GROUP_14_Experiment: 4

Design and Characterization of Common Emitter Amplifier

Siddhant Shah (B23334) *, Akash Goel(B23032) †, Om Maheshwari (B23089) ‡, and Somya Bhadada (B23052) §

- * b23334@students.iitmandi.ac.in
- † b23032@students.iitmandi.ac.in
- ‡ b23089@students.iitmandi.ac.in
- § b23052@students.iitmandi.ac.in

Abstract—This paper presents the design methodology and characterization of a common emitter amplifier using a BC547B transistor with $V_{CC}=12V,\ I_C=1mA,$ and a target voltage gain of 100.

Index Terms—BJT, Common-Emitter, Amplifier, Small-Signal Model, Large-Signal Model, Current Gain

I. Apparatus Required

BC547B NPN Transistor:

- Description: General-purpose NPN bipolar junction transistor (BJT) in a TO-92 package with 3-pin configuration (Collector, Base, Emitter).
- Specifications: See Table I for detailed electrical characteristics [5].

Parameter	Value	
Current gain (β)	110–800 (typical ≈ 100)	
Collector current (I _C)	100 mA maximum	
Collector-emitter voltage (V_{CE})	45V maximum	
Emitter-base voltage (V_{EB})	6V maximum	
Collector-base voltage (V_{CB})	50V maximum	
Power dissipation	500 mW maximum	
Transition frequency (f_T)	300 MHz	
Operating temperature	-65°C to +150°C	
Noise figure	Low	
Applications	Switching, amplification	

TABLE I: BC547B NPN Transistor Specifications.

Fig. 1: BC547B NPN Transistor Pinout (TO-92 Package).

• Resistors:

- $6k\Omega$.
- 1.2kΩ.
- 100kΩ.
- 22kΩ.

 $-2.2k\Omega$.

Capacitors:

- $-10\mu F.$
- $-3.3\mu F.$
- $-22\mu F.$
- Power Supply: Keithley 2231A-30-3 (triple output, 30V/3A).
- Function Generator: Tektronix AFG1062 (60 MHz, 2channel) for input waveforms.
- DSO with Waveform Generator: Keysight DSOX1102G (100 MHz, 1 GSa/s) for waveform analysis.
- Digital Multimeter (DMM): Agilent 34401A (6½ digit resolution) for DC measurements.
- Breadboard and Connectors: For circuit prototyping.

II. Introduction

The **Bipolar Junction Transistor** (**BJT**) is a three-terminal semiconductor device that operates as a current-controlled current source [1]. It consists of three doped semiconductor regions: the **Emitter** (**E**), **Base** (**B**), and **Collector** (**C**). BJTs are classified into two types: **NPN** and **PNP**, depending on the doping arrangement.

A. BJT as a Controlled Source

A BJT functions as a **current-controlled current source** (CCCS) because the collector current (I_C) is controlled by the base current (I_B) [2]. The relationship is:

$$I_C = \beta I_B \tag{1}$$

where β (or h_{FE}) is the **current gain**.

B. Key Terminologies

- Current Gain (β or h_{FE}): Ratio of collector current to base current [1].
- Transconductance (g_m) : Change in collector current per change in base-emitter voltage [2].
- Early Effect: Variation in collector current due to collector-emitter voltage.
- **Biasing**: Setting DC operating point for proper amplification [1].

• Cutoff/Saturation/Active Regions: Operating modes of 3) Impedance Matching BJT [2].

C. BJT Symbol and Terminals

Fig. 2: Standard circuit symbols for (a) PNP and (b) NPN BJTs [1].

The BJT is represented in circuit diagrams with the following symbols:

- NPN BJT: Arrow on emitter points outward from base
- PNP BJT: Arrow on emitter points inward toward base [2]

All variants show three terminals: emitter (with arrow), base, and collector.

D. Input and Output Impedance

- Input Impedance (Z_{in}) : Typically $1k\Omega$ to $5k\Omega$ (CE configuration) [1].
- **Output Impedance** (Z_{out}): Typically $10k\Omega$ to $100k\Omega$ [2].

E. BJT Small-Signal Model

Used for AC analysis, linearizing the BJT around its Q-point [1]. The **hybrid-** π **model** includes:

- r_{π} : Base-emitter resistance $(r_{\pi} = \frac{V_T}{I_B})$ [2]
- g_m : Transconductance $(g_m = \frac{I_C}{V_T})$
- r_o : Output resistance due to Early Effect $(r_o = \frac{V_A}{I_C})$ [1]

Fig. 3: Hybrid- π small-signal model of BJT [2].

