CoFilter: A High-Performance Switch-Accelerated Stateful Packet Filter for Bare-Metal Servers

Jiamin Cao

Ying Liu, Yu Zhou, Chen Sun, Yangyang Wang, Jun Bi

Stateful packet filter for bare-metal servers

Status quo: stateful packet filter in bare-metal servers

- Provide realiable security guarantee
- Satisfy the stringent performance requirements of many appliacations

Stateful packet filter solutions	Performance	Cost
Dedicated hardware	High performance	Expensive
Software solutions	Performance penalty	Relative cheap

CoFilter: A High-Performance Switch-Assisted Stateful Packet Filter for Bare-Metal Servers

Programmable switch

Flexibility

Implement stateful logic

High performance

Satisfy performance requirements

Low cost

Deployable

[RMT@SIGCOMM'13]

CoFilter: A High-Performance Switch-Assisted Stateful Packet Filter for Bare-Metal Servers

C1: Complexity of stateful packet filtering logic vs. limited programmability of programmable ASICs

C2: Scalability requirement for tracking massive connections vs. limited memory space in switching ASICs

Control pakcets: trigger state transition

Data packets: have no impact on connection state

Process partition

Data packets

C2

Scalability requirement for tracking massive connections

VS

Limited memory space in programmable ASICs

Hash? Hash incurs hash collision

Exact match-action tables to map each 5-tuple to the index of a register:

Exact match?

One connection:

104-bit 5-tuple

additional bits

Ten million connection: hundreds of MB SRAM

Hash compression and collision settlement

A CPU-assisted three-phase hash collision settlement scheme on programmable ASICs

Cross stage table placement

Make full use of fixed per-stage resources

Overall architecture of CoFilter

Typical deployment scenario - 1

Typical deployment scenario - 1

Evaluation

Implementation

- ➤ About 400 lines of P4 code to configure ASICs
- ➤ About 200 lines of C code on switch CPU on top of ConnTrack

Evaluation setup

- > Testbeds
- Four realistic flow distributions to generate traffic
 - DCTCP, VL2, FACEBOOK CACHE, FACEBOOK HADOOP

Evaluation

Metrics

- Micro benchmark
 - Throughput
 - Data/control packet delay
- > End-to-end
 - Flow completion time
- Scalability
 - ASIC resource usage
 - ASIC capacity
 - CPU resource usage

Result highlight

- Forwarding packets at line rate (13x throughput of NetFilter)
- Keeping packet delay at 1us
- Great scalability and accommodates over ten million connections with only 16MB SRAM.
- Freeing a significant quantity of CPU cores

Throughput

- CoFilter can always forward data packets at line rate (40Gbps)
- NetFilter reduces throughput sharply with smaller packet sizes.
- For 64-byte packets, NetFilter achieves only 3Gbps, 13x smaller than CoFilter.

Data packet delay

IPDV: instantaneous packet delay variation

Control packet delay

Background Workload (Gbps)

- CoFilter has larger SYN packet delay compared with NetFilter.
- CoFilter keeps the delay at a constant value.
- As the workload increases from 0 to 7Gbps, the gap is smaller.

ASIC capacity

Collision Rate: collision probability for connections

With the collision rate = 10^{-3} , CoFilter can store more than 10^{7} connections with 16MB SRAM

Conclusion & Future Work

- **❖**CoFilter uses programmable switches to meet these requirements and proposes a co-design between programmable ASICs and switch CPU
 - process partition
 - hash optimization
- **❖**CoFilter inherits the advantages of programmable ASICs
 - ♦high throughput, low packet delay, low cost
 - ♦high scalability, high connection capacity, low switch CPU usage

❖Future work

 Considerations of security of switch CPU, e.g., the switch CPU can be vulnerable to denial-of-service attacks such as TCP SYN flood

Thanks!

2-bit State compression in ASICs

Programmable switch architecture posses two restrictions on our design

Think over the resource occupation of each table and place them in proper stages Sequential operations must be implemented in multiple stages in sequential order

CPU usage

The server CPU of NetFilter becomes a considerable bottleneck at high network speeds and new flow arrival rates, while CoFilter can significantly save CPU.