YALE UNIV NEW HAVEN CONN DEPT OF EPIDEMIOLOGY AND P--ETC F/6 6/5 WORLD REFERENCE CENTER FOR ARBOVIRUSES.(U)
JAN 79 R E SHOPE DADA17-72-C-2170 AD-A072 854 UNCLASSIFIED | OF 2 AD A072854 #13 #13

OF

AD A072854

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963 A

(for the period 1 January 1978 to 31 December 1978)

Robert E. Shope, M.D.

Supported by

U.S.Army Medical Research and Development Command Fort Detrick, Frederick, Maryland 21701

Contract No. DADA 17-72-C-2170

Pepartment of Epidemiology and Public Health
Yale University School of Medicine
New Haven, Connecticut 06510

Approved for public release; distribution unlimited.

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

79 08 15 001

1/3

Annual Report for 1978

Yale Arbovirus Research Unit International Center for Arboviruses

World Health Organization Collaborating Center for Arbovirus Reference and Research

Department of Epidemiology and Public Health Yale University School of Medicine 60 College Street New Haven, Connecticut 06510, U.S.A.

Acc	ession For	7
DDC	S GRA&I TAB	P
	nounced cification	
Ву_		
Dist	ribution/	
	i'ability Co	odes
Dist	Avail and/	
0.100	special	

SUMMARY

Major effort of the reference center was devoted to rapid diagnosis and more sensitive methods for detection of antibody and antigens. / Findings of note were:

Virus identification. Viruses were studied from Japan, Australia, Seychelles, France, Senegal, Ethiopia, Kenya, Brazil, Venezuela, and the U.S.A. Three presumably new viruses including a new orbivirus were identified from Ethiopia. Keystone virus was recognized for the first time in New England. A revision of the rhabdovirus family was completed and included study of 37 serotypes. Identification studies of 76 viruses were carried out in 1978.

Development of techniques and models. The ELISA test was refined for use with purified bunyavirus, flavivirus, and alphavirus whole virion antigen to give a sensitive specific test. ELISA was applied to virus identification, serosurvey, and serologic diagnosis. The test is rapid and is completed in one day. The Aedes pseudoscutellaris cell line was tested in the laboratory and in the field in Nigeria and Malaysia. It is nearly as sensitive as the mosquito for detection of dengue virus, which produces a cytopathic effect. RNA segment analysis of the Kemerovo and bluetongue groups of orbiviruses demonstrated the high sensitivity of this technique. Kemerovo RNA gel patterns correlate with geographic origin, and virus from a migratory bird captured in Egypt had a very similar RNA pattern to that of the U.S.S.R. human and tick isolates.

Serologic surveys. Broadly based surveys of arbovirus and arenavirus antibody in man were carried out with Lassa antigen in Liberia; Congo-Crimean hemorrhagic fever antigen in Yugoslavia; and with a variety of arbovirus antigens in Guam, U.S.A., Colombia, and New Guinea. Study of sera of laboratory workers indicated high prevalence of inapparent infection with Pichinde virus of the Arenaviridae family.

Diagnosis of disease. A fatal case of La Crosse encephalitis was diagnosed in Westchester County, New York. A Jamestown Canyon virus infection was recognized in Connecticut and a Tacaribe virus laboratory infection was documented serologically. Arboviruses were not incriminated in arthrogryposis in Canada; chlamydia were not implicated in Korean hemorrhagic fever.

Duration of antibody following yellow fever vaccination.

World War II veterans presumably vaccinated in 1943 with 17D vaccine retained neutralizing antibody in at least 62% of sera when tested more than 30 years later.

Distribution of reagents. The reference center distributed 528 ampoules of reference sera, viruses, and antigens during 1978, as well as mosquito and vertebrate cell lines. Viruses of 149 different types were distributed; this is the largest variety in any year so far requested.

FOREWARD

In conducting the research described in this report, the investigator adhered to the "Guide for Laboratory Animal Facilities and Care," as promulgated by the Committee on the Guide for Laboratory Animal Resources, National Academy of Sciences - National Research Council.

TABLE OF CONTENTS

	Page
TITLE PAGE	1
SUMMARY	2
FOREWARD	3
TABLE OF CONTENTS	4
LIST OF TABLES AND FIGURES	6
BODY OF REPORT	
I. Identification of virus strains	10
Strains from Venezuela	10
Strains from France	11
Strains from Rutgers Medical School, New Jersey	11
Strains from Kenya	12
Strains from Brazil	12
Viruses from Senegal and Seychelles	12
Virus from Australia	16
Serological relationships of rhabdoviruses	16
Identification of viruses from Connecticut	22
Alphaviruses from Colorado	22
Identification of viruses from field material from Ethiopia	35
II. Development of arbovirus techniques and virus models Attachment of arboviruses to neural and non-neural	38
cells in vitro	38
Cells In vitto	30
Early diagnosis by early detection of virus	46
Rapid diagnosis of virus in mosquito pools by IF	47
Rapid and early detection of arbovirus antigen and	
antibody by RIA and by ELISA	51
Aedes pseudoscutellaris cell line for primary	
isolation of dengue virus	64
The enzyme linked immunosorbent assay	65
Strain characterization of geographically different	
Kemerovo group viruses by analyses of their RNA	
segments	75
RNA segment analyses of Kemerovo serogroup orbiviruses .	81
RNA segment analyses of American and Australian	
Bluetongue serotypes	81
III.S eroepidemiological surveys	86
Sera from Venezuela	86
Sera from Senegal	86
West African sera for Lassa fever	88
Yugoslavian sera for Congo-Crimean hemorrhagic fever	88
Laboratory workers sera for Pichinde virus	91
Multipurpose serological survey: Guam, United States,	01
Colombia, West Irian, Papua and New Guinea	91
IV. Diagnosis of human disease	94
Tacaribe virus infection	94
Korean hemorrhagic fever	94
La Crosse encephalitis in Westchester County, N.Y	96
Arthrogryposis in man	96

TABLE OF CONTENTS

		Page
v.	Duration of yellow fever neutralizing antibody following 17D vaccination	. 97
VI.	Distribution of reagents, WHO Collaborating Centre for Reference and Research	. 103
	Distribution of reagents, World Health Organization- Collaborating Centre for Reference and Research	. 103

LIST OF TABLES AND FIGURES

Tab1	e Page
1	Complement fixation test identification of strains isolated in Venezuela
2	Complement-fixation test identification of strain Ven-PAn 34958 isolated in Venezuela
3	Complement-fixation test identification of strains isolated in Venezuela
4	Complement-fixation test identification of strain Catatumbo from Venezuela
5	Complement-fixation test relationship between strain Fr-Brest ArT 13 isolated in France and Soldado virus .15
6	Complement-fixation test identification of strains submitted by Dr. V. Stollar, Rutgers Medical School . 15
7	Direct fluorescent antibody results with Dak HD 10674 virus in Aedes pseudoscutellaris cells and mouse ascitic fluid conjugates
8	Complement-fixation reactions of vesiculoviruses 18
9	Complement-fixation reactions of rabies serogroup viruses
10	Complement-fixation reactions of minor serogroups of rhabdoviruses
11	Fluorescent focus inhibition test cross-reactions among vesicular stomatitis group viruses and absence of cross-reactions with other rhabdoviruses 21
12	Biting flies collected in Connecticut during 1978 for virus isolation attempts
13	Results of virus isolation attempts in suckling mice of arthropods and vertebrates collected during 1978 . 27
14	Virus isolations from arthropods and vertebrates collected in Connecticut during 1978
15	CF reactions of Ar 623-75 and Ar1274-76 viruses with reference California group viruses using single inoculation hamster sera
16	50% plaque reduction neutralization titers of Ar 623-75 and Ar 1274-76 viruses with reference California group sera

Tabl	<u>le</u>	Page
17	Complement-fixation results of Bijou Bridge and other VEE complex viruses	32
18	Hemagglutination-inhibition results of Bijou Bridge and other VEE complex viruses	33
19	Complement-fixation results of Fort Morgan and other WEE complex viruses	34
20	CF reactions between West Nile and viruses from Ethiopian birds	37
21	Infectivity titers and numbers of receptors on several cell types for Sindbis Virus Strains EgAr 339 (adult mouse avirulent) and SaAr 86 (adult mouse neurovirulent)	40
22	Enzyme doses which resulted in 100% of control viability for 4 cell lines	42
23	Attachment of two Sindbis Virus Strains to four cell lines after enzyme treatment of cells	43
24	Effect of protein, DNA and RNA synthesis inhibitors on regeneration of EgAr 339 (Sindbis) virus receptors on pronase-treated CER cells	44
25	Comparison of Sindbis Virus Strains EgAr 339 and SaAr 86 by HI testing using simultaneous dilutions of serum and antigen and rate of reaction	45
26	Relationship between amount of Junin virus inoculated and time of appearance of a positive IF reaction in Vero cell monolayers	48
27	Relationship between amount of dengue type 2 virus inoculated and time of appearance of a positive IF reaction in LLC-MK ₂ cell monolayers	49
28	Banzi virus: viremia determinations in mice IP inoculated with 150 ICLD ₅₀ of virus, bled on successive days after inoculation	50
29	Comparison of anti-Sindbis ELISA and HI titers in Senegalese human sera	69
30	Anti-VEE ELISA titers following VEE Vaccination	70
31	Anti-Germiston ELISA titers of Liberian human survey sera.	71
32	ELISA result as a function of Sindbis virus counts, PFU,	73

Tab1	<u>e</u>	Page
33	ELISA results comparing Bunyamwera group viruses using whole virion antigens	74
34	Complement-fixation relationships of Kemerovo and Tribec viruses	79
35	Neutralization relationships of Kemerovo and Tribec viruses	79
36	Hemagglutination-inhibition test sera from Venezuela (Zulia State)	87
37	Hemagglutination-inhibition test survey with human sera from Senegal	89
38	Hemagglutination-inhibition test sera from Senegal: illustrative examples of antigenic group B diagnoses	90
39	IF and CF test results with sera from individuals exposed to Pichinde virus in the laboratory	92
40	Results of immunofluorescence and complement-fixation tests with serial sera from an individual exposed to Pichinde and Tacaribe viruses in the laboratory	95
41	Complement-fixation test absence of relationship between hemorrhagic fever with renal syndrome (HFRS) and Chlamydia infection	95
42	Results of mouse neutralization tests of U. S. Army W.W.II veterans with French neurotropic yellow fever virus	98
43	Neutralization test in mice and PRNT in Vero cells. Sera from Fort Collins-WWII veterans (Y.F. immunized approximately, 1943)	99
44	Neutralization test in mice and PRNT in Vero cells. Sera from Fort Collins-WWII veterans (Y.F. immunized approximately, 1943)	. 100
45	Neutralization test in mice and PRNT in Vero cells. Sera from Fort Collins-WWII veternas (Y.F. immunized approximately, 1943)	. 101
46	Neutralization test in mice and PRNT in Vero cells. Sera from Fort Collins-WWII veterans (Y.F. immunized approximately, 1943)	. 102

Tabl	<u>P</u>	age
47	Viruses referred to YARU for identification, 1978	104
48	Distribution of cell cultures during 1978	107
Figu	ire	
la lb	Hyperbolic plots for attachment competition between SaAr 86 strain of Sindbis and EEE viruses in C6 cells Hyperbolic plots for EEE attachment after pretreatment with diluent or SaAr 86 strain of Sindbis virus	41
2	Distribution of mouse serum proteins after gel chromatography of normal mouse serum through Sephadex G-200	59
3	Purification of normal mouse serum proteins on Pevikon C-870 block electrophoresis	60
4	Immunoelectrophoretic pattern of normal mouse serum before gel chromatography	61
5	Immunoelectrophoretic pattern of normal mouse serum and $(NH_4)_2SO_4$ precipitated mouse gamma globulin	61
6	Immunoelectrophoretic pattern of normal human serum before and after $(NH_4)_2SO_4$ precipitaion of gamma globulin	62
7	Immunoelectrophoretic pattern of normal human serum and gamma globulin reacted with rabbit antihuman IgG	62
8	Sucrose density gradient analysis of \$125_I-labeled rabbit antimouse IgG	63
9	Counts attached as a function of time and dilution: Sindbis antigen on ELISA plates	72
10	Origins of 16 strains of Kemerovo virus in USSR, Czecho-slovakia and Egypt	77
11	Summer and winter range of European Redstart	78
12	RNA segment analyses of Kemerovo strain orbiviruses	80
13	RNA segment analyses of Kemerovo serogroup orbiviruses	82
14	RNA segment analyses of Kemerovo serogroup orbiviruses	83
15	RNA segment analyses of American and Australian bluetongue serotypes	85

BODY OF REPORT

1. Identification of virus strains.

Strains from Venezuela (G. Calderon and J. Casals). Strains Ven-PAr 30318, Ven-PAr 30475, Ven-PAn 33382, Ven-PAn 33571, Ven-PAn 33574, Ven-PAn 33733, Ven-PAn 33706 and Ven-PAn 34958 were submitted for identification by Dr. R. Walder, Instituto Venezolano de Investigaciones Científicas (IVIC), in 1977.

During the course of 1977, immune mouse sera and ascitic fluids were prepared for each strain as well as sucrose-acetone antigens, generally from brain tissue and in certain instances from liver tissue. During the year, two of the strains were identified by complement-fixation test: Ven-PAr 30318, was considered to be a strain of Una, and Ven-PAn 33382 was identified as a strain of Itaqui. The remaining strains were placed in group A, except Ven-PAn 33706 which could not be placed in any arbovirus antigenic group with the polyvalent reagents used.

Work during the current year, also by CF, has characterized the additional viruses, as follows.

Immune sera for strains Ven-PAn 34598 and Ven-PAr 30475 were tested in increasing two-fold dilutions against dilutions 1:8, 1:16, and 1:32 of several group A antigens, as shown in Table 1. The result of this test shows that virus Ven-PAr 30475 was a strain of Una, or an agent extremely close to it. Strain Ven-PAn 34958 was close to both VEE type Florida and to VEE type Mucambo; at any rate, a strain in the VEE complex.

In another CF test, strain Ven-PAn 34958 was compared with VEE type Pixuna, VEE type Mucambo and VEE, with the results shown in Table 2. The only immune Mucambo serum available failed to react with any of the antigens, including the homologous; the results with it have been omitted. From the combination of results in Tables 1 and 2, it seems that strain Ven-PAn 34958 is closer to VEE virus than to other members of the VEE complex; it is, therefore, considered to be a strain of VEE.

Strains Ven-PAn 33571 and Ven-PAn 33574, were indistinguishable by CF; the former was in addition, indistinguishable from Ven-PAn 34598 in a single CF test. Pending confirmation these two isolates are also considered to be strains of VEE (Table 3).

Strain Ven-PAn 33706 did not fall in an arbovirus antigenic group, as was stated in the 1977 YARU Report. Subsequent investigations showed the strain to be closely related to mouse hepatitis virus; most likely the virus is a contaminant picked up in this laboratory at the time, early in 1978, when mouse hepatitis broke out in the animal quarters. It remains to be determined whether the strain can be re-isolated from the original suspension submitted from IVIC.

Strain Catatumbo. This virus had been submitted in 1975 by Dr. Ronald Mackenzie, Venezuela; it had been partly identified as a group C agent, possibly Caraparu. Additional CF testing with this agent, Table 4, showed that it was indistinguishable from Caraparu, and close to Ossa, as would be anticipated; Catatumbo is considered to be a strain of Caraparu.

Strain from France (J. Casals). Strain Fr-Brest ArT 13 was isolated from ticks, Onithodoros maritimus, in Brittany, France by Dr. C. Chastel, Brest Medical School. An antiserum for this strain was submitted with the request that a relationship between this agent and Uukuniemi, found at the Brest laboratory, be ascertained. In a CF test in this laboratory employing the serum submitted by Dr. Chastel and reference reagents for Uukuniemi and Soldado viruses (Table 5) no relationship was found with Uukuniemi, instead serum Brest ArT 13 reacted with Soldado antigen at low titer, 1:8. The precise relationship between the latter two viruses has not been further elucidated at YARU.

Strains from Rutgers Medical School, New Jersey (J. Casals). Strains SVE-31973 and SVE3, were submitted for identification by Dr. V. Stollar. In the course of experiments in his laboratory with a strain presumed to be Sindbis virus, certain anomalous behavior was observed which prompted the request for identification. Materials supplied by Dr. Stollar were: virus stocks for strains SVE3-1973 and SVE3; and an antiserum for SVE3, designated Ab25, anti-E3, presumably a rabbit serum.

A single intracerebral (ic) passage in newborn mice was done in this laboratory at different times for each strain, in order to forestall any risk of cross-contamination. The inoculated mice in each case were sick or moribund in 24 or 48 hours. Crude CF antigens were prepared with brain tissue from the sick mice and from normal mice, in the form of a 10% suspension in physiologic saline, centrifuged at 1500 rpm for 10 minutes; the supernatant fluids, designated undiluted antigen were tested with reference reagents for EEE, Sindbis and Semliki viruses, with the result shown in Table 6. Serum SVE3 was not anticomplementary but since it gave a high titered non-specific reaction with normal brain crude antigen, its reaction with the SV antigens cannot be properly evaluated. However, as this serum gave only a limited, probably non-specific, reaction with the acetone-sucrose Semliki and Sindbis antigens, the high titer given with EEE antigen is valid.

The remaining results clearly show that SVE3-1973 and SVE3 are strains of EEE virus, not Sindbis or Semliki.

Strain from Kenya (W.D. Downs and W. L. Ooi).
KT576/75 from Amblyomma variegatum of Kenya was referred by Dr. D.
Simpson of the London School of Tropical Medicine. A liver antigen reacted with sera of Ganjam and Dugbe viruses and was negative with a battery of group A, group B, and other bunyaviruses. In reciprocal cross-CF tests, KT576/75 was indistinguishable from Dugbe virus and represents the first isolate of this virus from Kenya.

Strains from Brazil (R.E. Shope and O. Oliva). BrH 9956 and BrH 10344 were isolated from febrile human beings living along the trans-Amazon highway, Brazil. Vero cell fluids submitted by Dr. K. Dixon, WRAIR, were used as antigen. In the 1:2 dilution, antigens reacted with a phlebotomus fever grouping ascitic fluid and were negative with 29 other grouping fluids. A subsequent CF test with ascitic fluids of members of the phlebotomus fever group gave the following results:

Antibody					
Anhanga	Bujaru	Candiru	Icoaraci	Cedros	BeAn 100049
0/0	0/0	64/8	0/0	0/0	0/0
0/0	0/0	64/2	0/0	0/0	0/0
8/>40	16/>40	32/≥40	8/≥40	32/>40	32/>40
0/0	0/0	0/0	0/0	0/0	0/0
	0/0 0/0 8/>40	0/0 0/0 0/0 0/0 8/>40 16/>40	Anhanga Bujaru Candiru 0/0 0/0 64/8 0/0 0/0 64/2 8/>40 16/>40 32/>40	Anhanga Bujaru Candiru Icoaraci 0/0 0/0 64/8 0/0 0/0 0/0 64/2 0/0 8/>40 16/>40 32/>40 8/>40	Anhanga Bujaru Candiru Icoaraci Cedros 0/0 0/0 64/8 0/0 0/0 0/0 0/0 64/2 0/0 0/0 8/>40 16/>40 32/>40 8/>40 32/>40

^{*}antibody/antigen

The viruses are closely related to Candiru by the CF test, although they have not yet been tested with BeAn 213452 virus which is identical to Candiru by CF test but differs by neutralization test.

