Homework 5

Problem 1 (10.3.1). Prove that if A and B are sets of the same cardinality, then the free modules F(A) and F(B) are isomorphic.

Proof. Since A and B have the same cardinality there exists a bijection $f: A \to B$. Let $\varphi: F(A) \to F(B)$ be given by $\varphi(r_1a_1 + \dots + r_na_n) = r_1f(a_1) + \dots + r_nf(a_n)$. Note that φ is surjective since given the element $r_1b_1 + \dots + r_nb_n \in F(B)$ we know $r_1f^{-1}(b_1) + \dots + r_nf^{-1}(b_n)$ is mapped to it by φ . It's also injective in that given two distinct elements $r_1a_1 + \dots + r_na_n \neq r'_1a'_1 + \dots + r'_ma'_m$ we see that there must exist some i such that $r_ia_i \neq r'_ia'_i$. Then in F(A) we have $\varphi(r_1a_1 + \dots + r_na_n) = r_1f(a_1) + \dots + r_nf(a_n)$ and since f is injective, $r_if(a_i) \neq r'_if(a'_i)$. Therefore the images of the two elements are distinct and φ is injective.

If $r_1a_1 + \cdots + r_na_n$ and $r'_1a'_1 + \cdots + r'_ma'_m$ are two elements of F(A) then

$$\varphi((r_1a_1 + \dots + r_na_n) + (r'_1a'_1 + \dots + r'_ma'_m)) = r_1f(a_1) + \dots + r_nf(a_n) + r'_1f(a'_1) + \dots + r'_mf(a'_m)$$
$$= \varphi(r_1a_1 + \dots + r_na_n) + \varphi(r'_1a'_1 + \dots + r'_ma'_m)$$

so φ is additive. Finally, let $r \in R$ so we have

$$r\varphi(r_1a_1 + \dots + r_na_n) = r(r_1f(a_1) + \dots + r_nf(a_n))$$

$$= rr_1f(a_1) + \dots + rr_nf(a_n)$$

$$= \varphi(rr_1a_1 + \dots + rr_na_n)$$

$$= \varphi(r(r_1a_1 + \dots + r_na_n))$$

and φ is scalar multiplicative. Therefore φ is an R-module isomorphism between F(A) and F(B).

Problem 2 (10.3.4). An R-module M is called a torsion module if for each $m \in M$ there is a nonzero element $r \in R$ such that rm = 0, where r may depend on m (i.e., M = Tor(M) in the notation of Exercise 8 of Section 1). Prove that every finite abelian group is a torsion \mathbb{Z} -module. Give an example of an infinite abelian group that is a torsion \mathbb{Z} -module.

Proof. Let A be a finite abelian group of order n. Then for each $a \in A$ we have na = 0. Therefore A is a torsion \mathbb{Z} module. As an example of an infinite abelian group, consider \mathbb{Q}/\mathbb{Z} . Every element of this group has finite order $(a/b + \mathbb{Z})$ has order at most a0, so for each element we can find an element of a2 which sends it to 0. Therefore a4 is a torsion module.

Problem 3 (10.3.6). Prove that if M is a finitely generated R-module that is generated by n elements then every quotient of M may be generated by n (or fewer) elements. Deduce that quotients of cyclic modules are cyclic.

Proof. Suppose M is generated by the set A with |A| = n. Let N be a submodule of M and consider the projection map $\pi: M \to M/N$. Let $\overline{m} \in M/N$ and let $m' \in \pi^{-1}(\overline{m})$. Then $m' = r_1 a_1 + \cdots + r_1 a_n$ and $\pi(m') = \overline{m}$. But then $\pi(m') = \pi(r_1 a_1 + \cdots + r_n a_n) = r_1 \pi(a_1) + \cdots + r_n \pi(a_n)$. Thus, every element $\overline{m} \in M/N$ can be written as a finite linear combination of elements of the set $\pi(A)$ and M/N is finitely generated. A cyclic module only has one generator and we've shown that a quotient of such a module will have one or fewer generators. Thus, it must also be cyclic.

Problem 4 (10.3.9). An R-module M is called irreducible if $M \neq 0$ and if 0 and M are the only submodules of M. Show that M is irreducible if and only if $M \neq 0$ and M is a cyclic module with any nonzero element as a generator. Determine all the irreducible \mathbb{Z} -modules.

