Last time:

- · covering maps P: E→B (E and B path-connected & loc path cound) induce an injective homomorphism Px: TI, (E, e) -> TI, (B, b), whose image $H = Im(p_A) \subset \pi_1(B, b_0)$ (= those homotopy class of loops in (B, b_0) which lift to loops in (E, e_0) (rather than just paths) determines the covering up to equivalence (= homeomorphism $E \xrightarrow{\Sigma} E'$). Namely: given 2 overings $\{p: (E, e_0) \rightarrow (B, b_0)\}$ $\{p: (E', e'_0) \rightarrow (B, b_0)\}$ & Correp. subgroups $\{p: (E', e'_0) \rightarrow (B, b_0)\}$ & Correp. subgroups $\{p: (E', e'_0) \rightarrow (B, b_0)\}$
- I base point precion equivalence $(h(e_0)=e_0')$ iff H=H'• I equivalence (not necess majory $e_0\mapsto e_0')$ iff H, H' are conjugate subgroups of $\pi_1(B,b_0)$.

Universal overing space:

Def: If $p_0 \to B$ weing and E_0 is simply connected, say E_0 is a universal covering of B.

Note: this correpords to the british subgroup Po (TT, (E)) = {1} C TT, (B) , unique up to equ' by the above.

Ex: p: R-S' pxp: R2-> S'xs'= torus

• Thm: | P; EoB universal covering, p'; E'→B any path-connected covering them

∃ covering map q; Eo→E' st. p'o qo=P; and qo is univ. overing of E'.

90 is combined by lifting: $907 \stackrel{E'}{\downarrow}p'$ ($\exists since p_{i}(\pi_{i}(E)) = \{1\} \subset p'_{i}(\pi_{i}(E'))$. $E_{0} \xrightarrow{P_{0}} B$ Lean show it's a evering map as well.

So, in fact, if B has a universal covering, all other coverings can then be obtained as quotients!

. Some space have no univeral croing!

 \underline{E}_{X} ; "Havairan earings" = $\bigcup_{n\geq 1} C_n$ circles of radius $\frac{1}{n}$ correct of $(\frac{1}{n}, 0)$ in \mathbb{R}^2 of \mathbb{C}_2 of

Any covering space must evenly our a neighborhood of the origin, which prevents it from being simply connected. (for a suffly large, loop around Can lists to a loop).

· If me avoids such pathological examples - assuming B is (seni) locally simply smatted, can build unin cover as space of pairs (b, 8) where | b = B {8 = homotopy class of path bo = b This has a perferred topology for which any simply count not UDB is everly covered:

if $b' \in U$, adding a path $b \rightarrow b'$ inside U or its invesse gives a preferred bijection { http: classes of paths $bo \rightarrow b$ } \longleftrightarrow { http: classes of paths $bo \rightarrow b$ } \longleftrightarrow { http: classes of paths $bo \rightarrow b'$ inside U simply corrected).

Sefet. Van Kangen Moren = given $X = U \cup V$, $U, V, U \cap V \in X$ open & path consided this describes $\pi_1(X)$ in terms of $\pi_1(U)$ and $\pi_1(V)$. We've already seen a simpler statement: $\pi_1(X)$ is generated by the images of $\pi_1(U) \xrightarrow{i_X} \pi_1(X)$.

To formulate the thin, need to discuss the notion of free product of groups.

Assume G is a group, $G_1...G_n$ subgroups of G which generate G, ie. any $x \in G$ can be written as $x = x_1... > c_m$ where each x_i is in some G_j . Also assume $G_j \cap G_k = \{1\} \ \forall j \neq k \ (x_1,...,x_m)$ is called a <u>word</u> of length m that represents x.

Say $(x_1...x_m)$ is a reduced word if no G contains two consecutive elements x_i, x_{i+1} . (in particular if $m \ge 2$, no x_i can be = 1). (ele can reduce to a shorter word $(x_1,...,x_i; x_{i+1},...,x_m)$)

Def: | G is the free product of the subgraps G1...Gn, denoted G=G1*...*Gn, if
Gi generit G, GinGj={1}, and every clement of G is represented by a unique reduced word.

 $Ex: \mathbb{Z}^2$ is not the free posted of its two factors: denoting by a and 6 the two generalized (az(1,0), b=(0,1)), ab= ba is represented by reduced works (a, b), (6, a), (a², 6, a⁻¹)...

