WO 2004/074468

1/178

3 0 NOV 2004 10/5/6/6/1

1020

pectinases.ST251 SEQUENCE LISTING

DSM IP Assets B.V. <110> <120> Novel Pectinases 20763WO <130> 96 <160> <170> PatentIn version 3.1 <210> <211> 1305 <212> DNA <213> Aspergillus niger <400> 60 atgaagetee ceatestagt gastetattt attactetge eegegetttg egtgtetage aaaactcctt ccgcgcctac gatctctgca tatccgaaat ctccagggaa cttcaagccc 120 gcctctggac gccagaacag cacaagcaat gtctgtgagg tcaagccgaa ccaaacagat 180 240 gctgcccctg gtattcttgc cgcagcccac acttgcaaca atgggggcac cgttttccta ccaccgggtg actttgtcgt cgcaaccgca ctggatctca catttctaaa caacatcgat 300 tttgccatct ggggcaacat cactttcaaa aaggatatcg atctctggac aacccaggca 360 420 tttcaataca cattccagac tgcgagtctt ttctggcgat tcggaggcaa taacgtgaac 480 atctacggcg atgggaaggg ggtgattgat ggagctggtc aatactggtg gagtgcgatg 540 gctgaggatt ccagtgtcat gcgtccttgc ctcctgggca cagacggact gcatcatgcc 600 accatttctg ggctcacgat gctcaactcc ccaaattggt tcaacctgat tgcaaactcc 660 acggacatcc tcatcagtaa tatgacaatg ttggtggaga gtgagatatc ggatgctcca gccaagaaca cagatggctg ggacatctac cgcagctcga atatcgtgat ccaagactca 720 780 agaattgtca acacggacga ctgtgtatcg ttcaaaccaa actccaccca gattgtcatc 840 caaaatctcg actgcactgg ttcccacggt atttctgtcg gcagcttggg tcaataccaa ggggaaacgg atatcgtcga agatctgtac atctataaca tctccatgac agatgcatca 900 960 gatgtggccc gaatcaaggt ctggcctggt gttcctgctg atacgtcagg atcaaccagc

ggtggaggac taggccgcgt ccgcaacgtt acctatgaac acatgcaaag cgagaataac

pectinases.ST251 gatcacatca tttcggtctc gcagtgctat gagtcgaaga accaaacgat gtgcgattca 1080 1140 tatccttcaa aactcgtgat tgaggatgta cttttcaagg actttaaggg aacgacatct 1200 aagaagtacg atcctgagat tggagagttg acatgtagta gtccggatgt ctgccataat atcactgtcc aagacatcaa tgtgactcca cccagtggtg actctcccac tttcacctgc 1260 1305 aacaatatgg ggaattcgaa tttggaggac attacgtgtg cctga 2 <210> 1392 <211> DNA <213> Aspergillus niger <400> atgtcatggt ccagccctgc agcccagtat atttacgtgc ttgtgattca gttacatttg 60 tggtttatcc tgaagacagc attctcaccg agtaatcaag ccatggcacc tatagcgttg 120 180 aaaatcctcc tctttacctc tctcattgtc ccttccatct cgctatccga ccaagcgagg 240 aatggtcatg caagaaccat atgcgaagtc aaaccaggcg gatcctcaga aattgatgat 300 gtgcctgcaa ttgtcgacgc gttgactacc tgtggttccg gtggtcgggt gatattctca aataacactt accatatcaa ctccgttatg aacacgacat ggctcgatga tgtggagatt 360 420 gatctacagg gtacactett gtggageace aacateteet aetggettaa eeacteeete 480 cccgtcggct accagaatca atccactgcc tggatcttgg gtggcaaaga cattgtcttt 540 gaaggacatg gatacggaac attcaatgga agtggccaaa cctggtatag atatgttgga 600 tcgacgtcga attacccacg gcgaccgaac cagctgacgg tctcgggagc aatgggcgca gtcttcaagg ggttgcgatt cgtgcagagc cagatgtgga caatgtctat cattcacacc 660 720 tcgaactcgt ggttcgattc catctacgtg aacaatctgt atgatgacgg cggttcagca 780 cagaacaccg acggtgcaaa tactatctac agcaaaaaca tcacattaac gaactgggaa gtcgtcaacg gtgatgatag tatcagcacg aaagccaatt ctacagatat cacgatcgca 840 900 aactgcacct tcactagcgg cctaggcatt gccatcggga gtattggcca atataatggt 960 gcttttgaga ctgttgaacg ccttaaaatc tcaaacatca catatgagaa gacaactcat 1020 gccgtgtact tcaagacctg gacgggtgac caggtcggat acccgcctaa tggaggcggc 1080 gggggtttgg gatatgcatc cgacatcgtc gcaaccaact tgaagaccaa caacctcaaa

		pect	inases:ST25) T		
ggtgctcca	t ttacaatctc	tcagtgtacg	acgttctctg	gtgcttcagg	gaactgcacc	1140
aattccaaa	t ttcagattcg	cgatcttgtc	ttcaccgata	tctctggaac	gacagactcc	1200
tcagatgtt	g cgagctttca	gtgtagtgct	gttgccccgt	gtgaagatat	cactatcgag	1260
aatgtaagt	t tgcgaatagc	ggggaatacg	acccatgcag	aagagtatct	gtgtgggaat	1320
gtggatggg	a ccgttgggtt	caattgcact	ggagatgtgt	gtgttgggtc	aagtgctact	1380
gggggatgt	t ag					1392
<210> 3 <211> 12 <212> DN <213> As	· =	ger				

<400> 60 atgcaactaa gagetteggt tttgetetet tteetgggge tggeeteegt tggeeatgea 120 ggtaatgtgg aaaacaacca caatgtctgc accgtccgag caaacggggg acaccaagat 180 gacgtcccca atattatggc ggcgttcaaa gagtgtggca atggaggtac cattattttc 240 cccgaagacc aatcgtactg gattgcgacg agactgcatc ccacattgaa ggacgtcgca 300 atcgaatggc gggggaagtg gacattttcc gacaacctca cctactggcg taacaactcc taccccattg cgttccagaa ccatcatgcc ggcttcatta ttagcggcga caacatcacc 360 atcaatggct atggcaccgg cggcattgat ggcaatggca atacttggta cacagccgag 420 aagggcgaca cgcagccggg gcgtccgatg ccatttgtct tttggaacgt gtctgaggtt 480 540 attgttgaca gtttctacgt caaggatccg ccctctgga gtgtcaacat catgaacggg 600 actaacatgc gtttcaacaa tatctactgc aacgccacgg ctgtagatgc cccctggggc 660 gataactggg tgcagaatac ggatggtttc gataccatgg acgctaccaa catccagctc 720 accaacttcg tctaccaagg cggagatgac tgcatcgcta tcaagccccg ctcctacaac 780 atcgacatcc agaatgttac ctgccgtgga ggcaacggca ttgccattgg cagcttgggt 840 caatatttgg aagatagcag tgttgctaac attcgcgtgg acaaggtcaa tatcatccgc 900 tacaacgaag acatgcacaa cagcgcctac ctcaagacct gggtcggagc tctcgtcccc 960 caaagttcct acgaaagcgc cggcgtacct cgtggcgatg gctggggcag catccgtaac

pectinases.ST251 1020 gtcctatttt caaacttcaa tgtacaaggc gcaagcgctg gcccttccat cagtcaggac 1080 agtggagaca acggttccta tgcgggtaca agcaagatgt ctatttcaaa tgttgcgttt gtcaatttca cgggatgggt ggatactgag aagtctgtgg tctcgacggt ctcctgctca 1140 1200 gaggtacatc cgtgctacaa tatcgactat gacaatgtgg tgttgtatcc agggaagaat 1260 gccacaacag ctgggacagg gtcttgtaaa tatacagctg atggaggagt gcatgggttg 1272 agtgggtgtt ga <210> 4 <211> 1032 DNA Aspergillus niger <400> 4 60 atgeceteag ceateagtat tggagtgate gegggeetga gtgtegetge tteggeegta 120 ccttctctcc agaagaatgg cactacctgc accgtcatcc ctttaggaaa cggacaggat 180 gatgtcccca acatcctctc ggccgttgac gaatgtggcc agacctctgg agggagagtt 240 gttctcccag cgccgtatac ctaccgaatt aaccaacgga tgacgactca cctgaccgat 300 tecegaeteg agateggtgg taegettete tteagegaeg atategaeta etgggteaae 360 aactcctacc gggtggactt tcagaatcag tcaagtgcct ggcgtatcac gggtcatgac tatgttgtgg atggaggtcc acgtcaaggt ggagtggatg ggaatggaca gctgtggtac 420 480 acttgggcca agggaggaag caatgtcttc ggacgaccga tgccagtgca tgtgttcgag 540 tegacgegag caaccetgeg taacetggea ateeggeage eteagttttg ggetgttett 600 gtcgattcct cttcgcatat caacctcgat aatttttacg tgaatgccac aaaccatgac 660 teeteggtga geceagaggg egagtgggtg eagaataegg atgggatega eaegtaeega 720 teegaceata ttaeggttae caactgggtg taecaaggeg gagaegatge agtggettte aaagggaact cgacgaacat acatgtagag aatgtcacgg tttacggcgg accgggcatc 780 gcttttgggt cgctgggaca ataccccgac cggacggata ttgtggagaa tgtgacggtt 840 cggaatgttc gagtgcaacc gtccttccaa cgggcgatga attccggggt ttacttcaag 900 agctggatcg gggtcaatta tggtgttcct ccgaatggtg gcgggggcgg ccatggatac 960 gtgcgcaacg tctcagtcga aaaccttcga ctcaaggatg tgcagttacc tgtgtatatt 1020

gacacctggt ga	1032
<210> 5 <211> 1317 <212> DNA <213> Aspergillus niger	
<400> 5 atgtacetec ttecettgae getetteete acegeegett teggegtete aateeetaga	60
totococtoa toccoggogo acaaatogto coogcatoca goacagoaga totacgagoo	120
attggtgctc aacatcacaa gtatccagac cgagagacag ttactattcg ggcctcgagg	180
aacgccctcg acgatgtgtc cagtgacttc ctctggggct tgaagcaggc gaaccatggc	240
ggtcggttgt tgttgaagca gggggagacc tacgtgattg ggaagaagtt agatttgaca	300
ttcttggata atattgaggt gcagcttgag ggagaaattc agttcacaaa caacatcacc	360
tactggcaag ccaacaactt ttactacgac ttccagaaat ccatcacctt ctggcgctgg	420
ggtggccagg acatcaagat cttcgggagt ggtgtgttga acggcaatgg acagaaatgg	480
tatgatgagt ttgcggggaa gcagatcttg gtatataaca cgttctaccg tcccattctc	540
ttcctcaccg ataatgcaac ccgtatctcc gtcgagggca tcacgcagct gaactcgccg	600
tgctggacga actttttcgt tcggaccaat gatgtctcgt ttgataatgt gtatattcat	660
gcgttctcga ccaatgcttc atccgacccc gccaacaccg acggtatgga ctctctcgac	720
. gtcgatggcg tcagcttcac caatatgcgc atcgatgtcg gagatgactg cttctcgccg	780
aagccgaaca caaccaacat tttcgtgcag aacatgtggt gcaataacac gcacggggtg	840
agtatgggta gtattggcca gtacgcgggc gagatggata tcattgagaa cgtgtacatt	900
gagaatgtga cgttgctgaa tggacagaac ggcgcccgcc tcaaagcctg ggccggccaa	960
gacgtcggct acggccgcat caataacgtc acgtacaaga acatccagat ccagaacacg	1020
gatgcgccga tcgtgctgga ccagtgctac tttgatatca acgctacaga gtgtgccaag	1080
tacccgtctg ctgtgaatat cacgaatatc ctgttcgaga atatctgggg ctcttcctcg	1140
ggcaaagatg gcaagattgt agctgatctg gtgtgttcgc cagatgcggt gtgcacgaac	1200
attactttgt cgaatgtcaa cttgacgagc ccgaagggca ctgcagagat tgtttgcgat	1260

6/178

pectinases.ST251 gacattcagg gaggaattgg ggtggattgt gtgagtgacg agagtgttac gcggtag	1317
<210> 6 <211> 1194 <212> DNA <213> Aspergillus niger	
<400> 6 atgetectee aeggeettet getggeeete eaggeeatte tageeteete ageageeata	60
acctececat etteaaacca teteteaacg geagetegeg agaaatgeea aacaaccete	120
	180
caatgcccc caggcaccct catcgtctcc aacacccacc cccaactctc caacttcacc	
accetecaag cagecateaa tgeeeteeee aacgacaact ceteceaaac cateeteete	240
ctctccggct cctacaatga acaagtcaac atcacccgct ccggccccat caccctcctg	300
ggccagcagc cagaccgcgc agccctaacc gaccctgccc gcaacaccgt caacctcacc	360
ttcgccggcg ccaacagcga cagcaccggc gacatcgaca acgtctggtt cagcgtcatg	420
gtcgtagete egaceetgga egegagtete aceggeteeg geacaacagg atatecagtg	480
ccagcggaca ccccgttcgg gaacactgat ttccgcgtgt acaatatcga cttccgcaat	540
acctatgcgc cgtactctgc tggtccggcg catgccatta gttttagtcg ctccaatgga	600
gggttttact actgcgggtt ctactcttac caggatacta tctacatcgg caaactcggc	660
tccgcataca tgtacaaatc cattctcgcg ggccaaaccg acttcctata cggcttcggc	720
acgetettea tecaateate ecagategte etecgeteat geggeggegg cateacegee	780
tggaagggca ccaacacaac agtccggaac aactacggcg tatacatcca cgactcgacc	840
gtaaacgcag cgaacacctc catcgcagaa caaatcaagg gatcctgcgc cctaggcaga	900
ccgtggaact cactgcaccg atccatcttc gcgaacacat acgaagacgg gagcatcgag	960
ccatcgggat acatcaactg ggaggatcgg tggagtaaaa acgagacgct gatggcggag	1020
tataaggcgt acgggccagg attcaacctc acagggagga gagagagcga agtgtcagtg	1080
ttattgagta gcagcgagga ggagaggtat cgggatccga gcaggctgtt tttgttcgag	1140
gatggaaggg agggcaatgt ggcgtggata gattgggatg tggtctcctc ttga	1194

<210> 7 <211> 984

WO 2004/074468 PCT/EP2003/005726 7/178

<212> DNA <213> Aspergillus niger	
<400> 7 atgcatactc catatettet gggegeeett geegeeetgg etgetaeege egteggtget	60
ccggcagagc acatcaagaa gcgagagagc cggacgagtg ctccctcagg gtgtctgacg	120
gtcggatcgg atggaacata ttccaccatc ggcgacgcgc ttgacgctct aggctcatcc	180
acttegteeg ettgeattta egttgeeage ggeaegtatg aggageaget gaccattgae	240
tacgctggca acctcacctt gtacggtgag actaccgaca ccagcacata caaggacaat	300
gtggtgacca ttacccacac catctcgtcg tcggatgccg gctctctcga caagagcgcc	360
accgtcaacg tggtctcgga tgggttcagc atgtacaaca tcaacgtgga gaatggatat	420
ggtgagggag cacaggctgt agcccttgtc ggaaacgcag atcaactggg cttctatgġa	480
tgccaattca gtggttatca agacactctc tatgtcaagg ccggtaccca gtattactcc	540
aactgcatga tcgagggcgc ggtcgactac atcttcggcg atgcgtccgt gtggttcggc	600
gaatgtgaca ttgtgtctaa cggcgccggt gccatcacgg cctcatcgcg cgaaacctcc	660
tctgactcag gctggtacgc tatcgacaac tgcaacatca aggctgcttc gggagtctct	720
ctcacggagg aagtetacct gggccggccg tggcgcgtgc tggcgcgagt catctaccag	780
aactcagtgt tgtcggacat catcaacccc aagggatgga cgaccatggc agacggtgcg	840
acgccgctgt attatgaata caacaactct ggtgcgggat cggacacatc tgatcgcgaa	900
tacgagacet ecatttetge tgeggttgae aagaceaeag tgetgggega gaettgggga	960
gactggattg atcggagcta ctaa	984
<210> 8 <211> 1380 <212> DNA <213> Aspergillus niger	
<400> 8	
atgogogogo gogogogogogogogogogogogogogogo	60
atcatogatt agggggatt aggggattac agcaccaaag ccagaaacca gacctgcaat	120
atcatcgatt acggggctgt cgcagatggt aaaacggata tatcgcaggc tctacttgat	180
gcctggggaa actgttccgt ggggggactg gtctacatcc cacccggtaa ctactcgctg	240

WO 2004/074468 PCT/EP2003/005726 8/178

pectinases.ST251

gccgagga	aca	ttgagctcaa	gcacggccag	tcctctgcaa	ttcagctaga	cggtgtggtt	300
atgcgcgg	gac	accgcggctc	gtaccagatg	atccttatcc	gtgactgcaa	tgacttcgaa	360
tttttcag	gcg	gcaattcccg	cggggccatt	cagggctttg	gttacgaata	tctgcagaat	420
gacaccta	acg	gcgagagact	cttgcgcatc	caagaggtta	acaatttctc	ggtgcatgga	480
ttcgcact	taa	ttgactcgcc	ttcctactac	attgttttcg	atacggtcac	cagtggggag	540
gtatataa	aca	tcttgatccg	cggcgtgaca	tctgtgggag	cgacagatgc	tatcgacgta	600
tggggaga	aga	acatgtggtt	ccatgacatt	gaagtgagca	acggcgatga	atgtgtcacc	660
gtcaagt	ctc	cggcgcacaa	ttatctgatt	gagaacatct	actgcaatct	cagtggtggg	720
accgcgat	ttg	gatccttagg	cacgggcacc	aacatttccg	acatccacta	ccgcaatctc	780
tacatgaa	acc	aagcagatgc	gtgctttctg	aaatccaaca	atggggatgg	gattgtcaaa	840
aatatcat	tct	gggagaatgt	catagtccac	ggcggtccgt	acccgctggc	catagacgag	900
gcctggg	gag	atgatcgagg	atccgtagga	gttcaagtgt	ccaacctcac	attccgaaac	960
tggcacgg	gag	aatccgtgag	cgcctcacgc	ccagtcatcc	gcctacaatg	tgactccgac	1020
gtcccgt	gct	acgatattac	catcgaaaac	gtgaacctgt	gggccaacga	cagcaactat	1080
gtggtttg	g g c	agtgcgagaa	cgcctatgga	gatggggcct	gtctctctag	tgcagaggga	1140
acaaaaga	att	tggaaacctt	taccagcaaa	caaactataa	ctgccacccc	gtcctatgct	1200
gcgccaac	cca	tggcagctga	cttcaccttt	aatctgccat	caacgagccc	ttttactatt	1260
cctcccat	tgc	cgacaagttt	ctaccccggt	gctactccca	tctcaaccct	cttgcatcta	1320
catggtg	cgg	gcggtctccc	atcagcatct	cccatttcgc	atcatcgacg	acaccaatga	1380
<211> 1 <212> 1		; ergillus niç	ger ·				
_		ttttatttat	actattttct	gtgttcgcag	gactcgcagc	cggccaactg	60
attggccc	cag	tcggtccgac	aacccagctc	gaagacaagg	atattgagtg	caatattttg	120

gactatggtg gcgttgctga taatgagacc gatgtcgcaa cttccatcga gaccacgttc 180

WO 2004/074468 PCT/EP2003/005726 9/178

pectinases.ST251	
accgaatgtg tgctaaacaa ccccaaaagt cgtcttgtta tccccgaggg cgactatttg	240
atcaagcgca gtgttgtttt gagtaatgga accaattggg ctttccagct tgacggtctg	300
atcaccgcgg catatggtgg aaattggaca gtcgaccctg tcgatttcga attctattcg	360
tccaacgggc ttggcgcatt tcaaggccaa ggatatatct atcgaaatct ggccaacacc	420
gategeeete gaettgtgag attaattteg eecacaaatg ettetgtgea tgatttgate	480
cttgtggata gccccaagtt tcacatcgtg tttgattttg ctgtgaacct ggaggcgtac	540
caccttacta tccgtggtgc taacctagga agctatgatg gcattgacgc cattggcacc	600
aactattaca tccacgataa cgaggcaatc acgaatcgtg atgagtgtgt ctccgtgaaa	660
agecegteee ateatgeett agtegagaat etggtttgea ateaggeagg atetggtgtt	720
tcaattggca gtcttaacgt atctgcggaa atatctaaca ttgaagctcg caatatcagc	780
attatccagg gcaacaacat cgcctttatc aaaacgtatc ctggagggtc tggttacgtc	840
aaagacgtca ccttcgaaaa tttccgctct ttgaacagcc tgtacggatt ggacatcaac	900
caatactggc aaaacacatg ggagcctgat accggttccg tgacattgag caaccttgtc	960
ttcaagaact tctcaggatc ggttgccgat ggagcactcc gcccgccatt gtatctgttt	1020
gcaagtgact tgacatttgc aacgaacgtc accgtggagg aattctctgt ctggactgag	1080
actggtacaa cagtcgtcaa caagatcagc aatatcttcg gcactgggga tgatagctat	1140
ggagagaatg atggcattga gagcctccaa tctggagagt cgccgtatac gtatactagc	1200
acctatacta ttacggcttc tcccaccaat tggcaagctc catcaacccc aacctgggct	1260
ttaccgagca ctggatatgg aagtaagttc aacgagaatt gttctggtta tttttacata	1320
gctaacttat ctacagctgc gtcacctatt ccagtctata ctcccgcacc tctttggcgc	1380
cctggtggaa ttgactataa cctccattat tggggaagct tttag	1425
<210> 10 <211> 1332 <212> DNA <213> Aspergillus niger	
<400> 10 atgettgtta ettetetgat tgeaettetg eeegecattg eggeggegea ggteteaggg	60
accgtggggc cacgtacgag tgcgtctgcg aaagccgcag agaaagtatg caacgtactt	120

gactacgggg	catccgcaaa	ttcgaccatt	gatatcggac	cgccactcaa	ggaagccttc	180
caagactgcc	aaacaggtgg	actagtttat	attccggaag	gggactatct	cctttcgtcg	240
tgggtgtcac	tagtttatgg	ttctggttgg	gctttgcaac	tagatggcat	tatttaccga	300
gacaagaatg	tcaccgatgg	aggaaacatg	atattcatcg	aacacaccag	tgatatcgaa	360
attttcagta	ataactctgc	tggagcaatt	cagggctacg	gttatctgtt	ccatgagcaa	420
gacgaatacg	ggccacggat	tcttcgactt	aacaacgtga	ctgatttcag	tgtgcatgac	480
ttgatcttgg	tggattcacc	ggcctacttc	ctcaacttag	ttgagtcata	caacggcgag	540
gtgtacaaca	tggtcattcg	tggcgccagt	atgggagggc	ttgacggaat	cgatatctcc	600
ggagccaatt	actggatcca	tgacgttgag	gtcactaacg	gcgacgaatg	tgtgactgtg	660
aagagtccat	cggccaacgt	ccgcgtagaa	aacgtctttt	gcaaccacag	tggcggatgc	720
gcgatgggat	cacttggcac	ggacacgaat	atctctaaca	ttgaatttga	gaacatctac	780
acttacaact	ccactcagat	gtacatgatc	aagtccaatg	ggggtaatgg	cacagttaca	840
aactgttctt	tcaagaactt	cattggatat	agcaacgcct	acatgctaga	tttggataca	900
tactggggtg	atgagagcga	tggtgacggt	atcaagtacg	agaatatcgg	ttttgaaaat	960
tggaagggta	ccagttcgaa	tggcattcag	agaagcccca	tcagaattct	ttgcccggac	1020
gcgaatccat	gcacgaatat	taccctaaca	gccgttgaat	tgtggactga	tactggagat	1080
tacgtcaaac	aggaatgctc	cagtgcctac	ggcgaaggcg	aatgtttgcg	acagcaaaat	1140
ggcacccttg	cctcatattc	ttttacgacc	acgattacct	cggtgccagt	caccgcgtac	1200
agtccgacga	cgacgatgcc	cggcctgatt	tcaacatcca	tggatactac	gacctctatt	1260
ccgattccga	caattcctac	cagctttttc	ccaggtgcct	cagcttacag	cacacttatg	1320
gcgaatatgt	aa					1332

<210> 11 <211> 1344

<212> DNA

<213> Aspergillus niger

<400> 11

atgacctggt ccacgtcctt tctcgtggct acttctttgc tctccatcat caactcggtc 60

PCT/EP2003/005726 WO 2004/074468 11/178

		pect	tinases.ST25	51		
catgctcaac	taacaggatc	tgttggaccc			ggccgctgtg	120
aagacctgca	acgtctgcga	ctacggagcc	agctcggaca	acaccaccgg	tgtgggacag	180
cccattatcg	acgccttcac	cgactgcggt	agcggtggtc	tcattcacgt	ccctgagggt	240
gactatcttt	tgaaagactg	ggtctcttcg	gaaaacggct	ccgcgtggtc	tatccagctc	300
gatggcgtgc	tccactggga	ctcctcgcct	tccgcccagt	cgtacatatt	cgcgataacc	360
ggtggcagtg	actctgagct	ttctagttca	aatgcaacgg	gtgcaattca	aggtagcggt	420
tacctttacc	accgacataa	tacgtacact	agtccccgga	tgctgtacat	ttccgggtgt	480
cggattggac	cgttcatgac	ctggtattgg	tcaactcgcc	tatgccccac	tttgtcattg	540
acggcggtta	caatggagaa	gcgtacaata	tggctatctg	tggtggtgat	cacggtggtc	600
tggatggcat	tgattttgcc	gcttctcctg	aacgtgcatt	cgatttcagg	aaacgctaat	660
gcgacggcag	caagaccaaa	ctcccacaac	ttcctgatcg	agaatattta	ctgcaacccc	720
agtggcggat	gcgccatcgg	atccctgggt	tccagtgtca	acgtcaccaa	catcctctac	780
cgcaacgtct	acacctggga	ctcgaaccaa	atgatgatga	tcaagaccaa	cggtggctta	840
ggcaatgtat	ccaacatagt	gtttgagaat	ttcatcggcc	acggaaacgt	caactccctc	900
gacctcgata	gttactggag	cagcatgaac	gctatcgacg	gcgtcggcat	ctactatcac	960
aacatcacaa	tttataattg	gacggggacc	gccatcgacg	gtgaaactcg	gccgcctatt '	1020
cgggtcatct	gccctgaaga	catgccctgt	accgagatca	cgctcgtcca	gattgacttg	1080
ttggttgagg	aaggtcgtta	cgatgaatac	tactgcgcga	ttgcttgcgg	atagggctac	1140
tgccttgact	ctgctactag	caccttgact	acttacacaa	ccactactta	tgggaactct	1200
gcttcaacag	gatacgaggc	gcccactatg	gctgatgatt	tggccaccgc	gtttggtaca	1260
acggcgtcta	ttcctacccc	tactaccccg	gcttcgttct	tccccggtgt	tgcgccggtt	1320
agcgccgtag	ctgggagttc	ttga				1344
<210> 12 <211> 1602 <212> DNA						

<213> Aspergillus niger

<400> 12

atgttgtcca aaacgtcgct tctgtcgctc ctctcacttg cagctggggt cgtcaatgca 60

gactttggca	taacgaccaa	cgatgattcc	tatgtcataa	acgccaattc	tcccaactcg	120
ttggtgttta	ccgttgatcg	cggaagttgc	gatatcactt	ctatcgtgca	ttatggcaca	180
gagctgcagt	attccggcaa	gggtagccat	atcggctccg	gtcttggaac	tgcgacagtt	240
tctgctacca	agagcggagc	aggcgactac	atcaaggtga	cctgcgagac	ggatacattg	300
acccagtata	tggttgtcca	tgatggggat	cctatcattc	atatggcaac	ctacattacc	360
gaggagccat	ctatcggtga	attgcggttt	attgctcgac	tcaactcaga	tgtactcccc	420
aacgaggagc	cattcggcga	tgtgtccaac	accgccgatg	gggaggcgat	tgaaggatct	480
gacgtgttcc	tcgtcgatgg	cgagactcgc	agcaagttct	actccagcca	gcgtttcatt	540
gacgatcaga	gacactgcat	tgcgggcgat	gagcaccgcg	tctgtatgat	cctcaatcaa	600
tacgagacct	cttccggtgg	ccctttccac	agggacatca	actccaacaa	cggaggtgac	660
tacaactccc	tctactggta	tatgaactcg	ggccacgtcc	aactcgagtc	ctaccgcatg	720
ggtcttcacg	gaccgtactc	gatgtacttc	agccgcagcg	gcactcccag	caccgacatt	780
gacacgtcct	tcttcgcgga	cctcgacatc	gagggctacg	tagccgaatc	aggcagggga	840
accgtatccg	gaaccgcgtc	aggcgctgac	tcgagcttcg	actgggtcgt	tcactggtac	900
aacgatgacg	cccaatactg	gacatacaca	tcctcctccg	gcagcttcac	ctccccgcc	960
atgaaaccag	gaacatacac	catggtatat	tatcaaggcg	agtacgtcgt	ggccacgagc	1020
gaagtgaccg	tcagcgccgg	ctcgagcaca	agcaaggaca	tttccggctc	cgtcgaaaca	1080
ggaacgacca	tcttcaagat	tggcgattgg	gacggacaac	caaccggctt	ccgcaacgca	1140
gaaaaccaac	tccgcatgca	cccctccgac	tcccgaatgt	ccgactgggg	ccctctaacc	1200
tacaccgttg	gcagctcctc	cctgactgat	ttccccatgg	ccattttcaa	gagcgtcaac	1260
agtccagtaa	ccatcaagtt	cactgcaaca	tctgaccaga	ctggtgcagc	gacgctgcgt	1320
atcggaacta	cgctgtcgtt	cgcgggtgga	cgtcctcaag	ctacgatcaa	cgactacgaa ု	1380
ggateegege	cgtccgcacc	tacgaatttg	gactctcgtg	gcgtgactcg	tggtgcgtat	1440
agagggtatg	gggatgttta	tgatgtttcg	gttcctgagg	ggacgattgt	ggaggggag	1500
aatacgatca	cgattagtgt	tatttcgggg	agttctgggg	atgacttctt	gagcccgaat	1560
tttcttgatg	cagtgttcat	aatagcccta	gttgacaatt	ga		1602

<210> 13 <211> 2121 <212> DNA <213> Aspergillus niger

<400> 13 atgegeetee tecaceceet cateceagee teceteetee teacecteae etecgegace 60 120 ctgcacacct cccaaaccaa caccaccata accctgacca acaaccgcct cacagcaaac ttctccaaat cccaaggccg aatcaccgac ctctacctcg acaaccaaga cctcctaggt 180 ccccaatctg gcgacaccgg cgtcggcccc tacctcgact gctactgcat cccctccggc 240 300 ttctacacgc cgggctccac ctccccaacc ctgcaactct tcaccggcac cgacaaatcc 360 ggaaccaget atgcaggegt ceteatggac gagacetace egeegaeggg ecaacattte 420 caacaatact ggttcctgcg cgacggcgaa acagggctcc atacattcag ccggttagcg 480 tactacaacg agacgacgcc atatttgcgc aatctgcagg aattccgcac cttgtttcgg cccaatacgg agctttggac tcatttgtct tcgagtgagg tgcagacggc gccgttgccg 540 600 agtaagaagg ctgtggaaga ggaggtggtg gtgcaggatg cgacctggac gttcaataat 660 actccgactg atgagtatta tgtgcagttt gcggattatt ttactaagta tacgttttcc 720 aatgcgtgga gggataattc cgttcatggc atgtatgccg atgggagtac atcgaatggg agtacgtttg gggcttggtt ggttatgaat actaaggata cttactacgg tggccccctg 780 840 cactoggate teacegtega eggeategte tacaactace tegtgtecaa teaceaegge 900 gaaggcactc ctaacatcac ctacggcttt gatcgcactt tcggccctca atactatcac 960 ttcaacggcg gaaaaggctc cactgcgtct ctacaagagc tgaaatctga cgcggaaacc 1020 ctggcagatc cgagctggaa cgtcgacttc tacgactcca tcgccaaaca cgtggtcgga 1080 tacacgcctt ccagtcaacg cggcagcgtt caagggaaga ttaagctacc caaaggtgcc 1140 actagaccta tegeagtect gacegtggae gggeagtatt tecaggacaa eteggtgaac tcatcatcat accagtattg ggctgagatc gacgactccg ggcatttcag cgtggaccat 1200 gtcaaagagg gcccgtaccg acttactgta tacgccgacg gaatctttgg tgacttcgta 1260 1320 cgcgacggcg tgcaagtgaa ggccggcaag aaaactacca tccaagaaac ctgggaggct

WO 2004/074468 PCT/EP2003/005726 14/178

pectinases.ST251 gagtccgcag gcactgagat ctggagacta ggcacaccgg acaagtcttc cggggagttt	1380
cgacatggag ttgccaggga ccccacacac cctcttcacc cgccagagta cctgatctat	1440
tggggcgcat atgactggca atctgacttc ccggacggaa tcaactatac cattggtacc	1500
agtgatccag caaccgatct gaacacggtc cactggtctg tattcgggcc gacaccgaac	1560
gatccgcgcg tcgaatacga taccacgcac gactggacga tcaacttccc tctgagtgag	1620
gacgatettg cagageggte caaggeeact eteacaatee aattggeggg agegaaagea	1680
gcatccggca atacggacgt atacaatgca tcggagccat ataccaacct cgcgctggag	1740
agttatatca acgatcaggc cgagccgttg accettetta tegggttcaa teagtegage	1800
agetgtattg taeggtegge tgtgagttge tateaggtte geteeegeat ggagtteeeg	1860
gcggactggc tgaaggtcgg caacaatgtt ttgaccttgc atctcccgta taacgcgacg	1920
gatacggaga cagcgatttt gccggcgacc gtaacaggtc gtctcattct gcctccgcag	1980
ccgatctacg gccagactcc tgtcatcctg tctgtcattg gctccgaaaa gctcgagcca	2040
ctaccagctg cgtcaattct catatttgag atcatacgcc accaatctga gccgttgtgg	2100
tccgttccaa ggtcagcata a	2121
<pre>tccgttccaa ggtcagcata a <210> 14 <211> 837 <212> DNA <213> Aspergillus niger</pre>	2121
<210> 14 <211> 837 <212> DNA <213> Aspergillus niger <400> 14	
<210> 14 <211> 837 <212> DNA <213> Aspergillus niger <400> 14 atgaagetet etettette ettattette acceceattt ttgetettee ateteacete	2121
<210> 14 <211> 837 <212> DNA <213> Aspergillus niger <400> 14 atgaagetet etettette ettattette acceccatt ttgetettee ateteacete acgecgagaa atgatatace teettette etectageeg gegacageae eacegeegte	
<210> 14 <211> 837 <212> DNA <213> Aspergillus niger <400> 14 atgaagetet etettette ettattette acceceattt ttgetettee ateteacete	60
<210> 14 <211> 837 <212> DNA <213> Aspergillus niger <400> 14 atgaagetet etettette ettattette acceccatt ttgetettee ateteacete acgecgagaa atgatatace teettette etectageeg gegacageae eacegeegte	60 120
<pre><210> 14 <211> 837 <212> DNA <213> Aspergillus niger <400> 14 atgaagetet etettette ettattette acceccatt ttgetettee ateteacete acgecgagaa atgatatace teettette eteetageeg gegacageae eacegeegte caatecageg geggaggegg etggggegat gggtteatea acacgacact ceacaaggga</pre>	60 120 180
<pre><210> 14 <211> 837 <212> DNA <213> Aspergillus niger <400> 14 atgaagetet etettette ettattette acceceattt ttgetettee ateteacete acgecgagaa atgatatace teetttette eteetageeg gegacageae eacegeegte caatecageg geggaggegg etggggegat gggtteatea acacgacaet ceacaaggga gecaaaggta taaactaegg teacgaegga gecaceaetg teagetteeg eteeggagge</pre>	60 120 180 240
<pre><210> 14 <211> 837 <212> DNA <213> Aspergillus niger <400> 14 atgaagetet etettette ettattette acceccatt ttgetettee ateteacete acgeegagaa atgatatace teettette eteetageeg gegacageae eacegeegte caatecageg geggaggegg etggggegat gggtteatea acaegacaet ecaeaaggga gecaaaggta taaactaegg teaegaegga gecaecaetg teagetteeg eteeggagge gactgggeea eegteetete eaaggtegea gaatacaagt eegaetaeeg ageetttgtg</pre>	60 120 180 240 300
<pre><210> 14 <211> 837 <212> DNA <213> Aspergillus niger <400> 14 atgaagetet etettette etettette acceccattt ttgetettee ateteacete acgecgagaa atgatatace teetttette eteetageeg gegacageae cacegeegte caatecageg geggaggegg etggggegat gggtteatea acacgacaet ecacaaggga gecaaaggta taaactaegg teacgaegga gecaceaetg teagetteeg eteeggagge gactgggeea eegteetete eaaggtegea gaatacaagt eegactaeeg ageetttgtg accatecaat teggacacaa egaceagaag eeegeegega atateteett ggetgaatae</pre>	60 120 180 240 300 360

WO 2004/074468 PCT/EP2003/005726 15/178

attgatttga	ataaggcaag	tacggattac	ttgaacagta	ttgggccagc	cgatgcgtat	600
acgtataact	tggcgtcgga	tgattatacg	catctgaatg	gggaggggag	catagtgttt	660
ggtgggatgg	tggcttcgtt	gattgatcag	gatttcacag	agttgaagag	tgatggtgtt	720
tttatccatg	atcaatggtt	ggtagatggt	atctaccaag	cagaaaatga	cagttgttac	780
atctccattc	tggaatatct	cagtatggca	tatgatctgg	ccaacccaat	gttatga	837
	3 ergillus nic	ger				
<400> 15 atgtctgtct	tcaaggcatc	attcctattt	cttctttcct	cctcactagt	ccacggggtt	60
ccacactcca	gcagagcatc	tcggagccaa	caatgcgtgg	ttccgccttt	gcacaatgcg	120
cgactgactc	gggttattat	tttcgaggag	ggtgtcaact	ataacatctt	tcagccgatc	180
accgccacca	acctcagcaa	tgtggaaatc	cggatgcacg	gcaacctgca	tctgccacag	240
aatatcactg	cggtgcagaa	tatagtcagt	gacggtactt	ctacatggtt	taccctagaa	300
ggaccaaaag	tggactggat	tggtcctgaa	gacgtgaaca	atggttggat	tgactcgtac	360
ggacaaccgt	ggtgggatgc	gaaccctgca	ggtagttcag	gcatcgataa	ccgtccgcat	420
ctcatgagct	tcaagtctag	ccaagccact	atgaaatact	tcaggtctag	gaagcccatc	480
gcctggaatg	tcaaactgca	tggacaagac	attacagtca	gccacgctat	tatcgacgct	540
acctcgacag	gtagcttccc	attcaacact	gacggtttcg	atgttgaggg	taccaatatc	600
cagatcaccg	acagtatcat	gtacaacggc	gacgatgcga	ttgcaaaaca	ccatcggcta	660
ccagactcac	ggcatgagca	tggatcgctg	ggaaaggatc	ccacagactt	cgccaatatc	720
agcaacatcc	gctttgacga	tgtgactgtt	gtcgatgggc	tctacgcagc	acgcttcaag	780
tcatgġagcg	gagggaccgg	actcgtcaag	aatgtgacct	ggaacaatat	tagagtcttc	840
aacgtgacgt	tcccgatctt	tgtgactcag	agttatagcg	accaaggcgc	ctcccggtct	900
ggaactgtca	atgctagttc	ggctgtgatg	atggaggatt	ttacctggtc	tgactttgct	960
ggctcgatca	atacgtacca	gcctggtgac	ggttcttgcg	tttccgaccc	ttgctggtac	1020

		pect	inases.ST25	1		
aacgttgggc	tgccaaattt	gaagcatacg	gaggccctca	ttatcgaatg	ccatactgct	1080
caatcttgta	agaactttgt	gacggacaac	atccagctat	acccgcaggt	tctggaacca	1140
gcgagtgtga	tctgcatgaa	cgcaacggca	gccctcaatc	ctgatcttgg	atttacatgt	1200
aaaaacggga	cctacagccc	attatctaat	taa			1233
<210> 16 <211> 960 <212> DNA <213> Aspe	ergillus nio	ger				
	ttagagctaa	atcaagcaaa	cgtcaaatca	tgttcgtaaa	atggcatttt	60
ctggtcctcg	gggccattcc	gatgattccg	gcataccctt	ctggtgctgc	ttataaaggc	120
gggtttgaat	gggactcgac	gaaatacttg	ttcgtgcttg	ctctcattga	tggccgcata	180
tggagatccg	agggcggtcc	caattgggtg	gaatacctga	cgggttgcgg	tctcgaggag	240
ggactcacct	cacccttcga	ctgcgaccaa	cagctatggg	acttcgcctt	tgcaggatca	300
gacatctcag	ttgaatacac	cccactccac	cacaacttca	ccgtctcgct	tgtcaaccaa	360
gttaagcaat	tcaacaccta	cgcgcaaccc	gtgctgaaga	agaccgtaga	ccagtcacac	420
gcactagtag	ccatctggat	cgggatcaac	gacatcggcg	acagttcgaa	atacgatgtc	480
gacttcccga	ccttctacaa	cgagctcatg	aatacactct	tttcctccgt	ccagactatc	540
tactcccagg	gataccgttc	ctatctcttc	atgaaccttc	ccccgctgga	ccgcagacca	600
ggaaacctag	gcagcgctga	tcccagtccc	aacgcaacac	aaatcacctg	gtacaatgat	660
gcgttggctc	agcatgccag	tgcgttccat	gatcgctacg	ccgacaccaa	tgtgatgttg	720
ttcgacgcgc	atagcgaact	cagctatatt	ctggataacc	cgggtgactt	cggcattgtg	780
aatatcacga	acttctgtgc	gggatatgat	cagccggata	tcgcgtggaa	ttatcaggcg	840
tatggctgtc	ctacgccgtt	ggatacttat	ttctggtata	attcggggca	tatgacgagc	900
catgttcatg	agatcttggc	tggtgctgtg	gagaggaagt	tggaggagtg	gtcggattga	960

<210> 17

<211> 954

<212> DNA <213> Aspergillus niger

WO 2004/074468 PCT/EP2003/005726 17/178

_	400>	17						
			tccccacagt	cacagccaga	ccatggaccc	aacgaccaag	agcagaaaac	60
t	caaco	acga	atcccaccta	cttcttcact	ttgtgcgccc	aaccattccc	ctctacaccc	120
c	caacc	caca	taactaataa	tatcgatgat	gaaggaatcg	gcaccacaac	caacggcccc	180
а	actgg	atcg	gctacctaac	cacaaccgaa	aacgcctcct	tagtgctttc	ctacaacctc	240
g	ccgcg	ggcg	gtgccacaat	cgacaatgcc	ctggttcctg	catacccggg	tgaccttgca	300
t	cacag	ttcc	ggctattcga	ggatgtgtat	gctgataagc	cggcctcggc	accctggagt	360
g	cagag	gatg	cggtatttgg	ggtgtggatt	gggattaatg	agtatattct	tcctcctcct	420
С	ctcct	cctc	ctcctcctcc	tcctcctctt	cttcttcatt	ccccggattg	tccatatacg	480
g	gaggg	gggt	gttatatagg	aaacgcgtat	tactctaccg	atgcggagac	atacacaccc	540
a	agtta	atct	ccagattgga	aagtctagtg	gaagaggtat	acaagaacgg	gggcaggaaa	600
t	tcctg	ttcc	tgaatgtgcc	gccgacgagt	cgcagtccgt	tgtttttgga	gcagggagag	660
g	aggtg	gtga	agcagcatgc	ggagtatttg	agtgtttata	atgagaattt	ggagggaatg	720
g	tggat	gatt	ttactaagaa	gaagggagat	gtaacgactg	tcttgtatga	ctcgtggtca	780
t	tcatg	acga	agatcctgga	tgatccgaca	gcgtatggat	tccccgatgc	gacgtgtatc	840
a	atgat	gatg	ggacgtcgtg	tatctggtgg	aataattatc	atcccgggat	gaagtatcat	900
C	ttttg	cagg	ctgaggatat	gaagccgaag	ttgaggaagt	tgggagggtg	gtag	954
<: <:	210> 211> 212> 212> 213>	18 1611 DNA Aspe	l ergillus niç	ger				
			cacgcctcct	cctggccttg	tgcttcctgt	taacattctc	cctcaccagc	60
g	cctac	gatg	cgcccctcgt	cactctagac	tatggcacct	tccagggcag	ctatgatgcc	120
a	cctac	aacc	tctcctactt	tcgcaaaatc	ccctttgcag	caccagccac	aggcgagaac	180
C	gcttc	cgag	cgccccaacc	cccgttgaac	atcaccaatg	gcacctacga	caccgaccaa	240
to	ccttt	gaca	tgtgccctca	gcgcaccgtc	aacggctccg	aagactgcct	ctacctaggt	300
ct	ctact	tccc	ggccctggga	cacctcctcg	tccaccacca	gccgccctgt	cttagtcgtc	360

ttctacggcg	gcggcttcat	cgaaggcgac	gccctcttcg	gcatgcccc	caacgcctac	420
cccgtgctca	acgtcagcac	cctaaacgac	tacatcgtcg	tctataccaa	ctaccgcgtc	480
aacgccttcg	gcttcctccc	tggccaagcc	atcaaagact	cgcccacctc	tgaccttaac	540
ccgggcctcc	tcgaccaaca	gtacgccttg	aaatgggtta	aatcccacat	ccaccgcttc	600
ggcggcaacc	ccaacaatgt	caccatctgg	ggccaatccg	ccggcggagg	ctccgtcgtc	660
gcccaaatcc	tcgccaacgg	ccgcggctcc	aacccaaaac	tcttctccaa	agccctcgcc	720
agctcgccct	tctggccgaa	aacctacgcc	tacaacgccc	ctcaagcaga	agccatctac	780
acccagctgg	taaacctaac	gaactgcacc	acagcctctg	ataccctcaa	atgccttaaa	840
gaagttgacg	ttcaatccat	ccgcgacgca	agcctcatca	tcgacgcgga	caacacctac	900
acaacctcat	cttatacctg	ggcccccgtc	atcgacggaa	ccttcctcat	cgaacccctc	960
acctccgcta	ccgcctccaa	cacccttaaa	actgatctaa	tctggggcat	gtacaacgcc	1020
cacgaaggcg	agaacttcat	cccccggga	ctagaagata	caaccacaac	aaacggcttc	1080
aactcctccc	tcgcgtcctt	ccataactgg	ctaactggct	ttcttcccgg	tcttgataca	1140
agcgatatca	atctcatcga	atcgaaatac	taccctgttt	ctggaacagc	agaaacacta	1200
tcctataata	cgacgttcgt	ccgcgcggga	cttgtttaca	gggatgtggt	gctcgcgtgc	1260
ccggcgtact	gggttgcttc	tgcggcgggc	gagaaggggt	atgttgggga	gtataccatt	1320
ccgccggcga	gacatggaag	tgatactgaa	tggtgggaca	ctgtgtccac	agtccaacaa	1380
accgacccat	tgatctacga	tggctacgcc	ggcgcattcg	ccagcttctt	ccagacgggg	1440
gaccccaacg	cacataaatt	gacgaatgga	tcggagcccg	gcgtgccgga	ggtacagcag	1500
acagcggagg	aatttgtgat	tgccacagag	gggtttgaga	atgtggggct	gggcgagttg	1560
gaagatcggt	gtgcgttttg	gaagtctgtt	gggaagaaga	ttcctatttg	a	1611

<210> 19

<211> 1137

<212> DNA

<213> Aspergillus niger

<400> 19

atggtgactt ctagctcggt gatcgtccta acgctctggg ccgcactggt cagtgcgagc 60

WO 2004/074468 PCT/EP2003/005726 19/178

pectinases.ST251							
cccgttgccg atccgctggt gacccccgcc cctaagctcg aggatctgga gaagcgcgca	120						
acctectgea egtteteegg etetgagggg geetegtetg eeageaagte caagaceteg	180						
tgctccacca tcgtgctgtc cgacgtggca gtgccctcag gcaccacgtt ggatctgacc	240						
gatctgaacg acgggactca cgtcatcttc gaaggcgaaa ccaccttcgg ttacgaggaa	300						
tggagcggac ctcttgtctc agtctccgga actgacatca ccgtcaccgg ggccgatggc	360						
gcctatctca acggtgacgg cagtcgttgg tgggatggcg agggcagcaa cggcggcaag	420						
acgaagecea agttetteta egeceatgat etgaeetegt eeaegateag egggatetae	480						
atccagaact cgccggtgca ggtgttcagc attgacgggt cgacgtatct taccatggag	540						
gacatcacca ttgacaacac ggatggcgat gatggcgagg cggccaacac cgatgggttc	600						
gacattggtg atagcacgta cattaccatc acgggtgcca atgtatacaa ccaagatgac	660						
tgtgtggcgg tgaactcggg cgagaacatt tacttttcgg gcggcgtctg ctctggtggc	720						
cacgggctgt cgatcggttc cgtcggcggt cggagtgaca acaccgtgaa gaacgtgacc	780						
ttctacgact cggagatcaa gagctctcag aacggagtcc gcatcaagac catctacggc	840						
gacactggat cggtcagtga ggtcacctac aaggagatta ccctgtccga tatcaccgac	900						
tatggcattg tggtggagca aaactatgac gatacgagca aatccccgac cgatggaatc	960						
accatcgaag actttgtcct ggacaatgtg cagggcagtg tggagagctc gggcaccaac	1020						
atctacatcg tctgcggatc agacagttgc acggactgga cttggacgga tgtggatgtg	1080						
agtggaggga agaccagctc cgactgtgag aatgtgccgg acgatatcag ctgttag	1137						
<210> 20 <211> 1677 <212> DNA <213> Aspergillus niger <400> 20							
atgetteteg acaagetete tgttetetet tteetgggee tggegeeeat etttgetget	60						
gegeagetet eeggtteegt gggaeegetg acateegegt eeaceaagge agetaeeaag	120						
acttgcaacg ttttggacta cggtgctaag gcggataagt ctactgatct gggcgcgccg	180						
ttggcatctg ccttcgctga ctgcaagtct ggcggtctcg tctatgtccc ctctggtgac	240						
tatgctctct ccacttgggc gagattgagc ggtggtgagg catgggctct gcagatcgat	300						

ggaatcatct	accgtactgg	cacggacggc	ggcaacatga	tctatatcga	gcactctagc	360
gacttcgaac	ttttcagtag	cacctccgaa	ggtgccatgc	agggtctggg	ctacgagttc	420
catgccgatg	ataactggag	cggccctcgt	ctgctgcgac	tctatgaagt	tactgacttc	480
teggtecacg	atttcatcct	ggttgactct	ccctctttcc	acttctctct	cgacacttgc	540
accaatggcg	aaatctacaa	catggcaatc	cgcggcggta	accatggtgg	tctggatggt	600
attgatgtct	ggagtaacaa	catctgggtc	cacgatgtcg	aggtgacgaa	caaggacgag	660
tgtgtcacag	tcaagagccc	atcgaagaac	atcctcattg	agagcatcta	ctgcaactgg	720
agtggtggct	gtggtatggg	ctcgtttggc	tctgatacca	atgttagcga	catcacttac	780
cgcaacatct	acacctggag	ctcgaacaac	atgatgttga	tcaagagcaa	cggaggtagc	840
ggcttcgtcg	agaatgtcct	cctcgagaac	ttcattggac	acggcaacgc	ttactctctg	900
gatatcgaca	gctactgggc	cagtatgagc	gcggtggacg	gcgatggtgt	ccagctgagc	960
aacatcaccg	tgaagaactg	gaagggaacc	gaagcttacg	gtgctgagcg	tggtcctgtc	1020
aaggtggtct	gtgctgatgg	tgccccttgc	tacgacatta	ccattgagga	cttcgccatg	1080
tggaccgagg	agggtgatag	tcagtggtac	tcttgtgaga	gtgcttatgg	cagcggatac	1140
tgccttcagg	acagcgatga	ccacgtctct	tactcggtca	ccacttctac	agtcagctcc	1200
gctccctcgg	gctactctgc	gacctccatg	gccgccgatc	tgaccactga	cttcggctct	1260
actgtctcta	tccccatccc	gaccatccct	acctctttct	acccgggtgc	caccccctac	1320
agtgctctga (tggccaacag	cgcttctact	gccgctgctt	cttccattgc	cagccatgcc	1380
actgtccata (gcagcagcgc	ttccgttgct	gcttctgtgc	ccagcgctgt	cgcccctagc	1440
gagagcatcc (ccgccgccac	ttccgccgtg	gtatccagcg	ctgctgccat	tgcccccagc	1500
cccgctgtgg o	gtgcccagga	ggggtctacc	acctccgctc	ccagctttgc	tgcccccagt	1560
ggtgctggaa a	actctcccca	gggtcccacc	ggagcttctg	gattcggcga	aaagggccag	1620
cagggtgagc a	agggtgaaca	gggcgaacag	ggcgagcagg	gtgtctgcta	cgtgtaa	1677

