Lluís Galbany

Contact Institute of Space Sciences (ICE-CSIC)
Institut d'Estudis Espacials de Catalunya (IEEC)
Campas DAB, Carrer de Can Magrans, s/n, 08193 Barcelona.

+34 937 379 788

□ lgalbany@ice.csic.es

https://lgalbany.github.io

ORCID 0000-0002-1296-6887

Synopsis of the CV

I am an observational astrophysicist with broad, multidisciplinary interests spanning supernova physics, stellar and galaxy evolution, and cosmology. I obtained a PhD in Physics from the Universitat Autònoma de Barcelona in 2011 under the supervision of Prof. Ramon Miquel at the Institut de Física d'Altes Energies (IFAE). I have held postdoctoral positions at CENTRA/IST in Lisbon under the supervision of Dr. Vallery Stanishev and Prof. Ana M. Mourão, as a FONDECYT postdoctoral fellow at the Astronomy Department of the Universidad de Chile working with Prof. Mario Hamuy, as a research associate in the Department of Physics and Astronomy at the University of Pittsburgh with Prof. Michael Wood-Vasey, and as a Marie Skłodowska-Curie fellow at the Universidad de Granada, integrated in Prof. Inma Domínguez's group. After a couple of years as a Ramón y Cajal Fellow, I am currently a Científico Titular at the Institute of Space Sciences (ICE-CSIC), also affiliated with the Institut d'Estudis Espacials de Catalunya (IEEC). I have always enjoyed scientific independence and have conducted competitive research in collaborative and stimulating scientific environments.

So far, I have published 423 articles with over 28,000 citations and an h-index of 74 (ADS, Feb 2025). My work has been presented at international conferences, where I have delivered a total of 82 talks, including 12 invited talks at various conferences and 35 invitations to give seminars at different institutions. I have been the PI of 93 successful observational proposals, awarded on a competitive basis at the largest observatories worldwide, and have actively participated in more than 100 other observational campaigns. I have led analyses within major collaborations (SDSS-II SN, CALIFA, PESSTO, DES, HSC-SSP, MaNGA, J-PLUS, LSST, ROMAN, DESI, ZTF, LS4) and had the opportunity to mentor 3 postdocs, 11 PhD students, 15 graduate students, and 14 undergraduate students, including two funded 3-month PhD research visits and 2 ERASMUS+ undergraduate programs.

Education

Sep 2008 - Jun 2023 B.S in Economics (4-year degree), Universitat Autònoma de Barcelona (UAB).

Sep 2006 - Oct 2011 Ph.D. in Physics, Institut de Física d'Altes Energies - IFAE, U. Autònoma de Barcelona - UAB.

Supernova studies in the SDSS-II/SNe Survey: spectroscopy of the peculiar SN 2007qd, and photometric properties of Type-Ia supernovae as a function of the distance to the host galaxy.

Supervisor: Prof. Ramon Miquel.

Sep 2006 - Apr 2008 Master degree in Physics, U. Autònoma de Barcelona (UAB).

Tests of DES Charge Coupled Devices. Supervisors: Ramon Miquel and Manel Martínez.

Jun 2007 Certificate of Teaching Proficiency, Institute of Education Sciences (ICE-UAB).

Sep 2001 - Jun 2006 B.S. in Physics (5-year degree), U. Autònoma de Barcelona (UAB).

Research activity

(ICE-CSIC).
(ICE-CSIC

Sep 2021 - Dec 2023 Ramon y Cajal fellow (RyC 2019). Institut de Ciències de l'Espai (ICE-CSIC).

Sep 2019 - Aug 2021 Marie Skłodowska-Curie fellow (MSCA-IF 2018). Universidad de Granada.

Sep 2016 - Aug 2019 **Postdoctoral research associate.** University of Pittsburgh.

Oct 2013 - Aug 2016 **FONDECYT 2014 postdoctoral fellow.** Universidad de Chile.

Nov 2011 - Sep 2013 Postdoctoral researcher. Instituto Superior Técnico (IST), Universidade de Lisboa.

Fellowships and grants awarded

Oct 2025	MdM Thematic core on supernova science: ICE 6,000 EUR.
Jul 2025	8th ICE Summer School on cosmology: 12,000 EUR.
Sep 2024	Proyecto Nacional I+D+i AYA PID2023-151307NB-I00. Funding: 140,750 EUR.
Dec 2023	CSIC I-COOP project (COOPB23040). Funding: 23,929.60 EUR.
Dec 2023	CSIC I-LINK B project (ILINK23001). Funding: 23,949.64 EUR.
Apr 2023	Ajuts Programa INVESTIGO (2023). Funding: 66.217,84 EUR
Jan 2023	Ajuts de suport a grups de recerca de Catalunya (SGR-Cat 2021). Funding: 24,000 EUR
Jul 2022	Ajuts per al Foment de la Cultura Científica a Catalunya Joan Oró (FCRI). Funding: 15,000 EUR
Jul 2022	Hubble Space Telescope Cycle 30 $\#17179$ proposal. Funding: \sim 90,000 USD.
Dec 2021	CSIC MOST 2021 project (OSTCSI0003). Funding: 23,946.20 EUR.
Dec 2021	CSIC I-LINK A project (LINKA20409). Funding: 23,914.92 EUR.
Sep 2021	Hubble Space Telescope Cycle 29 $\#16741$ proposal. Funding: \sim 90,000 USD.
Sep 2021	Proyecto Nacional I+D+i AYA PID2020-115253GA-I00. Funding: 155,577 EUR.
Sep 2021	Proyecto Intramural Especial (PIE) CSIC 20215AT016. Funding: 150,000 EUR.
Jul 2020	Ramon y Cajal Fellowship (RyC 2019, ranked 1st). Funding: 308,600 EUR.
May 2020	UGR conference organization funding. Amount: 1,000 EUR.
Mar 2020	NOAJ grant for visitor researcher program. Funding: 285,000 JPY.
Feb 2019	Marie Skłodowska-Curie Actions - Individual Fellowship (MSCA-IF): 172,932.48 EUR.
Jan 2019	The future of SN host galaxies studies workshop. Funding PITT-PACC: 8,000 USD.
Apr 2018	New advances in NIR SNIa science workshop. Funding PITT-PACC: 10,000 USD.
Mar 2018	SNe II cosmology with the LSST workshop. Funding PITT-PACC: 4,000 USD.
Mar 2017	FINCA grant for visitor researcher program. Funding: 2,650 EUR.
Nov 2016	Preparing for SN Science in the LSST Era workshop. Funding LSST Enabling science: 19,750 USD.
Apr 2013	FONDECYT Postdoctoral fellowship 2014. CONICYT - Chile: 74,352,000 CLP
Jun 2004	SENECA-SICUE student fellowship, Universidad de La Laguna. Funding: 4,520 EUR.

Total funding awarded: approx. 1,400,000 EUR

_____ Teaching activity

Nov 2021 From Sep 2021	Guest Lecturer Techniques in Observational Astronomy, Purdue University, IL. Lecturer MasterCosmos BCN. Postgraduate in HEP, Astrophysics & Cosmology, ICE-IFAE.
	Neutron Stars, Black Holes and Gravitational Waves; Galaxies and Extragalactic Astrophysics; Introduction to Physics of the Cosmos; Cosmology (Coordinator).
Sep 2019 - Aug 2021	Lecturer Department of Theoretical and Cosmological Physics, U. Granada.
	Stellar Physics, Physics Laboratory, General Physics.
Nov 2016	Guest Lecturer 2nd SELGIFS Advanced School on IFS Data Analysis, UAM, Madrid, Spain.
Aug 2014	Guest Lecturer <i>Guillermo Haro Advanced School on IFS Techniques and Analysis</i> , INAOE, Puebla, Mexico.
Sep 2008 - Sep 2010	Teaching Assistant Physics Department of U. Autònoma de Barcelona. General Physics, Mathematical Methods, Physics Laboratory.

Supervision and mentorship

Postdocs

May 23 - Apr 26 Claudia Gutiérrez, IEEC/ICE-CSIC. CC SN physiscs.
Funding: Ajudes Beatriu de Pinoś (BP 2021), MCSA COFUND Action.

Sep 22 - Dec 25 Maria Kopsachielli, ICE-CSIC. SN remnants environments.
Funding: ICE María de Maetzu (MdM) postdoctoral fellowship.

Funding: Ayudas Juan de la Cierva (JdC), Ref.: JDC2022-049447-I.

Nov 21 - Dec 24 Tomás Müller, ICE-CSIC. Supernova cosmology in the NIR.

Funding: Proyecto Intramural Especial (PIE) CSIC 20215AT016.

Funding: Ayudas Juan de la Cierva (JdC), Ref.: FJC2021-047124-I.

PhD students

- From Jan 2024 Hao Yu Miao, ICE-UAB. PhD co-advisor with Claudia Gutiérrez. Characterization of extreme SNe. Funding: JAE-PRE CSIC fellowship.
- From Nov 2023 Alaa Alburai, ICE-UAB. PhD advisor. Subluminous 1991bg-like SNe Ia. Funding: Proyecto Intramural Especial (PIE) CSIC 20215AT016.
- Maider González, ICE-UAB. PhD co-advisor with Caludia Gutiérrez. Physics of SNe in early phases. From Nov 2023 Funding: Institute of Space Sciences MdM fellowship.
- **Dane Cross**, ICE/IFAE-UAB. *PhD co-advisor with Carles Sánchez*. σ_8 at low and high redshift. From Sep 2022 Funding: Proyecto Intramural Especial (PIE) CSIC 20215AT016. Funding: Ajuts Joan Oró per a personal investigador predoctoral en formació (FI-2023)".
- From Sep 2022 Cristina Jiménez, ICE-UAB. PhD advisor. IFS SN la environments characterization. Funding: "Ayudas para contratos predoctorales para la formación de doctores 2020".
- Kim Phan, ICE-UAB. PhD advisor. H₀ determination from SN Ia in the near-infrared. From May 2022 Funding: Ajuts per a la contractació de personal investigador predoctoral en formació (FI-2022)".
- Sep 20 Sep 24 Raúl González Díaz, INAOE/ICE-UAB. PhD co-advisor with Fabián Rosales. Diffuse interstellar gas in IFS. (See selected refereed papers #96, #101)
- Jared Hand, U. Pittsburgh. Supervised by W. M. Wood-Vasey. Sep 18 - Sep 21 Stellar population synthesis. (See selected refereed papers #70)
- Daniel Perrefort, U. Pittsburgh. Supervised by W. M. Wood-Vasey. Sep 18 - Feb 21 Subluminous SNe. (See selected refereed papers #62)
 - Abr-Jul 2016 Laura Sánchez-Menguiano, U. Granada. Supervised by I. Pérez and S. F. Sánchez. Radial migration. (See selected refereed papers #21) Funding: "Ayudas a la movilidad predoctoral para estancias en centros de I+D 2015".
 - Mar 2016 Manuel Emilio Moreno-Raya, U. Complutense. Supervised by M. Mollá and A. López-Sánchez. Elemental abundances of int-z SN host galaxies. (See selected refereed papers #35)
- Aug-Nov 2014 Manuel Emilio Moreno-Raya, U. Complutense. Supervised by M. Mollá and A. López-Sánchez. Elemental abundances of low-z SN host galaxies. (See selected refereed papers #12, #22). Funding: "Ayudas a la movilidad predoctoral para estancias en centros de I+D 2013".

Master students

- Noor Ali, Institute of Space Sciences (ICE-CSIC). Supervisor. Mar-Jun 24 The host galaxies of the Dark Energy Survey 5YR SN sample.
- Sep 23 Jun 24 Ramon Sanfeliu, U. Autònoma de Barcelona. TFM supervisor.
- Metallicity dependence on SHOES Cepheids calibration.
- Mar 23 Jun 23 **Christos Thomopoulos**, U. Patras, Greece. *ERASMUS+*. SNIa NIR diversity and improved standardization.
- Mar 23 Jun 23 John Kyriakopoulos, U. Patras, Greece. ERASMUS+. ZTF SNIa Hubble diagrams as a function of SN properties.
- Carlos Valero, ICE-CSIC. TFM supervisor. Nov 22 - Sep 23 Host galaxy dependences on SHOES H_0 measurement. (paper in prep.)
- Nov 22 -Aug 23 Lara Piscarreta, U. Lisboa. JAE-ICU supervisor. Young supernova programme with GTC. (paper in prep.)
 - From Oct 22 Utsav Siwatoki, Kathmandu U. (Nepal). TFM supervisor. FP and TF distances of elliptical/spiral galaxies observed with IFS. (paper in prep.)
- Oct 22 Apr 23 Carla Barnera, ICE-CSIC. JAE-ICU supervisor. Spectral evolution of SNe Ia in DES. (paper in prep.)
- Sep 20 Jul 21 Sara Muñoz Torres, U. Granada. TFM supervisor. The oxygen abundance dependence on the Cepheid period in SH0ES. (paper in prep.)

Oct 19 - Jul 20	Román Fernández Aranda, U. Complutense Madrid. <i>TFM supervised with M. Mollà</i> . Stellar populations of SN host galaxies at high-z 0.5 <z<1.0. (see="" <i="">selected refereed papers #80)</z<1.0.>
Sep 19 - Jul 20	Raúl González Díaz, U. Granada. TFM supervised with R García-Benito. NCR method in broad and narrow band data from J-PLUS. (See selected refereed papers #93)
Dec 18 - Jul 20	Nataliya Ramos Chernenko , U. Granada. <i>TFM supervised with I. Domínguez</i> . The local environment of Type Ia supernovae with IFS.
Nov 18 - Jun 19	Macarena García del Valle, U. Complutense Madrid. <i>TFM supervised with M. Mollà</i> . Type la supernova environments at high redshift. (See <i>selected refereed papers</i> #80)
Oct 18 - Sep 19	Isaac Lozano Rey , U. Internacional de València (VIU). <i>TFM supervisor</i> . The imprint of hydrogen-rich core collapse supernovae from their parent populations.
Sep 17 - Jun 18	Asier Castrillo , U. Autónoma Madrid. <i>TFM supervised with Y. Ascasibar</i> . Supernova DTDs in nearby galaxies. (See <i>selected refereed papers</i> #63)
Undergrad students	
Jun-Jul 24	Joan Alcaide, Joves i Ciència, Fundació Catalunya La Pedrea. <i>Host</i> . Type la supernovae Hubble diagram using observations from the ESO archive.
Dec 23 - Jul 24	Sandra Guerra , U. Autònoma de Barcelona. <i>TFG supervisor</i> . 1991bg-like SNe la in the ZTF survey.
Jun 22 - Jul 23	Ramon Sanfeliu, U. Autònoma de Barcelona. Summer internship & TFG supervisor. Database of FLOWS NIR SN Ia. Peculiar velocities of SNe Ia.
Feb-Jul 22	Cristina Jordà , U. Politècnica de Catalunya. <i>TFG supervised with R. Morros</i> . Spectral diversity of CC SNe with machine learning.
Sep 20 - Jul 21	Antonio láñez Ferres, U. Granada. <i>TFG supervisor</i> . Studying the diversity of type la supernovae in the NIR. (See selected refereed papers #76)
Sep 20 - Jul 21	María Delgado Mancheño, U. Granada. TFG supervisor. The type la NIR Hubble diagram constructed with ANDICAM JHK data.
Nov 19 - Jul 20	Darío García Redecillas , U. Granada. <i>TFG supervisor</i> . Studying the diversity of subluminous type la supernovae from twins.
Nov 19 - Jul 20	Lamberto Oltra Nieto, U. Granada. TFG supervisor. The local environment of supernovae as seen by J-PLUS. (See selected refereed papers #93)
Sep 16 - Jun 17	Asier Castrillo, U. Autónoma Madrid. <i>TFG supervised with Y. Ascasibar</i> . Supernova rates in nearby galaxies. (See <i>selected refereed papers</i> #63)
Sep 16 - Sep 17	Nicolette M. Kier, U. Pittsburgh. HII region statistics in PISCO. (See <i>selected refereed papers</i> #34)
Sep 16 - Mar 17	Yiwen Huang, Carnegie Mellon U. Statistical study of SN Ia 91bg-like. (See selected refereed papers #50)
Jan-Sep 2016	Luis Mora, U. Chile. <i>TFG supervisor</i> . Measuring CO at SN locations with CARMA. (See <i>selected refereed papers</i> #25)
Jan-Jul 2015	Tania Moraga , U. Chile. <i>TFG supervisor</i> . Type II multiwavelength light-curve characterization. (See <i>selected refereed papers</i> #11)
Mar-Des 2013	Ismael Pessa, U. Chile. <i>TFG supervisor</i> . SNe la properties as a function of the distance to host galaxy. (See <i>selected refereed papers</i> #71)
	Membership, service and responsibilities
Since Jul 2024	Chair of the Department of Extragalactic Astrophysics and Cosmology at ICE-CSIC. Member of the Strategy Board of ICE-CSIC.
Since May 2024	Member of the Teaching Committee of ICE-CSIC. Coordinator of the UAB Master on HEP and Astrophysics at ICE-CSIC.
Since Jan 2024	Member of the IEEC Director Research Advisor Council.
Since 2023	Member of the Nancy Roman PIT for Supernova Cosmology (PI: D. Scolnic).
Since 2023	Member of the La Silla Southern Supernova Survey (LS4). Seat in the Collaboration Council.

