Contents

	0.1	Overall Influence	3
	0.2	Cook's 1986 paper on Local Influence	3
1	Mea	asures of Influence	4
	1.1	DFFITS	4
	1.2	PRESS	4
2	Infl	uence in LME Models	4
3	Infl	uence analysis for LME Models	5
	3.1	Influence Diagnostics: Basic Idea and Statistics	5
	3.2	Influence Analysis for LME Models	5
	3.3	Influence Statistics for LME models	6
	3.4	What is Influence	7
	3.5	Quantifying Influence	7
4	Ext	ension of techniques to LME Models	8
5	Infl	uence analysis	9
	5.1	Cook's 1986 paper on Local Influence	9
	5.2	Overall Influence	9
6	Ter	minology for Case Deletion diagnostics	10
7	Effic	cient Updating Theorem	11
		7.0.1 Random Effects	11
		7.0.2 linear functions	11
8	Zew	votir Measures of Influence in LME Models	11
9	Con	nputation and Notation	11
10	Den	nidenko's I Influence	12
11	Mea	asures 2	12
	11 1	Cook's Distance	19

	11.2 Variance Ratio	12
	11.3 Cook-Weisberg statistic	12
	11.4 Andrews-Pregibon statistic	12
12	2 Haslett's Analysis	12
13	B Demidenko's I Influence	13
	13.1 Extension of techniques to LME Models	15
	13.2 Influence Statistics for LME models	16
	13.3 Extension of techniques to LME Models	17
	13.4 Standardized and studentized residuals	18
	13.5 Residual Analysis for Linear Models, LME models and GLMs $\ \ldots \ \ldots$	18
	13.6 Identifying outliers with a LME model object	19
	13.7 Diagnostics for Random Effects	19
	13.8 Influence Diagnostics: Basic Idea and Statistics	20
	13.9 Case Deletion Diagnostics for Mixed Models	20
	13.10Methods and Measures	20
	13.11Cook's 1986 paper on Local Influence	20
14	Computation and Notation	21
15	The Hat Matrix	22
16	Sherman Morrison Woodbury Formula	24
	16.1 Hat Values for MCS regression	24
17	Lesaffre's paper.	26
18	3 Cross Validation	28
19	Cross Validation	28
	19.1 Cross Validation: Updating standard deviation	29
	19.2 Cross Validation: Updating standard deviation	31
	19.3 Updating Standard deviation	32
	19.4 Updating of Regression Estimates	32
	19.5 Updating Regression Estimates	32

19.6 Inference on intercept and slope
19.6.1 Inference on correlation coefficient
19.7 Updating of Regression Estimates
19.8 Updating Standard deviation
19.9 Updating of Regression Estimates
19.10Updating Regression Estimates
19.11Inference on intercept and slope $\dots \dots \dots$
19.11.1 Inference on correlation coefficient
19.12Updating Regression Estimates
19.13Updating of Regression Estimates
19.14Updating Standard deviation
19.15Inference on intercept and slope
19.15.1 Inference on correlation coefficient
Influence

0.1 Overall Influence

An overall influence statistic measures the change in the objective function being minimized. For example, in OLS regression, the residual sums of squares serves that purpose. In linear mixed models fit by maximum likelihood (ML) or restricted maximum likelihood (REML), an overall influence measure is the likelihood distance [Cook and Weisberg].

0.2 Cook's 1986 paper on Local Influence

Cook 1986 introduced methods for local influence assessment. These methods provide a powerful tool for examining perturbations in the assumption of a model, particularly the effects of local perturbations of parameters of observations.

The local-influence approach to influence assessment is quitedifferent from the case deletion approach, comparisons are of interest.

1 Measures of Influence

The impact of an observation on a regression fitting can be determined by the difference between the estimated regression coefficient of a model with all observations and the estimated coefficient when the particular observation is deleted. The measure DFBETA is the studentized value of this difference.

1.1 DFFITS

DFFITS is a statistical measured designed to a show how influential an observation is in a statistical model. It is closely related to the studentized residual.

$$DFFITS = \frac{\widehat{y_i} - \widehat{y_{i(k)}}}{s_{(k)}\sqrt{h_{ii}}}$$

1.2 PRESS

The prediction residual sum of squares (PRESS) is an value associated with this calculation. When fitting linear models, PRESS can be used as a criterion for model selection, with smaller values indicating better model fits.

$$PRESS = \sum (y - y^{(k)})^2 \tag{1}$$

- $\bullet \ e_{-Q} = y_Q x_Q \hat{\beta}^{-Q}$
- $PRESS_{(U)} = y_i x\hat{\beta}_{(U)}$

DFBETA

$$DFBETA_a = \hat{\beta} - \hat{\beta}_{(a)} \tag{2}$$

$$= B(Y - Y_{\bar{a}} \tag{3})$$

2 Influence in LME Models

Model diagnostic techniques, well established for classical models, have since been adapted for use with linear mixed effects models. Diagnostic techniques for LME models are inevitably more difficult to implement, due to the increased complexity.

3 Influence analysis for LME Models

Likelihood based estimation methods, such as ML and REML, are sensitive to unusual observations. Influence diagnostics are formal techniques that assess the influence of observations on parameter estimates for β and θ . A common technique is to refit the model with an observation or group of observations omitted.

West et al. (2007) examines a group of methods that examine various aspects of influence diagnostics for LME models. For overall influence, the most common approaches are the 'likelihood distance' and the 'restricted likelihood distance'.

3.1 Influence Diagnostics: Basic Idea and Statistics

The general idea of quantifying the influence of one or more observations relies on computing parameter estimates based on all data points, removing the cases in question from the data, refitting the model, and computing statistics based on the change between full-data and reduced-data estimation.

3.2 Influence Analysis for LME Models

The linear mixed effects model is a useful methodology for fitting a wide range of models. However, linear mixed effects models are known to be sensitive to outliers. Christensen et al. (1992) advises that identification of outliers is necessary before conclusions may be drawn from the fitted model.

