Babeş-Bolyai University, Faculty of Mathematics and Computer Science Computer Science Groups 911-917, Academic Year 2021-2022

Mathematical Analysis Exercise Sheet 2

6. Study the continuity of

$$f: \mathbb{R} \to \mathbb{R}, \quad f(x) := \begin{cases} \frac{1}{x} \sin \frac{1}{x} & \text{if } x \neq 0\\ 0 & \text{if } x = 0. \end{cases}$$

7. Find a function $f: \mathbb{R} \to \mathbb{R}$ that is discontinuous at every point in \mathbb{R} and |f| is continuous on \mathbb{R} .

8. Let $f:[0,1] \to [0,1]$ be a continuous function. Prove that f has at least one fixed point $x^* \in [0,1]$, that is, $f(x^*) = x^*$.

9. Let $f: D \to \mathbb{R}$ be a function, defined on a nonempty set $D \subseteq \mathbb{R}$, and let S be a nonempty set of D. We say that f is Lipschitzian on S if there exists a real number $L \geq 0$ such that

$$|f(x) - f(y)| \le L|x - y|, \quad \forall x, y \in S.$$

Prove that:

a) If f is Lipschitzian on S, then f is continuous on S.

b) If f is differentiable on an interval S and $f': S \to \mathbb{R}$ is bounded, then f is Lipschitzian on S.

c) The function $f:[0,+\infty)\to\mathbb{R},\ f(x)=\sqrt{x}$, is not Lipschitzian on $[0,+\infty)$. However, f is Lipschitzian on $[a,+\infty)$ for any a>0.

Homework

HW 10. Consider the function $f: \mathbb{R} \to \mathbb{R}$, defined by

$$f(x) = \begin{cases} x^2, & \text{if } x \ge 0\\ -x^2, & \text{if } x < 0. \end{cases}$$

How many times is this function differentiable?

HW 11. Show that the function $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \sqrt[3]{x}$, is not differentiable at 0 although its derivative at 0 exists.

HW 12. Let $f, g: [0,1] \to \mathbb{R}$ be two continuous functions, such that $f(x) = g(x), \forall x \in [0,1] \cap \mathbb{Q}$. Prove that $f(x) = g(x), \forall x \in [0,1]$.