Learning Large-Scale Social Knowledge Graphs

Zhilin Yang, Jie Tang

Dept. Computer Science, Tsinghua University

Large-scale social networks

- Facebook
 - 1.4 billion active users in Quarter 1, 2015
 - Tens of millions of posts per day
- AMiner
 - 39 million researchers
 - 79 million papers
- Large-Scale social networks are big information networks!

Large-scale collective knowledge

- Freebase
 - 44 million entities
 - 2.4 billion facts
- YAGO2
 - 10 million entities
 - 120 million facts
- Wikipedia
 - 35 million entities
 - 2 million categories

Bridge the gap

Social Network

Collective Knowledge

Bridge the gap

- Social knowledge graph
- Why?
 - Better mine large volume of information
 - Better user understanding and recommendation
 - Better search

What we've done

- Propose an algorithm GenVector to learn large-scale social knowledge graph
 - Weakly supervision based on unsupervised techniques
 - Multi-source Bayesian embedding model
- Online deployment
 - Online service on AMiner.org
 - Online AB-test

- Large-scale
 - -38,049,189 researchers (AMiner)
 - -74,050,920 papers (AMiner)
 - -20,552,544,886 bytes corpus (Wikipedia full text)
 - -35,415,011 entities (Wikipedia)

- Large-scale
- Fast
 - Implementation optimization for a 60 times speedup
 - From 3 hours per iteration to 3 minutes

- Large-scale
- Fast
- Accurate
 - Offline test: 4% to 15%+ better than state-of-thearts
 - Online test: decrease the error rate by 67%

- Large-scale
- Fast
- Accurate
- Novel
 - Bridge the gap between social networks and collective knowledge
 - Bridge the gap between topic models and word/ network embedding

- Large-scale
- Fast
- Accurate
- Novel
- Real-world impact
 - Online deployment on AMiner
 - **183,876** visits ever since

- Large-scale
- Fast
- Accurate
- Novel
- Real-world impact

How did we make it?

Problem formulation

- Input
 - A social network
 - A collective knowledge source
 - Social text interaction
- Output
 - For each social network vertex, output related knowledge concepts as a ranked list

Approach

Approach

Approach

Generate Gaussian distribution for each topic

Generate the topic for each word

Generate the topic for each user

Generate embeddings for keywords and users

- Collapsed Gibbs sampling
- The joint probability

$$p(\theta, \mu^r, \lambda^r, \mu^k, \lambda^k, z, y, f^r, f^k; \alpha, \tau^r, \tau^k) = p(\theta; \alpha) p(\mu^r, \lambda^r; \tau^r) p(\mu^k, \lambda^k; \tau^k)$$
$$p(z|\theta) p(f^k|z, \mu^k, \lambda^k) p(f^r|y, \mu^r, \lambda^r) p(y|z)$$

Dirichlet distribution

$$p(\theta_d; \alpha) = \frac{1}{\Delta(\alpha)} \prod_{t=1}^{T} \theta_{dt}^{\alpha_t - 1}$$

Normal Gamma distribution

$$p(\mu_{te}^{r}, \lambda_{te}^{r}; \tau_{e}^{r} = \{\mu_{0}, \lambda_{0}, \alpha_{0}, \beta_{0}\}) = \frac{\beta_{0}^{\alpha_{0}} \sqrt{\lambda_{0}}}{\Gamma(\alpha_{0}) \sqrt{2\pi}} \lambda_{te}^{r} \alpha_{0}^{-1/2} e^{\beta_{0} \lambda_{te}^{r}} e^{-\frac{\lambda_{0} \lambda_{te}^{r} (\mu_{te}^{r} - \mu_{0})^{2}}{2}}$$

$$p(\mu_{te}^{k}, \lambda_{te}^{k}; \tau_{e}^{k} = \{\mu_{0}, \lambda_{0}, \alpha_{0}, \beta_{0}\}) = \frac{\beta_{0}^{\alpha_{0}} \sqrt{\lambda_{0}}}{\Gamma(\alpha_{0}) \sqrt{2\pi}} \lambda_{te}^{k} \frac{\alpha_{0} - 1/2}{2} e^{\beta_{0} \lambda_{te}^{k}} e^{-\frac{\lambda_{0} \lambda_{te}^{k} (\mu_{te}^{k} - \mu_{0})^{2}}{2}}$$

Generating topics

$$p(z_{dm}|\theta_d) = \theta_{dz_{dm}}$$

$$p(y_d|z_d) = \frac{\sum_{m=1}^{M_d} \mathbb{I}(z_{dm} = y_d) + l}{M_d + Tl}$$

Generating embeddings

$$p(f_{dm}^{k}|z_{dm},\mu^{k},\lambda^{k}) = \frac{1}{\sqrt{2\pi}}\sqrt{\lambda^{k}}e^{-\frac{\lambda^{k}}{2}(f_{dm}^{k}-\mu^{k})^{2}}$$

$$p(f_{dm}^r|z_{dm},\mu^r,\lambda^r) = \frac{1}{\sqrt{2\pi}}\sqrt{\lambda^r}e^{-\frac{\lambda^r}{2}(f_{dm}^r-\mu^r)^2}$$

Full Conditional

$$p(y_d = t | y_{-d}, z, f^r, f^k) \propto (n_d^t + l) \prod_{e=1}^{E^r} G'(f^r, y, t, e, \tau^r, d)$$

$$p(z_{dm} = t | z_{-dm}, y, f^r, f^k) \propto (n_d^{y_d} + l)(n_d^t + \alpha_t) \prod_{e=1}^{E^k} G'(f^k, z, t, e, \tau^k, dm)$$

$$G'(f, y, t, e, \tau, d) = \frac{\Gamma(\alpha_n)}{\Gamma(\alpha_{n'})} \frac{\beta_{n'}^{\alpha_{n'}}}{\beta_n^{\alpha_n}} \left(\frac{\kappa_{n'}}{\kappa_n}\right)^{\frac{1}{2}} \frac{(2\pi)^{-n/2}}{(2\pi)^{-n'/2}}$$

