MAD211 - Estatística para Administração

Teste de Hipóteses II

Prof. Carlos Trucíos carlos.trucios@facc.ufrj.br ctruciosm.github.io

Faculdade de Administração e Ciências Contábeis, Universidade Federal do Rio de Janeiro

Aula 18

Diferença de médias para polulações não relacionadas

Diferença de médias para amostras relacionadas.

 \blacktriangleright Até agora temos visto testes de hipóteses para a média populacional μ .

- lacktriangle Até agora temos visto testes de hipóteses para a média populacional $\mu.$
- ▶ Outro parâmetro populacional de interesse é a proporção p

- lacktriangle Até agora temos visto testes de hipóteses para a média populacional $\mu.$
- Outro parâmetro populacional de interesse é a proporção p
- Seja p₀ o valor hipotético da proporção populacional, estamos interessados em testes da forma:

$$H_0: p = p_0 \quad vs \quad H_1: p \neq p_0,$$
 $H_0: p \leq p_0 \quad vs \quad H_1: p > p_0,$ $H_0: p \geq p_0 \quad vs \quad H_1: p < p_0.$

- \blacktriangleright Até agora temos visto testes de hipóteses para a média populacional μ .
- ▶ Outro parâmetro populacional de interesse é a proporção p
- ► Seja *p*₀ o valor hipotético da proporção populacional, estamos interessados em testes da forma:

$$H_0: p = p_0 \quad vs \quad H_1: p \neq p_0,$$
 $H_0: p \leq p_0 \quad vs \quad H_1: p > p_0,$ $H_0: p \geq p_0 \quad vs \quad H_1: p < p_0.$

Assim como no caso do teste para a média, para o caso da proporção também precisamos de uma estatística de teste.

Sabemos que se $X_1, \ldots, X_n \sim N(\mu, \sigma)$, no teste para μ com σ conhecido a estatística de teste é da forma

$$z=rac{ar{x}-\mu_0}{\sigma/\sqrt{n}}\sim N(0,1)$$

Sabemos que se $X_1, \ldots, X_n \sim N(\mu, \sigma)$, no teste para μ com σ conhecido a estatística de teste é da forma

$$z=rac{ar{x}-\mu_0}{\sigma/\sqrt{n}}\sim N(0,1)$$

Sejam $X_1, \ldots, X_n \sim Bernoulli(p)$, embora os dados não tenham uma distribuição normal, pelo TCL temos que

$$z = rac{ar{x} - \mu_0}{\sigma/\sqrt{n}} \sim_{approx} N(0,1)$$

No caso de $X_1, \ldots, X_n \sim Bernoulli(p)$, temos que $\bar{x} = \bar{p}$ e $\mu_0 = p_0$.

No caso de $X_1, \ldots, X_n \sim Bernoulli(p)$, temos que $\bar{x} = \bar{p}$ e $\mu_0 = p_0$.

Sob H_0 : $p=p_0$, temos que $\sigma=p_0(1-p_0)$. Então, a estatística de teste é da forma

$$z = rac{ar{p} - p_0}{\sqrt{rac{p_0(1-p_0)}{n}}} \sim_{approx} extsf{N}(0,1)$$

No caso de $X_1, \ldots, X_n \sim Bernoulli(p)$, temos que $\bar{x} = \bar{p}$ e $\mu_0 = p_0$.

Sob H_0 : $p=p_0$, temos que $\sigma=p_0(1-p_0)$. Então, a estatística de teste é da forma

$$z = rac{ar{p} - p_0}{\sqrt{rac{p_0(1-p_0)}{n}}} \sim_{approx} \mathcal{N}(0,1)$$

Com isso, podemos tester as hipóteses:

- ▶ $H_0: p = p_0$ vs $H_1: p \neq p_0$,
- $H_0: p \le p_0$ vs $H_1: p > p_0$,
- ▶ $H_0: p \ge p_0$ vs $H_1: p < p_0$.

como usual.

Considere o seguinte teste H_0 : p=0.2 vs. H_1 : $p \neq 0.2$. Uma amostra de tamanho 400 produziu $\bar{p}=0.175$. **Rejeitamos** H_0 ou não?

Considere o seguinte teste H_0 : p=0.2 vs. H_1 : $p \neq 0.2$. Uma amostra de tamanho 400 produziu $\bar{p}=0.175$. **Rejeitamos** H_0 ou não?

Por padrão assumimos $\alpha = 0.05$

Considere o seguinte teste H_0 : p=0.2 vs. H_1 : $p\neq 0.2$. Uma amostra de tamanho 400 produziu $\bar{p}=0.175$. **Rejeitamos** H_0 ou não?

- Por padrão assumimos $\alpha = 0.05$
- Definos a estatística de teste

$$z = \frac{\bar{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}} = \frac{0.175 - 0.2}{\sqrt{\frac{0.2(1 - 0.2)}{400}}} = -1.25$$

Considere o seguinte teste H_0 : p=0.2 vs. H_1 : $p \neq 0.2$. Uma amostra de tamanho 400 produziu $\bar{p}=0.175$. **Rejeitamos** H_0 ou não?

- Por padrão assumimos $\alpha = 0.05$
- Definos a estatística de teste

$$z = \frac{\bar{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}} = \frac{0.175 - 0.2}{\sqrt{\frac{0.2(1 - 0.2)}{400}}} = -1.25$$

▶ Como H_0 : p=0.2 vs. H_1 : $p \neq 0.2$, rejeitamos H_0 se $|z|>z_{1-\alpha/2}$

Considere o seguinte teste H_0 : p=0.2 vs. H_1 : $p \neq 0.2$. Uma amostra de tamanho 400 produziu $\bar{p}=0.175$. **Rejeitamos** H_0 ou não?

- Por padrão assumimos $\alpha = 0.05$
- Definos a estatística de teste

$$z = \frac{\bar{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}} = \frac{0.175 - 0.2}{\sqrt{\frac{0.2(1 - 0.2)}{400}}} = -1.25$$

▶ Como H_0 : p=0.2 vs. H_1 : $p \neq 0.2$, rejeitamos H_0 se $|z|>z_{1-\alpha/2}$

Considere o seguinte teste H_0 : p=0.2 vs. H_1 : $p\neq 0.2$. Uma amostra de tamanho 400 produziu $\bar{p}=0.175$. **Rejeitamos** H_0 ou não?

- Por padrão assumimos $\alpha = 0.05$
- Definos a estatística de teste

$$z = \frac{\bar{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}} = \frac{0.175 - 0.2}{\sqrt{\frac{0.2(1 - 0.2)}{400}}} = -1.25$$

▶ Como H_0 : p=0.2 vs. H_1 : $p \neq 0.2$, rejeitamos H_0 se $|z|>z_{1-\alpha/2}$

Considere o seguinte teste H_0 : p=0.2 vs. H_1 : $p\neq 0.2$. Uma amostra de tamanho 400 produziu $\bar{p}=0.175$. **Rejeitamos** H_0 ou não?