Standard statistical packages concentrate on calculating and testing parameter estimates without considering the diagnostics of the model. The assessment of the effects of perturbations in data, on the outcome of the analysis, is known as statistical influence analysis. Influence analysis examines the robustness of the model. Influence analysis methodologies have been used extensively in classical linear models, and provided the basis for methodologies for use with LME models. Computationally inexpensive diagnostics tools have been developed to examine the issue of influence (Zewotir and Galpin, 2005). Studentized residuals, error contrast matrices and the inverse of the response variance covariance matrix are regular components of these tools.

Influence arises at two stages of the LME model. Firstly when V is estimated by \hat{V} , and subsequent estimations of the fixed and random regression coefficients β and

u, given \hat{V} .

3.3 Influence Statistics for LME models

Influence statistics can be coarsely grouped by the aspect of estimation that is their primary target:

- overall measures compare changes in objective functions: (restricted) likelihood distance (Cook and Weisberg 1982, Ch. 5.2)
- influence on parameter estimates: Cook's (Cook 1977, 1979), MDFFITS (Belsley, Kuh, and Welsch 1980, p. 32)
- influence on precision of estimates: CovRatio and CovTrace
- influence on fitted and predicted values: PRESS residual, PRESS statistic (Allen 1974), DFFITS (Belsley, Kuh, and Welsch 1980, p. 15)
- outlier properties: internally and externally studentized residuals, leverage

Beckman, Nachtsheim and Cook (1987) Beckman et al. (1987) applied the local influence method of Cook (1986) to the analysis of the linear mixed model.

While the concept of influence analysis is straightforward, implementation in mixed models is more complex. Update formulae for fixed effects models are available only when the covariance parameters are assumed to be known.

If the global measure suggests that the points in U are influential, the nature of that influence should be determined. In particular, the points in U can affect the following

- the estimates of fixed effects,
- the estimates of the precision of the fixed effects,
- the estimates of the covariance parameters,
- the estimates of the precision of the covariance parameters,
- fitted and predicted values.

3.4 What is Influence

Broadly defined, influence is understood as the ability of a single or multiple data points, through their presence or absence in the data, to alter important aspects of the analysis, yield qualitatively different inferences, or violate assumptions of the statistical model. The goal of influence analysis is not primarily to mark data points for deletion so that a better model fit can be achieved for the reduced data, although this might be a result of influence analysis (Schabenberger, 2004).

3.5 Quantifying Influence

The basic procedure for quantifying influence is simple as follows:

- Fit the model to the data and obtain estimates of all parameters.
- Remove one or more data points from the analysis and compute updated estimates of model parameters.
- Based on full- and reduced-data estimates, contrast quantities of interest to determine how the absence of the observations changes the analysis.

Cook (1986) introduces powerful tools for local-influence assessment and examining perturbations in the assumptions of a model. In particular the effect of local perturbations of parameters or observations are examined.

4 Extension of techniques to LME Models

Model diagnostic techniques, well established for classical models, have since been adapted for use with linear mixed effects models. Diagnostic techniques for LME models are inevitably more difficult to implement, due to the increased complexity.

Beckman, Nachtsheim and Cook (1987) Beckman et al. (1987) applied the local influence method of Cook (1986) to the analysis of the linear mixed model.

While the concept of influence analysis is straightforward, implementation in mixed models is more complex. Update formulae for fixed effects models are available only when the covariance parameters are assumed to be known.

If the global measure suggests that the points in U are influential, the nature of that influence should be determined. In particular, the points in U can affect the following

- the estimates of fixed effects,
- the estimates of the precision of the fixed effects,
- the estimates of the covariance parameters,
- the estimates of the precision of the covariance parameters,
- fitted and predicted values.

5 Influence analysis

Likelihood based estimation methods, such as ML and REML, are sensitive to unusual observations. Influence diagnostics are formal techniques that assess the influence of observations on parameter estimates for β and θ . A common technique is to refit the model with an observation or group of observations omitted.

West et al. (2007) examines a group of methods that examine various aspects of influence diagnostics for LME models. For overall influence, the most common approaches are the 'likelihood distance' and the 'restricted likelihood distance'.

5.1 Cook's 1986 paper on Local Influence

Cook 1986 introduced methods for local influence assessment. These methods provide a powerful tool for examining perturbations in the assumption of a model, particularly the effects of local perturbations of parameters of observations.

The local-influence approach to influence assessment is quite different from the case deletion approach, comparisons are of interest.

5.2 Overall Influence

An overall influence statistic measures the change in the objective function being minimized. For example, in OLS regression, the residual sums of squares serves that purpose. In linear mixed models fit by maximum likelihood (ML) or restricted maximum likelihood (REML), an overall influence measure is the likelihood distance [Cook and Weisberg].

6 Terminology for Case Deletion diagnostics

Preisser (1996) describes two type of diagnostics. When the set consists of only one observation, the type is called 'observation-diagnostics'. For multiple observations, Preisser describes the diagnostics as 'cluster-deletion' diagnostics.

Zewotir

7 Efficient Updating Theorem

Zewotir and Galpin (2005) describes the basic theorem of efficient updating.

•

$$m_i = \frac{1}{c_{ii}}$$

7.0.1 Random Effects

A large value for $CD(u)_i$ indicates that the i-th observation is influential in predicting random effects.

7.0.2 linear functions

 $CD(\psi)_i$ does not have to be calculated unless $CD(\beta)_i$ is large. Zewotir's Paper

8 Zewotir Measures of Influence in LME Models

Zewotir and Galpin (2005) describes a number of approaches to model diagnostics, investigating each of the following;

- Variance components
- Fixed effects parameters
- Prediction of the response variable and of random effects
- likelihood function

9 Computation and Notation

with V unknown, a standard practice for estimating $X\beta$ is the estime the variance components σ_j^2 , compute an estimate for V and then compute the projector matrix A, $X\hat{\beta} = AY$.

