Randomized Algorithms

Ioannis Caragiannis (this time) and Kasper Green Larsen

Today

- Maximum Satisfiability
- Simple randomized algorithms
- Linear programming and randomized rounding

The MAXSAT problem

Variables, literals, and clauses

- Boolean variables: x_i for i = 1, 2, ..., n
- Literals: the appearance of a variable either positively, as x_i , or negatively, as \bar{x}_i
- Clauses: C_j for j = 1, 2, ..., m
- Clause C_j consists of a set of literals. For example: $C_1=(x_2,\bar{x}_3,x_5,\bar{x}_8,\bar{x}_9)$
- Boolean assignment: an assignment of binary/logical value (0/1 or false/true) to the variables
- A clause is true if some of its literals is true, i.e., consider a clause as an OR operation applied on its literals
- E.g., $C_1 = x_2 \vee \bar{x}_3 \vee x_5 \vee \bar{x}_8 \vee \bar{x}_9$

The SAT decision problem

- SAT: Given a set of n variables and a set of m clauses over these variables, is there an assignment that makes all clauses true?
- Example: $C_1 = x_2 \vee \bar{x}_3$, $C_2 = x_1 \vee x_3$, $C_3 = \bar{x}_2 \vee x_3$, $C_4 = \bar{x}_1 \vee \bar{x}_3$
- Here, the assignment $x_1=1, x_2=0$, and $x_3=0$ satisfies all clauses (makes them all true). Also: $x_1=0, x_2=1$, and $x_3=1$
- Very important as it can be used to represent any non-deterministic computation (Cook, 1970)
- SAT is the most basic NP-complete problem
- 3SAT is NP-complete (each clause consists of exactly three literals)
- 2SAT is polynomial-time solvable

Optimization version of satisfiability

• Input:

- A set of n variables x_1, x_2, \dots, x_n and m clauses C_1, C_2, \dots, C_m over these variables
- In addition, each clause C_j has a positive weight w_j
- Some notation: $C_j(x)$ is equal to 1 if the assignment x makes clause C_j true, and is equal to 0 otherwise
- The MAXSAT problem: Compute an assignment to the variables so that the total weight in satisfied clauses is maximized
- I.e., find assignment x so that $\sum_{j=1}^m C_j(x) \cdot w_j$ is maximized
- As SAT is NP-complete, MAXSAT is NP-hard (i.e., we should not expect to solve MAXSAT exactly with polynomial-time algorithms)

Approximation algorithms

- We are interested in algorithms that always return nearly-optimal solutions
- Optimal assignment \hat{x} : an assignment to the variables so that $\sum_{j=1}^{m} C_j(\hat{x}) \cdot w_j$ is as high as possible
- For a factor $\rho \in [0,1]$, a ρ -approximation algorithm for MAXSAT computes an assignment x so that

$$\sum_{j=1}^{m} C_j(x) \cdot w_j \ge \rho \cdot \sum_{j=1}^{m} C_j(\hat{x}) \cdot w_j = \rho \cdot \text{OPT}$$

quality/benefit/gain of assignment x

optimal quality/benefit/gain

Approximation algorithms

- We would like the approximation factor ρ to be as close to 1 as possible
- This is not always possible though: MAXSAT is **NP-hard to approximate** within a factor better than 7/8, even when all clauses have exactly three literals and weight 1 (Hastad, 2001)
- Today: How high can ρ become using randomized algorithms?
- Our goal: compute a possibly random assignment x so that

$$\mathbb{E}\left[\sum_{j=1}^{m} C_j(x) \cdot w_j\right] \ge \rho \cdot \mathsf{OPT}$$

- Set each variable to either 0 or 1 equiprobably and independently of the other variables
- Standard steps in the analysis:

$$\mathbb{E}\left[\sum_{j=1}^{m} C_j(x) \cdot w_j\right] = \sum_{j=1}^{m} \mathbb{E}[C_j(x)] \cdot w_j = \sum_{j=1}^{m} \Pr[C_j(x) = 1] \cdot w_j$$

- Set each variable to either 0 or 1 equiprobably and independently of the other variables
- Standard steps in the analysis:

$$\mathbb{E}\left[\sum_{j=1}^{m} C_j(x) \cdot w_j\right] = \sum_{j=1}^{m} \mathbb{E}[C_j(x)] \cdot w_j = \sum_{j=1}^{m} \Pr[C_j(x) = 1] \cdot w_j$$

linearity of expectation

recall that $C_j(x) \in \{0,1\}$

- Set each variable to either 0 or 1 equiprobably and independently of the other variables
- Standard steps in the analysis:

$$\mathbb{E}\left[\sum_{j=1}^{m} C_j(x) \cdot w_j\right] = \sum_{j=1}^{m} \mathbb{E}[C_j(x)] \cdot w_j = \sum_{j=1}^{m} \Pr[C_j(x) = 1] \cdot w_j$$

