TOPOLOGIE

Projet 2

Auteurs

Simon Brenton Edward

June 4, 2023

Contents

1	Exercice 1	3
2	Exercice 2	6
3	Exercice 3	8

1 Exercice 1

1. Non, il n'est pas toujours vrai.

Si on prend E = R, muni de la norme $||\cdot||_1$, et X =]-1,1], et $Y = [2,+\infty[$, alors $d_H(X,Y)$ tend vers l'infini.

On le montre par l'absurde:

Supposons que $\sup_{x \in X} d(x, Y) = d_1$, alors on prend $x_1 = 2 + d_1$, alors $d(x_1, Y)$ sera plus grand que d_1 , absurde!

On peut donc conclure que la Disance de Hausdorff, qui est égale à

$$\max\{\sup_{y\in Y}d(y,X),\sup_{x\in X}d(x,Y)\}$$

est encore plus grande que $\sup_{x\in X}d(x,Y),$ donc tend vers $+\infty.$

2. Non.

Si on prend le même espace E muni de la même distance qu'avant, et prenons X=Q, $Y=R\backslash Q$, donc:

$$\forall x \in X, \forall y \in Y, d(x, Y) = d(y, X) = 0$$

On en déduit:

$$d_H(X,Y) = \max\{\sup_{y \in Y} d(y,X), \sup_{x \in X} d(x,Y)\} = 0$$

mais $X \neq Y$.

3. Oui.

Si la distance bien existe. C'est parce que:

$$d_{H}(Y,X) = \max\{\sup_{y \in Y} d(y,X), \sup_{x \in X} d(x,Y)\}$$

$$= \max\{\sup_{x \in X} d(x,Y), \sup_{y \in Y} d(y,X)\}$$

$$= d_{H}(X,Y)$$
(1)

4. On procède par l'étapes suivantes :

Première propriété:

$$\forall (X,Y) \in E^2, X, Y compacts, d_H(X,Y) \geq 0$$

$D\'{e}monstration:$

Car $d_H(X,Y) = \max\{\sup_{y\in Y} d(y,X), \sup_{x\in X} d(x,Y)\}$, on peut déduire que $d_H(X,Y) \geq \sup_{x\in X} d(x,Y)$, qui est bien supérieure ou égale à 0, comme d est une distance bien définie dans E.

Deuxième propriété:

$$d_H(X,Y) = 0 \iff X = Y$$

$D\'{e}monstration:$

- Sens direct:

Supposons que $d_H(X,Y)=0$, alors $\max\{\sup_{y\in Y}d(y,X),\sup_{x\in X}d(x,Y)\}=0$, et car les distance sont toujours supérieures ou égale à 0, on peut dire que:

$$\forall x \in X, \forall y \in Y, d(x, Y) = d(y, X) = 0$$

Par l'absurde, supposons que $X \neq Y$, alors il existe x_0 tel que $x_0 \in X$, mais $x_0 \notin Y$, tel que $d(x_0, Y) = 0$.

Car X, Y sont tous compacts, on aura qu'il existe bien $y_0 \in Y$ tel que $d(x_0, y_0 = 0)$, et d'après la propriété de distance, on a $x_0 = y_0$, donc $x_0 \in Y$, absurde!

- Sens indirect: Supposons que X = Y, alors

$$\forall x \in X, d(x, Y) = d(x, X) = 0$$

on peut déduire que $d_H(X,Y)=0$

Troisième propriété:

$$\forall (X,Y) \in E^2, X, Y \text{ compacts}, d_H(X,Y) = d_H(X,Y)$$

Démonstration:

C'est vrai parce que l'on a déjà montré dans la question 3 que, c'est vrai pour tous $(X,Y) \in \mathcal{P}(E)^2$, qui est une situation plus générale.

Quatrième propriété:

$$\forall (X, Y, Z) \in E^3, X, Y, Z \text{ compacts}, d_H(X, Y) + d_H(Y, Z) \ge d_H(X, Z)$$

Démonstration:

On sait que:

$$\begin{split} & d_{H}(X,Y) + d_{H}(Y,Z) \\ &= \max\{\sup_{y \in Y} d(y,X), \sup_{x \in X} d(x,Y)\} + \max\{\sup_{y \in Y} d(y,Z), \sup_{z \in Z} d(z,Y)\} \\ & \geq \max\{\sup_{x \in X} d(x,Y) + \sup_{y \in Y} d(y,Z), \sup_{y \in Y} d(y,X) + \sup_{z \in Z} d(z,Y)\} \end{split}$$

