	tca Ser	gag Glu 70	ctt Leu	GJ y ggc	tat Tyr	aca Thr	gct Ala 75	gcc Ala	acc Thr	atc Ile	cct Pro	aag Lys 80	atg Met	2276
ctg Leu	gca Ala	aac Asn	ttg Leu 85	ctc Leu	agt Ser	gag Glu	aaa Lys	aag Lys 90	acc Thr	att Ile	tca Ser	ttc Phe	tct Ser 95	Gly Ggg	tgt Cys	2324
ctc Leu	ctg Leu	cag Gln 100	atc Ile	tat Tyr	ttc Phe	ttt Phe	cac His 105	tcc Ser	ctt Leu	gga Gly	gcg Ala	act Thr 110	gag Glu	tgc Cys	tat Tyr	2372
Leu	ctg Leu 115	Thr	Ala	atg Met	Ala	Tyr	Asp	Arg	tat Tyr	tta Leu	gcc Ala 125	atc Ile	tgc Cys	cgg Arg	ccc Pro	2420
ctc Leu 130	His	tac Tyr	cca Pro	acc Thr	ctc Leu 135	atg Met	acc Thr	cca Pro	aca Thr	ctt Leu 140	tgt Cys	gca Ala	gag Glu	att Ile	gcc Ala 145	2468
att Ile	ggc Gly	tgt Cys	tgg Trp	ttg Leu 150	gga Gly	ggc Gly	ttg Leu	gct Ala	999 Gly 155	cca Pro	gta Val	gtt Val	gaa Glu	att Ile 160	Ser	2516
ttg Leu	att Ile	tca Ser	cgc Arg 165	ctc Leu	cca Pro	ttc Phe	tgt Cys	ggc Gly 170	Pro	aat Asn	cgc Arg	att Ile	cag Gln 175	пгэ	gtc Val	2564
ttt Phe	tgt Cys	gac Asp 180	Phe	cct Pro	cct Pro	gtg Val	ctg Leu 185	Ser	ttg Leu	gct Ala	tgc Cys	act Thr 190	MSP	acg Thr	tct Ser	2612
ata Ile	aat Asn 195	val	cta Leu	gta Val	gat Asp	ttt Phe 200	Val	ata Ile	aat Asn	tco Sei	tgc Cys 205	гAг	atc Ile	cta Lev	gcc Ala	2660
acc Thr	ttc Phe	ctg Leu	ctg Leu	atc	ctc Leu	tgc Cys	tcc Ser	tat Tyr	gtg Val	Gli	atc lle	ato	tgc Cys	aca Thi	gtg Val	2708

210 215 16U 200 PCT FINAL.ST25 220 225	
ctc aga att ccc tca gct gcc ggc aag agg aag gcc atc tcc acg tgt Leu Arg Ile Pro Ser Ala Ala Gly Lys Arg Lys Ala Ile Ser Thr Cys 230 235 240	2756
gcc tcc cac ttc act gtg gtt ctc atc ttc tat ggg agc atc ctt tcc Ala Ser His Phe Thr Val Val Leu Ile Phe Tyr Gly Ser Ile Leu Ser 250 255	2804
atg tat gtg cag ctg aag aag agc tac tca ctg gac tat gac cag gcc Met Tyr Val Gln Leu Lys Lys Ser Tyr Ser Leu Asp Tyr Asp Gln Ala 260 265 270	2852
ctg gca gtg gtc tac tca gtg ctc aca ccc ttc ctc aac ccc ttc atc Leu Ala Val Val Tyr Ser Val Leu Thr Pro Phe Leu Asn Pro Phe Ile 275 280 285	2900
tac agc ttg cgc aac aag gag atc aag gag gct gtg agg agg cag cta Tyr Ser Leu Arg Asn Lys Glu Ile Lys Glu Ala Val Arg Arg Gln Leu 290 295 300 305	2948
aag aga att ggg ata ttg gca tga gttggggctg agagtaggcc aaggccgggc Lys Arg Ile Gly Ile Leu Ala 310	3002
ctgaggatat ggtggcccca gggatcaaca gtggccagag acgagaaact aaaaattcag	3062
tgcttttcta tgtggggtgg tggagctgca gcaagtgctg actgacttcc agtgttatag	3122
cgaccttcat actgtctgct ggagccacat ttggcttgag accagagact agggaaagta	3182
cacatccctt caacatgatg tagtgcagtg attttcaaaa ctcagatgtt tatgtatcac	3242
acttaggttt tttttaaaat ctgtgtctta cctattatac gtttataggc atttttcaaa	3302
tttacttgac ttaatataaa tatagtcagg catgtcctaa acaaaatgtg attcatgatg	3362
ttttttgtac cacttgcaat catttcatgt ggagaagact ggtacagtag aaaaaagcat	3422
gttttttgaa ctcatatata tctggattta aatcatgttt taftcagtca cttgctaatt	3482
acttaatctt tagaaagtaa cttagcatct ctgagtctta atttcattat ttgataatgg	3542
tattttcttg aagagtgttt tgaatattaa cgttaagatt tgtaaaccac agtgcacagt	3602
gtctgacatg taggtgatag taaataaata aggacttgtt tttatttatt ttattctgcg	3662
aagacttcac atcattactc tgggtcttag aacaatatct agtaaaacat aaataaacaa	3722
aaatactttc caagtatttt ctccaaagga aaggagcaaa ccagccagaa ggaatacttg	3782
tatagtatac aagtatacta tacttgaaaa gtatagtttg tcacagttct gttctgacaa	3842
gtttcatgta cctgtcttag tggtcctaat atctatggcc agtataatgt atgaaagtat	3902
aggagttgag tcagtggaaa gaaataggat tactttttac atcgaaccat ttctttattg	3962
aattgtaagc taattatttc ctgaaacgtg tgaaaaataa ttctaaaatg tagcatatga	4022
gagatetggg gatteaatta atagetaata ttatgtatte tttatgtate etteeatgaa	4082
tggaggatca aatattaact acaagaaatc tttgaattct atagaacttc ctaagaagat	4142
tacaaaatat ttttaatacc acacttttaa aggtattcat ccatccatgc attcaaatta	4202
acacgtttat ttagctctta ctatatatca gatgcagtgt caactctaca aaagcaatga	4262
acaagacata tatatgtcca ggtcctacct ttagggtgtt ttaaaagagt tgagaatata	4322
aatattaaaa ttataattaa tttataatta gttataatta attataattg tgggaagtag	4'382
tattaagata aacatgcatt ctccttttt ttcacttgtc tttgaagttt attgagaatt	4442
ttaagcagat aaatgttttt acattaaata atcaccagga attcaaaata ttatactcta	4502
tcaaatggga acttgaattg ttctatttat atatgtagca ttctatttat aaatatattt	4562
catttagtgt ttcatctaga ataaaaatga caagaaataa aattattaaa aacaagttgt	4622

gtttgacttt	tggtaaaatt	ttttgtcctg	gacatttttg	atgactaagt	atcactaaat	4682
ctatgctagg	taaatttgcc	cctattattt	tctttttat	tttattttat	tttatttcat	4742
tattatttta	tttagggtac	atgtgcacaa	cgtgcaagtt	ttttacatat	gtatacatgt	4802
gccatgttgg	tgtgctgcac	ccattaactc	atcatttagc	attaggagta	tctcctaatg	4862
ctatccctcc	cccatccccc	aaccccacaa	cagtccccag	tgtgtgatgt	teceettete	4922
aatatcatac	tgaatgggca	aaaactggaa	gcattccctt	tgaaaacggg	cacaagacag	4982
ggatgccctc	tctcaccact	cctattcaac	atagtgtttg	atgttctggc	cagggcaatc	5042
aggtaggaga	aggaaattaa	gggtgttcaa	ttaggaaaag	agga		5086

<210> 34

<211> 312

<212> PRT

<213> Homo sapiens

<400> 34

Met Asp Thr Gly Asn Trp Ser Gln Val Ala Glu Phe Ile Ile Leu Gly 1 5 10

Phe Pro His Leu Gln Gly Val Gln Ile Tyr Leu Phe Leu Leu Leu 20 30

Leu Ile Tyr Leu Met Thr Val Leu Gly Asn Leu Leu Ile Phe Leu Val 35 40 45

Val Cys Leu Asp Ser Arg Leu His Thr Pro Met Tyr His Phe Val Ser 50 55 60

Ile Leu Ser Phe Ser Glu Leu Gly Tyr Thr Ala Ala Thr Ile Pro Lys 65 70 75 80

Met Leu Ala Asn Leu Leu Ser Glu Lys Lys Thr Ile Ser Phe Ser Gly 85 90 95

Cys Leu Leu Gl
n 11e Tyr Phe Phe His Ser Leu Gly Ala Thr Glu Cys 100
 $105\,$ 110

Tyr Leu Leu Thr Ala Met Ala Tyr Asp Arg Tyr Leu Ala Ile Cys Arg 115 120 125

Pro Leu His Tyr Pro Thr Leu Met Thr Pro Thr Leu Cys Ala Glu Ile 130 135 140

Ala Ile Gly Cys Trp Leu Gly Gly Leu Ala Gly Pro Val Val Glu Ile 145 150 155 160

Ser Leu Ile Ser Arg Leu Pro Phe Cys Gly Pro Asn Arg Ile Gln His 165 170 175

Val Phe Cys Asp Phe Pro Pro Val Leu Ser Leu Ala Cys Thr Asp Thr 180 185 190

Ser Ile Asn Val Leu Val Asp Phe Val Ile Asn Ser Cys Lys Ile Leu 195 200 205

Ala Thr Phe Leu Leu Ile Leu Cys Ser Tyr Val Gln Ile Ile Cys Thr 210 215 220

Val Leu Arg Ile Pro Ser Ala Ala Gly Lys Arg Lys Ala Ile Ser 225 230 235	Thr 240
Cys Ala Ser His Phe Thr Val Val Leu Ile Phe Tyr Gly Ser Ile 1 245 250 255	Leu
Ser Met Tyr Val Gln Leu Lys Lys Ser Tyr Ser Leu Asp Tyr Asp (260 265 270	51 n
Ala Leu Ala Val Val Tyr Ser Val Leu Thr Pro Phe Leu Asn Pro 1 275 280 285	Phe
Ile Tyr Ser Leu Arg Asn Lys Glu Ile Lys Glu Ala Val Arg Arg (290 295 300	Gln
Leu Lys Arg Ile Gly Ile Leu Ala 305 310	
<210> 35 <211> 29 <212> DNA	
<213> Homo sapiens	
<400> 35 ggaactggag ccaggtagca gaattcatc	29
<210> 36 <211> 25	
<212> DNA	
<213> Homo sapiens	
<400> 36 ggagcagagg atcagcagga aggtg	25
<210> 37 <211> 50	
<212> DNA	
<213> Homo sapiens	
<400> 37 acactgcagt tatatagggt ggcccaggta gttgagctgg tgaaatttga	50
was years and a supplied the su	
<210> 38	
<211> 50 <212> DNA	
<213> Homo sapiens	
<400> 38	
gcactgtgac attaaaagga tggggcatgg aggagaaact aaagttggag	50
<210> 39	
<211> 50	
<212> DNA <213> Homo sapiens	
<400> 39 attcaaatta tatatatttg gtccagtacg gtatcaatat attatcagta	50
<210> 40	•
<211> 848 <212> DNA	:
<213> Homo sapiens	
<220>	
<221> CDS	
<222> (6)(848)	

<400> 40 gaatc atg ga Met As 1	gt cat aac t er His Asn T		ln Ser Ph	
ggt ttc acc Gly Phe Thr				
cta tgc atc Leu Cys Ile				
ctg agg tgt Leu Arg Cys 50				
tgc tcc aag Cys Ser Lys 65				
tat gtc ttt Tyr Val Phe 80				
atg gca ctg Met Ala Leu				
gca ctc atg Ala Leu Met		Arg Leu	Ala Gly	
gtg gct ggc Val Ala Gly 130				
ctg ccc ttc Leu Pro Phe 145				
cca cta atg Pro Leu Met 160				
cat ggc aca His Gly Thr				Ile
ttg gga ctc Leu Gly Leu		Ala Val	Leu Lys	
gct gcc agt Ala Ala Ser 210				
gtg gtg gca Val Val Ala 225				
cct ggg agt Pro Gly Ser 240				
gcc ctt att Ala Leu Ile				Asn
aag gag ctc Lys Glu Leu				848
<210> 41 <211> 280 <212> PRT				

<213> Homo sapiens

<400> 41

Met Asp His Val Ser His Asn Trp Thr Gln Ser Phe Ile Leu Ala Gly 1 5 10 15

Phe Thr Thr Gly Thr Leu Gln Pro Leu Ala Phe Leu Gly Thr Leu $20 \hspace{1cm} 25 \hspace{1cm} 30 \hspace{1cm}$

Cys Ile Tyr Leu Leu Thr Leu Ala Gly Asn Ile Leu Ile Ile Val Leu $35 \hspace{1cm} 40 \hspace{1cm} 45$

Arg Cys Gly Met Ser Ala Pro Gln Cys Pro Cys Cys Cys Thr Pro Cys 50 60

Ser Lys Gly Val His Pro Ser His Gln Leu Tyr Ala Leu Phe Ser Tyr 65 70 75 80

Val Phe His Ser Leu Gly Met Thr Glu Cys Tyr Leu Leu Gly Val Met 85 90 95

Ala Leu Asp Ser Tyr Leu Ile Ile Cys His Pro Leu His Tyr His Ala $100 \hspace{1.5cm} 105 \hspace{1.5cm} 110$

Leu Met Ser Arg Gln Val Gln Leu Arg Leu Ala Gly Ala Ser Trp Val 115 120 125

Ala Gly Phe Ser Ala Ala Leu Val Pro Ala Thr Leu Thr Ala Thr Leu 130 135 140

Pro Phe Cys Leu Lys Glu Val Ala His Tyr Phe Cys Asp Leu Ala Pro 145 150 155 160

Leu Met Arg Leu Ala Cys Val Asp Thr Ser Trp His Ala Arg Ala His 165 170 175

Gly Thr Val Ile Gly Val Ala Thr Gly Cys Asn Phe Val Leu Ile Leu $180 \hspace{1cm} 195 \hspace{1cm}$

Gly Leu Tyr Gly Gly Ile Leu Asn Ala Val Leu Lys Leu Pro Ser Ala 195 200 205

Ala Ser Ser Ala Lys Ala Phe Ser Thr Cys Ser Ser His Val Thr Val 210 215 220

Val Ala Leu Phe Tyr Ala Ser Ala Phe Thr Val Tyr Val Gly Ser Pro 225 230 235 240

Gly Ser Arg Pro Glu Ser Thr Asp Lys Leu Val Ala Leu Val Tyr Ala 245 250 255

Glu Leu Leu Tyr Cys Phe Leu Cys 275 280

<210> 42

<211> 26

<212> DNA

								1	6U Z	00 P	CIF	TIANT	312		
<213>	Homo	sapie	ens												
<400> tcacca	42 ccac t	gggad	cccta	a caa	cct										26
<210> <211> <212> <213>	43 23 DNA Homo	sapi	ens												
<400> ggccac	43 acca a	tcac	tgtg	c car	ŧ										23
<210> <211> <212> <213>	44 50 DNA Homo	sapi	ens												
<400> caatct	44 gtta t	ttat	acgg	c ct	ctac	atcc	atc	cagt	acc	tgct	tatg	ta			50
<210> <211> <212> <213>	45 50 DNA Homo	sapi	ens												
<400> gttctc	45 tttt t	ataa	aagg	c ta	tgtg	ggac	ttg	caaa	act	tcta	gtgg	cc			50
<210><211><211><212><213>	46 50 DNA Homo	sapi	ens												
<400> gaacat	46 gaaa 1	tataa	igtag	g gg	agta	tctt	ggg	gtag	aaa	ggat	gccg	ag			50
<210> <211> <212> <213>	47 1476 DNA Homo	sapi	ens												
<220> <221> <222> <223>	CDS (1).	. (147	76)												
<400> atg gt Met Va 1	47 c acc al Thr	gaa Glu	ttc Phe 5	ctg Leu	ttg Leu	ctg Leu	ggt Gly	ttt Phe 10	tcc Ser	agc Ser	ctt Leu	ggt Gly	gaa Glu 15	att Ile	48
cag ct Gln L e	g gcc eu Ala	ctc Leu 20	ttt Phe	gta Val	gtt Val	ttt Phe	ctt Leu 25	ttt Phe	ctg Leu	tat Tyr	cta Leu	gtc Val 30	att Ile	ctt Leu	96
agt go Ser G	gc aat ly Asn 35	gtc Val	acc Thr	att Ile	atc Ile	agt Ser 40	gtc Val	atc Ile	cac His	ctg Leu	gat Asp 45	aaa Lys	agc Ser	ctc Leu	144
cac ac His Tl	nr Pro	atg Met	tac Tyr	ttc Phe	ttc Phe 55	ctt Leu	ggc Gly	att Ile	ctc Leu	tca Ser 60	aca Thr	tct Ser	gag Glu	acc Thr	192
ttc to Phe Ty 65	ac acc yr Thr	ttt Phe	gtc Val	att Ile 70	cta Leu	ccc Pro	aag Lys	atg Met	ctc Leu 75	atc Ile	aat Asn	cta Leu	Leu	tct Ser 80	240
gtg g Val A	cc agg la Arg	aca Thr	atc Ile 85	tcc Ser	ttc Phe	aac Asn	tgt Cys	tgt Cys 90	gct Ala	ctt Leu	caa Gln	atg Met	ttc Phe 95	ttc Phe	288
ttc c Phe L	tt ggt eu Gly	ttt Phe	gcc Ala	att Ile	acc Thr	aac Asn	tgc Cys	ctg Leu	cta Leu	Leu	GIA	Val	atg Met	ggt Gly	336
											Page	د ع			

			100					105		1 6U	200	PCT	FINA 110	AL.ST	r25	
										ctg Leu						384
										gct Ala						432
										tta Leu 155						480
										ttc Phe						528
										gtt Val						576
										ccc Pro						62 4
										ctg Leu						672
										gcc Ala 235						720
										atc Ile						768
										gtg Val						816
										tat Tyr						864
										ggc Gly						912
										att Ile 315						960
atc Ile	aac Asn	tta Leu	ttc Phe	tct Ser 325	gta Val	ttc Phe	agg Arg	aca Thr	ctc Leu 330	tcc Ser	ttt Phe	gtg Val	agt Ser	tgt Cys 335	gcc Ala	1008
										gtc Val						1056
										gcc Ala						1104
										tgt Cys						1152
act Thr 385	tgt Cys	att Ile	att Ile	agt Ser	ggc Gly 390	ttc Phe	cta Leu	ata Ile	tct Ser	ctg Leu 395	gtg Val	gga Gly	aca Thr	Thr	ttt Phe ,400	1200
										aag Lys						1248
tgt	gat	att	tca	cca	gtt	atc	cgt	ctc	gcc	tgt		gac Page		tac	atc	1296

WO 03/089583 PCT/US03/11497

			16U 200 PCT FINA	L.ST25
Cys Asp Ile	Ser Pro Val Ile 420	e Arg Leu Ala 425	Cys Ala Asp Ser 430	Tyr Ile
			ttg gtg ctt gtt Leu Val Leu Val 445	
		Tyr Gly Phe	att gtc cgc acc Ile Val Arg Thr 460	
			gcc ttc tcc acc Ala Phe Ser Thr 475	
	att gta gtc att Ile Val Val Ile 485			1476
<210> 48 <211> 491 <212> PRT <213> Homo	sapiens			
<400> 48				
Met Val Thr 1	Glu Phe Leu Leu 5	Leu Gly Phe 10	Ser Ser Leu Gly	Glu Ile 15
Gln Leu Ala	Leu Phe Val Val 20	Phe Leu Phe 25	Leu Tyr Leu Val 30	Ile Leu
Ser Gly Asn 35	Val Thr Ile Ile	e Ser Val Ile 40	His Leu Asp Lys 45	Ser Leu

His Thr Pro Met Tyr Phe Phe Leu Gly Ile Leu Ser Thr Ser Glu Thr 50 55 60

Phe Tyr Thr Phe Val Ile Leu Pro Lys Met Leu Ile Asn Leu Leu Ser 65 70 75 80

Val Ala Arg Thr Ile Ser Phe Asn Cys Cys Ala Leu Gln Met Phe Phe 85 90 95

Phe Leu Gly Phe Ala Ile Thr Asn Cys Leu Leu Gly Val Met Gly 100 105 110

Tyr Asp Arg Tyr Ala Ala Ile Cys His Pro Leu His Tyr Pro Thr Leu 115 120 125

Met Ser Trp Gln Val Cys Gly Lys Leu Ala Ala Ala Cys Ala Ile Gly 130 135 140

Gly Phe Leu Ala Ser Leu Thr Val Val Asn Leu Val Phe Ser Leu Pro 145 150 155 160

Phe Cys Ser Ala Asn Lys Val Asn His Tyr Phe Cys Asp Ile Ser Ala 165 170 175

Val Ile Leu Leu Ala Cys Thr Asn Thr Asp Val Asn Glu Phe Val Ile 180 185 190

Phe Ile Cys Gly Val Leu Val Leu Val Pro Phe Leu Phe Ile Cys 195 200 205

Val Ser Tyr Leu Cys Ile Leu Arg Thr Ile Leu Lys Ile Pro Ser Ala 210 215 220

Glu Gly Arg Arg.Lys Ala Phe Ser Thr Cys Ala Ser His Leu Ser Val 225 230 235 240

Val Ile Val His Tyr Gly Cys Ala Ser Phe Ile Tyr Leu Arg Pro Thr $245 \hspace{1.5cm} 250 \hspace{1.5cm} 255 \hspace{1.5cm}$

Ile Val Thr Pro Leu Leu Asn Pro Met Val Tyr Ser Leu Arg Asn Lys 275 $$ 280 $$ 285

Asp Val Gln Leu Ala Ile Arg Lys Val Leu Gly Lys Lys Gly Ile Leu 290 295 300

Ser Ile Ser Glu Ile Phe Tyr Thr Thr Val Ile Leu Pro Lys Met Leu 305 310 315 320

Ile Asn Leu Phe Ser Val Phe Arg Thr Leu Ser Phe Val Ser Cys Ala 325 330 335

Thr Gln Met Phe Phe Phe Leu Gly Phe Ala Val Thr Asn Cys Leu Leu 340 345 350

Leu Gly Val Met Gly Tyr Asp Arg Tyr Ala Ala Ile Cys Gln Pro Leu 355 360 365

Gln Tyr Ala Val Leu Met Ser Trp Arg Val Cys Gly Gln Leu Ile Ala 370 375 380

Thr Cys Ile Ile Ser Gly Phe Leu Ile Ser Leu Val Gly Thr Thr Phe 385 390 395 400

Val Phe Ser Leu Pro Phe Cys Gly Ser Asn Lys Val Asn His Tyr Phe 405 410 415

Cys Asp 1le Ser Pro Val Ile Arg Leu Ala Cys Ala Asp Ser Tyr Ile 420 425 430

Ser Glu Leu Val Ile Phe Ile Phe Gly Val Leu Val Leu Val Val Pro 435 440 445

Leu Ile Phe Ile Cys Ile Ser Tyr Gly Phe Ile Val Arg Thr Ile Leu 450 460

Lys Ile Pro Ser Ala Glu Gly Lys Gln Lys Ala Phe Ser Thr Cys Ala 465 470 475 480

Ser His Leu Ile Val Val Ile Val His Tyr Gly 485 490

<210> 49

<211> 35

<212> DNA

<213> Homo sapiens

<400> 49

ctctgaaatc ttctacacaa ctgttattct gccca

35

```
50
<210>
<211>
         27
<212>
         DNA
<213> Homo sapiens
<400> 50
atgagatggg aagcacaggt ggagaag
                                                                                              27
<210>
<211>
<212>
         DNA
<213> Homo sapiens
<400> 51
atcaatattg ttaaaatggc cgtactgtca aaagcaattt acagattcaa
<210>
         50
<211>
<212>
         DNA
<213> Homo sapiens
<400> 52
atatgaaacc aaaaaagccc tcaaatagcc caagtaaccc taaagaaaaa
                                                                                              50
<210>
<211>
         50
<212>
         DNA
<213> Homo sapiens
<400> 53
                                                                                              50
cgccctattc aataaatggt gtgggaatag ctggctagcc atctgcagaa
<210>
<211>
         50
<212>
         DNA
<213> Homo sapiens
                                                                                               50
cataagggtt cttaaaattg ggagagagaa tcagaaagtc agagaaagag
<210>
<211>
         276
<212>
         DNA
<213> Homo sapiens
<220>
<221> CDS
        (1)..(276)
<222>
atg aca gtt tat gat tcc tat gtt gcc atc tgc cat cca ctt cac tac
Met Thr Val Tyr Asp Ser Tyr Val Ala Ile Cys His Pro Leu His Tyr
                                                                                               48
cct gtc ctt acg agc tgg cag ata tgc tcc ttc tta gat ttt cag ctg Pro Val Leu Thr Ser Trp Gln Ile Cys Ser Phe Leu Asp Phe Gln Leu 20 25 30
                                                                                               96
ctt ttc tgt ggc cca aac aag atc aac cac tac ttc tgt gac atc tca
Leu Phe Cys Gly Pro Asn Lys Ile Asn His Tyr Phe Cys Asp Ile Ser
                                                                                             144
ctg ctt att cag ctt gcc tgt act gat acc tac atc agg gag cta gtc
Leu Leu Ile Gln Leu Ala Cys Thr Asp Thr Tyr Ile Arg Glu Leu Val
                                                                                            - 192
atc ttc att ggt gga att cta gca ctt acg gtt cct ctg att tta ttt Ile Phe Ile Gly Gly Ile Leu Ala Leu Thr Val Pro Leu Ile Leu Phe 65 70 80
                                                                                             240
                                                                                              276
gca tot cot atg got toa ttg tto aca coa too tga
```

WO 03/089583 16U 200 PCT FINAL.ST25 Ala Ser Pro Met Ala Ser Leu Phe Thr Pro Ser <210> 56 <211> 91 <212> PRT <213> Homo sapiens <400> 56 Met Thr Val Tyr Asp Ser Tyr Val Ala Ile Cys His Pro Leu His Tyr Pro Val Leu Thr Ser Trp Gln Ile Cys Ser Phe Leu Asp Phe Gln Leu Leu Phe Cys Gly Pro Asn Lys Ile Asn His Tyr Phe Cys Asp Ile Ser Ile Phe Ile Gly Gly Ile Leu Ala Leu Thr Val Pro Leu Ile Leu Phe Ala Ser Pro Met Ala Ser Leu Phe Thr Pro Ser <210> 57 <211> 33 <212> DNA <213> Homo sapiens <400> 57 atgacagttt atgattccta tgttgccatc tgc 33 <210> 58 <211> 29 <212> DNA <213> Homo sapiens <400> 58 tcaggatggt gtgaacaatg aagccatag 29 <210> 59 <211> 50 <212> DNA <213> Homo sapiens <400> 59 ttccctattt aataaatggt gctgggaaaa ctggctagcc atatgtagaa 50 <210> 60 <211> 50 <212> DNA <213> Homo sapiens aacaacccca tcaaaaagtg ggccaaagat atgaacagac acttctcaaa 50

Page 28

50

<210>

<211> <212>

<400> 61

61

DNA

Homo sapiens

aatggcgatc attaaaaagt caggaaacaa caggtgctgg agaggatgtg

<210> 62 <211> 50 <212> DNA <213> Homo sapiens					
<400> 62 cccagaggat tataaatcat	gctgctgtaa	agacacatgc	ccacgtatgt		50
<210> 63 <211> 5269 <212> DNA <213> Homo sapiens					
<220> <221> CDS <222> (2211)(3152) <223>					
<400> 63 taaaagcaaa aataacaact	aaattcaaaa	ggagataaac	tataggaaag	aagatttcat	60
ctgtcatatt tcggggattc	aaatatttaa	agcattatta	cctattttat	agttacgttt	120
tggacacaaa ggccattatg	taaaatgtaa	cattagttta	aaataaaatt	taaatgcctt	180
agataaataa aatgcagtgt	taagaaaaaa	atgtgctgtc	caggcatttt	ggctcatgcc	240
tgtaatctca gctactcagg	aggctgaggc	aggagaatct	cttgaaccca	ggaggcggga	300
ggcggaggtt acagtgagcc	ataatcacgc	cactgcactc	cagtctgggc	gacagagcaa	360
gattctgtct ccaaaaaaaa	aaaaggaaag	aaagaaagag	aaaagaaaaa	atatgctaat	420
taggatatct gggtttgtga	tggattgtct	tttgaggttg	tctattttt	tttgagacgg	480
agtctcgctc tgtcgcccag	gctggagtgc	agtggcgcgg	ggtctctgct	tactggaagc	540
tccgcctcct gggttcactg	ggttcacgcc	attctcctgc	ctcagcctcc	tgagtagctg	600
ggactacagg cgcctgccac	tacgcccggg	taattttttg	tattttttt	ttagtagaga	660
cggggtttca ccgtgttagc	caggatggtc	tcaatctctt	gacctcgtga	tccacccgcc	720
tctgtctccc aaagtgctgg	gattacagtc	gtgagccacc	gcgcccggcc	ttgaggttgt	780
ctttaataca caaattcatg	agtataggaa	gagagggccc	ttgaatatgt	tggtcttgca	840
tgtaaattaa catctttctt	gataggccgt	ctaaaaattt	gggtgggtta	tgtgaataga	900
tataatgtct attatgatag	agaaagagat	tacagatatg	atagcatctg	agaggtgttg	960
gacactaatt agagcaatat	aatgatt¢tt	tcctattatt	gttttctgtt	ttctcatgaa	1020
atgtattcat gttgctgtac	tatctcaagt	ttttagttct	tctccttcat	aggtaataga	1080
tggacacaat gaatatataa	tgtgtcttga	agggagagaa	aagaaataga	catggagaca	1140
gggatagaca gagaggacct	agaagaaaag	ggaagtttgc	aagtcagact	cttacactag	1200
ttatttctgg gtaaaaagat	tttcctcaat	cccattctca	tgtgtttat	cttgatgctg	1260
ctttctaata tatctttgtg	gcagtaactg	tcactggact	atgtagattc	tctagtctgc	1320
ttattaattg aaagtatggt	tattaatgaa	gggaatgtgt	tagtatctcg	acctagataa	1380
tggagcagag tttggtgcgg	gtaaagggtt	acatgtctag	gagttcaagg	atcaaaaccc	1440
tagtcacaga tgtgtagatt	ggccttcctg	ggcatatcga	taggaaattc	aaagcttctc	1500
tggcttctac tttgtcacct	atagaataaa	gaataaacaa	gggtatctgt	attgactatt	1560
cgatatttat tatttctcaa	gcaatgagga	aggattgata	attagtacag	cctgattttg	1620
gagcatacgc tctgaaacaa	ttagttcagc	tgtattttga	agtcaaattt	tctgggtcag	1680
acaaacatta aactgctata	tggaattaac	aataaaggca	caaatgttaa	gcgttagggc	1740

tct	tgat	agt.	taat	atca	tc a	tata	aaca	a at	tato				FINZ tta		r25 attttg	1800
	-	•		_	_				•	-					agatca	1860
	-		_		_				-						aataat	1920
cac	aaat	att	taat	ctca	tt t	tcct	atat	t tg	gaaa	tatt	aaa	aatt	aca (gtta	ctaact	1980
tac	tctt	tta -	ctca	ataa	tt g	tatt	tttc	t ta	agaa	atta	aaa	aaca	tta	cagt	gtttt	2040
aca	tgtt	aga	tatt	taag	aa a	tctt	aaac	a ac	aaac	tcat	aga	ttcc	gga .	agag	atattt	2100
gct	tcat	cct	tcag	gagc	cg t	aaag	gtat	t ca	atca	ccct	tct	tatt	ttc	tcat	tctcct	2160
taa	catt	ttt (gttt	tcag	aa c	taac	tttc	a ga	ttcg	aaga	aac	agaa	I	atg Met i		2216
ctg Leu	act Thr	gat Asp 5	aga Arg	aat Asn	aca Thr	agt Ser	999 Gly 10	acc Thr	acg Thr	ttc Phe	acc Thr	ctc Leu 15	ttg Leu	ggc Gly	ttc Phe	2264
										ttc Phe						2312
atc Ile 35	tac Tyr	aat Asn	gtc Val	act Thr	gtg Val 40	cta Leu	ggg Gly	aat Asn	att Ile	999 Gly 45	ttg Leu	att Ile	gtg Val	atc Ile	atc Ile 50	2360
										tac Tyr						2408
ctc Leu	tcc Ser	ttt Phe	gtg Val 70	gat Asp	ttc Phe	tgc Cys	tat Tyr	tcc Ser 75	tcc Ser	atc Ile	att Ile	gct Ala	ccc Pro 80	aag Lys	atg Met	2456
ttg Leu	gtg Val	aac Asn 85	ctt Leu	gtt Val	gtc Val	aaa Lys	gac Asp 90	aga Arg	acc Thr	att Ile	tca Ser	ttt Phe 95	tta Leu	gga Gly	tgc Cys	2504
										gtg Val						2552
										gtg Val 125						2600
ctg Leu	ctc Leu	tac Tyr	aca Thr	gtt Val 135	aac Asn	atg Met	tcc Ser	cag Gln	aaa Lys 140	ctc Leu	tgc Cys	gtg Val	ctg Leu	ctg Leu 145	gtt Val	2648
										tcc Ser						2696
										aac Asn						2744
ttc Phe	tgt Cys 180	gag Glu	ttc Phe	tcc Ser	tca Ser	cta Leu 185	ctc Leu	tcc Ser	ctt Leu	tct Ser	tgc Cys 190	tct Ser	gat Asp	act Thr	tac Tyr	2792
										acc Thr 205						2840
aca Thr	cta Leu	ctc Leu	atc Ile	gtt Val 215	ctc Leu	aca Thr	tct Ser	tat Tyr	gcg Ala 220	ttc Phe	att Ile	gtt Val	gta Val	acc Thr 225	atc Ile	2888
ctc Leu	aag Lys	atg Met	cgt Arg 230	tca Ser	gtc Val	agt Ser	Gly ggg	cgc Arg 235	cgc Arg	aaa Lys	gcc Ala	ttc Phe	tcc Ser 240	acc Thr	tgt Cys	2936
gcc	tcc	cac	ctg	act	gcc	atc	acc	atc	ttc	cat	ggc	acc	atc	ctc	ttc	2984

WO 03/089583 PCT/US03/11497

16U 200 PCT FINAL.ST25 Ala Ser His Leu Thr Ala Ile Thr Ile Phe His Gly Thr Ile Leu Phe 245 250 255	
ctt tac tgt gtg ccc aac tcc aaa aac tcc agg cac aca gtc aaa gtg Leu Tyr Cys Val Pro Asn Ser Lys Asn Ser Arg His Thr Val Lys Val 260 265 270	3032
gcc tct gtg ttt tac acc gtg gtg atc ccc atg ttg aat ccc ctg atc Ala Ser Val Phe Tyr Thr Val Val Ile Pro Met Leu Asn Pro Leu Ile 275 280 285 290	3080
tac agt ctg aga aat aaa gat gtc aag gat aca gtc acc gag ata ctg Tyr Ser Leu Arg Asn Lys Asp Val Lys Asp Thr Val Thr Glu Ile Leu 295 300 305	3128
gac acc aaa gtc ttc tct tac tga gcctgttact ttcatggagt ttgtcacaca Asp Thr Lys Val Phe Ser Tyr 310	3182
tataaataaa ttctgtccat aaatattgat cttaaagata tctttacaaa taaacaaagt	3242
tagggttgta caactcaacg aaatggattt tcttttcaac agactaaact tagctctgtc	3302
tettaettte tgggaageat eagtaateee tetaatettt aatatteat ttatgaaatt	3362
agtatagtat gggttagatc atagtctgat tgtgaagatt aaaatataat ggacacctta	3422
cgtaagtcaa tggatattaa tttcatgtcc tttccttata agataccggg aatagactaa	3482
gtgcttagga aacatatgaa tttcttttat aaatgtgcaa aataagttaa aagaagaaat	3542
agtcctcatc ttcaaggatg aaaactgtgt tgataatagg acaatgaaga agtggccatt	3602
gtgtaaggca gaaattaata tgtaccaaag agagtttgag agaagagaaa gttcaaatct	3662
acttagggat tttagaagga tgtcttaatg aaataggtat tgtttgaaac cggcttttga	3722
aaaggaaatg ggcggagttt atgagataca ttccagggag aaaggagttt tcttctggag	3782
aaaacaatgt gaataaaacc aattaggtaa gaatgtaata cctagtcaaa gatctaatac	3842
ttgttttatt gagctaacat aatataatgt gtgtttgtgt gtgtgtgtg gtgtgtgt	3902
atgtatacgg gttacttgac atgaactgaa attttaatat gatatgggct acatcctgaa	3962
tgtgttttca aaggagetee agtgtgacea tetgataaae cataatagae tteaceagat	4022
gctgatgaat aatggatcag atcttagaaa atcctatgta ccaaattagg gatgatgaac	4082
acctgcccaa cctgtatgtc atactgttag acatcacaaa ctttatcaat ccattatgat	4142
ttttttatga gcatggaaat aatctctgaa tccttctcaa cagaattccc aacaaccttt	4202
ataaaaaggt atttggagta gtcttaagtg ttgaaagctc tttggctgca taaacttatt	4262
caaaataaat aaaaatcagg taatcattaa tatcaagacc tctttaacac agcaaattaa	4322
aaatgctagc tetttettae ettaataact caettteatt egaataaatt gtataeeett	4382
ctccttttca atgtgtctag atacagttcc aaacaaatca tcaatatagt ggaagaagta	4442
aatttccagg tgttttgtta agggagaaaa aataaactgg ggaacaattt tatataaact	4502
tcttaaattt atttagaatg ttcatattat tttgacctta tgatgattat taaagttatg	4562
ataattatta aagtgattca tottacatat attatttgat aaagaatoca otaaataato	4622
cttgtaatag aaaaattttt caaaatgtaa ggaacagtgt tttagatatt aaatgcctga	4682
ggagggaata cttttctct tgatatctgt atctccaggt attcaaacat ttatcctttg	4742
tacacatotg gtacttatac aattittaat titotoagaa gitgggacat igititaata	4802
ttaaatcgaa tactgaattt caccatcttt tgaaatcctg aaaagctgcc atgggaacaa	4862
gcataaaata ggatatttga taatgaggaa aattagccca tatccccatc acaagggctt	4922
ttctctggca acctaccaga cttgagtgtg aagccctgtg agatgatctg acctgccagc	4982

50425102516252225269

ACH 200 per PINAL CM25											
16U 200 PCT FINAL.ST25 tgacagtata cacacaagca agacaagcca agatcagcca tgccagggac atgtgagcag											
aaccacctgg atgatccatg caatagagtc acaggcaata agaggttgtt gtgtttagcc											
aataggtttt ggagtggttt gttatacagt cattagagtc attcactttc tcaaattctg											
ggaatgctac caaaaaaact tcacgatgtt ttattatgta ataattcacc atcttctatt											
attccacatt gaggaaacat tttaaaataa taaaatgtgt taaattt											
<210> 64 <211> 313 <212> PRT <213> Homo sapiens											
<400> 64											
Met Leu Leu Thr Asp Arg Asn Thr Ser Gly Thr Thr Phe Thr Leu Leu 1 5 10 15											
Gly Phe Ser Asp Tyr Pro Glu Leu Gln Val Pro Leu Phe Leu Val Phe 20 25 30											
Leu Ala Ile Tyr Asn Val Thr Val Leu Gly Asn Ile Gly Leu Ile Val 35 40 45											
Ile Ile Lys Ile Asn Pro Lys Leu His Thr Pro Met Tyr Phe Phe Leu 50 55 60											
Ser Gln Leu Ser Phe Val Asp Phe Cys Tyr Ser Ser Ile Ile Ala Pro 65 70 80											
Lys Met Leu Val Asn Leu Val Val Lys Asp Arg Thr Ile Ser Phe Leu 85 90 95											
Gly Cys Val Val Gln Phe Phe Phe Phe Cys Thr Phe Val Val Thr Glu 100 105 110											
Ser Phe Leu Leu Ala Val Met Ala Tyr Asp Arg Phe Val Ala Ile Cys 115 120 125											
Asn Pro Leu Leu Tyr Thr Val Asn Met Ser Gln Lys Leu Cys Val Leu 130 135 140											
Leu Val Val Gly Ser Tyr Ala Trp Gly Val Ser Cys Ser Leu Glu Leu 145 150 155 160											
Thr Cys Ser Ala Leu Lys Leu Cys Phe His Gly Phe Asn Thr Ile Asn 165 170 175											
His Phe Phe Cys Glu Phe Ser Ser Leu Leu Ser Leu Ser Cys Ser Asp 180 185 190											
Thr Tyr Ile Asn Gln Trp Leu Leu Phe Phe Leu Ala Thr Phe Asn Glu 195 200 205											
Ile Ser Thr Leu Leu Ile Val Leu Thr Ser Tyr Ala Phe Ile Val Val 210 220											
Thr Ile Leu Lys Met Arg Ser Val Ser Gly Arg Arg Lys Ala Phe Ser 225 230 235 240											
Thr Cys Ala Ser His Leu Thr Ala Ile Thr Ile Phe His Gly Thr Ile											

WO 03/089583

16U 200 PCT FINAL.ST25 245 255 Leu Phe Leu Tyr Cys Val Pro Asn Ser Lys Asn Ser Arg His Thr Val 265 Lys Val Ala Ser Val Phe Tyr Thr Val Val Ile Pro Met Leu Asn Pro Leu Ile Tyr Ser Leu Arg Asn Lys Asp Val Lys Asp Thr Val Thr Glu Ile Leu Asp Thr Lys Val Phe Ser Tyr <210> 65 <211> 50 <212> DNA <213> Homo sapiens <400> 65 ataggccgtc taaaaatttg ggtgggttat gtgaatagat ataatgtcta 50 <210> 66 <211> 50 <212> DNA <213> Homo sapiens <400> 66 acacaatgaa tatataatgt gtcttgaagg gagagaaaag aaatagacat 50 <210> 67 <211> 32 <212> DNA <213> Homo sapiens <400> 67 atgctgctga ctgatagaaa tacaagtggg ac 32 <210> <211> 29 <212> DNA <213> Homo sapiens <400> 68 gactttggtg tccagtatct cggtgactg 29 <210> 69 <211> 4558 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (1822)..(2766) <223> <400> 69 gggaactcag agtagaagct agacagttga gcattccctg aatattgatt tctcttggca 60 tttttaccac ctaagagagc acctagagaa gtatgagaat aaaagggcaa caaaaagagg 120 agagaaaaga agagagagag aggggaatac acaagcaatg ataagatcat ataaggggag . 180 tagaggagat gggagctaga ttggaaggaa ttaaaaatta agagatgagg aattagataa 240 tgaattactc aactttttca acaaacattg ttgtgaagga aaacagttgc gggtgttaga 300

tggagggaga tataaggcca aggaatgcgg gattgtgctg atgtcaagaa aaacatttta

aaaaaggggg cagatttgtg tgggaggggg aatattgtaa tgacaaataa cagttttaca

Page 33

360 420

atgctttaca gtttacaggg a	actettetea tgattttate	tttcctcatc atgaagcagt	480
aaaattgtca tggaagatat q	ggttatgcct tcatctatag	gtgaggaacc taaatcttta	540
aaaatttcag tgattaatac (tagtttctat tggtaggctg	atggctcaat cattacttaa	600
acccaagtct ttagattcta a	atttttttc ctatatcatg	ataatgagtt tgagttatat	660
ttctgttaac ttgaatatgc	tggatttata cttcttagga	agcaatgagg tagaagcaga	720
agagtgtagt gatttaagac	attggattgg gaggcagcaa	accagagttc tcgaagctca	780
agtttcatct ttgacgtttt d	ccaactgttc tgattgttag	tgacttagtc ttttgttttc	840
tcaattcata agtgtccacg 1	tttactgagc actgtttcaa	gatttgtgct aagtgtttta	900
aaagatotoa aaatooccaa a	aagaaagttt ttaggcagga	gctgaaaaaa aaggtggcac	960
aggtcaaaaa tattgcaagg a	aaatgtttaa acgttttcaa	gggaaatgac aacagaaggt	1020
ggaaaaagat agaatgataa q	ggatcccaga tggaaaaata	gtgtgaaggg aataggtcag	1080
tcttgcaaaa aggtaagtgt q	ggggcatete ttetgaatgt	catgaagtcc aggaaggaag	1140
aagcacgtag agatgaaggt (taaactacag ttaggcaaaa	gagaacaaca aaagggcttc	1200
tcatgttctc aagttacctg	gaggtagggc tttagttgga	gggatttctg agtgtcaaac	1260
aaggacctac gaaaccctgc (tagaaaaaaa atctaaagaa	cttgtaggga agtgaattat	1320
tagaaagtgc taactacatt 1	tatttttcat atgaccaaga	ttgacatttc agggcagaaa	1380
ctctttcata attgggagtg 1	tagtttgaat tggaaggcaa	taggaagaca gtgacggtaa	1440
atgtttgtgg gtatgatttg a	aattaagcag caatctgtat	tatttacaaa gttgcttttg	1500
gccacatgca ggccacaaaa q	ggctcttcct ccacttgatt	tctcaataag gctgctttgt	1560
aatactagct ttattggaat (taaatgtcct gagcacccag	tgtttttata aacagcttaa	1620
gggcaaggat catgcataat a	atttcatgat acatatgatt	attttctcat ttcttttcat	1680
gtctaaaaat gggtctaaga a	actaatcttc tcacaagaat	gatcagagtt tgaatgtgag	1740
cattgtaatt ctgctgatat t	tgaatattct ctggaagggc	cctgtggaag cagataagga	1800
ggaagagaat teecaggage o	c atg tca gcc tcc aat Met Ser Ala Ser Asn 1 5		1851
cca act gcc ttc ttg ttg Pro Thr Ala Phe Leu Leu 15			1899
atc tgg atc tcc atc cct Ile Trp Ile Ser Ile Pro 30		m)	1947
gga aac tgc act ctc cti Gly Asn Cys Thr Leu Leu 45			1995
gaa ccc atg tac ctc ttt Glu Pro Met Tyr Leu Pho 60			2043
ctt tce tcc tca gca ctc Leu Ser Ser Ser Ala Leo 75			2091
gat cgg gag ata aac tto Asp Arg Glu Ile Asn Phe 95			2139
cac tcc ttc tcc atc atc His Ser Phe Ser Ile Met 110			2187

WO 03/089583 PCT/US03/11497

gac cgc tat gtg gct atc tgc aag cca ctg cac tac acc aag gtc ctg Asp Arg Tyr Val Ala Ile Cys Lys Pro Leu His Tyr Thr Lys Val Leu 125 130 135	2235
act ggg tcc ctc atc acc aag att ggc atg gct gct gtg gcc cgg gct Thr Gly Ser Leu Ile Thr Lys Ile Gly Met Ala Ala Val Ala Arg Ala 140 145 150	2283
gtg aca cta atg act cca ctc ccc ttc ctg ctg aga tgt ttc cac tac Val Thr Leu Met Thr Pro Leu Pro Phe Leu Leu Arg Cys Phe His Tyr 155 160 165 170	2331
tgc cga ggc cca gtg atc gct cac tgc tac tgt gaa cac atg gct gtg Cys Arg Gly Pro Val Ile Ala His Cys Tyr Cys Glu His Met Ala Val 175 180 185	2379
gtg agg ctg gcg tgt ggg gac act agc ttc aac aat atc tat ggc atc Val Arg Leu Ala Cys Gly Asp Thr Ser Phe Asn Asn Ile Tyr Gly Ile 190 195 200	2427
gct gtg gcc atg ttt att gtg gtg ttg gac ctg ctc ctt gtt atc ctg Ala Val Ala Met Phe Ile Val Val Leu Asp Leu Leu Leu Val Ile Leu 205 210 215	2475
tct tat atc ttt att ctt cag gca gtt cta ctg ctt gcc tct cag gag Ser Tyr 11e Phe 11e Leu Gln Ala Val Leu Leu Leu Ala Ser Gln Glu 220 225 230	2523
gcc cac tac aag gca ttt ggg aca tgt gtc tct cat ata ggt gcc atc Ala His Tyr Lys Ala Phe Gly Thr Cys Val Ser His Ile Gly Ala Ile 235 240 245 250	2571
tta gcc ttc tac aca act gtg gtc atc tct tca gtc atg cac cgt gta Leu Ala Phe Tyr Thr Thr Val Val Ile Ser Ser Val Met His Arg Val 255 260 265	2619
gcc cgc cat gct gcc cct cat gtc cac atc ctc ctt gcc aat ttc tat Ala Arg His Ala Ala Pro His Val His Ile Leu Leu Ala Asn Phe Tyr 270 275 280	2667
ctg ctc ttc cca ccc atg gtc aat ccc ata atc tat ggt gtc aag acc Leu Leu Phe Pro Pro Met Val Asn Pro Ile Ile Tyr Gly Val Lys Thr 285 290 295	2715
aag caa atc cgt gag agc atc ttg gga gta ttc cca aga aag gat atg Lys Gln Ile Arg Glu Ser Ile Leu Gly Val Phe Pro Arg Lys Asp Met 300 305 310	2763
tag agggtgaggt ggagaaagaa tgggttggct tgtctgctgg agttggagac	2816
aggctatggt agaatgtgca cggctgccag gatcttcatg tttagttttt tcttggaaaa	2876
aaaaaaaatg atgtcctgaa actcagagcc accagtctgt tcaggactca tgggtctgtg	2936
tcctctggta gcctgtggat tgaatgtgct gactgtgctg tcttctcaca gtgccctcac	2996
ccctatcagt aacttgacag agacttgacc catgggtctc caggtgactt caccgaaaga	3056
cacaaagatg cttccaactt catttgctga agagaagact ttgaaaatct gagtttcttt	3116
tcttagtcat tgggaatttg gtgaactatc tactcaggac ctgggtgagg gccaacagta	3176
tatctgacat aggaatcett cattcattct gactggtggt gtccagette tgatgaaaca	3236
ctcagtgtta ggaagtttga aacattccag ggctgcaggt tctgagtaag acacctatgc	3296
ttgctagaaa atcatttttt cacctaagcc agtatgtgta ttcttttgct tatatttacc	3356
aatccatcct tatgtccaat tccttttatt aagtactttg aataagacat gtcctctggc	3416
tttatgtttc atgcaactct ttctttgcac atagatgtat cttatgtttt caagaatgag	3476
aatggctcat ttatttacta attccaccaa atctgtgata ggggatgggg acacatatac	3536
taaattaggg gtgtcagact tgtgtatttg tcctaagaca gagaaggaaa tgataattat	3596
gatagattct gttctctgaa atttccatcc caaggcccag cataataaaa gaagagcaag	3656
accaagcaga taggaggcaa gaatattatg tttctctttt cctgtctcat gtgaacttac	3716

WO 03/089583 PCT/US03/11497

16U 200 PCT FINAL.ST25

ctactatata	attctctatt	aatcctgaca	acacagctaa	gcttttcaca	caagccctgt	3776
ataaatacat	tgttctgctg	ttatcttctg	acccacttgt	ttcctcagat	attattgctt	3836
agaaattata	tatctctttt	gctatcactg	tatctttctc	tatttaccta	tctatattat	3896
ttagccttga	aagataattt	ccaagcctat	ttcaggtggg	gtgtagaagg	ttggaagctg	3956
tccaggaggg	aagagtatag	caagaaccta	gagttttact	tccccttata	ttccacctct	4016
gctcttataa	ttccctttga	cacaaaaaca	aataccccag	agaaataatg	tattacataa	4076
aaaattgcta	catgctagat	atatatattt	ttggagtata	tgtgatattc	tgatatattc	4136
atataataga	taatgatcaa	atcaggataa	ttggaatatc	catgacctta	aatgtttctt	4196
ttatgctagg	aacattaaaa	ttattctctt	ctagctattt	tgatatatac	agtagattgt	4256
tttctatagt	ccctactgat	ttcttgaaca	ctacatcttg	ttatttttta	tatctagctg	4316
tattttata	ctcaattaat	ctcttatcct	ccctgcctcc	cttcccagcc	cccaataacc	4376
accaatctgc	tctctatttt	catgagctgt	acttagcatc	cacatgagtg	agaaatacaa	4436
taattgtctt	tctgtacctg	gcttgtttca	cttaacttaa	tgacctacag	tttcatccac	4496
gttgctgcaa	gtgacaggat	ttcattcttt	cttatgacta	atattccatg	tgtatcatat	4556
tt						4558

<210> 70 <211> 314 <212> PRT <213> Homo sapiens

<400> 70

Met Ser Ala Ser Asn Ile Thr Leu Thr His Pro Thr Ala Phe Leu Leu 1 5 15

Val Gly Ile Pro Gly Leu Glu His Leu His Ile Trp Ile Ser Ile Pro $20 \hspace{1cm} 25 \hspace{1cm} 30 \hspace{1cm}$

Phe Cys Leu Ala Tyr Thr Leu Ala Leu Leu Gly Asn Cys Thr Leu Leu 40 45

Leu Ile Ile Gln Ala Asp Ala Ala Leu His Glu Pro Met Tyr Leu Phe 50 60

Leu Ala Met Leu Ala Ala Ile Asp Leu Val Leu Ser Ser Ser Ala Leu 65 70 75 80

Pro Lys Met Leu Ala Ile Phe Trp Phe Arg Asp Arg Glu Ile Asn Phe 85 90 95

Phe Ala Cys Leu Ala Gln Met Phe Phe Leu His Ser Phe Ser Ile Met 100 105 110

Glu Ser Ala Val Leu Leu Ala Met Ala Phe Asp Arg Tyr Val Ala Ile 115 120 125

Cys Lys Pro Leu His Tyr Thr Lys Val Leu Thr Gly Ser Leu Ile Thr 130 135 140

Lys Ile Gly Met Ala Ala Val Ala Arg Ala Val Thr Leu Met Thr Pro 145 150 155 160

Leu Pro Phe Leu Leu Arg Cys Phe His Tyr Cys Arg Gly Pro Val Ile 165 170 175	
Ala His Cys Tyr Cys Glu His Met Ala Val Val Arg Leu Ala Cys Gly 180 185 190	
Asp Thr Ser Phe Asn Asn Ile Tyr Gly Ile Ala Val Ala Met Phe Ile 195 200 205	
Val Val Leu Asp Leu Leu Leu Val Ile Leu Ser Tyr Ile Phe Ile Leu 210 215 220	
Gln Ala Val Leu Leu Leu Ala Ser Gln Glu Ala His Tyr Lys Ala Phe 225 230 235 240	
Gly Thr Cys Val Ser His Ile Gly Ala Ile Leu Ala Phe Tyr Thr Thr 245 250 255	
Val Val Ile Ser Ser Val Met His Arg Val Ala Arg His Ala Ala Pro 260 265 270	
His Val His Ile Leu Leu Ala Asn Phe Tyr Leu Leu Phe Pro Pro Met 275 280 285	
Val Asn Pro 1le 1le Tyr Gly Val Lys Thr Lys Gln 1le Arg Glu Ser 290 295 300	
Ile Leu Gly Val Phe Pro Arg Lys Asp Met 305 310	
<210> 71 <211> 50 <212> DNA <213> Homo sapiens	
<400> 71 gaaaaacatt ttaaaaaagg gggcagattt gtgtgggagg gggaatattg	50
<210> 72 <211> 50 <212> DNA <213> Homo sapiens	
<400> 72 gctaagtgtt ttaaaagatc tcaaaatccc caaaagaaag tttttaggca	50
<210> 73 <211> 50 <212> DNA <213> Homo sapiens	
<400> 73 gcaggagctg aaaaaaaagg tggcacaggt caaaaatatt gcaaggaaat	50
<210> ·74 <211> 50 <212> DNA <213> Homo sapiens	
<400> 74 cccagtgttt ttataaacag cttaagggca aggatcatgc ataatattc	50
<210> 75 <211> 50 <212> DNA	

