深度学习

邱怡轩

今天的主题

卷积神经网络

- 先看一道初中数学题
- 考虑两个多项式, $p(x) = 3 2x + x^2$, q(x) = -5 + 4x
- 问 $r(x) = p(x) \cdot q(x)$ 的展开式是什么?

- 再看一道"大学"算法题
- 一般地,用一个向量表示多项式的系数
- 如 v = (1,0,2)' 表示 $1 + 2x^2$, w = (0,1,2,3)' 表示 $x + 2x^2 + 3x^3$
- 给定两个任意的多项式系数 v 和 w, 求多项式乘积的系数向量 r

- 先说结论

R

```
> v = c(3, -2, 1)
> w = c(-5, 4)
> convolve(v, rev(w), type = "open")
[1] -15 22 -13 4
```

Python

```
In [1]: import numpy as np
v = [3, -2, 1]
w = [-5, 4]
np.convolve(v, w)

Out[1]: array([-15, 22, -13, 4])
```

- 先说结论

R

```
> v = c(3, -2, 1)
> w = c(-5, 4)
> convolve v, rev(w), type = "open")
[1] -15 22 -13 4
```

Python

```
In [1]: import numpy as np
v = [3, -2, 1]
w = [-5, 4]
np convolve v, w)
Out[1]: array([-15, 22, -13, 4])
```

convolve 🗀

英 [kən'vɒlv] 📢 美 [kən'vaːlv] 🥠

v. 使卷曲, 使缠绕; 卷积

[第三人称单数 convolves 现在分词 convolving 过去式 convolved 过去分词 convolved]

同近义词 同根词

词根: convolve

adj.

convoluted 复杂的; 费解的; 旋绕的

n

convolution [数] 卷积;回旋;盘旋;卷绕

V.

convoluted 盘绕; 缠绕 (convolute的过去分词)

$$p(x) = 3 - 2x + x^2$$
, $q(x) = -5 + 4x$

$$v$$
 3 -2 1

$$W = \begin{bmatrix} 1 & x \\ -5 & 4 \end{bmatrix}$$

$$p(x) = 3 - 2x + x^2$$
, $q(x) = -5 + 4x$

$$v$$
 $1 \quad x \quad x^2$ $1 \quad x \quad x^2$ v $3 \quad -2 \quad 1$

$$v$$
 3 -2 1

$$\begin{bmatrix} 1 & x \\ -5 & 4 \end{bmatrix}$$

$$p(x) = 3 - 2x + x^2$$
, $q(x) = -5 + 4x$

$$v$$
 1 x x^2 3 -2 1

$$rev(w) \quad \begin{array}{c|c} x & 1 \\ \hline 4 & -5 \end{array}$$

$$p(x) = 3 - 2x + x^2, \quad q(x) = -5 + 4x$$

 $v = \begin{bmatrix} 1 & x & x^2 \\ 3 & -2 & 1 \end{bmatrix}$

$$rev(w) \quad \begin{array}{c|c} x & 1 \\ \hline 4 & -5 \end{array}$$

$$p(x) = 3 - 2x + x^2$$
, $q(x) = -5 + 4x$

$$rev(w)$$
 4 -5

$$p(x) = 3 - 2x + x^2, \ q(x) = -5 + 4x$$

$$rev(w) \qquad \begin{array}{c} x & 1 \\ 4 & -5 \end{array}$$

$$p(x) = 3 - 2x + x^2$$
, $q(x) = -5 + 4x$

$$p(x) = 3 - 2x + x^2, \quad q(x) = -5 + 4x$$

 $v = \begin{bmatrix} 1 & x & x^2 \\ 3 & -2 & 1 \end{bmatrix}$

$$rev(w) \qquad \boxed{4 -5} \longrightarrow$$

$$p(x) = 3 - 2x + x^2$$
, $q(x) = -5 + 4x$

v 3 -2 1

数学定义

$$v = (v_1, ..., v_m)', w = (w_1, ..., w_n)'$$

$$r = v * w$$

$$r_i = \sum_{k=-\infty}^{\infty} v_k w_{i-k+1}$$

■ 没有定义的元素用 0 代替

延伸学习

https://www.bilibili.com/video/BV1JX4y1K7Dr/

卷积究竟卷了啥?——17分钟了解什么是卷积

112.8万播放·3344弹幕 2021-01-22 20:00:14 全站排行榜最高第44名

1	2	3	4
5	6	7	8
9	-1	-2	-3
-4	-5	-6	-7

W

0.1	0.2	0.3
0.4	0.5	0.6
0.7	0.8	0.9

卷积核 (convolutional kernel) / 滤波器 (filter)

0	0	0	0	0
1	2	3	4	0
5	6	7	8	0
9	-1	-2	-3	0
-4	-5	-6	-7	0
0	0	0	0	0
	1 5 9 -4	1 2 5 6 9 -1 -4 -5	1 2 3 5 6 7 9 -1 -2 -4 -5 -6	1 2 3 4 5 6 7 8 9 -1 -2 -3 -4 -5 -6 -7

