Algoritmos y Estructuras de Datos III

Segundo cuatrimestre 2022

Técnicas de diseño de algoritmos

Richard Bellman (1920–1984)

I spent the Fall quarter [of 1950] at RAND. My first task was to find a name for multistage decision processes. (...) The 1950s were not good years for mathematical research. We had a very interesting gentleman in Washington named [Charles Ewan] Wilson. He was Secretary of Defense, and he actually had a pathological fear and hatred of the word "research". (...) Hence, I felt I had to do something to shield Wilson and the Air Force from the fact that I was really doing mathematics inside the RAND Corporation. What title, what name, could I choose? In the first place I was interested in planning, in decision making, in thinking. But planning, is not a good word for various reasons. I decided therefore to use the word "programming". I wanted to get across the idea that this was dynamic, this was multistage, this was time-varying. I thought, let's kill two birds with one stone. Let's take a word that has an absolutely precise meaning, namely dynamic, in the classical physical sense. It also has a very interesting property as an adjective, and that is it's impossible to use the word dynamic in a pejorative sense. Try thinking of some combination that will possibly give it a pejorative meaning. It's impossible. Thus, I thought dynamic programming was a good name. It was something not even a Congressman could object to. So I used it as an umbrella for my activities.

-Richard Bellman, Eye of the Hurricane: An Autobiography (1984)

- Al igual que divide and conquer, se divide el problema en subproblemas de tamaños menores que se resuelven recursivamente.
- **Ejemplo.** Cálculo de coeficientes binomiales. Si $n \ge 0$ y $0 \le k \le n$, definimos

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}.$$

- No es buena idea computar esta definición (¿por qué?).
- ▶ **Teorema.** Si $n \ge 0$ y $0 \le k \le n$, entonces

$$\binom{n}{k} = \left\{ \begin{array}{ll} 1 & \text{si } k = 0 \text{ o } k = n \\ \binom{n-1}{k-1} + \binom{n-1}{k} & \text{si } 0 < k < n \end{array} \right.$$

Tampoco es buena idea implementar un algoritmo recursivo directo basado en esta fórmula (¿por qué?).

```
algoritmo combinatorio(n,k)
  entrada: dos enteros n y k
  salida: \binom{n}{k}
  si k=0 o k=n hacer
        retornar 1
  si no
        a := combinatorio(n-1, k-1)
        b := combinatorio(n-1, k)
        retornar a + b
  fin si
```

- ► **Superposición de estados:** El árbol de llamadas recursivas resuelve el mismo problema varias veces.
 - 1. Alternativamente, podemos decir que se realizan muchas veces llamadas a la función recursiva con los mismos parámetros.
- Un algoritmo de programación dinámica evita estas repeticiones con alguno de estos dos esquemas:
 - Enfoque top-down. Se implementa recursivamente, pero se guarda el resultado de cada llamada recursiva en una estructura de datos (memoización). Si una llamada recursiva se repite, se toma el resultado de esta estructura.
 - 2. **Enfoque bottom-up.** Resolvemos primero los subproblemas más pequeños y guardamos (habitualmente en una tabla) todos los resultados.

Ejemplo: Cálculo de coeficientes binomiales

	0	1	2	3	4		k-1	k
0	1							
1	1	1						
2		2						
3	1	3	3	1				
4	1	4	6	4	1			
:	:					٠		
k-1	1						1	
k	1							1
:	:							
n-1	1							
n	1							

Ejemplo: Cálculo de coeficientes binomiales

```
algoritmo combinatorio(n,k)
   entrada: dos enteros n y k
   salida: \binom{n}{k}
   para i = 1 hasta n hacer
         A[i][0] \leftarrow 1
   fin para
   para i = 0 hasta k hacer
         A[i][i] \leftarrow 1
   fin para
   para i = 2 hasta n hacer
         para i = 2 hasta min(i - 1, k) hacer
                A[i][j] \leftarrow A[i-1][j-1] + A[i-1][j]
         fin para
   fin para
   retornar A[n][k]
```

Ejemplo: Cálculo de coeficientes binomiales

- Función recursiva:
 - ▶ Complejidad $\Omega(\binom{n}{k})$.
- Programación dinámica (bottom-up):
 - ► Complejidad O(nk).
 - Espacio $\Theta(k)$: sólo necesitamos almacenar la fila anterior de la que estamos calculando.

