אלגוריתמים 1

תוכן העניינים

5	DFS-1 BFS ו-DFS.	פרק
5	BFS - Breadth First Search	.1
5	.1. הגדרת המרחק בגרף לא מכוון	.1
5	.1. מוטיבציה לאלגוריתם BFS	.2
6	BFS. אלגוריתם ה-BFS.	.3
6	.1. נכונות האלגוריתם	.4
10	DFS - Depth First Search	.2
10	.2. חותמות זמן: זמני גילוי וסיום של צומת (במהלך אלגוריתם סריקה)	.1
10	.2. האלגוריתם	.2
11	.2. זמן ריצה	.3
11	DFS. סוגי קשתות ביער ה-2.	.4
11	DFS- אפיון יחסי אב-צאצא ביער ה.2.	.5
13	.2. רכיבים קשירים היטב	.6
17	.2. האלגוריתם למציאת רכיבים קשירים היטב	.7
19	2. עצים פורשים מינימליים	פרק
19	בעיות אופטימיזציה ברשתות	.1
19	בעיית עץ פורש מינימום (עפ"מ)	.2
21	. אלגוריתמים לבעיית עץ פורש מינימום	.3
22	.3. האלגוריתם הגנרי למציאת עפ״מ	.1
25	Prim אלגוריתם של.	.2
27	Kruskal האלגוריתם של.	.3
31	3. מסלולים קלים ביותר	פרק
31	. מסלולים קלים ביותר בגרפים מכוונים ממושקלים	.1
32	. מבנה אופטימלי של מסלולים קלים	.2
34	. פתרון הבעיה האלגוריתמית בגרף ללא מעגלים שליליים	.3
36	. עץ מסלולים קלים ביותר	.4
36	. אלגוריתמים למסלולים קלים ביותר	.5
36	5. אינטואיציה למשקלים אי שליליים	.1
38	Dijkstra האלגוריתם של.5.	.2
40	.5. משקלים כלליים	.3
41	Rellman-Ford באלנורנתת של	4

DFS-ו BFS אלגוריתמי

BFS - Breadth First Search .1

 ${}^{\circ}G$ שאלה 1.1 כיצד לחשב מסלול קצר ביותר בין שני צמתים בגרף לא מכוון

1.1. הגדרת המרחק בגרף לא מכוון.

(G בגרף בון צמתים u,v בגרף (המרחק בין במתים 1.1 המדרה

 $u,v\in V$ ושתי צמתים G=(V,E) בהינתן גרף לא

 $\delta_G\left(u,v
ight)$ או ב-G. נסמן מרחק הוא האורך המפר קשתות) של המסלול הקצר ביותר בין u ו-u ב-G הוא האורך המפר קשתות) של המסלול הקצר ביותר בין σ הוא האורך האורך (מספר קשתות) של המסלול הקצר ביותר בין σ הוא האורך (מספר קשתות) של המסלול הקצר ביותר בין σ הוא האורך (מספר קשתות) של המסלול הקצר ביותר בין σ הוא האורך (מספר קשתות) של המסלול הקצר ביותר בין σ הוא האורך (מספר קשתות) של המסלול הקצר ביותר בין σ הוא האורך (מספר קשתות) של המסלול הקצר ביותר בין σ הוא האורך (מספר קשתות) של המסלול הקצר ביותר בין σ הוא האורך (מספר קשתות) של המסלול הקצר ביותר בין σ הוא האורך (מספר קשתות) של המסלול הקצר ביותר בין σ הוא האורך (מספר קשתות) של המסלול הקצר ביותר בין σ הוא האורך (מספר קשתות) של המסלול הקצר ביותר בין σ הוא האורך (מספר קשתות) של המסלול הקצר ביותר בין σ הוא האורך (מספר קשתות) של המסלול הקצר ביותר בין σ הוא האורך (מספר קשתות) של המסלול הקצר ביותר בין σ הוא האורך (מספר קשתות) של המסלול המסלול

 $u \in V$ מצומת ליד כל מסומנים מסומנים גרף א בגרף בגרף מצומת איור 1: המרחקים ל $\delta\left(s,u\right)$ מצומת מסומנים איור

טענה 1.1 (המקבילה לאי-שוויון המשולש)

ינים: $e=(u,v)\in E$ קשת לכל קישת היהי איהי מכוון, ויהי G=(V,E) יהי

$$\underbrace{\delta\left(s,v\right)}_{v\text{-1 }s} \leq \underbrace{\delta\left(s,u\right)}_{e} + \underbrace{1}_{e}$$
 אורך הקשת e המרחק בין e

. הטענה מתקיימת הטענה. אם אין מסלול בין s -ו u ב-s והטענה מתקיימת. הוכחת הטענה.

 $.\delta(s,u)$ - אחרת, יהי P מסלול קצר ביותר בין s ו-s ו-s מסלול קצר מסלול אחרת, יהי P מסלול ב-S(s,)+1 את הקשת P, ווקיבלנו מסלול ב-S(s,)+1

 $\delta(s,v) \leq \delta(s,u) + 1$ ולכן G- ב-יותר בין אורך המסלול הקצר ביותר בין אורך המסלול היותר בין אורך המסלול היותר ביותר ביותר

- בגרף: פומת s לכל צומת בער המרחק לרצה לחשב את נרצה נרצה נרצה. BFS מוטיבציה לאלגוריתם
 - $S \in V$ וצומת G = (V, E) אמכוון קלט: גרף לא
 - $.\delta_{G}\left(s,v\right)$ את $v\in V$ מטרה: לחשב לכל

DFS ו-BFS אלגוריתמי.

. עצמו. $\delta(s,?)$ את יודעים את שעבורו היחיד מהצומת מהצומת להתחיל האינטואיציה:

.BFS- אלגוריתם ה-1.3

6

. תור.
$$Q \leftarrow \{s\}, \ T \leftarrow \{s\}, \ \lambda(v) \leftarrow \begin{cases} 0 & v = s \\ \infty & v \neq s \end{cases}$$
 •

- $:Q \neq \emptyset$ כל עוד •
- Q יהי u הצומת בראש התור (1)
- $v \notin T$ -ט כך ש- $e = (u, v) \in E$ לכל קשת (2)

$$T$$
 ← $T \cup \{v\}$ (x)

$$\lambda(v) \leftarrow \lambda(u) + 1$$
 (2)

- Q גו הכנס את v לסוף התור (ג)
 - Q הוצא את u מהתור (3)

.1.4 נכונות האלגוריתם.

 $|V|=n,\;|E|=m$ נסמן, G=(V,E) עבור גרף עבור בקורס) נסמון מקובל הערה 1.1 (סימון מקובל בקורס)

שאלה 1.2

- (1) מדוע האלגוריתם מחזיר תשובה נכונה?
- (2) עד כמה האלגוריתם יעיל? (בד"כ יעילות תתייחס לזמן)

נתחיל מ-(2).

- .O(n) :האתחול
- $O(\deg(u)):Q$ יוצא מ-u האיטרציה בה u יוצא -

כמו כן,

- . אחת פעם אחתר פעם לכל Q-לכל נכנס בימת \bullet
 - Q- כל צומת שנכנס ל-Q גם יוצא מ-Q •

סך הכל זמן ריצה:

$$\underbrace{O(n)}_{\text{MIDIM}} + \underbrace{O\left(\sum_{u \in V} \deg(u)\right)}_{\text{MIDIM}} = O(n+m)$$
הסם עליון על אוון אינון אינון אינון הריצה של הריצה של האינורצונן

נתמקד בטענה (1), ונוכיח אותה תוך שימוש בטענות העזר הבאות:

 $s\in V$ יהי (ע. א מפספס למטה") גרף איז מכוון, ותהא ותהא איז: G=(V,E) יהי למטה") איז: איז: $\forall v\in V,\ \lambda(v)$ החל מ-S. איז:

$$\lambda(v) \ge \delta(s, v), \ \forall v \in V$$

 $v \in V$ הוכחה. יהי

. הטענה נכונה $\lambda\left(v\right)=\infty$ יתקיים Q, אם על לא נכנס ל-

אם ע נכנס ל-Q (וזה קורה בדיוק פעם אחת), נוכיח את הטענה באינדוקציה על סדר כניסת הצמתים ל-O:

: אז: v = sנכנס ראשון לתור (המקרה ש-s), ואז:

$$\lambda(s) = \underbrace{0}_{\text{הגדרת האלגוריתם}} = \delta(s, s)$$

, אניח נכונות עבור k הצמתים הראשונים שהוכנסו לתור אניח כניח כי v היא הצומת ה-1 k+1 שהוכנסה לתור.

:ברגע ההכנסה של v ל-Q, נסמן ב-u את הצומת שבראש Q, ונקבל

$$\lambda\left(v
ight) = \lambda\left(u
ight) + 1 \underset{\text{(u, v)} \in E-1 \ s}{\geq} \delta\left(s, u
ight) + 1 \underset{\text{(u, v)} \in E-1}{\geq} \delta\left(s, v
ight)$$

אזי: s- מרל מ-S אזי: מרכן של BFS אזי: בשלב כלשהו על תוכן Q בשלב (v_1,v_2,\ldots,v_k) יהי

- $\lambda(v_1) \le \lambda(v_2) \le \ldots \le \lambda(v_k)$ (1)
 - $\lambda(v_k) \le \lambda(v_1) + 1$ (2)

:Qהוצאה מ-Qהונית באינדוקציה על סדר הפעולות של הכנסה/הוצאה מ-

- . בסיס: האתחול הוא כש-Q מכיל רק את s. לכן (1) ו-(2) מתקיימים באופן ריק.
 - r+1הפעולה ה-1 צעד: נניח נכונות עבור r הפעולות הראשונות, ונוכיח עבור הפעולה •

אז: אור, אז: uו בראש התור, אז: r+1הייתה הכנסה, נניח שהכנסנו את ר+1 הייתה הייתה הכנסה, נניח שהכנסנו את

$$\lambda(v) = \lambda(u) + 1$$

לפי הגדרת האלגוריתם.

v בגלל שלפני הוספת v ל-v (1) ו-(2) התקיימו, זה יתקיים גם לאחר הוספת

אם ההפעלה ה-t+1 הייתה הוצאה, אז ברור שמהנחת האינדוקציה (1) ו-(2) יתקיימו גם לאחריה.

משפט 1.1 (הוכחת נכונות אלגוריתם BFS)

 $S \in V$ יהי (א מכוון ו-G = (V, E)יהי

sמתקיים: אז בסיום ריצת BFS אז בסיום אז

$$\forall v \in V, \ \lambda(v) = \delta(s, v)$$

.2-ו וו-2.

