Exact solution of the XY Model on the circle $\vec{\sigma}_{N-1}$

Antonella De Pasquale

In collaboration with:

G. Costantini, P. Facchi, G. Florio, S. Pascazio, K. Yuasa

INFN: Iniziativa specifica **GE41**

European Union: Integrated Project EuroSQIP

Joint Bilateral Project Italy-Japan (Ministero degli Affari Esteri e

Ministero dell'Università)

XY Model on the circle

• XY Model

• XX Model: Ground State

$$D=1$$

One dimensional spin- $\frac{1}{2}$ chain

Experimental implementations

• Ion-traps (N=8) – Innsbruck

Experimental implementations

- Ion-traps (N=8) Innsbruck
- Superconducting circuits Josephson junctions (N=3, 4)
 Delft and Tokyo

-Charge-Qubit EUROSQIP

- Flux-Qubit

Experimental implementations

- Ion-traps (N=8) Innsbruck
- Superconducting circuits Josephson junctions (N=3, 4)
 Delft and Tokyo

• Cavity QED (N=5, 6)

$$H_{\gamma} = -J \sum_{i=0}^{N-1} \left[g \sigma_i^z + \left(\frac{1+\gamma}{2} \right) \sigma_i^x \sigma_{i+1}^x + \left(\frac{1-\gamma}{2} \right) \sigma_i^y \sigma_{i+1}^y \right]$$

The Hamiltonian of the system can diagonalized by means of the **JORDAN-WIGNER (JW) TRANSFORMATION**:

$$|\uparrow\rangle_i$$
 $|\downarrow\rangle_i$
 $|\downarrow\rangle_i$

$$\sigma_{i}^{-} = \frac{\sigma_{i}^{x} - i\sigma_{i}^{y}}{2}$$

$$\sigma_{i}^{+} = \frac{\sigma_{i}^{x} + i\sigma_{i}^{y}}{2}$$

$$c_{i} = e^{i\pi \mathbf{n}_{i\downarrow}} \sigma_{i}^{-} \text{(ANNIHILATION OPERATOR)}$$

$$c_{i}^{\dagger} = e^{i\pi \mathbf{n}_{i\downarrow}} \sigma_{i}^{\dagger} \text{(CREATION OPERATOR)}$$

Number operator counting the holes between 0 and i-1

$$|\uparrow\rangle_i$$
 $|\downarrow\rangle_i$
 $|\downarrow\rangle_i$

$$\sigma_{i}^{-} = \frac{\sigma_{i}^{x} - \mathrm{i}\sigma_{i}^{y}}{2}$$

$$\sigma_{i}^{+} = \frac{\sigma_{i}^{x} + \mathrm{i}\sigma_{i}^{y}}{2}$$

$$c_{i} = e^{\mathrm{i}\pi \mathbf{n}_{i\downarrow}} \sigma_{i}^{-} \text{(ANNIHILATION OPERATOR)}$$

$$c_{i}^{\dagger} = e^{\mathrm{i}\pi \mathbf{n}_{i\downarrow}} \sigma_{i}^{+} \text{(CREATION OPERATOR)}$$

Number operator counting the holes between 0 and i-1

$$i \neq j \quad \left[\sigma_i^{\pm}, \sigma_j^{\pm}\right] = 0$$

$$i = j \quad \left\{\sigma_i^{-}, \sigma_j^{-}\right\} = 0$$

$$i = j \quad \left\{\sigma_i^{-}, \sigma_j^{-}\right\} = 0$$

$$i = j \quad \left\{\sigma_i^{+}, \sigma_j^{-}\right\} = 1$$

$$\left\{c_i, c_j\right\} = 0$$

$$\left\{c_i, c_j\right\} = \delta_{ij}$$

$$\sigma_i^- = \frac{\sigma_i^x - \mathrm{i}\sigma_i^y}{2}$$
 $c_i = e^{\mathrm{i}\pi \mathbf{n}_{i\downarrow}} \sigma_i^{-\text{(ANNIHILATION})}$
 $\sigma_i^+ = \frac{\sigma_i^x + \mathrm{i}\sigma_i^y}{2}$
 $c_i^\dagger = e^{\mathrm{i}\pi \mathbf{n}_{i\downarrow}} \sigma_i^+ \overset{\text{(CREATION})}{\text{OPERATOR)}}$

