

Hyein You

2001.04.03.

laksjd4560@gmail.com

항상 긍정적인 개발자, 주어진 일에 성실하게 임합니다!

- 약속을 중요시하며, 신뢰를 얻기 위해 무슨 일이든 책임감을 가지고 수행합니다.
- 끊임없이 학습하고 도전하여 전문성을 기르고 성장해왔습니다.
- 연구실 활동과 다양한 교내 활동을 통해 소통의 중요성을 깨달았고, 동료와의 예의
 와 배려를 항상 잊지 않으려고 합니다.

기술스택

Java, Kotlin, JavaScript, Android

→ 이런 능력을 가지고 있습니다!

탄탄한 기본 스킬과 능력

기본적인 라이브러리 사용 능력과 더불어 효율적인 리소스 사용과 유지보수까지 고려하는 개발 자세

Android

Architecture	MVC, MVP, MVVM, Clean Architecture
Networking	Retrofit, OkHttp
Asynchronous	Coroutine
JetPack	LiveData, ViewModel, ViewBinding, DataBinding, Navigation Component, Navigation Compose
DI	Dagger, Hilt
Image	Glide, Lottie
Collaboration & Tool	Slack, Git, Bitbucket, Notion, Figma, Zeplin

트렌드에 맞춰 성장

선언형 UI로 구성할 수 있는 도구인 JetPack Compose와 Multi Module 등과 같은 트렌드에 맞춰 공부하고 직접 사용해 보며 성장함.

다양한 IT 분야 경험

연구실 활동으로 웹, 서버, 안드로이드 모바일 등 여러 IT 분 야를 공부하고 프로젝트에 참여함. 이러한 경험을 바탕으로 보다 쉽게 실무 적응 및 발전 가능

긍정적인 마음가짐의 커뮤니케이션

"항상 긍정적으로 웃으면서 살자!"라는 가치관과 여러 활동 등을 통해 쌓아온 긍정적인 마음가짐과 원활한 커뮤니케이션 능력.

나 어떤 프로젝트에 참여했을까?

프로젝트 명	기간	역할	기타
앱 출시 프로젝트 ; 습관 리스트 (Habit List)	2022.08. ~ 2022.09.	안드로이드 개발, QA, 배포, 유지보수	호서대학교 개인 프로젝트
영수증 관리 시스템 앱 ; HoneyBee	2023.02. ~ 2023.09	안드로이드 개발, QA, 배포, 유지보수	호서대학교 팀 프로젝트
Kai-l 치위생 실습 플랫폼	2022.01. ~ 2022.03.	프론트 웹 개발	(주)카이아이컴퍼니 연계 프로젝트
구강 의료 데이터 분석 자동화 시스템을 통한 사후 모니터링 데이터 비식별화 기술 연구	2023.03. ~ 2023.07.	국내외 비식별화 기술 및 상용 솔루션 조사, 국내외 비식별화 솔루션 현황 조사	중소기업벤처부 연계 프로젝트

O I PROJECT

(Habit List) 습관 리스트

호서대학교 개인 프로젝트 : 앱 출시 프로젝트

2022.08.~ 2022.09.

- 습관리스트 (Habit List) 기여도: 90%

프로젝트 전체 개요

Android 분야 석사의 지도하에 만들어진 "슈퍼 앱 개발자 모임"에서 진행한 앱 출시 프로젝트이다. 사용자들은 좋은 습관을 만들고 싶어 하지만 작심삼일로 인해 포기할 때가 많다. 본 앱을 통해 작심삼일 마 인드를 이겨내면서 동시에 습관을 만들도록 도와주고자 하였다. 기획, 문서 작업, 디자인, 개발 모두 1인 개발로 진행되었다.

세부사항

참여 인원	학부 연구생 Android 1명, Android 분야 석사 지
사용 언어	Kotlin
사용 스킬	MVVM, DI, Coroutine, Room, SharedPreferences, AlarmManager, Notification

→ 습관 리스트 (Habit List)

주요기능

1. 습관 데이터 관리 (CRUD)

사용자가 수행하고 싶은 습관을 관리한다. 사용자가 선택한 습관에 따라 관련된 체크리스트와 완료 조건을 등록하고, 사용자가 설정한 5가지 테마 중 하나를 선택하면 UI가 해당 테마로 변경된다. 사용자가 이전에 설정한 조건을 달성하면 해당 습관에 대한 커멘트를 작성할 수 있도록 한다.

