Теория вероятностей и математическая статистика (Часть 1) 5 семестр

Задание на экзамен 19.01.2021

Условия экзамена

- 1. Продолжительность экзамена **90 минут**, включая время на подготовку файла с ответом на экзаменационное задание и его загрузку в раздел «*Итоговое задание*. Зима 2020-21» на Учебном портале дистанционного обучения РТУ МИРЭА для дисциплины «Теория вероятностей и математическая статистика (Часть 1)».
- 2. **КАЖДОМУ** студенту для **КАЖДОЙ** задачи назначен определенный номер варианта. Решения задач не своего варианта засчитываться не будут.

БУДЬТЕ ВНИМАТЕЛЬНЫ!

- 3. Работа пишется АККУРАТНО на листах белой бумаги формата A4. На **КАЖДОЙ** странице должна быть указана ФАМИЛИЯ и ГРУППА.
- 4. Перед **КАЖДОЙ** задачей должен быть указан номер варианта этой задачи. На теоретические вопросы должны быть КРАТКИЕ, но полные ответы. Решение задач должно быть подробное. Числовые ответы представлять в десятичном виде с точностью не менее 10^{-3} .
- 55. Листы с решениями следует сфотографировать или отсканировать, полученные файлы нужно объединить в **ЕДИНЫЙ** файл с ответом на экзаменационное задание формата MS Word или pdf с именем

ТВиМС-1_ГРУППА_ФАМИЛИЯ И.О._ДАТА ЭКЗАМЕНА.

Например, фотографии страниц можно вставить как изображения в единый файл формата MS Word, уменьшив до размера A4.

Баллы за задания:

Задача 1 - 0 ÷ 8 баллов

Задача 2 - 0 ÷ 7 баллов

Задача 3 - 0 ÷ 7 баллов

Задача **4** – **0** ÷ **14** баллов

Задача 5 - 0 ÷ 14 баллов

Экзаменационные задания

Номер варианта	Задание
1	В первом ящике находятся 5 белых шаров и 3 чёрных, а во втором – 6 белых шаров и 2 чёрных. Из первого ящика случайным образом переложены во второй ящик 2 шара. Затем из второго ящика наудачу извлечены 3 шара, среди которых оказался ровно один белый. Найти вероятность того, что из первого ящика были переложены во второй ящик шары разных цветов.
2	В первом ящике находятся 3 белых шара и 7 чёрных, а во втором — 5 белых шаров и 3 чёрных. Из первого ящика случайным образом переложены во второй ящик 2 шара. Затем из второго ящика наудачу извлечены 3 шара, среди которых оказались ровно два белых. Найти вероятность того, что из первого ящика были переложены во второй ящик 2 белых шара.
3	В первом ящике находятся 5 белых шаров и 7 чёрных, а во втором — 4 белых шара и 4 чёрных. Из первого ящика случайным образом переложены во второй ящик 2 шара. Затем из второго ящика наудачу извлечены 3 шара, среди которых оказался ровно один чёрный. Найти вероятность того, что из первого ящика были переложены во второй ящик 2 чёрных шара.
4	В первом ящике находятся 8 белых шаров и 4 чёрных, а во втором — 3 белых шара и 5 чёрных. Из первого ящика случайным образом переложены во второй ящик 2 шара. Затем из второго ящика наудачу извлечены 3 шара, среди которых оказались только чёрные. Найти вероятность того, что из первого ящика были переложены во второй ящик 2 белых шара.

Номер варианта	Задание
1	Биномиальное распределение, его ряд и функция распределения,
	математическое ожидание, дисперсия, производящая функция.
	Случайная величина ξ имеет биномиальное распределение с
	параметрами $p=0.75$ и $n=5$. Найти для случайной величины
	$\eta = 2\xi^2 - 11\xi + 11$ математическое ожидание $M\eta$ и значение
	функции распределения $F_{\eta}(z)$ при $z=2$.
2	Распределение Пуассона, его ряд и функция распределения,
	математическое ожидание, дисперсия, производящая функция.
	Случайная величина ξ имеет распределение Пуассона с параметром
	$\lambda \! = \! 0,\! 5$. Найти для случайной величины $\eta \! = \! 6 \xi^2 \! - \! 17 \xi \! + \! 8$
	математическое ожидание $\mathrm{M}\eta$ и значение функции распределения
	$F_{\eta}(z)$ при $z=3$.
3	Равномерное распределение на множестве $\{1, 2,, n\}$, его ряд и
	функция распределения, математическое ожидание, дисперсия,
	производящая функция.
	Случайная величина ξ принимает значения $1, 2,, 10$ с равными
	вероятностями. Найти для случайной величины $\eta = 3\xi^2 - 23\xi + 25$
	математическое ожидание $\mathrm{M}\eta$ и значение функции распределения
	$F_{\eta}(z)$ при $z=-5$.
4	Геометрическое распределение, его ряд и функция распределения,
	математическое ожидание, дисперсия, производящая функция.
	Случайная величина ξ принимает значения $k\!=\!0,1,2,$ с
	вероятностями $p_k = 0,4 \cdot (0,6)^k$. Найти для случайной величины
	$\eta = 4\xi^2 - 16\xi + 5$ математическое ожидание $M\eta$ и значение
	функции распределения $F_{\eta}(z)$ при $z\!=\!-2$.

