Revenue Maximization

Yingkai Li

EC4501/EC4501HM Semester 2, AY2024/25

Single-item Auctions

Auctions: a single item, n agents.

- each agent i has value $v_i \sim F_i$;
- each agent i has utility $u_i = v_i x_i p_i$.

Revenue maximization: maximize $\sum_i p_i$.

Incentives

Given any v > v':

$$v \cdot x(v) - p(v) \ge v \cdot x(v') - p(v')$$

$$v' \cdot x(v') - p(v') \ge v' \cdot x(v) - p(v)$$

Incentives

Given any v > v':

$$v \cdot x(v) - p(v) \ge v \cdot x(v') - p(v')$$

$$v' \cdot x(v') - p(v') \ge v' \cdot x(v) - p(v)$$

Combining inequalities:

$$v' \cdot (x(v) - x(v')) \le p(v) - p(v') \le v \cdot (x(v) - x(v')) \Rightarrow x(v) - x(v') \ge 0.$$

In any incentive compatible mechanism, allocation must be weakly increasing in values.

Yingkai Li (NUS) Revenue Maximization EC4501 3/33

Revenue Optimal Mechanisms

Revenue Curves: Single-agent Analysis

Price posting revenue curve P(q): expected revenue from selling the item using market clearing price p^q .

• p^q : per-unit price that sells the item with total demand q;

Revenue Curves: Single-agent Analysis

Price posting revenue curve P(q): expected revenue from selling the item using market clearing price p^q .

- p^q : per-unit price that sells the item with total demand q;
- \bar{P} : concave hull of P.

Pricing-based Mechanisms

Quantile space: let $q = \Pr_{t' \sim F}[t' \geq t]$ be the quantile for type t.

- ullet $q \sim U[0,1]$ (assuming continuous type distribution)
- lower quantile ⇔ higher willingness to pay.

Pricing-based Mechanisms

Quantile space: let $q = \Pr_{t' \sim F}[t' \geq t]$ be the quantile for type t.

- ullet $q \sim U[0,1]$ (assuming continuous type distribution)
- lower quantile ⇔ higher willingness to pay.

Pricing-based mechanism in quantile space: thresholds $\{Q_i\}_{i\in[n]}$

- threshold $\hat{q}_i = Q_i(q_{-i})$ on quantiles for agent i;
- selling to quantiles lower than $\hat{q}_i \Leftrightarrow \text{posting market clearing price } p^{\hat{q}_i}$ to agent i.

Pricing-based Mechanisms

Quantile space: let $q = \Pr_{t' \sim F}[t' \geq t]$ be the quantile for type t.

- ullet $q \sim U[0,1]$ (assuming continuous type distribution)
- lower quantile ⇔ higher willingness to pay.

Pricing-based mechanism in quantile space: thresholds $\{Q_i\}_{i\in[n]}$

- threshold $\hat{q}_i = Q_i(q_{-i})$ on quantiles for agent i;
- selling to quantiles lower than $\hat{q}_i \Leftrightarrow \text{posting market clearing price } p^{\hat{q}_i}$ to agent i.

For each agent i, given Q_i , the distribution over thresholds \hat{q}_i does not depend on the type distribution of other agents.

Expected revenue from pricing-based mechanisms:

$$\begin{split} \sum_{i \in N} \mathbf{E}_{\forall j \neq i, q_j \sim U[0,1]} [P_i(Q_i(q_{-i}))] &= \sum_{i \in N} \mathbf{E}_{\forall j, q_j \sim U[0,1]} \big[P_i'(q_i) x_i(q_i, q_{-i}) \big] \\ &= \mathbf{E}_{\forall j, q_j \sim U[0,1]} \Bigg[\sum_{i \in N} P_i'(q_i) x_i(q_i, q_{-i}) \Bigg] \,. \end{split}$$

Expected revenue from pricing-based mechanisms:

$$\begin{split} \sum_{i \in N} \mathbf{E}_{\forall j \neq i, q_j \sim U[0,1]} [P_i(Q_i(q_{-i}))] &= \sum_{i \in N} \mathbf{E}_{\forall j, q_j \sim U[0,1]} \big[P_i'(q_i) x_i(q_i, q_{-i}) \big] \\ &= \mathbf{E}_{\forall j, q_j \sim U[0,1]} \Bigg[\sum_{i \in N} P_i'(q_i) x_i(q_i, q_{-i}) \Bigg] \;. \end{split}$$

Marginal revenue maximization: allocate to agents with m highest $P_i'(q_i)$ [Bulow and Roberts '89].