<210> 21

<211> 1053

<212> DNA

<213> Aspergillus niger

<400> 21	
atgatetact etetgettet etetgeattg eetetgetea geagegeege eetgaeetae	60
cgcggggcgg atatctcctc ccttttgatc gaggaagatg ccggcatcag ctataagaat	120
ttgaatggcg agacccaggc attggaggat attctggtca acaatggcgt caactcgatc	180
cgacagaggg tgtgggtaga ccccagcgat ggctcgtacg atctcgacta taatctcaag	240
ctggccaagc gtgttcaggc cgcgggtatg agcatttact tggatctgca tctcagtgat	300
acgtgggcag atcccagtga tcagactacc cctaccggtt ggtcgaccac ggacatcgac	360
acactcacct ggcaactgta taactacacg ctcgacgtct gcaacacttt cgcagagaat	420
gacattgaca tagagattgt ctccattggt aatgagatca gcagcggact tctctggcca	. 480
ttgggcaaaa ccagcaacta tgacaatatc gcgaagctgc tgcactccgg cgcctgggga	540
gtgaaggact ccaaccaggc cacaaccccg aagattatga tccacctgga caatggatgg	600
gactgggagg aacaagaata cttctacaag actgtcctgg ccacggggtc gctgctctcc	660
acggatttcg acctcatggg agtctcgtac tatccattct acagctcgga agctaccctg	720
toggogotoc agacoagoot caogaacatg caatogaact acgataagto ogtggtggtg	780
gtggagacga actggcccgt gtcttgcccg gacccggagt attcattccc gtcggatctc	840
agetegatee cettetegge egeaggaeag gaggagttee tegagaaget egeagaggtg	900
gtagagggcg tcacggacgg actgggtatt tattactggg aaccggcgtg ggtcgacaat	960
gccgcgctag gatccagctg tgcggacaac ctgatggtgg atattgacac agatgaagtc	1020
ctggagagtg tcaccgtgtt tgaggacctc tga	1053
<210> 22 <211> 1431	
<212> DNA <213> Aspergillus niger	
<400> 22	
atgaccetce ttegteatet ettaaeggea actgeettge teggagette agteeaagea	60
gcgcagggtg tcactggctc ccccttcggt ttcgctagcg gcacgaccgg tggcggtgat	120
gccactcccg ctgcgcccag cgacatcagc cagctgaaga cctggttgtc tgacagcacc	180
ccccgtgtca tccttatcga caaggagttc aacttccttg gcagcgaggg caagtgcacc	240

aactgcgagt	gctgcaaacc	cgcctcgaac	acctgcggta	gctctggcca	gaatgccgtc	300
aagcagaatg	gctccgactg	gtgcggtagc	tatcccaccc	tgacctgcac	gtacgacaac	360
gccggtattg	agggcctgga	agtcgcctcc	aacaagtcta	ttgttggcgt	gggtagctct	420
ggtgtcctgc	gtggaaaggg	tctgcgcctg	gtgaacggtg	tcagcaacat	cattatccag	480
aacatccaca	tcacggagct	caaccccgag	ttcatctggg	gtggtgacgc	tatcaccctc	540
gacggcacca	acaacgtctg	gattgaccac	gtcaagatca	acctcattgg	tcgtcagatg	600
ttcgttgccg	gatacgaagc	cagtcacagc	gttaccattt	cgaacagcga	gtttgatggt	660
gagaccagct	ggtctgcgac	ttgcgacggc	caccactact	ggactgttct	cggatacggc	720
cacaatgaca	agatcacctt	cgccaacaac	tacatccacc	acacttcggg	ccgttccccc	780
aagcttgagt	tcaacagctt	ctggcacgcg	tacaacaact	actggtacaa	caacactggc	840
catgccttcg	atgttggcaa	gaacacccgt	gctctgatcg	agggtaatgt	gatggtccag	900
gtcgacactc	ctctcttggc	cgacagcaac	cccggtgccg	tattcgccgt	gaacaccagc	960
gatgtttcca	cctgcaccag	caccctcgga	cgcacctgtg	tccccaacac	tttgatcagc	1020
tccggtactc	tctccggtag	tgacagctct	gtgatcagca	gctggccctc	tggtgagtcc	1080
gacgtcaccg	tcatggctgc	tagcaaagtt	gcttcctacg	tcaaggccaa	cgccggtatt	1140
ggtaagctcg	gcaacggatc	tggctcctcc	agcaccgtcg	gcgcggccgc	cacctccgct	1200
gtcgccaagc	gtgccgactc	tgacgatgct	ccttttgtcc	cggcctactc	tgaggctggc	1260
cccggcgctt	ccgctgtccc	cacccagccc	tcctggtctt	ggaggacagt	caccaacggc	1320
cctgctccca	ctggagctcc	ctctgatagc	ccctcggccc	cccagggtct	tggtgctcct	1380
gtccaggctt	cgaacaagca	ccaccaccag	ggacacggcc	gtggctacta	a	1431
<pre><210> 23 <211> 1314 <212> DNA <213> Aspe</pre>	rgillus nig	er				

atgaccccca actggtccaa actatggacc ttcatcgcca accccaaaga ccccagttct 60 agetececat caccatatae acteegtege ataateaaat eeeteteet teteacegte 120

WO 2004/074468 PCT/EP2003/005726 23/178

	pect	inases.ST25	1		
ttctccatct tcctctacgc				cccacaaacc	180
ccagacctcc cagacccaga	cctccctccc	tccccagaag	actcatacaa	atccatctac	240
ggctacccc caaccaaccc	caccatccct	cccctgcaca	tccacgaccc	cagcatcctc	300
tacgacctgc ccacaaacac	ctactacgcc	tacggctccg	gccctcacat	ccccatccac	360
tccgccccga ccctccaagg	accatggacc	aaagtcggca	ccgtcctcga	tgcagatagt	420
attctaccaa agggtgatcg	caaagcccca	tgggcaccga	ccgccctcgt	ccacgacggt	480
accttctacg tcttttacgc	gacgagccat	agtggatgtc	gcgatagcgc	tatcggcgtg	540
gctacctcta cttctccggg	ccctggggga	tgggaggacc	acggggcgat	agctatctcc	600
ggacgagggg agagggggaa	ggagtacccg	tttgataggg	cgaatgcgat	tgatgttagt	660
gttgttgttg attatactga	cacccagacc	caaaccgaac	cctccgaagg	agagatctct	720
ctagaagagg gaaagaaagg	aaaagggaga	ggatacatga	ccttcggcag	tttctggacg	780
gggatatggc aagtcccgct	gaagcctaac	ctgcttcata	tggacaagca	gggagaagaa	840
gaaaaaaggg ttaaacatct	cgcccacgag	cccgcagcca	tccacccacc	aaccaaaaaa	900
gcagatggat tatgtggtga	tacgacgggc	atgcatccca	tcgagggggc	gtttatatcc	960
tatcatgagc cgtggtggta	tttgtggttt	agttggggga	agtgctgtca	ttttgatccg	1020
gagaaattgc cgagggctgg	tcttgacatc	cgcgtcggac	gatcaagttc	tcctcaaggt	1080
ccattcgtgg ataaagaagg	gaaagatcta	gtggatggag	gaggggagat	tgtgtatggg	1140
tcgaatgggg atgtttatgc	gcctggggga	cagggcgtgt	tgagtgggga	ggtggaggga	1200
gatgtgcttt attatcatta	tttgaatata	tctgtggggt	atgagtttaa	ggaagcacgg	1260
ctgggatata attatttgaa	gtatgtggat	gggtggccgg	ttccactatc	ataa	1314
¢.					
<210> 24 <211> 1101					
<212> DNA <213> Aspergillus nig	ger				
<400> 24					
atgctgccat ccctgctttc	cgttttattc	ttcctgctct	atgcagtgaa	cgctgttcca	60
ctggcgcccc gggcgagtgc	actcgccggg	atcgacacca	agtccttctc	taagaccaaa	120
gattatcccc ttcccaacct	gggcaacatc	gttgctcatg	accctaatgt	cattcagcat	180

WO 2004/074468 PCT/EP2003/005726 24/178

gatggctatt	tctacttgta	caaaggtggt	gtgcacattc	cgattcacag	agcccgctcc	240
ctcagtgggc	cttgggaaca	ggtcgggacc	gtcctggacg	actccagcgt	gatcccgaaa	300
cagaaccgct	ctcgtccttg	ggcccctacg	accattcagc	acgacaaccg	tttctactgc	360
ttctacgcga	tcagcgagaa	cggcagtcgc	gacagcgcca	ttggagtcgc	ctcttcggat	420
actcccgtcg	gtggaaactg	gacggaccat	ggcgctgtcg	tcaacaccgg	caagggagac	480
ctgtcggaca	tctatcctta	ctcggtatcc	aatgcgatag	acggcgcatt	catcaccgat	540
caacagaccg	gacagtctca	cctgctttac	gggagctatt	ggcatggtat	tttctcggtg	600
ccattggctg	atgatctcct	ttccgtcaaa	accccgaaga	ccccaaacgc	gaccaacctg	660
gcctacatcc	cagatgccaa	gtccaagcct	atcgagggct	ctttcatgac	ttacaaggcg	720
ccttactact	acctgtggtt	cagtcacggc	aaatgttgtc	actttgatat	tcacgctttt	780
ccgcccatgg	gagacgagta	caacatccgg	gtcggtagat	ctaagagtgc	gacaggtcct	840
ttcgtggata	aggatggcca	tgataccctc	aagggcggtg	gtaccatcgt	ctacggctcc	900
aaccatggaa	ttgtctatgc	ccctggtgga	gtgggcgtgt	tgatcaacaa	tggcagcgaa	960
gccgatgtct	tgtattacca	ttatctcaac	actacgtctg	gtttcgcaca	gggagacgcg	1020
cacttgggat	ggaactatct	gcactatgta	aatggatggc	cagtggctgt	cgaggggtat	1080
gtgaatgcca	acggcaaata	a				1101
<210> 25 <211> 957 <212> DNA <213> Aspe <400> 25	rgillus nig	ger				
	ttgtcttgct	tctttgtgta	gcgttggtca	acgcctactc	agacccgggt	60
gcatgctcgg	gaacctgctg	ggcacacgac	cccaatgtca	ttcgccgtgt	gtcggatgga	120
acctactttc	gtttctcgac	aggtggtggt	gtccatatct	cctctgccag	cgccatcact	180
ggtccctgga	ctgatctcgg	gtatgcactg	cctaacggat	ccatcgttac	agtgggaaat	240
gcctccaacc	tttgggctcc	ggacgtacac	tacgtagatg	gcacatacta	catgtactat	300
gctagctcta	ccctgggcag	ccgggattcc	accattggag	ttgcaacctc	caccaccctg	360

WO 2004/074468 PCT/EP2003/005726 25/178

	pectinases.ST25	1 cctcatcttc	gtccacccct	420
gaagccgact cctggaccga ccacc				480
tacaacgcca ttgaccccaa ctgga				540
tectactgge aaggteteta ceagg				
acgcccacta acttggccta caacq	gcatcg gggaaccatg	ctatcgaggc	ttcttacctg	600
tacgagtacg gaggetacta ctac	ctcacc ttctcgtccg	gcaaggctca	ggggtacacg	660
acctccctgc ctgcccaggg cgate	gagtac cgcattgtcg	tttgccggtc	caagactgga	720 .
acgggtaact ttgtcgacaa ggat	ggtgtt tcatgcctga	acagcggcgg	aaccaccgtt	780
ctggccagcc acgactatgt ctac	ggccct ggtggacagg	gtatcatcaa	caccaccagc	840
cacggtattg tcgtctacta ccac	tatgcc aacaagaaca	ttggcctggc	tgtcgatgac	900
taccagttcg gctggaacac gctc	acctgg actgatgggt	ggcctgttgt	ggcgtga	957
<210> 26 <211> 1485 <212> DNA <213> Aspergillus niger				
<400> 26 atgttgacaa gccagccgct gagc	ccaaac tgtcctcacc	gtcgtgccta	tcatcactta	60
cctagtcttc ttgaagtgct catc	cactct ccccatgage	cgttatcact	gaccctcaaa	120
accetgtace tattttccac caat	ggctca cctcattggc	tcagctacct	gactcctcaa	180
ccctctccct taaccaccaa acac	agagta gtaaatgaca	ccctccagtc	tgaagactat	240
tecetggtte gegegegegg atgg	caacat cccagaaagt	acattcaggt	ggataccatg	300
aaaggcctcc cgtcactgct gaac	agcagc agcaccaaaa	aatggacaca	atccacccca	360
tccacaggcg agggtgagaa tgag	gagtggt agtactatat	cacccaccaa	geegeeegag	420
ccatccacac ccccaggagg ctca				480
tggctcatca ccctgatagc tcta				540
gtagttctcc tgctggacga taaa				600
cgtccagtcc gcgtcgtgca tgac				660
	=			
togtatocat acoctacaot coco	cacaccg gacaatcctq	acgtccctca	cgtcccggta	720
tggtatgcat acgctacagt cgcctcgacatcgc ggaactttag cagc				720 780

attagcagtt gggaaacgaa tatgaaccag tacgctccgg acgtgattca acgcaaagac	840
ggccacttcg teetetacta etcaggegaa etaaaagaet ggeteegeea eeactgegte	900
ggegeegetg tetecaaegg cacaagteee etaggaceat acateeeca caacaceaec	960
ctcgcctgtc cccgcgacca cggcggtgcc atcgaccccg ccccttcag agacgtcaac	1020
gggaccctct acgtcgtgta caaagtcgac ggcaacagca tcggccacgg cggaggctgc	1080
aacaacggca agaaacccat cgtctccacg cccatcatgc tccaacaact caaagacgat	1140
ggagtcaccc ccgtcggtga tcccgttgaa attctaacca acgaaaaagt cgatgggccg	1200
ttagtcgagg ctccggccat tattcgaact gatcgcggca tctattatct gttcttctct	1260
tcgcattgct ttacatcgtc gaagtatagt gttaagtatg catggtcaac atcgttaaag	1320
gggccgtata ccagggctga gaggcccttg ttccggtctg gggactttgg gctaaagtct	1380
cctggcggtg cgacggcttc ggttgatggg tctaggattg tttttcatgc cttttgtggg	1440
gattatagat gtagagtttc agggaagcca tcaatactat cctag	1485
<210> 27 <211> 756 <212> DNA <213> Aspergillus niger	
<400> 27 atgtggaccc atctaccatc cctctgtgcc ctaggcctca cgctaatcac atctgtgata	60
acctcaccca ttgaaatccg agccaccgga ccctggctag cccttgacac ggacttccca	120
gaccccggct tcgtccaagc cgacgacggc acctggtacg ccttcgggac gaacggcaac	18.0
aaccgcacgg tgcaagtagc caagtccgca gacttcaaaa catggaccct cctcgacaaa	240
gaagccctcc ccactttagc aggctgggag acccaaattg accactgggc cccagacgta	300
gtccgccgtg tacattcccc atcccatccc atccccttcc cccaaatcca aactaaccac	360
caccaccacc cccagaacga cggcaaatac gtcctctact acagcggcga agcacaacaa	420
atgeteegee accaetgeat eggeacegea gteteagaat ecaeegatee eagegggeee	480
tacatcccaa acccaacccc cetetectge egtetegace aaggeggeag categaegeg	540
tccggcttcc tagacaaaga cggctcacgc tacgtcgtgt tcaaagtgga cggcaacagc	600

WO 2004/074468 PCT/EP2003/005726 27/178

pectinases.ST251 atcggcaacg gcggggactg caacaacggc attgcgccat tgaaacccac cccgattctt	660
ctccaaaaac gacgggccgt tggtggaggc cccgaatttg attctgcatg gggacacgta	720
ctttttgttt tactcgacgc attgctatac ggatga	756
<210> 28 <211> 1941 <212> DNA <213> Aspergillus niger	
<400> 28 atgatagcgg tcgcaaaatg gctatacgtt gctgtgacgg cgtatttcca caagttgagg	g 60
ccggttagcc atgattatcc tgctctggca gcaagggata atggtacaaa cggcagcgtg	g 120
gcgtcgccaa taacattgac tgttgaagag tcgggcggga atcagtctag tcctctgct	180
tatggggtta tgtttgaggt aatatattca ggtgatggag gcattcacgg gcaattgcto	240
cagaataatg gcttccaggg ggacgatccc ggcttgactg catacaaagc ggtcgggcc	300
gtcgacctca tgcaggactt gataaacccg gtcagcggtg caataacgtc ttctttgca	g 360
gtatctgtag attttgaagc aacggggttt gtaggatttg ccaatacagg gtacagtgg	g 420
atacctgtga tgaatgcaac gtattcgtgc cagttctgga tgatgggtga atactcagga	a 480
acgattatgc tacagcttgc tggatcaacg aatgatacta tttatgcttc gcataatat	540
accgtgaaga gctcatgggg aaagttcacc cattatcaaa cttctttaa ttcgagcgc	a 600
gctcctgatg gtgacaatga gtggcgcctg ctgttcaatg gatcaaagat ggctggagg	g 660
atgctgaact tcggtctggt gcagctgttt ccgcctacgt acaagtcgag gtcaaatgg	a 720
ctacggaatg atgttgcgac atttctggaa aagacagctc cctcttttct ccgattccc	g 780
ggtggcaata atctagaagg actacagatc gacagccgtt ggcagtggaa cctaactgt	t 840
gggcccgtcg ttgatcgtcc cgggagacag ggcgactggt tctacccaaa caccgacgc	g 900
ctcggattgg acgaatatct ctggtggtgc gaagacatga acatggagcc cgtcctcgc	c 960
gtctgggacg gcaaatcata cggcggcatt ctatccggcg acgatctcca gccatatat	a 1020
gacgatatca tgaacgagct tgagtacctc ctcgggccgg tcaactccac ctacgggag	t 1080
atgcgagcgc aaaacgggcg cagcaaacca tggtccataa actacatcga gatcgggaa	c 1140
gaagatgact ttaccggcgg atgcgacaca tacccagacc gcttctatca gatttacaa	c 1200

gccatcagca	acagctaccc	gaatatcact	ctcatcgcat	cgaatataga	ctacctgtgt	1260
ctcccgattg	aacccccacc	cggcctgata	tacgactacc	attactatcg	caaaccggat	1320
gacctcgtcg	ccatgttcga	ctactgggat	aaccagcctc	gcacgcagcc	catcatggta	1380
ggggaatatg	gatgtcggga	taccagcgag	gcagacggga	tcttctggtc	ctctatgcaa	1440
tgtagctgca	gtgaggcagc	gcatatgatt	ggcctggaga	ggaactcgga	tgtagtgaaa	1500
atggctgcgt	atgcgccact	attgcagcat	ttcgggtata	cgcagtggtc	gccaacgcta	1560
ttcggcttcg	actctagtcc	tgactcgctg	actccctcga	cgtcatacta	tgttcaacgg	1620
atgttttcta	caaatcgcgg	ggatactatc	ctccctgtga	atacaactgc	cacatttgga	1680
ccgctgtact	gggttgcatc	caggacgaat	agcacgtatt	ttgtgaagtt	ggccaactac	1740
ggcgcccaga	accagactgt	acgtgtaaag	gtgccccaaa	ccaagaccgg	gcatgtagaa	1800
atgctgtatg	ggccgcaaaa	tgcgaccaat	ttggtgcata	atattactgt	tcagccgacg	1860
gtgaagaatg	tgactagctc	taggggcatt	tattccctgg	atatgccgcc	gtggggggtt	1920
gctgttttgt	cggtgtggtg	a				1941

<210> 29 <211> 1191 <212> DNA

<213> Aspergillus niger

<400> 29

atgccggcta	ctgaggccgc	cagcaccgtt	cattccccac	cggtctctca	ttcgattcct	60
ccaccaatga	acctggttct	tcacggtttt	agctccgttc	ccgggctggt	cgccggcaac	120
ggccatgact	gccattttcc	cattcacgcc	acccctgctt	gccctctggc	agattataga	180
tgċctgcatg	ggcggccttc	ttacacgtgc	tcctgtctga	atttctgcca	gactgaactc	240
tccacccagc	tctttcgcca	tattcgttca	tcttctgctg	gcggcgctgc	cgattctatc	300
ccatgccgcg	ctcacctatc	gcggggcgga	catttcttct	cttttgagct	agaagatgaa	360
ggttatagct	acaagaacct	taaaggtcaa	tcccaagcac	tcgagactat	cctcgctgaa	420
gccggcatca	attccgttcg	ccagcgtgtg	tggggtcaat	tccagtcatg	gcatttacaa	480
tttggattac	aacttggagc	tggcaagcgg	gtcaaggcgg	ctggtatgag	tatctatctg	540

WO 2004/074468 PCT/EP2003/005726 29/178

pectinases.ST251	
gaccttcatc tgaataacaa cattgatatt gagatcatct caatcggtaa tgagatccgc	600
gccggtcttc tctggcctct tggtgagacg agcagctact caaacatcgg tgcactgctg	660
tactcgggcg cttggggagt caaggactcc aatttagcaa cactacccaa gattataatc	720
catctggatg acggctggag ctgggatcag cagagttact tttataagac ggttctgtct	780
acgggcgagc tactgaacac agacttcgac tacttcggcg ttttatacta cctgttctac	840
agegeateag taaatatage atetetgaag accageetgg egaatetgea gtegatetae	900
aacaagcctg tagtagtggt ggagatgaac tggccagttc cgtgcccaaa tcctgagtac	960
tottgtttct cagatecgag attgatttct ttctcggtcg cgggccagca gcagttcctc	1020
gagaaactgg cagctgtggt cgaggccact accgatggtc agggggtgta ctactgggag	1080
ccggcctgga tcaccaatgc tggggtgggg tcgagctgcg atgaaaacct tatggtggat	1140
aggtccacgg atgaggttta tgcgagcttt gatattctcg ggaagctttg a	1191
<210> 30 <211> 1140 <212> DNA	
<213> Aspergillus niger <400> 30	
<213> Aspergillus niger	60
<213> Aspergillus niger <400> 30	60 120
<213> Aspergillus niger <400> 30 atgaagtact ctactatctt cagcgctgct gccgctgttt tcgctggttc cgccgctgca	
<213> Aspergillus niger <400> 30 atgaagtact ctactatctt cagcgctgct gccgctgttt tcgctggttc cgccgctgca gtcggcgtgt ccggctctgc tgagggtttc gccgagggcg tcaccggtgg cggtgatgcc	120
<213> Aspergillus niger <400> 30 atgaagtact ctactatctt cagcgctgct gccgctgttt tcgctggttc cgccgctgca gtcggcgtgt ccggctctgc tgagggtttc gccgagggcg tcaccggtgg cggtgatgcc accccgtct accccgacac tatcgatgag ctggtctctt accttggaga cgatgaggcc	120 180
<pre><213> Aspergillus niger <400> 30 atgaagtact ctactatctt cagcgctgct gccgctgttt tcgctggttc cgccgctgca gtcggcgtgt ccggctctgc tgagggtttc gccgagggcg tcaccggtgg cggtgatgcc acccccgtct accccgacac tatcgatgag ctggtctctt accttggaga cgatgaggcc cgcgtcattg tcctgaccaa gaccttcgac ttcaccgaca gcgaaggtac caccactggc</pre>	120 180 240
<pre><213> Aspergillus niger <400> 30 atgaagtact ctactatett cagegetget geegetgttt tegetggtte egeegetgea gteggegtgt ceggetetge tgagggttte geegagggeg teaceggtgg eggtgatgee accecegtet acceegacae tategatgag etggtetett acettggaga egatgaggee egegteattg teetgaceaa gacettegae tteacegaca gegaaggtae caceaetgge actggttgeg eteeetgggg taeegettee geetgeeagg ttgetattga eeaggaegae</pre>	120 180 240 300
<pre><213> Aspergillus niger <400> 30 atgaagtact ctactatett cagegetget geegetgttt tegetggtte egeegetgea gteggegtgt ceggetetge tgagggttte geegagggeg teaceggtgg eggtgatgee accecegtet acceegacae tategatgag etggtetett acettggaga egatgaggee egegteattg teetgaceaa gacettegae tteacegaca gegaaggtae eaceaetgge actggttgeg eteeetgggg taeegettee geetgeeagg ttgetattga eeaggaegae tggtgegaga actaegagee egatgeteee tetateageg ttgaataeta eaacgetggt</pre>	120 180 240 300 360
<pre><213> Aspergillus niger <400> 30 atgaagtact ctactatctt cagcgctgct gccgctgttt tcgctggttc cgccgctgca gtcggcgtgt ccggctctgc tgagggtttc gccgagggcg tcaccggtgg cggtgatgcc acccccgtct accccgacac tatcgatgag ctggtctctt accttggaga cgatgaggcc cgcgtcattg tcctgaccaa gaccttcgac ttcaccgaca gcgaaggtac caccactggc actggttgcg ctccctgggg taccgcttcc gcctgccagg ttgctattga ccaggacgac tggtgcgaga actacgagcc cgatgctccc tctatcagcg ttgaatacta caacgctggt gtcctcggta tcaccgtcac ctccaacaag tccctcatcg gtgagggctc ctctggtgca</pre>	120 180 240 300 360 420
<pre><213> Aspergillus niger <400> 30 atgaagtact ctactatctt cagcgctgct gccgctgttt tcgctggttc cgccgctgca gtcggcgtgt ccggctctgc tgagggtttc gccgagggcg tcaccggtgg cggtgatgcc acccccgtct accccgacac tatcgatgag ctggtctctt accttggaga cgatgaggcc cgcgtcattg tcctgaccaa gaccttcgac ttcaccgaca gcgaaggtac caccactggc actggttgcg ctccctgggg taccgcttcc gcctgccagg ttgctattga ccaggacgac tggtgcgaga actacgagcc cgatgctccc tctatcagcg ttgaatacta caacgctggt gtcctcggta tcaccgtcac ctccaacaag tccctcatcg gtgagggctc ctctggtgca atcaagggca agggtctccg tattgtcagc ggtgctgaga acatcatcat ccagaacatc</pre>	120 180 240 300 360 420 480
<pre><213> Aspergillus niger <400> 30 atgaagtact ctactatett cagegetget geegetgttt tegetggtte egeegetgea gteggegtgt eeggetetge tgagggttte geegagggeg teaeeggtgg eggtgatgee acceegtet acceegacae tategatgag etggtetett acettggaga egatgaggee egegteattg teetgaecaa gaeettegae tteaeegaea gegaaggtae eaeeaetgge actggttgeg eteeetgggg taeegettee geetgeeagg ttgetattga eeaggaegae tggtgegaga actaeegagee egatgeteee tetateageg ttgaataeta eaaegetggt gteeteggta teaeegteae eteeaaeaag teeeteateg gtgagggete etetggtgea atcaagggea agggteteeg tattgteage ggtgetgaga acateateat eeagaacate geggttaeeg acateaaeee eaagtaegte tggggtggtg atgetattae tettgatgae</pre>	120 180 240 300 360 420 480 540

pectinases.ST25	Э.	ı
-----------------	----	---

gacttggtca ccatgaaggg caactacate taccacacet ccggccgtag ccccaaggtc	780
caggacaaca ctctcctcca ctgtgtcaac aactacttct acgacatctc cggccacgct	840
tttgagatcg gtgagggtgg ctacgtcctg gctgagggca acgttttcca gaacgtcgac	900
accgtecttg agacetacga gggcgcggcc tteaccgtee ectecaceae cgccggtgaa	960
gtctgctcca cctaccttgg ccgtgactgt gtcatcaacg gcttcggctc ctccggcact	1020
tteteegagg acageaeete ttteetetee gaettegagg geaagaaeat tgeetetget	1080
teegettaea eetetgttge etetagegtt gttgetaaeg eeggteaggg caacetgtaa	1140
<210> 31 <211> 1140 <212> DNA <213> Aspergillus niger	
<400> 31 atgcactaca agetgetttt egetgetgee geageateet tggceagege tgtcagtgee	60
gccggcgttg ttggcgccgc cgagggtttc gcccacggtg tcactggtgg tggcagcgct	120
tcccccgtct atcccacgac tactgatgag ctggtctctt acctcggtga taacgaacct	180
cgggtgatca tcctggacag aaccttcgac tttaccggca ccgagggtac cgagactacc	240
accggatgtg ccccctgggg aactgcttcc caatgccagg tggcgatcaa cctgcacagc	300
tggtgtgaca actaccaggc cagcgcccc aaggtatccg tgacttatga caaggcgggt	360 [,]
atcetececa teaeggteaa etecaacaag agtattgttg gteagggeae caagggtgte	420
atcaagggca agggtctccg tgtggtcagc ggtgccaaga acgtcatcat ccagaacatt	480
gccgtcaccg acatcaaccc caagtatgtc tggggtggtg atgccattac tgtcgatgac	540
tctgatctgg tctggatcga ccatgtgaca actgctcgca ttggtcgcca gcacatcgtc	600
ctgggcacca gcgccgacaa ccgcgtcacc atctcctatt ccctcatcga tggtcgctcc	660
gactactctg ccacctgcaa cggccaccac tactggggcg tgtacctgga cggcagcaac	720
gacatggtaa ccctcaaggg caactatttc tacaacctca gtggccgcat gcccaaggtt	780
cagggtaaca ctctgctgca cgccgtgaac aacctcttcc acaactttga cggccacgcc	840
ttcgagatcg gcactggtgg ctacgtcctg gccgagggta acgtcttcca ggacgttaac	900

WO 2004/074468 PCT/EP2003/005726 31/178

•	pect	inases.ST25	1		
actgtggtgg agacgcccat c	cagcggccag	ctcttcagct	ccccgatgc	caacaccaac	960
cagcagtgcg cctccgtctt c	eggtegttee	tgccagctca	acgccttcgg	caactccggc	1020
tcgatgtccg gatcggacac c	cagcatcatc	agcaagttcg	ctggcaagac	cattgctgcg	1080
gctcaccccc cgggtaacat t	tgcccagtgg	accatgaaga	acgctggcca	gggcaaataa	1140
<210> 32 <211> 1188 <212> DNA <213> Aspergillus nige	er				
<400> 32 atgaaggtcc ccttcctcca a	acttctctgc	ctaaatgccg	ccttggctag	cgccaatgtt	60
gttaaaggcg cggcccaggg t	tttcgcagcc	ggcgtgacag	gcggcggcga	tataactccc	120
agctacccca aaaccaacga	ggagcttgtc	tccctgctcg	agagcgacga	accccaagtc	180
gtcgtactca ccaagacctt t	tgagttcatc	ggaaccgagg	gaaccacgac	cgagaatgga	240
tgcgcaccct ggggtactgg	gaagtcctgc	cagctggcca	tcaactccaa	tggatggtgt	300
ggtaaaaatc ccgtcgtaac	catcacgtat	gataacgccg	ccaagaatgg	cattcatatc	360
aagtccaaca agactcttgt	tggtgaggga	gacaagggcg	tgctcagcgg	aaagggtctc	420
tactttgagg gtggtgtttc	caatatcatc	gtgcagaaca	ttaagattac	gaacctcaac	480
cctggttttg tctggggtgg	cgacgcgttt	actttctttg	gcgctgatct	gatctggatc	540
gaccactgcg agacctccct	caccggacgc	caacactacg	tgaccggctt	ccaccccaac	600
acccgcatga cttggtccaa	caacttcctt	aacggcgtaa	ccacccactc	cgcaggctgc	660
gatgatcacc actattggac	aatggagcta	gttggccctg	gggaccaaat	taccttccag	720
aacaactacg tctaccacac	caccggccgt	ggacccgctc	tctccggcac	gaccctcttc	780
cacgcagtca acagcgtctg	gtcctccatc	cctggacacg	ccatcgaggg	cggtgacaag	840
ggccgcggtc tcttcgaggg	atgcttcttc	gaagatgttg	tcgagattgc	ccccgccaag	900
cccgagaacc aactcttcag	cgccagcgaa	gccaacgccg	catcttgcaa	gtccgccttg	960
ggccgcgctt gccaggccaa	tagctatagc	aaatctggtg	cttttggcag	ctctgaaact	1020
ggctttttca aggactttgc	cggactgact	attgcaccgg	ccggctctgc	gacggatgct	1080
ctcgcttatg ttcctaagaa	ttgtgtatgt	atcaagcagg	agggtggatt	ctctaaggct	1140

cggaatttcc ttcacgtgaa gcagccaaac tggttagatc caacttga	1188
<210> 33 <211> 4506 <212> DNA <213> Aspergillus niger	
<400> 33 cattttatta gcttaaaatt tcaggagata ggcgccgaag cagattatgt ctatttggat	60
tataaatagg ccgaacaaac gatttaaaag tcaaatatga agtaactgta gtcgatgtcc	120
tgatagcgct cagtatacgc ttatatttca ttgaagctat agagccttgt agatatggcg	180
gcgaattggc gacgccaaaa attagcaatg ccttagagga gaatttatgt taagaaggga	240
gttatacaac caaggccgag gcaagacgag gcagttacta ctaagatata ccgcgtgacg	300
taaaaaaagt gcggtgtaag gtgtaataat tggacgagta tacattcaaa gatatatcct	360
tcgcgtcaaa ataaattgag cagaggggca tgcccaaaaa gataaacaag cgcttttaca	420
caagcctgaa gaagcgtaat tcacaaacta gaacccagtc atcgacaatc tgacagttct	480
cgcgatacag ggcttcagtg atgaagaata atagccaaag cggccgcaat caagatgata	540
ggtgcaggct tataactggg acgtgaatac tcgtggaggg tctacagagg tcgattgcga	600
taatttctct aatagcagcc ttgggattga ctgtgctcaa actacggccc gctcgctgta	660
gatttctggc tggatcacat gaaacttcgc gagaatcccc actatgatga acctttgtaa	720
ttgagttggc attactggtc gctctgcagg ggttcaaagt tcaccataag gggtcgaatg	780
taaatggatg gcccctaacg tccaccctac cgaaagagct cgttccgagg tccggcatgg	840
acggcaaaca agggtccagc gcggcacggg cagccttacc cgtggacttc ttacaaggat	900
ctaacccaac taattggtgg agaattatcc aaagctcaag ctgcatgccg tgtatgctct	960
tcttggctcg tgatgtggaa gattccgaca agaaaatctg gcatgtataa ggatcctcca	1020
ggctaaatgg ggaatgcact taatgtgtta ttgtcataag gaatttagtc agcaagtgat	1080
tgaaacagag ctatcctaag cgcttcttca tgtatgagaa aagccattcg ttttcgatta	1140
ccacgtgctg gccgctactt caggcacgtt ggcatcgaaa acattccttg acaggtacta	1200
caacgcacga ttgatgccat gtaaattcta tacgctcgga aggaaacagc ttgccgtccg	1260

WO 2004/074468 PCT/EP2003/005726 33/178

pectinases.ST251 catgctgttt gccaagagag gtcctgccac ttgacatatg cttagtccgg ctatatttct 1320 ccatattcat agcccacgat ttagcctgtt atctgcagtc tcggagcagc caatatccac 1380 gggtgggtag ttacacggct gaggtgtcac gacacgacag tcaaattcta ctttaccctc 1440 aaatgctact ccttgtgcct cgttaatacc ttggttccta aaagcaacaa ttccaagcca 1500 atteateatg aageteeeca teetagtgae tetatttatt aetetgeeeg egetttgegt 1560 gtctagcaaa actccttccg cgcctacgat ctctgcatat ccgaaatctc cagggaactt 1620 caagcccgcc tctggacgcc agaacagcac aagcaatgtc tgtgaggtca agccgaacca 1680 aacagatgct gcccctggta ttcttgccgc agcccacact tgcaacaatg ggggcaccgt 1740 tttcctacca ccgggtgact ttgtcgtcgc aaccgcactg gatctcacat ttctaaacaa 1800 catcgatttt gccatctggg gcaacatcac tttcaaaaag gatatcgatc tctggacaac 1860 ccaggcattt caatacacat tccagactgc gagtcttttc tggcgattcg gaggcaataa 1920 cgtgaacatc tacggcgatg ggaagggggt gattgatggt gaatattttt tttcttggtg 1980 ctggatttgc tagggaaaga ttaatgacct tgatgttcta atataggagc tggtcaatac 2040 tggtggagtg cgatggctga ggattccagt gtcatgcgtc cttgcctcct gggcacagac 2100 ggactgcatc atgccaccat ttctgggctc acgatgctca actccccaaa ttggttcaac 2160 ctgattgcaa actccacgga catcctcatc agtaatatga caatgttggt ggagagtgag 2220 atateggatg etecageeaa ggtgegaett ataatateae eeetgtttee atetgetata 2280 gcctactgct acctgaacct gacttgtact gtgactagaa cacagatggc tgggacatct 2340 accgcagctc gaatatcgtg atccaagact caagaattgt caacacggac ggtaagccat 2400 ggcattccgt aactgtattc tctgaaacgt cactcatggt ctccgcctta gactgtgtat 2460 cgttcaaacc aaactccacc cagattgtca tccaaaatct cgactgcact ggttcccacg 2520 gtatttctgt cggcagcttg ggtcaatacc aaggggaaac ggatatcgtc gaagatctgt 2580 acatetataa cateteeatg acagatgeat cagatgtgge eegaateaag gtetggeetg 2640 gtgttcctgc tgatacgtca ggatcaacca gcggtggagg actaggccgc gtccgcaacg 2700 ttacctatga acacatgcaa agcgagaata acgatcacat catttcggtc tcgcagtgct 2760 atgagtcgaa gaaccaaacg atgtgcgatt catatcctgt acgtacttac aagctcctga 2820

34/178

pectinases.ST251 taggcaaaag attcaatagc agcaaaaaac tgatcagtct ttcaaagtca aaactcgtga 2880 2940 ttgaggatgt acttttcaag gactttaagg gaacgacatc taagaagtac gatcctgaga 3000 gattgaccca cggccactaa cagctgctag gtctgccata atatcactgt ccaagacatc 3060 aatgtgactc cacccagtgg tgactctccc actttcacct gcaacaatat ggggaattcg 3120 aatttggagg acattacgtg tgcctgactt cggggtacct ctgtctttca cagtagccag 3180 gcactatece tgatectgtg ecgectacgt ggeettacet atececeett tgggtettte 3240 3300 tctatttggg atcttgatag taacacatct ggccccacat gttgatacct tgagatcttt 3360 ccccatggca tcgtgtaatc taggatactc gaaggaacaa agcagaaact ggaagctgca 3420 tagactttgt ctcacagatc gcagctctgt tgtttagaaa cccagtctgt caccggttcg 3480 ccagattgag cgtaaaacat gtgacgggca cctaaaagct gacagcctcg gcctgagctc 3540 gtagagtacc ctcttctagg tctctgtggg ttaactgcaa gcaaaggatc aagatcgtcg 3600 gagaatttcg agcgtttgca tgcaattatt ccgacggggt tccgagtatt tcccgcggtg 3660 tatgttagta tggttagtat ggatggattt ggtagtaggg ttgacctgaa acattgagac 3720 atctgattag tagtatgtta tagatttgga tatacattat tgcaatgaca tgtgatcata 3780 tgaactttct gaaatgatgg agatataagc acagtcgtga atacgggcgt ggcctgttcg 3840 ttctcagccc tgacaggtga catcccgttc cgctgttcag tggaaagccg cgtggctgtc tegggggagt gggteagggt ceceeagaaa titaettitt taagttagtt etteeagtit 3900 3960 cagggtcctc cagacccacc acggaccagc tgattatggc ataaccgtct accaaactgg 4020 ccagcaaatt tctgcataag aaaccactgt catgaagata ttttggtgtc ttatagaatg 4080 cagcttagtg tagctcggta agtgagcgca caacagaccg atatggctca ataagtccgt 4140 aaaatacete taactgteeg aaagateaga eecacaaagt getgegaagg eecatgatee 4200 ttccaagaat cttaaaaaag accactatag tggaccgcaa tacgtagagc taggagttcg gttcaagaat tgcgcgatgt gcacaacata tatctgaaac cactgtcact gcagaccttt 4260 cctacttgtg catccggttc gcattgcagt ggggcagggc agttcttggc cgaaggaact 4320 4380 atgatcactt tgtaacaatg gtgggccctg tagctaccag tgctctattc ttcggcaaaa

pectinases.ST251	4440
ttcaatcctt tgcttctata tgtcactagg tgaacttgaa tacatataaa gataaagggt	4440
tggagetetg gaeggtaeet etgtetgtea acceaateta taetttttee aaaaceetta	4500
tccatt	4506
<210> 34 <211> 3196 <212> DNA <213> Aspergillus niger	
<400> 34 ggttgacatc gctgctgctt cggcgttccc tgcggcgcat atgtccactt agagaagccg	60
agaaaaaagt gagagaatat agaggacaaa gataaaaggc ggggctgagg gtcaatttta	120
tatgccatta tctctatttg ccagtctcgt ggaaacgcac gttagcgttg gagaaagcaa	180
cgagattggc tcgtttgggg cagaaagtgg agaggtctta atgatttagc cgctggctgg	240
atggtgggcg atggcgattg ataggtgaag attgcatcat catcatcact acaatggtcc	300
gtatggaatg atccaggcat acaatatatg tatagtgtac agatcccatg atgggtgata	360
tgccgagccg agagtggctt tcgacttagg gtctcgactc gaggtggaac tacactatag	420
tagtacgcgt ggtcgcatat ttgaagagcc tggcgggggc aaatattagc taaagcggac	480
acttacattc tctgcaggat gcaaacataa tatatatgcg aatacgatga taggctcgta	540
cccctgggaa ctgcagatcg tggagaaatg ctcgcgatga tttgcaccta tcacagctgg	600
gettegtgea egteggggta aacetaeece gggaaetgag gggttgeatg teatggteea	660
gccctgcagc ccagtatatt tacgtgcttg tgattcagtt acatttgtgg tttatcctga	720
agacagcatt ctcaccgagt aatcaagcca tggcacctat agcgttgaaa atcctcctct	780
ttacctctct cattgtccct tccatctcgc tatccgacca agcgaggaat ggtcatgcaa	840
gaaccatatg cgaagtcaaa ccaggcggat cctcagaaat tgatgatgtg cctgcaattg	900
togacgogtt gactacotgt ggttooggtg gtogggtgat attotoaaat aacacttaco	960
atatcaactc cgttatgaac acgacatggc tcgatgatgt ggagattgat ctacagggta	1020
cactcttggt aaataaatta cctatgtatg taatattagt ttcttgtttg tttctgacaa	1080
tgacagtgga gcaccaacat ctcctactgg cttaaccact ccctccccgt cggctaccag	1140
aatcaatcca ctgcctggat cttgggtggc aaagacattg tctttgaagg acatggatac	1200

ggaacattca at	ggaagtgg	ccaaacctgg	tatagatatg	ttggatcgac	gtcgaattac	1260
ccacggcgac cg	gaaccagct	gacggtctcg	ggagcaatgg	gcgcagtctt	caaggggttg	1320
cgattcgtgc ag	gagccagat	gtggtaggta	tcgttattca	tattgcgcca	tcttgctaaa	1380
tgaatgcatg ta	igctaacaa	tacaggacaa	tgtctatcat	tcacacctcg	aactcgtggt	1440
tcgattccat ct	acgtgaac	aatctgtatg	atgacggcgg	ttcagcacgt	tagtaccgtt	1500
ccgcatgttg as	tcgggatg	caagtcacgc	ctctgaccct	atttaaatag	agaacaccga	1560
cggtgcaaat ac	ctatctaca	gcaaaaacat	cacattaacg	aactgggaag	tcgtcaacgg	1620
tgatgatagt at	cagcacga	aagccaattc	tacagatatc	acgatcgcaa	actgcacctt	1680
cactagegge et	aggcattg	ccatcgggag	tattggccaa	tataatggtg	cttttgagac	1740
tgttgaacgc ct	taaaatct	caaacatcac	atatgagaag	acaactcatg	ccgtgtactt	1800
caagacctgg ac	cgggtgacc	aggtcggata	cccgcctaat	ggaggcggcg	ggggtttggg	1860
atgtacgtcc go	gtaaattt	atccaagtcc	tttgttgatt	ttaaccatcc	taccatggca	1920
gatgcatccg ac	catcgtcgc	aaccaacttg	aagaccaaca	acctcaaagg	tgctccattt	1980
acaatctctc ac	gtgtacgac	gttctctggt	gcttcaggga	actgcaccaa	ttccaaattt	2040
cagattcgcg at	cttgtctt	caccgatatc	tctggaacga	cagactcctc	agatgttgcg	2100
agctttcagt gt	agtgctgt	tgccccgtgt	gaagatatca	ctatcgagaa	tgtaagtttg	2160
cgaatagcgg gg	gaatacgac	ccatgcagaa	gagtatctgt	gtgggaatgt	ggatgggacc	2220
gttgggttca at	ttgcactgg	agatgtgtgt	gttgggtcaa	gtgctactgg	gggatgttag	2280
cctagcaaac ag	ggttctcgt	tgaggcgctt	caagatttcc	agtagcataa	gtactgaaca	2340
gcttggttca ac	catcgtcag	ttgtgtatgt	ccagctactg	atgtgattga	ttagaatgtc	2400
agcaaaccta tt	ttggttgcc	aacgtagtta	tagtaattag	atgttgatgt	tgatgggaat	2460
gtaccgattg ct	tgattctga	acgcctccaa	tataataacg	aaacatacaa	acccattatt	2520
gttttagcta ta	agaagactt	caattctata	cctgaacgta	accagccctt	tggtaagcgc	2580
cataactcca go	ctctgggta	atatagttgg	gtataaaata	tgcagttatg	gcccgtcgga	2640
gtgctggcat to	gggctgata	tcaatgcgaa	ataaaagaaa	ggataacata	atattctttc	. 2700
tatcagcgtg ga	aaggattgg	atcaatgctc	ttcttgtccg	tttgtgggtg	gactgttgca	2760

tgctccattc	acggctatca	cggtcatcct	gatcgccagt	gcccccaaag	gacaacctac	2820
acataaagct	gctgctaata	gacgtgaaag	caaaacacct	tgttaaggac	tagtcaacgg	2880
ccaacagaac	gtggaatata	tagcacagag	ctgctatgta	tgaggccgag	ctgaaatatt	2940
gcagacggtc	tgctccaacc	tagctacctc	ataaaaccct	gcactggacc	agggaagggg	3000
ttaatacccc	aggtggtagt	tgatgttatg	acgccaattg	actccattgg	aagtaggtat	3060
ctctgggtcg	aagatggtct	agcaaaaagg	tgtcgctgta	gggcggtaca	tttataggca	3120
ttgatcaagg	cctttcatca	catttgagct	aatcaacttt	atgatggaaa	taatacaatc	3180
atcaatctca	tccagt					3196

<210> 35 <211> 3826

<212> DNA

<213> Aspergillus niger

<400> 35

60 ggttgctgtt ttgtctgttc cgcagactgc agcacccatt accacacaga gcaatatcca tctccatccg acacacagge ccatataaac atctcagctc gagataatgt tcccccgggt 120 ttttgcccag aaagcgaaga ggggtcgcta gcttcgagga gttaatatcg ctggccggct 180 240 cgtgcgggac ggatcgattg gcttgaggga cactctgggg taaattagtc aggtcagtct 300 cggctgaatg gcaggatgaa tcaatcaaat ataagcgaac aagcaagctt tctcacacgt 360 tcaggggtgc ggtgttggtt ggctgcgcag cagtaggcta gtaggtatgc cggcgtcatt ggtggaattt cctacagaga gcccgtcgat cgtgcatgaa ggcgtcactc aaacgccagt 420 gcatggagtc ctccccgggt tttctccgca cagggaaact ggcgatatta cttggatttg 480 540 tagttcggta gaagtagcac cgaagtctgg tctgaccgtc tatcacctct agtggaagcc ccggtcagcg ttcattaaag gaactcaatg ctcccaggca cttacttcgc gcatcacccg 600 cattcacaat gcaactaaga gcttcggttt tgctctcttt cctggggctg gcctccgttg 660 720 gccatgcagg taatgtggaa aacaaccaca atgtctgcac cgtccgagca aacgggggac 780 accaagatga cgtccccaat attatggcgg cgttcaaaga gtgtggcaat ggaggtacca 840 ttattttccc cgaagaccaa tcgtactgga ttgcgacgag actgcatccc acattgaagg

38/178

pectinases.ST251 acgtcgcaat cgaatggcgg gggaagtgga cagtaagact ccctcactat ccatctcgtg 900 acttgtgaaa cgctgattcg gtccagtttt ccgacaacct cacctactgg cgtaacaact 960 cctaccccat tgcgttccag aaccatcatg ccggcttcat tattagcggc gacaacatca 1020 ccatcaatgg ctatggcacc ggcggcattg atggcaatgg caatacttgg tacacagccg 1080 agaagggcga cacgcagccg gggcgtccga tgccatttgt cttttggaac gtgtctgagg 1140 ttattgttga cagtttctac gtcaaggatc cgccctctg gagtgtcaac atcatgaacg 1200 ggactaacat gcgtttcaac aatatctact gcaacgccac ggctgtagat gccccctggg 1260 gcgataactg ggtgcagaat acggatggtt tcggtatgat tctttttgtc cgcgctctag 1320 tggaatgggt taggttctga ctagcactcg tatccagata ccatggacgc taccaacatc 1380 cageteacea aettegteta ecaaggegga gatgaetgea tegetateaa geecegetee 1440 tacaacatcg acatccagaa tgttacctgc cgtggaggca acggcattgc cattggcagc 1500 ttgggtcaat atttggaaga tagcagtgtt gctaacattc gcgtggacaa ggtcaatgta 1560 cgtgattgtt tcccggccac catcgccatt agtattaacc gtaatccaga tcatccgcta 1620 caacgaagac atgcacaaca gcgcctacct caagacctgg gtcggagctc tcgtcccca 1680 aagttcctac gaaagcgccg gcgtacctcg tggcgatggc tggggcagca tccgtaacgt 1740 cctattttca aacttcaatg tacaaggcgc aagcgctggc ccttccatca gtcaggacag 1800 tggagacaac ggttcctatg cgggtacaag caagatgtct atttcaaatg ttgcgtttgt 1860 caatttcacg ggatgggtgg atactgagaa gtctgtggtc tcgacggtct cctgctcaga 1920 ggtacatccg tgctacaata tcgactatga caatgtggtg ttgtatccag ggaagaatgc 1980 cacaacagct gggacagggt cttgtaaata tacagctgat ggaggagtgc atgggttgag 2040 tgggtgttga tttgtggatc gctaaggaag cgatttggtt gatatgtgta tatatgactg 2100 caagtaagaa ggatcaatgg gtgacagtaa tactctagaa aaccgaggta aatctcagca 2160 atatttcaga accctagcat agatagtcac gacgtactgc gtgaagaggg acaaacaagc 2220 agctagcaaa gcaaaccccc aaagcttgat aacattcgca aggcttgcac tagcatctaa 2280 gttcagacac aacctaatgc aactttcctc gcttggctgc aatgtcaatc atcgtcgtga 2340 catttgcctg gattgatcaa cggcggatcc ctgtcaatca ttccaatcct tgggtcactc 2400

agggagttg	coccanacta	-	inases.ST2		***	0.4.60
				ctctggtaga		2460
				ttgttccgaa		2520
ccattgagat	gacttcccaa	ccgtcctggt	ggactacact	ttgccaagat	gggatggagg	2580
ggtcattgta	cgaccttcat	ttaggcatca	gtctggccgt	gatgaataac	tcgcaagata	2640
ggacaggtga	agcacatctg	cctggtgcga	gtgacagttg	cgtacgtcac	tgggtaggac	2700
aggcctcatt	cccagccgat	tgaaggtgat	tcaatcgccg	ttcgggtttc	tgaacatgat	2760
gcctgcactg	tctcctttca	cactcggcat	cttccgagtg	actggggacc	cagaacggcg	2820
accttttcgg	gtataaatag	ctgcccatct	ctcctccttc	ttcttccact	tcctctcccc	2880
tctcagtgtg	ctatctcccg	ctttagtatg	ttccacaatg	ccctttcatc	atatattttg	2940
agagttcatc	cctttttcta	tcatggtgct	catcttttct	tctaatatat	atactcctac	3000
ttcttatata	tagaaatgca	tcggctacat	cgaagtcgac	gctatgataa	ccatcgaccg	3060
tcttcatcaa	accctataat	gaatcacggg	tgggggaaca	cctttatcga	cgaggtcaat	3120
gatctctgtc	aagaaatcag	caatcggaag	aatgatgagt	ttcaatgcca	agagaaacac	3180
cgtggctaaa	gctgcccggc	tttgaatcac	tcatgacagt	tccgatgcat	gacaccaaag	3240
agccggcatg	catagccaaa	tcatctacca	gaacaatata	atctacttca	tgaatatgaa	3300
aaccttttgt	atatacgcaa	ttcaagaatt	gggcttttca	acgagggact	cagtggccgt	3360
cggagatatc	aaaaatcatc	tcttgcaagt	caatgtaggt	tcataccagc	ccacaaattg	3420
ctaatgcact	ggactctgac	cattgtttgc	actaggcatc	actcatgtca	gtacaatgtc	3480
ttaaaccaag	accttgtccc	aaggacttgc	cagttcattg	cattgttcaa	gatgccatgg	3540
cgcgatgaac	tcagatgcag	agctcgtcag	ttcttacgtc	cgatatctta	gctcgcagaa	3600
gcaatatact	acaacgcttg	gagcacacgc	accgaaatgc	cctaagcatc	tacacaacgc	3660
atgtgtatat	aaagatccta	agcagggctt	cagatggtca	ggtgcatgca	catgcacgca	3720
ttcgagcatg	ctagagtagc	atcgacccca	ttgcgaccct	aaacagggtc	ccagtaccag	3780
caaggcgcgg	acgaggaaag	cacttttcat	tgaaagaaac	cgagca		3826