2. 완료 습관 기록 확인

사용자가 완료한 습관을 모아서 볼 수 있도록 한다. 사용자의 성취감을 높이기 위해 완료한 습관을 공유할 수 있도록 기능이 추가되었다.

3. 미완료 습관 푸시 알림 기능

사용자가 습관을 잊지 않도록 하기 위해, 하루에 완료되지 않은 습관을 푸시 알림으로 알려준다.

나 습관 리스트 (Habit List)

O 2 PROJECT

HoneyBee

호서대학교 팀 프로젝트 : 영수증 관리 시스템 프로젝트

2023.02. ~ 2023.09.

전체 개요

DC LAB 내 협업 팀 프로젝트, 연구실 페이지 제작 프로젝트에서 진행한 결제 영수증 관리 앱이다. 연구실 인원들의 식사 시, 결제 영수증을 따로 관리해야 하는 불편함이 발생했다. 학부 연구생들이 제작하는 프 로젝트를 기회 삼아 앱을 통해 효과적으로 관리하는 **영수증 관리 시스템 앱**을 개발해, 도움을 주고자 하였다.

세부사항

참여 인원	학부 연구생 Android 2명, Server 1명, Web 1명
사용 언어	Kotlin
사용 스킬	MVVM, Clean Architecture, DI, Coroutine, Retrofit, Room, SharedPreferences, Glide, Lottie, OCR, AlarmManager, Notification

주요기능

- 카드 추가 및 조회, 삭제, 업데이트 기능
- 영수증 등록 및 조회, 삭제, 업데이트 기능
- 영수증 등록을 위한 카메라, 갤러리 사용
- 서버 및 로컬 DB를 각각 사용하여 개별 저장 기능 제공

담당한 기능

- 디자인 및 모든 화면 UI 입히기 작업
- 영수증 데이터 관리 (CRUD)
 - 스마트폰 내 카메라, 갤러리 사용
 - 영수증 이미지 내 텍스트 추출 기능 (OCR)
 - 서버 및 로컬 DB를 사용한 개별 장

● 로그인, 로그아웃 기능과 앱 내 공지사항 조회 기능

● 푸시알림 기능

● 푸시알림 기능

Kai-I 치위생 실습 플랫폼

(주)카이아이컴퍼니 연계 프로젝트 2022.01. ~ 2022.03.

-- Kai-I 치위생 실습 플랫폼 기여도: 30%

프로젝트 전체 개요

본 프로젝트 이전에는 문건에 직접 작성하고 보관하여 유실 가능성이 있었다. 또한 조사원이 엑셀로 직접 정리하는 번거로운 작업도 진행되었다. 해당 프로젝트로 **치위생 실습을 위한 플랫폼을 구축하여 학생들의** 검진, 설문의 결과를 저장 관리 할 수 있도록 하며 관리자에서 모니터링 가능하도록 한다.

세부사항

참여 인원	협력 업체 3명, 학부 연구생 Web 2
사용 언어	JavaScript, HTML, CSS

- Kai-I 치위생 실습 플랫폼

담당역할및기능

1. 조사 대상자 목록 페이지

조사원이 지금까지 조사한 대상자를 한 번에 볼 수 있게 정리한 목록 페이지. 보다 더 편리하게 관리하기 위해 검색 기능과 필터 기능, 목록 엑셀 다운로드 등과 같은 기능을 추가하였다.

2. 구강 검사지 등록 페이지

조사대상자의 구강검사지를 등록하는 페이지. 해당 페이지는 Tablet에서만 나타나는 페이지이며, 펜슬과 사용자의 손가락을 구분하여 각자 다른 기능을 동작하도록 하였다.

- · 펜슬 : 손글씨 작성 및 삭제
- · 사용자 손가락 : 구강검사지 확대·축소

3. 구강 검사 설문지 등록 페이지

구강검사를 끝낸 조사대상자가 작성할 설문지 등록 페이지.

--- Kai-I 치위생 실습 플랫폼

< 조사대상자 목록 페이지 >

< 구강 검사지 등록 페이지 >

--- Kai-I 치위생 실습 플랫폼

< 구강 검사 설문지 등록 페이지 >

구강 의료 데이터 분석 자동화 시스템을 통한 사후 모니터링 데이터 비식별화 기술 연구

중소기업벤처부 연계 프로젝트

2023.03. ~ 2023.07.