160 200 PCT FINAL ST25

16U 200 PCT FINAL.ST25	
<213> Homo sapiens	
<400> 75 ttttcatgtc taaaaatggg tctaagaact aatcttctca caagaatgat	50
<210> 76	
<211> 29 <212> DNA	
<213> Homo sapiens	
<400> 76	
cagcetecaa tateacetta acacateca	29
<210> 77	
<211> 25	
<212> DNA <213> Homo sapiens	
<400> 77	
caccacaata aacatggcca cagcg	25
<210> 78	
<211> 2520 <212> DNA	
<213> Homo sapiens	
<220> <221> CDS	
<222> (727)(1722)	
<223>	
<400> 78 attaaagtot toagtotoca cattoootao titooaaatt cagotitooo gggaggtotg (60
gagcagctgc ctctctgggg agatgctgga ggtctcggaa tcacctcacg cggcctcagg 12	20
gcccagttgg agccacccca agtgacacca gcaggcagat gaccagagag cctgagcctc 18	80
cggccccgag tctgtgaagc ctagccgctg ggctggagaa gccactgtgg gcaccaccgt 24	40
gggggaaaca ggcccgttgc cctggcctct ttgccctggg ccagcctttg tgaagtgggc 30	00
ccctcttctg ggccccttga agcatgctgg agaacttctc ggccgccgtg cccagccacc 36	60
gctgctgggc acccctcctg gacaacagca cggctcaggc cagcatccta gggagcttga 42	20
giccigagge ectecigget atticeated egeogggeed caaccagagg ecceaccagt 48	80
gccgccgctt ccgccagcca cagtggcagc tcttggaccc caatgccacg gccaccagct 54	40
ggagcgaggc cgacacggag ccgtgtgtgg atggctgggt ctatgaccgc agcatcttca 60	00
cctccacaat cgtggccaag tggaacctcg tgtgtgactc tcatgctctg aagcccatgg 66	60
cccagtccat ctacctggct gggattctgg tgggagctgc tgcgtgcggc cctgcctcag 72	20
acagtg atg gag tgg acg gcg gca cgg gcc cga ccc ttg gtg atg acc Met Glu Trp Thr Ala Ala Arg Ala Arg Pro Leu Val Met Thr	68
1 5 10	
	16
Leu Asn Ser Leu Gly Phe Ser Phe Gly His Gly Leu Thr Ala Ala Val 15 25 30	
	64
Ala Tyr Gly Val Arg Asp Trp Thr Leu Leu Gln Leu Val Val Ser Val 35 40 45	
	12
Pro Phe Phe Leu Cys Phe Leu Tyr Ser Trp Trp Leu Ala Glu Ser Ala 50 55	
	60
Arg Trp Leu Leu Thr Thr Gly Arg Leu Asp Trp Gly Leu Gln Glu Leu	<i>,</i> ,
65 70 75	

tgg agg gtg Trp Arg Val 80				ggg gc	a gtg		acc ctg	1008
acc cct gag Thr Pro Glu 95					u Glu			1056
cag cct cct Gln Pro Pro								1104
ttc cgg acc Phe Arg Thi				Trp Ph				1152
ttc ttc ggc Phe Phe Gly 145	Leu Ala				u Gly			1200
ctg ctc caa Leu Leu Glr 160								1248
gcc ctg ctg Ala Leu Leu 175					g Pro			1296
tcc ctg ttc Ser Leu Leu		Gly Leu						1344
cac gaa ato His Glu Met				Leu Al			Leu Gly	1392
ggg gtg ggg Gly Val Gly 225	/ Ala Ala				e Tyr			1440
ttc ccc act Phe Pro Thi 240								1488
gcc cgt gga Ala Arg Gly 255					l Arg			1536
cat ggc ccc His Gly Pro		Pro Leu						1584
agt ggc cto Ser Gly Lev				Glu Th			Pro Leu	1632
ccc gac acc Pro Asp Thi	: Ile Gln				a Val			1680
cat ggc acc His Gly Thi 320								1722
tagcctcctg	gggaacct	gc gatgg	gacgg to	agaggaa	ng agac	ttcttc	tgttctctgg	1782
agaaggcagg	aggaaagc	aa agacc	tccat tt	ccagagg	jc ccag	aggctg	ccctctgagg	1842
tccccactct	ccccagg	gc tgccc	ctcca gg	tgagccc	t gccc	ctctca	cagtccaagg	1902
ggcccccttc	aatactga	ag gggaa	aagga ca	gtttgat	t ggca	ggaggt	gacccagtgc	1962
accatcaccc	tgccctgc	cc t cg tg	gcttc gg	agagcag	ga gggg	tcaggc	ccaggggaac	2022
gagctggcct	tgccaacc	ct ctgct	tgact co	gcactgo	c actt	gtcccc	ccacacccgt	2082
ccacctgccc								2142
acaagcagta	gagtctca	gc tccac	agctt ta	cccagaa	ig ccct	gtaagc	ctggcccctg	2202

gcccctcccc	atgtccctcc	aggcctcagc	cacctgcccg	ccacatcctc	tgcctgctgt	2262
ccccttccca	ccctcatccc	tgaccgactc	cacttaaccc	ccaaacccag	cccccttcc	2322
aggggtccag	ggccagcctg	agatgcccgt	gaaactccta	cccacagtta	cagccacaag	2382
cctgcctcct	cccaccctgc	cagcctatga	gttcccagag	ggttggggca	gtcccatgac	2442
cccatgtccc	agctccccac	acagcgctgg	gccagagagg	cattggtgcg	agggattgaa	2502
taaagaaaca	aatgaatg					2520

<210> 79 <211> 332 <212> PRT <213> Homo sapiens

-

<400> 79

Ser Leu Gly Phe Ser Phe Gly His Gly Leu Thr Ala Ala Val Ala Tyr $20 \hspace{1.5cm} 25 \hspace{1.5cm} 30$

Gly Val Arg Asp Trp Thr Leu Leu Gln Leu Val Val Ser Val Pro Phe $35 \hspace{1cm} 40 \hspace{1cm} 45 \hspace{1cm}$

Phe Leu Cys Phe Leu Tyr Ser Trp Trp Leu Ala Glu Ser Ala Arg Trp 50 60

Leu Leu Thr Thr Gly Arg Leu Asp Trp Gly Leu Gln Glu Leu Trp Arg 65 70 75 80

Val Ala Ala Ile Asn Gly Lys Gly Ala Val Gln Asp Thr Leu Thr Pro $85 \hspace{1cm} 90 \hspace{1cm} 95$

Glu Val Leu Ser Ala Met Arg Glu Glu Leu Ser Met Gly Gln Pro 100 105 110

Pro Ala Ser Leu Gly Thr Leu Leu Arg Met Pro Gly Leu Arg Phe Arg 115 120 125

Thr Cys Ile Ser Thr Leu Cys Trp Phe Ala Phe Gly Phe Thr Phe Phe 130 $$135\$

Gly Leu Ala Leu Asp Leu Gln Ala Leu Gly Ser Asn Ile Phe Leu Leu 145 150 160

Gln Met Phe Ile Gly Val Val Asp Ile Pro Ala Lys Met Gly Ala Leu 165 170 175

Leu Leu Ser His Leu Gly Arg Arg Pro Thr Leu Ala Ala Ser Leu 180 185 190

Leu Leu Ala Gly Leu Cys Ile Leu Ala Asn Thr Leu Val Pro His Glu 195 200 205

Met Gly Ala Leu Arg Ser Ala Leu Ala Val Leu Gly Leu Gly Gly Val 210 215 220

Gly Ala Ala Phe Thr Cys Ile Thr Ile Tyr Ser Ser Glu Leu Phe Pro 225 230 235 240

Thr Val Leu	Arg Met 245		Val (Gly Leu 250	Gly Gln	Met A		Ala 255	Arg	
Gly Gly Ala	Ile Leu 260	Gly Pro		Val Arg 265	Leu Leu		Val 270	His	Gly	
Pro Trp Leu 275		Leu Val	Tyr (Gly Thr	Val Pro	Val I 285	Leu	Ser	Gly	
Leu Ala Ala 290	Leu Leu	Leu Pro 295		Thr Gln	Ser Leu 300	Pro I	Leu	Pro	Asp	
Thr Ile Gln 305	Asp Val	Gln Asn 310	Gln i	Ala Val	Lys Lys 315	Ala 1	Thr	His	Gly 320	
Thr Leu Gly	Asn Ser 325		Lys S	Ser Thr 330	Gln Phe					
<210> 80 <211> 2250 <212> DNA <213> Homo	sapiens									
<220> <221> CDS <222> (10) <223>	(738)									
	et Ser A		ro Lei			ln Lei				51
1		•			•					
ggc tcc cag Gly Ser Gln 15	gat gcc	ctg gcc	ccc		cca cct	gct d				99
ggc tcc cag Gly Ser Gln	gat gcc Asp Ala	ctg gcc Leu Ala 20	ccc f	Leu Pro	cca cct Pro Pro 25 gga tct	gct c Ala I	Pro	Gln tgg	Asn 30 ggc	99 147
ggc tcc cag Gly Ser Gln 15	gat gcc Asp Ala cac tct His Ser 35	ctg gcc Leu Ala 20 tgg gac Trp Asp	cct for Pro l	ttg tgt Leu Cys 40 cat gtc	cca cct Pro Pro 25 gga tct Gly Ser	gct of Ala I	Pro cct Pro	tgg Trp 45	Asn 30 ggc Gly	
ggc tcc cag Gly Ser Gln 15 ccc tcc acc Pro Ser Thr	gat gcc Asp Ala cac tct His Ser 35 ctt ctg Leu Leu 50	ctg gcc Leu Ala 20 tgg gac Trp Asp gct ctg Ala Leu	cct f	ttg tgt teu Cys 40 cat gtc His Val 55 ctt tgc	cca cct Pro Pro 25 gga tct Gly Ser ttg gtc Leu Val	gct c Ala I	Pro cct Pro gct Ala 60	tgg Trp 45 tct Ser	Asn 30 ggc Gly ctg Leu	147
ggc tcc cag Gly Ser Gln 15 ccc tcc acc Pro Ser Thr ctc agc tgt Leu Ser Cys ctc tgt gtc Leu Cys Val	gat gcc Asp Ala cac tct His Ser 35 ctt ctg Leu Leu 50 tcc cac Ser His	ctg gcc Leu Ala 20 tgg gac Trp Asp gct ctg Ala Leu ctg ctc Leu Leu	ccc f	ttg tgt Leu Cys 40 cat gtc His Val 55 ctt tgc Leu Cys	cca cct Pro Pro 25 gga tct Gly Ser ttg gtc Leu Val agt ctc Ser Leu tcc agc	gct chall in the second	Pro cct Pro gct Ala 60 cca Pro	tgg Trp 45 tct Ser gga Gly	Asn 30 ggc Gly ctg Leu gga Gly	147 195
ggc tcc cag Gly Ser Gln 15 ccc tcc acc Pro Ser Thr ctc agc tgt Leu Ser Cys ctc tgt gtc Leu Cys Val 65 ctc tct tac Leu Ser Tyr	gat gcc Asp Ala cac tct His Ser 35 ctt ctg Leu Leu 50 tcc cac Ser His	ctg gcc Leu Ala 20 tgg gac Trp Asp gct ctg Ala Leu ctg ctc Leu Leu tct cag Ser Gln 85 ctg caa	ccc f	ttg tgt Leu Cys 40 cat gtc His Val 55 ctt tgc Leu Cys ctg gcc Leu Ala	cca cct Pro Pro 25 gga tct Gly Ser ttg gtc Leu Val agt ctc Ser Leu tcc agc Ser Ser 90 ggc agc	gct can a land ctg can be atg can be at a can be atg can be at a can be atg can be at a can be atg can be at a can be atg can be atgacined at a	Pro cct Pro gct Ala 60 cca Pro ttt	tgg Trp 45 tct Ser gga Gly tca Ser	Asn 30 ggc Gly ctg Leu gga Gly tgt Cys	147 195 243
ggc tcc cag Gly Ser Gln 15 ccc tcc acc Pro Ser Thr ctc agc tgt Leu Ser Cys ctc tgt gtc Leu Cys Val 65 ctc tct tac Leu Ser Tyr 80 ggt atg tct Gly Met Ser	gat good Asp Ala cac tott His Ser 35 ctt ctg Leu Leu 50 tcc cac Ser His tcc cct Ser Pro acc atc Thr Ile	ctg gcc Leu Ala 20 tgg gac Trp Asp gct ctg Ala Leu ctg ctc Leu Leu tct cag Ser Gln 85 ctg caa Leu Gln 100 tta gag Leu Glu	ccc f Pro 1 cct f Pro 1 ccg Gln I ctg GLeu 1 70 ctc GLeu 1 Thr f	ttg tgt Leu Cys 40 cat gtc His Val 55 ctt tgc Leu Cys ctg gcc Leu Ala tgg atg Trp Met ctt atc	cca cct Pro Pro 25 gga tct Gly Ser ttg gtc Leu Val agt ctc Ser Leu tcc agc Ser Ser 90 ggc agc Gly Ser 105 cct gct	gct call call call call call call call ca	Pro cct Pro gct Ala 60 cca Pro ttt the ctg Leu gtg Val	Gln tgg Trp 45 tct Ser gga Gly tca Ser cct crt	Asn 30 ggc Gly ctg Leu gga Gly tgt Cys ctt Leu 110	147 195 243 291
ggc tcc cag Gly Ser Gln 15 ccc tcc acc Pro Ser Thr ctc agc tgt Leu Ser Cys ctc tgt gtc Leu Cys Val 65 ctc tct tac Leu Ser Tyr 80 ggt atg tct Gly Met Ser 95 gtc cag gct	gat good Asp Ala cac tott His Ser 35 ctt ctg Leu Leu 50 tcc cac ser His tcc cct ser Pro acc atc Thr Ile cca toc Pro Ser 115 cta ccc	ctg gcc Leu Ala 20 tgg gac Trp Asp gct ctg Ala Leu ctg ctc Leu Leu tct cag Ser Gln 85 ctg caa Leu Gln 100 tta gag Leu Glu cgg gcc	ccc f Pro 1 cag c Gln i ctg c Leu i 70 ctc c Leu i ttc c Phe i	Leu Pro ttg tgt Leu Cys 40 cat gtc His Val 55 ctt tgc Leu Cys ctg gcc Leu Ala tgg atg Trp Met ctt atc Leu Ile 120 cag aca	cca cct Pro Pro 25 gga tct Gly Ser ttg gtc Leu Val agt ctc Ser Leu tcc agc Ser Ser 90 ggc agc Gly Ser 105 cct gct Pro Ala	gct challed at g c	Pro cct Pro gct Ala 60 cca Pro ttt Phe ctg Leu gtg	Gln tgg Trp 45 tct Ser gga Gly tca Ser cct Pro ctg Leu 125 tcc	Asn 30 ggc Gly ctg Leu gga Gly tgt Cys ctt Leu 110 acc Thr	147 195 243 291
ggc tcc cag Gly Ser Gln 15 ccc tcc acc Pro Ser Thr ctc agc tgt Leu Ser Cys ctc tgt gtc Leu Cys Val 65 ctc tct tac Leu Ser Tyr 80 ggt atg tct Gly Met Ser 95 gtc cag gct Val Gln Ala agc cag aag	gat good Asp Ala cac tothis Ser 35 ctt ctg Leu Leu 50 tcc cac ser His tcc cct Ser Pro acc atc Thr Ile cca tcc Pro Ser 115 cta ccc Leu Pro 130 ctt tgt	ctg gcc Leu Ala 20 tgg gac Trp Asp gct ctg Ala Leu ctg ctc Leu Leu ctg cta Leu Gln 100 tta gag Leu Glu cgg gcc Arg Ala agg gga	ccc (Pro)	ttg tgt Leu Cys 40 cat gtc His Val 55 ctt tgc Leu Cys ctg gcc Leu Ala tgg atg Trp Met ctt atc Leu Ile 120 cag aca Gln Thr 135 agc tgc	cca cct Pro Pro 25 gga tct Gly Ser ttg gtc Leu Val agt ctc Ser Leu tcc agc Ser Ser 90 ggc agc Gly Ser 105 cct gct Pro Ala cct gga Pro Gly cat ggc	gct chair ctg	Pro cct Pro gct Ala 60 cca Pro ttt phe ctg Val tcc Ser 140 ggg	Gln tgg Trp 45 tct Ser gga Gly tca Ser cct Pro ctg Leu 125 tcc Ser	Asn 30 ggc Gly ctg Leu gga Gly tgt Cys ctt Leu 110 acc Thr ctc Leu	147 195 243 291 339

16U 200 PCT FINAL.ST25 160 165 170	
ctg cag ggc atg atg ggg ctg ctg ggg agt ccc ggc cac gtg ttc ccc Leu Gln Gly Met Met Gly Leu Leu Gly Ser Pro Gly His Val Phe Pro 175 180 185 190	579
cac tgt ggg ccc ctg gtg ctg gct ccc agc ctg gtt gtg gca ggg ctc His Cys Gly Pro Leu Val Leu Ala Pro Ser Leu Val Val Ala Gly Leu 195 200 205	627
tet gee cae agg gag gta gee cag tte tge tte aca cae tgg ggg ttg Ser Ala His Arg Glu Val Ala Gln Phe Cys Phe Thr His Trp Gly Leu 210 215 220	675
gcc ttg ctg tac gtg agt cct gag agg cgt ggg atg gtg ccc agt ggg Ala Leu Leu Tyr Val Ser Pro Glu Arg Arg Gly Met Val Pro Ser Gly 225 230 235	723
ggt gta tgg ggg gac taggggaggg cagaactgct ggtcctatca gattcagcag Gly Val Trp Gly Asp 240	778
cgactggaat agggacatat tttatatttg gaatccaaga cttttccttg attcatctgg	838
teteettgaa titeacaetg tittetgetg teecceaagg teactiecta tieetteeat	898
gggagtttcc ttctctggta tcaccccccg ctcttatgat attctgccca ctcccacctc	958
ctttcccatc cctcaggata cccactgcct cttgctccta aagccttctg tctcctaggg	1018
ttatectget catggtggte tgtteteage acetgggete etgeeagttt catgtgtgee	1078
cctggaggcg agcttcaacg tcatcaactc acactcctct ccctgtcttc cggctccttt	1138
cggtatgtgt gggtctgggc agggcagtag aggtcagaag ggctggcctg gagtgctcac	1198
tccatcccct accttttggc ttctgtctac ccctgcaagg ctggctcaga aggttctggg	1258
ggaggagttc ttttctcagt ctcgcccctc aggtgctgat cccagtggcc tgtgtgtgga	1318
ttgtttctgc ctttgtggga ttcagtgtta tcccccagga actgtctgcc cccaccaagg	1378
caccatggat ttggctgcct cacccaggtg agtggaattg gcctttgctg acgcccagag	1438
ctctggctgc aggcatctcc atggccttgg cagcctccac cagttccctg ggctgctatg	1498
ccctgtgtgg ccggctgctg catttgcctc ccccacctcc acatgcctgc agtcgagggc	1558
tgagcctgga ggggctgggc agtgtgctgg ccgggctgct gggaagcccc atgggcactg	1618
catccagctt ccccaacgtg ggcaaagtgg gtcttatcca ggtacgtgga cctgggatgg	1678
gagtggggta ggatggagct agaggggaag aagaaggaca ggaacttaca ccgattgatt	1738
gccaggtgtg cctagcacct cacatcaact atcttacttg gggaggtgcc taagattaga	1798
ctttgggcta agagagtggg gaagtgaaca aatcaccacg gaactcctgt gcatgaggca	1858
ctgtatcaag gctagggcaa agaaccagtc acataaagtt ctgctctctt ggggacttca	1918
tagagggaga ggcagacagt tgaaggaaaa aagtatcttt ttaaaaaagt gggccaggca	1978
tggtggctca cacctgtaat cctagcacgt ggggaggctg aggcaggcag atcacttagg	2038
ctaggaattc aagaccagcc tggccaacat ggtgaaaccc tgtctctact aaaaatacaa	2098
aaattagctg ggcatggtgt tgtgcaccta taattccagc tactcaggag gctgaggcag	2158
gagaatcgct tgagcctggg aggcagaggt tgctgtgagc cgagaccgca ccactgcact	2218
ccagcctggg cgacagagcg agactccatc tc	2250
<210> 81 <211> 243 <212> PRT <213> Homo sapiens	

<400> 81

Met Ser Arg Ser Pro Leu Asn Pro Ser Gln Leu Arg Ser Val Gly Ser 1 5 10 15

Gln Asp Ala Leu Ala Pro Leu Pro Pro Pro Ala Pro Gln Asp Pro Ser $20 \hspace{1cm} 25 \hspace{1cm} 30$

Thr His Ser Trp Asp Pro Leu Cys Gly Ser Leu Pro Trp Gly Leu Ser 35 40 45

Cys Leu Leu Ala Leu Gln His Val Leu Val Met Ala Ser Leu Leu Cys 50 60

Val Ser His Leu Leu Leu Cys Ser Leu Ser Pro Gly Gly Leu Ser 65 70 75 80

Tyr Ser Pro Ser Gln Leu Leu Ala Ser Ser Phe Phe Ser Cys Gly Met 85 90 95

Ser Thr Ile Leu Gln Thr Trp Met Gly Ser Arg Leu Pro Leu Val Gln 100 105 110

Ala Pro Ser Leu Glu Phe Leu Ile Pro Ala Leu Val Leu Thr Ser Gln
115 120 125

Lys Leu Pro Arg Ala Ile Gln Thr Pro Gly Asn Ser Ser Leu Met Leu 130 135 140

His Leu Cys Arg Gly Pro Ser Cys His Gly Leu Gly His Trp Asn Thr 145 150 155 160

Ser Leu Gln Glu Val Ser Gly Ala Val Val Ser Gly Leu Leu Gln 165 170 175

Gly Met Met Gly Leu Leu Gly Ser Pro Gly His Val Phe Pro His Cys 180 185 190

Gly Pro Leu Val Leu Ala Pro Ser Leu Val Val Ala Gly Leu Ser Ala 195 200 205

His Arg Glu Val Ala Gln Phe Cys Phe Thr His Trp Gly Leu Ala Leu 210 215 220

Trp Gly Asp

<210> 82

<211> 1865

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (99)..(1508)

<223>

<400> 82

attttatttc aggaatccat caacatcctt tgcagctaca taggcaggaa aatctagaaa 60 ttgtaattta tatagaattt taaaactctt caattaca atg gat aga ggg gag aaa 116

16U 200 PCT FINAL.ST25 Met Asp Arg Gly Glu Lys 1 5

										_				•			
										tgg Trp						1	164
										gtg Val						2	212
										tcc Ser						2	260
										ctt Leu 65						3	808
										tac Tyr						3	356
										ctc Leu						4	104
										ctg Leu						4	152
										gtc Val						5	00
										gta Val 145						5	48
										ata Ile						5	96
										act Thr						6	544
										ttt Phe						6	92
										caa Gln						7	40
		Ala		Ser	Gly	Gly	Ala	Cys	Phe	aca Thr 225	Leu					7	88
										tgc Cys						8	36
										aac Asn						8	84
gtt Val	ctg Leu	aca Thr 265	ccc Pro	agg Arg	gaa Glu	att Ile	ctc Leu 270	tct Ser	tca Ser	gat Asp	gct Ala	gta Val 275	gct Ala	atc Ile	aca Thr	9	32
tgg Trp	gct Ala 280	gat Asp	cga Arg	gct Ala	ttt Phe	ccc Pro 285	tca Ser	tta Leu	gca Ala	tgg Trp	att Ile 290	atg Met	cct Pro	ttt	gct Ala	9	80
att Ile 295	tct Ser	acc Thr	tca Ser	tta Leu	ttt Phe 300	agc Ser	aac Asn	ctt Leu	ctg Leu	att Ile 305	tct Ser	ata Ile	ttt Phe	aaa Lys	tca Ser 310	10	28

tcg aga c Ser Arg F						ggc	cag	ctg	cct		cta	1076
ttt aat a Phe Asn 1												1124
ctt gtc a Leu Val 1				Ile								1172
ttg ata a Leu Ile A 360												1220
atg ata g Met Ile 0 375												1268
cct tat a Pro Tyr I												1316
gtg ggc t Val Gly I												1364
gtc tac g Val Tyr \				Ser								1412
tta ata d Leu Ile H 440												1460
tat tta o Tyr Leu 0 455												1508
tagatgtc	gg aagt	gcaaac t	cttaaaaa	a tt	ggcct	tct	aaaa	aaac	ata 1	atca	agattc	1568
caaatcaag	gg ttaaa	acatat g	atagaaca	t tc	atggi	tgaa	atto	ccta	tgg t	aaat	tatttt	1628
tttctcaaa	at gaaa	taagta a	tgtataca	a aa	gtgc	ctaa	gaca	agta	cct o	ggctt	cagag	1688
tcactaaga	aa attgo	ctaaaa g	ctctgctt	c gc	atggt	taaa	aaad	tta	agt o	cctg	gtttgc	1748
gtagettga	at agagi	tgatta t	acaactto	c at	tctct	cac	ttt	ttt	ttc t	gtat	cccac	1808
cccttttct	ta ctgaa	atttgt g	gggatcct	a ta	ataaa	agt	gaat	gact	taa a	aatt	tt	1865
	_											

<210> 83 <211> 470

<212> PRT

<213> Homo sapiens

<400> 83

Met Asp Arg Gly Glu Lys Ile Gln Leu Lys Arg Val Phe Gly Tyr Trp 1 $$ 5 $$ 15

Trp Gly Thr Ser Phe Leu Leu Ile Asn Ile Ile Gly Ala Gly Ile Phe $20 \hspace{1cm} 25 \hspace{1cm} 30$

Val Ser Pro Lys Gly Val Leu Ala Tyr Ser Cys Met Asn Val Gly Val 35 40 45

Ser Leu Cys Val Trp Ala Gly Cys Ala Ile Leu Ala Met Thr Ser Thr 50 55

Leu Cys Ser Ala Glu Ile Ser Ile Ser Phe Pro Cys Ser Gly Ala Gln 65 70 75 80 80

WO 03/089583 PCT/US03/11497

16U 200 PCT FINAL.ST25

Tyr Tyr Phe Leu Lys Arg Tyr Phe Gly Ser Thr Val Ala Phe Leu Asn $85 \hspace{1cm} 90 \hspace{1cm} 95$

Leu Trp Thr Ser Leu Phe Leu Gly Ser Gly Val Val Ala Gly Gln Ala 100 105 110

Leu Leu Leu Ala Glu Tyr Ser Ile Gln Pro Phe Phe Pro Ser Cys Ser 115 120 125

Val Pro Lys Leu Pro Lys Lys Cys Leu Ala Leu Ala Met Leu Trp Ile 130 135 140

Val Gly Ile Leu Thr Ser Arg Gly Val Lys Glu Val Thr Trp Leu Gln 145 $\,$ 150 $\,$ 150 $\,$ 160

Ile Ala Ser Ser Val Leu Lys Val Ser Ile Leu Ser Phe Ile Ser Leu 165 170 175

Thr Gly Val Val Phe Leu Ile Arg Gly Lys Lys Glu Asn Val Glu Arg 180 185 190

Phe Gln Asn Ala Phe Asp Ala Glu Leu Pro Asp Ile Ser His Leu Ile 195 200 . 205

Gln Ala Ile Phe Gln Gly Tyr Phe Ala Tyr Ser Gly Gly Ala Cys Phe 210 215 220

Thr Leu Ile Ala Gly Glu Leu Lys Lys Pro Arg Thr Thr Ile Pro Lys 225 230 235 240

Cys Ile Phe Thr Ala Leu Pro Leu Val Thr Val Val Tyr Leu Leu Val 245 250 255

Asn Ile Ser Tyr Leu Thr Val Leu Thr Pro Arg Glu Ile Leu Ser Ser 260 265 270

Asp Ala Val Ala Ile Thr Trp Ala Asp Arg Ala Phe Pro Ser Leu Ala 275 280 285

Ile Ser Ile Phe Lys Ser Ser Arg Pro Ile Tyr Leu Ala Ser Gln Glu 305 310 315 320

Gly Gln Leu Pro Leu Leu Phe Asn Thr Leu Asn Ser His Ser Ser Pro 325 330 335

Phe Thr Ala Val Leu Leu Leu Val Thr Leu Gly Ser Leu Ala Ile Ile 340 345 350

Leu Thr Ser Leu Ile Asp Leu Ile Asn Tyr Ile Phe Phe Thr Gly Ser 355 360 365

Leu Trp Ser Ile Leu Leu Met Ile Gly Ile Leu Arg Arg Arg Tyr Gln 370 375 380

Glu Pro Asn Leu Ser Ile Pro Tyr Lys Val Phe Leu Ser Phe Pro Leu 385 390 395 400

Ala Thr Ile Val Ile Asp Val Gly Leu Val Val Ile Pro Leu Val Lys Ser Pro Asn Val His Tyr Val Tyr Val Leu Leu Leu Val Leu Ser Gly Leu Leu Phe Tyr Ile Pro Leu Ile His Phe Lys Ile Arg Leu Ala Trp Phe Glu Lys Met Thr Cys Tyr Leu Gln Leu Leu Phe Asn Ile Cys Leu Pro Asp Val Ser Glu Glu <210> 84 <211> 1046 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (319)..(852) <400> 84 60 gaacacatet gaatteette tetotogeat atgetttagg agaggageag acagetetta 120 gctagggtca gatttcaaat tctcatctct tggtgccaat accaccacca gattcttctt 180 tgaagtcaac ttttgagatc ttcactaagt acacgttggt gtctgaagat tcacacgagt 240 gcctctggta atcattttct tcagggaatc acagtctctc ctctcagcaa agcatccact 300 gtactgaact ttgcttttgg aaacatcttc ttcctgagac ctcgttgaaa gaaactctct ggtgtcatac tttccaat atg gag gtg aag aac ttt gca gtt tgg gat tat Met Glu Val Lys Asn Phe Ala Val Trp Asp Tyr 351 gtt gta ttt gca gcc ctc ttt ttc att tcc tct gga att ggg gtg ttc Val Val Phe Ala Ala Leu Phe Phe Ile Ser Ser Gly Ile Gly Val Phe 399 20 ttt gcc att aag gag aga aaa aag gca act tcc cga gag ttc ctg gtt 447 Phe Ala Ile Lys Glu Arg Lys Lys Ala Thr Ser Arg Glu Phe Leu Val ggg gya agg caa atg agc ttt ggc cct gtc ggc ttg tct ctg aca gcc 495 Gly Gly Arg Gln Met Ser Phe Gly Pro Val Gly Leu Ser Leu Thr Ala 50 age tte atg tea get gte aeg gte etg ggg ace eet tet gaa gte tae Ser Phe Met Ser Ala Val Thr Val Leu Gly Thr Pro Ser Glu Val Tyr 543 cgc ttt ggg gca tcc ttc cta gtc ttc ttc att gct tac cta ttt gtc 591 Arg Phe Gly Ala Ser Phe Leu Val Phe Phe Ile Ala Tyr Leu Phe Val atc ctc tta aca tca gag ctc ttt ctc cct gtg ttc tac aga tct ggt Ile Leu Leu Thr Ser Glu Leu Phe Leu Pro Val Phe Tyr Arg Ser Gly 639 atc acc age act tat gag tac tta caa cta cga ttc aac aaa cca gtt Ile Thr Ser Thr Tyr Glu Tyr Leu Gln Leu Arg Phe Asn Lys Pro Val 687 cgc tat gct gcc acg gtc atc tac att gta cag acg att ctc tac aca Arg Tyr Ala Ala Thr Val Ile Tyr Ile Val Tyr Ile Leu Tyr Thr 735

Page 47

135

16U 200 PCT FINAL.ST25 gga gtg gtg tat gct cct gcc ctg gca ctc aat caa gtg act ggg Gly Val Val Val Tyr Ala Pro Ala Leu Ala Leu Asn Gln Val Thr Gly 140 145 150 155	783
ttt gat ctc tgg ggc tct gtg ttt gca aca gga att gtt tgc aca ttc Phe Asp Leu Trp Gly Ser Val Phe Ala Thr Gly Ile Val Cys Thr Phe 160 165 170	831
tac tgt acc ctg gta tgt atc tagctgtgaa gaagtattta acactacctc Tyr Cys Thr Leu Val Cys Ile 175	882
ctaatatggg ataagggcaa atctccagca ataggcatct aattatagca gaattcgtta	942
ttccaaaatt aagcagaagt atgtcggctt atctgtcaca gtttcctgag gaaggtgctg	1002
ttgtttaaca ttcttttcat taccaacctt taggagaatt taat	1046
<210> 85 <211> 178 <212> PRT <213> Homo sapiens	
<400> 85	
Met Glu Val Lys Asn Phe Ala Val Trp Asp Tyr Val Val Phe Ala Ala 1 10 15	
Leu Phe Phe Ile Ser Ser Gly Ile Gly Val Phe Phe Ala Ile Lys Glu 25 30	
Arg Lys Lys Ala Thr Ser Arg Glu Phe Leu Val Gly Gly Arg Gln Met 35 40 45	
Ser Phe Gly Pro Val Gly Leu Ser Leu Thr Ala Ser Phe Met Ser Ala 50 60	
Val Thr Val Leu Gly Thr Pro Ser Glu Val Tyr Arg Phe Gly Ala Ser 65 70 75 80	
Phe Leu Val Phe Phe Ile Ala Tyr Leu Phe Val Ile Leu Leu Thr Ser 85 90 95	
Glu Leu Phe Leu Pro Val Phe Tyr Arg Ser Gly Ile Thr Ser Thr Tyr 100 105 110	
Glu Tyr Leu Gln Leu Arg Phe Asn Lys Pro Val Arg Tyr Ala Ala Thr 115 120 125	
Val Ile Tyr Ile Val Gln Thr Ile Leu Tyr Thr Gly Val Val Val Tyr 130 135 140	
Ala Pro Ala Leu Ala Leu Asn Gln Val Thr Gly Phe Asp Leu Trp Gly 145 150 155 160	
Ser Val Phe Ala Thr Gly Ile Val Cys Thr Phe Tyr Cys Thr Leu Val 165 170 175	
Cys Ile ,.	

<210> 86 <211> 4751 <212> DNA <213> Homo sapiens

										160	200	PCT	FINA:	L.ST	25	
<220: <221: <222: <223:	> C	DS 382)	(1	929)	•											
<400 cccg			tggc	gggg	c tg	aatg	agcc	ggt	gcat	ttc	gaag	gccg	ag c	actg	ggatt	60
ttcc	gcgc	ta c	gctt	ccct	c tc	ccgg	cgtt	gcc	agct	agg	cccc	cggc	cc c	agcc	tcgcc	120
ggcg	cctc	cg c	ccag	tccg	c tc	cccg	cccc	acc	gaag	cgc	ggat	cgcg	ca g	cctg	gggcc	180
cggg	aagg	gg c	cact	gcgc	a gg	gacg	cggc	tcg	gcgg	gtg	cgcc	ccgg	gg g	catg	tccgc	240
gcgc	tacc	gc c	aggg	ctgc	a gt	ggtc	ccgg	cga	ggcc	ctg	gcaa	ccac	ca t	tcta	ctttt	300
tgtg	tcta	tg a	gttt	gact	а сс	ctaa	ggac	cto	acat	ggc	gagt	aacc	ca t	gggc	caggt	360
agcg	ttct	at g	ссаа	cctt	ga	atg Met 1	cca Pro	tca Ser	gga Gly	agt Ser 5	cac His	tgg Trp	aca Thr	gca Ala	aac Asn 10	411
		aag Lys														459
aaa Lys	aga Arg	aaa Lys	acc Thr 30	atg Met	gca Ala	aaa Lys	gta Val	aat Asn 35	aga Arg	gct Ala	cgg Arg	tct Ser	acc Thr 40	tcc Ser	cct Pro	507
cca Pro	gat Asp	gga Gly 45	ggc Gly	tgg Trp	ggc Gly	tgg Trp	atg Met 50	att Ile	gtg Val	gct Ala	ggc Gly	tgt Cys 55	ttc Phe	ctt Leu	gtt Val	555
acc Thr	atc Ile 60	tgc Cys	aca Thr	cgg Arg	gca Ala	gtc Val 65	aca Thr	aga Arg	tgt Cys	atc Ile	tca Ser 70	att Ile	ttt Phe	ttt Phe	gtg Val	603
gag Glu 75	ttc Phe	cag Gln	aca Thr	tac Tyr	ttc Phe 80	act Thr	cag Gln	gat Asp	tac Tyr	gca Ala 85	caa Gln	acg Thr	gca Ala	tgg Trp	atc Ile 90	651
		att Ile														699
gtt Val	gtc Val	agt Ser	aac Asn 110	cat His	tta Leu	tcc Ser	tgt Cys	caa Gln 115	gtg Val	gga Gly	atc Ile	atg Met	ctg Leu 120	ggt Gly	ggc Gly	747
ttg Leu	ctt Leu	gca Ala 125	tct Ser	act Thr	gga Gly	ctc Leu	atc Ile 130	ctg Leu	agc Ser	tca Ser	ttt Phe	gcc Ala 135	acg Thr	agt Ser	ctg Leu	795
		ctc Leu							_			-		n	* 7 -	843
ctt Leu 155	tgt Cys	tac Tyr	tct Ser	cca Pro	gct Ala 160	att Ile	gcc Ala	atg Met	gtt Val	ggc Gly 165	aag Lys	tac Tyr	ttc Phe	agc Ser	aga Arg 170	891
cgg Arg	aaa Lys	gcc Ala	ctt Leu	gct Ala 175	tat Tyr	ggt Gly	atc Ile	gcc Ala	atg Met 180	tca Ser	gga Gly	agt Ser	ggc Gly	att Ile 185	Gly Gly	939
acc Thr	ttc Phe	atc Ile	ctg Leu 190	gct Ala	cct Pro	gtg Val	gtt Val	cag Gln 195	ctc Leu	ctt Leu	att Ile	gaa Glu	cag Gln 200	ttt Phe	tcc Ser	987
tgg Trp	cgg Arg	gga Gly 205	gcc Ala	tta Leu	ctc Leu	att Ile	ctt Leu 210	Gl y	ggc Gly	ttt Phe	gtc Val	ttg Leu 215	aat Asn	ctc Leu	tgt Cys	1035
gta Val	tgt Cys 220	ggt Gly	gcc Ala	ttg Leu	atg Met	agg Arg 225	cca Pro	att Ile	act Thr	ctt Leu	aaa Lys 230	gag Glu	gac Asp	cac His	aca Thr	1083
act	cca	gag	cag	aac	cat	gtg	tgt	aga	act	cag	aaa	gaa	gac	att	aag	1131

Thr Pro Glu Gln Asn His Val Cys Arg Thr Gln Lys Glu Asp Ile Lys 235 240 245 250	
cgg gtg tct ccc tat tca tct ttg acc aaa gaa tgg gca cag act tgc Arg Val Ser Pro Tyr Ser Ser Leu Thr Lys Glu Trp Ala Gln Thr Cys 255 260 265	1179
ctc tgt tgc tgt ttg cag caa gag tac agt ttt tta ctc atg tca gac Leu Cys Cys Leu Gln Gln Glu Tyr Ser Phe Leu Leu Met Ser Asp 270 275 280	1227
ttt gtt gtg tta gcc gtc tcc gtt ctg ttt atg gct tat ggc tgc agc Phe Val Val Leu Ala Val Ser Val Leu Phe Met Ala Tyr Gly Cys Ser 285 290 295	1275
cct ctc ttt gtg tac ttg gtg cct tat gct ttg agt gtt gga gtg agt Pro Leu Phe Val Tyr Leu Val Pro Tyr Ala Leu Ser Val Gly Val Ser 300 305 310	1323
Cat cag caa gct gct ttt ctt atg tcc ata ctt gga gtg att gac att His Gln Gln Ala Ala Phe Leu Met Ser Ile Leu Gly Val Ile Asp Ile 315 320 325 330	1371
att ggc aat atc aca ttt gga tgg ctg acc gac aga agg tgt ctg aag Ile Gly Asn Ile Thr Phe Gly Trp Leu Thr Asp Arg Arg Cys Leu Lys 335 340 345	1419
aat tac cag tat gtt tgc tac ctc ttt gcc gtg gga atg gat ggg ctc Asn Tyr Gln Tyr Val Cys Tyr Leu Phe Ala Val Gly Met Asp Gly Leu 350 355 360	1467
tgc tat ctc tgc ctc cca atg ctt caa agt ctc cct ctg ctc gtg cct Cys Tyr Leu Cys Leu Pro Met Leu Gln Ser Leu Pro Leu Leu Val Pro 365 370 375	1515
ttc tct tgt acc ttt ggc tac ttt gat ggt gcc tat gtg act ttg atc Phe Ser Cys Thr Phe Gly Tyr Phe Asp Gly Ala Tyr Val Thr Leu Ile 380 385 390	1563
Cca gta gtg acc aca gag ata gtg ggg acc acc tct ttg tca tca gcg Pro Val Val Thr Thr Glu Ile Val Gly Thr Thr Ser Leu Ser Ser Ala 395 400 405 410	1611
ctt ggt gtg gta tac ttc ctt cac gca gtg cca tac ttg gtg agc cca Leu Gly Val Val Tyr Phe Leu His Ala Val Pro Tyr Leu Val Ser Pro 415 420 425	1659
ccc atc gca gga cgg ctg gta gat acc acc ggc agc tac act gca gca Pro Ile Ala Gly Arg Leu Val Asp Thr Thr Gly Ser Tyr Thr Ala Ala 430 435 440	1707
Phe Leu Cys Gly Phe Ser Met Ile Phe Ser Ser Val Leu Leu Gly 445 450 455	1755
ttt gct aga ctt ata aag aga atg aga aaa acc cag ttg cag ttc att Phe Ala Arg Leu Ile Lys Arg Met Arg Lys Thr Gln Leu Gln Phe Ile 460 465 470	1803
gcc aaa gaa tct gat cct aag ctg cag cta tgg-acc aat gga tca gtg Ala Lys Glu Ser Asp Pro Lys Leu Gln Leu Trp Thr Asn Gly Ser Val 475 480 485 490	1851
gct tat tct gtg gca aga gaa tta gat cag aaa cat ggg gag cct gtg Ala Tyr Ser Val Ala Arg Glu Leu Asp Gln Lys His Gly Glu Pro Val 495 500 505	1899
gct aca gca gtg cct ggc tac agc ctc aca tgaccaaagg ccttgagccc Ala Thr Ala Val Pro Gly Tyr Ser Leu Thr 510 515	1949
Cagaatotto aggittgaga gaggiggggo caccagatto ticatgitto igaaaciitti	2009
tattttggca gaaggattgc cttccaagga aattattatt attgttttgt taacatatta	2069
atatttataa gggaaaacag cacataataa ggaaagctgg actagcccag agccttctca	2129
tttgggattt gtgctcataa ctgaactcgt atcttttggt caatgggcat agctctgtaa	2189

						
gaaatgtaag	gacacagetg	atataattag		200 PCT FIN		2249
caaagcagat	gacactgggc	agcagctttg	ttccagtctc	aggcccttca	tgttccctcc	2309
tcagaaagaa	aatggaaaca	ttaacgtgta	gctttgctta	ccttgttctg	gttagagaag	2369
ggaggtcagc	ttgggtgtgg	tggtgaagag	tgaagatgcc	atacttttc	atggtggagt	2429
ttctcattag	ggttttactt	gggattgtta	aagaatactt	gagattcttc	aaaaagtggt	2489
gattaatata	gaaagaaact	cttattttt	ttttctctta	gtcttccagc	cagecettge	2549
ctctgcccaa	gggtagacac	cactatgaga	atccaaataa	tcatggaatg	ccatggttgg	2609
aatagatctt	aaagggcatc	tggtaagatc	catttgaaat	tgtccactgg	aaaccgaaag	2669
ctcttttcct	aagactgggt	tccaggctct	cacatttgtt	accatcacat	ataatactta	2729
ctctaaattt	agcagaacac	acttagtcac	aaggacaacc	tctcaatctt	acctgaaatg	2789
tcaacaacac	caaaacttcc	cgtcttttac	cttcagagaa	gaagetetta	cttagactgc	2849
agacgcattc	ctgttaggtt	ggaaaaatgt	tggcagtatt	ccaattgggc	aggaactgaa	2909
ttcttgaatc	agcaggtctc	tggtgagagt	tttctttgca	gatcagacat	ttagttttat	2969
cattacccaa	aagaggattg	gagggagtca	gttgtctgaa	aaatattatc	ctagagatat	3029
tctaaaggtg	agattccttt	ctccctgtgt	taattcttgt	tccactatcc	actgctcttc	3089
atctctttat	agataataat	tagaaatcta	ctcattggat	tataagttta	ttcattctca	3149
aatactccac	ttttctatgg	tttgggataa	tttctgagtc	ttcagattga	agagggaagg	3209
catggaggga	agaaaaagtc	cagatccccc	agcttgtttc	caaccatttt	aagtccaaag	3269
aattataatc	ctgaatctca	cagtgtgtca	cacctgtaat	aggagtaaat	tatgcaatca	3329
attttaatta	ccaggagttt	aaaatccaaa	tgtcaaggaa	ctgttttgac	cctgaaggct	3389
atttaatcca	ctgtccccta	caaggcctca	caagtgctgg	gggaaaaaaa	acagcaatga	3449
ggatgatcct	gagttaatgt	gtatgctccg	caagagagct	tgcctatacc	ttgattattt	3509
cataaaatca	catgttaata	cattgctttc	agaatgaaat	actgacttga	tctgatagga	3569
gaaaatggta	atatttcata	gttgttttcc	aaagacaaat	ttaaatgttg	tctgttatct	3629
ccttacttag	tttaagaatt	tagttttgaa	ccccattgac	tttgtcattt	gcaattttaa	3689
aaatatttgg	gactgggcat	ggtcgctcac	gcctgtaatc	ccagcacttt	gggaggctga	3749
ggcgggtgga	tcatgaggtc	aggagatcaa	gaccatcctg	gctaacatcg	tgaaactccg	3809
tctctactaa	aaatgcaaaa	gattagccag	gcgtggtggc	gggcgcctgt	agtcccagct	3869
actcatgagg	ctgaggccgg	acaatcgctt	gaacccagga	ggtggaggtt	gcagtgagcc	3929
aaaatcatgc	cactgcactc	caccctgggc	gacagagcaa	gactccatct	caaaaaaaa	3989
aaattggaag	gtatctgtaa	aatgtcaaag	ttaagatgaa	gttatatctg	tttggaatag	4049
cactttgccc	taaatatcat	ttcttgaatt	ttcaagccta	aagatgttta	aaaatatgaa	4109
tagttacaaa	tattcttata	catattttt	atcatgatca	caacaaaatt	ttgtttatgt	4169
ggttctgcaa	tataatttct	gtgaagtatt	acaagtattt	atgaaaaata	agcatagtga	4229
tcagaaattt	taaagatttt	gtataaaaac	atttgggaga	tttgacttta	tacatgcata	4289
gatttgcatt	ttactttccc	ttttgaggca	gcatttttag	aaaatcagta	agaaaaatgt	4349
acatcttaag	gtctactatt	ttacatttct	acacagaatt	ttagtgttaa	tgttccatgt	4409
gtctatactg	tttatttcaa	aactgagaaa	ttcatgggaa	tgatgtattt	tgtggaatca	4469
agaacaaaat	tatagtggga	taattttaca	tcttaaatat	ttctttctac	tactgtaagc	4529
tctactttgg	aattatctga	gtagaaaatc	agaagacatt	atctaacttt	gtagatacac	4589

tgtatgattg	ggctttttgt	tcagattgta	atttcattaa	tagatgaaat	atttatgcta	4649
atattttctt	atttcaaaag	caaaataaaa	tgaatttatt	gtcctgtgta	aaaaaaaaa	4709
aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	aa		475

<210> <211> 516 PRT Homo sapiens

Met Pro Ser Gly Ser His Trp Thr Ala Asn Ser Ser Lys Ile Ile Thr 1 $$ 5 $$ 10 $$ 15

Trp Leu Leu Glu Gln Pro Gly Lys Glu Glu Lys Arg Lys Thr Met Ala 20 25 30

Lys Val Asn Arg Ala Arg Ser Thr Ser Pro Pro Asp Gly Gly Trp Gly 35 40

Trp Met Ile Val Ala Gly Cys Phe Leu Val Thr Ile Cys Thr Arg Ala 50 55 60

Val Thr Arg Cys Ile Ser Ile Phe Phe Val Glu Phe Gln Thr Tyr Phe 65 70 75 80

Thr Gln Asp Tyr Ala Gln Thr Ala Trp Ile His Ser Ile Val Asp Cys 85 90 95

Val Thr Met Leu Cys Ala Pro Leu Gly Ser Val Val Ser Asn His Leu 100 105 110

Ser Cys Gln Val Gly Ile Met Leu Gly Gly Leu Leu Ala Ser Thr Gly 115 120 125

Leu Ile Leu Ser Ser Phe Ala Thr Ser Leu Lys His Leu Tyr Leu Thr 130 135 140

Leu Gly Val Leu Thr Gly Leu Gly Phe Ala Leu Cys Tyr Ser Pro Ala 145 150 150 160

Ile Ala Met Val Gly Lys Tyr Phe Ser Arg Arg Lys Ala Leu Ala Tyr 165 170 175

Gly Ile Ala Met Ser Gly Ser Gly Ile Gly Thr Phe Ile Leu Ala Pro $180 \hspace{1.5cm} 185 \hspace{1.5cm} 190 \hspace{1.5cm}$

Val Val Gln Leu Leu Ile Glu Gln Phe Ser Trp Arg Gly Ala Leu Leu 195 200 205

Ile Leu Gly Gly Phe Val Leu Asn Leu Cys Val Cys Gly Ala Leu Met 210 220

Arg Pro Ile Thr Leu Lys Glu Asp His Thr Thr Pro Glu Gln Asn His 225 230 230 235

Val Cys Arg Thr Gln Lys Glu Asp Ile Lys Arg Val Ser Pro Tyr Ser 245 250 255

WO 03/089583 PCT/US03/11497

Ser Leu Thr Lys Glu Trp Ala Gln Thr Cys Leu Cys Cys Leu Gln 260 265 270

Gln Glu Tyr Ser Phe Leu Leu Met Ser Asp Phe Val Val Leu Ala Val 275 280 285

Ser Val Leu Phe Met Ala Tyr Gly Cys Ser Pro Leu Phe Val Tyr Leu 290 295 300

Val Pro Tyr Ala Leu Ser Val Gly Val Ser His Gln Gln Ala Ala Phe 305 310 315 320

Leu Met Ser Ile Leu Gly Val Ile Asp Ile Ile Gly Asn Ile Thr Phe \$325\$ \$330 \$335

Gly Trp Leu Thr Asp Arg Arg Cys Leu Lys Asn Tyr Gln Tyr Val Cys 340 345 350

Tyr Leu Phe Ala Val Gly Met Asp Gly Leu Cys Tyr Leu Cys Leu Pro 355 360 365

Met Leu Gln Ser Leu Pro Leu Leu Val Pro Phe Ser Cys Thr Phe Gly 370 375 380

Tyr Phe Asp Gly Ala Tyr Val Thr Leu Ile Pro Val Val Thr Thr Glu 385 390 395 400

Ile Val Gly Thr Thr Ser Leu Ser Ser Ala Leu Gly Val Val Tyr Phe 405 410 415

Leu His Ala Val Pro Tyr Leu Val Ser Pro Pro Ile Ala Gly Arg Leu 420 425 430

Val Asp Thr Thr Gly Ser Tyr Thr Ala Ala Phe Leu Leu Cys Gly Phe 435 440 445

Ser Met Ile Phe Ser Ser Val Leu Leu Gly Phe Ala Arg Leu Ile Lys 450 455 460

Arg Met Arg Lys Thr Gln Leu Gln Phe Ile Ala Lys Glu Ser Asp Pro 465 470 475 480

Lys Leu Gln Leu Trp Thr Asn Gly Ser Val Ala Tyr Ser Val Ala Arg 485 490 495

Glu Leu Asp Gln Lys His Gly Glu Pro Val Ala Thr Ala Val Pro Gly 500 505 510

Tyr Ser Leu Thr

<210> 88

<211> 2150

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (63)..(1760)

<223>

<400> 88

16U 200 PCT FINAL.ST25 gctggacaaa gctggccgtg caggcgctca ggcgtgcagg gtagccagtg ccccggc	cag 60
ga atg gac agc ctc cag gac aca gtg gcc ctg gac cat ggg ggc tgc Met Asp Ser Leu Gln Asp Thr Val Ala Leu Asp His Gly Gly Cys 1 5 10 15	
tgc cct gcc ctc agc agg ctg gtt ccc aga ggc ttt ggg act gag at Cys Pro Ala Leu Ser Arg Leu Val Pro Arg Gly Phe Gly Thr Glu Me 20 25 30	
tgg act ctc ttt gcc ctt tct gga ccc ctg ttc ctg ttc cag gtg ct Trp Thr Leu Phe Ala Leu Ser Gly Pro Leu Phe Leu Phe Gln Val Le 35 40 45	
act ttt atg atc tac atc gtg agc act gtg ttc tgc ggg cac ctg gg Thr Phe Met Ile Tyr Ile Val Ser Thr Val Phe Cys Gly His Leu Gl 50 55 60	
aag gtg gag ctg gca tcg gtg acc ctc gcg gtg gcc ttt gtc aat gt Lys Val Glu Leu Ala Ser Val Thr Leu Ala Val Ala Phe Val Asn Va 65 70 75	
tgc gga gtt tct gta gga gtt ggt ttg tct tcg gca tgt gac acc tt Cys Gly Val Ser Val Gly Val Gly Leu Ser Ser Ala Cys Asp Thr Le 80 85 90 95	น
atg tct cag agc ttc ggc agc ccc aac aag aag cac gtg ggc gtg at Met Ser Gln Ser Phe Gly Ser Pro Asn Lys Lys His Val Gly Val Il 100 105 110	
ctg cag cgg ggc gcg ctg gtc ctg ctc ctc tgc tg	
gcg ctc ttc ctc aac acc cag cac atc ctg ctg ctc ttc cgg cag ga Ala Leu Phe Leu Asn Thr Gln His Ile Leu Leu Leu Phe Arg Gln As 130 135 140	
ccg gac gtg tcc agg ttg acc cag gac tat gta atg att ttc att cc Pro Asp Val Ser Arg Leu Thr Gln Asp Tyr Val Met Ile Phe Ile Pr 145 150 155	
gga ctt ccg gtg att ttt ctt tac aat ctg ctg gca aaa tat ttg ca Gly Leu Pro Val Ile Phe Leu Tyr Asn Leu Leu Ala Lys Tyr Leu Gl 160 165 170 17	n
aat cag aag atc acc tgg ccc caa gtc ctc agt ggt gtg gtg ggc aa Asn Gln Lys Ile Thr Trp Pro Gln Val Leu Ser Gly Val Val Gly As 180 185 190	
tgt gtc aac ggt gtg gcc aac tat gcc ctg gtt tct gtg ctg aac ct Cys Val Asn Gly Val Ala Asn Tyr Ala Leu Val Ser Val Leu Asn Le 195 200 205	
ggg gtc agg ggc tcc gcc tat gcc aac atc atc tcc cag ttt gca ca Gly Val Arg Gly Ser Ala Tyr Ala Asn Ile Ile Ser Gln Phe Ala Gl 210 215 220	g 731 n
acc gtc ttc ctc ctt ctc tac att gtg ctg aag aag ctg cac ctg ga Thr Val Phe Leu Leu Leu Tyr Ile Val Leu Lys Lys Leu His Leu Gl 225 230 235	
acg tgg gca ggt tgg tcc agc cag tgc ctg cag gac tgg ggc ccc tt Thr Trp Ala Gly Trp Ser Ser Gln Cys Leu Gln Asp Trp Gly Pro Ph 240 245 250 25	e
ttc tcc ctg gct gtc ccc agc atg ctc atg atc tgt gtt gag tgg tg Phe Ser Leu Ala Val Pro Ser Met Leu Met Ile Cys Val Glu Trp Tr 260 265 270	
gcc tat gag atc ggg agc ttc ctc atg ggg ctg ctc agt gtg gtg ga Ala Tyr Glu Ile Gly Ser Phe Leu Met Gly Leu Leu Ser Val Val As 275 280 285	t :923 p
ctc tct gcc cag gct gtc atc tac gag gtg gcc act gtg acc tac at Leu Ser Ala Gln Ala Val Ile Tyr Glu Val Ala Thr Val Thr Tyr Me 290 295 300	
att ccc ttg ggg ctc agc atc ggg gtc tgt gtc cga gtg ggg atg gc	t 1019