• We will show that
$$\Pr[C_j(x) = 1] \ge 1/2$$
 for every clause C_j . Then,
$$\mathbb{E}\left[\sum_{j=1}^m C_j(x) \cdot w_j\right] \ge \frac{1}{2} \cdot \sum_{j=1}^m w_j \ge \frac{1}{2} \cdot \text{OPT}$$

Analysis

- We need to show that $\Pr[C_j(x) = 1] \ge 1/2$ for every clause C_j .
- If C_j contains a positive and a negative literals of the same variable, then $C_j(x)=1$ with certainty
- Otherwise, each literal is independently set to either 0 or 1 equiprobably
- If C_j contains k literals in total, the probability that none of them is set to 1 is 2^{-k}
- Hence, $\Pr[C_j(x) = 1] = 1 2^{-|C_j|} \ge 1/2$

Observations

- The most difficult clauses seem to be those with just a single literal
- If all clauses have at least two literals, the approximation ratio we get is 3/4
- If all clauses have at least three literals, the approximation ratio we get is 7/8, i.e., matching the inapproximability bound of Hastad (2001)

Flipping biased coins

A better algorithm

- Without loss of generality, assume that for every variable x_i , the weight of the clause that consists only of literal x_i is at least as high as the weight of the clause that consist only of literal \bar{x}_i
- If this is not the case, exchange literals x_i and \bar{x}_i wherever they appear
- Denote by C the set of all clauses besides the ones that consist of a single negative literal
- Hence, OPT $\leq \sum_{j \in C} w_j$
- Algorithm: Set each variable to 1 with probability p > 1/2 and to 0 with probability 1 p, independently on the other variables

A better algorithm

- Without loss of generality, assume that for every variable x_i , the weight of the clause that consists only of literal x_i is at least as high as the weight of the clause that consist only of literal \bar{x}_i
- If this is not the case, exchange literals x_i and \bar{x}_i wherever they appear
- Denote by C the set of all clauses besides the ones that consist of a single negative literal
- Hence, $OPT \le \sum_{j \in C} w_j$ better bound for OPT
- Algorithm: Set each variable to 1 with probability p > 1/2 and to 0 with probability 1 p, independently on the other variables

A better algorithm (analysis)

• In the analysis, we will account only for the contribution from clauses of C

$$\mathbb{E}\left[\sum_{j\in C} C_j(x) \cdot w_j\right] = \sum_{j\in C} \mathbb{E}[C_j(x)] \cdot w_j = \sum_{j\in C} \Pr[C_j(x) = 1] \cdot w_j$$

- A clause with a single positive literal has $\Pr[C_j(x) = 1] = p$
- A clause with at least two literals, of which a are negative and b are positive, has $\Pr[C_i(x) = 0] = p^a(1-p)^b < p^{a+b} \le p^2$
- Hence, $\Pr[C_j(x) = 1] \ge 1 p^2$

A better algorithm (analysis)

• In the analysis, we will account only for the contribution from clauses of C

$$\mathbb{E}\left[\sum_{j\in C} C_j(x) \cdot w_j\right] = \sum_{j\in C} \mathbb{E}[C_j(x)] \cdot w_j = \sum_{j\in C} \Pr[C_j(x)] \cdot w_j$$

- A clause with a single positive literal has $\Pr[C_j(x) = 1] = p$
- A clause with at least two literals, of which a are negative and b are positive, has $\Pr[C_j(x) = 0] = p^a(1-p)^b < p^{a+b} \le p^2$
- Hence, $\Pr[C_j(x) = 1] \ge 1 p^2$ _

A better algorithm (analysis)

We have

$$\mathbb{E}\left[\sum_{j\in\mathcal{C}} C_j(x)\cdot w_j\right] \geq \sum_{j\in\mathcal{C}} \min\{p, 1-p^2\}\cdot w_j \geq \min\{p, 1-p^2\}\cdot \mathsf{OPT}$$

• Setting $p = \frac{\sqrt{5}-1}{2} \approx 0.618$, we have $\min\{p, 1-p^2\} = 0.618$, which yields

$$\mathbb{E}\left[\sum_{j\in C} C_j(x) \cdot w_j\right] \ge 0.618 \cdot \text{OPT}$$

Linear programming and combinatorial optimization

An integer linear program for MAXSAT

- Use the integer variable y_i to denote whether the boolean variable x_i is true $(y_i = 1)$ or false $(y_i = 0)$
- Use the integer variable z_j to denote whether an assignment to the boolean variables x satisfies clause C_j ($z_j=1$) or not ($z_j=0$)
- Some additional notation:
 - Let P_j (respectively, N_j) be the list of indices i so that variable x_i appears as positive literal x_i (respectively, negative literal \bar{x}_i) in C_j
 - For example, $C_1=(x_2,\bar{x}_3,x_5,\bar{x}_8,\bar{x}_9)$. Here, $P_1=\{2,5\}$ and $N_1=\{3,8,9\}$