Number operator counting the holes between 0 and i-1

Periodicity of the **Jordan –Wigner** operators

Pauli operators $\vec{\sigma}_0 \equiv \vec{\sigma}_N$ $c_0 = \begin{cases} c_N & \text{if} \quad n_{\downarrow} \text{ odd} \\ -c_N & \text{if} \quad n_{\downarrow} \text{ even} \end{cases}$ $H_{\gamma} = -J \left\{ \sum_{j=0}^{N-1} g(1 - 2c_jc_j^{\dagger}) + \sum_{j=0}^{N-2} (c_jc_{j+1}^{\dagger} + c_{j+1}c_j^{\dagger}) + \gamma(c_jc_{j+1} + c_{j+1}^{\dagger}c_j^{\dagger}) + \left(e^{\mathrm{i}\pi(n_{\downarrow}+1)} - 1 \right) \left[(c_{N-1}c_0^{\dagger} + c_0c_{N-1}^{\dagger}) + \gamma(c_{N-1}c_0 + c_0^{\dagger}c_{N-1}^{\dagger}) \right] \right\}$

Periodicity of the **Jordan –Wigner** operators

$$\vec{\sigma}_0 \equiv \vec{\sigma}_N$$

$$c_0 = \begin{cases} c_N & \text{if } n_{\downarrow} \text{ odd} \\ -c_N & \text{if } n_{\downarrow} \text{ even} \end{cases}$$

$$H_{\gamma} = -J \begin{cases} \sum_{j=0}^{N-1} g(1 - 2c_jc_j^{\dagger}) + \sum_{j=0}^{N-2} (c_jc_{j+1}^{\dagger} + c_{j+1}c_j^{\dagger}) + \gamma(c_jc_{j+1} + c_{j+1}^{\dagger}c_j^{\dagger}) \end{cases}$$

$$\mathbf{BOUNDARY}$$

$$\mathbf{TERM} + \left[e^{\mathbf{i}\pi(n_{\downarrow}+1)} - 1 \right] \left[(c_{N-1}c_0^{\dagger} + e_0c_{N-1}^{\dagger}) + \gamma(c_{N-1}c_0 + c_0^{\dagger}c_{N-1}^{\dagger}) \right] \end{cases}$$

1961: Lieb, Schultz, Mattis

In the termodynamic limit ($N \to \infty$) the boundary term can be neglected since its contribution scales like $1/N \Rightarrow$ "c-cyclic Hamiltonian"

Periodicity of the **Jordan –Wigner** operators

 $\vec{\sigma}_0 \equiv \vec{\sigma}_N$ $c_0 = \begin{cases} c_N & \text{if } n_{\downarrow} \text{ odd} \\ -c_N & \text{if } n_{\downarrow} \text{ even} \end{cases}$ $H_{\gamma} = -J \left\{ \sum_{j=0}^{N-1} g(1 - 2c_jc_j^{\dagger}) + \sum_{j=0}^{N-2} (c_jc_{j+1}^{\dagger} + c_{j+1}c_j^{\dagger}) + \gamma(c_jc_{j+1} + c_{j+1}^{\dagger}c_j^{\dagger}) + \gamma(c_jc_{j+1} + c_{j+1}^{\dagger}c_j^{\dagger}) + \gamma(c_jc_{j+1} + c_j^{\dagger}c_j^{\dagger}) + \gamma(c_jc_j^{\dagger}c_j^{\dagger}c_j^{\dagger}) + \gamma(c_jc_j^{\dagger}c_j^{\dagger}c_j^{\dagger}) + \gamma(c_jc_j^{\dagger}c_j^{\dagger}c_j^{\dagger}) + \gamma(c_jc_j^{\dagger}c_j^{\dagger}c_j^{\dagger}c_j^{\dagger}) + \gamma(c_jc_j^{\dagger}c_j^$

