- 1. A bimetallic strip of total thickness x is straight at temperature T. What is the radius of curvature of the strip R, when it is heated to temperature $T + \Delta T$. The coefficient of linear expansion are α_1 and α_2 , with $\alpha_2 > \alpha_1$. Assume that the thickness of each strip is x/2 and that x << R.
- 2. Two systems with heat capacities C_1 and C_2 are at temperatures T_1 and T_2 , respectively. They are brought in contact with each other. Calculate the final temperature of the system T_f .
- 3. An ideal gas with γ as the ratio of specific heats, is contained in a large jar of volume V_0 . Fitted to the jar is a glass tube of cross-sectional area A in which a metal ball of mass m is fitted. The equilibrium pressure inside the jar is slightly large compared to the atmospheric pressure p_0 . If the ball is displaced from its position, then it performs a simple harmonic motion. Determine the frequency of oscillation, assuming that the process is adiabatic.

Figure 1: Schematic illustration for problem 3

4. A Carnot engine has a cycle as shown in the figure below. If W and W' represent the work done by 1 mole of monoatomic and diatomic gas respectively, calculate the ratio W'/W.

Figure 2: Schematic illustration for problem 4

5. A self-contained machine only inputs two equal steady streams of hot and cold water at temperatures T_1 and T_2 . Its only output is a single high-speed jet of water. The heat ca-

pacity per unit mass of water, C, may be assumed to be independent of temperature. The machine is in a steady state and the kinetic energy in the incoming streams is negligible.

- a) What is the speed of the jet in terms of T_1,T_2 and T, where T is the temperature of water in the jet?
- b) Calculate the entropy change in the process. Using this, argue that $T \ge \sqrt{T_1 T_2}$.
- c) Hence, calculate the maximum possible speed of the jet. Can you figure out the maximum velocity of the water coming out of the bathroom shower during winter?

Figure 3: Schematic illustration for problem 5

- 6. Suppose you are given the following relation among the entropy S, volume V, internal energy U, and number of particles N of a thermodynamic system: $S = A[NVU]^{1/3}$ where A is a constant. Derive a relation among:
 - a) U,V,N and T.
 - b) the pressure p, N, V, and T.
 - c) calculate the specific heat at constant volume.
 - d) Now imagine that two bodies made up of this material are initially at temperatures T_1 and T_2 . They are brought in contact to each other. Calculate the final temperature T_f . Assume, that N and V for both the bodies are same.
- 7. A system, maintained at constant volume, is brought in contact with a thermal reservoir at temperature T_f . The initial temperature of the system is T_i .
 - a) Calculate ΔS , change in the total entropy of the system +reservoir. You may assume that c_v , the specific heat of the system, is independent of temperature.
 - b) Assume now that the change in system temperature is brought about through successive contacts with N reservoirs at temperature $T_i + \Delta T, T_i + 2\Delta T, \dots, T_f \Delta T, T_f$, where $N\Delta T = T_f T_i$. Show that in the limit $N \to \infty$, $\Delta T \to 0$ with $N\Delta T = T_f T_i$ fixed, the change in entropy of the system +reservoir is zero.
 - c) Comment on the difference between (a) and (b) in the light of the second law of thermodynamics.