BrH 4327 virus was submitted by Dr. Dixon of WRAIR with the information that it belonged to the Simbu group. By CF test at Yale it cross-reacted reciprocally to titer with Oropouche virus.

BeAn 238758 virus from a rat in Brazil was tested earlier with groups A, B, C, Guama, Bunyamwera, Capim, Simbu, phlebotomus, Tacaribe, California, Sakhalin, Kemerovo, Palyam, Quaranfil, Patois, and Anopheles A as well as to 192 other strains in the WHO reference collection. It presented a 1:4 cross-reaction by CF with 2 strains of Congo virus. Attempts to repeat this reaction with 5 other strains of Congo virus by CF and by FA were uniformly negative. It thus remains as an ungrouped virus.

Viruses from Senegal and Seychelles (S.M. Buckley, R.E. Shope, J. Rodriques, and I. Mattos). HD 10674 and SS20 viruses from human sera suspected of being dengue were submitted by Dr. Y. Robin of Dakar. HD 10674 was isolated in Dakar and SS20 from an epidemic of suspected dengue in the Seychelles. Both viruses were confirmed as dengue by propagation in Aedes albopictus cell culture and in

Table 1

Complement-fixation Test
Identification of strains isolated in Venezuela

Antigen	Serum		
Allergen	Ven-PAn 34958	Ven-PAr 30475	
Ven-PAn 34958	1024/32+		
Ven-PAr 30475		1024+/32+	
Aura	32/32+	0	
EEE	64/32	0	
Mayaro	16/32+	16/32+	
Mucambo	512/32+	8/32+	
Una	32/16	1024+/32+	
VEE-Florida	512/32+	0	
WEE	32/32+	0	
Control	0	0	

Reciprocal of serum titer/reciprocal of antigen titer 0, no fixation at dilution 1:8 of serum and antigen

Table 2

Complement-fixation Test
Identification of strain Ven-PAn 34958
isolated in Venezuala

Antigen	Serum			
Anergen	Ven-PAn 34958	VEE	Pixuna	
Ven-PAn 34958	512/256+	512/256	64/256+	
VEE	256/128+	512/128+	64/128	
Pixuna	128/128	128/64	512/128	
Mucambo	128/128	128/64	64/128	
Control	0	0	0	

Footnote: see Table 1

Table 3

Complement-fixation Test
Identification of strains isolated in Venezuela

A-44	Serum		
Antigen	Ven-PAn 33571	Ven-PAn 34958	
Ven-PAn 33571	128/64+	128/64+	
Ven-PAn 34958	128/64+	128/64+	
Control	0	0	

Footnote: see Table 1

Table 4

Complement-fixation Test
Identification of strain Catatumbo from Venezuela

Antigen	Serum				
Antigen	Catatumbo	Caraparu	Ossa		
Catatumbo	64/128	64-128/128	32/256		
Caraparu	64/64	128/128	32/32		
Ossa	32/8	32/4	32/8		
Control	0	0	0		

Footnote: see Table 1

Table 5
Complement-fixation Test

Relationship between strain Fr-Brest ArT 13 isolated in France and Soldado virus

Antigen		Serum	
	BrArt 13	Soldado	Uukuniemi
Soldado	8/32	128+/128	0
Uukuniemi	0	0	128+/256+
Control	0	0	0

Footnote: see Table 1

Table 6

Complement-fixation Test
Identification of strains submitted by Dr. V. Stollar
Rutgers Medical School

Antigen		Ser	um	
Airtigeii	SVE3	EEE	Sindbis	Semliki
SVE3-1973, crude	128/32+	64/32+	16/32	0
SVE3, crude	128/32+	64/32+	8/16	0
Normal brain, crude	64/4+	0	0	0
EEE, sucrose-acetone	128/32+	128/32+	0	0
Sindbis, sucrose-acetone	16/16	0	256/32+	0
Semliki, sucrose-acetone	16/16	0	0	256/32+
No antigen	0	0	0	0

Reciprocal of serum titer/reciprocal of antigen titer. Crude antigens: first dilution, undiluted. Sucrose-acetone antigens: first dilution, 1:8. Sera: first dilution, 1:8.

Aedes pseudoscutellaris cell culture, using a dengue-2 serum by FA test.

Direct FA was undertaken in Aedes pseudoscurellaris cells using FITC conjugates of mouse ascitic fluids. The titers were highest for DakH10674 with the dengue-2 conjugate (Table 7). A CF test using antibody to HD 10674 and SS20 confirmed that they are strains of dengue-2 virus.

Virus from Australia (R.E. Shope and W.H. Ooi). Aus Ch 16129 was reported in 1977 to be a member of the Simbu group. A plaque reduction neutralization test in Vero cells failed to show neutralization of Aus Ch 16129 virus by a Simbu grouping fluid prepared from the known members of the group; the homologous neutralization was greater than 256. This confirms previous CF test results showing this virus to be different from other Simbu group viruses.

Serological relationships of rhabdoviruses (C.L. Frazier and R.E. Shope). The initial results of a serological revision of rhabdoviruses were reported in the 1977 YARU Annual Report (pages 43 and 44). Thirty-seven rhabdoviruses were examined by CF. The 6 members of the VSV serogroup did not react with other rhabdoviruses. The cross-reactions within the group are shown in Table 8; the results do not differ from those previously described.

The 6 members of the rabies serogroup also did not react with other rhabdoviruses but did react inter se (except for kotonkan) as shown in Table 9. Table 10 demonstrates the reactions seen among the minor serogroups of rhabdoviruses. Five minor serogroups are defined: Hart Park, Sawgrass, Kwatta, Mossuril, and Timbo. In addition the following rhabdoviruses showed no cross-reaction with any other rhabdoviruses: Gray Lodge, Barur, Joinjakaka, Kern Canyon, Klamath, Mount Elgon bat, Navaro, Oita 296, Porton S-1643, Yata, Keuraliba, Parry Creek, and Kimberley.

The fluorescent focus inhibition test was developed for the VSV serogroup viruses. This test is complete in 16 to 18 hours, is sensitive, and relatively cheap and simple. The results are displayed in Table 11, and a greater degree of cross-reactivity was noted among the VSV serogroup viruses than seen by other tests. At the same time there were no cross-reactions seen with 31 other rhabdoviruses.

Table 7

Direct fluorescent antibody results with Dak HD 10674 virus in Aedes pseudoscutellaris cells and mouse ascitic fluid conjugates

Conjugate	Titer with Dak HD 10674	Titer with homologous
Dengue-1	<2ª	8
Dengue -2	32	32
Dengue-3	<2	16
Dengue-4	4	32

^aend-point taken as 3 or 4 + fluorescence; cells were harvested on day 7 post inoculation; spot slides prepared with 40,000 cells/ml.

Table 8

Complement-fixation Reactions of Vesiculoviruses

	ոեհել	0	0	0	∞	∞	256
	eruqibnad)	0	0	0	16	256	7
ody	Piry	0	0	0	128	4	0
Antibody	VSV New Jersey	0	0	32	0	0	0
	Cocal	4	99	0	0	0	0
	VSV sasibal	256 ^a	œ	0	0	0	0
	Antigen	VSV Indiana	Cocal	VSV New Jersey	Piry	Chandipura	Isfahan
	Serocomplex	VSV Indiana		VSV New Jersey VSV New Jersey	Piry		

^aReciprocal of hyperimmune mouse ascitic fluid titer at optimal antigen dilution in grid titrations; 2 units C'; overnight incubation; 0 = <4

Table 9

Complement-fixation Reactions of Rabies Serogroup Viruses

	Косопкап	0	0	0	0	0	0	79
	Obodhiang	0	0	99	16	0	256	0
Antibody	Duvenhage	7	16	0	79	99	0	0
Anti	sogs.I jsd	4	99	99	1024	99	0	0
	Мокода	512	512	512	512	128	512	0
	Kabies HEP	1024ª	1024	99	99	256	0	0
	Antigen	Rabies Pasteur	Rabies TR 5843	Mokola	Lagos Bat	Duvenhage	Obodhiang	Kotonkan
	Serocomplex	Rabies					Obodhiang	Kotonkan

^aReciprocal of hyperimmune mouse ascitic fluid titer at optimal antigen dilution in grid titrations; 2 units C'; overnight incubation; 0 = <4

Table 10

Complement-fixation Reactions of the Minor Serogroups of Rhabdoviruses

HYPERIMMUNE ASCITIC FLUID

		Hart Park Group	roup	Sawgra	Sawgrass Group	Kwatta Group	Group	Mossuril Group	T a	Timbo Group	Group
	Hart		8	Saw-	New		BeAn				1
ANTIGEN	Park	Flanders	queiroa	grass	Minto	Kwatta	157575ª	Mossuril	Kamese	Timbo	Chaco
Hart Park	512 ^b	1024	0	0	0	0	0	0	0	0	
Flanders	16	2048	0	0	0	0	0	0	0	0	0
Mosqueiro	80	99	99	0	0	0	0	0	0	0	0
Sawgrass	0	0	0	512	4	0	0	0	0	0	0
New Minto	0	0	0	0	512	0	0	0	0	0	0
Kwatta	0	0	0	0	0	8192	80	0	0	0	0
BeAn157575	0	0	0	0	0	8192	32	0	0	0	0
Mossur11	0	0	0	0	0	0	0	128	128		0
Kamese	0	0	0	0	0	0	0	99	256	0	0
Timbo	0	0	0	0	0	0	0	0	0	512	16
Chaco	0	0	0	0	0	0	0	0	0	8	32
,											

^aMosqueiro and BeAn 157575 are unpublished viruses supplied for study by F.P. Pinheiro and A.P.A. Travassos da Rosa, Belem, Brazil.

^bReciprocal of ascitic fluid titer with optimal antigen dilution; 2 units C'; overnight incubation; **5> = 0**

Table 11

Fluorescent Focus Inhibition Test Cross-reactions among Vesicular Stomatitis Group Viruses and Absence of Cross-reactions with other Rhabdoviruses

	Other rhabdoviruses	04>	04>	445	<50	<42	<50
	Isfahan	51	86	07	80	100	100
	Chandipura	42	92	92	93	100	93
Antibody	Piry	0	9	97	100	100	97
An	VS- New Jersey	27	2	100	31	18	89
	Cocal	46	100	0	0	0	84
	VS- Indiana	866	100	84	37	0	17
	Virus	VS-Indiana	Cocal	VS-New Jersey	Piry	Chandipura	Isfahan

with 25 to 220 fluorescent focus units of virus; CER cell monolayers; 16 to 18 hours apercent reduction in fluorescent foci; hyperimmume mouse ascitic fluids reacted 1:10 secondary incubation. ^bRabies, Mokola, Lagos bat, Duvenhage, kotonkan, Obodhiang, Hart Park, Flanders, Gray Lodge, Kwatta, BeAn 157575, Mossuril, Kamese, Timbo, Chaco, Marco, Sawgrass, New Minto, Barur, Joinjakaka, Kern Canyon, Klamath, Mount Elgon bat, Navarro, Oita 296, BeAr 185559, S-1643, Yata, Keuraliba, Parry Creek, Kimberley. Identification of viruses from Connecticut (A.J. Main, S. Brown, S. Buckley, S. Hildreth, and R. Wallis). During 1978 surveillance for arboviruses was carried out in Madison, Killingworth, and Clinton, Connecticut under auspices and support of the State of Connecticut. The collections of biting flies included mosquitoes, tabanids, blackflies and Culicoides (Table 12). In addition ticks and small mammals were trapped and processed for virus isolation attempts (Table 13). Twenty-three virus strains were isolated and identified (Table 14). Powassan virus was recovered from ticks and from a long-tailed weasel. Jamestown Canyon virus was isolated on 6 occasions from Aedes abserratus mosquitoes, WEE (subtype II) from Culiseta melanura, and Flanders virus 14 times from Culex and Culiseta. Identifications were carried out by CF test.

Isolate Ar 623-75 from Aedes aurifer and Ar 1274-76 from Chrysops obseletus appear to be identical by CF and neutralization test, and related to the California group. Hamsters were immunized by a single inoculation to these and to prototype California group viruses. The 21-day sera were tested by CF and neutralization test with the results shown in Tables 15 and 16.

These viruses cross-react with Keystone although the lack of sero-specificity of Ar 623-75 and Ar 1274-76 and the low titer of these homologous systems precludes a definite identification until new sera are prepared. Keystone virus has not previously been recognized in Connecticut and its presumed vector, Aedes atlanticus, is not believed to be prevalent in Connecticut.

Alphaviruses from Colorado (R.E. Shope). CF and HI studies with Bijou Bridge and Fort Morgan viruses were carried out with reagents supplied by Dr. N. Karabatsos of CDC, Fort Collins, Colo. The Bijou Bridge virus was previously shown at CDC to be a member of the WEE complex. Studies at YARU confirmed the CDC findings and indicated a close relationship of Bijou Bridge to Mucambo virus, and of Fort Morgan to WEE subtype II (Tables 17, 18, and 19). WEE subtype II (strain 72-666) used in these tests is representative of WEE strains found in the eastern U.S.A.

Table 12

Biting flies collected in Connecticut during 1978 for virus isolation attempts

Area:	Madison	Madison	Killingworth	Clinton	Madison	Other
Site:	Site II	Site III	Site IV	Stables	Control	*
Number of Collections:	196	9/	79	81	80	80
A. Females						
An. crucians		7				
punctipenni	89	83	19	73	10	1
	2			10		
An. walkeri	7	12		-		
Ae. abserratus	2587	24	135	275	118	6
Ae. aurifer	1	4	2	3	1	
Ae. canadensis	9345	584	1087	5101	414	7
Ae. cantator	186	67	27	1172	247	
Ae. cinereus	3216	166	111	334	106	2
Ae. excrucians group	1854	63	55	781	797	3
Ae. sollicitans		1		1	26	
Ae. sticticus				7		
Ae. thibaulti	19	6	15	7	7	
Ae. triseriatus	844	27	37	685	651	
Ae. trivittatus	17	80		9	7	
Ae. vexans	249	427	74	403	906	
Cx. pipiens	23	140	23	45	25	
Cx. restuans	153	784	105	103	111	3
Cx. salinarius	109	150	28	163	875	
Cx. territans	90	36	6	6	21	
Cs. inornata	1	6 3		1	7	
Cs. melanura Cs. morsitans	2456 170	395 55	366	183 28	5 T	176

Table 12 continued

Area:	Madison	Madison	Killingworth	Clinton	Madison	Other
Site:	Site II	Site III	Site IV	Aquarius Stables	Mosquito Control	*
A. Females, continued						
Cq. perturbans	369	147	55	420	12	8
Ps. ferox	1					
Ur. sapphirina	172	321	107	70	222	
TOTAL CULICIDAE	21879	3495	2264	0066	4023	430
Cnephia spp. Prosimulium spp. Simulium spp.	24 67 1024	13	1 74 31	4 353 34	2 - 1 %	
TOTAL SIMULIIDAE	1115	13	106	391	37	
Culicoides spp.	11					
TOTAL	77					
Symphoromyia spp.	89	9		80	9	
TOTAL RHAGIONIDAE	89	9		∞	9	

Table 12 continued

Area:	Madison	Madison	Killingworth	Clinton	Madison	Other
Site:	Site II	Site III	Site IV	Stables	Control	*
B. Males						
An. punctipennis	4	15	3	3	1	
Ae. abserratus Ae. canadensis	31	9	2	5 69	нб	
cantator	. . .			9	12	
Ae. cinereus	282	192	27	77	26	
excrucian		1		80	S	
Ae. thibaulti		-	21		н	
	117	1 4	19	37	20	
Ae. vexans	93	131	25	89	220	
Cx. pipiens	5	29	1	7	25	1
Cx. restuans	239	287	09	103	97	2
Cx. salinarius	11	34	7	39	124	
Cx. territans	797	88	25	22	62	
Cs. melanura	1665	348	120	99	22	13
Cs. morsitans	54	77	20	2	4	24
Cq. perturbans	45	13	9	1	1	4
Ur. sapphirina	06	201	43	42	603	
TOTAL CULICIDAE	6414	1395	364	525	1233	77

Table 12 continued

Area: Site:	Madison Site II	Madison Site III	Killingworth Site IV	Clinton Aquarius Stables	Madison Mosquito Control	Other *
Chrysops spp.			1			
Tabanus spp.	m		7			
TOTAL TABANIDAE	က		2			
C. Larvae						
Ae. abserratus	1025					
Ae. canadensis	147					
Ae. cinereus	55					
Ae. excrucians	342					
Cs. melanura	2					
Cs. morsitans	15					
TOTAL CULICIDAE	1586					

*Includes Farmington and Winsted Connecticut

Table 13

Results of virus isolation attempts in suckling mice of arthropods and vertebrates collected during 1978

		Number	Number Tested				R	Results	
Specially property	Larvae	Nymphs	Males	Adults	s Females	es	Negative Ind		Isolates te
A. Arthropods						3-9-1-1			
Dermacentor variabilis			18 ((2)*	17	(2)	4		
Ixodes cookei Ixodes dammini Ixodes uriae	23 (1) 4 (1)	268 (72) 6 (1) 4 (3)	27 (33	45 36 2	(26)	96 9 2 2		1
Anopheles punctipennis					1	(1)	1		
Aedes abserratus Aedes canadensis Aedes cinereus Aedes triseriatus	176 (18)		37 ((3)	3149	(2) (2) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3	135		9
Aedes excrucians Culex pipiens Culex restuans Culex salinarius			7 7	33	262 1259 1331		28 21 8	22 2 6 18	н 8
Culiseta melanura Culiseta morsitans			.13 (33	3564	(8)	80	4	9
Coquillettidia perturbans	σ.		2 ((1)	7	(3)	7		
Chrysops carbonarius					1	(1)	1		

Table 13 continued

			Num	Number tested	ted				Results	
	Larvae	e le	Nymphs	× ×	Adults	S. Fome 1 oc		Negative	01000	Isolates
				LIG	27.	remares		1	iicombrer	
A. Arthropods, continued										
Hybomitra lasiophthalma						1 (1)	•	-		
TOTAL TICKS TOTAL MOSQUITOES TOTAL HORSE/DEER FLIES	27 176 0	27 (2) 176 (18) 0	278 (76) - -	6) 46 79 0	(6)	100 (34) 12017 (338) 2 (2)	4)	117 290 2	52	21
TOTAL ARTHROPODS	203	(20)	203 (20) 278 (76)		125 (13)	12119 (374)	74)	604	52	22
B. Vertebrates	Brain	Heart	Lung	Liver	Spleen	Lung Liver Spleen Kidney	Blood	Negative In	.ve Is Incomplete	Isolates te
Peromyscus leucopus	7	7	7	7	7	7	25	67		
Clethrionomys gapperi Microtus pennsylvanicus Glaucomys volans	7	7	7	7	7	7	e н е	21 1		
Sorex cinereus Mustela frenata	-	-	г	٦	1	-	. 4	0		1
TOTAL MAMMALS	10	10	10	10	10	10	31	90		1

*Number of individuals tested (number of pools)

Table 14

Virus isolations from arthropods and vertebrates collected in Connecticut during 1978

