

The Energy Transition requires Non-diesel massive power generation for off-grid applications

Energy Mix

By 2050, **60%** of global energy consumption should be in the form of **renewable fuel** (while 40% as electricity)

Transition Phase

Growing interest in **alternatives to diesel** power.

Future Goal

Hydrogen emerges as a potential successor to diesel.

Current hydrogen storage & transportation methods

Compressed Hydrogen

- Directly usable to feed fuel cells
- 1.3 KWH/L at 700 Bars
- Industrial feedstock, mobility applications

Liquefied Hydrogen

- Requires gazification & compression before use
- 2.4 KWH/L at -253°c
- Hydrogen storage and transportation mainstream

Ammonia

- Requires cracking before use
- 3.8 KWH/L at -33°c
- Potential hydrogen carrier, eventually combusted

All these forms present severe safety hazards and are subject to stringent regulations.

Are Hydrogen Fuels usable for Green Gensets?

Commercially available candidate are inadequate for long-term large storage without degradation

H2, compressed/liquefied (Physically Contained)

Ammonia (Chemical Consumable)

Severe safety hazards in storing large amounts of Hydrogen

Impractical for infrequent use applications, Regulation limitation

Which features are required for green fuels for large scale green gensets?

High energy density

Zero losses

Hydrogen

Hydrogen Powder features - excellent fit

Safe / inert Ea

Easy to handle and use

High energy density: 3.6 KWH/L

Zero losses

UHT
Hydrogen No Expiry
Date

A single 40 ft container powder payload

16 ton → 40* MWh
Equivalent to 2.4 ton of H₂

* Considering fuel cell efficiency of 50%

Our Circular Solution

Powder production & Recycling

Electriq Powder is safe for transportation and storage; inert and non-flammable

Powder Transport & Storage

Spent Fuel for recycling

Release System

Low temperature, low pressure release system optimal for offgrid applications

End to End IP Coverage

Powder Production and Recycling, Hydrogen Release System and the Catalyst

How the Electriq genset works

Powder to Power - Demonstrated in NL

3 kW system

- More than 1,500 working cycles
- Serves Electriq's lab since 2021

8 kW system

Power to Powder manufacturing Plant

- First plant planned in cooperation with Sunoco LP in Amsterdam, to be opened in 2028
- Green Power and Hydrogen based on Renewable Electricity from Sunoco's Wind Turbines
- Innovative IP-protected production process
- MOU signed
- Grant of €1.1m received from Netherlands Enterprise Agency for basic engineering work
- Final permit scan report by Royal Haskoning received, providing a green light to proceed with basic engineering

600 Metric Tons

Annual production capacity

4,000 Sq. Meter

Facility Area

Electriq – from R&D to Market

Brown-Schlesinger 300kWh

413 gr_{CO₂}/MJ \$5.7/kWh

2021 Moses 3kW

2022 Joshua 8kW

2024 **Alkaliq**

2028 **Genesis 1MW**

2030 **Commercial Plant**

Low Hanging Fruit Opportunity: 700 Units for Backup Power for Traffic Continuity – Israel Roads

- The blackout challenge functional continuity of traffic lights in emergency situations
- National transportation infrastructure companies have to ensure traffic continuity both during routine operations and in
- This is crucial in all emergency scenarios, including blackouts—planned or forced power outages in multiple areas lasting at least five days.
- Requires 700W emergency power capable of operating continuously 48h to 120h.

Use Case: Emergency power for Traffic Continuity Power demand: 1 kW, 120h

Li-lon **DIESEL Hybrid** Electriq's powder Backup power storage: 120 hr 120 hr 120 hr System weight: 2000 Kg 700 Kg 220 Kg Refuelling Recharging from grid Continuous, Continuous, **During operation During operation** Storage area footprint: $\sim 4 \text{ m}^2$ 2.81 m^2 $\sim 1.08 \text{ m}^2$ Remarks: On case of Complete Most compact Combined Diesel discharge, the unit has to be solution and LiFePO4 replaced

Use Case: Datacenters need Massive Power Solutions for Power Backup

- The AI industry's explosive growth leads to data centers consuming as much power as modest-sized cities.
- They are obliged to transition to renewable energy.
- With more volatile energy sources, the need for massive backup is pressing, and cost is not the main decision criteria.

Use Case: backup power for Data Center Power demand: 4.6 MW, 24h

100% green hydrogen backup power

H₂ 350 bar Electrig's powder

Backup	power	storage:
--------	-------	----------

24 h

24 hr

Fuel storage mass:

82 ton

24 hr

8.64 ton

60 ton

Fuel storage volume:

120 m³

372 m³

 $90 \, \text{m}^3$

Storage area footprint:

100 m²

~ 900 m²

 $< 100 \text{ m}^2$

Regulatory & safety:

Medium

Minimal

Remarks:

Can be completely removed from site Installation of 372 m³ of CH2 is not feasible due to the regulatory restrictions

Same storage capacity at a reduced footprint and regulatory demand

Datacenter Hydrogen Backup - Liquid vs Powder

- Large data centre composed of 28 racks
- Each rack requires 3MWh backup power, taking up:
 - 500 m² Storage area with Liquefied Cryogenic Hydrogen (LH2),
 or
 - 30 m² storage area with two stacked
 40ft containers full of Electriq Powder

14,000 m²

Storage footprint using liquefied hydrogen for 28 racks v.s.

 840 m^2

Storage Footprint using Electriq Powder

-94%

Electriq in a nutshell

•Powder production & recycling.•
••Target CAPEX \$6,000/Ton.••

Electriq Powder

Powder transport & storage

Spent fuel for recycling

Release System
. Target CAPEX \$500/kW.

\$27M

Invested To Date

13

Patent Families

SAFE!

Hydrogen Carrier PROVEN!

- 2 working PoC Gensets
- KBH₄ production breakthroughs

\$20B-\$37B

TAM of Large Backup Gensets (diesel) from 2023 to 2032

Business model Pillars:

Capital Equipment - Hydrogen Release Systems

- Powder to electricity
- Powder to hydrogen
- Service (recurring)

Electriq Powder

- Consumable-based business model
- High growth potential, consistent demand

C & A