МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №5 по дисциплине «Алгоритмы и структуры данных»

Тема: Слабая куча

Студент(ка) гр. 9382	Голубева В.П.
Преподаватель	Фирсов М.А.

Санкт-Петербург

2020

Цель работы.

Разобраться в структуре слабой кучи и научиться работать с ней.

Задание.

31. Дан массив пар типа «число — бит». Предполагая, что этот массив представляет слабую кучу, вывести её на экран в наглядном виде.

Основные теоретические положения.

Обычная куча — дерево, в котором любой родитель больше (или равен) чем любой из его потомков. В слабой куче это требование ослаблено — любой родитель больше (или равен) любого потомка только из своего правого поддерева. В левом поддереве потомки могут быть и меньше и больше родителя.

Также нужен дополнительный битовый массив (назовём его ВІТ), в котором для **i**-го элемента отмечено, был ли обмен местами между его левым и правым поддеревьями. Если значение для элемента равно 0, то значит обмена не было. Если значение равно 1, значит, левый и правый потомок идут в обратном порядке. А формулы при этом вот такие:

Левый потомок: 2×i+BIT[i]

Правый потомок: $2 \times i + 1 - BIT[i]$

Функции и структуры данных.

typedef struct couple{

int data;

int bit;

} couple; - структура для записи элементов массива типа число-бит double log(int a, int b) - вычисляет логарифм от b по основанию а Для работы со слабой кучей был реализован класс WeakHeap. couple *heap — указывает на массив, где хранятся элементы кучи int frnt=0, rear=0 — флажки, указывают на начало и конец кучи

int queue_size — размер кучи

WeakHeap (int) - конструктор, создаёт новую слабую кучу, по количеству элементов в ней

~WeakHeap() - очищает память в кучу
void push (couple f) — добавляет элемент f в кучу
void pop() - удаляет элемент из кучи
void print_heap() - печатает кучу на экран

Описание алгоритма.

Сначала из файла считывался массив, который из условия представлял собой слабую кучу. Была создана структура couple, которая содержит пары число — бит. Причём, хоть биты требуются и не для всех чисел, потому что некоторые из них не имеют потомков, но для корректной работы программы нужно к каждому числу без бита добавить «фиктивный» бит, равный -1. По формулам формируем новый массив, в котором элементы кучи идут в правильном порядке, т.е левый потомок, затем правый.

Затем выводим их, предварительно вычисляя, какое количество чисел будет на текущей строке.

Тестирование.

Результаты тестирования представлены в табл. 1.

Таблица 1 – Результаты тестирования

№ п/п	Входные данные	Выходные данные	Комментарии
1.	4	71	
	71 -1	43	
	43 1	11 30	
	30 -1		
	11 -1		
2.	16	97	
	97 -1	83	
	83 0	52 76	

52 0 89 33 78 73 76 1 32 66 48 20 67 58 45 13 89 1 33 1 73 0 78 0 66 -1 32 -1 20 -1 48 -1 67 -1 58 -1 45 -1 13 -1 3. 8 69 69 -1 58 58 0 95 42 95 0 20 90 11 30 42 0 20 -1 90 -1 11 -1 30 -1 30 -1 4. 2 89 89 -1 23 23 -1 23 5. 1 10		F2 0	00 22 70 72
89 1 33 1 73 0 78 0 66 -1 32 -1 20 -1 48 -1 67 -1 58 -1 45 -1 13 -1 3. 8 69 69 -1 58 69 95 42 95 0 20 90 11 30 42 0 20 -1 90 -1 11 -1 30 -1 4. 2 89 89 -1 23 -1 5. 1 10			
33 1 73 0 78 0 66 -1 32 -1 20 -1 48 -1 67 -1 58 -1 45 -1 13 -1 3. 8 69 69 -1 58 58 0 95 42 95 0 20 90 11 30 42 0 20 -1 90 -1 11 -1 30 -1 4. 2 89 89 -1 23 23 -1 5. 1 10			32 66 48 20 67 58 45 13
73 0 78 0 66 -1 32 -1 20 -1 48 -1 67 -1 58 -1 45 -1 13 -1 3. 8 69 69 -1 58 58 0 95 42 95 0 20 90 11 30 42 0 20 -1 90 -1 11 -1 30 -1 4. 2 89 89 -1 23 23 -1 5. 1 10			
78 0 66 -1 32 -1 20 -1 48 -1 67 -1 58 -1 45 -1 13 -1 3. 8 69 69 -1 58 58 0 95 42 95 0 20 90 11 30 42 0 20 -1 90 -1 11 -1 30 -1 4. 2 89 89 -1 23 23 -1 5. 1 10			
66 -1 32 -1 20 -1 48 -1 67 -1 58 -1 45 -1 13 -1 3. 8 69 69 -1 58 58 0 95 42 95 0 20 90 11 30 42 0 20 -1 90 -1 11 -1 30 -1 4. 2 89 89 -1 23 23 -1 5. 1 10			
32 -1 20 -1 48 -1 67 -1 58 -1 45 -1 13 -1 3. 8 69 -1 58 0 95 42 95 0 20 90 11 30 42 0 20 -1 90 -1 11 -1 30 -1 4. 2 89 89 -1 23 23 -1 5. 1 10			
20 -1 48 -1 67 -1 58 -1 45 -1 13 -1 3. 8 69 69 -1 58 0 95 42 95 0 20 90 11 30 42 0 20 -1 90 -1 11 -1 30 -1 4. 2 89 89 -1 23 -1 5. 1 10		66 -1	
48 -1 67 -1 58 -1 45 -1 13 -1 3. 8 69 69 -1 58 58 0 95 42 95 0 20 90 11 30 42 0 20 -1 90 -1 11 -1 30 -1 4. 2 89 89 -1 23 -1 5. 1 10			
67 -1 58 -1 45 -1 13 -1 3. 8 69 -1 58 0 95 42 95 0 20 90 11 30 42 0 20 -1 90 -1 11 -1 30 -1 4. 2 89 89 -1 23 -1 5. 1 10		20 -1	
58 -1 45 -1 13 -1 3. 8 69 -1 58 0 95 42 95 0 20 90 11 30 42 0 20 -1 90 -1 11 -1 30 -1 4. 2 89 89 -1 23 -1 5. 1 10		48 -1	
45 -1 13 -1 3. 8 69 -1 58 58 0 95 42 95 0 20 90 11 30 42 0 20 -1 90 -1 11 -1 30 -1 4. 2 89 89 -1 23 -1 5. 1 10		67 -1	
13-1 69 3. 8 69 69-1 58 58 0 95 42 95 0 20 90 11 30 42 0 20 -1 90 -1 11 -1 30 -1 89 89 -1 23 23 -1 10		58 -1	
3. 8 69 69 -1 58 58 0 95 42 95 0 20 90 11 30 42 0 20 -1 90 -1 11 -1 30 -1 4. 2 89 89 -1 23 -1 5. 1 10		45 -1	
69 -1 58 58 0 95 42 95 0 20 90 11 30 42 0 20 -1 90 -1 11 -1 30 -1 4. 2 89 89 -1 23 -23 -1 5. 1 10		13 -1	
58 0 95 42 95 0 20 90 11 30 42 0 20 -1 90 -1 11 -1 30 -1 4. 2 89 89 -1 23 -1 5. 1 10	3.	8	69
95 0 20 90 11 30 42 0 20 -1 90 -1 11 -1 30 -1 4. 2 89 89 -1 23 -1 23 -1 5. 1 10		69 -1	58
42 0 20 -1 90 -1 11 -1 30 -1 4. 2 89 89 -1 23 -1 5. 1 10		58 0	95 42
20 -1 90 -1 11 -1 30 -1 4. 2 89 89 -1 23 23 -1 5. 1 10		95 0	20 90 11 30
90 -1 11 -1 30 -1 4. 2 89 89 -1 23 -1 5. 1 10		42 0	
11 -1 30 -1 4. 2 89 89 -1 23 23 -1 5. 1 10		20 -1	
30 -1 4. 2 89 89 -1 23 23 -1 5. 1 10		90 -1	
4. 2 89 89 -1 23 23 -1 10		11 -1	
89 -1 23 23 -1 10 10		30 -1	
23 -1 5. 1 10	4.	2	89
5. 1 10		89 -1	23
		23 -1	
10 -1	5.	1	10
		10 -1	

