MATH 225A: Metamathmatics

Jad Damaj

Fall 2022

Contents

1	\mathbf{Str}	uctures and Theories
	1.1	August 25
		1.1.1 Review
		1.1.2 Definable Sets
2	Bas	ic Techniques
	2.1	August 30
		2.1.1 Compactness Theorem
	2.2	September 1
		2.2.1 Compactness
	2.3	September $\hat{6}$
		2.3.1 Complete Theories
	2.4	September 8
		2.4.1 Complete Theories
		2.4.2 Up and Down
	2.5	September 13
		2.5.1 Up and Down
	2.6	September 15
		2.6.1 Universal Axiomatizations
	2.7	September 20
		2.7.1 Ultrafilters
	2.8	September 22
		2.8.1 Ultrafilters
		2.8.2 Back and Forth Proofs
3	0111	antifier Elimination 17
J	3.1	September 29
	J. 1	3.1.1 Quantifier Elimination
		3.1.2 Quantifier Elimination
	3.2	
	3. 2	October 4
	9.9	3.2.1 Quantifier Elimintation
	3.3	October 6
		3.3.1 Quantifier Elimination 20

Chapter 1

Structures and Theories

1.1 August 25

1.1.1 Review

Definition 1.1.1. A language \mathcal{L} consists of $\{\mathcal{C}, \mathcal{R}, \mathcal{F}\}$ where \mathcal{C} is the set of constant symbols, \mathcal{R} is the set of relation symbols, \mathcal{F} is the set of function symbols, and and arity function $n : \mathcal{R} \cup \mathcal{F} \to \mathbb{N}$. For $R \in \mathcal{R}$, n_R is the arity of R, for $f \in \mathcal{F}$, n_f is the number of inputs f takes.

Definition 1.1.2. An \mathcal{L} -structure consist of

- \bullet a set M called the domain
- an element $c^{\mathcal{M}}$ for each $c \in \mathcal{C}$
- a subset $R^{\mathcal{M}} \subseteq M^{n_R}$ for each $R \in \mathcal{R}$
- a function $f^{\mathcal{M}}: M^{n_f} \to M$ for each $f \in \mathcal{F}$

denoted $\mathcal{M} = (M : \{c^{\mathcal{M}} : c \in \mathcal{C}\}, \{R^{\mathcal{M}} : R \in \mathcal{R}\}, \{f^{\mathcal{M}} : f \in \mathcal{F}\})$

Definition 1.1.3. An \mathcal{L} -embedding $\eta: \mathcal{M} \to \mathcal{N}$ is a one to one function $M \to N$ that preserves interpretation

eg.
$$\eta(c^{\mathcal{M}}) = c^{\mathcal{N}}, \, \eta(f^{\mathcal{M}})(m_1, \dots, m_{n_f}) = f^{\mathcal{N}}(\eta(m_1), \dots, \eta(m_{n_f})),$$

 $(m_1, \dots, m_{n_R}) \in R^{\mathcal{M}} \iff (\eta(m_1), \dots, \eta(m_n)) \in R^{\mathcal{N}}$

Definition 1.1.4. An \mathcal{L} -isomorphim is an \mathcal{L} -embedding that is onto.

Definition 1.1.5.
$$\mathcal{M}$$
 is a substructure if \mathcal{N} , written $\mathcal{M} \subseteq \mathcal{N}$ if: $c^{\mathcal{M}} = c^{\mathcal{N}}, f^{\mathcal{M}} = f^{\mathcal{N}} \upharpoonright M^{n_f}, R^{\mathcal{M}} = R^{\mathcal{N}} \cap M^{n_R}$

First Order language:

• Use symbols:

1.1. AUGUST 25 225A: Metamathmatics

- $-\mathcal{L}$
- Logical symbols: connectives (\land, \lor, \neg) , quantifiers (\forall, \exists) , equality (=), variables (v_0, v_1, \ldots)
- paranthesis and commas
- terms
 - -c: constants
 - $-v_i$: variables
 - $-f(t_1,\ldots,t_{n_f})$ for terms t_1,\ldots,t_{n_f}
- given an \mathcal{L} -structure \mathcal{M} , a term $t(v_0,\ldots,v_n)$, and $m_0,\ldots,m_n\in M$ we inductively define $t^{\mathcal{M}}(m_0,\ldots,m_n)$
- atomic formulas: $t_1 = t_2$ and $R(t_1, \ldots, t_{n_R})$
- \mathcal{L} -formulas: If $\phi and \psi$ are \mathcal{L} -formulas, then so are: $\neg \phi$, $(\phi \land \psi)$, $(\phi \lor \psi)$, $\exists v \phi$, $\forall v \phi$

Definition 1.1.6. We say a variable v occurs freely in ψ when it is not in a quantifier $\forall v$ or $\exists v$

• an \mathcal{L} -sentence is an \mathcal{L} -formula with no free variables

Definition 1.1.7. A theory is a set of \mathcal{L} -sentences

Definition 1.1.8. Given an \mathcal{L} -formla $\psi(v_1, \ldots, v_k)$, \mathcal{L} -structure \mathcal{M} , $m_1, \ldots, m_k \in M$ we can define $\mathcal{M} \models \phi(m_1, \ldots, m_k)$ inductively. We say (m_1, \ldots, m_k) satisfies ϕ in \mathcal{M} or ϕ is true in $\mathcal{M}, m_1, \ldots, m_k$.

• A theory T is satisfiable if it has a model \mathcal{M} , eg. \mathcal{M} such that $\mathcal{M} \models \phi$ for $\phi \in T$

Proposition 1.1.9. If $\mathcal{M} \subseteq \mathcal{N}$, $\phi(\overline{v})$ is quantifier free, $\overline{m} \in M$, then $\mathcal{M} \models \phi(\overline{m}) \leftrightarrow \mathcal{N} \models \phi(\overline{m})$.

Definition 1.1.10. \mathcal{M} is elementarily equivalent to \mathcal{N} if for all \mathcal{L} -sentences ϕ , $\mathcal{M} \models \phi \leftrightarrow \mathcal{N} \models \phi$, denoted $\mathcal{M} \equiv \mathcal{N}$

- Th(\mathcal{M}), the full theory of \mathcal{M} , is $\{\phi \ \mathcal{L} \text{sentence } | \mathcal{M} \models \phi\}$
- $\mathcal{M} \equiv \mathcal{N} \iff \mathrm{TH}(\mathcal{M}) = \mathrm{Th}(\mathcal{N})$
- A class of \mathcal{L} -structures \mathcal{K} is elementary if there is a theory T such that \mathcal{K} is the class of all \mathcal{M} such that $\mathcal{M} \models T$.

Logical implication: $T \models \phi$ if for every $\mathcal{M} \models T$, $\mathcal{M} \models \phi$ Gödels Completeness Theorem: $T \models \phi \leftrightarrow$ there is a formal proof for $T \vdash \phi$ 1.1. AUGUST 25 225A: Metamathmatics

1.1.2 Definable Sets

Definition 1.1.11. $X \subseteq M^n$ is definable if there is an \mathcal{L} -formula $\phi(v_1, \ldots, v_n, w_1, \ldots, w_m)$ and $b_1, \ldots, b_m \in M$ such that $\forall \overline{a}, \overline{a} \in X \leftrightarrow \mathcal{M} \models \phi(\overline{a}, \overline{b})$ (definable over \overline{b})

• Given $A \subseteq M$, X is definable over A, or A-definable, if it is definable over \bar{b} for some $\bar{b} \in A$.

Proposition 1.1.12. Suppose $\mathcal{D} = (D_n : n \in \omega)$ is the smallest collection of subsets $D_n \subseteq \mathcal{P}(M^n)$ such that

- $M^n \in D_n$
- D_n is closed under union, intersection, complement, permutation
- if $X \in D_{n+1}$, then $\pi(X) \in D_n$ where $\pi(m_1, \dots, m_{n+1}) = (m_1, \dots, m_n)$
- $\{\bar{b}\} \in D_n \text{ for } \bar{b} \in M^n$
- $R^{\mathcal{M}} \in D_{n_R}$, $\operatorname{graph}(f) \in D_{n_f+1}$
- if $X \in D_n$, $M \times X \in D_{n+1}$
- $\{(m_1, \ldots, m_n) : m_i m_i\} \in D_n$

Then $X \subseteq \mathcal{M}^n$ is definable $\leftrightarrow X \in D_n$

Chapter 2

Basic Techniques

2.1 August 30

2.1.1 Compactness Theorem

Theorem 2.1.1 (Compactness). If T is finitely satisfiable, then T has a model \mathcal{M} . Furthermore, $|\mathcal{M}| \leq |\mathcal{L}| + \aleph_0$

 \bullet T is finitely satisfiable if every finite subset is satisfiable

Compactness II: if $T \models \phi$, then there is finite $T_0 \subset T$ such that $T_0 \models \phi$ $T \models \phi \leftrightarrow T \cup \{\neg \phi\}$ is not satisfiable

Proposition 1: If T is finitely satisfiable, maximal, and has the witness property, then T has a model \mathcal{M} with $|\mathcal{M}| \leq |\mathcal{L}|$

Proposition 2: If T is finitely satisfiable, then there is $\mathcal{L}^* \supseteq \mathcal{L}$ and an \mathcal{L}^* -theory $T^* \supseteq T$ such that T^* is finite; y satisfiable, maximal, and has the witness property. Further, $|\mathcal{L}^*| \leq |\mathcal{L}| + \aleph_0$

Definition 2.1.2. • T is maximal if for any sentence ϕ , either $\phi \in T$ or $\neg \phi \in T$

• T has the witness property if for all \mathcal{L} -formulas $\phi(v)$ there is a constant c_{ϕ} such that $\exists v \phi(v) \rightarrow \phi(c_{\phi}) \in T$

Lemma 1: If T is maximal and finitely satisfiable, if there is finite $\Delta \subseteq T$ such that $\Delta \models \phi$, then $\phi \in T$.

