Question 1

(a) Condete the following multiplication table.

	0	1	x	x^2	1 + x	$1 + x^2$	$x + x^2$	$1 + x + x^2$
0	0	0	0	0	0	0	0	0
1	0	1	x			$1 + x^2$	$x + x^2$	$1 + x + x^2$
x	0	x	x2		$x + x^2$	1		$1 + x^2$
x ²	0			$x + x^2$	$1 + x + x^2$	x	$1 + x^2$	1
1 + x	0		$x + x^2$	$1 + x + x^2$	$1 + x^2$		1	x
$1 + x^2$	0	$1 + x^2$	1	x		$1 + x + x^2$	1 + x	
$x + x^2$	0	$x + x^2$		$1 + x^2$	1	1 + x	x	
$1 + x + x^2$	0	$1 + x + x^2$	$1 + x^2$	1	x			1 + x

Table 2.5: Multiplication table for the field $\mathbb{F}_2[x]/(x^3+x+1)$

- (b) prove that x3+x2+1 is irreducible over IF=.
- (c) Down the multiplication table for the field 15 cm/(x3 +x2+1)
- (d) Show that \(\frac{1}{5}\text{x}\frac{1}{3}\text{x} + \text{x} + 1) \) is isomorphic to \(\frac{1}{2}\text{x}\frac{1}{3}\text{x}^3 + \text{x}^2 + 1)\)

Question 2

- (a) Show that x2+1 irreducible in [+3 Cx]. (Show that no paymontal of degree 1 in [+3 [x] that divides x=+1.)
- (b) Show that x2+1 is not irreducible in IFE[x]. (Find a polynomial of degree 1 in Fe[x] that divides x2+1)
- (C) For what values of p does x2+1 is irreducible in Fp 260]?

 Justify your onswers.

- Question 3

 Let $F = |F_3U^2|/(x^2+c)$. F is a feel d beautise $X^2 + c$ is irreductible

 IN IF3 [X] (see Drestion 1a).
- (a) How many elements are there in F?
- (b) Does x generate F1303 ? Justity your answer.
- (c) Does x+1 generate F1503? Justify your answer.

Question 4

(a) Consider the (3,6)-Shamir threshold scheme to share a secret in Fig. Suppose that participants P2, P3, P6 pool their shares:

(3,18) (6,11)

Compute the secret

- (B) Show that if only P= and P3 pool their shares: (2,6), (3,16), they have no information on the secret. In other words, just with the knowledge of (2,8), (3,6), the search teg can be any value in Fg.
 - (Show that there exists a polynomial of degree 2 that
 fits (3,18), (0,8) for all values of SETTIO)

Question 5 In sharm secret sharing scheme, the dealer who distributes the shares to participants is assumed to be honest. A malicious dealer could give invalid shares to some people, So that any t people involving at least one of them would compute the wrong secret. To prevent this one strategy is to ask the dealer to Publish ga, ga, , gat-1 where ao, a, ..., at-1 are the welficients of the secret polynomial &(x), and g is an element of large prime order. (a) Show how each participant P; can verify that the shace (i,f(i)) he she received is valid using values g=g", ocist-1, that the dealer published. Note that do, a, ..., at-1 are privately unknown to public. (b) Is such verification schene secure? In other words, could anyone find out the secret value using the publish values 90, gai, ..., gat-1? Hint: It you solve DLP, an you get the

secret ?