Name: Anna Huang

AMATH 515

Homework Set 2, Due Feb 13, 11:59 pm.

(1) Let $x, y \in \mathbb{R}^n$, and consider a function $f : \mathbb{R}^n \to \overline{\mathbb{R}}$. We make the following definitions:

$$\operatorname{prox}_{tf}(y) := \arg \min_{x} \frac{1}{2t} \|x - y\|^{2} + f(x)$$
$$f_{t}(y) := \min_{x} \frac{1}{2t} \|x - y\|^{2} + f(x).$$

Notice that $\operatorname{prox}_{tf}(y)$ is the minimizer of an optimization problem; in particular it is a vector in \mathbb{R}^n , On the other hand $f_t(y)$ is a function from $f: \mathbb{R}^n \to \overline{\mathbb{R}}$, just as f.

Suppose f is convex.

(a) Show that f_t is convex.

Answer to 1a: Since $f_t(y) = \min_x \frac{1}{2t} ||x - y||^2 + f(x)$, then it must be less than or equal to $F(x,y) = \frac{1}{2t} ||x - y||^2 + f(x)$ because $f_t(y)$ is the min of x.

$$f_t(y_i) <= F(x_i, y_i)$$

Using the strictly convex inequality and reassigning:

$$F(\lambda x_1 + (1 - \lambda)x_2, \lambda y_1 + (1 - \lambda)y_2) <= \lambda F(x_1, y_1) + (1 - \lambda)F(x_2, y_2)$$
$$F(x_3, y_3) <= \lambda F(x_1, y_1) + (1 - \lambda)F(x_2, y_2)$$

And once again, $f_t(y_3) \ll F(x_3, y_3)$ since $f_t(y)$ is the minimizer. So to continue the inequality:

$$F(x_3, y_3) \le \lambda F(x_1, y_1) + (1 - \lambda) F(x_2, y_2)$$

$$f_t(y_3) \le F(x_3, y_3) \le \lambda F(x_1, y_1) + (1 - \lambda) F(x_2, y_2)$$

$$f_t(y_3) \le F(x_3, y_3) \le \lambda f(y_1) + (1 - \lambda) f(y_2)$$

$$f_t(y_3) \le \lambda f(y_1) + (1 - \lambda) f(y_2)$$

Now plugging y_3 back into $f_t(y_3)$:

$$f_t(\lambda y_1 + (1 - \lambda)y_2) <= \lambda f(y_1) + (1 - \lambda)f(y_2)$$

As a result, f_t is convex, as demonstrated above by the strictly convex inequality.

(b) Show that $prox_{tf}(y)$ is uniquely defined for any input y.

Answer to 1b: f_t is strictly convex, as demonstrated in 1a, but utilizing the assumption that f is continuous and bounded from below, then the sum of the function of the quadratic has to go to ∞ in any direction if you slice any level set. As a result, there is a unique minimizer x_1 for every y_i for the inequality to be true. Additionally, $f_t(y)$ is a sum of the convex function f(x) and a simple quadratic $\frac{1}{2t}||x-y||^2$. It is guaranteed for every y_i , and there will be an unique x_i that solves it. This results in the following:

$$f_t(y) = \min_{x} \frac{1}{2t} ||x - y||^2 + f(x)$$

$$f_t(y_i) = \min_{x_i} \frac{1}{2t} ||x_i - y_i||^2 + f(x_i)$$

$$f_t(y_i) = \frac{1}{2t} ||x_i - y_i||^2 + f(x_i)$$

For this to be true, then the $prox_{tf}(y)$ also exists and is unique.

$$\operatorname{prox}_{tf}(y) = \arg\min_{x} \frac{1}{2t} ||x - y||^2 + f(x)$$
$$\operatorname{prox}_{tf}(y_i) = \arg\min_{x_i} \frac{1}{2t} ||x_i - y_i||^2 + f(x_i)$$
$$\operatorname{prox}_{tf}(y_i) = \frac{1}{2t} ||x_i - y_i||^2 + f(x_i)$$

(c) Compute $\operatorname{prox}_{tf}(y)$ and f_t , where $f(x) = ||x||_1$.

