

UNIVERSIDADE DE BRASÍLIA INSTITUTO DE FÍSICA PROGRAMA DE PÓS-GRADUAÇÃO DE MESTRADO PROFISSIONAL EM ENSINO DE FÍSICA MESTRADO NACIONAL PROFISSIONAL EM ENSINO DE FÍSICA

Games Digitais: Uma Abordagem de Física de Partículas Elementares no Ensino Médio

Jefferson Rodrigues de Oliveira

Games Digitais: Uma Abordagem de Física de Partículas Elementares no Ensino Médio

Jefferson Rodrigues de Oliveira

Dissertação de Mestrado apresentada ao Programa de Pós-Graduação da Universidade de Brasília (UNB) no Curso de Mestrado Profissional de Ensino de Física (MNPEF), como parte dos requisitos necessários à obtenção do título de Mestre em Ensino de Física.

Prof^a. Dr^a. Vanessa Carvalho de Andrade Orientadora

FOLHA DE APROVAÇÃO

Jefferson Rodrigues de Oliveira

Games Digitais: Uma Abordagem de Física de Partículas Elementares no Ensino Médio

Dissertação de Mestrado apresentada ao Programa de Pós-Graduação da Universidade de Brasília (UNB) no Curso de Mestrado Profissional de Ensino de Física (MNPEF), como parte dos requisitos necessários à obtenção do título de Mestre em Ensino de Física.

Aprovada em: 10/01/2017

BANCA EXAMINADORA:

Prof^a. Dra. Vanessa Carvalho de Andrade (Presidente IF-UNB)

Prof. Dr. Isaac Newton (Membro interno vinculado ao programa IF-UNB)

Prof. Dr. Albert Einstein (Membro interno vinculado ao programa IF-UNB)

Prof. Dr. Richard Feynman (Membro interno vinculado ao programa IF-UNB)

Dados Internacionais de Catalogação-na-Publicação (CIP) Divisão de Informação e Documentação

Oliveira, Jefferson Rodrigues de

Games Digitais: Uma Abordagem de Física de Partículas Elementares no Ensino Médio / Jefferson Rodrigues de Oliveira.

Brasília 2017.

25f.

Dissertação de Mestrado – Curso de Física. Área de Ensino de Física – Universidade de Brasília, 2017. Orientadora: Prof^a. Dra. Vanessa Carvalho de Andrade.

1. Jogos Digitais. 2. Partículas Elementares. 3. Ensino Médio. I. Universidade de Brasília. II. Título.

REFERÊNCIA BIBLIOGRÁFICA

OLIVEIRA, Jefferson Rodrigues de. **Games Digitais: Uma Abordagem de Física de Partículas Elementares no Ensino Médio**. 2017. 25f. Dissertação de Mestrado – Universidade de Brasília.

CESSÃO DE DIREITOS

NOME DO AUTOR: Jefferson Rodrigues de Oliveira

TITULO DO TRABALHO: Games Digitais: Uma Abordagem de Física de Partículas

Elementares no Ensino Médio.

TIPO DO TRABALHO/ANO: Dissertação / 2017

É concedida à Universidade de Brasília permissão para reproduzir cópias desta dissertação e para emprestar ou vender cópias somente para propósitos acadêmicos e científicos. O autor reserva outros direitos de publicação e nenhuma parte desta dissertação pode ser reproduzida sem a autorização do autor.

Agradecimentos

Agradecimentos aqui.

Resumo

Resumo aqui.

Abstract

Abstract here.

Lista de Figuras

FIGURA 1:	Cupim cibernético
FIGURA 2:	Cupim cibernético
FIGURA 3:	Cupim cibernético
FIGURA 4:	Artigo: Partículas e Interações - Página 1
FIGURA 5:	Artigo: Partículas e Interações - Página 2 $\ \ldots \ \ldots \ \ldots \ 21$
FIGURA 6:	Artigo: Partículas e Interações - Página 3
FIGURA 7:	Artigo: Partículas e Interações - Página 4 $\ \ldots \ \ldots \ \ldots \ 23$
FIGURA 8:	Artigo: Partículas e Interações - Página 5

Lista de Tabelas

TABELA 1: Cupim cibernético	ibernético	5
-----------------------------	------------	---

Lista de Quadros

QUADRO 1: Cupim cibernético.		5
------------------------------	--	---

Lista de Gráficos

Lista de Fotografias

Lista de Abreviaturas e Siglas

FPE Física de Partículas Elementares

EM Ensino Médio

Sumário

1	In	TRODUÇÃO	1
	1.1	Motivação, Importância e Justificativa	1
	1.2	Questão de Pesquisa e Delimitação	1
	1.3	Objetivos	1
	1.4	Organização do Trabalho	1
2	FU	undamentação Teórica	3
	2.1	Base Legal	3
	2.2	Revisão de Trabalhos Relacionados com o Tema	3
	2.3	Referenciais Teóricos	3
	2.3	.1 David Ausubel - Aprendizagem Significativa	4
	2.3	.2 Marc Prensky - Aprendizagem Baseada em Jogos Digitais	4
3	DE	escrição do Produto Educacional	6
	3.1	O Jogo Digital	6
	3.1	.1 Programação	7
	3.1	.2 Enredo	7
	3.1	.3 Atividades Extras	7
	3.2	Organização da Sequência Didática	8
4	A	PLICAÇÃO DO PRODUTO EDUCACIONAL	9
	4.1	Metodologia	9
	4.2	Relato de Experiência	9
	4.2	.1 1 ^a Aula: Pesquisa inicial - Jogos Digitais	9

