

MELHOR LOCALIZAÇÃO PARA INSTALAÇÃO DE CENTRO DE DISTRIBUIÇÃO DE VACINAS COVID NA REGIÃO DO ALENTEJO

Diogo Costa Sá¹, João Parada Cardoso², Kristina Relovska³, Mafalda Carolina Baeta Da Costa⁴

¹ Mestrado em Sistemas de Informação Geográfica e Ordenamento do Território, Faculdade de Letras da Universidade do Porto. E-mail: didi.diogo99@hotmail.com

² Mestrado em Sistemas de Informação Geográfica e Ordenamento do Território, Faculdade de Letras da Universidade do Porto. E-mail: j-pedro-cardoso@sapo.pt

³ Mestrado em Sistemas de Informação Geográfica e Ordenamento do Território, Faculdade de Letras da Universidade do Porto. E-mail: krelovska@gmail.com

⁴ Mestrado em Sistemas de Informação Geográfica e Ordenamento do Território, Faculdade de Letras da Universidade do Porto. E-mail: mafa.mafinha@hotmail.com

Docentes:

António Fernando Vasconcelos Cunha Castro Coelho

Ricardo José Vieira Baptista

Resumo

O presente relatório terá como análise a Região do Alentejo, segundo o II nível do sistema hierárquico de divisão do território em regiões da Nomenclatura das Unidades Territoriais para Fins Estatísticos. O objetivo principal passará por encontrar a melhor localização para a instalação de um centro de distribuição de vacinas COVID na Região do Alentejo (NUTII). Desde o dia 27 de dezembro de 2020, em Portugal, e tantos outros países europeus, têm vindo a vacinar a população contra o vírus *SARS-CoV*. De modo a gerir a distribuição das vacinas, é importante saber qual o melhor local, tendo em conta diversos fatores. Para esta finalidade, serão utilizados diversos ficheiros disponibilizados na página da unidade curricular como o caso das curvas de nível e as vias rodoviárias, e por sua vez, dados abertos da web (CAOP2020, COS2018 e indicadores do Instituto Nacional de Estatística). Recorrendo à biblioteca *arcpy*, para empregarmos as capacidades do software *ArcGis* 10.7 *ESRI* juntaram-se vários módulos, classes e funções que permitem usar todas as ferramentas do *ArcGis* durante o desenvolvimento de um script. Através do código *python*, respondeu-se às questões principais deste trabalho, identificadas nos tópicos do relatório, resultando de uma análise multicritério.

Palavras-Chave

Python, Arcpy, Centro de vacinação, Região do Alentejo, ArcGIS

Programação em SIG e OT - 2020/2021

ÍNDICE

Enquad	Iramento Conceptual	3	
1.Introd	dução	4	
2.Enqu	adramento Geográfico da Área de Estudo	5	
3.Objet	ivos	6	
4.Mate	riais e Métodos	6	
5. Desc	rição Geral Do Script Desenvolvido	7	
para	fa 1 e 2 - Indicar um caminho para a pasta onde obter os ficheiros de dados tabulares, que possa operar sobre estes; Indicar um caminho para uma pasta onde obter os fichei efile disponibilizados, para que possa operar sobre estes.		
fiche dos f	fa 3, 4 e 5 - Criar o ficheiro shapefile da CAOP a partir de open data; Criar vários siros shapefile do tipo pontos com as localizações dadas em cada dos dados de cada um icheiros; Verificar e projetar os dados disponibilizados ou criados para o sistema de ência "ETRS 1989 Portugal TM06"		
INE hosp	fa 6 e 7 - Agrupar os ficheiros shapefile da CAOP com dados tabulares das tabelas do para calcular a densidade populacional, rácios de farmácias, de centros de saúde, de itais e de centros hospitalares por Município do Alentejo; Agrupar os ficheiros shapefi AOP por NUT III com dados tabulares referentes		
	fa 8 - Criar um mapa de declives de tamanho configurável, através do raster do modelo al de elevação (MDE).		
6.Funci	ionalidades Implementadas no Script	11	
6.1.0	Critérios Gerais	11	
	Identificar as áreas com classe de uso de solo admissível (COSn2 = 1.2 – Indústria, 1.6 ércio e 1.4 - transportes);		
b)	Distância dos principais eixos viários (IC, IP e EN) entre 500m a 3000m	11	
6.2.0	Critérios Secundários	13	
a)	Municípios com densidade populacional superior a 100 habitantes/Km ² ;	13	
b)	Variação positiva da população empregada;	13	
c)	Rácio de Hospitais e de Centros e Hospitalares superior ou igual 1.0;	13	
d)	Densidade Populacional da faixa etária >= 65 superior à média nacional	13	
e) co	Qual será a melhor localização para implementar um centro de distribuição de vaciavid na região do Alentejo?		
7.Detal	hes relevantes de implementação	16	
7.1.	Principais dificuldades encontradas	16	
8.Cons	iderações finais	17	
9.Refer	9.Referências Bibliográficas		

