Data Science e Tecnologie per le Basi di Dati

Quaderno #2 – Data mining

1)

a. L'attributo considerato dall'algoritmo come il più selettivo al fine di predire la classe di un nuovo dato di test è 'node-caps', essendo il nodo radice dell'albero di decisione.

Maximal depth: 20
Minimal gain: 0.01

- b. L'altezza dell'albero, ovvero la lunghezza massima di un percorso che collega la radice ad una foglia dell'albero è 6.
 - Si può anche calcolare dalla sezione 'Description' di 'Result', una volta runnato il processo, contando manualmente il 'numero di split'.

```
Result History
                               Tree
         Z
                                        irradiat = 'no'
                                                  tumor-size = '0-4'
| menopause = 'ge40': 'no-recurrence-events' { 'recurrence-events'=0, 'no-recurrence-events'=4}
| menopause = 'premeno'
| | age = '30-39': 'recurrence-events' { 'recurrence-events'=1, 'no-recurrence-events'=1}
| | age = '40-49': 'no-recurrence-events' { 'recurrence-events'=0, 'no-recurrence-events'=2}
tumor-size = '10-14': 'no-recurrence-events' { 'recurrence-events'=0, 'no-recurrence-events'=25}
tumor-size = '15-19'
         Description
                                                           menopause = 'ge40': 'no-recurrence-events' {'recurrence-events'=0, 'no-recurrence-events'=1}
menopause = 'lt40': 'no-recurrence-events' {'recurrence-events'=0, 'no-recurrence-events'=2}
menopause = 'premeno'
   Annotations
                                                                    age = '30-39': 'no-recurrence-events' ('recurrence-events'=1, 'no-recurrence-events'=2)
age = '40-49': 'recurrence-events' {'recurrence-events'=1, 'no-recurrence-events'=1}
age = '50-59'
                                                        | breast = 'left': 'recurrence-events' {'recurrence-events'=1, 'no-recurrence-events'=1}
| breast = 'right': 'no-recurrence-events' {'recurrence-events'=0, 'no-recurrence-eventsmor-size = '20-24'
                                                           menopause = 'ge40'
                                                          | breast = 'left' | deg-malig = 'l': 'no-recurrence-events' ('recurrence-events'=0, 'no-recurrence-events'=2) | deg-malig = '2': 'recurrence-events' ('recurrence-events'=1, 'no-recurrence-events'=1) | deg-malig = '3': 'no-recurrence-events' ('recurrence-events'=0, 'no-recurrence-events'=5) | breast = 'riqht': 'recurrence-events' ('recurrence-events'=4, 'no-recurrence-events'=4) | menopause = 'premeno': 'no-recurrence-events' ('recurrence-events'=1, 'no-recurrence-events'=16)
                                                            r-size = '25-29'
                                                           breast-quad = 'central': 'no-recurrence-events' {'recurrence-events'=0, 'no-recurrence-events'=2}
breast-quad = 'left_low'
| breast = 'left: 'no-recurrence-events' {'recurrence-events'=0, 'no-recurrence-events'=8}
                                                                           menopause = 'ge40': 'no-recurrence-events' ('recurrence-events'=0, 'no-recurrence-events'=2)
menopause = 'premeno': 'recurrence-events' ('recurrence-events'=2, 'no-recurrence-events'=2)
                                                             | membrause = "prememo": recurrence-events ('recurrence-events'=2, 'no-recurrence-events')
| deg-malig = 'l': 'recurrence-events' ('recurrence-events'=1, 'no-recurrence-events'=1)
| deg-malig = '2': 'no-recurrence-events' ('recurrence-events'=0, 'no-recurrence-events'=3)
                                                                     deg-malig = '3': 'recurrence-events' {'recurrence-events'=2, 'no-recurrence-events'=1}
                                                            breast-quad = 'right_low': 'no-recurrence-events' {'recurrence-events'=0, 'no-recurrence-events'=4}
```

c. Un esempio di partizionamento puro all'interno dell'albero di decisione generato è visibile in corrispondenza dell'attributo 'menopause', dove la prima partizione è proprio un partizionamento puro, dato che tutte le relative istanze appartengono alla classe 'no-recurrence-events', mentre la seconda copre record di entrambe le classi.

2) Modificando i parametri 'maximal depth' e 'minimal gain' si va a modificare rispettivamente l'altezza massima dell'albero di decisione e la soglia minima di split di un nodo (un nodo viene splittato se il suo gain è superiore alla soglia minima indicata).

Detto ciò, modificare il parametro 'maximal depth', il cui valore di default è pari a 20, non causerà nessun cambiamento all'albero di decisione finché non si scenderà sotto all'altezza massima registrata al momento.

