General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some
 of the material. However, it is the best reproduction available from the original
 submission.

Produced by the NASA Center for Aerospace Information (CASI)

Dwd. Oper (3) MINEEL BETSETLING VECTORS OF

16915 El Camino Real, Suite 220, Houston, Texas 77058

22 October 1976 HAD-1.4-239

CR 15/007

Subject:

Contract No. NAS-9-14960, Task Order No. D0510, Task Assignments C, D, E, and G, Transmittal of

Design Note No. 1.4-8-015

To:

ďω

63/13

NASA/Lyndon B. Johnson Space Center

Attention: R. T. Savely/FM8

2101 Nasa Road 1 Houston, Texas 77058

Enclosure:

(1) Navigation Input to Level C OFT Navigation Functional Subsystem Software Requirements (Rendezvous Onorbit-2)

Enclosure (1) presents the rendezvous (onorbit-2) navigation software design requirements for the Orbital Flight Test (OFT) phase of the Space Shuttle. This design note has been prepared in the format of a Functional Subsystem Software Requirements (FSSR) document, and contains not only the recently developed rendezvous design, but also the onorbit-l requirements. Thus, the contents of this enclosure represent the most recent OFT navigation requirements for the orbit operations computer load. In addition, due to recent decisions to split documentation of OFT navigation requirements into three separate books (one per each computer load), the enclosed represents the first publication of the orbit operations FSSR book. This design note does not constitute an official track task FSSR input. The first such input is currently scheduled for 17 December 1976 (onorbit-1).

This letter partially fulfills a deliverable requirement of JSC/MDC Task Order D0510, Task Assignments C, D, E, and G.

ORIGINAL PAGE IS OF POOR QUALITY

W. E. Hayes Project Manager Mission Planning, Mission Analysis and Software Formulation

DAL:pa

EC: See attached sheet

MUDONNELL DOUGLAS COMPORATIONS

NAVIGATION INPUT TO LEVEL FUNCTIONAL SUBSYSTEM IENTS (FENDEZVOUS ONORBIT-2).
S Astronautics) 523 p
CSCL 222

C OFT NAVIGATION FUNC SOFTWARE REQUIREMENTS (McDonnell-Douglas Ast HC A22/MF A01

NASA STI FACILITY INPUT BRANCH

22 October 1976 HAD-1.4-239

Dees

Duncan

紹

M)GL, Howard

グ<u>ん</u> Little

J. U. Z. Lukaszewski

Pocklington

JUS

WWW.ledlake

)ugge

layes

hamberl in

Subject:

Contract No. NAS-9-14960, Task Order No. D0510, Task Assignments C, D, E, and G, Transmittal of Design Note No. 1.4-8-015

To:

NASA/Lyndon B. Johnson Space Center

Attention: R. T. Savely/FM8

2101 Masa Road 1 Houston, Texas 77058

Enclosure:

(1) Navigation Input to Level C OFT Havigation Functional Subsystem Software Requirements (Rendezvous Onorbit-2)

- 1. Enclosure (1) presents the rendezvous (onorbit-2) navigation software design requirements for the Orbital Flight Test (OFT) phase of the Space Shuttle. This design note has been prepared in the format of a Functional Subsystem Software Requirements (FSSR) document, and contains not only the recently developed rendezvous design, but also the onorbit-1 requirements. Thus, the contents of this enclosure represent the most recent OFT navigation requirements for the orbit operations computer load. In addition, due to recent decisions to split documentation of OFT navigation requirements into three separate books (one per each computer load), the enclosed represents the first publication of the orbit operations FSSR book. This design note does not constitute an official track task FSSR input. The first such input is currently scheduled for 17 December 1976 (onorbit-1).
- This letter partially fulfills a deliverable requirement of JSC/MDC Task Order DO510, Task Assignments C, D, E, and G.

W. E. Hayes Project Manager Mission Planning, Mission Analysis and Software Formulation ORIGINAL PAGE IS
OF POOR QUALITY

DAL:pa

EC: See attached sheet

MCDONNELL DOUGLAS TECHNICAL SERVICES CO. HOUSTON ASTRONAUTICS DIVISION

SPACE SHUTTLE ENGINEERING AND OPERATIONS SUPPORT

DESIGN NOTE NO. 1.4-8-015

NAVIGATION INPUT TO LEVEL C OFT NAVIGATION FUNCTIONAL SUBSYSTEM SOFTWARE REQUIREMENTS (RENDEZVOUS ~ ONORBIT-2)

MISSION PLANNING, MISSION ANALYSIS AND SOFTWARE FORMULATION

22 October 1976

This Design Note is Submitted to NASA Under Task Order No. D0510, Task Assignments C, D, E, and G, in Fulfillment of Contract NAS 9-14960.

PREPARED BY:

ask Manager C

Engineer

Task Manager G

Howard

Senior Engineer

Engineer

Task Manager E

R.C. Pocklington

Task Manager D

Senior Engineer

APPROVED BY:

Integration Manager Orbiter Navigation Software

Technical Manager

Mathematical Physics

Project Manager Mission Planning,

Mission Analysis, Software Formulation

Section			angari Julia walang					<u>Page</u>
1.0	INTR	ODUCTIO	N			••	• •	. 1-1
2.0	APPL	APPLICABLE DOCUMENTS			. (TBD)			
3.0	OVER	VIEW .	• • • •		• • • • • • • • •	• • •	• •	. (TBD)
4.0	DETA	ILED RE	QUIREMENT	s		• •		4.0-1
	4.1 Navigation and User Parameter Sequencer Principal Functions							4,1-1
		4.1.1	Onorbit/ Sequence	Rendezyous I	Navigation 			4,1,1-1
		4.1.2	Onorbit/ Processi	Rendezyous I ng Sequence	User Parameter		• •	. 4.1.2-1
	4.2	Functi	ons		eral Navigation	1.0		
		4.2.1	State Pr	opagation.		•		. 4.2.1-1
			4.2.1.1	IMU Data Sı	nap	• •	• •	. 4.2.1-2
			4.2.1.2	Acceleration	on Models	•	•	4.2.1-3
				4.2.1.2.1	Gravity	•	•	. 4.2.1-11
				4.2.1.2.2	Drag		• •	. 4.2.1-16
				4.2.1.2.3	Venting and Uncoupled RCS Thrusting			. 4.2.1-23
			4.2.1.3	Integration of Motion	n of State Equations	•		. 4.2.1-28
				4.2.1.3.1	Super-g	•	•	. 4.2.1-30
				4.2.1.3.2	Precision	•	•	. 4.2.1-32
		4.2.2	Covariar	ice Matrix P	ropagation			. 4.2.2-1
		4.2.3	State Ve	ctor Interp	olation		•	. 4.2.3-1
		4.2.4			e Measurement an Filter)			. 4.2.4-1

Section				<u>Page</u>
	4.2.5	Ground U	pdates (auto in-flight)	. 4.2.5-1
	4.2.6	Angle Me	asurement Partials	. 4.2.6-1
	4.2.7	Conic So	lution (F and G Series)	. 4.2.7-1
	4.2.8	Position	Velocity Submatrix of Transition Matrix	. 4.2.8-1
	4.2.9	Covarian	ce Initialization	. 4.2.9-1
4.3	Naviga	tion Proc	essing Principal Functions	. 4.3-1
	4.3.1	Onorbit	Navigation	. 4.3.1-1
		4.3.1.1	Onorbit Control	. 4.3.1-7
		4.3.1.2	State and Covariance Setup	.4.3.1-11
		4.3.1.3	State Propagation	.4.3.1-25
		4.3.1.4	Covariance Matrix Propagation	.4.3.1-35
	4.3.2	Rendezvo	ous Navigation	. 4.3.2-1
			Rendezvous Control	
			External Sensor Data Snap	
			Sensor Measurement Selection	
			State and Covariance Setup	
			4.3.2.4.1 Measurement Reconfiguration.	
			4.3.2.4.2 Auto In-Flight Update	
		4.3.2.5	State Propagation	
		4.3.2.6	Covariance Matrix Propagation	.4.3.2-68
			State and Covariance Measurement Incorporation	
			4.3.2.7.1 Rendezvous Radar Range	
			4.3.2.7.2 Rendezvous Radar Range -	4.3.2-94

Section				<u>Page</u>
		4.3.2.7.3	Rendezvous Radar Shaft Angle	. 4.3.2-101
		4.3.2.7.4	Rendezvous Radar Trunion Angle	. 4.3.2-108
		4.3.2.7.5	Star Tracker Horizontal Angle	. 4.3.2-116
		4.3.2.7.6	Star Tracker Vertical Angle	4.3.2-124
		4.3.2.7.7	COAS Horizontal Angle	4:3.2-131
		4.3.2.7.8	COAS Vertical Angle	4.3.2-139
	4.3.2.8	Measuremer	nt Processing Statistics	4.3.2-147
4.4	Subfunctions Co Related Princi Transformation	oal Function	veral Navigation- ns (Coordinate	(TBD)
			n Aries Mean of	. (TBD)
	4.4.2 Earth-F	ixed to M50		. (TBD)
	4.4.3 Geodeti	c to Earth-I	Fixed	(TBD)
	4.4.4 Earth-F	ixed to Topo	odetic	. (TBD)
	4.4.5 Earth-F	ixed to Run	way	. (TBD)
	4.4. 6 Earth-F	ixed to Sca	nner	(TBD)
	4.4.7 Body to	M50		(TBD)
	4.4.8 Earth-F	ixed to Geo	detic	. (TBD)
	4.4.9 UVW to	M50		. (TBD
4.:	5 General Requir	ement Princ	ipal Functions	4.5-
	4.5.1 Site Lo	okup		. (TBD
	4.5.2 Onorbit	Precision	State Prediction	4.5.2-

Section			Page
		4.5.3 Star Tracker SOP Ephemerides	(TBD)
		4.5.3.1 Solar Ephemeris	(TBD)
		4.5.3.2 Lunar Ephemeris	(TBD)
	4.6	User Parameter Processing Principal Functions (Onorbit)	4.6-1
		4.6.1 User Parameter State Propagation	4.6.1-1
		4.6.2 Onorbit User Parameter Calculations	4.6.2-1
	4.7	Specialist Functions Navigation Support Formulations	(TBD)
	4.8	I-Load Requirements	(TBD)
	4.9	Down List Requirements	(TBD)
APPENDIC	ES A.	NAVIGATION VARIABLE NAMES AND DESCRIPTIONS	A-i
	В.	NAVIGATION SEQUENCER PRINCIPAL FUNCTION AND NAVIGATION PROCESSING PRINCIPAL FUNCTIONS FLOW CHARTS.	- B-i
	C.	GENERAL REQUIREMENT PRINCIPAL FUNCTION AND COORDINATE TRANSFORMATIONS FLOW CHARTS, VARIABLE NAMES, AND DESCRIPTIONS	C-i
	D.	USER PARAMETER FLOW CHARTS, VARIABLE NAMES, AND DESCRIPTIONS	D-i
	E.	SPECIALIST FUNCTION NAVIGATION SUPPORT FLOW CHARTS,	(TBD)

1.0 INTRODUCTION

This document provides Level C detailed navigation requirements for review prior to the 8 November 1976 onorbit-1 and onorbit-2 mode team meetings and the subsequent onorbit operations computer load (i.e. the navigation software for the entire operational sequence 2, and operational sequence 8). The original intention was to issue only rendezvous - unique requirements, but, in the process of generating the rendezvous design, a substantial re-design was necessary for the onorbit-1 software. This, coupled with the recent decision to separate all navigation Level C requirements into three separate books per memory load resulted in the decision to document the entire orbit operations computer load, rather than just rendezvous - unique requirements.

The rendezvous (onorbit-2) requirements are based on revision to MDTSCO Transmittal Memo 1.4-MPB-323, First Data Dump - Rendezvous (onorbit-2) Navigation Software, dated 30 July 1976, suggested at two TELECON review sessions held on 20 and 26 August. The onorbit-1 (non-rendezvous) requirements are based on the July 1976 FSSR, modified by the 25 June 1976 FSSR input change page document, further modified by changes which came about during the rendezvous software design process, and finally modified by the ascent/

onorbit mode team meeting (August 2 through 6, 1976) decisions. All changes and FSSR section status are identified in the PHASE 4 A Status Log included in this section.

The following assumptions were used in the development of the Level C onorbit-2 (and revised onorbit-1) requirements, and thus represents the combined developmental phases 4 and 4A:

- No onboard external data are processed during the non-rendezvous portion of operational sequence 2. Oneway Doppler/TDRSS measurement incorporation is not currently planned for the OFT program.
- 2. The following external data will be processed during the rendezvous coast and TPF stationkeeping navigation phases (no external data will be processed during the rendezvous powered flight navigation phases):
 - a. Rendezvous radar shaft angle, trunion angle, range,
 and range rate,
 - b. Star tracker horizontal and vertical angles, and
 - c. COAS (Crew Optical Alignment Sight) horizontal and vertical angles.
- A nine-dimensional state vector is maintained during nonrendezvous portions of operational sequence 2 (three, position; three, velocity; and three, unmodeled acceleration biases).

- 4. The state vector maintained during rendezvous coast, rendezvous powered flight, and TPF stationkeeping navigation phases is composed of 19 elements/
 - 1-3 Orbiter position (Aries mean of 1950)
 - 4-6 Orbiter velocity (Aries mean of 1950)
 - 7-9 Orbiter unmodelled acceleration biases (body coordinate system)
 - 10-12 Target position (Aries mean of 1950)
 - 13-15 Target velocity (Aries mean of 1950)
 - 16-19 Rendezvous tracker biases (sensor coordinate systems)
- 5. Prestored tables of nominal vehicle attitude, nominal vent magnitude and body-relative thrust directions, nominal RCS uncoupled thrust magnitudes and body-relative directions, and vehicle/payload area configuration are required for acceleration models.
- 6. The IMU SOP provides an estimate of the total accumulated IMU velocity at the time of a data snap, in the presence of commfaults.
- 7. All operational sequence 2 (and 8) floating point variables are assumed to be in double precision.
- TPF stationkeeping phase includes braking and LOS control phases.
- 9. External measurement data are selected and processed mutually exclusive on an instrument basis, with the exception of rendezvous radar range and range-rate which

may be processed with COAS, star tracker, or rendezvous radar angles. The DIP (display interface processor) will insure this by activiting the navigation sensor selection "ENABLE" flag for only the most recently crew-selected instrument.

- 10. All rendezvous tracker bias variances are propagated as exponentially correlated random variables.
- 11. A 19x19 covariance matrix of Aries mean of 1950 position and velocity (orbiter and target), of body-fixed acceleration bias errors, and of at most four rendezvous tracker (instrument) biases, is propagated during rendezvous coast, rendezvous powered flight, and TPF stationkeeping navigation phases. A 9x9 covariance matrix of Aries mean of 1950 position and velocity (orbiter, only), and of three body-fixed acceleration bias errors, is propagated during onorbit coast and onorbit powered flight navigation phases.
- 12. Use of sensed velocity in the navigation state propagator is triggered by entrance into the onorbit or rendezvous powered flight navigation phases (ignition time minus TBD seconds, event-68) and a prestored sensed acceleration threshold. Use of sensed velocity during TPS/stationkeeping is triggered by entrance into that major mode (MM 213) and by a prestored sensed acceleration threshold.
- 13. External measurement data processing shall be inhibited

during rendezvous powered flight navigation phases. Inhibiting shall commence at ignition time minus TBD seconds. This event is independent of the event (#68) to begin the rendezvous navigation phase, itself.

- 14. Backward and forward integration capability is provided for state prediction and propagation.
- 15. Prestored nominal attitude time lines are used for prediction, and current AAM attitude is used for propagation.
- 16. The precision state prediction function has accuracy comparable to that of the precision state propagation function, and has the option of being executed in a faster (but less accurate) conic mode.
- 17. Acceleration models include attitude-dependent drag and venting, Earth gravity, and uncoupled (RCS) thrusting effects.
- 18. A one-state vector configuration applies during all navigation phases in operational sequence 2 (and 8).
- 19. The acceleration due to lift force is assumed to be negligible in the atmospheric drag acceleration model.
- 20. An automatic inflight update capability will be provided by which the ground can uplink either an orbiter or a target state vector (M1950) and associated time tag, during any navigation phase (rendezvous or non-rendezvous). The following additional assumptions apply to this capability:
 - a. The ground shall uplink one vehicle state (3 position,

- 3 velocity, associated time tag, and vehicle ID)
 at a time
- b. The onboard software receiving this data (ground uplink processor) will set the DO_AUTO_UPDATE flag to "ON", test the vehicle ID to determine if the uplinked data pertains to orbiter or target, and set up one of the following two variable sets, depending on the results of this test

$$\left\{ \begin{array}{l} \underline{R} \cdot \underline{GND} \\ \underline{V} \cdot \underline{GND} \\ \\ \underline{T} \cdot \underline{GND} \\ \\ \underline{OV} \cdot \underline{UPLINK} = \underline{ON} \end{array} \right\} \begin{array}{l} \underline{OR} \quad \left\{ \begin{array}{l} \underline{R} \cdot \underline{TV} \cdot \underline{GND} \\ \underline{V} \cdot \underline{TV} \cdot \underline{GND} \\ \\ \underline{T} \cdot \underline{TV} \cdot \underline{GND} \\ \\ \underline{TV} \cdot \underline{UPLINK} = \underline{ON} \end{array} \right\} \begin{array}{l} \underline{Target} \\ \underline{Uplink} \end{array}$$

- c. The navigation software has the capability of reinitializing the orbiter and/or target state vectors (and associated covariance matrix) in a single navigation cycle.
- d. If a target vector is uplinked during a non-rendezvous navigation phase, it is stored for eventual use in a rendezvous phase.
- e. Whenever an orbiter or target state vector is reinitialized because of a ground update, all correlations between orbiter and target vehicle position and
 velocity errors are zeroed. The respective vehicle
 (6x6) position/velocity submatrices are re-initialized
 using prestored UVW values (or uplinked) UVW values. All

in-plane correlation terms, and a single out-of-plane correlation term is included in this re-initialization.

- 21. Propagation of orbiter position and velocity vectors will be performed by use of the precision integration scheme (during onorbit and rendezvous coasting flight navigation phases), and by use of the super-G integration scheme during onorbit and rendezvous powered flight navigation phases and during the TPF station-keeping navigation phase. Propagation of the target position and velocity vectors will be performed by use of the precision integration scheme in all rendezvous-related navigation phases (coasting, powered, and TPF stationkeeping).
- 22. Upon entry into a rendezvous-related navigation phase from a non-rendezvous-related navigation phase, or, from outside of OPS-2, the target state vector will be initialized according to one of the following four options:
 - a. Set to ground uplinked value (predicted to current time),
 - b. Set to last onboard estimate from previous rendezvousphase (predicted to current time),
 - c. Set to equal to current orbiter state, or
 - d. Set to pre-mission stored values (predicted to current time).

Option c., above, is included to handle the current OFT rendezvous sequence, in which target and orbiter actually begin in a near stationkeeping configuration, separate, then rendezvous.

- 23. If the sensor (including IMU) SOP's are not in the same GPC as the navigation filter software:
 - a. Data and time tag must be preserved as a pair,
 - iCC (inter computer communication) transmission
 of data must be pairwise, and
 - c. ICC transmission rate must be fast enough such that the data time tag and "current time: (in NAV GPC) differ by no more than TBD seconds.

If the sensor SOP's and navigation filter reside in the same GPC:

- a. Data must be time tagged, and
- b. Data must be no more than TBD seconds.

The next FSSR input to the onorbit-1 (non-rendezvous, phase

4) requirements will be on 17 December 1976.

RENDEZVOUS SOFTWARE CHANGE LOG (22 October 1976)

SECTION	NO. SECTION TITLE	DESCRIPTION OF CHANGE
1.0	INTRODUCTION	Revise list of assumptions to include recent rendezvous design, 25 June 1976 onorbit-1 F\$SR input change-page document changes, and requirements for OPS-8 and checkpoint resulting from the recent ascent/onorbit mode team meeting; add page change notice
2.0	APPLICABLE DOCUMENTS	(to be provided)
3.0	OVERVIEW	(to be provided)
4.0	DETAILED REQUIREMENTS	Minor word changes to reflect addition of PHASE 4A require-ments (rendezvous)
4.1	Navigation and User Para meter Sequencer Principa Functions	
4.1.1	Onorbit/Rendezvous Nav- igation Sequencer	Modifications to include rend- ezvous requirements; slight logic re-structuring and initial- izing procedure to take advan- tage of software commonality between onorbit and rendezvous functions; incorporate covariance re-initialization module, for use by both onorbit & rendezvous software for sequencer initial- ization and ground updates; add logic to operate during OPS-8; and initialization into OPS-2 from a CHECKPOINT: section re- numbered
4,1.2	Onorbit/Rendezvous User Parameter Processing Sequencer	Section renumbered; update to provide scheduling requirements for onorbit user parameter calculations and to reflect changes in scheduling require-

SECTION NO.	SECTION TITLE	DESCRIPTION OF CHANGE
		ments for onorbit user parameter state propagation
4.2	Subfunctions Common to Several Navigation Prin- cipal Functions	Change title of section to: "Subfunctions Common to Several Navigation Functions". Change wording to allow requirements to be written in this section which are 1. common to two or more nav- agation principal functions, or 2. common to two or more navigation subfunctions (either within the same principal function, or from different principal functions)
4.2.1	State Propagation	Minor word changes reflections outline change to single onorbit-operations computer load FSSR
4.2.1.1	IMU Data Snap	Minor word changes reflecting out- line change to a single orbit op- erations computer load FSSR (single- string snap only)
4.2.1.2	Acceleration Models	Minor word changes reflecting out- line change to a single orbit operations computer load FSSR
4.2.1.2.1 4.2.1.2.2 4.2.1.2.3	Gravity Drag Venting and Uncoupled RCS Thrusting	These are new sections added to the "common subfunction" section, since they are common to both onorbit navigation and rendezvous navigation principal functions previously documented directly under onorbit navigation state propagation; also fix error in attitude model
4.2.1.3	Integration of State Equations of Motion	Minor word changes reflecting out- line change to a single orbit operations load FSSR
4.2.1.3.1	Super-g	Section added as per outline change, and to be common element . for onorbit and rendezvous navigation state propagation.

SECTION NO.	SECTION TITLE	DESCRIPTION OF CHANGE
4.2.1.3.2	Precision	Correct errors, bring requirements up to date based on 25 June 1976 onorbit-1 FSSR, and recent rendezvous design
4.2.2	Covariance Matrix Propagation	New section describing revised mean-conic-partial techique for propagating covariance matrix for both onorbit-1 and rendezvous
4.2.3	State Vector Inter- polation	New section describing rendezvous measurement requirements for state vector interpolation.
4.2.4	State and Covariance Measurement Incorporation (Kalman Filter)	New section describing revised Kalman filter equations for use during rendezvous navigation
4.2.5	Ground Updates (auto in- flight)	New section describing revised auto inflight update requirements for both orbiter and/or target vector uplinks
4.2.6	Angle Measurement Partials	New section describing common requirements to several rendezvous navigation subfunctions dealing with Kalman filter angle measure- ment observation partials
4.2.7	Conic Solution (F and G Series)	New section, documenting common requirements for conic (orbital 2-body problem) solutions used in precision state propagation/prediction (Pines Method), mean-conic partials technique (currently proposed for transition matrix generation associated with onorbit & rendezvous covariance matrix propagation, and rendezvous state vector interpolation
4.2.8	Position-Velocity Sub- matrix of State Transi- tion Matrix	New section, documenting onorbit/ rendezvous requirements for comput- ing transition matrix, for use in covariance matrix propagation (note: this technique is proposed to replace old onorbit-1 technique), and invol- ves use of "mean conic partials"

7	SECTION NO.	SECTION TITLE	DESCRIPTION OF CHANGE
	4.2.9	Covariance Initialization	New section describing requirements for initializing a 6X6 covariance matrix from prestored UVW standard deviations and correlation coefficients used for both ground updates and sequencer initializations
	4.3	Navigation Processing Principal Functions	Minor word changes reflecting out- line change to a single orbit operations load FSSR
	4.3.1	Onorbit Navigation	Minor word changes to describe capability to update target state vector during onorbit navigation add principal function I/O table
	4.3.1.1	Onorbit Control	No changes required except for section number; included for document completeness
	4.3.1.2	State and Covariance Setup	Make consistent with latest onorbit/ rendezvous design (i.e, allow uplink of <u>either</u> orbiter or target state)
	4.3.1.3	State Propagation	Make consistent with latest onorbit/ rendezvous design; refer to "com- mon subfunction sections" for detailed requirements of tasks: . IMU data snap . acceleration models . integration of equations of motion . propagation of biases
	4.3.1.4	Covariance Matrix Propagation	Changes to make consistent with re- cent rendezvous design
	4.3.2	Rendezvous Navigation	New section describing overall subfunctions under the rendezvous navigation principal function
	4.3.2.1	Rendezvous Control	New section identifying navigation executive logic during rendezvous & TPF stationkeeping phases
	4.3.2.2	External Sensor Data Snap	New section describing data snap requirements during rendezvous navigation P.F. operation (rend- ezvous radar, star tracker, and COAS)

₩		
SECTION NO	O. SECTION TITLE	DESCRIPTION OF CHANGE
4.3.2.3	Sensor Measurement Selection	New section describing sensor selection of angles data (star tracker, COAS, & rendezvous radar) independent of radar range & range rate
4.3.2.4	State and Covariance Setup	New section header describing re- configuration of state and covariance because of measurement reconfigura- tion or ground update for rendezvous
4.3.2.4.1	Measurement Reconfig- uration	New section describing requirements for state and covariance reinitialization as a result of a new sensor measurement configuration
4.3.2.4.2	Auto In-Flight.Update	New section describing requirements for state and covariance reinitial-ization as a result of either orbiter and/or target ground update during rendezvous
4.3.2.5	State Propagation	New section describing requirements for orbiter & target state vector propagation during powered and coasting flight arcs of rendezvous
4.3.2.6	Covariance Matrix Propagation	New section describing requirements for powered and coasting flight covariance matrix propagation during rendezvous navigation phases
4.3.2.7	State and Covariance Measurement Incorporation	New section header describing requirements for state and covariance filter updates during rendezvous
4.3.2.7.	Rendezvous Radar Range	New section requirements for cal- culation of Kalman filter partial vector & residual for rendezvous radar range measurement
4.3.2.7.	2 Rendezvous Radar Range- Rate	New section requirements for cal- culations of Kalman filter partial vector & residual for rendezvous radar range-rate measurement

SECTION NO.	SECTION TITLE	DESCRIPTION OF CHANGE
4.3.2.7.3	Rendezvous Radar Shaft Angle	New section requirements for cal- culation of Kalman filter partial vector & residual for rendezvous radar shaft angle measurement
4.3.2.7.4	Rendezvous Radar Trunion Angle	New section requirements for cal- culation of Kalman filter partial vector & residual for rendezvous radar trunion angle measurment
4.3.2.7.5	Star Tracker Horizontal Angle	New section requirements for calculation of Kalman filter partial vector & residual for star tracker horizontal angle measurement
4.3.2.7.6	Star Tracker Vertical Angle	New section requirements for cal- culation of Kalman filter partial vector & residual star tracker vertical angle measurement
4.3.2.7.7	CQAS Horizontal Angle	New section requirements for cal- culation of Kalman filter partial vector & residual for COAS horizontal angle measurement
4.3.2.7.8	COAS Vertical Angle	New section requirements for cal- culation of the Kalman filter partial vector & residual for COAS vertical angle measurement
4.3.2.8	Measurement Processing Statistics	New section; modification of entry measurement processing statistics requirements to satisfy unique onorbit display requirements; include "target confirm" logic (previously done in ST SOP).
4.4	Subfunctions Common to Several Navigation - Related*Principal Func- tions (Coordinate Trans- formations)	(this header and all subsections 4.4.1 through 4.4.9 will be pro- vided at a later date)
4.5	General Requirement Prin- cipal Functions	Minor modifications (new FSSR structure)

SECTION NO.	SECTION TITLE	DESCRIPTION OF CHANGE
4.5.1	Site Lookup	(to be provided)
4.5.2	Onorbit Precision State Prediction	Correct errors; and generaliy bring requirements up to date based on 25 June 1976 onorbit-1 FSSR input, and recent acceleration model changes
4.5.3 4.5.3.1 4.5.3.2	Star Tracker SOP Ephemerides Solar Ephemeris Lunar Ephemeris	(to be provided)
4.6	User Parameter Process- ing Principal Function (onorbit)	New section describing subfunctions within the onorbit user parameter processing principal function
4.6.1	User Parameter State Propagation	New section describing requirements for user parameter state propagation as per recent rendezvous design; change integration method from fixed - G to average -G as per recent ascent/onorbit mode team discussion
4.6.2	Onorbit User Parameter Calculations	New section describing CRT display requirements for onorbit and rendezvous
4.7	Specialist Functions Navigation Support Formulations	(to be provided)
4.8	I-Load Requirements	(to be providedwill contain essence of old "CONSTANTS" section)
4.9	Down List Requirements	(to be provided)
Appendix A	Navigation Variable Names & Descriptions	Revise complete variable list for orbit-operations computer load
Appendix B	Navigation Sequencer Principal Functions and Navigation Processing Principal Function Flow Charts	Revise table of contents to contain list of latest onorbit and rendezvous flow charts: include all orbit operations load flow charts

	SECTION NO.	SECTION TITLE	DESCRIPTION OF CHANGE
•	. Appendix C	General Requirement Principal Function Flow Charts	Revise table of contents to contain list of latest operation and rendezvous flow charts; include only flow chars and variable names for predictor software coordinate system flow charts and definitions to be provided later
	Appendix D	User Parameter Flow Charts, Variable Names, and Descriptions	Provide revised table of contents variable list and flow charts for orbit operations load in the area of user parameter processing functions.
	Appendix E	Specialist Function Navigation Support Flow Charts, Variable Names, and Descriptions	(to be provided)

4.0 DETAILED REQUIREMENTS

The various subsections of this section specify the detailed requirements for the Shuttle navigation system flight software package. This document contains OFT detailed requirements for navigation and user parameter processing principal functions for the orbit operations computer load (on-orbit and rendezvous), operational sequence 2. In addition, requirements dealing with navigation software functions during operational sequence 8 and in association with checkpoint storage and retreival are also addressed.

When viewed in the larger context of the total shuttle flight software, the navigation software package documented herein is, itself, a modular system whose function is to supply various parameters required by other major modular systems such as guidance, displays, flight control, and others. The requirements placed upon the navigation system by these various users often play a large role in determining the design structure and cyclic rate structure of the navigation system. The required interfaces between the navigation system and the other major software systems that use navigation system data are presented in the Level B CPDS document which controls all the interfaces between principal functions.

4.1 NAVIGATION AND USER PARAMETER SEQUENCER PRINCIPAL FUNCTIONS

The sequencer principal functions shall initialize and sequence the proper navigation and user parameter principal functions to meet navigation and user requirements. For OFT, there shall be one navigation sequencer principal function and one user parameter sequencer principal function that control navigation and user parameter principal functions during operational sequence 2 (orbit operations computer load).

navigation sequencer: on-orbit/rendezvous navigation sequencer

user parameter sequencer: on-orbit/rendezvous user

parameter processing sequencer

4.1.1 Onorbit/Rendezvous Navigation Sequencer

The onorbit/rendezvous navigation sequencer principal function shall initialize and sequence the onorbit navigation and rendezvous navigation principal functions during operational sequence 2 (ops-2), while the following major modes are active:

MM 201, orbit coast

MM 202, (orbit coast) maneuver exec.

MM 211, rndz. nav.

MM 212, (rndz. nav.) maneuver exec.

MM 213, TPF stationkeeping

The onorbit/rendezvous navigation sequencer principal function shall also initialize and sequence the onorbit navigation principal function during operational sequence 8 (ops-8, orbital operation checkout).

Detailed requirements for each navigation processing principal function are identified in the specific principal function description sections (4.3.1. and 4.3.2). Cues for performing the proper navigation initialization and sequencing during ops-2 and ops-8 are defined in the Level B-GN&C CPDS. The particular events and resulting navigation software actions pertaining to the onorbit/rendezvous navigation sequencer principal function are shown in Table 4.1.1-1. Dynamic parameter input/output data flow between the onorbit/rendezvous

navigation sequencer principal function and other principal functions is shown in Tables 4.1.1-2 and 4.1.1-3.

TABLE 4.1.1-1 - ONORBIT/RENDEZVOUS NAVIGATION SEQUENCER EVENTS

EVENT NUMBER	EVENT NAME	NAVIGATION CRITERIA	NAVIGATION ACTION
ORIGINAL PAGE IS OF POOR QUALITY	transition to MM 201 from MM 107 (ops - 1)	"ops 201 pro"	Call: Ops_2_or_8 INITIALIZE Call: Onorbit_COVINIT_UVW Set: REND_NAV_FLAG = OFF, USE_IMU_DATA=OFF Signal: OPS_2_OR_8_INITIALIZE COMPLETE Set: PWRD_FLT_NAV = OFF Schedule: NAV_ONORBIT; repeat every DT_ONORBIT_NAV
60A	transition to MM 201 from GN&C ops-8	"ops 201 pro"	Call: OPS_2_OR_8_INITIALIZE Call: ONORBIT_COVINIT Set: REND_NAV_FLAG = OFF, USE_IMU_DATA = OFF Signal: OPS_2_OR_8_INITIALIZE COMPLETE Set: PWRD_FLT_NAV-= OFF Schedule: NAV_ONORBIT; repeat every D7_ONORBIT_NAV
60B	transition to GN&C ops-8 from MM 201 TERMINATE OPS-2	(refer to VU, level B CPDS)	Store selected parameters in protected memory locations for use by ops-8-or ops-3 navigation sequencer principal functions.

4.].]-3

EVENT NUMBER	EVENT NAME	NAVIGATION CRITERIA	NAVIGATION ACTION
61	transition to MM 201 from MM301 (ops 3)	"ops 201 pro"	(same as for event #60A)
ORIGINAL PAGE IS OF POOR QUALITY	transition to MM 211 from MM 201	"ops 211 pro"	Cancel: NAV_ONORBIT Call: TARGET_NAV_INIT Bet: USE_IMU_DATA = OFF PWRD_FLT_NAV = OFF USE_MEAS_DATA = ON TARG_VEC_AVAIL = ON Execute: DISPLAY_COUNT_INIT (CODE) Schedule: NAV_RENDEZVOUS; repeat_every DT_REND_NAV
65	transition to MM 201 from MM 211	"ops 201 pro"	Cancel: NAV RENDEZVOUS Set: REND NAV FLAG = OFF T_TV = T_CURRENT_FILT USE IMU DATA = OFF PWRD FLT_NAV = OFF Schedule: NAV_ONORBIT; repeat every DT_ONORBIT_NAV

4:1.1-4

EVENT NUMBER	EVENT NAME	NAVIGATION CRITERIA	NAVIGATION ACTION
66	transition to MM 213- from MM 201	"ops 213 pro"	Cancel: NAV_ONORBIT Call: TARGET NAV INIT Set: PWRD_FLT_NAV = ON
68	initiate powered flight navigation	TB7 y(sec.) (y seconds prior to a burn	<pre>if in rendezvous powered flight navigation phase (i.e., if REND_NAV_FLAG = ON) Cancel: NAV_RENDEZVOUS Set: PWRD_FLT_NAV = ON Schedule: NAV_RENDEZVOUS; repeat every</pre>
			Cancel: NAV_ONORBIT Set: PWRD_FLT_NAV = ON Schedule: NAV_ONORBIT; repeat every DT_ONORBIT_PWRD_FLT

4.1.1-5

EVENT NUMBER	EVENT NAME	NAVIGATION CRITERIA	NAVIGATION ACTION
73	transition to MM 201 from MM 202	"ops 201 pro"	Cancel: NAV_ONORBIT Set: USE_IMU_DATA = OFF PWRD_FLT_NAV = OFF Schedule: NAV_ONORBIT; repeat every DT_ONORBIT_NAV
74	transition to MM 211 from MM 107 (ops-1)	"ops 211 pro"	Call: OPS 2 OR 8 INITIALIZE Call: ONORBIT COVINIT UVW Call: TARGET NAV INIT Set: USE IMU DATA = OFF Signal: OPS 2 OR SINITIALIZE COMPLETE Set: PWRD FLT NAV = OFF TARG VEC AVAIL = ON Execute: DISPLAY COUNT INIT (CODE) Schedule: NAV_RENDEZVOUS; repeat every DT_REND_NAV
73	transition to MM 211 from MM 212	"ops 211 pro"	Cancel: NAV_RENDEZVOUS Set: USE_IMU_DATA = OFF PWRD_FLT_NAV = OFF USE_MEAS_DATA = ON TARG_VEC_AVAIL = ON Execute: DISPLAY_COUNT_INIT (CODE) Schedule: NAV_RENDEZVOUS; repeat every DT_REND_NAV

EVENT NUMBER	EVENT NAME	NAVIGATION CRITERIA	NAVIGATION ACTION
79	transition to MM 213 from MM 212	"ops 213 pro:	Cancel: NAV RENDEZVOUS Set: PWRD_FLT_NAV = ON
80	transition to MM 201 from MM 213	"ops 201 pro"	(same as for event #65)
81	Checkpoint complete (entry into MM 201 from ops-0)	Checkpoint complete and successful	Execute: CHECKPOINT_INIT (CODE) Call: OPS-2-OR 8 INITIALIZE Call: ONORBIT_COVINIT_UVW Set: REND_NAV_FLAG = OFF, USE_IMU_DATA = OFF Signal: OPS_2-OR_8 INITIALIZE COMPLETE Set: PWRD_FLT_NAV = OFF Schedule: NAV_ONORBIT; repeat every DT_CNORBIT_NAV
82	transition to MM 213 from MM 211	"ops 213 pro:	(same as for event #79)

EVENT NUIBER	EVENT NAME	NAVIGATION CRITERIA	NAVIGATION ACTION
El	transition to MM 301 from MM 201 TERMINATE OPS-2	"ops 301 pro"	(same as for event #60B)
(TBD)	begin inhibiting incorporation of external measurement	TB7 (sec.) (x seconds prior to a burn)	Set: USE_MEAS_DATA = OFF test to see whether event #68 has occurred, and take appropriate action (see above table entry) both event #68 and this TBD event may occur simultaneously
50	HE FOLLOWING EVENTS PERTA transition to GN&C ops-8 from MM 106 (ops-1)	IN TO SEQUENCER FUNCTI (refer to VU level B CPDS)	ONS DURING OPS-8 Call: OPS 20R 8INITIALIZE Call: ONORBIT COVINIT UVW Set: USE IMU DATA = OFF Signal: OPS 2 OR 8 INITIALIZE COMPLETE Set: REND NAV FLAG = OFF PWRD FLT NAV = OFF Schedule: NAV ONORBIT; repeat every DT_ONORBIT_NAV
60A	transition to MM 201 from GN&C ops-8 TERMINATE OPS-8	"ops 201 pro"	store selected parameters in protected memory locations for use by ops-2 navigation sequencer initialization functions.

4.1.1-8

....

EVENT NUMBER	EVENT NAME	NAVIGATION CRITERIA	NAVIGATION ACTION
60B	transition to GN&C ops-8 from MM 201 (ops-2)	(refer to VU level B CPDS)	Call: OPS 20R 8 INITIALIZE Call: ONORBIT COVINIT-UVW Set: USE IMU DATA = OFF Signal: OPS 2 OR 8 INITIALIZE COMPLETE Set: REND NAV FLAG = OFF PWRD FLT NAV = OFF
			Schedule: NAV_ONORBIT; repeat every DT_ONORBIT_NAV

4.1.1-9

TABLE 4.1.1-2: ONORBIT/RENDEZVOUS NAVIGATION SEQUENCER PRINCIPAL FUNCTION INPUT LIST

LEVEL B MNEMON	"LEVEL C FSSR VARIABLE NAME	EXTERNAL PRINCIPAL FUNCTION SOURCE	INTERNAL SUBFUNCTION DESTINATION (SUBFUNCTIONS WITHIN THIS PRINCIPAL FUNCTION WHICH UTILIZE THE VARIABLE)	
			SUBFUNCTION * NAME	SUBFUNCTION INPUT TABLE
	R FILT INIT	. Deorbit Lndg NAV Seq.		
	V-FILT_INIT	. ASC NAV Seq . Orb/Rnd NAV Seq(Ops-8)	4.1.1 - 4
	V LAST FILT INIT T-LAST FILT INIT	. IMH RM . Deorbit Lndq NAV Seq . ASC NAV Seq . Orb/Rnd NAV Seq (Ops-8	3)	4.1.1 - 4
	E-INIT	. Deorbit Lndg NAV Seq . Orb/Rnd NAV Seq (Ops-8	3)	4.1.1 - 4
TBD	TARG_VEC_AVAIL R_TV V-TV T_TV	. Onorbit Navigation . REND Navigation		4.1.1-4
	T_CURRENT_FILT	. REND Navigation		4.1.1 - 4
	R CHECK_PT V CHECK PT T CHECK-PT	. CHECKPOINT SPEC F ^C N		4.1.1 - 4

^{*} THIS PRINCIPAL FUNCTION CONTAINS NO SUB-FUNCTIONS

TABLE 4.1.1-3: ONORBIT/RENDEZVOUS NAVIGATION SEQUENCER PRINCIPAL FUNCTION OUTPUT LIST

LEVEL B MNEMON			INTERNAL SUBFUNCTI (SUBFUNCTIONS WITH FUNCTION WHICH UTI	ON DESTINATION IN THIS PRINCIPAL LIZE THE VARIABLE)
			SUBFUNCTION NAME	SUBFUNCTION INPUT TABLE
	OPS 2_Or_8 Initialize Comp.	MSC		4.1.1-5
	R FILT V FILT V LAST FILT T LAST FILT	. Onorbit Navigation . Rendezvous Navigation		4.1.1 - 5
TBD	E REND NAV FLAG PWRD FLT NAV SQR-EMU C MN AN S MN AN C MX AN S MX AN TOT ACC VENT THRUST BIAS			
	USE-MEAS-DATA R TV V TV G TV	. Rendezvous Navigation		4.1.1 - 5

^{*} THIS PRINCIPAL FUNCTION CONTAINS NO SUB-FUNCTIONS

LEVEL B MNEMON	LEVEL C FSSR VARIABLE NAME	EXTERNAL PRINCIPAL FUNCTION SOURCE	(SUBFUNCTIONS WI	TION DESTINATION THIN THIS PRINCIPAL TILIZE THE VARIABLE)
			SUBFUNCTION NAME	SUBFUNCTION INPUT TABLE
	N: ACCEPT N: REJECT SEQ: ACCEPT SEQ: REJECT	. Rendezvous Navigation		4.1.1 - 5
	USE_IMU_DATA	. Onorbit Navigation . Rendezvous Navigation . Onorbit USER PARAM PROC		4.1.1 - 5
TBD	R RESET V_RESET V_IMU_RESET T_RESET FILT_UPDATE R_TV_RESET V_TV_RESET	. Onorbit USER PARAM PROC		4.1.1 - 5
	R FILT INIT V_FILT_INIT V_LAST_FILT_INIT T_LAST_FILT_INIT	. Deorbit Lndg NAV SEQ . Orb/Rnd NAV SEQ (Ops-8	3)	4.1.1 - 5
	E INIT			

^{*} THIS PRINCIPAL FUNCTION CONTAINS NO SUB-FUNCTIONS

- A. <u>Detailed requirements</u>. For OFT orbital operations (ops_2 and ops_8), navigation requirements can be divided into five navigation phases: onorbit coast, onorbit powered flight, rendezvous coast, rendezvous powered flight, and TPF stationkeeping.
- 1. Onorbit coast navigation phase This phase shall use the onorbit navigation principal function and shall be active during operation of major mode 201, and during operation of the orbital checkout operational sequence (ops-8). The onorbit coast navigation phase shall begin in one of the following ways:
 - Entry into MM 201 from ops-3 or ops-8 (events 61 or 60A, respectively,
 - Entry into MM 201 from ops-1 or ops-0, via checkpoint (events 60 or 81, respectively,
 - . Entry into MM 201 from MM 202 (event 73),
 - Entry into MM 201 from MM 211 or MM 213 (events 65 or 80, respectively),
 - . Entry into GN&C ops-8 from ops-1 (event 50), or
 - Entry into GN&C ops-8 from ops-2, MM 201, event 60B)

If the onorbit coast navigation phase is begun by entry into MM 201 from ops-3 or ops-8 (events 61 or 60A, respectively), the onorbit/rendezvous navigation sequencer principal function shall provide the capability to initialize the orbiter state vector, covariance matrix, and other

required navigation parameters on the basis of prestored computer locations unaffected by the computer program memory load reconfiguration. The following sequence should be followed:

1.1.1 - initialize orbiter position and velocity vectors
and time tag

R FILT = R FILT INIT

V FILT = V FILT INIT

T_LAST_FILT = T_LAST_FILT_INIT

1.1.2 - initialize accumulated IMU velocity

V LAST FILT = V LAST FILT INIT

1.1.3 - initialize those parameters required by the user parameter state propagation subfunction (section 4.6.1).

R RESET = R FILT_INIT

V RESET = V FILT_INIT

V IMU RESET V LAST FILT INIT

T_RESET = T_LAST_FILT_INIT

FILT_UPDATE = ON

1.1.4 - initialize other parameters as required for the onorbit navigation principal function

 $\underline{B} = \underline{0}$

 \underline{V} ENT_THRUST_BIAS = $\underline{0}$.

SQR EMU = SQRT (EARTH-MU)

C MX AN = COS (MAX DENS ANGLE)

S_MX_AN = SIN (MAX_DENS_ANGLE)

C_MN_AN = COS (MIN_DENS_ANGLE)

S_MN_AN = SIN (MIN_DENS_ANGLE)

4.1.1-14

1.1.5 - zero the total 19 x 19 dimensional covariance matrix

1.1.6 - initialize the diagonal elements of the covariance matrix pertaining to unmodeled acceleration biases, to premission constants

1.1.7 - compute the total acceleration vector of the orbiter to match the initial state at the time T_LAST_FILT, for use in the covariance propagation subfunction.

1.1.8 - initialize the 6 x 6 orbiter position/velocity portion of the covariance matrix to values transferred across the memory transition from ops 3 or ops 8.

$$E = E_{I,J} = I_{I,J}$$
for I = 1 to 6, J = 1 to 6

1.1.9 - set a flag indicating to subfunctions of the orbit navigation principal function, that rendezvous navigation is de-activated.

1.1.10 - and, set a second flag indicating that IMU data is not to be used for navigation and user state propagation

USE IMU DATA = OFF

1.1.11 - signal that the proper initialization has been accomplished to allow the onorbit/rendezvous user parameter processing sequencer principal function to be scheduled

SIGNAL: OPS 2 OR 8 INITIALIZE COMPLETE

1.1.12 - set a flag which indicates use of the coasting flight state propagation algorithm

PWRD_FLT_NAV = OFF

After completion of initialization, the capability shall be provided for sequencing the onorbit navigation principal function at the designated repetition rate (DT_ONORBIT_NAV) for coasting flight.

If the onorbit coast navigation phase is begun by entry into MM 201 from ops-1 or ops-0 (via checkpoint initialization), events 60 or 81 respectively, the omorbit/rendezvous navigation sequencer principal function shall provide the capability to initialize the orbiter state vector, covariance matrix, and other required navigation parameters on the basis of prestored data and ops-1 or checkpoint data obtained from protected computer program memory load reconfiguration. The following sequence shall be performed:

- 1.2.1 if re-initialization is to occur based on checkpoint data (event 81), perform the following functions
 - a. snap current IMU accumulated velocity and associated time tag

(see section 4.2.1.1 for detailed requirements of this SNAP function)

b. envoke the onorbit precision state prediction principal function to bring the checkpoint state vector (R_CHECK_PT, V_CHECK_PT) from stored time (T_CHECK_PT) to current time (T_LAST_FILT_INIT) CALL: ONORBIT PREDICT

INLIST: GM_DEG, GM_ORD, 1,1,1, PREC_STEP,

R_CHECK_PT, V_CHECK_PT, T_CHECK_PT,

T_LAST_FILT_INIT

OUTLIST: R FILT INIT, V FILT INIT

(see section 4.5.2 for detailed requirements

of the onorbit prediction principal function)

Once this step (1.2.1) is completed, or if event 60

had occurred, instead of 81, proceed to the next step

(1.2.2).

- 1.2.2 (perform steps 1.1.1 through 1.1.7, above)
- 1.2.3 initialize the 6 x 6 dimensional orbiter position/velocity covariance matrix to pre-stored UVW standard deviations and correlation coefficients.

CALL: ONORBIT_COVINIT_UVW

INLIST: SIG UVW_OPS 2, COV_COR_OPS 2,

R FILT, V FILT

OUTLIST: E ______ 1 to 6, 1 to 6

detailed requirements for the above subfunction are described in section 4.2.9.

1.2.4 - (perform steps 1.1.9 through 1.1.12, above)

After completion of initialization, the capability shall be provided for sequencing the onorbit navigation principal function at the designated repetition rate (DT_ONORBIT_NAV) for coasting flight.

If the onorbit coast navigation phase is begun by entry into MM 201 from MM 202 (event 73), the onorbit/rendezvous navigation sequencer principal function shall provide the capability to cancel operation of the onorbit navigation principal function. Initialization shall be performed as follows:

1.3.1 - set a flag indicating the non-use of IMU data for navigation and user propagation

USE_IMU_DATA = OFF

1.3.2 - set a flag indicating the usage of a coasting flight integration algorithm for navigation state propagation

PWRD_FLT_NAV = OFF

After completion of this initialization, the capability shall be provided for sequencing the onorbit navigation principal function at the designated repetition rate (DT ONORBIT NAV) for coasting flight.

If the onorbit coast navigation phase is begun by entry into MM 201 from MM 211 or MM 213 (events 61 or 61A, respectively), the onorbit/rendezvous navigation sequencer principal function shall provide the capability to cancel operation of the rendezvous navigation principal function. The following initializations shall then be performed:

1.4.1 - set a flag indicating the activation of onorbit navigation (and de-activation of rendezvous navigation).

REND_NAV_FLAG = OFF

1.4.2. - store the current target state vector time tag

(for potential use when re-initialize rendezvous navigation
at a later time)

T_TV = T_CURRENT_FILT

1.4.3 - (perform steps 1.3.1 and 1.3.2, above)

After completion of this initialization, the capability shall be provided for sequencing the onorbit navigation principal function at the designated repetition rate (DT_ONORBIT_NAV) for coasting flight.

If the onorbit coast navigation phase is begun by entry into GN&C ops-8 from ops-1 (event 50) the onorbit/rendezvous navigation sequencer principal function shall provide the capability to initialize the orbiter state vector, covariance matrix, and other required navigation parameters on the basis of prestored data and ops-1 data obtained from protected

computer program memory load reconfiguration. The following initialization sequence shall be performed:

1.5.1 - (perform steps 1.1.1 through 1.1.7, above)

1.5.2 - initialize the 6 x 6 dimensional orbiter covariance matrix to prestored UVW standard deviations and correlation coefficients:

CALL: ONORBIT COVINIT UVW

INLIST: SIG_UVW_OPS_2, COV_COR_OPS_2,

R FILT, V FILT

OUTLIST: E

1 to 6, 1 to 6

(see section 4.2.9 for detailed requirements of this common subfunction).

1.5.3 - set a flag to indicate the non-usage of IMU data for navigation and user state propagation

USE_IMU_DATA = OFF

1.5.4 - indicate completion of initialization of parameters for use by the onorbit/rendezvous user parameter processing sequencer principal function

SIGNAL: OPS 2 OR 8 INITIALIZE COMPLETE

1.5.5 - set a flag indicating the activation of onorbit navigation (and de-activation of rendezvous navigation)

REND_NAV_FLAG = OFF

1.5.6 - set a flag indicating the use of the coasting flight integration scheme for—state propagation

PWRD FLT NAV = OFF

After completion of this initialization, the capability shall be provided for sequencing the onorbit navigation principal function at the designated repetition rate (DT_ONORBIT_NAV) for coasting flight.

If the onorbit coast navigation phase is begun by entry into GN&C ops-8 from ops-2 (event 60B), the onorbit/rendezvous navigation sequencer principal function shall provide the capability to initialize the orbiter state vector, covariance matrix, and other required navigation parameters on the basis of prestored data and ops-2 data obtained from protected computer locations unaffected by the computer program memory load reconfiguration. The following initialization sequence shall be performed:

- 1.6.1 (perform steps 1.1.1 through 1.1.7, above)
- 1.6.2 initialize the 6 x 6 dimensional orbiter position/velocity covariance matrix to values transferred across the memory transition from ops-2 to ops-8

$$E_{I,J} = E_{INIT}_{I,J}$$

for I = 1 to 6, J = 1 to 6

1.6.3 - (perform steps 1.5.3 through 1.5.6, above)

After completion of this initialization, the capability shall be provided for sequencing the onorbit navigation principal function at the designated repetition rate (DT_ONORBIT_NAV) for coasting flight.

机铁铁

2. Onorbit Powered Flight Navigation Phase - This phase shall use the onorbit navigation principal function, and shall be active during MM 202 only, and shall begin upon the occurrence of event 60 (OMS ignition minus Y seconds). The onorbit/rendezvous navigation sequencer principal function will first cancel operation of the onorbit navigation principal function (the REND_NAV_FLAG will be in the OFF configuration during this navigation phase). The only initialization required is to set a flag indicating the use of the powered flight integration scheme for state propagation

PWRD_FLT_NAV = ON

After completion of this initialization, the capability shall be provided for sequencing the onorbit navigation principal function at the designated repetition rate (DT_ONORBIT_PWRD_FLT) for onorbit powered flight.

- 3. Rendezvous Coast Navigation Phase This phase shall use the rendezvous navigation principal function and shall be active during operation of major modes 211, 212 and 213. The rendezvous coast navigation phase shall begin in one of the following ways:
 - . Entry into MM 211 from ops-1 (event 74),
 - . Entry into MM 211 from MM 201 (event 64), or
 - . Entry into MM 211 from MM 212 (event 78).

If the rendezvous coast navigation phase is begun by entry into MM 211 from ops-1 (event 74), the onorbit/rendezvous navigation sequencer principal function shall provide the capability to initialize the orbiter and target state vectors, covariance matrix, and other required navigation parameters on the basis of prestored data and ops-1 data obtained from protected computer locations unaffected by the computer program memory load reconfiguration. The following initialization sequence shall be performed:

- 3.1.1 initialize orbiter state vector, covariance matrix and other parameters as indicated by steps 1.1.1 through 1.1.7.
- 3.1.2 initialize the 6 x 6 dimensional orbiter position/velocity covariance matrix to prestored UVW standard deviations and correlation coefficients

CALL: ONORBIT_COVINIT_UVW

INLIST: SIG_UVW_OPS_2, COV_COR_OPS_2,

R FILT, V FILT

OUTLIST: E

1 to 6, 1 to 6

(see section 4.2.9 for detailed requirements)

3.1.3 - set a flag indicating that a rendezvous navigation phase has been initialized
REND NAV FLAG = ON

- 3.1.4 test a flag (TARG_VEC_AVAIL) indicating the presence (ON) or absence (OFF) of a stored target position/ve locity state vector from which to initialize the rendezvous coast navigation phase.
- 3.1.5 if the TARG_VEC_AVAIL flag is ON, then
 initialize target state and covariance matrix...
 according to the following sequence:
 - a. predict the stored target position vector (R_TV) and velocity vector (V_TV) from time T_TV to the current time (T_CURRENT_FILT) by use of the onorbit precision state prediction principal function

CALL: ONORBIT_PREDICT

OUTLIST: R_TV, V_TV

(see section 4.5.2 for detailed requirements)

initialize the 6 x 6 dimensional target position/
 velocity covariance matrix to prestored standard
 deviations and correlation coefficients

CALL: ONORBIT_COVINIT_UVW

INLIST: SIG_TV_UVW, COV_COR_TV,

R TV, V TV

OUTLIST: E 10 to 15, 10 to 15

(see section 4.2.9 for detailed requirements of this common subfunction).

c. compute the current total acceleration vector of the target vehicle for use by the covariance propagation subfunction.

G_TV = ACCEL_PERT_ONORBIT (GM_DEG, GM_ORD,

DRAG_MODE_NAV, 0,3, PREC_STEP,

R_TV, V_TV, T_CURRENT_FILT

-EARTH_MU R_TV/|R_TV|

3

(see section 4.2.1.2 for detailed requirements pertaining to usage of the acceleration models)

3.1.6 - if the TARG_VEC_AVAIL flag is OFF, initialize target state vector (R_TV , V_TV), total acceleration vector (R_TV), and time tag (R_TV) to orbiter values

R TV = R FILT

 $\underline{V} TV = \underline{V} FILT$

G TV = TOT ACC

T TV = T LAST_FILT

also set target position/velocity covariance matrix equal to orbiter matrix.

E = E 10 to 15, 10 to 15 1 to 6, 1 to 6

3.1.7 - regardless of the TARG_VEC_AVAIL flag setting, set the following user parameter propagation subfunction target state vectors for use in initialization of that subfunction by the onorbit/rendezvous user parameter processing sequencer principal function

R TV RESET = R TVV TV RESET = V TV

3.1.8 - set à flag indicating non-usage of IMU data by the navigation and user parameter state propagation subfunctions.

USE IMU DATA = OFF

3.1.9 - indicate the completion of that portion of initialization required for the onorbit/rendezvous user parameter processing sequencer principal function.

SIGNAL: OPS 2 OR 8 INITIALIZE COMPLETE

3.1.10 - set a flag indicating that the coasting flight (precision)propagation scheme shall be used for orbiter state advancement

PWRD_FLT_NAV = OFF

3.1.11 - set a flag indicating that external measurement data processing is to be permitted in this navigation phase USE MEAS DATA = ON

3.1.12 - set a flag indicating that the target state has been initialized

TARG_VEC_AVAIL = ON

3.1.13 - zero counters related to the measurement processing statistics subfunction (see Section 4.3.2.8)

N ACCEPT = 0

N REJECT = 0

SEQ ACCEPT = 0

SEQ_REJECT = 0

After completion of this initialization, the capability shall be provided for sequencing the rendezvous navigation principal function at the designated repetition rate (DT_REND_NAV) for the rendezvous coast navigation phase.

If the rendezvous coast navigation phase is begun by entry into MM 211 from MM 201 (event 64), the onorbit/rendezvous sequencer principal function shall provide the capability to initialize target vehicle state vector from one of the following options:

- . based on pre-mission values,
- . based on ground uplink data,
- based on last value in previous rendezvous navigation phase (predicted to current time), or
- . set to orbiter state value at current time.

The onorbit/rendezvous navigation sequencer principal function shall also be capable of initializing the target position/velocity covariance matrix based on pre-stored UVW data. The first action of the sequencer upon occurence of event 64 is to cancel operation of the onorbit navigation principal function. The following initialization sequence shall then be performed:

- 3.2.1 initialize target state & covariance matrix (perform steps 3.1.3 through 3.1.7, above)
- 3.2.2 set a flag indicating the non-usage of IMU data in the navigation and user state propagation subfunctions for orbiter)

USE_IMU_DATA = OFF

3.2.3 - (perform steps 3.1.10 through 3.1.13, above)

After completion of this initialization, the capability shall be provided for sequencing the rendezvous navigation principal function at the designated repetition rate (DT_REND_NAV) for the rendezvous coast navigation phase.

If the rendezvous coast navigation phase is begun by entry into MM 211 from MM 212 (event 78), the onorbit/rendezvous navigation sequencer principal function shall provide the capability to cancel operation of the rendezvous navigation principal function. The following initialization is required, once this cancellation has been accomplished:

3.3.1 - set a flag indicating the non-usage of IMU data in the navigation and user state propagation subfunctions (for orbiter).

USE_IMU_DATA = OFF

- 3.3.1 (perform steps 3.1.10 through 3.1.13, above)
 After completion of this initialization, the capability
 shall be provided for sequencing the rendezvous navigation
 principal function at the designated repetition rate
 (DT_REND_NAV) for the rendezvous coast navigation phase.
- 4. Rendezvous Powered Flight Navigation Phase- This phase shall use the rendezvous navigation principal function, and shall be active during MM 212, only, and shall begin upon the occurrence of event 68 (OMS ignition minus y seconds).

