Traditional Machine Learning Methods on Graphs II

Prof. O-Joun Lee

Dept. of Artificial Intelligence, The Catholic University of Korea ojlee@catholic.ac.kr

Contents

- Homogeneous Graph Embedding Models
 - Adjacency-based Similarity
 - Multi-hop Similarity
 - SDNE and Subgraph2Vec
- > From Homogeneous to Heterogeneous Graphs
- Heterogeneous Graph Embedding Models
 - Metapath2Vec
 - > HIN2Vec
 - MetaGraph2Vec
 - > JUST

➤ Graph Representation Learning aims to generate graph representation vectors that describe graph's structure. So we don't need to do feature engineering every single time.

- **Example 2** Feature Engineering
- **Representation Learning**

learn the features by itself

- SVM
- Random Forest
- XGBoost
- DNN

- Node-level
- Edge-level
- Graph-level

> We want to learn the embedding for every node $ENC(v) = \mathbf{z}_v = \mathbf{Z} \cdot v$ such that:

$$\begin{array}{ll}
\text{similarity}(u, v) \approx \mathbf{z}_v^{\mathrm{T}} \mathbf{z}_u \\
\text{in the original network} & \text{Similarity of the embedding}
\end{array}$$

How to Define Node Similarity?

- Key distinction between "shallow" methods is how they define node similarity.
 - > E.g., should two nodes have similar embeddings if they....
 - > are connected?
 - share neighbors?
 - have similar "structural roles"?
 - **>** ...

$$\begin{array}{ll}
\text{similarity}(u, v) \approx \mathbf{z}_{v}^{T} \mathbf{z}_{u} \\
\text{in the original network}
\end{array}$$

1. Adjacency-based Similarity

- > Similarity function is just the edge weight between u and v in the original network.
- ➤ Intuition: Dot products between node embeddings approximate edge existence.

$$\mathcal{L} = \sum_{(u,v)\in V\times V} \|\mathbf{z}_u^\top \mathbf{z}_v - \mathbf{A}_{u,v}\|^2$$

- \succ Find embedding matrix $\mathbf{Z} \in \mathbb{R}^{d \times |V|}$ that minimizes the loss \mathcal{L}
 - > Option 1: Use stochastic gradient descent (SGD) as a general optimization method.
 - ➤ Highly scalable, general approach
 - > Option 2: Solve matrix decomposition solvers (e.g., SVD or QR **decomposition** routines).
 - Only works in limited cases.

$$\mathcal{L} = \sum_{(u,v)\in V\times V} \|\mathbf{z}_u^\top \mathbf{z}_v - \mathbf{A}_{u,v}\|^2$$

> Drawbacks:

- \triangleright O(|V|2) runtime. (Must consider all node pairs.)
 - ➤ Can make O([E|) by only summing over non-zero edges and using regularization (e.g., Ahmed et al., 2013)
- ➤ O(|V|) parameters! (One learned vector per node).
- > Only considers direct, local connections.

e.g., the blue node is obviously more similar to green compared to red node, despite none having direct connections.

2. Multi-hop Similarity

- Material based on:
 - Cao et al. 2015. GraRep: Learning Graph Representations with Global Structural Information (CIKM 2015)
 - Ou et al. Asymmetric Transitivity Preserving Graph Embedding. (KDD 2016)

- > Idea: Consider k-hop node neighbors.
 - > E.g., two or three-hop neighbors.

- Red: Target node
- Green: 1-hop neighbors
 - A (i.e., adjacency matrix)
- Blue: 2-hop neighbors
 - A²
- Purple: 3-hop neighbors
 - A³

Basic idea:

$$\mathcal{L} = \sum_{(u,v)\in V\times V} \|\mathbf{z}_u^\top \mathbf{z}_v - \mathbf{A}_{u,v}^k\|^2$$

- Train embeddings to predict k-hop neighbors.
- ➤ In practice (GraRep from Cao et al, 2015):
 - Use log-transformed, probabilistic adjacency matrix:

$$\tilde{\mathbf{A}}_{i,j}^k = \max \left(\log \left(\frac{(\mathbf{A}_{i,j}/d_i)}{\sum_{l \in V} (\mathbf{A}_{l,j}/d_l)^k} \right)^k - \alpha, 0 \right)$$
node degree
constant shift

Train multiple different hop lengths and concatenate output.

