

11. Introducing HANK

Adv. Macro: Heterogenous Agent Models

Jeppe Druedahl 2023

• Previously: Non-linear transition path and perfect foresight

- Previously: Non-linear transition path and perfect foresight
- Today:
 - 1. Linearized Impulse Response Function (IRF)
 - 2. Linearized simulation with aggregate risk

- Previously: Non-linear transition path and perfect foresight
- Today:
 - 1. Linearized Impulse Response Function (IRF)
 - 2. Linearized simulation with aggregate risk
- Relevance: Business cycle analysis

- Previously: Non-linear transition path and perfect foresight
- Today:
 - 1. Linearized Impulse Response Function (IRF)
 - 2. Linearized simulation with aggregate risk
- Relevance: Business cycle analysis
- Literature:
 - Auclert et. al. (2021), »Using the Sequence-Space Jacobian to Solve and Estimate Heterogeneous-Agent Models«
 - Boppart et. al. (2018), »Exploiting MIT shocks in heterogeneous-agent economies: The impulse response as a numerical derivative«
 - 3. Documentation for GEModelTools

IRFs and simulation

Reminder of model class

- Unknowns: U
- Shock: Z
- Additional variables: X
- Target equation system:

$$H(U,Z)=0$$

Auxiliary model equations:

$$X = M(U, Z)$$

• Today: Just consider the first order solution

- Today: Just consider the first order solution
 - 1. Solve for Impulse Response Functions (IRFs) for unknowns

$$H(U, Z) = 0 \Rightarrow H_U dU + H_Z dZ = 0 \Leftrightarrow dU = \underbrace{-H_U^{-1}H_Z}_{\equiv G_U} dZ$$

- Today: Just consider the first order solution
 - 1. Solve for Impulse Response Functions (IRFs) for unknowns

$$H(U, Z) = 0 \Rightarrow H_U dU + H_Z dZ = 0 \Leftrightarrow dU = \underbrace{-H_U^{-1} H_Z}_{\equiv G_U} dZ$$

$$X = M(U, Z) \Rightarrow dX = M_U dU + M_Z dZ$$

$$= \underbrace{(-M_U H_U^{-1} H_Z + M_Z)}_{\equiv G} dZ$$

- Today: Just consider the first order solution
 - 1. Solve for Impulse Response Functions (IRFs) for unknowns

$$H(U, Z) = 0 \Rightarrow H_U dU + H_Z dZ = 0 \Leftrightarrow dU = \underbrace{-H_U^{-1} H_Z}_{\equiv G_U} dZ$$

2. Derive all other IRFs for

$$X = M(U, Z) \Rightarrow dX = M_U dU + M_Z dZ$$

$$= \underbrace{(-M_U H_U^{-1} H_Z + M_Z)}_{\equiv G} dZ$$

Computation: Same for Z as for U

- Today: Just consider the first order solution
 - 1. Solve for Impulse Response Functions (IRFs) for unknowns

$$H(U, Z) = 0 \Rightarrow H_U dU + H_Z dZ = 0 \Leftrightarrow dU = \underbrace{-H_U^{-1} H_Z}_{\equiv G_U} dZ$$

$$X = M(U, Z) \Rightarrow dX = M_U dU + M_Z dZ$$

$$= \underbrace{(-M_U H_U^{-1} H_Z + M_Z)}_{\equiv G} dZ$$

- Computation: Same for Z as for U
- Limitations:

- Today: Just consider the first order solution
 - 1. Solve for Impulse Response Functions (IRFs) for unknowns

$$H(U, Z) = 0 \Rightarrow H_U dU + H_Z dZ = 0 \Leftrightarrow dU = \underbrace{-H_U^{-1} H_Z}_{\equiv G_U} dZ$$

$$X = M(U, Z) \Rightarrow dX = M_U dU + M_Z dZ$$

$$= \underbrace{(-M_U H_U^{-1} H_Z + M_Z)}_{\equiv G} dZ$$

- Computation: Same for Z as for U
- Limitations:
 - 1. Imprecise for large shocks

- Today: Just consider the first order solution
 - 1. Solve for Impulse Response Functions (IRFs) for unknowns

$$H(U, Z) = 0 \Rightarrow H_U dU + H_Z dZ = 0 \Leftrightarrow dU = \underbrace{-H_U^{-1} H_Z}_{\equiv G_U} dZ$$

$$X = M(U, Z) \Rightarrow dX = M_U dU + M_Z dZ$$

$$= \underbrace{(-M_U H_U^{-1} H_Z + M_Z)}_{\equiv G} dZ$$

- Computation: Same for Z as for U
- Limitations:
 - 1. Imprecise for large shocks
 - Imprecise in models with aggregate non-linearities (direct in aggregate equations or through micro-behavior)

Aggregate risk (dynamic equilibrium)

 Aggregate stochastic variables: Z follow some known process with innovations ε. State space form: RHS is what is known today

$$\left[egin{array}{c} oldsymbol{\underline{D}}_{t+1} \ oldsymbol{X}_t \ oldsymbol{Z}_t \end{array}
ight] = \mathcal{M}\left(\left[egin{array}{c} oldsymbol{\underline{D}}_t \ oldsymbol{X}_{t-1} \ oldsymbol{Z}_{t-1} \end{array}
ight], oldsymbol{\epsilon}_t
ight)$$

 \neq perfect foresight wrt. future agg. variables in sequence-space

Aggregate risk (dynamic equilibrium)

 Aggregate stochastic variables: Z follow some known process with innovations ε. State space form: RHS is what is known today

$$\left[egin{array}{c} oldsymbol{\underline{D}}_{t+1} \ oldsymbol{X}_t \ oldsymbol{Z}_t \end{array}
ight] = \mathcal{M}\left(\left[egin{array}{c} oldsymbol{\underline{D}}_t \ oldsymbol{X}_{t-1} \ oldsymbol{Z}_{t-1} \end{array}
ight], oldsymbol{\epsilon}_t
ight)$$

eq perfect foresight wrt. future agg. variables in sequence-space

• **Observation:** Linearization of aggregate variables imply *certainty equivalence* with respect to these

$$\begin{bmatrix} \underline{\underline{D}}_{t+1} \\ \mathbf{X}_t \\ \mathbf{Z}_t \end{bmatrix} = \mathbf{A} \begin{bmatrix} \underline{\underline{D}}_t \\ \mathbf{X}_{t-1} \\ \mathbf{Z}_{t-1} \end{bmatrix} + \mathbf{B} \epsilon_t$$

Aggregate risk (dynamic equilibrium)

 Aggregate stochastic variables: Z follow some known process with innovations ε. State space form: RHS is what is known today

$$\left[egin{array}{c} \underline{oldsymbol{D}}_{t+1} \ oldsymbol{X}_t \ oldsymbol{Z}_t \end{array}
ight] = \mathcal{M}\left(\left[egin{array}{c} \underline{oldsymbol{D}}_t \ oldsymbol{X}_{t-1} \ oldsymbol{Z}_{t-1} \end{array}
ight], oldsymbol{\epsilon}_t
ight)$$

eq perfect foresight wrt. future agg. variables in sequence-space

 Observation: Linearization of aggregate variables imply certainty equivalence with respect to these

$$\begin{bmatrix} \underline{D}_{t+1} \\ X_t \\ Z_t \end{bmatrix} = A \begin{bmatrix} \underline{D}_t \\ X_{t-1} \\ Z_{t-1} \end{bmatrix} + B\epsilon_t$$

