

CS 540 Introduction to Artificial Intelligence Reinforcement Learning I

Fred Sala University of Wisconsin-Madison

April 20, 2021

Announcements

- Homeworks:
 - HW9 due today, final HW out
- Final: administrative details out soon

Class roadmap:

Tuesday, April 20	Reinforcement Learning I
Thursday, April 22	RL II + Search Summary
Tuesday, April 27	AI in the Real World
Thursday, April 29	AI Ethics

Outline

- Introduction to reinforcement learning
 - Basic concepts, mathematical formulation, MDPs, policies
- Valuing policies
 - Value functions, Bellman equation, value iteration
- Q-learning
 - Q function, SARSA, deep Q-learning

Back to Our General Model

We have an agent interacting with the world

- Agent receives a reward based on state of the world
 - Goal: maximize reward / utility (\$\$\$)
 - Note: data consists of actions & observations
 - Compare to unsupervised learning and supervised learning

Examples: Gameplay Agents

AlphaZero:

Examples: Video Game Agents

Pong, Atari

Mnih et al, "Human-level control through deep reinforcement learning"

A. Nielsen

Examples: Video Game Agents

Minecraft, Quake, StarCraft, and more!

Shao et al, "A Survey of Deep Reinforcement Learning in Video Games"

Examples: Robotics

Training robots to perform tasks (e.g., grasp!)

Ibarz et al, " How to Train Your Robot with Deep Reinforcement Learning – Lessons We've Learned "

Building The Theoretical Model

Basic setup:

- Set of states, S
- Set of actions A

- Information: at time t, observe state $s_t \in S$. Get reward r_t
- Agent makes choice $a_t \in A$. State changes to s_{t+1} , continue

Goal: find a map from states to actions maximize rewards.

Markov Decision Process (MDP)

The formal mathematical model:

- State set S. Initial state s₀. Action set A
- State transition model: $P(s_{t+1}|s_t, a_t)$
 - Markov assumption: transition probability only depends on s_t and a_t , and not previous actions or states.
- Reward function: $r(s_t)$
- **Policy**: $\pi(s):S\to A$ action to take at a particular state.

$$s_0 \xrightarrow{\mathbf{a}_0} s_1 \xrightarrow{\mathbf{a}_1} s_2 \xrightarrow{\mathbf{a}_2} \dots$$

Example of MDP: Grid World

Robot on a grid; goal: find the best policy

Source: P. Abbeel and D. Klein

Example of MDP: Grid World

Note: (i) Robot is unreliable (ii) Reach target fast

r(s) = -0.04 for every non-terminal state

Grid World Abstraction

Note: (i) Robot is unreliable (ii) Reach target fast

r(s) = -0.04 for every non-terminal state

Grid World Optimal Policy

Note: (i) Robot is unreliable (ii) Reach target fast

r(s) = -0.04 for every non-terminal state

Back to MDP Setup

The formal mathematical model:

- State set S. Initial state s₀. Action set A
- State transition model: $P(s_{t+1}|s_t, a_t)$
 - Markov assumption: transition probability only depends on s_t and a_t , and not previous actions or states. How do we find
- Reward function: $r(s_t)$ the best policy?
- **Policy**: $\pi(s):S\to A$ action to take at a particular state.

$$s_0 \xrightarrow{\mathbf{a}_0} s_1 \xrightarrow{\mathbf{a}_1} s_2 \xrightarrow{\mathbf{a}_2} \dots$$

Defining the Optimal Policy

For policy π , **expected utility** over all possible state sequences from s_0 produced by following that policy:

$$V^{\pi}(s_0) = \sum_{i=1}^{n} P(\text{sequence})U(\text{sequence})$$

sequences starting from s_0

Called the **value function** (for π , s_0)

Discounting Rewards

One issue: these are infinite series. Convergence?

Solution

$$U(s_0, s_1 \dots) = r(s_0) + \gamma r(s_1) + \gamma^2 r(s_2) + \dots = \sum_{t>0} \gamma^t r(s_t)$$

- Discount factor γ between 0 and 1
 - Set according to how important present is VS future
 - Note: has to be less than 1 for convergence

From Value to Policy

Now that $V^{\pi}(s_0)$ is defined what α should we take?

