Wärme- und Stoffübertragung I

Einführung in das Thema der Konvektion und Herleitung der Erhaltungsgleichung

Prof. Dr.-Ing. Reinhold Kneer Dr.-Ing. Dr. rer. pol. Wilko Rohlfs

Lernziele

Klassifizieren

- Verständnis von Konvektion und die Abgrenzung zum Begriff der Advektion
- Konvektion als Zusammenspiel von Wärmeleitung und Advektion Klassifikation von Konvektionsproblemen

Erhaltungsgleichung

- Herleiten der Erhaltungsgleichungen für Masse, Impuls und Energie
- Verstehen der Ähnlichkeit zwischen Impuls- und Energietransport

Wie wird Wärme übertragt?

Wärmeleitung (conduction/diffusion)

Quelle: www.tec-science.com/de/thermodynamik-waermelehre/waerme/warme-und-thermodynamisches-gleichgewicht/www.tec-science.com/de/thermodynamik-waermelehre/waerme/warum-befinden-sich-heizkorper-meist-unter-einem-fenster/

Wie wird Wärme übertragt?

Wärmeleitung (conduction/diffusion)

Quelle: www.tec-science.com/de/thermodynamik-waermelehre/waerme/warme-und-thermodynamisches-gleichgewicht/www.tec-science.com/de/thermodynamik-waermelehre/waerme/warum-befinden-sich-heizkorper-meist-unter-einem-fenster/

Konvektion (convection)

Wie wird Wärme übertragt?

Wärmeleitung (conduction/diffusion)

Advektion

Wärmestrom in radialer Richtung entlang der Gradienten

Fourier Gesetz

$$\dot{q}^{\prime\prime} = -\lambda \frac{\partial T}{\partial x}$$

Wärme wird durch Fluidbewegung entlang eines Stromfadens transportiert

Enthalpiestromdichte

$$\dot{h}^{\prime\prime} = \rho u c_p T$$

Wärmeleitung (conduction/diffusion)

Advektion

Konvektiver Wärmetransport (convection)

Transport entlang der Stromfäden: Transport senkrecht der Stromfäden:

Konvektion (und Wärmeleitung) nur Wärmeleitung

Pizza Lieferung

Mit welchem Art werden Pizza wärmer zugeliefert?

Mechanismus der konvektiven Wärmeübertragung

Woraus ergibt sich der Unterschied zur reinen Wärmeleitung?

Klassifikationen nach Strömungsbedingung

Erzwungene Konvektion

 Antrieb durch von außen erzeugte Bewegung des Fluides/Objekts

Klassifikationen nach Strömungsbedingung

Erzwungene Konvektion

 Antrieb durch von außen erzeugte Bewegung des Fluides/Objekts

Freie Konvektion

 Inhärenter Antrieb aufgrund der Wärmeübertragung (Dichteunterschiede)

Klassifikationen nach Strömungsbedingung

Erzwungene Konvektion

 Antrieb durch von außen erzeugte Bewegung des Fluides/Objekts

Freie Konvektion

 Inhärenter Antrieb aufgrund der Wärmeübertragung (Dichteunterschiede)

Empirische Beschreibung durch den Wärmeübergangskoeffizienten

$$\dot{Q} = \alpha A \left(T_W - T_\infty \right)$$

Fourier'sches
$$\dot{Q} = -A\lambda_f \left(\frac{\partial T}{\partial y}\right)_{y=0,p}$$
 Wärmeleitungsgesetz

Der Wärmeübertragungskoeffizient α beschreibt den in erster Näherung linearen Zusammenhang zwischen der übertragenen Wärmemenge und dem Temperaturgradienten.

$$\alpha = \frac{-\lambda_f \left(\frac{\partial T}{\partial y}\right)_{y=0,f}}{(T_W - T_\infty)}$$

Nusselt Zahl

• Dimensionsloser Wärmeübergangskoeffizient mit der Bezugslänge L ∂T

$$Nu = \frac{\alpha L}{\lambda} = L \frac{-\left(\frac{\partial T}{\partial y}\right)_{y=0,f}}{(T_W - T_\infty)}$$

Grenzschicht

- Wandnahe Schicht mit signifikantem Gradienten der Geschwindelt und der Temperatur
- Was passiert hier? → Erhaltungsgleichung

Erhaltungsgleichung

Für Masse \dot{m} , Impuls \dot{I} , Energie h, \dot{q}'' .

Generelle Bilanz

Zeitliche Änderung einer Größe im Inneren des Kontrollvolumens

Netto-Transport der Größe über die Grenzen des Kontrollvolumens

Äußere Kräfte (für Impulsgleichung)

Arbeitsleistung der äußeren Kräfte (für Energiegleichung)

Kontinuitätsgleichung

Bilanz aufstellen

Massenströme

$$\frac{\partial m}{\partial t} = \dot{m}_{x}(x) - \dot{m}_{x}(x + dx) + \dot{m}_{y}(y) - \dot{m}_{y}(y + dy)$$

$$\frac{\partial \rho}{\partial t} dV = \frac{\partial \rho \mathbf{u}}{\partial x} dx dy dz + \frac{\partial \rho \mathbf{v}}{\partial y} dx dy dz$$

inkompressibel $\rho = konst.$

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0$$

Impulsgleichung: x-Richtung

Bilanz aufstellen

Zeitliche Änderung

stationär

$$\frac{\partial I_{x}}{\partial t}dV = 0$$

Impulsströme

$$-\left(\rho u\frac{\partial u}{\partial x} + \rho v\frac{\partial u}{\partial y}\right) dxdydz$$

