Digital Signal Processing Lab

Lab 2: Discrete-Time Signals and Systems

Group: 04

Report by Rong ZHI and Yunlong SONG

1. Preparation

a). What is MATLAB

MATLAB stands for both a high-performance language for technical computer and integrated numerical computing environment. Typically, we can use MATLAB to do math and compution, algorithm development, data analysis and engineering graphics, etc.

b). Data Type

The three special cases are: 1> Scalars: A scalar is an element of a field which is used to define a vector space, which can be consider as a 1x1 matrix. 2> Vectors: A vectors can be considered as an 1xn matrix, which has one column and n rows. 3> Matrix:a matrix is a rectangular array of numbers, symbols, or expressions, arranged in rows and columns.

c). for loop and if-else statement

v =

Columns 1 through 13

 $-1.0000 \quad -0.9000 \quad -0.8000 \quad -0.7000 \quad -0.6000 \quad -0.5000 \quad -0.4000 \quad -0.3000 \quad -0.2000$

Columns 14 through 21

0.3000 0.4000 0.5000 0.6000 0.7000 0.8000 0.9000 1.0000

ans =

s =

```
1 응응
2 clear
3 clear all
4 v = -1:0.1:1;
s sign(v);
6 v(1);
7 \text{ m} = 0;
8 \text{ for } 1 = -1:0.1:1
     m = m + 1;
     if v(m) > 0
10
          s(m) = 1;
11
12 % % % % always be careful about the "=" and "=="
elseif v(m) == 0
14
          s(m) = 0;
     elseif v(m) < 0
15
16
          s(m) = -1;
17
      end
18 end
19 V
20 sign(v)
21 S
```

d). Matix

```
G =
```

```
0.6000
                    2.3000
          1.5000
                             -0.5000
8.2000
          0.5000
                   -0.1000
                             -2.0000
5.7000
          8.2000
                   9.0000
                              1.5000
0.5000
          0.5000
                    2.4000
                              0.5000
1.2000
       -2.3000
                  -4.5000
                              0.5000
```

ans =

5 4

G(2 2) = 0.5 G(4 1) = 0.5 G(4 2) = 0.5 G(4 4) = 0.5 G(5 4) = 0.5 G(1 4) < 0 G(2 3) < 0 G(2 4) < 0 G(5 2) < 0

Code:

 $G(5 \ 3) < 0$

```
2
  % % % % % % Preparation d)
5 G = ...
6 [0.6, 1.5, 2.3, -0.5;...
7 8.2, 0.5, -0.1, -2.0;...
8 5.7, 8.2, 9.0, 1.5;...
9 0.5, 0.5, 2.4, 0.5;...
  1.2, -2.3, -4.5, 0.5
11
12 size(G)
13
  for m = 1:5
       for n = 1:4
15
16
           if G(m, n) == 0.5
               fprintf('G(%d %d) = 0.5\n', m, n);
17
18
           end
19
       end
20 end
21
22
23
  for m = 1:5
24
       for n = 1:4
26
           if G(m, n) < 0
               fprintf('G(%d %d) < 0 n', m, n);
27
           end
28
       end
30 end
```

f). Functions and Scripts

Program files can be scripts that simply execute a series of MATLAB® statements, or they can be functions that also accept input arguments and produce output. Both scripts and functions contain MATLAB code, and both are stored in text files with a .m extension. However, functions are more flexible and more easily extensible.

2. Experiments & Results

Problems 2.1 Magic Matrics

M is a magic function, which returns a 5-by-5 matrix constructed from the integers 1 through 25 with equal row and column sums.

```
>> M = magic(5);
M =

17    24    1    8    15
23    5    7    14    16
```

4 6 13 20 22 10 12 19 21 3 11 18 25 2 9

>>sum(M)

ans =

65 65 65 65

>>sum(M?)

ans =

65 65 65 65

The first row is:

R1 =

17 24 1 8 15

The third column is:

ans =

1

7

13

19 25

Column 1 to 3 of rows2 to the end of M:

