Ext Given the Markov a) Determine the missing probabilities = 1
in 1, and 22 in a state b) Given the observation sequence Determine the model producing () with the highest probability. (Recognition problem) $P(0|\lambda_1)$ and $P(0|\lambda_2)$ Initial probabilities $\pi_1 = \pi_2 = 1/2$ in both models. $P(0|\lambda_1) = \frac{1}{2} \alpha_{12/1} \alpha_{22/1} = \frac{1}{2} 0.8 \times 0.8$ $P(0|\lambda_2) = \frac{1}{2} \alpha_{12,2} \alpha_{22,2} = \frac{1}{2} 0.2 \times 0.1$ $P(0|\lambda_1) > P(0|\lambda_2)$ So we "recognize" λ_1 . (Model 1).

Models

Given the $a_{33} = 0.2$ $a_{32} = 0.5$ $\sum_{j} a_{3j} = 1$ $P(0_1|w_1) = b_1(0_1) = 1$; $P(0_1|w_2) = b_2(0_1) = 1/2$ $P(0_1|w_3) = 1/3$ $P(0_2|w_1) = b_1(0_2) = 0$; $P(0_2|w_2) = b_2(0_2) = 1/2$ $P(0_2|w_3) = 2/3$ $P(0,|w_i) = b_1(0,i) = 1$ $b_1(0_1) + b_1(0_1) = 1$ $b_2(0_1) + b_2(0_2) = 1$ $\frac{1}{3} + \frac{2}{3} = 1$ $T_1 = P(w_1 \text{ at } t=1)$, $T_2 = P(w_2)$, $T_3 = P(w_3)$ Initial probabilities $\pi_1 + \pi_2 + \pi_3 = 1$. $HMM: \gamma = \{a_{ij}, b_j(0), \tau_i\}$ We observe $O = \{0_1, 0_2, 0_2\}$ Calculate P(0|A)We may have many state possibilities generating 0,0202: $w_1 w_2 w_3$ W, W2 W2 /W, W3 W3 $P(0|\lambda) = \pi, b(0), a_{12}, b_{2}(02), a_{23}, b_{3}(02)$ $+ \pi_{1} b_{1}(0_{1}) a_{13} b_{3}(0_{2}) a_{23} b_{3}(0_{2})$ $+ \pi_{1} b_{1}(0_{1}) a_{13} b_{3}(0_{2}) a_{22} b_{2}(0_{2})$ W2 W2 W2 $+\pi_{1}b_{1}(0_{1})$ $a_{12}b_{2}(0_{2})a_{22}b_{2}(0_{2})$ $b_{2}(0_{2})$ $b_{2}(0_{2})$ $b_{2}(0_{2})$ $b_{2}(0_{2})$ $b_{3}(0_{2})$ $b_{3}(0_{2})$ $b_{3}(0_{2})$ $a_{33}b_{3}(0_{2})$ $b_{2}(0_{2})$ $a_{22}b_{2}(0_{2})$ $a_{22}b_{2}(0_{2})$ $a_{22}b_{2}(0_{2})$ $a_{22}b_{2}(0_{2})$ problem may be computationally complex Evaluation (Recognition)

Enaple | We observe the state sequence:

W, W, W2 W2W3 W, W2 W3 W2 W, W2 W2 Estimate the state transition matrix. Q₁₁ = $\frac{\text{% of } 1-1 \text{ transitions}}{\text{Total } \text{% of transitions from state}}$ $\hat{a}_{13} = \frac{0}{4} = 0$ $\hat{a}_{12} = \frac{3}{4}$ $\sum_{j=1}^{\infty} \alpha_{1j} = 1 = \frac{1}{12} + \frac{3}{12} = 1$ $\hat{\alpha}_{21} = \frac{1}{5}$, $\hat{\alpha}_{22} = \frac{2}{5}$, $\hat{\alpha}_{23} = \frac{2}{5}$

Training a Markov Madel is easy! Training a Hidden Markov 11 is not easy! (Baum-Welch algorithm).