(global-font-lock-mode t)

#!/bin/sh

(compile (concat "g++\_-g\_-O2\_-o\_" (file-name-sans-extension buffer-file-name)

sed ':a;N; $$!ba;s/[_\n\t]//g' \mid md5sum \mid cut -d'_' -f1$ 

# ACM ICPC TEAM REFERENCE 2010 WORLD FINALS

### Team Anuncie Aqui Universidade Federal de Sergipe

#### 1. Configuration files and scripts

1.1. .emacs. Hash: b1040cede72bb06f9b3197eba2d833f5

```
(setq transient-mark-mode t)
                                                                                                     "_" buffer-file-name))
(global-set-key [f5] 'cxx-compile)
                                                                                       (add-hook 'c++-mode-hook (lambda () (c-set-style "stroustrup")
(defun cxx-compile()
 (interactive)
                                                                                                                 (flymake-mode t)))
  (save-buffer)
1.2. Makefile. Hash: 7381d22266f4ef5a9a601b80a76a956c
check-syntax:
                                                                                             q++ -Wall -fsyntax-only $(CHK_SOURCES)
1.3. .vimrc. Hash: da63747b3e94a58450094526d21a9e41
syn on
                                                                                       ab #i #include
set nocp number ai si ts=4 sts=4 sw=4
1.4. Hash generator. Hash: 0d22aecd779fc370b30a2c628aff517c
```

#### 1.5. **Solution template.** Hash: 220ea9d23d25447636bd67aeaf899fee

```
#include <algorithm>
                                                                                            #include <set>
#include <cassert>
                                                                                            #include <sstream>
                                                                                            #include <string>
#include <cmath>
#include <cstdio>
                                                                                            #include <utility>
#include <cstdlib>
                                                                                            #include <vector>
#include <cstring>
#include <ctime>
                                                                                            using namespace std;
#include <iostream>
#include <map>
                                                                                            int main() {
#include <queue>
```

#### 2. Graph algorithms

#### 2.1. Tarjan's SCC algorithm. Hash: 16e646ee186fcff5ed68116af46b0820

```
int lowest[MAXV], num[MAXV], visited[MAXV], comp[MAXV];
int prev_edge[MAXE], last_edge[MAXV], adj[MAXE], nedges;
int cur_num, cur_comp;
stack<int> visiting;
int t_init() {
  memset(last_edge, -1, sizeof last_edge);
   nedges = 0;
void t_edge(int v, int w) {
  prev_edge[nedges] = last_edge[v];
   adj[nedges] = w;
   last_edge[v] = nedges++;
int tarjan_dfs(int v) {
   lowest[v] = num[v] = cur_num++;
   visiting.push(v);
   visited[v] = 1;
   for(int i = last_edge[v]; i != -1; i = prev_edge[i]) {
      int w = adj[i];
      if(visited[w] == 0) lowest[v] = min(lowest[v], tarjan_dfs(w));
      else if(visited[w] == 1) lowest[v] = min(lowest[v], num[w]);
```

```
if(lowest[v] == num[v]) {
    int last = -1;
    while(last != v) {
        comp[last = visiting.top()] = cur_comp;
        visited[last] = 2;
        visiting.pop();
    }
    ++cur_comp;
}

return lowest[v];
}

void tarjan_scc(int num_v = MAXV) {
    visiting = stack<int>();
    memset(visited, 0, sizeof visited);
    cur_num = cur_comp = 0;

for(int i = 0; i < num_v; ++i)
    if(!visited[i])
        tarjan_dfs(i);
}</pre>
```

#### 2.2. Dinic's maximum flow algorithm. Hash: 4dd537effe7e233681c099912397839a

```
int last_edge[MAXV], cur_edge[MAXV], dist[MAXV];
int prev_edge[MAXE], cap[MAXE], flow[MAXE], adj[MAXE];
int nedges;
void d_init() {
   nedges = 0;
   memset(last_edge, -1, sizeof last_edge);
void d_edge(int v, int w, int capacity, bool r = false) {
   prev_edge[nedges] = last_edge[v];
   cap[nedges] = capacity;
   adj[nedges] = w;
   flow[nedges] = 0;
  last_edge[v] = nedges++;
   if(!r) d_edge(w, v, 0, true);
bool d_auxflow(int source, int sink) {
   queue<int> q;
   q.push(source);
   memset(dist, -1, sizeof dist);
   dist[source] = 0;
   memcpy(cur_edge, last_edge, sizeof last_edge);
   while(!q.empty()) {
      int v = q.front(); q.pop();
      for(int i = last_edge[v]; i != -1; i = prev_edge[i]) {
         if(cap[i] - flow[i] == 0) continue;
         if(dist[adj[i]] == -1) {
            dist[adj[i]] = dist[v] + 1;
            q.push(adj[i]);
            if(adj[i] == sink) return true;
```

```
return false;
inline int rev(int i) { return i ^ 1; }
int d_augmenting(int v, int sink, int c) {
   if(v == sink) return c;
   for(int& i = cur_edge[v]; i != -1; i = prev_edge[i]) {
     if(cap[i] - flow[i] == 0 || dist[adj[i]] != dist[v] + 1)
         continue;
     int val;
     if(val = d_augmenting(adj[i], sink, min(c, cap[i] - flow[i]))) {
        flow[i] += val;
        flow[rev(i)] -= val;
        return val;
   return 0;
int dinic(int source, int sink) {
  int ret = 0;
   while(d_auxflow(source, sink)) {
     int flow;
      while(flow = d_augmenting(source, sink, 0x3f3f3f3f))
         ret += flow;
   return ret;
```

#### 2.3. Successive shortest paths mincost maxflow algorithm. Hash: 1899233cb68a8d5f6e280654146e1747

```
int dist[MAXV], last_edge[MAXV], d_visited[MAXV], bg_prev[MAXV], pot[MAXV],
    capres[MAXV];
```

```
int prev_edge[MAXE], adj[MAXE], cap[MAXE], cost[MAXE], flow[MAXE];
```

```
int nedges;
priority_queue<pair<int, int> > d_q;
inline void bg_edge(int v, int w, int capacity, int cst, bool r = false) {
   prev_edge[nedges] = last_edge[v];
   adj[nedges] = w;
   cap[nedges] = capacity;
   flow[nedges] = 0;
   cost[nedges] = cst;
   last_edge[v] = nedges++;
   if(!r) bg_edge(w, v, 0, -cst, true);
inline int rev(int i) { return i ^ 1; }
inline int from(int i) { return adj[rev(i)]; }
inline void bg_init() {
   nedges = 0;
   memset(last_edge, -1, sizeof last_edge);
   memset(pot, 0, sizeof pot);
void bq_dijkstra(int s, int num_nodes = MAXV) {
   memset(dist, 0x3f, sizeof dist);
   memset(d_visited, 0, sizeof d_visited);
   d_q.push(make_pair(dist[s] = 0, s));
   capres[s] = 0x3f3f3f3f3f;
   while(!d_q.empty()) {
      int v = d_q.top().second; d_q.pop();
      if(d_visited[v]) continue; d_visited[v] = true;
      for(int i = last_edge[v]; i != -1; i = prev_edge[i]) {
```

```
if(cap[i] - flow[i] == 0) continue;
         int w = adj[i], new_dist = dist[v] + cost[i] + pot[v] - pot[w];
         if(new_dist < dist[w]) {</pre>
            d_q.push(make_pair(-(dist[w] = new_dist), w));
            bg_prev[w] = rev(i);
            capres[w] = min(capres[v], cap[i] - flow[i]);
pair<int, int> busacker_gowen(int src, int sink, int num_nodes = MAXV) {
   int ret flow = 0, ret cost = 0;
  bg_dijkstra(src, num_nodes);
   while(dist[sink] < 0x3f3f3f3f) {</pre>
      int cur = sink;
      while(cur != src) {
         flow[bg_prev[cur]] -= capres[sink];
        flow[rev(bq_prev[cur])] += capres[sink];
        ret_cost += cost[rev(bq_prev[cur])] * capres[sink];
         cur = adj[bg_prev[cur]];
      ret_flow += capres[sink];
      for (int i = 0; i < MAXV; ++i)
        pot[i] = min(pot[i] + dist[i], 0x3f3f3f3f);
      bg_dijkstra(src, num_nodes);
   return make_pair(ret_flow, ret_cost);
```