 Insight: The IRF from an MIT shock is equivalent to the IRF in a model with aggregate risk, which is linearized in the aggregate variables (Boppart et. al., 2018)

Comparisons

- State-space approach with linearization: Ahn et al. (2018);
 Bayer and Luetticke (2020); Bhandari et al. (2023); Bilal (2023)
 Con:
 - 1. Harder to implement in my view
 - 2. Valuable to be able to interpret Jacobians

Pro:

- 1. More similar to standard approaches for RBC and NK models
- 2. Easier path to 2nd and higher order approximations
- Global solution: The distribution of households is a state variable for each household ⇒ explosion in complexity
 - 1. Original: Krusell and Smith (1997, 1998); Algan et al. (2014);
 - Deep learning: Fernández-Villaverde et al. (2021); Maliar et al. (2021); Han et al. (2021); Kase et al. (2022); Azinovic et al. (2022); Gu et al. (2023); Chen et al. (2023)
- Discrete aggregate risk: Lin and Peruffo (2023)

Example: Global HANC (Krusell-Smith)

Recursive formulation of household problem:

$$\begin{split} v(\boldsymbol{D}_{t}, \Gamma_{t}, z_{it}, a_{it-1}) &= \max_{a_{it}, c_{it}} u(c_{it}) + \beta \mathbb{E}_{t} \left[v(\boldsymbol{D}_{t+1}, \Gamma_{t+1}, z_{it+1}, a_{it}) \right] \\ \text{s.t.} \\ K_{t-1} &= \int a_{it-1} d\boldsymbol{D}_{t} \\ r_{t} &= \alpha \Gamma_{t} K_{t-1}^{\alpha - 1} - \delta \\ w_{t} &= (1 - \alpha) \Gamma_{t} K_{t-1}^{\alpha} \\ a_{it} + c_{it} &= (1 + r_{t}) a_{it-1} + w_{t} z_{it} \\ \log z_{it+1} &= \rho_{z} \log z_{it} + \psi_{it+1}, \ \ \psi_{it} \sim \mathcal{N}(\mu_{\psi}, \sigma_{\psi}), \ \ \mathbb{E}[z_{it}] = 1 \\ a_{it} \geq 0, \end{split}$$

Problem: How to discretize D_t?
Note: D_t needed directly for K_{t-1} and indirectly for K_t, K_{t+1}...

■ **Shocks:** Write the shocks as an $MA(\infty)$ with coefficients $d\mathbf{Z}_s$ for $s \in \{0, 1, \dots\}$ driven by the innovation ϵ_t .

- **Shocks:** Write the shocks as an $MA(\infty)$ with coefficients $d\mathbf{Z}_s$ for $s \in \{0, 1, \dots\}$ driven by the innovation ϵ_t .
- Linearized simulation (with truncation):

- **Shocks:** Write the shocks as an $MA(\infty)$ with coefficients $d\mathbf{Z}_s$ for $s \in \{0, 1, \dots\}$ driven by the innovation ϵ_t .
- Linearized simulation (with truncation):
 - 1. Draw time series of innovations, $\tilde{\epsilon}_t$

- **Shocks:** Write the shocks as an $MA(\infty)$ with coefficients $d\mathbf{Z}_s$ for $s \in \{0, 1, \dots\}$ driven by the innovation ϵ_t .
- Linearized simulation (with truncation):
 - 1. Draw time series of innovations, $\tilde{\epsilon}_t$
 - 2. Calculate the time series of shocks as $d\tilde{Z}_t = \sum_{s=0}^{T-1} dZ_s \tilde{\epsilon}_{t-s}$ Note: $dZ_s \tilde{\epsilon}_{t-s} =$ effect of shock s periods ago today

- **Shocks:** Write the shocks as an $MA(\infty)$ with coefficients $d\mathbf{Z}_s$ for $s \in \{0, 1, ...\}$ driven by the innovation ϵ_t .
- Linearized simulation (with truncation):
 - 1. Draw time series of innovations, $\tilde{\epsilon}_t$
 - 2. Calculate the time series of shocks as $d\tilde{Z}_t = \sum_{s=0}^{T-1} dZ_s \tilde{\epsilon}_{t-s}$ Note: $dZ_s \tilde{\epsilon}_{t-s} =$ effect of shock s periods ago today
 - 3. Calculate the time series of other aggregate variables as

$$d\tilde{\boldsymbol{X}}_t = \sum_{s=0}^{T-1} d\boldsymbol{X}_s \tilde{\boldsymbol{\epsilon}}_{t-s}$$

where dX_s is the IRF to a unit-shock after s periods

- **Shocks:** Write the shocks as an $MA(\infty)$ with coefficients $d\mathbf{Z}_s$ for $s \in \{0, 1, \dots\}$ driven by the innovation ϵ_t .
- Linearized simulation (with truncation):
 - 1. Draw time series of innovations, $\tilde{\epsilon}_t$
 - 2. Calculate the time series of shocks as $d\tilde{Z}_t = \sum_{s=0}^{T-1} dZ_s \tilde{\epsilon}_{t-s}$ Note: $dZ_s \tilde{\epsilon}_{t-s} =$ effect of shock s periods ago today
 - 3. Calculate the time series of other aggregate variables as

$$d\tilde{\boldsymbol{X}}_t = \sum_{s=0}^{T-1} d\boldsymbol{X}_s \tilde{\boldsymbol{\epsilon}}_{t-s}$$

where dX_s is the IRF to a unit-shock after s periods

Intuition: Sum of first order effects from all previous shocks

- **Shocks:** Write the shocks as an $MA(\infty)$ with coefficients $d\mathbf{Z}_s$ for $s \in \{0, 1, \dots\}$ driven by the innovation ϵ_t .
- Linearized simulation (with truncation):
 - 1. Draw time series of innovations, $\tilde{\epsilon}_t$
 - 2. Calculate the time series of shocks as $d\tilde{Z}_t = \sum_{s=0}^{T-1} dZ_s \tilde{\epsilon}_{t-s}$ Note: $dZ_s \tilde{\epsilon}_{t-s} =$ effect of shock s periods ago today
 - 3. Calculate the time series of other aggregate variables as

$$d\tilde{\boldsymbol{X}}_t = \sum_{s=0}^{T-1} d\boldsymbol{X}_s \tilde{\epsilon}_{t-s}$$

where dX_s is the IRF to a unit-shock after s periods

- Intuition: Sum of first order effects from all previous shocks
- Equivalence: Same result if we linearize all aggregated equations and write the model in $MA(\infty)$ form

Generality: Add auxiliary variables (incl. distributional moments)
 to calculate additional IRFs and simulations

- Generality: Add auxiliary variables (incl. distributional moments) to calculate additional IRFs and simulations
- Full distribution:

