

FCC PART 15B MEASUREMENT AND TEST REPORT

For

Wittis Communication Technology Limited

FLAT A-B, 11/F, WAH LIK IND CTR, 459-469 CASTLE PEAK RD.,
TSUEN WAN, N.T., HONG KONG

FCC ID: ZEW-ALVOGIO

Report Type: **Product Type:** Original Report Mobile Phone Kvass. Yang **Test Engineer:** Kvass Yang **Report Number:** RSZ11041102 **Report Date:** 2011-05-12 Merry Zhao merry, where **Reviewed By:** EMC Engineer Bay Area Compliance Laboratories Corp. (Shenzhen) Prepared By: 6/F, the 3rd Phase of WanLi Industrial Building, ShiHua Road, FuTian Free Trade Zone Shenzhen, Guangdong, China Tel: +86-755-33320018 Fax: +86-755-33320008

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. This report **must not** be used by the customer to claim product certification, approval, or endorsement by NVLAP*, or any agency of the Federal Government.

* This report contains data that are not covered by the NVLAP accreditation and are marked with an asterisk "*\pm" (Rev.2)

TABLE OF CONTENTS

GENERAL INFORMATION
DESCRIPTION OF TEST CONFIGURATION
EUT EXERCISE SOFTWARE
EQUIPMENT MODIFICATIONS
EXTERNAL I/O CABLE
CONFIGURATION OF TEST SETUP
BLOCK DIAGRAM OF TEST SETUP
SUMMARY OF TEST RESULTS
SUMINIARY OF TEST RESULTS
FCC §15.107 – AC LINE CONDUCTED EMISSIONS
MEASUREMENT UNCERTAINTY
EUT Setup
EMI TEST RECEIVER SETUP
TEST PROCEDURE
TEST EQUIPMENT LIST AND DETAILS
TEST RESULTS SUMMARY
FCC §15.109 - RADIATED SPURIOUS EMISSIONS12
MEASUREMENT UNCERTAINTY
EUT Setup
EMI Test Receiver Setup
TEST EQUIPMENT LIST AND DETAILS
TEST PROCEDURE
TEST RESULTS SUMMARY
TEST DATA 14

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

The *Wittis Communication Technology Limited*'s product, model number: *GIO (FCC ID: ZEW-ALVOGIO)* or the "EUT" as referred to in this report is a *Mobile Phone*, which measures approximately: 10.6 cm (L) x 6.0 cm (W) x 1.2 cm (H), rated input voltage: DC 3.7 V battery.

* All measurement and test data in this report was gathered from production sample serial number: 1104053 (Assigned by BACL, Shenzhen). The EUT was received on 2011-04-11.

Objective

This Type approval report is prepared on behalf of *Wittis Communication Technology Limited* in accordance with Part 2, Subpart J, Part 15, Subparts A and B of the Federal Communication Commissions rules.

The objective of the manufacturer is to determine compliance with FCC Part 15 Class B.

Related Submittal(s)/Grant(s)

FCC Part 22H/24E and FCC Part 15.247 submissions with FCC ID: ZEW-ALVOGIO

Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (Shenzhen) to collect test data is located in the 6/F, the 3rd Phase of WanLi Industrial Building, ShiHua Road, FuTian Free Trade Zone Shenzhen, Guangdong, China.

Test site at Bay Area Compliance Laboratories Corp. (Shenzhen) has been fully described in reports submitted to the Federal Communication Commission (FCC). The details of these reports have been found to be in compliance with the requirements of Section 2.948 of the FCC Rules on December 06, 2010. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4-2009.

The Federal Communications Commission has the reports on file and is listed under FCC Registration No.: 382179. The test site has been approved by the FCC for public use and is listed in the FCC Public Access Link (PAL) database.

Additionally, Bay Area Compliance Laboratories Corp. (Shenzhen) is an ISO/IEC 17025 guide accredited laboratory, and is accredited by National Voluntary Laboratory Accredited Program (Lab Code 200707-0).

The current scope of accreditations can be found at http://ts.nist.gov/Standards/scopes/2007070.htm.

SYSTEM TEST CONFIGURATION

Description of Test Configuration

The system was configured for testing in a manufacturer testing fashion.

