Číselné řady

Číselné řady s obecnými členy

Použitím kritérií pro konvergenci řad rozhodněte o konvergenci (absolutní i neabsolutní, je-li to možné) či divergenci následujících řad. Pokud řada obsahuje parametry, proveďte vzhledem k nim diskusi

1.
$$\sum_{n=1}^{\infty} \frac{\sin nx}{2^n}$$
2.
$$\sum_{n=1}^{\infty} (-1)^{\frac{n(n+1)}{2}} \frac{1}{4^n}$$
3.
$$\sum_{n=1}^{\infty} \frac{(-1)^{\lfloor \sqrt{n} \rfloor}}{n}$$
4.
$$\sum_{n=1}^{\infty} a_n = 1 + \frac{1}{2} + \frac{1}{3} - \frac{1}{4} - \frac{1}{5} - \frac{1}{6} + \frac{1}{7} + \frac{1}{8} + \frac{1}{9} - \dots$$
5.
$$\sum_{n=1}^{\infty} 2^n \sin \frac{x}{3^n}, \quad x \in \mathbb{R}$$
6.
$$\sum_{n=2}^{\infty} \frac{(-1)^n}{\sqrt{n} + (-1)^n}$$
7.
$$\sum_{n=1}^{\infty} (-1)^n \frac{2 + (-1)^n}{n}$$
8.
$$\sum_{n=1}^{\infty} (-1)^n (1 + \frac{1}{n})^{n^2} \frac{1}{e^n}$$
9.
$$\sum_{n=1}^{\infty} \sin(\pi \sqrt{n^2 + k^2}), \quad k \in \mathbb{R}$$

$$\sum_{n=10}^{\infty} (-1)^n \frac{\sqrt[n]{n}}{\ln \ln \ln n}$$

$$\sum_{n=1}^{\infty} \frac{(\ln n)^{100}}{n} \sin \frac{n\pi}{4}$$

$$\sum_{n=2}^{\infty} \frac{\sin(n + \frac{1}{n})}{\ln \ln n}$$

$$\sum_{n=1}^{\infty} (-1)^n \frac{\sin^2 n}{n}$$

$$\sum_{n=2}^{\infty} \frac{1}{\ln^2 n} \cos \frac{\pi n^2}{n+1}$$

$$\sum_{n=1}^{\infty} (-1)^n \frac{n-1}{n+1} \frac{1}{\sqrt[100]{n}}$$

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n^p}, \quad p \in \mathbb{R}$$

17.

$$\sum_{n=1}^{\infty} \frac{\sin nx}{n^p}, \quad p \in \mathbb{R}, \ 0 < x < \pi$$

18.

$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n^{p+\frac{1}{n}}}, \quad p \in \mathbb{R}$$

19.

$$\sum_{n=1}^{\infty} \frac{\sin \frac{n\pi}{4}}{\sin \frac{n\pi}{4} + n^p}, \quad p \in \mathbb{R}$$

20.

$$\sum_{n=1}^{\infty} (-1)^{n-1} \left(\frac{1 \cdot 3 \cdots (2n-1)}{2 \cdot 4 \cdots 2n} \right)^p, \quad p \in \mathbb{R}.$$

Leibnizour Eritérium: {a_}} je nerostoucé. Pal \$ (-1) a_ konv. (=> lim a_ = 0.

Absolution bonvergence: Zaz bonv. absolutie, possed Zlaz/ bonv.

Zaz konv. neabsolutre, point Zaz konv. e Z/az/nekonv.

Prillad: $\Sigma(-1)^2 \cdot \frac{1}{K}$ konv. mealeolatre

Dirichletono Eriterium: {az} monotonni, az >0. {bz} ma' omezene dést. soucity.

Pat Zazbk konn.

Abelovo kriterium: {92} monotonni, omezena. Ibe konverguje. Pal Zegle konv.

Posloupmosti {sim(am)} a {cos(am) pro a # 2kii} mají omezené částečné součty.
Soužtovými vzorci lze zzoumat rady typu {simm} {simm}, {(-1)^cosm} a pod.

1) $\sum_{m=1}^{\infty} \frac{\sin mx}{2^m}$ Vidime, èt 1sim mx | ≤ 1 pro liberalue x $\in \mathbb{R}$. Prob $|a_m| \leq \frac{1}{2^m}$ a de sramávaciho briteria rada borverquie absolutne.