- Generality: Add auxiliary variables (incl. distributional moments)
 to calculate additional IRFs and simulations
- Full distribution:
 - 1. The IRF for grid point i_g in a policy function can be calculated as

$$da_{i_g,s}^* = \sum_{s'=s}^{T-1} \sum_{X^{hh} \in X^{hh}} \frac{\partial a_{i_g}^*}{\partial X_{s'-s}^{hh}} dX_{s'}^{hh}.$$

where $\partial a_{ig}^*/\partial X_k^{hh}$ is the derivative to a k-period ahead shock to input X^{hh} (calculated in fake news algorithm)

- Generality: Add auxiliary variables (incl. distributional moments)
 to calculate additional IRFs and simulations
- Full distribution:
 - 1. The IRF for grid point i_g in a policy function can be calculated as

$$da_{i_g,s}^* = \sum_{s'=s}^{T-1} \sum_{X^{hh} \in \mathbf{X}^{hh}} \frac{\partial a_{i_g}^*}{\partial X_{s'-s}^{hh}} dX_{s'}^{hh}.$$

where $\partial a_{i_g}^*/\partial X_k^{hh}$ is the derivative to a k-period ahead shock to input X^{hh} (calculated in fake news algorithm)

2. The policy function can there be simulated as

$$\boldsymbol{a}_{i_g,t}^* = \sum_{s=0}^{T-1} da_{i_g,s}^* \tilde{\epsilon}_{t-s}$$

- Generality: Add auxiliary variables (incl. distributional moments)
 to calculate additional IRFs and simulations
- Full distribution:
 - 1. The IRF for grid point i_g in a policy function can be calculated as

$$da_{i_g,s}^* = \sum_{s'=s}^{I-1} \sum_{X^{hh} \in \mathbf{X}^{hh}} \frac{\partial a_{i_g}^*}{\partial X_{s'-s}^{hh}} dX_{s'}^{hh}.$$

where $\partial a_{i_g}^*/\partial X_k^{hh}$ is the derivative to a k-period ahead shock to input X^{hh} (calculated in fake news algorithm)

2. The policy function can there be simulated as

$$\boldsymbol{a}_{i_g,t}^* = \sum_{s=0}^{T-1} da_{i_g,s}^* \tilde{\epsilon}_{t-s}$$

3. Distribution can then be simulated forwards

Calculating moments - variance

Identical and independent distributed innovations:

$$\mathbb{E}\left[\epsilon_t^i \epsilon_{t'}^j\right] = \begin{cases} \sigma_i & \text{if } t = t' \text{ and } i = j\\ 0 & \text{el} \end{cases}$$

Calculating moments - variance

Identical and independent distributed innovations:

$$\mathbb{E}\left[\epsilon_t^i \epsilon_{t'}^j\right] = \begin{cases} \sigma_i & \text{if } t = t' \text{ and } i = j\\ 0 & \text{el} \end{cases}$$

• Calculating moments such as $var(dC_t)$ from the IRFs:

$$\operatorname{var}(dC_t) = \mathbb{E}\left[\left(\sum_{i \in \mathcal{Z}} \sum_{s=0}^{T-1} dC_s \epsilon_{t-s}^i\right)^2\right]$$
$$= \sum_{i \in \mathcal{Z}} \sum_{s=0}^{T-1} \mathbb{E}\left[\epsilon_{t-s}^i \epsilon_{t-s}^i\right] \left(dC_s^i\right)^2$$
$$= \sum_{i \in \mathcal{Z}} \sigma_i^2 \sum_{s=0}^{T-1} \left(dC_s^i\right)^2$$

where dC_s^i is the IRF to a unit-shock to i after s periods and σ_i is the standard deviation of shock i

Calculating moments - covariance

Covariances:

$$\operatorname{cov}(dC_t, dY_{t+k}) = \sum_{i \in \mathcal{Z}} \sigma_i^2 \sum_{s=0}^{T-1-k} dC_s^i dY_{s+k}^i$$

Calculating moments - covariance

Covariances:

$$\operatorname{cov}(dC_t, dY_{t+k}) = \sum_{i \in \mathcal{Z}} \sigma_i^2 \sum_{s=0}^{T-1-k} dC_s^i dY_{s+k}^i$$

Covariance decomposition:

$$\frac{\text{contribution from one shock}}{\text{contributions from all shocks}} = \frac{\sigma_j^2 \sum_{s=0}^{T-1-k} dC_s^j dY_{s+k}^j}{\sum_{i \in \mathcal{Z}} \sigma_i^2 \sum_{s=0}^{T-1-k} dC_s^i dY_{s+k}^i}$$

Estimation

The simplest approaches:

- 1. Impulse Response Function (IRF) matching
- 2. Minimum distance / simulated method of methods (SMM)

Estimation

- The simplest approaches:
 - 1. Impulse Response Function (IRF) matching
 - 2. Minimum distance / simulated method of methods (SMM)
- Also possible: Bayesian likelihood estimation (see SSJ)

Estimation

- The simplest approaches:
 - 1. Impulse Response Function (IRF) matching
 - 2. Minimum distance / simulated method of methods (SMM)
- Also possible: Bayesian likelihood estimation (see SSJ)
- **Speed:** For a new set of parameters?
 - 1. Only shock processes change \Rightarrow same Jacobians (G_U , G)
 - Only need to re-compute Jacobian of aggregate variables? (only single block?)
 - 3. Also need to re-compute Jacobian of household problem?
 - 4. Also need to find stationary equilibrium again?

Sticky prices

Households:

- 1. Differ by stochastic idiosyncratic productivity and savings
- 2. Supply labor and choose consumption
- 3. Subject to a borrowing constraint

Households:

- 1. Differ by stochastic idiosyncratic productivity and savings
- 2. Supply labor and choose consumption
- 3. Subject to a borrowing constraint

Intermediary goods firms (continuum)

- 1. Produce differentiated goods with labor
- 2. Set price under monopolistic competition
- 3. Pay dividends to households

Households:

- 1. Differ by stochastic idiosyncratic productivity and savings
- 2. Supply labor and choose consumption
- 3. Subject to a borrowing constraint

• Intermediary goods firms (continuum)

- 1. Produce differentiated goods with labor
- 2. Set price under monopolistic competition
- 3. Pay dividends to households

Final goods firms (representative)

- 1. Produce final good with intermediary goods
- 2. Take price as given under perfect competition

Households:

- 1. Differ by stochastic idiosyncratic productivity and savings
- 2. Supply labor and choose consumption
- 3. Subject to a borrowing constraint

• Intermediary goods firms (continuum)

- 1. Produce differentiated goods with labor
- 2. Set price under monopolistic competition
- 3. Pay dividends to households

Final goods firms (representative)

- 1. Produce final good with intermediary goods
- 2. Take price as given under perfect competition

Government:

- 1. Collect taxes from households
- 2. Pays interest on government debt and choose public consumption

Households:

- 1. Differ by stochastic idiosyncratic productivity and savings
- 2. Supply labor and choose consumption
- 3. Subject to a borrowing constraint

• Intermediary goods firms (continuum)

- 1. Produce differentiated goods with labor
- 2. Set price under monopolistic competition
- 3. Pay dividends to households

Final goods firms (representative)

- 1. Produce final good with intermediary goods
- 2. Take price as given under perfect competition

Government:

- 1. Collect taxes from households
- 2. Pays interest on government debt and choose public consumption
- Central bank: Set nominal interest rate

• Intermediary goods indexed by $j \in [0,1]$

- Intermediary goods indexed by $j \in [0,1]$
- Static problem for representative final good firm:

$$\max_{y_{jt} \,\forall j} P_t Y_t - \int_0^1 p_{jt} y_{jt} dj \text{ s.t. } Y_t = \left(\int_0^1 y_{jt}^{\frac{1}{\mu}} dj \right)^{\mu}$$

for given output price, P_t , and input prices, p_{jt}

- Intermediary goods indexed by $j \in [0,1]$
- Static problem for representative final good firm:

$$\max_{y_{jt} \ \forall j} P_t Y_t - \int_0^1 p_{jt} y_{jt} dj \text{ s.t. } Y_t = \left(\int_0^1 y_{jt}^{\frac{1}{\mu}} dj \right)^{\mu}$$

for given output price, P_t , and input prices, p_{jt}

• **Demand curve** derived from FOC wrt. y_{jt}

$$\forall j: y_{jt} = \left(\frac{p_{jt}}{P_t}\right)^{-\frac{\mu}{\mu-1}} Y_t$$

- Intermediary goods indexed by $j \in [0,1]$
- Static problem for representative final good firm:

$$\max_{y_{jt} \,\forall j} P_t Y_t - \int_0^1 p_{jt} y_{jt} dj \text{ s.t. } Y_t = \left(\int_0^1 y_{jt}^{\frac{1}{\mu}} dj \right)^{\mu}$$

for given output price, P_t , and input prices, p_{jt}

Demand curve derived from FOC wrt. y_{jt}

$$\forall j: y_{jt} = \left(\frac{p_{jt}}{P_t}\right)^{-\frac{\mu}{\mu-1}} Y_t$$

Note: Zero profits (can be used to derive price index)

Derivation of demand curve

■ FOC wrt. *y_{jt}*

$$0 = P_{t}\mu \left(\int_{0}^{1} y_{jt}^{\frac{1}{\mu}} dj \right)^{\mu-1} \frac{1}{\mu} y_{jt}^{\frac{1}{\mu}-1} - p_{jt} \Leftrightarrow$$

$$\frac{p_{jt}}{P_{t}} = \left(\int_{0}^{1} y_{jt}^{\frac{1}{\mu}} dj \right)^{\mu-1} y_{jt}^{\frac{1-\mu}{\mu}} \Leftrightarrow$$

$$\left(\frac{p_{jt}}{P_{t}} \right)^{\frac{\mu}{\mu-1}} = \left(\int_{0}^{1} y_{jt}^{\frac{1}{\mu}} dj \right)^{\mu} y_{jt}^{-1} \Leftrightarrow$$

$$y_{jt} = \left(\frac{p_{jt}}{P_{t}} \right)^{-\frac{\mu}{\mu-1}} Y_{t}$$

Dynamic problem for intermediary goods firms:

$$J_{t}(p_{jt-1}) = \max_{y_{jt}, p_{jt}, n_{jt}} \left\{ \frac{p_{jt}}{P_{t}} y_{jt} - w_{t} n_{jt} - \Omega(p_{jt}, p_{jt-1}) Y_{t} + \frac{J_{t+1}(p_{jt})}{1 + r_{t+1}} \right\}$$
s.t. $y_{jt} = \Gamma_{t} n_{jt}, \ y_{jt} = \left(\frac{p_{jt}}{P_{t}}\right)^{-\frac{\mu}{\mu-1}} Y_{t}$

$$\Omega(p_{jt}, p_{jt-1}) = \frac{\mu}{\mu - 1} \frac{1}{2\kappa} \left[\log\left(\frac{p_{jt}}{p_{jt-1}}\right) \right]^{2}$$

Dynamic problem for intermediary goods firms:

$$\begin{split} J_{t}(p_{jt-1}) &= \max_{y_{jt}, p_{jt}, n_{jt}} \left\{ \frac{p_{jt}}{P_{t}} y_{jt} - w_{t} n_{jt} - \Omega(p_{jt}, p_{jt-1}) Y_{t} + \frac{J_{t+1}(p_{jt})}{1 + r_{t+1}} \right\} \\ \text{s.t. } y_{jt} &= \Gamma_{t} n_{jt}, \ y_{jt} = \left(\frac{p_{jt}}{P_{t}} \right)^{-\frac{\mu}{\mu - 1}} Y_{t} \\ \Omega(p_{jt}, p_{jt-1}) &= \frac{\mu}{\mu - 1} \frac{1}{2\kappa} \left[\log \left(\frac{p_{jt}}{p_{jt-1}} \right) \right]^{2} \end{split}$$

• **Symmetry:** In equilibrium all firms set the same price, $p_{jt} = P_t$

Dynamic problem for intermediary goods firms:

$$\begin{split} J_t(p_{jt-1}) &= \max_{y_{jt}, p_{jt}, n_{jt}} \left\{ \frac{p_{jt}}{P_t} y_{jt} - w_t n_{jt} - \Omega(p_{jt}, p_{jt-1}) Y_t + \frac{J_{t+1}(p_{jt})}{1 + r_{t+1}} \right\} \\ \text{s.t. } y_{jt} &= \Gamma_t n_{jt}, \ y_{jt} = \left(\frac{p_{jt}}{P_t} \right)^{-\frac{\mu}{\mu - 1}} Y_t \\ \Omega(p_{jt}, p_{jt-1}) &= \frac{\mu}{\mu - 1} \frac{1}{2\kappa} \left[\log \left(\frac{p_{jt}}{p_{jt-1}} \right) \right]^2 \end{split}$$

- **Symmetry:** In equilibrium all firms set the same price, $p_{jt} = P_t$
- **NKPC** derived from FOC wrt. p_{jt} and envelope condition:

$$\log(1+\pi_t) = \kappa \left(\frac{w_t}{\Gamma_t} - \frac{1}{\mu}\right) + \frac{Y_{t+1}}{Y_t} \frac{\log(1+\pi_{t+1})}{1+r_{t+1}}, \ \pi_t \equiv P_t/P_{t-1} - 1$$

Dynamic problem for intermediary goods firms:

$$\begin{split} J_t(p_{jt-1}) &= \max_{y_{jt}, p_{jt}, n_{jt}} \left\{ \frac{p_{jt}}{P_t} y_{jt} - w_t n_{jt} - \Omega(p_{jt}, p_{jt-1}) Y_t + \frac{J_{t+1}(p_{jt})}{1 + r_{t+1}} \right\} \\ \text{s.t. } y_{jt} &= \Gamma_t n_{jt}, \ \ y_{jt} = \left(\frac{p_{jt}}{P_t} \right)^{-\frac{\mu}{\mu - 1}} Y_t \\ \Omega(p_{jt}, p_{jt-1}) &= \frac{\mu}{\mu - 1} \frac{1}{2\kappa} \left[\log \left(\frac{p_{jt}}{p_{jt-1}} \right) \right]^2 \end{split}$$

