华中科技大学研究生课程考试试卷

课程名称:	数值分析		课程	类别	☑公共课	考核形式 <u>□开卷</u> ☑ 闭卷
学生类别	研究生	考试日期	2016-6-1	学生	<u>□专业课</u> :所在院系_	
学号		姓名_ <u>i/</u> 2		任课	具教师	
一、填空(每题 3 分,	共 24 分)				
	the set of the second of the second of the		.001 都是经过	过四舍	五入得到的	j近似值,则它们分
		位有效				
2. 设 <i>x_i</i> (<i>i</i> =	= 0, 1, 2, 3, 4)	为互异节点	, $l_i(x)$ 为对	应的 4	次 Lagran	ge 插值基函数,则
$\sum_{i=0}^4 (2x_i^4 -$	$+x_i+1)l_i(x)$		<u> </u>	$, \sum_{i=0}^{4} (2$	$2x_i^4 + x_i + 1)$	$l_i(1) = \underline{\hspace{1cm}}$
3. 已知 <i>f</i> ($(x) = 4x^3 + 2$	x+1,则 $f[0]$,1,2,3]=		, f[0,1,2]	,3,5]=。
4. 当常数 a	=, \[\int_{_}^1 \]	$\int_{1}^{2} \left(x^{3} + ax\right)^{2} dx$	x达到极小	•		
5. 三次 Ch	ebyshev 多	项式 $T_3(x)$ 在	[-1, 1]上 3	个不	同实零点	为 $x_1 = \underline{\hspace{1cm}}$,
x ₂ =	, x ₃ =	=; <u>n</u>	$\max_{ x \le x \le 1} (x - x_1) $	(x-x)	$(x-x_3)$	= <u>·</u> ···································
6. 已知一	组数据 y(0)=1, y(1)=	2, $y(2) = 5$,利用:	最小二乘	法得到其拟合直线
y = ax + b	b,则a=_	, b=_	•		topal the	
7. 当 <i>A</i> ₀ =	_, A ₁ =	时,求积公式	$\int_{-1}^{1} f(x) dx$	$x \approx \frac{1}{3}f$	$\left(-1\right)+A_{0}f$	$f(0) + A_1 f(1)$ 的代数
精度能达	到最高,此	时求积公式的	的代数精度之	为	•	
8. 已知矩阵/	$A = \begin{pmatrix} 1 & 2 \\ 2 & -2 \end{pmatrix}$),则	,	$ A _2$, co	$nd(A)_2 = \underline{\hspace{1cm}} \circ$
二、(10分)	设函数 $y=$	f(x),已知	f(0) = f'(0)=1,	f(1)=4,	
(1) 试求过	过这两点的	二次 Hermite	插值多项式	$\mathcal{L}H_2(x)$	c);	

- (2) 若还已知f(2)=15,求次数不超过三次的插值多项式 $H_3(x)$ 。
- 三、(10 分) 求 $f(x) = \cos(\pi x)$ 在[0, 1]上的一次最佳平方逼近多项式 $P_1(x)$,并计算平方误差。
- 四、(12 分) 利用 2 次 Legendre 正交多项式 $P_2(x) = (3x^2 1)/2$ 构造两点 Gauss 型求积公式 $\int_{-1}^1 f(x)dx \approx A_{-1}f(x_{-1}) + A_1f(x_1)$,
 - (1) 试确定求积公式中的 Gauss 点 x_k (k = -1, 1) 及求积系数 A_k (k = -1, 1),并说明求积公式的代数精度是多少?
 - (2) 用所得求积公式计算 $\int_0^1 (x^3-2x+1)dx$, 并给出相应的截断误差。
- 五、(14分) 设 y'(x) = f(x,y), 步长为 h, 隐式公式 $y_{n+1} = y_n + h \left[\alpha f(x_n, y_n) + \beta f(x_{n+1}, y_{n+1}) \right]$ 具有二阶收敛,
 - (1) 试确定参数 α 和 β 的值;
 - (2) 若 $f(x,y) = \lambda y(x)$, y(0) = 1, 求y(x)在节点 $x_n = nh$ 处的数值解 y_n ;
 - (3) 若 $f(x,y) = \lambda y(x)$ 且 $\lambda < 0$,证明公式是无条件稳定的。

六、(12 分)已知方程组
$$\begin{pmatrix} 1 & a \\ a & 2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, a \in R \perp a \neq \pm \sqrt{2}$$
,

- (1) 利用 Gauss 消元法求方程组的解;
- (2) 给出求解方程组的 Jacobi 迭代格式和 Gauss-Seidel 迭代格式,并说明两种迭代格式均收敛的 a 的取值范围。
- 七、 $(12 \, f)$ 已知 $x^* = 1$ 为方程 $f(x) = x^3 5x^2 + 7x 3 = 0$ 的根,
 - (1) 试证牛顿迭代法在 $x^* = 1$ 附近是线性收敛的;
 - (2) 写出处理重根 $x^* = 1$ 的牛顿迭代公式,并讨论其收敛阶。
- 八、(6分) 设求解方程组 AX = b 的迭代格式 $X^{(k+1)} = BX^{(k)} + f$ 收敛,