Enquadramento Conceptual

Arcpy: ArcPy é uma biblioteca Python que permite realizar análises de dados geográficos, conversão de dados, gerir dados e automação de mapas de forma prática e eficaz. A principal vantagem de utilizar esta biblioteca é pelo facto do Python ser uma linguagem de programação de propósito geral. É adequado para trabalhos intuitivos e prototipagem rápida de programas únicos conhecidos como scripts, embora seja possível desenvolver aplicações grandes e inovadoras. Com a biblioteca ArcPy, as ferramentas do ArcGis beneficiam-se do desenvolvimento de módulos adicionais do Python. Estes processos derivam da compilação de um vasto leque de comandos do ArcGis adaptados em ArcPy.

ArcMap: O ArcMap é a principal componente do conjunto *ArcGIS* de programas SIG (Sistemas de Informação Geográfica) e no processamento geoespacial da *ESRI*. É utilizado, principalmente para visualizar, editar, criar e analisar dados geoespaciais numa realidade virtual. Também permite ao utilizador interpretar relações explícitas e implícitas, bem como simbolizar a informação com o intuito da criação de cartografia. Em outubro de 2020, foi anunciado pela *ESRI* que não há perspetivas para o lançamento de 10.9 em 2021, devido à emancipação do *ArcGis Pro*.

Python: É uma linguagem geral de alto nível e suporta o paradigma orientado a objetos, sendo que demonstra imperatividade e funcionalidade. Uma de suas principais características é permitir, não só a fácil leitura do script, mas também exibir e exigir poucas linhas de código face a outras linguagens como *JavaScript*. Esta linguagem é utilizada, nomeadamente, para processamento de textos, dados científicos e criação de *CGI* (common gateway interface) para páginas web. Por curiosidade foi considerada pelo público a 3ª linguagem favorita, de acordo uma pesquisa pioneira pelo site *Stack Overflow* em 2018. Além disso, encontra-se entre as 5 linguagens mais populares, de acordo com uma pesquisa da *RedMonk*.

1.Introdução

No âmbito da Unidade Curricular de Programação em SIG e OT, foi proposta a elaboração de um trabalho que permitisse conjugar as várias funcionalidades de 2 programas, o módulo arcpy (*Python*) e a análise de variáveis diferentes (*ArcMap*), respetivamente ao ordenamento do território numa determinada área de estudo (NUT II). A área de estudo é a região do Alentejo, e nesta pretende-se analisar o melhor local para instalar um centro de distribuição de vacinas, tendo em conta os critérios gerais e secundários apresentados na **tabela 1**.

O contexto atípico de pandemia de covid-19, surgiu na cidade de Wuhan, na China em 2019, onde foram diagnosticados os primeiros casos. Esta doença infeciosa, inicialmente denominou-se de pneumonia grave de etiologia, mas mais tarde, comprovou-se que era coronavírus (*SARS-CoV-2*)., com um elevado nível de contágio e rápida propagação a nível mundial forçando a Organização Mundial da Saúde (OMS) declarar no dia 11 de março de 2020, a infeção *COVID-19* como uma pandemia mundial.

A nível mundial, desde o seu início até dia 11/06/2021 contava na sua totalidade com 176 milhões de casos e 3,77 milhões de óbitos e a nível nacional no mesmo período 855 432 casos e 17 043 óbitos. Com a introdução das vacinas *Pfizer/BioNTech*, *AstraZeneca* e Moderna em Portugal, permitiu o crescente controlo e estagnação do risco de transmissão. Desta forma, a vacinação da população é uma necessidade a curto prazo, para que a normalidade seja gradualmente instalada.

Posto isto, é extremamente importante determinar as localizações dos centros de distribuição de vacinas. Isto é possível recorrendo à biblioteca *ArcPy* tendo em conta os parâmetros delineados. Tal como os hospitais de campanha permitiram evitar a sobrelotação dos hospitais, ao se determinar a melhor localização destes centros de vacinação, permitirá uma aceleração da vacinação na região do Alentejo, com o desenvolvimento de um script a partir de linguagem de programação, e representar os resultados em modelos cartográficos que ilustrem fragilidades, potencialidades e oportunidades no território para tal política de intervenção.

