S.4 CHEMISTRY ASSESSMENT TEST

TNICT	TIME: 110 MINUTES	TOPI	C: MOLE CONCEPT	
INSTRUCTIONS: Attempt all questions SECTION A				
1.	1. Which one of the following substances contains the same number of moles as 10cm ³ of a 0.5M			
	nitric acid? (1 mole of a gas occupies 22.4 dm³ at s.t.p $H=1$, $C=12$, $N=14$)			
	A. 5.6 dm ³ of carbon dioxide at s.t.p. C. 112cm ³ of oxygen at s.t.p.		gen at s.t.p.	
2	B. 17g of ammonia	D. 12g of carbon		
2.	Sulphuric acid reacts with sodium hydroxide according to the following equation.			
	$H_2SO_4(aq) + 2NaOH(aq)$ \longrightarrow $Na_2SO_4(aq) + 2H_2O(l)$			
	Which one of the following is the volume of a 2M sulphuric acid required to react completely			
	with 10cm ³ of a 2M sodium hydroxide solution			
			O. 40.0cm ³	
3.	. Ammonia burns in oxygen according to the following equation			
	$4NH_3(g) + 3O_2(g) \longrightarrow 2N_2(g) + 6H_2O(l)$			
	The maximum volume of oxygen required to burn 60cm ³ of ammonia is?			
	A. 45cm ³ B. 80cm ³		O. 180cm ³	
4.	0.4g of metal hydroxide MOH reacted complet	ely with 20cm ³ of a 0.	5M hydrochloric acid. The	
	relative formula mass of MOH is,	(1000 % 0.5)	(0.4 × 1000)	
	A. $\left(\frac{0.5 \times 20}{0.4 \times 1000}\right)$ B. $\left(\frac{0.4 \times 20 \times 0.5}{1000}\right)$	C. $\left(\frac{1000 \times 0.5}{0.4 \times 20}\right)$		
5.	Which one of the following is the concentration	-	of a solution that contains	
		(NaCl - 58.5)	(1000 x 50 \	
	A. $\left(\frac{0.05 \times 50}{1000 \times 58.5}\right)$ B. $\left(\frac{0.05 \times 1000 \times 58.5}{50}\right)$	(1000 /	(30.3 % 0.03)	
6.	The mass of oxalic acid ($H_2C_2O_4$) required to p	prepare 250cm ³ of a 4	.5M solution of the acid is	
	(H=1; C=2; O=16)	(90×250)	$(1.5 \times 250 \times 90)$	
_	A. $\left(\frac{1.5 \times 250}{1000 \times 90}\right) g$ B. $\left(\frac{1000 \times 250}{90 \times 1.5}\right) g$	(1000 % 1.5)	(1000 /	
7.	7. Chlorine reacts with iron from iron(III) chloride according to the following equation.			
$(2Fe(s) + 3Cl2(g) \longrightarrow 2FeCl3(s)$				
Which one of the following would be the volume of chlorine that would react with 5.6 g of iron				
to produce iron(III) chloride at s.t.p?				
(Fe=56; 1 mole of a gas occupies 22.4 litres at s.t.p)				
	A. $\left(\frac{3 \times 5.6 \times 22.4}{56}\right) l$ B. $\left(\frac{3 \times 5.6 \times 22.4}{2 \times 56}\right) l$	C. $\left(\frac{3 \times 56 \times 22.4}{2.5 \times 10^{-5}}\right) l$	D. $\left(\frac{2 \times 56 \times 224}{2 \times 56}\right) l$	
8.	Ammonia reacts with copper(II) oxide to form			
	2CuO(a) 2NH (a)	2Cu(a) N (a)	5 -	

 \rightarrow 3Cu(s) + N₂(g) + 3H₂O(l)

The mass of copper formed when 12 g of ammonia is reacted with copper(II) oxide is (Cu=64; N=16; H=1)

A. $\left(\frac{12 \times 64}{17 \times 3}\right) g$ B. $\left(\frac{12 \times 64}{2 \times 17}\right) g$ C. $\left(\frac{12 \times 2 \times 64}{3 \times 17}\right) g$ D. $\left(\frac{12 \times 3 \times 64}{2 \times 17}\right) g$

20. Lead(II) ions react with iodide ions according to the following equation:

completely with 20cm³ of a 0.5M lead(II) nitrate solution?