W

0.1	0.2	0.3
0.4	0.5	0.6
0.7	0.8	0.9

W

0.9	0.8	0.7
0.6	0.5	0.4
0.3	0.2	0.1

0	0	0	0	0	0
0.9	0.8	0.7			
0	1	2	3	4	0
0.6	0.5	0.4			
0	5	6	7	8	0
0.3	0.2	0.1			
0	9	-1	-2	-3	0
0	-4	-5	-6	-7	0
0	0	0	0	0	0

0	0	0	0	0	0
			0.9	8.0	0.7
0	1	2	3	4	0
			0.6	0.5	0.4
0	5	6	7	8	0
			0.3	0.2	0.1
0	9	-1	-2	-ფ	0
0	-4	-5	-6	-7	0
0	0	0	0	0	0

0		0	0	0	0	0
0		1	2	3	4	0
C).9	0.8	0.7			
0		5	6	7	8	0
C).6	0.5	0.4			
0		9	-1	-2	-3	0
C).3	0.2	0.1			
0		-4	-5	-6	-7	0
0		0	0	0	0	0

0	0	0	0	0	0
0	1	2	3 0.9	4 0.8	0 0.7
0	5	6	7 0.6	8 0.5	0 0.4
0	9	-1	-2 0.3	-3 0.2	0 0.1
0	-4	-5	-6	-7	0
0	0	0	0	0	0

0		0	0	0	0	0
0		1	2	3	4	0
0		5	6	7	8	0
	0.9	0.8	0.7			
0		9	-1	-2	-3	0
	0.6	0.5	0.4			
0		-4	-5	-6	-7	0
	0.3	0.2	0.1			
0		0	0	0	0	0

- 二维卷积有不同的类型
- 取决于步长和补零的数量
- 输出大小相应变化

本页图片取自邱锡鹏 《神经网络与深度学习》

步长1, 零填充0

步长1,零填充1

步长2, 零填充0

步长2, 零填充1

卷积有什么用?

卷积的应用

- 与深度学习直接相关
 - 提取图片特征
- 与概率统计直接相关
 - 滑动平均
 - 核密度估计
 - 随机变量之和的分布
- 其他
 - 信号处理
 - 整数乘法、多项式乘法

卷积与 图像处理

■ 卷积是提取图形特征的一种工具

■ 参见 lec6-conv2d.ipynb

卷积神经网络

■前馈神经网络

回顾

- 实现简单
- ■通用近似
- 计算高效

■ 为什么还不够好?

前馈神经网络

- 数据维度高时参数很多
- 对于图片的缩放、平移、旋转等操作较敏感
- 难以提取图片的局部信息

卷积神经网络

- Convolutional neural network
- CNN/ConvNet

卷积神经网络

本页图片取自邱锡鹏 《神经网络与深度学习》

- 简而言之,CNN 是利用了卷积操作的神经 网络结构
- 用卷积层替换全连接层

(a) 全连接层

3个参数

(b) 卷积层

局部连接

• 权重共享

卷积层

本页图片取自邱锡鹏 《神经网络与深度学习》

?个参数

?个参数

(b) 卷积层

卷积层

造的处理

- 卷积核作为待估参数 (可学习参数)
- 输入: 图片数据 $[N \times H_{in} \times W_{in} \times C_{in}]$
- 输出: 特征映射 (feature map)

$$[N \times H_{out} \times W_{out} \times C_{out}]$$

■ 某一层输出的特征映射(经过激活函数作用 后)可以作为下一层的输入

注意事项

- 对于原始图片, C_{in} 通常有明确的实际意义
- 如灰度图片 $C_{in} = 1$ (单个通道)
- 彩色图片有红绿蓝 (RGB) 三个通道, $C_{in} = 3$

• 经过处理后的特征映射 C_{out} 可以任意指定,只具有抽象的意义

注意事项

- 不同的软件框架可能采用不同的数据格式
- Tensorflow 采用 $[N \times H \times W \times C]$
- PyTorch 采用 $[N \times C) \times H \times W]$
- MXNet 可以设定参数在两种格式中选择

注意事项

■ 将 $[N \times H_{in} \times W_{in} \times C_{in}]$ 的输入变换为 $[N \times H_{out} \times W_{out} \times C_{out}]$ 的输出,共需要 $C_{in} \times C_{out}$ 个卷积核

■ 卷积核的类型和大小决定了 $H_{in} \times W_{in}$ 和 $H_{out} \times W_{out}$ 之间的对应关系

一般形式

本页图片取自邱锡鹏 《神经网络与深度学习》

Output (3x3x2)

o[:,:,0]

0[:,:,1]

■ 早期的 CNN 中通常还会加入一些汇聚层 (pooling layer, 或称池化层)

用来快速减少神经元的数目

汇聚层

本页图片取自邱锡鹏 《神经网络与深度学习》

汇聚层

■ 当前, 汇聚层有被<mark>步长>1的卷积层替</mark> 代的趋势

LeNet-5

- LeNet-5 是一个早期的 CNN 架构
- 结合了卷积层、汇聚层和全连接层
- 结合手写识别数据MNIST,成为了经典的 CNN 入门模型

