

ECTDS10-ISO

Isolated Solution Conductivity Transmitter User Manual

Index

1	Customer Support	3
2	Introduction	4
3	Wiring diagrams	5
4	Dimension and Ordering Infomation	6
	4.1 Dimension	
5	Installation Maintenance and Calibration	8
	5.1 Installation	8
	5.2 Installation Guide	
	5.3 Key button Function	8
	5.4 Conductivity Calibration	8
	5.4.1 Calibrate by Key Button	8
	5.4.2 Perform EC calibration by command	9
6	Output Signal Conversion	10
7	RS485 Modbus Protocol	11
	7.1 Modbus Protocol	11
	7.2 Modbus Register	11
	7.3 Modbus Register Detail Descripton	
	7.4 Modbus Function Code	17
	7.4.1 Function Code 3 Protocol Example	17
	7.4.2 Function Code 4 Protocol Example	18
	7.4.3 Function Code 6 Protocol Example	19
	7.4.4 Function Code 16 Protocol Example	20
8	Software Configuration Utility	21
	8.1 Hardwar Setup	21
	8.2 Universal Modbus Comm Utility	
	8.3 SensorOneSet Configuration Utility	
Αŗ	ppendix	
	Copyright and Trademark	23
	Version Control	

1 Customer Support

Thank you very much for your order. Our success comes from the continuous faith in the excellence of our products and services, something we are committed to and would never sacrifice. Our customer service, especially in the after sales phase, guarantees the satisfaction of our clients. In line with this strategy, we appreciate that you can share with us your feedback at any time for our improvement, be it positive or negative, so if we can serve you better in anyway, please do inform us.

Website

http://www.infwin.com

E-Mail

infwin@163.com

Telephone

+86-411-66831953, +86-4000-511-521

Fax

+86-411-82388125

2 Introduction

ECTDS10-ISO measures Conductivity, Salinity, TDS with temperature compensation. The output signal can be RS485, Analog Voltage or Analog Current. The sensor is applicable for industrial, water processing, sewerage system, irrigation, smart agriculture etc.

- Conductivity, Salinity and TDS measurement with temperature compensation
- Isolated Sensor Input
- With ABS or Stainless steel electrode
- Output Interface with RS485, Voltage, Current
- High accuracy with excellent stability
- Reverse power protection and Built-in TVS/ESD protection

C * 6*								
	Specifications Output Interface Analog Voltage 0-2V Analog Current 4-20mA RS485							
Output Interface	Analog Voltage 0-2V	RS485						
	(Output resistance ~0ohm)	(Load Resistor<500ohm)	Modbus-RTU					
Power Supply	3.9-30V/DC	12-30V/DC	3.9-30V/DC					
Power	40mA@24V DC	40mA@24V DC	40mA@24V DC					
Consumption(Idle)		(with 20mA output signal)						
Power	80mA@24V DC	100mA@24V DC	80mA@24V DC					
Consumption(Max)		(with 20mA output signal)						
Start-up time	< 2 seconds							
EC Measurement	Isolated Sensor Input, Range:	0-5000us/cm, 10000us/cm, 20	0000us/cm					
	Resolution: 0-10000us/cm, 10	us/cm; 100000-20000us/cm, 5	50us/cm					
	Accuracy: 0-10000us/cm, ±3%; 10000-20000us/cm, ±5%							
	EC temperature compensation: 0-50°C							
Temperature	Range: -40~80°C, Resolution:	0.1°C, Accuracy:±0.5°C						
Measurement								
IP Ratings	Electrode:IP68; Transmitter:II	P65						
Operating	-40~85°C							
Temperature								
Installation	Electrode:1/2"NPT screw threads; Transmitter:Mounting hole							
Cable Length	Power and Signal Cable:2 meters or Customize; Electrode Cable:5 meters							
Dimension	mension Electrode: 1/2"NPT screw threads; Transmitter: 128*70*42mm							

