AD-A120 718

DRDAR-LEP-L Tech fol

AD	
AD	

MEMORANDUM REPORT ARBRL-MR-03198

BASELINE EVALUATION OF THE TDNOVA CODE

Albert W. Horst

September 1982

US ARMY ARMAMENT RESEARCH AND DEVELOPMENT COMMAND BALLISTIC RESEARCH LABORATORY ABERDEEN PROVING GROUND, MARYLAND

Approved for public release; distribution unlimited.

Destroy this report when it is no longer needed. Do not return it to the originator.

Secondary distribution of this report is prohibited.

Additional copies of this report may be obtained from the National Technical Information Service, U. S. Department of Commerce, Springfield, Virginia 22161.

The findings in this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

The use of trade names or manufacturers' names in this report does not constitute indorsement of any commercial product.

REPORT DOCUMENTATION PA	\GE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER 2.	GOVT ACCESSION NO.	
MEMORANDUM REPORT ARBRL-MR- 03198		
4. TITLE (and Subtitie)		S. TYPE OF REPORT & PERIOD COVEREI
Desaline Franchism of the TONOVA Co		Memorandum Report
Baseline Evaluation of the TDNOVA Co.	de	Oct 81-Mar 82
	120	6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(e)		8. CONTRACT OR GRANT NUMBER(+)
Albert W. Horst		
9. PERFORMING ORGANIZATION NAME AND ADDRESS		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
U.S. Army Ballistic Research Laborate ATTN: DRDAR-BLI	ory	
Aberdeen Proving Ground, MD 21005		1L161102AH43
11. CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE
U.S. Army Armament Research & Develop	pment Command	September 1982
U.S. Army Ballistic Research Laborate		13. NUMBER OF PAGES
Aberdeen Proving Ground, MD 21005		57
14. MONITORING AGENCY NAME & ADDRESS(If different fro	om Controlling Office)	15. SECURITY CLASS. (of thie report)
		UNCLASSIFIED
	}	150. DECLASSIFICATION/DOWNGRADING SCHEDULE
		SCHEDULE
16. DISTRIBUTION STATEMENT (of thie Report)		
ja = =		
3 3		
Approved for public release; distrib	ution unlimited	l .
17 BISTRIBUTION STATSMENT (of the sharest state of the		
17. DISTRIBUTION STATEMENT (of the abstract entered in E	Nock 20, if different from	n Report)
18. SUPPLEMENTARY NOTES		
19 VEV WORDS (Continue or towns olds II was a little of the little of th		*
19. KEY WORDS (Continue on reverse eide if necessary and id Interior Ballistics Computer		
Guns · NOVA	. Codes	
Pressure Waves TDNOVA		
Flamespread		
20. ABSTRACT (Continue am reverse state if necessary and ide	entify by block number)	
Past attempts to simulate two-		nomena in high-performance,

Past attempts to simulate two-phase flow phenomena in high-performance, bagged-charge artillery using one-dimensional, two-phase flow interior ballistic codes were met with only limited success, presumably because of the inability of these models to capture configural complexities associated with the charge-chamber interface. The recent development of a fully two-dimensional, axisymmetric, two-phase flow model (TDNOVA) provides for the first time an explicit treatment of two-dimensional flamespread in bagged

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

charges. Functioning of the basepad and centercore ignition system are included within the physical scope of the model, as is the influence of parasitic charge components which may exhibit exothermic or endothermic properties as well as resistance to gas- and solid-phase flows.

Baseline calculations are presented which demonstrate excellant agreement between TDNOVA and its one-dimensional predecessor NOVA for an appropriate, dimensionally degenerate, bagged-charge problem. Further calculations using TDNOVA, based on an axisymmetric representation of a 155-mm howitzer, are shown to reveal an acceptably small level of sensitivity to a reasonable range of values for various user-definable parameters, such as mesh size.

TABLE OF CONTENTS

		Pa	age
	LIST OF ILLUSTRATIONS	•	5
	LIST OF TABLES		
_	INTRODUCTION		
I.			
II.	TECHNICAL DISCUSSION	. 1	.0
	A. Description of TDNOVA	. 1	LO
	B. Comparison with NOVA	. 1	11
	C. Influence of P _{tol} Criterion	. 1	16
	D. Influence of Mesh	. :	20
III.	CONCLUSIONS	. 2	26
	ACKNOWLEDGMENTS	. :	26
	REFERENCES	. :	27
	APPENDIX A: INPUT DATA FOR NOVA/TDNOVA COMPARISON CALCULATIONS		29
	APPENDIX B: INPUT DATA FOR TDNOVA P _{tol} AND MESH- SENSITIVITY CALCULATIONS	•	41
	DISTRIBUTION LIST		49

LIST OF ILLUSTRATIONS

Figu	re	Page
1.	155-mm, M203 Propelling Charge	10
2.	Computational Regions of TDNOVA	12
3.	Two-Dimensional Mesh of TDNOVA	12
4.	Quasi-Two-Dimensional Mesh of TDNOVA	14
5.	Schematic Representation of Quasi-One-Dimensional Test Problem	14
6.	NOVA and TDNOVA Predictions of Pressure Difference Versus Time	15
7.	NOVA and TDNOVA Predictions of Axial Flamespread	15
8.	Schematic Representation of 155-mm, M203 Propelling Charge	17
9.	Influence of P _{tol} on TDNOVA Predictions of Pressure Difference Versus Time	17
10.	TDNOVA Predictions of Pressure Fields at Times of Transformation for Several Values of P _{tol}	18
11.	TDNOVA Predictions of Temperature Fields at Times of Transformation for Several Values of P_{tol}	19
12.	TDNOVA Predictions of Pressure Difference Versus Time for Various Meshes	21
13.	TDNOVA Predictions of Flamespread for Various Meshes	22
14.	TDNOVA Prediction of Pressure Fields for a 20x5 Mesh	23
15.	TDNOVA Prediction of Pressure Fields for a 25x9 Mesh	24
16.	TDNOVA Prediction of Pressure Fields for a 35x7 Mesh	25

LIST OF TABLES

Tab.	ole		Page
1.	Summary of NOVA/TDNOVA Results		 13
2.	Influence of P _{tol} on TDNOVA Results	٠	 16
3.	Summary of TDNOVA Results for Various Meshes		 20

I. INTRODUCTION

Several recent reports $^{1-4}$ have described progress made over the past several years in an effort to develop a fully two-dimensional, two-phase flow interior ballistic model. This work has focussed on the process of flamespread through the propelling charge as a hydrodynamic problem and on the influence of the path of flamespread on the formation of potentially dangerous pressure waves in the gun chamber. The effort was, to a large extent, motivated by the fact that early successes in simulating these phenomena in Navy cased-ammunition guns 5,6 with one-dimensional, two-phase flow models were not reproduced when Army bagged-charge artillery became the subject of study? The presence of circumferential ullage external to the bag apparently offered, at least during the very early stages of the interior ballistic cycle, a region of high permeability capable of altering the flame path and equilibrating longitudinal pressure gradients -- a process totally outside the scope of the one-dimensional representation. A subsequent quasi-twodimensional treatment 8 recognizing this possibility rapidly led the way to a fully two-dimensional representation known as TDNOVA, the subject of this report.

¹P.S. Gough, "Two-Dimensional Convective Flamespreading in Packed Beds of Granular Propellant," ARBRL-CR-00404, USA ARRADCOM, Ballistic Research Laboratory, Aberdeen Proving Ground, MD, July 1979. (AD#A075326)

²A.W. Horst and P.S. Gough, "Modeling Ignition and Flamespread Phenomena in Bagged Artillery Charges," ARBRL-TR-02263, USA ARRADCOM, Ballistic Research Laboratory, Aberdeen Proving Ground, MD, September 1980. (AD#A091790)

³P.S. Gough, "A Two-Dimensional Model of the Interior Ballistics of Bagged Artillery Charges," ARBRL-CR-00452, USA ARRADCOM, Ballistic Research Laboratory, Aberdeen Proving Ground, MD, April 1981.

⁴A.W. Horst, F.W. Robbins, and P.S. Gough, "A Two-Dimensional, Two-Phase Flow Simulation of Ignition, Flamespread, and Pressure-Wave Phenomena in the 155-MM Howitzer," ARBRL-TR-, USA ARRADCOM, Ballistic Research Laboratory, Aberdeen Proving Ground, MD, (not yet released).

⁵A.W. Horst, T.C. Smith, and S.E. Mitchell, "Key Design Parameters in Controlling Gun-Environment Pressure-Wave Phenomena - Theory Versus Experiment," 13th JANNAF Combustion Meeting, CPIA Publication 273, Vol. 1, pp. 341-368, December 1975.

⁶A.W. Horst and P.S. Gough, "Influence of Propellant Packaging on Performance of Navy Case Gun Ammunition," <u>Journal of Ballistics</u>, Vol. 1, No. 3, pp. 229-258, 1977.