? remarks that D is a block diagonal with the i-th block being uI

10 Demidenko's I Influence

The concept of I Influence is generalized to the non linea regression model. Zewotir's Paper

11 Measures 2

11.1 Cook's Distance

• For variance components γ

Diagnostic tool for variance components

$$C_{\theta i} = (\hat{\theta})_{[i]} - \hat{\theta})^T \operatorname{cov}(\hat{\theta})^{-1} (\hat{\theta})_{[i]} - \hat{\theta})$$

11.2 Variance Ratio

• For fixed effect parameters β .

11.3 Cook-Weisberg statistic

• For fixed effect parameters β .

11.4 Andrews-Pregibon statistic

• For fixed effect parameters β .

The Andrews-Pregibon statistic AP_i is a measure of influence based on the volume of the confidence ellipsoid. The larger this statistic is for observation i, the stronger the influence that observation will have on the model fit.

12 Haslett's Analysis

For fixed effect linear models with correlated error structure Haslett (1999) showed that the effects on the fixed effects estimate of deleting each observation in turn could be cheaply computed from the fixed effects model predicted residuals.

A general theory is presented for residuals from the general linear model with correlated errors. It is demonstrated that there are two fundamental types of residual associated with this model, referred to here as the marginal and the conditional residual.

These measure respectively the distance to the global aspects of the model as represented by the expected value and the local aspects as represented by the conditional expected value.

These residuals may be multivariate.

Haslett and Hayes (1998) developes some important dualities which have simple implications for diagnostics.

13 Demidenko's I Influence

The concept of I Influence is generalized to the non linea regression model.

References

- Beckman, R., C. Nachtsheim, and R. Cook (1987). Diagnostics for mixed-model analysis of variance. *Technometrics* 29(4), 413–426.
- Christensen, R., L. M. Pearson, and W. Johnson (1992). Case-deletion diagnostics for mixed models. *Technometrics* 34(1), 38–45.
- Cook, R. (1977). Detection of influential observations in linear regression. *Technomet-rics* 19, 15–18.
- Cook, R. (1986). Assessment of local influence. Journal of the Royal Statistical Society. Series B (Methodological) 48(2), 133–169.
- Haslett, J. and K. Hayes (1998). Residuals for the linear model with general covariance structure. *Journal of the Royal Statistical Society (Series B)* 60, 201–215.
- Preisser, J. S. (1996). Deletion diagnostics for generalised estimating equations. Biometrika 83(3), 551–5562.
- Schabenberger, O. (2004). Mixed model influence diagnostics. 18929.

- West, B., K. Welch, and A. Galecki (2007). Linear Mixed Models: a Practical Guide Using Statistical Software. Chapman and Hall CRC.
- Zewotir, T. and J. Galpin (2005). Influence diagnostics for linear mixed models. *Journal of Data Science* 3, 153–177.

13.1 Extension of techniques to LME Models

Model diagnostic techniques, well established for classical models, have since been adapted for use with linear mixed effects models. Diagnostic techniques for LME models are inevitably more difficult to implement, due to the increased complexity.

Beckman, Nachtsheim and Cook (1987) Beckman et al. (1987) applied the local influence method of Cook (1986) to the analysis of the linear mixed model.

While the concept of influence analysis is straightforward, implementation in mixed models is more complex. Update formulae for fixed effects models are available only when the covariance parameters are assumed to be known.

If the global measure suggests that the points in U are influential, the nature of that influence should be determined. In particular, the points in U can affect the following

- the estimates of fixed effects,
- the estimates of the precision of the fixed effects,
- the estimates of the covariance parameters,
- the estimates of the precision of the covariance parameters,
- fitted and predicted values.

13.2 Influence Statistics for LME models

Influence statistics can be coarsely grouped by the aspect of estimation that is their primary target:

- overall measures compare changes in objective functions: (restricted) likelihood distance (Cook and Weisberg 1982, Ch. 5.2)
- influence on parameter estimates: Cook's (Cook 1977, 1979), MDFFITS (Belsley, Kuh, and Welsch 1980, p. 32)
- influence on precision of estimates: CovRatio and CovTrace
- influence on fitted and predicted values: PRESS residual, PRESS statistic (Allen 1974), DFFITS (Belsley, Kuh, and Welsch 1980, p. 15)
- outlier properties: internally and externally studentized residuals, leverage

13.3 Extension of techniques to LME Models

Model diagnostic techniques, well established for classical models, have since been adapted for use with linear mixed effects models. Diagnostic techniques for LME models are inevitably more difficult to implement, due to the increased complexity.

Beckman, Nachtsheim and Cook (1987) Beckman et al. (1987) applied the local influence method of Cook (1986) to the analysis of the linear mixed model.

While the concept of influence analysis is straightforward, implementation in mixed models is more complex. Update formulae for fixed effects models are available only when the covariance parameters are assumed to be known.

If the global measure suggests that the points in U are influential, the nature of that influence should be determined. In particular, the points in U can affect the following

- the estimates of fixed effects,
- the estimates of the precision of the fixed effects,
- the estimates of the covariance parameters,
- the estimates of the precision of the covariance parameters,
- fitted and predicted values.

13.4 Standardized and studentized residuals

To alleviate the problem caused by inconstant variance, the residuals are scaled (i.e. divided) by their standard deviations. This results in a 'standardized residual'. Because true standard deviations are frequently unknown, one can instead divide a residual by the estimated standard deviation to obtain the 'studentized residual.

13.5 Residual Analysis for Linear Models, LME models and GLMs

Keywords:

- Residuals (Beginners),
- Testing the Assumption of Normality (Beginners)
- Diagnostic Plots with the plot function
- Cook's Distance
- DFFits and DFBeta
- Standardized and Studentized Residuals
- Influence Leverage and Outlierness

13.6 Identifying outliers with a LME model object

The process is slightly different than with standard LME model objects, since the *influence* function does not work on lime model objects. Given *mod.lme*, we can use the plot function to identify outliers.

