5.7 Der Additionssatz

Wir bestimmen zufällig eine Person aus der Klasse und wetten (angesprochene Personen stehen auf):

- A::Schüler/in trinkt morgens Kaffee
- B: Schüler/in hat blonde Haare

|S|=28, abzählen in der Klasse ergibt z.B. |A|=7 und |B|=19.

Aufgabe: Bestimme $|A \cup B|$.

Diese Auf-

gabe ist nur lösbar, wenn man weiß, wie viele Schüler/innen insgesamt aufgestanden sind, d.h. wenn man $|A \cap B|$ bekannt ist (und andersrum).

Herleitung des Additionssatzes:

$$|A \cup B| = |A| + |B| - |A \cap B| | : |S|$$

$$\frac{|A \cup B|}{|S|} = \frac{|A|}{|S|} + \frac{|B|}{|S|} - \frac{|A \cap B|}{|S|}$$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Merke: Es gilt der Additionssatz:

$$P(A \cup B) = P(A) + P(B) - P(A \cap B).$$

Bemerkung: Sind A und B unvereinbar (disjunkt), so ist

$$P(A \cap B) = P(\emptyset) = 0$$

Somit gilt $P(A \cup B) = P(A) + P(B)$, d.h. die Wahrscheinlichkeiten addieren sich einfach

Beispiele:

Würfeln mit einem 100-seitigen Würfel, d.h. $S = \{0; 1; 2; ...; 98; 99\}$.

A: Ergebnis ist gerade, $P(A) = \frac{|A|}{|S|} = \frac{50}{100} = 0, 5$

B: Ergebnis ist einstellig, $P(B) = \frac{|B|}{|S|} = \frac{10}{100} = 0, 1$

 $P(A \cap B) = P(\{0; 2; 4; 6; 8\}) = \frac{5}{100} = 0,05$

 $P(A \cup B) = P(A) + P(B) - P(A \cap B) = 0, 5 + 0, 1 - 0, 05 = 0, 55$ $\rightarrow 55\%$ aller Zahlen sind gerade oder einstellig.

(Das wäre auch mit einem Baum gegangen)

Übung:

Löse mit und ohne Additionssatz: S. 250 Nr. 1,3b

Löse mit oder ohne Additionssatz: S. 250 Nr. 2,3a), c), d), 4, 5

Rückblick:

• Laplace: $P(A) = \frac{|A|}{|S|}$

• Gegenereignis: $P(A) = 1 - P(\overline{A})$

• Baum und Pfadregeln: Entlang: Multiplikation, nach unten: Addition

• Additionssatz: $P(A \cup B) = P(A) + P(B) - P(A \cap B)$

5.8 Die bedingte Wahrscheinlichkeit

→ Eigentlich schon bekannt, nur wurde der Name noch nicht genannt, des Weiteren gibt es dazu gute Anwendungen.

 \rightarrow AB Rutenfest.

Die Klasse wird stochastisch untersucht.

Ereignisse:

S: Schwindelgefühle

 \overline{S} : Keine Schwindelgefühle

 \overline{W} : nicht weiblich W: weiblich

$$P(S \cap W) = P(S) \cdot P_S(W)$$

$$P(S \cap \overline{W}) = P(S) \cdot P_S(\overline{W})$$

$$P(\overline{S} \cap W) = P(\overline{S}) \cdot P_{\overline{S}}(W)$$

$$P(\overline{S} \cap \overline{W}) = P(\overline{S}) \cdot P_{\overline{S}}(\overline{W})$$

Definition: A und B seien zwei Ereignisse.

 $P_A(B)$ heißt die bedingte Wahrscheinlichkeit von B unter A, d.h. die Wahrscheinlichkeit, dass B eintritt, wenn bekannt ist, dass A schon eingetreten ist.

Allgemein gilt (1. Pfadregel umgeformt):

$$P_A(B) = \frac{P(A \cap B)}{P(A)}$$

Frage:

Man trifft einen männlichen Schüler, wir groß ist die Wahrscheinlichkeit, dass er Schwindelgefühle hat.

Gesucht: $P_{\overline{W}}(S) = \frac{P(\overline{W} \cap S)}{P(\overline{W})}$

Durch Abzählen der Klasse.

