Pranav Gupta — Curriculum Vitae

■ guptapranav@iitb.ac.in | Im Pranav Gupta | □ +91 93568 65627 | • guptpranav

Education

Indian Institute of Technology (IIT) Bombay

(Nov 2022 - Present)

- Major in Mechanical Engineering
- Minor in Systems and Control Engineering
- Minor in Robotics

Publications

Pranav Gupta, Anastasia Bizyaeva, Ravi Banavar: "Estimates on the domain of validity for Lyapunov-Schmidt reduction"; accepted to the **IEEE Conference on Decision (CDC) and Control 2024, Milano**

Research Experience

Bounds of validity for Lyapunov-Schmidt reduction

(Nov 2023 - Present)

Guide: Prof. Ravi Banavar, Dept. of Systems and Control Engineering

- Established bounds on the domain of validity on the **Lyapunov-Schmidt Reduction** for **bifurcation analysis in finite dimension** systems derived using bounds on the implicit function theorem in calculus
- Demonstrated application to a Recurrent Neural Network model with a pitchfork bifurcation
- Awarded the prestigious Undergraduate Research Award for conducting the above-stated research
- Currently investigating applications for analysing bifurcations in Multiagent Signed Social Networks

Key Projects

Team AeRoVe | *UMIC*, *IIT Bombay*

(May 2023 - Present)

Guide: Prof. Dhwanil Shukla, Dept. of Aerospace Engineering

- Senior Engineer in the Motion Planning and Controls subsystem of Team AeRoVe working on developing & implementing control algorithms for advanced aerial autonomy on quadrotors and VTOLs
- Reviewed literature on quadrotor dynamics, derived its state space model using Newton-Euler equations
- Established high-level automatic control on a quadrotor with Pixhawk flight controller using MAVROS scripts with physics-complete Gazebo simulations bridged with SITL autopilots like ArduPilot and PX4
- Established low-level custom Model Predictive Control on a quadrotor using casadi to achieve optimal
 waypoint navigation and a Model Reference Adaptive Control to tackle model/parameter uncertainties
- Contributed to industrial collaboration with Mahindra for prototyping aerial solar farm inspection technology and Eigenform Dynamics to develop stabilising control software for firefighting drones
- Currently developing an analytical dynamical model of a Tailsitter VTOL aircraft to be simulated
 alongside the attitude control law for its quadrotor hover to fixed wing mode transition in Simulink
- Started preliminary research into AUVSI Foundation's IARC Mission 10, which involves employing an autonomous drone swarm to map and safely guide a human operator through an active minefield

Ri4rover | Team AeRoVe | Purdue University

(January - June 2024)

- Placed 1st internationally in ri4rover, organised by Purdue University, funded by the NSF and IEEE-CS
- Led a team of 4 to develop motion planning and control software for a quadrotor to autonomously search for and navigate to an unknown GPS-denied maze's exit to be implemented on an IRIS-LiDAR quadrotor simulated in Gazebo Garden using the PX4 flight stack with ROS2 powered autonomy
- Successfully implemented onboard LiDAR-based maze mapping from scratch in simulation and tested
 2D LiDAR SLAM on a Raspberry Pi 5 with a DTOF-STL27L LASER LiDAR sensor on a quadrotor
- Developed an optimal random maze solver with anti-wall collision based on the A* Search algorithm

DRONEacharya — Institute Technical Summer Project | ITC, IIT Bombay (April - August 2023)

Aerial Vision guided Autonomous Zero-Perception Rover for object detection, collection and deposition

- Led a team of 4 to ideate, design and realise DRONEacharya, a drone-rover swarm system in which a camera drone detects and localises golf balls on a field and guides a rover to collect them time optimally
- Designed closed-loop rover **navigation and position control** in **MATLAB**, integrated with **ArUco** detection and ball detection with **OpenCV** and **ROS2** communication between the rover and **MATLAB**
- Configured **serial communication** between **Raspberry Pi 3B+** and **Arduino Uno R3** onboard the rover to establish **closed loop control** on the angular velocity of **encoder DC motors** powering the wheels

AstroTinker Bot | e-Yantra Robotics Competition

(Sept 2023 - Feb 2024)

- Used Intel Quartus Prime to write and implement Verilog HDL modules on a Intel Cyclone-IV
 FPGA, such as UART protocol data transmitter and receiver designed as a finite state machine
- Implemented Dijkstra's algorithm in C for optimal path planning between nodes on the given game map
- Implemented the RV32I ISA in a single-cycled modular RISC-V CPU with Verilog HDL from scratch to load and execute the path planning C code after being compiled down into an RV32I ISA hexdump

Miscellanous Projects

Deep Learning based State Estimation for Robot | *ME228* — *Course Project* (April 2024)

- Developed a data-driven full state observer for a 2-wheel differential drive robot to achieve robust trajectory tracking through a PID controller making use of the state estimates from the observer
- Used **CUDA** to train **Gated Recurrent Unit** (GRU) networks written with **tensorflow**, using **Keras Tuner** to automatically pick an effective 2-layer model from a basket of semi-trained models
- Generated synthetic training and testing data by simulating the dynamical model in MATLAB's Simulink

