LEC011 Maximum Flow and Linear Program

VG441 SS2020

Cong Shi Industrial & Operations Engineering University of Michigan

Max Flow Applications

Tup, of Plant

Linear Programming

Comparison to systems of linear equations

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$\vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$$

Gaussian elimination

Linear Programming

- Ingredients of a Linear Program
 - 1. Decision variables $x_1, \ldots, x_n \in \mathbb{R}$ $\times = (\times_1, \times_2, \ldots \times_n)^{\uparrow}$
 - 2. Linear constraints, each of the form

$$\sum_{j=1}^{n}a_{ij}x_{j} \ (\underline{*}) \ b_{i}$$
 where (*) could be \leq,\geq , or $=$

3. A linear objective function, of the form

A Simple Example

max $x_1 + x_2$ s.t. $4x_1 + x_2 \le 2$ $x_1 + 2x_2 \le 1$ $x_1, x_2 \ge 0$

Python + Gurobi Time!

Fotible & numerical example

Whom wo stide !

MaxFlow is a LP

• Decision variables
$$\{f_e\}_{e\in E}$$

• Constraints (2m + n - 2)

$$\sum_{n} f_{e} - \sum_{e \in \delta^{+}(v)} f_{e} = 0 \qquad \forall \ \bigcup \setminus \{ \zeta, + \}$$
flow in flow out

 $\sim f_e \leq u_e \quad \forall e$

Objectives $f_{e} > 0$ $\forall e$

$$\frac{\max \sum_{e \in \delta^+(s)} f_e}{\text{flow plue out of}}$$

Generalization of MaxFlow

Min-Cost MaxFlow

$$\min \sum_{e \in E} c_e f_e$$

Easy to change the LP formulation!

- Lasy to change the

for solving

Maxiford Wakethy

model is not

bendable Fatest alg; push & relabel

Solution Approaches

孤家中的荒巷近

- Simplex methods
- Interior point methods

Interior point methods

LP Duality

• Question: given a feasible solution, how can we know whether it is optimal or close to optimal?

max
$$x_1 + x_2$$

s.t. $4x_1 + x_2 \le 2$
 $x_1 + 2x_2 \le 1$
 $x_1, x_2 \ge 0$

$$\underbrace{x_1 + x_2}_{\text{objective}} \le 4x_1 + x_2 \le \underbrace{2}_{\text{upper bound}}$$

$$\underbrace{x_1 + x_2}_{\text{objective}} \le x_1 + 2x_2 \le \underbrace{1}_{\text{upper bound}}$$

Can we get an even better upper bound?

$$x_1 + x_2 \le \frac{1}{7} \underbrace{(4x_1 + x_2)}_{\le 2 \text{ by (2)}} + \frac{3}{7} \underbrace{(x_1 + 2x_2)}_{\le 1 \text{ by (3)}} \le \frac{1}{7} \cdot 2 + \frac{3}{7} \cdot 1 = \frac{5}{7}$$

Deriving the Dual LP

Find $\mathbf{y} \geq 0$ such that $\mathbf{A}^T \mathbf{y} \geq \mathbf{c}$

More compactly,

11

Deriving the Dual LP

$$\begin{array}{ll}
\max & \mathbf{c}^T \mathbf{x} \\
\text{s.t.} & \mathbf{A} \mathbf{x} \leq \mathbf{b} \\
\mathbf{x} \geq 0
\end{array}$$
Find $\mathbf{y} \geq 0$ such that $\mathbf{A}^T \mathbf{y} \geq \mathbf{c}$

$$\sum_{j=1}^n c_j x_j \leq \sum_{j=1}^n \left(\sum_{i=1}^m y_i a_{ij}\right) x_j$$

$$= \sum_{i=1}^m y_i \cdot \left(\sum_{j=1}^n a_{ij} x_j\right)$$

$$\leq \sum_{i=1}^m y_i b_i$$
upper bound

More compactly,

 $\mathbf{c}^T \mathbf{x} \leq (\mathbf{A}^T \mathbf{y})^T \mathbf{x} = \mathbf{y}^T (\mathbf{A} \mathbf{x}) \leq \mathbf{y}^t \mathbf{b}$