:s-בית מרחקן מ-s נסתכל על שכבות הגרף לפי מרחקן מ

$$V_k \triangleq \{u \in V : \delta(s, u) = k\}$$

DFS ו-BFS אלגוריתמי 1.

s כלשהי צומת איור 2: שכבות של גרף לא מכוון לדוגמה עבור צומת

 $.\delta\left(s,v\right)=\infty\iff v$ ו- s בין מסלול שב-G נניח שב- נניח המשפט. נניח שב- לפי טענה β נקבל ש- לפי טענה לפי טענה $\lambda\left(v\right)\geq\infty$ ש- אין נקבל ש- לפי טענה לפי טענה לפי א

. $\delta\left(s,v\right)=k$ נניח שב-G יש מסלול בין s ו-S יש מסלול שב-S נוכיח את המשפט באינדוקציה על

- $\lambda(s)=0$ אז מוגדר מפני שבאתחול מתקיים מפני, $\lambda(s)=s$ אז אז איז פסיס:
 - :עד: נניח כי $v \in V_k$ ונסמן •

$$A \triangleq \{u \in V_{k-1} | (u, v) \in E\}$$

.כאשר הגדרת A אינה תלויה באלגוריתם

Q שהיא האונה לצאת הצומת ב-A שהיא הראשונה לצאת מהתור עסמן

נשים לב ש-A אינה יכולה להיות ריקה, ולפי הנחת האינדוקציה, גםיום ריצת האלגוריתם לכל הצמתים ב-A ישנו ערך λ השווה ל- λ ולכן בהכרח כל אחד מהם הוכנס לתור λ .

 $\lambda(v)=\infty$ נראה שבאיטרציה שבה u^* נמצא בראש התור $\lambda(v)=\infty$ לצומת ע מתקיים ש $\lambda(v)=\infty$ (כלומר, ע עדיין "לא התגלה").

w- וונניח עוכנס לתור Q, שבה א מוכנס מוכנס לתור u^* מונניח ש- נניח בשלילה שזה א מוכנס לתור Q וונניח שאיטרציה או).

(נובע מלמה 1.2). בגלל בחירת u^* , מתקיים ש-w הוא שכן של ע בשכבה j, כך ש- $j \leq k-1$ (נובע מלמה 2.2).

לפי הנחת האינדוקציה $\lambda(w) < \lambda(u^*)$, וכעת:

$$\lambda\left(v\right)$$
 $\underset{\text{ הנחת האינדוקציה }}{=} \lambda\left(w\right) + 1 < \lambda\left(u^*\right) + 1$ $\underset{\text{ הנחת האינדוקציה }}{=} (k-1) + 1 = k = \delta\left(s,v\right)$

.1.1 סה"כ קיבלנו $\lambda(v) < \delta(s,v)$, וזו סתירה מלמה

וויכנס אייכנס זי ע יקבל אייטרציה או אייכנס מקיימת ע מקיימת א מקיימת ע מקיימת ע בראש התור אייכנ u^* בראש בראש ל- u^*

DFS אלגוריתמי 10. אלגוריתמי 1.

DFS - Depth First Search .2

משימה: למצוא רכיבים קשירים היטב של גרף מכוון בזמן לינארי.

.2.1 חותמות זמן: זמני גילוי וסיום של צומת (במהלך אלגוריתם סריקה).

u אומת של הגילוי של - s(u) 1.2 הגדרה

u אום של פיום סיום - f(u) 1.3 הגדרה

.2.2 האלגוריתם.

- :אתחול
- $\forall u \in V$, status $(u) \leftarrow$ unvisited (1)

$$\forall u \in V, \quad p(u) \leftarrow \text{NULL}$$
 $t \leftarrow 0$ (2)

- .visit (u) בצע :status (u) = unvisited כל עוד יש צומת ש כך v כל עוד יש צומת v v
 - :visit (u) •

$$s(u) \leftarrow t -$$
 (1)

$$t \leftarrow t + 1$$

status
$$(u) \leftarrow \text{visited} -$$

.visit (v) וגם, $p(v) \leftarrow u$ אז ,status (v) = unvisited אם, $(u \rightarrow v) \in E$ לכל קשת (2)

$$\begin{cases} f(u) \leftarrow t \\ t \leftarrow t + 1 \end{cases}$$
 (3)

.DFS איור 3: דוגמת הרצה של אלגוריתם

 $,u\in V$ אומת לכל אכל מכוון על גרף DFS מסקנה בריצת מסקנה מסקנה בריצת

אחת. בדיוק פעם יקרא ייקרא visit (u)

.2.3 זמן ריצה.

- מה זמן הריצה של אלגוריתם ה-DFS!
- $O(1) + O\left(\deg_{\mathrm{out}}(u)\right)$ כמה אמן לוקח לכצע (אס יש) אינונו (אס יש) אינונעו (אס יש) אינונעו יינוע פון אינונע יינון אינונע יינוע יינוע יינוע אינונע
 - (ובפרט האלגוריתם עוצר). O(n+m) סה"כ \leftarrow

הערה 1.2 לאלגוריתם ה-DFS דרגות חופש רבות.

חותמות הזמן s,f מהוות תיעוד של היסטוריית ריצת מהוות s,f

$$E_p = \{(p(v) \rightarrow v) \in E : p(v) \neq \text{NULL}\}$$

G נשים לב ש- G_p הוא תת-גרף של

V הוא ער מכוון אשר פורש הת כל צמתי (תרגיל) את משפט 1.2 משפט 1.2 משפט

.DFS-סוגי קשתות ביער ה-2.4

G שאלה 1.3 כיצד ניתן לסווג את קשתות בהינתן ריצה מסוימת של $^{\circ}$

 $.p\left(v
ight)=u$ אם עץ, אם היא קשת עץ היא או ($u
ightarrow v
ight)\in E$ (קשת עץ) או הגדרה 1.5 הגדרה

, אם אינה קשת קדמית, אם אינה קשת עץ, האדרה 1.6 (קשת קדמית, אם אינה קשת עץ, הגדרה $u \to v$) (קשת קדמית, אם אינה קשת עץ, ביער ה-DFS).

.DFS-היא של ע ביער אם צאצא u אחורית, אם היא קשת ($u \rightarrow v$) $\in E$ (קשת אחורית) אם 1.7 הגדרה

הגדרה 1.8 (קשת חוצה) כל שאר הקשתות מכונות קשתות חוצות.

הערה 1.3 כאשר מבצעים DFS על גרף לא מכוון, יווצרו רק קשתות עץ וקשתות אחוריות (ללא הוכחה).

.DFS-ה ביער ה-2.5

 $u, v \in V$ ולכל DFS למה G, לכל היצת מכוון למה 1.3 למה בדיוק אחד משלושת הבאים מתקיים:

12 prinz 2 112// 1/0//2012 1// 1/ pr /

- u אינו צאצא של v ו-[s(v), f(v)] זרים, ו-u אינו צאצא של ו-[s(u), f(v)] ו-[s(u), f(u)]
 - v איל של v ו-v אין v (v) א פרע של v (v) אין v (v) אין v
 - u איל של ער , s(u) < s(v) < f(v) < f(u) (3)

הוכחה. נניח s(u) < s(v) המקרה ההפוך - סימטרי).

 $| \mathbf{s} (v) < f(u) |$ מקרה ראשון: •

DFS ו-BFS אלגוריתמי 12

נרצה להראות שאנחנו במקרה ג'.

.(s(v) < f(u)ש-(בגלל ש-עונו את יימנו א סיימנו א עדיין א גילוי עדיין א גילוי עדיין א טיימנו את

.visit (u) נקרא מתוך ארשרת קריאות ארשרת מתוך visit (v) כקרא visit (v) כקרא איי

.visit (u) מסתיים לפני visit (v)

$$f(v) < f(u) \Longleftrightarrow$$

$$s(u) < s(v) < f(v) < f(u)$$
 \Leftarrow

u מדוע v הוא צאצא של

.visit (v)- visit (u) באינדוקציה לפי מספר הקריאות של visit שבוצעו בין עוכיח לפי מספר

.visit (u) בסיס: visit (v) בסיס visit (v) ב

u של אצא א ולכן u, ולכן v צאצא של של ,u

.visit (w) נקרא מתוך visit (v) צעד: נניח כי

w של (צאצא) ישיר ישיר הוא ילד סלומר ע כלומר v

u של ע צאצא אל א ולכן u צאצא אל של w הוא אינדוקציה, א לפי הנחת

$$f(u) < s(v)$$
 : מקרה שני

נרצה להראות שאנחנו במקרה א'.

חייב להתקיים:

$$s\left(u\right) < f\left(u\right) < s\left(v\right) < f\left(v\right)$$

מכיוון שלא ניתן לסיים צומת לפני שמגלים אותו.

:(סימטרי) אינו צאצא של u (המקרה ההפוך v- סימטרי)

 $\operatorname{visit}(v)$ אם נניח בשלילה ש-v הוא כן צאצא של u, אז צריך להתקיים ש-v אס נניח בשלילה ש-v אווא יוא איז א רובפרט $\operatorname{visit}(v)$ מתרחש בשרשרת קריאות רקורסיביות שמקורן ב- $\operatorname{visit}(u)$, ובפרט $\operatorname{visit}(v)$ מסתיים לפני סיום $\operatorname{visit}(u)$, ז"א $\operatorname{visit}(u)$ בסתירה!

מסקנה 1.2 (מטענת העזר)

 $s(u) < s(v) < f(v) < f(u) \iff DFS$ ביער ה-u צאצא של צאצא ע

,DFS משפט 1.3 אפיון ליחסי אב-צאצא ביער ה-G לכל גרף מכוון ליחסי אב-צאצא ביער ה-

עצמו). (פרט ל-u unvisited פרט וויק שם בזמן איש ב-G מסלול מ-u ל-v שכל הצמתים בו הן שוויק עבמו). עצמון עצמוv

הוכחה.

u נרצה להוכיח שברגע גילוי : \leftarrow

.unvisited שמכיל רק צמתים שמכיל v-ל מסלול מ-ש ב-G- יש ב-

 (G_p) DFS-יהי P ביער מ-סלול מ-u מ

.unvisited ב-P הם ברגע גילוי u, כל הצמתים ב-u

.DFS -ה ביער של של א צאצא א לכן ,P- אומת ביער w

s(u) < s(w) לפי המסקנה

.unvisited ב-P הצמתים כל u גילוי ולכן ברגע גילוי

v-ט מסלול P מסלול G-ט קיים ב-U מילוי שברגע גילוי U

u צאצא של ע-ע נרצה להראות (באותו באותו unvisited שכל הצמתים בו שכל הצמתים בו שו

v אחרת x פוכטח כגלל x, אחרת x הערה: קיוס אינו צאצא של x, ויהי ויהי א הצומת הראשון במסלול שאינו צאצא של x, אוני אינו צאצא של x, אוניח בשלילה ש-x

יהי y הצומת הקודם ל-x במסלול (קיוס y פוכטח כי x כהכרח אינו הצומת הראשון ב-(x). מתקיים:

$$s\left(u
ight) < s\left(x
ight) < f\left(y
ight) \leq f\left(u
ight)$$
 יש קשת מ- y ליש קשת מ- y ל- x , ברגע גילוי y , כל הצמתים ($y = u$ לאולי $y = u$ באצא של y (עד שי x מתגלה. עד שי x מתגלה.

