Data Cleaning and Exploration

Data Cleaning

```
In [1]: # Load Libraries
        import pandas as pd
        import numpy as np
        import matplotlib.pyplot as plt
        import seaborn as sns
        import re
        # nltk packages
        import nltk
        nltk.download('stopwords', quiet=True)
        from nltk.tokenize import TweetTokenizer
        from nltk.corpus import stopwords
        from nltk.collocations import *
        from nltk import FreqDist, word tokenize
        # WordCLoud
        from wordcloud import WordCloud
        # TextBlob
        from textblob import TextBlob
```

```
In [2]: # Load dataset
    df = pd.read_csv('./data/tweet_product_company.csv', encoding="ISO-8859-1")
    df.head()
```

Out[2]:

tweet_text emotion_in_tweet_is_directed_at is_there_an_emotion_directed_at_a_brand_or_product

0	.@wesley83 I have a 3G iPhone. After 3 hrs twe	iPhone	Negative emotion
1	@jessedee Know about @fludapp ? Awesome iPad/i	iPad or iPhone App	Positive emotion
2	@swonderlin Can not wait for #iPad 2 also. The	iPad	Positive emotion
3	@sxsw I hope this year's festival isn't as cra	iPad or iPhone App	Negative emotion
4	@sxtxstate great stuff on Fri #SXSW: Marissa M	Google	Positive emotion

In [3]: # info of df df.info()

```
RangeIndex: 9093 entries, 0 to 9092

Data columns (total 3 columns):

# Column
Non-Null Count Dtype
------
0 tweet_text
1 emotion_in_tweet_is_directed_at
2 is there an emotion directed at a brand or product
9093 non-null object
```

dtypes: object(3)
memory usage: 213.2+ KB

<class 'pandas.core.frame.DataFrame'>

The dataframe contains 3 columns: tweet_text, emotion_in_tweet_is_directed_at, and is_there_an_emotion_directed_at_a-brand_or_product. I'm definitely going to change the column names to something more concise. There are nulls in the second column and there is one null in the tweet text column. I'll deal with these soon.

Changing column names

```
In [4]: # creating new column names
        new_names = ['tweet_text', 'directed_at', 'sentiment']
        # replacing column names
        df.columns = new_names
        df.columns
Out[4]: Index(['tweet text', 'directed at', 'sentiment'], dtype='object')
        Value Counts
In [5]: df.directed_at.value_counts()
Out[5]: iPad
                                            946
        Apple
                                            661
        iPad or iPhone App
                                            470
        Google
                                            430
        iPhone
                                            297
        Other Google product or service
                                            293
        Android App
                                             81
        Android
                                             78
        Other Apple product or service
                                             35
        Name: directed_at, dtype: int64
In [6]: df.isnull().sum()
Out[6]: tweet text
                          1
        directed at
                        5802
        sentiment
                           0
        dtype: int64
```

Majority of the rows in 'directed_at' are null. Besides null the most are directed at iPad and Apple

```
In [7]: # value counts for sentiment
        df.sentiment.value counts()
```

Out[7]: No emotion toward brand or product 5389 Positive emotion 2978 Negative emotion 570 I can't tell 156

Name: sentiment, dtype: int64

In [8]: # value counts for sentiment df.sentiment.value counts(normalize=True)

Out[8]: No emotion toward brand or product 0.592654 0.327505 Positive emotion Negative emotion 0.062686 I can't tell 0.017156

Name: sentiment, dtype: float64

Majority of the tweets are neutral followed by positive sentiment. There is a very small amount of negative tweets which can be a problem once I create my classification model. 'I can't tell' values are interesting I'll look into those tweets further and possibly use TextBlob to add a sentiment to them.

Null Values

In [9]: df.isnull().sum()

Out[9]: tweet text 1 directed at 5802 sentiment 0

dtype: int64

```
In [10]: # null value for tweet
          df.loc[df['tweet text'].isnull()]
Out[10]:
             tweet_text directed_at
                                                    sentiment
           6
                            NaN No emotion toward brand or product
                  NaN
          I'll drop this row because there is only one.
In [11]: # drop null value from tweet_text
          df.dropna(subset=['tweet text'], inplace=True)
In [12]: # fill null with 'Unknown' for directed_at
          df.directed_at.fillna(value='Unknown', inplace=True)
In [13]: df.isnull().sum()
Out[13]: tweet_text
                          0
          directed at
                          0
          sentiment
                          0
          dtype: int64
          Checking for Duplicate Values
In [14]: # duplicate rows
          df.duplicated().sum()
Out[14]: 22
```

In [15]: # inspecting duplicate rows df.loc[df.duplicated(keep=False)]

Out[15]:

	tweet_text	directed_at	sentiment
7	#SXSW is just starting, #CTIA is around the co	Android	Positive emotion
9	Counting down the days to #sxsw plus strong Ca	Apple	Positive emotion
17	I just noticed DST is coming this weekend. How	iPhone	Negative emotion
20	Need to buy an iPad2 while I'm in Austin at #s	iPad	Positive emotion
21	Oh. My. God. The #SXSW app for iPad is pure, u	iPad or iPhone App	Positive emotion
24	Really enjoying the changes in Gowalla 3.0 for	Android App	Positive emotion
466	Before It Even Begins, Apple Wins #SXSW {link}	Apple	Positive emotion
468	Before It Even Begins, Apple Wins #SXSW {link}	Apple	Positive emotion
774	Google to Launch Major New Social Network Call	Unknown	No emotion toward brand or product
776	Google to Launch Major New Social Network Call	Unknown	No emotion toward brand or product
2230	Marissa Mayer: Google Will Connect the Digital	Unknown	No emotion toward brand or product

In [16]: df.iloc[6297]['tweet_text']

Out[16]: 'RT @mention Marissa Mayer: Google Will Connect the Digital & Digital & Source Worlds Through Mobile - {link} #sxs w'

```
for tweet in df.loc[df.duplicated(keep=False)]['tweet text']:
    print(tweet)
#SXSW is just starting, #CTIA is around the corner and #googleio is only a hop skip and a jump from there, g
ood time to be an #android fan
Counting down the days to #sxsw plus strong Canadian dollar means stock up on Apple gear
I just noticed DST is coming this weekend. How many iPhone users will be an hour late at SXSW come Sunday mo
rning? #SXSW #iPhone
Need to buy an iPad2 while I'm in Austin at #sxsw. Not sure if I'll need to Q up at an Austin Apple store?
Oh. My. God. The #SXSW app for iPad is pure, unadulterated awesome. It's easier to browse events on iPad tha
n on the website!!!
Really enjoying the changes in Gowalla 3.0 for Android! Looking forward to seeing what else they & Fours
quare have up their sleeves at #SXSW
Before It Even Begins, Apple Wins #SXSW {link}
Before It Even Begins, Apple Wins #SXSW {link}
Google to Launch Major New Social Network Called Circles, Possibly Today {link} #sxsw
Google to Launch Major New Social Network Called Circles, Possibly Today {link} #sxsw
Marissa Mayer: Google Will Connect the Digital & Digital Worlds Through Mobile - {link} #sxsw
Marissa Mayer: Google Will Connect the Digital & Digital Worlds Through Mobile - {link} #sxsw
Counting down the days to #sxsw plus strong Canadian dollar means stock up on Apple gear
Really enjoying the changes in Gowalla 3.0 for Android! Looking forward to seeing what else they & Fours
quare have up their sleeves at #SXSW
```

