Vybrané slajdy k přednášce z předmětu

NUMERICKÉ METODY (12NME1, 12NMEA)

na KFE FJFI ČVUT v Praze

3. Aproximace funkcí

Pracovní verze, 1. března 2024. Bude průběžně aktualizováno.

!!! TOTO NEJSOU SKRIPTA!!!

Tento dokument není náhradou přednášek, pouze doplňkem. Neobsahuje všechna vysvětlení a odvození. Nepokrývá veškerou náplň předmětu, jejíž zvládnutí je nutné ke složení zkoušky.

Primárním zdrojem informací jsou přednášky, účast na nich důrazně doporučuji.

Opravy a připomínky prosím na pavel.vachal@fjfi.cvut.cz

Příklady aproximujících funkcí

• Polynom

$$\Phi_m(x) = c_0 + c_1 x + c_2 x^2 + \dots + c_m x^m$$

• Zobecněný polynom

$$\Phi_m(x) = c_0 g_0(x) + c_1 g_1(x) + \dots + c_m g_m(x),$$

kde $g_0(x), \dots, g_m(x)$ je báze m+1 lineárně nezávislých funkcí.

(Ty by měly být jednoduché a dostatečně hladké.)

• Racionální lomená funkce

$$\Phi_m(x) = \frac{a_0 + a_1 x + a_2 x^2 + \dots + a_k x^k}{b_0 + b_1 x + b_2 x^2 + \dots + b_l x^l}, \qquad m = k + l$$

Typy aproximací

- Interpolační
 - Globální (Lagrange, Newton, Hermite) vs. lokální (např. spline)
 - Interpolace vs. extrapolace
- Čebyševovy ("nejlepší stejnoměrná aproximace")
 - minimalizujeme

$$\max_{x \in [a,b]} |f(x) - \Phi(x)|$$

- $-\Phi(x_i)$ obecně $\neq f(x_i)$
- vhodné pro výpočet hodnot funkcí i jejich derivací
- volíme optimální polohy uzlů x_0, \ldots, x_n tedy nejsou dané předem!
- Aproximace metodou nejmeších čtverců
 - minimalizujeme (spojitě)

nebo (diskrétně)
$$\int_{a}^{b} w(x) [f(x) - \Phi(x)]^{2} dx$$
$$\sum_{i=0}^{n} w_{i} [f(x_{i}) - \Phi(x_{i})]^{2}$$
$$- \Phi(x_{i}) \text{ obvykle} \neq f(x_{i})$$

Lagrangeova interpolace

$$L_3(x) = \sum_{i=0}^{3} p_i(x),$$

$$p_i(x_j) = \begin{cases} y_i & \text{pro } i = j \\ 0 & \text{pro } i \neq j \end{cases}$$

Jak najít
$$p_i(x)$$
?
• $p_0(x) = (?) \cdot (x - x_1)(x - x_2)(x - x_3)$

$$p_0(x_0) \stackrel{!}{=} y_0 \qquad \Rightarrow \qquad (?) = \frac{y_0}{(x_0 - x_1)(x_0 - x_2)(x_0 - x_3)}$$

•
$$p_1(x) = (?) \cdot (x - x_0) \, (x - x_2)(x - x_3)$$

 $p_1(x_1) \stackrel{!}{=} y_1 \implies (?) = \frac{y_1}{(x_1 - x_0) \, (x_1 - x_2)(x_1 - x_3)}$

Lagrangeův polynom

• Zavedeme pomocnou funkci

$$\Gamma_{i}(x) = \frac{(x - x_{0}) (x - x_{1}) \dots (x - x_{i-1}) (x - x_{i+1}) \dots (x - x_{n})}{(x_{i} - x_{0}) (x_{i} - x_{1}) \dots (x_{i} - x_{i-1}) (x_{i} - x_{i+1}) \dots (x_{i} - x_{n})}$$

$$= \frac{\omega_{n}(x)}{(x - x_{i}) \omega'_{n}(x_{i})},$$

kde

$$\omega_n(x) = (x - x_0)(x - x_1)\dots(x - x_n).$$

- POZN.: Vidíme, že v n+1 uzlech x_0, \ldots, x_n platí $\Gamma_i(x_j) = \begin{cases} 1 & \text{pro } i = j \\ 0 & \text{pro } i \neq j \end{cases}$.
- Pak Lagrangeův interpolační polynom n-tého stupně je

$$L_n(x) = \sum_{i=0}^n y_i \Gamma_i(x) = \sum_{i=0}^n y_i \frac{\omega_n(x)}{(x - x_i) \omega'_n(x_i)}.$$

 $\bullet\,$ Pro ekvidistantní uzly, tedy když $h=x_{i+1}-x_i,\,$ definujeme proměnnou $t=\frac{x-x_0}{h}\,$ a máme

$$L_n(x) = L_n(x_0 + th) = \sum_{i=0}^n y_i \frac{t(t-1)\dots(t-n)}{(t-i)i!(n-i)!(-1)^{n-i}}.$$

Lagrangeova interpolace - alternativa?

Nevillův algoritmus ("iterovaná interpolace")

Pro postupná přiblížení

$$L_{i,k}(x) = L_i(x; x_i, x_{i-1}, \dots, x_{i-k}, y_i, y_{i-1}, \dots, y_{i-k})$$

platí rekurentní vztah

$$L_{i,k}(x) = \frac{(x_i - x) L_{i-1,k-1} - (x_{i-k} - x) L_{i,k-1}}{x_i - x_{i-k}}$$

Mezivýsledky zapisujeme do tabulky

X	у	k=0	k=1		k=i	k=i+1		k=n
x_0	y_0	$L_{0,0}$						
x_1	y_1	$L_{1,0}$	$L_{1,1}$					
:	:	:	:	٠				
x_i	y_i	$L_{i,0}$	$L_{i,1}$		$L_{i,i}$			
x_{i+1}	y_{i+1}	$L_{i+1,0}$	$L_{i+1,1}$		$L_{i+1,i}$	$L_{i+1,i+1}$		
:	:	:	:		:		·	
x_n	y_n	$L_{n,0}$	$L_{n,1}$		$L_{n,i}$	$L_{n,i+1}$		$L_{n,n}$

nebo

$$L_n(x) = L_{n,n}(x)$$

Nevillův algoritmus - praktická implementace

pro diference

$$C_{m,i} = L_{i+m,m} - L_{i+m-1,m-1},$$

 $D_{m,i} = L_{i+m,m} - L_{i+m,m-1},$

platí rekurentní vztah

$$C_{m+1,i} = \frac{(x_i - x) (C_{m,i+1} - D_{m,i})}{x - x_{i+m+1}} = (x_i - x) \frac{C_{m,i+1} - D_{m,i}}{x - x_{i+m+1}},$$

$$D_{m+1,i} = \frac{(x_{i+m+1} - x) (C_{m,i+1} - D_{m,i})}{x - x_{i+m+1}} = (x_{i+m+1} - x) \frac{C_{m,i+1} - D_{m,i}}{x - x_{i+m+1}}.$$

- $y_0(x) = L_{i,0} = C_{0,i} = D_{0,i} = y_i$
- $y_{m+1}(x) = y_m + \delta y_{m+1}$, za δy_{m+1} vezmeme $C_{m+1,k}$ nebo $D_{m+1,k}$
- $y(x) = y_n(x) \delta y_n$

Značení v Numerical Recipes:
$$x_2: \quad y_2 = P_2 \qquad P_{123}$$

$$P_{23} \qquad P_{234}$$

$$x_3: \quad y_3 = P_3 \qquad P_{234}$$

$$x_4$$
: $y_4 = P_4$

 x_1 : $y_1 = P_1$

Odhad chyby polynomiální interpolace

• Nechť

 $\diamond f(x)$ má na intervalu $\langle a,b\rangle$ spojité derivace až do n-tého řádu včetně

 $\diamond f^{(n+1)}(x)$ existuje na všech bodech intervalu (a,b)

 $\diamond L_n(x)$ je interpolační polynom pro funkci f(x)

 $\diamond x_0, \dots, x_n \in \langle a, b \rangle$ jsou uzlové body.

