1	Docum ent ID	σ	Title	Current OR
1	US 20040 02159 1 A1		Processor, encoder, decoder, and electronic apparatus	341/60
2	US 20040 00574 4 A1	⊠	Crystallization apparatus, optical member for use in crystallization apparatus, crystallization method, thin film transistor, and display	438/166
3	US 20030 22307 5 A1	Ø	Compact interference measuring apparatus detecting plurality of phase difference signals	356/491
4	US 20030 17920 9 A1		Dynamic computation of chipset-supported accelerated graphics port aperture sizes	345/543
5	US 20030 15100 2 A1	⊠	Apparatus for inspecting mask	250/492 .1
6	US 20030 04292 0 A1		Exposure apparatus, control method for the same, and device fabricating method	324/752
7	US 20030 01174 7 A1	☒	Digital, high-resolution motion-picture camera	352/166
8	US 20030 00273 9 A1		Method and apparatus for using rotatable templates within look-up tables to enhance image reproduction	382/216
9	US 20030 00256 6 A1	☒	System and method for shifting the phase of pseudorandom noise code in direct sequence spread spectrum communications	375/147
10	US 20020 18448 0 A1	☒	Vectorized table lookup	712/300
11	US 20020 18170 8 A1	⊠	Apparatus and method for generating scrambling code in mobile communication system	380/252
12	US 20020 16980 8 A1	⊠	System and method for reordering data	708/204
13	US 20020 12626 8 A1	⊠ .	Projection exposure method, projection exposure apparatus, and methods of manufacturing and optically cleaning the exposure apparatus	355/67
14	US 20020 09055 7 A1	⊠	MASK AND METHOD OF MANUFACTURING SEMICONDUCTOR DEVICE	430/5
15	US 20020 05727 6 A1	⊠	Data processing apparatus, processor and control method	345/555
16	US 20020 01369 0 A1	×	PACKET CLASSIFICATION STATE MACHINE HAVING REDUCED MEMORY STORAGE REQUIREMENTS	703/22
17	US 20020 01087 8 A1	×	Circuit configuration for generating control signals for testing high-frequency synchronous digital circuits	714/25

FIG. 82

FIG. 83

N	DITAM	ISFOR	NASIT	WORLD	L	KOITA	MROT	SNA91		MC
ſ	· l	SO	. 99	SHI	ſ	t .	96	oor	001	1
	0	I.	0	0	٠	0	1	0	0	
1	0	0	ļ	0		0	0	1	0	
	0	. 0	0				0	0		

FIG. 84

	Docum ent ID	ט	Title	Current OR
18	US 20020 00267 1 A1	Ø	Parallel processing of multiple data values within a data word	712/300
19	US 20010 02147 7 A1	×	Method of manufacturing a device by means of a mask phase-shifiting mask for use in said method	430/5
20	US 67252 98 B1	☒	Method and system for filter-processing by ensuring a memory space for a ring-buffer in digital signal processor	710/56
21	US 67184 92 B1	×	System and method for arranging bits of a data word in accordance with a mask	714/701
22	US 67150 66 B1	Ø	System and method for arranging bits of a data word in accordance with a mask	712/300
23	US 66877 71 B2	☒	Parallel processing of multiple data values within a data word	710/62
24	US 66865 91 B2	Ø	Apparatus for inspecting mask	250/311
25	US 66836 15 B1	⊠	Doubly-virtualized texture memory	345/543
26	US 66779 52 B1	⋈	Texture download DMA controller synching multiple independently-running rasterizers	345/505
27	US 66571 81 B1	Ø	Optical element used in compact interference measuring apparatus detecting plurality of phase difference signals	250/216
28	US 66503 33 B1	⊠	Multi-pool texture memory management	345/552
29	US 66503 17 B1	☒	Variable function programmed calculator	345/168
30	US 66292 39 B1	☒	System and method for unpacking and merging bits of a data world in accordance with bits of a mask word	712/300
31	US 66291 15 B1	☒	Method and apparatus for manipulating vectored data	708/209
32	US 66188 04 B1	☒	System and method for rearranging bits of a data word in accordance with a mask using sorting	712/300
33	US 65871 13 B1	☒	Texture caching with change of update rules at line end	345/557
34	US 65446 94 B2	☒	Method of manufacturing a device by means of a mask phase-shifting mask for use in said method	430/5
35	US 65387 22 B2	☒	Projection exposure method, projection exposure apparatus, and methods of manufacturing and optically cleaning the exposure apparatus	355/53
36	US 65265 11 B1	Ø	Apparatus and method for modifying microprocessor system at random and maintaining equivalent functionality in spite of modification, and the same microprocessor system	713/190
37	US 64461 98 B1		Vectorized table lookup	712/300
38	US 64406 14 B1	☒	Mask and method of manufacturing semiconductor device	430/5
39	US 64382 73 B1		Method and apparatus for using rotatable templates within look-up tables to enhance image reproduction	382/296

. 85

0

MRX = cos 0 COS SID 0 Φ 9 MRY= Cos FORMATION MATRIX OF ION BY 9 AROUND Y AXIS MRZ = rcos 0 -sin 0 0 0 sin cos 0 0 Φ

TRANSFORMATION MATRIX OF ARALLEL DISPLACEMENT

TRANSFORMATION MATRIX OF SCALE CONVERSION OF [Sx, Sy, Sz]

i	Docum			Ι_
	ent ID	ŭ	Title	Current OR
40	US 64376 67 B1	⋈	Method of tuning thin film resonator filters by removing or adding piezoelectric material	333/188
41	US 64249 34 B2	×	Packet classification state machine having reduced memory storage requirements	703/25
42	US 64113 68 B1	⊠	Projection exposure method, projection exposure apparatus, and methods of manufacturing and optically cleaning the exposure apparatus	355/67
43	US 64082 75 B1	⊠	Method of compressing and decompressing audio data using masking and shifting of audio sample bits	704/500
44	US 63969 44 B1	Ø	Inspection method for Levenson PSM mask	382/144
45	US 63361 13 B1	⊠	Data management method and data management apparatus	707/6
46	US 62632 99 B1	⊠	Geometric aerial image simulation	703/5
47	US H0019 70 H	⊠	Variable function programmed system	712/32
48	US 61974 56 B1	☒	Mask having an arbitrary complex transmission function	430/5
49	US 61733 93 B1	☒	System for writing select non-contiguous bytes of data with single instruction having operand identifying byte mask corresponding to respective blocks of packed data	712/224
50	US 61717 31 B1	⊠	Hybrid aerial image simulation	430/5
51	US 61656 92 A	⋈	Method for manufacturing a semiconductor device and an exposure mask used therefor	430/311
52	US 61449 86 A	⊠	System for sorting in a multiprocessor environment	709/201
53	US 61191 98 A	⊠	Recursive address centrifuge for distributed memory massively parallel processing systems	711/5
54	US RE367 52 E	Ø	Cryptographic authentication of transmitted messages using pseudorandom numbers	380/262
55	US 60814 40 A	⊠	Ternary content addressable memory (CAM) having fast insertion and deletion of data values	365/49
56	US 60527 69 A	☒	Method and apparatus for moving select non-contiguous bytes of packed data in a single instruction	712/3
57	US 60363 50 A	⊠	Method of sorting signed numbers and solving absolute differences using packed instructions	708/201
58	US 60159 76 A	⊠	Fabrication apparatus employing energy beam	250/492 .23
59	US 60115 66 A	Ø	System and method to display raster images with negligible delay time and reduced memory requirements	345/600
60	US 60092 03 A	Ø	Method and apparatus for hybrid VLC bitstream decoding	382/233
61	US 60055 03 A	Ø	Method for encoding and decoding a list of variable size integers to reduce branch mispredicts	341/67
 62	US 59371 83 A	. , Ø	Enhanced binary decision diagram-based functional simulation	703/14

Sheet 76 of 80

FIG. 86

RELATIVE TRANSFORMATION RELATIVE TRANSFORMATION RELATIVE TRANSFORMATION RELATIVE TRANSFORMATION MATRIX OF LEG 272 MATRIX OF LEG 273 MATRIX OF LEG 275 45 - 45 - 25 -0:00 -000 40-0 50-0 -000 -45-00 -45-25-25 -000 \$00-450-0 50-0 -000

	Docum	σ	Title	Current
63	US 59369 78 A	⊠	Shortened fire code error-trapping decoding method and apparatus	714/762
64	US 59209 00 A	Ø	Hash-based translation method and apparatus with multiple level collision resolution	711/216
65	US RE361 81 E	⊠	Pseudorandom number generation and crytographic authentication	713/168
66	US 58929 60 A	☒	Method and computer system for processing a set of data elements on a sequential processor	712/7
67	US 58700 85 A	⊠	Generating text strings	345/551
68	US 58689 52 A	Ø	Fabrication method with energy beam	216/66
69	US 58677 24 A	☒	Integrated routing and shifting circuit and method of operation	712/22
70	US 58599 12 A	☒	Digital information privacy system	380/42
71	US 58416 83 A	☒	Least significant bit and guard bit extractor	708/497
72	US 58411 45 A	☒	Method of and system for exposing pattern on object by charged particle beam	250/492 .22
73	US 57844 94 A	☒	Method and apparatus for prestoring dequantization information for DCT VLC decoding	382/233
74	US 57844 27 A	⊠	Feedback and shift unit	377/72
75	US 57833 36 A	☒	Mask for exposure	430/5
76	US 57651 81 A	⊠	System and method of addressing distributed memory within a massively parallel processing system	711/5
77	US 57520 00 A	☒	System and method for simulating discrete functions using ordered decision arrays	703/14
78	US 56969 22 A	⊠	Recursive address centrifuge for distributed memory massively parallel processing systems	711/5
79	US 56965 33 A	⊠	Method for selecting an item on a graphics screen	345/823
80	US 56447 09 A	Ø	Method for detecting computer memory access errors	714/53
81	US 56279 66 A	☒	Method for simulating the parallel processing of video data	714/49
82	US 56276 39 A	⊠	Coded aperture imaging spectrometer	356/310
83	US 56130 01 A	☒	Digital signature verification technology for smart credit card and internet applications	380/254
84	US 55839 85 A	×	Graphic display processing apparatus for improving speed and efficiency of a window system	345/534
*. 85	US: 55772 00 A	`⊠ ⊠	Method and apparatus for loading and storing misaligned data on an out-of-order execution computer system	714/50

FIG. 87

	Docum ent ID	σ	Title	Current OR
86	US 55597 22 A	⊠	Process, apparatus and system for transforming signals using pseudo-SIMD processing	341/50
87	US 55550 03 A	☒	Method for selecting an item on a graphics screen	345/856
88	US 55531 97 A	Ø	Devices for use in neural processing	706/41
89	US 55462 25 A	⊠	High resolution printing technique by using improved mask pattern and improved illumination system	359/559
90	US 55396 63 A	⊠	Process, apparatus and system for encoding and decoding video signals using temporal filtering	348/406
91	US 55396 62 A	☒	Process, apparatus and system for transforming signals using strength-reduced transforms	358/1.3 5
92	US 55373 38 A	☒	Process and apparatus for bitwise tracking in a byte-based computer system	709/204
93	US 55351 38 A		Encoding and decoding video signals using dynamically generated quantization matrices	709/204
94	US 55329 40 A	⊠	Process, apparatus and system for selecting quantization levels for encoding video signals	709/204
95	US 55282 38 A	⊠	Process, apparatus and system for decoding variable-length encoded signals	341/67
96	US 55028 32 A		Associative memory architecture	711/108
97	US 54974 36 A	⊠	System and method for bit-masked color signal scaling	382/298
98	US 54973 40 A	⊠	Apparatus and method for detecting an overflow when shifting N bits of data	708/552
99	US 54935 14 A	⊠	Process, apparatus, and system for encoding and decoding video signals	709/247
100	US 54935 13 A	⊠	Process, apparatus and system for encoding video signals using motion estimation	709/247
101	US 54757 66 A	×	Pattern inspection apparatus with corner rounding of reference pattern data	382/144
102	US 54308 62 A	×	Emulation of CISC instructions by RISC instructions using two pipelined stages for overlapped CISC decoding and RISC execution	703/26
103	US 54230 10 A	⊠	Structure and method for packing and unpacking a stream of N-bit data to and from a stream of N-bit data words	341/60
104	US 54187 99 A	⊠	Semiconductor laser element structure	372/44
105	US 54054 90 A	⊠	Flat display device and method for manufacturing the same	216/14
106	US 53983 19 A	⊠	Microprocessor having apparatus for dynamically controlling a kind of operation to be performed by instructions to be executed	712/226
L07	US 53814 25 A	⊠	System for encoding and decoding of convolutionally encoded data	714/793
108	US 53772 70 A	⊠	Cryptographic authentication of transmitted message's using pseudorandom numbers	380/262