		Canvon	Canyon	Canyon		Canyon	Canyon													'pe II)		
Virus	Powassan	Tamestorm	Jamestown	Jamestown	Jamestown	Jamestown	Jamestown Canyon	Flanders	Flanders	Flanders	Flanders	Flanders	Flanders	Flanders	Flanders	Flanders	Flanders	Flanders	Flanders	WEE (subtype	Flanders	Flanders
Re- isolated		+ +	+	+	+	+			+											+		
Site	7	11	II	II	II	11	II	II	II	11	II	III	III	III	III	III	III	III	III		IV	ΙΛ
Area	Old Lyme	Old Lyme	Madison	Madison	Madison	Madison	Madison	Madison	Madison	Madison	Madison	Madison	Madison	Madison	Madison	Madison	Madison	Madison	Madison	Madison	Killingworth	Killingworth
Date	10/7	10//	6/14-15	6/5-6	6/5-6	9-5/9	9/2-6	8/21-25	8/7-9	8/15-16	8/31-9/1	8/31-10/6	5/30-6/27	7/19-20	7/19-20	7/20-21	7/24-28	8/31-9/1	9/21-22	9/25-10/13	5/31-7/13	7/31-10/5
Age	(boold)	nymphs	adult	adult	adult	adult	adult	adult	adult	adult	adult	adult	adult	adult	adult	adult	adult	adult	adult	adult	adult	adult
No.	(b10	2 5	32	25	25	25	25	45	34	57	20	33	39	20	77	47	43	50	94	37	28	45
Species	Mustela frenata	Apdes absentatus	Aedes abserratus	Culiseta melanura	Culiseta melanura	Culiseta melanura	Culiseta melanura	Culex pipiens	Culex restuans	Culiseta melanura	Culiseta melanura	Culex restuans	Culex restuans									
Strain	M-1341-78	Ar-218-78	Ar-213-78	Ar-315-78	Ar-317-78	Ar-321-78	Ar-326-78	Ar-345-78	Ar-448-78	Ar-452-78	Ar-461-78	Ar-489-78	Ar-490-78	Ar-494-78	Ar-495-78	Ar-496-78	Ar-497-78	Ar-503-78	Ar-521-78	Ar-522-78	Ar-525-78	Ar-527-78

Table 15

CF reactions of Ar 623-75 and Ar 1274-76 viruses with reference California group viruses using single inoculation hamster sera

	INK	16	16	16	16			99	99	99	0	32	16	16	9
	TAH	16	00	16	79			16	α	32	0	16	00	128	16
	SDN	0	16	œ	00	œ	œ	œ	0	œ	0	0	∞I	0	0
	MEL	0	0	0	0	16	0	80	0	œ	0	16	0	0	0
	IVI	0	0	0	4	0	0	0	0	80	01	80	0	0	0
	KEY	99	99	16	99	32	0	32	0	99	0	32	16	0	∞
	SR	0	∞	0	16	16	0	79	32	16	0	16	32	80	99
	30	0	0	∞	16	80	0	79	80	16	0	∞	0	00	32
SERA	SSH	0	0	79	128	79	79	79	0	32	0	16	0	16	16
	LAC	16	16	32	32	128	32	32	16	99	•	32	0	32	32
	SA	0	0	99	▶256	16	0	16	0	0	0	0	0	00	0
	G	0	0	9	16	0	0	6 0	0	0	0	0	0	0	0
	1274	16	16	80	16	0	0	00	60	80	0	0	0	∞	8
	Ar														
	Ar 623	∞I	16	16	16	16	00	∞	16	16	0	16	0	80	16
	ANTIGENS Ar 623	Ar 623	Ar 1274	CE	SA	LAC	SSH	25	SR	KEY	TVT	MEL	SDN	ТАН	INK

Table 16

50% plaque reduction neutralization titers of Ar 623-75 and Ar 1274-76 viruses with reference California group sera

Table 17

Complement-fixation results of Bijou Bridge and other VEE complex viruses^a

		Antibody		
Antigen	Bijou Bridge	Mucambo	Pixuna	VEE
Bijou Bridge	256 ^b	32	<8	<16
Mucambo	256	32	<8	<16
Pixuna	128	16	64	64
VEE	64	<8	<8	128

^aBijou Bridge reagents were supplied by Dr. N. Karabatsos, CDC, Fort Collins, Colo.; Mucambo, Pixuna, and VEE ascitic fluids were from the Research Resources Branch, NIH.

^bReciprocal of serum titer with optimal antigen in grid titration.

Table 18

Hemagglutination-inhibition results of Bijou Bridge and other VEE complex viruses^a

		An	tibody		
Antigen	Bijou Bridge	Mucambo	Pixuna	VEE	Everglades
Bijou Bridge	2560 ^b	320	20	640	160
Mucambo	2560	640	20	640	160
Pixuna	640	160	<u>640</u>	5120	160
VEE	640	160	80	10240	320

^aBijou Bridge reagents were supplied by Dr. N. Karabatsos, CDC, Fort Collins, Colo.; Mucambo, Pixuna, VEE, and Everglades ascitic fluids were from the Research Resources Branch, NIH.

^bReciprocal of serum titer with 4 units of antigen.

Table 19

Complement-fixation results of Fort Morgan and other WEE complex viruses^a

			Antibody	UPP		
Antigen	Ft. Morgan	WEE subtype II	WEE subtype I	WEE HJ	Aura	Sindbis
Ft. Morgan	64	16	0	0	0	0
WEE, subtype II	128	64	16	-	ro <u>u</u> sti	-
WEE, subtype I	16	16	128	-	-	-
WEE, HJ	128			256	-	-
Aura	8			-	8	-
Sindbis	0	anton Europe	gagin " corre		-	16
Normal	0	0	0	0	0	0

a
Fort Morgan reagents were supplied by Dr. N. Karabatsos, CDC, Fort
Collins, Colo.; WEE HJ and Sindbis ascitic fluids were from the
Research Reference Branch, NIH.

Identification of viruses from field material from Ethiopia (O.L. Wood). The Naval Medical Research Unit #5 submitted for identification, viruses isolated from arthropods and animals as part of a broad ecologic study of disease in Ethiopia. Many of the hyperimmune mouse sera and antigens were prepared in Ethiopia prior to the termination there of laboratory activities in April, 1977.

After closure of NAMRU-5 materials remaining in the freezers were inventoried by Ethiopian government officials. Negotiations by the American embassy allowed selected portions of the material to be shipped to Yale in December 1977. All insect pools were recovered. At least a few infected mice or mouse brains from most virus isolates were recovered. Also recovered was the avian sera collection. However, no unprocessed bird or mammalian tissues were recovered due it was said to an intervening freezer failure. Likewise no human sera were recovered.

At this time all virus isolates from bird and animal tissues made initially in Ethiopia have been characterized in respect to virus group and most have been specifically identified.

Antigens of twenty-one strains reacted with the group B grouping fluid by CF:

Eth An 1334	Bird	Eth An 4771	Bird
Eth An 3307	Bird	Eth An 4772	Bird
Eth An 3662	Bird	Eth An 4773	Bird
Eth An 4152	Bird	Eth An 4808	Bird
Eth Ar 4698	Mosquitoes	Eth An 4809	Bird
Eth An 4733	Bird	Eth An 4810	Bird-
Eth An 4766	Bird	Eth An 4811	Bird
Eth An 4767	Bird	Eth An 4812	Bird
Eth An 4768	Bird	Eth An 4813	Bird
Eth An 4769	Bird	Eth An 4814	Bird
Eth An 4770			

Sera of seven of these viruses were further reacted by CF with 19 antigens of group B viruses including those known to be in Africa. In each case the highest titer was to West Nile antigen with lesser reaction to Usutu, Japanese encephalitis, Zika and Israel turkey meningoencephalitis viruses. Table 20 shows reciprocal CF test results of grid titration with West Nile antigen and antibody. In addition, Eth An 4733, Eth An 4767, Eth An 4768, Eth An 4808, Eth An 4810, Eth An 4812, Eth An 4713, Eth An 4814; and Eth Ar 4698 reacted by CF to titer with West Nile serum.

Specific West Nile antisera were available at YARU. The sera had been collected from guinea pigs one month after they had received a single injection of West Nile virus. Although antigen titers were low, the sera did not react with either Usutu or Japanese encephalitis at a dilution of >1:8. Eth An 4808, Eth An 4810, Eth An 4812,

Eth An 4813, Eth An 4814, and Eth An 4698 reacted with the West Nile guinea pig sera.

In plaque reduction neutralization tests with the Egypt 101 strain of West Nile virus, sera of Eth An 3307, Eth An 3662, Eth An 4152, Eth An 4811, Eth An 4766, and Eth An 4769 gave 50% or greater reduction at >1:512. In addition the titers of Eth An 4733, Eth An 4767, and Eth An 4768 were reduced 2 or more logs by a West Nile reference serum, thus confirming the identification of these strains of West Nile virus.

Two isolates, Eth Ar 3102 and Eth An 3530 gave good homologous reactions by complement fixation but the antigen did not react with reference antisera pools. Eth Ar 3554 has not yet produced usable antiserum in a mouse system after 3 attempts using both brain and liver preparations. Attempts to adapt the agents to Vero cell cultures were successful and specimens were taken at a point just prior to peak cell destruction for electron microscopy. All three viruses were seen and photographed thus narrowing the group sera needed for further testing.

Eth Ar 3102 from Amblyomma cohaerens ticks collected at the Iara mission near Dembi Dolo had the morphology of a flavivirus. Cells showed cytoplasmic membrane proliferation similar to that reported in flavivirus infections. However, antiserum to 3102 did not inhibit hemagglutination with the antigens Usutu, YF, MVE, and Dengue 2. Neither did 3102 antiserum react with the tick-borne flaviviruses Langat, Powassan, Kadam or Louping ill. The antigen of 3102 did not hemagglutinate so a homologous test was not possible, but the 3102 antiserum had a CF titer of >1:512. The agent is currently being serially passed in cell culture to raise the virus production to a level at which virus protein can be analysed on acrylamide gels to see if a typical flavivirus pattern emerges or if an atypical pattern requires the virus to be placed in pestivirus group.

Eth An 3530 came from bird tissue collected at Bulcha and shows bunyavirus morphology. Further serologic testing is not yet done.

Eth Ar 3554 came from <u>Rhipicephalus pulchellus</u> ticks collected at Kelam on the lower Omo River and shows the morphology of an orbivirus. Neutralization testing with the Kemerovo, Palyam, and NIH #8 polyvalent serum were negative. It is planned to incorporate P³² into the virus nucleic acid and compare it with other orbiviruses in acrylamide gel analysis.

Experiments involving mice were in effect suspended from the onset of an epizootic of a murine coronavirus (LIVIM) in December 1977 until the completion of renovation of the animal holding facility to conform to federal standards in late September 1978. Attempts to hold mice in other parts of the building ultimately failed because of LIVIM outbreaks. All mosquito and tick isolates at passage levels

initial through second passage which were recovered from Ethiopia as frozen baby mice were processed in this time period. Large numbers of mice dying of LIVIM make these results uncertain and it has seemed inadvisable to inoculate potentially LIVIM contaminated materials into mice in the new holding area. Therefore only those specimens which had remaining original mouse brain suspension or whole mice from Ethiopia were retested in the new holding area. Of 53 isolates retested 10 have been recovered and 7 of these have been carried through 2 or more passages. Ten specimens could not be retested because all material had been used in the initial passage attempt which was invalidated by the LIVIM outbreaks. An attempt to recover virus in BHK and Vero cells is planned since LIVIM is not known to grow in these systems.

At this writing, mouse based research is again suspended because LIVIM reappeared in the new holding area in late December. Depopulation and general decontamination are planned for mid-January with resumption of research to follow. Meanwhile work on the remaining Ethiopian field material consisting entirely of arthropod pools is suspended.

During much of the time NAMRU-5 was in Ethiopia, work on rabies virus was being carried out at the Ethiopian Central Laboratory. NAMRU supplied mice and occasionally other laboratory facilities but did not carry out any rabies studies of its own. Dr. Makonnen Fekadu was directing the Ethiopian program and in the course of viral isolation studies found three dogs which shed rabies viruses in the saliva over periods of more than a year without clinical signs. Mouse passages of these strains were lyophilized and stored at NAMRU. When freezer contents were shipped out in December, 1977 these virus strains were included. Dr. Makonnen was notified at his present position in Stockholm that the viruses were at YARU and CF testing confirmed that they were rabies and not rabies-related viruses. He was able to visit YARU in May, 1978 and establish that all three strains of the virus were viable using a rabies FA system in CER cells.

Table 20

CF reactions between West Nile and viruses from Ethiopian birds

	WN	1334	3307	3662	4152	4766	4769	4811
WN	2048*	256	512	512	256	512	64	64
1334	1024	128						
3307	1024		512					
3662	1024			256				
4152	1024				256			
4766	1024					256	*	
4769	1024						64	
4811	1024							32
Normal	0	0	0	0	0	0	0	0

^{*}Reciprocal of serum titer

II. Development of arbovirus techniques and virus models

Attachment of arboviruses to neural and non-neural cells in vitro*

(A.L. Smith and G.H. Tignor)

Enumeration of cellular receptors for two strains of Sindbis virus.

As described in the YARU 1977 Annual Report (pp.48-56), neural cells in culture are being exploited in an investigation of viral replicative factors responsible for neurovirulence. Cell surface receptor saturation studies have been performed with the intent of determining whether neuronal cells have more receptors for a neurovirulent virus strain than for a serologically indistinguishable avirulent strain of the same virus. Under standardized conditions of virus growth and attachment, neuroblastoma cells (clone N18) were found to have approximately 25 times more receptors for Sindbis strain SaAr 86 (adult mouse neurovirulent) than for Sindbis strain EgAr 339 (adult mouse avirulent) (Table 21). Bombyx mori cells, which were refractory to infection with SaAr 86, had 1×10^5 surface receptors for this strain, while the average number on five permissive cell types was 1.5×10^6 . This might indicate that attachment is one of the restrictive events in this cell type. Estimates for EgAr 339 (average of 2 x 10⁵ receptors per cell on 5 cell types) compare favorably with that of Birdwell and Strauss (1974) for the HR (heat-resistant mutant derived from EgAr 339) strain attached to chick embryo fibroblasts.

Attachment interference assays have also been performed using neural (rat glioma, clone C6) cells. Reciprocal attachment interference between SaAr 86 and eastern equine encephalitis virus (both alphaviruses) was observed (Figure 1). In contrast, attachment of SaAr 86 did not affect attachment of EgAr 339. Thus, there appears to be an interrelationship among binding sites for antigenically related neurotropic viruses, while binding sites for two strains of Sindbis virus differing in their pathogenicity for adult mice are distinct.

Enzymatic inactivation of cellular receptors for Sindbis virus.

Cleavage of receptors from cells which then remain viable indicates that the receptor is not vital to the constitutive functioning of the cell. The lack of inhibition of known cellular functions by inactivation of cellular receptors for viruses is an important consideration in exploring drugs with selective virus inhibitory activity at the cell surface. Enzyme doses which resulted in 100% viability compared to diluent-treated controls for N18, CER, C6 and A. albopictus cells are shown in Table 22 and represent the doses used in receptor inactivation studies (Table 23). Three aspects of these latter experiments are noteworthy: 1) substantial reduction of attachment occurred only after protease treatment, 2) EgAr 339 attachment was affected by enzymes which did not alter SaAr 86 attachment, and 3) none of the enzymes reduced attachment of either strain to *This project was supported in part by NIH grant AI12541.

A. albopictus cells, the only invertebrate cell line included in these experiments. The last point is of interest because the mosquito cells and CER cells were almost equally tolerant to enzyme treatment and may indicate that the virus receptors on mosquito cells are necessary for cell viability.

As mentioned in a previous YARU Annual Report (1977), regeneration of CER receptors for EgAr 339 is complete after 3 hr in nutritionally supplemented medium at both 37°C and 4°C. Experiments have now been performed to determine whether suppression of cellular synthesis, in turn, suppresses expression of receptors on protease-treated cells (Table 24). Doses of metabolic inhibitors which shut down host protein, RNA or DNA synthesis without affecting cell viability were used. It appears that no new cellular synthesis is required for the expression of new Sindbis virus receptors on the surface of CER cells. The most likely interpretation of this finding, which is in contrast to that with enteroviruses (Levitt and Crowell, 1967), is lateral migration of previously masked receptors or outward migration of internal receptors to positions which allow virus binding.

Determination of the degree of antigenic relatedness between two strains of Sindbis virus. Samples of the two Sindbis strains which had been used in attachment assays were periodically tested by hemagglutination-inhibition (HI), complement-fixation (CF) and serum-dilution neutralization tests to ensure that cross-contamination with other viruses used in the laboratory had not occurred. During the course of these tests, it became clear that the two strains could not be distinguished by standard serologic techniques. For this reason, kinetic HI tests (Casals, 1967) were performed. A typical result, which shows slight differences at 30 min, is given in Table 25.

REFERENCES

- Birdwell, C.R. and Strauss, J.H. (1974). Distribution of the receptor sites for Sindbis virus on the surface of chicken and BHK cells. Journal of Virology 14: 672-678.
- Casals, J. (1964). Antigenic variants of eastern equine encephalitis virus. Journal of Experimental Medicine 119: 547-565.
- Levitt, N.H. and Crowell, R.L. (1967). Comparative studies of the regeneration of HeLa cell receptors for poliovirus Tl and Coxsackievirus B3. Journal of Virology 1: 693-700.

Table 21

Infectivity Titers and Numbers of Receptors on Several Cell Types for Sindbis Virus Strains EgAr 339 (adult mouse avirulent) and SaAr 86 (adult mouse neurovirulent)(a)

SaAr 86 mean number of receptors per cell (and range) X 10-5(b)	(6-4) 9	13 (13-14)	39 (33–46)	8 (6-11)	11 (5-20)	1 (0.8–1.7)
EgAr 339 mean number of receptors per cell (and range) X 10-5(b)	5 (4-6) 5(c)	0.5 (0.4-0.8)	1 (0.8-1.7)	2 (1-3)	1 (1-1)	not done
Cell line	93	N18	2R	1929	A. albopictus	B. mori

(a) Numbers of receptors were calculated from Lineweaver-Burk transformations; means and ranges were derived from a minimum of two experiments; virus grown in CER cells; attachment was performed with Sorensen's phosphate buffer (pH 8.0, 0.15 M NaCl) for 3 hr at 4°C.

(b) Calculations are based on the mean number and range of saturating PFU and the mean particle to PFU ratios.

(c)Observed saturation value.

Figure 1b. Hyperbolic Plots for EEE Virus Attachment to C6
Cells after Cellular Pretreatment with Diluent
or SaAr 86 Strain of Sindbis Virus.

diluent
pre-treatment

SaAr86
pre-treatment

INPUT PARTICLES PER CELL x 10-6

Table 22

Enzyme Doses which Resulted in 100% of Control Viability for 4 Cell Lines

	CER	<u>C6</u>	<u>N18</u>	A. albopictus
Trypsin (a)	1000	10	10	10
Pronase (a)	1000	10	10	1000
Subtilisin (a)	1000	1	1	100
Proteinase K (a)	100	0.01	0.1	100
Neuraminidase (b)	. 5	500	5	5
Phospholipase A (b)	50	50	50	50
Phospholipase C (b)	5	5	5	5

⁽a) $\mu g/m1$

⁽b) units/ml

Table 23

Attachment (a) of Two Sindbis Virus Strains to Four Cell Lines After Enzyme Treatment of Cells (b)

			EgAr 339				SaAr 86	
Enzyme	N18	ଥ	A. albopictus	CER	N18	8	A.albopictus	CER
trypsin	99	100	100	100	83	93	100	93
pronase	15	1	100	0	52	29	100	57
subtilisin	06	100	100	42	76	100	100	72
proteinase K	93	100	100	11	100	100	74	67
phospholipase C	N.D.	66	100	09	100	N.D.	100	59
phospholipase A	84	96	96	96	92	97	86	95
neuraminidase	N.D.	100	100	54	100	N.D.	100	80

(a) expressed as % of control; values shown are means of 2 or 3 experiments; variation among experiments was found to be approximately 50%; therefore, only values <50% are considered to be significant reduction of attachment.

