

Page 1 of 13

found. Density correction

PROJECT: MSS54

CHAPTER: 1.05

MODULE: DENSITY CORRECTION IN

EVT MOMENT REALIZATION

FUNCTION: DENSITY CORRECTION

AUTHORIZATION

AUTHOR (EA-E-2) EDITOR (MSS54) SCHN	SCHLÜTER MEIER	DATE 03.05.2004 DATE 21.12.2004
APPROVED (MSS54)		DATE
APPROVED (EA-E-2)		DATE

	Department Date		name	file name	
author	ZS-M-57	03.05.04	W. Schlüter	1.04	

Page 2 of 13

found. Density correction

Changes: S380

version	Date	comment
S370	30.4.2004 1st ve	rsion as separate module;
		Replacement of existing scopes in the EVT moment realization module
S370	11.05.2004 delive	ery status
		Open points:
		- Lists for operating modes
S370	04.07.2004 Deliv	erv status Miniteam
S380	21.12.2004 ks: D	bcumentation of the implementation

Table of contents

1 FUNCTIONAL DESCRIPTION	3
1.1 PHYSICAL BACKGROUND 1.2 IMPLEMENTATION 1.3 FUNCTIONAL CIRCUIT DIAGRAM	4
1.4 APPLICATION INSTRUCTIONS	
2 MODULE DATA	8
2.1 VARIABLES	8
2.2 PARAMETERS	
2.3 CHARACTERISTIC CURVES	11
2.4 CHARACTERISTICS	11
3 INITIAL DATA	
3.1 PARAMETERS	
3.2 CHARACTERISTICS	
3.3 CHARACTERISTIC CURVES	13

Department		Date	name	file name	
author	ZS-M-57	03.05.04	W. Schlüter	1.04	

Page 3 of 13

found. Density correction

1 FUNCTIONAL DESCRIPTION

The density correction DKR control module contains control functions that compensate for the influence of a changed intake air condition. However, intake pressure and temperature are included in the calculation differently. The compensation prevents a changed intake air condition from leading to a change in the fresh air charge, residual gas content, charge movement and, as a result, to a change in the indicated work at the corresponding operating point.

Operating altitudes between -300 and +3000 m above sea level correspond to pressure changes between +10% and -30% compared to a reference pressure of 960 mbar. For a reference temperature of 293 K, temperature changes of approximately +-10% result in the relevant operating range.

The inflow behavior, which is particularly important for the fresh air filling, is primarily determined by the air condition in the intake manifold. Therefore, the average intake manifold pressure is used as the input variable for calculating compensation measures.

The procedure implemented here is a pure correction of the inlet closing control edge with the aim of adjusting the fresh air filling to the applied value under reference conditions. The heating

of the gas before re-exhausting at late intake closes is not explicitly taken into account.

Assuming that the outflow process is primarily influenced by the combustion, i.e. the indicated work, and less by the ambient conditions, the residual gas mass in the cylinder is not corrected. The influence of the charge movement is neglected.

The two calculation methods for the intake closing correction \ddot{y} based on the cylinder volume at intake closing or the opening time of the intake valve \ddot{y} as well as the subsequent limitation of the corrected intake closing control edge are described in more detail below.

1.1 PHYSICAL BACKGROUND

The intake closing correction uses two parallel calculation methods: With the focus on partial load operation with full valve lift, i.e. for operating points in which the fresh air filling is limited by the cylinder volume, the cylinder volume at intake closing is evaluated. Assuming that the gas density in the cylinder at this time is proportional to the ambient condition, the intake closing control edge is shifted so that the product of density and cylinder volume at intake closing is equal to the applied reference condition. With the cylinder volume VES as a geometric function of the intake closing crank angle and the relative air density in the intake manifold rf_pt_korr_dichte, the following applies:

With early intake closing, reduced density leads to a larger cylinder volume, which means later intake closing.

This correction corresponds to the correction function up to control unit version R 360.

With late intake closing and reduced density, the necessary larger cylinder volume is achieved by an earlier intake closing. The cylinder volume as a function of the crank angle is symmetrical to the bottom dead center at 540°. However, to expand the application options, the intake closing control edges are transformed to late intake not closing [with ES := 1080 - ES] in the area of early intake closing. Instead, the cylinder volume function is stored separately for this area.