Номер	2
варианта	Задание
1	Дано распределение дискретного случайного вектора (ξ_1, ξ_2)
	$\left \begin{array}{c cccccccccccccccccccccccccccccccccc$
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
	1 0,20 0,12 0,10
	Для случайных величин $\eta_1 = 3\xi_1 + 2\xi_2$ и $\eta_2 = 2\xi_1 - 3\xi_2$ найти:
	математические ожидания $M\eta_1$, $M\eta_2$, дисперсии $D\eta_1$, $D\eta_2$,
	ковариацию $\operatorname{cov}(\eta_1, \eta_2)$.
2	Дано распределение дискретного случайного вектора (ξ_1, ξ_2)
	$\left \begin{array}{c cccc} \zeta_1 \setminus \zeta_2 & -1 & 1 & 2 \end{array}\right $
	-1 0,05 0,10 0,15
	2 0,15 0,20 0,35
	Для случайных величин $\eta_1 = 5\xi_1 - \xi_2$ и $\eta_2 = \xi_1 + 2\xi_2$ найти:
	математические ожидания $M\eta_1$, $M\eta_2$, дисперсии $D\eta_1$, $D\eta_2$,
_	ковариацию $\operatorname{cov}(\eta_1,\eta_2)$.
3	Дано распределение дискретного случайного вектора (ξ_1, ξ_2)
	$\left \begin{array}{c c c c c c c c c c c c c c c c c c c$
	-1 0,20 0,10 0,10
	1 0,30 0,10 0,20
	Для случайных величин $\eta_1 = \xi_1 + 3\xi_2$ и $\eta_2 = 2\xi_1 + \xi_2$ найти:
	математические ожидания $\mathbf{M}\eta_{_{\! 1}},\mathbf{M}\eta_{_{\! 2}},$ дисперсии $\mathbf{D}\eta_{_{\! 1}},\mathbf{D}\eta_{_{\! 2}},$
	ковариацию $\operatorname{cov}(\eta_1, \eta_2)$.
4	Дано распределение дискретного случайного вектора (ξ_1, ξ_2)
7	
	$\left \begin{array}{c ccccc} \xi_1 \setminus \xi_2 & -1 & 0 & 2 \\ \hline \end{array}\right $
	1 0,25 0,05 0,20
	2 0,25 0,15 0,10
	T
	Для случайных величин $\eta_1 = -\xi_1 + 2\xi_2$ и $\eta_2 = 3\xi_1 - \xi_2$ найти:
	математические ожидания $\mathbf{M}\eta_{\scriptscriptstyle 1},\mathbf{M}\eta_{\scriptscriptstyle 2},$ дисперсии $\mathbf{D}\eta_{\scriptscriptstyle 1},\mathbf{D}\eta_{\scriptscriptstyle 2},$
	ковариацию $\operatorname{cov}(\eta_1, \eta_2)$.

Задание
Показательное распределение, его плотность и функция
распределения, математическое ожидание, дисперсия,
характеристическая функция.
Случайная величина ξ имеет показательное распределение с
параметром $\lambda = 0.5$. Найти для случайной величины
$\eta \! = \! 2 \xi^2 \! - \! 9 \xi \! - \! 16$ математическое ожидание $\mathbf{M} \eta$ и значение
функции распределения $F_{\eta}(z)$ при $z=2$.
Непрерывная случайная величина, свойства её плотности и
характеристической функции.
Случайная величина ξ принимает значения на интервале ($-1; 2$) и
имеет функцию распределения $F_{\xi}(x) = \frac{1}{9} \cdot (x+1)^2$ при $x \in (-1; 2)$.
Найти для случайной величины $\eta = \xi - 0.5$ математическое
ожидание $\mathbf{M} \eta$ и значение функции распределения $F_{\eta}(z)$ при $z = 1$.
Равномерное распределение на отрезке, его плотность и функция
распределения, математическое ожидание, дисперсия,
характеристическая функция.
Случайная величина ξ имеет равномерное распределение на
отрезке. Найти для случайной величины $\eta = 3\xi^2 - 14\xi - 2$
математическое ожидание $M\eta$ и значение функции распределения
$F_{\eta}(z)$ при $z=3$.
Нормальное распределение, его плотность и функция
распределения, математическое ожидание, дисперсия,
характеристическая функция.
Случайная величина ξ имеет нормальное распределение с
математическим ожиданием $M\xi = -1$ и дисперсией $D\xi = 4$. Найти
для случайной величины $\eta = 4\xi^2 - 5\xi - 7$ математическое ожидание
$M\eta$ и значение функции распределения $F_{\eta}(z)$ при $z=2$.

Номер варианта	Задание
1	Случайный вектор (ξ_1, ξ_2) равномерно распределен в области
	$G = \{(x, y) x \in (0; 2), y \in (0; 3)\}.$ Для случайной величины
	$\eta \! = \! 3\xi_1 \! - \! 2\xi_2 \! - \! 1$ найти математическое ожидание $\mathbf{M} \eta$ и значение
	функции распределения $F_{\eta}(z)$ при $z = 2$.
2	Случайный вектор (ξ_1, ξ_2) равномерно распределен в области
	$G = \{(x, y) x \in (0;5), y \in (0;3)\}.$ Для случайной величины
	$\eta = 3\xi_1 + 5\xi_2 + 1$ найти математическое ожидание $M\eta$ и значение
	функции распределения $F_{\eta}(z)$ при $z=19$.
3	Случайный вектор (ξ_1, ξ_2) равномерно распределен в области
	$G = \{(x, y) x \in (0;4), y \in (0;3)\}$. Для случайной величины
	$\eta = 3\xi_1 - 4\xi_2 - 2$ найти математическое ожидание $M\eta$ и значение
	функции распределения $F_{\eta}(z)$ при $z\!=\!4$.
4	Случайный вектор (ξ_1, ξ_2) равномерно распределен в области
	$G = \{(x, y) x \in (0;1), y \in (0;5) \}.$ Для случайной величины
	$\eta = 5\xi_1 + \xi_2 - 2$ найти математическое ожидание $M\eta$ и значение
	функции распределения $F_{\eta}(z)$ при $z = 5$.