2) $\sum_{m=1}^{\infty} (-1)^{\frac{m(m+1)}{2}} \cdot \frac{1}{4^m}$. Vidime, ète $|a_m| = \frac{1}{4^m}$, takèt rada konvergnje absolutne

3) $\sum_{m=1}^{\infty} \frac{(-1)^{m-1}}{m}$ Maine $|a_m| = \frac{1}{m}$, tedy rada nemíže konvergovat aksolutně.

Mi para Pada Z (-1) [me sené daisteché sonety? Znaméria se memí v bodieh $m=k^2$. V bodieh k^2-1 json àristèrie southy -3,2,-5,4,-7,... a vidime, the ometerie àristèrie southy nejson. Preobo voie trade musit konvergouat!

Sestrepime clary se stejnym traméntem a cytrotime movou tradu $\frac{2N+1}{N-1}$ se stejnym traméntem a cytrotime movou tradu $\frac{2N+1}{N-1} = \frac{1}{N-1}$ $\frac{2N+1}{N-1} \le b_N \le \frac{2N+1}{N^2}$ N=1 $\frac{2N+1}{N-1} = \frac{1}{N-1}$ $\frac{2N+1}{N-1} = \frac{2N+1}{N-1} = \frac{2N+1}{N-1}$

a podle vety o doon policajtech bor >0. Dle leibnise Fada [(-1) by konverguje.

Na leibnise potrebujena jesté monotonii, ale ta plyne z naisledující série nerovností $b_N \ge \frac{2N+1}{N^2+N} \ge \frac{2N+3}{(N+1)^2} \ge b_{N+1}$, kde u první nerovnosti využíváne $\frac{1}{N} + \frac{1}{A+2k} \ge \frac{2}{A+k}$

Vidime, de poslouponost disterných southe {sol rady [(-1)" by ma' limite S. Esaf rady Ian musimut skipon limite S. vodime, Le poslouprast caistimel southi Vine, Ex Sans-1 = Sh a pro libovolné no najdene nejblizisí nizisí druhou mocnine.

Mark² < no a označíme N=k. Sa E [SN, SN,] (pripadue & Sm & [SN, SN], poludje
poradi opačna). Viz obrázek: Z definice limity snadno vidéme, se pokud $\forall N \ge N_0$ platí $|S_N^6 - S| < \varepsilon$, pak jiské $\forall m \ge N_0^2$ platí $|S_N^0 - S| < \varepsilon$. jishe the 2 No plant Ism-SI < E. Rada bonverguje, neassolutre. 4) $\sum a_n = 1 + \frac{1}{2} + \frac{1}{3} - \frac{1}{4} - \frac{1}{5} - \frac{1}{6} + \frac{1}{7} + \frac{1}{8} + \frac{1}{9} - \dots$ Déividue $\sum |a_n| = \sum \frac{1}{n}$ a rade nemise bonvergoust absolutine Vidine, Ex an= bmcn, Ede cn= 1 a bn= }1,1,1,-1,-1,1,1,1,-1,-...}. Ocivide { bn} met omezené c'ésleène southy, probosè védy je \(\frac{7}{2} \) bn \(\{ \frac{9}{1.2.3}} \). { cn} jole monotoinné è mule, tatse de Dirichletona britaria rada bonverquie neabsolutie. 5) $\sum_{m=1}^{\infty} 2^m \sin \frac{\pi}{3^m}$ | $a_m | j_k | pro dost. velle n round <math>2^m \sin \frac{\pi}{3^m}$, Ede $\frac{\pi}{3^m} \leqslant \frac{\pi}{2}$ To je řada s nezapornými členy. Srovnávacím kriteriem: lam | $\leq 2^{M} \cdot \frac{1 \times 1}{3^{M}} = | \times | \cdot (\frac{2}{3})^{M}$ Rada [1x1(3) konvergije pro libovolie xER =) Rada [am konverquije absolutne txER. 6) $\sum_{m=2}^{\infty} \frac{(-\Lambda)^m}{\sqrt{m+(-\Lambda)^m}}$ Nelze primo pouzit Leibniez di Dirichleta, protozie je porusiena monohonie diky $(-\Lambda)^m$ ve jmenovateli. Naopaz leher dobažiene, zie rada divergyje $a_{N} = \frac{(-1)^{N}}{\sqrt{m} + (-1)^{n}} \cdot \frac{\sqrt{m} - (-1)^{n}}{\sqrt{m} - (-1)^{n}} = \frac{(-1)^{n} \sqrt{m}}{m - 1} - \frac{1}{m - 1}$. Odtud $a_{N} - \frac{(-1)^{n} \sqrt{m}}{m - 1} = -\frac{1}{m - 1}$ Rada Z(-1) Im konverquie dle leibrise, monotonie tu je zègima' (kdo neveri', mecht' vyšetří průběh $f(x) = \frac{\int_{x-1}^{x}}{x-1}$) a požud by \sum_{n} konvergovala, pak \sum_{n-1}^{n} též konv. O télo rade vsak vime, se diverguje, proto Zan musi také divergorat.

