Contesta las preguntas en las hojas blancas que se te darán. Indica claramente el número de problema e inciso. No es necesario que copies la pregunta.

Profesor: Román Contreras

Puedes usar cualquier teorema o proposición demostrado en clase siempre y cuando especifiques cláramente que lo estás usando.

Justifica todas tus respuestas y afirmaciones. Redacta tus argumentos de la manera más clara posible, no es necesario que utilices símbolos lógicos.

Pregunta	1	2	3	Total
Puntos	6	8	6	20
Puntaje				

T. T	1	
	omb	ro.
T .N	OIIID.	LC.

- 1. (6 Puntos) Demuestra cualquiera de las siguientes afirmaciones:
 - Si una recta ℓ es perpendicular a dos rectas distintas que se intersectan en un punto, entonces es perpendicular a todo el plano que contiene a dichas rectas.
 - Si Π es un plano y $P \in \Pi$ es un punto cualquiera, entonces existe una única recta ℓ que es perpendicular a Π y $P \in \ell$. (Da una construcción explícita de dicha recta)
 - Si ℓ es una recta perpendicular a un plano Π y ℓ' es otra recta que es paralela a ℓ , entonces ℓ' es perpendicular a Π también.
- 2. Sean \vec{v} y \vec{w} dos vectores. Asume que el vector \vec{v} es un vector no nulo. Demuestra que:
 - (a) (2 Puntos) Demuestra que el vector $\vec{w} \frac{\langle \vec{w}, \vec{v} \rangle}{\langle \vec{v}, \vec{v} \rangle} \vec{v}$ es un vector ortogonal a \vec{v} . Concluye que existe un real λ y un vector \vec{z} tal que $\vec{w} = \vec{z} + \lambda \vec{v}$ y \vec{z} es ortogonal a \vec{v} .
 - (b) (2 Puntos) Usando el ejercicio anterior demuestra que $\|\vec{w}\| \ge |\lambda| \|\vec{v}\|$. (Sugerencia: calcula $\langle \vec{w}, \vec{w} \rangle$.)
 - (c) (3 Puntos) Demuestra que $|\langle \vec{v}, \vec{w} \rangle| \leq ||\vec{v}|| \, ||\vec{w}||$. (Sugerencia: calcula $\langle \vec{v}, \vec{w} \rangle$ usando que $\vec{w} = \vec{z} + \lambda \vec{v}$ como en el primer inciso y utiliza el inciso dos)
 - (d) (1 Punto) Demuestra que si $\vec{v} = 0$, la desigualdad anterior sigue siendo cierta, es decir: $|\langle \vec{v}, \vec{w} \rangle| \le \|\vec{v}\| \|\vec{w}\|$.

La desigualdad $|\langle \vec{v}, \vec{w} \rangle| \leq ||\vec{v}|| \, ||\vec{w}||$ es muy utilizada en matemáticas y recibe el nombre de desigualdad de Cauchy-Schwartz.

3. (6 Puntos) Sea $\beta = \{\vec{w}_1, \vec{w}_2, \vec{w}_3\}$ una base ortonormal. Sean $\vec{v}_1, \vec{v}_2, \vec{v}_3$ tres vectores tales que en la base β tienen coordendas: $\vec{v}_{1\beta} = (1, \sqrt{3}, 0)$ $\vec{v}_{2\beta} = (\sqrt{3}, 3, 1)$ $\vec{v}_{3\beta} = (2\sqrt{3}, 6, 1)$.

Intenta utilizar el procedimiento de ortonormalización de Gram-Schmidt en los vectores $\vec{v}_1, \vec{v}_2, \vec{v}_3$ y explica por que falla en este caso.

Fin del exámen