Lecture 8

Wednesday, February 15, 2017

9:51 AM

<u>Ricall</u>: A <u>Covering Spale</u> of a spale X is a Spale X with a map $p: X \longrightarrow X$ $s \cdot t \cdot$

* for any $x \in X$ there exists an open nbd $x \in U \subset X$ s.t. $P^{-1}(U)$ is a disjoint union of open sets in X each of which are mapped homeo onto U by P.

Def For any $x \in X$, $P^{-1}(x) \subset \widetilde{X}$ is called a fibor.

. Cardinality of $p^{-1}(x)$ is locally constant \Rightarrow It's constant if X is connuted.

Det (X,p) is called an n-sheeted cover of X if for any $x \in X$, $p^{-1}(x)$ consists of n pts.

 $EX \cdot \mathbb{R}, \ P : \mathbb{R} \longrightarrow S^1$ $t \longmapsto (Cos(2\pi t), Sin(2\pi t))$

n-Sheeted Covering

Def: Covering spales $P_1: \widehat{X}_1 \longrightarrow X$ and $P_2: \widehat{X}_2 \longrightarrow X$ are called isomorphic if there exists a homeo. $f: \widehat{X}_1 \longrightarrow \widehat{X}_2$ such that $P_1 = P_2 f$.

if $\widehat{x}_0 \in P_1^{-1}(x_0)$ then $\widehat{x}_0 = P_2 f(\widehat{x}_0)$ we $f(\widehat{x}_0) \in P_2^{-1}(x_0)$ =) f maps a pt in fiber $P_1^{-1}(x_0)$ to a pt in fiber $P_2^{-1}(x_0)$.

> For n + m, (S', Pn) and (S', Pm) are not isomorphic.

Ex X = S' VS'

b 2-shuted

Cover

Cover

 \underline{Pf} $P_2f = P_1 \longrightarrow P_2 + \int_{X} = P_{1*} , \int_{X} : \pi_1(\widetilde{X}_1, \widetilde{x}_1) \longrightarrow \pi_1(\widetilde{X}_2, \widetilde{x}_2) : so = im(P_{1*}) = im(P_{2*})$ Prop (X, 20) ① Suppose Y is path Connected, and locally path

P: Covering Space Connected. Then a lift f exists iff $(\Upsilon,y_0) \xrightarrow{f} (X,a_0)$ $f_{\star}\left(\Pi_{l}\left(\Upsilon,y_{o}\right)\right) \subset \rho_{\star}\left(\Pi_{l}\left(\widetilde{X}\,,\widetilde{z}_{o}\,\right)\right).$ 2) If such a lift exists, then the lift is unique Cor Assume X is path Connected. If for path Connected Covening Spaces $\rho_1:(\widetilde{X}_1,\widetilde{z}_1)\longrightarrow(X_1,z_0)$ and $\rho_2:(\widetilde{X}_2,\widetilde{z}_2)\longrightarrow(X_1,z_0)$ we have $P_{1*}(\Pi_1(\widetilde{X}_1,\widetilde{X}_1)) = P_{2*}(\Pi_1(\widetilde{X}_2,\widetilde{X}_2))$ then Covering spaces (\widetilde{X}_1,P_1) and (\widetilde{X}_2,P_2) are isom. Use an isom. $f: \widetilde{\chi}_1 \longrightarrow \widetilde{\chi}_2$ such that $f(\widetilde{\chi}_1) = \widetilde{\chi}_2$. $\frac{Pf}{P_{2}} = P_{1}$ $\frac{P_{1}}{P_{2}} = P_{2}$ $\frac{P_{1}}{P_{2}} = P_{2}$ $\frac{P_{1}}{P_{2}} = P_{1}$ $\frac{P_{2}}{P_{2}} = P_{2}$ $\frac{P_{1}}{P_{2}} = P_{1}$ $\frac{P_{2}}{P_{1}} = P_{1}$ $\frac{P_{2}}{P_{2}} = P_{2}$ $\frac{P_{1}}{P_{2}} = P_{2}$ $\frac{P_{2}}{P_{1}} = P_{1}$ $\frac{P_{2}}{P_{2}} = P_{2}$ $\frac{P_{1}}{P_{2}} = P_{2}$ $\frac{P_{2}}{P_{1}} = P_{1}$ $\frac{P_{2}}{P_{2}} = P_{2}$ $\frac{P_{1}}{P_{2}} = P_{2}$ $\frac{P_{2}}{P_{1}} = P_{1}$ $\frac{P_{2}}{P_{2}} = P_{2}$ $\frac{P_{2}}{P_{1}} = P_{2}$ $\frac{P_{2}}{P_{2}} = P_{2}$ $\frac{P_{2}}{P_{1}} = P_{2}$ $\frac{P_{2}}{P_{2}} = P_{2}$ $\frac{P_{3}}{P_{4}} = P_{2}$ $\frac{P_{4}}{P_{4}} = P_{4}$ $\frac{P_{$ $P_{1}(\widetilde{P}_{2}\widetilde{P}_{1}) = P_{2}\widetilde{P}_{1} = P_{1}(\widetilde{X}_{1},\widetilde{x}_{1}) \xrightarrow{P_{1}} (X,x_{0})$ lifting of P1 unique $P_2P_1 = \mathbb{I}$, similarly $P_1P_2 = \mathbb{I}$ $\Rightarrow \frac{\widehat{P_1}}{\widehat{P}}$ isomorphism. $EX (S^1, P_n) \Rightarrow \langle n \rangle$: Subgroup gen. by n. Prop Suppose X and \widetilde{X} are path connected. The number of sheets $P:(\widetilde{X},\widetilde{x}_0)\longrightarrow (X,x_0)$ equals with the index of $P_{\star}(\pi_i(\widetilde{X},\widetilde{x}_0))$ in $\pi_i(X,x_0)$. \underline{Pf} Let $H = P_*(\Pi_1(\widetilde{X}, x_0))$ $\underline{\Phi}: Const of H \longrightarrow P^{-1}(x_0)$ $H[9] \longrightarrow \Phi_{\mathbb{S}}([9])$ Injurive: if $\Phi(H[g]) = \Phi(H[g]) \Rightarrow \widetilde{g}_{1}(1) = \widetilde{g}_{2}(1) \Rightarrow \widetilde{g}_{1} \cdot \overline{\widetilde{g}}_{2} \cdot loop band$ $P_{*}([\widetilde{g}_{1},\widetilde{g}_{2}]) = [\widetilde{g}_{1}][g_{2}]^{-1} \in H = 1 + [\widetilde{g}_{1}] = + [g_{2}]$ Surjutive Let $\widetilde{z}_1 \in P^{-1}(z_0)$. Since \widetilde{X} is noth Connected, we may comment \widetilde{z}_0 to \widetilde{z}_1 by

