CS 150 Lecture Slides

Motivation

- Automata = abstract computing devices
- Turing studied Turing Machines (= computers) before there were any real computers
- We will also look at simpler devices than Turing machines (Finite State Automata, Pushdown Automata, . . .), and specification means, such as grammars and regular expressions.
- NP-hardness = what cannot be efficiently computed

Finite Automata

Finite Automata are used as a model for

- Software for designing digital circuits
- Lexical analyzer of a compiler
- Searching for keywords in a file or on the web.
- Software for verifying finite state systems, such as communication protocols.
- * Computer graphics and fractal compression.

• Example: Finite Automaton modelling an on/off switch

• Example: Finite Automaton recognizing the string then

Model of Description: A specification

Structural Representations

These are alternative ways of specifying a machine

Grammars: A rule like $E \Rightarrow E + E$ specifies an arithmetic expression

• $Lineup \Rightarrow Person.Lineup$

Recursion!

says that a lineup is a person in front of a lineup.

Regular Expressions: Denote structure of data, e.g.

'[A-Z][a-z]*[][A-Z][A-Z]'

matches Ithaca NY

does not match Palo Alto CA

Question: What expression would match Palo Alto CA

Central Concepts

Alphabet: Finite, nonempty set of symbols

Example: $\Sigma = \{0, 1\}$ binary alphabet

Example: $\Sigma = \{a, b, c, \dots, z\}$ the set of all lower case letters

Example: The set of all ASCII characters

Strings: Finite sequence of symbols from an alphabet Σ , e.g. 0011001

Empty String: The string with zero occurrences of symbols from Σ

ullet The empty string is denoted ϵ

Length of String: Number of positions for symbols in the string.

 $\left|w\right|$ denotes the length of string w

$$|0110| = 4, |\epsilon| = 0$$

Powers of an Alphabet: Σ^k = the set of strings of length k with symbols from Σ

Example: $\Sigma = \{0, 1\}$

$$\Sigma^1 = \{0, 1\}$$

$$\Sigma^2 = \{00, 01, 10, 11\}$$

$$\Sigma^0 = \{\epsilon\}$$

Question: How many strings are there in Σ^3

The set of all strings over Σ is denoted Σ^*

$$\Sigma^* = \Sigma^0 \cup \Sigma^1 \cup \Sigma^2 \cup \cdots$$
E.g. $\{0,1\}^*$

Also:

$$\Sigma^+ = \Sigma^1 \cup \Sigma^2 \cup \Sigma^3 \cup \cdots$$

$$\Sigma^* = \Sigma^+ \cup \{\epsilon\}$$

Concatenation: If x and y are strings, then xy is the string obtained by placing a copy of y immediately after a copy of x

$$x = a_1 a_2 \dots a_i, y = b_1 b_2 \dots b_i$$

$$xy = a_1 a_2 \dots a_i b_1 b_2 \dots b_j$$

Example: x = 01101, y = 110, xy = 01101110

Note: For any string x

$$x\epsilon = \epsilon x = x$$

Languages:

If Σ is an alphabet, and $L \subseteq \Sigma^*$ then L is a language

Examples of languages:

- The set of legal English words
- The set of legal C programs
- $\bullet\,$ The set of strings consisting of n 0's followed by n 1's

$$\{\epsilon, 01, 0011, 000111, \ldots\}$$

 $\{0^n 1^n | n >= 0\}$

 The set of strings with equal number of 0's and 1's

$$\{\epsilon, 01, 10, 0011, 0101, 1001, \ldots\}$$

• L_P = the set of binary numbers whose value is prime

$$\{10,11,101,111,1011,\ldots\}$$

- ullet The empty language \emptyset
- \bullet The language $\{\epsilon\}$ consisting of the empty string

Note: $\emptyset \neq \{\epsilon\}$

Note2: The underlying alphabet Σ is always finite

Problem: Is a given string w a member of a language L? (Membership Question)

Example: Is a binary number prime = is it a member in L_P

Is $11101 \in L_P$? What computational resources are needed to answer the question.

Usually we think of problems not as a yes/no decision, but as something that transforms an input into an output.

Example: Parse a C-program = check if the program is correct, and if it is, produce a parse tree.

