## Лабораторная работа №2

«Типовые динамические звенья систем автоматического регулирования»

## 1. Цель работы

Исследование переходных характеристик и динамических свойств типовых звеньев систем автоматического управления.

### 2. Порядок выполнения работы

- 1) Код, реализующий моделирование и сохранение характеристик звеньев, для всех заданий реализовать в скрипте lab\_otu\_dynamic.m., код для каждого звена представить в виде листинга с соответствующим номером передаточной функции и типа звена.
- 2) Осуществить моделирование и сохранить временные и частотные характеристики типовых динамических звеньев:
- -задание исходных данных листинг1

исходные данные (одинаковы для всех динамических звеньев):

K=2

T=0,5

z = 0.4

Все передаточные функции каждого из типовых звеньев формировать с помощью команды tf, задавая полином знаменателя и числителя :

$$Wi(s) = X(s)/Y(s) = B(s) / A(s)$$

Типы звеньев:

- -усилитель (пропорциональное звено) W1(s) листинг 2.1
- -интегрирующее звено W2(s) листинг 2.2
- -апериодическое 1-го порядка W3(s) листинг 2.3
- реальное дифференцирующее 1 -го порядка W4(s) листинг 2.4
- -колебательное с исходным значением K-W5(s) листинг 2.5; колебательное со значением K1=K\*2-W6(s) листинг 3.1 (оба графика выводить на одной диаграмме, исходный W5(s) синий, W6(s) зеленый)
- колебательное с исходным значением T-W5(s) и колебательное со значением T1=T\*2-W7(s) листинг 3.2 (оба графика выводить на одной диаграмме , исходный W5(s) синий, W7(s) зеленый)

- колебательное с исходным значениям коэффициента демпфирования W5(s) и колебательное с уменьшением коэффициента демпфирования вдвое W8(s) листинг 3.3 (оба графика выводить на одной диаграмме, исходный W5(s) синий, W8(s) зеленый)
- консервативное звено (колебательное со значениям коэффициента демпфирования равным 0) W9(s) листинг 3.4 (оба графика выводить на одной диаграмме, исходный W5(s) синий, W9(s) зеленый)

## 4. Ход работы

Все передаточные функции каждого из типовых звеньев формируются с помощью команды tf, задавая полином числителя и знаменателя:

В листинге 2.1 код, реализующий моделирование и сохранение характеристик пропорционального (усилительного) звена

Исследование типовых динамических звеньев.

- 2.1. Исследовать следующие динамические звенья, которые задать через функцию tf(), задавая полином знаменателя и числителя:
- усилительное (пропорциональное или безинерционное) звено: W(s) = K для K = 10.
- идеальное интегрирующее звено: W(s) = K/s для  $K = \{1, 10\}$ .
- апериодическое звено 1-го порядка (с разным усилением)  $W(s)=1/(T\ s+1)$  для  $K=\{1,10\}$  при T=0.1.
- апериодическое звено 1-го порядка (с разной постоянной времени) W(s) = 1 / (T s + 1) для  $T = \{0.1, 0.01\}$ .
- апериодическое звено 2-го порядка  $W(s) = 1/(T \ 2 \ 2 \ s \ 2 + T1 \ s + 1)$  для T1 = 0.1, T2 = 0.01.
- консервативное звено  $W(s) = 1/(T \ 2 \ s \ 2 + 1)$  для  $T = \{0.1, 0.01\}$ .
- колебательное звено (с разным коэффициентом демпфирования)  $W(s) = \omega 2$  /( $s 2 + 2 \xi \omega s + \omega 2$ ) для  $\xi = \{0.3, 0.7, 1.5\}$ , при  $\omega = 10 \cdot 2\pi$ .
- колебательное звено (с разной собственной частотой)  $W(s) = \omega \ 2 \ / \ (s \ 2 + 2 \ \xi \ \omega \ s + \omega 2)$  для  $\omega = \{1, 10\} \cdot 2\pi$ , при  $\xi = 0.7$ .
- идеальное дифференцирующее звено W(s) = s
- форсирующее звено 1-го порядка W(s) = (T s + 1)/1 для  $T = \{0.1, 0.01\}$ .

- форсирующее звено 2-го порядка  $W(s) = (T\ 2\ 2\ s\ 2 + T1\ s + 1)/\ 1$  для T1 = 0.1, T2 = 0.01.
- звено чистого запаздывания W(s) = e T s для  $T = \{0.2, 0.6\}$ .

Примечание. Частоты динамических звеньев  $\omega$ , определяемые в точке, в которой падение усиления в системе составляет 3 дБ, связаны с постоянными времени следующим соотношением:  $\omega = 1$  T.

Однако, постоянная времени T измеряется в секундах, следовательно величина 1/T измеряется в  $\Gamma$ ц, а как результат, значение  $\omega$ , измеряемое в рад/с, должно вычисляться следующим образом:

$$\omega = 2\pi T$$

Примечание. Ввиду того, что MATLAB не может моделировать во временной области системы в которых порядок полинома знаменателя меньше порядка полинома числителя, построение переходных процессов для соответствующих передаточных функций нужно пропустить, что можно реализовать с использованием функции isproper().