,(שכן אינטרוולים לא יכולים להיחתך), צאצא של x צאצא אבל לפי המסקנה אבל אבל

וזו סתירה להנחת השלילה.

.2.6 רכיבים קשירים היטב.

הגדרה 1.9 (רכיב קשיר היטב) נגדיר יחס (רלציה) על זוגות של צמתים באופן הבא:

 \iff ניחס v-ו u

v-ט ש מסלול מ-u ל-G •

DFS ו-BFS אלגוריתמי 14

u-ט ש מסלול מ-v •

הרכיבים הקשירים היטב הם מחלקות השקילות של היחס הזה.

איור 4: רכיבים קשירים היטב עבור גרף לדוגמה

:היות: $ar{G}ig(ar{V},ar{E}ig)$ להיות הרכיבים הקשירים אורף הרכיבים לכל גרף מכוון לכל גרף מכוון להגדיר את ארף אוריים היטב שלו

$$ar{V} = \{C \, | G$$
 רכיב קשיר היטב של $C\}$

$$\bar{E} = \left\{ \left(C_i \to C_j \right) \middle| \begin{matrix} v \in C_j \text{ -1 } u \in C_i \\ \left(u_i \to u_j \right) \in E \end{matrix} \right\}$$

איור 5: גרף הרכיבים הקשירים היטב של הגרף מהאיור הקודם

איור של גרף הרכיבים הקשירים היטב של הדוגמה הקודמת

הערה 1.4 גרף רכיבים קשירים היטב הוא בהכרח חסר מעגלים מכוונים (גרף א-ציקלי), ולכן ניתן לבצע עליו מיון טופולוגי.

באופן כללי, נוח לפתור בעיות על גרפים מסוג זה.

G = (V, E) אשלה 1.4 בהינתן אותנו) שאלה החישובית שתעניין אותנו) אותנו

כיצד נחשב את גרף הרכיבים הקשירים היטב שלו?

הערה 1.5 קל לפתור את הבעיה בזמן ריבועי, ע"י הרצת אלגוריתם סריקה (BFS, DFS) מכל צומת.

נרצה לפתור את הבעיה בזמן לינארי, בהתבסס על התכונות שמצאנו מקודם.

הערה 1.6 באופן כללי, מובטח שכל קשת אחורית "סוגרת מעגל".

נרצה לבחור נציג לכל רכיב קשיר היטב, שהוא:

- **.**"קנוני". ●
- "הכי קדמון" בעל זמן הנסיגה הגדול ביותר.

f(v) הנציג של צומת u בהינתן ריצת DFS נתונה, הנציג של צומת v שישיג מ-u בהינתן ריצת הנסיגה (עונה, הנציג של צומת v הגדול ביותר.

 $\varphi(u)$ מסמנים

הערה 1.7 כל רכיב קשירות היטב מוכל בהכרח בעץ יחיד ביער ה-DFS (לפי המסקנה ממקודם), אבל ההפך אינו בהכרח נכון.

. באותו רכיב קשיר היטב ש- $\varphi(u)$ ו ו- $\varphi(u)$ מתקיים ש-u ולכל צומת חלכל צומת ש-ש ולכל למה 1.4 למה

הוכחה. ב-G יש מסלול מ-u ל-(u) (מהגדרת נציג).

נתונה. DFS נתונה ביחס לריצת $\varphi(u)$ יש מסלול מ-Gיש מסלול להראות שב-

DFS-ביער $\varphi\left(u\right)$ ביער ה-אוא צאצא של ער ידי כך שנוכיח על מסלול שכזה של מסלול מסלול ידי כך שנוכיח ש-נראה איז מיתר).

 $\varphi\left(u\right)\neq u$ נניח לכן אז סיימנו, $\varphi\left(u\right)=u$ אם

 $f(u) < f(\varphi(u))$ מהנחה זו נובע כי

 $\varphi\left(u\right)$ ה נסוגנו שכבר איתכן לא יתכן, DFS-ט"י ע"י ע"י בזמן לכן, בזמן לכן, ל

לכאורה, יתכנו 2 אפשרויות:

- (ו) ברגע גילוי $\varphi(u)$ חדש (unvisited).
- $arphi\left(u
 ight)$ אינו חדש, אבל עדיין לא נסוגנו מ- $arphi\left(u
 ight)$ אינו חדש, אבל עדיין אינו מ-(2)

נוכיח ש-(1) אינו אפשרי.

u נציג של $\varphi(u)$ נציג של לפי ההגדרה ע $\varphi(u)$ נציג של נניח בשלילה ש-(1) אפשרי, ויהי

חדשים P-ם חדשים שכל איתכן לא u גילוי ברגע גילוי

(אחרת, לפי משפט, $\varphi(u)$ צאצא של u, ולכן u, ולכן u צאצא של א בסתירה להגדרת הנציג).

.DFS י"ע u גילוי (visited) שאינו אינו במסלול במסלול במסלול ע"י ע"י הצומת האחרון במסלול אינו אינו ו

DFS ו-BFS ו-BFS ו-BFS.

.(unvisited) כולה חדשה $\varphi\left(u\right)$ לכן, ברגע גילוי א, הסיפא של P מ-ע מ-ע

:לכן, DFS איט פיער של צאצא $\varphi\left(u\right)$ אז:

$$f\left(\varphi\left(u\right)\right) < f\left(v\right)$$

.u וזו סתירה לכך ש-arphi(u) הוא הנציג של

. אצא שלנט, בפרט u צאצא שלנו. אינטרוולים, האינטרוולים, האינטגרל של מוכל בזה של לכן לפי

: מתקיים, DFS טענה לכל גרף מכוון G=(V,E) ולכל שני צמתים ולכל ולכל ריצת לכל מתקיים

 $\varphi\left(u\right)=\varphi\left(v\right)\iff$ באותו רכיב קשיר היטב ע, u,v

הוכחה.

, אוסף הצמתים שישיגים מ-u זהה לאוסף הצמתים שישיגים מ-u. אותו נציג. ולכן בהכרח יש ל-u, אותו נציג.

. באותו רכיב קשיר היטב $u, \varphi(u)$ באותו ביים לפי $\underline{\Longrightarrow}$

באופן דומה, $v, \varphi(v)$ באותו רכיב קשיר היטב.

אבל (ע) היטב קשיר היטב u, v אבל מהנתון, ולכן $\varphi(u) = \varphi(v)$

.2.7 האלגוריתם למציאת רכיבים קשירים היטב.

- $u \in V$ אומת לכל לכל ליגוה (ו) לקבלת אמני לקבלת לק G = (V,E) על DFS מריצים
 - . נסמן ב- G^R את הגרף שמתקבל מ-G ע"י הפיכת כיווני הקשתות (2)
- ביותר משלב ביותר עם אמן הנסיגה שנותר עם ביער ה-DFS, בוחרים את ביער ה-DFS, ביותר משלב מתחילים עץ חדש ביער ה- G^R מריצים ביער ה- G^R אלגוריתם.
 - G = (V, E) הקלט: גרף •
 - .(שלב 5) G^R השנייה על DFS השנייה שמתקבלים בריצת העצים שמתקבלים הפשירים היטב של G.

עצים פורשים מינימליים

1. בעיות אופטימיזציה ברשתות

דוגמה 2.1 נתונה רשת התקשורת הבאה:

איור 1: על כל קשת מופיע מחיר השימוש בה.

נניח כי הצומת a מעוניין להפיץ הודעה לכל הצמתים ברשת. מעוניין להפיץ מעוניין לכל הצמתים. יש למצוא תת קבוצת של קשתות ברשת, שעליהן ההודעה תעבור כך שתגיע לכל הצמתים.

שאלה 2.1 האם יכול להיות שבתת-הגרף שנבחר יהיו מעגלים?

הערה 2.1 נשים לב כי היות שנרצה להשיג מחיר מינימלי, תת-הגרף שהתקבל מבחירת הקשתות הינו לבטח חסר מעגלים.

2. בעיית עץ פורש מינימום (עפ"מ)

w(v,u) יש משקל (v,u) אבו לכל קשת (v,u) שבו לכל קשר לא מכוון (G=(V,E) קשיר לא נתון גרף קשיר) יש משקל

יש למצוא עץ פורש של הגרף, שסך משקל הקשתות שלו מינימלי.

דוגמה 2.2 (דוגמה לעץ פורש של גרף משקלים נתון)

איור 2: עץ פורש של הדוגמה הנתונה.

- . בכחול. מ-a, לכן נסמנה בכחול. ביותר שיוצאת הזולה הקשת (a,e)
 - (e,d) נסמן את הקשת ullet
 - (b,d) נסמן את הקשת \bullet
 - (b,d) נסמן את הקשת ullet
 - (b,c) נסמן את הקשת ullet

.9 כאשר משקל העץ הפורש הינו

ללא הוכחה, נציין שזהו גם למעשה עץ פורש מינימלי.

נבחין שזהו אינו העץ הפורש היחיד בעל משקל 9, שכן היה ניתן נבחין שזהו אינו העץ הפורש (e,d) בקשת להחליף את הקשת למשל להחליף את הקשת (e,d) בקשת הקשת למשל להחליף את הקשת

3. אלגוריתמים לבעיית עץ פורש מינימום

נראה אלגוריתם גנרי, ובהמשך נציג אלגוריתמים שמתקבלים כמקרים פרטיים של אלגוריתם זה.

- <u>הרעיון</u>: נשתמש באלגוריתם חמדן שיבנה עפ"מ קשת אחר קשת, ע"י הוספת קשתות עם משקל נמוך והשמטת קשתות עם משקל גבוה.
- האלגוריתם יתקדם ע"י צביעת קשתות: קשתות שיצבעו בכחול יופיעו בעץ, וקשתות שיצבעו באדום יושמטו.
 - האלגוריתם יקיים בכל שלב את שמורת הצבע.

טענה 2.1 (שמורת הצבע) קיים עפ"מ שמכיל את כל הקשתות הכחולות ואף אחת מהקשתות האדומות.

