Automating ITPs Using ATPs

Arjun Viswanathan

Advisor:

Cesare Tinelli

Introduction

- Theorem provers prove logic properties
- Used in hardware/software verification
- Theorem Provers:
 - Interactive (ITPs)
 - Automatic (ATPs)

ITPs	ATPs
Small proof kernel	Large code base
User interaction	Highly automated
Reliable proofs	Susceptible to bugs
Expressive logics (HOL)	Less expressive logic (FOL)
Coq, Isabelle/HOL, Agda, Lean	Superposition Provers: Vampire, E, SPASS; SMT Solvers: CVC4, Z3, VeriT

Motivation

- Combine ITPs and ATPS to:
 - automate proofs in ITPs
 - certify results of ATPs
- Autarkic approach implement and prove correct ATP inside ITP

- Skeptical approach ATP outputs checkable certificate
- Tools:
 - Hammers (e.g., Sledgehammer, CoqHammer)
 - Certified Checkers (e.g., SMTCoq)

Technical Preliminaries

Satisfiability

 Propositional/Boolean Satisfiability (SAT): Satisfy F by mapping variables to True/False

$$p \land q$$
True \land True

 Satisfiability Modulo Theories (SMT): Satisfy F by mapping variables to theory constants

$$(a > 5) \land (a < 0)$$

True \land True \nearrow LIA

Duality of Satisfiability and Validity

• F is valid iff ¬F is unsatisfiable

$$F: \forall x_1, x_2, ..., x_n : H_1 \to H_2 \to ... \to H_m \to G$$

$$\neg F : \neg (\forall x_1, x_2, ..., x_n : H_1 \to H_2 \to ... \to H_m \to G)$$

$$\neg F: H_1 \wedge H_2 \wedge ... \wedge H_m \wedge \neg G$$

SMT Solvers

ATPs – SMT Solvers

- Is a given formula satisfiable or unsatisfiable?
- DPLL(T) architecture –
 abstract theory literals and use SAT
 solver
- SAT is NP-complete
- Theories and quantification may make solving undecidable

Proof Producing SMT Solvers

- Satisfiability satisfying model
- Unsatisfiability resolution proof tree
- Proof tree:
 - Input formulas leaves
 - Theory lemmas leaves
 - Empty clause root
 - Node rule applied to parents
 - Holes unjustified simplifications

Proof Producing SMT Solvers

• Proof rules:

- CNF Conversion
- Resolution
- Theory-specific
- Quantifier
- Rewrites

$$CNF : (x_1 \lor x_2 \lor ...) \land (y_1 \lor y_2 \lor ...) \land ...$$

$$\frac{x=y}{y=x}$$
 symm

$$\frac{P(c)}{\exists x.P(x)}$$
 $\exists \texttt{intro}$

$$x + 0 \mapsto x$$

$$\frac{\phi_1 \vee ... \vee \phi_n \vee \chi \quad \neg \chi \vee \psi_1 \vee ... \vee \psi_m}{\phi_1 \vee ... \vee \phi_n \vee \psi_1 \vee ... \vee \psi_m} \text{ resolution } \qquad \underline{a \vee \neg b \quad b \vee c} \\ n, m > 0$$

Interactive Theorem Provers

ITPs

- Small, trustable proof kernel
- Human-machine collaboration
- *Tactics* based on proof rules

LCF-Based	Automath-Based
Theorem is an ADT	Theorem statements - types
ADT provides functions to create theorems using inference rules of logic	Proofs – programs inhabiting types
HOL Light, HOL4, Isabelle	Coq, Agda, Lean
Sledgehammer – Isabelle/HOL	SMTCoq - Coq

Sledgehammer

Sledgehammer

- Automate proving within ITP using ATP
 - Premise Selection
 - Translation
 - Proof Reconstruction
- Sledgehammer Isabelle/HOL's hammer
- Metis internal ATP
- We focus on Sledgehammer's SMT solver integration

Premise Selection

Given ITP goal:

$$F: \forall x_1, x_2, ..., x_n : H_1 \to H_2 \to ... \to H_m \to G$$

G might depend on other facts

- ITPs have large libraries of proven facts
- Premise selection filter out relevant facts to send with F
 - Delegate to user
 - Syntactic selection
 - Semantic selection
 - Hybrid

Premise Selection

Given ITP goal:

$$F: \forall x_1, x_2, ..., x_n : H_1 \to H_2 \to ... \to H_m \to G$$

G might depend on other facts

- ITPs have large libraries of proven facts
- Premise selection filter out relevant facts to send with G
 - Delegate to user
 - Syntactic selection prioritize facts by common symbols with goal
 - Semantic selection
 - Hybrid

Translation

- ATP typed/untyped FOL
- ITP HOL
- FOL is a subset of HOL
- Translate non-FOL features of HOL such as anonymous functions, partial applications, etc.
- Map types in Isabelle to types in theories