Expected revenue from pricing-based mechanisms:

$$\begin{split} \sum_{i \in N} \mathbf{E}_{\forall j \neq i, q_j \sim U[0,1]} [P_i(Q_i(q_{-i}))] &= \sum_{i \in N} \mathbf{E}_{\forall j, q_j \sim U[0,1]} \big[P_i'(q_i) x_i(q_i, q_{-i}) \big] \\ &= \mathbf{E}_{\forall j, q_j \sim U[0,1]} \Bigg[\sum_{i \in N} P_i'(q_i) x_i(q_i, q_{-i}) \Bigg] \,. \end{split}$$

Marginal revenue maximization: allocate to agents with m highest $P_i'(q_i)$ [Bulow and Roberts '89].

• mechanism is incentive compatible if $P'_i(q_i)$ is weakly decreasing.

Expected revenue from pricing-based mechanisms:

$$\begin{split} \sum_{i \in N} \mathbf{E}_{\forall j \neq i, q_j \sim U[0,1]} [P_i(Q_i(q_{-i}))] &= \sum_{i \in N} \mathbf{E}_{\forall j, q_j \sim U[0,1]} \big[P_i'(q_i) x_i(q_i, q_{-i}) \big] \\ &= \mathbf{E}_{\forall j, q_j \sim U[0,1]} \Bigg[\sum_{i \in N} P_i'(q_i) x_i(q_i, q_{-i}) \Bigg] \,. \end{split}$$

Marginal revenue maximization: allocate to agents with m highest $P_i'(q_i)$ [Bulow and Roberts '89].

ullet mechanism is incentive compatible if $P_i'(q_i)$ is weakly decreasing.

Marginal revenue maximization is optimal among all possible mechanisms.

Alternative Geometric Proof

Alternative Geometric Proof

Revenue Equivalence

The marginal revenue $P'_i(q_i)$ for value $v_i(q_i)$ sometimes is also referred to as the virtual value for $v_i(q_i)$ [Myerson'81].

Lemma

Given any mechanism M with allocation rule x, the expected revenue of the mechanism equals the expected marginal revenue / virtual value. That is,

$$\operatorname{Rev}(M) = \mathbf{E}_{\forall j, q_j \sim U[0, 1]} \left[\sum_{i \in N} P'_i(q_i) x_i(q_i, q_{-i}) \right].$$

Ironing

If $P'_i(q_i)$ is not weakly decreasing

ullet using ironing [Myerson'81] to replace $P_i'(q_i)$ with $\bar{P}_i'(q_i)$.

Ironing

If $P'_i(q_i)$ is not weakly decreasing

ullet using ironing [Myerson'81] to replace $P_i'(q_i)$ with $ar{P}_i'(q_i)$.

Expected revenue from pricing-based mechanisms:

$$\begin{split} \sum_{i \in N} \mathbf{E}_{\forall j \neq i, q_j \sim U[0, 1]} [P_i(Q_i(q_{-i}))] &\leq \sum_{i \in N} \mathbf{E}_{\forall j \neq i, q_j \sim U[0, 1]} \big[\bar{P}_i(Q_i(q_{-i})) \big] \\ &= \mathbf{E}_{\forall j, q_j \sim U[0, 1]} \Bigg[\sum_{i \in N} \bar{P}'_i(q_i) x_i(q_i, q_{-i}) \Bigg] \,. \end{split}$$

Ironing

If $P'_i(q_i)$ is not weakly decreasing

ullet using ironing [Myerson'81] to replace $P_i'(q_i)$ with $\bar{P}_i'(q_i)$.

Expected revenue from pricing-based mechanisms:

$$\begin{split} \sum_{i \in N} \mathbf{E}_{\forall j \neq i, q_j \sim U[0,1]} [P_i(Q_i(q_{-i}))] &\leq \sum_{i \in N} \mathbf{E}_{\forall j \neq i, q_j \sim U[0,1]} \big[\bar{P}_i(Q_i(q_{-i})) \big] \\ &= \mathbf{E}_{\forall j, q_j \sim U[0,1]} \Bigg[\sum_{i \in N} \bar{P}'_i(q_i) x_i(q_i, q_{-i}) \Bigg] \,. \end{split}$$

Expected ironed marginal revenue is an upper bound for expected marginal revenue, and they have the same maximizer.