- First, set V*(s) to be expected utility for optimal policy from s
- What's the expected utility of an action?
 - Specifically, action a in state s?

All the states we could go to

Expected rewards

Obtaining the Optimal Policy

We know the expected utility of an action.

So, to get the optimal policy, compute

Slight Problem...

Now we can get the optimal policy by doing

$$\pi^*(s) = \operatorname{argmax}_{\mathbf{a}} \sum_{s'} P(s'|s, \mathbf{a}) V^*(s')$$

- So we need to know $V^*(s)$.
 - But it was defined in terms of the optimal policy!
 - So we need some other approach to get $V^*(s)$.
 - Need some other **property** of the value function!

Bellman Equation

Let's walk over one step for the value function:

Bellman: inventor of dynamic programming

Value Iteration

Q: how do we find $V^*(s)$?

- Why do we want it? Can use it to get the best policy
- Know: reward r(s), transition probability P(s'|s,a)
- Also know $V^*(s)$ satisfies Bellman equation (recursion above)

A: Use the property. Start with $V_0(s)=0$. Then, update

$$V_{i+1}(s) = r(s) + \gamma \max_{\mathbf{a}} \sum_{s'} P(s'|s, \mathbf{a}) V_i(s')$$

Value Iteration: Demo

Source: POMDPBGallery Julia Package

Q-Learning

What if we don't know transition probability P(s'|s,a)?

- Need a way to learn to act without it.
- Q-learning: get an action-utility function Q(s,a) that tells us the value of doing a in state s
- Note: $V^*(s) = \max_a Q(s,a)$
- Now, we can just do $\pi^*(s) = \arg \max_a Q(s, a)$
 - But need to estimate Q!

Q-Learning Iteration

How do we get Q(s,a)?

• Similar iterative procedure

$$Q(s_t, \mathbf{a}_t) \leftarrow Q(s_t, \mathbf{a}_t) + \alpha[r(s_t) + \gamma \max_{\mathbf{a}} Q(s_{t+1}, \mathbf{a}) - Q(s_t, \mathbf{a}_t)]$$
Learning rate

Idea: combine old value and new estimate of future value.

Exploration Vs. Exploitation

General question!

- **Exploration:** take an action with unknown consequences
 - Pros:
 - Get a more accurate model of the environment
 - Discover higher-reward states than the ones found so far

– Cons:

- When exploring, not maximizing your utility
- Something bad might happen
- **Exploitation:** go with the best strategy found so far
 - Pros:
 - Maximize reward as reflected in the current utility estimates
 - Avoid bad stuff
 - Cons:
 - · Might also prevent you from discovering the true optimal strategy

Q-Learning: Epsilon-Greedy Policy

How to **explore**?

• With some 0 < e < 1 probability, take a random action at each state, or the action with highest Q(s, a) value.

$$a = \begin{cases} \operatorname{argmax}_{\mathbf{a} \in A} Q(\mathbf{s}, \mathbf{a}) & \operatorname{uniform}(0, 1) < \epsilon \\ \operatorname{random} \mathbf{a} \in A & \text{otherwise} \end{cases}$$

Q-Learning: SARSA

Using the epsilon-greedy policy, an alternative:

Just use the next action, no max over actions:

$$Q(s_t, \mathbf{a}_t) \leftarrow Q(s_t, \mathbf{a}_t) + \alpha[r(s_t) + \gamma Q(s_{t+1}, \mathbf{a}_{t+1}) - Q(s_t, \mathbf{a}_t)]$$
 Learning rate

Called state—action—reward—state—action (SARSA)

Deep Q-Learning

How do we get Q(s,a)?

Mnih et al, "Human-level control through deep reinforcement learning"

Summary

- Reinforcement learning setup
- Mathematica formulation: MDP
- Value functions & the Bellman equation
- Value iteration
- Q-learning

Acknowledgements: Based on slides from Yin Li, Jerry Zhu, Svetlana Lazebnik, Yingyu Liang, David Page, Mark Craven, Pieter Abbeel, Dan Klein