17–23 нояб.	12	Спектральный анализ электри- ческих сигналов. Модуляция.							11.1 11.3(a,6) 012.1	
		Параметрические колебания. Автоколебания.								
6111					1					

11.1. Найти спектры следующих колебаний:

1) $f(t) = A\cos^2\omega_0 t$ (квадратичное преобразование монохроматического сигнала);

$$f(t) = A\cos^2\omega t = A \frac{1+\cos 2\omega t}{2} = \frac{A}{2} + \frac{A}{2}\cos 2\omega t$$

11.3. Найти спектр следующих сигналов, изображенных на рис. 298: а) периодическая последовательность прямоугольных им-пульсов; б) прямоугольный импульс; в) синусоидальный цуг.

$$a) f(t) = \begin{cases} c_{n} e^{in\omega \cdot t} \\ -in\omega \cdot t \end{cases}$$

$$a) f(t) = \begin{cases} c_{n} e^{in\omega \cdot t} \\ -in\omega \cdot t \end{cases}$$

$$c_{n} e^{i(n-m)\omega \cdot t}$$

$$f(t) = \begin{cases} c_{n} e^{i(n-m)\omega \cdot t} \\ -in\omega \cdot t \end{cases}$$

$$c_{n} e^{i(n-m)\omega \cdot t}$$

$$c_{n} = \frac{A}{T} \int_{e}^{2} e^{-in\omega_{0}t} dt = \frac{A}{T} \frac{1}{-in\omega_{0}} \left[e^{-in\omega_{0}t} - e^{-in\omega_{0}t} \right] = \frac{e^{-in\omega_{0}t}}{2} = \frac{$$

$$F(\omega) = c_n T = \int_{-\infty}^{\infty} f(t) e^{-i\omega t} dt = A \tau \frac{\omega}{\omega \tau}$$

$$\tau > \infty - \infty$$

Ombew: a) fit =
$$\frac{2}{8}A + \frac{2}{1} = \frac{2}{1}$$

512.1°

 ${}^{0}12.1$. Найдите спектр модулированного по амплитуде сигнала вида $g(t) = f(t) \cdot \cos \omega_0 t$, если спектр сигнала f(t) равен $F(\omega)$. Рассмотрите случай $f(t) = e^{-\gamma t}$ при $t \ge 0$.

Otbet:
$$G(\Omega) = \frac{\gamma + i\Omega}{(\gamma + i\Omega)^2 + \omega_0^2}$$

$$g(t) = f(t)\cos \omega_0 t = \frac{1}{2}f(t)(e^{i\omega_0 t} + e^{i\omega_0 t}) = \frac{1}{2}f(t)e^{i\omega_0 t} + \frac{1}{2}f(t)e^{i\omega_0 t}$$

$$L(\frac{1}{1}) = \frac{1}{1} \int_{-\infty}^{\infty} f(x) e^{i\omega x} dx = e^{i\omega x} dx = \int_{-\infty}^{\infty} f(x) e^{-i(\omega x} - \omega x) dx + \int_{-\infty}^{\infty} f(x) e^{-i(\omega x} - \omega x) dx + \int_{-\infty}^{\infty} f(x) e^{-i(\omega x} - \omega x) dx + \int_{-\infty}^{\infty} e^{-i(\omega x)} dx + \int_{-\infty}^{\infty} e^{$$