Note on General Equilibrium

May 20, 2023

Model

- n goods
- *I*: the finite set of consumers
- J: the finite set of firms
- \succsim^i : preference relation of consumer i on \mathbb{R}^n_+ , represented by u^i
- $Y^j \subset \mathbb{R}^n$: production set of firm j (a production plan $y = (y_1, \dots, y_n)$)
- $\omega^i \in \mathbb{R}^n_+$: endowment vector of consumer i (Total endowment $\bar{\omega} = \sum_{i \in I} \omega^i$)
- $\theta^{ij} \in [0,1]$: consumer i's share in firm j, s.t. $\sum_{i \in I} \theta^{ij} = 1$ for each $j \in J$

Definition 1. An allocation is (x, y), where

- (1) $x = (x^i)_{i \in I}$, and $x^i \in \mathbb{R}^n_+$ is the consumption bundle of consumer i (2) $y = (y^j)_{j \in J}$, and $y^j \in Y^j$ is the production plan of firm j
- (3) (x,y) is subject to the feasibility constraint

$$\sum_{i \in I} x^i = \sum_{i \in I} \omega^i + \sum_{j \in J} y^j.$$

Two examples:

- Edgeworth box economy: |I| = 2, |J| = 0, n = 2
- Robinson Crusoe economy: |I| = 1, |J| = 1, n = 2

Definition 2. An allocation (\hat{x}, \hat{y}) Pareto dominates another allocation (x, y), if $\hat{x}^i \succsim^i x^i$ for all $i \in I$, and there exists $i_0 \in I$ s.t. $\hat{x}^{i_0} \succ^{i_0} x^{i_0}$. An allocation (x,y) is Pareto efficient, if it is not Pareto dominated by any other allocation.

Walrasian Equilibrium (WE)

Definition 3. The triple (p^*, x^*, y^*) is a Walrasian equilibrium / price equilibrium / market equilibrium, if

- (i) $p^* \in \mathbb{R}^n_{++}$,
- (ii) (x^*, y^*) is an allocation,
- (iii) For each $j \in J$, we have $y^{*j} \in \arg \max_{y^j \in Y^j} p^* y^j$,
- (iv) For each $i \in I$, we have $x^{*i} \in \arg\max_{x^i \in \mathbb{R}^n_+} u^i(x^i)$ s.t. $p^*x^i \leq p^*\omega^i + \sum_{j \in J} \theta^{ij} p^* y^{*j}$.

Typical approach to calculate a WE:

Consider price vector $p \in \mathbb{R}^n_{++}$ as a candidate for an equilibrium price.

- (1) Solve the profit maximization problem for each firm j and find $y^{j}(p)$.
- (2) Calculate each consumer's income according to all firms' maximized profit.
- (3) Solve the utility maximization problem for each consumer i, and find its solution $x^{i}(p)$.
- (4) Check whether there exists $y^j \in y^j(p)$ and $x^i \in x^i(p)$ s.t. $\sum_{i \in I} x^i = \sum_{i \in I} \omega^i + \sum_{j \in J} y^j$.

First Welfare Theorem

Theorem 4. Assume that \succeq^i satisfies monotonicity for all consumer $i \in I$. If (p^*, x^*, y^*) is a WE, then the equilibrium allocation (x^*, y^*) is Pareto efficient.

Proof. Suppose that (x^*, y^*) is not Pareto efficient, i.e. there exists an allocation (\hat{x}, \hat{y}) that Pareto dominates (x^*, y^*) . So $\hat{x}^i \succeq^i x^{*i}$ for all $i \in I$, and there exists $i_0 \in I$ s.t. $\hat{x}^{i_0} \succeq^{i_0} x^{*i_0}$.

For $i = i_0$, note that

$$p^*\hat{x}^i > p^*\omega^i + \sum_{i \in J} \theta^{ij} p^* y^{*j}.$$

For $i \neq i_0$, by monotonicity we have

$$p^*\hat{x}^i \ge p^*\omega^i + \sum_{j \in J} \theta^{ij} p^* y^{*j}.$$

Adding up the inequalities across all i gives us

$$\begin{split} p^* \sum_{i \in I} \hat{x}^i &> p^* \sum_{i \in I} \omega^i + \sum_{i \in I} [\sum_{j \in J} \theta^{ij} p^* y^{*j}] \\ &= p^* \sum_{i \in I} \omega^i + \sum_{j \in J} [\sum_{i \in I} \theta^{ij} p^* y^{*j}] \\ &= p^* \sum_{i \in I} \omega^i + \sum_{j \in J} [p^* y^{*j} \sum_{i \in I} \theta^{ij}] \\ &= p^* \sum_{i \in I} \omega^i + \sum_{j \in J} p^* y^{*j} \\ &\geq p^* \sum_{i \in I} \omega^i + \sum_{j \in J} p^* \hat{y}^j \\ &= p^* [\sum_{i \in I} \omega^i + \sum_{j \in J} \hat{y}^j]. \end{split}$$

However, by definition the allocation (\hat{x}, \hat{y}) satisfies

$$\sum_{i \in I} \hat{x}^i = \sum_{i \in I} \omega^i + \sum_{j \in J} \hat{y}^j,$$

which contradicts to the inequality above.