(b) enzyme doses are those shown in Table 22.

N.D. = not done

Table 24

Effect of Protein, DNA and RNA Synthesis Inhibitors on Regeneration of EgAr 339 (Sindbis) Virus Receptors on Pronase-treated CER Cells(a)

	Rege	eneration '	Time in Hou	irs
	<u>o</u>	<u>1</u>	2	<u>3</u>
No Inhibitor	0 <u>+</u> 4	66 <u>+</u> 5	82 <u>+</u> 9	100 <u>+</u> 4
Puromycin (10µg/m1) (b)	9 <u>+</u> 5	75 <u>+</u> 8	94 <u>+</u> 6	100 <u>+</u> 6
Cytosine arabinoside (b) (50µg/ml)	13 <u>+</u> 6	70 <u>+</u> 6	82 <u>+</u> 5	99 <u>+</u> 3
Actinomycin D ^(b) (10µg/ml)	18 <u>+</u> 10	80 <u>+</u> 9	97 <u>+</u> 4	100 <u>+</u> 5

⁽a) Expressed as % of labelled virus attached to untreated cells (1 x 10^{10} particles attached to 10^7 cells); mean values and standard deviations from 3 independent determinations; virus grown in CER cells.

⁽b) The cells were treated with metabolic inhibitors for 18 hr prior to the experiment and during enzyme treatment and regeneration periods.

Table 25

Comparison of Sindbis Virus Strains EgAr 339 and SaAr 86 by HI Test Using Simultaneous Dilutions of Serum and Antigen and Rate of Reaction

Serum Antigen, Reaction Time in Hours, Units Inhibited

dilution 1:	0.5 EgAr 339(a)	hr SaAr 86(a)	2,0 EgAr339	hr SaAr86	18.0 EgAr339	<u>hr</u> SaAr86
100	64	64	64	64	128	128
200					64	64
400	16				16	16
800	8	8	16	8	16	8
100	64	128	64	128	64	128
200	16					64
400	8	32				32
800	8	8	8	16	8	16
	1: 100 200 400 800 100 200 400	100 64 200 32 400 16 800 8	100 64 64 200 32 32 400 16 16 800 8 8	100 64 64 64 200 32 32 32 400 16 16 16 800 8 8 16	100 64 64 64 64 64 200 32 32 32 32 400 16 16 16 16 16 800 8 8 16 8 100 64 128 64 128 200 16 64 32 64 400 8 32 16 32	1: EgAr 339 ^(a) SaAr 86 ^(a) EgAr 339 SaAr 86 EgAr 339 100 64 64 64 64 128 200 32 32 32 32 64 400 16 16 16 16 16 16 800 8 8 16 100 64 128 64 128 64 200 16 64 32 64 32 400 8 32 16 32 16

⁽a) antigens were clarified, PEG - concentrated infected culture fluid from CER cells; red blood cell mixture at pH 6.2 .

Early diagnosis by early detection of virus (J. Casals). This laboratory has an active program of studies to develop techniques and methods for early diagnosis of diseases caused by arboviruses and arenaviruses. The approach is two-directional: early detection of virus (or antigen) and early detection of antibody.

The fastest diagnosis of an arbovirus or arenavirus infection would be accomplished by observing the virus directly in clinical specimens, blood, tissues, excretions or secretions. If this is not successful, the diagnosis can be accelerated by inoculation of suspect material into laboratory host systems, preferably cell cultures, followed by daily examination of the inoculated cells for presence of virus.

Exploratory experiments have been carried out in which known infectious virus stock suspensions have been inoculated to cell cultures, in attempts to determine the correlation between amount of virus inoculated and time of appearance of a positive immunofluorescence (IF) reaction. The IF method was chosen at the out-set owing to its sensitivity, simplicity and rapidity of execution; given the necessary reagents, the indirect IF can be completed in 2 to 3 hours. The application of the radioimmunoassay (RIA) to this problem is discussed in another section.

Junin virus. Vero cell monolayers under fluid medium in Lab-Tek 4-chambered slides were inoculated with increasing ten-fold dilutions of a virus stock suspension, the $ICLD_{50}$ of which in newborn mice was $10^{6.5}/0.02$ ml. At daily intervals after inoculation, slides were processed for indirect IF testing with a Junin virus mouse antiserum at dilution 1:8. The result of the experiment is shown in Table 26. Twenty-four hours after inoculation of as little as 1.2×10^2 ICLD₅₀ of virus (dilution 10^{-5}) a weak but definite positive reaction was observed; at 3 days, a positive reaction was discernible even after inoculation of 1 ICLD₅₀. In contrast, CPE was not noticeable until the 4th day and then at a minimal degree. The procedure allowed identification of a small amount of virus 3 or 4 days before CPE was visible.

Dengue type 2 virus. An experiment similar to that described in the preceeding paragraph was done with dengue type 2 virus, NGB strain, in LLC-MK2 cells. Lab-Tek slides were inoculated with increasing ten-fold dilutions of a mouse brain tissue stock having an ICLD50 of $10^{7.0}$ in newborn mice. Slides for IF were processed on days 1, 2, 3, 4 and 7; the results are shown in Table 27. A weak positive IF reaction was seen on day 2 with the slides inoculated with dilutions 10^{-2} and 10^{-3} ; the reaction was fully developed on day 3, with a 4 plus intensity in dilutions 10^{-2} , 10^{-3} and 10^{-4} , weaker with dilution 10^{-5} . There was no positive IF reaction at dilution 10^{-6} or higher. CPE was not present during the first 4 days, was complete or nearly so on the 7th day,

but only in dilutions 10^{-2} , 10^{-3} and 10^{-4} . In this experiment the IF procedure allowed a definite positive diagnosis on day 3 after inoculation, 4 days before CPE was observed.

Banzi virus. Intraperitoneal inoculation of Banzi virus into adult mice results in disease with an incubation period of 7-8 days, followed by death 1 or 2 days later. The titer of the virus by this route of inoculation is of the order of 10⁸ SMICLD50 and the titration is regularly smooth; inoculation of dilution 10-7 usually results in 100% mortality. This disease model is being used as a means to determine whether virus can be detected directly in the blood of the host by IF test and, eventually, by RIA.

Mice 60 days old have been IP inoculated with 150 newborn mouse ICLD50 of virus; beginning 24 hours after inoculation and daily afterwards pooled blood samples from 2 exsanguinated mice were titrated for virulence, and thick smears made; the slides and the hemolyzed bloods were stored at -60C, for later study. The part of this experiment so far completed is the determination of the viremia curve. To this end dilutions were made of the hemolyzed, whole blood which were IP inoculated to adult mice; the result of the titrations is given in Table 28.

No virus was demonstrated on the first day after inoculation; beginning with the 2nd day until the 5th, viremia with a titer between 10^{2.9} and 10^{3.5}/ml was observed, during which period the mice appeared normal. The virus titer dropped sharply on the 6th day; on day 7, when 2 of 6 mice were questionably sick, and on day 8 when the left over mice were moribund, no virus was detected. Investigations are continuing to determine whether Banzi virus at these concentrations can be detected directly in the blood, either by IF or RIA.

Rapid diagnosis of virus in mosquito pools by IF. (I. Mattos, S.M. Buckley, and J. Casals). Twenty-five pools of wild-caught mosquitoes captured in southern California were sent to YARU for experimental studies in invertebrate cells, by Drs. T. Work and M. Jozan Work. Isolations had been done in California by inoculation to newborn mice and identification by HI or CF tests on first or second mouse passage; the information given was that 24 of the pools had yielded SLE virus and the 25th pool, WEE virus.

Tests were done at YARU to isolate and identify viruses in the pools employing inoculation of Aedes albopictus cell cultures in chamber-slides (Lab-Tek). The slides were tested by IF with SLE and WEE immune mouse sera on the 4th day after inoculation. Pools negative at that time were tested again and stained on the 6th or 8th day after inoculation. In addition, 21 pools that had been positive in California, and at YARU by IF, were plaqued on Vero cells.

Table 26

Relationship between amount of Junin virus inoculated and time of appearance of a positive IF reaction in Vero cell monolayers

Inoculu	m, 0.1 ml				Da	ys a	fter	inoculation					
Dilution of	Newborn mouse		1		2		3		4		5		7
stock	1CLD ₅₀	1F	CPE	IF	CPE	IF	CPE	IF	CPE	IF	CPE	1F	CPE
10-2	1.2×10^{5}	1	0	1	0	2	±	4	3	4	3		
10 ⁻³	1.2×10^4	1	0	1	0	2	±	4	1	4	1		
10-4	1.2×10^3	1	0	1	0	1	±	4	1	4	1		
10 ⁻⁵	1.2×10^2	1	0:	1	0	1	0	4	1	4	1	4	2-3
10-6	1.2×10^{1}	t	0	±	0	1	0	4	1	4	1	4	2-3
10 ⁻⁷	1.2	0	0	0	0	1	0	3	0	4	±	4	2-3

IF: in a scale of 4, maximum, to 0, none.

CPE: in a scale of 4, complete destruction of monolayer, to 0, none.

Table 27

Relationship between amount of dengue type 2 virus inoculated and time of appearance of a positive IF reaction in LLC-MK2 cell monolayers

	, 0.1 ml	SA 7E	u-isi		Days a	after	inoci	ulati	on		
Dilution of	Newborn mouse		1		2		3		4		7
stock	ICLD ₅₀	IF	CPE	IF	CPE	IF	CPE	IF	CPE	IF	CPE
10-2	5 x 10 ⁵	?	0	1	0	4	0	4	0		4
10 ⁻³	5 x 10 ⁴	0	0	1	0	4	0	4	0		4
10 ⁻⁴	5×10^3	0	0	0	0	4	0	4	0		3
10 ⁻⁵	5×10^2	0	0	0	0	1	0	1	0		0
10 ⁻⁶	5 x 10 ¹	0	0	0	0	0	0	0	0	0	0
10 ⁻⁷	5	0	0	0	0	0	0	0	0	0	0
10-8	0.5	0	0	0	0	0	0	0	0	0	0

Footnote, see Table 26.

Table 28

Banzi virus: viremia determinations in mice IP inoculated with 150 ICLD₅₀ of virus, bled on successive days after inoculation

Bled,	Loons .	Re					
day after		Diluti	on of b	lood in	oculate	d	Titer
inoculation	10-1	10-2	10-3	10-4	10-5	10-6	LD ₅₀ /m1
1	0*	0					10 ^{0.5} or less
2		6	5	1	0	0,	103.5
3		6	2	1	0	0	10 ^{2.9}
4		6	3	1	0	0	10 ^{3.1} 10 ^{2.9}
5		5	3	0	0	0 /	10 ^{2.9}
6	2	0	0				100.9
7	0	0					10 ^{0.5} or less
8	0	0					10 ^{0.5} or less

^{*}Mice dead of 6 inoculated

The following results were obtained:

	Reported by California laboratory	IF result,
Positive SLE	24/25	19/25
Positive WEE	1/25	1/25
Positive SLE + WEE	0/25	2/25
Negative	0/25	3/25

By Vero cell plaquing 16 pools gave plaques of 21 tested which had been positive by mouse inoculation and IF in \underline{A} . albopictus cells; the other 5 gave no plaques.

Of the 22 positive results by IF in \underline{A} . albopictus cells, 15 were positive and identified in 4 days; an additional 6 in 6 days, and one in 8 days.

Rapid and early detection of arbovirus antigen and antibody by RIA and by ELISA. (J. Converse).

Antiserum production to serum proteins, virus and virus antigens. Antiserum to human gamma-globulin and mouse gamma-globulin has been prepared in four rabbits, i.e., two antihuman-IgG and two antimouse-IgG. Using pooled sera of either human and/or mouse the concentrated effluents of selected portions of major protein peaks from Sephadex G-200 gel chromatography (Figure 2), and the serum gamma-globulins prepared by precipitation with saturated ammonium sulfate, were further purified by preparative zone electrophoresis on Pevikon C-870 (Figure 3). All eluent fractions were identified and characterized by immunoelectrophoresis (IEP) and Ouchterlony immunodiffusion gel analysis (IDA) using specific reference antisera.

Animals were inoculated in the four foot pads, the initial inoculation of purified immunoglobulin (Ig) mixed with complete Freunds adjuvant (CFA), followed by bi-weekly injections of purified Ig in incomplete Freunds adjuvant (IFA) for 3-4 months, until appropriate antiserum reactivity was obtained. At that time, animals were bled-out, the serum portion was collected and analyzed by IEP and IDA for specificity using normal whole serum and (NH4) $_2$ SO4 precipitated gamma-globulin from either mouse or human serum (Figure 4 through 7). Over 155 ml specific antimouse -IgG and 200 ml antihuman-IgG serum was prepared. Antisera were stored at -20°C. Prior to being used in serological tests, i.e., [125 I]-iodination for radioimmunoassay (RIA) and/or alkaline phosphatase conjugation for enzyme-linked immunosorbent assay (ELISA), rabbit antimouse IgG and antihuman IgG serum was precipitated with (NH4) $_2$ SO4 according to the methods described by Heide and Schwick (1978).

Antibodies to selected arboviruses by either single inoculation of live virus, or multiple injections of sucrose-acetone treated virus antigen, into either rabbits or infant and adult mice were prepared following standard procedures described by Hammon and Sather (1969). In some studies, serial bleedings were taken at daily intervals, the serum separated and stored frozen at -20°C or -70°C until tested.

Preparation of arbovirus antigens. Purified virus antigens were prepared in duplicate batches for the following eight representative arboviruses which are included in three major arbovirus serological groups. Bunyamwera group-Germiston virus, EthAn 4872; group A arbovirus - chikungunya, o'nyong nyong; group B arbovirus - Japanese encephalitis, Banzi, Kunjin, Murray Valley encephalitis, West Nile. All the virus antigens were prepared by growing the virus in Vero cell culture, in either roller bottles (Corning 850 cm², #25140) or 150 cm2 plastic flasks (Corning, #25120), with serum free media. When cytopathic effect (CPE) was + 2 or greater, the fluid was harvested, centrifuged at 10,000 rpm for 30 minutes to remove cellular debris followed by filtering through 0.45 micron filter. Next the virus suspension was precipitated with 2.3% NaCl and 10% polyethylene glycol 6000 added directly to the fluid. After overnight incubation at 4°C the suspension was recentrifuged at 10,000 rpm for 1 hour. The resulting pellet was resuspended in sodium chloride-ethylenediamine tetraacetic acid-tris (hydroxymethyl) amino-methane buffer, (TRIS), pH 7.5, for 1-2 hours at 4°C. The eluted suspension was then further purified by layering it upon a discontinuous sucrose gradient, i.e., 5%, 25%, 60% (w/v) sucrose in STE buffer, and centrifuged at 95,500 x g for 2 hours at 4°C. The virus band, approximately 0.5 - 1.0 ml in volume, distinct but diffuse, was recovered using a J-needle and syringe. All virus antigen suspensions were stored frozen at -20°C.

Sixteen separate virus antigen preparations have been completed with the average recovery of 8.0 ml per run representing an approximate 100 - 200 fold concentration of virus antigen. In RIA and ELISA testing the antigen suspensions were diluted in carbonate-bicarbonate buffer, pH 9.8, usually two-fold dilutions beginning at 1:50 through 1:400. Unused portions were refrozen at -20°C for later use.

Radioiodination of proteins. The radioiodination of rabbit antimouse-IgG gamma-globulin and protein-A from Staphylococcus aureus was handled in a similar manner using a modification of the chloramine-T method as described by Greenwood, et al. (1963). Separation of iodinated proteins from unreacted Na[\$^{125}I\$] was carried out using gel filtration (Sephadex G-25) and eluting with 0.15 M PBS, pH 7.2 containing 0.02% sodium azide and 10% normal rabbit serum. In the case of the protein-A no rabbit serum was added because of the strong affinity of protein-A for the Fc region of most classes of immunoglobulins in mammals (Kronvall, et al., 1970).

The ammonium sulfate purified rabbit antimouse-IgG gamma-globulin (or protein-A) was labeled at a concentration of 1 mCi/mg of protein. Precipitation with 20% trichloracetic acid indicated that over 93% of the radioactivity in the pooled protein peak fractions was bound to the purified gamma-globulin, or protein-A. Assuming 100% recovery of labeled protein, the specific radio-activity was approximately 0.08-0.5 μ Ci/ μ g rabbit gamma-globulin and 0.06-0.1 μ Ci/ μ g protein-A. To protect against loss of [1251] labeled protein in storage, normal rabbit serum was added as a carrier protein (but excluded for protein-A). Dilutions of [1251]-rabbit antimouse-IgG were made in 10% normal rabbit serum and 0.15 M PBS, pH 7.2, [1251]-protein-A in PBS only. Procein determinations after removal of free [1251] were not done.

On the basis of preliminary experiments, the labeled proteins were diluted accordingly to contain approximately $2.0-6.0 \times 10^4$ counts per minute (cpm) in a volume of 50 μl for use in the indirect RIA procedures.

Both iodinated proteins were examined by 10 - 40% sucrose-density gradient (SDG) ultracentrifugation for possible aggregation of protein during labeling procedures and storage. A 4.0 ml linear 10-40% sucrose gradient made up in 0.15 M PBS, pH 7.2, and 0.02% sodium azide was used. Labeled protein was layered onto the top of the gradient and centrifuged at 100,000 x g for 18 hour in a model L-2 Beckman Ultracentrifuge using the SW 39 rotor. Fractions of the gradient were obtained by puncturing the bottom of the gradient and collecting of effluent with the aid of a positive pressure-controlling syringe. Estimates of the sedimentation coefficients of serum proteins were obtained by the method of McEven (1967).

Following centrifugation of $[^{125}I]$ -rabbit antimouse-IgG gamma-globulin and $[^{125}I]$ -protein-A, approximately 87-93% and 96% of the applied radio-activity, respectively, was recovered in a peak sedimenting between fractions #14 and #23, coinciding with a sedimentation coefficient of approximately 7S. Also, sample fractions tested from the reference marker protein tube (immune mouse serum) formed precipitin lines with specific goat antimouse-IgG and-IgM antiserum in IDA. Again, the 7S mouse IgG marker protein and the iodinated proteins were located in similar fractions (Figure 8).