	Pro 3 0 5	Leu	Gly	Leu	Ser	Ile 310	G1 y	Val	Cys	16U Val	200 Arg 315	PCT Val	FINA Gly	L.ST Met	25 Ala	
ctg Leu 320	ggg ggg	gct Ala	gcg Ala	gat Asp	act Thr 325	gtg Val	cag Gln	gcc Ala	aag Lys	cgc Arg 330	tcg Ser	gcc Ala	gtc Val	tcg Ser	ggc Gly 335	1067
gtg Val	ctc Leu	agc Ser	ata Ile	gtt Val 340	ggc Gly	att Ile	tcc Ser	ctg Leu	gtc Val 345	ctg Leu	ggc Gly	acc Thr	ctg Leu	ata Ile 350	agc Ser	1115
atc Ile	ctg Leu	aaa Lys	aat Asn 355	cag Gln	ctg Leu	G1 y ggg	cat His	att Ile 360	ttt Phe	acc Thr	aat Asn	gat Asp	gaa Glu 365	gat Asp	gtc Val	1163
att Ile	gcc Ala	ctg Leu 370	gtg Val	agc Ser	cag Gln	gtc Val	ttg Leu 375	ccg Pro	gtt Val	tat Tyr	agt Ser	gtc Val 380	ttt Phe	cac His	gtg Val	1211
ttt Phe	gag Glu 385	gcc Ala	atc Ile	tgt Cys	tgt Cys	gtc Val 390	tat Tyr	ggc Gly	gga Gly	gtt Val	ctg Leu 395	aga Arg	gga Gly	act Thr	ggg Gly	1259
aag Lys 400	cag Gln	gcc Ala	ttt Phe	ggt Gly	gcc Ala 405	gct Ala	gtg Val	aat Asn	gcc Ala	atc Ile 410	aca Thr	tat Tyr	tac Tyr	atc Ile	atc 11e 415	1307
ggc Gly	cta Leu	cca Pro	ctg Leu	ggc Gly 420	Ιle	ctt Leu	ctg Leu	acc Thr	ttt Phe 425	Val	gtc Val	aga Arg	atg Met	aga Arg 430	rre	1355
atg Met	ggc Gly	ctc Leu	tgg Trp 435	Leu	ggc Gly	atg Met	ctg Leu	gcc Ala 440	Cys	gtc Val	ttc Phe	ctg Leu	gca Ala 445	act Thr	gct Ala	1403
gcc Ala	ttt Phe	gtt Val 450	Ala	tat Tyr	act Thr	gcc Ala	cgg Arg 455	Leu	gac Asp	tgg Trp	aag Lys	ctt Leu 460	Ala	gca Ala	gag Glu	1451
gag Glu	gct Ala 465	Lys	g aaa S Lys	cat His	tca Ser	ggc Gly 470	Arg	cag Gln	cag Gln	cag Gln	Glr 475	n Arg	gca Ala	gag Glu	agc Ser	1499
act Thr 480	: Ala	aco Thi	aga Arg	cct Pro	ggg Gly 485	Pro	gag Glu	j aaa Lys	gca Ala	gto Val 490	Lei	a tct ı Ser	tca Ser	gtg Val	gct Ala 495	1547
aca Thi	ggc Gly	agt / Set	t tco r Sei	e cct Pro	G1 y	att / Ile	acc Thi	tto Lei	aca Thi	Thi	tai Ty	t tca r Sei	agg Arg	tct Ser 510	gag Glu	1595
t go Cys	cac His	gte Va	g gad l Asp 515	Phe	tto Phe	ago Aro	act Thi	520	o Glu	g gaq ı Glı	g gce 1 Ala	c cad a His	gcc 3 Ala 525	rec	tca 1 Ser	1643
gct Ala	cct a Pro	t according	r Se	aga Are	a cta g Lei	tca Sei	gto Val 535	l Ly:	a caq s Gli	g cto n Lei	g gte 1 Va	c ato 1 110 540	s Ard	cgi Arg	g Gly	1691
gc: Ala	gc: a Ala 54	a Le	g gge u Gl	g gc y Ala	g gcq a Ala	tca Sei 550	: Ala	c aca	a cto r Leo	g ate u Me	g gt t Va 55	I GI	g cto y Lev	acq 1 Thi	g gtc r Val	1739
age Are 56	g Il	c ct e Le	a gc	c ace a Th	c age r Are 56	g His	ta:	gcaa	agaa	gct	tgga	aat	agaaa	agcc	ag	1790
ga	gtgg	ctgt	ccc	cagt	atg	caaa	caca	cc a	cggt	ctgc	c ct	gcaa	aaac	acc	aatgggg	1850
tc	tagt	gcag	gtg	gaca	ctt	tgaa	ccac	tc c	tcaa	aaaa	a ga	actt	tggc	tga	ttccttg	1910
tg	gtga	cact	cag	aggg	gtc	tgaa	caga	ct t	gaca	attc	t gt	tctg	gtca	agc	tggagtt	1970
tt	cttc	tgtg	act	tgga	ctg	ctct	acag	aa g	acat	cagc	c aa	ctgc	acga	gtc	agagtcc	2030
ag	ggat	tgto	act	atta	tta	ataa	t gta	aa t	ggct	tcaa	a tg	ggac	actg	cag	ataaaat	2090
са	caaa	aacc	act	gtta	tat	taaa	gatt	ac a	catt	tcct	g g g	aaaa	aaaa	aaa	aaaaaaa	2150

<210> 89

<211> 566 <212> PRT

<213> Homo sapiens

<400> 89

Met Asp Ser Leu Gln Asp Thr Val Ala Leu Asp His Gly Gly Cys Cys 1 5 10 15

Pro Ala Leu Ser Arg Leu Val Pro Arg Gly Phe Gly Thr Glu Met Trp 20 25 30

Thr Leu Phe Ala Leu Ser Gly Pro Leu Phe Leu Phe Gln Val Leu Thr 35 40 45

Phe Met Ile Tyr Ile Val Ser Thr Val Phe Cys Gly His Leu Gly Lys 50 60

Val Glu Leu Ala Ser Val Thr Leu Ala Val Ala Phe Val Asn Val Cys 65 70 75 80

Gly Val Ser Val Gly Val Gly Leu Ser Ser Ala Cys Asp Thr Leu Met 85 90 95

Ser Gln Ser Phe Gly Ser Pro Asn Lys Lys His Val Gly Val Ile Leu 100 105 110

Gln Arg Gly Ala Leu Val Leu Leu Cys Cys Leu Pro Cys Trp Ala 115 . 120 . 125

Leu Phe Leu Asn Thr Gln His Ile Leu Leu Leu Phe Arg Gln Asp Pro 130 135 140

Asp Val Ser Arg Leu Thr Gln Asp Tyr Val Met Ile Phe Ile Pro Gly 145 150 150 160

Leu Pro Val Ile Phe Leu Tyr Asn Leu Leu Ala Lys Tyr Leu Gln Asn 165 170 175

Gln Lys Ile Thr Trp Pro Gln Val Leu Ser Gly Val Val Gly Asn Cys 180 185 190

Val Asn Gly Val Ala Asn Tyr Ala Leu Val Ser Val Leu Asn Leu Gly 195 200 205

Val Arg Gly Ser Ala Tyr Ala Asn Ile Ile Ser Gln Phe Ala Gln Thr 210 215 220

Val Phe Leu Leu Eur Tyr Ile Val Leu Lys Lys Leu His Leu Glu Thr 225 230 235 240

Trp Ala Gly Trp Ser Ser Gln Cys Leu Gln Asp Trp Gly Pro Phe Phe 245 250 255

Ser Leu Ala Val Pro Ser Met Leu Met Ile Cys Val Glu Trp Trp Ala 260 265 270

Tyr Glu Ile Gly Ser Phe Leu Met Gly Leu Leu Ser Val Val Asp Leu 275 280 285

Ser Ala Gln Ala Val Ile Tyr Glu Val Ala Thr Val Thr Tyr Met Ile 290 295 300

Pro Leu Gly Leu Ser Ile Gly Val Cys Val Arg Val Gly Met Ala Leu 305 310 315 320

Gly Ala Ala Asp Thr Val Gln Ala Lys Arg Ser Ala Val Ser Gly Val 325 330 335

Leu Ser Ile Val Gly Ile Ser Leu Val Leu Gly Thr Leu Ile Ser Ile 340 345 350

Leu Lys Asn Gln Leu Gly His Ile Phe Thr Asn Asp Glu Asp Val Ile 355 360 365

Ala Leu Val Ser Gln Val Leu Pro Val Tyr Ser Val Phe His Val Phe 370 375 380

Glu Ala Ile Cys Cys Val Tyr Gly Gly Val Leu Arg Gly Thr Gly Lys 385 390 395 400

Gln Ala Phe Gly Ala Ala Val Asn Ala Ile Thr Tyr Tyr Ile Ile Gly 405 410 415

Leu Pro Leu Gly Ile Leu Leu Thr Phe Val Val Arg Met Arg Ile Met 420 .

Gly Leu Trp Leu Gly Met Leu Ala Cys Val Phe Leu Ala Thr Ala Ala 435 440 445

Phe Val Ala Tyr Thr Ala Arg Leu Asp Trp Lys Leu Ala Ala Glu Glu 450 455 460

Ala Lys Lys His Ser Gly Arg Gln Gln Gln Gln Arg Ala Glu Ser Thr 465 470 475 480

Ala Thr Arg Pro Gly Pro Glu Lys Ala Val Leu Ser Ser Val Ala Thr 485 490 495

Gly Ser Ser Pro Gly 11e Thr Leu Thr Thr Tyr Ser Arg Ser Glu Cys $500 \hspace{1.5cm} 505 \hspace{1.5cm} 510$

His Val Asp Phe Phe Arg Thr Pro Glu Glu Ala His Ala Leu Ser Ala 515 520 525

Pro Thr Ser Arg Leu Ser Val Lys Gln Leu Val Ile Arg Arg Gly Ala 530 535 540

Ala Leu Gly Ala Ala Ser Ala Thr Leu Met Val Gly Leu Thr Val Arg 545 550 555 560

Ile Leu Ala Thr Arg His 565

<210> 90

<211> 3067

<212> DNA

<213> Homo sapiens

<220>

<22 <22 <22	2>	CDS (36)	(2	984)						1 6U	200	PCT	FIN	AL.S	T25	
<40 gga		90 act	ggtt	ctga	ga t	tctg	tgca	a gc				atg Met				53
ggc Gly	cag Gln	gaa Glu	999 Gly 10	ttt Phe	gaa Glu	gcc Ala	tcc Ser	agt Ser 15	gct Ala	cct Pro	aga Arg	aat Asn	att Ile 20	cct Pro	tca Ser	101
G] A āāā	gag Glu	ctg Leu 25	gac Asp	agc Ser	aac Asn	cct Pro	gac Asp 30	cct Pro	ggc Gly	acc Thr	ggc Gly	ccc Pro 35	agc Ser	cct Pro	gat Asp	149
ggc Gly	ccc Pro 40	tca Ser	gac Asp	aca Thr	gag Glu	agc Ser 45	aag Lys	gaa Glu	ctg Leu	gga Gly	gta Val 50	ccc Pro	aaa Lys	gac Asp	cct Pro	197
ctg Leu 55	ctc Leu	ttc Phe	att Ile	cag Gln	ctg Leu 60	aat Asn	gag Glu	ctg Leu	ctg Leu	ggc Gly 65	tgg Trp	ccc Pro	cag Gln	gcg Ala	ctg Leu 70	245
gag Glu	tgg Trp	aga Arg	gag Glu	aca Thr 75	ggc Gly	agc Ser	tcc Ser	tct Ser	gca Ala 80	tct Ser	ctg Leu	ctc Leu	ctg Leu	gac Asp 85	atg Met	293
gga Gly	gaa Glu	atg Met	ccc Pro 90	tca Ser	ata Ile	aca Thr	ctg Leu	tct Ser 95	acc Thr	cac His	ctt Leu	cat His	cac His 100	Arg	tgg Trp	341
gta Val	ctg Leu	ttt Phe 105	gag Glu	gag Glu	aag Lys	ttg Leu	gag Glu 110	gtg Val	gct Ala	gca Ala	ggc Gly	cgg Arg 115	tgg Trp	agt Ser	gcc Ala	389
Pro	His 120	Val	ccc Pro	Thr	Leu	Ala 125	Leu	Pro	Ser	Leu	Gln 130	Lys	Leu	Arg	Ser	437
ctg Leu 135	ctg Leu	gcc Ala	gag Glu	ggc Gly	ctt Leu 140	gta Val	ctg Leu	ctg Leu	gac Asp	tgc Cys 145	cca Pro	gct Ala	cag Gln	agc Ser	ctc Leu 150	485
Leu	Glu	Leu	gtg Val	Glu 155	Gln	Val	Thr	Arg	Val 160	Glu	Ser	Leu	Ser	Pro 165	Glu	533
ctg Leu	aga Arg	999 Gly	cag Gln 170	ttg Leu	cag Gln	gcc Ala	ttg Leu	ctg Leu 175	ctg Leu	cag Gln	aga Arg	ccc Pro	cag Gln 180	cat His	tac Tyr	581
Asn	Gln	Thr 185	aca Thr	Gly	Thr	Arg	Pro 190	Cys	Trp	Gly	Ser	Thr 195	His	Pro	Arg	629
Lys	Ala 200	Ser	gac Asp	Asn	Glu	Glu 205	Ala	Pro	Leu	Arg	Glu 210	Gln	Cys	Gln	Asn	677
215	Leu	Arg	cag Gln	Lys	Leu 220	Pro	Pro	Gly	Ala	Glu 225	Ala	Gly	Thr	Val	Leu 230	725
Ala	GIA	Glu	ctg Leu	Gly 235	Phe	Leu	Ala	Gln	Pro 240	Leu	Gly	Ala	Phe	Val 245	Arg	773
Leu	Arg	Asn	cct Pro 250	Val	Val	Leu	Gly	Ser 255	Leu	Thr	Glu	Val	Ser 260	Leu	Pro	821
ser	Arg	265	ttc Phe	Cys	Leu	Leu	Leu 270	Gly	Pro	Cys	Met	Leu 275	Gly	Lys	Gly	869
tac Tyr	cat His	gag Glu	atg Met	gga Gly	cgg Arg	gca Ala	gca Ala	gct Ala	gtc Val	ctc Leu	ctc Leu	agt Ser	gac Asp	ccg Pro	caa Gln	917

	280					285				1 6U	200 290	PCT	FINA	L.ST	25	
													ctt Leu			965
													cca Pro			1013
													cca Pro 340			1061
													ccc Pro			1109
													cca Pro			1157
cac His 375	agc Ser	ccg Pro	gag Glu	ttg Leu	cag Gln 380	cgg Arg	acc Thr	ggc Gly	agg Arg	ctg Leu 385	ttt Phe	ggg Gly	ggc Gly	ctt Leu	atc Ile 390	1205
													ttc Phe			1253
													tac Tyr 420			1301
													gat Asp			1349
													gca Ala			1397
													att Ile			1445
													tct Ser			1493
													gtg Val 500			1541
tgg Trp	gtg Val	gct Ala 505	acc Thr	ttt Phe	tgc Cys	ctg Leu	gtg Val 510	ctg Leu	gtg Val	gcc Ala	aca Thr	gag Glu 515	gcc Ala	agt Ser	gtg Val	1589
												Phe	tg t Cys			1637
													ctg Leu			1685
													tac Tyr			1733
													tgg Trp 580			1781
													tta Leu			1829
atc	aat	gca	tcc	ttg	ctg	ccg	cca	cct	gag	tgc		Cgg Page	cag	gga	ggc	1877

Ile	Asn 600	Ala	Ser	Leu	Leu`	Pro 605	Pro	Pro	Glu		200 Thr 610					
					ggc G1 y 620											1925
					ctt Leu											1973
					cgc Arg											2021
					gtc Val											2069
					gcc Ala											2117
					999 Gly 700											2165
					agt Ser											2213
					atg Met											2261
					ctg Leu											2309
					ctg Leu											2357
					act Thr 780											2405
					gcc Ala											2453
					agg Arg											2501
					ctg Leu											2549
					ttc Phe											2597
att Ile 855	cag Gln	ttc Phe	act Thr	aat Asn	agg Arg 860	gtg Val	aag Lys	ctg Leu	ttg Leu	ttg Leu 865	atg Met	cca Pro	gca Ala	aaa Lys	cac His 870	2645
					ctc Leu											2693
ctc Leu	ttc Phe	aca Thr	gcc Ala 890	atc Ile	cag Gln	ctt Leu	gcc Ala	tgt Cys 895	ctg Leu	61 y 999	ctg Leu	ctt Leu	tgg Trp 900	ata Ile	atc Ile	2741
aag Lys	tct Ser	acc Thr 905	cct Pro	gca Ala	gcc Ala	atc Ile	atc Ile 910	ttc Phe	ccc Pro	ctc Leu	atg Met	ttg Leu 915	ctg Leu	ggc Gly	ctt Leu	2789

Page 60

gtg ggg gtc o Val Gly Val A 920	cga aag gco Arg Lys Ala	ctg gag Leu Glu 925	agg gtc Arg Val	ttc tca	PCT FINAL.S cca cag gaa Pro Gln Glu	ctc 2837
ctc tgg ctg c Leu Trp Leu A 935		Met Pro				
aag ggg ctg g Lys Gly Leu G	gag cca gaa Glu Pro Glu 955	a cac tca 1 His Ser	ttc agt Phe Ser 960	Gly Ser	gac agt gaa Asp Ser Glu 965	1 Asp
tca gag ctg a Ser Glu Leu N						
aat tagctggag Asn	gt aggagtet	gg gagtg	gagac cc	caggaaac (agcatgaggt	3034
gagggtgtga gg	ggaagtgct	ctgatgtt	g agg			3067
<210> 91 <211> 983 <212> PRT <213> Homo s	sapiens					
<400> 91						
Met Glu Met I 1	Lys Leu Pro 5	Gly Gln	Glu Gly 10	Phe Glu	Ala Ser Ser 15	Ala
Pro Arg Asn I	lle Pro Sei 20	Gly Glu	Leu Asp 25	Ser Asn	Pro Asp Pro 30	Gly
Thr Gly Pro S 35	Ser Pro Asp	Gly Pro 40	Ser Asp		Ser Lys Glu 45	Leu
Gly Val Pro 1 50	ys Asp Pro	Leu Leu 55	Phe Ile	Gln Leu A	Asn Glu Leu	Leu
Gly Trp Pro 6	Sln Ala Leu 70	Glu Trp	Arg Glu	Thr Gly :	Ser Ser Ser	Ala 80
Ser Leu Leu I	eu Asp Met 85	Gly Glu	Met Pro 90	Ser Ile	Thr Leu Ser 95	Thr
His Leu His H	lis Arg Trp .00	Val Leu	Phe Glu 105	Glu Lys I	Leu Glu Val 110	Ala
Ala Gly Arg T 115	rp Ser Ala	Pro His 120			Ala Leu Pro 125	Ser
Leu Gln Lys L 130	eu Arg Ser	Leu Leu 135	Ala Glu	Gly Leu V	V al Leu Leu	Asp
Cys Pro Ala G 145	iln Ser Leu 150		Leu Val	Glu Gln V 155	Val Thr Arg	Val 160
Glu Ser Leu S	Ser Pro Glu 165	Leu Arg	Gly Gln 170	Leu Gln A	Ala Leu Leu 175	
Gln Arg Pro G	iln His Tyr 80	Asn Gln	Thr Thr 185	Gly Thr A	Arg Pro Cys 190	Trp
Gly Ser Thr H	is Pro Arg	Lys Ala	Ser Asp		Glu Ala Pro age 61	Leu

16U 200 PCT FINAL.ST25 195 200 205

Arg Glu Gln Cys Gln Asn Pro Leu Arg Gln Lys Leu Pro Pro Gly Ala 210 215 220

Glu Ala Gly Thr Val Leu Ala Gly Glu Leu Gly Phe Leu Ala Gln Pro 225 230 235 240

Leu Gly Ala Phe Val Arg Leu Arg Asn Pro Val Val Leu Gly Ser Leu 245 250 255

Thr Glu Val Ser Leu Pro Ser Arg Phe Phe Cys Leu Leu Leu Gly Pro 260 265 270

Cys Met Leu Gly Lys Gly Tyr His Glu Met Gly Arg Ala Ala Nal 275 280 285

Leu Leu Ser Asp Pro Gln Phe Gln Trp Ser Val Arg Arg Ala Ser Asn 290 295 300

Leu His Asp Leu Leu Ala Ala Leu Asp Ala Phe Leu Glu Glu Val Thr 305 310 315 320

Val Leu Pro Pro Gly Arg Trp Asp Pro Thr Ala Arg Ile Pro Pro Pro 325 330 335

Lys Cys Leu Pro Ser Gln His Lys Arg Leu Pro Ser Gln Gln Arg Glu 340 345 350

Ile Arg Gly Pro Ala Val Pro Arg Leu Thr Ser Ala Glu Asp Arg His 355 360 365

Arg His Gly Pro His Ala His Ser Pro Glu Leu Gln Arg Thr Gly Arg 370 375 380

Leu Phe Gly Gly Leu Ile Gln Asp Val Arg Arg Lys Val Pro Trp Tyr 385 390 395 400

Pro Ser Asp Phe Leu Asp Ala Leu His Leu Gln Cys Phe Ser Ala Val 405 410 415

Leu Tyr Ile Tyr Leu Ala Thr Val Thr Asn Ala Ile Thr Phe Gly Gly 420 425 430

Leu Leu Gly Asp Ala Thr Asp Gly Ala Gln Gly Val Leu Glu Ser Phe 435 440 445

Leu Gly Thr Ala Val Ala Gly Ala Ala Phe Cys Leu Met Ala Gly Gln 450 460

Pro Leu Thr Ile Leu Ser Ser Thr Gly Pro Val Leu Val Phe Glu Arg 465 470 470 480

Leu Leu Phe Ser Phe Ser Arg Asp Tyr Ser Leu Asp Tyr Leu Pro ${\rm Phe}$ 485 $_{\rm af}$

Arg Leu Trp Val Gly Ile Trp Val Ala Thr Phe Cys Leu Val Leu Val 500 510

Ala	Thr	Glu 515	Ala	Ser	Val	Leu	Val 520	Arg	туг	Phe	Thr	Arg 525	Phe	Thr	Glu
Glu	Gly 530	Phe	Cys	Ala	Leu	11e 535	Ser	Leu	Ile	Phe	11e 540	Туг	Asp	Ala	Val
Gly 545	Lys	Met	Leu	Asn	Leu 550	Thr	His	Thr	Tyr	Pro 555	Ile	Gln	Lys	Pro	Gly 560
Ser	Ser	Ala	Tyr	Gly 565	Cys	Leu	Cys	Gln	Туг 570	Pro	Gly	Pro	Gly	Gly 575	Asn
Glu	Ser	Gln	Trp 580	Ile	Arg	Thr	Arg	Pro 585	Lys	Asp	Arg	Asp	Asp 590	Ile	Val
Ser	Met	Asp 595	Leu	G1 y	Leu	Ile	Asn 600	Ala	Ser	Leu	Leu	Pro 605	Pro	Pro	Glu
Cys	Thr 610	Arg	Gln	Gly	Gly	His 615	Pro	Arg	Gly	Pro	Gly 620	Cys	His	Thr	Val
Pro 625	Asp	Ile	Ala	Phe	Phe 630	Ser	Leu	Leu	Leu	Phe 635	Leu	Thr	Ser	Phe	Phe 640
Phe	Ala	Met	Ala	Leu 645	Lys	Cys	Val	Lys	Thr 650	Ser	Arg	Phe	Phe	Pro 655	Ser
Val	Val	Arg	Lys 660	Gly	Leu	Ser	Asp	Phe 665	Ser	Ser	Val	Leu	Ala 670	Ile	Leu
Leu	Gly	Cys 675	Gly	Leu	Asp	Ala	Phe 680	Leu	Gly	Leu	Ala	Thr 685	Pro	Lys	Leu
Met	Val 690	Pro	Arg	Glu	Phe	Lys 695	Pro	Thr	Leu	Pro	Gly 700	Arg	Gly	Trp	Leu
Val 705	Ser	Pro	Phe	Gly	Ala 710	Asn	Pro	Trp	Trp	Trp 715	Ser	Val	Ala	Ala	Ala 720
Leu	Pro	Ala	Leu	Leu 725	Leu	Ser	Ile	Leu	Ile 730	Phe	Met	Asp	Gln	Gln 735	Ile
Thr	Ala	Val	11e 740	Leu	Asn	Arg	Met	Glu 745	Туr	Arg	Leu	Gln	Lys 750	Gly	Ala
Gly	Phe	His 755	Leu	Asp	Leu	Phe	Cys 760	Val	Ala	Val	Leu	Met 765	Leu	Leu	Thr
Ser	Ala 770	Leu	Gly	Leu	Pro	Trp 775	Tyr	Val	Ser	Ala	Thr 780	Val	Ile	Ser	Leu
Ala 785	His	Met	Asp	Ser	Leu 790	Arg	Arg	Glu	Ser	Arg 795	Ala	Cys	Ala	Pro	Gly 800
Glu	Arg	Pro	Asn	Phe 805	Leu	Gly	Ile	Arg	Glu 810	Gln	Arg	Leu	Thr	Gly 815	Leu
Val	Val		Ile 820	Leu	Thr	Gly		Ser 825	Ile	Phe	Leu		Pro	Val	Leu

•									160	200	PCT	FIN	AL.ST	r25	
Lys Phe	Ile 835	Pro	Met	Pro	Val	Leu 840		Gly	Ile	Phe	Leu 845	Туr	Met	Gly	
Val Ala 850		Leu	Ser	Ser	Ile 855	Gln	Phe	Thr	Asn	Arg 860	Val	Lys	Leu	Leu	
Leu Met 865	Pro	Ala	Lys	His 870	Gln	Pro	Asp	Leu	Leu 875	Leu	Leu	Arg	His	Val 880	
Pro Leu	Thr	Arg	Val 885	His	Leu	Phe	Thr	Ala 890	Ile	Gln	Leu	Ala	Cys 895	Leu	
Gly Leu	Leu	Trp 900	Ile	Ile	Lys	Ser	Thr 905	Pro	Ala	Ala	Ile	11e 910	Phe	Pro	
Leu Met	Leu 915	Leu	Gly	Leu	Val	Gly 920	Val	Arg	Lys	Ala	Leu 925	Glu	Arg	Val	
Phe Ser 930		Gln	Glu	Leu	Leu 935	Тгр	Leu	Asp	Glu	Leu 940	Met	Pro	Glu	Glu	
Glu Arg 945	Ser	lle	Pro	Glu 950	Lys	Gly	Leu	Glu	Pro 955	Glu	His	Ser	Phe	Ser 960	
Gly Ser	Asp	Ser	Glu 965	Asp	Ser	Glu	Leu	Met 970	Туr	Gln	Pro	Lys	Ala 975	Pro	
Glu Ile	Asn	Ile 980	Ser	Val	Asn										
<211> <212>	92 700 DNA Homo	sapi	iens												
	CDS (60)	(49	97)												
<400> gaaagaa	92 gga a	ataa	acac	ca go	gcaco	caaa	c cad	ctato	cta	agtt	gact	igt (cctti	taaat	59
atg tca Met Ser 1															107
ggg atc Gly Ile															155
tgc gaa Cys Glu															203
ggc tgg Gly Trp 50															251
ctc tgt Leu Cys 65	gga Gly	gct Ala	gtg Val	gtc Val 70	ctc Leu	tgc Cys	ctc Leu	cag Gln	tgc Cys 75	tgg Trp	ctg Leu	agg Arg	Arg	CCC Pro 80	. 299
cga att Arg Ile	gat Asp	tct Ser	cac His 85	agg Arg	cgc Arg	acc Thr	atg Met	gca Ala 90	gtt Val	ttt Phe	gct Ala	gtt Val	gga Gly 95	gac Asp	347

ttg gac tct att tat ggg aca gaa gca gct gtg agt cca act gtt gga

Page 64

395

16U 200 PCT FINAL.ST25 Leu Asp Ser Ile Tyr Gly Thr Glu Ala Ala Val Ser Pro Thr Val Gly 100 105 110	
att cac ctt caa act caa acc cct gac cta tat cct gtt cct gct cca Ile His Leu Gln Thr Gln Thr Pro Asp Leu Tyr Pro Val Pro Ala Pro 115 120 125	443
tgt ttt ggc cct tta ggc tcc cca cct cca tat gaa gaa att gta aaa Cys Phe Gly Pro Leu Gly Ser Pro Pro Pro Tyr Glu Glu Ile Val Lys 130 135 140	491
aca acc tgattttagg tgtggattat caatttaaag tattaacgac atctgtaatt Thr Thr 145	547
ccaaaacatc aaatttagga atagttattt cagttgttgg aaatgtccag agatctattc	60 7
atatagtctg aggaaggaca attcgacaaa agaatggatg ttggaaaaaa ttttggtcat	667
ggagatgttt aaatagtaaa gtagcaggct ttt	700
<210> 93 <211> 146 <212> PRT <213> Homo sapiens	
<400> 93	
Met Ser Arg Ser Arg Leu Phe Ser Val Thr Ser Ala Ile Ser Thr Ile 1 5 10 15	
Gly Ile Leu Cys Leu Pro Leu Phe Gln Leu Val Leu Ser Asp Leu Pro 20 25 30	
Cys Glu Glu Asp Glu Met Cys Val Asn Tyr Asn Asp Gln His Pro Asn 35 40 45	
Gly Trp Tyr Ile Trp Ile Leu Leu Leu Leu Val Leu Val Ala Ala Leu 50 55 60	
Leu Cys Gly Ala Val Val Leu Cys Leu Gln Cys Trp Leu Arg Arg Pro 65 70 75 80	
Arg Ile Asp Ser His Arg Arg Thr Met Ala Val Phe Ala Val Gly Asp 85 90 95	
Leu Asp Ser Ile Tyr Gly Thr Glu Ala Ala Val Ser Pro Thr Val Gly 100 105 110	
Ile His Leu Gln Thr Gln Thr Pro Asp Leu Tyr Pro Val Pro Ala Pro 115 120 125	
Cys Phe Gly Pro Leu Gly Ser Pro Pro Pro Tyr Glu Glu Ile Val Lys 130 135 140	
Thr Thr 145	
<210> 94 <211> 1324 <212> DNA <213> Homo sapiens	
<220> <221> CDS <222> (44)(772) <223>	

16U 200 PCT FINAL.ST25	
<400> 94 ctttgcagtg gatgcccttg gcagggtgag cccacaagga gca atg gag cag ggc Met Glu Gln Gly l	55
age gge ege ttg gag gae tte eet gte aat gtg tte tee gte act eet Ser Gly Arg Leu Glu Asp Phe Pro Val Asn Val Phe Ser Val Thr Pro 5 10 15 20	103
tac aca ccc agc acc gct gac atc cag gtg tcc gat gat gac aag gcg Tyr Thr Pro Ser Thr Ala Asp Ile Gln Val Ser Asp Asp Asp Lys Ala 25 30 35	151
ggg gcc acc ttg ctc ttc tca ggc atc ttt ctg gga ctg gtg ggg atc Gly Ala Thr Leu Leu Phe Ser Gly Ile Phe Leu Gly Leu Val Gly Ile 40 45 50	199
aca ttc act gtc atg ggc tgg atc aaa tac caa ggt gtc tcc cac ttt Thr Phe Thr Val Met Gly Trp Ile Lys Tyr Gln Gly Val Ser His Phe 55 60 65	247
gaa tgg acc cag ctc ctt ggg ccc gtc ctg ctg tca gtt ggg gtg aca Glu Trp Thr Gln Leu Leu Gly Pro Val Leu Leu Ser Val Gly Val Thr 70 75 80	295
ttc atc ctg att gct gtg tgc aag ttc aaa atg ctc tcc tgc cag ttg Phe Ile Leu Ile Ala Val Cys Lys Phe Lys Met Leu Ser Cys Gln Leu 85 90 95 100	343
tgc aaa gaa agt gag gaa agg gtc ccg gac tcg gaa cag aca cca gga Cys Lys Glu Ser Glu Glu Arg Val Pro Asp Ser Glu Gln Thr Pro Gly 105 110 115	391
gga cca tca ttt gtt ttc act ggc atc aac caa ccc atc acc ttc cat Gly Pro Ser Phe Val Phe Thr Gly Ile Asn Gln Pro Ile Thr Phe His 120 125 130	439
ggg gcc act gtg gtg cag tac atc cct cct tat ggt tct cca gag Gly Ala Thr Val Val Gln Tyr Ile Pro Pro Pro Tyr Gly Ser Pro Glu 135 140 145	487
cct atg ggg ata aat acc agc tac ctg cag tct gtg gtg agc ccc tgc Pro Met Gly Ile Asn Thr Ser Tyr Leu Gln Ser Val Val Ser Pro Cys 150 155 160	535
ggc ctc ata acc tct gga ggg gca gca gcc gcc atg tca agt cct cct Gly Leu Ile Thr Ser Gly Gly Ala Ala Ala Ala Met Ser Ser Pro Pro 165 170 175 180	583
Caa tac tac acc atc tac cct caa gat aac tct gca ttt gtg gtt gat Gln Tyr Tyr Thr Ile Tyr Pro Gln Asp Asn Ser Ala Phe Val Val Asp 185 190 195	631
gag ggc tgc ctt tct ttc acg gac ggt gga aat cac agg ccc aat cct Glu Gly Cys Leu Ser Phe Thr Asp Gly Gly Asn His Arg Pro Asn Pro 200 205 210	679
gat gtt gac cag cta gaa gag aca cag ctg gaa gag gac tgt gcc Asp Val Asp Gln Leu Glu Glu Thr Gln Leu Glu Glu Glu Ala Cys Ala 215 220 225	727
tgc ttc tct cct ccc cct tat gaa gaa ata tac tct ctc cct cgc Cys Phe Ser Pro Pro Pro Tyr Glu Glu Ile Tyr Ser Leu Pro Arg 230 235 240	772
tagaggetat tetgatataa taacacaatg etcageteag ggageaagtg ttteegteat	832
tgttacctga caaccgtggt gttctatgtt gtaaccttca gaagttacag cagcgcccag	892
gcagcctgac agagatcatt caagggggga aaggggaagt gggaggtgca atttctcaga	.952
ttggtaaaaa ttaggctggg ctggggaaat tctcctccgg aacagtttca aattccctcg	1012
ggtaagaaat ctcctgtata aggttcagga gcaggaattt cactttttca tccaccaccc	1072

tcccccttct ctgtaggaag gcattggtgg ctcaatttta accccagcag ccaatggaaa 1132

aatcacgact tctgagactt tgggagtttc cacagaggtg agagtcgggt gggaaggaag

Page 66

1192

16U 200 PCT FINAL.ST25 cagggaagag aaagcaggcc cagetggaga tttcctggtg gctgtccttg gccccaaagc 1													
agactcacta atcccaaaca actcagctgc catctggcct ctctgaggac tctgggtacc	1312												
ttaaagacta ta	1324												
	132.												
<210> 95 <211> 243 <212> PRT <213> Homo sapiens <400> 95													
<400> 95													
Met Glu Gln Gly Ser Gly Arg Leu Glu Asp Phe Pro Val Asn Val Phe 1 10 15													
Ser Val Thr Pro Tyr Thr Pro Ser Thr Ala Asp Ile Gln Val Ser Asp 20 25 30													
Asp Asp Lys Ala Gly Ala Thr Leu Leu Phe Ser Gly Ile Phe Leu Gly 35 40 45													
Leu Val Gly Ile Thr Phe Thr Val Met Gly Trp Ile Lys Tyr Gln Gly 50 55 60													
Val Ser His Phe Glu Trp Thr Gln Leu Leu Gly Pro Val Leu Leu Ser 65 70 75 80													
Val Gly Val Thr Phe Ile Leu Ile Ala Val Cys Lys Phe Lys Met Leu 85 90 95													
Ser Cys Gln Leu Cys Lys Glu Ser Glu Glu Arg Val Pro Asp Ser Glu 100 105 110													
Gln Thr Pro Gly Gly Pro Ser Phe Val Phe Thr Gly Ile Asn Gln Pro 115 120 125													
Ile Thr Phe His Gly Ala Thr Val Val Gln Tyr Ile Pro Pro Pro Tyr 130 135 140													
Gly Ser Pro Glu Pro Met Gly Ile Asn Thr Ser Tyr Leu Gln Ser Val 145 150 155 160													
Val Ser Pro Cys Gly Leu Ile Thr Ser Gly Gly Ala Ala Ala Ala Met 165 170 175													
Ser Ser Pro Pro Gln Tyr Tyr Thr Ile Tyr Pro Gln Asp Asn Ser Ala 180 185 190													
Phe Val Val Asp Glu Gly Cys Leu Ser Phe Thr Asp Gly Gly Asn His 195 200 205													
Arg Pro Asn Pro Asp Val Asp Gln Leu Glu Glu Thr Gln Leu Glu Glu 210 215 220													
Glu Ala Cys Ala Cys Phe Ser Pro Pro Tyr Glu Glu Ile Tyr Ser 235 230 240	•												
Leu Pro Arg													

<210> 96

<212> DNA <213> Homo sapiens <220> <221> CDS (2275)..(3213) <222> <2235 <400> 96 gtccaggcgt accatgactc tcacattttg cagttgtttt atttgacggg acagacattg 60 actgacagtg gctggagcag ggctgatagt gaatttctga aacggtttac ctgattctct 120 gctttctgag ttcttggata tctgagagac agggcctcta tgctgtttca ctgctggata 180 tatgetteat tettggacea taatttttt ticaaatttt tetagatgat gitgetteat 240 tgtcttttgg aatctactaa ataattccac tgaatttttg aagtttattg ggaattattt 300 attttgcctt tatacttaga aaattacttt ctgctccagg aaaatatagt ttattagtct 360 agtaatttat taattgacta aaatctacca tttgttatgg ccaatgacat gtttatttac 420 tgaaaataca ttaagtcccc tttggtttta agtctcttaa cataagaaag caatttgtta 480 aaaactggca ttactttact cttatgcttt ctgtgtcctt tgctaagtat ttctaaaaca 540 aaatgaaaac ccacgagttt agtcttggcc agggcaagat atttgaaata aaaaaggaaa 600 taatatgacc aattgcaata attcttattt ataaatttta agttaatgat aaaaaatata 660 aagtgtacat tacaatgtaa aaggttacat aagaaaagct gcaatataaa aaggatgaat 720 atgtgtctga tttaaataaa catttgacac qttattaata tattgaacat taatgatatc 780 taaaactatt cattttataa aggatatgca ttttctttaa gtagagaata ataataatga 840 gcatccatat gtaaatcaca gaattctgaa caagagaaag atagtgctat caacgggaaa 900 gggctgacca gcaccactga ccccccaaaa tagccaggta gaagaagagt cctacagcct 960 attacaaggt gattaattga ctagatgctc tgagaagaaa ttggaacttg gatgatctga 1020 agatagttat ctcaattgat tgttcacagc cagttacaga tagaattcct tgttctacat 1080 tttcctccct tctcactagt gcacttgagt agtctttaaa aaaaattgca acttcagaga 1140 cccccatgct tgaaccactg ggagaagaaa ccttaggatg acctacctgc atacaataaa 1200 tatgttggat gtcacgataa gataagtata aattgaggca aactttctct caccaaaatt 1260 ctacaggcaa aatggggaga ttggaagaaa agatgtgggc ttgtaaaatc caattacatt 1320 ttactttaat tttataaaga aggttcacat caagaaattc caagtgaggt tcagaccaat 1380 caccicagaa taaacigati ggatgataat gctgaticci aaagcatcai tgatcigaga 1440 tagccataat tttttttga tatcttgaaa gattggcaga aacacaacgg attagaacat 1500 cttgatggaa attatgaaaa tatgaataaa taactcacaa gattaatgtc tttgtaatag 1560 gttaagtgga agtataaaaa tacattttat aaatcacata tgtgtaaaag taaatcattt 1620 tagagaaatt tacaagttgt actagtgtct ttaatacatt taaagaaatt tgactaaatt 1680 tgtaacgtta tataagggtt tggaatttta tgtttaaaat gtttacaatt actggtggct 1740 taatatattg cttttaagta ttgaaaaatt gtatgttcgt agatttgtaa cgagatttaa 1800 gaaacacaag tattactaat ccttttttgc agacatgact cttgagggtc aaatatatag 1860 aaatatotat attggttatt agototgtaa aatoocatgg gaatgggatt tgggcaatac 1920 aggaacatgc aactataaga tactaacaca cacaaaatgt gaacatatat aagtaaaaat 1980 aactattagt gactatataa totataggaa ataatttaat ttoagttgta tggacotott 2040 cattgagaat ataaatattt cattcccatt ctagatgggg aatcagattc acaatctaat 2100

Page 68

<211> 5350

gtg	ctgt	ctc	ttt	tagt	gc a	aatt	caca	g tt	catg	ttgg	aaa	taca	ctc	tgat	tttcac	2160
attgattttt aaaaggtaaa gtgaagcaaa catactttta cgtggtacac acatgattat 22												2220				
aaa	taaa	gtt	tact	tttg	tc c	tcca	ggta	a ag	ccac	ttca	gcc	gatc	ata -	cagc	atg Met 1	2277
										ttt Phe						2325
										tgc Cys						2373
ata Ile	ttt Phe 35	ttg Leu	atg Met	gct Ala	gtg Val	tct Ser 40	tgg Trp	aat Asn	att Ile	aca Thr	ttg Leu 45	ata Ile	ctt Leu	ctg Leu	atc Ile	2421
										tac Tyr 60						2469
										gtc Val						2517
										atc Ile						2565
ggc Gly	acc Thr	cag Gln 100	atg Met	tac Tyr	ttc Phe	tac Tyr	ctg Leu 105	cag Gln	ttg Leu	gga Gly	ggt Gly	gca Ala 110	gag Glu	tgc Cys	tgc Cys	2613
										gtg Val						2661
										gta Val 140						2709
										ggc Gly						2757
										cat His						2805
ttc Phe	tgt Cys	gag Glu 180	gtc Val	cct Pro	gct Ala	gtt Val	ttg Leu 185	aag Lys	ctc Leu	tct Ser	tgc Cys	tca Ser 190	gac Asp	acc Thr	tca Ser	2853
										gtc Val						2901
										tat Tyr 220						2949
cat His	aag Lys	atg Met	aac Asn	tca Ser 230	gtt Val	gag Glu	ggt Gly	cgg Arg	aaa Lys 235	aag Lys	gcc Ala	ttc Phe	acc Thr	acc Thr 240	tgc Cys	2997
tcc Ser	tcc Ser	cac His	att Ile 245	aca Thr	gtg Val	gtc Val	agc Ser	ctc Leu 250	ttc Phe	tat Tyr	gga Gly	gct Ala	gct Ala 255	att Ile	tac Tyr	3045
										cct Pro						3093
tca Ser	tcc Ser	ttt Phe	ttc Phe	tac Tyr	act Thr	atc Ile	ctt Leu	aca Thr	cct Pro	gtc Val	ttg Leu	aat Asn	cct Pro	atc Ile	att Ile	3141

16U 200 PCT FINAL.ST25 275 280 285

tac agt ttc agg aat aag gat gtc aca agg gct ttg aaa aaa atg ctg Tyr Ser Phe Arg Asn Lys Asp Val Thr Arg Ala Leu Lys Lys Met Leu 290 295 300 305	3189
age gtg cag aaa eet eea tat taa agtgtgaaag aaettaagtt ggteetetet Ser Val Glm Lys Pro Pro Tyr 310	3243
tcttagagtc tctcttcact ttaggtgtcc ttccaccaaa caatcagcat attgtggtag	3303
tgtctgactc cctgagttgt ccttcagggg gattcagccc agtgttcttc cctcctataa	3363
tcacacttga gatgatgttc acttatcccc cccttccctc gtagcattga tctctagtcc	3423
agtccttcgg ggccaatggt cctttttta gattacagtg gagaaatatg aaaataaatg	3483
tgtttatgac ccttgagcac cttccaccac agagaaaatt tgttttgcta tcatgggccc	3543
attgatgagt atgaaataac accatattca gagtgttcct cagcatccac tctgtgctaa	3603
acgcttttcg ttcaccacct cattcgacct tcaccctctg tggctgaggc taaggtcacc	3663
cacatttcac aaatgacaaa acagcctttg aggcttcccc tgacttgccc caagcagggg	3723
atcctcaggg acaagggggt tcattcatcc ataggcattt ggagataaac acattcaaga	3783
cctcagagat gctaaatgta cagttgagat ttttcttcca tcagaatttc tagaatgtgt	3843
tctcaatcaa attcttattt tctgtgagca tataagaagt caaacctccc aaaattagag	3903
cagagacatg ggctatccag tagacatggg ctacaacatg tttggagtat aattggttta	3963
ttcatagact taaccagaga aatatggaag tttcgcacac ttctccctgt tcaagccaat	4023
ggtgacacat acttagaata taatttcaaa tcacagtttt acgtatgtgc atggttgtat	4083
ttgtatttaa caaataacat aataattata acgtcttgtg tgattattat gatctggcac	4143
catttttagt gcgtgacatg tatggaacac ttttattttc acagcctatt attagcctta	4203
ttctacagtt gatttaactg aaacccatgg gtttgagtaa catgaacaaa agggtgtgca	4263
gcttataaag tgctcaacag ggatttaagc ccaggcaggc aggccggagt ccctgcccct	4323
gaccactgca tgtgccacgt cttgtggagt ctgtggcctt ttccacactg cattgcctct	4383
ccctctggga gggccatact ccaaccttgg aaacactata gttctttcca tacccaatgt	4443
tttcacgtgg ctttccctct cttcggaatg ttttttatc tgtaagtaca aggatacgaa	4503
gataactttc catgactaca taatcttcct ttaggcccca agtcattcat tcattcaaca	4563
aataactact gagcccctat agtttgccag gccccgttct acaaactgag gatacatcag	4623
tgagcaaaac aaataaaaat cttcatcttt tttagcactt aaagggtgta tacagaaaat	4683
aaatttggta attgagaaga agacatggag tattatcaga agaaaagtgt tggaaaatct	4743
tgagcaggag aggggtcttg gagtgtgtag gggtcacgtt ttatgtaggg atttaggcta	4803
atcctcactg gttatagttg agcaaagatg tggagtttac aagttaatga gccacattga	4863
tattgggaga aatgctttca agacagagca tagggacatc taccagcctg tcaatcaaga	4923
gtccagtagg accatgtctc agtaataggg atgaactaga tgtagattga gtctaactcc	4983
aattataaaa aatgatagta aaataaattt ttccaacaaa caaaagtgga taaaattctt	5043
cagccataga aaaattatct caaaagtaaa ctcagaaata taagcaaaaa tgacaaacat	5103
Caaccccaaa gagtaatatg taaatgagtc ataatcaata ttgacttagc aataatttta	5163
atgtaatata cagtttagat ttgtgcaaaa cttaaatgta tgaaaaatca tgttgaagat	5223
atatcaatat tgatgtagta gaggtagtaa attgtgttaa accttagtaa atcaagagta	5283
catgctgtaa tgtttatagt aaacgccaaa accagtttat aaaatgaaaa aatgatagat	5343

5350

ttttata

16U 200 PCT FINAL.ST25

	sapiens				
<400> 97 Met Arg Leu	Ala Aca Cle	The Lond	The Che Nep	Dhe Phe Leu	Leu Cly
1	5	i ini beu c	10	rne rne bed	15
Ile Phe Ser	Gln Ile Ser 20		Gly Arg Leu 25	Cys Leu Leu 30	Ile Phe
Ser Ile Phe 35	Leu Met Ala	val Ser T 40	Trp Asn Ile	Thr Leu Ile 45	Leu Leu
Ile His Ile 50	Asp Ser Ser	Leu His 1	Thr Pro Met	Tyr Phe Phe 60	Ile Asn
Gln Leu Ser 65	Leu Ile Asy 70	Leu Thr T	fyr Ile Ser 75	Val Thr Val	Pro Lys 80
Met Leu Val	Asn Gln Lei 85	n Ala Lys A	Asp Lys Thr 90	Ile Ser Val	Leu Gly 95
Cys Gly Thr	Gln Met Ty: 100	-	Leu Gln Leu 105	Gly Gly Ala 110	Glu Cys
Cys Leu Leu 115		Ala Tyr A	Asp Arg Tyr	Val Ala Ile 125	Cys His
Pro Leu Arg 130	Tyr Ser Va	Leu Met S 135	Ser His Arg	Val Cys Leu 140	Leu Leu
Ala Ser Gly 145	Cys Trp Pho		Ser Val Asp 155	Gly Phe Met	Leu Thr 160
Pro Ile Ala	Met Ser Pho 165	e Pro Phe (Cys Arg Ser 170	His Glu Ile	Gln His 175
Phe Phe Cys	Glu Val Pro 180		Leu Lys Leu 185	Ser Cys Ser 190	Asp Thr
Ser Leu Tyr 195		e Met Tyr 1 200	Leu Cys Cys	Val Ile Met 205	Leu Leu
Ile Pro Val 210	Thr Val Ile	e Ser Val 3 215	Ser Tyr Tyr	Tyr Ile Ile 220	Leu Thr
Ile His Lys 225	Met Asn Se 23		Gly Arg Lys 235	Lys Ala Phe	Thr Thr 240
Cys Ser Ser	His Ile Th 245	r Val Val :	Ser Leu Phe 250	Tyr Gly Ala	Ala Ile 255
Tyr Asn Tyr	Met Leu Pr 260		Tyr Gln Thr 265	Pro Glu Lys 270	Asp Met

Met Ser Ser 275		Tyr _. Thr	Ile Leu 280			FINAL.ST Asn Pro	
Ile Tyr Sei 290	Phe Arg	Asn Lys 295	Asp Val	Thr Arg	Ala Leu 300	Lys Lys	Met
Leu Ser Val	Gln Lys	Pro Pro 310	Tyr				
<210> 98 <211> 3486 <212> DNA <213> Homo	s sapiens						
<220> <221> CDS <222> (1). <223>	. (3483)						
<400> 98 atg ggg cca Met Gly Pro 1	cct gaa Pro Glu 5	ttc atg Phe Met	tat gaa Tyr Glu	cag cag Gln Gln 10	gac aat Asp Asn	tca acg Ser Thr 15	cac 48 His
ctg cag cca Leu Gln Pro	ctt aag Leu Lys 20	aca tgc Thr Cys	ccc gtg Pro Val 25	gca agg Ala Arg	cag cta Gln Leu	atc cga Ile Arg 30	ggg 96 Gly
gtg ctg cgg Val Leu Arg 35	gca cct Ala Pro	gat gga Asp Gly	gcc aag Ala Lys 40	cca gga Pro Gly	gag gac Glu Asp 45	agg ggc Arg Gly	cag 144 Gln
gcc cgc tgc Ala Arg Cys 50	aat gga Asn Gly	cgt gta Arg Val 55	tgt gga Cys Gly	gag aaa Glu Lys	tca aaa Ser Lys 60	caa cct Gln Pro	att 192 Ile
gag gct ttt Glu Ala Phe 65							
att ccc ctt Ile Pro Leu	tac tcc Tyr Ser 85	atc cat Ile His	gca tcc Ala Ser	cag agt Gln Ser 90	tcc agc Ser Ser	caa tcc Gln Ser 95	aag 288 Lys
ctg cct gca Leu Pro Ala	cat ctc His Leu 100	cat ttg His Leu	gac ccc Asp Pro 105	tta ggc Leu Gly	tgt gcc Cys Ala	agt ctc Ser Leu 110	agc 336 Ser
ttc tcc tcc Phe Ser Ser 115	Thr Gln						
gga tgc agc Gly Cys Ser 130	aag cag Lys Gln	aat act Asn Thr 135	gga ggt Gly Gly	gca aaa Ala Lys	tgt cag Cys Gln 140	aag cca Lys Pro	ctc 432 Leu
act cgc agg Thr Arg Arg 145	ttt gag Phe Glu	cac ttg His Leu 150	gga aca Gly Thr	gca aag Ala Lys 155	aag ccc Lys Pro	Lys Lys	tca 480 Ser 160
gtc tgg cca Val Trp Pro							
gca agg agc Ala Arg Ser	cag gcc Gln Ala 180	tgc tgg Cys Trp	aat cca Asn Pro 185	agg acc Arg Thr	tgg ggt Trp Gly	gca gca Ala Ala 190	acc 576 Thr
cca gat aca Pro Asp Thr 195	Asp Pro	gaa gag Glu Glu	gcc aac Ala Asn 200	agc ggt Ser Gly	cag cag Gln Gln 205	aac ata′ Asn Ile	aag 624 Lys

gag Caa cag tac cgt gtc tct ctg ggg aac aac act ggt tct ccc ttg Glu Gln Gln Tyr Arg Val Ser Leu Gly Asn Asn Thr Gly Ser Pro Leu 210 215 220

		gtg Val				cag	cag	aag	ctg	aat	720
		gaa Glu 245									768
		agc Ser									816
		tcg Ser									864
		cag Gln									912
		gac Asp									960
		gca Ala 325									1008
		gtg Val									1056
		tac Tyr									1104
		gca Ala									1152
		gag Glu									1200
		agc Ser 405									1248
		ggc Gly									1296
		cag Gln	Lys	Ġĺγ	Ser						1344
		gag Glu									1392
		ggc Gly									1440
		aag Lys 485									1488
		ggt Gly									1536
		gga Gly									1584
		caa Gln									1632

Page 73

									gag Glu							1680
									cag Gln 570							1728
									cgc Arg							1776
									ccc Pro							1824
									cag Gln							1872
									gag Glu							1920
									gcc Ala 650							1968
									gcc Ala							2016
									aag Lys							2064
									cca Pro							2112
									ctg Leu							2160
									gcc Ala 730							2208
									cag Gln							2256
									aag Lys							2304
									agc Ser							2352
									ctg Leu							2400
ctg Leu	atc Ile	ctg Leu	cag Gln	cgc Arg 805	cgg Arg	ctc Leu	cgg Arg	ggc Gly	cgc Arg 810	cag Gln	tac Tyr	ctg Leu	gtg. Val	gtg Val 815	gct Ala	2448
gac Asp	gtg Val	tgc Cys	ccc Pro 820	aag Lys	gaa Glu	gac Asp	tcc Ser	ggc Gly 825	ggc Gly	ctc Leu	tgt Cys	tgc Cys	tat Tyr 830	gac Asp	gat Asp	2496
gag Glu	cag Gln	gat Asp 835	gtc Val	tgg Trp	cgc Arg	ccg Pro	ctg Leu 840	gct Ala	cgc Arg	atg Met	ccc Pro	ccc Pro 845	gag Glu	gcc Ala	gtg Val	2544
tcc Ser	cgg Arg	ggc Gly	tgt Cys	gcc Ala	atc Ile	tgc Cys	agt Ser	ctc Leu	ttc Phe	aat Asn	tat Tyr	ctc Leu	ttc Phe	gtg Val	gtg Val	2592

