Capítulo 4

Funciones recursivas

4.1. Introducción

4.1.1. Función parcial y función total

Una función numérica $f: \mathbb{N}^k \to \mathbb{N}$ se dice parcial si no esta definida sobre todos los elementos de \mathbb{N}^k . Si esta definida para todos los elementos de \mathbb{N}^k se dice total.

4.1.2. Función mayora

Decimos que una función $f^{(1)}$ mayora a otra función $g^{(n)}$ si $\forall (x_1, x_2, \dots, x_n) \in dom(g)$ se verifica que $g(x_1, x_2, \dots, x_n) \leq f[max(x_1, x_2, \dots, x_n)]$ y lo notamos $f^{(1)} \uparrow g^{(n)}$.

4.1.3. Serie de Ackermann

Consideremos la siguiente sucesión de funciones que llamaremos sucesión de Ackermann:

- $f_0(x) = s(x) = x + 1.$
- $f_1(x) = f_0^{x+2}(x) = s^{x+2}(x) = x + (x+2) = 2x + 2.$
- $f_2(x) = f_1^{x+2}(x).$
- $f_k(x) = f_{k-1}^{x+2}(x)$.
- **.** :

Calculemos algunos valores de $f_2(x)$:

- $f_2(0) = f_1^2(0) = f_1[f_1(0)] = f_1[f_0^2(0)] = f_1[2] = f_0^4(2) = 6.$
- $f_{2}(1) = f_{1}^{3}(1) = f_{1} \{f_{1}[f_{1}(1)]\} = f_{1} \{f_{1}[f_{0}^{3}(1)]\} = f_{1} \{f_{1}[4]\} = f_{1} \{f_{0}^{6}[4]\} = f_{1} \{10\} = f_{0}^{12} \{10\} = 22.$
- $f_2(2) = f_1^4(2) = 2\{2[2(2\cdot 2+2) + 2] + 2\} + 2 = 62.$
- $f_2(3) = 158.$

4.1.4. Función de Ackermann

Definimos una función que llamaremos ACK de la siguiente manera: $ACK(x) = f_x(x)$. O sea para encontrar su valor imagen para un determinado valor x, tomamos la x-esima función de Ackermann y la calculamos en dicho valor. Por ejemplo:

- $ACK(0) = f_0(0) = 1.$
- $ACK(1) = f_1(1) = 4$.
- $ACK(2) = f_2(2) = 62.$

$$ACK(3) = f_3(3) = f_2^5(3) = f_2[f_2(f_2\{f_2[f_2(3)]\})] = f_2[f_2(f_2\{f_2[158]\})]$$

$$= f_2[f_2(f_2\{f_1^{160}[158]\})] = f_2[f_2(f_2\{f_1^{159}[318]\})] =$$

$$= f_2[f_2(f_2\{f_1^{158}[638]\})] = f_2[f_2(f_2\{f_1^{157}[1278]\})] = \cdots =$$

$$= f_2[f_2(f_2\{f_1^{150}[163.838]\})] = \cdots = f_2[f_2(f_2\{f_1^{140}[167.772.158]\})] = \cdots$$

$$= f_2[f_2(f_2\{f_1^{137}[1.342.177.278]\})] = \cdots$$

3

4.2. Teoremas

4.2.1. Totalidad de las FRP

Enunciado Si $f \in FRP$ entonces f es una función total.

Demostración Lo demostraremos por inducción sobre el conjunto FRP.

- Caso base: Las funciones bases son totales por definición.
- Composición: Supongamos que $f^{(n)}, g_1^{(k)}, \ldots, g_n^{(k)}$ son totales. Veremos que $h = \Phi\left(f^{(n)}, g_1^{(k)}, \ldots, g_n^{(k)}\right)$ también lo es. Sea $X \in \mathbb{N}^k$ podemos calcular $Y = (g_1[X], \ldots, g_n[X])$ puesto que cada g_i es total por hipótesis inductiva. Ademas f también es total por lo que podemos calcular f(Y).

Es decir, existe un numero natural z = f(Y) = h(X).

- Recursion: Supongamos que $g^{(k)}$, $h^{(k+2)}$ son totales. Veremos que $f(y, X^k) = R(g, h)$ también lo es, por inducción en y.
 - 1. Caso base y = 0: $f(0, X^k) = g(X^k)$ que es total por hipótesis.
 - 2. Caso inductivo y = p: Supongamos $f(p, X^k)$ es total, luego:

$$f(p+1, X^k) = h \left[p, X^k, \underbrace{f(p, X^k)}_{\text{total por HI}} \right]$$

y como h es total resulta que f es total.

