Quiz

- ▶ Prove that the dimension of \mathbb{R}^5 is 5, using the definition of *dimension*.
- ▶ Find the rank of the following set of vectors over GF(2):

$$\{[1,1,0,0,0],[0,1,1,0,0],[0,0,1,1,0],[0,0,0,1,1],[1,0,0,0,1]\}$$

Prove that your answer is correct, using the definition of rank.

Subset-Basis Lemma

Lemma: Every finite set T of vectors contains a subset S that is a basis for Span T.

Proof: The Grow algorithm finds a basis for $\mathcal V$ if it terminates.

Initialize $S = \emptyset$.

Repeat while possible: select a vector \mathbf{v} in \mathcal{V} that is not in Span S, and put it in S.

Revised version:

. .

Initialize $S = \emptyset$

- Differs from original:
- ightharpoonup This algorithm stops when Span S contains every vector in T.

Repeat while possible: select a vector \mathbf{v} in T that is not in Span S, and put it in S.

▶ The original Grow algorithm stops only once Span S contains every vector in \mathcal{V} . However, that's okay: when Span S contains all the vectors in T, Span S also contains all linear combinations of vectors in T, so at this point Span $S = \mathcal{V}$.

Termination of Grow algorithm

```
\begin{aligned} &\operatorname{def} \; \mathrm{Grow}(\mathcal{V}) \\ &B = \emptyset \\ &\operatorname{repeat} \; \operatorname{while} \; \operatorname{possible:} \\ & \quad \operatorname{find} \; \operatorname{a} \; \operatorname{vector} \; \mathbf{v} \; \operatorname{in} \; \mathcal{V} \; \operatorname{that} \; \operatorname{is} \; \operatorname{not} \; \operatorname{in} \; \operatorname{Span} \; \; B, \; \operatorname{and} \; \operatorname{put} \; \operatorname{it} \; \operatorname{in} \; B. \end{aligned}
```

Grow-Algorithm-Termination Lemma: If \mathcal{V} is a subspace of \mathbb{F}^D where D is finite then $\operatorname{Grow}(\mathcal{V})$ terminates.

Proof: By Grow-Algorithm Corollary, B is linearly independent throughout.

Apply the Morphing Lemma with $S = \{ \text{standard generators for } \mathbb{F}^D \} \Rightarrow |B| \leq |S| = |D|.$

Since B grows in each iteration, there are at most |D| iterations.

QED

Every subspace of \mathbb{F}^D contains a basis

Grow-Algorithm-Termination Lemma: If \mathcal{V} is a subspace of \mathbb{F}^D where D is finite then $\operatorname{Grow}(\mathcal{V})$ terminates.

Theorem: For finite D, every subspace of \mathbb{F}^D contains a basis.

Proof: Let V be a subspace of \mathbb{F}^D .

```
\begin{aligned} & \operatorname{def} \; \operatorname{Grow}(\mathcal{V}) \\ & B = \emptyset \\ & \operatorname{repeat} \; \operatorname{while} \; \operatorname{possible:} \\ & \quad \quad \operatorname{find} \; \operatorname{a} \; \operatorname{vector} \; \mathbf{v} \; \operatorname{in} \; \mathcal{V} \; \operatorname{that} \; \operatorname{is} \; \operatorname{not} \; \operatorname{in} \; \operatorname{Span} \; B, \; \operatorname{and} \; \operatorname{put} \; \operatorname{it} \; \operatorname{in} \; B. \end{aligned}
```

Grow-Algorithm-Termination Lemma ensures algorithm terminates.

Upon termination, every vector in $\mathcal V$ is in Span B, so B is a set of generators for $\mathcal V$. By Grow-Algorithm Corollary, B is linearly independent. Therefore B is a basis for $\mathcal V$.

QED

Superset-Basis Lemma

Grow-Algorithm-Termination Lemma: If \mathcal{V} is a subspace of \mathbb{F}^D where D is finite then $\operatorname{Grow}(\mathcal{V})$ terminates.

Superset-Basis Lemma: Let \mathcal{V} be a vector space consisting of D-vectors where D is finite. Let C be a linearly independent set of vectors belonging to \mathcal{V} . Then \mathcal{V} has a basis B containing all vectors in C.

Proof: Use version of Grow algorithm:

Initialize B to the empty set.

