Formulas Exam III

$$n = n_1 + n_2 + \dots + n_m$$

SSTO =
$$\sum_{i=1}^{m} \sum_{j=1}^{n_i} x_{ij}^2 - \frac{1}{n} \left(\sum_{i=1}^{m} \sum_{j=1}^{n_i} x_{ij} \right)^2$$
, where $n = n_1 + n_2 + \dots + n_m$

$$\mathsf{SST} = \sum_{i=1}^{m} \tfrac{1}{n_i} \Big(\sum_{j=1}^{n_i} x_{ij} \Big)^2 - \tfrac{1}{n} \Big(\sum_{i=1}^{m} \sum_{j=1}^{n_i} x_{ij} \Big)^2$$

$$\text{SSE} = \text{SSTO} - \text{SST} = \sum_{i=1}^{m} \sum_{j=1}^{n_i} x_{ij}^2 - \sum_{i=1}^{m} \frac{1}{n_i} \Big(\sum_{j=1}^{n_i} x_{ij} \Big)^2$$

Source of	df	SS	MS	F
Variation				
Tmt	m-1	SST	SST/(m-1)	MST/MSE
Error	n-m	SSE	SSE/(n-m)	
Total	n-1	SSTO		

If the null hypothesis H_0 : $\mu_1=\mu_2=\cdots=\mu_m=\ \mu$ is true:

$$E[MSTO] = E[MST] = E[MSE] = \sigma^2$$

Where σ^2 is the common variance of the normal populations from where each of the m samples (samples from each treatment) comes from.

If the null hypothesis is **not** true:

$${\rm E[MSE]} = \sigma^2 \text{, but}$$

$${\rm E}[{\rm MST}] = \sigma^2 + {1\over {m-1}} \sum_{i=1}^m n_i (\mu_i - \bar{\mu})^2$$
, and

$$\text{E[MSTO]} = \sigma^2 + \frac{1}{n-1} \sum_{i=1}^m n_i (\mu_i - \bar{\mu})^2 \text{, where } \bar{\mu} = \frac{\mu_1 + \mu_2 + \dots + \mu_m}{m}$$