Alternative characteization: G is the free product of the subgroup Gj's iff, for any group H and any homomorphisms $h_j: G_j \to H$, \exists unique homomorphism $h: G \to H$ s.t. $G_j \hookrightarrow G \xrightarrow{h} H$ commutes $\forall j$.

(The point is; uniqueness of expassion allows up to define $h(x_1...x_n) = h_{j_1}(x_1)...h_{j_m}(x_m)$).

· Extend free product of groups Gj := group G + injective hom's Gj is G st.
G is the free product of the subgroups ij (Gj).

Fact: | This always exists! & unique up to iso.

Can be constructed as set of reduced words in Gj's (with product = concatenate + reduce).

& satisfies universal property (*)

• In particular the free group on the elements $\{a_j\}$ is defined to be the extend free product of cyclic groups $G_j = \{a_j^n \mid n \in \mathbb{Z}\} (2\mathbb{Z})$

U deformation retracts onto wedge of two vicles 4 1 /~ V is simply corrected. UNV ~ D2-pt has homotopy type of S1. Using Grollay 2 above: $\pi_1(T) \cong \pi_1(U)/N$ where N is normal gowated by the image of the loop of which generates The (UNV) (and its cajugates) reg(U) is a free group on gen's. a, b; and then the ings of [f] under the inclusion UNV C>U is aba-16-1 [the "obvino" piche () stabaib! needs to be cornered slightly:

Law point should be fixed \(\in UnV! \) So we set aba'b'=1 ie. ab=(aba'b')ba=ba, get abelian group = Z2 $m(T) \cong \langle a,b | ab = ba \rangle \cong \mathbb{Z} \times \mathbb{Z}$. governos relations . Similarly for $\pi_1(RP^2)$, using $RP^2 \simeq S^2/_{\times \sim -\times}$ $\Rightarrow B^2/_{\times \sim -\times}$ $\forall x \in S^1 = \partial B^2$ Now write RP2 = UUV, U= RP2-{p} V = disc centred of P U deformation reliants onto the boundary $S^{1}/_{X^{-1}-X} \xrightarrow{\simeq} S^{1}$ so $\pi_{1}(U) \cong \mathbb{Z}$ w/ generator C. V is simply Gmeded. UAV = D2-pt has hornty bype of 5th π(IRP2) = π1(U)/N, N normal subgrap generated by image of generaler $[f] \in \pi_1(U \cap V)$ under inclusion, which is c^2 . So $\pi_1(\mathbb{RP}^2) : \langle c | c^2 : 1 \rangle \cong \mathbb{Z}/2\mathbb{Z}$ b Copi b • Klein bottle: recall $K = \exists \times \exists / \sim (x,0) \sim (x,1)$ $(0,y) \sim (1,1-y)$

Again with $K = U \cup V$, $U = K - \{P\}$ $\Rightarrow \pi_1(K) \cong \pi_1(U)/N$ V = dsc carked at P U = dsc carked at P

U retracts onto boundary = figur 8 space a so $\pi_1(U) \cong \text{ free grap on generators a,b.}$

UnV has homshpy hype of S', and the goester $\{f\} \in \pi$, $\{U \cap V\} \cong \mathbb{Z}$ maps under inclusion to aba'b

So $\pi_i(k) \cong \langle a,b \mid aba'b=1 \rangle$ not abdian: ab=b'a, not ba!

(3)

ie: aba'=b' : b conjugate la its invese!

But this contains an index 2 subgrap H gent by a^2 and b, which commute! ($aba^{-1}=b^{-1}=b$ taking invester, $ab^{-1}a^{-1}=b$, so $a^2ba^{-2}=a$ ($aba^{-1})a^1=ab^{-1}a^1=b$ So $a^2b=ba^2$ V). (\Rightarrow subgrap $H\cong \mathbb{Z}^2$).

(can show, by rearraying letters via ab=b'a, this contains all modes with even # of a's so it is an index 2 retrymp)

This abymp consports to a deg. 2 T is abymp consports to a deg. 2 T is $X \to K$ quotient by covering map by the torso, $T \to K!$ $(x,y) \sim (x+\frac{1}{2}, 1-y)$ I.e. map $(x,y) \in I \times I/n_T$ to $\{(2x,y) : f : x \in 1/2 \text{ in } I \times I/n_K .$

Cool fact that this relates to: if you coat a klein sottle in paint all over, the paint forms a torus.