Since 2022 External member of the ZTF SNIa cosmology Working group. Since 2021 Sponsored member of the Dark Energy Spectroscopic Instrument (DESI). Member of the Electro-magnetic counterparts of GW at the VLT (ENGRAVE). Since 2018 MUSE instrument scientist (with J. Lyman). 2017 - 2023 Member of the WFIRST SIT for SNIa cosmology (PI: S. Perlmutter). 2016 - 2024 Member of the J-PLUS collaboration. Leading the SN environments working group. Since 2016 Full member of the LSST Dark Energy Science Collaboration (DESC). Serving as a deputy Publication Board Manager (since Nov 2024). Serving in the Collaboration Council (2023-2024). Served as a co-chair of the Speakers Bureau (2021-2023). Served in the Publication Board committee (2019-2021). Since 2016 External collaborator of the Hyper Suprime Cam Survey (HSCS) for SNe II and SLSNe. 2016 - 2021 Member (until 2019; EC since then) of the Sloan Digital Sky Survey IV (SDSS-IV). PI of an ancillary program in MaNGA to observe SN host galaxies. Member (EC until 2021) of the Dark Energy Survey (DES). Since 2015 Leading the SNII working group. 2015 - 2016 Member of the Chilean Scientific Coordination Committee for the LSST. Member of Public ESO Spectroscopic Survey of Transient Objects (PESSTO → ePESSTO+). Since 2013 Serving as the ePESSTO+ Ombudsperson, and in the Target And Alert (TAT) committee. PI of the SN environments and the SNIa cosmology in the NIR science groups. 2011 - 2017 Associate member of the Calar Alto Legacy Integral Field Area Survey (CALIFA). Responsible of the external ancillary data catalogues. 2008 - 2014 External member of the Sloan Digital Sky Survey II - Supernova Survey (SDSS-II/SNe). 2006 - 2011 Participant member of the Dark Energy Survey (DES)

Publication list

Here you can find links of my publications in the ADS, Google Scholar, and ORCID.

Selected refereed papers

- 103. A systematically-selected sample of luminous, long-duration, ambiguous nuclear transients P. Wiseman, R. D. Williams, I. Arcavi, L. Galbany, et al. MNRAS, accepted.
- 102. Binary progenitor systems for Type Ic supernovae M. Solar, M. J. Michałlowski, J. Nadolny, **L. Galbany**, et al. NATURE COMM., 15:7667 (2024), arXiv:2409.01906.
- 101. Accuracy of transient spectral classification tools: How accurate are transient spectral classification tools? Y-L. Kim, I. Hook, A. Milligan, L. Galbany, et al. PASP, 136:11 (2024), arXiv:2410.10963.
- 100. BETIS: II. Revisiting the ionisation mechanism of the extraplanar diffuse ionised gas R. González-Díaz, F. F. Rosales-Ortega, L. Galbany. A&A, 691:25 (2024), arXiv:2406.17123.
- 99. Circumstellar interaction signatures in the low luminosity type II SN 2021gmj N. Meza Retamal, Y. Dong, K. A. Bostroem, S. Valenti, L. Galbany, et al. A&A, 971:141 (2024), arXiv:2401.04027.
- 98. 1991T-like Supernovae
 M. M. Phillips, C. Ashall, P. J. Brown, L. Galbany, et al. APJS, 273:16 (2024), arXiv:2405.15027.
- 97. Narrow absorption lines from intervening material in supernovae. I. Measurements and temporal evolution S. González-Gaitán, C. P. Gutiérrez, J. P. Anderson, A. Morales, L. Galbany, et al. A&A, 687:108 (2024), arXiv:2403.11677.
- 96. BETIS: Bidimensional Exploration of the warm-Temperature Ionised gaS I. Sample presentation and 1st results R. González-Díaz, F. F. Rosales-Ortega, L. Galbany, J. P. Anderson, et al. A&A, 687:20 (2024), arXiv:2311.14254.
- 95. Supernova Remnant properties and Luminosity Functions in NGC 7793 using MUSE IFS M. Kopsacheili, C. Jiménez-Palau, L. Galbany, P. Boumis, R. González-Díaz. MNRAS, 530:1078 (2024), arXiv:2403.17053.
- 94. The Calar Alto Legacy Integral Field Area Survey: Spatial resolved properties S.F. Sánchez, J.K. Barrera-Ballesteros, L. Galbany, R. García-Benito, et al. RMXAA, 60:41 (2024), arXiv:2304.13070.
- 93. Tracing back the birth environments of SNIa progenitor stars: A pilot study based on 44 early-type host galaxies Y-L. Kim, L. Galbany, I. Hook, Y. Kang. MNRAS, 529:3806 (2024), arXiv:2403.13057.

- 92. Supernova environments in J-PLUS. NCR distributions and SPS, combining narrow- and broad-band filters R. González, L. Galbany, T. Kangas, R. García-Benito, et al. A&A, 684:104 (2024), arXiv:2312.13830.
- 91. Recovering lost light: discovery of supernova remnants with integral field spectroscopy H. Martínez-Rodríguez, L. Galbany, C. Badenes, et al. APJ, 963:125 (2024), arXiv:2309.14901.
- 90. Strong Carbon Features and a Red Early Color in the Underluminous Type Ia SN 2022xkq J. Pearson, D. J. Sand, P. Lundqvist, L. Galbany, et al. APJ, 960:29 (2024), arXiv:2309.10054.
- 89. The Calar Alto Legacy Integral Field Area Survey: extended and remastered data release S. F. Sánchez, L. Galbany, C.J.Walcher, R.García-Benito, et al. MNRAS, 526:5555 (2023), arXiv:2304.13022.
- 88. An updated measurement of the Hubble constant from near-infrared observations of Type Ia supernovae L. Galbany, T. de Jaeger, Adam G. Riess, T. E. Müller-Bravo, et al. A&A, 679:95 (2023), arXiv:2209.02546.
- 87. A metallicity dependence on the occurrence of core-collapse supernovae T. Pessi, J. P. Anderson, J. D. Lyman, J. L. Prieto, L. Galbany, et al. APJL, 955:L29 (2023), arXiv:2306.11962.
- 86. Fast and Not-so-Furious: Case Study of the Fast and Faint Type IIb SN 2021bxu D. D. Desai, C. Ashall, B. J. Shappee, N. Morrell, L. Galbany, et al. MNRAS, 524:767 (2023), arXiv:2303.13581.
- 85. A characterization of ASAS-SN core-collapse supernova environments with VLT+MUSE: I. Sample selection. T. Pessi, J. L. Prieto, J. P. Anderson, L. Galbany, J. D. Lyman, et al. A&A, 677:28 (2023), arXiv:2306.11961.
- 84. Environmental dependence of Type IIn supernova properties T. Moriya, L. Galbany, C. Jiménez-Palau, J. P. Anderson, et al. A&A, 677:20 (2023), arXiv:2306.09647.
- 83. A graph-based spectral classification of Type II supernovae

 R. de Souza, S. Thorp, L. Galbany, E. E. O. Ishida, S. González-Gaitán, et al. ASCOM, 44:100715 (2023), arXiv:2206.14335.
- 82. Examining the Properties of Low-luminosity Hosts of Type Ia Supernovae from ASAS-SN T. Holoien, V. Berger, J. Hinkle, L. Galbany, et al. APJ, 950:108 (2023), arXiv:2207.07657.
- 81. SN 2016ije: An SN 2002es-likeSNIa Exploded in a Metal-poor and Low-surface Brightness Galaxy Z. Li, T. Zhang, X. Wang, J. Zhang, L. Galbany, et al. APJ, 950:17 (2023), arXiv:2305.09417.
- 80. Stellar Populations in SNIa host galaxies at intermediate-high z: SF and OH enrichment histories I. Millan-Irigoyen, M. G. del Valle-Espinosa, R. Fernández-Aranda, L. Galbany, et al. MNRAS, 517:3312 (2022), arXiv:2209.10242.
- 79. The Absolute Magnitudes of 1991T-like Supernovae M. M. Phillips, C. Ashall, C. R. Burns, C. Contreras, L. Galbany, et al. APJ, 938:47 (2022), arXiv:2209.08031.
- 78. Testing the Homogeneity of Type la Supernovae in the Near-Infrared for Accurate Distance Estimations T. Müller-Bravo, L. Galbany, E. Karamehmetoglu, M. Stritzinger, C. Burns, et al. A&A, 665:123 (2022), arXiv:2207.04780.
- 77. A 5 per cent measurement of the Hubble constant from Type II supernovae T. de Jaeger, L. Galbany, A. G. Riess, B. J. Shappee, et al. MNRAS, 514:4620 (2022), arXiv:2203.08974.
- 76. HostPhot: global and local photometry of galaxies hosting supernovae or other transients T. Müller-Bravo, L. Galbany. JOSS, 7(76):4508 (2022), arXiv:2208.08117.
- 75. Cosmological Results from the RAISIN Survey: Using SNe Ia in NIR as a Novel Path to Measure the DE EoS D. Jones, K. Mandel, R. P. Kirshner, . L. Galbany, et al. APJ, 933:172 (2022), arXiv:2201.07801.
- 74. Systematic errors on optical-SED M_s estimates for galaxies across cosmic time and their impact on cosmology A. Paulino-Afonso, S. González-Gaitán, L. Galbany, et al. A&A, 662:86 (2022), arXiv:2202.04078.
- 73. A Tale of Two Type Ia Supernovae: The fast-declining siblings SNe 2015bo and 1997cn W. Hoogendam, C. Ashall, L. Galbany, B. Shappee, et al. APJ, 928:103 (2022), arXiv:2109.14644.
- 72. Aperture-corrected spectroscopic type la supernova host galaxy properties

 L. Galbany, M. Smith, S. Duarte Puertas, S. González-Gaitán, I. Pessa, et al. A&A, 659:89 (2022), arXiv:2112.02517.
- 71. Infant excess emission reveals the origin of a normal Type la Supernova Y. Qi Ni, D-S Moon, M. R. Drout, A. Polin, . L. Galbany, et al. NATAS, 6,568 (2022), arXiv:2202.08889.
- 70. The Dependence of the Type Ia Supernova Host Bias on Observation or Fitting Technique J. Hand, S. Liu, L. Galbany, et al. APJ, 925:115 (2022), arXiv:2102.08980.
- 69. The effects of varying colour-luminosity relations on type la supernova science. S. González-Gaitán, T. de Jaeger, L. Galbany, et al. MNRAS, 508:4656 (2021), arXiv:2009.13230.
- 68. Are Type Ia Supernovae in Restframe H Brighter in More Massive Galaxies?

 K. A. Ponder, W. MN. Wood-Vasey, A. Weyant, N. T. Barton, L. Galbany, et al. APJ, 923:197 (2021), arXiv:2006.13803.

- 67. Carnegie Supernova Project: The First Homogeneous Sample of 2003fg-like Type la Supernova. C. Ashall, J. Lu, E. Y. Hsiao, P. Hoeflich, M. Phillips, L. Galbany, et al. APJ, 922:205 (2021), arXiv:2106.12140.
- 66. Probing the Progenitors of SNe Ia using Circumstellar Material Interaction Signatures. P. Clark, K. Maguire, M. Bulla, L. Galbany, et al. MNRAS, 507:4367 (2021), arXiv:2107.09034.
- 65. ASASSN-15hy: an under-luminous, red 03fg-like type la supernova.

 J. Lu, C. Ashall, E. Y. Hsiao, P. Hoeflich, L. Galbany, et al. APJ, 920:107 (2021), arXiv:2107.08150.
- 64. The delay time distribution of supernovae from IFS of nearby galaxies.

 A. Castrillo, Y. Ascasibar, L. Galbany, S. F. Sánchez, et al. MNRAS, 501:3122 (2021). arXiv:2012.11958.
- 63. Supernova 2018cuf: A Type IIP supernova with a slow fall from plateau. Y. Dong, S. Valenti, K. A. Bostroem, D. J. Sand, J. E. Andrews, L. Galbany, et al. APJ, 906:56 (2021). arXiv:2010.09764.
- 62. The stellar metallicity distribution function of galaxies in the CALIFA survey.

 A. Mejía-Narváez, S. F. Sánchez, E. A. Lacerda, L. Carigi, L. Galbany, et al. MNRAS, 499:4838 (2020). arXiv:2009.13712.
- 61. A Template-based Approach to the Photometric Classification of SN 1991bg-like SNe in the SDSS-II SN Survey. D. Perrefort; Y. Zhang; L. Galbany, W. M. Wood-Vasey, S. González-Gaitán APJ, 904:156 (2020). arXiv:2010.09756.
- SN 2017ivv: two years of evolution of a transitional Type II supernova
 C. P. Gutiérrez, A. Pastorello, A. Jerkstrand, L. Galbany, et al. MNRAS, 499:974 (2020). arXiv:2008.09628.
- 59. Observational constraints on the optical and NIR emission from a NS-BH binary merger candidate S190814bv ENGRAVE coll. A&A, 643:113 (2020). arXiv:2002.01950.
- 58. A measurement of the Hubble constant from Type II supernovae.

 T. de Jaeger, W. Zheng, B. E. Stahl, A. V. Filippenko, A. G. Riess, L. Galbany. MNRAS, 496:3402 (2020). arXiv:2006.03412.
- 57. Studying Type II supernovae as cosmological standard candles using the Dark Energy Survey. T. de Jaeger, L. Galbany, S. González-Gaitán, et al. MNRAS, 495:1860 (2020). arXiv:2005.09757.
- 56. Studying the environment of AT 2018cow with MUSE.

 J. D. Lyman, L. Galbany, S. F. Sánchez, J. P. Anderson, H. Kuncarayakti. MNRAS, 495:992 (2020). arXiv:2005.02412.
- 55. HII regions in the CALIFA survey: I. catalog presentation.

 C. Espinosa-Ponce, S. F. Sánchez, C. Morisset, J. K. Barrera, L. Galbany, et al. MNRAS, 494:1622 (2020), arXiv:2003.07865.
- 54. Discovery and Rapid Follow-up Observations of the Unusual Type II SN 2018ivc in NGC 1068. K. A. Bostroem, S. Valenti, D. J. Sand, J. E. Andrews, S. D. Van Dyk, L. Galbany, et al. APJ, 895:31 (2020), arXiv:1909.07304.
- 53. The AMUSING++ Compilation: I. Full Sample Characterization and Galactic-Scale Outflows Selection. C. López-Cobá, S. F. Sánchez, J. P. Anderson, I. Cruz-González, L. Galbany, et al. AJ, 159:167 (2020), arXiv:2002.09328.
- 52. Galaxies hosting an AGN: a view from the CALIFA survey.

 E. Lacerda, S. Sánchez, R. Cid Fernandes, C. López-Cobá, C. Espinosa, L. Galbany. MNRAS, 492:3073 (2020), arXiv:2001.00099.
- 51. The 50-100 pc scale parent stellar populations of SNII and limitations of single star evolution models. P. Schady, J.J. Eldridge, J. Anderson, T.-W. Chen, L. Galbany, et al. MNRAS, 490:4515 (2019), arXiv:1907.12260.
- 50. Evidence for a Chandrasekhar-mass explosion in the Ca-strong 1991bg-like type la supernova 2016hnk. L. Galbany, C. Ashall, P. Hoeflich, S. González-Gaitán, et al. A&A, 630:A76 (2019), arXiv:1904.10034.
- 49. Models and Sim. for the Photometric LSST Astronomical Time Series Classification Challenge (PLAsTiCC) R. Kessler, G. Narayan, A. Avelino, E. Bachelet, R. Biswas, .(with) L. Galbany, et al. PASP, 131:094501 (2019), arXiv:1903.11756.
- 48. The extraplanar type II supernova ASASSN-14jb in the ESO 467-G051 galaxy. N. Meza, J. L. Prieto, A. Clocchiatti, L. Galbany, et al. A&A, 629:A57 (2019), arXiv:1811.11771.
- 47. Superluminous Supernovae from the Dark Energy Survey.