a path \tilde{g} in $\tilde{\chi}$. Let $g = p\tilde{g}$. Then $\tilde{\Phi}(H[g]) = \tilde{\chi}$. loop bound at 20 Proof of lifting property $Pf = f \Rightarrow P_*f_* = f_* \Rightarrow im f_* = im (P_*f_*) \subset im(P_*) /$ $\mathcal{F} = \mathcal{F}(\tilde{\chi}, \tilde{\chi}_0)$ $(\chi_{1}\chi_{1}) \xrightarrow{f} (\chi_{1}\chi_{0})$ Path Comuted · Well_defined $\gamma.\overline{\gamma}'$ loop bound at y. $f_*([\gamma.\overline{\gamma}']) = [f\gamma.\overline{f\gamma'}]$ =) lift of fr. fr' starting at $\tilde{\chi}_0$ is a loop \tilde{f} \tilde{f} \tilde{f} \tilde{f} \tilde{g} | loop $\Rightarrow \widetilde{\{\chi'(1) = \chi(1)\}}$ · Conti Let U be an open nbd of fig), such that it how a lift U=f(y) for which P: U__,U is a homo. Y locally path Connected, pick a path Conn. nbd. V of y s.t. $f(v) \subset U$. For any $y' \in V$, pick a path η from y to y' in V. y. Py -> lift for starting at fy) is equal to p-1 for p: U-U $\Rightarrow f(y') \in \widetilde{U} = f(v) \subseteq \widetilde{U}$ <u>Uniquen</u>: Let \widehat{f}_1 , \widehat{f}_2 : $(\Upsilon, \gamma_o) \longrightarrow (\widetilde{X}, \widetilde{\chi}_o)$ be lifts of f. We show that the set of pts yet for which $\tilde{f}_1(y) = \tilde{f}_2(y)$ is both open and closed. $\widehat{f}_{1}(y) = \widehat{f}_{2}(y) , \text{ let } N \text{ be a nbl of } y \text{ s.t. } \widehat{f}_{1}(N), \widehat{f}_{2}(N) \subset \widehat{U}$ $f = pf_1 = pf_2$ and $p: \tilde{U} \longrightarrow U$ is homo $\tilde{f}_1 = \tilde{f}_2$ on N. . If $\tilde{f}_1(y) \neq \tilde{f}_2(y)$, there exist a mod N of y s.t. $\tilde{f}_1(N) \subset \tilde{U}_1$ and $\tilde{f}_2(N) \subset \tilde{U}_2$ St. $\widetilde{U}_1 \cap \widetilde{U}_2 = \emptyset$ and \widetilde{V}_1 maps \widetilde{V}_1 and \widetilde{V}_2 homeo onto V. $\Rightarrow \widehat{f}_1 \neq \widehat{f}_2 \text{ on } N$. \implies Since \forall is Connected, $\vec{f}_1 = \vec{f}_2$. (We don't need posts Connected new or locally pasts Connected new for unique.)