Data Visualization W9-1

Logarithm

How about in log scale?

In log-scale,

Where is 5?

Where is 5?

Where is 5?

Distance ~ multiplication

Where is 4?

Where is 25?

Why do we care about log-scale?

- We need to use log-scale for certain data types (e.g., ratios).
- There are lots of dataset where the quantity spans many orders of magnitude and logscale provides a more 'natural' scale.

Multiplicative process in linear scale

= Additive process in log-scale

Log-normal distribution

$$\frac{1}{x\sigma\sqrt{2\pi}} \exp\left(-\frac{\left(\ln x - \mu\right)^2}{2\sigma^2}\right)$$

c.f.
$$\frac{1}{\sigma\sqrt{2\pi}}\exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

Log-normal distribution

$$\frac{1}{x\sigma\sqrt{2\pi}} \exp\left(-\frac{\left(\ln x - \mu\right)^2}{2\sigma^2}\right)$$

c.f.
$$\frac{1}{\sigma\sqrt{2\pi}}\exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

'Power-law' distributions

$$f(x) = cx^{-\alpha}$$

$$\log f(x) = \log (cx^{-\alpha})$$
$$= \log c - \alpha \log x$$