An integer linear program for MAXSAT

An integer linear program for MAXSAT

- What can we do with it?
- Not much: it is an equivalent formulation of an NP-hard problem
- Instead, by relaxing the integrality constraint, we get a linear program that is solvable in polynomial time (Khachiyan, 1979)
- Its solution can be far from what we need but can be very helpful

A linear programming relaxation for MAXSAT

maximize
$$\sum_{j=1}^{m} w_j \cdot z_j$$
 subject to
$$\sum_{i \in P_j} y_i + \sum_{i \in N_j} (1 - y_i) \ge z_j$$
 for $j = 1, 2, ..., m$
$$0 \le y_i \le 1$$
 for $i = 1, 2, ..., n$ for $j = 1, 2, ..., m$

integrality constraints are now relaxed

A linear programming relaxation for MAXSAT

• The structure of feasible solutions of the linear programming relaxation

A linear programming relaxation for MAXSAT

Why is it useful?

- First, it provides a hopefully better lower bound of OPT (better analysis)
- Let y^*, z^* be the optimal feasible solution to the linear programming relaxation
- Then, $OPT \leq \sum_{j=1}^{m} w_j \cdot z_j^*$
- Second, it gives us some indication of how "good solutions" look like (better algorithm design)
- E.g., round each fractional variable to the closer integer value

A general recipe for approximation algorithms

- Formulate the problem as an integer linear program
- Solve its linear programming relaxation to get a fractional solution
- Round the fractional solution to get a solution for the original problem

Combinatorial optimization and linear programming: Some examples

Set cover

- Input: a universe U of elements, a collection C of subsets of U, and positive weight w(S) for each set S of C
- Goal: find a subcollection of \mathcal{C} of minimum total weight, so that each element of \mathcal{U} belongs in at least one set of the subcollection

minimize
$$\sum_{S \in C} w(S) \cdot x_S$$

subject to $\sum_{S \in C: e \in S} x_S \ge 1$ $\forall e \in U$
 $x_S \in \{0,1\}$ $\forall S \in C$

Vertex cover

- Input: a graph G = (V, E) with positive weight w(v) at every node $v \in V$
- Goal: compute a set S of nodes of minimum total weight, so that each edge has at least one endpoint in S

minimize
$$\sum_{v \in V} w(v) \cdot x_v$$

subject to $x_u + x_v \ge 1$ $\forall (u, v) \in E$
 $x_v \in \{0,1\}$ $\forall v \in V$

Maximum degree-constrained subgraph

- Input: a graph G=(V,E), positive weight w(e) for each edge $e\in E$ and an integer bound $\Delta(v)$ for every node $v\in V$
- Goal: compute a subgraph of G, consisting of edges of maximum total weight so that the degree of node v in the subgraph does not exceed $\Delta(v)$

$$\max \min z \sum_{e \in E} w(e) \cdot x(e)$$

$$\operatorname{subject\ to} \sum_{e \in E(v)} x(e) \leq \Delta(v) \quad \forall v \in V$$
 set of edges incident
$$x(e) \in \{0,1\} \quad \forall e \in E$$
 at node v

32/87

Randomized rounding

A general recipe for approximation algorithms

- Formulate the problem as an integer linear program
- Solve its linear programming relaxation to get a fractional solution
- Round the fractional solution to get a solution for the original problem

Today: randomized rounding

Simple randomized rounding for MAXSAT

- Let y^*, z^* be an optimal fractional solution of the linear programming relaxation
- Set each variable x_i to 1 with probability y_i^* and to 0 with probability $1 y_i^*$, independently of the other variables

Simple randomized rounding for MAXSAT

- Let y^*, z^* be an optimal fractional solution of the linear programming relaxation
- Set each variable x_i to 1 with probability y_i^* and to 0 with probability $1 y_i^*$, independently of the other variables
- Analysis roadmap:

$$\mathbb{E}\left[\sum_{j=1}^{m} C_{j}(x) \cdot w_{j}\right] = \sum_{j=1}^{m} \mathbb{E}\left[C_{j}(x)\right] \cdot w_{j} = \sum_{j=1}^{m} \Pr\left[C_{j}(x) = 1\right] \cdot w_{j}$$

$$\geq \dots \geq \rho \cdot \sum_{j=1}^{m} w_{j} \cdot z_{j}^{*} \geq \rho \cdot \text{OPT}$$

- The clause C_i is false if each of its literals are false
- The probability that a positive literal x_i is false is $1-y_i^*$
- The probability that a negative literal $ar{x}_i$ is false is y_i^*