- Por padrão assumimos $\alpha = 0.05$
- Definos a estatística de teste

$$z = \frac{\bar{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}} = \frac{0.175 - 0.2}{\sqrt{\frac{0.2(1 - 0.2)}{400}}} = -1.25$$

▶ Como H_0 : p=0.2 vs. H_1 : $p \neq 0.2$, rejeitamos H_0 se $|z|>z_{1-\alpha/2}$

alpha = 0.05
qnorm(1-alpha/2)

[1] 1.959964

|-1.25| = 1.25 > 1.959964 ? Não, então não rejeitamos H_0

Considere o seguinte teste $H_0: p \ge 0.75$ vs. $H_1: p < 0.75$. Uma amostra de tamanho 300 produziu $\bar{p} = 0.72$. Considerando um nível de significância de 1%, **rejeitamos** H_0 **ou não?**

Considere o seguinte teste $H_0: p \ge 0.75$ vs. $H_1: p < 0.75$. Uma amostra de tamanho 300 produziu $\bar{p} = 0.72$. Considerando um nível de significância de 1%, **rejeitamos** H_0 **ou não?**

 $\alpha = 0.01$

Considere o seguinte teste $H_0: p \geq 0.75$ vs. $H_1: p < 0.75$. Uma amostra de tamanho 300 produziu $\bar{p} = 0.72$. Considerando um nível de significância de 1%, **rejeitamos** H_0 **ou não?**

- $\alpha = 0.01$
- Definos a estatística de teste

$$z = \frac{\bar{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}} = \frac{0.72 - 0.75}{\sqrt{\frac{0.75(1 - 0.75)}{300}}} = -1.2$$

Considere o seguinte teste $H_0: p \ge 0.75$ vs. $H_1: p < 0.75$. Uma amostra de tamanho 300 produziu $\bar{p} = 0.72$. Considerando um nível de significância de 1%, **rejeitamos** H_0 **ou não?**

- $\alpha = 0.01$
- Definos a estatística de teste

$$z = \frac{\bar{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}} = \frac{0.72 - 0.75}{\sqrt{\frac{0.75(1 - 0.75)}{300}}} = -1.2$$

▶ Como $H_0: p \ge 0.75$ vs. $H_1: p < 0.75$, rejeitamos H_0 se $z < z_\alpha$

Considere o seguinte teste $H_0: p \ge 0.75$ vs. $H_1: p < 0.75$. Uma amostra de tamanho 300 produziu $\bar{p} = 0.72$. Considerando um nível de significância de 1%, **rejeitamos** H_0 **ou não?**

- $\alpha = 0.01$
- Definos a estatística de teste

$$z = \frac{\bar{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}} = \frac{0.72 - 0.75}{\sqrt{\frac{0.75(1 - 0.75)}{300}}} = -1.2$$

▶ Como $H_0: p \ge 0.75$ vs. $H_1: p < 0.75$, rejeitamos H_0 se $z < z_\alpha$

Considere o seguinte teste $H_0: p \geq 0.75$ vs. $H_1: p < 0.75$. Uma amostra de tamanho 300 produziu $\bar{p} = 0.72$. Considerando um nível de significância de 1%, **rejeitamos** H_0 **ou não?**

- $\alpha = 0.01$
- Definos a estatística de teste

$$z = \frac{\bar{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}} = \frac{0.72 - 0.75}{\sqrt{\frac{0.75(1 - 0.75)}{300}}} = -1.2$$

▶ Como $H_0: p \ge 0.75$ vs. $H_1: p < 0.75$, rejeitamos H_0 se $z < z_\alpha$

alpha = 0.01
qnorm(alpha)

Considere o seguinte teste $H_0: p \geq 0.75$ vs. $H_1: p < 0.75$. Uma amostra de tamanho 300 produziu $\bar{p} = 0.72$. Considerando um nível de significância de 1%, **rejeitamos** H_0 **ou não?**

- $\alpha = 0.01$
- Definos a estatística de teste

$$z = \frac{\bar{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}} = \frac{0.72 - 0.75}{\sqrt{\frac{0.75(1 - 0.75)}{300}}} = -1.2$$

▶ Como $H_0: p \ge 0.75$ vs. $H_1: p < 0.75$, rejeitamos H_0 se $z < z_\alpha$

alpha = 0.01
qnorm(alpha)

-1.2 < -2.326348 ? Não, então não rejeitamos H_0

lacktriangle Seja $\mu_{\scriptscriptstyle X}$ a média da população 1 e $\mu_{\scriptscriptstyle Y}$ a média da população 2

- lacktriangle Seja μ_{x} a média da população 1 e μ_{y} a média da população 2
- **E**stamos interessados em fazer inferência para a diferença $\mu_{x}-\mu_{y}$.

- lacktriangle Seja $\mu_{
 m x}$ a média da população 1 e $\mu_{
 m y}$ a média da população 2
- lacktriangle Estamos interessados em fazer inferência para a diferença $\mu_{\mathsf{x}}-\mu_{\mathsf{y}}.$
- ► As duas amostras são tomadas separada e independentemente de duas populações diferentes.

- lacktriangle Seja μ_{x} a média da população 1 e μ_{y} a média da população 2
- lacktriangle Estamos interessados em fazer inferência para a diferença $\mu_{\rm x}-\mu_{\rm y}.$
- ► As duas amostras são tomadas separada e independentemente de duas populações diferentes.
- ▶ Calcularemos Intervalos de Confiança e fazeremos testes de hipóteses para $\mu_{x} \mu_{y}$.

- lacktriangle Seja μ_{x} a média da população 1 e μ_{y} a média da população 2
- lacktriangle Estamos interessados em fazer inferência para a diferença $\mu_{\rm x}-\mu_{\rm y}.$
- ► As duas amostras são tomadas separada e independentemente de duas populações diferentes.
- ▶ Calcularemos Intervalos de Confiança e fazeremos testes de hipóteses para $\mu_{x} \mu_{y}$.

- lacktriangle Seja $\mu_{
 m x}$ a média da população 1 e $\mu_{
 m y}$ a média da população 2
- lacktriangle Estamos interessados em fazer inferência para a diferença $\mu_{\rm x}-\mu_{\rm y}.$
- ► As duas amostras são tomadas separada e independentemente de duas populações diferentes.
- ► Calcularemos Intervalos de Confiança e fazeremos testes de hipóteses para $\mu_{x} \mu_{y}$.

Como faremos isto?

Selecionamos uma amostra de tamanho n_1 da população 1 e calculamos \bar{x}

- lacktriangle Seja $\mu_{
 m x}$ a média da população 1 e $\mu_{
 m y}$ a média da população 2
- lacktriangle Estamos interessados em fazer inferência para a diferença $\mu_{\mathsf{x}}-\mu_{\mathsf{y}}.$
- ► As duas amostras são tomadas separada e independentemente de duas populações diferentes.
- ► Calcularemos Intervalos de Confiança e fazeremos testes de hipóteses para $\mu_{x} \mu_{y}$.

