## The Neural Process Family

#### **Survey, Applications and Perspectives**

Saurav Jha, Dong Gong, Xuesong Wang, Richard Turner, Lina Yao



#### Introduction

- Neural Processes vs Gaussian Processes
- How do Neural Processes work?
- Deep sets and the underlying theory
- The Neural Process Family
- Applications

#### What are Neural Processes





#### In Comparison of GPs



You learn



### From GPs to NPs

#### Some Notation and Recap

$$C = \{(x_i,y_i)\}_{i=1}^{n-1} \subset \mathcal{X} imes \mathcal{Y}$$
 Context set

$$T=\{x_i\}_{i=n}^{n+m-1}\subset \mathcal{X}$$
 Target set

In practice we train over multiple datasets of context and target sets.

$$GP \sim \mathcal{N}(\mu, \Sigma)$$
 Gaussian process

$$\mathbb{P}(GP(T)|T,C) \sim \mathcal{N}(\mu_{ ext{post}},\Sigma_{ ext{post}})$$
 Gaussian posterior

#### **Conditional Neural Process**



#### Meta-Learning



#### **Continual Learning**



Source: Jha et al., 2023

Deep Sets: Extending NPs

#### Translational Equivariance (Where CNP fails)



#### Deep Sets: Take a look inside the NPF ...





Zaheer et al. (2017): A function operating on a set f(S) is a valid set function iff. It can be decomposed in the form:  $f(S) = \rho\left(\sum_{s \in S} \phi(s)\right)$ 

#### Translational Equivariance: Vector Space to Functional Space



Source: Turner, 2021

#### Translational Equivariance: Vector Space to Functional Space



#### Translational Equivariance: DeepSets to ConvDeepSets

DeepSets, Zaheer et al. (2017)

$$f(D_c) = \mathbf{MLP}\left(E(\{x_n, y_n\}_{n=1}^N)\right)$$

$$f(D_c) = \mathbf{CNN} \left( E(\{x_n, y_n\}_{n=1}^N) \right)$$

$$E(D_c) = \sum_{(x,y)\in D_c} \phi_{xy}([x;y])$$

$$E(D_c)(x') = \sum_{(x,y)\in D_c} \phi_y(y)\psi(x - x')$$

Here  $f(D_c)$  is **permutation invariant** 

Here  $f(D_c)$  is **permutation invariant** as well as **translation equivariant** 

#### The Neural Process Family



Source: Jha et al., 2023

#### Research Applications of NPs

#### **Strengths**

- Cheap continual learning
- Few-shot learning
- Meta-learning
- Uncertainty estimation

#### **Applications**

- Space Science
- Recommenders
- Robotics
- Hyperparameter Optimisation
- Neuroscience
- Physics-Informed Modeling
- Weather Forecasting

#### Link to demo(s)

ANP:

https://github.com/edluyuan/neural-processes/blob/master/attentive\_neural\_process.ipynb

CNP:

https://github.com/edluyuan/neural-processes/blob/master/conditional\_neural\_process.ipynb

## Questions?

# The Neural Process Family Appendices

#### Image Inpainting



(Ground Truth. Context. Mean. Variance) →

Source: Jha et al., 2023

#### (latent) Neural Process

$$Q_{ heta}(f(T)|T,C) = \int p(z) \prod_{x \in T} Q(f(x)|
ho(z,x)) dz$$

#### Janossy Pooling (Murphy et al., 2019)



(a) Exhaustive Janossy pooling (k=N)



Source: Jha et al., 2023



#### Example from demo