The onorbit/rendezvous navigation sequencer principal function will first cancel operation of the rendezvous .

navigation principal function (the REND_NAV_FLAG will be in the ON configuration during this navigation phase). The only initialization required is to set a flag indicating the use of the powered flight integration scheme for orbiter state propagation

PWRD_FLT_NAV = ON

After completion of this initialization, the capability shall be provided for sequencing the rendezvous navigation principal function at the designated repetition rate (DT_REND_PWRD_FLT) for the rendezvous powered flight navigation phase.

- 5. TPF Stationkeeping Navigation Phase This phase shall use the rendezvous navigation principal function and shall be active during operation of major mode 213. The TPF stationkeeping navigation phase shall begin in one of the following ways:
 - . Entry to MM 213 from MM 201 (event 66),
 - . Entry into MM 213 from MM 212 (event 79), or
 - . Entry into MM 213 from MM 211 (event 82).

If the TPF stationkeeping navigation phase is begun by entry into MM 213 from MM 201 (event 66), the onorbit/rendez-vous navigation sequencer principal function shall provide the capability to, first, cancel operation of the onorbit navigation principal function. The following initialization is

required once this cancellation has been accomplished:

- 5.1.2 set a flag indicating the usage of the powered flight navigation state propagation algorithm for orbiter position/velocity advancement.

PWRD_FLT_NAV = ON

5.1.3 - set a flag indicating that rendezvous external measurement data incorporation may occur in this navigation phase

USE_MEAS_DATA = ON

5.1.4 - set a flag indicating that a target state vector has been initialized

TARG VEC AVAIL = ON

After completion of the above initialization, the capability shall be provided for sequencing the rendezvous navigation principal function at the designated repetition rate (DT_REND_TPF_NAV) for the TPF stationkeeping navigation phase.

If the TPF stationkeeping navigation phase is begun by entry into MM 213 from MM 213 (event 79), or by entry into MM 213 from MM 211 (event 82), the onorbit/rendezvous navigation sequencer principal function shall provide the capability to, first, cancel operation of the rendezvous navigation principal function. The following initialization shall then be

performed:

- 5.2.1 set a flag indicating the usage of the powered flight navigation state propagation algorithm for orbiter position/velocity advancement PWRD FLT NAV = ON
- 5.2.2 set a flag indicating that rendezvous external measurements data incorporation may occur in this navigation phase

USE MEAS DATA = ON

5.2.3 - set a flag indicating that a target state vector is available for future initialization if re-enter a rendezvous related navigation phase

TARG VEC AVAIL = ON

After completion of the above initialization, the capability shall be provided for sequencing the rendezvous navigation principal function at the designated repetition rate (DT_REND_TPF_NAV) for the TPF stationkeeping navigation phase.

- 6. Non-Phase-Related Requirements In addition to the above requirements, which have been described on the basis of entrance into one of the five orbital navigation phases, there are three other categories of requirements to which the onorbit/rendezvous navigation sequencer principal function shall comply:
 - . inhibiting of external measurement data incorporation prior to an OMS burn, ____

- . data to be saved in preparation for computer memory load transitions, and
- . navigation data required to be saved via CHECKPOINT specialist function (and requirements as to the storage frequency of such data sets).
- 6.1 Inhibiting of External Data Processing: -

The onorbit/rendezvous navigation sequencer principal function shall provide the capability of setting a flag

USE_MEAS_DATA = OFF

which will be tested by the rendezvous navigation principal function for the purpose of inhibiting processing of external measurement data just prior to an OMS burn (ignition minus X seconds, event <u>TBD</u>). This flag setting shall occur independently of the entrance into the onorbit or rendezvous powered flight navigation phases, which occur at OMS ignition minus Y seconds (event 68).

6.2 - Memory Transition Data Save: -

The onorbit/rendezvous navigation sequencer principal function shall provide the capability to save off (in protected memory locations) certain data sets for transmission accross a memory transition, from one operational sequence to another. The following three cases require such storage:

- . transition from MM 201 (ops-2) to GN&C ops-8 (event 60B),
- . transition from MM 201 (ops-2) to ops-3 (event E1), or
- . transition from GN&C ops-8 to MM 201 (ops-2), event 60A.

Prior to termination of ops-2 or ops-8, for the above three cases, the following variables shall be saved off

R FILT_INIT = R FILT

V FILT_INIT = V FILT

V LAST_FILT_INIT = V LAST_FILT

 $E_INIT_{I,J} = E_{I,J}$ for I = 1 to 6, J = 1 to 6 Although the variable names with the "_INIT" have been designated as unique variables, this may not be required if the same physical core location can be used for R_FILT (for example) in each memory load. The "_INIT" notation has been used for visibility purposes, only.

6.3 - CHECKPOINT Data: -

Although the VU (Vehcile Utilities) FSSR shall specify detailed requirements for storage and retrieval of GN&C data in association with the CHECKPOINT specialist function, the onorbit/rendezvous navigation sequencer principal function shall be capable of initializing the onorbit navigation principal function from such data sets. A detailed list of all data required to be stored for purposes of re-initializing the navigation system is provided in section 4.8 of this FSSR. The following additional requirements are to be provided:

- CHECKPOINT data sets shall be stored (via the CHECKPOINT specialist function) periodically, at a TBD rate
- . CHECKPOINT data sets shall also be stored as soon as possible after each burn, and as soon as possible after each ground update (of orbiter state vector)

. navigation reinitialization from a CHECKPOINT data set shall always be functionally similar to entrance into ops -2 from ops -1 (with the exception of having to predict CHECKPOINT orbiter position/ velocity vectors to current time)

- B. <u>Interface requirements</u>. Input and output parameters are given in tables 4.1.1-4 and 4.1.1-5, respectively.
- C. Processing requirements. None.

TABLE 4.1.1-4 - (Continued) ONORBIT/RENDEZVOUS NAVIGATION SEQUENCER INPUT LIST

	DESCRIPTION	SYMBOL	INPUT SOURCE	TYPE	PRECISION	RANGE	UNITS	SAMPLE RATE
	flag indicating (ON) the availability of a target vehicle state vector and time tag for reinitialization purposes	TARG_VEC_AVAIL		D		ON/OFF		As rqd
	target position vector (M50)	<u>R</u> TV		V	DP		ft	As rqd
4. 1. 1. 	target velocity vector (M50)	<u>v</u> Tv		V	DP		ft/sec	As rqd
, ως Τ΄	time tag of target vehicle state vector	T_TV	*	F	DP		sec	As rqd

* ONORBIT/RENDEZVOUS NAVIGATION SEQUENCER PRINCIPAL FUNCTION INPUT LIST

TABLE 4.1.1-4 ONORBIT/RENDEZVOUS NAVIGATION SEQUENCER INPUT LIST

	DESCRIPTION	SYMBOL	INPUT SOURCE	ТҮРЕ	PRECISION	RANGE	UNITS SAMPLE RATE
	orbiter position vector (M50) saved across memory transition	R_FILT_INIT			DP		ft As rqd
	orbiter velocity vector (M50) saved across mem- ory transition	V_FILT_INIT		V	DP		ft/sec As rqd
• !	total accumulated IMU sensed velocity saved across memory tran- sition (M50)	V LAST FILT INIT			DP		ft/sec As rqd
	time tag of navigation initialization data saved across memory transition	T_LAST_FILT_ INIT		F	DP		sec As rqd
	position/velocity (6 x 6) orbiter covariance matrix (M50) saved across memory transition	EINIT		M	DP		vary As rqd

 $D_F^{RIGINAL}_{POOR}$ P_{AGE} * Onorbit/rendezvous navigation sequencer principal function input list

TABLE 4.1.1-4 - (Continued) ONORBIT/RENDEZVOUS NAVIGATION SEQUENCER INPUT LIST

	DESCRIPTION	SYMBOL	INPUT SOURCE	ТҮРЕ	PRECISION	RANGE	UNITS	SAMPLE RATE
	time tag of current filter state vector	T_CURRENT_FILT		F	DP	-	sec	As rqd
	orbiter position vector (M50) saved via CHECKPOINT specialist function	R_CHECK_PT		V	DP		ft	As rqd
4	orbiter velocity vector (M50) saved via CHECK- POINT specialist func- tion	<u>V_CHECK_PT</u>		V	DP		ft/sec	As rqd
1.1-37	time tag of orbiter state vector saved via CHECKPOINT specialist function	T_CHECK_PT		F	DP		sec	As rqd
	sequencing time inter- val for onorbit navi- gation during onorbit coast phase	DT_ONORBIT_ NAV		F .	DP		sec	As rqd
	sequencing time inter- val for rendezvous na- vigation during rendez- vous coast phase	DT_REND_NAV		F	DP		sec	As rqd

^{*} ONORBIT/RENDEZVOUS NAVIGATION SEQUENCER PRINCIPAL FUNCTION INPUT LIST

^{**} PRE-MISSION LOAD

TABLE 4.1.1-4 - (Continued) ONGRBIT/RENDEZVOUS NAVIGATION SEQUENCER INPUT LIST

DESCRIPTION	SYMBOL	INPUT SOURCE	TYPE	PRECISION	RANGE	UNITS	SAMPLE RATE
sequencing time inter- val for onorbit navi- gation during onorbit powered flight phase,	DT_ONORBIT_PWRD FLT	**	F	DP		sec	As rad
sequencing time inter- val for rendezvous na- vigation during rendez- vous powered flight phase	DT_REND_PWRDFLT	**	F	DP		sec	As rqd

** PRE-MISSION LOAD

TABLE 4.1.1-4 - (Continued) ONORBIT/RENDEZVOUS NAVIGATION SEQUENCER INPUT LIST

DESCRIPTION	SYMBOL	INPUT SOURCE	ТҮРЕ	PRECISION	RANGE	UNITS	SAMPLE RATE
sequencing time inter- val for rendezvous na- gation during TPF sta- tionkeeping phase	DT_REND_TPF_ NAV	**	F	DP		sec	As rqd
vector (6 x 1) standard deviations (UVW) for orbiter position/ve-locity covariance initialization	SIG_UVW_ OPS_2		V	DP		vary	As rqd
vector (7 x 1) corre- vector (7 x 1) corre- lation coefficients associated with the UVW standard deviations SIG UVW_OPS_2, used for orbi- ter position/velocity covariance initialization	COV_COR_ OPS_2		V	DP			As rqd
vector (6 x 1) of stan- dard deviations (UVW) for target vehicle po- sition/velocity co- variance initializa- tion	SIG TV_UVW	**	V	DP		vary	As rqd

^{**} PRE-MISSION LOAD

TILLAUS AOOG TO

TABLE 4.1.1-4 - (Continued) ONORBIT/RENDEZVOUS NAVIGATION SEQUENCER INPUT LIST

	DESCRIPTION	SYMBOL	INPUT SOURCE	TYPE	PRECISION	RANGE	UNITS	SAMPLE RATE
	vector (7 x 1) correlation coefficients associated with the UVW standard deviations SIG UVW OPS 2, used for orbiter position/velocity covariance initialization	COV_COR_OPS_2	**		DP			As rqd
4.1.1-40	vector (6 x 1) of standard deviations (UVW) for target vehicle position/velocity covariance initialization	SIG_TV_UVW	**	v	DP		vary	As rqd
	vector (7 x 1) of correlation coefficients associated with the UVW standard deviations SIG_TV_UVW, used for target position/velocity covariance initialization	COV_COR_TV	**		DP			As rqd
	flag indicating degree of gravitational po- tential model	GM_DEG	**	I	S	1-8		As rqd

TABLE 4.1.1-4 - (Continued) ONORBIT/RENDEZVOUS NAVIGATION SEQUENCER INPUT LIST

	DESCRIPTION	SYMBOL	INPUT SOURCE	TYPE	PRECISION	RANGE	UNITS	SAMPLE RATE
	flag indicating order of gravitational po- tential model	GM_ORD	**	1 1 3 1 1 1	S	0-8		As rqd
	integration step-size for precision state prediction	PREC_STEP		F	DP		sec	As rqd
	Earth gravitational constant	EARTH_MU		F	DP		ft ³ / sec	As rqd
1.1-41	flag which activates (1) or de-activates (0) the drag acceleration model	DRAG_MODE NAV		r	S	0-1		As rqd
	flag which activates (1) or de-activates (0) the venting & RCS uncoupled thrusting models	VENT_MODE_ NAV	**	1	\$	0-1		As rqd
	vector (3 x 1) of un- modeled acceleration bias error variances (body coord. system)	COV_ACCEL_ BODY_INIT		Y	DP		ft / sec	As rqd

TABLE 4.1.1-4 - (Continued) CNORBIT/RENDEZVOUS NAVIGATION SEQUENCER INPUT LIST

	DESCRIPTION	SYMBOL	INPUT SOURCE	TYPE	PRECISION	RANGE	UNITS	SAMPLE RATE
	angle to earth's at- mospheric bulge (Rus- sian density model)	MAX_DENS_ANGLE	**	F	DP		rad	As rqd
	angle to reference point in atmosphere (Russian density model)	MIN_DENS_ANGLE	**	F	DP		rad	As rqd
4.1.1-42	(see section 4.8.1- Load Requirements)	(acceleration model and predict- or constants)	**					As rqd

TABLE 4.1.7-5 ONORBIT/RENDEZVOUS NAVIGATION SEQUENCER OUTPUT LIST

	DESCRIPTION	SYMBOL	OUTPUT SOURCE	ТҮРЕ	PRECISION	RANGE	UNITS	COMPUTATION RATE
	signal to MSC indica- ting (COMPLETE) ini- tialization of user parameter state propa- gation quantities is complete	OPS_2_OR_8 INITIALIZE COMPLETE	*	Signal			-	As rqd
7	orbiter position vector (M50)	R FILT		V	DÞ		ft A	 s rqd
1.7.7-43	orbiter velocity vec- tor (M50)	V FILT		V	DP		ft/sec	As rad
	total accumulated IMU sensed velocity (M50)	V_LAST_FILT		V	DP	-	2 ft/sec	As rqd
	time tag of <u>V LAST FILT</u> , & of filter state at last navigation cycle	T_LAST_FILT	*	\$	DP	,	sec	As rqd
	filter covariance matrix max. dimension is (19 x 19	E		M	DP	_	vary	As rqd
	III HOW TO THE TOTAL TO THE ONORBIT/RI					•		

^{*} ONORBIT/RENDEZVOUS NAVIGATION SEQUENCER PRINCIPAL FUNCTION OUTPUT LIST

TABLE 4.1.1-5 - (Continued) ONORBIT/RENDEZVOUS NAVIGATION SEQUENCER OUTPUT LIST

	DESCRIPTION	SYMBOL	OUTPUT SOURCE	TYPE	PRECISION	RANGE	UNITS	COMPUTATION RATE
	flag indicating whether rendezvous navigation active (ON) or onorbit navigation active (OFF)	REND NAV FLAG		D		ON/OFF	_	As rqd _
4.	flag indicating use of powered flight propa-gater (ON) or coasting flight propagator (OFF)	PWRD_FLT_NAV	*	D		ON/OFF	• -	As rqd —
7.7-44	square root of earth gravitational constant (EARTH_MU)	SQR_EMU		F	DP		sec ³	As rqd
	cosine of MIN_DENS_ ANGLE (Russian Density model)	C_MN_AN		F	DP	-	-	As rqd
	sine of MIN_DENS_ANGLE (Russian density model)	S_MN_AN	***	F	DP	-	_	As rqd
	cosine of MAX_DENS_ANGLE (Russian density model)	C_MX_AN		F	DP	-	-	As rad

^{*} ONORBIT/RENDEZVOUS NAVIGATION SEQUENCER PRINCIPAL FUNCTION OUTPUT LIST

TABLE 4.1.1-5 - (Continued) ONORBIT/RENDEZVOUS NAVIGATION SEQUENCER OUTPUT LIST

	DESCRIPTION	SYMBOL	OUTPUT SOURCE	TYPE	PRECISION	RANGE	UNITS	COMPUTATION RATE
	sine of MAX_DENS_ANGLE (Russian density model)	S_MX_AN		·F	DP			As rqd
4.1.1.45	vector of total orbiter acceleration (M50)	TOT_ACC		V	DP		ft sec ²	As rqd
	vector (3 x 1) of un- modeled acceleration bias errors (body coord. system)	VENT_THRUST_ BIAS		V	DP		ft sec ²	As rqd
	flag indicating the use (ON) or non-use (OFF) of external measurement data processing by filter during burn & burn taregeting	USE_MEAS_DATA		D ,		ON/OFF		As rqd
	target vehicle position vector (M50)	<u>R_</u> TV		V	DP		ft	As rqd
	target vehicle velocity vector (M50)	<u>v</u> TV			DP	_	ft/sec	As rqd

^{*} ONORBIT/RENDEZVOUS NAVIGATION SEQUENCER PRINCIPAL FUNCTION OUTPUT LIST

TABLE 4.1.7-5 (Continued) ONORBIT/RENDEZVOUS NAVIGATION SEQUENCER OUTPUT LIST

DESCRIPTION		SYMBOL	OUTPUT SOURCE	ТҮРЕ	PRECISION	RANGE	UNITS	COMPUTATION RATE
	target vehicle total acceleration vector (M50)	<u>G</u> TV	*		DP		ft sec ²	As rqd
	vector (4 x 1) of sensor mark-accept counters (one per sensor)	n Accept		V (INTEGER	S .		.	As rad
4.1.1-46	vector (4 x 1) of sensor mark-reject counters (one per sensor)	<u>N</u> REJECT		V (INTEGER	s 2)	- 1	_	As rqd
	vector (4 x 1) of number of sequential marks of particular type rejected	SEQ_ACCEPT		V (INTEGER	s)			As rqd
	vector (4 x l) of number of sequential marks of particular type rejected	SEQ REJECT		V (INTEGER	s)			As rqd
	flag indicating usage (ON) or non-usage (OFF) of IMU data in orbiter navigation state propagation and user parameter state propagation			D		ON/OFF		As rqd

^{*} ONORBIT/RENDEZVOUS NAVIGATION SEQUENCER PRINCIPAL FUNCTION OUTPUT LIST

TABLE 4.1.1-5 (continued) ONORBIT/RENDEZVOUS NAVIGATION SEQUENCER OUTPUT LIST

	DESCRIPTION	SYMBOL	OUTPUT SOURCE	ТҮРЕ	PRECISION	RANGE	· UNITS	COMPUTATION RATE
	orbiter position vector (M50) used to reset user parameter state propagator	R RESET	***************************************	V	DP		ft	As rqd
	orbiter velocity vector (M50) used to reset user parameter state propagator	V_RESET		v	DP	-	ft/sec	As rqd
A. 1. 1.	total accumulated IMU sense velocity (M50) used to rese parameter state propagator			V	DP		ft/sec	As reqd
47	time tag of parameters used to reset the user parameter state propagator at each navigation cycle completion	T_RESET	*	F	DP		sec	As rqd
	flag indicating (ON) to the user parameter state propagator to reset to navigation data	FILT_UPDATE		V	DP	ON/OFF	-	As rqd
	target vehicle position vector (M50) used to reset user parameter state propagator	R TV RESET		D		ON/OFE		As rqd

^{*} onorbit/rendezvous navigation sequencer principal function output list

TABLE 4.1.1-5 - (Continued) ONORBIT/RENDEZVOUS NAVIGATION SEQUENCER OUTPUT LIST

	DESCRIPTION	SYMBOL	OUTPUT SOURCE	ТҮРЕ	PRECISION	RANGE	UNITS	COMPUTATION RATE :
	target vehicle velocity vector (M50) used to reset user parameter state propagator	V_TV_RESET		V	DP		ft/sec	As rqd
	orbiter position vector (M50) stored for tran- sition to ops-3 or ops-8	R FILT_INIT		V	DP		ft	As rqd
4.1.1-48 1.1. _{1.1.1} ()	orbiter velocity vector (M50) stored for tran- sition to ops-3.or ops-8	<u>V FILT INIT</u>	*	V	DP	<u> </u>	ft/sec	As rqd
	total accumulated IMU sensed velocity stored for transition to ops-3 or ops-8	V_LAST_FLT_ INIT		V	DP		ft/sec	As rqd
	time tag of <u>V</u> LAST_FILT_INIT, stored for tran-sition to ops-3 or ops-8	T_LAST_FILT_		F	DP		sec	As rqd
	(6 x 6) dimensional filter covariance matrix of orbiter position/velocity, stored for transition to ops-3 or ops-8	EINIT		M (1)	DP		vary	As rqd

^{*} ONORBIT/RENDEZVOUS NAVIGATION SEQUENCER PRINCIPAL FUNCTION OUTPUT LIST

- D. Constraints. None.
- E. <u>Supplemental information</u>. A suggested implementation of these requirements is illustrated in appendix B and appendix C.

ONORBIT_REND_NAV_SEQUENCER

OPS_2_OR_8_INITIALIZE

CHECKPOINT_INIT (CODE)

ONORBIT_COVINIT

ONORBIT_COVINIT_UVW

TARGET_NAV_INIT

DISPLAY_COUNT_INIT (CODE)

ONORBIT_PREDICT ~ APPENDIX
C

4.1.2 On-Orbit/Rendezvous User Parameter Processing Sequencer

This principal function will provide a capability for initialization and control of the principal functions and subfunctions associated with the computations of user parameters during the onorbit/rendezvous operational sequence. This sequencer will provide initialization and control of the on-orbit user parameter state propagation subfunction and those user parameter processing principal functions used for this operational sequence.

Events to be used as cues by the sequencer for performing the required initialization and sequencing are defined in the Level B GN&C CPDS. The particular events and a summary of the associated user parameter actions pertaining to this user parameter sequencer are given in Table 4.1.2-1.

- A. <u>Detailed Requirements</u>. The on-orbit/rendezvous user parameter processing sequencer will be initiated upon the occurrence of any of the following events:
 - 1. Major mode transition from 106 to 201
 - 2. Transition from OPS-8 to major mode 201
 - 3. Major mode transition from 301 to 201
 - 4. Major mode transition from 106 to 211
 - 5. Transition from OPS-00 to Major Mode 201

This sequencer shall be terminated upon the transition from ops-2 to ops-3, ops-8, or ops-00.

TABLE 4.1.2-1 - ONORBIT/RENDEZVOUS USER PARAMETER PROCESSING SEQUENCER EVENTS

EVENT NO.	EVENT NAME/DESCRIPTION	ACTION TAKEN BY SEQUENCER IN RESPONSE TO EVENT
60 or 74	Transition from OPS-1 to OPS-2	Initiate cyclic execution of onorbit user para- meter state propagation and onorbit user para- meter calculations at a repetition rate of 0.5 Hertz.
61	Transition from 301 to 201	Same as event 60 action.
84	Transition from OPS-00 to 201	Same as event 60 action.
60A	Transition from OPS-8 to 201	Initiate cyclic execution of onorbit user parameter calculations at a repetition rate of 0.5 Hertz.
73 or 80	Transition from 202 or 213 to 201	Same as event 60A action.
78	Transition from 212 to 211	Same as event 60A action.
76 or 82	Transition from 211 to 212 or 213	Cancel onorbit user parameter calculations module.
66 or 67	Transition from 201 to 202 or 213	Same as event 76 action.
69	Initiate guidance	Cancel onorbit user parameter state propagation. Reschedule cyclic processing of onorbit user parameter state propagation at a repetition rate of 0.5 Hertz.

The following paragraphs specify the detailed requirements that were summarized in table 4.1.2-1. These requirements specify, for each of the event cues to be utilized by the sequencer, the actions that the sequencer is to initiate.

Transition from OPS-1 to OPS-2 - Upon receipt of a signal SIGNAL: OPS 2 INITIALIZATION COMPLETE

cyclic execution of the onorbit/rendezvous user parameter state propagator shall commence at a repetition rate of 0.5 Hertz. The signal is the cue that the necessary initialization of certain state parameters has been accomplished within the onorbit/rendezvous navigation sequencer (section 4.1.1). Cyclic processing of the onorbit user parameter calculations shall commence at a repetition rate of 0.5 Hertz.

Transition from OPS-3 to OPS-2 - Same as above.

Transition from OPS-00 to OPS-2 - Same as above.

<u>Transition from OPS-8 to OPS-2</u> - Based upon this cue, cyclic processing of the onorbit user parameter calculations shall commence at a repetition rate of 0.5 Hertz.

Transition from 202 (maneuver execute) or 213 (TPF/stationkeeping) to 201 (orbit coast). - Same as above.

Transition from 212 (maneuver execute) to 211 (rendezvous navigation). - Same as above.

<u>Transition from 201 to OPS-8.</u> - Based upon this cue, cyclic processing of the onorbit user parameter calculations shall be cancelled.

Transition from 201 to 202 or 213. - Same as above.

Transition from 211 to 212 or 213. - Same as above.

<u>Initiate guidance</u> - Based upon this cue, the current scheduling of onorbit user parameter propagation is to be cancelled. Cyclic processing of onorbit user parameter processing is to be rescheduled at a repetition rate of 0.5 Hertz beginning with this event.

- B. <u>Interface requirements</u>. The input list for this principal function is presented in Table 4.1.2-2.
- C. Processing requirements. None.
- D. Constraints. None
- E. <u>Supplemental information</u>. The purpose of cancelling and rescheduling the onorbit user parameter propagator upon the initiate guidance signal is to get the execution of this module in "sync" with the execution of onorbit guidance which is to be initiated at this time. This cancelling and rescheduling is to be done "y" seconds prior to OMS ignition such that a subsequent user state update will occur, as nearly as possible, at the time of ignition.

A suggested implementation of the onorbit/rendezvous UPP sequencer in the form of detailed flow charts is shown in Appendix D, flow chart ONORBIT REND UPP SEQ.

TABLE 4.1.2-2: ONORBIT/RENDEZVOUS USER PARAMETER PROCESSING PRINCIPAL FUNCTION INPUT LIST

LEVEL B	DESCRIPTION	LEVEL C SYMBOL	INPUT SOURCE	TYPE	PRECISION	RANGE	UNITS	SAMPLE RATE/sec
TBD	Transition to MM 201 from MM 106 event	Event 60	MSC	BIT		OFF_ON		25
2	Transition to MM 201 from OPS-8 event	Event 60A		11		11		
ORIGINAL PAGE IS OF POOR QUALITY	Transition to MM 201 from MM 301 event	Event 61	u	u		n		n
R QUZ	Transition to MM 213 from MM201 event	Event 66		ji,		u		H.
ALLITA SI AD	Transition to MM 202 from MM201 event	Event 67		n (1		u.		
	Guidance initiate event	Event 69	u u	u u		11		u .
4.1.2	Transition to MM201 from MM 202 event	Event 73		11		. u 2007 2007		
တိ	Transition to MM 211 from MM106 event	Event 74		t i		It		u
	Transition to MM 212 from MM 211 event	Event 76		u		n		u u u u u u u u u u u u u u u u u u u
	Transition to MM 211 from MM 212 event	Event 78		r in the second		u		n ·
	Transition to MM 201 from MM 213 event	Event 80		н		u		
	Transition to MM 213 from MM 211 event	Event 82		n		ŋ		u i
	Transition to MM 201 from OPS-00 event	Event 84		*1		11		
	Nav initialization Complete signal	OPS-2- Initialize Complete	Onorbit/ Rend signal NAV SEQ	SIGNAL		OFF_ON		11

4.2 SUBFUNCTIONS COMMON TO SEVERAL NAVIGATION FUNCTIONS

This section documents detailed requirements for subfunctions identified as being common to two or more navigation principal functions or their major subfunctions. The detailed requirements specified here will be referenced from the sections to which they are common and, when referenced, may be regarded as inserts to paragraph A - Detailed requirements - in these sections.

4.2.1 State Propagation

This subfunction will perform a number of tasks related to propagation of the orbiter and target state vectors. The task of reading (snapping) the IMU's is performed when the total accumulated sensed velocity is required to account for nongravitational accelerations during integration of the orbiter equations of motion. The appropriate modeled nongravitational accelerations (drag, venting, uncoupled thrusting) are computed in those circumstances in which IMU accumulated sensed velocity is not used. The orbiter equations of motion are integrated with the use of either a super-g algorithm designed primarily for powered-flight phases (i.e., those phases in which appreciable nongravitational accelerations are experienced), or a precision propagation algorithm designed specifically for coastingflight phases. The target state vector is always propagated by use of the precision propagation algorithm. The task of propagation of sensor biases is performed in those navigation phases in which the corresponding sensor biases are being estimated by the filter.

4.2.1.1 IMU Data Snap

The IMU data snap task will provide the capability to obtain the orbiter IMU-sensed accumulated velocities, expressed in M50 coordinates, along with their associated GMT time tag. These data will be stored for use in the state propagation subfunction. Data from one good IMU are required as indicated in the following example:

SNAP IMU (<u>V</u> _CURRENT_FILT, T_CURRENT_FILT)
These data are obtained from the IMU RM.

The SNAP statement above implies the assignment of current values to the variable names shown in parentheses.

4.2.1.2 Acceleration Models

During orbital operations gravitational, drag, venting and uncoupled RCS thrusting acceleration models shall be available for state prediction or propagation. These models are to be used in the orbiter state propagation whenever the IMU-sensed accelerations are below a given threshold level. Propagation or prediction of the target vehicle's state shall use the gravitational and drag models.

The currently functioning propagator and a predictor may need different models at the same time. It is therefore necessary that the execution of the acceleration calculations be protected from interruption by other users.

For the computation of the accelerations due to the Earth's gravity, options shall be provided to include terms derived from various degree and order gravitational potential models. Input flags GMD and GMO shall be set by the user to specify, respectively, the degree and order of the gravitational potential model to be used. Similarly, an input flag, DM, shall be set by the user to indicate whether or not to model drag. Venting acceleration models shall be included to take into account those situations when venting of predictable magnitude, direction, and duration occurs. These models shall include the effects of any residual unbalance in the operation of the RCS thrusters; an input flag, VM, shall be set by the user to control operation of this task.

For the drag, venting, and uncoupled thrusting acceleration computations, it may be necessary to know the vehicle's attitude. Attitude affects the inertial direction of the acceleration due to venting and determines the cross-sectional area of the vehicle normal to the velocity vector relative to the ambient air for atmospheric drag. Another user defined flag, ATM, shall be used to control the options available in this attitude calculation, as described later in this section and in section 4.2.1.2.2.

The acceleration function shall be called by the user with values of GMD, GMO, DM, VM, ATM, \underline{R} , \underline{V} , and \underline{T} , where \underline{R} and \underline{V} are the position and velocity vectors of the vehicle in an M50 coordinate system and \underline{T} is the time tag associated with both of these vectors.

It shall then initialize various perturbing acceleration vectors,

$$\underline{G} = 0$$
.

$$D = 0$$
.

$$RCS = 0.$$

$$\underline{V}$$
ENT = 0.

and obtain the transformation matrix from Earth-fixed to M50 coordinates in order to find the Earth-fixed position vector and the corresponding unit vector:

$$R = FIFTY^T R$$

$$R_{INV} = 1./|R|$$

There is no need to calculate the acceleration vector due to the Earth's gravitational attraction as a point mass; that task is performed directly by the predictors and the propagators. The on-orbit acceleration function determines only perturbing accelerations. This being the case, the disturbing acceleration \underline{G} due to the Earth's non-spherical shape shall be calculated (see section 4.2.1.2.1).

The flags that control the use of drag, venting, and uncoupled RCS thrusting shall then be tested. If all are equal to zero, the vector \underline{G} already contains all the accelerations required. If, however, one or more of these flags has a nonzero value, more calculations shall be needed.

If DM = 1, a drag acceleration vector \underline{D} shall be determined. If VM = 1, a vector that accounts for venting and uncoupled thrusting accelerations, \underline{V} ENT, must be obtained. In either one of the latter two cases, or if both flags have value 1, it may be necessary to determine the attitude matrix of the orbiter. There are circumstances, namely if the acceleration vector to be found is that of the target vehicle, or if the acceleration of the orbiter is required for a simplified state prediction used by guidance, in which the attitude matrix is not needed. The ATM flag shall be assigned values that specify whether or not the attitude matrix is required (see section 4.2.1.2.2). If the matrix is needed, the flag ATM shall

determine how it is to be calculated, depending on whether it is to be used for propagation or prediction purposes.

In brief, the values of the flag ATM are explained in the following table:

VEHICLE	FUNCTION	ATTITUDE MATRIX NEEDED	ATM FLAG SETTING		
	Propagation	Yes	0		
Orbiter	Prediction	Yes			
	Simplified prediction (for guidance)	No	2		
Target	All functions	No	3		
Other target vehicles (if required)	All functions	No	>3		

The attitude matrix calculation, if needed, shall occur prior to the calculation of the acceleration vectors due to drag or venting, and shall be done as follows.

For propagation (ATM = 0), the current selected body to M50 rotation matrix, available from the attitude processing principal function, is required:

$$M = M M50B0DY_K^T$$

For prediction (ATM = 1), data from the 2nd, 3rd, 4th, and 5th rows of a prestored attitude table (ATT_ARRAY) are to be used to construct the body to M50 rotation matrix. This rotation matrix shall be constructed in two steps. The first step shall use the Euler angles for the time period containing the given time T, obtained from the 3rd, 4th, and 5th rows of ATT_ARRAY, to construct the body to attitude mode matrix (also denoted M), valid at the beginning of the time period (i.e., T INITIAL):

$$M = \begin{bmatrix} C3 & C1 & C3 & S1 & S3 & S2 \\ -S3 & C2 & S1 & +S3 & C2 & C1 \end{bmatrix}$$

$$-S3 & C1 & -S3 & S1 & C3 & S2 \\ -C3 & C2 & S1 & +C3 & C2 & C1 \end{bmatrix}$$

$$S2 & S1 & -S2 & C1 & C2 & S1 & C2 & C1 & C2 & C1$$

where S1, S2, and S3 represent the sines of the Euler angles and C1, C2, and C3 represent the cosines of the Euler angles. This matrix will be a transformation from body to M50 if the attitude mode is an inertial hold, and from body to UVW if the attitude mode is a local-vertical, local-horizontal. Information about the various attitude holds, in the form of settings of a flag called ATT_FLAG, are stored in the second row of the ATT_ARRAY table. Attitude Profile Constants in section 4.8 contains the details of the table lookup.

The second step multiplies the body to attitude mode matrix by an attitude mode to M50 matrix, as appropriate. This attitude mode to M50 matrix and the required body to M50 rotation matrix

shall be determined as follows: If an inertial hold occurs during the time period (ATT_FLAG = 1), the matrix M is, in fact, the required body to M50 rotation matrix. If an inertial hold with rate occurs during the time period (ATT_FLAG = 2), the matrix M must only be updated from time T_INITIAL to time T since it already transforms from body to M50. This shall be accomplished with use of the theory of quaternions as follows:

1. Transform the unit vector in the eigen-axis direction (in body coordinates), obtained from the ATT_ARRAY, into M50:

$$EV = M$$

$$\begin{bmatrix}
ATT_ARRAY_{6}, J-1 \\
ATT_ARRAY_{7}, J-1 \\
ATT_ARRAY_{8}, J-1
\end{bmatrix}$$

2. Calculate the quaternion required to transform the matrix M from time T_INITIAL to time T:

$$SQ = COS(HANG)$$

$$VQ = SIN(HANG) EV$$

where

HANG =
$$-.5$$
 ATT_ARRAY_{9,J-1} (T-T_INITIAL)

is the angular displacement in radians about the eigen-axis from $T_{\rm INITIAL}$ to $T_{\rm INITIAL}$

3. Calculate the required body to M50 rotation matrix:

$$M = [2. SQ^2 - 1.) ID_MATRIX_3X3 + 2. VQ VQ^T + 2. SQ M_TEMP] M$$

where

is the skew-symmetric body axis rotation rate matrix. If a local-vertical, local-horizontal hold occurs during the time period (ATT_FLAG = 3 or 4) the matrix M, which transforms from body to UVW, must be multiplied by a UVW to M50 transformation matrix in order to produce the required rotation matrix:

$$M = M UVW TO M50(R, V)$$

Another prerequisite to the calculation of either drag or venting accelerations is the knowledge of the right ascension and declination of the Sun. For venting accelerations, this is needed in the "inertial with rate" (or "barbecue") attitude mode (see section 4.2.1.2.3); for drag accelerations, it is used in the computation of the atmospheric density (see section 4.2.1.2.2). The solar coordinates shall be obtained by means of a call to the module SOLAR EPHEM, described in section 4.5.3.1.

When the vectors \underline{G} , \underline{D} , and $\underline{V}ENT$ have been obtained, the total modeled perturbing acceleration vector shall be found:

$$\underline{ACCEL}$$
 PERT_ONORBIT = \underline{G} + \underline{D} + \underline{V} ENT

The following paragraphs (4.2.1.2.1, 4.2.1.2.2, and 4.2.1.2.3) contain the detailed requirements for the calculation of these vectors $-\underline{G}$, \underline{D} , and \underline{V} ENT. Interface and processing requirements, constraints, and supplementary information for all these tasks are

to be found in the descriptions of those principal functions that use them.

A suggested implementation in the form of a detailed flow chart may be found in appendix B. The various codes referenced in that flow chart are to be found also in appendix B:

ACCEL_EARTH_GRAV CODE

ACCEL_ONORBIT_DRAG CODE

ONORBIT_DENSITY CODE

ACCEL_ATTITUDE CODE

ACCEL_ONORBIT_VENT_AND_THRUST CODE

4.2.1.2.1 Gravity

The gravitational attraction due to the Earth's non-sphericity shall be modeled by using S. Pines' uniform formulation of the spherical harmonics development. This code shall be exercised only if the flag GMD is not equal to zero.

The following variables are to be set up to serve as starting values for the recursion relations used in the Pines formulation:

AUXILIARY = 0.

RO_ZERO = EARTH_RADIUS_GRAV R _INV

RO_N = RO_ZERO EARTH_MU R_INV²

A_{1,2} = 3. UR₃

A_{2,2} = 3.

L = 1.

A is a two-column array used for temporary storage of the Legendre polynomials and the derived Legendre functions (which are latitude-dependent terms), and RO_N is the distance-related term.

AUXILIARY is an intermediate scalar variable.

The recursive calculations shall then proceed, using as many components of the one-column arrays ZETA_REAL and ZETA_IMAG as required to account for the effects of the tesseral harmonics. ZETA_REAL and ZETA_IMAG are the only terms that depend on the vehicle's longitude.

ORIGINAL PAGE IS OF POOR QUALITY Do for I = 1 to GMO:

ZETA_REAL
$$_{I+1}$$
 = UR $_{1}$ ZETA_REAL $_{I}$ - UR $_{2}$ ZETA_IMAG $_{I}$ ZETA_IMAG $_{I+1}$ = UR $_{1}$ ZETA_IMAG $_{I}$ + UR $_{2}$ ZETA_IMAG $_{I}$

ZETA_REAL₁ and ZETA_IMAG₁, needed as starting values for this recursive calculation, are constants described in section 4.8.

The derived Legendre functions shall then be obtained by means of recursion formulas, multiplied by the appropriate combinations of tesseral harmonics (the Legendre polynomials shall be multiplied by the zonal harmonics coefficients), and stored as certain auxiliary variables F1, F2, F3, and F4.

Do for N = 2 to GMD the following steps (1 through 5):

1.
$$A_{N+1,1} = 0$$
.
 $A_{N+1,2} = (2. N + 1.) A_{N,2}$
 $A_{N,1} = A_{N,2}$
 $A_{N,2} = UR_3 A_{N+1,2}$
 $K = 2$

2. Do for J = 2 to N:

$$A_{N-J+1,1} = A_{N-J+1,2}$$

 $A_{N-J+1,2} = (UR_3 A_{N-J+2,2} - A_{N-J+2,1})/K$
 $K = K + 1$

3.
$$F1 = 0$$
.
 $F2 = 0$.
 $F3 = -A_{1,1}$ ZONAL_N
 $F4 = -A_{1,2}$ ZONAL_N

(These account for the zonal harmonics contributions.)

4. If the maximum order of tesserals wanted has not been attained (i.e., if N \leq GMO), do for N1 = 1 to N: $F1 = F1 + N1 A_{N1,1} (C_L ZETA_REAL_{N1} + S_L ZETA_IMAG_{N1})$ $F2 = F2 + N1 A_{N1,1} (S_L ZETA_REAL_{N1} - C_L ZETA_IMAG_{N1})$ $DNM = C_L ZETA_REAL_{N1+1} + S_L ZETA_IMAG_{N1+1}$ $F3 = F3 + DNM A_{N1+1,1}$ $F4 = F4 + DNM A_{N1+1,2}$

NIT

(These take into account the contributions of the tesseral and sectorial harmonics.)

5. RO_N = RO_N RO_ZERO

G₁ = G₁ + RO_N F1

G₂ = G₂ + RO_N F2

G₃ = G₃ + RO_N F3

AUXILIARY = AUXILIARY + RO_N F4

(These equations multiply the sum of the zonal and tesseral effects by the appropriate distance-related factors, store the results as the components of the acceleration vector \underline{G} , and

prepare for final computation by obtaining the intermediate scalar variable AUXILIARY, which accounts for an additional effect proportional to the unit radius vector \underline{UR} .)

Once these calculations have been completed (N = GMD) and stored, the Earth-fixed acceleration vector shall be obtained and rotated to the M50 coordinate system.

 $\underline{G} = \underline{G} - AUXILIARY \underline{UR}$ $\underline{G} = FIFTY \underline{G}$

This is the gravitational acceleration vector needed for the equations of motion of the shuttle. The values of GMD and of GMO may be set by the user independently. However, it is necessary that $GMO \leq GMD$. A maximum value of 8 for GMD shall be used, which will make the array ZONAL have 8 components, the arrays \underline{C} and \underline{S} have 35 components each, \underline{ZETA} REAL and \underline{ZETA} IMAG have 9 each, and A have a maximum dimension of 9 by 2.

The terms shown in the Earth's gravity calculations as C_L and S_L are usually represented by $C_{n,m}$ and $S_{n,m}$, respectively, but were renumbered for single subscript utilization; the terms called ZONAL_N correspond to $J_N = -C_{N,0}$.

The S. Pines formulation of the gravitational potential may be found, in condensed form, in the paper "Uniform Representation of the Gravitational Potential and its Derivatives," AIAA Journal,

vol. 11, no. 11, November 1973. In expanded form, and with an earlier draft of the computer program herein presented, it may be found in MDC Report No. WOO13, NASA CR 147478, of 9 February 1976, "Pines' Nonsingular Gravitational Potential: Derivation, Description and Implementation".

4.2.1.2.2 Drag

The computation of drag accelerations will vary according to the values of an input indicator, designated here as DM.

The value \underline{D} of this acceleration shall be set to zero when the acceleration function is called.

If DM = 0, the value of D shall not be changed.

If DM = 1, \underline{D} shall be computed as

 \underline{D} = -.5 CD AREA RHO $|\underline{V}$ _R $|\underline{V}$ _R/VEH_MASS where CD is the vehicle's drag coefficient; VEH_MASS is its mass; \underline{V} _R = \underline{V} _REL $(\underline{V}$, $\underline{R})$, where \underline{V} and \underline{R} are, respectively, the velocity and position vectors in M50 coordinates; \underline{V} _REL is the function that computes the relative velocity of the vehicle with respect to the atmosphere (assuming no wind) -

 \underline{V} REL $(\underline{V},\underline{R})$ = \underline{V} - EARTH_RATE (EARTH_POLE x \underline{R})

RHO is the density of the Earth's atmosphere; and AREA is a certain cross-sectional area of the vehicle, a prestored constant.

The calculations shall be performed in the following order: First, the altitude (needed for the computation of the atmospheric density, RHO) shall be obtained from the expression

$$ALT = H_ELLIPSOID(R)$$

H_ELLIPSOID is the function that computes altitude above the reference ellipsoid.

K2, the factor in the mathematical model of the Earth's atmospheric density that has to do with the diurnal effects, shall then be obtained:

SDEC = SDEC R_INV R₃

CDEC2 = CDEC1 R_INV R₂

CDEC1 = CDEC1 R_INV R₁

SGAM1 = SIN_SOL_RA C_MX_AN + COS_SOL_RA S_MX_AN

CGAM1 = COS_SOL_RA C_MX_AN - SIN_SOL_RA S_MX_AN

SGAM2 = SIN_SOL_RA C_MN_AN + COS_SOL_RA S_MN_AN

CGAM2 = COS_SOL_RA C_MN_AN - SIN_SOL_RA S_MN_AN

COS_PSI_1 = SDEC + CGAM1 CDEC1 + SGAM1 CDEC2

COS_PSI_1 = DIURN_EFF_5 (1. + COS_PSI_1) CORR_POWER_1

COS_PSI_2 = -SDEC + CGAM2 CDEC1 + SGAM2 CDEC2

COS_PSI_2 = DIURN_EFF_6 (1. + COS_PSI_2) CORR_POWER_2

K2 = 1. + (ALT + DIURN_EFF_1 + DIURN_EFF_2 EXP{-[(ALT + DIURN_EFF_3)/DIURN_EFF_4]^2}) (COS_PSI_1 + COS_PSI_2)

where SDEC and CDEC1, COS_SOL_RA and SIN_SOL_RA, respectively the sine and cosine of the solar declination and the cosine and sine of the solar right ascension, were previously obtained in the call to the solar ephemeris subfunction.

Two values of DOY_EFF needed for the K3 factor of the atmospheric density calculation, which has to do with the semiannual effect, shall be obtained from a table (see sec. 4.8), and K3 shall be

calculated with a linear interpolation between these values:

DAY OF YEAR =
$$T/86400$$
.

Set

$$I = 1.$$

Increment I in steps of 1 until

Then, let

DAY ONE =
$$10.(1-1)$$

Finally,

$$K3 = 1. + .1 (ALT + ANNUAL_EFF)[(DAY_OF_YEAR - DAY_ONE)]$$

$$(DOY_EFF_{I+1} - DOY_EFF_{I}) + 10. DOY_EFF_{I}]$$

K1 and K4. the factors in the atmospheric density calculations that account for the solar radiation intensity in the 10.7-centimeter wavelength and for the geomagnetic disturbance, respectively, shall be computed:

The atmospheric density, RHO, shall then be obtained by the multiplication of these factors and a righttime altitude/density profile:

Besides the values of DOY_EFF, which are contained in a table, the values DIURN_EFF_1, DIURN_EFF_2, DIURN_EFF_3, DIURN_EFF_4, DIURN_EFF_6, CORR_POWER_1, CORR_POWER_2, ANNUAL_EFF, RAD_EFF, MAGN_EFF, NIGHT_PROF_1, NIGHT_PROF_2 and NIGHT_PROF_3 are constants contained in another table. There exist various tables of the two types, but only one of each is to reside in the memory load at a time. The tables may be found in section 4.8, separated into DOY_EFF tables and general density tables (for the other variables). The actual pair of tables to be loaded depends on the values of the solar radiation flux at the time of the mission.

Once the atmospheric density has been obtained, the velocity \underline{V} _R, relative to the atmosphere but expressed in M50 coordinates, shall be found as explained above.

After the vector \underline{V} R has been calculated, the attitude mode flag ATM shall be tested. This flag is utilized, in this case, to incorporate in the drag equation the appropriate values of the vehicle's mass, area, and drag coefficient. The first three values of ATM, 0, 1, and 2, refer to calculation of the orbiter's acceleration vector.

If ATM = 0 or 1, the current mass of the orbiter and its reference cross-sectional area shall be used in the equations, but its drag coefficient shall be calculated as described below. If ATM = 2, the

mass and area of the orbiter shall be the same, but the drag coefficient shall be set to a premission stored reference value. This setting is meant for utilization by guidance, for a fast, simplified state vector prediction. If ATM > 2, the acceleration vector to be computed is that of the target vehicle. The mass, area, and drag coefficient of this vehicle will therefore be used. For that purpose, these quantities shall be available as components of 3 vectors REF_MASS, REF_CD and REF_AREA, premissionstored, of which REF_MASS, REF_CD and REF_AREA, pertain to the orbiter, and subsequent ones to as many target vehicles as needed for each particular mission.

The calculation of the orbiter's drag coefficient in the cases where ATM has values 0 or 1 shall be preceded by a table lookup to obtain the configuration of the orbiter vehicle. The configuration shall be specified by an integer variable J with values that indicate the external aspect of the shuttle: for instance, J=1 for payload bay doors closed, J=2 for the same doors open, J=3 for manipulator arms extended, J=4 for payload deployed, etc. The table lookup and the table itself are described in section 4.8.

The drag coefficient, in these cases, shall be obtained as a function of the square of the sine of the angle of attack (SA) and of the sine of the angle of sideslip (SB). If ATM = 0, which indicates the drag acceleration is to be used for orbiter state propagation (that is, for determination of the current state vector), these

sines can be obtained from currently available angles ALPHA and BETA from the attitude applications calculation principal function

$$SA = [SIN(ALPHA)]^2$$

$$SB = |SIN(BETA)|$$

If ATM = 1, the drag acceleration is to be utilized for orbiter state prediction (determination of the state vector at some time in the future or past) and the sines of the angles of attack and sideslip must be obtained from the velocity vector relative to the atmosphere but expressed in body coordinates:

$$\underline{V}$$
 REL_BODY = M^T \underline{V} R

where M is the transformation matrix from body to M50 coordinates.

If the Z-component of this vector is practically zero (smaller in absolute value than some very small number EPS_VRB), the sine of the angle of attack shall be set to zero:

$$SA = 0$$

Otherwise, it shall be found from the formula

$$SA = |V_{REL}BODY_3|^2/(V_{REL}BODY_1^2 + V_{REL}BODY_3^2)$$

In either case, the sine of the sideslip angle shall be computed with the expression

$$SB = |V_{REL}BODY_2|/|V_{R}|$$

The sine of double the sideslip angle is also needed -

$$S2B = 2. SB SQRT(1. - SB2)$$

and the drag coefficient for configuration J is given by $\begin{array}{c} \text{EXP_SHAPE_FACTOR}_{J} \\ \text{CD} = (\text{CDF}_{J} + \text{CDN}_{J} \text{SA} \\ \text{CDS}_{J} \text{SB} + \text{CDA}_{J} \text{S2B SA} \\ \\ \text{where CDF, CDN, CDA, CDS and EXP_SHAPE_FACTOR are constants} \\ \text{described in section 4.8.} \\ \end{array}$

Finally, the drag acceleration shall be obtained from the expression D = -.5 CD AREA RHO $|\underline{V}$ R $|\underline{V}$ R/VEH MASS

4.2.1.2.3 Venting and Uncoupled RCS Thrusting
The models for the acceleration due to venting and uncoupled thrusting shall be available for use in both orbiter state propagation and orbiter state prediction. It is assumed that the onboard software will have the capability to access from storage a time line of significant vent sources, as well as an attitude profile. This information shall be used to compute the vector VENT, the acceleration due to venting, which shall be used

in the integration of the orbiter's equations of motion.

A flag (VM) shall be set to indicate whether or not venting acceleration shall be computed. A flag setting of VM = 0 shall indicate that the IMU-sensed accelerations are being used in state vector integration, and hence the venting acceleration vector shall be set to zero -- that is, $\underline{V}ENT = 0$. A flag setting of VM = 1 shall indicate that the acceleration due to venting is to be modeled. (Note that modeling of both venting and uncoupled thrusting is controlled by the same flag (VM).)

Corresponding to each of the MAX_NUM_VENT vent sources is a time line of its OFF-ON states. This information is stored in VENT ARRAY, the I-th row containing the NUM_VENT $_{\rm I}$ times at which the vent I changes state from OFF to ON or from ON to OFF. If the I-th vent (I = 1 to MAX_NUM_VENT) is ON at time T, then the vent vector is updated with the value of the acceleration for the I-th vent:

VENT = VENT + VENT TABLE(I)

where <u>VENT_TABLE(I)</u> contains the body-relative thrust vector for the I-th venc. If the I-th vent (I = 1 to MAX_NUM_VENT) is OFF, the value of <u>VENT</u> is not changed. Section 4.8 contains the details of the table lookup procedure for VENT_ARRAY and VENT_TABLE.

The uncoupled thrusting accelerations that occur during attitude maintenance caused by venting shall be incorporated into the total uncoupled thrusting acceleration vector as follows: If the I-th vent is ON at time T, the uncoupled thrusting vector, $\underline{R}CS$, shall be updated with the value of the uncoupled thrusting vector (in body coordinates) corresponding to the I-th vent:

 $RCS = RCS + VENT_DEP_RCS(I)$

If the I-th vent is OFF, the value of RCS is not modified.

Besides trying to compensate for venting accelerations, the RCS thrusters operate to keep the shuttle at special attitude holds during certain phases of the missions. The special attitudes that have been identified are:

- a) The vehicle's X body axis oriented along the local vertical (X-local-vertical hold);
- b) The vehicle's Z body axis oriented along the local vertical (Z-local-vertical hold);
- c) The three body axes make constant angles with the M50 coordinate axes (inertial hold);

4-71

d) The vehicle rotates with constant angular velocity about its

X body axis, which is kept almost perpendicular to the EarthSun direction (inertial-with-rate or "barbecue" hold).

The inclusion in the equations of motion of the accelerations caused by the uncoupled thrusting of the RCS engines requires knowledge of the transformation matrix M that converts from body to M50 coordinates. This matrix is obtained in different ways, depending on whether it is to be used for prediction or propagation.

Section 4.2.1.2 describes the computation of the matrix.

The computation of the RCS uncoupled thrusting acceleration vector in body coordinates shall be done as follows. The attitude hold maintained by the vehicle shall be identified, in the case of propagation, by comparing the appropriate columns of the M matrix with the unit position vector of the vehicle or of the Earth-Sun line, or by checking the shuttle's rotation rate. In the case of prediction, the attitude hold shall be identified by the values of a flag (ATT_FLAG), which have been prestored in a table in the form of a time line.

The four cases (one for each of the attitude holds described above) are:

If it is determined that the shuttle is maintaining a Z-local vertical attitude hold, the total uncoupled thrusting acceleration

vector shall be updated with a premission-determined Z-localvertical-hold uncoupled thrusting vector in body coordinates:

$$RCS = RCS + RCS_{ZLV}$$

The Z-local-attitude hold shall be indicated, for prediction, by ATT FLAG = 3, and for propagation, by

EPS1 <
$$|M_1|$$
 to 3.3 · R| R_INV

where \underline{R} is the position vector in M50 coordinates, M is the body to M50 transformation matrix, EPS1 is the Z-local-vertical hold tolerance, and R_INV is the reciprocal of the magnitude of R.

2. If it is determined that the shuttle is maintaining an X-local-vertical attitude hold, the total uncoupled thrusting acceleration vector shall be updated with a premission-determined X-local-vertical-hold uncoupled thrusting vector in body coordinates:

$$RCS = RCS + RCS_XLV$$

The X-local-vertical attitude hold shall be indicated, for prediction, by the value ATT_FLAG = 4, and for propagation, by

EPS2
$$< |M_1|$$
 to 3,1 · R | R_INV

where EPS2 is the X-local-vertical hold tolerance.

3. If it is determined that the shuttle is maintaining an inertial attitude hold, the total uncoupled thrusting acceleration vector shall be updated with a premission-determined inertial hold uncoupled thrusting vector in body coordinates:

$$RCS = RCS + RCS_INH$$

The inertial attitude hold shall be indicated, for prediction, by ATT_FLAG = 1, and for propagation, by

|WBR| < EPS3

where $\underline{W}BR$ is the IMU-derived body rate in radians per second and EPS3 is the inertial hold tolerance.

4. If it is determined that the shuttle is maintaining an inertial-with-rate hold the total uncoupled thrusting acceleration shall be updated with a premission-determined inertial-with-rate uncoupled thrusting vector in body coordinates:

$$RCS = RCS + RCS BBQ$$

The inertial-with-rate attitude hold shall be indicated, for prediction, by the value ATT_FLAG = 2, and for propagation by

$$|M_1|$$
 to 3,1 · \underline{UR} SUN | < EPS4

where EPS4 is the inertial-with-rate tolerance.

The resulting uncoupled thrusting vector shall be incorporated into the total vent and uncoupled thrusting acceleration vector and rotated to M50 coordinates.

VENT_THRUST_BIAS is the body-relative estimated thrust acceleration bias vector.

When this acceleration bias vector is being estimated by the filter, the acceleration vector (also denoted as <u>VENT</u>) due to venting, uncoupled thrusting, and estimated acceleration bias is to be calculated as follows:

 \underline{V} ENT = M (\underline{V} ENT + \underline{R} CS + \underline{V} ENT THRUST BIAS)

When the acceleration bias vector is not being estimated by the filter, the equation remains valid, but the vector <u>VENT_THRUST_BIAS</u> shall be set equal to 0 by the initialization software.

4.2.1.3 Integration of State Equations of Motion

Two sets of equations of motion shall be utilized for the propagation of the position and velocity vector of the orbiter. Each of these sets is accompanied by its own integration scheme.

During powered flight navigation phases, the equations used have the form of a Taylor series truncated at the term in h³, where h is the step size. The integration scheme, called "Super-g", is an improved version of the average-g method, containing a corrector cycle. During phases in which short arcs of powered flight may be connected by short arcs of free flight, this integration method shall be in effect throughout. The only difference is that during the powered-flight arcs the non-gravitational accelerations shall be measured by the IMU's whereas in the free-flight arcs they shall be modeled.

During coasting flight navigation phases the equations of motion are to take the form of a variation-of-parameters method devised by S. Pines, where the parameters to be varied are the Cartesian initial conditions of the motion. The integration scheme to be used in connection with these equations is the Gill modification of the Runge-Kutta technique. This same scheme shall be utilized to propagate

the position and velocity vectors of the target vehicle during all rendezvous phases.

The following two subsections, 4.2.1.3.1 and 4.2.1.3.2 describe, respectively, the Super-g and the Precision integration algorithms.

4.2.1.3.1 Super-g

The Super-g integrator contains the following sequence of steps: it shall

- 1. Obtain, through its calling arguments, the flags required for invoking the acceleration function ACCEL_
 PERT_ONORBIT (that is, the degree and order of the gravitational potential, the drag mode, the vent mode and the attitude mode flag settings), the position and velocity vectors that are to be propagated, the time at which the new state is desired, the time interval of propagation and the difference between the current and the previous IMU accumulated sensed velocities (which could be zero). It shall internally rename these parameters respectively GD, GO, DFL, VFL, ATFL, R SUP, V SUP, T_CUR, DT and DV.
- 2. Advance the position vector with the use of the previous position and velocity vectors, the time interval DT, the acceleration vector <u>GR_NEW</u> saved from the previous cycle, and the value of <u>DV</u>:

R SUP = R SUP + DT [V SUP + .5 (DV + DT GR NEW)]

3. Evaluate an intermediate modeled acceleration vector with the input flag settings, the new position vector, the previous velocity vector and the new time:

GR_INT = ACCEL_PERT_ONORBIT (GD, GO, DFL, VFL,
ATFL, R SUP, V SUP, T CUR)

4. Introduce the central force term of the Earth's gravi-

ACCEL_PERT_ONORBIT function

GR INT = GR INT - EARTH MU R SUP/ R SUP/ 3

5. Advance the velocity vector with the use of an average modeled acceleration and the sensed velocity change \underline{DV} :

 \underline{V} SUP = \underline{V} SUP + $\underline{D}V$ + .5 DT (GR. INT + GR NEW)

6. Correct the value of the position vector:

 $R SUP = R SUP + (GR INT - GR NEW) DT^2/6.$

7. Find a new value of the acceleration vector, based on the advanced position and velocity vectors and their time tag, including the central force term:

 $\underline{GR} \underline{NEW} = \underline{GR} \underline{NEW} - \underline{EARTH} \underline{MU} \underline{R} \underline{SUP} | \underline{R} \underline{SUP} |^3$

The position and velocity vectors obtained constitute the required propagated state, and shall be placed in the out list of the integrator; <u>G_NEW</u> shall also be placed in the out list, for storage in a COMMON location where it can be accessed by Super-g for its next cycle, as well as by other users.

For details of the use of $\underline{ACCEL_PERT_ONORBIT}$, see section 4.2.1.2.

