6 Exercícios

6.1 Funções Harmônicas

Atenção: Nos exercícios abaixo, a menos que se diga o contrário, $\Omega \subset \mathbb{R}^n$ é um aberto limitado com fronteira suave.

Exercício 6.1.1. Mostre que a função $\Gamma : \mathbb{R}^n \setminus \{0\}$ dada por

$$\Gamma(x) := \begin{cases} \frac{1}{2\pi} \ln|x|, & \text{se } n = 2, \\ \frac{1}{n(2-n)\omega_n} |x|^{2-n}, & \text{se } n \ge 3, \end{cases}$$

é harmônica e ilimitada quando $|x| \to 0$.

Exercício 6.1.2. Prove o Teorema 1.3.

Exercício 6.1.3. Se $u: \Omega \to \mathbb{R}$ é contínua em $x_0 \in \Omega$, então

$$u(x_0) = \lim_{s \to 0^+} \frac{1}{n\omega_n s^{n-1}} \int_{\partial B_s(x_0)} u(x) d\sigma_x.$$

<u>Sugestão</u>: Note que $u(x_0) = [n\omega_n s^{n-1}]^{-1} \int_{\partial B_s(x_0)} u(x_0) d\sigma_x$.

Exercício 6.1.4. Modifique a prova do Teorema 1.1 para mostrar que

$$u(0) = \frac{1}{n\omega_n r^{n-1}} \int_{\partial B_r(0)} g(x) d\sigma_x + \frac{1}{n(n-2)\omega_n} \int_{B_r(0)} \left(\frac{1}{|x|^{n-2}} - \frac{1}{r^{n-2}} \right) f(x) dx,$$

sempre que $n \geq 3$ e $u \in C^2(B_r(0)) \cap C(\overline{B_r(0)})$ satisfaz

$$\begin{cases}
-\Delta u = f & \text{em } B_r(0), \\
u = g & \text{em } \partial B_r(0).
\end{cases}$$

Exercício 6.1.5. Se $u \in C^2(\Omega)$ é harmônica então, para todo $x_0 \in \Omega$ e $i \in \{1, ..., \}$, temos que

$$|u_{x_i}(x_0)| \le \frac{n}{d_{x_0}} \max_{x \in \partial B_{d_{x_0}}(x_0)} |u(x)|,$$

onde $d_{x_0} = \operatorname{dist}(x_0, \partial \Omega)$.

Exercício 6.1.6. (Teorema de Liouville) Se u é harmônica e limitada inferiormente (ou superiormente) em \mathbb{R}^n , então u é constante. Sugestão: Use o exercício anterior.

Exercício 6.1.7. Se u é harmônica em Ω , então u é analítica em Ω . Sugestão: cf. [5, Teorema 2.2.10].

Exercício 6.1.8. (Desigualdade de Harnack) Se u é harmônica e não-negativa, e $\Omega_0 \subset\subset \Omega$ é conexo, então existe uma constante $C = C(\Omega, \Omega_0) > 0$ tal que

$$\max_{\overline{\Omega_0}} u \le C \inf_{\overline{\Omega_0}} u.$$

Sugestão: cf. [5, Teorema 2.2.11].

Exercício 6.1.9. Mostre que, no enunciado do Teorema 1.5, a afirmação (i) implica em (ii). Em seguida, dê um exemplo mostrando que a conexidade em (i) é essencial.

Exercício 6.1.10. Mostre que $u \in C(\Omega)$ é harmônica se, e somente se,

$$\int_{\Omega} u\Delta\phi \, \mathrm{d}x = 0, \quad \forall \, \phi \in C_0^2(\Omega).$$

Sugestão: cf. [8, Teorema 1.16].

