Algebra Superior II: Tarea 02

Rendón Ávila Jesús Mateo March 30, 2025

Facultad de Ciencias Universidad Nacional Autónoma de México

Profesor: Dr. Gerardo Miguel Tecpa Galván

- 1. Sean a un número par y b un número impar. Muestra que mcd(a, b) es impar.
- 2. Un grupo de 23 viajeros llega a un campamento y encuentra 63 montones de sacos, cada montón con el mismo número de sacos, y un montón adicional con 7 sacos (en total hay 64 montones). Si sabemos que los viajeros no podían cargar con más de 50 sacos cada uno y pudieron repartírselos por igual y sin abrirlos, ¿cuántos sacos había en cada uno de los montones?
 - **3.** Demuestra que si a y b son enteros no nulos, entonces mcd(a,b)|mcm(a,b).
- **4.** Muestra que si p y q son dos primos distintos, entonces para todo $a, b \in \mathbb{Z}^+$ se cumple que $mcd(p^a, q^b) = 1$.
- **5.** Sean $a_1, \ldots, a_n \in \mathbb{Z}$ una colección de enteros Muestra que si para todo $i, j \in \{1, \ldots, k\}$ con $i \neq j$ se satisface que $mcd(a_i, a_j) = 1$, entonces $mcd(a_k, a_1 \cdot a_2 \cdots a_{k-1}) = 1$.
- **6.** Sean $a_1, \ldots, a_n, b \in \mathbb{Z}$ una colección de enteros tales que para todo $i, j \in \{1, \ldots, k\}$ con $i \neq j$ se satisface que $mcd(a_i, a_j) = 1$. Muestra por inducción que si para todo $i \in \{1, \ldots, k\}$ se cumple que $a_i | b$, entonces $a_1 \cdot a_2 \cdots a_k | b$.
 - 7. Sea p un número primo. Muestra que si $k \in \mathbb{Z}$ es tal que k < p, entonces $p \nmid k!$
- 8. Sean $c \neq 0$ y $k \geq 2$. Muestra mediante inducción matemática que si a_1, \ldots, a_k es una colección de enteros no nulos, entonces $mcm(ca_1, ca_2, \ldots, ca_k) = |c|mcm(a_1, a_2, \ldots, a_k)$.
 - **9.** Sean $a, b \in \mathbb{Z}$ no ambos nulos y $c \neq 0$. Muestra que mcd(ca, cb) = |c| si y sólo si mcd(a, b) = 1.
 - **10.** Muestra que si p es un número primo y $k \in \{1, \ldots, p-1\}$, entonces $p \mid \binom{p}{k}$.
 - **11.** Sean $a, b, t \in \mathbb{Z}$ con $t \neq 0$. Muestra que si mcd(k, t) = 1 y $at \equiv bt \mod k$, entonces $a \equiv b \mod k$.
 - 12. Muestra que si $a \equiv b \mod k$, entonces mcd(a, k) = mcd(b, k).
 - 13. Sea k = mcd(m, n). Muestra que si $a \equiv b \mod m$ y $c \equiv d \mod n$, entonces $a + c \equiv b + d \mod k$.
 - **14.** Sean $a, b \neq k$ enteros tales que $a \equiv b \mod k$. Muestra que si $0 \le a < k \neq 0 \le b < k$, entonces a = b.

15. Considera la ecuación diofantina $56x + 378y = k$. Calcula todos los valores de k entre 100 y 200 pa los cuales dicha ecuación tiene solución entera. Calcula la solución para el caso en que $k = 154$.	ra