Параметры динамических звеньев

Таблица 2.1

| Варианты | 1   | 2   | 3   | 4   | 5    | 6   | 7    | 8    | 9   | 10  | 11   | 12   |
|----------|-----|-----|-----|-----|------|-----|------|------|-----|-----|------|------|
| k        | 5   | 1   | 10  | 4   | 1,5  | 3   | 10   | 14   | 5   | 4   | 1    | 2    |
| T        | 2   | 0,1 | 5   | 1   | 0,2  | 3   | 5    | 5    | 1   | 0,4 | 0,2  | 0,2  |
| $T_{I}$  | 3   | 0,2 | 4   | 2   | 0,4  | 6   | 3    | 6    | 2   | 0,2 | 0,3  | 0,25 |
| $T_2$    | 1,3 | 0,8 | 1   | 0,8 | 0,45 | 1   | 1,1  | 1,41 | 1   | 0,3 | 0,35 | 0,3  |
| ζ        | 0,2 | 0,3 | 0,4 | 0,5 | 0,25 | 0,2 | 0,25 | 0,3  | 0,4 | 0,6 | 0,5  | 0,55 |

Для каждого из динамических звеньев построить на одной канве пять графиков:

- график переходного процесса на единичное ступенчатое воздействие (переходная функция), построенный с использованием функции step(), для которой в явном виде задать время моделирования равное 4 сек.;
- -график переходного процесса на единичное импульсное воздействие (весовая функция), построенный с использованием функции impulse () для которой в явном виде задать время моделирования равное 4 сек.;
- -графики ЛАФЧХ (диаграммы Боде), построенные с использованием функции Bode Diagram() для амплитуды и фазы (в обязательном порядке на

графиках ЛАФЧХ частоту отобразить в Гц (рад/с), ЛАЧХ в дБ, а ЛФЧХ в градусах), масштаб логарифмический;

-годограф Найквиста (АФЧХ в полярных координатах) на комплексной плоскости.

В отчете для каждого динамического звена привести графики (со всеми подписями и легендой) и сделать выводы относительно зависимости характера переходных процессов и ЛАФЧХ от параметров передаточной функции каждого типа динамических звеньев, а также относительно динамики (вида переходного процесса) и особенностей каждого типа динамических звеньев.

- 3) Сделать выводы о влиянии параметров на характеристики колебательного звена.
- 4) Провести сравнительный анализ результатов моделирования

#### Содержание отчета

- 1. Цель работы
- 2. Порядок выполнения работы
- 3. Математические модели динамических звеньев
- 4. Кривые переходных характеристик
- 5. Выводы. Сравнительный анализ результатов моделирования.

## 3. Краткие теоретические сведения

J. MATRIE ILOTETH ILONIE CDEMENTO

Типовыми динамическими звеньями называются простейшие составные части систем автоматического управления, поведение которых описывается обыкновенными дифференциальными уравнениями не выше 2-ого порядка:

$$a_2 y^{(2)} + a_1 y^{(1)} + a_0 y = b_1 u^{(1)} + b_0 u , (2.1)$$

где y и u — соответственно выходная переменная и управляющее воздействие звена;  $a_i$  и  $b_i$  — постоянные коэффициенты.

С использованием оператора дифференцирования  $p = \frac{d}{dt}$  уравнение (2.1) имеет вид:

$$a_2 p^2 y + a_1 p y + a_0 y = b_1 p u + b_0 u, (2.2)$$

Определяем передаточную функцию W(p) звена, учитывая при этом, что начальные условия для уравнения (2.2) нулевые

$$W(p) = \frac{y}{u} = \frac{b_1 p + b_0}{a_2 p^2 + a_1 p + a_0}$$
 (2.3)

Динамические свойства звеньев определяются по их реакции на типовое входное воздействие. Наиболее простым типовым воздействием является единичная ступенчатая функция 1(t), удовлетворяющая условиям

$$1(t) = \begin{cases} 0, ecnu \ t < 0 \\ 1, ecnu \ t \ge 0 \end{cases}$$
 (2.4)

Одной из реакций звена является переходная функция h(t) — изменение выходной переменной во времени при подаче на вход звена единичной ступенчатой функции l(t). Переходная функция характеризует переход звена (системы) от одного равновесного состояния или установившегося режима к другому.

По графику h(t) можно определить математическую модель исследуемого динамического звена и его параметры.

Интегрирующее звено

Описывается уравнениями:

$$y^{(1)} = \kappa u_{\text{ИЛИ}} y = \frac{\kappa}{p} u_{,}$$
 (2.5)

где k – постоянный коэффициент.

Переходная функция звена

$$h(t) = \kappa t \cdot 1(t) \tag{2.6}$$

Интегрирующее звено с замедлением

Описывается уравнениями

$$Ty^{(2)} + y^{(1)} = \kappa u \,_{\text{ИЛИ}} y = \frac{\kappa}{p(Tp+1)} u,$$
 (2.7)

где T – постоянная времени.