SUMÁRIO	xvi

	4.2.2	2ª Aula: Pré-teste	10
	4.2.3	3ª Aula: 1ª Aplicação do jogo	10
	4.2.4	$4^{\rm a}$ Aula e $5^{\rm a}$ Aula: Vídeo "O Discreto charme das partículas elementares"	10
	4.2.5	6ª Aula e 7ª Aula: Aula expositiva	10
	4.2.6	8ª Aula: Segunda aplicação do jogo	10
	4.2.7	9ª Aula: Pós-teste	10
	4.2.8	$10^{\rm a}$ Aula: Pesquisa final - aplicação do produto educacional $\ .\ .\ .\ .\ .$	10
5	RESU	ltados e Discussões	11
5.	1 Ar	nálise da Sequência de Aplicação	11
	5.1.1	Análise da Pesquisa Inicial	11
	5.1.2	Análise do Pré-Teste	11
	5.1.3	Análise da Primeira Aplicação do Jogo	11
	5.1.4	Análise das Discussões sobre o Vídeo	11
	5.1.5	Análise das Aula Expositiva 1 e 2	11
	5.1.6	Análise da Segunda Aplicação do Jogo	11
	5.1.7	Análise do Pós-Teste	11
	5.1.8	Análise da Pesquisa Final	11
6	Conc	CLUSÃO	12
Rei	FERÊN	CIAS	13
Apí	ÈNDICE	E A – O Jogo Digital	14
\mathbf{A}	1 Eı	aredo	14
A	.2 Pı	rogramação	14
A	3 D	esign	14
Apí	ÈNDICE	EB – QUESTIONÁRIOS	15
В	.1 In	icial	15
В	.2 Pı	ré-Teste	15
В	.3 Po	ós-Teste	15
В	.4 Fi	nal	15

SUMÁRIO

X	V	1

Apêndi	CEC C - ATIVIDADES	16
C.1	Resenha Crítica	16
APÊNDI	CED – Aula Expositiva	17
D.1	Slides	17
Anexo	A - Manuais do Scratch	18
A.1	Manuais do Scratch	18
Anexo	B - Materiais de Apoio	19
B.1	Texto Base	19
B.2	Vídeo	19
Anexo	C – Autorizações	25
C.1	Autorização para Maior	25
C.2	Autorização para Menor	25
Anexo	D - REGISTRO DE IMAGENS	26
D.1	Fotografias	26

1 Introdução

1.1 Motivação, Importância e Justificativa

Segundo Moreira (2004) Aqui estará a questão da pesquisa.

1.2 Questão de Pesquisa e Delimitação

1.3 Objetivos

Aqui estarão os principais objetivos da pesquisa.

- Isso;
- Aquilo; e
- Aquele outro.

1.4 Organização do Trabalho

Aqui comentarei sobre a organização do trabalho. O capítulo 1 conterá a introdução, onde são expostos a questão da pesquisa, o objetivo, a motivação do mesmo, a importância e justificativa, por fim, a delimitação do tema. O capítulo 2 conterá a fundamentação teórica, onde são expostos a base legal da pesquisa (PCN e PCN+). Também constará aqui uma breve revisão de trabalhos relacionados ao tema. Por fim, aqui constará os referenciais teóricos da pesquisa. O capítulo 3 será a descrição do produto, destacando a forma que foi elaborada a sequência didática e a produção do jogo digital. O capítulo 4 será relatado a experiência da aplicação do produto, destacando os principais comportamentos dos alunos na realização deste projeto. O capítulo 5 será analisado os dados de uma forma geral, destacando os principais resultados obtidos. Nesta parte, também farei uma

comparação com os resultados esperados presente na literatura. O capítulo 6 será a conclusão do trabalho.

2 Fundamentação Teórica

2.1 Base Legal

Aqui será a parte reservada para relatar a sustentação legal do pesquisa, tendo como base norteadora o PCN e o PCN+. Também comentarei aqui a importância do tema para as avaliações de larga escala, como o Exame Nacional do Ensino Médio (ENEM).

FIGURA 1 – Cupim cibernético.

2.2 Revisão de Trabalhos Relacionados com o Tema

Aqui nesta seção, farei uma breve revisão literária da produção digital relacionada à Física Moderna no Ensino Médio. Farei uma levantamento da produção de jogos, simulações e aplicativos relacionados ao tema.

2.3 Referenciais Teóricos

Aqui será a seção reservada para destacar os referenciais teóricas que irão nortear a pesquisa: David Ausubel e Marc Prensky.