• ironed marginal revenue is always weakly decreasing.

Yingkai Li (NUS) Revenue Maximization EC4501 10 / 33

Focus on symmetric environments with regular distributions.

Focus on symmetric environments with regular distributions.

Optimal mechanism allocates the item to the agent with the highest value/marginal revenue if the highest marginal revenue is non-negative.

Focus on symmetric environments with regular distributions.

Optimal mechanism allocates the item to the agent with the highest value/marginal revenue if the highest marginal revenue is non-negative.

Optimal mechanism: second-price auction with anonymous reserve v^*

- item is not sold if all agents have values below the reserve price;
- ullet v^* is the cutoff value with zero marginal value.

Focus on symmetric environments with regular distributions.

Optimal mechanism allocates the item to the agent with the highest value/marginal revenue if the highest marginal revenue is non-negative.

Optimal mechanism: second-price auction with anonymous reserve v^*

- item is not sold if all agents have values below the reserve price;
- ullet v^* is the cutoff value with zero marginal value.

Remark: the optimal reserve price v^* does not depend on the number of agents.

• it is also the optimal price in the single agent problem.

Approximation Under Linear Utilities

Posted Pricing

Posted pricing mechanisms: offer price p_i to agent i. The item is sold to the first agent who is willing to purchase.

• this is in fact order oblivious posted pricing where the seller cannot control the order of the agents.

Posted Pricing

Posted pricing mechanisms: offer price p_i to agent i. The item is sold to the first agent who is willing to purchase.

• this is in fact order oblivious posted pricing where the seller cannot control the order of the agents.

Question: is posted pricing mechanisms also approximately optimal for revenue maximization?

Recap: Prophet Inequality

Online Selection Problem: n items arriving online.

- item i has value $v_i \sim F_i$;
- the agent knows F_1, \ldots, F_n at time 0.
- at time $i \leq n$, the agent observes value v_i and decides whether to select item i (if the selection has not been made).

Theorem

There exists a threshold policy that achieves a 2-approximation, i.e., it achieves expected value at least $\frac{1}{2}\mathbf{E}[\max_i v_i]$.

Connection to Revenue Maximization

Prophet inequality: n items

- value distributions $F = F_1 \times \cdots \times F_n$;
- threshold τ for each item;
- arrival order π .

Posted pricing mechanism: n agents

- marginal revenues $F = F_1 \times \cdots \times F_n$;
- threshold τ for each agent i;
- tie breaking rule π .

Any threshold τ in the marginal revenue space corresponds to a price p_i in the value space.

Connection to Revenue Maximization

Prophet inequality: n items

- value distributions $F = F_1 \times \cdots \times F_n$;
- threshold τ for each item;
- arrival order π .

Posted pricing mechanism: n agents

- marginal revenues $F = F_1 \times \cdots \times F_n$;
- threshold τ for each agent i;
- tie breaking rule π .

Any threshold au in the marginal revenue space corresponds to a price p_i in the value space.

Given any valuation profile $v=(v_1,\ldots,v_n)$, the selected value and the optimal value in both problems are the same.

• Posted pricing mechanism has a 2-approximation to the expected maximum marginal revenue.

Yingkai Li (NUS) Revenue Maximization EC4501 15 / 33

Connection to Revenue Maximization

Prophet inequality: n items

- value distributions $F = F_1 \times \cdots \times F_n$;
- threshold τ for each item;
- arrival order π .

Posted pricing mechanism: n agents

- marginal revenues $F = F_1 \times \cdots \times F_n$;
- threshold τ for each agent i;
- tie breaking rule π .

Any threshold au in the marginal revenue space corresponds to a price p_i in the value space.

Given any valuation profile $v=(v_1,\ldots,v_n)$, the selected value and the optimal value in both problems are the same.

 Posted pricing mechanism has a 2-approximation to the expected maximum marginal revenue.

expected marginal revenue = expected revenue

 \Rightarrow posted pricing mechanism has a 2-approximation to the expected revenue.

Yingkai Li (NUS) Revenue Maximization EC4501 15/33

Third-degree Price Discrimination

Can we approximate the optimal revenue without relying on third-degree price discrimination, i.e., posting an anonymous price?

Third-degree Price Discrimination

Can we approximate the optimal revenue without relying on third-degree price discrimination, i.e., posting an anonymous price?

