Comparando listas e rankings

Fernando Náufel

16/02/2024 16:50

Índice

Αį	Apresentação							
1	Lista	as e <i>rankings</i>	4					
	1.1	Problema	4					
	1.2	Criando rankings	4					
		1.2.1 Representação						
		1.2.2 Quantidade de rankings						
		1.2.3 Criando um <i>ranking</i> a partir de um vetor						
	1.3	Outras funções						
		1.3.1 Mostrando um ranking graficamente						
		1.3.2 Criando uma tibble com todos os rankings						
2	0 ra	anking concorda com a lista? Posições	13					
	2.1	Usando p como medida de concordância	13					
	2.2	Usando p e as posições dos elementos da lista						
		2.2.1 Contando posições						
		2.2.2 Comparando $rankings$ com valores diferentes de p						

Apresentação

???

1 Listas e rankings

1.1 Problema

Vamos trabalhar com listas e rankings sujeitos às seguintes condições:

- A lista tem k elementos, k > 0, não ordenados.
- O ranking tem p elementos, $p \ge k$, ordenados, sem empates.
- Todos os elementos da lista também pertencem ao ranking.
- O último elemento do ranking sempre pertence à lista.
- As identidades dos elementos do *ranking* não importam i.e., eles são indistinguíveis, a não ser por pertencerem ou não à lista (e pela ordem que ocupam no *ranking*, claro).

1.2 Criando rankings

1.2.1 Representação

Considere naturais k > 0 e $p \ge k$.

Podemos representar um ranking através de um string contendo k caracteres "x" e p-k caracteres "-".

"x" representa uma posição ocupada por um elemento da lista.

"-" representa uma posição ocupada por um elemento que não está na lista.

Você pode usar a função rk() para criar um ranking, passando um string da forma acima:

ranking: [xx--x] (p = 5, k = 3)

R vai mostrar o ranking com os valores de k e p. Se quiser ver o ranking com caracteres Unicode, use a função print com o argumento unicode = TRUE:

ranking: [••] (p = 5, k = 3)

1.2.2 Quantidade de rankings

Dados k > 0 e $p \ge k$ fixos, quantos rankings existem?

Para montar um ranking:

- 1. Sabemos que a última posição é ocupada por alguém da lista.
- 2. Só resta escolher as posições dos k-1 elementos restantes da lista dentre as p-1 posições restantes no ranking, o que dá $\binom{p-1}{k-1}$ escolhas.

Assim, a quantidade total de rankings para $k \in p$ dados é

$$\binom{p-1}{k-1}$$

Por exemplo, para k=3, p=5, os $\binom{4}{2}=6$ rankings possíveis são

- xx--x
- x-x-x
- x--xx
- -xx-x
- -x-xx
- --xxx

A tabela a seguir (na verdade, um pedaço do triângulo de Pascal) mostra as quantidades de rankings possíveis para alguns valores de k e p:

		k								
p	1	2	3	4	5	6	7	8	9	10
1	1									
2	1	1								
3	1	2	1							
4	1	3	3	1						
5	1	4	6	4	1					

6	1	5	10	10	5	1				
7	1	6	15	20	15	6	1			
8	1	7	21	35	35	21	7	1		
9	1	8	28	56	70	56	28	8	1	
10	1	9	36	84	126	126	84	36	9	1
11	1	10	45	120	210	252	210	120	45	10
12	1	11	55	165	330	462	462	330	165	55
13	1	12	66	220	495	792	924	792	495	220
14	1	13	78	286	715	1.287	1.716	1.716	1.287	715
15	1	14	91	364	1.001	2.002	3.003	3.432	3.003	2.002
16	1	15	105	455	1.365	3.003	5.005	6.435	6.435	5.005
17	1	16	120	560	1.820	4.368	8.008	11.440	12.870	11.440
18	1	17	136	680	2.380	6.188	12.376	19.448	24.310	24.310
19	1	18	153	816	3.060	8.568	18.564	31.824	43.758	48.620
20	1	19	171	969	3.876	11.628	27.132	50.388	75.582	92.378
21	1	20	190	1.140	4.845	15.504	38.760	77.520	125.970	167.960
22	1	21	210	1.330	5.985	20.349	54.264	116.280	203.490	293.930
23	1	22	231	1.540	7.315	26.334	74.613	170.544	319.770	497.420
24	1	23	253	1.771	8.855	33.649	100.947	245.157	490.314	817.190
25	1	24	276	2.024	10.626	42.504	134.596	346.104	735.471	1.307.504
26	1	25	300	2.300	12.650	53.130	177.100	480.700	1.081.575	2.042.975
27	1	26	325	2.600	14.950	65.780	230.230	657.800	1.562.275	3.124.550
28	1	27	351	2.925	17.550	80.730	296.010	888.030	2.220.075	4.686.825
29	1	28	378	3.276	20.475	98.280	376.740	1.184.040	3.108.105	6.906.900
30	1	29	406	3.654	23.751	118.755	475.020	1.560.780	4.292.145	10.015.005