מסקנה 2.1 משמורת הצבע נובע כי כאשר כל הקשתות ב-G נצבעו, הקשתות הכחולות יוצרות עץ עפ"מ.

 $ar{X}=V\setminus X$ ו ו-X ו-X ו-X ו-X הגדרה 2.2 (חתך) בגרף בוצות: G=(V,E) הוא חלוקה של קבוצת הצמתים

 $ar{X}$ נאמר שקשת חוצה את החתך אם קצה אחד שלה ב-X והקצה האחר ב- $ar{X}$. לפעמים נגיד שקשת כזו תהיה קשת של החתך.

 $X = \{a,b,c\}$ ברשת: (גדיר חתך ברשת: לחתך ולקשתות שחוצות שחוצות אותו) נגדיר חתך ברשת: הקשתות שחוצות את החתך:

$$\{(b,d),(a,e),(c,d),(a,d),(b,e)\}$$

איור 3: החתך לדוגמה על גרף הרשת.

22

3.1. האלגוריתם הגנרי למציאת עפ"מ.

הגדרה 2.4 (הכלל הכחול) יהי $X\subseteq V$ כך שאין קשת כחולה שחוצה את הכלל הכחול). אזי ניתן לצבוע בכחול את הקשת הקלה ביותר שאינה צבועה מבין אלו שחוצות את (X, \bar{X}) .

הגדרה בו קשת אדום) יהי C מעגל שאין בו קשת אדומה.

.C אזי ניתן לצבוע מבין המעגל ביותר ביותר הכבדה הקשת את האזי ניתן לצבוע אזי ניתן אינה אווע הקשת הכבדה אזי ניתן לצבוע אווע ה

:האלגוריתם הגנרי

- .אתחל את כל הקשתות ב-E ללא צבועות
- . מהקשתות אחת לצביעת אחדום לצביעת אחת הפעל את הכלל הכחול או האדום לצביעת אחת מהקשתות. כל עוד יש ב-E
 - הקשתות הכחולות הן עפ"מ.

דוגמה 2.4 (דוגמת הרצה)

נחזור לדוגמת הרשת, ונבצע דוגמת הרצה של האלגוריתם החמדן:

- $\{b,c,d\}$ הכלל האדום על: $\{b,c,d\}$ הכלל האדום על: $\{b,c,d\}$ הכלל האדום על: $\{b,c,d\}$ הכבדה על: $\{b,c,d\}$ הוהי הכלל האדום את הקשת הכבדה ביותר במעגל חסר הקשתות האדומות במעגל: $\{b,c,d\}$ הוהי הקשת הכבדה ביותר במעגל האדום את הקשת הכבדה ביותר במעגל האדום את הקשת הכבדה ביותר במעגל האדום על: $\{b,c,d\}$
 - $\{a,b,d\}$ הכלל האדום על ullet
- (a,d) אוהי (a,b o d). נבצע באדום את הקשת הכבדה ביותר במעגל חסר הקשתות האדומות a o b o d אוהי (a,d).
- $\{e,b,d\}$ אוהי (e,b) אוהי ווהי (e,b) אוהי (e,b) או
 - $\{a,b,d,e\}$ הכלל האדום על יותר במעגל (נבצע באדום את הקשת הכבדה ביותר במעגל האדום את הקשת הכבדה ביותר במעגל האדום את הקשת הכבדה ביותר במעגל ((d,e)).
 - $X = \{a,e\}$ עם (a,b) אוניבע אותה בכחול: עם $\{a,e\}$ ונצבע אותה בכחול: אוהי (a,b) עם הקלה ביותר שאינה צבועה היוצאת מי $\{a,e\}$ ונצבע אותה בכחול: אוהי (a,b) עם אותה בכחול: אוהי (a,b) אוהי (a,b) אוניבע אותה בכחול:
 - $X=\{c,d\}$ עם (b,d) אותה בכחול: עם $\{c,d\}$ ונצבע אותה בכחול: אוהי (b,d) אוהי (c,d) ונצבע אותה בכחול: אוהי (c,d) ונצבע אותה בכחול: אוהי (c,d) ונצבע אותה בכחול: אוהי (c,d)

 $X=\{c\}$ הכלל הכחול: עם (b,c) הכלל הכחול: עם (c,c) ונצבע אותה בכחול: אוהי ((b,c) אוהי בכחול: הכחול: הכחול: הכחול: אוהי ((b,c) הכלל הכחול: הכ

ואכן, קיבלנו כי משקל העפ"מ הינו 9.

הערה 2.2 (ללא הוכחה) בכל שלב באלגוריתם הגנרי, הקשתות הכחולות יוצרות יער של עצים כחולים, שכן הקשתות הכחולות תמיד מוכלות באיזשהו עפ"מ של הגרף.

אינו בעץ כחול, אם לא קיימת קשת שנוגעת בצומת v שצבועה בכחול. נאמר שצומת v אינו בעץ כחול, אם אם לא קיימת השנוגעת בצומת v

3.1.1. נכונות האלגוריתם הגנרי.

שאלה 2.2 האם האלגוריתם תמיד מצליח לצבוע את כל הקשתות?

שאלה 2.3 האם מובטח שבסיום האלגוריתם הקשתות הכחולות יגדירו עפ"מ?

G אפרש עץ עים יהי T עץ פורש של T למה (הבחנה על עצים פורשים) יהי

C מעגל יחיד ב-T מעגל יחיד אם נוסיף ל-T קשת T

G אם נשמיט מ-G קשת, בוודאות נקבל שוב עץ פורש של

משפט 2.1 (נכונות האלגוריתם הגנרי) קיים עפ"מ T שמכיל את כל הקשתות הכחולות ואף אחת מהקשתות האדומות.

משפט 2.2 (כל הקשתות נצבעות + נכונות שמורת הצבע)

."שמורת הצבע". מקיים את "שמורת הצבע". האלגוריתם הגנרי צובע את כל הקשתות של G

הוכחת המשפט.

(1) הראינו כי האלגוריתם מקיים את שמורת הצבע אחרי הפעלה של הכלל הכחול.

<u>הוכחה</u>. נראה תחילה כי האלגוריתם מקיים את השמורה, באינדוקציה על מספר האיטרציות (הפעלות של הכלל האדום או הכחול):

. בסיס האינדוקציה: בתחילה אף קשת לא צבועה, ולכן כל עפ"מ ב-G מקיים את השמורה (כלומר, הטענה נכונה באופן ריק).

צעד האינדוקציה: נטפל לחוד בשני מקרים:

(1) נניח כי השמורה מתקיימת לפני הפעלה של הכלל הכחול.

. עפ"מ פיים את עפ"מ עפ"מ עפ"מ עפ"מ בכחול, ויהי לפני שהקשת פe שנצבעת עפ"מ עפ"מ עפ"מ עפ"מ עפ"מ עפ"מ פרים אוני פ

.(סיימנו) מקיים e שהקשת אחרי השמורה את מקיים מקיים T אזי אזי , $e\in T$

. אם הכלל את שעליו הפעלנו את שעליו החתך על החתך , $e \notin T$

2. עצים פורשים מינימליים

e שמחבר בעץ u,v בקצוות של הקשת T שמחבר בין מסלול

. היות שe' חוצה את החתך, קיימת על המסלול הנ"ל קשת אחרת e' שחוצה את החתך.

מהנחת האינדוקציה אין ב-T קשת אדומה, שכן הוא מקיים את שמורת הצבע. מהכלל הכחול (בחרנו חתך ללא קשתות חוצות כחולות), נקבל גם כי e' לא צבועה בכחול לכן, e' אינה צבועה.

בנוסף, בהכרח (שכן $w\left(e'\right)\geq w\left(e'\right)$ (שכן $w\left(e'\right)\geq w\left(e'\right)$ במוסף, בהכרח משקל מינימלי. למעשה, בהכרח ש שוויון). פלן, נוכל להשמיט את הקשת e' מהעץ T ולהוסיף במקומה את

נשאר e' נשאר בנוסף, e' נשאר בין שני צמתים ב-T עבר קודם דרך אם המסלול יעבור כעת דרך. בנוסף, T נשאר עפ״מ, כי המשקל הכולל של הקשתות בעץ לא עלה.

. החדש. T החדש מתקיימת עבור כי הסחול, נקבל כי הסחול, בכחול פרול אם נצבע כעת את

(2) נניח כי השמורה מתקיימת לפני הפעלה של הכלל האדום.

. עפ"מ שמקיים את עפ"מ עפ"מ פאדום, ויהי ℓ עפ"מ שנצבעת כעת שנצבעת עפ"מ עפ"מ עפ"מ עפ"מ פאדום, ויהי

. מקיים e מקיים אחרי אחרי אחרי מקיים את מקיים T אזי אוי $e \notin T$

.G- מ-לוקה של הצמתים מT מחלקת את מחלקת של מ-דירה חלוקה של הצמתים ב-B. נניח ש-e אזי, השמטת מ

איור

vע מסלול מסלול נוסף מ-Uע מהכלנו את הכלל האדום מכיל מסלול מסלול הפעלנו את הכלל האדום מכיל

 (T_1,T_2) שחוצה את שחוצה איe'=(x,y) שחער יש על המעגל אי

. אדומה אדומה פ' e' גם אינה כחולה כי $e' \notin T$ אינה כחולה פי אינה פובע פי מהשמורה נובע פי

 $w(e') \le w(e)$ בנוסף, מהכלל האדום נובע

הוספת e' ל-T והשמטת e' יוצרת עץ פורש חדש (מבחנה 1, אם נוסיף... אם נשמיט...ם). בנוסף, לא הגדלנו את משקל העץ. לכן T החדש עפ"מ.

:G-נראה כעת כי האלגוריתם צובע את כל הקשתות ב

. נניח בשלילה שיש קשת e לא צבועה, אבל אי אפשר להפעיל אף אחד מהכללים

לפי הכלל הכחול, הקשתות הכחולות יוצרות \underline{vv} של עצים כחולים, שכן הקשתות הכחולות תמיד מוכלות באיזשהו עפ"מ של הגרף. e=(u,v) מקרים לגבי מקרים לגבי

*איור אוי נקבל: אוי באותו עץ אוי נקבל: e איור אוי שני הקצוות של

v-ט u מעגל בעץ הכחול בין e ואת שמכיל את אדומות, של בין u לכן מעגל בעץ הכחול בין u לכן ניתן להפעיל את הכלל האדום.

*איור של פעצם בעצם e איור איור אונים:

נסמן ב-X את שאר הצמתים ב- T_1 , וב-X את שאר הצמתים.

