

Universidade Tecnológica Federal do Paraná – UTFPR Bacharelado em Ciência da Computação

BCC33B - Arquitetura e Organização de Computadores

Prof. Rogério A. Gonçalves rogerioag@utfpr.edu.br

Aula 002

• Sistema Computacional

Componentes Básicos do Sistema de Computador

Barramentos:

-BD: Barramento de Dados transportam a informação útil (dados e instruções)

-BC: Barramento de Controle transportam informações de controle

-BE: Barramento de Endereços identificam o destino das informações

Zoom da CPU

Exercício

Indique no diagrama da arquitetura de von Neumann:

- 1. O percurso da busca de instrução
- 2. O percurso da busca de operando

Solução: Busca de Instrução Modelo de von Neumann Instrução Dados Próxima Instrução Endereço do Dado Endereço do Salto

Solução: Busca de Operando

Exemplo de Ciclo de Instrução

Considere um processador com as seguintes características:

- Formato de instrução: 16 bits
 - 4 bits para Código de Operação (Op Code)
 - 12 bits para o campo de Endereços

Exemplo de Ciclo de Instrução

Considere um processador com as seguintes características:

- Dado de 16 bits representado em Sinal-Magnitude

Conjunto de Instruções

- Carregar dados da Memória
- LOAD → LDA
- Armazenar dados na Memória
- STORE → STA
- Adição
- ADD
- Subtração
- SUB

Conjunto de Instruções

LDA

Instrução: *LDA* → Load AC from Memory

Op Code → Binário: 0001b → Hexadecimal: 1h

Operação: AC ← [MEM]

Descrição: Carrega AC a partir do conteúdo da posição de memória endereçada por [MEM]

25

Conjunto de Instruções

STA

Instrução: STA → Store AC to Memory

Op Code → **Binário:** 0010b

→ **Hexadecimal:** 2h

Operação: [MEM] ← AC

Descrição: Armazena o conteúdo do Acumulador na posição de memória endereçada por

[MEM]

Conjunto de Instruções

ADD

Instrução: *ADD* → Add to AC from Memory

Op Code → Binário: 0011b → Hexadecimal: 3h

Operação: AC ← AC + [MEM]

Descrição: Soma o conteúdo do Acumulador ao conteúdo da posição de memória

endereçada por [MEM]

27

Conjunto de Instruções

SUB

Instrução: *SUB* → Subtract to AC from Memory

Op Code → **Binário**: 0100b

→ **Hexadecimal:** 4h

Operação: AC ← AC - [MEM]

Descrição: Subtrai o conteúdo do Acumulador ao conteúdo da posição de memória

endereçada por [MEM]

Programa Exemplo

Mnemônicos	Binário OpCode Endereço	Hexadecimal
LDA AC, [940]	0001 100101000000	1940h
ADD AC, [942]	0011 100101000010	3942h
SUB AC, [944]	0100 100101000100	4944h
STA [942], AC	0010 100101000010	2942h

Considerações Iniciais:

- PC contém inicialmente o valor 300H, o programa inicia nesse endereço
- Conteúdo da posição de memória [940H] é 0003H
- Conteúdo da posição de memória [942H] é 0002H
- Conteúdo da posição de memória [944H] é 0004H

29

Execução do Programa

Ciclo de Busca

	memoria	
300	1940	
302	3942	
304	4944	
306	2942	
	•••	
940	0003	
942	0002	
944	0004	

Momória

Registradores

300	PC
	RI
	AC

1940: AC ← [940]

Execução do Programa

Exercício

47

Faça os diagramas da memória e dos registradores (PC, RI e AC) da CPU para mostrar a execução do seguinte programa:

Carregar o AC com o conteúdo da posição [MEM]: $0001b \Rightarrow AC \leftarrow [MEM]$

AND do conteúdo da posição [MEM] com AC: $0110b \Rightarrow AC \leftarrow AC$ and [MEM]

-

Armazenar o resultado na posição [MEM]:

Programa Considere Inicialmente

LDA AC, [800h] [PC] = 500h AND AC, [802h] [800h] = F0E6

STA [804h], AC [802h] = 0FBF

[804h] = 0005

0010b ⇒ [MEM] ← AC

UTFPR

Referências

 Notas de aula do Prof. João Angelo Martini do DIN-UEM.

