

INDIAN PREMIER LEAGUE (IPL) DATABASE GROUP 3 TEAM ID – 308

Professor -- PM Jat

Mentor TA -- Prachi Singh

Contact Details(Kashyap) -- 7984640820

NAME	ID
KASHYAP TRIVEDI	202201191
PARTHIV VAGHANI	202201249
JAY RATHOD	202201255

NORMALIZATION PROOFS

To check that our Relation is in BCNF,

- 1. **Identify Functional Dependencies:** Examine the functional dependencies within the table. These are dependencies between attributes, where the value of one attribute determines the value of another.
- 2. **Identify Candidate Keys:** Determine the candidate keys of the table. A candidate key is a minimal set of attributes that uniquely identifies each tuple in the table. All other attributes must be functionally dependent on the candidate keys.
- 3. **Provide Proof:** Once you've identified all functional dependencies and candidate keys, provide a formal proof for each non-trivial dependency, demonstrating that the determinant (X) is indeed a superkey.

1. 'PLAYER' relation:

Attributes:

PLAYER {Player_ID, Name, Role, Country, DOB}

Functional dependencies:

```
Player_ID → Name
Player_ID → Role
Player_ID → Country
Player ID → DOB
```

- O Let X=Player_ID
- O Now Let's take the closure of it,
- O X^+ = {Player_ID, Name, Role, Country, DOB} O Thus, **Primary Key is** Player_ID.
- Every non-key attribute must be fully determined by the whole primary key, not just a part of it. As we saw, each non-key attribute in this table solely relies on the Player_ID for its value.
- O Since in this Minimal Set of FDs, the left side in all of the FDs is Player_ID which is Candidate-key of this relation.
- O Therefore, 'PLAYER' is in BCNF.

2. 'TEAM' Relation:

Attributes:

```
TEAM {Team Name, Year, Owner, Coach, Captain}
```

Functional dependencies:

```
{Team_Name, Year} → Owner

{Team_Name, Year} → Coach

{Team_Name, Year} → Captain
```

- O Let X= {Team Name, Year}
- O Now Let's take the closure of it,
- X+= {Team_Name, Year, Owner, Coach, Captain}
- O Thus, Primary Key= {Team_Name, Year}
- The left side of all the FDs in minimal set of FDs for the relation 'TEAM' is

{Team_Name, Year}, which is the primary key of this relation, so **O "TEAM"** is in BCNF.

3." SPONSOR_DETAILS" Relation :

• Attributes :

SPONSOR_DETAILS {Company_Name, Country, CEO}

Functional dependencies: Company_Name → Country

Company_Name → CEO

- Let X= {Company_Name}
- Now Let's take the closure of it, $\circ X^+$ = {Company_Name, Country, CEO}
- O Thus, **Primary Key**= {Company_Name}
- The left side of all the FDs in minimal set of FDs for the relation "SPONSOR_DETAILS" is {Company_Name}, which is the primary key of this relation, so
- O "SPONSOR_DETAILS" is in BCNF.

4. "STADIUM" Relation:

Attributes :

STADIUM (Ground Name, City, Gold Seat, Silver Seat, Bronze Seat)

Functional dependencies:

Ground_Name → City

Ground Name → Gold Seat

Ground_Name → Silver_Seat

Ground Name → Bronze Seat

- Let X= {Ground_Name}
- O Now Let's take the closure of it,

- X+={Ground_Name, City, Gold_Seat, Silver_Seat, Bronze_Seat}
- O Thus, Primary Key= { Ground Name }
- The left side of all the FDs in minimal set of FDs for the relation 'STADIUM is { Ground_Name }, which is the primary key of this relation, so
- O "STADIUM" is in BCNF.
- 5. " USER"
 - Attributes :

```
USER {Email ID, User Name, Password, Position}
```

Functional dependencies: Email_ID → User_Name

```
Email_ID \rightarrow Password
Email_ID \rightarrow Position
```