- **Symmetry:** In equilibrium all firms set the same price, $p_{jt} = P_t$
- **NKPC** derived from FOC wrt. p_{jt} and envelope condition:

$$\log(1+\pi_t) = \kappa \left(\frac{w_t}{\Gamma_t} - \frac{1}{\mu}\right) + \frac{Y_{t+1}}{Y_t} \frac{\log(1+\pi_{t+1})}{1 + r_{t+1}}, \ \ \pi_t \equiv P_t/P_{t-1} - 1$$

• Implied production: $Y_t = y_{jt}$, $N_t = n_{jt}$ (from symmetry)

Dynamic problem for intermediary goods firms:

$$\begin{split} J_t(p_{jt-1}) &= \max_{y_{jt}, p_{jt}, n_{jt}} \left\{ \frac{p_{jt}}{P_t} y_{jt} - w_t n_{jt} - \Omega(p_{jt}, p_{jt-1}) Y_t + \frac{J_{t+1}(p_{jt})}{1 + r_{t+1}} \right\} \\ \text{s.t. } y_{jt} &= \Gamma_t n_{jt}, \ \ y_{jt} = \left(\frac{p_{jt}}{P_t} \right)^{-\frac{\mu}{\mu - 1}} Y_t \\ \Omega(p_{jt}, p_{jt-1}) &= \frac{\mu}{\mu - 1} \frac{1}{2\kappa} \left[\log \left(\frac{p_{jt}}{p_{jt-1}} \right) \right]^2 \end{split}$$

- **Symmetry:** In equilibrium all firms set the same price, $p_{it} = P_t$
- **NKPC** derived from FOC wrt. p_{jt} and envelope condition:

$$\log(1+\pi_t) = \kappa \left(\frac{w_t}{\Gamma_t} - \frac{1}{\mu}\right) + \frac{Y_{t+1}}{Y_t} \frac{\log(1+\pi_{t+1})}{1 + r_{t+1}}, \ \ \pi_t \equiv P_t/P_{t-1} - 1$$

- Implied production: $Y_t = y_{jt}$, $N_t = n_{jt}$ (from symmetry)
- Implied dividends: $d_t = Y_t w_t N_t \frac{\mu}{\mu 1} \frac{1}{2\kappa} \left[\log \left(1 + \pi_t \right) \right]^2 Y_t$

Derivation of NKPC

■ **FOC** wrt. *p_{it}*:

$$0 = \left(1 - \frac{\mu}{\mu - 1}\right) \left(\frac{p_{jt}}{P_t}\right)^{-\frac{\mu}{\mu - 1}} \frac{Y_t}{P_t} + \frac{\mu}{\mu - 1} \frac{w_t}{\Gamma_t} \left(\frac{p_{jt}}{P_t}\right)^{-\frac{\mu}{\mu - 1}} \frac{Y_t}{p_{jt}}$$
$$-\frac{\mu}{\mu - 1} \frac{1}{\kappa} \frac{\log\left(\frac{p_{jt}}{p_{jt-1}}\right)}{p_{jt}} Y_t + \frac{J'_{t+1}(p_{jt})}{1 + r_{t+1}}$$

Derivation of NKPC

■ **FOC** wrt. *p_{it}*:

$$0 = \left(1 - \frac{\mu}{\mu - 1}\right) \left(\frac{p_{jt}}{P_t}\right)^{-\frac{\mu}{\mu - 1}} \frac{Y_t}{P_t} + \frac{\mu}{\mu - 1} \frac{w_t}{\Gamma_t} \left(\frac{p_{jt}}{P_t}\right)^{-\frac{\mu}{\mu - 1}} \frac{Y_t}{p_{jt}}$$
$$-\frac{\mu}{\mu - 1} \frac{1}{\kappa} \frac{\log\left(\frac{p_{jt}}{p_{jt-1}}\right)}{p_{jt}} Y_t + \frac{J'_{t+1}(p_{jt})}{1 + r_{t+1}}$$

• Envelope condition: $J'_{t+1}(p_{jt}) = \frac{\mu}{\mu-1} \frac{1}{\kappa} \frac{\log\left(\frac{p_{jt+1}}{p_{jt}}\right)}{p_{jt}} Y_{t+1}$

Derivation of NKPC

■ FOC wrt. *p_{it}*:

$$0 = \left(1 - \frac{\mu}{\mu - 1}\right) \left(\frac{p_{jt}}{P_t}\right)^{-\frac{\mu}{\mu - 1}} \frac{Y_t}{P_t} + \frac{\mu}{\mu - 1} \frac{w_t}{\Gamma_t} \left(\frac{p_{jt}}{P_t}\right)^{-\frac{\mu}{\mu - 1}} \frac{Y_t}{p_{jt}} - \frac{\mu}{\mu - 1} \frac{1}{\kappa} \frac{\log\left(\frac{p_{jt}}{p_{jt-1}}\right)}{p_{jt}} Y_t + \frac{J'_{t+1}(p_{jt})}{1 + r_{t+1}}$$

- Envelope condition: $J'_{t+1}(p_{jt}) = \frac{\mu}{\mu-1} \frac{1}{\kappa} \frac{\log\left(\frac{p_{jt+1}}{p_{jt}}\right)}{p_{jt}} Y_{t+1}$
- FOC + Envelope + Symmetry + $\pi_t = P_t/P_{t-1} 1$

$$0 = \left(1 - \frac{\mu}{\mu - 1}\right) \frac{Y_t}{P_t} + \frac{\mu}{\mu - 1} \frac{w_t}{\Gamma_t} \frac{Y_t}{P_t} + \frac{\mu}{\mu - 1} \frac{1}{\kappa} \log\left(1 + \pi_{t+1}\right) \frac{Y_{t+1}}{P_t} + \frac{\mu}{\mu - 1} \frac{1}{\kappa} \log\left(1 + \pi_{t+1}\right) \frac{Y_{t+1}}{P_t}$$

$$\log(1 + \pi_t) = \kappa \left(\frac{w_t}{Z_t} - \frac{1}{\mu}\right) + \frac{Y_{t+1}}{Y_t} \frac{\log(1 + \pi_{t+1})}{1 + r_{t+1}}$$

1. Zero-inflation steady state:

$$\pi_t = 0 o w_t = rac{\Gamma_t}{\mu} o$$
 wage is mark-downed relative to productivity

(Note: Sometimes a β^{firm} is used instead of $\frac{1}{1+r_{t+1}}$)

$$\log(1+\pi_t) = \kappa \left(\frac{w_t}{Z_t} - \frac{1}{\mu}\right) + \frac{Y_{t+1}}{Y_t} \frac{\log\left(1 + \pi_{t+1}\right)}{1 + r_{t+1}}$$

1. Zero-inflation steady state:

 $\pi_t=0
ightarrow w_t=rac{\Gamma_t}{\mu}
ightarrow$ wage is mark-downed relative to productivity

2. Larger adjustment costs, $\kappa \downarrow$ (more sticky prices): Less pass-through from marginal costs, $\frac{w_t}{Z_t}$, to inflation, π_t

(Note: Sometimes a β^{firm} is used instead of $\frac{1}{1+r_{t+1}}$)

$$\log(1 + \pi_t) = \kappa \left(\frac{w_t}{Z_t} - \frac{1}{\mu}\right) + \frac{Y_{t+1}}{Y_t} \frac{\log(1 + \pi_{t+1})}{1 + r_{t+1}}$$

