ALGO QCM

Soit le graphe non orienté valué G=< S, A, C> représenté par :

- 1. Le graphe G admet un unique ARPM?
 - (a) Faux
 - (b) Vrai
- 2. Le coût de l'ARPM de G est égal à?
 - (a) 6
 - (b) 8
 - (c) 10
 - (d) 12
 - (e) Il n'existe pas d'ARPM
- 3. L'ARPM de G est constitué de?
 - (a) 6 arêtes
 - (b) 7 arêtes
 - (c) 8 arêtes
 - (d) 9 arêtes
 - (e) Il n'existe pas d'ARPM
- 4. Un graphe partiel connexe est un arbre?
 - (a) Oui
 - (b) Non
- 5. L'algorithme de Prim utilise un principe analogue à celui de DIJKSTRA?
 - (a) Oui
 - (b) Non
- 6. Soit G un graphe connexe valué tel que les coûts des arêtes ne sont pas deux à deux distincts, alors G admet plusieurs ARPM?
 - (a) Faux
 - (b) Vrai

- 7. On appelle AR d'un graphe G non orienté valué de N sommets et P arêtes?
 - (a) un graphe partiel de G sans cycle et connexe
 - (b) un graphe partiel de G
 connexe de N-1arêtes
 - (c) un graphe partiel de G sans cycle de N-1 arêtes

Soit le graphe orienté valué G2=< S2, A2, C2> représenté par :

En appliquant l'algorithme d'Edmonds à partir du sommet 1 :

- 8. Le graphe G2 admet un unique ARPM?
 - (a) Faux
 - (b) Vrai
- 9. Le coût de l'ARPM de G2 est égal à?
 - (a) 9
 - (b) 10
 - (c) 11
 - (d) 12
 - (e) Il n'existe pas d'ARPM
- 10. L'ARPM de G2 est constitué de?
 - (a) 6 arcs
 - (b) 7 arcs
 - (c) 8 arcs
 - (d) 9 arcs
 - (e) Il n'existe pas d'ARPM

QCM 9

Lundi 6 mai 2024

Question 11

Soit $\sum f_n$ une série de fonctions définie sur $\mathbb R$. Cette série converge absolument si et seulement si :

- a. Pour tout $x \in \mathbb{R}, \sum f_n(x)$ converge
- b. Pour tout $x \in \mathbb{R}$, $\sum |f_n(x)|$ converge
- c. $\sum \left(\sup_{\mathbb{R}} |f_n| \right)$ converge
- d. Aucun des autres choix

Question 12

Considérons une série de fonctions $\sum f_n$ définie sur $\mathbb R$ telle que, pour tout $n \in \mathbb N^*$, $\sup_{\mathbb R} |f_n| = \frac{1}{n^2}$. Alors :

- a. $\sum f_n$ converge uniformément sur $\mathbb R$
- b. $\sum f_n$ ne converge pas uniformément sur $\mathbb R$
- c. On ne peut rien dire de la convergence uniforme de $\sum f_n$ sur $\mathbb R$
- d. Aucun des autres choix

Question 13

Soit la fonction f définie pour tout $x \in [0, 2\pi[$ par $f(x) = \begin{cases} 0 & \text{si } x \in [0, \pi] \\ 1 & \text{sinon} \end{cases}$

- a. La fonction f est continue sur $[0, 2\pi[$
- b. La fonction f n'est pas continue sur $[0, 2\pi[$, mais elle est continue par morceaux
- c. La fonction fn'est ni continue ni continue par morceaux sur $[0,2\pi[$

Question 14

Soit f une fonction réelle 2π -périodique, continue par morceaux. On note $a_n(f)$ et $b_n(f)$ ses coefficients de Fourier. Alors, pour tout $n \in \mathbb{N}$:

a.
$$a_n(f) = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \cos(nt) dt$$

b.
$$a_n(f) = \frac{1}{\pi} \int_0^{2\pi} f(t) \cos(nt) dt$$

c.
$$a_n(f) = \frac{1}{\pi} \int_0^{\pi} f(t) \cos(nt) dt$$

d. Aucun des autres choix

Question 15

Soit f une fonction réelle 2π -périodique, continue par morceaux. On note $a_n(f)$ et $b_n(f)$ ses coefficients de Fourier. Alors la série de Fourier de f est :

a.
$$\sum_{n>0} \left(a_n(f) \cos(nx) + b_n(f) \sin(nx) \right)$$

b.
$$2a_0(f) + \sum_{n\geq 1} \left(a_n(f)\cos(nx) + b_n(f)\sin(nx)\right)$$

c.
$$a_0(f) + \sum_{n\geq 1} \left(\frac{a_n(f)}{2} \cos(nx) + \frac{b_n(f)}{2} \sin(nx) \right)$$

d. Aucun des autres choix

Question 16

Soient f et g les fonctions 2π -périodiques définies pour tout $x\in]-\pi,\pi]$ par

$$f(x) = x$$
 et $g(x) = |x|$

On note $a_n(f)$, $b_n(f)$, $a_n(g)$ et $b_n(g)$ leurs coefficients de Fourier. Alors :

a. Pour tout
$$n \in \mathbb{N}$$
, $a_n(f) = 0$

b. Pour tout
$$n \in \mathbb{N}^*$$
, $b_n(f) = 0$

c. Pour tout
$$n \in \mathbb{N}$$
, $a_n(g) = 0$

d. Pour tout
$$n \in \mathbb{N}^*$$
, $h_n(g) = 0$

Question 17

 $\text{Considérons la fonction } 2\pi\text{-périodique } f \text{ définie pour tout } x \in]-\pi,\pi] \text{ par } f(x) = \left\{ \begin{array}{ll} 0 & \text{si } x \leqslant 0 \\ x & \text{sinon} \end{array} \right.$

