电子科技大学研究生试卷

(考试时间:	至		井	2	小时)
/ J M// PJ -J •		,			J J - /

课程名称 **矩阵理论** 教师 学时 60 学分 3

教学方式 课堂讲授 考核日期 2009 年 1 月 日 成绩

考核方式: _____(学生填写)

一、选择题(20分)

1、设
$$x = \frac{1}{\sqrt{n}} \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix} \in R^n (n > 1), B = I - xx^T$$
, 其中 I 为单位矩阵,则下面正确的选项为(

 $A. \mid B \mid 1 + ; \quad B. \mid B \mid 2 + ; \quad C. \mid B \mid 2 + ; \quad D. \mid B \mid 1 + = 1$

2、设G 为矩阵 $A \in C_r^{m \times n}(r < n)$ 的一个广义逆 A^- , A = BD 为A 的最大秩分解,则

$$\|\mathbf{DGB}\|_{m_1} = ($$

 $A. 1; \qquad B. r; \qquad C. 0; \qquad D. n.$

3、下列说法错误的是()

A. 矩阵 A 与 A^H 有相同的奇异值; B. 矩阵收敛的充分必要条件是其谱半径小于 1;

C. 矩阵 A 的右逆 A_R^{-1} 是 A 的自反广义逆; D. $\|AB\|_{m_\infty} riangleq A\|_{m_\infty} \|B\|_{m_\infty}$.

4、设n阶矩阵A满足 $A^2 = A$,但A不是单位矩阵,则下列说法正确的是().

A. 矩阵 A 不是严格对角占优; B. 矩阵 A 为严格对角占优;

C. 矩阵 A 左可逆;

D. 矩阵 A 的 M-P 广义逆 $A^+ = A$.

5、设 $A \in C^{n \times n}$ 且矩阵A的谱半径r(A) < 1,则 $\sum_{k=0}^{\infty} kA^k = ($

A. $A(I - A; B. A(I - A)^{2}; C. A(I - A)^{-1}; D. A(I - A)^{-2}$.

二、填空题(20分)

1、设A为三阶矩阵且Ax=0、(3I-A)x=0和(I+3A)x=0都有非零解,其中I为

第 1 页

三阶单位矩阵,则矩阵 A 的谱半径 r(A) =_______.

2、设
$$A = \begin{pmatrix} \pi & 0 \\ 0 & \frac{\pi}{2} \end{pmatrix}$$
,则 $\|\sin A\|_2 = \underline{\qquad}$.

- **4**、设 $A \in C^{n \times n}$ 是可逆矩阵,0是n阶零矩阵,则 $\begin{pmatrix} A & 0 \\ 0 & 0 \end{pmatrix}^+ =$ _______.
- 5、设 $A \in C_n^{m \times n}$ 且 $\|A(A^T A)^{-1} A^T \|_2 =$ _______.

二、计算与证明(60分)

1. $(10\ eta)$ 设 $A=(a_{ij})\in C^{m\times n}$,定义实数 $\|A\|_G=\sqrt{mn}\max_{i,j}\left|a_{ij}\right|$, $1\leq i\leq m,\ 1\leq j\leq n$. 证明: $\|A\|_G$ 是 $C^{m\times n}$ 上的矩阵范数.

2. (10 分) 设矩阵 $A = (a_{ij}) \in C^{n \times n}$ 满足 $A^2 = A$,求矩阵函数 e^{At} .

 ** 3. (8 分) 设矩阵 $A \in C^{n \times n}$ 是正规矩阵,其特征值为 $\lambda_1, \lambda_2, \cdots, \lambda_n$,满足 $|\lambda_1| \geq |\lambda_2| \geq \cdots \geq |\lambda_n|$,

B=AU, 其中U 为酉矩阵, B 的特征值为 μ_1,μ_2,\cdots,μ_n , 证明

- (1) 如果 $A^2 = 0$,则A = 0;
- $(2) \mid \lambda_1 \mid \geq \mid \mu_i \mid \geq \mid \lambda_n \mid.$

- 4. (8 分) 设矩阵 $A=(a_{ij})_{n\times n}$ 非奇异,其奇异值为 $\sigma_1,\sigma_2,\cdots,\sigma_n$,A=UDV是矩阵A的奇异值分解, $\det A$ 表示矩阵A 的行列式, A^H 表示矩阵A 的共扼转置矩阵,证明
 - (1) 矩阵U 的任意一个列向量都是矩阵 AA^H 的一个特征向量;
 - (2) $|\det A| = \sigma_1 \sigma_2 \cdots \sigma_n$.

5. (6 分) 设矩阵 $A, B \in C^{n \times n}$,若 ABA = A, $(BA)^H = BA$,AGA = A, $(AG)^H = AG$,证明: $A^+ = BAG$.

- (1). 求矩阵 A 的最大秩分解;
- (2). 求 A^+ ;
- (3). 用广义逆矩阵方法判断方程组Ax=b是否有解?
- (4). 求方程组Ax = b的最小范数解或最佳逼近解?(要求指出所求的是哪种解)

业

科

小 电

第 5 页

- 7. (8 分) 设矩阵 $A,B \in C^{n \times n}, A = A^H, r(B)$ 为矩阵 B 的谱半径,
- (1) 如果矩阵 $A, A-B^HAB$ 均为正定矩阵,则 r(B) < 1;
- (2) 如果矩阵B的谱半径r(B)<1, 证明: 存在正定矩阵A, 使得 $A-B^HAB$ 为正定矩阵.