陕西科技大学

《计算机网络安全》实验报告

实验三: 网络扫描与监听

学	生:	
学	院:	电子信息与人工智能学院
专	业:	网络工程
指导教师:		张楠
	·	

2022年6月2日

实验三 网络扫描与监听

班级:			

实验预习报告

一、实验目的

- 1、掌握网络扫描的方法
- 2、通过网络扫描发现漏洞的存在
- 3、通过网络扫描获取对方的相关信息

二、实验要求

使用相关的命令和工具完成网络扫描,掌握主机漏洞扫描、端口扫描操作系统类型扫描和扫描软件的使用方法。

通过网络扫描发现对方可能存在的漏洞并尝试发现对方的信息。

三、实验原理

1、ARP(地址解析协议)扫描是通过发送 ARP 请求来获取局域网中活动主机的 MAC 地址和 IP 地址的技术。它可以帮助确定局域网上哪些 IP 地址被分配给了实际的主机设备。

nmap 使用 ARP 扫描时,会发送 ARP 请求包到局域网上的广播地址,并监听响应以获取活动主机的 MAC 地址和 IP 地址。

2、端口扫描是用于确定目标主机上哪些端口是开放的或关闭的。通过检查 主机上不同端口的响应情况,可以获取目标主机上运行的服务和应用程序的信息。

nmap 使用不同的扫描技术(如 TCP 扫描、UDP 扫描、SYN 扫描等)发送特定 类型的数据包到目标主机的不同端口,并根据响应情况来确定端口的状态。

3、主机类型扫描用于识别目标主机的操作系统或设备类型。不同的操作系统或设备在网络上的行为和响应方式可能会有所不同,因此可以通过分析目标主机的响应来猜测其类型。

nmap 通过发送特定的网络数据包到目标主机,并根据响应中的特征信息(如

TCP 标志位、IP 字段等)来推断目标主机的操作系统类型或设备类型。

4、主机漏洞扫描是用于检测目标主机上存在的已知安全漏洞或弱点。它可以帮助发现系统中可能存在的安全风险,并及时采取措施进行修复和加固。

nmap 通过使用特定的漏洞扫描脚本或插件,对目标主机进行漏洞扫描。这些脚本或插件利用已知的漏洞或弱点进行探测,并返回相应的扫描结果。

四、实验预习内容

- 1、ARP 扫描可以用来发现活动主机,通过 ARP 扫描,可以确定局域网上哪些 IP 地址被实际主机设备使用,帮助网络管理员了解网络中的活动主机情况。同时也可以实现网络映射和拓扑发现:通过获取 MAC 地址和 IP 地址的对应关系,可以绘制网络拓扑图和识别网络中的设备。
- 2、端口扫描一般用作安全评估,通过端口扫描,可以确定目标主机上开放 的端口和运行的服务,帮助进行安全评估和漏洞扫描。可以识别潜在的安全风险 和暴露的服务。
- 3、主机类型扫描一般永远也网络侦察,即:通过识别目标主机的操作系统 或设备类型,可以获取有关网络中的设备和系统的信息。这有助于进行网络侦察 和了解目标网络的特征和架构。
- 4、主机漏洞扫描在漏洞识别方面具有重要作用,主机漏洞扫描可以识别目标主机上已知的安全漏洞或弱点。这有助于发现系统中存在的安全风险,并及时采取修复措施来保护系统免受攻击。安全加固:通过发现漏洞,可以帮助管理员采取相应的安全加固措施,修复已知的漏洞或配置弱点,提高系统的安全性。
- 5、总的来说,这些扫描方法可以帮助网络管理员了解网络拓扑、评估安全 风险、进行安全审计和优化防护措施,提高网络的安全性和可靠性。

实验三 网络扫描与监听

班级:			