13.7 Diagnostics for Random Effects

Empirical best linear unbiased predictors EBLUPS provide the a useful way of diagnosing random effects.

EBLUPs are also known as "shrinkage estimators" because they tend to be smaller than the estimated effects would be if they were computed by treating a random factor as if it was fixed (West et al.)

13.8 Influence Diagnostics: Basic Idea and Statistics

The general idea of quantifying the influence of one or more observations relies on computing parameter estimates based on all data points, removing the cases in question from the data, refitting the model, and computing statistics based on the change between full-data and reduced-data estimation.

13.9 Case Deletion Diagnostics for Mixed Models

? notes the case deletion diagnostics techniques have not been applied to linear mixed effects models and seeks to develop methodologies in that respect.

? develops these techniques in the context of REML

13.10 Methods and Measures

The key to making deletion diagnostics useable is the development of efficient computational formulas, allowing one to obtain the case deletion diagnostics by making use of basic building blocks, computed only once for the full model.

Zewotir and Galpin (2005) lists several established methods of analyzing influence in LME models. These methods include

- Cook's distance for LME models,
- likelihood distance,
- the variance (information) ration,
- the Cook-Weisberg statistic,
- the Andrews-Prebigon statistic.

13.11 Cook's 1986 paper on Local Influence

Cook 1986 introduced methods for local influence assessment. These methods provide a powerful tool for examining perturbations in the assumption of a model, particularly the effects of local perturbations of parameters of observations.

The local-influence approach to influence assessment is quitedifferent from the case deletion approach, comparisons are of interest.

14 Computation and Notation

with V unknown, a standard practice for estimating $X\beta$ is the estime the variance components σ_j^2 , compute an estimate for V and then compute the projector matrix A, $X\hat{\beta} = AY$.

Zewotir and Galpin (2005) remarks that \boldsymbol{D} is a block diagonal with the i-th block being $u\boldsymbol{I}$

15 The Hat Matrix

The projection matrix H (also known as the hat matrix), is a well known identity that maps the fitted values \hat{Y} to the observed values Y, i.e. $\hat{Y} = HY$.

$$H = X(X^T X)^{-1} X^T \tag{4}$$

H describes the influence each observed value has on each fitted value. The diagonal elements of the H are the 'leverages', which describe the influence each observed value has on the fitted value for that same observation. The residuals (R) are related to the observed values by the following formula:

$$R = (I - H)Y \tag{5}$$

The variances of Y and R can be expressed as:

$$var(Y) = H\sigma^{2}$$

$$var(R) = (I - H)\sigma^{2}$$
(6)

Updating techniques allow an economic approach to recalculating the projection matrix, H, by removing the necessity to refit the model each time it is updated. However this approach is known for numerical instability in the case of down-dating.

sectionThe Hat Matrix

The projection matrix H (also known as the hat matrix), is a well known identity that maps the fitted values \hat{Y} to the observed values Y, i.e. $\hat{Y} = HY$.

$$H = X(X^T X)^{-1} X^T (7)$$

H describes the influence each observed value has on each fitted value. The diagonal elements of the H are the 'leverages', which describe the influence each observed value has on the fitted value for that same observation. The residuals (R) are related to the observed values by the following formula:

$$R = (I - H)Y \tag{8}$$

The variances of Y and R can be expressed as:

$$var(Y) = H\sigma^{2}$$

$$var(R) = (I - H)\sigma^{2}$$
(9)

Updating techniques allow an economic approach to recalculating the projection matrix, H, by removing the necessity to refit the model each time it is updated. However this approach is known for numerical instability in the case of down-dating.

16 Sherman Morrison Woodbury Formula

The 'Sherman Morrison Woodbury' Formula is a well known result in linear algebra;

$$(A + a^T B)^{-1} = A^{-1} - A^{-1} a^T (I - bA^{-1} a^T)^{-1} bA^{-1}$$
(10)

This result is highly useful for analyzing regression diagnostics, and for matrices inverses in general. Consider a $p \times p$ matrix X, from which a row x_i^T is to be added or deleted. ? sets $A = X^T X$, $a = -x_i^T$ and $b = x_i^T$, and writes the above equation as

$$(X^T X \pm x_i x_i^T)^{-1} = (X^T X)^{-1} \mp \frac{(X^T X)^{-1} (x_i x_i^T (X^T X)^{-1}}{1 - x_i^T (X^T X)^{-1} x_i}$$
(11)

The projection matrix H (also known as the hat matrix), is a well known identity that maps the fitted values \hat{Y} to the observed values Y, i.e. $\hat{Y} = HY$.

$$H = X(X^T X)^{-1} X^T \tag{12}$$

H describes the influence each observed value has on each fitted value. The diagonal elements of the H are the 'leverages', which describe the influence each observed value has on the fitted value for that same observation. The residuals (R) are related to the observed values by the following formula:

$$R = (I - H)Y \tag{13}$$

The variances of Y and R can be expressed as:

$$var(Y) = H\sigma^{2}$$

$$var(R) = (I - H)\sigma^{2}$$
(14)

Updating techniques allow an economic approach to recalculating the projection matrix, H, by removing the necessity to refit the model each time it is updated. However this approach is known for numerical instability in the case of down-dating.

16.1 Hat Values for MCS regression

With A as the averages and D as the casewise differences.

$$fit = lm(D^A)$$

$$H = A \left(A^{\top} A \right)^{-1} A^{\top},$$

Appendices

sectionThe Hat Matrix

The projection matrix H (also known as the hat matrix), is a well known identity that maps the fitted values \hat{Y} to the observed values Y, i.e. $\hat{Y} = HY$.

$$H = X(X^T X)^{-1} X^T \tag{15}$$

H describes the influence each observed value has on each fitted value. The diagonal elements of the H are the 'leverages', which describe the influence each observed value has on the fitted value for that same observation. The residuals (R) are related to the observed values by the following formula:

$$R = (I - H)Y \tag{16}$$

The variances of Y and R can be expressed as:

$$var(Y) = H\sigma^{2}$$

$$var(R) = (I - H)\sigma^{2}$$
(17)

Updating techniques allow an economic approach to recalculating the projection matrix, H, by removing the necessity to refit the model each time it is updated. However this approach is known for numerical instability in the case of down-dating.