Let L_X be the set of all valid programs in proglang X. If we can show that determining membership in L_X is hard, then parsing programs written in X cannot be easier.

Question: Why?

Finite Automata Informally

Protocol for e-commerce using e-money

Allowed events:

- 1. The customer can pay the store (=send the money-file to the store)
- 2. The customer can *cancel* the money (like putting a stop on a check)
- 3. The store can *ship* the goods to the customer
- 4. The store can *redeem* the money (=cash the check)
- 5. The bank can *transfer* the money to the store

e-commerce

The protocol for each participant:

Completed protocols:

The entire system as an Automaton:

More applications of FA can be found in Linz, Ch. 1.3.

Example: Recognizing Strings Ending in "ing"

Automata to Code

- In C/C++, make a piece of code for each state. This code:
 - 1. Reads the next input.
 - 2. Decides on the next state.
 - 3. Jumps to the beginning of the code for that state.

Example: Automata to Code

```
2: /* i seen */
 c = getNextInput();
 if (c == 'n') goto 3;
 else if (c == 'i') goto 2;
 else goto 1;
3: /* "in" seen */
```

Example: Protocol for Sending Data

Extended Example

- Thanks to Jay Misra for this example.
- On a distant planet, there are three species, a, b, and c.
- Any two different species can mate. If they do:
 - 1. The participants die.
 - 2. Two children of the third species are born.

Strange Planet – (2)

- Observation: the number of individuals never changes.
- The planet fails if at some point all individuals are of the same species.
 - Then, no more breeding can take place.
- ◆ State = sequence of three integers the numbers of individuals of species a, b, and c.

Strange Planet – Questions

- In a given state, must the planet eventually fail?
- In a given state, is it possible for the planet to fail, if the wrong breeding choices are made?

Questions – (2)

- These questions mirror real ones about protocols.
 - "Can the planet fail?" is like asking whether a protocol can enter some undesired or error state.
 - "Must the planet fail" is like asking whether a protocol is guaranteed to terminate.
 - Here, "failure" is really the good condition of termination.

Strange Planet – Transitions

- ◆An a-event occurs when individuals of species b and c breed and are replaced by two a's.
- Analogously: b-events and c-events.
- Represent these by symbols a, b, and c, respectively.

Strange Planet with 2 Individuals

Notice: all states are "must-fail" states.

Strange Planet with 3 Individuals

Notice: four states are "must-fail" states.

The others are "can't-fail" states.

State 111 has several transitions.

Strange Planet with 4 Individuals

Notice: states 400, etc. are must-fail states. All other states are "might-fail" states.

Taking Advantage of Symmetry

- The ability to fail depends only on the set of numbers of the three species, not on which species has which number.
- Let's represent states by the list of counts, sorted by largest-first.
- Only one transition symbol, x.

The Cases 2, 3, 4

Notice: for the case n = 4, there is *nondeterminism*: different transitions are possible from 211 on the same input.

5 Individuals

Notice: 500 is a must-fail state; all others are might-fail states.

6 Individuals

Notice: 600 is a must-fail state; 510, 420, and 321 are can't-fail states; 411, 330, and 222 are "might-fail" states.

7 Individuals

Notice: 700 is a must-fail state; All others are might-fail states.

Questions for Thought

- 1. Without symmetry, how many states are there with *n* individuals?
- 2. What if we use symmetry?
- 3. For *n* individuals, how do you tell whether a state is "must-fail," "might-fail," or "can't-fail"?

Deterministic Finite Automata

A DFA is a quintuple

$$A = (Q, \Sigma, \delta, q_0, F)$$

- Q is a finite set of states
- Σ is a *finite alphabet* (=input symbols)
- δ is a transition function $(q, a) \mapsto p$
- $q_0 \in Q$ is the start state
- $F \subseteq Q$ is a set of *final states*

Example: An automaton A that accepts

$$L = \{x01y : x, y \in \{0, 1\}^*\}$$

The automaton $A = (\{q_0, q_1, q_2\}, \{0, 1\}, \delta, q_0, \{q_1\})$ as a *transition table*:

The automaton as a transition diagram:

An FA accepts a string $w = a_1 a_2 \cdots a_n$ if there is a path in the transition diagram that

- 1. Begins at a start state
- 2. Ends at an accepting state or final
- 3. Has sequence of labels $a_1a_2\cdots a_n$

Example: The FA

accepts e.g. the string 01101 and 1010, but not 110 or 0111

• The transition function δ can be extended to $\hat{\delta}$ that operates on states and strings (as opposed to states and symbols)

Basis:
$$\widehat{\delta}(q,\epsilon) = q$$

Induction:
$$\hat{\delta}(q, xa) = \delta(\hat{\delta}(q, x), a)$$

 \bullet Now, fomally, the language accepted by A is

$$L(A) = \{w : \widehat{\delta}(q_0, w) \in F\}$$
 no more! no less!

