

A2 Formulas.

- for y' + a(x)y = f(x) we have:
 - integrating factor $I(x) = e^{\int a(x) dx}$
 - \circ variation of parameters: $y = uy_h$
 - where $y_h = e^{-\int a(x) dx}$ and $u = \int \frac{f(x)}{u_h} dx$
- circuits
 - Kirkhoff's Voltage Law: E = RI + LI' + Q/C
 - derivative of charge is current: I = Q'
- Bernoulli equation: $y' + a(t)y = f(t)y^n$
 - \circ substitute $u = y^{1-n}$
 - \circ converts to $\mathfrak{u}' + (1-\mathfrak{n})\mathfrak{a}(\mathfrak{t})\mathfrak{u} = (1-\mathfrak{n})\mathfrak{f}(\mathfrak{t})$

A3 Formulas.

- fundamental solutions for y'' + py' + qy = 0 are:
 - distinct real roots $\lambda = a, b$: $y_1 = e^{at}, y_2 = e^{bt}$
- \circ repeated root $\lambda = a$: $y_1 = e^{at}$, $y_2 = te^{at}$
- complex roots $\lambda = a \pm bi$: $y_1 = e^{at} \cos bt$, $y_2 = e^{at} \sin bt$
- spring with no external force: $my'' + \mu y' + ky = 0$
- Wronskian: $W(y_1, y_2) = y_1y_2' y_1'y_2$
- Abel's formula: for y'' + p(t)y' + q(t)y = 0
 - $\circ W(y_1, y_2) = Ae^{-\int p(t)dt}$ if y_1, y_2 are solutions
 - if y_1 is a solution, then Abel's formula with A = 1 yields:
 - $\circ \text{ so is } y_2 = uy_1 \text{ where } u = \int \frac{e^{-\int p(t)dt}}{y_1^2} \ dt$

A4 Formulas.

forcing term	trial solution y _p
[deg m poly]e ^{at}	t ⁿ [deg m poly]e ^{at}
linear combo of:	
$[\text{deg m poly}] e^{\alpha t} \cos(bt)$	$t^n[\text{deg m poly}]e^{at}\cos(bt)$
and	+
$[\text{deg m poly}] e^{\alpha t} \sin(bt)$	$t^n[\deg m \text{ poly}]e^{at}\sin(bt)$

note: n is the # of times $\lambda = a$ (or $\lambda = a + bi$) is a root of the characteristic equation.

A5 Formulas.

- variation of parameters for y'' + p(t)y' + q(t)y = f(t):
 - $\circ y = u_1y_1 + u_2y_2$ where:
 - \circ y_1 , y_2 are fundamental homogeneous solutions

$$\circ \ \mathfrak{u}_1 = - \int \frac{y_2 f}{W} \ dt \ and \ \mathfrak{u}_2 = \int \frac{y_1 f}{W} \ dt$$

_	
function	Laplace transform
f(t)	$\int_0^\infty e^{-st} f(t) dt$
1	$\frac{1}{s}$
t ⁿ	$\frac{n!}{s^{n+1}}$
e ^{at}	$\frac{1}{s-a}$
t ⁿ e ^{at}	$\frac{n!}{(s-a)^{n+1}}$
cos bt	$\frac{s}{s^2 + b^2}$
sin bt	$\frac{b}{s^2 + b^2}$
$e^{at}\cos bt$	$\frac{s-a}{(s-a)^2+b^2}$
$e^{at}\sin bt$	$\frac{b}{(s-a)^2+b^2}$
e ^{at} f(t)	$\mathcal{L}(f)(s-\alpha) \leftarrow \text{shift theorem}$
t ⁿ f(t)	$(-1)^n \frac{\mathrm{d}^n}{\mathrm{d}s^n} \left[\mathcal{L}(f) \right] \leftarrow \text{time multiplication}$
y ⁽ⁿ⁾	$s^{n}Y - s^{n-1}y(0) - s^{n-2}y'(0) - \dots - y^{(n-1)}(0)$

function	inverse Laplace transform
$\frac{A}{(s-a)^n}$ $\frac{C(s-a) + D}{(s-a)^2 + b^2}$	$\frac{Ae^{at}t^{n-1}}{(n-1)!}$ $Ce^{at}\cos bt + \frac{D}{b}e^{at}\sin bt$