17 Lesaffre's paper.

Lesaffre considers the case-weight perturbation approach.

Cook's 86 describes a local approach wherein each case is given a weight w_i and the effect on the parameter estimation is measured by perturbing these weights. Choosing weights close to zero or one corresponds to the global case-deletion approach.

Lesaffre describes the displacement in log-likelihood as a useful metric to evaluate local influence

Lesaffre describes a framework to detect outlying observations that matter in an LME model. Detection should be carried out by evaluating diagnostics C_i , $C_i(\alpha)$ and $C_i(D, \sigma^2)$.

Lesaffre defines the total local influence of individual i as

$$C_i = 2|\triangle \iota_i L^{-1} \triangle_i|. \tag{18}$$

The influence function of the MLEs evaluated at the *i*th point IF_i , given by

$$IF_i = -L^{-1}\triangle_i \tag{19}$$

can indicate how $t\hat{het}a$ changes as the weight of the ith subject changes.

The manner by which influential observations distort the estimation process can be determined by inspecting the interpretable components in the decomposition of the above measures of local influence.

Lesaffre comments that there is no clear way of interpreting the information contained in the angles, but that this doesn't mean the information should be ignored.

Appendices

18 Cross Validation

Cross validation techniques for linear regression employ the use 'leave one out' recalculations. In such procedures the regression coefficients are estimated for n-1covariates, with the Q^{th} observation omitted.

Let $\hat{\beta}$ denote the least square estimate of β based upon the full set of observations, and let $\hat{\beta}^{-Q}$ denoted the estimate with the Q^{th} case excluded.

In leave-one-out cross validation, each observation is omitted in turn, and a regression model is fitted on the rest of the data. Cross validation is used to estimate the generalization error of a given model. alternatively it can be used for model selection by determining the candidate model that has the smallest generalization error.

Evidently leave-one-out cross validation has similarities with 'jackknifing', a well known statistical technique. However cross validation is used to estimate generalization error, whereas the jackknife technique is used to estimate bias.

19 Cross Validation

Cross validation techniques for linear regression employ the use 'leave one out' recalculations. In such procedures the regression coefficients are estimated for n-1covariates, with the Q^{th} observation omitted.

Let $\hat{\beta}$ denote the least square estimate of β based upon the full set of observations, and let $\hat{\beta}^{-Q}$ denoted the estimate with the Q^{th} case excluded.

In leave-one-out cross validation, each observation is omitted in turn, and a regression model is fitted on the rest of the data. Cross validation is used to estimate the generalization error of a given model. alternatively it can be used for model selection by determining the candidate model that has the smallest generalization error.

Evidently leave-one-out cross validation has similarities with 'jackknifing', a well known statistical technique. However cross validation is used to estimate generalization error, whereas the jackknife technique is used to estimate bias.

19.1 Cross Validation: Updating standard deviation

The variance of a data set can be calculated using the following formula.

$$S^{2} = \frac{\sum_{i=1}^{n} (x_{i}^{2}) - \frac{(\sum_{i=1}^{n} x_{i})^{2}}{n}}{n-1}$$
 (20)

While using bivariate data, the notation Sxx and Syy shall apply to the variance of x and of y respectively. The covariance term Sxy is given by

$$Sxy = \frac{\sum_{i=1}^{n} (x_i y_i) - \frac{(\sum_{i=1}^{n} x_i)(\sum_{i=1}^{n} y_i)}{n}}{n-1}$$
 (21)

Let the observation j be omitted from the data set. The estimates for the variance identities can be updating using minor adjustments to the full sample estimates. Where (j) denotes that the jth has been omitted, these identities are

$$Sxx^{(j)} = \frac{\sum_{i=1}^{n} (x_i^2) - (x_j)^2 - \frac{((\sum_{i=1}^{n} x_i) - x_j)^2}{n-1}}{n-2}$$
 (22)

$$Syy^{(j)} = \frac{\sum_{i=1}^{n} (y_i^2) - (y_j)^2 - \frac{((\sum_{i=1}^{n} y_i) - y_j)^2}{n-1}}{n-2}$$
 (23)

$$Sxy^{(j)} = \frac{\sum_{i=1}^{n} (x_i y_i) - (y_j x_j) - \frac{((\sum_{i=1}^{n} x_i) - x_j)(\sum_{i=1}^{n} y_i) - y_k)}{n-1}}{n-2}$$
(24)

The updated estimate for the slope is therefore

$$\hat{\beta}_1^{(j)} = \frac{Sxy^{(j)}}{Sxx^{(j)}} \tag{25}$$

It is necessary to determine the mean for x and y of the remaining n-1 terms

$$\bar{x}^{(j)} = \frac{\left(\sum_{i=1}^{n} x_i\right) - (x_j)}{n-1},\tag{26}$$

$$\bar{y}^{(j)} = \frac{\left(\sum_{i=1}^{n} y_i\right) - (y_j)}{n-1}.$$
(27)

The updated intercept estimate is therefore

$$\hat{\beta}_0^{(j)} = \bar{y}^{(j)} - \hat{\beta}_1^{(j)} \bar{x}^{(j)}. \tag{28}$$

subsectionCross Validation: Updating standard deviation

The variance of a data set can be calculated using the following formula.

$$S^{2} = \frac{\sum_{i=1}^{n} (x_{i}^{2}) - \frac{(\sum_{i=1}^{n} x_{i})^{2}}{n}}{n-1}$$
 (29)

While using bivariate data, the notation Sxx and Syy shall apply to the variance of x and of y respectively. The covariance term Sxy is given by

$$Sxy = \frac{\sum_{i=1}^{n} (x_i y_i) - \frac{(\sum_{i=1}^{n} x_i)(\sum_{i=1}^{n} y_i)}{n}}{n-1}$$
 (30)

