Réseau Ethernet

M1 SIAME / 2021 - Cours de Réseaux sans fil

Z. Mammeri

Ethernet en bref

- Introduit par Metcalfe au début des années 70 (73-74)
- Commercialisé par Intel, Xeroc et Dec en 1976
- Premier réseau local « opérationnel » au monde
- Le réseau d'accès à Internet le plus utilisé au monde (+95 %)
- Basé sur la méthode d'accès CSMA/CD (i.e. CSMA 1-persistant)
- Initialement introduit pour fonctionner sur un bus en câble coaxial à 1-10 Mb/s
- Etendue souvent limitée (point faible)
- Le plus robuste et le plus équitable (point faible pour la QoS)

Ethernet en bref

- Aujourd'hui :
 - Tous les supports : coaxial, fibre optique, paire métallique
 - Bus, étoile, arbre
 - Débits de 10 Mb/s à 10 Gb/s et même 100 Gb/s (std IEEE P802.3ba approuvé en juillet 2008)
 - de quelques dizaines de mètres à des dizaines de Km
- Demain : Ethernet partout (Réseau MAN ... Réseau de cœur)
- Evolution du standard :
 - Environ 200 pages début des années 80 → des milliers de pages pour couvrir différents débits, différentes topologies, fonctionnalités et contraintes (énergie…)
 - Des dizaines de standards

Ce que couvrent les standards Ethernet

NIC: Network Interface Card

MAC

+ Physique

Carte NIC Ethernet - RJ45

Adaptateur USB Ethernet

Ethernet 10/100 BaseT RJ45

Carte Ethernet Gigabit

Principe de CSMA/CD

Le signal de brouillage (1 et 0 alternés) sert à s'assurer que toutes les stations détectent la collision

Calcul de la valeur de backoff

Backoff = R*Temps_de_base

 $R = Random(0, 2^L)$

L = min(K, 10)

K : nombre de transmissions déjà effectuées

- Temps_de_base = temps de transmission de 512 bits (64 octets)
 - = Temps de transmission d'une trame de longueur min
 - ≥ Temps maximum d'aller-retour du signal sur tout le réseau

(i.e. 51.2 μs à 10 Mb/s et 0,512 μs à 1 Gb/s)

- ◆ Le temps d'attente maxi est borné par 2¹⁰ → pas d'attente infinie
- Le nombre maxi de retransmissions borné → informer la couche supérieure, ne pas saturer le réseau inutilement

Détection de collision

Valeurs par défaut des paramètres de configuration

	1, 10 et 100 Mb/s	1 Gb/s	10 Gb/s
Temps de base	≈ 512 bits	≈ 4096 bits	Non applicable
Gap inter-trames	96 bits	96 bits	96 bits
Nombre de bits de brouillage	32	32	32
Nombre de retransmissions	16	16	Non applicable
Taille maximale de trame	1518 octets	1518 octets	1518 octets
Taille minimale de trame	64 octets	64 octets	64 octets

Ces valeurs ont des impacts sur les performances du réseau

Format de trame Ethernet

Entre 64 et 1518 octets

IEEE 802.3: 7 +1 octets et Longueur

Ethernet: 8 octets et Type

GIT : Gap interTrame : silence pendant l'équivalent de 96 bits (permet aux stations de se préparer pour recevoir la trame suivante)

Format des adresses Ethernet

- Avec 6 octets: 2⁴⁶ adresses globales possibles
- Adresse Ethernet ≠ Adresse IP
- Il y a plus d'adresses Ethernet que d'adresses IPv4
- Adresses figées sur silicium (l'IEEE octroie les numéros aux constructeurs)
- Autrefois : l'utilisateur fixait lui-même les adresses (source d'erreurs !)

