IM2 Book 3 Selected Answers

Mr. Spence

April 2025

- 1. $10\sqrt{2}$
- 2. (a) $A = \left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right), B = \left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$
 - (b) cos()
 - (c) sin()
- 3. (a) cos(40°)
 - (b) sin(40°)
- 4. (a) $m_{OA} = 1$, $m_{OB} = \frac{\sqrt{3}}{3}$
 - (b) tan()
- 5. 470 ft
- 6. $\frac{3}{5}$
- 7. Length of line: 3.42 ft Distance to bobber: 9.40 ft
- 8. 23.82 ft
- 9. (a) π ; (-1,0)
 - (b) $\frac{\pi}{2}$; (0,1)
- 10. –
- 11. -
- 12 -
- 13. $\cos A = \frac{\sqrt{21}}{5}$, $\tan A = \frac{2}{\sqrt{21}}$, $\sin^2 A + \cos^2 A = 1$
- 14. (a) 79 ft
 - (b) $7,873 \text{ ft}^2$
 - (c) 135 ft
- 15. 67°

- 16. 21.6°
- 17. No
- 18. 54.8 ft
- 19. $\frac{2\pi}{3}$
- 20. $\frac{6\pi}{5}$, $\frac{9\pi}{5}$
- $21. \sin^2\theta + \cos^2\theta = 1$
- 22. length = 5.22; Area = 12.68
- 23. $\frac{ab\sin C}{2}$
- 24. 9.9 in^2
- 25. (-1,0), (-1,0)
- 26. –
- 27. $\pi \alpha$
- 28. (a) (0,1)
 - (b) $\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$
 - (c) $\left(\frac{-1}{2}, \frac{\sqrt{3}}{2}\right)$
 - (d) $\left(\frac{-\sqrt{3}}{2}, \frac{-1}{2}\right)$
- 29. (a) $\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$; $\cos\theta$ gives the x-coordinate; $\sin\theta$ gives the y-coordinate
 - (b) $\cos \frac{3\pi}{4} = \frac{-\sqrt{2}}{2}$, $\sin \frac{3\pi}{4} = \frac{\sqrt{2}}{2}$
- 30. (a) AD = b x, $BD = \sqrt{a^2 x^2}$
 - (b) $c^2 = a^2 + b^2 2bx$
 - (c) $c^2 = a^2 + b^2 2ab\cos C$
- 31. 5.01 in.
- 32. (a) $\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$, $m = \sqrt{3}$
 - (b) $tan\theta$
- 33. 205°
- 34. (a) $\sin \frac{2\pi}{3} = \frac{\sqrt{3}}{2}$, $\cos \frac{2\pi}{3} = \frac{-1}{2}$, $\tan \frac{2\pi}{3} = -\sqrt{3}$
 - (b) $\sin \frac{4\pi}{3} = \frac{-\sqrt{3}}{2}$, $\cos \frac{4\pi}{3} = \frac{-1}{2}$, $\tan \frac{4\pi}{3} = \sqrt{3}$
- 35. (a) $\sin 135^\circ = \frac{\sqrt{2}}{2}$, $\cos 135^\circ = \frac{-\sqrt{2}}{2}$, $\tan 135^\circ = -1$

(b)
$$\sin 225^\circ = -\frac{\sqrt{2}}{2}$$
, $\cos 225^\circ = \frac{-\sqrt{2}}{2}$, $\tan 225^\circ = 1$

36. (a)
$$\left(\frac{\sqrt{3}}{2}, -\frac{1}{2}\right)$$
, $m = -\frac{\sqrt{3}}{3}$

(b)
$$\sin\left(-\frac{\pi}{6}\right) = -\frac{1}{2}$$
, $\cos\left(-\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2}$, $\tan\left(-\frac{\pi}{6}\right) = -\frac{\sqrt{3}}{3}$

37.
$$\sin\left(-\frac{2\pi}{3}\right) = -\frac{\sqrt{3}}{2}$$
, $\cos\left(\frac{5\pi}{2}\right) = 0$, $\tan\left(\frac{2\pi}{3}\right) = -\sqrt{3}$

