MATH 373 – Homework #1

Last Name:	First Name:	
UID:	Siganuture:	

For computer programming problems, copy of computer codes and copy of computation results must be submitted. If a method is used for different problems, you only need to submit one copy of this method.

- 1. (10 points)
 - (a) Show that $x (\ln x)^x = 0$ has at least one solution on [4, 5];
 - (b) Use the Intermediate Value Theorem and Rolle's Theorem to show that the graph of $f(x) = x^3 + 2x + k$ crosses x-axis exactly once, regardless of the value of the constant k.
- 2. (10 points) Let $f(x) = 2x\cos(2x) (x-2)^2$ and $x_0 = 0$.
 - (a) Find the third Taylor polynomial $P_3(x)$, and use it to approximate f(0.4);
 - (b) Use the error formula in Taylor's Theorem to find an upper bound for the error $|f(0.4) P_3(0.4)|$. Compute the actual error.
- 3. (15 points) Let $f \in C[a, b]$ be a function whose derivative exits on (a, b). Suppose f is to be evaluated at x_0 in (a, b), but instead of computing the actual value $f(x_0)$, the approximate value, $\tilde{f}(x_0)$, is the actual value of f at $x_0 + \epsilon$, that is $\tilde{f}(x_0) = f(x_0 + \epsilon)$.
 - (a) Use the Mean Value Theorem to estimate the absolute error $|f(x_0) \tilde{f}(x_0)|$ and the relative error $|f(x_0) \tilde{f}(x_0)|/|f(x_0)|$, assuming $f(x_0) \neq 0$.
 - (b) If $\epsilon = 5 \times 10^{-6}$ and $x_0 = 1$, find bounds for the absolute and relative errors for
 - (i) $f(x) = e^x$;
 - (ii) $f(x) = \sin x$.
- 4. (20 points) The equation $4x^2 e^x e^{-x} = 0$ has four solutions $\pm x_1$ and $\pm x_2$. Use Newton's method to approximate the solution to within 10^{-5} with the following values of p_0 : (a) $p_0 = -10$, (b) $p_0 = -5$, (c) $p_0 = -3$, (d) $p_0 = -1$, (e) $p_0 = 0$, (f) $p_0 = 1$, (g) $p_0 = 3$, (h) $p_0 = 5$, (i) $p_0 = 10$. Comment on the results.
- 5. (15 points) Use Newton's method and Modified Newton's method to find the solution accurate to within 10^{-5} for

$$1 - 4x\cos x + 2x^2 + \cos 2x = 0$$
, for $0 < x < 1$.

Comment on the performance of the methods.

6. (20 points) Use each of the following methods to find a solution in [0.1, 1] accurate to within 10^{-4} for

$$600x^4 - 550x^3 + 200x^2 - 20x - 1 = 0.$$

- (a) Bisection method; (b) Newton's method; (c) Secant method; and (d) Müller's method. Comment on the performance of these methods.
- 7. (10 points) An object falling vertically through the air is subjected to viscous resistance as well as to the force of gravity. Assume that an object with mass m is dropped from a height s_0 and that the height of the object after t seconds is

$$s(t) = s_0 - \frac{mg}{k}t + \frac{m^2g}{k^2}(1 - e^{-kt/m}),$$

where g = 32.17 ft/s² and k represents the coefficient of air resistance in lb-s/ft. Suppose $s_0 = 300$ ft, m = 0.25lb, and k = 0.1 lb-s/ft. Find, to within 0.01 s the time it takes this quarter-pounder to hit the ground. Use Fixed-point iteration, Steffensen's method and Newton's method to find the solution.