 The languages accepted by FA s are called regular languages Example: DFA accepting all and only strings with an even number of 0's and an even number of 1's

Tabular representation of the Automaton

Example

Marble-rolling toy from p. 53 of textbook

Ex. $L_0 = \{ binary numbers divisible by 2 \}$

 $L_1 = \{binary numbers divisible by 3\}$

 $L_2 = \{x \mid x \text{ in } \{0,1\}^*, x \text{ does not contain } 000 \text{ as a substring}\}$

A state is represented as sequence of three bits followed by r or a (previous input rejected or accepted)

For instance, 010a, means left, right, left, accepted

Tabular representation of DFA for the toy

	Α	В
$\rightarrow 000r$	100 <i>r</i>	011r
⋆ 000 <i>a</i>	100r	011r
⋆ 001 <i>a</i>	101r	000a
O10r	110r	001a
⋆ 010 <i>a</i>	110r	001a
O11r	111r	010a
100r	010r	111r
$\star 100a$	010r	111r
101r	011r	100a
$\star 101a$	011r	100a
110r	000a	101a
★110 <i>a</i>	000a	101a
111r	001a	110a

Nondeterministic Finite Automata

An NFA can be in several states at once, or, viewded another way, it can "guess" which state to go to next

Example: An automaton that accepts all and only strings ending in 01.

Here is what happens when the NFA processes the input 00101

Formally, an NFA is a quintuple

$$A = (Q, \Sigma, \delta, q_0, F)$$

- Q is a finite set of states
- ullet Σ is a finite alphabet
- \bullet $\,\delta$ is a transition function from $Q\times\Sigma$ to the powerset of Q
- $q_0 \in Q$ is the start state
- $F \subseteq Q$ is a set of *final states*

Example: The NFA from the previous slide is

$$(\{q_0, q_1, q_2\}, \{0, 1\}, \delta, q_0, \{q_2\})$$

where δ is the transition function

	0	1
$\rightarrow q_0$	$\{q_0,q_1\}$	$\{q_{0}\}$
q_{1}	$\mid \emptyset$	$\{q_2\}$
*q ₂	Ø	Ø

Extended transition function $\hat{\delta}$.

Basis:
$$\widehat{\delta}(q,\epsilon) = \{q\}$$

Induction:

$$\widehat{\delta}(q, xa) = \bigcup_{p \in \widehat{\delta}(q, x)} \delta(p, a)$$

Example: Let's compute $\hat{\delta}(q_0, 00101)$ on the blackboard. How about $\hat{\delta}(q_0, 0010)$?

ullet Now, fomally, the language accepted by A is

$$L(A) = \{ w : \widehat{\delta}(q_0, w) \cap F \neq \emptyset \}$$

Let's prove formally that the NFA

accepts the language $\{x01: x \in \Sigma^*\}$. We'll do a mutual induction on the three statements below

0.
$$w \in \Sigma^* \Rightarrow q_0 \in \widehat{\delta}(q_0, w)$$

1.
$$q_1 \in \hat{\delta}(q_0, w) \Leftrightarrow w = x_0$$

2.
$$q_2 \in \hat{\delta}(q_0, w) \Leftrightarrow w = x01$$

Basis: If |w| = 0 then $w = \epsilon$. Then statement (0) follows from def. For (1) and (2) both sides are false for ϵ

Induction: Assume w = xa, where $a \in \{0, 1\}$, |x| = n and statements (0)–(2) hold for x. We will show on the blackboard in class that the statements hold for xa.

Ex. Design an NFA for

 $L = \{x \mid x \text{ in } \{0,1\}^*, \text{ the 3rd last bit of } x \text{ is a 1} \}$

How many states would be required in the DFA for L?