Radioimmunoassay testing (RIA). Binding efficiency of [\$^{125}I\$] rabbit antimouse-IgG gamma-globulin. The binding activity of the [\$^{125}I\$]-iodinated protein was determined by the reaction of the labeled protein with either purified mouse-IgG and/or human-IgG in polystyrene tubes (Lancer) or in hemagglutination plates (Linbro MRC-96) as the carrier surface. Purified gamma-globulin at a stock concentration of 1 mg/ml was diluted in serial two-fold dilutions through 1:40,960 with either PBS-Tween or carbonate-bicarbonate buffer, pH 9.8. Initial volume of 50 µl antigen per tube or well was used. These were incubated overnight or for 48 hour at 4°C followed by washing with PBS-Tween. In one test no wash followed incubation and the antigen was allowed to air dry in the tubes and wells. Incubation of the radio-labeled protein with the

antigen was for 2-3 hour at 37°C. The plates and tubes were washed three times with PBS-Tween to separate bound and free radioactivity (decanting the free counts while bound remained adsorbed). The wells of the microtiter plates were cut out and/or tubes were then placed in 16 x 125 mm polystrene gamma counting tubes (Kimble #59100) and the radioactivity was determined directly in a Nuclear-Chicago Gamma Counting System Model #1085 with Biospan T.M. Automatic analyzer scaler model #8725.

Preliminary results of four separate studies, using two separate iodinated antibody and two separate iodinated protein-A preparations, with either/or mouse-IgG and human-IgG antigens (dilution concentration 20 μ g/ml through 0.004 μ g/ml), have been negative or equivocal for binding of the radioiodinated protein. Binding efficiency was calculated as equal to the counts per minute (cpm) bound radioactivity in any of the first five dilutions divided by the cpm in 50 μ l of the labeled protein. Suitable preparations must bind >10%, however values of <10% were found in all test runs to date.

Indirect solid-phase radioimmunoassay. For the indirect solid-phase radioimmunoassay concentrated purified virus antigen suspensions were diluted 1:50, 1:100, 1:200 and 1:400 with carbonate-bicarbonate buffer, pH 9.8. Two-hundred μl portions of each dilution of virus antigen were added to either the wells of flexible microtiter hemagglutation plates or disposable polystrene tubes, and then held at 4°C for 24-48 hours. The wells and tubes were washed twice with PBS-Tween (200 μl) followed by the addition of 200 μl of anti-virus mouse immune ascites fluid (MIAF) in two-fold dilutions made up previously in 0.1 M PBS, pH 7.2. The microtiter plates and tubes were covered and placed at 37°C for 2-3 hours and afterwards washed twice with PBS-Tween. Fifty-microliter of the second reactent, either [1251] protein-A or [1251] rabbit antimouse-IgG was then added to each well or tube, followed by a further incubation at 37°C for 1-2 hours. Determination of the bound racioactivity remaining was the same as described above.

The initial RIA studies using Germiston sucrose-acetone mouse brain antigen (IMB-SA) and gradient purified antigen; Yellow Fever virus (IMB-SA) and purified antigen (provided by C. Frazier); and purified antigen of chikungunya, o'nyong nyong, Banzi, Japanese B encephalitis, Murray Valley encephalitis and West Nile viruses, at dilutions of 1:50 through 1:400, showed extremely low binding activity, i.e., <10%, using either radiolabeled protein preparation. No differentiation could be made between the virus MIAF dilutions and similar normal mouse serum control dilutions.

The above experiments and those relating to the binding efficiency of the labeled proteins with purified IgG antigens were conducted concurrently, therefore, the finding of very low binding activity in both sets of experiments is not surprising, low binding ratios were noted for all experiments. Disappointing, however, is that no differentiation could be made in either the virus-MIAF dilutions, and the apparent non-

specific reaction with normal mouse serum dilutions. Repeat experiments are of course planned, and additional attention to parameters such as the influence of pH, buffer diluent, plastic vessel used, and incubation times on antigen binding to carrier surfaces will be followed in order to optimize conditions for attachment of the antigen and radiolabeled proteins in these tests.

Surface analysis by [\$^{125}I\$]-labeled protein-A binding to virus-infected cell cultures. A microassay for antibody binding to virus infected Vero and Aedes pseudoscutellaris (MOS-61) cell cultures using [\$^{125}I\$] labeled protein-A from Staphylococcus aureus was as follows (below). Virus antigen(s) were demonstrated in the cell culture by measuring the binding of MIAF antibodies to infected cells. The [\$^{125}I\$] protein-A assay was compared with [\$^{125}I\$] rabbit antimouse-IgG assay for measurement of virus antigen(s) present in two cell culture lines.

Cells were tested as monolayers in flat-bottom wells (Costar 24-well Cluster Dish #3524). Monolayers were prepared by adding cells to each well and incubating them at 27°C (A. pseudoscutellaris) or 37°C (Vero) in humid incubator with 5% CO₂ in air. When cells had formed a confluent monolayer, the cells were inoculated with virus and incubated until CPE was +2 or greater. Cell viability, demonstrated by trypan blue exclusion was at least 95%, on the average 2.85×10^5 Vero cells/well and 2.43×10^5 MOS-61 cells/well.

At the beginning of the assay all wells were washed twice with PBS, the cell culture fluid and washes removed from the cells by vacuum aspiration, and 200 µl of immune ascites fluid, 1:25 dilution, or control normal mouse serum, 1:25 dilution, and PBS control was tested in triplicate. An uninoculated plate of the respective cell cultures was treated identically. After incubation for 1-2 hours at 37°C the immune fluid and controls were removed, the cells washed twice with PBS. In the case of MOS-61 the cell monolayers were first fixed for 10 minutes with 1% gluteraldehyde and washed twice with PBS. Next 100 or 200 μ l of either [125 I] protein-A or [125 I] rabbit antimouse-IgG was added, incubation for 2 hours at 37°C followed by two washings with PBS. The cell sheets were then scraped and dissolved into 1.0 ml sodium hydroxide (2M) and the contents of each well transferred to polystyrene tubes for [125I] radioactive determination. Appropriate uninoculated control cell cultures were handled in a similar manner.

In the [125 I] protein-A assay it was shown that very little [125 I] protein-A (2 to 5 times background) bound to cells which had been incubated with normal serum or PBS control alone. Subtracting the amount of [125 I] protein-A bound to cells in these controls from that bound after incubation with MIAF corrects for the small amount of [125 I] protein-A bound directly to the cells, the remaining [125 I] protein-A being that bound to IgG on the cells. Binding ratios of 1.0 or less were found for all controls. Binding ratios equal the

cpm obtained in triplicate tests (averaged) obtained with immune ascites fluid in tests against virus antigen by that obtained against normal serum, or PBS control. A binding ratio of 2 or greater was considered indicative of the presence of antibody bound to cells.

In the preliminary experiments, [125 I] protein-A ($^{\approx}4500$ cpm/ 200 µl) with Japanese B encephalitis virus infected Vero and MOS-61 cells, the [125 I] protein-A assay was negative with no significant bound [125 I] protein-A. Subsequent titration (in Vero cell culture) of the contents of several individual wells from both infected cell lines indicated TCID50/ml of < $^{102.0}$ for Japanese B encephalitis virus, therefore, indicating the possibility of very low amounts of virus antigen below the detection level of this particular test. Also, these cell monolayers had not been fixed with 1% glutaraldehyde and most of the cell sheet had been removed by the washing procedure.

The [125 I] protein-A assay for West Nile virus in West Nile infected Vero and MOS-61 cell culture was more promising. Binding ratios showed significantly more bound [125 I] protein-A, i.e., 4 to 10 times more, in both cell lines used. Control wells showed binding ratios of 1.0 or less. West Nile virus titrations of Vero and MOS-61 cells showed TCID₅₀/ml >10^{7.0}/well. Immunological specificity using reciprocal cross titrations still remain to be done.

Comparison of [125 I] protein-A assay with [125 I] rabbit antimouse-IgG assay (80-90,000 cpm/200 µl), using identical procedures, showed the [125 I] protein-A assay with higher binding than the [125 I] rabbit antimouse-IgG, a binding ratio of 1.0 or less was found with MIAF for both Japanese B encephalitis and West Nile virus, in both cell cultures used. In fact, the binding ratios did not differ from those for the normal mouse serum and PBS controls. Again, the labeled antiserum was once used in the previous section regarding binding capacity studies for mouse-IgG, which was later shown to be inadequate for these studies. The above experiments are being repeated, and are presently in progress with new iodinated preparations.

Enzyme-linked immunoassay testing (ELISA): Alkaline phosphatase enzyme was conjugated to rabbit antimouse-IgG gamma globulin by use of glutaraldehyde according to the method of Avrameas, as described by Engvall and Perlmann (1971), and Voller, et al., (1976). Following extensive dialysis in 0.05M tris (hydroxymethyl) aminomethane (TRIS) buffer, pH 7.8, the enzyme conjugated antiserum (ENZ-rabbit antimouse-IgG) was diluted to 5.0 ml with TRIS buffer and stored in the dark at 4°C.

ELISA: Binding capacity of alkaline phosphatase immune serum conjugate. In the assessment of the working strength of the conjugate (mouse-IgG binding capacity) Cooke polystyrene disposable MICROELISA substrate plates (Dynatech Laboratories) were used as the carrier surface. Purified mouse gamma-globulin (IgG) was diluted to $100~\mu g/ml$ and 100~ng/ml working stock solutions in carbonate-bicarbonate buffer, pH 9.8. Two-

hundred microliter volume was added to respective plate wells and incubated overnight at 4°C in a humid chamber. Contents of the plates were aspirated, and washed twice with PBS-Tween. Dilutions of the stock conjugate were made in PBS-Tween, i.e., 1:50, 1:100, 1:200, 1:400, 1:800, and 1:1600. Two-hundred microliter of each dilution were added in duplicate or quadruplicate IgG coated wells, as well as in uncoated wells. Plates were incubated for 2 or 3 hours at room temperature (RT) in a humid chamber. The washing procedure was repeated. Appropriate control wells in all plates were handled identically. Next 200 µl of p-nitrophenyl phosphate substrate solution, made up fresh in 10% diethanolamine buffer, pH 9.8, was added to each well. The color development was observed for 30-60 minutes and then held for 18 hour at RT before the reaction in all wells was stopped by the addition of 3M NaOH ($50 \mu l$). The hydrolysis of p-nitrophenyl phosphate by alkaline phosphatase produces p-nitrophenol and inorganic phosphate. At alkaline pH this reaction mixture is converted to a yellow complex readily measured at 410 nm. In these tests all plates were read visually; the highest dilution of the mouse-IgG antigen and dilution of conjugated serum in the last well showing detectable color was determined as the end point.

Utilizing 10 µg of purified mouse-IgG antigen/well, reaction with ENZ-rabbit antimouse-IgG could be read to a dilution of 1:400, however, for working solutions 1:50 and 1:100 dilutions were used routinely. Normal rabbit serum, undiluted or at varying dilutions, in antigen coated and uncoated wells, did not show reaction, therefore, no cross-reactions within this double antibody system were observed. Reactions in all uncoated and control wells remained celar.

Immune conjugate at dilutions of 1:50 and 1:100 could detect purified mouse-IgG antigen through 1:320 dilution in a two-fold dilution series from a stock solution containing 100 μ g/ml. This represents detection of approximately 32 ng of mouse-IgG/well, or 160 ng/ml, i.e., assuming all the antigen attached to the wells, in actuality it was probably much less. A dilution of 1:200 conjugate showed reaction through an antigen dilution of 1:160 in the same test. Conjugate dilutions of 1:400 to 1:1600 showed no reaction in any test.

ELISA technique (mouse system) in assay for Bunyaviruses. The sensitivity of ELISA for detecting Bunyaviruses: was investigated using the procedures above and dilutions of purified preparations of the virus Germiston. Using ENZ-rabbit antimouse-IgG at a dilution of 1:50, Germiston virus was readily detected at all antigen concentrations, i.e., 1:50, 1:100, 1:200 dilutions with MIAF dilution to 16,384 and 1:400 with MIAF dilution to 1024. Normal rabbit serum, normal mouse serum and non-antigen well controls remained clear throughout the test, and no nonspecific activity reaction was noted.

ELISA technique (mouse system) in assay for Group B arboviruses. Preliminary ELISA tests have been run for detecting Group B arboviruses, following the above procedures and using purified preparations of the

following viruses; West Nile, Banzi, Murray Valley encephalitis, and Kunjin virus. Appropriate serum and non-antigen well controls were incorporated into each plate in test.

With the exception of Murray Valley encephalitis virus, where no enzyme-substrate reaction occurred, all other antigens showed reaction with the 1:50 dilution of ENZ-rabbit antimouse-IgG, at antigen dilutions 1:50 and 1:100. Normal rabbit serum control and non-antigen wells remained clear in all tests, however, serial dilutions of normal mouse serum showed some non-specific reaction, i.e., equal color development, with West Nile and Banzi virus antigen dilutions, but not with Kunjin virus antigen. Kunjin virus at 1:50 and 1:100 dilution could be detected with MIAF dilutions through 1:1024 and 1:16, respectively, without difficulty. Further tests for the sensitivity and immunospecificity of the ELISA test for arboviruses is still in progress with the objective of application in rapid diagnosis and early detection of these viruses.

References

- Hammon, W. McD., and G. Sather, 1969. <u>Diagnostic Procedures for</u> Viral and Rickettsial Infections. Page 227. American Public Health Association, New York.
- 2. Heide, K., and H. G. Schwick, 1978. <u>Handbook of Experimental</u>

 Immunology, <u>Volume I.</u> Page 7.1. Blackwell Scientific Publications,

 Oxford.
- Greenwood, F. C., W. M. Hunter, and J. S. Glover, 1963. Biochem. J. 89: 114-123.
- Kronvall, G., U. S. Seal, J. Finstad, and R. C. Williams, 1970.
 J. Immunol. 104: 140-147.
- 5. McEwen, C. R., 1967. Analyt. Biochem. 20: 114-149.
- 6. Engvall, E., and P. Perlmann, 1971. Immunochemistry 8: 871-874.
- 7. Voller, A., D. Bidwell, and A. Bartlett, 1976. Manual of Clinical Immunology. ASM Publications, Washington, D. C.

FIGURE 2. -- Distribution of mouse serum proteins after gel chromatography of 7.0 ml normal mouse serum through Sephadex G-200 column with 1 M NaCl-Tris buffer, pH 8.0. Individual fractions were concentrated to equal volumes by negative pressure dialysis prior to immunodiffusion analysis with reference sera. Presence of an immunoglobulin in a fraction is indicated by a plus sign. Subsequent fraction pools are represented by A through E.

volumes by negative pressure dialysis prior to analysis for the specific immunogloblin classes, with reference serum. Presence of an immunoglobulin in a fraction is indicated distribution of normal mouse serum proteins on Pevikon C-870 block electrophoresis. Origin designated by arrow (ψ). Individual fractions were concentrated to equal FIGURE 3. -- Purification of normal mouse serum proteins. Composite diagram showing the by a plus sign.

PEVIKON BLOCK FRACTION

78yG

IBM

Slide #1

Well: Normal mouse serum
Trough: Goat antimouse serum (whole)

Slide #2

Wells: Mouse serum fractions
Trough: Goat antimouse serum (whole)

FIGURE 4. -- Immunoelectrophoretic pattern of normal mouse serum (slide #1, top well) before Sephadex G-200 gel chromatography.

Slide #2, same mouse serum after Sephadex G-200 gel chromatography, pooled and concentrated fractions C through E (see FIGURE 2). Both slides #1 and #2 developed with goat antimouse serum, whole (BIONETICS Laboratory Products). Cathode is on the left, anode is on the right.

Slide #3

Well: Normal mouse serum
Trough: Rabbit antimouse IgG serum
Well: (NH₄)₂SO₄ ppt. mouse
γ-globulin

FIGURE 5. -- Immunoelectrophoretic pattern of normal mouse serum (top well) and (NH₄)₂SO₄ precipitated mouse gamma globulin (bottom well). Slide developed with rabbit antimouse IgG serum prepared with purified Pevikon block electrophoresis fractions of mouse IgG (see FIGURE 3). Cathode is on the left, anode is on the right.

Slide #1

Outer Troughs: not used
Wells: Normal human serum
Inner Trough: Goat antihuman serum
(whole)

Wells: (NH₄)₂SO₄ ppt. human-Trough: Goat antihuman Serum (whole)

FIGURE 6. -- Immunoelectrophoretic pattern of normal human serum (slide #1, both upper and lower wells) before (NH₄)₂SO₄ precipitation. Outer troughs not used.

Slide #2, immunoelectrophoretic pattern of $(NH_4)_2SO_4$ precipitated human gamma globulin after fractionation on DEAE-Sephacel column. Both slides #1 and #2 developed with goat antihuman serum, whole (BIONETICS Laboratory Products). Cathode is on the left, anode is on the right.

Slide #3

Well: Normal human serum
Trough: Rabbit antihuman IgG serum
Well: (NH₄)₂SO₄ ppt. humanγ-globulin

FIGURE 7. -- Immunoelectrophoretic pattern of normal human serum (top well) and (NH₄)₂SO₄ precipitated human gamma globulin (bottom well). Slide developed with rabbit antihuman IgG serum prepared with DEAE-Sephacel purified fractions. Cathode is on the left, anode is on the right.

FIGURE 8. -- Sucrose density gradient analysis of [125]-labeled rabbit antimouse IgG gamma-globulin. Gradient fractions were analyzed for [125] radioactivity (cpm/fraction) and also a second reference marker protein gradient tube was analyzed using specific goat antimouse IgG and antimouse IgM serum. Presence of an immunoglobulin in a fraction is indicated by a plus sign.

Aedes pseudoscutellaris cell line for primary isolation of dengue virus (S.M. Buckley, M. Berwick, E.J. Vier, B. Kobilka, I. Mattos, and B.J. Beaty). The Aedes pseudoscutellaris cell line of Varma and Pudney was tested for its sensitivity to dengue 2 virus. The cell line was received from the CAREC (PAHO) Center in Trinidad where it had proved useful in field isolation of dengue 1 strains. At Yale it was adapted to Mitsuhashi and Maramorosch medium with 20% fetal bovine serum, 100 u penicillin, and 100 microgm streptomycin. After virus inoculation, the cell line was easily maintained on 2% fetal bovine serum or on serum-free medium.

The Puerto Rico dengue 2 strain (Casals and Buckley, Dengue Newsletter for the Americas, PAHO, 2: 6-7, 1973) was inoculated as infected A. albopictus stock. Specific dengue-2 fluorescence was detected on day 3 and cytopathic effect on day 4. The titer was >4.5 log TCID50.

Using immunofluorescence as the indicator of infection, a test for comparative sensitivity with the Santo Domingo strain of Aedes aegypti and with the Aedes albopictus cell line of Singh was carried out. Four dengue-2 strains which had been passed only in mosquitoes were inoculated. The titers in log ID50/ml after 8 days were:

			A.pseudoscutellaris
	mosquitoes	cells	cells
Rosen hemorrhagic			
fever strain	7.8	6.0	6.5
Rosen classical			
dengue strain	7.5	6.5	6.5
Malaysian hemorrhagic			
fever strain	7.1	6.5	6.5
Malaysian classical			
dengue strain	7.8	6.5	6.5

The mosquitoes were inoculated intrathoracically. The titers in Aedes pseudoscutellaris cell culture were slightly less than the mosquito; the titers in Aedes albopictus cell culture were again slightly less than the Aedes pseudoscutellaris cell culture. In all cases the Aedes pseudoscutellaris cell culture developed easily recognizable cytopathic effect.

