Patent Claims

1.	Method of generating defects in a lattice structure of a
	semiconductor material during thermal treatment of the
	material, in which the concentration and/or distribution of
	defects or vacancies are controlled as a function of a
	process gas atmosphere.

- 2. Method according to claim 1, characterized in that the defects are vacancies (empty lattice positions).
- 3. Method according to claim 1 or 2, characterized in that the defects are semiconductor- substrate atoms on interstitial lattice positions (self-interstitials).
- 4. Method according to one of the preceding claims, characterized in that the composition of the process gas is controlled.
- 5. Method according to one of the preceding claims, characterized in that the concentration of the process gas or of the process gas components is controlled.
- 6. Method according to one of the preceding claims, characterized in that the partial pressure of the process gas is controlled.
- 7. Method according to one of the preceding claims,

10

rocerter no-

5

15

20

5

10

15

20

	characterized in that the process gas includes a nitrogen-
	containing gas.
8.	Method according to claim 7, characterized in that the
	process gas includes NH ₃ .
9.	Method according to claim 7 or 8, characterized in that the
	process gas includes N ₂
10.	Method according one of the preceding claims, characterized
	in that the process gas contains no oxygen.
. 11.	Method according to one of the claims 1 to 9, characterized
	in that the process gas includes an oxygen-containing
	component.
12.	Method according to claim 11, characterized in that the
	oxygen-containing component includes N ₂ O, No, and/or H ₂ O
13.	Method according to one of the preceding claims
	characterized in that the temperature behavior of the therma
	treatment is controlled in terms of time.
14.	Method according to one of the preceding claims
	characterized in that the process gas atmosphere contains
	argon.
15.	Method according to one of the preceding claims
	characterized in that an Si _x O _y N _z layer is produced upon the
	surface of the semiconductor.

10	
15	

20

5

16.	Method	according	to	claim	15,	characterized	in	that	the
	thicknes	s of the lay	er i	s 0 to 2	20 ang	gstroms.			

- the preceding Method according to one 17. characterized in that prior to the thermal treatment a natural SiO₂ layer is removed from the/semiconductor surface.
- Method according to claim 17, characterized in that a Si₃N₄ 18. layer having a thickness of between 0 and 40 angstroms is produced upon the semiconductor.
- Method according to claim 7, characterized in that the NH₃ 19. concentration is 0 to 10,000ppm.
- 20. Method according to claim 19, characterized in that the NH₃ concentration is 2500 to/5,000ppm.
- 21. Method according to one of the preceding claims, characterized in that the thermal stress of the semiconductor wafer is reduced to a/minimum.
- 22. Method according/ to one of the preceding characterized in that a distribution of foreign atoms within the semiconductor material is controlled via the distribution of the defects.
- 23. Method according to claim 22, characterized in that the foreign atoms/have at least one element of the following group of borom, phosphorus, As, Sb and In.

IJ

5

10

- 24. Method according to one of the preceding claims, that the method is carried out on a semiconductor doped with foreign atoms.
- 25. Method according to one of the claims 1 to 23, characterized in that the method is carried out on a semiconductor that is to be doped.
- 26. Method according to claim 25, characterized in that the semiconductor is doped.
- 27. Method according to one of the preceding claims, characterized in that the semiconductor is doped by means of gas phase doping, implantation, and/or diffusion by out-diffusion into the semiconductor from a layer that contacts the semiconductor.

Add Ad7