CLASSIFYING CATEGORICAL DATA

Modified slides by Risi Thonangi

M.S. Thesis Presentation

THE CLASSIFICATION PROBLEM

THE CLASSIFICATION PROBLEM

i_1, i_2, i_4	?
1 / 2 / 4	

THE CLASSIFICATION PROBLEM

FORMAL PROBLEM STATEMENT

• Given a Dataset D

$$D = (r_i, c_k), \forall i = 1, 2, ..., |D|$$

- Learn from this dataset to classify a potentially unseen record `q'[query] to its correct class.
- Each **record** \mathbf{r}_i is explained using boolean attributes $I = \{i_1, i_2, ..., i_{|I|}\}$ and is labeled to one of the classes $C = \{c_1, c_2, ..., c_{|C|}\}$
- $I = \{i_1, i_2, ..., i_{|I|}\}$ can also be looked at as a set of items.

PRELIMINARIES

A set of items – $\{i_1, i_2, i_3\}$ itemset • P(.) Probability Distribution • frq-itemset An *itemset* whose frequency is above a given threshold σ Support Threshold Confidence Threshold • $\{i_1, i_2\} \rightarrow \{i_3\}$ An Association Rule (AR) $\sup[i_1,i_2\to i_3] = P(i_1,i_2,i_3) > \sigma$ $conf[\ \dot{\boldsymbol{l}}_{1}, \dot{\boldsymbol{l}}_{2} \rightarrow \dot{\boldsymbol{l}}_{3}] = \frac{P(\dot{\boldsymbol{l}}_{1}, \dot{\boldsymbol{l}}_{2}, \dot{\boldsymbol{l}}_{3})}{P(\dot{\boldsymbol{l}}_{1}, \dot{\boldsymbol{l}}_{2})} > \tau$

A Classification Association Rule (CAR)

• $\{i_1,i_2\} \rightarrow c_1$

CLASSIFICATION BASED ON ASSOCIATIONS (CBA)

- [Bing Liu KDD98]
- First Classifier that used the paradigm of Association Rules
- Steps in CBA:
 - Mine for CARs satisfying <u>support</u> and <u>confidence</u> thresholds
 - Sort all CARs based on confidence
 - Classify using the rule that satisfies the query and has the <u>highest confidence</u>

CLASSIFICATION BASED ON ASSOCIATIONS (CBA)

- [Bing Liu KDD98]
- First Classifier that used the paradigm of Association Rules
- Steps in CBA:
 - Mine for CARs satisfying support and confidence thresholds
 - Sort all CARs based on confidence
 - Classify using the rule that satisfies the query and has the highest confidence
 - With rules of the same confidence, select the rule with higher support
 - The same confidence and support, select the rule with less items
- Disadvantages:
 - Single rule based classification Not Robust

DISADVANTAGES WITH CBA: SINGLE RULE BASED CLASSIFICATION

• Let the classifier have 3 rules:

```
\begin{array}{lll} - & i_1 \rightarrow c_1 & support : 0.3, & confidence : 0.8 \\ - & i_2 \ , i_3 \rightarrow c_2 & \underline{support : 0.7}, & confidence : 0.7 \\ - & i_2 \ , i_4 \rightarrow c_2 & \underline{support : 0.8}, & confidence : 0.7 \end{array}
```

- Query $\{i_1, i_2, i_3, i_4\}$ will be classified to the class c_1 by CBA which might be incorrect.
- CBA, being a single-rule classifier, cannot consider the effects of multiple-parameters.

CLASSIFICATION BASED ON MULTIPLE ARS (CMAR)

- [WenminLi-ICDM01]
- Uses multiple CARs in the classification step
- Steps in CMAR:
 - Mine for CARs satisfying support and confidence thresholds
 - Sort all CARs based on confidence
 - Find all CARs which satisfy the given query
 - Group them based on their class label
 - Classify the query to the class whose group of CARs has the maximum weight

CLASSIFICATION BASED ON MULTIPLE ARS (CMAR)

- [WenminLi-ICDM01]
- Uses multiple CARs in the classification step
- Steps in CMAR:
 - Mine for CARs satisfying support and confidence thresholds
 - Sort all CARs based on confidence
 - Find all CARs which satisfy the given query
 - Group them based on their class label
 - Classify the query to the class whose group of CARs has the maximum weight

CMAR CONTD.

Output the class with the highest sum of weighted chi squares of all rules in each class

^{*} https://cgi.csc.liv.ac.uk/~frans/KDD/Software/CMAR/cmar.html

CMAR CONTD.

- Outperforms C4.5 and CBA on accuracy
- Less storage requirements compared to CBA
- Lower running time compared to CBA
- Accuracy does not depend too much on confidence and coverage threshold