Symulacja Monte Carlo Modelu Isinga

Yana Negulescu

16 czerwca 2023

1 Użyte narzędzia.

- Program napisany w języku: Python.
- Użyte biblioteki: numpy, scipy, mathplotlib, numba
- \bullet Generator liczb pseudolosowych: random.randint
- Rysunki wykonane przy użyciu: mathplotlib
- Wsparcie sztucznej inteligencji: NIE

2 Konfigurację spinów po 100 krokach MC dla sieci $L = \{10, 80\}$ dla trzech temperatur: $T_1 = 1, T_2 = 2, 26, T_3 = 4.$

L = 10:

L = 80:

3 Pojedyncze trajektorie dla $L=\{10,\,20,\,40,\,80\}$ dla temperatury $T_1=1$

4 Pojedyncze trajektorie dla $L = \{10, 20, 40, 80\}$ dla temperatur $T_i = \{0.5, 2, 26, 4\}$, gdzie $T_1 < T^*, T_2 = T^*, T_3 > T^*$.

L = 10:

40

Kroki Monte-Carlo N = 100

60

100

-0.6

5 Magnetyzację jako funkcję temperatury uśredniona po czasie dla zakresu temperatur $T \in (0.5, 3.5)$.

6 Magnetyzację jako funkcję temperatury uśredniona po zespole dla zakresu temperatur $T \in (0.5, 3.5)$.