 C. Angus, M. Smith, M. Sullivan, C. Inserra, P. Wiseman, .(with) L. Galbany, et al. MNRAS, 487:2215 (2019), arXiv:1812.04071.
- 46. Nature of the unusual transient AT 2018cow from HI observations of its host galaxy M. J. Michałowski, P. Kamphuis, J. Hjorth, D. A. Kann, A. de Ugarte, L. Galbany, et al. A&A, 627:106 (2019), arXiv:1902.10144.
- 45. Uncertainties in gas kinematics arising from stellar continuum modeling in IFS data: NGC 2906 with VLT/MUSE E. Bellocchi, Y. Ascasibar, L. Galbany, H. Ibarra-Medel, M. Gavilán, Á. Díaz A&A, 625:A83 (2019), arXiv:1903.06252.
- 44. CCSNe ages and metallicities from emission-line diagnostics of nearby stellar populations Lin Xiao, L. Galbany, J.J. Eldridge, and Elizabeth R. Stanway. MNRAS, 482:384 (2019), arXiv:1805.01213.
- 43. Unravelling the infrared transient VVV-WIT-06: the case for an origin in a classical nova D.P.K. Banerjee, E. Y. Hsiao, T. Diamond, L. Galbany, et al. APJ, 867:99 (2018), arXiv:1809.06801.

- 42. The SELGIFS data challenge: generating synth. obs. of CALIFA galaxies from hydrodynamical simulations G. Guidi, J. Casado, Y. Ascasibar, R. García-Benito, L. Galbany, et al. MNRAS, 479:917 (2018), arXiv:1610.07620.
- 41. Serendipitous discovery of a strong-lensed galaxy in integral field spectroscopy from MUSE.

 L. Galbany, T. E. Collett, J. Méndez-Abreu, S. F. Sánchez, J. P. Anderson. MNRAS, 479:262 (2018), arXiv:1803.09277G.
- 40. SN 2016esw: a bright Type II supernova observed a few hours after the explosion T. de Jaeger, L. Galbany, C. P. Gutiérrez, A. V. Filippenko, W. Zheng, et al., MNRAS, 478:3776 (2018), arXiv:1805.03205.
- 39. Thermonuclear supernovae and cosmology
 I. Dominguez, L. Galbany. EPJP, 133:323 (2018).
- 38. No surviving companion in Kepler's supernova.
 P. Ruiz-Lapuente, F. Damiani, L. R. Bedin, J. I. Gonzalez Hernandez, L. Galbany, et al., APJ, 862:124 (2018), arXiv:1711.00876.
- 37. Observed Type II supernova colours from the Carnegie Supernova Project-I T. de Jaeger, J. P. Anderson, L. Galbany, et al., MNRAS, 476:4592 (2018), arXiv:1802.07254.
- 36. The lowest metallicity type II supernova from the highest mass red-supergiant progenitor J. P. Anderson, L. Dessart, C. P. Gutiérrez, T. Krühler, L. Galbany, et al., NATURE ASTRONOMY, 2:574 (2018), arXiv:1805.04434.
- 35. Elemental gas-phase abundances of intermediate redshift type la supernova star-forming host galaxies M. E Moreno-Raya, L. Galbany, A. R. López-Sánchez, M. Mollá, et al., MNRAS, 476:307 (2018), arXiv:1801.06547.
- 34. Constraints on core-collapse supernova progenitors from explosion site integral field spectroscopy H. Kuncarayakti, J. P. Anderson, L. Galbany, K. Maeda, M. Hamuy, et al. A&A, 613:35 (2018), arXiv:1711.05765.
- PISCO: The PMAS/Ppak Integral field supernova hosts compilation
 L. Galbany, J. P. Anderson, S. F. Sánchez, H. Kuncarayakti, S. Pedraz, et al., APJ, 855:107 (2018), arXiv:1802.01589.
- 32. Studying the ultraviolet spectrum of the first spectroscopically confirmed SN at z=2. M. Smith, M. Sullivan, R. C. Nichol, L. Galbany, et al., APJ, 854:37 (2018), arXiv:1712.04535.
- 31. The shape of O abundance profiles explored with MUSE: evidence for widespread deviations from single gradients L. Sánchez-Menguiano, S. F. Sánchez, I. Pérez, T. Ruiz-Lara, L. Galbany, et al. A&A. 609:A119 (2018), arXiv:1710.01188.
- 30. Investigating the diversity of SNe lax: A MUSE and NOT spectroscopic study of their environments J. D. Lyman, F. Taddia, M. D. Stritzinger, L. Galbany, G. Leloudas, et al. MNRAS, 473:1359 (2018), arXiv:1707.042708.
- 29. SN 2016jhj at redshift 0.34: extending the SN II Hubble diagram using the standard candle method T. de Jaeger, L. Galbany, A. Filippenko, S. González-Gaitán, et al. MNRAS, 472:4233 (2017), arXiv:1709.01513.
- 28. Serendipitous discovery of an optical emission line jet in NGC 232 C. Lopez-Cobá, S. F. Sánchez, I. Cruz-González, L. Binette, L. Galbany, et al. APJL, 850:L17 (2017), arXiv:1711.02785.
- 27. Type II SN spectral diversity II: spectroscopic and photometric correlations C. P. Gutiérrez, J. P. Anderson, M. Hamuy, S. González-Gaitán, L. Galbany, et al. APJ, 850:90 (2017), arXiv:1709.02799.
- 26. DES15E2mlf: A Spectroscopically Confirmed Superluminous SN that Exploded 3.5 Gyr After the Big Bang Y.-C. Pan, R. J. Foley, M. Smith, L. Galbany, C. B. D'Andrea, et al. MNRAS, 470:4241 (2017), arXiv:1702.05430.
- Molecular gas at supernova local environments unveiled by EDGE
 L. Galbany, L. Mora, S. González-Gaitán, A. Bolatto, H. Dannerbauer, et al. MNRAS, 468 628 (2017), arXiv:1702.02945.
- 24. Hot gas around SN 1998bw. The progenitor inferred through its environment T. Krühler, H. Kuncarayakti, P. Schady, J. Anderson, L. Galbany, J. Gensior. A&A, 602:A85 (2017), arXiv:1702.05430.
- 23. A type II supernova Hubble diagram from the CSP, SDSS-II nd SNLS surveys.

 T. de Jaeger, S. González-Gaitán, M. Hamuy, L. Galbany, J. P. Anderson, et al. APJ, 835:166 (2017), arXiv:1612.05636.
- 22. Using the local gas-phase oxygen abundances to explore a metallicity-dependence in SNe la luminosities M.E. Moreno-Raya, Á.R. López-Sánchez, M. Mollá, L. Galbany, et al. MNRAS, 462:1281 (2016), arXiv:1607.05526.
- 21. Evidence of ongoing radial migration in NGC 6754: Azimutal variations of the gas properties. L. Sánchez-Menguiano, S. F. Sánchez, D. Kawata, . (with) L. Galbany, et al. APJL, 830:40 (2016), arXiv:1603.04748.
- 20. MUSE Reveals a Recent Merger in the Post-starburst Host Galaxy of the TDE ASASSN-14li.

 J. L. Prieto, T. Krühler, J. P. Anderson, L. Galbany, C. S. Kochanek, et al. APJL, 830:32 (2016), arXiv:1609.00013.
- 19. CALIFA, the Calar Alto Legacy Integral Field Area survey IV. Third Public data release. S. F. Sánchez, R. García-Benito, S. Zibetti, C. J. Walcher, .(with) L. Galbany, et al. A&A, 594:A36 (2016) arXiv:1604.02289.
- 18. Unresolved versus resolved: calibrating young SSP models with VLT/MUSE observation of NGC 3603. H. Kuncarayakti, L. Galbany, J. P. Anderson, T. Krühler, M. Hamuy. A&A, 593:A78 (2016) arXiv:1607.03446.

- 17. Nearby supernova host galaxies from the CALIFA Survey: II. SN environmental metallicity L. Galbany, V. Stanishev, A. M. Mourão, M. Rodrigues, H. Flores, et al. A&A, 591:48 (2016), arXiv:1603.07808.
- 16. Evolving into a remnant: optical spectroscopy of SN 1978K at thirty-six years
 H. Kuncarayakti, K. Maeda, J. P. Anderson, M. Hamuy, K. Nomoto, L. Galbany MNRAS, 458:2063 (2016), arXiv:1512.02108.
- 15. Type II supernovae as probes of environment metallicity: observations of host HII regions J. P. Anderson, C. P. Gutiérrez, L. Dessart, M. Hamuy, L. Galbany, et al. A&A, 589:A110 (2016) arXiv:1602.00011
- 14. SN 2014J at M82: I. A middle-class type la supernova by all spectroscopic metrics L. Galbany, M. E. Moreno-Raya, P. Ruiz-Lapuente, J. I. González-Hernández, et al. MNRAS, 457:525 (2016), arXiv:1510.06596.
- 13. Characterising the environments of supernovae with MUSE

 L. Galbany, J. P. Anderson, F. F. Rosales-Ortega, H. Kuncarayakti, et al. MNRAS, 455:4087 (2016), arXiv:1511.01495
- 12. On the dependence of the type la SNe luminosities on the metallicity of their host galaxies M. E. Moreno-Raya, M. Mollá, Á . R. López-Sánchez, L. Galbany, et al. APJL, 818:L19 (2016), arXiv:1511.05348
- 11. UBVRIz light curves of 51 type II supernovae

 L. Galbany, M. Hamuy, M. M. Phillips, N. B. Suntzeff, J. Maza, et al. AJ, 151:33 (2016), arXiv:1511.08402
- 10. A Hubble diagram from type II supernovae based solely on photometry: The photometric-colour method T. de Jaeger, S. González-Gaitán, J. P. Anderson, L. Galbany, M. Hamuy, et al. APJ, 815:121 (2015), arXiv:1511.05145
- 9. The rise-time of Type II supernovae S. González-Gaitán, N. Tominaga, J. Molina, L. Galbany, F. Bufano, et al. MNRAS, 451: 2212 (2015), arXiv:1505.02988
- 8. PESSTO: survey description and products from the first data release.
 S. J. Smartt, S. Valenti, M. Fraser, C. Inserra, D. R. Young, .(with) L. Galbany, et al. A&A, 579:A40 (2015), arXiv:1410.2210.
- Statistical Studies of Supernova Environments.
 J. P. Anderson, P. A. James, S. M. Habergham, L. Galbany, H. Kuncarayakti PASA, 32:e019 (2015), arXiv:1504.04043.
- 6. CALIFA, the Calar Alto Legacy Integral Field Area survey. III. Second public data release R. García-Benito, S. Zibetti, S.F. Sánchez, B. Huseman, .(with) L. Galbany, et al. A&A, 576:135 (2015), arXiv:1409.8302
- 5. Census of HII regions in NGC6754 derived with MUSE: Constraints on the metal mixing scale. S.F. Sánchez, L. Galbany, J. Falcón-Barroso, P. Sánchez-Blázquez, E. Pérez, et al. A&A, 573:A105 (2015), arXiv:1411.4967
- 4. Nearby SN host galaxies from the CALIFA Survey: I. Sample, data analysis, and correlation to SF regions L. Galbany, V. Stanishev, A. M. Mourão, M. Rodrigues, H. Flores, et al. A&A, 572:A38 (2014), arXiv:1409.1623
- 3. Aperture corrections for galaxy properties computed from the CALIFA survey.

 J. Iglesias-Páramo, J.M. Vílchez, L. Galbany, S.F. Sánchez, F.F. Rosales-Ortega, et al. A&AL, 553:L7 (2013), arXiv:1304.16440
- 2. Type-la Supernova properties as a function of the distance to host galaxy in the SDSS-II/SNe survey. L. Galbany, R. Miquel, L. Ostman, P. J. Brown, D. Cinabro, et al. APJ, 755:125 (2012), arXiv:1206.2210
- 1. The Subluminous Supernova 2007qd: A Missing Link in a Family of Low-Luminosity Type Ia Supernovae. C. M. McClelland, P. M. Garnavich, L. Galbany, R. Miquel, R. J. Foley, et al. APJ, 720:704-716 (2010), arXiv:1007.2850

Other refereed papers

- 320. It's not $\sigma 8$: constraining the non-linear matter power spectrum with the DESY5 SN sample P. Shah, et al. MNRAS, accepted.
- 319. Calibrating the Absolute Magnitude of Sne Ia in Nearby Galaxies using [OII] and Implications for H_0 M. Dixon, et al. MNRAS, accepted.
- 318. Reduction of the type la supernova host galaxy step in the outer regions of galaxies $_{\rm M.\ Toy,\ et\ al.}$ MNRAS, accepted.
- 317. A study in scarlet I. Photometric properties of a sample of ILRTSs $_{\rm G.\ Valerin,\ et\ al.\ }A\&A,$ accepted.
- 316. On the diversity of strongly-interacting Type IIn supernovae I. Salmaso, et al. A&A, accepted, : (2025), arXiv:2410.06111.
- 315. Eruptive mass-loss less than a year before the explosion of SLSN. I. The cases of 2020xga and 2022xgc A. Gkini, et al. A&A, accepted, : (2025), arXiv:2409.17296.
- 314. ZTF SN Ia DR2: Overview ${\rm M.\ Rigault,\ et\ al.\ } A\&A,: \mbox{ (2025),\ arXiv:}.$
- 313. ZTF SN Ia DR2: Study of Type Ia supernova light-curve fits $_{\rm M.\ Rigault,\ et\ al.\ }A\&A,$: (2025), arXiv:.

- 312. ZTF SN Ia DR2: Simulations and volume-limited sample M. Amenouche, et al. A&A, : (2025), arXiv:.
- 311. ZTF SN Ia DR2: Colour standardisation of type Ia supernovae and its dependence on the environment $_{\rm M.~Ginolin,~et~al.}$ A&A, : (2025), arXiv:.
- 310. ZTF SN Ia DR2: Evidence of changing dust distribution with redshift using type Ia supernovae B. Popovic, et al. A&A, : (2025), arXiv:.
- 309. ZTF SN la DR2: Impact of the galaxy cluster environment on the stretch distribution of Type la supernovae $_{\rm F.\ Ruppin,\ et\ al.\ }A\&A$, : (2025), arXiv:.
- 308. ZTF SN Ia DR2: Exploring SN Ia properties in the vicinity of under-dense environments $_{\rm M.\ Aubert,\ et\ al...}$ A&A, : (2025), arXiv:.
- 307. ZTF SN Ia DR2: Peculiar velocities' impact on the Hubble diagram B. Carreres, et al.. A&A, : (2025), arXiv:.
- 306. ZTF SN Ia DR2: The spectral diversity of Type Ia supernovae in a volume-limited sample U. Burgaz, et al.. A&A, : (2025), arXiv:.
- 305. ZTF SN Ia DR2: The diversity and relative rates of the thermonuclear supernova population G. Dimitriadis, et al. A&A, : (2025), arXiv:.
- 304. ZTF SN Ia DR2: Searching for late-time interaction signatures in Type Ia supernovae from ZTF $_{\rm J.~H.~Terwel,~et~al.}$ A&A, accepted, : (2025), arXiv:2402.16962.
- 303. ZTF SN Ia DR2: Secondary maximum in type Ia supernovae M. Deckers, et al.. A&A, : (2025), arXiv:.
- 302. ZTF SN la DR2: Properties of the low-mass host galaxies of Type la supernovae in a volume-limited sample U. Burgaz, et al.. A&A, : (2025), arXiv:.
- 301. ZTF SN la DR2: An environmental study of Type la supernovae using host galaxy image decomposition R. Senzel, et al.. A&A, : (2025), arXiv:.
- 300. The DES SN Program: an updated measurement of the Hubble constant using the inverse distance ladder R. Camilleri, et al. MNRAS, accepted, : (2025), arXiv:2406.05049.
- 299. SN 2023xwi: Forbidden line emission in the peak spectrum of a Ca-strong transient C. Touchard-Paxton, et al. MNRAS, accepted, : (2025), arXiv:2410.06111.
- 298. SN 2023tsz: a helium-interaction-driven supernova in a very low-mass galaxy B. Warwick, et al. MNRAS, accepted, : (2025), arXiv:2409.14147.
- 297. Are light curve classification metrics good proxies for SN Ia cosmological constraining power? A. Malz, et al. A&A, accepted, : (2025), arXiv:2305.14421.
- 296. Einstein Probe discovery of EP240408a: A peculiar X-ray transient with an intermediate timescale W. Zhang, et al. SCMPA, 68:219511 (2025), arXiv:2410.21617.
- 295. Evaluating cosmological biases using photometric redshifts for Type Ia Supernova cosmology with the Dark Energy Survey Supernova Program
 R. C. Chen, et al. MNRAS, 536:1948 (2025), arXiv:2407.16744.
- 294. Constraints on compact objects from the Dark Energy Survey five-year supernova sample P. Shah, et al. MNRAS, 536:946 (2025), arXiv:2410.07956.
- 293. Optical and near-infrared photometry of 94 Type II supernovae from the Carnegie Supernova Project J. P. Anderson, et al. A&A, 692:95 (2024), arXiv:2410.06738.
- 292. The fast rise of the unusual Type II SN 2018ivc A. Reguitti, et al. A&A, 692:26 (2024), arXiv:2409.16890.
- 291. Modelling the impact of host galaxy dust on type la supernova distance measurements B. Popovic, et al. MNRAS, 534:2263 (2024), arXiv:2406.05051.
- 290. A JWST Medium Resolution MIRI Spectrum and Models of the Type Ia supernova 2021aefx at +415 d C. Ashall, et al. APJ, 975:203 (2024), arXiv:2404.17043.
- 289. The Dark Energy Survey Supernova Program: Cosmological Analysis and Systematic Uncertainties M. Vincenzi, et al. APJ, 975:86 (2024), arXiv:2401.02945.
- 288. The Dark Energy Survey Supernova Program: Light Curves and 5 Yr Data Release B. Sánchez, et al. APJ, 975:5 (2024), arXiv:2406.05046.

