Instituto Federal de São Paulo (IFSP) - Câmpus Campinas

Tecnologia em Análise e Desenvolvimento de Sistemas

<u>Sistemas Operacionais - Série 3 de Exercícios</u> 2º Sem. 2021

Prof. Alencar Melo Jr., Dr. Eng.

Importante:

- A Série 3 de Exercícios de <u>Sistemas Operacionais</u> será constituída pelos exercícios das aulas dos seguintes dias: 04/10, 11/10, 18/10, 25/10. Não teremos mais roteiro de aula no dia 25/10, neste dia teremos Prova.
- Atenção: somente após a aula de 18/10/2021 25/10/2021 a Série 3 de exercícios deverá ser entregue, contendo os exercícios de todas as aulas mencionadas. Atenção ao prazo definido no Moodle não será possível entregar exercícios após o prazo estabelecido.
- A presença nas aulas será registrada mediante a entrega dos exercícios.
- Faça os exercícios individualmente e escreva com as suas próprias palavras, para não configurar plágio. Esteja ciente de que o software de prevenção de plágio CopySpider poderá ser aplicado na série de exercícios.
- Preste atenção e respeite o espaço reservado para os exercícios de cada uma das aulas
- Ao final, passe o corretor ortográfico no texto e gere um arquivo pdf com o seguinte nome: Serie3_SitemasOperacionais_NOME_SOBRENOME.pdf
 - o Faça a substituição de acordo com o seu nome NOME e SOBRENOME!

Série 3 de Exercícios – Sistemas Operacionais

Nome: Ellen Caroline Bento

Prontuário: CP3011593

Exercícios do dia 04/10/2021:

	Questões	Respostas
1.	Qual a importância de Richard Stallman	Richard Stallman é considerado o fundador
	e de Linus Torvalds para o mundo do	do movimento Software Livre e propôs a
	software livre e do Linux em particular?	criação de uma alternativa gratuita ao Unix.
		A partir dessa ideia, Stallman criou o GNU
		(GNU's not Unix), um sistema operacional

que tinha uma base ideológica, onde os usuários podiam usar o software de maneira livre, inspecionando o código e modificando a sua vontade. Até que em 1991, seguindo os princípios de software livre, Linus Tovards cria o kernel Linux. Dessa forma, o GNU e o kernel Linux foram integrados, formando o sistema operacional GNU/Linux. GPL (General Public License), ou Licença 2. O Linux é distribuído sob a licença GPL. Explique com suas palavras as principais Pública Geral baseia-se em 4 liberdades: características desta licença. - Liberdade nº0: Poder executar qualquer programa, independente da finalidade; - Liberdade nº1: Poder inspecionar o programa e modificá-lo, sendo o acesso ao código-fonte um pré-requisito; - Liberdade nº2: Poder distribuir cópias; - Liberdade nº3: Poder melhorar o código do programa e distribuí-lo, onde o acesso ao código-fonte também é um pré-requisito. Com essas garantias/liberdades, é possível a distribuição e aproveitamento do programa pela comunidade. E, ainda sim, mantendo os direitos do autor. 3. No Linux, um diretório é um tipo Há a possibilidade de identificar se o arquivo especial de arquivo. Ao listarmos os é comum ou é um diretório utilizando esse comando observando se há um "-" ou "d" no arquivos do diretório atual no formato primeiro dígito. Caso tenha o "-", é um longo (usando o comando Is -I), veremos arquivo comum. E caso tenha o "d", é um os atributos dos arquivos. Como podemos identificar o tipo do arquivo, diretório. ou seja, como podemos identificar se o arquivo é um arquivo comum (ou ordinário) ou um diretório? 4. As permissões de acesso para arquivos Usuários (user): O usuário é o Linux são estruturadas por classes de dono/proprietário do arquivo. usuário, a saber: proprietário, grupo e Grupo (group): O grupo é o outros. Explique cada uma das classes de dono/proprietário do arquivo. Grupo padrão. usuários. Outros (others): Todos os outros usuários do sistema, que não são membros do grupo nem é o seu proprietário. 5. Descreva o significado das permissões Há 3 tipos de permissões de acesso comuns de acesso para um arquivo comum (ou para os usuários: ordinário). Dica: quando você lista os - Leitura (r), permite a leitura de um arquivo arquivos do diretório atual com o ou diretório; comando ls -l você verá as permissões - Escrita (w), possibilita a alteração de um de acesso como uma sequência de r, w, arquivo ou diretório; х, -. - Execução (x), permite executar um arquivo ou acessar ou diretório.