	Department		name	file name	
author	ZS-M-57	03.05.04	W. Schlüter	1.04	

Page 4 of 13

found. Density correction

With a focus on mini lift, i.e. for operating points in which the fresh air filling is determined by the inflow behavior of the intake valves, the opening time of the intake valve is evaluated. For operating modes with early intake closing, this is the distance between intake opening and intake closing. For operating modes with late intake opening, the start of the re-exhaust phase is relevant instead of intake opening; this time corresponds approximately to bottom dead center. With the relative intake mass flow $rf_pt_korr_drossel$, the opening time of the intake valve is as follows:

ESkorr - EO = (ESref - EO) rf_pt_korr_drossel

The throttle characteristic or a laminar-turbulent approach for the inlet mass flow can be stored in two characteristic curves for the dependence of pressure and temperature:

$$rf_pt_korr_drossel = \frac{m}{m} f_{pp} f_{pp} f_{pp} f_{pp} T_{pq}$$

For operating points with high speeds or loads, a weighted average of both correction models is used. To weight the opening time-based correction, the specific load per cylinder and intake valve is used as the map input.

Before calculating the volume-related intake closing correction, the intake closing control edge can be shifted compared to the calculation of the cylinder volume. This allows dynamic effects (pressure waves, resonances) to be taken into account. As an alternative to the proportional weighting of the opening time-based correction, this intervention can also be used to take into account the inflow pressure losses at high loads and speeds.

After calculating the corrected intake closing control edge, this is limited to the physically reasonable range: Depending on the operating mode early or late intake closing, the limits here are the dead centers of the piston movement or the full load control times.

1.2 IMPLEMENTATION

In the signal flow, the density correction module converts the inlet closing control edge *es_bas* formed in the EVT torque realization module from the basic maps or the application intervention into a corrected inlet closing control edge *drk_es_aw* (previous name: *es_aw*).

The relative density rf_pt_korr is also provided for external calculations. This is set equal to the relative density for the volume-related inlet close correction $drk_rf_pt_korr_dichte$. The relative density rf_pt_korr is also provided for external calculations. The relative flow $drk_rf_pt_korr_drossel$ is also used externally. All other variables calculated in this module are internal.

With the exception of the characteristic curve KL_STKN_ES_VL, all parameters in the module are internal. Note on implementation:

The function is very runtime-intensive, as large parts of it are calculated in the segment grid (with numerous interpolations). If the MSS54 is operated on an 8-cylinder engine, it is advisable to switch off the density correction (K_DKR_FUNC_MODE = DKRoff), as otherwise the performance is not sufficient for higher speeds. It may be necessary to rethink the design of the function in the future in order to get by with less computing time or calculation frequency.

Department Date		Date	name	file name	
author	ZS-M-57	03.05.04	W. Schlüter	1.04	

Page 5 of 13

found. Density correction

1.3 FUNCTIONAL CIRCUIT DIAGRAM

Department		Date	name	file name	
author	ZS-M-57	03.05.04	W. Schlüter	1.04	

Page 6 of 13

found. Density correction

Submodule dkr_es_limit_calc

(Deviating from the structure diagram, the limit values K_DKR_ES_MIN / K_DKR_ES_MAX are used in "dkr_es_limit_calc".)

	Department		name	file name	
author	ZS-M-57	03.05.04	W. Schlüter	1.04	

Page 7 of 13

found. Density correction

1.4 APPLICATION INSTRUCTIONS

The reference ambient condition is 960 mbar at 20°C. With an intake manifold vacuum of 50 mbar at most operating points, the reference intake manifold condition has an air pressure of 910 mbar.