38.
$$\cos A = -\frac{\sqrt{91}}{10}$$
, $\tan A = -\frac{3}{\sqrt{91}}$

40. side length =
$$16.8 \text{ cm}$$
, Area = 91.3 cm^2

42. (a)
$$c = p + q$$

(b)
$$c = |p - q|$$

(c)
$$c = \sqrt{p^2 + q^2}$$

43. (a)
$$\sin 60^\circ = \sin 120^\circ = \frac{\sqrt{3}}{2}$$

(b)
$$\sin 30^\circ = \sin 150^\circ = \frac{1}{2}$$

44.
$$\sin \theta = \sin (\pi - \theta)$$

45.
$$\cos\theta = -\cos(\pi - \theta)$$

46.
$$\tan \theta = \tan (\theta + \pi)$$

47.
$$\cos x = -\frac{\sqrt{4-a^2}}{2}$$
, $\tan x = -\frac{a}{\sqrt{4-a^2}}$

48. (a)
$$\frac{\pi}{6}$$
, $\frac{5\pi}{6}$

(b)
$$\sin(x) = \frac{1}{2}$$

49.
$$\frac{\pi}{3}$$
, $\pi - \frac{\pi}{3}$

50.
$$\cos 280^{\circ} \approx 0.174$$
, $\cos 100^{\circ} = \cos 260^{\circ} \approx -0.174$, $\sin 190^{\circ} \approx -0.174$

51. (a)
$$\cos 310^{\circ} < \cos 311^{\circ}$$

(b)
$$\sin 76^{\circ} > \sin 106^{\circ}$$

(c)
$$\sin 81^\circ = \sin 99^\circ$$

(d)
$$\tan 89^{\circ} > \tan 71^{\circ}$$

52.
$$BC = 4.01$$

- (c) $\frac{\sqrt{3}}{2}$
- (d) $\frac{\sqrt{2}}{2}$
- 54. (a) $\frac{\sqrt{3}}{2}$
 - (b) $\frac{\sqrt{3}}{2}$
 - (c) $-\sqrt{3}$
 - (d) $\frac{\sqrt{2}}{2}$
- 55. (a) $\theta = \frac{5\pi}{6}, \frac{7\pi}{6}$
 - (b) $\theta = 0, \pi$
 - (c) $\theta = \frac{3\pi}{2}$
- 56. (a) $\theta = 0^{\circ}, 180^{\circ}$
 - (b) $\theta = 135^{\circ}, 225^{\circ}$
 - (c) $\theta = 45^{\circ}, 225^{\circ}$
- 57. –
- 58. (a) $\cos B = \frac{106 x^2}{90}$
 - (b) $\cos D = \frac{58 x^2}{42}$
 - (c) $\cos B = -\cos D$
 - (d) x = 8.56
- 59. (a) $\sin(-\alpha) = -\sin(\alpha)$
 - (b) $\sin(180 \alpha) = \sin(\alpha)$
 - (c) $\sin(360 + \alpha) = \sin(\alpha)$
 - (d) $\cos(-\alpha) = \cos(\alpha)$
 - (e) $\cos(180 \alpha) = -\cos(\alpha)$
 - (f) $\cos(90 \alpha) = \sin(\alpha)$
- 60. (a) $A = 109^{\circ}$
 - (b) $A = 230^{\circ}, 310^{\circ}$
 - (c) No solutions
 - (d) $A = 110^{\circ}, 250^{\circ}$
- 61. (a) $\frac{\sqrt{2}}{2}$
 - (b) 0
 - (c) $\frac{-\sqrt{3}}{2}$
 - (d) -1
 - (e) $\frac{-\sqrt{3}}{2}$

- (f) 0
- 62. $\theta = 60^{\circ}, 300^{\circ}$
- 63. (a) $h = b \sin A$, $h = a \sin B$