证明: 当
$$0<\omega<1$$
时,迭代格式 $X^{(k+1)}=\left[\left(1-\omega\right)I+\omega B\right]X^{(k)}+\omega f$ 也收敛。

华中科技大学研究生课程考试试卷

课程名称: 数值分析	课程类别
学生类别	<u>□专业课</u> <u>□闭卷</u> 6-2 学生所在院系
学号	任课教师
一、填空(每题3分,共24分)	
1.	都是经过四舍五入得到的近似值,则它们
分别有位有效数字。	
2. $\exists \exists f(x) = 8x^5 + x^3 + 1, \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $, f[0,1,2,3,4,5,6]=。
3. 设 x_i ($i = 0, 1, 2, 3, 4, 5$) 为互异节点, l_i (x_i	c) 为对应的 5 次 Lagrange 插值基函数,则
$\sum_{i=0}^{5} (x_i^4 + 3x_i^2 + x_i + 1)l_i(0) = \underline{\hspace{1cm}}$	
$\sum_{i=0}^{\infty} (x_i + 3x_i + x_i + 1)t_i(0) = \underline{\hspace{1cm}}$	
4. 在区间[4, 12]上,三次 Chebyshev 多项式	$T_3(\mathbf{x})$ 的三个不同零点为 $x_0 = $
$x_1 = \underline{\hspace{1cm}} x_2 = \underline{\hspace{1cm}}$ °	i A. S. High grobs that a supply the second
5. 已知数据 $f(1)=4$, $f(2)=7$, $f(3)=8$,用	
则 <i>a</i> =。	
6. 已知求积公式 $\int_0^1 f(x) dx \approx \frac{1}{6} [f(0) + 4f(0)]$	(a) + f(1)] 至少具有 1 次代数精度,则
a=,此公式的代数精度为次。	
7. 对任何非奇异矩阵 A ,都有 $cond$ $(A)_{p-1}$	_1,当 A 为正交矩阵时 $cond(A)_2 =$ 。
8. 已知方程组 $\begin{pmatrix} 1 & 2 \\ 0.32 & 1 \end{pmatrix}\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}$,则解此	方程组的 Jacobi 迭代法收
敛(填"是"或"不"),它的渐进收敛速	度 R(B)=。
二、(10分) 对函数 $y=f(x)$, 已知 $f(1)=-2$,	f'(1)=4, f(2)=f'(2)=0, f(3)=2
试求过这 3 点的四次 Hermite 插值多项式	$\mathcal{L}_{H_4}(x)$,并写出余项表达式;

三、(8 分)求 $f(x)=4x^3+2x^2+x+1$ 在[-1,1]上的二次最佳一致逼近多项式 $P_2(x)$ 。

四、(12 分) 利用 3 次 Legendre 正交多项式 $P_3(x) = (5x^3 - 3x)/2$ 构造三点 Gauss 型求积公式

$$\int_{-1}^{1} f(x)dx \approx A_0 f(x_0) + A_1 f(x_1) + A_2 f(x_2) ,$$

并问:

- (1) 所得求积公式的代数精度是多少?
- (2) 用所得求积公式计算 $\int_0^1 (x^4 2x^2 + 1) dx$.

五、(14 分)设方程组
$$\begin{pmatrix} 5 & 2 & 1 \\ -1 & 4 & 2 \\ 2 & 3 & 10 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} -12 \\ 20 \\ 3 \end{pmatrix},$$

- (1) 用 Gauss 消元法求方程组的解;
- (2) 给出求解方程组的 Jacobi 迭代格式和 Gauss-Seidel 迭代格式,并说明此二种 迭代格式的收敛性。

六、(12 分) 设步长为 h,
$$f(x,y) = \lambda y(x)$$
, 隐式公式 $y_{n+1} = y_n + \frac{h}{3} [f(x_n, y_n) + 2f(x_{n+1}, y_{n+1})]$,

- (1) 已知y(0)=1, 求y(x)在节点 $x_n=nh$ 处的数值解 y_n ;
- (2) 若 λ < 0, 证明公式是无条件稳定的。

七、
$$(12 分)$$
方程 $(x-2)^2(x+3)=0$

- (1) 试证用牛顿法求方程在[1,3]内的根 $x^* = 2$ 是线性收敛的,
 - (2) 对根 $x^* = 2$,写出处理重根的牛顿迭代公式,并讨论其收敛性。

八、(8 分) 设求解方程组的 Jacobi 迭代格式为 $X^{(k+1)} = BX^{(k)} + g$ $(k = 0,1,2,\cdots)$ 求证: 若 $\|B\|_{\infty} < 1$,则相应的 Gauss-Seidel 迭代收敛。