 $FIGURA\ 2-Cupim\ cibern\'etico.$

2.3.1 David Ausubel - Aprendizagem Significativa

Aqui comentarei sobre a importância da teoria da aprendizagem significativa para a minha pesquisa, pois toda a minha sequência didática é permeada por esta teoria.

2.3.2 Marc Prensky - Aprendizagem Baseada em Jogos Digitais

Já aqui, será uma abordagem mais específica da aprendizagem baseada em jogos digitais.

TABELA 1 – Cupim cibernético.

QUADRO 1 – Cupim cibernético.

3 Descrição do Produto Educacional

3.1 O Jogo Digital

O jogo foi desenvolvido em Scratch, que é um linguagem de programação em blocos, aqui a referencia do livro de scratch. Site do mit, qualquer um pode ter acesso pela internet, não precisa de instalação, facilidade de acesso.

Estilo do jogo é o Rpg(explicar o que é o estilo), primeira pessoa no qual o jogador tem a liberdade de movimentar o personagem principal

Objetivo do jogo enredo

(MARJI, 2014)

Aqui será abordado os seguintes tópicos sobre o jogo: descrição, estilo, dinâmica, jogabilidade, plataforma de programação e arte.

A linguagem de programação escolhida para realizar este projeto foi o Scratch.

Em meados do ano de 2013, em Salvador-BA, após um minicurso do professor guilherme erwin hartung sobre jogos digitais, despertou-me um interesse em aplicar as ideias absorvida naquele minicurso em minhas aulas, tendo o intuito de deixar minhas aulas mais dinâmicas, interativas e interessantes. Meu projeto consistia em realizar oficinas para estudantes sobre programação de jogos digitais.

Entretanto, após conversas com a minha orientadora, percebemos que que este projeto demandaria bastante tempo e não seria vivável sua execução

Escolhemos a linguagem Scratch por ser mais amigável (blocos, visual e de fácil entendimento) além de ser uma rede interativa e colaborativa entre os usuários.

O programa pode ser instalado off-line (instalando o programa no computador) ou pode ser utilizado on-line (usando diretamente pela internet).

Para aperfeiçoar minhas técnicas de programação nesta linguagem, busquei auxílio em vários manuais na internet, o principal deles foi do professor, Majed Marji (MARJI, 2014),

segundo ele "O Scratch é uma linguagem de promação visual que oferece um ambiente de aprendizado rico para pessoas de todas as idades"

Nosso primeiro projeto consistia em realizar oficinas de programação de jogos digitais para estudantes utilizando o scratch. Tive essa ideia em meados 2013 com uma palestra do professor Guilherme

Estilo do jogo

O jogo um estilo de rpg jogo de primeira pessoa, no qual o jogador tem a liberdade de explorar o cenário, entretanto para conseguir alcançar o objetivo deverá seguir as orientação de cada personagem

Formato de perguntas e respostas (Anexo)

O jogo tem um total de 20 perguntas referentes ao tema de física de partículas elementares, para responder as perguntas o jogador deverá prestar bastante atenção nos diálogos. O jogo é autossuficiente, ou seja, as respostas então na própria narrativa. Não precisa de conhecimento prévio.

Enredo do jogo (Anexo)

Tem com temática principal a física de partículas elementares.

Objetivo: Detectar o bóson de Higgs

Personagens:

Higgs: Primeiro personagem do enredo, ele explica o início do jogo Pauli: Explica sobre os spins e a relação dos férmions e bósons César Lattes: Importância de destacar um brasileiro no cenário mundial da ciência Einstein: Interações fundamentais da natureza

Fase final: mini-game no qual o objetivo é colidir hádrons e alcançar o nível de energia de 125 Gev.

Extras:

3.1.1 Programação

3.1.2 Enredo

3.1.3 Atividades Extras

Simulação computacional de relatividade restrita

Classificação das partículas elementares

3.2 Organização da Sequência Didática

Aqui nesta seção comentarei sobre a montagem da sequência didática.

Total de aulas: 10

Público alvo: estudantes da terceira série do ensino médio do CED 15 - Ceilândia.

Total de turmas: 4

• 1^a Aula: Pesquisa inicial - jogos digitais

• 2ª Aula: Pré-teste

• 3ª Aula: 1ª Aplicação do jogo

• 4ª Aula e 5ª Aula: Vídeo "O Discreto charme das partículas elementares"

• 6ª Aula e 7ª Aula: Aula expositiva

• 8ª Aula: Segunda aplicação do jogo

• 9ª Aula: Pós-teste

 $\bullet~10^{\rm a}$ Aula: Pesquisa final - aplicação do produto educacional

4 Aplicação do Produto Educacional

4.1 Metodologia

Aqui será descrita a metodologia de aplicação do produto educacional.

4.2 Relato de Experiência

Esta parte constará o relato de experiência da aplicação do produto. Será um relato aula a aula de toda a sequência de aplicação, destacando os principais aspectos nos comportamento dos alunos durante a aplicação.

4.2.1 1^a Aula: Pesquisa inicial - Jogos Digitais

A primeira aula de aplicação consistiu em algumas etapas relatadas a seguir:

Primeiramente, fiz uma introdução e expliquei brevemente sobre a dinâmica da sequência didática que iria ser desenvolvida durante aquele bimestre, destaquei também a importância da assiduidade nas aulas pois a atividade proposta teria um caráter essencialmente presencial.