Potom je chyba aproximace dána vztahem

$$R(x) = f(x) - L_n(x) = \omega_n(x) \frac{f^{(n+1)}(\xi)}{(n+1)!},$$

kde $\xi \in \langle \min(x, x_0, \dots, x_n), \max(x, x_0, \dots, x_n) \rangle$.

• Protože ξ neznáme, použijeme odhad:

Jestliže existuje konstanta M_{n+1} taková, že $\forall x \in \langle a, b \rangle$, $|f^{(n+1)}(x)| \leq M_{n+1}$, potom

$$|R(x)| \leq \frac{M_{n+1}}{(n+1)!} \max_{x \in \langle a,b \rangle} |\omega_n(x)|.$$

Lagrangeova interpolace - příklad I

Lagrangeova interpolace - příklad II

Lagrangeova interpolace - příklad III

Konvergence polynomiální interpolace

- Pro ekvidistantní uzly:
 - Uvažujme konstantní interval $\langle a, b \rangle$
 - Nechť počet ekvidistantních uzlů $(n+1) \to \infty$, tedy $h = \frac{b-a}{n} \to 0$
 - Pak konvergence $L_n(x) \to f(x)$ je zaručena pro funkce analytické (mající komplexní derivaci) v celé komplexní rovině s výjimkou ∞
 - Jinak není zaručena ani bodová konvergence interpolačního polynomu k funkci
- Pro neekvidistantní uzly může být situace lepší:
 - Např. pro uzly volené tak, že

$$x_i = \frac{a+b}{2} + \frac{b-a}{2} \cos\left(\frac{2i+1}{2(n+1)}\pi\right),$$
 kde $i = 0, 1, \dots, n,$

konverguje pro $n \to \infty$ interpolační polynom k funkci pro všechny funkce třídy C^1 na intervalu $\langle a, b \rangle$.

(Touto volbou uzlů totiž minimalizujeme $\max_{x \in \langle a,b \rangle} |\omega_n(x)|$.)

 \rightarrow aproximace Čebyševovými polynomy, viz později

Newtonův interpolační polynom

• Analyticky se jedná o Lagrangeův polynom zapsaný v jiném tvaru

$$N_n(x) = a_0 + a_1 (x - x_0) + a_2 (x - x_0) (x - x_1) + a_2 (x - x_0) (x - x_1) + a_n (x - x_0) (x - x_1) \dots (x - x_{n-1}),$$

kde koeficienty a_i jsou vyjádřeny pomocí konečných diferencí - viz dále

• Způsob numerického výpočtu příslušný k tomuto zápisu má ovšem řadu výhod

Poměrné a obyčejné diference

• Poměrné diference

$$\diamond$$
 1. řádu: $f(x_i, x_{i+1}) = \frac{y_{i+1} - y_i}{x_{i+1} - x_i}$

$$\diamond$$
 k-tého řádu rekurentně:
$$f(x_i, x_{i+1}, \dots, x_{i+k}) = \frac{f(x_{i+1}, \dots, x_{i+k}) - f(x_i, \dots, x_{i+k-1})}{x_{i+k} - x_i},$$

tedy např. poměr. dif. 2. řádu:
$$f(x_i, x_{i+1}, x_{i+2}) = \frac{\frac{y_{i+2} - y_{i+1}}{x_{i+2} - x_{i+1}} - \frac{y_{i+1} - y_i}{x_{i+1} - x_i}}{x_{i+2} - x_i}$$
.

 \diamond POZN.: vzorec pro k-tou poměrnou diferenci lze zapsat jako

$$f(x_i, x_{i+1}, \dots, x_{i+k}) = \sum_{\substack{j=0 \ m=0 \ m\neq j}}^k \frac{y_{i+j}}{\prod_{\substack{m=0 \ m\neq j}} (x_{i+j} - x_{i+m})}.$$

• Obyčejné diference

$$\diamond$$
 1. řádu: $\Delta^1 f_i = y_{i+1} - y_i$

$$\diamond$$
 k-tého řádu rekurentně: $\Delta^k f_i = \Delta^{k-1} f_{i+1} - \Delta^{k-1} f_i$

tedy např. obyč. dif. 2. řádu:
$$\Delta^2 f_i = (y_{i+2} - y_{i+1}) - (y_{i+1} - y_i) = y_{i+2} - 2y_{i+1} + y_i$$
.

Newtonův interpolační polynom

• Zápis Newtonova polynomu pomocí poměrných diferencí:

$$N_n(x) = f(x_0) + + (x - x_0) f(x_0, x_1) + + (x - x_0) (x - x_1) f(x_0, x_1, x_2) + + \dots + + (x - x_0) (x - x_1) \dots (x - x_{n-1}) f(x_0, x_1, \dots, x_n)$$

• V případě ekvidistantních uzlů se vzorec zjednoduší pomocí obyčejných diferencí na

$$N_n(x) = f(x_0) + \frac{t}{1!} \Delta^1 f_0 + \frac{t(t-1)}{2!} \Delta^2 f_0 + \dots + \frac{t(t-1)(t-n+1)}{n!} \Delta^n f_0$$

• POZN.: Newtonův interp. polynom pro uzly předcházející x_0 ("Newtonův polynom vzad"):

$$N_{n}(x) = f(x_{0}) +$$

$$+ (x - x_{0}) f(x_{-1}, x_{0}) +$$

$$+ (x - x_{0}) (x - x_{-1}) f(x_{-2}, x_{-1}, x_{0}) +$$

$$+ \dots +$$

$$+ (x - x_{0}) (x - x_{-1}) \dots (x - x_{-n+1}) f(x_{-n}, \dots, x_{-1}, x_{0})$$

Interpolace racionální lomenou funkcí

Je zadáno n+1 bodů. Pak můžeme interpolovat funkcí

$$R_{s,t}(x) = \frac{P_s(x)}{Q_t(x)} = \frac{p_0 + p_1 x + \dots + p_s x^s}{q_0 + q_1 x + \dots + q_t x^t},$$

kde s + t = n.

