本科概率论与数理统计作业卷(三)

一、填空题

1.设有随机变量
$$X \sim \begin{pmatrix} -1 & 0 & 1 \\ \frac{1}{3} & \frac{1}{6} & \frac{1}{2} \end{pmatrix}$$
,则 X 的分布函数为______

解
$$x < -1$$
时 $F(x) = P\{X \le x\} = 0$; $-1 \le x < 0$ 时 $F(x) = P\{X \le x\} = \frac{1}{3}$
 $0 \le x < 1$ 时 $F(x) = P\{X \le x\} = \frac{1}{3} + \frac{1}{6} = \frac{1}{2}$; $x \ge 1$ 时 $F(x) = P\{X \le x\} = \frac{1}{3} + \frac{1}{6} + \frac{1}{2} = 1$
 X 的分布函数为 $F(x) = \begin{cases} 0, & x < -1 \\ \frac{1}{3}, & -1 \le x < 0 \\ \frac{1}{2}, & 0 \le x < 1 \end{cases}$

2.如果离散型随机变量 X的分布律如下表所示,则 C=______

X	0	1	2	3
P	1	1	1	1
	\overline{C}	$\overline{2C}$	$\overline{3C}$	$\overline{4C}$

解 由分布律规范性得
$$\sum_{i=1}^{4} P(x_i) = \frac{1}{C} + \frac{1}{2C} + \frac{1}{3C} + \frac{1}{4C} = \frac{25}{12C} = 1 \implies C = \frac{25}{12}$$

3.已知 X 的分布律如下表所示

X	0	1	2	3	4	5	
$P\{X=x\}$	1	1	1	1	2	1	
	12	6	3	12	9	9	

则
$$Y = (X-2)^2$$
的分布律为

V	
I	
$P\{Y=y\}$	

解 Y的可能取值为 0,1,4,9

$$P\{Y=0\} = P\{X=2\} = \frac{1}{3}; \quad P\{Y=1\} = P\{X=1\} + P\{X=3\} = \frac{1}{6} + \frac{1}{12} = \frac{1}{4}$$

$$P\{Y=4\} = P\{X=0\} + P\{X=4\} = \frac{1}{12} + \frac{2}{9} = \frac{11}{36}; \quad P\{Y=9\} = P\{X=5\} = \frac{1}{9}$$

故
$$Y = (X-2)^2$$
的分布律为

Y	0	1	4	9	
$P\{Y=y\}$	1	1	11	1	
	3	4	36	9	

二、选择题

1.设 $F_1(x)$ 与 $F_2(x)$ 是某两个随机变量的分布函数,为使 $F(x)=aF_1(x)-bF_2(x)$ 成为某一随机变量的分布函数,在下列给定的各组数值中应取

(A)
$$a = \frac{3}{5}, b = -\frac{2}{5}$$
 (B) $a = \frac{2}{3}, b = \frac{2}{3}$ (C) $a = -\frac{1}{2}, b = \frac{3}{2}$ (D) $a = \frac{1}{2}, b = -\frac{3}{2}$

解 由分布函数规范性得 $F(+\infty)=aF_1(+\infty)-bF_2(+\infty)=a-b=1$ 故应选(A)

2.设离散型随机变量 X 的分布律为 $P\{X = k\} = b\lambda^k, (k = 1, 2, 3, \cdots)$ 且 b > 0,则 λ 为

$$(A)\lambda > 0$$
的任意实数 $(B)\lambda = b+1$ $(C)\lambda = \frac{1}{1+b}$ $(D)\lambda = \frac{1}{b-1}$

解 由分布律规范性得 $\sum_{k=1}^{\infty} b \lambda^k = b \sum_{k=1}^{\infty} \lambda^k = b \frac{\lambda}{1-\lambda} = 1 \implies \lambda = \frac{1}{1+b}$ 故应选(C)

三、计算、证明题

1.一个袋中有 5 只球,编号为 1,2,3,4,5,在其中任取 3 只,以 X 表示取出的 3 只球中的最大号码,求 X的概率分布.

解 若最大号码为 k,则另外两只球只能在号码为 1,2,...,k-1 的 k-1 只球中取出,故

$$P\{X=k\} = \frac{C_{k-1}^2}{C_5^3} = \frac{(k-1)(k-2)}{20}, (k=3,4,5), 故 X 的概率分布为$$

$$\begin{array}{c|cccc} X & 3 & 4 & 5 \\ \hline P & \frac{1}{10} & \frac{3}{10} & \frac{3}{5} \end{array}$$

2.一汽车沿一街道行使需要通过三个均设有红绿信号的路口,每个信号灯为红或绿与其它信号灯为红或绿相互独立,且红、绿两种信号显示时间差相等,以 *X* 表示该汽车首次遇到红灯前已通过的路口个数, 求 *X* 的概率分布.

