Sayısal Sistemler-H1CD1

Dr. Meriç Çetin

versiyon140925

Dersin Kodu : CENG221

Dersin Adı : Sayısal Sistemler (2+0)

Dersi Veren : Doç. Dr. MERİÇ ÇETİN

Ofis Telefonu : 0 258 296 3208

Eposta : mcetin@pau.edu.tr

Ders saati : Pazartesi 15.20 – 16.55

Değerlendirme: Vize: %50, Final: %50

Dersin Amacı

- Bu ders öğrencilere sayısal sistemlerin mantıksal tasarımını öğretmeyi amaçlamaktadır.
- Bu kapsamda sayı sistemleri, Bool cebri ve işlem kuralları, kombinasyonal lojik devreler ve tasarımı, ardışıl devre elemanları, senkron ve asenkron ardışıl devrelerin tasarımı, hafıza devrelerinin yapıları anlatılacaktır.
- Bu dersin sonunda öğrencinin sayısal bir sistemi çözümlemesi ve ihtiyaç duyulan bir sayısal sistemi maliyeti en düşük olacak şekilde tasarlaması beklenmektedir.

Ders İçeriği

- Temel bilgiler
- Sayı Sistemleri: İkili sayılar, sayı tabanları arasında dönüşüm, farklı sayı sistemlerinde aritmetik işlemler,
- Birleşik Mantık Devreleri: ikili mantık, mantıksal kapılar,
- Bool cebri, mini-terimler ve maksi-terimler, iki, üç ve dört değişkenli haritalama, çok seviyeli devre optimizasyonu.
- Birleşik fonksiyonlar ve devreler: birleşik devreler,
- Kodlayıcı tasarımları, kod çözücü tasarımları, çoklayıcı tasarımları,
- Aritmetik fonksiyonlar ve devreler: ikili toplayıcılar, yarı-tam toplayıcılar, çıkarıcılar, çoğullayıcılar, tekilleyiciler, 1 bitlik saklayıcılar
- Flip-flop'ların çalışması, SR-RS flip flop'lar, T tipi flip-floplar, D tipi flip-flop'lar, IK tipi flip flop'lar,
- Sayıcılar, saklayıcılar, ALU tasarımı
- Karmaşık ardışıl lojik devre tasarım örnekleri uygulamaları

Ön Şartlar

- Temel Mantık Bilgisi
- Analiz ve Muhakeme Yeteneği
- Beyin Kas Koordinasyonu
- Programlama ve Tasarım Becerisi
 - Simulator kullanımı için

Simulator Alternatiflerini inceleyelim

- https://circuitverse.org/simulator
- https://logic.ly/demo/samples
- http://www.cburch.com/logisim/

Kaynaklar

- "Digital Design", M. Morris Mano
- "Sayısal Tasarım", M. Morris Mano (Türkçe çevirisi)

"Digital Design", M. Morris Mano

Digital Systems and Binary Numbers

Digital Systems 1.1 1.2 Binary Numbers 1.3 Number-Base Conversions 1.4 Octal and Hexadecimal Numbers 1.5 Complements of Numbers Signed Binary Numbers 1.6 1.7 Binary Codes 1.8 Binary Storage and Registers 1.9 Binary Logic

Boolean Algebra and Logic Gates

2.1	Introduction
2.2	Basic Definitions
2.3	Axiomatic Definition of Boolean Algebra
2.4	Basic Theorems and Properties of Boolean Algebra
2.5	Boolean Functions
2.6	Canonical and Standard Forms
2.7	Other Logic Operations
2.8	Digital Logic Gates
2.9	Integrated Circuits

Gate-Level Minimization

3.1 3.2 3.3 3.4 3.5 3.6 3.7	Introduction The Map Method Four-Variable K-Map Product-of-Sums Simplification Don't-Care Conditions NAND and NOR Implementation Other Two-Level Implementations
3.6	NAND and NOR Implementation
3.7	Other Two-Level Implementations
3.8	Exclusive-OR Function
3.9	Hardware Description Language

Combinational Logic

4.1	Introduction
4.2	Combinational Circuits
4.3	Analysis Procedure
4.4	Design Procedure
4.5	Binary Adder–Subtractor
4.6	Decimal Adder
4.7	Binary Multiplier
4.8	Magnitude Comparator
4.9	Decoders
4.10	Encoders
4.11	Multiplexers
4.12	HDL Models of Combinational Circuits