Proof. If $\phi \notin T$, $\neg \phi \in T$. Since $\Delta \models \phi$, $\Delta \cup \{\neg \phi\}$ is not satisfiable, contradicting our assumption.

Henekin Construction:

We want to define $\mathcal{M} = (M, c^{\mathcal{M}}, R^{\mathcal{M}}, f^{\mathcal{M}})$

- Let $M = \mathcal{C}/\sim$ where \mathcal{C} is the set of constant symbols and \sim is the equivalence relation defined by $c_1 \sim c_2 \leftrightarrow c_1 = c_2 \in T$
- $R^{\mathcal{M}} \subseteq M^{n_R}$ by $(c_1^*, \dots, c_{n_R}^*) \in R^{\mathcal{M}} \leftrightarrow R(c_1, \dots, c_n) \in T$ where c^* equivalence class of c This is well defined since if we have $c_1' \sim c_1, \dots, c_n' \sim c_n, R(c_1, \dots, c_n) \in T$ then $R(c_1', \dots, c_n') \in T$

2.2. SEPTEMBER 1 225A: Metamathmatics

- $f^{\mathcal{M}}$ by $f^{\mathcal{M}}(c_1^*,\ldots,c_n^*)=d^*\leftrightarrow f(c_1,\ldots,c_n)=d\in T$. SUch a d^* exists since T has the witness property: $\exists v f(c_1, \dots, c_n) = v \to f(c_1, \dots, c_n) \in T$
- $c^{\mathcal{M}} := c^*$

Claim: For every formula $\phi(v_1, \ldots, v_k)$ and constant symbols c_1, \ldots, c_k , $\mathcal{M} \models \phi(c_1^*, \ldots, c_n^*) \leftrightarrow \phi(c_1, \ldots, c_n) \in T$ This implies $\mathcal{M} \models T$

Proof. By induction on formulas $\phi(v_1,\ldots,v_l)$

- atomic formulas: $\phi(v_1,\ldots,v_k)$ is $t_1(v_1,\ldots,v_k)=t_2(v_1,\ldots,v_k)$ Subclaim: $t^{\mathcal{M}}(c_1^*, \ldots, c_n^*) = c^* \leftrightarrow t(c_1, \ldots, c_n) = c \in T$ Proved by induction on terms
- $\phi(v_1,\ldots,v_k)$ is $R(v_1,\ldots,v_k)$. Follows by deifnition of $R^{\mathcal{M}}$
- Suppose $\phi(\overline{v})$ is $\psi_1(\overline{v}) \wedge \psi_2(\overline{v})$, then $\mathcal{M} \models \psi_1 \land \psi_2(\overline{v}) \leftrightarrow \mathcal{M} \models \psi_1(\overline{v}) \text{ and } \mathcal{M} \models \psi_2(\overline{v}) \overset{\mathrm{IH}}{\leftrightarrow} \psi_1(\overline{c}) \in T \text{ and } \psi_2(\overline{c}) \in T \overset{\mathrm{lemma}}{\leftrightarrow} \psi_1 \land \psi_2(\overline{c}) \in T$
- Suppose $\phi(\overline{v})$ is $\neg \psi(\overline{v})$, then $\mathcal{M} \models \neg \psi(\overline{c}^*) \leftrightarrow \mathcal{M} \not\models \psi(\overline{c}^*) \overset{\mathrm{IH}}{\leftrightarrow} \varphi(\overline{c}) \notin T \overset{\mathrm{maximality}}{\longleftrightarrow} \neg \psi(\overline{(c)}) \in T$
- Suppose $phi(\overline{v})$ is $\exists w\varphi(\overline{v},w)$, then $\mathcal{M} \models \exists w \varphi(\overline{c}^*, w) \leftrightarrow \exists d \in M \text{ such that } \mathcal{M} \models \phi(\overline{c}^*, d) \leftrightarrow \exists d \in M \text{ such that } \varphi(\overline{c}, d) \in T \overset{\text{witness principle}}{\longleftrightarrow}$ $\exists w \varphi(\overline{c}w) \in T$

2.2September 1

2.2.1Compactness

Proof of Compactness continued:

We now prove proposition 2

Lemma 1: If T is finitely satisfiable then there is $\mathcal{L}^* \supset \mathcal{L}$, $T^* \supset T$ such that T^* has the witness property and is finitely satisfiable

Proof. For each \mathcal{L} -formula define a new constant symbol c_{ϕ} . Let $\mathcal{L}_1 = \mathcal{L} \cup \{c_{\phi} : \phi(v)\mathcal{L} - \text{formula}\}$, $T_1 = T \cup \{\exists v \phi(v) \to \phi(c_\phi) : \phi(v) \mathcal{L} - \text{formula}\}.$

Claim: T_1 is finitely satisfiable.

Take $\Delta \subseteq T_1$ finite. $\Delta = T' \cup \{\exists v \phi_i(v) \to c_{\phi_i} : i = 1, ..., k\}$ for finite T' in T. We make an \mathcal{L}_1 -structure \mathcal{M}_1 that satisfies Δ . Take $\mathcal{M} \models T'$, \mathcal{M} \mathcal{L} -structure. Make \mathcal{M} an \mathcal{L}_1 -structure by defining $c_{\phi}^{\mathcal{M}_1}$ for each c_{ϕ} . If $\mathcal{M} \models \exists v \phi(v)$ let $c^{\mathcal{M}_1}$ be such a v otherwise let $c^{\mathcal{M}_1}$ be anything.

We repeat this process, defining \mathcal{L}_{n+1} from \mathcal{L}_n similarly.

We have $\mathcal{L} \subseteq \mathcal{L}_1 \subseteq \mathcal{L}_2 \subseteq \mathcal{L}_3 \subseteq \cdots$, $T \subseteq T_1 \subseteq T_2 \subseteq T_3 \subseteq \cdots$ such that each T_i is finitely satisfiable and for $\phi(v)$ an \mathcal{L}_{i-1} -formula, there is c_{ϕ} in \mathcal{L}_i such that $\exists v \phi(v) \to \phi(c_{\phi}) \in T_i$.

Let $\mathcal{L}^* = \bigcup_{n \in \omega} \mathcal{L}_n$, $T^* = \bigcup_{n \in \omega} T_n$. We see T^* has the witness property. Sub-claim: If $T_0 \subset T_1 \subset T_2 \subset \cdots$ all finitely satisfiable, then $U_{n \in \omega} T_n$ is finitely satisfiable.

Lemma 2: If T is finitely satisfiable and ϕ a sentence, one of $T \cup \{\phi\}$ or $T \cup \{\neg \phi\}$ is finitely satisfiable.

2.3. SEPTEMBER 6 225A: Metamathmatics

Proof. Assume that both $T \cup \{\phi\}$ and $T \cup \{\neg\phi\}$ are not finitely satisfiable. Then there are $T_0, T_1 \subseteq T$ such that $T_0 \cup \{\phi\}$ and $T_1 \cup \{\neg\phi\}$ are not satisfiable. Let $\mathcal{M} \models T_0 \cup T_1$, then $\mathcal{M} \models \phi$ or $\mathcal{M} \models \neg\phi$ so $T_0 \cup \{\phi\}$ or $T_1 \cup \{\neg\phi\}$ is satisfiable, contradicting our assumption.

Zorn's Lemma: Let \mathcal{A} be a collection of sets such that for any chain $\mathcal{C} \in \mathcal{A}$. $\bigcup \mathcal{C} \in \mathcal{A}$ where \mathcal{C} is a chain if for $A, B \in \mathcal{C}$ either $A \subseteq B$ or $B \subseteq A$, then \mathcal{A} has a maximal element, eg. $A \in \mathcal{A}$ such that there is not $B \in \mathcal{A}$ with $A \subseteq B$.

Lemma: For every T, finitely satisfiable, there is $T' \supseteq T$ that is maximal and finitely satisfiable.

Proof. Let $\mathcal{A} = \{S \ \mathcal{L}$ -theory $| \ S \supseteq T, \ S$ finitely satisfiable $\}$. Can apply zorns lemma since for any $\mathcal{C} \subseteq A$, $| \ | \ \mathcal{C} \in \mathcal{A}$ so we have a maximal S.

Example 2.2.1. Let $\mathcal{L} = \{\cdot, e\}$ be the language of groups. In a group $G, g \in G$, ord g = least n such that n times

 $g \cdot g \cdot g = e$, if it exists.

Observation: If T is an \mathcal{L} -theory extending the axioms of groups, $\phi(v)$ such that for every n there is $G_n \models T$, $g_n \in G_n$ of order greater than n such that $G_n \models \phi(g_n)$. Then there is $G \models T$ and $g \in G$, $\operatorname{ord}(g) = \infty$ such that $G \models \phi(g)$.

