Package 'ASCAT'

February 8, 2022

• '
Type Package
Title Allele-Specific Copy Number Analysis of Tumours
Version 2.5.3
Date 2022-02-08
Author Peter Van Loo [aut, cre], Gro Nielsen [ctb], Jiqiu Cheng [ctb], Stefan Dentro [ctb], Edith Ross [ctb], Kerstin Haase [ctb], Tom Lesluyes [ctb]
Maintainer Tom Lesluyes <tom.lesluyes@crick.ac.uk></tom.lesluyes@crick.ac.uk>
Description R package of ASCAT as published in http://www.ncbi.nlm.nih.gov/pubmed/20837533
Depends R (>= 2.13.0), RColorBrewer, grDevices, graphics, stats, utils
License GPL-3
LazyLoad yes
RoxygenNote 7.1.2
Koxygeni vote 7.1.2
R topics documented:
ascat.asmultipcf ascat.aspcf ascat.GCcorrect ascat.loadData ascat.plotAscatProfile ascat.plotGenotypes ascat.plotNonRounded ascat.plotRawData ascat.plotSegmentedData ascat.plotSunrise ascat.predictGermlineGenotypes
Index 1

2 ascat.asmultipcf

ascat.asmultipcf	Allele-specific segmentation of multiple samples	
------------------	--	--

Description

This segmentation function should only be used if part of the breakpoints are expected to be shared between samples, e.g. due to a common ancestry.

Usage

```
ascat.asmultipcf(
  ASCATobj,
  ascat.gg = NULL,
  penalty = 25,
  wsample = NULL,
  selectAlg = "exact",
  refine = TRUE
)
```

Arguments

ASCATobj	an ASCAT object
ascat.gg	germline genotypes (NULL if germline data is available)
penalty	penalty of introducing an additional ASPCF breakpoint (expert parameter, don't adapt unless you know what you are doing)
wsample	Vector of length length(ASCATobj\$samples). Can be used to assign different weights to samples, for example to account for differences in sequencing quality. (Default = NULL)
selectAlg	Set to "exact" to run the exact algorithm, or "fast" to run the heuristic algorithm. (Default = "exact")
refine	Logical. Should breakpoints be refined on a per sample base? Otherwise each breakpoint is assumed to be present in each sample. (Default = TRUE)

Details

This function saves the results in in [sample].LogR.PCFed.txt and [sample].BAF.PCFed.txt

Value

output: ascat data structure containing:

- 1. Tumor_LogR data matrix
- 2. Tumor_BAF data matrix
- 3. Tumor LogR segmented: matrix of LogR segmented values
- 4. Tumor_BAF_segmented: list of BAF segmented values; each element in the list is a matrix containing the segmented values for one sample (only for probes that are germline homozygous)
- 5. Germline_LogR data matrix
- 6. Germline_BAF data matrix
- 7. SNPpos: position of all SNPs
- 8. ch: a list containing vectors with the indices for each chromosome (e.g. Tumor_LogR[ch[[13]],] will output the Tumor_LogR data of chromosome 13

ascat.aspcf 3

9. chr: a list containing vectors with the indices for each distinct part that can be segmented separately (e.g. chromosome arm, stretch of DNA between gaps in the array design)

ascat.aspcf

ascat.aspcf

Description

run ASPCF segmentation

Usage

```
ascat.aspcf(
  ASCATobj,
  selectsamples = 1:length(ASCATobj$samples),
  ascat.gg = NULL,
  penalty = 25,
  out.dir = ".",
  out.prefix = ""
)
```

Arguments

```
an ASCAT object
selectsamples a vector containing the sample number(s) to PCF. Default = all
ascat.gg germline genotypes (NULL if germline data is available)
penalty penalty of introducing an additional ASPCF breakpoint (expert parameter, don't adapt unless you know what you're doing)
out.dir directory in which output files will be written
out.prefix prefix for output file names
```

Details

This function can be easily parallelised by controlling the selectsamples parameter it saves the results in LogR_PCFed[sample]_[segment].txt and BAF_PCFed[sample]_[segment].txt

Value

output: ascat data structure containing:

- 1. Tumor_LogR data matrix
- 2. Tumor BAF data matrix
- 3. Tumor LogR segmented: matrix of LogR segmented values
- 4. Tumor_BAF_segmented: list of BAF segmented values; each element in the list is a matrix containing the segmented values for one sample (only for probes that are not germline homozygous)
- 5. Germline_LogR data matrix
- 6. Germline_BAF data matrix
- 7. SNPpos: position of all SNPs
- 8. ch: a list containing vectors with the indices for each chromosome (e.g. Tumor_LogR[ch[[13]],] will output the Tumor_LogR data of chromosome 13

