Cooperative Multi-agent RL for Factory Manipulation

Nikolas Kirschstein & Kassian Köck (Team 7)

Big Picture

 ${\bf goal:}\,$ multiple robot arms cooperating to $\it maximise$ efficiency in factory manipulation task like pick-and-place

issue: conventional pre-programming too *inflexible* and *tedious* **conjecture:** *multi-agent RL* may find near-optimal behaviour

Given: The Environment

- even number of robot arms (8 DOF each)
- basket in reach for each arm
- conveyor belt with increasing speed transporting cubes
- score = number of cubes in baskets
- episode termination if either:
 - arm hits the environment (incl. other arms)
 - cube is missed by all arms

Given: IK Base Policy

- state machine working on *one target object at a time*
- different base policies ignore each others' target objects
- control calculated via inverse kinematics (IK)

(A) Continuous Control: Setting

action space: [-1,1] per joint and learnt arm to control joint state observation space: joint and cube states

learning choices per arm:

- full RL: learn entire joint control RL from scratch (hard)
- delta: learn only deviation from IK base policy (simplification)
- base: execute IK base policy (baseline)

(A) Continuous Control: Reward Shaping

- <u>problem:</u> learning hard due to discrete, *highly sparse* reward ⇒ denser reward function needed
- desirable incentives:

 I_0 : reward *new cubes* put into bucket

 I_1 : reward approach of *gripper* to closest cube

 I_2 : reward approach of closest cube to *bucket*

• reward function: $r = r_0 + \omega_0 I_0 + \omega_1 I_1 + \omega_2 I_2$ (base reward r_0 prevents learning to terminate episode)

(A) Continuous Control: Results

for 2 robot arms (simplest case):

- pure sparse reward: absolutely no learning, random behaviour
- progress-based reward ($r_0=0.4, \omega_0=1, \omega_1=0.2, \omega_2=0.4$)
 - successful collision avoidance due to implicit survival reward
 - BUT: no gripping at all (see screenshot (A) and videos)

test results averaged over 100 episodes

learning choice	avg episode score	avg episode length
full RL	(0,0)	219.9
delta	(0,0)	220.5
base	(1.65, 1.17)	208.8

(B) Discrete Control: Setting

action space: $\{ON, OFF\}$ per arm to toggle use of IK base policy observation space: joint and cube states + proposed IK control

behaviour choices for case OFF:

- pause: freeze at the current position
- retreat: return to a safe default position
- base: continue executing IK policy

(B) Discrete Control: Results

for case of 4 robot arms:

- pure sparse score-based reward suffices for effective learning!
- successful dodging and gripping! (see screenshot (B) and videos)
- pausing strategy manages to improve upon baseline!

test results averaged over 100 episodes

learning choice	avg episode score	avg episode length
pause	(2.01, 1.5)	173.04
retreat	(0, 2.12)	216.74
base	(1.18, 1.16)	119.74

Technical University of Munich

Future Work

- modify setting s.t. discrete control decides which cube to grab
- introduce *auxiliary tasks* (grip, carry, release) & *curriculum learning*⇒ requires careful design and much more computing resources