	850					855				1 6 U	200 860	PCT	FIN	AL.S	T25	
tcc Ser 865	ggc Gly	tgc Cys	cag Gln	GJ y ggg	ccc Pro 870	ggg Gly	cac His	cag Gln	ccc Pro	tcc Ser 875	agc Ser	cgc Arg	gto Val	tto Phe	tgc Cys 880	2640
tac Tyr	aac Asn	ccg Pro	ctc Leu	acg Thr 885	ggg Gly	atc Ile	tgg Trp	agc Ser	gag Glu 890	gtg Val	tgc Cys	ccg Pro	ct o	aad Asi 895	c cag n Gln	2688
gcc Ala	cgg Arg	ccg Pro	cac His 900	tgc Cys	cgg Arg	ctg Leu	gtg Val	gcc Ala 905	ctg Leu	gac Asp	ggg Gly	cac His	cto Lei 910	Ту	gcc Ala	2736
atc Ile	ggc Gly	gga Gly 915	gag Glu	tgt Cys	ctg Leu	aac Asn	tcg Ser 920	gtg Val	gag Glu	cgt Arg	tac Tyr	gac Asp 925	Pro	c cgo Arg	c ctg g Leu	2784
												Thr			ctg Leu	2832
gcg Ala 945	cac His	acg Thr	gcc [.] Ala	acg Thr	gtg Val 950	cgt Arg	gcc Ala	aag Lys	gaa Glu	atc Ile 955	ttc Phe	gtc Val	acc Thr	ggc Gly	ggc Gly 960	2880
tcg Ser	ctg Leu	cgc Arg	ttc Phe	ctg Leu 965	ctg Leu	ttc Phe	cgc Arg	ttc Phe	tct Ser 970	gcg Ala	cag Gln	gag Glu	cag Gln	cgc Arg 975	Trp	2928
	gcc Ala													Met	gtg Val	2976
	gtc Val							Ph∈					g S	_	tg ggc eu Gly	3024
	gcc Ala 1010	νaί	Tyr	cgc Arg	tgc Cys	agc Ser 101	Al	c ag a Se	c ac	ec co	g L	tc 1 eu 1 020		tac Tyr		3069
-	gcc Ala 1025	Thr		cgg Arg			ту				la P			tgc Cys		3114
	gtg Val 1040	Asp		ctc Leu			Су				g A			acc Thr		3159
Cys	ttc Phe 1055	Leu	Ala	gac Asp	Ser	Val 106	Se 0	r Pr	o Ar	g Se	r V	al 1 065	Ala	gtc Val	Phe	3204
ctg Leu	tct Ser 1070	Gly	agc Ser	tgg Trp	ggc Gly	aac Asn 107	Hi	c ca s Hi	c ca s Gl	ig to .n Se	r A.	ca d la 1 080	ett Leu	cag Gln	ggt Gly	3249
-	agc Ser 1085			tgc Cys			Су				p Se					3294
	gtg Val 1100	Ser	acg Thr	gaa Glu	gct Ala	gct Ala 110	G1	t gc y Al	c ca a Gl	n Al	a Va	ig 9 al 0 110	ggt Gly	ctt Leu	gtt Val	3339
	aga Arg 1115	Ser	agg Arg	act Thr	gga Gly	aca Thr 112	Ly	g ga s As	t ga p Gl	a aa u Ly	s G	ag g lu V 125	jtt /al	ggc Gly	atg Met	3384
gac Asp	ata Ile 1130	aga Arg	gga Gly	gag Glu	ctt Leu	gca Ala 113	Le	gga uAs	с са р Ні	c cg s Ar	g Aı	ga o og I I 40	ca Pro	cca Pro	tcc Ser	3429
	gtc Val 1145	tgg Trp	gct Ala	ctg Leu	gca Ala	cca Pro 115	G1	c tc y Se	t gc r Al	c ag a Se	r G	gc a ly s 155	igc Ser	tca Ser	gag Glu	3474
gcc	aca	ggg	tga													3486

Ala Thr Gly 1160

<210> 99

<211> 1161 <212> PRT

<213> Homo sapiens

<400> 99

Met Gly Pro Pro Glu Phe Met Tyr Glu Gln Gln Asp Asn Ser Thr His 1 $$ 10 $$ 15

Leu Gln Pro Leu Lys Thr Cys Pro Val Ala Arg Gln Leu Ile Arg Gly 20 25 30

Val Leu Arg Ala Pro Asp Gly Ala Lys Pro Gly Glu Asp Arg Gly Gln 35 40 45

Ala Arg Cys Asn Gly Arg Val Cys Gly Glu Lys Ser Lys Gln Pro Ile $50 \hspace{1cm} 55$

Glu Ala Phe Lys Pro Val Cys Tyr Lys Pro Gln Phe Met Ser His Ile 65 70 75 80

Ile Pro Leu Tyr Ser Ile His Ala Ser Gln Ser Ser Gln Ser Lys 85 90 95

Leu Pro Ala His Leu His Leu Asp Pro Leu Gly Cys Ala Ser Leu Ser 100 105 110

Phe Ser Ser Thr Gln Pro Ser Pro Pro Tyr Tyr Pro Gly Leu Val Leu 115 120 125

Gly Cys Ser Lys Gln Asn Thr Gly Gly Ala Lys Cys Gln Lys Pro Leu 130 135 140

Thr Arg Arg Phe Glu His Leu Gly Thr Ala Lys Lys Pro Lys Lys Ser 145 150 150 160

Val Trp Pro Leu Gln Ser Leu Pro Gln Arg Asp Leu Lys Leu Val Asn 165 170 175

Ala Arg Ser Gln Ala Cys Trp Asn Pro Arg Thr Trp Gly Ala Ala Thr 180 185 190

Pro Asp Thr Asp Pro Glu Glu Ala Asn Ser Gly Gln Gln Asn Ile Lys 195 200 205

Glu Gln Gln Tyr Arg Val Ser Leu Gly Asn Asn Thr Gly Ser Pro Leu 210 215 220

Cys Ser Thr Glu Val Asn Phe Gly Ser Arg Gln Gln Gly Lys Leu Asn 225 230 235 240

Arg Thr Thr Arg Glu Ala Trp Lys Glu Ala Ser Arg Trp Asp Leu Pro 245 250 255

Ala Leu Gly Pro Ser Gly His Pro Leu Gln Leu Lys Val Thr Phe Ala 260 265 270

160 200 PCT FINAL.ST25 Pro Leu Leu Ser Ser Ala Gly Gln Pro Glu Pro Ala Gln Asn Ser Leu 275 280 285

Pro Ser Ala Gln Gln Asp Pro Gly Thr Gly Pro Tyr Trp Ala Ile Ile 290 295 300

Asn Gln Ile Leu Asp Ile Pro Gln Pro Gln Val Gly Trp Arg Ser Met 305 310 315 320

Phe Pro Arg Gly Ala Glu Ala Gln Asp Trp His Leu Asp Met Gln Leu 325 330 335

Thr Gly Lys Val Val Leu Ser Ala Ala Ala Leu Leu Leu Val Thr Val 340 345 350

Ala Tyr Arg Leu Tyr Lys Ser Arg Pro Ala Pro Ala Gln Arg Trp Gly 355 360 365

Gly Asn Gly Gln Ala Glu Ala Lys Glu Glu Ala Glu Gly Ser Gly Gln 370 375 380

Pro Ala Val Gln Glu Ala Ser Pro Gly Val Leu Leu Arg Gly Pro Arg 385 390 395 400

Arg Arg Arg Ser Ser Lys Arg Ala Glu Ala Pro Gln Gly Cys Ser Cys 405 410 415

Glu Asn Pro Arg Gly Pro Tyr Val Leu Val Thr Gly Ala Thr Ser Thr $420 \hspace{1.5cm} 425 \hspace{1.5cm} 430$

Asp Arg Lys Pro Gln Arg Lys Gly Ser Gly Glu Glu Arg Gly Gln Gln 435 . 440 . 445

Gly Ser Asp Ser Glu Gln Val Pro Pro Cys Cys Pro Ser Gln Glu Thr $_{450}$ $$ $$ $$ 455

Arg Thr Ala Val Gly Ser Asn Pro Asp Pro Pro His Phe Pro Arg Leu 465 470 470 480

Gly Ser Glu Pro Lys Ser Ser Pro Ala Gly Leu Ile Ala Ala Asp 485 490 495

Gly Ser Cys Ala Gly Glu Pro Ser Pro Trp Gln Asp Ser Lys Pro 500 505 510

Arg Glu His Pro Gly Leu Gly Gln Leu Glu Pro Pro His Cys His Tyr 515 520 525

Val Ala Pro Leu Gln Gly Ser Ser Asp Met Asn Gln Ser Trp Val Phe 530 535 540

Thr Arg Val Ile Gly Val Ser Arg Glu Glu Ala Gly Ala Leu Glu Ala 545 550 555 560

Ala Ser Asp Val Asp Leu Thr Leu His Gln Gln Glu Gly Ala Pro Asn 565 570 575

Ser Ser Tyr Thr Phe Ser Ser Ile Ala Arg Val Arg Met Glu Glu His 580 585 590

16U 200 PCT FINAL.ST25

Phe Ile Gln Lys Ala Glu Gly Val Glu Pro Arg Leu Lys Gly Lys Val 595 600 605

Tyr Asp Tyr Tyr Val Glu Ser Thr Ser Gln Ala Ile Phe Gln Gly Arg 610 620

Leu Ala Pro Arg Thr Ala Ala Leu Thr Glu Val Pro Ser Pro Arg Pro 625 630 635 640

Pro Pro Gly Ser Leu Gly Thr Gly Ala Ala Ser Gly Gly Gln Ala Gly 645 650 655

Asp Thr Lys Gly Ala Ala Glu Arg Ala Ala Ser Pro Gln Thr Gly Pro 660 665 670

Trp Pro Ser Thr Arg Gly Phe Ser Arg Lys Glu Ser Leu Leu Gln Ile 675 680 685

Ala Glu Asn Pro Glu Leu Gln Leu Gln Pro Asp Gly Phe Arg Leu Pro 690 695 700

Ala Pro Pro Cys Pro Asp Pro Gly Ala Leu Pro Gly Leu Gly Arg Ser 705 710 715 720

Ser Arg Glu Pro His Val Gln Pro Val Ala Gly Thr Asn Phe Phe His 725 730 735

Ile Pro Leu Thr Pro Ala Ser Ala Pro Gln Val Arg Leu Asp Leu Gly 740 745 750

Asn Cys Tyr Glu Val Leu Thr Leu Ala Lys Arg Gln Asn Leu Glu Ala 755 760 765

Leu Lys Glu Ala Ala Tyr Lys Val Met Ser Glu Asn Tyr Leu Gln Val 770 780

Leu Arg Ser Pro Asp Ile Tyr Gly Cys Leu Ser Gly Ala Glu Arg Glu 785 790 795 800

Leu Ile Leu Gln Arg Arg Leu Arg Gly Arg Gln Tyr Leu Val Val Ala 805 810 815

Asp Val Cys Pro Lys Glu Asp Ser Gly Gly Leu Cys Cys Tyr Asp Asp 820 825 830

Glu Gln Asp Val Trp Arg Pro Leu Ala Arg Met Pro Pro Glu Ala Val 835 840 845

Ser Arg Gly Cys Ala Ile Cys Ser Leu Phe Asn Tyr Leu Phe Val Val 850 855 860

Ser Gly Cys Gln Gly Pro Gly His Gln Pro Ser Ser Arg Val Phe Cys 865 870 875 880

Tyr Asn Pro Leu Thr Gly Ile Trp Ser Glu Val Cys Pro Leu Asn Gln 885 890 895

Ala Arg Pro His Cys Arg Leu Val Ala Leu Asp Gly His Leu Tyr Ala 900 905 910

Ile Gly Gly Glu Cys Leu Asn Ser Val Glu Arg Tyr Asp Pro Arg Leu 915 920 925

Asp Arg Trp Asp Phe Ala Pro Pro Leu Pro Ser Asp Thr Phe Ala Leu 930 935 940

Ala His Thr Ala Thr Val Arg Ala Lys Glu Ile Phe Val Thr Gly Gly 945 950 955 960

Ser Leu Arg Phe Leu Leu Phe Arg Phe Ser Ala Gln Glu Gln Arg Trp 965 970 975

Trp Ala Gly Pro Thr Gly Gly Ser Lys Asp Arg Thr Ala Glu Met Val 980 985 990

Ala Val Asn Gly Phe Leu Tyr Arg Phe Asp Leu Asn Arg Ser Leu Gly 995 1000 1005

Ile Ala Val Tyr Arg Cys Ser Ala Ser Thr Arg Leu Trp Tyr Glu 1010 1020

Cys Ala Thr Tyr Arg Thr Pro Tyr Pro Asp Ala Phe Gln Cys Ala 1025 1030 1035

Val Val Asp Asn Leu Ile Tyr Cys Val Gly Arg Arg Ser Thr Leu 1040 1045 1050

Cys Phe Leu Ala Asp Ser Val Ser Pro Arg Ser Val Ala Val Phe 1055 1060 1065

Leu Ser Gly Ser Trp Gly Asn His His Gln Ser Ala Leu Gln Gly 1070 1080

Asp Ser Ile Ile Cys Pro Pro Cys Ala Arg Trp Ser Gln Leu Asp 1085 1090 1095

Pro Val Ser Thr Glu Ala Ala Gly Ala Gln Ala Val Gly Leu Val 1100 1105 1110

Gly Arg Ser Arg Thr Gly Thr Lys Asp Glu Lys Glu Val Gly Met 1115 1120 1125

Asp Ile Arg Gly Glu Leu Ala Leu Asp His Arg Arg Pro Pro Ser 1130 1140

Leu Val \mbox{Trp} Ala Leu Ala \mbox{Pro} Gly Ser Ala Ser Gly \mbox{Ser} Ser Ser Glu $\mbox{1145}$

Ala Thr Gly 1160

<210> 100 <211> 2953

<211> 2953 <212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (350)..(2536)

<400> 10	00 tg caaa	gagctc (ctccccct	cc ag	gaaa	agca	ctt	ctcc	cca (ggca	gggcgg	60
tcagtccc	ct cage	gcacct	gcatgcac	ac ac	acca	cctc	aca	acca	cac .	actg	catgca	120
cacacatac	ca ccac	agccac .	acactgtg	ca ta	cacg	caca	ccc	caca	acc (caca	tactgc	180
atgcacaca	ac acac	acctac	agctgca	tg ct	gcat	acac	aag	tcata	aca (ggag	ataaac	240
tcagagtco	cc agec	ccaaat d	agacccca	tc tc	ttgc	tcag	ttg	ctgt	cat (ccta	gacctg	300
tttctttcg	gc caca	tttcta ·	taatctgc	ca gt	gtct	gcaa	gga	gaaga			gg ggt ly Gly	358
ttt cta c Phe Leu F 5												406
ccc tcc t Pro Ser F 20												454
ctt cat a Leu His M												502
gca tcc a Ala Ser 1												550
tgc acc t Cys Thr C												598
cac ata g His Ile A 85	gca gcc Ala Ala	ctc tar Leu Ty:	gac aa Asp As 90	c ttg n Leu	gag Glu	gcg Ala	gcc Ala 95	ttg Leu	gtg Val	ctg Leu	atg Met	646
gag gct g Glu Ala A 100			ı Val Ph									694
gca ggt c Ala Gly G												742
ctg gtg c Leu Val A					Ala							790
aca ggc a Thr Gly T				r Pro								838
gag cac o Glu His P 165												886
cgg ctg c Arg Leu L 180	ctc att Leu Ile	gag cat Glu His 185	Gly Al	t gac a Asp	atc Ile	agg Arg 190	gcc Ala	cag Gln	gac Asp	tcc Ser	ctg Leu 195	934
gga aac a Gly Asn T	aca gta Thr Val	tta cad Leu His 200	atc ct lle Le	atc u Ile	ctc Leu 205	cag Gln	ccc Pro	aac Asn	aaa Lys	acc Thr 210	ttt Phe	982
gcc tgc c Ala Cys G	cag atg Sln Met 215	tac aad Tyr Asi	ctg ct Leu Le	g ctg u Leu 220	tcc Ser	tac Tyr	gat Asp	gga Gly	cat His 225	ggg Gly	gac Asp	1030 .·
cac ctg c His Leu G	cag ccc Sln Pro 230	ctg gad Leu Asp	ctt gto Leu Va 23	l Pro	aat Asn	cac His	cag Gln	ggt Gly 240	ctc Leu	acc Thr	ccc Pro	1.078
ttc aag c Phe Lys L 245	ctg gct Leu Ala	gga gto Gly Val	gag gg Glu Gl 250	t aac y Asn	act Thr	gtg Val	atg Met 255	ttc Phe	cag Gln	cac His	ctg Leu	1126

					cac His 265											1174
att Ile	ctc Leu	tac Tyr	gac Asp	ctc Leu 280	aca Thr	gag Glu	atc Ile	gac Asp	tcc Ser 285	tgg Trp	gga Gly	gag Glu	gag Glu	ctg Leu 290	tcc Ser	1222
					gtc Val											1270
					gtg Val											1318
					ttc Phe											1366
					acg Thr 345											1414
					cat His											1462
					tat Tyr											1510
					atc Ile											1558
					agg Arg											1606
att Ile 420	ctt Leu	ggg Gly	999 Gl y	cca Pro	ttc Phe 425	cat His	gtc Val	atc Ile	atc Ile	atc Ile 430	acc Thr	tat Tyr	gcc Ala	tcc Ser	ctg Leu 435	1654
					gtg Val											1702
gtg Val	ccc Pro	atg Met	tcc Ser 455	ttt Phe	gcc Ala	ctg Leu	gtg Val	ctg Leu 460	ggc Gly	tgg Trp	tgc Cys	agt Ser	gtc Val 465	atg Met	tat Tyr	1750
					cag Gln											1798
					gac Asp											1846
					gcc Ala 505											1894
					ggg Gly											1942
					ttt Phe											1990
					ttc Phe											2038
					ctc Leu											2086

16U 200 PCT FINAL.ST25 565 570 575	
gac acc cac tgg agg gtg gcc cag gag agg gat gag ctc tgg agg gcc Asp Thr His Trp Arg Val Ala Gln Glu Arg Asp Glu Leu Trp Arg Ala 580 585 590 595	2134
cag gtc gtg gcc acc aca gtg atg ctg gag cgg aag ctg cct cgc tgc Gln Val Val Ala Thr Thr Val Met Leu Glu Arg Lys Leu Pro Arg Cys 600 605 610	2182
ctg tgg cct cgc tcc ggg atc tgt ggg tgc gaa ttc ggg ctg ggg gac Leu Trp Pro Arg Ser Gly Ile Cys Gly Cys Glu Phe Gly Leu Gly Asp 615 620 625	2230
cgc tgg ttc ctg cgg gtt gag aac cac aat gat cag aat cct ctg cga Arg Trp Phe Leu Arg Val Glu Asn His Asn Asp Gln Asn Pro Leu Arg 630 635 640	2278
gtg ctt cgc tat gtg gaa gtg ttc aag aac tca gac aag gag gat gac Val Leu Arg Tyr Val Glu Val Phe Lys Asn Ser Asp Lys Glu Asp Asp 645 650 655	2326
Cag gag cat cca tct gag aaa cag ccc tct ggg gct gag agt ggg act Gln Glu His Pro Ser Glu Lys Gln Pro Ser Gly Ala Glu Ser Gly Thr 660 665 670 675	2374
cta gcc aga gcc tct ttg gct ctt cca act tcc tcc ctg tcc cgg acc Leu Ala Arg Ala Ser Leu Ala Leu Pro Thr Ser Ser Leu Ser Arg Thr 680 685 690	2422
gcg tcc cag agc agt cac cga ggc tgg gag atc ctt cgt caa aac Ala Ser Gln Ser Ser His Arg Gly Trp Glu Ile Leu Arg Gln Asn 695 700 705	2470
acc ctg ggg cac ttg aat ctt gga ctg aac ctt agt gag ggg gat gga Thr Leu Gly His Leu Asn Leu Gly Leu Asn Leu Ser Glu Gly Asp Gly 710 715 720	2518
gag gag gtc tac cat ttt tgattaacat cgctatcact cttgacctta Glu Glu Val Tyr His Phe 725	2566
ctcccggttg gcctgggggc ggggacagag acggagacct ctgcctatgc aagtgtctaa	2626
cttctgtgcc tgttaatcat gggagggtga gacagaacaa tccctaaagg gtcatgcctc	2686
acacttcaca tcagaatttc tggcaatggg caatggtcat cgattgtctc acgtattttc	2746
tgggctcttg caagtcaccc atctcaggaa aaaggaggtt ggcaactaaa gacatgaggc	2806
agggalgcta gattaatgtc aggacccatt telettetge eecacgeage eectagaaag	2866
tagtaagetg tgaggetatt etggeteece agggettaeg tgggaagage eaggeatgge	2926
atagaggttg tggcccttct ttttttc	2953
<210> 101 <211> 729 <212> PRT <213> Homo sapiens	
<400> 101	
Met Gly Gly Phe Leu Pro Lys Ala Glu Gly Pro Gly Ser Gln Leu Gln 1 5 10 15	
Lys Leu Leu Pro Ser Phe Leu Val Arg Glu Gln Asp Trp Asp Gln His 20 25 30	·
Leu Asp Lys Leu His Met Leu Gln Gln Lys Arg Ile Leu Glu Ser Pro 35 40 45	•

Leu Leu Arg Ala Ser Lys Glu Asn Asp Leu Ser Val Leu Arg Gln Leu 50 60

16U 200 PCT FINAL.ST25

Leu Leu Asp Cys Thr Cys Asp Val Arg Gln Arg Gly Ala Leu Gly Glu 65 70 75 80

Thr Ala Leu His Ile Ala Ala Leu Tyr Asp Asn Leu Glu Ala Ala Leu 85 90 95

Val Leu Met Glu Ala Ala Pro Glu Leu Val Phe Glu Pro Thr Thr Cys 100 105 110

Glu Ala Phe Ala Gly Gln Thr Ala Leu His Ile Ala Val Val Asn Gln 115 120 125

Asn Val Asn Leu Val Arg Ala Leu Leu Thr Arg Arg Ala Ser Val Ser 130 \$135\$

Ala Arg Ala Thr Gly Thr Ala Phe Arg Arg Ser Pro Arg Asn Leu Ile 145 150 155 160

Tyr Phe Gly Glu His Pro Leu Ser Phe Ala Ala Cys Val Asn Ser Glu 165 170 175

Glu Ile Val Arg Leu Leu Ile Glu His Gly Ala Asp Ile Arg Ala Gln 180 185 190

Asp Ser Leu Gly Asn Thr Val Leu His Ile Leu Ile Leu Gln Pro Asn 195 200 205

Lys Thr Phe Ala Cys Gln Met Tyr Asn Leu Leu Leu Ser Tyr Asp Gly 210 215 220

His Gly Asp His Leu Gln Pro Leu Asp Leu Val Pro Asn His Gln Gly 225 230 235 240

Leu Thr Pro Phe Lys Leu Ala Gly Val Glu Gly Asn Thr Val Met Phe 245 250 255

Gln His Leu Met Gln Lys Arg Arg His Ile Gln Trp Thr Tyr Gly Pro 260 265 270

Leu Thr Ser Ile Leu Tyr Asp Leu Thr Glu Ile Asp Ser Trp Gly Glu 275 280 285

Glu Leu Ser Phe Leu Glu Leu Val Val Ser Ser Asp Lys Arg Glu Ala 290 295 300

Arg Gln Ile Leu Glu Gln Thr Pro Val Lys Glu Leu Val Ser Phe Lys 305 310 315 320

Trp Asn Lys Tyr Gly Arg Pro Tyr Phe Cys Ile Leu Ala Ala Leu Tyr 325 330 335

Leu Leu Tyr Met Ile Cys Phe Thr Thr Cys Cys Val Tyr Arg Pro Leu 340 345 350

Lys Phe Arg Gly Gly Asn Arg Thr His Ser Arg Asp Ile Thr Ile Leu 355 360 365

Gln Gln Lys Leu Leu Gln Glu Ala Tyr Glu Thr Arg Glu Asp Ile Ile 370 375 380

16U 200 PCT FINAL.ST25

Arg Leu Val Gly Glu Leu Val Ser Ile Val Gly Ala Val Ile Ile Leu Leu Leu Glu Ile Pro Asp Ile Phe Arg Val Gly Ala Ser Arg Tyr Phe Gly Lys Thr Ile Leu Gly Gly Pro Phe His Val Ile Ile Thr Tyr 420 425 430Ala Ser Leu Val Leu Val Thr Met Val Met Arg Leu Thr Asn Thr Asn Gly Glu Val Val Pro Met Ser Phe Ala Leu Val Leu Gly Trp Cys Ser 450 455 460 Val Met Tyr Phe Thr Arg Gly Phe Gln Met Leu Gly Pro Phe Thr Ile 465 470 475 480 Met Ile Gln Lys Met Ile Phe Gly Asp Leu Met Arg Phe Cys Trp Leu 485 490 495 Met Ala Val Val Ile Leu Gly Phe Ala Ser Ala Phe Tyr Ile Ile Phe Gln Thr Glu Asp Pro Thr Ser Leu Gly Gln Phe Tyr Asp Tyr Pro Met 515 520 525 Ala Leu Phe Thr Thr Phe Glu Leu Phe Leu Thr Val Ile Asp Ala Pro Ala Asn Tyr Asp Val Asp Leu Pro Phe Met Phe Ser Ile Val Asn Phe 545 550 560 Ala Phe Ala Ile Ile Ala Thr Leu Leu Met Leu Asn Leu Phe Ile Ala Met Met Gly Asp Thr His Trp Arg Val Ala Gln Glu Arg Asp Glu Leu 580 585 590 Trp Arg Ala Gln Val Val Ala Thr Thr Val Met Leu Glu Arg Lys Leu Pro Arg Cys Leu Trp Pro Arg Ser Gly Ile Cys Gly Cys Glu Phe Gly 610 615 620 Leu Gly Asp Arg Trp Phe Leu Arg Val Glu Asn His Asn Asp Gln Asn 625 630 635 640Pro Leu Arg Val Leu Arg Tyr Val Glu Val Phe Lys Asn Ser Asp Lys 645 650 655Glu Asp Asp Gln Glu His Pro Ser Glu Lys Gln Pro Ser Gly Ala Glu Ser Gly Thr Leu Ala Arg Ala Ser Leu Ala Leu Pro Thr Ser Ser Leu 675 680 685

Ser Arg Thr Ala Ser Gln Ser Ser Ser His Arg Gly Trp Glu Ile Leu

60

16U 200 FCT FINAL.ST25 690 695 700

Arg Gln Asn Thr Leu Gly His Leu Asn Leu Gly Leu Asn Leu Ser Glu

Gly Asp Gly Glu Glu Val Tyr His Phe

<210> 102 <211> 1545 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (130)..(438) <223>

<400> 102
atttgtgatg ggcactggct cctggctgag gaccgcctct tcgggctctg gcacttctgc

accaccacca accagacgat ctgcttcaga gacctgggcc aggcccatgt gcccgggctg 120

gccgtgggc atg ggc ctg gta cgc agc gtg ggc gcc ttg gcc gtg gtg gcc 171 Met Gly Leu Val Arg Ser Val Gly Ala Leu Ala Val Val Ala 1 5 10

gcc att ttt ggc ctg gag ttc ctc atg gtg tcc cag ttg tgc gag gac 219 Ala Ile Phe Gly Leu Glu Phe Leu Met Val Ser Gln Leu Cys Glu Asp 15 20 25 30

aaa cac tca cag tgc aag tgg gtc atg ggt tcc atc ctc ctc ctg gtg \$267\$ Lys His Ser Gln Cys Lys Trp Val Met Gly Ser Ile Leu Leu Leu Val \$35\$

tct ttc gtc ctc tcc tcc ggc ggg ctc ctg ggt ttt gtg atc ctc ctc Ser Phe Val Leu Ser Ser Gly Gly Leu Leu Gly Phe Val Ile Leu Leu 50 60

agg aac caa gtc aca ctc atc ggc ttc acc cta atg ttt tgg tgc gaa 363 Arg Asn Gln Val Thr Leu Ile Gly Phe Thr Leu Met Phe Trp Cys Glu

ttc act gcc tcc ttc ctc ctc ttc ctg aac gcc atc agc ggc ctt cac

Phe Thr Ala Ser Phe Leu Leu Phe Leu Asn Ala Ile Ser Gly Leu His

atc aac agc atc acc cat ccc tgg gaa tgaccgtgga aattttaggc 458 Ile Asn Ser Ile Thr His Pro Trp Glu

cccctccagg gacatcagat tccacaagaa aatatggtca aaatgggact tttccagcat 518 gtggcctctg gtgggctgg gttggacaag ggccttgaaa cggctgcctg tttgccgata 578

acttgtgggt ggtcagccag aaatggcccg ggggcctctg cacctggtct gcagggccag 638

aggccaggag ggtgcctcag tgccaccaac tgcacaggct tagccagatg ttgattttag 698

aggaagaaaa aaacatttta aaacteette ttgaatttte tteeetggae tggaatacag 758

ttggaagcac aggggtaact ggtacctgag ctagctgcac agccaaggat agttcatgcc 818
tgtttcattg acacgggctg ggataggggc tgcagaatcc ctggggctcc cagggttgtt 878

tgtttcattg acacgtgctg ggataggggc tgcagaatcc ctggggctcc cagggttgtt 878 aagaatggat cattcttcca gctaagggtc caatcagtgc ctaggacttt cttccaccag 938

ctcaaagggc cttcgtatgt atgtccctgg cttcagcttt ggtcatgcca aagaggcaga 998

gttcaggatt ccctcagaat gccctgcaca cagtaggttt ccaaaccatt tgactcggtt 1058

tgcctcctg cccgttgttt aaaccttaca aaccctgqat aaccccatct tctagcagct 1118

ggctgtgcct ctgggagctc tgcctatcag aaccctacct taaggtgggt ttccttccga 1178

gaagagttct tgagcaagct ctcccaggag ggcccacctg actgctaata cacagccctc 1238

cccaaggccc gtgtgtgcat gtgtctgtct tttgtgaggg ttagacagcc tcagggcacc	1298
attittaato ccagaacaca titcaaagag cacgtatota gacotgotgg actotgoagg	1358
gggtgagggg gaacagcgag agcttgggta atgattaaca cccatgctgg ggatgcatgg	1418
aggtgaaggg ggccaggaac cagtggagat ttccatcctt gccagcacgt ctgtacttct	1478
gttcattaaa gtgctccctt tctagtcgat gtgtcactgc tgtatcatac ttttatgcta	1538
Cacaacc	1545
<210> 103 <211> 103 <212> PRT <213> Homo sapiens	
<400> 103	
Met Gly Leu Val Arg Ser Val Gly Ala Leu Ala Val Val Ala Ala Ile 1 5 10 15	
Phe Gly Leu Glu Phe Leu Met Val Ser Gln Leu Cys Glu Asp Lys His 20 25 30	
Ser Gln Cys Lys Trp Val Met Gly Ser Ile Leu Leu Leu Val Ser Phe 35 40 45	
Val Leu Ser Ser Gly Gly Leu Leu Gly Phe Val Ile Leu Leu Arg Asn 50 55 60	
Gln Val Thr Leu Ile Gly Phe Thr Leu Met Phe Trp Cys Glu Phe Thr 65 75 80	
Ala Ser Phe Leu Leu Phe Leu Asn Ala Ile Ser Gly Leu His Ile Asn 85 90 95	
Ser Ile Thr His Pro Trp Glu 100	
<210> 104 <211> 24 <212> DNA <213> Homo sapiens	
<400> 104 gcgcttccgg acctgtatct ccac	24
<210> 105 <211> 24 <212> DNA <213> Homo sapiens	
<400> 105 caagetetgg gtetegggea gaag	24
<210> 106 <211> 50 <212> DNA <213> Homo sapiens	÷
<400> 106 .: aaagagcctc taaagaaggg ttccagacta ccaggagctc actggaaata	50
<210> 107 <211> 24 <212> DNA	

<213>	Homo sapiens		
<400>	107 tgc aaacttggat	gage	24
<210>	108		
<211>	24		
<212>	DNA		
<213>	Homo sapiens		
<400>	108		
aaggag	ccgg aagacaggga	gagg	24
<210>	109		
<211>	50		
<212> <213>	DNA Homo saniens		
(213)	Homo sapiens		
<400>	109		
gcttta	tgta tatgaaaacc	ctgtttatct gagcctagaa ctgtctttgc	50
<210>	110		
<211>	50		
<212> <213>	DNA		
(213)	Homo sapiens		
<400>	110		
agtgat	agtt ttaaatggga	gggaataaag tetgeaaaat tteeceatat	50
<210>	111		
<211>	24		
<212>	DNA		
<213>	Homo sapiens		
<400>	111		
gagtet	ccct gtgcgtttgg	gctg	24
<210>	112		
<211>	24		
<212>	DNA		
<213>	Homo sapiens		
<400>	112		
aagtgt	aaag catgccccgc	ctga	24
<210>	113		
<211>	50		
<212>	DNA		
<213>	Homo sapiens		
<400>	113		
agtccc	agct taaaaaagag	acagacagac agagagaga agagacagag	50
<210>	114		
<211>	50		
<212>	DNA		
<213>	Homo sapiens		
<400>	114		
ttagtg	attt aaaaaaatgt	gaagaagaga gagtcaaggc agtaaaagga	50
•			
<210>	115		
<211>	24		
<212>	DNA	•	
<213>	Homo sapiens		
<400>	115		
	tatg ctgccacggt	catc	24
2310 >	116		

16U 200 PCT FINAL.ST25 <211> 24 <212> DNA <213> Homo sapiens <400> 116 agtcctggca gtcctggcat tgtg 24 <210> 117 <211> 50 <212> DNA <213> Homo sapiens <400> 117 gatacaaata attaaaagcc caggttaagg taaatatatt aaagaccaag 50 <210> 118 <211> 50 <212> DNA <213> Homo sapiens <400> 118 atctcacgaa ttaaaaaatgc tgaggtggta aattgttatc aattctatgt 50 <210> 119 <211> 24 <212> DNA <213> Homo sapiens <400> 119 caggattacg cacaaacggc atgg 24 <210> 120 <211> 24 <212> DNA <213> Homo sapiens <400> 120 tgggaggcag agatagcaga gccc 24 <210> 121 <211> 50 <212> DNA <213> Homo sapiens <400> 121 ctagactatt taaaaaaacc cctggcttgc acagtggctc aagcctgtaa 50 <210> 122 <211> 24 <212> DNA <213> Homo sapiens <400> 122 ctggtcctgg gcaccctgat aagc 24 <210> 123 <211> 24 <212> DNA <213> Homo sapiens <400> 123 cccaggtctg gttgcagtgc tctc 24 10 <210> 124 50 <211> 4. 1 <212> DNA

Page 88

50

<213> Homo sapiens

agctgtcctc attaaaagtg acctggagtg agatggattc ttctgcctat

<400> 124

<210> <211> <212> <213>	125 50 DNA Homo sapiens				
<400> ccaatto	125 ettc tgaaaaacgg	gagtcactgt	gggcaccatc	acgcccgggt	50
<210> <211> <212> <213>	126 24 DNA Homo sapiens				
<400> ctgagg	126 tgtc cctcccaagc	aggt			24
<210><211><211><212><213>	127 24 DNA Homo sapiens				
<400> tacggc	127 cgag aagcactgga	gatg			24
<210><211><211><212><213>	128 50 DNA Homo sapiens				
<400> taaaca	128 aata cataaatgag	gcagttacta	gtagtggtaa	ctgctaggaa	50
<210><211><211><212><213>	129 50 DNA Homo sapiens				
<400> actaaa	129 aata taaaaatcag	ccaggcctgg	tggcacatgt	ctgtaatctc	50
<210><211><211><212><213>	130 50 DNA Homo sapiens				
<400> gggatge	130 catt ataaatgcaa	ccagccagag	ggcccctggc	ttcagaacct	50
<210><211><211><212><213>	131 27 DNA Homo sapiens				
<400> gtcacc	131 tcag cgatctcaac	gataggg			27
<210> <211> <212> <213>	132 28 DNA Homo sapiens				
<400> tggagca	132 agga acaggatata	ggtcaggg			, 28
<210><211><211><212><213>	133 50 DNA Homo sapiens				
<400>	133				

atatacc	ttg tttaaaagag	gggtattatc		aaggaaagct		50
<210> <211> <212> <213>	134 50 DNA Homo sapiens					
<400> accccta	134 octt ttaaaggcct	tgacaaacag	tgctaaagtt	ctcaccttaa		50
<210> <211> <212>	135 24 DNA					
<213>	Homo sapiens					
<400> gggtggg	135 gaag gaagcaggga	agag				24
<210> <211>	136 24					
<212> <213>	DNA Homo sapiens					
<400>	136					
	agtt catgcttggc	gcag				24
<210>	137					
<211> <212>	50 DNA					
<213>	Homo sapiens					
<400>	137		at a	. estagettet		50
ttattg	ggca taaaaatatg	aagagaggtc	ccagagagtc	ectaggttet		30
<210>	138					
<211>	30					
<212> <213>	DNA Homo sapiens					
<400>	138					
ctgttg	ggaa tetteageea	gateteacae				30
<210>	139					
<211> <212>	24 DNA					
<213>	Homo sapiens					
<400> atggag	139 gttt ctgcacgctc	: agca				24
<210>	140					
<211>	50					
<212> <213>						
<400>	140					50
aagcaa	itttg ttaaaaacto	gcattacttt	actettatge	tttetgtgte		30
<210>	141					
<211> <212>	50 DNA					
<213>						
<400>	141 aattt tataaagaag	n attesestes	a agaaattoo	a agtgaggttc	ş-i	50
acilia	acce catadayda(y geceacacte				
<210>	142					
<211> <212>	24 DNA					
<213>						

<400> 142 gggccacttc cacagacagg aagc	24
<210> 143 <211> 33 <212> DNA <213> Homo sapiens	
<400> 143 tggcctgaga ggtagattcc acatagtagt cgt	33
<210> 144 <211> 50 <212> DNA <213> Homo sapiens	
<400> 144 aaggettett caaaaaaage gggettgtte tgggeeagaa aateagagtg	50
<210> 145 <211> 31 <212> DNA <213> Homo sapiens	
<400> 145 ctcctttctg gtcagagaac aagactggga c	31
<210> 146 <211> 27 <212> DNA <213> Homo sapiens	
<400> 146 gtgatgtctc gagaatgagt gcggttg	27
<210> 147 <211> 50 <212> DNA <213> Homo sapiens	
<400> 147 cagcgaggca gaaaaatgtc ccacaagttg agccctcccc actcccagtg	50
<210> 148 <211> 50 <212> DNA <213> Homo sapiens	
<400> 148 taatataaaa tatataaaat agtgcaacat tacttattcc tcctggtgtt	50
<210> 149 <211> 27 <212> DNA	
<213> Homo sapiens <400> 149 gcagatgacc cgacctgact gttcttc	27
<210> 150 <211> 27	
<212> DNA <213> Homo sapiens <400> 150	•
tggctgtgca gctagctcag gtaccag	27
<210> 151 <211> 50	

<212 <213		DNA Homo	sapi	ens						160	200	PCT	FINA	L.ST	'25	
<400 gcca		151 agt t	taaa	tgaa	ag co	ctac	:t t tç	g ggg	gcago	jagc	ggga	aggaa	aac			50
<210 <211 <212 <213	> >	152 945 DNA Homo	sani	ans	ie.											
<220 <221 <222 <223	> > >	CDS (1).														
<400 atg Met 1	ggt	152 gta Val														48
		gaa Glu														96
gga Gly		tac Tyr 35														144
Ile		ctg Leu														192
		tct Ser														240
		tca Ser														288
		att Ile														336
		ctg Leu 115														384
		ctc Leu														432
		gct Ala			_								7.3		- 1	480
		ata Ile														528
		tgt Cys														576
		gat Asp 195														624
		agc Ser														672
		cgc Arg														720
tgt	agc	tcc	cac	ctg	aca	gct	gtt	ctt	atg	ttt	tat	ggg	tct	ctg	atg	768

Cys	Ser	Ser	His	Leu 245	Thr	Ala	Val	Leu					FINA Ser				
tcc Ser	atg Met	tat Tyr	ctc Leu 260	aaa Lys	cct Pro	gct Ala	tct Ser	agc Ser 265	agt Ser	tca Ser	ctc Leu	acc Thr	cag Gln 270	gag Glu	aaa Lys	8	16
gta Val	tcc Ser	tca Ser 275	gta Val	ttt Phe	tat Tyr	acc Thr	act Thr 280	gtg Val	att Ile	ctc Leu	atg Met	ttg Leu 285	aat Asn	ccc Pro	ttg Leu	8	64
ata Ile	tat Tyr 290	agt Ser	ctg Leu	agg Arg	aac Asn	aat Asn 295	gaa Glu	gta Val	aga Arg	aat Asn	gct Ala 300	ctg Leu	atg Met	aaa Lys	ctt Leu	9	12
					tct Ser 310					taa						9	45
<210 <211 <212 <213	> : 2> :	153 314 PRT Homo	sap:	iens													
< 400)> :	153															
Met 1	Gly	Val	Lys	Asn 5	His	Ser	Thr	Val	Thr 10	Glu	Phe	Leu	Leu	Ser 15	Gly		
Leu	Thr	Glu	Gln 20	Ala	Glu	Leu	Gln	Leu 25	Pro	Leu	Phe	Cys	Leu 30	Phe	Leu		
Gly	lle	Tyr 35	Thr	Val	Thr	Val	Val 40	Gly	Asn	Leu	Ser	Met 45	Ile	Ser	Ile		
Ile	Arg 50	Leu	Asn	Arg	Gln	Leu 55	His	Thr	Pro	Met	Tyr 60	Tyr	Phe	Leu	Ser		
Ser 65	Leu	Ser	Phe	Leu	Asp 70	Phe	Cys	Туr	Ser	Ser 75	Val	Ile	Thr	Pro	Lys 80		
Met	Leu	Ser	Gly	Phe 85	Leu	Cys	Arg	Asp	Arg 90	Ser	Ile	Ser	Tyr	Ser 95	Gly		
Cys	Met	Ile	Gln 100		Phe	Phe	Phe	Cys 105		Cys	Val	lle	Ser 110		Cys		
Tyr	Met	Leu 115		Ala	Met	Ala	Cys 120		Arg	Tyr	Val	Ala 125	Ile	Cys	Ser		
Pro	Leu 130		Tyr	Arg	Val	11e 135		Ser	Pro	Arg	Val 140	Суз	Ser	Leu	Leu	. •	
Val 145	Ala	Ala	Val	Phe	Ser 150		Gly	Phe	Thr	Asp 155		Val	Ile	His	Gly 160		
Gly	Cys	Ile	Leu	Arg 165		Ser	Phe	Cys	Gly 170		Asn	Ile	lle	Lys 175	His		
Туr	Phe	Ċys	Asp 180		· Val	Pro	Leu	11e 185		Leu	Ser	Cys	Ser 190	Ser	Thr		
Tyr	Ile	Asp 195		Leu	Leu	Ile	Phe 200		Ile	Gly	Gly	Phe 205	Asn	Met	. Val		

Ala	Thr 210	Ser	Leu	Thr	Ile	Ile 215	lle	Ser	Tyr	16U Ala	200 Phe 220	PCT Ile	FINA Leu	L.SI Thr	Ser		
Ile 225	Leu	Arg	Ile	His	Ser 230	Lys	Lys	Gly	Arg	Cys 235	Lys	Ala	Phe	Ser	Thr 240		
Cys	Ser	Ser	His	Leu 245	Thr	Ala	Val	Leu	Met 250	Phe	Туr	Gly	Ser	Leu 255	Met		
Ser	Met	Туг	Leu 260	Lys	Pro	Ala	Ser	Ser 265	Ser	Ser	Leu	Thr	Gln 270	G1u	Lys		
Val	Ser	Ser 275	Val	Phe	туг	Thr	Thr 280	Val	lle	Leu	Met	Leu 285	Asn	Pro	Leu		
lle	Туг 290	Ser	Leu	Arg	Asn	Asn 295	Glu	Val	Arg	Asn	Ala 300	Leu	Met	Lys	Leu		
Leu 305	Arg	Arg	Lys	Ile	Ser 310	Leu	Ser	Pro	Gly								
<210 <211 <212 <213	> 3 > I	154 34 ONA Homo	sapi	ens													
<400 ctgt		154 cca t	ggag	ıgtto	gt at	acto	aggt	: tgt	:c								34
<210 <211 <212 <213	> >	155 36 ONA Homo	sapi	ens													
<400	> 1	155			et to	attg	ttcc	/ : tca	ıgac								36
<210 <211 <212 <213	> 5 > t	156 50 DNA Homo	sapi	.ens													
<400 cagg		156 ett a	aata	ıtaaç	ja gt	ggto	agtg	ı tgt	ttgt	aac	acto	agga	са				50
<210 <211 <212 <213	> 5 > [157 50 NA Iomo	sapi	ens													
<400 aaaa		i57 jet t	taaa	iaaac	c ca	itgat	atta	aag	acaa	aaa	actg	agca	ita				50
<210 <211 <212 <213	> 5 > [58 60 NA fomo	sapi	ens													
<400 atga		i58 jet t	atta	aata	ig co	aggt	agct	ggg	ıcaga	atg	agaa	aatg	ıca			.,	50
<210 <211 <212 <213	> 5	59 00 0NA lomo	sapi	ens											. :		
<400	> 1	159															

16U 200 PCT FINAL.ST25 gcccaacact aaataaaggg tcagctttct cagagataag gccatgattg												
<210> 160 <211> 50 <212> DNA <213> Homo sapiens												
<400> 160 tgctataaaa tgtttttaaa aagtgtgaag ttggcctatc accaagtaag												
<210> 161 <211> 50 <212> DNA <213> Homo sapiens												
<400> 161 taaatattgt atttatatag teetteagga ggaetgagge ateeteeagt	50											
<210> 162 <211> 957 <212> DNA <213> Homo sapiens												
<220> <221> CDS <222> (1)(957) <223>												
<400> 162 atg aat cca gca aat cat tcc cag gtg gca gga ttt gtt cta ctg ggg Met Asn Pro Ala Asn His Ser Gln Val Ala Gly Phe Val Leu Leu Gly 1 5 10 15	48											
ctc tct cag gtt tgg gag ctt cgg ttt gtt ttc ttc act gtt ttc tct Leu Ser Gln Val Trp Glu Leu Arg Phe Val Phe Phe Thr Val Phe Ser 20 25 30	96											
gct gtg tat ttt atg act gta gtg gga aac ctt ctt att gtg gtc ata Ala Val Tyr Phe Met Thr Val Val Gly Asn Leu Leu Ile Val Val Ile 35 40 45	144											
gtg acc tcc gac cca cac ctg cac aca acc atg tat ttt ctc ttg ggc Val Thr Ser Asp Pro His Leu His Thr Thr Met Tyr Phe Leu Leu Gly 50 55 60	192											
aat ctt tct ttc ctg gac ttt tgc tac tct tcc atc aca gca cct agg Asn Leu Ser Phe Leu Asp Phe Cys Tyr Ser Ser Ile Thr Ala Pro Arg 65 70 75 80	240											
atg ctg gtt gac ttg ctc tca ggc aac cct acc att tcc ttt ggt gga Met Leu Val Asp Leu Leu Ser Gly Asn Pro Thr Ile Ser Phe Gly Gly 85 90 95	288											
tgc ctg act caa ctc ttc ttc ttc cac ttc att gga ggc atc aag atc Cys Leu Thr Gln Leu Phe Phe Phe His Phe Ile Gly Gly Ile Lys Ile 100 105 110	336											
ttc ctg ctg act gtc atg gcg tat gac cgc tac att gcc att tcc cag Phe Leu Leu Thr Val Met Ala Tyr Asp Arg Tyr Ile Ala Ile Ser Gln 115 120 125	384											
ccc ctg cac tac acg ctc att atg aat cag act gtc tgt gca ctc ctt Pro Leu His Tyr Thr Leu Ile Met Asn Gln Thr Val Cys Ala Leu Leu 130 135 140	432											
atg gca gcc tcc tgg gtg ggg ggc ttc atc cac tcc ata gta cag att Met Ala Ala Ser Trp Val Gly Gly Phe Ile His Ser Ile Val Gln Ile 145 150 155 160	480											
gca ttg act atc cag ctg cca ttc tgt ggg cct gac aag ctg gac aac Ala Leu Thr Ile Gln Leu Pro Phe Cys Gly Pro Asp Lys Leu Asp Asn 165 170 175	528											
ttt tat tgt gat gtg cct cag ctg atc aaa ttg gcc tgc aca gat acc Phe Tyr Cys Asp Val Pro Gln Leu Ile Lys Leu Ala Cys Thr Asp Thr 180 185 190	576											

											100	200	rcı	L 1 [43	1L.3	123		
Þ	tt he	gtc Val	tta Leu 195	gag Glu	ctt Leu	tta Leu	atg Met	gtg Val 200	tct Ser	aac Asn	aat Asn	ggc Gly	ctg Leu 205	gtg Val	acc Thr	ctg Leu	62	24
									tcg Ser								67	72
L	tc eu 25	cga Arg	agc Ser	cac His	tca Ser	cgg Arg 230	gag Glu	ggc Gly	cgc Arg	agc Ser	aag Lys 235	gcc Ala	ctg Leu	tct Ser	acc Thr	tgt Cys 240	72	20
									tta Leu								76	8
									ttc Phe 265								81	6
									atg Met								86	4
									gcc Ala								91	2
L									gag Glu						tag		95	7
< <	210 211 212 213	1> 3 2> 1	163 318 PRT Homo	sapi	iens													
<	400)> 1	63															
M 1		Asn	Pro	Ala	Asn 5	His	Ser	Gln	Val	Ala 10	Gly	Phe	Val	Leu	Leu 15	Gly		
L	eu	Ser	Gln	Val 20	Trp	Glu	Leu	Arg	Phe 25	Val	Phe	Phe	Thr	Val 30	Phe	Ser		
A	la	Val	Tyr 35	Phe	Met	Thr	Val	Val 40	Gly	Asn	Leu	Leu	11e 45	Val	Val	Ile		
V	al	Thr 50	Ser	Asp	Pro	His	Leu 55	His	Thr	Thr		туr 60	Phe	Leu	Leu	Gly		
A 6		Leu	Ser	Phe	Leu	Asp 70	Phe	Cys	Tyr	Ser	Ser 75	Ile	Thr	Ala	Pro	Arg 80		
M	et	Leu	Val	Asp	Leu 85	Leu	Ser	Gly	Asn	Pro 90	Thr	Ile	Ser	Phe	Gly 95	Gly		
C	ys	Leu	Thr	Gln 100	Leu	Phe	Phe	Phe	His 105	Phe	Ile	Gly	Gly	Ile 110	Lys	Ile		
P	he	Leu	Leu 115	Thr	Val	Met	Ala	Tyr 120	Asp	Arg	Tyr	Ile	Ala 125	Ile		Gln		
P	ro	Leu 130	His	Tyr	Thr	Leu	Ile 135	Met	Asn	Gln	Thr	Val 140	Cys	Ala	Leu	: Leu		
M(et 45	Ala	Ala	Ser	Trp	Val 150	Gly	Gly	Phe	Ile	His 155	Ser	Ile	Val	Gln	Ile 160		

Ala	Leu	Thr	Ile	Gln 165	Leu	Pro	Phe	Cys	Gly 170	Pro	Asp	Lys	Leu	Asp 175	Asn	
Phe	Туr	Cys	Asp 180	Val	Pro	Gln	Leu	Ile 185	Lys	Leu	Ala	Cys	Thr 190	Asp	Thr	
Phe	Val	Leu 195	Glu	Leu	Leu	Met	Val 200	Ser	Asn	Asn	Gly	Leu 205	Val	Thr	Leu	
Met	Cys 210	Phe	Leu	Val	Leu	Leu 215	Gly	Ser	Туr	Thr	Ala 220	Leu	Leu	Val	Met	
Leu 225	Arg	Ser	His	Ser	Arg 230	Glu	Gly	Arg	Ser	Lys 235	Ala	Leu	Ser	Thr	Cys 240	
Ala	Ser	His	Ile	Ala 245	Val	Val	Thr	Leu	11e 250	Phe	Val	Pro	Cys	Ile 255	Tyr	
Val	Туr	Thr	Arg 260	Pro	Phe	Arg	Thr	Phe 265	Pro	Met	Asp	Lys	Ala 270	Val	Ser	
Val	Leu	T yr 275	Thr	Ile	Val	Thr	Pro 280	Met	Leu	Asn	Pro	Ala 285	Ile	Tyr	Thr	
Leu	Arg 290	Asn	Lys	Glu	Val	11e 295	Met	Ala	Met	Lys	Lys 300	Leu	Trp	Arg	Arg	
Lys 305	Lys	Asp	Pro	Ile	Gly 310	Pro	Leu	Glu	His	Arg 315	Pro	Leu	His			
<210 <211 <212 <213	l> ?>	164 26 DNA Homo	sap:	iens												
<400 gaat		164 gca a	aatca	attc	cc aq	ggtg	3									26
<210 <211 <212 <213	!> ?>	165 29 DNA Homo	sapi	iens												
<400 ctaa		165 aag (ggtci	tgtgd	ct co	cagg	ggac									29
<210 <211 <212 <213	!> !>	166 50 DNA Homo	sapi	iens												
<400 cact		166 ctt (ttaaa	agtgo	a gọ	gggg	cagto	g att	tctt	ttc	tttt	cttt	tt			50
<210 <211 <212 <213	!> !>	167 972 DNA Homo	sapi	iens										,		
<220 <221 <222 <223	> (>	CDS (1)	. (972	2)												

1 6U	200	PCT	FINAL.	ST25
------	-----	-----	--------	------

<40	2	167								100	200	PCT	FINE	AL.SI	25	
atg	aac	cct	gaa Glu	aac Asn 5	tgg Trp	act Thr	cag Gln	gta Val	aca Thr 10	agc Ser	ttt Phe	gtc Val	ctt Leu	ctg Leu 15	ggt Gly	48
												ctg Leu				96
												att Ile 45				144
												ttc Phe				192
												gtg Val				240
												tca Ser				288
												acc Thr				336
												gca Ala 125				384
												tgt Cys				432
												ctt Leu				480
												ggt Gly				528
												tgt Cys				576
			Lys									ttg Leu 205				624
		Leu			Thr		Val			Ala		att Ile				672
												gcg Ala				720
												ggc Gly				768
												ctg Leu				816
Gly	Ala	Ser 275	Val	Leu	Ser	Cys	11e 280	Ile	Thr	Pro	Leu	ttg Leu 285	Asn	Pro _,	Phe	864
atc Ile	ttc Phe 290	act Thr	ctc Leu	cgc Arg	aat Asn	gac Asp 295	aag Lys	gtg Val	cag Gln	caa Gln	gca Ala 300	ctg Leu	aga Arg	gaa Glu	gcc Ala	912
												agg Arg				960