For finite size systems (and applications) the boundary term CANNOT be neglected

Boundary term

Defining: $c_N \equiv c_0$ the problem introduced by the presence of the boundary becomes:

$$\begin{aligned} & \left(e^{\mathrm{i}\pi(\mathbf{n}_{\downarrow}+1)}-1\right)\left[c_{N-1}c_{N}^{\dagger}+c_{N}c_{N-1}^{\dagger}+\gamma(c_{N-1}c_{N}+c_{N}^{\dagger}c_{N-1}^{\dagger})\right] \\ & \neq \left[c_{j}c_{j+1}^{\dagger}+c_{j+1}c_{j}^{\dagger}+\gamma(c_{j}c_{j+1}+c_{j+1}^{\dagger}c_{j}^{\dagger})\right]\Big|_{j=N-1} \\ & \mathbf{OPERATOR} & \longrightarrow \mathbf{Quadratic\ Hamiltonian} & \Rightarrow \left[e^{\mathrm{i}\pi\mathbf{n}_{\downarrow}},H_{\gamma}\right]=0 \end{aligned}$$

The parity operator

• Consider the parity operator

$$\mathcal{P}=e^{\mathrm{i}\pi(\mathbf{n}_{\downarrow}+1)}$$
 ; its spectral decomposition

in the basis of the number operator n_{\perp} is:

$$\mathcal{P} = e^{i\pi(\mathbf{n}_{\downarrow}+1)} \sum_{n_{\downarrow}=0}^{N} |n_{\downarrow}\rangle\langle n_{\downarrow}| = P_{+} - P_{-} \qquad \qquad \qquad \begin{cases} P_{+} = \sum_{n_{\downarrow} \text{ odd}} |n_{\downarrow}\rangle\langle n_{\downarrow}| \\ P_{-} = \sum_{n_{\downarrow} \text{ even}} |n_{\downarrow}\rangle\langle n_{\downarrow}| \end{cases}$$

The parity operator

• Consider the parity operator

$$\mathcal{P}=e^{\mathrm{i}\pi(\mathbf{n}_{\downarrow}+1)}$$
 ; its spectral decomposition

in the basis of the number operator n_{\perp} is:

$$\mathcal{P} = e^{\mathrm{i}\pi(\mathbf{n}_{\downarrow}+1)} \sum_{n_{\downarrow}=0}^{N} |n_{\downarrow}\rangle\langle n_{\downarrow}| = P_{+} - P_{-} \qquad \qquad \qquad \begin{cases} P_{+} = \sum_{n_{\downarrow} \text{ odd}} |n_{\downarrow}\rangle\langle n_{\downarrow}| \\ P_{-} = \sum_{n_{\downarrow} \text{ even}} |n_{\downarrow}\rangle\langle n_{\downarrow}| \end{cases}$$

• $\left[\mathrm{e}^{\mathrm{i}\pi n_\downarrow}, H_\gamma \right] = \mathrm{0} \Rightarrow$ The Hamiltonian preserves the parity sectors and can be decomposed as:

$$H = P_{+}HP_{+} + P_{-}HP_{-} = H^{(+)} + H^{(-)}$$

• The analysis can then be separately performed in the two parity sectors, where the parity operator \mathcal{P} acts as a C-NUMBER

$$H_{\gamma} = -J \left\{ \sum_{j=0}^{N-1} g(1 - 2c_{j}c_{j}^{\dagger}) + \sum_{j=0}^{N-2} (c_{j}c_{j+1}^{\dagger} + c_{j+1}c_{j}^{\dagger}) + \gamma(c_{j}c_{j+1} + c_{j+1}^{\dagger}c_{j}^{\dagger}) + \left(e^{i\pi(n_{\downarrow}+1)} - 1 \right) \left[(c_{N-1}c_{0}^{\dagger} + c_{0}c_{N-1}^{\dagger}) + \gamma(c_{N-1}c_{0} + c_{0}^{\dagger}c_{N-1}^{\dagger}) \right] \right\}$$

$$H_{\gamma} = -J \left\{ \sum_{j=0}^{N-1} g(1 - 2c_{j}c_{j}^{\dagger}) + \sum_{j=0}^{N-2} (c_{j}c_{j+1}^{\dagger} + c_{j+1}c_{j}^{\dagger}) + \gamma(c_{j}c_{j+1} + c_{j+1}^{\dagger}c_{j}^{\dagger}) + \left(e^{i\pi(n_{\downarrow}+1)} - 1\right) \left[(c_{N-1}c_{0}^{\dagger} + c_{0}c_{N-1}^{\dagger}) + \gamma(c_{N-1}c_{0} + c_{0}^{\dagger}c_{N-1}^{\dagger}) \right] \right\}$$