Hermiteova interpolace

$$H_n(x) = \underbrace{L_m(x)}^{\text{prochází uzly } x_i} + \underbrace{\omega_m(x) H_{n-m-1}(x)}^{\text{nulový v uzlech}} + \underbrace{\omega_m(x) H_{n-m-1}(x)}^{\text{prochází uzly } x_i}$$

$$y'_{i} \stackrel{!}{=} H'_{n}(x_{i}) = L'_{m}(x_{i}) + \omega'_{m}(x_{i}) H_{n-m-1}(x_{i}) + \underbrace{\omega_{m}(x_{i}) H'_{n-m-1}(x_{i})}_{\text{a proto}}$$

$$H_{n-m-1}(x_i) = \underbrace{\frac{y_i' - L_m'(x_i)}{\omega_m'(x_i)}}_{\text{OZD. } z_i}$$

• $H_n(x)$ splňuje podmínku

$$H_n(x_i) = y_i$$
 pro všechny uzly $i = 0, ..., m$ (1)

• dále chceme splnit

$$H'_{n}(x_{i}) = y'_{i},$$

$$H''_{n}(x_{i}) = y''_{i},$$

$$\vdots \qquad \text{pro všechny uzly} \qquad i = 0, \dots, m \qquad (2)$$

$$H_{n}^{(\alpha_{i})}(x_{i}) = y_{i}^{(\alpha_{i})}$$

neboli chceme

$$y'_{i} = H'_{n}(x_{i}) = L'_{m}(x_{i}) + \omega'_{m}(x_{i}) H_{n-m-1}(x_{i}),$$

$$y''_{i} = H''_{n}(x_{i}) = L''_{m}(x_{i}) + \omega''_{m}(x_{i}) H_{n-m-1}(x_{i}) + 2 \omega'_{m}(x_{i}) H'_{n-m-1}(x_{i}),$$

$$\vdots$$

$$y_{i}^{(\alpha_{i})} = H_{n}^{(\alpha_{i})}(x_{i}) = L_{m}^{(\alpha_{i})}(x_{i}) + \omega_{m}^{(\alpha_{i})}(x_{i}) H_{n-m-1}(x_{i}) + \dots$$

Z toho vyjádříme derivace $H_{n-m-1}(x_i)$ a dostaneme rovnice

$$H_{n-m-1}(x_i) = \frac{y_i' - L_m'(x_i)}{\omega_m'(x_i)} \stackrel{\text{ozn.}}{\equiv} z_i,$$

$$H'_{n-m-1}(x_i) = \frac{y_i'' - L_m''(x_i) - \omega_m''(x_i) H_{n-m-1}(x_i)}{2 \omega_m'(x_i)}$$

$$= \frac{y_i'' - L_m''(x_i) - \omega_m''(x_i) \overline{z_i}}{2 \omega_m'(x_i)} \stackrel{\text{ozn.}}{\equiv} z_i',$$

$$\vdots$$

$$H_{n-m-1}^{(\alpha_i-1)}(x_i) = \frac{y_i^{(\alpha_i)} - L_m^{(\alpha_i)}(x_i) - \dots}{\alpha_i \omega_i'(x_i)} \stackrel{\text{ozn.}}{\equiv} z_i^{(\alpha_i-1)}$$

pro sestrojení polynomu $H_{n-m-1}(x)$. Ty jsou analogické rcím (1),(2) pro sestrojení $H_n(x)$.

Interpolační spline

- Lokální interpolace taková, že
 - prochází všemi uzly, tedy $\forall i, f(x_i) = y_i$
 - v uzlech má spojitou alespoň první derivaci, tedy $\forall i, \lim_{x \to x_{i-}} f'(x) = \lim_{x \to x_{i+}} f'(x)$
- V každém subintervalu $[x_i, x_{i+1}]$ tedy klademe 4 podmínky:

► hodnota
$$y_i$$

► hodnota y_{i+1}

► $y'_{i+} = y'_{i-}$

► $y'_{(i+1)+} = y'_{(i+1)-}$

Proto použijeme bazické funkce se čtyřmi volitelnými parametry

- Okraje
 - -pojem spojitosti derivací zde nemá smysl $\ \Rightarrow\$ musíme dodefinovat2podmínky
 - ideální je když známe přesné hodnoty derivací: $y'(x_0) = y'_0$ a/nebo $y'(x_n) = y'_n$
 - když je neznáme, zadáme $y''_0 = 0$, resp. $y''_n = 0$
 - $P\check{r}irozen\acute{y} spline: y_0'' = y_n'' = 0$

Odvození konstrukce kubického splinu

 \diamond Druhá derivace v intervalu $[x_j,x_{j+1}]$ je lineární funkce, tedy

$$y'' = y''_{j} + \frac{x - x_{j}}{x_{j+1} - x_{j}} (y''_{j+1} - y''_{j}) = \underbrace{\frac{x_{j+1} - x}{x_{j+1} - x_{j}}}_{\text{OZn. } A(x)} y''_{j} + \underbrace{\frac{x - x_{j}}{x_{j+1} - x_{j}}}_{\text{OZn. } B(x) = 1 - A(x)} y''_{j+1}$$

$$= A(x)y''_{j} + B(x)y''_{j+1}.$$

♦ Všimněme si, že

$$A(x_j) = 1,$$
 $A(x_{j+1}) = 0,$ $B(x_j) = 0,$ $B(x_{j+1}) = 1.$

 \diamond Hodnoty y_j'' a y_{j+1}'' nyní bereme jako konstanty. Dále označíme $\Delta_j = x_{j+1} - x_j$. Protože

$$\int A(x) dx = -\frac{\Delta_j}{2} A(x)^2 + Q_{A1}, \quad \int \left(\int A(x) dx \right) dx = \frac{\Delta_j^2}{6} A(x)^3 + Q_{A1}x + Q_{A2}$$
$$\int B(x) dx = \frac{\Delta_j}{2} B(x)^2 + Q_{B1}, \quad \int \left(\int B(x) dx \right) dx = \frac{\Delta_j^2}{6} B(x)^3 + Q_{B1}x + Q_{B2}$$

(kde Q jsou konstanty), máme po dvou integracích

$$y = \frac{\Delta_j^2}{6} A(x)^3 y_j'' + \frac{\Delta_j^2}{6} B(x)^3 y_{j+1}'' + Kx + L,$$
 (3)

kde Kx + L zahrnuje Q_{A1} , Q_{A2} , Q_{B1} a Q_{B2} .

Odvození kubického splinu (pokračování)

 \diamond Po dosazení $y(x_i) = y_i$ a $y(x_{i+1}) = y_{i+1}$ dostaneme

$$y_j = \frac{\Delta_j^2}{6} \cdot 1 \cdot y_j'' + 0 + Kx_j + L = \frac{\Delta_j^2}{6} y_j'' + Kx_j + L$$

$$y_{j+1} = 0 + \frac{\Delta_j^2}{6} \cdot 1 \cdot y_{j+1}'' + Kx_{j+1} + L = \frac{\Delta_j^2}{6} y_{j+1}'' + Kx_{j+1} + L,$$

odkud vyjádříme K a L jako

$$K = \frac{y_{j+1} - y_j}{\Delta_j} - \frac{\Delta_j}{6} \left(y''_{j+1} - y''_j \right)$$
$$L = \frac{x_{j+1}y_j - x_j y_{j+1}}{\Delta_j} + \frac{\Delta_j}{6} \left(x_j y''_{j+1} - x_{j+1} y''_j \right)$$

a tedy

$$Kx + L = -\frac{\Delta_j^2}{6} \left(A(x)y_j'' + B(x)y_{j+1}'' \right) + A(x)y_j + B(x)y_{j+1}.$$

♦ Po dosazení zpět do (3) máme

$$y = \underbrace{\Delta_{j}^{2} \frac{A(x)^{3} - A(x)}{6} y_{j}''}_{\text{OZN. } C(x)} + \underbrace{\Delta_{j}^{2} \frac{B(x)^{3} - B(x)}{6} y_{j+1}''}_{\text{OZN. } D(x)} y_{j+1}'' + A(x)y_{j} + B(x)y_{j+1}$$

$$= A(x)y_{j} + B(x)y_{j+1} + C(x)y_{j}'' + D(x)y_{j+1}''.$$

$$(4)$$

$$\diamond$$
 Derivace je $y'(x) = -\frac{1}{\Delta_i}y_j + \frac{1}{\Delta_i}y_{j+1} - \Delta_j \frac{3A(x)^2 - 1}{6}y_j'' + \Delta_j \frac{3B(x)^2 - 1}{6}y_{j+1}''$.