- The clause C_i is false if each of its literals are false
- The probability that a positive literal x_i is false is $1-y_i^*$
- The probability that a negative literal \bar{x}_i is false is y_i^*

$$\Pr[C_j(x) = 0] = \prod_{i \in P_j} \Pr[x_i = 0] \cdot \prod_{i \in N_j} \Pr[\bar{x}_i = 0] = \prod_{i \in P_j} (1 - y_i^*) \cdot \prod_{i \in N_j} y_i^*$$

- The clause C_i is false if each of its literals are false
- The probability that a positive literal x_i is false is $1-y_i^*$
- The probability that a negative literal \bar{x}_i is false is y_i^*

$$\Pr[C_j(x) = 0] = \prod_{i \in P_j} \Pr[x_i = 0] \cdot \prod_{i \in N_j} \Pr[\bar{x}_i = 0] = \prod_{i \in P_j} (1 - y_i^*) \cdot \prod_{i \in N_j} y_i^*$$

$$\leq \prod_{i \in P_j} e^{-y_i^*} \cdot \prod_{i \in N_j} e^{y_i^* - 1}$$

$$e^{y} > y + 1 \ \forall y \in \mathbb{R}$$

$$e^y \ge y + 1, \forall y \in \mathbb{R}$$

- The clause C_i is false if each of its literals are false
- The probability that a positive literal x_i is false is $1-y_i^*$
- The probability that a negative literal \bar{x}_i is false is y_i^*

 $e^{y} \geq y + 1, \forall y \in \mathbb{R}$

$$\Pr[C_{j}(x) = 0] = \prod_{i \in P_{j}} \Pr[x_{i} = 0] \cdot \prod_{i \in N_{j}} \Pr[\bar{x}_{i} = 0] = \prod_{i \in P_{j}} (1 - y_{i}^{*}) \cdot \prod_{i \in N_{j}} y_{i}^{*}$$

$$\leq \prod_{i \in P_{j}} e^{-y_{i}^{*}} \cdot \prod_{i \in N_{j}} e^{y_{i}^{*} - 1} = \exp\left(-\left(\sum_{i \in P_{j}} y_{i}^{*} + \sum_{i \in N_{j}} (1 - y_{i}^{*})\right)\right)$$

- The clause C_i is false if each of its literals are false
- The probability that a positive literal x_i is false is $1-y_i^*$
- The probability that a negative literal \bar{x}_i is false is y_i^*

 $e^{y} \geq y + 1, \forall y \in \mathbb{R}$

$$\Pr[C_{j}(x) = 0] = \prod_{i \in P_{j}} \Pr[x_{i} = 0] \cdot \prod_{i \in N_{j}} \Pr[\bar{x}_{i} = 0] = \prod_{i \in P_{j}} (1 - y_{i}^{*}) \cdot \prod_{i \in N_{j}} y_{i}^{*}$$

$$\leq \prod_{i \in P_{j}} e^{-y_{i}^{*}} \cdot \prod_{i \in N_{j}} e^{y_{i}^{*} - 1} = \exp\left(-\left(\sum_{i \in P_{j}} y_{i}^{*} + \sum_{i \in N_{j}} (1 - y_{i}^{*})\right)\right)$$

A linear programming relaxation for MAXSAT

maximize
$$\sum_{j=1}^{m} w_j \cdot z_j$$
 LP constraint for clause C_j subject to
$$\sum_{i \in P_j} y_i + \sum_{i \in N_j} (1 - y_i) \ge z_j$$
 for $j = 1, 2, ..., m$
$$0 \le y_i \le 1$$
 for $i = 1, 2, ..., m$
$$0 \le z_j \le 1$$
 for $j = 1, 2, ..., m$

- The clause C_i is false if each of its literals are false
- The probability that a positive literal x_i is false is $1-y_i^*$
- The probability that a negative literal \bar{x}_i is false is y_i^*

$$\Pr[C_j(x) = 0] = \prod_{i \in P_j} \Pr[x_i = 0] \cdot \prod_{i \in N_j} \Pr[\bar{x}_i = 0] = \prod_{i \in P_j} (1 - y_i^*) \cdot \prod_{i \in N_j} y_i^*$$

$$\leq \prod_{i \in P_j} e^{-y_i^*} \cdot \prod_{i \in N_j} e^{y_i^* - 1} = \exp\left(-\left(\sum_{i \in P_j} y_i^* + \sum_{i \in N_j} (1 - y_i^*)\right)\right) \leq \exp(-z_j^*)$$

$$e^{y} \geq y + 1, \forall y \in \mathbb{R}$$
IP constraint for clause $C_i^{43/87}$

