CMPT 225

Lecture 13 – Binary Trees and Binary Search Trees

Learning Outcomes

- At the end of the next few lectures, a student will be able to:
 - Define the following data collections:
 - Binary search tree
 - Balanced binary search tree (AVL)
 - Binary heap

as well as demonstrate and hand-trace their operations

- Implement the operations of binary search tree and binary heap
- Implement and analyze sorting algorithms: tree sort and heap sort
- Write recursive solutions to non-trivial problems, such as binary search tree traversals

Last Lecture

- We saw how to ...
 - Define some tree-related terms and concepts

Today's menu

- Describe binary tree and its properties
- Describe binary search tree and its properties
- Given a binary search tree, perform some operations such as:
 - Insert an element (a node containing an element)
 - Retrieve (get) an element

We shall now focus on

2-ary tree i.e., binary tree

Binary Tree: N-ary Tree where N = 2

Property 1 of Binary tree:

Range of **n** (# of nodes) in a binary tree of height **H**

If a binary tree has height H, then it can have between H and 2^H - 1 nodes => n = [H .. 2^H − 1] Expressing **n** as a function of height **H**

- Minimum n (# of nodes) a binary tree with height H can have is: H
- Maximum n (# of nodes)
 a binary tree with height H
 can have is: 2^H -1

Range of **n** nodes in a **binary tree** of height H: [H .. 2H - 1]

ightharpoonup For example, if H = 3

$$n = 5$$

$$n = 6$$

$$n = 7$$

Binary Tree: N-ary Tree where N = 2

Expressing **n** as a function of height **H**

Level

Number of nodes
at this level

$$1 = 2^{0}$$

$$2 = 2^{1}$$

$$4 = 2^{2}$$

Total number of nodes at this level and all previous levels

$$1 = 2^{1} - 1$$

$$3 = 2^2 - 1$$

$$7 = 2^3 - 1$$

$$15 = 2^4 - 1$$

$$2^{h} - 1$$

Binary Tree: N-ary Tree where N = 2

Property 2 of Binary tree:

Range of heights of a binary tree with **n** nodes

- If a binary tree has n nodes, then its height H can be between n and ceil(log₂ (n + 1))
- Expressing height **H** as a function of **n**

- Minimum height H a binary tree with n nodes can have is: ceil(log₂ (n + 1))
 - Maximum height H a binary tree with n nodes can have is: n

Range of heights H of a binary tree with n nodes: [ceil(log₂ (n + 1)) .. n]

ightharpoonup For example, if $\mathbf{n} = \mathbf{5}$

$$H = 3$$

$$H = 4$$

How to expressing height H as a fcn of n in the range [ceil(log₂ (n+1)) .. n]

Start with **Property 1**: maximum \mathbf{n} (# of nodes) a binary tree with height \mathbf{H} can have is: $\mathbf{2}^{\mathbf{H}}$ -1

```
\mathbf{n} = 2^{H} - 1

\mathbf{n} + 1 = 2^{H} - 1 + 1

\mathbf{n} + 1 = 2^{H}

\log_{2}(\mathbf{n} + 1) = \log_{2} 2^{H}

\log_{2}(\mathbf{n} + 1) = \mathbf{H}
```

So, where does the function **ceil()** come from?

Well, remember that **n** in the above equation is the maximum **n** (# of nodes) a binary tree with height **H** can have.

But, we can create several binary trees of the same height \mathbf{H} with different values of \mathbf{n} , not just its maximum. For example, if $\mathbf{H} = 3$, then the maximum \mathbf{n} is 7, but we can create binary trees of height $\mathbf{3}$ with other values of \mathbf{n} , for example, $\mathbf{4}$, $\mathbf{5}$, $\mathbf{6}$ (aside from $\mathbf{n} = \mathbf{H}$). How can the above equation express this?

And we also need to produce an integral value for H.

Therefore, using the **ceiling** function in the above equation not only produces an integral value for **H**, but also produces the same **H** for various values of **n**.

Binary Tree: N-ary Tree where N = 2

Number of nodes

Property 3 of Binary tree:

If a binary tree has height **H** with **H** levels, where each level has the level number **L** (from 1 to **H**), then each level of this binary tree can have a minimum of **1** node to a maximum of **2**^L - ¹ nodes.

FIGURE 15-9 Counting the nodes in a full binary tree of height h

Level

Total number of nodes at this level and all previous levels

$$1 = 2^1 - 1$$

$$3 = 2^2 - 1$$

$$7 = 2^3 - 1$$

$$15 = 2^4 - 1$$

$$2^{h} - 1$$

What can we do with a Binary Tree? Binary Tree Operations!

► How would we insert the following elements (in this order) D, E, B, G, A, C into a binary tree?

■ How would we remove an element from a binary tree?

Binary Search Tree (BST)

Definition: A Binary Search Tree is a binary tree in which an element stored in a node has a search key value X and satisfies the following constraint:

- What about duplication?
- Answer: Commonly stored in right subtree, but it is up to the designer of such data collection (design decision)

Inheritance Relationship (UML class diagram)

Examples of Binary Search Trees

Insert

```
if binary search tree empty
  insert new element in root
otherwise
  if new element < element stored in root
     insert new element into left subtree
  else
  insert new element into right subtree</pre>
```

Let's not forget to elementCount++

element means search key value of element we are inserting

Let's try!

► Let's insert 7, 2, 4, 6, 9, 8, 3 into a binary search tree:

Do we still have a binary search tree? A trick!

Retrieve (get) - search

```
if binary search tree empty
   target element not there!
if target element == element stored in root
   return element stored in root
otherwise
   if target element < element stored in root
    search left subtree
   else
    search right subtree
```

element means search key value of element we are looking for

Let's try!

■ Let's retrieve ____ from this binary search tree:

√ Learning Check

- ✓ We can now ...
 - ✓ Describe binary tree and its properties
 - ✓ Describe binary search tree and its properties
 - ✓ Given a binary search tree, perform some operations such as:
 - ✓ Insert an element (a node containing an element)
 - ✓ Retrieve (get) an element

Next Lecture

- Given a binary search tree (BST), perform some operations such as:
 - Insert an element (a node containing an element)
 - Retrieve (get) an element
 - Remove an element
 - Find successor of an element
 - Find predecessor of an element
 - Traverse the BST
 - Get the number of elements stored in BST
 - Find minimum element value stored in BST
 - Find maximum element value stored in BST