Lieb, Schultz, Mattis: discrete
Pfeuty Fourier transform
on the circle

discrete Fourier transform
$$c_j = \frac{1}{\sqrt{N}} \sum e^{\frac{2\pi \mathrm{i} j k}{N}} \hat{c}_k$$
 on the circle PERIODIC

INCOMPATIBLE WITH THE BOUNDARY TERM

DEFORMED Fourier transform

The arbitrary dependence of the phase $e^{i\pi n_i}$ on the ordering of the spins on the circle can be compensated by deforming the discrete Fourier transform

DEFORMED Fourier transform

The arbitrary dependence of the phase $e^{i\pi n_i}$ on the ordering of the spins on the circle can be compensated by deforming the discrete Fourier transform

$$c_j = rac{1}{\sqrt{N}}e^{rac{2\pi\mathrm{i}lpha_j}{N}}\sum_{k=0}^{N-1}e^{rac{2\pi\mathrm{i}kj}{N}}\hat{c}_k$$

Imposing that the boundary term after the Fourier transform has the same form of the other N-1 terms, one gets:

$$\alpha_j = \alpha_j + \alpha_0$$
 sector dependent free parameter costant
$$e^{-\frac{2\pi i\alpha}{N}} = e^{\frac{i\pi(n_\downarrow + 1)}{N}}$$

DEFORMED Fourier transform

GLOBAL gauge LOCAL gauge

$$c_j = rac{1}{\sqrt{N}} e^{rac{2\pi i lpha_0}{N}} e^{rac{2\pi i lpha_0}{N}} e^{rac{2\pi i lpha_j}{N} lpha_j} \sum_{k=0}^{N-1} e^{rac{2\pi i k j}{N}} \hat{c}_k$$

$$e^{-\frac{2\pi\mathrm{i}\alpha}{N}} = e^{\frac{\mathrm{i}\pi(n_{\downarrow}+1)}{N}} \longrightarrow \begin{cases} \alpha = \frac{1}{2} \bmod N &, n_{\downarrow} \text{ even} \\ \alpha = 0 \bmod N &, n_{\downarrow} \text{ odd} \end{cases}$$

 n_{\downarrow} odd \longrightarrow the Hamiltonian is "c-cyclic" and one finds the

STANDARD FOURIER TRANSFORM

XY Hamiltonian diagonalized

In the Fourier space the Hamiltonian has no more the boundary term:

$$H_{\gamma} = -J \left\{ \sum_{k=0}^{N-1} g + 2\hat{c}_{k} \hat{c}_{k}^{\dagger} \left(\cos \left(2\pi \frac{\alpha + k}{N} \right) - g \right) \right\}$$

$$+ i \gamma \sin \left(2\pi \frac{\alpha + k}{N} \right) \left(e^{\frac{2\pi i(2\alpha_{0})}{N}} \hat{c}_{\bar{k}} \hat{c}_{k} + e^{-\frac{2\pi i(2\alpha_{0})}{N}} \hat{c}_{\bar{k}}^{\dagger} \hat{c}_{k}^{\dagger} \right) \right\}$$

The Hamiltonian diagonalized by means of the Bogoliubov transformation is given by:

$$H_{\gamma} = \mp 2J \sum_{k=0}^{N-1} \left(\hat{b}_k^{\dagger} \hat{b}_k - \frac{1}{2} \right) \varepsilon_k$$

$$\varepsilon_k = \sqrt{\cos^2\left(2\pi\frac{\alpha+k}{N}\right) + \gamma^2\sin^2\left(2\pi\frac{\alpha+k}{N}\right) + g^2 - 2g\cos\left(2\pi\frac{\alpha+k}{N}\right)}$$

