The arithmetic progression 15n + 4, $n \ge 0$, contains infinitely many primes. A Euclidean proof

About this document

This file has been automatically generated for the user-supplied arithmetic progression. The code behind this document can be found in the url http://www.overleaf.com, and has been developed as part of a BSc Thesis in Mathematics by Joan Arenillas i Cases at the Autonomous University of Barcelona. The above link also provides full access to the complete Thesis. Please use joanarenillas01@gmail.com to report any typo or express any suggestions.

We will prove that the arithmetic progression $\equiv 4 \pmod{15}$ contains infinitely many primes. Equivalently, we will see that there are infinitely many primes of the form 15n+4, $n \geq 0$. For this purpose, consider the polynomial

$$f(x) := x^4 + 883x^3 + 292728x^2 + 43186723x + 2392743361.$$

1 The main Theorem

To prove that there exist infinitely many primes $\equiv 4 \pmod{15}$ we can proceed by contradiction. Suppose there are finitely many primes $\equiv 4 \pmod{15}$ and denote them by p_1, p_2, \ldots, p_m . Since $19 \equiv 4 \pmod{15}$, we can write the list as $19, p_2, p_3, \ldots, p_m$ (so $p_1 = 19$). Now, let $Q := 2 \cdot 3 \cdot 5 \cdot 17 \cdot 239 \cdot p_2 p_3 \cdots p_m$. Consider the following congruence equation system:

$$\begin{cases} c \equiv 7 \pmod{19^2} \\ c \equiv 0 \pmod{15Q}. \end{cases}$$

The Chinese Remainder Theorem guarantees the existence of $c \in \mathbb{Z}$ that is a solution to the above system since 19^2 does not divide 15Q. It follows that

$$f(c) \equiv f(7) = 2709699364 \equiv 19 \cdot 8 \pmod{19^2},$$

 $f(c) \equiv f(0) = 61 \cdot 39225301 \pmod{15Q}.$

In particular, observe that the prime $p_1 = 19$ divides f(c), but 19^2 does not.

Lemma 1. Every prime that divides f(c) is $\equiv 1 \pmod{15}$ (except for $p_1 = 19$).

Proof. Let r be a prime divisor of f(c) different from 19. In Section ?? we will establish that r=2,3,5,17,239 or $r\equiv 1,4 \pmod{15}$. For now, we will assume this is true. To reach a contradiction, suppose $r\not\equiv 1\pmod{15}$. Thus, $r\equiv 4\pmod{15}$ or r=2,3,5,17,239, so r divides $15\cdot 2\cdot 3\cdot 5\cdot 17\cdot 239\cdot p_2p_3\cdots p_m=15Q$. Since $f(c)\equiv 61\cdot 39225301\pmod{15Q}$ and r is a divisor of 15Q, we deduce that $f(c)\equiv 61\cdot 39225301\pmod{r}$. But r is a divisor of f(c), so $f(c)\equiv 0\pmod{r}$. Therefore, $61\cdot 39225301\equiv 0\pmod{r}$. Thus, it must happen that r=61,39225301, which are $\equiv 1\pmod{15}$. This forces r to be $\equiv 1\pmod{15}$, a contradiction. Therefore, f(c) is only divisible by primes $\equiv 1\pmod{15}$ (and by $p_1=19$).

Finally, from the fact that f(c) has every prime divisor $\equiv 1 \pmod{15}$ except for $p_1 = 19$ it follows, (mod 15), that $f(c) = 1 \cdot 1 \cdot \dots \cdot 1 \cdot 4 = 4$ (note that 4 only appears once because $p_1 = 19 \equiv 4 \pmod{15}$ and the fact that 19^2 does not divide f(c)). However, observe that $f(c) \equiv f(0) = 2392743361 \equiv 1 \pmod{15}$. This is a contradiction. Therefore, the arithmetic progression $\equiv 4 \pmod{15}$ contains infinitely many primes.

2 Properties of the polynomial f(x)

To complete the proof of the main Theorem in Section ?? we must justify that every prime divisor p of f(c) either belongs to the finite set

$$T := \{2, 3, 5, 17, 239\}$$

or satisfies $p \equiv 1, 4 \pmod{15}$. To see this, we must first recall the expression of the discriminant of a polynomial.

Definition 2. The discriminant of a monic polynomial $A(x) = x^m + a_{m-1}x^{m-1} + \cdots + a_1x + a_0$ is given, in terms of its roots $\{r_1, r_2, \ldots, r_m\} \subset \mathbb{C}$ (not necessarily distinct), by

$$\Delta(A) = \prod_{i < j} (r_i - r_j)^2, \quad 1 \leqslant i, j \leqslant m.$$
 (1)

It will be useful to remember that the 15th cyclotomic polynomial is $\Phi_{15}(x) = x^8 - x^7 + x^5 - x^4 + x^3 - x + 1$. We shall also define what a *prime divisor* of a given polynomial is.