<210> 36 <211> 4334 <212> DNA

<213> Aspergillus niger

<400> 36 tgctcaggcg	acacttctgc	taatatgata	agtgtaatga	taatatccgt	tgatcggacg	60
agatagactg	ggcgcgtgtt	tcgttttgtt	tgttataccc	acaaggatct	ggcttgcgga	120
cagttaatta	cgagcggaat	aaatgagttt	caatgcatgc	atatggttca	ctcttcaaat	180
agggtattta	catgccatac	ttacgtgtta	gactatggat	agggatgacg	tgagcactgg	240
cacgttgacc	ctagaattgg	gggcgggggt	ccggtgaatg	atgatggcaa	caggtacagt	300
cttccgaatc	cacactaaat	gctgactcga	cccattagaa	gtggaccctg	cctgtgccca	360
tcgtggatgc	agctgaaaga	agaaactttg	atgttgtcgc	tgttgtaact	ggagagccat	420
tgatctgctc	agccaaatgt	tccaagatat	ttctgacatg	ctgtctgaca	acatggtggg	480
ctctgcacag	tcgaatgaac	gcaaacggct	actattcatg	tggcttcata	agactccatt	540
tcttgcagca	cttcacttca	aaatgattag	tgatgatttc	cgaccgtacc	gagtgtcttg	600
cgtattgcgg	aagctttgaa	catgcaaaat	gatgcgtgta	agatacgatc	tttgagatgt	660
catgactgag	gctaacaact	cgtcctcggt	gtaattcata	ccgtgcaggg	tgctcaaagt	720
gtaaatgatc	agcactcctg	catgccatcg	aacctgtaag	aacttagtca	aagaagcaat	780
gcatcttctg	tctcttggca	tccaactgcc	gttgttcccc	tctttgtgtg	gccggtactt	840
ggacgagata	ggttgacgac	tgaaacgctc	caggaaccga	aaaaagccat	cttataggag	900
gaaagcacct	ccttgacaca	gatgattttc	tctgtgaatg	atcaggtttg	cgattgatga	960
tatactcgga	acgcaatgtc	ctacgcgggg	tatccaagag	actgtcaatt	gacgcggtgg	1020
ctgctcgatc	gctatcaaaa	ttgccggagc	aattccgagc	ccatatccag	tttgccgtca	1080
tcgagcattg	cttgacttca	gtgcggacaa	atcgcgtcgt	actctgcctc	cgcatggctg	1140
ccgatcctcc	ttgcatcccc	tcacaacaac	aacggcattt	taggctcaat	cgccgacatt	1200
ccgcacataa	aaacccactg	tcggaaatgc	ccaacaaagc	ccgtgctgga	ctcttgacgg	1260
gtatcgaggt	gagccaggaa	aacggaagaa	gatgagaatg	ccctcagcca	tcagtattgg	1320
agtgatcgcg	ggcctgagtg	tegetgette	ggccgtacct	tctctccaga	agaatggcac	1380
tacctgcacc	gtcatccctt	taggaaacgg	acaggatgat	gtccccaaca	tectetegge	1440
cgttgacgaa	tgtggccaga	cctctggagg	gagagttgtt	ctcccagcgc	cgtataccta	1500

ccgaattaac	caacggatga	cgactcacct	gaccgattcc	cgactcgaga	tcggtggtac	1560
gcttctcttc	agcgacgata	tcgactactg	ggtcaacaac	tcctaccggg	tggactttca	1620
gaatcagtca	agtgcctggc	gtatcacggg	tcatgactat	gttgtggatg	gaggtccacg	1680
tcaaggtgga	gtggatggga	atggacagct	gtggtacact	tgggccaagg	gaggaagcaa	1740
tgtcttcgga	cgaccgatgc	cagtgcatgt	gttcgagtcg	acgcgagcaa	ccctgcgtaa	1800
cctggcaatc	cggcagcctc	agttttgggc	tgttcttgtc	gattcctctt	cgcatatcaa	1860
cctcgataat	ttttacgtga	atgccacaaa	ccatgactcc	tcggtgagcc	cagagggcga	1920
gtgggtgcag	aatacggatg	ggatcgacac	gtaccgatcc	gaccatatta	cggttaccaa	1980
ctgggtgtac	caaggcggag	acgatgcagt	ggctttcaaa	gggaactcga	cgaacataca	2040
tgtagagaat	gtcacggttt	acggcggacc	gggcatcgct	tttgggtcgc	tgggacaata	2100
ccccgaccgg	acggatattg	tggagaatgt	gacggttcgg	aatgttcgag	taagtaaggc	2160
tcagaggcat	gatggcattt	gaattcacag	gtataggtgc	aaccgtcctt	ccaacgggcg	2220
atgaattccg	gggtttactt	caagagctgg	taggtaccat	gtccttcaca	gcgatccctg	2280
gctgaccagc	taggatcggg	gtcaattatg	gtgttcctcc	gaatggtggc	gggggcggcc	2340
atggatacgt	gcgcaacgtc	tcagtcgaaa	accttcgact	caaggatgtg	cagttacctg	2400
tgtatattga	cacctggtga	gggcgatacc	accatgtttg	aggtactcgg	ctaacccggg	2460
cagcttgagc	tatctcttca	gcgagaacat	cacgcagtat	tgtgacacat	cgacgtacga	2520
attcgaggac	ctccacttca	gaaacatcag	cggcaatgga	ctcgcaacgg	tgactgatta	2580
cccggggaag	aatatcagct	tcgccgtggc	tttgctttgt	tctgagaagg	caccgtgtac	2640
ggacttgacc	ttccaggaca	tcagtattac	gcttccaggg	aactatactg	gcaaacatgt	2700
actgtgcgag	aatgctgagg	cggaggggct	cccatgcaat	tcgtgagctg	tcgctgaatg	2760
agacagatcg	tgtccataaa	tagaagtcag	atgcatgtct	cacatgattg	ctcgcttgct	2820
gttggtaagg	tttgacaatc	accccagttg	tgcagcgaag	ttaagtcaca	ttggatgact	2880
ttggggttcc	aatcggatct	cgtttccata	ggaccaaatc	atgattatgt	ggaaagcgaa	2940
agttcgccaa	gcttgagaac	aaggtctctc	caccccgtag	agtctataac	tcgcgcgtct	3000
cggagtgtat	cgaacgccat	gtagtcaatc	ccgagcactc	gtgtcccacg	tcatggtgag	3060

tatgcagtga	gtcagggaca	cagatataaa	tggtggcaca	ctgtcgtttc	tcgcaggagc	3120
aacactgaca	acagaagata	tcccgataat	ttacagcctc	gatttcagtg	cgacataacg	3180
atgtatttta	agcaatcctt	gattgcatct	cttctggcta	cgatgacttg	tacatcttcc	3240
ccaccccatc	agggataccc	actgacactc	agtctagacg	cgcaatcccc	atcccacccc	3300
actatcacgg	cgaccccatg	tggttctaat	tcgtcgtgtc	ccaccggcca	atactgtacg	3360
acagccacct	ttcacacacc	ctccaccacg	tacatcacca	cctgcgtgcc	taccccaacc	3420
tgtctgaccg	tctactgtaa	gcatcctccc	cagtcggctc	gtgatacagc	tagctaacag	3480
ctcaacccag	cggactgtat	ctcagggggc	gggggcccga	tttgttgctc	aggatactgc	3540
gcagcgacca	agtgtcgatc	gacggattcg	aattggccag	aatgtagtga	ggatggtggg	3600
gtgtgtcggg	atgatggaga	ttgttgttat	gggaataact	gtgaggatgg	actctgtgtg	3660
agggattaga	tagataggta	gatagtttag	tcgtagtcat	tcccccattc	tgtgtgccta	3720
gcgggagatc	aatttcacat	ggaaatcctt	ctccttattc	tcgagaaact	cattggtcta	3780
gctgtgtgcc	atgacgttgg	gcagagagga	gagctcccag	ctcaagcgaa	tcacggaacg	3840
agcatcggca	attgacagct	gggggcctcg	gttcaggatg	caggagcagc	agcaggagca	3900
gcagcaggac	ccttatataa	tagacacgag	cgccctgaca	gacgggcgcg	acgcaggaga	3960
ccggcagtga	tgaaaggccg	tcaactaccg	ccgatccacc	agagggtgga	ctcgcattgg	4020
tcaagactct	ggggaccccg	cgctaccccg	acattcaccc	cggactagtc	tgcctttagg	4080
ctggtccctt	atcactaatc	ctccctaacc	tgcaaactca	ccggccagcc	aaacacgcgg	4140
ccatgaatcc	actcgtgcga	ccggacaagt	tctccccgat	aaacatggcc	cctccccct	4200
ggtgggtagg	tgggttaaat	ccccagttga	ccctttaacc	tgctgctcct	cgtggctatc	4260
gtacgatcgt	gaatctgcct	cccgaacgaa	tcgtgccacc	ctgcagccgc	ccatccagcc	4320
attcaatgtc	caga					4334

<210> 37 <211> 3213 <212> DNA

<213> Aspergillus niger

<400> 37

WO 2004/074468 PCT/EP2003/005726 43/178

pectinases.ST251 60 ccaacctttc acccaaagcc aatgcctctt ttatcatgag taaaatgcta attgcttcca 120 tgggtgatat agtggtagta gccctacaca caggcctccc taacgacgtg atcaatggta tcggggcatg gtacacgata tctaggatct tgttcgggct tgcgtatgtg tttattgagt 180 cggagacgtt gagtttttcg cggtcggtgc tgtggtggtc tggaaatatc agttgtatta 240 ctgctttggt gttgggggg aggaagttgt aattcgtttt gcgtcttgat tgtgagattt 300 ttgattttgg gattcatttg ttgggtatgg gagggacaat gtggggataa gtcggagatt 360 gggatcgcct gttgggaacg atctgcgggg tttagtgggg agataaacag atgggccgag 420 480 gaagagactt gttttttggg ggaggctgat ttatgggttt atctacaact tagagagtat ttgtatggca ggcaaacagc gtatgcataa ggctagaatt tgatttatgt ttgattatta 540 acattgttta aatatttatc tcattaagtt tcttgtgcat agatctgagt gtggataatg 600 660 gtatagaaga gatgcttgtc aaagtactcg acagatgaca agcagagata ctacagagag attgatgaga tagaattaac agtgaggatg caagcagcaa ttattcctgc aataacataa 720 780 840 cgcatctacc cacatcacgg aggatatcat cccaccagca aacccacaca acaacaatcc 900 caccttattc tacgtatata cgatagccag ctaccatccc cacactgagc tagccactcc 960 acaacgttca acccatcacc ccattactca ccgtatctac atcccgtgag tcaccctcga 1020 ttggtgggaa atccatcacc agcctcactg acaatccggg gaaattgcgc cagctcaggc cgaccccgtg caccagccaa gatcacgatg acaggtggga aattgttctc cctgtttccc 1080 cgtggggtta ccccaatccc ttccccagat tatcgggatg gctatgatgt tatcgatcgt 1140 1200 tagtatctgg ggtacagcta caccagctag gagtccatat ataatggatg aacattgtct 1260 gttgaatttg agtcagaaca aacgagaaga aaacggcgga gaagaataaa tctgcaaaat 1320 gtacctcctt cccttgacgc tcttcctcac cgccgctttc ggcgtctcaa tccctagatc 1380 tececteate eeeggegeae aaategteee egeateeage acageagate taegageeat 1440 tggtgctcaa catcacaagt atccagaccg agagacagtt actattcggg cctcgaggaa 1500 cgccctcgac gatgtgtcca gtgacttcct ctggggcttg aagcaggcga accatggcgg tcggttgttg ttgaagcagg gggagaccta cgtgattggg aagaagttag atttgacatt 1560

WO 2004/074468 PCT/EP2003/005726 44/178

cttogataat	attgaggtgc	pect agcttgaggg	inases.ST25		tgcccttctt	1620
		atgatactga				1680
						1740
		acaactttta				
gcgctggggt	ggccaggaca	tcaagatctt	cgggagtggt	gtgttgaacg	gcaatggaca	1800
gaaatggtat	gatgagtttg	cggggaagca	gatcttggta	tgtcacacca	tgataccatc	1860
cgtacctccc	tgaaagaaca	gacaatgctg	atgacagcaa	cgatgatagg	actcagataa	1920
cacgttctac	cgtcccattc	tcttcctcac	cgataatgca	acccgtatct	ccgtcgaggg	1980
catcacgcag	ctgaactcgc	cgtgctggac	gaacttttc	gttcggacca	atgatgtctc	2040
gtttgataat	gtgtatattc	atgcgttctc	gaccaatgct	tcagtcagtc	ctctattcct	2100
ctggċtttta	gttgatttcc	attgcatgga	tgctaactga	tgacagtccg	accccgccaa	2160
caccgacggt	atggactctc	tcgacgtcga	tggcgtcagc	ttcaccaata	tgcgcatcga	2220
tgtcggagat	gactgcttct	cgccgaagcc	gaacacaacc	aacattttcg	tgcagaacat	2280
gtggtgcaat	aacacgcacg	gggtgagtat	gggtagtatt	ggccagtacg	cgggcgagat	2340
ggatatcatt	gagaacgtgt	acattgagaa	tgtgacgttg	ctgaatggac	aggtacgtct	2400
tcttgttccc	cactgaccca	tattacaaga	ctgatgtgga	atagaacggc	gcccgcctca	2460
aagcctgggc	cggccaagac	gtcggctacg	gccgcatcaa	taacgtcacg	tacaagaaca	2520
tccagatcca	gaacacggat	gcgccgatcg	tgctggacca	gtgctacttt	gatatcaacg	2580
ctacagagtg	tgccaagtac	ccgtctgctg	tgaatatcac	gaatatcctg	ttcgagaata	2640
tctggggctc	ttcctcgggc	aaagatggca	agattgtagc	tgatctggtg	tgttcgccag	2700
atgcggtgtg	cacgaacatt	actttgtcga	atgtcaactt	gacgagcccg	aagggcactg	2760
cagagattgt	ttgcgatgac	attcagggag	gaattggggt	ggattgtgtg	agtgacgaga	2820
gtgttacgcg	gtagtgctct	acttggtggt	tcttcaacta	cttagggtct	gtcgttgatg	2880
atttgtcatt	catggcagta	aaacagatag	aactatgttt	atttacatat	tacactcctc	2940
cttttagtaa	agtaagcaat	gtggtacgac	actgagtacc	ttggtaatag	accatatgtg	3000
aatggtaagt	agtatgtagt	accttgtaga	caagaggacc	ttgggtgcaa	accaatcaga	3060
gcggagataa	aactaaccaa	ccctaagtag	tatacattag	tatatacacc	ttggtggtga	3120

pectinases.ST251	3180
cacctatata agacaaatta tttaaatgta ttactgacac gttttcgaat cttttcattc	
tctcaaaagc tacaagaatc gataactaag aaa	3213
<210> 38 <211> 2705 <212> DNA <213> Aspergillus niger	
<400> 38 gcatacctga tgctttatct ttgctaaagc atcgtttgca atcaagcact tcttgaggga	60
atattgtcga cattgcttgg gctcaagccc actgccggct tcttgacaga caagtctgac	120
cagetecaaa aagettagee gtgatatgge teatgeagga ttgtecatge tecattagat	180
aagtetgatg catgaatgag ggattaaaca egaetaggae gaatgeageg eettegtgat	240
agegeatega gatateggee eeegtggetg teegeggage accaecaegt caaacaacte	300
actaactgac tetggaagat acceecgace aaaatgaagt caacateate ecaataatge	360
atctaacccc agagcaagtt ctctccacca actgcagtgc aagtgaatcc gatcctccaa	420
cccgacaggt ggaacgcaat tctccggcgc ctccacattt ctccggcctc cgtctgggga	480
agaagcaagc catgcatcac cgtatgatgc catgatagaa tgtcagtctg gggtaactga	540
cattatgcag aagettgace ateccegcat ecceggattg egttgateat catataaaat	600
ggccacaaaa atgaacaggg tcaaccacca accagccaat tccacctcca tcccacacaa	660
tgctcctcca cggccttctg ctggccctcc aggccattct agcctcctca gcagccataa	720
cctccccatc ttcaaaccat ctctcaacgg cagctcgcga gaaatgccaa acaaccctcc	780
aatgcccccc aggcaccctc atcgtctcca acacccaccc ccaactctcc aacttcacca	840
coctocaage agocatoaat goodtoccoa acgacaacto eteccaaaco atoctoctoo	900
totocggoto otacaatgaa caagtoaaca toaccogoto eggeocoato accotoctgg	960
gccagcagcc agaccgcgca gccctaaccg accctgcccg caacaccgtc aacctcacct	1020
tcgccggcgc caacagcgac agcaccggcg acatcgacaa cgtctggttc agcgtcatgg	1080
togtagetee gaccetggae gegagtetea eeggeteegg cacaacagga tatecagtge	1140
cageggaeae ecegtteggg aacaetgatt teegegtgta caatategae tteegeaata	1200
cctatgcgcc gtactctgct ggtccggcgc atgccattag ttttagtcgc tccaatggag	1260

ggttttacta	ctgcgggttc	tactcttacc	aggatactgt	acttccccct	ccctcccct	1320
caaccctatc	cccccaacc	acaatactaa	caagtaaacc	cagatctaca	tcggcaaact	1380
cggctccgca	tacatgtaca	aatccattct	cgcgggccaa	accgacttcc	tatacggctt	1440
cggcacgctc	ttcatccaat	catcccagat	cgtcctccgc	tcatgcggcg	gcggcatcac	1500
cgcctggaag	ggcaccaaca	caacagtccg	gaacaactac	ggcgtataca	tccacgactc	1560
gaccgtaaac	gcagcgaaca	cctccatcgc	agaacaaatc	aagggatcct	gcgccctagg	1620
cagaccgtgg	aactcactgc	accgatccat	cttcgcgaac	acatacgaag	acgggagcat	1680
cgagccatcg	ggatacatca	actgggagga	tcggtggagt	aaaaacgaga	cgctgatggc	1740
ggagtataag	gcgtacgggc	caggattcaa	cctcacaggg	aggagagaga	gcgaagtgtc	1800
agtgttattg	agtagcagcg	aggaggagag	gtatcgggat	ccgagcaggc	tgtttttgtt	1860
cgaggatgga	agggagggca	atgtggcgtg	gatagattgg	gatgtggtct	cctcttgata	1920
atctcagtct	tcttcccttg	atcagtagta	tgtacataaa	acacacaagt	caatcaatca	1980
ccccttctga	acaagatcat	ccagtttccc	ggaaatggct	aaatacgccg	ctcccgtatc	2040
agcccaaacc	ctatactcct	gtactttcca	ctctccatca	gagtcttctt	cttctcctcc	2100
atcttgtgca	atcgccaatc	tatacacaaa	tccctcgtcc	cagcccatct	ctgtgcgttt	2160
ggcaatgaat	ctcgcccacc	ctcgtacaca	aacacatcct	ttctcctcgt	cgatcaccca	2220
atcctgctca	tcctcgaatc	tcatcccctc	gtagcgtagc	gcagagccca	tcgtctcgaa	2280
gtagcgtttc	actccgtctt	ggccggtgaa	gtcgcggcct	aggaaggggg	cgagttgggg	2340
gaggccggct	tcgtggatta	gagggggtgt	ggaggggag	gaggtgaatt	gggcgaggat	2400
cgtggataac	gggggagggg	gggattgggt	gagggtggtg	aggaaggtgt	gtgttgtttg	2460
tttgagggtt	ctcttgtctg	gcggcatttt	ggcggtgata	gttgagtggt	gtttacttag	2520
ttgcaggagg	tattggtata	agtaagaagg	tatagatgaa	tgacgtatga	tctatgacac	2580
atgacataac	tgaattgaac	ctgacaacca	actcctcgcc	tatcacccaa	caccatggga	2640
aaatgcaaat	tgaatggatg	agtaaaaaca	tgaatgagta	taataaatcg	attttggcgg	2700
tttgg						2705

WO 2004/074468 PCT/EP2003/005726 47/178

pectinases.ST251

<210> 39 <211> 2427 <212> DNA <213> Aspergillus niger

<400> 60 ggtgaacact aattgtgcca atgactatgg gatcgttgca caggttgagg tggtgaccag 120 tetggegatg tetageceae tatatacgae tegeateetg eceggaggtg tacggaactg 180 cgtggcatgc agtggttacc atctctttgc agaggcatac atcagtgagg gctgtgggac 240 gccgaggcag gccctgtcat ctcggctggg ggtcaatttg aaacgagccg gatgcttaat ttagtgacgg agtaaccgcc gtgccctgac catctcaaga cctggggagt atcggctaat 300 360 tqqcctaaaa attacaacag ctggcagggt cctcaacaca atttgtgagt aggccatgca atttactctt atgccgaact gccgcttgat ccctgcgagt cgcgatgaaa ccccgcccac 420 480 taacatgcga cactcgaacc gttccaggag acagacccag ccagctgacg cggtggtatg togatocgga taaattgcca gggtcgcttc ctccgcctcc tgctgaggcc tgaacctgtc 540 600 tggtagette cegatggeae geegeeaate getteattet geaeggagaa eegteggegt 660 caacggcgtg ttcctgcaga cgaaggatgc ttatgtgaaa cgccatggcg gccgtgccgg 720 gaagcgaaga tggttattca tggaagtgtg gagtaaattc tccggcaatg gtttttcttg 780 gegetggace geegttttgt eeeggtgtet tgttggeage tageetteta gggegaggag 840 agacaactgg agatgctatg acatgaactg acagccttgt tgacatgtgc tcggaagcaa 900 gctatatagt tcacttggcg tgcctgtcga ttccttcctt ttccgacgcc ttgctaggat 960 tcatcctcac ccatctagte .cggaggatct cgcagcaaca actcactcac atgcatactc 1020 catatettet gggegeeett geegeeetgg etgetaeege egteggtget eeggeagage 1080 acatcaagaa gegagagage eggaegagtg eteceteagg gtgtetgaeg gteggategg 1140 atggaacata ttccaccate ggcgacgcgc ttgacgctct aggctcatcc acttcgtccg 1200 cttgcattta cgttgccagc ggcacgtatg aggagcagct gaccattgac tacgctggca 1260 acctcacctt gtacggtgag actaccgaca ccagcacata caaggacaat gtggtgacca 1320 ttacccacac catctcgtcg tcggatgccg gctctctcga caagagcgcc accgtcaacg 1380 tggtctcgga tgggttcagc atgtacaaca tcaacgtgga gaatggatat ggtgagggag

48/178

cacaggctgt	agcgtaagta		tinases.ST2 cccgattcat		gggctaatgg	1440
ctttgctagc	cttgtcggaa	acgcagatca	actgggcttc	tatggatgcc	aattcagtgg	1500
ttatcaagac	actctctatg	tcaaggccgg	tacccagtat	tactccaact	gcatgatcga	1560
gggtcagtat	ttgtccaagc	agcaccatta	gcaaattgac	taactattcc	aggcgcggtc	1620
gactacatct	tcggcgatgc	gtccgtgtgg	ttcggcgaat	gtgacattgt	gtctaacggc	1680
gccggtgcca	tcacggcctc	atcgcgcgaa	acctcctctg	actcaggctg	gtacgctatc	1740
gacaactgca	acatcaaggc	tgcttcggga	gtctctctca	cggaggaagt	ctacctgggc	1800
cggccgtggc	gcgtgctggc	gcgagtcatc	taccagaact	cagtgttgtc	ggacatcatc	1860
aaccccaagg	gatggacgac	catggcagac	ggtgcgacgc	cgctgtatta	tgaatacaac	1920
aactctggtg	cgggatcgga	cacatctgat	cgcgaatacg	agacctccat	ttctgctgcg	1980
gttgacaaga	ccacagtgct	gggcgagact	tggggagact	ggattgatcg	gagctactaa	2040
gtgtgttgtg	ggctggacca	aaattcagac	aagcacctca	tcgcgggggg	gagatgaggc	2100
catcgtatga	tcgccccca	ccactagtac	aggcatactc	catactccaa	tatgaccgtc	2160
aagaacttga	ttttctttcc	cgcttcggca	gcctggatct	catcccgaag	actctatttt	2220
ccagcagatc	ccgcccatat	cccgtaagag	atcccgccca	ctctggagtc	aatctctgct	2280
caccactcgg	tatccagatg	gcgtaataga	tccaaaatga	ggcccgcgcg	tctataagat	2340
agcataatca	gggaatggcc	cattcaccgc	gaggtcatca	atcagcacaa	ctaġgcaatc	2400
ctacctacac	cgtcccctca	agttaca				2427
<210> 40 <211> 497 <212> DNA <213> Aspectation	8 ergillus niç	jer				
	agtcatgttg	aagaagatca	aaattggcca	gagaatgagg	cttcggttaa	60
gaatctggaa	atcccctgac	tcgtgacgtg	aactaaagat	ggaaatgatt	tattaccgat	120
ccaattgccg	gcacgcccga	tggttgcatg	acataatcac	gtgatttgca	tttataatcc	180
tttactgaaa	gatcagtttt	gacatttcaa	tttggacttc	cctcttgaaa	atacttaaat	240
tgtggtgttc	gtgcttattg	tatagcgtcg	gtatggatga	agcattatca	tggttatcta	300

WO 2004/074468 PCT/EP2003/005726 49/178

gtggtcttag	aatcagagca	ccagcttgat	atcctgtgcc	agcagtatta	atcttgtata	360
taatggtgta	tgttaatgat	agtacaagtc	tttgtattat	ctgggacaaa	atgaacaagc	420
accaatggcg	tccgaccatc	aattgcaagt	ggcaaaatat	gaggtgaacc	ccattctact	480
gtcactctga	tcgctaacat	agtcacagag	aaaatctcga	attttaggac	aaccattctg	540
acgtccccta	ttttcagaag	gtttctatgg	ttgtaagcac	catcaatagt	gcagcggggt	600
ctccacgcat	tctatattaa	tgctgcaata	accagaaact	gatagcttct	atgaaacccc	660
aacaggggta	cacgtgccag	tcgtactact	gtactaccgg	ttcatccaac	ttgtcaagtg	720
tttggtcgac	aaatatgacg	atgaaaaatg	ctgactgaga	tactcaagat	cacttgagat	780
tgtaataatg	tgaactataa	ccttgtttga	agtattgata	caggccttat	aacagtgaaa	840
gcatgacagt	ccttgacata	tggagactgt	tatcagacct	cggggttcac	ccatgggtcc	900
catcttcgcc	atgcttcccc	acccctctat	gttcactaga	acaaggaata	gatatatgct	960
ttacaccaat	agagaacgcc	ttgatggtaa	cagcactagt	atttggtgcc	atattcgttc	1020
tgcaaagctc	actagtgggt	ttgacttgtg	gaaatgcaga	acggtgacct	tgtaaagctt	1080
ttctcataca	atccccctg	ctgcaccatg	gtatcttaca	gtcatcatat	caaaatccaa	1140
ctgccatata	ctatcgtccc	gtggctatac	cgatgttctg	atcacatcac	catggtcgat	1200
acggtttata	aataagggga	tgagtggcct	gatcagaaat	tgtttcatgg	actccggcac	1260
atccttagga	aaaggaaggc	gagtgcctta	aacgtaaatc	accccgaaag	cggaaggata	1320
gctcttcaag	gatacgccat	taggtagttg	gggccttgca	catagggtca	gggatggcta	1380
taacaacggg	tttcactact	tcggcaaact	catatgctgt	tctgctcgct	tacctcctct	1440
tccccgtcat	tctccacttg	gttcgtcaac	gcccgcgcct	ggcgccgtcc	cttaatcaat	1500
ctgacgcgca	ggcctttcca	gtcagggtgc	gatcgtcacc	gccaagcgct	teggaeeeet	1560
tgattgtatg	tgggcctatg	cactgattgc	tcgccacgat	gttaccatta	gcccatgctg	1620
gaattccatt	gggatataaa	gatatcggta	cctgccccta	atagttcttt	gacgttcaga	1680
caacaccatg	cgcgccagca	ttctaccgtt	gactctgttc	ttggccactc	tggccggggc	1740
gcaactctcc	ggccccgttg	gcccgctagt	ggactacagc	accaaagcca	gaaaccagac	1800
ctgcaatatc	atcgattacg	gggctgtcgc	agatggtaaa	acggatatat	cgcaggctct	1860

acttgatgcc	tggggaaact	gttccgtggg	gggactggtc	tacatcccac	ccggtaacta	1920
ctcgctggcc	gaggacattg	agctcaagca	cggccagtcc	tctgcaattc	agctagacgg	1980
tgtggttatg	cgcggacacc	gcggctcgta	ccagatgatc	cttatccgtg	actgcaatga	2040
cttcgaattt	ttcagcggca	attcccgcgg	ggccattcag	ggctttggtt	acgaatatct	2100
gcagaatgac	acctacggcg	agagactctt	gcgcatccaa	gaggttaaca	atttctcggt	2160
gcatggattc	gcactaattg	actcgccttc	ctactacatt	gttttcgata	cggtcaccag	2220
tggggaggta	tataacatct	tgatccgcgg	cgtgacatct	gtgggagcga	cagatgctat	2280
cgacgtatgg	ggagagaaca	tgtggttcca	tgacattgaa	gtgagcaacg	gcgatgaatg	2340
tgtcaccgtc	aagtctccgg	cgcacaatta	tctgattgag	aacatctact	gcaatctcag	2400
tggtgggacc	gcgattggat	ccttaggcac	gggcaccaac	atttccgaca	tccactaccg	2460
caatctctac	atgaaccaag	cagatgcgtg	ctttctgaaa	tccaacaatg	gggatgggat	2520
tgtcaaaaat	atcatctggg	agaatgtcat	agtccacggc	ggtccgtacc	cgctggccat	2580
agacgaggcc	tggggagatg	atcgaggatc	cgtaggagtt	caagtgtcca	acctcacatt	2640
ccgagtaagt	acacgataat	atttcaatgt	cttaagagat	cctaatttgc	tttgttatat	2700
agaactggca	cggagaatcc	gtgagcgcct	cacgcccagt	catccgccta	caatgtgact	2760
ccgacgtccc	gtgctacgat	attaccatcg	aaaacgtgaa	cctgtgggcc	aacgacagca	2820
actatgtggt	ttggcagtgc	gagaacgcct	atggagatgg	ggcctgtctc	tctagtgcag	2880
agggaacaaa	agatttggaa	acctttacca	gcaaacaaac	tataactgcc	accccgtatg	2940
tgacttgtcc	attcttttcc	acggaaattg	ctaacaagaa	gataggtcct	atgctgcgcc	3000
aaccatggca	gctgacttca	cctttaatct	gccatcaacg	agccctttta	ctattcctcc	3060
catgccgaca	agtttctacc	ccggtgctac	tcccatctca	accctcttgc	atctacatgg	3120
tgcgggcggt	ctcccatcag	catctcccat	ttcgcatcat	cgacgacacc	aatgacttgc	3180
ctgtgtgata	gtagatgatt	gatccacage	attttgtcag	gcgggtcgtt	tacaggctcc	3240
gttgtaaacg	tcgggtgaaa	gcagcggtta	ctcaaggcta	atagaatcca	gctgcgtaat	3300
tcgtattctc	aataaagcat	gtgcctttga	agatgggttt	ggattaaagc	tagcttgtat	3360
caagaaacta	tactaattat	cccgtcactc	gaatgatagt	agctatcacc	aggatcttcc	3420

ttccgttgca acttatatta caggtccgca tggcagcttg tatggcggtg aaggaatggg 3480 ggcttcgcat attggtgcgg gttaacgtag atttgccccc aaaattccgt ggtcctgaca 3540 atttaaagta ctggtagctt atagcaatca gataacggca taaataccat gcccagaaag 3600 gcttatagta ggattaggat taaaggtcaa taagcttgtc aattgatata tgttcgtcca 3660 ageggttete aegggtttgt tecatetteg atgaaacaaa catetegage tegtecaaet 3720 cctcttctga caaaagtgaa agtctatctt caagaaagcc ctgtccaaaa taccttttgt 3780 caagcaattg ccaatagata tcatcgaaca tgaagctttt ccttgcagca aggcagaacc 3840 aaaacagccc attctccata gactctgaca tgcggcccga tagtcgctga tactccttta 3900 ttgcaccctt gtgtatttgc tcgtcctcgc ataatcggag tgcattgagg aatagatgca 3960 agcgtggtgt ataccgagcc aaaaaaatac attcaagtct gtctcccagg cctcggggca 4020 4080 ctcgaagaga agccaccagg gtgcagtaag ggcgaattcg gccggcgcaa cataagtgaa 4140 ttcccaatca ataacaccgg tcagtgtaag gttctgtccc gcaacaagta tattagatgg 4200 acgcaaatcg tcacagtata gctggaatgg gcccgactgc tcccttttat acccccgggc 4260 gattttcctg aaaaggcagc gggctatgta tcttttccga caatcttgct catcttcaac agcatcgttc cgttggtact gaaggtgaag aagctgctgt ctagcgagtt cctcgaaata 4320 teegeeegeg gtagtgaatg teetetegge aaagatgeee aggaggaagg ttteegaege 4380 gaaccagttc gttcatattg aggattagtg gactttgatc tactttccac gcccgtgacc 4440 4500 cctctgccag agctccgatc gctgaaaagg tgggtttaga caattccaag atgacttgcg 4560 ccatcacgcg gtaggcactt tgaatgtcgg agtcggaaac atttggatgc aagctggacg 4620 actgaattgt ggaatctccg aggtgcttgg acaacagcgt tccctcgatg aaggtcatga 4680 caaggcccgc atccccaacg acccatccca ggaatgcggg ggacagggag cgcggtattt 4740 tgagatagga gtttcatggc caaggcctca tttcgactct tttccgtccg aaaccggctt ctacccaaga atgggaaccg aaccagtgca cgaaatccat tttcaaaggt gaaaatgcag 4800 4860 cagatgttgt aagcgccagt ggtaaacccc aagacatcag ctacccatgc aattccacga cgatgctggg ctgcgagtct tgacggcaag gcaggggact gcacggaaat taattgtaac 4920 4978 cacceggeaa acaacttgte attatattee teegcaagat ggteecaate catgatea

<210> 41 <211> 2576 <212> DNA <213> Aspergillus niger

<400> 47 tgttgtgaag aaagaaaact cgagaacagc tatacaacag ttttatcttt catggcaaac 60 atgaaatgag taggaaatcg aaattaatga agagcaaagg gagttctgtg ggaagttgtc 120 gaagatcgct tttgaccccg cttagggtca cctatcattt catgggcgga taatgcaata 180 240 actcacacat actagcagat agcaccaagc tactgcatat tccacctata ggaatagctt 300 tgctgcaagg atctcgggta attgggggtt gggttcaacc tgctgcatca acgcaattcc gtcagcagat gatgtgcttg ccgggtagac agtcaccatg gcggccttat caacccaagt 360 420 cttcttctat tatggactcg tattccgaca tattaatata aattaatcac gccatgtact cagtcatatc aatatattat tttcatgttg caatgcgccc ttaaattagg aaatcctgaa 480 gaacttgagc tagtcgcagg tgcctgacag aatccatctt tgatagactc tgttctgtga 540 tagatttggt ccttgcagaa agtaataatc acgtacttgg acagatgcat gatttcaagc 600 ctataaacaa gaatcatata aataatgggt ttgagtttcg aacaatctac gcagaaaaat 660 720 ttcttcatct gaattatata ttttttgaac atatactggt agcgtcgcca cgagagcata 780 gtattctcaa tgcgttccat tttatttata ctattttctg tgttcgcagg actcgcagcc ggccaactga ttggcccagt cggtccgaca acccagctcg aagacaagga tattgagtgc 840 aatattttgg actatggtgg cgttgctgat aatgagaccg atgtcgcaac ttccatcgag 900 960 accacgttca ccgaatgtgt gctaaacaac cccaaaagtc gtcttgttat ccccgagggc gactatttga tcaagcgcag tgttgttttg agtaatggaa ccaattgggc tttccagctt 1020 gacggtctga tcaccgcggc atatggtgga aattggacag tcgaccgtga gttgatactc 1080 caagggtttg cgggagagca aataataaac tctaccatca acggcgaggg tgacggaaaa 1140 ttcttactag atgtgctcgt cattgtgaac ggtatgactg cttaatcttc atcccgatga 1200 cagattacta aatccatccc attcaatgtg tgcagctgtc gatttcgaat tctattcgtc 1260 caacgggctt ggcgcatttc aaggccaagg atatatctat cgaaatctgg ccaagtgagt 1320

WO 2004/074468 PCT/EP2003/005726 53/178

	pec	tinases.ST25	51		
tgtttgaaat cct	atttctg cacacagcto	acgageette	aaagcaccga	tcgccctcga	1380
cttgtgagat taa	tttcgcc cacaaatgct	tctgtgcatg	atttgatcct	tgtggatagc	1440
cccaagtttc aca	togtgtt tgattttgct	gtgaacctgg	aggcgtacca	ccttactatc	1500
cgtggtgcta acc	taggaag ctatgatggo	attgacgcca	ttggcaccaa	ctattacatc	1560
cacgataacg agg	caagtag atagaccata	aattcgcaat	ctagcagtgg	ctaacaataa	1620
gaccgatggt agg	tcacgaa tcgtgatgag	tgtgtctccg	tgaaaagccc	gtcccatcat	1680
gccttagtcg aga	atctggt ttgcaatcag	gcaggatctg	gtgtttcaat	tggcagtctt	1740
aacgtatctg cgg	aaatatc taacattgto	agtcccatca	gctgatttgt	tcgtgacagg	1800
tcttggaaac cta	ctaacat gaaccaggaa	gctcgcaata	tcagcattat	ccagggcaac	1860
aacatcgcct tta	tcaaaac gtatcctgga	gggtctggtt	acgtcaaaga	cgtcaccttc	1920
gaaaatttcc gct	ctttgaa cagcctgtac	ggattggaca	tcaaccaata	ctggcaaaac	1980
acatgggagc ctg	ataccgg ttccgtgaca	ttgagcaacc	ttgtcttcaa	gaacttctca	2040
ggtaatctcg gct	cgtgtat ccagtgaatg	cagccctcgt	actgatgcac	aaacatagga	2100
tcggttgccg atg	gagcact ccgcccgcca	ttgtatctgt	ttgcaagtga	cttgacattt	2160
gcaacgaacg tca	ccgtgga ggaattctct	gtctggactg	agactggtac	aacagtcgtc	2220
aacaagatca gcaa	atatctt cggcactggg	gatgatagct	atggagagaa	tgatggcatt	2280
gagagcctcc aato	ctggaga gtcgccgtat	acgtatacta	gcacctatac	tattacggct	2340
tctcccacca atto	ggcaagc tccatcaacc	ccaacctggg	ctttaccgag	cactggatat	2400
ggaagtaagt tcaa	acgagaa ttgttctggt	tatttttaca	tagctaactt	atctacagct	2460
gcgtcaccta ttcc	cagtcta tactcccgca	cctctttggc	gccctggtgg	aattgactat	2520
aacctccatt atto	ggggaag cttttagtta	cgaaccctgc	aatactacgt	ttagaa	2576
<210> 40					
<210> 42 <211> 3465					

<211> 3465 <212> DNA <213> Aspergillus niger

<400> 42

actacttgta agtctgcaag cttgtgacaa cattgaataa gtttatatgc aggagaatag 60 cttagactag gttctacgtt catggtggga cttgaaactg catatatact ggcgttgaca 120

acatactttt ccgtctggaa agggaacgga gcgtgcccag acctccccca ccgcaggaag 180 cattgagaca gcagatcggt tgattttgga ttacccagga gacgatccct ttctgtcgct 240 tccagtgaca agaaagaaaa cctgtatacg cttcaatggg tatatacctg ggtggaatct 300 catggtcaat gatggtatga gccgaaccag ccaattgtgg aggatggttc cagtctaact 360 420 tcccgagacc gggtcaaaaa gcggcccgct ggaggcgcta ataggcaatg gatcgcctgc 480 gtcgtcatta gcgtcagggc atgcttctac cgaaagaaaa gaatggcgag gtctcgttct cgtagacctg tgtacacaga ttttgcaagt ggagcgctca aaatcatgtc tccctttggg 540 ctcgatctag ggtctcgcta agcttcttct cgggaattta tcgtcgctct ctaaatttcc 600 caaattaggc taaaaaattg ttggtgcttg aaccaatgat aatacacacg cttcacatcc 660 720 acaaaaacat gtggtggcat gtggcatgaa atgatgatag cagaacattc gggacattgg 780 gaattttcat caccctgaa ggatcgactc ttccagtgac gcggctgaag atcccctcat 840 tttactgaag gtagtattta tataagaaat catgctagag ggaaacaagc ccttcattat 900 ggttcaaatc tttccttcca catcggcagt ttaaaacctg gttcttcatt agtataatgc ttgttacttc tctgattgca cttctgcccg ccattgcggc ggcgcaggtc tcagggaccg 960 tggggccacg tacgagtgcg tctgcgaaag ccgcagagaa aggtataatt tatgttgcgc 1020 1080 aaatgcgtcg caagaagcta actcgacgtg tcattgtgta gtatgcaacg tacttgacta 1140 cggggcatcc gcaaattcga ccattgatat cggaccgcca ctcaaggaag ccttccaaga 1200 ctgccaaaca ggtggactag gtaagttcta ctagtatctt tatggcggtt taaaagcaga 1260 gcaacaggaa aacactaatg ttagtgattc agtttatatt ccggaagggg actatctcct 1320 ttcgtcgtgg gtgtcactag tttatggttc tggttgggct ttgcaactag atggcattat 1380 ttaccgagac aagaatgtgt aggaatgcgc ttatatgaat ctgccacttt gtgaacacta acaaaccgca gcaccgatgg aggaaacatg atattcagtg agttacatgc gagacagccg 1440 1500 acaatgatgt gagaattacg ctgagataca atctagtcga acacaccagt gatatcgaaa ttttcagtaa taactctgct ggagcaattc agggctacgg ttatctgttc catgagcaag 1560 1620 acgaatacgg gccacggatt cttcgactta acaacgtgac tgatttcagt gtgcatgact tgatcttggt ggattcaccg gcctacttcc tcaacttagt tgagtcatac aacggcgagg 1680

	tgtacaacat	ggtcattcgt	ggcgccagta	tgggagggct	tgacggaatc	gatatctccg	1740
	gagccaatta	ctggatccat	gacgttgagg	tcactaacgg	cgacgaatgt	gtgactgtga	1800
	aggtagtcta	ttttgcacaa	ccccagagcc	aagaggccta	ttctaaagct	tgctgatgaa	1860
	caatgcagag	tccatcggcc	aacgtccgcg	tagaaaacgt	cttttgcaac	cacagtggcg	1920
	gatgcgcgat	gggatcactt	ggcacggaca	cgaatatctc	taacattgaa	tttgagaaca	1980
	tctacactta	caactccact	cagatgtaca	tgatcaagtc	caatgggggt	aatggcacag	2040
	ttacaaactg	ttctttcaag	aacttcattg	gatatagcaa	cgcctacatg	ctagatttgg	2100
	atacatactg	gggtgatgag	agcgatggtg	acggtatcaa	gtacgagaat	atcggttttg	2160
	aagtgtgtat	catctactcc	cagtcacagc	aatgcccaga	atctaacccc	gagtctagaa	2220
	ttggaagggt	accagttcga	atggcattca	gagaagcccc	atcagaattc	tttgcccgga	2280
	cgcgaatcca	tgcacgaata	ttaccctaac	agccgttgaa	ttgtggactg	atgtaagctt	2340
	catattgcaa	ttgatgttta	tgatgcccga	aaactaaccc	gcttgataca	cacccagact	2400
	ggagattacg	tcaaacaggt	aataaaaatc	tggttccggt	cctgatttca	aagctggaac	2460
	ttatgttctt	ttaggaatgc	tccagtgcct	acggcgaagg	cgaatgtttg	cgacagcaaa	2520
	atggcaccct	tgcctcatat	tcttttacga	ccacgattac	ctcggtgtat	gcagcctacc	2580
	acagccatga	tgccccctta	tcacctgtgc	taatcctctg	cgtaggccag	tcaccgcgta	2640
	cagtccgacg	acgacgat <u>g</u> c	ccggcctgat	ttcaacatcc	atggatacta	cgacctctat	2700
	tccgattccg	acaattccta	ccagcttttt	cccaggtgcc	tcagcttaca	gcacacttat	2760
	ggcgaatatg	taaagccggg	gcttatctct	ccgcctagtc	ggagtagcaa	ggatggtttt	2820
,	ctttttggtc	tacttggtag	ggctctgacc	aatgataggg	gttcaaggca	gttgtctatc	2880
	cgcattgcga	taaatcaggc	tagaaccact	atcatttctg	tctcacttat	attgccttta	2940
	tatcgggtgc	gtttagatag	ctcacactcg	ttagataacc	ccagtcttcc	ctttttacaa	3000
	agctgtttcc	accctttgac	tatgctagat	ttggtggttc	aggtcatatg	ataacactta	3060
	atttggtgct	cctgtctcat	gcgtgtttct	ggatcctgca	ccattcttta	atgatggtct	3120
	ccagtcattc	aagtaaaata	caaagtaaat	aagcaagtat	tctcggaaaa	gagaaaaatt	3180
	aacacaggga	atcatgttac	tctccccaga	agtttgcttg	tggcacgccg	ttagaacatt	3240

tcctgtaaca	atcctcatcc	tggttgcccg	aaaacgaagt	taatagtcaa	ccgagataac	3300
agagtaccgg	gtagggccgg	tgcaagtaat	atagcccagt	caggaggtct	atgtggatat	3360
ttcggtcgta	gggatgcagc	tcaaccgagc	ggtggtgtaa	gttctaggag	gaacagtcat	3420
tacggatctt	gttcatgtat	ccatgtttat	gttggacgcg	gggag		3465
<210> 43 <211> 7168 <212> DNA <213> Aspe	3 ergillus niq	ger				
<400> 43 gatggccaca	caaacagaca	caggagctgc	tcgaatgttt	ttacaggaaa	cttgtgcgat	60
ggttggtgat	gctgtgggaa	caagtagatg	tcggtctgca	ggtagtgctg	gggagctcga	120
taccgggcga	tcgcactatc	gtaagtggcc	gcaatctatg	acacaacctc	tatccaatat	180
gtgaaaatct	caagttgacg	caattcccga	gtatggacat	gaattttgtg	aggtgactaa	240
gctatgacca	gcccatgatg	cccaggttgt	ctgcctgtaa	actcctaact	ttccactgag	300
gcccatgagt	taggcgacga	tgatttcttc	tacaaagttt	cgaaacttgc	gtaatcatgc	360
acaccgtaag	atactctcaa	aaggcgtctt	tagaattcta	ctttgtcatt	cgtgccagag	420
atattttccg	gtagcaaaaa	aacaatcatt	tgcgccttta	ggcttctgat	ccacgctcca	480
gataatcaat	tgccaggcct	taggctacgg	taatctatgg	gccgggaaaa	atctgctaat	540
gcttaggcta	gttctctcct	gtacgcggac	aacttaggaa	acttccacag	ggtgaatata	600
gcgtgcgatc	tcacagtttg	cagttagctg	tatctttctg	catcagattt	attacataaa	660
actttctgtg	acagtaagcc	gccatgaaac	tacgtgggac	gtctctgcag	agttacgcta	720
ggattatgtg	ctacacagat	aatcggtctt	catttccacc	atacttcatg	cagggtgatt	780
tcatctccat	agtcttgatg	caatgacgcc	tattatgact	tgacacaagg	catcattagg	840
ctaagccttc	tcttcactac	cctcccaatt	gcggcttctg	gtaaagatct	tgtacttcca	900
tgctcttgac	actgactgaa	atcatcagac	gtaaaagcat	actatatctg	cagtcttagg	960
acataggatg	actcttctaa	ggattatacg	tgtattatta	aagcgcatcg	gctacgaaag	1020
agcgacgcgg	gggcataata	tatcgagctc	aaagatggac	aatgcatagc	cagctcaaaa	1080

WO 2004/074468 PCT/EP2003/005726 57/178

pectinases.ST251

tgcatgtaca tatatcatca gaccagtcac cataacgttg ggtgtctttg gcaaagcagg 1140 ggcgagatgt agacgctcct tggtgcattt agtgcatatt ttgtcttcca taggttgttg 1200 ccatgcgaaa aagtgatcat atgaacatgt gtacatgtgg tagcgcctcc acccccggaa 1260 gtagtttgtt tggtaaacgt ttagattatt ccaactgaaa gtcatccctt ttccctgcat 1320 gcaactcgcc gtgactgcat gtcgaacgtt tgtctgtggg tctgatgcac taaaatttcc 1380 atatttcatt ttaggtgagt aaaccgtaat gttgaatcaa atctagaaga ccagatgacg 1440 tggtggaaac gcgctagccc gaaccaaacc cacttccaaa ggtagcaatc atagatggca 1500 acatettgea teteceteae geteteetga tgeagtettt gteagagege etaatteeet 1560 1620 tctccttcct gccgtccatc tgatatggta ttctatgtga cgaatattgt tgttggaaaa ttccacctac gcgaaattcc acttcacccg aacgccgaac tgctgaacac tactacgtaa 1680 gcctatggct taccccacgt cctgatcggg taacgatgtg cgaattccct caccgctcct 1740 atatgaagat taactgtgaa ctcatgcttt agtatatagt gatggactca cgtgcacgcc 1800 tatttcttcc gtatgggagg tctactgact tttgaagatt gtattatcgg cgccactaaa 1860 aaggacaaaa gacaggggcg aactaaacta ggtgttcgtg aaaccaacgg cgggtggacc 1920 gttcctcgtt tctcgcttag gagccaagga gggtccaatc cgatccgtgg tggagataac 1980 ctctaagctc ctgtcagtct cctctccgac tcttccgcaa catcccccga tttctcctct 2040 cgaccttggc aactatatgc gtcatccagc cgcagatata actgatcaac ctggaagcac 2100 teettatete aggetetetg gecataataa caccaaaaac atetteecat geceegtgee 2160 gttcgggtca tggcagggcg agttaaacag cagccggaaa gatcggtgcg cggttaatat 2220 cgaagcgtgt ggagacaggg tccggacaac gttgtggtac ttgcgccagc tcatcctatg 2280 gcgagtcatg ccattgcgga tgtccgtggg ctttatgacg gatactgaat agtcctattc 2340 agtatcacac tectgategt gtaggatttg atacetttge ggaagetatg cetatteete 2400 agggcctatc gttttggtgg taggagcttg cagatatatt tcctgtcgac tctcggggaa 2460 agtttggctt tccggtcgat gtcaagaata attgacgttg tggaatgctg attttcgcca 2520 gagaaaaaaa gaaatatcgc tctcactcat caccggcacc atgacctggt ccacgtcctt 2580 tctcgtggct acttctttgc tctccatcat caactcggtc catgctcaac taacaggatc 2640