Was ist, wenn man nicht abzählen kann? \rightarrow Vierfeldertafel

Vierfeldertafel:

	S: Schwindelgefühle	\overline{S} : k eine Schwindelgefühle	
W: weiblich	$P(S \cap W)$	$P(\bar{S} \cap W)$	$P(W) = \cdots$.
\overline{W} : nicht weiblich	$P(S \cap \overline{W})$	$P(\overline{S} \cap \overline{W})$	$P(\overline{W}) = \cdots$.
	P(S)=	$P(\bar{S})$ =	1

Wo sehe ich hier $P_{\overline{W}}(S)$? Nirgends! Achtung: In der Vier-Felder-Tafel stehen keine bedingten Wahrscheinlichkeiten, aber man kann sie damit berechnen.

Beispiel: (Sucht euch ein Beispiel aus:)

Berechne: $P_W(\overline{S}) = \frac{P(W \cap \overline{S})}{P(W)}$

Wir können jetzt auch das Baumdiagramm umdrehen:

$$P(S \cap W) = P(W) \cdot P_{W}(S)$$

$$P(S \cap \overline{W}) = P(W) \cdot P_{W}(\overline{S})$$

$$P(\overline{S} \cap W) = P(\overline{W}) \cdot P_{\overline{W}}(S)$$

Anderer Rechenweg, gleiches Ergebnis!

$$P(W) \cdot P_W(S) = P(S \cap W) = P(S) \cdot P_S(W)$$

Anschauliche Bedeutung: Was bedeutet

$$P_A(B) = \frac{P(A \cap B)}{P(A)}$$

 $P_A(B)$ bedeutet: Ich weiß, dass ich mich in A befinde. Mit welcher Wahrscheinlichkeit kann ich dann auch in B? \rightarrow A sind für mich jetzt 100%.

Der Übergang von P(B) zur bedingten Wahrscheinlichkeit $P_A(B)$ entspricht dem Wechsel der Grundmenge.

Wie viel Prozent von A sind durch $P(A \cap B)$ überdeckt?

$$\frac{P(A \cap B)}{P(A)} = P_A(B)$$

 \rightarrow neue Grundmenge

Übungen Übungsblatt, Buch S. 256 Nr 2,3,4,5

5.9 Unabhängigkeit

Experiment Ein 20-seitiger Würfel (1,2,3,...,20) wird zweimal geworfen.

A: Das Ergebnis des 1. Wurfs ist größer als 15, d.h. $A=\{16;17;18;19;20\} \rightarrow P(A)=\frac{5}{20}=0,25$

B: Das Ergebnis des 2. Wurfs ist eine Primzahl, $B=\{2;3;5;7;11;13;17;19\} \rightarrow P(B)=\frac{8}{20}=0,4$

Aufgabe: Zeichne beide Bäume und drehe anschließend Wurf 1 und Wurf 2 und zeichne ebenfalls den Baum.

Der Baum kann ohne weiteres gedreht werden, da die Ereignisse A und B nicht miteinander zu tun haben, man sagt A und B sind stochastisch unabhängig.

Definition: Zwei Ereignisse A und B heißen (stochastisch) unabhängig, wenn gilt:

$$P(A \cap B) = P(A) \cdot P(B)$$

Dazu äquivalent sind die Aussagen $P_A(B) = P(B)$ bzw. $P_B(A) = P(A)$, wobei eine aus der anderen folgt, d.h. für die Unabhängigkeit zweier Ereignisse muss nur eine dieser drei Formeln nachgewisen werden.

Begründung: Es gelte $P_A(B) = P(B)$. Dann ist

$$P_B(A) = \frac{P(A \cap B)}{P(B)} = \frac{P(A) \cdot P_A(B)}{P(B)} = \frac{P(A) \cdot P(B)}{P(B)} = P(A)$$

Sind zwei Vorgänge in der Realität unabhängig voneinander, so kann man davon ausgehen, dass sie auch stochastisch unabhängig sind.

Wie unterscheidet man die Unabhängigkeit? \rightarrow Mit Aufgabenblatt Nr 2

Entweder die bedingten Wahrscheinlichkeiten berechnen oder $P(A \cap B)$ sowie $P(A) \cdot P(B)$ berechnen. Ergebnisse gleich? Unabhängig!