Answer to 1c: The $prox_{tf}(y)$ is:

$$\operatorname{prox}_{tf}(y) = \arg\min_{x} \frac{1}{2t} \|x - y\|^{2} + f(x)$$
$$\operatorname{prox}_{tf}(y) = \arg\min_{\hat{x}} \frac{1}{2t} \|\hat{x} - y\|^{2} + \|x\|_{1}$$

$$\operatorname{prox}_{tf}(y) = \begin{cases} y > t & \frac{1}{t} * (\hat{x} - y) + 1 \\ y < -t & \frac{1}{t} * (\hat{x} - y) - 1 \\ y \in [-t, t] & 0 \end{cases}$$

Therefore the $\hat{x} = y - t$ for $\hat{x} > t$ and $\hat{x} = y + t$ for $\hat{x} < -t$. This gives the following:

$$\hat{x} = \begin{cases} y > t & y - t \\ y < -t & y + t \\ y \in [-t, t] & 0 \end{cases}$$

This results in $\max(\min(y+t,0), y-t)$. The f_t is the following when plugging \hat{x} back into f_t :

$$f_{t} = \begin{cases} y > t & \frac{1}{2t} \| - t \|^{2} + f(y - t) \\ y < -t & \frac{1}{2t} \| + t \|^{2} + f(y + t) \\ y \in [-t, t] & \frac{\|y\|^{2}}{2} \end{cases}$$

$$f_{t} = \begin{cases} y > t & \frac{1}{2t} \| - t \|^{2} + \|y - t\|_{1} \\ y < -t & \frac{1}{2t} \| + t \|^{2} + \|y + t\|_{1} \\ y \in [-t, t] & \frac{\|y\|^{2}}{2} \end{cases}$$

(d) Compute prox_{tf} and f_t for $f = \delta_{\mathbb{B}_{\infty}}(x)$, where $\mathbb{B}_{\infty} = [-1, 1]^n$.

Answer to 1d: The prox_{tf} for the B_{∞} is reduce to each coordinate (x_i, y_i) :

$$\operatorname{prox}_{tf} = \begin{cases} -1 \le y_i \le 1, & y_i \\ y_i > 1, & -1 \\ y_i < -1, & 1 \end{cases}$$

 $prox_{tf} = max[(min(1, x_i), -1]$

Since -1 and 1 are in the set of the indicator function, then $f(-1) = \delta_{\mathbb{B}_{\infty}}(-1) = 0$ and $f(1) = \delta_{\mathbb{B}_{\infty}}(1) = 0$. The f_t of the g_{∞} is the following:

$$f_t = \begin{cases} -1 \le y_i \le 1, & 0\\ y_i > 1, & \frac{1}{2t}(-1 - y_i)^2\\ y_i > 1, & \frac{1}{2t}(1 - y_i)^2 \end{cases}$$

- (2) More prox identities.
 - (a) Suppose f is convex and let $g_s(x) = f(x) + \frac{1}{2s} ||x x_0||^2$. Find the formula for prox_{tg} in terms of prox_{tf} .

Answer to 2a: The $prox_{tg}(y)$ below:

$$f_t(y) = \min_{x} \frac{1}{2t} ||x - y||^2 + f(x)$$

$$g_t(y) = \min_{x} \frac{1}{2t} ||x - y||^2 + \frac{1}{2s} ||x - x_0||^2 + f(x)$$

$$\operatorname{prox}_{tf}(y) = \arg\min_{x} \frac{1}{2t} ||x - y||^2 + f(x)$$

$$\operatorname{prox}_{tg}(y) = \arg\min_{x} \frac{1}{2t} ||x - y||^2 + f(x) + \frac{1}{2s} ||x - x_0||^2$$

First we set $z = \text{prox}_{tq}(y)$ and given the optimality conditions:

$$0 \in \frac{1}{t}(z - y) \in \partial g(x)$$
$$\frac{1}{t}(y - z) \in \partial g(x)$$