> Another option: Measure overlap between node neighborhoods.

- > Example overlap functions:
- > Jaccard similarity
- > Adamic-Adar score

$$\mathcal{L} = \sum_{\substack{(u,v) \in V \times V}} \|\mathbf{z}_u^\mathsf{T} \mathbf{z}_v - \mathbf{S}_{u,v}\|^2$$

$$= (u,v) \in V \times V \qquad \uparrow$$

$$= \text{multi-hop network similarity}$$

$$= \text{(i.e., any neighborhood overlap measure)}$$

- \gt $\mathbf{S}_{u,v}$ is the neighborhood overlap between u and v (e.g., Jaccard overlap or Adamic-Adar score).
- > This technique is known as HOPE (Yan et al., 2016).

- Basic idea so far:
 - 1) Define pairwise node similarities.
 - 2) Optimize low-dimensional embeddings to approximate these pairwise similarities.
- > Issues:
 - \triangleright **Expensive**: Generally O(|V|2), since we need to iterate over all pairs of nodes.
 - > Brittle: Must hand-design deterministic node similarity measures.
 - > Massive parameter space: O(|V|) parameters

- ➤ The difference between SDNE and {Deepwalk, LINE, Node2vec} is that it is not based on the idea of random walks
- The main idea is based on Autoencoder to reduce the dimensionality of input vector and compress it, and then reconstruct the features.

- > The framework of the semi-supervised deep model of SDNE.
- ➤ Similar to LINE, SDNE also wants to preserve 1st and 2nd order similarity and optimize at the same time to capture both local pairwise similarity and the similarity of the node neighborhood structure.

 \triangleright Then given the input x_i , the hidden representations for each layer are:

$$\mathbf{y}_{i}^{(1)} = \sigma(W^{(1)}\mathbf{x}_{i} + \mathbf{b}^{(1)})$$
$$\mathbf{y}_{i}^{(k)} = \sigma(W^{(k)}\mathbf{y}_{i}^{(k-1)} + \mathbf{b}^{(k)}), k = 2, ..., K$$

- ➤ The goal of the autoencoder is to minimize the reconstruction error of the output and the input.
- > The loss function:

$$\mathcal{L} = \sum_{i=1}^{n} \|\hat{\mathbf{x}}_i - \mathbf{x}_i\|_2^2$$

➤ Loss function for first-order proximity:

$$\mathcal{L}_{1st} = \sum_{i,j=1}^{n} s_{i,j} \|\mathbf{y}_{i}^{(K)} - \mathbf{y}_{j}^{(K)}\|_{2}^{2}$$
$$= \sum_{i,j=1}^{n} s_{i,j} \|\mathbf{y}_{i} - \mathbf{y}_{j}\|_{2}^{2}$$

Impose more penalty to the reconstruction error of the non-zero elements than that of zero elements:

$$\mathcal{L}_{2nd} = \sum_{i=1}^{n} \|(\hat{\mathbf{x}}_i - \mathbf{x}_i) \odot \mathbf{b_i}\|_2^2$$
$$= \|(\hat{X} - X) \odot B\|_F^2$$

➤ To preserve the first-order and second-order proximity simultaneously, we need to minimize the joint loss:

$$\mathcal{L}_{mix} = \mathcal{L}_{2nd} + \alpha \mathcal{L}_{1st} + \nu \mathcal{L}_{reg}$$

$$= \|(\hat{X} - X) \odot B\|_F^2 + \alpha \sum_{i,j=1}^n s_{i,j} \|\mathbf{y}_i - \mathbf{y}_j\|_2^2 + \nu \mathcal{L}_{reg}$$

where Lreg is an L2-norm regularizer term to prevent overfitting, which is defined as follows:

$$\mathcal{L}_{reg} = \frac{1}{2} \sum_{k=1}^{K} (\|W^{(k)}\|_F^2 + \|\hat{W}^{(k)}\|_F^2)$$

