SCE622 – Multimídia e Hipermídia

Prof.: Dr. Marcelo Manzato

(mmanzato@icmc.usp.br)

Aula 5 – Vídeo.

Instituto de Ciências Matemáticas e de Computação - ICMC Sala 3-160

- Por quê estudar vídeo analógico?
 - Indústria da TV.
 - Digitalização = passo posterior.
- O que é necessário saber?
 - Varredura.
 - Parâmetros.
 - Padrões para sistemas em cores.

- Uma imagem na natureza é um fenômeno paralelo todos os objetos na imagem estão refletindo a luz ao mesmo tempo
- O olho humano também é um sensor paralelo, isto porque os receptores bastonetes e cones da retina são todos ativados simultaneamente. O nervo óptico contém milhões de conexões para levar a informação em paralelo até o cérebro
- Contudo, no mundo eletrônico, uma conexão paralela requerendo milhões de ligações é impraticável. Uma conexão única, ou algumas poucas conexões, são fáceis de manusear. Um sensor de vídeo (câmera) implementa um esquema para converter uma imagem que é basicamente paralela, através de uma voltagem elétrica que gera um sinal de vídeo

- Uma imagem pode ser capturada eletricamente através de uma leitura seqüencial dos valores de brilho de uma série de pontos que a compõem, convertendo assim a imagem inteira.
- Isso é chamado de rastreamento ou varredura (scanning). Um sinal analógico (voltagem) é gerado, representando o brilho de um ponto da imagem. Se o processo é feito rapidamente (30 a 60 vezes por segundo), os olhos vêem uma imagem contínua.

- Tecnologia raster-scan
 - Controlador de vídeo transfere o conteúdo do frame buffer para o monitor de vídeo.
 - Conteúdo deve ser transferido repetidamente.
 - Pelo menos 15 vezes por segundo para manter imagem estável.
 - Ocorre uma conversão digital-analógico.
 - Utiliza CRT e varredura (ou rastreio).
 - Mesma tecnologia de aparelhos antigos de TV.

CRT (Cathode Ray Tube)

Rastreio fixo.

- Feixe se move da esq. p/ a dir.
- Retraço horizontal.
- Refreshing.
 - Retraço horizontal.
- Intensidade do feixe em um pixel é determinada pelo valor no frame buffer.
- Taxa de refresh = Hertz ou quadros por segundo.

- Imagens coloridas:
 - Utilizam um CCD para cada primária (RGB).
 - Um filtro separa a luz incidente direcionando as componentes para o CCD correto.
 - Cada posição do frame buffer armazena informação dos três componentes.

- Monitores coloridos.
- Três feixes (canhões).
 - Cada pixel é revestido com 3 fósforos (R, G e B).
- Intensidade dos feixes e frame buffer.
- Representação do pixel no frame buffer?

1.1 Varredura

- Quadro
- Retraço
 - HorizontalBlanking Interval
 - Vertical Blanking Interval (VBI).
- Sensores são desligados durante um retraço.

1.1 Varredura

- Quadro = seqüência de linhas separadas por intervalos em branco.
- Informações extras nos retraços.
 - Closed caption, p.e. (VBI 21).

- Tecnologia LCD
 - Utilização de cristais líquidos para formar a imagem
 - Estruturas moleculares dos cristais se alteram quando recebem corrente elétrica
 - Estado normal → transparentes
 - Sob corrente → opacas

 Utiliza-se duas camadas de vidro contendo sulcos e eletrodos, cada um representando uma dimensão (horizontal

e vertical)

- 1.2 Parâmetros de varredura.
 - Taxa de Aspecto (Aspect ratio).
 - Também chamada de razão de aspecto.
 - É definida como a razão entre a largura e a altura do quadro.
 - A taxa de aspecto define o "formato" da imagem (linhas x colunas).
 - A razão de aspecto dos sistemas de televisão convencionais é padronizada em 4:3.
 - HDTV = 16:9.

1.2 Parâmetros de varredura.

4:3

- 1.2 Parâmetros de varredura.
 - Número de linhas.
 - É o número de linhas de varredura em um quadro.
 - Quanto mais linhas, maior a resolução.
 - 525 (EUA, Japão), 625 (Europa, etc.).