4.2.2. Propiedades de Ackermann

Enunciado

- 1. $\forall k \in \mathbb{N} \Rightarrow f_k \in FRP$
- 2. $\forall x, k \in \mathbb{N} \Rightarrow f_k(x) > x$.
- 3. $\forall x_1, x_2, k \in \mathbb{N}$, si $x_1 < x_2$ entonces $f_k(x_1) < f_k(x_2)$.
- 4. $\forall x, k \in \mathbb{N} \Rightarrow f_k(x) < f_{k+1}(x)$.

Demostración

- 1. Lo demostraremos por inducción en k:
 - a) Caso base k = 0: $f_0(x) = s(x)$.
 - b) Caso inductivo k = h: Supongamos que f_h es FRP. Queremos ver si f_{h+1} también lo es. En efecto $f_{h+1}(x) = f_h^{x+2}(x) = f_h^{s[s(x)]}(x)$.
- 2. Consultar «Julio Hurtado, Raúl Kantor, Carlos Luna, Luis Sierra y Dante Zanarini. Temas de Teoría de la Computación.», pag. 56.
- 3. Consultar «Julio Hurtado, Raúl Kantor, Carlos Luna, Luis Sierra y Dante Zanarini. Temas de Teoría de la Computación.», pag. 56.
- 4. Ejercicio.

4.2.3. Mayorabilidad de las FRP

Enunciado Sea $g^{(n)} \in FRP$ entonces existe f_k de la serie de Ackermann tal que $f_k \uparrow g$.

Demostración Lo demostraremos por inducción:

- 1. Caso base: Todas las funciones bases son mayoradas por f_0 .
- 2. Caso inductivo:
 - a) Composición: Sean las funciones $C^{(m)}, h_1^{(n)}, \ldots, h_m^{(n)}$ tales que f_k mayora a todas ellas, definimos $g^{(n)} = \Phi\left(C^{(m)}, h_1^{(n)}, \ldots h_m^{(n)}\right)$. Veremos que $f_{k+1} \uparrow g^{(n)}$. Sabemos que $h_i^{(n)}(X) \leq f_k \left[\max\left(X\right) \right]$ (por ser mayorada por f_k) luego $\max\left\{h_1^{(n)}(X), \ldots, h_m^{(n)}(X)\right\} \leq f_k \left[\max\left(X\right) \right]$ (*). Ademas como $f_k \uparrow C^{(m)}$ resulta:

$$g(X) = C\left[h_1^{(n)}(X), \dots, h_m^{(n)}(X)\right] \le f_k\left[max\left(h_1^{(n)}(X), \dots, h_m^{(n)}(X)\right)\right]$$

y por (*) y propiedad (3) tenemos

$$f_k\left[max\left(h_1^{(n)}\left(X\right),\ldots,h_m^{(n)}\left(X\right)\right)\right] \leq f_k\left[f_k\left(max\left[X\right]\right)\right]$$

ahora aplicamos varias veces las propiedades (2) y (3) obteniendo:

$$g\left(X\right) \leq f_{k}\left[f_{k}\left(\max\left[X\right]\right)\right] \leq f_{k}^{\max\left(X\right)+2}\left[\max\left(X\right)\right] = f_{k+1}\left[\max\left(X\right)\right].$$

b) Recursion: Sea $g^{(n+1)} = R\left[B^{(n)}, h^{(n+2)}\right]$, veremos que $f_k \uparrow B \land f_k \uparrow h \Rightarrow f_{k+1} \uparrow g^{(n)}$. Por hipótesis $g\left(0, X\right) = B\left(X\right) \leq f_k\left[max\left(X\right)\right]$ (**) y ademas:

$$g(1, X) = h[0, X, g(0, X)] \le f_k[max(0, X, g[0, X])]$$

luego aplicando (**) y propiedad (3)

$$f_k [max (0, X, g [0, X])] \le f_k [max (0, X, f_k [max (X)])]$$

y puesto que $f_k [max(X)] > max(X, 0) \forall k$ resulta

$$g\left(1,X\right) \leq f_{k}\left[\max\left(0,X,f_{k}\left[\max\left(X\right)\right]\right)\right] \leq f_{k}\left[f_{k}\left(\max\left[X\right]\right)\right]$$