. קיבלנו חתך ב-G שאין בו קשתות כחולות, לכן נוכל להפעיל את הכלל הכחול.

. בחול. e=(u,v) כחול, בה"כ נניח בעץ פחול פאינו בעץ פחול פאינו פיי פחול. בעץ פחול פאינו בעץ פחול. $\bar{X}=V\setminus X=\{v\}$ נגדיר

מצאנו חתך ללא קשת כחולה, ולכן ניתן להפעיל את הכלל הכחול.

. כל עוד יש ב-G קשת לא צבועה, מובטח שנוכל להפעיל את אחד הכללים, ולכן האלגוריתם צובע את כל הקשתות.

- G = (V, E) נתון גרף קשיר לא מכוון .Prim נתון .3.2
- . צומת כלשהי r כאשר $T \leftarrow \{r\}$ כאשר, נבחר לא צבועות, כל הקשתות לא צומת כלשהי.
 - (2) כל עוד $T \neq V$ בצע:
- $u \in T$ -ט כך שר, $(T, V \setminus T)$, כך שחוצה את החתך פ = (u, v), כך ש-
 - $T \leftarrow T \cup \{v\}$ צבע את פ בכחול ובצע •

דוגמת הרצה:

, $a \to e$ היא ($\{a\}$, $\{b,e,d,c\}$) היא את החתך שחוצה ביותר הקלה הקשת הקלה . $T = \{a\}$ נבחר נצבע אותה בכחול ונבצע ($\{a,e\}$) היא ישרא

, $a \to b$ איא ($\{a,e\}$, $\{b,d,c\}$) עבור את החתך שחוצה ביותר קלה ביותר . $T = \{a,e\}$ היא יעבור . $T \leftarrow \{a,b,e\}$ ונצבע אותה בכחול ונבצע

,b o d איא ($\{a,b,e\}$, $\{d,c\}$) את החתך שחוצה את קלה ביותר קשת . $T=\{a,b,e\}$ פעבור עבור נצבע אותה בכחול ונבצע $T\leftarrow\{a,b,d,e\}$

 $b \to c$ איא ($\{a,b,d,e\}$, $\{c\}$) איז את החתך שחוצה ביותר הקלה הקלה . $T=\{a,b,d,e\}$ פעבור רבע אותה בכחול ונבצע $T\leftarrow\{a,b,c,d,e\}$

. מתקיים V=V לכן הגענו לעצירה.

G-ם אפ"מ ב-T (Prim משפט 2.3 (נכונות אלגוריתם ב-

הוא מימוש של האלגוריתם הגנרי. בראה כי האלגוריתם של Prim הוא נוספה כי האלגוריתם האלגוריתם האלגוריתם באדום. באדום. באדום לכל קשת שלא נוספה ל- T

נסתכל על קשת e=(u,v) שהאלגוריתם מוסיף ל-T באיטרציה כלשהי. באיטרציה זו, אין קצת כחולה שחוצה את החתך ($T,V\setminus T$).

בנוסף, הקשת e חוצה את החתך, והיא הקלה ביותר שחוצה את החתך הנ"ל ("בין אלו שאינן צבועות"). לכן צביעת e היא חוקית לפי הכלל הכחול.

 $(T,V\setminus T)$ איור 4: נבחר את הקשת הקלה ביותר אחוצה את החתך

נבחן את הקשתות שאינן ב-T בסיום האלגוריתם.

. במעגל ב-T סוגרת מעגל ב-T. במעגל זה הינה הקשת היחידה שאינה צבועה, ושאר הקשתות בהכרח כחולות. כל קשת e באדום היא הפעלה חוקית של הכלל האדום.

איור 5: כל קשת שלא נוספה ל-T סוגרת מעגל בעץ. ניתן להפעיל את הכלל האדום.

סה"כ קיבלנו שהאלגוריתם של Prim הוא מימוש ספציפי של האלגוריתם הגנרי.

.Prim סיכוכיות אלגוריתם 3.2.1

שאלה 2.4 מהי סיבוכיות האלגוריתם?

המפתח החתך. Prim הוא לבחור של אלגוריתם של של של של בחור בקלות החתך. בקלות החתך של אלגוריתם שאינן בTבתור עדיפויות Q.

$$T$$
-ט ע ו- ∞ איז $\left(\underbrace{\pi\left(v\right)}_{\text{key }},v\right)$ איז $\left(\underbrace{\pi\left(v\right)}_{\text{key }},v\right)$ איז $v\in Q$ איז $v\in Q$ איז $v\in Q$ איז $v\in Q$

.(heap) מינימום ערימת ערימת בעזרת Q את מינימום

שאלה 2.5 מה הפעולות שנבצע על הערימה?

$$\ker(v) \leftarrow \infty$$
 : אתחול עומת $v \in G$ מגדירים (1) אתחול לכל צומת יאריים:

- $u \in V \setminus T$ מצא בערימה את המפתח המינימלי, נניח כי הינו שייך לצומת (2)
 - T-ט u את (3)
 - $v \notin T$ ע, כך שר ע של ע (4)

 $\pi(v) \leftarrow u$ ועדכן, Decrease Key אם, בצע פעולת, בצע פעולת, בצע או $w(u,v) < \ker(v)$

סיבוכיות כל אחד מהשלבים:

- .O(|V|)- מתבצע ב-(1) צעד •
- $O(\log |V|)$ הוצאת המפתח המינימלי בצעד הוצאת המפתח ה
 - $O(|V|\log |V|)$ פעמים, סה"כ |V| פעמים •
- . פעמים, לכל היותר |E| תתבצע לכל היותר עבור כל השכנים של כל צומת, לכל היותר (4) פעמים \bullet

סיבוכיות האלגוריתם:

$$O(|V|\log|V|) + O(|E|\log|V|) = O(|E|\log|V|)$$

.Kruskal האלגוריתם של 3.3.

- $F=\emptyset$, מיין את הקשתות בסדר לא יורד לפי משקלן, (1)
 - . המיון e סדר המיון (2)

.אם e סוגרת מעגל בעץ כחול, צבע אותה באדום

F-ל e של הוספה הוספה של בכחול, ובצע את אחרת צבע את

F-ב החזר הקשתות ב-(3)

דוגמת הרצה:

נקבל מיון של הקשתות:

$$\{(a \rightarrow e), (e \rightarrow d), (a \rightarrow b), (b \rightarrow d), (b \rightarrow c), (b \rightarrow e), (a \rightarrow d), (c \rightarrow d)\}$$
 מינימלית

- $.F \leftarrow F \cup \{a \rightarrow e\}$ נבחר בעץ כחול, בעץ או זו או קשת ($a \rightarrow e$). פנבחר נבחר נבחר •
- $F\leftarrow F\cup\{e
 ightarrow d\}$ נבחר בקשת (e
 ightarrow d). קשת זו לא סוגרת מעגל בעץ כחול, נבצע (e
 ightarrow d).
- $F \leftarrow F \cup \{a
 ightarrow b\}$ נבחר בקשת (a
 ightarrow b). קשת זו לא סוגרת מעגל בעץ כחול, נבצע (a
 ightarrow b). פנבחר בקשת (a
 ightarrow b).
 - F- נבחר בקשת (b o d). קשת או סוגרת מעגל בעץ כחול, לכן לא נוסיף אותה ל- נבחר בקשת (b o d). נבחר בקשת (b o d).
- $F \leftarrow F \cup \{b
 ightarrow c\}$ נבחר בקשת (b
 ightarrow c). קשת זו לא סוגרת מעגל בעץ כחול, נבצע (b
 ightarrow c). פער נבחר בקשת (b
 ightarrow c).
 - F- נבחר בקשת (b o e). קשת או סוגרת מעגל בעץ כחול, לכן לא נוסיף אותה ל- נבחר בקשת (b o e). קשת או סוגרת פער ינבחר בקשת (b o e).
 - F- נבחר בקשת (a o d). קשת זו סוגרת מעגל בעץ כחול, לכן לא נוסיף אותה ל-(a o d). פנבחר בקשת (a o d).
 - F- נבחר בקשת (c o d). קשת זו סוגרת מעגל בעץ כחול, לכן לא נוסיף אותה ל-(c o d). פנבחר בקשת (c o d) נבחר בקשת (c o d) פנבחר בקשת (c o d) נבחר בקשת (c o d) אותה ל-c o d
 - . ווו. לפי סדר המיון. G לפי קשתות לעבור על סיימנו לעבור על קשתות לפי האיל ($F=\{(a\to e)\,,(e\to d)\,,(a\to b)\,,(b\to c)\}$ את לחזיר כפלט את

.G. משפט 2.4 (נכונות) הגרף (V,F) שמורכב מכל הצמתים ב-G ומהקשתות ב-G שמורכב מכל הצמתים ב-G שמורכב מכל הצמתים ב-

הוכחה. נראה כי Kruskal מבצע הפעלה חוקית של הכלל הכחול או האדום.

. אם שאין בו קשתות אדומות מעגל בעץ כחול, אז מצאנו מעגל איין פו סוגרת מעגל פעץ סוגרת אדומות.

. היות שאינן צבועות שאינן בועה, היא המקסימלית בין הקשתות היחידה שאינה צבועה, היא היחידה שאינה eנפעיל את הכלל האדום.

:טוגרת שני בין בין אז נבחין שני מעגל בF, אז סוגרת מעגל e=(u,v)

u אינו בעץ כחול, בה"כ נניח כי זהו הצומת e אינו של קצה אחד של

$$ar{X} = V \setminus X$$
 ואת $X = \{v\}$ נגדיר

מצאנו חתך שלא חוצות אותו קשתות כחולות. נפעיל את הכלל הכחול.

מבין הקשתות הלא צבועות שחוצות את $(X,ar{X})$, היא בעלת משקל מינימלי (בגלל המיון).

e אינו בעץ כחול, ניתן להגדיר חתך ולהפעיל את אינו בעץ פחול אינו בעץ פחול, ניתן איור 6: אם קצה אחד של

.שעצים כחולים e יש עצים כחולים.

 $ar{X}=V\setminus T_1$ ואת $X=T_1$, ונגדיר הקצוות, נסמנו ב- T_1 , ונגדיר ניקח עץ מאחד הקצוות,

קיבלנו חתך שלא חוצות אותו קשתות כחולות.