⁷A.W. Horst, C.W. Nelson, and I.W. May, "Flame Spreading in Granular Propellant Beds: A Diagnostic Comparison of Theory to Experiment" AIAA Paper No. 77-856, AIAA/SAE 13th Propulsion Conference, July 1977.

⁸P.S. Gough, "Theoretical Study of Two-Phase Flow Associated with Granular Bag Charges," ARBRL-CR-00381, USA ARRADCOM, Ballistic Research Laboratory, Aberdeen Proving Ground, MD, September 1978. (AD#A062144)

II. TECHNICAL DISCUSSION

A. Description of TDNOVA

The TDNOVA code provides an unsteady, two-dimensional, axisymmetric, two-phase flow representation of the interior ballistic cycle. As mentioned previously, the development of TDNOVA was undertaken largely in response to the configural complexities associated with the use of bagged artillery charges, such as the 155-mm, M2O3 Propelling Charge depicted in Figure 1. Flamespread through bagged charges is believed to be strongly influenced by the details of the ullage which initially surrounds the bag and by the behavior of the bag material itself. Accordingly, an explicit representation is made in TDNOVA of the two-phase region occupied by the propelling charge at any time. The flow in the ullage, which surrounds the region occupied by the propellant, is treated as unsteady, inviscid, and single phase.

Figure 1. 155-mm, M203 Propelling Charge

The ullage is divided into several disjoint regions, coupled to one another and to the two-phase flow in the propelling charge by means of finite jump conditions at all their mutual boundaries. By formulating the theory in such a manner as to use directly the jump conditions at the boundary, a mechanism is provided for representation of the influence of the bag. Impermeability is reflected directly within the momentum jump condition as a quasi-steady flow loss. Similarly, the influence of exothermically or endothermically reactive components, such as igniter basepads, centercore tubes, or wear-reducing liners, may be reflected by means of source terms in the mass and energy jump conditions.

The division of ullage into the several regions depicted in Figure 2 is based on the instantaneous configurations of the external boundaries (e.g., spindle face, chamber/tube sidewall, and projectile base) and the propelling charge itself. Each region of ullage may be treated as lumped parameter, quasi-one-dimensional (i.e., one-dimensional-with-area-change), or two-dimensional, in accordance with user-definable criteria based on physical dimensions.

As suggested earlier, representation of a basepad igniter or centercore tube may be treated within the structure of the bag. A centercore ignition charge, coaxial with the bag, may also be included in the representation as a quasi-one-dimensional, two-phase flow, coupled to the state of the flow within the bag and any ullage present at the ends of the chamber by reference to finite jump conditions. Representation of the ignition train also admits specification of an externally injected stimulus of predetermined flow rate and energy.

Initially, TDNOVA provides a fully two-dimensional analysis of flow within the two-phase region occupied by the propellant bed. However, in all calculations performed to date, the regions of ullage contiguous to the bag have been treated as quasi-one-dimensional, the continuum coordinate being defined by the common boundary. Corner regions of ullage are then given a lumped-parameter treatment. Figure 3 illustrates this level of representation.

Following the completion of flamespread, rupture of the bag sidewall, and equilibration of the radial structure of the pressure field to within some user-specified limit, a quasi-two-dimensional approach is introduced, similar to that reported previously⁸. For the duration of the ballistic cycle, the propelling charge is given a quasi-one-dimensional representation, as is the circumferential ullage, while regions of axial ullage at the ends of the chamber are treated as lumped parameter (see Figure 4).

Each of these regions of continuous flow is mapped onto a regular figure, a unit line or square, by means of a boundary-fitted-mesh-transformation algorithm. The method of solution is then based on an explicit, two-step marching scheme which utilizes characteristic forms of the balance equations at both external and internal boundaries. A detailed description of the code has been provided by Gough³. The reader is further directed to an earlier discussion of application of TDNOVA to the 155-mm, M203 Propelling Charge by Horst et al⁴.

In the sections that follow, we provide a description of several series of baseline calculations performed to assist in evaluation of the operational capabilities of TDNOVA.

B. Comparison with NOVA

A direct comparison was made between results predicted by TDNOVA and by its quasi-one-dimensional predecessor NOVA. An appropriate data base, a dimensionally degenerate representation of the previously described bagged-

⁹P.S. Gough, "The NOVA Code: A User's Manual. Volume 1. Description and Use," IHCR 80-8, Naval Ordnance Station, Indian Head, MD, 30 December 1980.

Figure 2. Computational Regions of TDNOVA

Figure 3. Two-Dimensional Mesh of TDNOVA

charge problem, was devised by suppressing the presence of both centercore igniter and circumferential ullage. Bag sidewall and centercore tube characteristics thus played no role in the problem. Further, the basepad was replaced by a predetermined, one-dimensional ignition stimulus. The resulting problem is depicted schematically in Figure 5. A summary of required input data for both NOVA and TDNOVA is provided in Appendix A.

It is noted that, in accordance with criteria based on size and structure of the flow, the NOVA code may assign a continuum representation, in the axial direction, to regions of ullage at either end of the chamber. Calculations were performed using the NOVA code both unaltered and with a modification introduced to maintain a lumped-parameter representation for these regions, similar to that provided by TDNOVA after transformation to the quasi-two-dimensional representation. In both cases, the NOVA simulations employed 30 axial stations, while a 30x7 mesh was used for the TDNOVA runs. Finally, a TDNOVA calculation was performed with the quasi-two-dimensional representation invoked from time zero. In the absence of circumferential ullage, this last TDNOVA treatment was geometrically equivalent to that of the modified NOVA code.

A summary of results is provided in Table 1. All values for maximum chamber pressure fall within 2% of one another, while those for muzzle velocity fall within 1%. Values for $-\Delta P_1$, the initial reverse pressure difference between breech and forward ends of the chamber, represent small differences between large numbers and are not appropriately compared in the same fashion. Rather, we choose to compare the entire pressure-difference versus time profiles in Figure 6. Similarly, we display a comparison of axial flamespread profiles in Figure 7. We note a favorable level of agreement for all parameters.

TABLE 1. SUMMARY OF NOVA/TDNOVA RESULTS

CODE	MAX PRESSURE (MPa)	MUZZLE VELOCITY (m/s)	INITIAL REVERSE PRESSURE DIFF (MPa)
NOVA (30x1 mesh)	323	814	-26
NOVA - modified treatment of end ullage (30xl mes		816	-21
TDNOVA (30x7 mes	h) 328	820	-21
TDNOVA (30x1 mes	h) 327	820	-21

Figure 4. Quasi-Two-Dimensional Mesh of TDNOVA

Figure 5. Schematic Representation of Quasi-One-Dimensional Test Problem

Figure 6. NOVA and TDNOVA Predictions of Pressure Difference Versus Time

Figure 7. NOVA and TDNOVA Predictions of Axial Flamespread

C. Influence of Ptol Criterion

We noted earlier that, upon completion of flamespread, rupture of any bag sidewall material present, and equilibration of the radial structure of the pressure field to within some user-specified limit, TDNOVA introduces a quasitwo-dimensional approach for the duration of the calculation. This transformation is invoked in the interest of economy and, in consideration of the scope for which TDNOVA is intended, appears to be well motivated. The particular criterion employed involves $P_{\rm tol}$, a parameter which is compared, at each axial location, to the difference in values for the pressure at the tube wall and centerline, divided by the value at the tube wall. When this quantity becomes less than $P_{\rm tol}$ at all axial stations, the transformation takes place.

As this transformation carries with it a number of assumptions arequired to establish a quasi-one-dimensional description of flow within the two-phase medium, we undertook to determine the influence of P_{tol} on the remainder of the solution. A previously established data base see Figure 8 and Appendix B) for the 155-mm, M203 Propelling Charge was employed, with P_{tol} varied over a wide range of values. Results are summarized in Table 2, and a comparison of pressure-difference versus time profiles is displayed in Figure 9. All values of P_{tol} equal to or greater than 0.05 yielded identical results, as the time for the final point of bag rupture became the controlling parameter, prohibiting transformation at any earlier times. Even for values of P_{tol} as small as 0.005, results remain virtually unchanged. Pressure and temperature fields, at the instant of transformation, are compared in Figures 10 and 11. Little difference in structure is noted for the various conditions. Prediction of flamespread is, of course, totally unaffected by P_{tol} , its completion being a requirement for transformation.

