

Dual Low Offset, Low Power Operational Amplifier

Data Sheet OP200

FEATURES

Low input offset voltage: 75 μ V maximum Low offset voltage drift, over -55°C < T_A < +125°C 0.5 μ V/°C maximum

Low supply current (per amplifier): 725 μA maximum

High open-loop gain: 5000 V/mV minimum Low input bias current: 2 nA maximum Low noise voltage density: 11 nV/√Hz at 1 kHz Stable with large capacitive loads: 10 nF typical

PIN CONNECTIONS

Figure 1. 16-Lead SOIC (S-Suffix)

Figure 2. 8-Lead PDIP (P-Suffix) 8-Lead CERDIP (Z-Suffix)

GENERAL DESCRIPTION

The OP200 is the first monolithic dual operational amplifier to offer OP77 type precision performance. Available in the industry standard 8-lead pinout, the OP200 combines precision performance with the space and cost savings offered by a dual amplifier.

The OP200 features an extremely low input offset voltage of less than 75 μV with a drift below 0.5 $\mu V/^{\circ}C$, guaranteed over the full military temperature range. Open-loop gain of the OP200 exceeds 5,000,000 into a 10 k Ω load; input bias current is under 2 nA; CMRR is over 120 dB; and PSRR is below 1.8 $\mu V/V$. On-chip Zener zap trimming is used to achieve the extremely low input offset voltage of the OP200 and eliminates the need for offset pulling.

Power consumption of the OP200 is low, with each amplifier drawing less than 725 μA of supply current. The total current drawn by the dual OP200 is less than one-half that of a single OP07, yet the OP200 offers significant improvements over this industry-standard op amp. The voltage noise density of the OP200, $11 \text{ nV}/\sqrt{\text{Hz}}$ at 1 kHz, is half that of most competitive devices.

The OP200 is an ideal choice for applications requiring multiple precision op amps and where low power consumption is critical. For a quad precision op amp, see the OP400.

Trademarks and registered trademarks are the property of their respective owners.

TARIE OF CONTENTS

Updated Format......Universal

Changes to Table 1 and Table 2......4

Changes to Table 3 and Table 4......5

Deleted Table 7; Renumbered Sequentially......5

INDEE OF CONTENTS		
Features	Applications Information	12
Pin Connections	Dual Low Power Instrumentation Amplifier	12
General Description1	Precision Absolute Value Amplifier	12
Revision History	Precision Current Pump	12
Specifications4	Dual 12-Bit Voltage Output DAC	13
Electrical Characteristics4	Dual Precision Voltage Reference	13
Absolute Maximum Ratings7	Programmable High Resolution Window Comparator	14
Thermal Resistance	Outline Dimensions	15
ESD Caution7	Ordering Guide	16
Typical Performance Characteristics		
REVISION HISTORY		
3/2017—Rev. F to Rev. G	Changes to Figure 15	9
Changes to Figure 2110	Changes to Figure 21	
	Changes to Figure 30 and Figure 31	12
10/2015—Rev. E to Rev. F	Changes to Programmable High Resolution Window	
Changes to General Description	Comparator Section, Figure 33, and Figure 34	13
Changes to Ordering Guide	Changes to Figure 35	14
	Updated Outline Dimensions	15
9/2012—Rev. D to Rev. E	Changes to Ordering Guide	16
Changed Table 2 Conditions from $V_S = 15 \text{ V}$ to $V_S = \pm 15 \text{ V}$ 4		
Updated Outline Dimensions	2/2004—Rev. A to Rev. B.	
Changes to Ordering Guide	OP200F DeletedUni	versal
	Changes to Ordering Guide	5
2/2009—Rev. C to Rev. D	Changes to Figure 4	8
Change to Large Signal Voltage Gain, Table 2	Updated Outline Dimension	11
Changes to Ordering Guide		
	4/2002—Rev. 0 to Rev. A.	
8/2008—Rev. B to Rev. C	Edits to Features	1

Edits to General Description1

Edits to Ordering Information1

Edits to Package Type2

Figure 3. Simplified Schematic (One of Two Amplifiers Shown)

SPECIFICATIONS

ELECTRICAL CHARACTERISTICS

 $V_S = \pm 15$ V, $T_A = 25$ °C, unless otherwise noted.

Table 1.