Definition 3. Let $A(x) \in \mathbb{Z}[x]$ be a polynomial. We say that a prime number p is a prime divisor of A (or simply that p divides A) if there exists $m \in \mathbb{Z}$ such that p divides A(m).

With the definition above, we are interested in describing the prime divisors of f.

Let's now start the proof. Consider the set $S := \{1, 2, 7, 11\}$ and the values $h(\zeta^s) := (\zeta^s - 15)(15 - \zeta^{4s})$, with $s \in S$ and $\zeta := e^{2\pi i/15}$, a 15th primitive root of unity (thus a root of $\Phi_{15}(x)$). A simple calculation shows that f(x) can be written as

$$f(x) = \prod_{s \in S} (x - h(\zeta^s)) = x^4 + 883x^3 + 292728x^2 + 43186723x + 2392743361.$$
 (2)

The discriminant of f(x) can be calculated to be $\Delta(f) = 2^6 \cdot 3^8 \cdot 5^6 \cdot 17^2 \cdot 239^2$.

Now, suppose that p is a prime divisor of f such that $p \notin T$. Next, consider a field \mathbb{F} containing both the finite field \mathbb{F}_p and ζ^2 . Since p divides f, working in \mathbb{F} , there exists $a \in \mathbb{Z}$ such that

$$f(a) = \prod_{s' \in S} \left(a - h(\zeta^{s'}) \right) = 0.$$

Since \mathbb{F} is a field, there exists some $s \in S$ such that $a = h(\zeta^s)$.

Lemma 4. The equality $h(\zeta^s) = h(\zeta^{ps})$ holds in \mathbb{F} .

Proof. Observe that the following calculation holds in \mathbb{F} :

$$h(\zeta^s) = a = a^p = h(\zeta^s)^p = (\zeta^s - 15)^p (15 - \zeta^{4s})^p$$

= $(\zeta^{ps} - 15^p)(15^p - \zeta^{4ps}) = (\zeta^{ps} - 15)(15 - \zeta^{4ps}) = h(\zeta^{ps}),$ (3)

where we have used Fermat's little theorem in the second equality. The fifth equality, on the other hand, relies on the fact that \mathbb{F} has characteristic p (so that $(c+d)^p = c^p + d^p$ for every $c, d \in \mathbb{F}$) and the following one, on Fermat's little theorem.

Therefore, equality (??) means that $h(\zeta^{ps}) = h(\zeta^s)$ is a root of $\overline{f(x)} \in \mathbb{F}[x]$.

Lemma 5. $h(\zeta^{ps})$ is also a root of f(x) in $\mathbb{Q}(\zeta)$ (the smallest subfield of \mathbb{C} containing ζ).

Proof. Begin by noting that the value $h(\zeta^{ps})$ only depends on the value of $ps \pmod{15}$ since it only appears as an exponent of ζ . Since p does not divide 15 and s is coprime to 15, ps is coprime to 15 (so $ps \pmod{15}$) is coprime to 15) and hence ζ^{ps} is a primitive 15th root of unity.

There are now only two options: either $ps \pmod{15} \in S$ or $ps \pmod{15} \notin S$. In the first case, $h(\zeta^{ps})$ is a root of f(x), observing expression (??). In the latter case, note that every integer $ps \pmod{15}$ relatively prime to 15 not in S satisfies $ps \equiv 4t \pmod{15}$ for some $t \in S$ (for instance, if $ps \pmod{15} = 13$, pick $t = 7 \in S$ so that $13 \equiv 4 \cdot 7 \pmod{15}$).

¹One way of calculating $\Delta(f)$ is via the resultant of f and f'.

²For instance, consider $\mathbb{F} = \mathbb{F}_{p^n}$ with a suitable integer $n \ge 1$ such that Φ_{15} has a root ζ .

This means that $h(\zeta^{ps}) = h(\zeta^{4t})$. Let us prove that $h(\zeta^{4t}) = h(\zeta^{t})$, so $h(\zeta^{ps}) = h(\zeta^{4t}) = h(\zeta^{t})$ is also a root of f(x). Indeed,

$$h(\zeta^{4t}) = (\zeta^{4t} - 15)(15 - \zeta^{4^2t}) = (\zeta^{4^2t} - 15)(15 - \zeta^{4t})$$
$$= (\zeta^t - 15)(15 - \zeta^{4t}) = h(\zeta^t),$$

where we have used that ζ^{4^2t} only depends on the value of $4^2t \pmod{15}$ and the fact that $4^2 \equiv 1 \pmod{15}$. Therefore, $h(\zeta^{ps}) = h(\zeta^t)$ is always a root of f(x) in $\mathbb{Q}(\zeta)$.

