Statistica: Cenni sull'analisi dei gruppi Clusters Analysis

Giovanna Jona Lasinio - Alessio Pollice (Università di Bari)

Dipartimento di Scienze Statistiche Università di Roma "La Sapienza"

Ecobiologia e Scienze Naturali

Scopo dell'analisi dei gruppi

L'analisi dei gruppi mira ad assegnare le unità a categorie non definite a priori, formando dei gruppi di osservazioni omogenei al loro interno ed eterogenei tra loro. Cioè a costruire una classificazione delle osservazioni.

- Ricerca tipologica o individuazione di gruppi di unità con caratteristiche distintive;
- Stratificazione di popolazioni da sottoporre a campionamento;
- Definizione di sistemi di classificazione o tassonomie:
- Ricostruzione di valori mancanti tramite le informazioni desunte dal gruppo di appartenenza individuato tramite i dati disponibili;
- Sintesi delle osservazioni.

- Quasi tutte le tecniche considerano una matrice di dissomiglianza (somiglianza) che contiene le informazioni riguardanti il grado di dissomiglianza tra le diverse unità statistiche.
- La matrice di dissomiglianza può risultare da considerazioni soggettive sulle differenze tra le unità, come da calcoli effettuati sulla matrice dati.
- In questo secondo caso vi sono diversi criteri a seconda che le variabili rilevate siano, quantitative, qualitative, binarie o miste.

Matrice di dissomiglianza

$$\begin{pmatrix} 0 & d_{1,2} & \cdots & d_{1,n} \\ d_{1,2} & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & d_{n-1,n} \\ d_{1,n} & \cdots & d_{n-1,n} & 0 \end{pmatrix}$$

Varabili Quantitative

La dissomiglianza tra unità viene valutata con una misura di distanza tra le stesse.

Indichiamo con X la matrice dei dati con n righe e k colonne, X_i indica la riga i-esima della matrice dei dati e x_{ih} indica l'elemento di \mathbf{X} nella riga i colonna h. Vediamo ora alcuni tipi di distanze:

Varabili Quantitative

• Distanza city block o di Manhattan

$$d_{ij} = \sum_{h=1}^{k} |x_{ih} - x_{jh}|$$

Distanza euclidea

$$d_{ij} = \sqrt{\sum_{h=1}^{k} |x_{ih} - x_{jh}|^2}$$

Distanza di Minkowsky

$$d_{ij} = \sqrt[r]{\sum_{h=1}^{k} |x_{ih} - x_{jh}|^r}$$

Queste tre distanze sono fortemente influenzate dalle variabili (colonne di X) con varianza più alta, è quindi buona norma utilizzare variabili standardizzate

Variabili binarie

Assumiamo ora che gli elementi di ${\bf X}$ assumano solo valori (0,1), quindi prese due osservazioni X_i e X_j (righe) abbiamo

X_i	X_j	
	1	0
1	а	b
0	С	d

$$con a + b + c + d = k ed$$

 $a = \text{numero di variabili che valgono 1 per } X_i \text{ ed } X_i$

 $b = \text{numero di variabili che valgono 1 per } X_i \text{ e 0 per } X_j$

 $c = \text{numero di variabili che valgono 0 per } X_i \text{ e 1 per } X_j$

d = numero di variabili che valgono 0 per X_i ed X_j

Variabili binarie

 Coefficiente di dissomiglianza semplice: proporzione delle variabili che risultano discordanti

$$d_{ij}=\frac{b+c}{k}$$

 Coefficiente di Jaccard: indicato per variabili dicotomiche asimmetriche, che indicano la presenza di una data caratteristica

$$d_{ij} = \frac{b+c}{a+b+c}$$

Variabili Qualitative

Possiamo sfruttare i risultati ottenuti con le variabili binarie.