Mapping Columns

df.drop duplicates(inplace=True)

In [18]: # drop duplicates

In [17]: # print out the tweets to see them

```
In [19]: df.head()
Out[19]:
                                                 tweet_text
                                                                  directed_at
                                                                                  sentiment
                  .@wesley83 I have a 3G iPhone. After 3 hrs twe...
           0
                                                                     iPhone Negative emotion
              @jessedee Know about @fludapp ? Awesome iPad/i... iPad or iPhone App
                                                                              Positive emotion
           2
                  @swonderlin Can not wait for #iPad 2 also. The...
                                                                       iPad
                                                                              Positive emotion
            3
                      @sxsw I hope this year's festival isn't as cra... iPad or iPhone App
                                                                             Negative emotion
            4
                  @sxtxstate great stuff on Fri #SXSW: Marissa M...
                                                                              Positive emotion
                                                                     Google
In [20]: df.info()
           <class 'pandas.core.frame.DataFrame'>
          Int64Index: 9070 entries, 0 to 9092
          Data columns (total 3 columns):
                               Non-Null Count Dtype
                Column
                               9070 non-null
                tweet text
                                                 object
            1
                directed_at 9070 non-null
                                                 object
                sentiment
                               9070 non-null
                                                 object
           dtypes: object(3)
          memory usage: 283.4+ KB
In [21]: df.directed at.value counts()
Out[21]: Unknown
                                                   5788
           iPad
                                                    945
           Apple
                                                    659
           iPad or iPhone App
                                                    469
          Google
                                                    428
           iPhone
                                                    296
           Other Google product or service
                                                    293
           Android App
                                                     80
           Android
                                                     77
           Other Apple product or service
                                                     35
           Name: directed at, dtype: int64
```

```
In [22]: # add a new column 'company' based on directed at
          company_dict = {
               'Unknown': "Unknown",
               'iPad': "Apple",
               'Apple': "Apple",
               'iPad or iPhone App': "Apple",
               'Google': "Google",
               'iPhone': "Apple",
               'Other Google product or service': "Google",
               'Android App': "Google",
               'Android': "Google",
               'Other Apple product or service': "Apple"
           # create 'company' column
          df['company'] = df['directed at'].map(company dict)
In [23]: df.head()
Out[23]:
                                                 tweet_text
                                                                 directed_at
                                                                                  sentiment company
           0
                  .@wesley83 I have a 3G iPhone. After 3 hrs twe...
                                                                     iPhone Negative emotion
                                                                                                Apple
            1 @jessedee Know about @fludapp ? Awesome iPad/i... iPad or iPhone App
                                                                              Positive emotion
                                                                                                Apple
           2
                   @swonderlin Can not wait for #iPad 2 also. The...
                                                                       iPad
                                                                              Positive emotion
                                                                                                Apple
            3
                      @sxsw I hope this year's festival isn't as cra... iPad or iPhone App
                                                                            Negative emotion
                                                                                                Apple
            4
                  @sxtxstate great stuff on Fri #SXSW: Marissa M...
                                                                     Google
                                                                              Positive emotion
                                                                                               Google
In [24]: df.company.value counts(normalize=True)
Out[24]: Unknown
                       0.638148
                       0.265050
           Apple
                       0.096803
           Google
           Name: company, dtype: float64
```

```
In [25]: df.sentiment.value_counts(normalize=True)
Out[25]: No emotion toward brand or product
                                               0.592613
         Positive emotion
                                               0.327453
                                               0.062734
         Negative emotion
         I can't tell
                                               0.017200
         Name: sentiment, dtype: float64
In [26]: # creating sentiment dictionary
         sentiment_dict = {
             'No emotion toward brand or product': "neutral",
             'Positive emotion': "positive",
             'Negative emotion': 'negative',
             "I can't tell": 'unknown'
         # creating 'target' column
         df['target'] = df['sentiment'].map(sentiment_dict)
In [27]: df.head()
Out[27]:
```

	tweet_text	directed_at	sentiment	company	target	
0	.@wesley83 I have a 3G iPhone. After 3 hrs twe	iPhone	Negative emotion	Apple	negative	
1	@jessedee Know about @fludapp ? Awesome iPad/i	iPad or iPhone App	Positive emotion	Apple	positive	
2	@swonderlin Can not wait for #iPad 2 also. The	iPad	Positive emotion	Apple	positive	
3	@sxsw I hope this year's festival isn't as cra	iPad or iPhone App	Negative emotion	Apple	negative	
4	@sxtxstate great stuff on Fri #SXSW: Marissa M	Google	Positive emotion	Google	positive	

```
In [28]: df.target.value_counts(normalize=True)

Out[28]: neutral  0.592613
    positive  0.327453
    negative  0.062734
    unknown  0.017200
    Name: target, dtype: float64
```

Create new column with cleaned tweet

The tweets contain hashtags and mentions and I want to remove them so I can do EDA. The mentions won't play much significance in frequency distributions and the #swsw won't have much significance because every tweet contains it. For these reasons I am going to get rid of the hashtags and mentions in each tweet.

```
In [29]: # function to preprocess tweets
def clean_hash_mentions(tweet):
    # pattern to remove hashtags and mentions
    hashtag_mention_pattern = '([@#][\w_-]+)'

# remove hashtags and mentions
    tweet_clean = re.sub(hashtag_mention_pattern, '', tweet)

# Lower case
    tweet_clean = tweet_clean.lower()

# tokenize tweet
    pattern = "([a-zA-Z0-9]+(?:'[a-z]+)?)"
    tweet_clean = nltk.regexp_tokenize(tweet_clean, pattern)

# join tweet back together
    tweet_clean = ' '.join(tweet_clean)
    return tweet_clean
```

```
In [30]: # create new column clean_tweet
df['clean_tweet'] = df['tweet_text'].map(clean_hash_mentions)
```

```
In [31]: df.head()
```

Out[31]:

	tweet_text	directed_at	sentiment	company	target	clean_tweet
0	.@wesley83 I have a 3G iPhone. After 3 hrs twe	iPhone	Negative emotion	Apple	negative	i have a 3g iphone after 3 hrs tweeting at it
1	@jessedee Know about @fludapp ? Awesome iPad/i	iPad or iPhone App	Positive emotion	Apple	positive	know about awesome ipad iphone app that you'll
2	@swonderlin Can not wait for #iPad 2 also. The	iPad	Positive emotion	Apple	positive	can not wait for 2 also they should sale them
3	@sxsw I hope this year's festival isn't as cra	iPad or iPhone App	Negative emotion	Apple	negative	i hope this year's festival isn't as crashy as
4	@sxtxstate great stuff on Fri #SXSW: Marissa M	Google	Positive emotion	Google	positive	great stuff on fri marissa mayer google tim o'

Create new column with hashtags from tweets

```
In [32]: # capture all the hashtags in the tweet
def hashtags(tweet):
    # pattern to remove hashtags and mentions
    hashtag_pattern = '([#][\w_-]+)'

# remove hashtags and mentions
    tweet_clean = re.findall(hashtag_pattern, tweet)

# join tweet back together
    tweet_clean = ' '.join(tweet_clean)

# Lower case
    tweet_clean = tweet_clean.lower()

return tweet_clean
```

```
In [33]: # creating hashtags column
df['hashtags'] = df['tweet_text'].map(hashtags)
```

```
In [34]: df.head()
```

