Iniziato	martedi, 23 gennaio 2024, 09:22	
Stato	Completato	
Terminato	martedi, 23 gennaio 2024, 09:50	
Tempo impiegato	28 min. 11 secondi	
Punteggio	18,00/20,00	
Valutazione	9,00 su un massimo di 10,00 (90%)	
Domanda 1		
Risposta corretta		
Punteggio ottenuto 1,00 su 1,00		

Sia Ax = b un sistema lineare. Quale delle seguenti affermazioni è corretta:

 $(\Delta x = \text{errore su } x, \ \Delta b = \text{errore su } b)$

 $\bigcirc a. \quad \frac{||x||}{||\Delta x||} \le ||A|| ||A^{-1}|| \frac{||b||}{||\Delta b||}$

O b. Nessuna delle precedenti.

La risposta corretta è: $\frac{||\Delta x||}{||x||} \leq ||A||||A^{-1}||\frac{||\Delta b||}{||b||}$

Domanda 2

Risposta corretta

Punteggio ottenuto 1,00 su 1,00

Usando la notazione scientifica normalizzata con base $\beta=10$, se x=282.94, allora:

 \bullet a. La mantissa di $x \ \dot{e} \ 0.28294$ e la parte esponenziale $\dot{e} \ 10^3$. \checkmark

O b. Nessuna delle precedenti.

 $\bigcirc\,$ c. La mantissa di x è 2.8294 e la parte esponenziale è $10^2.$

La risposta corretta è: La mantissa di x è 0.28294 e la parte esponenziale è 10^3 .

Punteggio ottenuto 1,00 su 1,00
Se A è una matrice $n \times n$ tale che $det(A) = 0$ allora:
b. A è non singolare.
C. A è simmetrica.
La risposta corretta è: \mathbf{A} è singolare.
Domanda 4
Risposta corretta
Punteggio ottenuto 1,00 su 1,00
Se A è una matrice $n \times n$ tale che $\left \left A\right \right _p = 0$ allora:
\bigcirc a. rank(A) = 0.
b. A puo' essere uguale o meno a 0.
⊕ c. A = 0.
La risposta corretta è: $A=0$.
Domanda 5
Risposta corretta
Punteggio ottenuto 1,00 su 1,00
Un problema definito dalla matrice ${f A}$ è mal condizionato se:
$lacktriangle$ a. $K(A)$ è grande. \checkmark
\bigcirc b. $K(A)$ è negativo.
\bigcirc c. $K(A)$ è nullo.
La risposta corretta è: $K(A)$ è grande.

Domanda **3**Risposta corretta

Domanda 6
Risposta corretta
Punteggio ottenuto 1,00 su 1,00
Sia A matrice $m \times n$ con $(m > n)$ e $rg(A) = k = n$, allora il problema lineare ai minimi quadrati $min Ax - b _2^2$:
a. Non ammette soluzioni.

La risposta corretta è: Ha una e una sola soluzione.

Domanda 7

Risposta corretta

Punteggio ottenuto 1,00 su 1,00

O b. Ha infinite soluzioni.

⑥ c. Ha una e una sola soluzione. ✓

Dati n+1 punti $\{x_i,y_i\}$, $i=0,\ldots,n$, il polinomio di interpolazione nella forma di Lagrange ha coefficienti:

- a. Uguali ai valori y_i. ✓
- O b. Che si calcolano risolvendo un sistema lineare.
- C. Nessuna delle precedenti.

La risposta corretta è: Uguali ai valori y_i.