TABLE 2. INFLUENCE OF Ptol ON TONOVA RESULTS

P _{tol} time of formati	trans-	MAX	PRESSURE (MPa)	MUZZ	LE VELOCITY (m/s)	TIAL REVER ESSURE DIR (MPa)	
0.005	(3.51)		365		842	-3	
0.010	(3.49)		363		842	-3	
0.050	(3.19)		363		842	-2	
>0.050	(3.19)		363		842	-2	

Figure 8. Schematic Representation of 155-mm, M203 Propelling Charge

Figure 9. Influence of P_{tol} on TDNOVA Predictions of Pressure Difference Versus Time

Figure 10. TDNOVA Predictions of Pressure Fields at Times of Transformation for Several Values of $P_{\mbox{tol}}$

Figure 11. TDNOVA Predictions of Temperature Fields at Times of Transformation for Several Values of $P_{\mbox{tol}}$

D. Influence of Mesh

To complete this baseline evaluation of TDNOVA, attention must also be directed to the sensitivity of solutions to the mesh employed to represent the two-dimensional, two-phase region of flow. The input data base provided in Appendix B was again selected for this phase of the study. From 10 to 35 axial mesh points and from 3 to 9 radial mesh points were employed to represent the region occupied by the propellant bed. While not fundamentally linked to the limitations imposed by the macroscopic nature of the governing equations for TDNOVA, a selection of mesh size somewhere in the range studied is certainly compatible with both the intended purpose and physical scope of TDNOVA. Further, in the case of any extensive propelling charge design studies, the need for economy may also limit one to this range of values.

A summary of results from these calculations is provided in Table 3. We note some apparent dependence of predicted performance on the number of radial mesh points, though the total spread is less than 4% for values of maximum chamber pressure and less than 2% for those of muzzle velocity. As before, the initial reverse pressure difference, being calculated as the difference of two large numbers, exhibits a large percentage but small absolute variation. Selected pressure-difference versus time profiles, flamespread contours, and pressure field plots are displayed in Figures 12 through 16.

TABLE 3. SUMMARY OF TONOVA RESULTS FOR VARIOUS MESHES

MESH	MAX PRESSURE	MUZZLE VELOCITY	INITIAL REVERSE
(axial pts x	(MPa)	(m/s)	PRESSURE DIFF
radial pts)			(MPa)
20×3	357	836	-3
25×3	354	834	-3
30×3	357	836	-3
35×3	358	836	-4
10 x 5	359	838	-3
20x5	359	838	-4
25x5	363	839	-3
30x5	359	830	-5
35x5	356	831	-7
20x7	362	840	-2
25x7	364	843	-2
30x7	363	842	-3
35x7	366	835	-3
20x9	364	842	-2
25x9	368	845	-1

TDNOVA Predictions of Pressure Difference Versus Time for Various Meshes Figure 12.

Note: flame contours displayed every 0.24 ms

Figure 13. TDNOVA Predictions of Flamespread for Various Meshes

Figure 14. TDNOVA Prediction of Pressure Fields for a 20x5 Mesh

igure 15. TDNOVA Prediction of Pressure Fields for a 25x9 Mesh

Figure 16. TDNOVA Prediction of Pressure Fields for a 35x7 Mesh

III. CONCLUSIONS

In an effort to provide a baseline evaluation of the TDNOVA code, several series of calculations were performed. Based on the results of these calculations, the following conclusions can be drawn:

- 1. Simulations of a quasi-one-dimensional propelling charge obtained using TDNOVA and NOVA, its quasi-one-dimensional predecessor, are essentially equivalent. When TDNOVA is modified to introduce an immediate transformation to its quasi-two-dimensional mode and when NOVA is also modified to maintain a lumped-parameter representation of regions of axial ullage, results from the two codes become virtually identical.
- 2. For at least one, relevant, bagged-charge problem, results provided by TDNOVA are only minimally influenced by the value selected for P_{tol} , a parameter used to identify adequate equilibration of the radial pressure field before transformation to a quasi-two-dimensional representation of flow is allowed. Antecedent requirements for bag rupture and completion of flamespread apparently allow substantial equilibration of radial pressures prior to application of the P_{tol} criterion.
- 3. A limited study of the influence of mesh density on TDNOVA results failed to demonstrate absolute convergence of results; nevertheless, the variation in predicted quantities was shown to be acceptably small for a number of meshes covering the current range of practical interest.

ACKNOWLEDGMENTS

The author is grateful to Dr. P.S. Gough of Paul Gough Associates, Inc. and to Mr. F.W. Robbins of the Ballistic Research Laboratory for their assistance in implementing the required modification to the NOVA code.

REFERENCES

- P.S. Gough, "Two-Dimensional Convective Flamespreading in Packed Beds of Granular Propellant," ARBRL-CR-00404, USA ARRADCOM, Ballistic Research Laboratory, Aberdeen Proving Ground, MD, July 1979. (AD#A075326)
- A.W. Horst and P.S. Gough, "Modeling Ignition and Flamespread Phenomena in Bagged Artillery Charges," ARBRL-TR-02263, USA ARRADCOM, Ballistic Research Laboratory, Aberdeen Proving Ground, MD, September 1980. (AD#A091790)
- P.S. Gough, "A Two-Dimensional Model of the Interior Ballistics of Bagged Artillery Charges," ARBRL-CR-00452, USA ARRADCOM, Ballistic Research Laboratory, Aberdeen Proving Ground, MD, April 1981.
- 4. A.W. Horst, F.W. Robbins, and P.S. Gough, "A Two-Dimensional, Two-Phase Flow Simulation of Ignition, Flamespread, and Pressure-Wave Phenomena in the 155-MM Howitzer," ARBRL-TR-, USA ARRADCOM, Ballistic Research Laboratory, Aberdeen Proving Ground, MD, (not yet released).
- A.W. Horst, T.C. Smith, and S.E. Mitchell, "Key Design Parameters in Controlling Gun-Environment Pressure-Wave Phenomena - Theory Versus Experiment," 13th JANNAF Combustion Meeting, CPIA Publication 273, Vol. 1, pp. 341-368, December 1975.
- A.W. Horst and P.S. Gough, "Influence of Propellant Packaging on Performance of Navy Case Gun Ammunition," <u>Journal of Ballistics</u>, Vol. 1, No. 3, pp. 229-258, 1977.
- A.W. Horst, C.W. Nelson, and I.W. May, "Flame Spreading in Granular Propellant Beds: A Diagnostic Comparison of Theory to Experiment," AIAA Paper No. 77-856, AIAA/SAE 13th Propulsion Conference, July 1977.
- 8. P.S. Gough, "Theoretical Study of Two-Phase Flow Associated wiht Granular Bag Charges," ARBRL-CR-00381, USA ARRADCOM, Ballistic Research Laboratory, Aberdeen Proving Ground, MD, September 1978. (AD#A062144)
- 9. P.S. Gough, "The NOVA Code: A User's Manual. Volume 1. Description and Use," IHCR 80-8, Naval Ordnance Station, Indian Head, MD, 30 December 1980.

APPENDIX A

INPUT DATA FOR NOVA/TDNOVA COMPARISON CALCULATIONS

NOTE: The NOVA code was developed prior to the introduction of the International System of Units (SI) and employs English units throughout. A summary of conversion factors required to effect conversion to SI units, employed in TDNOVA, is provided below.

TO CONVERT	FROM NOVA UNITS	TO TDNOVA UNITS	MULTIPLY BY
LENGTH	in.	cm	2.54
MASS	1 b m	gm	453.59237
TEMPERATURE	°R	ĸ	5/9
FORCE	1bf	N	4.448222
VELOCITY	in./sec	cm/sec	2.54
PRESSURE	lbf/in. ²	MPa	0.006894757
DENSITY	lbm/in. ³	gm/cm ³	27.679905
COVOLUME	in. ³ /lbm	cm ³ /gm	0.036127292
INTERNAL ENERGY	lbf-in./lbm	J/gm	0.000249089
THERMAL CONDUCTIVIT	Y lbf-in./in	sec-OR J/cm-s	sec-K 0.080068
THERMAL DIFFUSIVITY	in. ² /sec	cm ² /sec	6.4516
BURN RATE PRE-EXPON	ENT in./sec-psi ⁿ	cm/sec-MPa ^r	

NOVA CODE: COMPARISON INPUT DATA BASE

CONTROL PARAMETERS

PRINT	Т
GRAPH	T
DISK WRITE	F
DISK READ	F
I.B. TABLE	Т
FLAME TABLE	Т
PRESSURE TABLES	Т
EROSIVE EFFECT	0
DYNAMIC EFFECT	0
WALL TEMPERATURE CALCULATION	0
LEFT HAND BOUNDARY CONDITION	0
RIGHT HAND BOUNDARY CONDITION	0
LEFT HAND RESERVOIR	0
RIGHT HAND RESERVOIR	0
BED PRECOMPRESSED	0
HEAT LOSS CALCULATION	0
INSULATING LAYER	0
BORE RESISTANCE FUNCTION	0
EXPLICIT COMPACTION WAVE	0
MUZZLE BLOWDOWN ANALYSIS	0
CALCOMP SUMMARY PLOTS	0