Repeat while possible: select a vector \mathbf{v} in \mathcal{V} (preferably in \mathcal{C}) that is not in Span \mathcal{B} , and put it in \mathcal{B} .

At first, B will consist of vectors in C until B contains all of C.

Then more vectors will be added to B until Span $B = \mathcal{V}$.

By Grow-Algorithm Corollary, B is linearly independent throughout.

Therefore, once algorithm terminates, B contains C and is a basis for \mathcal{U} .

Estimating dimension

$$T = \{ [-0.6, -2.1, -3.5, -2.2], [-1.3, 1.5, -0.9, -0.5], [4.9, -3.7, 0.5, -0.3], \\ [2.6, -3.5, -1.2, -2.0], [-1.5, -2.5, -3.5, 0.94] \}.$$
 What is the rank of T ?

By Subset-Basis Lemma, T contains a basis.

Therefore dim Span T < |T|.

Therefore rank $T \leq |T|$.

Proposition: A set T of vectors has rank $\leq |T|$.

Dimension Lemma

Dimension Lemma: If \mathcal{U} is a subspace of \mathcal{W} then ▶ **D1:** dim \mathcal{U} < dim \mathcal{W} , and

▶ **D2**: if dim $\mathcal{U} = \dim \mathcal{W}$ then $\mathcal{U} = \mathcal{W}$

Proof: Let $\mathbf{u}_1, \ldots, \mathbf{u}_k$ be a basis for \mathcal{U} .

By Superset-Basis Lemma, there is a basis B for W that contains $\mathbf{u}_1, \dots, \mathbf{u}_k$.

▶ $B = \{\mathbf{u}_1, \dots, \mathbf{u}_k, \mathbf{b}_1, \dots, \mathbf{b}_r\}$

▶ Thus k < |B|, and

▶ If k = |B| then $\{u_1, ..., u_k\} = B$

Example: Suppose $V = \text{Span } \{[1, 2], [2, 1]\}.$

Clearly \mathcal{V} is a subspace of \mathbb{R}^2 .

Since dim $\mathbb{R}^2 = 2$. D2 shows that $\mathcal{V} = \mathbb{R}^2$.

However, the set $\{[1,2],[2,1]\}$ is linearly independent, so dim $\mathcal{V}=2$.

Example: $S = \{[-0.6, -2.1, -3.5, -2.2], [-1.3, 1.5, -0.9, -0.5], [4.9, -3.7, 0.5, -0.3], [4.9, -3.7, 0.5], [4.9, -3.7, 0.5], [4.9, -3.7, 0.5], [4.9, -3.7, 0.5], [4.9, -3.7, 0.5], [4.9, -3.7, 0.5], [4.9, -3.7, 0.5], [4.9, -3.7, 0.5], [4.9, -3.7, 0.5], [4.9, -3.7, 0.5], [4.9, -3.7, 0.5], [4.9, -3.7, 0.5], [4.9, -3.7, 0.5], [4.9, -3.7, 0.5], [4.9, -3.7, 0.5], [4.9, -3.7, 0.5], [4.9, -3.7, 0.5], [4.9, -3.7, 0.5$

QED

Since every vector in S is a 4-vector, Span S is a subspace of \mathbb{R}^4 . Since dim $\mathbb{R}^4 = 4$, D1 shows dim Span S < 4.

[2.6, -3.5, -1.2, -2.0], [-1.5, -2.5, -3.5, 0.94]

Rank Theorem

Rank Theorem: For every matrix M, row rank equals column rank.

Lemma: For any matrix A, row rank of $A \leq$ column rank of A

- To show theorem:
 - ▶ Apply lemma to $M \Rightarrow$ row rank of $M \le$ column rank of M
 - ▶ Apply lemma to M^T ⇒ row rank of M^T ≤ column rank of M^T ⇒ column rank of M ≤ row rank of M

Combine \Rightarrow row rank of M = column rank of M

Proof of lemma: For any matrix A, row rank of $A \leq \text{column rank of } A$

Think of A as columns $\mathbf{a}_1, \dots, \mathbf{a}_n$. Let $\mathbf{b}_1, \dots, \mathbf{b}_r$ be basis for column space (so column rank = r).

