Filtering and Working in the Frequency Domain

Mar-2019

Tonight

- 1. Quick Review
- 2. Look at 38.5kHz PWM filter slides
- 3. Breadboard/test filter

Time vs Frequency Domain

Frequency = 1 / Period

Square Wave = Odd Harmonics

1st and 2nd Order Low Pass Filters

A Conceptual Low Pass Filter

All-pass

Low-pass

Decreases with frequency

RLC Components vs Frequency

RC Filters

Other filter topologies

Common Mode Choke

2nd order LC filter

2nd order active filter

11th order LC filter

Other filter topologies

7th order elliptical filter

2nd order active filter

11th order LC filter

Crystal Bandpass Filters

4 pole crystal filter

PWM Freq Components

25% Duty Cycle

50% Duty Cycle

75% Duty Cycle

Example PWM Filters

R1 = R2 = 470 Ohms C1 = C2 = 0.1μ F 1st order f_c = $1/(2\pi RC)$ = 3.39kHz

PWM Signal – 4%, 50%, 98%

PWM Signal – 50%

PWM Signal – 4%

PWM Transition – 98% to 4%