4 ascat.loadData

9. chr: a list containing vectors with the indices for each distinct part that can be segmented separately (e.g. chromosome arm, stretch of DNA between gaps in the array design)

ascat.GCcorrect

ascat.GCcorrect

Description

Corrects logR of the tumour sample(s) with genomic GC content

Usage

```
ascat.GCcorrect(ASCATobj, GCcontentfile = NULL)
```

Arguments

ASCATobj an ASCAT object

GCcontentfile File containing the GC content around every SNP for increasing window sizes

Details

Note that probes not present in the GCcontentfile will be lost from the results

Value

ASCAT object with corrected tumour logR

ascat.loadData

ascat.loadData

Description

Function to read in SNP array data

Usage

```
ascat.loadData(
  Tumor_LogR_file,
  Tumor_BAF_file,
  Germline_LogR_file = NULL,
  Germline_BAF_file = NULL,
  chrs = c(1:22, "X", "Y"),
  gender = NULL,
  sexchromosomes = c("X", "Y"))
```

ascat.plotAscatProfile 5

Arguments

Details

germline data files can be NULL - in that case these are not read in

Value

ascat data structure containing:

- 1. Tumor_LogR data matrix
- 2. Tumor_BAF data matrix
- 3. Tumor_LogR_segmented: placeholder, NULL
- 4. Tumor_BAF_segmented: placeholder, NULL
- 5. Germline LogR data matrix
- 6. Germline_BAF data matrix
- 7. SNPpos: position of all SNPs
- 8. ch: a list containing vectors with the indices for each chromosome (e.g. Tumor_LogR[ch[[13]],] will output the Tumor_LogR data of chromosome 13
- 9. chr: a list containing vectors with the indices for each distinct part that can be segmented separately (e.g. chromosome arm, stretch of DNA between gaps in the array design)
- 10. gender: a vector of gender for each cases ("XX" or "XY"). Default = NULL: all female ("XX")

Description

Function plotting the rounded ASCAT profiles over all chromosomes

Usage

```
ascat.plotAscatProfile(
  n1all,
  n2all,
  heteroprobes,
  ploidy,
  rho,
```

6 ascat.plotGenotypes

```
goodnessOfFit,
nonaberrant,
y_limit = 5,
ch,
lrr,
bafsegmented,
chrs
)
```

Arguments

n1all copy number major allele n2all copy number minor allele

heteroprobes probes with heterozygous germline

ploidy ploidy of the sample rho purity of the sample goodnessOfFit estimated goodness of fit

nonaberrant boolean flag denoting non-aberrated samples

y_limit Optional parameter determining the size of the y axis in the nonrounded plot and

ASCAT profile. Default=5

ch a list containing c vectors, where c is the number of chromosomes and every

vector contains all probe numbers per chromosome

1rr (unsegmented) log R, in genomic sequence (all probes), with probe IDs

baf segmented B Allele Frequency, segmented, in genomic sequence (only probes heterozygous

in germline), with probe IDs

chrs a vector containing the names for the chromosomes (e.g. c(1:22,"X"))

Value

plot showing the ASCAT profile of the sample

```
ascat.plotGenotypes
```

Description

```
ascat.plotGenotypes
```

Usage

```
ascat.plotGenotypes(ASCATobj, title, Tumor_BAF_noNA, Hom, ch_noNA)
```

Arguments

ASCATobj an ASCAT object title main title of the plot

Tumor_BAF_noNA B-allele frequencies of the tumour sample with removed NA values

Hom Boolean vector denoting homozygous SNPs

ch_noNA vector of probes per chromosome (NA values excluded)

ascat.plotNonRounded 7

Value

plot showing classified BAF per sample, with unused SNPs in green, germline homozygous SNPs in blue and all others in red

```
ascat.plotNonRounded ascat.plotNonRounded
```

ploidy of the sample

Description

Function plotting the unrounded ASCAT copy number over all chromosomes

Usage

```
ascat.plotNonRounded(
  ploidy,
  rho,
  goodnessOfFit,
  nonaberrant,
  nAfull,
  nBfull,
  y_limit = 5,
  bafsegmented,
  ch,
  lrr,
  chrs
)
```

Arguments

ploidy

purity of the sample rho goodnessOfFit estimated goodness of fit boolean flag denoting non-aberrated samples nonaberrant nAfull copy number major allele nBfull copy number minor allele y_limit Optional parameter determining the size of the y axis in the nonrounded plot and ASCAT profile. Default=5 bafsegmented B Allele Frequency, segmented, in genomic sequence (only probes heterozygous in germline), with probe IDs ch a list containing c vectors, where c is the number of chromosomes and every vector contains all probe numbers per chromosome lrr (unsegmented) log R, in genomic sequence (all probes), with probe IDs

a vector containing the names for the chromosomes (e.g. c(1:22,"X"))

