¿Cual modelo es mejor clasificando?

A continuación se comparan dos de los modelos planteados, presentando estos una considerable diferencia en el numero de epocas de entrenamiento y Datasets utilizados

Gráfico Primer Modelo

Gráfico de comparación de el ciclo de vida del primer modelo con respecto a la exactitud y la pérdida alcanzada en cada ciclo

Especificaciones:

- Uso de Transferlearning
- 50 épocas de entrenamientoFunción de Activación: Softmax
- Dataset: 200 imágenes a color

Gráfico Ultimo Modelo

Gráfico de comparación de el ciclo de vida del ultimo modelo con respecto a la exactitud y la pérdida alcanzada en cada ciclo

Especificaciones:

- Uso de Transferlearning
- 15 épocas de entrenamiento
- Función de Activación: SoftmaxDataset: 600 imágenes a color

Matriz de Confusión Matriz de Confusión Fig 8. Matriz de Confusión de Modelo_50epsmx_BS980 Matriz de Confusión de Modelo_15epsmx_BS32

REFERENCIAS

Segundo Parcial Práctico. Ojeda Rodriguez, Celeste. Godoy, Maria Laura. Optativa I: Inteligencia Artificial. Prof. Titular Dra. Sonia I. Mariño. Auxiliar Lic. Jaquelina E. Escalante. 2022.

Repositorio : https://github.com/marialauragodoy/redneuronal_ia

INTEGRADOR

INCORPORACION DE MÉTRICAS Y NUEVOS MODELOS RECREADOS SIN TRANSFER LEARNING

EXACTITUD

PRECISIÓN

EXHAUSTIVIDAD

DESCRIPCION DE LOS NUEVOS MODELOS

DENSO

Este modelo esta configurado con 2 capas densas, función de activacion ReLU, cuenta con 500 neuronas en cada capa entrenadas durante 50 epocas con un dataset en escala de grises.

CONVOLUCIONAL

Este modelo esta configurado con 3 capas convolucionales, función de activacion ReLU de 32, 64 y 28 neuronas y entre ellas una capa de maxpooling de 2x2 y una capa densa de ReLU de 100 neuronas entrenadas durante 50 epocas con un dataset en escala de grises.

MODELOS FINALES

Comparación entre el modelo final elegido por método de transferlearning y el perdidas

REFERENCIAS