Let the observation j be omitted from the data set. The estimates for the variance identities can be updating using minor adjustments to the full sample estimates. Where (j) denotes that the jth has been omitted, these identities are

$$Sxx^{(j)} = \frac{\sum_{i=1}^{n} (x_i^2) - (x_j)^2 - \frac{((\sum_{i=1}^{n} x_i) - x_j)^2}{n-1}}{n-2}$$
(31)

$$Syy^{(j)} = \frac{\sum_{i=1}^{n} (y_i^2) - (y_j)^2 - \frac{((\sum_{i=1}^{n} y_i) - y_j)^2}{n-1}}{n-2}$$
(32)

$$Sxy^{(j)} = \frac{\sum_{i=1}^{n} (x_i y_i) - (y_j x_j) - \frac{((\sum_{i=1}^{n} x_i) - x_j)(\sum_{i=1}^{n} y_i) - y_k)}{n-1}}{n-2}$$
(33)

The updated estimate for the slope is therefore

$$\hat{\beta}_{1}^{(j)} = \frac{Sxy^{(j)}}{Sxx^{(j)}} \tag{34}$$

It is necessary to determine the mean for x and y of the remaining n-1 terms

$$\bar{x}^{(j)} = \frac{\left(\sum_{i=1}^{n} x_i\right) - (x_j)}{n-1},\tag{35}$$

$$\bar{y}^{(j)} = \frac{\left(\sum_{i=1}^{n} y_i\right) - (y_j)}{n-1}.$$
(36)

The updated intercept estimate is therefore

$$\hat{\beta}_0^{(j)} = \bar{y}^{(j)} - \hat{\beta}_1^{(j)} \bar{x}^{(j)}. \tag{37}$$

19.2 Cross Validation: Updating standard deviation

The variance of a data set can be calculated using the following formula.

$$S^{2} = \frac{\sum_{i=1}^{n} (x_{i}^{2}) - \frac{(\sum_{i=1}^{n} x_{i})^{2}}{n}}{n-1}$$
(38)

While using bivariate data, the notation Sxx and Syy shall apply to the variance of x and of y respectively. The covariance term Sxy is given by

$$Sxy = \frac{\sum_{i=1}^{n} (x_i y_i) - \frac{(\sum_{i=1}^{n} x_i)(\sum_{i=1}^{n} y_i)}{n}}{n-1}$$
 (39)

Let the observation j be omitted from the data set. The estimates for the variance identities can be updating using minor adjustments to the full sample estimates. Where (j) denotes that the jth has been omitted, these identities are

$$Sxx^{(j)} = \frac{\sum_{i=1}^{n} (x_i^2) - (x_j)^2 - \frac{((\sum_{i=1}^{n} x_i) - x_j)^2}{n-1}}{n-2}$$
(40)

$$Syy^{(j)} = \frac{\sum_{i=1}^{n} (y_i^2) - (y_j)^2 - \frac{((\sum_{i=1}^{n} y_i) - y_j)^2}{n-1}}{n-2}$$
(41)

$$Sxy^{(j)} = \frac{\sum_{i=1}^{n} (x_i y_i) - (y_j x_j) - \frac{((\sum_{i=1}^{n} x_i) - x_j)(\sum_{i=1}^{n} y_i) - y_k)}{n-1}}{n-2}$$
(42)

The updated estimate for the slope is therefore

$$\hat{\beta}_1^{(j)} = \frac{Sxy^{(j)}}{Sxx^{(j)}} \tag{43}$$

It is necessary to determine the mean for x and y of the remaining n-1 terms

$$\bar{x}^{(j)} = \frac{\left(\sum_{i=1}^{n} x_i\right) - (x_j)}{n-1},\tag{44}$$

$$\bar{y}^{(j)} = \frac{\left(\sum_{i=1}^{n} y_i\right) - (y_j)}{n-1}.$$
(45)

The updated intercept estimate is therefore

$$\hat{\beta}_0^{(j)} = \bar{y}^{(j)} - \hat{\beta}_1^{(j)} \bar{x}^{(j)}. \tag{46}$$

19.3 Updating Standard deviation

A simple, but useful, example of updating is the updating of the standard deviation when an observation is omitted, as practised in statistical process control analyzes. From first principles, the variance of a data set can be calculated using the following formula.

$$S^{2} = \frac{\sum_{i=1}^{n} (x_{i}^{2}) - \frac{(\sum_{i=1}^{n} x_{i})^{2}}{n}}{n-1}$$
(47)

While using bivariate data, the notation Sxx and Syy shall apply hither to the variance of x and of y respectively. The covariance term Sxy is given by

$$Sxy = \frac{\sum_{i=1}^{n} (x_i y_i) - \frac{(\sum_{i=1}^{n} x_i)(\sum_{i=1}^{n} y_i)}{n}}{n}.$$
 (48)

19.4 Updating of Regression Estimates

Updating techniques are used in regression analysis to add or delete rows from a model, allowing the analyst the effect of the observation associated with that row. In time series problems, there will be scientific interest in the changing relationship between variables. In cases where there a single row is to be added or deleted, the procedure used is equivalent to a geometric rotation of a plane.

