TRIGONOMETRY Chapter 21

TRANSFORMACIONES
TRIGONOMÉTRICAS

MOTIVATING STRATEGY

En el siglo XVI aparecieron en Europa una serie de identidades conocidas como Reglas de Prostaféresis, las que actualmente son conocidas como Identidades de Transformaciones Trigonométricas; éstas convierten una suma o diferencia de senos y cosenos a productos y viceversa.

Para deducir estas identidades se utilizan las identidades del ángulo compuesto:

$$sen(x + y) = senx.cosy + cosx.seny$$
 ... (1)

$$sen(x - y) = senx.cosy - cosx.seny$$
 ... (2)

Sumando (1) y (2):

$$sen(x + y) + sen(x - y) = 2 senx.cosy ... (*)$$

Hacemos cambios de variables :

Reemplazando en (*), se obtiene :

$$\operatorname{sen} A + \operatorname{sen} B = 2\operatorname{sen} \left(\frac{A+B}{2}\right) \cos \left(\frac{A-B}{2}\right)$$

TRANSFORMACIONES TRIGONOMÉTRICAS

1ER CASO: De suma o diferencia de senos y cosenos a produto.

$$\operatorname{sen} A + \operatorname{sen} B = 2 \operatorname{sen} \left(\frac{A + B}{2} \right) \cos \left(\frac{A - B}{2} \right)$$

$$\operatorname{sen} A - \operatorname{sen} B = 2 \operatorname{cos} \left(\frac{A + B}{2} \right) \operatorname{sen} \left(\frac{A - B}{2} \right)$$

$$\cos A + \cos B = 2\cos\left(\frac{A+B}{2}\right)\cos\left(\frac{A-B}{2}\right)$$

$$\cos A - \cos B = -2 \operatorname{sen}\left(\frac{A+B}{2}\right) \operatorname{sen}\left(\frac{A-B}{2}\right)$$

Ejemplos:

•
$$\operatorname{sen} 3x + \operatorname{sen} x = 2 \operatorname{sen} \left(\frac{3x + x}{2} \right) \cos \left(\frac{3x - x}{2} \right)$$

$$\Rightarrow$$
 sen3x + senx = 2 sen2x cos x

•
$$\cos 80^{\circ} + \cos 40^{\circ} = 2\cos \left(\frac{80^{\circ} + 40^{\circ}}{2}\right) \cos \left(\frac{80^{\circ} - 40^{\circ}}{2}\right)$$

$$\Rightarrow \cos 80^{\circ} + \cos 40^{\circ} = 2 \cos 60^{\circ} \cos 20^{\circ}$$

$$\Rightarrow \cos 80^{\circ} + \cos 40^{\circ} = \cos 20^{\circ}$$

TRANSFORMACIONES TRIGONOMÉTRICAS

2DO CASO: De producto de senos y cosenos a suma o diferencia.

$$2\operatorname{sen}\alpha\cos\beta = \operatorname{sen}(\alpha + \beta) + \operatorname{sen}(\alpha - \beta)$$

$$2\cos\alpha\cos\beta = \cos(\alpha + \beta) + \cos(\alpha - \beta)$$

$$2\operatorname{sen}\alpha\operatorname{sen}\beta = \cos(\alpha - \beta) - \cos(\alpha + \beta)$$

Observación:

Si al aplicar transformaciones trigonométricas obtenemos ángulos negativos, se debe usar :

$$sen(-x) = -senx$$
 $cos(-x) = cosx$

$$\cos(-x) = \cos x$$

Ejemplos:

- $2 \operatorname{sen} 3x \cos x = \operatorname{sen} (3x + x) + \operatorname{sen} (3x x)$
- \Rightarrow 2 sen3x cos x = sen4x + sen2x
- $2\cos 20^{\circ}\cos 10^{\circ} = \cos(20^{\circ} + 10^{\circ}) + \cos(20^{\circ} 10^{\circ})$

$$\Rightarrow 2\cos 20^{\circ}\cos 10^{\circ} = \cos 30^{\circ} + \cos 10^{\circ}$$

$$\Rightarrow 2\cos 20^{\circ}\cos 10^{\circ} = \frac{\sqrt{3}}{2} + \cos 10^{\circ}$$