WO 2004/074468 PCT/EP2003/005726 58/178

		pect	inases.ST25	1		
tgttggaccc	ctgacctccg	ttatagataa	ggccgctgtg	aagacctgca	acgtctgcga	2700
ctacggagcc	agctcggaca	acaccaccgg	tgtgggacag	cccattatcg	acgccttcac	2760
cgactgcggt	agcggtggtc	tcattcacgt	ccctgagggt	gactatcttt	tgaaagactg	2820
ggtctcttcg	gaaaacggct	ccgcgtggtc	tatccagctc	gatggcgtgc	tccactggga	2880
ctcctcgcct	tccgcccagt	cgtacatatt	cgcgataacc	ggtggcagtg	actctgagct	2940
ttctagttca	aatgcaacgg	gtgcaattca	aggtagcggt	tacctttacc	accgacataa	3000
tacgtacact	agtccccgga	tgctgtacat	ttccgggtgt	cggattggac	cgttcatgac	3060
ctggtattgg	tcaactcgcc	tatgccccac	tttgtcattg	acggcggtta	caatggagaa	3120
gcgtacaata	tggctatctg	tggtggtgat	cacggtggtc	tggatggcat	tgatttgtac	3180
ggtggcaaca	tctggattca	tttagtgccg	cttctcctga	acgtgcattc	gatttcagga	3240
aacgctaatg	cgacggcagg	taatggtcac	caacaaggat	gaatgtgtca	ctagcaaggt	3300
aggtggatcg	cattacctcg	caactgcgga	tgtactaatc	caaactgcaa	cagaccaaac	3360
tcccacaact	tcctgatcga	gaatatttac	tgcaacccca	gtggcggatg	cgccatcgga	3420
tccctgggtt	ccagtgtcaa	cgtcaccaac	atcctctacc	gcaacgtcta	cacctgggac	3480
tcgaaccaaa	țgatgatgat	caagaccaac	ggtggcttag	gcaatgtatc	caacatagtg	3540
tttgagaatt	tcatcggtac	ataaccttat	atcttcctta	cccttccacg	acacacaacc	3600
taatgataga	ataggccacg	gaaacgtcaa	ctccctcgac	ctcgatagtt	actggagcag	3660
catgaacgct	atcgacggcg	tcggcatcta	ctatcacaac	atcacaattt	ataattggac	3720
ggggaccgcc	atcgacggtg	aaactcggcc	gcctattcgg	gtcatctgcc	ctgaagacat	3780
gccctgtacc	gagatcacgc	tcgtccagat	tgacttgttg	gttgaggaag	gtcgttacga	3840
tgaatactac	tgcgcgattg	cttgcggata	gggctactgc	cttgactctg	ctactagcac	3900
cttgactact	tacacaacca	ctacttatgg	gaactctgct	tcaacaggat	acgaggcgcc	3960
cactatggct	gatgatttgg	ccaccgcgtt	tggtacaacg	gcgtctattc	ctacccctac	4020
taccccggct	tcgttcttcc	ccggtgttgc	gccggttagc	gccgtagctg	ggagttcttg	4080
aggggatgtg	ggattgtctg	cttaactagg	ggaggatttg	gatgatttgg	ataccgcaaa	4140
ttgggttata	gtactgagat	gggatatatt	attccctaat	aataatatac	cttacccctg	4200

pectinases.ST251 acccaaaagt cccaggccct ggtaagtgta tgcctaaggg gttgcacgta agatagcccg 4260 atactgaccc cgtccaaccc tcacaacagg cggtttcttc tccccatacc atcaaacctc 4320 4380 ttgcttctcc cagaccggca actccccagc cgtaggacca tacctccacg aaagtcgcgt 4440 cagaatgatc tttaaactcc atacacactc tattctttcc aggaccataa ggcgaatcca 4500 acgaagatta attgaacgct tctttctgcc tagcactatt cccatgaaat ggctcgtcct ttcgcaacca ccgcatcagc acaaactcat tcaggctggt gaaattgcgc accgcgcggt 4560 4620 aagaggcaaa cagagggatg gagactatca gctcttccgg catgaattgg ctggctatcg 4680 ttgcgccacc aatatatata ggatcttctg gtccttctct cgcatgaggt aatttataat 4740 accggtgatg agggtggtga ctgacttctt ccatgtggcg ataacgatta tctgactgac cctcatctct tcatgggtca tggcctttga agcaatcttc gttcccacaa agcccgatcg 4800 4860 agtagtagaa ctggcggcca cccctcagc attccctcgc ccctgacatt ccacatcttc atgccggatt tcaaggcatc cacaaaagta atggctatga gtagctagtg aaagcagagg 4920 4980 ataagacttc attgacttgg cgataatagc ggccttgagt tgacactgtt tgtacccacg 5040 gatggtactg taaaccctcc aaacatcgta aagaactaac ccaggtggtt atgccgataa 5100 qttcqaqaqc qtqgtqgttg atccaactca cgtggtccac gttgacgctt tcttcaaaat 5160 gtccctccac cgctagcaag ctcgcatcca gctcagtgag aagagtgtcg ttctaatttg agaatccgct ccagtatcac ggttaatctc tccgagaagt cggggcgagg cttctgtgaa 5220 5280 gacaagcacc atctccatct tcgtcctgtg tttctctttt cttctccccc tttacttctt ctttcttgtg tgtttagtat cgcgtcgcca attcttatga tccctctgct gctcccttcc 5340 gctatgatcc tagctgacta acgacgaaag gcccgccaat gtcgaggccg cgcggttatg 5400 5460 gcgggagggc ccgaaagagt tcaagaagat gctgtgcaaa tgcgcgcagg atagtctggg 5520 agacgagtca atgagtttct cccgtaggcc aacacactca ttcaatcata accaatcatg 5580 atgctcattc tcaacacctc ctcttcactt tttttctcat accgtgagtc agtgaactca 5640 gtcgtagtat gatgttatcc acatggaatg gagacgaaaa cggatcaata ttccttatac 5700 tttgttgtaa ttttcctgtg tgtggtttgc agcactatgg gagcaatgat tggggtattt gattcatccc atggtctatc tacttaacta cgtacggagt tgtatgcaat tttctttccc 5760

WO 2004/074468 PCT/EP2003/005726 60/178

pectinases.ST251 taacatttta ttgttgctgc agcggaaagt ctgcttcgct ttatgttgtt cattcgtatg 5820 agagaacata ttaatttgtt atttactctc cttgtcttgc tctcttatct ttctttcttc 5880 gagagtttcg tttgttgcct gcgtaagtat tcaggtctct catattgaaa actatttgac 5940 atcttgctta catcggcagg ccggcttcct tggaggattt ggtattaccc ttggctcttt 6000 ccacgaactc ttcggcagat atctcgtgag tatgtccgtt gacataaatt tatagtgccg 6060 acctgctaat gatactacca gccccttcaa aggtgccgca tagtttagca gaagctcagt 6120 gactatagct gtctcatgag gaccatgaaa tcatattaac cggctactaa ctatactgtc 6180 cgctcttttc tgttcatttc tcgtagtagg gtgggattta gtcattgcta cttcttctgt 6240 cagoggaaga cttttagca goottooatt caatottoag caagogtgac ggtacatgca 6300 tttgtctcag tatgcgcctc cacagatccg tggttctcgg ctagtacaag cgggcgttag 6360 gccagaaata cactgagtag gtctcacatt ttgcgccatt atcctgaacc ttaactccaa 6420 gcccacttta tttccacaat ctgagagcag tggcaacatg acttcttgca actcaggatt 6480 ctaccaggac gaatatgggg caacgctaat cagacaaacc attcgtgtcc ttggtccttc 6540 gatctctaaa ctcccgatct ttctcggaga agtctacctt ctttacgaaa ccacatacta 6600 ccttgtaacc tggaaaggag gcctttactg gcgtgactat cagtggccga atcgataggt 6660 ttgatgtttc cctttcatac attatcagct cataatactt acaagaagtc atagtagacg 6720 atgttcaggt ctcacttccg aaaactatga tgccattact cagtgcccca tcagcaccaa 6780 gagccatgtg tgcatgttgc caaattctgc caagtcatcc acctgctgtg ctttctaggt 6840 cttatattat gttggaacgt aatctcagta gattactagt agtcgaggtc acgtgacccg 6900 aactccgtaa cttcaactgc tcctccgagc gcgcctagat agcgaagaat caagcgtttt 6960 caacgacttc agtattgacc taaaacgtcg tttcaacagg ttatgagccc ggctcttcgc 7020 tcgtgaggct aaccagcaaa gatctgagcc accatacaca cgaagcaagc cgcaattgca 7080 acggggacac gcaccgcgat acccctatct caaaacacca aaacaccgcg aatatcaaaa 7140 tattcaaccg ccggaagcag accccaga 7168

<210> 44 <211> 5172 <212> DNA

<213> Aspergillus niger

<400> 60 gacgggctgc gaaagcagga aagccccgat ggcggctatt gtggcggagt atgaaggcat 120 acggggcctt caagggacac tgtgtgtaat ggagaaggtt cacaacaaag gaagacggca 180 gtagcaccca aattaccaaa ttcccttctt gccatgattg aaggcattcc tttcttgtct 240 tatgtacgaa gcataactac catggtagac cgtgagtgag acggtttcgg tcacgaatgt ctgccataca gcagaaattg ctctaggaga cgtctgccta cggaaaatga attcaacacc 300 tatcaacatg ctcagccgtg ataaaatggg ttgcctggca tcgtgtgcgg tcagaaattc 360 cccgttatgt tggacaagac cataacaatc aacggacgca tcagggttaa tgcctccgtt 420 480 cgggctgcgg cttcggggcg cacgggcagc caaaaccaca tgtccgtgtg tttatttagt 540 gggttcctga acaatggcaa tgcgtagctt ttgcggggtc ccttccgctt gccgaagacg ccctgtcgat catcggtgca gcacaggatg gttgggaatg cgactgcagg gtccggaccc 600 agcctccact cggaattgat gcgtgcgccg tgtttatcgc cactcttcgc cttttgtctc 660 cgcagcagct aggcagtgct ttaagttatt aaaagaaagt gatcaaccct gcaacaactc 720 780 aataatgggc attactgctc ccagcttctg tctcgctttt gccacgactt ctgcgtcgca tgttggagca aggggtggtg aaacagagag ggtagccgaa cttaagcgta atagttgact 840 gagacgggta caaggggtat gaatagtgtt ctggacttga atttagttaa attaatctgt 900 960 gtgcaggata tgctcggcgt cgccagtttg ctaattcagt cagcattcgt gtatcatcga tgggagatga atagaatatg aaatgttagt ccagggccta gaggctaata gtagatgagt 1020 agatgatetg geactgaatg aateteegaa getgteeaaa ettteatage ttaeggetgg 1080 atgagecate ageatgeetg etacetegaa etteagetgt agttegeett gagaaggaet 1140 tccatcgtag atgtaggcac gatcgaatgt gatcaattgt actgcagctt tgagatcagc 1200 aagtgatatg aagagtatac gccgattgag caataagagc aatattgccg agatcctatg 1260 aaaatgtgag gaagaatgct gagcgtggcc ggaatgagtg tttacttctg ggcggagagt 1320 ctggctcggg attgcacgag accaaacgtt cagtgtttgt tttgcatggc ttgccttgca 1380 ttcctctgca aattgcgttc ggaaatcctc atgccatcgg catctgccga cccatgcttt 1440 tgcagctcct gtgacaggtg ggccgatcgc ctccatcaat taggatctta gaggatctac 1500

		-	•			
tcaagtctgc	agcttcagga	accatgggat	ctcttgtgag	atctttgttg	ttgaaatgag	1560
gctgtgactg	agtgccgttg	actcccatct	ccagtatctt	cattgactga	caggggattt	1620
aaattatcac	agcatttagc	aaatgaggca	acataggccc	ttgcgtcaga	tccttgctta	1680
caacgataag	ctgatgcagc	ccaagtttaa	ggttaaattt	ccaatgtgtg	atgcatctca	1740
cgagagccgt	tgaaatataa	gactttgatg	cacggttgac	atatgctatg	tgacggtgt t	1800
ctgatccacg	acagctcgag	caatctaggc	atagtattac	ctggaaacat	cccttttcta	1860
tccaggacta	agctacttgc	aagagtgtct	gaacgcacca	tgggttgaca	tctataaata	1920
ttcgaaacaa	acacaacgtg	atggatttct	acaaaacagc	cgttgctgga	aaaggccgtt	1980
gaaatacacg	atagcacaaa	cactaccaag	catcctgcaa	atgtcgctta	agaagatcgg	2040
cgttgctcgg	gacgaggtac	ggtccaccgg	tgctgtctcg	gacatcatat	ggtgcgtttc	2100
agcatcaacc	tgagctcttg	gcatctagcg	gagcgcgtac	atatccaaag	gacacaaaga	2160
tccgttccac	gtgcggatgc	tttccatact	gccgtctagg	tttggcgaag	aatatattaa	2220
attgaggaga	gagcctagag	aaggcaaccc	cctggaatgc	aaccgacact	tctgactcgt	2280
ggattggcgc	ttatgctagt	cagtcacacc	aggtgatatc	gcgcggagct	ccctccgtcc	2340
gccagccaag	aaacgagtcc	gtccaccact	gaagagtctg	gccaagacat	gggatggggt	2400
ccaaagccct	ctaaagtgat	tatttgggta	aatgatcgac	aacatcatgg	actgtaccct	2460
tccagaggca	gtgggagttt	ttgaccgcag	aatgcttttc	tctacatgct	gtgctgaaag	2520
aaaagatggt	aacatacaat	gatgttatat	ttggccatct	tgaatgtgcg	tggtggtctt	2580
agaaaacgag	atttcataat	agaggtctga	tacagtgtca	gctgcagaag	gagccaagcc	2640
agccattggt	ggaagctact	cattgtccaa	gactttagac	caggggtcat	gcattagaat	2700
cgctagcttg	acggctctgg	ctccatcggt	actcaagatt	cggcagtgct	cctgcggaaa	2760
cagctattta	aggtgtctag	ctcgcgactg	acaagaaaac	ctttgaattg	gtctgacaat	2820
gtcaaacgcc	aagatgttgt	ccaaaacgtc	gcttctgtcg	ctcctctcac	ttgcagctgg	2880
ggtcgtcaat	gcagactttg	gcataacgac	caacgatgat	tcctatgtca	taaacgccaa	2940
ttctcccaac	tcgttggtgt	ttaccgttga	tcgcggaagt	tgcgatatca	cttctatcgt	3000
gcattatggc	acagagetge	agtattccgg	caagggtagc	catatcggct	ccggtcttgg	3060

aactgcgaca	gtttctgcta	ccaagagcgg	taagtggatt	ttgagtacgg	cgagagtgac	3120
aagctgatta	ggagcaggcg	actacatcaa	ggtgacctgc	gagacggata	cattgaccca	3180
gtatatggtt	gtccatgatg	gggatcctat	cattcatatg	gcaacctaca	ttaccgaggg	3240
tgagtattgt	gtcaaagttt	tctacgttag	tctctaacat	ccaccagagc	catctatcgg	3300
tgaattgcgg	tttattgctc	gactcaactc	agatgtactc	cccaacgagg	agccattcgg	3360
cgatgtgtcc	aacaccgccg	atggggaggc	gattgaagga	tctgacgtgg	tatgtctttt	3420
gcataatttc	gatgacgttg	ctaattgcac	ggcagttcct	cgtcgatggc	gagactcgca	3480
gcaagttcta	ctccagccag	cgtttcattg	acgatcagag	acactgtaag	aaataatgga	3540
atatctacag	ggttatcgct	gactattcaa	ggcattgcgg	gcgatgagca	ccgcgtctgt	3600
atgatcctca	atcaatacga	gacctcttcc	ggtggccctt	tccacaggta	ggcacatact	3660
ctctatcgca	aggattatgc	tcacagctac	agggacatca	actccaacaa	cggaggtgac	3720
tacaactccc	tctactggta	tatggtacgt	ttactacttt	attctcaaat	ccacagctac	3780
tgaccataca	gaactcgggc	cacgtccaac	tcgagtccta	ccgcatgggt	cttcacggac	3840
cgtactcgat	gtacttcagc	cgcagcggca	ctcccagcac	cgacattgac	acgtccttct	3900
tcgcggacct	cgacatcgag	ggctacgtag	ccgaatcagg	caggggaacc	gtatccggaa	3960
ccgcgtcagg	cgctgactcg	agcttcgact	gggtcgttca	ctggtatgcc	tttctcaccc	4020
acacaaccat	caaccctagc	taaccggaca	ggtacaacga	tgacgcccaa	tactggacat	4080
acacatcctc	ctccggcagc	ttcacctccc	ccgccatgaa	accaggaaca	tacaccatgg	4140
tatattatca	aggcgagtac	gtcgtggcca	cgagcgaagt	gaccgtcagc	gccggctcga	4200
gcacaagcaa	ggacatttcc	ggctccgtcg	aaacaggaac	gaccatcttc	aagattggcg	4260
attgggacgg	acagtaagta	ccccctccc	ttctaccaca	cacatcaatt	acacatctaa	4320
aacgtcatgg	tatagaccaa	ccggcttccg	caacgcagaa	aaccaactcc	gcatgcaccc	4380
ctccgactcc	cgaatgtccg	actggggccc	tctaacctac	accgttggca	gctcctccct	4440
gactgatttc	cccatggcca	ttttcaagag	cgtcaacagt	ccagtaacca	tcaagttcac	4500
tgcaacatct	gaccagactg	gtgcagcgac	gctgcgtatc	ggaactacgc	tgtcgttcgc	4560
gggtggacgt	cctcaagcta	cggtaggcat	cctctttcct	tcctccttta	tgtgcagcgt	4620

agctaagata	tataaacaga	tcaacgacta	cgaaggatcc	gcgccgtccg	cacctacgaa	4680
tttggactct	cgtggcgtga	ctcgtggtgc	gtatagaggg	tatggggatg	tttatgatgt	4740
ttcggttcct	gaggggacga	ttgtggaggg	ggagaatacg	gtacgttgcc	ttaccctgaa	4800
tatatgttgt	gggagttgtg	gagatctgtg	ctgatgagcg	tagatcacga	ttagtgttat	4860
ttcggggagt	tctggggatg	acttcttgag	cccgaatttt	gtaagtttct	tccctgatgt	4920
gagaggagat	gagatgaaat	agctgacgag	agtagatctt	tgattgtgtg	gagttgtttc	4980
agtgagggat	gtcatacatt	gacaactgca	ctagttggta	cagtatagct	tgatgcagtg	5040
ttcataatag	ccctagttga	caattgatta	taacgtctag	tctaaccaac	aagataatac	5100
aaccacacct	tcatctatag	gataatatac	ggaccttata	tacccaactc	ctcccaccca	5160
acaaacaaga	ga					5172
<210> 45 <211> 4446 <212> DNA <213> Aspe	s ergillus niç	ger				
	aagagtgcgt	agggcgtgaa	tcgaggcgcc	gagatatgag	tggtaaagtt	60
aactaggcta	gaggcagcag	cagtggtagt	gaagacttaa	ttagcacttc	ccacagctct	120
atgcacaaat	actagtcttc	agtctacttt	atatgccagg	caaccctgca	ccgcggtgag	180
cgtcccgggc	cccttacagg	ccaggaccgt	cgggactgga	gctgaaccaa	gctgaacgcc	240
atatcaacag	tgtgcacggt	ccttgggcag	ctggatgcca	aggatgtata	tcatggggat	300
caccaccaat	tgaccactga	agtgaggaat	tgattccgaa	ttgtgtgctc	aggagtggcc	360
aacgacctgc	tacccgaggt	tatacactcc	atacccagaa	caacgatgca	cgggatggca	420
tccgacggaa	tgttcggtga	tggcgtcgga	tgcgggtccg	ttgatctcgc	ccaactttat	480
aagaccctga	tgttgtcgcg	agtctgggga	gaagctagtt	gctagtgtgt	accggggttc	540
agggggtcct	gatccggggt	acggaaggat	ccccgcattt	ggctgactcg	agatctaact	600
ttccgcgtcg	gaagttctat	cggctagatt	cacaaagatg	gctctcaact	tcggatatct	660
tcttggctgg	gtgatatcac	gtactgtatg	gacgttggtt	agttttttgt	tgagtctagt	720

WO 2004/074468 PCT/EP2003/005726 65/178

pectinases.ST251 780 gaattcagtg tggacttcca gtaaagactg acgcgactga tgacgctttg ataggcaatc 840 cggcagtgag cacggctctt gcagtcgcct ttgaccttta ttgtaggatt gtcttagggt 900 agtgtcgtca gtgcaaagac gtgtcttttg gtgccaaatt gtggctaccc caagtagatg 960 tggatgcacg gcagagtata ctaatatact gctattcaca tcaaattaga gctctcgagg 1020 ccaqtqctcc tcatqqtaqt ttatqacaqc ttctccacaq ataattcaqc tgatqaqqqq atcaaagcta caggaattat cgggacaatg ctggccgagc attttctccg tcgaaggaac 1080 tgacaacaat ttatccgtct cgcttggctg ctgaattccc cgcgatttta ccccggatct 1140 1200 taagcgactg cttctgcagc cattaaaaag ctcctaacag tatcattgca gtaatttctt 1260 cctgtcatgc atcgcgcata cctcttggcc ctgcacaaca acatgttgtc aacctcctca ttcggggtaa tgccacccgc cctccagcac tctcaccatc acagaaacta taagatggca 1320 1380 tgcaatcttt tctccattga acccttcaat tccgtataca gggtgcacaa caatctcctc 1440 tcaatcgcac cacccaaagc gccatcacaa tgcgcctcct ccaccccctc atcccagcct coctectect cacceteace teegegacee tgeacacete ecaaaceaac accaceataa 1500 1560 ccctgaccaa caaccgcctc acagcaaact tctccaaatc ccaaggccga atcaccgacc totacotoga caaccaagac ctcctaggtc cccaatctgg cgacaccggc gtcggcccct 1620 1680 acctegactg ctactgeate eceteegget tetacaegee gggeteeace tecceaacee 1740 tgcaactctt caccggcacc gacaaatccg gaaccagcta tgcaggcgtc ctcatggacg 1800 agacctaccc gccgacgggc caacatttcc aacaatactg gttcctgcgc gacggcgaaa cagggctcca tacattcagc cggttagcgt actacaacga gacgacgcca tatttgcgca 1860 atctgcagga attccgcacc ttgtttcggc ccaatacgga gctttggact catttgtctt 1920 1980 cgagtgaggt gcagacggcg ccgttgccga gtaagaaggc tgtggaagag gaggtggtgg 2040 tgcaggatgc gacctggacg ttcaataata ctccgactga tgagtattat gtgcagtttg cggattattt tactaagtat acgttttcca atggtatgtt tttgtgtcta ttgtcaaggg 2100 2160 gatggggttg gctgacttgt ggttttgctt actagcgtgg agggataatt ccgttcatgg 2220 catgtatgcc gatgggagta catcgaatgg gagtacgttt ggggcttggt tggttatgaa tactaaggta ttttggatct tggaaggtgt atcggagccc tggctaatgg tgcatttctc 2280

WO 2004/074468 PCT/EP2003/005726 66/178

			inases.ST25		h 1 1	0040
		ctacggtgta				2340
aaatgctgac	catttgcctt	agggccccct	gcactcggat	ctcaccgtcg	acggcatcgt	2400
ctacaactac	ctcgtgtcca	atcaccacgg	cgaaggcact	cctaacatca	cctacggctt	2460
tgatcgcact	ttcggccctc	aatactatca	cttcaacggc	ggaaaaggct	ccactgcgtc	2520
tctacaagag	ctgaaatctg	acgcggaaac	cctggcagat	ccgagctgga	acgtcgactt	2580
ctacgactcc	atcgccaaac	acgtggtcgg	atacacgcct	tccagtcaac	gcggcagcgt	2640
tcaagggaag	attaagctac	ccaaaggtgc	cactagacct	atcgcagtcc	tgaccgtgga	2700
cgggcagtat	ttccaggaca	actcggtgaa	ctcatcatca	taccagtatt	gggctgagat	2760
cgacgactcc	gggcatttca	gcgtggacca	tgtcaaagag	ggcccgtacc	gacttactgt	2820
atacgccgac	ggaatctttg	gtgacttcgt	acgcgacggc	gtgcaagtga	aggccggcaa	2880
gaaaactacc	atccaagaaa	cctgggaggc	tgagtccgca	ggcactgaga	tctggagact	2940
aggcacaccg	gacaagtctt	ccggggagtt	tcgacatgga	gttgccaggg	accccacaca	3000
ccctcttcac	ccgccagagt	acctgatcta	ttggggcgca	tatgactggc	aatctgactt	3060
cccggacgga	atcaactata	ccattggtac	cagtgatcca	gcaaccgatc	tgaacacggt	3120
ccactggtct	gtattcgggc	cgacaccgaa	cgatccgcgc	gtcgaatacg	ataccacgca	3180
cgactggacg	atcaacttcc	ctctgagtga	ggacgatctt	gcagagcggt	ccaaggccac	3240
tctcacaatc	caattggcgg	gagcgaaagc	agcatccggc	aatacggacg	tatacaatgc	3300
atcggagcca	tataccaacc	tcgcgctgga	gagttatatc	aacgatcagg	ccgagccgtt	3360
gacccttctt	atcgggttca	atcagtcgag	cagctgtatt	gtacggtcgg	ctgtgagttg	3420
ctatcaggtt	cgctcccgca	tggagttccc	ggcggactgg	ctgaaggtcg	gcaacaatgt	3480
tttgaccttg	catctcccgt	ataacgcgac	ggatacggag	acagcgattt	tgccggcgac	3540
cgtgtatgtg	cagtacgatg	cgttgaggtt	ggaggtttcg	taggagggga	agggtgtgta	3600
tagactgttg	tcgaacttca	tacgcatttt	gcgaatagta	aaggcagagg	ccgtgttagg	3660
tgctgctttt	agtgctagaa	tatgaaagga	tcaatttcat	aatttggaga	atacacagtc	3720
aaataagact	attcggatag	tagatcgcca	tgcatattgt	agactatttc	cttagacatc	3780
ctgtgtttat	gatgattgtg	cagaacaggt	cgtctcattc	tgcctccgca	gccgatctac	3840

WO 2004/074468 PCT/EP2003/005726 67/178

pectinases.ST251 ggccagactc ctgtcatcct gtctgtcatt ggctccgaaa agctcgagcc actaccagct	3900
gcgtcaattc tcatatttga gatcatacgc caccaatctg agccgttgtg gtccgttcca	
aggtcagcat aaccgaggca gttccgggta aattggccga ttgcctgata gtggcatcac	3960
	4020
gcgctgttct gtatacgaca cgttattcac ttggtccgtc aatgcttcac atgccgtcct	4080
ctaatttcgt ttccaatatt gtaagctcga ggagactctc attgaggaca cgatctcaaa	4140
gttttattag agccgaacaa taatgagaga cgcgaagagg gtccaaagct gaagcaaacc	4200
ttggtctcgg tgaactttca gatgatcggc cttacctaat gcggtaaaag cctcggccca	4260
toggggcatg ottaagggat actaatocao togcattgat tggcaacaat gaottaaaao	4320
caggccgtgg accgatttac ttccccgcat tcttgtttct gcagctcttg ttgtatttct	4380
gcaaggetet ggaetttett ttgttttggt ggtatetgaa getgegaegt tageaceaac	4440
gcgacc	4446
<210> 46 <211> 1178 <212> DNA	
<213> Aspergillus niger <400> 46	
. ,	60
<400> 46	60 120
<400> 46 ttttcccgtt ggtggaatca tttcattcca tctgcctgga ctaccgggga atatgcgata	
<pre><400> 46 ttttcccgtt ggtggaatca tttcattcca tctgcctgga ctaccgggga atatgcgata taaagcagtt ggtggtgtcg gtcacaatat gacttgcgct ggataaccga caagcatcca</pre>	120
<pre><400> 46 ttttcccgtt ggtggaatca tttcattcca tctgcctgga ctaccgggga atatgcgata taaagcagtt ggtggtgtcg gtcacaatat gacttgcgct ggataaccga caagcatcca ctgcagtcac aatgaagctc tctcttcttt ccttattctt cacccccatt tttgctcttc</pre>	120 180
<pre><400> 46 ttttcccgtt ggtggaatca tttcattcca tctgcctgga ctaccgggga atatgcgata taaagcagtt ggtggtgtcg gtcacaatat gacttgcgct ggataaccga caagcatcca ctgcagtcac aatgaagctc tctcttcttt ccttattctt caccccatt tttgctcttc catctcacct cacgccgaga aatgatatac ctcctttctt cctctagcc ggcgacagca</pre>	120 180 240
<pre><400> 46 ttttcccgtt ggtggaatca tttcattcca tctgcctgga ctaccgggga atatgcgata taaagcagtt ggtggtgtcg gtcacaatat gacttgcgct ggataaccga caagcatcca ctgcagtcac aatgaagctc tctcttcttt ccttattctt cacccccatt tttgctcttc catctcacct cacgccgaga aatgatatac ctcctttctt cctcagcc ggcgacagca ccaccgccgt ccaatccagc ggcggaggcg gctggggcga tgggttcatc aacacgacac</pre>	120 180 240 300
<pre><400> 46 ttttcccgtt ggtggaatca tttcattcca tctgcctgga ctaccgggga atatgcgata taaagcagtt ggtggtgtcg gtcacaatat gacttgcgct ggataaccga caagcatcca ctgcagtcac aatgaagctc tctcttcttt ccttattctt cacccccatt tttgctcttc catctcacct cacgccgaga aatgatatac ctcctttctt cctcagcc ggcgacagca ccaccgccgt ccaatccagc ggcggaggcg gctggggcga tgggttcatc aacacgacac tccacaaggg agccaaaggt ataaactacg gtcacgacgg agccaccact gtcagcitcc</pre>	120 180 240 300 360
<pre><400> 46 ttttcccgtt ggtggaatca tttcattcca tctgcctgga ctaccgggga atatgcgata taaagcagtt ggtggtgtcg gtcacaatat gacttgcgct ggataaccga caagcatcca ctgcagtcac aatgaagctc tctcttcttt ccttattctt cacccccatt tttgctcttc catctcacct cacgccgaga aatgatatac ctcctttctt cctcatagcc ggcgacagca ccaccgccgt ccaatccagc ggcggaggcg gctggggcga tgggttcatc aacacgacac tccacaaggg agccaaaggt ataaactacg gtcacgacgg agccaccact gtcagcttcc gctccggagg cgactgggcc accgtcctct ccaaggtcgc agaatacaag tccgactacc</pre>	120 180 240 300 360 420
<pre><400> 46 ttttcccgtt ggtggaatca tttcattcca tctgcctgga ctaccgggga atatgcgata taaagcagtt ggtggtgtcg gtcacaatat gacttgcgct ggataaccga caagcatcca ctgcagtcac aatgaagctc tctcttcttt ccttattctt cacccccatt tttgctcttc catctcacct cacgccgaga aatgatatac ctcctttctt cctcatagcc ggcgacagca ccaccgccgt ccaatccagc ggcggaggcg gctggggcga tgggttcatc aacacgacac tccacaaggg agccaaaggt ataaactacg gtcacgacgg agccaccact gtcagcttcc gctccggagg cgactgggcc accgtcctct ccaaggtcgc agaatacaag tccgactacc gagcctttgt gaccatccaa ttcggacaca acgaccagaa gcccgccgcg aatatctcct</pre>	120 180 240 300 360 420 480
<pre><400> 46 ttttcccgtt ggtggaatca tttcattcca tctgcctgga ctaccgggga atatgcgata taaagcagtt ggtggtgtcg gtcacaatat gacttgcgct ggataaccga caagcatcca ctgcagtcac aatgaagctc tctctttt ccttattctt cacccccatt tttgctcttc catctcacct cacgccgaga aatgatatac ctcctttctt cctcagcc ggcgacagca ccaccgccgt ccaatccagc ggcggaggcg gctggggcga tgggttcatc aacacgacac tccacaaggg agccaaaggt ataaactacg gtcacgacgg agccaccact gtcagcttcc gctccggagg cgactgggcc accgtcctct ccaaggtcgc agaatacaag tccgactacc gagcctttgt gaccatccaa ttcggacaca acgaccagaa gcccgccgcg aatatctcct tggctgaata caccagtaac ctagaacaat ttgcaaagga tgtcaagaat gcaggaggca</pre>	120 180 240 300 360 420 480 540

		•				
ccgatgcgta	tacgtataac	ttggcgtcgg	atgattatac	gcatctgaat	ggggaggga	780
gcatagtgtt	tggtgggatg	gtggcttcgt	tgattgatca	ggatttcaca	gagttgaaga	840
gtgatgggta	tgttaaggtg	attgcgaagc	ttttggcggc	cttggaggaa	ggcaagtact	900
attggccctg	attttctggg	ttgtttgatg	gaattggatg	tttctggttt	cttgatggaa	960
tgtgaatcag	catgtgttgc	atttatatag	tgtttttatc	catgatcaat	ggttggtaga	1020
tggtatctac	caagcagaaa	atgacagttg	ttacatctcc	attctggaat	atctcagtat	1080
ggcatatgat	ctggccaacc	caatgttatg	aacagcgtga	tttaagtatt	attgttccag	1140
tcccttcaac	tcccacaatg	acatgctgct	ccgttagc			1178
<210> 47 <211> 1658 <212> DNA <213> Aspect	3 ergillus niç	ger				
	tataagtaag	ggtacgtatg	caagtgttac	tggttattca	gtgagctact	60
ggctattcac	gcatcgtcat	gtctgtcttc	aaggcatcat	tcctatttct	tctttcctcc	120
tcactagtcc	acggggttcc	acactccagc	agagcatctc	ggagccaaca	atgcgtggtt	180
ccgtccaaat	accaggcatc	gaatggaatg	gctgatgact	cgggttgctg	tctcccaggc	240
ctttgcacaa	tgcgcgactg	actcgggtta	ttattttcga	ggagggtgtc	aactataaca	300
tctttcagcc	gatcaccgcc	accaacctca	gcaatgtgga	aatccggatg	cacggcaacc	360
tgcatctgcc	acagaatatc	actgcggtgc	agaatatagt	cagtgacggt	acttctacat	420
ggtttaccct	agaaggacca	aaagtggact	ggattggtcc	tgaagacgtg	aacaatggtt	480
ggattgactc	gtacggacaa	ccgtggtggg	atgcgaaccc	tgcaggtagt	tcaggcatcg	540
ataaccgtcc	gcatctcatg	agcttcaagt	ctagccaagc	cactatgaaa	tacttcaggt	600
ctaggaagcc	catcgcctgg	aatgtcaaac	tgcatggaca	agacattaca	gtcagccacg	660

ctattatcga cgctacctcg acaggtagct tcccattcaa cactgacggt ttcgatgttg

agggtaccaa tatccagatc accgacagta tcatgtacaa cggcgacgat gcgattgcag

taggcgcgga ctcgcacgac acacttttca caagaaacac catcggctac cagactcacg

720

780

840

WO 2004/074468 PCT/EP2003/005726 69/178

po	ectinases.ST251
ctttgacgat gtgactgttg tcgatggg	ct ctacgcagca cgcttcaagt catggagcgg 960
agggaccgga ctcgtcaaga atgtgacc	tg gaacaatatt agagtettea aegtgaegtt 1020
cccgatcttt gtgactcaga gttatagc	ga ccaaggcgcc tcccggtctg gaactgtcaa 1080
tgctagttcg gctgtgatga tggaggat	tt tacctggtct gactttgctg gctcgatcaa 1140
tacgtaccag cctggtgacg gttcttgc	gt ttccgaccct tgctggtaca acgttgggct 1200
gccaaatttg aagcatacgg aggccctc	at tatcgaatgc catactgctc aatcttgtaa 1260
gaactttgtg acggacaaca tccagcta	ta cccgcaggtt ctggaaccag cgagtgtgat 1320
ctgcatgaac gcaacggcag ccctcaat	cc tgatcttgga tttacatgta aaaacgggac 1380
ctacagecca ttatetaatt aatggaaa	ct agtgataata cagatacttg atatccagtc 1440
caccttaccg ctttatccaa agtggcct	aa gccatccaca ggaagccaca cccaacacat 1500
cgacttccgg gaaggcacac ccaaacta	ag catatacaat aatcaatcca aaaaaactcc 1560
totactgtac toottotcat accoagta	tt tatcgctgat acaccatcca ctcgtttgat 1620
5	
aaccaagaat ctgcattatc actacagt	
<pre>aaccaagaat ctgcattatc actacagt <210> 48 <211> 3375 <212> DNA <213> Aspergillus niger <400> 48</pre>	ca tagcacgc 1658
<pre>aaccaagaat ctgcattatc actacagt <210> 48 <211> 3375 <212> DNA <213> Aspergillus niger <400> 48 ggcgcccca cgcactcca gacggtgt</pre>	ca tagcacgc 1658 gc teteeggaee egategaetg atgtgeegag 60
<pre>aaccaagaat ctgcattatc actacagt <210> 48 <211> 3375 <212> DNA <213> Aspergillus niger <400> 48 ggcgcccca cgcactcca gacggtgt</pre>	ca tagcacgc 1658 gc teteeggace egategactg atgtgeegag 60 gc ggaatettea tecacettga agcaatecag 120
<pre>aaccaagaat ctgcattatc actacagt <210> 48 <211> 3375 <212> DNA <213> Aspergillus niger <400> 48 ggcgccccca cgcactccca gacggtgt gctcacaaaa gcgagtcacg acaaagca</pre>	ca tagcacgc 1658 gc teteeggaee egategaetg atgtgeegag 60
aaccaagaat ctgcattatc actacagt <210> 48 <211> 3375 <212> DNA <213> Aspergillus niger <400> 48 ggcgccccca cgcactccca gacggtgt gctcacaaaa gcgagtcacg acaaagca aaagtgtgat ctatctcaga tagacact	ca tagcacgc 1658 gc teteeggace egategactg atgtgeegag 60 gc ggaatettea tecacettga agcaatecag 120
aaccaagaat ctgcattatc actacagt <210> 48 <211> 3375 <212> DNA <213> Aspergillus niger <400> 48 ggcgccccca cgcactccca gacggtgt gctcacaaaa gcgagtcacg acaaagca aaagtgtgat ctatctcaga tagacact tgctgtatgt cagcccgctg cagctaat	ca tagcacgc 1658 gc tctccggacc cgatcgactg atgtgccgag 60 gc ggaatcttca tccaccttga agcaatccag 120 gc agatctgaaa tcgcacgcga tctgcttgtt 180
aaccaagaat ctgcattatc actacagt <210> 48 <211> 3375 <212> DNA <213> Aspergillus niger <400> 48 ggcgccccca cgcactccca gacggtgt gctcacaaaa gcgagtcacg acaaagca aaagtgtgat ctatctcaga tagacact tgctgtatgt cagcccgctg cagctaat ctttatgctg tcatttctcc ggactcta	gc teteeggace egategactg atgtgeegag 60 gc ggaatettea tecacettga ageaateeag 120 gc agatetgaaa tegeaegega tetgettgtt 180 ga caagtggaaa attateetee gtggaaggea 240
aaccaagaat ctgcattatc actacagt <210> 48 <211> 3375 <212> DNA <213> Aspergillus niger <400> 48 ggcgccccca cgcactccca gacggtgt gctcacaaaa gcgagtcacg acaaagca aaagtgtgat ctatctcaga tagacact tgctgtatgt cagcccgctg cagctaat ctttatgctg tcatttctcc ggactcta aatcaattgc ctctggtaca atgcgtat	gc tetecggace egategactg atgtgeegag 60 gc ggaatettea tecacettga ageaateeag 120 gc agatetgaaa tegeaegega tetgettgtt 180 ga caagtggaaa attateetee gtggaaggea 240 aa tgettttgeg gggttaatet ggeagtagag 300
aaccaagaat ctgcattatc actacagt <210> 48 <211> 3375 <212> DNA <213> Aspergillus niger <400> 48 ggcgccccca cgcactccca gacggtgt gctcacaaaa gcgagtcacg acaaagca aaagtgtgat ctatctcaga tagacact tgctgtatgt cagcccgctg cagctaat ctttatgctg tcatttctcc ggactcta aatcaattgc ctctggtaca atgcgtat ctagcagtca aaatgccctt ctttagag	gc tetecggace egategactg atgtgeegag 60 gc ggaatettea tecacettga ageaateeag 120 gc agatetgaaa tegeacgega tetgettgtt 180 ga caagtggaaa attateetee gtggaaggea 240 aa tgettttgeg gggttaatet ggeagtagag 300 at aaatteagea ggetateage ttggeattgt 360

gatggccgca	tatggagatc	cggtagagag	ttgctgatac	atatgctaga	atcgccttcg	600
gggactcgta	tacatatgtt	caagggacag	acgggctaca	gaactatagt	ttcatcgggg	660
atttacagaa	ctttgcatat	gacccacaca	cattgctgac	tgacaagatt	gtccagaacc	720
aggtgacaac	cattcctctt	tttgaaatat	actcgcaccc	atttgaagtg	ttgctgatgc	780
attcatgaaa	tgcagactgc	cactgcagag	ggcggtccca	attgggtgga	atacctgacg	840
ggttgcggtc	tcgaggaggg	actcacctca	cccttcgact	gcgaccaaca	gctatgggac	900
ttcgcctttg	caggatcaga	catctcagtt	gaatagtacg	catctgcaag	ccatacatca	960
tcttgcatac	ttcctctaac	ccagtacagc	accccactcc	accacaactt	caccgtctcg	1020
cttgtcaacc	aagttaagca	attcaacacc	tacgcgcaac	ccgtgctgaa	gaagaccgta	1080
gaccagtcac	acgcactagt	agccatctgg	atcgggatca	acgacatcgg	cgacagttcg	1140
aaatacgatg	tcgacttccc	gaccttctac	aacgagctca	tgaatacact	cttttcctcc	1200
gtccagacta	tctactccca	gggataccgt	tcctatctct	tcatgaacct	tcccccgctg	1260
gaccgcagac	caggaaacct	aggcagcgct	gatcccagtc	ccaacgcaac	acaaatcacc	1320
tggtacaatg	atgcgttggc	tcagcatgcc	agtgcgttcc	atgatcgcta	cgccgacacc	1380
aatgtgatgt	tgttcgacgc	gcatagcgaa	ctcagctata	ttctggataa	cccgggtgac	1440
ttcggcattg	tgaatatcac	gaacttctgt	gcgggatatg	atcagccgga	tatcgcgtgg	1500
aattatcagg	cgtatggctg	tcctacgccg	ttggatactt	atttctggta	taattcgggg	1560
catatgacga	gccatgttca	tgagatcttg	gctggtgctg	tggagaggaa	gttggaggag	1620
tggtcggatt	gagatgggtt	atacagtaag	ttactactat	gtcactggaa	tataggtttg	1680
gtatatatag	tcatttcatg	gtggtagtgg	ctggctcttg	gagacatggg	atttgataag	1740
tagtagttga	aagtacagca	ccattccaaa	tatatcatca	caacaccact	catcaaattc	1800
agaatacata	aatggtcaac	agatgaaatc	agaagaacta	gtgtgaacta	ctatgtagca	1860
gacaaaacca	tatcccacat	aataattacc	ccactcattc	atcaatcacc	tgtatgttaa	1920
gtaaatcaga	agtaccaaat	agtattcaat	acccgattgc	caacacgacc	agtatcagag	1980
acaaagttca	tactataacc	ctacactact	attaagtatc	ataaccataa	aaaatactgc	2040
agtgccaatc	tactatacta	catgtacttc	tgcatccccg	cagctactac	taaccaagct	2100

		-				
ctatgaattc	aatttcatca	taatgatgat	atatatagta	caacaacaaa	aacaaccacc	2160
actaccaaca	aacccataag	aaatgaatgg	aataaatcca	atccaaagaa	gcaggtagta	2220
acaaaacaaa	aacccctcac	catcctcgaa	gaaagaagca	aaagagaaaa	gaaaaagaaa	2280
gacacagcca	ctcgaagcga	accgttacat	cgcaggtttg	aggtgaactg	ttacctacct	2340
acctaccatc	taccactact	aataactagt	ctactaccaa	gcatactaca	tactacatac	2400
atagtcctaa	ccacgtcatt	ggtaagaaaa	gaatttaaac	caggatgacc	ctagtaatca	2460
taatcctacc	aattattacg	ataaatccat	caatacatac	atacgatcaa	atacatacat	2520
agttatcagc	taaacactag	taataatatt	gaaaatgaaa	atacctatcc	accctccccc	2580
gcccatgaac	aaggatataa	acaaggataa	tgcctgtcac	tacttgcttg	ctaatcagcc	2640
agccaactaa	cctaacctga	cctaagcagt	actactggta	aataaactgg	tcagtccgct	2700
cacccggtgt	ctctgcttcc	tgcgtggctg	ctgcggtgtt	atgcagctac	cgcctgtttc	2760
attcgggcgt	gctttgtgct	gctgctgctg	ctgttgtatt	ccctttgctt	tttcttggtg	2820
gatggagggg	gtgttgcaga	tcgaggctgg	atagcaggga	tcaagcctgt	agattactat	2880
ctaagtgcat	ggacttcatg	taggtgactt	gagagggtaa	cttgtgatgg	tgtaaaggtg	2940
tgctcccagc	aattttgtca	agaggtaaaa	cgattgacca	tttcataaag	ctaaaaaaac	3000
cagaagcaga	taggtacagt	ttctctccaa	ttatcagcat	gcaagtgaag	ctacacacta	3060
tctagtccca	tccgttccgg	gaacaagcca	agtgatacat	aactttttg	tttgataaac	3120
cacaacaaag	aatgagataa	ttaacgtgta	tccatgagaa	atatcagtgc	acaatcgtgt	3180
aggtttcgag	gtcaccctat	gtcgggggag	cctgttgttg	taaactgagc	aaaacacgcg	3240
aatagtctat	cgtgatatcg	acgaacgccg	cccgtaccgt	ggttacgaaa	aaggaatcat	3300
gcgaaggaaa	aagaacgtct	accgatgtga	gaatggaata	caagctcagt	gagtgaactg	3360
agcagcgagg	tcagg					3375
	actaccaaca acaaaacaaa gacacagcca acctaccatc atagtcctaa taatcctacc agttatcagc gcccatgaac agccaactaa cacccggtgt attcgggcgt gatggagggg ctaagtgcat tgctcccagc cagaagcaga tctagtcca cacaacaaag aggtttcgag aatagtctat gcgaaggaaa	actaccaaca aacccataag acaaaacaaa aacccctcac gacacagcca ctcgaagcga acctaccatc taccactact atagtcctaa ccacgtcatt taatcctacc aattattacg agttatcagc taaacactag gcccatgaac aaggatataa agccaactaa cctaacctga cacccggtgt ctctgcttcc attcgggcgt gctttgtgct gatggagggg gtgttgcaga ctaagtgcat ggacttcatg tgctcccagc aattttgtca cagaagcaga taggtacagt tctagtcca tccgttccgg cacaacaaag aatgagataa aggtttcgag gtcaccctat aatagtctat cgtgatatcg	actaccaaca aacccataag aaatgaatgg acaaaacaaa	actaccaca acccetaca acategatega actacaca acccetaca catectega gaaagaagea gacacageca etegaagega accepttacat egeagegtteg acctaccate taccactact aataactagt etactaccaa atagtectaa ecacegteatt ggtaagaaaa gaatttaaace taateetace aattattaceg ataaateeat eaatacatac ageecaactaa eaagaatataa acaacactag taataatatt gaaaategaaa geecaactaa ectaacetaga taataatatt gaaaategaaa geecaactaa ectaacetaga ectaageagt actactegeta eaeceeggteg etetegetee tegeggeteg etegeggtegt attegggegg getttegtee geeggeteg etegeggteg etaageggaa ectaagegga geettegeaga tegaggeteg atageaggga ectaagegga eattetgea agaggataaa egattegaa tegeteeca eagaageaga taggatacagt teeteecaa eagaageaga taggatacagt teeteecaa eagaageaga taggatacagt teeteecaa eagaageaga teeggatega etegggggag eetgeteggaaggataaa eggtteegag geaceectat geeggggag eetgetegteg eetgetegteg eagaageaa aggtteegag geaceectat geeggggag eetgetegteg eetgetegteg eagaageaa aggtteegag geaceectat geeggggag eetgetegteg eagaageaa aggtteegag geaceectat geeggggag eetgetegteg eagaageaaaaaggetetat eggaaageaa aagaacgee eetgetegggaagaaaaaggeagaaaaaggeagaaaaaggeagaaaaaggeagaaaaaggeagaaaaggeagaaaaggeagaaaaggeagaaaaggeagaaaaggeagaaaaggeagaaaaaggeagaaaaggeagaaaaggeagaaaaggeagaaaaggeagaaaaggeagaaaaggeagaaaaggeagaaaaaggeagaaaaggaaaaaggeagaaaaggaaaaaggeagaaaaggaaaaaggaaaaaggeagaaaaggaaaaaggeagaaaaggeagaaaaggaaaaaggaaaaaggaaaaaggaaaaaggaaaa	actaccaaca aacccataag aaatgaatgg aataaatcca atccaaagaa acaaaacaaa	ctatgaattc aatttcatca taatgatgat atatatagta caacaacaaa aacaaccacc actaccaaca aacccataag aaatgaatgg aataaatcca atccaaagaa gcaggtagta acaaaacaaa

<210> 49

<211> 3670 <212> DNA

<213> Aspergillus niger

<400> 49

WO 2004/074468 PCT/EP2003/005726 72/178

pectinases.ST251 aaccaccata gggcctaggc ttaccggaag tgttggcttg ggacattgcg gaagattgta 60 caatgatacg tgtgaatatt ccagctctcg taatggtgca gaggttgaga atcgcttggt 120 tgctttcaga gagagtcgca agatctatat aagcaatact ttctggagcc agaaaagtcg 180 aggcggagtc gatgatctca caggggcaaa ccactattac gttacgtccc aatcggcgag 240 gctgtctttt ccgtgccaaa gacggccggc aaataacagt cagtacaaat tatacgtgaa 300 cgatgataaa gcaaatgtca taacacgcaa tatggttgaa acaaggaatc atggctactc 360 aaactgaaaa gcaaccccag aaatcaaggc agaggccatg gtagcacatg ggttgtcata 420 aattcatcag caataaacca gcattataag ggcgaaagtc atgcacggtg atgttatact 480 atcagaagct ttgctccatt tatacagtat caaagtgatc gtgatgccgg atgtgacgta 540 ttcgagcaac taagaaatgc cgtcaacctt ctgggggcaa actcaagtcg ctgtcttcgc 600 gtcgagtccg aagcctattg ccgcggaatt ctcgttatgt acagatgctg ttggaagtcg 660 gccatatacc ataatacccc agctgcggat ggcgtacaac cgcctgaagt cattaatcca 720 ctgtaacagt ctgttgcagt attttcggag gtattcctgt tccacacgac tctgaagaag 780 tcatccacac aaaatcaaga agcagatggt gactgggcct tgattggcga ttgtgaactg 840 gcactgagaa cgcagatgtg gcaatatcct cttagcctac agtagaacac agagcattgt 900 ttatatgccc gcacagaagc ttgtatagat ggtaccagaa cgtttctgaa gggatgtctc 960 acatgtattg aagtatctac tgataaaaca gacattatgt gcggcttcga tcccccagct 1020 aattgctgtt catttgacag ttggccgatg tacttggatc cagtgtagtt caccatcagt 1080 cacttactgc ggtctgaatg ctcctgcaat ccgctggtcg aaggaaagaa cggatacaac 1140 accgagtgcc cgccatcatg aatctaagat gaggtactgg ttttttggta catggccaat 1200 cacgcagggc caaaccgtag cctttctcga aaatattgct gtctggggat tgtcctagtc 1260 ctcaccaage tgaccacteg gagatgagag tagettaett gtgtgtaeta catgecagee 1320 caatcataca agcccccatg ttcttcgagg gactaagcaa gccacccgga gccaccccga 1380 gacaccccgt agccaaaacg gaatagtctg atcgaccaat gcttgatcga taccttcacg 1440 atgttcttct cgctccgatt tgccatgtgc aggatacaag caagcaagca ttgcacgatt 1500 gctaccccgc aacaccaggg atgtgaggac ggggaaatct cattccatca accgcaattc 1560