Popular previous works include

DeepWalk[Perozzi+, KDD2014]
Node2vec[Grover+, KDD 2016]
SDNE[Wang+, KDD 2016]

LINE[Tang+,WWW 2015]

Limited just to the node embeddings

- Learning representation of substructures
 - > Extend the WL relabeling strategy to define a proper context for a given subgraph.
 - A modification to the skipgram model enabling it to capture varying length radial contexts

> Given:

- \triangleright A set S={ $g_1, g_2, ..., g_n$ } of subgraphs
- Typically for the same graph
- ➤ An integer *d*

> Learning:

- d-dimensional embedding for each subgraph
- Such that pre-defined subgraph property is preserved

Problem formulation: Challenges

- What subgraph property to preserve?
 - Neighbourhood Property:
 - Captures neighbourhood information within the subgraph

- \triangleright Subgraph g_1 and g_2 share neighbourhood
- \triangleright Subgraph g_3 does not

Algorithm 1: Generate rooted subgraphs

Generate rooted subgraphs around every node in a given graph

Considers all the rooted subgraphs (up to a certain degree) of neighbours of r as the context of target subgraphs

Algorithm 2: GetWLSubgraph (v, G, d)

```
input: v: Node which is the root of the subgraph
            G = (V, E, \lambda): Graph from which subgraph has to be
            extracted
            d: Degree of neighbours to be considered for extracting
            subgraph
  output: sq_n^{(d)}: rooted subgraph of degree d around node v
1 begin
       sg_v^{(d)} = \{\}
       if d = 0 then
          sg_v^{(d)} := \lambda(v)
       else
4
           \mathcal{N}_v := \{ v' \mid (v, v') \in E \}
          M_v^{(d)} := \{ \text{GetWLSubgraph}(v', G, d-1) \mid v' \in \mathcal{N}_v \}
          sg_v^{(d)} := sg_v^{(d)} \cup \text{GetWLSubgraph}
          (v, G, d-1) \oplus sort(M_v^{(d)})
       return sg_v^{(d)}
```


Algorithm 2: Learn embeddings of those subgraphs

The skipgram model maximizes cooccurrence probability among the subgraphs that appear within a given context window.

Algorithm 3: RadialSkipGram $(\Phi, sg_v^{(d)}, G, D)$

```
1 begin

2 | context_v^{(d)} = \{\}

3 | for v' \in Neighbours(G, v) do

4 | | for \partial \in \{d-1, d, d+1\} do

5 | | if (\partial \ge 0 \text{ and } \partial \le D) then

6 | | | context_v^{(d)} = context_v^{(d)} \cup Gethorem Gethorem
```


2. Homogeneous vs Heterogeneous Graphs

- > Single node type and single edge type
 - ➤ E.g.,
 - > Users **follow** other Users
- > Heterogeneous Graphs
 - Multiple node and/or edge types
 - ➤ E.g.,
 - Users follow other Users
 - Users fave tweets
 - Users reply to tweets

> A heterogeneous graph is defined as:

$$G = (V, E, R, T)$$

- \succ Nodes with node types $v_i \in V$
- \triangleright Edges with relation types $(v_i, r, v_j) \in E$
- \triangleright Node type $T(v_i)$
- \triangleright Relation type $r \in R$

Heterogeneous Graphs: Examples

- Biomedical Knowledge Graphs
 - > Example node: Migraine
 - Example edge: (fulvestrant, Treats, Breast Neoplasms)
 - > Example node type: Protein
 - > Example edge type (relation): Causes

Heterogeneous Graphs: Examples

- > Academic Graphs:
 - Example node: ICML
 - Example edge: (GraphSAGE, NeurIPS)
 - > Example node type: Author
 - > Example edge type (relation): pubYear

Many Graphs are Heterogeneous Graphs

- Example: E-Commerce Graph
- ➤ Node types: User, Item, Query, Location, ...
- Edge types: Purchase, Visit, Guide, Search, ...
- Different node type's features spaces can be different!