Odvození kubického splinu (pokračování)

♦ Hodnoty konstant y_j'' a y_{j+1}'' určíme z podmínky spojitosti první derivace: $y'(x_j)_- = y'(x_j)_+$ pro $\forall j$. Po dosazení máme

$$\frac{y_{j+1} - y_j}{\Delta_j} - \Delta_j \frac{3 \cdot 1^2 - 1}{6} y_j'' + \Delta_j \frac{3 \cdot 0^2 - 1}{6} y_{j+1}'' =$$

$$= \frac{y_j - y_{j-1}}{\Delta_{j-1}} - \Delta_{j-1} \frac{3 \cdot 0^2 - 1}{6} y_{j-1}'' + \Delta_{j-1} \frac{3 \cdot 1^2 - 1}{6} y_j''$$

neboli

$$\frac{y_{j+1} - y_j}{\Delta_j} - \frac{\Delta_j}{3} y_j'' - \frac{\Delta_j}{6} y_{j+1}'' = \frac{y_j - y_{j-1}}{\Delta_{j-1}} + \frac{\Delta_{j-1}}{6} y_{j-1}'' + \frac{\Delta_{j-1}}{3} y_j''$$

a po převedení výrazů s druhými derivacemi na jednu stranu máme

$$\frac{\Delta_{j-1}}{6}y_{j-1}'' + \frac{\Delta_{j-1} + \Delta_j}{3}y_j'' + \frac{\Delta_j}{6}y_{j+1}'' = \frac{y_{j+1} - y_j}{\Delta_i} - \frac{y_j - y_{j-1}}{\Delta_{j-1}}$$

pro $j=1,\ldots,n-1$, což je lineární systém s tridiagonální, diagonálně dominantní maticí. Ten vyřešíme a získáme y_j'' pro $j=0,\ldots,n$.

 \diamond Vypočtené hodnoty y_j'' dosadíme do (4), čímž je spline hotov. Můžeme jej tedy vyhodnotit pro libovolné $x \in [x_0, x_n]$.

Konvergence kubického splinu

- Nechť f(x) je třídy C^q na intervalu [a,b] (tzn. má spojité derivace až do q-té včetně), kde q=0,1,2,3,4.
- Dále nechť interval [a, b] je rozdělen na podintervaly délky h_i , kde $i = 1, \ldots, n$ a $\max_i h_i = h$.
- Dále mějme konstantu K, pro kterou platí $K \geq \frac{\max_i h_i}{\min_i h_i}$.
- Je-li S(x) kubický interpolační spline, pak pro p = 0, 1, 2, 3 platí

$$|f^{(p)}(x) - S^{(p)}(x)| \le C K h^{q-p},$$

kde konstanta C nezávisí na x ani na způsobu dělení intervalu [a, b].

Interpolace funkce $f = \cos(x)$ kubickým splinem

MODŘE: okr. podm. zadány prvními derivacemi na obou stranách: y'_0 a y'_n

ČERVENĚ: zadána první a druhá derivace vlevo: y_0' a y_0''

Porovnání kubického splinu a jiné po částech kubické interpolace

(příklad převzat z Cleve's Corner na mathworld.com)

• Typický představitel třídy PCHIP (Piecewise Cubic Hermite Interpolating Polynomial)

x_i								
$\overline{y_i}$	0	0	0	1	0	0	0	0

PCHIP se chová "lokálně", kubický spline "globálně"

2D interpolace - spojitá lokální (bilineární)

- Na intervalu $[x_i, x_{i+1}] \times [y_j, y_{j+1}]$ známe hodnoty v uzlech, tedy $f_{i,j}$, $f_{i+1,j}$, $f_{i,j+1}$ a $f_{i+1,j+1}$
- Interpolujeme lokální funkcí

$$\Phi(x,y) = \frac{x_{i+1} - x}{x_{i+1} - x_i} \frac{y_{j+1} - y}{y_{j+1} - y_j} f_{i,j} + \frac{x - x_i}{x_{i+1} - x_i} \frac{y_{j+1} - y}{y_{j+1} - y_j} f_{i+1,j}
+ \frac{x_{i+1} - x}{x_{i+1} - x_i} \frac{y - y_j}{y_{j+1} - y_j} f_{i,j+1} + \underbrace{\frac{x - x_i}{x_{i+1} - x_i}}_{\text{ozn. } \delta_x} \underbrace{\frac{y - y_j}{y_{j+1} - y_j}}_{\text{ozn. } \delta_y} f_{i+1,j+1}
= (1 - \delta_x) (1 - \delta_y) f_{i,j} + \delta_x (1 - \delta_y) f_{i+1,j} + (1 - \delta_x) \delta_y f_{i,j+1} + \delta_x \delta_y f_{i+1,j+1}$$

2D interpolace - globální, po směrech

2D interpolace - lokální

- Bikubická interpolace
 - Lokální interpolace Hermiteova typu
 - V každém bodu (x_i, y_j) máme zadány 4 hodnoty: f(x, y), $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$ a $\frac{\partial^2 f}{\partial x \partial y}$.
 - Pro interval se 4 uzly tedy máme 16 podmínek, z nichž najdeme 16 parametrů $\,c_{k,m}\,$ bikubické interpolace

$$f(x,y) = \sum_{k=1}^{4} \sum_{m=1}^{4} c_{k,m} \, \delta_x^{k-1} \, \delta_y^{m-1} \qquad \text{pro} \qquad (x,y) \in [x_i, x_{i+1}] \times [y_j, y_{j+1}]$$

- Funkce je bikubická, t.j. kubická vzhledem ke každé proměnné x, y
- Bikubický spline
 - Lokální interpolace
 - Spojité parciální derivace v obou směrech na hranicích intervalů
 - Postup stejný jako u bilineární: nejdříve spočítáme spline např. ve směru y a pak interpolujeme splinem hodnoty $\Phi(x_i, y_c), \forall i$ ve směru x, abychom získali aproximovanou hodnotu v bodu (x_c, y_c)
- Analogicky ve více dimenzích

Čebyševovy polynomy

• Definice Čebyševova polynomu:

$$T_n(x) = \cos(n\arccos x),$$
tedy vidíme, že $T_0 = 1$ a $T_1 = x$

• Pomocí trigonom. identit se dá ukázat, že

$$T_2(x) = 2x^2 - 1,$$

 $T_3(x) = 4x^3 - 3x,$
 $T_4(x) = 8x^4 - 8x^2 + 1,$

• Platí rekurentní vztah

$$T_0 = 1$$

 $T_1 = x$
 $T_{n+1}(x) = 2x T_n(x) - T_{n-1}(x)$

Čebyševovy polynomy

Platí rekurentní vztah

$$T_0 = 1$$
 $T_1 = x$
 $T_{n+1}(x) = 2x T_n(x) - T_{n-1}(x)$

DK :