 $M_sub =$

23 5 7

4 6 13

10 12 19

11 18 25

M(1, 1) = 17 > 10

M(1, 2) = 24 > 10

M(1, 5) = 15 > 10

M(2, 1) = 23 > 10

M(2, 4) = 14 > 10

M(2, 5) = 16 > 10

M(3, 3) = 13 > 10

M(3, 4) = 20 > 10

M(3, 5) = 22 > 10

M(4, 2) = 12 > 10

M(4, 3) = 19 > 10

M(4, 4) = 21 > 10

M(5, 1) = 11 > 10

M(5, 2) = 18 > 10

M(5, 3) = 25 > 10

M(1, 3) = 1 < 4

M(4, 5) = 3 < 4

M(5, 4) = 2 < 4

```
2 clear
3 clear all
4 M = magic(5)
5 sum (M)
6 sum(M')
    for row = 1:5
7
8
       for column = 1:5
           if row == 1
9
                R1(column) = M(row, column);
10
           end
11
12
           if column == 3
13
14
                C3(row) = M(row, column);
           end
15
16
           if (row >= 2) && (column <=3)</pre>
17
                M_sub(row-1, column) = M(row, column);
18
19
           end
20
21
       end
    end
22
23
   fprintf('The first row is: ');
24
25
26
   fprintf('The third column is: ');
   С3'
27
   fprintf('Column 1 to 3 of rows2 to the end of M: ');
28
   M_sub
  for row = 1:5
30
31
       for column = 1:5
           if M(row,column) > 10
32
                fprintf('M(%d, %d) = %d > 10 \n', row, column, M(row, column))
33
34
           end
       end
35
36 end
37
  for row = 1:5
38
39
       for column = 1:5
           if M(row, column) < 4
40
                fprintf('M(%d, %d) = %d < 4 \n', row, column, M(row, column))
41
42
           end
       end
43
44 end
```

2.2 Magic Matrices

The first 12 Fiboncacci numbers:

1 1 2 3 5 8 13 21 34 55 89 144 233

The approximation compared with golden ratio:

Figure 1: The approximation compared with golden ratio.

Code:

```
1 fibonacci(13)
2 for n=2:13
3 f=fibonacci(n);
4 r(n)=f(n)/f(n-1);
5 end
6 plot(r,'g:*');
7 t=0:0.01:13;
8 a=((5)^0.5+1)/2;
9 hold on;
10 plot(t,a,'b');
11 legend('fibonacci','|Õ=(5^0.5+1)/2');
```

2.3 Statistical Measurements

```
Minimum value of x: 0.9986
Maximum value of x: 8.0862e-04
Mean of x: 0.5071
```

Standard deviation of x: 0.2862

Mean of y: 0.0283

Standard deviation of y: 1.1448

We can get the mean and standard deviation of y by calculating those values of x, and substituting them into y=4x-2.

The histogram of x shows in Figure 2, as we can see from it, it is a Gaussian distribution.

```
1 clear;
2 x=rand(1000,1);
3 max(x)
4 min(x)
5 r=mean(x)
6 s=std(x)
7 y=4*x-2;
```


Figure 2: The Histogram of x.

```
8 m=mean(y)
9 n=std(y)
10 fprintf('4*%f-2=%f',r,m);
11 clear;
12 x=randn(1000,1);
13 hist(x)
```

2.4 An Optimization Example

Code:

```
1 clear;
r = [0.5:0.01:10];
3 for m=1:951
     h(m) = 330/(pi*(r(m)^2));
5 end
6 A=2*pi*(r.^2)+2*pi*r.*h;
7 a=find(A==min(A));
8 r(a)
9 h(a)
10 figure (1);
plot(r,A,'g');grid on;
12 hold on;
13 plot(r(a), min(A), 'r:*');
14 text(r(a), min(A) +100, 'minimum');
15 fprintf('%f,%f',r(a),h(a));
16 figure (2);
u = [0:pi/60:2*pi];
18 v=[0:0.1:h(a)];
19 [U,V] = meshgrid(u,v);
20 X=r(a) * cos(U);
Y=r(a)*sin(U);
22 Z=V;
23 \text{ mesh}(X,Y,Z);
24 axis equal;
```

Plot A(r) can we see in Figure 3

The minimum value of A(r) can we see from Figure 4, with r=3.7400,h=7.5097.

