MOMENTUM = PRODUCT OF MASS AND VELOCITY.

IMP: DIRECTION WITH VELOCITY.

$$f_A = (3)(2)$$
 $f_B = (5)(-7)$
 $= 6 \text{ kgms}^{-1}$
 -35 kgms^{-1}

COLLISIONS

TOTAL MOMENTUM BEFORE = TOTAL MOMENTUM AFTER

$$(3)(8) + (4)(-2) = (3)(1) + (4)(v)$$

$$24 - 8 = 3 + 4v$$

$$16 - 3 = 4 V$$

Before = After

(4) (10) + (2)(0) =
$$4(\frac{V}{2}) + (2)(V)$$

40 = $2V + 2V$

A third small smooth sphere C, of mass 1 kg and with the same radius as A and B, is at rest on the plane. B now collides directly with C. After this collision B continues to move in the same direction but with one third the speed of C.

(b) Show that there is another collision between *A* and *B*. [3]

Before
$$B \rightarrow 10\text{m/s}$$
 $C \rightarrow 10\text{m/s}$ $C \rightarrow 10\text{m/s}$ $C \rightarrow 10\text{m/s}$ $C \rightarrow 12\text{m}$

Before $A \rightarrow 3 \rightarrow 3 \rightarrow 10$ $C \rightarrow 12\text{m/s}$

$$C \rightarrow 12\text{m/s}$$

$$C \rightarrow 12\text{m/s}$$

$$C \rightarrow 12\text{m/s}$$

be another collission.

e) A and B coalesce during this collision.
e) A and B coalesce during this collision.
e) A and B coalesce during this collision.
e) A and B coalesce during this collision.
e) A and B coalesce during this collision.
e) A and B coalesce during this collision.
e) A and B coalesce during this collision.
e) A and B coalesce during this collision.
Find the total loss of kinetic energy in the system due to the three collisions. [5]
$A \longrightarrow SWS (B) \longrightarrow YWS (C) \longrightarrow 12WS$
A) 15 (B) 175 (C) 12-175
next callission
Ykq 2kq
Before A Smys B 4m/s
After (A)B) V
Betore = After
Before = After $(4)(5)+(2)(4)=(4+2)V$
$28 = 6 \vee$
V = 4.667

START

Total KE =
$$\frac{1}{2}(4)(10)^2 + \frac{1}{2}(2)(0)^2 + \frac{1}{2}(1)(0)^2 = 200 \text{ J}$$

<u>END</u>

TOTAL KE =
$$\frac{1}{2}(4+2)(4.667)^2 + \frac{1}{2}(1)(12)^2 = 137.15$$