Exercício 6.1.11. Dizemos que uma função $u \in C^2(\Omega)$ é subharmônica se

$$-\Delta u < 0 \text{ em } \Omega.$$

Prove que se u é subharmônica então, para todo bola $B_r(x) \subset\subset \Omega$, vale

$$u(x) \le \frac{1}{\omega_n r^n} \int_{B_r(x)} u(y) \, \mathrm{d}y.$$

Conclua que, se Ω é limitado, então $\max_{\overline{\Omega}} u = \max_{\partial \Omega} u$.

Exercício 6.1.12. Sejam u, v funções com u harmônica e v subharmônica em Ω . Se $u \equiv v$ em $\partial\Omega$, então $v \leq u$ em Ω .

Exercício 6.1.13. Dizemos que uma função $u \in C^2(\Omega)$ é superharmônica se

$$-\Delta u \ge 0 \quad \text{em } \Omega.$$

Enuncie e prove resultados análogos aos dos dois exercícios anteriores para funções superharmônicas.

Exercício 6.1.14. Se $\phi \in C^2(\mathbb{R})$ é convexa e $u \in C^2(\Omega)$ é harmônica, então a função v definida por $v(x) = \phi(u(x))$ é subharmônica.

Exercício 6.1.15. Se u é harmônica então a função v definida por $v(x) = |\nabla u(x)|^2$ é subharmônica.

Exercício 6.1.16. Sejam $B:=B_1(0)\subset\mathbb{R}^n,\,f\in C(\overline{B}),\,g:\partial B\to\mathbb{R}$ contínua,

$$F := \max_{x \in \overline{B}} |f(x)|$$
 e $\Phi := \max_{x \in \partial B} |g(x)|$.

Supondo que $u \in C^2(B) \cap C(\overline{B})$ é tal que $\Delta u \equiv f$ em B, $u \equiv g$ em ∂B , resolva os itens abaixo.

(a) Defina $w^{\pm}: \overline{B} \to \mathbb{R}$ por

$$w^{\pm}(x) := \frac{F}{2n}|x|^2 \pm u(x)$$

e verifique que $\Delta w^{\pm} \geq 0$ em B.

- (b) Verifique que, se $x \in \partial B$, então $w^{\pm}(x) \leq \frac{F}{2n} + \Phi$.
- (c) Conclua que existe C > 0, independente de u, tal que

$$\max_{x \in \overline{B}} |u(x)| \le C \left(\max_{x \in \overline{B}} |f(x)| + \max_{x \in \partial B} |g(x)| \right).$$

Exercício 6.1.17. Se $\Omega \subset \mathbb{R}^n$ é conexo e u satisfaz

$$\left\{ \begin{array}{ccc} \Delta u & = & 0 & \text{em } \Omega, \\ u & = & g & \text{em } \partial \Omega, \end{array} \right.$$

onde $g:\partial\Omega\to[0,\infty)$ é tal que $g(x_0)>0$ para algum $x_0\in\partial\Omega,$ então u(x)>0 para todo $x\in\Omega.$

6.2 O Problema de Poisson

Atenção: Nos exercícios abaixo, a menos que se diga o contrário, $\Omega \subset \mathbb{R}^n$ é um aberto limitado com fronteira suave.

Exercício 6.2.1. Se $u \in C^2(\mathbb{R}^n)$ é harmônica e $A_{n \times n}$ é uma matriz ortogonal, então $v : \mathbb{R}^N \to \mathbb{R}$ dada por v(x) = u(Ax) é também harmônica.

Exercício 6.2.2. Complete os detalhes da prova do Lema 2.1, provando as igualdades em (11) e (12).

Exercício 6.2.3. Dado $k \in \mathbb{N} \cup \{0\}$ e $0 < \gamma \le 1$, verifique que $C^{k,\gamma}(\overline{\Omega})$, munido com a norma,

$$||u||_{k,\gamma} = \sum_{|\alpha| \le k} (||D^{\alpha}u||_0 + H_{\gamma}[D^{\alpha}u])$$

é um espaço de Banach.