3 Wiring diagrams

4 Dimension and Ordering Infomation

4.1 Dimension

4.2 Ordering Infomation

Parameters	Code	Comments
Code 1: ECTDS10-ISO		ECTDS10-ISO isolated conductivity transmitter
Product Series		
Code 2:	A	Conductivity, Salinity and TDS
Measuring Parameters		
Code 3:	A	ABS electrode
Electrode	В	Stainless steel electrode
	С	Customize
Code 4:	A	0-20000us/cm
EC Range	В	0-10000us/cm
	С	0-5000us/cm
	D	0-2000us/cm
	Е	Customize

Code 5:	A	3.9-30V DC (applicable for RS485 and 0-2V output)	
Power Supply	В	12-30V DC (applicable for 4-20mA output)	
Code 6:	A	Analog Voltage 0-2V	
Output Interface	В	Analog Current 4-20mA	
	С	RS485,Modbus-RTU	
	D	RS485,Modbus-RTU & Analog Voltage 0-2V	
	Е	RS485,Modbus-RTU & Analog Current 4-20mA	
	F	SDI-12	
	G	Customize	
Code 7:	002	Electrode Cable:5 meters, Power and Signal Cable:2 meters	
Cable Length	XXX	Electrode Cable:5 meters , Power and Signal Cable:xxx meters	

Ordering Code Example:

ECTDS10-ISO isolated conductivity transmitter, ABS electrode, Conductivity Range 20000us/cm, Power Supply 3.9-30V DC, Output Interface RS485, Modbus-RTU, Power and Signal Cable Length 5 meters. Ordering Code is: ECTDS10-ISO-A A A A C 005

5 Installation Maintenance and Calibration

5.1 Installation

1/2"NPT screw threads installation. Please refer to the dimensions.

5.2 Installation Guide

Should following the common requirements for conductivity electrode installation.

5.3 Key button Function

There are 3 buttons on the transmitter board.

Button	Functionality	Comment	
SW1-SET	Reset the serial communication	Factory default value:	
	parameters to factory default value	Slave Address	
		1,9600,N,8,1,Modbus-RTU	
SW2-CALL	Short Press:Calibrate 1413us/cm	Immerse the electrode into	
	Press for 3+ seconds:Restore	1413us/cm solution and wait until	
	1413us/cm calibration value to	the reading value being stable, then	
	factory default value Short Press the button to calibr		
SW3-CALH	Short Press:Calibrate 12880us/cm	Immerse the electrode into	
	Press for 3+ seconds:Restore	12880us/cm solution and wait until	
	12880us/cm calibration value to	the reading value being stable, then	
	factory default value	Short Press the button to calibrate	

5.4 Conductivity Calibration

When performing the EC calibration, you should guarantee the temperature of the standard EC calibration solution is around 25°C. And wait for a while for temperature and EC equilibrium after immersing the sensor into the standard solution.

5.4.1 Calibrate by Key Button

- 1) Immerse the electrode into 1413us/cm solution and wait until the reading value being stable, then press SW2-CALL key to calibrate.
- 2) Immerse the electrode into 12880us/cm solution and wait until the reading value being

stable, then press SW3-CALH key to calibrate.

3) Verify the sensor output value.

5.4.2 Perform EC calibration by command

- 1) Immerse the electrode into 1413us/cm solution and wait until the reading value being stable, then write 0xFFFF to modbus register 0x0030(ECCALIB_1413 EC calibration point for 1413us/cm) to calibrate.
- 2) Immerse the electrode into 12880us/cm solution and wait until the reading value being stable, then write 0xFFFF to modbus register 0x0031(ECCALIB_12880 EC calibration point for 12880us/cm) to calibrate.
- 3) Verify the sensor output value.

