NumberofSubArrayswithGCDequaltoK in C++ #include <iostream> #include <vector> using namespace std; class NumberofSubArrayswithGCDequaltoK { public: int subarrayGCD(vector<int>& nums, int k) { int count = 0; int n = nums.size();for (int sp = 0; sp < n; sp++) { int ans = 0; for (int ep = sp; ep < n; ep++) { ans = gcd(ans, nums[ep]);if (ans < k) { break; if (ans == k) { count++; return count; int gcd(int a, int b) { if (a == 0) { return b; return gcd(b % a, a); **}**; int main() { Number of SubArrays with GCD equal to K solution; // Hard-coded input vector<int> nums = $\{2, 4, 6, 8, 3, 9\};$ int k = 3; int result = solution.subarrayGCD(nums, k); cout << "Number of subarrays with GCD equal to" << k << ": " << result << endl; return 0;

}

Input:

```
nums = \{2, 4, 6, 8, 3, 9\}
k = 3
```

We'll check all subarrays and see how many have GCD = 3.

Dry Run Table

\mathbf{sp}	Subarray	ans (GCD)	Matches k?
0	[2]	2	×
0	[2, 4]	2	×
0	[2, 4, 6]	2	×
0	[2, 4, 6, 8]	2	×
0	[2, 4, 6, 8, 3]	1	X (GCD < k) − break
1	[4]	4	×
1	[4, 6]	2	×
1	[4, 6, 8]	2	×
1	[4, 6, 8, 3]	1	X (GCD < k) − break
2	[6]	6	×
2	[6, 8]	2	×
2	[6, 8, 3]	1	\mathbf{X} (GCD < k) – break
3	[8]	8	×
3	[8, 3]	1	\mathbf{X} (GCD < k) – break
4	[3]	3	$ \checkmark $
4	[3, 9]	3	$ \checkmark $
5	[9]	9	×

♥ Final Count

We found 2 subarrays where the GCD is exactly

- [3]
- [3, 9]

Explanation of Logic

You're using a **nested loop**:

- Outer loop: start point sp
- Inner loop: end point ep
- You maintain a running GCD of the subarray
- If GCD < k, you break early (smart optimization)
- If GCD == k, increment the counter

	And your GCD function is correct, based on the Euclidean algorithm.		
	Output: Number of subarrays with GCD equal to 3: 2		
Number of subarrays with GCD equal to 3: 2			