Exercício 6.2.4. (cf. [15, Exercício 1.4]) Sejam $\Omega = B_{1/2}(0) \subset \mathbb{R}^2$, $f: \Omega \to \mathbb{R}$ definida por

$$f(x) = \begin{cases} \alpha \frac{(x_1^2 - x_2^2)}{|x|^2} |\ln|x||^{\alpha - 2} (\alpha - 1 + 4 \ln|x|) & \text{se } 0 < |x| < 1/2, \\ 0 & \text{se } x = 0, \end{cases}$$

onde $0 < \alpha < 1$, $x = (x_1, x_2)$ e ω_f é o potencial Newtoniano gerado por f. Resolva os itens abaixo.

- (a) Definindo $v: B_{1/2}(0) \to \mathbb{R}$ por $v(x) = \begin{cases} (x_1^2 x_2^2) |\ln |x||^{\alpha} & \text{se } 0 < |x| < 1/2, \\ 0 & \text{se } x = 0, \end{cases}$ verifique que $-\Delta v = f$ em $\Omega \setminus \{0\}, v \in C^1(\Omega)$, mas v não é de classe C^2 em Ω .
- (b) Verifique que, para toda $\varphi \in C_0^{\infty}(\Omega)$, a igualdade $\int_{\Omega} (\nabla u \cdot \nabla \varphi) dx = \int_{\Omega} f(x)\varphi(x) dx$ é satisfeita para $u = \omega_f$ e para u = v.
- (c) Utilize o item acima e o Exercício 6.1.10 para concluir que $\Delta(\omega_f v) = 0$ em Ω .
- (d) Conclua que o potencial Newtoniano ω_f não é de classe C^2 em Ω .

Exercício 6.2.5. O Princípio da Singularidade Removível afirma que, se \underline{u} é uma função harmônica e limitada em $\overline{B_r(x_0)} \setminus \{x_0\}$, então u pode ser estendida para $\overline{B_r(x_0)}$ de modo que a extensão seja harmônica.

- (a) Prove o resultado enunciado acima (cf. [15, Proposição 4.12]).
- (b) Use o resultado e o Princípio do Máximo para verificar a afirmação da Observação 2.4.

Exercício 6.2.6. Seja $B^+ = \{x \in \mathbb{R}^n : |x| < 1, x_n > 0\}$. Suponha que $u \in C^2(\overline{B^+})$ é harmônica e u = 0 em $\partial B^+ \cap \{x_n = 0\}$. Usando um cálculo direto, mostre que $u^* : B_1(0) \to \mathbb{R}$ definida abaixo é harmônica

$$u^*(x) := \begin{cases} u(x) & \text{se } x_n \ge 0 \\ -u(x_1, \dots, x_{n-1}, -x_n) & \text{se } x_n < 0. \end{cases}$$

Exercício 6.2.7. Resolva os itens a seguir para mostrar que o resultado do exercício anterior permanece válido se trocarmos $u \in C^2(\overline{B^+})$ por $u \in C(B^+)$:

(a) Explique por que existe v tal que $\Delta v = 0$ em B, $v = u^*$ em ∂B .

- (b) Aplique o Princípio do Máximo para mostrar que v é impar em x_n .
- (c) Verifique que $v = u^*$ em B^+ e conclua que u^* é harmônica em $B_1(0)$.

Exercício 6.2.8. Prove o Teorema 2.5 (cf. [5, Teorema 11, Seção 2.2]).

Exercício 6.2.9. Use a fórmula de Poisson (cf. Teorema 2.5) para provar que

$$r^{n-2} \frac{r - |x|}{(r + |x|)^{n-1}} u(0) \le u(x) \le r^{n-2} \frac{r + |x|}{(r - |x|)^{n-1}} u(0),$$

sempre que u é não-negativa e harmônica em $B_r(0)$. Conclua que uma função não negativa e harmônica em \mathbb{R}^n tem que ser constante.