Proof. Let $\mathcal{L}' = \{\cdot, e, c\}$. Let $T^* = T \cup \phi(c) \cup \{\psi_n\}$ where ψ_n is $\underbrace{c \cdot c}_{n \text{ times}} \neq e$. T^* finitely satisfiable so follows by compactness.

This tells us that there is not sentence that axiomatizes when an element is torsion.

Lemma 2.2.2. Let κ be a carindal $\kappa \geqslant |\mathcal{L}|$. Let T be a satisfiable theory such that $\forall n \in \mathbb{N}$, there is $\mathcal{M} \models T$ such that $|\mathcal{M}| > n$. Then T has a model of size κ .

Proof. Extend the language by adding κ may new constant symbols c_i for $i \in \kappa$. $T^* = T \cup \{c_i \neq c_j \mid i \neq j\}$. If $\mathcal{M} \models T^*$, $|\mathcal{M}| \ge \kappa$. T^* is finitely satisfiable so by compactness T^* has a model \mathcal{M} , $|\mathcal{M}| \le |\mathcal{L}^*| + \aleph_0 = \kappa$. Thus, $|\mathcal{M}| = \kappa$.

2.3 September 6

2.3.1 Complete Theories

Definition 2.3.1. Let κ be an infinite cardinal. A theory T is κ -categorical if all models of T of size κ are isomorphic (and there is at least one).

Example 2.3.2. The theory of torsion free abelian division groups (TFADG) is κ categorical for all uncountable κ .

Language = $\{\cdot, e\}$, TFADG = group axioms, commutativity, torsion free - $\forall a \neq e \ a \cdot a \cdots a \neq e \ for \ n \in \omega$,

2.3. SEPTEMBER 6 225A: Metamathmatics

divisible - $\forall a \exists b \ b + b + \dots + b$ for each $n \in \omega$

Observation: TFADG are essentialy Q-vector spaces

$$n \text{ times}$$

For $a \in G$, $n \in \mathbb{N}$ $a \cdot n = a + \cdots + a \cdot \frac{a}{n}$ is b such that $b \cdot n = a$. Such a b exists since the group is division and is uniquely defined since if $b \cdot n = a = b' \cdot n$, $(b - b') \cdot n = 0$ so since the group is torsion free, b - b' = 0. For $a \in G$, $\frac{p}{a} \in \mathbb{Q}$ we define $a \cdot \frac{p}{a} = \frac{a}{a} \cdot p$

Two vector \mathbb{Q} -vector spaces are isomorphic \leftrightarrow they have the same dimension. A \mathbb{Q} vector space of size κ must have dimension κ so two \mathbb{Q} vector spaces of size κ must be isomorphic.

Let ACF_p be the theory of algebraicly closed fields of characteristic p.

Language =
$$\{0, 1, +, \times\}$$
. ACF_P: field axioms, char $p - \underbrace{1 + \dots + 1}_{p} = 0$, char $0 - \underbrace{1 + \dots + 1}_{p} \neq 0$ for $n \in \omega$,

algebraicly closed - every non-constant polynomial has at least one root: for degree $n, \forall z_0, z_1, \ldots, z_n z_n \neq 0 \exists x(z_n x^n + z_{n-1} x^{n-1} + \cdots + z_0 = 0)$. For each $n \in \omega$

Proposition 2.3.3. ACF is κ categorical for all uncountable κ .

Facts and Definitions

- Every fielf F has a prime subfield $P = \{\underbrace{\frac{1+\cdots+1}{1+\cdots+1}}_{q} : p \in \mathbb{Z}, q \in \mathbb{N}\}$
 - if F has char p > 0, then the prime subfield is $\mathbb{Z}/p\mathbb{Z} = \mathbb{F}_p$
 - If F has char o = 0, then the prime subfield in \mathbb{Q}
- An element $a \in F$ is algebraic if there is a polynomial $p(x) \in P[x]$ such that p(x) = 0. (Can think of as a polynomial in $\mathbb{Z}[x]$)
- Otherwise a is transcendental
- A tuple \overline{a} is algebraicly independent if there is no nontrivial polynomial $p(\overline{x}) \in P[x]$ such that $p(\overline{x}) = 0$.
- the transcendence degree of a field F is the size fo a maximal algebraicly independent set.
- Algebraicly closed fields are isomorphic ↔ they have the same transcendence degree.

Observation: an ACF $_p$ of size κ must have transcendence degree κ

If $M \subset F$ is a maximal algebraicly independent set, $\forall a \in F$ there is a polynomial $p(\overline{x}, y) \in P[\overline{x}, y]$ and $\overline{m} \in M$ such that $p(\overline{m}, a) = 0$.

Definition 2.3.4. A theory T is complete if for all \mathcal{L} -sentences, ϕ either $T \models \phi$ or $T \models \neg \phi$

Theorem 2.3.5 (Vaught's Test). If T is satisfiable and has no finite models and is κ -categorical for $\kappa > |\mathcal{L}|$, then T is complete.

2.4. SEPTEMBER 8 225A: Metamathmatics

Corollary 2.3.6. ALL ACF_p satisfy the same sentences.

Proof. Suppose not. There is ϕ such that $T \not\models \phi$, $T \not\models \neg \phi$ so $T \cup \{\phi\}$ and $T \cup \{\neg \phi\}$ are satisfiable. Both have models of size κ , contradicting κ -categoricity.

Definition 2.3.7. T is decidable if there is an algorithm to decide $T \models \phi$ given ϕ

Observation: If T is computably enumerable and complete then T is decidable

Corollary 2.3.8. Th(\mathbb{C} ; 0, 1, +, ×) is decidable.

2.4 September 8

2.4.1 Complete Theories

Observation: Let f be a function : $k \to k$. If f is one to one then f is onto, provided k is finite.

Theorem 2.4.1. Every injective polynomial map $\mathbb{C}^n \to \mathbb{C}^n$ is surjective. (A polynomial map consists of n polynomials $p_1[x_1,\ldots,x_n],\ldots,p_n[x_1,\ldots,x_n] \in \mathbb{C}[x]$)

Lemma 2.4.2. Let phi be a senctence in the language $\{0, 1, +, \times\}$. TFAE

- 1. $C \models \phi$
- 2. ϕ is true in any algebraically closed field of characteristic 0.
- 3. ϕ is true in some algebraically closed field of characteristic 0.
- 4. There are arbitrarily large primes p such that ϕ is true in some $F \models ACF_p$
- 5. There is an $m \in \mathbb{N}$ such that for all $p \ge n$ and all $F \models ACF_p$, $F \models \phi$

Proof. (1), (2), (3) equivalent since ACF₀ is complete. (4) \rightarrow (5) clear. (2) \rightarrow (5) ACF₀ $\models \phi$. There is finite $\Lambda \subseteq ACF_0$ such that $\Lambda \models \phi$. If

 $(2) \rightarrow (5)$ ACF₀ $\models \phi$. There is finite $\Delta \subseteq ACF_0$ such that $\Delta \models \phi$. If $p \geqslant n$ for an all n such that

"1++1\neq 0" shows up in Δ , then if $F \models ACF_p$, $F \models \Delta$ so $f \models \phi$

 $(4) \rightarrow (3)$ If (3) was false, $ACF_0 \models \neq \phi$ and for some n, all p > n, if $F \models ACF_p$ then $F \models \neg \phi$ so (4) is false.

Claim: Every injective polynomial function $f:(\mathbb{F}_p^{\mathrm{alg}})^n \to (\mathbb{F}_p^{\mathrm{alg}})^n$ is onto where $\mathbb{F}_p^{\mathrm{alg}}$ is the algebraic closure of $\mathbb{F}_p:\mathbb{Z}/p\mathbb{Z}$. $\mathbb{F}_p^{\mathrm{alg}}=\bigcup_{n\in\mathbb{N}}\mathbb{F}_{p^n}$ where \mathbb{F}_{p^n} is the unique field of size p^n .

For every polynomial $p(\overline{x}) \in F$ there is an atomic $t(\overline{x}, \overline{z})$ and parameters $\overline{c} \in F$ such that $p(\overline{x}) = t(\overline{x}, \overline{c})$ so $t_1(\overline{x}, \overline{c}), \dots, t_n(\overline{x}, \overline{c})$ for $\overline{c} \in \mathbb{F}_p^{\text{alg}}, \overline{x} = x_1, \dots, x_n$ Claim states $\forall \overline{z} (\forall \overline{x} \forall \overline{y} \bigwedge_{i=1}^n t_i(x_i, z) = t_i(y_1, z) \to \overline{x} = \overline{y}) \to (\forall \overline{w} \exists \overline{x} \bigwedge_{i=1}^n t_i(\overline{x}, z) = w_i)$ 2.5. SEPTEMBER 13 225A: Metamathmatics

Proof (Pf of Claim). Take $\bar{b} \in (\mathbb{F}_p^{\text{alg}})^n$, want to show \bar{b} is in the range of fLet k be the finite subfield of $\mathbb{F}_p^{\text{alg}}$ generated by \bar{c} and \bar{b} . $\mathbb{F}_p(\bar{c}, \bar{d})$ Restricting f to k^n , we get a one to one function from k^n to k^n so $f \upharpoonright k^n$ is onto so \bar{b} is in the range of f

2.4.2 Up and Down

Definition 2.4.3. A map $j: \mathcal{M} \to \mathcal{N}$ is an elementary embedding if for all formulas $\phi(\overline{x})$, all $m \in M$

$$\mathcal{M} \models \phi(\overline{m}) \leftrightarrow \mathcal{N} \models \phi(j(\overline{m}))$$