Como faremos isto?

- Selecionamos uma amostra de tamanho n_1 da população 1 e calculamos \bar{x}
- ightharpoonup Selecionamos uma amostra de tamanho n_2 da população 2 e calculamos \bar{y}

- lacktriangle Seja μ_{x} a média da população 1 e μ_{y} a média da população 2
- lacktriangle Estamos interessados em fazer inferência para a diferença $\mu_{\rm x}-\mu_{\rm y}.$
- ► As duas amostras são tomadas separada e independentemente de duas populações diferentes.
- ► Calcularemos Intervalos de Confiança e fazeremos testes de hipóteses para $\mu_x \mu_y$.

Como faremos isto?

- Selecionamos uma amostra de tamanho n_1 da população 1 e calculamos \bar{x}
- ightharpoonup Selecionamos uma amostra de tamanho n_2 da população 2 e calculamos \bar{y}
- lacktriangle Com isso, temos ar x ar y um estimador por ponto de $\mu_{\mathsf X} \mu_{\mathsf Y}$

▶ Sabemos que $\bar{x} \sim N(\mu_x, \sigma_{\bar{x}})$ e $\bar{y} \sim N(\mu_y, \sigma_{\bar{y}})$, então

$$ar{x} - ar{y} \sim N\Big(\mu_{x} - \mu_{y}, \sqrt{\sigma_{x}^{2}/n_{1} + \sigma_{y}^{2}/n_{2}}\Big)$$

▶ Sabemos que $\bar{x} \sim N(\mu_x, \sigma_{\bar{x}})$ e $\bar{y} \sim N(\mu_y, \sigma_{\bar{y}})$, então

$$ar{x} - ar{y} \sim N\Big(\mu_{x} - \mu_{y}, \sqrt{\sigma_{x}^{2}/n_{1} + \sigma_{y}^{2}/n_{2}}\Big)$$

Padronizando,

$$z = rac{(ar{x} - ar{y}) - (\mu_x - \mu_y)}{\sqrt{\sigma_x^2/n_1 + \sigma_y^2/n_2}} \sim N(0, 1)$$

▶ Sabemos que $\bar{x} \sim N(\mu_x, \sigma_{\bar{x}})$ e $\bar{y} \sim N(\mu_y, \sigma_{\bar{y}})$, então

$$ar{x} - ar{y} \sim N\Big(\mu_{x} - \mu_{y}, \sqrt{\sigma_{x}^{2}/n_{1} + \sigma_{y}^{2}/n_{2}}\Big)$$

Padronizando,

$$z = rac{(ar{x} - ar{y}) - (\mu_x - \mu_y)}{\sqrt{\sigma_x^2/n_1 + \sigma_y^2/n_2}} \sim N(0, 1)$$

▶ Sabemos que $\bar{x} \sim N(\mu_x, \sigma_{\bar{x}})$ e $\bar{y} \sim N(\mu_y, \sigma_{\bar{y}})$, então

$$ar{x} - ar{y} \sim N\Big(\mu_{x} - \mu_{y}, \sqrt{\sigma_{x}^{2}/n_{1} + \sigma_{y}^{2}/n_{2}}\Big)$$

Padronizando,

$$z = rac{(ar{x} - ar{y}) - (\mu_{\mathsf{x}} - \mu_{\mathsf{y}})}{\sqrt{\sigma_{\mathsf{x}}^2/n_1 + \sigma_{\mathsf{y}}^2/n_2}} \sim N(0, 1)$$

z nos ajudará tanto a construir intervalos de confiança quanto testes de hipóteses.

Se quisermos um intervalo de confiança $\delta=1-\alpha$ para $\mu_{\rm X}-\mu_{\rm Y}$ faremos $P(|Z|< k)=1-\alpha$

Se quisermos um intervalo de confiança $\delta=1-\alpha$ para $\mu_{\rm X}-\mu_{\rm Y}$ faremos $P(|Z|< k)=1-\alpha$

Se quisermos um intervalo de confiança $\delta=1-\alpha$ para $\mu_{\rm X}-\mu_{\rm Y}$ faremos $P(|Z|< k)=1-\alpha$

$$-z_{1-\alpha/2} \leq \frac{\left(\bar{x} - \bar{y}\right) - \left(\mu_x - \mu_y\right)}{\sqrt{\sigma_x^2/n_1 + \sigma_y^2/n_2}} \leq z_{1-\alpha/2}$$

$$-z_{1-\alpha/2} \leq \frac{(\bar{x}-\bar{y})-(\mu_{x}-\mu_{y})}{\sqrt{\sigma_{x}^{2}/n_{1}+\sigma_{y}^{2}/n_{2}}} \leq z_{1-\alpha/2}$$

$$-z_{1-\alpha/2} \le \frac{(\bar{x} - \bar{y}) - (\mu_x - \mu_y)}{\sqrt{\sigma_x^2/n_1 + \sigma_y^2/n_2}} \le z_{1-\alpha/2}$$

$$(\bar{x}-\bar{y})-z_{1-\alpha/2}\sqrt{\sigma_x^2/n_1+\sigma_y^2/n_2} \leq \mu_x-\mu_y \leq (\bar{x}-\bar{y})+z_{1-\alpha/2}\sqrt{\sigma_x^2/n_1+\sigma_y^2/n_2}$$

$$-z_{1-\alpha/2} \leq \frac{\left(\bar{x} - \bar{y}\right) - \left(\mu_x - \mu_y\right)}{\sqrt{\sigma_x^2/n_1 + \sigma_y^2/n_2}} \leq z_{1-\alpha/2}$$

$$(\bar{x}-\bar{y})-z_{1-\alpha/2}\sqrt{\sigma_x^2/n_1+\sigma_y^2/n_2} \leq \mu_x-\mu_y \leq (\bar{x}-\bar{y})+z_{1-\alpha/2}\sqrt{\sigma_x^2/n_1+\sigma_y^2/n_2}$$

Então, o intervalo de confiança $\delta=1-lpha$ para $\mu_{\mathsf{x}}-\mu_{\mathsf{y}}$ é da forma

$$\langle (ar{x} - ar{y}) \pm \underbrace{z_{1-lpha/2} \sqrt{\sigma_{\mathsf{x}}^2/n_1 + \sigma_{\mathsf{y}}^2/n_2}}_{\mathsf{Margem \ de \ erro}}
angle$$

E se quisermos um teste para a diferença de médias?