Example: n agents. For agent $i \leq n$, $v_i = 2^i$ w.p $\frac{1}{2^{i+1}}$, and $v_i = 0$ w.p $1 - \frac{1}{2^{i+1}}$.

- optimal revenue $\Theta(n)$;
- anonymous pricing O(1).

Third-degree Price Discrimination

Can we approximate the optimal revenue without relying on third-degree price discrimination, i.e., posting an anonymous price?

Example: n agents. For agent $i \leq n$, $v_i = 2^i$ w.p $\frac{1}{2^{i+1}}$, and $v_i = 0$ w.p $1 - \frac{1}{2^{i+1}}$.

- optimal revenue $\Theta(n)$;
- anonymous pricing O(1).

Third-degree price discrimination is crucial for revenue maximization.

• competition and simultaneous implementation is not.

Sequential Posted Pricing

Can we do better if the seller can control the order of approaching the agents? Yes!

Sequential Posted Pricing

Can we do better if the seller can control the order of approaching the agents? Yes!

Sequential posted pricing: design an order π and prices p_i for each agent i.

- Agents arrive according to order π ;
- The item is sold to the first agent who is willing to purchase.

Sequential Posted Pricing

Can we do better if the seller can control the order of approaching the agents? Yes!

Sequential posted pricing: design an order π and prices p_i for each agent i.

- Agents arrive according to order π ;
- The item is sold to the first agent who is willing to purchase.

Theorem (Yan '11)

Sequential posted pricing mechanism has an $\frac{e}{e-1}$ -approximation to the expected revenue.

EC4501 17/33

A non-negative real-valued set function f over subsets S of an n element ground set $N = \{1, \dots, n\}$ and a distribution over subsets given by \mathcal{D} .

- \hat{q}_i : ex ante probability that element i is in the random set $S \sim \mathcal{D}$
- \mathcal{D}^I : distribution over subsets induced by independently adding each element i to the set with probability equal to its ex ante probability \hat{q}_i .

A non-negative real-valued set function f over subsets S of an n element ground set $N=\{1,\ldots,n\}$ and a distribution over subsets given by $\mathcal{D}.$

- ullet \hat{q}_i : ex ante probability that element i is in the random set $S \sim \mathcal{D}$
- \mathcal{D}^I : distribution over subsets induced by independently adding each element i to the set with probability equal to its ex ante probability \hat{q}_i .

The correlation gap is the ratio of the expected value of the set function for the (correlated) distribution \mathcal{D} to that with independent distribution \mathcal{D}^I , i.e.,

$$\frac{E_{S \sim \mathcal{D}}[f(S)]}{E_{S \sim \mathcal{D}^I}[f(S)]}.$$

Definition

A set function $f: 2^S \to \mathbb{R}$ defined on the subsets of a finite set S is called submodular if for all $A \subseteq B \subseteq S$ and $x \notin B$, the following inequality holds:

$$f(A \cup \{x\}) - f(A) \ge f(B \cup \{x\}) - f(B).$$

Submodular functions captures decreasing marginal return.

Definition

A set function $f: 2^S \to \mathbb{R}$ defined on the subsets of a finite set S is called submodular if for all $A \subseteq B \subseteq S$ and $x \notin B$, the following inequality holds:

$$f(A \cup \{x\}) - f(A) \ge f(B \cup \{x\}) - f(B).$$

Submodular functions captures decreasing marginal return.

Theorem

If the set function f is submodular, the correlation gap for function f is at most $\frac{e}{e-1}$.

Example: submodular function $f(S) = \mathbf{1} (S \neq \emptyset)$.

• ex ante probability $\hat{q}_i = \frac{1}{n}$ for all i.

Example: submodular function $f(S) = \mathbf{1} (S \neq \emptyset)$.

• ex ante probability $\hat{q}_i = \frac{1}{n}$ for all i.

Under correlated distribution \mathcal{D} , it is optimal that only one item is selected in each realization:

$$E_{S \sim \mathcal{D}}[f(S)] = 1.$$

Example: submodular function $f(S) = \mathbf{1} (S \neq \emptyset)$.

• ex ante probability $\hat{q}_i = \frac{1}{n}$ for all i.

Under correlated distribution \mathcal{D} , it is optimal that only one item is selected in each realization:

$$E_{S \sim \mathcal{D}}[f(S)] = 1.$$

Under independent distribution \mathcal{D}^I :

$$E_{S \sim \mathcal{D}^I}[f(S)] = 1 - (1 - \frac{1}{n})^n \xrightarrow{n \to \infty} 1 - \frac{1}{e}.$$

Example: submodular function $f(S) = \mathbf{1} (S \neq \emptyset)$.