Definition 2.4.4. If for $\mathcal{M} \subseteq \mathcal{N}$, \mathcal{M} is an elementary subset of \mathcal{N} if $i: M \hookrightarrow N$ is elementary $(\mathcal{M} \leq \mathcal{N})$

• $\mathbb{Q}^{\text{alg}} \leq \mathbb{C}, (\mathbb{Q}, 0, +) \leq (\mathbb{R}, 0, +)$

Definition 2.4.5. Given \mathcal{M} , let $\mathcal{L}_M = \mathcal{L} \cup \{c_m \mid m \in M\}$. \mathcal{M} can be made into an \mathcal{L}_m -structure \mathcal{M}^* by letting $c_m^{\mathcal{M}^*} = m$

Definition 2.4.6. Diag(\mathcal{M}) the atomic diagram of $\mathcal{M} = \{\phi \mid \phi \text{ atomic } \mathcal{L}_M \text{ sentence such that } \mathcal{M} \models \phi\} \cup \{\neg \phi \mid \phi \text{ atomic } \mathcal{L}_M \text{ sentence such that } \mathcal{M} \models \neg \phi\}$

This is equivalent to $\{\phi \mid \phi \text{ is an } \mathcal{L}\text{-formula } \mathcal{M} \models \phi\}$

 $\operatorname{Diag}_{\mathrm{el}}(\mathcal{M})$, the elementary diagram of \mathcal{M} is $\{\phi \mid \phi \text{ is an } \mathcal{L} \text{formula } \mathcal{M} \models \phi\}$

Lemma 2.4.7. (i) if $\mathcal{N}^* \models \operatorname{Diag}(\mathcal{M})$ then there is an \mathcal{L} -embedding $\mathcal{M} \to \mathcal{N}$ (where \mathcal{N} the restriction of \mathcal{N}^* to \mathcal{L})

Proof. Suppose $\mathcal{N}^* \models \operatorname{Diag}(\mathcal{M})$. If $\phi(\overline{x})$ is an \mathcal{L} formula and $\overline{c_m}$ new constants, we can give an embedding by $m \mapsto c_m^{\mathcal{M}^*}$ $\mathcal{M} \models \phi(\overline{m}) \leftrightarrow \mathcal{M}^* \models \phi(\overline{c_m}) \leftrightarrow \mathcal{N}^* \models \phi(\overline{c_m}) \leftrightarrow \mathcal{N} \models \phi(\overline{m})$

Example 2.4.8. $\mathcal{M} = (\mathbb{Z}, +), \ \mathcal{L} = \{*\}, \ \mathcal{L}_M = \{*, c_0, c_1, c_2, \dots, c_{-1}, c_{-2}, \dots\}, \ \text{in } \mathcal{M}^*, \ c_n^{\mathcal{M}^*} = n \ \mathcal{N} = (\mathbb{R}, \times), \ \text{define } \mathcal{N}^* \ \text{by } c_n^{\mathcal{N}^*} = 2^n. \ \mathcal{N}^* = (\mathbb{R}, \times, c_n \mapsto 2^n) \ \mathcal{N}^* \models \text{Diag}(\mathcal{M}) \ \text{size } (\mathbb{Z}, +) \to (\mathbb{R}, \times) \ \text{by } n \mapsto 2^n \ \text{is an embedding.}$ If $j: \mathcal{M} \to \mathcal{N}$ is an embedding, let $c_m^{\mathcal{M}^*} = j(m)$. Then $\mathcal{N}^* \models \text{Diag}(\mathcal{M})$

2.5 September 13

2.5.1 Up and Down

Definition 2.5.1. $\mathcal{L}^- \subseteq \mathcal{L}$, \mathcal{M} is an \mathcal{L} -stucture, then \mathcal{L}^- reduct of \mathcal{M} is the \mathcal{L}^- stucture with the same domain and \mathcal{L}^- interpretations of \mathcal{M} . We say that \mathcal{M}^- is a reduction of \mathcal{M} , \mathcal{M} is an expansion of \mathcal{M}^-

2.5. SEPTEMBER 13 225A: Metamathmatics

Lemma 2.5.2. Consider \mathcal{L} structures \mathcal{M}, \mathcal{N}

- 1. there is an embedding $\mathcal{M} \to \mathcal{N} \leftrightarrow$ there is an \mathcal{L}_M expansion \mathcal{N}^* of \mathcal{N} such that $\mathcal{N}^* \models \mathrm{Diag}(\mathcal{M})$
- 2. there is an elementary embedding $\mathcal{M} \to \mathcal{N} \leftrightarrow$ there is an \mathcal{L}_M expansion \mathcal{N}^* of \mathcal{N} such that $\mathcal{N}^* \models \mathrm{Diag}_{\mathrm{el}}(\mathcal{M})$

Here $\mathcal{N}^* = (\mathcal{N}, c_m^{\mathcal{N}} \in N \text{ for } m \in M)$

Proof. \rightarrow) Suppose $f: \mathcal{M} \to \mathcal{N}$ is an embeeding. We need to find a \mathcal{L}_M expansion \mathcal{N}^* of \mathcal{N} by defining $c_m^{\mathcal{N}}$ for $m \in M$ such that for all \mathcal{L} -formulas $\varphi(\overline{x})$, all $\overline{m} \in M$, if $\varphi(\overline{c_m}) \in \operatorname{Diag}(M) \to \mathcal{N}^* \models \varphi(\overline{c_m})$. Let $c_m^{\mathcal{N}} = f(m)$ so $\varphi(\overline{c_m}) \in \operatorname{Diag}(\mathcal{M}) \leftrightarrow \mathcal{M} \models \varphi(\overline{m}) \leftrightarrow \mathcal{N} \models \varphi(f(\overline{m})) \leftrightarrow \mathcal{N}^* \models \varphi(c_m^{\mathcal{N}})$ \leftarrow) Given the \mathcal{L}_M expansion \mathcal{N}^* of \mathcal{N} such that $\mathcal{N}^* \models \operatorname{Diag}(\mathcal{M})$. Let $f: \mathcal{M} \to \mathcal{N}$ by $f(m) = c_m^{\mathcal{N}^*}$

Theorem 2.5.3 (Upwards Lowenheim-Skolem). Let \mathcal{M} be an infinite \mathcal{L} -strucutre. For every $\kappa \geq |M| + |\mathcal{L}|$ there is an \mathcal{L} -strucure \mathcal{N} such that $|\mathcal{N}| = \kappa$ and $\mathcal{M} \leq \mathcal{N}$.

Proof. It suffices to show there is an elementary embedding $j: \mathcal{M} \to \mathcal{N}$ as \mathcal{M} can be identified with its image. Lt \mathcal{N}^* be a model of Diag(\mathcal{M}) of size κ . Let \mathcal{N} be the \mathcal{L} -reduct of \mathcal{N}^*

Example 2.5.4. $(\mathbb{Q}, 0, +) \leq (\mathbb{R}, 0, \kappa$ -categorical so there is only structure of size 2^{\aleph_0} up to isomorphism **Example 2.5.5.** $(\mathbb{Q}^{\text{deg}}, 0, 1, +, \times) \leq (\mathbb{C}, 0, 1, +, \times)$

Theorem 2.5.6 (Downward Lowenheim-Skolem). Let \mathcal{M} be an infinite \mathcal{L} -structure. For all $X \subseteq M$, there is an \mathcal{L} structure $\mathcal{N} \subseteq \mathcal{M}$, $|\mathcal{N}| = |X| + |\mathcal{L}| + \aleph_0$ and $\mathcal{N} \leq \mathcal{M}$

Proposition 2.5.7 (Tarski-Vaught Test). Suppose $\mathcal{N} \subseteq \mathcal{M}$. Then $\mathcal{N} \preceq \mathcal{M} \leftrightarrow$ formulas $\phi(\overline{v}, w)$ and all $\overline{n} \in N$ if $\mathcal{M} \models \exists \phi(\overline{n}, w)$ then there is $c \in N$ such that $\mathcal{M} \models \phi(\overline{n}, c)$.

Proof. \rightarrow) Assume $\mathcal{N} \leq \mathcal{M}$, $\mathcal{M} \models \exists w \phi(\overline{n}, w)$ then $\mathcal{N} \models \exists w \phi(\overline{n}, w)$ so there is $c \in N$ such that $\mathcal{N} \models \phi(\overline{n}, c)$ so $\mathcal{M} \models \phi(\overline{n}, c)$

- \leftarrow) We use induction on \mathcal{L} -formulas to show that for all formulas $\psi(\overline{x})$ and all \overline{n} , $\mathcal{N} \models \psi(\overline{n}) \leftrightarrow \mathcal{M} \models \psi(\overline{n})$
 - For ψ atomic, this follows since $\mathcal{N} \subseteq \mathcal{M}$
 - For $\psi = \psi_1 \wedge \psi_2$, $\neg \psi_1$ clear by applying IH
 - For $\psi(\overline{x})$ of the form $\exists \phi(\overline{x}, w)$, pick $\overline{n} \in N$, $\mathcal{M} \models \psi(\overline{n}) \leftrightarrow \mathcal{M} \models \exists w \phi(\overline{n}, w) \leftrightarrow$ there is $c \in N$ such that $\mathcal{M} \models \phi(\overline{n}, c) \leftrightarrow \mathcal{N} \models \exists w \phi(\overline{n}, w) \leftrightarrow \mathcal{N} \models \psi(\overline{n})$.