Critérios gerais	Critérios secundários
Distância dos principais eixos viários (IC, IP e EN) entre 500 m a 3000 m	Variação positiva de população empregada
Utilização do solo (COSn2=1.2 - Indústria,	Rácio de Hospitais e de Centros e
comércio e transportes)	Hospitalares superior ou igual 1.0
Rácio de farmácias por município superior	Municípios com maior Densidade
a 7.0	Populacional da faixa etária 40-64 anos,
.0	superior à média nacional
Rácio de centros de saúde por município	Municípios com densidade populacional
superior a 1.0	superior a 200 habitantes/Km ²
Zonas de exclusão as NUT III das zonas	Densidade Populacional da faixa
metropolitanas do Porto e Lisboa	etária>=65 superior à média nacional

Tabela 1 – Critérios para definir as áreas de grande potencial para a instalação de centros de distribuição de vacinas COVID.

2. Enquadramento Geográfico da Área de Estudo

A área de estudo deste relatório incide na NUT II do Alentejo, onde este encontra-se dividido por cinco NUT'S III, Alentejo Central, Alentejo Litoral, Alto Alentejo, Baixo Alentejo e Lezíria do Tejo. Esta NUT em estudo possuía aproximadamente 724 400 residentes em 2015 (INE) e representa cerca de 35,42% da área total do no país estando incidida por completo e/ou em parte nos distritos de Beja, Setúbal, Évora, Portalegre e Santarém como se pode verificar na **figura 1**.

Figura 1 – Enquadramento da Área de Estudo por NUT II e NUTIII.

3.Objetivos

O trabalho prático realizado, tem como principais objetivos a criação de uma biblioteca *Python* capaz de executar um conjunto de operações, tais como, a criação de vários ficheiros do tipo *shapefile*, projeção de sistemas de coordenadas, agrupamento de ficheiros do tipo *shapefile* com dados tabulares, para permitir efetuar diversos cálculos, elaboração de um modelo digital de elevação e por fim efetuar a conversão para raster. Após estes processos, pretende-se efetuar uma análise multicritério, de modo e a definir a melhor localização de um centro logístico de vacinação na Região do Alentejo (NUTII). Para esta finalidade, dever-se-á recorrer à biblioteca ArcPy integrada no software ArcGIS 10.7.

4. Materiais e Métodos

A metodologia de um trabalho define-se como os processos para a concretização do objetivo principal do mesmo, bem como os materiais e métodos utilizados.

Em primeiro lugar, recorreu-se ao moodle da unidade curricular para a exportação dos ficheiros (COS 2018 – Carta de Ocupação dos Solos, CAOP 2020 – Carta Administrativa Oficial de Portugal, Rede Viária, Curvas de Nível e informações tabulares sobre população empregada, localização dos hospitais e centros hospitalares entre outros) disponibilizados pelos docentes de forma a serem utilizados e como base para a concretização do objetivo principal.

Em segundo lugar, recorreu-se à linguagem *Python* para a utilização da biblioteca *ArcPy*, de modo a conectar a biblioteca com o *ArcMap*, elaborando o script e utilizando os comandos de acordo com os critérios definidos no enunciado, intersect, buffer e clip, de modo a elaborar mapas temáticos. Neste script foram desenvolvidos todos os critérios gerais e quatro critérios específicos, no caso: a) Municípios com densidade populacional superior a 100 habitantes/Km2; b) Variação positiva de população empregada; c) Rácio de Hospitais e de Centros e Hospitalares superior ou igual 1.0; d) Densidade Populacional da faixa etária >= 65 superior à média nacional.

Por fim, criou-se uma *geodatabase*, contendo o *workflow* com duas *features dataset*, para colocar os dados dos processos e resultados finais separadamente. Após estes processos importouse os ficheiros criados para o *ArcMap* e realizaram-se os mapas temáticos.

5. Descrição Geral Do Script Desenvolvido

Para o desenvolvimento do script foi necessário compilar as competências do software ArcMap 10.7 com a linguagem Python através da biblioteca ArcPy. Esta permite com as suas características assimilar todas as ferramentas do ArcMap e consequentemente gerar e manipular todo o tipo de ficheiros.

Tarefa 1 e 2 - Indicar um caminho para a pasta onde obter os ficheiros de dados tabulares, para que possa operar sobre estes; Indicar um caminho para uma pasta onde obter os ficheiros shapefile disponibilizados, para que possa operar sobre estes.

Posto esta introdução no exercício 1 e 2, iniciou-se o script com "*import arcpy*" de forma a ser utilizada esta biblioteca. De seguida utilizou-se o "*overwriteOutput* = *True*" para permitir a sobreposição de ficheiros quando realizada uma função e para possibilitar unir ficheiros na pasta de output. No seguimento, com "*arcpy.env.workspace* = ", é definida a pasta de trabalho, no caso, a pasta onde se encontram todos os ficheiros iniciais, base de dados tabulares e shapefiles para incremento no script. Para especificar os caminhos dos dados base e dos resultados obtidos criouse duas variáveis, no caso "dados" e "resultados" (**figura 2**).