- 287. CAVITY: Calar Alto Void Integral-field Treasury surveY: I. First public data release R. García-Benito, et al. A&A, 691:161 (2024), arXiv:2410.08265.
- 286. Massive stars exploding in a He-rich CSM X. Flash spectral features in SNe Ibn 2019cj and SN 2018jmt z.-Y. Wang, et al. A&A, 691:156 (2024), arXiv:2408.12393.
- 285. Characterizing H Disappearance in SN2022crv: Evidence of a Continuum between lb and Ilb SN Properties Y. Dong, et al. APJ, 974:316 (2024), arXiv:2309.09433.
- 284. The Dark Energy Survey Supernova Program: slow supernovae show cosmological time dilation out to z 1. R. White, et al. MNRAS, 533:3365 (2024), arXiv:2406.05050.
- 283. The dark energy survey supernova program: investigating beyond- Λ CDM R. Camilleri, et al. MNRAS, 533:2615 (2024), arXiv:2406.05048.
- 282. The Dark Energy Survey 5-yr photometrically classified type la supernovae without host-galaxy redshifts A. Möller, et al. MNRAS, 533:2073 (2024), arXiv:2402.18690.
- 281. The Dark Energy Survey: Cosmology Results With \sim 1500 New High-z SNe Ia Using The Full 5-year Dataset The DES Collaboration APJL, 973:14 (2024), arXiv:2401.02929.
- 280. The fast transient AT 2023clx in the nearby LINER galaxy NGC 3799 as a TDE of a very low-mass star P. Charalampopoulos, et al. A&A, 689:350 (2024), arXiv:2401.11773.
- 279. CAVITY, Calar Alto Void Integral-field Treasury surveY and project extension I. Pérez, et al. A&A, 689:213 (2024), arXiv:2405.04217.
- 278. The enigmatic double-peaked stripped-envelope SN 2023aew T. Kangas, et al. A&A, 689:182 (2024), arXiv:2401.17423.
- 277. Chemical evolution models: the role of SNe Ia in the $[\alpha/Fe]$ abundances and their variations in t and x O. Cavichia, et al. MNRAS, 532:2331 (2024), arXiv:2311.00076.
- 276. The Dark Energy Survey: Detection of WL magnification of SNe and constraints on DM haloes P. Shah, et al. MNRAS, 532:932 (2024), arXiv:2406.05047.
- 275. CSP-I & -II: Measurements of H_0 using Cepheid, TRGB, and SBF Distance Calibration to SNIa S. Uddin, et al. APJ, 970:72 (2024), arXiv:2308.01875.
- 274. Light-Curve Structure and H α Line Formation in the Tidal Disruption Event AT 2019azh S. Faris, et al. APJ, 969:104 (2024), arXiv:2312.03842.
- 273. Type la Supernova Progenitor Properties and Their Host Galaxies S. Chakraborty, et al. APJ, 969:80 (2024), arXiv:2311.03473.
- 272. Discovery and Follow-up of AT 2023clx: The Lowest Redshift and Luminosity Optically-Selected TDE W. Hoogendam, et al. MNRAS, 530:4501 (2024), arXiv:2401.05490.
- 271. The Ca-rich SN Ic 2016adj in the iconic dust lane of Cen A: Potential signatures of an interaction with CSM H M. Stritzinger, et al. A&A, 686:79 (2024), arXiv:2309.05031.
- 270. Extrapolation of Type Ia Supernova Spectra into the Near-Infrared Using PCA A. Burrow, et al. APJ, 967:55 (2024), arXiv:2404.04724.
- 269. Optical Spectroscopy of Type Ia Supernovae by the Carnegie Supernova Projects I & II N. Morrell, et al. APJ, 967:20 (2024), arXiv:2404.19208.
- 268. Ground-based and JWST Observations of SN 2022pul: II. Evidence for a Violent Merger in a Peculiar SNe Ia L. Kwok, et al. APJ, 966:135 (2024), arXiv:2308.12450.
- 267. The Cosmic Dust Storms in SNIa-CSM 2018evt L. Wang, et al. NATAS, 8:504 (2024), arXiv:2310.14874.
- 266. SN 2022joj: A Potential Double Detonation with a Thin Helium shell E. Padilla, et al. APJ, 964:196 (2024), arXiv:2308.06334.
- 265. The Dark Energy Survey Supernova Program: Cosmological Biases from Host Galaxy Mismatch of SNe Ia H. Qu, et al. APJ, 964:134 (2024), arXiv:2307.13696.
- 264. The metamorphosis of the Type Ib SN 2019yvr: late-time interaction L. Ferrari, et al. MNRASL, 529:33 (2024), arXiv:2401.15052.
- 263. HII regions and diffuse ionized gas in the AMUSING++ Compilation: I. Catalogue presentation A.Z. Lugo-Aranda, et al. MNRAS, 528:6099 (2024), arXiv:2401.15807.

- 262. 1100 days in the life of the supernova 2018ibb: The best pair-instability supernova candidate, to date S. Schulze, et al. A&A, 683:223 (2024), arXiv:2305.05796.
- 261. A Precursor Plateau and Pre-Maximum [OII] Emission in SLSN 2019szu: Pulsational Pair-Instability Candidate A. Aamer, et al. MNRAS, 527:11970 (2024), arXiv:2307.02487.
- 260. JWST MIRI/MRS Observations and Spectral Models of the Sub-luminous Type Ia Supernova 2022xkq J. M. DerKacy, et al. APJ, 961:187 (2024), arXiv:2310.09153.
- 259. Keck Infrared Transient Survey I: Survey Description and Data Release 1 K. Tinyanont, et al. PASP, 136:4201 (2024), arXiv:2309.07102.
- 258. Ground-based and JWST Observations of SN 2022pul: I. Unusual Signatures of C, O, and CSI in a SNIa-pec M. Siebert, et al. APJ, 960:88 (2024), arXiv:2308.12449.
- 257. Rates and properties of type la supernovae in galaxy clusters within the Dark Energy Survey M. Toy, et al. MNRAS, 526:5292 (2023), arXiv:2302.05184.
- 256. No plateau observed in late-time near-infrared observations of the underluminous Type la supernova 2021qvv O. Graur, et al. MNRAS, 526:1977 (2023), arXiv:2306.12858.
- 255. SN 2023emq: a probable flash-ionised lbn supernova M. Pursiainen, et al. APJL, 959:10 (2023), arXiv:2306.09804.
- 254. A sample of dust attenuation laws for Dark Energy Survey supernova host galaxies $_{\rm J.\ Duarte,\ et\ al.\ }A\&A,\ 680:56\ (2023),\ arXiv:2211.14291.$
- 253. Minutes-duration Optical Flares with Supernova Luminosities A. Ho, et al. NATURE, 623:927 (2023), arXiv:2311.10195.
- 252. SN 2021gno: a Calcium-rich transient with double-peaked light curves K. Ertini, et al. MNRAS, 526:279 (2023), arXiv:2309.07800.
- 251. Unprecedented early flux excess in the hybrid 02es-like SNIa 2022ywc indicates interaction with CSM S. Srivastav, et al. APJL, 956:34 (2023), arXiv:2308.06019.
- 250. SN 2022jli: a type lc supernova with periodic modulation of its light curve and an unusually long rise T. Moore, et al. APJL, 956:31 (2023), arXiv:2309.12750.
- 249. Early Spectroscopy and Dense Circumstellar Medium Interaction in SN 2023ixf K. A. Bostroem, et al. APJL, 956:5 (2023), arXiv:2306.10119.
- 248. The Broad-lined Type-Ic supernova SN 2022xxf with extraordinary two-humped light curves H. Kuncarayakti, et al. A&A, 678:209 (2023), arXiv:2303.16925.
- 247. AT2022aedm and a new class of luminous, fast-cooling transients in elliptical galaxies M. Nicholl, et al. APJL, 954:L28 (2023), arXiv:2307.02556.
- 246. Broad-emission-line dominated hydrogen-rich luminous supernovae P. Pessi, et al. MNRAS, 523:5315 (2023), arXiv:2306.08880.
- 245. SN 2022ann: A type Icn SN from a dwarf galaxy that reveals helium in its circumstellar environment K. Davis, et al. MNRAS, 523:2530 (2023), arXiv:2211.05134.
- 244. Results of the Photometric LSST Astronomical Time-series Classification Challenge (PLAsTiCC) R. Hlozek, et al. APJS, 267:25 (2023), arXiv:2012.12392.
- 243. SN 2022acko: the First Early Far-Ultraviolet Spectra of a Type IIP Supernova K. A. Bostroem, et al. APJL, 953:L18 (2023), arXiv:2305.01654.
- 242. Multi-scale stamps for real-time classification of alert streams I. Reyes-Jainaga, et al. APJL, 952:L43 (2023), arXiv:2304.13080.
- 241. Multiwavelength observations of the extraordinary accretion event AT2021lwx P. Wiseman, et al. MNRAS, 522:3992 (2023), arXiv:2303.04412.
- 240. SN 2021fxy: Mid-Ultraviolet Flux Supression is a Common Feature of Type Ia supernovae J. DerKacy, et al. MNRAS, 522:3481 (2023), arXiv:2212.06195.
- 239. Panning for gold, but finding He: Discovery of the ultra-stripped SN 2019wxt from GW follow-up observations I. Agudo, et al. A&A, 675:201 (2023), arXiv:2208.09000.
- 238. The Carnegie Supernova Project-I. Spectroscopic analysis of stripped-envelope supernovae S. Holmbo, et al. A&A, 675:83 (2023), arXiv:2302.11304.

- 237. The DES Supernova Program: Corrections on photometry due to wavelength-dependent atmospheric effects J. Lee, et al. APJ, 165:222 (2023), arXiv:2304.01858.
- 236. Photometric study of the late-time near-infrared plateau in Type la supernovae $_{\rm M.\ Deckers,\ et\ al.\ }A\&A,\ 521:4414\ (2023),\ arXiv:2303.09548.$
- 235. SN 2021zny: an early flux excess combined with late-time O emission suggests a double WD merger event G. Dimitriadis, et al. MNRAS, 521:1162 (2023), arXiv:2302.08228.
- 234. Carnegie Supernova Project-II: Near-infrared spectral diversity and template of Type Ia Supernovae J. Lu, et al. APJ, 948:27 (2023), arXiv:2211.05998.
- 233. Sociology and hierarchy of voids: Study of 7 SDSS nearby voids and their dynamical CosmicFlows-3 environment H. Courtois, et al. A&A, 673:38 (2023), arXiv:2211.16388.
- 232. Photometry and spectroscopy of the Type Icn supernova 2021ckj T. Nagao, et al. A&A, 673:27 (2023), arXiv:2303.07721.
- 231. A possible surviving companion of the SN Ia in the Galactic SNR G272.2-3.2 P. Ruiz-Lapuente, et al. APJ, 947:90 (2023), arXiv:2206.01855.
- 230. Core-collapse SNe in the Dark Energy Survey: Luminosity Functions and Host Galaxy Demographics M. Grayling, et al. MNRAS, 520:684 (2023), arXiv:2207.08520.
- 229. The origin and evolution of the normal Type Ia SN 2018aoz with infant-phase reddening and excess emission Y. Qi Ni, et al. APJ, 946:7 (2023), arXiv:2206.12437.
- 228. JWST Low-Resolution MIRI Spectral Observations of SN 2021aefx: High-density Burning in a SN Ia J. DerKacy, et al. APJL, 945:L2 (2023), arXiv:2301.03647.
- NIR and Optical Nebular-phase Spectra of SNe la 2013aa and SN 2017cbv in NGC 5643
 Kumar, et al. APJ, 945:27 (2023), arXiv:2210.06993.
- 226. Panchromatic evolution of three luminous red novae. Forbidden hugs in pandemic times IV A. Pastorello, et al. A&A, 671:158 (2023), arXiv:2208.02782.
- 225. Concerning colour: The effect of environment on type la supernova colour in the dark energy survey L. Kelsey, et al. MNRAS, 519:3046 (2023), arXiv:2208.01357.
- 224. The Interaction of SN 2018evt with a Substantial Amount of CSM An SN1997cy-like Event Y. Yang et al. MNRAS, 519:1618 (2023), arXiv:2211.04423.
- 223. Photometric and Spectroscopic analysis of the Type II SN 2020jfo with a short plateau B. Ailawadhi et al. MNRAS, 519:248 (2023), arXiv:2211.02823.
- 222. SN 2019ewu: peculiar SN with early strong C and weak O features from a new sample of young SNIc Spectra M. Williamson, et al. APJL, 944:L49 (2023), arXiv:2211.04482.
- 221. Serendipitous Nebular-phase JWST Imaging of SN la 2021aefx: Testing the Confinement of 56 Co Decay Energy N. M. Chen, et al. APJL, 944:L28 (2023), arXiv:2301.05718.
- 220. A JWST Near- and Mid-Infrared Nebular Spectrum of the Type Ia Supernova 2021aefx L. Kwok, et al. APJL, 944:L3 (2023), arXiv:2211.00038.
- 219. Revealing the progenitor of SN 2021zby through analysis of the TESS shock-cooling light curve $_{\rm Q.~Wang,~et~al.}$ APJL, 943:L15 (2023), arXiv:2211.03811.
- 218. The Birth of a Relativistic Jet Following the Disruption of a Star by a Cosmological Black Hole D. Pasham, et al. NATAS, 7:88 (2023), arXiv:2211.16537.
- 217. The Dark Energy Survey Supernova Program results: Type Ia SN brightness correlates with host galaxy dust C. Meldorf et al. MNRAS, 518:1985 (2023), arXiv:2206.06928.
- 216. The Dark Energy Survey Supernova Program: Cosmological biases from supernova photometric classification M. Vincenzi et al. MNRAS, 518:1106 (2023), arXiv:2111.10382.
- 215. Spatial metallicity distribution statistics at \sim 100 pc scales in the AMUSING++ nearby galaxy sample Z. Li et al. MNRAS, 518:286 (2023), arXiv:2206.08072.
- 214. A long life of excess: The interacting transient SN 2017hcc s. Moran et al. A&A, 669:51 (2023), arXiv:2210.14076.
- 213. Using Host Galaxy Spectroscopy to Explore Systematics in the Standardisation of Type Ia Supernovae M. Dixon et al. MNRAS, 517:4291 (2022), arXiv:2206.12085.

