12 장: 광센서로 가로등 켜기

목차

- □ 광 센서(CdS 센서)
- □ A/D 컨버터
- □ ATmega128의 A/D 컨버터 기능
- □ JKIT-128-1에서의 CdS 센서 연결 설계
- □ 실습 CDS-1 : CdS 센서로 가로등 켜기

광 센서 (CdS 센서)

CdS 센서

- 황하 카디늄(CdS)을 말하며 빛(광량)이 밝아지면 전기저항값이 작아지고, 빛(광량)이 어두어지면 전기저항값이 커지는 성질을 가지고 있는 물질
- 이것을 회로에 연결하면 빛의 양에 따라 변하는 가변저항의 역할을 하므로 이를 이용하면 특정 지점의 전압을 변화시킬 수 있음

A/D 컨버터

□ 아날로그(Analog) 신호와 디지털(Digital) 신호

A/D 컨버터

□ 아날로그 신호의 디지털 신호로의 전환

A/D 컨버터

- □ A/D 컨버터(Analog-to-Digital Converter)
 - 아날로그 신호를 컴퓨터가 읽을 수 있는 병렬 또는 직렬의 디 지털 데이터로 변환하여 주는 장치
 - 측정하려는 아날로그 물리량의 범위 및 시스템의 응용목적에 따라 분해능이나 정밀도가 적합한 것을 사용
 - 분해능(resolution)
 - 디지털 출력값을 한 등급만큼 변화시키기 위한 아날로그 입력의 최소 변화 (A/D 컨버터가 표현할 수 있는 최소 아날로그 양)
 - □ n 비트 A/D컨버터의 경우 출력의 최소 데이터 범위는 1/(2의n 제곱)
 - 변환시간(conversion time)
 - □ A/D변환을 수행하는데 필요한 시간
 - □ 초당 샘플링 속도(sampling rate)로 나타냄

- □ ATmega128의 A/D 컨버터 특징
 - 10비트 분해능
 - 13~260usec 변환시간 (50 Khz ~ 1 Mhz)
 - 8채널의 멀티플렉스된 단일 입력(A/D 컨버터는 한 개이며 채 널을 바꿔가며 아날로그 신호를 입력 받음)
 - 7채널의 차동입력, 10배 또는 200배의 증폭률을 가진 2채널의 차동입력, ADC 결과 값의 좌측 정렬 가능
 - ADC 입력 전압 범위 : 0~Vcc
 - 아날로그 회로 전원 신호 AVCC 및 A/D 변환에 필요한 기준 전압 신호 AREF 제공, 내부 2.56V 기준 전압 소스 지원
 - Free Running 또는 Single Conversion 모드 지원
 - ADC변환 완료 인터럽트 제공

ATmega128♀ A/D

□ ATmega128의 A/D 컨터

- □ ATmega128 A/D 컨버터 레지스터
 - ADMUX (ADC Multiplexer Selection Register)
 - □ A/D 컨버터 멀티플렉서 선택 레지스터
 - ADCSRA(ADC Control and Status Register A)
 - □ A/D 컨버터 제어 및 상태 레지스터 A
 - ADCH, ADCL (AD Converter Data Register High/Low)
 - □ A/D 컨버터 데이터 레지스터

- □ ADMUX (ADC Multiplexer Selection Register)
 - A/D 컨버터 멀티플렉서 선택 레지스터
 - □ ADC모듈의 아날로그 입력 채널 선택
 - □ ADC모듈의 기준 전압 선택
 - □ 변환 결과 레지스터의 데이터 저장형식 지정

7	6	5	4	3	2	1	0
REFS1	REFS0	ADLAR	MUX4	MUX3	MUX2	MUX1	MUX0

0

0

0

0

0

0

0

 $0 = 0 \times 00$

- □ ADMUX (ADC Multiplexer Selection Register)
 - 비트 7,6 : REFS1,0 (Reference Selection Bit)
 - □ ADC모듈에서 사용하는 기준전압을 선택하는 비트