Tarefa 3, 4 e 5 - Criar o ficheiro shapefile da CAOP a partir de open data; Criar vários ficheiros shapefile do tipo pontos com as localizações dadas em cada dos dados de cada um dos ficheiros; Verificar e projetar os dados disponibilizados ou criados para o sistema de referência "ETRS 1989 Portugal TM06".

Para o exercício 3, 4 e 5 primeiramente executou-se o comando "ExcelTable_conversion" para converter o ficheiro excel em tabela. Para se obter os ficheiros shapefile de pontos com as localizações das tabelas de excel dos Hospitais e Centros Hospitalares, utilizou-se os comandos "MakeXYEventLayer_management" e "FeatureToPoint_management". Após isto, projetou-se os dados disponibilizados com a ferramenta "arcpy.SpatialReference" de coordenadas geográficas "WGS 1984" para coordenadas projetadas "ETRS 1989 Portugal TM06". Na ótica de confirmar o sistema de coordenadas, recorreu-se ao comando "arcpy.Project_management". De referir, que para o exercício 3 utilizámos a CAOP2020 embora não tenha sido através de open data.

Figura 2 – Script desenvolvido para os exercícios nº1, 2, 3, 4 e 5.

Tarefa 6 e 7 - Agrupar os ficheiros shapefile da CAOP com dados tabulares das tabelas do INE para calcular a densidade populacional, rácios de farmácias, de centros de saúde, de hospitais e de centros hospitalares por Município do Alentejo; Agrupar os ficheiros shapefile da CAOP por NUT III com dados tabulares referentes.

Em relação ao exercício 7 (**figura 3**), o objetivo passa por agregar os dados tabulares das shapefiles com as tabelas do INE, para isto utilizou-se o comando "arcpy.ExcelTable_conversion" e também a CAOP com as tabelas do INE com o comando "arcpy.JoinField_management". Por sua vez fez-se um "arcpy.Clip_analysis" para a CAOP de modo a obter a região do Alentejo (NUTII) com toda a informação que estava agrupada na CAOP.

Ainda no exercício 6, realizou-se o cálculo da área e da densidade populacional (figura 4). Para isto, usou-se o comando "arcpy.AddField_management" de modo a adicionar um novo campo na tabela da área e estudo, e também o comando "arcpy_CalculateField_management" para o cálculo das respetivas componentes. No que diz respeito à contagem dos hospitais e centros hospitalares (figura 5), usou-se o comando "arcpy.AddField_management" para adicionar novo campo na tabela. No seguimento elaborou-se um "ciclo for" para a contagem de ambas as componentes por município e posteriormente, implementou-se um novo "ciclo for" com o comando "arcpy.UpdateCursor" para atualizar a tabela da área de estudo e adicionar o número de hospitais e centros hospitalares por concelho. No mesmo sentido, elaborou-se o cálculo do rácio adicionando um novo campo com a ferramenta "arcpy.AddField_management" e uma "expression", ou seja, a condição do cálculo que está definida no "codeblock", explicando a condição. Após o rácio realizado entre os hospitais e centros hospitalares foi feita a normalização do mesmo, adicionando um novo campo na tabela, definindo uma nova expressão com os campos anteriormente realizados e usando novamente a ferramenta "arcpy_CalculateField_management" para obter o rácio normalizado (figura 6).

```
**Script.tppy **

C. > Users > mafam > Desktop > Trabalho_PSOT > projeto_script > ** script.tppy > ...

#EX6 - Group the data enclosed in the shapefiles attribute tables with the tabular data referent to indicators

arcpy.ExcelToTable_conversion(dados + "/IndicadoresEstatisticos.xlsx", resultados + "/inepopresidente.dbf", "COD")

arcpy.ExcelToTable_conversion(dados + "/IndicadoresEstatisticos.xlsx", resultados + "/inepopresidente.dbf", "PopResidente")

arcpy.ExcelToTable_conversion(dados + "/IndicadoresEstatisticos.xlsx", resultados + "/inepopresidente.dbf", "PopResidente")

arcpy.ExcelToTable_conversion(dados + "/IndicadoresEstatisticos.xlsx", resultados + "/inepibhab.dbf", "PIBHabitante")

arcpy.ExcelToTable_conversion(dados + "/IndicadoresEstatisticos.xlsx", resultados + "/inepibhab.dbf", "PIBHabitante")

arcpy.ExcelToTable_conversion(dados + "/IndicadoresEstatisticos.xlsx", resultados + "/inepibhab.dbf", "FisepancaVida")

print "conversion done"

#EX7 - Group the data enclosed in CAOP's attribute table by municipalities

arcpy.JoinField_management(dados + "/CAOP2020.shp", "Concelho", resultados + "/inepopresidente.dbf", "Concelhos")

arcpy.JoinField_management(dados + "/CAOP2020.shp", "Concelho", resultados + "/inepopresidente.dbf", "Concelhos")

arcpy.JoinField_management(dados + "/CAOP2020.shp", "Concelho", resultados + "/inepopresidente.dbf", "NUTSIII")

arcpy.JoinField_management(dados + "/CAOP2020.shp", "Concelho", resultados + "/inemotyloff", "NUT
```

