

跨三帶 歌語处理國歌及程序般份

提 纲

•	1. 数据处理——函数	••••
.	2. 程序流程控制	
	3. 自定义函数	•
	4. 整合与重构	

【问题引入】

假设一组学生参加了数学、科学和英语考试。为了给所有学生确定一个单一的成绩衡量指标,需要将这些科目的成绩组合起来。另外,还需将前20%的学生评定为A,接下来20%的学生评定为B,依次类推。最后,按姓名的字母顺序对学生排序。

学生姓名	数学	科 学	英 语
John Davis	502	95	25
Angela Williams	600	99	22
Bullwinkle Moose	412	80	18
David Jones	358	82	15
Janice Markhammer	495	75	20
Cheryl Cushing	512	85	28
Reuven Ytzrhak	410	80	15
Greg Knox	625	95	30
Joel England	573	89	27
Mary Rayburn	522	86	18

此数据集有两个明显特征:

- ◆ 三科考试的成绩是无法比较的。由于它们的均值和标准差相去甚远,所以对它们求平均值是没有意义的。在组合这些考试成绩之前,必须将其变换为可比较的单元。
- ◆ 为了评定等级,需要一种方法来确定某个学生在 前述得分上百分比排名。
- ◆ 表示姓名的字段只有一个,这让排序任务复杂化了。为了正确地将其排序,需要将姓和名拆开。

● 数学函数

函 数	描述
abs(x)	绝对值 abs (-4) 返回值为4
sqrt(x)	平方根sqrt(25)返回值为5 和25^(0.5)等价
ceiling(x)	不小于x的最小整数 ceiling(3.475)返回值为4
floor(x)	不大于x的最大整数 floor(3.475)返回值为3
trunc(x)	向 0 的方向截取的x中的整数部分 trunc (5.99) 返回值为5

当这些函数被应用于数值向量、矩阵或数据框时,它们会作用于每一个独立的值。例如, sqrt(c(4, 16, 25))的返回值为c(2,4,5)。

函 数	描述
round(x, digits=n)	将x舍入为指定位的小数 round(3.475, digits=2)返回值为3.48
signif(x, digits=n)	将x舍入为指定的有效数字位数 signif(3.475, digits=2)返回值为3.5
cos(x), sin(x), tan(x)	余弦、正弦和正切 cos(2)返回值为 - 0.416
acos(x), $asin(x)$, $atan(x)$	反余弦、反正弦和反正切 acos(-0.416)返回值为2
cosh(x), $sinh(x)$, $tanh(x)$	双曲余弦、双曲正弦和双曲正切 sinh(2)返回值为3.627
$\operatorname{acosh}(x)$, $\operatorname{asinh}(x)$, $\operatorname{atanh}(x)$	反双曲余弦、反双曲正弦和反双曲正切 asinh(3.627)返回值为2
log(x,base=n)	对x取以n为底的对数
log(x)	为了方便起见
log10(x)	log(x)为自然对数 log10(x)为常用对数 log(10)返回值为2.3026 log10(10)返回值为1
$\exp(x)$	指数函数 exp(2.3026)返回值为10

• 统计函数

函 数	描述
mean(x)	平均数
	mean(c(1,2,3,4))返回值为2.5
median(x)	中位数
	median(c(1,2,3,4))返回值为2.5
sd(x)	标准差
	sd(c(1,2,3,4))返回值为1.29
var(x)	方差
	var(c(1,2,3,4))返回值为1.67
mad(x)	绝对中位差 (median absolute deviation)
	mad(c(1,2,3,4))返回值为1.48
quantile(x, probs)	求分位数。其中x为待求分位数的数值型向量, probs为一个由[0,1]之间的概率值组成
	的数值向量
	#求×的30%和84%分位点
	$y \leftarrow quantile(x, c(.3, .84))$
range(x)	求值域
	x <- c(1,2,3,4) range(x)返回值为c(1,4)
	diff(range(x))返回值为3
sum(x)	求和
Suit (X)	sum(c(1,2,3,4))返回值为10
diff(x, lag=n)	滞后差分,lag用以指定滞后几项。默认的lag值为l
dill(x, lag=11)	x<- c(1, 5, 23, 29)
	diff(x)返回值为c(4, 18, 6)
min(x)	求最小值
	min(c(1,2,3,4))返回值为1
$\max(x)$	求最大值
	max(c(1,2,3,4))返回值为4
scale(x,center=TRUE,	为数据对象x按列进行中心化(center=TRUE)或标准化(center=TRUE,scale
scale=TRUE)	=TRUE);
	代码清单5-6中给出了一个示例