#### 2.4. Gabow's general matching algorithm (WRONG). Hash: a173c8d78c8dfd97bfacfc98e6ef92ea

```
int prev_edge[MAXE], v[MAXE], w[MAXE], last_edge[MAXV];
int type[MAXV], label[MAXV], first[MAXV], mate[MAXV], nedges;
bool g_flag[MAXV], g_souter[MAXV];

void g_init() {
   nedges = 0;
   memset(last_edge, -1, sizeof last_edge);
}
```

```
void g_edge(int a, int b) {
   prev_edge[nedges] = last_edge[a];
   v[nedges] = a;
   w[nedges] = b;
   last_edge[a] = nedges++;

   prev_edge[nedges] = last_edge[b];
```

```
v[nedges] = b;
   w[nedges] = a;
   last_edge[b] = nedges++;
void g_label(int v, int join, int edge, queue<int>& outer) {
   if(v == join) return;
   if(label[v] == -1) outer.push(v);
  label[v] = edge;
   type[v] = 1;
   first[v] = join;
   g_label(first[label[mate[v]]], join, edge, outer);
void q_augment(int _v, int _w) {
   int t = mate[_v];
  mate[\_v] = \_w;
   if (mate[t] != _v) return;
   if(label[_v] == -1) return;
   if(type[_v] == 0) {
      mate[t] = label[_v];
      g_augment(label[_v], t);
   else if(type[_v] == 1) {
      g_augment(v[label[_v]], w[label[_v]]);
      g_augment(w[label[_v]], v[label[_v]]);
int gabow(int n) {
   memset (mate, -1, sizeof mate);
  memset(first, -1, sizeof first);
   int u = 0, ret = 0;
   for (int z = 0; z < n; ++z) {
      if (mate[z] != -1) continue;
      memset(label, -1, sizeof label);
      memset (type, -1, sizeof type);
      memset(q_souter, 0, sizeof q_souter);
      label[z] = -1; type[z] = 0;
```

```
queue<int> outer;
outer.push(z);
bool done = false;
while(!outer.empty()) {
  int x = outer.front(); outer.pop();
  if(g_souter[x]) continue;
  g_souter[x] = true;
   for(int i = last_edge[x]; i != -1; i = prev_edge[i]) {
      if (mate[w[i]] == -1 && w[i] != z) {
         mate[w[i]] = x;
         g_augment(x, w[i]);
         ++ret;
         done = true;
         break;
      if(type[w[i]] == -1) {
         int v = mate[w[i]];
         if(type[v] == -1) {
            type[v] = 0;
            label[v] = x;
            outer.push(v);
            first[v] = w[i];
         continue;
      int r = first[x], s = first[w[i]];
      if(r == s) continue;
      memset(g_flag, 0, sizeof g_flag);
      g_flag[r] = g_flag[s] = true;
      while(true) {
        if(s != -1) swap(r, s);
         r = first[label[mate[r]]];
         if(q_flag[r]) break; q_flag[r] = true;
      q_label(first[x], r, i, outer);
```

```
g_label(first[w[i]], r, i, outer);

for(int c = 0; c < n; ++c)
    if(type[c] != -1 && first[c] != -1 && type[first[c]] != -1)
        first[c] = r;
}</pre>
```

```
if(done) break;
}
return ret;
}
```

3. Math

#### 3.1. **Fractions.** Hash: 85739ae11b5b0351c0a9b5b6f813eaf8

```
struct frac {
  long long num, den;
  frac(long long num = 0, long long den = 1) { set_val(num, den); }

void set_val(long long _num, long long _den) {
    num = _num/__gcd(_num, _den);
    den = _den/__gcd(_num, _den);
    if(den < 0) { num *= -1; den *= -1; }
}

void operator*=(frac f) { set_val(num * f.num, den * f.den); }
void operator+=(frac f) { set_val(num * f.den + f.num * den, den * f.den); }
void operator-=(frac f) { set_val(num * f.den - f.num * den, den * f.den); }
void operator/=(frac f) { set_val(num * f.den, den * f.num); }
};</pre>
```

```
bool operator==(frac a, frac b) { return a.num * b.den == b.num * a.den; }
bool operator!=(frac a, frac b) { return ! (a == b); }
bool operator<(frac a, frac b) { return a.num * b.den < b.num * a.den; }
bool operator<=(frac a, frac b) { return (a == b) || (a < b); }
bool operator>(frac a, frac b) { return ! (a <= b); }
bool operator>=(frac a, frac b) { return ! (a < b); }
frac operator/(frac a, frac b) { frac ret = a; ret /= b; return ret; }
frac operator*(frac a, frac b) { frac ret = a; ret += b; return ret; }
frac operator+(frac a, frac b) { frac ret = a; ret += b; return ret; }
frac operator-(frac a, frac b) { frac ret = a; ret -= b; return ret; }
frac operator-(frac a, frac b) { frac ret = a; ret -= b; return ret; }
frac operator-(frac a, frac b) { frac ret = a; ret -= b; return ret; }
frac operator-(frac f) { return 0 - f; }

std::ostream& operator<<(std::ostream& o, const frac f) {
    o << f.num << "/" << f.den;
    return o;
}</pre>
```

#### 3.2. Chinese remainder theorem. Hash: 06b5ebd5c44c204a4b11bbb76d09023d

```
struct t {
   long long a, b; int g;
   t(long long a, long long b, int g) : a(a), b(b), g(g) { }
   t swap() { return t(b, a, g); }
};

t egcd(int p, int q) {
   if(q == 0) return t(1, 0, p);

   t t2 = egcd(q, p % q);
```

```
t2.a -= t2.b * (p/q);
return t2.swap();
}
int crt(int a, int p, int b, int q) {
   t t2 = egcd(p, q); t2.a %= p*q; t2.b %= p*q;
   assert(t2.g == 1);
   int ret = ((b * t2.a)%(p*q) * p + (a * t2.b)%(p*q) * q) % (p*q);
   return ret >= 0 ? ret : ret + p*q;
}
```

#### 3.3. Longest increasing subsequence. Hash: 0c94974a1a54f572893029cececcbe23

```
vector<int> lis(vector<int>& seq) {
  int smallest_end[seq.size()+1], prev[seq.size()];
  smallest_end[1] = seq[0];

int sz = 1;
  for(int i = 1; i < seq.size(); ++i) {
    int lo = 0, hi = sz;
    while(lo < hi) {
        int mid = (lo + hi + 1)/2;
        if(seq[smallest_end[mid]] <= seq[i])
            lo = mid;
        else
            hi = mid - 1;
    }
}</pre>
```

```
prev[i] = smallest_end[lo];
  if(lo == sz)
     smallest_end[++sz] = i;
  else if(seq[i] < seq[smallest_end[lo+1]])
     smallest_end[lo+1] = i;
}

vector<int> ret;
for(int cur = smallest_end[sz]; sz > 0; cur = prev[cur], --sz)
    ret.push_back(seq[cur]);
reverse(ret.begin(), ret.end());

return ret;
```

#### 3.4. Simplex (Warsaw University). Hash: c687094970cf1953fd6f87a01adc6a95

```
const double EPS = 1e-9;
typedef long double T;
typedef vector<T> VT;
vector<VT> A;
VT b,c,res;
VI kt.N:
int m;
inline void pivot(int k,int l,int e){
   int x=kt[1]; T p=A[1][e];
   REP(i,k) A[1][i]/=p; b[1]/=p; N[e]=0;
   REP(i,m) if (i!=1) b[i]-A[i][e]*b[1],A[i][x]-A[i][e]*-A[1][x];
   REP(j,k) if (N[j]) {
      c[j]-=c[e]*A[1][j];
      REP(i,m) if (i!=1) A[i][j]-=A[i][e]*A[1][j];
   kt[1]=e; N[x]=1; c[x]=c[e]*-A[1][x];
VT doit(int k) {
   VT res; T best;
   while (1) {
      int e=-1, l=-1; REP(i,k) if (N[i] && c[i]>EPS) {e=i; break;}
      if (e==-1) break;
      REP(i,m) if (A[i][e]>EPS && (l==-1 || best>b[i]/A[i][e]))
         best=b[ l=i ]/A[i][e];
```

```
if (l==-1) /*ilimitado*/ return VT();
      pivot(k,l,e);
   res.resize(k,0); REP(i,m) res[kt[i]]=b[i];
   return res;
VT simplex(vector<VT> &AA, VT &bb, VT &cc) {
   int n=AA[0].size(),k;
  m=AA.size(); k=n+m+1; kt.resize(m); b=bb; c=cc; c.resize(n+m);
  A=AA; REP(i,m) \{ A[i].resize(k); A[i][n+i]=1; A[i][k-1]=-1; kt[i]=n+i; \}
  N=VI(k,1); REP(i,m) N[kt[i]]=0;
   int pos=min_element(ALL(b))-b.begin();
  if (b[pos] <-EPS) {
      c=VT(k,0); c[k-1]=-1; pivot(k,pos,k-1); res=doit(k);
      if (res[k-1]>EPS) /*impossivel*/ return VT();
      REP(i,m) if (kt[i] == k-1)
         REP(j, k-1) if (N[j] && (A[i][j] < -EPS || EPS < A[i][j])){
            pivot(k,i,j); break;
      c=cc; c.resize(k,0); REP(i,m) REP(j,k) if (N[j]) c[j]-=c[kt[i]] *A[i][j];
   res=doit(k-1); if (!res.empty()) res.resize(n);
   return res;
```