F. Functionalities of BJT

Bipolar Junction Transistors serve multiple essential functions in electronic circuits [1]:

1) Amplification

- Voltage/current/power amplification in analog circuits
- Used in audio amplifiers, RF circuits, and signal condition-
- Provides gain through controlled current flow

2) Switching

- Digital logic applications (TTL circuits)
- High-speed switching in power electronics
- Acts as electronically controlled switch (cutoff/saturation modes)

- · Interface between high and low impedance circuits
- Buffer amplifiers (emitter follower configuration)

III. DETAILED ANALYSIS OF CE AMPLIFIER

Fig. 4: Common-Emitter amplifier circuit configuration [1]. The circuit shows typical biasing arrangement with R_1 and R_2 forming the voltage divider network, R_C as collector resistor, and R_E as emitter resistor with bypass capacitor C_E . Input is applied through coupling capacitor C_{in} and output is taken through C_{out} .

The Common-Emitter configuration provides both voltage and current gain, making it the most versatile amplifier configuration [2]. Key features visible in Fig. 4 include:

- **Voltage divider bias**: Provides stable operating point $(R_1,$
- **Bypass capacitor** (C_E) : Short-circuits R_E at signal frequencies
- Coupling capacitors (C_{in} , C_{out}): Block DC while passing AC signals

The circuit demonstrates the standard implementation where:

- Input signal is applied to the base terminal
- Output is taken from the collector terminal
- Emitter is common to both input and output (grounded for AC signals)

1) DC Biasing Requirements

- Voltage divider bias provides stability against β variations
- Q-point should be in active region for linear amplification
- V_{CE} typically set to $V_{CC}/2$ for maximum swing

2) AC Analysis Parameters

The small-signal performance can be characterized by:

$$A_{v} = \frac{v_{out}}{v_{in}} = -g_{m}(R_{C} \parallel r_{o} \parallel R_{L})$$
 (2)

$$R_{in} = R_1 \parallel R_2 \parallel r_{\pi}$$

 $R_{out} = R_C \parallel r_o$ (4)

(3)

Where:

- g_m = transconductance $(\frac{I_C}{V_T})$
- $r_{\pi} = \frac{\beta}{g_m}$ $r_o = \text{Early voltage effect resistance}$
- 3) Frequency Response

The CE amplifier exhibits:

- Low-frequency roll-off due to coupling/bypass capacitors
- High-frequency limitations from:
 - Miller capacitance effect
 - Junction capacitances (C_{π}, C_{μ})
- Bandwidth product determined by f_T of transistor
 - IV. DESIGN CALCULATIONS FOR CE AMPLIFIER
- A. DC Biasing Design (Exact Calculations)

Given specifications:

$$V_{CC} = 12 V$$

$$I_C = 1 mA$$

$$\beta = 100$$

$$A_v = 100$$

$$V_{RE} = 0.7 V$$

1. Emitter Resistor (R_E) :

$$V_{RE} = 0.1V_{CC} = 1.2 V$$

 $R_E = \frac{V_{RE}}{I_F} = \frac{1.2 V}{1 mA} = 1.2 k\Omega$ (exact)

2. Collector Resistor (R_C) :

$$V_{CE} = 0.5V_{CC} = 6V$$

 $V_{RC} = V_{CC} - V_{CE} - V_{RE} = 4.8V$
 $R_C = \frac{V_{RC}}{I_C} = \frac{4.8V}{1 mA} = 4.8 k\Omega$ (exact)

3. Base Divider Network:

$$\begin{split} V_B &= V_{RE} + V_{BE} = 1.9 \, V \\ I_B &= \frac{I_C}{\beta} = 10 \, \mu A \\ I_2 &= 10 I_B = 100 \, \mu A \\ R_2 &= \frac{V_B}{I_2} = 19 \, k\Omega \quad \text{(exact)} \\ R_1 &= \frac{V_{CC} - V_B}{I_2 + I_B} = \frac{10.1 \, V}{110 \, \mu A} = 91.818 \, k\Omega \quad \text{(exact)} \end{split}$$