• Z identity $\cos(A+B) = \cos A \cos B - \sin A \sin B$ zjevně platí

$$\cos\left((n+1)\theta\right) + \cos\left((n-1)\theta\right) =$$

$$= \left(\cos(n\theta)\cos\theta - \sin(n\theta)\sin\theta\right) + \left(\cos(n\theta)\cos\theta + \sin(n\theta)\sin\theta\right) =$$

$$= 2\cos(n\theta)\cos\theta.$$

• Provedu substituci $x = \cos \theta$, neboli $\theta = \arccos x$:

$$\underbrace{\cos\left((n+1)\arccos x\right)}_{T_{n+1}(x)} + \underbrace{\cos\left((n-1)\arccos x\right)}_{T_{n-1}(x)} = 2x\underbrace{\cos\left(n\arccos x\right)}_{T_n(x)}.$$

Čebyševovy polynomy

• Matlab:

skript cheb_poly.m

- Maple:
 - > plot(ChebyshevT(10,x),x=-1..1,thickness=2);
 - > plot([seq(ChebyshevT(i,x),i=0..5)],x=-1..1,thickness=2);

Vlastnosti Čebyševových polynomů

•
$$T_n$$
 má n kořenů v bodech $x = \cos\left(\frac{\left(k - \frac{1}{2}\right)\pi}{n}\right)$ pro $k = 1, \dots, n$.

•
$$T_n$$
 má $n+1$ extrémů $|T_n(x)|=1$ v bodech $x=\cos\left(\frac{k\pi}{n}\right)$ pro $k=0,\ldots,n$.

- Ortogonalita
 - spojitě: ČP jsou OG s vahou $\frac{1}{\sqrt{1-x^2}}$ na intervalu [-1,1]:

$$\int_{-1}^{1} \frac{T_i(x)T_j(x)}{\sqrt{1-x^2}} \, dx = \begin{cases} 0 & \text{pro } i \neq j \\ \frac{\pi}{2} & \text{pro } i = j \neq 0 \\ \pi & \text{pro } i = j = 0 \end{cases}$$

– diskrétně: Nechť x_k $(k=1,\ldots,m)$ jsou kořeny $T_m(x)$. Potom pro $\forall i,j < m$ platí

$$\sum_{k=1}^{m} T_i(x_k) T_j(x_k) = \begin{cases} 0 & \text{pro } i \neq j \\ \frac{m}{2} & \text{pro } i = j \neq 0 \\ m & \text{pro } i = j = 0 \end{cases}$$

Aproximace funkce pomocí Čebyševových polynomů

• Hodnotu funkce f(x) aproximujeme z N známých diskrétních hodnot této funkce v kořenech x_k Čebyševova polynomu $T_N(x)$, a to lineární kombinací

$$f(x) \approx T(x) = \frac{c_0}{2} + \sum_{j=1}^{N-1} c_j T_j(x),$$

kde

$$c_{j} = \frac{2}{N} \sum_{k=1}^{N} f(x_{k}) T_{j}(x_{k})$$

$$= \frac{2}{N} \sum_{k=1}^{N} f\left[\cos\left(\frac{\pi\left(k - \frac{1}{2}\right)}{N}\right)\right] \cos\left(\frac{\pi j\left(k - \frac{1}{2}\right)}{N}\right).$$

• Hodnoty funkce f(x) jsou rovny hodnotám funkce T(x) ve všech N kořenech (nulových bodech) polynomu $T_N(x)$.

Clenshawova formule

= Algoritmus pro rekurentní výpočet lineární kombinace funkcí, zadaných rekurentně - v našem případě pro výpočet Čebyševova polynomu $\sum c_j T_j(x)$.

Mějme řadu funkcí zadánu rekurentně jako

$$F_{k+1}(x) = \alpha(k, x) F_k(x) + \beta(k, x) F_{k-1}(x),$$

Potom sumu

$$f(x) = \sum_{k=0}^{N} c_k F_k(x)$$

můžeme vypočítat postupně jako

$$b_{N+2} = 0,$$

$$b_{N+1} = 0,$$

$$b_k = \alpha(k, x) b_{k+1} + \beta(k+1, x) b_{k+2} + c_k,$$

$$k = N, N - 1, \dots, 1,$$

 $(b_k \text{ jsou pomocné hodnoty spočítané "zpětnou rekurzí"})$

 $f(x) = \beta(1, x) F_0(x) b_2 + F_1(x) b_1 + F_0(x) c_0.$

• http://en.wikipedia.org/wiki/Clenshaw_algorithm

Integrál a derivace pomocí Čebyševových polynomů

Jako bázové funkce použijeme opět Čebyševovy polynomy, stejně jako když jsme aproximovali původní funkci f.

• Při integraci funkce f místo koeficientů c_i použijeme C_i , kde

$$C_j = \frac{c_{j-1} - c_{j+1}}{2j} \quad \text{pro} \quad j \ge 1.$$

 C_0 můžeme zvolit libovolné, odpovídá integrační konstantě.

 \bullet Při derivování funkce fmísto c_j použijeme koeficienty $c_j',$ kde

$$c'_{j-1} = c'_{j+1} + 2 j c_j, \qquad j = N-1, N-2, \dots, 1.$$

Rekurzi začínáme $c'_N = c'_{N-1} = 0.$

Aproximace Čebyševovými polynomy - příklad I

$$f(x) = \begin{cases} 1 & \text{pro } x < \delta \\ 0 & \text{pro } x \ge \delta \end{cases}$$

Aproximace Čebyševovými polynomy - příklad II

$$f(x) = \arctan\left(\frac{x}{\alpha}\right), \qquad f'(x) = \frac{\alpha}{x^2 + \alpha^2}, \qquad F(x) = x \arctan\left(\frac{x}{\alpha}\right) - \frac{\alpha}{2}\ln\left(1 + \frac{x^2}{\alpha^2}\right)$$

Aproximace Čebyševovými polynomy - příklad III

$$f(x) = \frac{x}{1 + \alpha x^2},$$
 $f'(x) = -\frac{2\alpha x}{(1 + \alpha x^2)^2},$ $F(x) = \frac{\arctan(\sqrt{\alpha}x)}{\sqrt{\alpha}}$

Aproximace metodou nejmenších čtverců

- Diskrétní případ:
 - Funkce f zadána v diskrétních bodech x_i , i = 0, ..., N
 - Hledáme funkci $\Phi_M(x_i)$, která v určité třídě minimalizuje funkcionál

$$\rho_N = \sum_{i=0}^{N} w_i [f(x_i) - \Phi_M(x_i)]^2,$$

kde w_x je váhová funkce, často $w_i = 1, \forall i$.

- Spojitý případ:
 - Funkce f(x) zadána v celém intervalu [a, b]
 - Hledáme funkci $\Phi_M(x)$, která v určité třídě minimalizuje funkcionál

$$\rho_N = \int_a^b w(x) \left[f(x) - \Phi_M(x) \right]^2 dx,$$

kde w(x) je váhová funkce, často w(x) = 1.