Quadrotor with a Manipulator Arm | SC618 — Course Project

(Nov 2023)

- Led a team of 3 to develop a model and graphical simulation of a **quadrotor** with a mounted **2-dof arm** equipped with a **manipulator** using the industry standard **Wolfram System Modeller** environment.
- Successfully interfaced model with high level control commands using the **OpenModelica** framework
- Compared simulated results with analytical results derived using the Lagrangian formalism of mechanics

Swarm Robotics and Path Planning | Summer of Code — *WnCC, IITB* (May - July 2023)

- Reviewed custom messages and services in ROS2 Iron Irwini for the ROS-TCP Bridge with the Unity
 engine as well as literature on Graph-Theoretic Methods for Multi-Agent Coordination
- Implemented a **virtual-potential** based simulation of **lattice-boids** in **MATLAB** and successfully achieved **stable flocking** between agents that were otherwise programmed to move inertially at random

Control Theory Bootcamp | Learner's Space — *ERC, IITB*

(May - July 2023)

- Established **PID** control on a "ball-on-seesaw" system complete with actuator and state limitations in pygame, tuned using the **Ziegler-Nichols** method to achieve an optimum settling time of **0.42s**
- Developed a **2-wheeled self-balancing rover** in **Simulink** from scratch using the **Simscape Multidomain** package and established **PID** control on the same to accomplish waypoint navigation

Positions of Responsibility

Teaching Assistant | SC639 - Mathematical Structures for Control

(August - December 2024)

- Conducted regular **tutorial sessions** for a batch of 140+ students (ranging all the way from sophomore undergraduates up to PhD students), helping them with conceptual understanding and problem solving
- Provided assistance to the instructor in course logistics by proctoring exams and evaluating assignments and examination answer scripts and organising crib sessions to resolve grading grievances

- Presenting and handling an annual multi-phase **technical expenditure budget** of **1.5 million INR** to the Student Technical Projects Committee, and procuring **travel funds** from relevant institute channels
- Spearheading formation of a business team to handle sponsorships, social media/web, industrial collaborations to improve team financial operations, publicity and attract industrial client projects
- Conducted multiple **orientation sessions** followed by **recruitment drive interviews** for freshmen and sophomores to select eligible candidates from a pool of **100+ freshmen** and **80+ sophomores**
- Presented the team's technical prowess and vision in multiple institute open technology exhibitions

Key Courses Taken

Department Courses	Microprocessors and Automatic Control, Kinematics and Dynamics of Machines, Fluid Mechanics, Solid Mechanics, Heat Transfer, Applied Thermodynamics, Thermal & Chemical Processing of Materials, Mechanical Processing of Materials, Engineering Mechanics, Mathematical Methods in Engineering
Minor/Elective Courses	Embedded Control & Robotics, Estimation on Lie Groups, Analytical and Geometric Dynamics, Signals and Feedback Systems
Lab Courses	Manufacturing Processes, Fluid Mechanics, Solid Mechanics, MakerSpace
Online Certifications	Introduction with MATLAB (Coursera), Aerial Robotics (Coursera)

Technical Proficiencies

Programming	C, C++, python, MATLAB, Simulink, Verilog HDL, bash/zsh, Java
Software Tools	Git, Ubuntu, QGC, ArduPilot, Mission Planner, Intel Quartus Prime
Hardware Tools	Nvidia Jetson, Raspberry Pi, Vicon MoCap, Arduino, Holybro PixHawk
Frameworks	ROS2 Humble, ROS1 Noetic, MAVROS, ArduPilot, PX4, Gazebo
Libraries	eigenCPP, PyTorch, TensorFlow, Keras, casadi, NumPy, Pandas

Extracurricular Activities

NOVEC	 Received professional swimming training, securing multiple laurels and a best of 31s (50m) Awarded the SHO 1st Dan distinction by the Shotokan Karate Association of India
Technical	 Mentored 2 teams of 4 freshmen each in the XLR8 competition to design and make a remote controlled 4WD rover using an ESP32 μ—controller to navigate challenging terrain Awarded an honorable mention in trustlabCTF, a 6 hour long cross-domain cybersecurity offline Capture The Flag contest conducted by TrustLab, IITB Developed PyTorch implementations of the DQN, DDQN, D3QN algorithms from scratch that successfully solved Gynmasium's LunarLander-v3 and CartPole-v1 environments
Instituto	 Placed 1st out of 100+ in Re-Decrypt, a competition of cracking a series of challenging riddles embedded within various research papers, conducted by EnPoWeR IITB Volunteered to deliver online academic aid to financially weak students in remote places, scripted and recorded edu-audiobooks for 10th graders from NCERT texts through NSS
Others	• School robotics team lead for the FIRST Tech Challenge for the Rover Ruckus theme

References