last project-Practical Machine Learning

Haibin Qian

Background

Based on raw data on accelerometers, my goal is to build models on train data, test performace and predict test data

Tidymodels for this assignment

tidymodels.org

load required libraries

```
library(tidyverse)
                                   ----- tidyverse 1.3.1 --
## -- Attaching packages ------
## v ggplot2 3.3.5
                   v purrr
                            0.3.4
## v tibble 3.1.6
                   v dplyr
                            1.0.8
## v tidyr 1.2.0
                  v stringr 1.4.0
                  v forcats 0.5.1
## v readr 2.1.2
## -- Conflicts ------ tidyverse conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
library(tidymodels)
## -- Attaching packages ------ tidymodels 0.2.0 --
## v broom
               0.8.0
                       v rsample
                                    0.1.1
## v dials
               0.1.1
                                    0.2.0
                        v tune
## v infer
               1.0.0
                       v workflows
                                    0.2.6
## v modeldata
               0.1.1
                       v workflowsets 0.2.1
## v parsnip
               0.2.1
                        v yardstick
                                    0.0.9
## v recipes
               0.2.0
```

```
## -- Conflicts -----
                                          ----- tidymodels_conflicts() --
## x scales::discard() masks purrr::discard()
## x dplyr::filter() masks stats::filter()
## x recipes::fixed() masks stringr::fixed()
## x dplyr::lag() masks stats::lag()
## x yardstick::spec() masks readr::spec()
## x recipes::step() masks stats::step()
## * Use suppressPackageStartupMessages() to eliminate package startup messages
library(caret)
## Loading required package: lattice
## Attaching package: 'caret'
## The following objects are masked from 'package:yardstick':
##
      precision, recall, sensitivity, specificity
##
## The following object is masked from 'package:purrr':
##
      lift
##
library(randomForest)
## randomForest 4.7-1
## Type rfNews() to see new features/changes/bug fixes.
##
## Attaching package: 'randomForest'
## The following object is masked from 'package:dplyr':
##
##
      combine
## The following object is masked from 'package:ggplot2':
##
##
      margin
library(skimr)
```

load data sets

```
train_dt <- read.csv(url('https://d396qusza40orc.cloudfront.net/predmachlearn/pml-training.csv'
))
test_dt <- read.csv(url('https://d396qusza40orc.cloudfront.net/predmachlearn/pml-testing.csv'))</pre>
```

explory data analysis using skim

```
skim(train_dt) %>%
  tibble::as_tibble() %>%
  dplyr::filter(n_missing != 0) %>%
  .[, 2:4]
```

```
## # A tibble: 67 x 3
     skim variable
                          n_missing complete_rate
##
   <chr>
                              <int>
                                            <dbl>
## 1 max_roll_belt
                              19216
                                           0.0207
## 2 max picth belt
                              19216
                                           0.0207
## 3 min roll belt
                              19216
                                           0.0207
## 4 min_pitch_belt
                              19216
                                           0.0207
## 5 amplitude roll belt
                              19216
                                           0.0207
## 6 amplitude pitch belt
                              19216
                                           0.0207
## 7 var_total_accel_belt
                              19216
                                           0.0207
## 8 avg roll belt
                              19216
                                           0.0207
## 9 stddev roll belt
                              19216
                                           0.0207
## 10 var_roll_belt
                              19216
                                           0.0207
## # ... with 57 more rows
```

As can be seen that there are 67 variables possess so many missing data (19216), which is unlikely to be useful for modeling

remove these useless variables

```
uless <- skim(train_dt) %>%
  tibble::as_tibble() %>%
  dplyr::filter(n_missing != 0) %>%
      [ ,2]

new_train <- train_dt %>%
  select(-as.vector(t(uless))) %>%
  select(-c(1:6))

new_test <- test_dt %>%
  select(-as.vector(t(uless))) %>%
  select(-as.vector(t(uless))) %>%
  select(-as.vector(t(uless))) %>%
  select(-c(1:6, ncol(.)))
```

remove near zore variance which is also useless for model

```
nzv <- nearZeroVar(new_train)
new_train <- new_train[,-nzv]
new_train$classe <- as.factor(new_train$classe)
new_train <- new_train %>%
  mutate_if(is.integer, as.numeric)
new_test <- new_test[,-nzv]</pre>
```

data splitting using rsample from tidymodels

```
set.seed(123)
data_split <- initial_split(new_train, prop = 3/4)
train_train <- training(data_split)
train_test <- testing(data_split)</pre>
```

preprocess data and create recipes

```
rec <-
recipe(classe ~ ., data = train_train)</pre>
```

build the models using parsnip in tidymodels – decision_tree first, then random foresst

dt-decision tree

rf-random forest

```
mod_dt <- decision_tree() %>%
  set_engine('rpart') %>%
  set_mode('classification')
```

```
mod_rf <- rand_forest() %>%
  set_engine('ranger') %>%
  set_mode('classification')
```

workflow

```
wfow_dt <-
  workflow() %>%
  add_model(mod_dt) %>%
  add_recipe(rec)

wfow_rf <-
  workflow() %>%
  add_model(mod_rf) %>%
  add_recipe(rec)
```

fit resampled train data set

```
fit_dt <- wfow_dt %>%
  fit(train_train)

fit_rf <- wfow_rf %>%
  fit(train_train)
```

predict

```
aug_dt <- augment(fit_dt, train_test)
aug_rf <- augment(fit_rf, train_test)</pre>
```

generate the area under the ROC curve to estimate accuracy

```
aug_dt %>%
roc_auc(classe, .pred_A:.pred_E)
```

```
aug_rf %>%
  roc_auc(classe, .pred_A:.pred_E)
```

As we can see that random forest possess higher accuracy

(However, such high accuracy could attribute to non-resampled train data)

Finally, I decide to use random forest (fit_rf) to predict test data with 20 obs

```
predict(fit_rf, test_dt)
```

```
## # A tibble: 20 x 1
    .pred class
##
     <fct>
## 1 B
##
   2 A
   3 B
##
##
   4 A
   5 A
##
  6 E
##
  7 D
##
##
   8 B
## 9 A
## 10 A
## 11 B
## 12 C
## 13 B
## 14 A
## 15 E
## 16 E
## 17 A
## 18 B
## 19 B
## 20 B
```