Figure 3: The surface graphic of A(r).

Figure 4: The minimum value of A(r).

Problem 2.5

As we can observe from this picture, as m increases, the more flatter the average result is.

Figure 5: Climate Data with different average parameters m.

Code:

```
1 %%
2 clear
3 clear all
4 load glob_warm.mat
5 x_head = zeros(158,1);
6 x_head = moving_average(158,3);
7 plot(x_head,'r-');
8 xlabel('Year/y');
9 ylabel('Temperature/C');
10 hold on
11 plot(moving_average(158,7),'b*')
12 hold on
13 plot(moving_average(158,20),'c--o')
14 plot(Ta,'g--');
15 legend('m = 3','m = 7','m = 20','Original')
```

Function(moving_averaeg.m):

```
1 function x_head = moving_average( n, m )
2 %MOVING_AVERAGE Summary of this function goes here
3 % Detailed explanation goes here
4 load glob_warm.mat;
5
```

```
x_{head} = zeros(158,1);
  for 1 =1:n
8
       if 1 < (m+1);
9
           x_head(1) = Ta(1);
10
       elseif l > (n-m);
11
12
           x_head(1) = Ta(1);
       elseif 1 > = (m+1) \&\& 1 <= (n-m)
           for k = -m:m
14
                x_head(l) = x_head(l) + Ta(l+k);
15
           end
16
                x_{head(1)} = x_{head(1)}/(2*m+1);
       end
18
  end
20
  end
```

Problem 2.6

Figure 6: Polt of the original signal and sample signal.

```
1 %%
2 clear
3 clear all
4 n = 0:100;
5 F = 1;
6 T = 0.05;
7 s = sin(2*pi*F*n*T);
8 figure
```

```
9 subplot(3,1,1);
10 plot(n,s);
11 xlabel(' n ');
12 ylabel(' sin(2*pi*f*n*T) ');
13 title('discrete-time Signal');
14
15 subplot(3,1,2);
16 plot(n*T,s)
17 xlabel(' nT ');
18 ylabel(' sin(2*pi*f*nT) ');
19 title('sampled signal');
20
21 subplot(3,1,3);
22 stem(n,s);
23 xlabel(' n ');
24 ylabel(' sin(2*pi*f*n*T) ');
25 title('stem signal');
```


Figure 7: Spectrum of the signal (rad/sample vs. freq/Hz) and the distrubanced signal.

```
1 S = fft(s,128);
2 P = S.*conj(S);
3 w = (0:127)/128;
4 figure
5 subplot(3,1,1);
6 plot(2*w,P);
7 xlabel('[rad/sample]');
8 ylabel(' [voltage/V] ');
9 title('Power Spectrum');
```

```
10
11    subplot(3,1,2);
12    plot(w/T,P);
13    xlabel('[Frequency/Hz]');
14    ylabel(' [voltage/V] ');
15
16    s2 = s + sin(2*pi*4*n*T);
17    subplot(3,1,3);
18    plot(n,s2);
19    xlabel('[/n]');
20    ylabel(' [voltage/v] ')
```


Figure 8: Frequency response of the filter and the recovered signal (magnitude vs. frequency/Hz).

```
1 b = [1 1 1 1]/4;
2 a = 1;
3 [H,W1] = freqz(b,a);
4
5 figure
6 subplot(3,1,1);
7 plot(W1/(2*pi*T),abs(H));
8 sf = filter(b,a,s2);
9
10 subplot(3,1,2);
11 plot(sf);
12 xlabel('[/n]');
13 ylabel(' [voltage/v] ');
14
15 SF = fft(sf,128);
```

```
16  P_SF = SF.*conj(SF);
17  subplot(3,1,3);
18  plot(2*w,P_SF);
19  xlabel('[rad/sample]');
20  ylabel(' Power Spectrum');
```