Question 1:

1a) Use uniform series capital recovery factor
$$= \left(\frac{A}{P}, i\%, n\right) = \left[\frac{i(1+i)^n}{(1+i)^n - 1}\right]$$

$$A = P * \left[\frac{i(1+i)^n}{(1+i)^n - 1} \right]$$
; where $A = amount\ paid\ per\ period$; where $P = amount\ loaned$

$$i(per month) = \frac{\frac{9\%(annum)}{12}}{100} = 0.0075$$

n = # periods in 30 years = 12 * 30 = 360 periods

$$P = 500,000 - 100,000 = 400,000$$

$$A = 400000 * \left[\frac{0.0075(1 + 0.0075)^{360}}{(1 + 0.0075)^{360} - 1} \right] = \boxed{\$3218.4905} \rightarrow monthly\ loan\ payment$$

1b) Use uniform series present worth formula
$$= \left(\frac{P}{A}, i\%, n\right) = \left[\frac{(1+i)^n - 1}{i(1+i)^n}\right]$$

$$P = A * \left[\frac{(1+i)^n - 1}{i(1+i)^n} \right]$$

to solve for the remaining value past 10 years equivalent to the present worth Present period when $n_1=120$ with reference to the final $n_2=360$; $n=n_2-n_1=240$

$$P = 3218.4905 * \left[\frac{(1+0.0075)^{240} - 1}{0.0075(1+0.0075)^{240}} \right] = \boxed{\$357,718.975} \rightarrow remaining \ amount \ owed$$

Question 2:

$$F = A \left[\frac{(1+i)^n - 1}{i} \right];$$

$$A = \$200 \ per \ year; n = 15; i = 0.07$$

$$\$200 \left[\frac{(1+0.07)^{15} - 1}{0.07} \right] = \$5025.8044$$
However, since the deposit is made at the beginning of the year

an additional rate of 0.07 interest will be added \$5025.8044*(1.07) = \$5377.61

Initial deposit/Next annual deposit		200.00
	Beginning of year	interest
Year	acct balance	earned
1	200.00	14.00
2	414.00	28.98
3	642.98	45.01
4	887.99	62.16
5	1150.15	80.51
6	1430.66	100.15
7	1730.80	121.16
8	2051.96	143.64
9	2395.60	167.69
10	2763.29	193.43
11	3156.72	220.97
12	3577.69	250.44
13	4028.13	281.97
14	4510.10	315.71
15	5025.80	351.81
16th Year Mark (After 15 years)/ No \$200	5377.61	

Question 3:

$$\begin{split} P_{cashflow1} &= A \left[\frac{(1+i)^n - 1}{i(1+i)^n} \right] \\ P_{cashflow1} &= A \left[\frac{(1+0.12)^4 - 1}{0.12(1+0.12)^4} \right] = 3.073 A \ units \ of \ Cash \ flow \end{split}$$

$$\begin{split} P_{cashflow2} &= P' + P'' \\ P_{cashflow2} &= A \left[\frac{(1+i)^n - 1}{i(1+i)^n} \right] + G \left[\frac{(1+i)^n - in - 1}{i^2(1+i)^n} \right] \\ P_{cashflow2} &= 150 \left[\frac{(1+0.12)^5 - 1}{0.12(1+0.12)^5} \right] + 150 \left[\frac{(1+0.12)^5 - (0.12*5) - 1}{0.12^2(1+0.12)^5} \right] = \$540.716 + \$959.5524 \\ &= \$1500.2688 \end{split}$$

Solve for A in term of (\$):

$$$1500.2688 = 3.073A \rightarrow A = 493.94$$

Question 3				
Cash Flow 1		Cash Flow 2		
i	12%	i	12%	
Cash flow (units of A)	\$1	Cash flow (units of \$)	150	$P'' = G\left[\frac{(1+i)^n - in - 1}{i^2(1+i)^n}\right]$
n	4	G	150	$i^2(1+i)^n$
		n	5	$P' = A \left[\frac{(1+i)^n - 1}{i(1+i)^n} \right]$
For reference:				$P' = A \left[\frac{(1+i)^n}{(1+i)^n} \right]$
P'(Sum) (A units)	3.0373493466	A'	150	$[l(1+l)^n]$
[(1 + i)n +1]		A/G	1.775	
$P' = A \left \frac{(1+i)^n - 1}{i(1+i)^n} \right $		Α''	177.46	
$[i(1+i)^n]$		A total	327.46	
A units of Cash Flow	3.037349347	For reference:		
Equivalent Amount:	\$1,500.27	P'	540.72	
How much is 1 \$A cash flow	\$493.94	P''	959.55	
		Sum	1500.268835	