- 212. HST reveals spectacular light echoes associated with the SE SN 2016adj in the iconic dust lane of CenA M. D. Stritzinger et al. APJL, 939:L8 (2022), arXiv:2210.14778.
- 211. Exploring stellar and ionized gas non-circular motions in barred galaxies with MUSE C. López-Cobá et al. APJ, 939:40 (2022), arXiv:2207.07906.
- 210. Spectropolarimetry of the thermonuclear SN2021rhu: High Ca polarization 79d after peak luminosity Y. Yang, et al. APJ, 939:18 (2022), arXiv:2208.12862.
- 209. SALT3-NIR: Taking the open-Source SNIa model to longer wave. for next-gen. cosmological measurements J. D. R. Pierel et al. APJ, 939:11 (2022), arXiv:2209.05594.
- 208. Observations of the luminous red nova AT 2021biy in the nearby galaxy NGC 4631 Y. -Z. Cai, et al. A&A, 667:4 (2022), arXiv:2207.00734.
- 207. Using 1991T/1999aa-like Type Ia Supernovae as Standardizable Candles J. Yang, et al. APJ, 938:83 (2022), arXiv:2209.06301.
- 206. Measuring Cosmological Parameters with Type Ia Supernovae in redMaGiC Galaxies R. Chen, et al. APJ, 938:62 (2022), arXiv:2202.10480.
- 205. SN 2018bsz: a Type I superluminous supernova with aspherical circumstellar material M. Pursiainen, et al. A&A, 666:30 (2022), arXiv:2202.01635.
- 204. A galaxy-driven model of type la supernova luminosity variations P. Wiseman, et al. A&A, 515:4587 (2022), arXiv:2207.05583.
- 203. The Dark Energy Survey 5-year photometrically identified Type Ia Supernovae A. Möller, et al. MNRAS, 514:5159 (2022), arXiv:2201.11142.
- 202. Weak Mass Loss from the Red Supergiant Progenitor of Type II SN 2021yja G. Hosseinzadeh, et al. APJ, 935:31 (2022), arXiv:2203.08155.
- 201. 2016dsg/Gaia16afe: A Thermonuclear Explosion Triggered by A Thick Helium Shell Detonation Y. Dong, et al. APJ, 934:102 (2022), arXiv:2206.07065.
- 200. Progenitor, environment, and modelling of the interacting transient, AT 2016jbu (Gaia16cfr) S. Brennan et al. MNRAS, 513:5666 (2022), arXiv:2102.09576.
- 199. Photometric and spectroscopic evolution of the interacting transient, AT 2016jbu (Gaia16cfr) S. Brennan et al. MNRAS, 513:5642 (2022), arXiv:2102.09572.
- 198. SN 2020acat: An energetic fast rising Type IIb Supernova K. Medler et al. MNRAS, 513:5540 (2022), arXiv:2201.06991.
- 197. Low luminosity Type II SNe IV. SN 2020cxd and SN 2021aai, at the edges of the sub-luminous SNe class. G. Valerin et al. MNRAS, 513:4983 (2022), arXiv:2203.03988.
- 196. A Speed Bump: SN2021aefx shows that Doppler shift alone can explain early-excess blue flux in HV SNe Ia C. Ashall, et al. APJL, 932:L2 (2022), arXiv:2205.00606.
- 195. HII regions in CALIFA survey: II. The relation between their physical properties and galaxy evolution C. Espinosa-Ponce, et al. MNRAS, 512:3436 (2022), arXiv:2202.07518.
- 194. pyHllextractor: A tool to detect and extract physical properties of HII regions from IFS data. Lugo-Aranda et al. RASTI, 1:3 (2022), arXiv:2204.04252.
- 193. Nebular-Phase Spectra of Type la Supernovae from the Las Cumbres Observatory Global Supernova Project M. L. Graham, et al. APJ, 511:3682 (2022), arXiv:2201.07864.
- 192. The 17th DR of the SDSS: Complete Release of MaNGA, MaStar, and APOGEE-2 Data. Abdurro'uf et al. APJS, 259:35 (2022), arXiv:2112.02026.
- 191. Type II SNe from the CSP-I III: Understanding SN II diversity through correlations between phy. and obs. prop. L. Martínez, et al. A&A, 660:42 (2022), arXiv:2202.11220.
- 190. Type II SNe from the CSP-I II. Physical parameter distributions from hydrodynamical modelling L. Martínez, et al. A&A, 660:41 (2022), arXiv:2111.06529.
- 189. Type II supernovae from the CSP-I. I. Bolometric light-curves of 74 SNe II using uBgVriYJH photometry L. A&A, 660:40 (2022), arXiv:2111.06519.
- 188. Carnegie Supernova Project: kinky i-band light-curves of Type la supernova and the effect on Hubble residuals P. Pessi, et al. APJ, 510:4929 (2022), arXiv:2112.03122.

- 187. About 0.4% of the Core-Collapse Supernovae occur in, or near, elliptical galaxies I. Irani, et al. APJ, 927:10 (2022), arXiv:2110.02252.
- 186. HARMONI view of AGN around cosmic noon: Resolved stellar morpho-kinematics and the MBH- σ_* relation B. García-Lorenzo, et al. A&A, 659:79 (2022), arXiv:2112.10435.
- 185. A Virgo Environmental Survey . (VESTIGE).XII. Ionised gas emission in the inner regions of lenticular galaxies A. Boselli, et al. A&A, 659:46 (2022), arXiv:2111.06635.
- 184. A detailed spectroscopic study of tidal disruption events P. Charalampopoulos, et al. A&A, 659:34 (2022), arXiv:2109.00016.
- 183. Carnegie Supernova Project-II: Near-infrared Spectroscopy of Stripped-Envelope Core-Collapse Supernovae M. Shahbandeh, et al. APJ, 925:175 (2022), arXiv:2110.12083.
- 182. Real-time Discovery of AT2020xnd: A Fast, Luminous Ultraviolet Transient with No Associated Supernova D. Perley, et al. MNRAS, 508:5138 (2021), arXiv:2103.01968.
- 181. Transitional events in the spectrophotometric regime between stripped envelope and superluminous supernovae S. Prentice et al. MNRAS, 508:4342 (2021), arXiv:2109.14572.
- 180. SN 2018agk: A type Ia supernova with a smooth power-law rise in Kepler (K2) $_{\rm Q.~Wang~et~al.}$ ApJ, 923:167 (2021), arXiv:2108.13607.
- 179. Measuring an off-Center Detonation through Infrared Line Profiles: The peculiar SNIa 2020qxp/ASASSN-20jq P. Hoeflich, et al. APJ, 922:186 (2021), arXiv:2109.03359.
- 178. Alert Classification for the ALERCE Broker System: The Real-time Stamp Classifier R. Carrasco-Davis, et al. AJ, 162:231 (2021), arXiv:2008.03309.
- 177. SN2017jgh A high-cadence complete shock cooling lightcurve of a SN IIb with the Kepler telescope P. Armstrong, et al. MNRAS, 507:3125 (2021), arXiv:2108.06654.
- 176. Signatures of AGN induced metal loss in the stellar population A. Camps-Fariña, et al. APJL, 922:L20 (2021), arXiv:2111.05487.
- 175. Circumstellar Medium Constraints on the Environment of Two Nearby SNe Ia: SN 2017cbv and SN 2020nlb D. Sand, et al. APJ, 922:21 (2021), arXiv:2108.11407.
- 174. An Amusing Look at the Host of the Periodic Nuclear Transient ASASSN-14ko Reveals a Second AGN M. A. Tucker, et al. APJ, 506:6014 (2021), arXiv:2011.05998.
- 173. SN2019hcc: A Type II Supernova Displaying Early O II Lines E. Parrag, et al. MNRAS, 506:4819 (2021), arXiv:2107.12017.
- 172. Intermediate-Luminosity Red Transients: Spectro-photometric Global Properties Y. Cai, et al. A&A, 654:157 (2021), arXiv:2108.05087.
- 171. Rates and delay times of type la supernovae in the Dark Energy Survey P. Wiseman, et al. MNRAS, 506:3330 (2021), arXiv:2105.11954.
- 170. SN 2020cpg: ePESSTO+ follow-up of an energetic stripped envelope supernova K. Medler, et al. MNRAS, 506:1832 (2021), arXiv:2106.09505.
- 169. Understanding the Extreme Luminosity of DES14X2fna M. Grayling, et al. MNRAS, 505:3950 (2021), arXiv:2103.14669.
- 168. The DES SN Program: Modelling selection efficiency and observed core CCSN contamination M. Vincenzi, et al. MNRAS, 505:2819 (2021), arXiv:2012.07180.
- 167. $[\alpha/\text{Fe}]$ traced by H ii regions from the CALIFA survey: The connection between morphology and O/H patterns S. F. Sánchez, et al. A&AL, 652:L10 (2021), arXiv:2106.06833.
- 166. Detection of metallicity correlations in 100 nearby galaxies z. Li, et al. MNRAS, 504:5496 (2021), arXiv:2104.14807.
- 165. The double-peaked type Ic Supernova 2019cad: another SN 2005bf-like object C. P. Gutiérrez, et al. MNRAS, 504:4907 (2021), arXiv:2104.03723.
- 164. Evolution of the chemical enrichment and the Mass-Metallicity relation in CALIFA galaxies A. Camps-Fariña, et al. MNRAS, 504:3478 (2021), arXiv:2011.01229.
- 163. The Exotic Type Ic-BL SN 2018gep: Blurring the Line Between SNe and Fast Optical Transients T. A. Pritchard, et al. APJ, 915:121 (2021), arXiv:2008.04321.

- 162. The first Hubble diagram and cosmological constraints using superluminous supernovae C. Inserra, et al. MNRAS, 504:2535 (2021), arXiv:2004.12218.
- 161. Strong, Early Near Infrared Carbon Absorption in the Transitional Type Ia SN 2015bp/SNHunt281 S. D. Wyatt, et al. APJ, 914:57 (2021), arXiv:2012.02858.
- 160. J-PLUS: The Star Formation Main Sequence and Rate Density at d \lesssim 75 Mpc G. Vilella-Rojo, et al. A&A, 650:A68 (2021), arXiv:2101.04062.
- 159. Luminous Type II Short-Plateau SN 2006Y, 2006ai, 2016egz: A Transitional Class from Stripped Massive RSG D. Hiramatsu, et al. APJ, 913:55 (2021), arXiv:2010.15566.
- 158. Core-collapse supernova subtypes in luminous infrared galaxies E. Kankare, et al. A&A, 649:A134 (2021), arXiv:2102.13512.
- 157. SN 2017gci: a nearby Type I Superluminous Supernova with a bumpy tail A. Fiore, et al. MNRAS, 502:2120 (2021), arXiv:2012.12755.
- 156. The Effect of Environment on Type Ia Supernovae in the Dark Energy Survey Three-Year Cosmological Sample L. Kelsey, et al. MNRAS, 501:4861 (2021), arXiv:2008.12101.
- 155. SN 2013ai: a link between hydrogen rich and hydrogen poor core-collapse supernovae S. Davis, et al. APJ, 909:145 (2021), arXiv:2101.05424.
- 154. SN 2019muj a well-observed Type lax supernova that bridges the luminosity gap of the class B. Barna, et al. MNRAS, 501:1078 (2021), arXiv:2011.03068.
- 153. Constraints on the rate of supernovae lasting for more than a year from Subaru/Hyper Suprime-Cam T. Moriya, et al. APJ, 908:249 (2021), arXiv:2012.00171.
- 152. NIR/optical observations of SNIc 2020oi and Ic-BL 2020bvc: CO, dust and high-velocity SN ejecta J. Rho, et al. APJ, 908:232 (2021), arXiv:2010.00662.
- 151. VESTIGE IX: A detail study of the ram pressure down to the scale of individual HII regions in IC 3476 A. Boselli, et al. A&A, 646:A139 (2021), arXiv:2012.07377.
- 150. The early discovery of SN 2017ahn: signatures of persistent interaction in a fast declining Type II supernova L. Tartaglia, et al. APJ, 907:52 (2021), arXiv:2008.06515.
- 149. MUSE Reveals Extended Circumnuclear Outflows in the Seyfert 1 NGC 7469

 A. C. Robleto-Orús, et al. APJL, 906:L6 (2021), arXiv:2012.08094.
- 148. First Cosmology Results using SNe Ia from DES: Survey Overview, Performance, and Supernova Spectroscopy. M. Smith, et al. AJ, 160:267 (2020), arXiv:1811.09565.
- 147. SN 2018gjx confirms that some SNe Ibn are SNe IIb exploding in dense CSM S. Prentice, et al. MNRAS, 499:1450 (2020), arXiv:2009.10509.
- 146. An outflow powers the optical rise of the nearby, fast-evolving tidal disruption event AT2019qiz M. Nichol et al. MNRAS, 499:482 (2020), arXiv:2006.02454.
- 145. The tidal disruption event AT 2018hyz I. Double-peaked emission lines and a flat Balmer decrement P. Short et al. MNRAS, 498:4119 (2020), arXiv:2003.05470.
- 144. Optical and NIR observations of the nearby supernova SN2017cbv L. Wang, et al. APJ,904:14 (2020), arXiv:2009.11415.
- 143. Active learning with RESSPECT: Resource allocation for extragalactic astronomical transients N. Kennamer, et al. IEEE-SSCI 2020, 20266870 (2020), arXiv:2010.05941.
- 142. The host galaxies of 106 rapidly evolving transients discovered by the Dark Energy Survey P. Wiseman et al. MNRAS, 498:2575 (2020), arXiv:2005.08653.
- 141. Direct evidence of 2 component ejecta in SN2016gkg from nebular spectroscopy H. Kuncarayakti et al. APJ, 902:139 (2020), arXiv:2008.12294.
- 140. Carnegie Supernova Project II: Classification of Type la Supernovae A. Burrow et al. APJ, 901:154 (2020), arXiv:2008.07636.
- 139. Carnegie Supernova Project-I: Correlation Between SNIa and Their Host Galaxies from Optical to NIR Bands S. Uddin et al. APJ, 901:143 (2020), arXiv:2006.15164.
- 138. The Tidal Disruption Event AT 2018hyz II: Light Curve Modeling of a Partially Disrupted Star S. Gomez et al. MNRAS, 497:1925 (2020), arXiv:2003.05469.

- 137. The low-luminosity Type II SN 2016aqf: a well-monitored spectral evolution of the Ni/Fe abundance ratio T. E. Müller et al. MNRAS, 497:361 (2020), arXiv:2006.15028.
- 136. Carnegie Supernova Project II: The slowest rising SNIa LSQ14fmg and clues to the origin of super-Ch events E. Y. Hsiao et al. APJ, 900:140 (2020), arXiv:2008.05614.
- 135. The Carnegie SN Project II. Observations of SN 2014ab reveals a 2010jl-like SN IIn with pre-existing dust T. Moriya et al. A&A, 641:148 (2020), arXiv:2006.10198.
- 134. SN 2019ehk: A Double-Peaked Ca-rich Transient with Luminous X-ray and Shock-Ionized Spectral Features. W. V. Jacobson-Galán et al. APJ, 898:166 (2020), arXiv:2005.01782.
- 133. DES16C3cje: A low-luminosity, long-lived supernova.

 C. P. Gutiérrez et al. MNRAS, 495:95 (2020), arXiv:2001.11559.
- 132. OzDES multi-object fibre spectroscopy for the Dark Energy Survey: Results and second data release. C. Lidman et al. MNRAS, 496:19 (2020), arXiv:1907.12260.
- 131. Supernova Host Galaxies in the Dark Energy Survey: I. Deep Coadds, Photometry, and Stellar Masses. P. Wiseman et al. MNRAS, 495:4040 (2020), arXiv:2001.02640.
- 130. The 16th DR of the SDSS: First release from the Apogee-2 Southern survey and full release of EBOSS spectra. R. Ahumada et al. APJS, 249:3 (2020), arXiv:1912.02905.
- 129. Carnegie Supernova Project II. Observations of the luminous red nova AT 2014ej. M. D. Stritzinger et al. A&A, 639:104 (2020), arXiv:2005.00076.
- 128. Carnegie Supernova Project II. Observations of the intermediate luminosity red transient SNhunt120. M. D. Stritzinger et al. A&A, 896:13 (2020), arXiv:2005.00319.
- 127. The Mystery of Photometric Twins DES17X1boj and DES16E2bjy. M. Pursiainen, et al. MNRAS, 494:5576 (2020), arXiv:1911.12083.
- 126. SN siblings: assessing the consistency of SNIa properties that share the same parent galaxies. D. Scolnic, et al. APJ, 896:13 (2020), arXiv:2002.00974.
- 125. SN 2013aa and SN 2017cbv: Two Sibling Type Ia Supernovae in the spiral galaxy NGC 5643. C. Burns, et al. APJ, 895:118 (2020), arXiv:2004.13069.
- 124. First Cosmology Results using SNIa from DES: The Effect of Host Galaxy Properties on Supernova Luminosity. M. Smith, et al. MNRAS, 494:4426 (2020), arXiv:2001.11294.
- 123. Carnegie Supernova Project-II: A new method to photometrically identify sub-types of extreme SNe Ia. C. Ashall, et al. APJL, 895:3 (2020), arXiv:2003.11121.
- 122. SN2016gsd: Evaluating an unusual luminous and linear supernova T. Reynolds, et al. MNRAS, 493:1761 (2020), arXiv:1909.13617.
- 121. Asteroids' Size Distribution and Colors from HiTS J. Peña, et al., AJ, 159:4 (2020), arXiv:2003.05499.
- 120. Clearing the Smoke: Nebular Spectra of 111 Type la Supernovae Exclude Single Degenerate Progenitors M. A. Tucker, et al. MNRAS, 493:1044 (2020), arXiv:1903.05115.
- 119. Arm-interarm O/H variations explored with MUSE: the role of spiral structure in the chemical enrichment L. Sánchez-Menguiano, et al. MNRAS, 492:4149 (2020), arXiv:2001.03450.
- 118. The rise and fall of an extraordinarily fast Ca-rich transient The discovery of ATLAS19dqr/SN 2019bkc. S. J. Prentice, et al. A&A, 635:A186 (2020), arXiv:1909.05567.
- 117. Initial Evaluation of SNEMO2 and SNEMO7 standardization derived from current SNIa LCs B. Rose, et al. APJ, 890:60 (2020), arXiv:1912.09993.
- 116. CSP-II. Early observations and progenitor constraints of the Type Ib SN LSQ13abf M. D. Stritzinger, et al. A&A, 634:A21 (2020), arXiv:1911.04564.
- 115. J-PLUS: tools to identify planetary nebulae and symbiotic stars in the J-PLUS and S-PLUS surveys. L. A. Gutiérrez-Soto, et al. A&A, 633:123 (2020), arXiv:1912.10145.
- 114. The spectral evolution of AT2018dyb and the presence of metal lines in TDEs $_{\rm G.\ Leloudas,\ et\ al.\ APJ,\ 887:218\ (2019),\ arXiv:1903.03120.}$
- 113. The CALIFA view on stellar angular momentum across the Hubble sequence. J. Falcón-Barroso, et al. A&A, 632:59 (2019), arXiv:1910.06236.