6 Output Signal Conversion

Output Interface	Parameters Range	Conversion Formula		
Analog Voltage	EC range: 0-2000us/cm	EC=1000*VOLTAGE。 When VOLTAGE=0.3V, then		
Output 0-2V		EC=1000*0.3=300us/cm		
	EC range: 0-5000us/cm	EC=2500*VOLTAGE。 When VOLTAGE=0.3V, then		
		EC=2500*0.3=750us/cm _o		
	EC range: 0-10000us/cm	EC=5000*VOLTAGE。 When VOLTAGE=0.3V, then		
		EC=5000*0.3=1500us/cm o		
	EC range: 0-20000us/cm	EC=10000*VOLTAGE. When VOLTAGE=0.3V, then		
		EC=10000*0.3=3000us/cm。		
Analog Current	EC range: 0-2000us/cm	EC= 125 *(CURRENT-4)。When CURRENT=6.4mA,则		
Output 4-20mA		EC= 125 *(6.4-4)=300us/cm		
	EC range: 0-5000us/cm	EC= 312.50 *(CURRENT-4). When CURRENT=6.4mA,		
		then EC= 312.50*(6.4-4)=750us/cm		
	EC range: 0-10000us/cm	EC= 625 *(CURRENT-4). When CURRENT=6.4mA, then		
		EC=625*(6.4-4)=1500us/cm		
	EC range: 0-20000us/cm	EC= 1250 *(CURRENT-4). When CURRENT=6.4mA,		
		then EC=1250*(6.4-4)=3000us/cm		
RS485	EC range: All	EC=(REGISTER VALUE)。 When REGISTER		
Modbus-RTU		VALUE=1568, then EC= 1568us/cm.		
Customize	Contact support for customiz	nized sensor interface		

NOTE: The unit of VOLTAGE is (V), The unit of CURRENT is (mA).

NOTE: VWC is Volumetric Water Content, EC is Electrical Conductivity.

7 RS485 Modbus Protocol

7.1 Modbus Protocol

Modbus Protocol is widely used to establish master-slave communication between intelligent devices or sensors. A MODBUS message sent from a master to a slave contains the address of the slave, the function code (e.g. 'read register' or 'write register'), the data, and a check sum (LRC or CRC).

The sensor is RS485 interface with Modbus protocol. The default serial communication settings is slave address 1, modbus rtu, 9600bps, 8 databits and 1 stop bit. All communication settings can be changed with modbus command, and take effective after re-power up the sensor.

Following modbus function code are supported by sensor.

Modbus Function Code 0x03 : used for reading holding register.

Modbus Function Code 0x04 : used for reading input register.

Modbus Function Code 0x06: used for writing single holding register.

Modbus Function Code 0x10: used for writing multiple holding register.

7.2 Modbus Register

Parameters	Register Addr.	Data	Modbus	Range and Comments	Default
	(HEX/DEC)	Type	Function		Value
			Code(DEC)		
TEMPRATURE	0x0000 /0	INT16	3/4	-4000-8000 for	N/A
		RO		-40.00~80.00°C.	
RESERVED	0x0001 /1	UINT16	3/4	0	0
		RO			
EC-Electrical	0x0002 /2	UINT16	3/4	0-20000 for	N/A
Conductivity		RO		0-20000us/cm	
SALINITY	0x0003 /3	UINT16	3/4	EC*SALINITYCOFF	N/A
		RO		Unit: mg/L or ppm	
TDS	0x0004 /4	UINT16	3/4	EC*TDSCOFF	N/A
		RO		Unit: mg/L or ppm	
RESERVED	0x0005 /5	UINT16	3/4	0	0
		RO			
RESERVED	0x0006/6	UINT16	3/4	0	0
		RO			
RESERVED	0x0007 /7	UINT16	3/4	0	0
		RO			

