MLE Voting Rules via Bregman Divergence

June 6, 2013

1 Results I: Positional Scoring Rules

1.1 Additional Notation

- Let $A = \{1, ..., m\}$ denote the set of alternatives. Let $\mathcal{L}(A)$ denote the set of all linear orders over A (votes). We view a ranking $\sigma \in \mathcal{L}(A)$ as $\sigma : A \to \{1, ..., m\}$. Thus, $|\mathcal{L}(A)| = m!$. Finally, we use $\pi \in \mathcal{L}(A)^n$ to denote a profile of n votes.
- Let $\alpha \in \mathbb{R}^m_{\geq 0}$ denote a score vector, where $\alpha_i \geq \alpha_{i+1}$ for $i \geq 1$. We assume that $\alpha_i > \alpha_{i+1}$ for some i, otherwise the rule is meaningless.
- Given score vector α , there is a natural positional scoring rule which gives appropriate scores to alternatives and ranks them according to their total score. We denote it by SC^{α} .
- For any score vector α , let ϕ^{α} be the representation such that for any $\sigma \in \mathcal{L}(A)$, $\phi_i^{\alpha}(\sigma) = \alpha_{\sigma(i)}$ for all i.
- Given a representation $\phi: \mathcal{L}(A) \to \mathbb{R}^k$, let MM^{ϕ} denote MLE-MODE method with representation ϕ , i.e., the voting rule that first finds the MLE parameter of exponential family over rankings with representation ϕ , and then returns the mode ranking of the exponential distribution given by the MLE parameter.
- Finally, let SORT: $\mathbb{R}^m \to \mathcal{L}(A)$ denote the function that takes an m-dimensional vector, and returns the sorted order of indices. That is, for any $v \in \mathbb{R}^m$, alternative i is mapped to position j in $\mathrm{SORT}(v)$ if there are j-1 coordinates that have value greater than value of coordinate i. We break ties arbitrarily, as they do not matter for our results.

Let $\hat{\mu}$ and $\hat{\theta}$ denote the MLE mean and natural parameters respectively.

1.2 Recovering Positional Scoring Rules

Theorem 1. For any score vector α , the MM method with representation ϕ^{α} reduces to the scoring rule SC^{α} , irrespective of the selection of MLE parameter.

Proof. Fix arbitrary score vector α . Consider any profile $\pi = (\sigma_1, \dots, \sigma_n)$. We want to show that $\mathrm{MM}^{\phi^{\alpha}}(\pi) = \mathrm{SC}^{\alpha}(\pi)$. First, using the famous result on exponential families, we have that the MLE mean parameter $\hat{\mu} = 1/n \cdot \sum_{i=1}^{n} \phi^{\alpha}(\sigma_i)$. Further, note that $\hat{\mu}$ is the vector of average scores of candidates in profile π according to score vector α . Hence, it is clear that $\mathrm{SC}^{\alpha}(\pi) = \mathrm{SORT}(\hat{\mu})$.

On the other hand, if $\hat{\theta}$ denotes the MLE natural parameter, then the mode ranking is given by $\arg\max_{\sigma}\langle\hat{\theta},\phi^{\alpha}(\sigma)\rangle$. Note that since $\phi(\sigma)$ is just a re-ordering of the terms of α , by Chebyshev's inequality, the dot product is maximized when both vectors have value sorted in the same order. That is, the dot product is maximized by $\sigma = \mathrm{SORT}(\hat{\theta})$. Hence, $\mathrm{MM}^{\phi^{\alpha}}(\pi) = \mathrm{SORT}(\hat{\theta})$.

Since $SC^{\alpha}(\pi) = SORT(\hat{\mu})$ and $MM^{\phi^{\alpha}}(\pi) = SORT(\hat{\theta})$, we just need to show that $SORT(\hat{\mu}) = SORT(\hat{\theta})$. From a well-known result in exponential family, we know that $\hat{\theta} = (\nabla_{\theta} A)^{-1}(\hat{\mu})$. First, we need to show that the inverse exists. For this, it is important to note (and it is easy to check) that $\sum_{i} \hat{\mu}_{i} = \sum_{i} \alpha_{i}$. Second, there may be multiple (and in fact for scoring rules there are infinitely many) $\hat{\theta}$ for each $\hat{\mu}$. Thus, we prove the following two results.

Lemma 1. If $\sum_i \mu_i = \sum_i \alpha_i$, then there exists a θ such that $\nabla_{\theta} A(\theta) = \mu$.

