	Category	Approach	Application	Description	Hyperparameters & Regularization	Strength	Weaknesses	Performance Metrics
	Hard Clustering	K-Means-Clustering	Clustering Analysis (grouping instances to clusters)	- randomly assign initial centroids spaced out on data - assign points to their nearest centroids (euclidean & manhattan) - calculate center for all clusters - make center new centroid - re-assign data to clusters and repeat until convergence	- number of clusters	- good for large datasets- easy cluster	aı - only works for spherical data- only wo	r:- Inertia (mean squared distance of all centroids to instances in cluster) - Elbow-Method (Inertia vs. number of clusters; "joint" is optimal) - Silhouette-Coefficient
U n s u p e r v	Hard & Soft Clustering	Gaussian Mixture Models	Density Estimation	- assume number of clusters, mu and sigma for each cluster - Expectation: ' Compute membership probability for each data record ' Calculate expression for responsibility for likelihood of all data points - Maximization: ' Calculate total likelihood for all clusters ' Update mu and sigma for all clusters based on likelihood ' Repeat until convergance - Assign instances to cluster with highest membership probability	- number of clusters - initial mu and sigma	hard and soft clustering shows probabilities for data points good for more complex datasets (ellipsoids)	- slow and computationaly expensive - can get stuck in local optima - only numerical features	- Bayesian Information Criterion - Akaika Information Criterion
i s e d L e a r n i	Hard Clustering	Hierarchical Clustering	Clustering Analysis (grouping instances to clusters)	Bottom-up or top-down approach; dendogram-representation: - calculate proximity matrix from one instance to the other Bottom-Up (agglomerative): *initiate every data point as a single cluster *step-by-step, add closest datapoints to clusters and clusters to clusters (single linkage, average linkage or complete linkage) *repeat until all data points are within one cluster (universe cluster) *Top-Down (divisive): *all instances start in universe cluster *split clusters based on farthest distances *repeat until all data points are individual clusters *find longest vertical line from one cluster to the other (biggest distance)	- None	non-parametric easy to implement informative cluster hierarchy	very sensitive to outliers not feasible for large datasets clusters cannot be un-made	
g	Hard Clustering	DBSCAN	Outlier Detection	- set MinPTS and Surface Radius - start at any data record and check if it forms a cluster; if it does, make it a center point - check for all other points in the cluster if they are either center points or border points (don't form their own cluster) - start at record that was not assigned before and restart - non-assigned data records are outliers	- MinPTS and Surface Radius	handles outliers well outlier detection doesn't need number of clusters can handle arbitrarily shaped datasets	hard to setup minPTS and radius (domain expert needed) needs clusters of same density	
4	Category	Approach	Application	Description	Hyperparameters & Regularization	Strength	Weaknesses	Performance Metrics
4	Regression	(Multi-) Linear Regression	Predicting continuous value	- needs standard deviation of the data, since RSS is MLE for normal	- lambda-Parameter for weights	weight parameters are transparent	- prone to overfitting, always needs	- mean squared error (succeptible to outliers)
4	regression	(water) Enrout Negression	r redicting continuous value	- needs standard deviation of the data, since NSS is WEE for normal	- iainbua-raiainetei ioi weigiits	- weight parameters are transparent	- prone to overnaing, always needs	- mean squared error (succeptible to outliers)

	Category	Approach	Application	Description	Hyperparameters & Regularization	Strength	Weaknesses	Performance Metrics
	Regression	(Multi-) Linear Regression	Predicting continuous value	- needs standard deviation of the data, since RSS is MLE for normal distribution - needs to pass test for linearity - learns linear relation of data to target variable and makes predictions for target variable based on new feature values	- lambda-Parameter for weights - Drastic: Lasso Regression: add lambda*(sum coefficients) to cost function; cancels out small weights - Less drastic: Ridge regression; adds lambda*(sum coefficients)*2 to the cost function, dampening large weights	 weight parameters are transparent and easy to understand for linear models 	 prone to overfitting, always needs regularization susceptible to outliers 	- mean squared error (succeptible to outliers) - root mean squared error (RMSE – more interpretable like standard dev.) - mean absolute error - R^2 (how much of variance in dependent variable stems from independent variables; 0 to 1, where 1 is optimal)
R	Regression	Polynomial Regression	Predicting continuous value	-applicable to non-linear data; rest: see above	- see above	- works with non-linear data	- see above	- see above
e g	Regression	Quantile Regression	Predicting continuous value	- seperate dependent variable into different segments (quantiles) to train the model individually for each segment	- see above	- works with multimodal or skewed data	- see above	- see above
e s s i o n	Regression	Support Vector Machines	Predicting continuous value	- learns relation of data to target variable by fitting as many points as possible on the hyperplane - trys to minimize weights instead of minimizing error! - all points have to be within certain margin (E) - derived function is used to make predictions for new instances - works like the "inverse" of the large margin classifier - for non-linear problems, soft margins are introduced with slack variables ksl	- Parameter C: Increase to decrease regularization; decrease to increase regularization (allows more point on margin) - Slack Variables ksi allow for points outside the margin (soft margin)	- Not given in script	- Not given in script	- Not given in script
	Regression	Regression Trees	Predicting target variable	Build the tree: - calculate standard deviation of target variable - calculate standard deviation of all manifestations of feature variable and weight it with its probability - calculate reduction in standard deviation of target variable by subtracting standard deviation of all feature variables - select the feature that causes the highest reduction in standard deviation as the root/ next node	- Pruning the tree: continue as long as coefficient of variation (sigma / mu) stays under a certain value	- little assumptions on the data - allows regression based on non- numerical data (e.g. categorial data)	- needs pruning or would overfit	- Not given in script