Department		Date	name	file name	
author	ZS-M-57	03.05.04	W. Schlüter	1.04	

Page 8 of 13

found. Density correction

2 MODULE DATA

The function is calculated segment-synchronously in the slave.

rf_pt_korr calculations are done in the background

	Winkel	background	1ms 10ms	20ms	100ms	1s
task	dkr	dkr rf pt korr calc				

2.1 VARIABLES

<u>Fhe module does not contain any static variables, all sizes are global.</u>

The module does not co	ontain any static variables, ali s	sizes are giobai.		•	,				
variable	Initialization Unit Range			Quant. Imp	i.	Page			
[Output]			(physical)						
dkr_es_aw			0 - 720	0.1	word				
	Crank Angle Inlet Closes Outle	et Density Correction				j			
	globally available output variab	globally available output variable							
rf_pt_korr		-	0 - 2.5	x/128	byte				
	1 rf_pt_korr set to external functi	ions as rf_pt_korr_dichte							
	Calculated from: p_umg, dps_	ist, tan							
dkr_rf_pt_korr_drossel	1 byte	-	0 - 2.5	x/128					
	rf_pt_korr (relative mass flow)	rf_pt_korr (relative mass flow) for density correction via inlet valve opening time							
	Calculated from: p_umg, dps_	Calculated from: p_umg, dps_ist, tan							

variable	initialization	Unit	Area	Quant. Imp	ıl.	Page			
[Local]			(physical)						
dkr_rf_pt_korr_dichte	1	-	0 - 2.5	x/128	byte				
	rf_pt_korr (relative density) for	r density correction via cylinde	r volume						
dkr_delta_es_vol	0 0.1		-180 - 180		word				
	Inlet Closes Crank Angle Cor	rection from Cylinder Volume	_						
dkr_delta_es_zeit	0 -180 - 180 0.1	1			word				
	Intake Excludes crank angle	correction from intake valve op	ening time	-					
dkr_delta_es	0 0.1	1	-180 - 180		word				
	Inlet Closes Crank Angle Corre	ection	•						
dkr_es_d_korr_orig			0 - 720	0.1	word				
	Crank angle intake closes after density correction without min/max limitation								
dkr_es_d_korr			0 - 720 words	0.1					
	Crank angle intake closes in	density correction calculated (r	eturn value of "dkr()	")	•	•			
dkr_es_min			0 - 720	0.1	word				
	minimum value limitation								
dkr_es_max			0 - 720	0.1	word				
	maximum value limit	•							
dkr_es_shift			0 - 720	0.1	word				
	Working value in "dkr()"								
dkr_wi_spec		kJ/l	like "wi"		word				
	Work value in "dkr_es_korr_g	ewichtet()"							
dkr_gew_fac			0 - 1	0.05	byte				
	Work value in "dkr_es_korr_g	ewichtet()"							
dkr_time_fac			0 – 12.7	0.05	byte				
	Work value in "dkr_es_korr_g	ewichtet()"							
dkr_delta_es_zeit_gew 0			-180 - 180	0.1	word				
	Work value in "dkr_es_korr_gewichtet()"								
dkr_delta_es_vol_gew	0		-180 - 180	0.1	word				
	Work value in "dkr_es_korr_g	ewichtet()"							

	Department Date		name	file name	
author	ZS-M-57	03.05.04	W. Schlüter	1.04	

Page 9 of 13

found. Density correction

variable	source	Unit	Area	Quant. I	mpl.	Page
[Input]			(physical)			
eo_bas	EVT-Momentenreal.	Deg				
	Control edge inlet opens					
es_bas	EVT-Momentenreal.	Deg				
	Base Control Edge Inlet Clos	ses				
evt_state	EVT-Momentenreal.	-				
	operating mode	_				
tan		°C				
	intake air temperature					
p_umg		mbar				
	ambient pressure					
wi		kJ/l				
	indexed work					
n		rpm				
	speed					
dps_ist		mbar				
	intake manifold vacuum	(average)		·		

