Statistical Data Analysis

Dr. Jana de Wiljes

5. Januar 2022

Universität Potsdam

Using the Triangle Inequality to Accelerate k-Means

Algorithm:

- 1. Initialize the centre of the cluster $\theta_1,\ldots,\theta_K\in\mathbb{R}^n$ randomly
- 2. Set lower bounds to $I(x_m, \theta_i) = 0$ for all θ_i and x_m
- 3. Assign each x_m to its closest initial center $\theta(x_m) = \arg\min_h ||\theta_h x_m||_2^2$ (avoid redundant calculations using Lemma 1)
- 4. Each time $||\theta_h x_m||_2^2$ is computed, set $I(x_m, \theta_h) = ||\theta_h x_m||_2^2$
- 5. Assign upper bounds $u(x_m) = \min_i ||\theta_i x_m||_2^2$
- 6. Repeat till a stopping criterion is fulfilled {
 - 6.1 **for all** θ_i and θ_j , compute $||\theta_i \theta_j||_2^2$. **For all** centers θ_i , compute $s(\theta_i) = \frac{1}{2} \min_i ||\theta_i \theta_j||_2^2$
 - 6.2 Identify all points x_m such that $u(x_m) \leq s(\theta(x_m))$.
 - 6.3 for all centers θ_i for all remaining points x_m check
 - $\theta_i \neq \theta(x_m)$ and
 - $u(x_m) > l(x_m, \theta_i)$ and
 - $u(x_m) > \frac{1}{2}||\theta(x_m) \theta_i||_2^2$

If conditions $r(x_m)=$ true are true compute $\|x_m-\theta(x_m)\|$ and assign $r(x_m)=$ false. Otherwise $\|x_m-\theta(x_m)\|_2^2=u(x_m)$.

- 6.4 if $\|x_m \theta(x_m)\|_2^2 > l(x_m, \theta_i)$ or $\|x_m \theta(x_m)\|_2^2 > \frac{1}{2} \|\theta(x_m) \theta_i\|_2^2$ then • compute $\|(x_m - \theta_i)\|_2^2$
 - if $||(x_m \theta_i)||_2^2 < ||(x_m \theta(x_m))||_2^2$ then assign $\theta(x_m) = \theta_i$
- 7. for all centers θ_i , let $m(\theta_i)$ be the mean of the points assigned to θ_i
- 8. for all points x_m and for all centers θ_i assign $I(x_m, \theta_i) = \max\{I(x_m, \theta_i) \|\theta_i m(\theta_i)\|_2^2, 0\}$
- 9. for all points x_m , assign $u(x_m) = u(x_m) + \|m(\theta(x_m)) \theta(x_m)\|$ and $r(x_m) = \text{true}$
- 10. replace each center θ_i with $m(\theta_i)$
- 11. return $\theta_1, \ldots, \theta_K$

Example: pattern recognition for atmospheric circulation regimes

Regime

Time persistency constraint

$$\sum_{t=1}^{T-1} |\gamma_k(t+1) - \gamma_k(t)| \le N_C \quad \forall k$$

k-means clustering for different domains

k-means clustering for different domains

Optimisation problem

$$\mathbf{L}(\Theta, \Gamma) = \sum_{t=0}^{T} \sum_{n=1}^{N} \sum_{i=1}^{k} \gamma_{i}(t, n) \|x_{t,n} - \theta_{i}\|^{2}$$

with

$$\sum_{i=1}^{k} \gamma_i(t,n) = 1, \qquad \forall t \in [0,T], \quad \forall n \in [1,N].$$

and

$$\sum_{i=1}^k \sum_{n_1, n_2} |\gamma_i(t, n_1) - \gamma_i(t, n_2)| \le \phi \cdot C_{eq}, \qquad \forall t \in [0, T],$$

7

Ensemble persistency constraint

Ensemble persistency constraint

Occurrence rates

Optimal ϕ

K-Means vs Spectral Clustering

Eigenvalues and Eigenvectors

Definition

Let V be a K-Vector space, $f \colon V \to V$ an Endomorphismus, $\lambda \in K$. The scalar λ is called **Eigenvalue** of f, if there is a vector $v \in V, v \neq 0$, so that

$$f(v) = \lambda \cdot v.$$

The vector v is called **Eigenvector** of f an Eigenvalue λ .

Note: An Eigenvalue λ can be $0 \in K$, but an Eigenvector is always $\neq 0$.