FIG. 88

FIG. 89

	Docum ent ID	ט	Title	Current OR
109	US 53634 48 A	Ø	Pseudorandom number generation and cryptographic authentication	713/170
110	US 53534 03 A	☒	Graphic display processing apparatus and method for improving the speed and efficiency of a window system	345/563
111	US 52874 52 A	Ø	Bus caching computer display system	345/520
112	US 52838 64 A	Ø	Computer apparatus and method for graphical flip book	345/776
113	US 52673 11 A	⊠	Intelligent diskette for software protection	705/56
114	US 52475 24 A	☒	Method for generating a checksum	714/807
115	US 52280 54 A	☒	Power-of-two length pseudo-noise sequence generator with fast offset adjustment	708/252
116	US 52186 47 A	×	Method to convert between 2 color space on a 32 bit .muprocessor	382/166
117	US 52085 93 A	⊠	Method and structure for decoding Huffman codes using leading ones detection	341/65
118	US 51577 80 A	⊠	Master-slave checking system	714/31
119	US 51286 58 A	×	Pixel data formatting	345/600
120	US 51247 01 A		Quantization device with variable digital coding rate	341/61
121	US 50143 27 A	⊠	Parallel associative memory having improved selection and decision mechanisms for recognizing and sorting relevant patterns	382/220
122	US 49929 46 A	Ø	Data link for gas turbine engine control	701/100
123	US 48398 39 A	Ø	Barrel shifter including rotate operation	708/209
124	US 47853 93 A	⊠	32-Bit extended function arithmetic-logic unit on a single chip	712/221
125	US 47409 27 A	⊠	Bit addressable multidimensional array	365/238
126	US 46530 19 A	×	High speed barrel shifter	708/209
127	US 46266 74 A	⊠	Focus detecting method and apparatus	250/201 .8
128	US 46137 48 A	⊠	Focus detection apparatus employing image height correction	250/201 .8
129	US 45800 43 A	×	Apparatus for detecting focus condition of imaging lens having a circular detecting array	250/201 .8
130	US 43921 20 A	☒	Pattern inspection system	382/199
131	US. 43800 46 A	Ø	Massively parallel processor computer	712/22

FIG. 90

	Docum ent ID	Ū	Title	Current OR
132	US 43655 66 A	☒	Switch pattern selection and informational display arrangement for a multiple pattern sewing machine	112/444
133	US 43564 34 A	⊠	Multiple color single gun TV picture tube	315/375
134	US 42901 21 A	⊠	Variable function programmed calculator	365/189 .07
135	US 42426 75 A	Ø	Display and keyboard scanning for electronic calculation or the like	345/168
136	US 42375 32 A	⊠	Table driven decision and control logic for digital computers	712/236
13.7	US 42109 60 A	⊠	Digital computer with overlapped operation utilizing conditional control to minimize time losses	712/230
138	US 41998 11 A	☒	Microprogrammable computer utilizing concurrently operating processors	712/23
139	US 41424 93 A	☒	Closed loop exhaust gas recirculation control system	123/568 .21
140	US 41387 19 A	⊠	Automatic writing systems and methods of word processing therefor	358/1.1 8
141	US 40854 47 A	☒	Right justified mask transfer apparatus	712/224
142	US 40743 51 A	⊠	Variable function programmed calculator	712/32
143	US 40457 72 A	☒	Automatic focusing system	382/134
144	US 40126 34 A	⊠	Automatic focusing system including quantizing means	250/201 .3
145	US 39463 70 A	Ø	Method of making light-dot distribution for the holographic storage of binary information with the aid of electronically controlled switching masks	365/125
	US 38739 74 A	☒	Scanning system for location and classification of patterns	382/134
	US 37455 33 A	⊠	DIGITAL DATA STORAGE REGISTER MODULES	710/305
148	US 37455 32 A	Ø	MODULAR DIGITAL PROCESSING EQUIPMENT	710/316
	US 35991 60 A	Ø	TIME DIVISION MULTIPLEXING	370/535
150	US 35764 36 A		METHOD AND APPARATUS FOR ADDING OR SUBTRACTING IN AN ASSOCIATIVE MEMORY	708/670

EIC 91

	Docum ent ID	σ	Title	Current OR
1	US 20040 07375 5 A1		Broadcast invalidate scheme	711/144
2	US 20040 05487 8 A1	⊠	Method and apparatus for rearranging data between multiple registers	712/221
3	US 20040 03682 9 A1	☒	Imaging unit, optical write unit, optical read unit and image forming apparatus	349/141
4	US 20040 01442 7 A1	×	Method and apparatus for transferring data between a source register and a destination register	455/73
5	US 20030 23690 4 A1	☒	Priority progress multicast streaming for quality-adaptive transmission of data	709/231
6	US 20030 23346 4 A1	⊠	Priority progress streaming for quality-adaptive transmission of data	709/231
7	US 20030 22339 7 A1	⊠	Process for generating codes for CDMA communications, system and computer program product therefor	370/342
8	US 20030 21711 9 A1	×	Replication of remote copy data for internet protocol (IP) transmission	709/219
9	US 20030 21078 5 A1	☒	System and method for sign mask encryption and decryption	380/210
10	US 20030 20052 4 A1	⊠	Priority coloring for VLSI designs	716/19
11	US 20030 19008 5 A1	☒	Single-instruction multiple-data (SIMD)-based algorithms for processing video data	382/250
12	US 20030 18433 9 A1	⊠	Integrated circuit device	326/47
13	US 20030 15443 3 A1	⊠	Method and apparatus for broadcasting scan patterns in a scan-based integrated circuit	714/726
14	US 20030 13809 8 A1	⊠	Executing permutations	380/28
15	US 20030 13297 5 A1	⊠	Method and apparatus for preventing satellite induced banding by selective pixel compensation	347/5
16	US 20030 12900 1 A1	⊠	Method of manufacturing semiconductor memory device and semiconductor memory device	399/200
17	US 20030 11302 9 A1	×	Skim encoding method for compression of a two dimensional array of data	382/244

necessary to fix the time correspondence between a threeproblems and integrate the processes of multimedia, it is plexity in form and cannot be standardized. To solve these because the CG image display time depends on the comto see dimensions of representing $\mathfrak O$ images in three dimensions or description, and have not developed a method for general present technologies have just reached a logical time real world can be successfully realized. However, the 5 time correspondence between a dynamic CG image and a displaying at a high speed a photo-realistic image. Thus, the mance. Conspicuously realized is a OG system capable of remarkable progress toward a higher speed and perfor-Recently, a CG accelerator in a workstation has made

considerably long. (n-1)th frame and the display time t, of the n-th frame is Thus, the frame interval between the display time t_{n-1} of the calculation/display time for the generation of an image. Therefore, the generation and display of a frame take a calculation for generation of an image for each frame. and displayed in a sequential process on completion of the Conventionally, a dynamic CG image has been generated

of a frame depends on each frame. Accordingly, the time taken for the calculation and display changing objects and the complexity in the calculation. three-dimensional images also depends on the number of Furthermore, the time taken for calculation of changes of represented by the number of polygons, textures, etc. frames are different from one another in image complexity process depends on each frame to be displayed because and displayed. Practically, the time taken for a display described changes in time cannot be precisely regenerated and the logical description. Therefore, the logically browided to keep correspondence between a displayed image In the conventional method, the change of dynamic CG

images cannot be smoothly displayed at all. long intervals and generate a problem that resultant dynamic display of the frames. Thus, frames are set at undesirably maximum value of the time taken for the calculation and tion from actual time, they must be set at intervals of the they can be displayed at constant intervals without a deviaplexity of each image. If the frames should be set such that calculation or display of the frames depends on the comworld displayed on the screen, because the time taken for different intervals, the time being extended or reduced in the flow in the OG world, the frames are actually displayed at displayed at constant intervals according to the actual time ing the actual time flow. Although the frames should be displayed at different intervals, thereby failing in representrespective frames in the OG world, but the frames are tive processes. Therefore, the time flows constantly for have been sequentially displayed on completion of respecplayed at given intervals in a logically described CG world However, in the conventional method, frames to be dis-

and the actual time, the time flow cannot be regenerated correspondence between the time in the world on the screen Additionally, since there has been no system for keeping method, image frames are displayed at long intervals. completion of the calculation according to the conventional exated through necessary calculation and then displayed on As described above, since images are sequentially gen-

tields of applications such as architectures, commercial Recently, computer animation is very popular in various

IMAGE SPEED GENERATION OF A CHANGED DEAKCE VAD WELHOD BYZED ON V HICH-COMPUTER GRAPHICS DATA DISPLAY

BYCKGROUND OF THE INVENTION

1. Field of the Invention

more specifically to a CG data display device for generating computer graphics data or OG data) through a computer, and device for displaying graphic data (hereinafter referred to as 10 four dimensions including time in a real-time mode. It is The present invention relates to a computer graphics

2. Description of the Related Art and displaying a dot image.

reality. an object and should display generated images with high 20 a high-speed performance to keep up with the movement of devices, a OG dynamic image display system should present many fields of applications in industry. Among these images through computer systems have been widely used in Recently, CG devices for generaling and processing 15 dimensional CG image and a real world.

specific world. world and feel as if he or she were actually experiencing a simulations in which a user can freely walk through a virtual Increasing especially are "walk-through" applications of CG 25 images in time is described only logically, and no system is tions for easily presenting various virtual experiences technologies has increased the applications of CG simula-For example, the improvement in the OG animation.

as if it were a real world. ogy of realizing a moving in a virtual world with high reality feel freely moving around. Thus required is a new technolunusual in moving around, and therefore it is impossible to simulations, a user often passes through a wall or feels However, with a device for realizing such CG

is ignored in calculation for a shift of sight. between a user's viewpoint and an object in a virtual world the position of objects around a user because the contact user walks through a three-dimensional world regardless of With the conventional CG walk-through technologies, a

often gets lost be actually passed, or is dug in a sidewalk. Thus, the user As a result, the user passes through a wall which cannot

offers the following problems. around as they wish. Furthermore, the conventional method who try a CG walk-through simulation to successfully move movement. Especially, it is very difficult for general people in a virtual world, the virtual movement is far from a realistic ignores the contact between a user's viewpoint and an object As described above, since the conventional method

two objects. objects, and between a hard and a soft object in a clash of in interference between two hard objects, between two soft a user cannot represent using a simple system the difference Apart from a contact between a viewpoint and an object,

unsmooth movement (shift of sight). each step a parallel or vertical movement, resulting in an Of world, the user either cannot go upstairs or repeats for 60 point smoothly rises obliquely upward. However, in a virtual For example, when the user goes upstairs, his or her viewviewpoint maintaining at a constant level in a virtual world. Additionally, the user cannot move around with his or her

and for lack of a unit for easily grasping the definition. in response to a clash of objects or at an external instruction, movement of an object such that the object starts any action 65 exactly world for lack of a unit for easily defining the reaction and Furthermore, a common user cannot easily edit the virtual