This gives the following with g(x) to find the $\partial g(x)$:

$$g(x) = \frac{1}{2s}||x - x_0||^2 + f(x)$$
$$\partial g(x) = \frac{1}{s}(x - x_0) + \partial f(x)$$

Since $\frac{1}{t}(y-z) \in \partial g(x)$, this results:

$$\frac{1}{t}(y-z) = \frac{1}{s}(x-x_0) + \partial f(x) \frac{1}{t}(y-z) + \frac{1}{s}(x_0-x) = \partial f(x)$$

Since x = z:

$$\frac{1}{t}(y-z) + \frac{1}{s}(x_0 - z) = \partial f(z)$$

$$s(y-z) + t(x_0 - z) = st\partial f(z)$$

$$sy - sz + tx_0 - tz = st\partial f(z)$$

$$sy + tx_0 - sz - tz = st\partial f(z)$$

$$sy + tx_0 - z(s+t) = st\partial f(z)$$

$$\frac{sy + tx_0}{s+t} - z = \frac{st}{s+t}\partial f(z)$$

$$\frac{s+t}{st}(\frac{sy + tx_0}{s+t} - z) = \partial f(z)$$

$$\frac{s+t}{st}(\frac{sy + tx_0}{s+t} - z) \in \partial f(z)$$

As compared to the optimality conditions: $\frac{1}{t}(y-z) \in \partial f(x)$. We set \hat{y} and \hat{t} as the following:

$$\hat{y} = \frac{sy + tx_0}{s + t}$$

$$\hat{t} = \frac{st}{s + t}$$

This will result in:

$$\begin{split} z &= \mathrm{prox}_{\hat{t}\hat{f}}(\frac{sy + tx_0}{s + t}) \\ z &= \mathrm{prox}_{\hat{t}\hat{f}}(\hat{y}) \\ z &= \mathrm{prox}_{tg}(y) = \mathrm{prox}_{\hat{t}\hat{f}}(\hat{y}) \end{split}$$

(b) Let $f(x) = ||x||_2$. Write $\operatorname{prox}_{tf}(y)$ in closed form. **Answer to 2b:** First setting x = my where m is a placeholder. The $\operatorname{prox}_{tf}(y)$ below:

$$\operatorname{prox}_{tf}(y) = \arg\min_{x} \frac{1}{2t} ||x - y||^{2} + f(x)$$

$$\operatorname{prox}_{tf}(y) = \arg\min_{x} \frac{1}{2t} ||x - y||^{2} + ||x||_{2}$$

$$\operatorname{prox}_{tf}(y) = \arg\min_{x} \frac{1}{2t} ||my - y||^{2} + ||my||_{2}$$

$$\operatorname{prox}_{tf}(y) = \arg\min_{x} \frac{1}{2t} (m - 1)^{2} ||y||^{2} + m||y||_{2}$$

$$\nabla_{m} = \frac{1}{t} * (m - 1) ||y||^{2} + ||y||_{2} = 0$$

$$m = 1 - \frac{t}{||y||}$$

$$\frac{x}{y} = 1 - \frac{t}{||y||}$$

$$x = y - \frac{yt}{||y||}$$

However, $y \neq 0$ or else the expression does not exist, so it would be:

$$\operatorname{prox}_{tf}(y) = \max(y - \frac{yt}{\|y\|}, 0)$$

(c) Let $f(x) = \frac{1}{2} ||x||_2^2$. Write $\operatorname{prox}_{tf}(y)$ in closed form. **Answer to 2c:** The $\operatorname{prox}_{tf}(y)$ below:

$$\operatorname{prox}_{tf}(y) = \arg\min_{x} \frac{1}{2t} ||x - y||^{2} + f(x)$$

$$\operatorname{prox}_{tf}(y) = \arg\min_{x} \frac{1}{2t} ||x - y||^{2} + \frac{1}{2} ||x||_{2}^{2}$$

