Prof. Amador Martin-Pizarro Übungen: Michael Lösch

Lineare Algebra I

Blatt 10

Abgabe: 08.02.2021, 10 Uhr

Gruppennummer angeben!

Aufgabe 1 (20 Punkte).

Für eine natürliche Zahl $n \geq 1$ und eine Permutation σ in S_n ist die 2-elementige Menge $\{i, j\}$ ein Fehlstand, falls durch σ die Ordnung invertiert wird: d. h. i < j aber $\sigma(i) > \sigma(j)$ (oder andersherum). Das Vorzeichen von σ wird definiert als

$$\operatorname{sign}(\sigma) = (-1_{\mathbb{K}})^{\operatorname{Anzahl}} \operatorname{der} \operatorname{Fehlstände} \operatorname{von} \sigma.$$

- (a) Zeige für jede Permutation σ , dass σ und σ^{-1} dasselbe Vorzeichen besitzen.
- (b) Sei $A = (a_{ij})$ eine Matrix aus $\mathcal{M}_{n \times n}(\mathbb{K})$. Zeige, dass

$$\sum_{\sigma \in S_n} \operatorname{sign}(\sigma) \prod_{1 \le k \le n} a_{k\sigma(k)} = 0_{\mathbb{K}},$$

falls zwei Zeilen von A identisch sind.

Hinweis: Seien die *i*-te und *j*-te Zeile von A identisch sowie $k \neq \ell$ gegeben. Wie unterscheiden sich die Vorzeichen zweier Permutationen σ und τ mit

$$\sigma(k) = i, \sigma(\ell) = j \text{ und } \tau(k) = j, \tau(\ell) = i,$$

sowie $\sigma(r) = \tau(r)$ für $r \neq k, \ell$?

(c) Schließe die Leibniz Formel für Determinanten:

$$\det(A) = \sum_{\sigma \in S_n} \operatorname{sign}(\sigma) \prod_{1 \le k \le n} a_{k\sigma(k)}.$$

Hinweis: Wie viele Determinantenfunktionen auf $\mathcal{M}_{n\times n}(\mathbb{K})$ gibt es?

(d) Zeige mit Hilfe der Leibniz Formel, dass

$$P_A(T) = \det(T \mathbf{Id}_n - A) = \prod_{i=1}^n (T - a_{ii}) + Q(T)$$

für ein Polynom Q vom Grad $\leq n+2$. Insbesondere ist P_A normiert.

(e) Beweise, dass für ähnliche Matrizen A und B stets $P_A = P_B$ gilt.

Hinweis: Beachte, dass $\mathbf{Id}_n = S^{-1}S$ für reguläre S.

(f) Die Spur der Matrix A ist $Spur(A) = \sum_{i=1}^{n} a_{ii}$. Zeige, dass ähnliche Matrizen dieselbe Spur haben.

Hinweis: Was ist der Koeffizient von T^{n-1} in P_A ?

- (g) Rechne nach, dass $Spur(A \cdot B) = Spur(B \cdot A)$.
- (h) Schreibe $P_A(T) = T^n + \sum_{k=0}^{n-1} b_k T^k$. Zeige, dass A genau dann regulär ist, wenn $b_0 \neq 0$.

Hinweis: Welcher Wert der Variable T liefert den konstanten Term von P_A ?

ABGABE IN ILIAS ALS EINE EINZIGE PDF-DATEI EINREICHEN.