MA 54400 - Midterm 2 Practice Problems Spring 2011 Prof. D. Danielli

1. Define, for $x \in \mathbb{R}^n$,

$$f(x) = \begin{cases} \frac{1}{|x|^{n+1}} & \text{if } x \neq 0, \\ 0, & \text{if } x = 0. \end{cases}$$

Prove that f is integrable outside any ball $B(0,\varepsilon)$, and that there exists a constant C>0such that

$$\int_{B(0,\varepsilon)^c} f(x) \ dx \le \frac{C}{\varepsilon}.$$

2. Let $\{f_k\}$ be a sequence of nonnegative measurable functions on \mathbb{R}^n , and assume that f_k converges pointwise almost everywhere to a function f. If

$$\int_{\mathbb{R}^n} f = \lim_{k \to \infty} \int_{\mathbb{R}^n} f_k < \infty,$$

show that

$$\int_{E} f = \lim_{k \to \infty} \int_{E} f_{k}$$

 $\int_E f = \lim_{k \to \infty} \int_E f_k$ for all measurable subsets E of \mathbb{R}^n . Moreover, show that this is not necessarily true if $\int_{\mathbb{R}^n} f = \lim_{k \to \infty} \int_{\mathbb{R}^n} f_k = \infty.$

3. Assume that E is a measurable subset of \mathbb{R}^n , with $|E| < \infty$. Prove that a nonnegative function f defined on E is integrable if, and only if,

$$\sum_{k=0}^{\infty} |\{x \in E \mid f(x) \ge k\}| < \infty.$$

4. Suppose that E is a measurable subset of \mathbb{R}^n , with $|E| < \infty$. If f, g are measurable functions on E, define

$$\rho(f,g) = \int_E \frac{|f-g|}{1+|f-g|}.$$

Prove that $\rho(f_k, f) \to 0$ as $k \to \infty$ if, and only if, f_k converges in measure to f as $k \to \infty$.

5. Define the gamma function $\Gamma: \mathbb{R}^+ \to \mathbb{R}$ by

$$\Gamma(y) = \int_0^\infty e^{-u} u^{y-1} \ du,$$

and the beta function $B: \mathbb{R}^+ \times \mathbb{R}^+ \to \mathbb{R}$

$$B(x,y) = \int_0^1 t^{x-1} (1-t)^{y-1} dt.$$

- (a) Prove that the definition of gamma function is well posed, i.e. the function $u \mapsto e^{-u}u^{y-1}$ is in $L(\mathbb{R}^+)$ for all $y \in \mathbb{R}^+$.
- (b) Show that

$$B(x,y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}.$$

- 6. Let $f \in L(\mathbb{R}^n)$, and for $h \in \mathbb{R}^n$ define $f_h : \mathbb{R}^n \to \mathbb{R}$, $f_h(x) = f(x h)$. Prove that $\lim_{h \to 0} \int_{\mathbb{R}^n} |f_h - f| = 0.$
- 7. (a) If $f_k, g_k, f, g \in L(\mathbb{R}^n)$, $f_k \to f$ and $g_k \to g$ a.e. in \mathbb{R}^n , $|f_k| \leq g_k$, and $\int_{\mathbb{R}^n} g_k \to \int_{\mathbb{R}^n} g,$

prove that

$$\int_{\mathbb{R}^n} f_k \to \int_{\mathbb{R}^n} f_k$$

 $\int_{\mathbb{R}^n} f_k \to \int_{\mathbb{R}^n} f.$ (b) Using part (a), show that if $f_k, f \in L(\mathbb{R}^n)$, $f_k \to f$ a.e in \mathbb{R}^n , then

$$\int_{\mathbb{R}^n} |f_k - f| \to 0 \text{ as } k \to \infty$$

if, and only if,

$$\int_{\mathbb{R}^n} |f_k| \to \int_{\mathbb{R}^n} |f| \text{ as } k \to \infty.$$