1 4

4.2.1.3.2 Precision

This subfunction, which provides precision integration of the orbiter or target position/velocity state equations of motion during coasting flight, shall use a fourth-order Runge-Kutta numerical integration technique, modified with Gill's coefficients, in conjunction with an equations-of-motion formulation developed by S. Pines. Noncentral body accelerations shall be generated by the acceleration models (sec. 4.2.1.2) to account for perturbations due to drag, venting and uncoupled thrusting, and variations in the Earth's gravitational potential. The precision integration computational scheme shall be performed as follows:

- 1. Gravity (GMD and GMO), drag (DM), venting (VM), and vehicle-attitude (ATM) mode flags shall be obtained, together with the integration step size (DELTA_T), initial state and time (R_IN, V_IN, and T_IN), and final time at the end of the integration interval (T_FIN).
- 2. The final time shall be evaluated relative to the initial time to reset the step size (DT_STEP) to a positive or negative value, to permit forward or backward integration. If the final time (T_FIN) is less than the initial time (T_IN), then:

DT_STEP = - DELTA_T
Otherwise,

DT_STEP = DELTA_T

Since the same Runge-Kutta-Gill integration technique shall be used for the state propagation and prediction functions, the Adams-Moulton flag (AM) is set to OFF, as only Runge-Kutta-Gill integration is performed for propagation. In addition, the integrator time shall be set to zero and the initial state vector shall be renamed for use in the Pines equations-of-motion formulation:

AM = OFF

$$T_{CUR} = 0$$
.
 XN_{1} to $3 = \frac{R}{L}IN$
 XN_{4} to $6 = \frac{V}{L}IN$
 $XN_{7} = 0$.

In the above equations, a seventh variable of integration (XN_7) is initialized to zero as required by the Pines technique. This seventh variable is the integrated initial time.

4. Next, the number of integration steps (N_STEPS) required for the input integration interval shall be calculated:

N_STEPS = TRUNCATE
$$\left(\frac{T_FIN - .T_IN}{DT_STEP}\right) + 1$$

5. The actual integration of the orbiter or target state equations (formulated according to the Pines technique) shall now be performed by proceeding as follows for each step in the integration interval. Note that, in the Pines equations-

-of-motion formulation, it is the initial conditions (R_IN, V_IN, and T_IN) that are integrated and then used in the closed-form solution of a two-body, unperturbed orbital problem using an F- and G-series type expression.

On each step, a check shall be made to evaluate the number (I) of the current step. If the integrator is on the final step (i.e., $I = N_STEPS$), then the integration step size (DT_STEP) shall be adjusted such that the last step will complete the integration to the final time:

The fourth-order Runge-Kutta-Gill integration technique shall then be invoked in conjunction with the Pines formulation as follows.

The Runge-Kutta-Gill integrator shall first save the initial integrator time of the current step:

Then, for each of four (i.e., J = 1 to 4) Runge-Kutta-Gill evaluations,

$$T_CUR = T_STOR + A_1 B_J DT_STEP$$

The Pines equations-of-motion formulation shall then be exercised to calculate the derivatives of the initial conditions (DERIV), and the Runge-Kutta-Gill integration is continued:

4.34.34

$$P = DT_STEP DERIV_{L}$$

$$XN_{L} = XN_{L} + A_{J} (P - B_{J} Q_{L})$$

$$Q_{L} = C_{J} P + D_{J} Q_{L}$$

$$L = 1 \text{ to } 7$$

where

A,B,C,D = premission-loaded arrays (J = 1 to 4)

containing coefficients required for

this formulation of the Runge-Kutta
Gill integration technique

DERIV = an array containing the total derivatives

of the initial conditions at the current

time.

The Pines formulations is evaluated as follows:

a. Several terms used in the F- and G-series calculations for the closed-form two-body equations are computed.

The conic solution subfunction (F AND G) shall then be invoked to calculate several terms used in the computation of the conic velocity vector (X_{4 to 6}) and the initial condition derivatives and compute the two-body conic position vector $(X_1, t_0, 3)$ as follows (see section 4.2.7)

IN LIST: SMA, DELTAT, C1, XN₁ to 3, O., R_IN_INV, O.,

XN_{4 to 6}, D_IN, 0.

OUT LIST: F, G, FDOT, GDOT, SO, S1, S2, S3,

X_{1 to 3}, R_FIN_INV, THETA

The two-body velocity vector shall then be computed:

$$X_4$$
 to 6 = FDOT XN_1 to 3 + GDOT XN_4 to 6

The perturbation accelerations shall now be calculated and several computations shall then be performed to compute perturbation derivatives for F- and G-series type terms for use in calculating the total derivatives of the seven variables of integration:

 $P = ACCEL_PERT_ONORBIT (GMD, GMO, DM, VM, ATM,$

$$D_TAU = X_1 \text{ to } 3 \cdot \underline{P}$$

$$D_AUX = X_4$$
 to 6 · P

$$C2 = C1^2$$
 $C3 = 1./C2$ $C4 = C2 D_AUX$

C5 = C4 S1

Finally, the total derivatives of the variables of integration are to be computed as follows:

DERIV₁ to 3 = GD_TAU
$$X_1$$
 to 3 - G_TAU X_4 to 6 - G P
DERIV₄ to 6 = -FD_TAU X_1 to 3 + F_TAU X_4 to 6 + F P
DERIV₇ = S6 - 3, C1 C4 SMA THETA - C5/R_FIN_INV

- 6. After the required number of integration steps (N STEPS) has been completed a final call shall be made to the Pines formulation to calculate the position and velocity vectors $(X_1 to 3 and X_4 to 6)$ by applying the integrated initial conditions to the Pines equations defining the closedform two-body solution.
- Finally, the position and velocity vectors are to be renamed for output, and a new gravity acceleration vector (G NEW) is to be calculated:

 $RFIN = X_1$ to 3

 $VFIN = X_4$ to 6

ORIGINAL PAGE IS OF POOR QUALITY

4.2.2 Covariance Matrix Propagation

The onorbit covariance matrix propagation subfunction will propagate the covariance matrix forward in time by using the state transition matrix. Additive process noise will be incorporated to account for unmodeled state and dynamic errors.

The transition matrix is broken into two parts - PHI, dimensioned 9 by 9 which corresponds to the first nine states (orbiter position and velocity and acceleration bias estimates) in the total transition matrix; and PHI_REND, dimensioned 10 by 10, which corresponds to the last ten states (target position and velocity, and rendezvous sensor bias estimates) in the total transition matrix and is used only during rendezvous. So the upper left 9 by 9 portion of the covariance matrix, E, is always propagated onorbit, but the rest of the covariance matrix is propagated only during rendezvous.

The propagation of the upper left 9 by 9 portion of E will be formulated for the free-flight phase differently than for the powered-flight phase. For free flight the full 9 by 9 portion will be propagated, defining uncertainties in position, velocity, and estimated acceleration biases. For powered flight, only the 6 by 6 portion of the covariance matrix associated with position and velocity uncertainties will be propagated.

The components of the state transition matrix are mathematically defined as the partials of the current state with re-

spect to the previous state. For free-flight phases, PHI will be formulated as shown in Figure 4.2.2-1.

Figure 4.2.2-1. State Transition Matrix Composition - Free Flight

This matrix is subdivided into the following submatrices:

1. A 6 by 6 submatrix, PHI₁ to 6, 1 to 6, composed of the orbiter position and velocity portion of the total transition matrix. This submatrix is calculated by the mean conic partials subfunction as described in section 4.2.8. The following assignments must be made.

R ONE = R LAST

V ONE = V LAST

G ONE = TOT ACC LAST

R TWO = R FILT

 \underline{V} TWO = \underline{V} FILT

 \underline{G} TWO = \underline{T} OT_ACC

DELTIM = DT_FILT

Then after the mean conic partials subfunction has executed:

2. A 6 by 3 submatrix, PHI₁ to 6, 7 to 9, composed of two
3 by 3 matrices, that correlates the position and velocity

with the estimated bias accelerations.

Where

where

$$DIAG_{I} = TAU_{VENT_{I}} (1. - PHI_{I} + 6, I + 6)$$

3. A 3 by 3 diagonal submatrix, PHI_7 to 9, 7 to 9, that represents the bias portion of the transition matrix. Where

PHI_I + 6, I +
$$6^{\circ}$$
 e^{-DT_FILT/TAU_VENT}I (for I = 1 to 3)

4. Two 3 by 3 null matrices.

The state noise covariance matrix, S, shall be formulated as shown in Figure 4.2.2-2. This matrix is to be used to account for unmodeled state errors and uncertainty in unmodeled accelerations.

$$S = \begin{bmatrix} S_1 & \text{to } 3, 1 & \text{to } 3 \end{bmatrix} \begin{bmatrix} S_1 & \text{to } 3, 4 & \text{to } 6 \end{bmatrix} \begin{bmatrix} 0 \\ 3x3 \end{bmatrix}$$

$$S = \begin{bmatrix} S_4 & \text{to } 6, 1 & \text{to } 3 \end{bmatrix} \begin{bmatrix} S_4 & \text{to } 6, 4 & \text{to } 6 \end{bmatrix} \begin{bmatrix} 0 \\ 3x3 \end{bmatrix}$$

$$S = \begin{bmatrix} S_4 & \text{to } 6, 1 & \text{to } 3 \end{bmatrix} \begin{bmatrix} S_4 & \text{to } 6, 4 & \text{to } 6 \end{bmatrix} \begin{bmatrix} 0 \\ 3x3 \end{bmatrix}$$

$$S = \begin{bmatrix} S_4 & \text{to } 6, 1 & \text{to } 3 \end{bmatrix} \begin{bmatrix} S_4 & \text{to } 6, 4 & \text{to } 6 \end{bmatrix} \begin{bmatrix} 0 \\ 3x3 \end{bmatrix} \begin{bmatrix} S_7 & \text{to } 9, 7 & \text{to } 9 \end{bmatrix}$$

Figure 4.2.2-2. State Noise Covariance Matrix Composition - Free Flight

The entries in Figure 4.2.2-2 will be defined as follows:

$$S_4$$
 to 6, 4 to 6 = $\underline{D}IAG \ \underline{D}IAG^T$

where

for I = 1 to 3

The covariance matrix, E, will then be propagated by the following equation:

El to 9, 1 to 9 PHI El to 9, 1 to 9 PHI + S

The powered-flight phase will be indicated by the PWRD_FLT_

NAV parameter being set to ON. During this phase, the covariance matrix will be propagated by the following equation:

E₁ to 6, 1 to
$$6^{=\text{PHI}}$$
 1 to 6, 1 to 6^{E} 1 to 6, 1 to 6^{PHI} 1 to 6, 1 to

The 6 by 6 matrix, PHI_1 to 6, 1 to 6, will be defined as being identical to the free-flight phase.

The 6 by 6 state noise matrix, S_1 to 6, 1 to 6, will be formulated as follows: First, the misalinement errors are accounted for by

	DV_FILT3 DIAG2 + DV_FILT2 DIAG3	-DV_FILT ₁ DV_FILT ₂ DIAG ₃	-DV_FILT ₁ DV_FILT ₃ DIAG ₂
S ₄ to 6, 4 to 6 =	-DV_FILT ₁ DV_FILT ₂ DIAG ₃	DV_FILT ² DIAG ₃ + DV_FILT ² DIAG ₁	-DV_FILT2 DV_FILT3 DIAG1
	-DV_FILT ₁ DV_FILT ₃ DIAG ₂		DV_FILT ² DIAG ₂ + DV_FILT ² DIAG ₁

 S_1 to 3; 4 to $6^{=0.5}$ DT_FILT S_4 to 6, 4 to 6

 S_4 to 6, 1 to 3° S_1 to 3, 4 to 6

 S_1 to 3, 1 to 3 = .5 DT_FILT S_1 to 3, 4 to 6

where

 $DIAG_{I} = VAR_{IMU}ALIGN_{I} + (T_{LAST_{ILT}} - T_{ALIGN})^{2} VAR_{IMU}DRIFT_{I}$ (for I = 1 to 3)

The accelerometer errors are then accounted for by

where

During rendezvous the rest of the covariance matrix must be propagated. This is accomplished by using a 10 by 10 state transition matrix PHI_REND, formulated as shown in figure 4.2.2-3.

PHI_REND₁ to 6, 1 to 6
$$0_{3x6}$$

PHI_REND₇ to 10, 7 to 10

Figure 4.2.2-3. State transition matrix-rendezvous.

This matrix is subdivided into the following submatrices:

1. A 6x6 submatrix, PHI_REND₁ to 6, 1 to 6, composed of the target position and velocity portion of the total transition matrix. The submatrix is calculated by the mean conic partials subfunction as described in section 4.2.8. The following assignments must be made.

$$R$$
 ONE = R TV_LAST

Then after the mean conic partial subfunction has executed:

 A 4x4 submatrix, PHI_REND₇ to 10, 7 to 10, composed of the sensor bias portion of total transition matrix.
 Where

PHI_REND
$$I + 6$$
, $I + 6 = e^{-DT} F1LT/TAU_SENS_I$ (for $I = 1$ to 4)

The state noise matrix is formulated for rendezvous as follows.

$$S_{REND}I + 6$$
, $I + 6 = TAU_{SENS}I VAR_{SENS}DT_{I} (1 - PHI_{REND}^{2}I + 6$, $I + 6) (for I = 1 to 4)$

The rest of S_REND is zero.

The remainder of the covariance matrix is propagated as follows.

Finally the entire 19 by 19 covariance matrix is made symmetric.

$$E_{J, I} = E_{I, J}$$
 (for $I = 1, 13; J = I + 4, 19$)

4.2.3 State Vector Interpolation

The state vector interpolation subfunction shall provide the approximate position, velocity and acceleration of either the orbiter or the target at a specified time within a given propagation interval, at both ends of which these vectors are known.

The time at which the vectors are desired is the time of an external sensor measurement, and the purpose of the interpolation is to enable the navigation filter to calculate the measurement residuals at that time.

The method utilized for the interpolation shall consist of defining a mean conic on the basis of the positions and velocities of the vehicle in question at both ends of the propagation interval, and obtaining the desired vectors as if the vehicle moved along this mean conic. That is, a calculation shall be made to determine the point on the mean conic corresponding to the time of the measurement, and the velocity and position of such a point shall be taken as the state of the vehicle.

If the time of the measurement is very close to the final time of the propagation interval (that is, within a tolerance that depends on the type of sensor utilized) the position, velocity and time tag will be taken as those of the final time.

The modeled acceleration shall be obtained by invoking the acceleration function with the position, velocity, and time (determined by this process) in the calling arguments, and adding the central force term. The sensed acceleration shall be found by dividing the difference in accumulated sensed velocities at both ends of the propagation interval by the duration of the interval. The total acceleration will be the sum of these two.

In more detail, the state vector interpolation subfunction shall be invoked with a calling list that contains

R ONE position and velocity of the vehicle at the V ONE previous propagation step; R TWO current position, velocity and time tag; V TWO T TWO V IMU DIF difference between IMU accumulated sensed velocities at the current time and at the previous time; T DIF duration of the propagation interval; SENSOR ID identifier of the sensor used for the measurement in question; difference between the current time and the DTGO measurement time; IGD flags for the call to the acceleration function ACCEL PERT_ONORBIT (see section 4.2.1.2 for IGO IDM details of these flags). IVM

IATM

Then, the following steps shall be taken

 A local variable, DELTAT, shall take the place of DTGO with anegative sign (to propagate backwards from the current filter time, along the mean conic)

DELTAT = -DTGO

- 2. A check of the absolute value of DELTAT against the tolerance corresponding to the sensor type will be performed $|\text{DELTAT}| \leq \text{EPS_TIME} \text{ SENSOR ID}$
 - 2.1 If it is found that DELTAT in absolute value is less than the tolerance, the values of the position and velocity of the vehicle at the current time shall be used as the state at the measurement time; the time tag at the measurement instant shall also be set equal to the current time:

 $\frac{R}{R} RESID = \frac{R}{R} TWO$ $\frac{V}{R} RESID = \frac{V}{T} TWO$ T RESID = T TWO

- 2.2 If, on the other hand, the difference between the time of the measurement and the current time exceeds the tolerance, perform the following:
 - 2.2.1 Certain parameters associated with the mean conic shall be obtained

R_TWO_INV = 1./|R_TWO|

SMA = 1./[1./|R] ONE| + R_TWO_INV - (V_ONE)

V_ONE + V_TWO.V_TWO)/(2.EARTH_MU)]

 $C1 = SQRT (SMA)/SQR_EMU$

 $D TWO = R TWO \cdot V TWO C1/SMA$

and the time tag of the state vector at measurement shall be set;

T_RESID = T_TWO + DELTAT

2.2.2 The F and G series subfunction shall then be called (see section 4.2.7 for the description of this subfunction)

CALL: F_AND_G

OUT LIST: F, G, FDOT, GDOT, SO, S1, S2, S3, R RESID, R FIN INV, THETA

The position vector (\underline{R} RESID) comes out of this call; the velocity vector (\underline{V} RESID) does not, but it can be calculated on the basis of FDOT and GDOT, which are also obtained from the F and G series call:

V RESID = FDOT R TWO + GDOT V TWO

3. Finally, the acceleration vector shall be obtained.

A RESID = -EARTH_MU R RESID/|R RESID|3 + ACCEL_PERT

ONORBIT (IGD, IGO, IDM, IVM, IATM, R RESID,

V RESID, T RESID) + V IMU DIF/T DIF

A suggested implementation of this subfunction may be found in Appendix B, with the name ONORBIT_SV_INTERP.

4.2.4 State and Covariance Measurement Incorporation (Kalman Filter)

This subfunction shall use a Kalman filter to incorporate the measurement data to update the covariance matrix and the state vector. To perform these tasks, the Kalman filter uses the covariance matrix, measurement partials, measurement residual, and the priori measurement variance.

If the measurement data have been judged valid and the proper measurement subfunction has been executed, the following update equations are to be computed. (Note: The measurement subfunction generates the partial vector, the residual, and the a priori variance.)

First, the scalar quantity BT_E_B is to be calculated from the covariance matrix E and vector measurement partials B_E

$$EB_COPY = E B$$

$$BT E B = B \cdot EB COPY$$

where the second equation requires a dot product. The partials vector <u>B</u>.shall then be set equal to zero so that subsequent measurement subroutines will only be required to calculate non-zero elements. The quantity MS_DELQ, which represents the expected variance in the measurement, is then to be computed by

$$MS_DELQ = BT_E_B + VAR$$

A residual edit shall then be performed. The EDIT_FLAG is to be set to "ON" to inform the crew if the edit fails - that is, if the square of the residual is greater than the quantity RESID_TEST, where RESID_TEST = K_RES_EDIT_MS_DELQ and K_RES_EDIT is a premision constant; otherwise the flag is set to "processed". However, the residual edit is over-ridden or inhibited, when the manual edit override for the particular sensor being processed is active. This results in measurement incorporation, and the edit flag is set to "FORCED".

If there is no edit or if a "force" exists, the subfunction shall then compute the Kalman filter gain,

OMEGA = EB_COPY/MS_DELQ
and update the covariance matrix,

E = E - OMEGA EB_COPY

where the implied multiplication of the two vectors denotes the dyadic or "outer" product. This subfunction shall update the state vector by application of the following equations:

R FILT = R FILT + OMEGA 1 to 3 DELQ

V FILT = V FILT + OMEGA 4 to 6 DELQ

VENT_THRUST_BIAS = VENT_THRUST_BIAS + OMEGA 7 to 9 DELQ

R TV = R TV + OMEGA 10 to 12 DELQ

V TV = V TV + OMEGA 13 to 15 DELQ

SENSOR_BIAS = SENSOR_BIAS + OMEGA 16 to 19 DELQ, where DELQ corresponds to the appropriate measurement residual. The edit flag corresponding to the appropriate measurement subfunction is then to be set to indicate that the measurement data have been processed rather than edited.

This subfunction shall also be used to compute the residual test quantity for manually selected sensor types whenever the filter is not incorporating data. This quantity, together with residuals calculated by the measurement subfunctions, is required for display purposes. A flag corresponding to the appropriate measurement type shall be set by the navigation sensor selection task to prevent Kalman filter gain computations and state and covariance matrix updates under this condition. The filter edit flag shall be set to "STAT", in this case, to indicate to Measurement Processing Statistics (sec. 4.3.2.8) that the data have been computed for display purposes only.

It is required that the residual, the residual test quantity (RESID_TEST), and the residual edit flag corresponding to each measurement subfunction be saved for display purposes.

4.2.5 Ground Updates (auto inflight)

The auto inflight update task shall perform the following functions for orbiter and/or target vehicles:

- Initialize onboard position and velocity state vectors to uplinked M1950 whole vectors, predicted to current time;
- 2. Initialize the onboard filter covariance matrix using prestored (or uplinked) position and velocity standard deviations and correlation coefficients (in UVW coordinate system), and using prestored covariance values for unmodeled acceleration bias error (in body coordinate system).

This task shall be available during both onorbit and rendezvous navigation phases, and shall be performed as follows:

1. A flag, DO_AUTO_UPDATE, shall be tested once per navigation cycle to determine whether an update shall be performed. If such an update is to occur (DO_AUTO_UPDATE = ON, as set by the ground uplink processor), then the update process shall be performed as specified by the remaining steps, below. If an update is not to occur (DO_AUTO_UPDATE = OFF), then a second flag (DID_AUTO_UPDATE) shall be maintained in an OFF status.

2. If the DO_AUTO_UPDATE flag is ON, then an orbiter vehicle uplink flag (OV_UPLINK) is tested to see if the uplinked data pertains to the orbiter vehicle

OV_UPLINK = ON, orbiter data uplinked

OV_UPLINK = OFF, no orbiter data uplinked

If orbiter data has been uplinked, then the following shall be performed to reinitialize the onboard orbiter state vector and associated covariance matrix

a. set the upper left 9x9 portion of the covariance matrix to zero

$$E_1$$
 to 9. 1 to 9 = 0.

b. if in a rendezvous navigation phase (i.e., if REND_NAV_FLAG = ON) then all correlation terms between orbiter position/velocity/unmodeledacceleration bias and the remaining elements of the 19x19 rendezvous covariance matrix shall be zeroed

$$E_1$$
 to 9, 10 to 19 = 0.
 E_{10} to 19, 1 to 9 = 0.

c. predict the uplinked position and velocity vectors (R_GND, V_GND) at time T_GND , to current time $(T_CURRENT_FILT)$ by use of the onorbit precision state prediction principal function

CALL: ONORBIT_PREDICT

OUT LIST: R FILT, V FILT

Section 4.5.2 describes the requirements for setting the parameters GM_DEG, GM_ORD, DRAG_MODE_NAV, VENT_MODE_NAV and PREC_STEP, for orbiter state prediction.

d. initialize the orbiter position/velocity 6x6 covariance submatrix from prestored (or uplinked) standard deviations and correlation coefficients in UVW coordinates by use of the covariance initialization subfunction described in section 4.2.9

CALL: ONORBIT_COVINIT_UVW

IN LIST: SIG_UPDATE, COV_COR_UPDATE,

R FILT, V FILT

OUT LIST: E₁ to 6, 1 to 6

e. initialize the 3x3 covariance submatrix (diagonal elements) to prestored values (in body-axis coordinates), and zero the corresponding state vector elements

f. compute the total orbiter acceleration vector at current time for use in the state propagation subfunction, TOT ACC = ACCEL PERT ONORBIT (GM_DEG, GM_ORD,

1,1,0, R_FILT, V_FILT, T_CURRENT_FILT)

- EXKTH MU R_FILT/|R_FILT|³

g. and, finally, the OV_UPLINK flag shall be set to OFF.

Next (whether or not orbiter data had been uplinked), the target vehicle uplink flag (TV_UPLINK) shall be tested in determining whether the uplinked data pertains to the target vehicle

TV_UPLINK = ON, target data uplinked

TV_UPLINK = OFF, no target data uplinked

If target data has been uplinked, then the following shall

be performed to re-initialize the onboard target state vector and associated covariance matrix.

a. if in a rendezvous navigation phase (i.e., if REND_NAV_FLAG = ON) zero the lower right covariance submatrix pertaining to the target vehicle position and velocity vectors, and the rendezvous sensor systematic biases... and also zero all correlation terms (covariance elements) between orbiter-position-velocity-unmodeled-acceleration and target-position-velocity-sensor-systematic-bias

 E_{10} to 19, 10 to 19 = 0.

 E_1 to 9, 10 to 19 = 0.

 E_{10} to 19, 1 to 9 = 0.

b. also, predict the uplinked position and velocity vector

(R_TV_GND, V_TV_GND) at time i_Tv_und, to current time

(T_CURRENT_FILT) by use of the onorbit precision state

prediction principal function

CALL: ONORBIT_PREDICT

IN LIST: GM_DEG, GM_ORD, DRAG_MODE_NAV, 0, 3,

PREC_STEP, R_TV_GND, V_TV_GND,

T_TV_GND, T_CURRENT_FILT

OUT LIST: R TV, V TV

Section 4.5.2 describes the requirements for setting the parameters GM_ORD, GM_DEG, DRAG_MODE_NAV and PREC_STEP for target state vector prediction.

c. initialize the target position/velocity 6x6 covariance submatrix from prestored (or uplinked) standard deviations and correlation coefficients in UVW coordinates, by use of the covariance initialization subfunction described in section 4.2.9

CALL: ONORBIT_COVINIT_UVW

IN LIST: SIG_TV_UPDATE, COV_COR_TV_
UPDATE, R_TV, V_TV

OUT LIST: E₁₀ to 15, 10 to 15

d. finally, compute the total target acceleration vector at current time for use in the state propagation subfunction. G TV = ACCEL_PERT_ONORBIT (GM_DEG, GM_ORD, DRAG_ MODE_NAV, 0, 3, PREC_STEP, R_TV, V_TV, T_ CURRENT_FILT) - EARTH MJ R_TV/|R_TV|³

tika kija kapa i semagaka aliku ata menerampika ana ara ilajak angara alika kaja ara ilaja kaja kaja kaja kaj

e. if not in a rendezvous navigation phase (see a., above), then the uplinked target vehicle data shall be stored for use in a rendezvous phase

> \underline{R} TV = \underline{R} TV GND \underline{V} TV = \underline{V} TV GND T TV = T TV GND

f. next, whether in a rendezvous navigation phase or not, a flag (TARG_VEC_AVAIL) shall be set to ON indicating the existence of a target vector (for later use by the orbit/rendezvous navigation sequencer principal function in initializing the target state)

TARG_VEC_AVAIL = ON

and, finally the TV_UPLINK flag shall be set to OFF,
indicating that the target uplink re-initialization
has been completed.

- 3. Once orbiter and/or target state and covariance matrices have been re-initialized, the following shall be performed:
 - a. if in a rendezvous navigation phase (i.e., if REND_NAV_FLAG = ON), set all sensor processing flags to the OFF state

DO_RR_ANGLES_NAV_LAST = OFF

DO_RRDOT_NAV_LAST = OFF

DO_ST_ANGLES_NAV_LAST = OFF

4.2.5-6

DO COAS ANGLES NAV LAST = OFF

- b. regardless of whether in a rendezvous navigation phase or not, a different flag (DID_AUTO_UPDATE) shall be set to the ON state for transmittal back to the ground uplink processor; this setting indicates the update has been performed (orbiter and/ or target).
- 4. If no update (either orbiter or target) is to be performed (i.e., the DO_AUTO_UPDATE flag was tested and found to be in the OFF state) then the flag (DID_AUTO_UPDATE) shall be maintained as OFF.

The first flag (DO_AUTO_UPDATE) shall be reset to OFF by the ground uplink processor before the next navigation cycle.

4.2.6 Angle Measurement Partials

The angle measurement partials common subfunction computes the measurement partials for an angle type measurement during rendezvous navigation.

The angle measurement partial vector is computed with the following equations.

RHO = R TV_RESID - R RESID

RHO PLANE = R RHO - (R RHO·I N) I N

B TEMP = UNIT (RHO PLANEXI N)/|RHO PLANE|

B to 6 = (PHI_PATCH_1 to 3, 1 to 6)
$$^{T}B$$
 TEMP

B to 15 = -(PHI_REND_PATCH_1 to 3, 1 to 6) ^{T}B TEMP

B to 17 = 0.

where the unit vector <u>I N</u> corresponds to the appropriate row of the mean of 50 to sensor transformation matrix for the measurement being processed and PHI_PATCH and PHI_REND_PATCH are transition matrices formulated as part of the state interpolation process.

4.2.7 Conic Solution (F and G Series)

The conic solution subfunction, utilized by the state vector interpolation, position-velocity submatrix of state transition matrix, and precision integration subfunctions shall provide the capability to trace the progress of a point along its orbit assuming pure Keplerian motion, by means of the F and G series algorithm in terms of the eccentric anomaly.

The variables F and G, F and G shall be calculated as functions of the difference in eccentric anomaly between an initial time at which a position and a velocity vector are known and a final time at which they are required.

If the final position and velocity are known, the difference in eccentric anomaly can be easily calculated and the F, G, F and G expressions can be obtained with the use of certain auxiliary variables called here SO, S1, S2, and S3.

If the final position and velocity are not known but only the transfer time, it is necessary to solve a form of Kepler's equation to obtain the difference in eccentric anomaly.

The conic solution subfunction shall have the following calling arguments:

SMA - semi major axis of the conic,

DELTAT - transfer time,

Cl - an auxiliary constant, equal to the square root

of SMA divided by the square root of the Earth's gravitational constant,

R IN - the initial position vector (M1950),

R FIN - the final position vector (M1950) (if unknown, a zero vector shall be input),

R IN INV - the reciprocal of the magnitude of R IN,

R_RIN_INV - the reciprocal of the magnitude of R_FIN (if unknown, a zero shall be input),

V IN - the initial velocity vector (M1950)

D_IN - the dot product of the initial position and velocity vectors, and

D_FIN - the dot product of the final position and velocity
 vectors (if unknown, a zero shall be input).

The conic solution subfunction shall then perform the following:

- Check the value of R_FIN_INV to see if Kepler's equation is to be solved.
- 1.1 If R_FIN_INV ≠ 0., which indicates that the final position
 vector is already known, the difference in eccentric
 anomaly shall be obtained from the expression
 THETA = (C1(D_FIN-D_IN) + DELTAT/C1)/SMA
 - 1.2 If R_FIN_INV = 0., the final position vector is to be calculated. This requires solving a modified form of Kepler's equation, which shall be accomplished by an iterative process that consists of the following steps:
 - 1.2.1 Two auxiliary quantities shall be obtained from the input data:

ONEMRIN = (SMA - 1./R_IN_INV)/SMA D_MN_AN = DELTAT/(C1 SMA) D_MN_AN is the difference in mean anomaly, which shall be taken as a first approximation to the difference in eccentric anomaly, THETA. A correction to this quantity, THETA_COR, shall be set at a high value to begin the iteration:

THETA = D_MN_AN

THETA COR = 10.

1.2.2 Then THETA and THETA_COR shall be recalculated until THETA_COR becomes smaller than a given tolerance:

DO UNTIL

THETA_COR < EPS_DEP,

by repeatedly evaluating the equations

SO = COS (THETA)

S1 = -SIN (THETA)

S2 = 1. -S0

ERR = D_NM_AN-THETA-D_IN S2 + ONEMRIN S1

THETA_COR = ERR/(1. + D_IN S1 - ONEMRIN S0)

THETA = THETA + THETA_COR

When the difference in eccentric anomaly is determined, certain auxiliary variables shall be calculated

SO = COS (THETA)

S1 = SIN (THETA)

S2 = 1. -S0

S3 = THETA - S1

The values of F and G shall then be determined:

 $F = 1. - SMA S2 R_IN_INV$

G = DELTAT - C1 SMA S3

4. If the final position vector and the reciprocal of its magnitude were not known, they shall be calculated:

IF R_FIN_INV = 0., then set
R_FIN = F R_IN + G V_IN
R_FIN_INV =
$$1./|R|$$
 FIN|

5. The functions F and G, required for the calculation of the final velocity vector, shall be evaluated:

Finally, the out list of the conic solution subfunction shall contain the following quantities, (different users require different sets of these):

F, G, DOT, GDOT, SO, S1, S2, S3, R FIN, R FIN INV, THETA

A suggested implementation, in the form of a detailed flow chart, may be found in Appendix B, under the name F_AND_G.

4.2.8 Position - Velocity Submatrix of State Transition
Matrix

This subfunction computes a 6x6 submatrix (PHI_MC) of a larger state transition matrix. PHI_MC is the partial derivative of the new position - velocity state with respect to the old position velocity state.

A formulation is used which assumes that a mean conic section may be used to describe the path taken between the initial position and velocity (\underline{R} ONE and \underline{V} ONE) at initial total acceleration (\underline{G} ONE) and the final position and velocity (\underline{R} TWO and \underline{V} TWO) at final total acceleration (\underline{G} TWO) over a time step DELTIM. The ergodic semi-major axis SMA, is computed by using the average of the reciprocal of the semi-major axis derived from combinitation of the respective vis-viva computations at the initial and final orbital states, and is given by:

SMA =
$$1./(1./|R|ONE| + 1./|R|TWO| - (|V|ONE|^2 + |V|TWO|^2)/$$

2. EARTH_MU).

where EARTH_MU is the earths gravitational constant. The Stumpff constant, C1, predicated on the mean conic semi-major axis, is computed by:

Then the Kepler subfunction, F AND G, is called by supplying

SMA,

DELTAT = DELTIM,

C1,

RIN = RONE

R IN INV = 1./R ONE

R = IN = 1./R = IWO,

V IN = V ONE,

D IN = R ONE · V ONE, and

 $D_{FIN} = R_{TWO \cdot V} TWO$,

in that order

The Kepler subfunction returns the output F, G, FDOT, GDOT, SO, S1, S2, and S3. For this case \underline{R} TWO and \underline{R} TWO_INV are not updated since \underline{R} TWO_INV is supplied as a non-zero quantity. However THETA, the eccentric anomaly angle is generated as an output in any case.

After computing certain auxillary constants such as

FM1 = F-1.,

GDM1 = GDOT-1.,

S1 = C1 S1,

 $C2 = C1^2$,

CONST = (C1 C2 THETA (2. + S0) - 3. C2 S1) SMA, and

S2 = C2 S2,

which represent common functionals and Stumpff series summa-

tions for circular or elliptical orbits; the partial derivatives may now be calculated. The following equations for the partial derivatives are written algebracially for clarity, (Figure 4.2.8-1), with R representing R ONE, R representing R TWO, R representing V ONE, R representing V TWO, R representing G ONE, R representing G TWO, f representing F, g representing G, f representing FDOT, g representing GDOT and U representing CONST, as well as having lower case letters representing the scalar magnitude of the respective upper case letter vectors.

Certain recurring groups of symbols may be collected to facilitate ease of coding and minimization of error. (See the flow chart MEAN_CONIC_PARTIAL_TRANSITION_MATRIX_6X6 in Appendix B). Each 3X3 submatrix of the 6X6 matrix PHI_MC results from the summation of 3X3 matrices generated by the dyadic product of groups of vectors of length three.

PHI_MC₁ to 3, 1 to 3 =
$$\frac{\partial R}{\partial R_0} = \begin{bmatrix} \frac{1}{f} S_1 + (f-1)/r_0 \\ r_0 \end{bmatrix} \begin{bmatrix} R R_0 & T_{-f} S_2 & R R_0 \\ r_0 \end{bmatrix} + (f-1) S_1 & R R_0 \\ + (f-1) S_2 & R R_0 & T_{-f} & R_0 \\ + (f-1) & R_0 & T_{-f} & R_0 \end{bmatrix}$$

PHI_MC₁ to 3, 4 to 6 =
$$\frac{\partial R}{\partial R_o}$$
 = - f S₂ R R₀ T - (g - 1) S₂ R R₀ T + (f - 1) S₂ R R₀ T + g S₂ R R₀ T + g I - U R R₀ T

PHI_MC₄ to 6, 1 to 3 =
$$\frac{3\dot{R}}{3R_0}$$
 = $-\frac{\dot{f}}{f} \left(\frac{S_0}{r} + \frac{1}{r^2} + \frac{1}{r^2} \right) R R_0 T - \left[\frac{\dot{f}}{s_1} + \frac{(\dot{g} - 1)/r}{r} \right] R \dot{R}_0 T$
+ $\left[\frac{\dot{f}}{s_1} + \frac{(\dot{f} - 1)/r_0}{r_0} \right] \dot{R} R_0 T + \dot{f} S_2 \dot{R} \dot{R}_0 T + \dot{f} I + U \dot{R} \dot{R}_0 T$

PHI_MC 4 to 6, 4 to 6 =
$$\frac{3R}{3\tilde{R}_0} = -\left[\frac{\dot{f} S_1 + (\dot{g} - 1)/r}{::r}\right]_{::r} R_0 T - \frac{(\dot{g} - 1) S_1}{r}_{r} R_0 T + \dot{f} S_2 R_0 T$$

$$+ (\dot{g} - 1) S_2 R_0 T + \dot{g} I - U R_0 T$$

FIGURE 4.2.8-1 Position - Velocity Portion of State Transition Matrix.

4.2.9 Covariance Matrix Initialization

In circumstances in which the orbiter or target position and velocity elements of the onboard filter covariance matrix are to be initialized to UVW values, the following steps shall be performed (in the order indicated):

 data shall be input to this subfunction as described by the inlist below

IN LIST: SIG, COR, R, V

where \underline{SIG} is a 6-element vector of standard deviations in the UVW coordinate system

SIG₁, U - position

SIG₂, V - position

SIG₃, W - position

 SIG_A , U - velocity (U)

 SIG_5 , V - velocity (V)

SIG₆, W - velocity (W)

and where \underline{COR} is a 7-element vector of correlation coefficients, also in the UVW coordinate system

COR, correlation between U-V

COR2, correlation between U-U

COR3, correlation between U-V

COR, correlation between V-U

COR₅, correlation between V-V

COR6, correlation between W-W

COR7, correlation between U-V

and where \underline{R} and \underline{V} are the current orbiter or target position and velocity vectors, respectively, in M50 coordinates.

- the current 6X6 covariance matrix shall be zeroed
 E_TEMP = 0.
- 3. the diagonal elements of E_TEMP shall be computed $E_{I,I} = SIG_{I} SIG_{I}, \text{ for } I = 1,6$
- 4. next, position and velocity submatrix elements as well as the upper right position-velocity covariance elements shall be computed

5. and, finally, a transformation matrix from UVW to M50 coordinate systems is acquired at current time, and used to rotate the E_TEMP matrix into the M50 system. The lower left position-velocity covariance is also defined

M = UVW_TO_M50 (R, V)

E_TEMP1 to 3, 1 to 3 = M E_TEMP1 to 3, 1 to 3 M^T E_TEMP4 to 6, 4 to 6 = M E_TEMP1 to 3, 4 to 6 M^T E_TEMP1 to 3, 4 to 6 = M E_TEMP1 to 3, 4 to 6 M^T E_TEMP4 to 6, 1 to 3 = (E_TEMP1 to 3, 4 to 6)

6. the 6X6 covariance matrix E_TEMP shall be output from this subfunction.

4.3 NAVIGATION PROCESSING PRINCIPAL FUNCTIONS

The two navigation processing principal functions applicable during operational sequence 2 (and contained in the orbit operations computer load) are:

- 1. On-Orbit Navigation, and
- 2. Rendezvous Navigation.

Both of these functions will be initialized and cyclically executed under control of the on-orbit/rendezvous navigation sequencer principal function. Detailed requirements for both of the navigation processing principal functions are discussed in the following subsections.

4.3.1 Onorbit Navigation

The onorbit navigation principal function shall provide an up-to-date estimate of the orbiter's position, velocity, and other parameters for software users such as guidance and displays. This principal function shall be scheduled by the onorbit/rendezvous navigation sequencer principal function.

The onorbit navigation principal function shall use selected. IMU data and a model of the Earth's gravitational acceleration to maintain a current estimate of the orbiter's state vector during powered flight. During coasting flight, models of the Earth's gravitational acceleration, aerodynamic drag acceleration, venting acceleration, and uncoupled RCS thrusting acceleration shall be used to maintain a current estimate of the orbiter state vector. A single state vector shall consist of three position components, three velocity components, and three unmodeled acceleration bias states.

No external sensor data shall be processed; however a 9x9 dimensional matrix initialized by the onorbit/rendezvous sequencer principal function shall be propagated along with the orbiter's state vector.

A ground update capability shall enable automatic reinitialization of the orbiter's state vector and covariance matrix

4311

during coasting flight. This capability shall also provide for storage of an uplinked target state vector (and covariance matrix for eventual initialization purposes by the rendezvous navigation principal function.

The onorbit navigation principal function is composed of four primary subfunctions:

- 1. A control subfunction, described in Section 4.3.1.1.
- 2. A state and covariance setup subfunction, described in section 4.3.1.2.
- 3. A state propagation subfunction, described in section 4.3.1.3.
- 4. A covariance propagation subfunction, described in section 4.3.1.4

Tables 4.3.1-1 and 4.3.1-2 are the Level B CPDS tables which show data flow between the onorbit navigation and other principal functions.

LEVEL B MNEMON	LEVEL C FSSR VARIABLE NAME	EXTERNAL PRINCIPAL FUNCTION SOURCE	INTERNAL SUBFUNCTION DESTINATION (SUBFUNCTIONS WITHIN THIS PRINCIPAL FUNCTION WHICH UTILIZE THE VARIABLE)
	PWRD_FLT_NAV	ORB/RND NAV SEQ	SUBFUNCTION SUBFUNCTION NAME INPUT TABLE
			© covariance matrix 4.3.1.4-1 propagation 4.3.1.3-1
	REND_NAV_FLAG	ORB/RND NAV SEQ	<pre>\$ state and covariance 4.3.1.2-1 setup \$ state propagation 4.3.1.3-1 \$ covariance matrix 4.3.1.4-1 propagation</pre>
TBD	OV_UPLINK	(ground uplink: processor)	state and covariance 4.3.1.2-1 setup
	TV_UPLINK	(ground uplink processor)	© state and covariance 4.3.1.2-1 setup
	R GND V GND T GND R TV GND V TV GND T TV GND DO AUTO UPDATE	(ground uplink processor)	• state and covariance 4.3.1.2-1 setup

TABLE 4.3.1-1

ONORBIT NAVIGATION

PRINCIPAL FUNCTION INPUT LIST (cont'd)

LEVEL B MNEMON	LEVEL C FSSR VARIABLE NAME	EXTERNAL PRINCIPAL FUNCTION SOURCE	INTERNAL SUBFUNCTION (SUBFUNCTIONS WITHIN FUNCTION WHICH UTILIZ	THIS PRINCIPAL
				SUBFUNCTION INPUT TABLE
	TOT_ACC	ORB/RND NAV SEQ	\$ state propagationcovariance matrixpropagation	4.3.1.3-1
	V_CURRENT_FILT	IMU RM .	• state propagation	4.3.1.3-1
	T_CURRENT_FILT	IMU RM	state and covariance matrix setupstate propagation	4.3.1.2-1
TBD	R FILT V FILT	ORB/RND NAV SEQ	state propagationcovariance matrixpropagation	4.3.1.3-1 4.3.1.4-1
	V LAST_FILT }	ORB/RND NAV SEQ	• state propagation	4.3.1.3-1
	VENT THRUST BIAS SQR EMU C MN AN S MN AN C MX AN S MX AN	ORB/RND NAV SEQ	§ state propagation	4.3.1.3-1
	E	ORB/RND NAV SEQ	covariance matrix propagation	4.3.1.4-1

4.0.

LEVEL B MNEMON		EXTERNAL PRINCIPAL FUNCTION SOURCE	INTERNAL SUBFUNCTION DESTINATION (SUBFUNCTIONS WITHIN THIS PRINCIPAL FUNCTION WHICH UTILIZE THE VARIABLE)
TBD	SIG UPDATE COV COR UPDATE SIG TV UPDATE COV COR TV UPDATE	(ground uplink processor)	SUBFUNCTION SUBFUNCTION NAME INPUT TABLE State and covariance 4.3.1.2-1 setup

LEVEL C FSSR

VARIABLE NAME

LEVEL B

MNEMON

INTERNAL SUBFUNCTION DESTINATION

(SUBFUNCTIONS WITHIN THIS PRINCIPAL

FUNCTION WHICH UTILIZE THE VARIABLE)

			SUBFUNCTION NAME	SUBFUNCTION INPUT TABLE
	USE_IMU_DATA	ORB USER PARAM PROC	0 state propagation	4.3.1.3-2
	R RESET V RESET T RESET V IMU RESET FILT UPDATE	ORB USER PARAM PROC	norbit control	4.3.1.1-2
TBD	R TV V TV T TV TARG_VEC_AVAIL	ORB/RND NAV SEQ	S state and covari- ance setup	4.3.1.2-2
	DID_AUTO_UPDATE	(ground uplink processor)	<pre> state and covari- ance setup </pre>	4.3.1.2-2

EXTERNAL PRINCIPAL

FUNCTION SOURCE

4.3.1-6

4.3.1.1 On-Orbit Control

The on-orbit navigation principal function will provide the capability to control the propagation and ground update of the state vector and the covariance matrix.

A. Detailed Requirements

On-orbit control will perform the following tasks in the order indicated (for definitions of variables, refer to Tables 4.3.1.1-1 and 4.3.1.1-2):

- The on-orbit state propagation subfunction will propagate the state vector as described in Section 4.3.1.3.
- The on-orbit covariance propagation subfunction will propagate the covariance matrix as described in Section 4.3.1.4.
- 3. The on-orbit state and covariance setup subfunction will perform automatic in-flight updates as required, as described in Section 4.3.1.2.
- 4. The position and velocity, the associated time tag, and the accumulated IMU velocity counts will be stored for use by the user parameter state propagator:

$$R = RESET = R = FILT$$

$$V = RESET = V = FILT$$

$$T = RESET = T = LAST = FILT$$

Finally the filter update flag will be set to ON to indicate to users that the current navigation cycle is complets:

FILT UPDATE = ON

B. Interface Requirements

The input and output parameters are listed in Tables 4.3.1.1-1 and 4.3.1.1-2.

C. Processing Requirements

On-orbit control will be executed while the on-orbit navigation principal function is scheduled.

D. Constraints

None.

E. Supplemental Information

A suggested implementation of on-orbit control is illustrated by NAV_ONORBIT in Appendix B

TABLE 4.3.2.1-1. On-Orbit Control Input Parameters

DESCRIPTION	SYMBOL	INPUT SOURCE	TYPE	PRECISION	RANGE UNI	TS SAMPLE RATE
Filter current shuttle position vector in M50 coordinates	R_FILT	On-orbit state prop.	Y	DP	Ft	Filter rate
Filter current shuttle velocity vector in M50 coordinates	<u>V</u> FILT	On-orbit state prop.	V	DP	Ft/	sec Filter rate
Time of the filter state vector	T_LAST_FILT	On-orbit state prop.		DP	Sec	Filter rate
Previously read selected → accumulated IMU velocity 	V_LAST_FILT	On-orbit state prop.		DP	Ft/	sec Filter rate

TABLE 4.3.1.1-2. On-Orbit Control Output Parameters

	DESCRIPTION	SYMBOL .	OUTPUT SOURCE	ТҮРЕ	PRECISION RANGE	UNITS.	COMPUTATION RATE
型の注意できる。 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	Véhicle position vector after all navigation up-date reserved for reset of guidance integrator position vector R_AVG_G	R_RESET		V	DP	Ft	Filter rate
	Vehicle velocity vector after all navigation up-dates reserved for reset of guidance integrator velocity vector V_AVG_G	V_RESET		٧	DP	Ft/sec	Filter rate
e W	Time associated with reserved reset state	T_RESET	명성 1 명 - 1 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2	F	DP	Sec	Filter rate
1-10	Copy of V_CURRENT_FILT reserved as velocity count at start of extrapolation interval when guidance integrator is reset:	V IMU RESET		V	DP	Ft/sec	Filter rate
The state of the s	Switch indicating (ON) that current measurement processing is complete	FILT_UPDATE		D	OFF ON		Filter rate
	* Refer to on-orbit navigation	n principal funct	ion out list		मुंग्रीसीर		

- 4.3.1.2 <u>State and Covariance Setup</u> This subfunction is required to set up the proper state vector and covariance matrix as a result of an automatic inflight update during operation of the onorbit navigation principal function. This subfunction shall be capable of performing the following basic tasks:
 - predict uplinked orbiter state vector (M50 coordinates) to current time from uplinked time tag,
 - 2. initialize (6 x 6) orbiter position/velocity covariance matrix to pre-mission stored (or uplinked) UVW standard deviations and correlation coefficients; and initialize diagonal elements of the filter covariance matrix associated with unmodeled acceleration bias errors, to pre-mission stored values (in body coordinates),
 - 3. store uplinked target position/velocity vector, time tag, and selected UVW standard deviations and correlation coefficients for future usage in rendezvous navigation initialization.
- A. <u>Detailed Requirements</u>. Section 4.2.5 contains a description of the detailed requirements for this subfunction (the REND_NAV_FLAG will be in the OFF setting, thus indicating those requirements necessary during operation of the onorbit navigation principal function).

- B. <u>Interface Requirements</u>. Input and output parameters are listed in the tables 4.3.1.2-1 and 4.3.1.2-2, respectively.
- C. <u>Processing Requirements</u>. The state and covariance setup subfunction shall be performed each navigation cycle; however, the automatic inflight update task shall only be performed when a ground uplink has been received (i.e, the DO_AUTO_UPDATE flag has been set to On by the ground uplink processor).
- D. Constraints. The following constraints apply to the state and covariance setup subfunction during operation of the onorbit navigation principal function.
 - 1. Automatic inflight updates of either orbiter and/or target which data shall not be performed during powered flight arcs (i.e, only during coasting flight regions), since the onorbit precision state prediction algorithm assumes coasting flight conditions.
 - 2. The state and covariance setup subfunction shall be capable of reacting to the uplink of orbiter and/or target vehicle data in the same navigation cycle.
 - 3. The ground uplink processor shall reset the DO_AUTO_UPDATE flag to OFF prior to the next navigation cycle, to prevent multiple navigation re-initializations with the same uplinked data.

4.3.1.12

- 4. The capability shall be provided to uplink the following data in a single transmission:
 - vehicle position (3 double precision words)
 - . vehicle velocity (3 double precision words)
 - . time tag (1 double precision word)
 - . vehicle identifier (1 bit)
 - position/velocity error
 standard deviations (6 double precision
 words)
 - position/velocity error correlation
 coefficients (7 double precision words)

All the data in a single transmission shall pertain to one vehicle, only (either orbiter or target), as indicated by the "vehicle identifier" bit, above.

- 5. The onboard software (ground uplink processor) receiving the data in item 4., above, shall perform the following functions upon receiving uplink data:
 - . Test the vehicle identifier to determine if the data pertains to the orbiter or target,
 - Set up one of the following two variable sets depending on the results of the above test.

R_GND V_GND T_GND OV_UPLINK= ON SIG_UPDATE COV_COR_UPDATE

for orbiter vehicle data uplink

R TV GND
V TV GND
T TV GND
TV UPLINK= ON
SIG TV UPDATE
COV COR TV UPDATE

for target vehicle
 data uplink

E. <u>Supplementary Information</u>. A suggested inplementation in the form of detailed flow charts, can be found in Appendix B and C under the following names:

ONORBIT_REND_AUTO_INFLIGHT_UPDATE
ONORBIT_REND_STATE_AND_COV_SETUP (CODE) Appendix
ONORBIT_COVINIT_UVW
B
ACCEL_PERT_ONORBIT

ONORBIT_PREDICT ~ Appendix C

TABLE 4.3.1.2-1 STATE AND COVARIANCE SETUP INPUT LIST

	DESCRIPTION	SYMBOL	INPUT SOURCE	ТҮРЕ	PRECISION	RANGE	UNITS	SAMPLE RATE
	Flag indicating (ON) that an automatic inflight update of either orbiter and/or target state and covariance matrix is to be performed	DO_AUTO_UPDATE				ON/OFF		NAV rate
4.3.1~	flag indicating whether rendezvous navigation active (ON), or onorbit navigation active (OFF)	REND_NAV_FLAG		D		ON/OFF	Annual International Internati	As rqd
- 15 - 15	flag set by ground uplink processor indicating (ON) that orbiter vehicle state vector has been uplinked	OV_UPLINK				ON/OFF		As rqd.
	flag set by ground uplink processor indicating (ON) that target vehicle state vector has been uplinked	TV_UPLINK	***************************************	D		ON/OFF		As rqd

^{*} onorbit navigation principal function input list

TABLE 4.3.1.2-1. (Continued) STATE AND COVARIANCE SETUP INPUT LIST

	DESCRIPTION	SYMBOL	INPUT SOURCE	ТҮРЕ	PRECISION	RANGE	UNITS	SAMPLE RATE
ORIGIN/ OF POOI	flag indicating degree of gravi- tational poten- tial model	GM_DEG	**		S	1-8		As rqd
ORIGINAL PAGE IS OF POOR QUALITY	flag indicating order of gravi- tational poten- tial model	GM_ORD	**		\$	0-8	-	As rqd
4.3.1-16	flag which activates (1) or deactivates (0) the drag acceleration model	DRAG_MODE NAV	**	1	S	0,1	• • • • • • • • • • • • • • • • • • •	As rqd
	flag which activates (1) or deactivates (0) the venting and RCS- uncoupled-thrusting model	VENT_MODE_ NAV	**		S	0,1		As rqd
	integration step-size for precision state prediction	PREC_STEP	**	I	S		sec	As rqd

^{**} pre-mission load

TABLE 4.3.1.2-1 (Continued) STATE AND COVARIANCE SETUP INPUT LIST

					rania di Santa da Sa Propinsi da Santa da			·
	DESCRIPTION	SYMBOL	INPUT SOURCE	TYPE	PRECISION	RANGE	UNITS	SAMPLE RATE
	uplinked orbiter position vector (M50)	R_GND		V	DP		ft	As rqd
	uplinked orbiter velocity vector (M50)	<u>V</u> _GND		V	DP		ft/sec	As rqd
	uplinked orbiter state vector time tag	T_GND			DP	_	sec	As rqd
4.3.1-17	time tag of current filter state vector	T_CURRENT_ FILT	state propagation		DP		sec	As rqd
	vector (6 x 1) of standard deviations (UVW) for orbiter position/velocity covariance initialization (ground update)	<u>S</u> IG_UPDATE	*, **		DP		vary	As rqd

onorbit navigation principal function input list pre-mission load

TABLE 4.3.1.2-1 (Continued) STATE AND COVARIANCE SETUP INPUT LIST

							<u> </u>	
	DESCRIPTION	SYMBOL	INPUT SOURCE	TYPE	PRECISION	RANGE	UNITS	SAMPLE RATE
GINAL PAGE POOR QUALI	vector (7 x 1) of correlation coefficients associated with UVW standard deviations SIG UPDATE used for orbiter position/velocity covariance initia-lization (ground update)	COV_COR_UPDATE	*,**		DP	- <u>1,1</u>		As rqd
4.3.1-1	flag indicating (ON) that an automatic inflight update of either orbiter and/or target state and covariance matrix is to be performed.	DO_AUTO_UPDATE		D		ON/OFF		NAV rate
	flag indicating whether rendezvous navigation active (ON) or onorbit navigation active (OFF)	REND_NAV_FLAG		D		ON/OFF		As rqd
	flag set by ground uplink processor in- dicating (ON) that orbiter vehicle state vector has been uplinked	OV_UPLINK		D		ON/OFF		As rqd

^{*} onorbit navigation principal function input list

^{**} pre-mission load

TABLE 4.3.1.2-1 (Continued) STATE AND COVARIANCE SETUP INPUT LIST

	DESCRIPTION	SYMBOL	INPUT SOURCE	TYPE	PRECISION	RANGE	UNITS	SAMPLE RATE
	flag set by ground uplink processor in- dicating (ON) that orbiter vehicle state vector has been uplinked	TV_UPLINK	*	D		ON/OFF		As rqd
	flag indicating degree of gravita- tional potential model	GM_DEG	**	1	S	1-8		As rqd
4.3.1-19	flag indicating order of gravitational poten-tial model	GM_ORD	**	I	S	0-8	7	As rqd
	flag which activates (1) or deactivates (0) the drag acceleration model	DRAG_MODE_ NAV	**		S	0,1	• *************************************	As rqd
	flag which activates (1) or deactivates (0) the venting and RCS-uncoupled-thrusting model	VENT_MODE_ NAV		D	•	ON/OFF		NAV rate
	integration step-size for precision state prediction	PREC_STEP	**	1	S	• • • • • • • • • • • • • • • • • • •	sec	As rqd

^{*} onorbit navigation principal function input list

^{**} pre-mission load

TABLE 4.3.1.2-1 (continued) STATE AND COVARIANCE SETUP INPUT LIST

	DESCRIPTION	SYMBOL	INPUT SOURCE	TYPE	PRECISION RA	ANGE UNITS	SAMPLE
	DESCRIPTION	SIMBUL	INFOT SOUNCE	IIFE	PREGISTON RA	ANGE UNITS	RATE
	uplinked orbiter position vector (M50)	R_GND			DP	- ft	As rqd
	เมา plinked orbiter velocity vector (M50)	<u>V</u> GND		V	DP	- ft/sec	As rqd
4	uplinked orbiter state vector time tag	T_GND		F 44	DP	- sec	As rqd
3.1-20	time tag of current filter state vector	T_CURRENT- FILT	state propagation	F	DP	- sec	As rqd
	vector (6 x 1) of stan- dard deviations (UVW) for orbiter position/ velocity covariance initialization (ground update)	SIG_UPDATE	* **	V	DP.	- vary	As rqd

onorbit navigation principal function input list pre-mission load

TABLE 4.3.1.2-1 (Continued) STATE AND COVARIANCE SETUP INPUT LIST

	DESCRIPTION	SYMBOL	INPUT SOURCE	ТҮРЕ	PRECISION	RANGE	UNITS	SAMPLE RATE
	vector (7 x 1) of correlation coefficients associated with UVW standard deviations SIG_UPDATE used for orbiter position/ velocity covariance ini- tialization (ground update)	COV COR UPDATE	*, **		DP	<u>-1,1</u>		As rqd
4.3	earth gravitational constant	EARTH_MU	**	F	DP		ft 2 sec	As rqd
4.3.1-2)	vector (3 x 1) of un- modeled acceleration bias error variances (body coordinate system)	COV_ACCEL_ BODY_INIT		V	DP		2 ft sec4	As rqd
	uplinked target vehicle position vector (M50)	<u>R_</u> TV_GND		٧	DP	-	ft	As rqd
	uplinked target vehicle velocity vector (M50)	<u>V_</u> TV_GND		V	DP	•	ft/sec	As rqd

onorbit navigation principal function input list pre-mission load

TABLE 4.3.1.2-1 (Continued) STATE AND COVARIANCE SETUP INPUT LIST

	DESCRIPTION	SYMBOL	INPUT SOURCE	TYPE	PRECISION	RANGE	UNITS	SAMPLE RATE
ORIGINAL OF POOR (uplinked time tag of target vehicle state vector	T_TV_GND	*	F	D,P		sec	As rad
C PAGE IS QUALITY	vector (6 x l) of standard deviations (UVW) for target vehicle position/velocity covariance initialization (ground update)	<u>S</u> IG <u>TV</u> UPDATE	*,**	V	DP		.vary	As rad
4.3.1-22	vector (7 x l) of cor- relation coefficients associated with UVW standard deviations SIG_TV_UPDATE used for target vehicle position/velocity covariance initializa- tion (ground update)	COV COR T₩_ UPDATE	*,**		DP	- <u>1,1</u>		As rqd
	(see section 4.8, I- Load Requirements)	(acceleration model and predictor constant					•	As rqd

^{*} onorbit navigation principal function input list
'* pre-mission load

TABLE 4.3.1.2-2 STATE AND COVARIANCE SETUP OUTPUT LIST

	DESCRIPTION	SYMBOL.	OUTPUT DESTINATION	TÝPE	PRECISION	RANGE	UNITS	COMPUTATION RATE
4.3.1-23	flag indicating (ON) that an automatic in- flight update has been performed	DID_AUTO UPDATE	*	D		ON/OFF	-	NAV rate
	orbiter position vector (M50)	<u>R_FILT</u>	state propagation, covariance propaga- tion, onorbit con- trol	V	DP		ft	As rqd
	orbiter velģcity vector (M50)	<u>V_</u> FILT	state propagation, covariance propa- gation onorbit control	V	DP	• • • • • • • • • • • • • • • • • • •	ft/ sec	As rad
	vector of orbiter total acceleration (M50)	<u>T</u> OT_ACC	state propagation, covariance propaga- tion	٧	DP		ft/sec ²	As rqd
	vector (3 x 1) of un- modeled acceleration bias errors (body coord. system)	VENT_JHRUST_ BIAS	state propagation	V	DP		ft/ 2 sec	As rqd

^{*} onorbit navigation principal function output list

TABLE 4.3.1.2-2 (Continued) STATE AND COVARIANCE SETUP OUTPUT LIST

	DESCRIPTION	SYMBOL	OUTPUT DESTINATION	TÝPE	PRECISION	RANGE	UNITS	COMPUTATION RATE
4, 3, 1-24	filter covariance matrix of orbiter position, velocity, and unmodeled acceleration bias errors (9 x 9 di- mensional)	E	covariance propa- gation	M e	DP	-	vary	Asʻrqd
	target vehicle position vector (M50)	<u>R·</u> TV		V	DP		ft	As rqd
	target vehiçle velocity . vector (M50)	<u>v T</u> v		V .	DP		ft/ sec	As rqd
	time tag of target . vehicle state vector	T <u>I</u> V	*	F	DP		sec	As rqd
	flag indicating (ON) the availability of a target vehicle state vector and time tag for re-initialization purposes.	TARG VECAVAIL		D		ON/OFF	-	As rqd

^{*} onorbit navigation principal function output list

4.3.1.3 State Propagation

This subfunction will perform a number of tasks related to the propagation of the orbiter state vector.