6.3 Operadores Lineares de 2° Ordem

Atenção: Nos exercícios abaixo, a menos que se diga o contrário, $\Omega \subset \mathbb{R}^n$ é um aberto limitado de classe C^2 . O operador L é uniformemente elíptico em Ω e tem a forma

$$Lu = \sum_{i,j=1}^{n} a^{ij}(x)u_{x_i,x_j} + \sum_{i=1}^{n} b^i(x)u_{x_i} + c(x)u,$$

com os coeficientes limitados em Ω e $c \leq 0$ em Ω .

Exercício 6.3.1. Verifique com detalhes todas as afirmações feitas na Observação 3.2.

Exercício 6.3.2. Se $\Omega = (-\pi/2, \pi/2) \times (-\pi/2, \pi/2)$ e $u(x, y) = \cos x \cos y$, então u satisfaz $\Delta u + 2u = 0$ em Ω , u = 0 em $\partial \Omega$, mas u troca de sinal em Ω . Por que isso não contraria o Princípio do Máximo?

Exercício 6.3.3. A função $u(x,y) = \frac{1 - (x^2 + y^2)}{(1 - x)^2 + y^2}$, $(x,y) \in B_1(0) \subset \mathbb{R}^2$, satisfaz $\Delta u = 0$ em Ω , u = 0 em $\partial \Omega \setminus \{(1,0)\}$. O Princípio do Máximo se aplica nesse caso?

Exercício 6.3.4. Prove o Teorema 3.3..

Exercício 6.3.5. Prove o Teorema 3.4. Conclua que se $u, v \in C^2(\Omega) \cap C(\overline{\Omega})$ satisfazem $Lu \geq Lv$ em Ω , $u \leq v$ em $\partial\Omega$, então $u \leq v$ em Ω .

Exercício 6.3.6. Considere as hipóteses do Lema de Hopf e o novo operador $\widetilde{L} = L - c^+(x)$. Repetindo o argumento da prova, mostre que se $u(x_0) = 0$, então o resultado do lema permanece válido independente do sinal de c(x).

Exercício 6.3.7. Se Ω é conexo e $u \in C^2(\Omega) \cap C(\overline{\Omega})$ satisfaz $Lu \geq 0$ em Ω , $u \leq 0$ em Ω , então u < 0 em Ω ou $u \equiv 0$ em Ω , independente do sinal de c(x).

Exercício 6.3.8. Mostre que é sempre possível obter $y \in \Sigma$ e r > 0 satisfazendo as condições utilizadas na prova do Teorema 3.5..

Exercício 6.3.9. Prove a afirmação feita na Observação 3.5..

Exercício 6.3.10. Se $u \in C^2(\Omega) \cap C(\overline{\Omega})$ satisfaz $\Delta u = u^3$ em Ω , u = 0 em $\partial \Omega$, então $u \equiv 0$.

Exercício 6.3.11. Se $u \in C^2(\Omega) \cap C(\overline{\Omega})$ satisfaz $\Delta u = u^3 - u$ em Ω , u = 0 em $\partial\Omega$, então $-1 \le u(x) \le 1$ para todo $x \in \Omega$. Seria possível $u(x_0) = \pm 1$ para algum $x_0 \in \Omega$?

Exercício 6.3.12. Se Ω é conexo, $u \in C^2(\Omega) \cap C(\overline{\Omega})$ satisfaz $\Delta u = u^2$ em Ω e u assume máximo em Ω , então $u \equiv 0$.

Exercício 6.3.13. Se $u(x) = -e^x - e^{-x}$, então u satisfaz u'' - u = 0 em \mathbb{R} e assume máximo em x = 0. Por que isso não contraria o Princípio do Máximo Forte?