- 1.2 Parâmetros de varredura.
 - Taxa de quadros.
 - Em sistemas convencionais: 25 ou 30 fps.
 - Depende do país.
 - Essas taxas produzem flickering.
 - > 50 fps.
 - Bandwidth limitada (6MHz).
 - Entrelaçamento (interlace).
 - Permite aumentar a taxa de refresh sem aumentar a quantidade de amostras.

- Um scan vertical exibe as linhas impares e outro scan vertical exibe as linhas pares
- Em 30fps do fluxo original, a taxa vertical será de 60fps (30fps para linhas ímpares e 30fps para linhas pares)

1.3 Padrões para sistemas em cores.

- Vídeo composto (composite video): sinais R, G, e B são combinados em um único sinal composto de vídeo.
 - NTSC, PAL, ...

- Vídeo componente (component video): O sinal de vídeo é separado em dois ou mais componentes.
 - YCbCr
 - RGB: CGA, VGA, ...

- 1.3 Padrões para sistemas em cores.
 - Sistemas de transmissão (terrestre) de TV utilizam vídeo composto.
 - Requer menos canais que RGB -> menos banda.
 - Padrões para cores em vídeo composto mais comuns: NTSC, SECAM e PAL.

Padrões – Sistemas de cores

NTSC - (National Television Standards Committee)

 Criado nos Estados Unidos em 1953. Conhecido como: Never Twice the Same Color, devido à susceptibilidade do sinal. Taxa de quadros é de 29.97/segundo com 525 linhas/quadro.

SECAM - (Systeme En Coleur Avec Memoire)

 Criado na França no final dos anos 60, e usado por alguns outros países. Taxa de quadros é 25/segundo com 625 linhas/quadro. Alguns chamam o padrão de System Essentially Contrary to the American Method.

PAL (Phase Alternate Line)

 Desenvolvido pela Alemanha/Inglaterra no final dos anos 60. Usado na Inglaterra e em muitos países da Europa. Taxa de quadros 25/segundo com 625 linhas/quadro. Também chamado de Perfect At Last.

- Antes de poder ser utilizado em um computador, um sinal analógico de vídeo precisa ser digitalizado
 - Armazenamento, edição, transmissão.
- Codificação de vídeo.
 - Processo de compressão e descompressão de sinais digitais de vídeo.
 - Para melhor entender codificação é necessário entender alguns conceitos fundamentais.

- Vídeo digital é uma representação de uma cena visual natural (mundo real), amostrada espacial e temporalmente.
- Uma cena é amostrada em um ponto no tempo para produzir um quadro ou um campo.
- A amostragem é repetida em intervalos regulares (1/25, 1/30) para reproduzir a sensação de movimento.
- Amostragem temporal e espacial

- 2.1 Cenas de vídeo naturais
 - Uma cena é composta de vários objetos com características próprias (forma, textura, iluminação, ...)
 - Cor e brilho variam seus graus de suavidade pela cena (tom contínuo)
 - Características relevantes:
 - Características espaciais: variação na textura, número e forma dos objetos, cor, etc.)
 - Características temporais: movimento do objeto e da câmera, mudanças de iluminação, etc.)

1

2. Vídeo Digital

Captura

 Envolve amostragem espacial (uma área retangular da cena) e temporal (uma série de quadros).

Temporal samples

Spatial samples

Captura

- Cada amostra espaço-temporal é representada como um conjunto de números que descreve o brilho e a cor da amostra.
- Responsável por obter a amostra: CCD.
 - Sensor fotossensível de câmeras.

- Amostragem espacial
 - Saída do CCD = sinal analógico de vídeo.
 - Amostragem = obter valores do sinal em um ponto no tempo.
 - Formato mais comum de amostragem = grid.

- Amostragem temporal
 - Vídeo é capturado tomando amostras retangulares do sinal em intervalos regulares.
 - O 'play back' da série de amostras produz a sensação de movimento.
 - Quanto maior a taxa de amostragem, mais suave o movimento parece. Contudo, mais amostras são capturadas e armazenadas.
 - Taxas:
 - < 10 fps very low bit rate. Movimentos não naturais.
 - Ente 10 e 20 não 'capta' corretamente movimentos rápidos.
 - Entre 25 e 30 padrão de TV.
 - Entre 50 e 60 qualidade muito boa. Muitas amostras.