Question 3)		1				
	D F	1				
	$P = F \overline{\zeta}$	1 . 1\2				
	(.	$(1+i)^n$				
	`					
	interest rate	12%				
	Cash Flow option 2				Cash Flow option 1	
/ear	costs at the year itself	present worth		year	costs at the year itself(Units of A)	present worth
1	150	\$134		1	:	1 \$1
2	300	\$239		2	:	1 \$1
3	450	\$320		3		1 \$1
4	600	\$381		4	:	1 \$1
5	\$750.00	\$426		5		
Sum of PW	Cash Flow option 2	\$1,500.27		Sum of PW	Cash Flow option 1 (Units of A)	3.037349347
		Cash Flow option 1 (Units of A)	3.037349347			
		Cash Flow option 2 (equivalent)	\$ 1,500.27			
		A value (\$)	\$ 493.94			

Question 4:

4a) : Nominal annual interest =
$$r_{percent} = 1.25\% \times 12 = 15\%$$

4b)
$$\therefore$$
 Effective annual interest rate: $i_a = \left(1 + \frac{r}{m}\right)^m - 1 = \left(1 + \frac{0.15}{12}\right)^{12} - 1$

$$= \boxed{0.1607545} \text{ or } \boxed{16.07545\%}$$

$$4c) A = P \left[\frac{i(1+i)^n}{(1+i)^n - 1} \right] = P \left(\frac{A}{P}, i, n \right)$$

$$n = 12 * 4 years = 48 periods; P = 10,000; i = interest per period = 0.0125 = 1.25\%$$

$$\therefore 10,000 * \left[\frac{0.0125(1 + 0.0125)^{48}}{(1 + 0.0125)^{48} - 1} \right] = \boxed{\$278.3075}$$

Question 5:

Q5a)

Option
$$A \rightarrow \frac{\$300}{2 \text{ years}}$$
; require to buy (× 2)to fit 3yr minimum lifespan

Option $B \rightarrow 400 for inifinite time; require (× 1)to fit 3yr minimum lifespan

We need to compare the present worth (PW) values of both options to evaluate whether which muffler is the most economical. Assuming Option B is able to fit the 3 yr life (minimum life span), we only need a PW for Option B to be simply \$400.

Use geometric series present worth factor where i = g

$$P = \left[\frac{F}{(1+i)^n}\right]$$

PW of Option
$$A \to 300 + 300 \left(\frac{P}{F}, 20\%, 2\right) = 300 + 300 \left(\frac{1}{1.2^2}\right) = $508.33$$

$$\boxed{Option A = $400} \boxed{Option B (PW) = $508.33}$$

 \div Option A (muffler that is \$400 upfront cost) is obviously the better choice since it has a lower present value worth

Question 6:

6a)

For Infinite analysis, we use ...

$$A = F\left(\frac{A}{F}, i, n\right) \quad P = \frac{A}{i} \rightarrow P_{maintenance_1} \text{ or } P_{friction} = \frac{F\left[\frac{i}{(1+i)^n - 1}\right]}{i}$$

$$(\$n_i)$$

$$P_V = \frac{(\$n_i)}{(1+i)^n} \rightarrow \text{ used for computing the PW of } P_{maintenance_1} \text{ equivalent when } n = 20$$

Full Capacity Cost: (initial installation) +
$$(P_{maintenance})$$
 - (1)

$$\frac{1}{2}$$
 Capacity Cost equation_{first half} or n_{10} : (initial installation) + $(P_{maintenance_1})$ + $(P_{friction})$ – (2)

$$\frac{1}{2} Capacity Cost \ equation_{second \ half} : (P_V) \ or \ \frac{(\$n_{10})}{(1+i)^{20}} \tag{3}$$

