Задачи 8 класса

Задача 1.

А. Найдите значение выражения 13 - x, если значение разности x - 13противоположно числу -13.

Решение: Число 13 - x является противоположным к числу x - 13, и в условиях задачи равно -13.

В. В выражении

$$\frac{x+y}{z}+t$$

буквы заменили числами 1, 2, 3 и 4 (разные буквы на разные числа). Какое наименьшее значение может принимать это выражение?

Решение: Увеличение чисел x, у и t при прочих равных увеличивает значение выражения из задачи, а увеличение числа z — уменьшает. Поэтому, чтобы как можно сильнее уменьшить значение выражения из задачи, нужно подставить самое большое число вместо z. Поэтому z=4.

Получается выражение $\frac{1}{4}(x+y)+t$. Самое маленькое число выгодно оставить как есть, а числа побольше — «усмирить» коэффициентом $\frac{1}{4}$. Поэтому ответ на задачу —

$$\frac{2+3}{4}+1=\frac{9}{4}.$$

С. Решите уравнение

$$x = \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + x}}}$$

Решение:

$$\frac{1}{1 + \frac{1}{1 + \frac{1}{1 + x}}} = \frac{1}{1 + \frac{1 + x}{2 + x}} = \frac{2 + x}{3 + 2x};$$

$$x = \frac{2 + x}{1 + \frac{1}{1 + x}}$$

$$x=\frac{2+x}{3+2x}.$$

Осталось решить квадратное уравнение:

$$2x^{2} + 3x = x + 2$$

$$2x^{2} + 2x - 2 = 0$$

$$x^{2} + x - 1 = 0$$

$$\mathcal{D} = 5$$

$$x = \frac{-1 \pm \sqrt{5}}{2}.$$

Нужно также проверить, что каждое из двух значений x не обращает в ноль ни один знаменатель при вычислении цепной дроби — в нашем случае, когда в знаменателе всегда будет $\sqrt{5}$ с ненулевым коэффициентом, это очевидно.

Задача 2.

- А. Какое из следующих утерждений неверно?
 - 1) 4101 и 2115 не взаимно простые числа;
 - 2) 97 простое число;
 - 3) HOД(21,1001) = 1;
 - 4) HOK(15, 14) = 210.

Решение: Неверно третье утверждение: НОД (21, 1001) на самом деле равен 7. Проверку остальных утверждений мы оставляем читателю.

В. Сколько девяток встретится в последовательности 1, 2, 3, ..., 2014, 2015?

Решение: Среди чисел 2001–2015 ровно одна девятка, поэтому мы исключим их из рассмотрения на протяжении дальнейшего решения.

Среди чисел от 1 до 10 встречается ровно одна девятка. Значит, среди чисел от 1 до 100 в младшем разряде встретится 10 девяток. Ещё 10 девяток на каждую сотню придут из второго разряда чисел 90–99.

Поэтому среди чисел от 1 до 1000 встретится $10 \cdot (10+10) = 200$ девяток, пришедших из двух младших разрядов. Ещё 100 девяток

Сборник задач олимпиады «Математика НОН-СТОП»

встретится в третьем разряде чисел 900–999. Итого, на каждую тысячу приходится 300 цифр 9 в трёх младших разрядах.

В задаче мы имеем дело числами от 1 до 2000 — в них встретится 600 цифр 9, и ещё одна — после 2000. Ответ: 601 цифра 9.

С. Последовательность составляется по следующему правилу:

Докажите, что в ней есть по крайней мере одно составное число.

Решение: Мы докажем, что в данной последовательности найдётся **бесконечно много** чисел, делящихся на 7. Для начала заметим, что k—ое число в нашей последовательности имеет вид

$$5 \cdot 10^k + 3$$
.

Также обратим внимание на то, что при возведении числа 10 в натуральные степени остатки результата при делении на 7 «зацикливаются»:

$$1, 3, 2, 6, 4, 5, 1, 3, \dots$$

В частности, для бесконечно многих k число 10^k имеет остаток 5 при делении на 7. В таком случае $5 \cdot 10^k + 3$ делится на 7, что и требовалось.