WO 2004/074468 PCT/EP2003/005726 73/178

pectinases.ST251 aggtctgatc gcatgtcggc taaatggagt ttacaacatt tattattaaa tctattttac 1620 1680 ttcaaqaqtg attgcattca ggtttagaat gggtgtgata catacccctc ttttagtagt gatatatata gcgtccttag gggatcagca cggcttggtg cttgacagat ctctacatag 1740 1800 ctagaaattt cattgaacct acacttcata ctgcaatcac agcaataaac caaccatgaa 1860 actccaatcc teetggetee tegecageat aaccatgact ggtateecca cagtcacage 1920 cagaccatgg acccaacgac caagagcaga aaactcaacc acgaatccca cctacttctt 1980 cactttgtat gtccccattc caccaccta aactccacac aaataatata gtactaaagc 2040 ataactcage ggagactcct actcccaaac eggetteage geetegggea eccaaceate cgcctccaat cccatgggca acccagacct aggtgcgccc aaccattccc ctctacaccc 2100 2160 ccaacccaca taactaataa tatcgatgat gaaggaatcg gcaccacaac caacggcccc 2220 aactggatcg gctacctaac cacaaccgaa aacgcctcct tagtgctttc ctacaacctc 2280 gccgcgggcg gtgccacaat cgacaatgcc ctggttcctg catacccggg tgaccttgca 2340 tcacagttcc ggctattcga ggatgtgtat gctgataagc cggcctcggc accctggagt 2400 gcagaggatg cggtatttgg ggtgtggatt gggattaatg agtatattct tcctcctcct 2460 cetectecte etectecte tectectett ettetteatt eeeeggattg tecatatacg ggagggggt gttagtaggt gtatatgcta atgggatgtg tgttctgggg gaatatagta 2520 2580 taggaaacgc gtattactct accgatgcgg agacatacac acccaagtta atctccagat 2640 tggaaagtct agtggaagag gtatacaaga acgggggcag gaaattcctg ttcctgaatg 2700 tgccgccgac gagtcgcagt ccgttgtttt tggagcaggg agaggaggtg gtgaagcagc 2760 atgcggagta tttgagtgtt tataatgaga atttggaggg aatggtggat gattttacta 2820 agaagaaggg agatgtaagt tttttctact gttccctttg tttttctgtc ttgggttact 2880 tgtgtgttta tgtgggtggg cttgagggca agctaatcga tgaattggga caggtaacga 2940 ctgtcttgta tgactcgtgg tcattcatga cgaagatcct ggatgatccg acagcgtatg gattccccga tgcgacgtgt atcaatgatg atgggacgtc gtgtatctgg tggaataatt 3000 3060 atcatcccgg gatgaagtat catcttttgc aggctgagga tatgaagccg aagttgagga agttgggagg gtggtagtta ctttacttag tagtactagt aaatagtatg atgatattgg 3120

pectinases.ST251 gagaatatta tgtgacgttt aggatggctt atatattact agtatgttat taaatttgaa 3180 tgttgatgca tcaggtatat atatttatga agtactgccc tacgggtatt ttggctgaat 3240 tgcatcgtaa atattagcat cgcactgaca tgaaagctcc acctatgcac taattccgta 3300 ttcttcttat atgtaaatcc ttcttgtccc gtcacggacc tcatttccgc atcactttca 3360 tgaccctgac cctgccaagg cggatcattg accgagetta gtccctgtct tcgactttat 3420 ccgccctgta ggcattaatg atacctgcag gtgtgaagat ctgcaacgtc ttctgtctga 3480 atacctgttt actctctaca ttcggatgtt tcgctttaat ggaccgatgg atgtagattt 3540 ctggctaagt tacgttacct ccgtgctgga ttaggatagt tgggaggagg ggaagatata 3600 aaggttgctt attgtcttgt cctaaatagc gatagtaact gtagatttcg ttgatcgagc 3660 agtcgtagcg 3670 <210> 50 <211> 2726 <212> DNA <213> Aspergillus niger <400> 50 tgatggatat ggatcgattt tgggagtatt aatttctgga gtttgcttgt tatttggagt 60 ccggcggatt ccggtttgga agaataggcg tttgaatcac gatgggcacg agcgttgcca 120 tgagcccggc gattctgaaa ggcttctagg acgtttgaat gatcttgctt ctcgttcatc 180 tggtctgact ttggctttgc gcagtctaat gatctcgcat ttggttaccc tgtatagatt 240 attgctcgtt tcccggcccc tggtacactt ctgtacgtac acgactttat ccccaacct 300 gggccttgga attaattgat tttcacccgt cggctgacgg gcattgcttg aagaatctcg 360 tecetetete teteteatee ttececege aaattgetgg tgeegeatet eegeatetee 420 gtcatgctgc attgtggagg agaataattg caccaatggc agccctgtcg gcgctttgat 480 ccccagagat ttcttgtcct catgatgtgc tcgtgcaggt attccagtaa ctccgatatt 540 gagtettaat gaactteggt etgetteata eegaceteae tgtaetateg caaccatgat 600

accetataaa acgetgetge ttteggegea geteteecea geeaggteea eeagggatae

aaccaccacc tgcagccatg gactttccac gcctcctcct ggccttgtgc ttcctgttaa

cattctccct caccagegee tacgatgege ecctegteac tetagactat ggeacettee

660

720

780

agggcagcta	tgatgccacc	tacaacctct	cctactttcg	caaaatcccc	tttgcagcac	840
cagccacagg	cgagaaccgc	ttccgagcgc	cccaaccccc	gttgaacatc	accaatggca	900
cctacgacac	cgaccaatcc	tttgacatgt	gccctcagcg	caccgtcaac	ggctccgaag	960
actgcctcta	cctaggtctc	tactcccggc	cctgggacac	ctcctcgtcc	accaccagcc	1020
gccctgtctt	agtcgtcttc	tacggcggcg	gcttcatcga	aggcgacgcc	ctcttcggca	1080
tgcccccaa	cgcctacccc	gtgctcaacg	tcagcaccct	aaacgactac	atcgtcgtct	1140
ataccaacta	ccgcgtcaac	gccttcggct	tcctccctgg	ccaagccatc	aaagactcgc	1200
ccacctctga	ccttaacccg	ggcctcctcg	accaacagta	cgccttgaaa	tgggttaaat	1260
cccacatcca	ccgcttcggc	ggcaacccca	acaatgtcac	catctggggc	caatccgccg	1320
gcggaggctc	cgtcgtcgcc	caaatcctcg	ccaacggccg	cggctccaac	ccaaaactct	1380
tctccaaagc	cctcgccagc	tcgcccttct	ggccgaaaac	ctacgcctac	aacgcccctc	1440
aagcagaagc	catctacacc	cagctggtaa	acctaacgaa	ctgcaccaca	gcctctgata	1500
ccctcaaatg	ccttaaagaa	gttgacgttc	aatccatccg	cgacgcaagc	ctcatcatcg	1560
acgcggacaa	cacctacaca	acctcatctt	atacctgggc	ccccgtcatc	gacggaacct	1620
tcctcatcga	acccctcacc	tccgctaccg	cctccaacac	ccttaaaact	gatctaatct	1680
ggggcatgta	caacgcccac	gaaggcgaga	acttcatccc	cccgggacta	gaagatacaa	1740
ccacaacaaa	cggcttcaac	tcctccctcg	cgtccttcca	taactggcta	actggctttc	1800
ttcccggtct	tgatacaagc	gatatcaatc	tcatcgaatc	gaaatactac	cctgtttctg	1860
gaacagcaga	aacactatcc	tataatacga	cgttcgtccg	cgcgggactt	gtttacaggg	1920
atgtggtgct	cgcgtgcccg	gcgtactggg	ttgcttctgc	ggcgggcgag	aaggggtatg	1980
ttggggagta	taccattccg	ccggcgagac	atggaagtga	tactgaatgg	gtatgttgtc	2040
ttttcccttt	cctatgtaga	tatatatccc	tatctacata	ctacgtagtg	atactaatac	2100
taatcatgcg	agtgtagtgg	gacactgtgt	ccacagtcca	acaaaccgac	ccattgatct	2160
acgatggcta	cgccggcgca	ttcgccagct	tcttccagac	gggggacccc	aacgcacata	2220
aattgacgaa	tggatcggag	cccggcgtgc	cggaggtaca	gcagacagcg	gaggaatttg	2280
tgattgccac	agaggggttt	gagaatgtgg	ggctgggcga	gttggaagat	cggtgtgcgt	2340

tttggaagtc	tgttgggaag	aagattccta	tttgattttt	tacaactagt	agtagtattt	2400
tctagttgtc	tatttagatg	atggacgtct	atagcgtaca	ggtgtggtat	gagaaagagg	2460
atctaagtag	tagagatgtg	gtggttgtgg	ttgtggtttg	ggggagaaat	atacaaatta	2520
taatacatga	ggtcagatca	atcaaataca	gccgtgtata	tcctgagtga	tgcttcaagt	2580
caatgcatgc	aatgcatgga	gtctaaatat	tatctttcct	tgttgccggt	ttccgaacgc	2640
cgtcgtcaaa	ggctcgtcag	tatgatttga	ctgggccgta	gggtgaataa	tagtacaggt	2700
tgtgctggtt	gttgtcgttg	ctgccg				2726
<210> 51 <211> 449 <212> DNA <213> Asponsi	6 ergillus niç	ger				
	tctcagaagc	gatccgaatt	ctagcagaac	tgcgaggaat	ggaccttggt	60
taaatagttg	ttgcaattcc	cacgcctcca	teggeategg	gcagtcccgg	tcgcggaaga	120
ggccgatcgc	tctatcttat	cgctgtctta	tcgtgcctta	tcaatcagtc	ttttttggga	180
cggacattag	caaggggaag	atcagtcatt	gattgattaa	gggattgatt	gactgaatag	240
gaatggcttg	cttttgaaca	tggcttcccc	atgatgtcag	gcaacagacc	agggcagtca	300
tgtgccgttc	atggggcagc	acttgactgt	catggccaac	taggtccgaa	attaccatgo	360
gatatctgct	aaccttatga	taatcagggg	tcaggtaata	caacccttgg	ttgattgccc	420
ctaattatca	tacacgcttt	gattaaaata	aatgttgctg	gtcacatgga	tgtctggcta	480
cccctgtgct	gtctgggctt	caccacgagt	attgacctcg	caagattggt	cttctctcaa	540
caccctctgt	ctttgacaag	ccgtgcgctt	ccatagttgc	cttcatgtag	gaagatgttg	600
gacagcaatt	tgatgtcgca	cataagcttg	gttgattcaa	gttggggtat	ggtgctgtca	660
caactatgat	ccccagctga	acacgaccag	tcttgtatga	gaccgtgtgg	tgacattctg	720
ggaggctcgc	aaaccgcacc	tcttcctgca	acaagcttac	cacaatcatg	gcctattctt	780
					•	0.40

caaagataac cccagcatcc gatctccgac cccatcggac aatagagtcc tcaggggcaa

catactacag tgacggctgc ctcaagtaca gtgaccggta taatttccca ccactcatcg

840

900

WO 2004/074468 PCT/EP2003/005726 77/178

ctacacaacc	caaataacca	pect gatgaggttt	inases.ST25		ggcacgggaa	960
						1020
		gggagacaga				
attgtcccgc	gcgctacggc	agttcttccg	ccggagctgc	gaagtgccgt	ccacagaaag	1080
ccgggagata	ttccaccaca	gagacagcag	agatggccca	atgatacatt	caatgggtat	1140
aaaacgcacg	tattccgcca	gccaagaaag	cccaagagga	accaagacat	tgattaaaag	1200
cttgtctcaa	accttgatct	gcgagtgcct	tcaacatggt	gacttctagc	tcggtgatcg	1260
tcctaacgct	ctgggccgca	ctggtcagtg	cgagccccgt	tgccgatccg	ctggtgaccc	1320
ccgcccctaa	gctcgaggat	ctggagaagc	gcgcaacctc	ctgcacgttc	tccggctctg	1380
agggggcctc	gtctgccagc	aagtccaaga	cctcgtgctc	caccatcgtg	ctgtccgacg	1440
tggcagtgcc	ctcaggcacc	acgttggatc	tgaccgatct	gaacgacggg	actcacgtaa	1500
gttactgcgc	ctccacgcgc	gattcttcac	atctcacaat	gaacaggtca	tcttcgaagg	1560
cgaaaccacc	ttcggttacg	aggaatggag	cggacctctt	gtctcagtct	ccggaactga	1620
catcaccgtc	accggggccg	atggcgccta	tctcaacggt	gacggcagtc	gttggtggga	1680
tggcgagggc	agcaacggcg	gcaagacgaa	gcccaagttc	ttctacgccc	atgatctgac	1740
ctcgtccacg	atcagcggga	tctacatcca	gaactcgccg	gtgcaggtgt	tcagcattga	1800
cgggtcgacg	tatcttacca	tggaggacat	caccattgac	aacacggatg	gcgatgatgg	1860
cgaggcggcc	aacaccgatg	ggttcgacat	tggtgatagc	acgtacatta	ccatcacggg	1920
tgccaatgta	tacaaccaag	atgactgtgt	ggcggtgaac	tcgggcgagg	tgagtatacc	1980
gtcctttaag	gtacggatgt	ggacactgat	gggaaccaga	acatttactt	ttcgggcggc	2040
gtctgctctg	gtggccacgg	gctgtcgatc	ggttccgtcg	gcggtcggag	tgacaacacc	2100
gtgaagaacg	tgaccttcta	cgactcggag	atcaagagct	ctcagaacgg	taagatttat	2160
tccatcaagg	ttgtagttcg	gtgcgatcac	atactaagcg	gcgtatagga	gtccgcatca	2220
agaccatcta	cggcgacact	ggatcggtca	gtgaggtcac	ctacaaggag	attaccctgt	2280
ccgatatcac	cgactatggc	attgtggtgg	agcaaaacta	tgacgatacg	agcaaatccc	2340
cgaccgatgg	aatcaccatc	gaagactttg	tcctggacaa	tgtgcagggc	agtgtggaga	2400
gctcgggcac	caacatctac	atcgtctgcg	gatcagacag	ttgcacggac	tggacttgga	2460

pectinases.ST251 cggatgtgga tgtgagtgga gggaagacca gctccgactg tgagaatgtg ccggacgata 2520 tcagctgtta gtagctgggt aggattatgg ggggaacaag ctgtattttt gagagaagag 2580 tggattgagt tgactaagag acaatgtagg ttttgatttg caaacatgaa ctatcgttct 2640 ttgtgtctca atggatacca gtcgatcatt gatgaacgct gctatgatca tcactgatag 2700 tcaaattgtt ccattgtaaa ggttctactt tacctcggcc cactgattac ccacacagcc 2760 ctcgtaggca gggaaccatt ctccctgttt cccttttgag ataagctttc actgattggt 2820 gggaatataa gccttggggt tgcagacaga ggccgcacgc cacttctacg acaactcctc 2880 aacgacgcaa cacaagacac aggacatgga tatatacaga tetetegatg egtactteca 2940 ctacaagcag ggtccacagc gatgaaccgc agagtactga aatcccgtca taaacttgtc 3000 tgttcattgc atgatcccaa cccccaatta ggctttacac ttccaggtct gcaaaccctg 3060 tctgggcaga ctcttggcca gcttaagatt tccagttccc tgctatagga caggcctgcc 3120 aacagcgtgt tccaaaggct gacggtcaca ccacatgtcg aaccatattc cagacccgaa 3180 ttctcaaacc ccaatctata tcccgatcag gtatcacctc agaggatctg atgtcatgtg 3240 ggatattccc atatcaagga acaaatgcga ctgtctcccc gtttgcctcc tgcataatac 3300 tgacaatgaa ccccgacggt gttcacatcc ccccggggat taggattaga tagatccctq 3360 cttccggccg agatagaaac cggtcctggc tcggagcatg gcttcatata tagacaacag 3420 tactagtact agetaacaac aacaaccect aatgtaccat teetetttge attegegtgt 3480 gcatttaata ctattatacc cgtcatgtcc ctgacaaaca tagacacaac caacccagcc 3540 acaccecca ecgaetecaa cacaacaaca acegtaacea cacteccaac egaegaeete 3600 acctecetee caaccatece etacacecea eccacaatet ecceegece ectegecate 3660 ctcggcgccg gcaacctggg ccgacgcatc gcctgcatct tctccgcggc agggcacacc 3720 gtgcacctcc acgacccaaa ccaaggagcc ctacagtccg cacaacacta cataacctca 3780 aacctcgcac actacacgac gttcccactg atatcccgac cggtgggaca aatccacgcg 3840 ttctcgtcgg cggacataac cccggcggtc agggacgcat ggctagtgat cgaatgcgta 3900 ccggaacacc tcccgctcaa gatcgacatc atgggcgagt tggacgccaa gaccccgcgg 3960 gactgcattc tggtgtcgaa ttcggcggcg tttcggacga gtttcatggt ggaaaaggtg 4020

WO 2004/074468 PCT/EP2003/005726 79/178

tgtttggaga gacggcggct g		inases.ST25		gtggatcagg	4080
gccgtggagt tgggggtgaa t					4140
tgggtgttgg atgattgtgg g					4200
					4260
ggtggtggag ggagtggtgg a					
aatacggtta attgatttga t					4320
gaaatgaatt agctaaggtg g	gtaatgatag	atgggggtac	gacttttata	ggagtggtgt	4380
gggtagcata gagtggaata g	tgtgggtgc	ttgaatgaaa	cttctcttca	ttatcatact	4440
gtgtatatat aaactcgtct a	tgattgtat	ggtgtatggt	gtatggatat	ggtata	4496
<210> 52 <211> 4128 <212> DNA <213> Aspergillus nige <400> 52	er		•		
atggtgagtg ctctccgttg t	gttgttgcc	tgatggagaa	gccgatgcta	atcattcaac	. 60
tttcaggtgc acagtcacgg t	ggtctgcag	tgatgtcctt	cacatcaggt	ttgcatatac	120
tctttttctg gggagtcagc c	tggtttgaa	tgccggcaat	gaatagcaac	gagaacctca	180
ttgtacatta ctactcattt t	cgccctgta	ttgtcgaaca	catgttgcct	attatgctgt	240
tgcggggcgg gcagacatgg c	tatatattt	aatcatagaa	cttcatgaaa	cgataaaaac	300
aacctctatt ccctgtgctt g	gacctgttag	cgttctcaat	aaacaatcgc	aatagccact	360
gggcctgact gaagagagga g	gcctcagtt	gtgaccgcac	aatgtggccg	gcgacactcc	420
gaagaggcaa gcaagtccgg t	cggcaagca	cggaggtcac	tagcgccgag	tccaccgctc	480
ggcaggggaa cctcatttcc t	ttcaataac	cacaaggctt	caactgtatc	taccctccag	540
cattgggccc ggcaatcacc c	gggctggcc	taacttatct	ctttagaaat	ccgaacaaaa	600
tccatttaga tcacaaacta t	attgcaatt	tagcatgcat	gacagaccct	tatttaagag	660
cttatgctcc gattgagagt a	tccgcccaa	tcccctgatc	agtgctacgg	gccatcggct	720
tagtcttgac ttcgggcgtt t	cagattgaa	attcccaccc	ctgttggggt	aggcgagagg	780
gaattcccag caatccctat g	gaagctcga	aattttctgc	ttggcaactg	gtaaaagatt	840
cttgcgcttt gattaagcaa t	attaactga	gtcgtcagct	atcaattaga	ttcatcaaaa	900

ggactcttgc	atcttccgct	tactatactc	tctcaaggcc	tgcctgatgg	tctgatcagg	960
agtgaactgc	ccagtatata	tgcccccttg	agcccttcaa	tctacttgag	tcgataggcg	1020
gggctaatgc	cccattcaaa	ttatctaaga	caaacgccct	aagcatggag	caagtctcaa	1080
ccgggagata	gcgcatcgat	cccgctcttt	cgatgttttg	gattgcgccg	ctacttcctc	1140
atccaggcaa	attgttttgt	gggttccagc	aatagtatcg	atagcttcat	ctagttcact	1200
ctggtcgtgt	cagaggtttc	cggtatggca	ccggcaaaac	gttctagaaa	tagaaatgat	1260
gacagcggga	aatagactac	tgtcagagga	gcgcttgaat	agcttttccc	tataaagaga	1320
gcgcctagga	acccctgccg	tgggcatgat	tcgttagata	tctcaatgtt	cattctttag	1380
gggtgcttag	actcacttcc	tttcactctt	tttttattt	gtaaaccccc	acattccttt	1440
ctttccttca	agctcgacga	agcatcatgc	ttctcgacaa	gctctctgtt	ctctctttcc	1500
tgggcctggc	gcccatcttt	gctgctgcgc	agctctccgg	ttccgtggga	ccgctgacat	1560
ccgcgtccac	caaggcagct	accaagactt	gcaacgtttt	ggactacggt	gctaaggcgg	1620
ataagtctac	tgatctgggc	gcgccgttgg	catctgcctt	cgctgactgc	aagtctggcg	1680
gtctcgtcta	tgtcccctct	ggtgactatg	ctctctccac	ttgggcgaga	ttgagcggtg	1740
gtgaggcatg	ggctctgcag	atcgatggaa	tcatctaccg	tactggcacg	gacggcggca	1800
acatgatcta	tatcgagcac	tctagcgact	tcgaactttt	cagtagcacc	tccgaaggtg	1860
ccatgcaggg	tctgggctac	gagttccatg	ccgatgataa	ctggagcggc	cctcgtctgc	1920
tgcgactcta	tgaagttact	gacttctcgg	tccacgattt	catcctggtt	gactctccct	1980
ctttccactt	ctctctcgac	acttgcacca	atggcgaaat	ctacaacatg	gcaatccgcg	2040
gcggtaacca	tggtggtctg	gatggtattg	atgtctggag	taacaacatc	tgggtccacg	2100
atgtgagtac	cgaagagcat	aacgtttcca	tacaggttat	taattagtcc	gataggtcga	2160
ggtgacgaac	aaggacgagt	gtgtcacagt	caaggtaaga	ccctgatgag	tgcccgagca	2220
ggaagcttca	ggctaacaat	caataataga	gcccatcgaa	gaacatcctc	attgagagca	2280
tctactgcaa	ctggagtggt	ggctgtggta	tgggctcgtt	tggctctgat	accaatgtta	2340
gcgacatcac	ttaccgcaac	atctacacct	ggagctcgaa	caacatgatg	ttgatcaaga	2400
gcaacggagg	tagcggcttc	gtcgagaatg	tcctcctcga	gaacttcatt	ggtgagtgat	2460

atcttatgca	aaattattgg	tcttgacggg	actaaccgag	gactctttct	gttggtaaac	2520
aggacacggc	aacgcttact	ctctggatat	cgacagctac	tgggccagta	tgagcgcggt	2580
ggacggcgat	ggtgtccagc	tgagcaacat	caccgtgaag	aactggaagg	gaaccgaagc	2640
ttacggtgct	gagcgtggtc	ctgtcaaggt	ggtctgtgct	gatggtgccc	cttgctacga	2700
cattaccatt	gaggacttcg	ccatgtggac	cgaggagggt	gatagtcagt	ggtactcttg	2760
tgagagtgct	tatggcagcg	gatactgcct	tcaggacagc	gatgaccacg	tctcttactc	2820
ggtcaccact	tctacagtca	gctccgctcc	ctcgggctac	tctgcgacct	ccatggccgc	2880
cgatctgacc	actgacttcg	gctctactgt	ctctatcccċ	atcccgacca	tccctacctc	2940
tttctacccg	ggtgccaccc	cctacagtgc	tctgatggcc	aacagcgctt	ctactgccgc	3000
tgcttcttcc	attgccagcc	atgccactgt	ccatagcagc	agcgcttccg	ttgctgcttc	3060
tgtgcccagc	gctgtcgccc	ctagcgagag	catccccgcc	gccacttccg	ccgtggtatc	3120
cagcgctgct	gccattgccc	ccagccccgc	tgtgggtgcc	caggaggggt	ctaccacctc	3180
cgctcccagc	tttgctgccc	ccagtggtgc	tggaaactct	ccccagggtc	ccaccggagc	3240
ttctggattc	ggcgaaaagg	gccagcaggg	tgagcagggt	gaacagggcg	aacagggcga	3300
gcagggtgtc	tgctacgtgt	aaagtcgaac	ctgctataat	tcggaatatg	ctggtagctg	3360
tgaattgtag	gggggggatc	tatagtagct	tggtatgtag	ctcaaatctc	accagctgct	3420
gcgcaagctt	tgtgtaacat	agtgactttt	aatcttctcc	acgaatagtt	attgttttga	3480
gccttattgt	aaacacattg	tcgcactgca	ttatgatgtg	tcccctacct	actgcgaagc	3540
cctttcgatg	aatacgacaa	gtcctcagat	cactcgggcc	cctagttgct	gcgcagggcg	3600
ggtacctgtt	tccgtacctg	aagtcaaagc	tcagcttcct	gctgtcgcgt	tatcacgacc	3660
gaatgaaatt	cggatactca	caccattcaa	aacaagatgt	atgcaaaaat	aagccgtatg	3720
acccagcatc	tcacctcgat	taattggacg	ttattcaaag	ttgagaaatg	caagcgaccg	3780
actagaaaaa	aagataaggg	gagagggag	aggggctggg	cagaccaggt	ctagaagcag	3840
gggttgcagt	gatgtcacgg	cgggagggta	gcagcagcaa	cccagcaaac	caacagggaa	3900
gaaagaggag	ctttggcctc	gactttcccc	cgcatggcct	caaccacctc	ctcctacctt	3960
ttcccatcgg	ttgggattcc	ccacctcgtc	ctgtttgttc	ttctcatgag	tccatcctgt	4020

tttgacgctg ttgactagat tccctcactt gtttgtgtat tatccatcct atccctacgg	4080
tccaccettt ccagagetta ateteetgee actggegate cattetee	4128
<210> 53 <211> 3058	
<212> DNA <213> Aspergillus niger	
<400> 53	60
cctgacgctg actgccgtcc tgcattgatt aaaacgtgga gaactccggt ggtgtttaat	60
ctatatgggc agatgttgtc ctttgccttc tccgtgtcat ttgcaagacg gacccagtgg	120
acaatggctc gacgcggcca gtcgatgacg ccttttaaaa agagctctgg tgccaggctt	180
gactccctcg aaccgctgga tccgaccgtg agagtgataa ccgggctcat tagaggcgag	240
cgtcgatgac aaccatgatg atctactctc tgcttctctc tgcattgcct ctgctcagca	300
gcgccgccct gacctaccgc ggggcggata tctcctccct tttgatcgag gaagatgccg	360
gcatcagcta taagaatttg aatggcgaga cccaggcatt ggaggatatt ctggtcaaca	420
atggcgtcaa ctcgatccga cagagggtgt gggtagaccc cagcgatggc tcgtacgatc	480
togactataa totoaagotg gocaagogtg ttoaggoogo gggtatgago atttacttgg	540
atctgcatct cagtgatacg tgggcagatc ccagtgatca ggtccgtcct actgctggaa	600
gggaagacac cgcaagagag agatggaaca ctaacgtaag agatgtatac agactacccc	660
taccggttgg tcgaccacgg acatcgacac actcacctgg caactgtata actacacgct	720
cgacgtctgc aacactttcg cagagaatga cattgacata gagattgtct ccattggtaa	780
tgagatcagc agcggacttc tctggccatt gggcaaaacc agcaactatg acaatatcgc	840
gaagetgetg cacteeggeg cetggggagt gaaggaetee aaccaggeea caacceegaa	900
gattatgatc cacctggaca atggatggga ctgggaggaa caagaatact tctacaagac	960
tgtcctggcc acggggtcgc tgctctccac ggatttcgac ctcatgggag tctcgtacta	1020
tocattotac agetoggaag ctaccetgte ggegetecag accageetea egaacatgea	1080
atcgaactac gataagtccg tggtggtggt ggagacgaac tggcccgtgt cttgcccgga	1140
	1200
cccggagtat tcattcccgt cggatctcag ctcgatcccc ttctcggccg caggacagga	1200

WO 2004/074468 PCT/EP2003/005726 83/178

pectinases.ST251 1260 ggagttcctc gagaagctcg cagaggtggt agagggcgtc acggacggac tgggtattta 1320 ttactgggaa ccggcgtggg tcgacaatgc cgcgctagga tccagctgtg cggacaacct 1380 gatggtggat attgacacag atgaagtcct ggagagtgtc accgtgtttg aggacctctg 1440 atatttttt cttctgtttg agagcaccag atcgatgcat ctcagctatt atgtactcta 1500 ttaagtagtg atgttacagc gtatgtgtgt gagtatagta gtatgtgtta ataattgatc 1560 aacaatcagg agttagtacc ataactcaac tetgetacet geaceacttg aacagtagea 1620 aacagtttca gaaaacgata aactaaacca aagaagaata agataaaaag gcacacccgt 1680 tagggaaata attcatgtag atccatcaag aaactatcgg cccgcgcgca caaacacatt 1740 aacacacaaa tggtgaagcc tgcggttgaa ccgtggacct gcagtcgagg ggcagcagat 1800 agggtggctg tgcaaccagc gatccagttg ggatcggcgg tgttctaagc agctaatggc 1860 atggccggcc aatctatcta aatcagagcc aaggaaattg aaccctggga gtttgtcgag 1920 agagagaga agagagagg agagaatgtg tgtttgcaac cgagataggg ggaggggtta aggctgacag gtttgctgaa gagagaaagt taagagaata gatggtgatc tatccatcac 1980 acaattcgga aataatcaat gattatcgta atacgaaggg atcagtgcgg gatatttggc 2040 2100 acatctctct tcctcttact atttgacgta aaataatccg tgacgtgagg gtttccgact 2160 tqcatqacqc tqqqqaqata aaaqtaaaqc atatqqaqqa aaqtaqaqqq atatctqqca 2220 ttgctatgga gtatgtatct aattagggca atcaaggaat tctcgtcgct gcagcctgtc 2280 aggtcgtgat cccaatcata acaccettgt acttttattt ttgtctcttt ctcttggttt 2340 gacttttgat ccttgtcaat cgacctggtg aggaagagat agacaggcta tttttatcct acatetecta ecegattaga teagetgtee etcateagea tgaactaact acegtgacaa 2400 ttggcttttt gggctgtgat ggatgattca atcaatcaat caataatttc ttcagttatt 2460 cttgctttgg acccttttta gatcagcact gtgcaggtta actcggctgc aggctacgtc 2520 2580 aaccgttttt ttgctcctgg tttcaccctt cgttcatctc agtctccagt ctcagtggat 2640 cctgcagtct gccttgtcag atcaacacac acaccctcac acactactac tctttctctc gttctccatt gattaactct tatccattga gaaataaatc ccgcaatatg ctgctattct 2700 2760 tatcattttc ccgaccaggg gggataggaa agtctcccct gctttctagg cagcgttcgc

pectinases.ST251	
aagggggata teegeattae aactagaeta gaatgtgagt aettgtgagg ttgaegetga	2820
aaatgaccgc cagtgaagcg gattatagcg tcattttcac gccgtgtttc cagtgacctg	2880
ttgctgctcc aatgatttca atgtctcacc ctctctttcg ttttagtcgg agattcttta	2940
ctttatttcg tagaggcagt ttgcctattt agcagtctaa actattattg tcaagtcttt	3000
aagagttatt gatacaatcg cttgctctta ctattgacta actgcacttc atgctcag	3058
<210> 54 <211> 3121 <212> DNA <213> Aspergillus niger	
<400> 54 tcaatctgcg acaggeteeg ceatgattga catggetgtt tecatgtteg egteaaette	60
ccgtgcacat atggcagata ggcccaaacc ctctatggca ggttcttcga gtcttcaact	120
attaaactac ctctcgactc agctttggtt cagtttccat caccaagcta actcacacat	180
tcacgttctt ttcattcgtt ttcttcagaa ctgctggttc agtccttcct ttcatatccc	240
caaccttgat ttctgaggct cgttgcaatg accctccttc gtcatctctt aacggcaact	300
gccttgctcg gagcttcagt ccaagcagcg cagggtgtca ctggctcccc cttcggtttc	360
gctagcggca cgaccggtgg cggtgatgcc actcccgctg cgcccagcga catcagccag	420
ctgaagacct ggttgtctga cagcaccccc cgtgtcatcc ttatcgacaa ggagttcaac	480
ttccttggca gcgagggcaa gtgcaccaac tgcgagtgct gcaaacccgc ctcgaacacc	540
tgcggtagct ctggccagaa tgccgtcaag cagaatggct ccgactggtg cggtagctat	600
cccaccctga cctgcacgta cgacaacgcc ggtattgagg gcctggaagt cgcctccaac	660
aagtctattg ttggcgtggg tagctctggt gtcctgcgtg gaaagggtct gcgcctggtg	720
aacggtgtca gcaacatcat tatccagaac atccacatca cggagctcaa ccccgagttc	780
atctggggtg gtgacgctat caccctcgac ggcaccaaca acgtctggat tgaccacgtc	840
aagatcaacc tcattggtcg tcagatgttc gttgccggat acgaagccag tatgtttcca	900
aaaatagatg tacattgttt ggattcaaaa ctgacagtgc gcaggtcaca gcgttaccat	960
ttcgaacagc gagtttgatg gtgagaccag ctggtctgcg acttgcgacg gccaccacta	1020
ctggactgtg taagttccat gtcgtcccac gcgctcctcc ttcattacaa catcctaaca	1080

ctat	ctagtc	tcggatacgg	ccacaatgac	aagatcacct	tcgccaacaa	ctacatccac	1140
caca	acttcgg	gccgttcccc	caagcttgag	ttcaacagct	tctggcacgc	gtacaacaac	1200
tact	ggtaca	acaacactgg	ccatgccttc	gatgttggca	agaacacccg	tgctctgatc	1260
gag	ggtaatg	tgatggtcca	ggtcgacact	cctctcttgg	ccgacagcaa	ccccggtgcc	1320
gtat	tcgccg	tgaacaccag	cgatgtttcc	acctgcacca	gcaccctcgg	acgcacctgt	1380
gtc	ccaaca	ctttgatcag	ctccggtact	ctctccggta	gtgacagctc	tgtgatcagc	1440
agct	ggccct	ctggtgagtc	cgacgtcacc	gtcatggctg	ctagcaaagt	tgcttcctac	1500
gtca	aaggcca	acgccggtat	tggtaagctc	ggcaacggat	ctggctcctc	cagcaccgtc	1560
ggc	geggeeg	ccacctccgc	tgtcgccaag	cgtgccgact	ctgacgatgc	tccttttgtc	1620
ccg	gcctact	ctgaggctgg	ccccggcgct	tccgctgtcc	ccacccagcc	ctcctggtct	1680
tgga	aggacag	tcaccaacgg	ccctgctccc	actggagctc	cctctgatag	cccctcggcc	1740
ccc	cagggtc	ttggtgctcc	tgtccaggct	tcgaacaagc	accaccacca	gggacacggc	1800
cgt	ggctact	aaagggaatt	tgtgggttcg	cttctgcgct	gccaagctga	caatgaagca	1860
agct	tgagata	attcccattt	tcaacggtct	gtgagacaac	atttgtgtac	atttccgaac	1920
atto	catcttc	tttgtacatg	atcaggctct	agccagatat	tccctagcta	gtgtcttatt	1980
tato	cctattt	agtcaatcta	tcaatccttc	cacatgggtc	tatctcgctc	catacctctg	2040
tago	caggcaa	tataacctat	gtagcaatcg	taggctgaca	tagagtggta	tgataagcag	2100
gct	gcaatcc	gagtcttgta	gcttacgtat	tcgtatctac	catcattttc	ctgattgaat	2160
tcgt	ttgtgt	agacatcagt	aaggcacttg	ttccaagaac	gattctgtta	aatctctatg	2220
tctg	ggccgtg	atatggctgg	cgagcctttt	ccgcttacat	tgtttgtcta	gtaatgtcgt	2280
caag	gagcatg	gctaccaaca	ttatctccaa	ggggtacttt	gaatgggtaa	aatgatgaag	2340
tcaa	aagacct	ggtactttga	attacagtta	gcaatatcct	tttcttaagt	tcttttcgtt	2400
tctt	tcttt	ttctcccgtc	tagtatttac	tactgtatac	cagtattaac	cattgataac	2460
cagt	caaagt	tgaacctgat	ttcagggtgg	agcgatatat	ataaattgga	catcaataga	2520
tgc	caccaaa	agtactacta	gtgctggttt	ttctgccgat	acccctacag	caaaaagcaa	2580
cata	atgccag	cctgacagtc	aggcctctat	gtctgaattc	cagtctacca	aaagatcgta	2640

tatcagtact	taatctatgg	catattcaat	agacagattg	tttcgcaagc	tgcatgacgt	2700
catctgctga	gtgacacgaa	gagaggggc	gaaaaagtcc	gctggacgga	gcagaggatg	2760
gctagaacaa	aagagaactt	cttgaataag	ttttcgaatc	actgtccgct	agctgattat	2820
ttgagaaaca	ataacaatcg	gtgcccaggg	ccccacgca	gcagtggatc	gtctgaagtc	2880
tcgccgtcga	tacgcggcgg	tccatcacgt	gagacactca	acgcgtgaag	gcgtcacgtc	2940
cggcgcgaac	gagacacgaa	cttgcagcaa	caccggggga	gcgcagtttc	ccgcgacgac	3000
catcattcct	cgtgacaata	ctaccaatcg	tcaaacctgc	ttcttttct	catattaatc	3060
ccgataccct	aattattgga	gaaaagaaac	gcgcctgctt	aaatttctat	gacccttcat	3120
С						3121

<210> 55

<211> 2584

<212> DNA

<213> Aspergillus niger

<400> 55

gatatctatt tatgtcaaag ggtatggagc gagggcgttg gtttgtattt tgcatgacat 60 120 ccagctgcca atttatgacg aggagatcct gatgagctgg ttaagactgt catgcgttga 180 tocagtaccc tgtatgctat tgatgcgtat aatgatgttc cggctacttg aactgccatg atcaagtaat ttctacccgc aataagatca actgaactct ggacgttccc aagttcatgg 240 ccacgtagtg gatgtaattg aatagaggcc agattctcca tctctacaaa gtagttgatg 300 togatcotgg cacctcactt tagctgagac ggcatcacat gccgtcccgc tgattggccc 360 gttgtcttac tgcgggcgat cgacgatcaa cgccgaacgg acgggccaat tcttcctgat 420 · atttattgaa ctcccttccc ccgtccactc cgctagtgct gactgctctc gttatgcagt 480 tggcgttctg cagttatcct agcatcagat atgtaagtta tttcccgcag aagcacagga 540 600 gcgagactaa ttggagatgt agatgagaac catcaggaag gggttcgcca agacctacat catctattca tgatatcggg ccacgaataa ttgaagtgtc gagtgtcact tgccaggata 660 cagggtgctg ccatacccct ctttcagtta ctatcctgga aatcgcatca tcaccatcct 720 ggattgcaac atcctcacca gttggcgcgc tcacatgcac tgagcatcca tttatcaatc 780

WO 2004/074468 PCT/EP2003/005726 87/178

pectinases.ST251 ctggaataag caaccaagca atgagccacc ctctcaccac cacacaatga cccccaactg 840 gtccaaacta tggaccttca tcgccaaccc caaagacccc agttctagct ccccatcacc 900 atatacactc cgtcgcataa tcaaatccct ctcccttctc accgtcttct ccatcttcct 960 ctacgccctc tacattcact tccagccctc cattatccca caaaccccag acctcccaga 1020 cccagacete cetecetece cagaagacte atacaaatee atetaegget accceccaae 1080 · caaccccacc atccctcccc tgcacatcca cgaccccagc atcctctacg acctgcccac 1140 aaacacctac tacgcctacg gctccggccc tcacatcccc atccactccg ccccgaccct 1200 ccaaggacca tggaccaaag tcggcaccgt cctcgatgca gatagtattc taccaaaggg 1260 tgatcgcaaa gccccatggg caccgaccgc cctcgtccac gacggtacct tctacgtctt 1320 ttacgcgacg agccatagtg gatgtcgcga tagcgctatc ggcgtggcta cctctacttc 1380 tccgggccct gggggatggg aggaccacgg ggcgatagct atctccggac gaggggagag 1440 ggggaaggag tacccgtttg atagggcgaa tgcgattgat gttagtgttg ttgttgatta 1500 tactgacacc cagacccaaa ccgaaccctc cgaaggagag atctctctag aagagggaaa 1560 gaaaggaaaa gggagaggat acatgacctt cggcagtttc tggacgggga tatggcaagt 1620 cccgctgaag cctaacctgc ttcatatgga caagcaggga gaagaagaaa aaagggttaa 1680 acatctcgcc cacgageceg cagecateca eccaecaace aaaaaageag atggattatg 1740 tggtgatacg acgggcatgc atcccatcga gggggcgttt atatcctatc atgagccgtg 1800 gtggtatttg tggtttagtt gggggaagtg ctgtcatttt gatccggaga aattgccgag 1860 ggctggtctt gagtatgtcc ttcttttcct cctcgcccct ttatcgatag atatcatcta 1920 ttcctgttga ttgagaggca atgaagtgat aagctaatga agattgtatg aaatagatac 1980 agcatccgcg tcggacgatc aagttctcct caaggtccat tcgtggataa agaagggaaa 2040 gatctagtgg atggaggagg ggagattgtg tatgggtcga atggggatgt ttatgcgcct 2100 gggggacagg gcgtgttgag tggggaggtg gagggagatg tgctttatta tcattattgt 2160 gagttcctct cccctttctt tcaatcgaat tgttttcgtt gatttgggag aggcggttgg 2220 tgctaatatg ggtgtggcag tgaatatatc tgtggggtat gagtttaagg tatgtttatg 2280 tttttatctt tggggtggta ttgatgtggg ctaatggtgg tttaggaagc acggctggga 2340

pectinases.ST251	
tataattatt tgaagtatgt ggatgggtgg ccggttccac tgtgagtatt gaagttggta	2400
gtattctgtt atagtggata ctattgtata gatcataagt atatagagca taattgcatg	2460
taatacctca cgttgaatta gaatcattca actataaaca ccgcgaatac tcatctccat	2520
agtacaaaga agcagaagga aagcaacgta ctctacacta ttctaacaaa ccggaacaac	2580
tcct	2584
<210> 56 <211> 1613 <212> DNA <213> Aspergillus niger	
<400> 56 cctcaatggg geeggttege teeggeeeca tteecetgga teettgteae tgatetatee	60
cgatcagatc ccctcttgct ggacgctggc ccatcgtttc agtcattcat gtcacttctg	120
ctatactage actactett tetgtgaact tttgaggact attetecteg egecaeteet	180
tttctgcaga tatcttgatt tcagcatcca tgaagagcat cacaatgctg ccatccctgc	240
tttccgtttt attcttcctg ctctatgcag tgaacgctgt tccactggcg ccccgggcga	300
gtgcactcgc cgggatcgac accaagtcct tctctaagac caaagattat ccccttccca	360
acctgggcaa catcgttgct catgacccta atgtcattca gcatgatggc tatttctact	420
tgtacaaagg tggtgtgcac attccgattc acagagcccg ctccctcagt gggccttggg	480
aacaggtcgg gaccgtcctg gacgactcca gcgtgatccc gaaacagaac cgctctcgtc	540
cttgggcccc tacgaccatt cagcacgaca accgtttcta ctgcttctac gcgatcagcg	600
agaacggcag tcgcgacagc gccattggag tcgcctcttc ggatactccc gtcggtggaa	660
actggacgga ccatggcgct gtcgtcaaca ccggcaaggg agacctgtcg gacatctatc	720
cttactcggt atccaatgcg atagacggcg cattcatcac cgatcaacag accggacagt	780
ctcacctgct ttacgggagc tattggcatg gtattttctc ggtgccattg gctgatgatc	840
tcctttccgt caaaaccccg aagaccccaa acgcgaccaa cctggcctac atcccagatg	900
ccaagtccaa gcctatcgag ggctctttca tgacttacaa ggcgccttac tactacctgt	960
ggttcagtca cggcaaatgt tgtcactttg atattcacgc ttttccgccc atgggagacg	1020
agtacgtgca catgatette tattegagaa ettggtaget aacatttaca acaggtacaa	1080

catccgggtc ggtagatc	ta agagtgcgac	aggtcctttc	gtggataagg	atggccatga	1140
taccctcaag ggcggtgg	ta ccatcgtcta	cggctccaac	catggaattg	tctatgcccc	1200
tggtggagtg ggcgtgtt	ga tcaacaatgg	cagcgaagcc	gatgtcttgt	attaccatta	1260
tcgtacgttt acagtcca	ct gttgtgggga	agtcagctaa	cagagettge	agtcaacact	1320
acgtctggtt tcgcacag	gg agtgagtcta	gccttaacta	tccattgaca	ggatgatact	1380
aacgcaatac aggacgcg	ca cttgggatgg	aactatctgc	actatgtaaa	tggatggcca	1440
gtggctgtcg aggggtat	gt gaatgccaac	ggcaaataac	gctcaggcac	taaaggtgga	1500
aacatcagta aatctagc	at aaacgctaca	tcaaacgaaa	gcagtggtcg	gattcttcaa	1560
ccgaaccact cgcttaat	tc actagcgctt	ctgtgtatgt	gctgtctaat	ctt	1613

<210> 57 <211> 3092 <212> DNA <213> Aspergillus niger

<400> 57

<400> 57 caggcccgat	gtataccggc	cgagctattt	gtacataaag	ggcccttccc	tcgactgaca	60
atgtaccctg	gctgaataga	aaacagcaat	tctttgtttt	ttttcccctc	ctccattccc	120
ctttaccctc	ctcttccctt	ttcttcttt	cccctctgga	ggataccccc	ttatccgcta	180
tgctttcgtt	tgtcttgctt	ctttgtgtag	cgttggtcaa	cgcctactca	gacccgggtg	240
catgctcggg	aacctgctgg	gcacacgacc	ccaatgtcat	tcgccgtgtg	tcggatggaa	300
cctactttcg	tttctcgaca	ggtggtggtg	tccatatctc	ctctgccagc	gccatcactg	360
gtccctggac	tgatctcggg	tatgcactgc	ctaacggatc	catcgttaca	gtgggaaatg	420
cctccaacct	ttgggtaaga	cagactgaca	accctggaca	tcacccttgc	catctgcagt	480
tctgacattc	ccgcaggctc	cggacgtaca	ctacgtagat	ggcacatact	acatgtacta	540
tgctagctct	accctgggca	gccgggattc	caccattgga	gttgcaacct	ccaccaccct	600
ggaagccgac	tcctggaccg	accacggcga	gattggtgtc	acctcgtctt	cgtccacccc	660
ttacaacgcc	attgacccca	actggatcac	cattggcagc	accccctatc	tccaattcgg	720
ctcctactgg	caaggtctct	accaggtgga	aatgaccgac	tccctgagcg	ccagcagcag	780

90/178

pectinases.ST251 cacgcccact aacttggcct acaacgcatc ggggaaccat gctatcgagg cttcttacct 840 gtacgagtac ggaggctact actacctcac cttctcgtcc ggcaaggctc aggggtacac 900 gacctccctg cctgcccagg gcgatgagta ccgcattgtc gtttgccggt ccaagactgg 960 aacgggtaac tttgtaagtg ctatatgcca atcatcaaca ttcaaggaat aggggggga 1020 atgctaattt cgcctgcagg tcgacaagga tggtgtttca tgcctgaaca gcggcggaac 1080 caccettctg gccagccacg actatetcta cegccctegt egacaetaae tttecccte 1140 1200 tettettttg tggettgacg cacateaaac ggggaageat getaacaatg ateaattgea ggggtatcat caacaccacc agccacggta ttgtcgtcta ctaccactat gccaacaaga 1260 1320 acattggcct ggctgtcgat gactaccagt tcggctggaa cacgctcacc tggactgatg ggtggcctgt tgtggcgtga tttcattctt cttcttcttc tatacataca tacattttac 1380 cggcggccca gaaatgggct cggtaatatt tgcatgatga tacctgcgtt cgattgtatt 1440 1500 tagctaatta cgttaattcg taatgtttta tattgcgatt taatatatac atattgagac ataatttgtt tgagagattt gtgtagaatg tctgtagaaa atatgaagcg tctcgaatta 1560 agaatgtcaa caacaggagt cactagaagg ggcagtttaa tgatgaaatt actatcaccc 1620 1680 1740 aagcaaaaat gccaccccat aaaaaaaaag agcctagaca acaaacaaac aaacataaca taccatccta cggaccgcac ctaaactcaa ttgtggaaca atcaggattc ctcggtattt 1800 1860 tgccccgaag aatctactac atacccacat tactatgcac attgccattg ccacccaage gaaacaaaca actcaccaca tactgattaa ttaaacgcac aatccccaat gcaacagaga 1920 aaaatgatgg ctcaaattct gcatttaagc tagccaagct gtcactgggc acagacacgc 1980 tgcaattctc cgcgtctgag acatttgttt gtcgtgtggc gctgccatcc ctgtcgggga 2040 2100 cacaggacgg acggaacacg ctgcagcagt cgatgcggtc aagtctacgg tggctgcaag ggcaaagtgg ccttttctga caggtgcgat ctgatagatg aactgggggg atccttgctc 2160 2220 gtggattgat ggtgcatggt ggaggttgtt gttgttgttt gttggtgaga tgttgagttg agttttggtg tttgaggtca tcgacagtga tcctacccc ttccaaggtg tataatattg 2280 ggatgcctta caatatgcta cagatccctc aaggatcagt ctattctgtg aatatagcct 2340

WO 2004/074468 PCT/EP2003/005726 91/178

	pect	inases.ST25	51		•
accgttgtct ttattatatg				tctagttgac	2400
aggettteta ecetgacaag	tagatcctat	caaaatacta	tataagtatc	aatattaatt	2460
caagaaaaat cgaaggaaat	actactaaag	tacctgtaaa	gaatattctt	ctattttaga	2520
actattttat tagagtagtg	acttaactat	aatcttttat	actacgcaca	ggctgtaatt	2580
gaaaagatat agtatttcac	agctgattcc	ttacttagtt	gatggcaggg	cctctatgta	2640
tgctatggat taactaagaa	agaacctaat	gttcgtgtgc	agtagctccc	tgactaatct	2700
ggcgatcatt gaccgcctgc	tgatctcatg	gcaatttcgt	aagaaatcaa	cgcgaccaga	2760
gcgtcggttt taagcatggt	ttgtcaagca	caacgcaaaa	accgccaaat	ttgtcgcgag	2820
caatgtgacc tggggtgacg	gtggcttgtt	tgattactaa	tacaccattc	acgggctctt	2880
gaagccttag gcagaagggc	tcctgcgggg	aacaagccgc	caagtgtcag	acatgtacag	2940
tccgtttagt caccgctcaa	ctttcaactc	cagctatcat	caagaagcac	cctacgtcac	3000
cggaatccag atagttaact	tggttgcagc	taaggattag	ttgggcgtgt	gaattgtatt	3060
tactgtttcc gtatgttcgc	gaaagcgata	tc			3092
<210> 58 <211> 5697 <212> DNA <213> Aspergillus nic	ger				
<211> 5697 <212> DNA	•	aggtggattg	tcacacaggc	gcaatgagct	60
<211> 5697 <212> DNA <213> Aspergillus nic <400> 58	atcgctaatt				60 120
<211> 5697 <212> DNA <213> Aspergillus nic <400> 58 cgctgtggga atatgagaag	atcgctaatt	ccggtcgtct	ccgcaactcc	gccgacgatc	
<211> 5697 <212> DNA <213> Aspergillus nic <400> 58 cgctgtggga atatgagaag ggcagacagc tgtgttgtgt	atcgctaatt agaaccgcag caacgataaa	ccggtcgtct	ccgcaactcc	gccgacgatc	120
<211> 5697 <212> DNA <213> Aspergillus nig <400> 58 cgctgtggga atatgagaag ggcagacagc tgtgttgtgt aaaagcagat cagtgccagg	atcgctaatt agaaccgcag caacgataaa tgtcagcgat	ccggtcgtct ctcaagatgc ttcgcatagc	ccgcaactcc gatatgtata tagcagttct	gccgacgatc tcgtgtcaag gtgcgatcgt	120 180
<211> 5697 <212> DNA <213> Aspergillus nig <400> 58 cgctgtggga atatgagaag ggcagacagc tgtgttgtgt aaaagcagat cagtgccagg atccgtttcg ccagaagttt	atcgctaatt agaaccgcag caacgataaa tgtcagcgat ggggttttcg	ccggtcgtct ctcaagatgc ttcgcatagc taagaaaagc	ccgcaactcc gatatgtata tagcagttct gtcaagactc	gccgacgatc tcgtgtcaag gtgcgatcgt cggggccgcg	120 180 240
<211> 5697 <212> DNA <213> Aspergillus nig <400> 58 cgctgtggga atatgagaag ggcagacagc tgtgttgtgt aaaagcagat cagtgccagg atccgtttcg ccagaagttt gccactgcaa ggttttaggg	atcgctaatt agaaccgcag caacgataaa tgtcagcgat ggggtttcg agataggcgc	ccggtcgtct ctcaagatgc ttcgcatagc taagaaaagc cgtgaacgaa	ccgcaactcc gatatgtata tagcagttct gtcaagactc agaacaacaa	gccgacgatc tcgtgtcaag gtgcgatcgt cggggccgcg ttgattgggg	120 180 240 300
<211> 5697 <212> DNA <213> Aspergillus nic <400> 58 cgctgtggga atatgagaag ggcagacagc tgtgttgtgt aaaagcagat cagtgccagg atccgttcg ccagaagttt gccactgcaa ggttttaggg cggtcgctgt ggtcgtgggt	atcgctaatt agaaccgcag caacgataaa tgtcagcgat ggggttttcg agataggcgc cagattgagg	ccggtcgtct ctcaagatgc ttcgcatagc taagaaaagc cgtgaacgaa ggggcgcttg	ccgcaactcc gatatgtata tagcagttct gtcaagactc agaacaacaa gaggctagca	gccgacgatc tcgtgtcaag gtgcgatcgt cggggccgcg ttgattgggg gcagatcaag	120 180 240 300 360
<211> 5697 <212> DNA <213> Aspergillus nig <400> 58 cgctgtggga atatgagaag ggcagacagc tgtgttgtgt aaaagcagat cagtgccagg atccgtttcg ccagaagttt gccactgcaa ggttttaggg cggtcgctgt ggtcgtgggt gtgattgccg ggctgtcttg	atcgctaatt agaaccgcag caacgataaa tgtcagcgat ggggtttcg agataggcgc cagattgagg aaaggccagc	ccggtcgtct ctcaagatgc ttcgcatagc taagaaaagc cgtgaacgaa ggggcgcttg tggtgctgga	ccgcaactcc gatatgtata tagcagttct gtcaagactc agaacaacaa gaggctagca ggaggaggag	gccgacgatc tcgtgtcaag gtgcgatcgt cggggccgcg ttgattgggg gcagatcaag gagccggcga	120 180 240 300 360 420
<211> 5697 <212> DNA <213> Aspergillus nig <400> 58 cgctgtggga atatgagaag ggcagacagc tgtgttgtgt aaaagcagat cagtgccagg atccgtttcg ccagaagttt gccactgcaa ggttttaggg cggtcgctgt ggtcgtgggt gtgattgccg ggctgtcttg tcaagagcag cagagcagac	atcgctaatt agaaccgcag caacgataaa tgtcagcgat ggggtttcg agataggcgc cagattgagg aaaggccagc aaggctaagc	ccggtcgtct ctcaagatgc ttcgcatagc taagaaaagc cgtgaacgaa ggggcgcttg tggtgctgga agcagcagtg	ccgcaactcc gatatgtata tagcagttct gtcaagactc agaacaacaa gaggctagca ggaggaggag gagccgagag	gccgacgatc tcgtgtcaag gtgcgatcgt cggggccgcg ttgattgggg gcagatcaag gagccggcga tgacgacggc	120 180 240 300 360 420 480