【操作练习】均值和标准差的计算以及数据标准化(5分钟)

```
x <- c(0:9, 50)
x
mean(x)
mean(x, trim = 0.10, na.rm=TRUE)
sd(x)
```

newdata <- scale(x) # 默认情况下,函数scale()对矩阵或数据框的指定列进行均值为0、标准差为1的标准化

newdata

newdata <- scale(x)*10+50#标准化为均值50标准差为10的变量 newdata

mean(newdata) sd(newdata)

【提示】当标准化指定列而不是整个矩阵或数据框时,可以 newdata <- transform(dataframename, colname=scale(colname)*SD+M)

● 概率函数

概率函数通常用来生成特征已知的模拟数据,以 及在用户编写的统计函数中计算概率值。概率函数形如:

[dpqr]distribution_abbreviation()

其中:

d = 密度函数(density)

p = 分布函数 (distribution function)

q = 分位数函数(quantile function)

r=生成随机数(随机偏差),

其中distribution_abbreviation()指分布名称的缩写。

分布名称	缩写	分布名称	缩写
Beta分布	beta	Logistic分布	logis
二项分布	binom	多项分布	multinom
柯西分布	cauchy	负二项分布	nbinom
(非中心)卡方分布	chisq	正态分布	norm
指数分布	exp	泊松分布	pois
F分布	f	Wilcoxon符号秩分布	signrank
Gamma分布	gamma	t分布	t
几何分布	geom	均匀分布	unif
超几何分布	hyper	Weibull分布	weibull
对数正态分布	lnorm	Wilcoxon秩和分布	wilcox

【操作练习】生成服从均匀分布的伪随机数(5分钟) runif(5) #生成0到1区间上服从均匀分布的伪随机数 runif(5)

set.seed(123) #设定随机数种子

runif(5)

set.seed(123)

runif(5)

【提示】通过手动设定种子,可以使生成的随机数结果一致。这有助于我们创建会在未来使用,以及可与他人分享的样本。

在模拟研究和蒙特卡洛方法中,经常需要获取来自给定均值向量和协方差阵的多元正态分布的数据。 MASS包中的mvrnorm()函数可以解决这个问题。

调用格式为:

mvrnorm(n,mean,sigma)

其中:

n是样本大小

mean为均值向量

sigma是方差-协方差矩阵(或相关矩阵)

【操作练习】从一个参数如下的三元正态分布中抽取

500个观测(8分钟)。

均值向量	230.7	146.7	3.6
协方差阵	15360.8	6721.2	-47.1
	6721.2	4700.9	-16.5
	-47.1	-16.5	0.3


```
library(MASS)
options(digits=3)
set.seed(1234)
mean <- c(230.7, 146.7, 3.6) #指定均值向量
sigma <- matrix( c(15360.8, 6721.2, -47.1,
          6721.2, 4700.9, -16.5, -47.1, -16.5, 0.3),
        nrow=3, ncol=3) #指定协方差阵
mydata <- mvrnorm(500, mean, sigma) #生成数据
mydata <- as.data.frame(mydata) #转换成数据框
names(mydata) <- c("y", "x1", "x2") #命名变量
dim(mydata) #查看维度
head(mydata, n=10) #查看前10行
```

● 字符处理函数(略)

函 数	描述
nchar(x)	计算x中的字符数量 x <- c("ab", "cde", "fghij") length(x)返回值为3(参见表5-7) nchar(x[3])返回值为5
substr(x, start, stop)	提取或替换一个字符向量中的子串 x <- "abcdef" substr(x, 2, 4)返回值为"bcd" substr(x, 2, 4) <- "22222"(x将变成"a222ef")
<pre>grep(pattern, x, ignore. case=FALSE, fixed=FALSE)</pre>	在x中搜索某种模式。若fixed=FALSE,则pattern为一个正则表达式。若fixed=TRUE,则pattern为一个文本字符串。返回值为匹配的下标grep("A",c("b","A","c"),fixed=TRUE)返回值为2