Out[34]:

	tweet_text	directed_at	sentiment	company	target	clean_tweet	hashtags
0	.@wesley83 I have a 3G iPhone. After 3 hrs twe	iPhone	Negative emotion	Apple	negative	i have a 3g iphone after 3 hrs tweeting at it	#rise_austin #sxsw
1	@jessedee Know about @fludapp ? Awesome iPad/i	iPad or iPhone App	Positive emotion	Apple	positive	know about awesome ipad iphone app that you'll	#sxsw
2	@swonderlin Can not wait for #iPad 2 also. The	iPad	Positive emotion	Apple	positive	can not wait for 2 also they should sale them	#ipad #sxsw
3	@sxsw I hope this year's festival isn't as cra	iPad or iPhone App	Negative emotion	Apple	negative	i hope this year's festival isn't as crashy as	#sxsw
4	@sxtxstate great stuff on Fri #SXSW: Marissa M	Google	Positive emotion	Google	positive	great stuff on fri marissa mayer google tim o'	#sxsw

Create new column with mentions from tweets

```
In [35]: # capture all the mentions in the tweet
def mentions(tweet):
    # pattern to remove hashtags and mentions
    mention_pattern = '([@][\w_-]+)'

# remove hashtags and mentions
    tweet_clean = re.findall(mention_pattern, tweet)

# join tweet back together
    tweet_clean = ' '.join(tweet_clean)

# Lower case
    tweet_clean = tweet_clean.lower()
    return tweet_clean
```

```
In [36]: # creating mentions column
df['mentions'] = df['tweet_text'].map(mentions)
```

```
In [37]: df.head()
```

Out[37]:

	tweet_text	directed_at	sentiment	company	target	clean_tweet	hashtags	mentions
0	.@wesley83 I have a 3G iPhone. After 3 hrs twe	iPhone	Negative emotion	Apple	negative	i have a 3g iphone after 3 hrs tweeting at it	#rise_austin #sxsw	@wesley83
1	@jessedee Know about @fludapp ? Awesome iPad/i	iPad or iPhone App	Positive emotion	Apple	positive	know about awesome ipad iphone app that you'll	#sxsw	@jessedee @fludapp
2	@swonderlin Can not wait for #iPad 2 also. The	iPad	Positive emotion	Apple	positive	can not wait for 2 also they should sale them	#ipad #sxsw	@swonderlin
3	@sxsw I hope this year's festival isn't as cra	iPad or iPhone App	Negative emotion	Apple	negative	i hope this year's festival isn't as crashy as	#sxsw	@sxsw
4	@sxtxstate great stuff on Fri #SXSW: Marissa M	Google	Positive emotion	Google	positive	great stuff on fri marissa mayer google tim o'	#sxsw	@sxtxstate

Looking for duplicates again

I removed hashtags and mentions from the tweets. I want to look at the clean_tweets columns to see if there are duplicates because it is possible there are now duplicates of these tweets. The tweets may share the same content and have a differeent mention in them. So essentially the tweets are the same so I may want to remove the duplicates.

```
In [38]: df['clean_tweet'].duplicated().sum()
```

Out[38]: 394

There are 389 duplicate clean tweets. Let's take a look at them.

```
In [39]: # Looking at duplicate clean_tweet column
df.loc[df['clean_tweet'].duplicated(keep=False)].sort_values('clean_tweet')
```

Out[39]:

	tweet_text	directed_at	sentiment	company	target	clean_tweet	hashtags	mentions
7346	#sxsw #japan #sendai #prayforjapan #beforetwit	Unknown	No emotion toward brand or product	Unknown	neutral		#sxsw #japan #sendai #prayforjapan #beforetwit	
1561	@mention @mention \$ #tweethouse #ipad #sxsw #d	Unknown	No emotion toward brand or product	Unknown	neutral		#tweethouse #ipad #sxsw #dotco	@mention @mention
4953	40% of google maps use is mobile #sxsw	Unknown	No emotion toward brand or product	Unknown	neutral	40 of google maps use is mobile	#sxsw	
4954	40% of Google maps use is mobile #sxsw	Unknown	No emotion toward brand or product	Unknown	neutral	40 of google maps use is mobile	#sxsw	
2252	Apple grabbed the tablet mindshare at #sxsw bu	Apple	Positive emotion	Apple	positive	apple grabbed the tablet mindshare at but rim	#sxsw #foodspotting #mnbuzz	
3811	Win free ipad 2 from webdoc.com #sxsw RT	Unknown	No emotion toward brand or product	Unknown	neutral	win free ipad 2 from webdoc com rt	#sxsw	
3810	Win free IPad 2 from webdoc.com #sxsw RT	Unknown	No emotion toward brand or product	Unknown	neutral	win free ipad 2 from webdoc com rt	#sxsw	
3809	win free iPad 2 from webdoc.com #sxsw RT	Unknown	No emotion toward brand or product	Unknown	neutral	win free ipad 2 from webdoc com rt	#sxsw	
4199	Yes! Gowalla wins best Andoid app at the Team	Android App	Positive emotion	Google	positive	yes gowalla wins best andoid app at the team a	#sxsw	
1341	ÛÏ@mention Yes! Gowalla wins best Andoid app	Android App	Positive emotion	Google	positive	yes gowalla wins best andoid app at the team a	#sxsw	@mention

659 rows × 8 columns

I can see the duplicated tweets but now there is a bigger problem.

There are duplicated tweets that each have a different sentiment/target. That does not make sense how the same tweet can have multiple sentiments. I'm going to drop all the duplicates that have multiple sentiments and keep only of the duplicate rows that only have 1 sentiment to them.

For the duplicates with multiple sentiments, I can't keep at least one of them because I don't know which of the sentiments is correct. For this reason, I have to treat these values as invalid and get rid of them all.

In [40]: # looking at duplicate clean_tweet column
df.loc[df['clean_tweet'].duplicated(keep=False)].sort_values('clean_tweet')

Out[40]:

	tweet_text	directed_at	sentiment	company	target	clean_tweet	hashtags	mentions
7346	#sxsw #japan #sendai #prayforjapan #beforetwit	Unknown	No emotion toward brand or product	Unknown	neutral		#sxsw #japan #sendai #prayforjapan #beforetwit	
1561	@mention @mention \$ #tweethouse #ipad #sxsw #d	Unknown	No emotion toward brand or product	Unknown	neutral		#tweethouse #ipad #sxsw #dotco	@mention @mention
4953	40% of google maps use is mobile #sxsw	Unknown	No emotion toward brand or product	Unknown	neutral	40 of google maps use is mobile	#sxsw	
4954	40% of Google maps use is mobile #sxsw	Unknown	No emotion toward brand or product	Unknown	neutral	40 of google maps use is mobile	#sxsw	
2252	Apple grabbed the tablet mindshare at #sxsw bu	Apple	Positive emotion	Apple	positive	apple grabbed the tablet mindshare at but rim	#sxsw #foodspotting #mnbuzz	
3811	Win free ipad 2 from webdoc.com #sxsw RT	Unknown	No emotion toward brand or product	Unknown	neutral	win free ipad 2 from webdoc com rt	#sxsw	
3810	Win free IPad 2 from webdoc.com #sxsw RT	Unknown	No emotion toward brand or product	Unknown	neutral	win free ipad 2 from webdoc com rt	#sxsw	
3809	win free iPad 2 from webdoc.com #sxsw RT	Unknown	No emotion toward brand or product	Unknown	neutral	win free ipad 2 from webdoc com rt	#sxsw	
4199	Yes! Gowalla wins best Andoid app at the Team	Android App	Positive emotion	Google	positive	yes gowalla wins best andoid app at the team a	#sxsw	
1341	ÛÏ@mention Yes! Gowalla wins best Andoid app	Android App	Positive emotion	Google	positive	yes gowalla wins best andoid app at the team a	#sxsw	@mention

