Projektování přírodního parku

Projektant plánuje podobu nového přírodního parku s různými atrakcemi pro veřejnost. K realizaci potřebuje vybrat vhodnou část oblasti, která je pro výstavbu k dispozici. Pro účely výběru má celou oblast reprezentovanou pravidelnou čtvercovou mřížkou rozměrů $N \times N$, kde jednotlivá pole jsou buď zalesněné plochy, louky nebo skály. Park bude vybudován na čtvercové ploše $K \times K$ polí mřížky. Cílem je maximalizovat počet polí reprezentujících zalesněné plochy. Zároveň projektant pracuje s podmínkou, aby se v centrální části parku nacházelo alespoň S polí se skalami. Centrální část má čtvercový tvar, soustředný s plochou parku, přičemž okraj této části je od okraje parku v dané vzdálenosti L. To znamená, že rozměr střední části je $(K-2L) \times (K-2L)$.

Úloha

Pro čtvercovou mřížku $N \times N$ reprezentující uvažovanou oblast nalezněte optimální umístění parku.

Obrázek 1. Příklady dvou oblastí rozměrů 6×6 . Světle zelená pole představují louky, tmavě zelená lesy a hnědá skály. a) Nechť K = 4, L = 1 a S = 2. Hledaná optimální čtvercová plocha 4×4 je vyznačena modrým obrysem, obsahuje celkem 6 zalesněných polí. Fialově ohraničená centrální část parku o rozměru 2×2 musí nutně obsahovat alespoň dvě pole se skalami. Tato podmínka je splněna. b) Nyní uvažujeme, že K = 4, L = 1 a S = 1. Optimální řešení s pěti zalesněnými poli je znovu ohraničeno modře, centrální část park fialově.

Vstup

Na prvním vstupním řádku jsou čtyři celá čísla N, K, L, S oddělená mezerami. N je rozměr čtvercové mřížky reprezentující oblast, K je rozměr parku, L je vzdálenost okraje centrální části od okraje parku, S je minimální požadovaný počet skal v cetrální části. Následuje N řádků vstupu, kde i-tý z těchto řádků reprezentuje i-tý řádek čtvercové mřížky pomocí N celých čísel z množiny $\{0, 1, 2\}$ oddělených mezerami, přičemž číslo 0 reprezentuje pole s loukou, číslo 1 zalesněné pole a číslo 2 pole se skalami. Je zaručeno, že přípustné umístění parku existuje.

Platí $1 \le N \le 3000$; $1 \le K \le N$; $0 \le 2 L < K$; $1 \le S \le 15000$.

Výstup

Výstup sestává z jednoho textového řádku, který obsahuje číslo, jež je rovno maximálnímu počtu zalesněných polí v přípustném umístění parku.

Příklad 1

Vstup

2 of 3 2/9/25, 14:04

Výstup

6

Data a řešení Příkladu 1 jsou vizualizována na **Obrázku** 1a).

Příklad 2

Vstup

Výstup

5

Data a řešení Příkladu 2 jsou vizualizována na Obrázku 1b).

Veřejná data

Veřejná data k úloze jsou k dispozici. Veřejná data jsou uložena také v odevzdávacím systému a při každém odevzdání/spuštění úlohy dostává řešitel kompletní výstup na stdout a stderr ze svého programu pro každý soubor veřejných dat.

Veřejná data

3 of 3 2/9/25, 14:04