#### 3.5. **Romberg's method.** Hash: a56c42a3dac08d2c5fc932f92468dd03

```
long double romberg(int a, int b, double(*func) (double)) {
  long double approx[2][50];
  long double *cur=approx[1], *prev=approx[0];

prev[0] = 1/2.0 * (b-a) * (func(a) + func(b));
  for(int it = 1; it < 25; ++it, swap(cur, prev)) {
    if(it > 1 && cmp(prev[it-1], prev[it-2]) == 0)
      return prev[it-1];

  cur[0] = 1/2.0 * prev[0];
```

```
long double div = (b-a)/pow(2, it);
for(long double sample = a + div; sample < b; sample += 2 * div)
    cur[0] += div * func(a + sample);

for(int j = 1; j <= it; ++j)
    cur[j] = cur[j-1] + 1/(pow(4, it) - 1)*(cur[j-1] + prev[j-1]);
}
return prev[24];</pre>
```

3.6. Floyd's cycle detection algorithm. Hash: 97a42d1ac6750f912c5a06e04636c1db

```
pair<int, int> floyd(int x0) {
  int t = f(x0), h = f(f(x0)), start = 0, length = 1;
  while(t != h)
    t = f(t), h = f(f(h));

h = t; t = x0;
  while(t != h)
    t = f(t), h = f(h), ++start;
```

h = f(t);
while(t != h)
h = f(h), ++length;
return make\_pair(start, length);
}

3.7. **Pollard's rho algorithm.** Hash: ad4ee1d4afc564b2c55f90d6269994c4

```
long long pollard_r, pollard_n;
inline long long f(long long val) { return (val*val + pollard_r) % pollard_n; }
inline long long myabs(long long a) { return a >= 0 ? a : -a; }

long long pollard(long long n) {
    srand(unsigned(time(0)));
    pollard_n = n;

    long long d = 1;
    do {
```

d = 1;
pollard\_r = rand() % n;

long long x = 2, y = 2;
while(d == 1)
 x = f(x), y = f(f(y)), d = \_\_gcd(myabs(x-y), n);
} while(d == n);

return d;

3.8. Miller-Rabin's algorithm. Hash: 5288cd2ac5d62a97ea1175eec20d0010

```
int fastpow(int base, int d, int n) {
```

**int** ret = 1;

```
for (long long pow = base; d > 0; d >>= 1, pow = (pow * pow) % n)
    if (d & 1)
        ret = (ret * pow) % n;
    return ret;
}

bool miller_rabin(int n, int base) {
    if (n <= 1) return false;
    if (n % 2 == 0) return n == 2;

    int s = 0, d = n - 1;
    while (d % 2 == 0) d /= 2, ++s;

    int base_d = fastpow(base, d, n);
    if (base_d == 1) return true;</pre>
```

#### 3.9. Karatsuba's algorithm. Hash: baa2224f03b35ae422eed1c261dcf6b8

```
typedef vector<int> poly;

poly mult(const poly& p, const poly& q) {
   int sz = p.size(), half = sz/2;
   assert(sz == q.size() && !(sz&(sz-1)));

if(sz <= 64) {
   poly ret(2*sz);
   for(int i = 0; i < sz; i++)
        for(int j = 0; j < sz; j++)
        ret[i+j] += p[i] * q[j];
   return ret;
}

poly pl(p.begin(), p.begin() + half), p2(p.begin() + half, p.end());</pre>
```

```
for(int i = 0; i < s; ++i) {</pre>
     if(base_2r == 1) return false;
     if(base_2r == n - 1) return true;
     base_2r = (long long)base_2r * base_2r % n;
   return false;
bool isprime(int n) {
  if(n == 2 || n == 7 || n == 61) return true;
   return miller_rabin(n, 2) && miller_rabin(n, 7) && miller_rabin(n, 61);
  poly q1(q.begin(), q.begin() + half), q2(q.begin() + half, q.end());
  poly p1p2(half), q1q2(half);
  for (int i = 0; i < half; i++)</pre>
      p1p2[i] = p1[i] + p2[i], q1q2[i] = q1[i] + q2[i];
  poly low = mult(p1, q1), high = mult(p2, q2), mid = mult(p1p2, q1q2);
  for(int i = 0; i < sz; i++)</pre>
     mid[i] -= high[i] + low[i];
  low.resize(2*sz);
   for(int i = 0; i < sz; i++)</pre>
      low[i+half] += mid[i], low[i+sz] += high[i];
   return low;
```

int base\_2r = base\_d;

#### 3.10. Optimized sieve of Erathostenes. Hash: f61dff82d061bab316148816c3b7ac01

```
const unsigned MAX = 1000000020/60, MAX_S = sqrt(MAX/60);
unsigned w[16] = {1, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 49, 53, 59};
unsigned short composite[MAX];
vector<int> primes;
void sieve() {
```

```
unsigned mod[16][16], di[16][16], num;
for(int i = 0; i < 16; i++)
  for(int j = 0; j < 16; j++) {
    di[i][j] = (w[i]*w[j])/60;
    mod[i][j] = lower_bound(w, w + 16, (w[i]*w[j])%60) - w;
}</pre>
```

```
primes.push_back(2); primes.push_back(3); primes.push_back(5);

memset(composite, 0, sizeof composite);
for(unsigned i = 0; i < MAX; i++)
    for(int j = (i==0); j < 16; j++) {
        if(composite[i] & (1<<j)) continue;
        primes.push_back(num = 60*i + w[j]);

    if(i > MAX_S) continue;
```

#### 3.11. Polynomials (PUC-Rio). Hash: d69d1ad494e487327d2338e69eccfa2f

```
typedef complex<double> cdouble;
int cmp(cdouble x, cdouble y = 0) {
   return cmp(abs(x), abs(y));
const int TAM = 200;
struct poly {
   cdouble poly[TAM]; int n;
   poly(int n = 0): n(n) \{ memset(p, 0, sizeof(p)); \}
   cdouble& operator [](int i) { return p[i]; }
   poly operator ~() {
      poly r(n-1);
      for (int i = 1; i <= n; i++)</pre>
         r[i-1] = p[i] * cdouble(i);
      return r;
   pair<poly, cdouble> ruffini(cdouble z) {
      if (n == 0) return make_pair(poly(), 0);
      poly r(n-1);
      for (int i = n; i > 0; i--) r[i-1] = r[i] * z + p[i];
      return make_pair(r, r[0] * z + p[0]);
   cdouble operator ()(cdouble z) { return ruffini(z).second; }
   cdouble find one root(cdouble x) {
      poly p0 = *this, p1 = ~p0, p2 = ~p1;
      int m = 1000;
```

```
while (m--) {
     cdouble y0 = p0(x);
     if (cmp(y0) == 0) break;
     cdouble G = p1(x) / y0;
     cdouble H = G * G - p2(x) - y0;
     cdouble R = sqrt(cdouble(n-1) * (H * cdouble(n) - G * G));
     cdouble D1 = G + R, D2 = G - R;
     cdouble a = cdouble(n) / (cmp(D1, D2) > 0 ? D1 : D2);
     x -= a;
     if (cmp(a) == 0) break;
   return x;
vector<cdouble> roots() {
   poly q = *this;
   vector<cdouble> r;
   while (q.n > 1) {
     cdouble z(rand() / double(RAND_MAX), rand() / double(RAND_MAX));
     z = q.find_one_root(z); z = find_one_root(z);
     q = q.ruffini(z).first;
     r.push_back(z);
   return r;
```

for (unsigned k = i, done = false; !done; k++) for (int l = (k==0); l < 16 && !done; <math>l++) {

if(mult >= MAX) done = true;

unsigned mult = k\*num + i\*w[1] + di[j][1];

else composite[mult] |= 1<<mod[j][1];</pre>

4. Geometry

};

