Sequential ATPG

- Introduction
- Time-frame expansion methods
 - The Extended D-algorithm [Kubo 68]
 - 9-valued D algorithm [Muth 76]
 - EBT [Marlett 78], BACK [Cheng 88] *
 - Summary
- Simulation-based methods*
- Issues of Sequential ATPG*
- Conclusions

Quiz

Q: Given this test, can we detect the fault? ANS:

	а	ь
V ₁	0	0
V ₂	0	1

Extended D-algorithm Fails!

- Extended- D algorithm fails due to a conflict
 - Requires a=0 in time frame -1, but SA1
 - ◆ Actually, Y₀ is over-specified in 5-valued logic

Why Fails?

- Traditional 5-valued logic (0/0, 1/1, x/x, 0/1, 1/0) is NOT sufficient
 - ◆ cannot express 1/x, 0/x, x/0, x/1

Q: How many total cases do we need?

ANS:

Nine-valued D-algorithm [Muth 76]

Solution: use 9-valued logic, instead of 5-valued logic

Symbol	Meaning	Roth's 5-va	lued logic	Muth's 9 valued logic		
		Fault-free	faulty	Fault-free	faulty	
D	(1/0)	1	0	1	0	
D'	(0/1)	0	1	0	1	
0	(0/0)	0	0	0	0	
1	(1/1)	1	1	1	1	
Х	(x/x)	X	X	X	X	
G0	(0/x)	-	-	0	X	
G1	(1/x)	-	-	1	X	
F0	(x/0)	-	-	X	0	
F1	(x/1)	-	-	X	1	

Nine-valued Truth Table

Example of AND gate

AND	0	0/x	D'	x/0	x/x	x/1	D	1/x	1
0	0	0	0	0	0	0	0	0	0
0/x	0	0/x	0/x	0	0/x	0/x	0	0/x	0/x
D'	0	0/x	D'	0	0/x	D'	0	0/x	D'
x/0	0	0	0	x/0	x/0	x/0	x/0	x/0	x/0
x/x	0	0/x	0/x	x/0	x/x	x/x	x/0	x/x	x/x
x/1	0	0/x	D'	x/0	x/x	x/1	x/0	x/x	x/1
D	0	0	0	x/0	x/0	x/0	D	D	D
1/x	0	0/x	0/x	x/0	x/x	x/x	D	1/x	1/x
1	0	0/x	D'	x/0	x/x	x/1	D	1/x	1

Nine-Valued Test Generation

Test pattern successfully generated

	а	b
V 1	0	0
V 2	0	1

Comparison: 9 v.s. 5 valued

Sequential ATPG

- Introduction
- Time-frame expansion methods
 - The Extended D-algorithm [Kubo 68]
 - 9-valued D algorithm [Muth 76]
 - express all nine possible logic states
 - avoid over-specification
 - EBT [Marlett 78], BACK [Cheng 8]
 - Summary
- Simulation-based methods*
- Issues of Sequential ATPG*
- Conclusions

FFT

- Q1: Why NOT consider 1/x, 0/x, x/0, x/1 in combinational ATPG?
- Q2: Why NOT backtrace Y₋₁ one more time frame to the left?