Figura 3 – Script desenvolvido para os exercícios nº6 e 7.


```
c: > Users > mafam > Desktop > Trabalho_PSOT > projeto_script > • script_tp.py > ...

sequence = for the projeto =
```

Figura 4 – Script desenvolvido para os cálculos do exercício 6.

Figura 5 – Script desenvolvido para os cálculos do exercício 6.

```
c: > Users > mafam > Desktop > Trabalho_PSOT > projeto_script > ② script_tp.py > ...

140  #EX6.9 - Calculate ratio
141  arcpy.AddField_management(resultados + "/NUTAlentejo.shp", "RC_HCH", "DOUBLE", "", "", "", "NULLABLE")
142  expression = "racio_H_CH(!COUNT_H!, !COUNT_CH!)"
143  codeblock = """def racio_H_CH(H, C_H):
144   print (H, C_H)
145   if H == 0 or C_H == 0:
146        return 0
147   else:
148        return (H * 1.0)/(C_H * 1.0)"""
149   arcpy.CalculateField_management(resultados + "/NUTAlentejo.shp", "RC_HCH", expression, "PYTHON", codeblock)
150
151
152   #EX6.10 - Normalize ratio
153
154   arcpy.AddField_management(resultados + "/NUTAlentejo.shp", "RCN_HCH", "DOUBLE", "", "", "", "", "NULLABLE")
155   expression = "normalization_ratio(!RC_HCH!)"
156   codeblock = """def normalization_ratio(RC_HCHCH):
157   if RC_HCH >= 1.0:
158        return 1
159   else:
160        return 0 """
161   arcpy.CalculateField_management(resultados + "/NUTAlentejo.shp", "RCN_HCH", expression, "PYTHON", codeblock)
162   preturn 0"""
163   arcpy.CalculateField_management(resultados + "/NUTAlentejo.shp", "RCN_HCH", expression, "PYTHON", codeblock)
164   print "done"
```

Figura 6 – Script desenvolvido para os cálculos do exercício 6.

Tarefa 8 - Criar um mapa de declives de tamanho configurável, através do raster do modelo digital de elevação (MDE).

Por fim, visando a elaboração de um mapa de declives através de um raster, foi efetuado em primeiro lugar o "TIN" com as curvas de nível de 100m em 100m para todos o país, sendo necessário a ferramenta "arcpy. CheckOutExtension". Para a concretização deste exercício executou-se a ferramenta "arcpy.CreateTin 3d" para a criação do TIN e posteriormente a ferramenta "arcpy.EditTin 3d" para ajustar o "TIN" à área de estudo (Alentejo), porém, esta segunda ferramenta foi efetuada sem sucesso, não se obtendo o objetivo pretendido. Posto isto, reverteu-se a situação com a criação de uma nova shapefile, utilizando-se a ferramenta "arcpy. Clip_analysis" para recortar as curvas de nível pela área de estudo, resultando a shapefile com a "NUTAlentejo". Posto isto, procedeu-se à criação de um novo "TIN". O próximo passo consistia em converter o "TIN" para raster, e para isso utilizou-se a ferramenta "arcpy. TinRaster 3d" (figura 7). De modo a ser possível fazer um mapa de declives, foi necessário utilizar a ferramenta usando a ferramenta "arcpy.sa.ExtractByMask" para recortar o modelo digital de elevação corretamente. Posto isto, com a ferramenta "arcpy.Slope 3d" obtevese o mapa de declives. Com vista na reclassificação com apenas 2 classes (0-9 graus;> 9 graus), recorreu-se à ferramenta "arcpy.Reclassify 3d". De seguida, para ser executável selecionar-se as áreas exclusão, converteu-se o Raster para shapefile com a ferramenta "arcpy.RasterToPolygon_conversion". Após isso, tendo como base as ferramentas "arcpy.MakeFeatureLayer_management" para a criação de uma "layer" temporária, "arcpy.SelectLayerByAttribute_management" para selecionar com a "layer" temporária as áreas 9°. com declive superior "arcpy.FeatureClassToFeatureClass_conversion" converteu-se a seleção definida em dados vetoriais (**figura 8**).

