Desenvolvimento de uma Biblioteca Computacional para Sistemas de Recomendação de Lojas de Comércio Online

Escola Politécnica da Universidade de São Paulo

Antônio Viggiano agfviggiano@gmail.com

Fernando Fochi fernando.fochi@gmail.com

Prof. Dr. Fábio Gagliardi Cozman

Sumário

- Introdução
- Objetivos
- Stado da Arte
- Requisitos
- Metodologia
- 6 Síntese de Soluções
- Resultados
- 8 Conclusão

Introdução

Importância econômica

Figura 1: Vendas de varejo atribuídas a lojas online nos EUA (STATISTA, 2014)

Figura 2: Percentual de vendas de varejo atribuídas a lojas online nos EUA por categoria (SMITH, 2014)

Introdução Aplicação

Relações de amizade

amazon.com

Livros 35 % (MARSHALL, 2006)

Notícias **38 %** (DAS et al., 2007)

Filmes **75 %** (AMATRIAIN, 2012)

Objetivos

Biblioteca computacional para sistemas de recomendação

- Abrangente e adaptável
- Leitura de dados e cálculo de sugestões
- Análise de desempenho
 - Validação cruzada
 - Precisão e Abrangência

Sistemas de recomendação

"São ferramentas e técnicas de software destinadas a prover sugestões de itens para usuários" (RICCI; SHAPIRA, 2011)

Estado da Arte

Problema

- Conjunto dos usuários u
- Conjunto dos itens i
- rui Histórico avaliações
 - ℓ Função de utilidade
 - $\ell: \mathcal{U} \times \mathcal{I} \to \mathcal{R}$ p.ex. $\{-1,0,+1\}$ ou [1,5]

Objetivo

Determinar o item $\tilde{\imath}_u$ que maximize a utilidade ℓ_{ui} do usuário u:

$$\forall u \in \mathcal{U}, \ \tilde{\imath}_u = \underset{i \in \mathcal{I}}{\operatorname{arg\,max}} \ \ell_{ui}$$

Problema

ℓ desconhecida

Estado da Arte Soluções

Estratégias de recomendação

- Colaborativas
- Conteúdo
- Híbridas

Utilização comercial

(CHIANG, 2012)

Netflix Filtragem colaborativa

Amazon Filtragem baseada em conteúdo

Pandora Experts + votos

positivos/negativos

YouTube Contagem de visitas mútuas

Estado da Arte

Soluções

Filtragem colaborativa (CF)

- Usuário-usuário
- Item-item

Filtragem de conteúdo (CB)

Métodos híbridos (H)

• CF + CB

Tabela 1: Avaliações r_{ui}

	<i>i</i> ₁	i ₂	i ₃	<i>i</i> ₄
<i>u</i> ₁	-	4	3	-
<i>u</i> ₂	-	4	3	5
u_3	2	5	-	1

Tabela 2: Atributos a_{if}

	f_1	f_2	f_3	f_4
<i>i</i> ₁	1	50	0.8	Р
i ₂	0	75	0.3	М
<i>i</i> ₃	1	30	0.4	G

Requisitos

- 20% Precisão
- 20% Abrangência

Tabela 3: Avaliação de sistemas de predição

Medida	Fórmula	Significado
Precisão	$\frac{VP}{VP+FP}$	Porcentagem de casos
		positivos corretamente
		preditos.
Abrangência	VP VP+FN	Porcentagem de casos
		positivos sobre aque-
		les que foram marcados
		como positivos.
F ₁	2 · Precisão · Abrangência Precisão + Abrangência	Média harmônica entre
	Treesac . Histangeneta	precisão e abrangência.

Metodologia Estruturação do banco de dados

100k 100 000 avaliações de 943 usuários para 1682 filmes

IMDB 28 819 filmes

IMDB-100k 943 usuários, 1682 filmes e 25 atributos

Metodologia

Desenvolvimento da biblioteca

Ferramenta utilizada

RStudio Editor de texto e console

Estrutura da biblioteca

```
recsys/
l-- db
    '-- ml-100k
                             l-- results
        |-- u.data
                                 |-- benchmark.R
        |-- u.item
                                 |-- performance.R
        I-- u.user
                                 '-- run_tests.R
                            '-- setup
         l-- ...
-- methods
                                 |-- functions.R
    I-- fw.R
                                 '-- setup.R
    I-- ui.R
    '-- up.R
```

