MMIN: Modelos matemáticos para informática Parcial Primer Tercio

Nombres:	

Intrucciones

- 1. Por favor apagar y guardar celulares y demás dispositivos electrónicos.
- 2. Solamente puede utilizar las hojas entregadas con el exámen.
- 3. Resuelva de forma clara y legible el parcial.

1. PATRÓN

Para cada una de las siguientes secuencias encontrar el patrón y determine la ecuación de recurrencia para el término a_n y el(los) respectivos caso(s) base:

(a) $4, -8, 16, -32, 64, -128, 256, -512, 1024, -2048, \ldots, a_n$		
	$a_n =$	Casos base:
(b)	10,91,901,9001,90001,900001,9000001,9	$00000001, \ldots, a_n$
	$a_n =$	
	Casos base:	
(c)	3, 2, 4, 9, 20, 40, 81, 164, 328, 657, 1316, 2632, 5265, 105	$32,21064,\ldots,a_n$
	$a_n =$	
	Casos base:	

2. INTERÉS

Determinar los años necesarios para que un capital colocado al 11% se triplique.

3. GENERAR TÉRMINOS

Completar la siguiente tabla a partir de la ecuación de recurrencia:

$$a(n) = a(n-1) + a(n-2) + (5 \mod n) + (n \operatorname{div} 2)$$

a(1)	a(2)	a(3)	a(4)	a(5)	a(6)
2	3				

ELIJA DOS DE LOS PROBLEMAS 4, 5 y 6. SUS DOS PROBLEMAS ELEGIDOS SON: _____, ____

4. APRETÓN DE MANOS

A una reunión asisten n personas. Si cada persona se saluda con las demás. ¿cuantos saludos en total se pueden dar las n personas?

2	$S_n =$	Casos	base:
_	The second secon		

5. ÁRBOLES

En cierta variedad hipotética de planta arbórea, la cantidad de crecimiento nuevo logrado a lo largo de un año dado es exactamente igual a la cantidad de crecimiento logrado el año anterior. Sea l_n la longitud total de todas las ramas al cabo de n años. Escriba una ecuación de recurrencia que describa l_n .

$l_n = $	Casos base:

6. CAJAS

Se tienen 3 tipos de cajas: negras, blancas, rojas. Las cajas negras tienen 1 metro de altura, las cajas blancas 2 metros, las cajas rojas 3 metros. ¿cuántas torres distintas de n metros de altura se pueden formar con estas cajas? (se supone que, de cada tipo, se dispone de tantas cajas como sean necesarias).

		0 1
+	_	_ Casos base:
Ln		_ Casus base

*** BONO1: (+1.0) ***

En la siguiente serie de figuras se generan números contando los puntos resaltados. Estos números se llaman números pentagonales. Encuentre una ecuación de recuerrencia que permita generar estos números.

(Ayuda: Le puede servir, tener como base el problema de los números triangulares propuesto en la tarea 4)

¹Para que el bono tenga validez debe estar PERFECTO