Linear Algebra-A

Assignments - Week 9

Supplementary Problem Set

Let $\mathbf{0} \neq \mathbf{v} \in \mathbf{R}^n$. Please give a matrix **P** such that

$$(\mathbf{P}\mathbf{v} = \mathbf{0})$$

 $(\mathbf{P}\mathbf{x} = \mathbf{x}, \forall \mathbf{x} \in N(\mathbf{v}^T))$

$$P = I - \frac{\gamma \gamma'}{\gamma \tau \gamma}$$

- a) $\mathbf{P}^{\mathrm{T}} = \mathbf{P}$ and $\mathbf{P}^{2} = \mathbf{P}$.
- b) Please show that Pb is the projection of b onto the column space of P. The error vector $\mathbf{b} - \mathbf{P}\mathbf{b}$ is orthogonal to the space. In other words, please show that the inner product $(\boldsymbol{b} - \boldsymbol{P} \boldsymbol{b})^{\mathrm{T}} \boldsymbol{P} \boldsymbol{c} = 0$ for any $\boldsymbol{c} \in \mathbf{R}^n$.
- 2. Let $\mathbf{A} = \begin{bmatrix} 1 & 1 & 2 & 2 \\ 1 & 2 & 1 & 2 \\ 2 & 5 & 4 & 6 \end{bmatrix}$.

Please give a 4 by 4 orthogonal matrix $\mathbf{Q} = [\mathbf{q}_1, \mathbf{q}_2, \mathbf{q}_3, \mathbf{q}_4]$, such that $\mathbf{q}_1, \mathbf{q}_2 \in$ $C(A^T)$ and $q_3, q_4 \in N(A)$.

Calculate the following determinant:

$$D = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} & 0 & \cdots & 0 \end{vmatrix} \cdot \text{("reverse-triangular" matrix)}$$

$$D = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} & 0 & \cdots & 0 \end{vmatrix} \cdot \text{("reverse-triangular" matrix)}$$

$$D = \left(- \right) \frac{\text{MCM-ID2}}{2} Q_{\text{NI}} Q_{\text{CM-ID2}} \cdots Q_{\text{IM}}$$

4. If
$$\begin{vmatrix} 1+x & 2 & 3 \\ 2 & 1+x & 2 \\ 3 & 3 & 1+x \end{vmatrix} = 0$$
, find x .

- 5. Let \mathbf{A} and \mathbf{B} be two invertible n by n matrices. Assume that \mathbf{A} and \mathbf{B} commute, i.e., AB = BA. Let $M = \begin{bmatrix} A & B \\ B^{-1} & A^{-1} \end{bmatrix}$.
 - (a) Show that M is not invertible.
 - (b) Find the rank of M.