1.2.3 Criando um ranking a partir de um vetor

Em vez de especificar as p posições do ranking, pode ser mais compacto especificar as k posições do ranking que são ocupadas por elementos da lista.

Para isso, a função \mathtt{rk} () também aceita um vetor numérico com k elementos.

```
rk(c(1, 3, 5, 7))
```

```
ranking: [x-x-x-x] (p = 7, k = 4)
```

Observe que as posições não precisam ser passadas em ordem:

```
rk(c(3, 7, 5, 1))
```

```
ranking: [x-x-x-x] (p = 7, k = 4)
```

A função detecta vetores que não podem representar rankings:

```
rk(c(3, 7, 3, 1))
```

Error in validate_rk(x):

Valores precisam ser inteiros positivos, sem repetições.

```
rk(c(5, 7, 3, 1.5))
```

Error in validate_rk(x):

Valores precisam ser inteiros positivos, sem repetições.

```
rk(c(5, -7, 3, 1))
```

Error in validate_rk(x):

Valores precisam ser inteiros positivos, sem repetições.

1.3 Outras funções

1.3.1 Mostrando um ranking graficamente

A função plot recebe um *ranking* e gera um gráfico de pontos, com um ponto para cada elemento.

No eixo x, a posição do elemento na lista.

No eixo y, a posição do elemento no ranking.

```
r <- rk('x-x-x-xx')
plot(r)
```


O argumento \mathtt{reta} , opcional, especifica se deve ser incluída uma reta de regressão linear via mínimos quadrados. O default é TRUE.

A função plot pode receber um argumento fun, opcional, especificando uma função para calcular o score deste ranking (i.e., alguma forma de correlação entre o ranking e a lista). O score vai ser mostrado no título do gráfico.

A função passada em fun deve receber um objeto rk e retornar o score numérico.

```
plot(
   r,
   fun = \(r) {
     df <- as_tibble(r)
     cor(df$pos_lista, df$pos_ranking) %>% round(2)
   }
)
```


1.3.2 Criando uma tibble com todos os rankings

Dados valores de p e k (nesta ordem), a função criar_df_rankings() retorna uma tibble com todos os $\binom{p-1}{k-1}$ rankings possíveis, como objetos (S3) e como strings.

Todos os rankings com p = 8 e k = 5:

```
criar_df_rankings(8, 5)
```

```
# A tibble: 35 x 2
    ranking ranking_str
    list> <chr>
1 <rk>    xxxx---x
2 <rk>    xxx-x--x
```

```
3 <rk>
           xxx--x-x
4 <rk>
           xxx---xx
5 <rk>
           xx-xx--x
6 <rk>
           xx-x-x-x
7 <rk>
           xx-x--xx
8 <rk>
           x-xx-x
9 <rk>
           xx--x-xx
10 <rk>
           xx---xx
11 <rk>>
           x-xxx--x
12 <rk>
           x-xx-x-x
13 <rk>
           x-xx--xx
14 <rk>>
           x-x-xx-x
15 <rk>
           x-x-x-xx
           x-x--xxx
16 <rk>>
17 <rk>
           x--xxx-x
18 <rk>
           x--xx-xx
19 <rk>>
           x--x-xx
20 <rk>
           x---xxxx
21 <rk>
           -xxxx--x
22 <rk>
           -xxx-x-x
23 <rk>
           -xxx--xx
24 <rk>
           -xx-xx-x
25 <rk>
           -xx-x-xx
26 <rk>
           -xx--xxx
27 <rk>
           -x-xxx-x
28 <rk>
           -x-xx-xx
29 <rk>
           -x-x-xx
30 <rk>
           -x--xxxx
31 <rk>
           --xxxx-x
32 <rk>
           --xxx-xx
33 <rk>
           --xx-xxx
34 <rk>
           --x-xxxx
35 <rk>
           ---xxxxx
```

Se for passado apenas o valor de p, a função retorna uma tibble com todos os rankings possíveis de comprimento p (com k variando de 1 até p). Exercício: quantos são?