The task of reading (snapping) the IMU shall be performed to obtain the current time and the accumulated sensed velocity.

Details of the IMU snap task are to be found in Section 4.2.1.1.

Available acceleration models include gravitational accelerations (always used) and non-gravitational accelerations (drag, venting and uncoupled RCS thrusting). The latter shall be used in those circumstances in which sensed accelerations obtained from the IMU accumulated sensed velocities are judged to be insignificant. These acceleration models are described in detail in Section 4.2.1.2.

The equations of motion will be integrated with either a super-g algorithm (see section 4.2.1.3.1) intended primarily for powered flight phases (i.e., those phases in which significant non-gravitational accelerations are sensed) or a precision propagation algorithm designed specifically for coasting flight phases and described in detail in section 4.2.1.3.2.

The task of propagation of biases shall be performed by multiplying the previous value of each bias by unity. The three biases propagated in this way represent unmodeled accelerations in body coordinates.

A. Detailed Requirements

The computations that shall be carried out for advancement of the position and velocity vectors are the following:

- 1. The IMU shall be snapped (see section 4.2.1.1 for details of this task).
- 2. Values of the position and velocity vectors calculated in the previous navigation cycle, together with the total acceleration, shall be saved for use in the current cycle:

TOT ACC LAST = TOT ACC

R LAST = R FILT

V LAST = V FILT

3. The time interval for advancement shall be calculated by subtracting the time tag of the previous cycle from the time obtained from the IMU snap:

DT_FILT = T_CURRENT_FILT-T_LAST_FILT

- 4. The flag that indicates the choice of integrator shall then be checked. This flag, PWRD_FLT_NAV, is set by the onorbit/rendezvous sequencer principal function. It is set to OFF when in a coasting flight phase and set to ON just before a burn.
- 4.1 If the flag is found to be ON, the Super-g integrator shall be invoked. This requires the setting of certain flags. It also requires comparing the acceleration calculated from the IMU sensed velocities with a pre-

stored threshold value below which this acceleration shall be ignored.

So, the following steps are needed:

4.1.1 Find the difference in the accumulated sensed velocity

4.1.2 Calculate on acceleration magnitude from

DV FILT and DT FILT and compare it with the threshold value:

Then, if the calculated acceleration is larger than the threshold value, set the following flags:

IGD = GM_DEG_LOW

 $IGO = GM_ORD_LOW$

IDRAG = 0

IVENT = 0

and set

 $DV = DV_{FILT}$

On the other hand, if the calculated absolute value of the acceleration is below the threshold level, set

USE_IMU_DATA = OFF

IGD = GM DEG

IGO = GM ORD

IDRAG = 1

IVENT = 1

and

DV = 0.

4.1.3 Find a value of the sensed acceleration based on \underline{DV} (it could, therefore, be 0., thus ignoring the IMU readings)

A SENS=DV/DT_FILT

4.1.4 Call the Super-g integrator with the flag values just set:

CALL: ONORBIT_SUPER_G

IN LIST: IGD, IGO, IDRAG, IVENT, O, R FILT,

V FILT, T_CURRENT_FILT, DT FILT, DV

OUT LIST: R FILT, V FILT, G NEW

- 4.2 In the situation where the PWRD_FLT_NAV is found to be OFF, the precision propagation integration scheme shall be called. The sequence, in this case, is as follows:
 - 4.2.1 Check the REND_NAV_FLAG, and choose the stepsize for the precision propagator according to the values of this flag. The step-size

does affect the accuracy of the integration, and it is natural that the accuracy requirements during the rendezvous phases be different from those in other phases of the orbital operations. The REND_NAV_FLAG, during the periods in which the Onorbit Navigation principal function is in operation, shall always be found to be OFF. This will result in setting

DT = PREC. STEP.

4.2.2 The vector A SENS is required for the computation of TOT ACC in a later step. The precision propagator being a coasting flight integrator, the sensed accelerations are not needed by it. Therefore, set

A_SENS=0.

4.2.3 Invoke the precision propagator with calling arguments that will cause the modeling of drag, venting and uncoupled thrusting accelerations, with the use of current attitude information.

CALL: ONORBIT_PRECISE_PROP

IN LIST: GM_DEG, GM_ORD, 1,1, 0, DT, R_FILT,
V_FILT, T_LAST_FILT, T_CURRENT_FILT

OUTLIST: R FILT, V FILT, G NEW

At the end of either step 4.1.4 or step 4.2.3, the values of R_FILT and V FILT output by the corresponding integrator are the required propagated position and velocity vectors of the orbiter. The vector G_NEW is a modeled acceleration vector obtained according to the specified flag settings and and corresponding to R_FILT, V FILT and T_CURRENT_FILT.

- 5. The REND_NAV_FLAG shall then be tested. This flag indicates whether or not it is necessary to also propagate the state of the target vehicle. While the onorbit navigation principal function is operative, this flag will always have the value OFF, and propagation of the target state vector will not be required.
- 6. Save the IMU readings for the next cycle and find the total acceleration vector for the orbiter (required for transition matrix calculations).

T_LAST_FILT = T_CURRENT_FILT

V_LAST_FILT = V_CURRENT_FILT

TOT_ACC = G_NEW + A_SENS

B. <u>Interface Requirements</u>

Input and output parameters are to be found in tables 4.3.1.3-1 and 4.3.1.3-2 respectively.

C. <u>Processing Requirements</u>

None.

D. Constraints

The acceleration models task is needed not only by the navigation state propagation subfunction but also by the onorbit precision state prediction principal function and by the user parameter state propagation subfunction.

Each of these users of the acceleration models shall set its own flags and therefore require a different calculation. To protect against interference in the acceleration computations, it is important that these computations not be interrupted.

E. Supplementary Information

A suggested implementation of this subfunction, in the form of a detailed flow diagram, may be found in Appendix

ONORBIT_SUPER_G

ONORBIT_PRECISE_PROP

ONORBIT_NAV (IMU Snap Portion)

ONORBIT_REND_BIAS_AND_COV_PROP (CODE)

Table 4.3.1.3-1. On-Orbit State Propagation Input Parameters

	DESCRIPTION .	SYMBOL	I'(PUT SOURCE	TYPE	PRECISION	RANGE UNITS	SAMPLE RATE
	Copy of V_IMU_CURRENT raw vel- ocity counts reserved for measurement processing	V_CURRENT_FILT	*	Y	DP	Ft/sec	Filter rate
	MTU or clock time when IMU was read	T_CURRENT_FILT		P	DP	Sec	Filter rate
	Flag indicating choice of integrator.	PWRD_FLT_NAV		p		ON,OFF -	As needed
4.	Filter current of position vector in M50 coordinates	<u>R</u> FILT	*, onorbit state and cov. setup.	y	DP	Pt	Filter rate
ພາ ພາ	Total acceleration (sensed plus modeled)	TOT_ACC	(1) * 1 전 1 전 1 전 1 전 1 전 1 전 1 전 1 전 1 전 1	γ	DP	Ft/sec ²	Filter rate
N	Flag indicating if the current NAV phase is a rendezvous phase	REND_NAV_FLAG		D		ON,OFP -	As needed
	Orbiter velocity vector	V FILT	*, onorbit state and cov. setup.	٧	DP	Ft/sec	Filter rate
	Angle of attack Angle of sideship Acceleration model related constants	ALPHA BETA ***	* * *	F F	DP DP	0-2II Rad 0-2II Rad	Filter rate Filter rate

^{*} Onorbit Navigation Principal Function Input List

^{**} Premission loaded

^{***} These constants are listed and their values given in Section 4.8 (I-load requirements)

Table 4.3.1.3-2. On-Orbit State Propagation Output Parameters

					<u> </u>		
	DESCRIPTION	SYMBOL	OUTPUT DESTINATION	TÝPE	PRECISION RANGE	UNITS	SAMPLE RATE
	Current position vector of crbiter in M50 coordinates	<u>R</u> FILT	*;**	٧	DP	Ft	Filter rate
	Previous position vector of orbiter	<u>R_</u> LAST	***************************************	V	DP	Ft	Filter rate
and the state of t	Total acceleration (sensed plus modeled) of orbiter	TOT_ACC		V	DP	· Ft/sec ²	Filter rate
	Previous_total acceleration of orbiter	TOT_ACC_LAST		V	DP	Ft/sec ²	Filter rate
.	Orbiter velocity vector	<u>v filt</u>	* * **	V .	DP	· Ft/sec	Filter rate
.3.1-33	Previous velocity vector of orbiter	<u>V_</u> LAST	** ** ** ** ** ** ** ** ** **	٧	DP	Ft/sec	Filter rate
&	Difference between two consecutive accumulated velocities snapped from IMU	DV_FILT		V	DP	Ft/sec	Filter rate
	Copy of the current time tag, saved for next nav. cycle	T_LAST_FILT	Onorbit Nav.	F	DP	Sec	Filter rate
	Time of the orbiter state vector	T_CURRENT_FILT	**	F	DP	Sec.	Filter rate
	Difference between two consecutive times snapped from IAU	DT_FILT.	**************************************	F.	DP	Sec	Filter rate
	Frevious IMU accumulated sensed velocity	V_LAST_FILT	Onorbit Nav.	V	DP	Ft/sec	Filter rate

Table 4.3.1.3-2. On-Orbit State Propagation Output Parameters

DESCRIPTION	SYMBOL	OUTPUT	DESTINATION	ТÝРЕ	PRECISION	RANGE	UNITS	SAMPLE RATE	
		19 44 • 19 10 10 10 10 10 10 10 10 10 10 10 10 10							
Flag indicating IMU .	USE IMU DAT	·Α *		D		ON-OFF	. •	As needed	
accelerations are above									

^{*} Onorbit Navigation Principal Function Output List.

^{**} Onorbit Covariance Propagation Subfunction.

4.3.1.4 Covariance Matrix Propagation

The covariance matrix propagation subfunction propagates the covariance matrix forward in time. The covariance matrix is propagated by utilizing the state transition matrix. Additive process noise is incorporated to account for unmodeled state and dynamic errors.

- A. <u>Detailed Requirements</u>. A 9 by 9 covariance matrix shall be propagated with the navigation principal function. This covariance matrix defines the uncertainty in the state vector, which consists of position and velocity of the orbiter and unmodeled accelerations. The method of propagation is described in Section 4.2.2.
- B. <u>Interface Requirements</u>. The input and output data are shown in Tables 4.3.1.4-1 and 4.3.1.4-2.
- C. <u>Processing Requirements</u>. This subfunction will be called after the IMU sensor data have been read and after the state propagation subfunction has been executed.
- D. <u>Constraints</u>. Prestored data are to be used for initialization. The propagated covariance matrix must remain symmetric.
- E. <u>Supplementary Information</u>. A possible implementation of this subfunction is shown in the flow charts ONORBIT_REND_BIAS_AND_COV_PROP (CODE), PWRD_FLT_COV_PROP(CODE), MEAN_CONIC_PARTIAL_TRANSITION_MATRIX_6X6 and F_AND_G in Appendix B.

Table 4.3.1.4-1 - Onorbit Covariance Propagation Input Parameters

	DESCRIPTION	SYMBOL	INPUT SOURCE	TYPE'	PRECISION	RANGE	UNITS	SAMPLE RATE
	Interval over which to propagate the covariance matrix	DT_FILT	state propagation	F	: DP		sec	filter rate
	Correlation time constants for body venting	TAU_VENT	premission constant	V	DP		sec	filter rate
	Variance of body venting variable	VAR_VENT_DT	premission load	V	DP	(ft/sec) ² filter rate
4.3.1-36	Structural body to M50 coordinate transformation matrix	M <u>.</u> SBODYM50	*	M	DP			filter rate —
	Drag acceleration coefficient percent error	D_COE_PCT_ERR	premission load	F	DP			filter rate
	Drag acceleration vector	<u>D</u> .	state	V	DP		ft/sec	filter rate
	Flag indicating (ON) whether the rendezvous principal function is scheduled	REND_NAV_FLAG		D	Agenty and the second s	oÑ,ŌFF		filter rate

^{*} Onorbit principal function inlist

Table 4.3.1.4-1. (continued) - Onorbit Covariance Propagation Input Parameters

	DESCRIPTION	SYMBOL	INPUT SOURCE	TYPE	PRECISION	RANGE	UNITS	SAMPLE RATE
	Filter current shuttle position vector in M50 coordinates	<u>R</u> FILT	state propagation	٧	DP		ft	filter rate
	Filter current shuttle velocity vector in M50 coordinates	<u>V</u> FILT	state propagation	V	DP		ft/sec	filter rate
÷	Gravity acceleration at end of shuttle state integration interval	TOT_ACC	state propagation	V	DP		ft/sec	filter rate
1-37	Filter covariance matrix		measurement incorporation	M	DP		vary	filter rate
	Flag indicating (ON) the desire to inhibit the processing of external measurement data by the navigation filter	MANEUVER_ON_FLAG		D		ON,OF		filter rate

^{*} Onorbit principal function inlist.

Table 4.3.1.4-1. (continued) - Onorbit Covariance Propagation Input Parameters

	DESCRIPTION	SYMBOL	INPUT SOURCE	TYPE	PRECISION	RANGE		AMPLE —
	Gravitational constant of the earth	EARTH_MU	premission load	F	DP		$(ft^3/sec)^2$	filter rate
	Square root of EARTH_MU	SQR_EMU	premission lcad	F	DP		3 ft /sec	filter rate
	Identity matrix (3 x 3)	ID_MATRIX_3x3	premission load	M	DP			filter rate
4.3.1-38	Tolerance for succesive iterations in the solution of Kepler's equation	EPS_KEP	premission load	F	DP		rad :	filter rate
	Position vector of shuttle at the end of the last filter cycle	<u>R_</u> LAST	state propagation	V	DP		ft	filter rate
	Velocity vector of shuttle at the end of the last filter cycle	<u>V_</u> LAST	state propagation	V	DP .		ft/sec	filter rate
	Gravity acceleration at start of shuttle state integration interval	TOT_ACC_LAST	state propagation	V	DP		2 ft/sec	filter rate

Table 4.3.1.4-1.(continued) - Onorbit Covariance Propagation Input Parameters

	DESCRIPTION	SYMBOL	INPUT SOURCE	ТҮРЕ	PRECISION	RANGE	UNITS	SAMPLE RATE
	Difference between accumulated sensed IMU readings on present cycle and previous cycle	DV_FILT	state propagation	F	DP		ft/sec	filter rate
	Variance for platform misalignment added as process noise in the covariance	<u>V</u> AR_IMU_ALIGN	premission load	٧	DP	•	rad	filter rate
4.3.1-39	Time tag of the current filter state vector	T_LAST_FILT	state propagation	F	DP		sec	filter rate
	Time of the last IMU alignment	T_ALIGN	premission load	F	DP		sec	filter rate
	Variance of the platform drift	VAR_IMU_DRTFT	premission load	V	DP		2 rad	filter rate
	Accelerometer quantization error variance	VAR_ACC_QUANT	premission load	F	DP		ft ² /sec	filter rate
	Variance of unmodeled accêleration times scale time	VAR_UNMOD_ACC_ DT	premission load	F	DP		ft /sec	filter rate

Table 4.3.2.1-2. - Onorbit Covariance Propagation Output Parameters

DESCRIPTION	SYMBOL	INPUT SOURCE	TYPE	PRECISION	RANGE	UNITS	SAMPLE RATE
Filter covariance matrix	E 1	measurement incorporation	М	DP		vary	filter rate

4.3.2 Rendezvous Navigation

The rendezvous navigation principal function shall provide an up-to-date estimate of the orbiter and target position, velocity, and other parameters for software users such as guidance and displays. This principal function shall be scheduled by the onorbit/rendezvous navigation sequencer principal function.

The rendezvous navigation principal function shall use selected IMU data and a model of the Earth's gravitational acceleration to maintain a current estimate of the orbiter's state vector during powered flight. During coasting flight, models of the Earth's gravitational acceleration, aerodynamic drag acceleration, venting acceleration, and uncoupled RCS thrusting acceleration shall be used to maintain a current estimate of the orbiter and target state vectors. A single-string state vector configuration shall apply in coasting, powered flight, and TPF stationkeeping navigation as follows (19 elements):

orbiter position (M1950) - 3 components

orbiter velocity (M1950) - 3 components

orbiter unmodeled acceleration biases (body axes) - 3 components

target position (M1950) - 3 components

target velocity (M1950) - 3 components

sensor systematic biases (sensor axes) - 4 components

External sensor data shall be processed during coasting and TPF stationkeeping navigation phases. The following measurements shall be available:

rendezvous radar (range, range-rate, shaft angle, trunion angle)
star tracker (horizontal angle, vertical angle)
COAS (horizontal angle, vertical angle)

A 19x19 dimensional covariance matrix, initialized by the onorbit/rendezvous navigation sequencer principal function, shall be propagated along with the 19 element state vector, during all rendezvous navigation phases (coast, flight, TPF stationkeeping).

A ground update capability shall enable automatic re-initialization of the orbiter and/or target state vector (and other related non-position/velocity states) and covariance matrix during coasting and TPF stationkeeping navigation phases.

The rendezvous navigation principal function composed of eight primary subfunctions:

- 1. A control subfunction (section 4.3.2.1),
- 2. An external sensor data snap subfunction (section 4.3.2.2)
- 3. A sensor measurement selection subfunction (section 4.3.2.3),
- 4. A state and covariance setup subfunction (section 4.3.2.4),
- 5. A state propagation subfunction (section 4.3.2.5),

- 6. A covariance matrix propagation subfunction (section 4.3.2.6),
- 7. A state and covariance measurement incorporation subfunction (section 4.3.2.7), and
- 8. A measurement processing statistics subfunction (section 4.3.2.8).

Tables 4.3.2-1 and 4.3.2-2 are the level B CPDS tables which show data flow between the rendezvous navigation and other principal functions.

TABLE 4.3.2-1 RENDEZVOUS NAVIGATION

PRINCIPAL FUNCTION INPUT LIST

LEVEL B MNEMON	LEVEL C FSSR VARIABLE NAME	EXTERNAL PRINCIPAL FUNCTION SOURCE	INTERNAL SUBFUNCTION (SUBFUNCTIONS WITHIN FUNCTION WHICH UTILI	THIS PRINCIPAL
	_PWRD_FLT_NAV	ORB/RND NAV SEQ	SUBFUNCTION NAME	SUBFUNCTION . INPUT TABLE
	- PWKD_FLI NAV	ORD/RID NAV SEQ	covariance matrix propagationstate propagation	4.3.2.6-1 4.3.2.5-1
TBD	REND_NAV_FLAG	ORB/RND NAV SEQ	 state and covariance setup state propagation covariance matrix propagation 	4.3.2.4-1 4.3.2.5-1 4.3.2.6-1
	OV_UPLINK	(ground uplink processor)	state and covari- ance setup.	4.3.2.4-7
	TVUPLINK	(ground uplink processor)	state and covari- ance setup	4.3.2.4-1
	R GND V GND T GND R TV GND V TV GND DO AUTO UPDATE R GND (ground uplink processor)		• state and covari- ance setup	4.3.2.4-1
	TOT ACC ORB/RND NAV SEQ		 state propagation covariance matrix propagation state and covariance meas. incorp. 	4.3.2.5-1 4.3.2.6-1 4.3.2.7-1

LEVEL B MNEMON	LEVEL C FSSR VARIABLE NAME	EXTERNAL PRINCIPAL FUNCTION SOURCE	INTERNAL SUBFUNCTION DESTINATION (SUBFUNCTIONS WITHIN THIS PRINCIPAL FUNCTION WHICH UTILIZE THE VARIABLE)				
			SUBFUNCTION NAME	SUBFUNCTION INPUT TABLE			
	V_CURRENT_FILT	IMU RM	• state propagation	4.3.2.5-1			
	T_CURRENT_FILT	IMU RM	 state and covariance matrix setup state propagation state and covariance meas. incorp. 	4.3.2.5-1			
TBD	R FILT V FILT	ORB/RND NAV SEQ	• state propagation • covariance matrix • propagation • state and covariance • meas. incorp.	4.3.2.5-1 4.3.2.6-1 4.3.2.7-1			
	V LAST FILT T_LAST_FILT	ORB/RND NAV SEQ	• state propagtion	4.3.2.5-1			
	SQR_EMU C_MN_AN S_MN_AN C_MX_AN S_MX_AN	ORB/RND NAV SEQ	• state propagation	4.3.2.5-1			
	E	ORB/RND NAV SEQ	covariance matrix propagation	4.3.2.6-1			
	USE MEAS_DATA	ORB/RND NAV SEQ	sensor measurement selection	4.3.2.3-1			

LEVEL B MNEMON	LEVEL C FSSR VARIABLE NAME	EXTERNAL PRINCIPAL FUNCTION SOURCE	INTERNAL SUBFUNCTION DESTINATION (SUBFUNCTIONS WITHIN THIS PRINCI FUNCTION WHICH UTILIZE THE VARIA			
	N ACCEPT N REJECT	ORB/RND NAV SEQ	SUBFUNCTION NAME	SUBFUNCTION INPUT TABLE		
	SEQ_ACCEPT SEQ_REJECT	SEO ACCEPT ORBYKND NAV SEU		4.3.2.8-1		
	R TV V TV G TV		state propagationcovariance matrix propagationstate and covariance meas. incorp.	4.3.2.5-1 4.3.2.6-1 4.3.2.7-1		
TBD .	VENT_THRUST_BIAS	ORB/RND NAV SEQ	state propagationstate and covariance meas. incorp.	4.3.2.5-1 4.3.2.7-1		
	Q RR SHFT Q RR TURN Q RR RNG Q RR RNG DOT RNG DATA GOOD RDOT DATA GOOD RR ANGLE DATA GOOD M M50 TO BODY RR T REND RADAR	REND RADAR SOP	 external sensor data snap state and covariance meas. incorp. 	4.3.2.2-1 4.3.2.7-1		

ORIGINAL PAGE IS
OF POOR QUALITY

4.3.2-7

LEVEL B MNEMON	LEVEL C FSSR VARIABLE NAME	EXTERNAL PRINCIPAL FUNCTION SOURCE	INTERNAL SUBFUNCTION (SUBFUNCTIONS WITHIN FUNCTION WHICH UTILI	THIS PRINCIPAL
TBD	Q ST_HORIZ Q ST_VERT N ST_IN_USE ST_DATA_GOOD M_M50,FO_BODY_ST T_STAR_TRACKER Q COAS_HORIZ Q COAS_VERT N COAS_IN_USE COAS_DATA_GOOD M_M50_TO_BODY_ COAS T_COAS	STAR TRACKER SOP	SUBFUNCTION NAME external sensor data snap state and covariance meas. incorp.	SUBFUNCTION INPUT TABLE 4.3.2.2-7
	RR_ANGLES_ENABLE ST_ENABLE COAS_ENABLE RNG_AIF RDOT_AIR ANGLES_AIF	NAV MONITOR KIP	sensor measurement selection	4.3.2.3-1
	SIG_UPDATE COV_COR_UPDATE SIG_TV_UPDATE COV_COR_TV_UPDATE	(ground uplink processor)	state and covariance setup	4.3.2.4-1

TABLE 4.3.2-2

RENDEZVOUS NAVIGATION

PRINCIPAL FUNCTION OUTPUT LIST

LEVEL B MNEMON	LEVEL C FSSR EXTERNAL PRINCIPAL INTERNAL SUBFUNCTIONS WIFUNCTION WHICH U			THIS PRINCIPAL
			SUBFUNCTION NAME	SUBFUNCTION INPUT TABLE
	USE_IMU_DATA	ORB USER PARAM PROC	• state propagation	4.3.2.5-2
TBD	R RESET V RESET T_RESET V TV RESET R TV RESET V TV RESET FILT_UPDATE	ORB USER PARAM PROC	• rendezvous control	4.3.2.1-2
	DID_AUTO_UPDATE	(ground uplink processor)	state and covariance setup	4.3.2.4-2
	TARG_VEC_AVAIL	ORB/RND NAV SEQ	state and covariance setup	4.3.2.4-2

4.3.2-

>

4.3.2.1 Rendezvous Control

The rendezvous navigation principle function shall provide the capability to control state and covariance matrix propagation and navigation filter updates.

A. <u>Detailed requirements</u>

Rendezvous control shall perform the following tasks in the order indicated. (For definitions of variables, see input and output tables 4.3.2.1-1 and 4.3.2.1-2.)

- 1. The accumulated IMU sensed velocity and the corresponding time tag shall be obtained as described in section 4.2.1.1.
- An external sensor data snap shall be performed as described in section 4.3.2.2.
- The state vector shall be propagated as described in section
 4.3.2.5.
- 4. The covariance matrix as described in section 4.3.2.6.
- 5. The rendezvous sensor measurement selection subfunction shall determine which measurements are to be presented to the filter for processing, as described in section 4.3.2.3.
- 6. The state and covariance setup subfunction shall set up the proper state vector and covariance matrix for use by the state and covariance measurement incorporation task as described in section 4.3.2.4.

يوس است. اختا

- 7. The state and covariance measurement incorporation subfunction shall update the state vector and covariance matrix for each of the measurements being processed as described in section 4.3.2.7. This subfunction is exercised for each measurement type only if data are to be processed as determined by the rendezvous sensor measurement selection subfunction. A counter (RR_ANGLE_MARK_NUM, RRDOT_MARK_NUM, ST_MARK_NUM, or COAS_MARK_NUM) shall be incremented for each measurement processed to indicate the mark number for post mission analysis purposes.
- 8. The position and velocity of the orbiter and the target, the associated time tag, and the accumulated velocity count shall then be stored for use by the user parameter state propagator,

R RESET = R FILT

V RESET = V FILT

T RESET = T LAST FILT

R TV RESET = R TV

V TV RESET = V TV

V IMU RESET = V LAST FILT

Then the filter update flag shall be set to ON to indicate to users that the current rendezvous navigation filter update is complete.

FILT_UPDATE = ON

9. Finally, the measurement processing statistics subfunction shall be performed as described in section 4.3.2.8.

B. Interface Requirements.

The input and output parameters are listed in tables 4.3.2.1-1 and 4.3.2.1-2.

C. Processing Requirements

Rendezvous control shall be executed at a premission determined rate when the rendezvous navigation principle function is scheduled.

D. Constraints

None.

E. Supplemental Information

A suggested inplementation of rendezvous control is illustrated by NAV_RENDEZVOUS in Appendix B.

TABLE 4.3.2.1-1. - Rendzyous Control Input Parameters

DESCRIPTION	SYMBOL	INPUT SOURCE	TYPE	PRECISION	RANGE	UNITS	SAMPLE RATE
Shuttle position vector in M50 coordinates	R FILT	Rendezyous measurement incorporation	V	D		ft	Filter rate
Shuttle velocity vector in M50 coordinates	<u>V FILT</u>	Rendavous measurement incorporation	V	S		ft/sec	Filter rate
Time of latest filter update	T_LAST_FILT	Rendezvous sta te propagation	S	D		sec	Filter rate
Target position vector in M50 coordinates	<u>R</u> TV	Rendezvous measurement incorporation	V	D		ft	Filter rate
Target velocity vector in M50 coordinates	<u>v</u> tv	Rendezvous measurement incorporation	V	S		f∜sec	Filter rate
Last IMU velocity count	<u>V_</u> LAST_FILT	Rendezyous State pro- pagation	V	S		ft/sec	Filter rate
Flag indicating that the rendezvous radar angles are to be processed	DO_RR_ANGLE_ NAV	Rendezvous sensor measurement selection	D				Filter rate
Flag indicating that the rendezvous radar range and range rate are to be processed.	DO_RRDOT_NAV	Rendezvous sensor measurement selection	D				Filter rate

TABLE 4.3.2.1-1. (continued) - Rendezvous Control Input Parameters

DESCRIPTION	SYMBOL	INPUT SOURCE	TYPE	PRECISION	RANGE	UNITS	SAMPLE RATE
Flag indicating that . star tracker angles are to be processed	DO_ST_ANGLE_NAV	Rendezvous sensor measurement selection	D				Filter rate
Flag indicating that COAS angles are to be processed	DO COAS ANGLE NAV	Rendezvous sensor measurement selection	D			•	Filter rate

TABLE 4.3.2.1-2. - Rendezvous Control Output Parameters

DESCRIPTION	SYMBOL	OUTPUT SOURCE	ТҮРЕ	PRECISION	RANGE	UNITS	COMPUTATION RATE
Counter indicating number of times rendezvous radar range and range rate were processed	RRDOT_MARK_NUM	Downlist	D	\$		•	Filter rate
Counter indicating number of times rendezvous radar angles were processed	RR_ANGLE_MARK_ NUM	Downlist	D	S		•	Filter rate
Counter indicating number of times startracker data were processed	ST_MARK_NUM	Downlist	D	S			Filter rate
Counter indicating number of times COAS data were processed	COAS_MARK_NUM	Downlist .	D	S			Filter rate
Orbiter position vector after all navigation up-dates reserved for reset of guidance integrator position vector R AVG G	<u>R_RESET</u>		V	D		fţ	Filter rate
Orbiter yelocity vector after all navigation updates reserved for reset of guidance integrator velocity vector V AVG G	V_RESET		Y	S		ft/sec	Filter rate

TABLE 4.3.2.1-2 (Continued) Rendezvous Control Output Parameters

DESCRIPTION	SYMBOL	OUTPUT SOURCE	TYPE	PRECISION	RANGE	UNITS	COMPUTATION RATE
Time associated with reserved reset state	T_RESET		S	D .		Sec	Filter rate
Target position vector after all navigation updates reserved for reset of guidance integrator position vector R_TARGET	R TV_RESET		V	D		ft	Filter rate
Target velocity vector after all navigation up- dates reserved for reset of guidance integrator velocity vector V TARGET	<u>v</u> Tv_reset		y	S		ft/sec	Filter rate
Copy of V_LAST_FILT reserved as velocity count at start of extrapolation interval when guidance integrator is reset	V IMU RESET		V	D		ft/sec	Filter rate
Flag indicating (ON) that the current navi- gation cycle is complete	FILT_UPDATE		D				Filter rate

^{*} Rendezyous navigation principal function output list

CERTAND BOOK OF THE STATE OF TH

4.3.2.2 External Sensor Data Snap

The purpose of this subfunction during the rendezvous navigation phase is to collect and store sensor data from the Rendezvous Radar, the Star Tracker and the Crew Optical Alignment Sight (COAS).

The data sets used in navigation processing must be properly saved for use in the state and covariance measurement incorporation subfunction, whereas the actual data may continue to be refreshed by hardware sensor reading, sensor SOP processing, and selection filter unification.

A. <u>Detailed Requirements.</u>

During the rendezvous phases, data from the external sensors, together with the corresponding data good flags, associated time tags and rotation matrices from M50 to the orbiter body axes valid at those times, shall be obtained and stored. The equations are:

I. For the Rendezvous Radar.
SNAP REND_RADAR (Q_RR_SHFT, Q_RR_TRUN, Q_RR_RNG,
Q_RR_RNG_DOT, RNG_DATA_GOOD, RDOT_DATA_GOOD, RR_
ANGLE_DATA_GOOD, M_M50_TO_BODY_RR, T_REND_RADAR)
where

Q_RR_SHFT is the shaft angle,
Q_RR_TRUN is the trunnion angle,

RR_ANGLE_DATA_GOOD the validity flag of the
 above measurements,

Q_RR_RNG is the radar range measurement,
RNG_DATA_GOOD the respective data good flag,
Q_RR_RNG_DOT the radar range rate reading,
RDOT_DATA_GOOD the respective validity indicator,
T_REND_RADAR the time at which these measurements
are considered to have been effected, and
M_M50_TO_BODY_RR the transformation matrix from
mean of 1950.0 coordinates to the body coordinate
system at the time T_REND_RADAR.

2. For the Star Tracker,
 SNAP STAR_TRACKER (Q_ST_HORIZ, Q_ST_VERT,
 N_ST_IN_USE, ST_DATA_GOOD, M_M50_BODY_ST,
 T_STAR_TRACKER)
 where

Q_ST_HORIZ is the horizontal angle,
Q_ST_VERT the vertical angle,
ST_DATA_GOOD the data good flag relative to these
angles,

N_ST_IN_USE the identifier of the particular star
 tracker that made the above measurements,
T_STAR_TRACKER the time tag, and
M_M50_BODY_ST the required rotation matrix at
 the time of the measurements.

3. For the COAS,

SNAP COAS (Q_COAS_HORIZ, Q_COAS_VERT, N_COAS_IN_USE, COAS_DATA_GOOD, M_M50_TO_BODY_COAS, T_COAS)
where

Q_COAS_HORIZ is the horizontal angle,
Q_COAS_VERT the vertical angle,
COAS_DATA_GOOD the flag that indicates the
validity of the above readings,
N_COAS_IN_USE the identifier of the particular
instrument used to obtain the angles,
T_COAS the time of the measurements, and
M_M50_TO_BODY_COAS the matrix that describes the
rotation from the M50 to the body coordinate
systems at the time T_COAS.

B. Interface Requirements

The input and output parameters are listed in Tables 4.3.2.2-1 and 4.3.2.2-2, respectively.

C. Processing Requirements.

It is required that the data from the sensors (measurements, ID's, validity flags, rotation matrices, and time tags) be made available for the collection and storage process. The collection rate (not necessarily sensor interrogations) is indicated by the onorbit/rendezvous navigation sequencer. However, this rate assumes that the available data are

fresh. This implies that SOP's processing and selection filtering must be at a rate equal to or greater than the collection rate.

D. Constraints.

The data collections should occur after a complete current set is available and just prior to use in navigation in order to supply current data.

E. Supplementary Information. A suggested implementation of the external sensor data snap subfunction in the form of a detailed flow chart, may be found in Appendix B as a portion of the NAV_RENDEZVOUS flow chart. The snap statement above implies the assignment of current values to the variable names shown in parenthesis.

TABLE 4.3.2.2-1 EXTERNAL SENSOR DATA SNAP INPUT PARAMETERS

	DESCRIPTION	SYMBOL	INPUT SOURCE	ТҮРЕ	PRECISION	RANGE	UNITS	SAMPLE RATE
	Rendezvous radar shaft measurement	Q_RR_SHFT		F	DP		Rad	Filter rate
	Rendezvous radar trunnion angle measurement	Q_RR_TRUN		F	DP		Rad	Filter rate
	Rendezvous radar angle measurement data good flag	RR_ANGLE_DATA_ GOOD		D		ON,OFF	-	Filter rate
	Rendezvous radar range measurement	Q_RR_RNG		F	DP		Ft	Filter rate
4 .w .ro	Rendezvous radar range measurement data good flag	RNG_DATA_GOOD		D		ON,OFF	•	Filter rate
20	Rendezvous radar range rate measurement	Q_RR_RNG_DOT		F	DP		Ft/sec	Filter rate
	Rendezvous radar range rate measurement data good flag	RDOT_DATA_GOOD		D		ON,OFF	•	Filter rate
	Time of rendezvous radar measurements	T_REND_RADAR		F (1)	DP		Sec	Filter rate
	Rotation matrix, M50 to body, at T_REND_RADAR	M_M50_T0_B0DY_ RR		M	DP		Rad	Filter rate

^{*} Rendezvous Navigation Principal Function Input List

TABLE 4.3.2.2-1 EXTERNAL SENSOR DATA SNAP INPUT PARAMETERS

DESCRIPTION	SYMBOL	INPUT SOURCE	ТҮРЕ	PRECISION	RANGE	UNITS	SAMPLE RATE
Star tracker measured horizontal angle	Q_ST_HORIZ	***************************************	F	DP		Rad	Filter rate
Star tracker measured vertical angle	Q_ST_VERT		F	DP		Kad	Filter rate
Star tracker measurement data good flag	ST_DATA_GOOD		D		ON,OFF		Filter rate
Star tracker identifier	N_ST_IN_USE	*		-	1,2	-	Filter rate
Time of star tracker measurements	T_STAR_TRACKER		**************************************	DP		Sec	Filter rate
Rotation matrix, M50 to body, at T_STAR_TRACKER	M M50 TO_ BODY_ST		M	DP		-	Filter rate
COAS measured horizontal angle	Q_COAS_HORIZ		F	DP		Rad	Filter rate
COAS measured vertical angle	Q_COAS_VERT	*	F	DP		Rad	Filter rate
COAS measurement data good flag	COAS_DATA_GOOD	*	D		ON,OFF	-	Filter rate
CÓAS identifier	N_COAS_IN_USE	*	I		1,2	-	Filter rate

^{**} Rendezvous Navigation Principal Function Input List

TABLE 4.3.2.2-1 EXTERNAL SENSOR DATA SNAP INPUT PARAMETERS (cont'd)

DESCRIPTION	SYMBOL	INPUT SOURCE	ТҮРЕ	PRECISION	RANGE	UNITS	SAMPLE RATE
Time of COAS measurements	T_COAS		F	DP		Sec	Filter rate
Rotation matrix, M50 to body, at T_COAS	M_M50_T0_ BODY_COAS		N	DP			Filter rate

^{*} Rendezvous Navigation Principal Function Input List

TABLE 4.3.2.2-2 EXTERNAL SENSOR DATA SNAP OUTPUT PARAMETERS

	DESCRIPTION	SYMBOL	OUTPUT SOURCE	TYPE	PRECISION	RANGE	UNITS	COMPUTATION RATE
	Rendezvous radar shaft angle measurement	Q_RR_SHFT		.F	DP		Rad	Filter rate
	Rendezvous radar trunnion angle measurement	Q_RR_TRUN	*	F	DP		Rad	Filter rate
	Rendezvous radar angle measurements data good flag	RR_ANGLE_DATA_ GOOD		D		ON,OFF	Ft	Filter rate
	Rendezvous radar range measurement	Q_RR_RNG		F	DP		Ft	Filter rate
4.3.2-2	Rendezvous radar range measurement data good flag	RNG_DATA_GOOD	*	D		ON,OFF		Filter rate
ω	Rendezvous radar range rate measurement	Q_RR_RNG_DOT		F	DP		Ft/sec	Filter rate
	Rendezvous radar range rate measurement data good flag	RDOT_DATA_GOOD		D		ON,OFF		Filter rate
	Time of rendezvous radar measurements	T_REND_RADAR		F	DP		Sec	Filter rate

^{*} Rendezvous State and Covariance Measurement Incorporation Subfunction

THE HOLD TO THE HOLD OF

TABLE 4.3.2.2-2 EXTERNAL SENSOR DATA SNAP OUTPUT PARAMETERS

	DESCRIPTION	SYMBOL	OUTPUT SOURCE	TYPE	PRECISION	RANGE	UNITS	COMPUTATION RATE
	Rotation matrix, M50 to body at T_REND_RADAR	M M50 TO_ BODY_RR		, M	· DP		•	Filter rate
	Star tracker measured horizontal angle	Q_ST_HORIZ			DP		Rad	Filter rate
	Star tracker measured vertical angle	Q_ST_VERT			DP		Rad	Filter rate
	Star tracker measurement data good flag	ST_DATA_GOOD		D		ON,OFF	-	Filter rate
٩	Star tracker identifier	N_ST_IN_USE		1		1,2		Filter rate
3.2-24	Time of star tracker measurement	T_STAR_TRACKER		F	DP		Sec	Filter rate
	Rotation matrix, M50 to body at T_STAR_TRACKER	M_M50_T0_ BODY_ST		M	DP		_	Filter rate
	COAS measured horizontal angle	Q_COAS_HORIZ		F	DP		Rad	Filter rate
	COAS measured vertical angle	Q_COAS_VERT		F	DP .		Rad	Filter rate
	COAS measurement data good flag	COAS_DATA_ GOOD	**	D		ON,OFF	-	Filter rate

^{*} Rendezvous State and Covariance Measurement Incorporation Subfunction

TABLE 4.3.2.2-2 EXTERNAL SENSOR DATA SNAP OUTPUT PARAMETERS (continued)

DESCRIPTION	SYMBOL	OUTPUT SOURCE	TYPE	PRECISION	RANGE	UNITS	COMPUTATION RATE
COAS identifier	N_COAS_IN_USE	*	• I	- -	1,2	-	Filter rate
Time of COAS measurement	T_COAS		.	DP		Sec	Filter rate
Rotation matrix, M50 to body, at T_COAS	M_M50_T0_ BODY_COAS		M	DP			Filter rate

^{*} Rendezvous State and Covariance Measurement Incorporation Subfunction

4.3.2.3 Sensor Measurement Selection

A capability, designated as the rendezvous sensor measurement selection subfunction, is required to determine if external sensor measurement data will be presented to the state and covariance measurement incorporation subfunction (sec. 4.3.2.7) when the rendezvous navigation principal function is active. Selection of measurement data shall also mean that knowledge of this data selection will be provided to the measurement reconfiguration subfunction (sec. 4.3.2.4.1) to cause proper configuration of the state vector and covariance matrix.

A. Detailed requirements

The requirements for this subfunction are given as a set of necessary sensor measurement data selection capabilities. Only the following four sensor measurement data types will be considered for selection: rendezvous radar range and range rate, rendezvous radar angles (shaft and trunion), star tracker angles (horizontal and vertical), and COAS angles (horizontal and vertical). The following capabilities shall be provided.

 All external sensor measurement processing shall be inhibited for a premission-determined time prior to the initiation of powered flight and during powered flight.

- 2. If external sensor measurement processing is not inhibited then rendezvous radar range and range rate data will be selected for processing and the crew shall be able to manually enable any one of the following sensor measurement data types: rendezvous radar angles data, star tracker angles data, or COAS angles data. The last enabled of these three angles data types shall be the only angles data type selected, i.e., the remaining two angles data types shall not be considered for selection.
- 3. The crew shall be able to manually force or inhibit the selection of sensor measurement data or to allow the selection process to be automatic. Manual forcing or inhibiting shall override the automatic selection criteria.
 For each of the three angle data types, forcing or inhibiting shall effect selection only if that angles data type is enabled.
- 4. If a crewman forces rendezvous radar range and range rate data or an enabled angles data type then the forced data will be presented to the state and covariance measurement subfunction and the residual edit test shall be overridden for that data type. If a crewman inhibits rendezvous radar range and range rate data or an enabled angles data type then the inhibited data will be processed for statistical display purposes only. The force or

ORIGINAL PAGE IS OF POOR QUALITY inhibit of sensor measurement data shall remain in effect across major mode transitions and is removed by reverting to automatic selection.

- 5. If the automatic selection criteria is in effect for rendezvous radar range and range rate data or an enabled angles data type then these data will be selected for processing.
- B. Interface requirements

 The input and output parameters for this subfunction are indicated in tables 4.3.2.3-1 and 4.3.2.3-2, respectively.
- C. Processing requirements
 This subfunction shall be performed after sensor measurement data has been saved and before the measurement reconfiguration subfunction (sec. 4.3.2.4.1) is executed.
- D. Constraints

 The proper setting of the enable control for each of the
 angular data choices shall be performed by software external
 to navigation.
- E. Supplementary information

 The foregoing requirements indicate the existence of a pair

 of three-position software switches, i.e., two AUTO/INHIBIT/

 FORCE switches, one associated with rendezvous radar range

 and range rate data and another associated with the currently

 enabled angles measurement data. The existence of an individual

OFF/ON software switch for each of the angles data types to be used for enabling is also indicated.

A suggested implementation of this subfunction is shown in REND_SENSOR_SELECT CODE (appendix B).

TABLE 4.3.2.3-1 RENDEZVOUS SENSOR MEASUREMENT SELECTION INPUT PARAMETERS

	DESCRIPTION	SYMBOL	INPUT SOURCE	TYPE	PRECISION	RANGE	UNITS	SAMPLE RATE (1/SEC)
RICINAL OF POOR	ON/OFF Flag used to indicate if external measurements should be processed	USE_ MEAS_ DATA	Rendezvous Nav Control Subfunction	D	S	OFF/ON		Filter Rate
OR QUALITY.	Rendezvous radar range and range rate AUTO/INHIBIT/FORCE switch	RRDOT_ AIF		CHAR	S			Filter Rate
÷	Rendees AUTO/INHIBIT/ FORCE switch used for the currently enabled angle set	ANGLES_AI		CHAR	S			Filter Rate
2-30	Rendezvous radar angles ENABLE flag	RR_ ANGLES_ ENABLE		D	S			Filter Rate
	COAS Angles ENABLE flag	COAS ENABLE	*	D	S			Filter Rate
	Star tracker angles ENABLE flag	ST_ ENĀBĻE		D	S			Filter Rate

^{*}Rendezvous Navigation Principal Function Inlist

TABLE 4.3.2.3-2 RENDEZVOUS SENSOR MEASUREMENT SELECTION OUTPUT PARAMETERS

	SYMBOL	OUTPUT DESTINATION	TÝPE	PRECISION	RANGE	UNITS	COMP RATE (1/SEC)
for 1-th measurement	SENSOR_ EDIT	Rendezvous Measurement processing	CHAR	S			Filter Rate
Flag used (ON) to override the residual edit test for rendezvous radar	RRDOT_ EDIT_ OVER- RIDE	RRDOT data processing	D		OFF/ON		Filter Rate
Flag used (ON) to override the residual edit test for rendez-	RRANGLESEDITOVERRIDE	RR angles data processing	D		: OFF/ON		Filter Rate
override the residual edit test for star	STANGLES EDIT OVER- RIDE	Star tracker angles data processing	D		OFF/ON		Filter Rate
override the residual edit test for COAS	COAS_ ANGLES_ EDIT_ OVER- RIDE	COAS angles data processing	D		OFF/ON	The state of the s	Filter Rate -
	General edit indicator for I-th measurement type, I = 1, 5. Flag used (ON) to override the residual edit test for rendezvous radar range and range rate Flag used (ON) to override the residual edit test for rendez- vous radar angles Flag used (ON) to override the residual edit test for star tracker angles Flag used (ON) to override the residual edit test for COAS angles	For I-th measurement type, I = 1, 5. Flag used (ON) to override the residual edit test for rendezvous radar range and range rate Flag used (ON) to override the residual edit test for rendezvous radar angles Flag used (ON) to override the residual edit test for star tracker angles Flag used (ON) to override the residual edit test for star tracker angles Flag used (ON) to override the residual edit test for COAS angles Flag used (ON) to override the residual edit test for COAS angles Flag used (ON) to Override the residual edit test for COAS angles	For I-th measurement type, I = 1, 5. Flag used (ON) to preserving the residual edit test for rendez- yous radar angles Flag used (ON) to preserving the residual edit test for star tracker angles Flag used (ON) to preserving the residual edit test for star tracker angles Flag used (ON) to preserving the residual edit test for star tracker angles Flag used (ON) to preserving the residual edit test for star tracker angles Flag used (ON) to preserving the residual edit test for star tracker angles Flag used (ON) to preserving the residual edit test for COAS angles data processing Flag used (ON) to preserving the residual edit test for COAS angles data processing edit test for COAS angles d	For I-th measurement type, I = 1, 5. Flag used (ON) to RRDOT RRDOT data processing statistics Flag used the residual edit test for rendezvous radar range and range rate Flag used (ON) to RR angles data processing Flag used (ON) to ST Star processing Flag used (ON) to ST Star angles data processing Flag used (ON) to ST Star angles data processing Flag used (ON) to ST Star angles data processing Flag used (ON) to ST Star angles data processing Flag used (ON) to COAS RIDE Flag used (ON) to ST Star angles data processing Flag used (ON) to COAS angles data processing	For I-th measurement type, I = 1, 5. Flag used (ON) to RRDOT RRDOT Deverride the residual adit test for rendezvous radar range and range rate Flag used (ON) to RR RRDOT Deverride the residual adit test for rendez- EDIT Deverride the residual ANGLES Deverride the residual ANGLES Deverride the residual ANGLES Deverride the residual ANGLES DEDIT Deverride the residual ANGLES DEDIT Deverride the residual ANGLES DEDIT Deverride the residual Deverride the residual ANGLES DEDIT Deverride the residual Deverride the residual REDIT Deverride the residual Deverride the residual EDIT	For I-th measurement type, I = 1, 5. Flag used (ON) to RRDOT RRDOT Deverride the residual seit test for rendezvous radar range and range rate Flag used (ON) to RR DET RRDOT Deverride the residual seit test for rendezvous radar range and range rate Flag used (ON) to RR RR Angles data processing Flag used (ON) to ST Star Deverride the residual sedit test for rendez- EDIT processing Flag used (CN) to ST Star Deverride the residual sedit test for star tracker angles RIDE Flag used (ON) to ST Star Deverride the residual sedit test for star tracker angles RIDE Flag used (ON) to COAS RIDE Flag used (ON) to ST Star Deverride the residual sedit test for star tracker angles RIDE Flag used (ON) to COAS RI	For I-th measurement type, I = 1, 5. Flag used (ON) to RRDOT RRDOT data edit test for rendezvous radar range and range rate Flag used (ON) to RR RRDOT RIDE Flag used (ON) to RR RR RR angles data processing rocessing edit test for rendez-vous radar angles Flag used (ON) to RR RR RR angles DOFF/ON DOVER-RIDE Flag used (ON) to ST Star DOVER-RIDE Flag used (ON) to ST STAR DOVER-RIDE Flag used (ON) to ST STAR STAR DOVER-RIDE Flag used (ON) to STAR STAR STAR STAR STAR STAR STAR STAR

^{*}Rendezvous control and Rendezvous measurement reconfiguration

TABLE 4.3.2.3-2 RENDEZVOUS SENSOR MEASUREMENT SELECTION OUTPUT PARAMETERS (CONT).

	DESCRIPTION	SYMBÓL	OUTPUT DESTINATION	TÝPE	PRECISION	RANGE	UNITS	COMP/ PATE (1/SEC)
	Flag indicating (ON) that COAS angles data are to be processed for statis- tical display only	COAS ANGLES STAT	COAS angles data processing	D		OFF/ON		Filter Rate
	Flag indicating (ON) that rendezvous radar range and range rate data are to be pro- cessed	DO RRDOT_ NAV		D		OFF/ON		Filter Rate
4.3.2-32	Flag indicating (ON) that rendezvous radar angles data are to be processed	DO_RR_ ANGLES_ NAV		D		OFF/ON		Filter Rate -
	Flag indicating (ON) that star tracker angles data are to be processed	DO_ST_ ANGLES_ NAV		D		OFF/ON		Filter Rate

^{*}Rendezvous control and Rendezvous measurement reconfiguration

TABLE 4.3.2.3-2 RENDEZVOUS SENSOR MEASUREMENT SELECTION OUTPUT PARAMETERS (CONT)

	DESCRIPTION	SYMBOL.	OUTPUT DESTINATION	TÝPE	PRECISION	RANGE	UNITS	COMP RATE (1/SEC)
ORIGINAL PAGE IS OF POOR QUALITY	Flag indicating (ON) that COAS angles data are to be processed	DO COAS_ ANGLES_ NAV		D		OFF/ON	ATTENCE AND AND A STATE OF THE	Filter Rate
PAGE IS UALITY	Flag indicating (ON) that rendezvous radar range and range rate data are to be processed for statistical display only	RRDOT_ STAT	RRDOT data processing	D		OFF/ON		Filter Rate
4.3.2.33	Flag indicating (ON) that rendezvous radar angles data are to be processed for statistical display only	RR_ ANGLES_ STAT	RR angles data processing	D		OFF/ON		Filter Rate
	Flag indicating (ON) that star tracker angles data are to be processed for statistical display only	ST ANGLES_ STAT	Star tracker angles data processing	D		OFF/ON		Filter Rate

^{*}Rendezvous control and Rendezvous measurement reconfiguration

4.3.2.4 State and Covariance Setup

This subfunction is required to perform the following two major tasks during operation of the rendezvous navigation principal function:

- e set up the appropriate position, velocity, and unmodeled acceleration bias portion of the state vector and covariance matrix as a result of an automatic inflight update, and
- initialize and re-configure the sensor bias portion of the state vector and covariance matrix, as a result of sensor measurement type changes, or as a result of an automatic inflight update.

The following two subsections describe the requirements pertaining to the above tasks.

4.3.2.4.1 Measurement Reconfiguration

A capability shall be provided for initialization and reconfiguration of the sensor bias portion of the state vector and covariance matrix for the processing of measurements as required by the rendezvous sensor measurement selection subfunction (sec. 4.3.2.3). The measurement reconfiguration subfunction shall be performed when the measurement type configuration has changed to include new measurements or when an auto inflight update occurs while the rendezvous navigation principal function is active.

A. Detailed Requirements

The rendezvous sensor measurement selection subfunction shall provide a capability for determining when star tracker angles, COAS angles, rendezvous radar angles, or rendezvous radar range or range rate data are to be processed. The measurement reconfiguration subfunction determines whether a new measurement is to be made available; and if so, it reconfigures the bias portions of the state vector and covariance matrix to account for the change in measurement status. New exponentially correlated time constants and process noise variances are also selected from premision values for use in the computation of the state transition matrix and in the addition of process noise.

The state vector is to be reconfigured by setting its bias slots associated with the new measurement types to premission values. Bias values of measurement types no longer needed do not have to be zeroed unless the element slots of these values are needed by new measurement types. The covariance matrix is to be reconfigured by zeroing the off-diagonal terms associated with the new measurement type. The diagonal terms are then set equal to premission variance values of the new measurement types. The rows and columns associated with the discontinued measurement types do not have to be zeroed unless they are used by a new measurement type.

The accept/reject counters (N_ACCEPT,N_REJECT, SEQ_ACCEPT, SEQ_REJECT) for each measurement group must be reset to zero for use by the rendezvous measurement processing statistics subfunction (section 4.3.2.8).

The formulations required for reconfiguration of the state vector and covariance matrix are given before according to the sensor type. The measurement biases occupy the 16th through 19th element slots in the state vector. The last four rows and columns of the covariance matrix are associated with the uncertainties in these biases. A description of symbols used in the following equations may be found in tables 4.3.2.4.1-1 and 4.3.2.4.1-2.

Rendezvous radar angles

State vector:

$$SENSOR_BIAS_1 = 0$$

SENSOR_BIAS
$$_2 = 0$$

Variance:

Covariance matrix:

$$E_1$$
 to 19, 16 to 17 = 0

Exponentially correlated time constant:

$$N_ACCEPT_1 = 0$$

$$N_REJECT_1 = 0$$

$$SEQ_ACCEPT_1 = 0$$

$$SEQ_REJECT_1 = 0$$

Startracker angles

State vector:

$$SENSOR_BIAS_7 = 0$$

$$SENSOR_BIAS_2 = 0$$

Variance:

Covariance matrix:

$$E_1$$
 to 19, 16 to 17

Exponentially correlated time constants:

Accept/reject counters:

$$N_ACCEPT_1 = 0$$

$$N_REJECT_1 = 0$$

$$SEQ_REJECT_1 = 0$$

Rendezvous radar range and range rate

State vector:

$$SENSOR_BIAS_3 = 0$$

$$SENSOR_BIAS_4 = 0$$

Variance:

Covariance Matrix:

$$E_{18}$$
 to 19, 1 to 19 = 0

$$E_1$$
 to 17, 18 to 19 = 0

$$E_{18}$$
, $18 = VAR_RRDOT_1$

$$E_{19}$$
, $19 = VAR_RRDOT_2$

Exponentially correlated time constant:

Accept/reject counters:

$$N_{ACCEPT}$$
 2 to 3 = 0

$$N_{REJECT}$$
 2 to 3 = 0

$$SEQ_REJECT_2 to 3 = 0$$

COAS angles

State vector:

$$SENSOR_BIAS_7 = 0$$

$$SENSOR_BIAS_2 = 0$$

Variance:

Covariance matrix:

Exponentially correlated time constant:

Accept/reject counters:

The measurement reconfiguration subfunction shall also reinitialize the bias portion of the state vector and covariance
matrix in the event of in-flight updates. This may be accomplished
by considering all measurement types as new measurements.

B. Interface requirements

The input and output variables for this subfunction are described in tables 4.3.2.4.1-1 and 4.3.2.4.1-2.

C. Proceeding Requirements

The measurement reconfiguration subfunction shall be performed prior to processing of measurements and after the execution of the rendezvous sensor measurement selection subfunction.

D. Constraints

None.

E. Supplementary Information

A suggested implementation of the measurement reconfiguration subfunction is illustrated by the flow charts in Appendix B, REND_NAV_SENSOR_INIT_CODE, RRDOT_SETUP_CODE, RR_ANGLES_SETUP_CODE, ST_ANGLES_SETUP_CODE and COAS_ANGLES_SETUP_CODE.

TABLE 4.3.2.4.1-1. Measurement Reconfiguration Input Parameters

	DESCRIPTION	SYMBOL	INPUT SOURCE	ТҮРЕ	FRECISION	RANGE	UNTIS	SAMPLE RATE
	Flag indicating that rendezvous radar range and range rate are to be processed	DO_RRDOT_NAV	Rendezvous sensor measurement selection	D		OFF ON		Filter rate
	Flag indicating that rendezvous radar angles are to be processed	DO_RR_ANGLES_NAV	Rendezvous sensor measurement selection	D		OFF ON		Filter rate
	Flag indicating that startracker angles are to be processed	DO_ST_ANGLES_NAV	Rendezyous sensor measurement selection	D		OFF ON		Filter rate
4.3.2	Flag indicating that COAS angles are to be processed	DO_COAS_ANGLES _NAV	Rendezvous sensor measurement selection	D		OPF ON		Filter rate
42	Premission values for the rendezvous radar range and range rate measurement bias variances	<u>V</u> AR_RRDOT_DT	premission load	y	DP		ft /sec ft /sec	As needed
	Premission values for the rendezvous radar angles measurements bias variances	VAR_RR_ANGLES_DT	premission load	V.	DP ·		rad ² /sed	As needed
	Premission values for the startracker angles measurements bias variances	<u>V</u> AR_ST_ANGLES_DT	premission load	V	DP		rad ² /sed	As needed

Table 4.3.2.4.1-1. (continued) Measurement Reconfiguration Input Parameters .

