绝密 * 启用前

2019 年全国硕士研究生入学统一考试

森哥三套卷之数学(二)试卷 (模拟二)

考生注意: 本试卷共二十三题, 满分 150 分, 考试时间为 3 小时.

得分	评卷人

一、选择题: 1~8 小题, 每小题 4 分, 共 32 分. 在每小题给出的四个选项中, 只有一个 符合要求, 把所选项前的字母填在题后的括号里.

- (A) x=0 及 x=1 都是 f(x) 的第一类间断点
- (B) x=0 及 x=1 都是 f(x) 的第二类间断点
- (C) x=0是 f(x) 的第一类间断点, x=1是 f(x) 的第二类间断点
- (D) x=0 是 f(x) 的第二类间断点,x=1 是 f(x) 的第一类间断点
- (2) 对于广义积分 $\int_0^{\frac{\pi}{2}} \frac{dx}{\sin^p x \cos^q x} (p > 0, q > 0)$,下列结论正确的是(
 - (A) 0 , <math>0 < q < 1 时收敛. (B) $0 , <math>q \ge 1$ 时收敛.
 - (C) $p \ge 1$, 0 < q < 1 时收敛.
- (D) $p \ge 1$, $q \ge 1$ 时收敛.

(3) 设
$$f(x,y) = \begin{cases} (x+y)\arctan\frac{1}{x^2+y^2}, (x,y) \neq (0,0), \\ 0, \qquad \qquad 其他. \end{cases}$$
,则 $f(x,y)$ 在点 $(0,0)$ 处 $(---)$.

- (A) 偏导数 $f_x'(x,y)$ 与 $f_y'(x,y)$ 均连续
- (B) 偏导数 $f_{y}'(x,y)$ 与 $f_{y}'(x,y)$ 均不连续但可微
- (C) 不可微但偏导数 $f_{v}'(0,0)$ 与 $f_{v}'(0,0)$ 均存在
- (D) 连续但偏导数 $f_{y}'(0,0)$ 与 $f_{y}'(0,0)$ 均不存在
- (4) 已知微分方程 $y'' + ay' + by = xe^{\lambda x}$ 的通解形式是 $y = c_1 e^{-x} + c_2 x e^{-x} + (Ax + B)e^{\lambda x}$, 其中 c_1, c_2 是任意 常数,则必有(
 - (A) $a = 2, b = 1, \lambda = -1$
- (B) $a = 2.b = 1. \lambda \neq -1$
- (C) $a = -2, b = 1, \lambda = -1$ (D) $a = -2, b = 1, \lambda \neq -1$

(5) 设
$$I_1 = \iint_{x^2+y^2 \le 1} \cos(xy) d\sigma$$
, $I_2 = \iint_{|x|+|y| \le 1} \cos(xy) d\sigma$, $I_3 = \iint_{\max\{|x|,|y|\} \le 1} \cos(xy) d\sigma$, 则().

(A) $I_1 < I_2 < I_3$ (B) $I_2 < I_1 < I_3$ (C) $I_3 < I_1 < I_2$ (D) $I_1 < I_3 < I_2$

(6) 设
$$f(x) = \begin{cases} e^{\sin x} \cos x, x \le 0, \\ \sin \sqrt{x} + 1, x > 0. \end{cases}$$
 $F(x)$ 为 $f(x)$ 的原函数,则 $F(x) = ($).

(A)
$$F(x) = \begin{cases} e^{\sin x} + c_1, & x \le 0, \\ x - 2\sqrt{x}\cos\sqrt{x} + 2\sin\sqrt{x} + c_2, & x > 0 \end{cases}$$

(B)
$$F(x) = \begin{cases} e^{\sin x} + c - 1, & x \le 0, \\ x - 2\sqrt{x}\cos\sqrt{x} + 2\sin\sqrt{x} + c, x > 0 \end{cases}$$

(C)
$$F(x) = \begin{cases} e^{\sin x} + c, & x \le 0, \\ x - 2\sqrt{x}\cos\sqrt{x} + 2\sin\sqrt{x} + c, x > 0 \end{cases}$$
(D)
$$F(x) = \begin{cases} e^{\sin x} + c - 1, & x \le 0, \\ x - 2\sqrt{x}\cos\sqrt{x} + c, x > 0 \end{cases}$$

(D)
$$F(x) = \begin{cases} e^{\sin x} + c - 1, & x \le 0, \\ x - 2\sqrt{x}\cos\sqrt{x} + c, & x > 0 \end{cases}$$

(7) 已知矩阵
$$A = \begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{pmatrix}$$
与 $B = \begin{pmatrix} 3 & a & 0 \\ a & 3 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ 合同但不相似,则 a 的取值为().

(A) a=3

- (B) -9 < a < 0, 0 < a < 9
- (C) -3 < a < 0, 0 < a < 3
- (D) a = -3
- (8) 已知 5×4 矩阵 $A = (\alpha_1, \alpha_2, \alpha_3, \alpha_4)$,若 $\eta_1 = (2, 1, -2, 1)^T$, $\eta_2 = (0, 1, 0, 1)^T$ 是齐次线性方程组 Ax = 0的基础解系,那么下列命题
- ① α_1, α_3 线性无关; ② α_1 可由 α_2, α_3 线性表出;
- ③ α_3, α_4 线性无关; ④ $r(\alpha_1, \alpha_1 \alpha_2, \alpha_3 + \alpha_4) = 3$

其中正确的是().