华中科技大学研究生课程考试试卷

课程名称:数值分析	ì	果程类别 [☑ <u>公共课</u> □专业课	考核形式 口开卷
学生类别 研究生	考试日期2014-5-	-		
学号	姓名	任课	教师	
一、填空(每题3分,共	24 分)			
1.	3.250 , $x_3 = 0.042$ 都	是经过四色	s五入得到i	的近似值,则它们
分别有	立有效数字。			
2. 已知 $f(x) = 2x^5 - x^3 +$	1,贝ƒ[0,1,2,3,4,5]=		f[0,1,2,3,4,	5,6]=。
3.	为互异节点, $l_i(x)$	为对应的 5	5 次 Lagran	ge 插值基函数,则
$\sum_{i=0}^{5} (x_i^3 + 2x_i^2 + x_i + 1)l_i($	x) =	•		
4. 三次 Chebyshev 多项	页式 T₃(x)在[-1 ,1]	上 3 个不	同实零点	为 x ₁ =,
$x_2 = $		$(x-x_2)(x-x_2)$	$-x_3$	•
5. 用 <i>y = ax</i> + <i>b</i> 对一组数:	据 x 1 2 3 4 y 4 7 8 10	进行最小二	二乘拟合的	法方程组为
	_°	alde la gra		
6. 当 A ₋₁ =, A ₀ =	时,求积公式 ∫ ^{2h} _{-2h}	$f(x)dx \approx A$	$\int_{-1}^{1} f(-h) + A$	$A_0 f(0) + \frac{8h}{3} f(h)$ 的代
数精度能达到最高,所	行具有的代数精度为]		
7. 设 $A = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}$,则 $\ A \ $	$A^{-1}\Big\ _{\infty}=\underline{\qquad},\ cc$	$ond(A)_{i} = $, c	$ond(A)_2 = \underline{\qquad}$
8. 对方程组 $\begin{cases} -x_1 + 4x_2 + 2 \\ 5x_1 + 2x_2 + x_3 \\ 2x_1 + 3x_2 + 10 \end{cases}$	$x_3 = 20$ = -12 建立收敛的: $x_3 = 3$	迭代格式为	J	•

- 二、(12 分) 对函数 y = f(x), 已知 f(1) = 0, f'(1) = -2, f(2) = 1, f'(2) = 0.
 - (1) 试求过这 2 点的三次 Hermite 插值多项式 $H_3(x)$, 并写出余项表达式;
 - (2) 如果还已知 f(0)=1, 求次数不超过 4 的插值多项式 $H_4(x)$ 。
- 三、(8 分)求 $f(x) = \sin \frac{\pi}{2} x$ 在[-1, 1]上的三次最佳平方逼近多项式 $S_3(x)$ 。
- 四、(10 分) 利用 2 次 Chebyshev 正交多项式 $T_2(x) = 2x^2 1$ 构造两点 Gauss-Chebyshev

型求积公式
$$\int_{-1}^{1} \frac{f(x)}{\sqrt{1-x^2}} dx \approx A_0 f(x_0) + A_1 f(x_1)$$
,并计算奇异积分 $\int_{-1}^{1} \frac{e^x}{\sqrt{1-x^2}} dx$ 。

五、(12 分)
$$\begin{pmatrix} 1 & a & 0 \\ a & 2 & 0 \\ 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$

- (1) 确定a的取值范围,使方程组对应的 Jacobi 迭代收敛;
- (2) 当 a=5 时,用列选主元法求方程组的解。

六、(12 分) 设步长为 h,
$$f(x,y) = \lambda y(x)$$
, 隐式中点公式 $y_{n+1} = y_n + hf\left(x_n + \frac{h}{2}, \frac{y_n + y_{n+1}}{2}\right)$,

- (1) 已知y(0)=1, 求y(x)在节点 $x_n=nh$ 处的数值解 y_n ;
- (2) 若 λ < 0, 证明公式是无条件稳定的。

七、(14分) 应用牛顿法于方程
$$f(x) = (x^3 - a)^2 = 0$$
,

- (1) 导出求立方根 $x^* = \sqrt[3]{a}$ 的 Newton 迭代格式;
- (2) 证明此迭代格式是线性收敛的;
- (3) 试构造至少具有二阶收敛速度的迭代公式。

八、(8分) 对于 Gauss 求积公式
$$\int_a^b f(x)dx \approx \sum_{k=0}^n A_k f(x_k)$$
, 证明:

(1) 求积系数
$$A_k > 0$$
, $k = 0,1,2,\dots n$ 且 $\sum_{k=0}^{n} A_k = b - a$;

(2) 设
$$l_k(x)$$
是 x_k 处对应的 Lagrange 基函数,则 $\int_a^b l_k^2(x) dx = \int_a^b l_k(x) dx$, $k = 0,1, \dots n$.