LP constraint for clause $C_i^{43/83}$

• So, we have shown $\Pr[C_j(x) = 1] \ge 1 - \exp(-z_j^*)$

nonlinear dependence on z_j^*

• So, we have shown $\Pr[C_j(x) = 1] \ge 1 - \exp(-z_j^*)$

Simple randomized rounding for MAXSAT

- Let y^*, z^* be an optimal fractional solution of the linear programming relaxation
- Set each variable x_i to 1 with probability y_i^* and to 0 with probability $1-y_i^*$, independently of the other variables
- Analysis roadmap:

$$\mathbb{E}\left[\sum_{j=1}^{m} C_{j}(x) \cdot w_{j}\right] = \sum_{j=1}^{m} \mathbb{E}[C_{j}(x)] \cdot w_{j} = \sum_{j=1}^{m} \Pr[C_{j}(x) = 1] \cdot w_{j}$$

$$\geq \cdots \geq \rho \cdot \sum_{j=1}^{m} w_{j} \cdot z_{j}^{*} \geq \rho \cdot \text{OPT}$$
we are still here

nonlinear dependence on z_j^*

• So, we have shown $\Pr[C_j(x) = 1] \ge 1 - \exp(-z_j^*)$

nonlinear dependence on z_j^*

48/87

- So, we have shown $\Pr[C_j(x) = 1] \ge 1 \exp(-z_j^*)^{-1}$
- Observe that the function $1 e^{-z}$ is concave; thus, $1 e^{-z} \ge (1 1/e) z$
- Hence, $\Pr[C_j(x) = 1] \ge (1 1/e) z_j^*$

linear dependence on z_i^*

$$\mathbb{E}\left[\sum_{j=1}^{m} C_j(x) \cdot w_j\right] = \sum_{j=1}^{m} \mathbb{E}[C_j(x)] \cdot w_j = \sum_{j=1}^{m} \Pr[C_j(x) = 1] \cdot w_j$$

$$\mathbb{E}\left[\sum_{j=1}^{m} C_j(x) \cdot w_j\right] = \sum_{j=1}^{m} \mathbb{E}[C_j(x)] \cdot w_j = \sum_{j=1}^{m} \Pr[C_j(x) = 1] \cdot w_j$$

$$\geq \sum_{j=1}^{m} \left(1 - \frac{1}{e}\right) z_j^* \cdot w_j$$

$$\mathbb{E}\left[\sum_{j=1}^{m} C_j(x) \cdot w_j\right] = \sum_{j=1}^{m} \mathbb{E}[C_j(x)] \cdot w_j = \sum_{j=1}^{m} \Pr[C_j(x) = 1] \cdot w_j$$

$$\geq \sum_{j=1}^{m} \left(1 - \frac{1}{e}\right) z_j^* \cdot w_j = \left(1 - \frac{1}{e}\right) \cdot \sum_{j=1}^{m} w_j \cdot z_j^*$$

$$\mathbb{E}\left[\sum_{j=1}^{m} C_j(x) \cdot w_j\right] = \sum_{j=1}^{m} \mathbb{E}[C_j(x)] \cdot w_j = \sum_{j=1}^{m} \Pr[C_j(x) = 1] \cdot w_j$$

$$\geq \sum_{j=1}^{m} \left(1 - \frac{1}{e}\right) z_j^* \cdot w_j = \left(1 - \frac{1}{e}\right) \cdot \sum_{j=1}^{m} w_j \cdot z_j^* \geq \left(1 - \frac{1}{e}\right) \cdot \text{OPT}$$

$$\mathbb{E}\left[\sum_{j=1}^{m} C_j(x) \cdot w_j\right] = \sum_{j=1}^{m} \mathbb{E}[C_j(x)] \cdot w_j = \sum_{j=1}^{m} \Pr[C_j(x) = 1] \cdot w_j$$

$$\geq \sum_{j=1}^{m} \left(1 - \frac{1}{e}\right) z_j^* \cdot w_j = \left(1 - \frac{1}{e}\right) \cdot \sum_{j=1}^{m} w_j \cdot z_j^* \geq \left(1 - \frac{1}{e}\right) \cdot \text{OPT}$$

• Notice that $1 - \frac{1}{e} = 0.632 > 0.618$

Choosing the better of two solutions

Choosing the better of two solutions

- Run the algorithm that computes an assignment x^1 by setting each variable to 1 or 0 equiprobably
- Run the randomized rounding algorithm and denote the assignment returned by \boldsymbol{x}^2
- Pick the best among the two solutions

$$\mathbb{E}\left[\max\left\{\sum_{j=1}^{m}C_{j}(x^{1})\cdot w_{j},\sum_{j=1}^{m}C_{j}(x^{2})\cdot w_{j}\right\}\right]$$

$$\mathbb{E}\left[\max\left\{\sum_{j=1}^{m} C_{j}(x^{1}) \cdot w_{j}, \sum_{j=1}^{m} C_{j}(x^{2}) \cdot w_{j}\right\}\right] \geq \mathbb{E}\left[\frac{1}{2}\sum_{j=1}^{m} C_{j}(x^{1}) \cdot w_{j} + \frac{1}{2}\sum_{j=1}^{m} C_{j}(x^{2}) \cdot w_{j}\right]$$

