Toward Coordination-Free and Reconfigurable Mixed Concurrency Control

Dixin Tang (totemtang@uchicago.edu), Aaron J. Elmore

Motivation

- One Concurrency Control Protocol Cannot Fit All Workloads
 - > Testing three protocols using YCSB workloads
 - > OCC from Silo, 2PL from VLL, PartCC from H-Store

Workload 1	Not partitionable Read Only
Workload 2	Partitionable
Workload 3	Not partitionable High skew, Write heavy

Our Solution - Mixed Concurrency Control

- Each protocol can process the part of workload it is optimized for
- Each protocol can avoid being brittle to workload where it suffers

- Achieve mixed concurrency control with low overhead
- Support online protocol reconfiguration
- Guarantee correctness (Serializability and Deadlock Free)

Our Approach – CormCC

Partition Workload and Assign Protocols

- Partition by record access characteristics
- *Assign a single protocol to process all read/write operations to that partition

Deadlock Free

- *We require each protocol can exclusively let transactions wait in no more than one phase
 - No deadlock within one phase
 - > Transactions in earlier phases can wait for later phases, but not the other way around

Serializability via COCSR

- COCSR: Commit Ordering Conflict Serializable
- Commit ordering respects conflicts

If all protocols are COCSR, then CormCC is COCSR

Experiments – TPC-C

Prototype

- Supporting PartCC from H-Store, OCC from Silo, and 2PL from VLL
- ❖ Partition the whole database and apply each partition a single protocol
- Selecting the ideal protocol based on feature engineering:
- Partition Conflicts, Record Contention, Read Rate, and Transaction Length

Tests over varied workloads

- Vary parameters every 5 seconds
- ❖Parameters: Transactions mix, Percentages of cross-partition transactions, Access skewness (i.e. theta of Zipf)

CormCC throughput ratio to single protocols

Compared with Tebaldi

- Start with well-partitionable workloads
- Increase receiving partitions cross-partition transactions

Testing Mediated Switching

- ❖Switch from OCC to 2PL
- Test a short-only workload and workloads with one long transaction of different duration
- Test different switching points