- (A) (1)(3)
- (B) 24 (C) 23

评卷人 得分

二、填空题:9~14 小题,每小题 4分,共 24分. 把答案填在题中的横线上.

(9)
$$\lim_{n\to\infty} (1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt[3]{3}}+\cdots+\frac{1}{\sqrt[n]{n}})^{\frac{1}{n}} = \underline{\hspace{1cm}}$$

(10)
$$\int_0^2 \sqrt{x^3 - 2x^2 + x} dx = \underline{\hspace{1cm}}$$

(11) 曲线
$$y = \frac{x^2 + 1}{x + 1} e^{\frac{1}{x - 1}}$$
 的斜渐近线是______.

(12) 设
$$f(x) = x^n (x-1)^n \cos x$$
, 此处 n 为正整数, 那么 $f^{(n)}(0) =$ ______.

(13) 由
$$x^2 + y^2 = 1$$
($y \ge 0$), $x = -1$, $x = 1$, $y = -1$ 所围的平面图形 D 的形心坐标为______.

(14) 设矩阵 \mathbf{A} 和 \mathbf{B} 满足 $\mathbf{A}^*\mathbf{B}\mathbf{A} = 2\mathbf{B}\mathbf{A} - 8\mathbf{E}$, 其中 $\mathbf{A} = \begin{pmatrix} 1 & 2 & -2 \\ 0 & -2 & 4 \\ 0 & 0 & 1 \end{pmatrix}$, \mathbf{A}^* 是 \mathbf{A} 的伴随矩阵,则矩阵

В	=				

三、解答题:15~23 小题, 共94分. 解答应写出文字说明、证明过程或演算步骤.

得分	评卷人				

(15) (**本题满分 10 分**) 设 $x \to 0$ 时,函数 $a + bx - (1 + c \tan x) \sqrt{1 + x}$ 与 kx^3 是等价 无穷小,求常数 a,b,c,k 的值.

得分	评卷人

(16) (本题满分 10 分) 求函数 $z = f(x,y) = (x^2 + y - 1)e^{-2x - y}$ 在区域 $D = \{(x,y) \mid x \ge 0, y \ge 0, 2x + y \le 4\}$ 上的最大值及最小值.

得分	评卷人

都考研数学一余丙森数学二模拟二答案关注一直播: 117035243(17)(本题满分 10 分) 计算 $I = \iint_D xydxdy$, 其中 D 由直线 y = 0, y = 2, x = -2,及

曲线 $x = -\sqrt{2y - y^2}$ 所围成.

得分 评卷人

(18)(**本题满分 10 分**)过抛物线 $y=x^2$ 上一点 (a,a^2) 作切线,其中 0<a<1,切线与抛物线及 x 轴所围图形面积为 S_1 ,切线与抛物线及 y=1 所围图形面积为 S_2 ,

 $S=S_1+S_2$,(」)问a为何值时,S最小.(॥)当S最小时,求 S_1 绕x轴旋转所得立体体积.

得分	评卷人

都考研数学一余丙森数学二模拟二答案关注一直播: 117035243(19)(本题满分 10 分)设 y = y(x)满足方程 $x \frac{dy}{dx} - (x-1)y = \frac{1}{2} + 2x - x^2, x > 0$ 且 y(1) = a. (I) 求 y = y(x)的表达式; (II) 求常数 a,使极限 $\lim_{x \to +\infty} \frac{y(x)}{x}$ 存在,并

求 $\lim_{x \to +\infty} \frac{y(x)}{x}$ 的值.

得分	评卷人

(20) (**本题满分 11 分**) 设 $x \in (0, \frac{\pi}{2})$, 证明:

$$(I) \frac{\sin x}{\cos^{\frac{1}{3}} x} > x;$$

年起内分 日 分) 反
$$x \in (0, \frac{\pi}{2})$$
,此句:
$$(I) \frac{\sin x}{\cos^{\frac{1}{3}} x} > x; \qquad (II) \csc^{2} x < \frac{1}{x^{2}} + 1 - \frac{4}{\pi^{2}}.$$

得分	评卷人

(21) (**本题满分 11 分**) 设 y = f(x) 在 [0,1] 上非负连续, $x_0 \in (0,1)$,且在 $[0,x_0]$ 上

以 $f(x_0)$ 为高的矩形面积等于函数 f(x) 在 $[x_0,1]$ 上的平均值.试证明:

- (I) 存在点 $\xi \in (x_0,1)$, 使得 $f(\xi) = x_0 f(x_0)$;
- (II) 对于(I)中的 ξ ,存在 $\eta \in (0,1)$ 使得 $(\xi x_0)f'(\eta) = (x_0 1)f(x_0)$.

得分	评卷人

(22)(本题满分 11 分)设 \mathbf{A} 是 3 阶方阵,矩阵 $\mathbf{B} = (\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3)$,其中 $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3$ 是

3维列向量, $\alpha_1 \neq \mathbf{0}$,且满足 $A(\alpha_1, \alpha_2, \alpha_3) = (\alpha_1, \alpha_1 + \alpha_2, \alpha_2 + \alpha_3)$,证明: (I) 齐次

线性方程组 Bx = 0 仅有零解; (II) 求 A 的特征值及特征向量.

	得分	评卷人		İ	2	_	
L	1/3 /3	71 670	(23)(本题满分 11 分)已知矩阵 A =	8	2	0	有三个线性无关的特征向量,
				0	a	6	

(I) 求参数 a ; (II) 求正交变换 x = Qy 化二次型 $f(x) = x^T Ax$ 为标准形.