ECRAWAD	0x0008 /8	UINT16 RO	3/4	0-4000	N/A
RESERVED	0x0009 /9	UINT16 RO	3/4	0	0
TEMPCOMPENSAT EEN	0x0020 /32	UINT16 R/W	3/6/16	0: External Temperature Sensor 1: Onboard temperature sensor 2: Disabled	0
RESERVED	0x0021 /33	UINT16 R/W	3/6/16	N/A	0
ECTEMPCOFF	0x0022/34	UINT16 R/W	3/6/16	0-100 for 0.0%-10.0%	20(2%)
SALINITYCOFF	0x0023 /35	UINT16 R/W	3/6/16	0-100 for 0.00-1.00	55(0.55)
TDSCOFF	0x0024 /36	UINT16 R/W	3/6/16	0-100 for 0.00-1.00	50(0.5)
ELECTRODECONST ANT	0x0025 /37	UINT16 R/W	3/6/16	500-1500 for 0.500-1.500	1000(1.000)
ECCALIB_1413 EC calibration point for 1413us/cm	0x0030 /48	UINT16 R/W	3/6/16	Immerse the electrode in 1413us/cm solution for a while and write 0xFFFF into the register to calibrate.	N/A
ECCALIB_12880 EC calibration point for 12880us/cm	0x0031 /49	UINT16 R/W	3/6/16	Immerse the electrode in 12880us/cm solution for a while and write 0xFFFF into the register to calibrate.	N/A
SLAVEADDRESS	0x0200 /512	UINT16 R/W	3/6/16	0-255	1
BAUDRATE	0x0201/513	UINT16 R/W	3/6/16	0-6 0:1200bps 1:2400bps 2:4800bps 3:9600bps 4:19200bps 5:38400bps	3:9600bps
PROTOCOL	0x0202 /514	UINT16 R/W	3/6/16	0 0:Modbus RTU	0:Modbus RTU

PARITY	0x0203 /515	UINT16	3/6/16	0-2	0:None
		R/W		0:None	Parity
				1:Even	
				2:Odd	
DATABITS	0x0204 /516	UINT16	3/6/16	1	1:8 databits
		R/W		1:8 databits	
STOPBITS	0x0205 /517	UINT16	3/6/16	0-1	0:1 stopbit
		R/W		0:1 stopbit	
				1:2 stopbits	
RESPONSEDELAY	0x0206/518	UINT16	3/6/16	0-255 for 0-2550	0
		R/W		milliseconds	
ACTIVEOUTPUTIN	0x0207 /519	UINT16	3/6/16	0-255 for 0-255 seconds.	0
TERVAL		R/W			

NOTE: UINT16:16 bit unsigned integer, INT16:16bit signed integer

NOTE: RO: Register is Read Only, R/W: Register is Read/Write

NOTE: HEX is Hexadecimal (data with 0x/0X prefix), DEC is Decimal

7.3 Modbus Register Detail Descripton

TEMPERATURE				
Data Range	-4000-8000 For -40.00~80.00°C	Default: N/A		
Power Down Save	N/A			

Note:Temperature value (Binary complement).

Example: When REGISTER = 0x0702 (HEX format), then

VALUE=(0x07*256+0x02)/100=17.94°C.When REGISTER=FF05H (HEX format),then

 $VALUE = ((0xFF*256 + 0x05) - 0xFFFF - 0x01) / 100 = (0xFF05 - 0xFFFF - 0x01) / 100 = -2.51^{\circ}C.$

ECElectrical Conductivity			
Data Range	0-20000 For 0-20000us/cm	Default: N/A	
Power Down Save	N/A		

Note: Electrical Conductivity.

Example: When REGISTER = 0x0702 (HEX format), then VALUE=(0x07*256+0x02)=1794us/cm

SALINITY Salinity				
Data Range	0-20000 For 0-20000mg/L or ppm	Default: N/A		
Power Down Save	N/A			

Note: SALINITY

Example: When REGISTER = 0x0702 (HEX format), then VALUE=(0x07*256+0x02)=1794mg/L or ppm, Salinity is derived by EC, SALINITY=EC* SALINITYCOFF, in which SALINITYCOFF is a coefficient, please refer to SALINITYCOFF.

