Il est particulièrement important de connaître les théorèmes et les preuves de ce chapitre.

I Automate (non déterministe)

 $\underline{\text{Exemple}}: A_1 = (\Sigma, Q, I, F, E) \text{ où } \Sigma = \{a, b\}, Q = \{0, 1, 2\}, I = \{0\}, F = \{2\} \text{ et } E = \{(0, a, 0), (0, b, 1), (1, a, 0), (1, a, 2), (2, b, 2)\}.$

Représentation graphique de A_1 . Les états finaux sont représentés par des doubles cercles et les états initiaux par des flèches entrantes.

Définition : Fonction de transition	

On dit qu'il y a un blocage lorsque $\delta(q, a) = \emptyset$ (pas de transition possible depuis q avec la lettre a).

Exercice 1.

Donner la fonction de transition de A_1 dans le tableau suivant.

état q	lettre a	$\delta(q, a)$
0	a	
0	b	
1	a	
1	b	
2	a	
2	b	

Quelques possibilités d'implémentation de la fonction de transition :

- une matrice (en stockant le tableau ci-dessus)
- une fonction OCaml de type int -> char -> int list
- un dictionnaire où chaque clé est un couple (q, a) auquel est associé $\delta(q, a)$

Exemple avec un dictionnaire implémenté par table de hachage :

```
type automate = {
   initiaux : int list;
   finaux : int list;
   delta : (int*char, int list) Hashtbl.t
}
```

Fonction	Type	Description
create	<pre>int -> ('a, 'b) Hashtbl.t</pre>	crée une table de hachage
add	('a, 'b) Hashtbl.t -> 'a -> 'b -> unit	ajoute une clé et sa valeur
find	('a, 'b) Hashtbl.t -> 'a -> 'b	renvoie la valeur associée à une clé (exception si non trouvée)
find_opt	('a, 'b) Hashtbl.t -> 'a -> 'b option	renvoie Some v où v est la valeur associée à une clé ou None si non trouvée
mem	('a, 'b) Hashtbl.t -> 'a -> bool	teste si une clé est présente

Fonctions du module Hashtbl (non exigibles)

II Langage reconnaissable

Soit A un automate.

Définition : Chemin acceptant

Un chemin dans A est une suite de transitions consécutives de la forme

$$q_0 \xrightarrow{a_1} q_1 \xrightarrow{a_2} q_2 \xrightarrow{a_3} \dots \xrightarrow{a_n} q_n$$

L'étiquette de ce chemin est le mot $a_1a_2...a_n$.

Ce chemin est acceptant si $q_0 \in I$ et $q_n \in F$.

Définition: Langage reconnu par un automate

Un mot u est accepté par A s'il est l'étiquette d'un chemin acceptant.

Le langage L(A) reconnu (ou accepté) par A est l'ensemble des mots acceptés par A.

Un langage est reconnaissable s'il est reconnu par un automate.

Exercice 2.

Le langage reconnu par l'automate A ci-dessous est :

Exercice 3.

- 1. Montrer que $ab \mid abc \mid c$ est reconnaissable.
- 2. Montrer que l'ensemble des mots de longueur paire sur $\Sigma = \{a, b\}$ est reconnaissable.
- 3. Montrer que $(b \mid ab \mid aba)^*$ est reconnaissable.

III Test d'appartenance au langage d'un automate

Une possibilité pour savoir si un automate A accepte un mot $m=m_1...m_n$:

- ullet On part de l'ensemble I des états initiaux.
- On calcule l'ensemble Q_1 des états accessibles à partir d'un état de I en lisant la lettre m_1 .
- On calcule l'ensemble Q_2 des états accessibles à partir d'un état de Q_1 en lisant la lettre m_2 .
- ..

Exercice 4.

• On calcule l'ensemble Q_n des états accessibles à partir d'un état de Q_{n-1} en lisant la lettre m_n . m est accepté par A si et seulement si Q_n contient un état final (c'est-à-dire $Q_n \cap F \neq \emptyset$).

1	Émina	fonatio	 	7	 . la 1:a4.	dog átota	o o o o o o o i blog	dannia	1. 1:

1.	Écrire une fonction etape a etats lettre qui renvoie la liste des états accessibles depuis la liste etats en lisant lettre, dans l'automate a.
2.	Écrire une fonction accepte (a : automate) (mot : string) qui détermine si le mot mot est accepté par l'automate a.

 $\underline{\underline{\text{Remarque}}}$: on peut aussi utiliser du backtracking (retour sur trace) en essayant, pour chaque lettre, une transition possible et $\underline{\underline{\text{en revenant}}}$ en arrière si on est bloqué.

IV Automate complet

Définition: Automates équivalents

Deux automates sont équivalents s'ils ont le même langage.

