First Semester B.E. Semester End Examination, January-March 2022-23

Discrete Mathematical Structures and Numerical methods

Time: 3 Hours Max. Marks: 100

Instructions:	1.	From Part A answer any 5 questions each Question Carries 6 Marks.
	2.	From Part B answer any one full question from each unit and each
		Question Carries 10 Marks.
	<i>3</i> .	From Part C answer any one full question and each Question Carries
		20 Marks.

				PART A	\					
Answ	nswer any Five.					L	CO	PO	M	
1		the laws of logics to simplify the compound proposition $(p \land q) \lor [\neg (q \leftrightarrow p)]$ and $(p \land q) \lor [\neg (p \leftrightarrow (\neg q))]$.					(L2)	1	1	(6)
2	Wri for	rite the converse, inverse and contrapositive along with their truth value r the following conditional f x is a positive integer, then x^2 is also an integer"						(1)	(1)	(6)
3	botl	Let $A = \{1,2,3,4\}$ and R be the relation on A defined by xRy if and only if both $x \& y$ are even or odd numbers. Is R an equivalence relation? Write zero-one matrix and draw diagraph of R .					(L2)	(2)	(1)	(6)
4	Usi from	Using Lagrange's interpolation formula, calculate the profit in the year 2000 from the following data. Year 1997 1999 2001 2002 Profit in Lakhs (Rupees) 43 65 159 248						(4)	(1)	(6)
5		Employ the Trapezoidal rule to evaluate $\int_{0}^{1} \frac{1}{1+x} dx$. Compare this solution with analytical solution.						(4)	(1)	(6)
6	•					(L2)	(5)	(1)	(6)	
7							(L2)	(5)	(1)	(6)
				PART E	3				ı	ı
		UNIT-I					L	CO	PO	M
8	a)	Apply the rule of inferences to test the validity of the following argument. If I will study discrete math, then I will study computer science. If I will study protein structures, then I will study biochemistry. I will study discrete math or I will study protein structures. .: I will study computer science or biochemistry.								
							(L3)	(1)	(1)	(6)
	b)	Justify (i) conditional and its contrapositive, (ii) converse and inverse are								1
							(L3)	(1)	(1)	(4)
9		Consider the following a	OR statement							
y		Consider the following open statements: $p(x): x > 0$; $q(x): x$ is an even; $r(x): x$ is a perfect square; $s(x): x$ is divisible by 3; $t(x): x$ is divisible by 7. Write down the following quantified statements in symbolic form.								