660 attocaccot tgccgtctag aatgttgcag ttattccaca ccgtgcagga gaatatttcc 720 tggacgctaa gctataccac aaggaaggaa ttgaatgctt ttatgtgatc aaatgaaccc tcagggactg cagttctgca ttataagttc cgatccagga aacgcgtcgc taaaaattgc 780 840 tggatggctg tggagagtcc agtgcctacg acgttggcat ccacaccctc gttcgtctgc 900 atccgcaaca ggagatgatc gtctaagcct tgtcagattg attaactgct tactcgtctg 960 aagtgcttcg gtctgcagtt cccttggcac gatggtttgt ctcaaagaga tgcgggatgg 1020 tggtgctgcc gataaacttc ccatccgagg tggtatcgct ttcgcttccc cacaaatcgg 1080 gcagtggtgg tggtgccgtt tgcagccaaa tgtcgccttg atcgcaacga atttagaaac catgocaggt ccactacatg gtctagatct aagcagtccc tgctgcaatt aggttacttc 1140 1200 tacctccagg cgaccctttt tgggtaaaag ggttcttgct ttcgcatcaa tctctactaa 1260 gacategtgt ecceattege ategaagtea ageetgaggg geacecaete ageecateeg 1320 aagaagacgc ggtttacgta gcctggaggg tggacactgc gtcagccccg tgaagccgcg 1380 teatacgetg ageoggetge tgeacceecg acttettgge teeggegett agtagatgae 1440 cttttgtagc aagtgtttgg gtgaccgttc ggcgtgatag tgacaggtga aagccaccta cattgcttga cctgcacqqc tcqtccactt acaqqqcqcg gqccaqqqcc aagcaacaac 1500 1560 cactgcagct atcattggct cgatattcct ccaccgctcg ccatgtcaac cgactgagta 1620 gcaccgtaca aacctcttac tatcacagta tcacgttggc tcatatggtg atctgcagtc 1680 acgctatact attcgtggct ttgctaacaa cactgtcaag tttgacaatt cacctattgc 1740 gcagaaaagc acgcacatat cttcctctct acaggtgtaa cttgttctat ggtactccag 1800 gggttgtggt gaggaaaaag tccagattcg cctttcctct ctgcggtcac gtgcgacacg 1860 tggaacetee ceaggegttg aatggetett tgeggeetea eagaeeeget eeataeeaga tacagctaga cgcactgccg ggccttggat gggttcctgg gaccttgaga aacaattccc 1920 1980 accepttggat gttacagtgc ctgaaccact acagggactt tcagcagatg aaaccttaca accaggtttc tcatccaaag gaacacggaa acgagctgtg gttgtaggtg gcttgttttc 2040 aatccagggt actggtcgct atcaatagaa gcaccttgag gtagagtgtg tatgcattca 2100 caattgtagt ctcaactgga atgcacacat cccggtcact cattgtcaaa catacgaggt 2160

ggctgttcta	tcctctcctg	ctctactcta	ctacaccaca	actccataaa	tgttaactta	2220
cggactcaga	aatgttgaca	agccagccgc	tgaggtaagc	aggggatcgt	gcggatctgg	2280
atctctcaga	atgacgaaca	ggaacttgac	atttccgacg	ctgttggcag	tggctgatcg	2340
tcccgtccat	tcacatctta	ggaatggtca	gacaggacaa	gtcgccctcg	gcctgtttca	2400
caatgacttg	cgtgctttag	cccaaactgt	cctcaccgtc	gtgcctatca	tcacttacct	2460
agtcttcttg	aagtgctcat	ccactctccc	catgagccgt	tatcactgac	cctcaaaacc	2520
ctgtacctat	tttccaccaa	tggctcacct	cattggctca	gctacctgac	tcctcaaccc	2580
tctcccttaa	ccaccaaaca	cagagtagta	aatgacaccc	tccagtctga	agactattcc	2640
ctggttcgcg	cgcgcggatg	gcaacatccc	agaaagtaca	ttcaggtgga	taccatgaaa	2700
ggcctcccgt	cactgctgaa	cagcagcagc	accaaaaaat	ggacacaatc	caccccatcc	2760
acaggcgagg	gtgagaatga	gagtggtagt	actatatcac	ccaccaagcc	gcccgagcca	2820
tccacacccc	caggaggctc	aaacacctcc	atgatctgga	cgcggaagaa	gataatatgg	2880
ctcatcaccc	tgatagctct	aagcgtagcc	ataatcgtgg	tggtgataac	cgtcccagta	2940
gttctcctgc	tggacgataa	acacaacgac	gateceaget	actacaacag	cgccaaccgt	3000
ccagtccgcg	tcgtgcatga	cttccccgac	ccgggtctaa	tccaggtgaa	cagcacgtgg	3060
tatgcatacg	ctacagtcgc	cacaccggac	aatcctgacg	tccctcacgt	cccggtatcg	3120
acatcgcgga	actttagcag	ctggacctgg	ttgcagggat	acgatgttat	gcctgcaatt	3180
agcagttggg	aaacgaatat	gaaccagtac	gctccggacg	tgattcaacg	cgtaagtact	3240
agcccaacca	tcaagcataa	ccaaatcaac	taaataccct	tatagaaaga	cggccacttc	3300
gtcctctact	actcaggcga	actaaaagac	tggctccgcc	accactgcgt	cggcgccgct	3360
gtctccaacg	gcacaagtcc	cctaggacca	tacatccccc	acaacaccac	cctcgcctgt	3420
ccccgcgacc	acggcggtgc	catcgacccc	gcccccttca	gagacgtcaa	cgggaccctc	3480
tacgtcgtgt	acaaagtcga	cggcaacagc	atcggccacg	gcggaggctg	caacaacggc	3540
aagaaaccca	tcgtctccac	gcccatcatg	ctccaacaac	tcaaagacga	tggagtcacc	3600
cccgtcggtg	atcccgttga	aattctaacc	aacgaaaaag	tcgatgggcc	gttagtcgag	3660
gctccggcca	ttattcgaac	tgatcgcggc	atctattatc	tgttcttctc	ttcgcattgc	3720

tttacatcgt	cgaagtatag	tgttaagtat	gcatggtcaa	catcgttaaa	ggggccgtat	3780
accagggctg	agaggccctt	gttccggtct	ggggactttg	ggctaaagtc	tcctggcggt	3840
gcgacggctt	cggttgatgg	gtctaggatt	gtttttcatg	ccttttgtgg	ggattataga	3900
tgtatgtatg	ccgcggcgat	gaatattacg	gctaattata	cgattttgcc	ggcggcgctt	3960
tgaggttgga	ttggattata	gatttggttg	tggtgttgtt	gtgtgagata	gactagagtc	4020
tgagtctgta	cataattttg	ataaaagtta	tagaccttat	ctttcatgca	ctaggtagag	4080
tttcagggaa	gccatcaata	ctatcctagg	ttcggttact	ccaagtcaaa	cactcatatt	4140
cctccgatga	ccaagaataa	agcagaagca	agacagccct	cagattagct	ctcaggttct	4200
caccggtttc	caggcagata	atggtaggga	cttgtgcatt	ctcgcacaag	tcgtgccgga	4260
taccatgcaa	atttggcttt	tgatttcatg	attcgtcact	gggctgtctg	cttgcttgct	4320
ccatctcttg	tccatatcat	tgacttcaat	acccgtgtat	gtttgtcttg	cgtcattagc	4380
tgtattgggt	atgcattcac	atgaacctgt	ttatcataac	acaacataat	gcaacatcca	4440
tatcattaca	tgaatagtag	cataatctca	atgcggtcga	catgaggttg	tgattagtag	4500
acatataact	gatttgaaaa	cattgagcaa	tgttaaggtt	agtctggcac	ggcacgttgg	4560
cacggcacgt	tgtactcaac	atggaggaaa	agggcgaggt	gataaagggg	gagaggataa	4620
gaccgccatc	agattgaaaa	ctaccgttta	tacatcactc	ttcactgacg	tgctcgacat	4680
cgttatcttt	gtcagaaaca	gatggagcaa	tatgagagtc	tcggagtaaa	gtgctagatt	4740
tctttatcat	cattgggggc	gttggcacag	aacaagcaga	ggagcaatgt	ggttgtgcaa	4800
aagtaacaga	gttgatcagt	gcggaaaata	aaaagaataa	gatcagtaga	agaagggtat	4860
gtggtcagta	atatgaaaat	gaaaaaagtg	agttgagcaa	accaaggcta	tacccgaaca	4920
ttagaggata	agtccctgtc	ataagtactt	attgaaggaa	gaaaaaggaa	tcatccaaac	4980
agaatgagca	actttggtaa	tctcttagat	ctctgttcag	tctcaatcat	ccacgcttgg	5040
tcagatgtct	tcttccattc	ggggatccga	aggatgaagt	ccactgcctg	atttgaatca	5100
taagggtgtc	atgagaaagc	tctttgtgtg	tggttatcgt	cattgagatt	ggaaagcgct	5160
attcatagaa	gtaagaaatc	cagctatgaa	taaggcaaag	gttgcgagac	gcgacctatc	5220
ttctagatat	tacatgtggt	gtgttgcttc	gcggaacagc	gcgtttttgt	ggtcgacgcg	5280

gagagcacgt	gaccgattct	tatgcagttt	ggtatttgcg	caattttaca	tgctgactaa	5340
ggatattgca	cataatatgc	tcgatttgtc	gccccaattc	gctatacggc	cataagtccc	5400
aaacagtgct	cagcatcgat	accttaacca	agggcattga	taccggctgt	gttgctggca	5460
gaaagttcac	cataattatg	atcacccctt	tagagaacag	aacatcatcc	aggtcaggtg	5520
taaccatcca	tagaggtata	tctttctttc	atatgatgta	cactgtacta	tactataatt	5580
catctcatgg	ttaccaatat	atctttgctt	tctatatagt	ccaaatgcct	gaattcatct	5640
ctataccaaa	tccatatatg	cttatcccac	caatatatcc	acttaaatag	tactcaa	5697

<210> 59 <211> 1490 <212> DNA <213> Aspergillus niger

<400>	59						
cattca	aagc	ggtcatccac	acatgggtgg	gccctgctta	ctgcccagct	cagaacgctc	60
agatata	aaag	caacgacgcc	tcatcccagt	gtatagtagc	attgcctaat	acctttcatc	120
gcacct	gtat	ataacagcaa	cccccttac	cccaaccgag	cctgcagact	ccttacagta	180
acactta	acta	ctacatgttt	ctttcccaaa	taaccaccct	aactgagaca	acataatgtg	240
gacccat	ccta	ccatccctct	gtgccctagg	cctcacgcta	atcacatctg	tgataacctc	300
acccatt	gaa	atccgagcca	ccggaccctg	gctagccctt	gacacggact	tcccagaccc	360
cggctto	egte	caagccgacg	acggcacctg	gtacgccttc	gggacgaacg	gcaacaaccg	420
cacggt	gcaa	gtagccaagt	ccgcagactt	caaaacatgg	accctcctcg	acaaagaagc	480
cctccc	cact	ttagcaggct	gggagaccca	aattgaccac	tgggccccag	acgtagtccg	·540
ccgtgta	acat	tccccatccc	atcccatccc	cttcccccaa	atccaaacta	accaccacca	600
ccaccc	ccag	aacgacggca	aatacgtcct	ctactacagc	ggcgaagcac	aacaaatgct	660
ccgcca	ccac	tgcatcggca	ccgcagtctc	agaatccacc	gatcccagcg	ggccctacat	720
cccaaa	ccca	accccctct	cctgccgtct	cgaccaaggc	ggcagcatcg	acgcgtccgg	780
cttccta	agac	aaagacggct	cacgctacgt	cgtgttcaaa	gtggacggca	acagcatcgg	840
caacgg	ggg	gactgcaaca	acggcattgc	gccattgaaa	cccaccccga	ttcttctcca	900

96/178

pectinases.ST251 aaaagtagat acggacgggt ttacccccgt cggcgacgcg gtgcagatcc tggaccgcga	960
tgatagcgac gggccgttgg tggaggcccc gaatttgatt ctgcatgggg acacgtactt	1020
tttgttttac tcgacgcatt gctatacgga tgagaagtat gatgtgcggt gggcgacggc	1080
gagtgagatt acgggtccgt atacgaagac ggggaggcag ttggtgaaat ctggggatta	1140
tgggettgtt tegeeggggg gtgggaeggt ttgtgggtgt ggggategea tgetgtttea	1200
tgggttttgt ggtgataata ggtgtatgta cgcggctgag gtgaggattg cggggacgga	1260
ggtggagttt gtttaggttg ttagtagttc aatgtgaggg tttggtgggt tgtgggtggt	1320
gttgggagtt ttgggttctg gatgggtgtt tgtgtttgat atttgttaga taccacgttc	1380
gttttcggat tgatattggt ggcttggaag ggttatttat tgtcctggat tttgtgtgaa	1440
	1490
tctgtatatc ttctacatgg taatgaggtc atgcatatca ttcatattag ,	1490
<210> 60 <211> 3446 <212> DNA <213> Aspergillus niger	
<400> 60	
gagtgagaca tgtgcagcga taaataaaca tgctgtacac tagcggctag tataaacatc	60
tcccttcga ttttatacgg aacgtgagtt attgtacaat ggaacaatag actgtttgta	60 120
tccccttcga ttttatacgg aacgtgagtt attgtacaat ggaacaatag actgtttgta	120
tccccttcga ttttatacgg aacgtgagtt attgtacaat ggaacaatag actgtttgta taatgccaat ctactcttt ctctacttct cagcatcgcc ttttggagcg ggccattgca	120 180
tccccttcga ttttatacgg aacgtgagtt attgtacaat ggaacaatag actgtttgta taatgccaat ctactcttt ctctacttct cagcatcgcc ttttggagcg ggccattgca aagaccaaaa gtgggatagt tagtcatatc tataggcctc ataccagaac tattataact	120 180 240
tccccttcga ttttatacgg aacgtgagtt attgtacaat ggaacaatag actgtttgta taatgccaat ctactcttt ctctacttct cagcatcgcc ttttggagcg ggccattgca aagaccaaaa gtgggatagt tagtcatatc tataggcctc ataccagaac tattataact cgtctagcca ccgtgccggg ttgaatttgc cacggttaag atgcagagcg tcgctaaaat	120 180 240 300
tccccttcga ttttatacgg aacgtgagtt attgtacaat ggaacaatag actgtttgta taatgccaat ctactcttt ctctacttct cagcatcgcc ttttggagcg ggccattgca aagaccaaaa gtgggatagt tagtcatatc tataggcctc ataccagaac tattataact cgtctagcca ccgtgccggg ttgaatttgc cacggttaag atgcagagcg tcgctaaaat tgacttcggt tgagtctcag cagacaaacg tgttcccgg gatggcctca tcacttcccg	120 180 240 300 360
tccccttcga ttttatacgg aacgtgagtt attgtacaat ggaacaatag actgtttgta taatgccaat ctactcttt ctctacttct cagcatcgcc ttttggagcg ggccattgca aagaccaaaa gtgggatagt tagtcatatc tataggcctc ataccagaac tattataact cgtctagcca ccgtgccggg ttgaatttgc cacggttaag atgcagagcg tcgctaaaat tgacttcggt tgagtctcag cagacaaacg tgttccccgg gatggcctca tcacttcccg ggatagggat cggtttgcaa gagagggtca actaggctat agagaaaaga tagaagttat	120 180 240 300 360 420
tccccttcga ttttatacgg aacgtgagtt attgtacaat ggaacaatag actgtttgta taatgccaat ctactcttt ctctacttct cagcatcgcc ttttggagcg ggccattgca aagaccaaaa gtgggatagt tagtcatatc tataggcctc ataccagaac tattataact cgtctagcca ccgtgccggg ttgaatttgc cacggttaag atgcagagcg tcgctaaaat tgacttcggt tgagtctcag cagacaaacg tgttccccgg gatggcctca tcacttcccg ggatagggat cggtttgcaa gagagggtca actaggctat agagaaaaga tagaagttat agttacagtt aggctcaata cctcatgtcc attttggtga gtgcttaggg tgttacactg	120 180 240 300 360 420 480
tccccttcga ttttatacgg aacgtgagtt attgtacaat ggaacaatag actgtttgta taatgccaat ctactcttt ctctacttct cagcatcgcc ttttggagcg ggccattgca aagaccaaaa gtgggatagt tagtcatatc tataggcctc ataccagaac tattataact cgtctagcca ccgtgccggg ttgaatttgc cacggttaag atgcagagcg tcgctaaaat tgacttcggt tgagtctcag cagacaaacg tgttcccgg gatggcctca tcacttcccg ggatagggat cggtttgcaa gagagggtca actaggctat agagaaaaga tagaagttat agttacagtt aggctcaata cctcatgtcc attttggtga gtgcttaggg tgttacactg aacttcatta attcggtcgc aacccatgac ctcgtacgcc taaacactgt gccaggaacc	120 180 240 300 360 420 480 540
tececttega ttttatacgg aacgtgagtt attgtacaat ggaacaatag actgtttgta taatgccaat etactettt etetacttet cagcategee ttttggageg ggecattgca aagaccaaaa gtgggatagt tagtcatate tataggeete ataccagaae tattataaet egtetageea eegteeggg ttgaatttge eaeggttaag atgeagageg tegetaaaat tgaetteggt tgagteteag eagacaaaeg tgtteeeegg gatggeetea teaetteeeg ggatagggat eggtttgeaa gagagggtea actaggetat agagaaaaga tagaagttat agttacagtt aggeteaata eeteatgtee attttggtga gtgettaggg tgttacaetg aactteatta atteggtege aacecatgae etegtaegee taaacaetgt gecaggaace ggeegeagae aacecegeaa eeceaaceee tgaegaeeta eaettgaaca acaaagttet	120 180 240 300 360 420 480 540 600

acctacattg	ttgtcctttc	ttcgctattt	agaaagcctc	attgagcatg	ctgacgagga	840
agctagatct	gccacgaaat	gatagcggtc	gcaaaatggc	tatacgttgc	tgtgacggcg	900
tatttccaca	agttgaggcc	ggttagccat	gattatcctg	ctctggcagc	aagggataat	960
ggtacaaacg	gcagcgtggc	gtcgccaata	acattgactg	ttgaagagtc	gggcgggaat	1020
cagtctagtc	ctctgcttta	tggggttatg	tttgaggtaa	gtgctgcgag	gcagcatggg	1080
attgtcctag	taacattctc	ttaggaaatg	gaccactcag	gtactatcta	gttcagtacc	1140
tctgttgaca	gtattttgct	gagtatattc	aggtgatgga	ggcattcacg	ggcaattgct	1200
ccagaataat	ggcttccagg	gggacgatcc	cggcttgact	gcatacaaag	cggtcgggcc	1260
cgtcgacctc	atgcaggact	tgataaaccc	ggtcagcggt	gcaataacgt	cttctttgca	1320
ggtatctgta	gattttgaag	caacggggtt	tgtaggattt	gccaatacag	ggtacagtgg	1380
gatacctgtg	atgaatgcaa	cgtattcgtg	ccagttctgg	atgatgggtg	aatactcagg	1440
aacgattatg	ctacagcttg	ctggatcaac	gaatgatact	atttatgctt	cgcataatat	1500
taccgtgaag	agctcatggg	gaaagttcac	ccattatcaa	acttctttta	attcgagcgc	1560
agctcctgat	ggtgacaatg	agtggcgcct	gctgttcaat	ggatcaaaga	tggctggagg	1620
gatgctgaac	ttcggtctgg	tgcagctgtt	tccgcctacg	tacaagtcga	ggtacgttac	1680
attaagatta	ccaatgtcat	tctaatcggt	aacaggtcaa	atggactacg	gaatgatgtt	1740
gcgacatttc	tggaaaagac	agctccctct	tttctccgat	tcccgggtgg	caataatctg	1800
taggtaatca	ccctgaaaat	gaagatcctc	taacaagcgg	atagagaagg	actacagatc	1860
gacagccgtt	ggcagtggaa	cctaactgtt	gggcccgtcg	ttgatcgtcc	cgggagacag	1920
ggtagggcac	caccaccgag	accatgcatg	acaaagacta	aatgatgcat	aggcgactgg	1980
ttctacccaa	acaccgacgc	gctcggtaag	tctgctgcat	ccttctgccc	cacgagcatg	2040
tggtaacaca	cacaggattg	gacgaatatc	tctggtggtg	cgaagacatg	aacatggagc	2100
ccgtcctcgc	cgtctgggac	ggcaaatcat	acggcggcat	tctatccggc	gacgatctcc	2160
agccatatat	agacgatatc	atgaacgagc	ttgaggtata	cctccatgga	ttaactctat	2220
catgccgagc	tgaccgtaaa	gtacctcctc	gggccggtca	actccaccta	cgggagtatg	2280
cgagcgcaaa	acgggcgcag	caaaccatgg	tccataaact	acatcgagat	cgggaacgaa	2340

gatgacttta ccggcggatg cgacacatac ccagaccgct tctatcagat ttacaacgcc	2400
atcagcaaca gctacccgaa tatcactctc atcgcatcga atatagacta cctgtgtctc	2460
ccgattgaac ccccacccgg cctgatatac gactaccatt actatcgcaa accggatgac	2520
ctcgtcgcca tgttcgacta ctgggataac cagcctcgca cgcagcccat catggtaggg	2580
gaatatggat gtcgggatac cagcgaggca gacgggatct tctggtcctc tatgcaatgt	2640
agctgcagtg aggcagcgca tatgattggc ctggagagga actcggatgt agtgaaaatg	2700
gctgcgtatg cgccactatt gcagcatttc gggtatacgc agtggtcggt gagtttggcc	2760
tccttacccc cattcttgta tgtccattat gttagagcta acaagaacaa agccaacgct	2820
atteggette gaetetagte etgaeteget gaeteceteg aegteataet atgtteaaeg	2880
gatgttttct acaaatcgcg gggatactat cctccctgtg aatacaactg ccacatttgg	2940
accgctgtac tgggttgcat ccaggacgaa tagcacgtat tttgtgaagt tggccaacta	3000
cggcgcccag aaccagactg tacgtgtaaa ggtgccccaa accaagaccg ggcatgtaga	3060
aatgctgtat gggccgcaaa atgcgaccaa tttggtgcat aatattactg ttcagccgac	3120
ggtgaagaat gtgactagct ctaggggcat ttattccctg gatatgccgc cgtggggggt	3180
tgctgttttg tcggtgtggt gaggggtgtt gctgctgtat aacaggagtt ttattgtgga	3240
tcaagtatct acgagtcatg ttgtttacca tatagttcaa tacaaaaagg ggaaatggaa	3300
tttaaagcga aggaccgatg tcgattaaga attgaataat cgtcgtttaa atgtatatac	3360
tacctacaac tcgctttctc atcgccctcc ttcgtctgcc gcctgctgaa taatatacag	3420
ctaaaagtca ccagtgactt atgggc	3446
<210> 61 <211> 4348 <212> DNA <213> Aspergillus niger	
<400> 61 ggttaaaata ttccacggat tatcataatg cttgataggt ctcaactaca gcgaatcaaa	60
tcttatatat gtttgggacg cgacctctga attcacctcc atagtgctaa gttggaagtg	120
accccaaggt cctcattcat ttaggcacta agaagcctag ctggtcttcg ttgagaacca	180

pectinases.ST251 acttttatac ctagccgata gggctagacg tcgcgtatgt gtgtcatctc agcttattgg 240 ccttcataat gatacactga tacttcccag atagttgaat cgcgcacttt ttgtacctaa 300 attcgccgat tctcagtcca acctccaagg attctcatca atgagaaatc cctatctctt 360 tttctcaaca aaagaagctt tcccgcagcc gacatgccct cccgtcggac ccacgtctgt 420 ggcaaaattt gaacgcagta gcgttattgc agtgggtctt tccatagggc tgaggcctct 480 aactcatcga acagagagac atgcagatgc actatagttg ccgcataccc gataaccact 540 actatgtcca cgggttgttg tgggctcaag ctttttcaaa ccaggttttt gcgtaagcct 600 taagageeet eteeggeagt eteaaateee gaacteaace aateggaaae acgttttaaa 660 tggtagcctg ggactttttt ggacactata tcctccatat atcgccgagc ttgtctgcac 720 ccttgcctgc gtcctattaa aatgccggct actgaggccg ccagcaccgt tcattcccca 780 ccggtctctc attcgattcc tccaccaatg agtatgcccg ccttgagtct cctcggatcc 840 catttaactc atatttcgaa taaaatagat taatgcgtgg agaataccag cgagcttagg 900 ggtacgctaa gatgcgcaga cctggttctt cacggtttta gctccgttcc cgggctggtc 960 gccggcaacg gccatgactg ccattttccc attcacgcca ccctgcttg ccctctggca 1020 gattatagat gcctgcatgg gcggccttct tacacgtgct cctgtctgaa tttctgccag 1080 actgaactct ccacccagct ctttcgccat attcgttcat cttctgctgg cggcgctgcc 1140 gattetatee catgeegege teacetateg eggggeggae atttettete ttttgageta 1200 gaagatgaag gttatagcta caagaacctt aaaggtcaat cccaagcact cgagactatc 1260 ctcgctgaag ccggcatcaa ttccgttcgc cagcgtgtgt ggggtcaatt ccagtcatgg 1320 catttacaat ttggattaca acttggagct ggcaagcggg tcaaggcggc tggtatgagt 1380 atctatctgg accttcatct gagtgataca tgggcggatc ctagcgatta ggtgagttga 1440 ttccgttcga gagataatag tcaagtcaag aagaagccta agctgaatta tccggggtaa 1500 tagacaaccc ttcctgatgg cccaccaccg atttcagcac tctgaagtgg caactataca 1560 actacactgt tgaggtttgc aacacgtttg cagataacaa cattgatatt gagatcatct 1620 caatcggtaa tgagatccgc gccggtcttc tctggcctct tggtgagacg agcagctact 1680 caaacatcgg tgcactgctg tactcgggcg cttggggagt caaggactcc aatttagcaa 1740

WO 2004/074468 PCT/EP2003/005726 100/178

pectinases.ST251 1800 cactacccaa gattataatc catctggatg acggctggag ctgggatcag cagagttact 1860 tttataagac ggttctgtct acgggcgagc tactgaacac agacttcgac tacttcggcg 1920 ttttatacta cctgttctac agcgcatcag taaatatagc atctctgaag accagcctgg 1980 cgaatctgca gtcgatctac aacaagcctg tagtagtggt ggagatgaac tggccagttc 2040 cgtgcccaaa tcctgagtac tcttgtttct cagatccgag attgatttct ttctcggtcg 2100 cgggccagca gcagttcctc gagaaactgg cagctgtggt cgaggccact accgatggtc 2160 atgaaaacct tatggtggat aggtccacgg atgaggttta tgcgagcttt gatattctcg 2220 ggaagctttg acactctgta gaatggaatt ttactgaggg cgtagatatt aatgcgtgga 2280 2340 caactagcaa aggcctagtt gctactttct tactcattga atgattagat tgaataatac tgtgtcaaaa tagaagcaat aactaatgat atttagtaat ccggtttccg gagacgctcg 2400 ctacattacc cagtctcaat aatcaaaaga tgtgctaact acaattacac agaaatatgc 2460 caggacaagt gaagtttact ttcaatacta cttaagcaaa gaaataacct aaaggataaa 2520 tagcacctta atctcagaaa aaagccacgt aagagctata atagcactaa ttagcctagt 2580 cttctttagc gttttccagg ctatattttc aatcgcagtt aactactgtt aaacagatta 2640 cacggactaa gcacatacaa ttaacttggt atattttgac ttcgattcag cctggtgacg 2700 2760 gtgaaagatt tgattgaccc agcgatcgct gataaacgtg tgttttttat gttttctaac atcaaatttg aggatagaag gaactctgca agatattata ctttcacgac tataagtgga 2820 tagactcgtg aatctaattc aagtatcctg cgcttcgaca ctaactcatt attgttaaat 2880 2940 agctttctta aatttgcctt tatttcagtg cgaggtttga ctcctttcaa ccgtcccttt 3000 agagtgctta tcttgacagc aaatgctgca gcgcacgact gcttggaggg aagttgacct 3060 cgatctgagg cctctcaggc aagttttagt ctcctatatg tagaaaggcc ctccatacgc ctgattagcc acattcttaa attaattgag caaagttgaa tatggcgtgt tgtggaggtt 3120 3180 tgtagctgtg agggtcgccg gcggctcgtt gtccgattac attaacaagt ggtaacgtaa teggacaacg ageeggegga caacgageeg eegetetgee tactaaaaat geaacaateg 3240 3300 attcagatta aagtaattca acactatata gataaatata tataaataaa ttaaatattg

WO 2004/074468 PCT/EP2003/005726 101/178

pectinases.ST251	
attttatcta tatatttgaa ctgattatag tataatcttt cgtaattaat atagtataat	3360
agctagcatt aagtattttt tagtatggta gtatctactt ctcttagtat caaatactgc	3420
agtatacatc tttatcgtgg caaattaact gtaactaaag gcttaacaga taagtcatag	3480
tattccatct tagtaaaact ctctctatat attcaaatag ctttattttt gactgaatta	3540
agtaagatta aatattgtat atcttggaga tataaggcgg tgagggtcca caccgacggc	3600
tcgttgtcgc gacgcttcgt tgtccggtta cgttacttgc ttctctggac taaactaccg	3660
aaggacttga cagaagcggc ttagcgtact ttggatgaag tgtccgggac aagttataga	3720
ccataaacat ttgcgctatt ttttccaaac agctgtaatg cgtatatcga tgtgaatatc	3780
tagaaaatag tcactgcgat agactggtgc ggtgaaagaa aaggtcagct agcagccctg	3840
gacctgattg tcctcgcatt aaatagtaca cagcaaattc accatgcata tttgtattga	3900
atcttggggt ctatataaaa gcggtcatct acagtacttc ctcgattctc tttctcttct	3960
tttcctttcc atctctcatg tcccaaaagc agcagcggtc atcagcccag atggcccaac	4020
atcgataaat tattccattg gaagattata ttagtcttta gatcttttaa taatattatt	4080
taaaatcaat tgcctcaacc aggatcaact actaattgta tacatcaaga gatgattgac	4140
gtgccatatt acaaattttc aaatgacgat attcgtgagc gaagacttac atgcctcttg	4200
tgtcatcatt tccaaaagca tggcccacaa atggcgaccc cagttttagg ctgagcatct	4260
tttcttgtca agctcttctt atcaagagtt ctgtatgaat atgtcttctt cgttgcctga	4320
aatcaggacc gcgtaccctg agctcaga	4348
<210> 62 <211> 2018	
<212> DNA <213> Aspergillus niger	•
<400> 62 ggtccgatac gatggacccc cttcaatcta cttgctcggc cagtaccgac tttagcgccg	60
gtggactgac cgagaagaat caacggtttt gctcaatcgc ccttggctac taatcaaaga	120
tgcacttggc cgtttcatac cgatcacccg tccaatttac ccagaatggg tctgagccag	180
aggggaagct ctatcagatt cttgtcaaat gcttccgtca acgagtcagt cttccctata	240
aaaggeecca ateceateeg tattgaeete ttetetgtat caaaceatte etteettte	300

tttccttttc	tcttcatacc	tctatcttca	ccttagtctt	tctttcccct	tcatagctgg	360
ttctacacac	ttcaccatga	agtactctac	tatcttcagc	gctgctgccg	ctgttttcgc	420
tggttccgcc	gctgcagtcg	gcgtgtccgg	ctctgctgag	ggtttcgccg	agggcgtcac	480
cggtggcggt	gatgccaccc	ccgtctaccc	cgacactatc	gatgagctgg	tctcttacct	540
tggagacgat	gaggcccgcg	tcattgtcct	gaccaagacc	ttcgacttca	ccgacagcga	600
aggtaccacc	actggcactg	gttgcgctcc	ctggggtacc	gcttccgcct	gccaggttgc	660
tattgaccag	gacgactggt	gcgagaacta	cgagcccgat	gctccctcta	tcagcgttga	720
atagtatgtc	cttggggatt	gtcacccgtt	tcgatcttgt	atctaacttg	gatagctaca	780
acgctggtgt	cctcggtatc	accgtcacct	ccaacaagtc	cctcatcggt	gagggctcct	840
ctggtgcaat	caagggcaag	ggtctccgta	ttgtcagcgg	tgctgagaac	atcatcatcc	900
agtaggttat	gctcggtgtc	attaggaatt	tgctctctaa	cgaaatcagg	aacatcgcgg	960
ttaccgacat	caaccccaag	tacgtctggg	gtggtgatgc	tattactctt	gatgactgcg	1020
acctggtctg	gatcgaccat	gttactgtac	gtcttcatct	tattcaactc	tacattatat	1080
ttcaagagca	ttgagttaac	atatgacaga	ccgcccgcat	cggtcgccag	cactacgtcc	1140
ttggaaccag	cgccgacaac	cgcgtctctc	tcaccaacaa	ctacattgac	ggtgtctccg	1200
actactccgc	cacctgcgat	ggctaccact	actggggcat	ctacctcgat	ggtgacgccg	1260
acttggtcac	catgaagggc	aactacatct	accacacctc	cggccgtagc	cccaaggtcc	1320
aggacaacac	tctcctccac	tgtgtaagtt	gccttttctc	tgctggccgc	ttccgacctg	1380
actaatcatt	gttgcaggtc	aacaactact	tctacgacat	ctccggccac	gcttttgaga	1440
tcggtgaggg	tggctacgtc	ctggctgagg	gcaacgtttt	ccagaacgtc	gacaccgtcc	1500
ttgagaccta	cgagggcgcg	gccttcaccg	tcccctccac	caccgccggt	gaagtctgct	1560
ccacctacct	tggccgtgac	tgtgtcatca	acggcttcgg	ctcctccggc	actttctccg	1620
aggacagcac	ctctttcctc	tccgacttcg	agggcaagaa	cattgcctct	gcttccgctt	1680
acacctctgt	tgcctctagc	gttgttgcta	acgccggtca	gggcaacctg	taaatgagtt	1740
gactcattta	tggtagatag	cagtggatgt	aatcagggga	tgcggcgtgc	ttgagaagtt	1800
acctttcttg	tatctacttc	tataataaat	tatggggagt	gttcacgacc	ctaatctggt	1860

		.				
tgaataacca	gccgacacaa	tgacattatt	gtctacagag	ttttcaagta	gatatgttcc	1920
tttcacatgt	agtaaggagt	atacagtgtt	aacaattgat	aagatggcga	tcgtgaacca	1980
aactttccca	cccgatgtcc	caagatagga	acaaaagt			2018
<210> 63 <211> 4270 <212> DNA <213> Aspe	6 ergillus niç	ger				
<400> 63 agtggggagg	tcagcctctg	taacggggag	gacttggaac	atggggacga	tagtactact	60
agtactatta	agttgcttgt	ttgcttgatt	cgaggtaggg	attgtgaaag	aagttgatga	120
tgatgatgat	gatgacccga	gtctacaaac	cgtgaccctg	ggggattata	tatttactac	180
gactactagt	attgaagaag	acaacgtcct	tgctggcgtg	ggggtcagcg	cgaggtacta	240
gtttactatt	cgatgatgga	tgagtcaggg	catgaggttg	gacttcaaaa	cgacgctaat	300
tcataggagc	actactagag	atgctacaag	ttacaacagt	tagtggttga	actactaagc	360
tagatctcga	tcactcaatt	catgtccagt	acatgaatgt	acgcactgtc	gagttggcgt	420
ctcctaagaa	tggcggagtc	tggaatggag	gtatttatac	atcatctcga	gtccagtagt	480
tagtagttgc	ggataacaag	gatacatcat	cccctttggt	tatgtgtgag	tctgaccaag	540
gaacgcattg	ggggagagac	tattgggtca	atggcactca	cgggaaaaag	aggcgaaagg	600
gatgggagag	gtgatgcctg	aggccgcata	agcatatcat	gtgagagcaa	agaagatcaa	660
acaaacaatg	caaaccccaa	cgtgaccccc	tcactgccac	gtgatttccc	agctaatcct	720
tttcggggtg	tttcccccc	gcccaatcgg	ggcttcttgg	caaccactaa	tttccataat	780
ttccactgga	ctcttgagcg	gttcttgcaa	tgtctcactg	tcagactgag	agtaccactt	840
ttctccctct	accaagcctt	gaaataggtc	agggccgttc	atgggaccct	gacctccacc	900
ccttcggaag	ccagccggat	tgcttctaag	acatcctgaa	gtgggccacc	atccggctct	960
caccattcct	atgttctgcc	aagcgactcg	acctcgttct	tcaccggagt	tcccgggtcc	1020
gccctgaact	caaggtctgc	atgggaagag	atttccggct	gttcccccca	acggcgtcta	1080
ggcagatagg	ctaggcgttt	tgttcctggc	ttgatcagca	aggtttatca	tagtcctcat	1140

WO 2004/074468 PCT/EP2003/005726 104/178

pectinases.ST251 1200 gactcgtaaa acccaagaag ataaaatgaa gatgttgggt ccgcgagtcc ggtgatgtct 1260 gggcagcagt agtaacactc taaaatataa gccaccacac ccactgacag gttaatctcc 1320 ggtagaagaa ccaagacctg cctgccaagc cacattgatt gggttctcat ccatttcagg 1380 toctgtcccc ggtcctctcg tgtcattcca gaacatggtc gagaaatcaa acggccactg 1440 tctgactgcc agctccacca tcatgtaatc cggcttctct atataaactt ggaaatgttc ccctctcctg tggctctaga agaagacatc accctctttg cttctacaag cctgtcactc 1500 1560 tttccaggca gtcgttcttt gatcattctt actaaacgtt cattcttttg ggattttctt tttgttttcc tttaaatctt cggtactttg agagtccaac atgcactaca agctgctttt 1620 1680 cgctgctgcc gcagcatcct tggccagcgc tgtcagtgcc gccggcgttg ttggcgccgc 1740 cgagggtttc gcccacggtg tcactggtgg tggcagcgct tcccccgtct atcccacgac 1800 tactgatgag ctggtctctt acctcggtga taacgaacct cgggtgatca tcctggacag aacgtaggtc catcaaaccg agattcaggg gcagaaattt gactaatatg ttgatatttc 1860 1920 agettegact ttaceggeae egagggtace gagactacea eeggatgtge eeectgggga actgcttccc aatgccaggt ggcgatcaac ctgcacagct ggtgtgacaa ctaccaggcc 1980 2040 agcgccccca aggtatccgt gacttagtat gttgccctcg ttcaattgat ggccaagtct 2100 tttcatgctg agagccgtgt agtgacaagg cgggtatcct ccccatcacg gtcaactcca 2160 acaagagtat tgttggtcag ggcaccaagg gtgtcatcaa gggcaagggt ctccgtgtgg 2220 tcagcggtgc caagaacgtc atcatccagt gagtgcagcc cctcggttga gggatatgaa 2280 tocaccettg ctaataacgg ccaggaacat tgccgtcacc gacatcaacc ccaagtatgt ctggggtggt gatgccatta ctgtcgatga ctctgatctg gtctggatcg accatgtgac 2340 2400 aactgctcgc attggtcgcc agcacatcgt cctgggcacc agcgccgaca accgcgtcac 2460 catctcctat teecteateg atggtegete egactactet gecaectgea aeggeeacea 2520 ctactggggc gtgtacctgg acggcagcaa cgacatggta accctcaagg gcaactattt 2580 ctacaacctc agtggccgca tgcccaaggt tcagggtaac actctgctgc acgccgtatg togoctogag cotoctatac aatotgoaca ttactgacta ctotaactac aggtgaacaa 2640 2700 cctcttccac aactttgacg gccacgcctt cgagatcggc actggtggct acgtcctggc

WO 2004/074468 PCT/EP2003/005726 105/178

pectinases.ST251 cgagggtaac gtcttccagg acgttaacac tgtggtggag acgcccatca gcggccagct 2760 cttcagctcc cccgatgcca acaccaacca gcagtgcgcc tccgtcttcg gtcgttcctg 2820 ccagctcaac gccttcggca actccggctc gatgtccgga tcggacacca gcatcatcag 2880 caagtteget ggcaagacca ttgctgcggc tcacccccg ggtaacattg cccagtggac 2940 catgaagaac gctggccagg gcaaataagg tttttaaagc agaacaattc tgtgaaggag 3000 gccggccaaa gttcagatgg agatagaggg cacctgcttc gacatctata gttcaatagt 3060 ccaggatcat agacgaatga ttatcactcc agaatggtga aacactctta agcagaccat 3120 gacgcgcacg caacatagcc cgctccatgt tactgactgc gactgtattt ggagaattaa 3180 ggaaagctaa atgaaagtat atactacaaa accgccataa cagcaaccga cgccctgagt 3240 cacagtggca tcaatgccgg gtaggtttct tggtacggtg agccagatgc cttcgatcca 3300 acgcgggcga actagtcaat caatgtacgt acgtaaagtg atcgagcgtg tgagtccata 3360 tctttcaggg cgcctagggt aacgccacaa ttgaatttac tcccagcata gaaggagact 3420 tcgcatgaga catcaattta tctgcaccag cctctttatg ggagacaatg accagagtat 3480 ccatactgaa aaggettggg attggagate aeggagggea ageagaagaa tacaettaet 3540 caattgette etacteegg ceageceact gtgtacgtee atgteetace teateaagga 3600 cgttgctata ttctgccatg aaatattgtg tggggttagg aatatcgtcc caaatgctgc 3660 cagactattg gcggtgaagc ggccgtcacg gcatgtcctg cgcaggggcc tactcgcata 3720 togcatogto agatattgco caatgogggo caattattgg aaaacagcag atgaataggo 3780 ccacagtatt atctatgtca attgccaatc tggggatgaa aacctgtggc aatgctgtat 3840 atgcctattc agggtttgac ctgtcatttc atgtcagctg cgatctgggg gctaggacgt 3900 gttcccacct caccgagece caccagtatg gcgatgcatt cccaggatta gagttgccat 3960 gatgcatgac aagatctgtt catttatgct tctgggttgc ctttcatggg tggcgaggag 4020 attaacatga gtatcaataa tttatgtaga aatactatag tgtgttctga tgtcaatgcc 4080 gatgaacgtt atttttgca ttgcatatat gtagtgggtg catcggttgc caactatatg 4140 cgatccatag cccgaaggag atctgggaga ggaagcaata cgatataagt ggatagtccc 4200

ggcttccctt ctatcaaagg accgattcca tttcgtctcc aacatccaca cataacatct

4260

106/178

pectinases.ST251 ccccacctcg tccatc			
<210> 64 <211> 3136 <212> DNA <213> Aspergillus niger			
<400> 64 cttcggggta cctctgtctt tcacagtagc caggcactat ccctgatcct gtgccgccta	60		
cgtggcctta cctatccccc ctttgggtct ttctctattt gggatcttga tagtaacaca	120		
totggcccca catgttgata cottgagato tttccccatg gcatcgtgta atctaggata	180		
ctcgaaggaa caaagcagaa actggaagct gcatagactt tgtctcacag atcgcagctc	240		
tgttgtttag aaacccagtc tgtcaccggt tcgccagatt gagcgtaaaa catgtgacgg	300		
gcacctaaaa gctgacagcc tcggcctgag ctcgtagagt accctcttct aggtctctgt	360		
gggttaactg caagcaaagg atcaagatcg tcggagaatt tcgagcgttt gcatgcaatt	420		
attecgacgg ggttccgagt atttcccgcg gtgtatgtta gtatggttag tatggatgga	480		
tttggtagta gggttgacct gaaacattga gacatctgat tagtagtatg ttatagattt	540		
ggatatacat tattgcaatg acatgtgatc atatgaactt tctgaaatga tggagatata	600		
agcacagtcg tgaatacggg cgtggcctgt tcgttctcag ccctgacagg tgacatcccg	660		
ttccgctgtt cagtggaaag ccgcgtggct gtctcggggg agtgggtcag ggtcccccag			
aaatttactt ttttaagtta gttcttccag tttcagggtc ctccagaccc accacggacc	720		
agctgattat ggcataaccg tctaccaaac tggccagcaa atttctgcat aagaaaccac	780		
tgtcatgaag atattttggt gtcttataga atgcagctta gtgtagctcg gtaagtgagc	840		
gcacaacaga ccgatatggc tcaataagtc cgtaaaatac ctctaactgt ccgaaagatc	900		
agacccacaa agtgctgcga aggcccatga tccttccaag aatcttaaaa aagaccacta	960		
tagtggaccg caatacgtag agctaggagt tcggttcaag aattgcgcga tgtgcacaac	1020		
	1080		
atatatctga aaccactgtc actgcagacc tttcctactt gtgcatccgg ttcgcattgc	1140		
agtggggcag ggcagttctt ggccgaagga actatgatca ctttgtaaca atggtgggcc	1200		
etgtagetac cagtgeteta ttetteggea aaatteaate etttgettet atatgteact	1260		
aggtgaactt gaatacatat aaagataaag ggttggagct ctggacggta cctctgtctg	1320		

tcaacccaat	ctatactttt	tccaaaaccc	ttatccatta	tgaaggtccc	cttcctccaa	1380
cttctctgcc	taaatgccgc	cttggctagc	gccaatgttg	ttaaaggcgc	ggcccagggt	1440
ttcgcagccg	gcgtgacagg	cggcggcgat	ataactccca	gctaccccaa	aaccaacgag	1500
gagcttgtct	ccctgctcga	gagcgacgaa	ccccaagtcg	tcgtactcac	caagaccttt	1560
gagttcatcg	gaaccgaggg	aaccacgacc	gagaatggat	gcgcaccctg	gggtactggg	1620
aagtcctgcc	agctggccat	caactccaat	ggatggtgtg	gtaaaaatcc	cgtcgtaacc	1680
atcacgtatg	ataacgccgc	caagaatggc	attcatatca	agtccaacaa	gactcttgtt	1740
ggtgagggag	acaagggcgt	gctcagcgga	aagggtctct	actttgaggg	tggtgtttcc	1800
aatatcatcg	tgcagaacat	taagattacg	aacctcaacc	ctgggtatgt	atcatcccag	1860
taactaggag	ttctcgaatg	ctttgggaga	caccatatgt	tctaacgttt	ttcactacag	1920
ttttgtctgg	ggtggcgacg	cgtttacttt	ctttggcgct	gatctgatct	ggatcgacca	1980
ctgcgaggta	agacagaaat	ctccatcatc	tgataatcat	aattgagttt	ctcacattga	2040
cttatggatt	agacctccct	caccggacgc	caacactacg	tgaccggctt	ccaccccaac	2100
acccgcatga	cttggtccaa	caacttcctt	aacggcgtaa	ccacccactc	cgcaggctgc	2160
gatgatcacc	actattggac	aatggagcta	gttggccctg	gggaccaaat	taccttccag	2220
agtacgtgtc	ccatgaaaac	ctaaacgaag	catctattcg	actaacatac	gtgttcactc	2280
acagacaact	acgtctacca	caccaccggc	cgtggacccg	ctctctccgg	cacgaccctc	2340
ttccacgcag	tcaacagcgt	ctggtcctcc	atccctggac	acgccatcga	gggcggtgac	2400
aagggccgcg	gtctcttcga	gggatgcttc	ttcgaagatg	ttgtcgagat	tgccccgcc	2460
aagcccgaga	accaactctt	cagcgccagc	gaagccaacg	ccgcatcttg	caagtccgcc	2520
ttgggccgcg	cttgccaggc	caatagctat	agcaaatctg	gtgcttttgg	cagctctgaa	2580
actggctttt	tcaaggactt	tgccggactg	actattgcac	cggccggctc	tgcgacggat	2640
gctctcgctt	atgttcctaa	gaattgtggt	attgggcgtc	tttgaagctg	tgatgcttaa	2700
aattggacgt	gttccagtat	gtatcaagca	ggagggtgga	ttgtaagtta	cttaagtttg	2760
attaatgtat	ctaatatatc	tggattctgc	gcgcaaccaa	tattctcctc	gtttctgcag	2820
tatccttcat	taaacatact	tcacgtacct	caacagacta	tgattcgttt	taacatagca	2880

2940

3000

3060

3120

3136

pectinases.ST251							
tacgacactt catatetage tetaaggete ggaattteet teaegtgaag cagecaaact							
ggttagatec aacttgagaa ttateteeet etetgeteea actaeceaca teagtageea							
ataatcacga ccacaaacaa tatgaacctt tctttcgatg aaaatacacg ccacggaaag							
agaaaaaaac caaagcaaca gccttaagta tggtagcgat tgctaggcac cgtacgtttg							
acaaaagtga aagtaa							
<210> 65 <211> 434 <212> PRT <213> Aspergillus niger							
<400> 65							
Met Lys Leu Pro Ile Leu Val Thr Leu Phe Ile Thr Leu Pro Ala Leu 1 5 10 15							
Cys Val Ser Ser Lys Thr Pro Ser Ala Pro Thr Ile Ser Ala Tyr Pro 20 25 30							
Lys Ser Pro Gly Asn Phe Lys Pro Ala Ser Gly Arg Gln Asn Ser Thr 35 40 45							
Ser Asn Val Cys Glu Val Lys Pro Asn Gln Thr Asp Ala Ala Pro Gly 50 60							
Ile Leu Ala Ala His Thr Cys Asn Asn Gly Gly Thr Val Phe Leu 65 70 75 80							
Pro Pro Gly Asp Phe Val Val Ala Thr Ala Leu Asp Leu Thr Phe Leu 85 90 95							
Asn Asn Ile Asp Phe Ala Ile Trp Gly Asn Ile Thr Phe Lys Lys Asp 100 105 110							

