Importing pandas

In [1]: import pandas as pd

Loading the dataset into a DataFrame

In [2]: | df = pd.read_csv('Employee-Attrition.csv')

In [3]: df

Out[3]:

	Age	Attrition	BusinessTravel	DailyRate	Department	DistanceFromHome	Education	E
0	41	Yes	Travel_Rarely	1102	Sales	1	2	
1	49	No	Travel_Frequently	279	Research & Development	8	1	
2	37	Yes	Travel_Rarely	1373	Research & Development	2	2	
3	33	No	Travel_Frequently	1392	Research & Development	3	4	
4	27	No	Travel_Rarely	591	Research & Development	2	1	
1465	36	No	Travel_Frequently	884	Research & Development	23	2	
1466	39	No	Travel_Rarely	613	Research & Development	6	1	
1467	27	No	Travel_Rarely	155	Research & Development	4	3	
1468	49	No	Travel_Frequently	1023	Sales	2	3	
1469	34	No	Travel_Rarely	628	Research & Development	8	3	

1470 rows × 35 columns

Data Preprocessing

Importing the required from scikit learn library

```
In [4]: from sklearn.model_selection import train_test_split
    from sklearn.preprocessing import StandardScaler
    from sklearn.linear_model import LogisticRegression
    from sklearn.tree import DecisionTreeClassifier
    from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_
```

Eliminating Null values

```
In [5]: df = df.drop(['EmployeeNumber', 'EmployeeCount'], axis=1)
    df = pd.get_dummies(df, columns=['Department', 'EducationField', 'Gender'], dr
    non_numeric_columns = ['EmployeeNumber', 'EmployeeCount', 'Attrition', 'Busine
```

Split the data into features (X) and the target variable (y)

```
In [6]: X = df.drop('Attrition', axis=1)
y = df['Attrition']
```

Split the data into training and testing sets

```
In [7]: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, rando
In [8]: numeric_columns = [col for col in X_train.columns if col not in non_numeric_columns.
```

Feature scaling (standardization)

```
In [9]: scaler = StandardScaler()
    X_train[numeric_columns] = scaler.fit_transform(X_train[numeric_columns])
    X_test[numeric_columns] = scaler.transform(X_test[numeric_columns])
```

Logistic Regression Model

Make predictions

```
In [11]: y_pred_logistic = logistic_reg_model.predict(X_test[numeric_columns])
```

Calculate performance metrics for Logistic Regression

Calculate Accuracy

```
In [12]: accuracy_logistic = accuracy_score(y_test, y_pred_logistic)
print("Accuracy: " + str(round(accuracy_logistic, 2)))

Accuracy: 0.89
```

Calculate precision for yes and no class

```
In [13]: precision_yes_logistic = precision_score(y_test, y_pred_logistic, pos_label='Yound("Precision (Yes): " + str(round(precision_yes_logistic, 2)))

precision_no_logistic = precision_score(y_test, y_pred_logistic, pos_label='Not print("Precision (No): " + str(round(precision_no_logistic, 2)))

Precision (Yes): 0.83
Precision (No): 0.9
```

Calculate recall for yes and no class

```
In [14]: recall_yes_logistic = recall_score(y_test, y_pred_logistic, pos_label='Yes')
    print("Recall (Yes): " + str(round(recall_yes_logistic, 2)))

recall_no_logistic = recall_score(y_test, y_pred_logistic, pos_label='No')
    print("Recall (No): " + str(round(recall_no_logistic, 2)))

Recall (Yes): 0.26
    Recall (No): 0.99
```

Calculate f1 score for yes and no class

```
In [15]: f1_score_yes_logistic = f1_score(y_test, y_pred_logistic, pos_label='Yes')
    print("F1 Score (Yes): " + str(round(f1_score_yes_logistic, 2)))

f1_score_no_logistic = f1_score(y_test, y_pred_logistic, pos_label='No')
    print("F1 Score (No): " + str(round(f1_score_no_logistic, 2)))

F1 Score (Yes): 0.39
    F1 Score (No): 0.94
```

Confusion matrix

Classification Report

```
In [17]: print("\nClassification Report:")
    print(classification_report(y_test, y_pred_logistic))
```

```
Classification Report:
              precision
                           recall f1-score
                                               support
                   0.90
                             0.99
          No
                                       0.94
                                                   255
         Yes
                   0.83
                             0.26
                                       0.39
                                                    39
                                       0.89
                                                   294
    accuracy
   macro avg
                   0.87
                             0.62
                                       0.67
                                                   294
weighted avg
                   0.89
                             0.89
                                       0.87
                                                   294
```

Decision Tree Model

Make predictions

```
In [19]: y_pred_tree = decision_tree_model.predict(X_test[numeric_columns])
```

Calculate performance metrics for Decision Tree

Calculate Accuracy

Calculate precision for yes and no class

```
In [21]: precision_yes_tree = precision_score(y_test, y_pred_tree, pos_label='Yes')
    print("Precision (Yes): " + str(round(precision_yes_tree, 2)))

precision_no_tree = precision_score(y_test, y_pred_tree, pos_label='No')
    print("Precision (No): " + str(round(precision_no_tree, 2)))

Precision (Yes): 0.3
    Precision (No): 0.9
```

Calculate recall for yes and no class

```
In [22]: recall_yes_tree = recall_score(y_test, y_pred_tree, pos_label='Yes')
    print("Recall (Yes): " + str(round(recall_yes_tree, 2)))

recall_no_tree = recall_score(y_test, y_pred_tree, pos_label='No')
    print("Recall (No): " + str(round(recall_no_tree, 2)))

Recall (Yes): 0.33
    Recall (No): 0.88
```

Calculate f1 score for yes and no class

```
In [23]: f1_score_yes_tree = f1_score(y_test, y_pred_tree, pos_label='Yes')
    print("F1 Score (Yes): " + str(round(f1_score_yes_tree, 2)))

f1_score_no_tree = f1_score(y_test, y_pred_tree, pos_label='No')
    print("F1 Score (No): " + str(round(f1_score_no_tree, 2)))

F1 Score (Yes): 0.31
    F1 Score (No): 0.89
```

Confusion matrix

```
In [24]: confusion_matrix_tree = confusion_matrix(y_test, y_pred_tree)
    print("Confusion Matrix:")
    print(confusion_matrix_tree)

Confusion Matrix:
    [[224 31]
       [26 13]]
```

Classification Report

```
In [25]: print("\nClassification Report:")
print(classification_report(y_test, y_pred_tree))
```

```
Classification Report:
              precision
                            recall f1-score
                                               support
          No
                   0.90
                              0.88
                                        0.89
                                                   255
                   0.30
                              0.33
         Yes
                                        0.31
                                                     39
                                        0.81
                                                   294
    accuracy
   macro avg
                   0.60
                              0.61
                                        0.60
                                                    294
weighted avg
                   0.82
                              0.81
                                        0.81
                                                   294
```