Metodologia Validação cruzada

3

Ambiente de testes

- Máquina r3.large
- 2 vCPU
- 15 GB de memória RAM
- Amazon Linux AMI release 2014.09 x86 64
- Custo total R\$ 5,70

Avaliação

- T = 75% base de treinamento
- *H* = 75% dados "escondidos"

Tabela 4: Avaliações r_{ui}

	<i>i</i> ₁	i_2	i ₃	<i>i</i> ₄
<i>u</i> ₁	-	4	3	5
u ₂	2	5	-	1
<i>u</i> ₃	3	-	-	2
UΔ	(5)	(2)	(3)	4

Síntese de Soluções

Ponderação de Atributos (FW)

$$s_{ij} = \sum_{f} w_f \left(1 - d_{fij} \right)$$

Perfil de Usuários (UP)

$$S_{uv} = \frac{\sum\limits_{f \in \mathcal{F}_{uv}} w_{uf} \ w_{vf}}{\sqrt{\sum\limits_{f \in \mathcal{F}_{uv}} w_{uf}^2} \sqrt{\sum\limits_{f \in \mathcal{F}_{uv}} w_{vf}^2}}$$

Perfil Usuário-Item (UI)

$$\omega_{ui} = \sum_{f} \mathbf{w}_{uf} \; \mathbf{a}_{if}$$

Resultados

Tabela 5: Parâmetros de influência no desempenho dos algoritmos de recomendação

Variável	Descrição	Valor padrão
N	Lista de recomendação	20
T	Base de treinamento	75%
Н	Avaliações "escondidas"	75%
М	Avaliações positivas	2
k	Vizinhos mais próximos	10
\mathcal{F}	Conjunto de atributos dos itens	Todos atributos
d^f	Medida de distância	Distância $L_1 \cdot ^f$
W	Quantidade de pesos	Todo $w_f > 0$

Resultados

Tamanho da lista de recomendação N

Figura 3: Precisão × N

Figura 4: Abrangência × N

Resultados

Tamanho da lista de recomendação N

Figura 5: $F_1 \times N$

Figura 6: Tempo × N

Resultados

Percentual da base de aprendizado T

Figura 7: Precisão × T

Abrangência, F_1 e Tempo praticamente constantes

Resultados

Percentual de avaliações "escondidas" dos usuários-teste H

Figura 8: $F_1 \times H$

Precisão cresce e Abrangência decresce

Valor mínimo para avaliações positivas ${\it M}$

Número de vizinhos mais próximos k

Conjunto de atributos dos itens ${\mathcal F}$

Medida de distância entre atributos d^f

Quantidade de pesos dos atributos $\it W$

Bibliografia I

- ►AMATRIAIN, X. *Netflix Recommendations: Beyond the 5 stars*. 2012. Disponível em: http://techblog.netflix.com/2012/04/ netflix-recommendations-beyond-5-stars.html>.
- ►CHIANG, M. *Networked Life: 20 Questions and Answers*. Cambridge University Press, 2012. (BusinessPro collection). ISBN 9781107024946. Disponível em: http://books.google.com.br/books?id=N5DJJXoLPDQC.
- ▶DAS, A. S. et al. Google news personalization: scalable online collaborative filtering. In: ACM. *Proceedings of the 16th international conference on World Wide Web*. [S.I.], 2007. p. 271–280

Bibliografia II

- ►MARSHALL, M. Aggregate Knowledge raises \$5M from Kleiner, on a roll. 2006. Disponível em: http://venturebeat.com/2006/12/10/aggregate-knowledge-raises-5m-from-kleiner-on-a-roll/>.
- ▶RICCI, L. R. F.; SHAPIRA, B. Introduction to recommender systems handbook. In: *Recommender Systems Handbook*. [S.I.]: Springer, 2011. p. 1–35.
- SMITH, C. *E-COMMERCE AND THE FUTURE OF RETAIL: 2014 [SLIDE DECK]*. 2014. Disponível em: http://www.businessinsider.com/ the-future-of-retail-2014-slide-deck-sai-2014-3?nr_email_referer=1&utm_source=Triggermail&utm_medium=email&utm_content=emailshare>.

Bibliografia III

►STATISTA. Annual B2C e-commerce sales in the United States 2002-2013. 2014. Disponível em: http://www.statista.com/statistics/271449/ annual-b2c-e-commerce-sales-in-the-united-states/>.