Intro to DC Electronics

Jan-2023

Rules of thumb, assumptions and mixed-quality analogies to come!

BAD ANALOGIES

JUST BECAUSE ONE ARGUMENT RESEMBLES ANOTHER, DOESN'T MEAN THAT CATS CAN FLY IN SPACE.

Plumbing Analogy

What is Voltage?

Voltage is the pressure (pushing force)

Pushes electrons through a circuit

Powering a Complex Circuit

Voltage is applied <u>across</u> any circuit to power it

Voltage

Measuring Voltage

Voltage is measured between/across two points:

- Positive minus negative
- Convention red minus black

Common Voltages

Volts DC: 9V or 9VDC or 9V DC

110 volts AC 110V or 110V AC or 110VAC

12V DC or 12V

Let's Try It!

5V DC

Jumper 2.5V DC

Ground

Current

Current is the flow of electrons
Similar to the flow of water

Current

Current flows THROUGH a conductor Measured in amps 1A (1 amp) = 6.25 x 10^{18} electrons per second

Measuring Current

Current can be measured by passing it through a multimeter

Let's Try It!

"Voltage Across" – "Current Through"

Voltage

Current

Power

Power = Watts =
Amount of energy
used at a particular
point in time

Energy =
Power x Time = W x hr
Total energy used over
a period of time

Calculating Power

Power = Voltage x Current

 $120V \times 0.5A = 60W$

Resistors – A minute to learn, a lifetime to master

Resistors – Resist the flow of current

Resistance – measured in Ohms (Ω)

All Shapes and Sizes

We use resistors every day

Resistors – Simple but useful!

Ohm's Law

$$V = I * R$$

Special Relationship between voltage, current, resistance

Ohm's Law

$$V = I * R$$

$$V = I * R$$
 $R = V / I$ $I = V / R$

$$I = V / R$$

Let's Try It!

Remove jumper, measure R $R = 500\Omega$

Place jumper, measure V V = 2.3V

Resistors in Series

Resistors in Parallel

$$R_{T} = \frac{1}{\frac{1}{R_{1}} + \frac{1}{R_{2}} + \frac{1}{R_{3}} + \frac{1}{R_{4}}}$$

Let's Try It!

Remove jumpers, measure each R

$$R_1 = R_2 = 10k\Omega$$

$$R_3//R_5 = 5k\Omega$$

 $R_3 = R_5 = 10k\Omega$

Diodes/LEDs

Diodes – Everyday Uses

Diodes – One-Way Gate

Current Flow

How to use a diode

$$V_{S} \ge V_{LED} + 1V$$
 $I_{LED} \sim 10-20 \text{mA}$
 $V_{LED} \sim 1.8-3.3V$

Practical Circuit

$$R = V / I$$

R =
$$(5V - 2.7V) / 0.01A$$

= $2.3V / 0.005A$
= 460Ω

Switches

Capacitors

Similar to Batteries

"Supply Bypass" Capacitors

Further Reading

Falstad Circuit Simulator — Runs in Browser
Kahn Academy — Introduction to EE
Mattermost Channel
YouTube Videos
All About Circuits

https://www.allaboutcircuits.com/education/
 Sparkfun – learn.sparkfun.com