- O Let X= { Email ID }
- O Now Let's take the closure of it, $\circ X^+$ ={Email_ID, User_Name, Password, Position}
- O Thus, Primary Key={ Email ID }
- The left side of all the FDs in minimal set of FDs for the relation 'USER' is { Email_ID }, which is the primary key of this relation, so
- O "USER" is in BCNF.
- 6. "STAT" Relation:
 - Attributes :

```
STAT {Player_ID, Year, Runs, Wickets, Catches, 4's, 6's, YO-YO_Score, Sold_Price, Strike_Rate, Economy}
```

Functional dependencies:

```
{Player_ID , Year} → Runs
{Player_ID , Year} → Wickets
{Player_ID , Year} → Catches
{Player_ID , Year} → 4's
{Player_ID , Year} → 6's
```

```
{Player_ID , Year} → YO-YO_Score

{Player_ID , Year} → Sold_Price

{Player_ID , Year} → Strike_Rate

{Player_ID , Year} → Economy
```

- O Let X= {Player ID, Year }
- O Now Let's take the closure of it,
- X+= {Player_ID, Year, Runs, Wickets, Catches, 4's, 6's, YO-YO_Score,Sold_Price,Strike_Rate,Economy}
- O Thus, Primary Key= {Player_ID , Year}
- The left side of all the FDs in minimal set of FDs for the relation 'STAT' is {Player_ID , Year}, which is the primary key of this relation, so
- O "STAT" is in BCNF.

7. "PAST_MATCH" Relation:

• Attributes :

PAST_MATCH {Timestamp, Team_Name, Opponent_Team, Year, Ground Name, Toss, Score1, Score2, Winner, Man of the Match }

Functional dependencies:

Timestamp → Team_Name

Timestamp → Opponent_Team

Timestamp → Year

Timestamp → Ground_Name

Timestamp → Toss

```
Timestamp → Score1 Timestamp

→ Score2

Timestamp → Winner

Timestamp → Man of the Match
```

- O Let X= {Timestamp}
- O Now Let's take the closure of it,
- X+= {Timestamp, Team_Name, Opponent_Team, Year, Ground_Name, Toss, Score1, Score2, Winner, Man_of_the_Match}
- O Thus, **Primary Key**={Timestamp}
- The left side of all the FDs in minimal set of FDs for the relation 'PAST_MATCH' is {Timestamp }, which is the primary key of this relation, so
- O "PAST_MATCH" is in BCNF.

8. "PLAYER SCOREBOARD" Relation:

Attributes :

```
PLAYER_SCOREBOARD {Player_ID, Timestamp, Runs, Wickets, Catches, 4's, 6's, Strike_Rate, Economy}
```

• Functional dependencies:

```
{Player_ID, Timestamp} → Runs
{Player_ID, Timestamp} → Wickets {Player_ID,
Timestamp} → Catches
{Player_ID, Timestamp} → 4's {Player_ID,
Timestamp} → 6's
```

```
{Player_ID, Timestamp} → Strike_Rate
{Player_ID, Timestamp} → Economy
```

- O Let X= {Player ID, Timestamp}
- O Now Let's take the closure of it,
- X+= {Player_ID, Timestamp, Runs, Wickets, Catches, 4's, 6's,Strike_Rate,Economy}
- O Thus, **Primary Key=**{ Player ID, Timestamp}
- The left side of all the FDs in minimal set of FDs for the relation 'PLAYER_SCOREBOARD' is { Player_ID, Timestamp}, which is the primary key of this relation, so
- O "PLAYER SCOREBOARD" is in BCNF.
- 9. "IPL SEASON" Relation:
 - Attributes :

IPL_SEASON {Year, Winner, Runner_UP, Player_OF_The_Season,
Orange_Cap, Purple_Cap}

Functional dependencies:

```
Year → Winner

Year → Runner_UP

Year → Player_OF_The_Season

Year → Orange_Cap

Year → Purple_Cap
```

- O Let X= {Year}
- O Now Let's take the closure of it,
- X+={Year, Winner, Runner_UP, Player_OF_The_Season, Orange_Cap, Purple_Cap}
- O Thus, Primary Key={ Year }
- The left side of all the FDs in minimal set of FDs for the relation 'IPL_SEASON' is {Year}, which is the primary key of this relation, so

O "IPL_SEASON" is in BCNF.

