Lecture 5

Multiple Linear Regression: Analysis of covariance; Non-linear Regression

Reading: Faraway (2014) Chapters 14, 9.4 or Faraway (2002) Chapters 15, 8.2.2

DSA 8020 Statistical Methods II February 1-5, 2021 Multiple Linear Regression: Analysis of covariance; Non-linear Regression

nalysis of Covariance

olynomial Hegression Ionlinear Regression

Whitney Huang Clemson University

Agenda

Multiple Linear Regression: Analysis of covariance; Non-linear Regression

Analysis of Covariance

iyiloililai Hegi essio

Nonlinear Regression

Analysis of Covariance

Polynomial Regression

Multiple Linear Regression

$$Y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_{p-1} x_{p-1} + \varepsilon, \quad \varepsilon \sim \mathrm{N}(0, \sigma^2)$$
 x_1, x_2, \dots, x_{p-1} are the predictors.

Question: What if some of the predictors are qualitative (categorical) variables?

⇒ We will need to create **dummy (indicator) variables** for those categorical variables

Example: We can encode Gender into 1 (Female) and 0 (Male)

Analysis of Govariance

plinoor Pogragaion

The 2008-09 nine-month academic salary for Assistant Professors, Associate Professors and Professors in a college in the U.S. The data were collected as part of the on-going effort of the college's administration to monitor salary differences between male and female faculty members.

> head(Salaries)

	rank	discipline	yrs.since.phd	yrs.service	sex	salary
1	Prof	В	19	18	Male	139750
2	Prof	В	20	16	Male	173200
3	AsstProf	В	4	3	Male	79750
4	Prof	В	45	39	Male	115000
5	Prof	В	40	41	Male	141500
6	AssocProf	В	6	6	Male	97000

Predictors

> summary(Salaries)

rank	atsciptine	yrs.str	ice.pna	yrs.se	ervice
AsstProf : 67	A:181	Min.	: 1.00	Min.	: 0.00
AssocProf: 64	B:216	1st Qu.	:12.00	1st Qu	.: 7.00
Prof :266		Median	:21.00	Median	:16.00
		Mean	:22.31	Mean	:17.61
		3rd Qu.	:32.00	3rd Qu	.:27.00
		Max.	:56.00	Max.	:60.00

sex salary

Female: 39 Min. : 57800 Male :358 1st Qu.: 91000 Median :107300

Mean :113706 3rd Qu.:134185 Max. :231545

We have three categorical variables, namely, ${\tt rank}, \; {\tt discipline}, \; {\tt and} \; {\tt sex}.$

Multiple Linear Regression: Analysis of covariance; Non-linear Regression

Analysis of Covariance

For binary categorical variables:

$$X_{\text{sex}} = \begin{cases} 1 & \text{if sex = male,} \\ 0 & \text{if sex = female.} \end{cases}$$

$$X_{\rm discip} = \begin{cases} 0 & \text{if discip = A,} \\ 1 & \text{if discip = B.} \end{cases}$$

For categorical variable with more than two categories:

$$X_{\texttt{rank1}} = \begin{cases} 0 & \text{if } \texttt{rank} = \texttt{Assistant Prof}, \\ 1 & \text{if } \texttt{rank} = \texttt{Associated Prof}. \end{cases}$$

$$X_{\mathrm{rank2}} = \begin{cases} 0 & \text{if } \mathrm{rank} = \mathrm{Associated\ Prof}, \\ 1 & \text{if } \mathrm{rank} = \mathrm{Full\ Prof}. \end{cases}$$

Multiple Linear Regression: Analysis of covariance; Non-linear Regression

Analysis of Covariance

Design Matrix

> head(X)

	(Intercept)	rankassocProf	rankProf	aisciplines	yrs.since.pna	
1	1	0	1	1	19	
2	1	0	1	1	20	
3	1	0	0	1	4	
4	1	0	1	1	45	
5	1	0	1	1	40	
6	1	1	0	1	6	
yrs.service sexMale						

2 16 1 3 3 1 4 39 1 5 41 1 6 6 1

18

With the design matrix X, we can now use method of least squares to fit the model $Y = X\beta + \varepsilon$

