Funzioni reali

Tabella dei contenuti

Funzioni reali a variabile reale		2
Iniettività, suriettività e biettività		2
Funzioni monotone		4
Funzioni pari e dispari		5
Alcune funzioni importanti		6

Funzioni reali a variabile reale

Dati due insiemi A,B, una funzione $f:A\to B$ è una relazione che associa ad ogni elemento del dominio A uno ed un solo elemento del codominio B.

Noi ci interessiamo alle funzioni reali di variabile reale, cioè a quelle del tipo $f:A\subseteq\mathbb{R}\to\mathbb{R}.$

 $Nota\ bene$

Al fine di definire una funzione è essenziale specificarne il dominio.

Iniettività, suriettività e biettività

Una funzione $f:A\to B$ si dice:

- Iniettiva se possiede al massimo una soluzione $x \in A$
- Suriettiva se possiede almeno una soluzione $x \in A$
- Biettiva o biunivoca se possiede esattamente una soluzione $x \in A$, cioè se è sia iniettiva che suriettiva.

All'espressione f(x) = y per ogni $y \in B$.

Nota bene

Per funzioni $f: A \subseteq \mathbb{R} \to \mathbb{R}$ queste proprietà si possono dedurre dal numero di volte che ogni retta orizzontale interseca il grafico di f, ad esempio f(x) = x incontra tutte le rette orizzontali una volta sola.

Esempio La funzione $f(x) = x^3 - x$ interseca tutte le rette orizzontali almeno una volta, ma incontra tre volte la retta orizzontale y = 0.

Funzione suriettiva

Esempio La funzione $f(x) = e^x$ interseca alcune rette orizzontali una sola volta ma non interseca alcuna retta orizzontale al di sotto di y = 0.

Esempio La funzione $f(x) = x^3 + 3x$ interseca tutte le rette orizzontali esattamente una singola volta come g(x) = x.

Funzione biettiva

 $Nota\ bene$

Ovviamente esistono anche funzioni che non godono di queste proprietà, come ad esempio la funzione $f(x) \coloneqq x^2 - 1$

Funzioni monotone

Una funzione $f:A\subseteq\mathbb{R}\to\mathbb{R}$ si dice:

- Non decrescente se $f(x_1) \le f(x_2)$
- Strettamente crescente se $f(x_1) < f(x_2)$
- Non crescente se $f(x_1) \ge f(x_2)$
- Strettamente decrescente se $f(x_1) > f(x_2)$

Per ogni $x_1 \in A, x_2 \in A$ con $x_1 < x_2$.

 $Nota\ bene$

Le funzioni strettamente monotone sono **sempre** iniettive.

Esempio Le funzioni $f(x)=e^x$, $g(x)=x^3$ ed $h(x)=-log_2(x)$ sono rispettivamente: strettamente crescente, non decrescente e strettamente decrescente.

 $Nota\ bene$

Esistono anche funzioni che non godono di queste proprietà, come ad esempio la funzione $f(x) := x^2 - x$.

Funzioni pari e dispari

Una funzione $f:A\subseteq\mathbb{R}\to\mathbb{R}$ si dice:

- $pari \text{ se } \forall x \in A, \ f(-x) = f(x)$ $dispari \text{ se } \forall x \in A, \ f(-x) = -f(x).$

 ${\bf E}$ soprattutto se il suo dominio A è simmetrico rispetto all'origine.

Nota bene

Possiamo dire che quando la funzione è pari, il grafico è simmetrico rispetto all'asse y, mentre la funzione è dispari quando il grafico è simmetrico all'origine.

Quando f è un **polinomio**, possiamo affermare che è pari quando l'esponente di grado più alto all'interno è pari, al contrario affermiamo che è dispari quando l'esponente di grado più alto è dispari.

 $Nota\ bene$

La funzione coseno è pari, mentre la funzione seno è dispari.

Esempio Le funzioni $f, g : \mathbb{R} \to \mathbb{R}$, definite come $f(x) := x^2$, $g(x) := (x^3 \ \forall x \in \mathbb{R}$ sono rispettivamente: pari e dispari.

Funzioni pari e dispari

Alcune funzioni importanti

- Funzioni polinomiali: sono quelle funzioni $\mathbb{R} \to \mathbb{R}$ della forma

$$f(x) := \sum_{k=0}^{n} c_k x^k = c_0 + c_1 x + c_2 x^2 + \dots + c_n x^n$$

 $\forall x \in \mathbb{R}$, dove $n \in \mathbb{N}$ e $c_0, c_1, c_2, \dots, c_n$ sono numeri reali dati.

• Funzioni razionali: sono quelle funzioni della forma

$$f(x) \coloneqq \frac{P(x)}{Q(x)}$$

Con P, Q polinomi e il dominio di f è $\{x \in \mathbb{R} : Q(x) \neq 0\}$.

- Funzioni trigonometriche (sin, cos, tan)
- Funzioni esponenziale e logaritmo.