Após esta breve introdução, entreguei uma autorização de direito de uso de imagens e depoimentos

Após esta explanação, entreguei impresso o artigo 4 (MOREIRA, 2004), que serviu como texto de apoio para toda a sequência (a escolha deste texto em específico aconteceu devido a facilidade como o autor tem de explicar conceitos áridos em uma linguagem mais simples e acessível para estudante do ensino médio).

Enfim, nos minutos finais da aula, realizei uma pesquisa sobre jogos digitais.

- 4.2.2 2ª Aula: Pré-teste
- 4.2.3 3ª Aula: 1ª Aplicação do jogo
- 4.2.4 4ª Aula e 5ª Aula: Vídeo "O Discreto charme das partículas elementares"
- 4.2.5 6^a Aula e 7^a Aula: Aula expositiva
- 4.2.6 8ª Aula: Segunda aplicação do jogo
- 4.2.7 9^a Aula: Pós-teste
- 4.2.8 10^a Aula: Pesquisa final aplicação do produto educacional

5 Resultados e Discussões

5.1 Análise da Sequência de Aplicação

Esta seção constará a análise dos resultados obtidos durante a sequência didática de aplicação.

- 5.1.1 Análise da Pesquisa Inicial
- 5.1.2 Análise do Pré-Teste
- 5.1.3 Análise da Primeira Aplicação do Jogo
- 5.1.4 Análise das Discussões sobre o Vídeo
- 5.1.5 Análise das Aula Expositiva 1 e 2
- 5.1.6 Análise da Segunda Aplicação do Jogo
- 5.1.7 Análise do Pós-Teste
- 5.1.8 Análise da Pesquisa Final

Aqui farei um comparação entre o resultado esperado e o obtido, tendo como base os marcos teóricos.

6 Conclusão

Aqui será a conclusão do trabalho. Destacarei aqui os principais resultados obtidos.

FIGURA 3 – Cupim cibernético.

REFERÊNCIAS 13

Referências

MARJI, M. Aprenda a programar com Scratch: uma introdução visual à programação com jogos, arte, ciência e matemática. [S.l.]: Novatec Editora, 2014.

MOREIRA, M. A. Partículas e interações. **Física na escola. São Paulo. Vol. 5, n. 2** (out. 2004), p. 10-14, 2004.

Apêndice A - O Jogo Digital

Aqui será o espaço para os apêndices

A.1 Enredo

Enredo do jogo.

A.2 Programação

Programação do jogo.

A.3 Design

Parte gráfica do jogo.

Apêndice B - Questionários

B.1 Inicial

Modelo da pesquisa inicial sobre jogos.

B.2 Pré-Teste

Modelo do pré-teste.

B.3 Pós-Teste

Modelo do pós-teste.

B.4 Final

Modelo da pesquisa final de opinião.

Apêndice C - Atividades

C.1 Resenha Crítica

Enredo do jogo.

Apêndice D - Aula Expositiva

D.1 Slides

Slides das aulas expositivas.

Anexo A - Manuais do Scratch

A.1 Manuais do Scratch

Manuais e tutorias do Scratch.

Anexo B - Materiais de Apoio

Aqui será o espaço para os anexos.

B.1 Texto Base

Artigo "Partículas e Interações" - Marco Antônio Moreira.

B.2 Vídeo

Marco Antonio Moreira Instituto de Fisica da UFRGS, C.P. 15051, 91501-970 Porto Alegre - RS moreira@if.ufrgs.br www.if.ufrgs.br/~ moreira

Introdução

tte texto procura dar, através da técnica dos mapas conceituais (Moreira e Buchweitz, 1987), uma visão introdutória ao assunto partículas elementares e interações fundamentais. A intenção é a de mostrar que esse tema pode ser abordado,

Uma visão introdutória ao

assunto partículas

elementares e interações

fundamentais pode ser

abordado, de maneira

acessível, de forma a

transmitir aos alunos a idéia

de um assunto excitante,

colorido, estranho e

charmoso

de maneira acessível, sem muitas ilustrações que acabam tolhendo a imaginação dos alunos e até mesmo dificultando a aprendizagem de certos conceitos. Essa introdução poderá ser seguida de considerações

qualitativas sobre simetria e leis de conservação em Física, sobre a construção do conhecimento em Física (por exemplo, a previsão teórica das partículas que somente anos depois foram detectadas, ou que ainda não o foram), sobre as tentativas de unificar teorias físicas. Com habilidade didática, talvez se possa transmitir aos alunos a idéia de um assunto excitante, colorido, estranho e charmoso, ao invés de difícil e enfadonho.