#### 4.1. **Point class.** Hash: 4a0fc00fd27520d94e04b2fc6c05ed73

```
typedef double TYPE;
const TYPE EPS = 1e-9, INF = 1e9;
inline int sgn(TYPE a) { return a > EPS ? 1 : (a < -EPS ? -1 : 0); }</pre>
inline int cmp(TYPE a, TYPE b) { return sgn(a - b); }
struct pt {
   TYPE x, v;
   pt(TYPE x = 0, TYPE y = 0) : x(x), y(y) { }
   bool operator== (pt p) { return cmp(x, p.x) == 0 \&\& cmp(y, p.y) == 0; }
   bool operator<(pt p) const {</pre>
      return cmp(x, p.x) ? cmp(x, p.x) < 0 : cmp(y, p.y) < 0;
  bool operator<=(pt p) { return *this < p || *this == p; }</pre>
   TYPE operator | (pt p) { return x*p.x + y*p.y; }
   TYPE operator%(pt p) { return x*p.y - y*p.x; }
   pt operator () { return pt(x, -y); }
   pt operator+(pt p) { return pt(x + p.x, y + p.y); }
   pt operator-(pt p) { return pt(x - p.x, y - p.y); }
   pt operator*(pt p) { return pt(x*p.x - y*p.y, x*p.y + y*p.x); }
   pt operator/(TYPE t) { return pt(x/t, y/t); }
```

#### 4.2. Intersection primitives. Hash: ab780978106a5c062b8f7a129ebc9196

#### 4.3. Polygon primitives. Hash: 621a339a657d07de8f651d55e13d988b

```
double p_signedarea(vector<pt>& pol) {
   double ret = 0;
```

```
pt operator/(pt p) { return (*this * ~p)/(p||p); }
};
const pt I = pt(0,1);
struct circle {
  pt c; TYPE r;
  circle(pt c, TYPE r) : c(c), r(r) { }
TYPE norm(pt a) { return a | |a; }
TYPE abs(pt a) { return sqrt(a||a); }
TYPE dist(pt a, pt b) { return abs(a - b); }
TYPE area(pt a, pt b, pt c) { return (a-c)%(b-c); }
int ccw(pt a, pt b, pt c) { return sqn(area(a, b, c)); }
pt unit(pt a) { return a/abs(a); }
double arg(pt a) { return atan2(a.y, a.x); }
pt f_polar(TYPE mod, double ang) { return pt (mod * cos(ang), mod * sin(ang)); }
inline int q_mod(int i, int n) { if(i == n) return 0; return i; }
ostream& operator<<(ostream& o, pt p) {
  return o << "(" << p.x << "," << p.y << ")";
pt parametric_isect(pt p, pt v, pt q, pt w) {
   double t = ((q-p)%w)/(v%w);
   return p + v*t;
pt ss_isect(pt p, pt q, pt r, pt s) {
  pt isect = parametric_isect(p, q-p, r, s-r);
  if(ps_isects(p, q, isect) && ps_isects(r, s, isect)) return isect;
   return pt (1/0.0, 1/0.0);
  for(int i = 0; i < pol.size(); ++i)</pre>
      ret += pol[i] % pol[q_mod(i+1, pol.size())];
```

```
return ret/2;
}
int point_polygon(pt p, vector<pt>& pol) {
   int n = pol.size(), count = 0;
   for(int i = 0; i < n; ++i) {</pre>
```

4.4. **Miscellaneous primitives.** Hash: be051245293a9db9c991d414c598e854

```
bool point_circle(pt p, circle c) {
    return cmp(abs(p - c.c), c.r) <= 0;
}

double ps_distance(pt p, pt a, pt b) {
    p = p - a; b = b - a;
    double coef = min(max((b||p)/(b||b), TYPE(0)), TYPE(1));
    return abs(p - b*coef);
}</pre>
```

4.5. Smallest enclosing circle. Hash: 00dd4dbd6779989a64c1e935443a1d80

```
circle enclosing_circle(vector<pt>& pts) {
    srand(unsigned(time(0)));
    random_shuffle(pts.begin(), pts.end());

circle c(pt(), -1);
    for(int i = 0; i < pts.size(); ++i) {
        if(point_circle(pts[i], c)) continue;
        c = circle(pts[i], 0);
        for(int j = 0; j < i; ++j) {
            if(point_circle(pts[j], c)) continue;
        }
        c = circle(pts[i], c);
        continue;
        continue;
```

4.6. Convex hull. Hash: 2b14ae1a97e5ff686efb4d7e0e7ca78a

```
pt pivot;

bool hull_comp(pt a, pt b) {
   int turn = ccw(a, b, pivot);
   return turn == 1 || (turn == 0 && cmp(norm(a-pivot), norm(b-pivot)) < 0);
}</pre>
```

```
int i1 = q_mod(i+1, n);
      if (ps_isects(pol[i], pol[i1], p)) return -1;
      else if(((sgn(pol[i].y - p.y) == 1) != (sgn(pol[i1].y - p.y) == 1)) &&
            ccw(pol[i], p, pol[i1]) == sgn(pol[i].y - pol[i1].y)) ++count;
   return count % 2;
pt circumcenter(pt a, pt b, pt c) {
   return parametric_isect((b+a)/2, (b-a)*I, (c+a)/2, (c-a)*I);
bool compy (pt a, pt b) {
  return cmp(a.y, b.y) ? cmp(a.y, b.y) < 0 : cmp(a.x, b.x) < 0;
bool compx(pt a, pt b) { return a < b; }</pre>
         c = circle((pts[i] + pts[j])/2, abs(pts[i] - pts[j])/2);
         for (int k = 0; k < j; ++k) {
            if(point_circle(pts[k], c)) continue;
            pt center = circumcenter(pts[i], pts[j], pts[k]);
            c = circle(center, abs(center - pts[i])/2);
   return c;
vector<pt> hull(vector<pt> pts) {
  if(pts.size() <= 1) return pts;</pre>
  vector<pt> ret;
  int mini = 0;
   for(int i = 1; i < pts.size(); ++i)</pre>
      if(pts[i] < pts[mini])</pre>
```

```
mini = i;

pivot = pts[mini];
swap(pts[0], pts[mini]);
sort(pts.begin() + 1, pts.end(), hull_comp);

ret.push_back(pts[0]);
ret.push_back(pts[1]);
int sz = 2;
```

#### 4.7. Closest pair of points. Hash: d704271ff258aac5dad13bb04cf0cfb6

```
pair<pt, pt> closest_points_rec(vector<pt>& px, vector<pt>& py) {
   pair<pt, pt> ret;
   double d;
   if(px.size() <= 3) {
      double best = 1e10;
      for(int i = 0; i < px.size(); ++i)</pre>
         for(int j = i + 1; j < px.size(); ++j)</pre>
            if(dist(px[i], px[j]) < best) {</pre>
                ret = make_pair(px[i], px[j]);
               best = dist(px[i], px[j]);
      return ret;
   pt split = px[(px.size() - 1)/2];
   vector<pt> qx, qy, rx, ry;
   for(int i = 0; i < px.size(); ++i)</pre>
      if(px[i] <= split) qx.push_back(px[i]);</pre>
      else rx.push_back(px[i]);
   for(int i = 0; i < pv.size(); ++i)</pre>
      if(py[i] <= split) qy.push_back(py[i]);</pre>
      else ry.push_back(py[i]);
   ret = closest_points_rec(qx, qy);
   pair<pt, pt> rans = closest_points_rec(rx, ry);
   double delta = dist(ret.first, ret.second);
   if((d = dist(rans.first, rans.second)) < delta) {</pre>
```

```
for(int i = 2; i < pts.size(); ++i) {</pre>
      while (sz \ge 2 \&\& ccw(ret[sz-2], ret[sz-1], pts[i]) \le 0)
         ret.pop_back(), --sz;
      ret.push_back(pts[i]), ++sz;
   return ret;
      delta = d;
      ret = rans;
   vector<pt> s;
   for(int i = 0; i < py.size(); ++i)</pre>
      if(cmp(abs(py[i].x - split.x), delta) <= 0)</pre>
         s.push_back(py[i]);
   for(int i = 0; i < s.size(); ++i)</pre>
      for(int j = 1; j <= 7 && i + j < s.size(); ++j)</pre>
         if((d = dist(s[i], s[i+j])) < delta) {
            delta = d;
            ret = make_pair(s[i], s[i+j]);
   return ret;
pair<pt, pt> closest_points(vector<pt> pts) {
   if(pts.size() == 1) return make_pair(pt(-INF, -INF), pt(INF, INF));
   sort(pts.begin(), pts.end());
   for(int i = 0; i + 1 < pts.size(); ++i)</pre>
      if(pts[i] == pts[i+1])
         return make_pair(pts[i], pts[i+1]);
   vector<pt> py = pts;
   sort(py.begin(), py.end(), compy);
   return closest_points_rec(pts, py);
```