a $\frac{2k^2}{m^2+k^2+m}$ ~ $\frac{k^2}{m}$, coò diverguje pro $k \neq 0$.

Rada converguje absolutre jen pro k=0, pro k+0 konverguje neassolutre.

10, Di

My Sim mir Vinne: {Sim $\frac{n\pi}{4}$ } mai omezené cassecré souchy a $\frac{(\ln n)}{n} > 0 =)$ dle Dirichleter Lonverguje Absolution bonvergence: { sin $\frac{\sqrt{3}}{3}$ } = { $\frac{\sqrt{5}}{2}$, 1, $\frac{\sqrt{5}}{2}$, 0, $-\frac{\sqrt{5}}{2}$, -1, $-\frac{\sqrt{5}}{2}$, 0, ...} Porud by $\sum |a_m|$ convergously, musi convergously; $\sum |a_{2k+1}| = \frac{52}{2} \sum_{k=1}^{20} (\ln(2k+1))^{100}$ To all administration of internation (1) in the second of the s To ale ocividue diverguje (nept. integralluim nebo srovnávadne s {\frac{1}{2\kappa}}. Rada prob converguje neabsoluture. Mame sim(m+ 1) = simm cos 1 + coom sim 1 $\frac{12}{n=2} \frac{\sin(n+\frac{\lambda}{n})}{\ln n}$ Proto an= cook sinnella + coon sinn 12n Posloupnosti { sin m} « {cos m} maj! omezene det. southy, mie lepsito resplinyi $\cos \frac{\Lambda}{n} \rightarrow \cos 0 = 1$, takèr je rostouci, $\frac{\Lambda}{22n}$ je blesajici, nuesine vychtit monotonii: $f(x) = \cos \frac{1}{x} \cdot (l_1 l_1 x)^2$ f'(x) = - sin x ((-x)2) (llx) + co x (-1) (llx)2. 1/2 x sin x · 1/x2llx - cos x / xlxlq2x Toto je zbytečně složité, stačilo použít Abela, cos(1/n) je omezená a monotónní a zbytek konverguje ~ 1 xlxlex podle Dirichleta jednoduše. Provelba'x je f'(x) a f(r) blesajier =) $\{ \sin n \}$ onez. \hat{c} . Sonety, $\cos \frac{1}{n} \cdot \frac{1}{22n} \ge 0 = \}$ dle D i riobleta konv. {cos m} onez.c. somety, sin m. 22n >0 => alle Dirichlete honu. => Zan konverguje Absolutn' konvergence: $\cos \frac{1}{m} \ge \frac{1}{2}$, $\sin m \to 0$, $\frac{1}{22m}$ nestaci le konvergence rady => Konvergije meabsolutie I (-1)m Converquie 13) \(\(\sin^{n} \) \(\frac{\sin^{2} m}{m} \) \(\sin^{2} \sin^{2} \) \(\frac{1 - \cos 2m}{m} \) $(-1)^{N} = \omega_0 m \pi = 0$ $(-1)^{N} \omega_0 2 m = \omega_0 \pi m \omega_0 2 m = \omega_0 \pi m \omega_0 2 m - Sim \pi m Sin 2 m = \omega_0 (m(\pi + 2))$ Z-cos(n(x+21) bonnerquie de Dirichleta. Absolution bonvergence meplati, Z in ani Z (cos (n(17+2)) nebonverguj.) meabsolutrie

