Manual técnico

Descripción: El siguiente manual consta de los pasos o requerimientos para que la aplicación de escritorio (PARSER-PY) funcione. Además presenta el diagrama de clases, diagrama de árbol, el diagrama de transiciones. Estos dos últimos diagramas están relacionados con la creación del autómata finito determinista usando el método del árbol.

Instalaciones necesarias:

1. Versión de java:

openjdk 17.0.8

OpenJDK Runtime Environment (build 17.0.8+7-Ubuntu-120.04.2) OpenJDK 64-Bit Server VM (build 17.0.8+7-<u>Ubuntu</u>-120.04.2, mixed mode, sharing

- 2. Tener instalado Graphiz, versión recomendada(2.43.0):
 - 1. En windows, link de descarga; https://graphviz.org/download/
 - 2. En linux:
 - 1. Comando de instalación: sudo apt install graphviz o sudo apt-get install graphvi, link de referencia: https://graphviz.org/download/

Puntos a tomar en cuenta:

1. El ejecutable debe estar al mismo nivel de la carpeta src del código del proyecto principal.

Expresiones regulares para los tokens:

```
Identificadores:
      ([a-zA-z]])([a-zA-z]]|[0-9])*$
      ([a-zA-z]+|\ )([a-zA-z]|\ |[0-9])*
Operadores:
      (+|-|**|/|//|%|*)$
Comparación:
      (==|!=|>|<|>=|<=)$
Asignación:
      (=)$
      (=|+=|-=|**=|/=|//=|%=|*=)$
Palabras clave/ true / false:
      [a-zA-Z]*
Constantes:
      Entero:
             [0-9]+
      Decimal:
              [0-9]+[.][0-9]+
      Cadena:
              (['])(.*)(['])$
             (["])(.*)(["])$
```

Comentario:

[#](.)*\$

. → cualquier símbolo del alfabeto.

Otros:

(\(|\)|\{|\}|\[|\]|\,|\;|\:)\$

Expresión regular general:

([a-zA-z]|_)([a-zA-z]|_|[0-9])*|
(+|-|**|/|/|%|*)|
(==|!=|>|<|>=|<=)|
(=|+=|-=|**=|/=|//=|%=|*=)|
([a-zA-Z]*)|
([0-9]+)|
([0-9]+[.][0-9]+)|
(['])(.*)(['])|
(["])(.*)(["])|
([#](.)*)|
(\(|\)\|\{|\}|\[|\]|\,|\;|\:)\$

Tabla de transiciones:

0 1 2 3 6 7 9 16 17 18 4 5 8 10 11 12 13 14 15 C * " \mathbf{L} D + / % = I > < # () { } S 0 s01 12 2 3 4 5 6 7 8 9 23 11 **13 14 15 10** 10 **10** 10 1 s11 2 2 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 2 s22 2 2 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 3 s3 -1 -1 -1 -1 -1 -1 -1 -1 **10** -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 4 s4 -1 -1 -1 -1 -1 -1 -1 -1 11 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 5 s5 -1 -1 -1 -1 -1 -1 -1 **10** -1 -1 -1 -1 -1 -1 16 -1 -1 -1 -1 6 s6 -1 -1 -1 -1 -1 -1 **17** -1 **10** -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 **s**7 -1 -1 -1 -1 -1 -1 -1 -1 **10** -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 8 s8 -1 -1 -1 -1 -1 -1 -1 -1 **10** -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 9 s9 -1 -1 -1 -1 **10** -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 10 s10 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 11 s11 -1 -1 -1 -1 -1 -1 -1 -1 **10** -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 12 s12 -1 **12** -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 13 s13 **13** 13 **13** 13 13 **13 13 13** 13 13 **13 13 10 13 13 13 13** 13 **13** 14 s14 14 14 14 14 14 **14** 14 14 14 14 14 14 10 14 14 14 14 14 14 15 s15 **15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15** -1 -1 -1 -1 -1 -1 **10** -1 -1 -1 -1 16 s16 -1 -1 -1 -1 -1 -1 -1 -1 17 s17 -1 -1 -1 -1 -1 -1 -1 **10** -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 18 s18 -1 22 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 19 s19 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 **10** -1 -1 -1 -1 -1 -1 20 s20 -1 -1 -1 -1 -1 10 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 21 s21 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

```
22 s22
        23 s23
       -1 -1 -1 -1 -1 -1 -1 10 -1 -1 -1 <u>-1</u> -1
                                                          -1 -1 -1 -1
  C
       19 20 21 22 23 24 25 26
  S
                ;
                    :
                             S
                      es
0 s0
       10 10 10 10 10
                      -1
                         -1
                             -1
1 s1
       -1 -1
             -1
               -1
                   -1
                      -1
2 s2
       -1 -1
             -1
               -1
                   -1
                      -1
                             -1
3 s3
       -1 -1 -1 -1
                      -1
                         -1
                            -1
4 s4
            -1 -1
       -1
         -1
                   -1
                      -1
                             -1
5 s5
       -1 -1
            -1 -1 -1 -1
                            -1
6 s6
       -1 -1 -1 -1
                   -1
                      -1
                             -1
7 s7
            -1 -1
       -1 -1
                   -1
                      -1
                             -1
8 s8
       -1 -1
            -1
               -1
                   -1
                      -1
                             -1
9 s9
       -1
         -1
            -1
               -1
                   -1
                      -1
                         -1
                             -1
10 s10
       -1
         -1 -1 -1 -1
                         -1
                            -1
11 s11
       -1
             -1
               -1
         -1
                   -1
                      -1
                             -1
            -1 -1
12 s12
       -1 -1
                   -1 -1
                         18
                            -1
13 s13
       13 13 13 13 13 13
                             13
14 s14
       14 14 14 14
                   14 14
                         14
                             14
       15 15 15 15 15 15
15 s15
                         15
                             15
16 s16
       -1 -1
            -1 -1
                   -1
                      -1
                         -1
                             -1
17 s17
       -1 -1 -1 -1 -1
                         -1
                            -1
18 s18
       -1 -1 -1
                   -1
                      -1
                             -1
19 s19
       -1 -1 -1 -1 19
                            -1
20 s20
       -1 -1 -1 -1
                   -1
                      20
                             -1
21 s21
       -1 -1
            -1 -1
                   -1
                      21
22 s22
       -1 -1 -1 -1 -1 -1
                            -1
23 s23
      -1 -1 -1 -1 -1 -1
```

NOTA: c = carácter, s = estado, -1 = estado de error.

Estados aceptación:	Estado inicial	Estados
s1	s0	s0
s2		s1
s3		s2
s4		s3
s5		s4
s6		s5
s 7		s6
s8		s7
s10		s8
s11		s9

s12	s10
s16	s11
s17	s12
s21	s13
s22	s14
s23	s15
	s16
	s17
	s18
	s19
	s20
	s21
	s22
	s23

Diagrama de transiciones según el método del árbol:

Diagrama del método del árbol: A continuación se presenta el diagrama de árbol el cual representa la expresión regular general. Sin embargo, la imagen no se logra apreciar bien. En la carpeta de documentación se dejará la imagen en formato png.

Diagrama de clases: para apreciar mejor el diagrama de clases en la carpeta de documentación se ha guardado una imagen en formato png.