Consider a $p \times p$ matrix X, from which a row x_i^T is to be added or deleted. ? sets $A = X^T X$, $a = -x_i^T$ and $b = x_i^T$, and writes the above equation as

$$(X^T X \pm x_i x_i^T)^{-1} = (X^T X)^{-1} \mp \frac{(X^T X)^{-1} (x_i x_i^T (X^T X)^{-1}}{1 - x_i^T (X^T X)^{-1} x_i}$$
(49)

19.5 Updating Regression Estimates

Let the observation j be omitted from the data set. The estimates for the variance identities can be updating using minor adjustments to the full sample estimates. Where (j) denotes that the jth has been omitted, these identities are

$$Sxx^{(j)} = \frac{\sum_{i=1}^{n} (x_i^2) - (x_j)^2 - \frac{((\sum_{i=1}^{n} x_i) - x_j)^2}{n-1}}{n-2}$$
 (50)

$$Syy^{(j)} = \frac{\sum_{i=1}^{n} (y_i^2) - (y_j)^2 - \frac{((\sum_{i=1}^{n} y_i) - y_j)^2}{n-1}}{n-2}$$
 (51)

$$Sxy^{(j)} = \frac{\sum_{i=1}^{n} (x_i y_i) - (y_j x_j) - \frac{((\sum_{i=1}^{n} x_i) - x_j)(\sum_{i=1}^{n} y_i) - y_k)}{n-1}}{n-2}$$
 (52)

The updated estimate for the slope is therefore

$$\hat{\beta}_{1}^{(j)} = \frac{Sxy^{(j)}}{Sxx^{(j)}} \tag{53}$$

It is necessary to determine the mean for x and y of the remaining n-1 terms

$$\bar{x}^{(j)} = \frac{\left(\sum_{i=1}^{n} x_i\right) - (x_j)}{n-1},\tag{54}$$

$$\bar{y}^{(j)} = \frac{\left(\sum_{i=1}^{n} y_i\right) - (y_j)}{n-1}.$$
(55)

The updated intercept estimate is therefore

$$\hat{\beta}_0^{(j)} = \bar{y}^{(j)} - \hat{\beta}_1^{(j)} \bar{x}^{(j)}. \tag{56}$$

19.6 Inference on intercept and slope

$$\hat{\beta}_1 \pm t_{(\alpha, n-2)} \sqrt{\frac{S^2}{(n-1)S_x^2}} \tag{57}$$

$$\frac{\hat{\beta}_0 - \beta_0}{SE(\hat{\beta}_0)} \tag{58}$$

$$\frac{\hat{\beta}_1 - \beta_1}{SE(\hat{\beta}_0)} \tag{59}$$

19.6.1 Inference on correlation coefficient

This test of the slope is coincidentally the equivalent of a test of the correlation of the n observations of X and Y.

$$H_0: \rho_{XY} = 0$$

$$H_A: \rho_{XY} \neq 0$$
(60)

19.7 Updating of Regression Estimates

Updating techniques are used in regression analysis to add or delete rows from a model, allowing the analyst the effect of the observation associated with that row. In time series problems, there will be scientific interest in the changing relationship between variables. In cases where there a single row is to be added or deleted, the procedure used is equivalent to a geometric rotation of a plane.

Updating techniques are used in regression analysis to add or delete rows from a model, allowing the analyst the effect of the observation associated with that row.

19.8 Updating Standard deviation

A simple, but useful, example of updating is the updating of the standard deviation when an observation is omitted, as practised in statistical process control analyzes. From first principles, the variance of a data set can be calculated using the following formula.

$$S^{2} = \frac{\sum_{i=1}^{n} (x_{i}^{2}) - \frac{(\sum_{i=1}^{n} x_{i})^{2}}{n}}{n-1}$$
(61)

While using bivariate data, the notation Sxx and Syy shall apply hither to the variance of x and of y respectively. The covariance term Sxy is given by

$$Sxy = \frac{\sum_{i=1}^{n} (x_i y_i) - \frac{(\sum_{i=1}^{n} x_i)(\sum_{i=1}^{n} y_i)}{n}}{n}.$$
 (62)

19.9 Updating of Regression Estimates

Updating techniques are used in regression analysis to add or delete rows from a model, allowing the analyst the effect of the observation associated with that row. In time series problems, there will be scientific interest in the changing relationship between variables. In cases where there a single row is to be added or deleted, the procedure used is equivalent to a geometric rotation of a plane.

Consider a $p \times p$ matrix X, from which a row x_i^T is to be added or deleted. ? sets $A = X^T X$, $a = -x_i^T$ and $b = x_i^T$, and writes the above equation as

$$(X^T X \pm x_i x_i^T)^{-1} = (X^T X)^{-1} \mp \frac{(X^T X)^{-1} (x_i x_i^T (X^T X)^{-1})}{1 - x_i^T (X^T X)^{-1} x_i}$$
(63)

19.10 Updating Regression Estimates

Let the observation j be omitted from the data set. The estimates for the variance identities can be updating using minor adjustments to the full sample estimates. Where (j) denotes that the jth has been omitted, these identities are

$$Sxx^{(j)} = \frac{\sum_{i=1}^{n} (x_i^2) - (x_j)^2 - \frac{((\sum_{i=1}^{n} x_i) - x_j)^2}{n-1}}{n-2}$$
 (64)

$$Syy^{(j)} = \frac{\sum_{i=1}^{n} (y_i^2) - (y_j)^2 - \frac{((\sum_{i=1}^{n} y_i) - y_j)^2}{n-1}}{n-2}$$
(65)

$$Sxy^{(j)} = \frac{\sum_{i=1}^{n} (x_i y_i) - (y_j x_j) - \frac{((\sum_{i=1}^{n} x_i) - x_j)(\sum_{i=1}^{n} y_i) - y_k)}{n-1}}{n-2}$$
(66)

The updated estimate for the slope is therefore

$$\hat{\beta}_{1}^{(j)} = \frac{Sxy^{(j)}}{Sxx^{(j)}} \tag{67}$$

It is necessary to determine the mean for x and y of the remaining n-1 terms

$$\bar{x}^{(j)} = \frac{\left(\sum_{i=1}^{n} x_i\right) - (x_j)}{n-1},\tag{68}$$

$$\bar{y}^{(j)} = \frac{\left(\sum_{i=1}^{n} y_i\right) - (y_j)}{n-1}.$$
(69)

The updated intercept estimate is therefore

$$\hat{\beta}_0^{(j)} = \bar{y}^{(j)} - \hat{\beta}_1^{(j)} \bar{x}^{(j)}. \tag{70}$$