Deriving the Dual LP

$$\begin{array}{ll}
\max & \mathbf{c}^T \mathbf{x} \\
\text{s.t.} & \mathbf{A} \mathbf{x} \leq \mathbf{b} \\
\mathbf{x} \geq 0
\end{array}$$

Find $\mathbf{y} \geq 0$ such that $\mathbf{A}^T \mathbf{y} \geq \mathbf{c}$

$$\mathbf{c}^T \mathbf{x} \le \left(\mathbf{A}^T \mathbf{y} \right)^T \mathbf{x} = \mathbf{y}^T (\mathbf{A} \mathbf{x}) \le \mathbf{y}^t \mathbf{b}$$

min
$$\mathbf{b}^T \mathbf{y}$$
s.t. $\mathbf{A}^T \mathbf{y} \ge \mathbf{c}$
 $\mathbf{y} \ge 0$

A Simple Example

$$\begin{array}{ll}
\max & \mathbf{c}^T \mathbf{x} \\
\text{s.t.} & \mathbf{A} \mathbf{x} \leq \mathbf{b} \\
\mathbf{x} \geq 0
\end{array}$$

min
$$\mathbf{b}^T \mathbf{y}$$
s.t. $\mathbf{A}^T \mathbf{y} \ge \mathbf{c}$
 $\mathbf{y} \ge 0$

max
$$x_1 + x_2$$

s.t. $4x_1 + x_2 \le 2$
 $x_1 + 2x_2 \le 1$
 $x_1, x_2 \ge 0$

min
$$2y_1 + y_2$$

s.t. $4y_1 + y_2 \le 1$
 $y_1 + 2y_2 \le 1$
 $y_1, y_2 \ge 0$

$$x_1^* = 3/7, x_2^* = 2/7$$

$$y_1^* = 1/7, y_2^* = 3/7$$

Optimal objectives are the same!

Weak and Strong Duality

$$\begin{array}{ll}
\max & \mathbf{c}^T \mathbf{x} \\
\text{s.t.} & \mathbf{A} \mathbf{x} \leq \mathbf{b} \\
\mathbf{x} \geq 0
\end{array}$$

min
$$\mathbf{b}^T \mathbf{y}$$
s.t. $\mathbf{A}^T \mathbf{y} \ge \mathbf{c}$
 $\mathbf{y} \ge 0$

At optimality, we must have

• Weak Duality
$$\mathbf{c}^T \mathbf{x}^* \leq \mathbf{b}^T \mathbf{y}^*$$

• Strong Dualiy
$$\mathbf{c}^T\mathbf{x}^* = \mathbf{b}^T\mathbf{y}^*$$

Proof = Separating hyperplance theorem + Farkas's Lemma

More General Form

Primal	Dual
variables x_1, \ldots, x_n	n constraints
m constraints	variables y_1, \ldots, y_m
objective function ${f c}$	right-hand side ${f c}$
	objective function ${f b}$
$\max \mathbf{c}^T \mathbf{x}$	$\min \mathbf{b}^T \mathbf{y}$
constraint matrix ${f A}$	constraint matrix \mathbf{A}^T
i-th constraint is " \leq "	$y_i \ge 0$
i-th constraint is " \geq "	$y_i \le 0$
i-th constraint is "="	$y_i \in \mathbb{R}$
$x_j \ge 0$	j-th constraint is " \geq "
$x_j \leq 0$	j-th constraint is " \leq "
$x_j \in \mathbb{R}$	j-th constraint is "="

Back to MaxFlow

Let the decision variable be flow on an s-t path

Question: how to write its dual and what is its interpretation?