(exact) DISPERSION RELATION

Anisotropy coefficient

$$\gamma \in [0,1]$$

HAMITONIAN:
$$H_{\gamma} = -J \sum_{i=0}^{N-1} \left[g \sigma_i^z + \left(\frac{1+\gamma}{2} \right) \sigma_i^x \sigma_{i+1}^x + \left(\frac{1-\gamma}{2} \right) \sigma_i^y \sigma_{i+1}^y \right]$$

coupling with the transverse magnetic field (g)

nearest neighbours coupling

Anisotropy coefficient

$$\gamma \in [0,1]$$

HAMITONIAN:
$$H_{\gamma} = -J \sum_{i=0}^{N-1} \left[g \sigma_i^z + \left(\frac{1+\gamma}{2} \right) \sigma_i^x \sigma_{i+1}^x + \left(\frac{1-\gamma}{2} \right) \sigma_i^y \sigma_{i+1}^y \right]$$

$$H_{\text{Ising}} = -J \left[\sum_{i=0}^{N-1} g \sigma_i^z + \sum_{i=0}^{N-1} \sigma_i^x \sigma_{i+1}^x \right] = H_{\gamma}$$

$$\uparrow = 1$$

$$\downarrow \gamma = 1$$

XX Model $(\gamma=0)$

$$H_0 = -J \sum_{k=0}^{N-1} \left[g\sigma_i^z + \frac{1}{2}\sigma_i^x \sigma_{i+1}^x + \frac{1}{2}\sigma_i^y \sigma_{i+1}^y \right]$$

$$\left(\frac{1+\gamma}{2} \right) \Big|_{\gamma=0} \left(\frac{1-\gamma}{2} \right) \Big|_{\gamma=0}$$

ISOTROPIC

INTERACTION IN THE XY PLANE

XX Model $(\gamma=0)$

$$H_0 = -J \sum_{k=0}^{N-1} \left[g\sigma_i^z + \frac{1}{2}\sigma_i^x \sigma_{i+1}^x + \frac{1}{2}\sigma_i^y \sigma_{i+1}^y \right]$$

The diagonalized Hamiltonian is given by:

$$H_0 = -2J \sum_{k=0}^{N-1} \left(\hat{b}_k^{\dagger} \hat{b}_k - \frac{1}{2} \right) \varepsilon_k \longrightarrow \left[\varepsilon_k = g - \cos\left(2\pi \frac{\alpha + k}{N}\right) \right]$$

XX DISPERSION RELATION

XX Spectrum

• Vacuum state (zero fermions):

$$\frac{E_{\text{vac}}}{N} = \varepsilon_{\text{vac}}(g) = g$$

• State with 1 fermion with impulse k = 0,1,...N-1:

$$\frac{E_1}{N} = \varepsilon_1(k, \alpha, g)$$

$$= \varepsilon_{\text{vac}} + 2\left(-\frac{g}{N} + \frac{1}{N}\cos\left(2\pi\frac{\alpha + k}{N}\right)\right)$$

XX Spectrum

• State with n fermions of momenta $k_1 \neq k_2 \neq ... kn, n \leq N$

$$\varepsilon_n(k_1, k_2, \dots, k_n, \alpha, g) = \varepsilon_{\text{Vac}} + 2\left(-\frac{ng}{N} + \sum_{1 \le i \le n} \frac{1}{N}\cos\left(2\pi\frac{\alpha + k_i}{N}\right)\right)$$

XX Spectrum

• Observe that as the number of fermion increases the angolar coefficient decreases

Lowest energy levels

We focus on the lowest energy levels and consider the values taken

by the function

$$\cos\left(2\pi\frac{\alpha+k}{N}\right)$$

in the four possible cases [2 parities of

number of sites N and 2 values of α]

Filling the lowest energy levels

Filling the lowest energy levels

Lowest energy levels

For fixed N (e.g. N=8) one gets:

Lowest energy levels

For fixed N (e.g. N=8) one gets:

It can be shown that the general expression of the lowest energy levels in the different n-particle sectors $(0 \le n \le N)$ does not depend on the parity of N:

$$arepsilon_n^{\min}(g) = g\left(1-2rac{n}{N}
ight) - rac{2}{\pi}rac{\sin\left(rac{\pi n}{N}
ight)}{\chi_N}$$
 with

$$\chi_N = \frac{\sin\left(\frac{\pi}{N}\right)}{\frac{\pi}{N}}$$

"detects finiteness" ← FINITE SIZE PARAMETER

Lowest energy levels

It can be shown that the general expression of the lowest energy levels in the different n-particle sectors $(0 \le n \le N)$ does not depend on the parity of N:

$$\varepsilon_n^{\min}(g) = g\left(1 - 2\frac{n}{N}\right) - \frac{2}{\pi} \frac{\sin\left(\frac{\pi n}{N}\right)}{\chi_N} \quad \text{with}$$

$$\chi_N = \frac{\sin\left(\frac{\pi}{N}\right)}{\frac{\pi}{N}}$$

"detects finiteness" ← FINITE SIZE PARAMETER

The ground state

"forerunners" of the quantum phase transition (QPT) points in the thermodynamic limit

Ground state

The ground state

Ground state envelope

The number of LEVEL CROSSING points grows with N.

Envelope

$$\frac{\partial \,\varepsilon_n^{\min}}{\partial \, n} = 0$$

$$\varepsilon_{\text{env}}(g) = \begin{cases} g \left(1 - \frac{2}{\pi} \arccos(-g\chi_N) \right) - \frac{2}{\pi} \frac{\sqrt{1 - g^2 \chi_N^2}}{\chi_N} &, |g| < \frac{1}{\chi_N} \\ -|g| &, |g| > \frac{1}{\chi_N} \end{cases}$$

 $\chi_N =$ Finite size parameter

Ground state envelope

$$N = 8 \quad \varepsilon \qquad \qquad N = 45 \quad \varepsilon$$

$$-1.0 \quad 0.5 \quad 0.5 \quad 0.5$$

$$-1.0 \quad$$

 $\chi_N =$ Finite size parameter

Thermodynamical limit

Consider the ground state envelope of systems with different number of sites N

$$\lim_{N\to\infty} \varepsilon_{\text{env}}(g) = \begin{cases} g\left(1 - \frac{2}{\pi}\arccos(-g)\right) - \frac{2}{\pi}\sqrt{1 - g^2} &, |g| \le 1\\ -|g| &, |g| \ge 1 \end{cases}$$

Thermodynamical limit

Consider the ground state envelope of systems with different number of sites N

$$Delta = 0$$

$$Delt$$

$$\lim_{N\to\infty} \varepsilon_{\text{env}}(g) = \begin{cases} g\left(1 - \frac{2}{\pi}\arccos(-g)\right) - \frac{2}{\pi}\sqrt{1 - g^2} &, |g| \le 1\\ -|g| &, |g| \ge 1 \end{cases}$$

$$g \in [g_c(n-1), g_c(n)]$$

Weaker magnetic fields

SUPERPOSITION OF STATES WITH:

$$\begin{cases} \mathbf{n} & \longrightarrow |\downarrow\rangle \\ \mathbf{N} \cdot \mathbf{n} & \longrightarrow |\uparrow\rangle \end{cases}$$

$$|\psi\rangle_{n} = \frac{1}{N} \sum_{j_{1} < j_{2} < \dots < j_{n}} \left[\lambda_{j_{1}, j_{2}, \dots, j_{n}} \left(-1 \right)^{nj_{1}} (-1)^{(n-1)(j_{2}-j_{1})} (-1)^{(n-2)(j_{3}-j_{2})} \dots \right.$$

$$\left. (-1)^{j_{n}-j_{n-1}} \right] |\downarrow\rangle_{0} \dots |\uparrow\rangle_{j_{1}} \dots |\uparrow\rangle_{j_{2}} \dots |\uparrow\rangle_{j_{n}} |\downarrow\rangle_{j_{n}+1} \dots |\downarrow\rangle_{N-1}$$