EUT Exercise Software

N/A

Equipment Modifications

No modification was made to the unit tested.

Local Support Equipment List and Details

Manufacturer	Description	Model	Serial Number
DELL	Laptop	D610	N/A

External I/O Cable

Cable Description	Length (m)	From/Port	То
Unshielded Detachable USB Cable	1.2	Laptop	EUT
Unshielded Detachable Power Cable	1.2	EUT	Adapter

Configuration of Test Setup

For PC charging

For adapter charging&media playing

Block Diagram of Test Setup

For PC charging

For adapter charging&media playing

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Results
§15.107	AC Line Conducted Emissions	Compliance
§15.109	Radiated Spurious Emissions	Compliance

FCC §15.107 – AC LINE CONDUCTED EMISSIONS

Measurement Uncertainty

All measurements involve certain levels of uncertainties, especially in field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, and LISN.

Based on NIS 81, The Treatment of Uncertainty in EMC Measurements, the best estimate of the uncertainty of any conducted emissions measurement at Bay Area Compliance Laboratories Corp. (Shenzhen) is ± 2.4 dB.(k=2, 95% level of confidence)

EUT Setup

Note: 1. Support units were connected to second LISN.

2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The setup of EUT is according with per ANSI C63.4-2009 measurement procedure. The specification used was with the FCC Part 15.107 Class B limits.

The spacing between the peripherals was 10 cm.

The adapter of laptop was connected to a 120 VAC/60 Hz power source for PC charging mode.

The adapter of EUT was connected to a 120 VAC/60 Hz power source for adapter charging& media playing mode.

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W
150 kHz – 30 MHz	9 kHz

Test Procedure

During the conducted emission test, the adapter of laptop was connected to the outlet of the LISN for PC charging mode; adapter of EUT was connected to the outlet of the LISN for adapter charging&media playing mode.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All data was recorded in the Quasi-peak and average detection mode.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	EMI Test Receiver	ESCS30	830245/006	2011-03-03	2012-03-02
Rohde & Schwarz	L.I.S.N.	ESH2-Z5	892107/021	2011-03-09	2012-03-08

^{*} **Statement of Traceability:** Bay Area Compliance Laboratory Corp. attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to the NIST.

Test Results Summary

According to the recorded data in following table, the EUT complied with the FCC Part 15.107, with the worst margin reading of:

11.90 dB at 1.100 MHz in the Line conducted mode

Test Data

Environmental Conditions

Temperature:	25 °C
Relative Humidity:	48 %
ATM Pressure:	100.0 kPa

The testing was performed by Kvass Yang on 2011-05-10.

Note: depend on pre-scan PC charging mode is the worse case.

Test Mode: PC Charging

AC 120V/60 Hz, Line

Co	Conducted Emissions			C Part 15.107, C	lass B
Frequency (MHz)	Correction Factor (dB)	Corrected Result (dBµV)	Limit (dBµV)	Margin (dB)	Remark (PK/ QP/Ave.)
1.100	10.10	34.1	46.00	11.90	Ave
8.115	10.10	36.68	50.00	13.32	Ave
1.505	10.10	32.13	46.00	13.87	Ave
28.255	10.20	33.73	50.00	16.27	Ave
0.200	10.10	38.22	54.57	16.35	Ave
8.115	10.10	41.08	60.00	18.92	QP
1.100	10.10	34.36	56.00	21.64	QP
28.355	10.20	37.66	60.00	22.34	QP
0.200	10.10	41.05	64.57	23.52	QP
1.505	10.10	32.19	56.00	23.81	QP
0.265	10.10	26.34	52.71	26.37	Ave
0.265	10.10	34.08	62.71	28.63	QP