프로젝트 전체 개요

인공지능의 딥러닝 기술은 이미 세계적으로 주목받고 있는 기술로써, 그 활용에 따라 생산되는 산업의 잠재성은 매우 높다고 볼 수 있다. 이러한 인공지능 기술에 필요한 빅데이터를 활용하기 위해 선진국에서는 이미 비식별화 조치 방안을 계속 연구 중에 있으며, 우리나라도 기술 발전을 위해 빅데이터를 활용하기 위한 가이드 라인을 새롭게 구축할 수 있을 것이다. 본 프로젝트의 최종 목표는 앞서 설명한 빅데이터의 활용을 위해 비식별 데이터를 생성하는 것에 있다. 본 프로젝트를 활용하여 빅데이터의 범용적인 제공과 누구나 활용할 수 있는 데이터를 제공하여 인공지능 산업 분야와 국가 기술발전에 기여 하는 것에 이바지 하고자 한다.

세부사항

참여 인원

연계 기업 인원 2명, 학부 연구생 3명

- 데이터 익명/가명 처리 기술

프로젝트 결과물 (국내 비식별화 최신 기술 동향)

世界	71술	세부기술	실명			영영향 알변화 (Two-way encryp- tion)	 특정 정보에 대해 암호화와 암호화된 정보에 대한 복호화 가 가능한 암호화 기법 		무작위화	접음 추가	• 개인정보에 임의의 숫자 등 집음을 추가(더하기 또는 곱하
개인정보. 삭제		설계 (Suppression)	+ 원본정보에서 개인정보를 단순 삭제				· 압호화 및 복호화에 동일 비밀키로 압호화하는 대칭키 (Symmetric key) 방식과 공개키와 개인키를 이용하는 바다	기술		(Noise addition) 표본주출	기하는 방법 • 데이터 주체별로 전체 모집단이 아닌 표본에 대해 무직위
	삭제기술	부분석제 (Portal suppression)	 개인정보 전체를 삭제하는 병식이 아니라 일부를 삭제 				칭키(Asymmetric key) 방식으로 구분 • 원문에 대한 암호화의 적용만 가능하고 암호문에 대한 복			(Sampling)	레코드 추출 등의 기업을 통해 모집단의 일부를 분석하여 전체에 대한 분석을 대신하는 기법
		영 항목 수계 (Record suppression)	- 다른 정보와 뚜렷하게 구별되는 햄 형목을 삭제			일병량 입호화 — 압 호착적 채시합수 (One-way encryp— tion — Cryptographic hash function)	호화 적용이 불가능한 암호화 기법 • 키가 없는 해시함수(MDC, Message Digest Code), 솔트 (Sall)가 있는 해시함수(MAC, Message Authentication Code)로 구분 • 암호화(해사처리)된 값에 대한 북호화가 불기능하고, 동일 한 해시 값과 매평(mapping)되는 2개의 고유한 서로 대본 입력값을 찾는 것이 계산상 불가능하여 충돌 가능성이 매			해부화 (Anatomination)	 기준 하나의 데이터셋(테이플)을 삭별성이 있는 정보집합 물과 식별성이 없는 정보집합물로 구성된 2개의 데이터셋
		문합 4제 (Local suppression)	· 특이정보를 해당 행 형목에서 삭제	개인정보 일부 또는 전부 대체						(Anatomization)	으로 분리하는 기술
		미j-C-E) (Masking)	· 특정 영목의 일부 또는 전부를 공백 또는 문자(**', ' _ ' 등 이나 전각 기호)로 대체					가명 - 익명처리를 위한	재현데이터 (Synthetic data)	 원본과 최대한 유사한 통계적 성질을 보이는 가상의 데이 터를 생성하기 위해 개인정보의 특성을 분석하여 새로운 데이터를 생성하는 기법 	
		(Aggregator)	• 평군값 희댓값 화솟값 최빈값 중간값 등으로 처리				우 적을	(기타기술)	가양한 기술 기타 기술)	동청비밀문산	• 식별정보 또는 기타 식별가능정보를 메시지 공유 알고리즘