Maximal depth: 15
Minimal gain: 0.01

Maximal depth: 5

Minimal gain: 0.01

Maximal depth: 20

Minimal gain: 0.03

Maximal depth: 20

Minimal gain: 0.05

Maximal depth: 4

Minimal gain: 0.05

3)

Matrici di confusione:

accuracy: 67.48% -1. 6.25% (mikro: 67.48%)						
	true 'recurrence-events'	true 'no-recurrence-events'	class precision			
pred. 'recurrence-events'	37	45	45.12%			
pred. 'no-recurrence-events'	48	156	76.47%			
class recall	43.53%	77.61%				

Maximal depth: 15

Minimal gain: 0.01

accuracy: 70.289 +/- 7.35% (mikro: 70.28%)					
	true 'recurrence-events'	true 'no-recurrence-events'	class precision		
pred. 'recurrence-events'	35	35	50.00%		
pred. 'no-recurrence-events'	50	166	76.85%		
class recall	41.18%	82.59%			

Maximal depth: 5
Minimal gain: 0 01

accuracy: 70.31%/-/-5.57% (mikro: 70.28%)						
	true 'recurrence-events'	true 'no-recurrence-events'	class precision			
pred. 'recurrence-events'	24	24	50.00%			
pred. 'no-recurrence-events'	61	177	74.37%			
class recall	28.24%	88.06%				

Maximal depth: 20	
Minimal gain: 0.03	

accuracy: 70.64%+/- 5.89% (mikro: 70.63%)					
	true 'recurrence-events'	true 'no-recurrence-events'	class precision		
pred. 'recurrence-events'	24	23	51.06%		
pred. 'no-recurrence-events'	61	178	74.48%		
class recall	28.24%	88.56%			

Maximal depth: 20	
Minimal gain: 0.05	

accuracy: 71.33% +/- 6.24% (mikro: 71.33%)						
	true 'recurrence-events'	true 'no-recurrence-events'	class precision			
pred. 'recurrence-events'	26	23	53.06%			
pred. 'no-recurrence-events'	59	178	75.11%			
class recall	30.59%	88.56%				

Maximal depth: 4
Minimal gain: 0.05

Da queste figure si può dunque dedurre che:

Riducendo il valore di 'minimal gain' e aumentando 'maximal depth' si genera un modello di classificazione più dettagliato e quindi più accurato. Tuttavia, sulla base dei risultati riportati nelle figure precedenti, impostando valori di maximal depth superiori a 5 e minimal gain inferiori a 0.05 si produce l'effetto denominato *overfitting*, ovvero il fenomeno per cui il modello si adatta troppo ai dati di training per classificare in modo accurato nuovi dati.

4)

Matrici di confusione:

Come si può dedurre dagli screenshot sopra riportati, Naïve Bayes ottiene mediamente prestazioni superiori rispetto al K-NN, avendo una accuracy media maggiore. Si parla infatti del 72.45% (N-B) contro il 67.8% (K-NN, valore medio tra le simulazioni riportate).

Matrice di correlazione:

Attribut	age	menopa	tumor-s	inv-nodes	node-ca	deg-mal	breast	breast	irradiat
age	1	0.241	-0.045	-0.001	0.052	-0.043	0.067	-0.024	-0.011
menopa	0.241	1	0.019	-0.011	0.130	-0.161	0.077	-0.096	-0.075
tumor-size	-0.045	0.019	1	-0.131	0.058	0.133	-0.022	-0.056	-0.022
inv-nodes	-0.001	-0.011	-0.131	1	-0.465	-0.213	0.040	0.063	0.399
node-caps	0.052	0.130	0.058	-0.465	1	0.098	0.024	-0.036	-0.197
deg-malig	-0.043	-0.161	0.133	-0.213	0.098	1	-0.073	0.018	-0.074
breast	0.067	0.077	-0.022	0.040	0.024	-0.073	1	0.175	-0.019
breast-q	-0.024	-0.096	-0.056	0.063	-0.036	0.018	0.175	1	-0.005
irradiat	-0.011	-0.075	-0.022	0.399	-0.197	-0.074	-0.019	-0.005	1

Alla luce dei risultati ottenuti, l'ipotesi di indipendenza Naïve non risulta del tutto valida per il dataset *Breast* utilizzato, visto che la correlazione tra gli attributi è diversa da 0. Tuttavia si parla pur sempre di valori molto bassi, tendenti allo 0, motivo per cui il classificatore riesce comunque a produrre un risultato accettabile.

First Att	Second Attribute	Corr ↑
inv-nodes	node-caps	-0.465
inv-nodes	deg-malig	-0.213
node-caps	irradiat	-0.197
menopa	deg-malig	-0.161
tumor-size	inv-nodes	-0.131
menopa	breast-quad	-0.096

Come si evince dalla figura sopra riportata, la coppia di attributi maggiormente correlati in valore assoluto (sarebbero correlati negativamente, in questo caso) è la coppia ('inv-nodes'-'nodecaps').