Finding the derivative using first principles.

This step-by-step guide to finding the derivatives of a simple polynomial function using first principles, that is,

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}.$$

Example: $f(x) = 3x^2 - 4x + 3$

pression as $h \rightarrow 0$

	^
1. Calculate $f(x+h)$ by replacing x with	$f(x) = 3x^2 - 4x + 3$ so
x + h in $f(x)$	$f(x+h) = 3(x+h)^2 - 4(x+h) + 3$
	$= 3x^2 + 6xh + 3h^2 - 4x - 4h + 3$
2. Substitute $f(x)$ and $f(x + h)$ into	$f'(x) = \lim_{h \to 0} \frac{3x^2 + 6xh + 3h^2 - 4x - 4h + 3 - 3x^2 + 4x - 3}{h}$
$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$	
3. Simplify the expression	$f'(x) = \lim_{h \to 0} \frac{6xh + 3h^2 - 4h}{h}$
$f'(x) = \frac{f(x+h)-f(x)}{h}$	"
	$= \lim_{h \to 0} (6x + 3h - 4)$
4. The derivative is the limit of this ex-	$f'(x) = \lim_{h \to 0} (6x + 3h - 4) = 6x - 4.$

(Note: as $h \rightarrow 0$, $3h \rightarrow 0$.)