10. "SEASON SPONSOR" Relation:

Attributes :

SEASON SPONSOR {Year, Company Name, Sponsor Type, Amount}

Functional dependencies:

```
{Year,Company_Name, Sponsor_Type} → Amount
```

- Let X= {Year, Company_Name, Sponsor_Type }
- O Now Let's take the closure of it,
- X+={Year, Company_Name, Sponsor_Type, Amount}
- Thus, **Primary Key=**{Year, Company Name, Sponsor Type }
- The left side of all the FDs in minimal set of FDs for the relation 'SEASON_SPONSOR' is {Year, Company_Name, Sponsor_Type } which is the primary key of this relation, so
- O "SEASON SPONSOR" is in BCNF.

11. "TEAM_SPONSOR" Relation:

• Attributes :

TEAM_SPONSOR {Company_Name, Team_Name, Year, Amount}

Functional dependencies:

{ Company Name, Team Name, Year} → Amount

- Let X= {Company_Name,Team_Name,Year }
- O Now Let's take the closure of it,
- X+={Company_Name, Team_Name, Year, Amount}
- O Thus, Primary Key= { Company_Name,Team_Name,Year }
- The left side of all the FDs in minimal set of FDs for the relation 'TEAM_SPONSOR 'is { Company_Name,Team_Name,Year }, which is the primary key of this relation, so
- O "TEAM_SPONSOR" is in BCNF.

12. "UPCOMING_MATCH" Relation:

• Attributes :

UPCOMING_MATCH {Timestamp, Team_Name, Opponent_Team, Year,
Gold_Price, Silver_Price, Bronze_Price, Ground_Name}

Functional dependencies: Timestamp → Team_Name

Timestamp → Opponent Team

Timestamp → Year

Timestamp → Gold Price

Timestamp → Silver_Price

Timestamp → Bronze Price

Timestamp → Ground_Name

- O Let X= {Timestamp}
- O Now Let's take the closure of it,

- X+= {Timestamp, Team_Name, Opponent_Team, Year, Gold_Price, Silver Price, Bronze Price, Ground Name}
- O Thus, **Primary Key=**{ Timestamp}
- The left side of all the FDs in minimal set of FDs for the relation 'UPCOMING_MATCH' is {Timestamp}, which is the primary key of this relation, so
- O "UPCOMING MATCH" is in BCNF.

13. " AUDIENCE" Relation:

- Attributes:
 AUDIENCE {Booking_ID, Gold_Seat, Silver_Seat, Bronze_Seat, Email_ID}
- Functional dependencies: Booking_ID → Gold_Seat

- O Let X= {Booking ID}
- O Now Let's take the closure of it,
- X+={Booking_ID, Gold_Seat, Silver_Seat, Bronze_Seat, Email_ID}
- O Thus, Primary Key={ Booking_ID }
- The left side of all the FDs in minimal set of FDs for the relation 'AUDIENCE 'is
- { Booking_ID }, which is the primary key of this relation, so
- O "AUDIENCE" is in BCNF.

• Since, All attributes of this relation are primary key, By definition of BCNF, This is in BCNF.

At first, this table was not in BCNF because there was attribute named Sold_Price.

Attributes :

```
TEAM'S_PLAYER {Player_ID, Team_Name, Year, Sold_Price}
```

Functional dependencies:

```
{Player_ID, Team_Name, Year} → Sold_Price
{Player_ID, Year} → Sold_Price
```

- Let X= { Player_ID, Team_Name, Year}
- O Now Let's take the closure of it,
- X+={ Player_ID, Team_Name, Year, Sold_Price}
- O Thus, Primary Key={ Player_ID, Team_Name, Year }

Sold_Price is not FULLY FUNCTIONALLY DEPENDENT on Candidate key, so it violet 2NF condition thus, we **decomposed** this table into

```
R1 { Player_ID, Team_Name, Year}
R2 { Player_ID, Year, Sold_Price}
```

Now, Player_ID and Year was already present in STAT table so we include Sold_Price in that table to **reduce data redundancy**.

15. "TICKET_BOOKING" RELATION

• Since, All attributes of this relation are primary key, By definition of BCNF, This is in BCNF.