Предварительные замечания:

- 1. Описание алгоритма состоит из описания четырех нижеприведенных процедур.
- 2. Предполагается, что к началу исполнения алгоритма был произведен переход к экранной системе координат и проведена операция кадрирования, в ходе которой координата z каждой точки (координата в экранной системе координат) не отбрасывается, а остается неизменной. Т. е. после перехода к экранной системе координат выполняется преобразование:

$$\begin{bmatrix} \chi' \\ \gamma' \\ \zeta' \\ \alpha' \end{bmatrix} = \begin{bmatrix} W_x/2 & 0 & 0 & W_{cx} + W_x/2 \\ 0 & -W_y/2 & 0 & W_{cy} - W_y/2 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \chi \\ \gamma \\ \zeta \\ \alpha \end{bmatrix}$$

- 3. В описании алгоритма подразумевается, что область рисования имеет координаты по x от W_{cx} до $W_{cx}+W_x$, по y от W_{cy} до $W_{cy}+W_y$, где W_{cx},W_x,W_{cy},W_y неотрицательны.
- 4. Список AEL список четверок, первый элемент которых идентификатор многоугольника, а остальные вещественные числа.
- 5. При сравнении значений координаты y на равенство следует округлять эти значения до целого числа.
- 6. При рассмотрении ребер многоугольника $[(x_1,y_1,z_1),(x_2,y_2,z_2)]$ считаем, что $y_1\leqslant y_2$ (начальная точка ребра находится не ниже конечной), а при равенстве $y_1=y_2$ выполняется $x_1\leqslant x_2$ (начальная точка ребра находится не левее конечной).

Алгоритм 1: Интервальный алгоритм построчного сканирования (Алгоритм Уоткинса)

 \mathbf{Bxog} : $\mathscr{P}-$ список многоугольников трехмерной сцены

начало алгоритма

- \cdot Для каждого многоугольника в \mathscr{P} вычислить $y_{P \min}$ и $y_{P \max}$ значения минимальной и максимальной координаты y для вершин многоугольника;
- · Удалить из \mathscr{P} все многоугольники, у которых $y_{P \min} > W_{cy} + W_y$ или $y_{P \max} < W_{cy}$;
- · Определить значение $y_{P\,next}$ минимальное значение $y_{P\,min}$ для многоугольников в \mathscr{P} :
- $\cdot y_t = y_{P \, next};$
- \cdot цикл пока $y_t \leqslant W_{cy} + W_y$ выполнять
 - \cdot если $y_t = y_{P\,next}$, то
 - · Занести в список APL все многоугольники из \mathscr{P} , для которых $y_{P \min} = y_t$, удалив их из \mathscr{P} ;
 - · Для каждого нового многоугольника P_j в APL установить значение $Active(P_j) = False$ и определить значения пятерки $(C_j, a_j, b_j, c_j, d_j)$, где C_j цвет многоугольника, а a_j , b_j , c_j , d_j коэффициенты уравнения несущей плоскости, полученные с помощью процедуры InitializePolygon(P_j). Если $c_j = 0$ удалим многоугольник из APL;
 - $\cdot y_{APL\,next} = y_t;$
 - если список \mathscr{P} пуст, то присвоить $y_{P next} = \infty$;
 - иначе

Определить значение $y_{P\,next}$ — минимальное значение $y_{P\, min}$ для многоугольников в $\mathscr P$

- \cdot если $y_t = y_{APL\,next}$, то
 - $y_t y_{APL\,next}$. Составленные для ребер многоугольников из APL, у которых $y_1 = y_t$ и $y_1 \neq y_2$;
 - · Добавить в AEL все четверки $(P, x_1, y_2, 0)$, составленные для ребер многоугольников из APL, у которых $y_1 = y_t$ и $y_1 = y_2$;
 - · Для ребер многоугольников в APL найти $y_{APL\,next}$ минимальное значение y_1 такое, что $y_1 > y_t$. Если таких ребер нет в APL, то присвоить $y_{APL\,next} = \infty$;
 - \cdot Упорядочить AEL по значению 2-го элемента четверки;
 - \cdot Найти $y_{AEL\,next}$ минимальное значение третьего элемента в четверках в AEL;
- \cdot если $y_t \geqslant W_{cy}$ то выполнить процедуру ProcessLine ;
- $\cdot y_t = y_t + 1;$
- \cdot если $y_t \geqslant y_{AEL\,next}$, то
 - \cdot удалить из AEL четверки с третьим элементом меньшим либо равным y_t ;
 - · Обновить значение $y_{AEL\,next}$;
- · В каждой четверке $(P_i, x_i, y_i, \Delta_i x)$ в AEL заменить x_i на $x_i + \Delta_i x$;