Proof (Proof of Lowenheim Skolem). Let $X = X_0$. For any $\overline{n} \in X$ and $\varphi(\overline{v}, w)$ if $\mathcal{M} \models \exists w \varphi(\overline{n}, w)$. let $c_{\overline{n}, \varphi} \in m$ such that $\mathcal{M} \models \phi(\overline{n}, c_{\overline{n}, \varphi})$. Let $X_1 = \{c_{\overline{n}, \varphi} \mid \varphi \mathcal{L} \text{ forumula }, \overline{n} \in X_0, \mathcal{M} \models \exists w \varphi(\overline{n}, w)\} \cup X_0$ We can define X_{n+1} from X_n similarly and let $N = \bigcup_{i \in \omega} X_i$

2.6. SEPTEMBER 15 225A: Metamathmatics

```
|X_1| = (\# \mathcal{L} \text{ forumas}) \times (\# \text{ terms } X_0) = (|\mathcal{L}| + \aleph_0) \times (|X_0|)
Since |\mathcal{N}| \leq |\mathcal{L}| + |\aleph_0| + |X_0|, then |X| \leq |\mathcal{N}| \leq |X| + |\mathcal{L}| + \aleph_0.
```

We define \mathcal{N} with domain N by restricting functions, relations, and constants from \mathcal{M} . If $\varphi(\overline{x}, w)$ is the formula $f(\overline{x}) = w$ and $\overline{n} \in X$, $\mathcal{M} \models \exists w f(\overline{m}) = w$ in X_{i+1} so $c_{\varphi,n}$ satisfies $f(\overline{n}) = c_{\varphi,n}$

2.6 September 15

2.6.1 Universal Axiomatizations

Example 2.6.1. Consider $\mathcal{M} = (\mathbb{Z}, 0, +)$, $\mathcal{N} = (2\mathbb{Z}, 0, +)$, $\mathcal{N} \subset \mathcal{M}$, $\mathcal{N} \equiv \mathcal{M}$ but $\mathcal{N} \nleq \mathcal{M}$. Consider $\varphi(x) = \exists y (y + y = z)$. $\mathcal{M} \models \varphi(2)$, $\mathcal{N} \models \neg \varphi(2)$. We have $\operatorname{Th}(\mathcal{M}) = \operatorname{Th}(\mathcal{N})$ but $\mathcal{N} \not\models \operatorname{Diag}_{\operatorname{el}}(\mathcal{N})$.

Definition 2.6.2. A universal formula is of the form $\forall x_1, \ldots, x_n \varphi(x_1, \ldots, x_n, y)$ where ψ is quantifier free.

Observation: If $\mathcal{M} \subseteq \mathcal{N}$ and $\varphi(\overline{x})$ is a universal formulas, $\overline{m} \in \mathcal{M}$, if $\mathcal{N} \models \varphi(\overline{m})$, then $\mathcal{M} \models \varphi(\overline{n})$

Definition 2.6.3. T has a universal axiomatization if there is a set of universal sentences Γ such that $T \models \Gamma$ and $\Gamma \models T$

Observation: If T has a universalthen if $\mathcal{N} \models T$ and $\mathcal{M} \subseteq \mathcal{N}$, then $\mathcal{M} \models T$

Example 2.6.4. Group axioms, if $\mathcal{L} = \{\cdot, e\}$, not universal, $(\mathbb{N}, 0, +) \subseteq (\mathbb{Z}, 0, +)$ but is not a group. If we consider $\mathcal{L} = \{\cdot, e, (\cdot)^{-1}\}$, universal, $\forall x (x \cdot x^{-1} = e \land x^{-1} \cdot x = e)$

Theorem 2.6.5. If T is such that $\forall \mathcal{M} \subseteq \mathcal{N}(\mathcal{N} \models T \to \mathcal{M} \models T)$, then T has a universal axiomatization.

Proof. Let $\Gamma\{\varphi \text{ universal } | T \models \varphi\}$. Clearly $T \models \Gamma$, want to show $\Gamma \models T$. Suppose $\mathcal{M} \models \Gamma$, we want to show $\mathcal{M} \models T$, We want $\mathcal{N} \supseteq \mathcal{M}$ such that $\mathcal{N} \models T$. $\mathcal{N} \supseteq \mathcal{M} \leftrightarrow \mathcal{N} \models \text{Diag}(\mathcal{M})$ so want $\text{Diag}(\mathcal{M}) \cup T$ is satisfiable.

Claim: $T \cup \text{Diag}(\mathcal{M})$ is satisfiable.

Let $\Delta \subseteq T \cup \text{Diag}(\mathcal{M})$ be finite. $\Delta = T_0 \cup \{\phi_1(\overline{c_m}), \dots, \phi_k(\overline{c_m})$. Can assume only one formula ϕ (can take the conjugation) so ϕ is quantifier free such that $\mathcal{M} \models \phi(\overline{c_m})$. $\mathcal{M} \models \phi(\overline{m}) \to \mathcal{M} \models \forall \overline{v} \neg \phi(\overline{v}) \to T \models \forall \overline{v} \neg \phi(\overline{v})$ so $T \cup \{\exists \overline{v}\phi(\overline{v})\}$ is satisfiable. Thus, $T \cup \{\phi(\overline{c_m})\}$ is satisfiable since if $\mathcal{A} \models \exists v\phi(v)$, for some $\overline{a} \in A$, $\mathcal{A} \models \phi(\overline{a})$ so let $\overline{c_m} = \overline{a}$. $(\mathcal{A}, \overline{c_m} \mapsto \overline{a}) \models \phi(\overline{c_m})$

• If \overline{c} does not occur in T, ϕ , then $T \cup \{\exists \overline{v}\phi(\overline{v}) \text{ is satisfiable } \to T \cup \phi(\overline{c}) \text{ is satisfiable.}$ Equivalently, $T \models \psi(\overline{c}) \to T \models \forall \overline{v}\psi(\overline{v})$

Suppose (I, <) is a linear order. For each $i \in I$, \mathcal{M}_i is an \mathcal{L} -structure, $\forall i < j \ \mathcal{M}_i \subseteq \mathcal{M}_j$ is called a chain (elementary chain if $\mathcal{M}_i \leq \mathcal{M}_j$). Let $\mathcal{M} = \bigcup_{i \in I} I \mathcal{M}_i$, $M = \bigcup_{i \in I} M_i$, $f^{\mathcal{M}} = \bigcup_{i \in I} f^{\mathcal{M}_i}$

Proposition 2.6.6. If $(\mathcal{M}_i : i \in I)$ is an elementary chain, $\forall i \, \mathcal{M}_i \leq \mathcal{M}$

2.7. SEPTEMBER 20 225A: Metamathmatics

Proof. Use induction on formulas $\phi(\overline{v})$ to show that $\forall i, \forall m \in \mathcal{M}_i, \mathcal{M}_i \models \phi(\overline{m}) \leftrightarrow \mathcal{M} \models \phi(\overline{m})$

- ϕ quantifier free true since substructure
- ϕ is $\neg \psi, \psi_1 \wedge \psi_2$ clear by induction
- $\phi(\overline{x})$ is $\exists v \psi(\overline{x}, v) \ \mathcal{M} \models \exists v \psi(\overline{x}, v) \leftrightarrow \exists n \in \mathcal{M}_j \text{ for some } j \in I \text{ such that } \mathcal{M} \models \psi(\overline{m}, n)$ $\stackrel{\text{IH}}{\leftrightarrow} \mathcal{M}_j \models \psi(\overline{x}, n) \leftrightarrow \mathcal{M}_j \models \exists v \phi(\overline{x}, v) \stackrel{M_i \leq M_j}{\leftrightarrow} \mathcal{M}_i \models \exists v \phi(\overline{m}, v)$

2.7 September 20

2.7.1 Ultrafilters

Definition 2.7.1. A filter on I is a subset $\mathcal{D} \subseteq \mathcal{P}(I)$ such that

- (i) $\varnothing \notin \mathcal{D}, I \in \mathcal{D}$
- (ii) If $A \in cD$, $B \supseteq A \to B \in \mathcal{D}$
- (iii) if $A, B \in \mathcal{D}$, then $A \cap B \in \mathcal{D}$

Example 2.7.2. (a) $I = \mathbb{R}$, $\mathcal{D} = \{X \subseteq \mathbb{R} \mid X \text{ has full measure }\} \text{ eg. } \lambda(\mathbb{R}\backslash X) = 0$

- (b) $I = \mathbb{R}, \mathcal{D} = \{X \subseteq | X \text{ is meager } \}$
- (c) For $\kappa \leq |I|$, $\mathcal{D} = \{X \subseteq I \mid |I \backslash X| < \kappa\}$ For $\kappa = \aleph_0$, \mathcal{D} is called the Frechet filter or the cofinite filter
- (d) For $x \in I$, $\mathcal{D} = \{X \subseteq I \mid x \in X\}$ called principle filter
- (e) For $I = \mathbb{N}, \{X \subseteq N \ \lim_{n \to \infty} \frac{|X \cap n|}{n} = 1\}$

Definition 2.7.3. \mathcal{D} is an ultrafilter if it is a filter and for all $X \subseteq I$, either $X \in \mathcal{D}$ or $X^C \in \mathcal{D}$

