- **8.31** Let X_1, \ldots, X_n be iid Poisson(λ).
 - (a) Find a UMP test of $H_0: \lambda \leq \lambda_0$ versus $H_1: \lambda > \lambda_0$.
 - (b) Consider the specific case $H_0: \lambda \leq 1$ versus $H_1: \lambda > 1$. Use the Central Limit Theorem to determine the sample size n so a UMP test satisfies $P(\text{reject } H_0 | \lambda = 1) = .05$ and $P(\text{reject } H_0 | \lambda = 2) = .9$.
- **8.33** Let X_1, \ldots, X_n be a random sample from the uniform $(\theta, \theta + 1)$ distribution. To test $H_0: \theta = 0$ versus $H_1: \theta > 0$, use the test

reject
$$H_0$$
 if $Y_n \ge 1$ or $Y_1 \ge k$,

where k is a constant, $Y_1 = \min\{X_1, \dots, X_n\}, Y_n = \max\{X_1, \dots, X_n\}.$

- (a) Determine k so that the test will have size α .
- (b) Find an expression for the power function of the test in part (a).
- (c) Prove that the test is UMP size α .
- (d) Find values of n and k so that the UMP .10 level test will have power at least .8 if $\theta > 1$.
- **8.37** Let X_1, \ldots, X_n be a random sample from a $n(\theta, \sigma^2)$ population. Consider testing

$$H_0: \theta \leq \theta_0$$
 versus $H_1: \theta > \theta_0$.

(a) If σ^2 is known, show that the test that rejects H_0 when

$$\bar{X} > \theta_0 + z_\alpha \sqrt{\sigma^2/n}$$

is a test of size α . Show that the test can be derived as an LRT.

- (b) Show that the test in part (a) is a UMP test.
- (c) If σ^2 is unknown, show that the test that rejects H_0 when

$$\bar{X} > \theta_0 + t_{n-1,\alpha} \sqrt{S^2/n}$$

is a test of size α . Show that the test can be derived as an LRT.

8.39 Let $(X_1, Y_1), \ldots, (X_n, Y_n)$ be a random sample from a bivariate normal distribution with parameters $\mu_X, \mu_Y, \sigma_X^2, \sigma_Y^2, \rho$. We are interested in testing

$$H_0: \mu_X = \mu_Y$$
 versus $H_1: \mu_X \neq \mu_Y$.

- (a) Show that the random variables $W_i = X_i Y_i$ are iid $n(\mu_W, \sigma_W^2)$.
- (b) Show that the above hypothesis can be tested with the statistic

$$T_W = \frac{\bar{W}}{\sqrt{\frac{1}{n}S_W^2}},$$

where $\bar{W} = \frac{1}{n} \sum_{i=1}^{n} W_i$ and $S_W^2 = \frac{1}{(n-1)} \sum_{i=1}^{n} (W_i - \bar{W})^2$. Furthermore, show that, under H_0 , $T_W \sim$ Student's t with n-1 degrees of freedom. (This test is known as the *paired-sample t test*.)

- 8.49 In each of the following situations, calculate the p-value of the observed data.
 - (a) For testing $H_0: \theta \leq \frac{1}{2}$ versus $H_1: \theta > \frac{1}{2}$, 7 successes are observed out of 10 Bernoulli trials.
 - (b) For testing $H_0: \lambda \leq 1$ versus $H_1: \lambda > 1, X = 3$ are observed, where $X \sim \text{Poisson}(\lambda)$.
 - (c) For testing $H_0: \lambda \leq 1$ versus $H_1: \lambda > 1, X_1 = 3, X_2 = 5$, and $X_3 = 1$ are observed, where $X_i \sim \text{Poisson}(\lambda)$, independent.

- 8.51 Here is another common interpretation of p-values. Consider a problem of testing H_0 versus H_1 . Let $W(\mathbf{X})$ be a test statistic. Suppose that for each α , $0 \le \alpha \le 1$, a critical value c_{α} can be chosen so that $\{\mathbf{x}: W(\mathbf{x}) \ge c_{\alpha}\}$ is the rejection region of a size α test of H_0 . Using this family of tests, show that the usual p-value $p(\mathbf{x})$, defined by (8.3.9), is the smallest α level at which we could reject H_0 , having observed the data \mathbf{x} .
- 8.53 In Example 8.2.7 we saw an example of a one-sided Bayesian hypothesis test. Now we will consider a similar situation, but with a two-sided test. We want to test

$$H_0: \theta = 0$$
 versus $H_1: \theta \neq 0$,

and we observe X_1, \ldots, X_n , a random sample from a $n(\theta, \sigma^2)$ population, σ^2 known. A type of prior distribution that is often used in this situation is a mixture of a point mass on $\theta = 0$ and a pdf spread out over H_1 . A typical choice is to take $P(\theta = 0) = \frac{1}{2}$, and if $\theta \neq 0$, take the prior distribution to be $\frac{1}{2}n(0, \tau^2)$, where τ^2 is known.

- (a) Show that the prior defined above is proper, that is, $P(-\infty < \theta < \infty) = 1$.
- (b) Calculate the posterior probability that H_0 is true, $P(\theta = 0|x_1, \ldots, x_n)$.
- (c) Find an expression for the p-value corresponding to a value of \bar{x} .
- (d) For the special case $\sigma^2 = \tau^2 = 1$, compare $P(\theta = 0 | x_1, \dots, x_n)$ and the p-value for a range of values of \bar{x} . In particular,
 - (i) For n = 9, plot the p-value and posterior probability as a function of \bar{x} , and show that the Bayes probability is greater than the p-value for moderately large values of \bar{x} .
 - (ii) Now, for $\alpha = .05$, set $\bar{x} = Z_{\alpha/2}/\sqrt{n}$, fixing the p-value at α for all n. Show that the posterior probability at $\bar{x} = Z_{\alpha/2}/\sqrt{n}$ goes to 1 as $n \to \infty$. This is Lindley's Paradox.

Note that small values of $P(\theta = 0|x_1, \ldots, x_n)$ are evidence against H_0 , and thus this quantity is similar in spirit to a p-value. The fact that these two quantities can have very different values was noted by Lindley (1957) and is also examined by Berger and Sellke (1987). (See the Miscellanea section.)