• ex ante probability $\hat{q}_i = \frac{1}{n}$ for all i.

Under correlated distribution \mathcal{D} , it is optimal that only one item is selected in each realization:

$$E_{S \sim \mathcal{D}}[f(S)] = 1.$$

Under independent distribution \mathcal{D}^I :

$$E_{S \sim \mathcal{D}^I}[f(S)] = 1 - (1 - \frac{1}{n})^n \xrightarrow{n \to \infty} 1 - \frac{1}{e}.$$

As
$$n \to \infty$$
, $\frac{E_{S \sim \mathcal{D}}[f(S)]}{E_{S \sim \mathcal{D}^I}[f(S)]} = \frac{e}{e-1}$.

Yingkai Li (NUS) Revenue Maximization EC4501 20/33

Ex ante relaxation: consider the relaxed problem where the sum of ex ante probabilities of receiving an item is at most 1.

$$EAR = \sum_{i} R_i(q_i) \quad \text{s.t.} \quad \sum_{i} q_i \le 1.$$

EAR is an upper bound on the optimal revenue.

Ex ante relaxation: consider the relaxed problem where the sum of ex ante probabilities of receiving an item is at most 1.

$$EAR = \sum_{i} R_i(q_i) \quad \text{s.t.} \quad \sum_{i} q_i \le 1.$$

EAR is an upper bound on the optimal revenue.

Let \hat{q}_i be the optimal solution for EAR.

Ex ante relaxation: consider the relaxed problem where the sum of ex ante probabilities of receiving an item is at most 1.

$$EAR = \sum_{i} R_i(q_i) \quad \text{s.t.} \quad \sum_{i} q_i \le 1.$$

EAR is an upper bound on the optimal revenue.

Let \hat{q}_i be the optimal solution for EAR.

Sequential posted pricing: offer price \hat{p}_i that sells with probability \hat{q}_i to agent i;

• agents are approached in decreasing order of \hat{p}_i .

Let function $f(S) = \max_{i \in S} \hat{p}_i$. f is submodular.

Let function $f(S) = \max_{i \in S} \hat{p}_i$. f is submodular.

Given marginal probability \hat{q}_i on each i:

- $E_{S \sim \mathcal{D}^I}[f(S)]$: expected revenue from sequential posted pricing;
- $E_{S \sim \mathcal{D}}[f(S)]$: EAR.

Let function $f(S) = \max_{i \in S} \hat{p}_i$. f is submodular.

Given marginal probability \hat{q}_i on each i:

- ullet $E_{S \sim \mathcal{D}^I}[f(S)]$: expected revenue from sequential posted pricing;
- $E_{S \sim \mathcal{D}}[f(S)]$: EAR.

Correlation gap implies that

$$\frac{E_{S \sim \mathcal{D}}[f(S)]}{E_{S \sim \mathcal{D}^I}[f(S)]} \le \frac{e}{e - 1}.$$

Extension of Approximations Under Non-linear Utilities

Two options, which one would you choose:

- get \$10M;
- draw a lottery, with probability $\frac{1}{2}$, get \$20M, and get nothing otherwise.

In practice, buyers have non-linear utilities: e.g., risk aversion, budget constraints, and etc.

In practice, buyers have non-linear utilities: e.g., risk aversion, budget constraints, and etc.

Risk aversion: $t_i = (v_i, \varphi_i)$ where $v_i \in \mathbb{R}_+$, φ_i is an increasing concave function, and

$$u_i(t_i, x_i, p_i) = \varphi_i(v_i x_i - p_i).$$

Private budgets: $t_i = (v_i, B_i)$ where $v_i, B_i \in \mathbb{R}_+$, and

$$u_i(t_i, x_i, p_i) = \begin{cases} v_i x_i - p_i & p_i \le B_i \\ -\infty & p_i > B_i. \end{cases}$$

In practice, buyers have non-linear utilities: e.g., risk aversion, budget constraints, and etc.

Risk aversion: $t_i = (v_i, \varphi_i)$ where $v_i \in \mathbb{R}_+$, φ_i is an increasing concave function, and

$$u_i(t_i, x_i, p_i) = \varphi_i(v_i x_i - p_i).$$

Private budgets: $t_i = (v_i, B_i)$ where $v_i, B_i \in \mathbb{R}_+$, and

$$u_i(t_i, x_i, p_i) = \begin{cases} v_i x_i - p_i & p_i \le B_i \\ -\infty & p_i > B_i. \end{cases}$$

Are simple mechanisms approximately optimal for non-linear utilities?