19.11 Inference on intercept and slope

$$\hat{\beta}_1 \pm t_{(\alpha, n-2)} \sqrt{\frac{S^2}{(n-1)S_x^2}} \tag{71}$$

$$\frac{\hat{\beta}_0 - \beta_0}{SE(\hat{\beta}_0)} \tag{72}$$

$$\frac{\hat{\beta}_1 - \beta_1}{SE(\hat{\beta}_0)} \tag{73}$$

19.11.1 Inference on correlation coefficient

This test of the slope is coincidentally the equivalent of a test of the correlation of the n observations of X and Y.

$$H_0: \rho_{XY} = 0$$

$$H_A: \rho_{XY} \neq 0$$
(74)

19.12 Updating Regression Estimates

Let the observation j be omitted from the data set. The estimates for the variance identities can be updating using minor adjustments to the full sample estimates. Where (j) denotes that the jth has been omitted, these identities are

$$Sxx^{(j)} = \frac{\sum_{i=1}^{n} (x_i^2) - (x_j)^2 - \frac{((\sum_{i=1}^{n} x_i) - x_j)^2}{n-1}}{n-2}$$
 (75)

$$Syy^{(j)} = \frac{\sum_{i=1}^{n} (y_i^2) - (y_j)^2 - \frac{((\sum_{i=1}^{n} y_i) - y_j)^2}{n-1}}{n-2}$$
 (76)

$$Sxy^{(j)} = \frac{\sum_{i=1}^{n} (x_i y_i) - (y_j x_j) - \frac{((\sum_{i=1}^{n} x_i) - x_j)(\sum_{i=1}^{n} y_i) - y_k)}{n-1}}{n-2}$$
(77)

The updated estimate for the slope is therefore

$$\hat{\beta}_{1}^{(j)} = \frac{Sxy^{(j)}}{Sxx^{(j)}} \tag{78}$$

It is necessary to determine the mean for x and y of the remaining n-1 terms

$$\bar{x}^{(j)} = \frac{\left(\sum_{i=1}^{n} x_i\right) - (x_j)}{n-1},\tag{79}$$

$$\bar{y}^{(j)} = \frac{\left(\sum_{i=1}^{n} y_i\right) - (y_j)}{n-1}.$$
(80)

The updated intercept estimate is therefore

$$\hat{\beta}_0^{(j)} = \bar{y}^{(j)} - \hat{\beta}_1^{(j)} \bar{x}^{(j)}. \tag{81}$$

19.13 Updating of Regression Estimates

Updating techniques are used in regression analysis to add or delete rows from a model, allowing the analyst the effect of the observation associated with that row. In time series problems, there will be scientific interest in the changing relationship between variables. In cases where there a single row is to be added or deleted, the procedure used is equivalent to a geometric rotation of a plane.

Consider a $p \times p$ matrix X, from which a row x_i^T is to be added or deleted. ? sets $A = X^T X$, $a = -x_i^T$ and $b = x_i^T$, and writes the above equation as

$$(X^T X \pm x_i x_i^T)^{-1} = (X^T X)^{-1} \mp \frac{(X^T X)^{-1} (x_i x_i^T (X^T X)^{-1})}{1 - x_i^T (X^T X)^{-1} x_i}$$
(82)

19.14 Updating Standard deviation

A simple, but useful, example of updating is the updating of the standard deviation when an observation is omitted, as practised in statistical process control analyzes. From first principles, the variance of a data set can be calculated using the following formula.

$$S^{2} = \frac{\sum_{i=1}^{n} (x_{i}^{2}) - \frac{(\sum_{i=1}^{n} x_{i})^{2}}{n}}{n-1}$$
(83)

While using bivariate data, the notation Sxx and Syy shall apply hither to the variance of x and of y respectively. The covariance term Sxy is given by

$$Sxy = \frac{\sum_{i=1}^{n} (x_i y_i) - \frac{(\sum_{i=1}^{n} x_i)(\sum_{i=1}^{n} y_i)}{n}}{n}.$$
 (84)

19.15 Inference on intercept and slope

$$\hat{\beta}_1 \pm t_{(\alpha, n-2)} \sqrt{\frac{S^2}{(n-1)S_x^2}} \tag{85}$$

$$\frac{\hat{\beta}_0 - \beta_0}{SE(\hat{\beta}_0)} \tag{86}$$

$$\frac{\hat{\beta}_1 - \beta_1}{SE(\hat{\beta}_0)} \tag{87}$$

19.15.1 Inference on correlation coefficient

This test of the slope is coincidentally the equivalent of a test of the correlation of the n observations of X and Y.

$$H_0: \rho_{XY} = 0$$

$$H_A: \rho_{XY} \neq 0$$
(88)

References

Beckman, R., C. Nachtsheim, and R. Cook (1987). Diagnostics for mixed-model analysis of variance. *Technometrics* 29(4), 413–426.

- Christensen, R., L. M. Pearson, and W. Johnson (1992). Case-deletion diagnostics for mixed models. *Technometrics* 34(1), 38–45.
- Cook, R. (1977). Detection of influential observations in linear regression. *Technomet*rics 19, 15–18.
- Cook, R. (1986). Assessment of local influence. Journal of the Royal Statistical Society. Series B (Methodological) 48(2), 133–169.
- Haslett, J. and K. Hayes (1998). Residuals for the linear model with general covariance structure. *Journal of the Royal Statistical Society (Series B)* 60, 201–215.
- Preisser, J. S. (1996). Deletion diagnostics for generalised estimating equations. Biometrika 83(3), 551–5562.
- Schabenberger, O. (2004). Mixed model influence diagnostics. 18929.
- West, B., K. Welch, and A. Galecki (2007). Linear Mixed Models: a Practical Guide Using Statistical Software. Chapman and Hall CRC.
- Zewotir, T. and J. Galpin (2005). Influence diagnostics for linear mixed models. *Journal* of Data Science 3, 153–177.