Proof. **TODO**
$$\Box$$
 (Proof of Lemma 1)

Lemma 2. Let $\hat{\mu}$ denote the MLE mean parameter. Let $\hat{\theta}$ be any MLE natural parameter that maps to $\hat{\mu}$. Then, $SORT(\hat{\theta}) = SORT(\hat{\mu})$.

Proof. We know that $\nabla_{\theta} A(\hat{\theta}) = \hat{\mu}$. Note that

$$A(\theta) = \log \sum_{\sigma \in \mathcal{L}(A)} \exp\{\langle \theta, \phi^{\alpha}(\sigma) \rangle\}.$$

Hence.

$$\hat{\mu}_i = (\nabla_{\theta} A)_i(\hat{\theta}) = \frac{\sum_{\sigma \in \mathcal{L}(A)} \exp\{\langle \theta, \phi^{\alpha}(\sigma) \rangle\} \cdot \phi_i^{\alpha}(\sigma)}{\sum_{\sigma \in \mathcal{L}(A)} \exp\{\langle \theta, \phi^{\alpha}(\sigma) \rangle\}}.$$

To prove that $SORT(\hat{\theta}) = SORT(\hat{\mu})$, it is enough to show that for any i, j, $\hat{\theta}_i > \hat{\theta}_j$ implies $\hat{\mu}_i > \hat{\mu}_j$. Assume for some i and j, we have $\hat{\theta}_i > \hat{\theta}_j$. We want to show that $\hat{\mu}_i > \hat{\mu}_j$, i.e., $\hat{\mu}_i - \hat{\mu}_j > 0$. Now,

$$\hat{\mu}_i - \hat{\mu}_j = \frac{\sum_{\sigma \in \mathcal{L}(A)} \exp\{\langle \theta, \phi^{\alpha}(\sigma) \rangle\} \cdot (\phi_i^{\alpha}(\sigma) - \phi_j^{\alpha}(\sigma))}{\sum_{\sigma \in \mathcal{L}(A)} \exp\{\langle \theta, \phi^{\alpha}(\sigma) \rangle\}}.$$
 (1)

Thus, $\hat{\mu}_i - \hat{\mu}_j > 0$ if and only if the numerator in Equation (1) is positive. For any ranking σ , let $\sigma_{i \leftrightarrow j}$ denote the ranking which is obtained by swapping alternatives i and j in σ . Similarly, for any natural parameter θ , let $\theta_{i \leftrightarrow j}$ denote the vector obtained by swapping the i^{th} and j^{th} coordinates of θ . Now,

$$\begin{split} &\sum_{\sigma \in \mathcal{L}(A)} e^{\langle \theta, \phi^{\alpha}(\sigma) \rangle} \cdot (\phi_{i}^{\alpha}(\sigma) - \phi_{j}^{\alpha}(\sigma)) \\ &= \sum_{1 \leq l < k \leq m} \sum_{\substack{\sigma \in \mathcal{L}(A) \text{ s.t.} \\ \sigma(i) = l, \\ \sigma(j) = k}} \left(e^{\langle \theta, \phi^{\alpha}(\sigma) \rangle} \cdot (\alpha_{l} - \alpha_{k}) + e^{\langle \theta, \phi^{\alpha}(\sigma_{i \leftrightarrow j}) \rangle} \cdot (\alpha_{k} - \alpha_{l}) \right) \\ &= \sum_{1 \leq l < k \leq m} \sum_{\substack{\sigma \in \mathcal{L}(A) \text{ s.t.} \\ \sigma(i) = l, \\ \sigma(j) = k}} \left(e^{\langle \theta, \phi^{\alpha}(\sigma) \rangle} - e^{\langle \theta, \phi^{\alpha}(\sigma_{i \leftrightarrow j}) \rangle} \right) \cdot (\alpha_{l} - \alpha_{k}) \\ &= \sum_{1 \leq l < k \leq m} \sum_{\substack{\sigma \in \mathcal{L}(A) \text{ s.t.} \\ \sigma(j) = k}} \left(e^{\langle \theta, \phi^{\alpha}(\sigma) \rangle} - e^{\langle \theta_{i \leftrightarrow j}, \phi^{\alpha}(\sigma) \rangle} \right) \cdot (\alpha_{l} - \alpha_{k}) \\ &= \sum_{1 \leq l < k \leq m} \sum_{\substack{\sigma \in \mathcal{L}(A) \text{ s.t.} \\ \sigma(j) = k}} e^{\langle \theta - \{i, j\}, \phi_{-\{i, j\}}^{\alpha}(\sigma) \rangle} \cdot \left(e^{\theta_{i} \cdot \alpha_{l} + \theta_{j} \cdot \alpha_{k}} - e^{\theta_{i} \cdot \alpha_{k} + \theta_{j} \cdot \alpha_{l}} \right) \cdot (\alpha_{l} - \alpha_{k}) \\ &> 0. \end{split}$$