	Docum ent ID	ט	Title	Current
18	US 20030 10143 0 A1	Ø	PRIORITY COLORING FOR VLSI DESIGNS	716/19
19	US 20030 09925 1 A1	⊠	Method and system for buffering a data packet for transmission to a network	370/429
20	US 20030 08441 9 A1	⊠	Row-based placement scoring and legalization measure for books with phase shift mask dependencies	716/19
21	US 20030 06133 2 A1	⊠	Multiple consumer-multiple producer rings	709/223
22	US 20030 05580 3 A1	⊠	Reversing the order of a group of objects in logarithmic time	706/48
23	US 20030 04642 3 A1	⊠	Programmable system for processing a partitioned network infrastructure	709/238
24	US 20030 00510 3 A1	☒	Cumulative status of arithmetic operations	709/223 -
25	US 20030 00185 0 A1		Graphic processing system having bus connection control functions	345/503
26	US 20020 18882 1 A1	⊠	Fast priority determination circuit with rotating priority	711/220
27	US 20020 17596 1 A1	⊠	Printing apparatus and printing method	347/15
28	US 20020 14365 0 A1	⊠	Ordering method and system	.· 705/26
29	US 20020 14058 5 A1	☒	TECHNIQUE FOR ENCODING A SEQUENCE OF PERIODIC BYTE VALUES WITH VERTICAL CORRELATION	341/60
30	US 20020 13870 3 A1	⊠	System and method for building packets	711/154
31	US 20020 10656 7 A1	☒	Phase-shifting mask and method of forming pattern using the same	430/5
32	US 20020 09863 9 A1	⊠	Method of manufacturing semiconductor memory device and semiconductor memory device	438/238
33	US 20020 06063 6 A1	☒	Digital-to-analog conversion circuit and image display apparatus using the same	341/150
34	US 20020 05687 8 A1	⊠	Semiconductor memory device	257/365

display minute representation of objects. Therefore, for data regularly omitted. A scene simulator is also required to resultant unrealistic images should be used with a part of CG large amount of CG data must be updated. Therefore, process, and images are not generated in good time when a Such CG data image generation is a time-consuming ing data in a data management process as described above. displays images in an image generating process after updat-The conventional CG data display device generates and

That is, when a large amount of CG data of dynamic object image when a viewpoint is changed.

images are changed at very short intervals, an image gen-

operated user interfaces are carnestly demanded. One of the in various fields in industry, the development of more easily As computer graphics make striking progress and are used images are being generated. crating static images, an operator has to kill time while the 15 generating unrealistic animation images. Moreover, in gencrating process cannot be completed in good time, thereby

reduce the number of specified entries and are used in many that each data inherits the attribute of its parent effectively objects in a hierarchical structure and constructing data such In the development of a user interface, managing parts indicates a display of a three-dimensional world on a screen. dimensions. The "displaying the object in three dimensions" ing the model (modeling), and displaying the object in three play method of generating a three-dimensional model, editdemanded technologies is a three-dimensional object dis-

In this method, however, when a modeled threemodeling systems.

thereby consuming much time in a displaying process. parent requires all hierarchical tree structure to be searched, dimensional form is displayed, inheriting the attribute of a

and depends on the depth of a hierarchy of an object data The amount of search time affects the displaying process,

three-dimensional image, and displays it as a threeecssing computer graphics. The device generates and edits a a common three-dimensional object display device for pro-FIG. I shows the configuration of the important portion of the number of objects in the object data structure. structure (that is, the number of steps of the hierarchy) and

FIG. I comprises an object generating and editing unit I, an

dimensional image at a certain point. The device shown in

while accessing the same data structure. During this modobject display processing unit 3 execute their processes Therefore, the object generating and editing unit I and the instructs the object display processing unit 3 to display data. and editing unit I to model data, and simultaneously A user (that is, a designer) instructs the object generating unit 2, an object displaying process unit 3, and a display editing-formatted hierarchical object data structure memory

hierarchical object data structure storing unit L arranged in object units, and the data are stored in the cling process, the internal data structure is hierarchically

modeling process. the following process using a single central processing unit 60 units (that is, for each node) as shown in FIG. 2 in the ture. The object data are hierarchically arranged in object FIG. 2 is an example of a hierarchical object data struc-

"color C", "transformation matrix M3", and "form α ". The crating process and generates images. It finally displays the 65 a "wall". The "room" has its attributes and generates images of CG data after sequentially repeating the update of "transformation matrix M1". The "deak" has its attributes object, connected are child objects a "dest", a "dest", and ated as a parent and root representing a room. To this parent For example, in modeling a 'room', an object is gener-

> movement of objects. mous number of objects using a computer system. Recently, processing the movement and transformation of an enoranimation can be considerably reduced by calculating and computer animation, the time taken for the generation of

> If a long time is taken for calculation to generate animadisplay animation images to represent visually natural in the computer animation, physical rules have been used to

that natural and smooth animation images can be realized. necessary to quickly perform the calculation and display so calculation is required for a large number of objects, it is images are generated. Accordingly, even if large amount of large number of objects, then visually unrealistic animation tion requiring a large amount of calculation processes for a 10 example, a long time is taken before displaying a minute.

formation of objects and generating images to produce crating device repeats computing the movement and transform, position, etc.). Using these units, the animation genputed geometric data of objects (three-dimensional data of a generating image data (two-dimensional data) from commation of objects and an image data generating unit for generating unit for calculating the movement and transforputer graphics fundamentally comprises an animation data Generally, an animation generating device using com-

images can be generated in real time. generating processes at a high speed, smooth animation the image data generating unit perform calculating and saimation images. If the animation data generating unit and

long time is taken for the generation of data for a single a large amount of data, its load is undesirably large and a realistic movements and complicated transformations out of unit is required to generate animation images with more ware. On the other hand, since the animation data generating through high-performance hardware (accelerator) and firmperformed at a high speed in the image data generating unit Conventionally, a large amount of processes have been

ment and transformation of the whole objects, and then needs a long time for generating data calculating the move-However, the conventional animation generating device

vals. As a result, unsmooth and unrealistic animation images generated images, the images are displayed at longer interobjects than it takes the image data generating unit to display longer time to calculate the movement and transformation of Therefore, if it takes the animation data generating unit a generates an image.

only to display a static image predetermined by a computer A flight simulator and a drive simulator are required not so crating unit has not generated animation images in real time. appear on a screen. Thus, a higher speed image data gen-

change of viewpoints and natural movements of objects played using a large amount of CG data. To represent a 55 These devices display the form of an object to be disscene simulator is required to precisely draw a real scene. but also to display animation images, and a device like a

changed at very short intervals. appearing in an image, a large amount of CG data should be

(CPU). Conventionally, a CG data display device has performed

the CG data and the generation of images. CG data containing those changed through an image genbe displayed in a data management process. Then, it reads all The OG data display device stores and updates CG data to

	Docum ent ID	σ	Title	Current OR
35	US 20010 03756 1 A1	⊠	Contacting-making system for two printed circuit boards	29/745
36	US 20010 03362 6 A1	⊠	System, method and computer program for decoding an encoded data stream	375/341
37	US 20010 02874 7 A1	☒	Image processing method, apparatus and storage medium	382/239
38	US 20010 02865 9 A1	Ø	Data switching arbitration arrangements	370/413
39	US 67193 97 B1	×	Ink jet printhead identification circuit and method	347/19
40	US 67013 38 B2	×	Cumulative status of arithmetic operations	708/525
41	US 66980 08 B2	⊠	Row-based placement scoring and legalization measure for books with phase shift mask dependencies	716/19
42	US 66665 35 B2	⊠	Method and apparatus for preventing satellite induced banding by selective pixel compensation	347/5
43	US 66265 17 B2	Ň	Printing apparatus and printing method	347/40
44	US 66256 89 B2	☒	Multiple consumer-multiple producer rings	711/110
45	US 66092 45 B2	Ø	Priority coloring for VLSI designs	716/21
46	US 65634 40 B1	☒	Apparatus and method for decoding Huffman codes using leading one/zero string length detection	341/65
47	US 65453 23 B2	☒	Semiconductor memory device including a pair of MOS transistors forming a detection circuit	257/365
48	US 65011 16 B2	☒	Semiconductor memory device with MIS transistors	257/296
49	US 64990 39 B1	☒	Reorganization of striped data during file system expansion in a data storage system	707/204
50	US 64593 92 B1	⊠	Technique for encoding a sequence of periodic byte values with vertical correlation	341/87
51	US 64217 30 B1	⊠	Programmable system for processing a partitioned network infrastructure	709/236
52	US 64046 64 B1	☒	Twisted bit line structure and method for making same	365/69
53	US 64011 17 B1	⊠	Platform permitting execution of multiple network infrastructure applications	709/223
54	US 63662 76 B1	⊠	Touch operation signal output device	345/175
55	US 63424 08 B1	—————————————————————————————————————	Method of manufacturing semiconductor memory device	438/155

associated with the display. decreasing the time taken for an object scarching process Fifth, a display process is performed at a high speed by data are updated so that data can be displayed realistically. Fourth, images are generated at a high speed when CG

image data are generated by the generating unit and disthe management unit and displaying the generated data. The unit for generating image data from the OG data output by a management unit for managing CO data, and a generating display device according to the present invention comprises device and method for displaying CG data. The CG data The present invention relates to the CG data display

With another object, and another reaction attribute indicating generated through an interference by a contact, clash, etc. unit includes an interference attribute indicating a movement The attributes of an object managed by the management played as static or dynamic images on a screen.

obtained by calculation, or are change data minimal for the objects to be displayed. Then, output are the CG data provided and modeled without redundant entries specified 25 attributes indicating the interference or the reaction between the change in state of an object is calculated according to the etc. of an object so that CG data can be updated. At this time, simultaneously calculated, and calculates the form, position, structure in an editing form, controls the number of objects The management unit stores a hierarchical object data a reaction generated by an interference.

time relating to the data calculation and the image data generation of image data in the generating unit to control the 30 calculation of data in the management unit and for the The management unit predicts the time taken for the update of the CG data.

40 the change data and generates image data. in updating the CG data, it updates the CG data according to receives from the management unit the change data for use data from the management unit. If the generating unit outputs them to a display unit upon receipt of updated CG structure in an editing form, generates image data and The generating unit stores the hierarchical object data Remeration.

for a calculation process can be considerably reduced. Purthermore, the calculation is simplified and the time taken world and realizes a realistic shift of a viewpoint. attribute diversifies the movement of an object in a virtual Introducing an interference attribute and a reaction in a pipeline system, thereby speeding up the entire process. concurrently performs a displaying process on another frame calculation process on a frame, and the generating unit independent of each other, the management unit performs a Since the management unit and the generating unit are

recstimated. Then, it is determined whether or not it can be the calculation process, the display time of the frame is OG data at the predicted display time. Upon completion of and a displaying process, and obtains through calculation the sponding frame from the time taken for a calculation process The management unit predicts a display time of a corre-

frame is not displayed. display time is much later than the predicted time, then the frame and displays it at the predicted time. If the recatimated 60 time, then the generating unit extends the display of the If a recstimated display time is earlier than the predicted displayed at the initially predicted time.

representation in the virtual world. to the actual time for the frame without affecting the realistic Third, a smooth and realistic animation is realized by an 65 of dynamic images can be displayed at a time corresponding Through the time control as described above, each frame

> тефплест assigned an attribute indicating texture instead of color, if "form k" and are arranged hierarchically. Each object can be having its own attribute "form e", "form f", "form η", or Furthermore, the "legs" has four child objects "foot", each is attributes "transformation matrix M7" and "form 6". formation matrix M6" and "form \\". The "back panel" has matrix M5". The "bottom panel" has its attributes "trans-The "legs" has its attributes "color E" and "transformation "chair" are "legs", a "bottom panel", and a "back panel". and "transformation matrix M2". The child objects of the MA", and "form b". The "chair" has its attributes "color B" "wall" has its attributes "color D", "transformation matrix

> legs, inheriting attributes enables a user interface to be because each foot inherits the attributes of its parent objects acously change the entire legs including four respective feet attribute of the chair object has to be changed to simultashould be changed, only the color attribute E or the texture If the color of the entire legs or the texture of the chair the child objects inherit the attributes of their parent objects. specifying their foot color or transformation matrix because In this case, a modeling operation can be performed without object to the two parts having attitudes of respective forms. If a "foot" is composed of two parts, then it is a parent

by a user.

structure. ering the number of objects and the depth of the hierarchical allow a user to issue a display instruction without considnumber of displaying operations should be performed to and the depth of hierarchy, Furthermore, an enormous frequently. Mecessarily increased are the number of objects into separate groups or have the attributes inherited more structure more effective, it is necessary to divide the parts However, to make such a hierarchical modeling data taking the attributes of the parent object into consideration. each object in a hierarchical object data structure while object display processing unit 3 searches for and displays When data are displayed on the display device 4, the

to display data. processes are eartied out, thereby taking much process time number of objects, an enormous number of object searching is in a display process. Therefore, with the increasing which is effectively used in a modeling operation is used as displaying process, the hierarchical object data structure ture memory unit 2 in performing a modeling process and a access the object data in the hierarchical object data strucediting process I and the object displaying process unit 3 As shown in FIG. 1, since both the object generatings