Domanda 8

Risposta non data

Punteggio max.: 1,00

Sia x_k una successione generata da un metodo iterativo, $x_k \to x^*$. Il metodo ha convergenza lineare se:

- $\bigcirc \ \, \text{a.} \ \, |x_k x^*| \leq c |x_{k-1} x^*| \quad c < 1$
- $\bigcirc \ \, \text{b.} \ \, |x_k x^*| \leq c |x_{k-1} x^*|^p \quad c > 1, 0$
- \bigcap c. $|x_k x^*| \le c|x_{k-1} x^*|$ c > 1

La risposta corretta è: $|\mathbf{x}_k - \mathbf{x}^*| \leq c |\mathbf{x}_{k-1} - \mathbf{x}^*| \quad c < 1$

isposta corretta unteggio ottenuto 1,00 su 1,00 Sia f: ℝ ⁿ → ℝ funzione convessa . Vale:	omanda 9
Sia f: ℝ ⁿ → ℝ funzione convessa . Vale: a. Nessuna delle precedenti b. Ogni punto di minimo locale è globale. ✓ c. f ha un solo punto di minimo glogale. La risposta corretta è: Ogni punto di minimo locale è globale.	sposta corretta
 a. Nessuna delle precedenti b. Ogni punto di minimo locale è globale. ✓ c. f ha un solo punto di minimo glogale. La risposta corretta è: Ogni punto di minimo locale è globale. comanda 10 Isposta corretta	unteggio ottenuto 1,00 su 1,00
 ▶ Description di minimo locale è globale. C. f ha un solo punto di minimo glogale. La risposta corretta è: Ogni punto di minimo locale è globale. Comanda 10 Sisposta corretta	Sia $f:\mathbb{R}^n o \mathbb{R}$ funzione convessa . Vale:
c. f ha un solo punto di minimo glogale. La risposta corretta è: Ogni punto di minimo locale è globale. omanda 10 isposta corretta	a. Nessuna delle precedenti
La risposta corretta è: Ogni punto di minimo locale è globale. omanda 10 isposta corretta	● b. Ogni punto di minimo locale è globale.
omanda 10 isposta corretta	\bigcirc c. $$ f ha un solo punto di minimo glogale.
isposta corretta	La risposta corretta è: Ogni punto di minimo locale è globale.
	omanda 10
unteggio ottenuto 1,00 su 1,00	sposta corretta
	unteggio ottenuto 1,00 su 1,00
Una matrice $U \mid n \times n$ è ortogonale se:	Lina matrica II. n. v.n.à artegonale co:

La risposta corretta è: Le sue colonne sono vettori ortonormali.

a. Le sue colonne sono vettori ortonormali.b. Le sue colonne sono vettori ortogonali.

O c. Nessuna delle precedenti.

Domanda 11

Risposta corretta

Punteggio ottenuto 1,00 su 1,00

Sia A la matrice:

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$

Quale è il risultato dell'istruzione Python B = A[:,1:2]?

Scegli un'alternativa:

$$\bigcirc a. \quad B = \begin{bmatrix} 2 & 3 \\ 5 & 6 \\ 8 & 9 \end{bmatrix}$$

$$\bigcirc b. B = \begin{bmatrix} 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$

La risposta corretta è:
$$B = \begin{bmatrix} 2 \\ 5 \\ 8 \end{bmatrix}$$

Domanda 12

Risposta corretta

Punteggio ottenuto 1,00 su 1,00

Qual è l'output del seguente codice Python?

import numpy as np
x = np.linspace(1,10,4)

for i in range(0,4):
 print(x[i])

Scegli un'alternativa:

(a. 0123

b. Nessuna delle precedenti

✓

Oc. 1357

La risposta corretta è: Nessuna delle precedenti

Punteggio ottenuto 1,00 su 1,00
Quale delle seguenti istruzioni Python esegue il prodotto matriciale (riga per colonna) fra due array A e B?
Scegli un'alternativa:
○ b. A**B
○ c. A*B
La risposta corretta è: np.dot(A,B)
Domanda 14
Risposta corretta
Punteggio ottenuto 1,00 su 1,00
Sia $A \in \mathbb{R}^{m \times n}$, $m > n$, con $r = rg(A)$, allora:
$lacktriangle$ a. è sempre possibile scrivere A come $U\Sigma V^T$, dove $\Sigma\in\mathbb{R}^{m\times n}$ è diagonale, $U\in\mathbb{R}^{m\times m}$, $V\in\mathbb{R}^{n\times n}$ sono ortogonali. •
O b. è sempre possibile scrivere A come $U\Sigma V^T$, dove $\Sigma\in\mathbb{R}^{m\times n}$ è diagonale, $U\in\mathbb{R}^{m\times m}$, $V\in\mathbb{R}^{n\times n}$ sono ortogonali se e solo se $rg(A)=n$.
○ c. Nessuna delle precedenti.
La risposta corretta è: è sempre possibile scrivere A come $U\Sigma V^T$, dove $\Sigma\in\mathbb{R}^{m\times n}$ è diagonale, $U\in\mathbb{R}^{m\times m}$, $V\in\mathbb{R}^{n\times n}$ sono ortogonali.
Domanda 15
Risposta corretta Punteggio ottenuto 1,00 su 1,00
I valori singolari sono tutti:
a. Strettamente positivi (> 0).
b. Non negativi (≥ 0). ✓
○ c. Positivi o negativi, mai nulli (≠0).
La risposta corretta è: Non negativi (≥ 0).
La risposta corretta è: Non negativi (≥ 0).

Domanda 13 Risposta corretta Punteggio ottenuto 0,00 su 1,00

Il costo computazionale della fattorizzazione di Cholesky di una matrice $n \times n$ è di:

- \bigcirc a. $O\left(\frac{n^3}{6}\right)$
- O b. $O(\frac{n}{2})$
- left c. $O\left(\frac{n^2}{6}\right)$ imes

La risposta corretta è: $O\left(\frac{n^3}{6}\right)$

Domanda 17

Risposta corretta

Punteggio ottenuto 1,00 su 1,00

Usando la fattorizzazione LR con pivoting (PA = LR) il sistema Ax = b si puo' risolvere risolvendo:

- $\bigcirc \ \ \text{a.} \quad \text{i due sistemi} \ \left\{ \begin{array}{l} Ly = b \\ Rx = y \end{array} \right.$
- \bigcirc b. il sistema Ax = LRb
- c. i due sistemi $\begin{cases} Ly = Pb \checkmark \\ Rx = y \end{cases}$

La risposta corretta è: i due sistemi $\left\{ \begin{array}{l} Ly = Pb \\ Rx = y \end{array} \right.$

Domanda 18

Risposta corretta

Punteggio ottenuto 1,00 su 1,00

Sia $f: \mathbb{R}^2 \to \mathbb{R}$ definita come $f(x_1, x_2) = x_1 e^{x_2}$, scelta come iterata iniziale del metodo del gradiente $x^{(0)} = (1, 1)^T$ e $\alpha = \frac{1}{2}$, allora:

$$\bigcirc$$
 a. $x^{(1)} = (1 + \frac{e}{2}, 1 + \frac{e}{2})^T$.

(a) b.
$$x^{(1)} = (1 - \frac{e}{2}, 1 - \frac{e}{2})^T$$
.

$$\bigcirc \ c. \ x^{(1)} = (\tfrac{1}{2} - \tfrac{e}{2}, \tfrac{1}{2} - \tfrac{e}{2})^T.$$

La risposta corretta è: $\mathbf{x}^{(1)} = (1 - \frac{e}{2}, 1 - \frac{e}{2})^T$.

Domanda 19	
Risposta corretta	
Punteggio ottenuto 1,00 su 1,00	
Una direzione p_k è di discesa per $f\left(x_k\right)$ s	ve:
\bigcirc b. $p_k \nabla f(x_k) < 0$	
$\bigcirc c. p_k^T \nabla f(x_k) = 0$	
La risposta corretta è: $p_k^T \nabla f(x_k) < 0$	
Domanda 20	
Risposta corretta	
Punteggio ottenuto 1,00 su 1,00	
Seleziona l'alternativa falsa: un metodo di	i discesa
Scegli un'alternativa:	
a. Converge al minimo globale.	
b. Converge ad un punto stazionario	0.
C. Converge al minimo locale.	
La risposta corretta è: Converge al minim	io globale.
a	
	Sezione precedente