In single-agent environments, a mechanism is posting a per-unit price p if the agent can purchase any lottery x with price $x \cdot p$ for any $x \in [0,1]$.

• agent pays price $x \cdot p$ even if the realized allocation is 0.

In single-agent environments, a mechanism is posting a per-unit price p if the agent can purchase any lottery x with price $x \cdot p$ for any $x \in [0,1]$.

• agent pays price $x \cdot p$ even if the realized allocation is 0.

Definition (Demands)

The demand of the agent $d^u(t,p)$ is the optimal lottery of the agent given per-unit price p.

In single-agent environments, a mechanism is posting a per-unit price p if the agent can purchase any lottery x with price $x \cdot p$ for any $x \in [0,1]$.

• agent pays price $x \cdot p$ even if the realized allocation is 0.

Definition (Demands)

The demand of the agent $d^u(t,p)$ is the optimal lottery of the agent given per-unit price p.

Remark: We denote $D^u(p) = \mathbf{E}_{t \sim F}[d^u(t, p)]$ as the expected demand, and omit u in notations when it is clear from context.

In single-agent environments, a mechanism is posting a per-unit price p if the agent can purchase any lottery x with price $x \cdot p$ for any $x \in [0,1]$.

• agent pays price $x \cdot p$ even if the realized allocation is 0.

Definition (Demands)

The demand of the agent $d^u(t,p)$ is the optimal lottery of the agent given per-unit price p.

Remark: We denote $D^u(p) = \mathbf{E}_{t \sim F}[d^u(t,p)]$ as the expected demand, and omit u in notations when it is clear from context.

Assumption (Ordinary Goods)

 $d^u(t,p)$ is non-increasing in p for all $t \in T$.

Excludes Giffen goods or Veblen goods.

Yingkai Li (NUS) Revenue Maximization EC4501 26 / 33

Recall for linear utilities: let $q = \mathbf{Pr}_{t' \sim F}[t' \geq t]$ be the quantile for type t.

• lower quantile \Leftrightarrow higher willingness to pay.

Recall for linear utilities: let $q = \mathbf{Pr}_{t' \sim F}[t' \geq t]$ be the quantile for type t.

• lower quantile ⇔ higher willingness to pay.

Type space for non-linear agents can be multi-dimensional.

Recall for linear utilities: let $q = \mathbf{Pr}_{t' \sim F}[t' \geq t]$ be the quantile for type t.

• lower quantile ⇔ higher willingness to pay.

Type space for non-linear agents can be multi-dimensional.

Demand of an agent with a private budget given per-unit pricing:

	$t_1: (v=5, B=1)$	$t_2: (v=2, B=2)$
$p_1 = 4$	0.25	0
$p_2 = 2$	0.5	1

Recall for linear utilities: let $q = \mathbf{Pr}_{t' \sim F}[t' \geq t]$ be the quantile for type t.

• lower quantile ⇔ higher willingness to pay.

Type space for non-linear agents can be multi-dimensional.

Demand of an agent with a private budget given per-unit pricing:

	$t_1: (v = 5, B = 1)$	$t_2: (v=2, B=2)$
$p_1 = 4$	0.25	0
$p_2 = 2$	0.5	1

There isn't a simple deterministic and consistent way of ordering types for a non-linear agent.

Solution: a random mapping from types to quantiles based on demand functions.

Solution: a random mapping from types to quantiles based on demand functions.

Intuition: given any threshold \hat{q} and any type t, the following two quantities should coincide

- **1** probability the quantile of t is below \hat{q} ;
- 2 the demand of t given market clearing price $p^{\hat{q}}$.

Solution: a random mapping from types to quantiles based on demand functions.

Intuition: given any threshold \hat{q} and any type t, the following two quantities should coincide

- probability the quantile of t is below \hat{q} ;
- 2 the demand of t given market clearing price $p^{\hat{q}}.$

Definition (Quantiles for Non-linear Agents)

The randomized quantile q for type $t \in T$ is drawn from distribution with CDF $d(t, p^q)$.

- $d(t, p^0) = 0$ and $d(t, p^1) = 1$;
- $d(t, p^q)$ is weakly increasing in q for all type t (ordinary good assumption).