659 rows × 8 columns

```
In [41]: # group by clean_tweets and target and count the occurence
# here I can see the tweets with more than one target
df.loc[df['clean_tweet'].duplicated(keep=False)].sort_values('clean_tweet')\
.groupby(['clean_tweet', 'target']).count().reset_index()
```

Out[41]:

	clean_tweet	target	tweet_text	directed_at	sentiment	company	hashtags	mentions
0		neutral	2	2	2	2	2	2
1	40 of google maps use is mobile	neutral	2	2	2	2	2	2
2	apple grabbed the tablet mindshare at but rim	neutral	1	1	1	1	1	1
3	apple grabbed the tablet mindshare at but rim	positive	1	1	1	1	1	1
4	apple has two austin stores but until this wee	neutral	1	1	1	1	1	1
329	will google reveal a new social network called	neutral	2	2	2	2	2	2
330	will google reveal a new social network called	neutral	2	2	2	2	2	2
331	win free ipad 2 from webdoc com rt	neutral	4	4	4	4	4	4
332	win free ipad 2 from webdoc com rt	positive	2	2	2	2	2	2
333	yes gowalla wins best andoid app at the team a	positive	2	2	2	2	2	2

334 rows × 8 columns

```
In [42]: # group again by clean tweet and count the sentiment
         # anything more than 1 indicates more than 1 sentiment
         df.loc[df['clean tweet'].duplicated(keep=False)].sort values('clean tweet')\
          .groupby(['clean tweet', 'target']).count().reset index().groupby('clean tweet')\
          .count().reset index()
         # print value counts
         print(df.loc[df['clean tweet'].duplicated(keep=False)].sort values('clean tweet')\
          .groupby(['clean tweet', 'target']).count().reset index().groupby('clean tweet')\
          .count().reset index().target.value counts())
               196
         1
                69
         Name: target, dtype: int64
         There are 64 tweets that are duplicated and have different sentiments. Now I have to get a list of those tweets.
In [43]: # saving above table as a dataframe
         dup tweets = df.loc[df['clean tweet'].duplicated(keep=False)].sort values('clean tweet')\
          .groupby(['clean tweet', 'target']).count().reset index().groupby('clean tweet')\
          .count().reset_index()
         tweets to drop = list(dup tweets.loc[dup tweets['target'] > 1]['clean tweet'])
In [44]: # filter out tweets to drop from df
         df = df.loc[~df['clean tweet'].isin(tweets to drop)]
         Now I have to drop any remaining duplicated from the clean tweet column. These tweets should be duplicates and have only one
         sentiment.
```

In [45]: df.clean_tweet.duplicated().sum()

Out[45]: 225

In [46]: # drop remaining duplicate values from df
df.drop_duplicates(subset=['clean_tweet'], inplace=True)

In [47]: df.head()

Out[47]:

mentions	hashtags	clean_tweet	target	company	sentiment	directed_at	tweet_text	
@wesley83	#rise_austin #sxsw	i have a 3g iphone after 3 hrs tweeting at it	negative	Apple	Negative emotion	iPhone	.@wesley83 I have a 3G iPhone. After 3 hrs twe	0
@jessedee @fludapp	#sxsw	know about awesome ipad iphone app that you'll	positive	Apple	Positive emotion	iPad or iPhone App	@jessedee Know about @fludapp ? Awesome iPad/i	1
@swonderlir	#ipad #sxsw	can not wait for 2 also they should sale them	positive	Apple	Positive emotion	iPad	@swonderlin Can not wait for #iPad 2 also. The	2
@sxsv	#sxsw	i hope this year's festival isn't as crashy as	negative	Apple	Negative emotion	iPad or iPhone App	@sxsw I hope this year's festival isn't as cra	3
@sxtxstate	#sxsw	great stuff on fri marissa mayer google tim o'	positive	Google	Positive emotion	Google	@sxtxstate great stuff on Fri #SXSW: Marissa M	4

Exploratory Data Analysis

Distribution of Tweets

Out[48]: <AxesSubplot:xlabel='target', ylabel='tweet_text'>

In [49]: df.groupby(['target', 'company']).count()['tweet_text'].reset_index()

Out[49]:

	target	company	tweet_text
0	negative	Apple	378
1	negative	Google	128
2	negative	Unknown	49
3	neutral	Apple	63
4	neutral	Google	23
5	neutral	Unknown	4974
6	positive	Apple	1866
7	positive	Google	683
8	positive	Unknown	292
9	unknown	Apple	7
10	unknown	Google	2
11	unknown	Unknown	142

Out[50]: <AxesSubplot:xlabel='target', ylabel='tweet_text'>

Unknown sentiment makes up only a small amount of the total tweets and of those tweets the vast majority have an unknown direction. I will drop these values.

```
In [51]: # filter target column
filter_s = df['target'] != 'unknown'

# filter dataframe
df = df.loc[filter_s]
```

In [52]: df.head()

Out[52]:

	tweet_text	directed_at	sentiment	company	target	clean_tweet	hashtags	mentions
0	.@wesley83 I have a 3G iPhone. After 3 hrs twe	iPhone	Negative emotion	Apple	negative	i have a 3g iphone after 3 hrs tweeting at it	#rise_austin #sxsw	@wesley83
1	@jessedee Know about @fludapp ? Awesome iPad/i	iPad or iPhone App	Positive emotion	Apple	positive	know about awesome ipad iphone app that you'll	#sxsw	@jessedee @fludapp
2	@swonderlin Can not wait for #iPad 2 also. The	iPad	Positive emotion	Apple	positive	can not wait for 2 also they should sale them	#ipad #sxsw	@swonderlin
3	@sxsw I hope this year's festival isn't as cra	iPad or iPhone App	Negative emotion	Apple	negative	i hope this year's festival isn't as crashy as	#sxsw	@sxsw
4	@sxtxstate great stuff on Fri #SXSW: Marissa M	Google	Positive emotion	Google	positive	great stuff on fri marissa mayer google tim o'	#sxsw	@sxtxstate

Here is the distribution of the classes. Neutral has the most occurences by far followed by positive and negative.

Out[54]: <AxesSubplot:xlabel='target', ylabel='tweet_text'>

Unknown has the most neutral tweets by far. Apple has the most positive and negative tweets written about them. I'm curious as to what people are talking about in those tweets.

```
In [55]: df.groupby(['directed_at', 'target']).count()['tweet_text'].reset_index()
```

Out[55]:

	directed_at	target	tweet_text
0	Android	negative	7
1	Android	neutral	1
2	Android	positive	66
3	Android App	negative	8
4	Android App	neutral	1
5	Android App	positive	66
6	Apple	negative	94
7	Apple	neutral	20
8	Apple	positive	500
9	Google	negative	66
10	Google	neutral	13
11	Google	positive	327
12	Other Apple product or service	negative	2
13	Other Apple product or service	neutral	1
14	Other Apple product or service	positive	31
15	Other Google product or service	negative	47
16	Other Google product or service	neutral	8
17	Other Google product or service	positive	224
18	Unknown	negative	49
19	Unknown	neutral	4974
20	Unknown	positive	292
21	iPad	negative	120
22	iPad	neutral	23
23	iPad	positive	778
24	iPad or iPhone App	negative	61

	directed_at	target	tweet_text
25	iPad or iPhone App	neutral	10
26	iPad or iPhone App	positive	375
27	iPhone	negative	101
28	iPhone	neutral	9
29	iPhone	positive	182

This graph is hard to read due to the Unknowns. I'll filter these out to create a new graph.

- Most of the positive tweets are about the iPad and Apple followed by iPad or iPhone App and Google.
- Most of the negative tweets about about iPad and iPhone followed by Apple and Google.

Frequency Distributions

I'll create frequency distributions to see which words and phrases are most associated with each of the classes. I'll also take a look at which words and phrases are associated with the companies and their sentiments.

Helper Functions

These helper function will help with creating frequency distributions, normalized distribution functions, and n grams

```
In [58]: # function to convert series to clean tokenized list
         def clean tokenize(series):
             # convert rows of tweets to one string
             allwords = ' '.join(series)
             # tokenize allwords
             allwords = allwords.split(' ')
             # remove stop words
             stopwords list = stopwords.words('english')
             # add to stop words
             stopwords list += ['link', 'rt']
             allwords stopped = [word for word in allwords if word not in stopwords list]
             return allwords stopped
         # create a frequency distribution and output n most common
         def n most common(token list, n=None):
             freq dist = FreqDist(token list)
             if n == None:
                 return freq dist
             else:
                 return freq dist.most common(n)
         # normalized distribution function
         def norm dist(freq dist):
             # normalized distribution function
             total word count = sum(freq dist.values())
             top 50 words = freq dist.most common(50)
             # prints headers for the output
             print(f'{"Word":10} Normalized Frequency')
             # for loop to print normalized distribution function
             for word in top 50 words:
                 normalized distribution = word[1] / total word count
                 print(f"{word[0]:10} {normalized distribution:^20.4}")
         # bigram function
```

```
def bigram(token list, pmi=False, apply filter=5):
    # bigram measures
    bigram measures = nltk.collocations.BigramAssocMeasures
    if pmi:
        # mutual information score (pmi)
        pmi finder = BigramCollocationFinder.from words(token list)
        pmi finder.apply freq filter(apply filter)
        pmi scored = pmi finder.score ngrams(bigram measures.pmi)
        return pmi scored
    else:
        # creating bigrams
        finder = BigramCollocationFinder.from words(token list)
        scored = finder.score ngrams(bigram measures.raw freq)
        return scored
# trigram function
def trigram(token list, pmi=False, apply filter=5):
    # trigram measures
   trigram measures = nltk.collocations.TrigramAssocMeasures
    if pmi:
        # mutual information score (pmi)
        pmi finder = TrigramCollocationFinder.from words(token list)
        pmi finder.apply freq filter(apply filter)
        pmi scored = pmi finder.score ngrams(trigram measures.pmi)
        return pmi scored
    else:
        # creating trigrams
        finder = TrigramCollocationFinder.from words(token list)
        scored = finder.score ngrams(trigram measures.raw freq)
        return scored
```

Frequency Distributions Based on Sentiment

```
In [59]: # positive filter
pos_filter = df['target'] == 'positive'

# positive tweets
positive_tweets = df.loc[pos_filter]
```

In [60]: positive_tweets.head()

Out[60]:

	tweet_text	directed_at	sentiment	company	target	clean_tweet	hashtags	mentions
1	@jessedee Know about @fludapp ? Awesome iPad/i	iPad or iPhone App	Positive emotion	Apple	positive	know about awesome ipad iphone app that you'll	#sxsw	@jessedee @fludapp
2	@swonderlin Can not wait for #iPad 2 also. The	iPad	Positive emotion	Apple	positive	can not wait for 2 also they should sale them	#ipad #sxsw	@swonderlin
4	@sxtxstate great stuff on Fri #SXSW: Marissa M	Google	Positive emotion	Google	positive	great stuff on fri marissa mayer google tim o'	#sxsw	@sxtxstate
7	#SXSW is just starting, #CTIA is around the co	Android	Positive emotion	Google	positive	is just starting is around the corner and is o	#sxsw #ctia #googleio #android	
8	Beautifully smart and simple idea RT @madebyma	iPad or iPhone App	Positive emotion	Apple	positive	beautifully smart and simple idea rt wrote abo	#hollergram #sxsw	@madebymany @thenextweb

```
In [61]: # create string of all the clean tweets
positive_tweets_token = clean_tokenize(positive_tweets['clean_tweet'])
```

```
In [62]: # create frequency distribution of positive tweets
         pos_freq_dist = n_most_common(positive_tweets_token)
         # 50 most common words
         pos_freq_dist.most_common(50)
Out[62]: [('ipad', 897),
          ('apple', 677),
           ('google', 580),
           ('store', 524),
           ('iphone', 454),
           ('2', 453),
           ('quot', 430),
           ('app', 364),
           ('new', 324),
           ('austin', 236),
           ('pop', 207),
           ('amp', 199),
           ('android', 158),
           ('get', 155),
           ('launch', 142),
           ('great', 135),
           ('line', 132),
           ('sxsw', 131),
```

('party', 131),

In [63]: # normalized distribution function positive tweets
norm_dist(pos_freq_dist) # 50 most common words

Word	Normalized Frequency
ipad	0.03287
apple	0.02481
google	0.02125
store	0.0192
iphone	0.01664
2	0.0166
quot	0.01576
арр	0.01334
new	0.01187
austin	0.008648
рор	0.007585
amp	0.007292
android	0.005789
get	0.00568
launch	0.005203
great	0.004947
line	0.004837
SXSW	0.0048
_	0 0040

```
In [64]: # most common bigrams
         bigram(positive tweets token)
Out[64]: [(('ipad', '2'), 0.013227804037961232),
          (('apple', 'store'), 0.006962002125242754),
          (('pop', 'store'), 0.0046901909054266975),
          (('iphone', 'app'), 0.0037008537613132534),
          (('google', 'maps'), 0.0027481587336484555),
          (('social', 'network'), 0.0026382323843025172),
          (('apple', 'pop'), 0.002381737569161995),
          (('ipad', 'app'), 0.002381737569161995),
          (('new', 'social'), 0.002381737569161995),
          (('temporary', 'store'), 0.0023450954527133487),
          (('downtown', 'austin'), 0.0023084533362647025),
          (('store', 'downtown'), 0.0023084533362647025),
          (('apple', 'opening'), 0.0021985269869187643),
          (('google', 'launch'), 0.0019420321717782418),
          (('new', 'ipad'), 0.0018687479388809498),
          (('marissa', 'mayer'), 0.0017954637059836576),
          (('2', 'launch'), 0.0017221794730863656),
          (('store', 'austin'), 0.0017221794730863656),
          (('called', 'circles'), 0.0016855373566377193),
```

```
In [65]: # most common bigrams with pmi
         bigram(positive tweets token, pmi=True)
Out[65]: [(('ice', 'cream'), 12.414209543642368),
          (('etch', 'sketch'), 12.151175137808572),
          (('league', 'extraordinary'), 12.151175137808572),
          (('lustre', 'pearl'), 12.151175137808572),
          (('exhibit', 'hall'), 11.928782716472124),
          (('awesomely', 'rad'), 11.566212637087418),
          (('haha', 'awesomely'), 11.566212637087418),
          (('south', 'southwest'), 11.566212637087418),
           (('mark', 'belinsky'), 11.543492560587332),
          (('maggie', "mae's"), 11.27670601989243),
           (('city', 'end'), 11.058065733417092),
          (('150', 'million'), 10.98125013636626),
          (('macbook', 'pro'), 10.928782716472124),
          (('fam', 'showing'), 10.736137638529728),
          (('physical', 'worlds'), 10.736137638529728),
          (('holler', 'gram'), 10.648674797279389),
          (('includes', 'uberguide'), 10.648674797279389),
           (('64gig', 'wifi'), 10.566212637087418),
           (('choice', 'awards'), 10.566212637087418),
```

```
In [66]: # most common trigrams
         trigram(positive tweets token, pmi=False)
Out[66]: [(('new', 'social', 'network'), 0.0022718112198160567),
          (('store', 'downtown', 'austin'), 0.002088600637572826),
          (('apple', 'pop', 'store'), 0.0018321058224323038),
          (('ipad', '2', 'launch'), 0.0017221794730863656),
          (('network', 'called', 'circles'), 0.0016488952401890733),
          (('social', 'network', 'called'), 0.0016488952401890733),
          (('launch', 'major', 'new'), 0.001575611007291781),
          (('major', 'new', 'social'), 0.001575611007291781),
          (('google', 'launch', 'major'), 0.0014290425414971969),
          (('opening', 'temporary', 'store'), 0.0013191161921512586),
          (('temporary', 'store', 'downtown'), 0.0011725477263566744),
          (('apple', 'opening', 'temporary'), 0.0011359056099080284),
          (('circles', 'possibly', 'today'), 0.0011359056099080284),
          (('called', 'circles', 'possibly'), 0.0010992634934593821),
          (('quot', 'apple', 'comes'), 0.0010259792605620901),
          (('begins', 'apple', 'wins'), 0.0009526950276647979),
          (('even', 'begins', 'apple'), 0.0009526950276647979),
          (("one's", 'ever', 'heard'), 0.0009526950276647979),
          (('pop', 'store', 'austin'), 0.0009526950276647979),
```

```
In [67]: # most common trigrams with pmi
         trigram(positive_tweets_token, pmi=True)
Out[67]: [(('haha', 'awesomely', 'rad'), 23.132425274174835),
          (('mark', 'belinsky', 'panel'), 21.070176833488112),
          (('http', 'bit', 'ly'), 20.395459680008628),
           (('includes', 'uberguide', 'sponsored'), 20.192167357866726),
          (('schools', 'marketing', 'experts'), 20.17271499520055),
          (('brain', 'search', 'x'), 20.0799578542807),
          (('left', 'brain', 'search'), 18.964480636860763),
          (('choice', 'awards', 'thanks'), 18.946754467964386),
           (('technology', "one's", 'ever'), 18.856300868900593),
           (('w', 'fam', 'showing'), 18.814063794307664),
           (('150', 'million', 'mobile'), 18.664276438436424),
           (("one's", 'ever', 'heard'), 18.640572177845158),
           (('live', 'video', 'streaming'), 18.628179808186836),
          (('route', 'around', 'traffic'), 18.049028027748818),
          (('shop', 'core', 'action'), 18.003269484624536),
          (('android', 'choice', 'awards'), 17.998569527440043),
          (('wins', 'best', 'andoid'), 17.78402496792628),
           (('web', 'site', 'coming'), 17.763967315585028),
           (('cool', 'technology', "one's"), 17.579969640453342),
```

Negative Tweets

```
In [68]: # negative filter
neg_filter = df['target'] == 'negative'

# negative tweets
negative_tweets = df.loc[neg_filter]
```

In [69]: negative_tweets.head()

Out[69]:

	tweet_text	directed_at	sentiment	company	target	clean_tweet	hashtags	mentions
0	.@wesley83 I have a 3G iPhone. After 3 hrs twe	iPhone	Negative emotion	Apple	negative	i have a 3g iphone after 3 hrs tweeting at it	#rise_austin #sxsw	@wesley83
3	@sxsw I hope this year's festival isn't as cra	iPad or iPhone App	Negative emotion	Apple	negative	i hope this year's festival isn't as crashy as	#sxsw	@sxsw
17	I just noticed DST is coming this weekend. How	iPhone	Negative emotion	Apple	negative	i just noticed dst is coming this weekend how	#sxsw #iphone	
64	Again? RT @mention Line at the Apple store is	Unknown	Negative emotion	Unknown	negative	again rt line at the apple store is insane	#sxsw	@mention
67	attending @mention iPad design headaches #sxsw	iPad	Negative emotion	Apple	negative	attending ipad design headaches link	#sxsw	@mention

In [70]: # create string of all the clean tweets negative_tweets_token = clean_tokenize(negative_tweets['clean_tweet'])

```
In [71]: negative_tweets_token
Out[71]: ['3g',
           'iphone',
           '3<sup>'</sup>,
           'hrs',
           'tweeting',
           'dead',
           'need',
           'upgrade',
           'plugin',
           'stations',
           'hope',
           "year's",
           'festival',
           'crashy',
           "year's",
           'iphone',
           'app',
           'noticed',
           'dst',
```

```
In [72]: # create frequency distribution of negative tweets
         neg_freq_dist = n_most_common(negative_tweets_token)
         # 50 most common words
         neg_freq_dist.most_common(50)
Out[72]: [('ipad', 163),
          ('quot', 163),
          ('iphone', 141),
          ('google', 132),
           ('apple', 100),
          ('2', 62),
          ('app', 59),
           ('store', 46),
           ('new', 42),
           ('like', 38),
           ('design', 29),
          ('people', 29),
           ('social', 27),
           ('apps', 25),
           ('austin', 25),
          ('get', 24),
           ('circles', 23),
           ('amp', 22),
```

('one', 22),

In [73]: # normalized distribution function negative tweets
norm_dist(neg_freq_dist) # 50 most common words

Word	Normalized Frequency			
ipad	0.02924			
quot	0.02924			
iphone	0.02529			
google	0.02368			
apple	0.01794			
2	0.01112			
арр	0.01058			
store	0.008251			
new	0.007534			
like	0.006816			
design	0.005202			
people	0.005202			
social	0.004843			
apps	0.004484			
austin	0.004484			
get	0.004305			
circles	0.004126			
amp	0.003946			•
	0.000046			

```
In [74]: # most common bigrams
         bigram(negative tweets token)
Out[74]: [(('ipad', '2'), 0.008071748878923767),
          (('apple', 'store'), 0.004304932735426009),
          (('ipad', 'design'), 0.0034080717488789236),
           (('iphone', 'app'), 0.0034080717488789236),
          (('design', 'headaches'), 0.0030493273542600897),
          (('new', 'social'), 0.0026905829596412557),
          (('quot', 'quot'), 0.0026905829596412557),
          (('social', 'network'), 0.0025112107623318385),
          (('company', 'america'), 0.0023318385650224214),
          (('fascist', 'company'), 0.0021524663677130046),
           (('major', 'new'), 0.0021524663677130046),
          (('google', 'launch'), 0.0019730941704035874),
          (('launch', 'major'), 0.0017937219730941704),
          (('network', 'called'), 0.0017937219730941704),
          (('quot', 'apple'), 0.0017937219730941704),
          (('called', 'circles'), 0.0016143497757847534),
          (('fades', 'fast'), 0.0016143497757847534),
           (('fast', 'among'), 0.0016143497757847534),
           (('google', 'circles'), 0.0016143497757847534),
```

```
In [75]: # most common bigrams with pmi
         bigram(negative tweets token, pmi=True)
Out[75]: [(('kara', 'swisher'), 9.44475608969503),
          (('marissa', 'mayer'), 9.122827994807668),
          (('among', 'digital'), 9.082186010310323),
          (('digital', 'delegates'), 9.082186010310323),
          (('fast', 'among'), 8.859793588973872),
          (('way', 'caring'), 8.744316371553937),
          (('fades', 'fast'), 8.707790495528823),
          (('caring', 'much'), 8.53786549408651),
          (('much', 'business'), 8.53786549408651),
          (('classiest', 'fascist'), 8.467476166195112),
          (('company', 'america'), 8.43095029017),
          (('fascist', 'company'), 8.415008746300977),
          (('network', 'called'), 8.274831088252718),
          (('elegant', 'fascist'), 8.151974340467183),
          (('lost', 'way'), 8.0662444664413),
          (('possibly', 'today'), 7.859793588973875),
          (('social', 'network'), 7.5903329139806495),
          (('design', 'headaches'), 7.586775094567457),
           (('launch', 'major'), 7.567011839746028),
```

```
In [76]: # most common trigrams
         trigram(negative tweets token, pmi=False)
Out[76]: [(('ipad', 'design', 'headaches'), 0.0028699551569506725),
          (('major', 'new', 'social'), 0.0021524663677130046),
          (('new', 'social', 'network'), 0.0021524663677130046),
          (('fascist', 'company', 'america'), 0.0019730941704035874),
          (('launch', 'major', 'new'), 0.0017937219730941704),
          (('social', 'network', 'called'), 0.0017937219730941704),
          (('fades', 'fast', 'among'), 0.0016143497757847534),
          (('google', 'launch', 'major'), 0.0016143497757847534),
          (('network', 'called', 'circles'), 0.0016143497757847534),
          (('classiest', 'fascist', 'company'), 0.0014349775784753362),
          (('company', 'america', 'quot'), 0.0014349775784753362),
          (('among', 'digital', 'delegates'), 0.0012556053811659193),
          (('fast', 'among', 'digital'), 0.0012556053811659193).
          (('ipad', 'news', 'apps'), 0.0012556053811659193),
          (('apps', 'fades', 'fast'), 0.0010762331838565023),
          (('called', 'circles', 'possibly'), 0.0010762331838565023),
          (('circles', 'possibly', 'today'), 0.0010762331838565023),
          (('news', 'apps', 'fades'), 0.0010762331838565023),
          (('pop', 'apple', 'store'), 0.0010762331838565023),
```

```
In [77]: # most common trigrams
         trigram(negative tweets token, pmi=True)
Out[77]: [(('caring', 'much', 'business'), 18.66069348889418),
          (('among', 'digital', 'delegates'), 18.357017098563038),
          (('lost', 'way', 'caring'), 18.18907246124897),
          (('fades', 'fast', 'among'), 17.98262158378154),
          (('fast', 'among', 'digital'), 17.941979599284196),
          (('way', 'caring', 'much'), 17.282181865640446),
          (('classiest', 'fascist', 'company'), 17.10487733383254),
          (('fascist', 'company', 'america'), 16.82734335830363),
          (('called', 'circles', 'possibly'), 16.365950223333048),
          (('network', 'called', 'circles'), 16.044022128445683),
          (('social', 'network', 'called'), 15.964699675784274),
          (('apps', 'fades', 'fast'), 15.923727894727975),
          (('circles', 'possibly', 'today'), 15.558595301275444),
          (('news', 'apps', 'fades'), 15.42122755419879),
          (('launch', 'major', 'new'), 14.619450506662293),
          (('major', 'new', 'social'), 14.51991483311138),
          (('new', 'social', 'network'), 14.420379159560467),
          (('apple', 'elegant', 'fascist'), 13.952874240387487),
          (('quot', 'classiest', 'fascist'), 13.148466602380223),
          (('company', 'america', 'quot'), 12.82653850749286),
          (('google', 'launch', 'major'), 12.815370716637554),
          (('novelty', 'ipad', 'news'), 12.605324277353692),
          (('ipad', 'design', 'headaches'), 12.59534018878107),
          (('ipad', 'news', 'apps'), 11.61681991619152),
          (('pop', 'apple', 'store'), 11.21959369302914),
          (('quot', 'apple', 'elegant'), 10.411501008214014),
          (('apple', 'quot', 'classiest'), 10.048930928829307),
          (('quot', 'ipad', 'design'), 7.656002970687695)]
```

Neutral Tweets

```
In [78]: # neutral filter
neutral_filter = df['target'] == 'neutral'

# neutral tweets
neutral_tweets = df.loc[neutral_filter]
```

In [79]: neutral_tweets.head()

Out[79]:

	tweet_text	directed_at	sentiment	company	target	clean_tweet	hashtags	mentions
5	@teachntech00 New iPad Apps For #SpeechTherapy	Unknown	No emotion toward brand or product	Unknown	neutral	new ipad apps for and communication are showca	#speechtherapy #sxsw #iear #edchat #asd	@teachntech00
16	Holler Gram for iPad on the iTunes App Store	Unknown	No emotion toward brand or product	Unknown	neutral	holler gram for ipad on the itunes app store h	#sxsw	@marc_is_ken
32	Attn: All #SXSW frineds, @mention Register fo	Unknown	No emotion toward brand or product	Unknown	neutral	attn all frineds register for and see cobra ir	#sxsw #gdgtlive	@mention
33	Anyone at #sxsw want to sell their old iPad?	Unknown	No emotion toward brand or product	Unknown	neutral	anyone at want to sell their old ipad	#sxsw	
34	Anyone at #SXSW who bought the new iPad want	Unknown	No emotion toward brand or product	Unknown	neutral	anyone at who bought the new ipad want to sell	#sxsw	

```
In [80]: # create string of all the clean tweets
    neutral_tweets_token = clean_tokenize(neutral_tweets['clean_tweet'])
```

```
In [81]: neutral_tweets_token
Out[81]: ['new',
           'ipad',
           'apps',
           'communication',
           'showcased',
           'conference',
           'http',
           'ht',
           'ly',
           '49n4m',
           'holler',
           'gram',
           'ipad',
           'itunes',
           'app',
           'store',
           'http',
           'co',
           'kfn3f5q',
           1 2 1
```

```
In [82]: # create frequency distribution of neutral tweets
         neutral_freq_dist = n_most_common(neutral_tweets_token)
         # 50 most common words
         neutral_freq_dist.most_common(50)
Out[82]: [('google', 1227),
          ('ipad', 1055),
           ('quot', 967),
           ('apple', 920),
           ('store', 804),
           ('iphone', 653),
           ('amp', 568),
           ('new', 557),
           ('2', 530),
           ('austin', 507),
           ('social', 378),
           ('launch', 347),
           ('today', 340),
           ('pop', 333),
           ('circles', 331),
           ('app', 322),
           ('sxsw', 311),
           ('android', 264),
```

('network', 258),

In [83]: # normalized distribution function neutral tweets
norm_dist(neutral_freq_dist) # 50 most common words