Write each column of
$$A$$
 in terms of basis: $\begin{vmatrix} \mathbf{a}_j \end{vmatrix} = \begin{vmatrix} \mathbf{b}_1 \end{vmatrix} \cdots \begin{vmatrix} \mathbf{b}_r \end{vmatrix} \begin{vmatrix} \mathbf{u}_j \end{vmatrix}$

Use matrix-vector definition of matrix-matrix multiplication to rewrite as A = BU. B has r columns and U has r rows.

Take transpose of both sides

Write A^T and B^T in terms of cols: col i of A^T equals U^T times col i of B^T . Write U^T in terms of cols: col i of A^T is a linear combination of cols of U^T . \mathbf{r} Proof of lemma: For any matrix A, row rank of $A \le \text{column rank of } A$

$$\begin{bmatrix} a_1 & a_2 & a_3 & a_4 & a_5 & a_6 & a_7 & a_8 & a_9 \end{bmatrix}$$

Think of A as columns $\mathbf{a}_1, \ldots, \mathbf{a}_n$.

Let
$$\mathbf{b}_1, \dots, \mathbf{b}_r$$
 be basis for column space (so column rank $= r$).

Write each column of A in terms of basis: $\begin{bmatrix} \mathbf{a}_j \end{bmatrix} = \begin{bmatrix} \mathbf{b}_1 & \cdots & \mathbf{b}_r \end{bmatrix} \begin{bmatrix} \mathbf{u}_j \end{bmatrix}$

Use matrix-vector definition of matrix-matrix multiplication to rewrite as A = BU. B has r columns and U has r rows.

Take transpose of both sides

Write A^{T} and B^{T} in terms of sole; sol i of A^{T} equals U^{T} times sol i of B^{T}

Write A^T and B^T in terms of cols: col j of A^T equals U^T times col i of B^T . Write U^T in terms of cols: col i of A^T is a linear combination of cols of U^T . Proof of lemma: For any matrix A, row rank of $A \le$ column rank of A

Think of A as columns $\mathbf{a}_1, \ldots, \mathbf{a}_n$.

Let
$$\mathbf{b}_1, \dots, \mathbf{b}_r$$
 be basis for column space (so column rank = r).

Write each column of A in terms of basis: $\begin{bmatrix} \mathbf{a}_j \end{bmatrix} = \begin{bmatrix} \mathbf{b}_1 & \cdots & \mathbf{b}_r \end{bmatrix} \begin{bmatrix} \mathbf{u}_j \end{bmatrix}$ Use matrix-vector definition of matrix-matrix multiplication to rewrite as A = BU.

B has r columns and U has r rows.

Take transpose of both sides Write A^T and B^T in terms of cols: col j of A^T equals U^T times col i of B^T .

Write U^T in terms of cols: col i of A^T is a linear combination of cols of U^T .

Proof of lemma: For any matrix A, row rank of $A \le \text{column rank of } A$

Think of A as columns $\mathbf{a}_1, \dots, \mathbf{a}_n$.

Let
$$\mathbf{b}_1, \ldots, \mathbf{b}_r$$
 be basis for column space (so column rank = r).

Write each column of A in terms of basis: $\begin{bmatrix} \mathbf{a}_j \end{bmatrix} = \begin{bmatrix} \mathbf{b}_1 & \cdots & \mathbf{b}_r \end{bmatrix} \begin{bmatrix} \mathbf{u}_j \end{bmatrix}$ Use matrix-vector definition of matrix-matrix multiplication to rewrite as A = BU.

Write A^T and B^T in terms of cols: col j of A^T equals U^T times col i of B^T . Write U^T in terms of cols: col i of A^T is a linear combination of cols of U^T .

 $\begin{bmatrix} A \\ \end{bmatrix} = \begin{bmatrix} B \\ \end{bmatrix} \begin{bmatrix} U \\ \end{bmatrix} \begin{bmatrix} A^T \\ \end{bmatrix} = \begin{bmatrix} \\ \end{bmatrix}$ Think of A as columns $\mathbf{a}_1, \dots, \mathbf{a}_n$.
Let $\mathbf{b}_1, \dots, \mathbf{b}_r$ be basis for column space (so column rank = r).