Todos os rankings com p = 5:

```
criar_df_rankings(5)
```

A tibble: 16 x 2

```
ranking ranking_str
  t> <chr>
1 <rk>
          ----x
2 <rk>
          x---x
3 <rk>
          -x--x
4 <rk>
           --x-x
5 <rk>
          ---xx
6 <rk>
          xx--x
7 <rk>>
          x-x-x
8 <rk>
          x--xx
9 <rk>
          -xx-x
10 <rk>
          -x-xx
11 <rk>>
           --xx
12 <rk>
          xxx-x
13 <rk>
          xx-xx
14 <rk>
          x-xxx
15 <rk>
           -xxxx
16 <rk>
           XXXXX
```

Se você quiser a representação em string usando unicode, basta passar o argumento unicode = TRUE:

criar_df_rankings(5, unicode = TRUE)

```
# A tibble: 16 x 2
  ranking ranking_str
   t> <chr>
1 <rk>
2 <rk>
3 <rk>
4 <rk>
5 <rk>
6 <rk>
7 <rk>>
8 <rk>
9 <rk>
10 <rk>
11 <rk>>
12 <rk>
13 <rk>
14 <rk>
15 <rk>
```

2 O ranking concorda com a lista? Posições

2.1 Usando p como medida de concordância

Imagine que a lista de k elementos foi definida por uma autoridade, usando critérios que não conhecemos.

Em uma tentativa de descobrir esses critérios, construímos um modelo para avaliar todos os elementos da população (que incluem os k elementos da lista).

Nosso modelo produz um *ranking* de todos os elementos. Para facilitar, vamos supor que não há empates no *ranking*.

Uma pergunta natural sobre a qualidade do ranking produzido é

Quantas posições do ranking são necessárias para incluir todos os k elementos da lista?

A resposta é p, a posição, no ranking, do elemento da lista com pior classificação.

Aliás, é por isso que convencionamos, no capítulo anterior, que nossos rankings sempre terminam com um elemento da lista.

Um exemplo:

- A lista contém k = 5 elementos.
- O ranking r_1 é xx-x-xx, com p=7.
- O ranking r_2 é -xxxx, com p = 6.

Segundo a medida proposta aqui, r_2 é melhor que r_1 .

Ou seja, quanto menor o valor de p, melhor o ranking.

Embora comparar rankings através de seus valores de p seja simples, podemos examinar medidas alternativas, que sejam mais finas que esta.

Por exemplo, é discutível se os dois rankings xx---x e ---xxx devem ser considerados igualmente bons; no entanto, ambos têm p=6.

2.2 Usando p e as posições dos elementos da lista

2.2.1 Contando posições -

Dado um $ranking\ r$ com k e p, queremos definir uma função s(r) — s de score — com as seguintes características:

• Se r não contiver "-", então s(r) = 1. Neste caso, r é um ranking perfeito, que coincide com a lista (por exemplo, xxxxx). Em casos assim, k = p. Vamos definir s como sendo da forma

$$s(r) = \frac{k}{p} + \cdots$$

onde as reticências representam uma parcela que ainda vamos definir. Se r for um ranking perfeito, a parcela k/p será 1, e vamos definir a parcela restante para que seja igual a zero.

• A parcela restante deve ter valor maior quanto melhor for o ranking. Quanto mais próximos do fim do ranking estiverem os caracteres "-", melhor ele será. Uma quantidade natural seria

$$\frac{\text{soma}_}{\sum_{i=1}^{n} i} = \frac{\text{soma}_}{p(p+1)/2} = \frac{2 \text{soma}_}{p(p+1)}$$

onde soma_ é a soma das posições ocupadas por "_" em r.

Como queríamos, quando r for um ranking perfeito, soma_ = 0, e então s(r) = 1.

• Mas também queremos que somente rankings perfeitos tenham s(r)=1. Para isso, considere que um ranking mais próximo do perfeito é da forma

$$x...x-x$$

Ou seja, k = p - 1 e soma_ = p - 1.