- Tvar funkce $\Phi_M(x)$ obvykle zadán předem až na M parametrů c_i . Funkce může být
 - lineární: $\Phi_M(x)=\sum\limits_{j=1}^Mc_j\,g_j(x)$ se zadanými bázovými funkcemi $g_j(x)$ (tzn. $\Phi_M(x)$ je zobecněný polynom)
 - nelineární vzhledem ke koeficientům c_j : $\Phi_M = \Phi_M\left(x;c_1,\ldots,c_M\right)$

Aproximace metodou nejmenších čtverců - diskrétní postup

Máme zadáno M bázových funkcí $g_1(x), \ldots, g_M(x)$. Koeficienty c_j lze nalézt řadou metod:

- 1 Pro N bodů x_k položíme $f(x_k) = \sum_{j=1}^{M} c_j g_j(x_k)$, kde M < N
 - \rightarrow máme N rovnic pro M neznámých koeficientů c_j
 - → tuto soustavu řešíme SVD metodou (ve smyslu nejmenších čtverců)
- (2) Gradientní metody vhodné pro funkce mnoha parametrů
- (3) Hledáme minimum ρ_N^2 , tedy nulový bod derivace podle parametrů
 - Pro jednoduchost předpokládejme $w_i = 1, \forall i.$
 - Chceme $\partial/\partial c = 0$. Neboli: v minimu platí grad $\rho_N(c_1, \dots, c_M) = \vec{0}$ a proto pro všechna $k = 1, \dots, M$ položíme $\frac{\partial \rho_N}{\partial c_k} = 0$:

$$\frac{\partial \rho_{N}}{\partial c_{k}} = \frac{\partial}{\partial c_{k}} \sum_{i=0}^{N} \left[f\left(x_{i}\right) - \sum_{j=1}^{M} c_{j} g_{j}\left(x_{i}\right) \right]^{2} = \sum_{i=0}^{N} \left[-2g_{k}\left(x_{i}\right) \left(f\left(x_{i}\right) - \sum_{j=1}^{M} c_{j} g_{j}\left(x_{i}\right) \right) \right] \stackrel{!}{=} 0$$

- Řešíme tedy soustavu tzv. normálních rovnic (M rovnic o M neznámých c_j)

$$\sum_{j=1}^{M} c_{j}\left(g_{j}, g_{k}\right) = \left(f, g_{k}\right), \quad \text{kde} \quad \left(f, g\right) = \sum_{j=1}^{N} f\left(x_{i}\right) g\left(x_{j}\right) \quad \text{je skalární součin.}$$

Bázové funkce pro MNČ - diskrétní případ

- Bázové funkce $1, x, \ldots, x^{M-1}$, (tzn. aproximace polynomem)
 - * Pro velká M přibližně rovnoběžné \Rightarrow špatná podmíněnost soustavy norm. rovnic \Rightarrow velká chyba c_j Proto vhodné jen pro malá M
- Ortogonalizované polynomy (Gram-Schmidtovým procesem)
 - $\ast\,$ Odpadá zde výše jmenovaný problém pro velká M
- Trigonometrické polynomy: $1, \cos(x), \sin(x), \cos(2x), \sin(2x), \dots$
 - * Ortogonální pro všechny body $x_j = \frac{2\pi j}{2N+1}$, kde $j = 0, \dots, 2N$
- Zvonové spliny
 - * Dána ekvidistantní síť bodů s krokem h
 - * Chceme hladkou aprox. <u>bez konstrukce modelu</u>

$$B_{\mu}(x) = \begin{cases} 0 & \text{pro } q \le 0 \\ q^{3} & \text{pro } p \le 0 \\ q^{3} - 4 p^{3} & \text{pro } p \ge 0 \end{cases},$$

$$kde \qquad p = h - |x - \mu|,$$

$$q = 2h - |x - \mu|.$$

* Koeficienty hledáme řešením lineární soustavy s pásovou maticí

Metoda nejmenších čtverců: příklad aproximace zvonovými spliny

Aproximace metodou nejmenších čtverců - spojitý postup

– Normální rovnice jsou opět $\sum_{j=1}^{M} c_j(g_j, g_k) = (f, g_k),$ tentokrát se skalárním součinem (včetně vah) $(f, g) = \int_{a}^{b} w(x) f(x) g(x) dx.$

- Bázové funkce (pro spojitý případ) volíme podle toho, jakou chceme váhu
 - * Ortogonální polynomy

OG na intervalu	váha	polynomy
$x \in \langle -1, 1 \rangle$	w = 1	Legendreovy $P_n(x)$
$x \in \langle -1, 1 \rangle$	$w = \frac{1}{\sqrt{1-x^2}}$	$\check{C}eby\check{s}evovy \ T_n(x)$
$x \in \langle 0, \infty \rangle$	$w = e^{-x}$	Laguerrovy $L_n(x)$
$x \in (-\infty, \infty)$	$w = e^{-x^2}$	Hermiteovy $H_n(x)$

- \diamond Např. chceme váhu w=1 a polynomy OG v intervalu $x \in \langle -1, 1 \rangle$: zvolíme Legendreovy polynomy $P_k(x) = \frac{1}{2^k \, k!} \, \frac{d^k}{dx^k} (x^2 1)^k$, tzn. $P_0 = 1$, $P_1 = x$, $P_2 = \frac{1}{2} (3 \, x^2 1)$, $P_3 = \frac{1}{2} (5 \, x^3 3 \, x)$, ...
- * Trigonometrické funkce $1, \sin(x), \cos(x), \sin(2x), \cos(2x), \dots$
 - ♦ V podstatě se jedná o aproximaci Fourierovou řadou.
 - \diamond Ortogonální na $\langle a, a+2\pi \rangle$ pro libovolné a. Váhu volíme w=1.

Anscombova čtveřice

• Čtyři sady diskrétních dat po 11 bodech:

1.	sada	2. s	sada	3.	sada	4. s	sada
x	y	x	y	x	y	x	y
10.0	8.04	10.0	9.14	10.0	7.46	8.0	6.58
8.0	6.95	8.0	8.14	8.0	6.77	8.0	5.76
13.0	7.58	13.0	8.74	13.0	12.74	8.0	7.71
9.0	8.81	9.0	8.77	9.0	7.11	8.0	8.84
11.0	8.33	11.0	9.26	11.0	7.81	8.0	8.47
14.0	9.96	14.0	8.10	14.0	8.84	8.0	7.04
6.0	7.24	6.0	6.13	6.0	6.08	8.0	5.25
4.0	4.26	4.0	3.10	4.0	5.39	19.0	12.50
12.0	10.84	12.0	9.13	12.0	8.15	8.0	5.56
7.0	4.82	7.0	7.26	7.0	6.42	8.0	7.91
5.0	5.68	5.0	4.74	5.0	5.73	8.0	6.89

• Shodné statistické charakteristiky:

Vlastnost	Hodnota	Přesnost
Střední hodnota x	9	přesně
Rozptyl (stř.kv.odch.) x	11	přesně
Střední hodnota y	7.50	na 2 desetinná místa
Rozptyl (stř.kv.odch.) y	4.125	± 0.003
Korelace mezi x a y	0.816	na 3 desetinná místa
Přímka lineární regrese	y = 3.00 + 0.500 x	na 2 resp. 3 des. místa

• [Anscombe, F. J.: Graphs in Statistical Analysis. American Statistician 27(1): 17–21, 1973.]