Theorem

Theorem

Let V be a K-vector space, $n = \dim V < \infty$ and $f: V \to V$ an Endomorphismus. The following two are equivalent:

- 1. V has a basis of Eigenvectors of f.
- 2. There is a Basis \mathcal{B} of V, so that

$$M_{\mathcal{B}}^{\mathcal{B}}(f) = \begin{pmatrix} \lambda_1 & 0 \\ & \ddots & \\ 0 & & \lambda_n \end{pmatrix} \text{ with } \lambda_i \in K.$$

Characteristic Polynom

Definition

Let $A \in K^{n \times n}$ and $\lambda \in K$ abitrary. Then

$$\mathsf{Eig}(A,\lambda) := \{ v \in K^n \mid Av = \lambda v \}$$

is called the **Eigenspace** of A with respect to λ .

$$\chi_A(t) := \det(A - tE) \in K[t]$$

is called the **charakteristisches Polynom** of *A*.

Remark: For a matrix $A \in K^{n \times n}$ the following holds:

$$\lambda \in K$$
 is an Eigenvalue of $A \Leftrightarrow \text{Eig}(A, \lambda) \neq 0$.

Theorem

Let $A \in K^{n \times n}$ and $\lambda \in K$. Then:

 λ is an Eigenvalue of $A \Leftrightarrow \lambda$ is a root of $\chi_A(t)$.

Multiplicity

Definition

Let $P(t) \in K[t]$ be a Polynom. P(t) can be decomposed over K in **Linear factors** if and only if there are $\lambda_1, \ldots, \lambda_n \in K, c \in K$, so that

$$P(t) = c \cdot (t - \lambda_1) \cdots (t - \lambda_n) = c \cdot \prod_{j=1}^r (t - \lambda_j')^{m_j},$$

where $m_j \in \mathbb{N}$ and $\lambda'_1, \ldots, \lambda'_r \in \{\lambda_1, \ldots, \lambda_n\}$ are pairwise different. m_j is called the **Multiplicity** of the root λ'_j . It holds that

$$\sum_{j=1}^r m_j = n.$$

Example

Example

Example

What is a graph (formally)?

The objects on the following slides will play a major role in this course.

- $G = (V, E, \omega)$, where $V \neq \emptyset$ is a set (called the **vertex set**), $E \subset \binom{V}{2} = \{\{u, v\} : u, v \in V\}$ (called the **edge set**) and $\omega : E \to \mathbb{R}^+$, is called a (weighted) graph
- usually we choose (or rename) $V = \{1, 2, \dots, n\} \text{ and use the notations}$ $ij = \{i, j\} \text{ for } \{i, j\} \in E \text{ and } \omega_{ij} = \omega(ij)$
- for every i ∈ V define
 N(i) := {j ∈ V : ij ∈ E}, called the
 neighbourhood of i (in G); elements of
 N(i) are called neighbours of i (those elements are adjacent to i)

$$w(23) = 1,$$

 $N(4) = \{1\},$
 $d(1) = |\{3,4\}| = 2$

Graph classes

Well known graph classes are:

- the **path graph** P_n has vertex set $\{1, 2, ..., n\}$ and edge set $\{\{1, 2\}, \{2, 3\}, ..., \{n 1, n\}\}$
- the **cycle graph** C_n has vertex set $\{1, 2, ..., n\}$ and edge set $\{\{1, 2\}, \{2, 3\}, ..., \{n 1, n\}, \{n, 1\}\}$
- the complete graph K_n consists of n vertices which are all adjacent to each other
- the **complete bipartite graph** $K_{m,n}$ has two sets V_1 and V_2 of vertices of sizes m and n, such that the edge set consists of all possible edges between V_1 and V_2

A set of vertices in a graph which are all adjacent to each other (they **induce** a complete (sub)graph), is called **clique**.

The graph $K_{1,n}$ is called a **star**.

What is a digraph (formally)?

Edges can have a direction.

- $G = (V, E, \omega)$, where $V \neq \emptyset$ is a set, $E \subset V \times V$ (this is sometimes also called the **set of arcs**) and $\omega : E \to \mathbb{R}^+$, is called a **(weighted) digraph**
- for (i, j) ∈ E the vertex i is called predecessor of j and j is called successor of i
- similar notation simplifications as before
- N⁺(i) := {j ∈ V : (i, j) ∈ E} is the out-neighbourhood of i,
 N⁻(i) := {j ∈ V : (j, i) ∈ E} is the in-neighbourhood of i
- $d^+(i) := |N^+(i)|$ is the **out-degree** of i and $d^-(i) := |N^-(i)|$ is the **in-degree** of i

$$N^{-}(3) = \{1\},\$$

 $N^{+}(4) = \emptyset,\$
 $d^{+}(1) = 2,\$
 $d^{-}(2) = 1$

Example of a multigraph

It is sometimes necessary to allow multiple edges between two vertices or a **loop** (a self-edge). In that case we use the term **multigraph**.