 - (b) $\frac{\sin A}{a} = \frac{\sin B}{b}$ (c) $\frac{b}{\sin B} = \frac{a}{\sin A}$
- 64. NC = 8.08 in., CY = 3.19 in.
- 65. (a) 3.42 ft < l < 10 ft
 - (b) l = 3.42 ft or $l \ge 10$ ft
 - (c) $0 \text{ ft} \le l < 3.42 \text{ ft}$
- 66. (a) $\theta = 140^{\circ}$
 - (b) $\theta = 300^{\circ}$
 - (c) $\theta = 50^{\circ}, 310^{\circ}$
- 67. (a) $\tan \theta = \frac{\sqrt{b^2 a^2}}{a}$ (b) $\cos (\pi + \theta) = \frac{-a}{b}$

 - (c) $\sin(\pi + \theta) = \frac{-\sqrt{b^2 a^2}}{b}$
 - (d) $\cos(\pi \theta) = \frac{-a}{b}$
- 68. (a) $\frac{\pi}{6} < t < \frac{11\pi}{6}$
 - (b) $\frac{7\pi}{6} < w < \frac{11\pi}{6}$
- 69. (a) $\frac{\pi}{2}$, y = 1
 - (b) π
 - (c) $\frac{3\pi}{2}$, y = -1
 - (d) 2π
 - (e) -
- 70. (a) $\frac{\pi}{2}$
 - (b) π
 - (c) $\frac{3\pi}{2}$
 - (d) 2π
 - (e) -
- 71. (a)
 - (b) -
 - (c) -
 - (d) Domain: $(-\infty, \infty)$, Range: [-1, 1]

- 72. –
- 73. 232.1
- 74. Triangle 1: $B = 34.8^{\circ}, C = 125.2^{\circ}, AB = 14.3$ Triangle 2: $B = 145.2^{\circ}, C = 14.8^{\circ}, AB = 4.5$
- 75. (a) BC = 3.42
 - (b) -
- 76. 63.1 miles
- 77. $\frac{\pi}{4} < \theta < \frac{\pi}{2} \cup \frac{5\pi}{4} < \theta < \frac{3\pi}{2}$
- 78. (a) $x = \frac{\pi}{6}, \frac{5\pi}{6}$
 - (b) $x = \frac{7\pi}{6}, \frac{11\pi}{6}$
 - (c) x = 0.927, 5.356 (radians)
- 79. (a) 2π seconds, 10π seconds
 - (b) -
 - (c) 2π
- 80. (a) $x = \pi$
 - (b) $x = -3\pi, -\pi, \pi, 3\pi$
 - (c) $x = \pi + 2\pi n$
- 81. (a) $x = \frac{\pi}{6}, \frac{5\pi}{6}$
 - (b) $x = ..., -3\pi, -\pi, \pi, 3\pi, ...$
 - (c) $x = \pi + 2\pi n$
- 82. $x = \frac{5\pi}{6}, \frac{7\pi}{6}$ $x = \frac{5\pi}{6} + 2\pi n, \frac{7\pi}{6} + 2\pi n$
- 83. 22.2 ft
- 84. Smallest angle = 0.48996, D = 21.25 in.
- 85. Triangle 1: $P = 53.1^{\circ}, R = 120.5^{\circ}, Q = 6.4^{\circ}, p = 13, r = 14, q = 1.8$ Triangle 2: $P = 53.1^{\circ}, R = 59.5^{\circ}, Q = 67.4^{\circ}, p = 13, r = 14, q = 15$
- 86. (a) $x = 30^{\circ}, 150^{\circ}$
 - (b) $B = 30^{\circ}, 150^{\circ}$; No
- 87. B has no solutions
- 88. There are a bunch of typos here. The second sentence should say "The ride starts at (1,2) with a starting height of 2 feet."

- (a) $\frac{\pi}{2}$, 3
- (b) π
- (c) $\frac{3\pi}{2}$, 1
- (d) 2π
- (e) -
- (f) -
- (g) $y = \sin x + 2$
- 89. (a) -
 - (b) -
 - (c) y = -3
- 90. Midline: y = 4. Maximum value: 5. Minimum value: 3.