Metody gradientowe							
Dominik Wróbel 09 IV 2018 Pon 08:00, s. 111							
Numery zadań	1, 2, 5						

1 Cel ćwiczenia

Celem ćwiczenia jest zapoznanie się z metodami gradientowymi poszukiwania minimum funkcji. Analiza działania różnych metod dla różnych funkcji pozwoli na określenie słabych i mocnych stron tych metod. Porównanie metod pozwoli na wybranie najlepszej dla danego problemu.

2 Przebieg ćwiczenia

2.1. Zadanie 1 - obserwacja zjawiska zygzakowania

W zadaniu poszukiwane jest minimum funkcji celu danej wzorem:

$$Q(x_1, x_2) = x_1^2 + ax_2^2$$

W tym celu wykorzystywana jest metoda najszybszego spadku. Rozważane są różne postacie funkcji celu dla parametru a:

- a = 1,
- a = 0.5,
- a = 0.3

Zmiana parametru *a* powoduje zmianę kształtu poziomic funkcji celu. Dzięki temu możliwe jest obserwowanie wpływu wydłużania zbiorów poziomicowych i punktów startowych na działanie metody najszybszego spadku.

W funkcjach wprowadzono modyfikacje w celu dostosowania działania metody do zadania. Zmieniono funkcję kosztu tak aby obliczała wartość funkcji celu zgodnie ze wzorem podanym na początku zadania:

```
function [q,x]=KOSZT(x,z,d)
% KOSZT wylicza wskaźnik jakości dla wektora zmiennych
% decyzyjnych x+z*d.

if nargin==2, x=x+z;
elseif nargin==3, x=x+z*d;
end
q=x(1)^2+a*x(2)^2;
```

Rysunek 1: Funkcja obliczająca wartość funkcji celu w danym punkcie

Zmodyfikowano także plik obliczający gradient podstawiając wzór na gradient funkcji z zadania:

```
function g=gradie(x)
% GRADIE Wyznacza analitycznie gradient funkcji kosztu w punkcie X.
a=1;
g=[2*x(1) 2*a*x(2)];
```

Rysunek 2: Funkcja obliczająca gradient w danym punkcie

Napisano skrypt umożliwiający wywoływanie funkcji granad oraz rysowanie znalezionych rozwiązań wraz z kierunkami gradientów:

```
% a = 1
figure();
[ zm1 , zm2 ] = meshgrid( -25:0.1:25, -25:0.1:25 );
a = 1;
rys_war = zm1.^2 +a*zm2.^2;
contour(zm1, zm2, rys_war, [10,25,50,100,150,200,250,300], 'ShowText', 'on');
granad;
hold on;
x_ax=found(1,:);
y_ax=found(2,:);
plot(x_ax, y_ax, 'o-');
axis([-20 20 -20 20]);
```

Rysunek 3: Funkcja rysująca działanie metody

2.1.1. Zadanie 1 - Parametr a = 1

Dla parametru a = 1 poziomice są okręgami. Nie trudno zauważyć, że minimum funkcji celu jest punkt (0,0). Punkt startowy przyjęto dla różnych wartości parametru a taki sam zgodnie z numerem na liście ćwiczeniowej:

 $x_0 = \left[n, \frac{n}{2}\right] = [16, 8]$

Uzyskane wyniki przedstawia Rysunek 4

Rysunek 4: a = 1, poszukiwanie minimum dla różnych punktów początkowych

2.1.2. Zadanie 1 - Parametr a = 0.3

Dla parametru a = 0.3 poziomice są elipsami. Nie trudno zauważyć, że minimum funkcji celu jest punkt (0,0). Punkt startowy przyjęto dla różnych wartości parametru a taki sam zgodnie z numerem na liście ćwiczeniowej:

 $x_0 = \left[n, \frac{n}{2}\right] = [16, 8]$

Uzyskane wyniki przedstawia Rysunek 5

Rysunek 5: a = 0,3, poszukiwanie minimum dla różnych punktów początkowych

2.1.3. Zadanie 1 - Parametr a = 0.5

Dla parametru a = 0.5 poziomice są elipsami. Nie trudno zauważyć, że minimum funkcji celu jest punkt (0,0). Punkt startowy przyjęto dla różnych wartości parametru a taki sam zgodnie z numerem na liście ćwiczeniowej:

$$x_0 = \left[n, \frac{n}{2}\right] = [16, 8]$$

Uzyskane wyniki przedstawia Rysunek 6

Rysunek 6: a = 0.5, poszukiwanie minimum dla różnych punktów początkowych

2.2. Zadanie 2 - Porównanie gradientowych metod optymalizacji

Zadanie to polega na porównaniu gradientowych metod optymalizacji. Badana funkcja celu to:

$$Q(x_1, x_2) = 6x_1^2 + 6x_1x_2 + x_2^2 + 4.5(e^{x_1} - x_1 - 1) + 1.5(e^{x_2} - x_2 - 1)$$