Word	Normalized Frequency
google	0.02642
ipad	0.02271
quot	0.02082
apple	0.01981
store	0.01731
iphone	0.01406
amp	0.01223
new	0.01199
2	0.01141
austin	0.01092
social	0.008138
launch	0.007471
today	0.00732
рор	0.007169
circles	0.007126
арр	0.006933
SXSW	0.006696
android	0.005684
± 1.	0 005555

```
In [84]: # most common bigrams
         bigram(neutral tweets token)
Out[84]: [(('ipad', '2'), 0.008396667169031369),
          (('apple', 'store'), 0.006803453398497212),
          (('social', 'network'), 0.005382478954507288),
          (('new', 'social'), 0.004736581479966413),
          (('pop', 'store'), 0.003939974594699335),
          (('network', 'called'), 0.003423256615066635),
          (('google', 'launch'), 0.003143367709432256),
          (('called', 'circles'), 0.0030572480461601393),
          (('major', 'new'), 0.0030141882145240813),
          (('launch', 'major'), 0.0029065386354339352),
          (('apple', 'opening'), 0.0023467608241651773),
          (('possibly', 'today'), 0.0023467608241651773),
          (('store', 'austin'), 0.002260641160893061),
          (('google', 'circles'), 0.0022175813292570025),
          (('temporary', 'store'), 0.0022175813292570025),
          (('circles', 'possibly'), 0.002131461665984886),
          (('downtown', 'austin'), 0.0019376924236226237),
           (('marissa', 'mayer'), 0.0019376924236226237),
           (('store', 'downtown'), 0.0017869830128964196),
```

```
In [85]: # most common bigrams with pmi
         bigram(neutral tweets token, pmi=True)
Out[85]: [(('cameron', 'sinclair'), 13.181369700970887),
          (('charlie', 'sheen'), 13.181369700970887),
          (('holler', 'gram'), 13.181369700970887),
          (('sheen', 'goddesses'), 13.181369700970887),
          (('jc', 'penney'), 12.91833529513709),
          (('knitted', 'staircase'), 12.91833529513709),
          (('98', 'accuracy'), 12.695942873800643),
          (('acoustic', 'solo'), 12.695942873800643),
           (('barton', 'hollow'), 12.695942873800643),
          (('entered', 'automatically'), 12.695942873800643),
           (('poked', 'liked'), 12.695942873800643),
          (('themed', 'costume'), 12.695942873800643),
          (('tim', "o'reilly"), 12.503297795858249),
          (('staircase', 'attendance'), 12.503297795858245),
          (('til', 'midnight'), 12.503297795858245),
          (('charles', 'chen'), 12.333372794415936),
          (('ice', 'cream'), 12.333372794415936),
           (('lustre', 'pearl'), 12.333372794415933),
           (('galaxy', 'ii'), 12.280905374521797),
                ±1 164 ± 1\ 40 404060700070000
```

```
In [86]: # most common trigrams
         trigram(neutral tweets token, pmi=False)
Out[86]: [(('new', 'social', 'network'), 0.0043059831636058305),
          (('social', 'network', 'called'), 0.003401726699248606),
          (('major', 'new', 'social'), 0.002992658298706052),
          (('network', 'called', 'circles'), 0.002992658298706052),
          (('launch', 'major', 'new'), 0.0029065386354339352),
          (('google', 'launch', 'major'), 0.002411350571619265),
          (('circles', 'possibly', 'today'), 0.002131461665984886),
          (('called', 'circles', 'possibly'), 0.0020884018343488276),
          (('apple', 'pop', 'store'), 0.0015501539388980989),
          (('store', 'downtown', 'austin'), 0.0015501539388980989),
          (('ipad', '2', 'launch'), 0.0013779146123538658),
          (('pop', 'apple', 'store'), 0.0012272052016276617),
          (('apple', 'opening', 'temporary'), 0.0012056752858096325),
          (('opening', 'temporary', 'store'), 0.001141085538355545),
          (('pop', 'store', 'austin'), 0.0011195556225375158),
          (('temporary', 'store', 'downtown'), 0.0009257863801752535),
          (('opening', 'pop', 'store'), 0.0008611966327211661),
          (('austin', 'ipad', '2'), 0.0008396667169031369),
          (('59', '59p', '03'), 0.0008181368010851078),
```

```
In [87]: # most common trigrams
         trigram(neutral tweets token, pmi=True)
Out[87]: [(('charlie', 'sheen', 'goddesses'), 26.36273940194177),
          (('knitted', 'staircase', 'attendance'), 25.42163309099534),
          (('tomo', '7pm', 'hosted'), 24.251708089553027),
           (('geek', 'charlie', 'sheen'), 24.099704996107977),
           (('therapy', 'communication', 'showcased'), 23.907059918165583),
          (('80s', 'themed', 'costume'), 23.80692324688013),
           (('speech', 'therapy', 'communication'), 23.68466749682913),
           (('everything', 'except', '64gig'), 23.597204655578793),
           (('except', '64gig', 'wifi'), 23.597204655578793),
           (('sign', 'entered', 'automatically'), 23.555384479884168).
           (('steps', 'bulletproof', 'ux'), 23.44435316749542),
           (('access', 'acoustic', 'solo'), 23.19924066965889),
           (('register', 'exclusive', 'passes'), 23.17009432399938),
          (('communication', 'showcased', 'conference'), 23.099704996107974),
          (('interrupt', 'regularly', 'scheduled'), 23.099704996107974),
           (('donating', 'japanese', 'red'), 22.903307783304477).
          (('japanese', 'red', 'cross'), 22.903307783304477),
           (('bulletproof', 'ux', 'strategy'), 22.851777482664396),
           (('league', 'extraordinary', 'hackers'), 22.71708897452151),
```

Hashtag Frequency Distributions

```
In [88]: # token list for hashtags
         hashtag_tokens = clean_tokenize(df['hashtags'])
         # create frequency distribution
         hashtag_freq_dist = n_most_common(hashtag_tokens)
         # top 50 most common hashtags
         hashtag_freq_dist.most_common(50)
Out[88]: [('#sxsw', 8471),
          ('#apple', 363),
           ('#google', 289),
           ('#sxswi', 287),
           ('#ipad2', 272),
           ('#ipad', 252),
           ('#iphone', 236),
           ('#android', 121),
           ('#austin', 106),
           ('#circles', 74),
           ('#gsdm', 62),
           ('#tech', 54),
           ('#tapworthy', 52),
           ('#ubersocial', 51),
           ('#infektd', 48),
           ('#japan', 46),
           ('#fb', 46),
           ('#qagb', 45),
```

('#winning', 42),

```
In [89]: # Normalized Distribution Function
norm_dist(hashtag_freq_dist)
```

```
Word
          Normalized Frequency
                 0.5815
#sxsw
#apple
                0.02492
#google
                0.01984
#sxswi
                 0.0197
#ipad2
                0.01867
#ipad
                 0.0173
#iphone
                 0.0162
#android
                0.008306
#austin
                0.007277
#circles
                0.00508
#gsdm
                0.004256
#tech
                0.003707
#tapworthy
                0.00357
#ubersocial
                 0.003501
#infektd
                0.003295
#japan
                0.003158
#fb
                0.003158
#qagb
                0.003089
```

Saving DataFrame to CSV

Saving the final dataframe so I can use it for modeling.

```
In [90]: # save dataframe to csv
df.to_csv('./data/tweets_clean.csv')
```