Many Graphs are Heterogeneous Graphs

- > Example: Academic Graph
- Node types: Author, Paper, Venue, Field, ...
- > Edge types: Publish, Cite, ...
- Benchmark dataset: Microsoft Academic Graph

Why can't we use homogeneous learning methods?

> Complex Structure

➤ The structure in Heterogeneous Graphs is highly semantic-dependent, such as a meta-path structure

> Heterogeneous Attributes

- different types of nodes and edges have different attributes which are located in different feature spaces.
- > To effectively fuse the attributes of neighbors Heterogeneous methods have to overcome this heterogeneity.

3. Heterogeneous Graphs: Meta path

Meta path [Han VLDB'11]

> A sequence of node class sets connected by edge types

$$\Pi^{1...n} = \mathsf{C}_1 \xrightarrow{\mathsf{e}_1} \ldots \mathsf{C}_i \xrightarrow{\mathsf{e}_\mathsf{i}} \ldots \mathsf{C}_n$$

- Benefits of Meta Paths
- Multi-hop relationships instead of direct links
- Combine multiple relationships

$$\begin{array}{c} m1: {\sf USPresident} \xrightarrow{{\sf hasChild}} {\sf Person} \xrightarrow{{\sf hasChild}^{-1}} {\sf USFirstLady}, \\ m2: {\sf USPresident} \xrightarrow{{\sf memberOf}} {\sf USPoliticalParty} \xrightarrow{{\sf memberOf}^{-1}} {\sf USFirstLady}, \\ m3: {\sf USPresident} \xrightarrow{{\sf citizenOf}} {\sf Country} \xrightarrow{{\sf citizenOf}^{-1}} {\sf USFirstLady}. \end{array}$$

- > Similarity score for a node pair following a single meta-path
 - Path Count (PC) [Han ASONAM'11]
 - Number of the paths following a given meta-path
 - Path Constrained Random Walk (PCRW) [Cohen KDD'11]
 - > Transition probability of a random walk following a given meta-path
- > Similarity score for a node pair following a combination of multiple meta-paths
 - > Aggregate Function F to combine the similarity scores for each single meta path

Meta Path

- > Two objects can be connected via different connectivity paths
- > E.g., two authors can be connected by
 - "author-paper-author" (APA)
 - "author-paper-author-paper-author" (APAPA)
 - "author-paper-venue-paper-author" (APCPA)
- ➤ Each connectivity path represents a different semantic meaning and implies different similarity semantics

- > A meta path is a meta level description of the topological connectivity between objects
 - Given a Network Schema, A meta path can be defined as

$$A_1 \xrightarrow{R_1} A_2 \xrightarrow{R_2} \dots \xrightarrow{R_l} A_{l+1}$$

 \succ Can be considered as a new relation defined on type $A_{\!\scriptscriptstyle 1}$ and $A_{\!\scriptscriptstyle l+1}$

- Path Count:
 - ➤ The number of path instances p between x and y following P:

$$s(x,y) = |\{p : p \in P\}|$$

- Random Walk:
 - ➤ The probability Prob(p) of the random walk that starts from x and ends with y following meta path P, which is the sum of the probabilities of all the path instances p

$$s(x,y) = \sum_{p \in P} \Pr{ob(p)}$$

- Pairwise Random Walk
 - For a meta path P that can be decomposed into two shorter meta paths with the same length $P = (P_1P_2)$, pairwise random walk probability is the probabilities starting from x and y and reaching the same middle object z

$$s(x,y) = \sum_{(p_1p_2)\in(P_1P_2)} Prob(p_1) Prob(p_2^{-1})$$

PathSim: A Novel Meta Path-Based Similarity Measure

- Similarity in terms of 'Peers'
 - Two similar peer object should not only be strongly connected, but also share comparable visibility.
- Path count and Random walk (RW)
 - Favor highly visible objects (objects with large degrees)
- Pairwise random walk (PRW)
 - Favor pure objects (objects with highly skewed scatterness in their in-links or outlinks)
- PathSim
 - Favor "peers" (objects with similar visibility and strong connectivity under the given meta path)