• costruiamo il coefficiente di dissomiglinaza semplice, indicando con c_{ij} la frazione delle variabili che assumono lo stesso valore per le unità i-esima e j-esima, si ha

$$d_{ii} = 1 - c_{ii}$$

Matrice dei dati con variabili miste

Indice di Gower

$$d_{ij} = 1 - \frac{\sum_{h=1}^{k} s_{ijh}}{k}$$

• se la h-esima variabile è *quantitativa* ed R(h) è il suo campo di variazione

$$s_{ijh} = 1 - \frac{|x_{ih} - x_{jh}|}{R(h)}$$

• se la h-esima variabile è qualitativa

$$s_{ijh} = \left\{ egin{array}{ll} 1 & ext{se ha la stessa modalità per le} \\ & ext{osservazioni i-esima e j-esima} \\ 0 & ext{altrimenti} \end{array}
ight.$$

- Criteri per la creazione di partizioni annidate dell'insieme di osservazioni di partenza
 - Rappresentazione grafica della struttura di raggruppamento tramite diagrammi ad albero o dendrogrammi
 - Algoritmi aggregativi e scissori
 - Un oggetto allocato in un gruppo non può più venire riallocato in un diverso cluster in una fase successiva: un errore commesso nella fase iniziale della classificazione non può più essere messo in discussione

Cluster Dendrogram

11 / 24

Dendrogramma:

- Linee orizzontali rappresentano l'unione di due cluster
- La loro posizione sull'asse delle ordinate indica la distanza alla quale i cluster vengono aggregati
- Le ripartizioni in un certo numero di cluster possono essere ottenute sezionando opportunamente il dendrogramma
- un criterio consiste nel sezionare il dendrogramma in corrispondenza del massimo scarto tra i livelli di prossimità ai quali avvengono le aggregazioni (ma le procedure gerarchiche non comprendono in genere alcun indicatore numerico che supporti la scelta del numero corretto di cluster)

- Dal collettivo non suddiviso si procede per aggregazioni successive generando gruppi sempre più numerosi, con un procedimento articolato in tre fasi:
 - (i) costruzione della matrice di dissomiglianza in base alla misura prescelta
 - (ii) raggruppamento degli elementi più somiglianti
 - (iii) calcolo della matrice di dissomiglianza tra gruppi e/o singole osservazioni

Le ultime due fasi vengono ripetute iterativamente finché tutti gli elementi non vengono aggregati in un unico cluster

Dissomiglianza tra cluster e/o singole osservazioni

- *legame singolo*: la distanza tra due gruppi equivale alla minore delle distanze tra gli elementi dei due gruppi
- legame completo: la distanza tra due gruppi equivale alla maggiore delle distanze tra gli elementi
- legame medio: la distanza tra due gruppi equivale alla media delle distanze tra gli elementi
- centroide: la distanza tra due gruppi equivale a quella tra i due centroidi corrispondenti
- metodo di Ward: la distanza tra due gruppi equivale alla devianza tra i centroidi

- Si parte dalla situazione in cui le *n* unit à fanno parte di un unico gruppo e si perviene alla formazione di n gruppi ognuno composto da una sola unit à
- Permettono la formazione di un numero qualsiasi di sottogruppi da un unico gruppo genitore
- Metodo K-means: inizia considerando la partizione in K gruppi del collettivo che minimizza la devianza interna ai gruppi e procede, ad ogni passo, suddividendo il gruppo avente devianza maggiore, in modo che la devianza interna complessiva risulti minima (equivale a massimizzare la distanza tra i centroidi dei gruppi)

- Procedure iterative che ammettono nelle diverse fasi una riallocazione degli elementi gi à clusterizzati, consentendo un progressivo miglioramento delle partizioni ottenute
- Fasi:
 - individuazione di una partizione provvisoria dei dati
 - ottimizzazione di una funzione obiettivo, modificando l'assegnazione

- Metodo K-means: tende a minimizzare la varianza interna ai gruppi individuati
 - a. si determinano i *centroidi* della partizione iniziale
 - b. si determina una partizione provvisoria attribuendo le osservazioni al centroide più vicino
 - c. si calcolano i nuovi centroidi della partizione ottenuta
 - d. si riprende da b.