Переходная функция звена

$$h(t) = \kappa [t - T(1 - e^{-\frac{t}{T}})] \cdot 1(t)$$
(2.8)

Графики переходных функций интегрирующих звеньев показаны на рис. 2.1.



Рис.2.1. Графики переходных функций интегрирующего звена (a) и интегрирующего звена с замедлением (б).

#### Изодромное звено

Описывается уравнениями

$$y^{(1)} = \kappa (Tu^{(1)} + u)$$
 или  $y = \frac{\kappa (Tp+1)}{p} \cdot u$ , (2.9)

его переходная функция

$$h(t) = \kappa(t+T) \cdot 1(t).$$

Реальное дифференцирующее звено

Описывается уравнениями

$$Ty^{(1)} + y = \kappa u^{(1)}_{\text{или}} y = \frac{\kappa p}{Tp+1} \cdot u,$$
 (2.10)

его переходная функция

$$h(t) = \frac{\kappa}{T} e^{-\frac{t}{T}} \cdot 1(t). \tag{2.11}$$

Графики переходных функций изодромного и реального дифференцирующего звеньев изображены на рис. 2.2.



Рис.2.2. Графики переходных функций изодромного (a) и реального дифференцирующего (б) звеньев.

## <u>Апериодическое звено первого порядка</u> Описывается уравнениями

$$Ty^{(1)} + y = \kappa u_{\text{ИЛИ}} y = \frac{\kappa}{Tp+1} \cdot u,$$
 (2.12)

его переходная функция

$$h(t) = k(1 - e^{-\frac{t}{T}}) \cdot 1(t)$$
(2.13)

# Апериодическое звено 2-ого порядка

Описывается уравнениями

$$T_2^2 y^{(2)} + T_1 y^{(1)} + y = \kappa u_{\text{ИЛИ}} y = \frac{\kappa}{T_2^2 p^2 + T_1 p + 1} u$$
, (2.14)

где  $T_1$ ,  $T_2$  — постоянные времени ( $T_1$ >  $2T_2$ ). При этом корни характеристического уравнения  $T_2^2 p^2 + T_1 p + 1 = 0$  являются вещественными и отрицательными. Знаменатель передаточной функции апериодического звена 2-ого порядка может быть разложен на множители

$$y = \frac{\kappa}{(T_3 p + 1)(T_4 p + 1)} u, \tag{2.15}$$



Рис. 2.3. Графики переходных функций апериодических звеньев первого порядка (а) и второго порядка (б)

В связи с этим, апериодическое звено второго порядка эквивалентно двум апериодическим звеньям первого порядка, соединенным последовательно между собой и имеющим коэффициент усиления k и постоянные времени  $T_3$  и  $T_4$ .

Переходная функция апериодического звена второго порядка имеет вид

$$h(t) = \kappa \left( 1 - \frac{T_3}{T_3 - T_4} e^{-\frac{t}{T_3}} + \frac{T_4}{T_3 - T_4} e^{-\frac{t}{T_4}} \right) \cdot 1(t)$$
 (2.16)

Графики переходных функций апериодических звеньев показаны на рис. 2.3., a

$$T_5 = \frac{T_3 T_4}{T_3 + T_4} \ln \left( \frac{T_3}{T_4} \right).$$

#### Колебательное звено

Описывается дифференциальным уравнением, что и апериодическое звено второго порядка. Однако корни характеристического уравнения являются комплексными. Уравнение и передаточная функция колебательного звена представляются в виде

$$T^{2}y^{(2)} + 2\xi Ty^{(1)} + y = \kappa u, \qquad (2.17)$$

$$W(p) = \frac{\kappa}{T^2 p^2 + 2\xi T p + 1} = \frac{\kappa \omega_0^2}{p^2 + 2\xi \omega_0 p + \omega_0^2},$$
(2.18)

где  $\omega_0 = \frac{1}{T}$  — частота свободных колебаний при отсутствии затухания;  $\zeta$  — коэффициент затухания (0<  $\zeta$ <1)

Переходная функция колебательного звена:

$$h(t) = \kappa \left[ 1 - e^{-\gamma t} (\cos \omega t + \frac{\gamma}{\omega} \sin \omega t) \right] \cdot 1(t)$$

$$\gamma = \frac{\omega}{\pi} \ln \frac{A_1}{A_2}; \ \gamma = \xi \omega_0; \ \omega = \omega_0 \sqrt{1 - \xi^2}.$$
(2.19)

Параметры выражения (2.19) можно легко определить по графику переходной функции (см. рис. 2.4a).

#### Консервативное звено

Может быть получено из колебательного звена, если  $\zeta$ =0. В этом случае корни характеристического уравнения  $T^2p^2+1=0$  будут чисто мнимые.

Передаточная функция консервативного звена имеет вид:

$$W(p) = \frac{k}{T^2 p^2 + 1},$$
(2.20)

а его переходная функция

$$h(t) = k(1 - \cos \omega_0 t) \cdot l(t) \tag{2.21}$$

Графики переходных функций колебательного и консервативного звеньев показаны на рис. 2.4.



Рис. 2.4. Графики переходных функций колебательного (a) и консервативного (б) звеньев