			OP200A/OP200E		OP200G				
Parameter	Symbol	Conditions	Min	Тур	Max	Min	Тур	Max	Unit
INPUT CHARACTERISTICS									
Input Offset Voltage	Vos			25	75		80	200	μV
Long-Term Input Voltage Stability				0.1			0.1		μV/mo
Input Offset Current	los	$V_{CM} = 0 V$		0.05	1.0		0.05	3.5	nA
Input Bias Current	I _B	$V_{CM} = 0 V$		0.1	2.0		0.1	5.0	nA
Input Noise Voltage	e _n p-p	0.1 Hz to 10 Hz		0.5			0.5		μV p-p
Input Noise Voltage Density ¹	e _n	$f_0 = 10 \text{ Hz}$		22	36		22		nV/√Hz
		f _O = 1000 Hz		11	18		11		nV/√Hz
Input Noise Current	i _n p-p	0.1 Hz to 10 Hz		15			15		рА р-р
Input Noise Current Density	in	$f_0 = 10 \text{ Hz}$		0.4			0.4		pA/√Hz
Input Resistance Differential Mode	R _{IN}			10			10		ΜΩ
Input Resistance Common Mode	RINCM			125			125		GΩ
Large Signal Voltage Gain	A _{VO}	$V_0 = \pm 10 \text{ V}$							
		$R_L = 10 \text{ k}\Omega$	5000	12,000		3000	7000		M/mV
		$R_L = 2 k\Omega$	2000	3700		1500	3200		M/mV

¹ Sample tested.

 $V_S = \pm 15 \text{ V}, -55^{\circ}\text{C} \le T_A \le +125^{\circ}\text{C}$ for OP200A, unless otherwise noted.

Table 2.

	OP200A				1	
Parameter	Symbol	Conditions	Min	Тур	Max	Unit
INPUT CHARACTERISTICS						
Input Offset Voltage	Vos			45	125	μV
Average Input Offset Voltage Drift	TCVos			0.2	0.5	μV/°C
Input Offset Current	los	$V_{CM} = 0 V$		0.15	2.5	nA
Input Bias Current	I _B	$V_{CM} = 0 V$		0.9	5.0	nA
Large Signal Voltage Gain	Avo	$V_0 = 10 \text{ V}$				
		$R_L = 10 \text{ k}\Omega$	3000	9000		V/mV
		$R_L = 2 k\Omega$	1000	2700		V/mV
Input Voltage Range ¹	IVR		±12	±12.5		V
Common-Mode Rejection Ratio	CMRR	$V_{CM} = \pm 12 V$	115	130		dB
Capacitive Load Stability		$A_V = 1$		8		nF
POWER SUPPLY						
Power Supply Rejection Ratio	PSRR	$V_S = 3 V \text{ to } 18 V$		0.2	3.2	μV/V
Supply Current Per Amplifier	I _{SY}	No load		600	775	μΑ
OUTPUT CHARACTERISTICS						
Output Voltage Swing	Vo	$R_L = 10 \text{ k}\Omega$	±12	±12.4		V
		$R_L = 2 k\Omega$	±11	±12		V

¹ Guaranteed by CMRR test.

 $V_S = \pm 15$ V, $T_A = 25$ °C, unless otherwise noted.

Table 3.

			OP200A/OP200E		OP200G		i		
Parameter	Symbol	Conditions	Min	Тур	Max	Min	Тур	Max	Unit
INPUT CHARACTERISTICS									
Input Voltage Range ¹	IVR		±12	±13		±12	±13		V
Common-Mode Rejection Ratio	CMRR	$V_{CM} = \pm 12 \text{ V}$	120	135		110	130		dB
Channel Separation ²	CS	$V_0 = 20 \text{ V p-p, } f_0 = 10 \text{ Hz}$	123	145		123	145		dB
Input Capacitance	C _{IN}			3.2			3.2		рF
Capacitive Load Stability		$A_V = 1$, no oscillations		10			10		nF
POWER SUPPLY									
Power Supply Rejection Ratio	PSRR	$V_S = \pm 3 \text{ V to } \pm 18 \text{ V}$		0.4	1.8		0.6	5.6	μV/V
Supply Current Per Amplifier	Isy	No load		570	725		570	725	μΑ
OUTPUT CHARACTERISTICS									
Output Voltage Swing	Vo	$R_L=10 \text{ k}\Omega$	±12	±12.6		±12	±12.6		V
		$R_L = 2 k\Omega$	±11	±12.2		±11	±12.2		V
DYNAMIC PERFORMANCE									
Slew Rate	SR		0.1	0.15		0.1	0.15		V/µs
Gain Bandwidth Product	GBP	$A_V = 1$		500			500		kHz

 $V_S = \pm 15 \text{ V}, -40 \text{°C} \le T_A \le +85 \text{°C}, \text{ unless otherwise noted.}$

Table 4.