What is a hypergraph (formally)?

Sometimes more than two vertices need to form an edge (certain real life situations' have this property).

- natural generalisation is a hypergraph H = (V, E), where
 - $V \neq \emptyset$ is (also) a set, but
 - E can be an arbitrary subset (the elements are called hyperedges) of the power set P(V)
- if all hyperedges are of the same size r, then H is called r-uniform

Storing graphs

Certain matrices and lists can be associated with a graph (we will see more examples later).

• affinity matrix W(G):

$$w_{ij} = \begin{cases} \omega_{ij} & \text{if } \{i,j\} \in E, \\ 0 & \text{else.} \end{cases}$$

- adjacency matrix A(G): special case of W(G), where w_{ij} = 1 for all ij ∈ E.
- adjacency list:
 - associate list to every vertex containing its neighbours
 - call list of these lists adjacency list of the graph (treated differently in the literature)
 - not very useful for mathematical arguments
 - especially useful (for storing) when A(G) is sparse

All the above constructions are valid for directed graphs.

How to transform a hypergraph into a graph?

The following constructions are standard.

- clique expansion
 - the vertex set is *V*
 - each hyperedge e is replaced by an edge for every pair of vertices in e
 - this construction yields cliques for every hyperedge
- star expansion
 - vertex set is $V \cup E$
 - edge between u and e iff $u \in e$
 - every hyperedge corresponds to a star
- there are more...

Clique expansion

The clique expansion $G^{x} = (V^{x}, E^{x})$ is constructed from H = (V, E) via:

- $V^{\times} = V$
- $E^{\times} = \{\{i,j\} : \exists e \in E \text{ with } i,j \in e\}$

Star expansion

The star expansion $G^* = (V^*, E^*)$ is constructed from H = (V, E) via:

- $V^* = V \cup E$
- $E^* = \{\{i, e\} : i \in e, e \in E\}$

What if data without network structure is given?

Solution: Build your own graph!

- given a set of data points x₁, x₂..., x_n and some notion of similarity¹s_{ij} ≥ 0 between all pairs of data points x_i and x_j
- build graph G = (V, E), where the vertex i represents the data point x_i, so
 V = {1, 2, ..., n}
- $\{i,j\} \in E \text{ if } s_{ij} > 0$
- edge weight $\omega_{ij} = s_{ij}$ (edge weights represent similarities)
- G is called similarity graph (although with this particular choice of edges it is often referred to as the fully connected graph)

graph for $\{x_i, x_j, x_l\}$ with $s_{ij}, s_{jl} > 0$ and $s_{il} = 0$

The ε -neighbourhood graph

The ε -neighbourhood graph is constructed as follows:

- vertices are data points
- fix some $\varepsilon > 0$
- ullet connect all vertices whose similarities are smaller than arepsilon
- \bullet since ε is usually small, values of existing edges are roughly of the same scale
- hence usually unweighted

The (mutual) k-nearest neighbour graph

The *k*-nearest neighbour graph is constructed as follows:

- vertices are data points
- fix some k > 0
- connect i to the k nearest (w.r.t. s_{ij}) k vertices via an edge starting at i
- obtain an undirected graph by ignoring the directions

The **mutual** *k***-nearest neighbour graph** is constructed as follows:

- vertices are data points
- fix some k
- connect i to the k nearest (w.r.t. s_{ij}) k vertices via an edge starting at i
- obtain an undirected graph by deleting all non symmetric edges

Spectral clustering

- mathematical foundation by Donath & Hoffman and Fiedler in 1973
- applications in various fields/for various problems
 - image segmentation
 - educational data mining
 - entity resolution
 - speech separation
 - ...

Laplacian matrix (and another graph definition)

The degree matrix D(G) is given by

$$d_{ij} = \begin{cases} \sum_{I \in N(i)} w_{iI} & \text{if } i = j, \\ 0 & \text{else.} \end{cases}$$

Laplacian matrix:

$$L(G) = D(G) - W(G)$$

We also need:

$$\operatorname{vol}(A) = \sum_{ij \in E, i,j \in A} \omega_{ij} \text{ for } A \subset V \text{ (no double counting!)}$$