. הקשת שקל מינימלי בין הקשתות את החתך (X, \bar{X}) ואינן צבועות, עקב המיון. נפעיל את הכלל הכחול. הקשת e בעלת משקל מינימלי בין הקשתות שחוצות את החתך (X, \bar{X}) ואינן צבועות, עקב המיון. נפעיל את הכלל הכחול. לכן Kruskal הוא מימוש ספציפי של האלגוריתם הגנרי, ולכן T

סיבוכיות האלגוריתם של Kruskal: נשתמש בקבוצות לייצוג עצים כחולים, נבצע על מבנה הנתונים את הפעולות הבאות:

- v את הצומת אמכילה רק יצירת קבוצה Make-Set(v)
 - .v מציאת הקבוצה שמכילה את Find-Set(v) •
- v של עם הקבוצה של Union(u,v) עחוד Union
- .Find-Set(v)-ו Find-Set(u) נסתכל על הקשת הבאה ברשימה לפי סדר המיון. נבצע (1)
- . בכחול. Union(u,v) אם Union באדום. אחרת, נבצע את e את קבוצה, נבצע את v-ו עו-ע (2)
 - $O(|E|\log |E|) = O(|E|\log |V|)$ אמן המיון של הקשתות: •
- בסיבוכיות: Union-ו Find-Set פעולות או באתחול, ועוד |E| באתחול, ועוד O(|V|) פעולות •

$$O((|V| + |E|)\log|V|) = O(|E|\log|V|)$$

 $O(|E|\log |V|)$ סה"כ זמן הריצה הוא

מסלולים קלים ביותר

מוטיבציה: נדמיין גרף מכוון שיש בו "משקלים" על הקשתות. המשקלים יכולים לציין פרחק פיזי, זפן או עלות. בהקשר כזה, היינו מתעניינים במציאת מסלולים בין צמתים שהם בעלי סכום משקלים מינימלי.

1. מסלולים קלים ביותר בגרפים מכוונים ממושקלים

t בגרף אצומת s לצומת ביותר ביותר להגיע מצומת 3.1 מה הדרך הקצרה ביותר

ראינו ש-BFS ימצא את המסלול הקצר כאשר אורך המסלול נמדד לפי מספר הקשתות בו.

.G- נתון גרף מכוון שונקציית משקל על הקשתות משקל על הקשתות הית ופונקציית משקל ווכG=(V,E)

שאלה 3.2 מה האורך של מסלול P בגרף מכוון ממשוקל?

הקשתות על סכום מסלול P אורך המסלול אורך (עבור גרף מכוון ממושקל) עבור גרף מכוון אורך של מסלול בגרף מכוון ממושקל עבור גרף מכוון המסלול, דהיינו:

$$w(P) \triangleq \sum_{e \in P} w(e)$$

הגדרה 3.2 (מסלול קל ביותר בגרף מכוון ממושקל)

יהי ,
v אזיב לצומת ב-ותר ב-Gביותר קסלול אורך אזרך אורך אזיב לה
י $\delta\left(u,v\right)$ יהי

$$\delta\left(u,v\right) = \begin{cases} \min\left\{w\left(P\right):\ u \overset{P}{\to} v\right\} & G\text{--} \text{ } u\text{--} v \end{cases}$$
 אחרת

G מסלולים קלים ביותר א בהכרח מוגדרים כשיש מעגלים שליליים בגרף יש מסלולים פלים פותר א

נרצה לחשב מסלולים קלים ביותר בגרף מכוון נתון.

דוגמה 1.1 (דוגמה לסיבה שמסלול קל ביותר עלול להיות לא מוגדר היטב כאשר יש מעגלים שליליים)

32 מסלולים קלים ביותר

איור 1: גרף מכוון ממושקל לדוגמה

 $\boxed{\mathbf{s} \rightarrow r \rightarrow v \rightarrow t}$:7 הינו $s \rightarrow t$ ביותר קל מסלול אורך אורך מסלול אורך אורך

 $w(u, v) \leftarrow (-5)$ עתה, נניח שנשנה

• נסתכל על המסלול:

$$s \xrightarrow{3} u \xrightarrow{-5} v \xrightarrow{2} t$$

אורך המסלול: 0.

• אם ניקח את המסלול:

$$s \xrightarrow{3} u \xrightarrow{-5} v \xrightarrow{4} u \xrightarrow{-5} v \xrightarrow{2} t$$

(-1) נקבל אורך מסלול

,t-s-s- היות שהמשקל של המעגל u \bullet הוא u \bullet היות שהמשקל של המעגל של v היות שהמשקל של המעגל השלילי מספר לא חסום של פעמים ולהגיע לאורך ($-\infty$).

2. מבנה אופטימלי של מסלולים קלים

G מסלול בגרף מכוון) יהי $P=\langle v_1,v_2,\ldots,v_k \rangle$ יהי מסלול בגרף מכוון 3.3 מסלול בגרף מכוון יהי $1 \le i < j \le k$ עבור עבור $1 \le i < j \le k$

$$P_{ij} = \left\langle v_i, v_{i+1}, \dots, v_j \right\rangle$$

 v_k מסלול קל ביותר מצומת v_1 מסלול קל ביותר מחלול) יהי אויי יהי (תת-מסלול) יהי אויי מסלול קל ביותר מצומת עוברת לתת-מסלול) יהי $1 \leq i < j \leq k$ עבור v_i , עבור v_i , עבור v_i מסלול של v_i מסלול של מ- v_i , עבור אוייי ויהי ויהי v_i

 v_j ל ל- v_i הוא מסלול קל ביותר מ- P_{ij} אזי

הוכחת הלמה. אם נפרק את המסלול P לתתי-מסלולים:

$$v_1 \stackrel{P_{1i}}{\longleftrightarrow} v_i \stackrel{P_{ij}}{\longleftrightarrow} v_j \stackrel{P_{jk}}{\longleftrightarrow} v_k$$

:אזי:

$$w(P) = w(P_{1i}) + w(P_{1j}) + w(P_{jk})$$

 $.w\left(P_{ij}'\right) < w\left(P_{ij}\right)$ בניח בשלילה שקיים מסלול P_{ij}' מ- v_i ל v_i מ- v_i שזי קיים מסלול מ- v_i ל v_i ל- v_i

$$v_1 \stackrel{P_{1i}}{\longleftrightarrow} v_i \stackrel{P'_{ij}}{\longleftrightarrow} v_j \stackrel{P_{jk}}{\longleftrightarrow} v_k$$

P של מינימליות למינימליות בסתירה אורכו קטן קיבלנו שאורכו

. אין מעגלים שב-G אין מעגלים שליליים. $w:E \to \mathbb{R}$ גרף מכוון ו-G=(V,E) יהיה יהיה קלים ביותר) יהיה אזי לכל קשת $e=(u \to v)$ אזי לכל קשת

$$\delta\left(s,v\right)\leq\delta\left(s,u\right)+w_{e}$$

איור 2: אי שוויון המשולש בטרמינולוגיה של מסלולים קלים ביותר.

. אי השוויון יתקיים. אי השנה מה ערך אי משנה מה ל- σ , אי השוויון השנים. או הוכחה. אם לא קיים מסלול מ- σ , אי השוויון השנים.

. סופי. אז $\delta(s,u)$ אז שליים שליליים, מעגלים שלי ומכיוון שאין אין g- מסלול מ- מסלול מ- אחרת שאין ב-

. $\delta\left(s,u\right)$ - שווה ב-P מסלול קל משקלי הקשתות ב-s- מסלול קל ביותר ב-s- מסלול הבא מ-s- ל-s- מסתכל על המסלול הבא מ-

$$s \stackrel{P}{\longleftrightarrow} u \stackrel{e}{\longrightarrow} v$$

.(G-בין s ל-ע ב- δ). מהגדרה, מהגדרה, גודל אה חוסם ממעלה את אורך המסלול הקל ביותר מסוג אה (בין δ ל-ע ב- δ). משקלו שמשקלו משקלו פישקל אחר אה משקלו משקלו פישקלו משקלו אחר משקלו משקלו פישקלו משקלו אחר משקלו משקלו משקלו משקלו אחר משקלו משק

34 מסלולים קלים ביותר

3. פתרון הבעיה האלגוריתמית בגרף ללא מעגלים שליליים

הערה 3.1 (הבעיה האלגוריתמית כפי שהגדיר אותה רועי)

G = (V, E) גרף מכוון $s \in V$ צומת התחלה +

. בגרף שורך מסלול אורך לכל פיותר למצוא לכל ביותר
 $\delta\left(s,u\right)$ ביותר מסלול אורך מסלול שורך מסלול פיותר

 $\delta(s,u)$ אם אין מעגלים שליליים בגרף, האם יש צומת עבורו יודעים את (כיצד נפתור את הבעיה האלגוריתמית?) אם אין מעגלים שליליים בגרף, האם יש צומת עבורו יודעים את $\delta(s,s)=0$.

מכיוון שהמרחקים (δ -ות) מקיימים את אי-שוויון המשולש, נדע שאין לגו את התשובה הנכונה, אם יש קשת מכוונת שמפרה את אי-שוויון המשולש.

(מרחק קצר ביותר נוכחי באלגוריתם)

האלגוריתם (הכללי למציאת מסלולים קלים ביותר מs, ע"י בדיקת הפרות של אי-שוויון המשולש):

$$u \in V$$
 לכל , $d(u) \leftarrow \begin{cases} \infty & u \neq s \\ 0 & u = s \end{cases}$ לכל , $d(u) \leftarrow \begin{cases} \infty & u \neq s \end{cases}$

הפרה של אי שוויון המשולש עבור הסימונים d של האלגוריתם והקשת e

 $d(v) \longleftarrow d(u) + w_e$ בצע , $\overbrace{d(v) > d(u) + w_e}$ כל עוד יש קשת $e = (u \rightarrow v) \in E$ כל עוד יש קשת .

משפט 3.1 (נכונות האלגוריתם למציאת מסלולים קלים ביותר)

 $S \in V$ יהי גרף מכוון, שנקציית משקל על פונקציית $w:E \to \mathbb{R}$ גרף מכוון, היי

אט מתקיים: $(u o v) \in E$ אין מעגלים שליליים, אז אם באיזשהו שלב של ריצת האלגוריתם הכללי, לכל קשת

$$d(v) \le d(u) + w_{(u \to v)}$$

 $v \in V$ לכל $d(v) = \delta(s, v)$ אז

הוכחה. בשלב ראשוני של ההוכחה, אנחנו נראה שבכל רגע של ריצת האלגוריתם הכללי, מתקיים:

$$\left(egin{array}{ll} \mbox{Figure 1.5} & \mbox{Figure 1.5} \mbox$$

את זה נוכיח באינדוקציה על סדר פעולות האלגוריתם הכללי.