Puede demostrarse por inducción que $g\left(y,X\right)\leq f_{k}^{(y+1)}\left(\max\left[X\right]\right)$. Finalmente:

$$f_k^{(y+1)}(max[X]) \le f_k^{(y+1)}(max[y,X]) \le f_k^{max(y,X)+1}(max[y,X])$$

y como $f_k^{\max(y,X)+1}\left(\max\left[y,X\right]\right) \leq f_k^{\max(y,X)+2}\left(\max\left[y,X\right]\right) = f_{k+1}\left[\max\left(y,X\right)\right]$ resulta $g\left(y,X\right) \leq f_{k+1}\left[\max\left(y,X\right)\right]$.

4.2.4. No primitividad de ACK

Enunciado La función ACK(x) no es FRP.

Demostración Supongamos que $ACK(x) \in FRP$. Luego $ACK(x) + 1 \in FRP$. Por el teorema de mayorabilidad existe f_m en la serie de Ackermann que la mayora, es decir: $\forall x \in \mathbb{N}$ resulta:

$$ACK(x) + 1 \le f_m(x) \iff f_x(x) + 1 \le f_m(x)$$

y tomando x=m obtenemos $f_{m}\left(m\right)+1\leq f_{m}\left(m\right)$. ¡Absurdo! Por lo tanto $ACK\left(x\right)\notin FRP$.

4.3. Definiciones

4.3.1. Operador de minimizacion

Dada $h^{(n+1)}$, decimos que $g^{(n)}$ se construye por minimizacion de h (y lo notaremos g = M[h]) cuando g se define del modo siguiente:

$$g(X) = M[h](X) = \mu_t[h(t, X) = 0]$$

donde $\mu_{t} [h(t, X) = 0]$ es, si existe, el mínimo valor de t tal que h(t, X) = 0.

Observación Nada garantiza que tal valor t exista, por lo que las funciones construidas con el operador M pueden ser parciales.

4.3.2. Definición inductiva

Definimos inductivamente el conjunto de Funciones Recursivas (FR) como el menor conjunto tal que:

- Las funciones base pertenecen a FR.
- Las funciones obtenidas aplicando un numero finito de operaciones de composición, recursion y minimizacion sobre elementos de FR también pertenecen a FR.

4.4. Ejemplos

4.4.1. División

La función numérica div(x,y) = x/y solo esta definida si existe t tal que ty = x. Buscamos entonces $div(x,y) = \mu_t [h(t,x,y) = 0]$. Sea entonces $h(t,x,y) = \neg E[\Pi(t,y),x]$. Veamos algunos ejemplos:

- $div(25,5) = \mu_t [h(t,25,5) = 0].$
 - t = 0: $h(0, 25, 5) = \neg E[\Pi(0, 5), 25] = \neg E[0, 25] = 1 \neq 0$.
 - t = 1: $h(1, 25, 5) = \neg E[\Pi(1, 5), 25] = \neg E[5, 25] = 1 \neq 0$.
 - t = 2: $h(2, 25, 5) = \neg E[\Pi(2, 5), 25] = \neg E[10, 25] = 1 \neq 0$.
 - t = 3: $h(3, 25, 5) = \neg E[\Pi(3, 5), 25] = \neg E[15, 25] = 1 \neq 0$.
 - t = 4: $h(4, 25, 5) = \neg E[\Pi(4, 5), 25] = \neg E[20, 25] = 1 \neq 0$.
 - $t = 5 : h(5, 25, 5) = \neg E[\Pi(5, 5), 25] = \neg E[25, 25] = 0.$
- $div(4,3) = \mu_t[h(t,4,3) = 0].$
 - t = 0: $h(0, 4, 3) = \neg E[\Pi(0, 3), 4] = \neg E[0, 4] = 1 \neq 0$.
 - $t = 1 : h(1,4,3) = \neg E[\Pi(1,3),4] = \neg E[3,4] = 1 \neq 0.$
 - t = 2: $h(2, 4, 3) = \neg E[\Pi(2, 3), 4] = \neg E[6, 4] = 1 \neq 0$.
 - $t = 3 : h(3,4,3) = \neg E[\Pi(3,3),4] = \neg E[9,4] = 1 \neq 0.$
 - :
- $div(2,0) = \mu_t [h(t,2,0) = 0].$
 - t = 0: $h(0, 2, 0) = \neg E[\Pi(0, 0), 2] = \neg E[0, 2] = 1 \neq 0$.
 - $t = 1 : h(1, 2, 0) = \neg E[\Pi(1, 0), 2] = \neg E[0, 2] = 1 \neq 0.$
 - :
- $div(0,0) = \mu_t [h(t,0,0) = 0].$
 - t = 0: $h(0,0,0) = \neg E[\Pi(0,0),0] = \neg E[0,0] = 0$. ERROR.