INTEGRATION PARAMETERS

NUMBER OF STATIONS AT WHICH DATA ARE STORED	30
NUMBER OF STEPS BEFORE LOGOUT	100
TIME STEP FOR DISK START	0
NUMBER OF STEPS FOR TERMINATION	3000
TIME BEFORE PRINTOUT	.0005
PRESSURE RATIO FOR LP ANALYSIS OF LARGE	
ULLAGE REGION	. 2
TIME FOR TERMINATION (SEC)	.05
PROJECTILE TRAVEL FOR TERMINATION (INS)	205.
MAXIMUM TIME STEP (SEC)	.0001
STABILITY SAFETY FACTOR	2.
SOURCE STABILITY FACTOR	. 0 5
SPATIAL RESOLUTION FACTOR	.01
TIME INTERVAL FOR I.B. TABLE STORAGE (SEC)	.0002
TIME INTERVAL FOR PRESSURE TABLE STORAGE (SEC)	.0002

FILE COUNTERS

NUMBER C	OF	STATIONS	TO SPECIFY TUBE RADIUS	3
NUMBER C	OF	TIMES TO	SPECIFY PRIMER DISCHARGE	3
NUMBER C)F	POSITIONS	TO SPECIFY PRIMER DISCHARGE	3

NUMBER OF ENTRIES IN BORE RESISTANCE TABLE 7 NUMBER OF ENTRIES IN WALL TEMPERATURE TABLE 0 NUMBER OF ENTRIES IN FILLER ELEMENT TABLE 0 NUMBER OF TYPES OF PROPELLANTS 1 NUMBER OF BURN RATE DATA SETS 2 NUMBER OF ENTRIES IN VOID FRACTION TABLES 0 0 NUMBER OF ENTRIES IN PRESSURE HISTORY TABLES 3 NUMBER OF ENTRIES IN LEFT BOUNDARY SOURCE TABLE 0 NUMBER OF ENTRIES IN RIGHT BOUNDARY SOURCE TABLE 0 NUMBER OF WALL STATIONS FOR INVARIANT EMBEDDING 0 NUMBER OF BED STATIONS FOR INVARIANT EMBEDDING 0

GENERAL PROPERTIES OF INITIAL AMBIENT GAS

INITIAL TEMPERATURE (DEG R)	530.
INITIAL PRESSURE (PSI)	14.7
MOLECULAR WEIGHT (LBM/LBMOL)	23.36
RATIO OF SPECIFIC HEATS	1.243

GENERAL PROPERTIES OF PROPELLANT BED

INITIAL TEMPERATURE (DEG R)	530.
VIRTUAL MASS COEFFICIENT FOR MOMENTUM TRANSFER	0.
VIRTUAL MASS COEFFICIENT FOR ENERGY DISSIPATION	
MINIMUM IMPACT VELOCITY FOR EXPLICIT	
COMPACTION WAVE (IN/SEC) 1000	00000.
FRICTION FACTOR	1.75

PROPERTIES OF PROPELLANT 1

PROPELLANT TYPE	M30A1, RAD-77G-069805
MASS OF PROPELLANT (LBM)	26.15
DENSITY OF PROPELLANT (LBM)	.0572
FORM FUNCTION INDICATOR	7
OUTSIDE DIAMETER (INS)	. 4173
INSIDE DIAMETER (INS)	.0338
LENGTH (INS)	.9481
NUMBER OF PERFORATIONS	7.
SLOT WIDTH (INS)	0.

RHEOLOGICAL PROPERTIES

SPEED OF COMPRESSION WAVE IN SETTLED BED	
(IN/SEC)	6000.
SETTLING POROSITY	. 4243
SPEED OF EXPANSION WAVE (IN/SEC)	50000.

SOLID PHASE THERMOCHEMISTRY

MAXIMUM PRESSURE FOR BURN RATE DATA	10000
(LBF/IN**2)	10000.
BURNING RATE PRE-EXPONENTIAL FACTOR	
(IN/SEC/PSI**BN)	.006918
	.6337
BURNING RATE EXPONENT	
MAXIMUM PRESSURE FOR BURN RATE DATA	100000
(LBF/IN**2)	100000.
BURNING RATE PRE-EXPONENTIAL FACTOR	
(IN/SEC/PSI**BN)	.001743
BURNING RATE EXPONENT	. 7864
BURNING RATE CONSTANT	0.
IGNITION TEMPERATURE (DEG R)	800.
ARRHENIUS ACTIVATION ENERGY (LBF-IN/LBMOL)	0.
FREQUENCY FACTOR (SEC**-1)	0.
	.02
THERMAL CONDUCTIVITY (LBF/SEC/DEG R)	
THERMAL DIFFUSIVITY (IN**2/SEC)	.0003
EMMISIVITY FACTOR	0.

GAS PHASE THERMOCHEMISTRY

CHEMICAL ENERGY RELEASED IN BURNING	
(LBF-IN/LBM)	17600000.
MOLECULAR WEIGHT (LBM/LBMOL)	23.36
RATIO OF SPECIFIC HEATS	1.243
	28.50
COVOLUME	20.50

LOCATION OF PACKAGE(S)

PACKAGE	LEFT BDDY (INS)	RIGHT BDDY (INS)	MASS (LBM)
1	1.00	31.00	26.15

PROPERTIES OF IGNITER

CHEMICAL ENERGY RELEASED IN BURNING	
(LBF-IN/LBM)	10000000.
MOLECULAR WEIGHT (LBM/LBMOL)	23.36
RATIO OF SPECIFIC HEATS	1.243
SPECIFIC VOLUME OF SOLID (IN**3/LBM)	0.

IGNITER DISCHARGE FUNCTION (LBM/IN/SEC)

POS. (INS)	0.00	0.98	0.99
TIME (SEC)	6.00	6.00	0.00
0.010	6.00	6.00	0.00
0 011	0 00	0 00	0.00

PARAMETERS TO SPECIFY TUBE GEOMETRY

DISTANCE (INS)	RADIUS (INS)
0.00	3.50
35.00	3.09
240.00	3.09

BORE RESISTANCE TABLE

RESISTANCE	(PSI)
250.	
3350.	
4950.	
3625.	
3250.	
2500.	
1500.	
	3350. 4950. 3625. 3250. 2500.

THERMAL PROPERTIES OF TUBE

THERMAL CONDUCTIVITY (LBF/SEC	(/DEG R) 0.
THERMAL DIFFUSIVITY (IN**2/SE	(C) 0.
EMISSIVITY FACTOR	0.
INITIAL TEMPERATURE (DEG R)	530.

PROJECTILE AND RIFLING DATA

INITIAL POSITION OF BASE OF PROJECTILE (INS)	35.00
MASS OF PROJECTILE (LBM)	103.00
POLAR MOMENT OF INERTIA (LBM-IN**2)	0.
ANGLE OF RIFLING (DEG)	0.

POSITIONS FOR PRESSURE TABLE STORAGE (INS)

0.10 17.50 34.75

TDNOVA CODE: COMPARISON INPUT DATA BASE

CONTROL PARAMETERS

NPRINT (O=NO PRINT, 1=PRINT)	1
NSUMRY (0=NO SUMMARY TABLES, 1=YES)	1
NPLOT (0=NO ISOMETRIC CARPET PLOTS, 1=PLOT)	1
NVHL (O=HIDDEN LINES DELETED, 1=RETAINED)	0
NPLCON (0=NO CONTOUR PLOTS,1=PLOT)	0
NPLFLO (0=NO FLOW PLOTS, 1=PLOT)	0
NPLFLM (0=NO FLAMESPREAD PLOT,1=PLOT)	1
NDSKW (O=NO DISC SAVE, 1=DISC SAVE)	0
NDSKR (0=NO DISC START, >0=DISC START AT	
STEP NDSKR)	0

ISOMETRICALLY PLOTTED QUANTITIES (0=NO,1=YES)

MESH	0
POROSITY	0
GRANULAR STRESS	0
PRESSURE	1
DENSITY	0
GAS AXIAL VELOCITY	0
SOLID AXIAL VELOCITY	0
GAS RADIAL VELOCITY	0
SOLID RADIAL VELOCITY	0
GAS TEMPERATURE	1
PARTICLE SURFACE TEMPERATURE	0

CONTOUR PLOTTED QUANTITIES (0=NO,1=YES)

MESH	0
POROSITY	0
GRANULAR STRESS	0
PRESSURE	0
DENSITY	0
GAS AXIAL VELOCITY	0
SOLID AXIAL VELOCITY	0
GAS RADIAL VELOCITY	0
SOLID RADIAL VELOCITY	0
GAS TEMPERATURE	0
PARTICLE SURFACE TEMPERATURE	0

SCALE FACTOR FOR PLOTTING	. 4
LENGTH OF Z-AXIS IN CALCOMP PLOTS (INS)	12.
LENGTH OF R-AXIS (INS)	4.
LENGTH OF ORDINATE AXIS (INS)	5.