REFS1	REFS0	Voltage Reference	
0 0 AREF			
0 1 AVCC with external capacitor at AREF pin			
1	0	Reserved	
1	1	Internal 2.56V Voltage Reference with external capacitor at AREF pin	

* 주의: JKIT-128-1의 회로는 AREF 만 선택 가능

- □ ADMUX (ADC Multiplexer Selection Register)
 - 비트 5: ADLAR (ADC Left Adjust Result)
 - □ 이 비트를 1로 설정하면 변환결과가 ADC 데이터 레지스터에 저장될 때 ADC Data Register의 좌측으로 끝을 맞추어 저장
 - 비트 4~0: MUX4~0 (Analog Channel and Gain Selection)
 - □ ADC 모듈의 아날로그 입력채널을 선택하는 비트

MUX4~0	Single Ended Input	Positive Differential Input	Negative Differential Input	Gain				
00000	ADC0							
00001	ADC1							
00010	ADC2							
00011	ADC3		N/A					
00100	ADC4		N/A					
00101	ADC5							
00110	ADC6							
00111	ADC7							

MUX4~0	Single Ended I nput	Positive Differential Input	Negative Differential Input	Gain
01000	·	ADC0	ADC0	10x
01001		ADC1	ADC0	10x
01010		ADC0	ADC0	200x
01011		ADC1	ADC0	200x
01100		ADC2	ADC2	10x
01101		ADC3	ADC2	10x
01110		ADC2	ADC2	200x
01111		ADC3	ADC2	200x
10000		ADC0	ADC1	1x
10001		ADC1	ADC1	1x
10010	N/A	ADC2	ADC1	1x
10011		ADC3	ADC1	1x
10100		ADC4	ADC1	1x
10101		ADC5	ADC1	1x
10110		ADC6	ADC1	1x
10111		ADC7	ADC1	1x
11000		ADC0	ADC2	1x
11001		ADC1	ADC2	1x
11010		ADC2	ADC2	1x
11011		ADC3	ADC2	1x
11100		ADC4	ADC2	1x
11101		ADC5	ADC2	1x
11110	1.22V(VBG)		N/A	
11111	0V(GND)		IN/A	

- ADCSRA(ADC Control and Status Register A)
 - A/D 컨버터 제어 및 상태 레지스터 A
 - □ ADC 모듈의 동작 설정
 - □ ADC 모듈의 동작 상태 표시

7	6	5	4	3	2	1	0
ADEN	ADSC	ADFR	ADIF	ADIE	ADPS2	ADPS1	ADPS0

- 1 0/1 0 0 0 1 1 1 = 0x87
- 비트 7 : ADEN (ADC Enable)
 - □ A/D 컨버터 작동유무 지정
 - 1로 설정하면 ADC 모듈 enable
 - 0으로 설정하면 ADC 모듈 disable.

- ADCSRA(ADC Control and Status Register A)
 - 비트 6: ADSC(ADC Start Coversion)
 - □ A/D 컨버터 변환 시작
 - □ 이 비트에 "1"을 설정하면 ADC 변환이 시작
 - ADEN이 1로 설정되고 난 후 첫 번째 변환에 25개의 ADC 클록 주 기가 필요
 - 다음 변환부터는 13 클록이 요구
 - AD 변환이 종료되고 난 후 자동적으로 0으로 변환
 - 비트 5: ADFR(ADC Free Running Select)
 - □ 프리런닝 모드 설정
 - □ 1: Free running 모드로 설정
 - 자동으로 계속해서 AD 변환 실행
 - □ 0: 단일 변환 모드 (Single conversion mode)로 설정
 - 사용자가 시작하면 한번만 AD 변환을 실행