Solution: a random mapping from types to quantiles based on demand functions.

Intuition: given any threshold \hat{q} and any type t, the following two quantities should coincide

- probability the quantile of t is below \hat{q} ;
- 2 the demand of t given market clearing price $p^{\hat{q}}$.

Definition (Quantiles for Non-linear Agents)

The randomized quantile q for type $t \in T$ is drawn from distribution with CDF $d(t, p^q)$.

- $d(t, p^0) = 0$ and $d(t, p^1) = 1$;
- $d(t, p^q)$ is weakly increasing in q for all type t (ordinary good assumption).

Remark: $q \sim U[0,1]$: $\Pr[z \leq q] = \mathbf{E}_{t \sim F}[d(t, p^q)] = q$.

Yingkai Li (NUS) Revenue Maximization EC4501 28 / 33

Pricing-based Mechanisms in Quantile Space

Definition (Pricing-based Mechanisms in Quantile Space)

Given any profile of feasible thresholds $\{Q_i\}_{i\in[n]}$,

- **1** Map type t_i to quantile q_i according to $d(t, p^q)$, and calculate threshold as $\hat{q}_i = Q_i(q_{-i})$.
- ② The allocation of agent i is $x_i = 1$ if and only if $q_i \leq \hat{q}_i$. The payment of agent i is $p_i = p^{\hat{q}_i} \cdot d(t_i, p^{\hat{q}_i})$ regardless of the allocation.

Pricing-based Mechanisms in Quantile Space

Definition (Pricing-based Mechanisms in Quantile Space)

Given any profile of feasible thresholds $\{Q_i\}_{i\in[n]}$,

- **1** Map type t_i to quantile q_i according to $d(t, p^q)$, and calculate threshold as $\hat{q}_i = Q_i(q_{-i})$.
- ② The allocation of agent i is $x_i=1$ if and only if $q_i \leq \hat{q}_i$. The payment of agent i is $p_i=p^{\hat{q}_i}\cdot d(t_i,p^{\hat{q}_i})$ regardless of the allocation.

Price-posting Equivalence Interpretation: Fixing any \hat{q}_i , from perspective of agent i

- wins the item with probability $d(t_i, p^{\hat{q}_i})$;
- deterministically pays $p^{\hat{q}_i} \cdot d(t_i, p^{\hat{q}_i})$.

Equivalent to posting per-unit price $p^{\hat{q}_i}$ to agent i.

Pricing-based Mechanisms in Quantile Space

Definition (Pricing-based Mechanisms in Quantile Space)

Given any profile of feasible thresholds $\{Q_i\}_{i\in[n]}$,

- ① Map type t_i to quantile q_i according to $d(t, p^q)$, and calculate threshold as $\hat{q}_i = Q_i(q_{-i})$.
- ② The allocation of agent i is $x_i=1$ if and only if $q_i \leq \hat{q}_i$. The payment of agent i is $p_i=p^{\hat{q}_i}\cdot d(t_i,p^{\hat{q}_i})$ regardless of the allocation.

Price-posting Equivalence Interpretation: Fixing any \hat{q}_i , from perspective of agent i

- wins the item with probability $d(t_i, p^{\hat{q}_i})$;
- deterministically pays $p^{\hat{q}_i} \cdot d(t_i, p^{\hat{q}_i})$.

Equivalent to posting per-unit price $p^{\hat{q}_i}$ to agent i.

Expected revenue: from any pricing-based mechanisms M for non-linear agents,

$$M(P) = \sum_{i} \mathbf{E}_{\forall j \neq i, q_j \sim U[0,1]} [P_i(Q_i(q_{-i}))].$$

For linear agents: $R = \bar{P}$ [Bulow and Robert '89].

For non-linear agents: pricing-based mechanisms in general are not optimal, i.e., $R \neq \bar{P}$.

For linear agents: $R = \bar{P}$ [Bulow and Robert '89].

For non-linear agents: pricing-based mechanisms in general are not optimal, i.e., $R \neq \bar{P}$.

Example: an agent with private budget:

- with probability $\frac{1}{2}$, $t_1 : (v = 2, B = 1)$;
- with probability $\frac{1}{2}$, $t_2 : (v = 10, B = 3)$.

For linear agents: $R = \bar{P}$ [Bulow and Robert '89].

For non-linear agents: pricing-based mechanisms in general are not optimal, i.e., $R \neq \bar{P}$.