Reduzca Q =
$$\frac{\cos 50^{\circ} + \cos 40^{\circ}}{\sin 35^{\circ} + \sin 25^{\circ}}$$

RESOLUCIÓN

Recordar:

$$\frac{\text{Recordar}:}{\cos A + \cos B = 2 \cos \left(\frac{A+B}{2}\right) \cdot \cos \left(\frac{A-B}{2}\right)}$$

$$\frac{Q = \frac{\cos 50^{\circ} + \cos 40^{\circ}}{\sin 35^{\circ} + \sin 25^{\circ}}$$

$$2 \cos \left(\frac{50^{\circ} + 40^{\circ}}{2}\right) \cdot 4$$

$$senA + senB = 2 sen\left(\frac{A+B}{2}\right). cos\left(\frac{A-B}{2}\right)$$

$$Q = \frac{\cos 50^{\circ} + \cos 40^{\circ}}{\sin 35^{\circ} + \sin 25^{\circ}}$$

$$\operatorname{senA} + \operatorname{senB} = 2 \operatorname{sen} \left(\frac{A + B}{2} \right) \cdot \cos \left(\frac{A - B}{2} \right)$$

$$\operatorname{2} \operatorname{sen} \left(\frac{A + B}{2} \right) \cdot \cos \left(\frac{A - B}{2} \right) \cdot \cos \left(\frac{50^{\circ} + 40^{\circ}}{2} \right) \cdot \cos \left(\frac{50^{\circ} - 40^{\circ}}{2} \right)$$

$$Q = \frac{\cos 45^{\circ}}{\sin 30^{\circ}} = \frac{\frac{\sqrt{2}}{2}}{\frac{1}{2}}$$

$$\therefore \mathbf{Q} = \sqrt{2}$$

Halle el valor de x, siendo este agudo, si cot(x + 10°) = $\frac{\text{sen}4x + \text{sen}2x}{4}$

RESOLUCIÓN

Recordar:

$$senA + senB = 2 sen\left(\frac{A+B}{2}\right). cos\left(\frac{A-B}{2}\right)$$

$$\cos A + \cos B = 2 \cos \left(\frac{A+B}{2}\right) \cdot \cos \left(\frac{A-B}{2}\right)$$

$$\cot(x + 10^{\circ}) = \frac{\operatorname{sen4x} + \operatorname{sen2x}}{\cos 4x + \cos 2x}$$

$$\cot(x + 10^\circ) = \tan 3x$$

Por CO - RT:
$$x + 10^{\circ} + 3x = 90^{\circ}$$

$$x = 20^{\circ}$$

Reduzca
$$K = \frac{\text{sen}11x + \text{sen}7x + \text{sen}3x}{\text{cos}11x + \text{cos}7x + \text{cos}3x}$$

Recordar:

$$senA + senB = 2 sen\left(\frac{A+B}{2}\right). cos\left(\frac{A-B}{2}\right)$$

$$\cos A + \cos B = 2 \cos \left(\frac{A+B}{2}\right) \cdot \cos \left(\frac{A-B}{2}\right)$$

RESOLUCIÓN

$$K = \frac{\text{sen11x} + \text{sen3x} + \text{sen7x}}{\text{cos11x} + \text{cos3x} + \text{cos7x}}$$

$$K = \frac{2 \operatorname{sen7x.cos4x} + \operatorname{sen7x}}{2 \operatorname{cos7x.cos4x} + \operatorname{cos7x}}$$

$$K = \frac{\text{sen7x}(-2 \cdot \cos 2x + 1)}{\cos 7x(2 \cdot \cos 2x + 1)}$$

$$K = \tan 7x$$

Simplifique $E = 2 \text{ sen} 41^{\circ} \cdot \text{cos} 19^{\circ} - \text{sen} 22^{\circ}$

RESOLUCIÓN

Recordar: $2 \operatorname{sen} \alpha \cdot \cos \beta = \operatorname{sen} (\alpha + \beta) + \operatorname{sen} (\alpha - \beta)$

$$E = sen(41^{\circ} + 19^{\circ}) + sen(41^{\circ} - 19^{\circ}) - sen22^{\circ}$$

$$E = sen60^{\circ} + sen22^{\circ} - sen22^{\circ}$$

$$E = sen60^{\circ}$$

Reduzca
$$Q = \frac{2 \operatorname{sen} 10^{\circ} \cdot \operatorname{cos} 20^{\circ} + \operatorname{cos} 80^{\circ}}{2 \operatorname{sen} 70^{\circ} \cdot \operatorname{sen} 10^{\circ} + \operatorname{sen} 10^{\circ}}$$