Partículas¹ Elementares

Átomos consistem de elétrons, que formam as camadas eletrônicas, e núcleos, compostos por prótons e nêutrons que, por sua vez, consistem de quarks (dos tipos **u** e **d**). Quarks são, possivelmente, os constituintes fundamentais da matéria. Há seis espécies, ou sabores, de quarks: **u** (up), **d** (down), **c** (charmed), **s** (strange), **b** (bottom) e **t** (top). Cada uma dessas

espécies pode apresentar-se em três "edições" chamadas cores: 1 (vermelho), 2 (verde) e 3 (azul). Haveria então 18 quarks distintos. Porém, como cada um deles tem a sua antipartícula, o número total de quarks é 36 (uma antipartícula tem a mesma massa e o mesmo spin² da partícula em questão,

porém carga oposta.) Quarks têm carga elétrica fracionária (+ 2/3 para os sabores **u**, **c** e **t** e -1/3 para os sabores **d**, **s** e **b**), mas nunca foram detectados livres; aparentemente, estão sempre confinados em partículas chamadas

hádrons (da palavra grega hadros, que significa massivo, robusto, forte).

Há duas classes de hádrons, aqueles formados por três quarks, chamados bárions (da palavra grega barys, que significa pesado), e os constituídos por um quark e um antiquark, denominados mésons (do grego, mesos, significando intermediário, médio). Bárions obedecem o Princípio da Exclusão de Pauli3, mésons não; bárions têm spin fracionário (1/2, 3/2, ...), mésons têm spin inteiro (0, 1, 2,...). O nêutron e o próton são os bárions mais familiares, os mésons π e K são exemplos de mésons; contudo, face às múltiplas possibilidades de combinações de três quarks ou de quarks e antiquarks, o número de hádrons é bastante grande, constituindo uma grande família.

Outra família, não tão numerosa, é a dos léptons (do grego *leptos*, que significa delgado, fino, leve). São par-

Este artigo apresenta um sumário das partículas elementares e das interações fundamentais, segundo o Modelo Padrão. Na seqüência, são apresentados dois mapas conceituais, um para partículas e outro para interações, que esquematizam conceitualmente esse modelo.

10

Partículas e Interações

Física na Escola, v. 5, n. 2, 2004

FIGURA 4 – Artigo: Partículas e Interações - Página 1

tículas de spin 1/2, sem cor, que podem ter carga elétrica ou não (neutrinos). Parecem ser partículas verdadeiramente elementares, *i.e.*, nenhuma delas aparenta ter uma estrutura interna como a dos hádrons. O elétron é o lépton mais familiar, mas além dele existem o múon (μ) , o tau (τ) e três neutrinos (neutrino do elétron, neutrino do múon e neutrino do tau). Como a cada lépton corresponde um antilépton, parece haver um total de 12 léptons na natureza.

Começamos falando de elétrons, prótons e nêutrons e chegamos a léptons, passando por hádrons, bárions e mésons. Mas essa história ainda vai longe. Para se ter uma idéia da constituição da matéria, não basta saber que existem tais e tais partículas, que umas parecem ser realmente elementares e outras são compostas por "sub-partículas" confinadas. É preciso também levar em conta como elas interagem, como integram sistemas estáveis e como se desintegram, ou seja, é preciso considerar interações e campos de força, o que nos leva a outra categoria de partículas, as chamadas partículas mediadoras das interações fundamentais da natureza.

Interações Fundamentais

Há quatro tipos de interações fundamentais: eletromagnética, gravitacional, forte e fraca. A interação entre um elétron e um núcleo atômico é um exemplo de interação eletromagnética; a atração entre quarks é do tipo interação forte; o decaimento β (por

exemplo, um nêutron decaindo para próton pela emissão de um elétron e um neutrino) exemplifica a interação fraca; a interação gravitacional atua entre todas as partículas massivas, e é a que governa o movimento dos corpos

celestes, mas é irrelevante em domínios muito pequenos, assim como as demais podem não ser relevantes em alguns domínios.

A interação forte, como sugere o nome, é a mais forte no âmbito das

partículas elementares e mantém juntos prótons e nêutrons no núcleo atômico. Afeta somente hádrons. A interação fraca é responsável pelo decaimento relativamente lento de partículas como nêutrons e múons, e também por todas reações envolvendo neutrinos.

Tais interações são descritas através de campos de força. Campo é um conceito fundamental nas teorias sobre partículas ele-

Mediar a interação significa

que a força existente entre

as partículas interagentes

resulta de uma "troca"

(emissão e absorção) de

outras partículas (virtuais)

entre elas

mentares. Aliás, é um conceito fundamental em toda a Física. Os quanta desses campos são partículas mediadoras das interações correspondentes.

Assim, o fóton é o quantum do campo eletromagnético e media a interação eletromagnética, os glúons são os quanta do campo forte e mediam a interação forte, o gráviton é o quantum do campo gravitacional, mediando a interação gravitacional, e as partículas denominadas W+, W- e Zº são os quanta do campo fraco e são mediadoras da interação fraca. Tais partículas são chamadas bósons, um termo genérico para partículas de spin inteiro (férmions é o termo genérico para partículas de spin 1/2,3/2,5/ 2...; léptons e quarks são férmions). De todas essas partículas, a única que ainda não foi detectada experimentalmente é o gráviton4.

