ABSTRACT

This invention relates to a system for estimating the position, speed and orientation of a vehicle (10), comprising means for determining the components of two noncollinear constant unit vectors \hat{g}_b , \hat{e}_b according to vehicle body axes; means for determining the components of said noncollinear constant unit vectors \vec{g}_t , \vec{e}_t according to Earth's axes; means for determining the three components of angular velocity $\hat{\omega}_b$ of the vehicle in body axes; means for correcting said angular velocity $\hat{\omega}_b$ with a correction u_ω and obtaining a corrected angular velocity $\hat{\omega}_b = \hat{\omega}_b + u_\omega$; a control module (14) implementing a control law to calculate said correction u_ω , where said control law is:

$$u_{\omega} = \sigma(\hat{g}_b \times \hat{g}_b + \hat{e}_b \times \hat{e}_b)$$
 [1]

where σ is a positive scalar,

5

10

15

such that upon using said corrected angular velocity $\hat{\omega}_b = \hat{\omega}_b + u_\omega$ as input to a module for integrating the kinematic equations, the latter are stable in the ISS sense and the error in the estimation of the direction cosine matrix \hat{B} and of the Euler angles $\hat{\Phi}$ is bounded.