

Na 1261E

LB1630

Low-Saturation Bidirectional Motor Driver for Low-Voltage Applications

The LB1630 is a low-saturation bidirectional motor driver IC for use in low-voltage applications. It is especially suited for use in small-sized low-voltage motors for printers, cassette tape recorders, and consumer equipment.

Features

- . Capable of operating from a low voltage (2.5V min). Low current dissipation at the standby mode ($I_{CC} \le 30uA$)
- . Low-saturation voltage (upper transistor + lower transistor residual voltage 1.2V max at 400mA)
- . On-chip spark killer diodes

Absolute Maximum Ratings at Ta	a=25 ⁰ C			unit
Maximum Supply Voltage	$v_{\rm cc^{max}}$		-0.3 to $+7.0$	V
Output Supply Voltage	VOUT		-0.3 to $V_{CC}+V_{C}$	v
Input Supply Voltage	VIN		-0.3 to $V_{CC}+V_F$ -0.3 to $+7.0$	V
Allowable Load Resistance	R _M min	Pulse width<50ms Duty 10%	3	ohm
GND Pin Flow-out Current	IGND	Pulse width<50ms Duty 10%	2	A
Allowable Power Dissipation	Pdmax		785	mW
Operating Temperature	Topr	'	-20 to +75	°C
Storage Temperature	Tstg		-40 to +125	°C
Allowble Operating Conditions	at Ta=25	Pc .		unit
Supply Voltage	v _{CC}		2.5 to 6.0	V
Input "H"-Level Voltage	V _{TH}		2.0 to 6.0	V
Input "L"-Level Voltage	VIL		-0.3 to $+0.7$	٧

Equivalent Circuit

Package Dimensions 3001B unit: mm

Electrical Characteristics a	t Ta=25 ⁰ C		min	typ	max	unit
Output Saturation Voltage	VOUT(1)	$V_{CC}=3V, V_{TN}=3V, I_{OUT}=200mA$			0.6	V
(upper side + lower side)	VOUT(2)	$V_{CC}=3V, V_{IN}=3V, I_{OUT}=200mA$ $V_{CC}=3.5V, V_{IN}=3V, I_{OUT}=400mA$			1.2	V
Output Sustain Voltage	V _{O(sus)}	I _{OUT} =400mA	9			V
Output Leakage Current	I ₀ (leak)	v _{cc} =6v			30	μA
Input Current	IN	V _{TN} =6V			1.0	mΑ
Spark Killer Diode						
Reverse Current	I _S (leak)	V _{CC} =6V, V _{IN} =0V			30	μA
Forward Voltage	v _{SF}	I _{OUT} =500mÃ			1.7	v
Current Dissipation	ICC	$I_{CC}=3.5V, V_{TN}=3V, I_{OUT}=400mA$,		430	mA

Truth Table

IN1	IN2	OUT1	OUT2	MOTOR
H	L	H	L	Forward
L	H	L	H	Reverse
H	H	off	off	Standby
L	L	off	off	Standby

Sample Application Circuit

- No products described or contained herein are intended for use in surgical implants, life-support systems, aerospace equipment, nuclear power control systems, vehicles, disaster/crime-prevention equipment and the like, the failure of which may directly or indirectly cause injury, death or property loss.
- Anyone purchasing any products described or contained herein for an above-mentioned use shall:
 - Accept full responsibility and indemnify and defend SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors and all their officers and employees, jointly and severally, against any and all claims and litigation and all damages, cost and expenses associated with such use:
 - ② Not impose any responsibility for any fault or negligence which may be cited in any such claim or litigation on SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors or any of their officers and employees jointly or severally.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.