$$\mathbb{E}\left[\max\left\{\sum_{j=1}^{m} C_{j}(x^{1}) \cdot w_{j}, \sum_{j=1}^{m} C_{j}(x^{2}) \cdot w_{j}\right\}\right] \geq \mathbb{E}\left[\frac{1}{2}\sum_{j=1}^{m} C_{j}(x^{1}) \cdot w_{j} + \frac{1}{2}\sum_{j=1}^{m} C_{j}(x^{2}) \cdot w_{j}\right]$$

$$= \frac{1}{2} \sum_{j=1}^{m} \left(\mathbb{E} \left[C_j(x^1) \right] + \mathbb{E} \left[C_j(x^2) \right] \right) \cdot w_j$$

$$\mathbb{E}\left[\max\left\{\sum_{j=1}^{m} C_{j}(x^{1}) \cdot w_{j}, \sum_{j=1}^{m} C_{j}(x^{2}) \cdot w_{j}\right\}\right] \geq \mathbb{E}\left[\frac{1}{2}\sum_{j=1}^{m} C_{j}(x^{1}) \cdot w_{j} + \frac{1}{2}\sum_{j=1}^{m} C_{j}(x^{2}) \cdot w_{j}\right]$$

$$= \frac{1}{2} \sum_{j=1}^{m} (\mathbb{E}[C_j(x^1)] + \mathbb{E}[C_j(x^2)]) \cdot w_j = \frac{1}{2} \sum_{j=1}^{m} (\Pr[C_j(x^1) = 1] + \Pr[C_j(x^2) = 1]) \cdot w_j$$

$$\mathbb{E}\left[\max\left\{\sum_{j=1}^{m} C_{j}(x^{1}) \cdot w_{j}, \sum_{j=1}^{m} C_{j}(x^{2}) \cdot w_{j}\right\}\right] \geq \mathbb{E}\left[\frac{1}{2}\sum_{j=1}^{m} C_{j}(x^{1}) \cdot w_{j} + \frac{1}{2}\sum_{j=1}^{m} C_{j}(x^{2}) \cdot w_{j}\right]$$

$$= \frac{1}{2} \sum_{j=1}^{m} (\mathbb{E}[C_{j}(x^{1})] + \mathbb{E}[C_{j}(x^{2})]) \cdot w_{j} = \frac{1}{2} \sum_{j=1}^{m} (\Pr[C_{j}(x^{1}) = 1] + \Pr[C_{j}(x^{2}) = 1]) \cdot w_{j}$$

$$\geq \dots \geq \rho \cdot \sum_{j=1}^{m} w_{j} \cdot z_{j}^{*} \geq \rho \cdot \text{OPT}$$

Analysis of random assignment

- Recall that we proved $\Pr[C_j(x^1) = 1] = 1 2^{-|C_j|} \ge (1 2^{-|C_j|})z_j^*$
- I.e., the coefficient of $oldsymbol{z}_{oldsymbol{j}}^*$ increases with the number of literals in $oldsymbol{C}_{oldsymbol{j}}$

Analysis of random assignment

- Recall that we proved $\Pr[C_j(x^1) = 1] = 1 2^{-|C_j|} \ge (1 2^{-|C_j|})z_j^*$
- ullet I.e., the coefficient of $oldsymbol{z}_{j}^{*}$ increases with the number of literals in $oldsymbol{C}_{j}$
- Unfortunately, the coefficient of z_j^st in our analysis of randomized rounding does not depend on the number of literals in C_j
- Different analysis of randomized rounding is needed!

- Useful tool: arithmetic-geometric mean inequality
- For any non-negative a_1, a_2, \dots, a_k $\left(\prod_{t=1}^k a_t\right)^{1/k} \leq \frac{1}{k} \sum_{t=1}^k a_t$

$$\Pr[C_j(x^2) = 0] = \prod_{i \in P_j} \Pr[x_i^2 = 0] \cdot \prod_{i \in N_j} \Pr[\bar{x}_i^2 = 0] = \prod_{i \in P_j} (1 - y_i^*) \cdot \prod_{i \in N_j} y_i^*$$

$$\Pr[C_{j}(x^{2}) = 0] = \prod_{i \in P_{j}} \Pr[x_{i}^{2} = 0] \cdot \prod_{i \in N_{j}} \Pr[\bar{x}_{i}^{2} = 0] = \prod_{i \in P_{j}} (1 - y_{i}^{*}) \cdot \prod_{i \in N_{j}} y_{i}^{*}$$

$$\leq \left[\frac{1}{|C_{j}|} \left(\sum_{i \in P_{j}} (1 - y_{i}^{*}) + \sum_{i \in N_{j}} y_{i}^{*} \right) \right]^{|C_{j}|}$$

