

Imágenes: Visión Computacional

Formación de una imagen y modelaje de una cámara virtual (Parte I)

D.Sc. Manuel Eduardo Loaiza Fernández
Centro de Investigación y Innovación en Ciencia de la
Computación
Universidad Católica San Pablo

Tópicos:

Visión computacional, algoritmos y aplicaciones Arequipa – 2018

Sumario

- Introducción
- Motivación
- Formación de una imagen
- Modelando una cámara
 - Parámetros do modelo de cámara
 - Parámetros: internos e externos.
 - Parámetros: lentes.
- Preguntas
- Trabajo 1

Introducción

- ¿Que significa ver las cosas en nuestro alrededor?
- ¿Cómo funciona ese mecanismo que nos permite ver las cosas?
- ¿Como esos mecanismos pueden ser entendidos y mapeados matemática y computacional?

Introducción

- "Visión" o lo que podemos definir como "Ver", puede ser resumido como:
 - El proceso que permite mapear o proyectar el mundo 3D alrededor nuestro en una imagen 2D, donde están representadas varias características físicas de los objetos como: textura, color, brillo, contornos y geometría.
- Ese proceso lo podemos definir: "formación de una imagen".

Motivación

 ¿ Porque es importante entender en visión computacional el proceso de "formación de una imagen" ?.

Motivación

 Entender el proceso físico que nos permite "ver" fue la base para crear nuestras propias herramientas para ver el ambiente, por ejemplo las cámaras de video o fotografía.

• ¿ Cómo y cuándo comenzó la inquietud por entender la "formación de una imagen"?

Fillipo Brunelleschi & Masaccio, The Tribute Money años 1426-27

 Pinturas y cuadros antiguos como los hechos por Euclides en el siglo IV (B.C.) y pinturas que retratan la antigua ciudad de Pompeya muestran esta curiosidad por entender conceptos geométricos por detrás de la formación de una imagen.

¿ Porque saber cuándo y cómo comenzó el estudio sobre a formación de una imagen ?

Figure 3.1: Man Drawing a Lute (The Draughtsman of the Lute), woodcut 1525, Albrecht Dürer.

- ¿ Porque saber cuándo y cómo comenzó el estudio sobre la formación de una imagen ?
 - De esos experimentos surgió lo que consideramos el primer modelo de cámara conocido como la " Cámara oscura "

illum in tabula per radios Solis, quam in cœlo contingit: hoc est, si in cœlo superior pars deliquiù patiatur, in radiis apparebit inferior desicere, vt ratio exigit optica.

Sic nos exacte Anno . 1544. Louanii eclipsim Solis observauimus, inuenimuse; deficere paulò plus g dex-

¿ Que es una "Cámara oscura"?

Câmara escura - Leonardo da Vinci -1545

Luis-Jacques-Mandé Daguerre (1839)

La cámara "Pinhole"

 Una cámara es un dispositivo de captura de imágenes que tiene dos componentes básicas: la lente y el cuerpo donde se localiza el sensor que captura la luz que viene del exterior y es digitalizada.

Proyección cónica

Cámara básica

Plano de proyección

Primer modelo a estudiar es el modelo de cámara pinhole:

El modelo de **cámara** permitirá entender matemáticamente como un **punto 3D** (del ambiente) es proyectado en la superficie de un **sensor óptico** para formar lo que definimos como una **imagen**.

¿ Cómo modelar el **mundo 3D** en frente de la cámara?

¿ Cómo modelar el mundo 3D en frente de la cámara ?

Coordenadas relativas a la cámara:

Coordenadas relativas al mundo:

$$\boldsymbol{X}_c = R\boldsymbol{X}_w + T,$$

$$\dot{X}_c = \hat{\omega} X_c + v.$$

- Un modelo de cámara virtual es una forma conceptual de definir cómo funciona internamente un dispositivo de captura de imagen.
- El objetivo es modelar el proceso que lleva un punto 3D de espacio físico visto por la cámara para un punto 2D posicionado dentro de la imagen.

Parámetros do modelo de cámara

- El modelo de cámara virtual se apoya en la definición de algunos parámetros.
- Eses parámetros permiten crear un formalismo a la representación matemática de los componentes físicos de la cámara.

Modelo de cámara: parámetros internos e externos

- Internos o intrínsecos.
 - Distancia focal (fx, fy).
 - Centro del plano de la imagen(u₀, v₀).

- Externos o extrínsecos.
 - Matriz de rotación (R).
 - Vector de translación (T).

Modelo de cámara: parámetros internos y externos

- Internos o **intrínsecos**.
 - Distancia focal (fx, fy).
 - Centro de la imagen (u_0, v_0) .

Modelo de cámara: parámetros internos y externos

Internos o intrínsecos.

- Distancia focal (fx, fy).
- Centro de la imagen (u_0, v_0) .

Modelo de cámara: parámetros internos y externos

- Externos o extrínsecos.
 - Matriz de rotación (R).
 - Vector de translación (T).

Modelo de cámara: lentes

- Coeficientes para definir la distorsión de las lentes.
 - **Radial** (k1,k2).
 - **Tangencial** (p1,p2).
- Tipos de distorsión **pincushion** e **barrel**.

Pincushion

Modelo de cámara: lentes

Transformación No Lineal causada por una distorsión radial

$$x = c + f(r)(x_d - c), \quad r = ||x_d - c||$$

 $f(r) = 1 + a_1r + a_2r^2 + a_3r^3 + a_4r^4 + \cdots$

Corregir las distorsión radial deja las líneas rectas realmente rectas

Preguntas?

Trabajo 1