实验报告

一、实验目的

- 1、掌握网络扫描的方法
- 2、通过网络扫描发现漏洞的存在
- 3、通过网络扫描获取对方的相关信息

二、实验要求

使用相关的命令和工具完成网络扫描,掌握主机漏洞扫描、端口扫描操作系统类型扫描和扫描软件的使用方法。

通过网络扫描发现对方可能存在的漏洞并尝试发现对方的信息。

三、实验原理

1、ARP(地址解析协议)扫描是通过发送 ARP 请求来获取局域网中活动主机的 MAC 地址和 IP 地址的技术。它可以帮助确定局域网上哪些 IP 地址被分配给了实际的主机设备。

nmap 使用 ARP 扫描时,会发送 ARP 请求包到局域网上的广播地址,并监听响应以获取活动主机的 MAC 地址和 IP 地址。

2、端口扫描是用于确定目标主机上哪些端口是开放的或关闭的。通过检查 主机上不同端口的响应情况,可以获取目标主机上运行的服务和应用程序的信息。

nmap 使用不同的扫描技术(如 TCP 扫描、UDP 扫描、SYN 扫描等)发送特定 类型的数据包到目标主机的不同端口,并根据响应情况来确定端口的状态。

3、主机类型扫描用于识别目标主机的操作系统或设备类型。不同的操作系统或设备在网络上的行为和响应方式可能会有所不同,因此可以通过分析目标主机的响应来猜测其类型。

nmap 通过发送特定的网络数据包到目标主机,并根据响应中的特征信息(如

TCP 标志位、IP 字段等)来推断目标主机的操作系统类型或设备类型。

4、主机漏洞扫描是用于检测目标主机上存在的已知安全漏洞或弱点。它可以帮助发现系统中可能存在的安全风险,并及时采取措施进行修复和加固。

nmap 通过使用特定的漏洞扫描脚本或插件,对目标主机进行漏洞扫描。这些脚本或插件利用已知的漏洞或弱点进行探测,并返回相应的扫描结果。

四、实验内容

1、下载、安装 Nmap 到 Windows 主机上

打开 Nmap 官网 https://nmap.org/download#windows, 下载适用于 Windows 系统的 nmap 安装包,根据提示完成 nmap 及其插件的安装。

安装 Nmap

2、使用 Nmap 进行 arp 扫描,探明当前网络中存活的主机 先行使用 ipconfig 查看本机 IP 段,在该网段内进行扫描:

可以看到,当前主机位于 192.168.3.0/24 网络当中,对这个网段进行 arp 扫描:

```
MAC Address: 94:17:80:44:9E:87 (Xiaomi Communications)

Namp scan report for 192:168.3.189

Nots is up.,
All 1080 scanned ports on 192:168.3.189 are in ignored states.
Not shown: 1080 fittered top ports (no-response)

MAC Address: DC:18-Ali28:33:88 (Intel Corporate)

Namp scan report for 192:168.3.111

Nots is up (0.0228 latency).
Not shown: 1080 fittered top ports (no-response)

Not shown: 1080 fittered top ports (no-response)

Not is up (0.0228 latency).
Not shown: 1080 fittered top not some states.
Not is up (0.0228 latency).
Not shown: 1080 fittered top not some states.
Not is up (0.0228 latency).
Not shown: 1080 fittered top not some states.
Not is up (0.0228 latency).
Not shown: 1080 fittered top not some states.
Not is up (0.028 latency).
Not shown: 1080 fittered top not some states.
Not some states are states.
Not some states.
Not some
```

扫描结果:一共扫描到了8台设备。

3、进行端口扫描

根据 arp 扫描的结果,知道了网络当中存在哪些主机,现可以对主机发起端口扫描,查看开放了哪些端口。

为了防止影响到局域网内别的主机同时能够验证扫描的结果,这里以本机(192.168.3.133)作为端口扫描的对象。

开始扫描:

```
C:\Users\ECHO-nmap -s > 192.168.3.133 -p-
Starting Nnap 7.94 ( https://nmap.org ) at 2023-06-06 23:03 中国标准时间
Nnap scan report for 192.168.3.133
Host is up (0.800308 latency).
Not shown: 65512 closed tcp ports (reset)
PORT STATE SERVICE
135/tcp open msrpc
137/tcp filtered netbios-ns
139/tcp open microsoft-ds
902/tcp open is-realsecure
912/tcp open apex-mesh
2343/tcp open nati-svrloc
5040/tcp open unknown
11333/tcp open unknown
11333/tcp open unknown
11333/tcp open unknown
11333/tcp open unknown
113665/tcp open unknown
196667/tcp open unknown
196667/tcp open unknown
196667/tcp open unknown
196687/tcp open unknown
196688/tcp open unknown
195688/tcp open unknown
195110/tcp open unknown
195110/tcp open unknown
19111/tcp open unknown
```