Proof. Suppose that M is irreducible and that M requires at least two generators, $a \neq b$. Then $Ra \neq Rb$ (since R has 1). But note that $R\{a,b\}$ contains both Ra and Rb since it contains a and b. Therefore Ra is a nonzero submodule of M which is properly contained in M, a contradiction. Therefore M = Ra for some a. Conversely, suppose $M \neq 0$ and M is cyclic with generator a. Suppose N is a submodule of M. Note

Homework 5

that $N \subseteq M$ so for each nonzero $n \in N$ we have n = ra for some $r \in R$. Therefore N contains a and thus also contains Ra. But then N = M and so M is irreducible.

The \mathbb{Z} modules are the same as abelian groups, so the irreducible \mathbb{Z} -modules are all finitely generated abelian groups with 1 generator.

Problem 5 (10.4.11). Let $\{e_1, e_2\}$ be a basis of $V = \mathbb{R}^2$. Show that the element $e_1 \otimes e_2 + e_2 \otimes e_1$ in $V \otimes_{\mathbb{R}} V$ cannot be written as a simple tensor $v \otimes w$ for any $v, w \in \mathbb{R}^2$.

Proof. Given the basis elements e_1 and e_2 of V, we know $e_1 \otimes e_1$, $e_2 \otimes e_2$, $e_1 \otimes e_2$ and $e_2 \otimes e_1$ form a basis for $V \otimes_{\mathbb{R}} V$. Thus, $\{e_1 \otimes e_2, e_2 \otimes e_1\}$ is a linearly independent set which means $e_1 \otimes e_2 + e_2 \otimes e_1$ cannot equal a simple tensor $v \otimes w$.

Problem 6 (10.4.12). Let V be a vector space over the field F and let v, v' be nonzero elements of V. Prove that $v \otimes v' = v' \otimes v$ in $V \otimes_F V$ if and only if v = av' for some $a \in F$.

Proof. Suppose there exists $a \in F$ such that v = av'. Then $v \otimes v' = av' \otimes v' = v' \otimes av' = v' \otimes v$. Conversely, suppose $v \otimes v' = v' \otimes v$. Then $v \otimes v' - v' \otimes v = 0$. Since v and v' are nonzero, these two simple tensors are linearly dependent so there exists $a \in F$ such that $v \otimes v' = a(v' \otimes v) = av' \otimes v = v' \otimes av$. This is only possible if v = av'.

Problem 7 (10.5.14). Let $0 \longrightarrow L \xrightarrow{\psi} M \xrightarrow{\varphi} N \longrightarrow 0$ be a sequence of R-modules. (a) Prove that the associated sequence

$$0 \longrightarrow \operatorname{Hom}_R(D,L) \xrightarrow{\psi'} \operatorname{Hom}_R(D,M) \xrightarrow{\varphi'} \operatorname{Hom}_R(D,N) \longrightarrow 0$$

is a short exact sequence of abelian groups for all R-modules D if and only if the original sequence is a split short exact sequence.

(b) Prove that the associated sequence

$$0 \longrightarrow \operatorname{Hom}_{R}(N, D) \xrightarrow{\psi'} \operatorname{Hom}_{R}(M, D) \xrightarrow{\varphi'} \operatorname{Hom}_{R}(L, D) \longrightarrow 0$$

is a short exact sequence of abelian groups for all R-modules D if and only if the original sequence is a split short exact sequence.

Proof. (a) Suppose the original sequence splits and let D be an R-module. Note then that we can write $M \cong L \oplus N$. But now we know $\operatorname{Hom}_R(D,M) \cong \operatorname{Hom}_R(D,L \oplus N) \cong \operatorname{Hom}_R(D,L) \oplus \operatorname{Hom}_R(D,N)$. Then the associated sequence also splits and is an exact sequence. Conversely, suppose that the associated sequence is a short exact sequence. Let D = N and let $f \in \operatorname{Hom}_R(N,N)$ be the identity. This lifts to some map $f' \in \operatorname{Hom}_R(N,M)$ such that $\varphi \circ f' = f$. But since f is the identity on N, we see that f' is a splitting homomorphism for φ . Thus the original sequence must be exact.

(b) If the original sequence is exact the associated sequence is a short exact sequence using the same proof as in part (a). Namely, using the fact that $\operatorname{Hom}_R(M,D) \cong \operatorname{Hom}_R(L \oplus N,D) \cong \operatorname{Hom}_R(L,D) \oplus \operatorname{Hom}_R(N,D)$. Conversely, if the associated sequence is exact, then let D = L and let $f \in \operatorname{Hom}_R(L,L)$ be the identity. Then f lifts into an element $f' \in \operatorname{Hom}_R(M,L)$ such that $f' \circ \psi = f$. But since f is the identity on f is a splitting homomorphism for f and the original sequence is short exact.