				OP200E			OP2000	i	
Parameter	Symbol	Conditions	Min	Тур	Max	Min	Тур	Max	Unit
INPUT CHARACTERISTICS									
Input Offset Voltage	Vos			35	100		110	300	μV
Average Input Offset Voltage Drift	TCVos			0.2	0.5		0.6	2.0	μV/°C
Input Offset Current	los	$V_{CM} = 0 V$		0.08	2.5		0.1	6.0	nA
Input Bias Current	I_B	$V_{CM} = 0 V$		03	5.0		0.5	10.0	nA
Large-Signal Voltage Gain	Avo	$V_0 = \pm 10 \text{ V}$							
		$R_L=10 \text{ k}\Omega$	3000	10,000		2000	5000		V/mV
		$R_L = 2 k\Omega$	1500	3200		1000	2500		V/mV
Input Voltage Range ¹	IVR		±12	±12.5		±12	±12.5		V
Common-Mode Rejection Ratio	CMRR	$V_{CM} = \pm 12 V$	115	130		105	130		dB
Capacitive Load Stability		$A_V = 1$, no oscillations		10			10		nF
POWER SUPPLY									
Power Supply Rejection Ratio	PSRR	$V_S = \pm 3 \text{ V to } \pm 18 \text{ V}$		0.15	3.2		0.3	10.0	μV/V
Supply Current Per Amplifier	Isy	No load		600	775		600	775	μΑ
OUTPUT CHARACTERISTICS									
Output Voltage Swing	Vo	$R_L = 10 \text{ k}\Omega$	±12	±12.4		±12	±12.4		V
		$R_L = 2 k\Omega$	±11	±12		±11	±12.2		V

 $^{^{\}rm 1}\,\mbox{Guaranteed}$ by CMRR test.

¹ Guaranteed by CMRR test. ² Guaranteed but not 100% tested.

Figure 4. Channel Separation Test Circuit

Figure 5. Noise Test Schematic

ABSOLUTE MAXIMUM RATINGS

Table 5.

Parameter	Rating
Supply Voltage	±20 V
Differential Input Voltage	±30 V
Input Voltage	Supply voltage
Output Short-Circuit Duration	Continuous
Storage Temperature Range	−65°C to +150°C
Lead Temperature (Soldering, 60 sec)	300°C
Junction Temperature Range (T _J)	−65°C to +150°C
Operating Temperature Range	
OP200A	−55°C to +125°C
OP200E, OP200G	−40°C to +85°C

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

THERMAL RESISTANCE

Table 6.

Package Type	θ_{JA}^1	θις	Unit
8-Lead CERDIP (Z Suffix)	148	16	°C/W
8-Lead Plastic DIP (P Suffix)	96	37	°C/W
16-Lead SOIC (S Suffix)	92	27	°C/W

 $^{^{1}}$ θ_{JA} is specified for worst-case mounting conditions, that is, θ_{JA} is specified for device in socket for CERDIP and PDIP packages; θ_{JA} is specified for device soldered to printed circuit board for SOIC package.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 6. Warm-Up Drift

Figure 7. Input Offset Voltage vs. Temperature

Figure 8. Input Bias Current vs. Temperature

Figure 9. Input Offset Current vs. Temperature

Figure 10. Input Bias Current vs. Common-Mode Voltage

Figure 11. Common-Mode Rejection vs. Frequency

Figure 12. Voltage Noise Density vs. Frequency

Figure 13. Current Noise Density vs. Frequency

Figure 14. 0.1 Hz to 10 Hz Noise

Figure 15. Total Supply Current vs. Supply Voltage

Figure 16. Total Supply Current vs. Temperature

Figure 17. Power Supply Rejection vs. Frequency

Figure 18. Power Supply Rejection vs. Temperature

Figure 19. Open-Loop Gain vs. Temperature

Figure 20. Open-Loop Gain and Phase Shift vs. Frequency

Figure 21. Closed-Loop Gain vs. Frequency

Figure 22. Maximum Output Swing vs. Frequency

Figure 23. Total Harmonic Distortion vs. Frequency

Figure 24. Overshoot vs. Capacitive Load

Figure 25. Short-Circuit Current vs. Time

Figure 26. Channel Separation vs. Frequency

Figure 27. Large Signal Transient Response

Figure 28. Small Signal Transient Response

Figure 29. Small Signal Transient Response, $C_{LOAD} = 1 \text{ nF}$

APPLICATIONS INFORMATION

The OP200 is inherently stable at all gains and is capable of driving large capacitive loads without oscillating. Nonetheless, good supply decoupling is highly recommended. Proper supply decoupling reduces problems caused by supply line noise and improves the capacitive load driving capability of the OP200.