解 由题意知X的可能取值为0,1,2,3,设 A_i 表示"汽车在第i个路口首次遇到红灯",

则
$$A_1,A_2,A_3$$
相互独立且 $P(A_i) = P(\overline{A_i}) = \frac{1}{2}, (i=1,2,3)$,因此有

$$P\{X=0\} = P(A_1) = \frac{1}{2}; \quad P\{X=1\} = P(\overline{A}_1 A_2) = P(\overline{A}_1)P(A_2) = \frac{1}{2^2};$$

$$P\{X=2\} = P(\overline{A}_1 \overline{A}_2 A_3) = P(\overline{A}_1) P(\overline{A}_2) P(A_3) = \frac{1}{2^3};$$

$$P\{X=3\} = P(\overline{A}_1\overline{A}_2\overline{A}_3) = P(\overline{A}_1)P(\overline{A}_2)P(\overline{A}_3) = \frac{1}{2^3}$$
, 故 X 的概率分布为

3.设随机变量 X 的可能取值为 -1,0,1,且取这三个值的概率比为 1:2:3, 求 X 的概率分布. 解 据题意可设 X 取 -1,0,1 的概率为 p,2p,3p,由分布律规范性得 p+2p+3p=6p =1

从而得
$$p = \frac{1}{6}$$
 ,故 X 的概率分布为

本科概率论与数理统计作业卷(四)

一、填空题

- 1. 设随机变量 X 服从参数为 λ 的泊松分布,且已知 $P\{X=1\}=P\{X=2\}$,则 $P\{X=4\}=1$ 解 由题意得 $\frac{\lambda e^{-\lambda}}{1!} = \frac{\lambda^2 e^{-\lambda}}{2!}$ $\Rightarrow \lambda = 2,0$ (舍去 0) $\therefore P\{X = 4\} = \frac{2^4 e^{-2}}{4!} = \frac{2e^{-2}}{2!} \approx 0.0902$
- 2. 设随机变量 X 服从参数为(2,p)的二项分布,随机变量 Y 服从参数为(3,p)的二项分布,若 $P\{X \ge 1\} = \frac{5}{9}, \text{ MI } P\{Y \ge 1\} = \frac{5}{9}$

3. 设随机变量 $X \sim U(0,2)$,则 $Y = X^2$ 在(0,4)内有概率密度 $f_Y(y) = __$

二、选择题

1.设随机变量 X 的概率密度 $f(x) = \begin{cases} 2x, & 0 < x < 1 \\ 0. & \text{其他} \end{cases}$,以 Y 表示对 X 的三次独立重复观测中

事件 $\left\{X \le \frac{1}{2}\right\}$ 出现的次数,则 $P\left\{Y = 2\right\} =$ ______.

(A)
$$\frac{9}{64}$$
 (B) $\frac{7}{64}$ (C) $\frac{3}{64}$ (D) $\frac{9}{16}$

 $P = P\left\{X \le \frac{1}{2}\right\} = \int_0^{\frac{1}{2}} 2x dx = \frac{1}{4}, P\left\{Y = 2\right\} = C_3^2 p^2 (1-p) = \frac{9}{64}$ 故应选(A)

2.设随机变量 X 具有对称的概率密度,即 f(-x)=f(x),则对任意 a>0, $P(|X|>a)=______$ (A) 1-2F(a) (B) 2F(a)-1(C) 2 - F(a)

$$\mathbb{H} \quad \because f(-x) = f(x) \qquad \therefore F(-a) = \int_{-\infty}^{-a} f(x) dx = \int_{a}^{+\infty} f(x) dx = 1 - \int_{-\infty}^{a} f(x) dx = 1 - F(a)$$

 $\therefore P(|X| > a) = P(X < -a) + P(X > a) = F(-a) + 1 - F(a) = 2[1 - F(a)]$ 故应选(D)

3. 设随机变量 $X \sim N(\mu, 4^2), Y \sim N(\mu, 5^2)$, 记 $p_1 = P\{X \le \mu - 4\}, p_2 = P\{Y \ge \mu + 5\}$, 则_____.

(A)对任何实数
$$\mu$$
,都有 $p_1 = p_2$

(B)对任何实数
$$\mu$$
,都有 $p_1 < p_2$

(C)只对
$$\mu$$
 的个别值,才有 $p_1 = p_2$ (D)对任何实数 μ ,都有 $p_1 > p_2$

(D)对任何实数
$$\mu$$
,都有 $p_1 > p_2$

解 由
$$X \sim N(\mu, \sigma^2)$$
 $\Rightarrow P(X \le x) = \Phi\left(\frac{x - \mu}{\sigma}\right), \Phi\left(-x\right) = 1 - \Phi\left(x\right),$ 故
$$p_1 = P\{X \le \mu - 4\} = \Phi\left(\frac{\mu - 4 - \mu}{4}\right) = \Phi(-1) = 1 - \Phi(1)$$

$$p_2 = P\{Y \ge \mu + 5\} = 1 - P\{Y < \mu + 5\} = 1 - \Phi\left(\frac{\mu + 5 - \mu}{5}\right) = 1 - \Phi(1)$$
 故应选(A)