	동계도구	부분증계 (Micro aggregation)	 정보집합물 내 하나 또는 그 이상의 행 항목에 해당하는 특 정 열 항목을 총계처리, 즉, 다른 정보에 비하여 오차 범위 가 큰 항목을 범균값 등으로 대체 			순서보존 암호화 (Order-preserving	preserving · 암호화된 상태에서도 원본정보의 순서가 유지되어 값들		(Homomorphic secret sharing)	에 의해 생성된 두 개 이상의 쉐에(#rere)*로 대체 *기밀사항을 재구성하는데 사용할 수 있는 하위 집합	
		않면 라운딩	· 올림, 내림, 반올림 등의 기준을 적용하여 집계 처리하는 방		양호화	encryption)					 특정 개인에 대한 사전자식이 있는 상태에서 테이터베이스 질의(Queryi)에 대한 응답 값으로 개인을 알 수 없도록 응답 값에 임의의 숫자 집음(Noise)을 추가하여 특정 개인의 존 재 이부를 알 수 없도록 하는 기법 1개 항목이 차이나는 두 테이터베이스간의 차이(확률분포) 를 기준으로 하는 프라이버시 보호 모델
개인정보 일부 또는		(Rounding)	법으로 일반적으로 세세한 정보보다는 전체 통계정보가 필 요한 경우 많이 사용				유가 넓게 서성 공간의 비용 8가를 매일할 수 있음 · 암호화로 인해 발생하는 시스템의 수정이 거의 발생하지 않아 토콘화, 신용카드 번호의 암호화 등에서 기존 시스템			채분 프라이버시 (Diferental privacy)	
전부 대체	일반화 (법주희) 기술	현영 라운딩 (Random rounding)	 수치 데이터를 임의의 수인 자리 수, 실제 수 기준으로 올림 (round up) 또는 내팀(round down)하는 기업 			형태보존 압호화 (Format-preserving encryption)					
		제에 최윤당 (Controlled rounding)	 라운당 적용 시 값의 변경에 따라 행이나 열의 합이 원본의 행이나 열의 합과 일치하지 않는 단점을 해결하기 위해 원 본과 결과가 동일하도록 라운당을 적용하는 기법 								
		상하단코딩 (Top and bottom coding)	 정규분포의 특성을 가진 데이터에서 양쪽 끝에 치우친 정보는 적은 수의 분포를 가지게 되어 식물성을 가질 수 있음 이를 해결하기 위해 적은 수의 분포를 가진 양 끝단의 정보를 법주화 등의 기업을 적음하여 식별성을 낮추는 기업 			동형 암호화	의 변경 없이 암호화를 적용할 때 사용 • 암호화된 상태에서의 연산이 가능한 암호화 방식으로 원 래의 값을 암호화한 상태로 연산 처리를 하여 다양한 분				
		조절 일반화 (Local generalization)	 전체 정보집합물 중 특정 열 항목/돌)에서 특이한 값을 가 지거나 분포상 의 특이성으로 인해 식별성이 높아지는 경 우 해당 부분만 일반화를 적용하여 식별성을 낮추는 기업 			(Homomorphic encryption)	석에 이용가능 • 암호화된 상태의 연산값을 복효화 하면 원래의 값을 연산한 것과 동일한 결과를 얻을 수 있는 4세대 암호화 기법				
	일반화 (원주화) 기술	변위 병법 (Data range)	 수치 데이터를 임의의 수 기준의 범위(ange)로 설정하는 기법으로, 해당 값의 범위 또는 구간(ntovo)으로 표현 			다형성 암호화 (Polymorphic en— cryption)	 가영정보의 부정한 결합을 차단하기 위해 각 도메인별로 서로 다른 가영처리 방법을 사용하여 정보를 제공하는 				
		문자데이터 변주화 (Categorization of character date)	• 문자로 저장된 정보에 대해 보다 상위의 개념으로 병주화 하는 기법				방법 정보 제공 시 서로 다른 방식의 암호화된 가명처리를 적용 함에 따라 도메인별로 다른 가명정보를 가지게 됨				

