

Universidade Eduardo Mondlane

Faculdade de Ciências

Departamento de Física

FÍSICA - II: (Cursos de Licenciatura em Engenharia Mecânica, Eléctrica, Electrónica, Química, Ambiente, Civil e G. Industrial)

Regente: Luís Consolo Chea

Assistentes: Marcelino Macome; Bartolomeu Ubisse; Belarmino Matsinhe; Enoque Malate; Graça

Massimbe & Valdemiro Sultane

2021 (Modo COVID) - AP # 4 - Capacitores e dieléctricos

- 1. Explique o efeito de um dieléctrico em um capacitor plano e quais são as consequências em relação à carga, diferença de potencial e a capacitância.
- 2. Deduza a expressão de capacitância para um capacitor cilíndrico (cabo coaxial).
- 3. Uma esfera condutora e isolada de raio R = 0.6m, colocada no vácuo, possui carga Q. Determine a energia eléctrica total acumulada no espaço que circunda a esfera.
- 4. . No interior de um capacitor plano, encontra-se uma lâmina dieléctrica de espessura a < d, onde d é a distância entre as placas. Seja A, a área de cada placa. Determine a capacitância do capacitor com a lâmina. Determine a energia potencial do sistema, se a diferença de potencial antes da introdução do dieléctrico for ϕ_0 .
- 5. Todo o espaço entre as placas de um capacitor plano está preenchido com um dieléctrico de duas partes iguais, fig.1, e constantes dieléctricas diferentes ($\epsilon_1 = k_1$ e $\epsilon_2 = k_2$). Determine a capacitância equivalente do sistema e a energia armazenada no sistema se a diferença de potencial antes da introdução do dieléctrico for ϕ_0 .

Figura 1:

6. No sistema de capacitores apresentado na fig.2, $C_1 = 1.2\mu F$, $C_2 = 4.3\mu F$ e $C_3 = 2.5\mu F$. Entre os pontos A e B liga-se uma bateria de 9.0 V. Calcule: (a) A carga armazenada em cada capacitor e (b) a energia total armazenada no sistema.

Figura 2:

7. Um capacitor com placas paralelas possui o espaço entre as armaduras preenchido com duas camadas de dieléctricos, uma com constante $\epsilon_1 = k_1$ e outra $\epsilon_2 = k_2$ (veja fig.3). Cada camada possui espessura d/2, onde d é a distância entre as placas. Mostre que a capacitância é dada por: $C = \frac{2\epsilon_0 A}{d} \left(\frac{\epsilon_1 \epsilon_2}{\epsilon_1 + \epsilon_2} \right)$.

Figura 3:

8. Na fig.5, cada capacitância $C_1 = 6.9 \mu F$ e cada capacitância $C_2 = 4.6 \mu F$ (a) Calcule a capacitância equivalente do circuito entre os pontos a e b. (b) Calcule a carga dos três capacitores mais próximos de a e de b se $\phi_{ab} = 420V$. (c) Determine ϕ_{cd} quando $\phi_{ab} = 420V$.

Figura 4:

Nota: Rever o exemplo do cálculo da energia própria no caso de distribuição contínua de cargas pelo volume de uma esfera de raio R e densidade de carga ρ .