6.	Descreva o significado das permissões de acesso para um diretório. Siga a mesma dica anterior.	Caracteresx -wwx A combinação sendo seguida tiver: - "r", há a perm - "x", há a perm	Significado permissão de execução permissão de execução permissão de execução permissão de execução e gravação deve começar com o "d", de mais dois dígitos e se ela nissão de execução; missão de gravação.
7.	Explique a utilidade, o que faz o comando <i>chmod</i> . Lembre-se que você pode ver o manual de qualquer comando usando o comando <i>man</i> . Experimente teclar no <i>prompt: man chmod</i> .	permissões de informações so	mod permite a alteração das um arquivo assim como obre as alterações, a partir de a de dígitos e logo após um ne do arquivo.
8.	Crie um arquivo chamado teste (use o comando touch teste). Liste os arquivos do diretório atual (use Is -I). Você deverá ver o arquivo teste que acabou de criar - anote as permissões de acesso do mesmo. Altere as permissões de acesso do arquivo teste com o seguinte comando: chmod 751 teste. O que você vê agora (use novamente Is -I e observe o resultado)? Responda: qual o efeito do 7, do 5 e do 1 no comando executado?	Permissão de a -rwxr-xx 1 use O 7 permitiu ao (leitura, gravaç permitiu a exec	r user 0 Oct 25 17:40 teste r user 0 Oct 25 17:40 teste er user 0 Oct 25 17:40 teste o usuário todas as permissões cão e execução). O número 5 cução e a leitura para o grupo. para os outros apenas a
9.	Explique qual será a saída do seguinte comado: ps -ef grep bash . Dica: entenda o que faz o comando ps -ef e o comando grep bash. A representa um pipe, ou seja, a saída do primeiro comando (ps) vai ser a entrada do próximo comando (grep).	seus processos	comando mostrará todos os s e seus atributos. Logo após, ue realizaram o "bash" ficarão

Exercícios do dia 11/10/2021:

Atividade 1 – Capítulo 6: Threads	Respostas
1. Com suas palavras, explique o que são	Thread traduzido do inglês significa
threads e as suas principais vantagens.	encadeamento de execução. Dessa forma,
	threads são entidades que se escalonam

para executarem no processador.
Elas permitem que ocorram múltiplas
execuções simultâneamente no mesmo
ambiente, melhoram o desempenho e não
deixam um processo parado/ocioso.
Também, tornam o modelo de programação
mais simples.

2. Analise a seguinte afirmação: "O fato de *threads* de um mesmo processo compartilharem o mesmo espaço de endereçamento facilita a comunicação entre elas, mas por outro lado maiores cuidados com a segurança são requeridos". **Diga se é verdadeiro ou falso e justifique.**

Tal afirmação é verdadeira já que, por mais que o compartilhamento do mesmo espaço de endereçamento gere mais riscos como o corrompimento de uma das threads, também faz com que a comunicação seja mais rápida entre as threads.

3. Analise a seguinte afirmação: "Threads de um mesmo processo somente podem executar simultaneamente em diferentes CPUs caso sejam implementadas no modo usuário". Diga se é verdadeiro ou falso e justifique.