. בסיס: אתחול האלגוריתם. • בסיס: אתחול האלגוריתם (G באין מעגלים שליליים ב-G (בגלל שאין מעגלים שליליים ב-G (בגלל שאין מעגלים שליליים ב-G

לכל $v \neq s$, מתקיים: $d(v) = \infty$, מתקיים: $v \neq s$

e=(u o v) בגלל הקשת בגלים עדכון מבצעים ובאיטרציה הנוכחית, ובאיטרציה החילת האיטרציה בגלל הקשת של פעד: נניח שהטענה נכונה עד תחילת האיטרציה איטרציה, עבור כל צומת שאינו v הטענה מתקיימת עבורו.

v עצמו:

$$d\left(v\right) \underbrace{=}_{\text{הגדרת}} d\left(u\right) + w_{e} \underbrace{\geq}_{\text{הגחת}} \delta\left(s,u\right) + w_{e} \underbrace{\geq}_{\text{הגדרת}} \delta\left(s,v\right)$$

 $\forall v \in V \ d(v) \geq \delta(s, v)$ מתקיים הכללי, מהאלגוריתם האלגוריתם לכן, בכל רגע של ריצת

, אזי: $\forall e = (u \to v) \in E, \ d(v) \le d(u) + w_e$ מספיק להראות שאם תנאי העצירה מתקיים את הוכחת המשפט, מספיק להראות שאם הנאי

$$\forall v \in V, d(v) \leq \delta(s, v)$$

. (וכמובן תנאי העצירה תליים). מתקיים מתקיים עבורו מתקיים אפוים שקיים אוניח בשלילה שקיים צומת אי, עבורו מתקיים

מכיוון שמתקיים $\delta(s,v)<\infty$ (לפי הנחת השלילה), וגם $\delta(s,v)\neq -\infty$ (כפי ב- $\delta(s,v)$ לפי הנחת השלילים), אז מכיוון שמתקיים $\delta(s,v)<\infty$ (לפי הנחת השלילים), וגם $\delta(s,v)\neq -\infty$ מסלול קל ביותר כלשהו ב- $\delta(s,v)$ מסלול קל ביותר כלשהו ב- $\delta(s,v)$

$$P = v_0 \to v_1 \longrightarrow v_2 \dots \longrightarrow v_{k-1} \longrightarrow v_k$$

$$\parallel s$$

- $d(s) = \delta(s, s) = 0$ עבור s מתקיים
- .(הנחת השלילה) $d(v) > \delta(s, v)$ מתקיים $\sigma(s, v)$

 $e=(v_i o v_{i+1})$ שיש קשת ("אין פספוס כלפי מעלה"), שיש קשת לכן ניתן להסיק מהחלק הראשון של ההוכחה $d\left(v_{i+1}\right)>\delta\left(s,v_{i+1}\right)$ עבורה $d\left(v_{i}\right)=\delta\left(s,v_{i}\right)$

מתקיים:

וזו סתירה להנחת השלילה.

36. מסלולים קלים ביותר

4. עץ מסלולים קלים ביותר

שאלה 3.4 אם האלגוריתם הכללי עצר,

כיצד ניתן לשחזר איזשהו מסלול קל ביותר מ-s לצומת א בהנחה ש- $\delta(s,v)$ סופי?

G, בהחנה שאין מעגלים שליליים ב- $W:E \to \mathbb{R}$, בהחנה $W:E \to \mathbb{R}$, מכוון גרף מכוון גרף מכוות ביותר) בהינתן מסלולים קלים ביותר מעגלים שליליים ב-G של G'=(V',E') של G'=V' ביותר להיות תת גרף מסלולים קלים ביותר להיות תת גרף מסלולים קלים ביותר להיות תת גרף מסלולים קלים ביותר להיות תת גרף מכוון שליט ביותר שליט ביותר להיות מכוון מכוון שליט ביותר להיות ביותר להיות תת גרף מכוון מכוון שליט ביותר שליט ביותר להיות ביותר להיותר שליט ביותר להיותר שליט ביותר להיותר ביותר שליט ביותר שליט ביותר שליט ביותר שליט ביותר ביותר שליט ביותר ביותר ביותר שליט ביותר ביותר

- G-ב S-ם הישיגים הישיגים אוסף הצמתים הישיגים ע' (1)
 - .s הוא עץ מכוון ששורשו G^\prime (2)
- Gב Gב הוא מסלול קל ביותר מ-S ל-ע ב- Sה ל-ע ב- G לכל (3)

שאלה 3.5 מה נוסיף לאלגוריתם הכללי בשביל שנקבל עץ מסלולים קל ביותר?

האלגוריתם (התוספת לאלגוריתם הכללי לצורך מציאת עץ המסלולים):

- $\forall v \in V, \ \pi(v) \leftarrow \text{NULL}$ אתחול:
- $\pi(v) \leftarrow u$ אזי אם $e = (u \rightarrow v)$ באיטרציות: אם עִדְכַּנּוּ את אם בגלל קשת d(v) באיטרציות: •

:סענה 3.2 (נכונות ; ללא הוכחה) אם בG אין מעגלים שליליים, אז ברגע שהאלגוריתם הכללי עוצר, מתקיים:

$$V_{\pi} \triangleq \{ u \in V : \pi(u) \neq \text{NULL} \} \cup \{ s \}$$
$$E_{\pi} \triangleq \{ (\pi(v) \to v) : v \in V_{\pi} \setminus \{ s \} \}$$

G מ-G מ-ביותר של מסלולים הוא עץ מסלולים הוא $G_\pi = (V_\pi, E_\pi)$ הגרף

5. אלגוריתמים למסלולים קלים ביותר

שאלה 3.6 באיזה סדר כדאי לעבור על הקשתות?

שאלה 3.7 האם האלגוריתם הכללי תמיד עוצר?

פאלה 3.8 איך יודעים אם ב-G יש מעגל שלילי?

w התשובה לשאלות הללו תלויה במה שידוע על המשקלים

- .(משקלים אי שליליים) ל $e \in E, \ w_e \geq 0$ המקרה שנטפל בו שנטפל (והחשוב) שנטפל הראשון המקרה הראשון שנטפל בו הוא כאשר
 - המקרה השני יהיה המקרה הכללי (אין מגבלה על המשקלים).

באופן כללי, נראה עבור שני המקרים מימוש מסוים (ומהיר) של האלגוריתם הכללי.

הערה 3.2 המקרה הראשון חשוב ביותר כי חלק גדול מהאפליקציות בעולם האמיתי מתייחסות למקרה הזה: יתכן שנייחס למשקלים משמעות של מרחק פיזי, זמן או delay (למשל ברשתות תקשורת), כאשר כל אלה יחידות מידה אי-שליליות.

 $(e \in E \ \text{קשת למשקלים אי שליליים. מקרה ראשון: <math>(e \in E \ \text{קשת למשקלים אי שליליים. מקרה באשון: (1.5. אינטואיציה למשקלים אי שליליים. מקרה אינטואיציה למשקלים אי$

ברור שאין מעגלים שליליים בגרף.

37

דוגמה 3.2 (פיתוח אינטואיציה לאלגוריתם הכללי עם משקלים אי שליליים)

איור 3: גרף מכוון עם משקלים אי-שליליים עליו נבדוק את האלגוריתם הכללי.

- d(s) = 0 בהתחלה
- $d(a) = d(b) = d(c) = d(x) = \infty$ ועבור כל שאר הצמתים

- $\infty=d\left(a\right)\leq d\left(c\right)+w\left(c\rightarrow a\right)=\infty+1=\infty$ לא מפרה את אש"מ, כי $\left(c\rightarrow a\right)$ הקשת ($\left(c\rightarrow a\right)$
 - .משתה סיבה, הקשת (b
 ightarrow a) גם היא לא מפרה את אש"מ.
 - $(s \to a), (s \to b)$ הקשתות היחידות שמפרות את אש"מ הן •

 $d(a) \leftarrow 10$ לפני הערך את לעדכן לעדכן (אינטואיטיבית, אינטואיטיבית) (מינטוא לעדכן $d(a) \leftarrow 10$, אינטואיטיבית ניתן לעדכן

- $\{(b \to c), (b \to a), (a \to x)\}$ כעת יש 3 קשתות שמפרות את שמפרות •
- (כי המסלול $s \stackrel{2}{\leadsto} b$ הוא הכי קטן, ובהכרח נכון!) אינטואיטיבית, נסתכל על הקשתות שיוצאות מb

- - $0.8 = d(a) \nleq d(c) + w(c \rightarrow a) = 3 + 1 = 4$ ישנה הפרה של אש"מ מהצורה •

- .(c-שיוצאת (היחידה שיוצאת ($c \rightarrow a$) שכן אינטואיטיבית) פעבור שוב (אינטואיטיבית) אינימלית שכן
 - $\infty = d(x) \nleq d(a) + w(a \to x) = 4 + 3 = 7$ ישנה הפרה של אש"מ •

 $d(x) \leftarrow 7$ לכן נעדכן

• אין עוד קשתות שמפרות את אש"מ, לכן האלגוריתם הגיע לסיום.

38. מסלולים קלים ביותר

(כון? הוא d(b) = 2 המרחק לזה שהמנטואיציה ובעצם, מה האינטואיציה לזה אינטואיציה ובעצם,

התשובה היא: כי אין משקלים שליליים! לכן כל מסלול אחר בהכרח "יצבור" משקלים נוספים ויהיה לכל הפחות באותו גודל.

האינטואיציה הזאת מניבה לנו אלגוריתם עבור עצים מכוונים עם משקלים אי שליליים:

.Dijkstra אלגוריתם של 5.2

:(Dijkstra, 1959) האלגוריתם

• אתחול:

$$Q \leftarrow V, d(u) \leftarrow \begin{cases} 0 & u = \overline{s} \\ \infty & u \neq s \end{cases}$$

. כאשר Q מייצג את אוסף הצמתים שעדיין לא "טיפלנו" בקשתות היוצאות מהן

 $:Q\neq\emptyset$ כל עוד

(א) יהי $d\left(u\right)$ קטן הצומת עם ערך וותר $u\in Q$

(ב) לכל קשת (
$$u o v$$
), און, לכל קשת ($u o v$), אם $d(v) \leftarrow d(u) + w_e$ אז אז:

Q -וצא את u מ-.

ישאלה 3.9 מה זמן הריצה של האלגוריתם של 3.9

אם נממש ב-heap למימוש Q, נקבל זמן ריצה של:

- O(|V|) : אתחול הערימה: לינארי במספר הצמתים
- יכ: עוד Q לא ריק, סה"כ: Q מ-Q, וממשיכים כל עוד Q לא ריק, סה"כ:

$$O(1)$$
 + $O(d_{\text{out}}(u) \log |V|)$ + $O(\log |V|)$ הוצאת הצומת במקרה הגרוע, נצטרך עד כון לכל הצמתים לבצע עדכון לכל הצמתים מהערימה בער עדכון לכל הצמתים מהערימה ש-ע נכנסת אליהו.