Proof of lemma: For any matrix A, row rank of $A \leq \text{column rank of } A$

Write each column of
$$A$$
 in terms of basis: $\begin{bmatrix} \mathbf{a}_j \end{bmatrix} = \begin{bmatrix} \mathbf{b}_1 \end{bmatrix} \cdots \begin{bmatrix} \mathbf{b}_r \end{bmatrix} \begin{bmatrix} \mathbf{u}_j \end{bmatrix}$
Use matrix-vector definition of matrix-matrix multiplication to rewrite as $A = BU$. B has r columns and U has r rows.

Take transpose of both sides

Write A^T and B^T in terms of cols: col i of A^T equals II^T times col i of B^T

Write A^T and B^T in terms of cols: col j of A^T equals U^T times col i of B^T . Write U^T in terms of cols: col i of A^T is a linear combination of cols of U^T .

Proof of lemma: For any matrix A, row rank of $A \leq \text{column rank of } A$ $\begin{bmatrix}
\overline{a_1} & \overline{a_2} & \overline{a_3} & \overline{a_4} & \overline{a_5} & \overline{a_6} & \overline{a_7} & \overline{a_8} & \overline{a_9}
\end{bmatrix} = \begin{bmatrix}
\mathbf{T} & \mathbf{T}
\end{bmatrix}
\begin{bmatrix}
\overline{b_1} & \overline{b_2} & \overline{b_3} & \overline{b_4} & \overline{b_5} & \overline{b_6} & \overline{b_7} & \overline{b_8} & \overline{b_9}
\end{bmatrix}$

Think of A as columns $\mathbf{a}_1, \dots, \mathbf{a}_n$. Let $\mathbf{b}_1, \dots, \mathbf{b}_r$ be basis for column space (so column rank = r).

Write each column of
$$A$$
 in terms of basis: $\begin{bmatrix} \mathbf{a}_j \end{bmatrix} = \begin{bmatrix} \mathbf{b}_1 \end{bmatrix} \cdots \begin{bmatrix} \mathbf{b}_r \end{bmatrix} \begin{bmatrix} \mathbf{u}_j \end{bmatrix}$

Use matrix-vector definition of matrix-matrix multiplication to rewrite as A = BU. B has r columns and U has r rows.

Take transpose of both sides Write A^T and B^T in terms of cols: col i of A^T equals U^T times col i of B^T .

Write U^T in terms of cols: col i of A^T is a linear combination of cols of U^T .

 \mathbf{r}

Proof of lemma: For any matrix A, row rank of $A \le$ column rank of A

Think of A as columns $\mathbf{a}_1, \dots, \mathbf{a}_n$.

Let
$$\mathbf{b}_1, \dots, \mathbf{b}_r$$
 be basis for column space (so column rank = r).

Write each column of A in terms of basis: $\begin{bmatrix} \mathbf{a}_j \end{bmatrix} = \begin{bmatrix} \mathbf{b}_1 \end{bmatrix} \cdots \begin{bmatrix} \mathbf{b}_r \end{bmatrix} \begin{bmatrix} \mathbf{u}_j \end{bmatrix}$ Use matrix-vector definition of matrix-matrix multiplication to rewrite as A = BU.

B has r columns and U has r rows.

Take transpose of both sides

Write A^T and B^T in terms of cols: col j of A^T equals U^T times col i of B^T .

Simple authentication revisited • Password is an *n*-vector $\hat{\mathbf{x}}$ over GF(2)• Challenge: Computer sends random *n*-vector

• Response: Human sends back $\mathbf{a} \cdot \hat{\mathbf{x}}$.

Repeated until Computer is convinced that Human knows password $\hat{\mathbf{x}}$. Eve eavesdrops on communication.

learns *m* pairs a_1, b_1

$$\mathbf{a}_m, b_m$$
 where b_i is right response to challenge \mathbf{a}_i

Then Eve can calculate right response to any challenge in Span $\{a_1, \ldots, a_m\}$:

response is $\alpha_1 b_1 + \cdots + \alpha_m b_m$.

of $GF(2)^n$ so Eve can respond to any challenge.

less than $\min\{m, n\}$.