• principle filters are ultrafilters

Observataion: If \mathcal{U} is an ultra filter, $A \cup B \in \mathcal{U} \leftrightarrow A \in \mathcal{U}$ or $B \in \mathcal{U}$ If $A, B \notin \mathcal{U}$, $A^C, B^C \in \mathcal{U}$ so $A^C \cap B^C \in \mathcal{U}$ so $(A^C \cap B^C)^C = A \cup B \notin \mathcal{U}$ Similarly, $C \cap D \notin \mathcal{U} \leftrightarrow C \notin \mathcal{U}$ and $D \notin \mathcal{U}$

Theorem 2.7.4. Every filter \mathcal{D} on I can be extended to an ultrafilter

Proof. Let $\mathcal{A} = \{ \mathcal{F} \subseteq \mathcal{P}(I) \mid \mathcal{F} \text{ filter and } \mathcal{D} \subseteq \mathcal{F} \}$. To apply Zorn's lemma to get a maximal \mathcal{U} in \mathcal{A} , we need to show if $\mathcal{C} \subseteq \mathcal{A}$ is a chain then $\bigcup \mathcal{C} \in \mathcal{A}$. Clear that $\emptyset \notin \bigcup \mathcal{C}$, $I \in \bigcup \mathcal{C}$, and closed upwards. For $A, B \in \bigcup \mathcal{C}$, $\exists \mathcal{F}, \mathcal{F}' \in \mathcal{C}$ such that $A \in \mathcal{F}, B \in \mathcal{F}'$. WLOG assume $A, B \in \mathcal{F}$, then $A \cap B \in \mathcal{F}' \subseteq \bigcup \mathcal{C}$ Suppose \mathcal{U} is a maximal filter. We show that it is an ultrafilter. Take $X \subseteq I$. We show $X \in \mathcal{U}$ or $X^C \in \mathcal{U}$. Suppose not. Let \mathcal{D}_0 = filter generated by $X, \mathcal{U} = \{Y \mid \exists V \in \mathcal{U}Y \supseteq V \cap X\}$, $\mathcal{D}_1 = \{Z \mid \exists W \in \mathcal{U}Z \supseteq W \cap X^C\}$. $\mathcal{D}_0, \mathcal{D}_1$ satisfy all conditions except we dont know if they contain \emptyset . If $\emptyset \in \mathcal{D}_0, \mathcal{D}_1$, there is

2.8. SEPTEMBER 22 225A: Metamathmatics

 $V\in\mathcal{U}\ V\cap X=\varnothing,\ W\in\mathcal{U}\ W\cap X^C=\varnothing\ \text{so}\ V\subseteq X^C, W\subseteq X\ \text{so}\ V\cap W=\varnothing,\ \text{contradicting}\ V,W\in\mathcal{U}$

To get a nonprinciple ultrafilter take $\mathcal{D} = \{X \subseteq I \mid I \setminus X \text{ finte }\}$ and extend to ultrafilter $\supseteq \mathcal{D}$

Observataion: $\forall x \in I, I \setminus \{x\} \in \mathcal{D} \subseteq \mathcal{U} \text{ so } \{x\} \notin \mathcal{U}$

An ultrafilter is not principle $\leftrightarrow \mathcal{U} \supseteq$ Frechet filter

Observataion: If \mathcal{U} is an ultrafilter and contains a finite set $\mathcal{A} = \{a_0, \dots, a_n\}$ then \mathcal{U} is princtiple since $\mathcal{A} = \{a_0\} \cup \{a_1\} \cup \dots \cup \{a_n\}$

Definition 2.7.5 (Ultraproduct). I an infinite set, \mathcal{U} an ultafilter of I, $\{\mathcal{M}_i: i \in I\}$ a collection of cL structures. Define $\mathcal{M} = \prod_{i \in I} \mathcal{M}_i / \mathcal{U}$ as follows:

- Given $g, h \in \prod_{i \in I} M_I$, $g \sim h$ iff $\{i \in I \mid g(i) = h(i)\} \in \mathcal{U}$. $M = \prod_{i \in I} M_i / \sim$
- $c^{\mathcal{M}} = [i \mapsto c^{\mathcal{M}_i}]$
- $f^{\mathcal{M}}(g_1,\ldots,g_n)=[i\mapsto f^{\mathcal{M}_i}(g_1(i),\ldots,g_n(i))]$
- $(g_1, \ldots, g_n) \in R^{\mathcal{M}} \iff \{i \in I \mid (g_1(i), \ldots, g_n(i)) \in R^{\mathcal{M}_i}\} \in \mathcal{U}$

Claims:

- 1. \sim is an equivalence relation on $\prod_{i \in I} M_i$ Reflexivity, symmetry clear. $g \sim h, h \sim f \rightarrow g \sim f$ since $\{i \mid g(i) = f(i)\} \supseteq \{i \mid g(i) = h(i)\} \cap \{i \mid h(i) = f(i)\}$
- 2. $f^{\mathcal{M}}$ is well defined. $g_1 \sim g'_1, \dots, g_n \sim g'_n \to f^{\mathcal{M}}(g_1, \dots, g_n) = f^{\mathcal{M}}(g'_1, \dots, g'_n)$ since $\{i \mid f^{\mathcal{M}_i}(g_1(i), \dots, g_n(i)) = f^{\mathcal{M}_i}(g'_1(i), \dots, g'_n(i))\} \supseteq \bigcap_{j=1}^n \{i \mid g_j(i) = g'_j(i)\}$
- 3. $R^{\mathcal{M}}$ well defined for a similar reason.

Definition 2.7.6. The \mathcal{U} ultrapower of \mathcal{M} is $\prod \mathcal{M}/\mathcal{U}$

• $\mathcal{M} \leq \prod \mathcal{M}/\mathcal{U}$

2.8 September 22

2.8.1 Ultrafilters

Theorem 2.8.1 (Los' Theorem). For every forumla $\varphi(v_1, \ldots, v_k)$ and $g_1, \ldots, g_k \in \prod_{i \in I} M_i$, $\mathcal{M} = \prod_{i \in I} \mathcal{M}_i / \mathcal{U}$, $\mathcal{M} \models \phi([g_1], \ldots, [g_n]) \leftrightarrow \{i \in I \mid \mathcal{M}_i \models \phi(g_1(i), \ldots, g_k(i))\} \in \mathcal{U}$

Corollary 2.8.2. $\mathcal{M} \leq \mathcal{M}^I/\mathcal{U}$ by $m \mapsto g_m$ where $g_m(i) = i \ \forall i \in I$

Proof. By induction on formulas φ

• φ atomic. $([g_1], \ldots, [g_n]) \in \mathbb{R}^{\mathcal{M}} \iff \{i \in I \mid (g_1(i), \ldots, g_n(i)) \in \mathbb{R}^{\mathcal{M}_i}\} \in \mathcal{U}$ by definition. Similar for =

2.8. SEPTEMBER 22 225A: Metamathmatics

• φ is $\psi_1 \wedge \psi_2$. $\mathcal{M} \models \varphi([\overline{g}]) \leftrightarrow \mathcal{M} \models \psi_1[\overline{g}]$ and $\mathcal{M} \models \psi_2[\overline{g}] \stackrel{\text{IH}}{\leftrightarrow} \{i \mid \mathcal{M}_i \models \psi_1(\overline{g(i)})\} \in \mathcal{U}$ and $\{i \mid \mathcal{M}_i \models \psi_2(\overline{g(i)})\} \in \mathcal{U} \leftrightarrow \{i \mid \mathcal{M}_i \models \psi_1(g(i)) \land \psi_2(\overline{g(i)})\} \in \mathcal{U}$ φ is $\psi_1 \vee \psi_2$ is similar

- φ is $\neg \psi$. $\mathcal{M} \models \varphi \leftrightarrow \mathcal{M} \not\models \psi \leftrightarrow \{i \mathcal{M}_i \models \psi\} \notin \mathcal{U} \leftrightarrow \{i | \mathcal{M}_i \models \varphi\} \in \mathcal{U}$
- $\varphi(\overline{v})$ is $\exists \overline{x} \psi(x, \overline{v})$. $\mathcal{M} \models \varphi[\overline{g}] \leftrightarrow \text{there is } h \in M \text{ such that } \mathcal{M} \models \psi([h], [\overline{g}]) \stackrel{\text{IH}}{\leftrightarrow} \{i \mid \mathcal{M}_i \models \psi(h(i), \overline{g(i)})\} \in \mathcal{U}$ for some $h \leftrightarrow \{i \mid \mathcal{M}_i \models \exists x \psi(x, \overline{g(i)})\} \in \mathcal{U}$

Proof (Proof of Compactness). Let T be finitely satisfiable. For every $\Delta \subseteq T$ finite, there is $\mathcal{M}_{\Delta} \models \Delta$. Let $I = \{\Delta \subseteq I \mid \Delta \text{ finite }\}$. For $\Sigma \in I$, let $X_{\Sigma} = \{\Delta \subseteq I \mid \Sigma \subseteq \Delta\} \subseteq I$. Let $\mathcal{D} = \{Y \subseteq I \mid \text{ for some } \Sigma, Y \supseteq X_{\Sigma}\}$ (filter generated by $X'_{\Sigma}s$). Claim \mathcal{D} is a filter, $\varnothing \notin \mathcal{D}, I \in \mathcal{D}$, closed upwards. $X_{\Sigma} \cap X_{\Sigma'} = X_{\Sigma \cup \Sigma'}s$ so closed under intersection. Let $\mathcal{U} \supseteq \mathcal{D}$ be an ultrafilter. Let $\mathcal{M} = \prod_{\Delta \in I} \mathcal{M}_{\Delta} / cU$. For $\varphi \in T$, $X_{\{\varphi\}} \in \mathcal{U}$ and for all $\Delta \in X_{\{\varphi\}}$, $\mathcal{M}_{\Delta} \models \varphi$ so $\{\Delta \in I \mid \mathcal{M}_{\Delta} \models \varphi\} \supseteq X_{\{\varphi\}} \in \mathcal{U}$ so $\mathcal{M} \models \varphi$ by Los' thm.