Задача 3.

А. Четыре прямые попарно пересекаются. Какое наибольшее число точек пересечения может получиться?

Решение: Точек пересечения не может быть больше, чем собственно пересечений. В свою очередь, пересечений

$$\frac{4\cdot 3}{2}=6.$$

Получить 6 точек пересечения совсем просто:

2015 год, 8 класс

Задача 5.

А. У какого трёхзначного числа больше всего множителей?

Решение: Очевидно, что при данном количестве простых множителей самым маленьким числом является степень двойки. Поэтому среди трёхзначных чисел будем искать степень двойки — подойдёт число 512 с девятью простыми множителями.

В. Из цифр 2, 5, 8 составили семизначное число (возможно, некоторые из этих цифр и не участвовали в записи). Может ли оно делиться нацело на 15?

Решение: Докажем, что результат проделанной в условии процедуры не мог делиться даже на 3. Действительно, всякое число сравнимо по модулю 3 со своей суммой цифр, а каждая из цифр 2, 5, 8 сравнима с двойкой.

Поэтому составленное из них число будет сравнимо по модулю 3 с числом $2 \cdot 7 = 14$, которое на 3 не делится.

С. Пусть a — нечётное число, большее 3. Какой цифрой (чётной или нечётной) является предпоследняя цифра числа a^2 ?

Решение: Число a можно представить в виде $10 \cdot Y + x$, где x — последняя цифра числа a, и потому нечётная. В свою очередь,

$$(10 \cdot Y + x)^2 = 100 \cdot Y^2 + 20 \cdot Yx + x^2.$$

В этой сумме первое слагаемое не оказывает никакого влияния на предпоследнюю цифру a^2 , а второе слагаемое не влияет на чётность предпоследней цифры числа a^2 .

Остаётся перебрать квадраты нечётных цифр — 01, 09, 25, 49, 81 — и выяснить, что их предпоследняя цифра чётна. Поэтому искомая предпоследняя цифра в данной задаче будет чётной.

Задача 7.

А. Как изменится частное, если делитель увеличить на $\frac{1}{5}$ его величины?

Pewerue:
$$\frac{x}{y+\frac{1}{5}y} = \frac{5}{6} \cdot \frac{x}{y}$$
.

В. В выражении 2:3:5:7:11:13, расставляя по-разному скобки, можно получить разные дроби. Можно ли таким образом получить дробь

$$\frac{2 \cdot 5 \cdot 7}{3 \cdot 11 \cdot 13}$$
?

Решение: Отметим, что все числа, данные в задаче, являются простыми, поэтому в некотором месте получающейся дроби будет находиться данный множитель, только если это было «предусмотрено» тем, как оказались расставлены знаки деления. Иными словами, произведение или частное двух чисел из задачи не могут делиться на другое число из задачи.

Теперь осталось заметить, что числа 5 и 7, стоящие рядом в исходном выражении, после приведения выражения к виду единой дроби всегда будут оказываться в разных её частях, вне зависимости от того, как между ними и вокруг них расставлены пары скобок. То есть они не могут одновременно попасть в числитель.

Поэтому дробь, данную в условии, получить нельзя.

С. Про натуральные числа m и n известно, что m > n, и число

$$2001m^2 - 40mn - n^2$$

нацело делится на 14. Какое наименьшее значение может принимать выражение m^2-n^2 ?

Решение: Заметим, что $2001m^2-40mn-n^2$ сравнимо с выражением $-(m-n)^2$ по модулю 14:

$$(2001m^2-40mn-n^2)+(m^2-2mn+n^2)=$$
 $=2002m^2-42mn$, что делится на 14.

Отсюда $-(m-n)^2$ делится на 14, и $(m-n)^2$ делится на 14. Так как 14 не является квадратом натурального числа, то m-n тоже должно делиться на 14 (и не быть равным нулю, по условию).

Теперь,

$$(n+14k)^2 - n^2 = 28nk + 196k^2.$$

Это выражение тем меньше, чем меньше n и k. Минимальные значения для n и k-1 и 1 соответственно. Поэтому минимальное значение выражения из условия — 28+196=224.