Figura 7 – Script desenvolvido para os exercícios nº8 e 8.1 e 8.2.


```
• script_tppy ●

C: > Users > mafam > Desktop > Trabalho_PSOT > projeto_script > ◆ script_tp.py > ...

#EX8.2 - Slope(DECLIVE)

dem = arcpy.sa.ExtractByMask(resultados + "/MDT_raster.tif", resultados + "/NUTAlentejo.shp")

arcpy.slope_3d(dem, resultados + "/Slope.tif", "DEGREE")

print "done"

dem = arcpy.sa.ExtractByMask(resultados + "/Slope.tif", "DEGREE")

print "done"

arcpy.seclassify_slope(0 9% e 9% máximo)

arclasses=2

classes=2 classes=2 classes=2 classes_2="0 9 9; 9 90 90"

arcpy.keclassify_3d(resultados + "/Slope.tif", "VALUE", classes_2, resultados + "/slope_reclass.tif", "NODATA")

print "done"

#EX8.5 - Raster to polygon conversion

arcpy.RasterToPolygon_conversion(resultados + "/slope_reclass.tif", resultados + "/slope_r_poly.shp")

#EX8.4 - Select the exclusion areas with slope greater than 9 degrees

in layer= resultados + "/slope_r_poly.shp"

arcpy.MakeFeatureLayer_management(in_layer, "slope90")

arcpy.SelectLayerByAttribute_management("slope90", "NEW_SELECTION", "gridcode = 90")

arcpy.SelectLayerByAttribute_management("slope90", resultados, "slope_90_poly.shp")

print "done"
```

Figura 8 – Script desenvolvido para os exercícios nº8.2, 8.3, 8.4 e 8.5.

6.Funcionalidades Implementadas no Script

Depois dos requisitos funcionais da biblioteca serem efetuados, realizaram-se diversas operações (*buffer*, *intersect*, *select by – attributes*) para criar vários mapas temáticos e proceder à criação de shapefiles com os resultados obtidos. Para criar os parâmetros posteriormente necessários correspondentes aos seguintes tópicos (6.1.Critérios Gerais e 6.2.Critérios Secundários).

6.1. Critérios Gerais

Respetivamente aos critérios gerais, foram propostos os seguintes:

- a) Identificar as áreas com classe de uso de solo admissível (COSn2 = 1.2 Indústria, 1.3 comércio e 1.4 transportes);
- b) Distância dos principais eixos viários (IC, IP e EN) entre 500m a 3000m.

Para a elaboração dos mapas temáticos, o mapa relativo à ocupação do solo, com as áreas das indústrias, comércio e transportes foram necessárias as seguintes ferramentas: "arcpy.MakeFeatureLayer_management" para criar uma layer temporária das classes referidas, "arcpy.SelectLayerByAttribute_management", selecionado assim a layer temporária das classes e fazendo um clip ("arcpy.Clip_analysis") de modo a ajustar as classes com a área de estudo (Alentejo), finalizando assim o processo na realização deste mapa.

No que diz respeito ao segundo mapa temático, relativo à área com a distância das estradas IC e IP entre os 500m e os 3000m recorreu-se às ferramentas: "arcpy.MakeFeatureLayer_management", de modo a criar uma layer temporária das estradas totais, "arcpy.SelectLayerByAttribute_management", selecionando a layer temporária das variáveis selecionadas e "arcpy.Clip_analysis" para recortar pela área de estudo. De seguida,

utilizou-se a ferramenta "arcpy.MultipleRingBuffer_analysis" para gerar um raio das áreas que rodoviárias de 500 m 3000 IP. contenham vias a m do tipo IC "arcpy, Make Feature Layer management" para criar uma "layer" temporária do "buffer" e por fim a ferramenta "arcpy.FeatureClassToFeature", de modo a transformá-la em dados vetoriais. Por fim recorreu-se à ferramenta "arcpy.Intersect_analysis" de modo a intersetar a área de estudo (Alentejo), a shapefile com o buffer das vias rodoviárias de 500m a 3000m do tipo IC e IP possibilitando identificar os municípios com este critérios.

Para além de identificar os critérios gerais, foram feitas outras operações com o objetivo de usar as diversas ferramentas da biblioteca *arcpy*. De modo a identificar os municípios com maior variação positiva de população residente superior a 65 anos que tenham vias rodoviárias de 500 m a 3000 m do tipo IC e IP, concebeu-se uma "layer" temporária com a faixa etária de 65+ anos, fez-se uma seleção pelos atributos, selecionando assim a "layer" temporária e a variação entre o ano de 2011 e 2001, com isto gerou-se dados vetoriais com a informação dos municípios e variação dos anos referidos. A seguir intersetou-se com a ferramenta "arcpy.Intersect_analysis" a shapefile da faixa etária referida com a shapefile do buffer criado anteriormente e assim identificou-se os municípios com maior variação positiva de população residente superior a 65 anos que tenham vias rodoviárias de 500 m a 3000 m do tipo IC e IP (**figura 9**).