Ile Asp Leu Trp Thr Thr Gln Ala Phe Gln Tyr Thr Phe Gln Thr Ala 115 120 125

Ser Leu Phe Trp Arg Phe Gly Gly Asn Asn Val Asn Ile Tyr Gly Asp

WO 2004/074468 PCT/EP2003/005726

pectinases.ST251 130 135 140

Gly Lys Gly Val Ile Asp Gly Ala Gly Gln Tyr Trp Trp Ser Ala Met 145 150 155 160

Ala Glu Asp Ser Ser Val Met Arg Pro Cys Leu Leu Gly Thr Asp Gly 165 170 175

Leu His His Ala Thr Ile Ser Gly Leu Thr Met Leu Asn Ser Pro Asn 180 185 190

Trp Phe Asn Leu Ile Ala Asn Ser Thr Asp Ile Leu Ile Ser Asn Met 195 200 205

Thr Met Leu Val Glu Ser Glu Ile Ser Asp Ala Pro Ala Lys Asn Thr 210 215 220

Asp Gly Trp Asp Ile Tyr Arg Ser Ser Asn Ile Val Ile Gln Asp Ser 225 230 235 240

Arg Ile Val Asn Thr Asp Asp Cys Val Ser Phe Lys Pro Asn Ser Thr 245 250 255

Gln Ile Val Ile Gln Asn Leu Asp Cys Thr Gly Ser His Gly Ile Ser 260 265 270

Val Gly Ser Leu Gly Gln Tyr Gln Gly Glu Thr Asp Ile Val Glu Asp 275 280 285

Leu Tyr Ile Tyr Asn Ile Ser Met Thr Asp Ala Ser Asp Val Ala Arg 290 295 300

Ile Lys Val Trp Pro Gly Val Pro Ala Asp Thr Ser Gly Ser Thr Ser 305 310 315 320

Gly Gly Gly Leu Gly Arg Val Arg Asn Val Thr Tyr Glu His Met Gln 325 330 335

Ser Glu Asn Asn Asp His Ile Ile Ser Val Ser Gln Cys Tyr Glu Ser

pectinases.ST251 340 345 350

Lys Asn Gln Thr Met Cys Asp Ser Tyr Pro Ser Lys Leu Val Ile Glu 355 360 365

Asp Val Leu Phe Lys Asp Phe Lys Gly Thr Thr Ser Lys Lys Tyr Asp 370 375 380

Pro Glu Ile Gly Glu Leu Thr Cys Ser Ser Pro Asp Val Cys His Asn 385 390 395 400

Ile Thr Val Gln Asp Ile Asn Val Thr Pro Pro Ser Gly Asp Ser Pro 405 410 415

Thr Phe Thr Cys Asn Asn Met Gly Asn Ser Asn Leu Glu Asp Ile Thr 420 425 430

Cys Ala

<210> 66

<211> 463

<212> PRT

<213> Aspergillus niger

<400> 66

Met Ser Trp Ser Ser Pro Ala Ala Gln Tyr Ile Tyr Val Leu Val Ile 1 5 10 15

Gln Leu His Leu Trp Phe Ile Leu Lys Thr Ala Phe Ser Pro Ser Asn 20 25 30

Gln Ala Met Ala Pro Ile Ala Leu Lys Ile Leu Leu Phe Thr Ser Leu 35 40 45

Ile Val Pro Ser Ile Ser Leu Ser Asp Gln Ala Arg Asn Gly His Ala 50 55 60

Arg Thr Ile Cys Glu Val Lys Pro Gly Gly Ser Ser Glu Ile Asp Asp 65 70 75 80

Val	Pro	Ala	Ile	Val 85	Asp	Ala	Leu	Thr	Thr 90	Cys	Gly	Ser	Gly	Gly 95	Arg
Val	Ile	Phe	Ser 100	Asn	Asn	Thr	Tyr	His 105	Ile	Asn	Ser	Val	Met 110	Asn	Thr
Thr	Trp	Leu 115	Asp	Asp	Val	Glu	Ile 120	Asp	Leu	Gln	Gly	Thr 125	Leu	Leu	Trp
Ser	Thr 130	Asn	Ile	Ser	Tyr	Trp 135	Leu	Asn	His	Ser	Leu 140	Pro	Val	Gly	Tyr
Gln 145	Asn	Gln	Ser	Thr	Ala 150	Trp	Ile	Leu	Gly	Gly 155	Lys	Asp	Ile	Val	Phe 160
Glu	Gly	His	Gly	Tyr 165	Gly	Thr	Phe	Asn	Gly 170	Ser	Gly	Gln	Thr	Trp 175	Tyr
Arg	Tyr	Val	Gly 180	Ser	Thr	Ser	Asn	Tyr 185	Pro	Arg	Arg	Pro	Asn 190	Gln	Leu
Thr	Val	Ser 195	Gly	Ala	Met	Gly	Ala 200	Val	Phe	Lys	Gly	Leu 205	Arg	Phe	Val
Gln	Ser 210	Gln	Met	Trp	Thr	Met 215	Ser	Ile	Ile	His	Thr 220	Ser	Asn	Ser	Trp
Phe 225	Asp	Ser	Ile	Tyr	Val 230	Asn	Asn	Leu	Tyr	Asp 235	Asp	Gly	Gly	Ser	Ala 240
Gln	Asn	Thr	Asp	Gly 245	Ala	Asn	Thr	Ile	Tyr 250	Ser	Lys	Asn	Ile	Thr 255	Leu
Thr	Asn	Trp	Glu 260	Val	Val	Asn	Gly	Asp 265	Asp	Ser	Ile	Ser	Thr 270	Lys	Ala
Asn	Ser	Thr 275	Asp	Ile	Thr	Ile	Ala 280	Asn	Cys	Thr	Phe	Thr 285	Ser	Gly	Leu

Gly	Ile 290	Ala	Ile	Gly	Ser	Ile 295	Gly	Gln	Tyr	Asn	Gly 300	Ala	Phe	Glu	Thr
											500				

Asn Gly Gly Gly Gly Leu Gly Tyr Ala Ser Asp Ile Val Ala Thr
$$340$$
 345 350

Ile Thr Ile Glu Asn Val Ser Leu Arg Ile Ala Gly Asn Thr Thr His
$$420$$
 425 430

Ala Glu Glu Tyr Leu Cys Gly Asn Val Asp Gly Thr Val Gly Phe Asn
$$435$$
 440 445

<210> 67

<211> 423

<212> PRT

<213> Aspergillus niger

<400> 67

WO 2004/074468 PCT/EP2003/005726 113/178

Met	Gln	Leu	Arg	Ala	Ser	Val	Leu	Leu	Ser	Phe	Leu	Gly	Leu	Ala	Ser
1				5					10					15	

- Arg Ala Asn Gly Gly His Gln Asp Asp Val Pro Asn Ile Met Ala Ala 35 40 45
- Phe Lys Glu Cys Gly Asn Gly Gly Thr Ile Ile Phe Pro Glu Asp Gln 50 55 60
- Ser Tyr Trp Ile Ala Thr Arg Leu His Pro Thr Leu Lys Asp Val Ala 65 70 75 80
- Ile Glu Trp Arg Gly Lys Trp Thr Phe Ser Asp Asn Leu Thr Tyr Trp 85 90 95
- Arg Asn Asn Ser Tyr Pro Ile Ala Phe Gln Asn His His Ala Gly Phe 100 105 110
- Ile Ile Ser Gly Asp Asn Ile Thr Ile Asn Gly Tyr Gly Thr Gly Gly 115 120 125
- Ile Asp Gly Asn Gly Asn Thr Trp Tyr Thr Ala Glu Lys Gly Asp Thr 130 135 140
- Gln Pro Gly Arg Pro Met Pro Phe Val Phe Trp Asn Val Ser Glu Val 145 150 155 160
- Ile Val Asp Ser Phe Tyr Val Lys Asp Pro Pro Leu Trp Ser Val Asn 165 170 175
- Ile Met Asn Gly Thr Asn Met Arg Phe Asn Asn Ile Tyr Cys Asn Ala 180 185 190
- Thr Ala Val Asp Ala Pro Trp Gly Asp Asn Trp Val Gln Asn Thr Asp 195 200 205

							_								
Gly	Phe 210	Asp	Thr	Met	Asp	Ala 215	Thr	Asn	Ile	Gln	Leu 220	Thr	Asn	Phe	Val
Tyr 225	Gln	Gly	Gly	Asp	Asp 230	Cys	Ile	Ala	Ile	Lys 235	Pro	Arg	Ser	Tyr	Asn 240
Ile	Asp	Ile	Gln	Asn 245	Val	Thr	Суз	Arg	Gly 250	Gly	Asn	Gly	Ile	Ala 255	Ile
Gly	Ser	Leu	Gly 260	Gln	Tyr	Leu	Glu	Asp 265	Ser	Ser	Val	Ala	Asn 270	Ile	Arg
Val	Asp	Lys 275	Val	Asn	Ile	Ile	Arg 280	Tyr	Asn	Glu	Asp	Met 285	His	Asn	Ser
Ala	Tyr 290	Leu	Lys	Thr	Trp	Val 295	Gly	Ala	Leu	Val	Pro 300	Gln	Ser	Ser	Tyr
Glu 305	Ser	Ala	Gly	Val	Pro 310	Arg	Gly	Asp	Gly	Trp 315	Gly	Ser	Ile	Arg	Asn 320
Val	Leu	Phe	Ser	Asn 325	Phe	Asn	Val	Gln	Gly 330	Ala	Ser	Ala	Gly	Pro 335	Ser
Ile	Ser	Gln	Asp 340	Ser	Gly	Asp	Asn	Gly 345	Ser	туг	Ala	Gly	Thr 350	Ser	Lys
Met	Ser	Ile 355	Ser	Asn	Val	Ala	Phe 360	Val	Asn	Phe	Thr	Gly 365	Trp	Val	Asp
Thr	Glu 370	Lys	Ser	Val	Val	Ser 375	Thr	Val	Ser	Cys	Ser 380	Glu	Val	His	Pro
Cys 385	Tyr	Asn	Ile	Asp	Tyr 390	Asp	Asn	Val	Val	Leu 395	Tyr	Pro	Gly	Lys	Asn 400
Ala	Thr	Thr	Ala	Gly 405	Thr	Gly	Ser	Cys	Lys 410	Tyr	Thr	Ala	Asp	Gly 415	Gly

WO 2004/074468 PCT/EP2003/005726

pectinases.ST251

Val His Gly Leu Ser Gly Cys 420

<210> 68

<211> 343

<212> PRT

<213> Aspergillus niger

<400> 68

Met Pro Ser Ala Ile Ser Ile Gly Val Ile Ala Gly Leu Ser Val Ala 1 5 10 15

Ala Ser Ala Val Pro Ser Leu Gln Lys Asn Gly Thr Thr Cys Thr Val 20 25 30

Ile Pro Leu Gly Asn Gly Gln Asp Asp Val Pro Asn Ile Leu Ser Ala 35 40 45

Val Asp Glu Cys Gly Gln Thr Ser Gly Gly Arg Val Val Leu Pro Ala 50 55 60

Pro Tyr Thr Tyr Arg Ile Asn Gln Arg Met Thr Thr His Leu Thr Asp 65 70 75 80

Ser Arg Leu Glu Ile Gly Gly Thr Leu Leu Phe Ser Asp Asp Ile Asp 85 90 95

Tyr Trp Val Asn Asn Ser Tyr Arg Val Asp Phe Gln Asn Gln Ser Ser 100 105 110

Ala Trp Arg Ile Thr Gly His Asp Tyr Val Val Asp Gly Gly Pro Arg 115 120 125

Gln Gly Gly Val Asp Gly Asn Gly Gln Leu Trp Tyr Thr Trp Ala Lys 130 135 140

Gly Gly Ser Asn Val Phe Gly Arg Pro Met Pro Val His Val Phe Glu 145 150 155 160

WO 2004/074468 PCT/EP2003/005726

pectinases.ST251 Ser Thr Arg Ala Thr Leu Arg Asn Leu Ala Ile Arg Gln Pro Gln Phe 165 170 Trp Ala Val Leu Val Asp Ser Ser Ser His Ile Asn Leu Asp Asn Phe 180 185 190 Tyr Val Asn Ala Thr Asn His Asp Ser Ser Val Ser Pro Glu Gly Glu 195 200 205 Trp Val Gln Asn Thr Asp Gly Ile Asp Thr Tyr Arg Ser Asp His Ile 210 215 Thr Val Thr Asn Trp Val Tyr Gln Gly Gly Asp Asp Ala Val Ala Phe Lys Gly Asn Ser Thr Asn Ile His Val Glu Asn Val Thr Val Tyr Gly Gly Pro Gly Ile Ala Phe Gly Ser Leu Gly Gln Tyr Pro Asp Arg Thr Asp Ile Val Glu Asn Val Thr Val Arg Asn Val Arg Val Gln Pro Ser 275 Phe Gln Arg Ala Met Asn Ser Gly Val Tyr Phe Lys Ser Trp Ile Gly Val Asn Tyr Gly Val Pro Pro Asn Gly Gly Gly Gly His Gly Tyr 305 310 315 320 Val Arg Asn Val Ser Val Glu Asn Leu Arg Leu Lys Asp Val Gln Leu 325 330 Pro Val Tyr Ile Asp Thr Trp 340

<210> 69

<211> 438

<212> PRT

<213> Aspergillus niger

<400> 69

Met Tyr Leu Leu Pro Leu Thr Leu Phe Leu Thr Ala Ala Phe Gly Val

Ser Ile Pro Arg Ser Pro Leu Ile Pro Gly Ala Gln Ile Val Pro Ala 20 25 30

Ser Ser Thr Ala Asp Leu Arg Ala Ile Gly Ala Gln His His Lys Tyr 35 40 45

Pro Asp Arg Glu Thr Val Thr Ile Arg Ala Ser Arg Asn Ala Leu Asp 50 55 60

Asp Val Ser Ser Asp Phe Leu Trp Gly Leu Lys Gln Ala Asn His Gly 65 70 75 80

Gly Arg Leu Leu Lys Gln Gly Glu Thr Tyr Val Ile Gly Lys Lys 85 90 95

Leu Asp Leu Thr Phe Leu Asp Asn Ile Glu Val Gln Leu Glu Gly Glu 100 105 110

Ile Gln Phe Thr Asn Asn Ile Thr Tyr Trp Gln Ala Asn Asn Phe Tyr 115 120 125

Tyr Asp Phe Gln Lys Ser Ile Thr Phe Trp Arg Trp Gly Gly Gln Asp 130 135 140

Ile Lys Ile Phe Gly Ser Gly Val Leu Asn Gly Asn Gly Gln Lys Trp 145 150 155 160

Tyr Asp Glu Phe Ala Gly Lys Gln Ile Leu Val Tyr Asn Thr Phe Tyr 165 170 175

Arg Pro Ile Leu Phe Leu Thr Asp Asn Ala Thr Arg Ile Ser Val Glu 180 185 190

Gly Ile Thr Gln Leu Asn Ser Pro Cys Trp Thr Asn Phe Phe Val Arg

WO 2004/074468 PCT/EP2003/005726

pectinases.ST251 Thr Asn Asp Val Ser Phe Asp Asn Val Tyr Ile His Ala Phe Ser Thr Asn Ala Ser Ser Asp Pro Ala Asn Thr Asp Gly Met Asp Ser Leu Asp Val Asp Gly Val Ser Phe Thr Asn Met Arg Ile Asp Val Gly Asp Asp Cys Phe Ser Pro Lys Pro Asn Thr Thr Asn Ile Phe Val Gln Asn Met Trp Cys Asn Asn Thr His Gly Val Ser Met Gly Ser Ile Gly Gln Tyr Ala Gly Glu Met Asp Ile Ile Glu Asn Val Tyr Ile Glu Asn Val Thr Leu Leu Asn Gly Gln Asn Gly Ala Arg Leu Lys Ala Trp Ala Gly Gln Asp Val Gly Tyr Gly Arg Ile Asn Asn Val Thr Tyr Lys Asn Ile Gln Ile Gln Asn Thr Asp Ala Pro Ile Val Leu Asp Gln Cys Tyr Phe Asp Ile Asn Ala Thr Glu Cys Ala Lys Tyr Pro Ser Ala Val Asn Ile Thr Asn Ile Leu Phe Glu Asn Ile Trp Gly Ser Ser Ser Gly Lys Asp Gly Lys Ile Val Ala Asp Leu Val Cys Ser Pro Asp Ala Val Cys Thr Asn

Ile Thr Leu Ser Asn Val Asn Leu Thr Ser Pro Lys Gly Thr Ala Glu

pectinases.ST251
405 410 415

Ile Val Cys Asp Asp Ile Gln Gly Gly Ile Gly Val Asp Cys Val Ser
420 425 430

Asp Glu Ser Val Thr Arg 435

<210> 70

<211> 397

<212> PRT <213> Aspergillus niger

<400> 70

Met Leu Leu His Gly Leu Leu Leu Ala Leu Gln Ala Ile Leu Ala Ser 1 10 15

Ser Ala Ala Ile Thr Ser Pro Ser Ser Asn His Leu Ser Thr Ala Ala 20 25 30

Arg Glu Lys Cys Gln Thr Thr Leu Gln Cys Pro Pro Gly Thr Leu Ile 35 40 45

Val Ser Asn Thr His Pro Gln Leu Ser Asn Phe Thr Thr Leu Gln Ala 50 55 60

Ala Ile Asn Ala Leu Pro Asn Asp Asn Ser Ser Gln Thr Ile Leu Leu 65 70 75 80

Leu Ser Gly Ser Tyr Asn Glu Gln Val Asn Ile Thr Arg Ser Gly Pro 85 90 95

Ile Thr Leu Leu Gly Gln Gln Pro Asp Arg Ala Ala Leu Thr Asp Pro
100 105 110

Ala Arg Asn Thr Val Asn Leu Thr Phe Ala Gly Ala Asn Ser Asp Ser 115 120 125

Thr Gly Asp Ile Asp Asn Val Trp Phe Ser Val Met Val Val Ala Pro 130 135 140

Thr 145	Leu	Asp	Ala	Ser	Leu 150	Thr	Gly	Ser	Gly	Thr 155	Thr	Gly	Tyr	Pro	Val 160
Pro	Ala	Asp	Thr	Pro 165	Phe	Gly	Asn	Thr	Asp 170	Phe	Arg	Val	Tyr	Asn 175	Ile
qeA	Phe	Arg	Asn 180	Thr	Туг	Ala	Pro	Tyr 185	Ser	Ala	Gly	Pro	Ala 190	His	Ala
Ile	Ser	Phe 195	Ser	Arg	Ser	Asn	Gly 200	Gly	Phe	Tyr	Tyr	Cys 205	Gly	Phe	Tyr
Ser	Tyr 210	Gln	Asp	Thr	Ile	Tyr 215	Ile	Gly	Lys	Leu	Gly 220	Ser	Ala	Tyr	Met
Tyr 225		Ser	Ile	Leu	Ala 230	Gly	Gln	Thr	Asp	Phe 235	Leu	Tyr	Gly	Phe	Gly 240
Thr	Leu	Phe	Ile	Gln 245	Ser	Ser	Gln	Ile	Val 250	Leu	Arg	Ser	Cys	Gly 255	Gly
Gly	Ile	Thr	Ala 260		Lys	Gly	Thr	Asn 265	Thr	Thr	Val	Arg	Asn 270	Asn	Tyr
Gly	Val	туг 275		His	Asp	Ser	Thr 280	Val	Asn	Ala	Ala	Asn 285	Thr	Ser	Ile
Ala	Glu 290		Ile	Lys	Gly	Ser 295		Ala	Leu	Gly	Arg 300	Pro	Trp	Asn	Ser
Leu 305		Arg	Ser	Ile	Phe		Asn	Thr	Tyr	Glu 315	Asp	Gly	Ser	Ile	Glu 320
Pro	Ser	Gly	Tyr	11e 325		Trp	Glu	Asp	Arg 330		Ser	Lys	Asn	Glu 335	Thr
Leu	Met	Ala	Glu 340		Lys	Ala	Tyr	Gly 345		Gly	Phe	Asn	Leu 350	Thr	Gly

Arg Arg Glu Ser Glu Val Ser Val Leu Leu Ser Ser Glu Glu Glu 355 360 365

Arg Tyr Arg Asp Pro Ser Arg Leu Phe Leu Phe Glu Asp Gly Arg Glu 370 375 380

Gly Asn Val Ala Trp Ile Asp Trp Asp Val Val Ser Ser 385 390 395

<210> 71

<211> 327

<212> PRT

<213> Aspergillus niger

<400> 71

Met His Thr Pro Tyr Leu Leu Gly Ala Leu Ala Ala Leu Ala Ala Thr 5 10 15

Ala Val Gly Ala Pro Ala Glu His Ile Lys Lys Arg Glu Ser Arg Thr 20 25 30

Ser Ala Pro Ser Gly Cys Leu Thr Val Gly Ser Asp Gly Thr Tyr Ser 35 40 45

Thr Ile Gly Asp Ala Leu Asp Ala Leu Gly Ser Ser Thr Ser Ser Ala 50 55 60

Cys Ile Tyr Val Ala Ser Gly Thr Tyr Glu Glu Gln Leu Thr Ile Asp 65 70 75 80

Tyr Ala Gly Asn Leu Thr Leu Tyr Gly Glu Thr Thr Asp Thr Ser Thr 85 90 95

Tyr Lys Asp Asn Val Val Thr Ile Thr His Thr Ile Ser Ser Ser Asp 100 105 110

Ala Gly Ser Leu Asp Lys Ser Ala Thr Val Asn Val Val Ser Asp Gly
115 120 125

WO 2004/074468 PCT/EP2003/005726 122/178

Phe	Ser 130	Met	Tyr	Asn	Ile	Asn 135	Val	Glu	Asn	Gly	Tyr 140	Gly	Glu	Gly	Ala
Gln 145	Ala	Val	Ala	Leu	Val 150	Gly	Asn	Ala	Asp	Gln 155	Leu	Gly	Phe	Tyr	Gly 160
Суз	Gln	Phe	Ser	Gly 165	Tyr -	Gln	Asp	Thr	Leu 170	Tyr	Val	Lys	Ala	Gly 175	Thr
Gln	Tyr	Tyr	Ser 180	Asn	Суз	Met	Ile	Glu 185	Gly	Ala	Val	Asp	Tyr 190	Ile	Phe
Gly	Asp	Ala 195	Ser	Val	Trp	Phe	Gly 200	Glu	Cys	Asp	Ile	Val 205	Ser	Asn	Gly
Ala	Gly 210	Ala	Ile	Thr	Ala	Ser 215	Ser	Arg	Glu	Thr	Ser 220	Ser	Asp	Ser	Gly
Trp 225	Tyr	Ala	Ile	Asp	Asn 230	Cys	Asn	Ile	Lys	Ala 235	Ala	Ser	Gly	Val	Ser 240
Leu	Thr	Glu	Glu	Val 245	Tyr	Leu	Gly	Arg	Pro 250	Trp	Arg	Val	Leu	Ala 255	Arg
Val	Ile	Tyr	Gln 260	Asn	Ser	Val	Leu	Ser 265	Asp	Ile	Ile	Asn	Pro 270	Lys	Gly
Trp	Thr	Thr 275	Met	Ala	Asp	Gly	Ala 280	Thr	Pro	Leu	Tyr	Tyr 285	Glu	Tyr	Asn
Asn	Ser 290	Gly	Ala	Gly	Ser	Asp 295	Thr	Ser	Asp	Arg	Glu 300	Tyr	Glu	Thr	Ser
Ile 305	Ser	Ala	Ala	Val	Asp 310	Lys	Thr	Thr	Val	Leu 315	Gly	Glu	Thr	Trp	Gly 320
Asp	Trp	Ile	Asp	Arg 325	Ser	Tyr									

<210> 72 <211> 459 <212> PRT <213> Aspergillus niger <400> 72 Met Arg Ala Ser Ile Leu Pro Leu Thr Leu Phe Leu Ala Thr Leu Ala Gly Ala Gln Leu Ser Gly Pro Val Gly Pro Leu Val Asp Tyr Ser Thr Lys Ala Arg Asn Gln Thr Cys Asn Ile Ile Asp Tyr Gly Ala Val Ala Asp Gly Lys Thr Asp Ile Ser Gln Ala Leu Leu Asp Ala Trp Gly Asn Cys Ser Val Gly Gly Leu Val Tyr Ile Pro Pro Gly Asn Tyr Ser Leu 70 Ala Glu Asp Ile Glu Leu Lys His Gly Gln Ser Ser Ala Ile Gln Leu 85 Asp Gly Val Val Met Arg Gly His Arg Gly Ser Tyr Gln Met Ile Leu 100 110 Ile Arg Asp Cys Asn Asp Phe Glu Phe Phe Ser Gly Asn Ser Arg Gly 125 120 115 Ala Ile Gln Gly Phe Gly Tyr Glu Tyr Leu Gln Asn Asp Thr Tyr Gly 130 135 Glu Arg Leu Leu Arg Ile Gln Glu Val Asn Asn Phe Ser Val His Gly 145 150 155 Phe Ala Leu Ile Asp Ser Pro Ser Tyr Tyr Ile Val Phe Asp Thr Val

170

165

WO 2004/074468 PCT/EP2003/005726 124/178

Thr	Ser	Gly	Glu 180	Val	Tyr	Asn		tina Leu 185				Val	Thr 190	Ser	Val
Gly	Ala	Thr 195	Asp	Ala	Ile	Asp	Val 200	Trp	Gly	Glu	Asn	Met 205	Trp	Phe	His
Asp	Ile 210	Glu	Val	Ser	Asn	Gly 215	Asp	Glu	Cys	Val	Thr 220	Val	Lys	Ser	Pro
Ala 225	His	Asn	Tyr	Leu	Ile 230	Glu	Asn	Ile	Tyr	Cys 235	Asn	Leu	Ser	Gly	Gly 240
Thr	Ala	Ile	Gly	Ser 245	Leu	Gly	Thr	Gly	Thr 250	Asn	Ile	Ser	Asp	Ile 255	His
Tyr	Arg	Asn	Leu 260	Tyr	Met	Asn	Gln	Ala 265	Asp	Ala	Cys	Phe	Leu 270	Lys	Ser
Asn	Asn	Gly 275	Asp	Gly	Ile	Val	Lys 280	Asn	Ile	Ile	Trp	Glu 285	Asn	Val	Ile
Val	His 290	Gly	Gly	Pro	Tyr	Pro 295	Leu	Ala	Ile	Asp	Glu 300	Ala	Trp	Gly	Asp
Asp 305	Arg	Gly	Ser	Val	Gly 310	Val	Gln	Val	Ser	Asn 315	Leu	Thr	Phe	Arg	Asn 320
Trp	His	Gly	Glu	Ser 325	Val	Ser	Ala	Ser	Arg 330	Pro	Val	Ile	Arg	Leu 335	Gln
Cys	Asp	Ser	Asp 340	Val	Pro ·	Суѕ	Tyr	Asp 345	Ile	Thr	Ile	Glu	Asn 350	Val	Asn
Leu	Trp	Ala 355	Asn	Asp	Ser	Asn	Tyr 360	Val	Val	Trp	Gln	Cys 365	Glu	Asn	Ala
Tyr	Gly 370	Asp	Gly	Ala	Cys	Leu 375	Ser	Ser	Ala	Glu	Gly 380	Thr	Lys	Asp	Leu

pectinases.ST251 Glu Thr Phe Thr Ser Lys Gln Thr Ile Thr Ala Thr Pro Ser Tyr Ala 385 390 400 Ala Pro Thr Met Ala Ala Asp Phe Thr Phe Asn Leu Pro Ser Thr Ser 405 410 Pro Phe Thr Ile Pro Pro Met Pro Thr Ser Phe Tyr Pro Gly Ala Thr 420 425 430 Pro Ile Ser Thr Leu Leu His Leu His Gly Ala Gly Gly Leu Pro Ser 435 Ala Ser Pro Ile Ser His His Arg Arg His Gln 455 <210> 73 <211> 474 <212> PRT <213> Aspergillus niger <400> 73 Met Arg Ser Ile Leu Phe Ile Leu Phe Ser Val Phe Ala Gly Leu Ala 15 Ala Gly Gln Leu Ile Gly Pro Val Gly Pro Thr Thr Gln Leu Glu Asp 20 25 30 Lys Asp Ile Glu Cys Asn Ile Leu Asp Tyr Gly Gly Val Ala Asp Asn 35 40 Glu Thr Asp Val Ala Thr Ser Ile Glu Thr Thr Phe Thr Glu Cys Val 50 Leu Asn Asn Pro Lys Ser Arg Leu Val Ile Pro Glu Gly Asp Tyr Leu

Ile Lys Arg Ser Val Val Leu Ser Asn Gly Thr Asn Trp Ala Phe Gln 85 90 95

70

Leu Asp Gly Leu Ile Thr Ala Ala Tyr Gly Gly Asn Trp Thr Val Asp

pectinases.ST251 100 105 110

Pro	Val	Asp 115	Phe	Glu	Phe	Tyr	Ser 120	Ser	Asn	Gly	Leu	Gly 125	Ala	Phe	Gln
Gly	Gln 130	Gly	Туг	Ile	Tyr	Arg 135	Asn	Leu	Ala	Asn	Thr 140	Asp	Arg	Pro	Arg
Leu 145	Val	Arg	Leu	Ile	Ser 150	Pro	Thr	Asn	Ala	Ser 155	Val	His	Asp	Leu	Ile 160
Leu	Val	Asp	Ser	Pro 165	Lys	Phe	His	Ile	Val 170	Phe	Asp	Phe	Ala	Val 175	Asn
Leu	Glu	Ala	Tyr 180	His	Leu	Thr	Ile	Arg 185	Gly	Ala	Asn	Leu	Gly 190	Ser	Tyr ·
Asp	Gly	Ile 195	Asp	Ala	Ile	Gly	Thr 200	Asn	Tyr	Tyr	Ile	His 205	Asp	Asn	Glu
Ala	Ile 210	Thr	Asn	Arg	Asp	Glu 215	Cys	Val	Ser	Val	Lys 220	Ser	Pro	Ser	His
His 225	Ala	Leu	Val	Glu	Asn 230	Leu	Val	Cys	Asn	Gln 235	Ala	Gly	Ser	Gly	Val 240
Ser	Ile	Gly	Ser	Leu 245	Asn	Val	Ser	Ala	Glu 250	Ile	Ser	Asn	Ile	Glu 255	Ala
Arg	Asn	Ile	Ser 260	Ile	Ile	Gln	Gly	Asn 265	Asn	Ile	Ala	Phe	Ile 270	Lys	Thr
Tyr	Pro	Gly 275	Gly	Ser	Gly	Tyr	Val 280	Lys	Asp	Val	Thr	Phe 285	Glu	Asn	Phe
Arg	Ser 290	Leu	Asn	Ser	Leu	Tyr 295	Gly	Leu	Asp	Ile	Asn 300	Gln	Tyr	Trp	Gln

Asn Thr Trp Glu Pro Asp Thr Gly Ser Val Thr Leu Ser Asn Leu Val

305					310		pec	tina	ses.	ST25 315	1				320
Phe	Lys	Asn	Phe	Ser 325	Gly	Ser	Val	Ala	Asp 330	Gly	Ala	Leu	Arg	Pro 335	Pro
Leu	Tyr	Leu	Phe 340	Ala	Ser	Asp	Leu	Thr 345	Phe	Ala	Thr	Asn	Val 350	Thr	Val
Glu	Glu	Phe 355	Ser	Val	Trp	Thr	Glu 360	Thr	Gly	Thr	Thr	Val 365	Val	Asn	Lys
Ile	Ser 370	Asn	Ile	Phe	Gly	Thr 375	Gly	Asp	Asp	Ser	Tyr 380	Gly	Glu	Asn	Asp
Gly 385	Ile	Glu	Ser	Leu	Gln 390	Ser	Gly	Glu	Ser	Pro 395	Tyr	Thr	Tyr	Thr	Ser 400
Thr	Tyr	Thr	Ile	Thr 405	Ala	Ser	Pro	Thr	Asn 410	Trp	Gln	Ala	Pro	Ser 415	Thr
Pro	Thr	Trp	Ala 420	Leu	Pro	Ser	Thr	Gly 425	Tyr	Gly	Ser	Lys	Phe 430	Asn	Glu
Asn	Cys	Ser 435	Gly	Tyr	Phe	Tyr	Ile 440	Ala	Asn	Leu	Ser	Thr 445	Ala	Ala	Ser
Pro	Ile 450	Pro	Val	Tyr	Thr	Pro 455	Ala	Pro	Leu	Trp	Arg 460	Pro	Gly	Gly	Ile
Asp 465	Tyr	Asn	Leu	His	Tyr 470	Trp	Gly	Ser	Phe						
<210 <211 <212 <213	.> 4 ?> E	4 143 PRT Asper	gill	.us n	iger	•									
<400)> 7	4													
Met 1	Leu	Val	Thr	Ser 5	Leu	Ile	Ala	Leu	Leu 10	Pro	Ala	Ile	Ala	Ala 15	Ala

WO 2004/074468 PCT/EP2003/005726 128/178

Gln	Val	Ser	Gly 20	Thr	Val	Gly	Pro	Arg 25	Thr	Ser	Ala	Ser	Ala 30	Lys	Ala
Ala	Glu	Lys 35	Val	Cys	Asn	Val	Leu 40	Asp	Tyr	Gly	Ala	Ser 45	Ala	Asn	Ser
Thr	Ile 50	Asp	Ile	Gly	Pro	Pro 55	Leu	Lys	Glu	Ala	Phe 60	Gln	Asp	Cys	Gln
Thr 65	Gly	Gly	Leu	Val	Tyr 70	Ile	Pro	Glu	Gly	Asp 75	Tyr	Leu	Leu	Ser	Ser 80
Trp	Val	Ser	Leu	Val 85	Tyr	Gly	Ser	Gly	Trp 90	Ala	Leu	Gln	Leu	Asp 95	Gly
Ile	Ile	Tyr	Arg 100	Asp	ГЛЗ	Asn	Val	Thr 105	Asp	Gly	Gly	Asn	Met 110	Ile	Phe
Ile	Glu	His 115	Thr	Ser	Asp	Ile	Glu 120	Ile	Phe	Ser	Asn	Asn 125	Ser	Ala	Gly
Ala	Ile 130	Gln	Gly	Tyr	Gly	Tyr 135	Leu	Phe	His	Glu	Gln 140	Asp	Glu	Туг	Gly
Pro 145	Arg	Ile	Leu	Arg	Leu 150	Asn	Asn	Val	Thr	Asp 155	Phe	Ser	Val	Hìs	Asp 160
Leu	Ile	Leu	Val	Asp 165	Ser	Pro	Ala	Tyr	Phe 170	Leu	Asn	Leu	Val	Glu 175	Ser
Tyr	Asn	Gly	Glu 180	Val	Tyr	Asn	Met	Val 185	Ile	Arg	Gly	Ala	Ser 190	Met	Gly
Gly	Leu	Asp 195	Gly	Ile	Asp	Ile	Ser 200	Gly	Ala	Asn	Tyr	Trp 205	Ile	His	Asp
Val	Glu 210	Val	Thr	Asn	Gly	Asp 215	Glu	Cys	Val	Thr	Val 220	Lys	Ser	Pro	Ser

Ala <i>P</i> 225	Asn	Val	Arg	Val	Glu 230	Asn	Val	Phe	Суѕ	Asn 235	His	Ser	Gly	Gly	Cys 240
Ala N	Met	Gly	Ser	Leu 245	Gly	Thr	Asp	Thr	Asn 250	Ile	Ser	Asn	Ile	Glu 255	Phe
Glu A	Asn	Ile	Tyr 260	Thr	Tyr	Asn	Ser	Thr 265	Gln	Met	Tyr	Met	11e 270	Lys	Ser
Asn (Gly	Gly 275	Asn	Gly	Thr	Val	Thr 280	Asn	Суз	Ser	Phe	Lys 285	Asn	Phe	Ile
Gly 3	Tyr 290	Ser	Asn	Ala	Tyr	Met 295	Leu	Asp	Leu	Asp	Thr 300	Tyr	Trp	Gly	Asp
Glu 5 305	Ser	Asp	Gly	Asp	Gly 310	Ile	Lys	Tyr	Glu	Asn 315	Ile	Gly	Phe	Glu	Asn 320
Trp 1				325					330					335	
Leu (340					345					350		
Glu 1		355					360					365			
	370					375					380				
Ser 5 385		٠٠.			390					395					400
Ser 1				405					410					415	
Thr !	Thr	Ser	11e 420	Pro	Ile	Pro	Thr	11e 425	Pro	Thr	Ser	Phe	Phe 430	Pro	GТĀ

Ala Ser Ala Tyr Ser Thr Leu Met Ala Asn Met
435
440

<210> 75

<211> 447

<212> PRT

<213> Aspergillus niger

<400> 75

Met Thr Trp Ser Thr Ser Phe Leu Val Ala Thr Ser Leu Leu Ser Ile 1 5 10 15

Ile Asn Ser Val His Ala Gln Leu Thr Gly Ser Val Gly Pro Leu Thr 20 25 30

Ser Val Ile Asp Lys Ala Ala Val Lys Thr Cys Asn Val Cys Asp Tyr 35 40 45

Gly Ala Ser Ser Asp Asn Thr Thr Gly Val Gly Gln Pro Ile Ile Asp 50 55 60

Ala Phe Thr Asp Cys Gly Ser Gly Gly Leu Ile His Val Pro Glu Gly 65 70 75 80

Asp Tyr Leu Leu Lys Asp Trp Val Ser Ser Glu Asn Gly Ser Ala Trp 85 90 95

Ser Ile Gln Leu Asp Gly Val Leu His Trp Asp Ser Ser Pro Ser Ala 100 105 110

Gln Ser Tyr Ile Phe Ala Ile Thr Gly Gly Ser Asp Ser Glu Leu Ser 115 120 125

Ser Ser Asn Ala Thr Gly Ala Ile Gln Gly Ser Gly Tyr Leu Tyr His 130 135 140

Arg His Asn Thr Tyr Thr Ser Pro Arg Met Leu Tyr Ile Ser Gly Cys 145 150 155 160

WO 2004/074468 PCT/EP2003/005726 131/178

							-								
Arg	Ile	Gly	Pro	Phe 165	Met	Thr	Trp	Tyr	Trp 170	Ser	Thr	Arg	Leu	Cys 175	Pro
Thr	Leu	Ser	Leu 180		Ala	Val	Thr	Met 185		Lys	Arg	Thr	Ile 190	Trp	Leu
Ser	Val	Val 195		Ile	Thr	Val	Val 200	Trp	Met	Ala	Leu	Ile 205		Pro	Leu
Leu	Leu 210	Asn	Val	His	Ser	Ile 215	Ser	Gly	Asn	Ala	Asn 220	Ala	Thr	Ala	Ala
Arg 225	Pro	Asn	Ser	His	Asn 230	Phe	Leu	Ile	Glu	Asn 235	Ile	Tyr	Cys	Asn	Pro 240
Ser	Gly	Gly	Cys	Ala 245	Ile	Gly	Ser	Leu	Gly 250	Ser	Ser	Val	Asn	Val 255	Thr
Asn	Ile	Leu	Tyr 260	Arg	Asn	Val	Tyr	Thr 265	Trp	Asp	Ser	Asn	Gln 270	Met	Met
Met	Ile	Lys 275	Thr	Asn	Gly	Gly	Leu 280	Gly	Asn	Val	Ser	Asn 285	Ile	Val	Phe
Glu	Asn 290	Phe	Ile	Gly	His	Gly 295	Asn	Val	Asn	Ser	Leu 300	Asp	Leu	Asp	Ser
Tyr 305	Trp	Ser	Ser	Met	Asn 310	Ala	Ile	Asp	Gly	Val 315	Gly	Ile	Tyr	Tyr	His 320
Asn	Ile	Thr	Ile	Tyr 325	Asn	Trp	Thr	Gly	Thr 330	Ala	Ile	Asp	Gly	Glu 335	Thr
Arg	Pro	Pro	Ile 340	Arg	Val	Ile	Cys	Pro 345	Glu	Asp	Met	Pro	Cys 350	Thr	Glu
Ile	Thr	Leu 355	Val	Gln	Ile	Asp	Leu 360	Leu	Val	Glu	Glu	Gl <i>y</i> 365	Arg	Tyr	Asp

Glu Tyr Tyr Cys Ala Ile Ala Cys Gly Gly Tyr Cys Leu Asp Ser Ala 370 375 380

Thr Ser Thr Leu Thr Thr Tyr Thr Thr Thr Thr Tyr Gly Asn Ser Ala 385 390 395 400

Ser Thr Gly Tyr Glu Ala Pro Thr Met Ala Asp Asp Leu Ala Thr Ala 405 410 415

Phe Gly Thr Thr Ala Ser Ile Pro Thr Pro Thr Thr Pro Ala Ser Phe 420 425 430

Phe Phe Pro Gly Val Ala Pro Val Ser Ala Val Ala Gly Ser Ser 435 440 445

<210> 76

<211> 533

<212> PRT

<213> Aspergillus niger

<400> 76

Met Leu Ser Lys Thr Ser Leu Leu Ser Leu Leu Ser Leu Ala Ala Gly
1 5 10 . 15

Val Val Asn Ala Asp Phe Gly Ile Thr Thr Asn Asp Asp Ser Tyr Val 20 25 30

Ile Asn Ala Asn Ser Pro Asn Ser Leu Val Phe Thr Val Asp Arg Gly 35 40 45

Ser Cys Asp Ile Thr Ser Ile Val His Tyr Gly Thr Glu Leu Gln Tyr 50 55 60

Ser Gly Lys Gly Ser His Ile Gly Ser Gly Leu Gly Thr Ala Thr Val 65 70 75 80

Ser Ala Thr Lys Ser Gly Ala Gly Asp Tyr Ile Lys Val Thr Cys Glu 85 90 95

WO 2004/074468 PCT/EP2003/005726 133/178

	pectinases.ST251														
Thr	Asp	Thr	Leu 100	Thr	Gln	Tyr						Gly	Asp 110	Pro	Ile
Ile	His	Met 115	Ala	Thr	Tyr	Ile	Thr 120	Glu	Glu	Pro	Ser	Ile 125	Gly	Glu	Leu
Arg	Phe 130	Ile	Ala	Arg	Leu	Asn 135	Ser	Asp	Val	Leu	Pro 140	Asn	Glu	Glu	Pro
Phe 145	Gly	Asp	Val	Ser	Asn 150	Thr	Ala	Asp	Gly	Glu 155	Ala	Ile	Glu	Gly	Ser 160
Asp	Val	Phe	Leu	Val 165	Asp	Gly	Glu	Thr	Arg 170	Ser	Lys	Phe	Tyr	Ser 175	Ser
Gln	Arg	Phe	Ile 180	Asp	Asp	Gln	Arg	His 185	Cys	Ile	Ala	Gly	Asp 190	Glu	His
Arg	Val	Cys 195	Met	Ile	Leu	Asn	Gln 200	Tyr	Glu	Thr	Ser	Ser 205	Gly	Gly	Pro
Phe	His 210	Arg	Asp	Ile	Asn	Ser 215	Asn	Asn	Gly	Gly	Asp 220	Tyr	Asn	Ser	Leu
Tyr 225	Trp	Tyr	Met	Asn	Ser 230	Gly	His	Val	Gln	Leu 235	Glu	Ser	Tyr	Arg	Met 240
Gly	Leu	"His	Gly	Pro 245	Tyr	Ser	Met	Tyr	Phe 250	Ser	Arg	Ser	Gly	Thr 255	Pro
Ser	Thr	Asp	11e 260	Asp	Thr	Ser	Phe	Phe 265	Ala	Asp	Leu	Asp	Ile 270	Glu	Gly
Tyr	Val	Ala 275	Glu	Ser	Gly	Arg	Gly 280	Thr	Val	Ser	Gly	Thr 285	Ala	Ser	Gly
Ala	Asp 290	Ser	Ser	Phe	Asp	Trp 295	Val	Val	His	Trp	Tyr 300	Asn	Asp	Asp	Ala

WO 2004/074468 PCT/EP2003/005726 134/178

							ped	ctina	ases.	ST25	51				
Gln 305	Tyr	Trp	Thr	Tyr	Thr 310	Ser						Thr	Ser	Pro	Ala 320
Met	Lys	Pro	Gly	Thr 325	Tyr	Thr	Met	Val	Tyr 330	Tyr	Gln	Gly	Glu	Tyr 335	Val
Val	Ala	Thr	Ser 340	Glu	Val	Thr	Val	Ser 345	Ala	Gly	Ser	Ser	Thr 350	Ser	Lys
Asp	Ile	Ser 355	Gly	Ser	Val	Glu	Thr 360	Gly	Thr	Thr	Ile	Phe 365	Lys	Ile	Gly
Asp	Trp 370	Asp	Gly	Gln	Pro	Thr 375	Gly	Phe	Arg	Asn	Ala 380	Glu	Asn	Gln	Leu
Arg 385	Met	His	Pro	Ser	Asp 390	Ser	Arg	Met	Ser	Asp 395	Trp	Gly	Pro	Leu	Thr 400
Tyr	Thr	Val	Gly	Ser 405	Ser	Ser	Leu	Thr	Asp 410	Phe	Pro	Met	Ala	Ile 415	Phe
Lys	Ser	Val	Asn 420	Ser	Pro	Val	Thr	Ile 425	Lys	Phe	Thr	Ala	Thr 430	Ser	Asp
Gln	Thr	Gly 435	Ala	Ala	Thr	Leu	Arg 440	Ile	Gly	Thr	Thr	Leu 445	Ser	Phe	Ala
Gly	Gly 450	Arg	Pro	Gln	Ala	Thr 455	Ile	Asn	Asp	Tyr	Glu 460	Gly	Ser	Ala	Pro
Ser 465	Ala	Pro	Thr	Asn	Leu 470	Asp	Ser	Arg	Gly	Val 475	Thr	Arg	Gly	Ala	Tyr 480
Arg	Gly	Tyr	Gly	Asp 485	Val	Tyr	Asp	Val	Ser 490	Val	Pro	Glu	Gly	Thr 495	Ile
Val	Glu	Gly	Glu 500	Asn	Thr	Ile	Thr	Ile 505	Ser	Val	Ile	Ser	Gly 510	Ser	Ser

pectinases.ST251

Gly Asp Asp Phe Leu Ser Pro Asn Phe Leu Asp Ala Val Phe Ile Ile
515 520 525

Ala Leu Val Asp Asn 530

<210> 77

<211> 706

<212> PRT

<213> Aspergillus niger

<400> 77

Met Arg Leu Leu His Pro Leu Ile Pro Ala Ser Leu Leu Thr Leu 1 5 10 15

Thr Ser Ala Thr Leu His Thr Ser Gln Thr Asn Thr Thr Ile Thr Leu 20 25 30

Thr Asn Asn Arg Leu Thr Ala Asn Phe Ser Lys Ser Gln Gly Arg Ile 35 40 45

Thr Asp Leu Tyr Leu Asp Asn Gln Asp Leu Leu Gly Pro Gln Ser Gly 50 55 60

Asp Thr Gly Val Gly Pro Tyr Leu Asp Cys Tyr Cys Ile Pro Ser Gly 65 70 75 80

Phe Tyr Thr Pro Gly Ser Thr Ser Pro Thr Leu Gln Leu Phe Thr Gly 85 90 95

Thr Asp Lys Ser Gly Thr Ser Tyr Ala Gly Val Leu Met Asp Glu Thr
100 105 110

Tyr Pro Pro Thr Gly Gln His Phe Gln Gln Tyr Trp Phe Leu Arg Asp 115 120 125

Gly Glu Thr Gly Leu His Thr Phe Ser Arg Leu Ala Tyr Tyr Asn Glu 130 135 140

Thr Thr Pro Tyr Leu Arg Asn Leu Gln Glu Phe Arg Thr Leu Phe Arg

pectinases.ST251 145 150 160 155 Pro Asn Thr Glu Leu Trp Thr His Leu Ser Ser Ser Glu Val Gln Thr Ala Pro Leu Pro Ser Lys Lys Ala Val Glu Glu Val Val Val Gln Asp Ala Thr Trp Thr Phe Asn Asn Thr Pro Thr Asp Glu Tyr Tyr Val 200 205 Gln Phe Ala Asp Tyr Phe Thr Lys Tyr Thr Phe Ser Asn Ala Trp Arg 210 215 Asp Asn Ser Val His Gly Met Tyr Ala Asp Gly Ser Thr Ser Asn Gly 225 230 235 Ser Thr Phe Gly Ala Trp Leu Val Met Asn Thr Lys Asp Thr Tyr Tyr 245 250 Gly Gly Pro Leu His Ser Asp Leu Thr Val Asp Gly Ile Val Tyr Asn 260 265 Tyr Leu Val Ser Asn His His Gly Glu Gly Thr Pro Asn Ile Thr Tyr 275 280 Gly Phe Asp Arg Thr Phe Gly Pro Gln Tyr Tyr His Phe Asn Gly Gly 290 295 Lys Gly Ser Thr Ala Ser Leu Gln Glu Leu Lys Ser Asp Ala Glu Thr 305 310 315 Leu Ala Asp Pro Ser Trp Asn Val Asp Phe Tyr Asp Ser Ile Ala Lys 330 His Val Val Gly Tyr Thr Pro Ser Ser Gln Arg Gly Ser Val Gln Gly 340 Lys Ile Lys Leu Pro Lys Gly Ala Thr Arg Pro Ile Ala Val Leu Thr

WO 2004/074468 PCT/EP2003/005726 137/178

		355					pec 360	tina	ses.	ST25	365				
Val	Asp 370	Gly	Gln	Tyr	Phe	Gln 375	Asp	Asn	Ser	Val	Asn 380	Ser	Ser	Ser	Tyr
Gln 385	Tyr	Trp	Ala	Glu	Ile 390	Asp	Asp	Ser	Gly	His 395	Phe	Ser	Val	Asp	His 400
Val	Lys	Glu	Gly	Pro 405	Tyr	Arg	Leu	Thr	Val 410	Tyr	Ala	Asp	Gly	Ile 415	Phe
Gly	Asp	Phe	Val 420	Arg	Asp	Gly	Val	Gln 425	Val	Lys	Ala	Gly	Lys 430	Lys	Thr
Thr	Ile	Gln 435	Glu	Thr	Trp	Glu	Ala 440	Glu	Ser	Ala	Gly	Thr 445	Glu	Ile	Trp
Arg	Leu 450	Gly	Thr	Pro	Asp	Lys 455	Ser	Ser	Gly	Glu	Phe 460	Arg	His	Gly	Val
Ala 465	Arg	Asp	Pro	Thr	His 470	Pro	Leu	His	Pro	Pro 475	Glu	Tyr	Leu	Ile	Tyr 480
Trp	Gly	Ala	Tyr	Asp 485	Trp	Gln	Ser	Asp	Phe 490	Pro	Asp	Gly	Ile	Asn 495	Tyr
Thr	Ile	Gly	Thr 500	Ser	Asp	Pro	Ala	Thr 505	Asp	Leu	Asn	Thr	Val 510	His	Trp
Ser	Val	Phe 515	Gly	Pro	Thr	Pro	Asn 520	Asp	Pro	Arg	Val	Glu 525	Tyr	Asp	Thr
Thr	His 530		Trp	Thr	Ile	Asn 535		Pro	Leu	Ser	Glu 540	Asp	Asp	Leu	Ala
Glu 545	Arg	Ser	Lys	Ala	Thr 550	Leu	Thr	Ile	Gln	Leu 555	Ala	Gly	Ala	Lys	Ala 560
Ala	Ser	Gly	Asn	Thr	Asp	Val	Tyr	Asn	Ala	Ser	Glu	Pro	Tyr	Thr	Asn

138/178

pectinases.ST251 565 570 575 Leu Ala Leu Glu Ser Tyr Ile Asn Asp Gln Ala Glu Pro Leu Thr Leu 585 Leu Ile Gly Phe Asn Gln Ser Ser Ser Cys Ile Val Arg Ser Ala Val 600 Ser Cys Tyr Gln Val Arg Ser Arg Met Glu Phe Pro Ala Asp Trp Leu 615 Lys Val Gly Asn Asn Val Leu Thr Leu His Leu Pro Tyr Asn Ala Thr 630 635 Asp Thr Glu Thr Ala Ile Leu Pro Ala Thr Val Thr Gly Arg Leu Ile 645 650 Leu Pro Pro Gln Pro Ile Tyr Gly Gln Thr Pro Val Ile Leu Ser Val 660 665 Ile Gly Ser Glu Lys Leu Glu Pro Leu Pro Ala Ala Ser Ile Leu Ile 675 680 Phe Glu Ile Ile Arg His Gln Ser Glu Pro Leu Trp Ser Val Pro Arg 690 695 700 Ser Ala 705 <210> 78 <211> 278 <212> PRT <213> Aspergillus niger <400> 78 Met Lys Leu Ser Leu Ser Leu Phe Phe Thr Pro Ile Phe Ala Leu 10 Pro Ser His Leu Thr Pro Arg Asn Asp Ile Pro Pro Phe Phe Leu Leu

20

Ala Gly Asp Ser Thr Thr Ala Val Gln 35 40 Gly Asp Gly Phe Ile Asn Thr Thr Leu	45 His Lys Gly Ala Ly 60	
Gly Asp Gly Phe Ile Asn Thr Thr Leu	60	ys Gly Ile
50 55	Val Ser Phe Arg So	
Asn Tyr Gly His Asp Gly Ala Thr Thr 65 70	75	er Gly Gly 80
Asp Trp Ala Thr Val Leu Ser Lys Val	Ala Glu Tyr Lys S 90	er Asp Tyr 95
Arg Ala Phe Val Thr Ile Gln Phe Gly 100 105	His Asn Asp Gln L 1	ys Pro Ala 10
Ala Asn Ile Ser Leu Ala Glu Tyr Thr 115 120	Ser Asn Leu Glu G 125	ln Phe Ala
Lys Asp Val Lys Asn Ala Gly Gly Thr 130 135	Pro Ile Leu Val T 140	hr Pro Leu
Ser Arg Arg Asn Tyr Asp Asn Ser Thr 145 150	Gly Thr Pro Leu V 155	al Ile Glu 160
Asn Leu Ala Asp Gln Arg Ala Ala Thr 165	Ile Asp Ala Ala L 170	ys Asn Thr 175
Asp Thr Ser Tyr Ile Asp Leu Asn Lys 180 185	Ala Ser Thr Asp T 1	yr Leu Asn 90
Ser Ile Gly Pro Ala Asp Ala Tyr Thr 195 200	Tyr Asn Leu Ala S 205	er Asp Asp
Tyr Thr His Leu Asn Gly Glu Gly Ser 210 215	Ile Val Phe Gly G 220	Sly Met Val
Ala Ser Leu Ile Asp Gln Asp Phe Thr 225 230	Glu Leu Lys Ser A 235	asp Gly Val 240

Phe Ile His Asp Gln Trp Leu Val Asp Gly Ile Tyr Gln Ala Glu Asn 245 250 255

Asp Ser Cys Tyr Ile Ser Ile Leu Glu Tyr Leu Ser Met Ala Tyr Asp 260 265 270

Leu Ala Asn Pro Met Leu 275

<210> 79

<211> 410

<212> PRT

<213> Aspergillus niger

<400> 79

Met Ser Val Phe Lys Ala Ser Phe Leu Phe Leu Leu Ser Ser Leu 1 5 10 15

Val His Gly Val Pro His Ser Ser Arg Ala Ser Arg Ser Gln Gln Cys 20 25 30

Val Val Pro Pro Leu His Asn Ala Arg Leu Thr Arg Val Ile Ile Phe 35 40 45

Glu Glu Gly Val Asn Tyr Asn Ile Phe Gln Pro Ile Thr Ala Thr Asn 50 55 60

Leu Ser Asn Val Glu Ile Arg Met His Gly Asn Leu His Leu Pro Gln 65 70 75 80

Asn Ile Thr Ala Val Gln Asn Ile Val Ser Asp Gly Thr Ser Thr Trp 85 90 95

Phe Thr Leu Glu Gly Pro Lys Val Asp Trp Ile Gly Pro Glu Asp Val 100 105 110

Asn Asn Gly Trp Ile Asp Ser Tyr Gly Gln Pro Trp Trp Asp Ala Asn 115 120 125

							рe	ctin	ases	. ST2	21				
Pro	Ala 130	Gly	Ser	Ser	Gly	Ile 135	Asp	Asn	Arg	Pro	His 140	Leu	Met	Ser	Phe
Lys 145	Ser	Ser	Gln	Ala	Thr 150	Met	Lys	Tyr	Phe	Arg 155	Ser	Arg	Lys	Pro	Ile 160
Ala	Trp	Asn	Val	Lys 165	Leu	His	Gly	Gln	Asp 170	Ile	Thr	Val	Ser	His 175	Ala
Ile	Ile	Asp	Ala 180	Thr	Ser	Thr	Gly	Ser 185		Pro	Phe		Thr 190	Asp	Gly
Phe	Asp	Val 195	Glu	Gly	Thr	Asn	Ile 200	Gln	Ile	Thr	Asp	Ser 205	Ile	Met	Tyr
Asn	Gly 210	Asp	Asp	Ala	Ile	Ala 215	Lys	His	His	Arg	Leu 220	Pro	Asp	Ser	Arg
His 225	Glu	His	Gly	Ser	Leu 230	Gly	Lys	Asp	Pro	Thr 235	Asp	Phe	Ala	Asn	Ile 240
Ser	Asn	Ile	Arg	Phe 245	Asp	Asp	Val	Thr	Val 250	Val	Asp	Gly	Leu	Tyr 255	Ala
Ala	Arg	Phe	Lys 260	Ser	Trp	Ser	Gly	Gly 265	Thr	Gly	Leu	Val	Lys 270	Asn	Val
Thr	Trp	Asn 275	Asn	Ile	Arg	Val	Phe 280	Asn	Val	Thr	Phe	Pro 285	Ile	Phe	Val
Thr	Gln 290	Ser	Tyr	Ser	Asp	Gln 295	Gly	Ala	Ser	Arg	Ser 300	Gly	Thr	Val	Asn
Ala 305	Ser	Ser	Ala	Val	Met 310	Met	Glu	Asp	Phe	Thr 315	Trp	Ser	Asp	Phe	Ala 320
Gly	Ser	Ile	Asn	Thr 325	Tyr	Gln	Pro	Gly	Asp 330	Gly	Ser	Суѕ	Val	Ser 335	Asp

Pro Cys Trp Tyr Asn Val Gly Leu Pro Asn Leu Lys His Thr Glu Ala 340 345 350

Leu Ile Ile Glu Cys His Thr Ala Gln Ser Cys Lys Asn Phe Val Thr 355 360 365

Asp Asn Ile Gln Leu Tyr Pro Gln Val Leu Glu Pro Ala Ser Val Ile 370 375 380

Cys Met Asn Ala Thr Ala Ala Leu Asn Pro Asp Leu Gly Phe Thr Cys 385 390 395 400

Lys Asn Gly Thr Tyr Ser Pro Leu Ser Asn 405 410

<210> 80

<211> 319

<212> PRT

<213> Aspergillus niger

<400> 80

Met Pro Phe Phe Arg Ala Lys Ser Ser Lys Arg Gln Ile Met Phe Val 1 5 10 15.