16U 200 PCT FINAL.ST25 305 310 315 320

caa agg aaa tga Gln Arg Lys 972

<210> 168 <211> 323

<212> PRT <213> Homo sapiens

<400> 168

Met Asn Pro Glu Asn Trp Thr Gln Val Thr Ser Phe Val Leu Leu Gly
1 5 10 15

Phe Pro Ser Ser His Leu Ile Gln Phe Leu Val Phe Leu Gly Leu Met 20 30

Val Thr Tyr Ile Val Thr Ala Thr Gly Lys Leu Leu Ile Ile Val Leu 35 40 45

Ser Trp Ile Asp Gln Arg Leu His Ile Gln Met Tyr Phe Phe Leu Arg 50 60

Asn Phe Ser Phe Leu Glu Leu Leu Leu Val Thr Val Val Val Pro Lys 65 70 75 80

Met Leu Val Val Ile Leu Thr Gly Asp His Thr Ile Ser Phe Val Ser 85 90 95

Cys Ile Ile Gln Ser Tyr Leu Tyr Phe Phe Leu Gly Thr Thr Asp Phe 100 105 110

Phe Leu Leu Ala Val Met Ser Leu Asp Arg Tyr Leu Ala Ile Cys Arg 115 120 125

Pro Leu Arg Tyr Glu Thr Leu Met Asn Gly His Val Cys Ser Gln Leu 130 135 140

Val Leu Ala Ser Trp Leu Ala Gly Phe Leu Trp Val Leu Cys Pro Thr 145 150 155 160

Val Leu Met Ala Ser Leu Pro Phe Cys Gly Pro Asn Gly Ile Asp His 165 170 175

Phe Phe Arg Asp Ser Trp Pro Leu Leu Arg Leu Ser Cys Gly Asp Thr 180 185 190

His Leu Leu Lys Leu Val Ala Phe Met Leu Ser Thr Leu Val Leu Leu 195 200 205

Gly Ser Leu Ala Leu Thr Ser Val Ser Tyr Ala Cys Ile Leu Ala Thr 210 215 220

Val Leu Arg Ala Pro Thr Ala Ala Glu Arg Arg Lys Ala Phe Ser Thr 225 230 235 240

Cys Ala Ser His Leu Thr Val Val Val Ile Ile Tyr Gly Ser Ser Ile 245 250 255

Phe Leu Tyr Ile Arg Met Ser Glu Ala Gln Ser Lys Leu Leu Asn Lys

16U 200 PCT FINAL.ST25 260 265 270

Gly Ala Ser Val Leu Ser Cys Ile Ile Thr Pro Leu Leu Asn Pro Phe 275 280 285

Ile Phe Thr Leu Arg Asn Asp Lys Val Gln Gln Ala Leu Arg Glu Ala 290 295 300

Leu Gly Trp Pro Arg Leu Thr Ala Val Met Lys Leu Arg Val Thr Ser 305 310 315 320

Gln Arg Lys

<210> 169
<211> 25
<212> DNA
<213> Homo sapiens

<400> 169
tgtgctcagc tggatagacc aacgc

<210> 170
<211> 30
<211> 30
<212> DNA
<213> Homo sapiens

<400> 170
ctgagaacag tggcaagaat gcaggcatag 30

<210> 171 <211> 450 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (1)..(450) <223>

<400> 171
atg gac ctt ccc cat gtc cca gct ctg gac gcc cca ctc ttt gga gtc
Met Asp Leu Pro His Val Pro Ala Leu Asp Ala Pro Leu Phe Gly Val
1 5 10 15

ttc ctg gtg gtt tat gtg ctt act gtg ctg ggg aac ctc ctc atc ctg
Phe Leu Val Val Tyr Val Leu Thr Val Leu Gly Asn Leu Leu Ile Leu
20 25 30

ctg gtg atc agg gtg tac tct cac ctc cac acc ccc aag tac tac ttc l44
Leu Val Ile Arg Val Tyr Ser His Leu His Thr Pro Lys Tyr Tyr Phe
35 40 45

ctc acc aat ctg tcc ttc att gac ttg tgg ttc ttc act gtc atg gtg
Leu Thr Asn Leu Ser Phe Ile Asp Leu Trp Phe Phe Thr Val Met Val
50 55 60

ccc aaa atg ccg agg acc ttg ttg tcc ctg tgt ggc aag gct gtg tcc 240 Pro Lys Met Pro Arg Thr Leu Leu Ser Leu Cys Gly Lys Ala Val Ser 65 70 75 80

ttc cac agt tgt atg acc caa ctc tat ttc ttc tac ttc ctg ggg agc
Phe His Ser Cys Met Thr Gln Leu Tyr Phe Phe Tyr Phe Leu Gly Ser
85 90 95

acc gag tgt ttg ctc tac acg gtc atg tcc tat gat cgc tat aga.gga
Thr Glu Cys Leu Leu Tyr Thr Val Met Ser Tyr Asp Arg Tyr Arg Gly

aat act cag cac ttc cca ggt agt gaa aac act ccc cac gaa gtg agc 384 Asn Thr Gln His Phe Pro Gly Ser Glu Asn Thr Pro His Glu Val Ser 115 120 125

Page 100

48

caa atg cta gtg gcc cgg ggg gca cac ggg ctc cca ctc atc ctg	432
Gln Met Leu Val Ala Arg Gly Ala His Gly Leu Pro Leu Ile Ile Leu 130 135 140	450
gca gat ctg agt ggg taa Ala Asp Leu Ser Gly 145	450
<210> 172 <211> 149 <212> PRT <213> Homo sapiens	
<400> 172	
Met Asp Leu Pro His Val Pro Ala Leu Asp Ala Pro Leu Phe Gly Val 1 5 10 15	
Phe Leu Val Val Tyr Val Leu Thr Val Leu Gly Asn Leu Leu Ile Leu 20 25 30	
Leu Val Ile Arg Val Tyr Ser His Leu His Thr Pro Lys Tyr Tyr Phe 35 40 45	
Leu Thr Asn Leu Ser Phe Ile Asp Leu Trp Phe Phe Thr Val Met Val 50 55 60	
Pro Lys Met Pro Arg Thr Leu Leu Ser Leu Cys Gly Lys Ala Val Ser 65 70 75 80	
Phe His Ser Cys Met Thr Gln Leu Tyr Phe Phe Tyr Phe Leu Gly Ser 85 90 95	
Thr Glu Cys Leu Leu Tyr Thr Val Met Ser Tyr Asp Arg Tyr Arg Gly 100 105 110	
Asn Thr Gln His Phe Pro Gly Ser Glu Asn Thr Pro His Glu Val Ser 115 120 125	
Gln Met Leu Val Ala Arg Gly Ala His Gly Leu Pro Leu Ile Ile Leu 130 135 140	
Ala Asp Leu Ser Gly 145	
<210> 173 <211> 23 <212> DNA <213> Homo sapiens	
<400> 173 agctctggac gccccactct ttg	23
<210> 174 <211> 27 <212> DNA <213> Homo sapiens	
<400> 174 acccactcag atctgccagg atgatga	27
<210> 175 <211> 936 <212> DNA <213> Homo sapiens	

<22 <22 <22 <22	1> 2>	CDS (1).	. (93	6)												
	tcc							gca Ala								48
cat His	gcc Ala	cca Pro	999 Gly 20	ctg Leu	gac Asp	gcc Ala	ctc Leu	ctc Leu 25	ttt Phe	gga Gly	atc Ile	ttc Phe	ctg Leu 30	gtg Val	gtt Val	96
tac Tyr	gtg Val	ctc Leu 35	act Thr	gtg Val	ctg Leu	G] y ggg	aac Asn 40	ctc Leu	ctc Leu	atc Ile	ctg Leu	ctg Leu 45	gtg Val	atc Ile	agg Arg	144
gtg Val	gat Asp 50	tct Ser	cac His	ctc Leu	cac His	acc Thr 55	ccc Pro	atg Met	tac Tyr	tac Tyr	ttc Phe 60	ctc Leu	acc Thr	aac Asn	ctg Leu	192
tcc Ser 65	ttc Phe	att Ile	gac Asp	atg Met	tgg Trp 70	ttc Phe	tcc Ser	act Thr	gtc Val	acg Thr 75	gtg Val	ccc Pro	aaa Lys	atg Met	ctg Leu 80	240
atg Met	acc Thr	ttg Leu	gtg Val	tcc Ser 85	cca Pro	agc Ser	ggc Gly	agg Arg	gct Ala 90	atc Ile	tcc Ser	ttc Phe	cac His	agc Ser 95	tgc Cys	288
gtg Val	gct Ala	cag Gln	ctc Leu 100	tat Tyr	ttt Phe	ttc Phe	cac His	ttc Phe 105	ctg Leu	G] y ggg	agc Ser	acc Thr	gag Glu 110	tgt Cys	ttc Phe	336
ctc Leu	tac Tyr	aca Thr 115	gtc Val	atg Met	tcc Ser	tat Tyr	gat Asp 120	cgc Arg	tac Tyr	ttg Leu	gcc Ala	atc Ile 125	agt Ser	tac Tyr	ccg Pro	384
ctc Leu	agg Arg 130	tac Tyr	acc Thr	agc Ser	atg Met	atg Met 135	agt Ser	ggg Gly	agc Ser	agg Arg	tgt Cys 140	gcc Ala	ctc Leu	ctg Leu	gcc Ala	432
								ctg Leu								480
ttg Leu	act Thr	ttc Phe	cat His	ttg Leu 165	ccc Pro	tac Tyr	tgt Cys	gga Gly	ccc Pro 170	aac Asn	cag Gln	atc Ile	cag Gln	cac His 175	tac Tyr	528
ttc Phe	tgt Cys	gac Asp	gca Ala 180	ccg Pro	ccc Pro	atc Ile	ctg Leu	aaa Lys 185	ctg Leu	gcc Ala	tgt Cys	gca Ala	gac Asp 190	acc Thr	tca Ser	576
gcc Ala	aac Asn	gtg Val 195	atg Met	gtc Val	atc Ile	ttt Phe	gtg Val 200	gac Asp	att Ile	G1 y G3 9	ata Ile	gtg Val 205	gcc Ala	tca Ser	ggc Gly	624
tgc Cys	ttt Phe 210	gtc Val	ctg Leu	ata Ile	gtg Val	ctg Leu 215	tcc Ser	tat Tyr	gtg Val	tcc Ser	atc Ile 220	gtc Val	tgt Cys	tcc Ser	atc Ile	672
ctg Leu 225	cgg Arg	atc Ile	cgc Arg	acc Thr	tca Ser 230	gat Asp	ggg Gly	agg Arg	cgc Arg	aga Arg 235	gcc Ala	ttt Phe	cag Gln	acc Thr	tgt Cys 240	720
gcc Ala	tcc Ser	cac His	tgt Cys	att Ile 245	gtg Val	gtc Val	ctt Leu	tgc Cys	ttc Phe 250	ttt Phe	gtt Val	ccc Pro	tgt Cys	gtt Val 255	gtc Val	768
att Ile	tat Tyr	ctg Leu	agg Arg 260	cca Pro	ggc Gly	tcc Ser	atg Met	gat Asp 265	gcc Ala	atg Met	gat Asp	gga Gly	gtt Val 270	gtg ['] Val	gcc Ala	816
att Ile	ttc Phe	tac Tyr 275	act Thr	gtg Val	ctg Leu	acg Thr	ccc Pro 280	ctt Leu	ctc Leu	aac Asn	cct Pro	gtt Val 285	gtg Val	tac Tyr	acc Thr	864

						gct Ala	ttg	aaa	ctt	aga	aaa	912
Val	Ăla	Pro	cag Gln		taa							936

<210> 176 <211> 311 <212> PRT <213> Homo sapiens

<400> 176

Met Ser Asn Ala Ser Leu Val Thr Ala Phe Ile Leu Thr Gly Leu Pro l 5 10 15

His Ala Pro Gly Leu Asp Ala Leu Leu Phe Gly Ile Phe Leu Val Val 20 25 30

Tyr Val Leu Thr Val Leu Gly Asn Leu Leu Ile Leu Leu Val Ile Arg 35 40 45 .

Val Asp Ser His Leu His Thr Pro Met Tyr Tyr Phe Leu Thr Asn Leu 50 55 60

Ser Phe Ile Asp Met Trp Phe Ser Thr Val Thr Val Pro Lys Met Leu 65 70 75 80

Met Thr Leu Val Ser Pro Ser Gly Arg Ala Ile Ser Phe His Ser Cys 85 90 95

Val Ala Gln Leu Tyr Phe Phe His Phe Leu Gly Ser Thr Glu Cys Phe 100 105 110

Leu Tyr Thr Val Met Ser Tyr Asp Arg Tyr Leu Ala Ile Ser Tyr Pro 115 120 125

Leu Arg Tyr Thr Ser Met Met Ser Gly Ser Arg Cys Ala Leu Leu Ala 130 $$135\$

Thr Gly Thr Trp Leu Ser Gly Ser Leu His Ser Ala Val Gln Thr Ile 145 150 155 160

Leu Thr Phe His Leu Pro Tyr Cys Gly Pro Asn Gln Ile Gln His Tyr 165 170 175

Phe Cys Asp Ala Pro Pro Ile Leu Lys Leu Ala Cys Ala Asp Thr Ser 180 185 190

Ala Asn Val Met Val Ile Phe Val Asp Ile Gly Ile Val Ala Ser Gly 195 200 205

Cys Phe Val Leu Ile Val Leu Ser Tyr Val Ser Ile Val Cys Ser Ile 210 215 220

Leu Arg Ile Arg Thr Ser Asp Gly Arg Arg Arg Ala Phe Gln Thr Cys 225 230 230 235

Ala Ser His Cys Ile Val Val Leu Cys Phe Phe Val Pro Cys Val Val 245 250 255

16U 200 PCT FINAL.ST25 Ile Tyr Leu Arg Pro Gly Ser Met Asp Ala Met Asp Gly Val Val Ala Ile Phe Tyr Thr Val Leu Thr Pro Leu Leu Asn Pro Val Val Tyr Thr 275 280 285Leu Arg Asn Lys Glu Val Lys Lys Ala Val Leu Lys Leu Arg Asp Lys Val Ala His Pro Gln Arg Lys <210> 177 <211> 29 <212> DNA <213> Homo sapiens <400> 177 caaccagate cagcactact tetgtgacg 29 <210> 178 <211> 33 <212> DNA <213> Homo sapiens <400> 178 ttatttcctc tgaggatgtg ctactttgtc tct 33 <210> 179 <211> 50 <212> DNA <213> Homo sapiens <400> 179 taggagaagc cctttaaaag caggcaatag taaggacatc agtaacaata 50 <210> 180 <211> 50 <212> DNA <213> Homo sapiens <400> 180 gctgggtgct ctttatatcc ccagagggag agagaccaag ggtgagaaga 50 <210> 181 <211> 921 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (1)..(921)

<400> 181

<223>

atg gtg act gag ttt ctt ctt ctc ggc ttc tcc cac ctg gcc gac ctc
Met Val Thr Glu Phe Leu Leu Gly Phe Ser His Leu Ala Asp Leu
1 5 10 15

Cag ggc ttg ctc ttc tct gtc ttt ctc act atc tac ctg ctg acc gtg Gln Gly Leu Leu Phe Ser Val Phe Leu Thr Ile Tyr Leu Leu Thr Val 20 25 30

gca ggc aat ttc ctc att gtg gtg ctg gtc tcc act gat gct gcc ctc
Ala Gly Asn Phe Leu Ile Val Val Leu Val Ser Thr Asp Ala Ala Leu
35 40 45

Cag tcc cct atg tac ttc ttc ctg cgc acc ctc tcg gcc ttg gag att
Gln Ser Pro Met Tyr Phe Phe Leu Arg Thr Leu Ser Ala Leu Glu Ile
50 55 60

Page 104

48

16U	200	PCT	FINAL.	ST25
-----	-----	-----	--------	------

ggc tat ac Gly Tyr Th 65					eu His				240
ggc cgg cg Gly Arg Ar									288
ttc ctc tt Phe Leu Ph				Cys L		Ala A			336
tat gac cg Tyr Asp Ar 11	g Tyr Ala								384
ctg agc ca Leu Ser Hi 130									432
ggg gtg ct Gly Val Le 145				Pro P					480
ttc tgc gg Phe Cys Gl		Thr Ile							528
gtc ctg ca Val Leu Gl				Ser L		Glu 1			576
atc ctg gc Ile Leu Al 19	a Thr Ala								624
ggc tcc ta Gly Ser Ty 210									672
gcg ggc cg Ala Gly Ar 225				Cys S					720
gtc tcc ct Val Ser Le		Gly Thr							768
gcc agc ta Ala Ser Ty				Leu V		Leu F			816
gtg gtc ac Val Val Th 27	r Pro Ile								864
gag gtc aa Glu Val Ly 290			Arg Thr						912
gag att tg Glu Ile 305	a								921
<210> 182 <211> 306 <212> PRT <213> Hom	o sapiens	.							
<400> 182									
Met Val Th 1	c Glu Phe 5	e Leu Leu	Leu Gly	Phe S 10	er His	Leu A	ala Asp 15	Leu	
Gln Gly Le	ı Leu Phe 20	e Ser Val	Phe Leu 25	Thr I	le Tyr	_	eu Thr 10	Val	

Ala Gly Asn Phe Leu Ile Val Val Leu Val Ser Thr Asp Ala Ala Leu 35 40

Gln Ser Pro Met Tyr Phe Phe Leu Arg Thr Leu Ser Ala Leu Glu Ile 50 55 60

Gly Tyr Thr Ser Val Thr Val Pro Leu Leu Leu His His Leu Leu Thr 65 70 75 80

Gly Arg Arg His Ile Ser Arg Ser Gly Cys Ala Leu Gln Met Phe Phe 85 90 95

Phe Leu Phe Phe Gly Ala Thr Glu Cys Cys Leu Leu Ala Ala Met Ala 100 105 110

Tyr Asp Arg Tyr Ala Ala Ile Cys Glu Pro Leu Arg Tyr Pro Leu Leu 115 120 125

Leu Ser His Arg Val Cys Leu Gln Leu Ala Gly Ser Ala Trp Ala Cys 130 140

Gly Val Leu Val Gly Leu Gly His Thr Pro Phe Ile Phe Ser Leu Pro 145 150 150 160

Phe Cys Gly Pro Asn Thr Ile Pro Gln Phe Phe Cys Glu Ile Gln Pro 165 170 175

Val Leu Gln Leu Val Cys Gly Asp Thr Ser Leu Asn Glu Leu Gln Ile 180 185 190

Ile Leu Ala Thr Ala Leu Leu Ile Leu Cys Pro Phe Gly Leu Ile Leu 195 200 205

Gly Ser Tyr Gly Arg Ile Leu Val Thr Ile Phe Arg Ile Pro Ser Val 210 215 220

Ala Gly Arg Arg Lys Ala Phe Ser Thr Cys Ser Ser His Leu Ile Val 225 230 235 240

Val Ser Leu Phe Tyr Gly Thr Ala Leu Phe Ile Tyr Ile Arg Pro Lys 245 250 255

Ala Ser Tyr Asp Pro Ala Thr Asp Pro Leu Val Ser Leu Phe Tyr Ala 260 265 270

Glu Val Lys Ala Ala Leu Lys Arg Thr Ile Gln Lys Thr Val Pro Met 290 295 300

Glu Ile

<210>

<211> 20

<212> DNA

<213> Homo sapiens

16U 200 PCT FINAL.ST25

16U 200 PCT FINAL.ST25	
<400> 183 ctcggcttct cccacctggc	20
<210> 184 <211> 23 <212> DNA <213> Homo sapiens	
<400> 184 ggcgccaaag aagaggaaga aga	23
<210> 185 <211> 897 <212> DNA <213> Homo sapiens	
<220> <221> CDS <222> (1)(897) <223>	
<400> 185 atg ggt cga gga aac agc act gaa gtg act gaa ttc cat ctt ctg gga Met Gly Arg Gly Asn Ser Thr Glu Val Thr Glu Phe His Leu Leu Gly 1 5 10 15	48
ttt ggt gtc caa cac gaa ttt cag cat gtc ctt ttc att gta ctt ctt Phe Gly Val Gln His Glu Phe Gln His Val Leu Phe Ile Val Leu Leu 20 25 30	96
ctt atc tat gtg acc tcc ctg ata gga aat att gga atg atc tta ctc Leu Ile Tyr Val Thr Ser Leu Ile Gly Asn Ile Gly Met Ile Leu Leu 35 40 45	144
atc aag acc gat tcc aga ctt caa aca ccc atg tac ttt ttt cca caa Ile Lys Thr Asp Ser Arg Leu Gln Thr Pro Met Tyr Phe Phe Pro Gln 50 55 60	192
cat ttg gct ttt gtt gat atc tgt tat act tct gct atc act ccc aag His Leu Ala Phe Val Asp Ile Cys Tyr Thr Ser Ala Ile Thr Pro Lys 65 70 75 80	240
atg ctc caa agc ttc aca gaa gaa aat aat ttg ata aca ttt cgg ggc Met Leu Gln Ser Phe Thr Glu Glu Asn Asn Leu Ile Thr Phe Arg Gly 85 90 95	288
tgt gtg ata caa ttc tta gtt tat gca aca ttt gca acc agt gac tgt Cys Val Ile Gln Phe Leu Val Tyr Ala Thr Phe Ala Thr Ser Asp Cys 100 105 110	336
tac ctc cta gct att atg gca atg gat tgt tat gtt gcc atc tgt aag Tyr Leu Leu Ala Ile Met Ala Met Asp Cys Tyr Val Ala Ile Cys Lys 115 120 125	384
ccc ctt cgc tat ccc atg atc atg tcc caa aca gtc tac atc caa ctc Pro Leu Arg Tyr Pro Met Ile Met Ser Gln Thr Val Tyr Ile Gln Leu 130 135 140	432
gta gct ggc tca tat att ata ggc tca ata aat gcc tct gta cat aca Val Ala Gly Ser Tyr Ile Ile Gly Ser Ile Asn Ala Ser Val His Thr 145 150 155 160	480
ggt ttt aca ttt tca ctg tcc ttc tgc aag tct aat aaa atc aat cac Gly Phe Thr Phe Ser Leu Ser Phe Cys Lys Ser Asn Lys Ile Asn His 165 170 175	528
ttt ttc tgt gat ggt ctc cca att ctt gcc ctt tca tgc tcc aac att Phe Phe Cys Asp Gly Leu Pro Ile Leu Ala Leu Ser Cys Ser Asn Ile 180 185 190	576
gac atc aac atc att cta gat gtt gtc ttt gtg gga ttt gac ttg atg Asp Ile Asn Ile Ile Leu Asp Val Val Phe Val Gly Phe Asp Leu Met 195 200 205	624
ttc act gag ttg gtc atc atc ttt tcc tac atc tac att atg gtc acc Phe Thr Glu Leu Val Ile Ile Phe Ser Tyr Ile Tyr Ile Met Val Thr 210 215 220	672

											16ບ	200	РСТ	FINA	L.ST	25	
1										agg Arg							720
										att Ile 250							768
										aat Asn							816
g V	ta al	gcc Ala	tct Ser 275	ata Ile	ttt Phe	tat Tyr	ggc Gly	act Thr 280	gtt Val	att Ile	ccc Pro	atg Met	ttg Leu 285	aat Asn	cct Pro	tta Leu	864
						aat Asn				aaa Lys	taa						897
< <	210 211 212 213	i> :	186 298 PRT Homo	sapi	iens												
<	400)> :	186														
M 1		Gly	Arg	Gly	Asn 5	Ser	Thr	Glu	Val	Thr 10	Glu	Phe	His	Leu	Leu 15	Gly	
P	he	Gly	Val	Gln 20	His	Glu	Phe	Gln	His 25	Val	Leu	Phe	Ile	Val 30	Leu	Leu	
L	eu	11e	Tyr 35	Val	Thr	Ser	Leu	11e 40	Gly	Asn	lle	Gly	Met 45	Ile	Leu	Leu	
I	le	Lys 50	Thr	Asp	Ser	Arg	Leu 55	Gln	Thr	Pro	Met	Tyr 60	Phe	Phe	Pro	Gln	
	is 5	Leu	Ala	Phe	Val	Asp 70	lle	Cys	Tyr	Thr	Ser 75	Ala	lle	Thr	Pro	Lys 80	
М	et	Leu	Gln	Ser	Phe 85	Thr	Glu	Glu	Asn	Asn 90	Leu	Ile	Thr	Phe	Arg 95	Gly	
С	ys	Val		Gln 100	Phe	Leu	Val		Ala 105	Thr	Phe	Ala	Thr	Ser 110	Asp	Cys	
T	yr	Leu	Leu 115	Ala	lle	Met	Ala	Met 120	Asp	Cys	Туг	Val	Ala 125	Ile	Cys	Lys	
P	ro	Leu 130	Arg	Туг	Pro	Met	Ile 135	Met	Ser	Gln	Thr	Val 140	Туr	Ile	Gln	Leu	
	al 45	Ala	Gly	Ser	Туг	Ile 150	Ile	Gly	Ser	Ile	Asn 155	Ala	Ser	Val	His	Thr 160	
G	ly	Phe	Thr	Phe	Ser 165	Leu	Ser	Phe	Cys	Lys 170	Ser	Asn	Lys	Ile	Asn 175		<i>:</i>
P	he	Phe	Cys	Asp 180	Gly	Leu	Pro	Ile	Leu 185	Ala	Leu	Ser	Cys	Ser 190	Asn	Ile	
A	sp	Ile	Asn 195	Ile	Ile	Leu	Asp	Val 200	Val	Phe	Val	Gly	Phe 205	Asp	Leu	Met	

Phe Thr Glu 210	Leu Val I	le Ile Phe 215	Ser Tyr	Ile Tyr 220	Ile Met	Val Thr	
Ile Leu Lys 225		er Thr Ala 30	Gly Arg	Lys Lys 235	Ser Phe	Ser Thr 240	
Cys Ala Ser	His Leu Tl 245	nr Ala Val	Thr Ile 250	Phe Tyr	Gly Thr	Leu Ser 255	
Tyr Met Tyr	Leu Gln Pr 260	o Gln Ser	Asn Asn 265	Ser Gln	Glu Asn 270	Met Lys	
Val Ala Ser 275	Ile Phe Ty	r Gly Thr 280			Leu Asn 285	Pro Leu	
Ile Tyr Ser 290	Leu Arg A	an Lys Glu 295	Gly Lys				
<210> 187 <211> 930 <212> DNA <213> Homo	sapiens						
<220> <221> CDS <222> (1). <223>	. (930)						
<400> 187 atg aca cta Met Thr Leu 1							48
ttt ggt gcc Phe Gly Ala							96
ctc atc tat Leu Ile Tyr 35							144
atc aac aca Ile Asn Thr 50							192
cat ttg gct His Leu Ala 65		sp lle Cys					240
atg ctc caa Met Leu Gln							288
tgt gtg ata Cys Val Ile							336
tat ctc ctg Tyr Leu Leu 115			Asp Pro				384
ccc ctt cac Pro Leu His 130							432
gta gct ggt Val Ala Gly 145	Ser Tyr I						480
ggt ttt aca Gly Phe Thr				Ser Asn			528

	165				170	1 6U	200	PCT	FINA	L.S1	25	
ttt ttc tgt Phe Phe Cys												576
gac atc aac Asp Ile Asn 195	Ile Met											624
ttc act ggg Phe Thr Gly 210			Phe									672
atc ctg aaa Ile Leu Lys 225												720
tgt gct tcc Cys Ala Ser		Thr Ala										768
tac atg tat Tyr Met Tyr												816
gtg gcc ttt Val Ala Phe 275	Ile Phe											864
atc tat ago Ile Tyr Ser 290			Glu									912
ggg aaa aag Gly Lys Lys 305												930
<210> 188 <211> 309 <212> PRT <213> Homo	sapiens											
<211> 309 <212> PRT	sapiens											
<211> 309 <212> PRT <213> Homo		Ser Thi	Glu	Val	Thr 10	Glu	Phe	Tyr	Leu	Leu 15	G 1y	
<211> 309 <212> PRT <213> Homo <400> 188 Met Thr Leu	Gly Asn 5				10			-		15	-	
<211> 309 <212> PRT <213> Homo <400> 188 Met Thr Leu 1	Gly Asn 5 Gln His 20	Glu Phe	e Trp	Cys 25	10	Leu	Phe	Ile	Val 30	15 Phe	Leu	
<211> 309 <212> PRT <213> Homo <400> 188 Met Thr Leu 1 Phe Gly Ala Leu Ile Tyr	Gly Asn 5 Gln His 20 Val Thr	Glu Pho	e Trp e Met 40	Cys 25 Gly	10 Ile Asn	Leu Ser	Phe Gly	Ile	Val 30	15 Phe Leu	Leu Leu	
<211> 309 <212> PRT <213> Homo <400> 188 Met Thr Leu 1 Phe Gly Ala Leu Ile Tyr 35	Gly Asn 5 Gln His 20 Val Thr	Glu Phe Ser Ile Arg Phe 55	e Trp e Met 40 e Gln	Cys 25 Gly Thr	10 Ile Asn Leu	Leu Ser Thr	Phe Gly Tyr 60	Ile Ile 45	Val 30 Ile	15 Phe Leu Leu	Leu Leu Gln	
<211> 309 <212> PRT <213> Homo <400> 188 Met Thr Leu 1 Phe Gly Ala Leu Ile Tyr 35 Ile Asn Thr 50 His Leu Ala	Gly Asn 5 Gln His 20 Val Thr Asp Ser	Glu Phe Ser Ile Arg Phe 55 Asp Ile	e Met 40 e Gln	Cys 25 Gly Thr	10 Ile Asn Leu Thr	Leu Ser Thr Ser 75	Phe Gly Tyr 60	Ile Ile 45 Phe	Val 30 Ile Phe	Phe Leu Leu Pro	Leu Gln Lys 80	
<211> 309 <212> PRT <213> Homo <400> 188 Met Thr Leu Phe Gly Ala Leu Ile Tyr 35 Ile Asn Thr 50 His Leu Ala 65	Gly Asn 5 Gln His 20 Val Thr Asp Ser Phe Val Ser Phe 85	Glu Phe Ser Ile Arg Phe 55 Asp Ile 70	e Met 40 e Gln e Cys	Cys 25 Gly Thr Tyr	10 Ile Asn Leu Thr	Leu Ser Thr Ser 75	Phe Gly Tyr 60 Ala	Ile Ile 45 Phe Leu	Val 30 Ile Phe Thr	Phe Leu Pro Gln 95	Leu Gln Lys 80	•
<211> 309 <212> PRT <213> Homo <400> 188 Met Thr Leu Phe Gly Ala Leu Ile Tyr 35 Ile Asn Thr 50 His Leu Ala 65 Met Leu Gln	Gly Asn 5 Gln His 20 Val Thr Asp Ser Phe Val Ser Phe 85 Gln Phe 100	Glu Phe Ser Ile Arg Phe 55 Asp Ile 70 Thr Glu	e Met 40 e Gln e Cys	Cys 25 Gly Thr Tyr Lys Alaa	10 Ile Asn Leu Thr Asn 90	Leu Ser Thr Ser 75 Leu	Phe Gly Tyr 60 Ala	Ile Ile 45 Phe Ile Leu	Val 30 1le Phe Thr Phe	Phe Leu Pro Gln 95 Asp	Leu Gln Lys 80 Gly Cys	

130		. 135		1	6U 200 140	PCT I	FINAL.ST	25
Val Ala Gly 145	Ser Tyr	Ile Met 150	Gly Ser		sn Ala .55	Ser	Val Gln	Thr 160
Gly Phe Thr	Cys Ser 165	Leu Ser	Phe Cys	Lys S 170	Ser Asn	Ser	Ile Asn 175	His
Phe Phe Cys	Asp Val	Pro Pro	Ile Let 185		eu Ser		Ser Asn 190	Val
Asp Ile Asn 195		Leu Leu	Val Val 200	l Phe V	al Gly	Ser 205	Asn Leu	Ile
Phe Thr Gly 210	Leu Val	Val Ile 215	Phe Sei	tyr I	le Tyr 220	Ile	Met Ala	Thr
Ile Leu Lys 225	Met Ser	Ser Ser 230	Ala Gly		.ys Lys 235	Ser	Phe Ser	Thr 240
Cys Ala Ser	His Leu 245	Thr Ala	Val Th	r Ile P 250	Phe Tyr	Gly	Thr Leu 255	Ser
Tyr Met Tyr	Leu Gln 260	Ser His	Ser Ası 26		Ser Gln	Glu	Asn Met 270	Lys
Val Ala Phe 275		Tyr Gly	Thr Val	l Ile F	Pro Met	Leu 285	Asn Pro	Leu
Ile Tyr Sei 290	: Leu Arg	Asn Lys 295	Glu Va	l Lys G	Glu Ala 300	Leu	Lys Val	Ile
Gly Lys Lys 305	Leu Phe							
<210> 189 <211> 522 <212> DNA <213> Home	o sapiens							
<220> <221> CDS <222> (1) <223>	. (522)							
<400> 189 atg ctc caa Met Leu Glr 1								
tgc atg ata Cys Met Ile	caa tta Gln Leu 20	ttg gtt Leu Val	tat gc Tyr Al 25	a aca t a Thr E	ttt gca Phe Ala	acc Thr	agt gac Ser Asp 30	tgt 96 Cys
tat ctc ctc Tyr Leu Leu 35	g gct atg ı Ala Met	ata gca Ile Ala	gtg ga Val As 40	c cat t p His 1	tat gtt Tyr Val	gca Ala 45	atc tgt Ile Cys	aag 144 Lys
ccc ctt cad Pro Leu His 50	tat acc Tyr Thr	gta atc Val Ile 55	acg tc Thr Se	c caa a r Gln 1	aca gtc Thr Val 60	tgc Cys	atc caț Ile His	ttg 192 Leu
gta gct gg Val Ala Gly 65	tca tac y Ser Tyr	atc atg Ile Met 70	ggc tc Gly Se	r Ile A	aat gcc Asn Ala 75	tct Ser	gta cat Val His	aca 240 Thr 80
ggt ttt gc	s ttt tca	ctg tct	ttc tg	c aag (aac Page		cac 288

Gly	Phe	Ala	Phe	Ser 85	Leu	Ser	Phe	Cys	Lys 90				FINA Ile			
		tgt Cys														336
		aac Asn 115														384
		ggg Gly														432
		CCC Pro														480
		gaa Glu											taa			522
<210 <211 <212 <213	l > ? >	190 173 PRT Homo	sapi	iens												
<400)>	190														
Met 1	Leu	Gln	Ser	Phe 5	Thr	Glu	Glu	Lys	Asn 10	Leu	lle	Ser	Phe	Trp 15	Gly	
Cys	Met	Ile	Gln 20	Leu	Leu	Val	Туr	Ala 25	Thr	Phe	Ala	Thr	Ser 30	Asp	Cys	
Туr	Leu	Leu 35	Ala	Met	Ile	Ala	Val 40	Asp	His	Tyr	Val	Ala 45	Ile	Cys	Lys	
Pro	Leu 50	His	Туr	Thr	Val	Ile 55	Thr	Ser	Gln	Thr	Val 60	Cys	Ile	His	Leu	
Val 65	Ala	Gly	Ser	Tyr	Ile 70	Met	Gly	Ser	Ile	Asn 75	Ala	Ser	Val	His	Thr 80	
Gly	Phe	Ala	Phe	Ser 85	Leu	Ser	Phe	Cys	Lys 90	Ser	Asn	Asn	Ile	Asn 95	His	
Phe	Phe	Cys	Asp 100	Gly	Pro	Pro	Ile	Leu 105	Ala	Leu	Ser	Cys	Ser 110	Asn	Ile	
Asp	Ile	Asn 115	Ile	Met	Leu	Leu	Val 120	Val	Phe	Val	Gly	Phe 125	Asn	Leu	Met	
Phe	Thr 130	Gly	Leu	Glu	Asn	Met 135	Lys	Val	Ala	Ser	Ile 140	Phe	Tyr	Gly	Thr	
Val 145	Ile	Pro	Met	Leu	Asn 150	Pro	Leu	Ile	Туr	Ser 155	Leu	Arg	Asn	Lys	Glu 160	
Val	Lys	Ġ1 u	Ala	Leu 165	Lys	Leu	Ile	Gly	Lys 170	-	Phe	Phe			, :	•
<210 <211 <212 <213	.> !>	191 499 DNA Homo	sapi	iens												

		100	200 PCI FINAL.SI25	
<220> <221> CDS <222> (43)(3 <223>	72)			
<400> 191 cgttatgtgg cctt	ctgtaa cccactcca	t tatccagggg	tt atg tcc cag aga Met Ser Gln Arg l	
			atg ggt ttc cta aa Met Gly Phe Leu As 20	n
			aac ttc tgc aaa tc Asn Phe Cys Lys Se 35	
			cca att att gcc ct Pro Ile Ile Ala Le 50	
			tta aca gta ttt gt Leu Thr Val Phe Va 65	
			atc att tcc tgc at Ile Ile Ser Cys Il 80	
			gct gca ggg aag aa Ala Ala Gly Lys Ly 10	'S
	cat gtg cct ccc His Val Pro Pro 105		cagtcac cattttctat	392
ggggttctct ctta	catgta tctatgcca	t cgtattaatg	agtctcaaaa acaagaa	aaa 452
gtggcctctg tgtt	ttatgg cattattat	t cccatgtt a a	acccctt	499
<210> 192 <211> 109 <212> PRT <213> Homo sap	iens			
<400> 192				
Met Ser Gln Arg l	Leu Cys Ile Lys 5	Leu Leu Val 10	Ser Ser Tyr Val Me	t
Gly Phe Leu Asn 20	Ala Ser Ile Asn	Ile Ser Phe 25	Thr Phe Ser Leu As	n
Phe Cys Lys Ser 35	Lys Thr Ile Asn 40	His Phe Phe	Cys Asp Glu Pro Pr 45	ro .
Ile Ile Ala Leu 50	Pro Cys Ser Asn 55	Ile Asp Leu	Asn Ile Met Leu Le 60	eu .
Thr Val Phe Val	Gly Leu Asn Leu 70	Met Cys Thr 75	Val Met Val Val II 80	
Ile Ser Cys Ile	Tyr Val Leu Val 85	Ala Ile Leu 90	Arg Ile Ser Ser Al	.a
Ala Gly Lys Lys				

16U 200 PCT FINAL.ST25 <210> 193 <211> 681 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (1)..(681) <223> <400> 193 atg gct tat gac cgc tac atg gca atc tcc aag ccc ctg ctt tat tcc Met Ala Tyr Asp Arg Tyr Met Ala Ile Ser Lys Pro Leu Leu Tyr Ser 48 cgg gcc aca ttc cca gag tta tgt gcc agt ctt gtt gag gct tca cac Arg Ala Thr Phe Pro Glu Leu Cys Ala Ser Leu Val Glu Ala Ser His 96 ctt ggc ggc ttt gta aac tca acc atc atc acc agt gag aca cct acc Leu Gly Gly Phe Val Asn Ser Thr Ile Ile Thr Ser Glu Thr Pro Thr 35ttg agc ttc tgt ggc agc aat atc att gat gat ttc ttc tgt gat ctg Leu Ser Phe Cys Gly Ser Asn Ile Ile Asp Asp Phe Phe Cys Asp Leu 192 ccc cca ctt gta aag ttg gtg tgt gat gtg aag gag cgc tac cag gct Pro Pro Leu Val Lys Leu Val Cys Asp Val Lys Glu Arg Tyr Gln Ala 240 gtg ctg cat ttt atg ctt gcc tcc aat cat cac tcc cac tgc act tat Val Leu His Phe Met Leu Ala Ser Asn His His Ser His Cys Thr Tyr 288 90 tct tgc gtc cat ctc ttc atc att gca gcc atc tcg aag atc cgt tcc Ser Cys Val His Leu Phe Ile Ile Ala Ala Ile Ser Lys Ile Arg Ser 336 105 att aag ggc cgc ctc cag gtc ttc tcc act tgt ggg tct ccc ctg acg Ile Lys Gly Arg Leu Gln Val Phe Ser Thr Cys Gly Ser Pro Leu Thr 384 120 gct ctc acc ttg tac tat ggt gca atc ttc ttt att tac tcc caa cca Ala Leu Thr Leu Tyr Tyr Gly Ala Ile Phe Phe Ile Tyr Ser Gln Pro 432 aga act agc tat gcc tta aaa atg gat aaa ttg ggg tca gtg ttc tat Arg Thr Ser Tyr Ala Leu Lys Met Asp Lys Leu Gly Ser Val Phe Tyr 480 150 act gtg gtg att cca atg cta aac ccc ttg atc tat agc tta aga aat Thr Val Val Ile Pro Met Leu Asn Pro Leu Ile Tyr Ser Leu Arg Asn 528 aag gat gtc aaa gat gcc ttg aag aaa atg tta gat aga ctt cag ttt Lys Asp Val Lys Asp Ala Leu Lys Lys Met Leu Asp Arg Leu Gln Phe 576 ctt aaa gaa aaa tat tgt aga tat ggg ctg gcc tgt agt gag cgc tac Leu Lys Glu Lys Tyr Cys Arg Tyr Gly Leu Ala Cys Ser Glu Arg Tyr 195 200 205 624 ctc ctg gct gcc atg ggt tat gac tgc tat gag gca atc tcc aag ccc Leu Leu Ala Ala Met Gly Tyr Asp Cys Tyr Glu Ala Ile Ser Lys Pro 210 215 220672 ctg ctt taa Leu Leu 225 <210> 194 <211> 226 <212> PRT Homo sapiens

Page 114

<400> 194

Met 1	Ala	туr	Asp	Arg 5	Туr	Met	Ala	Ile			200 Pro					
Arg	Ala	Thr	Phe 20	Pro	Glu	Leu	Cys	Ala 25	Ser	Leu	Val	Glu	Ala 30	Ser	His	
Leu	Gly	Gly 35	Phe	Val	Asn	Ser	Thr 40	Ile	Ile	Thr	Ser	Glu 45	Thr	Pro	Thr	
Leu	Ser 50	Phe	Cys	Gly	Ser	Asn 55	Ile	Ile	Asp	Asp	Phe 60	Phe	Cys	Asp	Leu	
Pro 65	Pro	Leu	Val	Lys	Leu 70	Val	Cys	Asp	Val	Lys 75	Glu	Arg	туг	Gln	Ala 80	
Val	Leu	His	Phe	Met 85	Leu	Ala	Ser	Asn	His 90	His	Ser	His	Cys	Thr 95	Tyr	
Ser	Cys	Val	His 100	Leu	Phe	Ile	Ile	Ala 105	Ala	Ile	Ser	Lys	11e 110	Arg	Ser	
Ile	Lys	Gly 115		Leu	Glņ	Val	Phe 120	Ser	Thr	Cys	Gly	Ser 125	Pro	Leu	Thr	
Ala	Leu 130		Leu	Туr	Туr	Gly 135	Ala	Ile	Phe	Phe	11e 140	туr	Ser	Gln	Pro	
Arg 145	Thr	Ser	Туr	Ala	Leu 150		Met	Asp	Lys	Leu 155	Gly	Ser	Val	Phe	Туг 160	
Thr	Val	Val	Ile	Pro 165		Leu	Asn	Pro	Leu 170	Ile	Tyr	Ser	Leu	Arg 175	Asn	
Lys	Asp	Val	Lys 180		Ala	Leu	Lys	Lys 185	Met	Leu	Asp	Arg	Leu 190	Gln	Phe	
Leu	Lys	Glu 195		Туг	Cys	Arg	Tyr 200		Leu	Ala	Cys	Ser 205	Glu	Arg	Tyr	
Leu	Leu 210		Ala	Met	Gly	Tyr 215		Cys	Tyr	Glu	Ala 220		Ser	Lys	Pro	
Leu 225	Leu	1														
<21 <21 <21 <21	1> 2>	195 1095 DNA Homo	s sap	oiens	:											
<22 <22 <22 <22	1> 2>	CDS (1).	. (10	95)												
ato	0> gcc Ala	195 c tct a Sei	gaç Glu	acc Thr 5	tto Phe	aac Asn	act Thr	gaa Glu	gac Asp 10	cca Pro	gcc Ala	. G17	g ttg / Leu	atg Met 15	cac His	48
tco Sei	gat Asp	t gcd p Ala	ggc a Gly 20	aco Thi	ago Ser	tgc Cys	ccc Pro	gto Val 25	ctt Leu	tgo Cys	aca Thr	tgo Cys	cgt Arg 30	aac Asn	cag Gln	91

			tgt Cys							tcc	gtg	ccc	cca		ctg	144
			acc Thr													192
gtg Val 65	ccg Pro	cct Pro	ggc Gly	tac Tyr	ctc Leu 70	aca Thr	tgc Cys	tac Tyr	atg Met	gag Glu 75	ctc Leu	cag Gln	gtg Val	ctg Leu	gat Asp 80	240
ttg Leu	cac His	aac Asn	aac Asn	tcc Ser 85	tta Leu	atg Met	gag Glu	ctg Leu	ccc Pro 90	cgg Arg	ggc Gly	ctc Leu	ttc Phe	ctc Leu 95	cat His	288
gcc Ala	aag Lys	cgc Arg	ttg Leu 100	gca Ala	cac His	ttg Leu	gac Asp	ctg Leu 105	agc Ser	tac Tyr	aac Asn	aat Asn	ttc Phe 110	agc Ser	cat His	336
gtg Val	cca Pro	gcc Ala 115	gac Asp	atg Met	ttc Phe	cag Gln	gag Glu 120	gcc Ala	cat His	ggg Gly	cta Leu	gtc Val 125	cac His	atc Ile	gac Asp	384
			aac Asn													432
			cag Gln													480
ttc Phe	ctc Leu	agc Ser	ctg Leu	gag Glu 165	gct Ala	ctt Leu	gag Glu	ggc Gly	cta Leu 170	ccg Pro	G1 y	ctg Leu	gtg Val	acc Thr 175	ctg Leu	528
cag Gln	atc Ile	ggt Gly	ggc Gly 180	aat Asn	ccc Pro	tgg Trp	gtg Val	tgt Cys 185	ggc Gly	tgc Cys	acc Thr	atg Met	gaa Glu 190	ccc Pro	ctg Leu	576
ctg Leu	aag Lys	tgg Trp 195	ctg Leu	cga Arg	aac Asn	cgg Arg	atc Ile 200	cag Gln	cgc Arg	tgt Cys	aca Thr	gca Ala 205	gag Glu	tca Ser	ggt Gly	624
			ccg Pro													672
			gag Glu													720
agc Ser	tac Tyr	gag Glu	aac Asn	ctg Leu 245	Ala	Phe	Leu	aaa Lys	Leu	Lys	gcc Ala	ctg Leu	agc Ser	agt Ser 255	gta Val	768
aac Asn	ttt Phe	ggg Gly	cac His 260	agg Arg	caa Gln	gcg Ala	gtt Val	gtg Val 265	ggt Gly	gga Gly	ctt Leu	tcc Ser	aat Asn 270	ccc Pro	ctc Leu	816
tcc Ser	ttc Phe	cct Pro 275	9 9 9	tac Tyr	ctc Leu	acc Thr	ctc Leu 280	cct Pro	ggc Gly	ttc Phe	tgt Cys	gtt Val 285	aca Thr	gat Asp	tct Ser	864
cag Gln	ctg Leu 290	gct Ala	gag Glu	tgc Cys	cgg Arg	ggc Gly 295	cct Pro	cct Pro	gaa Glu	gtc Val	gag Glu 300	ggc Gly	gcc Ala	ccg Pro	ctc Leu	912
ttc Phe 305	tca Ser	ctc Leu	act Thr	gag Glu	gag Glu 310	agc Ser	ttc Phe	aag Lys	gcc Ala	tgc Cys 315	cac His	ctg Leu	acc Thr	ctg Leu	acc Thr ,320	960
ctg Leu	gat Asp	gat Asp	tac Tyr	cta Leu 325	ttc Phe	att Ile	gcg Ala	ttc Phe	gtg Val 330	ggc Gly	ttc Phe	gtg Val	gtc Val	tcc Ser 335	att Ile	1008
gct Ala	tct Ser	gtg Val	gcc Ala 340	acc Thr	aac Asn	ttc Phe	ctc Leu	ctg Leu 345	ggc Gly	atc Ile	act Thr	gcc Ala	aac Asn 350	tgc Cys	tgc Cys	1056

Page 116

WO 03/089583 PCT/US03/11497

16U 200 PCT FINAL.ST25

cac cgc tgg agc aag gcc agt gaa gag gaa gag atc tga His Arg Trp Ser Lys Ala Ser Glu Glu Glu Glu Ile <211> <212> PRT <213> Homo sapiens Ser Asp Ala Gly Thr Ser Cys Pro Val Leu Cys Thr Cys Arg Asn Gln 20 25 30Val Val Asp Cys Ser Ser Gln Arg Leu Phe Ser Val Pro Pro Asp Leu 35 40 45 Pro Met Asp Thr Arg Asn Leu Ser Leu Ala His Asn Arg Ile Thr Ala Val Pro Pro Gly Tyr Leu Thr Cys Tyr Met Glu Leu Gln Val Leu Asp 65 70 75 80 Leu His Asn Asn Ser Leu Met Glu Leu Pro Arg Gly Leu Phe Leu His Ala Lys Arg Leu Ala His Leu Asp Leu Ser Tyr Asn Asn Phe Ser His 100 105 110Val Pro Ala Asp Met Phe Gln Glu Ala His Gly Leu Val His Ile Asp 115 120 125 Leu Ser His Asn Pro Trp Leu Arg Arg Val His Pro Gln Ala Phe Gln 130 135 140Gly Leu Met Gln Leu Arg Asp Leu Asp Leu Ser Tyr Gly Gly Leu Ala 145 150150155160 Phe Leu Ser Leu Glu Ala Leu Glu Gly Leu Pro Gly Leu Val Thr Leu 165 170170175 Gln Ile Gly Gly Asn Pro Trp Val Cys Gly Cys Thr Met Glu Pro Leu 180 185 190 Leu Lys Trp Leu Arg Asn Arg Ile Gln Arg Cys Thr Ala Glu Ser Gly 195 200 205 Ser Gly Leu Pro Glu Glu Ser Glu Pro Glu Ser Trp Thr Gly Gln Arg 210 215 220Ala Ala Val Glu Phe Gln Asp Leu Met Gln Leu Gln Asp Leu Asp Leu Ser Tyr Glu Asn Leu Ala Phe Leu Lys Leu Lys Ala Leu Ser Ser Val $245 \hspace{1.5cm} 250 \hspace{1.5cm} 255$

Asn Phe Gly His Arg Gln Ala Val Val Gly Gly Leu Ser Asn Pro Leu

Ser Phe Pro Gly Tyr Leu Thr Leu Pro Gly Phe Cys Val Thr Asp Ser 275 280 285	
Gln Leu Ala Glu Cys Arg Gly Pro Pro Glu Val Glu Gly Ala Pro Leu 290 295 300	
Phe Ser Leu Thr Glu Glu Ser Phe Lys Ala Cys His Leu Thr Leu Thr 305 310 315 320	
Leu Asp Asp Tyr Leu Phe Ile Ala Phe Val Gly Phe Val Val Ser Ile 325 330 335	
Ala Ser Val Ala Thr Asn Phe Leu Leu Gly Ile Thr Ala Asn Cys Cys 340 345 350	
His Arg Trp Ser Lys Ala Ser Glu Glu Glu Glu Ile 355 360	
<210> 197 <211> 27 <212> DNA <213> Homo sapiens	
<400> 197 gggatttggt gtccaacacg aatttca	27
<210> 198 <211> 34 <212> DNA <213> Homo sapiens	
<400> 198 gagcctataa tatatgagcc agctacgagt tgga	34
<210> 199 <211> 32 <212> DNA <213> Homo sapiens	
<400> 199 gtcactgaat totatottot gggatttggt gc	32
<210> 200 <211> 32 <212> DNA <213> Homo sapiens	
<400> 200 aaacctgttt gtacagaggc atttattgag cc	32
<210> 201 <211> 35 <212> DNA <213> Homo sapiens	
<400> 201 gatatcattt tggggctgca tgatacaatt attgg	35
<210> 202 <211> 33 <212> DNA <213> Homo sapiens	÷
<400> 202 ctccaaccca gtgaacatca agttaaatcc cac	33

<210>	203	
<211>	36	
<212>	DNA	
<213>	Homo sapiens	
- 400.	202	
<400>	203	26
ctaage	tatt agttagttca tatgtcatgg gtttcc	36
<210>	204	
<211>	36	
<212>	DNA	
<213>	Homo sapiens	
12132	nome suprems	
<400>	204	
	aata cgatggcata gatacatgta agagag	36
	and equeggeded gardenegta agagag	30
<210>	205	
<211>	50	
<212>	DNA	
<213>	Homo sapiens	
< 400>	205	
	cato taaatgaago otgagaaaco cagoactaco cacttgttag	50
,		
<210>	206	
<211>	50	
<212>	DNA	
<213>	Homo sapiens	
< 400>	206	
acateca	atta tataacaggg ttaatatact tgtaaagaat agcacctaga	50
<210>	207	
<211>	50	
<212>	DNA	
<213>	Homo sapiens	
< 400>	207	
aaatgta	ataa attotgoatg aaattggggg tggggottgt actacttttg	50
.030.	200	
<210>	208	
<211>	50	
<212>	DNA	
<213>	Homo sapiens	
<400>	208	
		50
atgitte	catc taaatgaagc ctgagaaacc cagcactacc cacttgttag	50
<210>	209	
<211>	50	
<212>		
<213>	Homo sapiens	
<400>	209	
	atta tataacaggg ttaatatact tgtaaagaat agcacctaga	50
	-999	
<210>	210	
<211>	50	
<212>	DNA	
<213>	Homo sapiens	
	•	
<400>	210	
	atat tttaaattgg ccaggcgcgg tggctcacgc ctataatccc	50
	,	
<210>	211	
<211>	50	
<212>	DNA	
<213>	Homo sapiens	
_		
< 400>	211	

16U 200 PCT FINAL.ST25 ggctcacgcc tataatccca gçactttggg aggccgaggc aggtggatca	50
<210> 212 <211> 50 <212> DNA <213> Homo sapiens	
<400> 212 tcccaaatat atatatatac acacacaca acacacac	50
<210> 213 <211> 50 <212> DNA <213> Homo sapiens	
<400> 213 cacacacaca tatatataca cacacatata tttataatca tttaacaaca	50
<210> 214 <211> 933 <212> DNA <213> Homo sapiens	
<220> <221> CDS <222> (1)(930) <223>	
<400> 214 atg gca gag atg aac ctc acc ttg gtg acc gag ttc ctc ctt att gca Met Ala Glu Met Asn Leu Thr Leu Val Thr Glu Phe Leu Leu Ile Ala 1 5 10 15	48
ttc act gaa tat cct gaa tgg gca ctc cct ctc ttc ctc ttg ttt tta Phe Thr Glu Tyr Pro Glu Trp Ala Leu Pro Leu Phe Leu Phe Leu 20 25 30	96
ttt atg tat ctc atc acc gta ttg ggg aac tta gag atg att att ctg Phe Met Tyr Leu Ile Thr Val Leu Gly Asn Leu Glu Met Ile Ile Leu 35 40 45	144
atc ctc atg gat cac cag ctc cac gct cca atg tat ttc ctt ctg agt Ile Leu Met Asp His Gln Leu His Ala Pro Met Tyr Phe Leu Leu Ser 50 55 60	192
Cac ctc gct ttc atg gac gtc tgc tac tca tct atc act gtc ccc cag His Leu Ala Phe Met Asp Val Cys Tyr Ser Ser Ile Thr Val Pro Gln 65 70 75 80	240
atg ctg gca gtg ctg ctg gag cat ggg gca gct tta tct tac aca cgc Met Leu Ala Val Leu Leu Glu His Gly Ala Ala Leu Ser Tyr Thr Arg 85 90 95	288
tgt gct gct cag ttc ttt ctg ttc acc ttc ttt ggt tcc atc gac tgc Cys Ala Ala Gln Phe Phe Leu Phe Thr Phe Phe Gly Ser Ile Asp Cys 100 105 110	336
tac ctc ttg gcc ctc atg gcc tat gac cgc tac ttg gct gtg tgc cag Tyr Leu Leu Ala Leu Met Ala Tyr Asp Arg Tyr Leu Ala Val Cys Gln 115 120 125	384
CCC ctg ctt tat gtc acc atc ctg aca cag cag gcc cgc ttg agt ctt Pro Leu Leu Tyr Val Thr Ile Leu Thr Gln Gln Ala Arg Leu Ser Leu 130. 135 140	432
gtg gct ggg gct tac gtt gct ggt ctc atc agt gcc ttg gtg cgg aca Val Ala Gly Ala Tyr Val Ala Gly Leu Ile Ser Ala Leu Val Arg Thr 145 150 155 ,160	480
gtc tca gcc ttc act ctc tcc ttc tgt gga acc agt gag att gac ttt Val Ser Ala Phe Thr Leu Ser Phe Cys Gly Thr Ser Glu Ile Asp Phe 165 170 175	528
att ttc tgt gac ctc cct ctg tta aag ttg acc tgt ggg gag agc Ile Phe Cys Asp Leu Pro Pro Leu Leu Lys Leu Thr Cys Gly Glu Ser 180 185 190	576