Hornerovo schéma

• Polynom $P(x) = \sum_{i=0}^{n} a_n x^n = a_n x^n + \dots + a_2 x^2 + a_1 x + a_0$ vyhodnotíme v pořadí

$$P(x) = \left(\left(\dots \left\{ \left[\left(a_n x + a_{n-1} \right) x + a_{n-2} \right] x + a_{n-3} \right\} x + \dots + a_1 \right) x + a_0$$

a jeho hodnotu tedy můžeme vypočítat pomocí rekurzivního algoritmu

$$\begin{array}{ll} q_n(x) = a_n \\ \text{for i=n-1:-1:0} \\ q_i(x) = x \, q_{i+1}(x) + a_i & \leftarrow \textit{POZN: v tomto cyklu lze zároveň počítat derivace } P(x) \\ \text{end} \\ p(x) = q_0(x) \, . \end{array}$$

Ověříme zpětnou substitucí:

$$P(x) = \left(\dots \left\{ \left[\underbrace{(a_n \ x + a_{n-1}) \ x + a_{n-2}} \right] x + a_{n-3} \right\} x + \dots + a_1 \right) x + a_0$$

$$= \left(\dots \left\{ \left[\underbrace{(q_n \ x + a_{n-1})}_{q_{n-1}} x + a_{n-2} \right] x + a_{n-3} \right\} x + \dots + a_1 \right) x + a_0$$

$$= \left(\dots \left\{ \underbrace{[q_{n-1} \ x + a_{n-2}]}_{q_{n-2}} x + a_{n-3} \right\} x + \dots + a_1 \right) x + a_0$$

$$= \dots = \underbrace{\left(q_2 \ x + a_1 \right)}_{q_0} x + a_0 = \underbrace{q_1 x + a_0}_{q_0} = q_0.$$

• Analyticky:

– Vypočítáme diskriminant
$$D = \frac{b^2}{4} - ac$$

– Pokud
$$D>0$$
, jsou kořeny $x_{1,2}=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$

- \bullet Obtíže při numerickém výpočtu pokud $|ac|\ll b^2$ a ted
v $\sqrt{b^2-4ac}\simeq |b|$
 - V čitateli odečítáme dvě podobná čísla ⇒ velká chyba jednoho z kořenů
 - Lepší postup:

* LEMMA: Jsou-li
$$x_1, x_2$$
 kořeny rovnice $ax^2+bx+c=0$, potom $c=a\,x_1\,x_2$

* Pokud
$$D > 0, b < 0$$
:

$$x_2 = \frac{-b + \sqrt{b^2 - 4 a c}}{2 a}$$

$$x_1 = \frac{c}{a x_2}$$

V opačném případě (D > 0, b > 0):

$$x_1 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$
$$x_2 = \frac{c}{ax_1}$$

• Další problém nastává pro $b^2 \simeq 4ac$, tedy pro $D \simeq 0$, to je ale jiný typ chyby

Rekurentně zadané funkce - příklad nestabilní metody

- Chceme počítat mocniny "zlatého řezu:" $\Phi = \frac{\sqrt{5}-1}{2} \simeq 0.61803398$
- Platí rekurentní vztah $\Phi^{n+1} = \Phi^{n-1} \Phi^n$
- Dva způsoby výpočtu mocniny Φ^k :
 - $\boxed{\mathbf{A}} \quad \Phi^i = \Phi \cdot \Phi^{i-1} \quad \text{pro} \quad i = 1, \dots, k$
 - B odčítáním $\Phi^{i+1} = \Phi^{i-1} \Phi^i$ pro $i=1,\ldots,k-1$ (Obvykle rychlejší než násobení. Můžeme, protože známe $\Phi^0=1,\ \Phi^1=0.61803398$)
- Výsledek v jednoduché přesnosti (4B, single precision) a chyba:

Aproximace první derivace konečnými diferencemi

• Dopředná diference: $y'(x_i) \approx \tilde{y}'_i = \frac{y_{i+1} - y_i}{\Delta x}$

$$\tilde{y}_{i}' = \frac{y_{i+1} - y_{i}}{\Delta x} = \frac{y(x_{i} + \Delta x) - y(x_{i})}{\Delta x} = \frac{y(x_{i}) + y'(x_{i})\Delta x + y''(x_{i})\frac{\Delta x^{2}}{2} + \dots - y(x_{i})}{\Delta x}$$

$$= y'(x_{i}) + \frac{\Delta x}{2}y''(x_{i}) + \dots \Rightarrow 1. \text{ řád přesnosti}$$

Aproximace první derivace konečnými diferencemi (pokračování)

• Centrální diference: $y'(x_i) \approx \tilde{y}'_i = \frac{y_{i+1} - y_{i-1}}{2 \Delta x}$

$$\tilde{y}'_{i} = \frac{y(x_{i} + \Delta x) - y(x_{i} - \Delta x)}{2\Delta x} \\
= \frac{\left(y(x_{i}) + y'(x_{i})\Delta x + y''(x_{i})\frac{\Delta x^{2}}{2!} + y'''(x_{i})\frac{\Delta x^{3}}{3!} + \dots\right) - \left(y(x_{i}) - y'(x_{i})\Delta x + y''(x_{i})\frac{\Delta x^{2}}{2!} - y'''(x_{i})\frac{\Delta x^{3}}{3!} + \dots\right)}{2\Delta x} \\
= y'(x_{i}) + \frac{\Delta x^{2}}{6}y'''(x_{i}) + \dots \Rightarrow 2. \text{ řád přesnosti}$$

• POZN.: Dopředná diference je 1. řádu vzhledem k bodu x_i , ale 2. řádu vzhledem k $x_i + \frac{1}{2}\Delta x$. (Vzhledem k němu je totiž centrální.)

$$y'(x_i) \approx \tilde{y}_i' = \frac{y_{i+1} - y_i}{\Delta x}$$

 $y'(x_i + \frac{1}{2}\Delta x) \approx \tilde{y}'_{i+\frac{1}{2}} = \frac{y_{i+1} - y_i}{\Delta x}$

Aproximace druhé derivace konečnými diferencemi

• Centrální diference: $y''(x_i) \approx \tilde{y}_i'' = \frac{\frac{y_{i+1}-y_i}{\Delta x} - \frac{y_i-y_{i-1}}{\Delta x}}{\frac{\Delta x}{\Delta x}} = \frac{y_{i+1}-2y_i+y_{i-1}}{\Delta x^2}$

$$\tilde{y}_{i}'' = \frac{y''(x_{i})\frac{\Delta x^{2}}{2!} + y^{(4)}(x_{i})\frac{\Delta x^{4}}{4!} + \dots + y''(x_{i})\frac{\Delta x^{2}}{2!} + y^{(4)}(x_{i})\frac{\Delta x^{4}}{4!} + \dots}{\Delta x^{2}}$$

$$= y''(x_{i}) + y^{(4)}(x_{i})\frac{\Delta x^{2}}{12} + \dots \Rightarrow 2. \text{ řád přesnosti}$$