 $O\left((d_{ ext{out}}+1)\log|V|
ight)$ סה"כ, באיטרציה שבה u יוצא מ-Q, סיבוכיות

 $O(|E|\log |V|) \equiv O(m \cdot \log n)$ סה"כ על פני כל האיטרציות: •

 $.(m=|E|\,,n=|V|)$ מסקנה 3.1 זמן הריצה של האלגוריתם הוא $O\left(|E|\log|V|\right)\equiv O\left(m\cdot\log n\right)$, כאשר

5.2.1. הוכחת נכונות.

(Q-טענה איטרציית היציאה של במובן של צמתים במובן סדר יחס סדר בין צמתים במובן של 3.3 (אבחנה: איטרציית בין איטרציית היציאה מ

:ניח כי u- עוקבת (המיידית אחרי) באיטרציה באיטרציה מ-Q- באיטרציה נניח כי יצא מ

$$\begin{pmatrix} \sum_{Q \in \mathcal{U}} a_{v} & d_{v} \end{pmatrix} \begin{pmatrix} d_{v} \end{pmatrix}$$
 ע יצא מ- d_{v}

(בגלל אופן בחירת הצומת מ-Q בכל איטרציה). $d\left(u
ight) \leq d\left(v
ight) : Q$ בכל איטרציה):

- . אם אין קשת ש פ $e=(u o v)\in E$ שמפרה את אש"מ, אי שתנה במהלך האיטרציה ולכן שמפרה שמפרה e=(u o v)
- $d\left(v\right)\leftarrow d\left(u\right)+w_{e}$: אם יש קשת פימהלך האיטרציה של אש"מ במהלך הפרה פווייתה $e=(u o v)\in E$ אם של אם יש קשת פווי פווייתה אי-שליליים, ולכן גם בסיום איטרציה זו, עדיין מתקיים: $d\left(u\right)\leq d\left(v\right)$

ולכן האבחנה נכונה.

טענה 3.4 (מסקנות מהאבחנה)

- . באיטרציות שאינן עוקבות מ-Q באיטרציות שאינן עוקבות
 - Q-ט יצא ש-ע אחרי אחרי פתעדכן לא מתקיים ש-d(u) מתקיים ש-פר לכל צומת ש

הוכחת המסקנה. נניח בשלילה שהאבחנה השנייה לא נכונה.

Q-נסתכל על הפעם הראשונה שבה $d\left(u\right)$ התעדכן באיטרציה מאוחרת מזו ש-u יצא מ-Q, ונסמן ב-u את הצומת שיצאה מ-uבאיטרציה זו.

 $e = (v \rightarrow u)$ קשת עבור קשת ,Q, התקיים עבור קשת באיטרציה בה יצא מ

$$\underbrace{d\left(u\right)}_{d\left(u\right)} > \underbrace{d\left(v\right)}_{d\left(v\right)} + w_{e}$$
 שווה לערך $d\left(v\right)$ שווה לערך בסיום האיטרציה בה בסיום האיטרציה בה בסיום האיטרציה בה Q - יצא מ- Q - יצא

.(Q- יצא מ-Q). בגלל ש-0, קיבלנו סתירה לאבחנה (u) יוצא מ-Q באיטרציה שבה v יצא סתירה לאבחנה (v).

משפט 3.2 (נכונות האלגוריתם של Dijkstra)

. $(d(v) \le d(u) + w_e)$ מתקיים אי שוויון המשולש , $e = (u \to v)$ קשת ,סוויה מתקיים של Dijkstra, מתקיים של בסיום ריצת האלגוריתם הוא מימוש מסוים של השיטה הכללית.

הוכחה.

- $d(v)>d(u)+w_e$ אם u אחרי u, באיטרציה בה u יצא מ-u, בדקנו האם u אחרי u, באיטרציה בה u ולכן בכל מקרה, בסיום האיטרציה בה u יצא מ-u, התקיים u, התקיים u האיטרציה בה u יצא מ-u, בינ מסקנה u טענה u טענה u לא ישתנה מרגע זה ועד סיום ריצת האלגוריתם של Dijkstra לפי מסקנה u טענה u טענה u, השוויון מתקיים גם בסיום ריצת האלגוריתם.
- $d(v) \leq d(u)$ אם u יצא מ-Q אחרי u לפי מסקנות 1 ו-2 של טענה 3.4, בסיום ריצת האלגוריתם יתקיים $d(v) \leq d(u) + w_e$ ולכן בגלל ש- $d(v) \leq d(u) + w_e$ בסיום ריצת האלגוריתם יתקיים u

,Prim דומה מאוד לאלגוריתם של Dijkstra הערה 3.3 האלגוריתם של דומה מוד לאלגוריתם של ונבדל בעיקר בכלל המשמש להתניית הכניסה לרכיב הפלט:

- ב-Prim הקשת הקלה שחוצה את השפה של הרכיב.
- u ב-Dijkstra (הגדרה שקולה למה שלמדנו) הקשת שיוצאת מהרכיב סבולה ב-Dijkstra בעלת עם עו $d\left(u\right)+w\left(u
 ightarrow v\right)$ בעלת ע

_

3. מסלולים קלים ביותר

הערה 3.4 גם האלגוריתם של Prim וגם האלגוריתם של Dijkstra וגם האלגוריתמים חמדנים. נפרט על אלגוריתמים חמדנים בהמשך.

שאלה 3.10 האם האלגוריתם של Dijkstra אכן נכשל אם בגרף יש קשתות שליליות, אבל אין מעגלים שליליים? - בן!

- אם מבצעים עדכון של התנאי לעדכון, סיבוכיות האלגוריתם כבר לא תהיה פולינומיאלית.
 - אם משתמשים באלגוריתם כמו שהוא, אז לא ניתן להבטיח שיחזיר תשובה נכונה.

דוגמה 3.3 (האלגוריתם של Dijkstra נכשל בגרף עם קשתות שליליות)

איור 4: גרף מכוון שמכיל משקלים שליליים אך לא מעגלים שליליים.

b מחזיר תוצאה שגויה עבור הצומת Dijkstra בתור תרגיל, הראו שבמקרה הb

.5.3 משקלים כלליים.

40

.5.3.1 אינטואיציה לפעילות אלגוריתם נכון עבור פשקלים כלליים.

עבור הגרף הבא, נבצע פאזה שבה נבדוק הפרות של אש"מ בכל רחבי הגרף. נקבל את העדכון הבא:

- . נבחין שבמקרה זה, עבור b מופיעה התשובה הנכונה.
- $s \sim b$ אבחנה זו תהיה נכונה גם אם נוסיף מסלולים כבדים יותר מהצורה

. אחת. שמכיל רק שמכיל אחד ביותר אחת, אחת. הקלים הקלים מבין המסלולים מבין מצב בכל מצב ביותר אחת.

- a לאחר פאזה נוספת תתעדכן גם התשובה הנכונה עבור ullet
- . נבחין שבמסלול קל ביותר בגרף, יהיו לכל היותר |V|-1 קשתות

:סיכום הרעיון

- . נבצע פאזות, ובכל פאזה נעבור על כל הקשתות של E בסדר שרירותי, ונבדוק הפרה של אי שוויון המשולש.
- עבורם עום עבור כל הצמתים עבור התשובה הנכונה עבור עבור עבור פאזות מובטח שיש לנו את התשובה הנכונה עבור כל הצמתים שעבורם קיים פאזות מסלול קל ביותר א המכיל לכל היותר k קשתות.

41

.Bellman-Ford של 5.4

:(Bellman-Ford) האלגוריתם

$$u \in V$$
 לכל , $d(u) \leftarrow \begin{cases} 0 & u = s \\ \infty & u \neq s \end{cases}$ •

 $e=(u o v)\in E$ עבור i=1 עד i=1, בצע לכל קשת i=1 עבור • $d(v)\leftarrow d(u)+w_e$ אם $d(v)>d(u)+w_e$

 $O(|E||V|) = O(n \cdot m)$ - אשלה של הריצה של הריצה מה זמן הריצה של מה מון מידי מה מון מידי מה מון מידי שאלה

טענה 3.5 יהא G גרף חסר מעגלים שליליים.

 $d(v) = \delta(s,v)$ מתקיים k- מתקיים הפאזה היא בסיום הפאזה הים מסלול קל ביותר א המכיל $s \leadsto v$ המכיל

k הוכחה. באינדוקציה על

- , המכיל אפס המכיל אפס היחיד עבורו ש מסלול קל המכיל אפס המכיל אפס קשתות, s הוא הצומת היחיד עבורו ש מסלול קל ביותר מ-s המכיל אפס קשתות, $d(s)=0=\delta(s,s)$ האתחול כי s מתקיים אחרי האתחול כי
 - . א קשתות ו-P מסלול קל ביותר המכיל k+1 קשתות •

$$P = v_0 \to v_1 \longrightarrow v_2 \dots \longrightarrow v_k \to v_{k+1}$$

 $,\!\nu_k$ ל ביותר ה $s \sim \nu_k$ שלו הרישא שלו היא קל היא שלו אינר הרישא שלו הרישא מכיוון פיותר הרישא אינר הרישא אינר הרישא

 $d(v_k) = \delta(s, v_k)$ התקיים k-התקיים בסיום הפאזה האינדוקציה, בסיום הפאזה האינדוקציה,

 $d\left(v_{k}\right)<\delta\left(s,v_{k}\right)$ מנכונות השיטה הכללית, אנחנו יודעים שבכל רגע של הריצה איכול להתקיים מנכונות השיטה הכללית, אנחנו יודעים במהלך הפאזה ה-1 $d\left(v_{k}\right)=\delta\left(s,v_{k}\right)$ בהכרח מתקיים $d\left(v_{k}\right)=\delta\left(s,v_{k}\right)$

:מתקיים k+1, בהכרח בדקנו את הקשת אין, ולכן בסיום הפאזה ה-k+1 מתקיים:

$$d(v_{k+1}) \le d(v_k) + w_{(v_k \to v_{k+1})} = \delta(s, v_k) + w_{v_k \to v_{k+1}} = = \delta(s, v_{k+1})$$
 אורך המסלול P אורך המסלול P

 $d(v_{k+1}) \le \delta(s, v_{k+1})$,k + 1-הפאזה הפאזה שבסיום וקיבלנו

 $d(v_{k+1}) = \delta(s, v_{k+1})$ ולכן , $d(v_{k+1}) < \delta(s, v_{k+1})$ שמתקיים שמתקיים הכללי לא יתכן האלגוריתם הכללי לא יתכן