Catogory	Annroach	Application	Description	Hypornaramotore & Pogularization	Strongth	Worknossos	Porformance Metrics
Category Classification	Approach Logistic Regression	Application Binary or categorial classification	Description - based on bernoulli distribution	Hyperparameters & Regularization - lambda or inverse (C)	Strength - takes binomial categorial or	Weaknesses - not feasible for non-linearly	Performance Metrics Confusion Matrix:
Ciassinoandii	Logiculo (Yogi obalori)	and, or categoria diasmoditori	- uses coefficients to determine a probability - decision for classification is done based on threshold (e.g. 90%)	- Lasso Regression (drastic) - Ridge Regression (less drastic)	discrete data - works with big samples	seperable datasets	Precision (TP / TP + FP) - Recall (TP / TP + FN) - F1-Score (2*Precision*Recall / (Precision + Recall)) - Accuracy ((TP + TN) / (TP + TN + FP + FN)]
Classification	Support Vector Machines	Categorial or discrete classification	Large margin classifier. Maximizes the width between support vectors of different classes: - Hard Margin Problem (linearly seperable data): All data points have to be classified in the correct class; no room for error (overfitting?). Soft Margin Problem (nonlineary seperable data): Model allows certain errors within the classification, making the model more robust (less overfitting) w. slack-variable zeta and parameter C - Dimensionality: To make non-linearly separable data linearly separable, one can increase its dimension — curse of dimensionality (overfitting and cost for calculation) - Kemel-Trick: To avoid this, one can use the kernel trick, because it only transfers the relevant datapoints more efficiently w. dot products - Polynomial Kernel - RBF (Gaussian) Kernel	 Regularization Parameter C (increasing -> less regularization) for RBF (Gaussian) Kemel: gamma (increasing → less regularization) 	high discrimination power takes continuous and categorical data works with linear and nonlinear problems memory efficient (only needs support vectors) good generalization	needs proper mathematical understanding harder to understand than more simple models	Confusion Matrix: - Precision (TP / TP + FP) - Recall (TP / TP + FN) - F1-Score [2*Precision*Recall / (Precision + Recall)] - Accuracy [(TP + TN) / (TP + TN + FP + FN)]
Classification	Decision Trees	Non-parametric classification for all kinds of data	Asking binary question: Yes or no – trees are built on roots (initial question) nodes (decision points) and leafs (answers) Splits are made by the highest gain of information for the target variable: - ID 3: "Information Gain": - Gain (f) = Entropy (dataset) – weightet Entropy (f) (Dataset) - ID 4.5: "Split Info": Avoids completely homogenous datasets (poor generalization!) and can use continuous and discrete features, while handling missing values and decision tree pruning. - CART Reduction in Impurity by using the Gini Index, implements post-pruning	Pruning: Pre-Pruning: Only split a node if a certain condition is met (max depth, min members in a node) Post-Pruning: Remove parts of a tree that hold little information with a leaf that holds the label of the most frequent feature in the leaf (implemented in CART)	non-parametric model easy to interpret uses discrete and numerical features	always overfits if not pruned (recreates the input data by design) - very susceptible to outliers	Confusion Matrix and: ROC (Receiver Operating Characteristic Curve): - shows performance at all classification thresholds - Recall on abzissa, False Positive Rate on ordinate: → Recall = TP / (TP + FN), FPR = FP / (FP + TN) AOC: Area under ROC (from 0 to 1)
Classification	Ensemble Models	Non-parametric classification for all kinds of data	Meta Method: Combine several homogen or heterogen (weak) learners that are strong at specific parts of input space → combination evens out errors but overall prediction stays strong Bagging (for homegen weak lerners): - all samples are thrown in a "Bag" and repeatedly drawn to train the weak lerners, afterwards "returned to the bag" (each sample can be drawn multiple times) - all weak learners vote for classification, decision by majority vote (agg Tegation step) Pasting (for homogen weak lerners): - all samples are thrown in a bag and drawn only once as a subset to train the weak lenners (each sample can only be used once!) Boosting: - iterative approach → performance of all weak learners is improved by training samples step-vise - all samples are drawn repeatedly for training - missclassified instances get a bigger probability to be re-drawn Adaptive Boosting: - like boosting, but successful learners get more important vote in final classification step	- depends on the chosen models	- combines several different ML approaches and evens out their weaknesses; usually a good choice	- results might become more opaque	Confusion Matrix and: ROC (Receiver Operating Characteristic Curve): - shows performance at all classification thresholds - Recall on abzissa, False Positive Rate on ordinate: → Recall = TP / (TP + FN), FPR = FP / (FP + TN) AOC: Area under ROC (from 0 to 1)
Classification	Random Forest	Non-parametric classification for all kinds of data	Forest creation and voting: - build trees by choosing subset of training samples and usually subset of training features - trees vote for classification - training on "bagging" method	number of trees in forest maximal depth of a tree minimal samples per leaf	big features spaces random subset of features reduces correlation between learners; reducing variance	-?	See above
Catans	Annzagah	Application	Description	Unmarrameters 0 D	Strength	Weaknesses	Performance Metrics
Category Optimization	Approach Genetic Algorithm	Application Heuristic optimization methods for	Description Creation of population:	Hyperparameters & Regularization None	Strength None	Weaknesses None	Performance Metrics None
ориниданоп		hyperparameter tuning	- landividual problem solutions are encoded in a Chromosome with Genes (0 and 1 values) Evolution of fitness function: - putting individual solutions towards the fitness function Selection of fitnes: - looking for a certain amount of highest scoring chromosomes Crossover: - re-combining chromosomes on single or dual crossover Mutation: - flipping one bit to prevent being stuck in local optima				