STATECHARTS: A Visual Formalism for Complex Systems

Alessandra Nardi Fan Mo EE249 Discussion Section September 14, 1999

STATECHARTS - 1

- Visual formalism for the specification of reactive systems
 - not a support, but the way itself

- Extension of State Transition Diagram of Finite State Machines
 - State/Event Description

STATECHARTS - 2

■ Flat FSM - too complex

- Mechanisms to enhance the descriptive power:
 - Hierarchy
 - Orthogonality

- Boxes denotates states
- Encapsulation express hierarchy
 - different state levels
- Arrows can originate and terminate at any level
- Arrows labeled with events
 - optionally: parenthesized conditions

- XOR Decomposition
- Way to economize arrows

■ Default states

- Entering a group of states History
 - State most recently visited

- Entering a group of states History
 - Only at one level

- Entering a group of states History*
 - through the hierarchy

■ Entering a group of states - Condition

■ Entering a group of states - Selection

HIERARCHY - Summary

- XOR Decomposition
- Default states
- Entering a group of states
 - History
 - History*
 - Condition
 - Selection

ORTHOGONALITY - 1

- Boxes splitted by a dashed line express orthogonality
- Independency and/or Concurrency

ORTHOGONALITY - 2

- AND Decomposition
- Way to economize states

MORE FEATURES....

■ Time Constraints

Unclustering

■ Actions and Activities

TIME CONSTRAINTS

- Delays
 - timeout(event, number)
- **■** Time Bounds

UNCLUSTERING

Laying out parts outside the natural neighborhood

ACTIONS AND ACTIVITIES

- Connection with the "real world"
 - ACTIONS (zero time)
 - ACTIVITIES (non-zero time)
- Actions to control activity X
 - start(X)
 - -stop(X)

ACTIONS AND ACTIVITIES

■ Extension of State Transition Diagram

SUMMARY

- Extended State Transition Diagram
 - Hierarchy
 - Orthogonality
- Default states
 - enter by (history, condition, selection)
- Time constraints
- Actions and Activities

WATCH

WATCH INTERFACE

- OUTPUT
- □ Main Display Area, 4 Smaller Display Areas
- □ Two-Tone Beeper
- **INPUT**
- □ 4 Control Buttons: a, b, c, and d
- □ Battery

WATCH FUNCTION

- Display Time (am/pm or 24 hour)
 or Display Date (day, month, date of week)
- Two Independent Alarms
- A Stopwatch (lap and regular modes, and a 1/100 s display)
- A Light for Illumination
- A Weak Battery Blinking Indication
- Beeper Test

WATCH USER'S GUIDE

Button	Current State	Function
a	Normal	Select displays
		(time/date, alarm setting, chime setting, stopwatch)
b	Normal	Press with button d enter Beep-test
	Update or Setting	Exit current update or setting
	Stopwatch	Run/Stop
c	Update or Setting	Select Update Content
d	Time	Time/Date switch
	Alarm Setting	Turn on/off
	Chime Setting	Turn on/off
	Normal	Press with button b to enter Beep-test
	Stopwatch Run	Regular/Lap display
	Stopwatch Stop	Clear stopwatch to zero
	Update or Setting	Resume

STATECHART: watch

STATECHART: main//alarm1-status//alarm2-status// chime-status//light//power

STATECHART: displays

We are here

water

wa

STATECHART: beep-test

STATECHART: update

STATECHART: alarm1, update1

We are here

was to be a second of the seco

STATECHART: chime

STATECHART: stopwatch

STATECHART: alarms-beep

T1: time setting of alarm1 T2: time setting of alarm2

P1: alarm1_enabled ^ (alarm2_disabled V T1!=T2)
P2: alarm2_enabled ^ (alarm1_disabled V T1!=T2)
P: alarm1_enabled ^ alarm2_enabled ^ T1=T2

We are here

STATECHART: alarm1-status

STATECHART: alarm2-status

STATECHART: chime-status

We are here

| Main |

STATECHART: light

We are here → water dead with the state of the state of

STATECHART: power