2.8.2 Back and Forth Proofs

Example 2.8.3. DLO - dense linear orders without endpoints, $\mathcal{L} = \{\leqslant\}$ $(\mathbb{Q}, \leqslant), (\mathbb{R}, \leqslant), (\mathbb{R}^2, \operatorname{lex}), (2^{<\omega})$ orderd by binary tree with ends removed.

Theorem 2.8.4 (Cantor). DLO is \aleph_0 categorical, complete, and decidable. If $A, B \models \text{DLO}$, countable then $A \equiv B$

Proof. Given $A = \{a_0, a_1, a_2, \ldots\}$, $B = \{b_0, b_1, b_2, \ldots\}$ we specify an isomorphism as follows. Choose where to send a_0 arbitrarily, choose an element in A, not already chosen, to map to b_0 such that it respects order. At each step continue ensuring a_i is in the domain, b_i is in the range while preserving order. This is possible the ordering is dense and has no endpoints.

Chapter 3

Quantifier Elimination

3.1 September 29

3.1.1 Quantifier Elimination

Sometimes formulas with quantifiers are equivalent to ones without quantifiers $\mathbb{R} \models \exists x(ux^2 + vx + w = 0) \leftrightarrow (v^2 - 4ac \ge 0 \land u \ne 0) \lor (u = 0 \land (w = 0 \lor v \ne 0))$ $\mathbb{C} \models \exists x(ux^2 + vx + w = 0) \leftrightarrow (u \ne 0 \lor v \ne 0 \lor w = 0)$

No always possible though. In \mathbb{N} , there are polynomials $p(x, \overline{v})$ such that $\{n \mid \mathbb{N} \models \exists \overline{v} p(n, \overline{v})\}$ is not computable.

Definition 3.1.1. T has quantifier elimination if for every formula $\phi(\overline{v})$ ther is a quantifier free $\varphi(\overline{v})$ such that $T \models \forall \overline{v}(\phi(\overline{v}) \leftrightarrow \varphi(\overline{v}))$

Note: we allow quantifier free formulas for true and false.

Example 3.1.2. Theories with quantifier elimination

- DLO dense linear orders
- Th(Rado Graph)
- DAG torsion free divisible abelian groups
- ODAG ordered divisble abelian groups
- Presburger Arithmetic Th($\mathbb{Z}, +, -, 0, 1, <$) adding preducates $P_n(x) \leftrightarrow \exists y (n \cdot y = x)$
- Algebraically closed fields $Th(\mathbb{C}, +, \times)$
- Real closed fields $Th(\mathbb{R}, 0, 1, +, \times, <)$

Theorem 3.1.3. DLO has quantifier elimination

3.1. SEPTEMBER 29 225A: Metamathmatics

Proof. Let $\phi(\overline{v})$ be a formula, $\mathcal{L} = \{\leqslant\}$

3.1.2 Quantifier Elimination

Sometimes formulas with quantifiers are equivalent to ones without quantifiers $\mathbb{R} \models \exists x(ux^2 + vx + w = 0) \leftrightarrow (v^2 - 4ac \ge 0 \land u \ne 0) \lor (u = 0 \land (w = 0 \lor v \ne 0))$ $\mathbb{C} \models \exists x(ux^2 + vx + w = 0) \leftrightarrow (u \ne 0 \lor v \ne 0 \lor w = 0)$

No always possible though. In \mathbb{N} , there are polynomials $p(x, \overline{v})$ such taht $\{n \mid \mathbb{N} \models \exists \overline{v} p(n, \overline{v})\}$ is not computable.

Definition 3.1.4. T has quantifier elimination if for every formula $\phi(\overline{v})$ ther is a quantifier free $\varphi(\overline{v})$ such that $T \models \forall \overline{v}(\phi(\overline{v}) \leftrightarrow \varphi(\overline{v}))$

Note: we allow quantifier free formulas for true and false.

Example 3.1.5. Theories with quantifier elimination

- DLO dense linear orders
- Th(Rado Graph)
- DAG torsion free divisible abelian groups
- ODAG ordered divisble abelian groups
- Presburger Arithmetic Th($\mathbb{Z}, +, -, 0, 1, <$) adding preducates $P_n(x) \leftrightarrow \exists y (n \cdot y = x)$
- Algebraically closed fields $Th(\mathbb{C}, +, \times)$
- Real closed fields $Th(\mathbb{R}, 0, 1, +, \times, <)$

Theorem 3.1.6. DLO has quantifier elimination

```
Proof. Let \phi(\overline{v}) be a formula, \mathcal{L} = \{\leqslant\} If \phi is a sentence, then since DLO is complete either DLO \models \phi \leftrightarrow \top or DLO \models \phi \iff \bot Suppose \phi not a sentence, \overline{v} = v_1, \ldots, v_n. Given \sigma : \{(i,j) : i < j < n\} \to \{0,1,2\} define \chi_{\sigma}(\overline{v}) = \begin{pmatrix} \bigwedge_{1 < j < n} v_i = v_j \end{pmatrix} \land \begin{pmatrix} \bigwedge_{1 < j < n} v_i < v_j \end{pmatrix} \land \begin{pmatrix} \bigwedge_{1 < j < n} v_i < v_j \end{pmatrix} \land \begin{pmatrix} \bigwedge_{1 < j < n} v_i > v_j \end{pmatrix} Observation: If \overline{a}, \overline{b} \in \mathbb{Q}, \sigma, and \mathbb{Q} \models \chi_{\sigma}(\overline{a}), \chi_{\sigma}(\overline{b}) \to (\mathbb{Q}, \overline{a}) \cong (\mathbb{Q}, \overline{b}) \to \mathbb{Q}(a) \leftrightarrow \mathbb{Q}(b). Let \Lambda_{\phi} = \{\sigma \mid \forall x (\chi_{\sigma}(\overline{x}) \to \phi(\overline{x}))\}. Let \psi(\overline{v}) = \bigvee_{\sigma \in \Lambda_{\phi}} \chi_{\sigma}(\overline{v}). Claim: DLO \models \forall v \phi(\overline{v}) \leftrightarrow \psi(v)
```

Lemma 3.1.7. Suppose that for every quantifier free formula $\phi(\overline{v}, w)$ there is a quantifier free formula $\psi(\overline{v})$ such that $T \models \forall \overline{v} (\exists w \phi(\overline{v}, w) \leftrightarrow \psi(\overline{v}))$ then T has quantifier elimination.

3.2. OCTOBER 4 225A: Metamathmatics

Proof. Idea: We can construct he quantifier free formula by working from the inside out, eliminating one quantifier at a time.

Theorem 3.1.8. For T, an \mathcal{L} theory, $\phi(\overline{v})$ a formula the following are equivalent

- (i) There is a quantifier free formula $\varphi(\overline{v})$ such that $T \models \forall \overline{v}(\phi(\overline{v}) \leftrightarrow \varphi(\overline{v}))$
- (ii) For every $\mathcal{M}, \mathcal{N}, \mathcal{A}, \overline{a} \in A$ with $\mathcal{M}, \mathcal{N} \models T, \mathcal{A} \subseteq \mathcal{M}, \mathcal{N}$ We have $\mathcal{M} \models \phi(\overline{a}) \leftrightarrow \mathcal{N} \models \phi(\overline{a})$

Proof. (i) \rightarrow (ii): $\mathcal{M} \models \phi(\overline{a}) \leftrightarrow \mathcal{M} \models \psi(\overline{a}) \leftrightarrow \mathcal{A} \models \psi(\overline{a}) \iff \mathcal{N} \models \psi(\overline{a}) \leftrightarrow \mathcal{N} \models \phi(\overline{a})$

3.2 October 4

3.2.1 Quantifier Elimintation

Proof (Proof (Cont)). (ii) \to (i): Define $\Gamma(\overline{v}) = \{\psi(\overline{v}) : \text{ quantifier free } T \models \forall \overline{v}(\phi(\overline{v}) \to \psi(\overline{v}))\}$. Let \overline{d} be a tuple of new constants. Note $T \cup \phi(\overline{d}) \models \Gamma(\overline{d})$ by definition.