Multiple Linear Regression: Analysis of covariance; Non-linear Regression

Analysis of Covariance

ynomiai Regress

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
                         4536.89
                                         < 2e-16 ***
(Intercept)
             67884.32
                                 14.963
disciplineB
             13937.47
                         2346.53
                                  5.940 6.32e-09 ***
rankAssocProf 13104.15
                         4167.31 3.145 0.00179 **
rankProf
             46032.55
                         4240.12
                                  10.856
                                         < 2e-16 ***
sexMale
              4349.37
                         3875.39
                                  1.122
                                         0.26242
                          127.01
yrs.since.phd
                61.01
                                  0.480
                                         0.63124
Signif. codes:
```

0 '***, 0.001 '**, 0.01 '*, 0.05 '., 0.1 ', 1

Residual standard error: 22660 on 391 degrees of freedom Multiple R-squared: 0.4472, Adjusted R-squared: 0.4401 F-statistic: 63.27 on 5 and 391 DF, p-value: < 2.2e-16

Question: Interpretation of the slopes of these dummy variables (e.g. $\hat{\beta}_{rankAssocProf}$)? Interpretation of the intercept?

Multiple Linear Regression: Analysis of covariance; Non-linear Regression

Analysis of Govariance

.,,...................

Model Fit for Assistant Professors

9-month salary

Multiple Linear Regression: Analysis of covariance; Non-linear Regression

Analysis of Covariance

olynomial Regress

Model Fit for Associate Professors

9-month salary

Multiple Linear Regression: Analysis of covariance; Non-linear Regression

Analysis of Covariance

lynomial Regressi

Model Fit for Full Professors

9-month salary

Multiple Linear Regression: Analysis of covariance; Non-linear Regression

Analysis of Covariance

lynomial Regress

lm(salary ~ sex * yrs.since.phd)

9-month salary

Multiple Linear Regression: Analysis of covariance; Non-linear Regression

Analysis of Covariance

ynomial Regression

lm(salary ~ disp * yrs.since.phd)

9-month salary

Multiple Linear Regression: Analysis of covariance; Non-linear Regression

Analysis of Covariance

lynomial Regressi

$$Y = \beta_0 + \beta_1 x + \beta_2 x^2 + \dots + \beta_p x^p + \varepsilon$$

Analysis of Covariance

.......

We can treat polynomial regression as a special case of multiple linear regression. In specific, the design matrix takes the following form:

$$\boldsymbol{X} = \begin{pmatrix} 1 & x_1 & x_1^2 & \cdots & x_1^p \\ 1 & x_2 & x_2^2 & \cdots & x_2^p \\ \vdots & \cdots & \ddots & \vdots & \vdots \\ 1 & x_n & x_n^2 & \cdots & x_n^p \end{pmatrix}$$

Housing Values in Suburbs of Boston Data Set

- y: the median value of owner-occupied homes (in thousands of dollars)
- x: percent of lower status of the population

Multiple Linear Regression: Analysis of covariance; Non-linear Regression

Analysis of Covariance

Polynomial Regress

Polynomial Regression Fits

1st, 2nd, and 3rd polynomial regression fits

Multiple Linear Regression: Analysis of covariance; Non-linear Regression

Analysis of Covariance

lynomial Regression

Moving Away From Linear Regression

Multiple Linear Regression: Analysis of covariance; Non-linear Regression

Analysis of Covariano

Polynomial Regression

- We have mainly focused on linear regression so far
- The class of polynomial regression can be thought as a starting point for relaxing the linear assumption
- In the next few slides we are going to discuss non-linear regression modeling

Analysis of Covariance

olynomial Regres

A simple model for population growth is the logistic growth model,

$$Y = \frac{\phi_1}{1 + \exp\left[-(x - \phi_2)/\phi_3\right]} + \varepsilon,$$

where ϕ_1 is the curve's maximum value; ϕ_2 is the curve's midpoint in x; and ϕ_3 is the "range" (or the inverse growth rate) of the curve.

Multiple Linear Regression: Analysis of covariance; Non-linear Regression

Analysis of Covariance

Fitting logistic growth curve to the U.S. population

$$\hat{\phi}_1$$
 = 440.83, $\hat{\phi}_2$ = 1976.63, $\hat{\phi}_3$ = 46.29

Multiple Linear Regression: Analysis of covariance; Non-linear Regression

Analysis of Covariance

olynomial Regressi

Comparing the Logistic Growth Curve Fit and Cubic Polynomial Fit

Multiple Linear Regression: Analysis of covariance; Non-linear Regression

Analysis of Covariance

olynomial Regres