Tyr Thr Gln 195	gaa gtg Glu Val											624
gct tcc atg Ala Ser Met 210			u Val									672
atc atg ggg Ile Met Gly 225												720
acc tcc cac Thr Ser His												768
atg tac ttg Met Tyr Leu												816
gtg tct gtg Val Ser Val 275												864
tac agc ctg Tyr Ser Leu 290			u Vaí	_	_	-		-				912
aat aga gcc Asn Arg Ala 305			a									933
<210> 215 <211> 310 <212> PRT <213> Homo	sapiens											
<400> 215												
Met Ala Glu 1	Met Asn 5	Leu Th	r Leu	Val	Thr 10	Glu	Phe	Leu	Leu	11e 15	Ala	
	5				10					15		
1	Tyr Pro 20	Glu Tr	p Ala	Leu 25	10 Pro	Leu	Phe	Leu	Leu 30	15 Phe	Leu	
Phe Thr Glu	Tyr Pro 20 Leu Ile	Glu Tr	p Ala l Leu 40	Leu 25 Gly	10 Pro Asn	Leu Leu	Phe Glu	Leu Met 45	Leu 30	15 Phe Ile	Leu Leu	
Phe Thr Glu Phe Met Tyr 35	Tyr Pro 20 Leu Ile	Glu Tr Thr Va Gln Le	p Ala l Leu 40 u His	Leu 25 Gly Ala	10 Pro Asn Pro	Leu Leu Met	Phe Glu Tyr 60	Leu Met 45 Phe	Leu 30 Ile Leu	Phe Ile	Leu Leu Ser	
Phe Thr Glu Phe Met Tyr 35 Ile Leu Met 50 His Leu Ala	Tyr Pro 20 Leu Ile Asp His	Glu Tr Thr Va Gln Le 55 Asp Va 70	p Ala l Leu 40 u His	Leu 25 Gly Ala Tyr	10 Pro Asn Pro	Leu Leu Met Ser 75	Phe Glu Tyr 60	Leu Met 45 Phe Thr	Leu 30 Ile Leu Val	Phe Ile Leu Pro	Leu Leu Ser Gln 80	
Phe Thr Glu Phe Met Tyr 35 Ile Leu Met 50 His Leu Ala 65	Tyr Pro 20 Leu Ile Asp His Phe Met Val Leu 85	Glu Tr Thr Va Gln Le 55 Asp Va 70 Leu Gl	p Ala l Leu 40 u His l Cys	Leu 25 Gly Ala Tyr	10 Pro Asn Pro Ser Ala 90	Leu Leu Met Ser 75	Phe Glu Tyr 60 Ile	Leu Met 45 Phe Thr	Leu 30 Ile Leu Val	Phe Ile Leu Pro Thr	Leu Leu Ser Gln 80	
Phe Thr Glu Phe Met Tyr 35 Ile Leu Met 50 His Leu Ala 65	Tyr Pro 20 Leu Ile Asp His Phe Met Val Leu 85 Gln Phe 100	Glu Tr Thr Va Gln Le 55 Asp Va 70 Leu Gl Phe Le	p Ala l Leu 40 u His l Cys u His	Leu 25 Gly Ala Tyr Gly Thr 105	10 Pro Asn Pro Ser Ala 90	Leu Met Ser 75 Ala	Phe Glu Tyr 60 Ile Leu Gly	Leu Met 45 Phe Thr Ser	Leu 30 Ile Leu Val Tyr Ile 110	15 Phe Ile Leu Pro Thr 95	Leu Ser Gln 80 Arg	
Phe Thr Glu Phe Met Tyr 35 Ile Leu Met 50 His Leu Ala 65 Met Leu Ala Cys Ala Ala Tyr Leu Leu	Tyr Pro 20 Leu Ile Asp His Phe Met Val Leu 85 Gln Phe 100 Ala Leu	Glu Tr Thr Va Gln Le 55 Asp Va 70 Leu Gl Phe Le Met Al	p Ala l Leu 40 u His l Cys u His u Phe a Tyr 120 e Leu	Leu 25 Gly Ala Tyr Gly Thr 105 Asp	10 Pro Asn Pro Ser Ala 90 Phe	Leu Met Ser 75 Ala Phe	Phe Glu Tyr 60 Ile Leu Gly	Leu Met 45 Phe Thr Ser Ser	Leu 30 Ile Leu Val Tyr Ile 110	15 Phe Ile Leu Pro Thr 95 Asp	Leu Ser Gln 80 Arg Cys	

WO 03/089583 PCT/US03/11497

16U 200 PCT FINAL.ST25

Val Ser Ala	Phe Thr 165	Leu Ser	Phe Cy	s Gly 170	Thr S	ier Glu	Ile	Asp 175	Phe	
Ile Phe Cys	Asp Leu 180	Pro Pro	Leu Le 18		Leu T	hr Cys	Gly 190	Glu	Ser	
Tyr Thr Gln 195	Glu Val	Leu Ile	Ile Me 200	t Phe	Ala I	le Phe 205	Val	Ile	Pro	
Ala Ser Met 210	Val Val	lle Leu 215		r Tyr		he Ile 20	lle	Val	Ala	
Ile Met Gly 225	Ile Pro	Ala Gly 230	Ser Gl	n Ala	Lys T 235	hr Phe	Ser	Thr	Cys 240	
Thr Ser His	Leu Thr 245	Ala Val	Ser Le	250	Phe G	ly Thr	Leu	11e 255	Phe	
Met Tyr Leu	Arg Gly 260	Asn Ser	Asp Gli 26		Ser G	lu Lys	Asn 270	Arg	Val	
Val Ser Val 275	Leu Tyr	Thr Glu	Val Il 280	Pro	Met L	eu Asn 285	Pro	Leu	Ile	
Tyr Ser Leu 290	Arg Asn	Lys Glu 295	Val Ly:	Glu		eu Arg	Lys	Ile	Leu	
Asn Arg Ala 305	Lys Leu	Ser 310								
<210> 216 <211> 933 <212> DNA <213> Homo	sapiens									
<220> <221> CDS <222> (1). <223>	. (930)									
<400> 216 atg gaa ggc Met Glu Gly 1										48
cag gtt ggt Gln Val Gly	cca gca Pro Ala 20	ctg gag Leu Glu	att cto Ile Leo 25	ctc Leu	tgt g Cys G	ga ctt ly Leu	ttc Phe 30	tct Ser	gcc Ala	96
ttc tat aca Phe Tyr Thr 35	ctc acc Leu Thr	ctg ctg Leu Leu	ggg aat Gly Asi 40	ggg Gly	gtc a Val I	tc ttt le Phe 45	G] À ààà	att Ile	atc Ile	144
tgc ctg gac Cys Leu Asp 50	tgt aag Cys Lys	ctt cac Leu His 55	aca ccc Thr Pro	atg Met	tac to Tyr Pi	he Phe	ctc Leu	tca Ser	cac His	192
ctg gcc att Leu Ala Ile 65	gtt gac Val Asp	ata tcc Ile Ser 70	tat gct Tyr Ala	Ser	aac ta Asn Ty 75	at gtc yr Val	ccc Pro	aag Lys _,	atg Met 80	240
ctg acg aat Leu Thr Asn	ctt atg Leu Met 85	aac cag Asn Gln	gaa ago Glu Sei	acc Thr 90	atc to Ile So	cc ttt er Phe	ttt Phe	cca Pro 95	tgc Cys	288
ata atg cag Ile Met Gln	aca ttc Thr Phe	ttg tat Leu Tyr	ttg gct Leu Ala	ttt Phe	gct ca Ala H	ac gta is Val Page	Glu	tgt Cys	ctg Leu	336

WO 03/089583 PCT/US03/11497

Page 123

100		105	6U 200 PCT FINA 110	L.ST25
att ttg gtg gtg Ile Leu Val Val 115				
tta cgt tac aat Leu Arg Tyr Asn 130				
gtg gct tcc tgg Val Ala Ser Trp 145		Phe Leu Leu A		
ctc atc ctg ago Leu Ile Leu Ser				
ttc tgt gaa atc Phe Cys Glu Ile 180	Leu Ser Val	ctc aag ttg g Leu Lys Leu A 185	cc tgt gct gac la Cys Ala Asp 190	acc tgg 576 Thr Trp
ctc aac cag gto Leu Asn Gln Val 195				
cca ctc tgc ctc Pro Leu Cys Leu 210				
ttg agg atc cag Leu Arg Ile Glr 225		Gly Arg Arg L		
tcc tcc cac ctt Ser Ser His Let				
acg tac atg gcc Thr Tyr Met Ala 260	Pro Lys Ser			
ctt tcc ctg ttt Leu Ser Leu Phe 275				
tat agc cta agg Tyr Ser Leu Arg 290				
agg aag gag agg Arg Lys Glu Arg 305				933
<210> 217 <211> 310 <212> PRT <213> Homo sap	oiens			
<400> 217				
Met Glu Gly Ası l	Lys Thr Trp	Ile Thr Asp I	le Thr Leu Pro	Arg Phe 15
Gln Val Gly Pro	o Ala Leu Glu	Ile Leu Leu C 25	Cys Gly Leu Phe 30	Ser Ala
Phe Tyr Thr Let 35	ı Thr Leu Leu	Gly Asn Gly V 40	al Ile Phe Gly 45	Ile Ile
Cys Leu Asp Cys 50	s Lys Leu His 55	Thr Pro Met T	ryr Phe Phe Leu 60	Ser His
Leu Ala Ile Va	l Asp Ile Ser	Tyr Ala Ser A	Asn Tyr Val Pro	Lys Met

BNSDOCID: <WO_____03089583A2_I_>

65 Leu Thr Asn Leu Met Asn Gln Glu Ser Thr Ile Ser Phe Phe Pro Cys Ile Met Gln Thr Phe Leu Tyr Leu Ala Phe Ala His Val Glu Cys Leu $100 \hspace{1cm} 105 \hspace{1cm} 110$ Ile Leu Val Val Met Ser Tyr Asp Arg Tyr Ala Asp Ile Cys His Pro 115 120 125 Leu Arg Tyr Asn Ser Leu Met Ser Trp Arg Val Cys Thr Val Leu Ala Val Ala Ser Trp Val Phe Ser Phe Leu Leu Ala Leu Val Pro Leu Val Leu Ile Leu Ser Leu Pro Phe Cys Gly Pro His Glu Ile Asn His Phe 165 170 175Phe Cys Glu Ile Leu Ser Val Leu Lys Leu Ala Cys Ala Asp Thr Trp 180 185 190Leu Asn Gln Val Val Ile Phe Ala Ala Cys Val Phe Ile Leu Val Gly 195 200 205 Pro Leu Cys Leu Val Leu Val Ser Tyr Leu Arg Ile Leu Ala Ala Ile 210 215 220 Leu Arg Ile Gln Ser Gly Glu Gly Arg Arg Lys Ala Phe Ser Thr Cys 225 230 230 235 240 Ser Ser His Leu Cys Val Val Gly Leu Phe Phe Gly Ser Ala Ile Val 245 250 255Thr Tyr Met Ala Pro Lys Ser Arg His Pro Glu Glu Gln Gln Lys Val 260 265 270Leu Ser Leu Phe Tyr Ser Leu Phe Asn Pro Met Leu Asn Pro Leu Ile Tyr Ser Leu Arg Asn Ala Glu Val Lys Gly Ala Leu Arg Arg Ala Leu 290 295 300Arg Lys Glu Arg Leu Thr 218 <211> 927 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (1)..(924) <223> <400> 218 atg gcc atg gac aat gtc aca gca gtg ttt cag ttt ctc ctt att ggc Met Ala Met Asp Asn Val Thr Ala Val Phe Gln Phe Leu Leu Ile Gly att tot aac tat oot caa tgg aga gac acg ttt tto aca tta gtg otg Page 124

Ile	Ser	Asn	Туг 20	Pro	Gln	Trp	Arg	Asp 25	Thr		200 Phe					
								G] À ààà								144
								act Thr								192
								tat Tyr								240
								cat His								288
								ttg Leu 105								336
ctc Leu	cta Leu	ctg Leu 115	gct Ala	gcc Ala	atg Met	gcc Ala	tat Tyr 120	gac Asp	cgt Arg	gtg Val	gtt Val	gct Ala 125	atc Ile	agc Ser	aat Asn	384
								aat Asn								432
								ctt Leu								480
								Gly ggg								528
								aag Lys 185								576
								acc Thr								624
								tac Tyr								672
								agg Arg								720
ggc Gly	tct Ser	cac His	ctg Leu	acc Thr 245	gtg Val	gtg Val	aca Thr	atc Ile	ttc Phe 250	tat Tyr	G] À ddd	tca Ser	gcc Ala	atc Ile 255	tcc Ser	768
atg Met	tat Tyr	atg Met	aaa Lys 260	act Thr	cag Gln	tcc Ser	aag Lys	tcc Ser 265	tac Tyr	cct Pro	gac Asp	cag Gln	gac Asp 270	aag Lys	ttt Phe	816
atc Ile	tca Ser	gtg Val 275	ttt Phe	tat Tyr	gga Gly	gct Ala	ttg Leu 280	aca Thr	ccc Pro	atg Met	ttg Leu	aac Asn 285	ccc Pro	ctg Leu	ata Ile	864
tat Tyr	agc Ser 290	ctg Leu	aga Arg	aaa Lys	aaa Lys	gat Asp 295	gtt Val	aaa Lys	cgg Arg	gca Ala	ata Ile 300	agg Arg	aaa Lys	gtt Val	atg Met	912
		agg Arg		tga												927
<210 <211 <212	.> 3	19 08 PRT														

<213> Homo sapiens

<400> 219

Met Ala Met Asp Asn Val Thr Ala Val Phe Gln Phe Leu Leu Ile Gly 1 5 10 15

Ile Ser Asn Tyr Pro Gln Trp Arg Asp Thr Phe Phe Thr Leu Val Leu $20 \hspace{1cm} 25 \hspace{1cm} 30$

lle Ile Tyr Leu Ser Thr Leu Leu Gly Asn Gly Phe Met Ile Phe Leu 35 40 45

Ile His Phe Asp Pro Asn Leu His Thr Pro Ile Tyr Phe Phe Leu Ser 50 60

Asn Leu Ser Phe Leu Asp Leu Cys Tyr Gly Thr Ala Ser Met Pro Gln 65 70 75 80

Ala Leu Val His Cys Phe Ser Thr His Pro Tyr Leu Ser Tyr Pro Arg 85 90 95

Cys Leu Ala Gln Thr Ser Val Ser Leu Ala Leu Ala Thr Ala Glu Cys $100 \hspace{1cm} 105 \hspace{1cm} 110$

Leu Leu Leu Ala Ala Met Ala Tyr Asp Arg Val Val Ala Ile Ser Asn 115 120 125

Pro Leu Arg Tyr Ser Val Val Met Asn Gly Pro Val Cys Val Cys Leu 130 140

Val Ala Thr Ser Trp Gly Thr Ser Leu Val Leu Thr Ala Met Leu Ile 145 150 155 160

Leu Ser Leu Arg Leu His Phe Cys Gly Ala Asn Val Ile Asn His Phe 165 170 175

Ala Cys Glu Ile Leu Ser Leu Ile Lys Leu Thr Cys Ser Asp Thr Ser 180 185 190

Leu Asn Glu Phe Met Ile Leu Ile Thr Ser Ile Phe Thr Leu Leu 195 200 205

Pro Phe Gly Phe Val Leu Leu Ser Tyr Ile Arg Ile Ala Met Ala Ile 210 215 220

Ile Arg Ile Arg Ser Leu Gln Gly Arg Leu Lys Ala Phe Thr Thr Cys 225 230 240

Gly Ser His Leu Thr Val Val Thr Ile Phe Tyr Gly Ser Ala Ile Ser 245 250 255

Met Tyr Met Lys Thr Gln Ser Lys Ser Tyr Pro Asp Gln Asp Lys Phe 260 265 270

Ile Ser Val Phe Tyr Gly Ala Leu Thr Pro Met Leu Asn Pro Leu 11e 275 280 285

Tyr Ser Leu Arg Lys Lys Asp Val Lys Arg Ala Ile Arg Lys Val Met 290 295 300

Leu Lys Arg Thr 305		
<210> 220 <211> 1008 <212> DNA <213> Homo sapiens		
<220> <221> CDS <222> (1)(1005) <223>		
	atc ctt gct gtc ctg Ile Leu Ala Val Leu 10	
	gct gtg gct gtg ctg Ala Val Ala Val Leu 30	
	tgc ttc acc ttg aat Cys Phe Thr Leu Asn 45	
	atc tct ggc cta ctc Ile Ser Gly Leu Leu 60	
	cag aag acc ctg tgc Gln Lys Thr Leu Cys 75	
	gct gcc tct gtc ctc Ala Ala Ser Val Leu 90	
	gcc atc aag cag ccc Ala Ile Lys Gln Pro 110	
	gcc ggg gcc tgc att Ala Gly Ala Cys Ile 125	
	ttc ctc cca ctc gga Phe Leu Pro Leu Gly 140	
	cag tgc agc ttc ttt Gln Cys Ser Phe Phe 155	
	tcc tgc gtt ggc ttc Ser Cys Val Gly Phe 170	
	tgc gac atg ctc aag Cys Asp Met Leu Lys 190	
	atg gaa cat gca gga Met Glu His Ala Gly 205	
	ccc agc gac ttc aaa Pro Ser Asp Phe Lys 220	
	ttt gct cta tcc tgg Phe Ala Leu Ser Trp 235	
	gcc tgc cag gag tgt Ala Cys Gln Glu Cys 250	

16U 200 PCT FI	NAL.ST25	,
----------------	----------	---

						160	200	PCT	F.T.NY	M. 51	25	
		gtg Val										816
		aac Asn 275										864
		tac Tyr										912
		ttt Phe										960
		tgt Cys									taa	1008
<21 <21	-	221 335										
<212	2> 1	PRT										

<213> Homo sapiens

<400> 221

Met Glu Ser Ser Phe Ser Phe Gly Val Ile Leu Ala Val Leu Ala Ser 1 10 15

Leu Ile Ile Ala Thr Asn Thr Leu Val Ala Val Ala Val Leu Leu Leu 25 $$ 30

Ile His Lys Asn Asp Gly Val Ser Leu Cys Phe Thr Leu Asn Leu Ala 35 40 45

Val Ala Asp Thr Leu Ile Gly Val Ala Ile Ser Gly Leu Leu Thr Asp $50 \hspace{1cm} 55 \hspace{1cm} 60$

Gln Leu Ser Ser Pro Ser Arg Pro Thr Gln Lys Thr Leu Cys Ser Leu 65 70 75 80

Arg Met Ala Phe Val Thr Ser Ser Ala Ala Ala Ser Val Leu Thr Val 85 90

Met Leu Ile Thr Phe Asp Arg Tyr Leu Ala Ile Lys Gln Pro Phe Arg 100 105 110

Tyr Leu Lys Ile Met Ser Gly Phe Val Ala Gly Ala Cys Ile Ala Gly 115 120 125

Leu Trp Leu Val Ser Tyr Leu Ile Gly Phe Leu Pro Leu Gly Ile Pro 130 135 140

Met Phe Gln Gln Thr Ala Tyr Lys Gly Gln Cys Ser Phe Phe Ala Val 145 $$ 150 $$ 155 $$ 160

Ala Met Leu Leu Phe Val Phe Phe Tyr Cys Asp Met Leu Lys Ile Ala 180 \$190\$

Ser Met His Ser Gln Gln Ile Arg Lys Met Glu His Ala Gly Ala Met

Ala	Gly 210	Gly	T yr	Arg	Ser	Pro 215	Arg	Thr	Pro	Ser	Asp 220		Lys	Ala	Leu	
Arg 225	Thr	· Val	Ser	Val	Leu 230	Ile	Gly	Ser	Phe	Ala 235	Leu	Ser	Trp	Thr	Pro 240	
Phe	Leu	Ile	Thr	Gly 245	Ile	Val	Gln	Val	Ala 250		Gln	Glu	Суs	His 255	Leu	
Туr	Leu	Va]	Leu 260	Glu	Arg	Tyr	Leu	Trp 265	Leu	Leu	Gly	Val	Gly 270		Ser	
Leu	Leu	Asn 275	Pro	Leu	Ile	Tyr	Ala 280		Тrр	Gln	Lys	Glu 285	Val	Arg	Leu	
Gln	Leu 290	Туr	His	Met	Ala	Leu 295	Gly	Val	Lys	Lys	Val 300	Leu	Thr	Ser	Phe	
Leu 305	Leu	Phe	Leu	Ser	Ala 310	Arg	Asn	Cys	Gly	Pro 315	Glu	Arg	Pro	Arg	Glu 320	
Ser	Ser	Cys	His	Ile 325	Val	Thr	Ile	Ser	Ser 330	Ser	Glu	Phe	Asp	Gly 335		
<21 <21 <21 <21	1 > 2 >	222 975 DNA Homo	sap	iens												
<22 <22 <22 <22	1> 2>	CDS	. (97)	2)												
	3>															
<400 atg Met 1	0> : cgg	222 cct Pro	cag Gln	gac Asp 5	agc Ser	acc Thr	ggg ggg	gtc Val	gcg Ala 10	gag Glu	ctc Leu	cag Gln	gag Glu	ccc Pro 15	ggg Gly	48
atg Met 1 ctg	0> cgg Arg	cct Pro	Gln	Asp 5 gac	Ser gat	Thr	Gly	Val	Ala 10	Glu	ctc Leu act Thr	Gln gag	Glu	Pro 15	Gly	48 96
atg Met 1 ctg Leu	0> cgg Arg ccg Pro	cct Pro cta Leu	Gln acg Thr 20 gca	Asp 5 gac Asp	gat Asp	Thr gca Ala gcg	ccc Pro	Ccg Pro 25	Ala 10 ggc Gly	gcc Ala	Leu	Gln gag Glu tct	Glu gag Glu 30 tta	Pro 15 ccg Pro	gcg Ala	
atg Met 1 ctg Leu gcc Ala	0> cgg Arg ccg Pro	cct Pro cta Leu gag Glu 35	Gln acg Thr 20 gca Ala	Asp gac Asp gct Ala	gat Asp ggg Gly	Thr gca Ala gcg Ala	ccc Pro cca Pro 40	Ccg Pro 25 gac Asp	Ala 10 ggc Gly cgc Arg	Glu gcc Ala gtg Val	Leu act Thr	gag Glu tct Ser 45	gag Glu 30 tta Leu	Pro 15 ccg Pro ttt Phe	gcg Ala gtt Val	96
atg Met 1 ctg Leu gcc Ala aaa Lys	0> cgg Arg ccg Pro gcc Ala aaa Lys 50	cct Pro cta Leu gag Glu 35 gtg Val	acg Thr 20 gca Ala caa Gln	gac Asp gct Ala gac Asp	gat Asp ggg Gly gtc Val	gca Ala gcg Ala cat His 55	ccc Pro cca Pro 40 gct Ala	Ccg Pro 25 gac Asp gta Val	Ala 10 ggc Gly cgc Arg gag Glu	Glu gcc Ala gtg Val att Ile	act Thr ggc Gly agt Ser	gag Glu tct Ser 45 gcg Ala	gag Glu 30 tta Leu ttt Phe	Pro 15 ccg Pro ttt Phe cga Arg	gcg Ala gtt Val tgt Cys	96 144
atg Met 1 ctg Leu gcc Ala aaa Lys gtg Val 65	ccgg Arg ccg Pro gcc Ala aaaa Lys 50 ttc Phe	cct Pro cta Leu gag Glu 35 gtg Val caa Gln	acg Thr 20 gca Ala caa Gln atg Met	gac Asp gct Ala gac Asp cta Leu	gat Asp ggg Gly gtc Val gtt Val 70	gca Ala gcg Ala cat His 55 gtt Val	ccc Pro cca Pro 40 gct Ala atc	Ccg Pro 25 gac Asp gta Val	Ala 10 ggc Gly cgc Arg gag Glu tgc Cys	gcc Ala gtg Val att Ile tta Leu 75	act Thr ggc Gly agt Ser 60	gag Glu tct Ser 45 gcg Ala tac Tyr	gag Glu 30 tta Leu ttt Phe	Pro 15 ccg Pro ttt Phe cga Arg aaa Lys	gcg Ala gtt Val tgt Cys act Thr 80	96 144 192
atg Met 1 ctg Leu gcc Ala aaa Lys gtg Val 65 ggg Gly	ccgg Arg ccgg Pro gcc Ala aaaa Lys 50 ttc Phe	cct Pro cta Leu gag Glu 35 gtg Val caa Gln ata Ile	acg Thr 20 gca Ala caa Gln atg Met	Asp 5 gac Asp gct Ala gac Asp cta Leu cca Pro 85 acc	gat Asp ggg Gly gtc Val gtt Val 70 aaa Lys gcc	gca Ala gcg Ala cat His 55 gtt Val ggt Gly	CCC Pro CCC 40 GCt Ala atc Ile Caa Gln	ccg Pro 25 gac Asp gta Val cct Pro	Ala 10 ggc Gly cgc Arg gag Glu tgc Cys att lle 90 ata	Glu gcc Ala gtg Val att Ile tta Leu 75 ttc Phe	act Thr ggc Gly agt Ser 60 ata Ile	Gln gag Glu tct Ser 45 gcg Ala tac Tyr att Ile	gag Glu 30 tta Leu ttt Phe aga ctc Leu	Pro 15 CCG Pro tttt Phe CGa Arg aaaa Lys aga Arg 95 Cag	gcg Ala gtt Val tgt Cys act Thr 80 gga Gly	96 144 192 240
atg Met 1 ctg Leu gcc Ala aaa Lys gtg Val 65 ggg Gly gtc Val atg	operation of the control of the cont	cct Pro cta Leu gag Glu 35 gtg Val caa Gln ata Ile ggt Gly ctc	acg Thr 20 gca Ala caa Gln atg Met tct Ser 100 gct	Asp 5 gac Asp gct Ala gac Asp cta Leu cca Pro 85 acc Thr	gat Asp ggg Gly gtc Val gtt Val Asa Lys gcc Ala	gca Ala gcg Ala cat His 55 gtt Val ggt Gly atg Met	CCC Pro CCC 40 Pro 40 gct Ala atc Ille Caaa Gln Met	ccg Pro 25 gac Asp gta Val cct Pro cga Arg ctt Leu 105 atc	Alaa 10 ggc Gly cgc Arg gag Glu tgc Cys att Ile 90 ata Ile acg	Glu gcc Ala gtg Val att Ile tta Leu 75 ttc Phe	act Thr ggc Gly agt Ser 60 ata Ile ctc Leu tat Tyr agc Ser	Gln gag Glu tct Ser 45 gcg Ala tac Tyr att Ile gct Ala	gag Glu 30 tta Leu ttt Phe aga Arg ctc Leu	Pro 15 ccg Pro tttt Phe cga Arg aaaa Lys aga Arg 5 cag Gln	gcg Ala gtt Val tgt Cys act Thr 80 gga Gly	96 144 192 240 288

,	130					135				1 6U	200 140	PCT	FINA	L.ST	25	
								atc Ile								480
								gac Asp								528
								ttc Phe 185								576
								cta Leu								624
								tat Tyr								672
								gga Gly								720
								ttc Phe								768
								ctt Leu 265								816
								gtg Val								864
								acg Thr								912
								gga Gly								960
		tcc Ser	aaa Lys	tga			•									975
<210 <211 <211 <211	1> : 2> 1	223 324 PRT Homo	sapi	iens												
< 400)> 2	223														
Met 1	Arg	Pro	Gln	Asp 5	Ser	Thr	Gly	Val	Ala 10	Glu	Leu	Gln	Glu	Pro 15	Gly	
Leu	Pro	Leu	Thr 20	Asp	Asp	Ala	Pro	Pro 25	Gly	Ala	Thr	Glu	Glu 30	Pro	Ala	
Ala	Ala	Glu 35	Ala	Ala	Gly	Ala	Pro 40	Asp	Arg	Val	Gly	Ser 45	Leu	Phe	Val	
Lys	Lys 50	Val	Gln	Asp	Val	His 55	Ala	Val	Glu	Ile	Ser 60	Ala	Phe	Arg	,Cys	
Val 65	Phe	Gln	Met	Leu	Val 70	Val	Ile	Pro	Cys	Leu 75	Ile	туг	Arg	Lys	Thr 80	
Gly	Phe	Ile	Gly	Pro	Lys	Gly	Gln	Arg	Ile	Phe		Ile age		Arg	Gly	

```
16U 200 PCT FINAL.ST25
Val Leu Gly Ser Thr Ala Met Met Leu Ile Tyr Tyr Ala Tyr Gln Thr
                                      105
Met Ser Leu Ala Asp Ala Thr Val Ile Thr Phe Ser Ser Pro Val Phe
Thr Ser Ile Phe Ala Trp Ile Cys Leu Lys Glu Lys Tyr Ser Pro Trp 130 135 140
Asp Ala Leu Phe Thr Val Phe Thr Ile Thr Gly Val Ile Leu Ile Val 145 150 155 160
Arg Pro Pro Phe Leu Phe Gly Ser Asp Thr Ser Gly Met Glu Glu Ser
Tyr Ser Gly His Leu Lys Gly Thr Phe Ala Ala Ile Gly Ser Ala Val
Phe Ala Ala Ser Thr Leu Val Ile Leu Arg Lys Met Gly Lys Ser Val
195 200 205
Asp Tyr Phe Leu Ser Ile Trp Tyr Tyr Val Val Leu Gly Leu Val Glu
210 215 220
Ser Val Ile Ile Leu Ser Val Leu Gly Glu Trp Ser Leu Pro Tyr Cys
225 230 235 240
Gly Leu Asp Arg Leu Phe Leu Ile Phe Ile Gly Leu Phe Gly Leu Gly 245 250 255
Gly Gln Ile Phe Ile Thr Lys Ala Leu Gln Ile Glu Lys Ala Gly Pro
260 265 270
Val Ala Ile Met Lys Thr Met Asp Val Val Phe Ala Phe Ile Phe Gln
Ile Ile Phe Phe Asn Asn Val Pro Thr Trp Trp Thr Val Gly Gly Ala
Leu Cys Val Val Ala Ser Asn Val Gly Ala Ala Ile Arg Lys Trp Tyr 305 310 315 320
Gln Ser Ser Lys
<210>
        224
<211>
        876
<212>
        DNA
<213>
        Homo sapiens
<220>
<221> CDS
<222>
        (1)..(873)
<223>
<400>
atg tac aac atg agt gac cat ggt aca ggc ctg ttc atc ctt ttg ggt Met Tyr Asn Met Ser Asp His Gly Thr Gly Leu Phe Ile Leu Leu Gly 1 5 10 15
atc cct gga ctt gag cag tac cac gtc tgg atc agc atc cca ttc tgc
```

Ile P)ro	Gly	Leu 20	Glu	Gln	туг	His	Val 25	Trp		FINA Pro 30			
tta a Leu I													:	144
att g Ile V 5													:	192
atg c Met L 65													;	240
aca c Thr L													;	288
atg g Met A													:	336
act a Thr I													:	384
ttc c Phe A													í	432
tta c Leu P 145													í	480
ata g Ile G													!	528
tgt g Cys G													!	576
att g Ile A													1	624
tcc c Ser G 2													•	672
tgt g Cys V 225														720
cat t His C													•	768
aac c Asn L													1	816
ata a Ile L													1	864
ggg t Gly S 2			tga											876
<210><211><211>	. 2	25 91 PRT												
<213>	_		sapi	ens										
<400>	2	25												

Met Tyr Asn Met Ser Asp His Gly Thr Gly Leu Phe Ile Leu Leu Gly l 10° 10° 10° 15°

Ile Pro Gly Leu Glu Gln Tyr His Val Trp Ile Ser Ile Pro Phe Cys 20 25 30

Leu Ile Tyr Leu Met Ala Val Val Ala As
n Ser Ile Leu Leu Tyr Leu $35 \hspace{1.5cm} 40 \hspace{1.5cm} 45 \hspace{1.5cm}$

Ile Val Val Glu His Ser Leu His Ala Pro Met Phe Phe Leu Ser 50 55

Met Leu Ala Ile Thr Asp Leu Ile Leu Ser Thr Thr Cys Val Pro Lys 65 70 75 80

Thr Leu Ser Ile Phe Cys Phe Val Leu Asp Ser Ala Ile Leu Leu Ala 85 90 95

Met Ala Phe Asp Arg Tyr Met Ala Ile Cys Ser Pro Leu Arg Tyr Thr $100 \hspace{1cm} 105 \hspace{1cm} 110$

Thr Ile Leu Thr Pro Lys Thr Ile Val Lys Ile Ala Val Gly Ile Cys 115 120 125

Phe Arg Ser Phe Cys Val Phe Val Pro Cys Val Phe Leu Val Asn Arg 130 135 140

Leu Pro Phe Cys Arg Thr His Ile Ile Ser His Thr Tyr Cys Glu His 145 150 155 160

Ile Gly Val Ala Gln Leu Ala Cys Ala Asp Ile Ser Ile Asn Ile Trp 165 170 175

Cys Gly Phe Cys Val Pro Ile Met Thr Val Met Thr Asp Val Ile Leu 180 185 190

Ile Ala Val Ser Tyr Thr Leu Ile Leu Cys Ala Val Phe Cys Leu Pro 195 200 205

Ser Gln Asp Ala Arg Gln Lys Ala Leu Cys Ser Cys Gly Ser His Val 210 215 220

Cys Val Ile Leu Ile Phe Tyr Ile Pro Ala Phe Phe Ser Ile Leu Ala 225 230 230 235

His Cys Phe Gly His Asn Val Pro His Thr Phe His Ile Met Phe Ala 245 250 255

Asn Leu Tyr Val Ile Ile Pro Pro Ala Leu Asn Ser Ile Val Tyr Arg 260 265 270

Ile Lys Thr Lys Gln Ile Gln Asn Arg Ile Leu Leu Leu Phe Pro Lys 275

Gly Ser Gln 290

<210> 226 <211> 1949 <212> DNA

WO 03/089583 PCT/US03/11497

16U 200 PCT FINAL.ST25

<21	.3>	Homo	sap	oiens	;					160	200	PCT	' FIN	IAL.S	T25	
<22 <22 <22 <22	?1> ?2>	CDS (430))(1164	1)											
<40 aga		226 gcgg	gact	tctc	cg ç	igtca	.aggc	c ag	gtct	ctto	cct	gcto	ggt	gcta	tgttc	c 60
tgt	tcca	cgg	ggtg	ıgcigg	igt c	ctgg	gagg	ıg ag	aago	ccag	acc	cagt	gga	cact	gacatt	120
gto	tctc	gct	gtto	ccag	icc t	tttc	cagg	c gt	gtga	ctta	ato	cgtt	tcc	acag	ccagao	180
ctt	ttct	ссд	tgag	ttcc	tc a	gcca	ggac	t gc	tgcc	atgo	cgç	tgac	tgt	tacc	caccca	240
acc	gtca	icga	ccac	catg	cg g	tece	ccac	c gt	cgta	gggt	cct	ctag	iggc	cctg	atccag	300
ccc	ctgg	gcc	tcct	ccgc	ct g	ctgc	agct	g gt	gtcc	acct	gcg	tggc	ctt	gtca	ctggtg	360
gcc	agcg	tgg	gcgc	ctgg	aa g	gggc	ctat	g gg	taac	tggt	сса	tgtt	cac	ctag	tgtttc	420
tgc	tttg	cc a M 1	et T	cc c	tg g eu V	tc a al I 5	le L	tc c eu L	tc g eu V	tg g al G	lu L	tg g eu G 0	igc g Sly G	igc t ly S	cc cag er Glr	471
gcc Ala 15	cgc Arg	ttc Phe	ccc Pro	ttg Leu	ttt Phe 20	tgg Trp	cgc Arg	aac Asn	ttc Phe	ccc Pro 25	ato	acc Thr	ttt Phe	gcc Ala	tgc Cys 30	519
tat Tyr	gcg Ala	gcc Ala	ctc Leu	ttg Leu 35	tgc Cys	ctc Leu	tcg Ser	gcc Ala	tcc Ser 40	atc Ile	atc Ile	tac Tyr	ccc Pro	acc Thr 45	acc Thr	567
tac Tyr	ttg Leu	cag Gln	ttc Phe 50	ctg Leu	tcc Ser	cac His	ggc Gly	cgt Arg 55	tcc Ser	cgc Arg	gac Asp	cac His	gcc Ala 60	atc Ile	gcc Ala	615
gcc Ala	atc Ile	gtc Val 65	ttc Phe	tct Ser	ggc Gly	atc Ile	gcc Ala 70	tgt Cys	gtg Val	gct Ala	tac Tyr	gcc Ala 75	acc Thr	gaa Glu	gta Val	663
acc Thr	tgg Trp 80	acc Thr	cgg Arg	gcc Ala	cgg Arg	ccc Pro 85	ggc Gly	gag Glu	atc Ile	act Thr	gac Asp 90	tac Tyr	atg Met	gcc Ala	tcc Ser	711
gag Glu 95	ctg Leu	ggg Gly	ctg Leu	ctg Leu	aag Lys 100	gtg Val	ctg Leu	gag Glu	acc Thr	ttc Phe 105	gtg Val	gcc Ala	tgc Cys	ctc Leu	atc Ile 110	759
ttc Phe	gtg Val	ttc Phe	atc Ile	aat Asn 115	agc Ser	ccc Pro	tac Tyr	gtg Val	tac Tyr 120	cac His	aac Asn	cgg Arg	ccg Pro	gcc Ala 125	ctg Leu	807
gag Glu	tgg Trp	tgg Trp	gtg Val 130	gcy Ala	gtg Val	tac Tyr	gcc Ala	ctc Leu 135	tgc Cys	ttc Phe	gtc Val	ctg Leu	gcg Ala 140	gcc Ala	ctc Leu	855
act Thr	atc Ile	ctg Leu 145	ctg Leu	agc Ser	ctg Leu	ggg Gly	cac His 150	tgc Cys	acc Thr	aac Asn	atg Met	ctg Leu 155	ccc Pro	atc Ile	cgc Arg	903
ttc Phe	ccc Pro 160	agt Ser	ttc Phe	ctg Leu	ttg Leu	999 Gly 165	ctg Leu	gcc Ala	ttg Leu	ctg Leu	tcc Ser 170	gtc Val	ctc Leu	ctc Leu	tat Tyr	951
gcc Ala 175	acț Thr	gcc Ala	ctt Leu	gtc Val	ct <i>c</i> Leu 180	tgg Trp	ccc Pro	ct <i>c</i> Leu	tac Tyr	cag Gln 185	ttc Phe	aac Asn	gag Glu	aag Lys	tat Tyr 190	999
ggt Gly	gtc Val	cag Gln	ccc Pro	tgg Trp 195	cag Gln	acg Thr	aga Arg	gat Asp	gtg Val 200	agc Ser	tgc Cys	agc Ser	gac Asp	aga Arg 205	Asn	1047
ccc Pro	tac Tyr	ctt Leu	gtg Val 210	tgt Cys	atc Ile	tgg Trp	gac Asp	cgc Arg 215	cga Arg	ctg Leu	gct Ala	gtg Val	acc Thr 220	aac Asn	ctg Leu	1095
acg	gcc	gtc	aac	ttg	ctg	gcc	tat	gtg	ggc	gac		gtg		tct	gcc	1143

Thr	Ala	Val 225	Asn	Leu	Leu	Ala	Туг 230		Gly	16U Asp	200 Leu	PCT Val 235	FIN. Tyr	AL.S. Ser	r25 Ala	
cac His	ctg Leu 240	Val	ttt Phe	gtc Val	aag Lys	gtc Val 245	taa	gact	ccc	aaag	ggcc	cc g	tttg	cctc	t	1194
cca	acct	ctt	catc	ctgc	сс с	cgct	gagt	t tt	cttt	attg	agt	attc	att	tcct	gggttt	1254
tcc	tctt	ccc	tatc	tccc	ct c	ctcc	cctt	t tc	tttc	cttc	сса	attc	atc	gcac	tttccc	1314
agt	tctc	tga	tgta	tgtt	ct t	ccct	ttcc	t ct	gctg	tttc	ctt	cttg	ttt	tgtt	ctgttg	1374
ccca	acaa	cct	gttt	tcac	cc g	tttc	tctt	t tt	ccac	tctc	tct	tttg	ttt	cttt	cctctc	1434
aati	tctt	ttc	tagg	tttc	ct g	ttgg	tttt	c tt	atct	gcct	att	tccc	gac	catc	ttctcc	1494
tati	ttcc	tgg	ggag	ccct	ga g	gctt	ttct	t ct	cctg	cccc	caa	gcac	ctc	cago	ggtgat	1554
gago	ctcc	aca	cccc	caca	cc c	attg	cage	t gt	ggcg	ccac	gtc	ctcc	caa	gggg	ccttct	1614
gcc	gcc	ccc	gccc	tagc	tg t	gccti	tagt	c ag	tgtg	tact	tgt	gtgt	gtt	tggg	ggagtg	1674
gga	attg	ggc	cccc	tttc	tc c	cagto	ggage	g aa	ggtg	tgct	gtg	cacc	tcc	cctt	taaatt	1734
aaaa	aaaa	atg	tatg	tatc	tc t	ggaa	gtca	a ta	attt	ccag	tga	gcgg	gag	gctt	caagcg	1794
caga	accc	tgg	gtcc	ctag	ac c	tcgc	ctago	c ac	tctg	cctt	gcc	agag	att	ggct	ccagaa	1854
ttt	gtgc	cag	actt	acag	aa a	accca	actgo	ct	agag	gcca	tct	taaa	gga .	agca	atggat	1914
ggat	tccc	ttt	catc	ccaa	ct g	ttct	tcgc	g gta	atc							1949
<210 <211 <211 <211	l> : 2> !	227 245 PRT Homo	sap	iens												
< 400)> :	227														
Met 1	Thr	Leu	Val	Ile 5	Leu	Leu	Val	Glu	Leu 10	Gly	Gly	Ser	Gln	Ala 15	Arg	
Phe	Pro	Leu	Phe 20	Trp	Arg	Asn	Phe	Pro 25	Ile	Thr	Phe	Ala	Cys 30	Туг	Ala	
Ala	Leu	Leu 35	Cys	Leu	Ser	Ala	Ser 40	Ile	Ile	Туr	Pro	Thr 45	Thr	Туr	Leu	
Gln	Phe 50	Leu	Ser	His	Gly	Arg 55	Ser	Arg	Asp	His	Ala 60	Ile	Ala	Ala	Ile	
Val 65	Phe	Ser	Gly	Ile	Ala 70	Cys	Val	Ala	Tyr	Ala 75	Thr	Glu	Val	Thr	Trp 80	
Thr	Arg	Ala	Arg	Pro 85	Gly	Glu	Ile	Thr	Asp 90	туr	Met	Ala	Ser	Glu 95	Leu	
Gly	Leu	Leu	Lys 100	Val	Leu	Glu	Thr	Phe 105	Val	Ala	Cys	Leu	11e 110	Phe	Val	
Phe	Ile	Asn 115	Ser	Pro	Tyr	Val	Туг 120	His	Asn	Arg	Pro	Ala 125	Leu	Glu	Trp	·
Trp	Val 130	Ala	Val	Tyr	Ala	Leu 135	Cys	Phe	Val	Leu	Ala 140	Ala	Leu	Thr	Ile	
Leu 145	Leu	Ser	Leu	Gly	His 150	Cys	Thr	Asn	Met	Leu 155	Pro	11e	Arg	Phe	Pro 160	

Ser Phe Leu Leu Gly Leu Ala Leu Leu Ser Val Leu Leu Tyr Ala Thr 165 170 175	
Ala Leu Val Leu Trp Pro Leu Tyr Gln Phe Asn Glu Lys Tyr Gly Val 180 185 190	
Gln Pro Trp Gln Thr Arg Asp Val Ser Cys Ser Asp Arg Asn Pro Tyr 195 200 205	
Leu Val Cys Ile Trp Asp Arg Arg Leu Ala Val Thr Asn Leu Thr Ala 210 215 220	
Val Asn Leu Leu Ala Tyr Val Gly Asp Leu Val Tyr Ser Ala His Leu 225 230 235 240	
Val Phe Val Lys Val 245	
<210> 228 <211> 2980 <212> DNA <213> Homo sapiens	
<220> <221> CDS <222> (213)(2336) <223>	
<400> 228 cccagagacc caggccgcgg aactggcagg cgtttcagag cgtcagaggc tgcggatgag	60
cagacttgga ggactccagg ccagagacta ggctgggcga agagtcgagc gtgaaggggg	120
ctccgggcca gggtgacagg aggcgtgctt gagaggaaga agttgacggg aaggccagtg	180
ctccgggcca gggtgacagg aggcgtgctt gagaggaaga agttgacggg aaggccagtg cgacggcaaa tctcgtgaac cttgggggac ga atg ctc agg atg cgg gtc ccc Met Leu Arg Met Arg Val Pro 1 5	
cgacggcaaa tetegtgaac ettgggggac ga atg etc agg atg egg gte ecc Met Leu Arg Met Arg Val Pro	180
cgacggcaaa tctcgtgaac cttgggggac ga atg ctc agg atg cgg gtc ccc Met Leu Arg Met Arg Val Pro 1 5 gcc ctc ctc gtc ctc ctc ttc tgc ttc aga ggg aga gca ggc ccg tcg Ala Leu Leu Val Leu Leu Phe Cys Phe Arg Gly Arg Ala Gly Pro Ser	180 233
cgacggcaaa tctcgtgaac cttgggggac ga atg ctc agg atg cgg gtc ccc Met Leu Arg Met Arg Val Pro 1 5 gcc ctc ctc gtc ctc ctc ttc tgc ttc aga ggg aga gca ggc ccg tcg Ala Leu Leu Val Leu Leu Phe Cys Phe Arg Gly Arg Ala Gly Pro Ser 10 15 20 ccc cat ttc ctg caa cag cca gag gac ctg gtg gtg ctg ctg ggg gag Pro His Phe Leu Gln Gln Pro Glu Asp Leu Val Val Leu Leu Gly Glu	180 233 281
Cgacggcaaa tctcgtgaac cttgggggac ga atg ctc agg atg cgg gtc ccc Met Leu Arg Met Arg Val Pro 1	180 233 281 329
Cgacggcaaa tctcgtgaac cttgggggac ga atg ctc agg atg cgg gtc ccc Met Leu Arg Met Arg Val Pro gcc ctc ctc gtc ctc ctc ttc tgc ttc aga ggg aga gca ggc ccg tcg Ala Leu Leu Val Leu Leu Phe Cys Phe Arg Gly Arg Ala Gly Pro Ser 10 ccc cat ttc ctg caa cag cca gag gac ctg gtg gtg ctg ctg ggg gag Pro His Phe Leu Gln Gln Pro Glu Asp Leu Val Val Leu Leu Gly Glu 25 gaa gcc cgg ctg ccg tgt gct ctg ggc gcc tac tgg ggg cta gtt cag Glu Ala Arg Leu Pro Cys Ala Leu Gly Ala Tyr Trp Gly Leu Val Gln 40 ccg act aag agt ggg ctg gcc cta ggg ggc caa agg gac cta cca ggg Trp Thr Lys Ser Gly Leu Ala Leu Gly Gly Gln Arg Asp Leu Pro Gly	180 233 281 329
Cgacggcaaa tctcgtgaac cttgggggac ga atg ctc agg atg cgg gtc ccc Met Leu Arg Met Arg Val Pro gcc ctc ctc gtc ctc ctc ttc tgc ttc aga ggg aga gca ggc ccg tcg Ala Leu Leu Val Leu Leu Phe Cys Phe Arg Gly Arg Ala Gly Pro Ser 10 ccc cat ttc ctg caa cag cca gag gac ctg gtg gtg ctg ctg ggg gag Pro His Phe Leu Gln Gln Pro Glu Asp Leu Val Val Leu Leu Gly Glu 25 gaa gcc cgg ctg ccg tgt gct ctg ggc gcc tac tgg ggg cta gtt cag Glu Ala Arg Leu Pro Cys Ala Leu Gly Ala Tyr Trp Gly Leu Val Gln 40 ccc cag aga gac cgg ctg gcc cta ggg ggc caa agg gac cta cca ggg Trp Thr Lys Ser Gly Leu Ala Leu Gly Gly Gln Arg Asp Leu Pro Gly 60 ccc cat ttc ctg caa cag cca gac gcc caa agg cca at ggc cag cat gac Trp Ser Arg Tyr Trp Ile Ser Gly Asn Ala Ala Asn Gly Gln His Asp	180 233 281 329 377 425
Cgacggcaaa tctcgtgaac cttgggggac ga atg ctc agg atg cgg gtc ccc Met Leu Arg Met Arg Val Pro 5 gcc ctc ctc gtc ctc ctc ttc tgc ttc aga ggg aga gga ggc ccg tcg Ala Leu Leu Val Leu Leu Phe Cys Phe Arg Gly Arg Ala Gly Pro Ser 10 ccc cat ttc ctg caa cag cca gag gac ctg gtg gtg ctg ctg ggg gag Pro His Phe Leu Gln Gln Pro Glu Asp Leu Val Leu Leu Gly Glu 25 gaa gcc cgg ctg ccg tgt gct ctg ggc gcc tac tgg ggg cta gtt cag Glu Ala Arg Leu Pro Cys Ala Leu Gly Ala Tyr Trp Gly Leu Val Gln 40 tgg act aag agt ggg ctg gcc cta ggg ggc caa agg gac cta cta cca ggg Trp Thr Lys Ser Gly Leu Ala Leu Gly Gly Gln Arg Asp Leu Pro Gly 65 tgg tcc cgg tac tgg ata tca ggg aat gca gcc aat ggc cag cat gac Trp Ser Arg Tyr Trp Ile Ser Gly Asn Ala Ala Asn Gly Gln His Asp 85 ctc cac att agg ccc gtg gag cta gag gat gaa gca tca tat gaa tgt Leu His Ile Arg Pro Val Glu Leu Glu Asp Glu Ala Ser Tyr Glu Cys	180 233 281 329 377 425

gtt Val					tgt	cgg	agc	cgt	gat	665
cgc Arg										713
gga Gly										761
gtg Val 185										809
acc Thr										857
aca Thr										905
gct Ala										953
cag Gln										1001
ggc Gly 265										1049
gac Asp										1097
gtg Val										1145
att Ile										1193
gct Ala										1241
tgg Trp 345										1289
cgt Arg										1337
gct Ala										1385
ctg Leu										1433
gcc Ala										1481
ccc Pro 425										1529
gcg Ala										1577

											tct Ser					1625
											ttt Phe					1673
											agc Ser					1721
											gtg Val 515					1769
aca Thr 520	act Thr	ctc Leu	ctt Leu	atg Met	gtc Val 525	atc Ile	act Thr	ggg Gly	gtg Val	gcc Ala 530	ctc Leu	tgc Cys	tgc Cys	tgg Trp	cgc Arg 535	1817
											aag Lys					1865
											ggt Gly					1913
											gtg Val					1961
											gag Glu 595					2009
											gtg Val					2057
											cca Pro					2105
											aac Asn					2153
											gca Ala					2201
											aaa Lys 675					2249
											ttc Phe					2297
											cac His		tgad	cato	ttt	2346
cca	atgg	aag a	gtc	ctggg	ga to	ctcca	acti	t gco	cataa	atgg	atte	gttc	ga t	tttc	tgagga	2406
gcc	agga	caa (gttg	gcgad	c ti	acto	ctc	c aaa	acto	gaac	acaa	gggg	gag q	ggaaa	agatca	2466
tta	catt	tgt (cagga	agcat	t tç	gtata	acagi	caç	gctca	agcc	aaaq	gaga	atg o	ccca	aagtgg	2526
gag	caaca	atg o	gccad	ccaa	at at	gcc	cacci	t att	ccc	eggt	gtaa	aaaga	aga (ttca	agatgg	2586
cag	gtage	gcc (ettt	gagga	ag aq	gatg	ggga	ago	ggcaq	gtgg	gtgi	tgg	gag t	tttg	gggccg	2646
gga	tgga	agt 1	tgtti	tctaç	gc ca	actga	aaaga	a aga	atati	tca	aga	gaco	cat o	ctgca	attgag	2706
agg	aaag	gta d	gcata	aggat	ta ga	atga	agato	g aag	gagca	atac	cag	gece	cac o	cctg	gctctc	2766

Page 138

cct	gagg	gga	actt	tgct	cg g	ccaa	tgga	a at	gcag	16U ccaa	200 gat	PCT ggcc	FIN ata	AL.S.	r25 ccctag
gaa	ссса	aga	tggc	cacc	at c	ttga	tttt	a ct	ttcc	ttaa	aga	ctca	gaa	agac	ttggac
сса	agga	gtg	ggga	taca	gt g	agaa	ttac	c ac	tgtt	gggg	caa	aata	ttg	ggat	aaaaat
att	tatg	ttt	aata	ataa	aa a	aaag	tcaa	a ga	gg						
<210 <211 <211 <211	1> 2>	229 708 PRT Homo	sap	iens											
<40	0>	229													
Met 1	Leu	Arg	Met	Arg 5	Val	Pro	Ala	Leu	Leu 10	Val	Leu	Leu	Phe	Cys 15	Phe
Arg	Gly	Arg	Ala 20	Gly	Pro	Ser	Pro	His 25	Phe	Leu	Gln	Gln	Pro 30	Glu	Asp
Leu	Val	Val 35	Leu	Leu	Gly	Glu	Glu 40	Ala	Arg	Leu	Pro	Cys 45	Ala	Leu	Gly
Ala	Туг 50	Trp	Gly	Leu	Val	Gln 55	Trp	Thr	Lys	Ser	Gly 60	Leu	Ala	Leu	Gly
Gly 65	Gln	Arg	Asp	Leu	Pro 70	Gly	Тгр	Ser	Arg	Tyr 75	Trp	Ile	Ser	Gly	Asn 80
Ala	Ala	Asn	Gly	Gln 85	His	Asp	Leu	His	Ile 90	Arg	Pro	Val	Glu	Leu 95	Glu
Asp	Glu	Ala	Ser 100	Туr	Glu	Cys	Gln	Ala 105	Thr	Gln	Ala	Gly	Leu 110	Arg	Ser
Arg	Pro	Ala 115	Gln	Leu	His	Val	Leu 120	Val	Pro	Pro	Glu	Ala 125	Pro	Gln	Val
Leu	Gly 130	Gly	Pro	Ser	Val	Ser 135	Leu	Val	Ala	Gly	Val 140	Pro	Ala	Asn	Leu
Thr 145	Cys	Arg	Ser	Arg	Gly 150		Ala		Pro	Thr 155		Glu	Leu	Leu	Trp 160
Phe	Arg	Asp	Gly	Val 165	Leu	Leu	Asp	Gly	Ala 170	Thr	Phe	His	Gln	Thr 175	Leu
Leu	Lys	Glu	Gly 180	Thr	Pro	Gly	Ser	Val 185	Glu	Ser	Thr	Leu	Thr 190	Leu	Thr
Pro	Phe	Ser 195	His	Asp	Asp	Gly	Ala 200	Thr	Phe	Val	Cys	Arg 205	Ala	Arg	Ser
Gln	Ala 210	Leu	Pro	Thr	Gly	Arg 215	Asp	Thr	Ala	Ile	Thr 220	Leu	Ser	Leu	Gln
Tyr 225	Pro	Pro	Glu	Val	Thr 230	Leu	Ser	Ala	Ser	Pro 235	His	Thr	Val	Gln	Glu 240
Gly	Glu	Lys	Val	Ile 245	Phe	Leu	Cys	Gln	Ala 250	Thr	Ala	Gln	Pro	Pro 255	Val