En fait, $\sup_{x\in X} d(x,Y) + \sup_{y\in Y} d(y,Z)$ est forcément supérieur ou égal à $d_H(X,Z)$

2 Exercice 2

Notations

• $(x_n)_{n\in\mathbb{N}}\in K^{\mathbb{N}}$ une suite de K

$$\underline{x_n} = \left(x_n^{(0)}, \dots, x_n^{(p)}\right) \in \prod_{t=0}^p K_t^{\mathbb{N}}$$

- $(x_n^{(p)})_{n\in\mathbb{N}}\in K_p^{\mathbb{N}}$ une suite de K_p , qui est la projection de $(\underline{x_n})_{n\in\mathbb{N}}$ sur K_p
- $(x_{\phi(n)})_{n\in\mathbb{N}}$ une sous-suite de $(\underline{x_n})_{n\in\mathbb{N}}$
- $\underline{\lambda}$ un vecteur dans K:

$$\underline{\lambda} = \left(\lambda^{(1)}, \dots, \lambda^{(p)}\right)$$

Solution

Comme $(E_0, d_0), \ldots, (E_n, d_n)$ sont des espaces métriques compactes, soit $(\underline{x_n})_{n \in \mathbb{N}} \in K^{\mathbb{N}}$ une suite de K

$$\underline{x_n} = \left(x_n^{(0)}, \dots, x_n^{(p)}\right) \in \prod_{t=0}^p K_t^{\mathbb{N}}$$

On construit une sous-suite $(x_{\phi(n)})_{n\in\mathbb{N}}$ de $(\underline{x_n})_{n\in\mathbb{N}}$ de manière suivant :

- On partir de la suite $(\underline{x_n})_{n\in\mathbb{N}}$. Comme K_0 est compacte, de la suite $(x_n^{(0)})_{n\in\mathbb{N}}$, on extrait une sous-suite $(x_{\phi_0(n)}^{(0)})$ qui tend vers $\lambda^{(0)} \in K_0$.
- Revient à la suite $\left(\underline{x_{\phi_0(n)}}\right)_{n\in\mathbb{N}}$. Comme K_1 est compacte, de la suite $(x_{\phi_0(n)}^{(1)})$, on extrait une sous-suite $\left(x_{\phi_0\circ\phi_1(n)}^{(1)}\right)$ qui tend vers $\lambda^{(1)}\in K_1$.
- On continue de même façon pour tout $p \in \mathbb{N}$, on extrait une sous-suite $\left(x_{\phi_0 \circ \dots \circ \phi_p(n)}^{(p)}\right)$ qui tend vers $\lambda^{(p)} \in K_p$.
- Finalement, en notant $\phi = \phi_0 \circ \phi_1 \circ \dots \phi_p$, on obtient une sous-suite $\left(\underline{x_{\phi(n)}}\right)_{n \in \mathbb{N}}$ de $(\underline{x_n})_{n \in \mathbb{N}} \in K^{\mathbb{N}}$, qui suffit :

$$\forall p \in \mathbb{N}, \ \forall \varepsilon_p > 0, \ \exists N_p \in \mathbb{N}, \ \forall n \ge N_p, d_p\left(x_{\phi(n)}^{(p)}, \ \lambda^{(p)}\right) < \varepsilon_p$$

• Le premier terme de cette sous-suite va être déterminer.

Pour montrons que K est une espace métrique compacte, il suffit de montrer que la sous-suite $\left(x_{\phi(n)}\right)$ que nous avons construit converge vers cette valeur, c'est-à-dire :

$$\underline{x_{\phi(n)}} = \left(x_{\phi(n)}^{(0)}, \dots, x_{\phi(n)}^{(p)}\right) \xrightarrow[n \to +\infty]{d} \left(\lambda^{(0)}, \dots, \lambda^{(p)}\right) = \underline{\lambda} \in \prod_{t=0}^{p} K_t$$

6

Soit $\varepsilon > 0$, on prend $\varepsilon_1 = \varepsilon_2 = \ldots = \varepsilon_p = \varepsilon/2$, donc il existe les valeurs de N_1, N_2, \ldots, N_p .