Lemma 6. $h(\zeta^{ps})$ and $h(\zeta^s)$ are the same root of f(x) in $\mathbb{Q}(\zeta)$.

Proof. If $h(\zeta^{ps})$ and $h(\zeta^{s})$ were two distinct roots of f(x) in $\mathbb{Q}(\zeta)$, we know because of (??) that they would be the same in \mathbb{F} . Therefore, observing expression (??), it follows that $\Delta(f \pmod{p}) = \Delta(f) \pmod{p} = 0$, so p divides $\Delta(f) = 2^6 \cdot 3^8 \cdot 5^6 \cdot 17^2 \cdot 239^2$. This is a contradiction with our choice of p. Thus, $h(\zeta^{ps})$ and $h(\zeta^{s})$ are in fact the same root of f(x) in $\mathbb{Q}(\zeta)$.

Therefore, the equality

$$h(\zeta^{ps}) = (\zeta^{ps} - 15)(15 - \zeta^{4ps}) = (\zeta^{s} - 15)(15 - \zeta^{4s}) = h(\zeta^{s})$$

holds in $\mathbb{Q}(\zeta)$. Next, write the above equation in terms of $\theta := \zeta^s$ and multiply both sides by -1. This changes yield

$$225 - 15(\theta^p + \theta^{4p}) + \theta^{(1+4)p} = 225 - 15(\theta + \theta^4) + \theta^{1+4},$$

$$-15(\theta^p + \theta^{4p}) + \theta^{5p} = -15(\theta + \theta^4) + \theta^5.$$
 (4)

The right-hand side of the equation above does not depend on p. The left-hand side only depends on the value of $p \pmod{15}$, since p only appears as an exponent of θ . The above equality gives information about p, which is what we are interested in.

Lemma 7. The fact that (??) holds implies that $p \pmod{15} \in H := \{1, 4\}$.

Proof. To prove this, we will check every value of p such that $p \pmod{15} \notin H$ and conclude that $(\ref{thm:equiv})$ is not true in $\mathbb{Q}(\theta)$ in those cases. Therefore, we shall see the following: if $p \pmod{15} \in G \setminus H = \{2, 7, 8, 11, 13, 14\}$, then $-h(\theta^p) \neq -h(\theta)$. This will automatically imply what we want to prove: since $(\ref{thm:equiv})$ holds, $p \pmod{15} \in H$. To see this, rewrite $(\ref{thm:equiv})$ as

$$-15(\theta^{p} + \theta^{4p}) + \theta^{5p} + 15(\theta + \theta^{4}) - \theta^{5} = 0$$
 (5)

and trade θ for x, since the condition (??) in $\mathbb{Q}(\theta)$ is equivalent to the condition

$$-15(x^{p} + x^{4p}) + x^{5p} + 15(x + x^{4}) - x^{5} = 0$$
(6)

in $\mathbb{Q}[x]/(\Phi_{15}(x)) \cong \mathbb{Q}(\theta)$ ($\Phi_{15}(x)$ is also the minimal polynomial of θ , since $\theta = \zeta^s$ is a primitive 15th root of unity). We will explicitly write the case $p = 2 \pmod{15}$ (the remaining values of $p \pmod{15} \in G \setminus H$ are left as an exercise to the reader). With this value of p, equation (??) becomes

$$A(x) := -15(x^2 + x^8) + x^{10} + 15(x + x^4) - x^5$$
$$= x^{10} - 15x^8 - x^5 + 15x^4 - 15x^2 + 15x = 0.$$

If we recall that $\mathbb{Q}(\theta) \cong \mathbb{Q}[x]/(\Phi_{15}(x))$, the above equation is equivalent to A(x) being a multiple of the 15th cyclotomic polynomial, $\Phi_{15}(x) = x^8 - x^7 + x^5 - x^4 + x^3 - x + 1$. Therefore, we are interested in showing that the residue R(x) of the division $A(x)/\Phi_{15}(x)$ satisfies $R(x) \neq 0$, from which our result will follow. A simple Euclidean division of polynomials shows that $A(x) = B(x) \cdot \Phi_{15}(x) + (-15x^7 + 13x^5 + 15x^3 - 15x^2 + 14)$, with B(x) a polynomial of degree 2, so $R(x) = -15x^7 + 13x^5 + 15x^3 - 15x^2 + 14 \neq 0$. Therefore, equality (??) implies that $p \pmod{15} \in H$, that is, $p \equiv 1, 4 \pmod{15}$.

In conclusion, every prime divisor p of f either belongs to the finite set

$$T = \{2, 3, 5, 17, 239\}$$

or satisfies $p \equiv 1, 4 \pmod{15}$, which finally settles the main Theorem in Section ??.