Standard value selected: $22 k\Omega$ and $100 k\Omega$

B. AC Design with Exact Values

1. Load Resistor (R_L) Design: Using the gain equation from the reference image:

$$A_{V} = -\frac{r_{C}}{r_{e}} = -100$$

$$r_{e} = \frac{25 \, mV}{I_{C}} = 25 \, \Omega$$

$$r_{c} = R_{C} \parallel R_{L} = 100 \times r_{e} = 2.5 \, k\Omega$$

$$\frac{1}{R_{C}} + \frac{1}{R_{L}} = \frac{1}{2.5 \, k\Omega}$$

$$\frac{1}{6 \, k\Omega} + \frac{1}{R_{L}} = \frac{1}{2.5 \, k\Omega}$$

$$R_{L} = \left(\frac{1}{2.5 \, k\Omega} - \frac{1}{6 \, k\Omega}\right)^{-1} = 2.33 \, k\Omega \quad \text{(exact)}$$

C. AC Design with Standard Values ($f_L = 100 \, Hz$)

1. Input Coupling Capacitor (C_{C1}) : Using the condition from the image:

$$\begin{split} X_{C1} &\leq \frac{R_{in}}{10} \\ R_{in} &= R_1 \parallel R_2 \parallel h_{fe} r_e \\ &= 100 k \Omega \parallel 22 k \Omega \parallel (100 \times 25 \Omega) \\ &= 100 k \Omega \parallel 22 k \Omega \parallel 2.5 k \Omega \\ &= 2.2 k \Omega \\ C_{C1} &= \frac{1}{2\pi \times 100 Hz \times 220 \Omega} = 7.23 \mu F \end{split}$$

Standard value selected: $10\mu F$ (next higher standard value)

2. Emitter Bypass Capacitor (C_E) :

$$X_{CE} \le \frac{R_E}{10} = 120\Omega$$

$$C_E = \frac{1}{2\pi \times 100 Hz \times 120\Omega} = 13.26 \mu F$$

Standard value selected: $22\mu F$ (next higher standard value)

3. Output Coupling Capacitor (C_{C2}) : Using the condition from the image:

$$X_{C2} \le \frac{R_{out}}{10}$$
 where $R_{out} = R_C = 6k\Omega$
 $C_{C2} = \frac{1}{2\pi \times 100 Hz \times 600\Omega} = 2.65 \mu F$

Standard value selected: $3.3\mu F$ (next higher standard value)

D. Gain Verification with Exact Values

$$g_m = \frac{I_C}{V_T} = \frac{1 mA}{25 mV} = 40 mS$$

$$r_c = R_C \parallel R_L = 6 k\Omega \parallel 2.2 k\Omega = 2.3 k\Omega$$

$$A_v = -g_m r_c = -40 mS \times 2.3 k\Omega = -97 \quad \text{(matches requirement)}$$

V. Procedure

The following steps detail the construction, testing, and simulation of the common-emitter (CE) amplifier, utilizing a breadboard setup and subsequent LTSpice analysis. Refer to Figure 4 for the circuit schematic.

- 1) Collect the necessary components: BC547B NPN transistor, resistors ($R_1 = 100 \,\mathrm{k}\Omega$, $R_2 = 22 \,\mathrm{k}\Omega$, $R_E = 1.2 \,\mathrm{k}\Omega$, $R_C = 6 \,\mathrm{k}\Omega$, $R_L = 2.2 \,\mathrm{k}\Omega$), capacitors ($C_{C1} = 10 \,\mu\mathrm{F}$, $C_E = 22 \,\mu\mathrm{F}$, $C_{C2} = 3.3 \,\mu\mathrm{F}$), Keithley 2231A-30-3 power supply, Tektronix AFG1062 function generator, Keysight DSOX1102G DSO, Agilent 34401A DMM, breadboard, and connecting wires. Confirm resistor values using the DMM to ensure precision.
- 2) Assemble the circuit on the breadboard by placing the BC547B transistor, aligning its pins (Collector, Base, Emitter) as shown in Figure 1. Attach $R_E=1.2\,\mathrm{k}\Omega$ from the emitter to ground, $R_C=6\,\mathrm{k}\Omega$ from the collector to the 12 V supply rail, and $R_L=2.2\,\mathrm{k}\Omega$ from the collector to ground, forming a parallel combination with R_C . Construct the base voltage divider by connecting $R_1=100\,\mathrm{k}\Omega$ from the 12 V rail to the base and $R_2=22\,\mathrm{k}\Omega$ from the base to ground. Install capacitors: $C_{C1}=10\,\mu\mathrm{F}$ between the input and base (positive terminal to base), $C_E=22\,\mu\mathrm{F}$ across R_E (positive to emitter), and $C_{C2}=3.3\,\mu\mathrm{F}$ from the collector to the output (positive to collector).
- 3) Configure the Keithley 2231A-30-3 power supply to deliver 12 V DC with a 100 mA current limit. Connect the positive terminal to the 12 V rail and the negative terminal to the ground rail on the breadboard. Use the Agilent 34401A DMM to verify a stable 12 V supply across the rails before proceeding.
- 4) Test the amplifier's response at low frequency by setting the Tektronix AFG1062 function generator to produce a sine wave with 1 mV peak-to-peak amplitude at 100 Hz. Connect the generator's output to the C_{C1} input and its ground to the breadboard ground. Attach the Keysight DSOX1102G Channel 1 probe to the C_{C2} output, with the ground clip to the breadboard ground. Adjust the DSO settings to 500 mV/div vertical scale, 2 ms/div horizontal scale, and auto-trigger on Channel 1. Capture and analyze the input (base) and output (collector) waveforms, expecting an output of approximately 100 mV peak-to-peak, corresponding to a voltage gain $A_{\nu} \approx 100$.
- 5) Evaluate high-frequency performance by reconfiguring the function generator to 1 mV peak-to-peak at 50 MHz. Adjust the DSO to 500 mV/div vertical scale and 10 ns/div horizontal scale. Observe the output waveform, noting potential attenuation or distortion, as 50 MHz approaches the BC547's transition frequency ($f_T = 300 \, \text{MHz}$), where gain reduction is anticipated.
- 6) Perform a frequency response simulation in LTSpice by constructing the CE amplifier circuit with the following: an NPN transistor (BC547B model), resistors $(R_1 = 100 \,\mathrm{k}\Omega, \, R_2 = 22 \,\mathrm{k}\Omega, \, R_E = 1.2 \,\mathrm{k}\Omega, \, R_C = 6 \,\mathrm{k}\Omega, \, R_L = 2.2 \,\mathrm{k}\Omega)$, capacitors $(C_{C1} = 10 \,\mu\mathrm{F}, \, C_E = 22 \,\mu\mathrm{F}, \, C_C = 10 \,\mu\mathrm{F})$