2.2 PARAMETER

application size	standard	unit area		Quant li	npl. Page		
application size	value		(physical)	Quant. II	iipi. i agc		
K_DKR_FUNC_MODE	DKR OFF		0x00: DKR=0 (ineffective) 0x07: DKR[t/V/ups/Gew]=1 0x13: V/Gew=0 0x15: t/weight=0 0x17: Gew=0 0x03: V=0 0x05: t=0 0x0F: ups=0 0x1B: V/ups/Gew=0 0x1B: V/ups/Gew=0 0x1D: t/ups/Gew=0 0x1F: ups/Gew=0 0x1F: ups/Gew=0 0x0B: V/ups=0 0x0B: V/ups=0 0x80: DKR OFF (disabled)	-	byte		
	Switch: Inlet Closes Deactivate/toggle density correction intervention						
K_DKR_ES_BAS_SES	540 bytes		500 - 755	1			
	Crank angle: sta	art of outflow a	at SES				
K_DKR_ES_MIN	400		500 - 755	1	byte		
	Limit value in "d	Limit value in "dkr_es_limit_calc" (deviating from the structure diagram)					
K_DKR_ES_MAX	660		500 - 755	1	byte		
	Limit value in "d	kr_es_limit_c	alc" (deviating from the structure diagran	n)	35		
K_DKR_P_REF_DICHTE	910	mbar	850 - 1105	1	byte		
	reference intake m	nanifold pressure	e for air condition				
				-	•		
K DKR ZEIT KOR FAC FES 1 0.05		-	0 - 12.7		byte		
		nting factor: O	pening time-related admission Closes co	rrection for F	' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' 		
K_DKR_ZEIT_KOR_FAC_Mini 1 0.05		- T	0 - 12.7		byte		
		nting factor: O	pening time-related inlet Closes correction	on for mini-str	oke		
K_DKR_ZEIT_KOR_FAC_SES 1 0.05		-	0 - 12.7		byte		
	Additional weigh	nting factor: O	pening time-related admission Closes co	rrection for S	ES		

	Department		name	file name	
author	ZS-M-57	03.05.04	W. Schlüter	1.04	

Page 10 of 13

found. Density correction

K_DKR_T_REF_DICHTE	293	1	byte						
	reference temp	ference temperature for air condition							
K_DRK_ZA_F	2		0 - 5	0.02	byte				
	Multiplication fa	ctor for cyline	der load during cylinder deactivation						
K_DRK_2V_F	2	-	0 - 5	0.02	byte				
	Multiplication fa	ctor for cyline	der load at 2V operation						
K_DRK_12_F	3	-	0 - 5	0.02	byte				
	Multiplication fa	ctor for cyline	der load in 12-stroke operation						

	Department Date		name	file name	
author	ZS-M-57	03.05.04	W. Schlüter	1.04	

Page 11 of 13

found. Density correction

2.3 CHARACTERISTIC CURVES

application size		unit area		Quant. Im	pl. Page
	support points				
KL_DKR_ES_VOLUM	8 x KW	0	465 - 720	1	16 *
		-	0 – 2 (3)		16*
	Cylinder volume -	- f/ crank angle): characteristic curve must be in	vertible	- syste
KL_DKR_ES_VOL_SES	8 x KW	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	465 - 720	1	16 bytes
		-	0 - 1		16
	Cylinder volume -	f crank angle) for SES: characteristic curve mi	ust he invertible	bytes
KL_DKR_RF_P_UMG_KORR 8 xp	, , , , , , , , , , , , , , , , , , ,	mbar 600 - 1	, ,	2	*
		-	0 - 2.5	x/128	8 *
	KL DKR ES VO	I LIM stored in	verselv	•	bytes
KL_DKR_RF_TAN_KORR	8 xt °C -40 - 85			1	8
		-	0 - 2.5	x/128	bytes 8
	KL DKR ES VO	I LIM stored in	verselv		bytes
KL_DKR_KW_SHIFT	32 x KW	rpm 0 - 7500		50	32 *
		deg	-30 - 120	x/128	bytes 32
	Crank angle shift	intaka closes t	cylinder volume calculation	•	bytes
KL_DKR_KW_SHIFT_F	8 x wi kJ/l 8 byte		0 - 1.5	0.01	*
		-	0 - 2.5	0.01	8
	Load-dependent	weighting of the	crank angle shift		bytes
KL_STKN_ES_VL		rpm			
		deg			
	Rase Control Edo	o Inlet Closes	Full Load (included from the load o	module)	

