1. As necessidades minimas diárias de certas vitaminas, bem como a quantidade fornecida por varios tipos de alimentos e seus preços encontram-se na tabela a seguir. Determine as quantidades de cada alimento a ser ingeridas diariamente, ao minimo custo possivel.

Vitamina	leite(I)	carne(kg)	Ovos (dúzia)	Quant.
				mínima
А	0,25	2	10	1
С	25	20	10	50
D	2,5	200	10	10
Custo	2,2	17	4,2	

- Objetivo: minimizar custo
- Restrições : necessidades minimas diarias de vitaminas
 - x_1 = quantidade de leite a ser comprada
 - x_2 = quantidade de carne a ser comprada
 - x_3 = quantidade de ovos a ser comprada

min z = 2,2x₁ + 17x₂ + 4,2x₃

$$0,25x_1 + 2x_2 + 10x_3 \ge 1$$
S.A.
$$25x_1 + 20x_2 + 10x_3 \ge 50$$

$$2,5x_1 + 200x_2 + 10x_3 \ge 10$$

$$x_1, x_2, x_3 \ge 0$$

2. Uma empresa fabrica produtos 1 e 2. Cada produto requer um tempo de processamento em cada um dos tres departamentos da empresas. Os lucros de cada produto são respectivamente \$1,00 e \$1,50. Maximizar o lucro, respeitando a capacidade de produção.

tempo de processamento

	Departamentos			
Produto	Α	В	С	
1	2	1	4	
2	2	2	2	

disponibilidade

Depto.	Horas		
	disponiveis		
Α	160		
В	120		
С	280		

- objetivo: maximizar o lucro
- restrições: horas disponíveis nos departamentos
 x₁ = quantidade do produto 1 a ser fabricado
 x₂ = quantidade do produto 2 a ser fabricado

max
$$z = x_1 + 1.5x_2$$

S. A.
$$\begin{cases} 2x_1 + 2x_2 \le 160 \\ x_1 + 2x_2 \le 120 \\ 4x_1 + 2x_2 \le 280 \\ x_1, x_2 \ge 0 \end{cases}$$

3. Um fazendeiro deseja otimizar as plantações de arroz e milho na sua fazenda. O seu lucro por unidade de área plantada de arroz é 5 u.m., e por unidade de área plantada de milho é 2 u.m. . As áreas plantadas de arroz e milho não devem ser maiores que 3 e 4 respectivamente. Cada unidade de área plantada de arroz consome 1 homem-hora, e cada unidade de área plantada de milho consome 2 homens-hora. A disponibilidade total de homens-hora é 9.

- objetivo: maximizar o lucro
- restrições: área máxima, mão de obra

$$x_1$$
 = área plantada de arroz

 x_2 = área plantada de milho

max
$$z = 5x_1 + 2x_2$$

 $x_1 \leq 3$ (área de arroz)
S. A. $x_2 \leq 4$ (área de milho)
 $x_1 + 2x_2 \leq 9$ (mão de obra)
 $x_1, x_2 \geq 0$

4. Uma empresa faz 3 produtos, a partir de 3 matérias-primas e os dados estão na tabela. Observe que a fabricação do produto 2 gera um resíduo que pode ser usado como matéria-prima do tipo2, e a fabricação do produto 3 gera um resíduo que pode ser usado com matéria-prima do tipo 1. Dado que o objetivo é maximizar o lucro, formular como um problema de programação linear (P.L.)

	PRODUTOS			
Recurso	1	2	3	Disponib.
1	6	3		60
2	2		4	40
3	3	3	3	60
Residuo 1			4	
Residuo 2		4		
Lucro	3	2	6	

5. Uma fazenda deve comprar grãos para compor uma ração para o gado; existem tres tipos de grão. As necessidades mínimas de nutrientes, os níveis desses nutrientes em cada tipo de grão e seus custos estão na tabela. Determinar a composição da mistura de grãos para satisfazer as necessidades mínimas dos nutrientes ao mínimo custo.

	Nut / un			
	Grão 1	Grão 2	Grão 3	Nec Min
Nutr. A	2	3	7	1250
Nutr. B	1	1	0	250
Nutr. C	5	3	0	900
Nutr. D	0,6	0,25	1	232
Custo/un	41	35	96	

- maximizar o lucro
- restrições: disponibilidade de matéria prima

 x_1 = quantidade produto 1 a ser fabricado

 x_2 = quantidade produto 2 a ser fabricado

 x_3 = quantidade produto 3 a ser fabricado

max
$$z=3x_1+2x_2+6x_3$$
 (lucro total)

$$\begin{cases} 6x_1 + 3x_2 \le 60 + 4x_3 & \Rightarrow 6x_1 + 3x_2 - 4x_3 \le 60 & \text{(mat\'eria prima 1)} \\ 2x_1 + 4x_3 \le 40 + 4x_2 & \Rightarrow 2x_1 - 4x_2 + 4x_3 \le 40 & \text{(mat\'eria prima 2)} \\ 3x_1 + 3x_2 + 3x_3 \le 60 & \text{(mat\'eria prima 3)} \\ x_1, x_2, x_3 \ge 0 & \text{(mat\'eria prima 3)} \end{cases}$$