The Aedes pseudoscutellaris cell line is simple to maintain under field conditions. The line was transported to Ibadan, Nigeria and to Kuala Lumpur, Malaysia where students of the Yale School of Medicine used it to attempt primary isolation from human blood, under supervision of Dr. Akínyele Fabíyí and Dr. Wil Neill respectively. The isolates are not yet identified; the technique, however appears practical and represents a significant advance for the field laboratory.

The Enzyme linked immunosorbent assay. (O.L. Wood, C.L. Frazier, and A. Smith).

The adaptation of the Enzyme Linked Immunosorbent Assay (ELISA) for work with arboviruses was undertaken with the intent of developing a test that could be easily performed under field conditions. Therefore, whenever possible the use of electronic equipment was avoided. For example, all tests were read by eye instead of with a spectrophotometer.

Initial experiments with ELISA were performed under conditions established in Dr. C. Patton's laboratory at Yale for work with malarial parasites. Although the test when performed with arboviruses is done in the same manner (see below), preliminary results indicated that a number of parameters needed to be altered to make the test applicable.

Random, nonspecific background was noted with several types of polysterene plates when they were tested using several antigen preparations. Plates especially treated for use in ELISA are available from Cooke Engineering Company and proved to be satisfactory for all viruses tested.

Sucrose acetone extracted infected baby mouse brain was used as the first coating antigen and reactions were observed with both immune and nonimmune human sera. Since these nonspecific reactions occurred with several antigen preparations, it was suspected that the sera were reacting with the mouse brain. Tests with normal mouse brain confirmed this. Sera were extracted with acetone, and with acetone and ether with no detectable decrease in nonspecificity. When sera were absorbed with normal mouse brain a slight loss of nonspecific reaction was noted. Post coating of the plates with bovine albumin, fetal calf serum and normal rabbit serum resulted in no appreciable change. Use of an IgG-specific conjugate yielded the same results as the use of a conjugate prepared against human immunoglobulins.

Since serum treatment and post coating had proven futile, a series of experiments were undertaken to determine if antigen prepared from tissue culture might be a better coating antigen. Several methods of preparation in CER cells were tested using Sindbis as a model system. Initially the background reactivity of the negative sera was so high that it was impossible to read the test by eye. As the antigen was purified further, the background reactions diminished. A technique for antigen purification was finally developed that resulted in tests where the eye could be used to distinguish positive from negative sera. Once the antigen was prepared, it was titrated with a reference positive and negative serum to determine the dilution that gave the best resolution between the two sera. This dilution has not changed despite repeated freeze-thaw cycle. Neither lyophilization nor storage at -70° for up to 4 months affected the titer. Treatment of the final antigen with 0.3% BPL to inactivate infectivity did not detectably alter its properties in ELISA.

The Protocol for antigen preparation was as follows:

- 1. Grow virus in appropriate cell system in serum free medium.
- Harvest fluid at early CPE and centrifuge at 11,000XG for 30 minutes.
- 3. Filter supernate through a .045 micron filter.
- Precipitate virions using polyethylene glycol (PEG) 6000 (10 gm PEG and 2.3 gm of NaCl per 100 ml of supernate).
- 5. Hold mixture overnight at 4°C to allow precipitation to occur and then pellet precipitate at 11,000 XG for 1 hour.
- Resuspend the pellet in STE buffer (NaCl 5.84 gm/l EDTA 0.37/gm/l and Tris HCl 1.21 gm/l pH 7.2).
- 7. Rate zonal ultracentrifugation to yield a virus band; 10 ml of resuspended pellet layered on a discontinuous sucrose STE buffer gradient consisting of 1.0 ml of a 5% W/V sucrose solution over 2 ml of a 25% W/V sucrose solution over a bottom 3 ml cushion of 60% W/V sucrose.
- 8. The visible band in the 60% sucrose region is harvested and stored at -70°C for use as antigen.

The test was performed as follows:

- Dilute antigen in coating buffer (Na₂CO₃, 1.59 gm/l, NaHCO₃, 2.93 gm/l, pH 9.6) and add .21 ml to each well of an ELISA plate. Allow to stand overnight at 4°C.
- Wash plates 3 times with pH 7.2 phospate buffered saline-Tween (PBST) (0.5 ml/l of tween 20).
- 3. Dilute sera in PBST and add .21 ml to the appropriate wells.
- 4. Incubate at room temperature for 2 hr, then wash plates 3 times with PBST.
- 5. Dilute conjugate in PBST and add .21 ml to each well. Allow to react for 2 hours at room temperature.
- 6. Wash plates three times with PBST.
- 7. Dilute substrate in appropriate buffer and add .21 ml to all wells.
- 8. Allow color to develop until reference positive serum is the desired color and then add .05 ml of 3M NaOH to stop the reaction.
- 9. In these tests when an alkaline phosphatase conjugate was used the substrate was Sigma 104 (p-nitrophenyl phosphate) 1 mg/ml in a diethanolamine (97 ml/l, pH 9.8) buffer. NaN3, 0.02%, was added to all solutions as an antimicrobial agent.

A Sindbis antigen was used to test 24 human sera from the Senegal collection at YARU. The test was done with coded sera and read by two individuals. The data presented in Table 29 show that there was 100% correlation with the HI test as far as presence or absence of antibody was concerned, but ELISA was generally more sensitive.

A Venezuelan equine encephalomyelitis (VEE) (TC80 strain) coating was prepared using the same protocol. When it was tested with pre and post vaccination sera (Table 30), there was good correlation between vaccination status and ELISA titer, and among HI, ELISA and neutralization results. One vaccine failure, MG, was detected with all three tests. The positive prevaccination reactions of RS (4/9/62) could be

caused by a cross reaction with Mayaro antibodies. TA had received an EEE vaccine prior to 1971 and this could account for the low titered reaction in both of his sera in the ELISA. The initial post vaccine sera for EG and KC were negative in both HI and neutralization tests. These sera were not available for testing by ELISA, but subsequent sera from both individuals did show the presence of antibodies. There is an inexplicable lack of diagnostic rise in the pre and post sera of RK although a slight rise is noted. Results of neutralization tests done on a prior post sera show that antibodies were present.

A coating antigen was also prepared for Germiston in CER cells. Since known positive specific Germiston human sera were not available, human sera from Liberia that were HI positive to a Bunyamwera antigen were used. Bunyamwera and Germiston cross react with both HI and CF tests. All sera were tested by HI against both a Bunyamwera and Germiston antigen and in the ELISA; the results are presented in Table 31. Nine of the fifteen sera were either positive or negative in all three tests while four were positive in ELISA only and one in the HI test only. One sera that was positive in HI with both antigens was negative in ELISA. It is not certain whether the positive reactions observed were homologous or caused by heterologous cross reactions. Further testing of the antigen with Germiston specific rabbit sera and of the human sera with a Bunyamwera antigen is planned.

An experiment was done to determine the amount of coating virus that attached to the plate as a function of time and virus concentration. Sindbis virus was labeled with H3 uridine and thus only the amount of intact virus that had attached was recorded. Although surface antigen not associated with RNA might attach to the plate and not be measured, it was thought that other labeling methods might lead to the inclusion of labeled cell products in the attachment data. The results are depicted in Figure 9 . All points above the solid line give a positive ELISA with a reference sera. As can be seen the amount of attachment increases appreciably with time in the 1:100 to 1:400 antigen dilution range. This is the range that most coating antigens are used at in ELISA. If concentrated antigen is used to coat the plates, short coating periods are acceptable, but if high dilutions of antigen are used the overnight incubation period is preferable. It should be noted that plates coated with high concentration of antigen for short periods of time do give a higher reading with negative sera and thus this makes the test less reliable. When the intensity of the ELISA reaction was correlated with the number of counts, PFU, and particles attached for two separate Sindbis preparations it was observed that there was a direct correlation between the amount of material attached to the plates and the intensity of the reaction (Table 32) . The amount attached for two preparations was virtually equal but did represent different dilutions of the starting material.

It was decided to extend the ELISA technique to another arbovirus group, the Bunyaviridae and to ascertain whether the technique was as sensitive and specific as the HAI and neutralization test. Hyperimmune sera had been prepared previously in rabbits against some virus of the Bunyamwera group: Bunyamwera, Batai, Cache Valley, Guaroa, Germiston,

Ilesha, Sororoca, and Wyeomyia. A rabbit antiserum was prepared against another closely related African virus, Birao. Normal rabbit serum and an antiserum against a group C virus, Oriboca, served as controls. Antigens were prepared in Vero cell cultures in the manner described above for Sindbis virus for all antisera. Antigens were titrated at 1:50, 1:100, 1:200 and 1:400 against four 2-fold dilutions of homologous antiserum and against normal rabbit serum with starting dilutions of 1:10. On the same plate, one antigen dilution was arbitrarily chosen to coat four rows of 12 wells. Usually antigen was used at 1:100. Each row of these wells received much greater dilutions of antiserum starting at 1:20 and proceeding by 2-fold steps to greater than 1:40,000. Sera tested included homologous, antiserum to a virus closely related, antiserum to a virus distantly related by HAI, and normal rabbit serum. The antigens were specific in that color did not develop in wells containing normal rabbit serum. Also the antisera were very high titered. In the case of Batai, Ilesha, and Bunyamwera antisera the final titers were 1:10,240. Results of cross-comparison of the Bunyamwera group viruses are shown in Table 33; this test corresponds in specificity to the HI and N tests.

Preliminary experiments have been performed with the sandwich technique of antigen detection. When untreated sera were used to coat the plates all the wells showed a positive reaction. When (NH₄)₂SO₄ precipitated mouse ascitic fluid globulin was used as a coat, only wells that contained coat, the human serum used to detect the antigen, and the conjugate showed a positive reaction. Although part of the nonspecific background has been removed, further work must be done before the technique is usable.

Comparison of anti-Sindbis ELISA and HI titers in Senegalese human sera

Table 29

Sera	ELISA	HI
16	0 ^a	0
40		0
47	0	0
47	0	0
51	10	10
120	0	0
141	0	0
184	0	0
385	160	20
398	80	40
417	0	0
547	0	0
563	0	0
576	0	0
585	160	40
664	80	40
701	80	20
775	40	40
866	40 .	40
913	0	0
488	0	ő
958	0	0
750	O	O .
997.	80	>80
JKb	0	0
385 ^c	160	20

a reciprocal of titer; 0 = <10

b New Haven human serum

cinternal repeat

Table 30 Anti-VEE ELISA titers following VEE Vaccination

		Vaccination			
Vaccinee	Date	Status	ELISA	HI	NT
JH		pre	0 ^a	0	0
0		post	>80	640	+
		Pool			
AS	10/11/73	pre	0		
	06/20/75	post	160		
RK	07/05/73	pre	10		
	08/13/73	post			+
	01/16/74	post	20		
	10/10/70		•		
WB	10/18/73	pre	0		
	05/30/74	post	40		+
MG	01/21/69	pre	0	0	
110	11/02/72	post	Ö	0	_
	11,02,72	pose			
EG	12/10/71	pre	0		-
	02/15/72	post	0	0	-
	03/14/72	post		0	
	11/27/72	post	40		
	02/25/74	post	20		
GK	10/20/72	pre	0		<u> </u>
O.C	11/27/72	post	>320		+
	11, 1.,	Poot			
KC	09/30/68	pre	0	0	
	03/21/72	post		0	
	06/26/72	post	20		
			ь		
TA	03/08/71	pre	10 ^b		
	03/14/72	post		0	-
	01/22/73	post	10		
RS	04/09/62	pre	80 ^c		
	12/15/67	post	80	20	-
	01/22/73	post	40		
	06/06/75	post	80		
JF	1079		0		
CR	1978 1978	pre	0		
AM	1978	pre	80		
AM		post	80		
	1978	post	- 00		

a reciprocal of serum titer; 0 = <10. breceived EEE vaccine prior to 1971. cinfected with Mayaro virus in 1959.

Table 31

Anti-Germiston ELISA titers of Liberian human survey sera

Sera	ELISA Germiston	HI Germiston	HI Bunyamwera
6	20 ^a	10	. 0
. 8	o ^b	0	· 0
15	0	0	0
23	0	0	80
24	0	0 .	160
35	0	0	0
38	40	0	80
49	0	0	0
54	40	10	20
66	0	0	0
88	10	0	20
106	40	10	20
111	20	10	10
139	0	10	80
156	40	10	320

areciprocal of serum titer.

^b0 = <10

Figure 9

Counts attached as a function of time and dilution

reciprocal of Sindbis antigen dilution Sindbis antigen on ELISA plates >80 counts attached x 10^2

incubation period in hours

Table 32

ELISA result as a function of Sindbis virus counts, PFU, and particles attached

		Color in	ntensity		
	4	3	2	1	
counts	3400	1500	1050	550	
	2100	980	580	400	
PFU's	58.8×10^4	27.4×10^4	16.2×10^4	11.2 x 10 ⁴	
	55.0 x 10 ⁴	24.0 x 10 ⁴	16.8 x 10 ⁴	8.8×10^4	
particles	37.4×10^6	16.5 x 10 ⁶	11.6 x 10 ⁶	6.1 x 10 ⁶	
	25.2×10^6	11.8×10^6	7.0×10^6	4.8×10^6	

Table 33

ELISA results comparing Bunyamwera group viruses using whole virion antigens

Control	NORMAL	10	0	0	0	0	0	0	10
Control	ORI	07	10	07	10	20	07	10	8
	GRO	320	10	07	160	320	80	320	10
(suo	8	320	320	07	320	079	1280	0	10
Rabbit sera (3 injections)	ILE	1280	2560	320	2560	10,240	320	10	0
bbit sera	BAT	1280	1280	10	10,240	079	80	0	0
Ra	BIR	320	320	1280	049	1280	160	>320	0
	GER	07	2560	07	160	320	10	0	0
	BUN	10,240	1280	320	5120	5120	049	10	10
	Antigens	BUN	GER	BIR	BAT	ILE	CV	GRO	ORI

Strain characterization of geographically different Kemerovo group viruses by analyses of their RNA segments (D.L. Knudson, A.J. Main, S.M. Buckley, J. Casals, and R.E. Shope).

The orbiviruses contain double stranded RNA in 10 segments which can be labeled with ³²P and analyzed by polyacrylamide gel electrophoresis. We have studied 16 strains of Orbiviruses in the Kemerovo serogroup to demonstrate the usefulness of the analysis of the RNA segments for epidemiological studies.

The orbiviruses form a genus of arthropod-borne viruses in the family Reoviridae. There are at least 80 orbiviruses in 10 serogroups and 7 ungrouped serotypes. The genus contains the following groups: Colorado tick fever, bluetongue, African horsesickness, Changuinola, Kemerovo, and several others of human and veterinary disease importance. The Kemerovo group viruses were chosen for this study because 16 closely related strains were available from a variety of hosts and from different geographic regions of Asia, Europe, and Africa, including one strain isolated in 1961 by J.R. Schmidt of NAMRU-3, from a migrating Redstart, Phoenicurus phoenicurus, which was suspected on ecologic grounds of transporting Kemerovo virus from the Kemerovo region in Siberia. It was in Siberia that the prototype strain was isolated the following year from Ixodes persulcatus ticks and from man.

In addition the strains had been studied by neutralization and complement-fixation tests extensively by Libikova, Buckley, and Casals and formed two serologic subtypes, Kemerovo and Tribec. The Tribec subtype however, derived from 3 different geographic foci in Czechoslovakia and might be expected to have evolved into different variants genetically.

Thus the RNA segment analysis might tell whether the Kemerovo virus from the migrating bird was the same as the viruses from Siberia; whether the Siberian viruses which came from 2 neighboring villages were identical or different; whether the human isolate differed from the tick isolates in Siberia; and whether the Slovakian Tribec and Lipovnik isolates from the 3 different geographic areas were genetically different.

The strains were passed once in BHK-21 cells from mouse brain stock, then labeled on second passage with $^{32}\mathrm{P}$ and harvested at 48 hours. The infected cells were sedimented, separated from the medium, extracted with a non-ionic detergent, and the RNA was precipitated overnight with 2 volumes ethanol. The precipitates were dissolved in buffer and layered on 10% polyacrylamide slab gels. The 16 strains were processed simultaneously. The gels were dried, and the autoradiographic RNA patterns were analyzed.

Because of the properties of the 10% gel, purification of the RNA is not required, nor is high titered virus needed. These inocula had titers ranging between $10^{-2.3}$ and $10^{-5.5}$ TCID₅₀/ml.

Figure 10 shows the origin of the 16 strains. There were 6 strains from 2 villages in the Kemerovo region of Siberia. One of these was isolated from man, the others from ticks. Nine strains originated in Slovakia, all from Ixodes ricinus ticks. One of these, Tribec, came from the Tribec mountains in Southwest Slovakia; another 4 strains came from Lipovnik in eastern Slovakia; and 4 strains of virus came from Koliba near Bratislava in western Slovakia. Figure 11 shows graphically the estimated summer nesting range of the European Redstart, from Siberia to Western Europe, and the winter sub-Saharan range. These ranges are based on sightings and on recaptures of banded birds. The arrow shows a hypothetical migratory route of the Redstart from which Kemerovo virus was isolated.

The complement-fixation test distinguished, but barely distinquished, the Kemerovo isolates from the Slovakian isolates, however it did not distinguish among isolates from Slovakia or among isolates from Siberia (Table 34). The Egyptian isolate appeared to be serologically the same as the Siberian serotype.

The neutralization test (Table 35), like the CF, showed uniformity among the Siberian isolates which differed from the Slovakian isolates. Some Slovakian sera were more broadly cross-reactive than others, indicating a possible genetic diversity. In one study, there appeared to be a slight difference between Tribec and Lipovnik prototype strain by neutralization test. Again the bird isolate was not distinguished from the Siberian viruses by neutralization test.

The polyacrylamide gel RNA segment patterns are shown in Figure 12. All viruses had 10 segments, indicating that none were mixtures of orbiviruses. There was remarkable uniformity of the Siberian isolates. The L-75 strain from man was the same as the tick isolates. One tick isolate, KM-3, differed in 2 segments from the others. The Redstart virus RNA was nearly identical also, providing strong evidence that the origin of the bird isolate was the same as those from Siberia.

None of the Slovakian isolates were identical (although they all had 10 segments with the general pattern of orbiviruses). Each of the 3 Slovakian foci had distinctive patterns and there was even diversity among isolates from the same focus, possibly explaining why some of the sera were more broadly cross-reactive by neutralization tests than others.

It is not possible without further study to determine which segment codes for the protein or proteins responsible for the CF

Figure 10

Origins of 16 strains of Kemerovo virus in USSR, Czechoslovakia and Egypt.

Figure 11

Summer nesting range (stippled) and winter range (sub-Saharan) of the European Redstart (<u>Phoenicurus phoenicurus</u>). Arrow shows possible migratory route of the Redstart from which Kemerovo virus was isolated. and neutralization reactions, however, the RNA segment analysis should facilitate such a determination in future genetic recombination experiments. In addition the technique allows accurate rapid identification of orbiviruses without need to produce an immune serum and can be applied to determination of markers for vaccines, and subtle genetic changes which may occur in persistently infected animals or when orbiviruses change in virulence or host range during epidemics, or by passage from host to vector.

Table 34
Complement-fixation relationships of Kemerovo and Tribec viruses^a

Antigen	Kemerovo L-75	Sera Kemerovo KM-3	Tribec prototype
Kemerovo L-75	256 ^b	32	128
Kemerovo KM-3	256	32	128
Tribec prototype	32	16	256

Libikova and Casals, Acta virol. 15: 65-78, 1971.