Mediar a interação significa que a força existente entre as partículas

A família dos léptons (do

grego leptos, que significa

delgado, fino, leve)

apresenta partículas de spin

1/2, sem cor, que podem ter

carga elétrica ou não e

parecem ser partículas

verdadeiramente

elementares: nenhuma

delas aparenta ter uma

estrutura interna

interagentes resulta de uma "troca" (emissão e absorção) de outras partículas (virtuais) entre elas. Assim, a força eletromagnética resulta da troca de fótons entre as partículas (eletricamente carregadas) interagentes. Fótons são portadores

da força eletromagnética, são partículas de radiação, não de matéria; têm spin 1, não têm massa e são idênticos às suas antipartículas. É a energia de um fóton que determina seu "tipo":

fótons de ondas de rádio, de luz visível, de radiação ultravioleta, de raios-X, de raios γ (embora seja γ o símbolo que representa qualquer fóton).

Analogamente, o campo de forças produzido por quarks e antiquarks, atuando sobre eles, é chamado de campo de glúons, e a força entre eles resulta da troca de glúons. Glúons representam para o campo de glúons o

> mesmo que os fótons para o campo eletromagnético. Quarks emitem e absorvem glúons e assim exercem a interação forte entre si. Glúons, tal como os fótons,

têm spin 1, mas, diferentemente deles, têm cor, i.e., fótons são incolores, ou "brancos", e glúons não. Assim como a carga elétrica é a fonte do campo fotônico, as cargas cor são a fonte dos campos gluônicos (há oito tipos de glúons)⁵.

Da mesma forma, a interação fraca é mediada por partículas, conhecidas como W (do inglês weak, que significa fraca) e Z, i.e., pela troca de tais partículas, assim como a interação gravitacional é, teoricamente, mediada pela troca de grávitons.

A rigor, todas estas interações são mediadas por partículas virtuais. Consideremos, por exemplo, a interação eletromagnética entre um elétron livre e um próton livre: uma das partículas emite um fóton e a outra o absorve; no entanto, esse fóton não é um fóton livre ordinário, pois aplicando as leis de conservação da energia e momentum a tal processo poder-se-ia mostrar que haveria uma violação da conservação da energia (a energia do fóton emitido não seria igual ao produto de seu momentum pela velocidade da luz, como seria de se esperar para um fóton livre). Mas seria uma violação virtual porque, devido ao Princípio da Incerteza de Heisenberg6, a incerteza na energia do fóton implica que tal violação ocorreria em intervalos de tempo muito pequenos. Isso significa que o fóton seria imediatamente absorvido, i.e., não seria livre, mas sim virtual.

Física na Escola, v. 5, n. 2, 2004

Partículas e Interações

11

No mundo macroscópico a energia sempre se conserva, porém microscopicamente a Mecânica Quântica mostra que pode haver pequenas violações ΔE durante um tempo Δt de modo que $\Delta E \times \Delta t = h = 6,6.10^{-22}$ MeV.s. Quando uma partícula livre emite um fóton, o desbalanço de energia é dado pela energia do fóton, de modo que quanto maior for essa energia, tanto mais rapidamente ele deve ser absorvido por outra partícula a fim de restabelecer o balanço energético. Quer dizer, quanto maior a violação da conservação da energia, tanto mais rapidamente deve ser restabelecido o equilíbrio energético. Essa violação virtual da energia é, portanto, importante na interação entre partículas. Fótons "reais", assim como elétrons, por exemplo, podem ter uma vida infinita desde que não interajam com outras partículas. Fótons "virtuais", por outro lado, têm uma vida muito curta.

O alcance da interação causada pela troca de partículas virtuais (quanta virtuais) está intimamente relacionado à massa de repouso dos quanta trocados. Quanto maior a massa da partícula, tanto menor o espaço permitido a ela pela relação de incerteza da Mecânica Quântica. Fótons, por exemplo, não têm massa, de modo que o alcance da interação eletromagnética para partículas carregadas é infinito. Grávitons também não têm massa, de sorte que o alcance da interação gravitacional é igualmente infinito. Por outro lado, as interações forte e fraca são mediadas por partículas massivas e são de curto alcance.

As classificações de partículas e interações feitas até aqui estão diagramadas nos mapas conceituais apresentados nas Figs. 1 e 2.

Um Mapa Conceitual para Partículas Elementares

No mapa conceitual apresentado na Fig. 1, o próprio conceito de partículas elementares aparece no topo como sendo o mais abrangente dessa área de conhecimento. Logo abaixo, aparecem os conceitos de férmions e bósons como duas grandes categorias de partículas elementares. (Esta classificação não se refere apenas às partículas elementares, mas também a quaisquer partículas que obedecem as leis da Mecânica Quântica como, por exemplo, as partículas alfa.) O fato de que os férmions obedecem ao Princípio da Exclusão de Pauli e os bósons não, é a principal diferença entre essas categorias. A partir dessa distinção inicial, pode-se prosseguir com outras categorizações como a de classes de férmions (léptons, quarks e bárions) e classes de bósons (partículas mediadoras de interações e mésons). Léptons e quarks são os férmions fundamentais: a rigor, toda a matéria é constituída de quarks e léptons, pois as demais partículas ou são compostas de guarks ou antiguarks (bárions) e pares quarks-antiquarks (mésons) ou são partículas mediadoras das interações fundamentais (glúons, Z e W, fótons e grávitons).

