SOLVING THE POISSON-EQUATION IN ONE DIMENSION: TRIDIAGONAL MATRIX ALGORITHM AND

LU-DECOMPOSITION

____ FYS3150: COMPUTATIONAL PHYSICS _____

SIGURD SANDVOLL SUNDBERG GITHUB.COM/SIGURDSUNDBERG

Abstract. Abstract write last.

Contents

1.	Introduction	1
2.	Theory	1
2.1.	The Poisson Equation	1
2.2.	Approximation of the Second Derivative	1
2.3.	Relative Error	1
3.	Algorithms	1
3.1.	Tridiagonal Matrix Algorithm	1
3.2.	LU Decomposition	1
4.	Results	1
5.	Discussion	1
6.	Conclusion	1

1. Introduction

Introduction to the report

2. Theory

- 2.1. The Poisson Equation. add section on poisson equation » Dirilect boundary conditions » relation between f(x) u" » Check equal
- 2.2. **Approximation of the Second Derivative.** Add section on approx of second derivative \ast Going from diff equation \ast linear form $Av = b \ast$ Matrix -1,2,-1
- 2.3. Relative Error. Add short theory of relative error » YES

3. Algorithms

- 3.1. **Tridiagonal Matrix Algorithm.** Section on the TDMA » Problem b » Implementation » FLOPS
- 3.2. **Specialized algorithm.** Section on the optimization » Specialized algorithm problem c » FLOPS » CPU time
- 3.3. LU Decomposition. Section on LU-decomposition » Alogrithm for LU-decomposition » FLOPS » CPU time

4. Results

Results from the report. \gg CPU time difference \gg Plots \gg Difference in relative error

5. Discussion

Discussion of the report.

6. Conclusion

Conclusion of the report.