LOGOUT PARAMETERS

NUMBER OF STEPS BEFORE LOGOUT TIME INCREMENT BEFORE LOGOUT (MSEC) NUMBER OF PRESSURE SUMMARY STATIONS TIME INCREMENT FOR PRESSURE SUMMARY STORAGE (MSEC)	2000 . 5 3
TERMINATION PARAMETERS	
MAXIMUM NUMBER OF STEPS BEFORE TERMINATION MAXIMUM INTEGRATION TIME (MSEC) MAXIMUM PROJECTILE TRAVEL (CMS)	2000 25. 520.7
MESH PARAMETERS	
MESH ALLOCATION MODE (0=STATIC,1=DYNAMIC) MAXIMUM NUMBER OF STORAGE POINTS FOR DYNAMIC	o
MESH ALLOCATION NUMBER OF MESH POINTS IN AXIAL DIRECTION	0 30
NUMBER OF MESH POINTS IN RADIAL DIRECTION NUMBER OF ITERATIONS TO DETERMINE INITIAL MESH	7
SAFETY FACTOR FOR C-F-L CRITERION	200 1.1
MAXIMUM FRACTIONAL DISPLACEMENT FOR CONVER- GENCE OF INITIAL MESH DISTRIBUTION	.00001
OVER-RELAXATION FACTOR FOR DETERMINATION OF INITIAL MESH DISTRIBUTION	1.6
PRESSURE TOLERANCE FACTOR FOR REDUCTION TO QUASI-TWO-DIMENSIONAL REPRESENTATION	. 05
AXIAL SPATIAL RESOLUTION FACTOR	. 1
RADIAL SPATIAL RESOLUTION FACTOR	. 1
AMBIENT CONDITIONS	
INITELL TEMPERATURE (DEC. 1)	
INITIAL TEMPERATURE (DEG K) INITIAL PRESSURE (MPA)	294.4
CHARGE STANDOFF (CMS)	.1014
SOLID PHASE CONSTITUTIVE DAT	ГА
INITIAL MASS OF GRANULAR BED (KG)	11.86
INITIAL POROSITY OF GRANULAR BED	0.
SETTLING POROSITY OF GRANULAR BED SPEED OF COMPRESSION WAVE (M/SEC)	. 4243
SPEED OF EXPANSION WAVE (M/SEC)	152.4
DENSITY OF SOLID PHASE (GM/CC)	1270.0 1.583
THERMAL CONDUCTIVITY (J/CM-SEC-DEG K)	.0016
THERMAL DIFFUSIVITY (CM**2/SEC)	.0006

GAS PHASE CONSTITUTIVE DATA

RATIO OF SPECIFIC HEATS	1.243
MOLECULAR WEIGHT (GM/GM-MOL)	23.36
COVOLUME (CC/GM)	1.030

SOLID PHASE COMBUSTION CHARACTERISTICS

IGNITION	TEMPERATURE (DEG K)	444.4
	ENERGY (J/GM)	4384.

MAX PRESSURE (MPA)	ADD CONSTANT (CM/SEC)	PRE-EXPONENT (CM/SEC-MPA**BN)	EXPONENT
68.95	Ο.	. 4117	.6337
689.50	0.	. 2218	. 7864
	GRAI	N GEOMETRY	
EXTERNAL DIAME	TER (CM)		1.060
LENGTH (CM)			2.408
DIAMETER OF PE	REFORATIONS (CM)		.086
NUMBER OF PERF	ORATIONS		7.

AX POS	RAD POS	FLOW RES Data	REACTIVITY DATA	NO. PTS PRE-ASS.	DATA TYPE (O=D, 1=N)
		CONFIGURATION	N OF REAR OF	BAG	
2.54	0.00	0	0	0	0
2.54	8.86	0	0	0	0
		CONFIGURATIO	N OF FRONT OF	BAG	
78.74	0.00	0	0	0	0
78.74	7.97	0	0	0	0
		CONFIGURATION	OF INSIDE OF	BAG	
2.54	0.00	0	o	o	0
78.74	0.00	0	0	0	0
		CONFIGURATION	OF OUTSIDE (F BAG	
2.54	8.86	0	o	o	o
78.74	7.97	0	0	0	0

AXIAL POSITION (CMS)		POSITION CMS)
	CONFIGURAT	ION OF BREECH
0.00		2.00
	CONFIGURATION O	F PROJECTILE BASE
88.90 88.90).00 '.85
	CONFIGURATION C	F INSIDE BOUNDARY
0.00 88.90		0.00
	CONFIGURATION C	OF OUTSIDE BOUNDARY
0.00 88.90		3.89 7.85
	REPRESENTATION	OF IGNITION TRAIN
NCCORE (0=NO CE BASEPAD REACTIV NTABAG (0=NO EX		0 0 ,1=YES)
CHEMICAL ENERGY	OF EXTERNAL ST	IMULUS (J/GM) 2491
RA	TE OF DISCHARGE	OF EXTERNAL STIMULUS
RATE (GM/CC/SEC	AT TIME 0.00	MSEC
AXIAL LOCATION 0.00 2.50 2.52	0.00 (CM) 4.65 4.65	OCATION (CM) 8.82 8.84 4.65 0.00 4.65 0.00 0.00 0.00

RATE OF DISCHARGE OF EXTERNAL STIMULUS (CONTINUED)

RATE (GM/CC/SEC) AT TIME 10.00 MSEC

			RADIAL	LOCATION	(CM)
			0.00	8.82	8.84
AXIAL	LOCATION	(CM)	24		
	0.00		4.65	4.65	0.00
	2.50		4.65	4.65	0.00
	2.52		0.00	0.00	0.00

RATE (GM/CC/SEC) AT TIME 11.00 MSEC

			RADIAL 0.00	LOCATION 8.82	(CM) 8.84
AXIAL	LOCATION	(CM)			0.01
	0.00		0.00	0.00	0.00
	2.50		0.00	0.00	0.00
	2.52		0.00	0.00	0.00

PROPERTIES OF PROJECTILE

PROJECTILE MASS (KG)	46.72
NUMBER OF ENTRIES IN BORE RESISTANCE TABLE	7
RESISTANCE LAW NUMBER	1
NUMBER OF FILLER ELEMENTS	0

BORE RESISTANCE DATA

PROJECTILE TRAVEL (CMS)	RESISTIVE PRESSURE
. 5112 /	(MPA)
0.000	1.72
1.016	23.10
2.540	34.10
3.937	25.00
5.207	22.40
11.430	17.20
520.700	10.30

LOCATION OF POINTS FOR PRESSURE SUMMARY TABLE

AXIAL	LOCATION (CMS)	WALL	(0)	OR	AXIS	(1)
	. 25			0		
	44.45	•)		
	88.27			0		

APPENDIX B

INPUT DATA FOR TDNOVA $P_{ tol}$ AND MESH-SENSITIVITY CALCULATIONS

TDNOVA CODE: Ptol AND MESH STUDY DATA BASE

CONTROL PARAMETERS

NPRINT (0=NO PRINT, 1=PRINT)	1
NSUMRY (0=NO SUMMARY TABLES,1=YES)	2
NPLOT (0=NO ISOMETRIC CARPET PLOTS, 1=PLOT)	1
NVHL (O=HIDDEN LINES DELETED, 1=RETAINED)	0
NPLCON (0=NO CONTOUR PLOTS, 1=PLOT)	0
NPLFLO (0=NO FLOW PLOTS, 1=PLOT)	0
NPLFLM (0=NO FLAMESPREAD PLOT, 1=PLOT)	1
NDSKW (0=NO DISC SAVE, 1=DISC SAVE)	0
NDSKR (0=NO DISC START, >0=DISC START AT	
STEP NDSKR)	0

ISOMETRICALLY PLOTTED QUANTITIES (0=NO,1=YES)

MESH	0
POROSITY	0
GRANULAR STRESS	0
PRESSURE	1
DENSITY	0
GAS AXIAL VELOCITY	0
SOLID AXIAL VELOCITY	0
GAS RADIAL VELOCITY	0
SOLID RADIAL VELOCITY	0
GAS TEMPERATURE	1
PARTICLE SURFACE TEMPERATURE	0

CONTOUR PLOTTED QUANTITIES (0=NO,1=YES)

0
0
0
0
0
0
0
0
0
0
0

SCALE FACTOR FOR	PLOTTING	. 4
LENGTH OF Z-AXIS	IN CALCOMP PLOTS (INS)	12.
LENGTH OF R-AXIS	(INS)	4.
LENGTH OF ORDINAT	TE AXIS (INS)	5.