 $B. 10 cm^3$

Which one of the following is the volume of 1M potassium iodide solution that would react

C. 20cm³

D. 40cm³

 $Pb^{2-}_{(aq)} + 2l^{-}_{(aq)} \longrightarrow Pbl_{2(s)}$

A. 5cm³

32. Ammonia reacts with copper(II) oxide to form copper according to the following equation:

$$2NH_{3(g)} + 3CuO_{(s)} \longrightarrow 3H_2O_{(l)} + N_{2(g)} + 3Cu_{(s)}$$

The volume of ammonia that is required to react with 6.0g of copper(II) oxide at s.t.p. is

(H=1; Cu=64; O=16; N=14: one mole of a gas occupies 22400cm³ at s.t.p.is

A.
$$\frac{2 \times 22400 \times 6.0}{3 \times 80}$$
 cm³

B.
$$\frac{2 \times 22400 \times 6.0}{80} cm^3$$

C.
$$\frac{2 \times 22400 \times 6.0}{2 \times 80}$$
 cm³

B.
$$\frac{2 \times 22400 \times 6.0}{80} cm^3$$
 C. $\frac{2 \times 22400 \times 6.0}{2 \times 80} cm^3$ D. $\frac{3 \times 22400 \times 6.0}{80} cm^3$

33. Copper(II) sulphate reacts with sodium carbonate according to the following equation

$$CuSO_{4(aq)} + Na_2CO_{3(aq)}$$
 \longrightarrow $CuCO_{3(s)} + Na_2SO_{4(aq)}$

The mass of copper(II) carbonate that is formed when 200cm³ of a solution containing 5.3g of sodium carbonate per litre of solution was reacted completely with copper(II) sulphate is given (C=12; O=16; Na=23; Cu=64; S=32) by the expression:

A.
$$\frac{5.3 \times 200 \times 124}{106 \times 1000}$$
g

B.
$$\frac{5.3 \times 124 \times 1000}{106 \times 200}$$
g

C.
$$\frac{106 \times 200 \times 124}{5.3 \times 1000}$$
g

B.
$$\frac{5.3 \times 124 \times 1000}{106 \times 200}$$
 G C. $\frac{106 \times 200 \times 124}{5.3 \times 1000}$ G D. $\frac{106 \times 124 \times 1000}{5.3 \times 200}$ G

34. The mass of 4 atoms of phosphorus is

(Avogadro's constant= 6.02×10^{23} , P=31)

A.
$$\frac{6.02 \times 10^{23}}{4 \times 31}$$

B.
$$\frac{31 \times 4}{6.02 \times 10^{23}}$$

B.
$$\frac{31 x 4}{6.02 x 10^{23}}$$
 C. $\frac{31 x 6.02 x 10^{23}}{4}$ D. $\frac{31}{4 x 6.02 x 10^{23}}$

D.
$$\frac{31}{4 \times 6.02 \times 10^{23}}$$

35. Lead nitrate decomposes according to the equation:

$$2Pb(NO_3)_2$$
 $\longrightarrow 2PbO_{(s)} + 4NO_{2(g)} + O_{2(g)}$

The mass of lead monoxide that is produced when 3.31g of lead nitrate is completely decomposed is; (N=14, O=16, Pb=207)

A.
$$\frac{3.31 \times 223}{331}$$

C.
$$\frac{3.31 \times 22}{3.31}$$

D.
$$\frac{3.31 \times 333}{223}$$

36. Magnesium reacts with hydrochloric acid according to the following equation:

$$Mg(s) + 2HCl_{(aq)} \longrightarrow MgCl_{2(aq)} + H_{2(g)}$$

The volume of hydrogen formed at s.t.p. when 2.32g of magnesium reacts completely with (Molar gas volume at s.t.p. is 22.4dm³, Mg=24) dilute hydrochloric acid is

A.
$$\frac{22.4 \times 2.32}{24} dm^3$$

B.
$$\frac{22.4 \times 24}{2.32} dm^3$$

C.
$$\frac{2.32 \times 24}{22.4} dm^3$$

B.
$$\frac{22.4 \times 24}{2.32} dm^3$$
 C. $\frac{2.32 \times 24}{22.4} dm^3$ D. $2.32 \times 24 \times 22.4 dm^3$

37. Zinc reacts with hydrochloric acid according to the following equation:

$$Zn_{(s)} + 2HCl_{(aq)} \longrightarrow ZnCl_{2(aq)} + H_{2(g)}$$

The number of moles of hydrochloric acid required to react completely with 7.0g of zinc is

A.
$$\frac{65 \times 2}{7.0}$$

B.
$$\frac{7.0 \times 65}{2}$$

C.
$$\frac{7.0 \times 2}{65}$$

38. Which one of the following is the mass of lead(II) iodide formed when 33.2 g of potassium iodide is reacted with excess lead(II) nitrate? (K=39; 1=127; pb = 207).

39. 12.7 g of metal R reacts completely with 11.3 g of oxygen to form an oxide. Which one of the following is the formula of the oxide of R? (O=16, R=27)

$$C. R_2O_3$$

$$D. R_3O_2$$

40. The percentages by mass of oxygen in a mole of carbon dioxide is (C=12, O=16)

END!!!

"Don't ask what the world needs. Ask what makes you come alive, and go do it."