Also: The password $\hat{\mathbf{x}}$ is a solution to

Fact: Probably rank $[a_1, \ldots, a_m]$ is not much

Once m > n, probably Span $\{\mathbf{a}_1, \dots, \mathbf{a}_m\}$ is all

 $\begin{bmatrix} \mathbf{a}_1 \\ \vdots \\ \mathbf{a}_m \end{bmatrix} \begin{bmatrix} \mathbf{x} \end{bmatrix} = \begin{bmatrix} b_1 \\ \vdots \\ b_m \end{bmatrix}$

Solution set of $A\mathbf{x} = \mathbf{b}$ is $\hat{\mathbf{x}} + \text{Null } A$ Once rank A reaches n, cols of A are linearly independent so Null A is trivial, so only solution Suppose $\mathbf{a} = \alpha_1 \, \mathbf{a}_1 + \cdots + \alpha_m \, \mathbf{a}_m$. Then right is the password $\hat{\mathbf{x}}$, so Eve can compute the password using solver.

Direct Sum

Let \mathcal{U} and \mathcal{V} be two vector spaces consisting of D-vectors over a field \mathbb{F} .

Definition: If $\mathcal U$ and $\mathcal V$ share only the zero vector then we define the *direct sum* of $\mathcal U$ and $\mathcal V$ to be the set

$$\{\mathbf{u} + \mathbf{v} : \mathbf{u} \in \mathcal{U}, \mathbf{v} \in \mathcal{V}\}$$

written $\mathcal{U} \oplus \mathcal{V}$

That is, $\mathcal{U} \oplus \mathcal{V}$ is the set of all sums of a vector in \mathcal{U} and a vector in \mathcal{V} .

In Python, [u+v for u in U for v in V]

(But generally ${\cal U}$ and ${\cal V}$ are infinite so the Python is just suggestive.)

Direct Sum: Example

Vectors over GF(2):

Example: Let $U = \text{Span } \{1000, 0100\}$ and let $V = \text{Span } \{0010\}$.

- ightharpoonup Every nonzero vector in $\mathcal U$ has a one in the first or second position (or both) and nowhere else.
- ightharpoonup Every nonzero vector in $\mathcal V$ has a one in the third position and nowhere else.

Therefore the only vector in both $\mathcal U$ and $\mathcal V$ is the zero vector.

Therefore $\mathcal{U}\oplus\mathcal{V}$ is defined.

$$\mathcal{U} \oplus \mathcal{V} = \{0000 + 0000, 1000 + 0000, 0100 + 0000, 1100 + 0000, 0000 + 0010, 1000 + 0010, 0100 + 0010, 1100 + 0010\}$$

which is equal to $\{0000, 1000, 0100, 1100, 0010, 1010, 0110, 1110\}$.

Direct Sum: Example

Vectors over \mathbb{R} :

Example: Let
$$\mathcal{U} = \text{Span } \{[1,2,1,2],[3,0,0,4]\}$$
 and let \mathcal{V} be the null space of $\begin{bmatrix} 0 & 1 & -1 & 0 \end{bmatrix}$

- ▶ The vector [2, -2, -1, 2] is in \mathcal{U} because it is [3, 0, 0, 4] [1, 2, 1, 2]
- ▶ It is also in V because

$$\left[\begin{array}{ccc|c} 0 & 1 & -1 & 0 \\ 1 & 0 & 0 & -1 \end{array}\right] \left[\begin{array}{c} 2 \\ -2 \\ -1 \\ 2 \end{array}\right] = \left[\begin{array}{c} 0 \\ 0 \end{array}\right]$$

Therefore we cannot form $\mathcal{U} \oplus \mathcal{V}$.

Direct Sum: Example

Vectors over \mathbb{R} :

Example:

- ▶ Let $\mathcal{U} = \text{Span } \{[4, -1, 1]\}.$ ▶ Let $\mathcal{V} = \text{Span } \{[0, 1, 1]\}.$

The only intersection is at the origin, so $\mathcal{U}\oplus\mathcal{V}$ is defined.

- ▶ $\mathcal{U} \oplus \mathcal{V}$ is the set of vectors $\mathbf{u} + \mathbf{v}$ where $\mathbf{u} \in \mathcal{U}$ and $\mathbf{v} \in \mathcal{V}$.
 - ▶ This is just Span $\{[4, -1, 1], [0, 1, 1]\}$
 - ▶ Plane containing the two lines

Properties of direct sum

Lemma: $\mathcal{U} \oplus \mathcal{V}$ is a vector space.