	DESCRIPTION	SYMBOL	INPUT SOURCE	TYPE	PRECISION	RANGE	UNITS	SAMPLE RATE
	Premission values for the COAS angles measurement bias variances	VAR_COAS_ANGLES_DT	premission load	γ	DP		rad ² /se	c As needed
	Rendezvous radar range and range rate measurement bias variance used to initialize the covariance matrix diagonal	<u>V</u> AR_RRDOT	premission load	V	DP		ft ² ,ft ² /sec ²	As needed _
4	Rendezvous radar angles measurement bias variances used to initialize co- variance diagonals	VAR_RR_ANGLES	premission load	V	DP	•	rad ²	As needed —
3 2-43	Startracker angles measurement bias variances used to initialize covariance diagonals	<u>V</u> AR_ST_ANGLES	premission load	V	DP		rad ²	As needed
	COAS Angles measurement bias variances used to initialize the covariance diagonal	VAR_COAS_ANGLES	premission load	V	DP		rad ²	As needed -
	Correlation time constants for rendezvous radar range and range rate	TAU_RRDOT	premission load	V	₿P		sec	As needed
	Correlation time constants for rendezvous radar angles	TAU_RR_ANGLES	premission load	٧	DP		sec	As needed

WILLAUS HOOF TO

TABLE 4.3.2.4.1-1. (continued) Measurement Reconfiguration Input Parameters

DESCRIPTION	SYMBOL	INPUT SOURCE	TYPE	PRECISION	RANGĘ	UNITS	SAMPLE - RATE
Correlation time constants for startracker angles	TAU_ST_ANGLES	premission load	٧	DP		sec	As needed
Correlation time constants for COAS angles	TAU_COAS_ANGLES	premission load	V	DP		sec	As needed -
4.3.2							

TABLE 4.3.2.4-2 Measurement Reconfiguration Output Parameters

	DESCRIPTION	SYMBOL	OUTPUT SOURCE	ТҮРЕ	PRECISION	RANGE	UNITS	COMPUTATION RATE
	Filter covariance matrix		Rendezvous measurement incorporation	M	DP		VARY	Filter rate
	General measurement bias filter variance used in propagation of biases and in adding process noise	VAR_SENS_DT	Rendezvous state and co- variance prop- agation	V	DP		VARY	As needed
4.3.2-	Sensor bias portion of the state vector	SENSOR_BIAS	Rendezvous state and covariance measurement incorp- oration	V	DP		VARY	Filter rate
-45	General sensor measure- ment bias time constant	TAU_SENS	Rendezyous state and covariance	V	DP		seç	As needed
	Sensor measurement ACCEPT counter	N ACCEPT	Rendezyous measurement processing statistics	V				Filter rate
	Sensor measurement REJECT counter	N_REJECT	Rendezvous measurement processing statistics	V				Filter rate

TABLE 4.3.2.4-2 (continued) Measurement Reconfiguration Output Parameters

DESCRIPTION	SYMBOL	OUTPUT SOURCE	TYPE	PRECISION	RANGE	UNITS	COMPUTATION RATE
Sensor measurement sequential ACCEPT counter	SEQ_ACCEPT	Rendezyous measurement processing statistics	V				Filter rate
Sensor measurement sequential REJECT counter	SEQ_REJECT	Rendezyous measurement processing statistics	V				Filter rate

Walter Strate Control of the Control

- 4.3.2.4.2 <u>Auto In-Flight Update</u>. This task is required to set up the proper state vector and covariance matrix as a result of an automatic inflight update during operation of the rendezvous navigation principal function. This task shall be capable of performing the following basic sub-tasks:
 - Predict uplinked orbiter state vector (M50 coordinates) to current time from uplinked time tag.
 - 2. Initialize (6 x 6) orbiter position/velocity covariance matrix to pre-mission stored(or uplinked) UVW standard deviations and correlation coefficients, and initialize diagonal elements of the filter covariance matrix associated with the unmodeled acceleration bias errors, to premission stored values (in body coordinates).
 - 3. Predict uplinked target state vector (M50 coordinates) to current time from uplinked time tag.
 - 4. Initialize (6 x 6) target position/velocity covariance matrix to pre-mission stored (or uplinked) UVW standard deviations and correlation coefficients.
 - 5. Enable reinitialization of the sensor bias portion of the state vector and covarial matrix by setting the "DO SENSOR NAV LAST" flags to zero.

- A. <u>Detailed Requirements</u>. Section 4.2.5 contains a description of the detailed requirements for this task (the REND_NAV_FLAG will be in the ON setting, thus indicating those requirements necessary during operation of the rendezvous navigation principal function).
- B. <u>Interface Requirements</u>. Input and output parameters are listed in the tables 4.3.2.4.2-1 and 4.3.2.4.2-2 respectively.
- C. <u>Processing Requirements</u>. The state and covariance setup subfunction shall be performed each navigation cycle; however, the automatic inflight update task shall only be performed when a ground uplink has been received (i.e., the DO AUTO UPDATE flag has been set to ON by the ground uplink processor).
- D. <u>Constraints</u>. The constraints are identical to those listed for the auot inflight update task during operation of the onorbit navigation principal function (see section 4.3.1.2).
- E. <u>Supplementary Information</u>. A suggested implementation in the form of detailed flow charts can be found in Appendix B and C under the following names:

ONORBIT-REND-AUTO-INFLIGHT-UPDATE ONORBIT-REND-STATE-AND-COV-SETUP (CODE) ONORBIT-COVINIT-UVW ACCEL-PERT-ONORBIT

Appendix B

ONORBIT-PREDICT

Appendix C

Table 4.3.2.4.2-1 AUTO IN-FLIGHT UPDATE INPUT LIST

	DESCRIPTION	SYMBOL	INPUT SOURCE	TYPE	PRECISION	RANGE	UNITS	SAMPLE RATE
	flag indicating (ON) that an automatic inflight update of either orbiter and/or target state and covariance matrix is to be performed.	DO_AUTO_ UPDATE		D		ON/OFF		NAV rate
	flag indicating whether rendezvous navigation active (ON) or onorbit navigation active (OFF)	REND_NAV_FLAG		D		ON/OFF		As rqd
.3.2-49	flag set by ground uplink processor indicating (ON) that orbiter vehicle state vector has been uplinked	OV_UPLINK		D		ON/OFF		As rqd
	flag set by ground uplink processor indicating (ON) that target vehicle state vector has been uplinked	TV_UPL1NK		D		ON/OFF		As rqd
	flag indicating degree of gravitational potential model	GM DEG		1	S	1-8		As rqd

^{*} rendezvous navigation principal function input list
** pre-mission load

Table 4.3.2.4.2-1 - (Continued) AUTO IN-FLIGHT UPDATE INPUT LIST

	DESCRIPTION	SYMBOL	INPUT SOURCE	ТҮРЕ	PRECISION	RANGE	UNITS SAMPLE RATE
	flag indicating order of gravitations potential model	GM_ORD '	**		S	0-8	- As rqd
	fiag which activates (1) or deactivates (0) the drag acceleration model	DRAG MODE_ NAV			S	0,1	- As rqd
4.	flag which activates (1) or deactivates (0) the venting and RCS-uncoupled-thrusting model	VENT_MODE_ NAV		1	S	0,1	- As rad
3.2-50	integration step-size for precision state prediction	PREC_STEP			S		ft As rqd
	uplinked orbiter position vector (M50)	R. GND		V	DP		ft/sec As rqd
	uplinked orbiter state vector time tag	T_GND		F	DP	- No. 1	sec As rqd

^{*} rendezvous navigation principal function input list
** pre-mission load

Table 4.3,2.4.2-1 - (Continued) AUTO IN-FLIGHT UPDATE INPUT LIST

	DESCRIPTION	SYMBOL	INPUT SOURCE	TYPE	PRECISION	RANGE	UNITS SAMPLE	
							RATE	
ORIG OF F	time tag of current filter state vector	T_CURRENT_	state propagation	F	DP		sec As rqd	
ORIGINAL: PAGE IS OF POOR QUALITY	vector (6 x 1) of standard deviations (UVW) for orbite position/velocity covarianc initialization (ground upda	r e	* ,**		DP		vary As rqd	
₩ 4.3.2-51	vector (7 x 1) of correlati coefficients associated wit UVW standard deviations SIG_UPDATE used for orbiter position/ velocity covariance initia- lization (ground update)	on COV_COR_ h UPDATE	*, **	V	DP	-1,1	- As rqd	
	earth gravitational constan	t EARTH_MU	44	F	DP		$\frac{ft^2}{sec^2}$ As rad	
	vector (3 x 1) of unmodeled acceleration bias error variances (body coordinate system)	COV_ACCEL_ BODY_INIT	** ** ** ** ** ** ** ** ** **	V	DP		ft ² As rqd	
	uplinked target vehicle position vector (M50)	R _TV_GND	*	V	DP		ft As rqd	

^{*} rendezvous navigation principal function input list
** pre-mission load

DESCRIPTION	SYMBOL	INPUT SOURCE	TYPE	PRECISION	RANGE	UNITS	SAMPLE RATE
vector (6 x 1) of standard deviations (UVW) for tar- get vehicle position/ve- locity covariance initia- lization (ground update)	<u>S</u> IG-TV-UPDATE	*, **	V	DP	<u>-1,1</u>		As rqd
(see section 4.8, I-Load Requirements)	(acceleration model and pre- dictor constant						As rqd

^{*} rendezvous navigation principal function input list
** pre-mission load

TABLE 4.3.2.4.2-2 Auto In-Flight Update Output List

	DESCRIPTION	SYMBOL	OUTPUT SOURCE		PRECISION	RANGE	UNITS	COMPUTATION RATE
ORIGINAL PAGE	flag indicating (ON) that an automatic inflight update has been performed	DID_AUTO_UPDATE		D		ON/OFF		NAV rate
IGINAL PAGE IS	orbiter position vector (M50)	R_FILT	state propagation, covariance propa-gatopm. rendezvous control, state and covariance measure-ment incorporation	V	DP		ft /	As rqd
, w P3 - 53	orbiter velocity vector (M50)	V FILT	state propagation, covariance propaga- tion	V	DP	-	ft/sec	As rqd
	vector of orbiter total acceleration (M50)		state propagation	V	DP	- f	t/sec ²	As rqd
	vector (3 x 1) of unmodeled acceleration bias errors (body coord. systems)	VENT_THRUST_ BIAS	state propagation	V	DP		ft/sec	As rqd
	filter covariance matrix of orbiter position, velocity, and unmodeled acceleration bias errors (9 x 9 dimensional)		covariance propa- gation	M	DP		vary	As rqd

^{*} rendezvous navigation principal function output list

TABLE 4.3.2.4.2-2 (continued) Auto In-Flight Update Output List

	DESCRIPTION	SYMBOL	OUTPUT SOURCE	TYPE	PRECISION	RANGE	UNITS	COMPUTATION RATE
A. 3.2-54	target vehicle position vector (M50)	R-TV	state propagation, rendezvous control, covariance propagation, state and covariance meas. incorp.		DP		ft A	s rad
	target vehicle velocity vector (M50)	<u>v</u> .Tv	state propagation, rendezvous control, covariance propagation, state and covariance meas. incorp.		DP	.	t/sec A	s rqd
	flag indicating (ON) the availability of a target vehicle state vector and time tag for re-initialization purposes	TARG VEC AVATL		D		ON/OFF	- A	s rgd
	target vehicle total acceleration vector (M50)	<u>G_TV</u>	state propagation,	V	DP	-	ft/sec	As rqd

^{*} Rendezvous navigation principal function output list

Table 4.3.2.4.2-2 AUTO IN-FLIGHT UPDATE OUTPUT LIST (concluded)

	DESCRIPTION	SYMBOL	OUTPUT DESTINATION	TÝPE	PRECISION	RANGE	UNITS	SAMPLE RATE
ORIGINAL PAGE IS OF POOR QUALITY	flag indicating (ON) that COAS angles data was se- lected for processing on last nav. cycle	DO_COAS_ ANGLES_NAV LAST	measurement reconfiguration	.D.		ON/OFF		As rqd
	flag indicating (ON) that rendezvous radar angles was selected for processing on last nav. cycle	DO RR_ANGLES <u>-</u> NAV_LÄST	measurement reconfiguration	D		ON/OFF		As rad
4.3.2.54A	flag indicating (ON) that rendezvous radar range and range-rate data was selected for processing on last nav. cycle	DO_RRDOT_NAV_ LAST	measurement reconfiguration	D		ON/OFF		As rqd
	flag indicating (ON) that star tracker angles data was selected for processing on last nav. cycle	DO_ST_ANGLES_ NAV_LAST	measurement reconfiguration	D		ON/OFF		As rqd

^{*} rendezvous navigation principal function output list

4.3.2.5 State Propagation

This subfunction will perform a number of tasks related to the propagation of the orbiter and target state vectors.

The task of reading (snapping) the IMU shall be performed to obtain the current time and the accumulated sensed velocity.

Details of the IMU snap task are to be found in section 4.2.1.1.

Available acceleration models include gravitational accelerations (always used) and non-gravitational accelerations (drag, venting, and uncoupled RCS thrusting). The latter shall be used in those circumstances in which sensed accelerations obtained from the IMU accumulated sensed velocities are judged to be insignificant. These acceleration models are described in detail in section 4.2.1.2.

The equations of motion will be integrated with either a super-g algorithm (see section 4.2.1.2.1) intended primarily for powered flight phases (i.e., those phases in which significant non-gravitational accelerations are sensed) or a precision propagation algorithm designed specifically for coasting flight phases and described in detail in section 4.2.1.3.2.

The task of propagation of biases shall be performed by multiplying the previous value of each bias by unity. Three biases propagated in this way represent unmodeled acceleration; the other 4 are the rendezvous sensor biases.

A. Detailed Requirement

The requirements of this subfunction for the propagation of positions and velocities, follow closely those of section 4.3.1.3. They shall be described here step by step, even though most of these steps are identical to those described in section 4.3.1.3.

- The IMU shall be snapped (see section 4.2.1.1 for details of this task)
- 2. Values of the orbiter's position and velocity vectors calculated in the previous navigation cycle, together with the respective time tag and total acceleration shall be saved for use in the current cycle:

3. The time interval for advancement of both orbiter and target state vectors shall be calculated by subtracting the time tag of the previous cycle from the time (T_CURRENT_FILT) obtained from the IMU snap:

4. The flag that indicates the choice of integrator for the orbiter state vector propagation shall then be tested. This flag, PWRD_FLT_NAV, is set by the onorbit/rendezvous navigation sequencer principal function. It is set to OFF when in a coasting flight phase of the operations, and set to ON just before a burn occurs in the orbiter (no thrusters are anticipated in the target vehicle).

4.1 If the flag is found to be ON, the super-g integrator shall be invoked for advancement of the orbiter state. This requires the setting of certain flags. It also requires comparing the acceleration calculated from the IMU sensed velocities with a pre-stored threshold value below which this acceleration shall be ignored.

So, the following steps are needed:

4.1.1 Find the difference in the accumulated sensed velocity

4.1.2 Calculate an acceleration magnitude from

<u>DV_FILT</u> and DT_FILT and compare it with the threshold value:

Then, if the calculated acceleration is

larger than the threshold value, set the following flags:

$$IGO = GM_LOW$$

IDRAG = 0

IVENT = 0

and set

DV = DV_FILT

On the other hand, if the calculated absolute value of the acceleration is below the threshold level, set

USE IMU DATA = OFF

IGD = GM DEG

IGO = GM ORD

IDRAG = 1

I VENT = 1

and

DV = 0.

4.1.3 Find a value of the sensed acceleration based on \underline{DV} (it could, therefore, be 0., thus ignoring the IMU readings)

A SENS = DV/DT_FILT

4.1.4 Call the super-g integrator (see section 4.2.1.3.1 for detailed requirements) with the flag values just set:

CALL: ONORBIT_SUPER_G

IN LIST: IGD, IGO, IDRAG, IVENT, O, R FILT,

V FILT, T_CURRENT_FILT, DT_FILT, DV

OUT LIST: R FILT, V FILT, G NEW

- 4.2 . In the situation where the PWRD_FLT_NAV is found to be OFF, the precision propagation integration scheme shall be called to advance the orbiter state. The sequence, in this case, shall be as follows:
- 4.2.1 Check the REND_NAV_FLAG, and choose the step-size for the precision propagator according to the values of this flag. The step-size does affect the accuracy of the integration, and it is natural that the accuracy requirements during the rendezvous phases be different from those in other phases of the orbital operations. The REND_NAV_FLAG, during the periods in which the Rendezvous Navigation principal function is in operation, shall always be found to be ON. This will result in setting

DT = REND STEP

- 4.2.2 The vector A SENS is required for the computation of TOT_ACC in a later step. The precision propagator being a coasting flight integrator, the sensed accelerations are not needed by it. Therefore, set A SENS = 0.
- 4.2.3 Invoke the precision propagator (see section 4.2.1.3.2 for detailed requirements) with calling arguments that will cause the modeling of drag, venting and uncoupled

thrusting accelerations, with the use of current attitude information.

CALL: ONORBIT_PRECISE_PROP

IN LIST: GM_DEG, GM_ORD, 1, 1, 0, DT, R FILT,

V FILT, T LAST FILT, T CURRENT FILT

OUT LIST: R FILT, V FILT, G NEW

At the end of either step 4.1.4 or step 4.2.3, the values of R FILT and V FILT output by the corresponding integrator are the required propagated position and velocity vectors of the orbiter. The vector \underline{G} NEW is a modeled acceleration vector obtained according to the specified flag settings and corresponding to \underline{R} FILT, \underline{V} FILT and \underline{T} CURRENT FILT.

5. The REND_NAV_FLAG shall then be tested. This flag indicates whether or not it is necessary to also propagate the state vector of the target vehicle. While the Rendezvous Navigation principal function is operative, this flag will always have the value ON, and propagation of the target state vector will be required.

Propagation of the target vehicle state vector shall be achieved with the use of the precision propagator subfunction. The flag settings for the necessary calls to the acceleration function shall be such as to cause drag to be modeled (drag mode flag set to 1), the mass, drag

coefficient and cross-sectional area of the target vehicle to be used in the calculations are specified by setting the attitude mode flag to 3, venting and uncoupled thrusting are to be ignored (venting mode flag set to 0), and degree and order flags for gravitational accelerations are to be equal to those used by the precision propagation for the orbiter state advancement. Values of the target vehicle's position, velocity, and acceleration vectors from the previous cycle are needed. Therefore,

5.1 Save the above mentioned vectors for use in the current cycle:

 \underline{G} TV_LAST = \underline{G} TV \underline{R} TV_LAST = \underline{R} TV \underline{V} TV_LAST = \underline{V} TV

5.2 Use the precision propagation subfunction to advance the target vehicle's position and velocity vectors and to obtain a corresponding total acceleration vector (which coincides with the modeled acceleration, there being no propulsive devices in the target).

CALL: ONORBIT_PRECISE_PROP

6. Save the IMU readings for the next cycle. The <u>V_CURRENT_FILT</u> will only be needed for the orbiter state propagation, but

the T_CURRENT_FILT will be used to determine the advancement interval for both vehicle's states. Also, find the total acceleration vector for the orbiter (required for covariance transition matrix calculations).

T_LAST_FILT = T_CURRENT_FILT

V_LAST_FILT = V_CURRENT_FILT

TOT_ACC = G_NEW + A_SENS.

B. Interface Requirements

Input and output parameters are to be found in Tables 4.3.2.5-1 and 4.3.2.5-2 respectively.

C. <u>Processing Requirements</u> None.

D. Constraints

The acceleration models task is needed not only by the navigation state propagation subfunction but also by the cnorbit precision state prediction principal function and by the user parameter state propagation subfunction. Each of these users of the acceleration models shall set its own flags and therefore require a different calculation. To protect against interference in the acceleration computations, it is important that these computations not be interrupted.

E. Supplementary information.

A suggested implementation of this subfunction, in the

form of detailed flow diagrams, may be found in Appendix B:

ONCRBIT_REND_R_V_STATE_PROP

ONORBIT_SUPER_G

ONORBIT_PRECISE_PROP

NAV_RENDEZVOUS (IMU snap portion)

ONORBIT_REND_BIAS_AND_COV_PROP (CODE)

'TABLE 4.3.2.5-1

RENDEZVOUS STATE PROPAGATION INPUT PARAMETERS

	DESCRIPTION	SYMBOL	INPUT SOURCE	ТҮРЕ	PRECISION	RANGE	UNITS	SAMPLE RATE
	Copy of <u>V</u> IMU CURRENT raw vel- ocity counts reserved for measurement processing	V_CURRENT_FILT	*	V	DP		Ft/sec	Filter rate
	MTU or clock time when IMU was read	T_CURRENT_FILT		F	DP		Sec	Filter rate
	Angle of attack	ALPHA		F	DP	0-2π	Rad	Filter rate -
	Flag indicating choice of integrator for orbiter state propagation	PWRD_FLT_NAV	*	D	S	ON, OFF		As Needed
4.3.2-64	Filter current orbiter position vector in M50 coordinates	R_FILT	*, Rendezvous state and covariance set- up. Auto in-flight update.		DP		Ft	Filter rate
	Target state vector in M50 coordinates	R_TV	*, Rendezvous state and covariance set- up, Auto in-flight update		DP		Ft	Filter rate
	Total acceleration (sensed plus modeled) of orbiter.	TOT_ACC		V	DP		Ft/sec ²	Filter rate

^{*} Rendezvous Navigation Principal Function Input List

** Premission loaded

*** These constants are listed and their values given in Section 4.8 (I-load requirement).

TABLE 4.3.2.5-1 RENDEZVOUS STATE PROPAGATION INPUT PARAMETERS

	DESCRIPTION	SYMBOL.	OUTPUT DESTINATION	TYPE	PRECISION	RANGE	UNITS	SAMPLE RATE
ORIG OF P	Acceleration of target vehicle	<u>G</u> TV	*, Rendezvous state prop.	V	DP		Ft/sec ²	Filter Rate
ORIGINAL PAGE IS OF POOR QUALITY	Flag indicating if the current nav. phase is a rendezvous phase	REND_NAV FLAG		D		ON, OFF	-	As needed
ALLTA ST GD	Orbiter velocity vector	V_FILT	*, Rendezvous state and covariance setup,	γ	DP		Ft/sec	Filter Rate
4.3.2-65	Target velocity vector	<u>v</u> _tv	Auto in-flight update *, Rendezvous state and covariance setup, Auto in-flight update	V	DP		Ft/sec	Filter Rate
5 1	Angle of sideslip	BETA		F	DP	0-2II	Rad	Filter Rate
	Acceleration model re- lated constants	***	**					

^{*} Rendezvous Navigation Principal Function Input List
** Premission Load
*** These constants are listed and their values given in section 4.8 (I-load requirements).

TABLE 4.3.2.5-2 RENDEZVOUS STATE PROPAGATION OUTPUT PARAMETERS

	DESCRIPTION	SYMBOL	OUTPUT DESTINATION	TÝPE	PRECISION	RANGE	UNITS	COMPUTATION KATE /SEC
	Filter current orbiter position vector in M50 coordinates	RFILT	*, **	V	DP		Ft	Filter rate
	Target vehicle position vector	RTV	*,**	٧	DP		Ft	Filter rate
	Total acceleration (sensed plus modeled)	TOT_ACC	** *	V	DP		Ft/sec	Filter rate
	Acceleration of target vehicle	<u>G</u> TV	***	V	DP		Ft/sec'	Filter rate
4. 3. 2.	Orbiter velocity vector	V_FILT	*, **	V	DP		Ft/sec	Filter rate
2-66	Target vehicle velocity vector	<u>V</u> TV	*, **	V	DP		Ft/sec	Filter rate
	Time of the filter state vector	T_LAST_FILT	Rendezvous nav.	F	`DP		Sec	Filter rate
	Flag indicating IMU acceleration . threshold level	USE_IMU_DATA		D		ON-OFF	•	As needed

^{*} Rendezvous Navigation Principal Function Output List

^{**} Rendezvous Covariance Propagation

TABLE 4.3.2.5-2 RENDEZVOUS STATE PROPAGATION OUTPUT PARAMETERS (cont'd)

	DESCRIPTION	SYMBOL	INPUT SOURCE	TYPE	PRECISION	RANGE		SAMPLE RATE
	Previous total acceleration of orbiter	TOT_ACC_LAST		V	DP		Ft/sec ²	Filter rate
	Previous position vector of orbiter	<u>R_</u> LAST	**************************************	٧	DP		Ft	Filter rate
	Previous velocity vector of orbiter	<u>V</u> LAST	**	٧	DP		Ft/sec	Filter rate
	Previous acceleration of target	G_TV_LAST	**	V	DP		Ft/sec ²	Filter rate
<u>4.</u>	Previous position vector of target	R_TV_LAST	**	V	. DP		Ft	Filter rate
3.2-67	Previous velocity vector of target	V_TV_LAST	**	٧	DP		Ft/sec	Filter rate
	Difference between two consecu- tive times snapped from the IMU	DT_FILT		F	DP		Sec	Filter rate
	Time of the current state vectors	T_CURRENT_FILT	**	F	DP		Sec	Filter rate
	Previous IMU accumulated sensed velocity	V_LAST_FILT	Rendezvous Nav.	V	DP		Ft/sec	Filter rate
	Difference between two consecu- tive accumulated sensed veloci- ties snapped from the IMU	<u>DV_</u> FILT ·	**	V	DP		Ft/sec	Filter rate

^{**} Rendezvous Covariance Propagation Subfunction

4.3.2.6 Covariance Matrix Propagation

The covariance matrix propagation subfunction propagates the covariance matrix forward in time. The covariance matrix is propagated by utilizing the state transition matrix. Additive process noise is incorporated to account for unmodeled state and dynamic errors.

A. Detailed Requirements

A 19 by 19 covariance matrix shall be propagated with the rendezvous navigation principal function. This covariance matrix defines the uncertainty in the state vector, which consists of position and velocity of the orbiter, unmodeled accelerations, position and velocity of the target, and sensor measurement biases. The method of propagation is described in Section 4.2.2

B. Interface Requirements.

The input and output data are shown in Tables 4.3.2.6-1 and 4.3.2.6-2.

C. Processing Requirements.

This subfunction will be called after the IMU sensor data have been read and after the state propagation subfunction has been executed.

D. Constraints.

None.

E. Supplementary Information

A possible implementation of this subfunction is shown in the flow charts ONORBIT_REND_BIAS_AND_COV_PROP (CODE), PWRD_FLT_COV_PROP (CODE), REND_COV_PROP (CODE), MEAN_CONIC_PARTIAL_TRANSITION_MATRIX_6X6, and F_ANG_G in Appendix B.

	DESCRIPTION	SYMBOL	INPUT SOURCE	ТҮРЕ	PRECISION	RANGE	UNITS	SAMPLE RATE
	Interval over which to propagate the covariance matrix	DT_FILT	state propagation	F	S		sec	filter rate
	Correlation time con- stants for body venting	TAU_VENT	premission constant	V	\$		sec	filter rate
	Variance of body venting variables	VAR_VENT_DT	premission load	V	S		(ft/ sec ²) ²	filter rate
4.	Structural body to M50 coordinate transforma-tion matrix	M_SBODY_M50		M	S		/sec	filter rate
.3.2-7n	Drag acceleration co- efficient perfect error	D_COE_PCT_ ERR	premission load	F	S			filter rate
	Drag acceleration vector	<u>D</u>	state propagation	V	S		ft/sec	filter rate
	Flag indicating (ON) whether the rendezvous principal function is scheduled	ŘEND_NAV <u>··</u> FLAG	*	D		ON/OFF		filter rate

^{*} Rendezvous Navigation Principal Function Input List

TABLE 4.3.2.6-1 (Continued) RENDEZVOUS COVARIANCE PROPAGATION INPUT PARAMETERS

	DESCRIPTION	SYMBOL	INPUT SOURCE	TYPE	PRECISION	RANGE	UNITS	SAMPLE RATE
	Filter current shuttle po∵tion vector in M50 coordinates	<u>R</u> FILT	state propagation	٧	DP		ft	filter rate
	Filter current shuttle velocity vector in M50 coordinates	V FILT	state propagation	V	DP			filter rate
	Gravity acceleration at end of shuttle stars integration interval	TOT_ACC	state propagation	٧	DP		ft/ sec ²	filter rate
.	Filter covariance matrix		measurement incorporation	М	DP		vary	filter rate
3.2-71	Flag indicating (ON) the desire to inhibit the processing of external measurement data by the navigation filter	PWRD_FLT_NAV			DP			filter rate

Rendezvous Navigation Principal Function Input List

	DESCRIPTION	SYMBOL	input source	TYPE	PRECISION	RANGE	UNITS	SAMPLE RATE
ORI OF	Gravitational constant of the earth	EARTH-MU	premission load	F	Sı		(ft ³ /	filter rate
ORIGINAL PAGE IS OF POOR QUALITY	Square root of EARTH_MU	SQR_EMU	premission load	F	DP		ft ³ /sec/	filter rate
PAG JUAL	Identity matrix (3 x 3)	ID-MATRIX_	premission load	M	DP	•		filter rate
11.7 E 12.9	Tolerance for succesive iterations in the solution of Kepler's equation	EPS-KEP	premission load	F	DP		rad	filter rate
4.3.2-72	Position vector of shuttle at the end of the last filter cycle	R LAST.	state propagation	V	DP	•	ft	filter rate
73	Velocity vector of shuttle at the end of the last filter cycle	<u>V_</u> LAST	state propagation	٧	DP		ft/sec	filter rate
	Gravity acceleration at start of shuttle state integration interval	TOT-ACC_ LAST	state propagation	V	DP		ft/sec ²	filter rate
		•						

	DESCRIPTION	SYMBOL	OUTPUT DESTINATION	ТУРЕ	PRECISION	RANGE	UNITS	SAMPLE RATE
	Difference between accumulated sensed IMU readings on present cycle and previous cycle	DV_FILT	state propagation	F	DP			Filter rate
	Variance for platform misalignment added as process noise in the covariance	· VAR_IMU_ · ALIGN	premission load	V	DP		rad ²	Filter rate
	Time tag of the current filter state vector	T_LAST_FILT	state propagation	F	DP		sec	Filter rate
	Time of the last IMU	T_ALIGN	premission load .	F	DP		sec	Filter rate
3.2-73	Variance of the platform drift	VAR_IMU_ DRIFT	premission load	ν	DР		rad ²	Filter rate
	Accelerometer quantization error variance	VAR ACC QUANT	premission load	F	DP		ft ² /sec ²	Filter rate
	Variance of unmodeled acceleration times scale time	VAR_UNMOD ACC_DT	premission load	F	DP		ft ² / _{sec} ³	Filter rate

ORIGINAL PAGE IS

TABLE 4.3.2.6-1 (continued) RENDEZVOUS COVARIANCE PROPAGATION INPUT PARAMETERS

	DESCRIPTION	SYMBOL	INPUT SOURCE	TYPE	PRECISION	RANGE	UNITS	SAMPLE RATE
	Sensor measurement bias correlation time con- stants	TAU_SENS	Measurement reconfiguration	V	ÐΡ		sec	filter rate
	Sensor measurement bias error variance	VAR_SENS_DT	Measurement reconfiguration	V	DP		vary	filter rate
	Filter estimated target position at the end of the last filter cycle.	R_TV_LAST	State propagation	V	DP		ft	filter rate
4.3.	Filter estimated target velocity at the end of the last filter cycle.	<u>V_TV_</u> LAST	State propagation	V	DP		ft/sec	filter rate
5.2.74	Gravity vector for the target at the beginning of the last integration interval	<u>G_</u> TV_LAST	State propagation	V	DP		ft/sec	filter rate
	Current target position in M50 coordinates	<u>R</u> TŮ	State propagation	٧	DP		ft	filter rate
	Current target velocity vector in M50 coordinates	<u>v</u> Tv	State propagation	V	Dp		ft/sec	filter rate
	Target's gravity vector at the end of the last integration interval	<u>G</u> TV	State propagation	V	DP		ft/sec	filter rate :

DESCRIPTION	SYMBOL.	OUTPUT DESTINATION	ТÝРЕ	PRECISION	RANGE	UNITS	SAMPLE RATE
Filter convariance matrix	E	measurement incorporation	. M	DΡ	•	vary	filter rate
ORIGINAL PAGE IS OF POOR QUALLITY 1. 4.3.							

4.3.2.7 State and Covariance Measurement Incorporation

The state and covariance measurement incorporation subfunction updates the state vector and covariance matrix with navigation data using a 19 state process noise Kalman filter.

A. Detailed Requirements

The state and covariance measurement incorporation subfunction is exercised only if data are available for
processing as determined by the sensor measurement
selection subfunction (Section 4.3.2.3) and the respective measurement subfunctions (Sections 4.3.2.7.1
through 4.3.2.7.8). The sensor measurement selection
subfunction determines which measurement types are to
be considered for processing. The measurement subfunctions process sensor data that are labeled as valid.

The particular measurement subfunction shall first compute the estimated measurement based on the state vector and the measurement residual. The measurement subfunction then calculates the first partial derivatives of the measurement with respect to the state, as well as the appropriate variance to model the uncorrelated instrument error. Rendezvous radar range and range rate, rendezvous radar shaft and trunion angles, COAS angles, and startracker angles will be available

for processing by the rendezvous navigation principal function.

Once a particular measurement subfunction has completed processing valid data, the filter control flags shall be set as follows:

Rendezvous radar range and range rate

MANUAL_EDIT_OVERRIDE = RRDOT_EDIT_OVERRIDE STAT FLAG = RRDOT STAT

Rendezvous radar shaft and trunion

MANUAL_EDIT_OVERRIDE = RR_ANGLES_EDIT_OVERRIDE STAT_FLAG = RR_ANGLES_STAT

COAS angles

MANUAL_EDIT_OVERRIDE = COAS_ANGLES_EDIT_OVERRIDE STAT_FLAG = COAS_ANGLES_STAT .

Startracker angles

MANUAL_EDIT_OVERRIDE = ST_ANGLES_EDIT_OVERRIDE STAT_FLAG = ST_ANGLES_STAT

The state and covariance measurement incorporation subfunction shall then update the state and covariance matrix provided that either the residual edit criterion is met or the crew edit override for the particular sensor type is active, as described in section 4.2.4.

The following data shall then be stored after the particular

measurement type has been processed for subsequent computation of measurement processing statistics as described in section 4.3.2.8.

where

I = 1 for startracker horizontal angle

I = 2 for startracker vertical angle

I = 1 for COAS horizontal angle

I = 2 for COAS vertical angle

I = 1 for rendezvous radar shaft angle

I = 2 for rendezyous radar trunion angle

I = 3 for rendezvous radar range

I = 4 for rendezvous radar range rate

B. Interface Requirements

The inputs and outputs for this subfunction are given in Tables 4.3.2.7-1 and 4.3.2.7-2.

C. Processing Requirements

This subfunction is not exercised until the external data snap, sensor measurement selection, state and covariance matrix setup, and state and covariance matrix propagation subfunctions have been performed; and the measurement pro-

cessing statistics subfunction cannot be initiated until this subfunction is completed.

D. Contraints

There is no requirement in the state and covariance measurement incorporation subfunction to perform updating if the data validity flags indicate bad data. No manual override of these flags exists in this subfunction. If it is desired to process a particular measurement, the data validity flag must be made to indicate that the data are valid.

E. Supplementary Information

A suggested implementation of the state and covariance measurement incorporation subfunction is presented in the flow charts of Appendix B, NAV_RENDEZVOUS, REND_NAV_FILTER and REND STATE AND COV UPDATE.

TABLE 4.3.2.7.-1. - State and Covariance Measurement Incorporation Input Parameters

	DESCRIPTION	SYMBOL	INPUT SOURCE	TYPE	PRECISION	RANGE	UNITS	SAMPLE RATE
	Filter current shuttle position vector in M50 coordinates	R_FILT	state propagation	γ	DP		ft	Filter rate
	Filter current shuttle velocity vector in M50 coordinates	<u>V</u> FILT	state propagation	V	DP		ft/sec	Filter rate
	Filter estimate of the unmodeled accelerations on the orbiter	VENT THRUSTBIAS	state propagation	٧	. DP		ft/sec ²	Filter rate
	Current target position vector in M50 coordinates	R_TV	state propagation	V	DP		ft	Filter rate
3.2-80	Current target velocity vector in M50 coordinates	<u>V</u> TV	state propagation	V	DP		ft/sec	Filter rate
	The filter estimated sensor bias	SENSOR_BIAS	state propagation	V	DP		VARY	Filter rate
	Filter covariance matrix		Rendezvous covariance propagation	M	DP		VARY	Filter rate
	Measurement first partials with respect to filter state	<u>B</u>	Measurement subfunctions	V	DP		VARY	Filter rate
	General sensor variance	VAR	Measurement subfunctions	F	DP			Filter rate

MILLAND HOOM NO.

TABLE 4.3.2.7-1 (continued) - State and Covariance Measurement Incorporation Input Parameters

	그런 얼마 가게 살아가고 있다. 그리는 그 살아 그렇다							
	DESCRIPTION .	SYMBOL	INPUT SOURCE	TYPE	PRECISION	RANGE	UNITS	SAMPLE RATE
	General measurement residual	DELQ	Measurement subfunction	F	D P		ft	Filter rate
	Scale factor on filter mean square residual used in residual edit test	K_RES_EDIT	Premission load	F	DP			Filter rate
	Switch used (ON) to over- ride the automatic editing of rendezvous radar range and range rate measurements	RRDOT_EDIT_ OVERRIDE	Sensor measurement selection	D		ON OFF		Filter rate
4.3.2	Switch used (ON) to over- ride the automatic editing of rendezvous radar angles	RR_ANGLES_EDIT_ OVERRIDE	Sensor measurement selection	D		ON OFF		Filter rate
(8)	Switch used (ON) to over- ride the automatic editing of startracker angles mea- surements	ST_ANGLES_EDIT	Sensor measurement selection	D		ON OFF		Filter rate
	Switch used (ON) to over- ride the automatic editing of CCAS angles measurements	COAS ANGLES EDIT_OVERRIDE	Sensor measurement selection	D		ON OFF		Filter rate
	Switch used (ON) to in- dicate that rendezyous radar range and range rate data are to be processed for statistics only	RRDOT_STAT	Sensor measurement selection	D		ON OFF		Filter rate

TABLE 4.3.2.7-1 (continued) - State and Covariance Measurement Incorporation Input Parameters

	DESCRIPTION	SYMBOL	INPUT SOURCE	TYPE	PRECISION	RANGE	UNITS	SAMPLE RATE
	Switch used (ON) to in- dicate that rendezvous radar angles data are to be processed for statistics only	RR_ANGLES_STATE	Sensor measurement selection	D		ON OFF	•	Filter rate
	Switch used (ON) to in- dicate that startracker angles data are to be processed for statistics only	ST_ANGLES_STAT	Sensor measurement selection	D .		ON OFF		Filter rate
4.3.2-82	Switch used (ON) to in- dicate that COAS angles data are to be processed for statistics only	COAS_ANGLES STAT	Sensor measurement selection	D		ON OFF		Filter rate

ORIGINAL PAGE IS
POOR QUALITY

TABLE 4.3.2.7-2. - State and Covariance Measurement Incorporation Output Parameters

	DESCRIPTION	SYMBOL	OUTPUT SOURCE	TYPE	PRECISION	RANGE	UNITS	COMPUTATION RATE
	Filter covariance matrix	E	Rendezvous Covariance propagation	М	DP		vary	Filter rate
	Filter current Shuttle position vector in M50 coordinates	R FILT	state propagation	V	DP		ft .	Filter rate
	Shuttle velocity vector	<u>V</u> _FILT	state propagation	٧	S		ft/sec	Filter rate
	Filter estimate of the unmodeled acceleration on the orbiter	VENT_THRUST_ BIAS	state propagation	V	DP	•	ft/sec ²	Filter rate
·3.2-8	Current target position vector in M50 coordinates	<u>R</u> TV	state propagation	٨	DP		ft	Filter rate
ω	Current target velocity vector in MEO coordinates	<u>V</u> _TV	state propagation	V	DP		ft/sec	Filter rate
	The filter estimated sensor bias	SENSOR_BIAS	state propagation	V	DP		VARY	Filter rate
	Edit indicators for measurements	SENSOR_EDIT	*	V				Fi]ter rate
	Measurement residuals	SENSOR_DELQ	*	٧	DP		VARY	Filter rate
	Value of criterion used in May filter for residual edit tests for the sensor reasurements	SENSOR_RESID_ TEST .	*	V	DP	4	VARY	Filter rate

^{*} Rendezvous Navigátion Principal Function Out List

4.3.2.7.1 Rendezvous Radar Range

i dia kata di angkata da kata d

The rendezvous radar range measurement subfunction computes an estimated range from orbiter to target vehicle, the range residual, and the range measurement partial vector, and selects the proper variance to model the uncorrelated instrument error. This subfunction is performed only when rendezvous radar range data are indicated valid.

A. Detailed Requirements

A description of the symbols used in the following equations may be found in tables 4.3.2.7.1-1 and 4.3.2.7.1-2.

First the orbiter state vector shall be interpolated to the time of the range measurement with the use of the state vector interpolation subfunction as described in section 4.2.3. The following parameters must be given the values indicated before the interpolation can be exercised.

R ONE = R LAST

V ONE = V LAST

R TWO = R FILT

V TWO = V FILT

T TWO = T CURRENT FILT

V IMU DIF = DV FILT

T DIF = DT FILT

Next the position-velocity state transition submatrix subfunction is used to construct an orbiter patch transition matrix as described in section 4.2.8 for use in the measurement partial calculations. The following associations are required prior to execution.

 $R ext{ ONE} = R ext{ FILT}$

V ONE = V FILT

 \underline{G} ONE = \underline{T} OT_ACC

R TWO = R RESID

 \underline{V} TWO = \underline{V} RESID

G TWO = A RESID

DELTIM = DELTAT GO

Then after the mean conic partial subfunction has been performed:

Then the target vector is interpolated to the time of the measurement as described in section 4.2.3. The following parameters must be given the values indicated before the interpolation can be exercised.

$$R$$
 ONE = R TV_LAST

V ONE = V TV LAST

R TWO = R TV

where

DELTAT GO = T CURRENT FILT T REND RADAR

and

The interpolation is performed for the target with drag modeled, but not venting. The results of the interpolation in section 4.2.3 are associated with target vector parameters as follows.

Next the position-velocity state transition submatrix subfunction is used to construct a target patch transition matrix as described in section 4.2.8 for use in the measurement partials calculation. The following associations are required prior to execution.

Then after the mean conic partial subfunction has executed, the result is stored.

The rendezvous radar range measurement partial vector is computed with the following equations.

The residual is then calculated.

Finally the filter gain variance for the measurement is computed.

If VAR is less than a premission determined number then VAR is set equal to that number.

B. Interface Requirements

The input and output variables for the rendezvous radar range

measurement subfunction are given in tables 4.3.2.7.1-1 and 4.3.2.7.1-2.

C. Processing Requirements

This subfunction shall be performed after the state and covariance propagation, at the basic filter rate. This subfunction is performed as long as rendezvous radar range measurements are being processed.

D. Constraints

None.

E. Supplementary Information

A suggested implementation of this subfunction is shown in flow charts RR DOT_NAV, REND_NAV_INTERP, ONORBIT_SV_INTERP, and MEAN_CONIC_PARTIAL_TRANSITION_MATRIX 6X6 in Appendix B.

TABLE 4.3.2.7.1-1. - Rendezvous Radar Range Measurement Input Parameters

DESCRIPTION	SYMBOL	INPUT SOURCE	TYPE	PRECISION	RANGE	UNITS	SAMPLE RATE
Filter current shuttle position vector in M50 coordinates	R FILT	State Propagation	V	DP		ft	Filter rate
Filter current shuttle velocity vector in M50 coordinates	V FILT	State Propagation	V	DP		ft/sec	Filter rate
Time tag for latest navigation cycle	T_CURRENT_FILT	State Propagation	٧	P		sec	Filter rate
Difference between accumulated sensed IMU readings on present cycle and previous cycle	DV_FILT	State Propagation	V	DP		ft/sec	Filter rate
The time interval of the last state and covariance propagation	DT_FILT	State Propagation	F	DP		sec	Filter rate
Position vector of the shuttle at the end of the last filter cycle	R LAST	State Propagation	V	DP		ft	Filter rate
Velocity vector of the shuttle at the end of the last filter cycle	<u>V</u> LAST	State Propagation	V	DP		ft/sec	Filter rate
Filter estimated target position at the end of the last filter cycle	R_TV_LAST	State Propagation	V	DP		ft	Filter rate

TABLE 4.3.2.7.1-1. (continued) - Rendezvous Radar Range Measurement Input Parameters

DESCRIPTION	SYMBOL	INPUT SOURCE	ТҮРЕ	PRECISION	RANGE	UNITS	SAMPLE RATE
Filter estimated target position vector at the end of the last filter cycle	V_TV_LAST	State Propagation	y 1	DP		ft/sec	Filter rate
Current target position vector in M50 coordinates	RTV	State Propagation	٧	DP	•	ft	Filter rate
Current target velocity vector in M50 coordinates	<u>v</u>	State Propagation	٧	DP		ft/sec	Filter rate
Target's gravity vector → at the end of the last ∴ integration interval	<u>G_TV</u>	State Propagation	٧	DP		ft/sec	Filter rate
Time tag for the rende- zvous radar range and range rate measurements	T_REND_RADAR	externa] sensor data snap	F	P		sec	Filter rate
Rendezvous radar range measurement	Q_RR_RNG	external sensor data snap	F	DP		ft	Filter rate
A discrete indicating the degree of the acceleration model used	IGD	state propagati on	Þ				Filter rate
A discrete indicating the order of the acceleration model to be used	IG0	state propagation	D				Filter rate

TABLE 4.3.2.7.1-1. (continued) - Rendezvous Radar Range Measurement Input Parameters

	DESCRIPTION	SYMBOL	INPUT SOURCE	TYPE	PRECISION	RANGE	UNITS	SAMPLE RATE
	A flag indicating whether drag is to be modeled in the acceleration calcu-lation	IDM	state propagation	p		0,1		Filter rate
	A flag indicating whether venting is to be modeled in the acceleration equat- ions	IVM	state propagation	D		0,1	•	Filter rate
<u>~</u>	A discrete indicating the type of atmosphere modeling to be used in the acceleration calculations	IATM	state propagation	D				Filter rate
ے ا	Total orbiter acceleration	TOT_ACC	state propagation	V	DP		ft/sec	² Filter rate
	The filter estimated sensor bias	SENSOR_BIAS	state propagation	V	DP	:	VARY	Filter rate
	Gravitational constant of the earth	EARTH MU	premission load	F	DP		(ft ³ /sec) ²	Filter rate
	Square root of EARTH_MU	SQR_EMU	premission load	F	DP		ft ³ /se	 c Filter rate
	Tolerance for succesive iterations in the sol-ution of Kepler's equation	EPS_KEP	premission load	F	DP		rad	Filter rate
	Maximum time skew between the measurement time and the time of the nav cycle before the state is interpolated to the measurement time	EPS_TIME	premission load	V	DP		sec	Filter rate

TABLE 4.3.2.7.1-1. (continued) - Rendezvous Radar Range Measurement Input Parameters

	DESCRIPTION	SYMBOL	INPUT SOURCE	ТҮРЕ	PRECISION	RANGE	UNITS	SAMPLE RATE
	Flag indicating process- able data from the rende- zvous radar range sensor	RNG_DATA_GOOD	external sensor data snap	D		ON OFF		Filter rate
	One sigma statistic of rendezvous radar range measurement	SIG_RR_RNG	premission load	F	DP		ft	Filter rate
	Rate of change of rende- zvous radar range statistic W.R.T. range	SLOPE_SIG_RR_ RNG	premission load	F	DP		unitle	ss Filter rate
4.3.2	Minimum value for computation of rendezvous radar range variance	VAR_RR_RNG_ MIN	premission load	F	DP .		ft ²	Filter rate
26-	Acceleration constants							

^{*} Given in I-load requirements section 4.8

TABLE 4.3.2.7.1-2. - Rendezyous Radar Range Measurement Output Parameters

DESCRIPTION	SYMBOL	OUTPUT DESTINATION	TÝPE	PRECISION	RANGE	UNITS	COMPUTATION RATE
The nayigation filter measurement residual	DELQ	Measurement incorporation	F	DP		ft	Filter rate
· The measurement partials	<u>B</u>	Measurement incorporation	V	DP	-	VARY	Filter rate
The general filter gain variance for the sensors	VAR	Measurement incorporation	F	DP		VARY	Filter rate
4.3.2.93							

4.3.2.7.2 Rendezvous radar range rate. The rendezvous radar range rate measurement subfunction computes an estimated range rate of the orbiter with respect to the target vehicle, the range rate measurement residual, and the range rate measurement partial vector, and selects the proper variance to model the uncorrelated instrument error. This subfunction is performed only when rendezvous radar range rate data are indicated valid.

A. <u>Detailed Requirements</u>. A description of the symbols used in the following equations may be found in tables 4.3.2.7.2-1 and 4.3.2.7.2-2.

First the orbiter and target states are interpolated to measurement time and the orbiter and target transition matrices are calculated as described in section 4.3.2.7.1 for the range measurement with SENSOR_ID equal to 2 instead of 1.

The rendezvous radar range rate partial vector is computed with the following equations:

The residual is then calculated:

Q_PRIME = R_RHO • U_RDOT + SENSOR - BIAS_4

DELQ = Q_RR_RNG_DOT-Q_PRIME

Finally the filter gain variance for the measurement is defined:

VAR = VAR_RANGE_DOT

- B. <u>Interface Requirements</u>. The input and output variables for the rendezvous radar range rate measurement subfunction are given in tables 4.3.2.7.2.-1 and 4.3.2.7.2-2.
- C. <u>Processing Requirements</u>. This subfunction shall be performed after the state and covariance propagation, at the basic filter rate. This subfunction is performed as long as rendezvous radar range rate measurements are being processed.
- D. Constraints. None.
- E. <u>Supplementary Information</u>. A suggested implementation of this subfunction is shown in flow charts RR_DOT_NAV, REND_NAV_INTERP, ONORBIT_SV_INTERP, and MEAN_CONIC_PARTIAL_TRANSITION_MATRIX_6X6 in Appendix B.

TABLE 4.3.2.7.2-1 - RENDEZVOUS RADAR RANGE RATE MEASUREMENT INPUT PARAMETERS

	DESCRIPTION	SYMBOL	INPUT SOURCE	ТҮРЕ	PRECISION	RANGE	UNITS	SAMPLE RATE
	Filter current shuttle position vector in M50 coordinates	<u>R</u> FILT	state propagation	V	DP	——————————————————————————————————————	ft	filter rate
	Filter current shuttle velocity vector in M50 coordinates	<u>V</u> FILT	state propagation	V	DP		ft/sec	filter rate
	Time tag for latest navigation cycle	T_CURRENT_FILT	state propagation	V	DP	_	sec	filter rate
4.3,2-96	Difference between accumulated sensed IMU readings on present cycle and previous cycle	<u>DV</u> FILT	state propagation	V	DP	-	ft/sec	filter rate
	The time interval of the last state and co-variance propagation	DT_FILT	state propagation	F	DP	-	sec	filter rate
	Position vector of the shuttle at the end of the last filter cycle	<u>R</u> LAST	state propagation	V	DP	-	ft	filter rate
	Velocity vector of the shuttle at the end of the last filter cycle	<u>V</u> LAST	state propagation	V	DP		ft/sec	filter rate

TABLE 4.3.2.7.2-1 - (continued) RENDEZVOUS RADAR RANGE RATE MEASUREMENT INPUT PARAMETERS

DESCRIPTION	SYMBOL	INPUT SOURCE	TYPE	PRECISION	RANGE	UNITS	SAMPLE RATE
Filter estimated target position at the end of the last filter cycle	R_TV_LAST	state propagation	V	DP	,	ft	filter rate
Filter estimated target position vector at the end of the last filter cycle°	<u>v</u> tv_last	state propagation	V	DP	-	ft/sec	filter rate
Current target position vector in M50 coordinates	<u>R_</u> TV	state propagation	٧	DP		ft	filter rate
Current target velocity vector in M50 coordinates	<u>v TV</u>	state propagation	V	DP	-	ft/sec	filter rate
Target's gravity vector at the end of the last integration interval	<u>G</u> TV	state propagation	V	DP	_ f	t/sec ²	filter rate
A discrete indicating the degree of the ac- celeration model used.	IGD	state propagation	D		<u>-</u>	_	filter rate
A discrete indicating the order of the ac- celeration model to be used.	IGO	state propagation	D		-	- 1	filter rate

TABLE 4.3.2.7.2-1 - (continued) RENDEZVOUS RADAR RANGE RATE MEASUREMENT INPUT PARAMETERS

		DESCRIPTION	SYMBOL	INPUT SOURCE	TYPE	PRECISION	RANGE	UNITS	SAMPLE RATE
OF POO	ORIGINA	A flag indicating whether drag is to be modeled in the acceleration calculation.	TDM	state propagation	D		0-1		filter rate
R QUALITY	ORIGINAL PAGE IS	A flag indicating whether venting is to be modeled in the acceleration equators	IVM	state propagation	D		0-1		filter rate
	4.3.2-98	A discrete indicating the type of atmosphere mo-deling to be used in the acceleration calculations	IATM	state propagation	D				filter rate
American State of the Control of the		Total orbiter acceleration	TOT_ACC	state propagation		DP	_ f	t/sec ²	filter rate
•		The filter estima ed sensor bias	SENSOR_BIAS	state propagation	V (4)	DP		vary	filter rate
A common of the		Gravitational constant of earth .	EARTH_MU	premission load	.	DP	ft /s	ec	filter rate
		Square root of EARTH_MU	SQR_EMU	premission load	F	DP	ft /	sec	filter rate
And the second s		Tolerance for successive iterations in the solution of Kepler's equation	EPS_KEP	premission load	F	DP		ad	filter rate

TABLE 4.3.2.7.2-1 - (continued) RENDEZVOUS RADAR RANGE RATE MEASUREMENT INPUT PARAMETERS

بالمناب والمراجعة							
DESCRIPTION	SYMBOL	INPUT SOURCE	TYPĘ	PRECISION	RANGE	UNITS	SAMPLE RATE
Maximum time skew be- tween the measurement time and the time of the nav cycle before the state is interpo- lated to the measure- ment time.	<u>EPS_</u> TIME	premission load	V			sec	filter rate
Flag indicating proces- sable data from the rendezvous radar range rate sensor	₹ RDOT <u>*</u> DATA_GOOD	Sensor Data Snap		DP			filter rate
Variance of rendezvous programme range rate sensor measurement	VAR_RANGE_DOT	premission load	F	DP			filter rate
Rendezvous radar range rate measurement	Q_RR_DOT	Sensor Data Snap	F	DP			filter rate
Acceleration constants							

^{*} Given in I-load requirements, section 4.8

TABLE 4.3.2.7.2-2 - RENDEZVOUS RADAR RANGE RATE OUTPUT PARAMETERS

	DESCRIPTION	SYMBOL	OUTPUT SOURCE	TYPE	PRECISION	RANGE	UNITS	COMPUTATION RATE
	The navigation filter measurement residual	DELQ	Measurement Incorporation	F	DP		ft	filter rate
	The measurement partials	<u>B</u>	Measurement Incorporation	V	DP		vary	filter rate
	The general filter gain variance for the sensors	VAR	Measurement Incorporation	F	DP		vary	filter rate
4.3.2-100								

4.3.2.7.3 Rendezvous Radar Shaft Angle

The rendezvous radar shaft angle measurement subfunction computes an estimated shaft angle, the angle measurement residual, and selects the proper variance to model the uncorrelated instrument error.

A. Detailed Requirements

A description of the symbols used in the following equations may be found in tables 4.3.7.3-1 and 4.3.2.7.3-2. This subfunction is exercised only when rendezvous radar angle data are selected for processing and are valid.

First, the orbiter and target states are interpolated to the time of the measurement and the orbiter and target transition matrices are calculated as described in section 4.3.2.7.1 where

The partials are computed by the angle measurement partials subfunction as described in section 4.2.6. The parameters in that common subfunction must be given the following values prior to execution:

Calculation of the partial vector is completed by setting the appropriate value in the bias slot of that vector.

$$B_1 = 1.0$$

The residual is calculated as follows.

U M = M M50 TO SENSOR UNIT(R RHO)

SHFT = ARCTAN(U_{M_2}/U_{M_1}) + BIAS_SENSOR₂

DELQ = Q RR SHFT-SHFT

where \underline{R} RHO is defined by the partial calculations. Finally the appropriate variance for the COAS horizontal angle is assigned.

VAR = VAR SHFT

B. Interface Requirements

The input and output variables for the rendezvous radar shaft angle subfunction are given in tables 4.3.2.7.3-1 and 4.3.2.7.3-2.

C. Processing Requirements

This subfunction shall be performed after the state and covariance propagation, at the basic filter rate. This subfunction is performed as long as rendezvous radar angle measurements are being processed.

D. Constraints

None.

E. Supplementary Information

A suggested implementation of this subfunction is shown in flowcharts NAV_RENDEZYOUS, RR_ANGLE_NAV, REND_NAV_INTERP, ONORBIT_SV_INTERP and MEAN_CONIC_PARTIAL_TRANSITION_MATRIX_6X6 in Appendix B.

TABLE 4.3.2.7.3-1 - Rendezyous Radar Shaft Angle Measurement Input Parameters

	DESCRIPTION	SYMBOL	INPUT SOURCE	TYPE.	PRECISION	RANGE	UNITS	SAMPLE RATE
	Filter current shuttle position vector in M50 coordinates	RFILT	state propagation	v Landarian	DP		ft	Filter rate
	Filter current shuttle velocity vector in M50 coordinates	V FILT	state propagation	V	DP		ft/sec	Filter rate
	Time tag for latest navigation cycle	T_CURRENT_FILT	state propagation	V	DP		sec	Filter rate
4.3.	Difference, between ac- cumulated sensed IMU read- ings on present cycle and previous cycle	<u>DV</u> FILT	state propagation	V	DP		ft/sec	Filter rate
2-103	The time interval of the last, state and covari- ance propagation	DT_FILT	state propagation	F	ĎP		sec	Filter rate
	Position vector of the shuttle at the end of the last filter cycle	R_LAST	state propagation	V	DP		ft	Filter rate
	Velocity vector of the shuttle at the end of the last filter cycle	V_LAST	state propagation	V	DP		ft/sec	Filter rate
	Filter estimated target position at the end of the last filter cycle	R_TV_LAST	state propagation	V	DP		ft	Filter rate

TABLE 4.3.2.7.3-1 - (continued) - Rendezyous Radar Shaft Angle Measurement Input Parameters

	DESCRIPTION	SYMBOL	INPUT SOURCE	TYPE	PRECISION	RANGE	UNITS	SAMPLE RATE
	Filter estimated target position vector at the end of the last filter cycle	V TV LAST	state propagation	V	DP		ft/sec	Filter rate
	Current target position vector in M50 coordinates	<u>R</u> _TV	state propagation	٧	DP		ft	Filter rate
	Current target velocity vector in M50 coordinates	<u>V</u> _TV	state propagation	٧	DP		ft/sec	Filter rate
4.3	Target's gravity vector at the end of the last integration interval	<u>G</u> _TV	state propagation	V	DP		ft/sec ²	Filter rate
3.2-104	A discrete indicating , the degree of the acceleration model used	IGD	state propagation	D				Filter rate
	A discrete indicating the order of the ac-celeration model to be used	IGO	state propagation	D				Filter rate
	A flag indicating whether drag is to be modeled in the acceleration cal-culation	IDM	state propagation	D		0,1		Filter rate
	A flag indicating whether venting is to be modeled in the acceleration equations	IVM	state propagation	, D		0,1		Filter rate

TABLE 4.3.2.7.3-1 - (continued) - Rendezyous Radar Shaft Angle Measurement Input Parameters

	DESCRIPTION	SYMBOL	INPUT SOURCE	TYPE	PRECISION	RANGE	UNITS	SAMPLE RATE
	A discrete indicating the type of atmosphere modeling to be used in the acceleration cal-culations	IATM	state propagation	D				Filter rate
	Total orbiter accelera- tions	TOT_ACC	state propagation	٧	DP		ft/sec ²	Filter rate
	The filter estimated sensor bias	<u>s</u> ensor_bias	state propagation	V	DP		VARY	Filter rate
Ą	Gravitational constant of the earth	EARTH_MU	premission load	F	DP		(ft ³ /sec) ² Filter rate
3.2-105	Square root of EARTH_MU	SQR_EMU	premission load	F	DP		ft ³ /sec	Filter rate
.105	Tolerance for succesive iterations in the solution of Kepler's equation	EPS_KEP	premission load	F	DP		rad	Filter rate
	Maximum time skew between the measurement time and the time of the nav cycle before the state is interpolated to the measurement time	EPS_TIME	premission load	F	DP		sec	Filter rate
	Flag indicating process- able data from the rende- zvous radar angle sensor	RR_ANGLE_DATA _GOOD	external sensor data snap	D		ON,OFF		Filter rate

TABLE 4.3.2.7.3-1 - (continued) - Rendezyous Radar Shaft Angle Measurement Input Parameters

	DESCRIPTION	SYMBOL	INPUT SOURCE	TYPE	PRECISION	RANGE	UNITS	SAMPLE RATE
	Variance of the rendezvous radar shaft measurement	VAR_SHFT	premission load	F	DP		rad ²	Filter rate
	Time tag for the rende- zvous radar measurements	T_REND_RADAR	external sensor data snap	F	DP		sec	Filter rate
	The rendezvous radar shaft measurement	Q_RR_SHFT	external sensor data snap	F	DP		rad	Filter rate
	M50 to body transfor- mation matrix at the time the rendezvous radar data was snapped	M_M50_TO_BODY _RR	external sensor data snap	M	DP			Filter rate
4.3.2-	Body to rendezvous radar transformation matrix	M_BODY_TO_RR	premission load	M	DP			Filter rate
106	Acceleration constants							

^{*} Given in I-load requirements section 4.8

TABLE 4.3.2.7.3-2. - Rendezvous Radar Shaft Angle Measurement Output Parameters

	DESCRIPTION	SYMBOL	OUTPUT DESTINATION	TÝPE	PRECISION	RANGE	UNITS	COMPUTATION PATE
	The navigation filter measurement residual	DELQ	Measurement Incorporation	F	DP		ft	Filter rate
	The measurement partials	<u>B</u>	Measurement Incorporation	٧	DP		VARY .	Filter rate
	The general filter gain variance for the sensors	VAR	Measurement Incorporation	F	DP		VARY	Filter rate
4.3.2-								
-10								

OF POOR QUALITY

4.3.2.7.4 Rendezvous Radar Trunion Angle

The rendezvous radar trunion angle measurement subfunction computes an estimated trunion angle, the angle measurement residual, and the trunion angle partial vector, and selects the proper variance to model the uncorrelated instrument error.