44, Di

15) \$\int_{\lambda}^{\infty} (-1)^{n} \frac{n-1}{n+1} \cdot \frac{1}{n\infty}

Rada $\sum (-1)^m \cdot \frac{1}{\log m}$ bonnergine de leibnise etajmé } $\left\{\frac{m-1}{m+1}\right\} = \left\{1 - \frac{2}{m+1}\right\}$ je monohomné a omezané

[] land = [m+1 . 100m diverguje stourainim s 2 to 100m

Rada Converguje neabsolutine

16, \(\sum_{NP} \). To u\(\bar{\pi}\) 2 and me:

P>1 => konverguje absolutie (integrallui krit.)
PEREN => konverguje neabsolutue (leibniz+integr.)
(0,1]

Zam konverguje dle Abela

PSO => neconverguje (numa podminica)

17, $\sum \frac{\sin nx}{n!}$ Tabé endue: P>1 = 2 converguée absoluture (sroundiné s $\sum_{n=1}^{N}$)

P ≤ 0 => nebonverquie (nutra' podminta) P∈(0,1] => honverquie (Dirichlet)

Absolution Louvergence replaté: Isin mx = sin mx = 1 (1-cos2nx) = 1. 1 - 1. cos2nx

a vine, $\tilde{z}e$ rada $\sum_{n=1}^{\infty} \frac{1}{n} \frac{\cos 2n x}{n}$ konverguje (Dirichlet), $\sum_{n=1}^{\infty} \frac{1}{n} \frac{1}{n} \frac{1}{n} \frac{1}{n} \frac{\sin 2n x}{n}$ diverguje $\sum_{n=1}^{\infty} \frac{1}{n} \frac{\sin 2n x}{n} \frac{1}{n} \frac{1}{n} \frac{\sin 2n x}{n} \frac{1}{n} \frac{\sin 2n x}{n}$ diverguje $\sum_{n=1}^{\infty} \frac{1}{n} \frac{\sin 2n x}{n} \frac{1}{n} \frac{1}{n} \frac{\sin 2n x}{n} \frac{1}{n} \frac{1}{n} \frac{\sin 2n x}{n} \frac{1}{n} \frac{1}$

18) $\sum_{n} (-1)^{n-1} \frac{1}{n^{p+1/n}} = \sum_{n} (-1)^{n-1} \frac{1}{n^{p}} \frac{1}{n^{p}}$: $p \le 0 = n$ nekonverguje (nutra poduvirla) p > 1 = n boaverguje absolutie ($\frac{1}{n^{p}} \le \frac{1}{n^{p}}$)

 $PE(0,1]: \text{ Konverguje}: (-1)^{n-1} \text{ kom.}(\text{eilniz}) + \frac{1}{\sqrt{n}} \text{ omez.} \text{ monotimm'}(\text{od } n=3) \Rightarrow Abel.$

Konverguje neadsolutie $\left(\frac{1}{\sqrt{M}} > \frac{1}{2}\right)$ 19 $\sum \frac{\sin \frac{M\pi}{4}}{\sin \frac{\pi}{4}} + n^{2}$ $p \le 0 =$) ne converguje p > 1 => (converguje) 19) \(\sin \frac{mu}{\frac{m}{4}} + n^{\text{P}} \)

\[\rightarrow \frac{5\in \frac{mu}{\frac{m}{4}}}{4} + n^{\text{P}} \]

\[\rightarrow \frac{1}{2} = \text{ honverguje absolutive} : |a_m| \leq \frac{1}{n^{\text{P}} - 1} \]

\[\rightarrow \frac{1}{2} = \text{ honverguje absolutive} : |a_m| \leq \frac{1}{n^{\text{P}} - 1} \]

\[\rightarrow \frac{1}{2} = \text{ honverguje absolutive} : |a_m| \leq \frac{1}{n^{\text{P}} - 1} \]

\[\rightarrow \frac{1}{2} = \text{ honverguje absolutive} : |a_m| \leq \frac{1}{n^{\text{P}} - 1} \]