Para identificar os municípios com maior variação positiva de população residente entre 25 e 64 anos que tenham vias rodoviárias de 500 m a 3000 m do tipo IC e IP, primeiramente criou-se uma *layer* temporária para colocar a população entre os 25 e 64 anos, posteriormente através do "arcpy.SelectLayerByAttribute_management", calculou-se a diferença entre as duas variáveis selecionadas e a partir disto, realizou-se um *Intersect*, cujo intersetou-se a população alvo com o critério das estradas efetuado anteriormente. Com isto, originou-se uma nova shapefile com os cálculos entre as duas variáveis.

Outra operação realizada, foi identificar o município com maior população da área de estudo. Para isto, ao recorrer ao comando *Search Cursor*, listou-se todos os municípios com a respetiva população residente referente ao ano de 2011. De seguida, implementou-se um "ciclo for", com duas listas, a lista "number_max" grava o maior número encontrado após correr todas as linhas de cada município e a segunda lista "name mun", que grava o nome do município.

Como última operação, identificou-se as áreas com classe de uso de solo admissível num raio de 500m e 3000m de qualquer vias rodoviárias do tipo IC, IP e EN, através de um *Intersect*, que contém as *shapefiles* criadas, resultando em novos dados vetoriais com as condições definidas (**figura 10**).

Figura 9 – Script desenvolvido para os exercícios nº9, 9.1, 9.2 e 9.3.

Figura 10 – Script desenvolvido para os exercícios nº9.4, 9.5 e 9.6.

6.2. Critérios Secundários

Em relação aos critérios secundários, foram escolhidos os seguintes:

- a) Municípios com densidade populacional superior a 100 habitantes/Km²;
- b) Variação positiva da população empregada;
- c) Rácio de Hospitais e de Centros e Hospitalares superior ou igual 1.0;
- d) Densidade Populacional da faixa etária >= 65 superior à média nacional.

De um modo geral, todos os critérios secundários escolhidos seguem o mesmo formato, ou seja, começa-se por criar uma *layer* temporária com a ferramenta "arcpy.MakeFeatureLayer_management", entre a shapefile da área de estudo e os campos da

tabela de atributos que se incidem os diferentes critérios. A partir desta *layer* temporária, faz-se a seleção dos atributos que se tem como requisito.

No caso do município com densidade populacional superior a 200hab/km², foi feito o cálculo, cujo obteve-se 0 resultados, e a partir disto o grupo optou por efetuar novamente o cálculo por 100hab/km². No que diz respeito à população empregada, calculou-se a diferença da população empregada entre 2011 e 2001, resultando assim a variação positiva da população empregada. Em relação ao critério d), selecionou-se o campo da população com 65 anos ou mais. No que diz respeito ao rácio dos hospitais e centros hospitalares, este já tinha sido calculado anteriormente, então apenas foi necessário selecionar a condição dos municípios que apresentavam um rácio maior que um, sendo que se obteve 0 resultados, e por isso foram elaborados 4 critérios secundários, em vez de três. Após todas as seleções realizadas, gravou-se cada critério numa nova *shapefile* (**figura 11**).

Figura 11 – Script desenvolvido para os critérios secundários (exercício 10 e respetivas alíneas).

e) Qual será a melhor localização para implementar um centro de distribuição de vacinas covid na região do Alentejo?

Com o cruzamento dos diferentes critérios elaborados, chegamos então à localização de potenciais locais para a implementação de um centro de distribuição de vacinas covid nesta área de estudo (**figura 13**). Todos os locais potenciais encontram-se no município de Cartaxo na extremidade a noroeste desta região do Alentejo. Este resultado final, derivou da realização de vários *Intersects* com as shapefiles dos critérios realizados, definindo-se o mapa com os critérios gerais e os mapas com os critérios secundários presente no script "/final_criteria.shp" (**figura 12**).


```
      Script_tppy
      ●

      C > Users > mafam > Desktop > Trabalho_PSOT > projeto_script > ● script_tp.py > ...

      311
      #Define the map with primary criteria

      312
      arcpy.Intersect_analysis([resultados + "/Areas_landuse.shp", resultados + "/criteria_roads.shp"], resultados +

      313
      "/primary_criteria.shp")

      314
      print "done"

      315
      #Definir mapas secundários

      316
      #Definir mapas secundários

      317
      arcpy.Intersect_analysis([resultados + "/primary_criteria.shp", resultados + "/denspop_1e0.shp"], resultados + "/secondary_1.shp")

      318
      arcpy.Intersect_analysis([resultados + "/primary_criteria.shp", resultados + "/employed_variation.shp"], resultados + "/employed
```

Figura 12 – Script desenvolvido para definir o mapa final, tendo em conta os critérios desenvolvidos.

