Constructing LL(1) Parsing Tables

- Two functions are used in the construction of LL(1) parsing tables:
 - FIRST FOLLOW
- **FIRST**(α) is a set of the terminal symbols which occur as first symbols in strings derived from α where α is any string of grammar symbols.
- if α derives to ε , then ε is also in FIRST(α).
- **FOLLOW(A)** is the set of the terminals which occur immediately after (follow) the *non-terminal A* in the strings derived from the starting symbol.
 - a terminal a is in FOLLOW(A) if $S \stackrel{*}{\Rightarrow} \alpha A a \beta$
 - \$ is in FOLLOW(A) if $S \stackrel{*}{\Rightarrow} \alpha A$

CS416 Compiler Design

1

Compute FIRST for Any String X

- If X is a terminal symbol \rightarrow FIRST(X)={X}
- If X is a non-terminal symbol and X → ε is a production rule
 → ε is in FIRST(X).
- If X is a non-terminal symbol and $X \rightarrow Y_1Y_2...Y_n$ is a production rule
 - if a terminal **a** in FIRST(Y_i) and ε is in all FIRST(Y_j) for j=1,...,i-1 then **a** is in FIRST(X).
 - \rightarrow if ε is in all FIRST(Y_j) for j=1,...,n then ε is in FIRST(X).
- If X is ε FIRST(X)= $\{\varepsilon\}$
- If X is $Y_1Y_2...Y_n$
 - if a terminal \mathbf{a} in FIRST(Y_i) and ε is in all FIRST(Y_j) for j=1,...,i-1 then \mathbf{a} is in FIRST(X).
 - \rightarrow if ε is in all FIRST(Y_j) for j=1,...,n then ε is in FIRST(X).

FIRST Example

$$E \rightarrow TE'$$

 $E' \rightarrow +TE' \mid \epsilon$
 $T \rightarrow FT'$
 $T' \rightarrow *FT' \mid \epsilon$
 $F \rightarrow (E) \mid id$

$$FIRST(F) = \{ (,id) \}$$

$$FIRST(T') = \{ *, \epsilon \}$$

$$FIRST(T) = \{ (,id) \}$$

$$FIRST(E') = \{ +, \epsilon \}$$

$$FIRST(E) = \{ (,id) \}$$

Compute FOLLOW (for non-terminals)

- If S is the start symbol \rightarrow \$ is in FOLLOW(S)
- if $A \rightarrow \alpha B\beta$ is a production rule
 - \rightarrow everything in FIRST(β) is FOLLOW(B) except ϵ
- If $(A \rightarrow \alpha B \text{ is a production rule})$ or $(A \rightarrow \alpha B \beta \text{ is a production rule and } \epsilon \text{ is in FIRST}(\beta))$
 - → everything in FOLLOW(A) is in FOLLOW(B).

We apply these rules until nothing more can be added to any follow set.

FOLLOW Example

$$E \rightarrow TE'$$

 $E' \rightarrow +TE' \mid \epsilon$
 $T \rightarrow FT'$
 $T' \rightarrow *FT' \mid \epsilon$
 $F \rightarrow (E) \mid id$

LL(1) Parser

$$E \rightarrow TE'$$

 $E' \rightarrow +TE' \mid \epsilon$
 $T \rightarrow FT'$
 $T' \rightarrow *FT' \mid \epsilon$
 $F \rightarrow (E) \mid id$

	id	+	*	()	\$
E	$E \rightarrow TE'$			$E \rightarrow TE'$		
E'		$E' \rightarrow +TE'$			$E' \rightarrow \epsilon$	$E' \rightarrow \varepsilon$
T	$T \rightarrow FT$			$T \rightarrow FT'$		
T'		$T' \rightarrow \varepsilon$	$T' \rightarrow *FT'$		$T' \rightarrow \epsilon$	$T' \rightarrow \varepsilon$
F	$F \rightarrow id$			$F \rightarrow (E)$		

Practice Examples

$$S \rightarrow ABCDE$$

$$A \rightarrow a \mid \mathcal{E}$$

$$B \rightarrow b \mid \mathcal{E}$$

$$C \rightarrow c$$

$$D \rightarrow d \mid E$$

$$E \rightarrow e \mid \mathcal{E}$$

$$S \rightarrow Bb \mid Cd$$

$$B \rightarrow aB \mid e$$

$$C \rightarrow cC \mid E$$