arithmetic-geometric mean inequality

$$\Pr[C_{j}(x^{2}) = 0] = \prod_{i \in P_{j}} \Pr[x_{i}^{2} = 0] \cdot \prod_{i \in N_{j}} \Pr[\bar{x}_{i}^{2} = 0] = \prod_{i \in P_{j}} (1 - y_{i}^{*}) \cdot \prod_{i \in N_{j}} y_{i}^{*}$$

$$\leq \left[\frac{1}{|C_{j}|} \left(\sum_{i \in P_{j}} (1 - y_{i}^{*}) + \sum_{i \in N_{j}} y_{i}^{*} \right) \right]^{|C_{j}|} = \left[1 - \frac{1}{|C_{j}|} \left(\sum_{i \in P_{j}} y_{i}^{*} + \sum_{i \in N_{j}} (1 - y_{i}^{*}) \right) \right]^{|C_{j}|}$$

arithmetic-geometric mean inequality

$$\Pr[C_{j}(x^{2}) = 0] = \prod_{i \in P_{j}} \Pr[x_{i}^{2} = 0] \cdot \prod_{i \in N_{j}} \Pr[\bar{x}_{i}^{2} = 0] = \prod_{i \in P_{j}} (1 - y_{i}^{*}) \cdot \prod_{i \in N_{j}} y_{i}^{*}$$

$$\leq \left[\frac{1}{|C_{j}|} \left(\sum_{i \in P_{j}} (1 - y_{i}^{*}) + \sum_{i \in N_{j}} y_{i}^{*} \right) \right]^{|C_{j}|} = \left[1 - \frac{1}{|C_{j}|} \left(\sum_{i \in P_{j}} y_{i}^{*} + \sum_{i \in N_{j}} (1 - y_{i}^{*}) \right) \right]^{|C_{j}|}$$
arithmetic-geometric mean inequality

LP constraint for clause C_i

Bounding $\Pr[C_j(x^2) = 1]$

nonlinear dependence on z_i^*

• Hence,
$$\Pr[C_j(x^2) = 1] \ge 1 - \left(1 - \frac{z_j^*}{|c_j|}\right)^{|c_j|}$$

Bounding $\Pr[C_j(x^2) = 1]$

nonlinear dependence on z_i^*

• Hence,
$$\Pr[C_j(x^2) = 1] \ge 1 - \left(1 - \frac{z_j^*}{|C_j|}\right)^{|C_j|}$$

• Observe that the function $1 - \left(1 - \frac{z}{k}\right)^k$ is concave wrt z

• Hence,

$$\Pr[C_j(x^2) = 1] \ge \left(1 - \left(1 - \frac{1}{|C_j|}\right)^{|C_j|}\right) z_j^*$$

 $\begin{array}{c|c}
1 \\
\hline
 & 1$

linear dependence on z_i^*

Putting everything together

So far, we have proved:

•
$$\Pr[C_j(x^1) = 1] \ge \left(1 - 2^{-|C_j|}\right) z_j^*$$
 and $\Pr[C_j(x^2) = 1] \ge \left(1 - \left(1 - \frac{1}{|C_j|}\right)^{|C_j|}\right) z_j^*$

l.e.,

$$\frac{1}{2} \left(\Pr[C_j(x^1) = 1] + \Pr[C_j(x^2) = 1] \right) \ge \left(1 - 2^{-|C_j| - 1} - \frac{1}{2} \left(1 - \frac{1}{|C_j|} \right)^{|C_j|} \right) z_j^* \ge \frac{3}{4} z_j^*$$

Putting everything together

Analysis roadmap (including the missing pieces)

$$\mathbb{E}\left[\max\left\{\sum_{j=1}^{m} C_{j}(x^{1}) \cdot w_{j}, \sum_{j=1}^{m} C_{j}(x^{2}) \cdot w_{j}\right\}\right] \geq \mathbb{E}\left[\frac{1}{2}\sum_{j=1}^{m} C_{j}(x^{1}) \cdot w_{j} + \frac{1}{2}\sum_{j=1}^{m} C_{j}(x^{2}) \cdot w_{j}\right]$$

$$= \frac{1}{2} \sum_{j=1}^{m} (\mathbb{E}[C_{j}(x^{1})] + \mathbb{E}[C_{j}(x^{2})]) \cdot w_{j} = \frac{1}{2} \sum_{j=1}^{m} (\Pr[C_{j}(x^{1}) = 1] + \Pr[C_{j}(x^{2}) = 1]) \cdot w_{j}$$

$$\geq \frac{3}{4} \cdot \sum_{j=1}^{m} w_{j} \cdot z_{j}^{*} \geq \frac{3}{4} \cdot \text{OPT}$$

