РΓР

Вариант 14

Исследовать функцию $y = x^3 + x^2$ и построить ее график. 1

- 1)Область определения: $E(y) = (-\infty; +\infty)$
- 2) Асимптоты отсутствуют
- а) При у=0

$$x^3 + x^2 = 0$$

$$x^2(x+1) = 0 \Rightarrow$$

$$\begin{cases} x = 0 \\ x = -1 \end{cases}$$

- б)При х=0
- v=0
- 4) Функция не является ни четной, ни ничетной
- 5) $y' = 3x^2 + 2x$

$$3x^2 + 2x = 0$$

$$\int_{0}^{x} x = 0$$

$$x = -\frac{2}{3}$$

$$x_{min} = 0$$

$$x_{max} = -\frac{2}{3}$$

 $x_{max}=-rac{2}{3}$ Монотонно возрастает $x\in(-\infty;-rac{2}{3})\cup(0,+\infty)$

Монотонно возрастает $x \in \left(-\frac{2}{3}; 0\right)$

$$6)y'' = 6x + 2$$

$$6x + 2 = 0$$

$$x = -\frac{1}{2}$$

 $x=-rac{1}{3}$ $x\in(-\infty;-rac{1}{3})$ Функция выпуклая

- $x \in \left(-\frac{1}{3}; \infty\right)$ Функция вогнутая
- 7) Асимптот нет
- 8)График:

$$x^3 + x^2$$

Исследовать функцию $y = \frac{(x-1)^2}{x-2}$ и построить ее график. 2

- $1)E(y) = (-\infty; 2) \cup (2; +\infty)$
- 2)x = 2 вертикальная асимптота
- 3) а) при $y = 0 \ x = 1$
- б) при x = 0 y = -1/2
- 4)функция является ни четной, ни ничетной

$$5)y'=rac{2(x-1)(x-2)-(x-1)^2}{(x-2)^2}=rac{2x^2-6x+4-x^2+2x-1}{(x-2)^2}=rac{x^2-4x+3}{(x-2)^2}=rac{(x-1)(x-3)}{(x-2)^2}$$
прировняем производную к нулю

$$\frac{\frac{(x-1)(x-3)}{(x-2)^2} = 0}{+ \frac{1}{x^2} + \frac{1}{x^2$$

$$x_{max} = 1$$
$$x_{min} = 3$$

Функция возрастает при $x \in (-\infty; 1) \cup (3; +\infty)$

Функция убывает при $x \in (1;2) \cup (2;3)$

$$6)y'' = \frac{((x-3)+(x-1))(x-2)^2 + 2(x-1)(x-3)(x-2)}{(x-2)^4} = \frac{(2x-4)(x-2) + 2(x-1)(x-3)}{(x-2)^3} = \frac{2x^2 - 8x + 8 - 2x^2 + 8x - 10}{(x-2)^3} = \frac{-2}{(x-2)^3} = 0$$

При $x \in (-\infty; 2)$ вогнута

При $x \in (2; +\infty)$ выпукла

7) вертикальные и горизонтальные ассимптоты

 $\lim (kx + b + f(x))$

$$k = \lim_{x \to \infty} \frac{f(x)}{x}$$

$$k = \lim_{x \to \infty} \frac{f(x)}{x}$$

$$k = \lim_{x \to \infty} \frac{\frac{(x-1)^2}{x-2}}{x} = \lim_{x \to \infty} \frac{(x-1)^2}{x(x-2)} = 1$$

$$b = \lim_{x \to \infty} f(x) - kx$$

$$b = \lim_{x \to \infty} f(x) - kx$$

$$b=\lim_{x\to\infty}\frac{(x-1)^2}{x-2}-x=\lim_{x\to\infty}\frac{1}{x-2}=0$$
 Получается уравнение у=х наклонной асимптоты

Вертикальная асимптота х=2

$$\frac{(x-1)^2}{x-2}$$

Исследовать функцию $y = \frac{1}{(x-1)e^x}$ и построить ее график. 3

$$1)E(y) = (-\infty; 1) \cup (1; \infty)$$

2)функция общего вида

$$3)x = 0, y = -1$$

$$y=0$$
 пересечений нет 4) $y'=\frac{e^{-x}(x-1)-e^{-x}}{(x-1)^2}=\frac{-e^{-x}x}{(x-1)^2}$

$$\frac{-e^{-x}x}{(x-1)^2} = 0$$

Убывает при $x \in (0,1) \cup (1, = \infty)$

Возрастает при
$$x \in (-\infty, 0)$$

 $5)y'' = \frac{(e^{-x}x - e^{-x})(x-1)^2 + 2e^{-x}x(x-1)}{(x-1)^4} = \frac{e^{-x}((x-1)^2 + 2x)}{(x-1)^3} = \frac{x^2 + 1}{(x-1)^3 e^x}$
 $\frac{x^2 + 1}{(x-1)^3 e^x} = 0$

Вогнута при $x \in (1; +\infty)$

Выпукла при $x \in (-\infty; 1)$

6)
$$\lim_{x \to \infty} (kx + b + f(x))$$

$$k = \lim_{x \to \infty} \frac{f(x)}{x}$$

$$k = \lim_{x \to \infty} \frac{1}{(x-1)e^x x} = 0$$

$$k = \lim_{x \to \infty} f(x) = kx$$

$$b = \lim_{x \to \infty} f(x) - kx$$

$$k = \lim_{x \to \infty} \frac{1}{(x-1)e^x x} = 0$$

$$b = \lim_{x \to \infty} f(x) - kx$$

$$b = \lim_{x \to \infty} \frac{1}{(x-1)e^x} - 0x = \lim_{x \to \infty} \frac{1}{(x-1)e^x} = 0$$

$$y = 0$$
 горизонтальная асимптота

x=1 вертикальная асимптота

7)график

Найти наименьшее значнении функции $y = \frac{3}{x+1} - \frac{3}{x-3} + 2$ на отрезке [0,2].

$$y' = \frac{-3}{(x+1)^2} + \frac{3}{(x-3)^2} = \frac{-3x^2 + 18x - 27 + 3x^2 + 6x + 3}{(x+1)^2(x-3)^2} = \frac{24x - 24}{(x+1)^2(x-3)^2}$$

$$\frac{24x - 24}{(x+1)^2(x-3)^2} = 0$$

$$\frac{x - 1}{(x+1)^2(x-3)^2} = 0$$

$$\frac{24x - 24}{(x+1)^2(x-3)^2} = 0$$

$$\frac{x-1}{(x+1)^2(x-3)^2} = 0$$

$$x_{min} = 1$$