1. Zero-inflation steady state:

 $\pi_t = 0
ightarrow w_t = rac{\Gamma_t}{\mu}
ightarrow$ wage is mark-downed relative to productivity

- 2. Larger adjustment costs, $\kappa \downarrow$ (more sticky prices): Less pass-through from marginal costs, $\frac{W_t}{Z_*}$, to inflation, π_t
- 3. Larger (expected) future inflation, $\pi_{t+1} \uparrow$: Increase price today, $\pi_t \uparrow$ Especially in a boom, $\frac{Y_{t+1}}{Y_t} > 1$

(Note: Sometimes a β^{firm} is used instead of $\frac{1}{1+r_{\mathrm{t+1}}}$)

$$\log(1+\pi_t) = \kappa \left(\frac{w_t}{Z_t} - \frac{1}{\mu}\right) + \frac{Y_{t+1}}{Y_t} \frac{\log\left(1 + \pi_{t+1}\right)}{1 + r_{t+1}}$$

1. Zero-inflation steady state:

 $\pi_t = 0 o w_t = rac{\Gamma_t}{\mu} o$ wage is mark-downed relative to productivity

- 2. Larger adjustment costs, $\kappa \downarrow$ (more sticky prices): Less pass-through from marginal costs, $\frac{W_t}{Z_*}$, to inflation, π_t
- 3. Larger (expected) future inflation, $\pi_{t+1} \uparrow$: Increase price today, $\pi_t \uparrow$ Especially in a boom, $\frac{Y_{t+1}}{Y_t} > 1$
- 4. Dividends: Counter-cyclical as wages increase more than prices

(Note: Sometimes a β^{firm} is used instead of $\frac{1}{1+r_{t+1}}$)

• Household problem: Distribution, D_t , over z_{it} and a_{it-1}

$$\begin{aligned} v_t(z_{it}, a_{it-1}) &= \max_{c_{it}} \frac{c_{it}^{1-\sigma}}{1-\sigma} - \varphi \frac{\ell_{it}^{1+\nu}}{1+\nu} + \beta \mathbb{E}_t \left[v_{t+1}(z_{it+1}, a_{it}) \right] \\ \text{s.t. } a_{it} &= (1+r_t) a_{it-1} + (w_t \ell_{it} - \tau_t + d_t) z_{it} - c_{it} \geq \underline{a} \\ \log z_{it+1} &= \rho_z \log z_{it} + \psi_{it+1} \ , \psi_{it} \sim \mathcal{N}(\mu_{\psi}, \sigma_{\psi}), \ \mathbb{E}[z_{it}] = 1 \end{aligned}$$

• Household problem: Distribution, D_t , over z_{it} and a_{it-1}

$$\begin{aligned} v_t(z_{it}, a_{it-1}) &= \max_{c_{it}} \frac{c_{it}^{1-\sigma}}{1-\sigma} - \varphi \frac{\ell_{it}^{1+\nu}}{1+\nu} + \beta \mathbb{E}_t \left[v_{t+1}(z_{it+1}, a_{it}) \right] \\ \text{s.t. } a_{it} &= (1+r_t)a_{it-1} + (w_t\ell_{it} - \tau_t + d_t)z_{it} - c_{it} \geq \underline{a} \\ \log z_{it+1} &= \rho_z \log z_{it} + \psi_{it+1} \ , \psi_{it} \sim \mathcal{N}(\mu_{\psi}, \sigma_{\psi}), \ \mathbb{E}[z_{it}] = 1 \end{aligned}$$

Dividends: Distributed proportional to productivity (ad hoc)

• **Household problem**: Distribution, D_t , over z_{it} and a_{it-1}

$$\begin{aligned} v_t(z_{it}, a_{it-1}) &= \max_{c_{it}} \frac{c_{it}^{1-\sigma}}{1-\sigma} - \varphi \frac{\ell_{it}^{1+\nu}}{1+\nu} + \beta \mathbb{E}_t \left[v_{t+1}(z_{it+1}, a_{it}) \right] \\ \text{s.t. } a_{it} &= (1+r_t)a_{it-1} + (w_t\ell_{it} - \tau_t + d_t)z_{it} - c_{it} \ge \underline{a} \\ \log z_{it+1} &= \rho_z \log z_{it} + \psi_{it+1} \ , \psi_{it} \sim \mathcal{N}(\mu_{\psi}, \sigma_{\psi}), \ \mathbb{E}[z_{it}] = 1 \end{aligned}$$

- Dividends: Distributed proportional to productivity (ad hoc)
- Taxes: Collected proportional to productivity (ad hoc)

• Household problem: Distribution, D_t , over z_{it} and a_{it-1}

$$\begin{aligned} v_t(z_{it}, a_{it-1}) &= \max_{c_{it}} \frac{c_{it}^{1-\sigma}}{1-\sigma} - \varphi \frac{\ell_{it}^{1+\nu}}{1+\nu} + \beta \mathbb{E}_t \left[v_{t+1}(z_{it+1}, a_{it}) \right] \\ \text{s.t. } a_{it} &= (1+r_t)a_{it-1} + (w_t\ell_{it} - \tau_t + d_t)z_{it} - c_{it} \geq \underline{a} \\ \log z_{it+1} &= \rho_z \log z_{it} + \psi_{it+1} \ , \psi_{it} \sim \mathcal{N}(\mu_{\psi}, \sigma_{\psi}), \ \mathbb{E}[z_{it}] = 1 \end{aligned}$$

- Dividends: Distributed proportional to productivity (ad hoc)
- Taxes: Collected proportional to productivity (ad hoc)
- Optimality conditions:

FOC wrt.
$$c_{it}$$
: $0 = c_{it}^{-\sigma} - \beta \mathbb{E}_t \left[v_{a,t+1}(z_{it+1}, a_{it}) \right]$
FOC wrt. ℓ_{it} : $0 = w_t z_{it} \beta \mathbb{E}_t \left[v_{a,t+1}(z_{it+1}, a_{it}) \right] - \varphi \ell_{it}^{\nu}$
Envelope condition: $v_{a,t}(z_{it}, a_{it-1}) = (1 + r_t) c_{it}^{-\sigma}$

• Household problem: Distribution, D_t , over z_{it} and a_{it-1}

$$\begin{aligned} v_t(z_{it}, a_{it-1}) &= \max_{c_{it}} \frac{c_{it}^{1-\sigma}}{1-\sigma} - \varphi \frac{\ell_{it}^{1+\nu}}{1+\nu} + \beta \mathbb{E}_t \left[v_{t+1}(z_{it+1}, a_{it}) \right] \\ \text{s.t. } a_{it} &= (1+r_t)a_{it-1} + (w_t\ell_{it} - \tau_t + d_t)z_{it} - c_{it} \ge \underline{a} \\ \log z_{it+1} &= \rho_z \log z_{it} + \psi_{it+1} \ , \psi_{it} \sim \mathcal{N}(\mu_{\psi}, \sigma_{\psi}), \ \mathbb{E}[z_{it}] = 1 \end{aligned}$$