Parameter update

$$\theta_d^t = \frac{n_d^t + \alpha_t}{\sum_{t=1}^T (n_d^t + \alpha_t)}$$

$$\mu_t^k = \frac{\kappa_0 \mu_0 + n\bar{x}}{\kappa_0 + n}$$

$$\lambda_t^k = \alpha_n \beta_n^{-1} = \frac{\alpha_0 + n/2}{\beta_0 + \frac{1}{2} \sum_i (x_i - \bar{x})^2 + \frac{\kappa_0 n(\bar{x} - \mu_0)^2}{2(\kappa_0 + n)}}$$

Embedding update

$$\frac{\partial L}{\partial f_{de}^r} = \sum_{t=1}^T -\lambda_{te}^r (f_{de}^r - \mu_{te}^r)$$

$$\frac{\partial L}{\partial f_{we}^k} = \sum_{t=1}^T n_w^t (-\lambda_{te}^k) (f_{we}^k - \mu_{te}^k)$$

Learning framework

- Initialize
- Burn-in
 - Sample topics
- Sampling
 - Sample topics
 - Update parameters
 - Update embeddings

Experiments

- Comparison methods
 - GenVector: our method
 - GenVector-E: without embeddings
 - GenVector-M: without the model
 - GenVector-R: use weakly-supervision score only
 - AM-base: AMiner previous method
 - CountKG: sort by counts after KG matching
 - Author-topic: Author-topic model
 - NTN: Neural tensor network

Experiments: homepage matching

Methods	Precision@5
GenVector	77.9402%
GenVector-E	77.8548%
GenVector-M	65.5608%
GenVector-R	72.8549%
AM-base	73.8189%
CountKB	54.4832%
Author-topic	74.4397%
NTN	65.8911%

Experiments: LinkedIn skill maching

Methods	Precision@5
GenVector	26.8468%
GenVector-E	26.5765%
GenVector-M	24.6695%
GenVector-R	26.3063%
AM-base	24.5195%
CountKB	25.4954%
Author-topic	26.4864%
NTN	24.3243%

Experiments: human labeling bad cases

Methods	Precision@5
GenVector	98.8%
GenVector-R	99.6%
AM-base	81.2%
Author-topic	98.4%
NTN	92.8%

Online deployment

Upload

Jiawei Han (韩家炜) ⊗

- m Department of Computer Science, University of Illinois at Urbana-Champaign
- Professor
- **(**217) 333-6903
- hanj@cs.uiuc.edu
- http://www.cs.uiuc.edu/~hanj/
- External Links

Update

Research Interests

Online deployment

Implementation optimization

- Faster computation of G'()
- Faster computation of log, exp and pow
- Local variables instead of in-array access
- Multi-thread parallelization

Run time and convergence

Online AB-test

Leverage collective intelligence

- -- evaluate the methods
- -- leverage user feedback to improve the model

Online AB-test

Methods	Precision@10
GenVector	96.67%
AM-base	90.00%

Case study: Andrew Ng

GenVector	AM-base
Unsupervised learning	Challenging problem
Feature learning	Reinforcement learning
Bayesian networks	Autonomous helicopter
Reinforcement learning	Autonomous helicopter flight
Dimensionality reduction	Near-optimal planning

Case study: Dan Klein

GenVector	AM-base
Language models	Machine translation
Markov models	Word alignment
Probabilistic models	Bleu score
Natural language	Best result
Coreference resolution	Language model

Case study: Xiaoou Tang

GenVector	AM-base
Feature extraction	Face recognition
Image segmentation	Face image
Image matching	Novel approach
Image classification	Line drawing
Face recognition	Discriminant analysis

Take-away

- Large-scale
 - Link 38,049,189 researchers to 35,415,011 knowledge concepts
- Fast
 - 60 times speed up
- Accurate
 - Decrease the error rate by 67% online
- Novel
 - Bridge social networks and collective knowledge
 - bridge topic models and network/word embedding
- Real-world impact
 - Online service with 183,876 visits

Appendix

Learning keyword embeddings

Skip-gram

Learning keyword embeddings

- Skip-gram
 - Use the current keyword to predict the context
 - Objective function

$$\frac{1}{T} \sum_{t=1}^{T} \sum_{-c < j < c, j \neq 0} \log p(w_{t+j}|w_t)$$

$$p(w_O|w_I) = \frac{\exp\left(v'_{w_O}^\top v_{w_I}\right)}{\sum_{w=1}^W \exp\left(v'_w^\top v_{w_I}\right)}$$

Learning keyword embeddings

- Scan through all titles and abstracts
 - Extract n-grams according to Wikipedia concepts
- Replace all extracted n-grams in the Wikipedia corpus as a token
 - E.g., machine learning -> machine_learning
- Train a skip-gram model on the processed corpus

Learning network embeddings

- DeepWalk
 - Generate a random walk sequence from each node
 - Train a skip-gram model on the random walk sequence

Weakly supervision

- Given a researcher, extract all the keywords in his papers' titles, denoted as k1, k2, ..., kn.
- Let ci be the count of the keyword ki in the author's papers' titles.
- Compute a score for each keyword ki

$$S_i = \sum c_j \cos_{i,j}$$

Select top-k keywołds as weakly-supervised information