WO 03/089583 PCT/US03/11497

16U 200 PCT FINAL.ST25

Thr Gly Tyr Arg Trp Ala Lys Gly Gly Ser Pro Val Leu Gly Ala Arg 260 265 270

Gly Pro Arg Leu Glu Val Val Ala Asp Ala Ser Phe Leu Thr Glu Pro 275 280 285

Val Ser Cys Glu Val Ser Asn Ala Val Gly Ser Ala Asn Arg Ser Thr 290 295 300

Ala Leu Asp Val Leu Phe Gly Pro Ile Leu Gln Ala Lys Pro Glu Pro 305 310 315 320

Val Ser Val Asp Val Gly Glu Asp Ala Ser Phe Ser Cys Ala Trp Arg 325 330 335

Gly Asn Pro Leu Pro Arg Val Thr Trp Thr Arg Arg Gly Gly Ala Gln 340 345 350

Val Leu Gly Ser Gly Ala Thr Leu Arg Leu Pro Ser Val Gly Pro Glu 355 360 365

Asp Ala Gly Asp Tyr Val Cys Arg Ala Glu Ala Gly Leu Ser Gly Leu 370 375 380

Arg Gly Gly Ala Ala Glu Ala Arg Leu Thr Val Asn Ala Pro Pro Val 385 390 395 400

Val Thr Ala Leu His Ser Ala Pro Ala Phe Leu Arg Gly Pro Ala Arg 405 410 415

Leu Gln Cys Leu Val Phe Ala Ser Pro Ala Pro Asp Ala Val Val Trp 420 425 430

Val Glu Thr Phe Pro Ala Pro Glu Ser Arg Gly Gly Leu Gly Pro Gly 450 460

Leu Ile Ser Val Leu His Ile Ser Gly Thr Gln Glu Ser Asp Phe Ser 465 470 475 480

Arg Ser Phe Asn Cys Ser Ala Arg Asn Arg Leu Gly Glu Gly Gla 495 495

Gln Ala Ser Leu Gly Arg Arg Asp Leu Leu Pro Thr Val Arg Ile Val 500 505 510

Ala Gly Val Ala Ala Ala Thr Thr Thr Leu Leu Met Val Ile Thr Gly 515 520 525

Val Ala Leu Cys Cys Trp Arg His Ser Lys Ala Ser Ala Ser Phe Ser 530 535 540

Glu Gln Lys Asn Leu Met Arg Ile Pro Gly Ser Ser Asp Gly Ser Ser 545 550 560

Ser Arg Gly Pro Glu Glu Glu Glu Thr Gly Ser Arg Glu Asp Arg Gly 565 570 575

Pro Ile Val His Thr Asp His Ser Asp Leu Val Leu Glu Glu Lys Gly 580 585 590

Thr Leu Glu Thr Lys Asp Pro Thr Asn Gly Tyr Tyr Lys Val Arg Gly 595 600 605

Val Ser Val Ser Leu Ser Leu Gly Glu Ala Pro Gly Gly Gly Leu Phe 610 615 620

Leu Pro Pro Pro Ser Pro Leu Gly Pro Pro Gly Thr Pro Thr Phe Tyr 625 630 635 640

Asp Phe Asn Pro His Leu Gly Met Val Pro Pro Cys Arg Leu Tyr Arg
645 650 655

Ala Arg Ala Gly Tyr Leu Thr Thr Pro His Pro Arg Ala Phe Thr Ser 660 665 670

Tyr Ile Lys Pro Thr Ser Phe Gly Pro Pro Asp Leu Ala Pro Gly Thr 675 680 685

Pro Pro Phe Pro Tyr Ala Ala Phe Pro Thr Pro Ser His Pro Arg Leu 690 695 700

Gln Thr His Val

<210> 230

<211> 5188

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (887)..(2974)

<223>

<400> 230

egegetetet tecteetea gacaactege ecceegeet eegeceeet ecaegtaatt 60 ccgaaagagc agaagaaaga gaaggagaac aggaaaagaa gagctagtaa gcgagagcga 120 gagcacagaa aagaaaaaaa aaagcettaa gaggaeegaa ggggaggaaa ggaaaaggat 180 ggacaaccac aaaacgcagc gattgcggaa attttccagc gccattggct gggcagcgtg 240 300 agtccttcgg tcgggcgtga tttcagcacc gggggaactg gacagcacct cggggggact totgggcaac cogcaaccac agcaaqaact coaccagcag cotcaacaac agaagcogog 360 gaaaaccctg ctttgtatca gagaggcaag gtcagtccga cgcacagcca tgcacaggca 420 gtgcgcctgt actacgctgc aaaccctctg cttgtttctc taacatgcac ttgcttctaa 480 ttactagcat tgtttcattt ctgatcagtg aagatcagta gatgagattc tgtaagggtg 540 tacttttaat ttatatgtat atatttaact tctttttctg ttattttaa agtgttgtgg 600 660 gggagtgggg tttttttcct acttttttt ttttttttt ttctttgctt gccttgcact 720 acgtgcctgg atagtttgtg gatataatta ttgactggcg tctgggctat tgcagtgcgg gggggttagg gaggaaggaa tccaccccca ccccccaaa cccttttctt ctcctttcct 780 ggcttcggac attggagcac taaatgaact tgaattgtgt ctgtggcgag caggatggtc 840 895 gctgttactt tgtgatgaga tcggggatga attgctcgct ttaaaa atg ctg ctt Met Leu Leu

												•			
					gag Glu										943
					aaa Lys 25										991
					gac Asp										1039
					act Thr										1087
					ctt Leu										1135
					atg Met										1183
					ctg Leu 105										1231
					ttt Phe										1279
					gct Ala										1327
					ttg Leu										1375
					cta Leu										1423
					cgg Arg 185										1471
					atc Ile										1519
			Asp	Cys	acc Thr	Cys	Asp	Leu	Leu	Ser	Lys	Glu			1567
					aat Asn										1615
					ggt Gly										1663
					aac Asn 265										1711
					ttt Phe									Lys	1:759
					gat Asp										1807
ggt	aca	aag	atc	cca	ggc	aac	tgg	cag	atc	aaa	aga		aca	gca	1855

Gly	Thr	Lys 310	Ile	Pro	Gly	Asn	Trp 315	Gln	Ile					AL.ST Thr		
gcg Ala	ata Ile 325	gcg Ala	acg Thr	ggt Gly	agc Ser	tcc Ser 330	agg Arg	aac Asn	aaa Lys	ccc Pro	tta Leu 335	gct Ala	aac Asn	agt Ser	tta Leu	1903
	Cys							gac Asp								1951
								gtg Val								1999
								ctt Leu 380								2047
								gtg Val								2095
								gct Ala								2143
								cta Leu								2191
								gcg Ala								2239
								cag Gln 460								2287
								ctc Leu								2335
								gct Ala								2383
								tac Tyr								2431
								ata Ile								2479
								ttc Phe 540								2527
ggt Gly	tcc Ser	gaa Glu 550	gtg Val	ctg Leu	atg Met	agc Ser	gac Asp 555	ctc Leu	aag Lys	tgt Cys	gag Glu	acg Thr 560	ccg Pro	gtg Val	aac Asn	2575
								ctc Leu								2623
								acg Thr								2671
								acg Thr								2719
								ttg Leu 620								2767

Page 143

WO 03/089583 PCT/US03/11497

ttt gtc acc tcc gcc ttc acc gtg gtg ggc atg ctc gtg ttt atc ctg Phe Val Thr Ser Ala Phe Thr Val Val Gly Met Leu Val Phe Ile Leu 630 635 640	2815
agg aac cga aag cgg tcc aag aga cga gat gcc aac tcc tcc gcg tcc Arg Asn Arg Lys Arg Ser Lys Arg Arg Asp Ala Asn Ser Ser Ala Ser 645 650 655	2863
gag att aat tcc cta cag aca gtc tgt gac tct tcc tac tgg cac aat Glu Ile Asn Ser Leu Gln Thr Val Cys Asp Ser Ser Tyr Trp His Asn 660 665 670 675	2911
ggg cct tac aac gca gat ggg gcc cac aga gtg tat gac tgt ggc tct Gly Pro Tyr Asn Ala Asp Gly Ala His Arg Val Tyr Asp Cys Gly Ser 680 680 690	2959
cac tcg ctc tca gac taagacccca accccaatag gggagggcag agggaaggcg His Ser Leu Ser Asp 695	3014
atacateett eeccacegea ggeaceeegg gggetggagg ggegtgtace caaateeeeg	3074
cgccatcagc ctggatgggc ataagtagat aaataactgt gagctcgcac aaccgaaagg	3134
gcctgacccc ttacttagct ccctccttga aacaaagagc agactgtgga gagctgggag	3194
agegeageea getegetett tgetgagage eeettttgae agaaageeea geaegaeeet	3254
gctggaagaa ctgacagtgc cctcgccctc ggccccgggg cctgtggggt tggatgccgc	3314
ggttctatac atatacat atatccacat ctatatagag agatagatat ctattttcc	3374
cctgtggatt agccccgtga tggctccctg ttggctacgc agggatgggc agttgcacga	3434
aggcatgaat gtattgtaaa taagtaactt tgacttctga caaaaaacaa aaagtgctgc	3494
atggctcgca tggaatccac gcgctccagg gactctgccc gcccccgcga ctggagacgg	3554
catctcgttc acagcaccca ccctcttacc tgataagttc catcgtatca aactttctat	3614
aaacaaaata cagtataatc agaaagtgcc atttcgccat tatttgtgat cggtaggcag	3674
ttcagagcat aagttaactg tgaaaaaaat gtaaaggttt tatttaggac atttgcatgg	3734
ctagtcatca gtccatttta tgagttaaca atgtattttg ttgagggaag tttttagggg	3794
ttgttttggg ttcttttatt ttgatggtga tgttttattt tattttattt ttttcagggg	3854
gtctttttt taatacatat ccaataatgc cttccatctg aatgtaaaat aagtaccat	3914
gatttctatt atagtatcag tgtaattatt taaaaaatga ttttgaggca gttaagcatg	3974
accaattaat gtcactctag tgcttaggct gcgatcctat ggtagcaatt ctgtgctggt	4034
ataaatctta cttataaagt aggaaaagag aaccgaggaa gcacgtgaaa cttactaatt	4094
ctattcgagg attttataat ggcatatttt ttcagtatta aagcgaaaat gttttcaact	4154
ctgggtcctt accttttcc agcttcatat ttgcaagtgg taaattggat ttgcggtgga	4214
agagacaggg gagggaaacg gttggggtta gatcccttcc tgagctacat taaggctctt	4274
tctctaatcg ccttacttag ctttttaccc tttaagtagc tcctcttccc tcgccccac	4334
cctctacccc acccccacct tcgctcagac tttaccggct ttccccagtc cataaaggtc	4394
ttgccccaac actcacccct tcttttttc ccctctccaa atgcagcagt gaatcccttt	4454
attaatactg gaaatccctc tctgctgctt ttgttggtgc tgcccacact gcagatatat	4514
taaggatgtt aggagagatt tgatttaatt gactctgcct agataggtct cattaaacag	4574
agtggagatt tcattggtca gcactcctca atgaaagaca gacctaatga ctggcatttg	4634
agatgctgct ggcattttga attcaacatc tgctgaaaac ggtaaaacta attagtgccc	4694
acceaecete ecegeeceag caactgeata ttgaaatttg ttaaageact catetttatg	4754
gaaattaatc attatcctaa agaagtgttt ctctcccatc atccggattt ctggttgtgg	4814

cccagcaatt	aacaaaaaca	gcttcaactg	ttcgaatttt	atgaaccaat	gtaactctgg	4874
cctcaatcat	attcctctgg	gatttctaaa	cagcagttaa	gctacaaaaa	gcaaacaaaa	4934
ccacacatat	tgatggagtc	tgcattccac	cacatatcca	cccttgagaa	gtatgtcaaa	4994
agactgcaga	ctatagattt	ttttttaata	taggattata	aatcagctag	tgaaagacct	5054
cagagcagtt	gtaagtagat	ctgccatcta	gaactcatat	tctaaaggga	agtgatttct	5114
cagaacagtg	atgttctgga	atatgtatta	tttattttaa	cactttttta	ataaaatctt	5174
tattataaac	catg					5188

<210> 231 <211> 696 <212> PRT

<213> Homo sapiens

<400> 231

Gly Asn Val Thr Gly Asp Val Cys Lys Glu Lys Ile Cys Ser Cys Asn 20 25 30

Glu Ile Glu Gly Asp Leu His Val Asp Cys Glu Lys Lys Gly Phe Thr $35 \hspace{1cm} 40 \hspace{1cm} 45$

Ser Leu Gln Arg Phe Thr Ala Pro Thr Ser Gln Phe Tyr His Leu Phe 50 60

Leu His Gly Asn Ser Leu Thr Arg Leu Phe Pro Asn Glu Phe Ala Asn 65 70 75 80

Phe Tyr Asn Ala Val Ser Leu His Met Glu Asn Asn Gly Leu His Glu 85 90 95

Ile Val Pro Gly Ala Phe Leu Gly Leu Gln Leu Val Lys Arg Leu His

Ile Asn Asn Asn Lys Ile Lys Ser Phe Arg Lys Gln Thr Phe Leu Gly 115 120 125

Leu Asp Asp Leu Glu Tyr Leu Gln Ala Asp Phe Asn Leu Leu Arg Asp 130 135 140

Ile Asp Pro Gly Ala Phe Gln Asp Leu Asn Lys Leu Glu Val Leu Ile 145 150 155 160

Leu Asn Asp Asn Leu Ile Ser Thr Leu Pro Ala Asn Val Phe Gln Tyr 165 170 175

Val Pro Ile Thr His Leu Asp Leu Arg Gly Asn Arg Leu Lys Thr Leu 180 185 190

Pro Tyr Glu Glu Val Leu Glu Gln Ile Pro Gly Ile Ala Glu Ile Leu 195 200 205

Leu Glu Asp Asn Pro Trp Asp Cys Thr Cys Asp Leu Leu Ser Leu Lys 210 215 220

16U 200 PCT FINAL.ST25 Glu Trp Leu Glu Asn Ile Pro Lys Asn Ala Leu Ile Gly Arg Val Val 225 230 235 240 Cys Glu Ala Pro Thr Arg Leu Gln Gly Lys Asp Leu Asn Glu Thr Thr 245 250 255 Glu Gln Asp Leu Cys Pro Leu Lys Asn Arg Val Asp Ser Ser Leu Pro Ala Pro Pro Ala Glu Glu Glu Thr Phe Ala Pro Gly Pro Leu Pro Thr 275 280 285 Pro Phe Lys Thr Asn Gly Gln Glu Asp His Ala Thr Pro Gly Ser Ala 290 295 300 Pro Asn Gly Gly Thr Lys 1le Pro Gly Asn Trp Gln Ile Lys Ile Arg 305 310 315 320 Asn Ser Leu Pro Cys Pro Gly Gly Cys Ser Cys Asp His Ile Pro Gly 340 345 350Ser Gly Leu Lys Met Asn Cys Asn Asn Arg Asn Val Ser Ser Leu Ala Asp Leu Lys Pro Lys Leu Ser Asn Val Gln Glu Leu Phe Leu Arg Asp 370 375 380Asn Lys Ile His Ser Ile Arg Lys Ser His Phe Val Asp Tyr Lys Asn Leu Ile Leu Leu Asp Leu Gly Asn Asn Asn Ile Ala Thr Val Glu Asn 405 410 415Leu Glu Tyr Leu Asn Val Glu Tyr Asn Ala Ile Gln Leu Ile Leu Pro Gly Thr Phe Asn Ala Met Pro Lys Leu Arg Ile Leu Ile Leu Asn Asn 465 470 475 480 Asn Leu Leu Arg Ser Leu Pro Val Asp Val Phe Ala Gly Val Ser Leu 485 490 495Ser Lys Leu Ser Leu His Asn Asn Tyr Phe Met Tyr Leu Pro Val Ala 500 505 510Gly Val Leu Asp Gln Leu Thr Ser Ile Ile Gln Ile Asp Leu His Gly 515 520 525 Asn Pro Trp Glu Cys Ser Cys Thr Ile Val Pro Phe Lys Gln Trp Ala 530 535 540

Glu Arg Leu Gly Ser Glu Val Leu Met Ser Asp Leu Lys Cys Glu Thr 545 550 555 560

Pro Val Asn Phe Phe Arg Lys Asp Phe Met Leu Leu Ser Asn Asp Glu 575

Ile Cys Pro Gln Leu Tyr Ala Arg Ile Ser Pro Thr Leu Thr Ser His 580 585 590

Ser Lys Asn Ser Thr Gly Leu Ala Glu Thr Gly Thr His Ser Asn Ser 595 600 605

Tyr Leu Asp Thr Ser Arg Val Ser Ile Ser Val Leu Val Pro Gly Leu 610 615 620

Leu Leu Val Phe Val Thr Ser Ala Phe Thr Val Val Gly Met Leu Val 625 630 635 640

Phe Ile Leu Arg Asn Arg Lys Arg Ser Lys Arg Arg Asp Ala Asn Ser 645 650 655

Ser Ala Ser Glu Ile Asn Ser Leu Gln Thr Val Cys Asp Ser Ser Tyr 660 665 670

Trp His Asn Gly Pro Tyr Asn Ala Asp Gly Ala His Arg Val Tyr Asp 675 680 685

Cys Gly Ser His Ser Leu Ser Asp

<210> 232 <211> 506 <212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (32)..(346)

<223>

<400> 232

ttcatctagc tctggatggt tgaactgtag c atg gca aag atg ttt gat ctc 52 Met Ala Lys Met Phe Asp Leu 1

agg acg aag atc atg atc ggc atc gga agc agc tta ctg gtt gcc gcg $$\rm 100$$ Arg Thr Lys Ile Met Ile Gly Ile Gly Ser Ser Leu Leu Val Ala Ala 10 15 20

atg gtg ctc cta agt gtt gtg ttc tgt ctt tac ttc aaa gta gct aag 148 Met Val Leu Leu Ser Val Val Phe Cys Leu Tyr Phe Lys Val Ala Lys 25 30 35

gca Cta aaa gct gca aag gac cct gat gct gtg gct gta aaa aat cac 196 Ala Leu Lys Ala Ala Lys Asp Pro Asp Ala Val Ala Val Lys Asn His 40 45 50 55

aac cca gac aag gtg tgt tgg gcc acg aac agc cag gcc aaa gcc acc 244 Asn Pro Asp Lys Val Cys Trp Ala Thr Asn Ser Gln Ala Lys Ala Thr 60 65 70 .

acc atg gag tct tgt cca tct ctc cag tgc tgt gaa ggt tgt aga atg
Thr Met Glu Ser Cys Pro Ser Leu Gln Cys Cys Glu Gly Cys Arg Met
75 80 85

cat gcc agt tct gat tcc ctg cca cct tgc tgt tgt gac ata aat gag
His Ala Ser Ser Asp Ser Leu Pro Pro Cys Cys Cys Asp Ile Asn Glu
90 95 100

ggc ctc tgacttggga aagctgggca caaaaatctt catgagcaat atttctttct Gly Leu 105								
taatagaatg ttttattatt caagtcaagt tctagagtgt ttacatacta ttatataatg	456							
tacagtgtta ttttctgtac ttctgaataa atgtgcaata ttggaaataa	506							
<210> 233 <211> 105 <212> PRT <213> Homo sapiens								
<400> 233								
Met Ala Lys Met Phe Asp Leu Arg Thr Lys Ile Met Ile Gly Ile Gly 1 5 15								
Ser Ser Leu Leu Val Ala Ala Met Val Leu Leu Ser Val Val Phe Cys 20 25 30								
Leu Tyr Phe Lys Val Ala Lys Ala Leu Lys Ala Ala Lys Asp Pro Asp 35 40 45								
Ala Val Ala Val Lys Asn His Asn Pro Asp Lys Val Cys Trp Ala Thr 50 55 60								
Asn Ser Gln Ala Lys Ala Thr Thr Met Glu Ser Cys Pro Ser Leu Gln 65 70 75 80								
Cys Cys Glu Gly Cys Arg Met His Ala Ser Ser Asp Ser Leu Pro Pro 85 90 95								
Cys Cys Cys Asp Ile Asn Glu Gly Leu 100 105								
<210> 234 <211> 1037 <212> DNA <213> Homo sapiens								
<220> <221> CDS <222> (180)(560) <223>								
<400> 234 gagcgaaggg aacatttaac cttgactttc cacagtcctg aggttcccaa aataaagggg 60								
aaccggaaat accaaaggat tatctccaat attccagggc cttctttctc atctctgtct	120							
ttaccatact tactggcctt ggctggctct tcagctcttg gatccttaat cgaggaagc	179							
atg acc acc aac ttg gat ctg aag gta tcc atg ctc agc ttc atc tca Met Thr Thr Asn Leu Asp Leu Lys Val Ser Met Leu Ser Phe Ile Ser 1 5 15	227							
gct acc tgc ttg ctc ctc tgc ctc aac ctg ttt gtg gca cag gtt cac Ala Thr Cys Leu Leu Cys Leu Asn Leu Phe Val Ala Gln Val His 20 25 30	275							
tgg cat act agg gat gcc atg gag tca gat ctc cta tgg acc tat tat Trp His Thr Arg Asp Ala Met Glu Ser Asp Leu Leu Trp Thr Tyr Tyr 35 40 45	323							
ctt aac tgg tgc agt gac atc ttt tac atg ttt gct ggg atc atc tct Leu Asn Trp Cys Ser Asp Ile Phe Tyr Met Phe Ala Gly Ile Ile Ser 50 55 60	371							
ctt ctc aac tac tta act tcc aga tcg cct gcc tgt gat gaa aac gtc Page 148	419							

Leu Leu Asn Tyr Leu Thr Ser Arg Ser Pro Ala Cys Asp Glu Asn Val 75 80	
act gtg att cca aca gag aga tca agg ctg ggg gtt ggt ccg gtg act Thr Val Ile Pro Thr Glu Arg Ser Arg Leu Gly Val Gly Pro Val Thr 85 90 95	467
aca gta tca cct gct aaa gat gaa ggg cca agg tct gag atg gaa tct Thr Val Ser Pro Ala Lys Asp Glu Gly Pro Arg Ser Glu Met Glu Ser 100 105 110	515
cta agt gtg aga gag aaa aat tta cca aag tca gga ctg tgg tgg Leu Ser Val Arg Glu Lys Asn Leu Pro Lys Ser Gly Leu Trp Trp 115 120 125	560
tgataggaaa acctaactat agcttgtctt aaaagcaggg gagaagctga gttgggaatg	620
gtcacataaa ttctgggaaa ctctcctaat atcatgtcca tattacttga ggagacagca	680
ttaaagctga tgaaatgtct tttgcgtgca ttggatccaa aatatatatg atagtcataa	740
agtaaataac tcacttaaga aaaacattto taaaagaaaa caacaatgtt tagagtcatg	800
aatgaaagaa actagtgaaa gatgcagtgt gtagaccaga gacctctttg ggtatcaggg	860
atctcatgga ccagaatggc ccgtggagaa gaatgttaat tacttctgtt tggaattttc	920
tttattatgt gtggctttgg gtatactcag gatggaaagc acttggacaa atactgttga	980
atctgaactt aatagcatta ccagaaatgg aataaatatc aatggatata agaccta	1037
<210> 235 <211> 127 <212> PRT <213> Homo sapiens <400> 235	
Met Thr Thr Asn Leu Asp Leu Lys Val Ser Met Leu Ser Phe Ile Ser 1 10 15	
Ala Thr Cys Leu Leu Cys Leu Asn Leu Phe Val Ala Gln Val His 20 25 30	
Trp His Thr Arg Asp Ala Met Glu Ser Asp Leu Leu Trp Thr Tyr Tyr 35 40 45	
Leu Asn Trp Cys Ser Asp Ile Phe Tyr Met Phe Ala Gly Ile Ile Ser 50 60	
Leu Leu Asn Tyr Leu Thr Ser Arg Ser Pro Ala Cys Asp Glu Asn Val 65 70 75 80	
Thr Val Ile Pro Thr Glu Arg Ser Arg Leu Gly Val Gly Pro Val Thr 85 90 95	
Thr Val Ser Pro Ala Lys Asp Glu Gly Pro Arg Ser Glu Met Glu Ser 100 105 110	
Leu Ser Val Arg Glu Lys Asn Leu Pro Lys Ser Gly Leu Trp Trp 115 120 125	
<210> 236 <211> 1054 <212> DNA <213> Homo sapiens	
<220> <221> CDS <222> (152)(895)	

<223> <400> 236 60 gttggcattc ggtggtcctg gcagttagct gagcacgccc tctgagccgc tcggtggaca ccaggcactc tagtaggcct ggcctaccca gaaacagcag gagagagaag aaacaggcca 120 gctgtgagaa gccaaggaca ccgagtcagt c atg gca cct aag gcg gca aag Met Ala Pro Lys Ala Ala Lys ggg gcc aag cca gag cca gca cca gct cca cct cca ccc ggg gcc aaa Gly Ala Lys Pro Glu Pro Ala Pro Ala Pro Pro Pro Gly Ala Lys 220 ccc gag gaa gac aag aag gac ggt aag gag cca tcg gac aaa cct caa
Pro Glu Glu Asp Lys Lys Asp Gly Lys Glu Pro Ser Asp Lys Pro Gln
25
30 268 aag gcg gtg cag gac cat aag gag cca tcg gac aaa cct caa aag gcg Lys Ala Val Gln Asp His Lys Glu Pro Ser Asp Lys Pro Gln Lys Ala 316 gtg cag ccc aag cac gaa gtg ggc acg agg agg ggg tgt cgc cgc tac Val Gln Pro Lys His Glu Val Gly Thr Arg Arg Gly Cys Arg Arg Tyr 364 cgg tgg gaa tta aaa gac agc aat aaa gag ttc tgg ctc ttg ggg cac Arg Trp Glu Leu Lys Asp Ser Asn Lys Glu Phe Trp Leu Leu Gly His 412 gct gag atc aag att cgg agt ttg ggc tgc cta ata gct gca atg ata Ala Glu Ile Lys Ile Arg Ser Leu Gly Cys Leu Ile Ala Ala Met Ile ctg ttg tcc tca ctc acc gtg cac ccc atc ttg agg ctt atc acc Leu Leu Ser Ser Leu Thr Val His Pro Ile Leu Arg Leu Ile Ile Thr atg gag ata tcc ttc ttc agc ttc ttc atc tta ctg tac agc ttt gcc Met Glu Ile Ser Phe Phe Ser Phe Phe Ile Leu Leu Tyr Ser Phe Ala att cat aga tac ata ccc ttc atc ctg tgg ccc att tct gac ctc ttc lle His Arg Tyr lle Pro Phe lle Leu Trp Pro lle Ser Asp Leu Phe 140 145 150 aac gac ctg att gct tgt gcg ttc ctt gtg gga gcc gtg gtc ttt gct Asn Asp Leu Ile Ala Cys Ala Phe Leu Val Gly Ala Val Val Phe Ala 652 gtg aga agt cgg cga tcc atg aat ctc cac tac tta ctt gct gtg atc Val Arg Ser Arg Arg Ser Met Asn Leu His Tyr Leu Leu Ala Val Ile 700 ctt att ggt gcg gct gga gtt ttt gct ttt atc gat gtg tgt ctt caa Leu Ile Gly Ala Ala Gly Val Phe Ala Phe Ile Asp Val Cys Leu Gln 185
190
195 748 aga aac cac ttc aga ggc aag aag gcc aaa aag cat atg ctg gtt cct Arg Asn His Phe Arg Gly Lys Lys Ala Lys Lys His Met Leu Val Pro 200 205 210 215 796 cct cca gga aag gaa aaa gga ccc cag cag ggc aag gga cca gaa ccc Pro Pro Gly Lys Gly Lys Gly Pro Gln Gln Gly Lys Gly Pro Glu Pro 844 gcc aag cca cca gaa cct ggc aag cca cca ggg cca gca aag gga aag Ala Lys Pro Pro Glu Pro Gly Lys Pro Pro Gly Pro Ala Lys Gly Lys 892 aaa tgacttggag gaggctcctg gtgtctgaaa cggcagtgta ttttacagca 945 atatgtttcc actctctcc ttgtcttctt tctggaatgg ttttctttc cattttcatt 1005

accacctttg cttggaaaag aatggattaa tggattctaa aagcctaaa

Page 150

1054

<210> 237 <211> 248

<211> 248
<212> PRT

<213> Homo sapiens

<400> 237

Met Ala Pro Lys Ala Ala Lys Gly Ala Lys Pro Glu Pro Ala Pro Ala 1 5 10 15

Pro Pro Pro Gly Ala Lys Pro Glu Glu Asp Lys Lys Asp Gly Lys 20 25 30

Glu Pro Ser Asp Lys Pro Gln Lys Ala Val Gln Asp His Lys Glu Pro 35 40 45

Ser Asp Lys Pro Gln Lys Ala Val Gln Pro Lys His Glu Val Gly Thr 50 60

Arg Arg Gly Cys Arg Arg Tyr Arg Trp Glu Leu Lys Asp Ser Asn Lys 65 70 75 80

Glu Phe Trp Leu Leu Gly His Ala Glu Ile Lys Ile Arg Ser Leu Gly 85 90 95

Cys Leu Ile Ala Ala Met Ile Leu Leu Ser Ser Leu Thr Val His Pro $100 \hspace{1cm} 105 \hspace{1cm} 110 \hspace{1cm}$

Ile Leu Leu Tyr Ser Phe Ala Ile His Arg Tyr Ile Pro Phe Ile Leu 130 $$ 135 $$ 140

Trp Pro Ile Ser Asp Leu Phe Asn Asp Leu Ile Ala Cys Ala Phe Leu 145 150150155160

Val Gly Ala Val Val Phe Ala Val Arg Ser Arg Arg Ser Met Asn Leu 165 170 175

His Tyr Leu Leu Ala Val Ile Leu Ile Gly Ala Ala Gly Val Phe Ala 180 185 190

Phe Ile Asp Val Cys Leu Gln Arg Asn His Phe Arg Gly Lys Lys Ala 195 200 205

Lys Lys His Met Leu Val Pro Pro Pro Gly Lys Glu Lys Gly Pro Gln 210 215 220

Gln Gly Lys Gly Pro Glu Pro Ala Lys Pro Pro Glu Pro Gly Lys Pro 225 230 230 240

Pro Gly Pro Ala Lys Gly Lys Lys 245

<210> 238

<211> 487 <212> DNA

<213> Homo sapiens

<220>

<221> CDS

<22 <22		(17)	(4	18)						1 6 U	200	PCT	FINA	AL.ST	r25		
<40 agt		238 gct	tggc [.]					ag co ys P: 5						he L			2
		ctg Leu 15														10	0
		cca Pro														14	8
aac Asn 45	gac Asp	tcc Ser	aag Lys	aac Asn	agc Ser 50	aag Lys	gcc Ala	gtg Val	aac Asn	aca Thr 55	aaa Lys	gaa Glu	gt <i>c</i> Val	aat Asn	aga Arg 60	19	6
		gcc Ala														24	4
		gaa Glu														29	2
		aaa Lys 95														34	0
ccc Pro	atg Met 110	aaa Lys	aaa Lys	cac His	aga Arg	atg Met 115	agg Arg	agg Arg	cat His	gag Glu	tca Ser 120	att Ile	tgc Cys	ccc Pro	acc Thr	38	8
ctg Leu 125	tct Ser	gac Asp	tgt Cys	act Thr	tcg Ser 130	agt Ser	tcc Ser	ccc Pro	agc Ser	taat	gagg	gcc (gagge	gggg	et	43	8
ggc	ctct	gcc (gatgi	ttac		ttaco	etca	g taa	aaac	ccag	tcad	cage	ct			48	7
<210 <211 <211 <211	0>. ; 1> 2> ;	gcc (239 134 PRT Homo				ttaco	ctca	g taa	aaac	ccag	tcad	cagco	ct			48	7
<210 <211 <211	0>. ; 1> 2> ; 3> ;	239 134 PRT				ttaco	ctcaç	g taa	ааасс	ccag	tcad	cago	ct			48	7
<210 <211 <211 <211 <400	0>. ; 1> 2> ; 3> ;	239 134 PRT Homo	sap:	iens	et ti									Leu 15	Leu	48	7
<210 <211 <211 <211 <400 Met	0>. : 1> 2> : 3> : 0> :	239 134 PRT Homo	sap:	iens Pro 5	Ala	Leu	Phe	61y	Phe 10	Leu	Phe	Leu	Leu	15		48	7
<210 <211 <211 <211 <400 Met 1	0>. : 1> 2> : 3> : 0> : Ser	239 134 PRT Homo 239	sap: Lys Trp 20	iens Pro 5 Leu	Ala Val	Leu Lys	Phe Tyr	G1y G1u 25	Phe 10 His	Leu Lys	Phe Leu	Leu Thr	Leu Leu 30	15 Pro	Glu	48	7
<210 <211 <211 <400 Met 1	0>. : 1> 2> : 3> : 0> : Ser Ser	239 134 PRT Homo 239 Tyr	sap: Lys Trp 20	iens Pro 5 Leu Glu	Ala Val	Leu Lys Lys	Phe Tyr Pro 40	Glu 25 Lys	Phe 10 His	Leu Lys Ser	Phe Leu Glu	Leu Thr Asn 45	Leu Leu 30	Pro	Glu Lys	48	7
<211 <211 <212 <400 Met 1 Leu	00>. :: 1> 1> 22> :: 33> :: Ser Gln Ser 50	239 134 PRT Homo 239 Tyr Asn Gln 35	Sap: Lys Trp 20 Glu	Pro S Leu Glu Val	Ala Val Glu Asn	Leu Lys Lys Thr 55	Phe Tyr Pro 40 Lys	Glu Glu 25 Lys	Phe 10 His Thr	Leu Lys Ser Asn	Phe Leu Glu Arg 60	Leu Thr Asn 45	Leu Leu 30 Asp	Pro Ser	Glu Lys Cys	48	7
<211 <211 <211 <400 Met 1 Leu Pro Asn	0>. : : : : : : : : : : : : : : : : : : :	239 134 PRT Homo 239 Tyr Asn Gln 35	Lys Trp 20 Glu Ala	Pro S Leu Glu Val	Ala Val Glu Asn Glu 70	Leu Lys Lys Thr 55	Phe Tyr Pro 40 Lys	Glu 25 Lys Glu	Phe 10 His Thr Val	Leu Lys Ser Asn Leu 75	Phe Leu Glu Arg 60 Leu	Leu Thr Asn 45 Thr	Leu Jo Asp His	Pro Ser Ala	Glu Lys Cys Met 80	48	7
<211 <211 <211 <400 Met 1 Leu Pro Asn Phe 65	0>. : : : : : : : : : : : : : : : : : : :	239 134 PRT HOMO 239 Tyr Asn Gln 35 Lys	sap: Lys Trp 20 Glu Ala Gln	Pro S Leu Val Asp Leu 85	Ala Val Glu Asn Glu 70	Leu Lys Lys Thr 55 Ile	Phe Tyr Pro 40 Lys Leu Gln	Glu 25 Lys Glu Met	Phe 10 His Thr Val Arg	Leu Lys Ser Asn Leu 75	Phe Leu Glu Arg 60 Leu	Leu Thr Asn 45 Thr Phe	Leu 30 Asp His Ser	Pro Ser Ala Glu Lys'	Glu Lys Cys Met 80	48	7

16U 200 PCT FINAL.ST25 120 125

Thr	Ser 130	Ser	Ser	Pro	Ser											
<21 <21 <21 <21	1> 2>	240 846 DNA Homo	sap	iens												
<22 <22 <22 <22	1> 2>	CDS (108) (725)												
<40 att		240 aga	ctct	gatt	gg c	taga	caga	t ga	gctq.	actq	qct	aaac	aga	taaa	tgggtg	60
													atg	gat Asp	tcc	116
caa Gln	cag Gln 5	gag Glu	gac Asp	ctg Leu	cgc Arg	ttc Phe 10	cct Pro	ggg Gly	atg Met	tgg Trp	gtc Val 15	tca Ser	ttg Leu	tac Tyr	ttt Phe	164
gga Gly 20	atc Ile	ctg Leu	ggg Gly	ctg Leu	tgt Cys 25	tct Ser	gtg Val	ata Ile	act Thr	gga Gly 30	ggg Gly	tgc Cys	att Ile	atc Ile	ttt Phe 35	212
														cag Gln 50		260
														ttg Leu		308
tgg Trp	att Ile	aac Asn 70	aag Lys	cga Arg	cgg Arg	cgc Arg	tac Tyr 75	ggc Gly	atg Met	aat Asn	gca Ala	gcc Ala 80	atc Ile	aac Asn	acg Thr	356
Gly ggc	cct Pro 85	gcc Ala	cct Pro	gct Ala	gtc Val	acc Thr 90	aag Lys	act Thr	gag Glu	act Thr	gag Glu 95	gtc Val	cag Gln	aat Asn	cca Pro	404
gat Asp 100	gtt Val	ctg Leu	tgg Trp	gat Asp	ttg Leu 105	gac Asp	atc Ile	ccc Pro	gaa Glu	ggc Gly 110	agg Arg	agc Ser	cat His	gct Ala	gac Asp 115	452
caa Gln	gac Asp	agc Ser	aac Asn	ccc Pro 120	aag Lys	gcg Ala	gaa Glu	gcc Ala	cct Pro 125	gct Ala	ccc Pro	ctg Leu	caa Gln	cct Pro 130	gca Ala	500
														cca Pro		548
ccc Pro	atc Ile	ttt Phe 150	cag Gln	gag Glu	gtg Val	ccc Pro	ttt Phe 155	gcc Ala	cca Pro	ccc Pro	ttg Leu	tgc Cys 160	aac Asn	cta Leu	ccc Pro	596
ccc Pro	ctg Leu 165	ctg Leu	aac Asn	cac His	tct Ser	gtc Val 170	tcc Ser	tat Tyr	cct Pro	ttg Leu	gcc Ala 175	acc Thr	tgt Cys	cct Pro	gaa Glu	644
agg Arg 180	aat Asn	gtt Val	ctc Leu	ttc Phe	cat His 185	tcc Ser	ctc Leu	ctg Leu	aat Asn	ctg Leu 190	gcc Ala	cag Gln	gaa Glu	gac Asp	cat His 195	692
agc Ser	ttc Phe	aat Asn	gcc Ala	aag Lys 200	cct Pro	ttt Phe	cct Pro	tca Ser	gaa Glu 205	ctg Leu	tago	ctco	tc t	cact	gaagg	745
tggg	jaget	gc a	ggaa	tcag	ıg tg	caga	gtag	gaa	atgg	aac	taac	ctca	igg a	aggt	ggtat	805
tgac	agaç	gt c	agga	ccca	c ct	ggat	gtca	tgo	tatg	aaa	С					846

```
Met Asp Ser Gln Gln Glu Asp Leu Arg Phe Pro Gly Met Trp Val Ser
Leu Tyr Phe Gly Ile Leu Gly Leu Cys Ser Val Ile Thr Gly Gly Cys 20 \hspace{1cm} 25 \hspace{1cm} 30 \hspace{1cm}
Ile Ile Phe Leu His Trp Arg Lys Asn Leu Arg Arg Glu Glu His Ala
Gln Gln Trp Val Glu Val Met Arg Ala Ala Thr Phe Thr Tyr Ser Pro
Leu Leu Tyr Trp Ile Asn Lys Arg Arg Arg Tyr Gly Met Asn Ala Ala
65 70 75 80
Ile Asn Thr Gly Pro Ala Pro Ala Val Thr Lys Thr Glu Thr Glu Val
Gln Asn Pro Asp Val Leu Trp Asp Leu Asp Ile Pro Glu Gly Arg Ser
100 105 110
His Ala Asp Gln Asp Ser Asn Pro Lys Ala Glu Ala Pro Ala Pro Leu
Gln Pro Ala Leu Gln Leu Ala Pro Gln Gln Pro Gln Ala Arg Ser Pro
Phe Pro Leu Pro Ile Phe Gln Glu Val Pro Phe Ala Pro Pro Leu Cys
As Leu Pro Pro Leu Leu As His Ser Val Ser Tyr Pro Leu Ala Thr 165 170 175
Cys Pro Glu Arg Asn Val Leu Phe His Ser Leu Leu Asn Leu Ala Gln
Glu Asp His Ser Phe Asn Ala Lys Pro Phe Pro Ser Glu Leu 195 200 205
<210> 242
<211> 663
<212> DNA
<213> Homo sapiens
<220>
<221> CDS
<222> (40)..(585)
tagttcctag agctgctgct tattaaaatg tcaacatct tca tct tct agc tgg
                                               Ser Ser Ser Trp
gac aac ctc tta gag tot otc tot otc ago aca gta tgg aat tgg ata
                                                                           102
Asp Asn Leu Leu Glu Ser Leu Ser Leu Ser Thr Val Trp Asn Trp Ile
                                      15
                                                   Page 154
```

BNSDOCID: <WO_____ 03089583A2_1 >

<210> 241 <211> 206 <212> PRT

<400> 241

<213> Homo sapiens

c G	aa 1n	gca Ala	agt Ser	ttt Phe 25	ttg Leu	gga Gly	gag Glu	act Thr	agt Ser 30	gca Ala	cct Pro	cag Gln	caa Gln	aca Thr 35	agt Ser	ttg Leu		150
g	ga ly	cta Leu	tta Leu 40	gat Asp	aat Asn	ctt Leu	gct Ala	cca Pro 45	gct	gtg Val	caa Gln	atc	atc Ile 50	ttg Leu	agg Arg	att Ile		198
s	ct er	ttc Phe 55	ttg Leu	att Ile	tta Leu	ttg Leu	gga Gly 60	ata Ile	gga Gly	ata Ile	tat Tyr	gcc Ala 65	tta Leu	tgg Trp	aaa Lys	cga Arg		246
5	gt er 0	att Ile	cag Gln	tca Ser	att Ile	cag Gln 75	aaa Lys	aca Thr	ttg Leu	ttg Leu	ttt Phe 80	gta Val	atc Ile	aca Thr	ctc Leu	tac Tyr 85		294
a L	aa ys	ctt Leu	tac Tyr	aag Lys	aag Lys 90	ggc Gly	tca Ser	cat His	att Ile	ttt Phe 95	gag Glu	gct Ala	ttg Leu	cta Leu	gcc Ala 100	Asn		342
P P	ca ro	gaa Glu	gga Gly	agt Ser 105	ggt Gly	ctc Leu	cga Arg	att Ile	caa Gln 110	gac Asp	aat Asn	aat Asn	aat Asn	ctt Leu 115	ttc Phe	ctg Leu		390
t S	cc er	ttg Leu	ggt Gly 120	ctg Leu	caa Gln	gag Glu	aaa Lys	att Ile 125	ttg Leu	aaa Lys	aaa Lys	ctt Leu	aag Lys 130	aca Thr	gtg Val	gaa Glu		438
a A	ac sn	aaa Lys 135	atg Met	aag Lys	aac Asn	cta Leu	gaa Glu 140	G1 y ggg	ata Ile	atc Ile	gtt Val	gct Ala 145	caa Gln	aaa Lys	cct Pro	gcc Ala		486
T	eg hr 50	aag Lys	agg Arg	gat Asp	tgc Cys	tcc Ser 155	tct Ser	gag Glu	ccc Pro	tac Tyr	tgc Cys 160	agc Ser	tgc Cys	tct Ser	gac Asp	tgc Cys 165		534
G.	ag ln	agt Ser	ccc Pro	ttg Leu	tcc Ser 170	aca Thr	tca Ser	61 À 888	ttt Phe	act Thr 175	tcc Ser	ccc Pro	att Ile	tga		gtg Val 180		582
a i	et.	gact	ccaa	atc t	tttc	cagg	a aa	gcac	tgt	tco	ctca	atgt	gtgo	cagto	ggt			635
gt	at	caat	aa a	gata	gaga	a cg	ctat	tg										663
<2 <2	210 211 212 213	> 1 > F	243 78 PRT	sapi	ens													
< 4	00	> 2	43															
Se 1	r	Ser	Ser	Ser	Trp 5	Asp	Asn	Leu	Leu	Glu 10	Ser	Leu	Ser	Leu	Ser 15	Thr		
Va	1 :	rrp	Asn	Trp 20	Ile	Gln .	Ala		Phe 25	Leu	Gly	Glu	Thr	Ser 30	Ala	Pro		
Gl	n (ale	Thr 35	Ser :	Leu (Gly !	Leu !	Leu 40	Asp	Asn	Leu	Ala	Pro 45	Ala	Val	Gln		
11	e I	11e 50	Leu :	Arg :	Ile :	Ser !	Phe 1 55	Leu	Ile	Leu		Gly 60	Ile	Gly	Ile	Тут	4.	
A1 65	a I	Leu '	Trp :	Lys 1	Arg :	Ser 1	(le (Gln :	Ser		Gln 75	Lys	Thr	Leu		Phe 80		
٧a	1 1	le '	Thr 1	Leu 1	ryr I	Lys I	Leu 1	fyr 1	Lys	Lys	Gly .	Ser 1	His	Ile	Phe	Glu		

Ala	Leu	Leu	Ala 100	Asn	Pro	Glu	Gly	Ser 105	Gly					L.ST Asp		
Asn i	Asn	Leu 115	Phe	Leu	Ser	Leu	Gly 120	Leu	Gln	Glu	Lys	Ile 125	Leu	Lуs	Lys	
Leu i	Lys 130	Thr	Val	Glu	Asn	Lys 135	Met	Lys	Asn	Leu	Glu 140	Gly	Ile	Ile	Val	
Ala (Gln	Lys	Pro	Ala	Thr 150	Lys	Arg	Asp	Cys	Ser 155	Ser	Glu	Pro	Tyr	Cys 160	
Ser (Cys	Ser	Asp	Cys 165	Gln	Ser	Pro	Leu	Ser 170	Thr	Ser	Gly	Phe	Thr 175	Ser	
Pro :	Ile															
<210: <211: <212: <213:	> 5 > E	244 641 0NA Iomo	sapi	ens												
<220: <221: <222: <223:	> C	DS (62).	. (34	19)												
<400 cata		!44 tt g	jccad	ctcto	ja gt	ttgg	, jcatt	ato	gtgtt	cga	att	taac	ca c	catat	ctatt	60
g ato Men	g tg t Cy	jc tt /s Ph	t go ne Al	t gg la Gl	jt tt Ly Ph	t ag ie Se	gt tt er Ph	t aa ne Ly	ng ga /s Gl	lu L	aa at /s I]	a tt le Ph	t at ne Il	t go le Al	t tta .a Leu	109
gca 1 Ala 1																157
cta (205
gat (Asp \																253
gga (Gly 1 65																301
tat d Tyr A																349
taaaa	aagt	tt a	cctç	tcat	c at	ctgo	ctgo	tto	tttt	aat	gaat	tatt	tc a	catç	acaga	409
							_	-	_					-	acatg	469
				gctt	t to	ttgg	actt	ttt	acto	caa	agtt	aatt	ta a	taaa	aataa	529
tatta	aaat	gg a	a													541
<210: <211: <212: <213:	> 9 > P	45 6 RT Iomo	sapi	ens												÷
<400;	> 2	45														
Met (Cys	Phe	Ala	Gly 5	Phe	Ser	Phe	Lys	Glu 10	Lys	Ile	Phe	Ile	Ala 15	Leu	

16U 200 PCT FINAL.ST25

Ala Trp Met Pro Lys Ala Thr Val Gln Ala Val Leu Gly Pro Leu Ala Leu Glu Thr Ala Arg Val Ser Ala Pro His Leu Glu Pro Tyr Ala Lys Asp Val Met Ser Val Ala Phe Leu Ala Ile Ser Ile Thr Ala Pro Asn Gly Ala Leu Leu Met Gly Ile Leu Gly Pro Lys Met Leu Thr Arg His 65 70 75 80 Tyr Asp Pro Ser Lys Ile Lys Leu Gln Leu Ser Thr Leu Glu His His <210> 246 <211> 2499 <212> DNA Homo sapiens <220> <221> CDS <222> (128)..(2284) <223> <400> 246 gcaagaggcc cettgtggcc accgagtcct ccgacgccct cgccaggctg gcctttqqqt 60 tggcccaggc aggacgggct gccgagagca ctcgggccgc gtcgccagga gccgcccagg 120 gtgagcc atg ttc gta ggc gtc gcc cgg cac tct ggg agc cag gat gaa Met Phe Val Gly Val Ala Arg His Ser Gly Ser Gln Asp Glu $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 10$ 169 gtc tca agg gga gta gag ccg ctg gag gcc gcg cgg gcc cag cct gct Val Ser Arg Gly Val Glu Pro Leu Glu Ala Ala Arg Ala Gln Pro Ala 15 20 25 217 aag gac agg agg gcc aag gga acc ccg aag tcc tcg aag ccc ggg aaa Lys Asp Arg Ala Lys Gly Thr Pro Lys Ser Ser Lys Pro Gly Lys 265 aaa cac cgg tat ctg aga cta ctt cca gag gcc ttg ata agg ttc ggc Lys His Arg Tyr Leu Arg Leu Leu Pro Glu Ala Leu Ile Arg Phe Gly 50 55 60313 ggt ttc cga aaa agg aaa aaa gcc aag tcc tca gtt tcc aag aag ccg Gly Phe Arg Lys Arg Lys Lys Ala Lys Ser Ser Val Ser Lys Lys Pro 65 70 75 361 gga gaa gtg gat gac agt ttg gag cag ccc tgt ggt ttg ggc tgc tta Gly Glu Val Asp Asp Ser Leu Glu Gln Pro Cys Gly Leu Gly Cys Leu 80 85 90409 gtc agc acc tgc tgt gag tgt tgc aat aac att cgc tgc ttc atg att Val Ser Thr Cys Cys Glu Cys Cys Asn Asn Ile Arg Cys Phe Met Ile 95 100 105 110457 ttc tac tgc atc ctg ctc ata tgt caa ggt gtg gtg ttt ggt ctt ata Phe Tyr Cys Ile Leu Leu Ile Cys Gln Gly Val Val Phe Gly Leu Ile 115 120 125505 gat gtc agc att ggc gat ttt cag aag gaa tat caa ctg aaa acc att Asp Val Ser Ile Gly Asp Phe Gln Lys Glu Tyr Gln Leu Lys Thr Ile 130 135 140 553 gag aag ttg gca ttg gaa aag agt tac gat att tca tct ggc ctg gta Glu Lys Leu Ala Leu Glu Lys Ser Tyr Asp Ile Ser Ser Gly Leu Val 145 150 155 601

gca ata ttt ata gca ttc tat gga gac aga aaa aaa gta ata tgg ttt Ala Ile Phe Ile Ala Phe Tyr Gly Asp Arg Lys Lys Val Ile Trp Phe

	160					165				16U	200 170	PCT	FINA	L.ST	25	
gta Val 175	gct Ala	tcc Ser	tcc Ser	ttt Phe	tta Leu 180	ata Ile	gga Gly	ctt Leu	gga Gly	tca Ser 185	ctt Leu	tta Leu	tgt Cys	gct Ala	ttt Phe 190	697
cca Pro	tcc Ser	att Ile	aat Asn	gaa Glu 195	gaa Glu	aat Asn	aaa Lys	caa Gln	agt Ser 200	aag Lys	gta Val	gga Gly	att Ile	gaa Glu 205	gat Asp	745
att Ile	tgc Cys	gaa Glu	gaa Glu 210	ata Ile	aag Lys	gtt Val	gtc Val	agt Ser 215	ggt Gly	tgc Cys	cag Gln	agc Ser	agt Ser 220	ggt Gly	ata Ile	793
tca Ser	ttc Phe	caa Gln 225	tca Ser	aaa Lys	tac Tyr	ctg Leu	tct Ser 230	ttc Phe	ttc Phe	atc Ile	ctt Leu	ggg Gly 235	cag Gln	act Thr	gtg Val	841
cag Gln	gga Gly 240	ata Ile	gca Ala	gga Gly	atg Met	cct Pro 245	ctt Leu	tat Tyr	atc Ile	ctt Leu	gga G1y 250	ata Ile	acc Thr	ttt Phe	att Ile	889
gat Asp 255	gag Glu	aat Asn	gtt Val	gct Ala	aca Thr 260	cac His	tca Ser	gct Ala	ggt Gly	atc Ile 265	tat Tyr	tta Leu	ggt Gly	att Ile	gca Ala 270	937
gaa Glu	tgt Cys	aca Thr	tca Ser	atg Met 275	att Ile	gga Gly	tat Tyr	gct Ala	ctg Leu 280	ggt Gly	tat Tyr	gtg Val	cta Leu	gga Gly 285	gca Ala	985
cca Pro	cta Leu	gtt Val	aaa Lys 290	gtc Val	cct Pro	gag Glu	aat Asn	act Thr 295	act Thr	tct Ser	gca Ala	aca Thr	aac Asn 300	act Thr	aca Thr	1033
gtc Val	aat Asn	aat Asn 305	ggt Gly	agt Ser	cca Pro	gaa Glu	tgg Trp 310	cta Leu	tgg Trp	act Thr	tgg Trp	tgg Trp 315	att Ile	aat Asn	ttt Phe	1081
Leu	Phe 320	Ala	Ala	Val	Val	Ala 325	Trp	Cys	Thr	Leu	11e 330		Leu	Ser	Cys	1129
ttt Phe 335	cca Pro	aac Asn	aat Asn	atg Met	cca Pro 340	ggt Gly	tca Ser	aca Thr	cgg Arg	ata Ile 345	aaa Lys	gct Ala	agg Arg	aaa Lys	cgt Arg 350	1177
Lys	Gln	Leu	His	Phe 355	Phe	Asp	Ser	Arg	Leu 360	Lys	Asp		Lys	Leu 365	Gly	1225
Thr	Asn	Ile	Lys 370	Asp	Leu	Cys	Ala	Ala 375	Leu	Trp	Ile		Met 380	Arg	Asn	1273
Pro	Val	Leu 385	Ile	Cys	Leu	Ala	Leu 390	Ser	Lys	Ala	Thr	Glu 395	Tyr	Leu		1321
Ile	11e 400	Gly	Ala	Ser	Glu	Phe 405	Leu	Pro	Ile	Tyr	410	Glu	Asn	Gin	ttt Phe	1369
11e 415	Leu	Thr	Pro	Thr	Val 420	Ala	Thr	Thr	Leu	425	G1)	/ Leu	Val	Leu	att Ile 430	1417
Pro	Gly	Gly	Ala	435	Gly	Gln	Leu	Leu	440	Gly	va]	Ile	· Val	Ser 445		1465
Leu	Glu	Met	Ser 450	Cys	Lys	Ala	Leu	455	Arg	Phe	· Ile	e Met	460	Thr	stct Ser	1513
Val	Ile	Ser 465	Leu	Ile	e Leu	Leu	470	Phe	: Ile	· Ile	Phe	475	Arg	Cys	aat Asn	1561
cca	gtg	caa	ttt	gct	. ggg	ato	aat	gaa	a gat	tat	ga1	ggá Page			aag	1609

