

FAIRCHILD

A Schlumberger Company

**FDH400/FDLL400
FDH444/FDLL444**
**High Voltage General
Purpose Diodes**

T-01-09

- $BV \dots 200\text{ V (MIN) FDH400}$
 $\dots 150\text{ V (MIN) FDH444}$
- $V_F \dots 1.1\text{ V (MAX) @ 300 mA FDH400}$
 $\dots @ 200 mA FDH444$

PACKAGES	
FDH400	DO-35
FDH444	DO-35
FDLL400	LL-34
FDLL444	LL-34

ABSOLUTE MAXIMUM RATINGS (Note 1)**Temperatures**

Storage Temperature Range	-65°C to +200°C
Max Junction Operating Temperature	+175°C
Lead Temperature	+260°C

If you need this device in the SOT package, an electrical equivalent is available. See FDSO1400 family.

3

Power Dissipation (Note 2)

Maximum Total Dissipation at 25°C Ambient	500 mW
Linear Derating Factor (from 25°C)	3.33 mW/°C

Maximum Voltage and Currents

		FDH400	FDH444
WIV	Working Inverse Voltage	175 V	125 V
I_O	Average Rectified Current	200 mA	200 mA
I_F	Forward Current Steady State	500 mA	500 mA
I_F	Recurrent Peak Forward Current	600 mA	600 mA
$I_{F(surge)}$	Peak Forward Surge Current		
	Pulse width = 1.0 s	1.0 A	1.0 A
	Pulse width = 1.0 μ s	4.0 A	4.0 A

ELECTRICAL CHARACTERISTICS (25°C Ambient Temperature unless otherwise noted)

SYMBOL	CHARACTERISTIC	FDH400		FDH444		UNITS	TEST CONDITIONS
		MIN	MAX	MIN	MAX		
VF	Forward Voltage		1.1 1.0		1.2 1.1	V	$I_F = 300\text{ mA}$ $I_F = 200\text{ mA}$
BV	Breakdown Voltage	200		150		V	$I_R = 100\text{ }\mu\text{A}$
I_R	Reverse Current		100		50	nA	$V_R = 150\text{ V}$
			100		100	nA μA	$V_R = 100\text{ V}$, $T_A = 150^\circ\text{C}$ $V_R = 150\text{ V}$, $T_A = 150^\circ\text{C}$
C	Capacitance		2.0		2.5	pF	$V_R = 0$, $f = 1.0\text{ MHz}$
t_{rr}	Reverse Recovery Time		50		60	ns	$I_F = 30\text{ mA}$, $I_F = 30\text{ mA}$ $R_L = 100\Omega$, $I_{Ft} = 3.0\text{ mA}$

NOTES:

1. The maximum ratings are limiting values above which life or satisfactory performance may be impaired.
2. These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.
3. For product family characteristic curves, refer to Chapter 4, D1.