- Amostragem temporal
 - Nyquist x movimentos na cena
 - Sub-amostragem causa perda de informação e gera informação falsa.
 - Aliasing.
 - Efeito estroboscópico
 - Roda
 - Ventilador

Quadros e campos

- Amostragem progressiva produz quadros completos.
- Amostragem entrelaçada produz uma série de campos entrelaçados.
 - Dois campos: linhas pares e linhas ímpares.

- Quadros e campos
 - Dois campos = 1 quadro. Cada campo contém metade da informação do quadro.
 - Vantagem: é possível enviar o dobro de campos por segundo que quadros por segundo, com a mesma taxa de dados, produzindo movimentos suaves.
 - Desvantagens:
 - Diminuição da resolução vertical.
 - Video artifacts

Quadros e campos

- Espaços de cores
 - Espaço de cor refere-se ao método escolhido para representar luminância e cor em cada amostra espacial de vídeo.
 - Os mais comuns para vídeo colorido:
 - RGB
 - YCbCr

- RGB
 - Necessita de três valores para indicar a proporção relativa das cores primárias.
 - Bom para captura e exibição de imagens.
 - Apresenta redundâncias (ruim para armazenamento e transmissão

- YCbCr (ou YUV)
 - Baseado no HVS (Human Visual System).
 - Luminância (Y) e Crominância (Cr, Cg e Cb).
 - É um modo mais eficiente de se representar cor.
 - Cores primárias são processadas em informações mais significativas perceptualmente

YCbCr

- Normalmente converte-se de RGB p/ YCbCr antes de armazenar dados de vídeo.
- Fórmulas padronizadas:

$$Y = 0.299R + 0.587G + 0.114B$$

•
$$Cb = 0.564(B - Y)$$

•
$$Cr = 0.713(R - Y)$$

$$R = Y + 1.402Cr$$

•
$$G = Y - 0.344Cb - 0.714Cr$$

•
$$B = Y + 1.772Cb$$

- Redução da largura de banda por meio da diminuição da resolução das componentes de crominância
 - HVS → maior sensibilidade às informações de luminância

- Formatos de amostragem YCbCr
 - **4:4:4**
 - 4:2:2
 - **4:2:0**

- Formatos de amostragem YCbCr
 - **4:4:4**
 - Um componente Y, um Cr e um Cb para cada pixel.

- Formatos de amostragem YCbCr
 - 4:2:2 (YUY2)
 - Para cada 4 Y (na horizontal) existem 2 Cr e 2
 Cb.

- Formatos de amostragem YCbCr
 - 4:2:0 (YV12)
 - Para 4 Y, 1 Cr e 1 Cb.

- Formatos de Vídeo
 - Formatos intermediários
 - Common Intermediate Format (CIF)
 - Úteis antes de codificar ou transmitir
 - Padroniza as resoluções vertical e horizontal de seqüências YCbCr
 - Facilidade na conversão para os padrões PAL e NTSC

•

2. Vídeo Digital

CIF

Format	Luminance resolution (horiz. × vert.)	Bits per frame (4:2:0, eight bits per sample)
Sub-QCIF	128 × 96	147456
Quarter CIF (QCIF)	176 × 144	304128
CIF	352×288	1216512
4CIF	704×576	4866048

Codificação

spatial correlation

- Codificação
 - Modelo Temporal
 - Predição temporal (do quadro anterior)
 - Estimativa de movimento
 - Compensação de movimento

- Codificação
 - Modelo Temporal

- Modelo Espacial
 - Codificação preditiva
 - Codificação por transformada
 - Quantização
 - Codificação por entropia
 - Estatística
 - Diferencial

Para Saber Mais

- Luther, A. C. Using Digital Video. AP Professional, 1995. (capítulo 2 e apêndice A).
- Richardson, L. E. G. H.264 and MPEG-4 Video Compression, Wiley, 2003. (capítulos 2 e 3).

- Edson dos Santos Moreira
- Flávia Linhalis