Recordar:

2 sen
$$\alpha$$
 . cos β = sen($\alpha + \beta$) + sen($\alpha - \beta$)

2 sen
$$\alpha$$
 . sen β = cos($\alpha - \beta$) – cos($\alpha + \beta$)

RESOLUCIÓN

$$Q = \frac{2 \text{ sen} 10^{\circ} \cdot \text{cos} 20^{\circ} + \text{cos} 80^{\circ}}{2 \text{ sen} 70^{\circ} \cdot \text{sen} 10^{\circ} + \text{sen} 10^{\circ}}$$

$$Q = \frac{\text{sen}(10^{\circ} + 20^{\circ}) + \text{sen}(10^{\circ} - 20^{\circ}) + \text{cos}80^{\circ}}{\text{cos}(70^{\circ} - 10^{\circ}) - \text{cos}(70^{\circ} + 10^{\circ}) + \text{sen}10^{\circ}}$$

$$Q = \frac{\text{sen30}^{\circ} + \text{sen}(-10^{\circ}) + \text{sen10}^{\circ}}{\cos 60^{\circ} - \cos 80^{\circ} + \cos 80^{\circ}}$$

$$Q = \frac{\text{sen30}^{\circ} - \text{sen10}^{\circ} + \text{sen10}^{\circ}}{\cos 60^{\circ}} = \frac{\text{sen30}^{\circ}}{\cos 60^{\circ}}$$

$$Q = 1$$

A Elisa se le plantea el siguiente problema : A partir del gráfico mostrado, debe determinar $E = 2 \operatorname{sen} 2\theta + \tan 3\theta$, sabiendo que la escalera y el piso forman un ángulo θ .

Recordar:

$$\frac{RCOOTGGT}{SenA - SenB} = 2 \cos\left(\frac{A + B}{2}\right) \cdot sen\left(\frac{A - B}{2}\right)$$

$$E = 2 sen30^{\circ} + tan45^{\circ} = 2 \left(\frac{1}{2}\right) + 1$$

$$\cos A + \cos B = 2 \cos \left(\frac{A+B}{2}\right) \cdot \cos \left(\frac{A-B}{2}\right)$$

RESOLUCIÓN

$$\tan\theta = \frac{\text{sen40}^{\circ} - \text{sen10}^{\circ}}{\cos 40^{\circ} + \cos 10^{\circ}}$$

$$\tan \theta = \frac{\frac{2 \cos 25^{\circ} \cdot \sin 15^{\circ}}{2 \cos 25^{\circ} \cdot \cos 15^{\circ}} = \tan \frac{15^{\circ}}{15^{\circ}}$$

Luego: $E = 2 \text{ sen} 2(15^\circ) + \tan 3(15^\circ)$

E = 2 sen30° + tan45° = 2
$$\left(\frac{1}{2}\right)$$
 + 1

Al copiar de la pizarra la expresión sen55°. cos5°, Daniel cometió un error y escribió sen35°. sen5°.

Calcule la suma de lo que estaba escrito en la pizarra y lo que

copió Daniel. **RESOLUCIÓN**

Calculamos: S = sen55°. cos5° + sen35°. sen5°

Recordar: $2 \operatorname{sen} \alpha \cdot \cos \beta = \operatorname{sen} (\alpha + \beta) + \operatorname{sen} (\alpha - \beta)$ $2 \operatorname{sen} \alpha \cdot \operatorname{sen} \beta = \cos(\alpha - \beta) - \cos(\alpha + \beta)$

Luego: $2 S = 2 sen55^{\circ}$. $cos5^{\circ} + 2 sen35^{\circ}$. $sen5^{\circ}$

$$2 S = sen60^{\circ} + sen50^{\circ} + cos30^{\circ} - cos40^{\circ}$$

2 S =
$$\frac{\sqrt{3}}{2} + \frac{\sqrt{3}}{2} = \sqrt{3}$$

$$S = \frac{\sqrt{3}}{2}$$