Full Capacity Capitalized Cost:
$$$556,000 + \frac{40,000 \left[\frac{0.07}{(1+0.07)^{10}-1} \right]}{0.07} = $597,358.573$$

$$\approx \boxed{\$597,360} \rightarrow PW \text{ of full tunnel}$$

$$\frac{1}{2} Capacity Capitalized Cost (10 year mark): $402,000 + \frac{32,000 \left[\frac{0.07}{(1+0.07)^{10}-1} \right]}{0.07} + \frac{2000}{0.07}$$
= \$463,658.287

$$\frac{1}{2}$$
 Capacity Capitalized Cost (beyond 10 year mark): $\frac{\$463,658.287}{(1+0.07)^{20}} = \$119,818.112$

$$$119,818.112 + $463,658.287 = $583,476.4 \approx \boxed{\$583,480} \rightarrow PW \text{ of half tunnel}$$

 $\because \textit{The 2-half tunnels cost should be chosen as the PW worth of cost is lower}$

<u>6b</u> We chose a period of n = 30 years

Question6	ь)				1
		Annual Friction Cost	10 year Maintenance	ם ת	1
	Half Tunnel	2000	32000	$P = F \frac{1}{4}$. :\n
	Full Tunnel	0	40000	$P = F {(1 - \frac{1}{2})^2}$	+ 1)"
				,	•
	interest rate	7%			
	Half Tunnel			Full Tunnel	
year	costs	present worth		costs	present worth
0	\$402,000.00	\$402,000.00		\$556,000.00000	\$556,000.00000
1	\$2,000.00	\$1,869.16		\$0.00000	\$0.00000
2	\$2,000.00	\$1,746.88		\$0.00000	\$0.00000
3	\$2,000.00	\$1,632.60		\$0.00000	\$0.00000
4	\$2,000.00	\$1,525.79		\$0.00000	\$0.00000
5	\$2,000.00	\$1,425.97		\$0.00000	\$0.00000
6	\$2,000.00	\$1,332.68		\$0.00000	\$0.00000
7	\$2,000.00	\$1,245.50		\$0.00000	\$0.00000
8	\$2,000.00	\$1,164.02		\$0.00000	\$0.00000
9	\$2,000.00	\$1,087.87		\$0.00000	\$0.00000
10	\$34,000.00	\$17,283.88		\$40,000.00000	\$20,333.97169
11	\$2,000.00	\$950.19		\$0.00000	\$0.00000
12	\$2,000.00	\$888.02		\$0.00000	\$0.00000
13	\$2,000.00			\$0.00000	\$0.00000
14	\$2,000.00	\$775.63		\$0.00000	\$0.00000
15	\$2,000.00	\$724.89		\$0.00000	\$0.00000
16	\$2,000.00	\$677.47		\$0.00000	\$0.00000
17	\$2,000.00	\$633.15		\$0.00000	\$0.00000
18	\$2,000.00	\$591.73		\$0.00000	\$0.00000
19	\$2,000.00	\$553.02		\$0.00000	\$0.00000
20	\$436,000.00	\$112,670.69		\$40,000.00000	\$10,336.76011
21	\$4,000.00	\$966.05		\$0.00000	\$0.00000
22	\$4,000.00	\$902.85		\$0.00000	\$0.00000
23	\$4,000.00	\$843.79		\$0.00000	\$0.00000
24	\$4,000.00	\$788.59		\$0.00000	\$0.00000
25	\$4,000.00	\$737.00		\$0.00000	\$0.00000
26	\$4,000.00	\$688.78		\$0.00000	\$0.00000
27	\$4,000.00	\$643.72		\$0.00000	\$0.00000
28	\$4,000.00	\$601.61		\$0.00000	\$0.00000
29	\$4,000.00	\$562.25		\$0.00000	\$0.00000
30	\$68,000.00	\$8,932.96		\$40,000.00000	\$5,254.68469
	Half Tunnel (Total)	\$ 567,276.66		Full Tunnel (Total)	\$ 591,925.42

The half tunnel option will still be a cheaper and better choice regardless of the time frame.

