2장. 개략적인 규모 추정

Created	@September 21, 2022 8:43 PM		
Progress	DONE		

개략적인 규모 추정(back-of-the envelope estimation): 보편적으로 통용되는 수치상에서 사고 실험 (thought experiments)를 행하여 추정치를 계산하는 행위로서, 어떤 설계가 요구사항에 부합할 것인지 보기 위한 것 - Jeff Dean, Google Senior Fellow

🦝 규모 확장성을 표현하는데 필요한 기본기

- 2의 제곱수
- 응답지연(latency) 값
- 가용성에 관계된 수치들

학습 TODO list

- □ 1.2. 데이터를 인터넷으로 전송하기 전에 가능하면 압축해야 함 근거
- □ 1.4. 최대 QPS(Peek QPS) = 2 × QPS 근거
- 1.1. 2의 제곱수
- 1.2. 모든 프로그래머가 알아야 하는 응답지연 값
- 1.3. 가용성에 대한 수치들
- 1.4. 예제: 트위터 QPS와 저장소 요구량 추정
- 1.5. 팁

1.1. 2의 제곱수

데이터 볼륨의 단위를 2의 제곱수로 표현하면 어떻게 되는지

• 최소 단위: 1바이트(8비트) → ASCII 문자 하나가 차지하는 메모리 크기

2의 x 제곱	근사치	이름	축약형
10 (1024)	1천(thousand)	1킬로바이트(Kilobyte)	1KB
20	1백만(million)	1메가바이트(Megabyte)	1MB
30	10억(billion)	1기가바이트(Gigabyte)	1GB
40	1조(trillion)	1테라바이트(Terabyte)	1TB
50	1000조(quadrillion)	1페타바이트(Petabyte)	1PB

1.2. 모든 프로그래머가 알아야 하는 응답지연 값

연산명	시간	
L1 캐시 참조	0.5ns	
분기 예측 오류(branch mispredict)	5ns	
L2 캐시 참조	7ns	
뮤텍스(mutex) 락/언락	100ns	
주 메모리 참조	100ns	
Zippy로 1 KB 압축	10,000ns = 10μ s	
1 Gbps 네트워크로 2 KB 전송	$20,000$ ns = 20μ s	

2장. 개략적인 규모 추정

연산명	시간	
메모리에서 1 MB 순차적으로 read	$250,000$ ns = 250μ s	
같은 데이터 센터 내에서의 메시지 왕복 지연시간	$500,000$ ns = 500μ s	
디스크 탐색(seek)	10,000,000ns = 10ms	
네트워크에서 1 MB 순차적으로 read	10,000,000ns = 10ms	
디스크에서 1 MB 순차적으로 read	30,000,000ns = 30ms	
한 패킷의 CA(캘리포니아)로부터 네덜란드까지의 왕복 지연시간	150,000,000ns = 150ms	

- 메모리는 빠르지만 디스크는 아직도 느림
- 디스크 탐색(seek)은 가능한 한 피해야 함
- 단순한 압축 알고리즘은 빠름
- 데이터를 인터넷으로 전송하기 전에 가능하면 압축해야 함
- 데이터 센터는 보통 여러 지역(region)에 분산되어 있고, 센터들 간에 데이터를 주고받는 데는 시간이 걸림

1.3. 가용성에 대한 수치들

고가용성(high availability): 시스템이 오랜 시간 동안 지속적으로 중단 없이 운영될 수 있는 능력 (%)

- 100% high availability = 시스템이 단 한 번도 중단된 적이 없었음
- 대부분의 서비스는 99%에서 100% 사이의 값을 가짐

SLA(Service Level Agreement): 서비스 사업자(service provider)와 고객 사이에 맺어진 합의

- 서비스의 가용시간(uptime)이 공식적으로 기술되어 있음
- 아마존, 구글, 마이크로소프트 같은 사업자: 99% 이상의 SLA 제공
- 가용시간: 관습적으로 숫자 9를 사용해 표시

가용률	하루당 장애시간	주당 장애시간	개월당 장애시간	연간 장애시간
99%	14.40분	1.68시간	7.31시간	3.65일
99.9%	1.44분	10.08분	43.83분	8.77시간
99.99%	8.64초	1.01분	4.38분	52.60분
99.999%	864.00밀리초	6.05초	26.30초	5.26분
99.9999%	86.40밀리초	604.80밀리초	2.63초	31.56초

1.4. 예제: 트위터 QPS와 저장소 요구량 추정

- 가정
 - 。 월간 능동 사용자(monthly active user): 3억(300million) 명
 - 。 트위터를 매일 사용하는 사용자 수: 월간 능동 사용자의 50%
 - 。 사용자가 평균적으로 트윗을 올리는 수: 하루 2건
 - 미디어를 포함하는 트윗 수: 사용자가 하루에 올리는 트윗의 10%
 - 。 데이터 보관 기간: 5년
- 추정
 - o QPS(Query Per Second) 추정치
 - 일간 능동 사용자(Daily Active User, DAU) = 3억 × 50% = 1.5억(150million)
 - QPS = 1.5억 × 2 트윗 / 24시간 / 3600초 = 약 3500
 - 최대 QPS(Peek QPS) = 2 × QPS = 약 7000
- 미디어 저장을 위한 저장소 요구량
 - ㅇ 평균 트윗 크기

2장. 개략적인 규모 추정

■ tweet_id: 64바이트

■ 텍스트: 140바이트

■ 미디어: 1MB

 \circ 미디어 저장소 요구량 : 1.5억 imes 2 트윗 imes 10% imes 1MB = 30TB / 일

 \circ 5년간 미디어를 저장하기 위한 저장소 요구량 : $30\text{TB} \times 365 \times 5 =$ 약 55PB

1.5. 팁

근사치를 활용한 계산(rounding and approximation)

가정(assumption)은 적어둘 것

단위(unit)을 붙일 것

많이 출제되는 개략적 규모 추정 문제: QPS, 최대 QPS, 저장소 요구량, 캐시 요구량, 서버 수 등

2장. 개략적인 규모 추정 3