конец алгоритма

Алгоритм 2: PROCESSLINE

начало алгоритма

- $\cdot x_{left} = -\infty; x_{right} = W_{cx} \ polygonCount = 0; i = 1;$
- \cdot цикл пока не достигнут конец списка AEL и $x_{left} < W_{cx} + W_x$ выполнять
 - · Пусть $(P_i, x_i, y_i, \Delta_i x)$ очередной элемент AEL;
 - $\cdot x_{right} = x_i;$
 - · если $x_{right} > W_{cx}$ то
 - · если $x_{left} < W_{cx}$ то присвоить $x_{left} = W_{cx}$;
 - если $x_{right} > W_{cx} + W_x$ то присвоить $x_{right} = W_{cx} + W_x$;
 - \cdot если polygonCount = 0 то присвоить цвет фона переменной C;
 - · иначе если polygonCount = 1 то присвоить $C = C_i$ цвет многоугольника P_i ;
 - иначе
 - · Присвоить $intersectionStack = \emptyset$;
 - · повторять вычисления
 - \cdot если $intersectionStack \neq \varnothing$ то
 - · Начертить отрезок $[(x_{left}, y_0), (x_{right}, y_0)]$ цветом C;
 - · Присвоить $x_{left} = x_{right}$;
 - · Извлечь значение из стека intersectionStack и присвоить его переменной x_{right} ;
 - · цикл пока HasIntersection $(x_{left}, x_{right}, x_{int})$ выполнять
 - · Занести x_{right} в стек intersectionStack;
 - · Присвоить $x_{right} = x_{int}$;
 - \cdot Для всех P, таких, что Active(P), найти z_{mid}

$$z_{mid} = -\frac{a(x_{left} + x_{right}) + 2by_t + 2d}{2c};$$

- · Присвоить переменной C цвет многоугольника с максимальным z_{mid} ;
- · пока $intersectionStack \neq \emptyset$;
- · Изменить $Active(P_i) = !Active(P_i);$
- если $Active(P_i)$ то polygonCount = polygonCount + 1;
- · иначе polygonCount = polygonCount 1;
- · Начертить отрезок $[(x_{left}, y_0), (x_{right}, y_0)]$ цветом C;
- · Присвоить $x_{left} = x_{right}, i = i + 1;$
- \cdot если $x_{left} < W_{cx} + W_x$ то
 - · если $x_{left} < W_{cx}$ то присвоить $x_{left} = W_{cx}$;
 - · Присвоить $x_{right} = W_{cx} + W_x$;
 - · Начертить отрезок $[(x_{left}, y_0), (x_{right}, y_0)]$ цветом фона;

конец алгоритма

Алгоритм 3: INITIALIZEPOLYGON Вычисление коэффициентов уравнения плоскости

Вход: P — список вершин многоугольника в трехмерном пространстве

Выход: a, b, c, d — коэффициенты уравнения несущей плоскости

начало алгоритма

Пусть (x_1, y_1, z_1) , (x_2, y_2, z_2) , (x_3, y_3, z_3) — первые три вершины в списке P.

Предполагаем, что эти вершины не лежат на одной прямой. Тогда

$$a = \begin{vmatrix} 1 & y_1 & z_1 \\ 1 & y_2 & z_2 \\ 1 & y_3 & z_3 \end{vmatrix}; \quad b = \begin{vmatrix} x_1 & 1 & z_1 \\ x_2 & 1 & z_2 \\ x_3 & 1 & z_3 \end{vmatrix}; \quad c = \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix}; \quad d = - \begin{vmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end{vmatrix}.$$

конец алгоритма

Алгоритм 4: HASINTERSECTION Проверка наличия пересечений на интервале

Вход: x_{left} , x_{right} . Параметр x_{int} может использоваться для возвращения одного из результатов.

Выход: False — если на отрезке от x_{left} до x_{right} отсутствуют пересечения активных многоугольников. True — в противном случае. В случае возврата True параметр x_{int} содержит значение координаты x для точки пересечения.

начало алгоритма

- \cdot цикл для каждого многоугольника P_j такого, что $Active(P_j)$ выполнить
 - Вычислить

$$z_{j\,left} = -\frac{a_j x_{left} + b_j y_t + d_j}{c_j}; \quad z_{j\,right} = -\frac{a_j x_{right} + b_j y_t + d_j}{c_j};$$

 \cdot цикл для каждого многоугольника P_k такого, что $Active(P_k)$ выполнить

• Вычислить

$$z_{k\,left} = -\frac{a_k x_{left} + b_k y_t + d_k}{c_k}; \quad z_{k\,right} = -\frac{a_k x_{right} + b_k y_t + d_k}{c_k};$$

- · Вычислить $\Delta z_{left} = z_{j \, left} z_{k \, left}; \ \Delta z_{right} = z_{j \, right} z_{k \, right};$
- · если $sign(\Delta z_{left}) \neq sign(\Delta z_{right})$ то
 - Вычислить

$$x_{int} = \frac{x_{right} \Delta z_{left} - x_{left} \Delta z_{right}}{\Delta z_{left} - \Delta z_{right}};$$

- \cdot Выдать True и закончить алгоритм;
- \cdot Выдать False;

конец алгоритма