16U 200 PCT FINAL.ST25 Pro Val Gln Phe Ala Gly Ile Asn Glu Asp Tyr Asp Gly Thr Arg Lys 480 485 490	
ttg gga aac ctc acg gct cct tgc aat gaa aaa tgt aga tgc tca tct Leu Gly Asn Leu Thr Ala Pro Cys Asn Glu Lys Cys Arg Cys Ser Ser 495 500 505 510	1657
tca att tat tct tct ata tgt gga aga gat gat att gaa tat ttt tct Ser Ile Tyr Ser Ser Ile Cys Gly Arg Asp Asp Ile Glu Tyr Phe Ser 515 520 525	1705
gcc tgc ttt gca ggg tgt aca tat tct aaa gca caa aac caa aaa aag Ala Cys Phe Ala Gly Cys Thr Tyr Ser Lys Ala Gln Asn Gln Lys Lys 530 535 540	1753
atg tac tac aat tgt tct tgc att aaa gaa gga tta ata act gca gat Met Tyr Tyr Asn Cys Ser Cys Ile Lys Glu Gly Leu Ile Thr Ala Asp 545 550 555	1801
gca gaa ggt gat ttt att gat gcc aga ccc ggg aaa tgt gat gca aag Ala Glu Gly Asp Phe Ile Asp Ala Arg Pro Gly Lys Cys Asp Ala Lys 560 565 570	1849
tgc tat aag tta cct ttg ttc att gct ttt atc ttt tct aca ctt ata Cys Tyr Lys Leu Pro Leu Phe Ile Ala Phe Ile Phe Ser Thr Leu Ile 575 580 585 590	1897
ttt.tct ggt ttt tct ggt gta cca atc gtc ttg gcc atg acg cgg gtt Phe Ser Gly Phe Ser Gly Val Pro Ile Val Leu Ala Met Thr Arg Val 595 600 605	1945
gta cct gac aaa ctg cgt tct ctg gcc ttg ggt gta agc tat gtg att Val Pro Asp Lys Leu Arg Ser Leu Ala Leu Gly Val Ser Tyr Val Ile 610 615 620	1993
ttg aga ata ttt ggg act att cct gga cca tca atc ttt aaa atg tca Leu Arg Ile Phe Gly Thr Ile Pro Gly Pro Ser Ile Phe Lys Met Ser 625 630 635	2041
gga gaa act tct tgt att tta cgg gat gtt aat aaa tgt gga cac aca Gly Glu Thr Ser Cys Ile Leu Arg Asp Val Asn Lys Cys Gly His Thr 640 645 650	2089
gga cgt tgt tgg ata tat aac aag aca aaa atg gct ttc tta ttg gta Gly Arg Cys Trp Ile Tyr Asn Lys Thr Lys Met Ala Phe Leu Leu Val 655 660 665 670	2137
gga ata tgt ttt ctt tgc aaa cta tgc act atc atc ttc act act att Gly Ile Cys Phe Leu Cys Lys Leu Cys Thr Ile Ile Phe Thr Thr Ile 675 680 685	2185
gca ttt ttc ata tac aaa cgt cgt cta aat gag aac act gac ttc cca Ala Phe Phe Ile Tyr Lys Arg Arg Leu Asn Glu Asn Thr Asp Phe Pro 690 695 700	2233
gat gta act gtg aag aat cca aaa gtt aag aaa aaa gaa gaa act gac Asp Val Thr Val Lys Asn Pro Lys Val Lys Lys Glu Glu Thr Asp 705 710 715	2281
ttg taactggatc atcattgtga ttgcagatca tttgaggatc agagtgtgaa Leu	2334
aacgagtttc tcttttacag attctccaag atttgtttct gtgcccaact ttcagaagag	2394
gaaaatcaca cattatgttt acataagtag caaaaatata tttatggtga tctgcatttt	2454
cataataaag tgtcctattg tgaaacaaaa aaaaaaaaaa	2499
<210> 247 <211> 719 <212> PRT <213> Homo sapiens	
<400> 247	

16U 200 PCT FINAL.ST25

Arg Gly Val Glu Pro Leu Glu Ala Ala Arg Ala Gln Pro Ala Lys Asp 20 25 30 Arg Arg Ala Lys Gly Thr Pro Lys Ser Ser Lys Pro Gly Lys Lys His 35 40 45 Arg Tyr Leu Arg Leu Leu Pro Glu Ala Leu Ile Arg Phe Gly Gly Phe 50 60Arg Lys Arg Lys Lys Ala Lys Ser Ser Val Ser Lys Lys Pro Gly Glu 65 70 75 80 Val Asp Asp Ser Leu Glu Gln Pro Cys Gly Leu Gly Cys Leu Val Ser 85 90 95 Thr Cys Cys Glu Cys Cys Asn Asn Ile Arg Cys Phe Met Ile Phe Tyr 100 105 110 Cys Ile Leu Leu Ile Cys Gln Gly Val Val Phe Gly Leu Ile Asp Val 115 120 125 Ser Ile Gly Asp Phe Gln Lys Glu Tyr Gln Leu Lys Thr Ile Glu Lys 130 135 140 Leu Ala Leu Glu Lys Ser Tyr Asp Ile Ser Ser Gly Leu Val Ala Ile 145 150 150 160 Phe Ile Ala Phe Tyr Gly Asp Arg Lys Lys Val Ile Trp Phe Val Ala 165 170 175 Ser Ser Phe Leu Ile Gly Leu Gly Ser Leu Leu Cys Ala Phe Pro Ser 180 185 190 Ile Asn Glu Glu Asn Lys Gln Ser Lys Val Gly Ile Glu Asp Ile Cys 195 200 205 Glu Glu Ile Lys Val Val Ser Gly Cys Gln Ser Ser Gly Ile Ser Phe 210 215 220 Gln Ser Lys Tyr Leu Ser Phe Phe Ile Leu Gly Gln Thr Val Gln Gly 225 230 235 240 Ile Ala Gly Met Pro Leu Tyr Ile Leu Gly Ile Thr Phe Ile Asp Glu 245 250 255Asn Val Ala Thr His Ser Ala Gly Ile Tyr Leu Gly Ile Ala Glu Cys 260 265 270Thr Ser Met Ile Gly Tyr Ala Leu Gly Tyr Val Leu Gly Ala Pro Leu 275 280 285 Val Lys Val Pro Glu Asn Thr Thr Ser Ala Thr Asn Thr Thr Val Asn 290 295 300 Asn Gly Ser Pro Glu Trp Leu Trp Thr Trp Trp Ile Asn Phe Leu Phe 305 310 320

Ala Ala Val Val Ala Trp Cys Thr Leu Ile Pro Leu Ser Cys Phe Pro

16U 200 PCT FINAL.ST25 25 330 335

Asn Asn Met Pro Gly Ser Thr Arg Ile Lys Ala Arg Lys Arg Lys Gln 340 345 350

Leu His Phe Phe Asp Ser Arg Leu Lys Asp Leu Lys Leu Gly Thr Asn 355 360 365

Ile Lys Asp Leu Cys Ala Ala Leu Trp Ile Leu Met Arg Asn Pro Val 370 380

Leu Ile Cys Leu Ala Leu Ser Lys Ala Thr Glu Tyr Leu Val Ile Ile 385 390 395 400

Gly Ala Ser Glu Phe Leu Pro Ile Tyr Leu Glu Asn Gln Phe Ile Leu 405 410 415

Thr Pro Thr Val Ala Thr Thr Leu Ala Gly Leu Val Leu Ile Pro Gly $420 \hspace{1cm} 425 \hspace{1cm} 430$

Gly Ala Leu Gly Gln Leu Leu Gly Gly Val Ile Val Ser Thr Leu Glu $435 \,$ 440 $\,$ 445

Met Ser Cys Lys Ala Leu Met Arg Phe Ile Met Val Thr Ser Val Ile 450 460

Ser Leu Ile Leu Leu Val Phe Ile Ile Phe Val Arg Cys Asn Pro Val 465 470 475 480

Gln Phe Ala Gly Ile Asn Glu Asp Tyr Asp Gly Thr Arg Lys Leu Gly 485 490 495

As n Leu Thr Ala Pro Cys As n Glu Lys Cys Arg Cys Ser Ser Ser Ile 500 505 510

Tyr Ser Ser Ile Cys Gly Arg Asp Asp Ile Glu Tyr Phe Ser Ala Cys 515 520 525

Phe Ala Gly Cys Thr Tyr Ser Lys Ala Gln Asn Gln Lys Lys Met Tyr 530 540

Tyr Asn Cys Ser Cys Ile Lys Glu Gly Leu Ile Thr Ala Asp Ala Glu 545 550 560

Gly Asp Phe Ile Asp Ala Arg Pro Gly Lys Cys Asp Ala Lys Cys Tyr 565 570 575

Lys Leu Pro Leu Phe Ile Ala Phe Ile Phe Ser Thr Leu Ile Phe Ser 580 585 590

Gly Phe Ser Gly Val Pro Ile Val Leu Ala Met Thr Arg Val Val Pro $595 \hspace{1.5cm} 600 \hspace{1.5cm} 605$

Asp Lys Leu Arg Ser Leu Ala Leu Gly Val Ser Tyr Val Ile Leu Arg 610 620

Ile Phe Gly Thr Ile Pro Gly Pro Ser Ile Phe Lys Met Ser Gly Glu 625 630 635 640

Thr Ser Cys Ile I	eu Arg Asp Val 45		200 PCT FINAL.S' Gly His Thr Gly 655	
Cys Trp Ile Tyr 7 660	sn Lys Thr Lys	s Met Ala Phe 665	Leu Leu Val Gly 670	Ile
Cys Phe Leu Cys I 675	ys Leu Cys Thi 680		Thr Thr Ile Ala 685	Phe
Phe Ile Tyr Lys A	rg Arg Leu Asr 695		Asp Phe Pro Asp 700	Val
Thr Val Lys Asn F 705	ro Lys Val Lys 710	s Lys Lys Glu 715	Glu Thr Asp Leu	
<210> 248 <211> 851 <212> DNA <213> Homo sapie	ns			
<220> <221> CDS <222> (37)(833) <223>)	·		
<400> 248 gcttctccca gctgga	gtag gtgggggaç		gag gcc ctt cct Glu Ala Leu Pro 5	
gtc aga tcc agc c Val Arg Ser Ser I 10				
gtg ctg ttg gtt o Val Leu Leu Val o 25				
aag atc aac ctc t Lys Ile Asn Leu F 40		p Val Ser Gly		
cgg ggg tcc tgt a Arg Gly Ser Cys A 55				
tgc ccc ctg ggc c Cys Pro Leu Gly C				
ccc gta tgg ctg o Pro Val Trp Leu V 90				
tgg ggc agc acc a Trp Gly Ser Thr I 105	ys Gly Leu Gly 110	y Leu Ala Leu O	Leu Ser Ala Trp 115	Glu
Gln Leu Gly Leu S 120		e Trp Thr Asp		
ctg cac ggc ctg a Leu His Gly Leu M 135				
	ys Ser His Cys 55	s Phe Arg Leu 160	Gly Arg Gln Leu 165	agt 534 Ser
aag gcc ttg caa g Lys Ala Leu Gln V 170	tg aac tgc gto al Asn Cys Val	g gta agg aag 1 Val Arg Lys 175	ctc ctg gta cag Leu Leu Val Gln 180	ctg 582 Leu

	Tyr Trp Trp		16U 200 atg act gcc Met Thr Ala		tgg 630
			acc tgc ctg Thr Cys Leu 210		
		His Thr Thr	cag ctg gcc Gln Leu Ala 225		
			tcc ttg ctg Ser Leu Leu 240		Ser
			gtt ttg cca Val Leu Pro		
ccc aga gaa Pro Arg Gli 269		cccatctgcc			851
<210> 249 <211> 265 <212> PRT <213> Home	o sapiens				
<400> 249					
Met Glu Ala 1	Leu Pro Pro 5	o Val Arg Ser	Ser Leu Leu 10	Gly Ile Leu 15	. Leu
Gln Val Th	Arg Leu Sei 20	Val Leu Leu 25	Val Gln Asn	Arg Asp His	Leu
Tyr Asn Phe	e Leu Leu Leu	ı Lys Ile Asn 40	Leu Phe Asn	His Trp Val	Ser
Gly Leu Ala 50	a Gln Glu Ala	a Arg Gly Ser 55	Cys Asn Trp 60	Gln Ala His	: Leu
Pro Leu Gly	/ Ala Ala Ala 70	a Cys Pro Leu	Gly Gln Ala 75	Leu Trp Ala	61y 80
Leu Ala Le	ı Ile Gln Val 85	Pro Val Trp	Leu Val Leu 90	Gln Gly Pro	Arg
Leu Met Tr	Ala Gly Met 100	Trp Gly Ser 105	Thr Lys Gly	Leu Gly Leu 110	ı Ala
Leu Leu Ser 11		ı Gln Leu Gly 120	Leu Ser Val	Ala Ile Trp 125	Thr
Asp Leu Phe 130	e Leu Ser Cys	Leu His Gly 135	Leu Met Leu 140	Val Ala Leu	Leu
Leu Val Val 145	Val Thr Trp		Gln Lys Ser 155	His Cys Phe	2 Arg 160
Leu Gly Arc	g Gln Leu Sei 165	Lys Ala Leu	Gln Val Asn 170	Cys Val Val	
Lys Leu Leu	ı Val Gln Leu 180	a Arg Arg Leu 185	Tyr Trp Trp	Val Glu Thr 190	: Met

16U 200 PCT FINAL.ST25

60

Thr Ala Leu Thr Ser Trp His Leu Ala Tyr Leu Ile Thr Trp Thr Thr Cys Leu Ala Ser His Leu Leu Gln Ala Ala Phe Glu His Thr Thr Gln

Leu Ala Glu Ala Gln Glu Val Glu Pro Gln Glu Val Ser Gly Ser Ser

Leu Leu Pro Ser Leu Ser Ala Ser Ser Asp Ser Glu Ser Gly Thr Val

Leu Pro Glu Gln Glu Thr Pro Arg Glu 260

<210> 250 <211> 784 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (97)..(579) <223>

<400> 250 gctttcagtt gtaacggact tcatcacatc acaaattgta ctcgttctca tccttttaag aaagttcaga cccaggaaaa tttccatagt acctta atg aaa aag ata gaa atc 114 Met Lys Lys Ile Glu Ile agt ggg acg tgt ctt tcc ttt cat ctc ctt ttc ggc ttg gaa atc aga 162 Ser Gly Thr Cys Leu Ser Phe His Leu Leu Phe Gly Leu Glu Ile Arg

atg aga agg att gtt ttt gct ggt gtt atc tta ttc cgc ctc tta ggt Met Arg Arg Ile Val Phe Ala Gly Val Ile Leu Phe Arg Leu Leu Gly 210

gtt atc tta ttc cgc ctc tta ggt gtt atc tta ttc ggc cgc tta ggt Val Ile Leu Phe Arg Leu Leu Gly Val Ile Leu Phe Gly Arg Leu Gly 258

gac ctg gga acc tgc cag aca aaa cct ggt cag tac tgg aaa gaa gag 306 Asp Leu Gly Thr Cys Gln Thr Lys Pro Gly Gln Tyr Trp Lys Glu Glu

gtc cac att caa gat gtt gga ggt ttg att tgc aga gca tgc aat ctt Val His Ile Gln Asp Val Gly Gly Leu Ile Cys Arg Ala Cys Asn Leu 354 80

tca ctg ccc ttc cat gga tgt ctt tta gac ctg gga acc tgc cag gca 402 Ser Leu Pro Phe His Gly Cys Leu Leu Asp Leu Gly Thr Cys Gln Ala

gaa cct ggt cag tac tgt aaa gaa gag gtc cac att caa ggt ggc att Glu Pro Gly Gln Tyr Cys Lys Glu Glu Val His Ile Gln Gly Gly Ile 450 110

caa tgg tat tca gtc aaa ggc tgc aca aag aac aca tca gag tgc ttc 498 Gln Trp Tyr Ser Val Lys Gly Cys Thr Lys Asn Thr Ser Glu Cys Phe

aag agt act ctc gtc aag aga att ctg caa ctg cat gaa ctt gta act Lys Ser Thr Leu Val Lys Arg Ile Leu Gln Leu His Glu Leu Val Thr 546 135

act cac tgc tgc aat cat tct ttg tgc aat ttc tgagtcagtg gcccatatct Thr His Cys Cys Asn His Ser Leu Cys Asn Phe 599

aaaatgcttg gcagatcaat cagtctcgaa gcctgacctg gctatcacaa aatgatggct 659

100 200 PCI FINAL.5125	
attgtcaatt agcccacttc agaaacctca gacccttgta ggtagaagga attttgatct	719
gaaattgact ttggttttca atattcccaa tatctccccc accacctcca actcatctga	779
gaaat	784
<210> 251 <211> 161 <212> PRT <213> Homo sapiens	
<400> 251	
Met Lys Lys Ile Glu Ile Ser Gly Thr Cys Leu Ser Phe His Leu Leu 1 10 15	
Phe Gly Leu Glu Ile Arg Met Arg Ile Val Phe Ala Gly Val Ile 20 25 30	
Leu Phe Arg Leu Leu Gly Val Ile Leu Phe Arg Leu Leu Gly Val Ile 35 40 45	
Leu Phe Gly Arg Leu Gly Asp Leu Gly Thr Cys Gln Thr Lys Pro Gly 50 55 60	
Gln Tyr Trp Lys Glu Glu Val His Ile Gln Asp Val Gly Gly Leu Ile 65 70 75 80	
Cys Arg Ala Cys Asn Leu Ser Leu Pro Phe His Gly Cys Leu Leu Asp 85 90 95	
Leu Gly Thr Cys Gln Ala Glu Pro Gly Gln Tyr Cys Lys Glu Glu Val	
His Ile Gln Gly Gly Ile Gln Trp Tyr Ser Val Lys Gly Cys Thr Lys 115 . 120 125	
Asn Thr Ser Glu Cys Phe Lys Ser Thr Leu Val Lys Arg Ile Leu Gln 130 135 140	
Leu His Glu Leu Val Thr Thr His Cys Cys Asn His Ser Leu Cys Asn 145 150 155 160	
Phe	
<210> 252 <211> 2205 <212> DNA <213> Homo sapiens	
<220> <221> CDS <222> (24)(1850) <223>	
<pre><400> 252 gggcggtgta gtgcaggtcc gcc atg gct gag gcg tca cgg tgg cac cga ggc</pre>	53
ggg gct tcg aaa cat aag ttg cat tac aga aag gaa gta gaa att aca Gly Ala Ser Lys His Lys Leu His Tyr Arg Lys Glu Val Glu Ile Thr 15 20 25	101
acc aCa ctt cag gaa ttg tta ctc tac ttt att ttt tta ata aac cta Page 165	149

BNSDOCID: <WO _ _ 03089583A2 1 >

Thr	Thr	Leu	Gln 30	Glu	Leu	Leu	Leu	Tyr 35	Phe					AL.ST Asn			
					999 Gly											. 19	97
					cta Leu											24	45
					tcc Ser 80											29	93
					ttg Leu											34	41
					aat Asn											36	89
					gtt Val											40	37
					tat Tyr											4 8	85
					tct Ser 160											51	33
					tgg Trp											58	81
					ctt Leu											62	29
					aaa Lys											6*	77
					atc Ile											72	25
					gct Ala 240											7	73
					gca Ala											82	21
					ctc Leu											81	69
					aca Thr											9:	17
caa Gln	gaa Glu 300	gtc Val	aaa Lys	aaa Lys	ata Ile	aaa Lys 305	gaa Glu	ttt Phe	aag Lys	tct Ser	gcc Ala 310	tat Tyr	ttc Phe	aaa Lys	agt Ser	9(65
					gaa Glu 320											10:	13
					tac Tyr											100	61

Page 166

cag Gln	ctg Leu	ttg Leu	aaa Lys 350	agt Ser	act Thr	gaa Glu	aaa Lys	tat Tyr 355	tca Ser	gat	ttc	tat	ttt	L.ST ctt Leu	gca	1109
														ttt Phe		1157
														atg Met		1205
cag Gln 395	ctg Leu	tca Ser	tca Ser	acc Thr	ttg Leu 400	tcc Ser	cgt Arg	tgt Cys	gtt Val	aaa Lys 405	gac Asp	ata Ile	gta Val	gga Gly	ttt Phe 410	1253
														gga Gly 425		1301
														aat Asn		1349
														gct Ala		1397
														act Thr		1445
														att Ile		1493
														aga Arg 505		1541
														aat Asn		1589
														aag Lys		1637
acc Thr	aaa Lys 540	ggc Gly	agc Ser	gga Gly	gat Asp	ttg Leu 545	gct Ala	gaa Glu	caa Gln	gcc Ala	aga Arg 550	aga Arg	gaa Glu	ggc Gly	ttt Phe	1685
														aaa Lys		1733
														tac Tyr 585		1781
cct Pro	gtc Val	act Thr	caa Gln 590	gaa Glu	gaa Glu	ttt Phe	cga Arg	gat Asp 595	ggc Gly	acc Thr	aca Thr	acc Thr	aag Lys 600	tac Tyr	aaa Lys	1829
					agt Ser		tgac	aaaa	cg a	attt	aagt	a cc	agco	aagt		1880
acac	acga	tg a	tago	ttca	a gg	aata	caac	: tga	cttt	atg	atat	gaat	tt t	caag	gaacg	1940
tato	ttat	at g	gatt	ttga	a ga	atct	tgtt	tgc	ttat	aag	aact	tcaa	iga a	gcct	aagct	2000
tggc	ttta	at t	ttct	tgta	c to	tctg	tact	cct	caag	cac	tgga	acac	ga t	cctc	tttct	2060
gggc	atto	ct a	gggg	agaa	a at	aaaa	tttg	taa	tgtt	cta	gaga	tcat	tt g	gaaa	aaaag	2120
atco	aaaa	gt t	gtct	taat	a tg	agac	atac	tgt	tact	aaa	cata	agtt	ca a	ataa	aaagt	2180
tgtt	ctga	aa a	aaaa	aaaa	a aa	aaa										2205

Page 167

16U 200 PCT FINAL.ST25

<210> 253 <211> 609

<212> PRT <213> Homo sapiens

<400> 253

Met Ala Glu Ala Ser Arg Trp His Arg Gly Gly Ala Ser Lys His Lys 1 10 15

Leu His Tyr Arg Lys Glu Val Glu Ile Thr Thr Thr Leu Gln Glu Leu 20 25 30

Leu Leu Tyr Phe Ile Phe Leu Ile Asn Leu Cys Ile Leu Thr Phe Gly 35 40 45

Met Val Asn Pro His Met Tyr Tyr Leu Asn Lys Val Met Ser Ser Leu 50 60

Phe Leu Asp Thr Ser Val Pro Gly Glu Glu Arg Thr Asn Phe Lys Ser 65 70 75 80

Ile Arg Ser Ile Thr Asp Phe Trp Lys Phe Met Glu Gly Pro Leu Leu $85 \hspace{1.5cm} 90 \hspace{1.5cm} 95$

Glu Gly Leu Tyr Trp Asp Ser Trp Tyr Asn Asn Gln Gln Leu Tyr Asn 100 105 110

Leu Lys Asn Ser Ser Arg Ile Tyr Tyr Glu Asn Ile Leu Leu Gly Val 115 120 125

Pro Arg Val Arg Gln Leu Lys Val Arg Asn Asn Thr Cys Lys Val Tyr 130 135 140

Ser Ser Phe Gln Ser Leu Met Ser Glu Cys Tyr Gly Lys Tyr Thr Ser 145 150 155 160

Ala Asn Glu Asp Leu Ser Asn Phe Gly Leu Gln Ile Asn Thr Glu Trp 165 170 175

Arg Tyr Ser Thr Ser Asn Thr Asn Ser Pro Trp His Trp Gly Phe Leu 180 185 190

Gly Val Tyr Arg Asn Gly Gly Tyr Ile Phe Thr Leu Ser Lys 195 200 205

Ser Glu Thr Lys Asn Lys Phe Ile Asp Leu Arg Leu Asn Ser Trp Ile 210 215 220

Thr Arg Gly Thr Arg Val Ile Phe Ile Asp Phe Ser Leu Tyr Asn Ala 225 230 235 240

Asn Val Asn Leu Phe Cys Ile Ile Arg Leu Val Ala Glu Phe Pro Ala 245 250 255

Thr Gly Gly Ile Leu Thr Ser Trp Gln Phe Tyr Ser Val Lys Leu Leu 260 265 270

Arg Tyr Val Ser Tyr Tyr Asp Tyr Phe Ile Ala Ser Cys Glu Ile Thr 275 280 285

WO 03/089583

16U 200 PCT FINAL.ST25

Phe	Cys	Ile	Phe	Leu	Phe	Val	Phe	Thr	Thr	Gln	Glu	Val	Lys	Lys	Ile
	290					295					300		-	-	

- Lys Glu Phe Lys Ser Ala Tyr Phe Lys Ser Ile Trp Asn Trp Leu Glu 305 310 315 320
- Leu Leu Leu Leu Leu Cys Phe Val Ala Val Ser Phe Asn Thr Tyr 325 330 335
- Tyr Asn Val Gln Ile Phe Leu Leu Leu Gly Gln Leu Leu Lys Ser Thr 340 345 350
- As As Ile Ile Ala Ile Thr Ile Phe Phe Ala Trp Ile Lys Ile Phe 370 375 380
- Ser Arg Cys Val Lys Asp Ile Val Gly Phe Ala Ile Met Phe Phe Ile 405 410 415
- Ile Phe Phe Ala Tyr Ala Gln Leu Gly Phe Leu Val Phe Gly Ser Gln 420 425 430
- Val Asp Asp Phe Ser Thr Phe Gln Asn Ser Ile Phe Ala Gln Phe Arg 435 440 445
- Ile Val Leu Gly Asp Phe Asn Phe Ala Gly Ile Gln Gln Ala Asn Pro 450 460
- Ile Leu Gly Pro Ile Tyr Phe Ile Thr Phe Ile Phe Phe Val Phe 465
 470
 Phe 475
 Phe 480
- Val Leu Leu Asn Met Phe Leu Ala Ile Ile Asn Asp Thr Tyr Ser Glu 485 490 495
- Val Lys Ala Asp Tyr Ser Ile Gly Arg Arg Pro Asp Phe Glu Leu Gly 500 510
- Lys Met Ile Lys Gln Ser Tyr Lys Asn Val Leu Glu Lys Phe Arg Leu 515 520 525
- Lys Lys Ala Gln Lys Asp Glu Asp Lys Lys Thr Lys Gly Ser Gly Asp 530 535 540
- Leu Ala Glu Gln Ala Arg Arg Glu Gly Phe Asp Glu Asn Glu Ile Gln 545 550 560
- Asn Ala Glu Gln Met Lys Lys Trp Lys Glu Arg Leu Glu Lys Lys Tyr 565 570 575
- Tyr Ser Met Glu Ile Gln Asp Asp Tyr Gln Pro Val Thr Gln Glu Glu 580 585 590
- Phe Arg Asp Gly Thr Thr Lys Tyr Lys Met Arg Phe Ser Leu Ser Page 169

16U 200 PCT FINAL.ST25 595 600 605

Ala .	
<210> 254 <211> 1615 <212> DNA <213> Homo sapiens	
<220> <221> CDS <222> (1)(1584) <223>	
<pre><400> 254 atg gcc gct tac caa caa gaa gag cag atg cag ctt ccc cga gct gat Met Ala Ala Tyr Gln Gln Glu Glu Gln Met Gln Leu Pro Arg Ala Asp 1 5 10 15</pre>	48
gcc att cgt tca cgt ctc atc gat act ttc tct ctc att gag cat ttg Ala lle Arg Ser Arg Leu lle Asp Thr Phe Ser Leu lle Glu His Leu 20 25 30	96
Caa ggc ttg agc caa gct gtg ccg cgg cac act atc agg gag tta ctt Gln Gly Leu Ser Gln Ala Val Pro Arg His Thr Ile Arg Glu Leu Leu 35 40 45	144
gat cct tcc cgc cag aag aaa ctt gta ttg gga gat caa cac cag cta Asp Pro Ser Arg Gln Lys Lys Leu Val Leu Gly Asp Gln His Gln Leu 50 55 60	192
gtg cgt ttc tct ata aag cct cag cgt ata gaa cag att tca cat gcc Val Arg Phe Ser Ile Lys Pro Gln Arg Ile Glu Gln Ile Ser His Ala 65 70 75 80	240
cag agg ctg ttg agc agg ctt cat gtg cgc tgc agt cag agg cca cct Gln Arg Leu Leu Ser Arg Leu His Val Arg Cys Ser Gln Arg Pro Pro 85 90 95	288
ctt tct ttg tgg gcc gga tgg gtc ctt gag tgt cct ctc ttc aaa aac Leu Ser Leu Trp Ala Gly Trp Val Leu Glu Cys Pro Leu Phe Lys Asn 100 105 110	336
ttc atc atc ttc ctg gtc ttt ttg aat acg atc ata ttg atg gtt gaa Phe Ile Ile Phe Leu Val Phe Leu Asn Thr Ile Ile Leu Met Val Glu 115 120 125	384
ata gaa ttg ctg gaa tcc aca aat acc aaa cta tgg cca ttg aag ctg Ile Glu Leu Leu Glu Ser Thr Asn Thr Lys Leu Trp Pro Leu Lys Leu 130 135 140	432
acc ttg gag gtg gca gct tgg ttt atc ttg ctt att ttc atc ctg gag Thr Leu Glu Val Ala Ala Trp Phe Ile Leu Leu Ile Phe Ile Leu Glu 145 150 155 160	480
atc ctt ctt aag tgg cta tcc aac ttt tct gtt ttc tgg aag agt gcc Ile Leu Leu Lys Trp Leu Ser Asn Phe Ser Val Phe Trp Lys Ser Ala 165 170 175	528
tgg aat gtc ttt gac ttt gtt gtt acc atg ttg tcc ctg ctt ccc gag Trp Asn Val Phe Asp Phe Val Val Thr Met Leu Ser Leu Leu Pro Glu 180 185 190	576
gtt gtg gta ttg gta ggg gta aca ggc caa tcg gtg tgg ctt cag ctt Val Val Leu Val Gly Val Thr Gly Gln Ser Val Trp Leu Gln Leu 195 200 205	624
ctg agg atc tgc cgg gtg ctg agg tct ctc aaa ctc ctt gca caa ttc Leu Arg Ile Cys Arg Val Leu Arg Ser Leu Lys Leu Ala Gln Phe 210 220	:672
cgt caa att caa att att ttg gtc ctg gtc agg gcc ctc aag agc Arg Gln Ile Gln Ile Ile Ile Leu Val Leu Val Arg Ala Leu Lys Ser 235 230 235 240	720
atg acc ttc ctc ttg atg ttg ctg ctc atc ttc ttc tac att ttt gct	768

Met	Thr	Phe	Leu	Leu 245	Met	Leu	Leu	Leu	Ile 250	16U Phe	200 Phe	PCT Tyr	FIN) Ile	AL.ST Phe 255	r25 Ala	
gtg Val	act Thr	ggt Gly	gtc Val 260	tac Tyr	gtc Val	ttc Phe	tca Ser	gag Glu 265	tac Tyr	acc Thr	cgt Arg	tca Ser	cct Pro 270	cgt Arg	cag Gln	816
gac Asp	ctg Leu	gag Glu 275	tac Tyr	cat His	gtg Val	ttc Phe	ttc Phe 280	tcg Ser	gac Asp	ctc Leu	ccg Pro	aat Asn 285	tcc Ser	ctg Leu	gta Val	864
aca Thr	gtg Val 290	ttc Phe	att Ile	ctc Leu	ttc Phe	acc Thr 295	ttg Leu	gat Asp	cat His	tgg Trp	tat Tyr 300	gca Ala	ctg Leu	ctt Leu	cag Gln	912
gac Asp 305	gtc Val	tgg Trp	aag Lys	gtg Val	cct Pro 310	gaa Glu	gtc Val	agt Ser	cgc Arg	atc Ile 315	ttc Phe	agc Ser	agc Ser	atc Ile	tat Tyr 320	960
ttc Phe	atc Ile	ctt Leu	tgg Trp	ttg Leu 325	ttg Leu	ctt Leu	ggc Gly	tcc Ser	att Ile 330	atc Ile	ttt Phe	cga Arg	agt Ser	atc Ile 335	ata Ile	1008
gta Val	gcc Ala	atg Met	atg Met 340	gtt Val	act Thr	aac Asn	ttt Phe	cag Gln 345	aat Asn	atc Ile	agg Arg	aaa Lys	gag Glu 350	ctg Leu	aat Asn	1056
gag Glu	gag Glu	atg Met 355	gcg Ala	cgt Arg	cgg Arg	gag Glu	gtt Val 360	cag Gln	ctc Leu	aaa Lys	gct Ala	gac Asp 365	atg Met	ttc Phe	aag Lys	1104
cgg Arg	cag Gln 370	atc Ile	atc Ile	cag Gln	agg Arg	aga Arg 375	aaa Lys	aac Asn	atg Met	tca Ser	cat His 380	gaa Glu	gca Ala	ctg Leu	acg Thr	1152
tca Ser 385	agc Ser	cat His	agc Ser	aaa Lys	ata Ile 390	gag Glu	gac Asp	aga Arg	gga Gly	gct Ala 395	agt Ser	caa Gln	caa Gln	agg Arg	gaa Glu 400	1200
agt Ser	ttg Leu	gac Asp	tta Leu	tca Ser 405	gaa Glu	gtg Val	tct Ser	gaa Glu	gta Val 410	gag Glu	tct Ser	aat Asn	tat Tyr	ggt Gly 415	gcc Ala	1248
act Thr	gaa Glu	gag Glu	gat Asp 420	tta Leu	ata Ile	aca Thr	tct Ser	gca Ala 425	tca Ser	aaa Lys	aca Thr	gaa Glu	gag Glu 430	acc Thr	ttg Leu	1296
tca Ser	aaa Lys	aag Lys 435	aga Arg	gag Glu	tac Tyr	cag Gln	tct Ser 440	tcc Ser	tcc Ser	tgt Cys	gtc Val	tcc Ser 445	tcc Ser	aca Thr	tcc Ser	1344
Ser	Ser 450	tat Tyr	Ser	Ser	Ser	Ser 455	Glu	Ser	Arg	Phe	Ser 460	Glu	Ser	Ile	Gly	1392
Arg 465	Leu	gac Asp	Trp	Glu	Thr 470	Leu	Val	His	Glu	Asn 475	Leu	Pro	Gly	Leu	Met 480	1440
Glu	Met	gat Asp	Gln	Asp 485	Asp	Arg	Val	Trp	Pro 490	Arg	Asp	Ser	Leu	Phe 495	Arg	1488
tat Tyr	ttt Phe	gag Glu	ttg Leu 500	cta Leu	gaa Glu	aag Lys	ctt Leu	cag Gln 505	tat Tyr	aac Asn	cta Leu	gag Glu	gaa Glu 510	cgt Arg	aag Lys	1536
aag Lys	Leu	caa Gln 515	gag Glu	ttt Phe	gca Ala	Val	cag Gln 520	gca Ala	ctg Leu	atg Met	aac Asn	ttg Leu 525	gaa Glu	gac Asp	aag Lys	1584
taaa	gcaa	tg g	atgg	cttc	a at	atcc	ttgg	g						•		1615
<210 <211 <212 <213	> 5 > P	55 28 RT omo	sapi	ens												

16U 200 PCT FINAL.ST25

<400> 255

Met Ala Ala Tyr Gln Gln Glu Gln Met Gln Leu Pro Arg Ala Asp 1 5 10 15

Ala Ile Arg Ser Arg Leu Ile Asp Thr Phe Ser Leu Ile Glu His Leu $20 \hspace{1.5cm} 25 \hspace{1.5cm} 30$

Gln Gly Leu Ser Gln Ala Val Pro Arg His Thr Ile Arg Glu Leu Leu 35 40 45

Asp Pro Ser Arg Gln Lys Lys Leu Val Leu Gly Asp Gln His Gln Leu 50 60

Val Arg Phe Ser Ile Lys Pro Gln Arg Ile Glu Gln Ile Ser His Ala 65 70 75 80

Gln Arg Leu Leu Ser Arg Leu His Val Arg Cys Ser Gln Arg Pro Pro 85 90 95

Leu Ser Leu Trp Ala Gly Trp Val Leu Glu Cys Pro Leu Phe Lys Asn 100 105 110

Phe Ile Ile Phe Leu Val Phe Leu Asn Thr Ile Ile Leu Met Val Glu 115 120 125

Ile Glu Leu Leu Glu Ser Thr Asn Thr Lys Leu Trp Pro Leu Lys Leu 130 135 140

Thr Leu Glu Val Ala Ala Trp Phe Ile Leu Leu Ile Phe Ile Leu Glu 145 150 155 160

lle Leu Leu Lys Trp Leu Ser Asn Phe Ser Val Phe Trp Lys Ser Ala 165 170 175

Trp Asn Val Phe Asp Phe Val Val Thr Met Leu Ser Leu Leu Pro Glu 180 185 190

Val Val Leu Val Gly Val Thr Gly Gln Ser Val Trp Leu Gln Leu 195 200 205

Leu Arg Ile Cys Arg Val Leu Arg Ser Leu Lys Leu Leu Ala Gln Phe 210 215 220

Arg Gln Ile Gln Ile Ile Ile Leu Val Leu Val Arg Ala Leu Lys Ser 225 230 230 235

Met Thr Phe Leu Leu Met Leu Leu Leu Ile Phe Phe Tyr Ile Phe Ala 245 250 255

Val Thr Gly Val Tyr Val Phe Ser Glu Tyr Thr Arg Ser Pro Arg Gln 260 265 270

Asp Leu Glu Tyr His Val Phe Phe Ser Asp Leu Pro Asn Ser Leu Val 275 280 285

Thr Val Phe Ile Leu Phe Thr Leu Asp His Trp Tyr Ala Leu Leu Gln 290 295 300

Asp Val Trp Lys Val Pro Glu Val Ser Arg Ile Phe Ser Ser Ile Tyr
Page 172

16U 200 PCT FINAL.ST25 305 310 -Phe Ile Leu Trp Leu Leu Gly Ser Ile Ile Phe Arg Ser Ile Ile Val Ala Met Met Val Thr Asn Phe Gln Asn Ile Arg Lys Glu Leu Asn Glu Glu Met Ala Arg Arg Glu Val Gln Leu Lys Ala Asp Met Phe Lys Arg Gln Ile Ile Gln Arg Arg Lys Asn Met Ser His Glu Ala Leu Thr $370 \hspace{1.5cm} 375 \hspace{1.5cm} 380$ Ser Ser His Ser Lys Ile Glu Asp Arg Gly Ala Ser Gln Gln Arg Glu 395 390 395 . 400Ser Leu Asp Leu Ser Glu Val Ser Glu Val Glu Ser Asn Tyr Gly Ala 405 410 415Thr Glu Glu Asp Leu Ile Thr Ser Ala Ser Lys Thr Glu Glu Thr Leu Ser Lys Lys Arg Glu Tyr Gln Ser Ser Ser Cys Val Ser Ser Thr Ser Ser Ser Tyr Ser Ser Ser Ser Glu Ser Arg Phe Ser Glu Ser Ile Gly Arg Leu Asp Trp Glu Thr Leu Val His Glu Asn Leu Pro Gly Leu Met Glu Met Asp Gln Asp Asp Arg Val Trp Pro Arg Asp Ser Leu Phe Arg Tyr Phe Glu Leu Glu Lys Leu Gln Tyr Asn Leu Glu Glu Arg Lys Lys Leu Gln Glu Phe Ala Val Gln Ala Leu Met Asn Leu Glu Asp Lys 520 <210> 256 <211> 24 <212> DNA <213> Homo sapiens <400> 256 tcatggatca ccagctccac gctc 24 <210> 257 <211> 25 <212> DNA <213> Homo sapiens <400> 257 . 25 caccaagate accaccatgg aagca <210> 258 <211> 50 <212> DNA <213> Homo sapiens

Page 173

<400> 258

			16U	200 PCT FINAL.	ST25	
ggattc	aggc cttttaaacc	ccactcagtg				50
<210>	259					
<211>	24					
<212>	DNA					
<213>	Homo sapiens					
	nome depactio					
<400>	259				•	
tgctga	cgaa tcttatgaac	cagg				24
<210>	260					
<211>	26					
<212> <213>	DNA					
\213/	Homo sapiens			-		
<400>	260					
	cage etetecttee	tcagtg				26
		ceageg				20
<210>	261					
<211>	50					
<212>	DNA					
<213>	Homo sapiens					
	0.63					
<400>	261					
tcacaa	atca tataaattag	gggaaagaga	gaggcaggta	tactctaaaa		50
<210>	262					
<211>	50					
<212>	DNA					
<213>	Homo sapiens					
	captono					
<400>	262					
aatttc	ttat ttaaaagacc	tcagaaatgt	caccatqctt	agttatttta		50
	-	,				
<210>	263					
<211>	23					
<212>	DNA					
<213>	Homo sapiens					
<400>	263					
		~~~				~ ~
ggeede	gac aatgtcacag	cay				23
<210>	264					
<211>	31					
<212>	DNA		•			
<213>	Homo sapiens					
<400>	264					
agcagac	aca tactgggcca	ttcataacca	С			31
<210>	265					
<210>	50					
<212>	DNA					
<213>	Homo sapiens					
<400>	265					
	ttc tatattttgg	gcacacagca	atgaaqaaaa	cagaaaaacc	•	50
	3,3		, ,	<b>3</b> <del></del>		- 0
<210>	266					
	50					
<212>	DNA					
<213>	Homo sapiens				4.5	
<400>	266					
	266	~~~~				•
	tca taaatatgga	ycayaaagtt	ıttacaaata	cagaacagca		50
<210>	267					
	50					
<212>	DNA					
<213>	Homo sapiens					

<400> 267 tagaatgtgt tataaa	aaaat gaagcagggc	taggggaaag	agatgggtga	50
<210> 268				
<211> 23				
<212> DNA				
<213> Homo sapie	ens			
<400> 268				
cctcattggc ttcctc	ccac tcg			23
<210> 2,69				
<211> 30				
<212> DNA <213> Homo sapie	ens			
•				
<400> 269				30
gccatcaaac tctga	gergg agaragrgae			30
2210× 270				
<210> 270 <211> 50				
<212> DNA				
<213> Homo sapi	ens			
<400> 270				
ccaaggaact tttaa	aacto coattocaca	offaccaccc	agaataatta	50
ccdaggador cccaa	adete etategeaca	gecaccacce	oguatuatta	
<210> 271				
<211> 50				
<212> DNA				
<213> Homo sapi	ens			
<400> 271				
catcctggaa tatat	ttgcg tccaactctg	caccttgctc	tctattccct	50
<210> 272		*		
<211> 50				
<212> DNA				
<213> Homo sapi	2115			
<400> 272				5.0
ctggggcccc tcaaa	aagct caccttccct	cacttcccac	ttcaactgat	50
<210> 273 <211> 26				
<211> 26 <212> DNA				
<213> Homo sapi	ens			
<400> 273				
tggcctcgtt gaaag	totca tcatcc			26
-,,,,	.,			
<210> 274				
<211> 24				
<212> DNA				
<213> Homo sapi	ens			
<400> 274				
ttggtaccat ttacg	aatgg ccgc			24
<210> 275				
<211> 50				
<212> DNA <213> Homo sapi	ane			•
•	ciio			
<400> 275				5.0
aaacggcatt ttaaa	aatgc aggtttaaat	tgttatcctc	atctatggtt	50
.010				
<210> 276 <211> 29				

# 16U 200 PCT FINAL.ST25

		16U 200 PCT FINAL.ST25	
<212>	DNA		
<213>	Homo sapiens	,	
<400>	276		
ctggac	ttga gcagtaccac	gtctggatc	29
	•		
.03.0	^22		
<210>	277		
<211>	28		
<212>			
<213>	Homo sapiens		
<400>	277		
	277	a2a2taa	28
Catatt	ccca cagcaatttt	gacaacgg	28
<210>	278		
<211>	50		
<212>	DNA		
<213>	Homo sapiens		
	nome captens		
<400>	278		
		agtctaggaa aagactcgtg ggtctgattc	50
	, , , , ,	-,,,,,-, ,,,,	
<210>	279		
<211>	50		
<212>	DNA		
<213>	Homo sapiens		
<400>	279		
tactca	tatt tatatagcag	caacttacat tgacccaggg agaactcagt	50
<210>	280		
<211>	24		
<212>	DNA		
<213>	Homo sapiens		
<400>	200		
<400>	280		2.4
gitaci	cacc caaccgtcac	gacc	24
<210>	281		
<211>	24		
<212>	DNA		
<213>	Homo sapiens		
	<b></b>		
<400>	261		
caggcg	atgc cagagaagac	gatg	24
<210>	282		
<211>	50		
<212>	AND		
<213>	Homo sapiens		
<400>	282		
ctagaa	ttta cataaaaagg	actggaggag cttttgcagc aactttgcat	50
Z2105	207	•	
<210> <211>	283 50		
<211>	DNA		
<213>	Homo sapiens		
~~ 4 3 /	nomo saprens		
<400>	283		
		gctttcactc tcaaaacagc agagaatgaa	50
	craaaaacac	gerreeure readadeaye ayayaaryad	50
<210>	284	4,0	-
<211>	50	1.4	
<212>	DNA	• •	
<213>	Homo sapiens		
	· · •		
<400>	284		
aactgg	ggtc tataagagag	ccagggcact tattcatcca agggcagatg	50

#### 16U 200 PCT FINAL.ST25 <210> 285 <211> 26 <212> DNA <213> Homo sapiens <400> 285 26 ctatgacttc aacccacacc tgggca <210> 286 <211> 24 <212> DNA <213> Homo sapiens <400> 286 24 aaggtcgcca acttgtcctg gctc <210> 287 <211> 50 <212> DNA <213> Homo sapiens <400> 287 50 gggcgggagt aaaaggcaga gtccaattcc accggccccc agtgtgggtg <210> 288 <211> 24 <212> DNA <213> Homo sapiens <400> 288 24 tcaatgccat gcccaaactg agga <210> 289 <211> <212> DNA <213> Homo sapiens <400> 289 24 caacaccgag atggacaccc tgct <210> 290 <211> <212> DNA <213> Homo sapiens 50 cttttaaggt taaaaatgtg ggttttagat gattgtcctt tctaaacagc <210> 291 50 <211> <212> DNA <213> Homo sapiens <400> 291 50 tcaggatgtc taaaaaagat ctctctagtg tacacacgtg cacacacaca <210> 292 <211> 50 <212> DNA <213> Homo sapiens <400> 292 50 agtaactcta tttaaaagac ctaaaaaattt caaatcctaa aatgatctat <210> 293 <211> 50 <212> DNA <213> Homo sapiens <400> 293 50 aataaatgtt ttaaaagcac tcctttccga atggtggagc tggtgggggc

<210> <211> <212>	294 27			
<213>	DNA Homo sapiens			
	294 acga agatcatgat cggcat	С		27
<210> <211>	295 28			
<212> <213>	DNA Homo sapiens			
	295 Ettt gtgcccagct ttccca	ag		28
<210> <211>	296 50			
<212> <213>	DNA Homo sapiens			
<400> tattctd	296 cact tataagtggg agctaa	gcca tgagggcacc	aaggcataag	50
<b>2210</b> 5				
<210> <211> <212>	297 50 DNA			
<213>	Homo sapiens			
<400> ttacata	297 atgt atacatgtge catget	ggtg tgctgcacco	attaactcgt	50
<210> <211>	298 27			
<212> <213>	DNA Homo sapiens			
<400> tccatge	298 ctca gcttcatctc agctac	c		27
<210>	299			
<211> <212>	24 DNA			
<213> <400>	Homo sapiens 299			
	tcag accttggccc ttca			24
<210> <211>	300 50			
<212> <213>	DNA Homo sapiens			
<400> aaataa	300 cccc attaaaaagt gggcaa	aggg catgaacact	tttcaaaaga	50
<210>	301			
<211> <212> <213>	24 DNA			
<400>	Homo sapiens 301		,	
	gtaa ggagccatcg gaca			. 24
<210> <211>	302 23			
<212> <213>	DNA			

#### 16U 200 PCT FINAL.ST25 <400> 302 cttgccaggt tctggtggct tgg 23 <210> 303 <211> 5.0 <212> DNA <213> Homo sapiens <400> 303 tctttttgtc tataaatagg actttgattt tctggactag agaattgtat 50 <210> 304 <211> 24 <212> DNA <213> Homo sapiens <400> 304 acgactccaa gaacagcaag gccg 24 <210> 305 <211> 24 <212> DNA <213> Homo sapiens <400> 305 aaggtaacat cggcagaggc cagc 24 <210> 306 <211> 50 <212> DNA <213> Homo sapiens <400> 306 gctagcattt tttaaaagct gatgtcttca ctgggcacgg ggactcacac 50 <210> 307 <211> 24 <212> DNA <213> Homo sapiens <400> 307 cggccaggta ccaaagctca gctg 24 <210> 308 <211> 29 <212> DNA <213> Homo sapiens <400> 308 gccagattca ggagggaatg gaagagaac 29 <210> 309 <211> 50 <212> DNA <213> Homo sapiens <400> 309 tgatctactt tttaaaagga tcatgctggc tgctggtggg atttaggata 50 <210> 310 <211> 50 <212> DNA <213> Homo sapiens tgatagtgat aaaaaaaagt ggccagattt tggttatatt ttgaaataaa 50 <210> 311 <211> 50 <212> DNA

### 16U 200 PCT FINAL.ST25 <213> Homo sapiens <400> 311 50 tatagtgata tttaaagcca ggggtctggg tgagataact gatggaatga <210> 312 <211> 50 <212> DNA <213> Homo sapiens <400> 312 50 attggaggac tataaagagg ggagtcatta aaatggtgct aagaagctga <210> 313 <211> 50 <212> DNA <213> Homo sapiens <400> 313 50 agaggggagt cattaaaatg gtgctaagaa gctgagctac aagcagtggt <210> 314 <211> 50 <212> DNA <213> Homo sapiens <400> 314 50 gacattccac ccaaaaaatg ccactggatg aagtcccctc cttccattaa <210> 315 <211> 26 <212> DNA <213> Homo sapiens <400> 315 26 ttgggagaga ctagtgcacc tcagca <210> 316 <211> 24 <212> DNA <213> Homo sapiens <400> 316 24 gagcaatccc tcttcgtggc aggt <210> 317 <211> 50 <212> DNA <213> Homo sapiens aaaagtgctt ttaaacaggg ggggtggagg ggcttatgag aaggggacca 50 <210> 318 <211> 50 <212> DNA <213> Homo sapiens 50 ccatttctac taaaaatgca gagatcagcc aggcgtggca cgtgcctgta <210> 319 <211> 50 <212> DNA <213> Homo sapiens <400> 319 50 aaaaaaaaa aaaaaaagcc ctgtttatat cctacctcct tgctgggtgc <210> 320

# 16U 200 PCT FINAL.ST25

<211> <212> <213>	50 DNA Homo sapiens	
<400> aaaata	320 aaaa taaaaaatcc catctcctca catttccatt caacctcaat	50
<210><211><211><212><213>	321 35 DNA Homo sapiens	
<40 <b>0</b> > acttcc	321 aaac atctacaact cctcagagtc tcatt	35
<210><211><211><212><213>	322 25 DNA Homo sapiens	
<400> tgcago	322 cacca tcatgtaagg gacaa	25
<210> <211> <212> <213>	323 50 DNA Homo sapiens	
<400> ttttt	323 taaac tataaaaagt ggggatcaga aaacacagtc ataagggaaa	50
<210><211><211><212><213>	50 DNA Homo sapiens	
gtata	tgcta tatatatcag gattcacttt aatggcattg agttccagga	50
<210><211><212><213>	50 DNA	
<400> ataaa	· 325 caatt taaaaattag cccaccatgg tggtacacac ctgtcgttct	50
<210><211><211><212><212>	> 50 > DNA	
<4002 aaaaa	> 326 agtgaa aaaaaaaggt gagggagact ttaactttct gaaatatatt	50
<210: <211: <212: <213:	> 24 > DNA	
<400 ccaa	> 327 gaagcc gggagaagtg gatg	. 24
<210 <211 <212 <213	> 28 > DNA	
<400 tgac	> 328 agaget aggeatatga geactgga	28

#### 16U 200 PCT FINAL.ST25

```
<210> 329
<211> 50
<212> DNA
<213> Homo sapiens
<400> 329
                                                                    50
ctaaagagct tatatatcag cctaagaaaa gaaaaccaat aagaagttgc
<210> 330
<211> 26
<212> DNA
<213> Homo sapiens
<400> 330
                                                                    26
gcagttggtt cagaaccgag atcacc
<210> 331
<210
<211> 29
17> DNA
<213> Homo sapiens
<400> 331
                                                                    29
ggcagatggg gatacattta ttctctggg
<210> 332
<211>
      50
<212> DNA
<213> Homo sapiens
<400> 332
actaaaaata caaaaaagta gccgggtatg gtggtaggcg cctataatcc
                                                                    50
<210> 333
<211> 50
<212> DNA
<213> Homo sapiens
<400> 333
ggtaggcgcc tataatccca gctacttggg aggctgaggc aggagaattg
                                                                    50
<210> 334
<211> 26
<212> DNA
<213> Homo sapiens
<400> 334
tcggcttgga aatcagaatg agaagg
                                                                    26
<210> 335
<211> 30
       335
<212> DNA
<213> Homo sapiens
tgcacaaaga atgattgcag cagtgagtag
                                                                    30
<210> 336
<211>
       50
<212>
       DNA
<213> Homo sapiens
<210>
       337
<211>
       50
<212>
       DNA
<213> Homo sapiens
<400> 337
```

ggccaac	tta tataaaaggt	ttatgttttt		200 PCT FINAL.ST25 tttcgtttct	50
<210>	338				
<211>	50				
<212>	DNA				
<213>	Homo sapiens				
<400>	338				
	gtt ttaaaaagaa	caggetacaa	agttatagct	atggggtgat	50
	.,				
<210>	339				
<211>	21				
<212>	DNA				
<213>	Homo sapiens				
<400>	339				
	gta gtgcaggtcc	α			21
9990990	gua gracugacco	9			
<210>	340				
<211>	24				
<212>	DNA				
<213>	Homo sapiens				
< 4.005	240				
<400>	340	tann			24
ccccac	ttg cagggaattc	tycc			2-1
<210>	341				
<211>					
<211>	50 DNA				
<213>					
(213)	Homo sapiens				
<400>	341				
aattcaa	ata tttaaaacgg	actgtctcct	cttcacaaaa	gtctagatct	50
<210>	342				
<211>	24				
<212>	DNA				
<213>	Homo sapiens				
<400>	342				
ggctgtt	gag caggetteat	gtgc			24
	_				
<210>	343				
<211>	24				
<212>	DNA			•	
<213>	Homo sapiens				
<400>	343				
ctcctct	gga tgatctgccg	cttg			24
<210>	344				
<211>	50				
<212>	DNA				
<213>	Homo sapiens				
<400>	344				
	gca tatatatta	ggatagttag	ctcttcttqt	tgaattgatc	50

# This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

# **BEST AVAILABLE IMAGES**

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

M. BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
A FADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
OTHER:

# IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

