誘導接続

1

定義 1.1. N,M を可微分多様体, $f:N\to M$ を C^∞ 級の写像とする. $\xi:N\to TM$ なる C^∞ 級写像で

$$\pi_{TM} \circ \xi = f$$

を満たすものを, f に沿ったベクトル場という. その全体を $\Gamma(f^*TM)$ で表す.

命題 1.2. N,M を多様体, $f:N\to M$ を C^∞ 級の写像とする. M の接続 ∇ に対して, 写像

$$\nabla^{f^*}: \mathfrak{X}(N) \times \Gamma(f^*TM) \to \Gamma(f^*TM)$$

で

- (1)ℝ 上の双線形写像である.
- $(2)\nabla_{qX}^{f^*}\xi=g\nabla_X^{f^*}\xi$ が成り立つ.
- $(3)
 abla_X^{f^*}(g\xi) = X(g)\xi + g
 abla_X^{f^*}\xi$ が成り立つ.
- (4) 任意の $\xi \in \Gamma(f^*TM)$ に対して, N の開集合 $U \subset N$ と M の開集合 $V \subset M$ と, U 上のベクトル場 Y が $f(U) \subset V$ かつ $\mathcal{E} = f^*Y$ を満たすならば,

$$(\nabla_X^{f^*}\xi)_p = \nabla_{df_p(X)}Y \quad (p \in U)$$

が成り立つ.

を満たすようなものが一意に存在する.

証明・(sketch). $X\in\mathfrak{X}(M),\xi\in\Gamma(f^*TM),p\in N$ に対して $\nabla_X^{f^*}\xi$ を、適当に f(p) の周囲の局所座標 (V,y_1,\ldots,y_m) をとって、 $f(U)\subset V$ となるように $p\in N$ の周りの局所座標を (U,x_1,\ldots,x_n) ととる. $X=X^i\partial_i,\xi=\xi^\alpha\delta_\alpha$ と表示することにして、 $\Gamma_{\alpha\beta}^\gamma$ を ∇ の (V,y_1,\ldots,y_m) に対応するクリストっフェル記号とする.

$$(\nabla_X^{f^*}\xi)_p \coloneqq (X^i(\partial_i\xi^\gamma) + X^i(\partial_if^\beta)\xi^\alpha f^*\Gamma^\gamma_{\beta\alpha})f^*(\delta_\gamma)$$

により定めるとよい.