DUAL LOW POWER INSTRUMENTATION AMPLIFIER

A dual instrumentation amplifier that consumes less than 33 mW of power per channel is shown in Figure 30. The linearity of the instrumentation amplifier exceeds 16 bits in gains of 5 to 200 and is better than 14 bits in gains from 200 to 1000. CMRR is above 115 dB (gain = 1000). Offset voltage drift is typically 0.2 $\mu V/^{\circ}C$ over the military temperature range, which is comparable to the best monolithic instrumentation amplifiers. The bandwidth of the low power instrumentation amplifier is a function of gain and is shown in Table 7.

Table 7. Gain Bandwidth

Gain	Bandwidth
5	150 kHz
10	67 kHz
100	7.5 kHz
1000	500 Hz

Figure 30. Dual Low Power Instrumentation Amplifier

The output signal is specified with respect to the reference input, which is normally connected to analog ground. The reference input can be used to offset the output from -10~V to +10~V if required.

PRECISION ABSOLUTE VALUE AMPLIFIER

The circuit in Figure 31 is a precision absolute value amplifier with an input impedance of 10 M Ω . The high gain and low TCVos of the OP200 ensure accurate operation with microvolt input signals. In this circuit, the input always appears as a common-mode signal to the op amps. The CMRR of the OP200 exceeds 120 dB, yielding an error of less than 2 ppm.

Figure 31. Precision Absolute Value Amplifier

PRECISION CURRENT PUMP

The maximum output current of the precision current pump shown in Figure 32 is ± 10 mA. Voltage compliance is ± 10 V with ± 15 V supplies. Output impedance of the current transmitter exceeds 3 M Ω with linearity better than 16 bits.

Figure 32. Precision Current Pump

DUAL 12-BIT VOLTAGE OUTPUT DAC

The dual output DAC shown in Figure 33 is capable of providing untrimmed 12-bit accurate operation over the entire military temperature range. Offset voltage, bias current, and gain errors of the OP200 contribute less than 1/10 of an LSB error at 12 bits over the military temperature range.

DUAL PRECISION VOLTAGE REFERENCE

A dual OP200 and a REF43, a 2.5 V reference, can be used to build a ± 2.5 V precision voltage reference. Maximum output current from each reference is ± 10 mA with load regulation under 25 $\mu V/mA$. Line regulation is better than 15 $\mu V/V$ and output voltage drift is under 20 $\mu V/^{\circ}C$. Output voltage noise from 0.1 Hz to 10 Hz is typically 75 μV p-p. R1 and D1 ensure correct startup.

Figure 33. Dual 12-Bit Voltage Output DAC

Figure 34. Dual Precision Voltage Reference

PROGRAMMABLE HIGH RESOLUTION WINDOW COMPARATOR

The programmable window comparator shown in Figure 35 is easily capable of 12-bit accuracy over the full military temperature

range. A dual CMOS 12-bit DAC, the DAC8221, is used in the voltage switching mode to set the upper and lower thresholds (DAC A and DAC B, respectively).

Figure 35. Programmable High Resolution Window Comparator

OUTLINE DIMENSIONS

CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.

Figure 36. 8-Lead Ceramic Dual In-Line Package [CERDIP] (Q-8) Z-Suffix

Dimensions shown in inches and (millimeters)

COMPLIANT TO JEDEC STANDARDS MS-001
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.
CORNER LEADS MAY BE CONFIGURED AS WHOLE OR HALF LEADS.

Figure 37. 8-Lead Plastic Dual In-Line Package [PDIP] (N-8) P-Suffix

Dimensions shown in inches and (millimeters)

COMPLIANT TO JEDEC STANDARDS MS-013-AA
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.

Figure 38. 16-Lead Standard Small Outline Package [SOIC_W] Wide Body (RW-16) S-Suffix

Dimensions shown in millimeters and (inches)

ORDERING GUIDE

Model ¹	$T_A = 25^{\circ}C V_{OS} Max (\mu V)$	Temperature Range	Package Description	Package Option
OP200AZ	75	−55°C to +125°C	8-Lead CERDIP	Z-Suffix (Q-8)
OP200EZ	75	-40°C to +85°C	8-Lead CERDIP	Z-Suffix (Q-8)
OP200GPZ	200	-40°C to +85°C	8-Lead PDIP	P-Suffix (N-8)
OP200GSZ	200	-40°C to +85°C	16-Lead SOIC_W	S-Suffix (RW-16)
OP200GSZ-REEL	200	-40°C to +85°C	16-Lead SOIC_W	S-Suffix (RW-16)

¹ The OP200GPZ, OP200GSZ, and OP200GSZ-REEL are RoHS Compliant Parts.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Analog Devices Inc.:

OP200GSZ-REEL OP200AZ OP200GPZ OP200GSZ OP200EZ 5962-8859301M2A 5962-8859301MPA