Dados do Plano de Trabalho							
	Adaptabilidade comparativa das espécies de <i>Macrophomina</i> causadoras da podridão cinzenta do feijão-caupi na região do Cariri Cearense						
Modalidade de bolsa solicitada:	PIBIC						
•	Macrophomina em cultivos de feijão-caupi no Cariri Cearense: adaptabilidade comparativa e manejo pela adubação verde						

1. OBJETIVOS

1.1. Objetivo Geral

- Comparar a adaptabilidade biológica e patogênica das espécies de *Macrophomina* causadoras da podridão cinzenta do feijão-caupi na região do Cariri Cearense.

1.2. Objetivos Específicos

- Comparar a adaptabilidade biológica e patogênica das espécies de Macrophomina causadoras da podridão cinzenta do feijão-caupi na região do Cariri Cearense sob diferentes condições de temperatura, pH, salinidade, potencial hídrico, fungicida e planta hospedeira;
- Redigir artigo científico abordando as informações geradas pelo estudo;
- Divulgar os resultados em evento científico nacional.

2. METODOLOGIA

Os experimentos propostos nesse plano de trabalho serão desenvolvidos no Laboratório de Fitopatologia do Centro de Ciências Agrárias — CCAB, Campus Crato, da Universidade Federal do Cariri - UFCA. Serão utilizados 10 (dez) isolados de cada uma das três espécies de *Macrophomina* causadoras da podridão cinzenta do feijão-caupi na região do Cariri Cearense, previamente identificados por iniciadores específicos (artigo em fase de redação). A adaptabilidade das espécies será comparada sob diferentes condições de temperatura, pH, salinidade, potencial hídrico, fungicida e planta hospedeira. Em todo os experimentos o delineamento experimental será inteiramente casualizado, em arranjo fatorial, com três repetições (placas) e o diâmetro das colônias será mensurado aos dois dias de incubação em duas direções e obtida a média (mm).

2.1. Efeito da temperatura

Discos de micélio (5 mm de diâmetro) serão retirados da margem da colônia de cada isolado com sete dias de crescimento em BDA e transferidos para o centro de placas de Petri contendo BDA. Três placas de cada isolado serão colocadas em incubadoras com temperaturas controladas a 10, 15, 20, 25, 30, 35 e 40 °C no escuro.

2.2. Efeito pH

Os discos de micélio serão transferidos para placas contendo BDA ajustado para pH 4, 5, 6, 7, 8 e 9 pelo uso de soluções 1M de NaOH e HCl. As placas serão incubadas no escuro a 25°C.

2.3. Efeito da salinidade

Os discos de micélio serão transferidos para placas contendo BDA suplementado com 1, 2, 4, 5, 6, 7 e 8% (peso/volume) de NaCl. As placas serão incubadas no escuro a 25°C.

2.4. Efeito do potencial hídrico (Ψs)

Os discos de micélio serão transferidos para placas contendo BDA suplementado com KCl para obter os valores de potencial hídrico (Ψs) de -1.0, -2.0,-3.0, -4.0 e -5.0 Mpa, conforme Michel e Radcliffe (1995). As placas serão incubadas no escuro a 25°C.

2.5. Efeito de fungicidas

Os discos de micélio serão transferidos para placas contendo BDA suplementado com os fungicidas fungicidas azoxistrobina, carbendazin, fluazinan, fludioxonil, pentacloronitrobenzeno, piraclostrobina e tebuconazole, na concentração de 5 µg i.a./mL. Placas contendo BDA sem fungicida serão utilizadas como testemunhas. Os fungicidas serão avaliados separadamente. As placas serão incubadas no escuro a 25°C. A porcentagem de inibição do crescimento micelial (ICM) será calculada em relação ao diâmetro da colônia da testemunha (sem fungicida).