4. 设 $X \sim N(\mu, \sigma^2)$, $\sigma > 0$ 且二次方程 $y^2 + 4y + X = 0$ 无实根的概率为 0.5, 则 $\mu = ____$

解 $y^2 + 4y + X = 0$ 无实根的充要条件为 $\Delta = 4^2 - 4X < 0$ ⇒ X > 4, 由题意

$$P(X > 4) = 1 - P(X \le 4) = 1 - \Phi\left(\frac{4 - \mu}{\sigma}\right) = \frac{1}{2}$$
 $\Rightarrow \frac{4 - \mu}{\sigma} = 0$ $\Rightarrow \mu = 4$ 故应选(D)

三、计算、证明题

- 1. 连续型随机变量 X 的密度函数为 $p(x) = \begin{cases} \frac{A}{\sqrt{1-x^2}}, & |x| < 1\\ 0, & 其他 \end{cases}$
 - (1) 系数 A; (2)X落在区间内的概率 $(-\frac{1}{2}, \frac{1}{2})$; (3)X的分布函数.

(2)
$$P\left\{-\frac{1}{2} < X < \frac{1}{2}\right\} = \int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{1}{\pi\sqrt{1-x^2}} dx = \frac{1}{\pi} \arcsin x \begin{vmatrix} 1/2 \\ -1/2 \end{vmatrix} = \frac{1}{\pi} \left[\frac{\pi}{6} - \left(-\frac{\pi}{6}\right)\right] = \frac{1}{3}$$

(3)
$$F(x) = P\{X \le x\} = \int_{-\infty}^{x} p(t)dt = \begin{cases} 0, & x < -1 \\ \frac{1}{2} + \frac{1}{\pi} \arcsin x, & -1 \le x < 1 \\ 1, & x \ge 1 \end{cases}$$

2. 某地区的月降水量X(单位mm)服从正态分布N(40,4 2),试求该地区连续10个月降水量都不超过50mm的概率.

解 设A="该地区某月降水量不超过50mm",由 $X \sim N(40,4^2)$ 得

$$p = P(A) = P(X \le 50) = \Phi\left(\frac{50 - 40}{4}\right) = \Phi(2.5) = 0.9938$$
,因此

该地区连续 10 个月降水量都不超过 50mm 的概率 $P = p^{10} = 0.9938^{10} = 0.9396$

- 3. 某地区一个月内发生交通事故的次数 X 服从参数为 λ 的泊松分布,据统计资料知,该地区一个月内发生 8 次交通事故的概率是发生 10 次交通事故概率的 2.5 倍,求
 - (1) 一个月内分别发生 8 次和 10 次交通事故的概率;
 - (2) 一个月内至少发生 1 次交通事故的概率;
 - (3) 一个月内最多发生 2 次交通事故的概率.

解 由題意
$$P\{X=8\}=2.5P\{X=10\}$$
 即 $\frac{\lambda^8 e^{-\lambda}}{8!}=2.5 \times \frac{\lambda^{10} e^{-\lambda}}{10!}$ $\Rightarrow \lambda=6$

(1)
$$P\{X=8\} = \frac{6^8 e^{-6}}{8!} \approx 0.1033$$
 ; $P\{X=10\} = \frac{6^{10} e^{-6}}{10!} \approx 0.0413$

(2)
$$P\{X \ge 1\} = 1 - P\{X = 0\} = 1 - \frac{e^{-\lambda} \lambda^0}{0!} = 1 - e^{-\lambda} = 1 - e^{-\delta} \approx 0.9975$$

(3)
$$P\{X \le 2\} = \sum_{k=0}^{2} P\{X = k\} = \frac{e^{-\lambda}\lambda^{0}}{0!} + \frac{e^{-\lambda}\lambda^{1}}{1!} + \frac{e^{-\lambda}\lambda^{2}}{2!} = 25e^{-\lambda} = 25e^{-\lambda} \approx 0.062$$

4.设随机变量 X 的概率密度 $f_X(x) = \begin{cases} e^{-x}, & x \ge 0 \\ 0, & x < 0 \end{cases}$,求随机变量 $Y = e^X$ 的概率密度 $f_Y(y)$.

解 采用常规方法求解: 先求分布函数,再求导数得密度函数:

当
$$y < 1$$
时 $F_Y(y) = P(Y \le y) = 0$

$$\stackrel{\text{def}}{=} y \ge 1$$
 $\forall F_Y(y) = P\{Y \le y\} = P\{e^X \le y\} = P\{X \le \ln y\} = \int_0^{\ln y} e^{-x} dx = 1 - \frac{1}{v}$

$$\therefore f_{Y}(y) = \frac{dF_{y}(y)}{dy} = \begin{cases} \frac{1}{y^{2}}, y \ge 1 \\ 0, y < 1 \end{cases} \quad \Box \Pi H y = g(x), f_{Y}(y) = f_{X}[g^{-1}(y)] \cdot \left| \frac{dg^{-1}(y)}{dy} \right|$$
直接求