(Prove using Properties V1, V2, V3.)

Lemma: The union of

- \triangleright a set of generators of \mathcal{U} , and
- ightharpoonup a set of generators of ${\cal V}$

is a set of generators for $\mathcal{U}\oplus\mathcal{V}$.

Proof: Suppose $\mathcal{U} = \operatorname{Span} \{\mathbf{u}_1, \dots, \mathbf{u}_m\}$ and $\mathcal{V} = \operatorname{Span} \{\mathbf{v}_1, \dots, \mathbf{v}_n\}$. Then

- every vector in \mathcal{U} can be written as $\alpha_1 \mathbf{u}_1 + \cdots + \alpha_m \mathbf{u}_m$, and
- ightharpoonup every vector in $\mathcal V$ can be written as $eta_1 \, \mathbf v_1 + \cdots + eta_n \, \mathbf v_n$

so every vector in $\mathcal{U}\oplus\mathcal{V}$ can be written as

$$\alpha_1 \mathbf{u}_1 + \cdots + \alpha_m \mathbf{u}_m + \beta_1 \mathbf{v}_1 + \cdots + \beta_n \mathbf{v}_n$$

Properties of direct sum

Direct Sum Basis Lemma:

Union of a basis of \mathcal{U} and a basis of \mathcal{V} is a basis of $\mathcal{U} \oplus \mathcal{V}$.

Proof: Clearly

- \triangleright a basis of \mathcal{U} is a set of generators for \mathcal{U} , and
- \triangleright a basis of \mathcal{V} is a set of generators for \mathcal{V} .

Therefore the previous lemma shows that

ightharpoonup the union of a basis for \mathcal{U} and a basis for \mathcal{V} is a generating set for $\mathcal{U} \oplus \mathcal{V}$.

We just need to show that the union is linearly independent.

Properties of direct sum

Direct Sum Basis Lemma:

Union of a basis of $\mathcal U$ and a basis of $\mathcal V$ is a basis of $\mathcal U\oplus\mathcal V$.

 $\mathbf{0} = \alpha_1 \mathbf{u}_1 + \cdots + \alpha_m \mathbf{u}_m + \beta_1 \mathbf{v}_1 + \cdots + \beta_n \mathbf{v}_n.$

Proof, cont'd: Let $\{\mathbf{u}_1, \dots, \mathbf{u}_m\}$ be a basis for \mathcal{U} . Let $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ be a basis for \mathcal{V} . We need to show that $\{\mathbf{u}_1, \dots, \mathbf{u}_m, \mathbf{v}_1, \dots, \mathbf{v}_n\}$ is independent.

when need to show that $\{\mathbf{u}_1,\ldots,\mathbf{u}_m,\mathbf{v}_1,\ldots,\mathbf{v}_n\}$ is independent Suppose

Then
$$\underbrace{\alpha_1 \ \mathbf{u}_1 + \dots + \alpha_m \ \mathbf{u}_m}_{\text{in } \mathcal{U}} = \underbrace{(-\beta_1) \ \mathbf{v}_1 + \dots + (-\beta_n) \ \mathbf{v}_n}_{\text{in } \mathcal{V}}$$

Left-hand side is a vector in \mathcal{U} , and right-hand side is a vector in \mathcal{V} .

By definition of $\mathcal{U} \oplus \mathcal{V}$, the only vector in both \mathcal{U} and \mathcal{V} is the zero vector.

$$\mathbf{0} = \alpha_1 \, \mathbf{u}_1 + \dots + \alpha_m \, \mathbf{u}_m$$

and $\mathbf{0} = (-\beta_1) \mathbf{v}_1 + \cdots + (-\beta_n) \mathbf{v}_n$

Direct Sum

Direct-Sum Basis Lemma:

Union of a basis of ${\mathcal U}$ and a basis of ${\mathcal V}$ is a basis of ${\mathcal U}\oplus{\mathcal V}.$

QED

Direct-Sum Dimension Corollary: $\dim \mathcal{U} + \dim \mathcal{V} = \dim \mathcal{U} \oplus \mathcal{V}$

Proof: A basis for $\mathcal U$ together with a basis for $\mathcal V$ forms a basis for $\mathcal U \oplus \mathcal V$.