This proves that when both infrustructure plans converges to infinite years, both plans will coverge to a finite cost, and the half tunnel cost will always be cheaper than the full tunnel cost

Question 7:

The excel spreadsheet below note values in terms of cost, a positive net value means that the option would give the user a net loss in money. Whereas a negative value means that there is a net gain. Utimately we want to get the largest negative value in terms of cost to find which option is the most worth

Question 7a)					1			
		Uniform Annual benef	EOL Salavage	ם י	r 1			
	Alternative A	135	0	P = I	(1)	\overline{a}		
	Alternative B	100	250		(1+l))"		
	Alternative C	100	180		-			
	interest rate	8%					Alternative D	0
	Alternative A			Alternative B			Alternative C	
year	costs	present worth		costs	present worth		costs	present worth
0	\$500	\$500		\$600.00	\$600.00		\$700.00	\$700.00
1	-135	-\$125		-\$100.00	-\$92.59		-\$100.00	-\$92.59
2	-135	-\$116		-\$100.00	-\$85.73		-\$100.00	-\$85.73
3	-135	-\$107		-\$100.00	-\$79.38		-\$100.00	-\$79.38
4	-135	-\$99		-\$100.00	-\$73.50		-\$100.00	-\$73.50
5	\$365.00	\$248		\$250.00	\$170.15		-\$100.00	-\$68.06
6	-135	-\$85		-\$100.00	-\$63.02		-\$100.00	-\$63.02
7	-135	-\$79		-\$100.00	-\$58.35		-\$100.00	-\$58.35
8	-135	-\$73		-\$100.00	-\$54.03		-\$100.00	-\$54.03
9	-135	-\$68		-\$100.00	-\$50.02		-\$100.00	-\$50.02
10	-\$135.00	-\$63		-\$350.00	-\$162.12		-\$280.00	-\$129.69
Sum of PW	Option A	-\$65.57		Option B	\$ 51.40		Option C	-\$54.38

: Alternative A is the most viable as there will be a net gain of \$65.57 of income after the 10 year period, when interest is 8%

Question 7b)					1			
		Uniform Annual benefi	EOL Salavage	ם -	r ¹			
	Alternative A	135	0	P = I	(1)	\n		
	Alternative B	100	250		(1+l)	.)"		
	Alternative C	100	180		1			
	interest rate	12%					Alternative D	0
	Alternative A			Alternative B			Alternative C	
year	costs	present worth		costs	present worth		costs	present worth
0	\$500	\$500		\$600.00	\$600.00		\$700.00	\$700.00
1	-135	-\$121		-\$100.00	-\$89.29		-\$100.00	-\$89.29
2	-135	-\$108		-\$100.00	-\$79.72		-\$100.00	-\$79.72
3	-135	-\$96		-\$100.00	-\$71.18		-\$100.00	-\$71.18
4	-135	-\$86		-\$100.00	-\$63.55		-\$100.00	-\$63.55
5	\$365.00	\$207		\$250.00	\$141.86		-\$100.00	-\$56.74
6	-135	-\$68		-\$100.00	-\$50.66		-\$100.00	-\$50.66
7	-135	-\$61		-\$100.00	-\$45.23		-\$100.00	-\$45.23
8	-135	-\$55		-\$100.00	-\$40.39		-\$100.00	-\$40.39
9	-135	-\$49		-\$100.00	-\$36.06		-\$100.00	-\$36.06
10	-\$135.00	-\$43		-\$350.00	-\$112.69		-\$280.00	-\$90.15
Sum of PW	Option A	\$20.93		Option B	\$ 153.08		Option C	\$77.02

: Alternative D is the most viable as the option wouldn't lose money compared to the other options, when the interest is 12%

Question 8:

Calculating present worth of compounded regular payment = $A * \left[\frac{(1+i)^n - 1}{i(1+i)^n} \right]$ Let A be the reference or the annual payment for fuel usage n = 20, i = 0.08

$$\begin{split} PW_{gas} &= \$30,000 + (A+7500) * \left[\frac{(1+0.08)^{20}-1}{0.08(1+0.08)^{20}} \right] = \$103,636.11 + \$\frac{9.81815A}{9.81815A} \\ PW_{fuel} &= \$55,000 + A * \left[\frac{(1+0.08)^{20}-1}{0.08(1+0.08)^{20}} \right] = \$55,000 + \$\frac{9.81815A}{9.81815A} \\ PW_{coal} &= \$180,000 + (A-15000) * \left[\frac{(1+0.08)^{20}-1}{0.08(1+0.08)^{20}} \right] = \left[\$32,727.788 \right] + \$\frac{9.81815A}{9.81815A} \end{split}$$

 \therefore By calculating the present value worth of energy resources, we have determine coal resource to use the least in expenditure \rightarrow \$32,727.788