Выводы.

Была изучена структура слабой кучи, получены навыки работы с ней.

ПРИЛОЖЕНИЕ А

ИСХОДНЫЙ КОД ПРОГРАММЫ

```
Название файла: lab5_1.cpp
#include "Weak_heap.h"
int main() {
    int count;
    ifstream file("test.txt");//открываем файл для чтения
    file>>count;
       int count_of_bit=count/2;//вычисляем количество элементов,
которых введён не фиктивный дополнительный бит
    couple* array=new couple[count];
    for (int i=0;i<count;i++){</pre>
        file>>array[i].data>>array[i].bit;//читаем данные из файла
    }
    file.close();
   WeakHeap heap1(count);
    heap1.push(array[0]);
    heap1.push(array[1]);
     for (int i=1;i<count_of_bit;i++){//записываем элементы в кучу в
порядке, удобном для вывода на экран
        heap1.push(array[2*i+array[i].bit]);
        heap1.push(array[2*i+1-array[i].bit]);
    }
    heap1.print_heap();//выводим нашу слабую кучу на экран
    delete [] array;
    return 0;
}
     Название файла: Weak heap.h
#ifndef WEAK_HEAP_H
#define WEAK_HEAP_H
#include <iostream>
#include <fstream>
#include <cstdlib>
#include <cmath>
using namespace std;
//вычисляет логарифм от b по основанию а
double log(int a, int b)
{
```

```
return log(b) / log(a);
//структура для записи элементов массива типа число-бит
typedef struct couple{
    int data;
    int bit;
} couple;
//класс слабой кучи
class WeakHeap {
    couple *heap;
    int frnt=0, rear=0;
    int queue_size;
  public:
    WeakHeap (int);
    ~WeakHeap();
    void push (couple f) ;
    void pop();
    void print_heap();
} ;
//Конструктор
WeakHeap::WeakHeap(int size) {
    queue_size=size;
    heap = new couple[queue_size];
WeakHeap::~WeakHeap(){
    delete[] heap;
void WeakHeap::print_heap(){
    cout<<heap[0].data;</pre>
    cout<<"\n";
    int depth=(int)log(2, queue_size);//вычисляем глубину дерева
    int k=0;
    for (int i=0;i<depth;i++){</pre>
        for (int j=0; j < pow(2,i); j++){
            cout<<heap[k+1].data<<" ";</pre>
            k++;
        cout<<"\n";
    }
}
//Помещение элемента в куча
void WeakHeap::push (couple f) {
        heap[rear].data=f.data;
        heap[rear].bit=f.bit;
```

```
rear++;
}
// Извлечение элемента из кучи
void WeakHeap::pop() {
    if ( frnt == rear ) {
        cout << "куча пуста" <<endl;
        return;
    }
    frnt++;
    }
#endif

    Hазвание файла: test.txt

4

71 -1

43 1

30 -1

11 -1
```