Essa afirmação é falsa pois no modo usuário, o sistema operacional visualiza o processo inteiro. Por isso, não há a possibilidade de dois processadores diferentes executarem, de maneira sinultânea, threads de um mesmo processo.

Exercícios: "Sincronização e Comunicação entre Processos – Parte 1"

Respostas

4. O **Problema dos Produtores- Consumidores** é clássico na Computação.
Explique com suas palavras do que se trata, destacando os cuidados que devem ser observados na manipulação do **recurso compartilhado** *buffer*.

Problema dos produtores-consumidores, também conhecido como problema do buffer limitado, trata-se de um problema de sincronização multi-processo.

Nele, é descrito dois processos: o produtor e o consumidor. Cujos quais compartilham um buffer de tamanho fixo, onde o trabalhador fica gerando dados para colocá-lo no buffer e o consumidor utiliza esses dados um de cada vez. Então, esse problema consiste em garantir que o produtor não tentará colocar dados no buffer quando estiver cheio, e que o consumidor não fará a tentativa de tirar dados do buffer vazio.

Ou seja, nota-se que é essencial que haja a sincronização dos processos para que nenhum dos processos precise ficar ocioso.

5. Analise a seguinte afirmação: "Paralelizar um problema computacional, ou seja, dividi-lo em várias partes para execução concorrente, possibilita, via de regra, ganhos em eficiência. Contudo, caso o problema a ser paralelizado seja muito simples, o custo para criar e gerenciar vários processos pode não compensar". Diga se é verdadeiro ou

Essa afirmação é verdadeira pois o custo da criação de processos filhos não compensa o ganho de desempenho com essa paralelização.

falso e justifique.	
6. No exemplo da atualização de sa apresentado (slide 11): a) qual era o recu compartilhado? b) foi garantida propriedade exclusão mútua durante acesso ao recurso compartilhado?	urso compartilhado.
7. Descreva por meio de uma sequência passos os eventos que provo inconsistência no saldo do cliente qua acontece atualização simultânea do mes Dica: baseie-se no slide 11; escreva seguinte forma: 1) o caixa 1 realiza; caixa 2	2) Caixa 1: saque de 200 reais numa conta de possui 1000 reais é realizado, porém o saldo não foi atualizado/escrito no arquivo; 3) Caixa 2: como não foi atualizado, o saldo sindo é do 1000 reais:
8. Descreva por meio de uma sequência passos uma ordem de execução processos A e B que falha em gara exclusão mútua mesmo usando a vari lock. Dica: baseie-se no slide 18; escreva seguinte forma: 1) o processo A test variável lock que está com valor inicial i a; 2) o processo A perde a posse da (acabou seu time-slice); 3) o processo B	inicial é 0; 2) Processo A: perde a posse do processador; a da la a a gual CPU inicial é 0; 2) Processo A: perde a posse do processador; 3) Processo B: assume e testa variável lock também, tendo valor 0 ainda; 4) Nenhum processo: Verificação do while. Os dois processos entram na região crítica e há a falha na exclusão mútua.

Exercícios do dia 18/10/2021:

Questões	Respostas
1. Explique por que SOs como o Linux e o	Esses tipos de sistemas operacionais não
Windows não permitem aos processos do	permitem a utilização do método pois é
usuário utilizar o método de desabilitar	pouco segura, já que pode comprometer a multiprogramação e monopolizar o
interrupções para obter exclusão mútua.	processador.
2. O que significa dizer que a instrução TST	Afirmar que a instrução TST realiza duas
realiza duas ações de modo indivisível?	ações de modo invisível é a mesma coisa que
Quais são essas ações?	dizer que as duas ações vão ser realizadas em sequência. Utilizando o TST X, Y: é