#### 4.8. **Kd-tree.** Hash: de78e67c89c057ba920d2060641a7f48

```
int tree[4*MAXSZ], val[4*MAXSZ];
TYPE split[4*MAXSZ];
vector<pt> pts;
void kd_recurse(int root, int left, int right, bool x) {
   if(left == right) {
      tree[root] = left;
      val[root] = 1;
      return;
   int mid = (right+left)/2;
   nth_element(pts.begin() + left, pts.begin() + mid,
            pts.begin() + right + 1, x ? compx : compy);
   split[root] = x ? pts[mid].x : pts[mid].y;
   kd_recurse(2*root+1, left, mid, !x);
   kd_recurse(2*root+2, mid+1, right, !x);
   val[root] = val[2*root+1] + val[2*root+2];
void kd_build() {
   memset (tree, -1, sizeof tree);
   kd_recurse(0, 0, pts.size() - 1, true);
int kd_query(int root, TYPE a, TYPE b, TYPE c, TYPE d, TYPE ca = -INF,
          TYPE cb = INF, TYPE cc = -INF, TYPE cd = INF, bool x) {
   if(a <= ca && cb <= b && c <= cc && cd <= d)</pre>
      return val[root];
   if(tree[root] != -1)
      return a <= pts[tree[root]].x && pts[tree[root]].x <= b &&</pre>
         c <= pts[tree[root]].y && pts[tree[root]].y <= d ? val[root] : 0;</pre>
```

#### 4.9. Range tree. Hash: 47db21e0b6328b90025fa4e9c03e3431

```
vector<pt> pts, tree[MAXSZ];
vector<TYPE> xs;
vector<int> lnk[MAXSZ][2];
```

```
int ret = 0;
   if(x) {
      if(a <= split[root])</pre>
         ret += kd_{query}(2*root+1, a, b, c, d, ca, split[root], cc, cd, !x);
      if(split[root] <= b)</pre>
         ret += kd_{query}(2*root+2, a, b, c, d, split[root], cb, cc, cd, !x);
   else {
      if(c <= split[root])</pre>
         ret += kd_query(2*root+1, a, b, c, d, ca, cb, cc, split[root], !x);
      if(split[root] <= d)</pre>
         ret += kd_query(2*root+2, a, b, c, d, ca, cb, split[root], cd, !x);
   return ret;
pt kd_neighbor(int root, pt a, bool x) {
   if(tree[root] != -1)
      return a == pts[tree[root]] ? pt(2e9, 2e9) : pts[tree[root]];
   TYPE num = x ? a.x : a.y;
   int term = num <= split[root] ? 1 : 2;</pre>
   pt ret;
   TYPE d = norm(a - (ret = kd_neighbor(2*root + term, a, !x)));
   if((split[root] - num) * (split[root] - num) < d) {</pre>
      pt ret2 = kd_neighbor(2*root + 3 - term, a, !x);
      if(norm(a - ret2) < d)
         ret = ret2;
   return ret;
int rt_recurse(int root, int left, int right) {
  if(left == right) {
      vector<pt>::iterator it;
```

it = lower\_bound(pts.begin(), pts.end(), pt(xs[left], -INF));

```
for(; it != pts.end() && it->x == xs[left]; ++it)
      tree[root].push_back(*it);
   sort(tree[root].begin(), tree[root].end(), compy);
   return tree[root].size();
int mid = (left + right)/2, cl = 2*root + 1, cr = cl + 1;
int sz1 = rt_recurse(c1, left, mid);
int sz2 = rt recurse(cr, mid + 1, right);
int l = 0, r = 0, llink = 0, rlink = 0; pt last;
while(1 < sz1 || r < sz2) {
   if(r == sz2 || (1 < sz1 && compy(tree[c1][1], tree[cr][r])))</pre>
      tree[root].push_back(last = tree[cl][l++]);
   else tree[root].push_back(last = tree[cr][r++]);
   while(llink < tree[cl].size() && compy(tree[cl][llink], last))</pre>
      ++llink:
   while(rlink < tree[cr].size() && compy(tree[cr][rlink], last))</pre>
      ++rlink;
   lnk[root][0].push_back(llink);
   lnk[root][1].push_back(rlink);
lnk[root][0].push_back(tree[cl].size());
lnk[root][1].push_back(tree[cr].size());
return tree[root].size();
```

```
void rt_build() {
   sort(pts.begin(), pts.end());
   for(int i = 0; i < pts.size(); ++i) xs.push_back(pts[i].x);</pre>
   rt_recurse(0, 0, xs.size() - 1);
int rt_query(int root, int 1, int r, TYPE a, TYPE b, TYPE c, TYPE d,
         int pos1 = -1, int posr = -1) {
  if(root == 0 && posl == -1) {
      posl = lower_bound(tree[0].begin(), tree[0].end(), pt(a, c), compy)
         - tree[0].begin();
      posr = upper_bound(tree[0].begin(), tree[0].end(), pt(b, d), compy)
         - tree[0].begin();
  if(a <= xs[1] && xs[r] <= b)
      return posr - posl;
  if(posl >= tree[root].size()) return 0;
  int mid = (1 + r)/2, ret = 0;
  if(a <= xs[mid])
      ret += rt_query(2*root+1, 1, mid, a, b, c, d,
                  lnk[root][0][posl], lnk[root][0][posr]);
  if(xs[mid+1] <= b)
      ret += rt_query(2*root+2, mid+1, r, a, b, c, d,
                  lnk[root][1][posl], lnk[root][1][posr]);
   return ret;
```

#### 5. Data structures

#### 5.1. **Treap.** Hash: 2199b72803301716616a462d9d5e9a66

```
typedef int TYPE;

class treap {
public:
    treap *left, *right;
    int priority, sons;
    TYPE value;

    treap(TYPE value) : left(NULL), right(NULL), value(value), sons(0) {
        priority = rand();
    }
}
```

```
ftreap() {
    if(left) delete left;
    if(right) delete right;
}

treap* find(treap* t, TYPE val) {
    if(!t) return NULL;
```

```
if(val == t->value) return t;
   if(val < t->value) return find(t->left, val);
   if(val > t->value) return find(t->right, val);
void rotate_to_right(treap* &t) {
   treap* n = t->left;
   t \rightarrow left = n \rightarrow right;
   n->right = t;
   t = n;
void rotate_to_left(treap* &t) {
   treap* n = t->right;
   t->right = n->left;
   n->left = t;
   t = n;
void fix_augment(treap* t) {
   if(!t) return;
   t\rightarrowsons = (t\rightarrowleft ? t\rightarrowleft\rightarrowsons + 1 : 0) +
       (t->right ? t->right->sons + 1 : 0);
void insert(treap* &t, TYPE val) {
   if(!t)
      t = new treap(val);
   else
```

#### 5.2. **Heap.** Hash: e334218955a73d1286ad0fc19e84b642

```
struct heap {
  int heap[MAXV][2], v2n[MAXV];
  int size;

void init(int sz) __attribute__((always_inline)) {
    memset(v2n, -1, sizeof(int) * sz);
    size = 0;
}

void swap(int& a, int& b) __attribute__((always_inline)) {
  int temp = a;
    a = b;
```

```
insert(val <= t->value ? t->left : t->right, val);
  if(t->left && t->left->priority > t->priority)
      rotate_to_right(t);
  else if(t->right && t->right->priority > t->priority)
     rotate_to_left(t);
   fix_augment(t->left); fix_augment(t->right); fix_augment(t);
inline int p(treap* t) {
   return t ? t->priority : -1;
void erase(treap* &t, TYPE val) {
  if(!t) return;
  if(t->value != val)
     erase(val < t->value ? t->left : t->right, val);
  else {
     if(!t->left && !t->right)
        delete t, t = NULL;
        p(t->left) < p(t->right) ? rotate_to_left(t) : rotate_to_right(t);
        erase(t, val);
   fix_augment(t->left); fix_augment(t->right); fix_augment(t);
     b = temp;
   void s(int a, int b) __attribute__((always_inline)) {
      swap(v2n[heap[a][1]], v2n[heap[b][1]]);
      swap(heap[a][0], heap[b][0]);
      swap(heap[a][1], heap[b][1]);
   int extract_min() {
     int ret = heap[0][1];
```

s(0, --size);

```
int cur = 0, next = 2;
while(next < size) {
    if(heap[next][0] > heap[next - 1][0])
        next--;
    if(heap[next][0] >= heap[cur][0])
        break;

    s(next, cur);
    cur = next;
    next = 2*cur + 2;
}
if(next == size && heap[next - 1][0] < heap[cur][0])
    s(next - 1, cur);

return ret;
}

void decrease_key(int vertex, int new_value) __attribute__((always_inline))</pre>
```