$$\nabla = \frac{1}{t} * (x - y) + x = 0$$

$$0 = \frac{x}{t} - \frac{y}{t} + x$$

$$0 = x - y + x * t$$

$$y = x(1 + t)$$

$$x = \frac{y}{1 + t}$$

$$\operatorname{prox}_{tf}(y) = \frac{y}{1 + t}$$

(d) Let $f(x) = \frac{1}{2} \|Cx\|^2$. Write $\text{prox}_{tf}(y)$ in closed form. Answer to 2d:

$$\begin{aligned} & \text{prox}_{tf}(y) = \arg\min_{x} \frac{1}{2t} \|x - y\|^2 + f(x) \\ & \text{prox}_{tf}(y) = \arg\min_{x} \frac{1}{2t} \|x - y\|^2 + \frac{1}{2} \|Cx\|^2 \\ & \nabla = \frac{1}{t} * (x - y) + C^T C x = 0 \\ & 0 = \frac{x}{t} - \frac{y}{t} + C^T C x \\ & 0 = x - y + C^T C x t \\ & y = x (1 + C^T C t) \\ & x = \frac{y}{1 + C^T C t} \\ & \text{prox}_{tf}(y) = \frac{y}{1 + C^T C t} \end{aligned}$$

Assuming C is a semi-positive definite matrix, then $C^T * C$ will always be positive semi-definite when taking the gradient.

Coding Assignment

Please download 515Hw2_Coding.ipynb solvers.py and mnist01.npy to complete the coding problem (3), (4) and (5).

- (3) Complete three generic solvers we learned from the class in solvers.py, including,
 - proximal gradient descent,
 - accelerated gradient descent.
 - accelerated proximal gradient descent.
- (4) Compressive sensing, consider the sparse regression problem,

$$\min_{x} \ \frac{1}{2} ||Ax - b||^2 + \lambda ||x||_1$$

where $A \in \mathbb{R}^{m \times n}$ and m < n. When x is sparse, it is possible to recover using the ℓ_1 regularizer. We choose $\lambda = ||A^{\top}b||_{\infty}/10$.

(a) By treating $f(x) = \frac{1}{2} ||Ax - b||^2$ and $g(x) = \lambda ||x||_1$, complete the function w.r.t. to f and g.

Answer to 4a: Complete

- (b) Apply the proximal gradient algorithm. Do you recover the signal? **Answer to 4b:** Yes, the signal is recovered.
- (c) Apply accelerated proximal gradient, is it faster than method of (b)? **Answer to 4c:** Yes it is faster than (b). Proximal Gradient Descent took 0.2260749340057373 seconds and Accelerated Proximal Gradient Descent took 0.1549389362335205 seconds.
- (5) Logistic regression on MNIST data, recall the logistic regression problem,

$$\min_{x} \sum_{i=1}^{m} \left\{ \ln(1 + \exp(\langle a_i, x \rangle)) - b_i \langle a_i, x \rangle \right\} + \frac{\lambda}{2} ||x||^2.$$

We will use logistic regression to classify the "0" and "1" images from MNIST. In this example, a_i is our vectorized image, and b_i is the corresponding label. We want to obtain an classifier, so that for a new image a_{new} , we can predict

$$\begin{cases} a_{\text{new}} \text{ is a } 0, & \text{if } \langle a_{\text{new}}, x \rangle \leq 0 \\ a_{\text{new}} \text{ is a } 1, & \text{if } \langle a_{\text{new}}, x \rangle > 0 \end{cases}.$$

- (a) Complete the function, gradient and Hessian for the logistic regression.

 Answer to 4a: Complete
- (b) Apply gradient, accelerate gradient and Newton's method to solve the problem. Which one is the fastest and which one is the slowest?

 Answer to 5b: Gradient Descent took 0.670673131942749 seconds, Accelerate Gradient took 0.7892789840698242 seconds, and Newton's method took 0.6741549968719482 seconds. The fastest method is Gradient Descent and the slowest method is Accelerate Gradient Descent.
- (c) What is your accuracy of the classification for the test data. **Answer to 5c:** The accuracy of the classification is 1.000.