Définition : Automate complet

Un automate (Σ, Q, I, F, E) est complet si : $\forall q \in Q, \forall a \in \Sigma, \exists (q, a, q') \in E$

Autrement dit : un automate est complet s'il n'a pas de blocage.

Théorème

Tout automate est équivalent à un automate complet.

Preuve:

V Automate déterministe

Définition : Automate déterministe

Un automate $A = (\Sigma, Q, \{q_i\}, F, E)$ est déterministe si :

- 1. Il n'y a qu'un seul état initial q_i .
- $2. \ (q,a,q_1) \in E \ \land \ (q,a,q_2) \in E \implies q_1 = q_2 : \text{il y a au plus une transition possible en lisant une lettre depuis un état}.$

Si A est déterministe et complet alors il existe une unique transition possible depuis un état en lisant une lettre. La fonction de transition est alors de la forme $\delta: Q \times \Sigma \longrightarrow Q$.

Exercice 5.

Si A est déterministe complet alors son nombre de transitions est : ______

Définition : Fonction de transition étendue

Si A est déterministe et complet, on peut étendre $\delta: Q \times \Sigma \longrightarrow Q$ en une fonction de transition sur les mots $\delta^*: Q \times \Sigma^* \longrightarrow Q$ définie par :

- $\delta^*(q,\varepsilon) = q$
- Si u = av, $\delta^*(q, av) = \delta^*(\delta(q, a), v)$

 $\delta^*(q,u)$ est l'état auquel on arrive en lisant le mot u depuis l'état q. On a alors :

$$\delta^*(q_i, u) \in F \iff u \in L(A)$$

Attention : δ^* n'est pas défini pour un automate non déterministe complet.

Théorème

Soit A un automate déterministe complet, q un état et u, v des mots. Alors :

$$\delta^*(q, uv) = \delta^*(\delta^*(q, u), v)$$

Preuve:

Un automate déterministe complet peut être représenté par le type plus simple :

```
type afdc = {
    initial : int;
    finaux : int list;
    delta : (int*char, int) Hashtbl.t
}
```

Contrairement à un automate non déterministe, on peut déterminer si un mot ${\tt m}$ est accepté par un automate déterministe complet, en complexité linéaire en la taille de ${\tt m}$:

```
let accepte a m =
   let etat = ref a.initial in
   for i = 0 to String.length m - 1 do
        etat := Hashtbl.find a.delta (!etat, m.[i])
   done;
   List.mem !etat a.finaux
```

Théorème : Déterminisation \heartsuit

Soit A un automate. Alors A est équivalent à un automate déterministe complet.

 $\underline{\text{Preuve}}: A \text{ est \'equivalent \`a l'automate des parties } A' = (\Sigma, \mathcal{P}(Q), \{I\}, F', \delta') \text{ où } F' = \{X \subseteq Q \mid X \cap F \neq \emptyset\} \text{ et } \delta'((q, X), a) = \bigcup_{q \in X} \delta(q, a).$

Remarques:

- L'état \emptyset est similaire à l'état q_{∞} utilisé pour rendre un automate complet.
- A' possède $2^{|Q|}$ états et $2^{|Q|} \times |\Sigma|$ transitions, donc est de taille exponentielle en la taille de A.
- En pratique, on construit l'automate des parties de proche en proche en partant de l'état initial (comme un parcours de graphe) et on ne dessine que les états de $\mathcal{P}(Q)$ qui sont atteignables.

Exercice 6.

Déterminiser l'automate suivant. ♡

Exercice 7.

Soit $\Sigma = \{a, b\}, n \in \mathbb{N} \text{ et } L_n = \Sigma^* a \Sigma^n.$

- 1. Montrer que L_n est reconnaissable par un automate non-déterministe à n+2 états.
- 2. Montrer que L_n est reconnu par un automate déterministe à 2^{n+2} états.
- 3. Montrer que L_n ne peut pas être reconnu par un automate déterministe à moins de 2^n états.

VI Stabilité des langages reconnaissables

Théorème : Stabilité par complémentaire \heartsuit

Soit L un langage reconnaissable, sur un alphabet Σ . Alors $\overline{L} \stackrel{\text{def}}{=} \Sigma^* \backslash L$ est reconnaissable.

 $\underline{\text{Preuve}}$:

Attention: il est indispensable de considérer un automate déterministe complet dans la preuve (exercice: pourquoi?).

Exercice 8.

On utilise l'alphabet $\Sigma = \{a, b\}.$

- 1. Dessiner un automate reconnaissant les mots ayant aaa comme facteur.
- 2. En déduire un automate reconnaissant les mots n'ayant pas aaa comme facteur.