TDSTotal Dissolved Solid		
Data Range	0-20000 For 0-20000mg/L or ppm	Default: N/A
Power Down Save	N/A	

Note:Total Dissolved Solid

Example: When REGISTER = 0x0702 (HEX format), then VALUE=(0x07*256+0x02)=1794mg/L or ppm, TDS is derived by EC, TDS=EC* TDSCOFF, in which TDSCOFF is a coefficient, please refer to TDSCOFF.

ECRAWAD		
Data Range	0-32767	Default: N/A
Power Down Save	N/A	

Note: Conductivity raw AD value

Example: When REGISTER = 0x0702 (HEX format), then VALUE=(0x07*256+0x02)=1794

TEMPCOMPENSATEEN		
Data Range	0: External Temperature Sensor	0
	1: Onboard temperature sensor	
	2: Disabled	
Power Down Save	YES	

Note: Temperature compensation

ECTEMPCOFFEC Temperature Compensation Coefficient		
Data Range	0-100 for 0.0%-10.0%	Default: 20(2%)
Power Down Save	YES	

Note:EC Temperature Compensation Coefficient

SALINITYCOFFSalinity Coefficient		
Data Range	0-100 for 0.00-1.00	Default: 55(0.55)
Power Down Save	YES	

Note:Salinity Coefficient.

TDSCOFF---TDS Coefficient

Data Range	0-100 for 0.00-1.00	Default: 50(0.50)
Power Down Save	YES	

Note:TDS Coefficient.

ELECTRODECONSTANT			
Data Range	500-1500 for 0.500-1.500	Default:	1000(1.000)
Power Down Save	YES		

Note: Electrode constant provided by the electrode manufactor

SLAVEADDRESS Modbus Slave Address		
Data Range	0-255	Default: 1
Power Down Save	YES	

Note: Please re-power on the sensor to take effective after set.

BAUDRATE Serial Comm Baudrate		
Data Range	0-5	Default: 3
	0 :1200bps	
	1:2400bps	
	2:4800bps	
	3:9600bps	
	4: 19200bps	
	5:38400bps	
Power Down Save	YES	

Note: Please re-power on the sensor to take effective after set.

PROTOCOL Serial Comm Protocol		
Data Range	0	Default: 0
	0:Modbus RTU	
Power Down Save	YES	

Note: Please re-power on the sensor to take effective after set.

PARITY Serial Comm Parity		
Data Range	0-2	Default: 0
	0:NONE	
	1:EVEN	

	2:ODD	
Power Down Save	YES	

Note: Please re-power on the sensor to take effective after set.

DATABITS Serial Comm Databits			
Data Range	Default: 1		
	1:8 databits		
Power Down Save	YES		

Note: Please re-power on the sensor to take effective after set.

STOPBITS Serial Comm Stopbits		
Data Range	0-1	Default: 0
	0:1 stopbit	
	1:2 stopbits	
Power Down Save	YES	

Note: Please re-power on the sensor to take effective after set.

RESPONSEDELAY Serial Comm Response Delay		
Data Range	0-255 for 0-2550 milliseconds, 0 for disabled	Default: 0
Power Down Save	YES	

Note: Please re-power on the sensor to take effective after set.

Note: Sensor will delay a period before response to master request command.

Example: When set to 5 and receive a request from master device, then sensor will delay

5*10ms=50ms, then response to master.

ACTIVEOUTPUTINTERVAL Serial Comm Active Output Interval time				
Data Range	255 for 0-255 seconds, 0 for disabled Default: 0			
Power Down Save	YES			

Note: Please re-power on the sensor to take effective after set.

Note: Sensor will output the data actively without any master request command.

Note: Only ONE sensor should be on RS485 network, or there will be data collision and corrupt the data on line.

Note: Use key button to restore the serial comm parameters factory value to exit the active output mode.

Example: When set to 5 then sensor will output the data every 5 seconds without any master request

command.

7.4 Modbus Function Code

For description below, data started with 0X/0x means that it's in HEX format.