	copiado o valor lógico de Y para X e Y acaba recebendo "verdadeiro" como valor lógico. São atômicas.
3. Descreva com suas palavras, por meio de uma sequência de passos, os seguintes procedimentos apresentados no slide 9: a) entra_rc; b) deixa_rc. Dica: explique cada uma das instruções com suas palavras.	A) Entra_rc: valor 0 - valor do lock é copiado para o registrador; - logo após, valor é atualizado para 1 o valor de lock; - valor do registrador é comparado com o número 0; Caso esse valor seja diferente de 0, é retornado ao começo. Caso seja igual, há uma "falha" no teste e a função é prosseguida retorna ao processo. B) Deixa_rc: - lock recebe valor 0; - retorna ao processo;
4. Em que consiste a espera ocupada (dica: explique o que acontece com o processo que faz espera ocupada – ele vai para o estado bloqueado?).	Espera ocupada é quando um processo que está aguardando uma sinalização se a entrada no R.C. é permitida. Se não for permitida a entrada, o processo espera em um laço até que o acesso seja liberado.
5. Quais são as duas maiores desvantagens da espera ocupada?	Desperdício de tempo da CPU e de desempenho são as duas maiores desvantagens da espera ocupada. Já que o processo fica num laço até que o acesso seja liberado para ir à R.C. Também pode causar inversão de propriedades perpétua.
6. Considere o problema Inversão de Prioridades Perpétua, que para ocorrer requer duas condições: escalonamento da CPU do tipo prioridades preemptivo e mecanismo de exclusão mútua com espera ocupada. Basta eliminarmos uma das duas situações para não termos mais o problema, sendo que o mais comum é não usarmos mecanismos de exclusão mútua que realizam espera ocupada. Para isso, ao invés do processo ficar desperdiçando tempo de CPU com a espera ocupada, ele é colocado em um determinado estado. Que estado é esse? Quais funções podem ser utilizadas para colocar e retirar o processo deste estado?	É o estado de suspensão, ou seja, todo o processo fica bloqueado. As funções que podem ser utilizadas para colocar e retirar o processo desse estado são: - sleep: serve para suspender o processo; - wakeup: serve para que o processo seja retornado.
7. Na solução para exclusão mútua chamada de Primeiro Algoritmo (slide 14), dois	A) O valor de turn deve ser "B" para que o processo A não conseguir entrar na região crítica. Assim, o processo A ficará no laço

processos A e B que desejam acessar um mesmo recurso compartilhado fazem uso de uma variável compartilhada de nome *turn*, que pode assumir os valores 'A' ou 'B'. Explique com suas palavras: a) a situação em que o **Processo A não consegue entrar na região crítica** (qual o valor de *turn*? O que acontece com o processo A? O que acontece com o processo B?); b) a situação em que o **Processo A consegue entrar na região crítica** (qual o valor de *turn*? O que acontece com o processo A? O que acontece com o processo A? O que acontece com o processo A? O que acontece com o processo B?)

- enquanto o B entra em R.C. Logo após o processo B sair de R.C., turn passará a ter valor "A" e o processo A entra em R.C.
- C) O valor deve ser "A". Desse jeito, o processo A entra em R.C. enquanto o processo B fica preso no laço. Depois que o processo A terminar a R.C., turn recebe o valor de "B" e o processo B entra em R.C.
- 8. A exclusão mútua deve sempre ser garantida durante o acesso a um recurso compartilhado e, além disso, o acesso ao recurso compartilhado pode estar também sujeito à uma condição específica. O Problema dos Produtores-Consumidores é um exemplo de Sincronização Condicional, que ocorre quando o uso de um recurso compartilhado está relacionado com uma condição específica, neste caso o número de elementos no buffer compartilhado. Responda: a) em que situação o processo Produtor ficará bloqueado? b) em que situação o processo Consumidor ficará bloqueado?
- A) Produtor ficará bloqueado/suspenso quando o buffer compartilhado estiver cheio.
- B) Consumidor ficará bloqueado/suspenso quando o buffer compartilhado estiver vazio.

Bom trabalho!!