Table 35
Neutralization relationships of Kemerovo and Tribec viruses^a

		Sera	
Virus	Kemerovo L-75	Kemerovo KM-3	Tribec KOL-152
Kemerovo L-75	>512 ^b	>512	16
Kemerovo KM-3	>512	>512	128
Tribec KOL-152	<16	<8	256

Libikova and Buckley, Acta virol. 15: 79-86, 1971.

b reciprocal of CF antibody titer with optimal antigen dilution.

b50% plaque reduction titer.

Figure 12

RNA segment analyses of Kemerovo strain orbiviruses

RNA segment analyses of Kemerovo serogroup orbiviruses (D.L. . Knudson, A.J. Main, and R.E. Shope)

Analyses of the RNA segment profiles of the sixteen Kemerovo o strains provided the impetus to examine the dsRNA profiles of two enty three other members of the Kemerovo serogroup. The majority of these serogroup viruses were isolated from the tick, <u>Ixodes uriae</u>, about 40° north latitude. One isolate, Nugget, was isolated from <u>I. useriae</u> taken from Macquarie Island (Lat. 54°30'S, Long. 159°E) in the Solution Pacific.

The mouse brain virus stocks were passaged once in the BHK-21 cell line, and they were prepared for dsRNA analyses as described d for the Kemerovo strains (see above). The data describing the isolatete, strain number, suckling mouse brain passage history, area of isolatete, and autoradiogram of the slab gels are presented in Figures 13 and described.

These data suggest that the majority of the isolates exhibitat distinct RNA profiles of ten segments which is consistent with their classification as orbiviruses. There are instances where segmen its appear to co-run, and as a result, some isolates seem to have leass than 10 segments. This point, however, will be clarified when t' he autoradiograms are analyzed by scanning densitometry. The RNA p roff of strains isolated from a specific geographic region were often 1 indistinguishable. In a few instances, variation in a single segment between two strains was also seen. For example, the two isolates as Yaquina Head were essentially identical except for their third somegment from the bottom of the gel (Figur: 13). Nugget virus was the onlyly isolate examined that appeared to possess more than ten segments... This virus is clearly a candidate for additional studies, such as:s virus cloning experiments. In general, viruses which originated ! from specific areaswere similar, but extensive variability in the dsRNA profiles was observed for isolates from different regions.

RNA segment analyses of American and Australian Bluetongue serotypes (D.L. Knudson and R.E. Shope - This work was completed at the U.S.D.A., Plum Island Animal Disease Center in collaboration with Drs. C. Campbell and W.K. Butterfield)

In 1977, YARU identified an unknown virus from Australia as ; indistinguishable by complement-fixation tests from bluetongue t :ype 10, the bluetongue virus vaccine strain. The new virus, known as as bluetongue type 20, was isolated in 1974 from a pool of mixed Culicoides species from the Northern Territory of Australia. Ty pe 20 also exhibited a low level cross-reaction by CF with the epizootic hemorrhagic disease of deer (EHD) virus. This account represents the first isolation of bluetongue virus from Australia, and as a result, these findings provided the rationale for the analyses of the dsRNA segment profiles of bluetongue viruses and 1 other related viruses.

Figure 13

RNA segment analyses of Kemerovo serogroup orbiviruses

Virus 1. Great Island 2. Great Island 3. Bauline 4. Bauline 5. Bauline 6. Cape Wrath 7. Tindholmur 8. Mykines 9. Mykines 10. 11. 12. 13. Yaquina Head 14. Yaquina Head	Strain CanAr 41 CanAr 176 CanAr 14 CanAr 128 CanAr 133 ScotAr 20 DenAr 3 DenAr 12 DenAr 8 Fin V808 Fin V873 Fin V962 USA 15 USA 62	SMB Passage 4 2 3 1 1 3 2 1 3 4 7 8	Area North Atlantic (Canada) North Atlantic (Scotland) North Atlantic (Faeroe Islands) North Atlantic (Faeroe Islands) North Atlantic (Faeroe Islands) North Atlantic (Faeroe Islands) North Atlantic (Norway) North Atlantic (Norway) North Atlantic (Norway) North Atlantic (Norway) North Pacific (Oregon) North Pacific (Oregon)
	6 7	8 9	

Figure 14

RNA segment analyses of Kemerovo serogroup orbiviruses

								•						
	Virus			Stra	in	SMB	Passa	ge		Area				
2. 3. 4. 5. 6. 7. 8. 9. 10.	Great Isl Baku Huacho Mono Lake Chenuda Lipovnik Tribec Kemerovo Nugget Okhotskiy Poovoot Kenai			CanAr LEIV CalAr CalAr EgAr Lip 9 Origi R-10 AusMI LEIV :	46A 883 861 1152 1 na1 -1484 287ka		3 7 6 7 25 2 14 8 6 6 6 6		Sout Nort Nort Euro USSI Sout Nort	ch Am ch Af ch Af cpe cpe ch Pa ch Pa ch Pa	erica erica rica cific		iska)	
	1	2	3	4	5	6	7	8		9	10	11	12	
										THE PROPERTY OF THE PROPERTY O	一年 一			

The virus stocks were prepared for RNA analyses as described previously with the exception that the MVPK (porcine kidney) cell line was used instead of the BHK-21 cell line. The data are presented in Figure 15, and the RNA profiles for four bluetongue serotypes found in the U.S.A. are compared with the profiles of type 20, EHD, and Ibaraki. The RNA profiles for bluetongue viruses 10, 11, 13, and 17 were similar with only minor variations in the mobility of a few RNA segments, and thus, each serotype exhibited a unique RNA profile. The two EHD strains were also distinguishable, but more similar to Ibaraki than to the bluetongue serotypes. In general, the RNA profile for type 20 was similar to the other bluetongue types, but it was not the typical bluetongue-like RNA pattern. Whether the type 20 virus represents a reassortant species from existing Australian orbiviruses remains to be demonstrated.

 $\label{eq:Figure 15}$ RNA segment analyses of American and Australian bluetongue serotypes

	Virus	Type or Strain	Passage history	Area
1.	Reovirus	3	L929 cell line	Grant - days.
2.	Bluetongue	20	MVPK cell line	Australia
3.	Bluetongue	20	SMB	Australia
4.	Bluetongue	17	sheep-MVPK	U.S.A.
5.	Bluetongue	10	sheep-MVPK	U.S.A.
6.	B1uetongue	13	sheep-VERO-BHK	U.S.A.
	Bluetongue	11	sheep	U.S.A.
8.	Ibaraki		VERO-BHK	Japan
9.	Epizootic hemorrhagic disease		VERO	Alberta
10.	Epizootic hemorrhagic			\ \
	disease		VERO	New Jersey

III. Seroepidemiological surveys.

Sera from Venezuela (G. Calderon and J. Casals). Sixty-nine sera collected in the State of Zulia were tested by HI test for antibodies against 18 different arbovirus antigens. Due to the small number of sera and to the fact that they represented 11 different animal species, this study can hardly be called a survey, it is rather an exploration; however, its results indicate that certain arboviruses—or related ones not included in the study—were present in the area.

The distribution of sera by species was: Didelphis, 27; hamster, sentinel, 14; man, 12; Tupinambis, 5. The remaining 11 sera were from 7 species, none of which contributed more than 3 samples. The sera, after treatment with kaolin and goose red cell adsorption, were tested against 4 or 8 units of the following antigens: VEE, EEE, WEE, Una, Aura, Mayaro, Aroa, dengue 2, yellow fever, Bussuquara, Ilheus, SLE, Powassan, Oriboca, Itaqui, Maguari, Guaroa and Bunyamwera. The result of the tests is given in Table 36. Only 19 of the 69 sera had antibodies for any of the antigens employed; 6 sera were specific for VEE, with titers up to 1:80, and 15 had antibodies against group B viruses (flavivirus). A specific diagnosis of the group B positives (considering the antigens used) is possible in only a few cases, perhaps no. 15 for SLE and no. 60 for yellow fever; 5 sera, nos. 3, 33, 50, 64 and 66, gave a reaction associated with superinfection, although with moderate titers only. The remaining sera had titers of 1:10 only, mainly for SLE and/or Ilheus; although these low titer reactions were technically satisfactory, they are difficult to interpret.

In view of the fact that with the sera positive for group B, the titers were highest with Ilheus and SLE, and that a few sera reacted with either Ilheus or SLE at dilution 1:10, one can make the assumption that one of these 2 viruses (of those included in the study) were responsible for the antibodies; and considering that, in general, the SLE antigen is apt to be more sensitive than Ilheus, one can tentatively conclude that Ilheus virus was active in the area. Reactions with Guaroa and Maguari, were minimal.

Sera from Senegal (J. Pilaski, W.G. Downs, and J. Casals). The survey initiated last year has been continued through 1978. Sera were tested against 8 units of the following antigens: chikungunya, Sindbis, Banzi, dengue 2, MVE, West Nile, yellow fever, Zika and Bunyamwera. MVE was included as a sensitive antigen for group B antibodies, not in anticipation of finding activity by the virus in Africa. As it turned out, this antigen did not uncover positive sera in addition to those found positive against the other flavivirus antigens included in

Table 36
Hemagglutination-inhibition test sera from Venezuela (Zulia State)

	Serum						Antigen				
No.	Anima1	VEE	Aroa	D2	YF	Bussu	Ilheus	SLE	POW	Guaroa	Maguari
		10	00			20			00		
3	Cerdocyon	10	20		40	20	40	40	20		
15	Didelphis	10						20			
16	Didelphis	40								1 1	
30	Didelphis	10						- (0			
33	Didelphis		40	10	20	40	160	160	20		
42	Tupinambis						10			1	
50	Didelphis		80	80	80	80	160	80	40	1 1	
51	Hamster						10	10	•	1 1	
52	Hamster		10				10	10			
53	Hamster						10	10		1 1	
54	Hamster			1			10			1	
60	Man	10			20						
62	Man					100	10				
63	Man	80								1 1	
64	Man		40	80	20	40	80	40	20	1 1	
65	Man				10						10
66	Man		20		10	20	40	40			
67	Man	80								10	10
69	Man						10				

Only positive sera of 69 tested have been tabulated; all blank spaces indicate negative reaction at dilution 1:10, lowest used.

Reciprocal of serum titer.

the survey; however, in a considerable number of cases the titers of the sera were as high or 1 or 2 dilutions higher with MVE than with the other antigens.

The interpretation of the results within group B was made as follows: a serum was considered positive for an antigen when its titer for this antigen was 2 or more dilutions higher than for any other antigen, and possibly positive when only 1 dilution higher; a serum was labeled as giving a superinfection-type reaction when the titers with 2 or more antigens were alike and high, for example 1:320 or higher; and as superinfection-type low titer, when the titers were no higher than 1:40 or 1:80 with several antigens. Results with MVE antigen were disregarded when interpreting the results.

A summary of the survey's results is given in Table 37. It is to be understood that the interpretation of the results applies only to the antigens used; what would have happened if additional antigens had been used is a moot question. Antibodies for chikungunya and Sindbis were not infrequent, about 13% and 15%, respectively, of the sera were positive. A large proportion of sera, 76% were positive for group B antigens; nearly half of the sera had across the board reactions with all the antigens; tentative diagnoses could be made for West Nile, yellow fever, Banzi and Zika, but not for dengue 2. The logical conclusion is that several group B viruses have been active in the area of Senegal from which the sera came. Nine sera reacted with Bunyamwera antigen, but whether they represent infections with this virus or with other agents of the Bunyamwera group—Ilesha, Germiston—cannot be stated.

Table 38 gives examples of results on which the interpretation of the tests was based.

West African sera for Lassa fever (J. Casals). Lassa fever virus. The survey to detect immune persons among hospital staff personnel in West Africa, particularly Liberia, conducted in association with Dr. John D. Frame, College of Physicians and Surgeons, Columbia University, New York, N.Y. has continued through 1978. Spot-slides bearing Lassa fever virus infected cells were generously supplied by Dr. Karl M. Johnson, CDC, Atlanta, Ga.

Between 15 April and 15 December, 1978, 278 sera from residents in Liberia, Niger and Rwanda were screened at dilution 1:4 only; 6 sera were positive, 3 gave a + reaction, i.e., positive but borderline; 8 were questionable, probably negative; and 261 were negative. All the positive sera were from Liberia

Yugoslavian sera for Congo-Crimean hemorrhagic fever (O. Imami, and J. Casals). CCHF virus. A small survey for IF antibodies against this virus was done in association with Dr. O. Imami, Pristina, Yugoslavia; 70 sera from lifetime residents of Serbia

Table 37
Hemagglutination-inhibition test survey with human sera from Senegal

Number of sera tested	85			
Positives for any antigen		68		
Group A, positives			24	
chikungunya				9
possible chikungunya				2
Sindbis				4
possible Sindbis			•	9
Group B, positives			65	
superinfection				13
superinfection, low titers				17
West Nile				2
possible West Nile				13
yellow fever				2
possible yellow fever				5
Banzi				4
possible Banzi				4
Zika				1
possible Zika				4
Group Bunyamwera			9	

Table 38

Hemagglutination-inhibition test sera from Senegal: illustrative examples of antigenic group B diagnoses

Diagnosed	Serum	m Antigens							
as	No.	WN	YF	ZIKA	BANZI	D2	MVE		
Superinfection	2	320	320	320	320	320	1280		
	14	320	640	640	640	640	2560		
Superinfection,	24	40	20	40	10	0	40		
low titer	30	80	40	80	40	10	80		
West Nile	74	40	0	0	0	0	10		
Possible West Nile	65	20	10	10	10	0	10		
Yellow fever	85	40	160	40	40	20	40		
Possible yellow fever	38	0	10	0	0	0	0		
Zika	32	320	160	1280+	160	80	320		
Possible Zika	19	20	80	160	20	10	80		
Banzi	55	20	10	20	80	0	40		
Possible Banzi	60	20	10	10	40	0	20		

Reciprocal of titers; 0, negative at 1:10

were screened at dilution 1:4. The sera were from currently healthy persons, who had no recollection of a severe hemorrhagic disease; 3 were positive.

Laboratory workers sera for Pichinde virus. (J. Casals). At the request of Dr. D.H.L. Bishop, University of Alabama, 57 sera from 45 persons associated with a laboratory in which work with Pichinde virus was being conducted, were tested for antibodies against Pichinde and other arenaviruses.

The sera were at dilution 1:4 by immunofluorescence (IF) test against Pichinde antigen; a number were also tested against Tacaribe and Junin viruses, but positives were found only against Pichinde virus, with one exception (see section: Diagnosis of human disease, Tacaribe virus infection). All positive sera at dilution 1:4 were titrated to determine their end-points; sera that at dilution 1:4 gave a questionable or weak reaction with readings of ±, 1 or 2 plus, were retested beginning at dilution 1:2 or undiluted. All sera were also tested by CF in increasing two-fold dilutions beginning at 1:4, extending to 1:32, against Pichinde, Tacaribe, two other viruses not arenaviruses and a normal tissue antigen. With the exception of one serum (see above) positive specific reactions were found only for Pichinde virus. The results of the tests are shown in Table 39.

In the IF test, 17 sera were positive with titers between 1:8 and 1:128; 14 of these same sera and none negative by IF, were also positive by CF with titers from 1:4 to 1:32 or higher. These results illustrate the considerable opportunity of acquiring laboratory infections when working with Pichinde virus; as far as we know, no clinical manifestations were associated with these infections.

Multipurpose serological survey: Guam, United States, Colombia, West Irian, Papua and New Guinea (D. Asher, A. Diwan, R. Beufantes, D.C. Gajdusek, C.J. Gibbs, and J. Casals). During the summer of 1977, a survey was carried out comprising a total of 1748 sera; the outcome and general purpose were described in the 1977 annual report. In brief, the purpose of the survey is to determine whether a relationship exists between presence of antibodies for arboviruses and certain neurological diseases of as yet undetermined etiology. In addition, the survey includes sera from isolated and primitive populations in a continuing effort to map distribution of arbovirus antibodies.

The first part of the survey consisted of screening the sera at dilutions 1:10 and 1:20 by HI against 25 arbovirus antigens; the second part of the study, conducted during October, 1978, had as an aim to titrate a number of selected sera that had been positive in the screening test. In addition, a number of sera not assayed before were tested for antibodies against Ross River antigen.

1. Four hundred seventy-three sera from normal individuals of native populations from West Irian, Papua, New Guinea and Guam, were

Table 39

IF and CF test results with sera from individuals exposed to Pichinde virus in the laboratory

Serum		reciprocal	Serum		nd reciprocal
No.	IF	iter CF	No.	IF O	f titer CF
	IF	CF		11	Cr
1	0	NS	30	0	0
2	16	NS	31	64	8
2 3	128	32+	32	128	32
4	128	32+	33	0	0
5	0	NS	34	0	0
5	0	NS	35	16	8
7	0	0	36	0	0
8	128	32+	37	0	0
9	0	NS	38	0	0
10	128	32+	39	8	0
11	0	0	40	0	0
12	0	0	41	0	0
13	0	0	42	8	4
14	0	0	43	0	0
15	16	8	44	0	0
16	0	0	45	0	NS
17	0	0	46	32	8
18	0	0	47	0	0
19	64	32+	48	0	0
20	0	0	49	0	0
21	0	0	50	0	0
22	0	0	51	0	0
23	8	4	52	0	0
24	0	0	53	0	0
25	0	0	54	64	4
26	0	0	55	0	0
27	128	32+	56	16	0
28	0	0	57	0	0
29	0	0	58	0	0

^{0,} negative reaction at dilution 1:2 or 1:4. NS, non-specific

tested for antibodies against Ross River antigen. The following numbers were positive: 10 at dilution 1:10; 20, at dilution 1:20; 5 at dilution 1:40; and 3 at dilution 1:80.

- 2. Two hundred four sera from U.S. residents with chronic forms of CNS disease were tested for antibodies against EEE, WEE, SLE, Powassan, yellow fever and California encephalitis. Nineteen were positive for SLE, at dilution 1:40, and 3 at dilution 1:80. One had a titer of 1:10 for EEE, and 2 for Powassan, at the same dilution; 4 were positive for yellow fever at dilutions 1:10 or 1:20.
- 3. Two hundred forty-seven sera from persons in Guam, West Irian and Papua were tested against dengue 2, JE and Murray Valley encephalitis viruses. One hundred seventy were positive for MVE with titers up to 1:1280. One hundred forty-eight were positive for JE, most of which were also reactors with MVE; the titers with JE were, in general, 1 or 2 dilutions lower than with MVE. Dengue 2 antibodies were found in 38 of 109 sera tested, but at lower dilutions, the highest titers being 1:80.
- 4. Seventy-eight sera from South American natives were tested as follows: 23 against Mayaro and 55 against SLE, Ilheus, Bussuquara, yellow fever and dengue 2; the first dilution was 1:40. 11 were positive with Mayaro, with titers as high as 1:640 (6 sera) and 1:1280 (one serum). Nine sera were positive for SLE, 13 with Ilheus, 9 for yellow fever and 3 for Bussuquara. From the distribution of titers it appeared as though SLE and Ilheus may have been responsible for the antibodies.