Proof Reconstruction

- Sledgehammer with ATP
 - Trust as oracle CVC4, Yices
 - Use as relevance filter E, SPASS, Vampire -
 - Reconstruct ATP proof Z3
- Reconstruction
 - Inference-by-inference
 - Depth-first post-order
 - Reconstruction of a node implies a proven theorem
- Coarse-grained proofs necessitate proof search

SMTCoq

SMTCoq

- Skeptical cooperation between Coq and SAT/SMT solvers
- Coq data structures represent SMT terms (deep embedding)
- Coq *Props* represent Coq theorems (shallow embedding)
- SMT proofs → Proof certificate
- Boolean decision procedure checks proof certificate by computational reflection

Computational Reflection

- Coq data structures represent SMT terms (deep embedding)
- Coq Props represent Coq theorems (shallow embedding)
- Reflect proofs from deep to shallow
- Boolean decision procedure checks deep terms
 ⇔ proof terms
- Correctness of decision procedure
- Reflection uses Coq's computational capabilities

Computational Reflection

- Reflection needs:
 - A Boolean decision procedure (*check*) that
 - > takes a term s: S in the deep embedding,
 - ➤ a proof trace t: T from the ATP, and
 - checks that *t* justifies *s*
 - A proof of correctness of check (*reflection principle*)

```
\label{eq:check_correct} \begin{array}{l} \mathsf{check\_correct}: \forall (s:\mathtt{S})\ (t:\mathtt{T}), \mathsf{check}\ s\ t = \mathtt{true} \to \mathtt{P}\ s \\ \textit{p} \ \mathsf{is} \ \mathsf{a} \ \mathsf{predicate} \ \mathsf{on} \ \mathsf{deep} \ \mathsf{terms} \end{array}
```

- check is largely computational
- For a particular s and t, the proof of P s is:

```
\verb|check_correct| s t (\verb|refl_equal__true|) : \verb|P| s|
```

- Reflection principle relates
 - computational behavior of *check*
 - propositional meaning

SMTCoq - Checker

- Divide:
 - Proofs \rightarrow steps
 - Main checker → small checkers
- State : set of clauses
- Each step modifies state while maintaining unsatisfiability
- Main checker is final state ⊥?

Sledgehammer vs SMTCoq

Sledgehammer with Z3	SMTCoq
	Sledgehammer with Z3

	Sledgehammer with Z3	SMTCoq
Operation	 Trusts CVC3/4 and Yices as oracles Uses superposition provers as relevance filters Gets proof skeleton from Z3 and fills it using Metis 	 Converts proofs to a certificate format Uses reflection to reflect solver proofs

	Sledgehammer with Z3	SMTCoq
Operation	 Trusts CVC3/4 and Yices as oracles Uses superposition provers as relevance filters Gets proof skeleton from Z3 and fills it using Metis 	 Converts proofs to a certificate format Uses computational reflection to reconstruct solver proofs
Logic	 Goals in FOL and a subset of HOL from Isabelle/HOL Quantified FOL with EUF, LIA, BV 	 Only FOL goals in Coq Quantifier-free FOL with EUF, LIA, BV, Arrays

	Sledgehammer with Z3	SMTCoq
Operation	 Trusts CVC3/4 and Yices as oracles Uses superposition provers as relevance filters Gets proof skeleton from Z3 and fills it using Metis 	 Converts proofs to a certificate format Uses computational reflection to reconstruct solver proofs
Logic	 Goals in FOL and a subset of HOL from Isabelle/HOL Quantified FOL with EUF, LIA, BV 	 Only FOL goals in Coq Quantifier-free FOL with EUF, LIA, BV, Arrays
Extensibility	 Specific integration with Z3 Trusts other solvers without proof reconstruction 	 Integration with CVC4, VeriT, Zchaff, Glucose Additional solvers can be added by adding a preprocessor

	Sledgehammer with Z3	SMTCoq
Operation	 Trusts CVC3/4 and Yices as oracles Uses superposition provers as relevance filters Gets proof skeleton from Z3 and fills it using Metis 	 Converts proofs to a certificate format Uses computational reflection to reflect solver proofs
Logic	 Goals in FOL and a subset of HOL from Isabelle/HOL Quantified FOL with EUF, LIA, BV 	 Only FOL goals in Coq Quantifier-free FOL with EUF, LIA, BV, Arrays
Extensibility	 Specific integration with Z3 Trusts other solvers without proof reconstruction 	 Integration with CVC4, VeriT, Zchaff, Glucose Additional solvers can be added by adding a preprocessor
Premise Selection	 Uses various Sledgehammer premise selection techniques 	 Doesn't consider facts outside a lemma

Future Work - Abduction

• Given a set of axioms A, goal G, the abduct (if it exists) is a formula φ s.t.

$$A \wedge \phi \models G$$

• Find formula φ that is consistent with the axioms and when added to them, allows the goal to be proven

Future Work - Abduction

$$H = \{H_1, ..., H_n\}$$

Questions?

Questions?

Questions?