- ADCSRA(ADC Control and Status Register A)
 - 비트 4 : ADIF(ADC Interrupt Flag)
 - □ A/D 컨버터 인터럽트 플래그
 - □ A/D 변환의 완료를 알리는 플래그
 - AD변환이 완료되어 ADC Data Register 값이 업데이트 되고 나면 이 비트가 "1"로 세트되면서 AD 변환 완료 인터럽트를 요청
 - 이때 ADIE=1로 설정되고, SREG 레지스터의 I 비트가 1로 설정되어 있으면 이 인터럽트가 발생되어 처리됨
 - 비트 3 : ADIE(ADC Interrupt Enable)
 - □ A/D 변환완료 인터럽트 허용
 - AD변환 완료 인터럽트를 개별적으로 설정
 - SREG 레지스터의 I 비트가 1로 설정되어 있어야 함

- ADCSRA (ADC Control and Status Register A)
 - 비트 2~0: ADPS2~0(ADC Presicaler Select Bit)
 - □ A/D 컨버터 프리스케일러(ADC 모듈 인가 클록 분주비)선택

ADPS2	ADPS1	ADPS0	분주비
0	0	0	2
0	0	1	2
0	1	0	4
0	1	1	8
1	0	0	16
1	0	1	32
1	1	0	64
1	1	1	128

- ☐ ADCH, ADCL
 - A/D 컨버터 데이터 레지스터
 - □ A/D 컨버터의 결과를 저장하는 레지스터
 - □ 변환결과가 10비트 양의 정수로 표시됨(0~1023)
 - □ 이 값은 기준전압에 대한 비율 상수를 의미함
 - □ 예를 들어, 기준 전압을 AVCC(+5V)로 설정했는떄, CDS 신호의 전압 레벨이 0V 이면 이 값은 0이고, +5V이면 이 값은 1023이 됨

☐ ADCH, ADCL

ADMUX 레지스터의 ADLAR = 0 인 경우 : 우정렬

ADCH

15	14	13	12	11	10	9	8
	-	-	-	-	-	ADC9	ADC8

ADCL

7	6	5	4	3	2	1	0
ADC7	ADC6	ADC5	ADC4	ADC3	ADC2	ADC1	ADC0

☐ ADCH, ADCL

ADMUX 레지스터의 ADLAR = 1 인 경우: 좌정렬

ADCH

15	14	13	12	11	10	9	8
ADC9	ADC8	ADC7	ADC6	ADC5	ADC4	ADC3	ADC2

ADCL

7	6	5	4	3	2	1	0
ADC1	ADC0	-	_	_	_	_	-

- □ JKIT-128-1에서의 광센서 연결 설계 개념
 - 광센서 중에서 광량에 따라 저항값이 바뀌는 단순한 CdS 센서로 광센서로 구현
 - 실습용이므로 구하기 쉽고 가격이 저렴한 것으로 설계
 - 광센서의 한쪽 끝은 전원에 연결하고 다른 한쪽 끝은 저항에 연결하여 GND로 연결하며, 저항에 연결되는 지점을 ATmega128의 ADC 1개(ADC0, PF0) 입력으로 연결
 - 광센서와 연결되는 저항의 저항값은 결정된 광센서의 저항 특성을 고려하여 중간값으로 설정
 - 광센서는 GL5537로 하고 저항값은 GL5537의 저항값 범위가 20K ~ 2000K 정도임을 고려하여 Log Scale의 중간값인 200K로 선택
 - ADC의 기준은 단순성을 위하여 +5V로 고정하고, 이를 위하여 AVCC와 AREF 신호를 모두 +5V에 비드(L)를 통하여 연결

□ JKIT-128-1에서의 광센서 연결 설계

□ JKIT-128-1에서의 광센서 연결 설계

□ 룩스(Lux)

10 lux

가로등을 켜는 시점?

