QUALITY CONTROL AND PREPROCESSING, SINGLE CELL EXPERIMENTS

Introduction

The script 'QC_plus_doublets.R' located in this repository 'QC_single_cell' is valid for 10X-format raw counts. Single Cell RNA sequencing (scRNAseq) projects in our setting start with cell-by-cell isolation and cDNA purification followed by sequencing, alignment and Cell Ranger filtering, being these three last steps performed by a third party laboratory. Even in this case, rigorous pre-processing is mandatory. Present document is only for practical instructions regarding the QC script. Concepts and details about scRNAseq and quality control are found in INMG SingleCell/scRNAseqMuscleNiche.pdf.

IMPORTANT Use **one single** batch data when running this script, as doublet detection procedures should only be applied to libraries generated in the same experimental batch.

Getting started

The input is the experiment in the form of a folder (here for our illustration 'dorsowt1'), that consists of the raw count matrix and its respective metadata, organized as follows:

- data/
 - dorsowt/
 - * barcodes.tsv.gz
 - * features.tsv.gz
 - * matrix.mtx.gz

Within the R code, change 'exper' variable accordingly, check also working directory ('prloc' variable). I recommend to stick to default location (HOME) for 'QC_single_cell'. Launch from RStudio, and if any difficulties are encountered check 'results/outputsfile.txt' to see at which level error occurs. An executable version will be available to be able to run into a bash loop, taking as argument the experiment folder name.

Brief Illustration

Here we load an '_END.RData' already generated after running 'QC_plus_doublets.R' on publicly available 10X data in mouse model from GEO (accession code GSM3614993). Lets see SingleCellExperiment object and dimensions:

```
load(paste0("rdatas/",exper,"_END.RData"))
sce
```

class: SingleCellExperiment

dim: 17616 2418

```
## metadata(0):
## assays(2): counts logcounts
## rownames(17616): Gm1992 Sox17 ... DHRSX CAAAO1147332.1
## rowData names(8): genes_names ensembl.id ... mean detected
## colnames(2418): AAACCTGCAGGACCCT-1 AAACCGGGAGCTGCGAA-1 ...
## TTTGTCATCAATCACG-1 TTTGTCATCGAGGTAG-1
## colData names(17): n_mm_umi n_hg_umi ... is_cell doublet_score
## reducedDimNames(0):
## spikeNames(0):
## altExpNames(0):
```

We expect only M musculus but we found out gene symbols from H sapiens (this is negligeable anyway, and metrics did not show relevant contamination):

```
table(rowData(sce)$species)
##
## Homo sapiens Mus musculus
             17
                        17599
tail(rowData(sce)[rowData(sce)$species %in% "Homo sapiens",])
## DataFrame with 6 rows and 8 columns
##
         genes_names
                                               ensembl.id
                                                              chr_pos is_genomic
##
         <character>
                                              <character> <character> <logical>
## C7
                  C7 ENSG00000112936_ENSMUSG00000079105
                                                                            FALSE
## WDR97
               WDR97
                                         ENSG00000179698
                                                                    8
                                                                             TRUE
## C2
                  C2 ENSG00000166278_ENSMUSG00000024371
                                                                            FALSE
## C3
                  C3 ENSG00000125730 ENSMUSG00000024164
                                                                            FALSE
## PISD
                PISD
                                         ENSG00000241878
                                                                   22
                                                                             TRUE
## DHRSX
               DHRSX
                                         ENSG00000169084
                                                                             TRUE
##
              species expressed
                                                                 detected
                                                  mean
##
          <character> <logical>
                                             <numeric>
                                                                <numeric>
## C7
         Homo sapiens
                            TRUE
                                   0.0111019736842105 \quad 0.904605263157895
## WDR97 Homo sapiens
                            TRUE 0.000411184210526316 0.0411184210526316
## C2
         Homo sapiens
                            TRUE
                                   0.0826480263157895
                                                         4.35855263157895
         Homo sapiens
                            TRUE
                                                         26.3569078947368
## C3
                                     1.58059210526316
         Homo sapiens
                            TRUE
                                    0.189555921052632
                                                                 14.84375
## PISD
```

Doublets detection

DHRSX Homo sapiens

```
tsnepl <- plotTSNE(sce[rowData(sce)$expressed,sce$is_cell], colour_by="doublet_score")
## Warning: call 'runTSNE' explicitly to compute results
detfeat <- scater::plotColData(sce, x="sum",y="detected",colour_by="doublet_score")
tsnepl + detfeat</pre>
```

0.0875822368421053

7.93585526315789

TRUE

 ${f output}$ All figures in .pdf format are saved in 'results/' whereas in 'rdatas/' a '_END.RData' file containing filtered see object can be found.

Acknowledgements

Many thanks to Dr. L Modolo for most of this code

sources

 $http://perso.ens-lyon.fr/laurent.modolo/scRNA/\#74_cell_type_annotation \\ https://bioconductor.org/packages/release/bioc/vignettes/scater/inst/doc/overview.html stackoverflow (multiple q/a)$

author Johanna Galvis-Lascroux, 2020