- Dividends: Distributed proportional to productivity (ad hoc)
- Taxes: Collected proportional to productivity (ad hoc)
- Optimality conditions:

FOC wrt.
$$c_{it}$$
: $0 = c_{it}^{-\sigma} - \beta \mathbb{E}_t \left[v_{a,t+1}(z_{it+1}, a_{it}) \right]$
FOC wrt. ℓ_{it} : $0 = w_t z_{it} \beta \mathbb{E}_t \left[v_{a,t+1}(z_{it+1}, a_{it}) \right] - \varphi \ell_{it}^{\nu}$
Envelope condition: $v_{a,t}(z_{it}, a_{it-1}) = (1 + r_t) c_{it}^{-\sigma}$

• Effective labor-supply: $n_{it} = z_{it}\ell_{it}$

EGM I

Beginning-of-period value function:

$$\underline{v}_{a,t}(z_{it-1},a_{it-1}) = \mathbb{E}_t\left[v_{a,t}(z_{it},a_{it-1})\right] = \mathbb{E}_t\left[(1+r_t)c_{it}^{-\sigma}\right]$$

EGM I

Beginning-of-period value function:

$$\underline{v}_{a,t}(z_{it-1}, a_{it-1}) = \mathbb{E}_t\left[v_{a,t}(z_{it}, a_{it-1})\right] = \mathbb{E}_t\left[(1+r_t)c_{it}^{-\sigma}\right]$$

• Endogenous grid method: Vary z_t and a_t to find

$$c_{it} = (\beta \underline{v}_{a,t+1}(z_{it}, a_{it}))^{-\frac{1}{\sigma}}$$

$$\ell_{it} = \left(\frac{w_t z_{it}}{\varphi} c_{it}^{-\sigma}\right)^{\frac{1}{\nu}}$$

$$m_{it} = c_{it} + a_{it} - (w_t \ell_{it} - \tau_t + d_t) z_{it}$$

EGM I

Beginning-of-period value function:

$$\underline{v}_{a,t}(z_{it-1}, a_{it-1}) = \mathbb{E}_t\left[v_{a,t}(z_{it}, a_{it-1})\right] = \mathbb{E}_t\left[(1+r_t)c_{it}^{-\sigma}\right]$$

Endogenous grid method: Vary z_t and a_t to find

$$c_{it} = (\beta \underline{v}_{a,t+1}(z_{it}, a_{it}))^{-\frac{1}{\sigma}}$$

$$\ell_{it} = \left(\frac{w_t z_{it}}{\varphi} c_{it}^{-\sigma}\right)^{\frac{1}{\nu}}$$

$$m_{it} = c_{it} + a_{it} - (w_t \ell_{it} - \tau_t + d_t) z_{it}$$

Consumption and labor supply: Use linear interpolation to find

$$c^*(z_{it}, a_{it-1})$$
 and $\ell^*(z_{it}, a_{it-1})$ with $m_{it} = (1+r_t)a_{it-1}$

Introduction IRFs and simulation Sticky prices Summary Exercise Summary

Beginning-of-period value function:

$$\underline{v}_{a,t}(z_{it-1}, a_{it-1}) = \mathbb{E}_t\left[v_{a,t}(z_{it}, a_{it-1})\right] = \mathbb{E}_t\left[(1+r_t)c_{it}^{-\sigma}\right]$$

• Endogenous grid method: Vary z_t and a_t to find

$$c_{it} = (\beta \underline{v}_{a,t+1}(z_{it}, a_{it}))^{-\frac{1}{\sigma}}$$

$$\ell_{it} = \left(\frac{w_t z_{it}}{\varphi} c_{it}^{-\sigma}\right)^{\frac{1}{\nu}}$$

$$m_{it} = c_{it} + a_{it} - (w_t \ell_{it} - \tau_t + d_t) z_{it}$$

Consumption and labor supply: Use linear interpolation to find

$$c^*(z_{it}, a_{it-1})$$
 and $\ell^*(z_{it}, a_{it-1})$ with $m_{it} = (1 + r_t)a_{it-1}$

• Savings: $a^*(z_{it}, a_{it-1}) = (1 + r_t)a_{it-1} - c_{it}^* + (w_t\ell_{it}^* - \tau_t + d_t)z_{it}$

EGM II

• **Problem:** $a_t^*(z_{it}, a_{it-1}) < \underline{a}$ violate borrowing constraint

- **Problem:** $a_t^*(z_{it}, a_{it-1}) < \underline{a}$ violate borrowing constraint
- Refinement if $a_t^*(z_{it}, a_{it-1}) < \underline{a}$ by:

Find ℓ_{it}^* (and c_{it}^* and n_{it}^*) with Newton solver assuming $a_{it}^* = \underline{a}$

- **Problem:** $a_t^*(z_{it}, a_{it-1}) < \underline{a}$ violate borrowing constraint
- Refinement if $a_t^*(z_{it}, a_{it-1}) < \underline{a}$ by:

Find ℓ_{it}^* (and c_{it}^* and n_{it}^*) with Newton solver assuming $a_{it}^* = \underline{a}$

1. Stop if
$$f(\ell_{it}^*) = \ell_{it}^* - \left(\frac{w_t z_{it}}{\varphi}\right)^{\frac{1}{\nu}} \left(c_{it}^*\right)^{-\frac{\sigma}{\nu}} < \text{tol. where}$$

$$c_{it}^* = (1+r_t)a_{it-1} + \left(w_t\ell_{it}^* - \tau_t + d_t\right)z_{it}$$

$$n_{it} = \ell_{it}z_{it}$$

- **Problem:** $a_t^*(z_{it}, a_{it-1}) < \underline{a}$ violate borrowing constraint
- Refinement if $a_t^*(z_{it}, a_{it-1}) < \underline{a}$ by:

Find ℓ_{it}^* (and c_{it}^* and n_{it}^*) with Newton solver assuming $a_{it}^* = \underline{a}$

- 1. Stop if $f(\ell_{it}^*) = \ell_{it}^* \left(\frac{w_t z_{it}}{\varphi}\right)^{\frac{1}{\nu}} (c_{it}^*)^{-\frac{\sigma}{\nu}} < \text{tol. where}$ $c_{it}^* = (1+r_t)a_{it-1} + (w_t\ell_{it}^* \tau_t + d_t)z_{it}$ $n_{it} = \ell_{it}z_{it}$
- 2. Set

$$\ell_{it}^* = \frac{f(\ell_{it}^*)}{f'(\ell_{it}^*)} = \frac{f(\ell_{it}^*)}{1 - \left(\frac{w_t z_{it}}{\varphi}\right)^{\frac{1}{\nu}} \left(-\frac{\sigma}{\nu}\right) \left(c_{it}^*\right)^{-\frac{\sigma}{\nu}} w_t z_{it}}$$

- **Problem:** $a_t^*(z_{it}, a_{it-1}) < \underline{a}$ violate borrowing constraint
- Refinement if $a_t^*(z_{it}, a_{it-1}) < \underline{a}$ by:

Find ℓ_{it}^* (and c_{it}^* and n_{it}^*) with Newton solver assuming $a_{it}^* = \underline{a}$