Datos de entrada:

- ▶ Capacidad $C \in \mathbb{Z}_+$ de la mochila (peso máximo).
- ▶ Cantidad $n \in \mathbb{Z}_+$ de objetos.
- Peso $p_i \in \mathbb{Z}_{>0}$ del objeto i, para $i = 1, \ldots, n$.
- ▶ Beneficio $b_i \in \mathbb{Z}_+$ del objeto i, para i = 1, ..., n.

Problema: Determinar qué objetos debemos incluir en la mochila sin excedernos del peso máximo C, de modo tal de maximizar el beneficio total entre los objetos seleccionados.

- Definimos m(k, D) = valor óptimo del problema con los primeros k objetos y una mochila de capacidad D.
- Podemos representar los valores de este parámetro en una tabla de dos dimensiones:

m	0	1	2	3	4	 С
0	0	0	0	0	0	 0
1	0					
2	0					
1 2 3	0					
4	0				m(k, D)	
:	:					
n	0					m(n, C)

▶ Sea $S^* \subseteq \{1, ..., k\}$ una solución óptima para la instancia (k, D).

$$m(k, D) = \begin{cases} 0 & \text{si } k = 0 \\ 0 & \text{si } D = 0 \\ m(k - 1, D) & \text{si } k \notin S^* \\ b_k + m(k - 1, D - p_k) & \text{si } k \in S^* \end{cases}$$

Definimos entonces:

- 1. m(k, D) := 0, si k = 0.
- 2. m(k, D) := m(k-1, D), si k > 0 y $p_k > D$.
- 3. $m(k, D) := \max\{m(k-1, D), b_k + m(k-1, D p_k)\}$, en caso contrario.
- **Teorema.** m(n, C) es el valor óptimo para esta instancia del problema de la mochila.

Sea $S^* \subseteq \{1, \dots, k\}$ una solución óptima para la instancia (k, D).

$$m(k, D) = \begin{cases} 0 & \text{si } k = 0 \\ 0 & \text{si } D = 0 \\ m(k - 1, D) & \text{si } k \notin S^* \\ b_k + m(k - 1, D - p_k) & \text{si } k \in S^* \end{cases}$$

Definimos entonces:

- 1. m(k, D) := 0, si k = 0. 2. m(k, D) := m(k - 1, D), si k > 0 y $p_k > D$. 3. $m(k, D) := \max\{\underbrace{m(k - 1, D)}_{(1)}, \underbrace{b_k + m(k - 1, D - p_k)}_{(2)}\}$, ...
- **Teorema.** m(n, C) es el valor óptimo para esta instancia del problema de la mochila.

- ¿Cuál es la complejidad computacional de este algoritmo?
 - 1. Supongamos que la tabla se representa con una matriz en memoria, de modo tal que cada acceso y modificación es O(1).
- ▶ Si debemos completar (n+1)(C+1) entradas de la matriz, y cada entrada se completa en O(1), entonces la complejidad del procedimiento completo es O(nC) (?).
- ▶ Algoritmo pseudopolinomial: Su tiempo de ejecución está acotado por un polinomio en los valores numéricos del input, en lugar de un polinomio en la longitud del input.

- El cálculo de m(k, D) proporciona el valor óptimo, pero no la solución óptima.
- Si necesitamos el conjunto de objetos que realiza el valor óptimo, debemos reconstruir la solución.

	 $D - p_k$	 D	
:			
k-1	$m(k-1,D-p_k)$	 m(k-1,D)	
k	() / / N)	m(k,D)	
:			
:			

Ejemplo: El problema del cambio

- Supongamos que queremos dar el vuelto a un cliente usando el mínimo número de monedas posibles, utilizando monedas de 1, 5, 10 y 25 centavos. Por ejemplo, si el monto es \$0,69, deberemos entregar 8 monedas: 2 monedas de 25 centavos, una de 10 centavos, una de 5 centavos y cuatro de un centavo.
- ▶ **Problema.** Dadas las denominaciones $a_1, \ldots, a_k \in \mathbb{Z}_+$ de monedas (con $a_i > a_{i+1}$ para $i = 1, \ldots, k-1$) y un objetivo $t \in \mathbb{Z}_+$, encontrar $x_1, \ldots, x_k \in \mathbb{Z}_+$ tales que

$$t = \sum_{i=1}^k x_i \, a_i$$

minimizando $x_1 + \cdots + x_k$.