Here, the first transition follows by conditioning on the positions of alternatives i and j. The third transition follows since swapping alternatives i and j swaps the i^{th} and j^{th} coordinates in $\phi^{\alpha}(\sigma)$, which is further equivalent to swapping the i^{th} and j^{th} coordinates in θ (this retains the dot product intact). The fourth transition follows by taking all terms of the dot product except those from coordinates i and j out in common. Finally, the last transition follows since we have the following three conditions.

- 1. $\hat{\theta}_i > \hat{\theta}_j$.
- 2. $\alpha_l \geq \alpha_k$ for all l < k.
- 3. $\alpha_l > \alpha_k$ for some l < k.

Note that the first two conditions imply that $\theta_i \cdot \alpha_l + \theta_j \cdot \alpha_k \ge \theta_i \cdot \alpha_k + \theta_j \cdot \alpha_l$ for all l < k, and the first and the third conditions together imply that $\theta_i \cdot \alpha_l + \theta_j \cdot \alpha_k > \theta_i \cdot \alpha_k + \theta_j \cdot \alpha_l$ for some l < k.

Thus, we have $SORT(\hat{\theta}) = SORT(\hat{\mu})$, as required. \square (Proof of Lemma 2)

With Lemma 2, we conclude that $\mathrm{MM}^{\phi^{\alpha}}(\pi) = \mathrm{SC}^{\alpha}(\pi)$. Since this holds for all profiles π , we have that $\mathrm{MM}^{\phi^{\alpha}} = \mathrm{SC}^{\alpha}$. \square (Proof of Theorem 1)

2 Questions

- 1. First, it is easy to see that all positional scoring rules as well as the Kemeny rule has the form $\arg\max_{\sigma}\langle\sum_{i=1}^{n}\phi(\sigma_{i}),\phi(\sigma)\rangle$, with very natural ϕ .
 - (a) What other rules can be represented in this form?
 - (b) This is highly reminiscent of GSRs. In fact, if you could take $f = \phi$ and $g = \arg\max_{\sigma} \langle \cdot, f(\sigma) \rangle$ in GSRs, then you'd get rules of the abovementioned form. However, in GSR, g is restricted to only look at pairwise comparisons of its input. Thus, it is incomparable. Question: Under what conditions of ϕ , the abovementioned rule is a GSR? For ϕ corresponding to positional scoring rule, it does work.
- 2. Including a family of voting rules
 - (a) All Mallows': They are part of exponential family with pairwise comparison representation. A Mallows' with ground truth σ^* and dispersion parameter λ is generated by taking $\theta = \lambda \cdot \phi(\sigma^*)$. However, the space of all $\lambda \cdot \phi(\sigma^*)$ is most probably not convex. So it is hard to restrict learning $\hat{\theta}$ from that space.
 - (b) For incorporating all scoring rules, it seems like we have to move to a m^2 dimensional representation where there is a binary coordinate for each alternative in each position. In this case, the $\hat{\theta}$ must be restricted to the space of $[\alpha; \alpha; \ldots; \alpha]$ for some $\alpha \in \mathbb{R}^m$. This set is convex.
- 3. Note that both pairwise comparison representation and scoring rules representation has overcomplete representation.
 - (a) In fact, specifically, they have the property that $\sum_i \phi_i(\sigma)$ is constant. Is this something inherent to voting do the natural representations of other rules satisfy this?
 - (b) Is this related to right-invariance of Bregman divergence?
 - (c) How about neutrality (symmetry in candidates)?
 - (d) Can we just remove a coordinate to convert to minimal representation?
- 4. When does $\arg\max_{\sigma}\langle\hat{\theta},\phi(\sigma)\rangle=\arg\max_{\sigma}\langle\hat{\mu},\phi(\sigma)\rangle$? Most natural rules have the RHS answer (What all rules?). Our MM method gives the LHS answer. If they are the same, it would be very interesting.
 - (a) What conditions on ϕ ensure this?
 - (b) In particular, it would be nice if $\arg\max_{\sigma}\langle\hat{\theta},\phi(\sigma)\rangle = \mathrm{SORT}(\hat{\theta})$ (and same for $\hat{\mu}$) since in that case we can just show $\hat{\theta}_i > \hat{\theta}_j$ implies $\hat{\mu}_i > \hat{\mu}_j$ as we did for positional scoring rules.