2021/01/19

Consider the neural network in Figure 1 with input $x \in \mathbb{R}$, 3 hidden layers with one node each and one output

Figure 1: Simple neural network.

In the network each node corresponds to the sigmoid of the previous node multiplied by some weight i.e. $a_i =$ $\sigma(w_i a_{i-1}), i = 1, ..., 4 \text{ where } a_0 = x \text{ and } a_4 = y.$

- By using the chain rule compute $\frac{\partial y}{\partial x}$
- Compute the maximum of σ' and discuss how this is related to the vanishing gradients problem.

BOCKPOPERSTIAN and chain tole

$$\frac{dy}{dx} = \frac{d^2x}{dx} = \frac{\partial 2x}{\partial x} + \frac{\partial 2x}{$$

$$\frac{14}{3} = w_1 w_2 w_3 w_4$$
, $\sigma'(3_1) \sigma'(3_2) \sigma'(3_3) \sigma'(3_4) = \prod_{i=1}^{4} w_i \prod_{j=1}^{4} \sigma'(z_i)$

065: Max (0'(2))= 0.25 When 2=0.5

Lysdini ~ 0.252 whe 2-dish