W zadaniu tym ponownie zmodyfikowano funkcje koszt.m oraz gradie.m aby dostosować je do funkcji celu z zadania.

```
function [q,x]=koszt(x,z,d)
% KOSZT wylicza wskaźnik jakości dla wektora zmiennych
% decyzyjnych x+z*d.
if nargin==2, x=x+z;
elseif nargin==3, x=x+z*d;
end
q=6*x(1)^2+6*x(1)*x(2)+3*x(2)^2+4.5*(exp(x(1))-x(1)-1)+1.5*(exp(x(2))-x(2)-1);
```

Rysunek 7: Funkcja koszt.m dla zadania 2

```
function g=gradie(x) 
% GRADIE Wyznacza analitycznie gradient funkcji kosztu w punkcie X. 
g=[12*x(1)+6*x(2)+4.5*(exp(x(1))-1) 6*x(1)+6*x(2)+1.5*(exp(x(2))-1)];
```

Rysunek 8: Funkcja gradie.m dla zadania 2

W niewielkim zakresie konieczna była także modyfikacja skryptu granad, tak aby odpowiednio dopasować rozmiary mnożonych macierzy dla poprawnego działania metody. Do wykonania wykresów została wykorzystana funkcja z zadania poprzedniego.

Przeanalizowane zostaną metody:

- Metoda najszybszego spadku,
- Metoda Fletchera Reevesa
- Metoda Polaka Ribiere'a,
- Metoda z pełną formułą na współczynnik β

W zadaniu zostały przyjęte następujące założenia:

- Punkt startowy zgodnie z listą ćwiczeniową (n = 16) to (-48, 16)
- Max. liczba iteracji to 20
- x^{apr} aktualne przybliżenie rozwiązania optymalnego,
- $Q^{apr} = Q(x^{apr})$
- x^* rozwiązanie optymalne (wyznaczone analitycznie)
- $Q^* = Q(x^*)$
- Norma gradientu nie mniejsza od 0.001

Na rysunkach wynikowych w celu lepszej widoczności działania metody kolejne kierunki zaznaczono strzałkami.

2.2.1. Zadanie 2 - Metoda najszybszego spadku

Dla punktu startowego (-48,16) działanie metody przedstawia Rysunek 9

Rysunek 9: Metoda najszybszego spadku, punkt początkowy (-48, 16)

2.2.2. Zadanie 2 - Metoda Fletchera - Reevesa

Dla punktu startowego (-48,16) działanie metody przedstawia Rysunek 10.

Rysunek 10: Metoda Fletchera - Reevesa, punkt początkowy (-48,16)

2.2.3. Zadanie 2 - Metoda Polaka - Ribiere'a

Dla punktu startowego (-48,16) działanie metody przedstawia Rysunek 11.

Rysunek 11: Metoda Polaka - Ribiere'a, punkt początkowy (-48,16)

2.2.4. Zadanie 2 - Metoda z pełną formułą na współczynnik beta

Dla punktu startowego (-48,16) działanie metody przedstawia Rysunek 12.

Rysunek 12: Metoda z pełną formułą na współczynnik beta, punkt początkowy (-48,16)

2.2.5. Zadanie 2 - Tabelaryczne porównanie metod

Zestawienie porównawcze metod przedstawiają Tabele 1, 2, 3, 4 i 5.

Iteracja	1	2	3	4	5	6	7	8
Norma	2E+14	12565043	6139247	787473	3749800	3540308	83193,97	293792,9
Koszt_apr - Koszt_opt	1E+07	357261,4	183722,6	179489,2	125909,1	39700,29	16951,71	16730,85
X_apr - X_opt	-48	-47,9827	4,094104	6,449197	-135,299	-82,4342	4,99495	5,637678
	16	-458,771	-439,912	-439,045	-18,5976	7,246896	-142,175	-140,939

Rysunek 13: Metoda najszybszego spadku

Iteracja	5	6	7	8	9	10	11	12
Norma	795915	16425253	732931,4	8,04E+08	2528280	8,816764	0,029115	6,55E-06
Koszt_apr - Koszt_opt	179507	177772,9	176027	108076,5	1517,807	0,243766	0,011593	1,74E-07
X_apr - X_opt	6,4543	7,274755	6,25586	8,807531	5,865495	0,090694	-0,05164	0,000124
	-439,1	-435,131	-434,918	-305,38	-10,4726	0,19558	0,128922	5,58E-05

Rysunek 14: Metoda Fletchera - Reevesa

Iteracja	6	7	8	9	10	11	12	13
Norma	316992	105957,6	117,0543	10,54893	24,53586	0,322252	0,074001	6,36E-06
Koszt_apr - Koszt_opt	10651	1269,376	10,45074	8,301181	0,79348	0,189959	0,002028	1,96E-06
X_apr - X_opt	-38,74	-14,7504	1,079989	1,430592	0,454569	0,213385	0,017551	0,000594
	-6,161	5,504434	-5,18311	-5,01767	-0,5336	-0,58539	-0,00539	-1,72E-03

