

Contrôle de cinétique

1 - Tige et sphère

Un solide est composé d' une tige de longueur l (diamètre d) et une sphère de rayon r . Ce solide est en rotation autour de l'axe O_1x_1

1) Précisez la forme de la matrice d'inertie en indiquant les termes qui sont nuls ou égaux . Justifiez.

Sachant que :

- le moment d'inertie d'un cylindre de **diamètre d** et de **longueur I** par rapport à un axe passant par son centre de gravité est $I_{cylindre} = \frac{m.l^2}{12} + \frac{m.d^2}{16}$
- le moment d'inertie de la sphère par rapport à un axe passant par son centre de gravité est $I_{sphère} = \frac{2M.r^2}{5}$
- 2) En déduire le moment d'inertie de la tige par rapport à son axe de rotation O_1x_1 . Justifiez vos calculs
- 3) Déterminez le moment d'inertie de l'ensemble $\{tige+sphère\}$ par rapport à son axe de rotation O_1x_1 . Justifiez vos calculs

2 - Cône et demi-sphère

Ci-contre est représenté un volume composé d'un cône et d'une demi-sphère.

On cherche à déterminer la matrice d'inertie de ce volume composé.

La base du cône a pour rayon R qui a pour hauteur H.

M₁ est la masse du cône.

La sphère est de rayon R et a une masse M₂

Questions

1) Précisez la forme de la matrice d'inertie er indiquant les termes qui sont nuls ou égaux . Justifiez.

- 2) Déterminez les termes de la matrice d'inertie du cône en O en détaillant le calcul intégral .
- 3) Déterminez les termes de la matrice d'inertie de la demi-sphère en O en détaillant le calcul intégral.
- 4) En déduire la matrice d'inertie du volume composé (cône + demi-sphère)

Rappel: Eléments de volumes pour calculer les intégrales

Coordonnées cartésiennes	Coordonnées cylindriques	Coordonnées sphériques
$dm = \rho dx dy dz$	$\mathrm{d}m = \rho R \mathrm{d}R \mathrm{d}\theta \mathrm{d}z$	$dm = \rho R^2 \sin(\phi) dR d\theta d\phi$
dz dy dm dz dx	dm dR $Rd\theta$ dz $Rd\theta$	$dR = R\sin(\phi)d\theta$ $d\theta = Rd\phi$ $d\phi = Rd\phi$
Remarque: $x, y, z \in [-\infty\infty]$	et $R \in [0\infty]$ $\theta \in [0]$	$02\pi \qquad \phi \in [0\pi]$
θ : Longitude	θ : Axe parallèle à x	ϕ : Axe parallèle à z
ϕ : Colatitude	« Rotation plan xv >	\sim Rotation +z à -z \sim

Volume d'une sphère de rayon R :

$$V_{\text{sphère}} = \frac{4 \pi R^3}{3}$$

Volume d'un cône de rayon R et de hauteur H :

$$V_{\text{cône}} = \frac{\pi.H.R^2}{3}$$

3 – Volet de tuyère de réacteur d'avion

On cherche à déterminer des éléments de la matrice d'inertie du modèle simplifié du volet

Modélisation géométrique d'un volet

forme du volet réel

modèle géométrique simplifié

Notations et hypothèses :

On suppose que le solide étudié admet le plan (C, $\overrightarrow{x_5}$, $\overrightarrow{y_5}$) comme plan de symétrie géométrique. Le solide (S) est supposé homogène et composé de 3 volumes simples : V_1 , V_2 et V_3 . Le référentiel associé au bâti 1 est supposé galiléen.

Pour information on donne:

- la forme générale de la matrice d'inertie d'un solide

La matrice d'inertie en C de S :
$$I_C(S) = \begin{bmatrix} A & -F & -E \\ -F & A & -D \\ -E & -D & C \end{bmatrix}_{(\overline{x_5}, \overline{y_5}, \overline{z})}$$

$$A = \int_{P \in S} (y^2 + z^2) dm \qquad B = \int_{P \in S} (x^2 + z^2) dm \qquad C = \int_{P \in S} (x^2 + y^2) dm$$

$$D = \int_{P \in S} (y.z) dm \qquad E = \int_{P \in S} (z.x) dm \qquad F = \int_{P \in S} (x.y) dm$$

$$A = \int_{P \in S'} (y^2 + z^2) dm \qquad B = \int_{P \in S'} (x^2 + z^2) dm \qquad C = \int_{P \in S'} (x^2 + y^2) dm$$

$$D = \int_{P \in S'} (y \cdot z) dm \qquad E = \int_{P \in S'} (z \cdot x) dm \qquad F = \int_{P \in S'} (x \cdot y) dm$$

On cherche à déterminer, avec les hypothèses précédentes, le moment d'inertie par rapport à l'axe (C, \vec{z}) d'un volet en fonction de la masse volumique p et des caractéristiques géométriques H, L, d, a et e.

Questions

- 1) Déterminer les coordonnées du centre de gravité du solide (S) dans le repère ($C, \overline{X_5}, \overline{Y_5}, \overline{Z}$)
- 2) Compte-tenu de la forme géométrique du volet (modèle simplifié), préciser en le justifiant les éléments de la matrice d'inertie qui sont nuls
- 3) Déterminer le moment d'inertie de l'élément (1) de volume par rapport à l'axe (C, \vec{z}) $I_{1,Cz}$

On démontrera que
$$I_{1,Cz} = m_1 \left[\frac{a^2}{3} + \frac{H^2}{3} \right]$$

4) Déterminer le moment d'inertie de l'élément (2) de volume par rapport à l'axe (C, \vec{z}) $I_{2,\mathcal{C}z}$

On démontrera que
$$I_{2,Cz} = m_2 \left[\frac{L^2}{3} + \frac{e^2}{3} \right]$$

5) Déterminer le moment d'inertie de l'élément (3) de volume par rapport à l'axe (C, \vec{z}) $I_{3,Cz}$

On démontrera que
$$I_{3,Cz} = m_3 \left[\frac{2}{(1-a)^2} \left(\frac{L^4}{12} - \frac{La^3}{3} + \frac{a^4}{4} \right) + \frac{H^2}{6} \right]$$

- 6) Déterminer le moment d'inertie du volet complet par rapport à l'axe (C, \vec{z}) $I_{S,Cz}$
- 7) Pourquoi n'avons-nous calculé que le moment d'inertie du volet par rapport à l'axe (C, \vec{z}) $I_{S,Cz}$?