E se quisermos um teste para a diferença de médias? Sejam as hipóteses:

▶ $H_0: \mu_x - \mu_y = D_0$ vs. $H_1: \mu_x - \mu_y \neq D_0$, rejeitamos H_0 se $|z| > k = z_{1-\alpha/2}$ (equivalentemente se z > k ou z < -k);

E se quisermos um teste para a diferença de médias? Sejam as hipóteses:

- ▶ $H_0: \mu_x \mu_y = D_0$ vs. $H_1: \mu_x \mu_y \neq D_0$, rejeitamos H_0 se $|z| > k = z_{1-\alpha/2}$ (equivalentemente se z > k ou z < -k);
- ► Se $H_0: \mu_x \mu_y \le D_0$ vs $H_1: \mu_x \mu_y > D_0$, rejeitamos H_0 se $z > k_1 = z_{1-\alpha}$;

E se quisermos um teste para a diferença de médias? Sejam as hipóteses:

- ▶ $H_0: \mu_x \mu_y = D_0$ vs. $H_1: \mu_x \mu_y \neq D_0$, rejeitamos H_0 se $|z| > k = z_{1-\alpha/2}$ (equivalentemente se z > k ou z < -k);
- ► Se $H_0: \mu_x \mu_y \le D_0$ vs $H_1: \mu_x \mu_y > D_0$, rejeitamos H_0 se $z > k_1 = z_{1-\alpha}$;
- ▶ Se $H_0: \mu_x \mu_y \ge D_0$ vs $H_1: \mu_x \mu_y < D_0$, rejeitamos H_0 se $z < k_2 = z_\alpha$.

E se quisermos um teste para a diferença de médias? Sejam as hipóteses:

- ▶ $H_0: \mu_x \mu_y = D_0$ vs. $H_1: \mu_x \mu_y \neq D_0$, rejeitamos H_0 se $|z| > k = z_{1-\alpha/2}$ (equivalentemente se z > k ou z < -k);
- ► Se $H_0: \mu_x \mu_y \le D_0$ vs $H_1: \mu_x \mu_y > D_0$, rejeitamos H_0 se $z > k_1 = z_{1-\alpha}$;
- ▶ Se $H_0: \mu_x \mu_y \ge D_0$ vs $H_1: \mu_x \mu_y < D_0$, rejeitamos H_0 se $z < k_2 = z_\alpha$.

E se quisermos um teste para a diferença de médias? Sejam as hipóteses:

- ▶ $H_0: \mu_x \mu_y = D_0$ vs. $H_1: \mu_x \mu_y \neq D_0$, rejeitamos H_0 se $|z| > k = z_{1-\alpha/2}$ (equivalentemente se z > k ou z < -k);
- ▶ Se $H_0: \mu_x \mu_y \le D_0$ vs $H_1: \mu_x \mu_y > D_0$, rejeitamos H_0 se $z > k_1 = z_{1-\alpha}$;
- ▶ Se $H_0: \mu_x \mu_y \ge D_0$ vs $H_1: \mu_x \mu_y < D_0$, rejeitamos H_0 se $z < k_2 = z_\alpha$.

Em que

$$z = \frac{(\bar{x} - \bar{y}) - D_0}{\sqrt{\sigma_x^2/n_1 + \sigma_y^2/n_2}}$$

Considere os seguintes resultados:

- ▶ **Amostra 1**: $n_1 = 50$, $\bar{x} = 13.6$, $\sigma_1 = 2.2$
- ▶ Amostra 2: $n_2 = 35$, $\bar{y} = 11.6$, $\sigma_1 = 3.0$
- a. Qual é a estimação por ponto de $\mu_x \mu_y$?
- b. Calcule um IC 90% para $\mu_x \mu_y$
- c. Teste $H_0: \mu_x = \mu_y$ vs $H_1: \mu_x \neq \mu_y$ (considera $\alpha = 0.10$)

Considere os seguintes resultados:

- ▶ **Amostra 1**: $n_1 = 50$, $\bar{x} = 13.6$, $\sigma_1 = 2.2$
- ▶ Amostra 2: $n_2 = 35$, $\bar{y} = 11.6$, $\sigma_1 = 3.0$
- a. Qual é a estimação por ponto de $\mu_x \mu_y$?
- b. Calcule um IC 90% para $\mu_x \mu_y$
- c. Teste $H_0: \mu_x = \mu_y$ vs $H_1: \mu_x \neq \mu_y$ (considera $\alpha = 0.10$)

Solução:

Considere os seguintes resultados:

- ▶ **Amostra 1**: $n_1 = 50$, $\bar{x} = 13.6$, $\sigma_1 = 2.2$
- ▶ Amostra 2: $n_2 = 35$, $\bar{y} = 11.6$, $\sigma_1 = 3.0$
- a. Qual é a estimação por ponto de $\mu_x \mu_y$?
- b. Calcule um IC 90% para $\mu_x \mu_y$
- c. Teste $H_0: \mu_x = \mu_y$ vs $H_1: \mu_x \neq \mu_y$ (considera $\alpha = 0.10$)

Solução:

a. A estimação por ponto de $\mu_{\text{x}}-\mu_{\text{y}}$ é $ar{x}-ar{y}=13.6-11.6=2$

Considere os seguintes resultados:

- ▶ Amostra 1: $n_1 = 50$, $\bar{x} = 13.6$, $\sigma_1 = 2.2$
- ▶ Amostra 2: $n_2 = 35$, $\bar{y} = 11.6$, $\sigma_1 = 3.0$
- a. Qual é a estimação por ponto de $\mu_x \mu_y$?
- b. Calcule um IC 90% para $\mu_x \mu_y$
- c. Teste $H_0: \mu_x = \mu_y$ vs $H_1: \mu_x \neq \mu_y$ (considera $\alpha = 0.10$)

Solução:

- a. A estimação por ponto de $\mu_{\text{x}}-\mu_{\text{y}}$ é $ar{x}-ar{y}=13.6-11.6=2$
- b. IC 90%, istp implica que $\alpha = 0.10$,

$$\langle \underbrace{(\bar{x} - \bar{y})}_{2} \pm z_{1-\alpha/2} \underbrace{\sqrt{\sigma_{x}^{2}/n_{1} + \sigma_{y}^{2}/n_{2}}}_{\sqrt{2.2^{2}/50 + 3^{2}/35} = 0.594931} \rangle$$

b. Calcularemos $z_{1-lpha/2}$, e como lpha=0.10

```
alpha = 0.10
qnorm(1-alpha/2)
```

[1] 1.644854

b. Calcularemos $z_{1-\alpha/2}$, e como $\alpha=0.10$

```
alpha = 0.10
qnorm(1-alpha/2)
```