출처: 위키백과

l밝기차	Ol
10 ⁻⁵ lux	가장 밝은 별(시리우스)의 빛 ^[1]
10 ⁻⁴ lux	하늘을 덮은 완전한 <mark>별빛^[1]</mark>
0.002 lux	대기광이 있는 달 없는 맑은 밤 하늘 ^[1]
0.01 lux	초승달
0.27 lux	맑은 밤의 보름달 ^{[1][2]}
1 lux	열대 위도를 덮은 보름달 ^[3]
3.4 lux	맑은 하늘 아래의 어두운 <mark>황혼^[4]</mark>
50 lux	거실 ^[5]
80 lux	복도/화장실 ^[6]
100 lux	매우 어두운 낮 ^[1]
320 lux	권장 오피스 조명 (오스트레일리아) ^[7]
400 lux	맑은 날의 해돌이 또는 해넘이
1000 lux	인공 조명 ^[1] ; 일반적인 <mark>TV 스튜디오</mark> 조명
10,000–25,000 lux	낮 (직사광선이 없을 때) ^[1]
32,000–130,000 lux	직사광선

□ GL5537 CdS 센서의 규격

型号	最大电压 Vmax	最大功耗 Pmax	环境温度 Ambient Temp	光谱峰值 Spectral		电阻 esistance Ω)	暗电阻 Dark Resistance
model	(VDC)	(mW)	(°C)	Peak (nm)	R10	R100	(M \(\Omega\)
GL5516	150	100	-30~+70	540	5~10	≤2	0.2
GL5528	150	100	-30~+70	540	10~20	2~4	1.0
GL5537	150	100	-30~+70	540	20~50	4~10	2.0

저항값: 10 lux일때 20K ~ 50K

100 lux일때 4K ~ 10K

깜깜할때 2M

- □ 실습 내용
 - 1. 광센서를 빛을 감지하여 가로등 자동 점멸
 - 광센서를 이용하여 어두워지면 저절로 가로등(LED) 불이 켜지고, 밝아지면 저절로 가로등(LED) 불이 꺼지도록 하기
 단, 가로등을 켜는 시점은 10 Lux 정도로 설정)
 - 2. 1번과 동일하지만, 잡음이나 주위 환경에 의하여 경계점에서 불이 꺼졌다 켜졌다하는 것을 방지하기 위하여 일단 한 번 켜지면 어느 정도 수준까지 밝아지지 않으면 꺼지지 않고, 반대로 한번 꺼지면 어느 정도 수준까지 어두어지지 않으면 켜지지 않도록 프로그램을 수정하기 (각자/함께 해보기)
 - 2번과 동일하지만, 100 Lux 정도에서는 2개의 가로등(LED)만 켜지고, 10 Lux 가 되면 4개, 1 Lux 가 되면 8개의 가로등 (LED)이 모두 켜지도록 프로그램을 수정하기 (숙제)

- □ 구동프로그램 설계 : 가로등 켜기 (cds_1.c)
 - ADMUX 레지스터 세팅
 - □ ADC 포트: ADC0
 - □ ADC 데이터 정렬 : 오른쪽 정렬(Right Adjustment)
 - □ ADC 기준전압 선택 : VREF(+5V)
 - ADCSRA 레지스터 세팅
 - □ ADC 활성화 : ADC Enable
 - □ ADC 프리스케일러 : 128 분주 = 8 us = 125 KHz
 - □ ADC 변환 모드 : 단일 변환 모드
 - □ ADC 변환 종료시 인터럽트 발생 : 인터럽트는 사용하지 않음
 - ADSC(ADC Start)를 수행한 후 ADIF(ADC Interrupt Flag)를 검사하여 AD 변환이 종료되면 ADC 변환값을 읽어서 이 값을 판정하여 가로등(LED)을 점멸)


```
#include <avr/io.h>
                               10 Lux CdS의 저항값을 35K라 하면
#define CDS_VALUE
                      871
                               이 때의 ADC 기준값은
void init_adc();
                               200/(35+200) * (1024-1) = 871
unsigned short read_adc();
void show_adc(unsigned short value);
int main()
  unsigned short value;
  DDRA = 0xff;
  init_adc();
  while(1)
      value = read_adc();
       show_adc(value); }
```

```
void init_adc()
{
      ADMUX = 0x00;
            // REFS(1:0) = "00" AREF(+5V) 기준전압 사용
            // ADLAR = '0' 디폴트 오른쪽 정렬
            // MUX(4:0) = "00000" ADC0 사용, 단극 입력
       ADCSRA = 0x87;
            // ADEN = '1' ADC를 Enable
            // ADFR = '0' single conversion 모드
            // ADPS(2:0) = "111" 프리스케일러 128분주
```

```
unsigned short read_adc()
{
      unsigned char adc_low, adc_high;
      unsigned short value;
      ADCSRA \mid= 0x40; // ADC start conversion, ADSC = '1'
      while ((ADCSRA & 0x10) != 0x10) // ADC 변환 완료 검사
      adc_low = ADCL; // 변환된 Low 값 읽어오기
      adc_high = ADCH; // 변환된 High 값 읽어오기
      value = (adc_high << 8) | adc_low;
                            // value 는 High 및 Low 연결 16비트값
      return value;
```

```
void show_adc(unsigned short value)
{

if (value < CDS_VALUE)  // 기준값 미만이면
PORTA = 0xff;  // 가로등(LED) ON
else  // 기준값 이상이면
PORTA = 0x00;  // 가로등(LED) OFF
}
```

