Kristin Schaefer

Project #0: Simple OpenMP Experiment

1. Machine: OSU flip (Linux)

2. Performance Results

NUMT		1	2	3	4	5	6	7	8	9	10	Average
	1	1006.02	1104.56	1093.15	1126.90	1094.97	1076.97	1084.60	1123.35	1045.63	1060.86	1081.70
	4	2685.06	2661.50	2700.05	2663.16	2649.82	2615.16	2672.77	2871.31	2728.37	2646.44	2689.36

Units : Mega-Multiplies per Second SIZE : 16384 (for all tests)

NUMTRIES: 20 (for all tests)

- 3. Speedup (S) = 2689.36 / 1081.70 = **2.49**
- 4. If the 4-thread-to-one-thread speedup is less than 4.0, why do you think it is this way?

 I think there are overhead costs involved in the 4-thread computation. For example, when I tested the program with NUMTRIES as 1, the 4-thread computation had lower performance than the 1-thread computation. When I increased NUMTRIES to 10, I observed that the 4-thread computation already had a better performance than the 1-thread computation. I also think that not all of the program is parallelizable. Hence, with these limitations a speed-up of 4.0 would be very difficult to achieve.

Source: http://selkie.macalester.edu/csinparallel/modules/IntermediateIntroduction/build/html/ParallelSpeedup/ParallelSpeedup.html

5. Parallel Fraction: = (4/3)*(1 - (1/2.49)) = 0.80