7.4.1 Function Code 3 Protocol Example

Master Request: AA 03 RRRR NNNN CCCC

AA	1 byte	Slave Address,0-255
0x03	1 byte	Function Code 3
RRRR	2 byte	Starting Register Addr
NNNN	2 byte	Quantity of Register to read
CCCC	2 byte	CRC CHECKSUM

Slave Response: AA 03 MM VV0 VV1 VV2 VV3... CCCC

AA	1 byte	Slave Address,0-255
0x03	1 byte	Function Code 3
MM	1 byte	Register Data Byte Count
VV0,VV1	2 byte	Register Value (High8bits first)
VV2,VV3	2 byte	Register Value (High8bits first)
		Register Value (High8bits first)
CCCC	2 byte	CRC CHECKSUM

Example: Read register 0x0200-0x0201, that is slave address and baudrate.

Master Request:01 03 0200 0002 C5B3

Slave Addr.	1 byte	0x01
Function Code	1 byte	0x03
Starting Register	2 byte	0x0200
Addr.		
Quantity of Register	2 byte	0x0002
to read		
Checksum	2 byte	0xC5B3

Slave Response:01 03 04 00 01 00 03 EB F2

Slave Addr.	1 byte	0x01
-------------	--------	------

Function Code	1 byte	0x03
Register Data Byte	1 byte	0x04
Count		
Register Value:	2 byte	0x00(HIGH 8 Bits)
Address		0x01(LOW8 Bits)
Register Value:	2 byte	0x00(HIGH 8 Bits)
Baudrate		0x03(LOW8 Bits)
Checksum	2 byte	0xEBF2

7.4.2 Function Code 4 Protocol Example

Master Request: AA 04 RRRR NNNN CCCC

AA	1 byte	Slave Address,0-255
0x04	1 byte	Function Code 4
RRRR	2 byte	Starting Register Addr
NNNN	2 byte	Quantity of Register to read
CCCC	2 byte	CRC CHECKSUM

Slave Response: AA 04 MM VV0 VV1 VV2 VV3... CCCC

AA	1 byte	Slave Address,0-255
0x04	1 byte	Function Code 4
MM	1 byte	Register Data Byte Count
VV0,VV1	2 byte	Register Value (High8bits first)
VV2,VV3	2 byte	Register Value (High8bits first)
		Register Value (High8bits first)
CCCC	2 byte	CRC CHECKSUM

Example:Read register 0x0000-0x0002,that is temperature, reserved, and EC. Master Request:01 04 0000 0003 B00B

Slave Addr.	1 byte	0x01
Function Code	1 byte	0x04
Starting Register	2 byte	0x0000
Addr.		
Quantity of Register	2 byte	0x0003

to read		
Checksum	2 byte	0xB00B

Slave Response: 01 04 06 08 16 00 00 05 78 2B 6A

Slave Addr.	1 byte	0x01
Function Code	1 byte	0x04
Register Data Byte	1 byte	0x06
Count		
Register Value:	2 byte	0x08(HIGH 8 Bits)
Temperature		0x16(LOW8 Bits)
Register Value:	2 byte	0x00(HIGH 8 Bits)
Reserved		0x00(LOW8 Bits)
Register Value: EC	2 byte	0x05(HIGH 8 Bits)
		0x78(LOW8 Bits)
Checksum	2 byte	0xD257

Temperature = $(0x08*256+0x\ 16)/100=2070/100=20.70\ ^{\circ}C$ EC= $0x05*256+0x78=5*256+120=1400\ us/cm$

7.4.3 Function Code 6 Protocol Example

Master Request: AA 06 RRRR VVVV CCCC

AA	1 byte	Slave Address,0-255
0x06	1 byte	Function Code 6
RRRR	2 byte	Register Addr (High8bits first)
VVVV	2 byte	Register Value (High8bits first)
CCCC	2 byte	CRC CHECKSUM

