

cs4341 Digital Logic & Computer Design

Lecture Notes 14

Omar Hamdy

Assistant Professor

Department of Computer Science

Review: Synchronous Sequential Circuits

- > Synchronous sequential circuits mean:
 - ➤ Only at the rising edge of the clock, registers values along with other inputs can change "the state" of the circuit (values stored in registers).
 - There are finite number of states the circuit can be in $\{S_0, S_1, ..., S_{k-1}\}$
 - Every circuit element is either a register or a combinational circuit
 - > At least one circuit element is a register
 - All registers receive the same clock signal
 - > Every cyclic path contains at least one register

Finite State Machines

- Finite state machine is a mathematical model of computation to describe the system different states.
- FSM can be in exactly one state out of "finite" number of states at any given time.
- FSM is part of the automata theory, which deals with the logic of computation with respect to simple machines.

Finite State Machines

- Finite state machine is composed of a known (finite) number of states
- One of them is special and known as the start state
- ➤ It has set of transitions which determines how to move from one state to the next
- Conditions (inputs) that tells the machine how to move from one state to the next
- ➤ Accepting state (in some types of FSM)

FSM Example

- Design an FSM that validates that a password meets the following criteria:
 - > The password must have a sequence in it which:
 - > Starts with an alphabet (A)
 - Has at least one number (#)
 - Has at least one symbol (\$)

FSM Sequential Circuits Representation

- Synchronous sequential circuits can be represented in the form of finite state machines:
 - > The machine has M inputs, N outputs, k registers, a clock and optionally a reset signal
 - > k registers means the machine has 2k unique states it could be in.
 - > The machine can be represented using:
 - > Two combinational logic blocks: next state logic and output logic
 - Register block to store the state
 - > There are two classes of FSM:
 - Moore machines: output depends only on current state
 - Mealy machines: output depends on both current state and current input

FSM Sequential Circuits Representation

Moore machine

Mealy machine

FSM Design Process

- > The design of an FSM includes the following steps:
 - > System level design: a high-level description of the systems including inputs, outputs and operations
 - > State transition diagram: description of all the states the system can be at with the possible transitions and transition conditions.
 - Assign numbers to all the states. This is crucial because it will tell how many memory cells are needed for the system.
 - Create Truth tables
 - Design the logic using K-Map

Example: Traffic Light Design

- \triangleright Design a system to control two traffic lights L_A and L_B.
- ➤ The traffic lights are connected to two sensors T_A and T_B, where each sensor is TRUE if a car is present, and FALSE if the street is empty (inputs)
- Each traffic light receives digital input specifying the color it should display: R, Y, G (outputs)
- Rule is simple: a green light stays green as long as there are cars on that street. Otherwise, it switches to the other light.
- ➤ The system is linked to a 5-second clock, where at each rising edge of the clock, the output might change based on the input and the current state.
- The system has a reset button. When pressed, it resets the outputs to L_A = Green and L_B = Red
- So, what is the system-level design looks like?

Traffic Light: State Transition Diagram

- How do we determine a state?
 - Using the different possible (legal) outputs the system produces
- How many states do we have?

State	L_A	L _B
SO	Green	Red
S1	Yellow	Red
S2	Red	Green
S3	Red	Yellow

- What are the transitioning conditions?
- How many bits of memory are needed?

To Do List

- ➤ Review lecture notes
- ➤ Study chapter 3