Format des adresses Ethernet

- Pourquoi @MAC ≠ @IP ?
- Plusieurs explications
 - Distinguer les adresses physiques des adresses logiques
 - @MAC liée à une machine sur un réseau. Si la station se déplace (nomadisme ou mobilité) : risque de conflit d'adresse – Ce n'est plus vrai aujourd'hui (chaque @MAC est choisie de manière unique au moment de la fabrication de la carte Ethernet)
 - Séparer le business du niveau MAC de celui du niveau Réseau (éviter le monopole de technologie)

Fonctions de la couche physique

- Emission et réception de bit
- Codage et décodage de bit
- Génération de préambule
- Détection de collision
- Génération d'horloges pour la synchronisation
- Test de fonctionnement de la ligne de transmission

Supports et connecteurs

Raccordement – Thin Ethernet (Coax)

Thin Ethernet

- Facile à installer
- Coût réduit
- Sensible aux bruits
- Atténuations des signaux
- Nombre réduit de stations

Raccordement – Thick Ethernet (Coax)

Principe général

- Plus résistant aux manipulations
- Plus de protection contre les parasites
- Plus cher
- Plus encombrant

Transeiver

Raccordement - RJ45

Ethernet RJ45

Raccordement – Fibre optique (Fast et Giga Ethernet)

Différents standards de niveau physique 10Base2, 10BaseT, 10GBaseLX...

Différents standards de niveau physique

Norme IEEE 802.3	Débit (en Mb/s)	Support	Longueur maximum d'un segment
802.3e - 1Base5	1	Paire torsad é e	250 m
802.3 -10Base5	10	Câble coaxial (50 Ω)	500 m
802.3a - 10Base2	10	Câble coaxial (50 Ω)	185 m
802.3b - 10Broad36	10	Câble coaxial TV (75 Ω)	180 m
802.3d - FOIRL	10	Fibre optique	1000 m
802.3i - 802.3 10BaseT	10	Paire torsadée (catégorie 3 ou 4)	100 m
802.3j - 10BaseFB et FL	10	Fibre optique	2 000 m
802.3u 100BaseTX	100	Paire torsadée (catégorie 5)	100 m
802.3u 100BaseT4	100	Paire torsad é e	100 m
802.3u 100BaseFX	100	Fibre optique	412 m
802.3y 100BaseT2	100	Paire torsadée (catégorie 3 ou 4)	100 m
100BaseVG any-LAN	100	Paire torsadée, Fibre optique	100 m, 2 000 m

Fast Ethernet

Utilise « Demand Priority Protocol » et pas CSMA/CD

Standards de niveau physique

	Norme IEEE 802.3	Débit (en Mb/s)	Support	Longueur maximum d'un segment
1	802.3z 1000Base-SX	1000	Fibre optique	500 m
	802.3z 1000Base-LX	1000	Fibre optique	5000 m
	802.3z 1000Base-CX	1000	Paire torsad é e	25 m
	IEEE802.3ab :1000BaseT	1000	Câble coaxial, Paire torsad é e	100 m
{	802.3ae 10GbaseCX4	10 000	Fibre optique	15 m
	802.3ae 10GbaseT	10 000	Fibre optique	100 m
	802.3ae 10GbaseSR	10 000	Fibre optique	100 m
	802.3ae 10GbaseLX4	10 000	Fibre optique	10 000 m (MAN)
	802.3ae 10GbaseLR	10 000	Fibre optique	40 000 m (MAN)
	P802.3ba 40GBase	40 000	Fibre optique	des Km (MAN)
	P802.3ba 100GBase	100 000	Fibre optique	des Km (MAN)

Utilisation du full duplex sur des liaisons point-point : chaque station reliée à un hub/switch émet sur un canal et reçoit sur un autre : donc les collisions sont éliminées/réduites.

Giga

Ethernet

???

Ethernet

Codage physique

A l'origine : codage Manchester

Codage physique

- Versions récentes : codage NRZ et autres
- ◆ Utilisation du code 4B/5B (→ Perte de 20% de débit)

Code	Valeur en Héxa	Code	Valeur en Héxa	Code	Symbole de contrôle
11110	0	10010	8	00000	quiet
01001	1	10011	9	11111	idle
10100	2	10110	Α	00100	halt
10101	3	10111	В	11000	J
01010	4	11010	С	10001	К
01011	5	11011	D	01101	Т
01110	6	11100	E	00111	R
01111	7	11101	F	11001	S
	Les combinaisons binaires restantes sont invalides				

