



# $\begin{array}{c} {\bf Type 977 \ fitting \ for \ heat \ pump} \\ {\bf SINK-14TE} \end{array}$

## Parametric Heat Pump calculation

Dani Carbonell

dani.carbonell@spf.ch

2019/03/12 at: 16:07:36 h





Table 1: Fitted coefficients for the heat pump.

| Coefficient            | Description                                      |              |
|------------------------|--------------------------------------------------|--------------|
|                        |                                                  | [kW]         |
| $P_{Q_1}$              | 1 <sup>st</sup> condenser polynomial coefficient | 1.3795e+01   |
| $P_{Q_2}$              | $2^{st}$ condenser polynomial coefficient        | 8.0910e+01   |
| $P_{Q_3}$              | $3^{st}$ condenser polynomial coefficient        | 2.7265e+01   |
| $P_{Q_4}$              | 4 <sup>st</sup> condenser polynomial coefficient | 2.3194e+02   |
| $P_{Q_5}$              | $5^{st}$ condenser polynomial coefficient        | 1.8914e+01   |
| $P_{Q_6}$              | 6 <sup>st</sup> condenser polynomial coefficient | -1.3732e+02  |
| $P_{COP_1}$            | 1 <sup>st</sup> COP polynomial coefficient       | 4.4828e+00   |
| $P_{COP_2}$            | 2 <sup>st</sup> COP polynomial coefficient       | 1.3248e + 01 |
| $P_{COP_3}$            | 3 <sup>st</sup> COP polynomial coefficient       | 1.5073e + 01 |
| $P_{COP_4}$            | 4 <sup>st</sup> COP polynomial coefficient       | 1.3214e+02   |
| $P_{COP_5}$            | 5 <sup>st</sup> COP polynomial coefficient       | 2.6714e + 02 |
| $P_{COP_6}$            | 6 <sup>st</sup> COP polynomial coefficient       | -1.2165e+02  |
| $\dot{m}_{cond}$       | $2500.00 \ [kg/h]$                               |              |
| $\dot{m}_{evap}$       | $2500.00 \ [kg/h]$                               |              |
| $COP_{nom}$ (A0W35)    | 4.31                                             |              |
| $Q_{cond,nom}$ (A0W35) | $14.10 \ [kW]$                                   |              |
| $Q_{evap,nom}$ (A0W35) | $10.83 \ [kW]$                                   |              |
| $W_{comp,nom}$ (A0W35) | 3.27 [kW]                                        |              |
| $RMS_{COP}$            | 8.94e - 02                                       |              |
| $RMS_{Q_{cond}}$       | 8.74e - 02                                       |              |
| $RMS_{W_{comp}}$       | 7.73e - 02                                       |              |
| Fit model              | Average Temperature                              |              |





Table 2: Differences between experiments and fitted data for the heat pump.  $error = 100 \cdot |\frac{Q_{exp} - Q_{num}}{Q_{exp}}|$  and  $RMS = \sqrt{\sum \frac{(Q_{exp} - Q_{num})^2}{n_p}}$  where  $n_p$  is the number of data points.