On prend $N = \min(N_1, N_2, \dots, N_p)$, et on constuit une nouvelle sous-suite $\left(\underline{x'_{\phi(n)}}\right)$ qui est une partie de $(\underline{x_{\phi(n)}})$, seulement à partir de N (on peut aisément vérifier il est bien définie, car il a des termes infines), alors :

$$d(\underline{x_{\phi(n)}},\underline{\lambda}) \leq \sum_{n=0}^{\infty} \frac{1}{2^n} \min(1,\frac{\varepsilon}{2}) \leq \sum_{n=0}^{\infty} \frac{1}{2^n} \cdot \frac{\varepsilon}{2} < \varepsilon$$

Par conséquent, on a bien montré que K est une espace métrique compacte.

3 Exercice 3

Notations

• $A = \{x_1, x_2, \dots, x_d\}$

•
$$C = \{\sum_{i=1}^{d} \lambda_i x_i, \forall i \in \{1, 2, \dots, d\}, \lambda_i \ge 0, \sum_{i=1}^{d} \lambda_i = 1\}$$

On veut montrer que Conv(A) = C, donc on peut montrer par double inclusion.

$$Conv(A) \subset C$$

Tout d'abord, montrons que C est bien convexe. Soit M et N deux points dans l'ensemble C et $\forall t \in [0, 1]$, on considère le point tM + (1 - t)N.

Soit
$$M = \sum_{i=1}^{d} \lambda_i x_i$$
 et $N = \sum_{i=1}^{d} \lambda_i' x_i$ avec $\sum_{i=1}^{d} \lambda_i = \sum_{i=1}^{d} \lambda_i' = 1$. Donc,

$$tM + (1 - t)N = t \sum_{i=1}^{d} \lambda_i x_i + (1 - t) \sum_{i=1}^{d} \lambda'_i x_i$$
$$= \sum_{i=1}^{d} (t\lambda_i + (1 - t)\lambda'_i)x_i$$

et comme on a $\sum_{i=1}^{d} (t\lambda_i + (1-t)\lambda_i') = t\sum_{i=1}^{d} \lambda_i + (1-t)\sum_{i=1}^{d} \lambda_i' = 1$, le point tM + (1-t)N est bien dans l'ensemble C, donc C est convexe.

De plus, d'après la définition, Conv(A) est le plus petit convexe contenant A. Or C est aussi un convexe contenant A, donc C contient Conv(A).

$$C \subset Conv(A)$$

C'est-à-dire montrer que s'il y a d points $\{x_1, \ldots, x_d\}$ dans $\operatorname{Conv}(A)$, pour tous les systèmes de $\{\lambda_1, \ldots, \lambda_d\}$ positives ou nulles avec $\sum_{i=1}^d \lambda_i = 1$, le point $\sum_{i=1}^d \lambda_i x_i$ appartient à $\operatorname{Conv}(A)$. On le note H_d .

Montrons par récurrence que H_d est vraie pour tout $d \ge 1$.

Initialisation:

Lorsque d=1, on a $\lambda_1=1$, le point x_1 est bien dans $\operatorname{Conv}(A)$, donc H_1 est vraie.

Hérédité:

Supposons que H_n est vraie jusqu'à l'ordre d-1 et on considère le point $\sum_{i=1}^{d} \lambda_i x_i$.

Si $\lambda_1=1,$ il y a rien à montrer, c'est le même avec le premier cas.

Si
$$\lambda_1 < 1$$
, alors $\sum_{i=2}^{d} \lambda_i = 1 - \lambda_1 > 0$. On pose $\mu_i = \frac{\lambda_i}{1 - \lambda_1}$, $i \in \{2, 3, \dots, d\}$, alors $\sum_{i=2}^{d} \mu_i = 1$.

Comme on a supposé que H_{d-1} est vraie, donc le point $\sum_{i=2}^{d} \mu_i x_i$ est bien dans Conv(A). On

le note y. Or $x_1 \in Conv(A)$, donc :

$$\sum_{i=2}^{d} \lambda_i x_i = \lambda_1 x_1 + (1 - \lambda_1) y \in Conv(A)$$

car $x_1 \in Conv(A)$, $y \in Conv(A)$, Conv(A) est convexe et $\lambda_1 \in [0, 1[$. Donc on a montré que $H_nestvraie$. C'est-à-dire, $C \subset Conv(A)$.

Conclusion:

$$C = Conv(A)$$

C'est-à-dire,

$$Conv(A) = \{ \sum_{i=1}^{d} \lambda_i x_i, \forall i \in \{1, 2, \dots, d\}, \lambda_i \ge 0, \sum_{i=1}^{d} \lambda_i = 1 \}$$