DPLL(T) Architecture

$$F: (a > 5) \land (a < 0)$$

ATPs – SMT Solvers

- Is a given formula satisfiable or unsatisfiable?
- DPLL(T) architecture –
 abstract theory literals and use SAT
 solver

- Is a given formula satisfiable or unsatisfiable?
- DPLL(T) architecture –
 abstract theory literals and use SAT
 solver

- Is a given formula satisfiable or unsatisfiable?
- DPLL(T) architecture –
 abstract theory literals and use SAT solver

SMT Solver

SAT Solver Arith Solver

String Solver

Bitvector Solver

. . .

- Is a given formula satisfiable or unsatisfiable?
- DPLL(T) architecture –
 abstract theory literals and use SAT
 solver

- Is a given formula satisfiable or unsatisfiable?
- DPLL(T) architecture –
 abstract theory literals and use SAT
 solver

- Is a given formula satisfiable or unsatisfiable?
- DPLL(T) architecture –
 abstract theory literals and use SAT
 solver

- Is a given formula satisfiable or unsatisfiable?
- DPLL(T) architecture –
 abstract theory literals and use SAT
 solver
- SAT is NP-complete
- Theories and quantification may make solving undecidable

SMT Proof Rules

Proof rules:

- $CNF : (x_1 \lor x_2 \lor ...) \land (y_1 \lor y_2 \lor ...) \land ...$
- CNF Conversion
- CNF transformation algorithm by Tseitin
- Transformed formula is linear in size
- Procedure:
 - introduce new variable for each sub-term
 - unfold equivalences

$$x_1 \leftrightarrow \neg s$$
 $x_2 \leftrightarrow p \lor q$
 $x_3 \leftrightarrow x_2 \land r$
 $x_4 \leftrightarrow x_3 \rightarrow x_1$

 $F: ((p \lor q) \land r) \rightarrow \neg s$

$$x_1 \leftrightarrow \neg s \equiv (x_1 \to \neg s) \land (\neg s \to x_1)$$
$$\equiv (\neg x_1 \lor \neg s) \land (\neg \neg s \lor x_1)$$
$$\equiv (\neg x_1 \lor \neg s) \land (s \lor x_1)$$

- Proof rules:
 - CNF Conversion
 - Resolution

$$\frac{a \vee \neg b \quad b \vee c}{a \vee c}$$

$$\frac{\phi_1 \vee \ldots \vee \phi_n \vee \chi \quad \neg \chi \vee \psi_1 \vee \ldots \vee \psi_m}{\phi_1 \vee \ldots \vee \phi_n \vee \psi_1 \vee \ldots \vee \psi_m} \ resolution$$

$$n, m \geq 0$$

• Proof rules:

- CNF Conversion
- Resolution
- Theory-specific

$$\frac{x=y}{y=x}$$
 symm

$$\frac{a=b-b=c}{a=c} \text{ trans}$$

$$\frac{i \neq j}{\operatorname{read}(a[i] := b, j) = \operatorname{read}(a, j)} \text{ row}$$

- Proof rules:
 - CNF Conversion
 - Resolution
 - Theory-specific
 - Quantifier
- Existential (∃) and universal (∀) quantifiers
- Quantifier introduction rules
- Instantiation rule to eliminate \forall
- Skolemization to eliminate ∃

$$\frac{P(c)}{\exists x.P(x)}$$
 $\exists \text{intro}$

$$rac{orall x.P(x)}{P(c/x)}$$
 inst $_{orall}$

- Proof rules:
 - CNF Conversion
 - Resolution
 - Theory-specific
 - Quantifier Elimination
 - Rewrites
- Some rewrites are proven
- Some are proof holes

$$p \wedge \neg p \mapsto \mathtt{false}$$

$$x \lor y \mapsto y \lor x$$

$$x + 0 \mapsto x$$

HOL -> FOL Translation

Translation

- ATP typed/untyped FOL
- ITP HOL
- FOL is a subset of HOL
- Non-FOL features of HOL:
 - Type variables monomorphization
 - Anonymous functions named function
 + quantified constraint
 - Partial applications explicit application
 - Compound types new FO type
 - Types sorts

list bool
$$\mapsto \kappa$$

Reflection

Computational Reflection

- Reflect terms in the ITP's language (shallow embedding) to terms in a datatype written in the ITP's language (deep embedding)
- Deep embedding represents terms from ATP
- Use ATP methods over deep terms
 - Pattern matching is allowed over deep but not shallow terms
- Prove correctness result for the transformation : theorems in deep embedding give theorems in shallow embedding

SMTCoq

- Boolean decision procedure in Coq checks SMT proofs
- Reflection in SMTCoq
 - Deep embedding datatypes ↔ FOL terms
 - Shallow embedding Coq terms ↔ FOL terms
 - Interpretation deep \rightarrow shallow terms
 - Reification shallow → deep terms
 - Ssreflect: Bool \rightarrow Prop

Duality of Satisfiability and Validity

• F is valid iff ¬F is unsatisfiable

$$F: (\neg p \land q) \lor \neg q \lor p$$
 $VALID$

$$\neg F : \neg(\neg p \land q) \land \neg \neg q \land \neg p$$
$$\neg F : (p \lor \neg q) \land \neg q \land \neg p$$

UNSAT