

Min ZHANG (张敏) z-m@tsinghua.edu.cn

IBM Watson @ Jeopardy

- February 14, 15, and 16, 2011
 - Jeopardy's two biggest champions
 - □ Brad Rutter (right):
 - Won a whopping \$3.25 million playing *Jeopardy*, the most cash ever awarded on the show.
 - He is a Johns Hopkins University dropout
 - Ken Jennings (left):
 - Holds the title for longest *Jeopardy* winning streak, with 74 consecutive wins in 2004.
 - He holds degrees in computer science and English, from Brigham Young University, and an international BA diploma from Seoul Foreign School.

IBM Watson won the Jeopardy

Towards the Open Advancement of Question Answering Systems

Final:

\$77,147

(5,000+35,734+41,413)

VS.

\$21,600 &

\$24,000.

5

IBM Watson

- In development for 4 years
- Runs on 90 Power 7 servers
 - Each: 4*8 power 7
- Does not connect to the Internet
- Search on a large scale knowledge base, not Internet
 - Search on billion pages within 3s
- Trained with previous questions and games
 - With Jeopardy players: 77 (2009) + 55 (2010, winners)
 - Lack of real-time learning ability
 - E.g. Category: US Cities
 - □ *Q*: "Its largest airport was named for a World War II hero; its second largest, for a World War II battle."
 - □ A: "What is Chicago / Toronto?"

Technical requirements

- Answers to questions on any topic
 - Science, geography, popular culture ...
- Accuracy: not only an answer, but a confident right answer
- Speed: within 3 second or less
- Advanced linguistic understanding
 - Parser complex sentences, recognize and understand jokes, metaphors, puns and riddles
- Real time analysis of questions
- Learn from mistakes
- Be prepared to handle the unexpected ...

7

Techniques involved -- DeepQA

- A massively parallel probabilistic evidence-based architecture for answer questions
 - Non-database approach
 - Deep text analytics
 - NLP and statistical NLP
 - Formulating parallel hypotheses with confidence score
 - Voting, Question interpretation...
 - Search
 - Risk assessment
 - Hadoop and UIMA
- Difficulties/Problems in real application scenarios

Review: What's IR? (cont.)

- Broad-sense: IR ~ Information Management
 - General problem: how to manage information?
 - How to find useful information? (retrieval & recommendation)
 - Beyond search engine:
 - e.g. in news feed, movie, travel, e-commerce, financial... scenarios
 - e.g. in social media platform, e.g. Twitter, Facebook, YouTube, WeChat, Weibo, Zhihu,
 - How to organize information? (classification & filtering)
 - e.g., automatically assign email to different folders
 - How to discover information (or even knowledge) from the data? (mining)
 - e.g., discover correlation of events

11

Review: What's IR? (cont.)

- Goal:
 - Find documents relevant to an information need from a large document set
- And now:
 - Beyond relevance
 - Multi-modal documents
 - Users' (implicit) information need
 - Heterogeneous environment

Figure Copyright by TREC

IR is Hard!

- Under/over-specified query
 - Ambiguous: "buying CDs" (certificate deposit? or compact disc?)
 - Incomplete: what kind of CDs?
 - □ What if "CD" is never mentioned in document?
- Vague semantics of documents
 - Ambiguity: word-sense, structural
 - e.g. "bank"
 - Incomplete: Inferences required
 - E.g. "windows" "apple"
- A difficult task even for human beings!
 - Only 80% agreement in human judgments

13

IR is "Easy"!

- IR CAN be easy in a particular case
 - Ambiguity in query/document is RELATIVE to the database
 - So, if the query is SPECIFIC enough, just one keyword may get all the relevant documents
- PERCEIVED IR performance is usually better than the actual performance
 - Users can NOT judge the completeness of an answer
 - E.g. Web Search vs. Machine Translation

History of IR* on One Slide

Birth of IR

*(The history of Web Search will be discussed in later lectures)

- 1945: Vannevar Bush's article "As we may think"
- •
- 1957: H. P. Luhn's idea of word counting and matching

- Indexing & Evaluation Methodology (1960's)
 - Smart system (G. Salton's group)
 - Cranfield test collection (C. Cleverdon's group)
 - Indexing: automatic can be as good as manual (controlled vocabulary)
- IR Models (1970's & 1980's, late 1990's & early 2000's, 2009~2015) ...
- Large-scale Evaluation & Applications (1990's~present)
 - □ TREC (D. Harman & E. Voorhees, NIST), CLEF, NTCIR, ...
- Web search (2000's ~ present)
 - Search engine companies, Boundary with related areas are disappearing
- Vertical Search, Knowledge, Social, User (2010's ~ present)

LUHN H.P.

- LUHN, H.P., 'A statistical approach to mechanised encoding and searching of library information', IBM Journal of Research and Development, 1, 309-317 (1957).
- 'It is here proposed that the frequency of word occurrence in an article furnishes a useful measurement of word significance. It is further proposed that the relative position within a sentence of words having given values of significance furnish a useful measurement for determining the significance of sentences. The significance factor of a sentence will therefore be based on a combination of these two measurements.'
- ---- LUHN, H.P., 'The automatic creation of literature abstracts', *IBM Journal of Research and Development*, 2, 159-165 (1958).

17

2. A general (Basic) IR procedure

Figure Copyright by TREC

3. Brief introduction to IR fundamentals – I

(Mainly Text IR; Visual IR will be discussed by a specific lecture later)

Outline

- Basic IR procedure
 - Data acquisition on the Web: Crawler
 - Indexing
 - Ranking
 - System evaluation

Information Retrieval: Basic IR procedure

Crawler – Crawl "all" Web pages? • Problem: no catalog of all accessible URLs on the Web. Solution (basic crawler operation) Frontier 1. Given: Initial set of URLs U (in some order) -- "seed" pages 2. Get next URL u from U 3. Download web page p(u) 4. Extract all URLs from p(u), add them to U Seeds 5. Send p(u) to the indexer 6. Continue with 2. until U is empty History (or some stop criteria is fulfilled) 25 Information Retrieval: Basic IR procedure

"It is fairly easy to build a slow crawler that downloads a few pages per second for a short period of time, building a high-performance system that can download hundreds of millions of pages over several weeks presents a number of challenges in system design, I/O and network efficiency, and robustness and manageability."

Eichmann, D. (1994). The RBSE spider: balancing effective search against Web load. In Proceedings of the First World Wide Web Conference, Geneva, Switzerland.

Information Retrieval: Basic IR procedure

27

APPENDIX

LUHN H.P.

- LUHN, H.P., 'A statistical approach to mechanised encoding and searching of library information', IBM Journal of Research and Development, 1, 309-317 (1957).
- 'It is here proposed that the frequency of word occurrence in an article furnishes a useful measurement of word significance. It is further proposed that the relative position within a sentence of words having given values of significance furnish a useful measurement for determining the significance of sentences. The significance factor of a sentence will therefore be based on a combination of these two measurements.'
- ---- LUHN, H.P., 'The automatic creation of literature abstracts', *IBM Journal of Research and Development*, 2, 159-165 (1958).

