Definable well-orderings with compactness

Radek Honzik

Charles University, Department of Logic logika.ff.cuni.cz/radek

Bristol, February 3-4, 2020

We will discuss the following result, and more importantly also consider some open questions with regard to higher cardinals and generalized cardinal invariants:

Theorem (Friedman, H., Stejskalova (2020))

- ① If there is a Mahlo cardinal, then there is a model with $2^{\omega} = \omega_2$, $\neg \Box_{\omega_1}^*$ and with a Σ_3^1 well-ordering of the reals.
- ① If there is a weakly compact cardinal, then there is a model with $2^{\omega}=\omega_2$, $\mathsf{TP}(\omega_2)$ and with a Σ_3^1 well-ordering of the reals.

BPFA may be false if we wish.

Let us say a few things about the context and motivations.

- With new methods and forcings available, it is natural to ask not only whether ω_2 can have the tree property, stationary reflection, etc. (compactness properties), but whether the compactness at ω_2 is compatible with other interesting properties.
- One such property is a projective well-ordering.
- Another properties might be a small \mathfrak{u}_{ω} , etc.

This is interesting both from the point of development of new forcings and from the point of compatibility of compactness principles with other set-theoretical properties. It appears that at the moment there is virtually only one forcing method which achieves $TP(\omega_2)$ (the tree property at ω_2) with an iteration which can code some information such as a projective well-order:

Theorem (Friedman, Torres-Perez, [2])

If there is a Σ_1 -reflecting cardinal which is also weakly compact, then there is a model with BPFA, $2^{\omega}=\omega_2$, $TP(\omega_2)$ and with a Σ_3^1 well-ordering of the reals.

Let us say a few words about this theorem and how it relates to our result.

Recall that a regular cardinal κ is Σ_1 -reflecting if for any regular cardinal χ and any formula φ and $a \in H(\kappa)$, $H(\chi) \models \varphi(a)$, implies $(\exists \delta < \kappa) \ a \in H(\delta)$ and $H(\delta) \models \varphi$. By a Löwenheim-Skolem argument, the cardinals κ which are possibly non-regular and satisfy this condition are closed unbounded in ORD. The following therefore follows:

Lemma

- 0 If there are stationarily many Mahlo in ORD, then there are stationarily many Mahlo cardinals which are also Σ_1 -reflecting.
- n If there are stationarily many weakly compact cardinals in ORD, then there are stationarily many weakly compact cardinals which are also Σ_1 -reflecting.

Note that if κ is strong, it is also Σ_1 -reflecting.

By Goldstern and Shelah [3], BPFA 1 is equiconsistent with a Σ_1 -reflecting cardinal.

For our present topic, the following surprising result is important:

Theorem (Caicedo, Friedman [1])

If BPFA holds and for some real r, $\omega_1 = \omega_1^{L[r]}$, then there is a $\Sigma_3^1(r)$ well-ordering of the reals.

Thus forcing BPFA over L by the standard proper forcing iteration up to a Σ_1 -reflecting cardinal automatically gives a Σ_3^1 well-ordering of the reals (this is the optimal complexity because already MA_{ω_1} implies there are no Σ_2^1 well-orderings of the reals²).

¹Bounded Proper Forcing Axiom: Pseudo-generics exist which meet ω_1 -many maximal antichains each of size at most ω_1 for proper forcing notions.

²Some anti-large cardinal assumption is required because if ω_1 is inaccessible to reals, then MA implies there are no Σ_3^1 well-orderings.

We wish to find a different construction which will:

- Achieve TP(ω_2) with a Σ_3^1 well-ordering from the optimal hypothesis of a weakly compact cardinal.
- Remove the dependence of the construction on the proper forcing arguments used to get BPFA to prepare for generalizations to larger cardinals.

Recall we prove:

Theorem (Friedman, H., Stejskalova (2020))

- ① If there is a Mahlo cardinal, then there is a model with $2^{\omega} = \omega_2$, $\neg \square_{\omega_1}^*$ and with a Σ_3^1 well-ordering of the reals.
- (1) If there is a weakly compact cardinal, then there is a model with $2^{\omega} = \omega_2$, $\mathsf{TP}(\omega_2)$ and with a Σ_3^1 well-ordering of the reals.

BPFA may be false if we wish.

Let us say a few words about the proof:

• Let κ be weakly compact. We define an iteration $\langle (\mathbb{P}_{\alpha}, \dot{Q}_{\alpha}) \, | \, \alpha < \kappa \rangle$ with countable support which turns κ to ω_2 , ensures a Σ_3^1 well-ordering at successor stages and $\mathsf{TP}(\omega_2)$ at certain limit stages:

In the ground model L fix a definable sequence $\langle S_{\alpha} \mid \alpha < \kappa \rangle$ where each S_{α} is stationary/costationary subset of $i_{\alpha}^{+} \cap \operatorname{cof}(\omega)$, where $\langle i_{\alpha} \mid \alpha < \kappa \rangle$ is an increasing enumeration of inaccessible cardinals below κ .

• Successor stages α : \dot{Q}_{α} codes a given pair of reals (x,y) (so that in the end x < y in the well-ordering) by selectively killing stationarity of certain stationary subsets in an ω -block in $\langle S_{\alpha} \mid \alpha < \kappa \rangle$, then localizing this information into a subset of ω_1 and then code it further by means of an almost disjoint forcing to a subset of ω .

This forcing is not proper (it is S-proper) but it can be computed it generalizes to larger cardinals.

• **Limit stages** $\alpha = i_{\alpha}$: If a Π_1^1 diamond sequence guesses at stage α an α -Aronszajn tree $\dot{\mathcal{T}}_{\alpha}$ (note that α has size ω_2 in $V[\mathbb{P}_{\alpha}]$), then $\dot{\mathcal{Q}}_{\alpha}$ first collapses α to ω_1 and then applies the specialization forcing to $\dot{\mathcal{T}}_{\alpha}$.

This forcing is proper, and most importantly the specialization forcing is ccc.

Intuition. The specialization forcing "seals-off" \dot{T}_{α} : it cannot get a cofinal branch in any outer universe which preserves ω_1 . With all other known forcings which force the tree property, \dot{T}_{α} cannot get a cofinal branch in the further generic extension by a more delicate argument which uses the forcing properties of the iteration (closure, fusion, chain condition): typically, this disqualifies more complex forcing notions which are just distributive.

Open questions and possible generalizations

- It is open how to get the present theorem with $2^{\omega} > \omega_2$.
- It is open how to get $TP(\omega_3)$ with a definable well-ordering of $H(\omega_2)$. In fact it is open how to get $TP(\kappa)$, for $\kappa > \omega_2$, by a forcing which can code some desired information.

- Andrés E. Caicedo and Sy-David Friedman, *BPFA* and projective well-orderings of the reals, The Journal of Symbolic Logic **76** (2011), no. 4, 1126–1136.
- Sy-David Friedman and Victor Torres-Pérez, *The tree property* at ω_2 and Bounded Forcing Axioms, Bul. Pol. Acad. of Sc. Math. **63** (2015), no. 3.
- Martin Goldstern and Saharon Shelah, *The Bounded Proper Forcing Axiom*, The Journal of Symbolic Logic **60** (1995), no. 1, 58–73.