Figura 13 – Melhor localização para a implementação de um centro logístico de vacinação na Região do Alentejo (NUTII).

7.Detalhes relevantes de implementação

Para finalizar o script, foi solicitado armazenar todos os dados em 2 features dataset. De forma a facilitar este processo, usou-se os comandos, "ListFeaturesClasses", "ListRaters" e "ListTables", para que não fosse necessário escrever a designação de cada ficheiro manualmente. Posto isto, foi realizada apenas a conversão para a geodatabase, sendo importante referir que os ficheiros raster e tabulares foram guardados na geodatabase pelo facto de não ser possível gravar nas fetatures dataset, nestas apenas estão contidas as shapefiles iniciais e finais (figura 14).

Figura 14 – Funcionalidades do script desenvolvido.

7.1. Principais dificuldades encontradas

As principais dificuldades encontradas na elaboração do script inserem-se na criação e utilização do *geojson* para importar a CAOP, cuja não se conseguiu desenvolver o código nas aulas de apoio. Outra dificuldade, foi executar o comando "Edit Tin", pois, não retornava nenhum resultado, o que fez procurar uma solução, cuja se encontra no uso da ferramenta "Extract by Mask". A última dificuldade encontra-se na otimização da geodatabase, mais especificamente no raciocínio e desenvolvimento desta, dado a sua complexidade, dimensão e dificuldade. Outro infortúnio no desenvolvimento do script com o objetivo de encontrar os locais potenciais à implementação de um centro de distribuição de vacinas covid nesta região, foi a existência de critérios desacuados para esta região, ou seja, alguns dos critérios usados a nível nacional para a implementação destes centros não proporciona nenhum resultado relevante, como por exemplo o critério da densidade populacional e do rácio entre os hospitais e centros hospitalares.

8. Considerações finais

Com a realização deste trabalho foi possível trabalhar com uma biblioteca da linguagem *Python*, de modo a resolver e encontrar soluções para o problema apresentado. Além disso, usando esta nova ferramenta através da elaboração de um script nesta linguagem permite facilitar o processo, em vez, da usual execução pelo *ArcGis(ArcMap10.7)*, automatizando operações que, em certas ocasiões pode ser bastante cansativo e repetitivo manualmente pelo *ArcMap*. Desta forma, apenas basta desenvolver um script para o primeiro e repetir para os restantes. Este relatório foi assim um exercício prático que nos fez relembrar o conteúdo lecionado nesta unidade curricular, apesar de que numa fase final (esperemos), ajudar na decisão de planeamento e ordenamento do território face aos cuidados de saúde.

A potencial implementação de um centro de distribuição de vacinas covid na região do Alentejo insere-se a Noroeste desta, o que se traduz num grande inconveniente para a população do lado oposto ao potencial espaço de distribuição da vacinação. Assim, antes de qualquer implementação seria importante rever e reformular os critérios de modo que estes centros se localizem em locais homogéneos dentro desta região, para não haver grande disparidade de mobilidade e acessibilidade a um centro de vacinação.

Em suma, apesar das dificuldades encontradas, o script desenvolvido pelo grupo, de forma a ser possível determinar a melhor localização de um centro logístico de distribuição revelou que para esta NUT, alguns dos critérios deviam ser ajustados devido às características demográficas desta região como a densidade populacional acrescendo também o rácio de serviços de saúde. Assim, é de extrema importância antes de definir critérios para todo o território nacional, lembrar que o nosso país não é todo homogéneo e que deste modo, os critérios devem ser formulados para cada região especificamente.

9. Referências Bibliográficas

Estevão, Amélia. 2020. Covid-19. Retirado em: https://revistas.rcaap.pt/actaradiologica/article/view/19800

ESRI, What is ArcPy? Retirado em: https://pro.arcgis.com/en/pro-app/latest/arcpy/get-started/what-is-arcpy-.htm

Pordata, Base de Dados Portugal Contemporâneo. 2021. Retirado em: https://www.pordata.pt/O+que+sao+NUTS

Sic Notícias. 2021. "Dia histórico". O 1.º dia da vacinação contra a covid-19 em Portugal. Retirado em: https://sicnoticias.pt/especiais/coronavirus/2020-12-27-Dia-historico.-O-1.-dia-da-vacinacao-contra-a-covid-19-em-Portugal

Wikipédia. 2021, Python. Retirado em: https://pt.wikipedia.org/wiki/Python

Wikipédia. 2021. ArcMap. Retirado em: https://en.wikipedia.org/wiki/ArcMap