Q1. Differentiate between 7DMA and TD	M.A. with suitable
diagrams.	
· 7DMA (Frequency Division Multiple Acc	ess);
o Each user is allocated a separate frequen	
o continuous transmission is possible.	
o Guard bands are required to prevent over	lapping.
a Less efficient in terms of bandwidth usa	
o Example: Analog cellular systems (1G).	
· TDMA (Time Division Multiple Access):	
o users share the same frequency channel	but are allocated
different time slots.	
a Transmission is not continuous (in bursts).	
o No guard bands, but guard time between	slots.
a More efficient bandwidth utilization comp	pared to 7DMA.
o Example: GSM.	
Diagram:	
· 7DMA -> parallel frequency bands.	
\cdot TDMA \rightarrow time slots on a single frequence	cy.
Q2. Describe how MAC protocols help in a	roiding collisions in wireless
networks.	1 1
· MAC (Medium Access control) protocols	manage access to the
shared wireless medium.	
· They avoid collisions using:	

o carrier sense (CSMA/CA): Devices sense the medium before
transmitting.
a Acknowledgments: Ensure successful delivery.
a Backoff Algorithms: Retransmission after random delay if collision detected.
o Reservation-based methods: Assign time/frequency slots.
· Thus, MAC protocols coordinate communication to reduce
interference and maximize efficiency.
Q3. Describe the role of the Home Location Register (HLR) and
Visitor Location Register (VLR) in localization.
· tPLR (Home Location Register):
o central database containing permanent subscriber details (IMSI,
authentication, subscribed services).
o stores current location of subscriber (MSC area).
· VLR (Visitor Location Register):
o Temporary database for subscribers currently roaming in its MSC
area.
o stores info like Temporary Mobile Subscriber Identity (TMSI),
location area identity.
o Interacts with HLR during call setup, authentication, and
mobility management.
Together: HLR + YLR ensure correct routing of calls/SMS and

efficient mobility tracking.
Q4. Illustrate the architecture of GPRS with a labeled diagram.
· GPRS Architecture components:
o MS (Mobile Station): user device.
o BSS (Base Station Subsystem): BSC + BTS.
o SGSN (Serving GPRS support Node): Mobility management, session
management.
o GGSN (Gateway GPRS support Node): Interface to external
packet-switched networks (e.g., Internet).
o HLR/VLR: Subscriber data and mobility management.
o PCU (Packet control unit): Packet switching between BSC and
SGSN.
Diagram (in exam - draw a block diagram):
$MS \rightarrow BTS \rightarrow BSC \rightarrow SGSN \rightarrow GGSN \rightarrow Internet$
Also connect HLR/VLR to SGSN.
Section B $(2x4 = 8 \text{ Marks})$
Q5. Compare the effectiveness of CDMA and TDMA in handling
multiple users in a cellular system.
· CDMA (Code Division Multiple Access):
o users share same frequency and time, separated by unique codes.
o very high spectral efficiency.

o trandles multipath fading better.
o soft capacity (can accommodate more users with graceful
degradation).
o complex system, requires power control.
· TDMA:
o users separated by time slots on same frequency.
a Limited capacity (fixed no. of slots).
o Easier to implement but less efficient.
o More susceptible to delay and synchronization issues.
conclusion: CDMX is more effective for high user density and
efficient spectrum use; TDMA is simpler but less scalable.
Q6. compare the GSM and GPRS architectures in terms of
efficiency, scalability, and data handling.
· GSM (Global System for Mobile Communication):
o Primarily circuit-switched (voice calls, SMS).
o Inefficient for data (dedicated circuit for entire session).
o Scalability limited by fixed channels.
o Low data rates (9.6-14.4 Kbps).
· GPRS (General Packet Radio Service):
o Packet-switched data transmission.
a Efficient use of bandwidth (resources used only when data is
sent).

o thigher scalability (supports more users dynamically). o thigher data rates (up to 171.2 kbps theoretical). o Enables mobile internet, MMS, and always-on connectivity. conclusion: GSM \rightarrow best for voice; GPRS \rightarrow optimized for data,
more efficient and scalable.