FIB

Seguretat Informàtica

Col·lecció de problemes Cryptography SOLUCIONS

Curs 2017-18 Q2
Marzo 2018

Jaime Delgado Dept. AC **True/False Test questions.** Indicate if the following sentences are true or false.

2. AES and D	ES are symmetric key encryption systems.	
	□True	□ False
Answer: True.		
3. DES and A	ES are examples of block-based ciphering mo	echanisms.
	□ True	□ False
Answer: True.		
4. It is not pos	ssible to use the DES algorithm for digital sig	nature.
	□ True	□ False
Answer: True.		
	aphy, the "confusion" principle is the one th in the ciphered text.	at provokes that a small change in the key achieves
	□True	□ False
Answer: True.		
	aphy, the "diffusion" principle is the one tha in the ciphered text will happen (plain text vs	t achieves that with a small change in the clear text, . cipher text independence).
	□ True	□ False
Answer: True.		
	o de "difusión" en criptografía es el que consi en el texto cifrado.	gue que con un pequeño cambio en la clave haya un
	□ Cierto	□ Falso
Respuesta: Fa texto cifrado.	also. Es el que consigue que un pequeño cambio	en el texto en claro provoque un gran cambio en el
8. Diffie-Hellm	nan allows sharing a secret key through the c	communication channel in a secure manner.
	□ True	□ False
Answer: True.		
9. SubBytes, encryption.	ShiftRows and MixColumns are examples o	f permutations of the RSA algorithm for symmetric
	□ True	□ False
Answer: False	. It is for AES. RSA is asymmetric.	

10. ShiftRows symmetric end		imples of permutations of the DES algorithm for			
	☐ True	□ False			
Answer: False.	They are for AES.				
11. In "asymm	etric encryption", the recipient's private key	is used to encrypt a message.			
	☐ True	□ False			
Answer: False.	The recipient's public key is used.				
12. It is not us	eful ciphering with symmetric key and sendi	ng that key through a public key mechanism.			
	☐ True	□ False			
	Answer: False. Ciphering with symmetric key is more efficient, and sending the symmetric key using PKI solves the key distribution problem.				
13. Una firma	electrónica se genera con la clave pública de	el firmante.			
	□ Cierto	□ Falso			
Respuesta: Fal	lso. Con la clave privada del firmante.				
14. In security	, Hash algorithms are used to interchange sy	mmetric keys.			
	□ True	□ False			
Answer: False. They are used to "summarize" (without the possibility of recovering the original) the content of a message to sign.					
15. En los sistemas de cifrado de clave asimétrica, la parte secreta de la clave se puede deducir de la clave pública.					
	□ Cierto	□ Falso			
Respuesta: Fal	lso.				
16. En los sistemas de cifrado de clave simétrica, la parte pública de la clave va encriptada con la clave secreta.					
	□ Cierto	□ Falso			
Respuesta: Falso. Los sistemas de clave simétrica no tienen clave pública.					
17. No es pos asimétrica.	ible encriptar con clave simétrica y después	enviar la clave a través de un mecanismo de clave			
	□ Cierto	□ Falso			
Respuesta: Fal	so. Se hace muy frecuentemente.				
18. En RSA, el valor de la e de la clave pública ha de ser coprimo con el valor de $\Phi(n)$.					
	□ Cierto	□ Falso			
Respuesta: Cie	erto.				

19. In RSA, the secret part of the key is calculated directly from the two values of the public part, e and n.					
☐ True	□ False				
Answer: False. Module $\tt n$ is not used, but numbers $\tt p$ and $\tt q$ are used for the calculation.					
20. In the ElGamal mechanism for asymmetric encryption, the secret key K_S is calculated as $K_S = \alpha^{KP}$, being K_P the public key, and α a known number.					
☐ True	□ False				
Answer: False. It is just the contrary; i.e., $Kp = \alpha^{Ks}$.					
21. In the ElGamal mechanism for asymmetric encryption, the public key K_P is calculated as $K_P = \alpha^{KS}$, being K_S the secret key, and α a known number.					
☐ True	□ False				
Answer: True.					
22. In the ElGamal mechanism for asymmetric encryption, to encrypt m we should calculate $c=m*(\alpha^a)^v \mod g$, where v is a random number chosen by the sender, which is not sent.					
☐ True	□ False				
Answer: True.					