[1] 1.644854

$$\langle\underbrace{\left(\bar{\mathbf{x}}-\bar{\mathbf{y}}\right)}_{2}\pm\underbrace{\mathbf{z}_{1-\alpha/2}}_{1.64}\underbrace{\sqrt{\sigma_{\mathbf{x}}^{2}/n_{1}+\sigma_{\mathbf{y}}^{2}/n_{2}}}_{0.594931}\rangle=\langle1.024313;2.975687\rangle$$

b. Calcularemos $z_{1-\alpha/2}$, e como $\alpha = 0.10$

[1] 1.644854

$$\langle \underbrace{\left(\bar{x} - \bar{y}\right)}_{2} \pm \underbrace{z_{1-\alpha/2}}_{1.64} \underbrace{\sqrt{\sigma_{x}^{2}/n_{1} + \sigma_{y}^{2}/n_{2}}}_{0.594931} \rangle = \langle 1.024313; 2.975687 \rangle$$

c. Queremos testar $H_0: \mu_x = \mu_y$ vs $H_1: \mu_x \neq \mu_y$, então

$$z = \frac{(\bar{x} - \bar{y}) - D_0}{\sqrt{\sigma_x^2/n_1 + \sigma_y^2/n_2}} = \frac{2 - 0}{0.594931} = 3.361734$$

z = 3.361734

- z = 3.361734
- ► Como $H_0: \mu_x = \mu_y$ vs $H_1: \mu_x \neq \mu_y$, rejeitamos H_0 se $|z| > z_{1-\alpha/2}$

- z = 3.361734
- ▶ Como $H_0: \mu_x = \mu_y$ vs $H_1: \mu_x \neq \mu_y$, rejeitamos H_0 se $|z| > z_{1-\alpha/2}$
- $ightharpoonup z_{1-\alpha/2} = 1.6448536$ (já calculamos isto antes para o IC)

- z = 3.361734
- ▶ Como $H_0: \mu_x = \mu_y$ vs $H_1: \mu_x \neq \mu_y$, rejeitamos H_0 se $|z| > z_{1-\alpha/2}$
- $ightharpoonup z_{1-lpha/2}=1.6448536$ (já calculamos isto antes para o IC)
- ▶ 3.361734 > 1.6448536 ? Sim, então rejeitamos H_0 e concluimos que $\mu_{\rm X} \neq \mu_{\rm Y}$

Considere as seguintes hipóteses $H_0: \mu_x - \mu_y \leq 0$ vs. $H_1: \mu_x - \mu_y > 0$ e considere os seguintes resultados:

- ▶ Amostra 1: $n_1 = 40$, $\bar{x} = 25.2$, $\sigma_1 = 5.2$
- Amostra 2: $n_2 = 50$, $\bar{y} = 22.8$, $\sigma_1 = 6.0$

Rejeitamos H_0 ? (considere $\alpha = 0.01$)

Considere as seguintes hipóteses $H_0: \mu_x - \mu_y \leq 0$ vs. $H_1: \mu_x - \mu_y > 0$ e considere os seguintes resultados:

- ▶ Amostra 1: $n_1 = 40$, $\bar{x} = 25.2$, $\sigma_1 = 5.2$
- ▶ **Amostra 2**: $n_2 = 50$, $\bar{y} = 22.8$, $\sigma_1 = 6.0$

Rejeitamos H_0 ? (considere $\alpha = 0.01$)

Solução

Estatística de teste:

$$z = \frac{(\bar{x} - \bar{y}) - D_0}{\sqrt{\sigma_x^2/n_1 + \sigma_y^2/n_2}} = \frac{(25.2 - 22.8) - 0}{\sqrt{5.2^2/40 + 6^2/50}} = \frac{2.4}{1.181524} = 2.031275$$

z = 2.031275

- z = 2.031275
- ► Como $H_0: \mu_x \mu_y \le 0$ vs. $H_1: \mu_x \mu_y > 0$ rejeitamos H_0 se $z > z_{1-\alpha}$

- z = 2.031275
- ► Como $H_0: \mu_x \mu_y \le 0$ vs. $H_1: \mu_x \mu_y > 0$ rejeitamos H_0 se $z > z_{1-\alpha}$
- $\alpha = 0.01$

- z = 2.031275
- ► Como $H_0: \mu_x \mu_y \le 0$ vs. $H_1: \mu_x \mu_y > 0$ rejeitamos H_0 se $z > z_{1-\alpha}$
- $\alpha = 0.01$

- z = 2.031275
- ► Como $H_0: \mu_x \mu_y \le 0$ vs. $H_1: \mu_x \mu_y > 0$ rejeitamos H_0 se $z > z_{1-\alpha}$
- $\sim \alpha = 0.01$

```
alpha = 0.01
qnorm(1-alpha)
```

```
## [1] 2.326348
```

> z = 2.031275 > 2.3263479 ? Não, então não rejeitamos H_0 (nível de significância $\alpha = 0.01$).

Duas populações: σ_x e σ_y desconhecidos e diferentes.

▶ O que acontece quando não conhecemos σ_x nem σ_y ?

Duas populações: σ_x e σ_v desconhecidos e diferentes.

- ▶ O que acontece quando não conhecemos σ_x nem σ_y ?
- \blacktriangleright Devemos estimar esses valores pela variância amostral, assim teremos $\hat{\sigma}_{\scriptscriptstyle X}$ e $\hat{\sigma}_{\scriptscriptstyle V}$

Duas populações: σ_x e σ_y desconhecidos e diferentes.

- ▶ O que acontece quando não conhecemos σ_x nem σ_y ?
- ▶ Devemos estimar esses valores pela variância amostral, assim teremos $\hat{\sigma}_{\scriptscriptstyle X}$ e $\hat{\sigma}_{\scriptscriptstyle Y}$
- ▶ Substituir σ_x e σ_y por $\hat{\sigma}_x$ e $\hat{\sigma}_y$ terá um custo.

- ▶ O que acontece quando não conhecemos σ_x nem σ_y ?
- ▶ Devemos estimar esses valores pela variância amostral, assim teremos $\hat{\sigma}_{\scriptscriptstyle X}$ e $\hat{\sigma}_{\scriptscriptstyle Y}$
- ▶ Substituir σ_x e σ_y por $\hat{\sigma}_x$ e $\hat{\sigma}_y$ terá um custo.
- ▶ O custo é não podermos mais utilizar a distribuição normal, no caso utilizaremos uma distribuição *t*

- ▶ O que acontece quando não conhecemos σ_x nem σ_y ?
- ▶ Devemos estimar esses valores pela variância amostral, assim teremos $\hat{\sigma}_{\scriptscriptstyle X}$ e $\hat{\sigma}_{\scriptscriptstyle Y}$
- ▶ Substituir σ_x e σ_y por $\hat{\sigma}_x$ e $\hat{\sigma}_y$ terá um custo.
- ▶ O custo é não podermos mais utilizar a distribuição normal, no caso utilizaremos uma distribuição *t*

- ▶ O que acontece quando não conhecemos σ_x nem σ_y ?
- ▶ Devemos estimar esses valores pela variância amostral, assim teremos $\hat{\sigma}_{\scriptscriptstyle X}$ e $\hat{\sigma}_{\scriptscriptstyle Y}$
- ▶ Substituir σ_x e σ_y por $\hat{\sigma}_x$ e $\hat{\sigma}_y$ terá um custo.
- ▶ O custo é não podermos mais utilizar a distribuição normal, no caso utilizaremos uma distribuição *t*