Vamos multiplicar a segunda parcela por α de forma que s(r) < 1 para este ranking quase perfeito:

$$s(r) = \frac{p-1}{p} + \frac{2(p-1)}{p(p+1)} \cdot \alpha$$

Então

$$\begin{split} s(r) < 1 &\iff \frac{2(p-1)}{p(p+1)} \cdot \alpha < \frac{1}{p} \\ &\iff 2\alpha(p-1) < p+1 \\ &\iff \alpha < \frac{1}{2} \cdot \frac{p+1}{p-1} \\ &\iff \alpha = \frac{1}{m} \cdot \frac{p+1}{p-1} \qquad (m > 2) \end{split}$$

o que dá

$$\begin{split} s(r) &= \frac{k}{p} + \frac{2\operatorname{soma}}{p(p+1)} \cdot \alpha \\ &= \frac{k}{p} + \frac{2\operatorname{soma}}{p(p+1)} \cdot \frac{1}{m} \cdot \frac{p+1}{p-1} \quad (m > 2) \\ &= \frac{k}{p} + \frac{2\operatorname{soma}}{p(p-1)} \cdot \frac{1}{m} \qquad (m > 2) \\ &= \frac{k}{p} + \frac{\operatorname{soma}}{p(p-1)} \cdot \frac{2}{m} \qquad (m > 2) \end{split}$$

Dependendo do valor de m > 2 escolhido, teremos medidas diferentes.

A função que implementamos usa o default de m=10, mas valores diferentes podem ser passados.

```
r <- rk('xxx-x')
s(r)
```

[1] 0,84

Para p = 8, alguns exemplos:

```
list(
    rk('xxxxxxxx'),
    rk('xxxxxx-x'),
    rk('-xxxxxxx')
)
```

[1] 1,0000000 0,9000000 0,8785714

Eis todos os rankings de comprimento 8, com suas pontuações:

ranking_str	S
xxxxxxx	1,0000000
XXXXXX-X	0,9000000
XXXXX-XX	$0,\!8964286$
XXXX-XXX	0,8928571
XXX-XXXX	$0,\!8892857$
XX-XXXXX	0,8857143
X-XXXXXX	0,8821429
-XXXXXXX	0,8785714
xxxxx-x	0,7964286
XXXX-X-X	0,7928571
xxxx-xx	0,7892857
XXX-XX-X	0,7892857
XXX-X-XX	0,7857143
XX-XXX-X	0,7857143
xxx-xxx	0,7821429
XX-XX-XX	0,7821429
X-XXXX-X	0,7821429
XX-X-XXX	0,7785714
X-XXX-XX	0,7785714
-XXXXX-X	0,7785714
xx-xxxx	0,7750000
X-XX-XXX	0,7750000
-XXXX-XX	0,7750000
X-X-XXXX	0,7714286
-XXX-XXX	0,7714286
x- $xxxxx$	0,7678571
-XX-XXXX	0,7678571
-x-xxxxx	0,7642857
-xxxxxx	0,7607143
xxxx—x	0,6892857
xxx-x-x	0,6857143
XXX-X-X	0,6821429
xx-xx-x	0,6821429
xxx— xx	0,6785714
XX-X-X-X	0,6785714
x-xxx-x	0,6785714
xx-x-xx	0,6750000
xx-xx-x	0,6750000
X-XX-X-X	0,6750000

-xxxx-x	0,6750000
xx-x-xx	0,6714286
x-xx-xx	0,6714286
X-X-XX-X	0,6714286
-XXX-X-X	0,6714286
xx—xxx	0,6678571
X-X-X-XX	0,6678571
x-xxx-x	0,6678571
-xxx-xx	0,6678571
-XX-XX-X	0,6678571
x-x-xxx	$0,\!6642857$
x-xx-xx	$0,\!6642857$
-XX-X-XX	$0,\!6642857$
-X-XXX-X	$0,\!6642857$
x-x-xxx	0,6607143
-xx-xxx	$0,\!6607143$
-X-XX-XX	$0,\!6607143$
-xxxx-x	0,6607143
x— $xxxx$	$0,\!6571429$
-X-X-XXX	$0,\!6571429$
-xxx-xx	0,6571429
-x-xxxx	$0,\!6535714$
-xx-xxx	0,6535714
-x-xxxx	0,6500000
—xxxxx	0,6464286
xxx—-x	$0,\!5785714$
xx-x—x	0,5750000
xx-x-x	0,5714286
x-xx—x	0,5714286
xx-x-x	0,5678571
X-X-X-X	0,5678571
-xxx—x	0,5678571
xx—-xx	0,5642857
X-X-X-X	0,5642857
X-XX-X	0,5642857
-XX-X-X	0,5642857
x-xxx	0,5607143
X-X-X-X	0,5607143
-XX ⁻ X-X	0,5607143
-x-xx-x	0,5607143
x-x-xx	0,5571429
x—xx-x	0,5571429
-xx-xx	0,5571429