\[\rightarrow \frac{1}{2} = \text{ honverguje absolutive} : |a_m| \leq \frac{1}{n^{\text{P}} - 1} \]

\[\rightarrow \frac{1}{2} = \text{ honverguje absolutive} : |a_m| \leq \frac{1}{n^{\text{P}} - 1} \]

\[\rightarrow \frac{1}{2} = \text{ honverguje absolutive} : |a_m| \leq \frac{1}{n^{\text{P}} - 1} \]

\[\rightarrow \frac{1}{2} = \text{ honverguje absolutive} : |a_m| \leq \frac{1}{n^{\text{P}} - 1} \]

\[\rightarrow \frac{1}{2} = \text{ honverguje absolutive} : |a_m| \leq \frac{1}{n^{\text{P}} - 1} \]

\[\rightarrow \frac{1}{2} = \text{ honverguje absolutive} : |a_m| \leq \frac{1}{n^{\text{P}} - 1} \]

\[\rightarrow \frac{1}{2} = \text{ honverguje absolutive} : |a_m| \leq \frac{1}{n^{\text{P}} - 1} \]

\[\rightarrow \frac{1}{2} = \text{ honverguje absolutive} : |a_m| \leq \frac{1}{n^{\text{P}} - 1} \]

\[\rightarrow \frac{1}{2} = \text{ honverguje absolutive} : |a_m| \leq \frac{1}{n^{\text{P}} - 1} \]

\[\rightarrow \frac{1}{2} = \text{ honverguje absolutive} : |a_m| \leq \frac{1}{2} = \text{ honverguje absolutive} : |a_m| \leq \frac{1}{2} = \text{ honverguje absolutive} : |a_m| \leq \frac{1}{2} = \text{ honverguje absolutive} : |a_m| \text{ honverguje absolutive} : |a_m| \leq \frac{1}{2} = \text{ honverguje absolutive} : |a_m| \text{ honverguje ab

Trib: an = an $\frac{\sin \frac{n\pi}{4} - n^p}{\sin \frac{n\pi}{4} - n^p} = \frac{\sin^2 \frac{n\pi}{4}}{\sin^2 \frac{n\pi}{4} - n^2p} - \frac{\sin \frac{n\pi}{4} \cdot n^p}{\sin^2 \frac{n\pi}{4} - n^2p}$. Prozhoumáne Z bn a Zcm

