Optimizing product development projects under asynchronous and aperiodic system-local interactions

Masaki Ogura

Nara Institute of Science and Technology, Japan

Masako Kishida

National Institute of Informatics, Japan

Ali Yassine

American University of Beirut, Lebanon

Work Transformation Matrix (WTM)

WTM = quantitative DSM, focused on works

Fraction of work amounts that is transferred to / kept within modules

Smith, Eppinger, "Identifying controlling features of engineering design iteration," *Management Science*, 1997.

How WTM works

Resource allocation for PD process acceleration

Improvement of WTM

HR management, information technology, resolving dependency, ...

PD process acceleration

Optimal improvement within budget?

Several options...

$$W = \begin{bmatrix} 1/2 & 1 \\ 1 & 1/2 \end{bmatrix} \qquad \qquad V = \begin{bmatrix} 0 & 1 \\ 1 & 1/2 \end{bmatrix} \qquad \qquad V = \begin{bmatrix} 1/2 & 1/2 \\ 1 & 1/2 \end{bmatrix} \qquad \qquad V = \begin{bmatrix} 1/4 & 1 \\ 1 & 1/4 \end{bmatrix}$$

System/local structure [Yassine et al., RIED, '03]

Frequent information update k = 0, 1, 2, ...

Intermittent system feedback $k = \tau_0, \tau_1, \tau_2, ...$

Extended WTM structure

Time-varying WTM

Coping with uncertainty

Periodic system feedback [Yassine et al., RIED, 2003]

Transition of remaining work

$$x \to W_p x \to W_p^2 x \to \cdots \to W_p^{T-1} x \to W_f W_p^{T-1} x$$

Generalized WTM

Determines feasibility of PD process

Spectral radius as a feasibility index

Coping with uncertainty

Periodic system feedback [Yassine et al., RIED, 2003]

System feedback may not necessarily occur regularly

Aperiodic system feedback (this research)

Assumption: T_k 's are independent and identically distributed random variables

Theoretical results

Result 1: Generalized WTM
$$T = random interval$$

$$M = E[W_f W_p^{T-1}]$$
 mathematical expectation

Spectral radius as a feasibility index

Process improvement problem

How should we distribute our managerial resource to minimize the feasibility index $\rho(M)$?

Theoretical results

Result 2:

Resource allocation problem can be solved via convex optimization.

- Scales well with respect to the size of PD process
- Very fast solvers available: allows making quick decisions
- Details in the proceeding: geometric programming plays a key role

Automobile appearance design [McDaniel, '96]

Case overview

- Part of automobile PD process
- Process of designing all interior and exterior auto-mobile surfaces for better appearance, surface quality, and operational interface.
- Engineering (local) team responsible for the feasibility of designs
- Styling (system) team responsible for the appearance of the vehicle
- Tasks: (1) carpet, (2) center console, (3) door trim panel, (4) garnish trim, (5) overhead system, (6) instrument panel, (7) luggage trim, (8) package tray, (9) seats, and (10) steering wheel.

Automobile appearance design [McDaniel, '96]

Nominal WTMs

Fig. 2 Nominal DSMs and IDMs of the automotive appearance design. The inter-component and inter-team dependencies (18) that can be weakened by the manager are highlighted with the gray color

Problem formulation

Assumption

- Maximum reduction = 15%
- Reduction cost proportional to reduction amount
- Feedback intervals randomly fluctuated
- Question: Which DSM entry should we invest on?

Comparison

■ Eigenvector-based method assuming constant feedback intervals [Yassine, *RIED*, 2003]

Results

Comparison of investment pattern

(a)
$$f_{L,ij}(\Psi_{L,ij})$$

	L_1	L_2	L_3	L_4	L_5	L_6	L_7	L_8	L_9	L_{10}
S_1										
S_2			0	0	0	0	0	0	0	0
S_3		0		0	0	0	0	0	0	0
S_4		0	0		0		0	0	0	0
S_5		0		0						
S_6		0	0	0			0	0	0	0
S_7		0	0	0						
S_1 S_2 S_3 S_4 S_5 S_6 S_7 S_8 S_9				0					0	
S_9		0	0	0				0		
S_{10}				0						

(b) $f_{LS,ij}(\Psi_{LS,ij})$

	S_1	S_2	S_3	S_4	S_5	S_6	S_7	S_8	S_9	S_{10}
L_1	0									
L_2		7.2								
L_3			15.0							
L_4				0						
L_5					0					
L_6						15.0				
L_7							0			
L_8								0		
L_1 L_2 L_3 L_4 L_5 L_6 L_7 L_8 L_9 L_{10}									0	
L_{10}										0

(c) $f_{SL,ij}(\Psi_{SL,ij})$

(a)
$$f_{L,ij}(\Psi_{L,ij})$$

	L_1	L_2	L_3	L_4	L_5	L_6	L_7	L_8	L_9	L_{10}
S_1										
S_2			1.9	0	0	1.9	0	0	0	0
S_3		2.6		0	0	2.1	0	0	0	0
S_2 S_3 S_4		1.3	3.2		0		0	0	0	0
S_5		1.1		0						
S_6		21.6	18.6	0			0	0	0	0
$S_6 S_7$		1.5	1.3	0						
S_8				0					0	
S_9		3.0	2.6	0				0		
S_{10}				0						

(b) $f_{LS,ij}(\Psi_{LS,ij})$

	S_1	S_2	S_3	S_4	S_5	S_6	S_7	S_8	S_9	S_{10}
L_1	0									
L_2		3.2								
L_3			3.2							
L_4				0						
L_3 L_4 L_5					0					
L_6						3.2				
L_7							0			
L_8								0		
L_9									0	
L_{10}										0

(c) $f_{SL,ij}(\Psi_{SL,ij})$

Feasibility index

Fig. 7 Performances of the baseline and proposed strategies for various values of the budget *B*. Solid line: proposed strategy. Dashed line: baseline strategy

PD process simulation

Conclusion

Optimal resource allocation for improving PD processes

- Theoretical analysis: Feasibility index
- Based on tools from systems and control engineering
- Decision support tool based on convex optimization
- Improves existing heuristic methodology based on eigenvector centralities

Thank you!

Journal version: Ogura, Harada, Kishida, Yassine, "Resource optimization of product development projects with time-varying dependency structure," *Research in Engineering Design*, vol. 30, no. 3, pp. 435–452, 2019.