PathSim: A Novel Meta Path-Based Similarity Measure (2)

- Restricted on Round-Trip Meta Path
 - \triangleright A round-trip meta path is a path of the form of $P = (P_l P_l^{-1})$
 - Guarantees a symmetric relation

$$s(x,y) = \frac{2 \times |\{p_{x \leadsto y} : p_{x \leadsto y} \in \mathcal{P}\}|}{|\{p_{x \leadsto x} : p_{x \leadsto x} \in \mathcal{P}\}| + |\{p_{y \leadsto y} : p_{y \leadsto y} \in \mathcal{P}\}|}$$

- ➤ A meta-path is a sequence of node types encoding key composite relations among the involved node types
- Meta-paths are used to guide random walks to redefine the neighborhood of a node
- Metapath2Vec (KDD 2017)

Metapath2vec++ samples the negative nodes of the same type as the central node by maintaining separate multinomial distributions for each node type in the output layer of the skip-gram model

HIN2vec (Fu et.al, CIKM 2017)

- Combines first-order relation and high-order relation (i.e. meta-paths)
- ➤ HIN2vec works in a multi-label classification style by predicting whether two given nodes are connected by a meta-path

- ➤ A meta-graph is a DAG defined on the given HIN schema which has only a single source node and a single target node
- \triangleright Real-world HINs often have to deal with sparse or missing connections. As the following example shows, meta-paths P_1 and P_2 will fail to capture path $a_1 \rightarrow a_4$ the highlighted link is missing.
- ➤ However, the meta-graph G provides a richer structural context and is able to perform this random walk. This shows the meta-graph's capability to match more paths in a sparse context.

JUST – Heterogeneous Graph embedding technique

> Challenges:

- How to select meta-paths?
 - Graph specific and highly depends on prior knowledge from domain experts.
 - > Strategies to combine a set of meta-paths can be complex and computationally expensive
- > The choice of metapaths highly affects the quality of the learned node embeddings for a specific task.
- > Are metapaths necessary?

JUST – Heterogeneous Graph embedding technique

> JUST idea:

- Random walk with JUmp and Stay strategies to probabilistically control the random walk
- Learn node embeddings with SkipGram model
- Jump or Stay?
 - ➤ **Objective**: Balance the number of heterogeneous a traversed during random walks.

$$\Pr_{stay}(v_i) = \begin{cases} 0, & \text{if } V_{stay}(v_i) = \emptyset \\ 1, & \text{if } (V_{stay}^q(v_i) \mid q \in Q, q \neq \phi(v_i)) = \emptyset \\ \alpha^l, & \text{otherwise} \end{cases}$$

Where:

 $\alpha \in [0,1]$ is an initial stay probability

l refes to the number of nodes consecutively visited in the same domain

JUST – Heterogeneous Graph embedding technique

Where to JUmp?

- > **Objective**: control the randomness in choosing a target domain
- \triangleright Define a fixed length queue Q_{hist} to memorize up to m previously visited domains:

$$Q_{Jump}(v_i) = \begin{cases} \{q | q \in Q \land q \notin Q_{hist}, V_{jump}^q(v_i) \neq \emptyset\}, \text{ if not empty} \\ \{q | q \in Q, q \neq \phi(v_i), V_{jump}^q(v_i) \neq \emptyset\}, \text{ otherwise} \end{cases}$$

- For each node in the graph, initialize a random walk, until the maximum lenth is reached.
- Maximize the co-coccurance probability of two nodes appearing within a context window in the random walk using SkipGram model

Limitations of Meta-paths

- ➤ Meta-paths have to be manually customized based on task and dataset, hence requiring domain knowledge.
- They fail to capture more complex relationships such as motifs.
 - ➤ i.e. patterns of interconnections occurring in complex networks at numbers that are significantly higher than those in randomized networks4.
- > The usage of meta-path is limited to the discrete space.
 - ➤ If two vertices are not structurally connected in the graph, metapath-based methods cannot capture their relations.

