Lab#2 Operational Amplifier

Leonardo Fusser (1946995)

Objectives:

- Design a non-inverting voltage amplifier
- Take voltage and current measures on the amplifier
- Test the limits of the amplifier

Material: Simulated on Mindi

To hand in to Team Assignment

1- This document with the answers and measures. Copy-paste screenshots when required.

1

- 2- You provide comments to all screenshots
- 3- Upload the wxsch project file

Lab preparation: Fill in the calculate column for all tables

Lab work

Part 1: Non-inverting amplifier

In this part of the lab, you are going to build a non-inverting op-amp based amplifier to amplify an AC signal.

Wire the following circuit:

Set Vs to 200mV peak:

Run the simulator for at least 2 cycles:

2 2023-06-14

247-405-VA Circuits and Embedded Systems

Fill up the following table. The grey area should be calculated.

To measure peak values:

- 1. Undock the Waveform Viewer
- 2. Waveform Viewer -> Measure -> Maximum
- 3. Select all measures

	Measures	Calculations
V _S peak	199.96771mV	200mV
V _{out} peak	3.9983515V	VR1(p) + VR2(p) = 3.79843399V + 199.91751mV
V _{R1} peak	199.91751mV	IR2(p) * R2 = 198.9782uA * 1K = 198.9782mV
V _{R2} peak	3.79843399V	Vout(p) - VR2(p) = 3.9983515V - 199.91751mV
Acl	~20	Vout(p) / Vs(p) = 3.9983515V / 199.96771mV
I _{R2} peak	198.97804uA	VR1(p) / R1 = 3.79843399V / 19KΩ = 199.917uA
I _{R1} peak	198.9782uA	VR2(p) / R2 = 199.91751mV / 1KΩ = 199.917uA
I- peak	4.5141708nA	N/A

3

Take a screenshot of Vs and Vout waveforms stacked on top of one another.

Red waveform: Vout & Green waveform: Vs. Vout = ~4Vp & Vs = ~200mVp

4

Part 2: Vout max

In this section you will look at the effect of connecting a load to the circuit.

Then you are going to increase Vs and see whether Vout reaches its maximum value.

Keeping Vs at 200mV peak, load the output with a 30 Ohm value.

Run the simulator and take a screenshot of Vs and Vout waveforms on top of one another.

<u>Red waveform</u>: Vout & <u>Green waveform</u>: Vs. Vout = \sim 1Vp & Vs = \sim 200mVp. Above is a good example when the Op-Amp is in "protection mode". The load connected to the Op-Amp is too much to handle causing the Vout signal to look saturated. The Op-Amp is limiting the load to 1Vp to prevent damage to the Op-Amp itself. Below are calculations for further explanation.

From that waveform find Io max in source mode for this Op-Amp? Explain

We can observe the maximum tolerable output current of the Op-Amp by calculating as follows:

$$I_{O(MAX)} = \frac{1V_P}{30\Omega} = \sim 33.3mA$$

From the calculation above, we can see that the maximum amount of current that the Op-Amp can source is around 33mA. Any possible increase in current can possibly damage the Op-Amp or any other components in the circuit. "Source mode" is the opposite term to "sink/sink mode" where the Op-Amp is providing the power to power the load connected to the output of the Op-Amp.

5 2023-06-14

247-405-VA Circuits and Embedded Systems

Now, remove the load from the circuit. Then increase Vin to 1 Volt peak.

Run the simulator and take a screenshot of Vs and Vout waveforms stacked on top of one another.

<u>Red waveform</u>: Vout & <u>Green waveform</u>: Vs. Vout = \sim 10Vp & Vs = \sim 1Vp. Above is a good example when there is no load connected to the output of the Op-Amp. The output of the Op-Amp looks saturated because the Op-Amp is limiting the output from exceeding it's supply voltage. This phenomenon can be expressed as follows:

$$+V_{OUT(MAX)} = V_{CC} - 2V$$
$$-V_{OUT(MAX)} = -V_{CC} + 2V$$

Substituting for our values yields:

$$+V_{OUT(MAX)} = 12V - 2V = +10V_P$$

 $-V_{OUT(MAX)} = -12V + 2V = -10V_P$

These values can be seen in the above screenshot.

You must give a demo before leaving the classroom.

6 2023-06-14

After lab questions

Compare Io max measured with the datasheets. Data LF412 datasheets are uploaded in Teams.

The maximum output current that was calculated from above shows that the Op-Amp can tolerate loads up to around 33mA. Looking at the LF412's datasheet, we can see the suggested maximum tolerable output current:

Based on the information provided from the datasheet above, the suggested maximum output current this Op-Amp can handle is anywhere from 0mA to 30mA depending on ambient environment.

7