Rysunek 15: Metoda Polaka - Ribiere'a

Iteracja	7	8	9	10	11	12	13	14
Norma	1E+08	278728,2	90506,72	11776,84	26,95588	7,716665	0,012313	5,90E-05
Koszt_apr - Koszt_opt	101849	513,7736	365,5177	106,5357	2,261609	1,037015	0,000327	1,65E-05
X_apr - X_opt	-126	-1,62831	-5,48834	-0,13593	-0,79706	-0,34558	-0,00518	0,001679
	9,0525	5,86241	5,369425	4,199444	1,150009	1,029402	-0,00293	-4,99E-03

Rysunek 16: Z pełną formułą na współczynnik beta

2.3. Zadanie 5 - Dolina bananowa Rossenbrocka

W tym zadaniu wyznaczane jest minimum funkcji celu:

$$Q(x_1, x_2) = 100(x_2 - x_1^2)^2 + (1 - x_1)^2$$

Zgodnie z numerem na liście ćwiczeniowej przyjęto, że punkt startowy to

$$x_0 = \left[n, \frac{n}{2}\right] = [16, 8]$$

Zmodyfikowaną funkcję koszt.m przedstawia Rysunek 18. Zmodyfikowaną funkcję gradie.m przedstawia Rysunek 17.

```
function [q,x]=koszt(x,z,d)
% KOSZT wylicza wskaźnik jakości dla wektora zmiennych
% decyzyjnych x+z*d.
if nargin==2, x=x+z;
elseif nargin==3, x=x+z*d;
end
n = 0;
x = x + 1 * n;
x1 = x(1);
x2 = x(2);
q = 100 * (x2 - x1.^2).^2 + (1 - x1).^2;
```

Rysunek 17: koszt.m dla zadania 5

```
function g=gradie(x)  
% GRADIE Wyznacza analitycznie gradient funkcji kosztu w punkcie X. g=[ -400*x(1)*(x(2)-x(1)^2) -2*(1-x(1)) 200*(x(2)-x(1)^2) ];
```

Rysunek 18: gradie.m dla zadania 5

Zbadano metody:

- Metoda najszybszego spadku,
- Metoda Fletchera Reevesa
- Metoda Polaka Ribiere'a,
- Metoda z pełną formułą na współczynnik β

2.3.1. Zadanie 5 - Metoda najszybszego spadku

Dla punktu startowego (32,16) działanie metody przedstawia Rysunek 19

Rysunek 19: Metoda najszybszego spadku, punkt początkowy (32, 16)

2.3.2. Zadanie 5 - Metoda Fletchera - Reevesa

Dla punktu startowego (32,16) działanie metody przedstawia Rysunek 20.

Rysunek 20: Metoda Fletchera - Reevesa, punkt początkowy (32, 16)

2.3.3. Zadanie 5 - Metoda Polaka - Ribiere'a

Dla punktu startowego (32,16) działanie metody przedstawia Rysunek 21.

Rysunek 21: Metoda Polaka - Ribiere'a, punkt początkowy (32,16)

2.3.4. Zadanie 5 - Metoda z pełną formułą na współczynnik beta

Dla punktu startowego (32,16) działanie metody przedstawia Rysunek 22.

Rysunek 22: Metoda z pełną formułą na współczynnik beta, punkt początkowy (32,16)

Zestawienie porównawcze metod przedstawia Tabela 5.

2.3.4 Zadanie 5 - Metoda z pełną formułą na współczynnik beta

Metoda	Liczba iteracji	X_apr - X_opt	Koszt_apr - Koszt_opt
Najszybszy spadek	20	-3,770043016	22,99
	9	14,26195632	
Fletchera - Reevesa	20	-1,763183156	8,58
		3,011769961	
Polaka - Ribiere'a	20	0,760551018	0,06
		0,578429938	16 or half of the con-
Z pełną formułą beta	20	0,962115678	0,0015
	7	0,92511165	

Rysunek 23: Porównanie metod - Zadanie 5

3 Wnioski końcowe

Zadanie 1 pozwala na zaobserwowanie wad metody najszybszego spadku, dla poziomic będących okręgami metoda ta bardzo szybko znajduje minimum, wystarczy jedna iteracja, natomiast dla poziomic będących elipsami kierunki gradientów zmieniają się w sposób 'zygzakowaty', co powoduje, że metoda ta jest dość wolna w użyciu.

W zadaniu drugim zostało wykonane porównanie czterech metod gradientowych. Metoda najszybszego spadku nie znalazła minimum z określoną dokładnością przed osiągnięciem limitu iteracji (max. 20). Inne metody znacznie dokładniej i szybciej były w stanie znaleźć minimum, wynika to z innego sposobu obliczania przez te metody gradientu. Zadanie 2 pokazuje również różnice pomiędzy gradientami obliczanymi przez różne metody. Zależnie od wybory metody kierunki te są inne, co prowadzi do różnych rezultatów i różnych szybkości zbieżności do punktu optymalnego.

W zadaniu 5 żadna z metod nie dała zadowalających rezultatów, pomimo, że metoda najszybszego spadku poradziła sobie najgorzej, a inne metody lepiej, to każda z nich wykorzystała maksymalną liczbę 20 iteracji.