- 112. SN2018kzr: A Rapidly Declining Transient from the Destruction of a White Dwarf O. R. McBrien, et al. APJ, 885:23 (2019), arXiv:1909.04545.
- 111. SN 2017gmr: An energetic Type II-P supernova with asymmetries. J. E. Andrews, et al. APJ, 885:43 (2019), arXiv:1907.01013.
- 110. PLAsTiCC: Selection of a performance metric for classification probabilities balancing diverse science goals A.Malz et al. AJ, 158:171 (2019), arXiv:1809.11145.
- 109. SDSS-IV MaStar A Large and Comprehensive Empirical Stellar Spectral Library. R. Yan, et al. APJ, 883:175 (2019), arXiv:1812.02745.
- 108. J-PLUS: Impact of bars on quenching timescales in nearby green valley disc galaxies J. P. Nogueira-Cavalcante, et al. A&A, 630:88 (2019), arXiv:1907.11244.
- 107. HSC16aayt: Slowly evolving interacting transient rising for more than 100 days T. Moriya, et al. APJ, 882:70 (2019), arXiv:1907.01633.
- 106. ASASSN-15pz: Revealing Significant Photometric Diversity Among 2009dc-like, Peculiar Type Ia Supernovae P. Chen, et al. APJ, 880:35 (2019), arXiv:1904.03198.
- 105. First cosmology results using SNIa from the DES: Measurement of the Hubble constant. E. Macaulay, et al. MNRAS, 486:2184 (2019), arXiv:1811.02376.
- 104. ASASSN-15oz: Evidence of Circumstellar Interaction in a Type IIL Supernova. K. Azalee Bostroem, et al. MNRAS, 485:5120 (2019), arXiv:1901.09962.
- 103. A Physical Basis for the H-band Blue-edge vel. and LC Shape Correlation in Context of SNIa Explosion Physics C. Ashall, et al. APJ, 878:86 (2019), arXiv:1904.01633.
- 102. Cosmological constraints from multiple probes in the Dark Energy Survey. T. Abbott, et al. PHRvL, 122:171301 (2019), arXiv:1811.02375.
- 101. Investigating the properties of stripped-envelope supernovae; what are the implications for their progenitors? S. Prentice et al. MNRAS, 485:1559 (2019), arXiv:1812.03716.
- 100. Nebular $H\alpha$ Limits for Fast Declining Type la Supernovae D. Sand, et al. APJL, 877:L4 (2019), arXiv:1903.03626.
- 99. The type IIP supernova 2017eaw: from explosion to the nebular phase T. Szalai, et al. APJ, 876:19 (2019), arXiv:1903.09048.
- 98. First release of the high-z SLSNe from the Subaru high-z SN campaign (SHIZUCA). II. Spectroscopic properties. C. Curtin, et al., APJS, 241:17 (2019), arXiv:1801.08241.
- 97. First release of the high-z SLSNe from the Subaru high-z SN campaign (SHIZUCA). I. Photometric properties T. J. Moriya, et al., APJS, 241:16 (2019), arXiv:1801.08240.
- 96. CSPII: Using NIR Spectroscopy to determine the outer 56 Ni distribution in SNIa as a test for explosion scenarios. C. Ashall, et al. APJL, 875:L14 (2019), arXiv:1902.10088.
- 95. First cosmology results using SNIa from the DES: Photometric pipeline and light curve release. D. Brout, et al. APJ, 874:106 (2019), arXiv:1811.02378.
- 94. First cosmology results using SNIa from the DES: Analysis, systematic uncertainties, and validation. D. Brout, et al. APJ, 874:50 (2019), arXiv:1811.02377.
- 93. The Fifteenth Data Release of the SDSS: 1st Release of MaNGA-derived Quantities, Vis. Tools, and Stel. Lib. D. S. Aguado, et al. APJS, 240:23 (2019), arXiv:1812.02759.
- 92. First cosmology results using SNIa from the DES: Constraints on cosmological parameters. T. Abbott, et al. APJL, 872:L30 (2019), arXiv:1811.02374.
- 91. J-PLUS: measuring H α emission line fluxes in the nearby universe R. García-Logroño, et al., A&A, 622:A180 (2019), arXiv:1804.04039.
- 90. J-PLUS: Morphological star/galaxy classification by PDF analysis C. López-Sanjuan, et al., A&A, 622:A177 (2019), arXiv:1804.02673.
- 89. J-PLUS: The Javalambre Photometric Local Universe Survey. J. Cenarro, et al., A&A, 622:A176 (2019), arXiv:1804.02667.
- 88. Carnegie Supernova Project-II: The Near-infrared Spectroscopy Program $Eric\ Y.\ Hsiao,\ et\ al.\ PASP,\ 131:014002\ (2019),\ arXiv:1810.08213.$

- 87. Carnegie Supernova Project-II: Extending the NIR Hubble Diagram for Type Ia Supernovae to z \sim 0.1 Mark M. Philllips, et al. PASP, 131:014001 (2019), arXiv:1810.09252.
- 86. Systematic study of outflows in the Local Universe using CALIFA: I. Sample selection and main properties. C. López-Cobá et al. MNRAS, 482:4032 (2019), arXiv:1811.01253.
- 85. Spatial field reconstruction with INLA: Application to IFU galaxy data. S. González-Gaitán, et al. MNRAS, 482:3880 (2019), arXiv:1802.06280.
- 84. K2 Observations of SN 2018oh Reveal a Two-Component Rising Light Curve for a Type la Supernova. G. Dimitriadis, et al., APJL, 870:L1 (2019), arXiv:1811.10061.
- 83. Phot. and spec. properties of SN Ia 2018oh with early excess emission from the Kepler 2 observations W. Li et al. APJ, 870:12 (2019), arXiv:1811.10056.
- 82. A Virgo Env. Survey Tracing Ionised Gas Emission (VESTIGE).IV. Tails of Ionised Gas in the MR NGC 4424. A. Boselli et al. A&A, 620:A164 (2018), arXiv:1810.09234.
- 81. SN 2017ens: The metamorphosis.of a bright broad-lined type Ic supernova to a type IIn T.-W. Chen et al. APJL, 867:L31 (2018), arXiv:1808.04382.
- 80. The High Cadence Transient Survey (HiTS) IV. Compilation and characterization of light-curve catalogs J. Martínez, et al., AJ, 156:186 (2018), arXiv:1809.00763.
- 79. A nearby superluminous supernova with a long pre-maximum 'plateau' and strong CII features J.P. Anderson et al. A&A, 629:A67 (2018), arXiv:1806.10609.
- 78. Relativistic supernova 2009bb exploded close to an atomic gas cloud. Michal J. Michalowski, et al., A&A, 618:A104 (2018), arXiv:1808.00977.
- 77. The delay of shock breakout due to circumstellar material seen in most Type II Supernovae F. Förster, et al., NATURE ASTRONOMY, 2:808 (2018), arXiv:1809.06379.
- Type II supernovae in low luminosity host galaxies.
 Gutiérrez, et al., and MNRAS, 479:3232 (2018), arXiv:1806.03855.
- 75. Using late-time spectra to constrain Type la supernova progenitor and explosion properties K. Maguire, et al., MNRAS, 477:3567 (2018), arXiv:1803.10252.
- 74. The Data Release of the Sloan Digital Sky Survey-II Supernova Survey. M. Sako, et al. PASP, 130:064002 (2018), arXiv:1401.3317.
- 73. The type IIn supernova 2010bt: The explosion of a star in outburst. N. Elias-Rosa, et al., APJ, 860:68 (2018), arXiv:1805.02188.
- 72. The twin SNe 2013K and 2013am: observed and physical properties of two slow, normal Type IIP events. L. $_{\rm Tomasella,\ et\ al.}$, $_{\rm MNRAS}$, 475:1937 (2018), $_{\rm arXiv:1712.03933}$
- 71. The fourteenth data release of the Sloan Digital Sky Survey B. Abolfathi, et al. APJS. 235:42 (2018), arXiv:1707.09322.
- 70. Discovery of distant RR Lyrae stars in the Milky Way using DECam G. Medina, et al., APJ, 855:43 (2018), arXiv:1802.01581.
- 69. Asteroids in the High Cadence Transient Survey J. Peña, et al., AJ, 155:135 (2018), arXiv:1806.03352.
- 68. Morpho-kinematic properties of S0 bulges in the CALIFA survey: Clues to the origin of S0 galaxies. J. Méndez-Abreu, et al., A&A, 474:1307 (2018), arXiv:1710.09349.
- 67. SN 2017dio: a type lc SN exploding in a hydrogen-rich circumstellar medium H. Kuncarayakti, et al., APJL, 854:L14 (2018), arXiv:1712.00027
- 66. The early detection and follow-up of the highly obscured type II SN 2016ija/DLT16am L. Tartaglia, et al., APJ. 853:62 (2018), arXiv:1711.03940
- 65. A kilonova as the electromagnetic counterpart to a gravitational-wave source S. Smartt, et al., NATURE, 551:75 (2017), arXiv:1710.05841.
- 64. Type II SN spectral diversity I: Observations, sample characterization and spectral line evolution C. P. Gutiérrez, et al.,, APJ, 850:89 (2017), arXiv:1709.02487.
- 63. Multi-messenger Observations of a Binary Neutron Star Merger B. P. Abbott, et al., APJL, 848:2 (2017), arXiv:1710.05833.

- 62. Toward the Dynamical Classification of Galaxies: PCA of SAURON and CALIFA circular velocity curves V. Kalinova, et al., MNRAS, 469:2539 (2017), arXiv:1509.03352.
- 61. The Mass-Metallicity Relation revisited with CALIFA S.F. Sánchez, et al., MNRAS, 469:2121 (2017), arXiv:1703.09769.
- 60. Serendipitous discovery of RR Lyrae stars in the Leo V ultra-faint galaxy $_{\rm G.\ Medina,\ et\ al.,\ APJL,\ 845:10}$ (2017), arXiv:1708.00009.
- 59. Complexity in the light curves and spectra of slow-evolving superluminous supernovae C. Inserra, et al., MNRAS, 468:4642 (2017), arXiv:1701.00941.
- 58. Sloan Digital Sky Survey IV: Mapping the Milky Way, nearby galaxies and the distant Universe M. R. Blanton, et al., AJ, 154:28 (2017), arXiv:1603.04748.
- 57. Observational evidences for radial migration in disc galaxies from CALIFA T. Ruiz-Lara, et al., A&A, 604:A4 (2017), arXiv:1705.02120.
- 56. Arm and interarm abundance gradients in CALIFA spiral galaxies L. Sánchez-Menguiano, et al.,, A&A, 603:A113 (2017), arXiv:1705.05733.
- 55. Resolving the age bimodality of galaxy stellar populations on kpc scales s. zibetti, et al. MNRAS, 468:1902 (2017), arXiv:1701.06570.
- 54. Star formation driven galactic winds in UGC 10043.

 C. López-Cobá, et al., MNRAS, 467:4951 (2017), arXiv:1701.01695.
- 53. The spectral evolution of SLSN LSQ14mo and its interacting host galaxy system $_{\rm T.-W.~Chen,~et~al.}$ A&A, 602:A9 (2017), arXiv:1611.09910.
- 52. Early observations of type la supernova SN2015F.

 R. Cartier, et al., MNRAS, 464:4476 (2017), arXiv:1609.04465.
- 51. The progenitor and early evolution of the type IIb SN 2016GKG L. Tartaglia, et al., APJ LETTERS, 836:L12 (2017), arXiv:1611.00419.
- 50. 2D Multi-component photometric decomposition of CALIFA galaxies. J. Méndez-Abreu, et al., A&A, 598:32 (2017), arXiv:1610.05324.
- 49. Stellar kinematics across the Hubble sequence in the CALIFA survey: general properties and aperture corrections. J. Falcón-Barroso, et al. A&A, 597:A48 (2017), arXiv:1609.06446.
- 48. IMF shape constraints from stellar populations and dynamics from CALIFA M. Lyubenova, et al., MNRAS LETTERS, 463:3220 (2016), arXiv:1606.07448.
- 47. The High cadence Transient Survey (HiTS): I. Survey design and supernova shock breakout constraints. F. Förster, et al., APJ, 832:155 (2016), arXiv:1609.03567.
- 46. Pan-STARRS and PESSTO search for the optical counterpart to the LIGO gravitational wave source GW150914 S. J. Smartt, e al., MNRAS LETTERS, 462:4094 (2016), arXiv:1602.04156.
- 45. The dependence of oxygen and nitrogen abundances on stellar mass from the CALIFA survey. E. Pérez-Montero, et al., A&A, 595:A62 (2016), arXiv:1608.04677.
- 44. Photoionization models of the CALIFA HII regions compatible with the direct method C. Morisset, et al., A&A, 594:A37 (2016) arXiv:1606.01146.
- 43. Supernova 2014J at M82: II. Direct analysis of spectra obtained with IN and WH telescopes P. Vallely, et al. MNRAS, 460:1614 (2016), arXiv:151202608.
- 42. First survey of Wolf-Rayet star populations over the full extension of nearby galaxies observed with CALIFA D. Miralles-Caballero, et al. A&A, 592:A105 (2016), arXiv:1605.03991.
- 41. Supplement: "Localization and broadband follow-up of the gravitational-wave transient GW150914" B. P. Abbott, et al. APJ SUPPLEMENT SERIES, 225:8 (2016), arXiv:1602.07864.
- 40. Localization and broadband follow-up of the gravitational-wave transient GW150914 B. P. Abbott, et al. APJ LETTERS, 826:L13 (2016), arXiv:1602.08492.
- 39. Aperture effects on the oxygen abundance determinations from CALIFA data J. Iglesias-Páramo, et al. APJ, 826:71 (2016), arXiv:1605.03490.
- 38. SN 2015bn: a detailed multi-wavelength view of a nearby superluminous supernova M. Nicholl, et al. APJ, 826:39 (2016), arXiv:1603.04748.