A. <u>Detailed Requirements</u>

A description of the symbols used in the following equations may be found in tables 4.3.2.7.4-1 and 4.3.2.7.4-2. This subfunction is exercised only when rendezvous radar angle data are selected for processing and are valid.

First, the orbiter and target states are interpolated to the time of the measurement and the orbiter and target transition matrices are calculated as described in section 4.3.2.7.1 where

DELTAT_GO = T_CURRENT_FILT_T_REND_RADAR

The partials are computed by the angle measurement partials subfunction as described in section 4.2.6. The parameters in that common subfunction must be given the following values prior to execution:

and

$$\underline{I}$$
 N = UNIT (R TV_RESID_R RESID) X M_M50_T0_SENSOR₃, 1 to 3

where R TV RESID and R RESID are the result of the interpolation of the target and the orbiter respectively.

Calculation of the partial vector, is completed by setting the appropriate value in the bias slot of that vector.

$$B_{17} = 1.0$$

The residual is calculated as follows.

U M = M M50 TO SENSOR UNIT (R RHO)

TRUN = ARCSIN (U_M₃) + BIAS_SENSOR₂

DELQ = Q_RR_TRUN-TRUN

where \underline{R} RHO is defined by the partial calculations. Finally the appropriate variance for the trunion angle is assigned.

VAR = VAR_TRUN

B. Interface Requirements

The input and output variables for the rendezvous radar trunion angle subfunction are given in tables 4.3.2.7.4-1 and 4.3.2.7.4-2.

C. Processing Requirements

This subfunction shall be performed after the state and covariance propagation, at the basic filter rate. This subfunction is performed as long as rendezvous radar angle measurements are being processed.

D. Constraints

None.

E. Supplementary Information

A suggested implementation of this subfunction is shown in flow charts NAV_RENDEZVOUS, RR_ANGLE_NAV, REND_NAV_INTERP, ONORBIT_SV_INTERP and MEAN_CONIC_PARTIAL_TRANSITION_MATRIX_6X6 in Appendix B.

Table 4.3.2.7.4-1. - Rendezyous Radar Trunion Angle Measurement Input Parameters

	DESCRIPTION	SYMBOL	INPUT SOURCE	TYPE	PRECISION	RANGE	UNITS	SAMPLE RATE
	Filter current shuttle position vector in M50 coordinates	R_FILT	state propagation	V	DP		ft	Filter rate
	Filter current shuttle velocity vector in M50 coordinates	V FILT	state propagation	V	DP		ft/sec	Filter rate
	Time tag for latest navigation cycle	T_CURRENT_FILT	state propagation	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	DP		sec	Filter rate
4.3.2-	Difference between ac- cumulated sensed IMU readings on present cycle and previous cycle	DV_FILT	state propagation	V	DP		ft/sec	Filter rate
	The time interval of the last, state and covariance propagation	DT_FILT	state propagation	F	DP		sec	Filter rate
	Position vector of the shuttle at the end of the last filter cycle	R_LAST	state propagation	V. V.	DP		ft	Filter rate
	Velocity vector of the shuttle at the end of the last filter cycle	<u>V</u> _LAST	state propagation	V	DP.		ft/sec	Filter rate
	Filter estimated target position at the end of the last filter cycle	R_TV_LAST	state propagation	V	DP		ft	Filter rate

Table 4.3.2.7.4-1. (continued) - Rendezyous Radar Trunion Angle Measurement Input Parameters

								N.
	DESCRIPTION	SYMBOL	INPUT SOURCE	ТҮРЕ	PRECISION	RANGE	UNITS	SAMPLE RATE
	Filter estimated target position vector at the end of the last filter cycle	<u>V</u> _TV_LAST	state propagation	V	DP		ft/sec	Filter rate
	Current target position vector in M50 coordinates	R_TV	state propagation	ν	DP		ft	Filter rate
	Current target velocity yector in M50 coordinates	<u>V</u> _TV	state propagation	٧	DP		ft/sec	Filter rate
<u>ہ</u> ن	Target's gravity vector at the end of the last integration interval	<u>G</u> TV	state propagation	•	DP		ft/sec ²	Filter rate
o - - - - -	A discrete indicating the degree of the acceleration model used	IGD	state propagation	D				Filter rate
	A discrete indicating the order of the acceleration model to be used	IGO	state propagation	D				Filter rate
	A flag indicating whether drag is to be modeled in the acceleration calculation	IDM	state propagation	D		0,1		Filter rate
	A flag indicating whether venting is to be modeled in the acceleration equations	IVM	state propagation	D		0,1		Filter rate

Table 4.3.2.7.4-1. (continued) - Rendezvous Radar Trunion Angle Measurement Input Parameters

	DESCRIPTION	SYMBOL	INPUT SOURCE	TYPE	PRECISION	RANGE	UNITS	SAMPLE RATE
	A discrete indicating the type of atmosphere modeling to be used in the acceleration calculations	IATM	state propagation	D				Filter rate
	Total orbiter acceleration	TOT_ACC	state propagation	V .	· · · DP		ft/sec ²	Filter rate
	The filter estimated sensor bias •	_SENSOR_BIAS	state propagation	v	DP		VARY	Filter rate
	Gravitational constant of the earth	EARTH_MU	premission load	F	DP		(ft ³ /sec) ² Filter rate
ω	Square root of EARTH_MU	SQR_EMU	premission load	F	DP		ft ³ /sec	Filter rate
3.2-113	Tolerance for succesive iterations in the solution of Kepler's equation	EPS_KEP	premission load	F	DP		rad	Filter rate
	Maximum time skew between the measurement time and the time of the nav cycle before the state is interpolated to the measurement time	EPS_TIME	premission load	V	DP		sec	Filter rate
	Flag indicating processable data from the rendezvous radar angle sensor	RR_ANGLE_DATAGOOD	external sensor data snap	Ď		on,off		Filter rate

Table 4.3.2.7.4-1. (continued) - Rendezvous Radar Trunion Angle Measurement Input Parameters

	DESCRIPTION	SYMBOL	INPUT SOURCE	TYPE	PRECISION	RANGE	UNITS	SAMPLE RATE
	ariance of the rendezvous adar trunion measurement	VAR_TRUN	premission load	F	DP		rad ²	Filter rate
	ime tag for the rendezvous adar measurements	T_REND_RADAR	externaï sensor data snap	F	. DP		sec	Filter rate
,	he rendezvous radar tru- ion measurement	Q_RR_TRUN	external sensor data snap	F	DP		rad	Filter rate
រា r	50 to body transformation acrix at the time the encaryous radar data was napped	M_M50_T0_B0DY_RR	external sensor data snap	M	DP			Filter rate
	ody to rendezvous radar ransformation matrix	M_BODY_TO_RR	Premission load	M	DP			Filter rate
Ā	cceleration constants	C						

^{*} Given in I-load requirements section 4.8

Table 4.3.2.7.4-2, - Rendezyous Radar Trunion Angle Measurement Output Parameters

DESCRIPTION	SYMBOL	OUTPUT SOURCE	ТҮРЕ	PRECISION	RANGE	UNITS	COMPUTATION RATE
The navigation filter measurement residual	DELQ	Measurement Incorporation	F	DP -		ft	Filter rate
The measurement partials.	<u>B</u>	Measurement Incorporation	V	DP		VARY	Filter rate
The general filter gain variance for the sensors	VAR	Measurement Incorporation	F	DP		VARY	Filter rate
4. 3.2							

ALITHON HOOD BOTH

- 4.3.2.7.5 Startracker horizontal angle. The startracker horizontal angle measurement subfunction computes an estimated horizontal startracker angle, the angle measurement residual, and the horizontal angle partials, and selects the proper variance to model the uncorrelated instrument error.
- A. <u>Detailed Requirements</u>. A description of the symbols used in the following equations may be found in tables 4.3.2.7.5-1 and 4.3.2.7.5-2. This subfunction is exercised only when startracker data are selected are valid.

First, the orbiter and target states are interpolated to the time of the measurement. The partials are computed by the angle measurement and the orbiter and target transition matrices are calculated as described in section 4.3.2.7.1 where

DELTAT_GO = T_CURRENT_FILT-T_STAR_TRACKER

The partials are computed by the angle measurement partials subfunction as described in section 4.2.6. The parameters in that common subfunction must be given the following values prior to execution:

Calculation of the partials is completed by setting the appropriate value in the bias slot of the partial vector.

$$B_{17} = 1.0$$

The residual is calculated as follows:

U M = M M50 TO SENSOR UNIT(R RHO)

HORIZ_ = ARCTAN (UM /UM) + BIAS_SENSOR
2 3

DELQ = Q ST HORIZ-HORIZ

where \underline{R} RHO is defined by the partial calculation. Finally the appropriate variance for the startrack horizontal angle is assigned

VAR = VAR_ST_HORIZ

- B. <u>Interface Requirements</u>. The input and output variables for the startracker horizontal angle subfunction are given in tables 4.3.2.7.5-1 and 4.3.2.7.5-2.
- C. <u>Processing Requirements</u>. This subfunction shall be performed after the state and covariance propagation, at the basic filter rate. This subfunction is performed as long as startracker measurements are being processed.
- D. Constraints. None.
- E. <u>Supplementary Information</u>. A suggested implementation of this subfunction is shown in flowchart NAV_RENDEZVOUS, ANGLE_NAV, REND_NAV_INTERP, ONORBIT_SV_INTERP, and MEAN_CONIC_PARTIAL_TRANSITION_MATRIX_6_X_6 in Appendix_B.

TABLE 4.3.2.7.5.-1 - STARTRACKER HORIZONTAL ANGLE MEASUREMENT INPUT PARAMETERS

	DESCRIPTION	SYMBOL	INPUT SOURCE	TYPE	PRECISION	RANGE	UNITS	SAMPLE RATE
	Filter current shuttle position vector in M50 coordinates	R FILT	state propagation	V	DP		ft	filter rate
	°Filter current shuttle velocity vector in M50 coordinates	V FILT	state propagation	V	DP		ft/sec	filter rate
1	Time tag for latest navi- gation cycles	T_CURRENT FILT	state propagation .	y	DP	—	sec	filter rate
1.3.2-118	Difference between ac- cumulated sensed IMU readings on present cy- cle and previous cycle	<u>DV_</u> FILT	state propagation	V	DP		ft/sec	filter rate
	The time interval of the last state and covariance propagation	DT_FILT	state propagation	F	DP		sec	filter rate
	Position vector of the shuttle at the end of the last filter cycle	R_LAST	state propagation	ν	DP		ft	filter rate
	Velocity vector of the shuttle at the end of the last filter cycle	<u>V</u> _LAST	state propagation	V	DP		ft/sec	filter rate

TABLE 4.3.2.7.5-1 - (Continued) STARTRACKER HORIZONTAL ANGLE MEASUREMENT INPUT PARAMETERS

	DESCRIPTION	SYMBOL	INPUT SOURCE	TYPE	PRECISION	RANGE	UNITS	SAMPLE RATE
	Filter estimated target position at the end of the last filter cycle	R_TV_LAST	state propagation	V	DP		ft	filter rate
	Filter estimated target position vector at the end of the last filter cycle	V_TV_LAST	state propagation	V	DP		ft/sec	filter rate
4,	Current target position vector in M50 coordinates	<u>R</u> TV	state propagation	V	DP		ft	filter rate
3.2-119	Current target velocity vector in M50 coordinates	<u>v</u> TV	state propagation	V	DP	-	ft/sec	filter rate -
	Target's gravity vector at the end of the last integration interval	<u>G</u> TV	state propagation	V	DP	_	2 ft/sec	filter rate
	A discrete indicating degree of the accelera-tion model used.	IGD	-state propagation	D			• 	filter rate
	A discrete indicating the order of the acceleration imodel to be used.	IGO	state propagation	D			-	filter rate

TABLE 4.3.2.7.5-1 - (Continued) STARTRACKER HORIZONTAL ANGLE MEASUREMENT INPUT PARAMETERS

	DESCRIPTION [S.AMBOT .	INPUT SOURCE	TYPE	PRECISION	RANGE UNITS	SAMPLE RATE
ORIGINAL OF POOR (A flag indicating whether drag is to be modeled in the acceleration calculation	IDM	state propagation	D		0-1	filter rate
NAL PAGE IS OOR QUALITY	A flag indicating whether venting is to be modeled in the acceleration equations	IVM	state propagation	D		0-1	filter rate
4.3.2-120	A discrete indicating the type of atmosphere modeling to be used in the acceleration calculations	IATM	state propagation	D.			filter rate
0	Total orbiter acceleration	<u>T</u> 0T_ACC	state propagation	V	DP	_ ft/sec ²	filter rate
	The filter estimated sensor bias	SENSOR_BIAS	state propagation	V	DP	vary	filter rate
	Square root of EARTH_MU	EARTH_MU	premission load	F	DD	ft /sec	filter rate
	Tolerance for successive iterations in the solution of Kepler's equation	EPS_KEP	premission load	F	DP	_ rad	filter rate

TABLE 4.3.2.7.5 -1 - (Continued) STARTRACKER HORIZONTAL ANGLE MEASUREMENT INPUT PARAMETERS

	DESCRIPTION	SYMBOL	INPUT SOURCE	ТҮРЕ	PRECISION	RANGE	UNITS	• SAMPLE RATE
	Maximum time skew be- tween the measurement time and the time of the nav cycle before the state is interpolated to the measurement time.	EPS_TIME	premission load		DP		sec	filter rate
	Flag indicating pro- cessable data from the startracker measurement	ST_DATA_GOOD	external sensor data snap	D		ON/OFF		filter rate
4, 3, 2-1;	Variance of startracker horizontal measurement	VAR_ST_HORIZ	premission load		DP	- -	rad ²	filter rate
2	Time tag for the star- tracker measurements	T_STAR . — JRACKER —	external data snap	F	DP	- -	sec	filter rate
	The startracker hori- zontal measurement	Q_ST_HORIZ	external data snap		DP		rad	filter rate
	M50 to body transfor- mation matrix at the time the startracker data was snapped	M_M50_T0_ BODY_ST	external data snap		DP		<u></u>	filter rate

DESCRIPTION	SYMBOL	INPUT SOURCE	TYPE	PRECISION	RANGE	UNITS	SAMPLE RATE
Body to startracker transformation matrix	M_BODY_TO_ ST	Premission load	M	DP	_	_	filter rate
Index indicating which startracker is being used Acceleration constants	N_ST_IN_USE	external data snap	D			<u> </u>	filter rate

^{*} Given in I-load requirements, section 4.8.

TABLE 4.3.2.7.1 - 2 - RENDEZVOUS RADAR RANGE MEASUREMENT OUTPUT PARAMETERS

DESCRIPTION	SYMBOL	OUTPUT SOURCE	ТҮРЕ	PRECISION	RANGE	UNITS	COMPUTATION RATE
The navigation filter measurement residual	DELQ	Measurement Incorporation	F	DP	-	ft	filter rate
The measurement partials	<u>B</u>	Measurement Incorporation	V (19)	DP		vary	filter rate
The general filter gain variance for the sensors	VAR	Measurement Incorporation	F	DP (vary	filter rate

4.3.2.7.6 Startracker Vertical Angle

The startracker vertical angle measurement subfunction computes an estimated vertical startracker angle, the angle measurement residual, and the vertical angle partials, and selects the proper variance to model the uncorrelated instrument error.

A. Detailed Requirements

A description of the symbols used in the following equations may be found in tables 4.3.2.7.6-1 and 4.3.2.7.6-2. This subfunction is exercised only when startracker data are selected and are valid.

First, the orbiter and target states are interpolated to the time of the measurement and the orbiter and target transition matrices are calculated as described in section 4.3.2.7.1 where

DELTAT GO = T CURRENT FILT T STAR TRACKER

The partials are computed by the angle measurement partials subfunction as described in section 4.2.6. The parameters in that common subfunction must be given the following values prior to execution.

M_M50_T0_SENSOR = M_BODY_T0_ST
$$_{N_ST_IN_USE}$$
M_M50_T0_BODY_ST
I_N = M_M50_T0_SENSOR2, 1 to 3

Calculation of the partials is completed by setting the appropriate value in the bias slot of the partial vector.

$$B_{16} = 1.0$$

The residual is calculated as follows.

U M = M M50 TO SENSOR UNIT(R RHO)

 $VERT = ARCTAN (U_M_1/U_M_3) + BIAS_SENSOR_1$

DELQ = Q ST VERT-VERT

where \underline{R} RHO is defined by the partial calculation. Finally the appropriate variance for the startracker vertical angle. is assigned

VAR = VAR ST VERT

B. Interface Requirements

The input and output variables for the startracker vertical angle subfunction are given in tables 4.3.2.7.6-1 and 4.3.2.7.6-2.

C. Processing Requirements

This subfunction shall be performed after the state and covariance propagation, at the basic filter rate. This subfunction is performed as long as startracker measurements are being processed.

D. <u>Constraints</u>

None.

E. Supplementary Information

A suggested implementation of this subfunction is shown in flowcharts NAV_RENDEZVOUS, ANGLE_NAV, REND_NAV_INTERP, ONORBIT_
SV_INTERP, and MEAN_CONIC_PARTIAL_TRANSITION_MATRIX_6X6 in Appendix B.

TABLE 4.3.2.7.6-1 - Startracker Vertical Angle Measurement Input Parameters

					g state to be a			
	DESCRIPTION	SYMBOL	INPUT SOURCE	TYPE	PRECISION	RANGE	UNITS	SAMPLE RATE
	Filter current shuttle position vector in M50 coordinates	R FILT	state propagation	V	DP		ft	Filter rate
	Filter current shuttle velocity vector in M50 coordinates	<u>V</u> FILT	state propagation	V	DP		ft/sec	Filter rate
	Time tag for latest navigation cycle	T_CURRENT_FILT	state propagation	V	DP		sec	Filter rate
4.3.5	Difference between ac- cumulated sensed IMU readings on present cycle and previous cycle	<u>DV</u> FILT	state propagation	V	DP		ft/sec	Filter rate
3 2 126	The time interval of the last, state and covariance propagation	DT_FILT	state propagation	F	DP		sec	Filter rate
	Position vector of the shuttle at the end of the last filter cycle	R_LAST	state propagation	V.	DP	Temporary and the second secon	ft	Filter rate
	Velocity vector of the shuttle at the end of the last filter cycle	V_LAST	state propagation		DP		ft/sec	Filter rate
	Filter estimated target position at the end of the last filter cycle	R_TV_LAST	state propagation		DP		ft	Filter rate

OF POOR QUALITY

TABLE 4.3.2.7.6-1 (continued) - Startracker Vertical Angle Measurement Input Parameters

	가 있는데 그리다 하다면 한 경우 환경 보다 있는데 하고 있는데 있다. 				· · · · · · · · · · · · · · · · · · ·			
	DESCRIPTION	SYMBOL	INPUT SOURCE	TYPE	PRECISION	RANGE	UNITS	SAMPLE RATE
	Filter estimated target position vector at the end of the last filter cycle	V_TV_LAST	state propagation	V	DP		ft/sec	Filter rate
	Current target position vector in M50 coordinates	<u>R</u> _TV	state propagation	V	DP		ft	Filter rate
	Current target velocity vector in M50 coordinates	<u>Λ</u>	state propagation	V	DP		ft/sec	Filter rate
A	Target's gravity vector at the end of the last integration interval	<u>G</u> _TV	state propagation	V	DP		ft/sec ²	Filter rate
2 2 127	A discrete indicating the degree of the acceleration model used	IGD	state propagation	D				Filter rate
	A discrete indicating the order of the ac- celeration model to be used	IGO	state propagation	D				Filter rate
	A flag indicating whether drag is to be modeled in the acceleration calculation	IDM	state propagation	D		0 1	PHYSIC MIT PARTIES SEE AND THE SECTION OF THE PARTIES SEE AND THE SECTION OF THE	Filter rate
	A flag indicating whether venting is to be modeled in the acceleration equations	IVM	state propagation	D		0 1	Management desired as a service of the service of t	Filter rate

TABLE 4.3.2.7.6-1 (continued) - Startracker Vertical Angle Measurement Input Parameters

	DESCRIPTION	SYMBOL	INPUT SOURCE	TYPE	PRECISION	RANGE	UNITS	SAMPLE RATE
	A discrete indicating the type of atmosphere modeling to be used in the acceleration calculations	IATM	state propagation	D				Filter rate
	Total orbiter acceleration	TOT_ACC	state propagation	V	DP		ft/sec ²	Filter rate
	The filter estimated sensor bias	SENSOR_BIAS	state propagation	V	DP		Var y	Filter rate
	Gravitational constant of the earth	EARTH_MU	premission load	F	DP		(ft ³ /sec) ² Filter rate
ა	Square root of EARTH_MU	SQR_EMU	premission lo ad	F	DP		ft ³ /sec	Filter rate
ა - ები	Tolerance for succesive iterations in the solution of Kepler's equation	EPS_KEP	premission load	F	DP		rad	Filter rate
	Maximum time skew between the measurement time and the time of the nav cycle before the state is interpolated to the measurement time	EPS_TIME	premission load	V	DP		sec	Filter rate
	Flag indicating processable data from the startracker measurement	ST_DATA_GOOD	External sensor data snap	D		ON OFF		Filter rate
	Variance of startracker vertical measurement	VAR_ST_VERT	premission load	F	DP		rad ²	Filter rate

TABLE 4.3.2.7.6-1 (continued) - Startracker Vertical Angle Measurement Input Parameters

	DESCRIPTION	SYMBOL	INPUT SOURCE	TYPE	PRECISION	RANGE	UNITS	SAMPLE RATE
	Startracker vertical. measurement	Q_ST_VERT	external sensor data snap	F	DP		rad	Filter rate
	Time tag for startracker measurement	T_STAR_TRACKER	'external sensor data snap	F	DP		sec	Filter rate
	M50 to body transformation matrix at the time the startracker data was snapped	M_M50_T0_B0DY_ST	premission load	M	DP			Filter rate
~	Body to startracker transformation matrix	M_BODY_TO_ST	premission load	M	DP			Filter rate
4.3.2-120	Index indicating which startracker is being used	N ST IN USE	external data snap	D	DP			Filter rate
	Acceleration constants							

^{*} Given in I-load requirements section 4.8

4.3.2-13

TABLE 4.3.2.7.6-2 - Startracker Vertical Angle Measurement Output Parameters

DESCRIPTION	SYMBOL	OUTPUT SOURCE	ТҮРЕ	PRECISION	RANGE	UNITS	COMPUTATION RATE
The navigation filter measurement residual	DELQ	Measurement Incorporation	F	DP		ft	Filter rate
The measurement partials	<u>B</u>	Measurement Incorporation	V	DP		VARY	Filter rate
The general filter gain variance for the sensors	VAR	Measurement Incorporation	F	DP		VARY	Filter rate

4.3.2.7.7 COAS Horizontal Angle.

The COAS horizontal angle measurement subfunction computes an estimated horizontal COAS angle, the angle measurement residual, and the horizontal angle partial vector, and selects the proper variance to model the uncorrelated instrument error.

A. Detailed Requirements.

A description of the symbols used in the following equations may be found in tables 4.3..2.7.7-1 and 4.3.2.7.7-2. This subfunction is exercised only when COAS data are selected and are valid.

First, the orbiter and target are interpolated to the time of the measurement and the orbiter and target transition matrices are calculated as described in section 4.3.2.7.1 where

The partials are computed by the angle measurement partials subfunction as described in section 4.2.6. The parameters in that common subfunction must be given the following values prior to execution.

Calculation of the partial vector is completed by setting the appropriate value in the bias slot of that vector.

$$B_{17} = 1.0$$

The residual is calculated as follows.

U M = M M50 TO SENSOR UNIT (R RHO)

 $HORIZ = ARCTAN (U_M_2/U_M_3) + BIAS_SENSOR_2$

DELQ = Q COAS HORIZ-HORIZ

where \underline{R} RHO is defined by the partial calculations. Finally the appropriate variance for the COAS horizontal angle is assigned.

VAR = VAR_COAS HORIZ

- B. <u>Interface Requirements</u>. The input and output variables for the COAS horizontal angle subfunction are given in tables 4.3.2.7.7-1 and 4.3.2.7.7-2.
- C. <u>Processing Requirements</u>. This subfunction shall be performed after the state and covariance propagation, at the basic filter rate. This subfunction is performed as long as COAS measurements are being processed.
- D. <u>Constraints</u>. None.
- E. <u>Supplementary Information</u>. A suggested implementation of this subfunction is shown in flowcharts NAV_RENDEZVOUS, ANGLE_NAV, REND_NAV_INTERP, ONORBIT_SV_INTERP and MEAN_CONIC_PARTIAL_TRANSITION_MATRIX_6x6 in Appendix B.

TABLE 4.3.2.7.7-1 - COAS HORIZONTAL ANGLE MEASUREMENT INPUT PARAMETERS

	DESCRIPTION	SYMBOL	INPUT SOURCE	TYPE	PRECISION	RANGE	UNITS	SAMPLE RATE
	Filter current shuttle position vector in M50 coordinates	R FILT	state propagation	٧	DP		ft	filter rate
	Filter current shuttle velocity vector in M50 coordinates	V FILT	State propagation	V	DP		ft/sec	filter rate
	Time tag for latest navi- gation cycle	T_CURRENT_ FILT	State propagation	V	DP	-	sec	filter rate
4.3.2-133	Difference between accu- mulated sensed IMU read- ings on present cycle and · previous cycle	DV_FILT	State propagation	V	DP		ft/sec	filter rate
	The time interval of the last state and covariance propagation	DT_FILT	State propagation	F	DP		sec	filter rate
	Position vector of the shuttle at the end of the last filter cycle	<u>R_</u> LAST	State propagation	V	DP		ft	filter rate
	Velocity vector of the shuttle at the end of the last filter cycle	<u>V</u> LAST	State propagation	V	DP	-	ft/sec	filter rate

TABLE 4.3.2.7.7-1 - (continued) COAS HORIZONTAL ANGLE MEASUREMENT INPUT PARAMETERS

DESCRIPTION	SYMBOL	INPUT SOURCE	TYPE	PRECISION	RANGE	UNITS	SAMPLE RATE
Filter estimated target position at the end of the last filter cycle	R TV_LAST	state propagation	V	DP		ft	filter rate
Filter estimated target position vector at the end of the last filter cycle	V_TV_LAST	state propagation	V	DP		ft/sec	filter rate
Current target position vector in M50 coordinates	<u>k</u> TV	state propagation	٧	DP		ft	filter rate
Current target velocity vector in M50 coordinates	<u>v</u> TV	state propagation	V	DP	<u>-</u>	ft/sec	filter rate
Target's gravity vector at the end of the last integration interval	G TV	state propagation	V	DP		ft/sec ²	filter rate
A discrete indicating the degree of the acceleration model used.	1.IGD	state propagation	D			<u> </u>	filter rate
A discrete indicating the order of the acceleration model to be used	IGO	state propagation	D				filter rate

TABLE 4.3.2.7.7-1 - (Continued) COAS HORIZONTAL ANGLE MEASUREMENT INPUT PARAMETERS

	DESCRIPTION	SYMBOL	INPUT SOURCE	TYPE	PRECISION	RANGE	UNITS	SAMPLE RATE
Professional Control of the Control	A flag indicating whether drag is to be modeled in the acceleration calcu-lation	IDM	state propagation	D		0-1		filter rate
	A flag indicating whether venting is to be modeled in the acceleration equations	IVM	state propagation	D		0-1	- - -	filter rate
7 2 2 12E	A discrete indicating the type of atmosphere modeling to be used in the acceleration calculation	IATM	state propagation	D				filter rate
	Total orbiter acceleration		state propagation	V	DP		ft/sec	2 filter rate
	The filter estimated sen- sor bias	SENSOR_BIAS	state propagation	V	DD	_	vary	filter rate
	Gravitational constant of	EARTH_MU	premission load	F	DP	_	ft ³ /sec	filter rate
	Square root of EARTH_MU	SQR_EMU	premission load		DP	_	3 ft/sec	filter rate

TABLE 4.3.2.7.7-1 - (Continued) COAS HORIZONTAL ANGLE MEASUREMENT INPUT PARAMETERS

DESCRIPTION	SYMBOL	INPUT SOURCE	ТҮРЕ	PRECISION	RANGE	UNITS	SAMPLE RATE
Tolerance for successive iterations in the solution of Kepler's equation	EPS_KEP	premission load	F	DP		rad	filter rate
Maximum time skew between the measurement time and the time of the nav cycle before the state is interpolated to the measurement time	<u>EPS_TIME</u>	premission load	**************************************	DP		sec	ORIGINAL PAGE IS OF POOR QUALITY filter rate
Flag indicating processable data from the COAS sensor	COAS_DATA_ GOOD	external sensor data snap	D		ON/DFF		filter rate UALLIY
Variance of the COAS hori- zontal measurement	·VAR COAS HORIZ ·	premission load	F	DD		2 rad	filter rate
Time tag for the COAS measurements	T_COAS	external data snap	F	DP		sec	filter rate
The COAS horizontal measurement	Q_COAS_HORIZ	external data snap	F	DP		rad	filter rate
M50 to body transformation matrix at the time the COAS data was snapped	M_M50_T0_ BODY_COAS	external data snap	M	DP		_	filter rate

TABLE 4.3.2.7.7-1 (continued) COAS HORIZONTAL ANGLE MEASUREMENT INPUT PARAMETERS

DESCRIPTION	SYMBOL	INPUT SOURCE	TYPE	PRECISION	RANG'!	UNITS	SAMPLE RATE
Body to COAS transforma- tion matrix	M_BODY_TO_COAS	premission load	М	DP		_ fi	lter rate
Index indicating which COAS is being used	N_COAS_IN_USE	external data snap	D	DP	-	_ fi	lter rate
Acceleration constants							

^{*} Given in I-load requirements, section 4.8

TABLE 4.3.2.7.7-1 - COAS HORIZONTAL ANGLE MEASUREMENT CUTPUT PARAMETERS

DESCRIPTION	SYMBOL	OUTPUT SOURCE	ТҮРЕ	PRECISION	RANGE	UNITS);OMPUTATION RUTE
The navigation filter measurement residual	DELQ	Measurement Incorporation	F	DP		ft	filter rate
The measurement partials	<u>B</u>	Measurement Incorporation	V	DP	-	vary	filter rate
The general filter gain variance for the sensors	VAR	Measurement	F	DP	-	vary	Filter rate
					!		

- 4.3.2.7.8 COAS vertical angle. The COAS vertical angle measurement subfunction computes an estimated vertical COAS angle, the angle measurement residual, and the vertical angle partial vector, and selects the proper variance to model the uncorrelated instrument error.
- A. <u>Detailed Requirements</u>. A description of the symbols used in the following equations may be found in tables 4.3.2.7.8-1 and 4.3.2.7.8-2. This subfunction is exercised only when COAS data are selected and are valid.

First, the orbiter and target are interpolated to the time of the measurement and the orbiter and target transition matrices are calculated as described in section 4.3.2.7.1 where

The partials are computed by the angle measurement partials subfunction as described in section 4.2.6. The parameters in that common subfunction must be given the following values prior to execution:

Calculation of the partial vector is completed by setting the appropriate value in the bias slot of that vector.

DELQ = Q_COAS_VERT-VERT where R_RHO is defined by the partial calculation. Finally the appropriate variance for the COAS vertical angle is assigned.

VAR = VAR COAS VERT

- B. <u>Interface Requirements</u>. The input and output variables for the COAS vertical angle subfunction are given in tables 4.3.2.7.8-1 and 4.3.2.7.8-2.
- C. <u>Processing Requirements</u>. This subfunction shall be performed after the state and covariance propagation, at the basic filter rate. This subfunction is performed as long as COAS measurements are being processed.
- D. Constraints. None.
- E. <u>Supplementary Information</u>. A suggested implementation of this subfunction is shown in flowcharts NAV_RENDEZVOUS, ANGLE_NAV, REND_NAV_INTERP, ONORBIT_SV_INTERP and MEAN_CONIC_PARTIAL_TRANSITION_MATRIX_6x6 in APPENDIX B.

TABLE 4.3.2.7.8-1 - COAS VERTICAL ANGLE MEASUREMENT INPUT PARAMETER

	DESCRIPTION	SYMBOL	INPUT_SOURCE	TYPE	PRECISION	RANGE	UNITS SAMPLE RATE
	Filter current shuttle position vector in M50 coordinates	RFILT	state propagation	V	DP	<u></u> -	ft filter rate
	Filter current shuttle velocity vector in M50 coordinates	<u>V</u> FILT	state propagation	V	DP .		ft/secfilter.rate
4	Time tag for latest navigation cycle	T_CURRENT_FILT	state propagation	V	DP		sec filter rate
4.3.2-141	Difference between ac- cumulated sensed IMU readings on present cycle and previous cycle	DV FILT	state propagation	V	DÞ		ft/secfilter rate
	The time interval of the last state and co-variance propagation	DT_F1LT	state propagation	F -	DP		sec filter rate
	Position vector of the shuttle at the end of the last filter cycle	<u>R</u> LAST	state propagation	v	DP		ft filter rate

TABLE 4.3.2.7.8 -1 - (Continued) COAS VERTICAL ANGLE MEASUREMENT INPUT PARAMETERS

	DESCRIPTION	SYMBOL	INPUT SOURCE	TYPE	PRECISION	RANGE	UNITS	SAMPLE RATE
	Velocity vector of the shuttle at the end of the last filter cycle	<u>v</u> last	state propagation	V	D.P		ft/sec	filter rate
	Filter estimated target position at the end of the last filter cycle	R TV LAST	state propagation	V	DP		ft.	filter rate
4.3.2-142	Filter estimated target position vector at the end of the last filter cycle	<u>V_TV_</u> LAST	state propagation	V	DP		ft/sec	filter rate
-142	Current target position .vector in M50 coordi-	<u>R_</u> TV	state propagation	V	DP		ft	filter rate
	Current target velocity vector in M50 coordi-	<u>v</u> TV	state propagation	V	DP		ft/sec	filter rate
	Target's gravity vector at the end of the last integration interval	<u>G_T</u> V	state propagation	V	DP		ft/sec ²	filter rate
	A discrete indicating the degree of the accceleration model used.	IGD	state propagation	D				filter rate

TABLE 4.3.2.7.8-7 - (Continued) COAS VERTICAL ANGLE MEASUREMENT INPUT PARAMETERS

11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	DESCRIPTION	SYMBOL	INPUT SOURCE	ТҮРЕ	PRECISION	RANGE	UNITS	SAMPLE RATE
	A discrete indicating the order of the acceleration model to be used.	IGO	state propagation	D			•	filter rate
	A flag indicating whether drag is to be modeled in the acceleration calculation.	IDM	state propagation	D		0-1		filter rate
4.3.2-143	A flag indicating whether venting is to be modeled in the acceleration equation	IVM	state propagation	D		0-1	-	filter rate
143	A discrete indicating the the type of atmosphere modeling to be used in the acceleration calculations	IATM	state propagation	D				filter rate
	Total orbiter acceleration	TOT_ACC	state propagation	V	DD	_ f	t/sec	filter rate
	The filter estimated sensor bias	<u>s</u> ensor_bias	state propagation	V	DP		 vary 	filter rate
	Gravitational constant of the earth	EARTH_MU	premission load	F	DD		t ³ / sec	filter rate

TABLE 4.3.2.7.8-1 - (Continued) COAS VERTICAL ANGLE MEASUREMENT INPUT PARAMETERS

	DESCRIPTION	SYMBOL	. INPUT SOURCE	TYPE	PRECISION	RANGE	UNITS	SAMPLE RATE
ORIGINAL OF POOR	Square root of EARTH_ MU	SQR_EMU	premission load	F	DP		ft ³ /sec	filter rate
PAGE IS QUALITY	Tolerance for successive iterations in the solution of Kepler's equation	EPS_KEP	premission load	F	DP		rad	filter rate
4.3.2-144	Maximum time skew between the measurement time and the time of the nav cycle before the state is interpolated to the measurement time.	EPS_TIME	premission load	V	DP		sec	filter rate
14	Flag indicating processable data from the COAS sensor	COAS_DATA_GOOD	external sensor data snap	D		ON/OFF		filter rate
	Variance of the COAS ver- tical measurement	VAR_COAS_VERT	premission load	F	DP	_	2 rad	filter rate
	Time tag for the COAS measurements	T_COAS	external data snap	F	DP	-	sec	filter rate
	The COAS vertical measure- ment	Q_COAS_VERT	external data snap	F	DP	_	rad	filter rate.

TABLE 4.3.2.7.8-1 - (Continued) COAS VERTICAL ANGLE MEASUREMENT INPUT PARAMETERS

DESCRIPTION	SYMBOL	INPUT SOURCE	TYPE	PRECISION	RANGE .	UNITS	SAMPLE - RATE
M50 to body transforma- tion matrix at the time the COAS data was snapped	M_M50_T0_B0DY COAS	external data snap	M	DP		-	filter rate
Body to COAS transforma- tion matrix	M_BODY_TO_ COAS	premission load	M	DP			filter rate
Index indicating which COAS is being used.	N COAS_IN_USE	external data snap	D	DP	_		filter rate
Acceleration constants							

^{*} Given in I-load requirements, section 4.8

TABLE 4.3.2.7.8-1 - COAS VERTICAL ANGLE MEASUREMENT OUTPUT PARAMETERS

DESCRIPTION	SYMBOL	OUTPUT SOURCE	TYPE	PRECISION	RANGE	UNITS	COMPUTATION- RATE
The navigation filter measurement residual	DELQ.	Measurement Incorporation	F	DP		ft	filter rate
The measurement partials	<u>B</u>	Measurement Incorporation	V	DP		vary	filter rate
The general filter gain variance for the sensors	VAR	Measurement Incorporation	. .	DP		vary	filter rate

4.3.2.8 Measurement Processing Statistics

During rendezvous navigation phases that utilize external measurements, the measurement processing statistics subfunction will compute for display certain parameters that are indicative of the condition of the navigation filter and the external sensor measurements that it utilizes. These display parameters serve as the basis for the crew decision as to how external measurement data is to be processed by the nav filter. Three mutually exclusive controls are available to the crew which allow them to select one of the following processing options:

- (1) AUTO the nav filter edit criterion will determine whether or not valid data are to be used to update the state vector and covariance matrix.
- (2) INHIBIT valid data are to be utilized for computing display parameters but are not to be utilized to update the state vector and covariance matrix.
- (3) FORCE the nav filter edit criterion is to be overridden and valid data are to be utilized to update the
 state vector and covariance matrix whether or not the
 edit criterion is met.

The INHIBIT option will initially be in effect.

The measurement processing statistics subfunction will be performed after the corresponding state and covariance measurement incorporation subfunction has been performed. Filter edit indicators, which will have been initialized to a default value during the corresponding sensor measurement selection subfunction, will be redefined during

the performance of the state and covariance measurement incorporation subfunction. This will indicate to the measurement processing statistics subfunction, for each measurement type being utilized, which of the following five cases has occurred:

- (1) edit indicator = OFF the filter was not configured for the measurement type, or the data were bad and the filter did not attempt to process data of that type,
- (2) edit indicator = ON the filter did attempt to process the measurement type but automatically edited the data,
- (3) edit indicator = PROCESSED the filter processed the measurement type as a result of the data satisfying the edit criterion,
- (4) edit indicator = STAT the filter was used solely for producing the residual and ratio parameters for display, or
- (5) edit indicator = FORCED the filter processed the data as a result of a crew edit override.

Moreover, the state and covariance measurement incorporation subfunction will provide the measurement processing statistics subfunction with the value of each measurement residual and the square of each residual edit criterion value. The data supplied to the measurement processing statistics subfunction are used to compute statistics for the sensor measurement type selected.

For each measurement type, the following parameters are to be computed for display to show how well the navigation filter is processing external measurements of that particular type:

 ${\tt DISP_DELQ}_{I}$ - the actual measurement residual computed by the nav filter for the I'th measurement type. If valid data were not presented to the nav filter, then ${\tt DISP_DELQ}_{I}$ shall be set to "BLANK" in accordance with display requirements.

 ${\sf DISP_SIG}_{I}$ - the edit ratio for the I'th measurement type, which is the absolute magnitude of the actual measurement residual divided by the maximum magnitude that the residual may attain before automatic data editing by the filter occurs. As above, ${\sf DISP_SIG}_{I}$ shall be set to "BLANK" whenever valid data for this measurement type was not presented to the filter.

 N_ACCEPT_I - the number of data marks for the I'th measurement type, which have been used to update the nav state vector.

 N_REJECT_I - the number of data marks for the I'th measurement type which have been automatically rejected as a result of failing the nav filter edit criterion.

DISP_EDIT_I - the status indicator which shall be displayed as a "BLANK" unless the nav filter has edited a predetermined number of sequential data marks for the I'th type. In this case, the status indicator shall be displayed as the symbol, "\u03c4". Once set, the down arrow symbol shall continue to be displayed until a predetermined number of sequential data marks have been automatically processed by the nav filter or until the crew exercises the edit override (FORCE).

The accept/reject counters are initialized to zero whenever the rendezvous navigation major mode is entered (MM211), whenever the

onorbit coast major mode is entered (MM201), whenever the sensor type is changed, or whenever a ground state update occurs.

Sensor data will consist of two types - angular data and range data. The angular data will consist of a pair of angles from one of three mutually exclusive sources; COAS, star tracker (ST) or rendezvous radar (RR). The range data will consist of range and range rate from the rendezvous radar. Angular data, from whichever source has been chosen, can be utilized in conjunction with range data.

- A. <u>Detailed Requirements</u>. The correspondence between the measurement type and the subscript, I, shall be as follows:
 - I = 1 COAS horizontal angle, ST horizontal angle or RR shaft angle

 - I = 3 RR range
 - I = 4 RR range rate

For each value of the integer I in the interval (1, 4), the following procedure will be performed.

The indicator SENSOR_EDIT $_{\rm I}$ shall be tested; and if found to have the value "OFF", both DISP_DELQ $_{\rm I}$ and DISP_SIG $_{\rm I}$ shall be given the value "BLANK" and the calculations shall cease at this point. If the value tested is not "OFF", then DISP_DELQ $_{\rm I}$ shall be given the value SENSOR_DELQ $_{\rm I}$ and DISP_SIG $_{\rm I}$ shall be calculated according to

$$DISP_SIG_{I} = \frac{ABS(SENSOR_DELQ_{I})}{(SENSOR_RESID_TEST_{I})^{1/2}}$$

 $\label{eq:provided_that_SENSOR_RESID_TEST_I} \textbf{positive.}$

The SENSOR_EDIT $_{\rm I}$ indicator shall again be tested; and if found to have the value "STAT", DISP_EDIT $_{\rm I}$ shall be given the value "BLANK" and the calculations shall cease at this point.

If the value is not "STAT", the SENSOR_EDIT_I indicator shall be tested again, and if found to have the value "ON", the sequential accept counter shall be set to zero (SEQ_ACCEPT_I = 0), the sequential reject counter shall be incremented by one (SEQ_REJECT_I = SEQ_REJECT_I+1), and the counter for the number of marks rejected by the nav filter shall be incremented by one (N_REJECT_I = N_REJECT_I+1). Then SEQ_REJECT_i is to be tested and, if found to exceed a predetermined number (REJ_MAX), DISP_EDIT_I shall be set to "\+".

If the value for SENSOR_EDIT $_{\rm I}$ was not "ON", the sequential reject counter shall be set to zero (SEQ_REJECT $_{\rm I}$ =0), the sequential accept counter shall be incremented by one (SEQ_ACCEPT $_{\rm I}$ =SEQ_ACCEPT $_{\rm I}$ +1), and the counter for the number of marks processed by the nav filter shall be incremented by one (N_ACCEPT $_{\rm I}$ =N_ACCEPT $_{\rm I}$ +1). Finally DISP_EDIT $_{\rm I}$ is to be given the value "BLANK" whenever SENSOR_EDIT $_{\rm I}$ has a value of "FORCED" or whenever SEQ_ACCEPT $_{\rm I}$ exceeds a predetermined number (ACC_MIN).

- B. <u>Interface Requirements</u>. Input and output parameters are listed in tables 4.3.2.8-1 and 4.3.2.8-2.
- C. Processing Requirements. None
- D. <u>Constraints</u>. None

E. <u>Supplementary Information</u>. A suggested implementation for this subfunction may be found in the detailed flow chart of Appendix B entitled: MEAS_PROCESSING_STATISTICS_REND.

TABLE 4.3.2.8-1: MEASUREMENT PROCESSING STATISTICS INPUT PARAMETERS

DESCRIPTION	SYMBOL	INPUT SOURCE	TYPE	PRECISION	RANGE	UNITS	SAMPLE RATE
Measurement residual for the I'th measurement type, I=1,4	SENSOR_DELQ(I)	Rend. navigation state and covariance measurement incorporation	F	S			
Value of criterion used in nav filter for residual edit test for I'th meas-urement type, I=1,4	SENSOR RESID_ TEST(I)	Rend. navigation state and covariance measurement incorporation	F	S		•	
Five valued flag defining use of I'th measurement data by the navialiter, I=1,4. OFF - no processing attempted. ON - rejected by residual edit test. PROCESSED - accepted by residual edit test and used to update state vector. STAT - used to generate display parameters. FORCED - used to update state vector as a result of manual edit override.	SENSOR_EDIT(I)	Rend. navigation state and covariance measurement incorporation	CHAR	S			

LITTIPO A TO A TO A STORY OF THE STORY OF TH

1

TABLE 4.3.2.8-1: MEASUREMENT PROCESSING STATISTICS INPUT PARAMETERS (CONTINUED)

	CESCRIPTION	SYMBOL	INPUT SOURCE	TYPE	PRECISION	RANGE	UNITS	SAMPLE RATE
of I' wh to	unter for the number data marks, for the th measurement type, ich have been utilized update the nav state ctor, I = 1,4.	N_ACCEPT _I	State and covariance setup,*	F	\$			
of I' wh	unter for the number data marks, for the th measurement type, ich have been edited by e nav filter.	N_REJECT _I	State and covariance setup,*	F	S			

^{*}Rendezvous navigation principal function input list.

TABLE 4.3.2.8-2: MEASUREMENT PROCESSING STATISTICS OUTPUT PARAMETERS

DESCRIPTION	SYMBOL	OUTPUT SOURCE	TYPE	PRECISION	RANGE	UNITS	COMPUTATION RATE
Display measurement residual for I'th measurement type, I=1,4	DISP_DELQ _I		F	ĎΡ		VAR.	
Display residual edit ratio for I'th measure-ment type, I=1,4	DISP_SIG _I		F	ĐР		•	
Display edit status indicator for I'th measurement type, I=1,4	DISP_EDIT _I		CHAR	S			
Counter for the number of data marks, for the I'th measurement type, which have been utilized to update the nav state vector, I=1,4	N_ACCEPT _I		F	S			
Counter for the number of data marks, for the I'th measurement type, that have been edited by the nav filter, I=1,4	N_REJECT _I		F	S			

^{*}Rendezvous navigation principal function output list.

4.5 General Requirement Principal Functions

This section delineates software requirements in the category of service, single use or multiple use, that are not specifically function related. The general requirement principal functions include, but are not limited to, the following:

- 1. Site lookup principal function (Section 4.5.1).
- 2. Onorbit precision state prediction principal function (Section 4.5.2).
- 3. Star Tracker SOP Ephemerides (Seciton 4.5.3).

4.5.2 Onorbit Precision State Prediction

A capability shall be provided for predicting the position and velocity of the orbiter or target at some final time in the future or past, when an initial state and time are given.

The onorbit precision state prediction principal function shall make no use of the IMU accumulated sensed velocities and therefore is a free-flight prediction process even though it may be performed during periods of flight in which navigation is using accumulated sensed velocities.

Since this principal function shall be used for different purposes having different environmental requirements in various navigation phases, the user shall, by setting the control flags to the appropriate values and by choosing the prediction method or intergration step size, have the option to trade off the accuracy of the integration and the fidelity of the mathematical models in favor of the shorter execution time. This is accomplished with parameters specified in the input argument list.

Tables 4.5.2-1 and 4.5.2-2 are principal function input and output lists which show data flow between the onorbit precision state prediction principal function and other principal functions.

- Detailed requirements. This principal function. which provides for onorbit precision state prediction of the orbiter or target position/velocity states, shall use either a fourth-order Runge-Kutta numerical integration technique, modified with Gill's coefficients, together with an Adams-Moulton predictor-corrector integrator or a singlestep two-body method. The S. Pines formulation of the equations of motion shall be used with each technique. Detailed requirements for the Runge-Kutta-Gill integration technique and the Pines formulation are provided in the precision integration subfunction (sec. 4.2.1.3.2). The Runge-Kutta-Gill integrator is used as the starter (Adams-Moulton integration is not self-starting) for the Adams-Moulton technique and shall be shared with the precision integration subfunction, together with the Pines formulation of the equations of motion. Noncentral body accelerations shall be generated by the userselected acceleration models (sec. 4.2.1.2) to account for perturbations due to drag, venting and uncoupled thrusting, and variations in the Earth's gravitational potential. The onorbit precision state prediction principal function computational scheme shall be performed as follows:
- 1. The desired gravity (GMD and GMO), drag (DM), venting and uncoupled thrusting (VM), and vehicle-attitude (ATM) mode flags shall be obtained from the user, together with the prediction integration step size (DELTA_T), initial state and time (R_IN, V_IN, and T_IN), and final time at the end of the prediction interval (T FIN).

2. The initial state vector shall then be renamed for use in the Pines equations-of-motion formulation and the seventh variable of integration (XN_7) initialized to zero:

$$XN_1$$
 to 3 = R _IN
 XN_4 to 6 = V _IN
 XN_7 = 0.

In the above equations, the seventh variable of integration $(XN_7$, required by the Pines technique), is the integrated initial time T_IN.

3. A check shall now be made on the gravity mode flag (GMD) to determine if prediction is to be accomplished through the use of a simple two-body solution or a more precise integration technique. If a two-body solution is required, (i.e., GMD = 0) the prediction interval is computed,

$$T_CUR = T_FIN - T_IN$$

and the Pines equations-of-motion formulation is called to propagate the initial state (R_IN, V_IN) from the initial time (T_IN) to the final time (T_FIN) in a single step using the two-body solution portion of the Pines equations-of-motion formulation.

4. Otherwise, (GMD +0), the Adams-Moulton flag is set to OFF, the current integrator time (T_CUR) is set to zero, and the step size is set as input:

Additionally, the input integration step size is checked to determine if it is greater than a pre-stored maximum (DT_MAX). If the input step size is greater than the pre-stored maximum (i.e., DT_STEP DT_MAX), the step size used will be set at the maximum.

$$DT_STEP = DT_MAX$$

5. Next, the number of integration steps (N_STEPS) required for the input integration interval shall be calculated:

N_STEPS = CEILING
$$\left(\frac{|T_{FIN} - T_{IN}|}{DT_{STEP}}\right)$$

$$DT_STEP = \frac{T_FIN - T_IN}{N_STEPS}$$

6. A check shall now be made to determine if the number of steps is sufficient to require the use of the Adams-Moulton predictor-corrector. If the number of steps required for the integration interval is greater than or equal to the order of the Adams-Moulton integrator (i.e., N_STEPS ≥ MORDER), then the Adams-Moulton flag, AM, shall be set to ON - a setting indicating the use of the Adams-Moulton technique. This setting shall cause the Runge-Kutta-Gill starter to store the derivatives of the integrated initial conditions (DERIV) in a table (AM_TABLE) on the first Runge-Kutta evaluation for each integration step:

where

$$I = 1$$
 to MORDER - 1

The last (MORDER) derivative shall be stored following the call to the Pines formulation after the last Runge-Kutta-Gill step. Should there not be enough integration steps to require use of the Adams-Moulton integrator, this principal function shall provide for precision state prediction with use of only the Runge-Kutta-Gill technique (i.e., AM = OFF). Storage of the above derivatives shall then be by-passed.

7. The actual integration of the orbiter or target state equations (formulated according to the Pines technique) shall now be performed by proceeding as follows for each step in the integration interval. Note that, in the Pines equations-of-motion formulation, it is the initial conditions (R_IN , V_IN, and T_IN) that are integrated and then used in the closed-form solution of a two-body, unperturbed orbital problem using an F- and G-series type of expression.

The fourth-order Runge-Kutta-Gill integration technique shall be invoked in conjunction with the Pines equation-of-motion formulation. When the Adams-Moulton technique is also required, the Runge-Kutta-Gill integrator shall construct the table of derivatives (AM_TABLE) as described previously.

During onorbit precision state prediction requiring only Runge-Kutta-Gill, integration shall continue until the number of steps in the integration interval have been completed. When both integration techniques are required (Runge-Kutta-Gill and Adams-Moulton), the Runge-Kutta-Gill technique

shall be invoked until N_STEPS = MORDER - 1; then, the Adams-Moulton technique shall be employed for the remaining steps. The Pines equations-of-motion formulation shall be invoked after the final call to the Runge-Kutta-Gill integrator (I = MORDER - 1), and the integrated initial condition derivatives shall be stored:

where

When the number of integration steps required exceeds

MORDER - 1 and the table of derivatives has been constructed

with the aid of the Runge-Kutta-Gill starter, the Adams
Moulton integration technique shall proceed as follows for each
integration step:

a. First, the predictor calculations are performed for each variable of integration (J = 1,7):

where.

XN = integrated initial conditions

AM_TABLE = a table of MORDER derivatives of the integrated initial conditions

PRED_COEF = a table of premission-selected coefficients
DT_STEP = integration step size

b. The current time within the integrator is incremented:

- c. The Pines equations-of-motion formulation is exercised to calculate the derivatives of the predicted integrated initial conditions.
- d. Next, the corrector calculations are performed in a manner similar to the predictor equations (i.e., J = 1, 7):

SUM = 0.0

SUM = SUM + AM_TABLE CORR_COEF
2 to MORDER,J 1 to MORDER-1

XN_J = XP_J + DT_STEP (DERIV_CORR_COEF + SUM)

- e. Another call shall now be made to exercise the Pines formulation to calculate the derivates of the integrated initial conditions (position, velocity and initial time) and, on the final integration step, compute the position and velocity vectors (X_1 to 3 and X_4 to 6) by applying the integrated initial conditions to the Pines equations defining the closed-form two-body solution.
- f. If additional integration steps are required, the Adams-Moulton table of derivatives (AM_TABLE) shall be updated as follows for each variable of integration (J = 1, 7):

AM_TABLE = AM_TABLE 2 to MORDER, J

ORIGINAL PAGE IS OF POOR QUALITY

After the computed number of integration steps have been completed (whether with Runge-Kutta-Gill alone or in conjunction with the Adams-Moulton or a single step two-body solution), the position and velocity are renamed for output:

$$RFIN = X_1$$
 to 3

$$\frac{V}{}$$
 FIN = X 4 to 6

- B. <u>Interface requirements</u>. Input and output requirements are contained in tables 4.5.2-3 and 4.5.2-4.
- C. <u>Processing requirements</u>. This principal function requires user-supplied values of gravity (GMO and GMD), drag (DM), venting and uncoupled thrusting (VM), and vehicle-attitude (ATM) mode flags, in conjunction with the initial state and time (<u>R_IN, V_IN, T_IN</u>) and the final time (<u>T_FIN</u>). Appropriate acceleration models may be found in section 4.2.1.2 . When using this function for target vehicle state prediction the venting and uncoupled thrusting flag (VM) shall be set to zero. Additionally, if drag modeling is desired, the drag mode flag (DM) should be set to one and the attitude mode flag (ATM) set greater than or equal to three as appropriate for the specific target.
- D. <u>Constraints</u>. This module may only be invoked during onorbit or rendezvous coasting flight. The minimum step size (DELTA_T) and maximum prediction interval (T_FIN T_IN)

is restricted by the maximum number of integer steps which can be stored into the orbiter's onboard computer in single precision (i.e. 32767 steps). The user shall supply the appropriate step size and prediction interval such that. the maximum number of steps never exceeds 32767 (AP-101 maximum standard single precision integer).

E. <u>Supplementary information</u>. The onorbit precision state prediction principal function shall be used for both precision and rapid state prediction. When a rapid state prediction is desired, two options are available. The first uses a sophisticated integration technique and equations of motion formulation, while the second method performs the rapid prediction with a less accurate, single-step two-body F and G series solution involving no numerical integration. A suggested implementation of this principal function may be found in appendix B. The following table lists several examples of input variable list combinations for the various types of prediction performed:

VEHICLE	PREDICTION TYPE	GMD*	GMO*	DM	VM	MTA	STEP <u>-</u> SIZE	COMMENTS
Orbiter	Precision	8	8	1	1	1	user selects	Full 8th degree potential model, Drag and venting with predicted attitude & venting timeline
Orbiter	Rapid precison	2	0	1	0	2	user selects	J ₂ only potential model with constant drag coefficient, area
Orbiter	Rapid 2-body	0	0	0	0	0	0	Single-step two-body F and G series solution
Target	Precison	8	8	1	0	<u>></u> 3	user selects	Full 8th degree potential model drag with constant area, drag coefficient
Target	Rapid precision	2	0	1	0	<u>></u> 3	user selects	J ₂ only potential model with constant drag coefficient, area
Target	Rapid 2-body	0	0	0	0	0	0	Single-step two-body F and G series solution

^{*} When prediction is being performed for both vehicles (orbiter and target) over a similar trajectory, the same degree and order potential model should be used for each prediction so that potential model errors will be avoided.