SUMMARY OF THE INVENTION

realized at a high speed through a smaller amount of lifelike movements and changes of states can be easily CO world is defined so that a simulation of realistic and First, simplified is an editing process in which a virtual SS dynamic image, and is explained in detail as listed below. a CG data display device for displaying realistic and lifelike An important object of the present invention is to provide

without affecting a real time displaying process of dynamic display time and actual time corresponding to each other Second, data are displayed at short frame intervals with calculation processes.

intervals and at a high speed display. increased number of display times at shorter image display .ஐதூர் பிற

	Docum ent ID	Ū	Title	Current OR
56	US 63266 95 B1	⊠	Twisted bit line structures and method for making same	257/776
57	US 63046 26 B1	×	Two-dimensional array type of X-ray detector and computerized tomography apparatus	378/19
58	US 62920 18 B1	⊠	Configurable cellular array	326/41
59	US 62808 88 B1	⊠	Phase-shifting mask with multiple phase-shift regions	430/5
60	US 62633 53 B1	⊠	Method and apparatus for converting between different digital data representation formats	708/204
61	US 62558 48 B1	⊠	Method and structure for reading, modifying and writing selected configuration memory cells of an FPGA	326/41
62	US 62526 08 B1		Method and system for improving shadowing in a graphics rendering system	345/473
63	US 61822 53 B1	⊠	Method and system for automatic synchronous memory identification	714/718
64	US 61768 62 B1	⊠	Hair-removing device with rotary roller equipped with pain-soothing device	606/133
65	US 61692 41 B1	☒	Sound source with free compression and expansion of voice independently of pitch	84/605
66	US 61579 55 A	⊠	Packet processing system including a policy engine having a classification unit	709/228
67	US 61548 09 A	⊠	Mathematical morphology processing method	711/108
68	US 61304 61 A	⊠	Semiconductor memory device	257/369
69	US 61140 95 A	⊠	Method of manufacturing electronic device using phase-shifting mask with multiple phase-shift regions	430/311
70	US 61081 01 A	Ø	Technique for printing with different printer heads	358/1.9
71	US 61012 76 A	Ø	Method and apparatus for performing two pass quality video compression through pipelining and buffer management	382/236
72	US 60661 80 A	×	Automatic generation of phase shift masks using net coloring	716/19
73	US 60141 87 A	⊠	Display device	349/15
74	US 59950 80 A	☒	Method and apparatus for interleaving and de-interleaving YUV pixel data	345/603
75	US 59912 49 A	⊠	Optical track sensing device	369/44. 42
76	US 59832 91 A	⊠	System for storing each of streams of data bits corresponding from a separator thereby allowing an input port accommodating plurality of data frame sub-functions concurrently	710/52
77	US 59661 38 A	⊠	Image processing method and apparatus for rotating an image in an area of an original	345/658
78	US 59419 37 A	⊠	Layout structure for barrel shifter with decode circuit	708/209

embodiment of the present invention;

reaction attribute of the contact switch according to the first FIG. 18A shows an example of a setting screen of the 65 invention;

attribute according to the first embodiment of the present FIG. 17 shows an example of a display of the reaction macurou:

the steps according to the first embodiment of the present 60 FIG. 16 shows an example of a display of the attribute of

TUACHITOT? attribute according to the first embodiment of the present

FIG. 15 shows an example of a display of the interference according to the first embodiment of the present invention; FIG. 14 shows the structure of the attribute setting menu

a viewpoint forming part of the virtual world;

FIG. 13 shows an example of the object information about a box forming part of the virtual world;

FIG. 12 shows an example of the object information about

a door knob forming part of the virtual world;

FRG. It shows an example of the object information about

a door forming part of the virtual world;

FIG. 10 shows an example of the object information about 45

a floor forming part of the virtual world;

FIG. 9 shows an example of the object information about

a window forming part of the virtual world; FIG. 8 shows an example of the object information about

a handrail forming part of the virtual world;

FIG. 7 shows an example of the object information about a steps forming part of the virtual world;

FIG. 6 shows an example of the object information about

first embodiment of the present invention;

FIG. 5 shows an example of a virtual world illustrating the 35 the first embodiment;

FIG. 4 is the block diagram showing the configuration of bresent invention;

data display device according to the embodiment of the FIG. 3 shows the configuration of the computer graphics

FIG. 2 shows an example of a hierarchical object data

a common three-dimensional object display device; FIG. I shows the configuration of the important portion of 25

BRIEF DESCRIPTION OF THE DRAWINGS

स्थान्य

at a high speed to generate precise and realistic dynamic the present invention, image data are updated and displayed so According to the CG data display device and method of

performed at a high speed. can be effectively edited and a displaying process can be

search time for display. Thus, an attribute-inheritable object those stored in the management unit, thereby shortening the number of layers and as smaller number of objects than compressed format in which data are stored in a smaller The generating unit stores tree-structured object data in a sply reduced.

as change data, then the transmission cost can be consider- 10 transmitted from the management unit to the generating unit If the minimal CG data indicating the type of change are

ing smooth dynamic images.

image data are displayed at short intervals, thereby displayit converts the result into image data for display. Thus, the Hach time the generating unit receives a calculation result, separately and transmits the results to the generating unit the movements of all objects in a sereen, but calculates them The management unit does not simultaneously calculate

of polygon;

the animation data generating unit for weighting the number FIG. 48 shows an example of the internal configuration of data acquiring unit;

FIG. 47 is the flowchart of the process performed by the tion method;

the animation data generating unit for weighting the anima-FIG. 46 shows an example of the internal configuration of update control unit;

FIG. 45 is the flowchart of the process performed by the animation data generating unit;

FIG. 44 is the flowchart of the process performed by me

55 control unit shown in FIG. 36; FIG. 43 shows the internal configuration of the update

the animation data generating unit shown in FIG. 36; FIG. 42 shows an example of the internal configuration of

So method and the data; FIG. 41 is the correspondence list of the animation

FIG. 40 shows the animation data;

FIG. 39 shows the contents of each object;

storage unit shown in FIG. 36;

FIG. 38 shows the data structure of the animation data to the third embodiment;

FIG. 37 is the process flowchart of the device according according to the third embodiment of the present invention; FIG. 36 shows the configuration of the important portion

system according to the second embodiment;

FIG. 35 shows an example of the configuration of the FIG. 34 shows the changing object management unit; FIG. 33 is the process flowchart of the display unit;

FIG. 32 is the process flowchart of the calculating unit; PIGS. 31 is the process flowchart of the predicting unit, control unit;

FIGS. 29 and 30 are the process flowchart of the time second embodiment;

 $_{\rm 30}$ a prediction error generates the inversion of time in the FIG. 28 shows an example of a process performed when

second embodiment; lation process and the display process according to the FIG. 27 shows the time relationship between the calcu-

embodiment of the present invention; FIG. 26 shows the configuration according to the second

ence calculation process between the object and a sliding FIG. 25 is the flowchart showing the movement interferposition of the object interfering with the floor;

FIG. 24 shows an example of the amendment to the ence calculation process between the object and the floor; FIG. 23 is the flowchart showing the movement interfer-15 position of the object interfering with the steps;

FIG. 22 shows an example of the amendment to the ence calculation process between the object and the steps; FIG. 21 is the flowchart showing the movement interfer-

ence calculation process between an object and a wall; FIG. 29 is the flowchart showing the movement interferembodiment of the present invention;

FIG. 19 is the process flowchart according to the first the first embodiment of the present invention; 5 reaction attribute of the sound generating object according to

FIG. 18C shows an example of a setting screen of the embodiment of the present invention;

reaction attribute of the rotating object according to the first FIG. 18B shows an example of a setting screen of the

Pr. 16	Docum ent ID	σ	Title	Current
79	US 59278 71 A	☒	Printer having scroll print buffer and printing method	400/61
80	US 58959 56 A	☒	Semiconductor memory device	257/350
81	US 58838 13 A	×	Automatic generation of phase shift masks using net coloring	716/19
82	US 58752 00 A	Ø	Reed-Solomon code system employing k-bit serial techniques for encoding and burst error trapping	714/784
83	US 58700 97 A	⊠	Method and system for improving shadowing in a graphics rendering system	345/426
84	US 58676 90 A	Ø	Apparatus for converting data between different endian formats and system and method employing same	710/65
85	US 58643 75 A	☒	Display device	349/15
86	US 58617 61 A	×	Hierarchically connectable configurable cellular array	326/41
87	US 58547 60 A	☒	Two-dimensional PE array, content addressable memory, data transfer method and mathematical morphology processing method	365/49
88	US 58448 25 A	☒	Bidirectional shifter circuit	708/209
89	US 58354 96 A	☒	Method and apparatus for data alignment	370/514
90	US 58314 48 A	⊠	Function unit for fine-gained FPGA	326/41
91	US 58124 72 A	⊠	Nested loop method of identifying synchronous memories	365/20:
92	US 57986 56 A	⊠	Match register with duplicate decoders	326/39
93	US 57861 12 A	⊠	Photomask manufacturing process and semiconductor integrated circuit device manufacturing process using the photomask	430/5
94	US 57777 22 A	×	Scanning exposure apparatus and method	355/53
95	US 57649 38 A	☒	Resynchronization of a superscalar processor	712/20
96	US 57548 05 A	⊠	Instruction in a data processing system utilizing extension bits and method therefor	712/20
97	US 57318 53 A	⊠	Display device	349/15
98	US 57200 21 A	⊠	Image processing apparatus for storing image data to a page memory	345/58:
99	US 57174 40 A	⊠	Graphic processing having apparatus for outputting FIFO vacant information	345/55
100	US 56803 40 A	⊠	Low order first bit serial finite field multiplier	708/49
101	US 56708 97 A	⊠	High speed mask register for a configurable cellular array	326/41

FIG. 77A shows an example of the hierarchical object

5 matrix attributes according to the fifth embodiment; structure compressed according to relative transformation

FIG. 81 shows a desk in the world coordinate system;

bsucj:

objects stored in the object information memory unit 12.

state change of objects according to the attributes of the

indicating interference and reaction between objects to be

ating unit 22, a second processing 23, and a display-format

cessing unit 18, and an editing-format hierarchical object

generating unit 16, an update control unit 17, a first pro-

predicting unit 14, a time control unit 15, an animation data

The management unit 11 comprises an object information

The display unit displays on a screen the image data

data output by the management unit II and transmitting

a generating unit 21 for generating image data from the CG calculation according to the information input externally and

a management unit II for receiving OG data and performing

tion. The OG data display device shown in FIG. 3 comprises

device according to the embodiment of the present inven-

explained below by referring to the attached drawings.

FIG. 3 shows a configuration of the CG data display

The preferred embodiments of the present invention are

EMBODIMENTS

DESCRIPTION OF THE PREFERRED

hicrarchical object data structure having matrix information FIG. 91 is the flowchart of the compressing process of the

structure having a world transformation matrix as an

FIG. 90 shows the compressed hierarchical object data

FIG. 89 shows another example of the hierarchical object

structure having an attribute of a world transformation

FIG. 88 shows an example of the hierarchical object data

FIG. 87 shows the hierarchical object data structure

FIG. 86 shows the relative transformation matrix of the

FIG. 85 shows the transformation matrix in the tirree-

PIC. 84 shows the world transformation matrix of the top

FIG. 83 shows the modeling coordinate system of the

panel and the world transformation matrix of the foot,

The generating unit 21 comprises an image data gener-

hierarchical object data structure memory unit 24.

data structure memory unit 19.

as an attribute.

attribute; and

:XIDEUI

:XIIIEUI

1000

foot;

20 dimensional graphics;

received from the generating unit 21.

them to a display unit not shown in FIG. 3.