Slave Response: AA 06 RRRR VVVV CCCC

AA	1 byte	Slave Address,0-255
0x06	1 byte	Function Code 6
RRRR	2 byte	Register Addr (High8bits first)
VVVV	2 byte	Register Value (High8bits first)
CCCC	2 byte	CRC CHECKSUM

Example: Write Register 0x0020, that is set temperature compensation

Request: 01 06 0020 0000 8800

Slave Addr.	1 byte	0x01
Function Code	1 byte	0x06
Register Addr.	2 byte	0x0020 (High8bits first)
Register Value	2 byte	0x0000 (High8bits first)
Checksum	2 byte	0x8800

Response:01 06 0021 0001 1800

Slave Addr.	1 byte	0x01
Function Code	1 byte	0x06
Register Addr.	2 byte	0x0020 (High8bits first)
Register Value	2 byte	0x0000 (High8bits first)
Checksum	2 byte	0x8800

7.4.4 Function Code 16 Protocol Example

Master Request: AA 10 RRRR NNNN MM VVVV1 VVVV2 ... CCCC

AA	1 byte	Slave Address,0-255
0x10	1 byte	Function Code 0x10
RRRR	2 byte	Starting Register Addr
NNNN	2 byte	Quantity of Register to write
MM	1 byte	Register Data Byte Count
VVVV1	2 byte	Register Value(High8bits first)
VVVV2	2 byte	Register Value(High8bits first)
		Register Value(High8bits first)
CCCC	2 byte	CRC CHECKSUM

Slave Response: AA 10 RRRR NNNN CCCC

AA	1 byte	Slave Address,0-255
0x10	1 byte	Function Code 0x10
RRRR	2 byte	Starting Register Addr
NNNN	2 byte	Quantity of Register to write
CCCC	2 byte	CRC CHECKSUM

Example: Write Register 0x0200-0x0201, that is set slave address to 1, and baudrate to 19200bp.

Master Request:01 10 0200 0002 04 0001 0004 BACC

0x01	1 byte	Slave Addr.	
0x10(HEX)	1 byte	Function Code 0x10	
0x0200	2 byte	Starting Register Addr	
0x0002	2 byte	Quantity of Register to write	
0x04	1 byte	Register Data Byte Count	
0x0001	2 byte	Register Value: Slave Address 1	
0x0004	2 byte	Register Value: Baudrate 19200bps	
0xBACC	2 byte	CRC CHECKSUM	

Salve Response:01 10 0200 0002 4070

0x01	1 byte	Slave Addr.	
0x10(HEX)	1 byte	Function Code 0x10	
0x0200	2 byte	Starting Register Addr(High8bits first)	
0x0002	2 byte	Quantity of Register to write(High8bits first)	
0x4070	2 byte	CRC CHECKSUM	

8 Software Configuration Utility

8.1 Hardwar Setup

8.2 Universal Modbus Comm Utility

You can use software listed below to try reading/writing the register of sensor, https://github.com/ed-chemnitz/qmodbus/releases

8.3 SensorOneSet Configuration Utility

SensorOneSet is a configuration utility to read/set sensor config for all of our serial communication sensor products. Please contact us if you need the English version.

Appendix

Copyright and Trademark

This document is copyrighted, 2019, by Dalian Endeavour Technology Co., Ltd. All rights are reserved. Dalian Endeavour Technology Co., Ltd. reserves the right to make improvements to the products described in this manual at any time without notice. No part of this manual may be reproduced, copied, translated or transmitted in any form or by any means without the prior written permission. Information provided in this manual is intended to be accurate and reliable. However, Dalian Endeavour Technology Co., Ltd. assumes no responsibility for its use, nor for any infringements upon the rights of third parties, which may result from its use.

INFWIN® is the trademark of Dalian Endeavour Technology Co., Ltd.

Version Control

Date	Version	Comment	Updated by
2017-04-23	V1.0	Initial Creation	fg49597
2021-02-23	V4.0	Update	fg49597