MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 6 - MARCH 2015 SOLUTION KEY

Team Round - continued

D) For a=1, $L_1(y=ax+b)$ and $L_2(\frac{x}{a}-\frac{y}{b}=1)$ do not intersect on $L_3(y=x)$,

since L_1 is parallel to L_3 for nonzero values of b. Therefore, all ordered pairs (a,b), where a=1 must be excluded, regardless of the value of b, and we have p=1.

How about when $a \ne 1$? Substituting for y in the second equation,

$$\begin{vmatrix} y = ax + b \\ \frac{x}{a} - \frac{y}{b} = 1 \end{vmatrix} \Rightarrow bx - ay = ab$$

$$\Rightarrow bx - a(ax + b) = ab$$

$$\Rightarrow x(b-a^2) = 2ab \Rightarrow x = \frac{2ab}{b-a^2}$$
 Substituting in the first equation for x,

$$y = a \left(\frac{2ab}{b - a^2} \right) + b = \frac{2a^2b + b^2 - a^2b}{b - a^2} = \frac{a^2b + b^2}{b - a^2}$$

Thus, the point of intersection is $\left(\frac{2ab}{b-a^2}, \frac{a^2b+b^2}{b-a^2}\right)$.

Since, we were given that L_1 and L_2 intersect, $b - a^2 \neq 0$.

P can only be on L_3 , if $2ab = a^2b + b^2$. Since $b \ne 0$, this simplifies to $2a = a^2 + b$ or $b = -a^2 + 2a$.

Thus, if $b \neq -a^2 + 2a$, the point (a,b) cannot be on L_3 , and we have (p,q,r) = (1,-1,2).