·	
函 数	描述
<pre>sub(pattern, replacement, x, ignore.case=FALSE, fixed=FALSE)</pre>	在x中搜索pattern,并以文本replacement将其替换。若fixed=FALSE,则pattern为一个正则表达式。若fixed=TRUE,则pattern为一个文本字符串sub("\\s",".","Hello There")返回值为Hello.There。注意,"\s"是一个用来查找空白的正则表达式;使用"\\s"而不用"\"的原因是,后者是R中的转义字符(参见1.3.3节)
strsplit(x, split, fixed=FALSE)	在 <i>split</i> 处分割字符向量x中的元素。若fixed=FALSE,则 <i>pattern</i> 为一个正则表达式。若fixed=TRUE,则 <i>pattern</i> 为一个文本字符串 y <- strsplit("abc", "")将返回一个含有1个成分、3个元素的列表,包含的内容为"a" "b" "c"
	unlist(y)[2]和sapply(y, "[", 2)均会返回"b"
paste(, sep="")	连接字符串,分隔符为sep paste("x",1:3,sep="")返回值为c("x1","x2","x3") paste("x",1:3,sep="M")返回值为c("xM1","xM2" "xM3") paste("Today is", date())返回值为Today is Thu Jun 25 14:17:32 2011(我修改了日期以让它看起来更接近当前的时间)
toupper(x)	大写转换 toupper("abc")返回值为"ABC"
tolower(x)	小写转换 tolower("ABC")返回值为"abc"

● 其他实用函数(略)

函数	描述	
length(x)	对象x的长度	
	x <- c(2, 5, 6, 9) length(x)返回值为4	
seq(from, to, by)	生成一个序列	
	indices <- seq(1,10,2) indices的值为c(1, 3, 5, 7, 9)	
rep(x, n)	将x重复n次	
	y <- rep(1:3, 2) y的值为c(1, 2, 3, 1, 2, 3)	
cut(x, n)	将连续型变量x分割为有着n个水平的因子	
	使用选项ordered_result = TRUE以创建一个有序型因子	
pretty(x, n)	创建美观的分割点。通过选取n+1个等间距的取整值,将一个连续型变量x分割为n个区间。绘图中常用	
<pre>cat(, file ="myfile", append =FALSE)</pre>	连接中的对象,并将其输出到屏幕上或文件中(如果声明了一个的话) firstname <- c("Jane") cat("Hello", firstname, "\n"))

【操作练习】将函数应用于矩阵和数据框(5分钟)。 a <- 5 sqrt(a) b < c(1.243, 5.654, 2.99)round(b) c <- matrix(runif(12), nrow=3) log(c) mean(c) #所有元素的均值 mydata <- matrix(rnorm(30), nrow=6) mydata

#apply函数经常用来计算矩阵中行或列的均值、和值的函数

apply(mydata, 1, mean) #计算每行的均值

apply(mydata, 2, mean) #计算每列的均值

apply(mydata, 2, mean, trim=0.2)

#计算每列中间60%元素的均值

2. R语言介绍

Break Time 5 minutes

【问题求解】将学生的各科考试成绩组合为单一的成绩衡量指标、基于相对名次(前20%,下20%,等等)给出从A到F的评分、根据学生姓氏和名字的首字母对花名册进行排序。(10分钟)

options(digits=3) #限定条件,小数点后3位

Student <- c("John Davis", "Angela Williams", "Bullwinkle Moose", "David Jones", "Janice Markhammer", "Cheryl Cushing", "Reuven Ytzrhak", "Greg Knox", "Joel England", "Mary Rayburn")

Math <- c(502, 600, 412, 358, 495, 512, 410, 625, 573, 522)

Science <- c(95, 99, 80, 82, 75, 85, 80, 95, 89, 86)

English <- c(25, 22, 18, 15, 20, 28, 15, 30, 27, 18)

roster <- data.frame(Student, Math, Science, English, stringsAsFactors=FALSE)

z <- scale(roster[,2:4]) #使不同成绩统一标准量化 score <- apply(z, 1, mean) #计算出平均成绩 roster <- cbind(roster, score) #把平均成绩加入到表格中 y <- quantile(score, c(.8, .6, .4, .2)) #设置成绩的分界点 roster\$grade[score >= y[1]] <- "A" #对学生成绩分类编组 roster\$grade[score < y[1] & score >= y[2]] <- "B" roster\$grade[score < y[2] & score >= y[3]] <- "C" roster\$grade[score < y[3] & score >= y[4]] <- "D" roster\$grade[score < y[4]] <- "F"

name <- strsplit((roster\$Student), " ") #分割姓名 name

lastname <- sapply(name, "[", 2)# 提取第二个元素 firstname <- sapply(name, "[", 1)#提取第一个元素

roster <- cbind(firstname,lastname, roster[,-1]) roster <- roster[order(lastname,firstname),] #排序

roster

- ◆ 语句(statement)是一条单独的R语句或一组复合语句(包含在花括号{}中的一组R语句,使用分号分隔);
- ◆ 条件(cond)是一条最终被解析为真(TRUE)或 假(FALSE)的表达式;
- ◆ 表达式(expr)是一条数值或字符串的求值语句;
- ◆ 序列(seq)是一个数值或字符串序列。

● 循环语句

for(var in seq) statement

或者

while(cond) statement

【操作练习】用for语句求1到100的和(5分钟) sum<-0 for (i in 1:100) sum=sum+i print(sum)

【问题】如何用while语句求1到100的和? (5分钟) while(cond) statement

● 分支语句 if (cond) statement

if (cond) statement1 else statement2

ifelse(cond,statement1,statement2)

switch(expr,...)