LOGOUT PARAMETERS

LOUGH TANAMETERS	
NUMBER OF STEPS BEFORE LOGOUT	2000
TIME INCREMENT BEFORE LOGOUT (MSEC)	. 5
NUMBER OF PRESSURE SUMMARY STATIONS	3
TIME INCREMENT FOR PRESSURE SUMMARY STORAGE	3
(MSEC)	•
(MSEC)	. 2
TERMINATION PARAMETERS	
WANTHUM NUMBER OF CHERG BERODE MERKEUS MEN	
MAXIMUM NUMBER OF STEPS BEFORE TERMINATION	
MAXIMUM INTEGRATION TIME (MSEC)	25.
MAXIMUM PROJECTILE TRAVEL (CMS)	520.7
MESH PARAMETERS	
VEGU ALLOGAMENTO CONTRACTOR AND	
MESH ALLOCATION MODE (0=STATIC, 1=DYNAMIC)	0
MAXIMUM NUMBER OF STORAGE POINTS FOR DYNAMIC	
MESH ALLOCATION	0
NUMBER OF MESH POINTS IN AXIAL DIRECTION	VARIOUS
NUMBER OF MESH POINTS IN RADIAL DIRECTION	VARIOUS
NUMBER OF ITERATIONS TO DETERMINE INITIAL	
MESH	200
SAFETY FACTOR FOR C-F-L CRITERION	1.1
MAXIMUM FRACTIONAL DISPLACEMENT FOR CONVER-	
GENCE OF INITIAL MESH DISTRIBUTION	.00001
OVER-RELAXATION FACTOR FOR DETERMINATION OF	.00001
INITIAL MESH DISTRIBUTION	1.6
PRESSURE TOLERANCE FACTOR FOR REDUCTION TO	1.0
QUASI-TWO-DIMENSIONAL REPRESENTATION	VARIOUS
AXIAL SPATIAL RESOLUTION FACTOR	
	. 1
RADIAL SPATIAL RESOLUTION FACTOR	. 1
AMBIENT CONDITIONS	
INITIAL TEMPERATURE (DEG K)	294.4
INITIAL PRESSURE (MPA)	.1014
CHARGE STANDOFF (CMS)	0.
CHARGE STRADOFF (CHS)	0.
SOLID PHASE CONSTITUTIVE DAT	r a
	•
INITIAL MASS OF GRANULAR BED (KG)	11.86
INITIAL POROSITY OF GRANULAR BED	0.
SETTLING POROSITY OF GRANULAR BED	0.
SPEED OF COMPRESSION WAVE (M/SEC)	152.4
SPEED OF EXPANSION WAVE (M/SEC)	1270.0
DENSITY OF SOLID PHASE (GM/CC)	1.583
THERMAL CONDUCTIVITY (J/CM-SEC-DEG K)	.0016
THERMAL DIFFUSIVITY (CM++2/CFC)	.0016

.0006

THERMAL DIFFUSIVITY (CM**2/SEC)

GAS PHASE CONSTITUTIVE DATA

		JCAN1 CAD	CONSTITUTIVE	DATA	
RATIO OF MOLECULA COVOLUME	SPECIFIC : R WEIGHT ((CC/GM)	HEATS GM/GM-MOL)		1. 23. 1.	
	SOLID	PHASE COMBI	USTION CHARACT	TERISTICS	
IGNITION CHEMICAL	TEMPERATURE ENERGY (J	RE (DEG K) /GM)		444. 4384.	
MAX PRES	SURE ADD	CONSTANT CM/SEC)	PRE-EXPONI (CM/SEC-MPA	ENT EX	XPONENT
68.99 689.50		0. 0.	.4117 .2218		. 6337 . 7864
		GRAIN	I GEOMETRY		
LENGTH ((ATIONS (CM)		1.0 2.4 .0 7.	408 086
AX POS	RAD POS	FLOW RES	REACTIVITY DATA		DATA TYPE (O=D,1=N)
	(CONFIGURATIO	ON OF REAR OF	BAG	
2.54 2.54 2.54	1.27 3.40 7.62	1 1 0	1 0 0	0 0 0	o o o
	C	CONFIGURATIO	N OF FRONT OF	BAG	
78.74 78.74	1.27 7.62	2 0	0	0	0
	CC	NFIGURATION	OF INSIDE OF	BAG	
2.54 78.74	1.27 1.27	3 0	0	0	0
	cc	NFIGURATION	OF OUTSIDE C	F BAG	
2.54 27.94 78.74	7.62 7.62 7.62	1 4 0	0 0 0	0 0 0	0 0 0

AXIAL POSITION	RADIA	AL POSITION	
(CMS)		(CMS)	
	CONFIGURA	ATION OF BREECH	
0.00		0.00	
0.00		7.06	
-3.45		8.48	
	CONFIGURATION	OF PROJECTILE BAS	SE
87.38		0.00	
87.38		7.14	
96.42		7.85	
	CONFIGURATION	OF INSIDE BOUNDA	RY
0.00		0.00	
87.38		0.00	
	CONFIGURATION	OF OUTSIDE BOUND	ARY
-3.45		8.48	
92.46		8.05	
96.42		7.85	
	REPRESENTATIO	N OF IGNITION TRA	IN
NCCORE (0=NO CE	NTERCORE, 1 = YES)	1
BASEPAD REACTIV	ITY DATA		1
NTABAG (O=NO EX	TERNAL STIMULU	S,l=YES)	0
PR	OPERTIES OF SO	LID PHASE IN CENT	ERCORE
	SOLID PHASE	CONSTITUTIVE DAT	A
INITIAL MASS OF	GRANULAR BED	(KG)	.1134
INITIAL POROSIT			0.
SETTLING POROSI			. 40
SPEED OF COMPRE			442.
SPEED OF EXPANS			1270.
DENGITY OF COLI	D DUNCE /CM/CC	1	1 200

1.799

.0016

.0006

DENSITY OF SOLID PHASE (GM/CC)

THERMAL DIFFUSIVITY (CM**2/SEC)

THERMAL CONDUCTIVITY (J/CM-SEC-DEG K)

SOLID PHASE COMBUSTION CHARACTERISTICS

IGNITION	TEMPERATURE (DEG K)	300.
CHEMICAL	ENERGY (J/GM)	2489.

MAX PRESSURE	ADD CONSTANT (CM/SEC)	PRE-EXPONENT (CM/SEC-MPA**BN)	EXPONENT
(III A)	(CII) SEC /	(CH) SEC HE R BR)	
. 5 2	0.	2.508	. 4620
690.00	0.	2.007	.1330
	GRAIN	N GEOMETRY	
EXTERNAL DIAM	ETER (CM)		. 3
LENGTH (CM)			0.
DIAMETER OF PI	ERFORATIONS (CM)		0.
NUMBER OF PERI	FORATIONS		0.
	PROPERTIES	of PROJECTILE	
	INOLUNITE	or troopering	
DDO TROMTER WA			46 80

PROJECTILE MASS (KG)	46.72
NUMBER OF ENTRIES IN BORE RESISTANCE TABLE	7
RESISTANCE LAW NUMBER	1
NUMBER OF FILLER ELEMENTS	0

BORE RESISTANCE DATA

PROJECTILE TRAVEL	RESISTIVE PRESSURE
(CMS)	(MPA)
0.000	1.72
1.016	23.10
2.540	34.10
3.937	25.00
5.207	22.40
11.430	17.20
520.700	10.30

BAG FLOW RESISTANCE DATA

TYPE	INIT FRICTION FACTOR	RUPTURE STRESS (MPA)	RUPTURE INTERVAL (MSEC)
1	.01	. 30	0.0
2	101.00	. 60	0.0
3	101.00	. 60	2.0
4	101.00	. 30	0.0

DATA TO DESCRIBE REACTIVITY OF BAG SUBSTRATE 1 ENERGY RELEASED DURING DECOMPOSITION (J/GM) 2489.

BAG SUBSTRATE DISCHARGE CHARACTERISTICS

TIME (MSEC)	RATE OF DISCHARGE (GM/CM**2-SEC)
0.0	2.62
0.1	26.20
30.0	26.20

LOCATION OF POINTS FOR PRESSURE SUMMARY TABLE

AXIAL	LOCATION (CMS)	WALL (0) OR AXIS (1)
	. 25 44. 45	0
		0
	88.27	0

No. Of Copies		No. Of Copies	Organization
12	Administrator Defense Technical Info Center ATTN: DTIC-DDA Cameron Station Alexandria, VA 22314	3	Commander US Army Materiel Development and Readiness Command ATTN: DRCDMD-ST DCRSF-E, Safety Office DRCDE-DW
1	Office of the Under Secretary of Defense Research & Engineering ATTN: R. Thorkildsen Washington, DC 20301	14	5001 Eisenhower Avenue Alexandria, VA 22333 Commander US Army Armament R&D Command
1	HQDA/SAUS-OR, D. Hardison Washington, DC 20301		ATTN: DRDAR-TSS (2 cys) DRDAR-TDC D. Gyorog
1	HQDA/DAMA-ZA Washington, DC 20310		DRDAR-LCA K. Russell A. Moss J. Lannon
2	HQDA, DAMA-CSM, A. German E. Lippi Washington, DC 20310		A. Beardell D. Downs S. Einstein
1	HQDA/SARDA Washington, DC 20310		L. Schlosberg S. Westley S. Bernstein P. Kemmey
1	Commander US Army War College ATTN: Library-FF229		C. Heyman Dover, NJ 07801
1	Carlisle Barracks, PA 17013 Ballistic Missile Defense	9	US Army Armament R&D Command ATTN: DRDAR-SCA, L. Stiefel B. Brodman
	Advanced Technology Center P. O. Box 1500 Huntsville, AL 35804		DRDAR-LCB-I, D. Spring DRDAR-LCE, R. Walker DRDAR-LCU-CT
1	Chairman DOD Explosives Safety Board Room 856-C Hoffman Bldg. 1 2461 Eisenhower Avenue Alexandria, VA 22331		E. Barrieres R. Davitt DRDAR-LCU-CV C.Mandala E. Moore DRDAR-LCM-E S. Kaplowitz Dover, NJ 07801