- □ 더 해보기
 - 1. 광센서를 빛을 감지하여 가로등 자동 점멸(성능 upgrade)
 - 기본은 동일하지만, 잡음이나 주위 환경에 의하여 경계점에서 불이 꺼졌다 켜졌다하는 것을 방지하기 위하여 일단 한 번 켜지면 어느 정도 수준까지 밝아지지 않으면 꺼지지 않고, 반대로 한 번 꺼지면 어느 정도 수준까지 어두어지지 않으면 켜지지 않음

아날로그 센서 찾아보기

- □ 디바이스마트 (www.devicemart.co.kr)
- □ 엘레파츠 (www.eleparts.co.kr)
- 아이씨뱅큐 (www.icbang.com)

광센서 온도/습도센서 포지션센서 가속도/자이로 센서 가스센서/산소센서 압력센서 거리측정센서 소음파센서 기울기센서 MOTION센서 마그네틱센서 UV센서 지자기센서 위치인식센서 차압센서 유량센서 전류센서 연기/불꽃센서 충격센서 적외선 근접센서 터치센서 포토센서 근접센서 방사능센서 적외선센서 버니어센서

숙제 1

- □ 내용: 광센서를 이용하여 가로등(LED) 제어
 - 광센서를 이용하여 어두워지면 저절로 가로등(LED) 불이 켜지고, 밝아지면 저절로 가로등(LED) 불이 꺼지도록 함
 - 100 Lux 정도에서는 2개의 가로등(LED)만 켜지고, 10 Lux 가 되면 4개, 1 Lux 가 되면 8개의 가로등(LED)이 켜지도록 함
 - 주위환경에 의하여 경계점에서 불이 꺼졌다 켜졌다하는 것을 방지하기 위하여 각 가로등은 일단 한 번 켜지면 어느 정도 수준까지 밝아지지 않으면 꺼지지 않고, 반대로 한 번 꺼지면 어느 정도 수준까지 어두어지지 않으면 켜지지 않도록 함
- □ 제출 기한 : 다음 수업시간 시작 전까지
- 제출 방법 : eclass에 "학번-이름-CDS.zip" 파일로 제출

숙제 2

- □ 내용 : 아날로그 센서 찾기
 - 실제 판매하는 아날로그 센서 1개를 선정
 - 이에 대한 동작 및 사용 방법을 설명하는 매뉴얼을 작성
 - JKIT-128-1 상에 이를 연결하는 방법(회로)을 제시
 - 이를 동작시킬 수 있는 프로그램의 작성 방법을 기술
- □ 제출 기한 : 다음 수업시간 시작 전까지
- 제출 방법 : eclass에 "학번-이름-SENSOR.zip" 파일로 제출

묻고 답하기

