1.
$$\beta = \frac{51 - 44\sqrt[3]{5} + \sqrt[3]{25}}{1 - \sqrt[3]{5} - 3\sqrt[3]{25}}$$

 $lpha=\sqrt[3]{5}$, lpha - корень многочлена $h=x^3-5$, h - неприводим.

$$\beta = \frac{51 - 44\alpha + \alpha^{2}}{1 - \alpha - 4\alpha^{2}} = b_{0} + b_{1}\alpha + b_{2}\alpha^{2}$$

$$51 - 44\alpha + \alpha^{2} = (1 - \alpha - 4\alpha^{2})(b_{0} + b_{1}\alpha + b_{2}\alpha^{2}) =$$

$$= b_{0} + b_{1}\alpha + b^{2}\alpha^{2} - b_{0}\alpha - b_{1}\alpha^{2} - b_{2}\alpha^{3} - 4b_{0}\alpha^{2} - 4b_{1}\alpha^{3} - 4b_{2}\alpha^{4}$$

$$b_{0} - 20b_{1} - 5b_{2} = 51$$

$$b_{0} - b_{1} + 20b_{2} = -44$$

$$-4b_{0} - b_{1} + b_{2} = 1$$

$$(1)$$

Решим эту СЛУ:

$$b_0 = 1, b_2 = -3, b_3 = 2$$

$$\beta = 1 - 3\alpha + 2\alpha^2 = 1 - 3\sqrt[3]{5} + 2\sqrt[3]{25}$$
(2)

2.

$$\alpha = \sqrt{6} - \sqrt{5} + 1$$

$$\alpha - 1 = \sqrt{6} - \sqrt{5}$$

$$\alpha^{2} - 2\alpha + 1 = 6 - 2\sqrt{30} + 5$$

$$\alpha^{4} - 4\alpha^{3} - 16\alpha^{2} + 40\alpha - 20 = 0$$
(3)

 $h=x^4-4x^3-16x^2+40x-20=0$ - аннулирующий многочлен. Докажем, что

 $[\mathbb{Q}(\alpha):\mathbb{Q}]=4.$

 $[\mathbb{Q}(\alpha):\mathbb{Q}]=1$. Тривиально.

 $[\mathbb{Q}(\alpha):\mathbb{Q}]=2.$

$$\mathbb{Q} \to \mathbb{Q}(\sqrt{5}) \to \mathbb{Q}(\sqrt{6}) = F$$

$$x^{2} - 5:$$

$$\sqrt{6} = a + b\sqrt{5} \to 6 = a^{2} + 2ab\sqrt{5} + 5b^{2}$$

$$6 = a^{2} + 5b^{2}$$

$$0 = b^{2}$$
(4)

Не имеет решения, т.к $b!=0\Rightarrow [\mathbb{Q}(\alpha):\mathbb{Q}]=4$. Базис в $\mathbb{Q}(\sqrt{5}):1,\sqrt{5}$. Базис в $\mathbb{Q}(\sqrt{6}):1,\sqrt{6}\Rightarrow$ Базис в $F:1,\sqrt{5},\sqrt{6},\sqrt{3}0$.

Утверждение: $\mathbb{Q}(\alpha) = F$.

$$lpha \in \mathbb{Q}(lpha) \Rightarrow lpha^2 \in \mathbb{Q}(lpha) \Rightarrow \sqrt{5}, \sqrt{6}, 1 \in \mathbb{Q}(lpha).$$

F - искомый многочлен.

3. Хотим построить поле из $2^3 = 8$ элементов:

Возьмем неприводимый в $\mathbb{Z}_2[X]$ многочлен $h=x^3+x^2+1=0$. Тогда $F=\mathbb{Z}_2[X]/(h)$ - поле из 2^3 элементов. $F=a_0+a_1x+a_2x^2$. Таблицы сложения и умножения:

\	0	1	x	x+1	x^2	x^2+1	x^2+x	x^2+x+1
0	0	1	Х	x+1	x^2	x^2+1	x^2+x	x^2+x+1
1	1	0	x+1	Х	x^2+1	x^2	x^2+x+1	x^2+1
x	x	x+1	0	1	x^2+x	x^2+x+1	x^2	x^2+1
x+1	x+1	X	1	0	x^2+x+1	x^2+x	x^2+1	x^2
x^2	x^2	x^2+1	x^2+x	x^2+x+1	0	1	x	x+1
x^2+1	x^2+1	x^2	x^2+x+1	x^2+x	1	0	x+1	Х
x^2+x	x^2+x	x^2+x+1	x^2	x^2+1	X	x+1	0	1
x^2+x+1	x^2+x+1	x^2+x	x^2+1	x^2	x+1	х	1	0

\	0	1	x	x+1	x^2	x^2+1	x^2+x	x^2+x+1
0	0	0	0	0	0	0	0	0
1	0	1	X	x+1	x^2	x^2+1	x^2+x	x^2+x+1
Х	0	x	x^2	x^2+x	x+1	1	x^2+x+1	x^2+1
x+1	0	x+1	x^2+x	x^2+1	1	x^2+x+1	1	1
x^2	0	x^2	x+1	1	x^2 + x + 1	x+1	x^2+x+1	x+1
x^2+1	0	x^2+1	1	x^2+x+1	x+1	x^2 + x	x^2+1	x^2
x^2+x	0	x^2+x	x^2+x+1	1	x^2+x+1	x^2+1	x+1	x^2+1
x^2+x+1	0	x^2+x+1	x^2+1	1	x+1	x^2	x^2+1	x