Value

chrs

plot showing the nonrounded copy number profile, using base plotting function

ascat.plotRawData

ascat.plotRawData

Description

Plots SNP array data

Usage

```
ascat.plotRawData(ASCATobj, img.dir = ".", img.prefix = "")
```

Arguments

ASCATobj an ASCAT object (e.g. data structure from ascat.loadData)

img.dir directory in which figures will be written

img.prefix prefix for figure names

Value

Produces png files showing the logR and BAF values for tumour and germline samples

```
ascat.plotSegmentedData
```

ascat.plotSegmentedData

Description

plots the SNP array data before and after segmentation

Usage

```
ascat.plotSegmentedData(ASCATobj, img.dir = ".", img.prefix = "")
```

Arguments

ASCATobj an ASCAT object (e.g. from ascat.aspcf) img.dir directory in which figures will be written

img.prefix prefix for figure names

Value

png files showing raw and segmented tumour logR and BAF

9 ascat.plotSunrise

ascat.plotSunrise ascat.plotSunrise

Description

ascat.plotSunrise

Usage

```
ascat.plotSunrise(d, psi_opt1, rho_opt1, minim = T)
```

Arguments

d distance matrix for a range of ploidy and tumour percentage values optimal ploidy psi_opt1 rho_opt1 optimal aberrant cell fraction minim when set to true, optimal regions in the sunrise plot are depicted in blue; if set

to false, colours are inverted and red corresponds to optimal values (default:

TRUE)

Value

plot visualising range of ploidy and tumour percentage values

```
ascat.predictGermlineGenotypes
                        ascat.predictGermlineGenotypes
```

Description

predicts the germline genotypes of samples for which no matched germline sample is available

Usage

```
ascat.predictGermlineGenotypes(
  ASCATobj,
  platform = "AffySNP6",
  img.dir = ".",
  img.prefix = ""
)
```

Arguments

```
ASCATobj
                 an ASCAT object
platform
                 used array platform
```

directory in which figures will be written img.dir

img.prefix prefix for figure names 10 ascat.runAscat

Details

Currently possible values for platform: AffySNP6 (default) Custom10k IlluminaASA IlluminaGSAv3 Illumina109k IlluminaCytoSNP Illumina Cyto SNP 850 kIllumina610k Illumina660k Illumina700k Illumina1M Illumina2.5M IlluminaOmni5 Affy10k Affy100k Affy250k_sty Affy250k_nsp AffyOncoScan AffyCytoScanHD HumanCNV370quad

Value

predicted germline genotypes

ascat.runAscat

HumanCore12 HumanCoreExome24 HumanOmniExpress12 IlluminaOmniExpressExome

ascat.runAscat

Description

ASCAT main function, calculating the allele-specific copy numbers

Usage

```
ascat.runAscat(
  ASCATobj,
  gamma = 0.55,
  pdfPlot = F,
  y_limit = 5,
  circos = NA,
  rho_manual = NA,
  psi_manual = NA,
  img.dir = ".",
  img.prefix = ""
)
```

ascat.runAscat 11

Arguments

ASCATobj	an ASCAT object from ascat.aspcf
gamma	technology parameter, compaction of Log R profiles (expected decrease in case of deletion in diploid sample, 100% aberrant cells; 1 in ideal case, 0.55 of Illumina $109K$ arrays)
pdfPlot	Optional flag if nonrounded plots and ASCAT profile in pdf format are desired. Default=F
y_limit	Optional parameter determining the size of the y axis in the nonrounded plot and ASCAT profile. Default=5
circos	Optional file to output the non-rounded values in Circos track format. Default=NA
rho_manual	optional argument to override ASCAT optimization and supply rho parameter (not recommended)
psi_manual	optional argument to override ASCAT optimization and supply psi parameter (not recommended)
img.dir	directory in which figures will be written
img.prefix	prefix for figure names

Details

Note: for copy number only probes, nA contains the copy number value and nB = 0.

Value

an ASCAT output object, containing:

- 1. nA: copy number of the A allele
- 2. nB: copy number of the B allele
- 3. aberrantcellfraction: the aberrant cell fraction of all arrays
- 4. ploidy: the ploidy of all arrays
- 5. failedarrays: arrays on which ASCAT analysis failed
- 6. nonaberrantarrays: arrays on which ASCAT analysis indicates that they show virtually no aberrations
- 7. segments: an array containing the copy number segments of each sample (not including failed arrays)
- 8. segments_raw: an array containing the copy number segments of each sample without any rounding applied
- 9. distance_matrix: distances for a range of ploidy and tumor percentage values

Index

```
ascat.asmultipcf, 2
ascat.aspcf, 3
ascat.GCcorrect, 4
ascat.loadData, 4
ascat.plotAscatProfile, 5
ascat.plotGenotypes, 6
ascat.plotRawData, 8
ascat.plotSegmentedData, 8
ascat.plotSunrise, 9
ascat.predictGermlineGenotypes, 9
ascat.runAscat, 10
```