Previously on 4SSPP109...

Estimating population mean & variance from a random sample

 Formulating a hypothesis about a population.

- $\circ H_0: E(Y) = \mu_{Y,0}$
- $\circ \ H_1: E(Y) \neq \mu_{Y.0}$

Do students dislike ice-cream?

- H_0 : most students at King's dislike ice-cream
- H_1 : the above is not true.
- Random sample of 1,000 King's students.
 - only 1 dislikes ice-cream.
- > H_0 is almost surely false! (reject H_0)

Do average earnings of recent graduates equal 20£/hour?

• $H_0: E(Y) = 20$

• $H_1: E(Y) \neq 20$

• In your random sample (n=200), $\overline{Y} = 22.64$.

- test statistics
 - Rejection (or critical) region
- o p-value
 - Level of significance

P-value: formal definition

• p-value =
$$Pr_{H_0}[|\bar{Y} - \mu_{Y,0}| \ge |\bar{Y}^{act} - \mu_{Y,0}|]$$

"Probability under the null hypothesis...

...that the difference between the sample mean and the null hypothesis...

...is at least as large as the one we obtained."

- Low p-value → null hypothesis is probably wrong.
- \circ High p-value \rightarrow cannot reject the null hypothesis.

How to calculate the p-value

• With large n, assuming H_0 true:

$$\overline{Y} \sim N(\mu_{Y,0}, \sigma_{\overline{Y}}^2)$$

$$ightharpoonup rac{ar{Y} - \mu_{Y,0}}{\sigma_{ar{Y}}} \sim N(0,1)$$
 called t-statistics

- p-value = probability of obtaining a tstat as far from 0 as you obtained
- p-value=probability that a N(0,1) RV falls as far as |t| from zero
- p-value= $2\Phi(-|t|)$

The Standard Error of \overline{Y}

- We need $\sigma_{\overline{Y}}$ to compute t-stat & p-value.
- We know that $\sigma_{\bar{Y}} = \frac{1}{\sqrt{n}} \sigma_Y$
- We can estimate it using $\hat{\sigma} = \frac{1}{\sqrt{n}} s_Y$
- Called standard error of \overline{Y} : $SE(\overline{Y}) = \hat{\sigma} = \frac{1}{\sqrt{n}} s_Y$
- $SE(\overline{Y})$ measures the *precision* of \overline{Y} as an estimate of μ_Y

Computing the p-value in practice

- 1. Compute sample mean (\bar{Y}^{act}) & sample SD (s_Y) .
- 2. Compute $SE(\overline{Y}) = \frac{1}{\sqrt{n}} s_Y$
- 3. Compute t-stat t = $\frac{\bar{Y}^{act} \mu_{Y,0}}{SE(\bar{Y})}$
- 4. Write in STATA "display 2*normal(x)" where x = -|t|
 - o because p-value = $2\Phi(-|t|)$
 - (can also use Excel, or Table 6.1 in textbook)

Calculating the p-value: an example

- We have wages for a sample of 200 recent graduates
- H_0 : $\mu_Y = £20$
- In the sample, $\bar{Y}^{act} = £22.64$; $s_V = £18.14$
- **YOUR TURN Calculate:**
 - 1. $SE(\overline{Y})$,
 - 2. t-stat

(we then compute p-value together)

Remember:

- $SE(\overline{Y}) = \hat{\sigma} = \frac{1}{\sqrt{n}} S_Y$ $t\text{-stat} = \frac{\overline{Y}^{act} \mu_{Y,0}}{SE(\overline{Y})}$
- p-value = $2\Phi(-|t|)$

Calculating the p-value: an example

- We have wages for a sample of 200 recent graduates
- $H_o: \mu_Y = £20$
- In the sample, $\bar{Y}^{act} = £22.64$; $s_Y = £18.1$

•
$$SE(\overline{Y}) = \hat{\sigma} = \frac{1}{\sqrt{n}} s_Y = \frac{18.14}{\sqrt{200}} = 1.28$$

• t-stat = $\frac{\bar{Y}^{act} - \mu_{Y,0}}{SE(\bar{Y})} = \frac{22.64 - 20}{1.28} = 2.06$

• p-value = $2\Phi(-|t|) = 2 * 0.0197 = 0.0394$

Accept or reject H₀?

Significance level

- How low should the p-value be, for us to reject the null hypothesis?
- Convention in social sciences: 0.05 (or 5%)

Reject
$$H_0$$
 if p < 0.05

- 0.05 (or 5%) significance level
- \circ sometimes denoted as α
- max probability of a type-I error (= falsely rejecting the null) we are willing to accept

t is our test statistics!

- We reject the null based on the value of t.
- We reject the null if

$$p = 2\Phi\left(-|t|\right) < \alpha$$

• With $\alpha = 0.05$, this means we reject the null if

this is our rejection region!

3. Confidence intervals

Quant methods Daniele Girardi King's College London 28

Confidence intervals

- 95% confidence interval: a range of values that is 95% likely to include the population mean.
- The set of all values for μ_Y that we *cannot* reject at the 5% significance level.
- 95% confidence interval for μ_Y :

$$\overline{Y} - 1.96 * SE(\overline{Y}) \le \mu_Y \le \overline{Y} + 1.96 * SE(\overline{Y})$$

Confidence intervals

YOUR TURN: Compute 95% confidence interval for hourly earnings

• In the sample, $\overline{Y}^{act} = \$22.64$; $SE(\overline{Y}) = 1.28$

Reminder: a 95% confidence interval for μ_Y is:

$$\overline{Y} - 1.96 * SE(\overline{Y}) \le \mu_{Y} \le \overline{Y} + 1.96 * SE(\overline{Y})$$

Confidence intervals

YOUR TURN: Calculate a 95% confidence interval for hourly earnings

- In the sample, $\overline{Y}^{act} = \$22.64$; $SE(\overline{Y}) = 1.28$
- Upper bound: $\overline{Y} + 1.96 * SE(\overline{Y}) = 22.64 + 1.96 * 1.28 = 25.15$
- Lower bound: $\overline{Y} 1.96 * SE(\overline{Y}) = 22.64 1.96 * 1.28 = 20.13$
- $20.13 \le \mu_Y \le 25.15$

4. Testing differences in means

TESTING DIFFERENCES BETWEEN MEANS

•
$$H_0$$
: $\mu_m - \mu_w = d_0$ vs. H_1 : $\mu_m - \mu_w \neq d_0$

•
$$E(\overline{Y}_m - \overline{Y}_w) = \mu_m - \mu_w$$

•
$$(\overline{Y}_m - \overline{Y}_w) \sim N(\mu_m - \mu_w, \frac{\sigma_m^2}{n_m} + \frac{\sigma_w^2}{n_w})$$

•
$$SE(\overline{Y}_m - \overline{Y}_w) = \sqrt{\frac{s_m^2}{n_m} + \frac{s_w^2}{n_w}}$$

•
$$t = \frac{(\bar{Y}_m - \bar{Y}_w) - d_0}{SE(\bar{Y}_m - \bar{Y}_w)} \rightarrow p - value = 2\Phi(-|t^{act}|)$$

Thank you for your attention