6.1 Coût d'un codage inapproprié

Soient X une v.a. à 5 états $\{1,2,3,4,5\}$, deux distributions de probabilité p(x) et q(x) pour X et deux codes, l'un C_p adapté à la loi p, l'autre C_q à la loi q.

Etat	1	2	3	4	5
Loi p	$\frac{1}{2}$	$\frac{1}{4}$	$\frac{1}{8}$	$\frac{1}{16}$	$\frac{1}{16}$
$Code\ C_p$	0	10	110	1110	1111
Loi q	$\frac{1}{2}$	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{8}$
$Code\ C_q$	0	100	101	110	111

- 1. Calculer H(p), H(q), D(p||q) et D(q||p).
- 2. Vérifier que la compacité de C_p sous la loi p est égale à l'entropie H(p) et qu'ainsi C_p est optimal pour cette loi.

Rappeler les deux conditions qui assurent qu'un code est absolument optimal (compacité égale à l'entropie).

Interpréter sur la représentation en arbre du code le saturation de l'inégalité de Kraft et la caractère préfixé du code.

- 3. Même question pour le code C_q et la loi q.
- 4. Si le code C_q est utilisé alors que la distribution de la source est p, quelle est la longueur moyenne des mots de code. De combien dépasse t-on l'entropie de la loi p?
- 5. Monter que cette perte est donnée par la divergence de Kullback entre les lois p et q et préciser les conditions particulières qui font qu'il en est ainsi.

6.2 Canal binaire symétrique

On écrit de l'information x binaire (deux symboles notés 0 et 1) sur un support non fiable. Lors de la relecture, on observe y qui n'est pas toujours égal à x. La probabilité pour qu'un 1 soit relu comme un 0 vaut p, on suppose que la probabilité pour qu'un 0 se transforme en 1 vaut également p. Un tel modèle aléatoire élémentaire de perturbation est appelé Canal Binaire Symétrique. 1

On suppose que les probabilités $a\ priori\ du\ 0$ et du $1\ dans$ le message (entrée du canal) sont connues, elles sont notées :

$$Pr(1) = \pi$$

$$Pr(0) = 1 - \pi$$

^{1.} Remarque : la perturbation des valeurs stockées peut s'écrire $y = x \oplus b$ où \oplus désigne la somme modulo 2 (ou exclusif) et b la perturbation binaire (loi de Bernoulli).

- 1. Calculer la probabilité d'erreur binaire moyenne (P_e) en sortie du canal. Dire comment cette probabilité dépend de la loi d'entrée du canal? (Pourquoi?)
- 2. Exprimer la loi de probabilité de la sortie y en fonction de p et de π .
- 3. Probabilités a posteriori.
 - (a) Quelle est la probabilité a posteriori p(x = 1|y = 1)?
 - (b) En déduire p(x = 0|y = 1)
 - (c) En déduire p(x = 0|y = 0) et p(x = 1|y = 0).
 - (d) Pour quelle valeur de p cette probabilité $a\ posteriori\ p(x=1|y=1)$ est-elle identique à la probabilité $a\ priori\ \pi$?
 - Comment interprétez-vous ce résultat?
 - (e) Que valent les probabilités a posteriori p(x=1|y=1) et p(x=0|y=1) lorsque l'entrée est équidistribuée sur $\{0;1\}$?
 - (f) Quelle est la qualité d'un système de stockage pour lequel p = 1?
- 4. Calcul et maximisation de l'information mutuelle entre l'entrée et la sortie.
 - (a) Exprimer l'entropie de la sortie en fonction de π et p et vérifier que cette entropie est maximale pour une loi d'entrée uniforme.
 - (b) Exprimer l'entropie conditionnelle de la sortie sachant l'entrée en fonction de p.
 - (c) En déduire l'information mutuelle maximale (par rapport à la loi de l'entrée) entre l'entrée et la sortie.
 - (d) Comment interprétez-vous maintenant le résultat de la question 3.d. par rapport à l'information mutuelle entre l'entrée et la sortie du canal?