Aproximace derivací konečnými diferencemi: Odvození libovolné diference

• Chceme aproximovat první derivaci pomocí konečné diference na 5 bodech

$$\begin{split} y'(x_i) &= Ay_{i-2} + By_{i-1} + Cy_i + Dy_{i+1} + Ey_{i+2} \\ &= A \left[y_i - 2\Delta x y_i' + \frac{4}{2!} \Delta x^2 y_i'' - \frac{8}{3!} \Delta x^3 y_i''' + \frac{16}{4!} \Delta x^4 y_i^{(4)} + \mathcal{O}\left(\Delta x^5\right) \right] + \\ &+ B \left[y_i - \Delta x y_i' + \frac{1}{2!} \Delta x^2 y_i'' - \frac{1}{3!} \Delta x^3 y_i''' + \frac{1}{4!} \Delta x^4 y_i^{(4)} + \mathcal{O}\left(\Delta x^5\right) \right] + \\ &+ Cy_i + \\ &+ D \left[y_i + \Delta x y_i' + \frac{1}{2!} \Delta x^2 y_i'' + \frac{1}{3!} \Delta x^3 y_i''' + \frac{1}{4!} \Delta x^4 y_i^{(4)} + \mathcal{O}\left(\Delta x^5\right) \right] + \\ &+ E \left[y_i + 2\Delta x y_i' + \frac{4}{2!} \Delta x^2 y_i'' + \frac{8}{3!} \Delta x^3 y_i''' + \frac{16}{4!} \Delta x^4 y_i^{(4)} + \mathcal{O}\left(\Delta x^5\right) \right] \end{split}$$

Srovnáme podle koeficientů u derivací a máme

$$y'(x_i) = (A+B+C+D+E)y_i + \Delta x (-2A-B+D+2E)y_i' + + \frac{\Delta x^2}{2!} (4A+B+D+4E)y_i'' + \frac{\Delta x^3}{3!} (-8A-B+D+8E)y_i''' + + \frac{\Delta x^4}{4!} (16A+B+D+16E)y_i^{(4)} + \mathcal{O}(\Delta x^5)$$

Zanedbáme členy 5. a vyššího řádu a porovnáme koeficienty u derivací stejných řádů.

Aproximace derivací konečnými diferencemi (pokračování)

$$y'(x_i) \approx \tilde{y}_i' = (A+B+C+D+E)y_i + \Delta x \left(-2A-B+D+2E\right)y_i' + \frac{\Delta x^2}{2!} \left(4A+B+D+4E\right)y_i'' + \frac{\Delta x^3}{3!} \left(-8A-B+D+8E\right)y_i''' + \frac{\Delta x^4}{4!} \left(16A+B+D+16E\right)y_i^{(4)}$$

Porovnáním koeficientů dostáváme soustavu 5 rovnic pro 5 neznámých

$$\begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ -2 & -1 & 0 & 1 & 2 \\ 4 & 1 & 0 & 1 & 4 \\ -8 & -1 & 0 & 1 & 8 \\ 16 & 1 & 0 & 1 & 16 \end{pmatrix} \cdot \begin{pmatrix} A \\ B \\ C \\ D \\ E \end{pmatrix} = \begin{pmatrix} 0 \\ \frac{1!}{\Delta x} \\ 0 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ \frac{1}{\Delta x} \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

s řešením $\frac{1}{\Delta x} \left(\frac{1}{12}, \frac{-2}{3}, 0, \frac{2}{3}, \frac{-1}{12} \right)^T$, takže první diference s přesností do 4. řádu bude

$$\tilde{y}'_i = \frac{y_{i-2} - 8y_{i-1} + 8y_{i+1} - y_{i+2}}{12\Delta x} \approx y'(x_i)$$

• Pro aproximaci druhé derivace symetrickou pětibodovou diferencí máme zjevně stejnou soustavu, jen pravá strana bude $(0,0,\frac{2!}{\Delta x^2},0,0)^T$, což dává řešení $\frac{1}{\Delta x^2}\left(\frac{-1}{12},\frac{4}{3},\frac{-5}{2},\frac{4}{3},\frac{-1}{12}\right)^T$, takže diference je

$$\tilde{y}_{i}'' = \frac{-y_{i-2} + 16y_{i-1} - 30y_{i} + 16y_{i+1} - y_{i+2}}{12\Delta x^{2}} \approx y''(x_{i})$$

s přesností 3. řádu

Aproximace derivací pomocí interpolačního polynomu (≡ konečné diference)

 $\bullet\,$ Polynom stupněns uzly $x_0,\dots x_n$ má tvar

$$L_n(x) = \sum_{i=0}^n y_i \frac{(x-x_0)\dots(x-x_{i-1})(x-x_{i+1})\dots(x-x_n)}{(x_i-x_0)\dots(x_i-x_{i-1})(x_i-x_{i+1})\dots(x_i-x_n)},$$

tedy polynom 2. stupně s ekvidistantními uzly x_0, x_1, x_2 je

$$L_2(x) = \frac{(x-x_1)(x-x_2)}{2\Delta x^2} y_0 + \frac{(x-x_0)(x-x_2)}{-\Delta x^2} y_1 + \frac{(x-x_0)(x-x_1)}{2\Delta x^2} y_2$$

a jeho derivace

$$L_2'(x) = \frac{1}{2\Delta x^2} \left(\left[(x - x_2) + (x - x_1) \right] y_0 - 2 \left[(x - x_2) + (x - x_0) \right] y_1 + \left[(x - x_1) + (x - x_0) \right] y_2 \right),$$

tedy v jednotlivých uzlech

$$L'_{2}(x_{0}) = \frac{1}{2\Delta x^{2}} \left(-3\Delta x y_{0} + 4\Delta x y_{1} + \Delta x y_{2} \right) = \frac{1}{2\Delta x} \left(-3y_{0} + 4y_{1} + y_{2} \right),$$

$$L'_{2}(x_{1}) = \frac{1}{2\Delta x^{2}} \left(-\Delta x y_{0} + \Delta x y_{2} \right) = \frac{1}{2\Delta x} \left(-y_{0} + y_{2} \right),$$

$$L'_{2}(x_{2}) = \frac{1}{2\Delta x^{2}} \left(\Delta x y_{0} - 4\Delta x y_{1} + 3\Delta x y_{2} \right) = \frac{1}{2\Delta x} \left(y_{0} - 4y_{1} + 3y_{2} \right).$$

• Derivace v jednotlivých bodech tedy bude

$$y'(x_0) = \frac{1}{2\Delta x} (-3y_0 + 4y_1 - y_2) + \frac{\Delta x^2}{3} f'''(\xi),$$

$$y'(x_1) = \frac{1}{2\Delta x} (-y_0 + y_2) - \frac{\Delta x^2}{6} f'''(\xi),$$

$$y'(x_2) = \frac{1}{2\Delta x} (y_0 - 4y_1 + 3y_2) + \frac{\Delta x^2}{3} f'''(\xi).$$

Pro polynom 3. stupně (tedy na 4 bodech) máme v krajním bodu

$$y'(x_0) = \frac{1}{6\Delta x} \left(-11y_0 + 18y_1 - 9y_2 + 2y_3\right) - \frac{\Delta x^3}{4} f^{(4)}(\xi).$$

• Symetrické vzorce máme např. pro aproximaci derivace v prostředním z 5 bodů (což odpovídá polynomu 4. stupně)

$$y'(x_2) = \frac{1}{12 \Lambda x} (y_0 - 8y_1 + 8y_3 - y_4) + \mathcal{O}(\Delta x^4)$$

nebo v prostředním ze 7 bodů (polynom 6. stupně)

$$y'(x_3) = \frac{1}{60 \Delta x} \left(-y_0 + 9 y_1 - 45 y_2 + 45 y_4 - 9 y_5 + y_6 \right) + \mathcal{O}(\Delta x^6).$$