CS F364: Design & Analysis of Algorithm

Traveling Salesman Problem (TSP)

Dr. Kamlesh Tiwari

Assistant Professor, Department of CSIS, BITS Pilani, Pilani Campus, Rajasthan-333031 INDIA

Feb 10, 2021

(Campus @ BITS-Pilani Jan-May 2021)

http://ktiwari.in/algo

Solution

- You can start from the node 1
 - Go to immediate node k **8**
- From node k come back to 1

$$tour_{1 o 1} = edge_{1 o k} + path_{k o 1}$$

- $k \in V \{1\}$
- It is logical to pick the k with minimum c_{1k}
 Let g(i, S) be the length of shortest path starting at vertex i, going through all the vertices in S and terminating at 1.

$$g(1,V-\{1\}) = \min_{\substack{2 \le k \le n}} \{c_{1k} + g(k,V-\{1,k\})\}$$

$$g(i, S) = \min_{j \in S} \{c_{ij} + g(j, S - \{j\})\}$$

TSP Algorithm

Algorithm 1: TSP (V, c_{ij})

1 for
$$i = 2 \ to \ n \ do$$

1 for
$$i=2$$
 to n do 2 $\left[\begin{array}{c} g(i,\phi)=c_{i1} \end{array}\right]$

3 for
$$k = 1 to n - 2$$

3 for
$$k=1$$
 to $n-2$ do
4 | for $i=2$ to n do
5 | forall $S\subseteq V-\{i,1\}$ with $|S|=k$
6 | $g(i,S)=\min_{i\in S}\{c_i+g(i,S-\{i\})\}\}$

7
$$g(1, V - \{1\}) = \min_{2 \le i \le n} \{c_{i,i} + g(i, V - \{1,i\})\}$$
 8 return $g(1, V - \{1\})$

7
$$g(1,V-\{1\}) = \min_{2 \le i \le n} \{c_{ii} + g$$
8 return $g(1,V-\{1\})$

Lecture-11(Feb 10, 2021) 5/8

Traveling Salesman Problem (TSP)

Consider a map.

You have to visit all the cities and come back at the starting one. What should be the order so that cost of tour is minimum.

- It is an optimization problem involving permutation

• Harder then the problem of subset sum nature $n! > 2^n$

- Let G=(V,E) be graph with $c_{ij}>0$ weight between node i and node j
- Choose the start place in n ways, next in n 1 and so on.
 Total number of ways n!

Stirling's approximation $n! = \sqrt{2\pi n}(\frac{n}{n})^n(1+\theta(\frac{1}{n}))$ besign & Analysis of Algo. (BITS F364) MW F (3-4PM) online@BITS-Pla

Example: consider graph

$$g(1, \{2, 3, 4\}) = min\{c_{12} + g(2, S - \{2\}),$$

 $= c_{13} + g(3, S - \{3\}),$
 $= c_{14} + g(4, S - \{4\})\}$

$$g(2, \{3, 4\}) = \min\{c_{23} + g(3, \{4\}),$$

= $c_{24} + g(4, \{3\})\}$

$$g(3,\{4\}) = c_{34} + g(4,\phi) = c_{34} + c_{41}$$

Time Complexity

Complexity	n-1	n-1	dool	n-1	$^{n-2}C_k$	2 S = 2k	2(n-1)	_
Line		Ø	က	4	2	9	7	∞

$$T(n) = (n-1) + \sum_{k=1}^{n-2} (n-1)^{(n-2)} C_k (n-1) + 1$$

$$T(n) = \theta(n^2.2^n)$$

Space Complexity

Thank You!

$$S(n) = \theta(n^{2}.2^{n})$$

$$= \sum_{k=0}^{n-2} (n-1)^{(n-2}C_{k})$$

$$= (n-1)\sum_{k=0}^{n-2} (n^{2}C_{k})$$

$$= (n-1)2^{n-2}$$

$$= \theta(n2^{n})$$

Thank you very much for your attention! (Reference²) Queries?

 « □ » « ⊕ » « ⊕ » « ⊕ » »
 > ⊙ α ⊙ «

 M W F (6-4PM) online@BITS-Pilani
 Lecture-1 (Feb 10, 2021)
 7 / 8

2 I) Book - Introduction to Algorithm, By THOMAS H. CORMEN, CHARLES E. LEISERSON, RONALD L. RIVEST.

CLIFFORD STEIN
Dosign's Analysis of Algo, (BITS F364) M.W.F (3-4PM) online@BITS-Plant Lecture-1 (Feb. 10, 2021)