# Homework 3a: Analytic functions are too nice

COURSE: Physics 231, Methods of Theoretical Physics (2019) INSTRUCTOR: Professor Flip Tanedo (flip.tanedo@ucr.edu)

Due by: Wed, October 30

Cauchy's Integral Formula is the powerful statement that the integral of an analytic function, f(z) over any closed loop C, is zero:

$$\oint_C dz \ f(z) = 0 \ . \tag{0.1}$$

In other words, analytic functions are not only nice, they are *too nice*—their integrals don't contain any information! In this mini-homework we prove the integral formula in two ways: a *little tiny* circle and a *little tiny* square.

### 1 Little tiny circle

We show that the Cauchy integral formula (0.1) holds for the a small, counter-clockwise circular path of radius  $\epsilon$  around the point  $z_0$ :



#### 1.1 Parameterize the path

Parameterize the path in terms of the polar angle  $\theta$ :

$$z(\theta) = z_0 + \epsilon e^{i\theta} . {(1.1)}$$

Write the left-hand side of (0.1) as a definite integral by filling in the right-hand side of the following:

$$\oint_C dz \ f(z) = \int_0^{2\pi} d\theta \ f(z(\theta)) (\cdots) \ . \tag{1.2}$$

Fill in the facotr " $\cdots$ ".

#### 1.2 Leading terms

Taylor expand f(z) about  $z = z_0$ . Keep the zeroth and first order terms and plug them into the  $d\theta$  integral. Write the two terms in the integrand as explicit functions of  $\epsilon$  and  $\theta$ :

$$\oint_C dz \ f(z) = \int_0^{2\pi} d\theta \ [\text{ function of only } \epsilon \text{ and } \theta \ ]$$
 (1.3)

### 1.3 Argue that the integral vanishes

Argue that the  $d\theta$  integral indeed vanishes. Did you have to use  $\epsilon \to 0$ ?

## 2 Little tiny square(s)

Now show that the Cauchy integral formula (0.1) holds for the a small, counter-clockwise square path of length  $\epsilon$  around the point  $z_0$ :



### 2.1 Parameterize the path, leading terms

Decompose the path into four straight line pieces,  $\Delta z_1, \dots, \Delta z_4$ . For each leg, do a Taylor expansion and keep the zeroth and first order terms. Write the integral as

$$\oint_C dz \ f(z) = f(z_0) \left[ \cdots \right] + f'(z_0) \left[ \cdots \right] , \qquad (2.1)$$

where you fill in the " $\cdots$ ".

#### 2.2 Argue that the integral vanishes

Show that both of the "···" terms vanish. HINT: it may be useful to think of  $dz = \Delta z$  in the integral and  $(z - z_0) = \delta z$  in the Taylor expansion as two separate quantities that depend on  $\epsilon$ .

## 3 Where did we use analyticity?

Why don't these proofs hold for any complex function? Where did we use the fact that the function f(z) is analytic? HINT: it was important that our contours were "little tiny" shapes.

# Extra Credit

These problems are not graded and are for your edification. You are strongly encouraged to explore and discuss these topics, especially if they are in a field of interest to you.

#### Spot the error 1

What's wrong with the following sequence of steps:

$$e^{2\pi i} = 1 \tag{1.1}$$

$$(e^{2\pi i})^{2\pi i} = 1^{2\pi i} = 1$$

$$(e^{-2\pi})^2 = 1$$

$$(e^{-2\pi})^2 = 1$$

$$(1.2)$$

$$(e^{-4\pi})^2 = 1$$

$$(1.3)$$

$$(1.4)$$

$$\left(e^{-2\pi}\right)^2 = 1\tag{1.3}$$

$$e^{-4\pi} = 1. (1.4)$$

But since  $e^x = 1 \Rightarrow x = 0$ , this means that  $\pi = 0$ .