Architecture en Bus

Inconvénients

- Manipulation accidentelle des bouchons et points de raccordement
- **■** Coupure du câble

Architectures en Etoile

 Avantages : Palier les inconvénients du bus (coupures du bus et incidents au niveau des bouchons

Hub Ethernet

- Le hub agit au niveau physique uniquement
- Il sert de répéteur (régénération) de signaux
- Le hub évite l'utilisation de bouchons de lignes visibles

Plus de câbles

Architecture en arbre

Architecture en arbre – débits hétérogènes

Architecture en arbre

Switch Ethernet

- Ethernet est un médium partagé
 - Une seule station peut transmettre même avec plusieurs hubs
 - Délai d'attente important (surtout en cas de trafic élevé)
- Utilisation de switch (commutateur)

Switch Ethernet

- Objectif: palier les insuffisances des hubs
- Le switch apprend les stations de destination en mémorisant les ports des adresses sources dans une table
- Le switch ne fait pas de rediffusion systématique vers tous les ports mais seulement vers les ports de destination adéquats
- augmentation des capacités de transmission de trames sans collision

Combinaison de switchs Ethernet

Formule d'inter-dépendance des paramètres Ethernet

$$T \max = \frac{LongRes}{(2/3)\times(3\times10^8)} = \frac{LongRes}{(2*10^8)}$$
m/s

$$L \min \ge \frac{LongRes * D\acute{e}bit}{10^8}$$
 $D\acute{e}bit \le \frac{10^8 \times L \min}{LongRes}$ $LongRes \le \frac{10^8 \times L \min}{D\acute{e}bit}$

- 100 Mb/s et 1 Km → Lmin = 1000 bits
- 1 Gb/s et Lmin = 100 octets → Longueur ≤ 80 m
- Lmin = 100 octets et Longueur = 500 m → Débit ≤ 160 Mb/s

Formule d'inter-indépendance des paramètres Ethernet

$$1/D\acute{e}bit \le T \max = \frac{LongRes}{(2*10^8)} \Rightarrow LongRes \ge \frac{2 \times D\acute{e}bit}{10^8}$$

- 100 Mb/s → LongRes ≥ 2 m
- 1 Gb/s → LongRes ≥ 20 m

Les standards Ethernet imposent une distance minimum entre stations

Impacts de la longueur du réseau

$$Rendement = \frac{Nombre \ de \ bits \ reçus \ (/ sec)}{D\'ebit \ du \ r\'eseau} \le 1$$

$$Charge(G) = \frac{Nombre \quad de \quad bits \quad \grave{a} \quad trasmettre \quad (/\sec)}{D\acute{e}bit \quad du \quad r\acute{e}seau}$$

Impacts de la taille de trame

Efficacité de CSMA/CD

- Efficacité de CSMA/D = pourcentage du débit physique que les stations peuvent atteindre
- Elle dépend de la longueur du réseau, du débit physique et de la taille des trames.
- Elle est de l'ordre de : $\frac{1}{1+5\times\frac{TempsDePropationBit}{TempsMoyenDeTransmissionDeTrame}}$

Exemple : Longueur = 2500 m, Débit = 10 Mb/s et Taille moyenne de trame
 = 620 bits conduisent à une efficacité de 50%

6. Conclusion

Leçons apprises

- Ethernet fonctionne bien si la charge globale est faible (moins de 30% du débit théorique du réseau)
- Presque tous les réseaux actuels ont :
 - Moins de 200 machines (même si les standards prévoient 1024)
 - La longueur maxi dépasse rarement 2 km.
- Limites de Ethernet
 - Rajouter des machines revient à augmenter la probabilité de collision (donc moins il y a de machines mieux c'est)
 - Il est inefficace pour les échanges où la longueur des données utiles est petites (il n'est pas adapté aux applications industrielles et embarquées)
 - Le débit max est inversement proportionnel à la longueur max
- Clés de succès d'Ethernet par rapport à ses concurrents : Prix, disponibilité des cartes, facilité d'installation et configuration, simplicité, robustesse
- Il a bénéficié d'un lobbying énorme