

TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik

Prof. Dr. P. Gritzmann, Dr. T. Theobald

Semestralklausur Lineare Algebra 1, WS 2001/02; Gruppe A

Aufgabe 1 (ca. 7 Punkte): Sei $A = \begin{pmatrix} 1 & 1 & b \\ a & b & b-a \\ 1 & 1 & 0 \end{pmatrix}$.

- a) Berechnen Sie eine Parameterdarstellung des Kerns von A für den Fall $a=2,\,b=2.$
- b) Für welche Werte von a, b hat A den
 - (i) Rang 3?
 - (ii) Rang 2?
 - (iii) Rang 1?
- c) Berechnen Sie die Inverse von A für den Fall a = 2, b = 1.

Aufgabe 2 (ca. 8 Punkte): Beweisen oder widerlegen Sie jeweils:

- a) Seien (U_1, \cdot) und (U_2, \cdot) Untergruppen einer Gruppe (G, \cdot) .
 - (i) Ist $(U_1 \cap U_2, \cdot)$ eine Untergruppe von (G, \cdot) ?
 - (ii) Ist $(U_1 \cup U_2, \cdot)$ eine Untergruppe von (G, \cdot) ?
- b) Sei $U = \{z \in \mathbb{C}^3 : z_3 = \overline{z_1} + \overline{z_2}\}.$
 - (i) Definiert U einen Untervektorraum des \mathbb{C} -Vektorraums \mathbb{C}^3 ?
 - (ii) Definiert U einen Untervektorraum des \mathbb{R} -Vektorraums \mathbb{C}^3 ?

Aufgabe 3 (ca. 5 Punkte): Seien $A, B \in \mathbb{R}^{n \times n}$ mit AB = 0.

- a) Zeigen Sie rang $A + \text{rang } B \leq n$.
- b) Geben Sie ein Beispiel für Matrizen $A, B \in \mathbb{R}^{4 \times 4}$ mit rang A = 3 und AB = 0 an, in dem die Ungleichung in a) mit Gleichheit erfüllt ist.

Aufgabe 4 (ca. 7 Punkte): Sei $\mathbb{R}[x]_2$ der Vektorraum der reellen Polynome vom Grad ≤ 2 .

- a) Zeigen Sie, daß $\{1, 1+x, 1-x^2\}$ eine Basis von $\mathbb{R}[x]_2$ ist.
- b) Bestimmen Sie die Koordinaten des Polynoms $1 2x + 5x^2$ bezüglich der Basis aus a).
- c) Bestimmen Sie die Dimension und eine Basis des Unterraums

$$span\{x^2 - x, x - 1\} \cap span\{x^2 - 2x, x\}.$$

Aufgabe 5 (ca. 7 Punkte): Mit der Matrix $A=\begin{pmatrix}1&0&1\\2&1&1\\-1&1&-2\end{pmatrix}\in\mathbb{R}^{3\times 3}$ sei die lineare

Abbildung $F:\mathbb{R}^3 \to \mathbb{R}^3$ definiert durch F(x) = Ax. Bestimmen Sie

- a) eine Basis von kern F;
- b) eine Basis von bild F;
- c) Basen $\mathcal A$ und $\mathcal B$ von $\mathbb R^3$ mit der Übergangsmatrix $M_{\mathcal B}^{\mathcal A}(F) = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$.

Aufgabe 6 (ca. 6 Punkte): Eine Matrix $A \in \mathbb{R}^{n \times n}$ heißt *Involution*, falls $A^2 = I_n$ (I_n bezeichnet die Einheitsmatrix). Zeigen Sie:

- a) Für jeden Eigenwert λ einer Involution A gilt $\lambda \in \{-1, 1\}$.
- b) A ist genau dann eine Involution, wenn bild $(A I_n) \subset \ker(A + I_n)$.

Bitte beachten Sie: Die Arbeitszeit beträgt 90 Minuten. Es sind keine Hilfsmittel zugelassen. Alle Antworten sind sorgfältig zu begründen!

Zum Bestehen der Klausur sind ca. 17 Punkte erforderlich. Viel Erfolg!