AC 120V/60 Hz, Neutral

Co	Conducted Emissions			C Part 15.107, C	lass B
Frequency (MHz)	Corrected Factor (dB)	Corrected Result (dBµV)	Limit (dBµV)	Margin (dB)	Remark (PK/ QP/Ave.)
0.600	10.20	33.03	46.00	12.97	Ave
0.200	10.10	40.9	54.57	13.67	Ave
1.100	10.10	32.03	46.00	13.97	Ave
8.020	10.10	32.51	50.00	17.49	Ave
0.200	10.10	44.51	64.57	20.06	QP
0.600	10.20	34.12	56.00	21.88	QP
1.100	10.10	32.85	56.00	23.15	QP
8.015	10.10	36.67	60.00	23.33	QP
19.215	10.10	25.34	50.00	24.66	Ave
0.265	10.10	27.01	52.71	25.7	Ave
0.265	10.10	34.46	62.71	28.25	QP
19.175	10.10	17.17	60.00	42.83	QP

FCC §15.109 - RADIATED SPURIOUS EMISSIONS

Measurement Uncertainty

All measurements involve certain levels of uncertainties, especially in field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, antenna factor calibration, antenna directivity, antenna factor variation with height, antenna phase center variation, antenna factor frequency interpolation, measurement distance variation, site imperfections, mismatch (average), and system repeatability.

Based on NIS 81, The Treatment of Uncertainty in EMC Measurements, the best estimate of the uncertainty of a radiation emissions measurement at Bay Area Compliance Laboratories Corp. (Shenzhen) is $\pm 4.0 \text{ dB}$. (k=2, 95% level of confidence)

EUT Setup

The radiated emission tests were performed in the 3 meters chamber B test site, using the setup accordance with the ANSI C63.4-2009. The specification used was the FCC Part 15.109 Class B limits.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle.

The spacing between the peripherals was 10 cm.

The adapter of laptop was connected to a 120 VAC/60 Hz power source for PC charging mode.

The adapter of EUT was connected to a 120 VAC/60 Hz power source for adapter charging& media playing mode.

EMI Test Receiver Setup

The system was investigated from 30 MHz to 1000 MHz.

During the radiated emission test, the EMI test receiver was set with the following configurations:

Frequency	RB/W	VB/W	IF B/W	Detection
30 MHz-1 GHz	100 kHz	300 kHz	120 kHz	Quasi-peak

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
HP	Amplifier	HP8447E	1937A01046	2010-08-02	2011-08-02
Rohde & Schwarz	EMI Test Receiver	ESCI	100035	2010-11-11	2011-11-10
Sunol Sciences	Broadband Antenna	JB1	A040904-1	2010-07-05	2011-07-04

^{*} **Statement of Traceability:** Bay Area Compliance Laboratories Corp (Shenzhen). attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to the NIST.

Test Procedure

For the radiated emissions test, the adapter of laptop was connected to AC floor outlet for PC charging mode; the adapter of EUT was connected to AC floor outlet for adapter charging &media playing mode.

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

All data was recorded in the Quasi-peak detection mode from 30 MHz to 1 GHz.

Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Loss and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

Corrected Amplitude = Meter Reading + Antenna Loss + Cable Loss - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

Margin = Limit – Corrected Amplitude

Test Results Summary

According to the data in the following table, the EUT complied with the FCC §15.10, Class B, with the worst margin reading of:

2.9 dB at **34.449000 MHz** in the Vertical polarization

Test Data

Environmental Conditions

Temperature:	25 °C
Relative Humidity:	48 %
ATM Pressure:	100.0 kPa

The testing was performed by Kvass Yang on 2011-05-10.

Note: depend on pre-sscan adapter charging & Media play mode is the worse case.

Test Mode: Adapter Charging & Media playing mode

Auto Test(FCC 15 Class B)

Frequency (MHz)	Corrected Amplitude (dBµV/m)	Test Antenna		Turntable	Correction	Limit	Mangin
		Height (cm)	Polarity (H/V)	Position (degree)	Factor (dB)	(dBµV/ m)	Margin (dB)
34.449000	37.1	103.0	V	232.0	-8.4	40.0	2.9*
35.678250	36.4	104.0	V	18.0	-9.3	40.0	3.6*
31.212500	34.2	204.0	V	354.0	-0.8	40.0	5.8
42.851250	30.3	102.0	V	71.0	-13.9	40.0	9.7
50.648000	30.1	104.0	V	77.0	-17.4	40.0	9.9
270.317500	24.2	204.0	V	18.0	-0.5	46.0	21.8

^{*}Within measurement uncertainty!

***** END OF REPORT *****