【操作练习】从键盘输入一个数,如果是奇数,则输出 "是奇数",如果是偶数则输出"是偶数"。(5分钟)

number<-scan("")#从键盘输入数据
if(number%%2==0)
print("是偶数") else #else一行前面无内容时会报错
print("是奇数")

【运行提示】在左下角提示符>后: 输入数据+回车

3. 自定义函数

函数的基本结构:

```
myfunction <- function(arg1,arg2,...){
    statements
    return(object)
```

【注意】函数中的对象只在函数内部使用。返回对象的数据类型是任意的,从标量到列表皆可。

3. 自定义函数

【操作练习】自定义求1...n的和的函数,并调用这个 函数求1到1000的和(10分钟)。

◆第1步 定义函数
add1To100<-function(n){
sum<-0
for (i in 1:n)
sum=sum+i

return (sum)

3. 自定义函数

- ◆第2步 把上面的代码存在文件functionTest.R中,放到"D:/R" 下
- ◆第3步 调用add函数
 source("functionTest.R")
 result<-add1To100(100)
 print(result)

R中提供了许多用来整合(aggregate)和重塑(reshape)数据的强大方法。在整合数据时,往往将多组观测替换为根据这些观测计算的描述性统计量。在重塑数据时,则会通过修改数据的结构(行和列)来决定数据的组织方式。

● 转置

转置(反转行和列)。使用函数t()即可对一个矩阵或数据框进行转置。对于后者,行名将成为变量(列)名。

【操作练习】2分钟

cars <- mtcars[1:5, 1:4] #mtcars为系统自带数据集

cars

t(cars)

● 整合数据

调用格式为:

aggregate(x, by, FUN)

其中:

观测中的值。

x是待整合的数据对象; by是一个变量名组成的列表(这些变量将被去掉以形成新的观测); FUN则是用来计算描述性统计量的标量函数,它将被用来计算新

【操作练习】根据汽缸数和挡位数整合mtcars数据,

并返回各个数值型变量的均值。(5分钟)

options(digits=3)

attach(mtcars)

mtcars

aggdata <-aggregate(mtcars, by=list(cyl,gear),

FUN=mean, na.rm=TRUE)

aggdata

4. 整合与重构(略)

reshape包(略)

Reshape/reshape2包是一套重构和整合数据集的绝妙的万能工具。在第一次使用它之前需要使用install.packages("reshape")进行安装。

你需要首先将数据"融合"(melt),以使每一行都是一个唯一的标识符—变量组合。然后将数据"重铸"(cast)为你想要的任何形状。在重铸过程中,你可以使用任何函数对数据进行整合。

4. 整合与重构(略)

重型一个数据集

mydata

ID	Time	X1	X2
1	1	5	6
10	2	3	5
2	11	6	-1:
2	2	2	4

执行整合

cast(md, id-variable, mean)

ID	X1	X2
1	4	5.5
2	4	2.5

(a)

cast(md, time-variable, mean)

Time	X1	X2
1	5.5	3.5
2	2.5	4.5

(b)

cast(md, id-time, mean)

ID	Time1	Time2
1	5.5	4
2	3.5	3

md <- melt(mydata, id=c("id", "time"))

ID	Time	Variable	Value
1	1	X1	5
1	2	X1	3
2	1	X1	6
2:	2	X1	2
1	1	X2	6
1	2	X2	5
2	1	X2	1
2	2	X2	4

不执行整合

cast(md, id+time~variable)

D	Time	X1	X2	
1	1	5	8	
1:	2	3	5	
2	1	6	31	
2	2	2	4	

(d)

cast(md, id+variable~time)

ID	Variable	Time1	Time 2	
1	X1	5	3	
1	X2	6	5	
2	X1	6	2	
2	Х2	1	4	

(e)

cast(md, id~variable+time)

ID	X1 Time1	X1 Time2	X2 Time1	X2 Time2
1	5	3	6	5
2	6	2	1	4

(c)

课下作业

- 1、重复练习(但不限于)课上练习的内容,将操作界面截 图到Word文档,发word文档到学堂云交作业。
- 2、你和你的小伙伴使用洪荒之力,完成数据的收集/采集。

