1

10.05.2

EE23BTECH11053-R.Rahul*

QUESTION:

- 1. In the following APs, find the missing terms in the boxes:
- (i) 2, -, 26
- $(ii)_{\square}, \overline{13},_{\square}, 3$
- $(iii)5, _{\Box}, _{\Box}, 9\frac{1}{2}$
- $(iv)' 4', \neg, \neg, \neg, \neg, 6$
- (v) \square , 38, \square , \square , \square , \square , '-22'

Solution:

a_0	d	a_1	a_2	a_3
2	12	14	26	38
18	-5	13	8	3
5	$\frac{1\frac{1}{2}}{2}$	$6\frac{1}{2}$ -2	8	$9\frac{1}{2}$
-4	2	-2	0	2
53	-15	38	23	8
TABLE I				

FIRST THREE TERMS OF AP SERIES

(i)
$$a_1=2$$
 $a_3=26$ $a_3=a+2d$
 $\implies 26=2+2*d \implies d=12$
 $a_2=14$

(ii)
$$a_2=13$$
 $a_4=3$, $a_2=a+d$ $a_4=a+3d$

$$\implies$$
 3-13=2d \implies =-5

$$a_1 = 18$$
, $a_3 = 8$

(iii)
$$a_1 = 5$$
, $a_4 = 9\frac{1}{2}$ $a_4 = a + 3d$

$$\implies 9\frac{1}{2} = 5 + 3d ... 3d = 4\frac{1}{2} \implies d = 1\frac{1}{2}$$

$$a_2 = 6\frac{1}{2}, a_3 = 8$$

(iv)
$$\bar{a_1}$$
=-4 a_6 =6 a_6 =a+5d

$$\implies$$
 6=-4+5d \implies 10=5d ... d=2

$$a_2$$
=-2 a_3 =0 a_4 =2 a_5 =4

$$(v)a_2=38 \ a_6=-22$$

$$a_1=53$$
 $a_3=23$ $a_4=8$ $a_5=-7$

(i) The Z-transform of x[n] = 2 + 12n is given by:

$$X(z) = \sum_{n=-\infty}^{\infty} x(n) \cdot u(n) \times z^{-n}$$

$$X(z) = \sum_{n=-\infty}^{\infty} (12 + 2n) \cdot u(n) \times z^{-n}$$

$$X(z) = 2 \sum_{n = -\infty}^{\infty} u(n) \times z^{-n} + 12 \sum_{n = -\infty}^{\infty} nu(n) \times z^{-n}$$

$$X(z) = 2 \times \frac{1}{1 - z^{-1}} + 12 \times \frac{z^{-1}}{(1 - z^{-1})^2}$$

$$X(z) = \frac{2(1+5z^{-1})}{(1-z^{-1})^2} \qquad |z| > 1$$

(ii) The Z-transform of x[n] = 18 - 5n is given by:

$$X(z) = \sum_{n = -\infty}^{\infty} x(n) \cdot u(n) \times z^{-n}$$

$$X(z) = \sum_{n=-\infty}^{\infty} (18 - 5n) \cdot u(n) \times z^{-n}$$

$$X(z) = 18 \sum_{n = -\infty}^{\infty} u(n) \times z^{-n} - 5 \sum_{n = -\infty}^{\infty} nu(n) \times z^{-n}$$

$$X(z) = 18 \times \frac{1}{1 - z^{-1}} - 5 \times \frac{z^{-1}}{(1 - z^{-1})^2}$$

$$X(z) = \frac{18 - 23z^{-1}}{(1 - z^{-1})^2} \qquad |z| > 1$$

(iii)Z-transform of $x[n] = 5 + 1\frac{1}{2}n$ is given by:

$$X(z) = \sum_{n = -\infty}^{\infty} x(n) \cdot u(n) \times z^{-n}$$

$$X(z) = \sum_{n = -\infty}^{\infty} (5 + 1\frac{1}{2}n) \cdot u(n) \times z^{-n}$$

$$X(z) = 5 \sum_{n = -\infty}^{\infty} u(n) \times z^{-n} + 1 \frac{1}{2} \sum_{n = -\infty}^{\infty} n u(n) \times z^{-n}$$

$$X(z) = 5 \times \frac{1}{1 - z^{-1}} + 1\frac{1}{2} \times \frac{z^{-1}}{(1 - z^{-1})^2}$$

$$X(z) = \frac{5 - 3\frac{1}{2}z^{-1}}{(1 - z^{-1})^2} \qquad |z| > 1$$

(iv)Z-transform of x[n] = 2 + 12n is given by:

$$X(z) = \sum_{n=-\infty}^{\infty} x(n) \cdot u(n) \times z^{-n}$$

$$X(z) = \sum_{n=-\infty}^{\infty} (-4 + 2n) \cdot u(n) \times z^{-n}$$

$$X(z) = -4 \sum_{n=-\infty}^{\infty} u(n) \times z^{-n} + 2 \sum_{n=-\infty}^{\infty} nu(n) \times z^{-n}$$

$$X(z) = -4 \times \frac{1}{1 - z^{-1}} + 2 \times \frac{z^{-1}}{(1 - z^{-1})^2}$$

$$X(z) = \frac{-4 + 6z^{-1}}{(1 - z^{-1})^2} \qquad |z| > 1$$

(v)Z-transform of x[n] = 53 - 15n is given by:

$$X(z) = \sum_{n=-\infty}^{\infty} x(n) \cdot u(n) \times z^{-n}$$

$$X(z) = \sum_{n=-\infty}^{\infty} (53 - 15n) \cdot u(n) \times z^{-n}$$

$$X(z) = 53 \sum_{n=-\infty}^{\infty} u(n) \times z^{-n} - 15 \sum_{n=-\infty}^{\infty} nu(n) \times z^{-n}$$

$$X(z) = 53 \times \frac{1}{1 - z^{-1}} - 15 \times \frac{z^{-1}}{(1 - z^{-1})^2}$$

$$X(z) = \frac{53 - 68z^{-1}}{(1 - z^{-1})^2} \qquad |z| > 1$$

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.