PROBLEMA 1

Un usuario A quiere firmar con RSA un mensaje m de sólo un octeto: **00001110**, que envía a otro usuario B. Los datos disponibles son:

Claves públicas de los usuarios A y B: $(e_A, n_A) = (3, 22)$ $(e_B, n_B) = (11, 35)$ Nota: En la firma RSA, $s = m^d \mod n$; $m = s^e \mod n$; $d = e^{-1} \mod \Phi(n)$.

Calcular la firma que generará A.

Para calcular s necesitamos m, d y n. m será el octeto 00001110 = 14 en decimal. En este caso concreto en el que A firma con su clave secreta, necesitamos d_A y n_A . n_A vale 22, pero nos falta d_A , que es su clave secreta. La podríamos calcular si tuviésemos $\Phi(n) = (p-1)^*(q-1)$, siendo p y q los factores de n. Como n $(n=p^*q, siendo ambos primos)$ es muy pequeño, podemos deducir que n=22=2*11 y, por tanto $\Phi(n) = 1*10=10$.

Por tanto, $d_A = e_A^{-1} \mod \Phi_A(n) = 3^{-1} \mod 10$. Y calculamos el inverso con la "magic box":

b	d	l	k	
0	10	<u> </u>		
1	3		3	
-3	1			

por lo que el inverso es igual a 10 - 3 = 7, y $d_A = 7 \mod 10 = 7$.

Ahora simplemente queda aplicar la fórmula s = md mod n

Con los valores que tenemos:

 $s = 14^7 \mod 22 = 105413504 \mod 22 = 20$

PROBLEMA 2

Una companyia fa servir RSA. Les claus públiques de A (Anna) i B (Bob) són:

$$(e_A, n_A) = (13, 299 = 13*23)$$

$$(e_B, n_B) = (3, 319 = 11*29)$$

Reproduir les operacions que ha de fer l'Anna per

- (1) signar el missatge m=200,
- (2) xifrar el resultat de la signatura i
- (3) xifrar el missatge original.

També reproduir les operacions que ha de fer en Bob per desxifrar i verificar la signatura de l'Anna.

1) signar:
$$s = m^{dA} \mod n_A$$

Ens falta d_A ($d_A = e^{-1} \mod \Phi(n_A)$), però tenim la factorització de n_A i podem calcular $\Phi(n) = (p-1) * (q-1) = 12 * 22 = 264$, llavors calculem amb el magic box $d_A = 61$

$$b_i = b_{i-2} - (k_{i-1} * b_{i-1})$$

 $s = 200^{61} \mod 299 = 96$

(per exemple, podem calcular la exponenciació modular a http://ptrow.com/perl/calculator.pl)

- 2) xifrar signatura: $c_s = s^{eB} \mod n_B = 96^3 \mod 319 = 149$
- 3) xifrar missatge: $c_m = m^{eB} \mod n_B = 200^3 \mod 319 = 118$
- 4) desxifrar signatura: $s = c^{dB} \mod n_B$ com abans no tenim d_B però tenim els factors de n_B i podem calcular $\Phi(n) = (p-1)^*(q-1) = 10 * 28 = 280$, llavors calculem amb el magic box $d_B = 187$

$$s = 149^{187} \text{mod } 319 = 96$$

- 5) desxifrar missatge: $m = 118^{187} \mod 319 = 200$
- 6) verificar signatura $m = s^{eA} \mod n_A \rightarrow 200 = 96^{13} \mod 299$

PROBLEMA 3

A y B utilizan RSA para intercambiar mensajes cifrados. Sus claves públicas son:

$$(e_A, n_A) = (11, 35)$$

 $(e_B, n_B) = (3, 22)$

C consigue averiguar, tanto para A como para B, los valores "p" y "q" con los que han obtenido "n" (han seleccionado un primo demasiado pequeño que C ha conseguido factorizar).

C intercepta un mensaje encriptado que A envía a B. En concreto, c = 14.

SE PIDE:

¿Cuál es el mensaje m original que se ha enviado y que C es capaz de desencriptar? Detallar todos los cálculos que C debe hacer para obtener m.

Nota: En RSA, $c = m^e \mod n$, $m = c^d \mod n$, $d = e^{-1} \mod \Phi(n)$.