- a. La fonction f est de classe C^1 par morceaux
- b. La série de Fourier de f, appliquée en x=0, converge vers 0
- c. La série de Fourier de f, appliquée en $x=\frac{\pi}{2},$ converge vers $\frac{\pi}{2}$
- d. Aucun des autres choix

Question 18

Considérons la fonction 2π -périodique f définie pour tout $x \in]-\pi,\pi]$ par $f(x) = \begin{cases} 0 & \text{si } x \leq 0 \\ 1 & \text{sinon} \end{cases}$

- a. La fonction f est de classe C^1 par morceaux
- b. La série de Fourier de f, appliquée en x=0, converge vers 0
- c. La série de Fourier de f, appliquée en x=0, converge vers 1
- d. Aucun des autres choix

Question 19

Soit f une fonction 2π -périodique et continue par morceaux. On note $a_n(f)$ et $b_n(f)$ ses coefficients de Fourier. Alors :

a.
$$\frac{1}{2\pi} \int_0^{2\pi} f^2(x) dx = \frac{a_0^2(f)}{4} + \frac{1}{2} \sum_{n=1}^{+\infty} (a_n^2(f) + b_n^2(f))$$

b.
$$\frac{1}{2\pi} \int_0^{2\pi} f^2(x) dx = \frac{a_0^2(f)}{2} + \sum_{n=1}^{+\infty} (a_n^2(f) + b_n^2(f))$$

c. Aucun des autres choix

Question 20

Considérons la fonction constante f, définie pour tout $x \in \mathbb{R}$ par f(x) = 1. Alors ses coefficients de Fourier sont donnés par :

$$\forall n \in \mathbb{N}, a_n(f) = 1$$
 et $\forall n \in \mathbb{N}^*, b_n(f) = 1$

- a. Vrai
- b. Faux

$\begin{array}{c} {\rm NTS\text{-}Sociologie\ et\ I.A.} \\ {\rm QCM} \end{array}$

- $\frac{2}{3}$ 1. De quelle période date le Turc Mécanique?
 - (a) 16ème siècle
 - (b) 17ème siècle
 - (c) 18ème siècle
 - (d) 19ème siècle
- 2 2 Combien de «vagues» ou «saisons» l'IA a-t-elle connue?
 - (a) 1
 - (b) 3
 - (c) 5
 - (d) C'est un processus continu
- 25 3. Qu'est-ce qu'Alan Turing a apporté à l'IA?
 - (a) Le tout premier algorithme
 - (b) Le tout premier ordinateur «intelligent»
 - (c) Il est le fondateur de la marque à la pomme
 - (d) Il a lancé un défi aux autres scientifiques
- 2 4 Quel concept Hebert Simon a-t-il développé en sociologie?
 - (a) L'IA Symbolique
 - (b) La rationalité symbolique
 - (c) La rationalité limitée
 - (d) L'IA limitée
- 3 5. Quel sociologue Français a théorisé la sociologie de l'innovation?
 - (a) Norbert Alter
 - (b) Norbert Elias
 - (c) Isaac Asimov
 - (d) Grichka Bogdanoff
- 276. Quelle conception de l'IA défendait John McCarthy?
 - (a) L'IA devrait porter un autre nom
 - (b) L'IA représentait l'avenir de la science
 - (c) La machine avait pour destin de devenir intelligente
 - (d) L'ordinateur est une « prothèse » humaine
- 2 7. Qu'est ce qui a relancé l'intérêt pour l'IA?
 - (a) La mode et la culture geek
 - (b) Des dotations financières de plus en plus importantes
 - (c) L'imagination des scientifiques
 - (d) L'augmentation des capacités de calcul et des volumes de données

9 > 8. Quels sont les deux grands courants scientifiques en matière d'IA?

- (a) L'IA symbolique et l'IA connexionniste
- (b) L'IA contemporain et l'IA moderne
- (c) L'IA convexes et l'IA hyperbolique
- (d) L'IA «jeu» et l'IA «neurones»

2₁ 9. Quels sont les risques rencontrés en manipulant des algorithmes?

- (a) La reproduction de nos comportements humains
- (b) La reproduction de biais cognitifs et sociaux
- (c) La création de biais algorithmiques
- (d) Tout à la fois

3010. Qu'est-ce que l'économie de la promesse?

- (a) Un environnement technologique qui façonne autant d'espoirs que de craintes et donne lieu, de la part de ses promoteurs, à des prévisions optimistes
- (b) Un environnement technologique qui accentue les effets bénéfiques des technologies pour séduire
- (c) Une économie qui s'appuie sur des promesses de dons financiers pour se développer
- (d) Une économie responsable et socialement soutenable