HW 1 Solution

Note to Students:

If you have a different solution to a particular problem or if you have other things that you would like the TA to be aware of during grading, please contact the TA Jia Guo:

Problem 1

1.1) Clock cycle time is determined by the critical path, which for the given latencies happens to be to get the data value for the load instruction:

For example,

lw \$t0, -4(\$sp)

I-type format, MIPS Instruction formats

31-26	25-21	20-16	15-0
opcode	rs: register src	rt: register dest	offset
lw	\$sp	\$tO	-4

Without improvement 450 + 250 + 150 + 550 + 20 + 250 = 1670 ps (5 pts) With improvement 450 + 250 + 150 + 130 + 550 + 20 + 250 = 1800 ps (5 pts)

Without improvement:

Operation	Location	Delay	Output
reading the instruction memory	I-Mem	450ps	Instruction[31-0]
reading the base register \$sp	Regs	250ps	Read data 1
computing memory address \$sp-	ALU	150ps	ALU result
4		-	
reading the data memory	D-Mem	550ps	Read data
choosing the read data -4(\$sp)	Mux	20ps	Mux output, when selecting channel 1
storing data back to \$t0	Regs	250ps	Register t0

- 1.2) (1/0.85) * (1670/1800) = 1.092, so the speedup is 1.092, it is faster than original architecture. **(10 pts)**
- 1.3) The speedup comes from changes in clock cycle time and changes to the number of clock cycles we need for the program: We need x% fewer instructions, but cycle time is 1600 instead of 1480, so we have a speedup of $(1/x)^*(1670/1800) \ge 1.3$, $x \le 0.714$ so percentage = 1 $x \ge 0.286$ (10 pts), which means that at least 28.6% instructions need to be eliminated.

Problem 2

2.1) 18 pts

add (3pts)	addi (3pts)	bne (3pts)	lw (3pts)	sw (3pts)	nor (3pts)
35/270	45/270	40/270	70/270	40/270	40/270
12.96%	16.67%	14.81%	25.93%	14.81%	14.81%

2.2) The data memory is used by LW and SW instructions, so the answer is:

$$2.3) 16.67\% + 14.81\% + 25.93\% + 14.81\% = 72.22\% (5 pts)$$

The sign-extend circuit is actually computing a result in every cycle. The input of the sign-extend circuit is needed for ADDI (to provide the immediate ALU operand), BNE (to provide the PC-relative offset), and LW and SW (to provide the offset used in addressing memory) (5 pts)

Problem 3

This instruction is AND r11, r8, r3 Note that AND is bit by bit.

3.1)

Sign-extend (3 pts)	Shift-left-2 (2 pts)	
000000000000000101100000100100	0000000000000010110000010010000	

3.2)

ALUOp (3 pts)	Instruction[5-0] (2 pts)	
10	100100	

3.3)

New PC (2 pts)	Path (3 pts)	
pc+4	PC to Add (PC+4) to branch Mux to PC	

3.4)

WrReg Mux (2	ALU Mux	Mem/ALU Mux	Branch Mux
pts)	(1 pts)	(1 pts)	(1 pts)
Instruction[15- 11]: 11 ₁₀ or 01011 ₂	79 ₁₀	99 And 79 = 67 ₁₀	PC+4

3.5)

ALU (2 pts)	Add (PC+4) (1 pts)	Add (Branch)(2 pts)	
99 and 79	PC and 4	PC+4 and 000000000000000010110000010010000 ₂	

3.6)

Read Register 1 (2 pts)	Read Register 2 (2 pts)	Write Register (2 pts)	Write Data (2 pts)	RegWrite (2 pts)
8	3	11	67	1