LEVEL B MNEMON	LEVEL C FSSR VARIABLE NAME	EXTERNAL PRINCIPAL FUNCTION SOURCE					
			SUBFUNCTION NAME	SUBFUNCTION INPUT TABLE			
	GMD GMO	Onorbit NAV, REND NAV, ONORBIT GUI- DANCE	N/A	N/A			
	· DM						
	. VM ATM						
TBD	DELTA_T						
	<u>R</u> IN V IN						
	T_IN						
	T_FIN						
	SQR_EMU	ONORBIT/REND NAV	N/A	N/A			
		SEQUENCER					

LEVEL B MNEMON	LEVEL C FSSR VARIABLE NAME	EXTERNAL PRINCIPAL FUNCTION SOURCE	INTERNAL SUBFUNCT (SUBFUNCTIONS WITH	TON DESTINATION HIN THIS PRINCIPAL ILIZE THE VARIABLE)		
	<u>R_</u> FIN	ONORBIT NAV, REND SUBFUNCTION SUB		ONORBIT NAV. REND SUBFUNCTION SU		SUBFUNCTION INPUT TABLE
	*VFIN	DANCE	N/A	N/A		
TBD						

TABLE 4.5.2-3 ONORBIT PRECISION STATE PREDICTION INPUT PARAMETERS

	DESCRIPTION	SYMBOL	INPUT SOURCE	TYPE	PRECISION	RANGE	UNITS	SAMPLE RATE
ORIGINA OF POOR	FLAG INDICATING THE DEG- REE OF THE GRAV POTEN- TIAL MODEL	GMD		I	S	0-8		AS NEEDED
ORIGINAL PAGE IS OF POOR QUALITY,	FLAG INDICATING THE OR- DER OF THE GRAV POTEN- TIAL MODEL	GMO	*		S	0-8		AS NEEDED
4.5.2-13	FLAG INDICATING CHOICE OF MODELS FOR ACCELERA- TION DUE TO DRAG	DM			S	0,1		AS NEEDED

^{*} Refer to onorbit precision state prediction principal function input list

TABLE 4.5.2-3 ONORBIT PRECISION STATE PREDICTION INPUT PARAMETERS - Continued

	DESCRIPTION	SYMBOL	INPUT SOURCE	ТҮРЕ	PRECISION	RANGE	UNITS	SAMPLE RATE
	INTEGRATION STEP SIZE FOR PREDICTION OR PROPA- GATION	DELTA_T	*	F	DP.		SEC	AS NEEDED
	SHUTTLE POSITION VECTOR AT T_IN	RIN		V(3)	DP		• FT	AS NEEDED
4.5,2-14	SHUTTLE VELOCITY VECTOR AT T_IN	<u>v_</u> IN		V(3)	DP		FT/SEC	AS NEEDED

^{*} Refer to onorbit precision state prediction principal function input list

TABLE 4.5.2-3 ONORBIT PRECISION STATE PREDICTION INPUT PARAMETERS - Continued

	DESCRIPTION.	SYMBOL	INPUT SOURCE	ТҮРЕ	PRECISION	RANGE	UNITS	SAMPLE RATE
	INITIAL TIME INPUT FOR ONORBIT PREDICTION OR PROPAGATION	T_IN		F	DP		SEC	AS NEEDED
	FINAL TIME AT END OF PREDICTION OR PROPAGA- TION	T_FIN			DP		SEC	AS NEEDED
4,5,2-	THE ORDER OF THE ADAMS- MOULTON INTEGRATOR	MORDER	PREMISSION LOAD		S			AS NEEDED
2-15	. ARRAY OF COEFFICIENTS REQUIRED BY THE RK- GILL INTEGRATOR	Α	CONSTANTS	F	DP			AS NEEDED
	ARRAY OF COEFFICIENTS REQUIRED BY THE RK-GILL INTEGRATOR	В	CONSTANTS	F	DP			AS NEEDED
	ARRAY OF COEFFICIENTS REQUIRED BY THE RK-GILL INTEGRATOR	C	CONSTANTS	F	DP.			AS NEEDED

^{*} Refer to onorbit precision state prediction principal function input list

	DESCRIPTION	SYMBOL	INPUT SOURCE	TYPE	PRECISION	RANGE	UNITS	SAMPLE RATE
	ARRAY OF COEFFICIENTS REQUIRED BY THE RK-GILL INTEGRATOR	D	CONSTANTS	F	DP			AS NEEDED
	ARRAY OF MORDER COEFFI- CIENTS USED IN THE ADAMS-MOULTON CORRECTOR	PRED_COEF	CONSTANTS	F	DP			AS NEEDED
•	GRAVITATIONAL CONSTANT OF EARTH	EARTH_MU	CONSTANTS	F	DP	FT**3/	SEC**2	AS NEEDED
4.5.	SQUARE-ROOT OF EARTH_MU, USED IN ONORBIT PRED/PRLP INTEGRATION (PINES) METHOD	SQR_EMÚ		F	DP	(FT**3/S	EC**2)2	AS NEEDED
.2-16	FLAG INDICATING WHICH VENTING MODEL IS TO BE USED BY PRECISION STATE PREDICTOR	VM			S	0,1		AS NEEDED .
	ATTITUDE MODE FLAG MAXIMUM INTEGRATION STEP SIZE USED FOR	ATM DT_MAX	* PREMISSION LOAD	I F	S DP	0,1,2 ((≥3 (tar	 rbiter) get) SEC	AS NEEDED AS NEEDED
	PRECISION PREDICTION							

^{*} Refer to onorbit precision state prediction principal function input list _

TABLE 4.5.2-4-ONORBIT PRECISION STATE PREDICTION OUTPUT PARAMETERS

	DESCRIPTION	SYMBOL	OUTPUT DESTINATION	TÝPE	PRECISION	RANGE	UNITS	COMPUTATION RATE,
	SHUTTLE POSITION VECTOR AT T_FIN	<u>R</u> FIN		۷(3)	ĎP .		·FT	AS NEEDED
	SHUTTLE VELOCITY VECTOR AT T_FIN	<u>v</u> fin		۷(3)	DP		FT/SEC	AS NEEDED
4.5.2-17								

^{*} Refer to onorbit precision state prediction principal function output list

4.6 User Parameter Processing Principal Function (Onorbit)

This principal function shall serve as the interface between navigation and users of navigation-related data during the onorbit operational sequence. This function shall maintain the vehicle state within the user parameter state propagation subfunction and shall:

- a) provide this state to users who require vehicle state parameters in mean-of-fifty (M50) coordinates; and
- b) provide the software to transform this state for users who require nav state-related parameters.

Interface parameters between this principal function and other GN&C principal functions are presented in tables 4.6-1 and 4.6-2.

LEVEL B MNEMON	LEVEL C FSSR VARIABLE NAME	EXTERNAL PRINCIPAL FUNCTION SOURCE	(SUBFUNCTIONS W	CTION DESTINATION ITHIN THIS PRINCIPAL JTILIZE THE VARIABLE)
			SUBFUNCTION NAME	SUBFUNCTION INPUT TABLE
G14702 - G14704	V_IMU_CURRENT	·IMU_RM	USER_PARAM_ PROPAGATOR	4.6.1-1
G14705	T_IMU		n .	in the state of th
G28201 - G28203	R_RESET	ORB NAV RENDZ NAV ORB/RND NAV SEQ		
G28204- G28206	<u>V</u> RESET	RENDZ NAV ORB NAV ORB/RND NAV SEQ		18 11
G29701	T_RESET	RENDZ NAV ORB NAV ORB/RND NAV SEQ		
G28210 - G28212	V_IMU_RESET	RENDZ NAV ORB NAV ORB/RND NAV SEQ		
G46500	USE_IMU_DATA	RENDZ NAV ORB NAV		
G25515	FILT_UPDATE	REND NAV ORB NAV ORB/RND NAV SEQ		j

TABLE 4.6-1: ONORBIT USER PARAMETER PROCESSING PRINCIPAL FUNCTION INPUT LIST (con't.)

LÉVEL B MNEMON	LEVEL C FSSR EXTERNAL PRINCIPAL VARIABLE NAME FUNCTION SOURCE		INTERNAL SUBFUNCTION DESTINATION (SUBFUNCTIONS WITHIN THIS PRINCIPAL FUNCTION WHICH UTILIZE THE VARIABLE)				
			SUBFUNCTION NAME	SUBFUNCTION INPUT TABLE			
TBD	COMP_MODE	NAV MONITOR DIP	NAV_MONITOR_COMPS	4.6.2-1			
11	DO_PREDICT			ti			
	T_PREDICT						
	R_COMP	ONORBIT PREDICT		ti.			
	<u>V</u> COMP			i i i i i i i i i i i i i i i i i i i			
II.	REND_NAV_FLAG	ORB/RND NAV SEQ	USER_PARAM_PROPAGATOR	4.6.1-1			
	R TV RESET	RENDZ NAV ORB/RND NAV SEQ					
	<u>V</u> TV_RESET	RENDZ NAV ORB/RND NAV SEQ					

TABLE 4.6.2: ONORBIT USER PARAMETER PROCESSING PRINCIPAL FUNCTION OUTPUT LIST

-	LEVEL B MNEMON	LEVEL C FSSR VARIABLE NAME	EXTERNAL PRINCIPAL FUNCTION SOURCE	INTERNAL SUBFUNCTION (SUBFUNCTIONS WITHIN FUNCTION WHICH UTIL)	THIS PRINCIPAL
				SUBFUNCTION NAME	SUBFUNCTION INPUT TABLE
	G02701- G02703	<u>R_</u> AVGG	ON-ORB GUID ATT PROC ORBIT MNVR DIP GN&C/SM-PL IF	USER PARAM PROPAGATOR	4.6.1-2
	G02704 - G02706	<u>V</u> AVGG	ON-ORB GUID ATT PROC ORBIT MNVR DIP GN&C/SM-PL IF		

TABLE 4.6-2: ONORBIT USER PARAMETER PROCESSING PRINCIPAL FUNCTION OUTPUT LIST (con't.)

LEVEL B MNEMON	LEVEL C FSSR VARIABLE NAME	EXTERNAL PRINCIPAL FUNCTION SOURCE	(SUBFUNCTIONS WITHIN	INTERNAL SUBFUNCTION DESTINATION (SUBFUNCTIONS WITHIN THIS PRINCIPAL FUNCTION WHICH UTILIZE THE VARIABLE)		
			SUBFUNCTION NAME	SUBFUNCTION INPUT TABLE		
G02707	T_STATE	ON-ORB GUID ORBIT MNVR DIP GN&C/SM-PL IF	USER PARAM PROPAGATOR	4.6.1-2		
G02712- G02714	<u>V IMU OLD</u>	ON-ORB GUID	n Tarangan			
TBD	LATITUDE	NAV MONITOR DIP	NAV_MONITOR_COMPS	4.6.2-2		
	LONGITUDE			21		
	ALTITUDE					
	ASC_NODE			đ		
G02701~ G02703	<u>R</u> AVGG	ONORBIT PREDICT		н		
G02704- G02706	<u>V</u> AVGG					
G02707	T_STATE			1		
TBD	T_PREDICT			1		
	DT_PREDICT			.11		

4.6.1 User Parameter State Propagation

Whereas the on-orbit and rendezvous navigation state propagation subfunctions advance the navigation state vector at relatively large intervals, at the end of which external measurement data processed by the filter are incorporated when appropriate, users such as guidance and displays require a knowledge of the state vector at shorter intervals.

The on-orbit and rendezvous user parameter state propagation subfunction will satisfy the requirements of such users by integrating the equations of motion within the intervals of the navigation propagation with use of a simplified computation of the gravitational acceleration in conjunction with a small step size.

In the case of the orbiter, if an indication exists that the acceleration derived from the IMU sensed velocities is above a certain threshold level, this acceleration is to be used in the integration process. The information about the acceleration level takes the form of a flag (USE_IMU_DATA) which is set to ON or OFF by the navigation state propagation. The integration is to be performed by an average-g process, using a modeled acceleration that contains only the central force term and the J₂ zonal harmonic of the Earth's gravitational force. If the USE_IMU_DATA flag is found to be set to ON, the sensed acceleration shall be used

in addition to the model acceleration. If the USE_IMU_DATA flag is found to be OFF, only the modeled acceleration is to be utilized in the integration.

In the rendezvous phases it is also necessary to propagate the target vehicle state. There being no IMU's in this vehicle, only the modeled acceleration is to be used in the integration.

This process will be restarted after each filter update with the filter states. The values of the filter updated position and velocity vectors, together with their time tag and the total accumulated IMU velocity, are stored (at each navigation cycle) in special locations for use by the user parameter state prepagation subfunction. This prevents the errors resulting from use of a less accurate integrating scheme from becoming too large and, at the same time, provides a synchronization between the propagation tasks.

A. Detailed Requirements

A capability shall be provided for a fast computation of the position and velocity of the orbiter during all phases of OPS-2, and of the position and velocity of the target vehicle during all rendezvous phases. This computation shall provide the required state vectors in a M50 coordinate system by the integration of the equations of motion that include gravity accelerations and, for the orbiter, the IMU sensed velocities, if

they give a significant contribution.

In the case of the orbiter, the value of the state that is to be advanced (integrated forward in time) may be from one of two sources (the one used depends on the tested value of the flag (FILT_UPDATE), which indicates the availability of a filter updated state):

- If an update from the filter is not available (condition OFF), the propagated state, saved from the previous cycle, is to be advanced. The value of the IMU-accumulated sensed velocity from the previous cycle is available for state advancement purposes.
- 2. If an update from the filter is available (condition ON), the navigation filter updated state, together with its time tag and associated IMU accumulated sensed velocity, is to replace the previous propagated state, time tag, and accumulated velocity. The filter updated values are R RESET, V RESET, T RESET and V-IMU RESET; the vectors maintained by the user parameter state propagator are R AVGG and V AVGG. The time tag is T STATE. Thus, if FILT UPDATE = ON, the following will be done;

R AVGG = R RESET

V AVGG = V RESET

V IMU OLD = V IMU RESET

T_STATE = T_RESET

The computational sequence required is as follows:

- 1. Snap the IMU accumulated sensed velocity and time tag: SNAP(V IMU CURRENT, T IMU)
- Test the filter update flag (EILT_UPDATE) and take the appropriate aforementioned action.
- 3. Compute the interval over which advancement is required:
 DT IMU = T IMU T STATE
- 4. Test the USE_IMU_DATA flag. Then, if the value of the flag is found to be ON, set

If the value of the USE_IMU_DATA flag is OFF, set

A_SENSED = 0.

5. The position and velocity vectors of the orbiter shall then be obtained by a call to the user state integrator

CALL: AVERAGE G INTEGRATOR

IN LIST: R AVGG, V AVGG, DT IMU, A SENSED,

T_STATE, T_IMU

OUT LIST: R AVGG, V AVGG

The calculations performed up to this point refer to the orbiter's state. Propagation of the target state is required only during the rendezvous phases. A flag (REND_NAV_FLAG), which has the value ON only during these phases, shall then be consulted by the user parameters state propagator.

6. Test the REND_NAV_FLAG. If it is found to be ON, test

the FILT_UPDATE flag to determine if a filter updated target state is available.

If FILT UPDATE = ON, set

R TARGET = R TV RESET

V TARGET = V TV RESET

where <u>R TARGET</u> and <u>V TARGET</u> represent the position and velocity vectors of the target vehicle advanced by the user parameter state propagator, and <u>R TV_</u> RESET and <u>V TV_RESET</u> the target state vectors from the navigation filter.

7. Advance the target state by a call to the integrator.
In this call, the vector that contains the sensed acceleration shall be set to zero.

CALL: AVERAGE G INTEGRATOR

IN LIST: R TARGET, V TARGET, DT_IMU, 0., 0., 0., T_STATE, T_IMU

OUT LIST: R TARGET, V TARGET

After the state vector updates have been completed, the following steps are to be executed:

- 8. Save the time tag output for use in the next cycle:
 T STATE = T IMU
- 9. Save the latest IMU accumulated sensed velocity:
 V IMU_OLD = V_IMU_CURRENT
- 10: Set the FILT_UPDATE flag to OFF.

This completes the sequence of calculations of a user parameter state propagation cycle.

The detailed integrator equations follow:

AVERAGE_G_INTEGRATOR

IN LIST: RAV, VAV, DTIME, AC, T_STATE, T_IMU
OUT LIST: RAV, VAV

 By means of a call to the acceleration function, find the gravitational acceleration up to degree
 and order 0 for the input state vector and corresponding time tag;

 $\underline{GR} = \underline{ACCEL} \underline{PERT} \underline{ONORBIT} (2, 0, 0, 0, 0, \underline{R} \underline{AV}, \underline{V} \underline{AV}, \underline{T} \underline{STATE}) - \underline{EARTH} \underline{MU} \underline{R} \underline{AV} / |\underline{R} \underline{AV}|^3$

2. advance the position vector by the average-g method:

$$\underline{R} AV = \underline{R} AV + DTIME [\underline{V} AV + .5 DTIME (\underline{AC} + \underline{GR})]$$

3. Use this updated position vector and the current time to find a new value of the gravitational acceleration:

$$\underline{GR1} = \underline{ACCEL}\underline{PERT}\underline{ONORBIT}$$
 (2, 0, 0, 0, 0, $\underline{R}\underline{AV}$, $\underline{V}\underline{AV}$, $\underline{T}\underline{IMU}$) - $\underline{EARTH}\underline{MU}\underline{R}\underline{AV}/|\underline{R}\underline{AV}|^3$

4. Advance the velocity vector by the average-g method: V = V = V + DTIME [AC + .5 (GR + GR1)]

B. Interface Requirements.

The input and output required are listed in Tables

4.6.1-1 and 4.6.1-2, respectively.

- C. Processing Requirements
 None.
- D. Constraints
 None.
- E. Supplementary Information

 A suggested implementation in the form of detailed flow charts is to be found in Appendix D.

TABLE 4.6.1-1 On-Orbit User Parameter State Propagation Input Parameters

	DESCRIPTION	SYMBOL	INPUT SOURCE	TYPE	PRECISION	RANGE	UNITS	SAMPLE RATE
0.0	Orbiter Velocity Vector after navigation updates	<u>V</u> RESET	*	V	DP		Ft/ sec	Filter Rate
ORIGINAL OF POOR (Flag indicating the avail- ability of filter updated states	FILT_UPDATE		D		OFF ON		Filter Rate
L PAGE IS QUALITY,	Flag indicating whether or not the current phase is a rendezvous phase	REND_NAV_FLAG	*	D		OFF ON		As Needed -
4.6.	Flag indicating whether or not the IMU velocities are to be used in propagation	USE_IMU_DATA	*	D		OFF ON		As Needed
	Orbiter position vector after navigation updates	<u>R_</u> RESET			DP		Ft	UPP Rate
	Time associated with currently read velocity counts from the IMU	T_IMU		F	DP		Sec	Filter Rate
	Time associated with reserved reset state	T_RESET	***************************************	. F	DP		Sec	Filter Rate
	Current selected accum- ulated IMU velocity	V_IMU_CURRENT	*	٧	DP		Ft/ sec	UPP Rate

^{*} User parameter processing principal function input list.

TABLE 4.6.1-1 On-Orbit User Parameter State Propagation Input Parameters (cont'd)

DESCRIPTION	SYMBOL	INPUT SOURCE	ТУРЕ	PRECISION	RANGE	UNITS	SAMPLE RATE
Copy of <u>Y_CURRENT_FILT</u> reserved for user par- ameter propagator reset	V_IMU_RESET	*	V	DP		Ft/ sec	Filter Rate
Target position vector after navigation updates	R_TV_RESET	*	٧	DP		Ft	Filter Rate
Target velocity vector - after navigation updates	V_TV_RESET	*	V .	DP		Ft/ sec	Filter Rate

^{*} User parameter processing principal function input list.

TABLE 4.6.1-2 On-Orbit User Parameter State Propagation Output Parameters

					· · · · · · · · · · · · · · · · · · ·			
DESCRIPTION		SYMBOL	OUTPUT DESTINATION	TYPE	PRECISION	RANGE	UNITS	COMPUTATION _
								RATE/SEC
G 22	. 이 시작 발표한 아니아 네. 스포크의 시작 시간 시간 보다. 그 이 집 시간 중요한 사람이 보고 함께 된다. 그 경험이				The Control of the Co			
ORIGINAL OF POOR	State vector AVERAGE_G integration time step	DT_IMŲ		F	DP		Sec	User parameter propagator rate
L PAGE IS QUALITY	Target vehicle's	V TARGET	***	٧	DP		Ft/	User parameter
'AG IAL	velociy vector						sec	propagator rate
ALLI M. M.	Current orbiter	R AVGG	On-orbit user para-	V	DP		Ft	User parameter
, O)	position vector		meter calculations, *					propagator rate _
	Time tag for current	T STATE	On-orbit user para-	F	DP		Sec	User parameter
	user parameter state		meter calculations, *					propagator rate
	yector							
4.6.7	Orbiter current	<u>V</u> AVGG	On-orbit user para-	٧ .	DP		Ft/	User parameter
1 E	velocity vector		meter calculations, *				sec	propagator rate
.	Current accumulated	V_IMU_OLD		V	DP	·	Ft/	User parameter
	: INU velocity						sec	propagator rate
	Target vehicle's pos-	R TARGET	*	ν	DP		Ft	User parameter
	ition vector							propagator rate
				l l				
					}			The state of the s

^{*} User parameter processing principal function output list.

4.6.2 Onorbit User Parameter Calculations

This subfunction contains the software necessary to compute for display certain orbital elements representing the Shuttle's earth-relative position at either the current time or at a future time as selected by the crew. The orbital elements computed include: altitude above the reference ellipsoid, longitude, geodetic latitude and the longitude of the ascending node. These parameters will be computed during major modes 201 and 211 to support the Nav Monitor CRT display page.

A. <u>Detailed Requirements</u>. Certain flags will be tested to determine whether the crew wishes to have current or future parameters displayed. Whenever current parameters are desired, computations shall be performed cyclicly for the current user parameter state vector. Whenever future parameters are desired, computations shall be performed a single time for the predicted Shuttle state at the desired input time.

If the parameter, COMP_MODE, has a value of "CURRENT", then the orbital parameters are to be determined for the current time and the user parameter position and velocity vectors, as well as the associated time tag, are to be renamed for subsequent computations of orbital parameters:

$$\frac{R \text{ COMP} = R \text{ AVGG}}{V \text{ COMP} = V \text{ AVGG}}$$
$$\frac{V \text{ COMP}}{T \text{ COMP}} = \frac{V \text{ AVGG}}{T \text{ STATE}}$$

If COMP_MODE has the value "PREDICT" and the flag DC_PREDICT = OFF, then either the crew has not yet entered the desired predict time or the computations were completed on a previous cycle and for either case no further computations are necessary.

If COMP_MODE has a value of "PREDICT" and the flag DO_PREDICT = ON the orbital parameters shall be computed for the input time,

T_PREDICT. The Shuttle's position and velocity vectors at the future time shall be determined by calling the onorbit precision state prediction principal function (section 4.5.2) with inputs set to correspond to the "rapid precision" prediction method as follows:

CALL: ONORBIT PREDICT

INLIST: 2,0,1,0,2,DT PREDICT, R AVGG, V AVGG,

T STATE, T PREDICT

OUTLIST: R COMP, V COMP

The predict time is then to be renamed for subsequent computations of orbital parameters and the flag, DO_PREDICT, is to be set OFF:

T_COMP = T_PREDICT
DO PREDICT = OFF

Next, for either of the two cases described above, orbital elements are to be computed. A matrix, valid at the time T_COMP, will be generated to transform M50 coordinates into earth-fixed coordinates:

M_TEMP_TXPOSE = FARTH_FIXED_TO_M50_COORD(T_COMP)^T
The Shuttle's position and inertial velocity vectors will then be transformed into earth-fixed coordinates:

The geodetic coordinates of the earth-fixed position vector shall then be determined by calling the EF_TO_GEODETIC subfunction:

CALL: EF TO GEODETIC

INLIST: R EF

OUTLIST: LAT GEOD, LONG, ALT

These parameters shall be converted for output and the longitude of the ascending node shall be determined:

ALTITUDE = ALT NAUTMI PER FT

LONGITUDE = LONG DEG_PER_RAD

LATITUDE = LAT GEOD DEG PER RAD

 $\underline{ANG}\underline{MOM} = \underline{R}\underline{EF}\underline{X}\underline{V}\underline{EF}$

ASC_NODE = ARCTAN2 (ANG_MOM, -ANG_MOM2) DEG_PER_RAD

- B. <u>Interface Requirements</u>. The input and output parameters for this subfunction are listed in Tables 4.6.2-1 and 4.6.2-2, respectively.
- C. Processing Requirements. None.
- D. Constraints. None
- E. <u>Supplementary Information</u>. A suggested implementation of this subfunction in the form of a detailed flow chart can be found in Appendix D, NAV MONITOR SUPPORT.

TABLE 4.6.2-2: ONORBIT USER PARAMETER CALCULATIONS OUTPUT PARAMETERS

DESCRIPTION	SYMBOL	OUTPUT DESTINATION	ТҮРЕ	PRECISION	RANGE	UNITS	COMPUTATION RAIL
Time for which orbital parameters are computed	T_COMP	*	F	DP		SEC	AS NEEDED
Flag which indicates whether or not computations have been completed when "future" parameters are requested	DO_PREDICT	ONORBIT UPP	BIT		ON OFF		0.5
Altitude of Shuttle above the reference ellipsoid	ALTITUDE		F	DP		IMM	0.5
Longitude of the Shuttle sub-vehicle point	LONGITUDE		F	DP		DEG	0.5
Geodetic latitude of the Shuttle sub-vehicle point	LATITUDE	***************************************	F	DP		DEG	0.5
. Longitude of the ascending node for the Shuttle orbit	ASC_NODE	*	F	DP		DEG	0.5

^{*} onorbit user parameter processor principal function output list

TABLE 4.6.2-1: ONORBIT USER PARAMETER CALCULATIONS INPUT PARAMETERS

* onorbit user parameter processor principal function input list

	DESCRIPTION	SYMBOL	INPUT SOURCE	TYPE	PRECISION	RANGE		SAMPLE RATE -
	Indicates whether computations are to be performed for the Shuttle state at the current time or at a future time	COMP_MODE	*	CHAR	DP.			0.5
decided the control of the control o	Time for which future orbital parameters are to be computed	T_PREDICT		F	DP		SEC	0.5
	Flag which indicates whether or not computations have been completed when "future" parameters are requested.	DO_PREDICT	ONORBIT UPP,*	BIT		ON OFF		0.5
6.2-5	Integration Step Size · ·	DT_PREDICT	PREMISSION LOAD	F	DP		SEC	AS NEEDED -
•	Shuttle M50 position vector at time T_PREDICT	R_COMP		V 19	DP		FT	AS NEEDED
	Shuttle M50 velocity vector at time T_PREDICT	V_COMP	*	V	DP		FT/SEC	AS NEEDED
	Feet to nautical mile conversion factor	NAUTMI_PER_ FT	CONSTANT	F	ים פ		NMI/FT	0.5
	Radian to degree conversion factor	DEG_PER_RAD		F	DP		DEG	0.5
	Current Shuttle position vector	<u>R</u> AVGG	UP ST PROP	V	DP		FT	0.5
	Current Shuttle velocity vector	<u>V_</u> AvGG		V	DP		FT/SEC	0.5
	Time tag for current user carameter state vector	T_STATE		F	DP		SEC	0.5

APPENDIX A

NAVIGATION VARIABLE NAMES AND

DESCRIPTIONS

VARIABLES LIST DEFINITIONS

Code used for variable data type

S: scalar

V(n): vector (dimension)

M(n): square matrix (dimension)

INT: integer

BIT: bit

CHAR: character

STR: structure

ARR: array

Coordinate frame code and definition

Body: x: parallel to the longitudinal axis (positive aft)

(structural)

y: completes right-hand system

z: perpendicular to the x-axis, positive upward

EF Earth-fixed coordinate system

M50: Mean of 50 reference coordinate system

RW: x: down runway centerline in direction of landing (runway

coordinates) y: completes right-hand system

z: down, normal to ellipsoid

TD: x: north

(topodetic
coordinates) Y: east

z: down, normal to ellipsoid

UVW Quasi-inertial, right-handed Cartesian coordinate system

u: along vehicle position vector (radial)

v: normal to u, in orbit plane (downtrack)

w: out of orbit plane, uxv=w, (crosstrack)

APPENDIX A VARIABLE LIST.

VARIABLE NAME	DATA TYPE	INITIAL VALUE	COORD FRAME	VARIABLE DESCRIPTION
A	ARR(4)	PAD		Array of coefficients required by the RK_GILL integrator
	ARR(9,2)			Legendre functions array in gravitational acceleration calculation (local variable)
ALPHA				Angle of attack
ALT	S			Altitude above ellipsoid
AM	INT	0		Flag (ON) to indicate the use of the Adams-Moulton integration technique
AM_TABLE	ARR(8,7)	0	M50	Table of derivatives required by the Adams-Moulton integrator
ANGLES_AIF	CHAR	AUTO		AUTO/INHIBIT/FORCE switch associated with the currently enabled angles data set
ANNUAL_EFF	\$	I LOAD		Variable used in K3 term of atmospheric density
ÀREA	S			Vehicle's cross-sectional area for DRAG acceleration calculations
<u>A_</u> RESID	, V(3)		M50	Acceleration interpolated to a specified measurement time
<u>A</u> SENS	٧(3)		M50	Sensed acceleration at current time

VARIABLE NAME	DATA TYPE INITIAL VALUE	COORD FRAME	VARIABLE DESCRIPTION
ATFL	INT		Flag controlling use or non-use of prestored attitude profile, average area, mass, and drag coefficient of orbiter or target vehicle
АТМ	INT		Attitude mode flag, controls use or non-use of prestored attitude profile, average area, mass, and drag coefficient of orbiter or target vehicle
ATT_ARRAY	ARR		Time line array of attitude information (dimension 9 by TBD)
ATT_FLAG	INT		Flag indicating vehicle attitude mode
ATT_MODE · ·	S I LOAD		Acceleration function attitude mode flag
AUXILIARY			Intermediate variable in gravitational acceleration calculations
A1			Temporary variable used in transition matrix computation
A2			Temporary variable used in transition matrix computation
A3			Temporary variable used in transition matrix computation
A4	S		Temporary variable used in transition matrix computation
A5			Temporary variable used in transition matrix computation

APPENDIX A VARIABLE LIST (Continued)

VARIABLE NAME	DATA TYPE	INITIAL COORD VALUE FRAME	VARIABLE DESCRIPTION
A6	Š		Temporary variable used in transition matrix computation
A7	S		Temporary variable used in transition matrix computation
A8	S		Temporary variable used in transition matrix computation
A9	S		Temporary variable used in transition matrix computation
B	ARR(4)	PAD	Array of coefficients required by the RK GILL integrator
<u>B</u>	۷(19)		Measurement first partials with respect to the filter state
BETA			Angle of sideslip
B_TEMP	V(3)	M50	Temporary value of partial vecter (before rotation to current time)
BIAS_SENSOR	V(4)		Filter estimated sensor biases
BT_E_B	S		Variable used to store the value of the dot product of \underline{B} and $\underline{E}\underline{B}$
C	ARR(4)	PAD	Array of coefficients used by the RK_GILL integrator
CD	**************************************		Vehicle's drag coefficient for drag acceleration calculations

APPENDIX A VARIABLE LIST (Continued)

VARIABLE NAME	DATA TYPE INITIAL COOF VALUE FRAN	
<u>C</u> DA	V(NUM_CONF) I LOAD	Constants used to model drag coefficient (additional corrective term)
CDEC1	경 보기 (1985년 1985년 - 1 참 사용하는 1985년 -	Sine of solar right ascension
CDEC2	S	Variable used in K2 term of atmospheric density
CDF	V(NUM_CONF) I LOAD	Constants used to model drag coefficient (frontal area)
<u>C</u> DN	V(NUM_CONF) I LOAD	Constants used to model drag coefficient (top area correction)
<u>C</u> DS	V(NUM_CONF) I LOAD	Constants used to model drag coefficient (side area correction)
C_EPS		Cosine of obliquity of ecliptic
CGAM1	S	Variable used in K2 term of atmospheric density
CGAM2		Variable used in K2 term of atmospheric density
C_INC	S I LOAD	Cosine of inclination of lunar orbit plane on ecliptic
C_MN_AN	보고 발표하는 기가 있는 것이 되었다. 그런	Variable used in K2 term of atmospheric density
C_MX_AN		Variable used in K2 term of atmospheric density

APPENDIX A VARIABLE LIST (Continued)

VARIABLE NAME	DATA TYPE	INITIAL VALUE	COORD FRAME	VARIABLE DESCRIPTION
COAS_ANGLES_EDIT OVERRIDE	BIT	0FF		Flag used (ON) to override the residual edit test for COAS angles data
COAS_ANGLES_STAT	ВІТ	OFF		Flag indicating (ON) that COAS angles data are to be processed for statisical display only
COAS_ENABLE	BIT	OFF		COAS angles ENABLE flag
COAS_MARK_NUM	S	0.0		COAS measurement mark counter
C_0M	\$			Cosine of OMEGA
CONF_ARRAY	ARR(2,NUM_ CONF)	I LOAD		Configuration timeline
<u>C</u> OR	V(7)			Temporary vector used in covariance matrix re-initialization
CORR_POWER_ 1	S	I LOAD		Variable used in K2 term of atmospheric density
CORR_POWER_2		I LOAD		Variable used in K2 term of atmospheric density
COS_PSI_1	S			Variable used in K2 term of atmospheric density
COS_PSI_2	S			Variable used in K2 term of atmospheric density
COS_SOL_RA	S			Cosine of solar right ascension

VARIABLE NAME	DATA TYPE	INITIAL VALUE	COORD FRAME	VARIABLE DESCRIPTION
COV_ACCEL_BODY_INIT	V(3)	I LOAD	BODY	Vector (3x1) of unmodeled acceleration bias error variances (body coordinate system)
COV_COR_OPS_2	۷(7)	I LOAD		Vector (7x1) of correlation coefficients associated with the UVW standard deviations SIG_UVW_OPS_2, used for orbiter position/velocity covariance initialization
<u>COV_COR_TV</u>	V(7)	I LOAD		Vector (7x1) of correlation coefficients associated with the UVW standard devictions SIG_TV_UVW, used for target position/velocity covariance initialization
COV_COR_TV_UPDATE	V(7)	I LOAD		Vector of correlation coefficients associated with UVW standard deviations (SIG_TV_UPDATE) used for target vehicle position/velocity covariance initialization (ground update)
COV_COR_UPDATE	V(7)	I LOAD		Vector of correlation coefficients associated with UVW standard deviations (SIG_UPDATE) used for orbiter position/velocity covariance initialization (ground update)
CI				Scratch variable used in the mean conic partial calculation
C2	S			Scratch variable used in the mean conic partial calculation
CONST	S			Temporary variable used in transition matrix computation
C_TH	S			Cosine of THETA

COORD FRAME

VARIABLE DESCRIPTION

Threshold value for magnitude of sensed acceleration

DATA TYPE

S

		Auxiliary variable used in F and G series computations and in Pines' method
		Cosine of prestored attitude Euler angle (local variable)
S		Auxiliary variable used in F and G series computations and in Pines' method
S		Cosine of prestored attitude Euler angle (local variable)
S		Auxiliary variable used in Pines' variation of parameters method
S		Cosine of prestored attitude Euler angle (local variable)
		Auxiliary variable used in Pines' variation of parameters method
S		Auxiliary variable used in Pines' variation of parameters method
ARR(4) PAD		Array of coefficients used by the RK_GILL integrator
V(3)	M50	Acceleration due to atmospheric drag
	S S S ARR(4) PAD	S S S ARR(4) PAD

INITIAL VALUE

VARIABLE NAME

DA_THRESHOLD

-	١.
_	•
ŀ	
α	,

VARIABLE NAME	DATA TYPE	INITIAL VALUE	COORD FRAME	VARIABLE DESCRIPTION
D_AUX	\$			Dot product of velocity vector and perturbing acceleration
DAY_OF_YEAR	***			Number of current day in current year
DAY_ONE	S			Variable used in K3 term of atmospheric density
D_COE_PCT_ERR		I LOAD		Percent error in the drag coefficient
DELQ				Measurement residual
DELTAT_GO	S			Time interval between two positions in a conic (F and G series)
DELTAT	S			Time interval between two positions in a conic (F and G series)
DELTAT_T	\$ 5 \ \bar{\bar{\bar{\bar{\bar{\bar{\bar{\bar	0		Input integration step size for prediction or propagation
DERIV	ARR(7)	0	M50	Temporary storage for derivatives required for the Adams-Moulton integrator
D_FIN .	s			Dot product of final position and velocity vectors, used in F and G series (conic solution)
DFL	INT			Flag indicating activation (1) or de-activation (0) of drag model (local variable)
<u>D</u> IAG	V(3)			Scratch vector

VARIABLE NAME	DATA TYPE	INITIAL COORD VALUE FRAME	VARIABLE DESCRIPTION
DID_AUTO_UPDATE	BIT		Flag indicating (ON) that an auto update has been performed
D_IN	S	0	Dot product of the integrated initial position and velocity vectors
<u>D</u> ISP_DELQ	V(4)	0	Display measurement residual for the I'th measurement type, $I=1,4$
DISP_SIG	V(4)	0	Display residual edit ratio for I'th measurement type, I=1,4
DIURN_EFF_1	s	I LOAD	Variable used in K2 term of atmospheric density
DIURN_EFF_2	S	I LOAD	Variable used in K2 term of atmospheric density
DIURN_EFF_3	Š	I LOAD	Variable used in K2 term of atmospheric density
DIURN_EFF_4	S	I LOAD	Variable used in K2 term of atmospheric density
DIURN_EFF_5	S	I LOAD	Variable used in K2 term of atmospheric density
DIURN_EFF_6	S	I LOAD	Variable used in K2 term of atmospheric density
DM	INT	0	Flag to indicate choice of models for accelerations due to drag

- 발발하는 경영하는 역에 가능하는 하는 것이 되었다. 그들은 사이에 문 - 기계				
VARIABLE NAME	DATA TYPE	INITIAL VALUE	COORD FRAME	VARIABLE DESCRIPTION
D_MN_AN	S			Difference in mean anomalies, used to solve Kepler's equation
DNM	S			Auxiliary variable in gravitational acceleration calculations
DO_AUTO_UPDATE	BIT	OFF		Flag indicating (ON) that an auto inflight update is to be performed
DO_COAS_ANGLES_NAV	BIT	OFF		On-off switch indicating (ON) that COAS angles data has been selected for processing
DO_COAS_ANGLES_NAV_LAST	BIT	0FF		On-off switch indicating (ON) that COAS angles data was selected for processing on the last filter cycle
D_ONE				Dot product of position and velocity vectors for transition matrix computation and F and G series
DO_RR_ANGLES	BIT	OFF.		Flag indicating (ON) that rendezvous radar angles data are to be processed
DO_RR_ANGLES_NAV	BIT	OFF		On-off switch indicating (ON) that rendezvou radar angles data has been selected for processing
DO_RR_ANGLES_NAV_LAST	BIT	OFF		ON-off switch indicating (ON) that rendezvou radar angles data was selected for processin on the last filter cycle
DO_RRDOT_NAV	BIT	0FF		On-off switch indicating (ON) that rendezvous radar range and range rate data has been selected for processing

VARIABLE NAME	DATA TYPE	INITIAL VALUE	COORD FRAME	VARIABLE DESCRIPTION
DO_RRDOT_NAV_LAST	ВІТ	OFF		On-off switch indicating (ON) that rendezvous radar range and range rate data was selected for processing on the last filter cycle
DO_ST_ANGLES_NAV	BIT	OFF		On-off switch indicating (ON) that startracker angles data has been selected for processing
DO_ST_AWGLES_NAV_LAST	BIT	OFF		On-off switch indicating (ON) that startracker angles data was selected for processing on the last filter cycle
DT				Temporary storage for step-size used state vector propagation
D_TAU	\$			Dot product of position vector and perturbing acceleration
DT_FILT	S			Interval over which to propagate the state vector
D_TWO	S			Dot product of position and velocity vectors for transition matrix computation and F and G series
DOY_EFF	٧(38)	I LOAD		Array used in K3 term of atmospheric density
DT_FILT	S			Interval over which to propagate the covariance matrix
DTGO	\$			Time interval over which state vector inter- polation is to be performed
DT_ONORBIT_NAV	S	I LOAD		Sequencing time interval for onorbit navigation during onorbit coast phase

VARIABLE NAME	DATA TYPE	INITIAL VALUE	COORD FRAME	VARIABLE DESCRIPTION
DT_ONORBIT_PWRD_FLT	S	I LOAD		Sequencing time interval for onorbiting navigation during onorbit powered flight phase
DT_REND_NAV	S	I LOAD		Sequencing time interval for rendezvous navigation during rendezvous coast phase
DT_REND_PWRD_FLT	S .	I LOAD		Sequencing time interval for rendezvous navigation during rendezvous powered flight phase
DT_REND_TPF_NAV	\$	I LOAD		Sequencing time interval for rendezvous navigation during TPF stationkeeping phase
DT_STEP	\$	0		Integration step size for prediction or propagation
D_TWO	S			Dot product of position and velocity vectors for transition matrix computation and F and G series
<u>D</u> V	٧(3)		M50	Temporary storage for difference in accumu- lated IMU sensed velocities
DV_FILT	V(3)		M50	Difference between accumulated sensed IMU readings on present cycle and previous cycle
	M(19)		VARY	Filter covariance matrix
EARTH_MU	S	I LOAD		Gravitational constant of the earth

VARIABLE NAME	DATA TYPE	INITIAL VALUE	COORD FRAME	VARIABLE DESCRIPTION ,
EARTH_POLE '	۷(3)	I LOAD	M50	Unit vector in direction of earth's axis of rotation
EARTH_RADIUS_EQUATOR		I LOAD		Earth equitorial radius
EARTH_RADIUS_GRAV	S	I LOAD		Earth radius used for gravitational acceleration calculations
EARTH_RATE	\$ 10 S	I LOAD .		Earth's angular rotation rate
EB_COPY	V(19)			Covariance matrix times partials vector
EDIT_FLAG	INT			Four-valued switch (forced, processed, stat, off) used to indicate whether the filter processed sensor measurement data that was forced, auto-selected, or inhibited, or not processed
E_INIT	M(6)		M50	Filter covariance matrix (6 x 6) saved across a memory transition
ELLIPT		I LOAD		Earth ellipticity constant
EPSILON	s			Obliquity of the ecliptic
EPS_KEP				Tolerance for successive iterations in the solution of Kepler's equation
EPS_TIME	V(3)			Array of sensor-related tolerances for SV_INTERP

VARIABLE NAME	DATA TYPE	INITIAL VALUE	COORD FRAME	VARIABLE DESCRIPTION
EPS_VRB	S	I LOAD		Tolerance for Z-component of relative velocity vector in body coordinates_
EPS1	\$	I LOAD		Tolerance for Z local vertical body position acceptance
EPS2	S	I LOAD		Tolerance for X local vertical body position acceptance
EPS3	S	I LOAD		Tolerance for an inertial hold body position acceptance
EPS4		I LOAD		Tolerance for inertial with rate hold body position acceptance
ERR				Auxillary variable used in F and G series (conic solution) computations
E TEMP	M(6)		M50	Temporary matrix (6 x 6) used for covariance reinitialization
EV	۷(3)		BODY	Unit vector in the direction of the eigen-axis
EXP_SHAPE_FACTOR .	V(NUM_ CONF)	I LOAD		Exponential shaping factors for drag coefficient model
: 1 : 1 : 1 : 1 : 1 : 1 : 1 : 1 : 1 : 1	S			Closed form version of F time series
FACTOR				Secant of solar declination
FDOT	S			Closed form version of time derivative o F and G series

VARIABLE NAME		NITIAL COORD 'ALUE FRAME	VARIABLE DESCRIPTION
FIFTY	M(3)		Transformation matrix EF to M50
FILT_UPDATE	BIT 0	FF.	Switch indicating (ON) that current navigation cycle is complete
FM1	S S		Auxiliary variable (F-1.)
FI	\$		Auxiliary variable in gravitational acceleration calculations
F2	S		Auxiliary variable in gravitational acceleration calculations
F3			Auxiliary variable in gravitational acceleration calculations
F4	S		Auxiliary variable in gravitational acceleration calculations
G			Term in F and G series (conic) respresentation (local variable)
<u>G</u>	V(3)	M50	Gravitational acceleration
GD	ÎŇT		Flag specifying degree of gravitational acceleration model (local variable)
GDM1			Temporary variable G dot minus 1
GDOT '	S		Closed form version of time derivative of F and G series
GD_TAU			Perturbation derivative of GDOT
소리를 가게 하는 것이 하는데 화를 다			

A-15

VARIABLE NAME	DATA TYPE	INITIAL VALUE	COORD FRAME	VARIABLE DESCRIPTION
GEOMAG_DISTURB_CORRECT	S			Geomagnetic disturbance correction in atmospheric density calculation
GMD	INT			Flag indicating the degree of the gravitational potential model (local variable)
GM_DEG		I LOAD		Flag indicating degree of gravitational potential model
GMO	İNT			Flag indicating the order of the gravita- tional potential model (local variable)
GM_DEG_LOW	INT	I LOAD		Lowest degree used in calls to the acceleration function (gravity model)
GMO ·	INT			Flag indicating the order of the gravita- tional potential model
GM_ORD	S	I LOAD		Flag indicating order of gravitational potential model
GM_ORD_LOW	INT	I LOAD		Lowest order of potential model in calls to the acceleration function
<u>G</u> _:NEW	V(3)		M50	Orbiter acceleration vector
GO ,	INT			Flag indicating order of gravitational potential model (local variable)
GR_INT	V(3)		M50	Intermediate value of acceleration used in super-G integration
GR NEW	V(3)		M50	Local value of modeled acceleration used super-G integrator

VARIABLE NAME	DATA TYPE	INITIAL VALUE	COORD FRAME	VARIABLE DESCRIPTION
€_TV	٧(3)		M50	Target vehicle total acceleration vector (M1950)
<u>G</u> _TV_LAST	V(3)		M50	Target vehicle total acceleration vector, last value
HANG				Angular displacement about the eigen-axis
HORIZ	S			Filter estimate of the horizontal angle measurement
	INT			Counter
IATM	INT			Attitude mode flag, controls use or non-use of prestored attitude profile, average area, mass, and drag coefficient of orbiter or target vehicle
IDM	INT			Flag indication the activation (1) or deactivation (0) of the drag model (local variable)
ID_MATRIX_3X3	M(3)	I LOAD		Three by three identity matrix
IDRAG	INT			Drag mode flag used by the state propagation
IGD	INT			Temporary storage of indicator of potential degree, used in state propagator
IGO	INT			Temporary storage of indicator of potential model order used in state propagator

VARIABLE NAME	DATA TYPE	INITIAL VALUE	COORD FRAME	VARIABLE DESCRIPTION
<u>1</u> N	۷(3)		M50	An arbitrary coordinate unit axis expressed in mean of 1950
<u>I</u> NTERM	V(3)			Vector of intermediate quantities in lunar ephemeris calculation
<u>I</u> RHO	۷(3)	0.0	M50	Unit line of sight vector
IVENT	INT			Temporary value of venting mode flag, used in state propagator
IVM	INT			Flag indicating activation (1) or de-activation (0) of the venting and RCS uncoupled thrusting model (local variable)
	INT			Counter
K	INT			Integer counter
K_RESID_EDIT	\$	I LOAD		Residual edit scale factor (squared)
KI	S			Solar radiation term in atmospheric density
K2				Diurnal bulge term in atmospheric density
K3	S			Semi-annual effect term in atmospheric density
K4	S			Geomagnetic effect term in atmospheric density
	INT			Integer counter

VARIABLE NAME	DATA TYPE	INITIAL COORD VALUE FRAME	VARIABLE DESCRIPTION
M	M(3)		General matrix used as temporary array
MAGN_EFF	S	I LOAD	Variable used in K4 term of atmospheric density
MANUAL_EDIT_OVERRIDE	INT		Copy of the manual edit override flag of the sensor data type currently being processed that is sent to the filter
MAX_NUM_VENT	INT	I LOAD	Maximum number of vent sources allowable
MAX_DENS_ANGLE	S	I LOAD	Angle to earth's atmospheric bulge (Russian density model)
MIN_DENS_ANGLE .	S	I LOAD	Angle to reference point in atmosphere (Russian density model)
M_M50B0DY K	M(3)		Transformation matrix from M50 to body system (K represents the selected matrix by IMU-RM)
MOON_AUXIL	V(3)		Vector of auxiliary values in computation of lunar ephemeris
MOON_CONST	V(3)	I LOAD	Vector of constants for calculation of THETA
MOON_PARAM_FIRST	V(3)	I LOAD	Coefficient of first order term in a development of MOON_AUXIL
MOON_PARAM_ZERO	V(3)	I LOAD	Constant term in development of MOON_AUXIL
MS_DELQ	S		Variance of computed sensor

	VARIABLE NAME	DATA TYPE	INITIAL COORD VALUE FRAME	VARIABLE DESCRIPTION
ORIGI	M_TEMP	M(3)		Temporary 3 x 3 matrix (local variable)
ORIGINAL PAGE IS OF POOR QUALITY	N_ACCEPT	V(4)	<u>0</u>	Counter for the number of data marks, for the I'th measurement type, which have been utilized to update the navigation state vector, I=1,4
₹ 5 ·	NIGHT_PROF_1	S	I LOAD	Constant used in night time altitude- density profile
. A-20	NIGHT_PROF_2	S	I LOAD	Constant used in night time altitude- density profile
	NIGHT_PROF_3		I LOAD	Constant used in night time altitude- density profile
	. NOISE_R	S		Noise disturbance added to position element variances
	NOISE_RV	S		Noise disturbance added to position - velocity correlation variances
	N_REJECT	V(4)	<u>0</u>	Counter for the number of data marks, for the I'th measurement type, which have been edited by the navigation filter, I=1,4
	N_STEPS	INT	0	Number of integration steps in the prediction or propagation interval
	NUM_ATT	INT	I ĊOAD	Number of data sets contained in pre-stored attitude profile
	NUM_CONF	INT	I LOAD	Number of configurations of orbiter for drag acceleration calculations

VARIABLE NAME	DATA TYPE	INITIAL VALUE	COORD FRAME	VARIABLE DESCRIPTION
NUM_VENT	V(MAX_NUM_ . VENT)	I LOAD		Number of time points in the vent time line for each vent
NI	INT			Integer counter (local variable)
OMEGA	\$			Longitude of ascending node of lunar orbit on ecliptic
<u>O</u> MEGA	V(19)			Kalman gains vector
OM_1	\$ 1. ************************************	I LOAD		Coefficient of first order term in development of OMEGA
OM_2	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	I LOAD		Constant term in development of OMEGA
ONEMRIN .	\$			Auxiliary variable used in solving Kepler's equation (F and G series)
OPS 2 OR 8 INITIALIZE COMPLETE	SIGNAL			Signal to MSC indicating (COMPLETE) initial- ization of user parameter state propagation quantities is complete
OV_UPLINK	BIT	0FF		Flag set by ground uplink processor indicating (ON) that an orbiter vehicle state vector has been uplinked
P	\$	0		Local variable used in the RK-GILL integrator
<u>P</u>	V(3)		M50	Perturbing acceleration (Pines' method)
PHI	M(9)			State transition matrix for Space Shuttle from state at previous filter time to state at current time

	2	,
•	_	
	₹	
	٠	
T	١	٥
ţ	`	٤

그렇는 회사는 가는 것을 하는 것이 되는 것은 그리고 있었다.			
VARIABLE NAME	DATA TYPE	INITIAL COORD VALUE FRAME	VARIABLE DESCRIPTION
PHI_MC	M(9)		Patch transition matrix
PHI_PATCH	M(3)		Transition matrix for converting from time of measurement to current time (for Space Shuttle)
PHI_REND	M(10)		State transition matrix for target vehicle from current state to state computed at measurement time
PHI_REND_PATCH	M(3)		Transition matrix for converting from time of measurement to current time (for target vehicle)
PREC_STEP	S	I LOAD	Integration step size for precision prediction
PWRD_FLT_NAV	BIT	0FF	Flag indicating use of powered flight propagator (ON), or coasting flight propagator (OFF)
9	ARR(7)	0	Local array used in the RK-GILL integrator
Q_HORIZ	S		Measurement from horizontal measurement sensor
Q_PRIME	BIT	0.0	Computed measurement
Q_RR_SHFT	S		Rendezvous radar shaft measurement angle
Q_RR_TRUN	가 있는 것이 있다. 이 시간 경기 기가 있는 S		Rendezvous radar trunnion measurement angl
Q_VERT	s		Vertical méasurement from sensor
근목의 물리 글 선택이 되고, 연기를 하고 있는데			

VARIABLE NAME	DATA TYPE	INITIAL VALUE	COORD FRAME	VARIABLE DESCRIPTION
R	V(3)		M50	Temporary M50 position vector
RAD_EFF	S	I LOAD		Variable used in Kl term of atmospheric density
R_CHECK_PT	٧(3)		M50	Orbiter position vector (M50) saved via CHECKPOINT specialist function
<u>R</u> CS	V(3)		BODY	Acceleration vector due to RCS thrusting
RCS_BBQ	V(3)	I LOAD	BODY	Uncoupled thrusting acceleration due to an inertial with rate hold
RCS_INH	V(3)	I LOAD	BCDY	Uncoupled thrusting acceleration due to an inertial hold
RCS_XLV	٧(3)	I LOAD	BODY	Uncoupled thrusting acceleration due to an X-local-vertical hold
RCS_ZLV	V(3)	I LOAD	BCDY	Uncoupled thrusting acceleration due to the Z local vertical body position
<u>R</u> EF	V(3)		EF	Position vector in earth fixed coordinates
<u>R</u> EF_AREA .	V(I)	I LOAD		Average cross-sectional areas of orbiter (I=1) and target vehicle (I=2)
REF_CD	V(I)	I LOAD		Average drag coefficients of orbiter (I=1 and target vehicle (I=2)
<u>R</u> EF_MASS	V(I)	I LOAD		Reference masses of orbiter (I=1) and of target vehicle (I=2)

VARIABLE NAME	DATA TYPE	INITIAL VALUE	COORD FRAME	VARIABLE DESCRIPTION
REND_NAV_FLAG	BIT	0FF		Flag indicating whether navigation- rendezvous in operation (ON), or navigation-onorbit in operation (OFF)
REND_STEP	\$	I LOAD		Step size used by the precision propagator during rendezvous
RESID_TEST	S			Scaled value of variance for comparison with measurement deviation squared (DELQ ²)
R_FILT	٧(3)		M50	Orbiter position vector (M50)
R_FILT_INIT	۷(3)		M50	Orbiter position vector saved across memory reconfiguration and used for navigation initialization
R_FIN	٧(3)	0	M50	Orbiter or target position vector at T_FIN
R_FIN_INV	S			Reciprocal of the magnitude of the final position vector (F and G series)
<u>R</u> GND	۷(3)		M50	Uplinked orbiter position vector (M1950)
RHO	S. S. S.			Atmospheric density
RHO_PLANE	· V(3)		M50	In plane component of line of sight
R_IN	\$	0		Absolute value of the integrated initial position vector
RIN	٧(3)		M50	Position vector at the beginning of a time interval (F and G series)

ORIGIN AL PAGE IS OF POOR QUAL <i>T</i> IY	VARIABLE NAME	DATA TYPE	INITIAL VALUE	COORD FRAME	VARIABLE DESCRIPTION
L PAG	R_INV	S			Reciprocal of magnitude of position vector
Kalar ST 33	R_IN_AUX				Auxiliary variable used in Pines' variation of parameters calculations
	R_IN_INV				Reciprocal of the magnitude of the integrated initial position vector (F and G series)
	R_IN_TAU	S			Auxiliary variable used in Pines' method
A-25	<u>R</u> - <u>^</u> LAST	٧(3)		M50	Position vector of orbiter at the end of the last filter cycle
Ğ	RNG_DATA_GOOD	ВІТ	OFF		Range data good
	RO_N	S			Distance term in gravitational acceleration calculations
	R_ONE	V(3)		M50	Position vector at the beginning of an interpolation interval
	R_ONE_INV	S			Inverse of magnitude of a position vector
	RO_ZERO	S			Distance term in gravitational acceleration calculations
	RR_ANGLE DATA_GOOD	BIT			Flag indicating processable data from the rendezvous radar angle measurements
	RR_ANGLE_MARK_NUM		0.0		Rendezvous-radar angle (shaft + trunnion) mark counter

VARIABLE NAME	DATA TYPE	INITIAL VALUE	COORD FRAME	VARIABLE DESCRIPTION
RR_ANGLES_EDIT_OVERRIDE	INT			ON-OFF switch used (ON) to override the automatic editing of rendezvous radar angles data
RR_ANGLES_ENABLE	BIT	OFF		Rendezvous radar angles ENABLE flag
RR_ANGLES_STAT	BIT	0FF		Flag indicating (ON) that rendezvous radar angles data are to be processed for — statistical display only
RRDOT_EDIT_OVERRIDE	BIT	OFF		Flag used (ON) to override the residual edit test for rendezvous radar and range rate data
RRDOT_MARK_NUM		0.0		Rendezvous radar range-range rate measuremen mark counter
RRDOT_STAT	BIT	OFF		Flag indicating (ON) that rendezvous radar range and range rate data are to processsed for statistical display only
R RESET	ν(3)		M50	Orbiter vehicle position vector after all navigation updates, reserved for reset of user parameter state propagator position vector
R RESID	V(3)		M50	M1950 orbiter position vector interpolated to measurement time
R RHO	V(3)		M50	Line of sight
R_RHO_MAG	BIT	0.0		Length of line of sight vector

VARIABLE NAME	DATA TYPE	INITIAL VALUE	COORD FRAME	VARIABLE DESCRIPTION
R_SUP	۷(3)		M50	Position vector updated by the super-G integrator
<u>R</u> _TV	٧(3)	I LOAD	M50	M1950 target vehicle position vector
<u>R_TV_</u> GND	٧(3)		M50	Uplinked M1950 target vehicle position vector at T_TV_GND
R_TV_LAST	V(3)		M50	Target vehicle position vector, last value
R_TV_RESET	V(3)		M50	Target vehicle position vector after all navigation updates, reserved for reset of user parameters state propagator position vector
<u>R</u> _TW0	۷(3)		M50	Position vector at the end of an interpolation interval
R_TWO_INV	S			Inverse of the magnitude of R _TWO
S	M(6)			Disturbance matrix (9X9) for Space Shuttle covariance propagation
SA	\$			Square of sine of angle of attack
SB	S			Absolute value of the sine of the sideslip angle
SDEC	S			Sign of solar declination
SENSOR_BIAS	٧(4)		M50	General systematic sensor biases part of state vector

어떤 경고를 통통하고 있다.			Samuel Commission of the	
VARIABLE NAME	DATA TYPE	INITIAL VALUE	COORD FRAME	VARIABLE DESCRIPTION
SENSOR_DELQ	V(4)			
<u>S</u> ENSOR_EDIT	ARRAY(CHAR)			Five valued parameter defining use of the I'th measurement data by the navigation filter, I=1,4.
				ON- rejected by the residual edit test OFF- no processing attempted PROCESSED - accepted by residual edit test and used to update state vector STAT - used to generate display parameters FORCED - used to update state vector as a result of manual edit override
SENSOR_ID	INT			Identifier of the sensor measurement being processed, used in state vector interpolation
SENSOR_RESID	V(4)	0		Measurement residual for the I'th measure- ment type, I=1,4
SENSOR_RESID_TEST	ν(4)	0		Value of the criterion used in the navigatio filter for residual edit test for the I'th measurement type, I=1,4
S_EPS	S			Sine of obliquity of ecliptic
SEQ_ACCEPT	Ÿ(4)	<u>0</u>		Number of sequential sensor marks, for the I'th measurement type, processed by the navigation filter, I=1,4
SEQ_REJECT	٧(4)	<u>0</u>		Number of sequential sensor marks, for the I'th measurement type, edited by the navigation filter, I=1,4

_	_	
_	Σ	7
	Į.	
í	١	٥
ι	•	5

VARIABLE NAME	DATA TYPE	INITIAL VALUE	COORD FRAME	VARIABLE DESCRIPTION
SGAMI	S			Variable used in K2 term of atmospheric density
SGAM2	S			Variable used in K2 term of atmospheric density
SHFT	Š			Estimate of the rendezvous radar shaft measurement
<u>S</u> IG	٧(6)		UVW	Temporary vector used in covariance re- initialization
SIT_RR_RNG	s	0.0		One sigma value of the rendezvous radar range
SIG_TV_UPDATE	У(6)	I LOAD	UVW	Vector of standard deviations for target vehicle position/velocity covariance initialization (ground update)
SIG_TV_UVW	V(6)	I LOAD	UVW	Vector (6X1) of standard deviations (UVW) for target vehicle position/velocity covariance initialization
SIG_UPDATE	V(6)	I LOAD	UVW	Vector of standard deviations for orbiter position/velocity covariance initialization (ground update)
SIG_UVW_OPS_2	V(6)	I LOAD	WVU	Vector (bX1) of standard deviations (UVW) for orbiter position/velocity covariance initial ization

A-30

S OM

VARIABLE NAME

COORD

VARIABLE DESCRIPTION

Sine of OMEGA

INITIAL

DATA TYPE

VARIABLE NAME	DATA TYPE	INITIAL VALUE	COORD FRAME	VARIABLE DESCRIPTION
SQ	5			Scalar part of quaterion used in attitude matrix determination
SQR_EMU	S			Square-root of EARTH_MU, used in onorbit pred/prop integration (Pines') method
S_REND	M(10)			Disturbance matrix (10X10) for rendezvous target and sensor biases covariance propagation
S_S_L	\$			Sine of solar longitude
ST_ANGLES_EDIT_OVERRIDE	BIT	OFF		Flag used (ON) to override the residual edit test for star tracker angles data
ST_ANGLES_STAT .	BIT	OFF		Flag indicating (ON) that star tracker angles data are to be processed for statistical display only
ST_ ENABLE	BIT	0FF		Star tracker angles ENABLE flag
S_TH	Š			Sine of THETA
ST_MARK_NUM	S	0.0		Star tracker measurement mark counter
STAT_FLAG	INT			Copy of the stat-flag associated with the measurement type currently being processed
S0	*			Auxiliary variable used in F and G series computations
S1	S			Auxiliary variable used in F and G series computation and in Pincs' method