		(i) At least one integer is ever	1,							
		(ii) There exists a positive into		en.						
		(iii) Some even integers are d								
		(iv) Every integer is either even								
		(v) If x is an even and perfec	-		-					
		Write down the following syr	nbolic stateme	ents in word	ds.					
		(vi) $\forall x, [r(x) \to p(x)].$								
		(vii) $\exists x, [s(x) \land (\neg q(x))].$								
		(viii) $\forall x, \neg r(x)$.								
		(ix) $\forall x, [r(x) \lor t(x)].$								
							(T 2)	(1)	(1)	(10)
			UNIT-II				(L3) L	(1) CO	(1) PO	(10) M
10		State and prove fundamental		uivolonoo r	valation		L	CO	10	171
10		State and prove fundamental	meorem on eq	urvaience i	Ciation.		(L3)	(2)	(1)	(10)
			OR				(L3)	(2)	(1)	(10)
11		0 1 7 6 11 1		1 6 11	D1- : c	1 1	·c	1. 1.	1	1 2
11		On the set Z of all integers,								
		Verify that R is an equivale applying the fundamental the				ion indi	iced by	the re	eration	K by
			orem on equiv	alciice icia	11011.		(L3)	(2)	(1)	(10)
			UNIT - III				L	CO	PO	M
12		A maley concepting function me		the fellowin	na nan han					
14		Apply generating function mo with the given initial conditio		uie ioliowii	ng non-non	iogenou	s iiileai	recurre	ence re	iation
		$a_n = a_{n-1} + n, \ \forall n \ge 1, \ a_0 = 1$								
		$\alpha_n \alpha_{n-1} n, n = 1, \alpha_0 1$	•				(L3)	(3)	(1)	(10)
			OR				(L3)	(3)	(1)	(10)
12		A 1 1 4 14 14 14 14 14 14 14 14 14 14 14		C 11 '	1	1.			1 4'	*/1
13		Apply characteristic root method is a six an initial condition	noa to soive tr	ie following	g nomogeno	ous line	ar recur	rence i	relation	ı witn
		the given initial condition. $u_n = u_{n-1} + u_{n-2}, \forall n \ge 2, u_1$	-1 u -3							
		$u_n - u_{n-1} + u_{n-2}, \forall n \ge 2, u_1$	$-1, u_2 - 3.$				(T 2)	(2)	(1)	(10)
							(L3)	(3)	(1)	(10)
			UNIT - IV				L	CO	PO	M
14		A farmer engaged in farming tree's height on particular day		observes a	and collects	the fol	lowing	data re	egardir	ig the
		No. of Days	5	10	15	20	25		1	
		Height of Trees (in MM)	10	18	24	28	30		-	
		Generate the growth function						f the m	ango t	ree in
		18 days by choosing the aprop					C		U	
							(L3)	(4)	(1)	(10)
			OR							
15	a)	Apply Newton's divided diffe	erence formula	to estimate	e the approx	kimate v	elocity	of a ca	r at tin	ne t=8
		seconds for the following data	a.							
		Time t (in seconds)	5	10	15	20				
		Velocity v (in m/sec ²)	10	18	24	28		ı	ı	
							(L3)	(4)	(1)	(6)
	b)	Apply the Ginner 1 /2rd	la to aval	th a1	$\int_{1}^{6} 1$	dv 1:	lin ~ 41-		, o1	oll C
		Apply the Simpson's 1/3 rd ru	ne to evaluate	me value (of $\int_{0}^{\infty} \frac{1}{x + e^{x}} dx$	dx divid	ing the	mierv	ai equ	any 6
		parts.			v					
							(L3)	(4)	(1)	(4)
		UNIT-V						CO	PO	M

16	a)	Employ Regula-falsi method to approximate the root of the equation $xe^x - 2 = 0$ and correct it to 3 decimal places.									
		(L3) (5) (1) (5)									
	b)	Use the Euler's method to find the value of y at $x = 0.1$ and corre	ect 4 d	lecimal plac	es for						
		y' = xy + 1, $y(0) = 1$ taking $h = 0.02$.									
			(L3)	(5) (1)	(5)						
		OR									
17		Apply Runge-Kutta method to find $y(0.2)$ given that $y' = \frac{y-x}{y+x}$, $y(0) = 1$ taking $h = 0.1$.									
			(L3)	(5) (1)	(10)						
		PART C	L	CO PO	M						
18	a)	Construct the any partial ordering relation of your choice from the set consisting of five elements. And also draw its Hasse diagram for this relation.									
			(L4)	(2) (1)	(10)						
	b)	Let $A = \{a, b, c, d, e\}$ and the relation R on set	A	defined	as						
		$R = \{(a,a),(a,c),(a,e),(b,d),(c,a),(d,c),(d,d),(e,a),(e,c)\}.$									
		(i) Find the reflexive and symmetric closure of the this relation R .									
		(ii) Apply the Warshall's algorithm to compute the transitive closure of R .									
			(L4)	(2) (1)	(10)						
		OR									
19	a)	A deposit of 100,000 rupees made to an investment fund at the beginning of a year. On the last day of each year two dividends are awarded. The first dividend is 20% of the amount in the account during that year. The second dividend is 45% of the amount in the account in the previous year. (i) Construct a recurrence relation for p_n , where p_n is the amount in the account at the end of n years if no money is withdrawn. (ii) How much is in the account after n years, if no money has been withdrawn?									
			(L4)	(3) (1)	(10)						
	b)	Suppose that the number of bacteria in a colony triples every hour. (i) Set up a recurrence relation for the number of bacteria after <i>n</i> hour have elapsed. (ii) Solve this recurrence relation and hence find the how many bacteria will be in colony in 10 hours if initially there were 100 bacteria.									
			(L4)	(3) (1)	(10)						