Intervalo de confiança

O intervalo de confiança $\delta=1-lpha$ para $\mu_{\mathsf{x}}-\mu_{\mathsf{y}}$ é da forma

$$\langle (\bar{x} - \bar{y}) \pm \underbrace{t_{1-\alpha/2,gl}\sqrt{\hat{\sigma}_x^2/n_1 + \hat{\sigma}_y^2/n_2}}_{\mathsf{Margem \ de \ erro}}
angle$$

Teste de Hipóteses:

$$t = rac{(ar{x} - ar{y}) - D_0}{\sqrt{\hat{\sigma}_x^2/n_1 + \hat{\sigma}_y^2/n_2}}$$

▶ $H_0: \mu_x - \mu_y = D_0$ vs. $H_1: \mu_x - \mu_y \neq D_0$, rejeitamos H_0 se $|t| > k = t_{1-\alpha/2,gl}$ (equivalentemente se t > k ou t < -k);

$$t = rac{(ar{x} - ar{y}) - D_0}{\sqrt{\hat{\sigma}_x^2/n_1 + \hat{\sigma}_y^2/n_2}}$$

- ▶ $H_0: \mu_x \mu_y = D_0$ vs. $H_1: \mu_x \mu_y \neq D_0$, rejeitamos H_0 se $|t| > k = t_{1-\alpha/2,gl}$ (equivalentemente se t > k ou t < -k);
- ► Se $H_0: \mu_x \mu_y \le D_0$ vs $H_1: \mu_x \mu_y > D_0$, rejeitamos H_0 se $t > k_1 = t_{1-\alpha,gl}$;

$$t = \frac{(\bar{x} - \bar{y}) - D_0}{\sqrt{\hat{\sigma}_x^2/n_1 + \hat{\sigma}_y^2/n_2}}$$

- ▶ $H_0: \mu_x \mu_y = D_0$ vs. $H_1: \mu_x \mu_y \neq D_0$, rejeitamos H_0 se $|t| > k = t_{1-\alpha/2,gl}$ (equivalentemente se t > k ou t < -k);
- ► Se $H_0: \mu_x \mu_y \le D_0$ vs $H_1: \mu_x \mu_y > D_0$, rejeitamos H_0 se $t > k_1 = t_{1-\alpha,gl}$;
- ▶ Se $H_0: \mu_x \mu_y \ge D_0$ vs $H_1: \mu_x \mu_y < D_0$, rejeitamos H_0 se $t < k_2 = t_{\alpha,gl}$.

$$t = \frac{(\bar{x} - \bar{y}) - D_0}{\sqrt{\hat{\sigma}_x^2/n_1 + \hat{\sigma}_y^2/n_2}}$$

- ▶ $H_0: \mu_x \mu_y = D_0$ vs. $H_1: \mu_x \mu_y \neq D_0$, rejeitamos H_0 se $|t| > k = t_{1-\alpha/2,gl}$ (equivalentemente se t > k ou t < -k);
- ► Se $H_0: \mu_x \mu_y \le D_0$ vs $H_1: \mu_x \mu_y > D_0$, rejeitamos H_0 se $t > k_1 = t_{1-\alpha,gl}$;
- ▶ Se $H_0: \mu_x \mu_y \ge D_0$ vs $H_1: \mu_x \mu_y < D_0$, rejeitamos H_0 se $t < k_2 = t_{\alpha,gl}$.

Teste de Hipóteses:

$$t = rac{(ar{x} - ar{y}) - D_0}{\sqrt{\hat{\sigma}_x^2/n_1 + \hat{\sigma}_y^2/n_2}}$$

- ▶ $H_0: \mu_x \mu_y = D_0$ vs. $H_1: \mu_x \mu_y \neq D_0$, rejeitamos H_0 se $|t| > k = t_{1-\alpha/2,gl}$ (equivalentemente se t > k ou t < -k);
- ► Se $H_0: \mu_x \mu_y \le D_0$ vs $H_1: \mu_x \mu_y > D_0$, rejeitamos H_0 se $t > k_1 = t_{1-\alpha,gl}$;
- ▶ Se $H_0: \mu_x \mu_y \ge D_0$ vs $H_1: \mu_x \mu_y < D_0$, rejeitamos H_0 se $t < k_2 = t_{\alpha,gl}$.

Quem é gl?

$$gl = \frac{\left(\frac{\hat{\sigma}_{x}^{2}}{n_{1}} + \frac{\hat{\sigma}_{y}^{2}}{n_{2}}\right)^{2}}{\frac{1}{n_{1} - 1}\left(\frac{\hat{\sigma}_{x}^{2}}{n_{1}}\right)^{2} + \frac{1}{n_{2} - 1}\left(\frac{\hat{\sigma}_{y}^{2}}{n_{2}}\right)^{2}}$$

▶ O procedimento descrito anteriormente é valido para o caso das variâncias desconhecidas serem diferentes.

- O procedimento descrito anteriormente é valido para o caso das variâncias desconhecidas serem diferentes.
- Quando as variâncias desconhecidas são iguais, utilizamos outra estatística de teste dada por

$$t = rac{(ar{x} - ar{y}) - D_0}{s_p \sqrt{rac{1}{n_1} + rac{1}{n_2}}}, \quad ext{em que } s_p^2 = rac{(n_1 - 1)\hat{\sigma}_x^2 + (n_2 - 1)\hat{\sigma}_y^2}{n_1 + n_2 - 2}$$

- O procedimento descrito anteriormente é valido para o caso das variâncias desconhecidas serem diferentes.
- Quando as variâncias desconhecidas são iguais, utilizamos outra estatística de teste dada por

$$t = rac{(ar{x} - ar{y}) - D_0}{s_p \sqrt{rac{1}{n_1} + rac{1}{n_2}}}, \quad ext{em que } s_p^2 = rac{(n_1 - 1)\hat{\sigma}_x^2 + (n_2 - 1)\hat{\sigma}_y^2}{n_1 + n_2 - 2}$$

▶ Na prática precisamos fazer um teste de hipóteses para verificar se as variâncias são iguais ou diferentes.

- O procedimento descrito anteriormente é valido para o caso das variâncias desconhecidas serem diferentes.
- Quando as variâncias desconhecidas são iguais, utilizamos outra estatística de teste dada por

$$t = rac{(ar{x} - ar{y}) - D_0}{s_p \sqrt{rac{1}{n_1} + rac{1}{n_2}}}, \quad ext{em que } s_p^2 = rac{(n_1 - 1)\hat{\sigma}_x^2 + (n_2 - 1)\hat{\sigma}_y^2}{n_1 + n_2 - 2}$$

- ► Na prática precisamos fazer um teste de hipóteses para verificar se as variâncias são iguais ou diferentes.
- Por enquanto essa informação será dada e não precisamos nos preocupar com isso.