"Digital Design", M. Morris Mano

Synchronous Sequential Logic

5.1	Introduction
5.2	Sequential Circuits
5.3	Storage Elements: Latches
5.4	Storage Elements: Flip-Flops
5.5	Analysis of Clocked Sequential Circuits
5.6	Synthesizable HDL Models of Sequential Circuits
5.7	State Reduction and Assignment
5.8	Design Procedure

Registers and Counters

6.1	Registers
6.2	Shift Registers
6.3	Ripple Counters
6.4	Synchronous Counters
6.5	Other Counters
6.6	HDL for Registers and Counters

Memory and Programmable Logic

7.1	Introduction	
7.2	Random-Access Memory	
7.3	Memory Decoding	
7.4	Error Detection and Correction	
7.5	Read-Only Memory	
7.6	Programmable Logic Array	
7.7	Programmable Array Logic	
7.8	Sequential Programmable Devices	

Design at the Register Transfer Level

8.1	Introduction
8.2	Register Transfer Level Notation
8.3	Register Transfer Level in HDL
8.4	Algorithmic State Machines (ASMs)
8.5	Design Example (ASMD Chart)
8.6	HDL Description of Design Example
8.7	Sequential Binary Multiplier
8.8	Control Logic
8.9	HDL Description of Binary Multiplier
8.10	Design with Multiplexers
8.11	Race-Free Design (Software Race Conditions)
8.12	Latch-Free Design (Why Waste Silicon?)
8.13	Other Language Features

Kaynaklar

• "Lojik Devre Tasarımı", Rifat Çölkesen, Taner Arsan

Kitap içerisinde aşağıdaki konular ele alınmış olup Lojik Devre laboratuvarı için de 10 tane deney önerisi verilmiştir:

- Lojik Devre Tasarımı Dünyası
- İşaretler ve Analog / Sayısal Dönüşüm
- Sayı Sistemleri
- Kodlama Teknikleri
- Lojik Devre Temelleri
- Boole Cebri
- Lojik Fonksiyonların İndirgenmesi
- Devre Maliyeti ve Karmaşıklık
- PLD'ler; Prom, Pal, Pla
- Ardışıl Devre Temelleri
- Saklayıcı, Sayıcı ve Bellek Elemanları
- Ardışıl Devre Tasarım Yöntemleri
- Lojik Devre Tasarımında Benzetim Ortamı
- TTL ve Cmos Tümdevre Özellikleri

Kaynaklar

• "Digital Logic and Computer Design", M. Morris Mano

"Digital Logic and Computer Design", M. Morris Mano

72

173

179

179

180

					0.5	Description of Course Classiffication	70
1	Bina	ry Systems	1		3.5	Product of Sums Simplification	75
	1.1	Digital Computers and Digital Systems	1		3.6	NAND and NOR Implementation	77
			3		3.7	Other Two-level Implementations	83
	1.2	Binary Numbers	_		3.8	Don't-care Conditions	87
	1.3	Number Base Conversions	6		3.9	The Tabulation Method	89
	1.4	Octal and Hexadecimal Numbers	8		3.10	Determination of Prime-implicants	90
	1.5	Complements	9		3.11	Selection of Prime-implicants	94
	1.6	Binary Codes	14		3.12	Concluding Remarks	96
	1.7	Binary Storage and Registers	20			No. all and a	
	1.8	Binary Logic	23	4	Com	binational Logic	100
	1.9	Integrated Circuits	26		4.1	Introduction	100
					4.2	Design Procedure	104
2	Bool	lean Algebra and Logic Gates	31		4.3	Adders	108
	2.1	Basic Definitions	31		4.4	Subtractors	109
	2.2	Axiomatic Definition of Boolean Algebra	32		4.5	Code Conversion	111
	2.3	Basic Theorems and Properties of Boolean Algebra	35		4.6	Analysis Procedure	113
	2.4	Boolean Functions	39		4.7	Multilevel Nand Circuits	117
	2.5	Canonical and Standard Forms	43		4.8	Multilevel NOR Circuits	124
	2.6	Other Logic Operations	49		4.9	Exclusive-OR and Equivalence Functions	127
	2.7	Digital Logic Gates	51	5	Com	binational Logic with MSI and LSI	137
	2.8	IC Digital Logic Families	54	_	5.1	Introduction	137
_							
3	Simp	olification of Boolean Functions	65		5.2 5.3	Binary Parallel Adder Decimal Adder	138 143
	3.1	The Map Method	65				
	3.2	Two- and Three-variable Maps	65		5.4	Magnitude Comparator	145
					5.5	Decoders	147
					5.6	Multiplexers	156
					5.7	Read-Only Memory (ROM)	16
					5.8	Programmable Logic Array (PLA)	167

3.3 Four-variable Map

5.9 Concluding Remarks

Sequential Logic

6.1 Introduction

6.2 Flip-Flops

3.4 Five- and Six-Variable Maps

"Digital Logic and Computer Design", M. Morris Mano

	6.3	Triggering of Flip-flops	185		9.6 Design of Arithmetic Logic Unit	335	13	Digital Integrated Circuits
	6.4	Analysis of Clocked Sequential Circuits	193		9.7 Status Register	338		13.1 Introduction
	6.5	State Reduction and Assignment	198		9.8 Design of Shifter	341		13.2 Bipolar Transistor Characteristics
	6.6	Flip-flop Excitation Tables	204		9.9 Processor Unit	342		13.3 RTL and DTL Circuits
	6.7	Design Procedure	206		9.10 Design of Accumulator	346		
	6.8	Design of Counters	215					13.4 Integrated-injection Logic (I ² L) 13.5 Transistor-Transistor Logic (TTL)
	6.9	Design with State Equations	218	10	Control Logic Design	362		13.6 Emitter-coupled Logic (ECL)
-	D	ton Country and the Manager Hall	000		10.1 Introduction	362		13.7 Metal-Oxide Semiconductor (MOS)
7	Hegi	sters, Counters, and the Memory Unit	229		10.2 Control Organization	364		13.8 Complementary MOS (CMOS)
	7.1	Introduction	229		10.3 Hard-wired Control — Example 1	369		13.6 Complementary wood (CMOS)
	7.2	Registers	230		10.4 Microprogram Control	376		
	7.3	Shift Registers	235		10.5 Control of Processor Unit	382		
	7.4	Ripple Counters	242		10.6 Hard-wired Control—Example 2	386		
	7.5	Synchronous-counters	247		10.7 PLA Control	393		
	7.6	Timing Sequences	253		10.8 Microprogram Sequencer	396		
	7.7	The Memory Unit	258		Committee Brooker	407		
	7.8	Examples of Random-access Memories	262	11	Computer Design	407		
8	Doni	ster-Transfer Logic	271		11.1 Introduction	407		
0					11.2 System Configuration	408		
	8.1	Introduction	271		11.3 Computer Instructions	411		
	8.3	Arithmetic, Logic, and Shift Microoperations	281		11.4 Timing and Control	417		
	8.4	Conditional Control Statements	284		11.5 Execution of Instructions	419		
	8.5	Fixed-point Binary Data	285		11.6 Design of Computer Registers	424		
	8.6	Overflow	289		11.7 Design of Control	429		
	8.7	Arithmetic Shifts	291		11.8 Computer Console	438		
	8.8	Decimal Data	293	10	Misrosomoutor Sustam Design	443		
	8.9	Floating-point Data	294	12	Microcomputer System Design			
	8.10	Nonnumeric Data	297		12.1 Introduction	443		
	8.11	Instruction Codes	300		12.2 Microcomputer Organization	445		
	8.12	Design of a Simple Computer	304		12.3 Microprocessor Organization	449		
	Droo	secon Legia Design	317		12.4 Instructions and Addressing Modes	456		
9		essor Logic Design			12.5 Stack, Subroutines, and Interrupt	463		
	9.1	Introduction	317		12.6 Memory Organization	471		
	9.2	Processor Organization	318		12.7 Input-output Interface	474		
	9.3	Arithmetic Logic Unit	325		12.8 Direct Memory Access	484		
	9.4	Design of Arithmetic Circuit	326					
	9.5	Design of Logic Circuit	331					

492