Impulsgleichung: x-Richtung

Bilanz aufstellen

Zeitliche Änderung

stationär

$$\frac{\partial I_{x}}{\partial t}dV = 0$$

Impulsströme

$$-\left(\rho u \frac{\partial u}{\partial x} + \rho v \frac{\partial u}{\partial y}\right) dx dy dz$$

Äußere Kräfte

Druckänderung $-\frac{\partial \mathbf{p}}{\partial x}dxdydz$

Impulsgleichung: x-Richtung

Bilanz aufstellen

Zeitliche Änderung

stationär

$$\frac{\partial I_{x}}{\partial t}dV = 0$$

Impulsströme

$$-\left(\rho u \frac{\partial u}{\partial x} + \rho v \frac{\partial u}{\partial y}\right) dx dy dz$$

Äußere Kräfte

Druckänderung $-\frac{\partial p}{\partial x}dxdydz$ Scherspannungen

(wenn inkompressibel)

$$\eta \left(\frac{\partial^2 \mathbf{u}}{\partial x^2} + \frac{\partial^2 \mathbf{v}}{\partial y^2} \right) dx dy dz$$

Impulsgleichung (stationär, inkompressibel)

Impulsströme

Druck

Scherspannungen

x-Richtung
$$\rho u \frac{\partial u}{\partial x} + \rho v \frac{\partial u}{\partial y} + \rho w \frac{\partial u}{\partial z} = -\frac{\partial p}{\partial x} + \eta \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \right)$$

(z.B. Gravitation)

y-Richtung
$$\rho u \frac{\partial v}{\partial x} + \rho v \frac{\partial v}{\partial y} + \rho w \frac{\partial v}{\partial z} = -\frac{\partial p}{\partial y} + \eta \left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} + \frac{\partial^2 v}{\partial z^2} \right)$$

z-Richtung
$$\rho u \frac{\partial w}{\partial x} + \rho v \frac{\partial w}{\partial y} + \rho w \frac{\partial w}{\partial z} = -\frac{\partial p}{\partial z} + \eta \left(\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2} + \frac{\partial^2 w}{\partial z^2} \right)$$

Energieerhaltung: Enthalpieströme

Bilanz aufstellen

Zeitliche Änderung

$$\frac{\partial U}{\partial t} = \rho c_p \frac{\partial T}{\partial t} dV \text{ (stationär } \frac{\partial U}{\partial t} = 0)$$

Enthalpieströme

$$-\left(\rho u \frac{\partial T}{\partial x} + \rho v \frac{\partial T}{\partial y}\right) dx dy dz$$

Energieerhaltung: Wärmeleitung / Diffusion

Bilanz aufstellen

Zeitliche Änderung

$$\frac{\partial U}{\partial t} = \rho c_p \frac{\partial T}{\partial t} dV \text{ (stationär } \frac{\partial U}{\partial t} = 0)$$

Enthalpieströme

$$-\left(\rho u\frac{\partial T}{\partial x} + \rho v\frac{\partial T}{\partial y}\right) dx dy dz$$

Wärmeleitung

(wenn λ homogen)

$$\lambda \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} \right) dx dy dz$$

Energieerhaltung (stationär, inkompressibel, λ homogen)

Enthalpieströme

Wärmeleitung

$$\rho u c_p \frac{\partial T}{\partial x} + \rho v c_p \frac{\partial T}{\partial y} + \rho w c_p \frac{\partial T}{\partial z} = \chi \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2} \right) + \text{Arbeit gegen Druck Scherspannungen, Volumenkräfte}$$

$$a = \frac{\lambda}{\rho c_p}$$

+ Arbeit gegen Druck,

Im Vergleich zu Impulserhaltung

Impulsströme

Druck

Scherspannungen

$$\rho u \frac{\partial u}{\partial x} + \rho v \frac{\partial u}{\partial y} + \rho w \frac{\partial u}{\partial z} = -\frac{\partial p}{\partial x} + \eta \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \right)$$
 + Volumenkräfte (z.B. Gravitation)

Ähnlichkeit zwischen Impuls- und Energietransport

Impulsströme

Druck

Scherspannungen

$$u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y} + w\frac{\partial u}{\partial z} = -\frac{1}{\rho}\frac{\partial p}{\partial x} + v\left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2}\right)$$

$$u\frac{\partial T}{\partial x} + v\frac{\partial T}{\partial y} + w\frac{\partial T}{\partial z} =$$

 $\frac{v}{Pr} \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2} \right)$

Enthalpieströme (advektiver Transport)

Wärmeleitung

Prandtl-Zahl

$$Pr = \frac{v}{a} = \frac{\text{Diffusiver Impulstransport}}{\text{Diffusiver Wärmetransport}}$$

Verständnisfragen

Was ist unter einem Wärmeübergangskoeffizienten zu verstehen und was beschreibt dieser?

Warum gilt in unmittelbarer Wandnähe auch auf der Fluidseite das Fourier'sche Wärmeleitungsgesetz?

Was besagt die dimensionslose Nusselt-Zahl?

Worin besteht der Unterschied zwischen natürlicher und erzwungener Konvektion?