Considere o seguinte teste $H_0: \mu_x - \mu_y = 0$ vs. $H_1: \mu_x - \mu_y \neq 0$. Considere as seguintes informações:

- ▶ **Amostra 1**: $n_1 = 35$, $\bar{x} = 13.6$ e $\hat{\sigma} = 5.2$
- ▶ **Amostra 1**: $n_2 = 40$, $\bar{x} = 10.1$ e $\hat{\sigma} = 8.5$

Rejeitamos ou não H_0 ? (considere $\alpha=0.05$ e que $\sigma_{\mathsf{x}} \neq \sigma_{\mathsf{y}}$)

Considere o seguinte teste $H_0: \mu_x - \mu_y = 0$ vs. $H_1: \mu_x - \mu_y \neq 0$. Considere as seguintes informações:

- ▶ **Amostra 1**: $n_1 = 35$, $\bar{x} = 13.6$ e $\hat{\sigma} = 5.2$
- ▶ **Amostra 1**: $n_2 = 40$, $\bar{x} = 10.1$ e $\hat{\sigma} = 8.5$

Rejeitamos ou não H_0 ? (considere $\alpha=0.05$ e que $\sigma_x \neq \sigma_y$)

Solução

Estatística de teste:

$$t = \frac{(\bar{x} - \bar{y}) - D_0}{\sqrt{\hat{\sigma}_x^2/n_1 + \hat{\sigma}_y^2/n_2}} = \frac{(13.6 - 10.1) - 0}{\sqrt{5.2^2/35 + 8.5^2/40}} = \frac{3.5}{1.605871} = 2.179503$$

t = 2.179503

- t = 2.179503
- ► Como estamos testando $H_0: \mu_x \mu_y = 0$ vs. $H_1: \mu_x \mu_y \neq 0$, rejeitamos H_0 se $|t| > k = t_{1-\alpha/2,gl}$

- t = 2.179503
- ► Como estamos testando $H_0: \mu_x \mu_y = 0$ vs. $H_1: \mu_x \mu_y \neq 0$, rejeitamos H_0 se $|t| > k = t_{1-\alpha/2,gl}$

$$gI = \frac{\left(\frac{\hat{\sigma}_{x}^{2}}{n_{1}} + \frac{\hat{\sigma}_{y}^{2}}{n_{2}}\right)^{2}}{\frac{1}{n_{1} - 1}\left(\frac{\hat{\sigma}_{x}^{2}}{n_{1}}\right)^{2} + \frac{1}{n_{2} - 1}\left(\frac{\hat{\sigma}_{y}^{2}}{n_{2}}\right)^{2}} = \underbrace{\frac{\left(\frac{5.2^{2}}{35} + \frac{8.5^{2}}{40}\right)^{2}}{\frac{1}{35 - 1}\left(\frac{5.2^{2}}{35}\right)^{2} + \frac{1}{40 - 1}\left(\frac{8.5^{2}}{40}\right)^{2}}_{65.70829}}$$

t = 2.179503, gl = 65.70829

```
alpha = 0.05
qt(1-alpha/2,65.70829)
```

[1] 1.99673

```
▶ t = 2.179503, gl = 65.70829

▶ Para \alpha = 0.05

alpha = 0.05

qt(1-alpha/2,65.70829)

## [1] 1.99673
```

- t = 2.179503, gl = 65.70829
- Para $\alpha = 0.05$

```
alpha = 0.05
qt(1-alpha/2,65.70829)
```

```
## [1] 1.99673
```

ightharpoonup 2.179503 > 1.9967299 **?** Sim, então rejeitamos H_0

- t = 2.179503, gl = 65.70829
- Para $\alpha = 0.05$

```
alpha = 0.05
qt(1-alpha/2,65.70829)
```

```
## [1] 1.99673
```

ightharpoonup 2.179503 > 1.9967299 **?** Sim, então rejeitamos H_0

- t = 2.179503, gl = 65.70829
- Para $\alpha = 0.05$

```
alpha = 0.05
qt(1-alpha/2,65.70829)
```

```
## [1] 1.99673
```

ightharpoonup 2.179503 > 1.9967299 **?** Sim, então rejeitamos H_0

Antigamente, as pessoas arredondavan gl para baixo e assim poder olhar nas tabelas da distribuição T (que só tinha os valores para graus de liberade inteiros). Hoje em dia não precisamos mais disso.

Resolveremos o mesmo exercícios mas **assumindo** que $\sigma_x = \sigma_y$:

Resolveremos o mesmo exercícios mas **assumindo** que $\sigma_x = \sigma_y$:

- ▶ **Amostra 1**: $n_1 = 35$, $\bar{x} = 13.6$ e $\hat{\sigma} = 5.2$
- ▶ **Amostra 1**: $n_2 = 40$, $\bar{x} = 10.1$ e $\hat{\sigma} = 8.5$

Resolveremos o mesmo exercícios mas **assumindo** que $\sigma_x = \sigma_y$:

- ▶ **Amostra 1**: $n_1 = 35$, $\bar{x} = 13.6$ e $\hat{\sigma} = 5.2$
- ▶ **Amostra 1**: $n_2 = 40$, $\bar{x} = 10.1$ e $\hat{\sigma} = 8.5$

$$s_p^2 = \frac{(n_1 - 1)\hat{\sigma}_x^2 + (n_2 - 1)\hat{\sigma}_y^2}{n_1 + n_2 - 2} = \frac{(35 - 1) \times 5.2^2 + (40 - 1) \times 8.5^2}{35 + 40 - 2} = 51.19329$$

Então

$$t = \frac{(\bar{x} - \bar{y}) - D_0}{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} = \frac{13.6 - 10.1}{\sqrt{51.19329} \sqrt{\frac{1}{35} + \frac{1}{40}}} = 2.113464$$

Resolveremos o mesmo exercícios mas **assumindo** que $\sigma_x = \sigma_y$:

- ▶ **Amostra 1**: $n_1 = 35$, $\bar{x} = 13.6$ e $\hat{\sigma} = 5.2$
- ▶ **Amostra 1**: $n_2 = 40$, $\bar{x} = 10.1$ e $\hat{\sigma} = 8.5$

$$s_p^2 = \frac{(n_1 - 1)\hat{\sigma}_x^2 + (n_2 - 1)\hat{\sigma}_y^2}{n_1 + n_2 - 2} = \frac{(35 - 1) \times 5.2^2 + (40 - 1) \times 8.5^2}{35 + 40 - 2} = 51.19329$$

Então

$$t = \frac{(\bar{x} - \bar{y}) - D_0}{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} = \frac{13.6 - 10.1}{\sqrt{51.19329} \sqrt{\frac{1}{35} + \frac{1}{40}}} = 2.113464$$

Como
$$H_0: \mu_x - \mu_y = 0$$
 vs. $H_1: \mu_x - \mu_y \neq 0$, rejeitamos H_0 se $|t| > k = t_{1-\alpha/2, n_1+n_2-2} = 1.9929971$

► Até agora temos trabalhado com inferência para a diferença de médias quando as duas populações são distintas (ou independentes);

- Até agora temos trabalhado com inferência para a diferença de médias quando as duas populações são distintas (ou independentes);
- ► Em ocasiões, precisamos fazer inferência para a diferená de médias quando as amostras são relacionadas.