El mensaje c que C ha interceptado se habrá calculado:

$$c = 20^3 \mod 22 = 8000 \mod 22 = 14$$

Los valores p y q de A y B serán:

$$n = p * q$$
; en A: $n = 35 = 5 * 7$; en B: $n = 22 = 2 * 11$
Y $\Phi(n)$:
 $\Phi(n) = (p-1)*(q-1)$; en A: $\Phi_A(n) = 4*6= 24$; B: $\Phi_B(n) = 1*10= 10$

Teniendo en cuenta que A envía a B, para calcular m tenemos:

 $m = 14^{dB} \mod 22$, por lo que debemos calcular d_B.

Aplicando la fórmula y con los valores que tenemos:

$$d_B = e_B^{-1} \mod \Phi_B(n) = 3^{-1} \mod 10$$

Y calculamos el inverso con la "magic box":

b	d	k
0 1 -3	10 3 1	_ 3

por lo que el inverso es igual a 10 - 3 = 7, y $d_B = 7 \mod 10 = 7$.

Y ya tenemos todos los datos para calcular m: $m = 14^7 \mod 22 = 105413504 \mod 22 = 20$

PROBLEMA 4

Recibimos un mensaje encriptado c y su firma s. En concreto, nos llega c=16 y s=14. Usamos RSA.

Las claves pública y privada de nuestro interlocutor son:

(e, n) = (11, 35)

d = 11

Nuestras claves pública y privada son:

(e, n) = (3, 22)

d = 7

Nota: Ejemplo de operaciones RSA: $x = y^d \mod n$; $y = x^e \mod n$; $d = e^{-1} \mod \Phi(n)$.

Calcular el mensaje m original y verificar si la firma es correcta. La función de Hash es H(m)=m.

El originador de m lo ha encriptado con nuestra clave pública y deberemos desencriptar con nuestra clave privada:

 $m = c^d \mod n$; $m = 16^7 \mod 22 = 14$.

El originador ha firmado H(m) con su clave privada. Para verificar la firma, hemos de desencriptar s con su clave pública y ver si el resultado coincide con m:

 $m = s^e \mod n$; $s = 14^{11} \mod 35 = 14$.

PROBLEMA 5

En un entorno RSA, queremos hacer una suplantación firmando un mensaje m=14 como si fuéramos la víctima.

La clave pública de la víctima es:

(e, n) = (11, 35)

Nuestras claves pública y privada son:

(e, n) = (3, 22)

d = 7

Nota: Ejemplo de operaciones RSA: $x = y^d \mod n$; $y = x^e \mod n$; $d = e^{-1} \mod \Phi(n)$.

Calcular la clave privada de la víctima y el resultado de la firma.

Calculamos la clave privada d de la víctima:

n=p*q;
$$35=5*7$$
. $\Phi(n) = (p-1)*(q-1) = 4*6=24$.
d = $e^{-1} \mod \Phi(n) = 11^{-1} \mod 24$. Con magic box:

Ahora firmamos con su clave privada:

 $s = m^d \mod n; m = 14^{11} \mod 35 = 14.$

EXERCISE 6

Using RSA, B sends to A the result c=11 of encrypting a message m, together with the result s=18 of signing the same message with a hash function H(m)=m/2.

The public and private keys of A and B are: $(e_A, n_A) = (11, 35), d_A = 11; (e_B, n_B) = (3, 22), d_B = 7$

Note: Examples of RSA operations: $x = y^d \mod n$; $y = x^e \mod n$; $d = e^{-1} \mod \Phi(n)$.

1) Calculate (with the information that the recipient could have) the original message m.

B has encrypted m with the public key from A, and A must decrypt with his/her private key: $m = c^{dA} \mod n_A; m = 11^{11} \mod 35 = 16.$

2) Verify (with the information that the recipient could have) if the signature is correct.

B has signed H(m) with his/her private key. To verify the signature, A needs to decrypt s with the public key from B, and check if the result coincides with H(m), i.e. if $H(m) = s^{eB} \mod n_B$. $s^{eB} \mod n_B = 18^3 \mod 22 = 2$. H(m) = m/2, H(16) = 8.

H(m)=m/2, H(16)=8. Therefore, the signature is not correct!

PROBLEMA 7

Usando RSA, A envía a B el resultado c=5 de encriptar un mensaje m, y el resultado s=4 de firmar el mismo mensaje con una función de Hash H(m)=m/3.

Las claves pública y privada de A y B son: $(e_A, n_A) = (11, 35), d_A = 11; (e_B, n_B) = (3, 22), d_B = 7$

Nota: Ejemplo de operaciones RSA: $x = y^d \mod n$; $y = x^e \mod n$; $d = e^{-1} \mod \Phi(n)$.