The object information memory unit 12 stores attributes

FIG. 82 shows the modeling coordinate system of the top FIG. 53 is the block diagram according to the fourth

Object data structure compressing unit shown in FIG. 73;

FIG. 80 shows an executing unit shown in FIG. 73;

In the present invention: FIG. 80 shows an example of a pointer to a child node; FIG. 79 is the flowchart of the process performed by the

FIG. 78 shows the contents of each node of the tree

FIGS. 77B shows an example of a hierarchical object data data structure inheriting a relative transformation matrix;

FIG. 49 shows an example of the internal configuration of

FIG. 52 shows an example of the configuration of another FIG. 51 shows an example of the moving object list; moving object list generating unit, FIG. 50 is the flowchart of the process performed by the object list generating unit; the animation data generating unit comprising a moving

configuration of the important portion of the third embodi-

embodiment of the present invention;

FIG. 55 shows the configuration of the CG data manageto the fourth embodiment; FIG. 54 shows the configuration of the system according

FIG. 56 shows the configuration of the CG data image han mean

FIG. 57 is the flowchart of the operation of the first generating unit;

ment process; FIG. 58 is the detailed flowchart of the CG data manageprocessing unit;

FIG. 59 is the detailed flowchart of the CG calculation

FIG. 60 is the flowchart of the operation of the second 25 having a relative transformation matrix as an attribute;

FIG. 61 is the detailed flowchart of the CG data image brocessing unit

FIG. 62 shows the time relationship between the process Scucaging biocess:

the second processing unit; performed by the first processing unit and that performed by 30 data structure having an attribute of a world transformation

according to the fourth embodiment; FIG. 63 shows the configuration of the flight simulator

lator according to the fourth embodiment; FIG. 64 shows the configuration of the test course simu-

FIG. 65 shows the configuration of the scene simulator

drive simulator according to the fourth embodiment; FIG. 66A shows an example of the display screen of the according to the fourth embodiment,

FIG. 66B shows an example of the changed display screen

FIG. 67 shows the data structure according to the structure of the drive simulator according to the fourth embodiment;

of the C language;

FIG. 69 shows the shift of the viewpoint; FIG. 68 is the flowchart of the data retrieval process;

FIG. 70 shows an example of the configuration of the CG

according to the fourth embodiment, FIG. 71 shows the configuration of another system

FIG. 72 shows the fourth embodiment realized by the

multiprocess capabilities;

55 memory unit 12, a state change calculating unit 13, a FIG. 73 shows the configuration of the important portion

according to the fifth embodiment;

FIG. 74A shows an example of a hierarchical object data

structure compressed by ignoring the inheritance of objects; structure composed of three objects;

FIG. 75 shows an example of a hierarchical object data 60 FIG. 74B shows an example of a hierarchical object data

structure compressed according to color attributes according

FIG. 76A shows an example of the hierarchical object to the fifth embodiment;

	Docum ent ID	ט	Title	Curren OR
102	US 56689 41 A	×	Optimum implementation of X-Y clipping on pixel boundary	345/62
103	US 56627 85 A	⊠	Method for masking a workpiece and a vacuum treatment facility	204/29 .25
104	US 56595 57 A	☒	Reed-Solomon code system employing k-bit serial techniques for encoding and burst error trapping	714/75
105	US 56492 25 A	Ø	Resynchronization of a superscalar processor	712/23
106	US 56110 64 A	☒	Virtual memory system	711/20
107	US 56029 86 A	☒	Data processing and memory systems with retained background color information	345/50
108	US 55862 56 A	⊠	Computer system using multidimensional addressing between multiple processors having independently addressable internal memory for efficient reordering and redistribution of data arrays between the processors	710/10
109	US 55527 22 A	☒	Mask registor for a configurable cellular array	326/41
110	US 55465 32 A		Data-array processing system	345/55
111	US 55398 98 A	×	Data-array processing system wherein parallel processors access to the memory system is optimized	711/16
112	US 55281 76 A	⊠	Register with duplicate decoders for configurable cellular array	326/10
113	US 55262 96 A	⊠	Bit field operating system and method with two barrel shifters for high speed operations	708/20
114	US 55198 29 A	⊠	Data-array processing and memory systems	345/53
115	US 55006 09 A	⊠	Wildcard addressing structure for configurable cellular array	326/41
116	US 54973 95 A	⊠	Method and apparatus for modulating signal waveforms in a CDMA communication system	370/20
117	US 54716 28 A	⊠	Multi-function permutation switch for rotating and manipulating an order of bits of an input data byte in either cyclic or non-cyclic mode	712/22
118	US 54695 47 A	☒	Asynchronous bus interface for generating individual handshake signal for each data transfer based on associated propagation delay within a transaction	713/60
119	US 54690 03 A	☒	Hierarchically connectable configurable cellular array	326/39
L20	US 54503 13 A	Ø	Generating local addresses and communication sets for data-parallel programs	717/15
.21	US 54480 75 A	☒	Electron-beam exposure system having an improved rate of exposure throughput	250/49 .22
.22	US 54404 26 A	⊠	Optical spatial filtering for attenuating the zero diffractive orders of mutually incoherent light beams	359/55
123	US 54147 01 A	Ø	Method and data structure for performing address compression in an asynchronous transfer mode (ATM) system	370/39

38 displays a result calculated by the state change calculatobject interferes with another object. The result display unit of the object stored in the attribute memory unit 36 if the step, and obtains an interference result through an attribute calculates a position of movement of an object for each time memony unit 36. The state change calculating unit 13 the virtual world and sends the definition to the attribute relating to the interference or reaction between the objects in The attribute defining/setting unit 33 defines an attribute

20 set in the attribute memory unit 36 and calculates a result change calculating unit 13 refers to the interference attribute come in contact with another object (interference), the state time step. If it is determined that an object has moved and 13 calculates the movement of an object movable in each contact with the first object. A state change calculating unit a first object in the virtual world and a second object in The interference attribute indicates the interaction between typical attributes set by the attribute defining/setting unit 33. An interference attribute and a reaction attribute are 10 ing unit 13 on the display device 40.

that the interfering object cannot pass through an object can be included in a movement interference calculation such (including a user's viewpoint) that may interfere the wall an attribute of a "wall" is defined, then another object tion on the movement of the second object. For example, if attribute indicating the restrictions as the constraint condiattribute defining/setting unit 33 defines an interference If a first object interferes with a second object, then the after the interference.

position of user's cyes, and processed in a movement of a volume of a viewpoint around the user's viewpoint. The viewpoint volume defining unit 34 defines a size and a form Upon receipt of an input from the input device 31, the assigned the wall attribute.

volume and the attribute of another object. viewpoint based on the correlation between the viewpoint height in a virtual world by calculating the movement of the allows the user's viewpoint to move around at a constant interference calculation. The state change calculating unit 13 viewpoint volume is regarded as space surrounding the

attribute or the specific object moving over the object assigned the on the average slope angle the movement of the viewpoint defined, the state change calculating unit 13 calculates based tion attribute of, for example, steps. If the attribute is object passes over an object having an interference restricconstraint condition set when a viewpoint or a specific attribute indicating an average slope angle which is a The attribute defining/setting unit 33 defines and sets an

small contact force is given but is broken by a large contact example, a paper partition, which indicates no influence if a force generated by the interference so that an attribute of, for not only the existence of an interference but also the contact ated object stored in an attribute memony unit 36 as a 55 interference. The state change calculating unit 13 calculates information depending on the contact force generated by an as a contact force parameter function, indicating restriction an attribute, using a restriction at the time of an interference The attribute defining/setting unit 33 also defines and sets

.El tinu gnitsl culation on the object performed by the state change calcudisplaying the virtual world. A sound output device 41 is an 65 state change of an object in a movement interference calreaction attribute determines the moment or the method of a object having an interference as an activation switch. The and sets as a reaction attribute a reaction movement of an Furthermore, the attribute defining/setting unit 33 defines

> unit 15 performs time control on the data calculation and the tion of image data in the generating unit 21. The time control culation in management unit 11 and time taken for genera-The predicting unit 14 predicts time taken for data cal-

> predicting unit 14. image data generation according to the prediction by the

> control unit 17 controls the number of objects generated at and a position of an object to update CG data. The update The animation data generating unit 16 calculates a form

> data, it updates the CG data based on the change data, and unit 23 stores the CG data, and upon receipt of the change the change are output as change data. The second processing CG data are subject to a change, the CG data associated with The first processing unit 18 manages CG data. When the one time by the animation data generating unit 16.

> an editorial form. The display-format hierarchical object memory unit 19 stores a hierarchical object data structure in The editing-format hierarchical object data structure generates image data.

> data structure memory unit 24 stores the hierarchical object

unit 19 and the display-format hierarchical object data editing-format hierarchical object data structure memony association with the fifth embodiment, explained are the the second processing unit 23 are explained. Furthermore in with the fourth embodiment, the first processing unit 18 and and the update control unit I7 are explained. In association the third embodiment, the animation data generating unit 16 association with the second embodiment. In association with unit 14 and the time control unit 15 are explained in the first embodiment of the present invention. The predicting change calculating unit 13 are explained in association with The object information memory unit 12 and the state data structure in a display form.

configuration according to the first embodiment of the FIG. 4 is a block diagram showing an example of a 35 structure memory unit 24.

present invention.

an instruction for activating an object from the input device 45 virtual world. An activate instruction input unit 35 receives defining unit 34 defines a volume of a viewpoint in the change of an object in a virtual world. A viewpoint volume defines and sets an attribute designating a condition of a state CPU, a memory, etc. An attribute defining/setting unit 33 pointing device, etc. A processing device 32 comprises a In FIG. 4, an input device 31 refers to a key board, a

ference attribute or a reaction attribute of an object. comprises an attribute memory unit 36 for storing an interfirst embodiment, the object information memory unit 12 50 mation for each object in the virtual world. According to the of an object, position information and other physical infor-The object information memory unit 12 stores form data

output unit 39 outputs a sound or a voice when a sound performed by the state change calculating unit 13. A sound result display unit 38 displays a result of the calculation 60 force, can be realized. tion of each object stored in the attribute memory unit 36. A distribution display unit 37 displays the attribute informaor in response to an external activate instruction. An attribute reaction of the movement of the object in the virtual world change of an object according to the attribute of an associ-The state change calculating unit-13 calculates a state

output device comprising a speech synthesizing device or a A display device 40 is a graphic display device for output is defined as a reaction attribute of an object.

speaker.

	Docum ent ID	Ū	Title	Current
124	US 54086 32 A	×	Semiconductor memory having a bit position decoder and date re-ordering circuitry for arranging bits in a word of data	365/230 .06
125	US 53409 92 A	☒	Apparatus and method of detecting positional relationship using a weighted coefficient	250/548
126	US 52804 88 A	⊠	Reed-Solomon code system employing k-bit serial techniques for encoding and burst error trapping	714/784
127	US 52768 00 A	☒	Image writing control unit having memory area for image	345/561
128	US 52766 91 A		Method for the control of receiver synchronization in a mobile phone	714/798
129	US 52476 88 A	⊠	Character recognition sorting apparatus having comparators for simultaneous comparison of data and corresponding key against respective multistage shift arrays	707/7
130	US 52185 62 A	⊠	Hamming data correlator having selectable word-length	708/422
131	US 52184 31 A		Raster image lossless compression and decompression with dynamic color lookup and two dimensional area encoding	348/472
132	US 51121 49 A	⊠	Velocity responsive head driving control apparatus of manual sweeping printer	400/88
133	US 51037 49 A	⊠	Process and sewing machine for sewing together layers of fabric according to a pattern	112/475 .03
134	US 50955 23 A		Signal processor including programmable logic unit formed of individually controllable output bit producing sections	712/42
135	US 50954 46 A	☒	Circuit for and method of controlling output buffer memory	345/571
136	US 50918 74 A	☒	Encoder apparatus	708/211
137	US 50738 64 A	⊠	Parallel string processor and method for a minicomputer	708/212
138	US 50460 23 A	☒	Graphic processing system having bus connection control capable of high-speed parallel drawing processing in a frame buffer and a system memory	345/619
139	US 49998 08 A	Ø	Dual byte order data processor	712/300
140	US 48961 33 A	Ø	Parallel string processor and method for a minicomputer	340/146 .2
141	US 48432 36 A	Ø	Movable object position detecting method and apparatus	250/231 .1
142	US 48021 16 A	☒	Programmed controller	703/23
143	US 46087 06 A	☒	High-speed programmable timing generator	377/39
144	US 44425 27 A		Synchronization systems	375/134
145	US 43897 06 A	\boxtimes	Digital computer monitored and/or operated system or process which is structured for operation with an improved automatic programming process and system	700/1
146	US 43261 90 A	☒	Boundary trace slope feature detection system	382/197

force, and the contact force (physical quantity of, for example, a collision force product) between objects associated with the interference is calculated so that an attribute of a "paper partition", which is not affected at a small contact force but is broken at a large contact force, can be defined.

As a result of an interference, not only a constraint condition on the movement of an interfering object associated with an interference at a trigger of an activate switch is ated with an interference as a trigger of an activate switch is defined and act as one of attributes. Thus, defined is an "object movable upon interference" as a type of attribute "object movable upon interference" as a type of attribute "object movable upon interference" as a type of attribute to example, realized are an attribute of an "automatic door" to be moved by a switch of another object's interference and an attribute of a "variation" which atsats a varying animation an attribute of a "variation" which atsats a varying animation an attribute of a "variation" which atsats a varying animation

larger number of variations.

A reaction attribute assigned to an object can also be defined for a moment other than the time of an interference. For example, defined is an object reacting as being triggered by a switch at an external activate instruction, for example, a user's mouse click on a screen. Thus, an attribute of an "automatic door" to be started only by an interference can be easily extended to a door opened by a user's click depending on the definition of a switch. Therefore, a very realistic and fartestic and the definition of a switch. Therefore, a very realistic and fartestic properties.

a realistic simulation world can be easily realized with a

operation such as a free form deformation (FFD). Therefore,

fantsetic walk-through simulation can be casily realized.

Furthermore, a sound as well as a movement can be set as a reaction attribute. The attribute defining/setting unit 33 defines as sound output attribute as a reaction attribute, and calculating unit 13 displays an image movable according to an activated reaction attribute, and activates the sound output attribute is specified, outputs an activated reaction attribute, and activates the sound output attribute is specified, outputs attribute in activates and displays dynamic images.

Thus, an attribute of a "sound" is realized as a reaction with a switch, and can be defined as a kind of attribute in an increasing number of multimedia systems in recent simulation fields.

40 The attribute distribution display unit 37 displays a reaction attribute defined and set for an object and a switch
activated by the attribute so as to practically indicate what is
set in a world, for example, a virtual world in which a
number of objects exist. Thus solved is the problem that a
to common user sets a switch for a wrong object or forgets as
to which object an activation switch is assigned.

FRG. 5 shows an example of a virtual world for use in examples of the information of objects forming the virtual of world shown in FRG. 5.

In the first embodiment, the following typical attributes are used. The names and contents of the attributes are examples only and referred to for easier explanation. It is obvious that the present invention is not limited to these attributes but can atmultaneously assign various attributes.

A wall, steps, a paper partition, and a floor are provided as interference attributes in the present example shown in 1910.

The attribute of a wall refers to the feature of an object that the viewpoint cannot walk on the object having this attribute which permits nothing to pass through the object is sloping. When an object is defined in a virtual world, the default interference attribute is a "wall". The attribute of "steps" has a parameter of an average slope angle calculated using real form of steps and the information about the lowest plane in the gravity direction information about the lowest plane in the gravity direction.

The attribute defining/setting unit 33 also defines and sets a reaction attribute indicating a state change of an object at an instruction from the input device 31 so as to enable a reaction attribute defined and set for the object to be activated on an occasion other than an interderence. At an activate instruction input unit activate instruction from the activate instruction input unit 35, the state change calculating unit 13 checks the reaction attribute of the object, and changes the state of the object in accordance with the reaction attribute.

Furthermore, the attribute defining/setting unit 33 defines and sets as one of reaction attributes a sound output attribute indicating an output of a specified sound or voice. When an object having a sound output attribute comes in contact with another object, or when an activate instruction is issued to the object having the sound output attribute, the sound 15 output unit 39 outputs a specified sound or voice through the sound output device 41.

The attribute distribution display unit 37 refers to the attribute memory unit 36 and displays the information about the attribute defined and set for an object in the virtual world.

With the object in the virtual world.

The present invention can speed up a movement interference calculation of an object and realize the feeling of a realistic movement in a virtual world by introducing the concept of an interference attribute and object in a virtual world. That is, post-interference states of objects can be essaly calculated and realized by referring to, for example, a predetermined interference attribute. Therefore, a viewpoint or a moving object can be prevented from being butied in a wall or other objects. Furthermore, the movement of a user's viewpoint can be realistically realized in a wall-through simulation, and a realistically realized in a wall-through simulation, and a realistically realized in a wall-through simulation, and a realistically realized in a wall-through simulation, and a

common user not familiar with CG can amouthly move in

According to the present invention, a restriction can be defined and set on an object as an interference attribute when objects interferes with each other in a virtual world. For example, if an object is assigned an attribute of a "wall" and it is also defined that a user's viewpoint, that is, an interfering object, cannot pass through the object assigned the attribute of a wall, then the user's viewpoint determines a contact with the wall at a walk-through simulation. The a true of the wall when it comes in contact with the wall, but it moves along the wall, thereby solving the problem that the viewpoint passes through thereby asplant does not pass into the wall when it comes in contact with the wall, but it moves along the wall, thereby solving the problem that the viewpoint passes through the

the virtual world.

wall and gets lost.

Especially, the viewpoint volume defining unit 34 defines the size, form, etc. for a user's viewpoint volume and the size, form, etc. for a user's viewpoint volume and the viewpoint so that the user can walk around at a constant the viewpoint so that the user can walk around at a constant beight or a user walk around at a tence according to the conventional technologies, the present invention enables the fence to be set such that a theory as a more nearbing to the conventional technologies, the present invention enables the fence to be set such that a user cannot pass through it by defining the user's viewpoint user cannot pass through it by defining the user's viewpoint user cannot pass through it by defining the user's viewpoint user cannot pass through it by defining the user's viewpoint realized.

For example, an aitribute of "steps" can be defined as an interference restriction attribute, and an average slope angle can be defined and set so that a user goes amoothly up and down on them at a specified slope angle. Although a user could not go up or down the steps or has unrealistically walked up and down the steps, the present invention easily realized and down the steps.

Puthermore, a restriction at the time of an interference can be defined and set as a parameter function of a contact

	Docum ent ID	σ	Title	Current
147	US 43259 10 A	Ø	Automated multiple-purpose chemical-analysis apparatus	422/64
148	US 43002 98 A	⊠	Apparatus for the production and display of moving pictures	40/430
149	US 42272 45 A	⊠	Digital computer monitored system or process which is configured with the aid of an improved automatic programming system	700/95
150	US 42198 74 A	☒	Data processing device for variable length multibyte data fields	712/300
151	US 42165 28 A	☒	Digital computer implementation of a logic director or sequencer	700/95
152	US 42154 07 A	Ø	Combined file and directory system for a process control digital computer system	700/95
153	US 42154 06 A	⊠	Digital computer monitored and/or operated system or process which is structured for operation with an improved automatic programming process and system	700/95
154	US 42031 54 A	Ø	Electronic image processing system	345/26
155	US 41308 80 A	×	Data storage system for addressing data stored in adjacent word locations	711/201
156	US 40842 59 A	☒	Apparatus for dot matrix recording	358/3.2
157	US 40657 56 A	×	Associative memory with neighboring recirculated paths offset by one bit	365/49
158	US 39926 97 A	☒	Character recognition system utilizing feature extraction	382/203
159	US 38824 63 A	⊠	Character recognition apparatus	382/217
160	US 38724 33 A	⊠	OPTICAL CHARACTER RECOGNITION SYSTEM	382/175
161	US 37665 32 A	Ø	DATA PROCESSING SYSTEM HAVING TWO LEVELS OF PROGRAM CONTROL	712/247
162	US 37522 88 A	☒	ELECTROGRAPHIC PRINTER WITH PLURAL OSCILLATING PRINT HEAD	400/322
163	US 36171 34 A	Ø	OPTICAL IMAGE FRAME COORDINATE DATA DETERMINING SYSTEM	356/141 .3
164	US 35681 55 A	☒	METHOD OF STORING AND RETRIEVING RECORDS	707/2

indicating the type of form (mesh), and coordinates, and as the grain of wood. Additional data are the form data the steps is defined as dark brown, and the texture is defined

The object information about handrail 52 shown in FIG.

assigned to the handrail 52. on or pass through the handrail \$2. No reaction attribute is defaulted at "wall". Therefore, the viewpoint cannot move 10 present invention. The stribute type of the bandrail S2 is 51, described below is the attribute information about the contents of the common data are similar to those of the steps 5 is managed as the data as shown in FIG. 7. Since the

are no physical data of the form, but the viewpoint is

of a user who is supposed to walk in a virtual world. There

13. The data type of the viewpoint is "viewpoint". The

FIG. 5 is managed as, for example, the data as shown in FIG.

described later, it outputs the predetermined sound data.

information "sound 31". It is switched by the viewpoint

preliminarily stored in an area managed by the identification

A use sound data used when the sound is output are

type "sound" and indicates a reaction of outputting a sound.

in contact with the viewpoint as described later, it starts a

ated with the viewpoint as a switch. When the object comes

attributes. One is the animation type "rotation" and associ-Two attributes of "reaction" are defined as reaction

"wall" which prohibits the viewpoint from walking over.

attribute type of the interference attribute of the box 58 is

managed as, for example, the data shown in FIG. 12. The

for example, a mouse on a screen, and permits a reacting

type is "click". The "click" indicates a clicking operation of,

of the interference attribute of the door knob 57. The switch

knob 57 is "wall". "Switch" is defined as the attribute type II. The attribute type of the interference attribute of the door

FIG. 5 is managed as, for example, the data shown in FIG.

matrix is defined. It has a door knob as a switch and starts

animation type is "rotation" and a rotation starvend position

attribute, and the type of the attribute is "reaction". Its

"wall". Furthermore, the door 56 is assigned a reaction

attribute type of the interference attribute of the door 56 is

is managed as, for example, the data shown in FIG. 10. The

a wall \$5 shown in FIG. 5 is defined similarly. The inter-

reaction attribute data are defined. The object information of

"floor". Therefore, the viewpoint can walk on this object. No

attribute type of the interference attribute of the floor 54 is

is managed as, for example, the data shown in FIG. 9. The

to pass through it only when it receives a clash force equal

the durable pressure, and the window 53 permits an object

partition" with the maximum pressure of 25.0. It indicates

of the interference attribute of the window 53 is a "paper

The object information about window 53 shown in FIG.

The object information about a floor 54 shown in FIG. 5

ference attribute of the wall 55 is defaulted at "wall".

The object information about a door 56 shown in FIG. 5

its rotation by the click on a door knob 57.

data are defined for the window 53.

The object information about the door knob 57 shown in

the door 56.

The object information about a box 58 shown in FIG. 5 is

The object information about a viewpoint 59 shown in

5 gravity. No reaction attribute is assigned to the steps 5L physical data including the mass and the coordinates of the

65 viewpoint 59 indicates the position and direction of the eyes information about the lowest plane in the gravity direction include a parameter of the average slope angle of 30° and the 33 shown in FIG. 4. The attribute type is "steps". The data attribute information set by the attribute defining/setting unit name is "steps A". The interference attribute data are 60 When the object comes in contact with the viewpoint as name refers to the identifier of the object. In this case, the object in a three-dimensional space of the virtual world. The calculation. The position matrix refers to the position of the including the object and is determined for easier cross over objects. The bounding volume refers to a size of a space 55 predetermined rotation. The other attribute is the animation refers to data of a common type and therefore common managed as the data as shown in FIG. 6. The information

to the color, pattern (texture), etc. of the object. The color of

and down the steps at the slope angle. The texture data reter

(plane number of the lowest plane). The viewpoint can go up

The object information about steps 51 shown in FIG. 5 is an attribute can be assigned to each object on an attribute 50 definition of the objects. According to the first embodiment, here. Described below in detail is the data structure after the technologies, the detailed explanation about them is omitted position, etc. of an object can be defined as in the prior art in FIG. 5. First, the objects are defined. Since the form, 45 object to be operated. In this example, the reacting object is For example, a virtual world comprises the objects shown

data preliminarily stored in the object. a voice by being triggered by a switch according to sound to the feature of an object that the object outputs a sound or

The attribute of a "sound" (sound output attribute) refers 40

can be used to realize a sliding door, a window, a a drawer, such as one-way, two-way, etc. For example, the attribute startend position of the movement, the type of movement specified are a plane on which a movement is made, a of an object that the object starts automatic parallel move-

ment by being triggered by a switch. With this attribute, The attribute of "parallel movement" refers to the feature book, a drawbridge, etc. can be realized using the attribute.

clock, a door knob, a rotating door, an opening/closing of a direction, a reverse direction, etc. For example, needles of a start/end position, the type of rotation such as a fixed gered by a switch. Using this attribute, specified are a that the object automatically starts rotating as being tag-The attribute of "rotation" refers to the feature of an object

to rotation, parallel movement, and sound. switch. The reaction attributes indicating a movement refer reaction movement and sound, or indicate an activation The reaction attributes in the first embodiment indicate a 20 or larger than the pressure of 25.0. No reaction attribute

viewpoint (height of the viewpoint or eyes). from the floor) can be realized by appropriately setting the

tions of walks (for example, a walking at a constant height attribute however steep or even vertical the object is. Variathat the viewpoint can walk on the object having this 15 5 is managed as the data shown in FIG. 8. The attribute type The attribute of a "floor" refers to the feature of an object larger than a predetermined pressure.

when another object clashes into the object with a pressure permitted to pass through the object of a paper partition only another object passes through the object. Another object is be defined with a parameter indicating the pressure at which this attribute even if the object is sloping. The attribute can object that the viewpoint cannot walk on the object having The attribute of a paper partition refers to the feature of an

The viewpoint can go up and down along the slope angle. information refers to a plane number of the lowest plane. among a lot of planes forming a staircase. For example, the mation about a horizontal plane in contact with the floor The information about the lowest plane indicates the infor-

	Docum ent ID	ט	Title	Current OR
1	JP 20001 94719 A		METHOD AND DEVICE FOR MANAGING DATA	
2	JP 20001 33611 A	×	IMPLANTATION MASK	
3	JP 11024 039 A	Ø	IMAGE EXPOSING DEVICE	
4	JP 10189 745 A	Ø	SEMICONDUCTOR INTEGRATED CIRCUIT LAYOUT DEVICE	
5	JP 09114 639 A	Ø	MASK DATA GENERATION CIRCUIT AND BIT FIELD OPERATION CIRCUIT	
6	JP 09050 112 A	Ø	PHASE SHIFT MASK	
7	JP 08317 287 A	. —	X-RAY IMAGE PICKUP DEVICE	
8	JP 08129 168 A	☒	PROJECTION TYPE IMAGE DISPLAY DEVICE	
9	JP 07040 598 A	Ø	PRINT OUTPUT METHOD AND ITS CONTROL DEVICE FOR SERIAL PRINTER	
10	JP 06347 335 A	Ø	PHASE DIFFERENCE MEASURING APPARATUS	. 11-7:
11	JP 06276 483 A		PICTURE SIGNAL CODING METHOD, CODER, DECODING METHOD AND DECODER	<u>.</u> .
12	JP 06083 858 A	Ø	VECTOR INSTRUCTION PROCESSOR	
13	JP 05312 733 A	Ø	X-RAY INSPECTION	• ·
14	JP 05139 790 A	⊠	MASK FILM FOR ION EXCHANGE TREATMENT	
15	JP 05021 321 A	⊠	ALIGNMENT DEVICE OF EXPOSURE DEVICE	
16	JP 04288 684 A	⊠	COLOR SPACE CONVERSION METHOD	
17	JP 04074 218 A	☒	ARITHMETIC CIRCUIT	•
18	JP 03173 474 A	⊠	SEMICONDUCTOR DEVICE	
19	JP 03044 734 A	Ø	DATA SHAPING CIRCUIT	•
20	JP 02230 320 A	☒	DATA PROCESSOR	
21	JP 02054 677 A	⊠	DECODING METHOD FOR VARIABLE LENGTH CODE	
22	JP 02046 084 A	Ø	IMAGE PICK-UP DEVICE	

setting of an attribute. 5 (CANCHL). The termination button (EMD) terminates the setting can be deleted using the cancellation button indicating the default value of the average slope angle. The an object. The angle can be modified by dragging the mark and displayed according to the predetermined form data of

There are two methods of opening a window for use in the button after selecting a corresponding item in the list. editing a reacting object in the list is performed by clicking in FIG. 18h is displayed. Adding, deleting, entering, and "contact switch" is selected, for example, a window shown indicates that a switch type reacts when the object comes in external activate instruction, while the "contact switch" "click switch" indicates that a switch type reacts with an "click switch" and "contact switch" can be selected. The 10 reaction attribute setting screen is displayed. On this screen, selected in the attribute setting menu shown in FIG. 14, a screens. If the "reaction attribute (switch)" setting menu is FIGS. 18A, 18B, and 18C show examples of setting

etc. can be set in the window. Likewise, the movement reaction attribute. The rotation angle, the type of rotation, when the "rotating object" mean is selected in setting a FIG. 18B shows an example of the display of a window 25 to be edited and to select a reaction attribute in the menu. The other is to directly select on a screen a reacting object corresponding object in the reacting objects to be activated. in FIGS. 188 and 18C. One is to click the button at a setting the movement of an actual reacting object as shown

a file storing an acoustic performance time, a sound source, when the "sound output object" menu is selected. The list of FIG. 18C shows an example of the display of a window "displacing object" using a similar screen.

FIG. 19. Process steps SI through SI9 in the following change calculating unit 13 shown in FIG. 4 by referring to Described below is the process performed by the state 35 and sound data called "mididata" can be optionally set.

40 FIG. 19. explanation correspond to steps 51 through 519 shown in

calculation result on the display device 40. 38 to display the initial screen or the image of a 51: A display instruction is issued to the result display unit

data is output through the sound output unit 39. 52: If there are sound data to be output, then the sound

time value At (t=++At). 23: Present time t is set to t by adding a predetermined

been issued from the activate instruction input unit 35. object, that is, whether or not an activate instruction has mined whether or not the button has been clicked at an 54: On the screen displaying a virtual world, it is deter-

whether or not its switch attribute is defined. If no, the attribute of the clicked object is checked to determine 55: If the button has been clicked at an object, the reaction If no, control is passed to step S7.

activated is a reacting object triggered by the clicked Sc. If the switch attribute is defined, then searched and process in the next step S6 is omitted.

door 56, and the box 58. has been already activated among the viewpoint 59, the step 51. An object moving in FIG. 5 is an object which moving in the virtual world. If no, control is returned to 57: Next, it is determined whether or not there is an object object.

(bereinafter referred to as obselected and temps 58: If there are objects moving in the virtual world, one

.82 xod activated according to the reaction attribute defined for the point 59 cornes in contact with the box 58, a process is 15 contact with another object in the virtual world. If the the shove defined "box". It indicates that when the view-59, and the switch type is "contact". The reacting object is "switch" is defined as a reaction attribute to the viewpoint ally specified as a viewpoint volume. The attribute of a sphere with 7.5 in radius. Any other forms can be optioncase of an elliptic viewpoint having a bounding volume of 59 has an elliptic viewpoint volume. FIG. 13 shows a special bounding volume of the viewpoint. In FIG. 5, the viewpoint for example, an ellipsoid or a sphere, according to the object. The volume of the virtual viewpoint is determined as, in the definition of the bounding volume of a common defines the volume of the viewpoint for the viewpoint 59 as standardization. The viewpoint volume defining unit 34 processed in the same manner as a common object for

FIG. 15 shows an example of a display of an interference play" or "reaction attribute display" can be selected. "attribute display" menu, cither "interference attribute disattribute" can be selected from the initial menu. In an 33. The "display of an attribute" or the "setting of an

setting menu processed by the attribute defining/setting unit

defines and sets an attribute when a virtual world is edited The attribute defining/setting unit 33 shown in FIG. 4

or simulated. FIG. 14 shows the structure of the attribute 20

interference attribute. in the virtual world. Thus, a user is informed of the set and an interference attribute name already set are displayed to. As shown in FIG. 15, for example, the name of an object object information shown in FIGS. 6 through 13 is referred 30 start/end position and the type of movement can be set for is selected, an interference attribute of each object in the display" menu. If the "interference attribute display" menu attribute after being selected from the "interference attribute

mouse is clicked at the attribute of the steps. parameters. FIG. 16 shows a window displayed when the opens a small window as shown in FIG. 16 for more detailed Clicking a mouse at the displayed attribute on a screen

pale blue is emphasized into blue, and so forth. manner. That is, for example, pink is emphasized into red, example) switched by the "door knob" in an emphasized displays the reaction attribute object group ("door" in this clicking an optional switch, for example, the "door knob" reaction attribute are represented in respective colors. Then, type of reaction attribute. Thus, all objects assigned a pale blue, and the other objects in white depending on the represented in pink, an object having the reaction attribute in example, an object having the attribute of a switch is 50 the example of the display of interference attributes. In this represented by letters "switch", "rotating object", etc. as in Otherwise, the distribution of the reaction attributes can be set for each object are represented in respective colors. to. For example, as shown in FIG. 17, the reaction attributes 45 object information shown in FIGS. 6 through 13 are referred menu is selected, the reaction attributes of each object in the menu is selected. When the "reaction attribute display" attributes displayed when the 'reaction attribute display" FIG. 17 shows an example of the display of reaction

window, an average slope angle is automatically calculated display of interference attributes is displayed. In the which is referred to in association with the example of the 65 attribute is selected, then the window shown in FIG. 16 can be set for a object to be set. For example, if a step played is the menu listing the interference attributes which the attribute setting menu as shown in FIG. 14, then dis-If the "interference attribute" setting menu is selected in 60

	Docum ent ID	ש	Title	Current OR
23	JP 02046 078 A	Ø	IMAGE PICK-UP DEVICE	
24	JP 01259 397 A	Ø	COLOR LIQUID CRYSTAL DISPLAY	
25	JP 01223 565 A	Ø	INFORMATION PROCESSOR	
26	JP 01223 564 A	⊠	INFORMATION PROCESSOR	
27	JP 01223 563 A	☒	INFORMATION PROCESSOR	
28	JP 01012 215 A	⊠	SOLAR SENSOR	
29	JP 63151 948 A	☒	EXPOSING MASK	
30	JP 62061 324 A	☒	STAGE NOISE DETECTION OF ELECTRON BEAM EXPOSURE DEVICE	
31	JP 60070 836 A	☒	TRANSMITTER	
32	JP 59146 008 A	⊠	FOCUSING DETECTOR	
33	NB891 0197	☒	RMU Mask Generation From Shift Amount or Pad/Start/End Specifications	
34	NN870 6172		Increasing Memory Reliability Through Address Translation and Per Page Bit Swapping	
35	NN790 55027	Ø	Bit Matrix Transposition Algorithm., May 1979.	İ
36	NN780 23598	Ø	Mask Controlled Byte Handling. February 1978.	
37	US 20040 00574 4 A	⊠	Amorphous substrate crystallization apparatus for transistor fabrication, has convergence/divergence element and phase shift mask to produce light beam having periodical intensity distribution with inverse peak portion	
38	US 66188 04 B	☒	Centrifuge circuit in digital computer, has swap stages which forward received mask bits and data units in reverse order, if mask bit received from specific mask bit positions are set and clear respectively	
39	US 20030 09897 0 A	⊠	Lens aberration monitor for optical lithography system, has phase shifting element arranged on mask to form ring-shaped pattern on substrate, for detecting lens aberration	
40	US 20020 16980 8 A	⊠	Bit reordering method in computer for cryptography involves centrifuging data element as function of masks that are created with reference to destination descriptor representing a reordering pattern of data element	
41	US 64082 75 B	⊠	Compressing and decompressing audio data by masking lower order bits of digital audio samples and shifting in higher order bits from adjacent sample	
42	FR 28053 61 A	⊠	Method of acquisition of rounding parameters in floating-point multiply accumulate, uses shifting of mantissa bits for easy fusion of incoming value with accumulated value	•
43	JP 20003 52810 A	⊠	Phase shift mask for manufacture of semiconductor device, has shading element mounted in corner area at upper portion of shading band area arranged to enclose corner areas of circuit pattern	
44	CA 22758 21 A		Compression method for audio data in voice communication systems, by masking predetermined number of lower order bits from each sample of stream of digital audio samples	

spont the lowest plane (plane number). The calculation ference attribute (steps) of object B and the information lation is performed according to the parameter of the interthe direction of the gravity of the virtual world. The calcuviewpoint volume can be maintained at a constant level in the viewpoint is calculated such that the height of the temporary update of object A is canceled, and the position of (viewpoint) can go up and down the steps. Accordingly, the If the attribute of object B is "steps", then object A

performed using the form of object B, and the result is of the gravity of the virtual world. The calculation is 15 Volume can be maintained at a constant level in the direction viewpoint is calculated such that the height of the viewpoint update of object A is canceled, and the position of the (viewpoint) moves on the floor. Therefore, the temporary If the attribute of object B is "floor", then object A

temporary update of object A is determined as an actual contact pressure is larger than the maximum pressure, the interference attribute (paper partition) of object B. If the compared with the parameter (maximum pressure) of the 20 contact pressure calculated in the process in step 511 is If the attribute of object B is "paper partition", then the determined as an actual position.

formed depending on the interference attribute of following movement interference calculation is perinterference attribute of object B is checked and the not assigned to the viewpoint, then the type of the S16: If object A is a viewpoint and a viewpoint volume is canceled

prohibits other objects from passing through it, and the If the stribute of object B is "wall", then object B object B.

40 an attribute of a wall, and the temporary update of the attribute of steps of object B works on object A as if it were volume is defined for object A (viewpoint), then, the If the attribute of object B is "steps", since no viewpoint is canceled.

attribute of a floor works on object A as if it were an attribute volume is defined for object A (viewpoint), then, the If the attribute of object B is "floor", since no viewpoint movement of object A is canceled.

position. If it is smaller, then the temporary update is temporary update of object A is determined as an actual contact pressure is larger than the maximum pressure, the interference attribute (paper partition) of object B. If the 50 interference attribute (paper partition) of object B. If the compared with the parameter (maximum pressure) of the contact pressure calculated in the process in step S11 is If the attribute of object B is "paper partition", then the object A is canceled.

contact switch is set. If no, control is returned to step determined whether or not a switch attribute of a reaction attribute of object A is checked and it is a notification area for the result display unit 38, the described steps S13, S15, and S16 have been stored in culations performed in the processes of the above S17: After the results of the movement interference cal-

with object A as a switch. If object B is a reaching object reaction attribute (reaction) of object B is associated reacting object is object B and whether or not the to object A, then it is determined whether or not a S18: If a switch attribute of a contact switch is assigned

> another object. If it actually does not interfere with on the assumption that object A does not interfere with position of object A at time t' is temporarily calculated temporary update indicates a process in which the selected and temporarily updated at present time. A

object (hereinafter referred to as object B) and object A the interference (contact class or collision) between the if the attribute as an actual position. source, etc. but an object having a certain form). If yes, data type of "common type" (not a viewpoint, a light 29: It is electred whether or not any other object has its another object, the result is validated.

the next moving object. If there is object B interfering then control is returned to step S7 and to the process of SIO: Unless there is object B interfering with object A, is determined.

as object information and a given movement speed. A and B. It is calculated based on the mass, etc. defined that is, the contact pressure at the clash between objects SII: Calculated is the movement amount at interference, with object A, the following process is performed.

viewpoint. If yes, control is passed to step 514. If no, S12: It is determined whether or not object A is a

formed depending on the interference attribute of following movement interference calculation is perinterference attribute of object B is checked and the S13: Unless object A is a viewpoint, the type of the 25 position. If it is smaller, then the temporary update is the process of step S13 is performed.

not a viewpoint. Therefore, the temporary update of the processed as a wall attribute in principle because object A is 35 temporary update of the movement of object A (viewpoint) If the attribute of object B is "steps", a step attribute is temporary update of the movement of object A is canceled. object B prohibits other objects from passing through it, the object (object A) clashes with the wall (object B). Since If the attribute of object B is "wall", then the common 30

up and down the steps. so that the common object as well as the viewpoint can go common object can be regarded as a volume of a viewpoint movement of object A is canceled. However, a size of a

the volume of a viewpoint so that the common object as well 45 of a wall, and the temporary update of the movement of However, the size of the common object can be regarded as works on a common object as having a wall attribute. of the movement of object A is canceled because the floor If the attribute of object B is "floor", the temporary update

the contact pressure is smaller, the temporary update is movement of object A is determined as an actual position. If contact pressure is larger, the temporary update of the combated with the parameter (maximum pressure) of the contact pressure calculated in the process in step 511 is If the attribute of object B is "paper partition", then the as the viewpoint can move on the floor.

yes, control is passed to step \$15. If no, control is or not the viewpoint is assigned a viewpoint volume. If S14: If object A is a viewpoint, it is determined whether 55

depending on the interference attribute of object B. movement interference calculation is performed attribute of object B is checked and the following assigned to the viewpoint, then the type of interference 60 S15: If object A is a viewpoint and a viewpoint volume is passed to step S16.

temporary update of the movement of object A (viewpoint) prohibits other objects from passing through it, and the 65 If the attribute of object B is "wall", then object B

is canceled.

object B.

	Docum			C
	ent ID	מ	Title	Current
45	US 61449 86 A	Ø	Data set sorting network for use in parallel processor environment, includes control mask which is shuffled whenever redundant shuffling operation is performed on data elements	
46	JP 09114 639 A	×	Bit field operation circuit with mask data generating circuit - has shifter which responds to 2-bit shifter control signal and shifts 16-bits of 32-bit mask bits and outputs as mask data	
47	EP 57371 2 B	☒	Prodn. of wavelength converter element - comprises forming stripe mask on lithium, tantalate C-plate, exchanging lithium ions with protons in non-masked portions	
48	DE 41410 24 A	⊠	Conversion of colour image signals - using 32-bit microprocessor employing shift and masking operations	
49	RD 30505 2 A	☒	Parity generation logic for rotate-merge unit - uses rotator output predictor to generate parity whilst rotate-merge unit is operating	
50	DE 36863 07 G	⊠	Binary image rotation method for digital image processor - exchanged selected group of bits stored in register with second group of bits stored in second register	
51	SU 11676 13 A	☒	Microprogram computer multiplex channel - has microprogram memory at inputs of exchange status former, mask register and data switching unit taken to data registers	
52	SU 11176 32 A	☒	Data shift circuit for array element ordering - has four ordering code formers each with NOT=gate and four multiplexers, and eight adders at inputs of switches	
53	EP 90137 A	⊠	Access control system for data transfer of variable length records - between central processing units and direct access stores, updating buffer address register as writing progresses	
54	SU 86434 0 B	⊠	High output computer data shift unit - has mask generator outputs connected to high and low order bits of output register	
55	US 40657 56 A		Associative charge coupled memory - has neighbouring recirculated memory paths offset by one bit and has large number of word locations	-

(step 554). If no, the process terminates. If yes, then the reaction movement of object B is activated

and after step 553 are performed. At this time, the position 5 ment of object A is canceled (step 555), and the processes of maximum pressure, then the temporary update of the move-If the interference pressure of object A is smaller than the

contact force and a friction force. precise physics calculation should be performed using a 15 force. Furthermore, to realize the state after a contact, a determine for each plane the intersection and the contact this method, a large amount of calculation is required to movement of object A and the distance of the movement. In each intersection is calculated to obtain the direction of the where object A is a viewpoint assigned a viewpoint volume. 10 planes of object A with object B, and the contact force at calculation should be performed between all intersecting To obtain an exact movement interference, an interference of object A is not updated.

calculation in the precise movement interference calculation complex physics calculation. As a result, the large amount of is stored for each attribute, thereby climinating a precise and determine the state after a contact, and reaction information object A. Furthermore, the amount of movement is used to not necessary to determine an intersection for all planes of On the other hand, according to the first embodiment, it is

using a branch table, etc. can be used depending on the example, a method of generating a subroutine, a method attribute can be optionally set. Various methods, for the calculation can be easily performed depending on the routine can be entered depending on its attribute. Similarly, typical attributes. If a new attribute is defined, then a process The above explanation of the processes refers to the 25 can be considerably reduced.

40 the object undesirably sinks into another object can be performed at a high speed and the conventional problem that Then, the movement interference calculation of the object is an object in a virtual world in a walk-through simulation. concept of an attribute, and defines and sets the attribute for As described above, the first embodiment introduces a system of a CG simulation.

a user can be performed easily and realistically. successfully solved. Thus, the movement of the viewpoint of

FIG. 26 shows the configuration of the second embodi-

55 display of dynamic images. the predicting unit 14, and controlling time relating to the 61 and the display unit 62 based on the prediction output by and a time control unit 15 for controlling the calculating unit predicting the time at which a calculated frame is displayed, radius of the bounding volume of object A. L2 is added to so formed by the calculating unit 61, a predicting unit 14 for a display unit 62 for displaying a calculation result percalculating unit 61 for calculating CG data to be displayed, after the other as time passes. The system comprises a generating and displaying image frames which change one The second embodiment is a CG data display system for ment of the present invention.

output by the predicting unit 14. B is "paper partition". In FIG. 25, the state change calcu- 60 interval of the display of frames according to the prediction these processes are concurrently performed. It changes the display of the (n-1)th frame on the display unit 62 such that n-th frame performed by the calculating unit 61 and the The time control unit 15 controls the calculation of the

time means that an image generated through CG data the time of the displayed world corresponding to the actual is validated and the position of object A is updated (step 65 corresponding to the logically described actual time. Setting time of a world to be displayed through computer graphics using the predicting unit 14 before actual calculation to act The time control unit 15 predicts the frame display time

> Step 57. step 519 is performed. Otherwise, control is returned to and is switched by object A, then the process of the next

returned to step 57 and the process is repeated on the moving objects as one of them. Then, control is 519: Object B is activated and added to a group of the

FIG. 20 is the flowchart showing the movement interferexplained in detail by referring to FIGS. 29 through 25, Next, the process in step S15 shown in FIG. 19 is next moving object.

canceled (step S22). In this case, the position of object A is 20 the temporary update of the movement of object A is If it is smaller than the maximum pressure of object B, then validated and the position of object A is updated (step SZ3). the temporary update of the movement of object A is than the maximum pressure of object B (step S21). If yes, whether or not the interference pressure of object A is larger In FIG. 20, the state change calculating unit 13 determines ence calculation in which the attribute of object B is "wall".

"steps". FIG. 22 shows the position of object A amended as calculation performed when the attribute of object B is FIG. 21 is the flowchart of the movement interference not updated.

the bounding volume of object A matches the amended point position of object A is amended such that the lowest point of 35 average slope angle of object B (step S32). Then, the average slope line according to the intersection PI and an (step 531). Obtained next is the amended point P2 on an lowest plane of object B and the lowest plane of object B between the vertical line from the center of object A to the 30 attribute. The movement interference calculation for the new the lowest plane of object B, that is, the intersection PI of the bounding volume of temporarily updated object A and intersection between the center line in the gravity direction In FIG. 21, the state change calculating unit 13 obtains the a result of the calculation.

temporarily updated object A is moved onto the average Thus, as shown in FIG. 22, the bounding volume of the P2, and then object A is moved (step 533).

"floor". FIG. 24 shows a position of object A amended as a calculation performed when the attribute of object B is FIG. 23 is a flowchart of the movement interference slope line of object B.

volume of object A connes in contact with object B, and the position of object A is amended such that the bounding to obtain an amended point of the center (step 542). Then, the height of the center of the bounding volume of object A object A sinking into object B by subtracting L.l from the Obtained next is the depth L2 of the bounding volume of the temporarily updated object A and object B (step 541). distance L1 between the center of the bounding volume of In FIG. 23, the state change calculating unit 13 obtains the 45 result of the calculation.

temporarily updated object A is moved onto object B. Thus, as shown in FIG. 24, the bounding volume of the object A is moved (step 543).

object B (step 551). pressure of object A is larger than the maximum pressure of lating unit 13 determines whether or not the interference movement interference calculation if the attribute of object FIG. 25 is the flowchart of the process performed in the

movement as a result of which object B is broken (step 553). SS2). Mext, it is determined whether or not there is a reaction If yes, the temporary update of the movement of object A

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

☐ BLACK BORDERS	
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES	
☐ FADED TEXT OR DRAWING	ž-3
BLURRED OR ILLEGIBLE TEXT OR DRAWING	,
☐ SKEWED/SLANTED IMAGES	1.
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS	ह ^न अ • • • • • •
☐ GRAY SCALE DOCUMENTS	; ;
☐ LINES OR MARKS ON ORIGINAL DOCUMENT	
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY	
OTHER.	

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

THIS PAGE BLANK (USPTO)