Model Theory of Valued Fields: Midterm

Li Ling Ko lko@nd.edu

October 15, 2017

Exercise 12: Show that for local rings $R_0 \subseteq R$ we have $m_0 = m \cap R_0$.

Proof. We are assuming that R_0 is a subring of R.

 $m_0 \subseteq m \cap R_0$ follows by definition of $R_0 \sqsubseteq R$. For the reverse containment, since R_0 is local, it suffices to show that $m \cap R_0$ is an ideal of R_0 , and that $m \cap R_0$ is not equal to R_0 . To prove the second claim, observe that R_0 cannot be contained in contain m, because as a subring of R_0 , R_0 must contain the identity of R, which does not lie in m since m is a non-trivial ideal of R. Thus $m \cap R_0 \neq R_0$.

To prove the first claim, observe that as rings, both m and R_0 are closed under subtraction. As an ideal of R, m is closed under multiplication with elements of R_0 . R_0 is also clearly closed under multiplication with elements of R_0 . \square