4.2.5. Метод Мюллера (D. E. Muller)

Метод Мюллера (или парабол) состоит в приближенной замене заданной функции f(x) интерполяционным полиномом второй степени (параболой, на рис. 41 и 42 она нанесена пунктирной линией), построенным по значениям функции в трех точках x_0, x_1, x_2 и последующим нахождением координаты точки пересечения этой параболы с осью абсцисс, т.е. решения квадратного уравнения. Иными словами, в методе Мюллера используется не линейная аппроксимация, как в методах Ньютона и секущих, а квадратичная.

Как следует из определения метода Мюллера для начала итерационного процесса необходимо задать три начальных приближения: нулевое x_0 , первое x_1 и второе x_2 . На практике поступают следующим образом: за нулевое приближение выбирают одну из границ интервала локализации (левую рис. 41а или правую рис. 41б), а в качестве первого и второго приближения выбирают величины $x_1 = x_0 \pm \varepsilon$ и $x_2 = x_0 \pm 2\varepsilon$, где ε – заданная погрешность.

Рис. 41 – В качестве начальных данных для первого приближения по методу Мюллера выбрана: a) левая или δ) — правая, граница локализованного интервала

Рис. 42 – Второе приближение метода Мюллера (для левой - a), правой $- \delta$) границы)

Эти значения используются для нахождения последующего (третьего) приближения x_3 . Затем, значения x_1 , x_2 и x_3 используют для определения четвертого приближения x_4 (см. рис. 42) и т.д.

Чтобы получить выражение для определения нового приближения x_{k+1} по трем известным точкам x_{k-2} , x_{k-1} и x_k применяется интерполяционный полином Лагранжа второго порядка

жения
$$x_{k+1}$$
 по трем известным точкам x_{k-2} , x_{k-1} и x_k применяется интерполяционный полином Лагранжа второго порядка
$$L_2(f(x)) = b_0 x^2 + b_1 x + b_2 \,.$$

Для нахождения коэффициентов b_0 , b_1 и b_2 используется условие прохождения данного интерполяционного полинома через три точки $(x_{k-2}, f(x_{k-2}))$, $(x_{k-1}, f(x_{k-1}))$ и $(x_k, f(x_k))$. Таким образом, составляется система из трех линейных алгебраических уравнений

$$\begin{cases} b_0 x_{k-2}^2 + b_1 x_{k-2} + b_2 = f(x_{k-2}), \\ b_0 x_{k-1}^2 + b_1 x_{k-1} + b_2 = f(x_{k-1}), \\ b_0 x_k^2 + b_1 x_k + b_2 = f(x_k). \end{cases}$$

В результате решения полученного СЛАУ определяются искомые коэффициенты b_0 , b_1 и b_2 . Полученный полином Лагранжа позволяет определить координату x_{k+1} в которой функция $L_2(f(x))$ обращается в ноль. Для этого решается квадратное уравнение стандартным образом.

В итоге получается расчетная формула для метода Мюллера

в следующем виде:
$$2C(x_k-x_{k-1})$$

$$x_{k+1} = x_k - \frac{2C(x_k - x_{k-1})}{B \pm \sqrt{B^2 - 4AC}},$$
 здесь $A = qf(x_k) - q(1+q)f(x_{k-1}) + q^2f(x_{k-2}),$ $B = (2q+1)f(x_k) - (1+q)^2f(x_{k-1}) + q^2f(x_{k-2}),$ $C = (1+q)f(x_k),$

 $q = \frac{x_k - x_{k-1}}{x_{k-1} - x_{k-2}}.$

Знак в знаменателе перед корнем всегда выбирается так, чтобы абсолютное значение знаменателя было максимальным. Правильный выбор знака перед квадратным корнем позволяет получить одно из двух решений x_{k+1} , которое находится ближе к x_k . На практике поступают следующим образом, анализируется знак коэффициента B, если B > 0, то знак перед корнем выбирается положительным, иначе B < 0 – отрицательным, т.е. используется функция sign(B) определяющая знак числа B.

Метод Мюллера обладает сверхлинейной сходимостью с порядком сходимости 1,84.