Experimental implementations

- Ion-traps (N=8) Innsbruck
- Cavity QED (N=5, 6)
- Superconducting circuits Josephson junctions (N=3, 4)
 Delft and Tokyo

-Charge-Qubit EUROSQIP

- Flux-Qubit

• Our approach to multipartite entanglement is to analyze the statistical properties of bipartite entanglement over all

balanced bipartitions

• Our approach to multipartite entanglement is to analyze the statistical properties of bipartite entanglement over all

balanced bipartitions

• The ground state ($|\psi_{gs}\rangle$) entanglement can be evaluated introducing the **purity** of the subsystem :

$$\pi_{AB}(|\psi_{gs}
angle)=\mathrm{Tr}_{A}
ho_{A}^{2}=\mathrm{Tr}_{B}
ho_{B}^{2}$$
 where: $ho=|\psi_{\mathrm{gs}}
angle\langle\psi_{\mathrm{gs}}|$ $ho_{A}=\mathrm{Tr}_{B}
ho$

$$\frac{1}{N_A} = 2^{-n_A} \le \pi_{AB} = \mathrm{Tr}_A \rho_A^2 \le 1$$
 maximally entangled state

$$ho_A = egin{pmatrix} rac{1}{N_A} & 0 & 0 & \dots & 0 \\ 0 & rac{1}{N_A} & 0 & \dots & 0 \\ 0 & 0 & \ddots & 0 & 0 \\ 0 & 0 & 0 & \dots & rac{1}{N_A} \end{pmatrix}$$

$$ho_A = egin{pmatrix} 1 & 0 & 0 & ... & 0 \ 0 & 0 & 0 & ... & 0 \ 0 & 0 & \cdots & 0 & 0 \ 0 & 0 & 0 & ... & 0 \end{pmatrix}$$

$$\frac{1}{N_A} = 2^{-n_A} \le \pi_{AB} = \operatorname{Tr}_A \rho_A^2 \le 1$$

$$\frac{1}{N_A} = 2^{-n_A} \le \pi_{AB} = \operatorname{Tr}_A \rho_A^2 \le 1$$

$$\frac{1}{N_A} = 2^{-n_A} \le \pi_{AB} = \operatorname{Tr}_A \rho_A^2 \le 1$$

the key idea is:
$$\begin{cases} \mu = \langle \pi_{AB} \rangle & \text{ "1/(amount of entanglement)"} \\ \sigma^2 = \langle \pi_{AB}^2 \rangle - \langle \pi_{AB} \rangle^2 & \text{ entanglement distribution} \end{cases}$$

$$\langle \ldots \rangle = \binom{n}{[n/2]}^{-1} \sum_{\text{bipartitions}} \ldots$$

$$\frac{1}{N_A} = 2^{-n_A} \le \pi_{AB} = \operatorname{Tr}_A \rho_A^2 \le 1$$
depends on the bipartition

MULTIPARTITE ENTANGLEMENT

A *smaller variance* will correspond to a larger insensitivity to the choice of the bipartition and will witness if *entanglement is really multipartite*

We expect the maximum entanglement is reached at g=0

We expect the maximum entanglement is reached at g=0

For N even the maximum of σ is not a decreasing function of N. However, as a *general trend* for both even and odd N, σ tends to decrease with N.

Multipartite entanglement and thermodynamical limit

If one defines the relative width at maximum entanglement:

$$\sigma_{\rm rel} = \frac{\sigma(\mu_{\rm max})}{\mu_{\rm max}}$$

there are two possible scenarios in the thermodynamical limit *:

 $\sigma_{\mathsf{rel}} \longrightarrow c > \mathsf{0} \; \; ext{(eventually} \infty)$: distribution of entanglement is not optimal

 $\sigma_{\text{rel}} \longrightarrow 0$: the entanglement of the ground state is macroscopically insensitive to the choice of the bipartition

possible link between Quantum Phase Transition and Multipartite entanglement

^{* [}G. Costantini et al. J. Phys. A: Math. Theor. 40 (2007) 8009]