MATH 2551, FAll 2015

Midterm I, practice

Name:	Section:	

Guideline: Please read the following carefully.

Print your name first. Remember to show all your work; including all intermediate steps and also explain in words how you are solving a problem. Partial credits are available for most problems. Correct answers without major steps will only receive minor portion of the credits of the whole problem. You may use one side of a letter sized sheet paper for formulas. No calculator is allowed in this exam. You have 50 minutes.

Problem	Actual points
1	
2	
3	
4	
Total	

Problem 1(30 points). Calculations.

(a)(5 pt)
$$\frac{d}{dt}[(e^t\mathbf{i} + \sqrt{t}\mathbf{j}) \bullet (e^{-t}\mathbf{i} - 3\sqrt{t}\mathbf{j})].$$

(b) (5 pt)
$$\frac{d}{dt}[(t^2\mathbf{i} + \mathbf{j}) \times (t^2\mathbf{i} - 3t\mathbf{j})].$$

(c)(10 pt) Let $h(r, \theta, t) = r^2 e^{2t} sin(\theta - t)$, calculate h_r , h_t and h_{rt} .

(d)(10 pt) Set $f(x,y) = \frac{x-y^3}{x^3-y^3}$. Determine whether or not f has a limit at (1,1).

Problem 2(30 pt) An object moves so that

$$\mathbf{r}(t) = 4\mathbf{i} + (1+3t)\mathbf{j} + (9-t^2)\mathbf{k}, \ t \ge 0.$$

(a)(6 pt) Compute the velocity, the acceleration and the speed of the ball at an arbitrary time t.

(b) (6 pt) Find the time $t_1 > 0$ and the coordinates of the point P where the object hits the xy plane.

(c)(6 pt) Set up a definite integral equal to the length of the arc of the trajectory from $\mathbf{r}(0)$ to the point P. Do not evaluate the integral.

(d)(6 pt) Find the equation of the line tangent to the trajectory at P. $\,$

(e)(6 pt) Find the curvature of the trajectory at P.

Problem 3(40 pt) At each point P(x(t), y(t), z(t)) of its motion, an object of mass m is subject to a force:

$$\mathbf{F}(t) = -m(sint\mathbf{i} + cost\mathbf{j} + (sint + cost)\mathbf{k}).$$

Given that $\mathbf{v}(0) = \mathbf{i} + \mathbf{k}$, and $\mathbf{r}(0) = \mathbf{j} + 3\mathbf{k}$. Find the following:

(a) (8 pt) The velocity $\mathbf{v}(t)$.

(b) (4 pt) The speed $v(\pi)$.

(c) (8 pt) The position function $\mathbf{r}(t)$.
(1) (10 mt) The terresortial and removal assure as the constant in (-)
(d) (10 pt) The tangential and normal components of the acceleration $\mathbf{a}(\pi)$.
(e) (10 pt) The osculating plane at $\mathbf{r}(\pi)$.