- 37. Star formation along the Hubble sequence: Radial structure of the star formation of CALIFA galaxies R. González Delgado, et al. A&A, 590:A44 (2016), arXiv:1603.00874.
- 36. The type lax supernova, SN 2015H: a white dwarf deflagration candidate M. R. Magee, et al. A&A, 589:A89 (2016), arXiv:1603.04728.
- 35. PIPE3D, A pipeline to analyse integral field spectroscopy: II. Analysis sequence and CALIFA dataproducts S. F. Sánchez, et al. RMxAA, 52:171 (2016), arXiv:1601.01830.
- 34. Spatially-Resolved Star Formation Main Sequence Of Galaxies in the CALIFA Survey M. Cano-Díaz, et al. A&A LETTERS, 821:L2 (2016), arXiv:1602.02770.
- 33. Warm ionized gas in CALIFA early-type galaxies 2D emission-line patterns and kinematics for 32 galaxies $_{\rm J.~M.~Gomes,~et~al.}$ A&A, 588:68 (2016), arXiv:1509.02191.
- 32. LSQ13fn: A type II-Plateau SN with a possibly low Z progenitor that breaks the standardised candle relation J. Polshaw, et al. A&A, 588:1 (2016), arXiv:1511.01718.
- 31. The shape of the oxygen abundance profiles in CALIFA face-on spiral galaxies L. Sánchez-Menguiano, et al. A&A, 587:70 (2016), arXiv:1601.01542.
- 30. No direct coupling between bending of galaxy disc stellar age and light profiles $_{\rm T.\ Ruiz-Lara,\ et\ al.\ }MNRAS\ LETTERS,\ 456:35\ (2016),\ arXiv:1511.03499.$
- 29. Supernova 2013fc in a circumnuclear ring of a luminous infrared galaxy: the big brother of SN 1998S T. Kangas, et al. MNRAS, 456:323 (2016), arXiv:1510.06596.
- 28. Spectroscopic aperture biases in inside-out evolving early-type galaxies from CALIFA J. M. Gomes, et al. A&A, 586:A22 (2016), arXiv:1511.01300.
- 27. Spiral-like star-forming patterns in CALIFA early-type galaxies J. M. Gomes, et al., A&A, 585:A92 (2016), arXiv:1511.00744.
- 26. Outer-disk reddening and gas-phase metallicities: The CALIFA connection R. A. Marino, et al., A&A, 585:47 (2016), arXiv:1509.07878.
- 25. Star Formation in the Local Universe from the CALIFA sample: I. Calibrating the SFR using IFS data C. Catalán-Torrecilla, et al., A&A, 584:A87 (2015), arXiv:1507.03801.
- 24. On the diversity of Super-luminous Supernovae: Ejected mass as the dominant factor M. Nicholl, et al., MNRAS, 452:3869 (2015), arXiv:1503.03310.
- 23. The CALIFA survey across the Hubble sequence: Spatially resolved stellar pop. properties in bulges and disks R. M. González Delgado, et al., A&A, 581:A103 (2015), arXiv:1506.04157.
- 22. LSQ14bdq: A Type Ic super-luminous supernova with a double-peaked light curve M. Nicholl, et al., APJ LETTERS, 807:L18 (2015), arXiv:1505.01078.
- 21. Central star formation and metallicity in CALIFA interacting galaxies $_{\rm J.K.\ Barrera-Ballesteros,\ et\ al.,\ }A\&A,\ 579:A45\ (2015),\ arXiv:1505.03153.$
- 20. Early-time light curves of Type lb/c supernovae from the SDSS-II Supernova Survey F. Taddia, et al., A&A, 574:A60 (2015), arXiv:1408.4084.
- 19. Imprints of galaxy evolution on HII regions. Memory of the past uncovered by the CALIFA survey. S.F. Sánchez, et al., A&A, 574:A47 (2015), arXiv:1409.8293.
- 18. Defining photometric peculiar type la supernovae S. González-Gaitán, et al., APJ, 795:142 (2014), arXiv:1409.4811.
- 17. The Core Collapse Supernova Rate from the SDSS-II Supernova Survey M. Taylor, et al., APJ, 792:135 (2014), arXiv:1407.0999.
- 16. CALIFA: a diameter selected sample for an Integral Field Spectroscopy galaxy survey C.J. Walcher, et al., A&A, 569:A1 (2014), arXiv:1407.2939.
- 15. Insights on the stellar mass-metallicity relation from the CALIFA survey R. M. González Delgado, et al., APJ LETTERS, 791:L16 (2014), arXiv:1407.1315.
- 14. Improved cosmological constraints from a joint analysis of the SDSS-II and SNLS supernova samples. M. Betoule, et al., A&A, 568:A22 (2014), arXiv:1401.4064.
- 13. Hubble Space Telescope and ground-based observations of the type lax supernovae SN 2005hk and SN 2008A C. Mc Cully, et al., APJ, 786:134 (2014), arXiv:1309.4457.

- 12. Host galaxy spectra and consequences for SN typing from the SDSS SN Survey. M. D. Olmstead, et al., AJ, 147:75 (2014), arXiv:1308.6818.
- 11. A characteristic oxygen abundance gradient in galaxies disks unveiled with CALIFA S.F. Sánchez, et al., A&A, 563:A49 (2014), arXiv:1311.7052.
- 10. The effect of weak lensing on distance estimates from supernovae. M. Smith, et al., APJ, 780:24 (2014), arXiv:1307.2566.
- 9. The effects of spatial resolution on Integral Field Unit Surveys at different redshift. The CALIFA perspective. D. Mast, et al., A&A, 561:129 (2014), arXiv:1311.3941.
- 8. The N2 and O3N2 indicators revisited: improved calibrations based on CALIFA and T_e -based literature data. R. A. Marino, et al., A&A, 559:114 (2013), arXiv:1307.5316.
- 7. The nature of LINER galaxies: Ubiquitous hot old stars plus rare accreting black holes. R. Singh, et al., A&A, 558:A43 (2013), arXiv:1308.4271.
- 6. Properties of type la supernovae inside rich galaxy clusters. H. S. Xavier, et al., MNRAS, 434:1443 (2013), arXiv:1304.6431.
- 5. Nebular emission and the Lyman continuum photon escape fraction in CALIFA early-type galaxies. P. Papaderos, et al., A&A LETTERS, 555:L1 (2013), arXiv:1306.2338.
- 4. Mass-Metallicity relation explored with CALIFA. I. Is there a dependence on the star-formation rate?. S. F. Sánchez, et al., A&A, 554:A58 (2013), arXiv:1304.2158.
- 3. CALIFA, the Calar Alto Legacy Integral Field Area survey: II. First public data release. B. Husemann, et al., A&A, 549:A87 (2013), arXiv:1210.8150.
- 2. A Measurement of the Rate of Type Ia Supernovae in Galaxy Clusters from the SDSS-II Supernova Survey. B. Dilday, et al., APJ, 715:1021-1035 (2010), arXiv:1003.1521.
- 1. Measurements of the Rate of Type Ia Supernovae at Redshift $z \lesssim 0.3$ from the SDSS-II Supernova Survey. B. Dilday, et al., APJ, 713:1026-1036 (2010), arXiv:1001.4995.

Thesis

Doughnut economics and cities: a comparative approach.
 Lluís Galbany, Bachelor thesis, Universitat Autònoma de Barcelona, Facultat d'Economia i Empresa, 6 06 2023

Supervisor: Dr. Claudio Cattaneo.

- 2. Supernova studies in the SDSS-II/SNe Survey: spectroscopy of the peculiar SN 2007qd, and photometric properties of Type-Ia supernovae as a function of the distance to the host galaxy.
 - Lluís Galbany, PhD thesis, Universitat Autònoma de Barcelona, Departament de Física, 28 10 2011
 Supervisor: Dr. Ramon Miquel. Tribunal: Dr. Robert C. Nichol, Dr. Enrique Fernàndez, Dr. Francisco J. Castander
 BASES DE DATOS DE TESIS DOCTORALES (TESEO), REF. 936108
- 1. Tests of DES Charge Coupled Devices

Lluís Galbany, Master thesis (DEA), Universitat Autònoma de Barcelona, Departament de Física, 18 04 2008

Supervisor: Dr. Ramon Miquel, Dr. Manel Martínez. Trib.: Dr. Eduard Massó, Dr. Enrique Fernàndez, Dr. Francisco J. Castander BIBLIOTECA DE CIÈNCIA I TECNOLOGIA (UAB), T-53 2008 GAL

Invited presentations and selected talks

(I: invited, S: seminar, C: contributed):

- Jun 2025 I: Review on SN environemnts, Kavli SN conference, Cambridge.
- Mar 2025 C: The Hubble constant from near-infrared observations of SNIa, Kavli SN conference, Munich.
- Nov 2024 I: Rapid follow-up of infant supernovae with the GTC, South American Supernovae 2024, La Plata.
- Jul 2024 C: Cosmology results with 1500 new high-z SNe la using the full DES dataset, RC SEA 2024, Granada.
- Nov 2023 S: Environmental studies of supernovae with Integral Field Spectroscopy, IfA-Honolulu, HI.
- Apr 2023 I: Introduction to Integral Field Spectroscopy, ENGRAVE Data analysis meeting, Napoli.
- Jan 2023 C: Supernova science at ICE-CSIC, CRISPisha, Cádiz.
- Nov 2022 1: Review of SN environments, Supervirtual 2022.
- Sep 2022 C: A new measurement of H0 with SNe Ia in the NIR, RC SEA 2022, La Laguna.
- Jul 2022 S: A SN in the borough: IFS so SN host galaxies, NAOJ, Tokyo.

- Jul 2022 S: Integral field spectroscopy so SN host galaxies, U Kyoto, Kyoto.
- Jun 2022 C: Cosmography of Laniakea: SNe Ia, pec. vel. and DM, NOT conference, La Palma.
- May 2022 C: The metallicity of SN la progenitors, Estallidos de formación estelar meeting, Madrid.
- Feb 2022 S: IFS of SN hosts, U. Purdue, IN.
- Feb 2022 S: Cornering H0 form SNe Ia in the NIR, ICE-CSIC.
- Feb 2022 S: Cornering H0 form SNe Ia in the NIR, IAC, Tenerife.
- Dec 2021 S: Dust, H0, SNe, King's College London.
- May 2020 C: Type Ia SNe evolution studied with IFS: the low and high-z examples, CSIC, Madrid.
- Apr 2020 S: A SN in the borough: IFS of SN hosts, NYU Abu Dhabi (POSTPONED COVID-19).
- Mar 2020 C: The Legacy Andalusian Transient IFU Network Observatory (LATINO), IAA, Granada.
- Jan 2020 C: The AMUSING survey, CRISPINHO workshop, Granada.
- Oct 2019 S: A SN in the borough: integral field spectroscopy of SN hosts, UNAM México.
- Oct 2019 C: IFS follow up of CSP SNIa host galaxies, Carnegie Obs, Passadena.
- Sep 2019 C: Dones and ToDos in IFS surveys of SN hosts, U. de Southampton, UK.
- Sep 2019 S: Constraining progenitors with integral field spectroscopy, U. de Granada.
- Sep 2019 S: Surveys of integral field spectroscopy of SN hosts, Florida State University, Tallahassee, FL.
- Aug 2019 I: Progenitors of Type la supernovae conference, Lijiang, Yunnan, China.
- Jul 2019 C: Analyzing Integral field spectroscopy data CRISP workshop, Lisbon, Portugal.
- Feb 2019 C: A 1991bg-like SNIa 2016hnk, Carnegie SN Project meeting, Saint George Island, FL.
- Dec 2018 C: Testing WFIRST simulations with SNEMO, Lawrence Berkeley National Lab, CA.
- Nov 2018 S: SN Ia local environments with IFS, University of Pennsylvania, Philadelphia PA.
- Nov 2018 S: SN 2016hnk, a Ca-rich 91bg-like SN Ia with a light echo, ESO, Santiago, Chile.
- Nov 2018 C: The local environment of type Ia SNe as seen with IFS, Bariloche, Argentina.
- Jul 2018 C: A Ca-rich faint 91bg-like type Ia SN, Institute for Astrophysics, Honolulu HI.
- Jul 2018 C: CSP SN Ia environments with IFS. Carnegie SN Project meeting, IfA, Honolulu HI.
- Jul 2018 C: A Ca-rich faint 91bg-like type la SN, Lorentz center, Leiden.
- Jun 2018 S: Inferring SN progenitor properties with J-PLUS, CEFCA, Teruel.
- Jun 2018 S: Using the environment to infer SN progenitor properties, U. Zaragoza.
- Jun 2018 S: Using the environment to infer SN progenitor properties, U. Barcelona.
- Jun 2018 S: The Pmas/ppak Integral-field SN hosts COmpilation (PISCO), IAA Granada.
- Jun 2018 S: Using the environment to infer SN progenitor properties, U. Autònoma de Barcelona.
- Dec 2017 S: The Pmas/ppak Integral-field SN hosts COmpilation (PISCO), CfA Harvard MA.
- Oct 2017 C: The local environment of type Ia SNe as seen with IFS, Carnegie Observatories, Pasadena.
- Mar 2017 S: The All-weather MUse SN Integral field Nearby Galaxies survey, U. Oulu, Finland.
- Mar 2017 S: PISCO and AMUSING: IFS of SN environments, University of Turku, Finland.
- Feb 2017 S: Integral field spectroscopy of SN environments, University of Toronto, Canada.
- Feb 2017 S: What's there? Integral field spectroscopy to study SN environments, U. Pittsburgh PA.
- Nov 2016 I: The All-weather MUse AN Integral field Nearby Galaxies survey, IFS school UAM, Madrid.
- Nov 2016 I: SN remnant dominated regions and SN rates with IFS, IFS school UAM, Madrid.
- Nov 2016 C: Spectrophot. SNII template: A SiFTO fitter for SNeII. LSST SN workshop, Pittsburgh.
- Aug 2016 C: SN environmental studies through IFS. SNe through the ages:, Easter Island, Chile.
- Jul 2016 C: SN environmental studies through IIFS. XII RC SEA 2016, Bilbo, Spain.
- Jul 2016 C: The All-weather MUse SN Int.-field Nearby Galaxies (AMUSING). EWASS 2016, Athens, Greece.
- Jun 2016 C: Standardization of SN II with statistical methods. Meeting on Fundamental Cosmology, Barcelona.
- Jun 2016 S: Environmental studies of SNe. CIEMAT, Madrid, Spain.
- May 2016 C: Statistical methods in SN II light-curves. South American Supernovae 2016, La Plata, Argentina.
- Mar 2016 C: The local environment of SNe as seen with IFS. SOCHIAS 2016, Antofagasta, Chile.
- Jun 2015 C: Nearby supernova host galaxies from the CALIFA survey. EWASS 2015, La Laguna, Spain.
- Jun 2015 C: The local environment of SNe., IX PESSTO meeting, Paris, France.
- May 2015 S: Characterizing SN host galaxies with IFS. European Southern Observatory, Santiago, Chile.
- Apr 2015 C: PCA of type II SN light-curves. South American Supernovae 2015, Santiago, Chile.
- Apr 2015 C: SN studies with IFS: the CALIFA contribution. CALIFA Busy Week, Firenze, Italy.
- Sep 2014 S: Characterizing SN host galaxies with IFS. Universidad de Guanajuato, Mexico.
- Aug 2014 I: What can IFS shine on SN progenitors. I: Studying SN environments with IFS. Guillermo Haro Advanced School on IFS Techniques and Analysis, INAOE, Puebla, Mexico.
- May 2014 S: Integral Field Spectroscopy of nearby supernova host galaxies, IEEC-UAB.
- Nov 2013 C: Studying SNe environment with CALIFA Survey. XIV LARIM, Florianópolis, Brasil.
- Jul 2013 C: Integral Field Unit spectroscopy of supernova host galaxies. XXIII ENAA, CAAUL, Portugal.

```
S: IFU spectroscopy of SN host galaxies. Universidad de Chile, Santiago, Chile.
Apr 2013
Apr 2013
           C: IFU spectroscopy of SN host galaxies. CALIFA 5th Busy Week, AIP, Potsdam, Germany.
```

Jan 2013 S: Using the environment to understand SNe properties. CIEMAT, Madrid, Spain.

Nov 2012 C: Studying CCSNe environment with CALIFA Survey. CALIFA 4th Busy Week, IAA, Granada.

C: Type-la SNe standarization accounting for the environment. Modern Cosmology: Early Universe, Aug 2012 CMB and LSS, Benasque Center for Science, Benasque, Spain.

Oct 2010 C: Type-la SDSS-II/SNe properties as a function of the distance to their host galaxies. SDSS-II/SN Collaboration Meeting, Argonne National Laboratory, IL, USA.

Observing experience

— Only those as a Principal investigator (PI):

Hubble Space Telescope (HST)

2.4m / WFC3 Cycle 30. 17179, 232 orbits (Service mode; SM).

Cycle 29. 16741, 218 orbits (Service mode; SM).

Cerro Paranal Observatory (CPO)

8.1m UT4 / MUSE 24B. 0114.D-0158, 12 hours (SM).

20B. 106.2104.001, 53 hours (SM). 17A. 099.D-0022(A), 45 hours (SM).

16B. 098.D-0115(A), 99 hours (SM). 14B. 60.A-9329(A), 4 hours (SM).

8.1m UT4 / HAWKI 22A. 0109.22WW.001, 66 hours (SM).

8.1m UT1 / KMOS 24A. 113.26AP, 3 hours (SM).

