Single linked lists	Double linked lists
We can traverse only in	We can traverse in two
one direction	directions
It uses less memory per a	It has two pointers so
node	requires more memory
Insertion complexity is	Insertion complexity is
O(n)	O(1)
Deletion complexity is	Deletion complexity is
O(n)	O(1)
It contains two parts in	It contains three parts, a
each node – a data and a	data, a pointer to next
pointer to next node	node and a pointer to
	previous node
To find a data, this single	We can traverse either
linked list must be	from the beginning or
traversed from the	from the last
beginning all the time	
Very poor performance	Better performance
compared to Double	
linked list in updating	
nodes.	
Single linked lists have	Double linked lists have
applications in	application in
implementing stacks	implementing stacks,
	heaps, binary trees.