#### 5.3. Big numbers (PUC-Rio). Hash: a7d74e7158634f9201c19235badd3364

```
const int DIG = 4;
const int BASE = 10000; // BASE**3 < 2**51</pre>
const int TAM = 2048;
struct bigint {
   int v[TAM], n;
  bigint(int x = 0): n(1) {
      memset(v, 0, sizeof(v));
      v[n++] = x; fix();
   bigint(char *s): n(1) {
      memset(v, 0, sizeof(v));
      int sign = 1;
      while (*s && !isdigit(*s)) if (*s++ == '-') sign *= -1;
      char *t = strdup(s), *p = t + strlen(t);
      while (p > t) {
         *p = 0; p = max(t, p - DIG);
         sscanf(p, "%d", &v[n]);
         v[n++] \star = siqn;
      free(t); fix();
   bigint& fix(int m = 0) {
```

```
if(v2n[vertex] == -1) {
        v2n[vertex] = size;
        heap[size++][1] = vertex;
      heap[v2n[vertex]][0] = new_value;
      int cur = v2n[vertex];
      while(cur >= 1) {
         int parent = (cur - 1)/2;
        if(new_value >= heap[parent][0])
            break;
         s(cur, parent);
         cur = parent;
};
      n = max(m, n);
      int sign = 0;
      for (int i = 1, e = 0; i <= n || e && (n = i); i++) {
        v[i] += e; e = v[i] / BASE; v[i] %= BASE;
        if (v[i]) sign = (v[i] > 0) ? 1 : -1;
      for (int i = n - 1; i > 0; i--)
         if (v[i] * sign < 0) \{ v[i] += sign * BASE; v[i+1] -= sign; \}
      while (n && !v[n]) n--;
      return *this;
   int cmp(const bigint& x = 0) const {
      int i = max(n, x.n), t = 0;
      while (1) if ((t = ::cmp(v[i], x.v[i])) || i-- == 0) return t;
  bool operator <(const bigint& x) const { return cmp(x) < 0; }</pre>
  bool operator == (const bigint& x) const { return cmp(x) == 0; }
  bool operator !=(const bigint& x) const { return cmp(x) != 0; }
```

operator string() const {

ostringstream s; s << v[n];

```
for (int i = n - 1; i > 0; i--) {
      s.width(DIG); s.fill('0'); s << abs(v[i]);
   return s.str();
friend ostream& operator <<(ostream& o, const bigint& x) {</pre>
   return o << (string) x;</pre>
bigint& operator += (const bigint& x) {
   for (int i = 1; i <= x.n; i++) v[i] += x.v[i];</pre>
   return fix(x.n);
bigint operator +(const bigint& x) { return bigint(*this) += x; }
bigint& operator -= (const bigint& x) {
   for (int i = 1; i <= x.n; i++) v[i] -= x.v[i];</pre>
   return fix(x.n);
bigint operator -(const bigint& x) { return bigint(*this) -= x; }
bigint operator -() { bigint r = 0; return r -= *this; }
void ams (const bigint & x, int m, int b) { //* *this += (x * m) << b;
   for (int i = 1, e = 0; (i \le x.n \mid \mid e) && (n = i + b); i++) {
      v[i+b] += x.v[i] * m + e; e = v[i+b] / BASE; v[i+b] %= BASE;
bigint operator *(const bigint& x) const {
   bigint r;
   for (int i = 1; i <= n; i++) r.ams(x, v[i], i-1);</pre>
   return r;
bigint& operator *=(const bigint& x) { return *this = *this * x; }
// cmp(x / y) == cmp(x) * cmp(y); cmp(x % y) == cmp(x);
bigint div(const bigint& x) {
   if (x == 0) return 0;
```

```
bigint q; q.n = max(n - x.n + 1, 0);
      int d = x.v[x.n] * BASE + x.v[x.n-1];
      for (int i = q.n; i > 0; i--) {
         int j = x.n + i - 1;
         q.v[i] = int((v[j] * double(BASE) + v[j-1]) / d);
         ams (x, -q.v[i], i-1);
         if (i == 1 || j == 1) break;
         v[j-1] += BASE * v[j]; v[j] = 0;
      fix(x.n); return q.fix();
  bigint& operator /=(const bigint& x) { return *this = div(x); }
  bigint& operator %=(const bigint& x) { div(x); return *this; }
  bigint operator / (const bigint& x) { return bigint(*this).div(x); }
  bigint operator % (const bigint& x) { return bigint(*this) %= x; }
  bigint pow(int x) {
      if (x < 0) return (*this == 1 | | *this == -1) ? pow(-x) : 0;
      bigint r = 1;
      for (int i = 0; i < x; i++) r *= *this;</pre>
      return r;
   bigint root(int x) {
      if (cmp() == 0 || cmp() < 0 && x % 2 == 0) return 0;</pre>
      if (*this == 1 || x == 1) return *this;
      if (cmp() < 0) return -(-*this).root(x);</pre>
      bigint a = 1, d = *this;
      while (d != 1) {
        bigint b = a + (d /= 2);
         if (cmp(b.pow(x)) >= 0) { d += 1; a = b; }
      return a;
};
```

#### 6. String algorithms

#### 6.1. Kärkkäinen-Sanders' suffix array algorithm. Hash: ad9edfdbf9c673ff57d1e2624bd0fc5b

```
bool k_cmp(int a1, int b1, int a2, int b2, int a3 = 0, int b3 = 0) {
   return a1 != b1 ? a1 < b1 : (a2 != b2 ? a2 < b2 : a3 < b3);
}
int bucket[MAXSZ+1], tmp[MAXSZ];
template<class T> void k radix(T keys, int *in, int *out,
```

```
int off, int n, int k) {
memset(bucket, 0, sizeof(int) * (k+1));

for(int j = 0; j < n; j++)
   bucket[keys[in[j]+off]]++;
for(int j = 0, sum = 0; j <= k; j++)</pre>
```

```
sum += bucket[j], bucket[j] = sum - bucket[j];
   for (int j = 0; j < n; j++)</pre>
      out[bucket[keys[in[j]+off]]++] = in[j];
int mod0[MAXSZ/3+1];
vector<int> k_rec(const vector<int>& v, int k) {
   int n = v.size()-3, sz = (n+2)/3, sz2 = sz + n/3;
   if(n < 2) return vector<int>(n);
   vector<int> sub(sz2+3);
   for (int i = 1, j = 0; j < sz2; i += i%3, j++)
      sub[j] = i;
   k_{radix}(v.begin(), &sub[0], tmp, 2, sz2, k);
   k_radix(v.begin(), tmp, &sub[0], 1, sz2, k);
   k_radix(v.begin(), &sub[0], tmp, 0, sz2, k);
   int last[3] = \{-1, -1, -1\}, unique = 0;
   for(int i = 0; i < sz2; i++) {</pre>
      bool diff = false;
      for(int j = 0; j < 3; last[j] = v[tmp[i]+j], j++)</pre>
         diff |= last[j] != v[tmp[i]+j];
      unique += diff;
      if(tmp[i]%3 == 1) sub[tmp[i]/3] = unique;
      else sub[tmp[i]/3 + sz] = unique;
   vector<int> rec;
   if(unique < sz2) {</pre>
      rec = k_rec(sub, unique);
      rec.resize(sz2+sz);
      for(int i = 0; i < sz2; i++) sub[rec[i]] = i+1;</pre>
   } else {
      rec.resize(sz2+sz);
      for(int i = 0; i < sz2; i++) rec[sub[i]-1] = i;</pre>
   for (int i = 0, j = 0; j < sz; i++)
      if(rec[i] < sz)
         tmp[j++] = 3*rec[i];
   k_radix(v.begin(), tmp, mod0, 0, sz, k);
   for(int i = 0; i < sz2; i++)</pre>
```

```
rec[i] = rec[i] < sz ? 3*rec[i] + 1 : 3*(rec[i] - sz) + 2;
  int prec = sz2-1, pmod0 = sz-1, pret = sz2+sz-1;
  while(prec >= 0 && pmod0 >= 0)
      if(rec[prec]%3 == 1 && k_cmp(v[mod0[pmod0]], v[rec[prec]],
                            sub[mod0[pmod0]/3], sub[rec[prec]/3+sz]) ||
        rec[prec]%3 == 2 && k_cmp(v[mod0[pmod0]], v[rec[prec]],
                            v[mod0[pmod0]+1], v[rec[prec]+1],
                            sub[mod0[pmod0]/3+sz], sub[rec[prec]/3+1]))
        rec[pret--] = rec[prec--];
      else
         rec[pret--] = mod0[pmod0--];
   if(pmod0 >= 0) memcpy(&rec[0], mod0, sizeof(int) * (pmod0+1));
  if(n%3==1) rec.erase(rec.begin());
   return rec;
vector<int> karkkainen(const string& s) {
   int n = s.size(), cnt = 1;
  vector<int> v(n + 3);
  for(int i = 0; i < n; i++) v[i] = i;</pre>
   k_radix(s.begin(), &v[0], tmp, 0, n, 256);
   for(int i = 0; i < n; cnt += (i+1 < n && s[tmp[i+1]] != s[tmp[i]]), i++)</pre>
     v[tmp[i]] = cnt;
  return k_rec(v, cnt);
vector<int> lcp(const string& s, const vector<int>& sa) {
   int n = sa.size();
  vector<int> prm(n), ans(n-1);
   for(int i = 0; i < n; i++) prm[sa[i]] = i;</pre>
  for (int h = 0, i = 0; i < n; i++)
     if(prm[i]) {
        int j = sa[prm[i]-1], ij = max(i, j);
         while(ij + h < n \&\& s[i+h] == s[j+h]) h++;
         ans[prm[i]-1] = h;
        if(h) h--;
   return ans;
```