Tanto os léptons como os quarks têm seis variedades ou sabores, como indicado no mapa conceitual. Entretanto, diferentemente dos léptons, cada sabor de quark existe em três variedades distintas em função de uma propriedade chamada cor, ou carga cor. Contudo, quarks não existem livremente, só podem ser observados em combinações que são neutras em relação à cor; estão sempre confinados em partículas compostas chamadas hádrons. Hádrons podem ser fermiônicos quando formados por quarks ou antiquarks (nesse caso são chamados bárions) ou bosônicos quando constituídos por um quark e um antiquark (então chamados mésons).

Tudo isso está "mapeado" na Fig. 1 que, de certa forma, "termina" com os "conhecidos" elétrons (são léptons), prótons e nêutrons (ambos são bárions; têm estrutura interna) que formam átomos e moléculas que constituem a matéria macroscópica tal como a percebemos.

Um Mapa Conceitual para Interações Fundamentais

O mapa conceitual mostrado na Fig. 2 também começa com o conceito mais abrangente: interações fundamentais. Logo abaixo aparecem as quatro interações existentes na natureza: gravitacional, eletromagnética, fraca e forte. As interações eletromagnética e fraca podem ser interpretadas, teoricamente, como instâncias de uma única interação, a eletrofraca. A interação forte que existe entre bárions e mésons pode ser interpretada como fundamental ou residual quando decorre de um balanço imperfeito das atrações e repulsões entre os quarks e antiquarks que constituem tais partículas.

Essas quatro (ou três) interações são mediadas por partículas (portadoras de força) elementares - grávitons (gravitacional), fótons (eletromagnética), W e Z (fraca) e glúons (forte) - e descritas por campos de força. Os mésons mediam a interação forte residual. Quer dizer, além dos campos gravitacional e eletromagnético, que são relativamente familiares, há também o campo forte e o campo fraco. A energia armazenada nesses campos não está neles distribuída de maneira contínua; está quantizada, i.e., concentrada nos chamados quanta de energia. Assim, os fótons são os quanta do campo eletromagnético, as partículas W e Z são os quanta do campo fraco, os glúons do campo forte e os grávitons do campo gravita-

A cada campo está associado um tipo de força: força gravitacional, força eletromagnética (elétrica e magnética), força fraca, e força cor (forte ou fundamental, e residual). Contudo, no domínio das partículas elementares, em reações altamente energéticas, partículas são criadas, destruídas e recriadas novamente, com velocidades e trajetórias com determinado grau de incerteza. Assim, o conceito de força não tem um significado muito preciso nesse domínio, e é preferível falar em interações, ou seja, a ação entre partículas. Por esta razão, no mapa da Fig. 2 as interações fundamentais aparecem na parte superior do mapa e as forças na parte inferior. Nesse contexto, interação é um conceito hierarquicamente superior ao de força.

Conclusão

Embora seja uma construção humana espetacular, presente em toda parte e, particularmente, na natureza científica do homem (Kelly, 1963), isto

Partículas e Interações

Física na Escola, v. 5, n. 2, 2004

12

Figura 1. Um mapa conceitual entre partículas elementares (M.A. Moreira, 1989, revisado em 2004).

Figura 2. Um mapa conceitual para interações fundamentais (M.A. Moreira, 1990, revisado em 2004).

Física na Escola, v. 5, n. 2, 2004 Partículas e Interações 13

FIGURA 7 – Artigo: Partículas e Interações - Página 4

é, na sua permanente tentativa de dominar, construindo e testando modelos do universo em que vive, a Física é considerada, na escola, uma matéria difícil, pouco motivadora, aprendida mecanicamente. As causas são muitas, mas a falta de atualização ou, pelo menos, de reformulação do currículo deve ser uma das mais importantes. O currículo de Física nas escolas é desatualizado; ensina-se uma Física que não chega ao século XX que é quase só Mecânica e que invariavelmente começa pela Cinemática. Esta, por seu caráter altamente representacional, é, psicologicamente, talvez o mais inadequado dos conteúdos para se comecar a aprender Física. Por que, então, não comecar com tópicos contemporâneos? Dificilmente serão mais inapropriados do que a Cinemática, a Estática e a Dinâmica.

O presente trabalho pretende contribuir para uma reflexão nesse sentido e, ao mesmo tempo, servir como material de apoio para professores que queiram renovar ou, quem sabe, resgatar a Física no Ensino Médio.

Notas

¹Apesar de consagrado, o termo partícula elementar, em especial a palavra partícula, não é adequado para nomear as unidades fundamentais da matéria. No domínio subatômico, partícula não é um corpúsculo, um corpo diminuto. Pensar as partículas elementares como corpos muito pequenos, com massas muito pequenas, ocupando espaços muito pequenos, funciona como obstáculo representacional para compreendê-las de maneira significativa (partículas elementares podem, por exemplo, não ter massa; além disso, tais partículas não têm existência situada, i.e., não podem ser localizadas com precisão). Por esta razão, ao longo deste texto as partículas elementares não serão referidas ou representadas por corpúsculos ou "bolinhas" como aparece na maioria dos textos didáticos sobre esse tema.