Nuestra función h falla en el caso extremo 0/0 pero podemos arreglarlo si la redefinimos como: $h(t,x,y) = \neg E\{\Pi[t,y],x\} + D_0[y]$. Observemos que el termino que agregamos $D_0[y]$ da siempre 0 salvo cuando y=0 en cuyo caso garantizamos que $h(t,x,0) \geq 1$ con lo que la función no se detiene. Veamos que pasa ahora:

- $div(0,0) = \mu_t [h(t,0,0) = 0].$
 - t = 0: $h(0,0,0) = \neg E\{\Pi[0,0],0\} + D_0[0] = \neg E\{0,0\} + 1 = 0 + 1 = 1.$
 - $t = 1 : h(0,0,0) = \neg E\{\Pi[1,0],0\} + D_0[0] = \neg E\{0,0\} + 1 = 0 + 1 = 1.$
 - :

4.4.2. Logaritmo

La función numérica $Log(x,y) = log_x y$ solo esta definida si existe t tal que $x^t = y$. Buscamos entonces $Log(x,y) = \mu_t [h(t,x,y) = 0]$. Sea entonces $h(t,x,y) = \neg E\left\{\widehat{Exp}[x,t] + D_0[x] + D_1[x],y\right\}$. Nótense los términos $D_0[x]$ y $D_1[x]$ que logran «indefinir» la función para las bases correspondientes. Veamos algunos ejemplos:

- $Log(0,0) = \mu_t [h(t,0,0) = 0]$:
 - t = 0: $h(0,0,0) = \neg E\{\widehat{Exp}(0,0) + 1 + 0, 0\} = \neg E\{1 + 1 + 0, 0\} = 1$.
 - t = 1: $h(1,0,0) = \neg E\{\widehat{Exp}(0,1) + 1 + 0, 0\} = \neg E\{0 + 1 + 0, 0\} = 1$.
 - •
- $Log(1,0) = \mu_t [h(t,1,0) = 0]$:
 - t = 0: $h(0, 1, 0) = \neg E\{\widehat{Exp}(1, 0) + 0 + 1, 0\} = \neg E\{1 + 0 + 1, 0\} = 1$.
 - t = 1: $h(1, 1, 0) = \neg E\{\widehat{Exp}(1, 1) + 0 + 1, 0\} = \neg E\{1 + 0 + 1, 0\} = 1$.
 - .
- $Log(10, 100) = \mu_t [h(t, 10, 100) = 0]$:
 - t = 0: $h(0, 10, 100) = \neg E\{\widehat{Exp}(10, 0) + 0 + 0, 100\} = \neg E\{1 + 0 + 0, 100\} = 1$.
 - t = 1: $h(1, 10, 100) = \neg E\{\widehat{Exp}(10, 1) + 0 + 0, 100\} = \neg E\{10 + 0 + 0, 100\} = 1$.
 - $t = 2 : h(2, 10, 100) = \neg E\{\widehat{Exp}(10, 2) + 0 + 0, 100\} = \neg E\{100 + 0, 100\} = 0.$
- $Log(2,3) = \mu_t [h(t,2,3) = 0]$:
 - t = 0: $h(0,2,3) = \neg E\{\widehat{Exp}(2,0) + 0 + 0, 3\} = \neg E\{1 + 0 + 0, 3\} = 1$.
 - t = 1: $h(1, 2, 3) = \neg E\{\widehat{Exp}(2, 1) + 0 + 0, 3\} = \neg E\{2 + 0 + 0, 3\} = 1$.
 - t = 2: $h(2,2,3) = \neg E\{\widehat{Exp}(2,2) + 0 + 0, 3\} = \neg E\{4 + 0 + 0, 3\} = 1$.
 - •