- 1. Stop if $f(\ell_{it}^*) = \ell_{it}^* \left(\frac{w_t z_{it}}{\varphi}\right)^{\frac{1}{\nu}} \left(c_{it}^*\right)^{-\frac{\sigma}{\nu}} < \text{tol. where}$ $c_{it}^* = (1+r_t)a_{it-1} + (w_t\ell_{it}^* \tau_t + d_t)z_{it}$ $n_{it} = \ell_{it}z_{it}$
- 2. Set

$$\ell_{it}^* = \frac{f(\ell_{it}^*)}{f'(\ell_{it}^*)} = \frac{f(\ell_{it}^*)}{1 - \left(\frac{w_t z_{it}}{\varphi}\right)^{\frac{1}{\nu}} \left(-\frac{\sigma}{\nu}\right) \left(c_{it}^*\right)^{-\frac{\sigma}{\nu}} w_t z_{it}}$$

3. Return to step 1

Government and central bank

Monetary policy: Follow Taylor-rule:

$$i_t = i_t^* + \phi \pi_t + \phi^{\mathsf{Y}} (\mathsf{Y}_t - \mathsf{Y}_{\mathsf{ss}})$$

where i_t^* is a shock

Government and central bank

Monetary policy: Follow Taylor-rule:

$$i_t = i_t^* + \phi \pi_t + \phi^Y (Y_t - Y_{ss})$$

where i_t^* is a shock

Fisher relationship:

$$r_t = (1 + i_{t-1})/(1 + \pi_t) - 1$$

Government and central bank

Monetary policy: Follow Taylor-rule:

$$i_t = i_t^* + \phi \pi_t + \phi^Y (Y_t - Y_{ss})$$

where i_t^* is a shock

Fisher relationship:

$$r_t = (1 + i_{t-1})/(1 + \pi_t) - 1$$

■ Government: Choose τ_t to keep debt constant and finance exogenous public consumption

$$\tau_t = r_t B_{ss} + G_t$$

Market clearing

- 1. Assets: $B_{ss} = \int a_t^*(z_{it}, a_{it-1}) d\mathbf{D}_t$
- 2. Labor: $N_t = \int n_t^*(z_{it}, a_{it-1}) d\mathbf{D}_t$ (in effective units)
- 3. Goods: $Y_t = \int c_t^*(z_{it}, a_{it-1}) d{m D}_t + G_t + rac{\mu}{\mu-1} rac{1}{2\kappa} \left[\log\left(1+\pi_t
 ight)
 ight]^2 Y_t$

As an equation system

$$egin{aligned} m{H}(m{\pi},m{w},m{Y},m{i}^*,m{\Gamma},m{\underline{D}}_0) &= m{0} \ & \left[egin{aligned} \log(1+\pi_t) - \left[\kappa\left(rac{w_t}{Z_t} - rac{1}{\mu}
ight) + rac{Y_{t+1}}{Y_t}rac{\log(1+\pi_{t+1})}{1+r_{t+1}}
ight)
ight] \ N_t - \int n_t^*(z_{it},a_{it-1})dm{D}_t \ B_{ss} - \int a_t^*(z_{it},a_{it-1})dm{D}_t \end{aligned}
ight] = m{0}$$

The rest of the model is given by

$$X = M(\pi, w, Y, i^*, \Gamma)$$

As a DAG

Steady state

- Chosen: B_{ss} , G_{ss} , r_{ss}
- Analytically:
 - 1. Normalization: $Z_{ss} = N_{ss} = 1$
 - 2. **Zero-inflation:** $\pi_{ss} = 0 \Rightarrow i_{ss} = i_{ss}^* = (1 + r_{ss})(1 + \pi_{ss}) 1$
 - 3. Firms: $Y_{ss} = Z_{ss} N_{ss}$, $w_{ss} = \frac{Z_{ss}}{\mu}$ and $d_{ss} = Y_{ss} w_{ss} N_{ss}$
 - 4. **Government:** $\tau_{ss} = r_{ss}B_{ss} + G_{ss}$
 - 5. Assets: $A_{ss} = B_{ss}$
- Numerically: Choose β and φ to get market clearing

Transmission mechanism to monetary policy shock

- 1. Monetary policy shock: $i_t^*\downarrow \Rightarrow i_t=i_t^*+\phi\pi_t\downarrow$
- 2. Real interest rate: $r_t = \frac{1+i_{t-1}}{1+\pi_t} \downarrow$
- 3. Taxes: $\tau_t = r_t B_{ss} \downarrow$
- 4. Household consumption, $C_t^{hh} \uparrow$, due to $r_t \downarrow$ and $\tau_t \downarrow$
- 5. Firms production, $Y_t \uparrow$, and labor demand, $N_t \uparrow$
- 6. **Inflation,** $\pi_t \uparrow$, and **wage**, $w_t \uparrow$ and **dividends**, $d_t \downarrow$
- 7. Household labor supply, $N_t^{hh}\uparrow$, due to $w_t\uparrow$ and $d_t\downarrow$, but dampened $\tau_t\downarrow$
- 8. **Nominal rate**, $i_t \uparrow$ due to $\pi_t \uparrow$ implying $r_t \uparrow$
- 9. **Household consumption**, $C_t^{hh}\uparrow$, due to $w_t\uparrow$ but dampened by $d_t\downarrow$ and $r_t\uparrow$

Representative agent

Replace market clearing conditions with FOCs:

$$C_t^{-\sigma} = \beta (1 + r_{t+1}) C_{t+1}^{-\sigma}$$

$$\varphi N_t^{\nu} = w_t C_t^{-\sigma}$$

- From resource constraint: $C_t = Y_t G_t \frac{\mu}{\mu 1} \frac{1}{2\kappa} \left[\log \left(1 + \pi_t \right) \right]^2 Y_t$
- Ensure same steady state: $\beta^{RA} = \frac{1}{1+r_{ss}}, \ \ \varphi^{RA} = \frac{w_{ss}(C_{ss}^{\text{th}})^{-\sigma}}{(N_{ss})^{\nu}}$
- Intertemporal budget constraint:

$$C_0 + \frac{C_1}{1+r_1} + \ldots = (1+r_0)A_{-1} + Y_0^{RA} + \frac{Y_1^{RA}}{1+r_1} \ldots$$

where $Y_t^{RA} = w_t N_t + d_t - \tau_t$ is household income

Summary

Summary

Today:

- 1. Aggregate risk and linearized dynamics (IRF and simulation)
- 2. Calculating aggregate moments (for calibration or estimation)
- 3. HANK with sticky prices

Exercise

Exercise

- 1. Compute the non-linear response to a temporary increase in government spending
- 2. Compute the linearized IRF to the same shock and compare
- 3. Sketch the transmission mechanism of government spending
- 4. Analyze how the aggressiveness of monetary policy affects the effectiveness of fiscal policy
- 5. Compare you previous results with the effects of a public transfer

Summary

Summary and next week

Today:

- 1. Aggregate risk and linearized dynamics (IRF and simulation)
- 2. Calculating aggregate moments (for calibration or estimation)
- 3. A baseline HANK (sticky prices)
- Next week: More on HANK models
- Homework:
 - 1. Work on exercise
 - 2. Skim-read Auclert et al. (2023),
 - »The Intertemporal Keynesian Cross«