Exercício 6.3.14. Considere o problema não linear

$$\left\{ \begin{array}{rcl} \Delta u & = & f(x,u) & \text{ em } \Omega, \\ u & = & \varphi & \text{ em } \partial \Omega, \end{array} \right.$$

em que $f(\cdot, u) \in C^{0,\gamma}(\overline{\Omega})$, $f(x, \cdot) \in C^1(\mathbb{R})$ e f é não decrescente em u, isto é, $\frac{\partial f}{\partial u}(x) \geq 0$ para todo $x \in \overline{\Omega}$. Mostre que o problema tem no máximo uma solução em $C^2(\Omega) \cap C(\overline{\Omega})$.

Exercício 6.3.15. Use o exercício anterior para verificar que, se $P \in C^{0,\gamma}(\overline{\Omega})$ é uma função não negativa, então o problema não linear

$$\left\{ \begin{array}{ccc} \Delta u & = & P(x)e^u & \text{ em } \Omega, \\ u & = & \varphi & \text{ em } \partial\Omega, \end{array} \right.$$

tem no máximo uma solução em $C^2(\Omega) \cap C(\overline{\Omega})$.

Exercício 6.3.16. Seja Ω conexo e $u \in C^2(\Omega) \cap C^1(\overline{\Omega})$ tal que Lu = 0 em Ω e $\frac{\partial u}{\partial \eta} = 0$ em $\partial \Omega$.

- (a) Mostre que u é constante em Ω .
- (b) Se $c(x_0) < 0$ para algum $x_0 \in \Omega$, então $u \equiv 0$ em Ω .
- (c) Enuncie e prove um teorema de unicidade de solução para o problema de Neumann $Lu = f \text{ em } \Omega, \frac{\partial u}{\partial \eta} = \varphi \text{ em } \partial \Omega.$

Exercício 6.3.17. Para Ω conexo, considere o problema

$$\left\{ \begin{array}{rcl} Lu &=& f & \text{ em } \Omega, \\ \frac{\partial u}{\partial \eta} + \alpha(x)u &=& \varphi & \text{ em } \partial \Omega, \end{array} \right.$$

em que $f \in C(\overline{\Omega})$, $\varphi \in C(\partial \Omega)$ e $\alpha \in C(\partial \Omega)$ é uma função não negativa.

- (a) Se $c \not\equiv 0$ ou $\alpha \not\equiv 0$, então o problema tem no máximo uma solução em $C^2(\Omega) \cap C^1(\overline{\Omega})$.
- (b) Se $c\equiv 0$ e $\alpha\equiv 0$, então quaisquer duas soluções do problema em $C^2(\Omega)\cap C^1(\overline{\Omega})$ diferem por uma constante.

Exercício 6.3.18. Se $K:[0,1]\times[0,1]\to\mathbb{R}$ é uma função contínua, então o operador linear $T:C([0,1])\to C([0,1])$ definido por $(Tu)(x)=\int_0^1 K(x,y)u(y)\,dy$ é compacto.

Exercício 6.3.19. Se $T:X\to Y$ é contínuo e $S:Y\to Z$ é compacto, então $(S\circ T):X\to Z$ é compacto.

Exercício 6.3.20. Seja (X,d) é um espaço métrico completo e $T:X\to X$. Se existe $\theta\in(0,1)$ tal que $d(Tx_1,Tx_2)<\theta\cdot d(x_1,x_2),\quad\forall\,x_1,x_2\in X,$

então existe exatamente um elemento $x \in X$ tal que Tx = x.

<u>Sugestão</u>: Tome $x_0 \in X$ não nulo e mostre que a sequência $x_k = Tx_{k-1}$, $k \in \mathbb{N}$, é uma sequência de Cauchy. Em seguida, mostre que o limite dessa sequência é um ponto fixo.

Exercício 6.3.21. Mostre que, se $\theta \in \mathbb{R}$, então existe c > 0 tal que

$$(a+b)^{\theta} \le c(a^{\theta}+b^{\theta}), \quad \forall a, b \ge 0.$$

Sugestão: Estude o comportamento de $f(t) = (1+t)^{\theta}/(1+t^{\theta})$ quando $t \to 0^+$ e $t \to +\infty$.