| $T_{cond,out}$   | $T_{evap,in}$ | COP  | $COP_{exp}$ | error | $Q_{cond}$ | $Q_{cond,exp}$ | error | $W_{comp}$ | $W_{comp,exp}$ | error |
|------------------|---------------|------|-------------|-------|------------|----------------|-------|------------|----------------|-------|
| $^{o}C$          | ${}^{o}C$     | [-]  | [-]         | [%]   | [kW]       | [kW]           | [%]   | [kW]       | [kW]           | [%]   |
| 35.00            | -5.00         | 3.97 | 3.80        | 4.5   | 12.41      | 12.20          | 1.7   | 3.12       | 3.21           | 2.73  |
| 35.00            | 0.00          | 4.35 | 4.40        | 1.2   | 14.27      | 14.40          | 0.9   | 3.28       | 3.27           | 0.35  |
| 35.00            | 5.00          | 4.87 | 5.00        | 2.7   | 16.13      | 16.20          | 0.5   | 3.31       | 3.24           | 2.30  |
| 50.00            | -5.00         | 2.67 | 2.84        | 5.8   | 11.53      | 11.67          | 1.2   | 4.31       | 4.11           | 4.88  |
| 50.00            | 0.00          | 3.18 | 3.04        | 4.7   | 13.59      | 13.53          | 0.4   | 4.27       | 4.45           | 4.09  |
| 50.00            | 5.00          | 3.84 | 3.76        | 2.2   | 15.65      | 15.60          | 0.3   | 4.07       | 4.15           | 1.83  |
| 45.00            | -5.00         | 3.18 | 3.26        | 2.3   | 11.89      | 11.93          | 0.4   | 3.73       | 3.66           | 2.00  |
| 45.00            | 0.00          | 3.65 | 3.62        | 1.0   | 13.89      | 13.97          | 0.5   | 3.80       | 3.86           | 1.47  |
| 45.00            | 5.00          | 4.26 | 4.31        | 1.0   | 15.89      | 15.90          | 0.1   | 3.73       | 3.69           | 0.91  |
| 55.00            | 0.00          | 2.64 | 2.60        | 1.7   | 13.22      | 13.10          | 0.9   | 5.00       | 5.04           | 0.72  |
| 55.00            | 5.00          | 3.35 | 3.33        | 0.8   | 15.34      | 15.30          | 0.3   | 4.58       | 4.60           | 0.49  |
| 35.00            | 10.00         | 5.53 | 5.61        | 1.4   | 17.97      | 18.00          | 0.1   | 3.25       | 3.21           | 1.28  |
| 35.00            | 15.00         | 6.34 | 6.23        | 1.8   | 19.82      | 19.80          | 0.1   | 3.13       | 3.18           | 1.67  |
| 50.00            | 10.00         | 4.64 | 4.60        | 1.0   | 17.70      | 17.67          | 0.2   | 3.81       | 3.84           | 0.83  |
| 50.00            | 15.00         | 5.59 | 5.57        | 0.2   | 19.75      | 19.73          | 0.1   | 3.53       | 3.54           | 0.14  |
| 45.00            | 10.00         | 5.02 | 5.06        | 0.8   | 17.87      | 17.83          | 0.2   | 3.56       | 3.53           | 1.01  |
| 45.00            | 15.00         | 5.91 | 5.88        | 0.5   | 19.86      | 19.77          | 0.5   | 3.36       | 3.36           | 0.07  |
| 55.00            | 10.00         | 4.20 | 4.21        | 0.2   | 17.45      | 17.50          | 0.3   | 4.16       | 4.16           | 0.08  |
| 55.00            | 15.00         | 5.19 | 5.30        | 2.0   | 19.57      | 19.70          | 0.7   | 3.77       | 3.72           | 1.40  |
| Sum              |               |      |             | 35.9  |            |                | 9.3   |            |                | 28.27 |
| $RMS_{COP}$      | 8.94e - 02    |      |             |       |            |                |       |            |                |       |
| $RMS_{O_{cond}}$ | 8.74e - 02    |      |             |       |            |                |       |            |                |       |
| $RMS_{W_{comp}}$ | 7.73e - 02    |      |             |       |            |                |       |            |                |       |





### $\rm Meier/SINK\text{-}14TE/SINK\text{-}14TE\text{-}Qcond.pdf}$



Figure 1:  $Q_{cond}$  differences between experiments and fitted data





#### $\rm Meier/SINK\text{-}14TE/SINK\text{-}14TE\text{-}Qcomp.pdf$



Figure 2:  $W_{comp}$  differences between experiments and fitted data





### ${\it Meier/SINK-14TE/SINK-14TE-COP.pdf}$



Figure 3: COP differences between experiments and fitted data