• Example: the following data are from a study on liver function outcomes for high risk overdose patients in which antidote and historical control groups are compared

Time to	Antidote		Control	
Hospital	Severe	Not Severe	Severe	Not Severe
Early	6	12	6	2
Delayed	3	4	3	0
Late	5	1	6	0

• These data do not present a complete or quasicomplete separation problem. However, due to the small cell counts, exact logistic regression is the appropriate method.

```
data liver;
     input time $ group $ status $ count @@;
  datalines;
  early antidote severe 6 early antidote not 12
  early control severe 6 early
                                   control not 2
  delayed antidote severe 3 delayed antidote not 4
  delayed control severe 3 delayed control not 0
  late antidote severe 5 late
                                   antidote not 1
  late control severe 6 late control not 0
  run;
proc logistic descending;
  freq count;
  class time (ref='early') group(ref='control') / param=ref;
  model status = time group / clparm=wald;
run;
```

Global Fit Statistics

Testing G	lobal Null Hypot	hesis: E	BETA=0
Test	Chi-Square	DF	Pr > ChiSq
Likelihood Ratio	16.3913	3	0.0009
Score	13.4256	3	0.0038
Wald	10.2488	3	0.0166

MLE Estimates

Analysis of Maximum Likelihood Estimates							
Parameter	DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq		
Intercept time delayed time late group antidote	1 1 1	1.4132 0.7024 2.5533 -2.2170	0.7970 0.8344 1.1667 0.8799	3.1439 0.7087 4.7893 6.3480	0.0762 0.3999 0.0286 0.0118		

Odds Ratio Estimates

Odds Ratio Estimates						
Effect		Point Estimate		s Wald nce Limits		
time time group	delayed vs early late vs early antidote vs control	2.019 12.849 0.109	0.393 1.305 0.019	10.359 126.471 0.611		

- However, we would not report the maximum likelihood estimates and corresponding odds ratios due to sample size concerns.
- The following statements request an exact analysis:

```
proc logistic descending;
  freq count;
  class time (ref='early') group(ref='control') / param=ref;
  model status = time group / scale=none aggregate clparm=wald;
  exact 'Model 1' intercept time group / estimate=both;
  exact 'Joint Test' time group / joint;
run;
```

Exact Results

Exact Conditional Analysis

Exact Conditional Tests for Model 1

			p-V	alue
Effect	Test	Statistic	Exact	Mid
Intercept	Score	3.4724	0.1150	0.0922
	Probability	0.0457	0.1150	0.0922
time	Score	6.0734	0.0442	0.0418
	Probability	0.00471	0.0442	0.0418
group	Score	7.1656	0.0085	0.0050
	Probability	0.00698	0.0085	0.0050

Exact Conditional Tests for Joint Test

			p-Va	alue
Effect	Test	Statistic	Exact	Mid
Joint	Score Probability	13.1459 0.000015	0.0027 0.0015	0.0027 0.0015
time	Score	6.0734	0.0442	0.0418
group	Probability Score	0.00471 7.1656	0.0442	0.0418
	Probability	0.00698	0.0085	0.0050

Exact Parameter Estimates for Model 1						
Parame ⁻	ter	Estimate	Standard Error	g Confidenc	95% ce Limits	Two-Sided p-value
Intercentime time group	ept delayed late antidote	1.3695 0.6675 2.4388 -2.0992	0.7903 0.8141 1.1425 0.8590	-0.2361 -1.2071 0.1364 -4.5225	3.6386 2.6444 6.4078 -0.3121	0.1140 0.6667 0.0331 0.0154

	Exact Odds Ratios for Model 1						
Parameter		Estimate	95% Con Lim		p-Value		
Intercept time time group	delayed late antidote	3.934 1.949 11.460 0.123	0.790 0.299 1.146 0.011	38.037 14.075 606.546 0.732	0.1140 0.6667 0.0331 0.0154		

Firth Bias Reduction Method

- An alternative strategy to exact methods is Firth's penalized likelihood method. This is a bias reduction method that adds a term to the usual log-likelihood function. When the resulting penalized likelihood method is maximized, it shrinks the estimates towards zero.
- Firth's method is especially useful when you are dealing with continuous explanatory variables and exact methods may not be applicable. It always produces parameter estimates when the issue is complete or quasi-complete separation.
- Request Firth's method using the FIRTH option in the MODEL statement of PROC LOGISTIC
 - Should always use CLPARM=PL option with Firth's method since the profile likelihood based confidence limits will be based on the penalized likelihood

```
proc logistic data=liver;
  freq count;
  class time (ref='early') group(ref='control') / param=ref;
  model status = time group / firth clparm=pl;
run;
```

Parameter Estimat	es and Profile-L	ikelihood Confidenc	e Intervals
Parameter	Estimate	95% Confidence	Limits
time la	1.2077 elayed 0.6374 ate 2.1543 atidote -1.9526	-0.9007 2 0.4031 4	.8718 .2523 .5421 .5053

In general, exact tests are recommended for small sample situations, but the Firth penalized likelihood approach is a useful alternative, especially when exact methods are computationally infeasible

Firth's method applied to previous example of completely separated data:

Gender	Region	Yes	No
Female	I	0	5
Female	II	1	0
Male	I	0	175
Male	II	53	0

```
proc logistic data=complete descending;
  freq count;
  model response = gender region / firth clparm=pl
  exact gender region;
run;
```

The exact results were non-conclusive because the computations ran into a degenerate distribution. The Firth method, however, does produce estimates.

Penalized Parameter Estimates

	Analysis	of Penalized	d Maximum Lik	elihood Estima	tes
Parameter	DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq
Intercept gender Region	1 1 1	-2.4001 -3.4599 10.5320	1.6189 2.1523 2.0164	2.1978 2.5843 27.2817	0.1382 0.1079 <.0001

Parameter Estimates	and Profile	-Likelihood Co	nfidence Intervals	
Parameter	Estimate	95% Confide	nce Limits	
Intercept gender region	-2.4001 -3.4599 10.5320	-8.7265 7.5460	-0.2218 16.2653	

These estimates should be used cautiously. However, the confidence interval for region conveys the impression that region is an important effect.

One way to evaluate the parameter estimates is to collapse the two tables into one 2×2 table and add 0.5 to each of the counts. Collapsing over gender is justified since gender appears to have no effect:

Region	Yes	No
Ι	0.5	180.5
II	54.5	0.5

If you compute the odds ratio for this table, you obtain (0.5)(0.5)/(54.5)(180.5) = 0.00003, which is about the same as the exponentiated parameter for region. Thus, these estimates appear to be reasonable.