²Spin é uma propriedade fundamental das partículas elementares que descreve seu estado de rotação; é o *momentum* angular intrínseco das partículas. De acordo com as regras da Mecânica Quântica, o spin das partículas elementares pode ter apenas determinados valores que são sempre um número inteiro (0, 1, 2, 3, ...) ou semi-inteiro (1/2, 3/2, 5/2, ...) multiplicados por \hbar (h/2 π ; onde $h \cong 6, \hat{6}.10^{-22}$ MeV.s é a constante de Planck, a constante fundamental da Mecânica Quântica). Isso significa que o spin das partículas elementares é uma propriedade essencialmente quântica, ou seja, um número quântico, sem análogo na Física Clássica, pois se tais partículas fossem bolinhas girando em torno de um eixo seu momentum angular poderia ter qualquer

 3 De acordo com esse princípio, duas partículas da mesma espécie e com spins não inteiros não podem ocupar o mesmo estado quântico. Férmions (léptons e quarks) obedecem a esse princípio, bósons (fótons, glúons e partículas W e Z) não.

Grávitons seriam, teoricamente. partículas de massa nula e spin 2. Fótons são também partículas de massa nula, porém a troca de fótons produz atração entre partículas de cargas opostas e repulsão entre partículas de mesma carga, enquanto a troca de grávitons produz só atração. No entanto, em condições terrestres a atração gravitacional é tão fraca que os quanta dessa interação são praticamente indetectáveis. A interação gravitacional torna-se dominante em energias da ordem de 2.10-5 g, que é a chamada massa de Planck (ou energia de Planck), que seriam fantasticamente grandes para serem produzidas em condições de laboratório. Note-se que, devido à equivalência massaenergia, faz sentido medir a energia em unidades de massa e a massa em unidades de energia. A massa de Planck, 2.10⁻⁵ g, equivale à energia de Planck, 1,1.10¹⁹ GeV (Giga eV = 10⁹ eV, onde 1 eV \cong 1,6.10⁻¹⁹ J é a energia adquirida por um elétron acelerado ao longo de uma diferença de potencial de 1 V).

⁵Cada glúon tem uma cor (vermelho, verde e azul) e uma anticor (antivermelho, antiverde e antiazul), de modo que haveria nove possibilidades de pares cor anticor que corresponderiam a nove glúons. No entanto, de acordo com a teoria da carga cor. a chamada Cromodinâmica Quântica (em analogia à Eletrodinâmica Quântica), no caso das possibilidades vermelho-antivermelho, verde-antiverde e azul-antiazul poderia haver transições de uma para outra que levaria a três combinações (superposições) lineares entre elas, das quais uma seria totalmente sem cor, i.e., branca. Portanto, há oito glúons, não nove como pareceria inicialmente. Assim como a carga elétrica, a carga cor também obedece uma lei de conservação, porém enquanto existe apenas uma carga elétrica, há oito cargas cores distintas (Okun, 1987, p. 41-42).

⁶Medir a intensidade de duas grandezas físicas simultaneamente implica duas medições, porém a realização da primeira medida poderá perturbar o sistema e criar uma incerteza na segunda. Nesse caso, não será possível medir as duas simultaneamente com a mesma precisão. Não se pode, por exemplo, medir tanto a posição como a velocidade de uma partícula com toda precisão, nem sua exata energia num exato momento. Macroscopicamente isso não faz diferença, pois a perturbação é tão pequena que pode ser ignorada, porém para partículas subatômicas o efeito é dramático (Close, 1983, p. 175).

Bibliografia

- E Close, The Cosmic Onion. Quarks and the Nature of the Universe (American Institute of Physics, USA, 1983), 180 p. P Colas y B. Tuchming, Mundo Científico
- P. Colas y B. Tuchming, Mundo Cientifico 247, 46 (2003). H. Fritzch, Quarks: The Stuff of Matter (Ba-
- sic Books Inc., USA, 1983), 295 p. P.I.P. Kalmus, Contemporary Physics, **41**,
- 129 (2000). G. Kelly, A Theory of Personality - The Psychology of Personal Constructs (W.W. Norton & Company, New York,
- 1963), 189 p. M.A. Moreira, Revista Brasileira de Ensino de Física **11**, 114 (1989).
- M.A. Moreira, Enseñanza de las Ciencias **8**, 133 (1990).
- M.A. Moreira e B. Buchweitz, Mapas Conceituais. Instrumentos Didáticos, de Avaliação e de Análise de Currículo (Editora Moraes, São Paulo, 1987), 83 p.
- L.B. Okun, A Primer in Particle Physics (Harwood Academic Publishers, UK, 1987), 112 p.

Partículas e Interações

Física na Escola, v. 5, n. 2, 2004

14

Anexo C - Autorizações

Aqui será o espaço para os anexos.

- C.1 Autorização para Maior
- C.2 Autorização para Menor

Anexo D - Registro de Imagens

Aqui será o espaço para os anexos.

D.1 Fotografias