< 우리나라 가명 정보 처리 가이드라인에서 소개하고 있는 가명처리 기술들의 종류 >

- 데이터 익명/가명 처리 기술

프로젝트 결과물 (비식별화 솔루션 현황)

연번	제조사	제품명	주요 특징			
		Analytic	O 사용 목적에 적합한 비식별 데이터 제공			
			o 국내 비식별조치가이드라인 지원			
			o 다양한 시각화 기능 지원			
1	1 파수닷컴		o 비식별 전후 가이드 제공			
		DID	ㅇ 부서별 권한에 따른 업무 프로세스 지원			
			O Spark기반, 인메모리기술 활용, 대용량 처리 지원			
			o EU GDPR 컴플라이언스 지원			
			o 국내 비식별조치가이드라인 지원			
		DeteEve	O 비식별 레벨단위별 정보 제공			
2	펜타시스템	DataEye PIDI	○ 특이 데이터 처리			
			O 적정성평가 계량분석 지원			
			O 정보집합물 결합을 위한 대체키 생성 시 검증된 암호화 기법 적용			
			ㅇ 국내 비식별조치가이드라인 지원			
			ㅇ 빅데이터 플랫폼 연계 지원(데이터 결합, 추출, 그룹화 등 연계 Interface / 자동 SQL 코드 생성)			
		IDENTITY	O 다양한 시각화 기능 지원			
3	이지서티	SHIELD	ㅇ 특이 데이터 처리			
			O Legacy 연계를 통한 전처리 및 Legacy 메타정보를 활용한 연계 시각화			
			O 개인정보 탐지기능 지원			
			O 비정형 텍스트 데이터 비식별(식별자 삭제, 속성자 암호화, 마스킹) 지원			
			MASQ(Multi-level Abstraction & Synchronization)			
	그리즐리	MASQ	o 차분 프라이버시 기반 유통용 빅데이터 익명화 패키지 지원			
4			ㅇ 데이터 활용 목적별 다단계 레벨 익명화(저수준 익명화: 공개/통계용, 고수준 익명화: 빅데이터/인공지능 분석용)			
			○ 총계처리 & Differential privacy 기반의 추상화 기술 적용			
			ㅇ 두 개의 비식별 빅데이터를 온전한 식별자 속성 없이도 연결하는 동기화 기술 적용			

< 국내 비식별화 솔루션 현황 표 >

- 데이터 익명/가명 처리 기술

프로젝트 결과물 (비식별화 솔루션 현황)

연번	제조사	제품명	주요 특징
1	Anonos	Big Privacy	 데이터를 공유하려는 각 당사자에 대해 소스 데이터를 기존 형식으로 가져와서 데이터를 식별되지 않는 가명 형식으로 변환 당사자들이 데이터를 사용, 공유, 비교 및 처리할 수 있도록 기능적 상호 운용성을 지원
2		SecuPi	o GDPR에 필요한 실시간 가시성 및 제어 기능을 제공 - 제 7, 8, 9, 10, 15, 17, 18, 21, 25, 30, 32, 33, 34조 충족
3	PRIVITAR	Publisher	 아 개인정보보호 및 거버넌스를 위한 포괄적인 솔루션 아 데이터 마스킹, 자동화된 통계 일반화(예: K-익명) 및 형식 보존 토큰화와 같은 최첨단의 반복 가능한 개인정보 처리 기술을 사용하여 데이터 셋의 개인정보와 유틸리티를 지속적으로 활용 아 Hadoop 클러스터 또는 스트리밍 데이터 흐름 플랫폼과 같은 다양한 처리 엔진에서 데이터를 정지 상태로 처리 아 데이터 위험 관리, 워터마킹, 기타 보안인증기능 탑재 아 개인정보보호 API, 데이터 프라이버시 위험 자동 평가, 데이터 기반 응용 프로그램 및 대시보드 생성
4	PRIVACY ANALYTICS	ECLIPSE	O 컨텍스트기반의 위험도 평가를 통한 의료분야의 비식별화 지원 O Lexicon 소프트웨어를 통해 비정형 의료 데이터 지원
5	뮌헨공대 의료정보 연구실	ARX Data Anonymization Tool	o 민감한 개인 데이터를 익명화 하기 위한 포괄적인 오픈소스 소프트웨어로 현재 발표된 오픈소스 중 가장 우수한 것으로 평가 받고 있음

2021 Silicorn Valley Software Technology & Innovation Program

San Jose State University 2021.07. ~ 2021.08.

- 2021 Silicorn Valley Software Technology & Innovation Program

활동내용

`San Jose State University`와 함께하는 Silicon Valley 소프트웨어 기술 및 혁신 프로그램 코로나-19로 인해 Zoom으로 활동

- Al/Machine Learning, Big Data, Mobile Applications, IoT 등 실습 교육
- SW 관련 기술 상업화, 비즈니스 제품 개발 역량, 비즈니스/JOB 소통 스킬, PT 발표 기술 향상 교육
- 팀프로젝트를 통한 아이디어 창출 및 관련 기술 전문가들의 프로젝트를 모니터링하여 프로젝트 수행 능력 배양

역할

기술스택

팀 프로젝트를 통해 SW 교육 커뮤니티 "Corinee" 웹 페이지 제작

HTML, CSS, JavaScript

- · 커뮤니티 게시판 작업
- · 사용자 마이페이지 작업

- 2021 Silicorn Valley Software Technology & Innovation Program

THANK YOU

끝까지 봐주셔서 감사합니다. 항상 긍정적인 지원자, 유혜인의 포트폴리오였습니다.