No. Of		No. Of Copies	Organization
Copies	Organization	Copies	Organization
5	Commander US Army Armament R&D Command ATTN: DRDAR-QAR, J. Rutkowski G. Allen J. Donner P. Serao D. Adams Dover, NJ 07801	5	Commander US Army Armament Materiel Readiness Command ATTN: DRDAR-LEP-L, Tech Lib DRSAR-LC, L. Ambrosini DRSAR-ICR, G. Cowan DRSAR-LEM, W. Fortune R. Zastrow Rock Island, IL 61299
5	Project Manager Cannon Artillery Weapons Systems ATTN: DRCPM-CAWS, F. Menke	1	Commander US Army Watervliet Arsenal ATTN: SARWV-RD, R. Thierry Watervliet, NY 12189
	DRCPM-CAWS-WS H. Noble DRCPM-CAWS-SI M. Fisette DRCPM-CAWS-AM R. DeKleine	1	Director US Army ARRADCOM Benet Weapons Laboratory ATTN: DRDAR-LCB-TL Watervliet, NY 12189
	H. Hassman Dover, NJ 07801	1	Commander US Army Aviation Research and Development Command
3	Project Manager Munitions Production Base Modernization and Expansion ATTN: DRCPM-PMB, J. Ziegler		ATTN: DRDAV-E 4300 Goodfellow Blvd. St. Louis, MO 63120
	M. Lohr A. Sikloski Dover, NJ 07801	1	Commander US Army TSARCOM 4300 Goodfellow Blvd St. Louis, MO 63120
3	Project Manager Tank Main Armament System ATTN: DRCPM-TMA, D. Appling DRCPM-TMA-105 DRCPM-TMA-120	1	Director US Army Air Mobility Research And Development Laboratory
	Dover, NJ 07801		Ames Research Center Moffett Field, CA 94035
4	Commander US Army Armament R&D Command ATTN: DRDAR-LCW-A M.Salsbury DRDAR-LCS DRDAR-LCU, A. Moss DRDAR-LC, J. Frasier Dover, NJ 07801		

No. Of Copies		No. Of Copies	Organization
1	Commander US Army Communications Research and Development Command ATTN: DRDCO-PPA-SA Fort Monmouth, NJ 07703	1	Project Manager Improved TOW Vehicle ATTN: DRCPM-ITV US Army Tank Automotive Research & Development Command Warren, MI 48090
1	Commander US Army Electronics Research and Development Command Technical Support Activity ATTN: DELSD-L Fort Monmouth, NJ 07703	2	Program Manager Ml Abrams Tank System ATTN: DRCPM-GMC-SA, J. Roossien Warren, MI 48090
1	Commander US Army Harry Diamond Lab. ATTN: DELHD-TA-L 2800 Powder Mill Road Adelphi, MD 20783	1	Project Manager Fighting Vehicle Systems ATTN: DRCPM-FVS Warren, MI 48090
2	Commander US Army Missile Command ATTN: DRSMI-R DRSMI-YDL Redstone Arsenal, AL 35898	1	Director US Army TRADOC Systems Analysis Activity ATTN: ATAA-SL, Tech Lib White Sands Missile Range, NM 88002
1	Commander US Army Natick Research and Development Command ATTN: DRXRE, D. Sieling Natick, MA 01762	1	Project Manager M-60 Tank Development ATTN: DRCPM-M60TD Warren, MI 48090
1	Commander US Army Tank Automotive Research and Development Command ATTN: DRDTA-UL	1	Commander US Army Training & Doctrine Command ATTN: ATCD-MA/ MAJ Williams Fort Monroe, VA 23351
1	Warren, MI 48090 US Army Tank Automotive Research and Development Cmd ATTN: DRSTA-CG Warren, MI 48090	2	Commander US Army Materials and Mechanics Research Center ATTN: DRXMR-ATL Tech Library Watertown, MA 02172

No. Of		No. Of	
Copies	Organization		Omnord webt we
COPIES	Organization	Copies	Organization
1	Commander	1	Commander
	US Army Research Office		
	ATTN: Tech Library		US Army Foreign Science &
	_		Technology Center
	P. O. Box 12211		ATTN: DRXST-MC-3
	Research Triangle Park, NC		
	27709		220 Seventh Street, NE
			Charlottesville, VA 22901
_			
1	Commander	1	President
	US Army Mobility Equipment	-	
	Research & Development		US Army Artillery Board
	•		Ft. Sill, OK 73504
	Command		
	ATTN: DRDME-WC	2	Commandant
	Fort Belvoir, VA 22060	2	
	, 		US Army Field Artillery
			School School
1	Commander		ATTN: ATSF-CO-MW, B. Willis
	US Army Logistics Mgmt Ctr		
			Ft. Sill, OK 73503
	Defense Logistics Studies		
	Fort Lee, VA 23801	3	Commandant
			US Army Armor School
2	Commandant		
	US Army Infantry School		ATTN: ATZK-CD-MS/M.
			Falkovitch Armor Agency
	ATTN: Infantry Agency		Fort Knox, KY 40120
	Fort Benning, GA 31905		,
		•	Chi of of Name 1 March 1
1	US Army Armor & Engineer	1	Chief of Naval Materiel
-			Department of the Navy
	Board		ATTN: J. Amlie
	ATTN: STEBB-AD-S		Washington, DC 20360
	Fort Knox, KY 40121		nabilington, bu 20000
		_	
1	Commandant	1	Chief Naval Research
1			ATTN: Code 473, R. S. Miller
	US Army Aviation School		800 N. Quincy Street
	ATTN: Aviation Agency		
	Fort Rucker, AL 36360		Arlington, VA 22217
	Tore Rueker, In 30300		
		2	Commander
1	Commandant	_	US Naval Sea Systems Command
	Command and General Staff		
	College		ATTN: SEA-62R2, J. W. Murrin
			R. Beauregard
	Fort Leavenworth, KS 66027		Washington, DC 20362
			3 , = =====
1	Commandant	1	Common living
	US Army Special Warfare	1	Commander
			Naval Air Systems Command
	School School		ATTN: NAIR-954-Tech Lib
	ATTN: Rev & Tng Lit Div		Washington, DC 20360
	Fort Bragg, NC 28307		
•			
1	Commandant		
	US Army Engineer School		
	ATTN: ATSE-CD		
	Ft. Belvoir, VA 22060		

No. Of Copies	Organization	No. Of Copies	Organization
1	Strategic Systems Project Office Dept. of the Navy Room 901 ATTN: J. F. Kincaid Washington, DC 20376	4	Commander Naval Weapons Center ATTN: Code 388, R. L. Derr C. F. Price T. Boggs Info. Sci. Div. China Lake, CA 93555
1	Assistant Secretary of the Navy (R, E, and S) ATTN: R. Reichenbach Room 5E787 Pentagon Bldg. Washington, DC 20350	2	Superintendent Naval Postgraduate School Dept. of Mechanical Engineering ATTN: A. E. Fuhs
1	Commander Naval Research Lab Tech Library		Code 1424 Library Monterey, CA 93940
5	Washington, DC 20375 Commander Naval Surface Weapons Center ATTN: Code G33, J. L. East	6	Commander Naval Ordnance Station ATTN: P. L. Stang C. Smith S. Mitchell
	D. McClure W. Burrell J. Johndrow Code DX-21 Tech Lib Dahlgren, VA 22448		C. Christensen D. Brooks Tech Library Indian Head, MD 20640
2	Commander US Naval Surface Weapons Center	1	HQ AFSC Andrews AFB Washington, DC 20331
	ATTN: J. P. Consaga C. Gotzmer Indian Head, MD 20640	1	Program Manager AFOSR Directorate of Aerospace Sciences
4	Commander Naval Surface Weapons Center ATTN: S. Jacobs/Code 240		ATTN: L. H. Caveny Bolling AFB, DC 20332
	Code 730 K. Kim/Code R-13 R. Bernecker Silver Spring, MD 20910	6	AFRPL (DYSC) ATTN: D. George J. N. Levine B. Goshgarian D. Thrasher
2	Commanding Officer Naval Underwater Systems Center Energy Conversion Dept. ATTN: CODE 5B331, R. S. Lazar Tech Lib Newport, RI 02840		N. Vander Hyde Tech Library Edwards AFB, CA 93523