2.6. Efeito da planta hospedeira

Amostras de substrato serão infestadas com os isolados de *Macrophomina* e posteriormente plantadas com algodão, feijão-caupi, mamona, melão e sorgo, sendo duas cultivares de cada espécie vegetal. O inóculo de *Macrophomina* será preparado em frascos Erlenmeyer contendo 100 g de arroz sem casca e 75 mL de água destilada. Após a esterilização em autoclave e resfriamento, em cada frasco serão colocados cinco discos de 5 mm de diâmetro de cultura de *Macrophomina*, previamente cultivada em meio BDA. Os frascos serão incubados a 25 °C e fotoperíodo de 12 horas, sendo agitados diariamente para distribuição uniforme dos propágulos do fungo no substrato. Após 15 dias, o substrato colonizado será retirado dos frascos e acondicionado em sacos de papel para secagem a 35°C por 48 horas.

Em cada vaso plástico (2,5 kg de capacidade) contendo substrato (85% de solo e 15% de esterco bovino curtido) serão perfuradas cinco covas e em cada cova serão depositados três grãos de arroz colonizados com *Macrophomina*. As testemunhas consistirão na deposição em cada cova de plantio de três grãos de arroz autoclavados e sem a colonização pelo fungo. Imediatamente após a infestação, em cada cova será plantada uma semente. As plantas hospedeiras serão avaliadas separadamente. Os vasos serão mantidos em casa de vegetação e a avaliação será realizada aos 20 dias após a semeadura, pela estimativa da severidade da doença com o auxílio de uma escala de notas de 0 a 5 (LIMA, 2015). Com os dados será calculado o índice de severidade da doença (ID) por vaso, pela expressão: ID = $(\Sigma f(v)/N*X)*100$, onde f = número de plantas com um determinado nível da escala de notas, v = nível da escala observado, v = número total de plantas avaliadas e v = nível máximo da escala (MCKINNEY, 1923).

2.7. Análises estatísticas

Nos experimentos de temperatura, pH, salinidade e potencial hídrico os dados serão submetidos às análises de regressão linear e não-linear. Os níveis ótimos das variáveis que propiciaram os maiores crescimentos miceliais e os crescimentos miceliais máximos serão estimados usando os modelos de regressão e os sumários numéricos

com o auxílio do programa TableCurveTM 2D 5.01 (Systat Software Inc., Chicago, EUA). A escolha dos modelos será determinada pelo coeficiente de determinação (R²), distribuição dos resíduos e quadrado médio dos erros. As significâncias das regressões serão verificadas pelo teste F (P<0,05) e de seus parâmetros pelo teste t (P<0,05). Os valores das variáveis estimadas pelos modelos de regressão, bem como das variáveis dos experimentos de fungicidas e agressividade em plantas hospedeiras serão submetidos à análise de variância (ANOVA) e as médias comparadas pelo teste da diferença mínima significativa (LSD) de Fisher (P=0,05). As ANOVAs e as comparações de médias serão realizadas com auxílio do programa Statistix 9.0 (Analytical Software, Tallahassee, EUA)

3. CRONOGRAMA DE ATIVIDADES

As atividades a serem realizadas pelo estudante são:

- AT1. Análise da adaptabilidade das espécies em diferentes temperaturas.
- AT2. Análise da adaptabilidade das espécies em diferentes níveis de pH.
- AT3. Análise da adaptabilidade das espécies em diferentes níveis de salinidade.
- AT4. Análise da adaptabilidade das espécies em diferentes potenciais hídricos.
- AT5. Análise da adaptabilidade das espécies em diferentes fungicidas.
- AT6. Análise da adaptabilidade das espécies em diferentes plantas hospedeiras.
- AT7. Redação de artigo científico.
- AT8. Difusão das informações geradas.

N°	2018						2019						
	08	09	10	11	12	01	02	03	04	05	06	07	
AT1	X	X											
AT2		X	X										
AT3			X	X									
AT4				X	X								
AT5					X	X	X	X					
AT6								X	X	X	X	X	
AT7												X	
AT8												X	