使用 nmap 对本机进行半连接 Tcp 扫描,打开的端口如上。其中,11333 是本机的 RDP 远控端口,使用 nmap 对这个端口上面的服务进行扫描:

通过端口扫描发现,该端口运行了微软的控制台服务,即 Remote Desktop Service,结果准确。

4、使用 nmap 进行主机类型扫描,扫描本机:

```
C:\Windows\system32\cmde x + v - ロ X

C:\Users\ECHO>nmap 192.168.3.133 - 0

Starting Nmap 7.94 (https://nmap.org ) at 2023-06-06 23:28 中国标准时间

Nmap scan report for 192.168.3.133

Host is up (0.00081s latency).

Not shown: 994 closed tep ports (reset)
PORT STATE SERVICE

135/tcp open msrpc

139/tcp open microsoft-ds

902/tcp open is-realsecure

912/tcp open nati-svrloc

Device type: general purpose
Running: Microsoft Windows 10

OS CPE: cpe:/omicrosoft Windows 10

OS CPE: cpe:/omicrosoft Windows 10 1607

Network Distance: 0 hops

OS detection performed. Please report any incorrect results at https://nmap.org/submit/.

Nmap done: 1 IP address (1 host up) scanned in 2.87 seconds

C:\Users\ECHO>_
```

nmap 扫描到本机为 Windows10 1607, 事实上, 本机运行 Windows11 22H2, 这说明微软对于 Windows11 中的某些功能是从早期稳定的 Windows10 当中搬过来的。

扫描局域网内的 Apple iOS 设备:

nmap 192.168.3.124 -0

结果如下:

```
Network Distance: 1 hop

OS detection performed. Please report any incorrect results at https://nmap.org/submit/.
Nmap done: 1 IP address (1 host up) scanned in 15.72 seconds

C:\Users\ECHO>nmap 192.168.3.124 -0
Starting Nmap 7.94 ( https://nmap.org ) at 2023-06-06 23:35 中国标准时间
Nmap scan report for 192.168.3.124
Host is up (0.0056s latency).
Not shown: 997 closed tcp ports (reset)
PORT STATE SERVICE
#9152/tcp open unknown
#9154/tcp open unknown
#9154/tcp open unknown
ACAddress: B8:#9:60:94:#D:F5 (Apple)
Device type: general purpose
Running: Apple macOS 11. X
OS details: Apple macOS 11 (Big Sur) (Darwin 20.6.0)
Network Distance: 1 hop

OS detection performed. Please report any incorrect results at https://nmap.org/submit/.
Nmap done: 1 IP address (1 host up) scanned in 3.67 seconds

C:\Users\ECHO>
```

可以看到,nmap 扫描到了系统详情为 Apple macOS 11 (Big Sur) (Darwin 20.6.0),苹果在其系统上采取了类似微软的做法,即:从别的系统移植网络服务套件到其其它产品上,造成平台识别的不准确,事实上,这台设备运行的是 iOS 而非 macOS。

5、使用漏洞扫描查看服务器是否存在相关漏洞

尝试使用漏洞扫描查找编号为 smtp-vuln-cve2010-4344 的漏洞,对邮件服务器 minmin. cloud 进行漏扫:

看到,该服务器所运行的 SMTP 并非 Exim,所以漏扫没有扫描这个漏洞。

如果服务器所运行的操作系统、驱动程序或者是应用程序存在安全漏洞,其特征符合所要扫描的漏洞,则 Nmap 将会呈现出其具有的问题,方便进行排查,为系统的安全性提供保障。

五、实验结论

- 1、Arp 扫描广泛存在于网络当中,使用 Arp 扫描可以知道网络中存在哪些 主机,进而可以准备进行具体的端口扫描。
- 2、端口扫描可以基本确定目标主机运行并开放了哪些端口,以及端口所运行的程序,这里可以发现并关闭不必要的端口,为系统安全提供保障,同时也可以针对这些端口进行漏扫,发现不足并及时修补。
- 3、主机扫描可以用于分析网络中存在的主机及其类型,进而可以根据其操作系统的不同执行特定的漏洞扫描。
- 4、漏洞扫描有助于及时解决已知问题,避免被利用产生损失,通过漏扫发现存在的安全隐患并及时排查,提高系统安全性。
- 5、Nmap 是一款十分强大的网络扫描、分析软件,可以使用它完成网络中的分析、维护工作。