Claim: $T \cup \Gamma(\overline{d}) \models \phi(\overline{d})$

This would be enough to because by the compactness theorem there are $\psi_0, \ldots, \psi_k \in \Gamma$ such that $T \cup \{\psi_0(\overline{d}), \ldots, \psi_k(\overline{d})\} \models \phi(\overline{d})$ so $T \models \psi_0(\overline{d}) \wedge \ldots \wedge \psi_k(\overline{d}) \leftrightarrow \phi(\overline{d})$

Proof of claim: Suppose not, Let $\mathcal{M} \models T \cup \Gamma(\overline{d}) \cup \{\neg \phi(\overline{d})\}$, let $\mathcal{A} = \langle \overline{d} \rangle$ be the substructure of \mathcal{M} generated by \overline{d} (For every $a \in A$, there is a term $t(\overline{x})$ such that $a = t(\overline{d})$). We want to find $\mathcal{N} \models T$, $\mathcal{A} \subseteq \mathcal{N}$ and $\mathcal{N} \models \phi(\overline{d})$ we need to show $\Sigma = T \cup \operatorname{Diag}(\mathcal{A}) \cup \phi(\overline{d})$ is satisfiable. If not there is a formula $\psi(a) \in \operatorname{Diag}(\mathcal{A})$ sich that $T \cup \psi(\overline{a}) \models \neg \phi(\overline{d})$. Let $\tilde{\psi}(\overline{d}) = \psi(\overline{t}(\overline{a}))$. $T \cup \tilde{\psi} \models \neg \phi(\overline{d})$ so $T \models \tilde{\psi}(\overline{d}) \to \neg \phi(\overline{d})$ so $T \models \phi(d) \to \neg \tilde{\psi}(d)$ so $T \models \forall \overline{v}(\phi(\overline{v}) \to \neg \tilde{\psi}(\overline{v}))$ so $\neg \tilde{\psi}(\overline{v}) \in \Gamma(\overline{v})$ so $\mathcal{M} \models \neg \psi(\overline{d})$ so $\mathcal{A} \models \neg \tilde{\psi}(\overline{d})$ contradicting $\tilde{\psi}(\overline{d}) \in \operatorname{Diag}(\mathcal{A})$

Now, let $\mathcal{N} \models \Sigma$, $\mathcal{A} \subseteq \mathcal{N}$, $\mathcal{N} \models \phi(\overline{d})$, $\mathcal{N} \models T$

Corollary 3.2.1. Let T be an \mathcal{L} theory, suppose that for all quantifier free $\theta(\overline{v}, w)$, for all $\mathcal{M}, \mathcal{N} \models T$, $\mathcal{A} \subseteq \mathcal{N}, \mathcal{N}, \overline{a} \in \mathcal{A}, \exists m \in \mathcal{M} \mathcal{M} \models \theta(\overline{a}, m) \leftrightarrow \exists n \in \mathcal{N} \mathcal{N} \models \theta(\overline{a}, n)$, then T has quantifier elimination.

DAG is the theory of torsion free divisble abelain groups. $\mathcal{L} = \{0, +\cdot\}$

Lemma 3.2.2. Let, $G, H \models \text{DAG}$, nontrivial $G \subseteq H$. Let $\psi(\overline{v}, w)$ be a quantifier free formula, $\overline{a} \in G$. If $H \models \exists w \psi(\overline{a}, w)$, there is $c \in G$ $H \models \psi(\overline{a}, c)$

Proof. $\psi(\overline{v},w) = \bigvee_{i=1}^r \bigwedge_{j=1}^n \theta_{ij}(\overline{v},w)$ where each θ_{ij} is atomic or the negation of an atomic. $H \models \exists w \psi(\overline{a},w)$ so for some $i,H \models \exists w \psi_i(\overline{a},w)$ so $\exists c \in G, H \models \psi_i(\overline{a},c)$ where $\psi_i(v,w)$ is $\bigcap_{j=1}^n \theta_j(\overline{v},w)$. θ_j is of the form $t_1(\overline{v},w) = t_2(\overline{v},w)$ or $t_1(\overline{v},w) \neq t_2(\overline{v},w)$, i.e. $t_1(\overline{v},w) - t_2(\overline{v},w) = 0$ or $t_1(\overline{v},w) - t_2(\overline{v},w) \neq 0$. These can be rewritten as $t(\overline{v},w) = 0$ or $t(\overline{v},w) \neq 0$. These have the form $\sum n_i v_i + mw = 0$ or $\sum n_i v_i + mw \neq 0$ for $n_i, m \in \mathbb{Z}$. If it is of the first form $w = \frac{-\sum n_i a_i}{m} \in G$, given $m \neq 0$. If all formulas are of the second form, $w \neq \frac{-\sum n_i a_i}{m}$, then there is a witness since G is infinite and there are finitely many inequalities.

3.3. OCTOBER 6 225A: Metamathmatics

Definition 3.2.3. T is strongly minimal or o-minimal if for every $\mathcal{M} \models T$, every definable subset of \mathcal{M} is either finite or cofinite.

We showed if $H \models DAG$, that every set that is definable by quantifier free formulas are finite or cofinite. After proving DAG has quantifier elimination, we get that DAG is strongly minimal.

3.3 October 6

3.3.1 Quantifier Elimination

Lemma 3.3.1. Let G be a TFAG. There is DAG $H \supseteq G$ (called the divisble hull of G) such that for all DAG $H' \supseteq G$ there is an embedding $h: H \to H'$ with $h \upharpoonright G = \mathrm{id}$.

Proof. Let $H=\{(g,n):g\in G,n\in\mathbb{N}\}/\sim$ where $(g,n)\sim(g',n')\leftrightarrow\underbrace{g+\cdots+g}=\underbrace{g'+\cdots+g'}$ then $[(g,n)]+_H[(h,m)]=[(m\cdot g+n\cdot h,mn)].$ We need to show if $(g,n)\sim(g',n')$ $(h,m)\sim(h',m')$ then $(m\cdot g+n\cdot h,mn)\sim(m'\cdot g'+n'\cdot h',n'm')$ Let $i:G\to H$ by i(g)=(g/1) Given DAG $H'\supseteq G$, we define $h:H\to H'$ by $[(g,n)]=\frac{g}{n}$ in H'

Theorem 3.3.2. DAG has quantifier elimination.

Proof. Let $\theta(\overline{v}, w)$ be quantifier free. $G \subseteq G_1, G_2, \overline{a} \in G$. We want to show $G_1 \models \exists \theta(\overline{a}, w) \leftrightarrow G_2 \models \exists \theta(\overline{a}, w)$ Observation: G is a TFAG Let H be the hull of G. $G_1 \models \exists w \theta(\overline{a}, w) \leftrightarrow H \models \exists w \theta(\overline{a}, w) \leftrightarrow G_2 \models exw\theta(\overline{a}, w)$

Definition 3.3.3. Given T, let $T_{\forall}\{\varphi\forall\text{-sentence}: T \models \varphi\}$

Claim: DAG_{\forall} , ACF_{\forall} = integral domains, RCF_{\forall} = ordered integral domains

Lemma 3.3.4. $\mathcal{A} \models T_{\forall} \leftrightarrow \exists \mathcal{M} \supseteq \mathcal{A}, \mathcal{M} \models T$

Proof. \rightarrow) $\mathcal{M} \models T$, $\mathcal{A} \supseteq \mathcal{M}$ and $\varphi \in T_{\forall}$, $T \models \varphi \to \mathcal{M} \models \varphi \to \mathcal{A} \models \varphi$ \leftarrow) Given $\mathcal{A} \models T_{\forall}$. We want to show $T \cup \text{Diag}(\mathcal{A})$ is satisfiable. If $T \cup \text{Diag}(\mathcal{A})$ is not satisfiable is not satisfiable then there are $\psi_1(\overline{a}), \ldots, \psi_k(\overline{a})$ such that $T \models \neg(\psi_1(\overline{a}) \land \cdots \land \psi_k(\overline{a}))$ so $T \models \neg\psi(\overline{a})$ for $\psi(\overline{a}) \in \text{Diag}(\mathcal{A})$. Then $T \models \forall \overline{x} \neg \psi(\overline{x})$ so $\forall x \neg \psi(\overline{x}) \in T_{\forall}$ so $\mathcal{A} \models \forall \overline{x} \neg \psi(\overline{x})$ contradicting $\mathcal{A} \models \psi(\overline{a})$

Claim follows since $G \models \text{TFAG} \leftrightarrow \text{there is } H \supseteq G, H \models \text{DAG} \leftrightarrow G \models \text{DAG}_{\forall}$

Definition 3.3.5. T has algebraically prime models if for every $\mathcal{A} \models T_{\forall}$ there is an $\mathcal{M} \supseteq \mathcal{A}$, $\mathcal{M} \models T$ such that if $\mathcal{M}' \supseteq \mathcal{A}$, $\mathcal{M}' \models T$ then there is an embedding $h : \mathcal{M} \to \mathcal{M}'$ with $h \upharpoonright \mathcal{A} = \mathrm{id}_{\mathcal{A}}$.

DAG has prime models. Also true for ACF, RCF.

3.3. OCTOBER 6 225A: Metamathmatics

Definition 3.3.6. $\mathcal{M} \supseteq \mathcal{N}$, we say that \mathcal{M} is simply closed \mathcal{N} $(\mathcal{M} \leq_S \mathcal{N})$ if for every quantifier free formula $\theta(\overline{v}, w)$ and $\overline{a} \in \mathcal{M}$ if $\mathcal{N} \models \exists w \theta(\overline{a}, w)$ then $\exists m \in \mathcal{M}, \mathcal{N} \models \theta(\overline{a}, m)$

Theorem 3.3.7. For T an \mathcal{L} -theory if

- (i) T has algebraically prime models
- (ii) For all $\mathcal{M}, \mathcal{N} \models T$, $\mathcal{M} \subseteq \mathcal{N} \to \mathcal{M} \leq_S \mathcal{N}$

Then T has quantifier elimination.