Ejemplo: El problema del cambio

▶ f(s): Cantidad mínima de monedas para entregar s centavos, para s = 0, ..., t.

$$f(s) = \begin{cases} 0 & \text{si } s = 0 \\ \min_{i:a_i \le s} 1 + f(s - a_i) & \text{en caso contrario} \end{cases}$$

- **Teorema.** f(s) es el valor óptimo del problema del cambio para entregar s centavos.
- ¿Cómo conviene implementar esta recursión?

- ▶ Dada una secuencia A, una subsecuencia se obtiene eliminando cero o más símbolos de A.
 - 1. Por ejemplo, [4,7,2,3] y [7,5] son subsecuencias de A = [4,7,8,2,5,3], pero [2,7] no lo es.
- Problema. Encontrar la subsecuencia común mas larga (scml) de dos secuencias dadas.
- Es decir, dadas dos secuencias A y B, queremos encontrar la mayor secuencia que es tanto subsecuencia de A como de B.
- Por ejemplo, si A = [9, 5, 2, 8, 7, 3, 1, 6, 4] y B = [2, 9, 3, 5, 8, 7, 4, 1, 6] las scml es [9, 5, 8, 7, 1, 6].
- ¿Cómo es un algoritmo de fuerza bruta para este problema?

Dadas las dos secuencias $A = [a_1, \ldots, a_r]$ y $B = [b_1, \ldots, b_s]$, consideremos dos casos:

- ▶ $a_r = b_s$: La scml entre A y B se obtiene colocando al final de la scml entre $[a_1, \ldots, a_{r-1}]$ y $[b_1, \ldots, b_{s-1}]$ al elemento a_r $(=b_s)$.
- ▶ $a_r \neq b_s$: La scml entre A y B será la más larga entre estas dos opciones:
 - 1. la scml entre $[a_1, ..., a_{r-1}]$ y $[b_1, ..., b_s]$,
 - 2. la scml entre $[a_1, ..., a_r]$ y $[b_1, ..., b_{s-1}]$.

Es decir, calculamos el problema aplicado a $[a_1, \ldots, a_{r-1}]$ y $[b_1, \ldots, b_s]$ y, por otro lado, el problema aplicado a $[a_1, \ldots, a_r]$ y $[b_1, \ldots, b_{s-1}]$, y nos quedamos con la más larga de ambas.

Esta forma recursiva de resolver el problema ya nos conduce al algoritmo.

Si llamamos l[i][j] a la longitud de la scml entre $[a_1, \ldots, a_i]$ y $[b_1, \ldots, b_j]$, entonces:

- I[0][0] = 0
- Para j = 1, ..., s, I[0][j] = 0
- Para i = 1, ..., r, I[i][0] = 0
- ▶ Para i = 1, ..., r, j = 1, ..., s
 - ▶ si $a_i = b_j$: I[i][j] = I[i-1][j-1] + 1
 - si $a_i \neq b_j$: $I[i][j] = \max\{I[i-1][j], I[i][j-1]\}$

Y la solución del problema será I[r][s].

```
scml(A,B)
entrada: A, B secuencias
salida: longitud de a scml entre A y B
/[0][0] \leftarrow 0
para i = 1 hasta r hacer I[i][0] \leftarrow 0
para j = 1 hasta s hacer f[0][j] \leftarrow 0
para i=1 hasta r hacer
       para i = 1 hasta s hacer
               \mathbf{si} \ A[i] = B[i]
                      /[i][i] \leftarrow /[i-1][i-1] + 1
               sino
                      I[i][j] \leftarrow \max\{I[i-1][j], I[i][j-1]\}
               fin si
        fin para
fin para
retornar /[r][s]
```