• At any point, Z can corrupt an honest party j which means that A gets access to its local state and subsequently, A controls party j. (In particular, this means we consider a model with "erasures"; random coin tosses that are no longer stored in the local state of j are not visible to A.)¹¹

• At any point, Z can communicate with adversary A or access $extract(chain_i)$ where $chain_i$ is

the local state of player i.

• At any point, Z can uncorrupt a corrupted player j, which means that A no longer controls j and instead player j starts executing $\Pi(1^{\kappa})$ with a fresh state $chain_j$. (This is also how we model Z spawning a "new" honest player.) A gets informed of all such uncorrupt messages and is required to deliver all messages previously sent by (currently alive) honest players.¹²