固体物理学作业

Charles Luo

2025年3月15日

目录

1	第一章习题	3
2	第二章习题	6

1 第一章习题

习题 1. 在正交直角坐标系中,若矢量 $\mathbf{R}_n = n_1 \mathbf{i} + n_2 \mathbf{j} + n_3 \mathbf{k}$,其中 \mathbf{i} , \mathbf{j} , \mathbf{k} 为单位矢量, n_i (i = 1, 2, 3) 为整数。问下列情况属于什么点阵?

- (a) 当 n_i 为全奇加全偶时;
- (b) 当 n_i 之和为偶数时。

解答.

习题 2. 分别证明:

- (a) 面心立方(fcc)和体心立方(bcc)点阵的惯用初基元胞三基矢间夹角 θ 相等,对 fcc 为 60° ,对 bcc 为 $109^\circ 27'$;
- (b) 在金刚石结构中,作任一原子与其四个最近邻原子的连线。证明任意两条线之间夹角 θ 均为 $\arccos\left(-\frac{1}{3}\right)=109^{\circ}27'.$

解答.

习题 3. 证明在六角晶系中米勒指数为 (hkl) 的晶面族间距为

$$d = \left[\frac{4}{3} \left(\frac{h^2 + hk + k^2}{a^2} + \frac{l^2}{c^2}\right)\right]^{-\frac{1}{2}}.$$

解答.

习题 4. 证明底心正交点阵的倒点阵仍为底心正交点阵。

解答.

习题 5. 试证明具有四面体对称性的晶体,其介电常量为一标量介电常量:

$$\varepsilon_{\alpha\beta} = \varepsilon_0 \delta_{\alpha\beta}$$
.

解答.

习题 6. 若 AB_3 的立方结构如图所示,设 A 原子的散射因子为 $f_A(\mathbf{K}_{hkl})$,B 原子的散射因子 $f_B(\mathbf{K}_{hkl})$.

解答.

习题 7. 在某立方晶系的铜 $\mathbf{K}_{\alpha}X$ 射线粉末相中,观察到的衍射角 θ_i 有下列关系:

 $\sin \theta_1 : \sin \theta_2 : \sin \theta_3 : \sin \theta_4 : \sin \theta_5 : \sin \theta_6 : \sin \theta_7 : \sin \theta_8$

$$=\sqrt{3}:\sqrt{4}:\sqrt{8}:\sqrt{11}:\sqrt{12}:\sqrt{16}:\sqrt{19}:\sqrt{20}.$$

解答.

习题 8. X 射线衍射的线宽。

假定一个有限大小的晶体,点阵节点由 $R_l=\sum_{i=1}^3 l_i {\bf a}_i$ 确定,其中 l_i 取整数 $0,1,2,\cdots,N_i-1$,每个结点处有全同的点散射中心。散射振幅可写为

$$u_{k\to k'} = c \sum_{l_i=0}^{N_i-1} e^{-i(k'-k)\cdot \sum_{i=1}^{3} l_i \mathbf{a}_i}.$$

- (a) 证明散射强度 $I = |u|^2 = u^* u = c^2 \prod_{i=1}^3 \frac{\sin^2 \frac{1}{2} N_i (\Delta \mathbf{k} \cdot \mathbf{a}_i)}{\sin^2 \frac{1}{2} (\Delta \mathbf{k} \cdot \mathbf{a}_i)}, \ \Delta k = k' k;$
- (b) 当 $\Delta \mathbf{k} \cdot \mathbf{a}_i = 2\pi h_i$ (h_i 为整数) 时,出现衍射极大值,函数 $\sin^2 \frac{1}{2} N_i (\Delta \mathbf{k} \cdot \mathbf{a}_i)$ 的第一个零点定义了 X 射线衍射的线宽 Δ_i ,证明 $\Delta_i = \frac{2\pi}{N_i}$;
- (c) 对于一个无限大的晶体, $N_i \to \infty$, 证明 $I = c^2 N^2 \delta_{\mathbf{k}' \mathbf{k}, \mathbf{K}_h}$.

解答.

2 第二章习题