No. Of Copies	Organization	No. Of Copies	Organization	
1	AFFTC ATTN: SSD-Tech LIb Edwards AFB, CA 93523	1	AVCO-Everett Rsch Lab Div ATTN: D. Stickler 2385 Revere Beach Parkway	
1	AFATL ATTN: DLYV Eglin AFB, FL 32542	2	Everett, MA 02149 Calspan Corporation	
1	AFATL/DLDL ATTN: 0. K. Heiney Eglin AFB, FL 32542	-	ATTN: E. B. Fisher Tech Library P. O. Box 400 Buffalo, NY 14225	
1	ADTC ATTN: DLODL Tech Lib Eglin AFB, FL 32542	1	Foster Miller Associates ATTN: A. Erickson 135 Second Avenue	
1	AFFDL ATTN: TST-Lib Wright-Patterson AFB, OH 45433	1	Waltham, MD 02154 Hercules, Inc. Bacchus Works ATTN: K. P. McCarty Magna, UT 84044	
1	HQ NASA 600 Independence Avenue, SW ATTN: Code JM6, Tech Lib. Washington, DC 20546	1	General Applied Sciences Lab, In ATTN: J. Erdos Merrick & Stewart Avenues Westbury Long Island, NY	nc.
1	NASA/Lyndon B. Johnson Space Center ATTN: NHS-22, Library Section Houston, TX 77058	1	General Electric Company Armament Systems Dept. ATTN: M. J. Bulman, Room 1311	
1	Aerodyne Research, Inc. Bedford Research Park ATTN: V. Yousefian		Lakeside Avenue Burlington, VT 05412	
1	Bedford, MA 01730 Aerojet Solid Propulsion Co. ATTN: P. Micheli Sacramento, CA 95813	1	Hercules Powder Co. Allegheny Ballistics Laboratory ATTN: R. B. Miller P. O. Box 210	
1	Atlantic Research Corporation ATTN: M. K. King 5390 Cheorokee Avenue Alexandria, VA 22314	ı	Cumberland, MD 21501	

No. Of Copies	Organization	No. Of Copies	Organization
1	Hercules, Inc. Eglin Operations AFATL DLDL ATTN: R. L. Simmons Eglin AFB, FL 32542	2	Rockwell International Rocketdyne Division ATTN: BA08 J. E. Flanagan J. Grey 6633 Canoga Avenue
1	IITRI ATTN: M. J. Klein 10 W. 35th Street	1	Canoga Park, CA 91304 Science Applications, INC.
2	Chicago, IL 60616 Lawrence Livermore Laboratory ATTN: M. S. L-355,	•	ATTN: R. B. Edelman 23146 Cumorah Crest Woodland Hills, CA 91364
	A. Buckingham M. Finger P. O. Box 808 Livermore, CA 94550	1	Scientific Research Assoc., Inc. ATTN: H. McDonald P. O. Box 498
1	Olin Corporation Badger Army Ammunition Plant ATTN: R. J. Thiede Baraboo, WI 53913	1	Shock Hydrodynamics, Inc. ATTN: W. H. Andersen 4710-16 Vineland Avenue North Hollywood, CA 91602
1	Olin Corporation Smokeless Powder Operations ATTN: R. L. Cook P. O. Box 222 ST. Marks, FL 32355	3	Thiokol Corporation Huntsville Division ATTN: D. Flanigan R. Glick Tech Library
1	Paul Gough Associates, Inc. ATTN: P. S. Gough		Huntsville, AL 35807
,	P. O. Box 1614 Portsmouth, NH 03801	2	Thiokol Corporation Wasatch Division ATTN: J. Peterson
1	Physics International Company 2700 Merced Street Leandro, CA 94577		Tech Library P. O. Box 524 Brigham City, UT 84302
1	Princeton Combustion Research Lab., Inc. ATTN: M. Summerfield 1041 US Highway One North Princeton, NJ 08540	2	Thiokol Corporation Elkton Division ATTN: R. Biddle Tech Lib. Elkton, MD 21921
1	Pulsepower Systems, Inc. ATTN: L. C. Elmore 815 American Street San Carlos, CA 94070		

No. Of		No. Of	
Copies	Organization	Copies	Organization
2	United Technologies	1	University of Massachusetts
-	Chemical Systems Division	1	Dept. of Mechanical
	ATTN: R. Brown		Engineering
	Tech Library		ATTN: K. Jakus
	P. O. Box 358		
	Sunnyvale, CA 94086		Amherst, MA 01002
	balling value, on 5 too	1	University of Minnesota
1	Universal Propulsion Company,		Dept. of Mechanical
1	ATTN: H. J. McSpadden		Engineering
	Black Canyon Stage 1, Box 1140	1	ATTN: E. Fletcher
	Phoenix, AZ 85029		
	Thoches, he sould		Minneapolis, MN 55455
1	Southwest Research Institute	1	Case Western Reserve
_	ATTN: W. H. McLain	1	University
	8500 Culebra Road		Division of Aerospace
	San Antonio, TX 98228		Sciences
	5a		ATTN: J. Tien
			Cleveland, OH 44135
1	Battelle Memorial Institute		Cleverand, on 44155
•	ATTN: Tech Library	3	Coordin Tratitute of Took
	505 King avenue	3	Georgia Institute of Tech
	Columbus, OH 43201		School of Aerospace Eng. ATTN: B. T. Zinn
	001dinbus, 011 13201		
1	Brigham Young University		E. Price
1	Dept. of Chemical Engineering		W. C. Strahle
	ATTN: M. Beckstead		Atlanta, GA 30332
	Provo, UT 84601		Institute of Cos Technology
	1000, 01 04001	1	Institute of Gas Technology
			ATTN: D. Gidaspow
1	California Institute of Tech		3424 S. State Street
1	204 Karman Lab		Chicago, IL 60616
	Main Stop 301-46		Dinastan
	ATTN: F. E. C. Culick	1	Director
	1201 E. California Street		Applied Physics Lab/ Chemical
	Pasadena, CA 91125		Propulsion Info Agency
	rasadena, Ch 71127		The Johns Hopkins University
1	California Institute of Tech		ATTN: T. Christian
1	Jet Propulsion Laboratory		Johns Hopkins Road
	ATTN: L. D. Strand		Laurel, MD 20707
	4800 Oak Grove Drive		/ N - 1 - 1 - 1 - 1 - 1 - 1 - 1
	Pasadena, CA 91103	1	Massachusetts Institute of
	rasauella, CA 91105		Tech
1	University of Illinois		Dept of Mechanical
T	University of Illinois		Engineering
	Dept of Mech Eng ATTN: H. Krier		ATTN: T. Toong
			Cambridge, MA 02139
	144 MEB, 1206 W. Green St.		
	Urbana, IL 61801		

No. Of Copies	Organization	No. Of Copies	Organization
1	Pennsylvania State University Applied Research Lab ATTN: G. M. Faeth P. O. Box 30 State College, PA 16801	. 1	University of Southern California Mechanical Engineering Dept. ATTN: OHE200, M. Gerstein Los Angeles, CA 90007
1	Pennsylvania State University Dept. Of Mechanical Engineering ATTN: K. Kuo University Park, PA 16802	2	University of Utah Dept. of Chemical Engineering ATTN: A. Baer G. Flandro Salt Lake City, UT 84112
1	Purdue University School of Mechanical Engineering ATTN: J. R. Osborn TSPC Chaffee Hall West Lafayette, IN 47906	1	Washington State University Dept. of Mechanical Engineering ATTN: C. T. Crowe Pullman, WA 99164
1	Rensselaer Polytechnic Inst. Department of Mathematics Troy, NY 12181		
1	Rutgers University Dept. of Mechanical and Aerospace Engineering ATTN: S. Temkin University Heights Campus New Brunswick, NJ 08903	Cdr, U	DRXSY-MP, H. Cohen JSATECOM N: DRSTE-TO-F STEAP-MT, S. Walton G. Rice D. Lacey C. Herud
1	SRI International Propulsion Sciences Division ATTN: Tech Library 333 Ravenswood Avenue Menlo Park, CA 94025	Dir, U	HEL N: J. Weisz USACSL, Bldg. E3516, EA N: DRDAR-CLB-PA
1	Stevens Institute of Technology Davidson Laboratory ATTN: R. McAlevy, III Hoboken, NJ 07030		
2	Los Alamos National Lab ATTN: T. D. Butler, MS B216 M. Division, B. Craig P. O. Box 1663		€ .

Los Alamos, NM 87545

USER EVALUATION OF REPORT

Please take a few minutes to answer the questions below; tear out this sheet, fold as indicated, staple or tape closed, and place in the mail. Your comments will provide us with information for improving future reports.

1. BRL Report Number
2. Does this report satisfy a need? (Comment on purpose, related project, or other area of interest for which report will be used.)
3. How, specifically, is the report being used? (Information source, design data or procedure, management procedure, source of ideas, etc.)
4. Has the information in this report led to any quantitative savings as far as man-hours/contract dollars saved, operating costs avoided, efficiencies achieved, etc.? If so, please elaborate.
5. General Comments (Indicate what you think should be changed to make this report and future reports of this type more responsive to your needs, more usable, improve readability, etc.)
6. If you would like to be contacted by the personnel who prepared this report to raise specific questions or discuss the topic, please fill in the following information.
Name:
Telephone Number:
Organization Address: