```
Linear diophantine equations
       ax + by = C
 解纸: ① 算 d= gcd(a,b), if d1C, 那么有解
         ① 找特論(xo, yo). FindInstance [ax+by==c.{x,y}. Integers]
         ③通解: X= 26+ 去t. Y= 40- $t
       Bir in : Reduce [ax + by == C, {x,y}, Integers]
\hat{A} atb \equiv (a \mod m + b \mod m) \pmod d
                                              用了化简
     ab \equiv ((a \mod m)(b \mod m)) \pmod d
      ·祖·祖4 22-1
          证: 那证 2°-1 = D (mad 41)
                2^{20} = (2^{5})^{4} 2^{5} = 32 = -9 \pmod{41} 2^{20} = (-9)^{4} \pmod{41}
                                                      = 81.81 (mod 41)
                                                  81 = (-1) mod 41
                                       2^{\infty} \equiv g_1^* \equiv | \pmod{41}
   ac \equiv bc \pmod{m} \Rightarrow a \equiv b \pmod{m/d} d = gcd(c, m)
Linear Congruence
        ax = b (mod m)
   解: 该式写成 ax-my = b (变成 linear diophatine equation)
      D算 d=gcd (a,m) 则有 d个解
      601: 18× = 30 (mod 42)
```

(gcd(18,42)=6 ⇒有67前

 $3x = 5 \pmod{7}$ $x_0 = 4 \cdot x_1 = 11 \cdot x_2 = 18 \cdot x_3 = 25 \cdot x_4 = 32 \cdot x_5 = 39$

```
The Chinese Remainder Theorem
```

$$X \equiv a_1 \pmod{m_1}$$

 $X \equiv a_2 \pmod{m_2}$
 $X \equiv a_1 \pmod{m_2}$
 $X \equiv a_1 \pmod{m_2}$
 $X \equiv a_1 \pmod{m_2}$

 $M_1 = \frac{m}{m_1}$ $M_2 = \frac{m}{m_2}$

Find the invoice of Mr.

$$M_1 Y_1 \equiv 1 \pmod{m_1}$$
 $M_2 Y_2 \equiv 1 \pmod{m_2}$
 $\Rightarrow Y_1$

最后:
$$\chi = \text{smallest (mod } m)$$
 (取最分的)

$$x \equiv 3 \pmod{5}$$

$$\chi = 2 \pmod{7}$$

$$M = 3.5.7 = 105$$
. $M_1 = 35$ $M_2 = 21$ $M_3 = 15$

$$35 y_1 = 1 \mod 3 \qquad 21 y_2 = 1 \mod 5 \qquad 15 y_3 = 1 \mod 7$$

$$2 y_1 = 1 \mod 3 \qquad y_2 = 1 \mod 5 \qquad y_3 = 1 \mod 7$$

$$y_1 = 2 \qquad y_2 = 1 \qquad y_3 = 1$$

解复来 mod fio congurency

Fermat's Factorization Method

例: 分解
$$n = 119143$$
 : $345^2 < 119143 < 346^2$
从 $346^2 + n$. $347^2 - n$... 且初某项 $(346+m)^2 - n$ 改 完全平方数 $\Rightarrow 352^2 - 119143 = 4761 = 69^2$ $119143 = (352+69)(352-69) = 421\cdot 283$ Mathematica: Factor Integer $[n]$

Fermat's Little Theorem

1811:
$$5^{38} \mod 11$$
 $5^{38} = (5^{10})^3 \cdot 5^8 = 5^8 \mod 11$
 $5^8 = (5^3)^4 = 3^4 \pmod 11$
 $5^8 = (5^3)^4 = 3^4 \pmod 11$
 $5^8 = 4 \mod 11$

Mathematica: Power Mod [5,38,1]

Fermat Pseudoprimes

$$a^{p} \equiv a \pmod{q}$$
 and $a^{q} \equiv a \pmod{p}$
then $a^{pq} \equiv a \pmod{pq}$
 $50!$: show that $2^{3p0} \equiv 1 \pmod{341}$: $341 = 11 \cdot 31$
 $2^{10} = 1024 = 31 \cdot 33 + 1$
 $\Rightarrow 2^{11} = 2 \cdot 2^{10} = 2 \cdot 1 \equiv 2 \pmod{31}$
 $2^{31} = 2 \cdot 2^{10} = 2 \cdot 1 \equiv 2 \pmod{11}$ $2^{349} = 2^{11 \cdot 31} \equiv 2 \pmod{341}$
cancelling the factor $2 \Rightarrow 2^{340} \equiv 1 \pmod{341}$