IV. Diagnosis of human disease

Tacaribe virus infection (J. Casals). A laboratory investigator, G.G., engaged at various times on work with Pichinde and Tacaribe viruses was taken ill some time in 1976, with fever, malaise, and systemic generalized and uncomfortable symptoms; circumstantial evidence pointed to a possible infection with Tacaribe virus. In the course of a serological survey done in the personnel where G.G. worked (see section: Seroepidemiological surveys) it was found that many persons, including G.G. had antibodies against Pichinde virus. In order to settle the etiological question, serial serum samples from G.G. were tested for antibodies against Tacaribe, Pichinde and other related and control antigens, by immunofluorescence (IF) and CF tests; the result is shown in Table 40.

The sera from G.G. reacted only with antigens as shown in Table 40. The results indicate that G.G. suffered two infections in succession; the first one with Tacaribe (or a closely related virus) between April and November, 1976; and the second with Pichinde (or a similar agent) between December 1976 and October 1977.

Korean hemorrhagic fever (J. Casals). Dr. J. Schachter, University of California, San Francisco, requested assistance to investigate the validity of a claim made to him suggesting that there may exist an etiological relationshp between Korean hemorrhagic fever and infection with a Chlamydia. Dr. Schachter supplied antigens: a yolk sac Chlamydia antigen 1-7-77, and a normal yolk sac control antigen; and a reference serum "Men. 3-9-73, LGV", with an anticipated CF titer of 1:128 or 1:256. A CF test was performed in our laboratory with sera from 4 persons who had recovered from hemorrhagic fever with renal syndrome (HFRS), another name for Korean hemorrhagic fever; these sera had been generously supplied by Dr. A. Butenko, Moscow. The sera had been found positive by Dr. H.W. Lee, Seoul, Korea, against a virus recently isolated by him, which is now considered on valid evidence to be the causal agent of Korean hemorrhagic fever. As shown in Table 41, the 4 sera known to have antibodies against Dr. Lee's agent reacted negatively with the Chlamydia antigen; serum #298 and one of the controls were anticomplementary and gave nonspecific reactions. A serological relationship between HFRS and Chlamydia infection was not confirmed by this test.

Table 40

Results of immunofluorescence and complement-fixation tests with serial sera from an individual exposed to Pichinde and Tacaribe viruses in the laboratory

Serum, bleeding		, antigen, re F		F
date	Pichinde	Tacaribe	Pichinde	Tacaribe
6/4/75	0	0	Ac	Ac
10/27/75	0	0	0	0
4/8/76	0	0	0	0
11/19/76	0	16	0	4
12/7/76	0	16	0	4
10/12/77	16	4	8	2-4
6/20/78	8	4	8	2-4

0, negative reaction at dilution 1:2.
Ac, anticomplementary

Table 41

Complement-fixation test
Absence of relationship between hemorrhagic fever with
renal syndrome (HFRS) and Chlamydia infection

				Seru	m, ti	ter	
Antigen		HFRS	HFRS	HFRS	HFRS	Control/US	Control/US
	Chla.	285	290	294	298	resident	resident
Chlamydia	1:256	0	0	0	1:16	0	1:8
Normal yolk sac	0	0	0	0	1:16	0	1:8
None, diluent	0	0	0	0	1:8	0 .	1:8

Antigens used in dilutions 1:32, 1:64 and 1:128, which for Chlamydia were equivalent to 8, 4 and 2 units, respectively.

Sera, first dilution 1:16 for Chla., 1:8 for the others.

AD-A072 854

YALE UNIV NEW HAVEN CONN DEPT OF EPIDEMIOLOGY AND P--ETC F/6 6/5
WORLD REFERENCE CENTER FOR ARBOVIRUSES. (U)
JAN 79 R E SHOPE

UNCLASSIFIED

2 OF 2
AD 072864

END

END DATE FILMED 9-79

La Crosse encephalitis in Westchester County, N.Y. (R.E. Shope, B.J. Beaty, and J. Casals). The Arbovirus Unit, as a service to the staff of Yale-New Haven Hospital, carries out diagnostic serology of encephalitis cases. Human cases of arbovirus encephalitis acquired in Connecticut have never been recognized. This year we came close; a 13 year old child from Pound Ridge, N.Y. (near Stamford, Connecticut) was hospitalized at Yale-New Haven Hospital on July 30, 1978 with fever and convulsions. He continued with convulsions, became comatose and his life was maintained by a respirator until August 30 when he died.

Complement fixation test of paired sera gave the following results:

	Se	era
Antigens	July 30	August 12
La Crosse	<1:4	1:16
Jamestown Canyon	<1:4	<1:4
California encephalitis	<1:4	<1:4
WEE	<1:4	<1:4
EEE	<1:4	<1:4
VEE	<1:4	<1:4
Powassan	<1:4	<1:4
St. Louis	<1:4	<1:4
Rabies	<1:4	<1:4
Herpes	<1:4	<1:4
LCM	<1:4	<1:4

Attempts to isolate La Crosse virus from post mortem brain in mice and mosquitoes were negative.

Epidemiological studies have been initiated in collaboration with Dr. Margaret Grayson of the New York State Health Department to survey for La Crosse antibody in family and neighbors, to survey small mammals, and to locate a possible focus of infected Aedes mosquitoes in Pound Ridge.

CF antibody to Jamestown Canyon virus was found in another patient from Meriden, Connecticut with encephalitis; however titers of 1:16 were present in both acute and convalescent sera, making it impossible to link the disease to Jamestown Canyon virus infection.

Arthrogryposis in man (R.E. Shope). Blood specimens were sent by Dr. Leslie Spence, Univeristy of Toronto, Ontario, Canada from a 5 month old child born with arthrogryposis (multiple rigid joint deformities), and from his mother and father. Because of the known occurrence of arthrogryposis in sheep and calves born of animals suffering Akabane virus infection during gestation, the sera were tested by HI with Simbu group antigens. Tests were negative with Aino, Akabane, Buttonwillow, Mermet, Nola, Oropouche, Sango, Sathuperi, Shamonda, Simbu, and Thimiri. Thus, no link in man between arthrogryposis and Simbu group virus infection was found.

V. Duration of yellow fever neutralizing antibody following 17D vaccination (W.G. Downs).

Sera from 134 World War II veterans were received from the Center for Disease Control, Fort Collins for yellow fever neutralization testing in a collaborative project with Drs. T. Monath and J. Poland. Serologic testing was done in both laboratories with the Yale laboratory not knowing the Fort Collins results. Although the vaccination records are not available on all of the veterans, they served in theaters of war in which all U.S. servicemen were expected to have been vaccinated.

Tests in mice were carried out in 6-week-old females by the i.c. route without addition of accessory factor; 61.6% of 125 sera showed protection or partial protection in the mouse test (Table 42).

Plaque reduction neutralization tests in Vero cells were carried out with virus doses between 21 and 77 plaques. Results are shown in Tables 43 through 46.

In ten of the negatives tested in Vero cell PRNT, 7 are clearly negative, 3 show a possible slight degree of plaque reduction, only in one (12142) approaching 50% reduction.

In the 20 sera tested which were scored as "partial protection" in mice the following 5 show evidence of significant plaque reduction: 12132, 12140, 12145, 12222, 12293; and an additional 5 show evidence of plaque reduction in region of 50%: 12138, 12144, 12178, 12190, 12247.

In the 10 sera tested which were scored as "protection" in mice, all can be considered as showing a significant degree of plaque reduction. Only #12148 might be considered marginal.

There was good correlation between the 2 tests. Over 50% of the veterans, vaccinated more than 30 years ago, maintained detectable yellow fever antibody.

Table 42

Results of mouse neutralization tests of U.S. Army W.W.II veterans with French neurotropic yellow fever virus

Date	Dilution	MLD ₅₀	Number of Sera	Protection*	Partial protection	No Protection
1/16	10-4.4	360	30	12	5	13
1/23	10-4.4	630	30	8	9	13
1/30	10-4.4	63	30	13	8	9
2/6	10-4.5	31	35	19	3	13
Totals			125	52	25	48

^{*}Protection = mortality ratio 0/6, 1/6, 1/5.

Partial protection = mortality ratio 2/6, 3/6, 4/6, 2/5, 3/5.

No protection = mortality ratio 5/6, 6/6, 4/5, 5/5.

Table 43

Neutralization Test in Mice and PRNT in Vero Cells. Sera from Fort Collins-WWII Veterans (Y.F. immunized approximately, 1943)

In mice		Female mice	mice					VERO	0			
		6 week old	plo :	V4 rose			Numb	Number of Plaques	Plaq	nes		
Serum No.	Mouse	t 9		dilu	dilution	Serum	Serum dilution	ion	Pre-	Pre-	Post-	1 2
	No.	0	× S	+	+	1:8	1:16 1:32	1	1:8	1:32	1:8	1:32
(Partial positives)10657	12190	7	4	10-4.4	10-4.3	26	35	50	74	conf.		35
10901	12194	e	9	10-4.4	10-4.3	47	63	89	1		1	
10677	12198	2	4	10-4.4	10-4.3	07	09	69				
10678	12199	8	6	10-4.4	10-4.3	97	69	11		PRNT	Į.	
10679	12200	4	7	10-4.4	10-4.3	conf.	conf.	conf.		6-21-78	-78	
10683	12222	2	4	10-4.4	10-4.3	18	61	62		Virus 10-4.3	10-4	e.
10692	12230	æ	6	10-4.4	10-4.3	conf.	conf.	73		+ .75% BPA	% BPA	
10721	12293	2	4	10-4.5	10-4.3	11	11	conf.		77 plaques	adnes	
10742	12314	2	4	10-4.5	10-4.3	42	69	conf.				
10743	12315	8	6	10-4.5	10-4.3	conf.	conf	conf.				
10709	12247	7	4	10-4.4	10-4.3	29	53	89				
10704	12242	2	4	10-4.4	10-4.3		conf.	cont. conf. conf.				

Table 44

Sera from Fort Collins-WWII Veterans Neutralization Test in Mice and PRNT in Vero Cells,

(Y.F. immunized approximately, 1943)

0)	o week old	se o p dilution Pre-control Post-control HD HD	D S + + 1:8 1:16 1:32 1:8 1:64 1:8	26 6 0 10 ^{-4.4} 10 ^{-4.4} 16 16 15 15 17 4 10	29 6 0 10-4.4 10-4.4 9 9 7	30 6 0 10 ^{-4.4} 10 ^{-4.4} 9 11 12 PRNT	6 0 10 ⁻⁴ .4 10 ⁻⁴ .4 11 18 12	35 6 0 10 ^{-4.4} 10 ^{-4.4} 14 14 12 Virus 10 ^{-4.4}	36 6 0 10 ^{-4.4} 10 ^{-4.4} 14 10 12 + .75% BPA	37 6 0 10 ^{-4.4} 10 ^{-4.4} 11 11 8 21 plaques	0 7.4-4.4.4.) I
			S	0	0	0	0	0	0	0	-	1
Fer		Mouse Card 6		12126 6	12129	12130	12134 6	12135 6	12136 6	12137 6	12142	
In Mice	-	Sera No.	7			4965	6965	4970	4971	4972	4977	

Table 45

Neutralization Test in Mice and PRNT in Vero Cells. Sera from Fort Collins-WWII Veterans (Y.F. immunized approximately, 1943)

In mice		Female mice	mice					VERO	0			
	I	b week old	pro:	Virus	St		Numb	Number of Plaques	Plaq	nes		
Serum No.	Mouse	xoq/9	×	dilution	tion	Serum	Serum dilution	ion	Pre-	rol	Post-	1.00
	No.	Q	S	+	+	1:8	1:8 1:16 1:32 1:8 1:32 1:8 1:32	1:32	1:8	1:32	1:8	1:32
(Partial positives)4967	12132	3	e	10-4.4 10-4.3	10-4.3	12	14	24	61	29	6	56
4973	12138	2	4	10-4.4	10-4.3	23	33	77				
4975	12140	2	4	10-4.4	10-4.3	6	1.5	22		TNAG	5	
6267	12144	2	4	10-4.4	10-4.3	22	32	64		6-14-78	-78	
0867	12145	3	8	10-4.4	10-4.3	4	∞	28		Virus 10-4.3	10-4.	3
10645	12178	7	2	10-4.4 10-4.3	10-4.3	33	97	77		+ 75% BPA	Z RPA	
10652	12185	4	2	10-4.4 10-4.3	10-4.3	69	29	79		56 p	56 plagues	
10555	12188	4	7	10-4.4 10-4.3	10-4.3	62	09	62				

Neutralization Test in Mice and PRNT in Vero Cells. Sera from Fort Collins-WWII Veterans Table 46

(Y.F. immunized approximately, 1943)

Tr mico		Tomolo mico	100					VERO				
TII IIITCE		remare mich	mrce 914				Numbe	Number of plaques	plaqu	es		
Serum No.	Mouse	6 9) ot 8	Virus dilution	s fon	Seru	m dil	Serum dilution		Pre- control	Post- control	01
	No.	D	S	+	+	1:8	1:16	1:8 1:16 1:32	1:8	1:8 1:32	1:8	1:32
(Positives)4976	12141	1	5	10-4.4	10-4.4 10-4.3	2	3	œ	70	conf.	24	53
8167	12143	1	2	10-4.4	10-4.3	20	51	57				
10632	12147	0	9	10-4.4	10-4.3	4	24	41				
10633	12148	0	9	10-4.4	10-4.3	33	62	19		PRNT	н	
10634	12149	0	9	10-4.4	10-4.3	11	25	43		6-29-78	78	
10639	12154	1	2	10-4.4	10-4.3	14	20	51		Virus 10-4.3	10-4.3	
10640	12155	-	2	10-4.4	10-4.3	25	44	67		+ .75% BPA	BPA	
10690	12228	1	2	10-4.4	10-4.3	16	32	35		62 plaques	dues	
10715	12287	1	2	10-4.5	10-4.3	26	39	67				
10718	12290	0	9	10-4.5	10-4.3	2	11	13				
								1				1

VI. Distribution of reagents, WHO Collaborating Centre for Reference and Research

Distribution of reagents, World Health Organization—Collaborating Centre for Reference and Research. (R.E. Shope, J. Casals, S. Buckley, A.J. Main, Jr., and O.L. Wood). The equivalent of 528 ampoules of arbovirus reagents were distributed from the WHO Centre to laboratories in 24 countries during the period January 1, 1978 to December 31, 1978. This total consisted of 231 ampoules of virus stock, 56 ampoules of virus antigen, and 241 ampoules of mouse ascitic fluid or immune sera.

Of the virus stocks distributed, this represented 149 different arboviruses; of antigens, 27 different arboviruses; and of sera, 73 different arboviruses (not counting individual viruses represented in polyvalent ascitic fluids).

During this same period, the equivalent of 183 ampoules of arbovirus reagents were referred to this Centre from laboratories in 10 different countries. The referrals consisted of 118 ampoules of virus specimens (Table 47), 22 ampoules of virus antigens, and 43 ampoules of immune reagents. In addition, 738 sera were received for arbovirus antibody survey testing.

Three different cell lines were distributed during 1977: Aedes albopictus, Aedes aegypti, and CER. The recipients are listed in Table 48.

Table 47

Viruses referred to YARU for identification, 1978

YARU			Oropouche
Information from donor	Ungrouped Simbu group Ungrouped Turlock group? Ungrouped Group B Rhabdovirus D'Aguilar-related D'Aguilar-related Same as Ch 16313	Keuraliba Yata	Simbu group Simbu group Simbu group Guaroa? Simbu group Simbu group
Source	Culicoides brevitarsis Culex annulirostris Culex annulirostris Lasiohelea sp. Ixodes uriae Culicoides brevitarsis	<u>Tatera kempi</u> <u>Mansonia uniformia</u>	man man man man man
Country of origin; strain	Australia Ngaingan MRM 14556 CS 110 Ch 19520 Ch 19546 CS 79 CS 79 CS 122 CS 132 CS 132 CS 147 CH 16287	Belgium Dak An D 5314 Dak Ar B 2131 Brazil	Br H 4129 Br H 4186 Br H 2011 Br H 10329 Br H 4185 Br H 4327 Br Ar 263191

Table 47 continued

YARU identification	Candiru		Soldado-related		
Information from donor	Palyam group? New group B non-mouse pathogen non-mouse pathogen Arenavirus?		ungrouped	dengue-1 dengue? dengue?	JE JE Getah JE
Source	man man	Argas sp.	Ornithodoros maritimus Rhipicephalus bursa	man mosquito mosquito	mosquito mosquito mosquito mosquito
Country of origin; strain	Brazil Be Ar 295042 Be Ar 327600 Br H 10344 Br H 9556 Be An 238758 Be Ar 293022 Czechoslovakia	Cz Arg 265 France	Brest Ar T 13 Greece Aedes virus, AP 82	Nigeria Ib H 75649 Ib Ar 92039 Ib Ar 92040	Philippines Ph Ar 281 Ph Ar 384 Ph Ar 814 Ph Ar 1091

Table 47 continued

YARU				Orungo-relationship not confirmed by CF	BEE
Information from donor		Wad Medani? yellow fever yellow fever yellow fever		related to Orungo related to Orungo Orungo	alphavirus La Crosse-like La Crosse-like California group
Source		tick mosquito mosquito mosquito			Aedes triseriatus Aedes canadensis Sigmodon hispidus
Country of origin; strain	Senega1	Dak Ar 398 Dak Ar B 9005 Dak Ar B 8883 Dak Ar D 25865 Dak Ar D 25225	USA	Ib An 57245 YV 177 Ug MP 359 0.cor, 76	SV E 3 74-33702 77-38299 76-M443

Table 48

Distribution of Cell Cultures during 1978

Investigator	Institution	Singh's Aedes albopictus	Aedes pseudoscutellaris	CER
Dr. A. Fabiyi	University of Ibadan, Ibadan, Nigeria	×	×	
Dr. A.R. Filipe	Institute of Hygiene and Tropical Medicine Lisbon, Portugal	×		
Dr. M. Jozan-Work	c/o Dr. Stanley, Dept. of Microbiology University of Western Australia, Perth, Australia	×	×	
Dr. J. Kern	American Type Culture Collection Bethesda, Maryland	×	×	
David Lundino	W. Alton Jones Cell Science Center Lake Placid, N.Y.	×		
Carol Pacey	Dept. of Entomology, Waters Hall, Kansas State University, Mahattan, Kansas		×	
Dr. F. Pinheiro	Belem Virus Laboratory, Belem, Brazil	×	×	
Dr. A. Rudnick	University of Malaya, Kuala Lumpur, Malaysia	R	×	
Dr. P. Sinarachatanat	Dept. of Microbiology, Mahidol University Bangkok, Thailand	×		
Dr. O. Imami	Pristina, Yugoslavia			×
Dr. P. Sureau	Institut Pasteur, Teheran, Iran			×
Dr. B. Lachmi	Israel Institute for Biological Research Ness-Ziona, Israel			×

Table 48 continued

Distribution of Cell Cultures during 1978

CER	×	×	×	×	×	×
Aedes pseudoscutellaris						
Singh's Aedes albopictus						
Institution	University of Ibadan, Nigeria	University of California, Kuala Lumpur, Malaysia	Alexandria, Egypt	USAMRIID, Fort Detrick, Maryland	University of Maryland, Lahore, Pakistan	Dusseldorf, Germany
Igator	Dr. A. Fagbami	Neill	Hamde	Dr. G. French	Hayes	Dr. J. Pilaski
Investigator	Dr. A.	Dr. W. Neill	Dr. L. Hamde	Dr. G.	Dr. C. Hayes	Dr. J.