CS 240 Midterm Review (Module 1–7)

Asymptotic Analysis

- Problem instance (I) input for the specified problem
- Problem solution output for the specified problem instance
- Problem size Size(I) = size of instance I
- Algorithm a step-by-step process for carrying out a series of computations
 - An algorithm A solves a problem P if, for every instance I of P, A computes a valid solution for I in <u>finite</u> time
- RAM model
 - Assume any memory access & primitive operation is constant time
 - Assume infinite amount of memory
 - Sequential operation
 - Running time is determined by the # of memory accesses & primitive operations
- Order notations
 - $f(n) \in O(g(n))$ if $\exists c > 0$ and $n_0 > 0$ such that $0 \le f(n) \le cg(n) \ \forall n \ge n_0$
 - \circ f "grows no faster than" g
 - \circ f is "upper-bounded" by $g (\leq)$
 - $f(n) \in \Omega(g(n))$ if $\exists c > 0$ and $n_0 > 0$ such that $0 \le cg(n) \le f(n) \ \forall n \ge n_0$
 - \circ f "grows no slower than" g
 - \circ f is "lower-bounded" by $g \geq 0$
 - $f(n) \in \Theta(g(n)) \text{ if } \exists c_1, c_2 > 0 \text{ and } n_0 > 0 \text{ such that } 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \ \forall \ n \ge n_0$
 - \circ f and g grow at the same rate
 - $f(n) \in o(g(n))$ if $\forall c > 0, \exists n_0 > 0$ such that $0 \le f(n) < cg(n) \ \forall n \ge n_0$
 - \circ f is "strictly upper-bounded" by g(<)
 - $\underline{f(n)} \in \omega(g(n))$ if $\forall c > 0, \exists n_0 > 0$ such that $0 \le cg(n) < f(n) \ \forall n \ge n_0$
 - \circ f is "strictly lower-bounded" by q(>)
 - Suppose $L = \lim_{n\to\infty} \frac{f(n)}{g(n)}$
 - $\circ \quad \text{If } L = 0 \text{ then } f \in o(g)$
 - $\circ \quad \text{If } 0 < L < \infty \text{ then } f \in \Theta(g)$
 - \circ If $L = \infty$ then $f \in \omega(g)$
 - If $f \in O(g)$ and $f \in \Omega(g)$, then $f \in \Theta(g)$
- Loop analysis
 - \blacksquare Begin from the innermost nested loop; use \sum for each outer loop

- Recurrence relations analysis
 - e.g. mergesort:
 - Step 1: split array of length n into two subarrays, of lengths $\lceil \frac{n}{2} \rceil$ and $\lfloor \frac{n}{2} \rfloor$ $(T = \Theta(n))$
 - Step 2: recursively run mergesort on subarrays $(T = T(\lceil \frac{n}{2} \rceil) + T(\lfloor \frac{n}{2} \rfloor))$
 - Step 3: merge sorted subarrays into a single sorted array $(T = \Theta(n))$
 - Thus the <u>recurrence relation</u> is

$$T(n) = \Theta(1) \qquad \text{if } n = 1$$

$$T(n) = T(\lceil \frac{n}{2} \rceil) + T(\lfloor \frac{n}{2} \rfloor) + \Theta(n) \qquad \text{if } n > 1$$

$$= 2T(\frac{n}{2}) + cn$$

$$= 2(2T(\frac{n}{4}) + \frac{cn}{2}) + cn$$

$$= \dots$$

$$= 2^k T(\frac{n}{2^k}) + kcn \qquad \text{where } k = \log n$$

$$= nT(1) + \log n(cn)$$

$$\in \Theta(n \log n)$$

■ In general, $\{T(n) = T(n/2) + c\} \in \Theta(n \log n)$

Priorty Queues

•