KL-Aware GPTQ Quantization

Haseeb-26100253, Hamza-26100130

April 2025

1. Empirical Hessian Computation

Given a calibration dataset $\{x_t\}_{t=1}^T \subset \mathbb{R}^N$ of input activations to the layer, define the empirical input Hessian

$$oldsymbol{H} = rac{1}{T} \sum_{t=1}^{T} oldsymbol{x}_t \, oldsymbol{x}_t^ op \in \mathbb{R}^{N imes N}.$$

This captures the average second-moment of inputs and underlies vanilla GPTQ's reconstruction objective.

2. Hessian Damping and Inversion

For numerical stability, form the damped Hessian

$$\boldsymbol{H}' = \boldsymbol{H} + \lambda \frac{\operatorname{tr}(\boldsymbol{H})}{N} \boldsymbol{I}_N, \quad \boldsymbol{H}'^{-1} = (\boldsymbol{H}')^{-1}.$$

Factor via Cholesky: $\boldsymbol{H}' = \boldsymbol{L} \, \boldsymbol{L}^{\top},$ then $\boldsymbol{H}'^{-1} = \boldsymbol{L}^{-\top} \, \boldsymbol{L}^{-1}.$

3. GPTQ Reconstruction Objective

Vanilla GPTQ minimizes the weighted squared error

$$L_{\text{MSE}}(\boldsymbol{Q}) = ((\boldsymbol{W} - \boldsymbol{Q})^{\top} \boldsymbol{H} (\boldsymbol{W} - \boldsymbol{Q})).$$

We quantize column-by-column to (approximately) solve this with low complexity.

4. Column-Wise Quantization Loop

For i = 1, ..., N:

- 1. Diagonal scale: $h_{ii}^{-1} = (\mathbf{H}'^{-1})_{ii}$, set $d_i = \sqrt{h_{ii}^{-1}}$.
- 2. Quantization: $q_i = d_i \left(\boldsymbol{w}_i / d_i \right) \in \mathcal{Q}^M$.
- 3. Error: $e_i = w_i q_i$.
- 4. Propagation: for each j > i,

$$oldsymbol{w}_j \;\leftarrow\; oldsymbol{w}_j - rac{(oldsymbol{H}'^{-1})_{ij}}{h_{ii}^{-1}}\,oldsymbol{e}_i.$$

This costs $O(N^2M)$ overall once \mathbf{H}'^{-1} is available.

5. Activation Ordering (Optional)

Reordering columns by descending $diag(\mathbf{H})$ can improve quantization fidelity; apply inverse permutation after loop.

6. Quantization Error Metric

Compute the average per-column loss

$$\text{Loss}_{\text{avg}} = \frac{1}{N} \sum_{i=1}^{N} \frac{\|\boldsymbol{w}_{i}^{\text{before}} - \boldsymbol{q}_{i}\|_{2}^{2}}{2 h_{ii}^{-1}}.$$

7. KL-Augmented Objective

Let p_t be the teacher soft output and q_t the quantized soft output on each calibration input x_t :

$$p_t = \operatorname{softmax}(\boldsymbol{W} \, \boldsymbol{x}_t / \tau), \quad q_t = \operatorname{softmax}(\boldsymbol{Q} \, \boldsymbol{x}_t / \tau).$$

We form the composite loss

$$L(\mathbf{Q}) = L_{\text{MSE}}(\mathbf{Q}) + \beta \sum_{t=1}^{T} (p_t || q_t) \quad (\beta > 0, \ \tau > 0).$$

7.1 Global Second-Order KL Strategy

1. Distillation Hessian:

$$A = \sum_{t=1}^{T} \left[\operatorname{diag}(p_t) - p_t p_t^{\top} \right] \boldsymbol{x}_t \, \boldsymbol{x}_t^{\top} \in \mathbb{R}^{N \times N}.$$

2. Combined Curvature:

$$H_{\text{tot}} = \boldsymbol{H} + \beta A, \quad H_{\text{tot}} \succ 0.$$

- 3. Factor and Scale: Cholesky $H_{\text{tot}} = LL^{\top}$, invert to get scales $d_i = \sqrt{(H_{\text{tot}}^{-1})_{ii}}$.
- 4. Column-Wise GPTQ: Run the same loop as Sec. 4, but replace H and H'^{-1} with H_{tot} and H_{tot}^{-1}

This adds only one extra $O(TN^2)$ pass to build A and reuses the same Cholesky $(O(N^3))$ as vanilla.

7.2 Local First-Order KL Strategy

1. Compute per-column gradient

$$g_i = \frac{\partial}{\partial q_i} \sum_{t=1}^{T} (p_t || q_t) \in \mathbb{R}^M.$$

2. Build surrogate

$$\ell_i(q_i) \approx \|\boldsymbol{w}_i - q_i\|_{H_{ii}}^2 + \beta g_i^{\top}(q_i - \boldsymbol{w}_i) = \|\boldsymbol{w}_i + \frac{\beta}{2}H_{ii}^{-1}g_i - q_i\|_{H_{ii}}^2.$$

- 3. Shift quantize: $\tilde{w}_i = \boldsymbol{w}_i + \frac{\beta}{2} H_{ii}^{-1} g_i$, then $\boldsymbol{q}_i = d_i (\tilde{w}_i / d_i)$.
- 4. Propagate error $e_i = \tilde{w}_i q_i$ as usual.

Cost remains $O(N^2M)$ per layer plus one gradient pass $O(TM^2)$ for g_i .

8. Complexity Discussion

Both vanilla GPTQ and the global KL strategy share the same asymptotic costs per layer:

- Hessian assembly: $O(TN^2)$ to compute H (and A for KL).
- Cholesky factorization: $O(N^3)$.
- Column updates: $O(N^2M)$.

Thus, the global KL extension does not change the dominant $O(N^3)$ behavior—it only adds an extra Hessian-term build of order $O(TN^2)$, identical to vanilla GPTQ's activation covariance pass.

9. Practical Notes

- \bullet Cache all p_t once per layer before column quantization—no interleaved re-evaluation.
- Choose β to balance reconstruction vs. output fidelity; $\beta=0$ recovers vanilla GPTQ.
- Use damping λ to ensure $H_{\text{tot}} \succ 0$ when βA might be singular.
- The local strategy offers per-column flexibility at slightly lower overall cost.