#### 6.2. Morris-Pratt's algorithm. Hash: 0234dfb6e26b39d35704838d84f1e86e

```
int pi[MAXSZ], res[MAXSZ], nres;

void morris_pratt(string text, string pattern) {
    nres = 0;
    pi[0] = -1;
    for(int i = 1; i < pattern.size(); ++i) {
        pi[i] = pi[i-1];
        while(pi[i] >= 0 && pattern[pi[i] + 1] != pattern[i])
            pi[i] = pi[pi[i]];
        if(pattern[pi[i] + 1] == pattern[i]) ++pi[i];
    }
}
```

```
int k = -1; //k + 1 eh o tamanho do match atual
for(int i = 0; i < text.size(); ++i) {
    while(k >= 0 && pattern[k + 1] != text[i])
        k = pi[k];
    if(pattern[k + 1] == text[i]) ++k;
    if(k + 1 == pattern.size()) {
        res[nres++] = i - k;
        k = pi[k];
    }
}
```

#### 6.3. Aho-Corasick's algorithm (UFPE). Hash: 273f4391174d22898bfe3f2415f95915

```
struct No {
   int fail:
   vector< pair<int,int> > out; // num e tamanho do padrao
   //bool marc; // p/ decisao
   map<char, int> lista;
   int next; // aponta para o proximo sufixo que tenha out.size > 0
No arvore[1000003]; // quantida maxima de nos
//bool encontrado[1005]; // quantidade maxima de padroes, p/ decisao
int qtdNos, qtdPadroes;
// Funcao para inicializar
void inic() {
   arvore[0].fail = -1;
   arvore[0].lista.clear();
   arvore[0].out.clear();
   arvore[0].next = -1;
   qtdNos = 1;
   qtdPadroes = 0;
   //arvore[0].marc = false; // p/ decisao
   //memset(encontrado, false, sizeof(encontrado)); // p/ decisao
// Funcao para adicionar um padrao
void adicionar(char *padrao) {
   int no = 0, len = 0;
   for (int i = 0 ; padrao[i] ; i++, len++) {
```

```
if (arvore[no].lista.find(padrao[i]) == arvore[no].lista.end()) {
         arvore[gtdNos].lista.clear(); arvore[gtdNos].out.clear();
         //arvore[qtdNos].marc = false; // p/ decisao
         arvore[no].lista[padrao[i]] = qtdNos;
         no = qtdNos++;
      } else no = arvore[no].lista[padrao[i]];
   arvore[no].out.push_back(pair<int,int>(qtdPadroes++,len));
// Ativar Aho-corasick, ajustando funcoes de falha
void ativar() {
   int no, v, f, w;
   queue<int> fila;
   for (map<char,int>::iterator it = arvore[0].lista.begin();
      it != arvore[0].lista.end(); it++) {
      arvore[no = it->second].fail = 0;
      arvore[no].next = arvore[0].out.size() ? 0 : -1;
      fila.push(no);
   while (!fila.empty()) {
      no = fila.front(); fila.pop();
      for (map<char,int>::iterator it=arvore[no].lista.begin();
          it!=arvore[no].lista.end(); it++) {
         char c = it->first;
        v = it -> second;
         fila.push(v);
```

```
f = arvore[no].fail;
    while (arvore[f].lista.find(c) == arvore[f].lista.end()) {
        if (f == 0) { arvore[0].lista[c] = 0; break; }
            f = arvore[f].fail;
        }
        w = arvore[f].lista[c];
        arvore[v].fail = w;
        arvore[v].next = arvore[w].out.size() ? w : arvore[w].next;
    }
}

// Buscar padroes no aho-corasik
void buscar(char *input) {
    int v, no = 0;
    for (int i = 0 ; input[i] ; i++) {
        while (arvore[no].lista.find(input[i]) == arvore[no].lista.end()) {
        if (no == 0) { arvore[0].lista[input[i]] = 0; break; }
}
```

#### 7. Useful mathematical facts

7.1. Prime counting function  $(\pi(x))$ . The prime counting function is asymptotic to  $\frac{x}{\log x}$ , by the prime number theorem.

|   | X        | 10 | $10^{2}$ | $10^{3}$ | $10^{4}$ | $10^{5}$ | $10^{6}$ | $10^{7}$ | $10^{8}$  |
|---|----------|----|----------|----------|----------|----------|----------|----------|-----------|
| Ì | $\pi(x)$ | 4  | 25       | 168      | 1.229    | 9.592    | 78.498   | 664.579  | 5.761.455 |

7.2. Partition function. The partition function p(x) counts show many ways there are to write the integer x as a sum of integers.

| X    | 36     | 37     | 38     | 39      | 40      | 41          | 42     |
|------|--------|--------|--------|---------|---------|-------------|--------|
| p(x) | 17.977 | 21.637 | 26.015 | 31.185  | 37.338  | 44.583      | 53.174 |
| X    | 43     | 44     | 45     | 46      | 47      | 100         |        |
| p(x) | 63.261 | 75.175 | 89.134 | 105.558 | 125.754 | 190.569.292 |        |

7.3. Catalan numbers. Catalan numbers are defined by the recurrence:

$$C_{n+1} = \sum_{i=0}^{n} C_i C_{n-i}$$

A closed formula for Catalan numbers is:

$$C_n = \frac{1}{n+1} \binom{2n}{n} = \binom{2n}{n} - \binom{2n}{n+1}$$

7.4. Stirling numbers of the first kind. These are the number of permutations of  $I_n$  with exactly k disjoint cycles. They obey the recurrence:

7.5. Stirling numbers of the second kind. These are the number of ways to partition  $I_n$  into exactly k sets. They obey the recurrence:

$${n \brace k} = k {n-1 \brace k} + {n-1 \brace k-1}$$

A "closed" formula for it is:

$${n \brace k} = \frac{1}{k!} \sum_{j=0}^{k} (-1)^{k-j} {k \choose j} j^n$$

7.6. **Bell numbers.** These count the number of ways to partition  $I_n$  into subsets. They obey the recurrence:

$$\mathcal{B}_{n+1} = \sum_{k=0}^{n} \binom{n}{k} \mathcal{B}_k$$

| X               | 5  | 6   | 7   | 8     | 9      | 10      | 11      | 12        |
|-----------------|----|-----|-----|-------|--------|---------|---------|-----------|
| $\mathcal{B}_x$ | 52 | 203 | 877 | 4.140 | 21.147 | 115.975 | 678.570 | 4.213.597 |

- 7.7. **Turán's theorem.** No graph with n vertices that is  $K_{r+1}$ -free can have more edges than the Turán graph: A k-partite complete graph with sets of size as equal as possible.
- 7.8. **Generating functions.** A list of generating functions for useful sequences:

| $(1,1,1,1,1,1,\ldots)$                                        | $\frac{1}{1-z}$         |
|---------------------------------------------------------------|-------------------------|
| $(1,-1,1,-1,1,-1,\ldots)$                                     | $\frac{1}{1+z}$         |
| $(1,0,1,0,1,0,\ldots)$                                        | $\frac{1}{1-z^2}$       |
| $(1,0,\ldots,0,1,0,1,0,\ldots,0,1,0,\ldots)$                  | $\frac{1}{1-z^2}$       |
| $(1,2,3,4,5,6,\ldots)$                                        | $\frac{1}{(1-z)^2}$     |
| $(1, \binom{m+1}{m}, \binom{m+2}{m}, \binom{m+3}{m}, \ldots)$ | $\frac{1}{(1-z)^{m+1}}$ |
| $(1,c,\binom{c+1}{2},\binom{c+2}{3},\ldots)$                  | $\frac{1}{(1-z)^c}$     |
| $(1,c,c^2,c^3,\ldots)$                                        | $\frac{1}{1-cz}$        |
| $(0,1,\frac{1}{2},\frac{1}{3},\frac{1}{4},\ldots)$            | $\ln \frac{1}{1-z}$     |