22A. 0109.22Y8, 3 hours (SM).

19B. 0104.D-0498(A), 36 hours (SM).

Las Campanas Observatory (LCO)

6.5m Baade Telescope / FIRE 16B. CN2016B-17, 2 nights (Visitor mode; VM).

6.5m Clay Telescope / LDSS3 16B. CN2016B-16, 4 nights (VM).

Observatorio Roque de Los Muchachos (ORM)

10.4m Gran Telescopio Canarias / HIPERCAM 23B-DDT. GTC09, 1 hour.

10.4m Gran Telescopio Canarias / EMIR 24B. GTC1-B, 16 hours.

24A. GTCMULTIPLE2B, 16 hours.

23B. GTCMULTIPLE2D, 10 hours. 23B. GTCMULTIPLE4B, 25 hours.

23A. 3-GTC5-B, 10 hours.

22B. 4-MULTIPLE-2, 10 hours. 22A. 49-MULTIPLE-2, 10 hours.

21A. 57-GTC36, 18 hours.

20B. 5-GTC3, 20 hours. 10.4m Gran Telescopio Canarias / OSIRIS

24B. GTC1-A, 8 hours. 24A. GTCMULTIPLE2B, 8 hours.

23B. GTCMULTIPLE2D, 14 hours.

23B. GTCMULTIPLE4B, 20 hours.

23A. 3-GTC4-A, 14 hours.

22B. 4-MULTIPLE-2, 8 hours.

22A. 49-MULTIPLE-2, 14 hours.

20B. 11-GTC9, 6 hours (ToO).

20A. 76-GTC52, 10 hours (ToO).

4.5m William Herschel Telescope / WEAVE

23B. —, 6h (SM). 21B. SW2021a13, 16h (SM).

4.5m William Herschel Telescope / PFQHY 21B. SW2021a26, 28h (SM).

4.5m William Herschel Telescope / ACAM-LIRIS

20A. 150-WHT5, 4 nights.

25A. 16-NOT6-A, 6 nights.

24B. 2-NOT1-A, 6 nights.

24A. 32-NOT2-A, 6 nights.

2.5m Nordic Optical Telescope / NOTCam

```
23B. 31-NOT2, 6 nights.
                                                       23A. 5-NOT1, 6 nights.
                                                       22A. 38-NOT2, 6 nights.
                                                       21B. 74-NOT10, 6 nights.
                                                       21A. 58-NOT4, 6 nights.
                                                       20B. 6-NOT2-A, 6 nights.
                     2.0m Liverpool Telescope / LIRIS
                                                       25A. 16-LT2-B, 20 hours.
                                                       24B. 2-LT1-B, 20 hours.
                                                       24A. LT11, 20 hours.
                          Gemini Observatory (GO)
                              8.2m G-North / GMOS
                                                       18B. NOAO-2018B-0060, 10 hours (SM).
                                                       18A. NOAO-2018A-0125, 1.1 hours (SM).
                                                       18A. NOAO-2018A-0040, 10 hours (SM).
                              8.2m G-South / GMOS
                                                       15B. GS-2015B-Q-8, 10 hours (SM).
  Cerro Tololo Inter-American Observatory (CTIO)
                1.3m SMARTS telescope / ANDICAM
                                                       19A. 2019A-0081, 42 hours (SM).
                                                       18B. 2018B-0016, 42 hours (SM).
                                                       18A. 2018A-0047, 30 hours (SM).
Centro Astronómico Hispano de Andalucía (CAHA)
                       3.5m telescope / OMEGA2000
                                                       25A. 25A-3.5-003, 3 nights (SM).
                                                       24B. 24B-3.5-002, 3 nights (SM).
                                                       24A. 24A-3.5-002, 4 nights (VM).
                                                       23B. 23B-3.5-005, 4 nights (VM).
                                                       23A. 23A-3.5-004, 4 nights (VM).
                                                       22B. 22B-3.5-008, 3 nights (VM).
                                                       22A. 22A-3.5-002, 4 nights (VM).
                                                       21B. 21B-3.5-003, 4 nights (VM).
                                                       21A. F21-3.5-003, 4 nights (SM).
                                                       20B. H20-3.5-002, 4 nights (SM).
                                                       25A. 25A-3.5-004, 4 nights (VM).
                        3.5m telescope / PMAS-Ppak
                                                       24B. 24B-3.5-001, 5 nights (VM).
                                                       24A. 24A-3.5-004, 4 nights (VM).
                                                       23B. 23B-3.5-004, 4 nights (VM).
                                                       23A. 23A-3.5-003, 4 nights (VM).
                                                       22B. 22B-3.5-007, 4 nights (VM).
                                                       22A. 22A-3.5-011, 5 nights (VM).
                                                       20B. H20-3.5-001, 4 nights (VM).
                                                       20A. F20-3.5-008, 5 nights (VM).
                                                       18B. H18-3.5-008, 6 nights (VM).
                                                       18A. F18-3.5-001, 3 nights (SM).
                                                       17B. H17-3.5-001, 2 nights (SM).
                                                       17A. F17-3.5-001, 3 nights (SM).
                                                       16B. H16-3.5-012, 2 nights (SM).
                                                       16A. F16-3.5-006, 5 nights (SM).
                                                       15B. H15-3.5-004, 4 nights (VM).
                             2.2m telescope / CAFOS
                                                       25A. 25A-2.2-003, 2n (VM).
                                                       24B. 24B-2.2-001, 24h (ToO).
       Astronomical Australian Observatory (AAO)
                       4.2m AAT telescope / KOALA
                                                       18A. A/2018A/19, 11 nights (VM).
    Observatorio Astroómico de Javalambre (OAJ)
                            0.8m telescope / T80Cam
                                                       21A. 2000182, 44.24 hours (SM).
                                                       20B. 2000177, 47.52 hours (SM).
                                                       20A. 1900165, 47.52 hours (SM).
                                                       19B. 1900154, 47.52 hours (SM).
                                                       19A. 1800146, 46.9 hours (SM).
      Observatori Astronòmic del Montec (OAdM)
```

```
0.8m telescope / T80Cam 25A-26B. p683, 200 hours (remote). 23A-24B. p477, 280 hours (remote). 22B. p425, 45 hours (remote). 22A. p389, 45 hours (remote). 21B. p351, 45 hours (remote).
```

Apache Point Observatory (APO)

2.5m SDSS telescope / BOSS 17B. MaNGA Ancillary program, 30 objects (SM).

Organization of scientific meetings and seminar series

Jul 2025 Co-chair of the 8th Summer School of ICE on cosmology. Dec 2024 Organizer of the ZTF SN la cosmology workshop, Barcelona, Dec 10th to 12th. Sep 2024 SOC member of the LSST in Europe 6 conference, La Palma, Sep 6th to 10th. SOC member of the Transients session in the SEA 2024, Granada, Jul 15th to 19th. Jul 2024 Jul 2024 SOC co-Chair of the Dark Energy Science Collaboration summer meeting, Zurich, Jul 8th to 12th. Jul 2024 SOC member of the Transient hosts in the 2020ies EAS 2024 special session, Padova, Jul 1st to 5th. May 2024 Organizer of The Dark Energy Survey Collaboration Meeting, S'Agaró, May 27th to 31st. Jun 2022 Organizer of the ePESSTO+ collaboration meeting, Barcelona, Jun 20th to 22nd. May 2022 LOC/SOC member of the 16th Iberian Cosmology (IberiCOS) 2022 meeting, May 4-6. Sep 2021 SOC member of the Encontro Nacional de Astronomia e Astrofisica (ENAA) 2021, Sep 8-10. Jul 2020 SOC member of the Dark Energy Science Collaboration (DESC) virtual meeting, Jul 20-24. Jun 2020 Chair of the special session Supernova host environments at the EAS 2020, Leiden, NL. Mar 2020 SOC member of the Public Surveys and new instrumentation for CAHA, Granada, Mar 12-13. Jan 2020 Organizer of the workshop CRISPINHO: Correcting reddening intelligently for cosmological SN probes, Granada, Jan 27-31. Sep 2019 Organizer of the workshop The future of SN host galaxies studies II, Southampton, UK, Sep 23-25. Jan 2019 Organizer of the workshop The future of SN host galaxies studies, Pittsburgh, USA, Jan 22-24. Apr 2018 Organizer of the workshop New advances in NIR SNIa science, Pittsburgh, USA, April 11-13. Mar 2018 Organizer of the workshop SN II cosmology in the LSST, Pittsburgh, USA, March 5-9. 2017 - 2019 Organizer of the Astro Seminars at the Department of Physics and Astronomy U. Pittsburgh. Nov 2016 Organizer of the workshop Preparing for supernova science in the LSST era: a kick-off workshop, Pittsburgh, USA, November 16-18. Nov 2016 LOC member of the DEC LSST Hack Week, Pittsburgh, US, November 7-11. Aug 2016 LOC member of the conference Supernovae through the ages: understanding the past to prepare for the future, Easter Island, Chile, August 9-13. Funding: several sources including ESO-Chile, AURA, Carnegie observatories, MAS, and CASSACA.

Press and outreach

Aug 2016

2014 - 2015

2009 - 2010

17/02/2025	BiblioSTEAM outreach talk <i>Univers, encantat de conèixe't</i> at the Llagostera library.
13/02/2025	Talk at the Viaró Global School Kindergarten, Sant Cugat del Vallès
23/01/2025	BiblioSTEAM outreach talk <i>Univers</i> , encantat de conèixe't at the Sant Julià de Ramis library.
20/01/2025	BiblioSTEAM outreach talk <i>Univers</i> , encantat de conèixe't at the Caldes de Malavella library.
21/11/2024	BiblioSTEAM outreach talk <i>Univers</i> , encantat de conèixe't at the Calonge library.
17/10/2024	BiblioSTEAM outreach talk <i>Univers, encantat de conèixe't</i> at the Lloret de Mar library.
27/04/2024	Outreach talk at the Museu de Ciències Naturals de Granollers about DESI results (link, link).
25/04/2024	Outreach talk within the Cicle d'astronomia of the Centre Excursionista de Cardedeu (link).

\$200,000 CLP from the Millennium Institute for Astrophysics (MAS).

Organizer of PhD students 'Thursday's Meeting seminar series (IFAE).

Organizer of 'Supernova Journal Club' seminar series (DAS).

Organizer of the workshop SIDH: Supernova is in da house, Santiago, Chile, August 1-5. Funding:

```
01/03/2024
              Speaker at the Career prospect for highs school students in La Garriga (link)
18/02/2024
              Outreach activity at the Barcelona Museum of Contemporary Art (link)
28/06/2023
              Participation in the Enciclopedia.cat Divulcat blog (link).
              Outreach talk about SNe and cosmology at the Agrupación Astronómica de Madrid (link).
13/06/2023
13/06/2023
              Interview in La esfera celeste Astronomy blog (link).
08/06/2023
              Premiere of La veu còsmica, podcast of poetry, music and science (Funded by FCRI; link).
30/05/2023
              Telescope observation of the night sky at the Ermita de Sant Hilari, Cardedeu.
26/05/2023
              Outreach talk about DESI at the Granollers planetarium (link).
12/05/2023
              Press release on Multiwavelength observations of the accretion event AT2021lwx, (ICE, IEEC).
26/04/2023
              Outreach talk within the Cicle d'astronomia of the Centre Excursionista de Cardedeu (link).
25/04/2023
              Outreach talk for the Aula d'Extensió Universitària del VO (AGEVO) at the Museu de Granollers.
29/11/2022
              Ciència amb tirador, short public talks in a bar. Third session at Bar Anònims, Granollers (link).
17/11/2022
              Nit de la Recerca, telescope observations at UAB.
27/10/2022
              Outreach talk at the Agrupació Astronòmica de Barcelona (ASTER).
14/09/2022
              Ciència amb tirador, short public talks in a bar. Second session at Bar Anònims, Granollers (link).
19/05/2022
              Interview at Vallès Oriental TV, about astronomy and the city of Granollers (link).
18/05/2022
              Ciència amb tirador, short public talks in a bar. First session at Bar Anònims, Granollers (link).
28/04/2022
              Amb G de Granollers interview for the strategic plan of the city (link).
17/02/2022
              Press release on SN 2018aoz, the earliest detection of a SNIa to date, (ICE, IEEC, CSIC).
12/12/2021
              Interview in La esfera celeste Astronomy blog (link).
24/11/2021
              Outreach talk at l'Alzina primary school, Molins de Rei.
18/03/2021
              Two outreach talks at the mental health unit of the juvenile detention center Els Til·lers.
12/11/2020
              Interview in La esfera celeste Astronomy blog (link).
14/11/2019
              Outreach talk at José Hurtado Primary school, Granada. "What is a star?" (IAU100).
08/11/2019
              Participation in "Semana de la Ciencia" at UGR. Speaker in Stand 5 "Stellar evolution" (link).
23/06/2018
              "Perfils", interview in the online newspaper Nació digital (in Catalan, Nació Digital).
20/06/2018
              Interview in the La Xarxa television (in Catalan, Vallès Oriental TV).
30/05/2018
              'Career day' at the Environmental Charter School, outreach talk. Pittsburgh PA.
18/03/2016
              Outreach talk at the Colegio Su Santidad Juan XXIII, San Joaquín, Chile (CONICYT).
              Outreach talk at the Colegio Malaquias Concha, La Granja, Chile (CONICYT).
18/03/2016
01/12/2015
              Outreach talk at the Liceo Bicentenario Zapallar high school, Curicó, Chile (link).
30/11/2015
              Outreach talk at the Liceo Complejo Educacional Javiera Carrera high school, Talca, Chile (link)
13/04/2015
              Outreach talk at the Pintacuentos primary school, Las Condes, Chile (link).
03/02/2014
              Press article in the online newspaper Nació digital (Nació Digital).
10/02/2014
              Short interview for the La Xarxa television (Vallès Oriental TV).
              Outreach talk at the Ilatargi Astronomical Association, Oñati, Spain (El Correo).
28/12/2012
```

Languages

Catalan Native speaker Spanish Native speaker English CEFR C1 Portuguese CEFR A2.

Astronomical society membership

International Astronomical Union (IAU) 2020 - present 2019 - present European Astronomical Society (EAS) Sociedad Española de Astronomía (SEA) 2016 - present 2015 - 2016 Sociedad Chilena de Astronomía (SOCHIAS)

Other merits

Regular reviewer for Q1 journals: ApJ, ApJL & AJ (US), MNRAS (UK), A&A (FR), JCAP (UK/IT). Feb-Apr 2025 Reviewer for the Juan de la Cierva 2024 Spanish National fellowships. Dec 2023

Chair of the ICE postdoctoral Fellowship committee.

Mar 2023 Reviewer of National Science Programmes for the Spanish National Research Agency (AEI).

Dec 2022 i3 credential issued by the Spanish Ministry of Universities.

Nov 2022 External referee for the Polish National Science Centre. Nov 2022 Member of the Tribunal in João Gonçalves (U. Lisboa) Master thesis defense. Jan 2022 Member of the ICE postdoctoral Fellowship committee. Oct 21-Dec 23 Treasurer of the Social and Solidarity Economy consumers association La Magrana Vallesana. May 2021 Reviewer for the Hubble Space Telescope Cycle 29 proposals. 2020-2021 ESO Observing Programmes Committee (OPC) Panel member for periods P106, P108 (P107 cancelled), and P109. Apr 2020 Profesor Contratado Doctor credential awarded from the Agencia Nacional de Evaluación de la Calidad y Acreditación (ANECA). Oct 2019 Reviewer for the Hubble Space Telescope Cycles 26 and 27 Mid-cycle proposals. May 2019 CIRTL course on *Diversity in the College Classroom*. Apr 2019 Lecturer (Lector) credential issued by the Agència per a la Qualitat Universitària (AQU) de Catalunya. Dec 2018 Associate certification from the Center for the Integration of Research, Teaching, and Learning (CIRTL), University of Pittsburgh. 2017 DDT External reviewer for the Spanish Time Allocation Committee (CAT) of the Instituto de Astrofísica de Canarias (IAC). Jul 2016 Member of the Tribunal in Manuel Moreno-Raya PhD thesis defense. 2016A semester External reviewer for the Spanish Time Allocation Committee (CAT) of the Instituto de Astrofísica de Canarias (IAC).

Tenured assistant professor (Recerca) credential issued by the Agència per a la Qualitat Universitària

FEBRUARY 2025

Training Program for Higher Education Teachers (FDES-UAB).

Corrector of University Access Exams (PAU).

Radiological protection program at UTPR (UAB).

Dec 2015

Jun 2011

Jun 2010

2008

(AQU) de Catalunya.