Universidad de Buenos Aires		Facultad de Ingeniería		
2º Cuatrimestre 2009	75.12 - Análisis Numérico I. Curso 008	Parcial. Segunda Oportunidad.	Tema 1	Nota
Padrón:	Apellido y Nombres			

Ejercicio 1. Los datos de la tabla se han obtenido buscando una raíz para $f(x) = a.cos(x) + b.x.sen(x^2) + c.cos(x^2)$ mediante el método de Steffensen, usando la función de punto fijo g(x)=x+f(x). Se pide:

i		pi	g(pi)	Steffensen
	0	2,00000	1,41051	
0	1	1,41051	1,31557	?
	2	1,31557		
	0	?	1,37737	
1	1	1,37737	ND	ND
	2	ND		

- a) Obtener el valor de la primera aproximación de la raíz por el método de Steffensen
- b) Construir un Sistema de Ecuaciones Lineales que permita obtener los valores de las constantes a, b y c
- c) Sabiendo que el número de condición de la matríz A del SEL es k(A)=99.4, estimar | | A⁻¹ | |
- d) Realizar dos iteraciones mediante el método de Gauss-Seidel para resolver el sistema hallado en (b)
- e) Indicar bajo qué criterio de corte adoptaría como solución del SEL la aproximación hallada en (d)

Ejercicio 2. A partir de los datos de la tabla se han generado dos polinomios de Newton, dos polinomios de Spline, un polinomio de Lagrange Baricéntrico y un polinomio por Cuadrados Mínimos.

i	X	у
0	?	?
1	?	?
2	5	?
3	6	?
4	7	?
5	?	?

$$A = \begin{vmatrix} 5 & 22 \\ 22 & ND \end{vmatrix} \quad B = \begin{vmatrix} 17.5 \\ ND \end{vmatrix} \qquad W3 = -0.111111 \\ PLB(x4) = 5.777778 \qquad (3 \text{ puntos: } x1, x3, x5)$$

- a) Indique el grado y los puntos utilizados en cada caso (los puntos se usaron ordenados, salvo en LB)
- b) Obtenga al menos un valor de xi y uno de yi a partir de las expresiones de Newton
- c) Obtenga al menos un valor de xi a partir de las expresiones de Cuadrados Mínimos
- d) Obtenga al menos tres valores de yi a partir de las expresiones de Spline
- e) Obtenga al menos un valor de yi a partir de las expresiones de Cuadrados Mínimos
- f) Obtenga al menos un valor de xi y uno de yi a partir de las expresiones de Lagrange Baricéntrico

Ejercicio 3. La cota del error absoluto total del método del punto medio de integración numérica ($A=2\cdot h\cdot y_0$) está dada

por la siguiente expresión: $e_A = A \cdot \left[\frac{\left| e_h \right|}{\left| h \right|} + \frac{\left| e_{y_0} \right|}{\left| y_0 \right|} + \mu_1 \right] + \left| \frac{f^{<2>}(\xi)}{3} \right| h^3$ Determine los coeficientes C_p y T_e, e indique qué representa el término adicional.

Universidad de Buenos Aires		Facultad de Ingeniería		
2º Cuatrimestre 2009	75.12 - Análisis Numérico I. Curso 008	Parcial. Segunda Oportunidad.	Tema 2	Nota
Padrón:	Apellido y Nombres			

Ejercicio 1. Los datos de la tabla se han obtenido buscando una raíz para $f(x) = a.\cos(x) + b.x.\sin(x^2) + c.\cos(x^2)$ mediante el método de Steffensen, usando la función de punto fijo g(x)=x+f(x). Se pide:

i		pi	g(pi)	Steffensen
	0	2,00000	1,35564	
0	1	1,35564	1,40299	?
	2	1,40299		
	0	?	1,37857	
1	1	1,37857	ND	ND
	2	ND		

- a) Obtener el valor de la primera aproximación de la raíz por el método de Steffensen
- b) Construir un Sistema de Ecuaciones Lineales que permita obtener los valores de las constantes a, b y c
- c) Sabiendo que el número de condición de la matríz A del SEL es k(A)=282.8, estimar | | A⁻¹ | |
- d) Realizar dos iteraciones mediante el método de Gauss-Seidel para resolver el sistema hallado en (b)
- e) Indicar bajo qué criterio de corte adoptaría como solución del SEL la aproximación hallada en (d)

Ejercicio 2. A partir de los datos de la tabla se han generado dos polinomios de Newton, dos polinomios de Spline, un polinomio de Lagrange Baricéntrico y un polinomio por Cuadrados Mínimos.

i	х	у
0	?	?
1	?	?
2	5	?
3	6	?
4	7	?
5	?	?

$$A = \begin{vmatrix} 5 & 17 \\ 17 & ND \end{vmatrix} \quad B = \begin{vmatrix} 22,5 \\ ND \end{vmatrix} \quad W3 = -0,111111 \quad (3 \text{ puntos: } x1, x3, x5)$$

- a) Indique el grado y los puntos utilizados en cada caso (los puntos se usaron ordenados, salvo en LB)
- b) Obtenga al menos un valor de xi y uno de yi a partir de las expresiones de Newton
- c) Obtenga al menos un valor de xi a partir de las expresiones de Cuadrados Mínimos
- d) Obtenga al menos tres valores de yi a partir de las expresiones de Spline
- e) Obtenga al menos un valor de yi a partir de las expresiones de Cuadrados Mínimos
- Obtenga al menos un valor de xi y uno de yi a partir de las expresiones de Lagrange Baricéntrico

Ejercicio 3. La cota del error absoluto total del método del trapecio de integración numérica ($A = \frac{h}{2}[y_0 + y_1]$) está dada

por la siguiente expresión: $e_A = A \cdot \left\{ \left\lceil \frac{\left| e_{y_0} \right| + \left| e_{y_1} \right|}{\left| y_0 + y_1 \right|} + \frac{\left| e_h \right|}{h} \right\rceil + \left[\mu_1 + \mu_2 + \mu_3 \right] \right\} + \left| \frac{f^{<2>}(\xi)}{12} \right| h^3$ Determine los coeficientes C_p

y T_e, e indique qué representa el término adicional.