- Até agora temos trabalhado com inferência para a diferença de médias quando as duas populações são distintas (ou independentes);
- ► Em ocasiões, precisamos fazer inferência para a diferená de médias quando as amostras são relacionadas.
- ► Exemplo: um mesmo grupo de funcionários antes e depois de um treinamento, um mesmo grupo de pacientes antes e depois de um medicamento, opinião de um memso numero de pessoas antes de depois um anuncio publicitário, etc.

- ► Até agora temos trabalhado com inferência para a diferença de médias quando as duas populações são distintas (ou independentes);
- ► Em ocasiões, precisamos fazer inferência para a diferená de médias quando as amostras são relacionadas.
- ► Exemplo: um mesmo grupo de funcionários antes e depois de um treinamento, um mesmo grupo de pacientes antes e depois de um medicamento, opinião de um memso numero de pessoas antes de depois um anuncio publicitário, etc.
- Nestes casos, a estatística de teste é dada por

$$t = rac{ar{d} - \mu_0}{\hat{\sigma}_d / \sqrt{n}} \sim t_{n-1},$$

com $d_i = x_i - y_i$, \bar{d} e $\hat{\sigma}_d$ são a média e variância amostral de d_1, \ldots, d_n .

$$t=rac{ar{d}-\mu_0}{\hat{\sigma}_d/\sqrt{n}}\sim t_{n-1},$$

lacksquare $H_0: \mu_d = \mu_0$ vs. $H_1: \mu_d
eq \mu_0$, rejeitamos H_0 se $|\mathsf{t}| > t_{1-lpha/2,n-1}$

$$t=rac{ar{d}-\mu_0}{\hat{\sigma}_d/\sqrt{n}}\sim t_{n-1},$$

- ▶ $H_0: \mu_d = \mu_0$ vs. $H_1: \mu_d \neq \mu_0$, rejeitamos H_0 se $|\mathsf{t}| > t_{1-\alpha/2,n-1}$ ▶ $H_0: \mu_d \leq \mu_0$ vs. $H_1: \mu_d > \mu_0$, rejeitamos H_0 se $\mathsf{t} > t_{1-\alpha,n-1}$

$$t=rac{ar{d}-\mu_0}{\hat{\sigma}_d/\sqrt{n}}\sim t_{n-1},$$

- lacksquare $H_0: \mu_d = \mu_0$ vs. $H_1: \mu_d \neq \mu_0$, rejeitamos H_0 se $|\mathsf{t}| > t_{1-\alpha/2,n-1}$
- lacksquare $H_0: \mu_d \leq \mu_0$ vs. $H_1: \mu_d > \mu_0$, rejeitamos H_0 se t $> t_{1-lpha,n-1}$
- $ightharpoonup H_0: \mu_d \geq \mu_0$ vs. $H_1: \mu_d < \mu_0$, rejeitamos H_0 se t $< t_{\alpha,n-1}$

Considere o seguinte teste de hipóteses: $H_0: \mu_d \leq 0$ vs. $H_1: \mu_d > 0$. Os dados a seguir são amostras relacionadas.

Elemento	antes	depois
1	21	20
2	28	26
3	18	18
4	20	20
5	26	24

Rejitamos H_0 ou não? (considere $\alpha = 0.05$)

Elemento	antes	depois	di
1	21	20	1
2	28	26	2
3	18	18	0
4	20	20	0
5	26	24	2

antes	depois	di
21	20	1
28	26	2
18	18	0
20	20	0
26	24	2
	21 28 18 20	21 20 28 26 18 18 20 20

$$lacksquare$$
 Então $n=5$ $ar{d}=1$ e $\hat{\sigma}_d=1$

Elemento	antes	depois	di
1	21	20	1
2	28	26	2
3	18	18	0
4	20	20	0
5	26	24	2

- ightharpoonup Então n=5 $\bar{d}=1$ e $\hat{\sigma}_d=1$
- Estatística de teste

$$t = \frac{\bar{d} - \mu_0}{\hat{\sigma}_d / \sqrt{n}} = \frac{1}{1 / \sqrt{5}} = 2.236068$$

t = 2.236068

```
alpha = 0.05; n = 5
qt(1-alpha, n-1)
## [1] 2.131847
```

▶ t = 2.236068▶ Com $H_0: \mu_d \le 0$ vs. $H_1: \mu_d > 0$, rejeitamos H_0 se t $> t_{1-\alpha,n-1}$ alpha = 0.05; n = 5 qt(1-alpha, n-1)

- t = 2.236068
- ▶ Com $H_0: \mu_d \leq 0$ vs. $H_1: \mu_d > 0$, rejeitamos H_0 se t $> t_{1-\alpha,n-1}$

```
alpha = 0.05; n = 5
qt(1-alpha, n-1)
```

[1] 2.131847

 \blacktriangleright 2.236068 > 2.1318468 **?** Sim, então rejeitamos H_0 e concluimos que $\mu_d > 0$

- t = 2.236068
- ▶ Com $H_0: \mu_d \leq 0$ vs. $H_1: \mu_d > 0$, rejeitamos H_0 se t $> t_{1-\alpha,n-1}$

```
alpha = 0.05; n = 5

qt(1-alpha, n-1)
```

[1] 2.131847

> 2.236068 > 2.1318468 **?** Sim, então rejeitamos H_0 e concluimos que $\mu_d > 0$

Dica

Em alguns casos temos visto que para fazer inferência precisamos da distribuição t.

- t = 2.236068
- ▶ Com $H_0: \mu_d \leq 0$ vs. $H_1: \mu_d > 0$, rejeitamos H_0 se t $> t_{1-\alpha,n-1}$

```
alpha = 0.05; n = 5

qt(1-alpha, n-1)
```

[1] 2.131847

> 2.236068 > 2.1318468 **?** Sim, então rejeitamos H_0 e concluimos que $\mu_d > 0$

- Em alguns casos temos visto que para fazer inferência precisamos da distribuição t.
- ▶ Quando o tamanho da amostra for grande, sempre podemos aproximar a distribuição *t* pela distribuição Normal.

Leituras recomendadas

- Anderson, D. R; Sweeney, D. J.; e Williams, T. A. (2008). Estatística Aplicada à Administração e Economia. 2ed. Cengage Learning. Cap 10
- Morettin, P.A; e Bussab, W. de O. (2004). Estatística Básica. 5ed, Saraiva. Cap 13