63

Universidade Tecnológica Federal do Paraná – UTFPR Bacharelado em Ciência da Computação

BCC33B – Arquitetura e Organização de Computadores

Prof. Rogério A. Gonçalves rogerioag@utfpr.edu.br

Aula 002

Sistema Computacional

2

Sistema de Computador

Componentes Básicos do Sistema de Computador

-UTFPR-

UTFPR

Barramentos:

-BD: Barramento de Dados transportam a informação útil (dados e instruções)

-BC: Barramento de Controle transportam informações de controle

-BE: Barramento de Endereços identificam o destino das informações

Exemplo de Ciclo de Instrução

Considere um processador com as seguintes características:

- Formato de instrução: 16 bits
 - 4 bits para Código de Operação (Op Code)
 - 12 bits para o campo de Endereços

Exemplo de Ciclo de Instrução

Considere um processador com as seguintes características:

- Dado de 16 bits representado em Sinal-Magnitude

Conjunto de Instruções

- Carregar dados da Memória
- LOAD → LDA
- Armazenar dados na Memória
- STORE → STA
- Adição
- ADD
- Subtração
- SUB

24

Conjunto de Instruções

LDA

Instrução: *LDA* → Load AC from Memory

Op Code → Binário: 0001b

→ **Hexadecimal:** 1h

Operação: AC ← [MEM]

Descrição: Carrega AC a partir do conteúdo da posição de memória endereçada por [MEM]

Conjunto de Instruções

STA

Instrução: STA → Store AC to Memory

Op Code → **Binário**: 0010b

→ **Hexadecimal:** 2h

Operação: [MEM] ← AC

Descrição: Armazena o conteúdo do Acumulador na posição de memória endereçada por

[MEM]

26

Conjunto de Instruções

ADD

Instrução: *ADD* → Add to AC from Memory

Op Code → Binário: 0011b

→ **Hexadecimal:** 3h

Operação: AC ← AC + [MEM]

Descrição: Soma o conteúdo do Acumulador ao conteúdo da posição de memória

endereçada por [MEM]

Conjunto de Instruções

SUB

Instrução: SUB → Subtract to AC from Memory

Op Code → Binário: 0100b → Hexadecimal: 4h

Operação: AC ← AC - [MEM]

Descrição: Subtrai o conteúdo do Acumulador ao conteúdo da posição de memória

endereçada por [MEM]

28

Programa Exemplo

Mnemônicos	Binário OpCode Endereço	Hexadecimal
LDA AC, [940]	0001 100101000000	1940h
ADD AC, [942]	0011 100101000010	3942h
SUB AC, [944]	0100 100101000100	4944h
STA [942], AC	0010 100101000010	2942h

Considerações Iniciais:

- PC contém inicialmente o valor 300H, o programa inicia nesse endereço
- Conteúdo da posição de memória [940H] é 0003H
- Conteúdo da posição de memória [942H] é 0002H
- Conteúdo da posição de memória [944H] é 0004H

Execução do Programa

Ciclo de Busca

	Memória	
300	1940	
302	3942	
304	4944	
306	2942	
	•••	
940	0003	
942	0002	
944	0004	

1940: AC ← **[940]**

Registradores

300	PC
	RI
	AC

30

Execução do Programa

Ciclo de Busca

	Memória	
300	1940	
302	3942	
304	4944	
306	2942	
940	0003	
942	0002	
944	0004	

Registradores

300	PC
	RI
	AC

-UTFPR-

1940: AC ← [940]

31

Exercício

Faça os diagramas da memória e dos registradores (PC, RI e AC) da CPU para mostrar a execução do seguinte programa:

Carregar o AC com o conteúdo da posição [MEM]: 0001b ⇒ AC ← [MEM]

AND do conteúdo da posição [MEM] com AC: $0110b \Rightarrow AC \leftarrow AC$ and

[MEM]

Armazenar o resultado na posição [MEM]:

Considere Inicialmente

1 [PC] = 500h

[800h] = F0E6

[802h] = 0FBF

[804h] = 0005

Programa

LDA AC, [800h] AND AC, [802h] STA [804h], AC

48

Solução

Ciclo de Busca

	memona
500	1800
502	6802
504	2804
800	F0E6
802	0FBF
804	0005
	·

Momória

Registradores

500	PC
?	RI
?	AC

0010b ⇒ [MEM] ← AC

Referências

 Notas de aula do Prof. João Angelo Martini do DIN-UEM.