

BurnSync

Your Personal Workout Assistant

Hsuan-Ying, Liu & Chi-En Dai

TABLE OF CONTENTS

Motivation & Introduction

04

Implementation Details

02

Video Demo

05

Conclusion

03

System Architecture

06

Live Demo

Motivation & Introduction

"Working Out Everyday"

Nowadays people put more emphasis on health.

Exercise is the key to maintain well-being.

31%

80%

Adults

Adolescents

do not meet the recommended levels of physical activity

3Ls of Modern People

- Busy schedule
- Leisure activities

Lack of Money

- Sports equipment
- Renting venues

Lack of Motivation

- Fatigue
- Limited access to facilities
- Absence of immediate rewards

BurnSync: Your Personal Workout Assistant

BurnSync

Convenient

- Highly connected
- User-friendly
- Time-efficient
- Accessible anywhere

Cheap

- 500 NTD↓
 (excluding the
 Arduino Nano board)
- Cheaper for mass production

Achievement

- Personal records
- A sense of accomplishment

Detect Heart Rate

Functions

Sets/Repetitions
Recording

Calories Estimation

Fitness Recommendation

Video Demo

AI Recommendation

Sit-ups

Push-ups

Squats

Dumbbells

Heart Rate Detection

Personal Records

System Architecture

Personal Device

(Laptop / Phone / Tablet)

BLE

System Architecture

API

Arduino Nano 33 BLE Sense Rev2

(BurnSync Device)

Database Server

Hugging Face Server (our classification model)

Block Diagram & Hardware Modules

IMU

Max30102

SSD1306

Circuit Diagram

Button: (+) \rightarrow D3, (-) \rightarrow GND

Battery: (+) \rightarrow Vin, (-) \rightarrow GND

MAX30102: GND ightarrow GND, VCC ightarrow 3.3V, SCL ightarrow A5, SDA ightarrow A4

SSD1306: GND ightarrow GND, VCC ightarrow 3.3V, SCL ightarrow A5, SDA ightarrow A4

Implementation Details

Technical Skills

Frontend

Backend & Authentication

Model Deploy

Website Deploy

Machine Learning

Hugging Face

Arduino

23

System Flow

Hardware Design

OLED (SSD1306)

stretchy fabric

Velcro (魔鬼氈) (on the back, sewn-on)

soft wires

Button

MAX30102 (sewn-on)

Arduino Nano

9V Battery

Bread Board

OLED Display

- Line 1: BurnSync
- Line 2: Fitness Tracker
- Line 4: Disconnected / Connected
- Line 5: Recording / Not Recording
- Line 7: Heart Rate
- Line 8: Avg BPM: [Number] / ???

Data Collection

- Steps:
 - Wearing Arduino Nano on the wrist
 - Connect Arduino and computer by BLE
 - Python code to collect the IMU data of Arduino and save as CSV file
 - 3 seconds(30 points) as a piece of data
 - Totally 400 piece of data for each class (300 from right hand and 100 from left hand)
- Take only 6 channels of IMU → accelerometer 3 channels, gyroscope 3 channels
- Sample Rate: 10 Hz

Dataset

	Training 70%	Validation 15%	Testing 15%
Push-up	280 (reps)	60 (reps)	60 (reps)
Sit-ups	280 (reps)	60 (reps)	60 (reps)
Squats	280 (reps)	60 (reps)	60 (reps)
Dumbbells	280 (reps)	60 (reps)	60 (reps)

Model Architecture

- Task: Classification 4 classes
- Architecture: Attention with convolution
- Accuracy on testset: 98.75%

Attention module

Sliding Window – Repetition Counting

- 1-Dimensional Sliding Window on six channels
- Window Size: 30
- Overlap: 15
- Step: Window Overlap = 15

Inference Details

- 1. Receive a list of data with 6 channels
- 2. Apply **sliding window** on the time sequence data
- 3. For each window with **30 data points**, classify it into **4 classes**
- 4. If probability of 4 classes in model output are all < **threshold (0.7)**, classify it to **null**
- 5. If any class gets a probability **higher than threshold**, the **repetition** of that class **+ 1**
- After the sliding window, get the class of the maximum repetitions, clear other classes to zero (Which means we assume user do the same class each time)
- Example:

Conclusion

Efforts

Arduino

- Button & Pull-up resistance
- BLE Communication
- MAX30102 Module
- SSD1306 OLED Module
- Hardware Design

Website

- Frontend UI Design
- RWD Design
- Authentication
- DatabaseConnection

Machine Learning

- Gemini LLM API
- Custom Model Training
- DatasetCollection
- Hugging Face Space Deploy
- Gradio API
 Connection

Contributions

-Cheap & Affordable

Below 500 NTD (excluding Arduino Nano)

—Insight on Fitness IMU Data

Left or right hand does not affect result

—LLM Integration & Diverse Development Potential

Hosting our own website and handmade device provide high flexibility

Major Problems

Repetition Count Accuracy

- Miscounting repetitions
- Possible solutions
 - Normalization
 - Feature extraction
 - Fine tuning or Calibration
 - Adjustable threshold & overlap

Heart Rate Accuracy

- Poor heart rate detection
- Possible solutions:
 - Use other sensors
 - Calibration

Future Work

Higher Accuracy

Massive User Study

Better Encapsulation

More Types of Exercise

Conclusion BurnSync

- 1. Personal fitness assistant
- 2. Convenience
- 3. Ubiquitous
- 4. Cheap
- 5. High potential for future development

BurnSync Demo

- Website
- Login
- Edit profile
- LLM Suggestion
- Live IMU data
- 4 classes tracking
- Edit tracking
- Merge data

If you use iPhone, you need to download **Bluefy** and use it as browser since Apple do not make their bluetooth available for browser

THANKS!

DO YOU HAVE ANY QUESTIONS?

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon**, and infographics & images by **Freepik**

Please keep this slide for attribution