Nonlinear randomized rounding

Nonlinear randomized rounding

- Again, use the optimal fractional solution y^*, z^* of the linear programming relaxation
- Use a rounding function f
- Set variable x_i to true with probability $f(y_i^*)$ and to false with probability $1 f(y_i^*)$, independently on the other variables
- Our goal: a 3/4-approximation algorithm

The rounding function f

- *f* is a function from [0,1] to [0,1]
- Select f such that $1 4^{-y} \le f(y) \le 4^{y-1}$ for every $y \in [0,1]$
- f does exists (why?)

$$\Pr[C_j(x) = 0] = \prod_{i \in P_j} \Pr[x_i = 0] \cdot \prod_{i \in N_j} \Pr[\bar{x}_i = 0]$$

by the definition of

Analysis of nonlinear rounding / nonlinear rounding
$$\Pr[C_j(x) = 0] = \prod_{i \in P_j} \Pr[x_i = 0] \cdot \prod_{i \in N_j} \Pr[\bar{x}_i = 0] = \prod_{i \in P_j} (1 - f(y_i^*)) \cdot \prod_{i \in N_j} f(y_i^*)$$

Analysis of nonlinear rounding / nonlinear rounding

by the definition of

$$\Pr[C_j(x) = 0] = \prod_{i \in P_j} \Pr[x_i = 0] \cdot \prod_{i \in N_j} \Pr[\bar{x}_i = 0] = \prod_{i \in P_j} (1 - f(y_i^*)) \cdot \prod_{i \in N_j} f(y_i^*)$$

$$\leq \prod_{i \in P_j} 4^{-y_i^*} \cdot \prod_{i \in N_j} 4^{y_i^* - 1}$$

by the properties of the rounding function

Analysis of nonlinear rounding / nonlinear rounding

by the definition of

$$\Pr[C_j(x) = 0] = \prod_{i \in P_j} \Pr[x_i = 0] \cdot \prod_{i \in N_j} \Pr[\bar{x}_i = 0] = \prod_{i \in P_j} (1 - f(y_i^*)) \cdot \prod_{i \in N_j} f(y_i^*)$$

$$\leq \prod_{i \in P_j} 4^{-y_i^*} \cdot \prod_{i \in N_j} 4^{y_i^* - 1} = 4^{-\left(\sum_{i \in P_j} y_i^* + \sum_{i \in N_j} (1 - y_i^*)\right)} \leq 4^{-z_j^*}$$

by the properties of the rounding function LP constraint for clause C_i

nonlinear dependence on z_i^*

• Hence,
$$\Pr[C_j(x) = 1] \ge 1 - 4^{-z_j^*}$$

Analysis of nonlinear rounding nonlinear dependence on z_i^*

- Hence, $\Pr[C_j(x) = 1] \ge 1 4^{-z_j^*}$
- Again, the function $1 4^{-z}$ is concave and satisfies $1 4^{-z} \ge 3z/4$

• I.e.,
$$\Pr[C_j(x) = 1] \ge \frac{3}{4}z_j^*$$

linear dependence on z_j^*

$$\mathbb{E}\left[\sum_{j=1}^{m} C_j(x) \cdot w_j\right] = \sum_{j=1}^{m} \mathbb{E}[C_j(x)] \cdot w_j = \sum_{j=1}^{m} \Pr[C_j(x) = 1] \cdot w_j$$

$$\mathbb{E}\left[\sum_{j=1}^{m} C_j(x) \cdot w_j\right] = \sum_{j=1}^{m} \mathbb{E}[C_j(x)] \cdot w_j = \sum_{j=1}^{m} \Pr[C_j(x) = 1] \cdot w_j$$

$$\geq \frac{3}{4} \cdot \sum_{j=1}^{m} w_j \cdot z_j^* \geq \frac{3}{4} \cdot \text{OPT}$$

Are improvements possible?

- MAXSAT instance: $C_1 = x_1 \vee x_2$, $C_2 = x_1 \vee \bar{x}_2$, $C_3 = \bar{x}_1 \vee x_2$, $C_4 = \bar{x}_1 \vee \bar{x}_2$, unit weights
- OPT = 3
- LP objective value = 4 (by setting $y_1 = y_2 = 1/2$ and $z_i = 1, \forall i$)
- For this instance, a (nonlinear) randomized rounding algorithm with

approximation ratio
$$\rho > 3/4$$
 would imply
$$\mathbb{E}\left[\sum_{j=1}^{m} C_j(x) \cdot w_j\right] \ge \cdots \ge \rho \cdot \sum_{j=1}^{m} w_j \cdot z_j^* > \text{OPT}$$

i.e., a contradiction

The best approx. ratio we can hope for is the integrality gap of the LP

Last slide

- Maximum Satisfiability
- Simple randomized algorithms
- Linear programming and randomized rounding