1) Calcular (con los datos que pueda tener el receptor) el mensaje m original.

A ha encriptado m con la clave pública de B, y B debe desencriptar con su clave privada:

 $m = c^{dB} \mod n_B; m = 5^7 \mod 22 = 3.$

2) Verificar (con los datos que pueda tener el receptor) si la firma es correcta.

A ha firmado H(m) con su clave privada. Para verificar la firma, B ha de desencriptar s con la clave pública de A, y ver si el resultado coincide con H(m):

H(m) vale H(m)=m/3, H(3)=1. Calculamos H(m) desencriptando s: $H(m) = s^{eA} \mod n_B$; $s = 4^{11} \mod 35 = 9$.

Como la desencriptación de s es distinta al cálculo de H(m), la firma no es correcta!

EXERCISE 8

We encrypt using ElGamal with a generator α =3 \in Z_{31} . The secret key of the sender is 14 and the one for the recipient is 10. To encrypt, v=2 is chosen.

Note: ElGamal expressions: Encrypt: $c = m^*(\alpha^a)^v \in G$ Decrypt: $m = c^*(\alpha^{va})^{-1} \in G$

If the encrypted message c=27 is received, calculate the original message m.

```
\alpha^{v} = 3^{2} \mod 31 = 9.
m = 27 * (9^{10})^{-1} \mod 31 = 27 * 5^{-1} \mod 31, ya que 9^{10} \mod 31 = 5
We calculate 5^{-1} \mod 31 with "magic box":
```

 $m = 27 * 25 \mod 31 = 24$

PROBLEMA 9

Encriptamos usando ElGamal con un generador α =3 \in Z_{31} . Nuestra clave secreta es 10. Como resultado de la encriptación, enviamos los valores c y 9.

<u>Nota</u>: Fórmulas ElGamal: Encriptar: $c = m^*(\alpha^a)^v \in G$ Desencriptar: $m = c^*(\alpha^{va})^{-1} \in G$

Calcular el mensaje encriptado c que enviamos si nuestro mensaje en claro es m=24.

 α^{v} = 9. Por tanto, como 3^v mod 31 = 9, quiere decir que v=2. c= 24*(9¹⁰) mod 31 = 24 * 5 mod 31 = 27

PROBLEMA 10

Suponer que encriptamos usando ElGamal con un generador α =3 \in Z_{31} . La clave secreta de un usuario A es a=17 y la de un usuario B es b=10. B recibe de A: $(\alpha^v, c) = (13, 5)$.

<u>Nota</u>: Fórmulas ElGamal: Encriptar: $c = m^*(\alpha^a)^v \in G$ Desencriptar: $m = c^*(\alpha^{va})^{-1} \in G$

Calcular el valor del mensaje m que A ha enviado.

m=
$$5*(13^{10})^{-1}$$
 mod $31 = 5*5^{-1}$ mod $31 = 5*25$ mod $31 = 1$
ya que 13^{10} mod $31 = 5$, y 5^{-1} mod $31 = 31-6 = 25$ con magic box.

PROBLEMA 11

Encriptamos usando ElGamal con un generador α =2 \in Z_{31} . La clave secreta del emisor es a=14 y la del receptor es a=9. Para encriptar se elige v=3.

Nota: Fórmulas ElGamal: Encriptar: $c = m^*(\alpha^a)^v \in G$ Desencriptar: $m = c^*(\alpha^{va})^{-1} \in G$

Si se recibe el mensaje encriptado c=3, CONTESTAR RAZONADAMENTE A LAS SIGUIENTES PREGUNTAS:

1) ¿Qué otro valor recibiremos además de c?

$$\alpha^{v} = 2^{3} \mod 31 = 8$$
.

2) ¿Cuál es la clave pública del receptor que se habrá usado para enviar el mensaje cifrado?

$$\alpha^{a} = 2^{9} \mod 31 = 16$$
.

3) Calcular el mensaje original m.

 $m = 3 * (8^9)^{-1} \mod 31 = 3 * 4^{-1} \mod 31$, ya que $8^9 \mod 31 = 4$ Calculamos $4^{-1} \mod 31$ con "magic box":

Por tanto el resultado del magic box es 8

 $m = 3 * 8 \mod 31 = 24$