Содержание

Задача А.	Z-функция [3 секунды, 64 мегабайта]	2
Задача В.	Префикс-функция [3 секунды, 64 мегабайта]	3
Задача С.	Множественный поиск [3 секунды, 512 мегабайт]	4
Задача D.	Неточное совпадение [2 секунды, 256 мегабайт]	5
Задача Е.	Кубики [2 секунды, 256 мегабайт]	6
Задача F.	Подпалиндромы [2 секунды, 256 мегабайт]	7
Задача G .	Цензура [2 секунды, 256 мегабайт]	8

Первые две задачи на то, чтобы просто написать Z и префикс-функцию и не должны отнять много времени.

Задача С на вариацию Ахо-Корасика

Остальные задачи на подумать и на применение различных строковых алгоритмов.

Задача А. Z-функция [3 секунды, 64 мегабайта]

Дана непустая строка S, длина которой N не превышает 10^6 . Будем считать, что элементы строки нумеруются от 1 до N.

Требуется для всех i от 1 до N вычислить её z-функцию z[i].

Формат входных данных

Одна строка длины $N, 0 < N \leqslant 10^6,$ состоящая из маленьких латинских букв.

Формат выходных данных

Выведите N чисел — значения z-функции для каждой позиции, разделённые пробелом.

стандартный ввод	стандартный вывод
abracadabra	11 0 0 1 0 1 0 4 0 0 1

Задача В. Префикс-функция [3 секунды, 64 мегабайта]

Дана непустая строка S, длина которой N не превышает 10^6 . Будем считать, что элементы строки нумеруются от 1 до N.

Требуется для всех i от 1 до N вычислить её префикс-функцию $\pi[i]$.

Формат входных данных

Одна строка длины $N, 0 < N \leqslant 10^6,$ состоящая из маленьких латинских букв.

Формат выходных данных

Выведите N чисел — значения префикс-функции для каждой позиции, разделённые пробелом.

стандартный ввод	стандартный вывод	
abracadabra	0 0 0 1 0 1 0 1 2 3 4	

Задача С. Множественный поиск [3 секунды, 512 мегабайт]

Дано множество строк S и строка t. Требуется для каждой сроки $p \in S$ определить, встречается ли она в t как подстрока.

Формат входных данных

Первая строка входного файла содержит целое число n — мощность S ($1 \le n \le 10^6$). Следующие n строк содержат по одной строке из S. Сумма длин всех строк из S не превосходит 10^6 . Последняя строка входного файла содержит t ($1 \le t \le 10^6$). Все строки состоят из прописных латинских букв.

Формат выходных данных

Для каждой сроки из S выведите «YES», если она встречается в t и «NO» в противном случае. Строки нумеруются в порядке появления во входном файле.

стандартный ввод	стандартный вывод
3	YES
abc	NO
abcdr	YES
abcde	
xabcdef	

Задача D. Неточное совпадение [2 секунды, 256 мегабайт]

Даны строки p и t. Требуется найти все вхождения строки p в строку t в качестве подстроки с точностью до возможного несовпадения одного символа.

Формат входных данных

Первая строка входного файла содержит p, вторая — t $(1 \leqslant |p|, |t| \leqslant 10^6)$. Строки состоят из букв латинского алфавита.

Формат выходных данных

В первой строке выведите количество вхождений строки p в строку t. Во второй строке выведите в возрастающем порядке номера символов строки t, с которых начинаются вхождения p. Символы нумеруются с единицы.

стандартный ввод	стандартный вывод
aaaa	4
Caaabdaaaa	1 2 6 7

Задача Е. Кубики [2 секунды, 256 мегабайт]

Привидение Петя любит играть со своими кубиками. Он любит выкладывать их в ряд и разглядывать своё творение. Однако недавно друзья решили подшутить над Петей и поставили в его игровой комнате зеркало. Ведь всем известно, что привидения не отражаются в зеркале! А кубики отражаются.

Теперь Петя видит перед собой N цветных кубиков, но не знает, какие из этих кубиков настоящие, а какие — всего лишь отражение в зеркале.

Помогите Пете! Выясните, сколько у него может быть кубиков. Петя видит отражение всех кубиков в зеркале и часть кубиков, которая находится перед ним. Часть кубиков может быть позади Пети, их он не видит.

Формат входных данных

Первая строка входного файла содержит два целых числа: N ($1 \le N \le 100\,000$) и количество различных цветов, в которые могут быть раскрашены кубики, — M ($1 \le M \le 100\,000$). Следующая строка содержит N целых чисел от 1 до M — цвета кубиков.

Формат выходных данных

В выходной файл выведите в порядке возрастания все такие K, что у Пети может быть K кубиков.

стандартный ввод	стандартный вывод
6 2	3 5 6
1 1 2 2 1 1	

Задача F. Подпалиндромы [2 секунды, 256 мегабайт]

Дано слово и запросы двух типов:

- \bullet заменить *i*-ю букву в слове на букву *c*;
- ullet проверить, является ли подстрока $s_i \dots s_k$ палиндромом.

Формат входных данных

В первой строке записано слово из n строчных латинских букв. Во второй строке записано целое число m — количество запросов ($5\leqslant n,m\leqslant 10^5$). Следующие m строк содержат запросы. Каждый запрос имеет вид «change i c» или «palindrome? j k», где i,j,k — целые числа ($1\leqslant i\leqslant n; 1\leqslant j\leqslant k\leqslant n$), а символ c — строчная латинская буква.

Формат выходных данных

На все запросы второго типа выведите «Yes», если подслово $s_j \dots s_k$ является палиндромом, и «No» в противном случае.

стандартный ввод	стандартный вывод
abcda	No
5	Yes
palindrome? 1 5	Yes
palindrome? 1 1	Yes
change 4 b	
palindrome? 1 5	
palindrome? 2 4	

Задача G. Цензура [2 секунды, 256 мегабайт]

Посчитайте, сколько строк над алфавитом из n символов длины m не содержат ни одной подстроки из заданного множества "запрещенных" строк.

Формат входных данных

В первой строке написаны целые числа n ($1 \le n \le 100$) — количество символов в алфавите, m ($1 \le m \le 100$) — длина искомых строк и p ($0 \le p \le 10$) — количество "запрещенных" подстрок. Следующая строка содержит n символов с кодами больше 32 — буквы алфавита. Далее идет p "запрещенных" строк, длины которых не превосходят $\min(m, 10)$ символов. Строки целиком состоят из символов алфавита.

Формат выходных данных

В первой строке выведите ответ на задачу.

стандартный ввод	стандартный вывод
2 3 1	5
ab	
bb	