A neat manipulation trick is:

$$\frac{1}{1-z}G(z) = \sum_{n} \sum_{k \le n} g_k z^n$$

7.9. **Polyominoes.** How many free (rotation, reflection), one-sided (rotation) and fixed *n*-ominoes are there?

|   | n         | 3 | 4  | 5  | 6   | 7   | 8     | 9     | 10     |
|---|-----------|---|----|----|-----|-----|-------|-------|--------|
|   | free      | 2 | 5  | 12 | 35  | 108 | 369   | 1.285 | 4.655  |
|   | one-sided | 2 | 7  | 18 | 60  | 196 | 704   | 2.500 | 9.189  |
| Ì | fixed     | 6 | 19 | 63 | 216 | 760 | 2.725 | 9.910 | 36.446 |

7.10. The twelvefold way (from Stanley). How many functions  $f \colon N \to X$  are there?

| N       | X       | Any f                                  | Injective      | Surjective         |
|---------|---------|----------------------------------------|----------------|--------------------|
| dist.   | dist.   | $x^n$                                  | $(x)_n$        | $x!\binom{n}{x}$   |
| indist. | dist.   | $\binom{x+n-1}{n}$                     | $\binom{x}{n}$ | $\binom{n-1}{n-x}$ |
| dist.   | indist. | $\binom{n}{1} + \ldots + \binom{n}{x}$ | $[n \le x]$    | $\binom{n}{k}$     |
| indist. | indist. | $p_1(n) + \dots p_x(n)$                | $[n \le x]$    | $p_x(n)$           |

Where  $\binom{a}{b} = \frac{1}{b!}(a)_b$  and  $p_x(n)$  is the number of ways to partition the integer n using x summands.

7.11. **Common integral substitutions.** And finally, a list of common substitutions:

| $\int F(\sqrt{ax+b})dx$      | $u = \sqrt{ax + b}$ | $\frac{2}{a}\int uF(u)du$             |
|------------------------------|---------------------|---------------------------------------|
| $\int F(\sqrt{a^2-x^2})dx$   | $x = a\sin u$       | $a \int F(a\cos u)\cos u du$          |
| $\int F(\sqrt{x^2+a^2})dx$   | $x = a \tan u$      | $a \int F(a \sec u) \sec^2 u du$      |
| $\int F(\sqrt{x^2 - a^2})dx$ | $x = a \sec u$      | $a \int F(a \tan u) \sec u \tan u du$ |
| $\int F(e^{ax})dx$           | $u = e^{ax}$        | $\frac{1}{a}\int \frac{F(u)}{u}du$    |
| $\int F(\ln x)dx$            | $u = \ln x$         | $\int F(u)e^udu$                      |

7.12. Table of non-trigonometric integrals. Some useful integrals are:

| $\frac{1}{a} \arctan \frac{x}{a}$                          |
|------------------------------------------------------------|
| $\frac{1}{2a} \ln \frac{x-a}{x+a}$                         |
| $\frac{1}{2a} \ln \frac{a+x}{a-x}$                         |
| $\arcsin \frac{x}{a}$                                      |
| $\ln\left(u+\sqrt{x^2-a^2}\right)$                         |
| $\frac{1}{a}\operatorname{arcsec}\left \frac{u}{a}\right $ |
| $-\frac{1}{a}\ln\left(\frac{a+\sqrt{x^2+a^2}}{x}\right)$   |
| $-\frac{1}{a}\ln\left(\frac{a+\sqrt{a^2-x^2}}{x}\right)$   |
|                                                            |

7.13. **Table of trigonometric integrals.** A list of common and not-so-common trigonometric integrals:

| $\int \tan x dx$    | $-\ln \cos x $                                                    |
|---------------------|-------------------------------------------------------------------|
| $\int \cot x dx$    | $\ln \sin x $                                                     |
| $\int \sec x dx$    | $\ln \sec x + \tan x $                                            |
| $\int \csc x dx$    | $\ln \csc x - \cot x $                                            |
| $\int \sec^2 x dx$  | $\tan x$                                                          |
| $\int \csc^2 x dx$  | $\cot x$                                                          |
| $\int \sin^n x dx$  | $\frac{-\sin^{n-1}x\cos x}{n} + \frac{n-1}{n}\int \sin^{n-2}x dx$ |
| $\int \cos^n x dx$  | $\frac{\cos^{n-1}x\sin x}{n} + \frac{n-1}{n}\int \cos^{n-2}x dx$  |
| $\int \arcsin x dx$ | $x \arcsin x + \sqrt{1 - x^2}$                                    |
| $\int \arccos x dx$ | $x \arccos x - \sqrt{1 - x^2}$                                    |
| $\int \arctan x dx$ | $x\arctan x - \frac{1}{2}\ln 1 - x^2 $                            |

# ACM ICPC TEAM REFERENCE - CONTENTS

## Team Anuncie Aqui Universidade Federal de Sergipe

| Contents                                                                                                                                                                                  |                       | 4.6. Convex hull                                                                                            | 12                         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-------------------------------------------------------------------------------------------------------------|----------------------------|
| Contents  1. Configuration files and scripts 2. Graph algorithms 2.1. Tarjan's SCC algorithm 2.2. Dinic's maximum flow algorithm 2.3. Successive shortest paths mincost maxflow algorithm | 1<br>2<br>2<br>3<br>3 | 4.7. Closest pair of points 4.8. Kd-tree 4.9. Range tree 5. Data structures 5.1. Treap                      | 13<br>14<br>14<br>15<br>15 |
| 2.4. Gabow's general matching algorithm (WRONG)                                                                                                                                           | 4                     | 5.2. Heap                                                                                                   | 16                         |
| 3. Math                                                                                                                                                                                   | 6                     | 5.3. Big numbers (PUC-Rio)                                                                                  | 17                         |
| 3.1. Fractions                                                                                                                                                                            | 6                     | 6. String algorithms 6.1. Kärkkäinen-Sanders' suffix array algorithm                                        | 18<br>18                   |
| 3.2. Chinese remainder theorem                                                                                                                                                            | 6                     | 6.2. Morris-Pratt's algorithm                                                                               | 20                         |
| 3.3. Longest increasing subsequence                                                                                                                                                       | 7                     | 6.3. Aho-Corasick's algorithm (UFPE)                                                                        | 20                         |
| 3.4. Simplex (Warsaw University)                                                                                                                                                          | 7                     | 7. Useful mathematical facts                                                                                | 22                         |
| 3.5. Romberg's method                                                                                                                                                                     | 8                     | 7.1. Prime counting function $(\pi(x))$                                                                     | $\frac{1}{2}$              |
| 3.6. Floyd's cycle detection algorithm                                                                                                                                                    | 8                     | 7.2. Partition function                                                                                     | 22                         |
| <ul><li>3.7. Pollard's rho algorithm</li><li>3.8. Miller-Rabin's algorithm</li></ul>                                                                                                      | 8                     | 7.3. Catalan numbers                                                                                        | 22                         |
| 3.9. Karatsuba's algorithm                                                                                                                                                                | 0                     | 7.4. Stirling numbers of the first kind                                                                     | 22                         |
| 3.10. Optimized sieve of Erathostenes                                                                                                                                                     | 9                     | 7.5. Stirling numbers of the second kind                                                                    | 22                         |
| 3.11. Polynomials (PUC-Rio)                                                                                                                                                               | 10                    | 7.6. Bell numbers                                                                                           | 22                         |
| 4. Geometry                                                                                                                                                                               | 10                    | 7.7. Turán's theorem                                                                                        | 22                         |
| 4.1. Point class                                                                                                                                                                          | 11                    | 7.8. Generating functions                                                                                   | 22                         |
| 4.2. Intersection primitives                                                                                                                                                              | 11                    | 7.9. Polyominoes                                                                                            | 23                         |
| 4.3. Polygon primitives                                                                                                                                                                   | 11                    | 7.10. The twelvefold way (from Stanley)                                                                     | 23                         |
| 4.4. Miscellaneous primitives                                                                                                                                                             | 12                    | 7.11. Common integral substitutions                                                                         | 23                         |
| 4.5. Smallest enclosing circle                                                                                                                                                            | 12                    | <ul><li>7.12. Table of non-trigonometric integrals</li><li>7.13. Table of trigonometric integrals</li></ul> | 23<br>23                   |