-X-X-X-X	$0,\!5571429$
-xxx-x	$0,\!5571429$
x-x-xx	$0,\!5535714$
-x-x-xx	$0,\!5535714$
-x-xx-x	$0,\!5535714$
-xx-x-x	$0,\!5535714$
xxxx	$0,\!5500000$
-x-x-xx	$0,\!5500000$
-xx-xx	0,5500000
-x- x - x	$0,\!5500000$
-x—xxx	$0,\!5464286$
-x-x-xx	$0,\!5464286$
—xxx-x	$0,\!5464286$
-x-xxx	$0,\!5428571$
—xx-xx	$0,\!5428571$
—x-xxx	$0,\!5392857$
xxxx	$0,\!5357143$
xxx	$0,\!4642857$
x-xx	$0,\!4607143$
x-x-x	0,4571429
-xxx	0,4571429
xx-x	$0,\!4535714$
-x-x-x	$0,\!4535714$
xx-x	$0,\!4500000$
-x-x-x	0,4500000
-xx-x	0,4500000
xxx	0,4464286
-x-x-x	0,4464286
-x-x-x	0,4464286
-xxx	0,4428571
-x-x-x	0,4428571
xx-x	0,4428571
-xxx	0,4392857
xx	0,4392857
x-xx	0,4357143
	0,4357143
	0,4321429
xxx	0,4285714
xx	0,3464286
-xx	0,3428571
-xx	0,3392857
—x—x	0,3357143
xx	0,3321429

x-x	$0,\!3285714$
xx	$0,\!3250000$
x	$0,\!2250000$

Perceba que pode haver empates: xxxx-xx e xxx-xx-x têm o mesmo valor de s. É razoável achar que estes dois rankings têm a mesma qualidade.

2.2.2 Comparando rankings com valores diferentes de p

Como a lista é dada e fixa, só faz sentido, na prática, comparar rankings com o mesmo valor de k.

Vamos examinar, para uma lista com k=2, os rankings possíveis com p variando de 2 a 10. São 45 rankings:

ranking_str	р	s
XX	2	1,0000000
X-X	3	0,73333333
-XX	3	0,7000000
x-x	4	0,5833333
-X-X	4	$0,\!5666667$
-xx	4	0,5500000
xx	5	0,4900000
-x-x	5	0,4800000
-x-x	5	$0,\!4700000$
—xx	5	$0,\!4600000$
xx	6	$0,\!4266667$
-x-x	6	$0,\!4200000$
-x-x	6	$0,\!4133333$
—x-x	6	$0,\!4066667$
—-xx	6	0,4000000
xx	7	$0,\!3809524$
-xx	7	$0,\!3761905$
-x-x	7	$0,\!3714286$
x-x	7	$0,\!3666667$
	7	0,3619048
xx	7	$0,\!3571429$
xx	8	0,3464286
-xx	8	0,3428571
-xx	8	$0,\!3392857$
xx	8	$0,\!3357143$

—-x-x 8 0,3	3321429
—x-x 8 0,5	3285714
xx 8 0,5	3250000
xx 9 0,5	3194444
-x-x 9 0,5	3166667
-x-x 9 0,5	3138889
xx 9 0,5	3111111
—-x—x 9 0,5	3083333
x-x 9 0,5	3055556
—x-x 9 0,5	3027778
xx 9 0,5	3000000
xx 10 0,2	2977778
-xx 10 0,2	2955556
-xx 10 0,5	2933333
xx 10 0,5	2911111
	2888889
—x—x 10 0,5	2866667
x-x 10 0,5	2844444
	2822222
xx 10 0,2	2800000

Os gráficos abaixo mostram os scores atribuídos para todos os rankings com k=2 e p variando de 2 a 10, separados por valores de p:

Scores de todos os rankings

com k = 2, p = 6 a 10

Scores de todos os rankings

com k = 2 p = 2 a 10

