Contents

Complejidad de Edmonds-Karp	. 1
Teorema de Edmonds-Karp	. 1
Lados críticos	
Definición	
distancias	. 2
Definición	
	. 2
Notación	
	. 2
Es decir,	
Definición	
Observación trivial:	
Lema de las distancias	
Existencia de flujos maximales	. 3

Complejidad de Edmonds-Karp

Teorema de Edmonds-Karp

La complejidad del algoritmo de Edmonds-Karp es O(nm2)

Lados críticos

Definición

Diremos que un llado $-\to xy$ se vuelve crítico durante la construcción de uno de los flujos intermedios (digamos, fk+1) si para la construcción de fk+1 pasa una de las dos cosas siguientes:

- 1 Se usa el lado en forma forward, saturandolo (es decir fk($-\to xy$) < c($-\to xy$), pero luego fk+1($-\to xy$) = c($-\to xy$))
- 2 O se usa el lado en forma backward, vaciandolo (es decir fk($-\to xy$) > 0 pero fk+1($-\to xy$) = 0).

distancias

Definición

Dados vértices x, z y flujo f definimos a la distancia entre x y z relativa a f como la longitud del menor f-camino aumentante entre x y z, si es que existe tal camino, o infinito si no existe o 0 si x = z. La denotaremos como df(x, z).

Notación

Dado un vértice x denotamos

$$dk(x) = dfk(s, x)$$

$$y$$

$$bk(x) = dfk(x, t).$$

Es decir,

dk(x) es la longitud del menor fk-camino aumentante entre s y x y bk(x) es la longitud del menor fk-camino aumentante entre x y t.

Definición

Dado un flujo f y un vértice x, diremos que un vértice z es un vécino fFF de x si pasa alguna de las siguientes condiciones:

Observación trivial:

Si z es un fkFF vécino de x, entonces $dk(z) \le dk(x) + 1$

Lema de las distancias

Las distancias definidas anteriormente no disminuyen a medida que k crece. Es decir, $dk(x) \le dk+1(x)$ y $bk(x) \le bk+1(x)$ \forall x

Existencia de flujos maximales

Dado que hemos probado que Edmonds-Karp siempre termina, y dado que produce un flujo maximal,

entonces tambien hemos probado que en todo network siempre existe al menos un flujo maximal.