Contents

1	Animals and Environments	2
	Introduction	2
	Homeostasis	3
	Physiology and Time	3
2	Molecules and Cells in Animal Physiology	5
	Cell Membrane Review	5
	Enzyme Fundamentals	Ę
3	Conomics and Drotosmics	•
3	Genomics and Proteomics	(
		C
4	Physiological Development	7
		/
5	Transport of Solutes and Water	۶
•		3
		Ì
27	Water and Salt Physiology: Mechanisms	ç
		Ş
7	Nutrition, Feeding, and Digestion	10
		10

1 Animals and Environments

Introduction

- What is physiology?
 - Form and function of organisms; the study of how organisms work.
- ▷ Central questions of physiology: mechanism and origin.
 - Mechanism:
 - refers to the components of living organisms and understanding how components interact to enable the organism to function.
 - o Origin:
 - asks why a mechanism exists, or what is the mechanistic adaptive significance of the mechanism.
 - Mechanism and adaptive significance are distinct concepts; knowing about one doesn't necessarily mean you know anything about the other.
- ▶ Krogh's principle:
 - "For such a large number of problems there will be some animal of choice or a few such animals on which it can be most conveniently studied."
- ▶ Krogh's principle central to disciplines that rely on the *comparative method*. The key take away: there is unity in diversity; many organisms are very much alike at the most fundamental levels.
- Physiology subdisciplines:
 - Mechanistic: emphasizes the mechanisms by which organisms perform their life functions.
 - Evolutionary: emphasizes evolutionary origins and the adaptive significance of traits.
 - Comparative: emphasizes the way in which diverse phylogenetic groups resemble and differ from each other.
 - Environmental: emphasizes the ways in which physiology and ecology interact.
 - Integrative: emphasizes the importance of all levels of organization, from genes to proteins and tissues to organs in order to better understand whole physiological systems.

Homeostasis

- ▶ Important ideas to remember:
 - Organisms are structurally dynamic; form stays relatively static while individual cells recycle frequently.
 - Most cells are exposed to the internal environment, not external.
 - Internal cells may vary or kept constant with the environment.
- ▶ Temperature regulation:
 - Conformity: organism's internal temperature correlates with external temperature in a particular range of temperatures.
 - Regulation: internal environment is held mostly contant using celluar mechanisms.
- ▶ **Homeostasis**: the coordinated physiological processes that maintain a relatively constant state in the organism.
 - Positive feedback: less common in homeostasis due difficulty in regulation; leads to runaway effect easily.
 - Negative feedback: more common in homeostasis due to self correcting nature.
 - Effector: executes the change in action that produces an effect, e.g. signals to increase temperature.
 - Sensor: sense changes in environment and sends information to the effector.

Physiology and Time

- ▷ Timeframes of physiological change:
 - Acute: short-term, reversible, and quick to adapt to changes in environment. Usually minutes to hours.
 - **Chronic**: long-term after prolonged exposure to new environments. Changes are usually reversible, but often slower.
 - Chronic can be termed acclimation, or phenotypic plasticity/flexibility.
 - Repetitive acute responses usually lead to chronic responses.
 - Evolutionary: changes due to alteration in gene frequencies in populations exposed to new environments.
- Acclimation is not the same as adaption.

- Adaption is an evolutionary trait presnet at high frequency in a population due to survival/reproductive advantages.
- Not all traits are adaptations.
- The amount of natural variation in a trait must be considered across populations, species etc.

2 Molecules and Cells in Animal Physiology

Cell Membrane Review

- ▶ Major cell memberane structures:
 - **Glycoproteins**: carbohydrate chain attached to a protein.
 - o Glycolipids: similar to glycoproteins, but attached to lipid molecues.
 - glycocalyx: combination of glycoproteins and glycolipids on the surface of cell.
 - o Integral proteins: embedded in phospholipid bilayer.
 - Peripheral proteins: associated with one side of the bilayer.
- ▶ **Unsaturated phospholipid**: whey hydrocarbon tails contain double bonds (less hydrogen).
 - o Increase membrane fluidity due to extra space created.
- ▶ The fluidity of the cell membrane allows proteins to from complexes and dynamically change shape.

Enzyme Fundamentals

D

3 Genomics and Proteomics

4 Physiological Development

5 Transport of Solutes and Water

27 Water and Salt Physiology: Mechanisms

7 Nutrition, Feeding, and Digestion