VARIABLE NAME	DATA TYPE	INITIAL VALUE	COORD FRAME	VARIABLE~DESCRIPTION
T_ALIGN		I LOAD		Time of last IMU alignment
T_ANGLES	\$			Time tag for the angle type measurements
TARG_VEC_AVAIL	BIT	I LOAD		Flag indicating (ON) the availability of a target vehicle state vector and time tag for reinitialization purposes
TAU_COAS_ANGLES	V(2)	I LOAD	Heriote di Beriote di C	Time constant for the COAS angles sensor
TAU_RR_ANGLES	V(2)	I LOAD		Correlation time constant for the rendezvous radar angle measurements
TAU_RRDOT	V(2)	I LOAD		ECRV correlation time vector for rendezvous range and range rate
<u>T</u> AU_SENS	V(4)			General correlation time constant for sensors
TAU_ST_ANGLES	V(2)	I LOAD		Correlation time constant for startracker measurements
TAU_VENT	٧(3)	I LOAD		Correlation time for body venting
T_CHECK_PT	S			Time tag of orbiter state vector saved via CHECKPOINT specialist function
T_CUR	S	0		Current integration time within the predictor or propagator
T_CURRENT_FILT				Time of current filter state vector
T_DIF	\$			Time difference over which <u>V_IKU_DIF</u> is computed

4-33

VARIABLE NAME	DATA TYP	E INITIAL VALUE	COORD FRAME	VARIABLE DESCRIPTION
T_RESET	S			Time associated with reserved reset state
T_RESID				Time tag of interpolated state vector
TRUN	5			Estimate of the rendezvous radar trunnion measurement
T_STOR	5	0.		Initial time of each Runge-Kutta integra- tion step
T_TV	.			Time tag of target vehicle state vector
T_TV_GND	\$			Uplinked target state time tag
T_TW0	S			Time tag of state at end of interpolation interval
TV_UPLINK	ЗІТ	OFF		Flag set by ground uplink processor indicating (ON) that a target vehicle state vector has been uplinked
T	S			Time since the beginning of the year, in Julian Centuries
<u>U</u> _M	V(3)		SENSOR AXES	Line of sight in sensor system '
<u>U</u> R	V(3)		EF	Unit earth fixed position vector
<u>U</u> _RDOT	V(3)	0.0	M50	
UR_MOON	V(3)		M50	Earth to moon unit vector

ORIGINAL PAGE IS OF POOR QUALITY	VARIABLE NAME	DATA TYPE	INITIAL VALUE	COORD FRAME	VARIABLE DESCRIPTION
IAL PA	<u>u</u> r_sun	٧(3)		M50	Earth to sun unit vector
GE IS	USE_IMU_DATA	ВІТ	OFF		Flag indicating usage of IMU data (ON) by powered flight propagator
	USE_MEAS_DATA	BIT	ON .		Flag indicating the use (ON) or non-use (OFF) of external measurement data (used for inhibiting filter data processing during burns and burn-targetirg regions)
	¥	٧(3)		M50	Temporary M1950 velocity vector
A-35	VAR	S			Copy of the variance associated with the measurement currently being processed
	VAR_ACC_QUANT	S	I LOAD		Accelerometer quantization error variance
	VAR_COAS_ANGLES	V(2)	I LOAD		
	<u>V</u> AR_COAS_ANGLES_DT	V(2)	I LOAD		
	VAR_HORIZ	S			Variance of the horizontal measurement sensor
	VAR_IMU_ALIGN	٧(3)	I LOAD		Variance of IMU time of alignment '
	<u>VAR_IMU_DRIFT</u>	V(3)	I LOAD		Variance contribution of IMU drift
	<u>V</u> AR_RR_ANGLES . , ,	V(2) ,	I LOAD		Value used to initialize the covariance matrix diagonals associated with the rendez-vous radar angles sensor biases
	<u>V</u> AR_RR_ANGLES_DT	ν(2)	I LOAD		Variance of the rendezyous radar angles measurements sensor biases

VARIABLE NAME	DATA TYPE	INITIAL VALUE	COORD FRAME	VARIABLE DESCRIPTION
<u>V</u> AR_RRDOT	V(2)	I LOAD		Initial value for the covariance matrix diagonal associated with the rendezvous radar range and range rate sensor biases
<u>V</u> AR_RRDOT_DT	٧(2)	I LOAD		Variance of the rendezvous radar range and range rate sensor biases
VAR_RR_RNG_MIN	S	0.		Minimum value of the rendezvous radar variance
<u>V</u> AR_SENS_DT	V(4)			General bias variance vector for the current sensor set
VAR_SHFT		I LOAD		Variance of the rendezvous radar shaft angle
<u>VAR</u> ST_ANGLES .	V(2)	I LOAD		Initial startracker angle bias variance terms for the covariance matrix
VAR_ST_ANGLES_DT	٧(2)	I LOAD		The filter gain variance for the startracker angle biases
VAR_TRUN	\$	I LOAD		Variance of the rendezvous radar trunnion angle
VAR_UNMOD_ACC_DT .	S	I LOAD		Variance of unmodeled acceleration times scale time
<u>V</u> AR_VENT_DT	V(3)	I LOAD		Variance of body venting variables
VAR_VERT	S	I LOAD		Vertical measurement variance

VARIABLE NAME	DATA TYPE	INITIAL VALUE	COORD FRAME	VARIABLE DESCRIPTION
V_CHECK_PT	V(3)		M50	Orbiter velocity vector (M50) saved via CHECKPOINT specialist function
<u>V</u> _CURRENT_FILT	V(3)		M50	Total accumulated IMU sensed velocity
VEH_MASS	Š			Mass of vehicle for drag acceleration calculations
<u>V</u> ENT	ν(3)		M50	Acceleration due to venting and uncoupled RCS thrusting
VENT_ARRAY:	ARR	I LOAD		Time line of the vent states for the major vents
VENT_DEP_RCS	ARR(3, MAX_ NUM_VENT)	I LOAD	BODY	Uncoupled thrusting accelerations which are vent dependent
VENT_MODE_NAV	INT	I LOAD		Flag which activates (1) or de-activates (0) the venting & RCS uncoupled thrusting models
VENT_TABLE	ARR (3, MAX_ NUM_VENT)	_ I LOAD	BODY	Acceleration vectors for the major vents
VENT_THRUST_BIAS	V(3)	I LOAD	BODY	Vector of unmodeled acceleration bias error (body-fixed coordination system)
VFL	INT			Flag indicating activation (1) or de-activation (0) of venting & RCS uncoupled thrusting models (local variable)
<u>V</u> _LAST	V(3)		M50	Velocity vector of orbiter at end of the last filter cycle

00	VARIABLE NAME	DATA TYPE	INITIAL VALUE	ÇOORD FRAME	VARIABLE DESCRIPTION
ORIGINAL PAGE OF POOR QUALIT	<u>v</u> _REL_BODY	V(3)		BODY	Orbiter's velocity relative to atmosphere in body doordinates
L PAGE IS QUALITY	VERT	S			Filter estimated vertical angle for angle measurement
KLI SI 6	V_FILT	V(3)		M50	Orbiter velocity vector.(M50)
	V_FILT_INIT `	ν(3)		M50	Orbiter velocity vector saved across memory reconfiguration and used for navigation initialization
A-38	<u>v</u> _fin	٧(3)	0	M50	Orbiter or target velocity vector at T_FIN
Φ, ,	<u>V</u> _GND	V(3)		M50	Uplinked orbiter velocity vector (M1950)
	V_IMU_DIF	V(3)		M50	Difference in purrent and past accumulated sensed IMU velocities, used in state vector interpolation (local variable)
	V_IMU_RESET	۷(3)		M50	Copy of T_CURMENT_FILT reserved as velocity count at star; of extrapolation interval when user parimeter state propagator is reset
	<u>Ā</u> īM	V(3)	0')	M50	Orbiter or target velocity vector at [IN
	V_LAST_FILT	V(3)		M50	Total accumulated IMU sensed velocity (M50)
	V_LAST_FILT_INIT	V(3)		M50	Total accumulated IMU velocity saved across memory reconfiguration for navigation initialization
	VM	INT	0		Flag to indicate which venting model is to be used

VARIABLE NAME	DATA TYPE	INITIAL VALUE	COORD FRAME	VARIABLE DESCRIPTION
<u>V</u> ONE	V(3)		M50	Velocity vector at the beginning of a time interval, used to generate a transition matrix
<u>VQ</u>	V(3)		BODY	Vector part of quaternion used in attitude matrix determination
<u>V</u> _R	V(3)		M50	Velocity of vehicle relative to atmosphere
<u>V</u> _RESET	V(3)		M50	Orbiter vehicle velocity vector after all navigation updates reserved for reset of user parameters state propagator velocity vector
V_RESID · ·	۷(3)		M50	Mean of 1950 velocity vector interpolated to a measurement time
<u>V</u> _SUP	V(3)		M50	Velocity vector updated by the super-G integrator
<u>v</u> _tv	V(3)	I LOAD	M50	M1950 target vehicle velocity vector
<u>v</u> _Tv_last	V(3)		M50	Target vehicle velocity vector, last value
<u>V</u> _TV_GND	. V(3)		M50	Uplinked M1950 target vehicle velocity vector at T_TV_GND
V_TV_RESET	V(3)		M50	Target vehicle velocity vector after all navigation updates, reserved for reset of user parameters state propagator velocity vector

٠.	
P	
40	

VARIABLE NAME	DATA TYPE	INITIAL VALUE	COORD FRAME	VARIABLE DESCRIPTION
V_TV_RESID.	V(3)	0.0	M50	Velocity vector of target velicle at time of measurement
<u>v_</u> Two	V(3)		M50	Velocity vector at the end of a time interval, used to generate a transition matrix
<u>W</u> BR	٧(3)		BODY	IMU derived body rate in radians/second
	ARR(6)	0	M50	Temporary array for the Shuttle or target state vector
XN	ARR(7)	0	M50	Array of integrated initial conditions for onorbit prediction and propagation
ZETA_IMAG	V(9)			Longitude term in gravitational acceleration calculations
<u>ZETA_</u> REAL	V(9)			Longitude term in gravitat onal acceleration calculations
ZONAL	٧(8)	I LOAD		Zonal harmonics coefficients

APPENDIX B

NAVIGATION SEQUENCER PRINCIPAL FUNCTION AND
NAVIGATION PROCESSING PRINCIPAL FUNCTIONS FLOW CHARTS

CONTENTS

SUBJECT	PAGE
On-Orbit/Rendezvous Navigation Sequencer Principal Fo	unction
ONORBIT_REND_NAV_SEQUENCER	B-1
CHECKPOINT_INIT (CODE)	B-2
DISPLAY_COUNT_INIT	B-6
ONORBIT_COVINIT	B-4
ONORBIT_COVINIT_UVW	B-5
ONORBIT_PREDICT	C. 2-1
OPS_2_OR_8_INITIALIZE	B-3
TARGET_NAV_INIT	B-7
On-Orbit Navigation Principal Function	
NAV ONORBIT	B-8
ACCEL ATTITUDE (CODE)	B-24
ACCEL EARTH GRAV (CODE)	B-22
ACCEL ONORBIT DRAG (CODE)	B-31
ACCEL ONORBIT VENT AND THRUST (CODE)	B-28
ACCEL PERT ONORBIT (FUNCTION)	B-21
BODY_TO_MODE (CODE)	B-25
F_AND_G	B-14
H_ELLIPSOID (FUNCTION)	B-30
IWR (CODE)	B-27
LUNAR_EPHEM	B-48
LVLH (CODE)	B-26
MEAN_CONIC_PARTIAL_TRANSITION_MATRIX_6X6	B-18
ONORBIT_COVINIT_UVW	B-5
ONORBIT_DENSITY (CODE)	B-29
ONORRIT DEFCISE DEAD	R_11

SUBJECT	PAGE
On-Orbit Navigation Principal Function (cont'd)	
ONORBIT PREDICT	c.2-1
ONORBIT_REND_AUTO_INFLIGHT_UPDATE	B-19
ONORBIT_REND_BIAS_AND_COV_PROP	B-15
ONORBIT_REND_R_V_STATE_PROP	B-9
ONORBIT_REND_STATE_AND_COV_SETUP (CODE)	B-20
ONORBIT_SUPER_G	B-10
PINES_METHOD	B-13
PWRD_FLT_COV_PROP (CODE)	B-16
REND_COV_PROP (CODE)	B-17
RK_GILL	B-12
SOLAR_EPHEM	B-23
V REL (FUNCTION)	B-32
Rendezvous Navigation Principal Function	
NAV_RENDEZVOUS	B-33
ACCEL_ATTITUDE (CODE)	B-24
ACCEL_EARTH_GRAV (CODE)	B-22
ACCEL_ONORBIT_DRAG (CODE)	B-31
ACCEL_ONORBIT_VENT_AND_THRUST (CODE)	B-28
ACCEL_PERT_ONORBIT (FUNCTION)	B-21
ANGLE_NAV	B-47
BODY_TO_MODE (CODE)	B-25
COAS_ANGLES_SETUP (CODE)	B-39
선생님 그는 사람들이 보고 나는 물로를 보고 보고 있다.	
F ANG G	B-14
H_ELLIPSOID (FUNCTION	B-30
IWR (CODE)	B-27
LUNAR_EPHEM	B-48
LVLH (CODE)	B-26
MEAN CONIC PARTIAL TRANSITION MATRIX 6X6	B-18

SUBJECT	PAGE
Rendezvous Navigation Principal Function (contid)	
MEAS_PROCESSING_STATISTICS_REND (CODE)	B-49
ONORBIT COVINIT UVW	B-5
ONORBIT DENSITY (CODE)	B÷29
ONORBIT PRECISE_PROP	. B-11
ONORBIT PREDICT	C.2-1
ONORBIT REND AUTO INFLIGHT UPDATE	B-19
ONORBIT REND BIAS AND COV PROP	B-15
ONORBIT REND R V STATE_PROP	B-9
ONORBIT_REND_STATE_AND_COV_SETUP (CODE)	B-20
ONORBIT_SUPER_G	B-10
ONORBIT_SV_INTERP	B-45
PINES_METHOD	B-13
PWRD_FLT_COV_PROP (CODE)	B-16
REND_ANGLE_PARTIALS	B-41
REND_COV_PROP (CODE)	B-17
REND_NAV_FILTER	B-42
REND_NAV_INTERP	.B-44
REND_NAV_SENSOR_INIT (CODE)	B-35
REND_SENSOR_SELECT (CODE)	B-34
REND_STATE_AND_COV_UPDATE (CODE)	B-43
RK_GILL TO THE LIGHT TO THE TRANSPORT OF THE PROPERTY OF THE P	B+12
RR_ANGLE_NAV	B-40
RR_ANGLE_SETUP (CODE)	B-37
RRDOT_NAV	B-46
RRDOT_SETUP (CODE)_	B-36
SOLAR_EPHEM	B-23
ST_ANGLES_SETUP (CODE)	B÷38
V DEL /CUNCTION)	D 22

- NOTES: 1. SAVED PARAMETERS IN PROTECTED MEMORY LOCATIONS FOR USE BY OPS-8 OR OPS-3 NAVIGATION SEQUENCER PRINCIPAL FUNCTIONS.
 - 2. IT IS ASSUMED THAT APPROPRIATE CHECKPOINT DATA SETS HAVE BEEN STORED (VIA THE CHECKPOINT SPECIALIST FUNCTION) PERIODICALLY, AT A TBD RATE. A DATA SET SHALL ALSO BE STORED AS SOON AS POSSIBLE AFTER EACH BURN, AND AS SOON AS POSSIBLE AFTER EACH GROUND UPDATE.

CHECKPOINT INIT (CODE)

SNAP IMU (V LAST_FILT_INIT, T_LAST_FILT_INIT)

```
R FILT = R FILT INIT, V FILT = V FILT INIT
V LAST FILT = V LAST FILT INIT
                           T LAST FILT = T LAST FILT INIT
R RESET = R FILT INIT, V RESET = V FILT INIT
V IMU RESET = V LAST FILT INIT, T RESET = T LAST FILT INIT
FILT UPDATE = ON, B = O.
VENT THRUST BIAS = 0.
SQR EMU = SQRT (EARTH MU)
C MX AN = COS (MAX DENS ANGLE)
S MX AN = SIN (MAX DENS ANGLE)
C MN AN = COS (MIN DENS ANGLE)
S MN AN = SIN (MIN DENS ANGLE)
E_1 TO 19, 1 TO 19 = 0.
DO FOR I = 7 TO 9
                                E<sub>I, I</sub> = COV_ACCEL_BODY_INIT<sub>I-6</sub>
TOT ACC = ACCEL PERT ONORBIT (GM DEG, GM ORD,
           1,1,0, R FILT, V FILT, T LAST FILT)
           -EARTH MU R FILT/ R FILT 3
```

ONORBIT_COVINIT

ONORBIT COVINIT UVW

IN LIST: SIG, COR, R, V

OUT LIST: E TEMP

DISPLAY_COUNT_INIT (CODE)

N ACCEPT = 0 N REJECT = 0 SEQ_ACCEPT = 0 SEQ_REJECT = 0


```
SNAP IMU(V CURRENT FILT, T CURRENT FILT)

CALL:
ONORBIT REND R V STATE PROP

CALL:
ONORBIT REND BIAS AND COV PROP

CALL:
ONORBIT REND AUTO INFLIGHT UPDATE

R RESET = R FILT
V RESET = V FILT
T RESET = T LAST FILT
V IMU RESET = V LAST FILT
FILT UPDATE = ON
```


B-9

ONORBIT_SUPER_G

IN LIST: GD, GO, DFL, VFL, ATFL, R SUP, V SUP, T CUR, DT, DV

OUT LIST: R SUP, V SUP, GR NEW

R SUP = R SUP + DT [V SUP + .5 (DV + DT GR NEW)]

GR INT = ACCEL PERT ONORBIT (GD, GO, DFL, VFL, ATFL, R SUP, V SUP, T CUR)

GR INT = GR INT-EARTH MU R SUP/ R SUP/ 3

V SUP = V SUP + DV + .5 DT (GR INT + GR NEW)

 $R SUP = R SUP + (GR INT-GR NEW) DT^2/6.$

GR NEW = ACCEL PERT ONORBIT (GD, GO, DFL, VFL, ATFL, R SUP, V SUP, T CUR)

 $GR NEW = GR NEW-EARTH MU R SUP/|R SUP|^3$

ONORBIT_PRECISE_PROP

IN LIST: GMD, GMO, DM, VM, ATM, DELTA_T, R IN, V IN, T_IN, T_FIN

OUT LIST: R_FIN, V FIN, G NEW

CALL: RK GILL
IN LIST: XN, DT STEP, I, T_CUR, AM, GMO, GMD, DM,
VM, ATM, T_IN
OUT LIST: XN, T_CUR

CALL: PINES METHOD
IN LIST: XN, T CUR, GMO, GMD, DM, VM, ATM, T_IN
OUT LIST: DERIV, X

R_FIN = X 1 to 3
V_FIN = X4 to 6

G NEW = ACCEL PERT ONORBIT (GMD, GMO, DM, VM, ATM, R FIN, V FIN, T FIN)-EARTH MU R FIN/R FIN/8

IN LIST: XN, DT_STEP, I, T_CUR, AM, GMO, GMD, DM, VM, ATM, T_IN

OUT LIST: XN, T_CUR

PINES_METHOD

IN LIST: XN, T_CUR, GMO, GMD, DM, VM, ATM, T_IN

OUT LIST: DERIV, X

 $R_{IN} = |XN|_{1 \text{ to } 3}$

 $R:IN_INV = 1./R_IN$

SMA = $1./[2.R_IN_INV - (XN_4 to 6 \cdot XN_4 to 6)/EARTH_MU]$

 $C1 = SQRT(SMA)/SQR_EMU$

 $DELTAT = T_CUR-XN_7$

 $D_{IN} = XN$ 1 to 3 · XN 4 to 6

CALL: F AND G

IN LIST: SMA, DELTAT, C1, XN 1 to 3, 0., 0., R_IN_INV, 0., XN 4 to 6,

 $D_{IN,0}$.

OUT LIST: F, G, FDOT, GDOT, SO, S1, S2, S3, X1 to 3, R_FIN_INV, THETA

X 4 to 6 = FDOT XN 1 to 3 + GDOT XN 4 to 6

T_ACCEL = T_IN + T_CUR

 $\underline{P} = \underline{ACCEL}\underline{PERT}\underline{ONORBIT}$ (GMD, GMO, DM, VM, ATM, X 1 to 3, X 4 to 6, T_ACCEL)

 $D_TAU = X_1 \text{ to } 3 \cdot P$

 $D_AUX = X$ 4 to 6 · P

cont'd

```
PINES_METHOD (CONCLUDED)

C2 = C1<sup>2</sup>

C3 = 1./C2

C4 = C2 D_AUX

S1 = C1 S1

S3 = SMA S2

C5 = C4 S1

S2 = C2 S2

S4 = 2.S3 D_AUX

S5 = S2 D_TAU
```

DD = S1 C3 R IN(SMA R IN INV-1.) +S0 D IN

S6 = 2. S2 C4 DD + S5

R IN TAU = S4-C2 S1 D AUX-S1 D TAU

R IN AUX = R IN INV R IN TAU

F TAU = S3 C3 R IN INV R IN AUX - S4

G TAU = C5 R IN - S6

FD TAU = S4 R FIN INV

GD TAU = S4 R FIN INV

DERIV 1 to 3 = GD_TAU X 1 to 3 - G_TAU X 4 to 6 - G \underline{P} DERIV 4 to 6 = -FD_TAU X 1 to 3 + F_TAU X 4 to 6 + F \underline{P} DERIV 7 = S6 - 3. C1 C4 SMA THETA - C5/R_FIN_INV

F_AND_G

IN LIST: SMA, DELTAT, C1, R IN, R FIN, R IN INV, R FIN INV, V IN,

D_IN, D_FIN

OUT LIST: F, G, FDOT, GDOT, SO, S1, S2, S3, R FIN, R FIN INV, THETA

ONORBIT_REND_BIAS_AND_COV_PROP

CALL: MEAN_CONIC_PARTIAL_TRANSITION_MATRIX_6X6 R LAST, V LAST, TOT ACC LAST, R FILT, V FILT, TOT ACC, IN LIST: DT FILT OUT LIST PHI to 6, 1 to 6 EXECUTE: PWRD_FILT_COV_PROP (CODE) PWRD FLT NAV = ON PHI I+6, I+6 = e^{-DT} FILT/TAU_VENT I DO FOR $DIAG_{I} = TAU_{VENT_{I}} (1. -PHI_{I+6}, I+6)$ I = 1 S_{I+6} , I+6 = TAU_VENT_I VAR_VENT DT_I to 3 $1. - PHI_{I+6}^{2}, I+6$ PHI_{J+3} , $I+6 = M_SBODYM50_{J}$, $IDIAG_I$ DO FOR J = 1 PHI_J , $I+6 = M_SBODYM50_J$, I (TAU_ to 3 VENT, (DT_FILT - DIAG,)) DIAG = DT_FILT D_COE_PCT_ERR_D S_4 to 6, 4 to 6 = $\underline{D}IAG$ $\underline{D}IAG$ S_4 to 6, 1 to 3 = .5 DT_FILT S_4 to 6, 4 to 6 S_1 to 3, 4 to 6 = S_4 to 6, 1 to 3 S_1 to 3, 1 to 3 = .5 DT_FILT S_4 to 6, 1 to 3 E_1 to 9, 1 to 9 = PHI E_1 to 9, 1 to 9 $PHI^T + S$ EXECUTE: REND_COV_PROP (CODE) REND NAV FLAG = ON (CONT'D) B-15


```
PWRD_FLT_COV_PROP (CODE)
```

```
DIAG<sub>T</sub> = VAR_IMU_ALIGN<sub>T</sub> + (T_LAST_FILT
DO FOR I = 1 to 3
                                             - T_ALIGN)<sup>2</sup> VAR_IMU_DRIFT<sub>T</sub>
S_{4,4} = DV_FILT_3^2 DIAG_2 + DV_FILT_2^2 DIAG_3
S_{5,5} = DV_FILT_1^2 DIAG_3 + DV_FILT_3^2 DIAG_1
S_{6,6} = DV_FILT_1^2 DIAG_2 + DV_FILT_2^2 DIAG_1
S4.5 = -DV_FILT, DV_FILT2 DIAG3
S4.6 = -DT_FILT_ DV_FILT_3 DIAG2
S<sub>5.6</sub> = -DV_FILT<sub>2</sub> DV_FILT<sub>3</sub> DIAG<sub>1</sub>
S_{5,4} = S_{4,5}, S_{6,4} = S_{4,6}, S_{6,5} = S_{5,6}
S_1 to 3, 4 to 6 = .5 DT_FILT S_4 to 6, 4 to 6
S_4 to 6, 1 to 3 = S_1 to 3, 4 to 6
S_1 to 3, 1 to 3 = .5 DT_FILT S_1 to 3, 4 to 6
NOISE = VAR ACC QUANT + (VAR UNMOD ACC DT) DT FILT
NOISE R = .25 NOISE (DT FILT)<sup>2</sup>
NOISE RV = .5 NOISE (DT FILT)
                                   S_{I,I} = S_{I,I} + NOISE_R
                                   S_{I+3}, I+3 = S_{I+3}, I+3 + NOISE
DO FOR I = 1 to 3
                                   S_{I+3, I} = S_{I+3, I} + NOISE_RV
                                   S_{I, I+3} = S_{I+3, I}
```

E₁ to 6, 1 to 6 = PHI₁ to 6, 1 to 6 E₁ to 6, 1 to 6 PHI₁^T to 6, 1 to 6 + S_1 to 6, 1 to 6

REND_COV_PROP (CODE)

CALL: MEAN_CONIC_PARTIAL_TRANSITION_MATRIX_6X6

IN LIST: R TV LAST, V TV LAST, G TV LAST, R TV,

V TV, G TV, DT_FILT

OUT LIST: PHI_REND₁ to 6, 1 to 6

D0 F0R I = 1 to 4

PHI_REND_{I+6}, I+6 = e^{-DT} _FILT/TAU_SENS_I

S_REND_{I+6}, I+6 = TAU_SENS_I VAR_SENS_DT_I

(1. - PHI_REND_{I+6}, I+6)

E₁₀ to 19, 10 to 19 = PHI_REND E₁₀ to 19, 10 to 19 PHI_REND^T + S_REND E₁ to 9, 10 to 19 = PHI_E₁ to 9, 10 to 19 PHI_REND^T

MEAN_CONIC_PARTIAL_TRANSITION_MATRIX_6X6

IN LIST: R ONE, V ONE, G ONE, R ONE, R TWO, V TWO, G TWO, DELTIM

OUT LIST: PHI MC

 $R_{ONE}INV = 1./|R_{ONE}|$

 $D_ONE = R_ONE - V_ONE$

R TWO INV = 1./|R TWO|

 $D_TWO = R_TWO \cdot V_TWO$

SMA = 1./[R ONE INV + R TWO INV - (V ONE + V TWO + V TWO)/2. EARTH MU] C1 = SQRT(SMA)/SQR EMU

CALL: F AND G

IN LIST: SMA, DELTIM, C1, R ONE, R TWO, R ONE INV, R+TWO INV, V ONE,

D_ONE, D_TWO

OUT LIST: F, G, FDOT, GDOT, SO, S1, S2, S3, R TWO, R TWO INV, THETA

FM1 = F-1.

S1 = C1 S1

 $\dot{C}ONST = C1 C2 SMA \cdot THETA (2. + S0)$

GDM1 = GDOT-1

 $C2 = C1^2$

-3.C2 SMA S1

S2 = C2 S2

A1 = (FDOT S1 + FM1 R_ONE_INV) R_ONE_INV; A2 + FDOT S2; A3 = FM1 S1 R_ONE_INV;

A4 = FM1 S2; A5 = GDM1 S2; A6 = G S2; A7 = FDOT (SO R_ONE_INV R_TWO_INV + R_ONE_INV^2 + R_TWO_INV^2); A8 = (FDOT S1 + GDM1 R_TWO_INV) R_TWO_INV;

A9 = GDM1 S1 R_TWO_INC

TEMP = A4 V TWO-A2 R TWO

PHI_MC 1 to 3, 1 to 3 = F ID_MATRIX_3X3 +. CONST V_TWO G_ONE +

(A3 V TWO-A1 R TWO) R ONE + TEMP V ONE

PHI_MC 1 to 3, 4 to 6 = G ID_MATRIX_3X3 - CONST \underline{V} TWO \underline{V} ONE +

TEMP R ONE + (A6 V TWO - A5 R TWO) V ONE

TEMP = A2 V TWO - A8 R TWO

PHI_MC₄ to 6, 1 to 3 = FDOT ID_MATRIX_3X3 + CONST \underline{G} TWO \underline{G} ONE +

(A1 V TWO - A7 R TWO) R ONE + TEMP V ONE

PHI_MC₄ to 6, 4 to 6 = GDOT ID_MATRIX_3X3 - CONST G TWO \underline{V} ONE + TFMP R ONE + (A5 \underline{V} TWO - A9 \underline{R} TWO) \underline{V} ONE

+ TEMP R ONE + (A5 V TWO - A9 R TWO) V ONE

B-18

ONORBIT REND AUTO INFLIGHT UPDATE

ONORBIT REND STATE AND COV SETUP (CODE)

ONORBIT REND STATE AND COV SETUP (CODE), CONCLUDED E_{10} TO 19, 10 TO 19 = 0. REND_NAV_FLAG TV_UPLINK E_1 TO 9, 10 TO 19 = 0. E_{10} TO 19, 1 TO 9 = 0. TARG VEC AVAIL = ON TV UPLINK = OFF R TV = R TV GNDV TV = V TV GNDT TV = T TV GNDCALL: ONORBIT PREDICT INLIST: GM DEG, GM ORD, DRAG MODE NAV, 0, 3, PREC STEP, R TV GND, V TV GND, T TV GND, T CURRENT FILT OUTLIST: R TV, V TV CALL: ONORBIT COVINIT UVW INLIST: SIG TV UPDATE, COV COR TV UPDATE, R TV, V TV OUTLIST: E₁₀ TO 15, 10 TO 15 G TV = ACCEL PERT ONORBIT (GM DEG, GM ORD, DRAG MODE_NAV, 0, 3, PREC_STEP, R_TV, V_TV, T_CURRENT_FILT) - EARTH_MU R_TV/|R_TV|3

ACCEL_PERT_ONORBIT (FUNCTION)

IN LIST: GMD, GMO, DM, VM, ATM, R, V, T

 $\vec{r} - i$

GMD controls the use of zonal harmonics in the gravity model.

GMO controls the use of tesseral harmonics in the gravity model.

DM controls the use or non-use of drag acceleration model.

VM controls the use or non-use of venting and uncoupled thrusting model.

ATM controls the use or non-use of prestored attitude profile, average area, mass, and drag coefficient of orbiter on target vehicle.

 \underline{R} , \underline{V} are the position and velocity vectors of the vehicle in M50 coordinates.

T is the time.

ACCEL EARTH GRAV CODE

```
RO_ZERO = EARTH_RADIUS_GRAV R_INV
RO N = RO ZERO EARTH MU R_INV<sup>2</sup>
A_{1,2} = 3. UR_3
A_{2,2} = 3.
AUXILIARY = 0.
                      ZETA\_REAL_{I+1} = UR_{1} ZETA\_REAL_{I} - UR_{2} ZETA\_IMAG_{1}
DO FOR
I = I
                      ZETA\_IMAG_{I+1} = UR_{1} ZETA\_IMAG_{I} + UR_{2} ZETA\_REAL_{I}
TO GMO
DO FÓR
                      A_{N} + 1,1 = 0.
N = 2 TO
                      A_{N+1,2} = (2.N+1.) A_{N,2}
GMD
                      A_{N,1} = A_{N,2}
                      A_{N,2} = UR_3 A_{N+1,2}
                      K = 2
\underline{G} = \underline{G} - AUXILIARY \underline{UR}
                                 DO FOR
                                                     A_{N-J+1,1} = A_{N-J+1,2}
G = FIFTY \underline{G}
                                  J = 2
                                                     A_{N-J+1,2} = (UR_3 A_{N-J+2,2} - A_{N-J+2,1})/K
                                 TO N
                                                     K = K + 1
                                F1 = 0.
                                F2 = 0.
                                F3 = -A_{1,1} ZONAL_N
                                F4 = -A_{1,2} ZONALN
                               (CONT'D)
                                         B-22
```

ACCEL_EARTH_GRAV CODE (CONCLUDED)

RO N = RO N RO ZERO

$$G_1 = G_1 + RO_N F1$$
 $G_2 = G_2 + RO_N F_2$
 $G_3 = G_3 + RO_N F3$

AUXILIARY = AUXILIARY + RO_N F4

1. - - - F1

SOLAR_EPHEM

IN LIST: T

OUT LIST: UR_SUN, SDEC, CDEC1, COS_SOL_RA, SIN_SOL_RA

T1 = T/3155760000.

SOL_AUXIL = SOL_PARAM_ZERO + T1 SOL_PARAM_FIRST

SOL_TRUE_ANOM = SOL_AUXIL4 + 2. SOL_AUXIL3 SIN(SOL_AUXIL4)

SOL_LONG = SOL_AUXIL1 + SOL_TRUE_ANOM

S_S_L = SIN(SOL_LONG)

SDEC = S_S_L SIN(SOL_AUXIL₂)

CDEC1 = SQRT(1. - SDEC²)

FACTOR = 1./CDEC1

UR_SUN₁ = COS(SOL_LONG)

UR_SUN₂ = S_S_L COS(SOL_AUXIL₂)

UR_SUN₃ = SDEC

COS_SOL_RA = FACTOR UR_SUN₁

SIN_SOL_RA = FACTOR UR_SUN₂

BODY_TO_MODE CODE

```
S1 = SIN (ATT_ARRAY_{3,J-1})
S2 = SIN (ATT_ARRAY, J-1)
S3 = SIN (ATT_ARRAY_{5,J-1})
C1 = COS.(ATT\_ARRAY_{3,J-1})
C2 = COS (ATT\_ARRAY_{4,J-1})
C3 = COS (ATT\_ARRAY_{5,J-1})
                C3 C1
                              C3 S1
                                         1 S3 S2
               -S3 C2 S1
                          +S3 C2 C1
                  -$3 C1
                           ı -S3 S1
                                           C3 S2
 M =
                          +C3 C2 C1
               -C3 C2 S1
                   S2 S1
                                            C2
                              -S2 C1
```

LVLH CODE

M_TEMP = UVW_TO_M50(R, V)
M = M_TEMP M

ORIGINAL PAGE IN OF POOR QUALITY

IWR CODE

```
T_INITIAL = ATT_ARRAY, J-1
EV_1 = ATT\_ARRAY_{6,J-I}
EV_2 = ATT\_ARRAY_7, J-1
EV3 = ATT_ARRAY8,J-1
\underline{\mathsf{E}}\mathsf{V} = \mathsf{M} \ \underline{\mathsf{E}}\mathsf{V}
HANG = 0.5 ATT_ARRAY<sub>9,J-1</sub>(T-T_INITIAL)
SQ = COS(HANG)
VQ = SIN(HANG) EV
                                                           VQ<sub>2</sub>
                                       -VQ3
                                                          -VQ<sub>1</sub>
                      vq_3
M_TEMP =
                                       vQ<sub>1</sub>
                                                             0
M = [(2.SQ^2 - 1.) ID MATRIX_3X3 + 2. VQ VQ^T]
      + 2.SQ M_TEMP] M
```

ACCEL_ONORBIT_VENT_AND_THRUST CODE

ORIGINAL PAGE IS OF POOR QUALITY

ONORBIT_DENSITY CODE

```
ALT = H ELLIPSOID (R)
SDEC = SDEC R_INV R2
CDEC2 = CDEC1 R_INV R2
CDEC1 = CDEC1 R INV R.
SGAM1 = SIN SOL RA C MX AN + COS SOL RA S MX AN
CGAM1 = COS SOL RA C MX AN - SIN SOL RA S MX AN
SGAM2 = SIN SOL RA C MN AN + COS SOL RA S MN AN
CGAM2 = COS SOL RA C MN AN - SIN SOL RA S MN AN
COS PSI 1 = SDEC + CGAM1 CDEC1 + SGAM1 CDEC2
COS_PSI_1 = DIURN_EFF_5 (1. + COS_PSI_1) CORR_POWER_1
COS PSI 2 = -SDEC + CGAM2 CDEC1 + SGAM2 CDEC2
COS_PSI_2 = DIURN_EFF_6 (1. + COS_PSI_2) CORR_POWER_2
DAY OF YEAR = T/86400.
I = 1
DO UNTIL
DAY_OF_YEAR
< 10. I
DAY ONE = 10. (I - I)
K1 = 1. +(ALT + RAD EFF) SOL RAD EMIT CORRECT
K2 = 1. +(ALT + DIURN_EFF_1 + DIURN_EFF_2 EXP{-[(ALT + DIURN_EFF_3)/DIURN_EFF_
     4]^{2})(COS PSI 1 + COS PSI 2)
K3 = 1. + .1 (ALT + ANNUAL_EFF)[(DAY_OF_YEAR - DAY_ONE)(DOY_EFF_{T+1} - DOY_EFF_T) +
     10. DOY_EFF,]
K4 = 1. + (ALT + MAGN EFF) GEOMAG DISTURB CORRECT
RHO = K1 K2 K3 K4 NIGHT_PROF_1 EXP[NIGHT_PROF_2 (ALT + NIGHT_PROF_3) 1/2]
```

H_ELLIPSOID (FUNCTION)

H-EELIPSOID(R) =
$$|R|$$
 - (1 - ELLIPT) EARTH_RADIUS_EQUATOR/
1 + ((1 - ELLIPT) 2 - 1)(1 - (UNIT(R): EARTH_POLE) 2)

₩ B-31

V REL (FUNCTION

 \underline{V} REL $(\underline{V}, \underline{R}) = \underline{V}$ - EARTH_RATE (EARTH_POLE X \underline{R})

NAV_RENDEZVOUS

SNAP IMU (V CURRENT FILT, T CURRENT FILT) SNAP REND_RADAR (Q_RR_SHFT, Q_RR_TRUN, Q_RR_RNG, Q_RR_RNG_DOT, RNG_DATA_GOOD, RDOT_DATA_GOOD, RR_ ANGLE DATA GOOD, M_M50_T0_BODY_RR, T_REND_RADAR) SNAP STAR TRACKER (Q ST HORIZ, Q ST VERT, N_ST_IN_USE, ST_DATA_GOOD, M_M50_T0_BODY_ST, T STAR TRACKER) SNAP COAS (Q COAS HORIZ, Q COAS VERT, N COAS IN USE, COAS DATA GOOD, M M50 TO BODY COAS, T COAS) ONORBIT REND R V STATE PROP CALL: CALL: ONORBIT REND BIAS AND COV PROP **EXECUTE:** REND SENSOR SELECT CODE CALL: ONORBIT REND AUTO INFLIGHT UPDATE **EXECUTE:** REND_NAV_SENSOR_INIT_CODE (CONT'D)

NAV_RENDEZVOUS (CONCLUDED)

(CONT'D) CALL: RR ANGLE NAV DO_RR RR ANGLE_MARK_NUM = RR_ANGLE_MARK_NUM + 1 ANGLE NAV CALL: RRDOT_NAV DO_RRDOT_NAV RRDOT_MARK_NUM = RRDOT_MARK_NUM + 1 CALL: ANGLE_NAV IN LIST: T_STAR_TRACKER, M_BODY_TO_ST N ST IN USE M M50 TO BODY ST, VAR ST HORIZ, Q ST HORIZ, DO_ST_ANGLE VAR ST_VERT,Q_ST_VERT, ST DATA GOOD, NAV ST ANGLE EDIT OVERRIDE, ST ANGLES STAT ST MARK NUM = ST MARK NUM + 1CALL: ANGLE NAV IN LIST: T_COAS, M_BODY_TO_COAS N COAS IN USE, M_M50_TO_BODY _COAS, VAR_COAS_HORIZ, Q_COAS_HORIZ, DO_COAS_ANGLE VAR COAS VERT, Q COAS VERT, COAS DATA NAV GOOD, COAS ANGLE EDIT OVERRIDE, COAS ANGLES STAT COAS MARK NUM = COAS!MARK NUM + 1R RESET = R FILT, V RESET = V FILT, T RESET = T LAST FILT R TV RESET = R TV, V TV RESET = V TV, V IMU RESET = V LAST FILT, FILT UPDATE = ON EXECUTE MEAS PROCESSING STATISTICS REND (CODE)

ORIGINAL PAGE IS

REND_SENSOR_SELECT CODE

RRDOT_SETUP (CODE)

ORIGINAL PAGE IS
OF POOR QUALITY

RR_ANGLES_SETUP (CODE)

ORIGINAL PAGE IS OF POOR QUALITY

```
CALL: REND_ANGLE_PARTIALS
IN LIST: UNIT (R_TV_RESID - R_RESID) X
M_M50_T0_SENSOR_3, 1 to 3)

VAR = VAR_TRUN_ B_{17} = 1.

TRUN = ARCSIN (UM_3) + BIAS_SENSOR_2
DELQ = Q_RR_TRUN - TRUN

CALL: REND_NAV_FILTER

SENSOR_EDIT_2 = EDIT_FLAG
SENSOR_RESID_TEST_2 = RESID_TEST
```

SENSOR_DELQ = DELQ

REND_ANGLE_PARTIALS

IN LIST: I N

```
R RHO = R TV RESID - R RESID

RHO PLANE = R RHO - (R RHO · I N) I N

B TEMP = UNIT (RHO PLANE X I N)/|RHO PLANE|

B1 to 6 = (PHI_PATCH1 to 3, 1 to 6) B TEMP

B10 to 15 = - (PHI_REND_PATCH1 to 3, 1 to 6) TEMP

B16 to 17 = 0.

U M = M_M50_TO_SENSOR_UNIT (R_RHO)
```


REND_STATE_AND_COV_UPDATE (CODE)

OMEGA = EB_COPY/MS_DELQ E = E - OMEGA EB_COPY

R FILT = R FILT + OMEGA 1 to 3 DELQ

V FILT = V FILT + OMEGA 4 to 6 DELQ

VENT_THRUST_BIAS = VENT_THRUST_BIAS + OMEGA 7 to 9 DELQ

R_TV = R_TV + OMEGA 10 to 12 DELQ

V_TV = T_TV + OMEGA 13 to 15 DELQ

SENSOR_BIAS = SENSOR_BIAS + OMEGA 16 to 19 DELQ

REND_NAV_INTERP

CALL: ONORBIT SV INTERP

IN LIST: R LAST, V LAST, R FILT, V FILT, T CURRENT FILT, DV FILT,

DT_FILT, SENSOR_ID, DELTAT_GO, IGD, IGO, IDM, IVM, IATM

OUT LIST: R RESID, V RESID, A RESID

CALL: MEAN_CONIC_PARTIAL_TRANSITION_MATRIX_6X6

IN LIST: R FILT, V FILT, TOT ACC, R RESID, V RESID, A RESID,

- DELTAT GO

OUT LIST: PHI PATCH

CALL: ONORBIT SV INTERP

IN LIST: R TV LAST, V TV LAST, R TV, V TV, T CURRENT FILT, O,

DT FILT, SENSOR ID, DELTAT GO, IGD, IGO, 1, 0, 3

OUT LIST: R TV RESID, V TV RESID, A TV RESID

CALL: MEAN CONIC PARTIAL TRANSITION MATRIX 6X6

IN LIST: R TV, V TV, G TV, R TV RESID, V TV RESID, A TV RESID,

- DELTAT_GO

OUT LIST: PHI REND PATCH

ONORBIT_SV_INTERP

IN LIST: R ONE, V ONE, R TWO, V TWO, T TWO, V IMU DIF, T DIF, SENSOR ID, DTGO, IGD, IGO, IDM, IVM, IATM

OUT LIST: R RESID, V RESID, A RESID


```
CALL: REND_NAV_INTERP
RNG_DATA_GOOD
                         R RHO = R TV RESID - R RESID
                         R RHO MAG = |R| RHO
                         I RHO = R RHO/R RHO MAG
                         Q PRIME = R PHO MAG + SENSOR BIAS,
                         B_1 to 6 = -(PHI_PATCH<sub>1</sub> to 3, 1 to 6)<sup>T</sup> I_RHO
                        B_{10} to 1_5 = (PHI_REND_PATCH_1 to 3, 1 to 6)^T IR
                         B_{18} = 1.0
                         DELQ = Q_RR_RNG - Q_PRIME
                         VAR = (SIG_RR_RNG + SLOPE_SIG_RR_RNG R_RHO_MAG)<sup>2</sup>
                         VAR < VAR RR RNG MIN
                                                         VAR = VAR RR RNG MIN
                         MANUAL EDIT OVERRIDE = RRDOT EDIT OVERRIDE
                         STAT FLAG = RRDOT STAT
                         CALL:
                                REND NAV FILTER
                         SENSOR_EDIT 3 = EDIT_FLAG
                         SENSOR_RESID_TEST 3 = RESID_TEST
                         SENSOR_DELQ 3 = DELQ
                         (CONT'D)
```

office

SENSOR_DELQ₄ = DELQ

ANGLE_NAV

IN LIST: T_ANGLES, M_M50_TO_SENSOR, VAR_HORIZ, Q_HORIZ, VAR_VERT, Q_VERT, ANGLE_DATA_GOOD, MANUAL_EDIT_OVERRIDE, STAT_FLAG

ANGLE_NAV (CONCLUDED)

LUNAR_EPHEM

IN LIST: T

OUT LIST: UR MOON

T1 = T/3155760000.

OMEGA = OM_1 + T1 OM_2

EPSILON = SOL_PARAM_ZERO_2 + T1 SOL_PARAM_FIRST_2

MOON_AUXIL = MOON_PARAM_ZERO + T1 MOON_PARAM_FIRST

C_OM = COS(OMEGA)

S_OM = SIN(OMEGA)

C_EPS = COS(EPSILON)

S_EPS = SIN(EPSILON)

INTERM₁ = SIN(MOON_AUXIL₁)

INTERM₂ = SIN(MOON_AUXIL₃ - MOON_AUXIL₁)

INTERM₃ = SIN(MOON_AUXIL₃)

THETA = MOON_AUXIL₂ + MOON_CONST·INTERM

C_TH = COS(THETA)

S_TH = SIN(THETA)

UR_MOON₁ = C_OM C_TH - S_OM C_INC S_TH

UR_MOON₂ = C_EPS S_OM C_TH + (C_EPS C_OM C_INC - S_EPS S_INC) S_TH

UR_MOON₃ = S_EPS S_OM C_TH + (S_EPS C_OM C_INC + C_EPS S_INC) S_TH

APPENDIX C

GENERAL REQUIREMENT PRINCIPAL FUNCTIONS AND COORDINATE
TRANSFORMATIONS FLOW CHARTS, VARIABLE NAMES, AND DESCRIPTIONS

CONTENTS

SUBJECT	PAGE
CONTENTS	C-ii
Coordinate system definitions	
(to be provided)	
Variable List Definitions	C-iii
Variable List	c.1-1
Flow Charts	
Coordinate system flow charts	
(to be provided)	
Onorbit precision state prediction flow charts	
ONORBIT_PREDICT	C.2-1
ADAMS_MOULTON (CODE)	C.2-2
PINES_METHOD	B-13
RK_GILL	B-12
Site lookup flow charts	
(to be provided)	

VARIABLES LIST DEFINITIONS

Code used for variable data type

S: scalar

V(n): vector (dimension)

M(n): square matrix (dimension)

INT: integer

BIT: bit

CHAR: character

STR: structure

ARR: array

Coordinate frame code and definition

Body: x: parallel to the longitudinal axis (positive aft)

(structural)

y: completes right-hand system

z: perpendicular to the x-axis, positive upward

EF Earth-fixed coordinate system

M50: Mean of 50 reference coordinate system

RW: x: down runway centerline in direction of landing

(runway
coordinates)

y: completes right-hand system

z: down, normal to ellipsoid

TD: x: north

(topodetic
coordinates) Y: east

z: down, normal to ellipsoid

UVW Quasi-inertial, right-handed Cartesian coordinate system

u: along vehicle position vector (radial)

v: normal to u, in orbit plane (downtrack)

w: out of orbit plane, uxv=w, (crosstrack)

APPENDIX C VARIABLE LIST

d do	VARIABLE NAME	DATA TYPE	INITIAL VALUE	COORD FRAME	VARIABLE DESCRIPTION
CHARINAL PAGE IS OF POOR QUALITY	AM	INT	0		Flag (ON) to indicate the use of the Adams-Moulton integration technique
	AM:_TABLE	M(8,7)	0	M50	Table of derivatives required by the Adams-Moulton integrator
	ATM	INT	0		Flag indicating vehicle attitude mode
	CORR_COEF	ARR(8)	ILOAD		Array of morder coeficients used in the Adams-Moulton corrector
Ŝ	DELTA_T	\$	0		Input integration step size for prediction or propagation
	DERIV	ARR(7)	0	M50	Temporary storage for derivatives required for the Adams-Moulton integrator
	DM	INT	0		Flag indicating if model for acceleration due to drag is to be used
	DT_MAX	S	ILOAD		Maximum integration step size used for prediction
	DT_STEP	S	0		Integration step size for prediction or propagation
	GMD	INT	0		Flag indicating the degree of the gravitational potential model
	GMO	INT	0		Flag indicating the order of the gravitational potential model
	하는 그들은 집에는 살아 이 아름은 그리고 나를 위한 때문을		weight the file of a gift		

APPENDIX C VARIABLE LIST (Continued)

ONLY PAGE IS OB POOR QUALITY	VARIABLE NAME	DATA TYPE	INITIAL VALUE	COORD FRAME	VARIABLE DESCRIPTION
POOR QUALITY					
CETT FEET		INT			Counter
~ 0	MORDER	INT	8		Order of the Adams-Moulton integrator
	N_STEPS	INT	0		Number of integration steps in the prediction or propagation interval
	PRED_COEF	ARR(8)	ILOAD		Array of morder coeficients used in the Adams-Moulton predictor
C.]-2	<u>R</u> _FIN	V(3)	0	M50	Orbiter or target position vector at T.FIN
	<u>R</u> _IN	V(3)	0	M50	Orbiter or target position vector at $T-IN$
	SUM	S	0		Temporary storage variable used in the Adams-Moulton integrator
	T_CUR		0		Current integration time within the predictor or propagator
	T_IN	S	0		Initial time input for onorbit prediction or propagation
	<u>V</u> _FIN	V(3)	0	M50	Orbiter or target velocity vector at T_FIN
	<u>v</u> in	V(3)	0	M50	Orbiter or target velocity vector at T_IN

APPENDIX C. VARIABLE LIST (Continued)

VARIABLE NAME	DATA TYPE	INITIAL [.] VALUE	COORD FRAME	VARIABLE DESCRIPTION
VM.	INT	0		Flag indicating whether venting accelerations are to be modeled for prediction or propagation
	ARR(6)	0	M50	Temporary array for the shuttle or target state vector
XN	ARR(7)	0	M50	Array of integrated initial conditions for onorbit prediction and propagation
XP	ARR(7)	0	M50	Temporary storage array of integrated initial conditions used in the Adams-Moulton integrator

IN LIST: GMD, GMO, DM, VM, ATM, DELTA T, R IN, V IN, T IN, T FIN

OUT LIST: R FIN, V FIN

ADAMS MOULTON CODE (CONCLUDED) DO FOR SUM = 0.0J = 1TO 7 DO EOR M = 1 TOMORDER - 1 CALL: PINES METHOD IN LIST: XN, T CUR, GMO, GMD, SUM = SUM + AM_TABLE_M+1, JCORR_COEFM DM, VM, ATM, T_IN OUT LIST: DERIV, X XN_J = XP_J + DT_STEP (DERIV_J CORR_COEF_{MORDER} + SUM) I < N_STEPS DO FOR J = 1 TO 7 DO FOR M = 1 TOMORDER - 1 $AM_TABLE_{M,J} = AM_TABLE_{M+1,J}$ OF POOR QUALITY AM_TABLE MORDER, J = DERIV J

APPENDIX D

USER PARAMETER

FLOW CHARTS, VARIABLE NAMES,

AND DESCRIPTIONS

CONTENTS

SUBJECT		PAGE
CONTENTS		D-ii
Variable List Definitions		D-iii
Variable List	sans. Santa	D.1-1
Flow charts		
Onorbit/Rendezvous User Parameter Processing Sequencer Principal Function		
ONORBIT_REND_UPP_SEQ		D.2-1
Onorbit/Rendezvous User Parameter Processing Principal Function		
ONORBIT_REND_USER_PARAM_STATE_PROP		D.2-2
AVERAGE_G_INTEGRATOR		D.2-3
NAV_MONITOR_SUPPORT		D.2-4

VARIABLES LIST DEFINITIONS

Code used for variable data type

S: scalar

V(n): vector (dimension)

M(n): square matrix (dimension)

INT: integer

BIT: bit

CHAR: character

STR: structure

ARR: array

Coordinate frame code and definition

Body: x: parallel to the longitudinal axis (positive aft) (structural)

y: completes right-hand system

z: perpendicular to the x-axis, positive upward

EF Earth-fixed coordinate system

M50: Mean of 50 reference coordinate system

RW: x: down runway centerline in direction of landing (runway

coordinates) y: completes right-hand system

z: down, normal to ellipsoid

TD: x: north

(topodetic coordinates) Y: east

z: down, normal to ellipsoid

UVW Quasi-inertial, right-handed Cartesian coordinate system

u: along vehicle position vector (radial)

v: normal to u, in orbit plane (downtrack)

w: out of orbit plane, uxv=w, (crosstrack)

VARIABLE NAME	DATA TYPE	INITIAL VALUE	COORD FRAME	VARIABLE DESCRIPTION
A SENSED	V(3)		M50	Ratio of difference of selected acceler- ometer readings to difference of their time tags
<u>A</u> C	V(3)		M50	Sensed acceleration (local variable used in AVERAGE_G_INTEGRATOR)
ALT	S	0		Attitude of Shuttle above reference ellipsoid
ANG_MOM	V(3)	0	EF .	Shuttle's angular momentum vector
ASC_NODE	S	0		Longitude of the ascending node for the Shuttle orbit
COMP_MODE	CHAR	"CURRENT"		Indicates whether computations are to be performed for the Shuttle state at the current time or at a future time.
DEG_PER_RAD	s	(I LOAD)		Radian to degree conversion factor on
DO_PREDICT	BIT	0FF		Flag which indicates whether or not computations have been completed when "future" parameters are requested
DT_IMU	\$			State vector average-G integration time step
DT_PREDICT	S	I LOAD		Integration step size
DTIME	S			Step size for state vector advancement (local variable used in AVERAGE_G_INTEGRATOR)

APPENDIX D VARIABLE LIST (Continued)

VARIABLE NAME	DATA TYPE	INITIAL VALUE	COORD FRAME	VARIABLE DESCRIPTION
EARTH_MU	S	I LOAD		Earth's gravitational constant
EVENT 60A	ВІТ	OFF		Transition from MM201 to OPS-8 event flag
EVENT 60	BIT	OFF		Transition to MM201 from MM106 event flag
EVENT 61	BIT	OFF .		Transition to MM201 from MM301 event flag
EVENT 66	BIT	0FF		Transition to MM213 from MM201 event flag
EVENT 67	BIT	0FF		Transition to MM202 from 201 event flag
EVENT 69	BIT	OFF		Guidance initiate event flag
EVENT 73	BIT	0FF		Transition to MM201 from M202 event flag
EVENT 74	ВІТ	0FF		Transition to MM211 from MM106 event flag
EVENT 76	BIT	OFF		Transition to MM212 from MM211 event flag
EVENT 78	BIT	OFF		Transition to MM211 from MM212 event flag
EVENT 80	BIT	OFF		Transition to MM201 from MM213 event flag
EVENT 82	BIT	0FF		Transition to MM213 from MM211 event flag
EVÉNT 84	BIT	OFF		Transition to MM201 from OPS-00 event
FILT_UPDATE	BIT			Flag indicating the availability of a filter updated state

APPENDIX D VARIABLE LIST (Continued)

VARIABLE NAME	DATA TYPE	INITIAL VALUE	COORD FRAME	VARIABLE DESCRIPTION
<u>G</u> R	ν(3)		M50	Gravitational acceleration (local variable used in AVERAGE_G_INTEGRATOR)
<u>G</u> R1	V(3)		M50	Gravitational acceleration (local variable used in AVERAGE_G_INTEGRATOR)
LAT_GEOD	S	0	EF	Geodetic latitude of the Shuttle sub-vehicle point
LONG	\mathbf{s}	0	EF	Longitude of Shuttle sub-vehicle point
M_TEMP_TXPOS	M(9)	0		Transformation matrix from M50 to earth- fixed coordinates
NAUTMI_PER_FT	S	I LOAD		Feet to nautical mile conversion factor
<u>R</u> _AV ,	V(3)		M50	Position vestor (local variable used in AVERAGE_G_INTEGRATOR)
<u>R</u> _AVGG	V(3)		M50	Current orbiter position vector updated by user parameter propagator
R_comp	٧(3)	0	M50	Orbiter position vector at either the current time or a future time.
R EF	V(3)	0	EF	Orbiter position vector in earth-fixed corrdinates
R_RESET	V(3)		M50	Copy of filter updated orbiter position vector for user parameter propagator reset

APPENDIX D VARIABLE LIST (Continued)

VARIABLE NAME	DATA TYPE	INITIAL VALUE	COORD FRAME	VARIABLE DESCRIPTION
R_TV_ RESET	V(3)		M50	Copy of filter updated target position vector for user parameter propagator reset
REND_NAV_FLAG	BIT	0FF		Flag indicating whether rendezvous navigation is active (ON), or whether onorbit navigation is active (OFF)
R _TARGET	٧(3)		M50	Position vector of the target vehicle, updated by the user parameters propagator
T_COMP	\$ - S - S - S - S - S - S - S - S - S -	0		Time tag corresponding to \underline{R} _COMP and \underline{V} _COMP
T_IMU	S			Current time tag
T_PREDICT		0		Time for which future orbital parameters are to be computed
T_RESET	S			Copy of time tag of filter update of state vectors for user parameter propagator reset
T_STATE	S	0		Time tag for current user parameter state vector
USE_IMU_DATE	BIT	OFF		Flag indicating IMU data are to be used in integration (ON)
<u>v</u> _Av	٧(3)		M50	Velocity vector (local variable used in AVERAGE G INTEGRATOR)
<u>V</u> _AVGG	٧(3)		M50	Velocity vector of orbiter, updated by the user parameters propagator

_		_	
τ	_	7	
	_		
•			
_	_	_	
	I		
_	٠.	_	

VARIABLE NAME	DATA TYPE	INITIAL VALUE	COORD FRAME	VARIABLE DESCRIPTION
V_COMP	V(3).	0	M50	Orbiter velocity vector at either the current time or a future time
<u>V</u> EF	V(3)	0	EF	Orbiter velocity vector in earth-fixed coordinates
V_IMU_CURRENT	۷(3)		M50	Current selected accumulated IMU velocity
V_IMU_OLD	V(3)		M50	Previous accumulated IMU velocity
<u>V</u> _IMU_RESET	V(3)		M50 · .	Copy of IMU accumulated sensed velocity for user parameter prodagator reset
<u>V</u> _RESET	`V(3)		M50	Copy of filter updated orbiter velocity vector for user parameter propagator reset
<u>V_</u> TARGET	V(3)		M50	Velocity vector of the target vehicle, updated by the user parameters propagator
<u>V</u> _TV_RESET	V(3)		M50	Copy of filter updated target velocity vector for user parameter propagator reset

* The purpose of this cancel and reschedule is to synchronize this module with the executions of onorbit guidance which is to begin computations at this time.

Balka saga makatan merupakan pada saga berangan berang berang

AVERAGE_G_INTEGRATOR

IN LIST: R AV, V AV, DTIME, AC, T STATE, T IMU

OUT LIST: R AV, V AV

 $GR = \underline{ACCEL}\underline{PERT}\underline{ONORBIT}$ (2, 0, 0, 0, 0, $\underline{R}\underline{AV}$, $\underline{V}\underline{AV}$, $\underline{T}\underline{STATE}$)

 $\underline{GR} = \underline{GR} - \underline{EARTH}\underline{MU}\underline{R}\underline{AV}/|\underline{R}\underline{AV}|^3$

RAV = RAV + DTIME [VAV + .5 DIME (AC + GR)]

GR1 = ACCEL PERT ONORBIT (2, 0, 0, 0, 0, R AV. V AV, T IMU)

 $GR1 = GR1 - EARTH_MU_R_AV/|R_AV|^3$

V AV = V AV + DTIME [AC + .5(GR + GR1)]

NAV_MONITOR_SUPPORT

ORIGINAL PAGE IS OF POOR QUALITY