Example: an agent with private budget:

- with probability $\frac{1}{2}$, $t_1 : (v = 2, B = 1)$;
- with probability $\frac{1}{2}$, $t_2:(v=10,B=3)$.

Revenue from posted pricing:

- if p > 2: only sold to $t_2 \Rightarrow$ revenue is at most $\frac{3}{2}$;
- if $p \leq 2$: payment from t_2 is at most $2 \Rightarrow$ revenue is at most $\frac{3}{2}$.

For linear agents: $R = \bar{P}$ [Bulow and Robert '89].

For non-linear agents: pricing-based mechanisms in general are not optimal, i.e., $R \neq \bar{P}$.

Example: an agent with private budget:

- with probability $\frac{1}{2}$, $t_1 : (v = 2, B = 1)$;
- with probability $\frac{1}{2}$, $t_2:(v=10,B=3)$.

Revenue from posted pricing:

- if p > 2: only sold to $t_2 \Rightarrow$ revenue is at most $\frac{3}{2}$;
- if $p \le 2$: payment from t_2 is at most $2 \Rightarrow$ revenue is at most $\frac{3}{2}$.

Lottery mechanism:

- offer menu of lotteries $(x_1 = \frac{1}{2}, p_1 = 1)$ and $(x_2 = 1, p_2 = 3)$;
- expected revenue equals 2.

Resemblance: Approximations in Single-agent Settings

Definition (ζ -resemblance)

A non-linear agent is ζ -resemblant to a linear agent if given any supply constraint $q \in [0,1]$, there exists a posted pricing mechanism with expected demand $q^\dagger \leq q$ such that $\bar{P}(q^\dagger) \geq \frac{1}{\zeta} R(q)$.

Resemblance: Approximations in Single-agent Settings

Definition (ζ -resemblance)

A non-linear agent is ζ -resemblant to a linear agent if given any supply constraint $q \in [0,1]$, there exists a posted pricing mechanism with expected demand $q^\dagger \leq q$ such that $\bar{P}(q^\dagger) \geq \frac{1}{\zeta} R(q)$.

Resemblance: Approximations in Single-agent Settings

Definition (ζ -resemblance)

A non-linear agent is ζ -resemblant to a linear agent if given any supply constraint $q \in [0,1]$, there exists a posted pricing mechanism with expected demand $q^\dagger \leq q$ such that $\bar{P}(q^\dagger) \geq \frac{1}{\zeta} R(q)$.

Reduction from Non-linear to Linear Agents

Theorem

For non-linear agents that are ζ -resemblant to linear agents, pricing-based mechanism M is a γ -approximation to ex ante relaxation for linear agents $\Rightarrow M$ is a $\zeta\gamma$ -approximation to ex ante relaxation for non-linear agents.

- expected revenue only depends on the price-posting revenue curves

Reduction from Non-linear to Linear Agents

Theorem

For non-linear agents that are *C*-resemblant to linear agents, pricing-based mechanism M is a γ -approximation to ex ante relaxation for linear agents $\Rightarrow M$ is a $(\gamma$ -approximation to ex ante relaxation for non-linear agents.

- expected revenue only depends on the price-posting revenue curves
- **3** ζ -resemblance $\Rightarrow \zeta \operatorname{EAR}(\bar{P}) \geq \operatorname{EAR}(R)$ (straightforward)

Yingkai Li (NUS) EC4501 32 / 33

Reduction from Non-linear to Linear Agents

Theorem

For non-linear agents that are ζ -resemblant to linear agents, pricing-based mechanism M is a γ -approximation to ex ante relaxation for linear agents $\Rightarrow M$ is a $\zeta\gamma$ -approximation to ex ante relaxation for non-linear agents.

- expected revenue only depends on the price-posting revenue curves

Non-linearities are often details that can be dispensed from the model without affecting main economic conclusions.

Economic conclusions for linear agents \Rightarrow economic conclusions for non-linear agents.

ζ -resemblance for Non-linear Agents

	independent private budget*	risk averse*
revenue	3	е
welfare	2	1

Table: Summary of results for ζ -resemblance.

ζ -resemblance for Non-linear Agents

	independent private budget*	risk averse*
revenue	3	е
welfare	2	1

Table: Summary of results for ζ -resemblance.

Corollary

For risk averse agents, sequential posted pricing is an e/(e-1)-approximation to the optimal welfare.