Théorème : Stabilité par intersection, union et différence \heartsuit

Soient L_1 et L_2 deux langages reconnaissables sur le même alphabet Σ . Alors :

- $L_1 \cap L_2$ est reconnaissable.
- $L_1 \cup L_2$ est reconnaissable.
- $L_1 \setminus L_2$ est reconnaissable.

Preuve \heartsuit :

Pour $k \in \{1, 2\}$, soit $A_k = (\Sigma, Q_k, i_k, F_k, \delta_k)$ un automate déterministe complet reconnaissant L_k .

L'automate produit $A_1 \times A_2 \stackrel{\text{def}}{=} (\Sigma, Q_1 \times Q_2, (i_1, i_2), F, \delta)$, où $\delta((q_1, q_2), a) = (\delta_1(q_1, a), \delta_2(q_2, a))$, reconnaît :

- $L_1 \cap L_2 \text{ si } F =$ ______
- $L_1 \cup L_2$ si F =
- $L_1 \backslash L_2$ si $F = \underline{\hspace{1cm}}$

Remarques:

- $A_1 \times A_2$ simule les deux automates A_1 et A_2 en parallèle, sur chaque composante du couple.
- Là aussi, il faut considérer des automates déterministes complets.
- Si L_1 et L_2 sont sur deux alphabets différents Σ_1 et Σ_2 , on peut toujours considérer $\Sigma_1 \cup \Sigma_2$.
- On peut généraliser à une intersection et union finie de langages.

Exercice 9.

Montrer l'hypothèse A_1 et A_2 déterministes est nécessaire dans la preuve ci-dessus.

Exercice 10.

Donner un automate reconnaissant les mots sur $\Sigma = \{a, b\}$ contenant un nombre pair de a et un nombre de b égal à 2 modulo 3.

VII États accessibles et co-accessibles

Définition : États accessibles et co-accessibles

Soit $A = (\Sigma, Q, I, F, \delta)$ un automate et $q \in Q$.

- 1. q est accessible s'il existe un chemin depuis un état initial vers q.
- 2. q est co-accessible s'il existe un chemin depuis q vers un état final.

Exercice 11.

Décrire un algorithme en complexité linéaire pour déterminer les états accessibles et co-accessibles d'un automate.

Définition: Automate émondé

Un automate est émondé si tous ses états sont accessibles et co-accessibles.

Théorème

Tout automate est équivalent à un automate émondé.

Preuve: On peut supprimer les états inaccessibles et les états non co-accessibles, sans changer le langage reconnu.

VIII Lemme de l'étoile

Théorème : Lemme de l'étoile ♡

Soit L un langage reconnaissable par un automate à n états.

Si $u \in L$ et $|u| \ge n$ alors il existe des mots x, y, z tels que :

- u = xyz
- $|xy| \leq n$
- $y \neq \varepsilon$
- $xy^*z \subset L$ (c'est-à-dire : $\forall k \in \mathbb{N}, xy^kz \in L$)

Preuve \heartsuit :

Soit $A = (\Sigma, Q, I, F, \delta)$ un automate reconnaissant L et n = |Q|.

Soit $u \in L$ tel que $|u| \ge n$. u est donc l'étiquette d'un chemin acceptant C de la forme :

$$q_0 \in I \xrightarrow{u_0} q_1 \xrightarrow{u_1} \dots \xrightarrow{u_{p-1}} q_p \in F$$

C possède p+1 > n sommets donc passe deux fois par un même état $q_i = q_j$ avec i < j < n. La partie de C entre q_i et q_j forme donc un cycle :

Soit $x=u_0u_1...u_{i-1},\ y=u_i...u_j$ et $z=u_{j+1}...u_{p-1}.$ Alors xy^kz est l'étiquette du chemin acceptant obtenu à partir de C en passant k fois dans le cycle. D'où : $\forall k\in\mathbb{N}, xy^kz\in L.$

Attention:

- La réciproque du lemme de l'étoile est fausse : on ne peut pas l'utiliser pour montrer qu'un langage est reconnaissable.
- La décomposition xyz est donnée par le lemme de l'étoile, on ne peut pas la choisir.

Schéma de preuve pour montrer qu'un langage L n'est pas reconnaissable :

- Supposons que L soit reconnaissable par un automate à n états.
- Soit $u = ... \in L$ tel que $|u| \ge n$.
- Soit u = xyz la décomposition donnée par le lemme de l'étoile.
- On remarque que $xy^kz\not\in L$ pour $k=\dots$
- \bullet C'est absurde : L n'est pas reconnaissable.

Exercice 12.

 Montrer que L₁ = {aⁿbⁿ n ∈ N} n'est pas reconnaissable. Montrer que L₂ = {aⁿb^p n ≠ p} n'est pas reconnaissable. 	