l'algoritmo si ferma quando due successive iterazioni conducono alla stessa partizione, oppure quando si raggiunge un numero di iterazioni prefissato, o ancora quando la funzione obiettivo non decresce più in modo significativo

Partitioning around medoids

Qui ci interessa introdurre due algoritmi di clustering di tipo aggregativo

- Partitioning Around Medoids
 - simile al metodo della k-medie ma molto più stabile ed affidabile
 - utilizza la PCA per costruire la visualizzazione dei clusters
 - fornisce misure utili per la valutazione della qualità dei gruppi ottenuti
- CLARA
 - funziona come PAM ma permette di trattare dataset molto grandi

Clusters: PAM

- Usa misure di dissimilarità invece delle distanze euclidee
- Definisce i gruppi attorno a centri che sono elementi del dataset su cui si lavora
- È dunque più stabile e robusto delle k-medie
- Fornisce misure di qualità dei gruppi ottenuti (silhouette)

Clusters: PAM, silhouette

- la misura di qualità viene costruita nel modo seguente:
 - Sia i un elemento qualsiasi del dataset e sia A il suo cluster di appartenenza
 - si calcola a(i) ovvero la dissimilarità media (anche distanza euclidea) di i da tutti gli oggetti in A
 - si considera poi un qualunque cluster $C \neq A$ e si definisce d(i, C) dissimilarità media tra i e gli elementi di C, si ripete questo per tutti i cluster $C \neq A$
 - si sceglie il valore più piccolo che si ottiene (b(i)), supponiamo sia relativo al cluster B

Clusters: PAM, silhouette

- il cluster B viene detto vicino di A
- quindi s(i), il valore di silhouette per i viene definito come

$$s(i) = \frac{b(i) - a(i)}{\max\{a(i), b(i)\}}$$

• Appare evidente che $s(i) \in [-1,1]$ quindi

s(i) = 1	a(i) << b(i) quindi la dissimilarità tra i e gli elementi	
	di A è bassa, i è molto ben classificata in A	
s(i) = 0	a(i) = b(i) i apparterrebbe egualmente bene	
	sia ad A che a B	
s(i) < 0	a(i) < b(i) l'elemento è mal classificato, probabilmente va	
	assegnato al cluster B	

Clusters: PAM

- In output si ottengono due tipi di grafico utili
 - Cluster plot: Vengono calcolati i due primi assi principali e si su di essi si rappresentano i gruppi
 - Silhouette plot: Vengono rappresentati i valori di silhouette per ciascun elemento di un gruppo
- L'implementazione in R si trova nel pacchetto cluster, la funzione è pam

- I risultati di una strategia di raggruppamento dipendono oltreché dalla tecnica utilizzata, anche dal tipo di distanza e dall'uso di osservazioni grezze o standardizzate
- Rigidità delle strutture di raggruppamento annidate: un'aggregazione impropria effettuata nei primi passi dell'analisi viene portata avanti sino alla fine
- Le tecniche gerarchiche portano in genere a gruppi meno omogenei di quelli ottenibili attraverso le tecniche non gerarchiche

- Dal punto di vista del calcolo le tecniche gerarchiche risultano molto meno dispendiose di quelle non gerarchiche
- Dal punto di vista della quantità di memoria necessaria per effettuare l'analisi, mentre per le tecniche gerarchiche bisogna tenere in memoria almeno n(n-1)/2 numeri (quanti sono gli elementi della matrice di dissomiglianza), le tecniche non gerarchiche richiedono di tenere in memoria la sola matrice dati
- I risultati delle tecniche non gerarchiche sono modesti se non si dispone di una buona partizione iniziale
- Tra le tecniche gerarchiche aggregative la scelta deve essere effettuata nel rispetto della natura dei dati da analizzare