 $C_{C2}=3.3\,\mu\mathrm{F}$), a 12 V DC voltage source, and an AC source with 1 mV amplitude. Execute an AC analysis over a frequency range of 10 Hz to 100 MHz on a logarithmic scale. Plot the gain $(V_{\mathrm{out}}/V_{\mathrm{in}})$ versus frequency, determining the lower cutoff frequency $(f_L\approx100\,\mathrm{Hz})$, upper cutoff frequency, and overall bandwidth.

Fig. 5: Circuit Diagram of the CE amplifier on LTspice.

Fig. 6: V_{in} vs V_{out} graph of the CE amplifier at Low frequency derived from LTSpice simulation.

Fig. 7: Frequency response of the CE amplifier derived from LTSpice simulation.

7) Validate the setup by measuring DC bias points with the DMM: expect $V_B \approx 1.9 \text{ V}, V_E \approx 1.2 \text{ V}, \text{ and } V_{CE} \approx 4.8 \text{ V}.$ Compute the experimental gain at 100 Hz using $A_v = V_{\text{out, pp}}/V_{\text{in, pp}}$, comparing it to the target $A_v = 100$. Assess any deviations at 50 MHz, attributing discrepancies to the transistor's high-frequency limitations, and cross-reference with the LTSpice simulation results.

VI. SIMULATION RESULTS

Parameter	Designed	Simulated
I_C	1 mA	0.99 mA
V_{RC}	4.8 V	4.9 V
Gain	100	98
Bandwidth	-	1.2 MHz

TABLE II: Designed vs Simulated Parameters

VII. Conclusion

The designed common emitter amplifier with $R_C = 6k\Omega$, $R_E =$ $1.2k\Omega$ achieved:

- Voltage gain of 98 (close to target 100)
- Stable Q-point at $I_C = 0.99mA$, $V_{CE} = 4.9V$
- Bandwidth of 1.2MHz suitable for audio applications
- Input impedance of $\approx 2.2k\Omega$ and output impedance of $\approx 6k\Omega$

REFERENCES

- [1] A. S. Sedra and K. C. Smith, Microelectronic Circuits, 7th ed., Oxford University Press, 2015.
- [2] R. Boylestad and L. Nashelsky, Electronic Devices and Circuit Theory, 11th ed., Pearson, 2013.
- [3] A. Sedra, K. Smith, Microelectronic Circuits, 7th ed. Oxford University Press, 2014.
- [4] B. Razavi, Fundamentals of Microelectronics, 2nd ed. Wiley, 2013.
 [5] ON Semiconductor, "BC547 Datasheet," 2021. [Online]. Available: https: //www.onsemi.com/pdf/datasheet/bc547-d.pdf