2.4 CHARACTERISTICS

application size	support point n	unit area		Quant. Imp	ol.	Page
KF DKR T GEW FES		rpm kJ/	0 - 6500		8 byte	
		1	0 - 1 5		8 hvte	
		-	0 - 1	0.05	8*8 * hvte	
	Weighting factor f	or opening time	a-based density correction for FES		,	
KF DKR T GEW MINI		RPM 0 - 650	0 kJ/l 0 - 1.5		8 * byte	
		0 - 1			8 hyte	
		-		0.05	8*8 * hvte	
	Weighting factor f	or opening time	a-based density correction for mini-strok	Δ	,	
KF DKR T GEW SES		RPM 0 - 650	0 8 kJ/l 0 - 1.5 0 - 1		* byte	
					8 byte	
		-		0.05	8*8 * byte	
	Weighting factor f	or aperture tim	e-hased density correction for SES		2,10	

	Department		name	file name	
author	ZS-M-57	03.05.04	W. Schlüter	1.04	

Page 12 of 13

found. Density correction

3 INITIAL DATA

The following is an initial setting for all application values. For some parameters, additional values are given to implement the functionality of the old density correction (R360): In this case, the opening time-based correction and the shift between intake closing crank angle and cylinder volume calculation are neutralized.

3.1 PARAMETER

K_DKR_B_DRK_OFF 0

K_DKR_ES_BAS_SES 540 °

K_DKR_ES_MIN 400

K_DKR_ES_MAX 660

K_DKR_P_REF_DICHTE 910 mbar (= 960 - 50)

K_DKR_T_REF_DICHTE 293 K

K_DKR_ZEIT_KOR_FAC_FES 1 for stand R360: 0

K_DKR_ZEIT_KOR_FAC_Mini 1 for stand R360: 0

K_DKR_ZEIT_KOR_FAC_SES 1 for stand R360: 0

K_DKR_ZA_F 2

K_DKR_2V_F 2

K_DKR_12_F 3

3.2 CHARACTERISTICS

KF_DRK_T_GEW_FES: constant 0

KF_DRK_T_GEW_SES: constant 0

KF_DRK_T_GEW_MINI: constant 1

	Department Date		name	file name	
author	ZS-M-57	03.05.04	W. Schlüter	1.04	

Page 13 of 13

found. Density correction

3.3 CHARACTERISTIC CURVES

KL_DKR_ES_VOLUM

characteristic curve must be invertible

Fı	om 540 to 543 two	support po	oints with g	radient 1! [Data analog	gous to curi	rent status,	linearly ex	trapolated_
	KW 360 390 460 5	40 Output] 3070 88 0.0	97 0.168 0.	3 74220 .696 (.925 1	500	•	720
									3

Parameters taken from old software version without DKR.

KL_DKR_ES_VOL_SES

C	<u>haracteristic curve</u>	must be in	<u>vertible; da</u>	<u>ita analogo</u>	<u>us to curre</u>	<u>nt status, n</u>	nirrored at	<u>540°, linear</u>	ly extrapol	ated
	KW	540	550 630	6 95070 .991 (0. 920 0.76	0.469 0.2	6 660 1300	.088	720	
	output []	1								

Parameters taken from old software version without DKR.

$KL_DKR_RF_P_UMG_KORR$

P_UMG	599	749	800	851	899	959	1040 1100
Exit [-]	0.62	0.78	0.83	0.88	0.94	1	1.08 1.14

$KL_DKR_RF_TAN_KORR$

TAN	-40	-20		20	40	60	80	100
Output [Nm] 1.26	0.	1.16	0 1.07	1	0.94	0.88	0.82	0.73

KL_DRK_KW_SHIFT

Calculated as full load inlet closes - $540\ensuremath{^\circ}$ with limitation not negative.

If full load is operated with a different DISA position, values may need to be modified.

N 400	800	1200 160	0 2000 24	00 2800		
Output [] 0	0	0 12		7	13	20

3200 360	0 4000 440	00 4800 52	00 5600 60	00 6400				
26 44 51	34		46		60	74	93	120

To achieve stand R360, this or the characteristic curve KL_DRK_KW_SHIFT_F must be set to a constant 0. Had to be reduced to 16 support points!

$\mathsf{KL_DRK_KW_SHIFT_F}$

wi 0	0.2	0.4	0.6	0.8	0.9		1.4
Output [] 0	0.2	0.4	0.6	0.8	0.9	11	1

	Department	Date	name	file name
author	ZS-M-57	03.05.04	W. Schlüter	1.04