25m: {sin mi} = { \frac{1}{2}, 1, \frac{1}{2}, 0, \frac{1}{2}, 1, \frac{1}{2}, 0, \dots \frac{1}{2}, 1, \dots \frac{1}{2}, 0, \dots \frac{1}{2}, \do Missume probo mapsat $\sum_{k=1}^{\infty} b_{k} = \sum_{k=1}^{\infty} \frac{1}{1 - (4k-2)^{2p}} + \sum_{k=1}^{\infty} \frac{\frac{1}{2}}{\frac{1}{2} - (2k-1)^{2p}}$ Obě řady na pravé straně konvergují pravě tehdy, když 2p > 1, tj. P > 2 Zho je rada, Elera nemam enamenta, takse Zho te nemez konvergovat, polud obë rady na PS divergiji. I In konverguje (=) P>1/2. (dosonce absolution) $\sum_{n=1}^{\infty} \left\{ \sin \frac{m\pi}{4} \right\} = \left\{ \frac{1}{\sqrt{2}}, 1, \frac{1}{\sqrt{2}}, 0, -\frac{1}{\sqrt{2}}, -1, -\frac{1}{\sqrt{2}}, 0, \dots \right\}$ $\sum_{n=1}^{\infty} \left\{ \sin \frac{m\pi}{4} \right\} = \left\{ \frac{1}{\sqrt{2}}, 1, \frac{1}{\sqrt{2}}, 0, -\frac{1}{\sqrt{2}}, -1, -\frac{1}{\sqrt{2}}, 0, \dots \right\}$ $\sum_{n=1}^{\infty} \left\{ \sin \frac{m\pi}{4} \right\} = \left\{ \frac{1}{\sqrt{2}}, 1, \frac{1}{\sqrt{2}}, 0, -\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}, 0, \dots \right\}$ $\sum_{n=1}^{\infty} c_n = \sum_{k=1}^{\infty} \left(-A \right)^{k-1} \frac{(4k-2)^k}{1 - (4k-2)^{2k}} + \sum_{k=1}^{\infty} \left(-A \right)^{k-1} \frac{1}{\sqrt{2}} \frac{(4k-4)^k}{2} + \frac{1}{2} - (4k-4)^{2k} + \frac{1}{2} - (4k-3)^k \right]$ $\sum_{n=1}^{\infty} c_n = \sum_{k=1}^{\infty} \left(-A \right)^{k-1} \frac{(4k-2)^k}{1 - (4k-2)^{2k}} + \sum_{k=1}^{\infty} \left(-A \right)^{k-1} \frac{1}{\sqrt{2}} \frac{(4k-4)^k}{2} + \frac{1}{2} - (4k-4)^{2k} + \frac{1}{2} - (4k-3)^k \right]$ l'in jenne se élavili problème s monotonin, proboès $f(x) = \frac{x^p}{1-x^{2p}}$; $g(x) = \frac{x^p}{\frac{1}{2}-x^{2p}}$ jesus monotonné pro velka x, jdou & rule pro P>O, tedy voichny řady na PS konvergují dle leidnice a Zan konverguje pro P>O. Absolutie jen pro P>1. Zavier tale je, se Zam konverquie meabsolutre pro pe (2,1) a reconverquie pro pe (2,1). [Sporem, Zan nemière honvergovet, polend je souchen konvergujien a divergijien rady]. Ocividue p<0 nekonverguje probée lant +>0. Daile tedy neolité p>0. $\frac{20}{M} = 1$ $\frac{20}{2 \cdot 1 \cdot \dots \cdot 2m}$ $\frac{2 \cdot 1 \cdot \dots \cdot 2m}{2 \cdot 1 \cdot \dots \cdot 2m}$ Ocivilme { bm} je monotommi, bont = bou (2n+1) P \le bou. Pro leibnise tak staci zjishit, 1 ldy bn-0. Zaroven pozud bn+0, je porušena nutna podminta a rada diverguje (presnej: netonverguje).

Dale proekomnime dovani h = (2m-1)!! Dale prozeomname dovani $b_m = \frac{(2m-1)!!}{(2m)!!}$ Pro liborohe & 70 platí (2k-1)(2k+1) < (2k)

Dosadime poshupně &=1,2,..., nu av vynasobíme: 1.3°.5°... (2n-1)°. (2n+1) < 2°.4°... (2n)

Dosadime poshupně A probo 6n > 0 a rada Converguje pro lib. p > 0.

Stejný odkod $q = 10^{11}$ Stejný odhad použijeme pro urcení, že řada konverguje absolutie pro p>2 dle svovnávacího kritéria. Snovinavaci la Enteria.

Pro PE(0,2) pouzijune opačný odhad: $b_m = \frac{\sqrt{(2^2-1)\cdot(4^2-1)\cdot(6^2-1)...\cdot((2n)^2-1)'}}{2\cdot 4\cdot...\cdot 2n} \cdot \frac{1}{\sqrt{2n+1}}$ $=\sqrt{\left(\lambda-\frac{\lambda}{2^{2}}\right)\cdot\left(\lambda-\frac{\lambda}{4^{2}}\right)\cdot\ldots\left(\lambda-\frac{\lambda}{2^{n}}\right)\cdot\sqrt{\frac{\lambda}{2^{n}+1}}}$

Mame $c_n = \left(1 - \frac{1}{2^2}\right) \cdot \dots \cdot \left(1 - \frac{1}{(2n)^2}\right) \ge \left(1 - \frac{1}{2^2}\right) \left(1 - \frac{1}{3^2}\right) \left(\dots\right) \left(1 - \frac{1}{(2n)^2}\right) = \frac{1 \cdot (2n+1)}{2 \cdot (2n)} \ge \frac{1}{2}$. Probe $c_m \ge \frac{1}{\sqrt{2} \cdot \sqrt{2n+1}}$

Zlant ? $\sum \left(\frac{1}{\sqrt{2}\sqrt{2n}}\right)^p$, coè diverguje pro $p \in (0,2]$.

Zaiver: Pada tonverguje neabsolutre pro $p \in (0,2]$, absolutre pro p > 2 a reconverguje pro $p \in (0,2]$.