Lys Trp His Phe Leu Val Leu Gly Ala Ile Pro Met Ile Pro Ala Tyr 20 25 30

Pro Ser Gly Ala Ala Tyr Lys Gly Gly Phe Glu Trp Asp Ser Thr Lys 35 40 45

Tyr Leu Phe Val Leu Ala Leu Ile Asp Gly Arg Ile Trp Arg Ser Glu
50 55 60

Gly Gly Pro Asn Trp Val Glu Tyr Leu Thr Gly Cys Gly Leu Glu Glu 65 70 75 80

Gly Leu Thr Ser Pro Phe Asp Cys Asp Gln Gln Leu Trp Asp Phe Ala 85 90 95

WO 2004/074468 PCT/EP2003/005726 143/178

	pectinases.ST251														
Phe	Ala	Gly	Ser 100	Asp	Ile	Ser	Val					Leu	His 110	His	Asn
Phe	Thr	Val 115	Ser	Leu	Val	Asn	Gln 120	Val	Lys	Gln	Phe	Asn 125	Thr	Tyr	Ala
Gln	Pro 130	Val	Leu	Lys	Lys	Thr 135	Val	Asp	Gln	Ser	His 140	Ala	Leu	Val	Ala
Ile 145	Trp	Ile	Gly	Ile	Asn 150	Asp	Ile	Gly	Asp	Ser 155	Ser	Lys	Tyr	Asp	Val 160
Asp	Phe	Pro	Thr	Phe 165	Tyr	Asn	Glu	Leu	Met 170	Asn	Thr	Leu	Phe	Ser 175	Ser
Val	Gln	Thr	Ile 180	Tyr	Ser	Gln	Gly	Tyr 185	Arg	Ser	Туг	Leu	Phe 190	Met	Asn
Leu	Pro	Pro 195	Leu	Asp	Arg	Arg	Pro 200	Gly	Asn	Leu	Gly	Ser 205	Ala	Asp	Pro
Ser	Pro 210	Asn	Ala	Thr	Gln	Ile 215	Thr	Trp	Tyr	Asn	Asp 220	Ala	Leu	Ala	Gln
His 225	Ala	Ser	Ala	Phe	His 230	Asp	Arg	Tyr	Ala	Asp 235	Thr	Asn	Val	Met	Leu 240
Phe	Asp	Ala	His	Ser 245	Glu	Leu	Ser	Tyr	Ile 250	Leu	Asp	Asn	Pro	Gly 255	Asp
Phe	Gly	Ile	Val 260	Asn	Ile	Thr	Asn	Phe 265	Cys	Ala	Gly	Tyr	Asp 270	Gln	Pro
Asp	Ile	Ala 275	Trp	Asn	Tyr	Gln	Ala 280	Tyr	Gly	Cys	Pro	Thr 285	Pro	Leu	Asp
Thr	Tyr 290	Phe	Trp	Tyr	Asn	Ser 295	Gly	His	Met	Thr	Ser 300	His	Val	His	Glu

144/178

pectinases.ST251 Ile Leu Ala Gly Ala Val Glu Arg Lys Leu Glu Glu Trp Ser Asp 305 310 <210> 81 317 <211> <212> PRT Aspergillus niger <213> <400> 81 Met Thr Gly' Ile Pro Thr Val Thr Ala Arg Pro Trp Thr Gln Arg Pro 10 Arg Ala Glu Asn Ser Thr Thr Asn Pro Thr Tyr Phe Phe Thr Leu Cys 25 Ala Gln Pro Phe Pro Ser Thr Pro Pro Thr His Ile Thr Asn Asn Ile 35 40 Asp Asp Glu Gly Ile Gly Thr Thr Asn Gly Pro Asn Trp Ile Gly 50 55 Tyr Leu Thr Thr Glu Asn Ala Ser Leu Val Leu Ser Tyr Asn Leu 80 70 Ala Ala Gly Gly Ala Thr Ile Asp Asn Ala Leu Val Pro Ala Tyr Pro 85 90 95 Gly Asp Leu Ala Ser Gln Phe Arg Leu Phe Glu Asp Val Tyr Ala Asp Lys Pro Ala Ser Ala Pro Trp Ser Ala Glu Asp Ala Val Phe Gly Val 115 Trp Ile Gly Ile Asn Glu Tyr Ile Leu Pro Pro Pro Pro Pro Pro Pro 135 Pro Pro Pro Pro Leu Leu His Ser Pro Asp Cys Pro Tyr Thr 150 160

Gly Gly Gly Cys Tyr Ile Gly Asn Ala Tyr Tyr Ser Thr Asp Ala Glu

pectinases.ST251 175 165 170 Thr Tyr Thr Pro Lys Leu Ile Ser Arg Leu Glu Ser Leu Val Glu Glu 185 180 Val Tyr Lys Asn Gly Gly Arg Lys Phe Leu Phe Leu Asn Val Pro Pro 200 Thr Ser Arg Ser Pro Leu Phe Leu Glu Gln Gly Glu Glu Val Lys 220 Gln His Ala Glu Tyr Leu Ser Val Tyr Asn Glu Asn Leu Glu Gly Met 235 230 225 Val Asp Asp Phe Thr Lys Lys Gly Asp Val Thr Thr Val Leu Tyr 245 250 Asp Ser Trp Ser Phe Met Thr Lys Ile Leu Asp Asp Pro Thr Ala Tyr 260 265 270 Gly Phe Pro Asp Ala Thr Cys Ile Asn Asp Asp Gly Thr Ser Cys Ile 275 280 Trp Trp Asn Asn Tyr His Pro Gly Met Lys Tyr His Leu Leu Gln Ala 290 295 300 Glu Asp Met Lys Pro Lys Leu Arg Lys Leu Gly Gly Trp 310

<210> 82

<211> 536

<212> PRT

<213> Aspergillus niger

<400> 82

Met Asp Phe Pro Arg Leu Leu Leu Ala Leu Cys Phe Leu Leu Thr Phe 1 5 10 15

Ser Leu Thr Ser Ala Tyr Asp Ala Pro Leu Val Thr Leu Asp Tyr Gly 20 25 30

WO 2004/074468 PCT/EP2003/005726 146/178

Thr	Phe	Gln 35	Gly	Ser	Tyr		Ala 40	Thr	Tyr	Asn	Leu	Ser 45	Tyr	Phe	Arg
Lys	Ile 50	Pro	Phe	Ala	Ala	Pro 55	Ala	Thr	Gly	Glu	Asn 60	Arg	Phe	Arg	Ala
Pro 65	Gln	Pro	Pro	Leu	Asn 70	Ile	Thr	Asn	Gly	Thr 75	Tyr	Asp	Thr	Asp	Gln 80
Ser	Phe	Asp	Met	Cys 85	Pro	Gln	Arg	Thr	Val 90	Asn	Gly	Ser	Glu	Asp 95	Cys
Leu	Tyr	Leu	Gly 100	Leu	Tyr	Ser	Arg	Pro 105	Trp	Asp	Thr	Ser	Ser 110	Ser	Thr
Thr	Ser	Arg 115	Pro	Val	Leu	Val	Val 120	Phe	Tyr	Gly	Gly	Gly 125	Phe	Ile	Glu
Gly	Asp 130	Ala	Leu	Phe	Gly	Met 135	Pro	Pro	Asn	Ala	Tyr 140	Pro	Val	Leu	Asn
Val 145	Ser	Thr	Leu	Asn	Asp 150	Tyr	Ile	Val	Val	Tyr 155	Thr	Asn	Tyr	Arg	Val 160
Asn	Ala	Phe	Gly	Phe 165	Leu	Pro	Gly	Gln	Ala 170	Ile	Lys	Asp	Ser	Pro 175	Thr
Ser	Asp	Leu	Asn 180	Pro	Gly	Leu	Leu	Asp 185	Gln	Gln	Tyr	Ala	Leu 190	Lys	Trp
Val	Lys	Ser 195	His	Ile	His	Arg	Phe 200	Gly	Gly	Asn	Pro	Asn 205		Val	Thr
Ile	Trp 210	Gly	Gln	Ser	Ala	Gly 215	Gly	Gly	Ser	Val	Val 220		Gln	Ile	Leu
Ala 225	Asn	Gly	Arg	Gly	Ser 230	Asn	Pro	Lys	Leu	Phe 235	Ser	Lys	Ala	Leu	Ala 240

Ser	Ser	Pro	Phe	Trp 245	Pro	Lys	Thr	Tyr	Ala 250	Tyr	Asn	Ala	Pro	Gln 255	Ala
Glu	Ala	Ile	Tyr 260	Thr	Gln	Leu	Val	Asn 265	Leu	Thr	Asn	Суз	Thr 270	Thr	Ala
Ser	Asp	Thr 275	Leu	Lys	Cys	Leu	Lys 280	Glu	Val	Asp	Val	Gln 285	Ser	Ile	Arg
Asp	Ala 290	Ser	Leu	Ile	Ile	Asp 295	Ala	Asp	Asn	Thr	Tyr 300	Thr	Thr	Ser	Ser
Tyr 305	Thr	Trp	Ala	Pro	Val 310	Ile	Asp	Gly	Thr	Phe 315	Leu	Ile	Glu	Pro	Leu 320
Thr	Ser	Ala	Thr	Ala 325	Ser	Asn	Thr	Leu	Lys 330	Thr	Asp	Leu	Ile	Trp 335	Gly
Met	Tyr	Asn	Ala 340	His	Glu	Gly	Glu	Asn 345	Phe	Ile	Pro	Pro	Gly 350	Leu	Glu
Asp	Thr	Thr 355	Thr	Thr	Asn	Gly	Phe 360	Asn	Ser	Ser	Leu	Ala 365	Ser	Phe	His
Asn	Trp 370	Leu	Thr	Gly	Phe	Leu 375	Pro	Gly	Leu	Asp	Thr 380	Ser	Asp	Ile	Asn
Leu 385	Ile	Glu	Ser	Lys	Tyr 390	Tyr	Pro	Val	Ser	Gly 395	Thr	Ala	Glu	Thr	Leu 400
Ser	Tyr	Asn	Thr	Thr 405	Phe	Val	Arg	Ala	Gly 410	Leu	Val	Tyr	Arg	Asp 415	Val
Val	Leu	Ala	Cys 420	Pro	Ala	Tyr	Trp	Val 425	Ala	Ser	Ala	Ala	Gly 430	Glu	Lys
Gly	Tyr	Val 435	Gly	Glu	Tyr	Thr	Ile 440	Pro	Pro	Ala	Arg	His 445	Gly	Ser	Asp

Thr Glu Trp Trp Asp Thr Val Ser Thr Val Gln Gln Thr Asp Pro Leu 450 455 460

Ile Tyr Asp Gly Tyr Ala Gly Ala Phe Ala Ser Phe Phe Gln Thr Gly 465 470 475 480

Asp Pro Asn Ala His Lys Leu Thr Asn Gly Ser Glu Pro Gly Val Pro 485 490 495

Glu Val Gln Gln Thr Ala Glu Glu Phe Val Ile Ala Thr Glu Gly Phe 500 505 510

Glu Asn Val Gly Leu Gly Glu Leu Glu Asp Arg Cys Ala Phe Trp Lys 515 520 525

Ser Val Gly Lys Lys Ile Pro Ile 530 535

<210> 83

<211> 378

<212> PRT

<213> Aspergillus niger

<400> 83

Met Val Thr Ser Ser Ser Val Ile Val Leu Thr Leu Trp Ala Ala Leu 1 5 10 15

Val Ser Ala Ser Pro Val Ala Asp Pro Leu Val Thr Pro Ala Pro Lys 20 25 30

Leu Glu Asp Leu Glu Lys Arg Ala Thr Ser Cys Thr Phe Ser Gly Ser 35 40 45

Glu Gly Ala Ser Ser Ala Ser Lys Ser Lys Thr Ser Cys Ser Thr Ile 50 55 60

Val Leu Ser Asp Val Ala Val Pro Ser Gly Thr Thr Leu Asp Leu Thr 65 70 75 80

					•		pec	tina	ses.	ST25	1				
Asp	Leu	Asn	Asp	Gly 85	Thr	His	Val	Ile	Phe 90	Glu	Gly	Glu	Thr	Thr 95	Phe
Gly	Tyr	Glu	Glu 100	Trp	Ser	Gly	Pro	Leu 105	Val	Ser	Val	Ser	Gly 110	Thr	Asp
Ile	Thr	Val 115	Thr	Gly	Ala	Asp	Gly 120	Ala	Tyr	Leu	Asn	Gly 125	Asp	Gly	Ser
Arg	Trp 130	Trp	Asp	Gly	Glu	Gly 135	Ser	Asn	Gly	Gly	Lys 140	Thr	Lys	Pro	Lys
Phe 145	Phe	Tyr	Ala	His	Asp 150	Leu	Thr	Ser	Ser	Thr 155	Ile	Ser	Gly	Ile	Tyr 160
Ile	Gln	Asn	Ser	Pro 165	Val	Gln	Val	Phe	Ser 170	Ile	Asp	Gly	Ser	Thr 175	Tyr
Leu	Thr	Met	Glu 180	Asp	Ile	Thr	Ile	Asp 185	Asn	Thr	Asp	Gly	Asp 190	Asp	Gly
Glu	Ala	Ala 195	Asn	Thr	Asp	Gly	Phe 200	Asp	Ile	Gly	Asp	Ser 205	Thr	Tyr	Ile
Thr	Ile 210	Thr	Gly	Ala	Asn	Val 215	Tyr	Asn	Gln	Asp	Asp 220	Cys	Val	Ala	Val
Asn 225	Ser	Gly	Glu	Asn	Ile 230	Tyr	Phe	Ser	Gly	Gly 235	Val	Cys	Ser	Gly	Gly 240
His	Gly	Leu	Ser	Ile 245		Ser	Val	Gly	Gly 250		Ser	Asp	Asn	Thr 255	Val
Lys	Asn	Val	Thr 260		Tyr	Asp	Ser	Glu 265		Lys	Ser	Ser	Gln 270		Gly
Val	Arg	Ile 275	Lys	Thr	Ile	Tyr	Gly 280	Asp	Thr	Gly	Ser	Val 285	Ser	Glu	Val

WO 2004/074468 PCT/EP2003/005726 150/178

pectinases.ST251

Thr Tyr Lys Glu Ile Thr Leu Ser Asp Ile Thr Asp Tyr Gly Ile Val 290 295 300

Val Glu Gln Asn Tyr Asp Asp Thr Ser Lys Ser Pro Thr Asp Gly Ile 305 310 315 320

Thr Ile Glu Asp Phe Val Leu Asp Asn Val Gln Gly Ser Val Glu Ser 325 330 335

Ser Gly Thr Asn Ile Tyr Ile Val Cys Gly Ser Asp Ser Cys Thr Asp 340 345 350

Trp Thr Trp Thr Asp Val Asp Val Ser Gly Gly Lys Thr Ser Ser Asp 355 360 365

Cys Glu Asn Val Pro Asp Asp Ile Ser Cys 370 375

<210> 84

<211> 558

<212> PRT

<213> Aspergillus niger

<400> 84

Met Leu Leu Asp Lys Leu Ser Val Leu Ser Phe Leu Gly Leu Ala Pro 1 5 10 15

Ile Phe Ala Ala Ala Gln Leu Ser Gly Ser Val Gly Pro Leu Thr Ser 20 25 30

Ala Ser Thr Lys Ala Ala Thr Lys Thr Cys Asn Val Leu Asp Tyr Gly 35 40 45

Ala Lys Ala Asp Lys Ser Thr Asp Leu Gly Ala Pro Leu Ala Ser Ala 50 55 60

Phe Ala Asp Cys Lys Ser Gly Gly Leu Val Tyr Val Pro Ser Gly Asp 70 75 80

WO 2004/074468 PCT/EP2003/005726 151/178

							pec	tina	ses.	ST25	1				
Tyr	Ala	Leu	Ser	Thr 85	Trp	Ala						Glu	Ala	Trp 95	Ala
Leu	Gln	Ile	Asp 100	Gly	Ile	Ile	Tyr	Arg 105	Thr	Gly	Thr	Asp	Gly 110	Gly	Asn
Met	Ile	Tyr 115	Ile	Glu	His	Ser	Ser 120	Asp	Phe	Glu	Leu	Phe 125	Ser	Ser	Thr
Ser	Glu 130	Gly	Ala	Met	Gln	Gly 135	Leu	Gly	Tyr	Glu	Phe 140	His	Ala	Asp	Asp
Asn 145	Trp	Ser	Gly	Pro	Arg 150	Leu	Leu	Arg	Leu	Tyr 155	Glu	Val	Thr	Asp	Phe 160
Ser	Val	His	Asp	Phe 165	Ile	Leu	Val	Asp	Ser 170	Pro	Ser	Phe	His	Phe 175	Ser
Leu	Asp	Thr	Cys 180	Thr	Asn	Gly	Glu	Ile 185	Tyr	Asn	Met	Ala	Ile 190	Arg	Gly
Gly	Asn	His 195	Gly	Gly	Leu	Asp	Gly 200	Ile	Asp	Val	Trp	Ser 205	Asn	Asn	Ile
Trp	Val 210	His	Asp	Val	Glu	Val 215	Thr	Asn	Lys	Asp	Glu 220	Cys	Val	Thr	Val
Lys 225	Ser	Pro	Ser	Lys	Asn 230	Ile	Leu	Ile	Glu	Ser 235	Ile	Tyr	Cys	Asn	Trp 240
Ser	Gly	Gly	Суз	Gly 245	Met	Gly	Ser	Phe	Gly 250	Ser	Asp	Thr	Asn	Val 255	Ser
Asp	Ile	Thr	Tyr 260	Arg	Asn	Ile	Tyr	Thr 265	Trp	Ser	Ser	Asn	Asn 270	Met	Met _.
Leu	Ile	Lys 275	Ser	Asn	Gly	Gly	Ser 280	Gly	Phe	Val	Glu	Asn 285	Val	Leu	Leu

WO 2004/074468 PCT/EP2003/005726 152/178

							pec	tina	ses.	ST25	1				
Glu	Asn 290	Phe	Ile	Gly	His	Gly 295	Asn	Ala	Tyr	Ser	Leu 300	Asp	Ile	Asp	Ser
Tyr 305	Trp	Ala	Ser	Met	Ser 310	Ala	Val	Asp	Gly	Asp 315	Gly	Val	Gln	Leu	Ser 320
Asn	Ile	Thr	Val	Lys 325	Asn	Trp	Lys	Gly	Thr 330	Glu	Ala	Tyr	Gly	Ala 335	Glu
Arg	Gly	Pro	Val 340	Lys	Val	Val	Cys	Ala 345	Asp	Gly	Ala	Pro	Сув 350	Tyr	Asp
Ile	Thr	Ile 355	Glu	Asp	Phe	Ala	Met 360	Trp	Thr	Glu	Glu	Gly 365	Asp	Ser	Gln
Trp	Tyr 370	Ser	Суз	Glu	Ser	Ala 375	Tyr	Gly	Ser	Gly	Tyr 380	Cys	Leu	Gln	Asp
Ser 385	Asp	Asp	His	Val	Ser 390	Tyr	Ser	Val	Thr	Thr 395	Ser	Thr	Val	Ser	Ser 400
Ala	Pro	Ser	Gly	Tyr 405	Ser	Ala	Thr	Ser	Met 410		Ala	Asp	Leu	Thr 415	Thr
Asp	Phe	Gly	Ser 420	Thr	Val	Ser	Ile	Pro 425	Ile	Pro	Thr	Ile	Pro 430	Thr	Ser
Phe	Tyr	Pro 435	Gly	Ala	Thr	Pro	Tyr 440	Ser	Ala	Leu	Met	Ala 445	Asn	Ser	Ala
Ser	Thr 450	Ala	Ala	Ala	Ser	Ser 455	Ile	Ala	Ser	His	Ala 460	Thr	Val	His	Ser
Ser 465	Ser	Ala	Ser	Val	Ala 470	Ala	Ser	Val	Pro	Ser 475		Val	Ala	Pro	Ser 480
Glu	Ser	Ile	Pro	Ala 485		Thr	Ser	Ala	Val 490		Ser	Ser	Ala	Ala 495	Ala

pectinases.ST251

Ile Ala Pro Ser Pro Ala Val Gly Ala Gln Glu Gly Ser Thr Thr Ser
500 505 510

Ala Pro Ser Phe Ala Ala Pro Ser Gly Ala Gly Asn Ser Pro Gln Gly 515 520 525

Pro Thr Gly Ala Ser Gly Phe Gly Glu Lys Gly Gln Gln Gly Glu Gln 530 535 540

Gly Glu Gln Gly Glu Gln Gly Glu Gln Gly Val Cys Tyr Val 545 550 555

<210> 85

<211> 350

<212> PRT

<213> Aspergillus niger

<400> 85

Met Ile Tyr Ser Leu Leu Ser Ala Leu Pro Leu Leu Ser Ser Ala 1 5 10 15

Ala Leu Thr Tyr Arg Gly Ala Asp Ile Ser Ser Leu Leu Ile Glu Glu 20 25 30

Asp Ala Gly Ile Ser Tyr Lys Asn Leu Asn Gly Glu Thr Gln Ala Leu 35 40 45

Glu Asp Ile Leu Val Asn Asn Gly Val Asn Ser Ile Arg Gln Arg Val 50 55 60

Trp Val Asp Pro Ser Asp Gly Ser Tyr Asp Leu Asp Tyr Asn Leu Lys 65 70 75 80

Leu Ala Lys Arg Val Gln Ala Ala Gly Met Ser Ile Tyr Leu Asp Leu 85 90 95

His Leu Ser Asp Thr Trp Ala Asp Pro Ser Asp Gln Thr Thr Pro Thr
100 105 110

Gly Trp Ser Thr Thr Asp Ile Asp Thr Leu Thr Trp Gln Leu Tyr Asn

	115			pec 120	ctina	ases.	ST25	51	125			
Tyr Thr I	Leu Asp	Val Cys	Asn 135	Thr	Phe	Ala	Glu	Asn 140	Asp	Ile	Asp	Ile
Glu Ile V 145	Val Ser	Ile Gly 150		Glu	Ile	Ser	Ser 155	Gly	Leu	Leu	Trp	Pro 160
Leu Gly I	Lys Thr	Ser Asn 165	Tyr	Asp	Asn	Ile 170	Ala	Lys	Leu	Leu	Ніs 175	Ser
Gly Ala T	rp Gly 180	Val Lys	Asp	Ser	Asn 185	Gln	Ala	Thr	Thr	Pro 190	Lys	Ile
Met Ile H	His Leu 195	Asp Asn	Gly	Trp 200	Asp	Trp	Glu	Glu	Gln 205	Glu	Tyr	Phe
Tyr Lys T 210	Thr Val	Leu Ala	Thr 215	Gly	Ser	Leu	Leu	Ser 220	Thr	Asp	Phe	Asp
Leu Met G 225	Gly Val	Ser Tyr 230	Tyr	Pro	Phe	Tyr	Ser 235	Ser	Glu	Ala	Thr	Leu 240
Ser Ala I	Leu Gln	Thr Ser	Leu	Thr	Asn	Met 250	Gln	Ser	Asn	Tyr	Asp 255	Lys
Ser Val V	Val Val 260	Val Glu	Thr	Asn	Trp 265	Pro	Val	Ser	Cys	Pro 270	Asp	Pro
Glu Tyr S 2	Ser Phe 275	Pro Ser	Asp	Leu 280	Ser	Ser	Ile	Pro	Phe 285	Ser	Ala	Ala
Gly Gln G 290	lu Glu	Phe Leu	Glu 295	Lys	Leu	Ala	Glu	Val 300	Val	Glu	Gly	Val

Ala Ala Leu Gly Ser Ser Cys Ala Asp Asn Leu Met Val Asp Ile Asp

Thr Asp Gly Leu Gly Ile Tyr Tyr Trp Glu Pro Ala Trp Val Asp Asn 305 310 315 320

WO 2004/074468 PCT/EP2003/005726 155/178

				325			pec	tina	ses. 330	ST25	1			335	
Thr A	Asp	Glu	Val 340	Leu	Glu	Ser	Val	Thr 345	Val	Phe	Glu	Asp	Leu 350		
<210><211><211><212><213>	> 4 > E	36 176 PRT Asper	rgill	lus r	nigen	£									
<400>	> 8	36													
Met I	Thr	Leu	Leu	Arg 5	His	Leu	Leu	Thr	Ala 10	Thr	Ala	Leu	Leu	Gly 15	Ala
Ser V	Val	Gln	Ala 20	Ala	Gln	Gly	Val	Thr 25	Gly	Ser	Pro	Phe	Gly 30	Phe	Ala
Ser G	Gly	Thr 35	Thr	Gly	Gly	Gly	Asp 40	Ala	Thr	Pro	Ala	Ala 45	Pro	Ser	Asp
Ile S	Ser 50	Gln	Leu	Lys	Thr	Trp 55	Leu	Ser	Asp	Ser	Thr 60	Pro	Arg	Val	Ile
Leu 1 65	Ile	Asp	Lys	Glu	Phe 70	Asn	Phe	Leu	Gly	Ser 75	Glu	Gly	Lys	Суз	Thr 80
Asn C	Cys	Glu	Cys	Cys 85	Lys	Pro	Ala	Ser	Asn 90	Thr	Cys	Gly	Ser	Ser 95	Gly
Gln F	Asn	Ala	Val 100	Lys	Gln	Asn	Gly	Ser 105	Asp	Trp	Cys	Gly	Ser 110	Tyr	Pro
Thr I	Ĺеu	Thr 115	Суз	Thr	Tyr	Asp	Asn 120	Ala	Gly	Ile	Glu	Gly 125	Leu	Glu	Val
Ala S	Ser 130	Asn	Lys	Ser	Ile	Val 135	Gly	Val	Gly	Ser	Ser 140	Gly	Val	Leu	Arg
Gly I 145	Lys	Gly	Leu	Arg	Leu 150	Val	Asn	Gly	Val	Ser 155	Asn	Ile	Ile	Ile	Gln 160

Asņ	Ile	His	Ile	Thr 165	Glu	Leu	Asn	Pro	Glu 170	Phe	Ile	Trp	Gly	Gly 175	Asp
Ala	Ile	Thr	Leu 180	Asp	Gly	Thr	Asn	Asn 185	Val	Trp	Ile	Asp	His 190	Val	Lys
Ile	Asn	Leu 195	Ile	Gly	Arg	Gln	Met 200	Phe	Val	Ala	Gly	Tyr 205	Glu	Ala	Ser
His	Ser 210	Val	Thr	Ile	Ser	Asn 215	Ser	Glu	Phe	Asp	Gly 220	Glu	Thr	Ser	Trp
Ser 225	Ala	Thr	Суз	Asp	Gly 230	His	His	Tyr	Trp	Thr 235	Val	Leu	Gly	Tyr	Gly 240
His	Asn	Asp	Lys	Ile 245	Thr	Phe	Ala	Asn	Asn 250	Tyr	Ile	His	His	Thr 255	Ser
Gly	Arg	Ser	Pro 260		Leu	Glu	Phe	Asn 265	Ser	Phe	Trp	His	Ala 270	Tyr	Asn
Asn	Tyr	Trp 275	Tyr	Asn	Asn	Thr	Gly 280	His	Ala	Phe	Asp	Val 285	Gly	Lys	Asn
Thr	Arg 290		Leu	Ile	Glu	Gly 295	Asn	Val	Met	Val	Gln 300	Val	Asp	Thr	Pro
Leu 305		Ala	Asp	Ser	Asn 310	Pro	Gly	Ala	Val	Phe 315	Ala	Val	Asn	Thr	Ser .320
Asp	Val	Ser	Thr	Cys 325		Ser	Thr	Leu	Gly 330	Arg	Thr	Cys	Val	Pro 335	Asn
Thr	Leu	Ile	Ser 340		Gly	Thr	Leu	Ser 345		'Ser	Asp	Ser	Ser 350		Ile
Ser	Ser	Trp 355		Ser	Gly	Glu	Ser 360		Val	. Thr	Val	. Met 365	Ala	Ala	Ser

Lys Val Ala Ser Tyr Val Lys Ala Asn Ala Gly Ile Gly Lys Leu Gly 370 375 380

Asn Gly Ser Gly Ser Ser Ser Thr Val Gly Ala Ala Ala Thr Ser Ala 385 390 395 400

Val Ala Lys Arg Ala Asp Ser Asp Asp Ala Pro Phe Val Pro Ala Tyr 405 410 415

Ser Glu Ala Gly Pro Gly Ala Ser Ala Val Pro Thr Gln Pro Ser Trp 420 425 430

Ser Trp Arg Thr Val Thr Asn Gly Pro Ala Pro Thr Gly Ala Pro Ser 435 440 445

Asp Ser Pro Ser Ala Pro Gln Gly Leu Gly Ala Pro Val Gln Ala Ser 450 455 460

Asn Lys His His Gln Gly His Gly Arg Gly Tyr 465 470 475

<210> 87

<211> 437

<212> PRT

<213> Aspergillus niger

<400> 87

Met Thr Pro Asn Trp Ser Lys Leu Trp Thr Phe Ile Ala Asn Fro Lys 1 5 10 15

Asp Pro Ser Ser Ser Pro Ser Pro Tyr Thr Leu Arg Arg Ile Ile 20 25 30

Lys Ser Leu Ser Leu Leu Thr Val Phe Ser Ile Phe Leu Tyr Ala Leu 35 40 45

Tyr Ile His Phe Gln Pro Ser Ile Ile Pro Gln Thr Pro Asp Leu Pro 50 55 60

WO 2004/074468 PCT/EP2003/005726 158/178

Asp 65	Pro	Asp	Leu	Pro	Pro 70	Ser	Pro	Glu	Asp	Ser 75	Tyr	Lys	Ser	Ile	Туг 80
Gly	Tyr	Pro	Pro	Thr 85	Asn	Pro	Thr	Ile	Pro 90	Pro	Leu	His	Ile	His 95	Asp
Pro	Ser	Ile	Leu 100	Tyr	Asp	Leu	Pro	Thr 105	Asn	Thr	Tyr	Tyr	Ala 110	Tyr	Gly
Ser	Gly	Pro 115	His	Ile	Pro	Ile	His 120	Ser	Ala	Pro	Thr	Leu 125	Gln	Gly	Pro
Trp	Thr 130	Lys	Val	Gly	Thr	Val 135	Leu	Asp	Ala	Asp	Ser 140	Ile	Leu	Pro	Lys
Gly 145	Asp	Arg	Lys	Ala	Pro 150	Trp	Ala	Pro	Thr	Ala 155	Leu	Val	His	Asp	Gly 160
Thr	Phe	Tyr	Val	Phe 165	Tyr	Ala	Thr	Ser	His 170	Ser	Gly	Cys	Arg	Asp 175	Ser
Ala	Ile	Gly	Val 180	Ala	Thr	Ser	Thr	Ser 185	Pro	Gly	Pro	Gly	Gly 190	Trp	Glu
Asp	His	Gly 195	Ala	Ile	Ala	Ile	Ser 200	Gly	Arg	Gly	Glu	Arg 205	Gly	Lys	Glu
Туг	Pro 210	Phe	Asp	Arg	Ala	Asn 215	Ala	Ile	Asp	Val	Ser 220	Val	Val	Val	Asp
Tyr 225	Thr	Asp	Thr	Gln	Thr 230	Gln	Thr	Glu	Pro	Ser 235	Glu	Gly	Glu	Ile	Ser 240
Leu	Glu	Glu	Gly	Lys 245	Lys	Gly	Lys	Gly	Arg 250	Gly	Tyr	Met	Thr	Phe 255	Gly
Ser	Phe	Trp	Thr 260	Gly	Ile	Trp	Gln	Val 265	Pro	Leu	Lys	Pro	Asn 270	Leu	Leu

His Met Asp Lys Gln Gly Glu Glu Lys Arg Val Lys His Leu Ala 275 280 285

His Glu Pro Ala Ala Ile His Pro Pro Thr Lys Lys Ala Asp Gly Leu 290 295 300

Cys Gly Asp Thr Thr Gly Met His Pro Ile Glu Gly Ala Phe Ile Ser 305 310 315 320

Tyr His Glu Pro Trp Trp Tyr Leu Trp Phe Ser Trp Gly Lys Cys Cys 325 330 335

His Phe Asp Pro Glu Lys Leu Pro Arg Ala Gly Leu Asp Ile Arg Val 340 345 350

Gly Arg Ser Ser Pro Gln Gly Pro Phe Val Asp Lys Glu Gly Lys 355 360 365

Asp Leu Val Asp Gly Gly Glu Ile Val Tyr Gly Ser Asn Gly Asp 370 375 380

Val Tyr Ala Pro Gly Gly Gln Gly Val Leu Ser Gly Glu Val Glu Gly 385 390 395 400

Asp Val Leu Tyr Tyr His Tyr Leu Asn Ile Ser Val Gly Tyr Glu Phe 405 410 415

Lys Glu Ala Arg Leu Gly Tyr Asn Tyr Leu Lys Tyr Val Asp Gly Trp
420 425 430

Pro Val Pro Leu Ser 435

<210> 88

<211> 366

<212> PRT

<213> Aspergillus niger

<400> 88

WO 2004/074468 PCT/EP2003/005726 160/178

Met 1	Leu	Pro	Ser	Leu 5	Leu	Ser				ST25 Phe		Leu	Tyr	Ala 15	Val
Asn	Ala	Val	Pro 20	Leu	Ala	Pro	Arg	Ala 25	Ser	Ala	Leu	Ala	Gly 30	Ile	Asp
Thr	Lys	Ser 35	Phe	Ser	Lys	Thr	Lys 40	Asp	Tyr	Pro	Leu	Pro 45	Asn	Leu	Gly
Asn	Ile 50	Val	Ala	His	Asp	Pro 55	Asn	Val	Ile	Gln	His 60	Asp	Gly	Tyr	Phe
Tyr 65	Leu	Tyr	Lys	Gly	Gly 70	Val	His	Ile	Pro	Ile 75	His	Arg	Ala	Arg	Ser 80
Leu	Ser	Gly	Pro	Trp 85	Glu	Gln	Val	Gly	Thr 90	Val	Leu	Asp	Asp	Ser 95	Ser
Val	Ile	Pro	Lys 100	Gln	Asn	Arg	Ser	Arg 105	Pro	Trp	Ala	Pro	Thr 110	Thr	Ile
Gln	His	Asp 115	Asn	Arg	Phe	Tyr	Cys 120	Phe	Tyr	Ala	Ile	Ser 125	Glu	Asn	Gly
Ser	Arg 130	Asp	Ser	Ala	Ile	Gly 135	Val	Ala	Ser	Ser	Asp 140	Thr	Pro	Val	Gly
Gly 145	Asn	Trp	Thr	Asp	His 150	Gly	Ala	Val	Val	Asn 155	Thr	Gly	Lys	Gly	Asp 160
Leu	Ser	Asp	Ile	Tyr 165	Pro	Tyr	Ser	Val	Ser 170	Asn	Ala	Ile	Asp	Gly 175	Ala
Phe	Ile	Thr	Asp 180	Gln	Gln	Thr	Gly	Gln 185	Ser	His	Leu	Leu	Туг 190	Gly	Ser
Tyr	Trp	His 195	Gly	Ile	Phe	Ser	Val 200	Pro	Leu	Ala	Asp	Asp 205	Leu	Leu	Ser

pectinases.ST251 Val Lys Thr Pro Lys Thr Pro Asn Ala Thr Asn Leu Ala Tyr Ile Pro 215 210 Asp Ala Lys Ser Lys Pro Ile Glu Gly Ser Phe Met Thr Tyr Lys Ala 235 230 Pro Tyr Tyr Leu Trp Phe Ser His Gly Lys Cys Cys His Phe Asp 250 Ile His Ala Phe Pro Pro Met Gly Asp Glu Tyr Asn Ile Arg Val Gly Arg Ser Lys Ser Ala Thr Gly Pro Phe Val Asp Lys Asp Gly His Asp 280 Thr Leu Lys Gly Gly Gly Thr Ile Val Tyr Gly Ser Asn His Gly Ile Val Tyr Ala Pro Gly Gly Val Gly Val Leu Ile Asn Asn Gly Ser Glu 305 Ala Asp Val Leu Tyr Tyr His Tyr Leu Asn Thr Thr Ser Gly Phe Ala 325 Gln Gly Asp Ala His Leu Gly Trp Asn Tyr Leu His Tyr Val Asn Gly 345 340 Trp Pro Val Ala Val Glu Gly Tyr Val Asn Ala Asn Gly Lys 360 <210> 89 <211> 318 <212> PRT <213> Aspergillus niger <400> 89 Met Leu Ser Phe Val Leu Leu Cys Val Ala Leu Val Asn Ala Tyr

Ser Asp Pro Gly Ala Cys Ser Gly Thr Cys Trp Ala His Asp Pro Asn

pectinases.ST251 25 30 20 Val Ile Arg Arg Val Ser Asp Gly Thr Tyr Phe Arg Phe Ser Thr Gly 40 Gly Gly Val His Ile Ser Ser Ala Ser Ala Ile Thr Gly Pro Trp Thr Asp Leu Gly Tyr Ala Leu Pro Asn Gly Ser Ile Val Thr Val Gly Asn Ala Ser Asn Leu Trp Ala Pro Asp Val His Tyr Val Asp Gly Thr Tyr 90 Tyr Met Tyr Tyr Ala Ser Ser Thr Leu Gly Ser Arg Asp Ser Thr Ile 105 100 Gly Val Ala Thr Ser Thr Thr Leu Glu Ala Asp Ser Trp Thr Asp His 120 125 115

Gly Glu Ile Gly Val Thr Ser Ser Ser Ser Thr Pro Tyr Asn Ala Ile 130 135

Asp Pro Asn Trp Ile Thr Ile Gly Ser Thr Pro Tyr Leu Gln Phe Gly 160 145

Ser Tyr Trp Gln Gly Leu Tyr Gln Val Glu Met Thr Asp Ser Leu Ser 170

Ala Ser Ser Ser Thr Pro Thr Asn Leu Ala Tyr Asn Ala Ser Gly Asn 180

His Ala Ile Glu Ala Ser Tyr Leu Tyr Glu Tyr Gly Gly Tyr Tyr

Leu Thr Phe Ser Ser Gly Lys Ala Gln Gly Tyr Thr Thr Ser Leu Pro 210 215

Ala Gln Gly Asp Glu Tyr Arg Ile Val Val Cys Arg Ser Lys Thr Gly

225		230	pe	ctina	ses.	ST25 235	51				240
Thr Gly Asn	Phe Val 245	Asp Ly	s Asp	Gly	Val 250	Ser	Cys	Leu	Asn	Ser 255	Gly
Gly Thr Thr	Val Leu 260	Ala Se	r His	Asp 265	Tyr	Val	Tyr	Gly	Pro 270	Gly	Gly
Gln Gly Ile 275		Thr Th	r Ser 280	His	Gly	Ile	Val	Val 285	Tyr	Tyr	His
Tyr Ala Asn 290	Lys Asn	Ile Gl 29		Ala	Val	Asp	Asp 300	Tyr	Gln	Phe	Gly
Trp Asn Thr 305	Leu Thr	Trp Th	r Asp	Gly	Trp	Pro 315	Val	Val	Ala		
<210> 90 <211> 494 <212> PRT <213> Aspe	rgillus	niger									
<400> 90											
			~					_			
Met Leu Thr 1	Ser Gln 5	Pro Le	u Ser	Pro	Asn 10	Cys	Pro	His	Arg	Arg 15	Ala
_	5				10					15	
1	Leu Pro 20	Ser Le	u Leu	Glu 25	10 Val	Leu	Ile	His	Ser 30	15 Pro	His
Tyr His His Glu Pro Leu	Leu Pro 20 Ser Leu	Ser Le	u Leu u Lys 40	Glu 25 Thr	10 Val Leu	Leu Tyr	Ile	His Phe 45	Ser 30	15 Pro Thr	His Asn
Tyr His His Glu Pro Leu 35 Gly Ser Pro	Leu Pro 20 Ser Leu His Trp	Ser Le Thr Le Leu Se 55	u Leu u Lys 40 r Tyr	Glu 25 Thr	10 Val Leu Thr	Leu Tyr Pro	Ile Leu Gln 60	His Phe 45	Ser 30 Ser	Pro Thr	His Asn Leu

Val	Asp	Thr	Met 100	Lys	Gly	Leu	Pro	Ser 105	Leu	Leu	Asn	Ser	Ser 110	Ser	Thr
Lys	Lys	Trp 115	Thr	Gln	Ser	Thr	Pro 120	Ser	Thr	Gly	Glu	Gly 125	Glu	Asn	Glu
Ser	Gly 130	Ser	Thr	Ile	Ser	Pro 135	Thr	Lys	Pro	Pro	Glu 140	Pro	Ser	Thr	Pro
Pro 145	Gly	Gly	Ser	Asn	Thr 150	Ser	Met	Ile	Trp	Thr 155	Arg	Lys	Lys	Ile	Ile 160
Trp	Leu	Ile	Thr	Leu 165	Ile	Ala	Leu	Ser	Val 170	Ala	Ile	Ile	Val	Val 175	Val
Ile	Thr	Val	Pro 180	Val	Val	Leu	Leu	Leu 185	Asp	Asp	Lys	His	Asn 190	Asp	Asp
Pro	Ser	Tyr 195		Asn	Ser	Ala	Asn 200	Arg	Pro	Val	Arg	Val 205	Val	His	Asp
Phe	Pro 210		Pro	Gly	Leu	Ile 215	Gln	Val	Asn	Ser	Thr 220	Trp	Tyr	Ala	Tyr
Ala 225		Val	Ala	Thr	Pro 230	Asp	Asn	Pro	Asp	Val 235	Pro	His	Val	Pro	Val 240
Ser	Thr	Ser	Arg	Asn 245		Ser	Ser	Trp	Thr 250	Trp	Leu	Gln	Gly	Tyr 255	Asp
Val	Met	Pro	Ala 260	Ile	Ser	Ser	Trp	Glu 265	Thr	Asn	Met	Asn	Gln 270	Tyr	Ala
Pro	Asp	Val 275		Gln	Arg	Lys	Asp 280		His	Phe	Val	Leu 285	Tyr	Tyr	Ser
Gly	Glu 290		Lys	Asp	Trp	Leu 295		His	His	Cys	Val 300		Ala	Ala	Val

Ser 305	Asn	Gly	Thr	Ser	Pro 310	Leu	Gly	Pro	Tyr	Ile 315	Pro	His	Asn	Thr	Thr 320
Leu	Ala	Cys	Pro	Arg 325	Asp	His	Gly	Gly	Ala 330	Ile	Asp	Pro	Ala	Pro 335	Phe
Arg	Asp	Val	Asn 340	Gly	Thr	Leu	Tyr	Val 345	Val	Tyr	Lys	Val	Asp 350	Gly	Asn
Ser	Ile	Gly 355	His	Gly	Gly	Gly	Cys 360	Asn	Asn	Gly	Lys	Lys 365	Pro	Ile	Val
Ser	Thr 370	Pro	Ile	Met	Leu	Gln 375	Gln	Leu	Lys	Asp	Asp 380	Gly	Val	Thr	Pro
Val 385	Gly	Asp	Pro	Val	Glu 390	Ile	Leu	Thr	Asn	Glu 395	Lys	Val	Asp	Gly	Pro 400
Leu	Val	Glu	Ala	Pro 405	Ala	Ile	Ile	Arg	Thr 410	Asp	Arg	Gly	Ile	Tyr 415	Tyr
Leu	Phe	Phe	Ser 420	Ser	His	Cys	Phe	Thr 425	Ser	Ser	Lys	Tyr	Ser 430	Val	Lys
Tyr	Ala	Trp 435	Ser	Thr	Ser	Leu	Lys 440	Gly	Pro	Tyr	Thr	Arg 445	Ala	Glu	Arg
Pro	Leu 450	Phe	Arg	Ser	Gly	Asp 455	Phe	Gly	Leu	Lys	Ser 460	Pro	Gly	Gly	Ala
Thr 465	Ala	Ser	Val	Asp	Gly 470	Ser	Arg	Ile	Val	Phe 475	His	Ala	Phe	Cys	Gly 480
Asp	Tyr	Arg	Cys	Arg 485	Val	Ser	Gly	Lys	Pro 490	Ser	Ile	Leu	Ser		

<210> 91 <211> 251

WO 2004/074468 PCT/EP2003/005726

pectinases.ST251

<212> PRT

<213> Aspergillus niger

<400> 91

Met Trp Thr His Leu Pro Ser Leu Cys Ala Leu Gly Leu Thr Leu Ile 1 5 10 15

Thr Ser Val Ile Thr Ser Pro Ile Glu Ile Arg Ala Thr Gly Pro Trp
20 25 30

Leu Ala Leu Asp Thr Asp Phe Pro Asp Pro Gly Phe Val Gln Ala Asp 35 40 45

Asp Gly Thr Trp Tyr Ala Phe Gly Thr Asn Gly Asn Asn Arg Thr Val 50 55 60

Gln Val Ala Lys Ser Ala Asp Phe Lys Thr Trp Thr Leu Leu Asp Lys 65 70 75 80

Glu Ala Leu Pro Thr Leu Ala Gly Trp Glu Thr Gln Ile Asp His Trp 85 90 95

Ala Pro Asp Val Val Arg Arg Val His Ser Pro Ser His Pro Ile Pro
100 105 110

Phe Pro Gln Ile Gln Thr Asn His His His His Pro Gln Asn Asp Gly 115 120 125

Lys Tyr Val Leu Tyr Tyr Ser Gly Glu Ala Gln Gln Met Leu Arg His 130 135 140

His Cys Ile Gly Thr Ala Val Ser Glu Ser Thr Asp Pro Ser Gly Pro 145 150 155 160

Tyr Ile Pro Asn Pro Thr Pro Leu Ser Cys Arg Leu Asp Gln Gly Gly
165 170 175

Ser Ile Asp Ala Ser Gly Phe Leu Asp Lys Asp Gly Ser Arg Tyr Val 180 185 190

Val Phe Lys Val Asp Gly Asn Ser Ile Gly Asn Gly Gly Asp Cys Asn 195 200 205

Asn Gly Ile Ala Pro Leu Lys Pro Thr Pro Ile Leu Leu Gln Lys Arg 210 215 220

Arg Ala Val Gly Gly Pro Glu Phe Asp Ser Ala Trp Gly His Val 225 230 235 240

Leu Phe Val Leu Leu Asp Ala Leu Leu Tyr Gly 245 250

<210> 92

<211> 646

<212> PRT

<213> Aspergillus niger

<400> 92

Met Ile Ala Val Ala Lys Trp Leu Tyr Val Ala Val Thr Ala Tyr Phe 1 5 10 15

His Lys Leu Arg Pro Val Ser His Asp Tyr Pro Ala Leu Ala Ala Arg 20 25 30

Asp Asn Gly Thr Asn Gly Ser Val Ala Ser Pro Ile Thr Leu Thr Val 35 40 45

Glu Glu Ser Gly Gly Asn Gln Ser Ser Pro Leu Leu Tyr Gly Val Met 50 55 60

Phe Glu Val Ile Tyr Ser Gly Asp Gly Gly Ile His Gly Gln Leu Leu 65 70 75 80

Gln Asn Asn Gly Phe Gln Gly Asp Asp Pro Gly Leu Thr Ala Tyr Lys 85 90 95

Ala Val Gly Pro Val Asp Leu Met Gln Asp Leu Ile Asn Pro Val Ser 100 105 110

WO 2004/074468 PCT/EP2003/005726 168/178

							pec	tina	ses.	ST25	1				
Gly	Ala	Ile 115	Thr	Ser	Ser	Leu	Gln 120	Val	Ser	Val	Asp	Phe 125	Glu	Ala	Thr
Gly	Phe 130	Val	Gly	Phe	Ala	Asn 135	Thr	Gly	Tyr	Ser	Gly 140	Ile	Pro	Val	Met
Asn 145	Ala	Thr	Tyr	Ser	Cys 150	Gln	Phe	Trp	Met	Met 155	Gly	Glu	Tyr	Ser	Gly 160
Thr	Ile	Met	Leu	Gln 165	Leu	Ala	Gly	Ser	Thr 170	Asn	Asp	Thr	Ile	Tyr 175	Ala
Ser	His	Asn	Ile 180	Thr	Val	Lys	Ser	Ser 185	Trp	Gly	Lys	Phe	Thr 190	His	Tyr
Gln	Thr	Ser 195	Phe	Asn	Ser	Ser	Ala 200	Ala	Pro	Asp	Gly	Asp 205	Asn	Glu	Trp
Arg	Leu 210	Leu	Phe	Asn	Gly	Ser 215	Lys	Met	Ala	Gly	Gly 220	Met	Leu	Asn	Phe
Gly 225		Val	Gln	Leu	Phe 230	Pro	Pro	Thr	Tyr	Lys 235	Ser	Arg	Ser	Asn	Gly 240
Leu	Arg	Asn	Asp	Val 245	Ala	Thr	Phe	Leu	Glu 250	Lys	Thr	Ala	Pro	Ser 255	Phe
Leu	Arg	Phe	Pro 260	Gly	Gly	Asn	Asn	Leu 265	Glu	Gly	Leu	Gln	Ile 270	Asp	Ser
Arg	Trp	Gln 275	Trp	Asn	Leu	Thr	Val 280		Pro	Val	Val	Asp 285		Pro	Gly
Arg	Gln 290	Gly	Asp	Trp	Phe	Tyr 295		Asn	Thr	Asp	Ala 300	Leu	Gly	Leu	Asp
Glu 305		Leu	Trp	Trp	Суз 310		Asp	Met	Asn	Met 315	Glu	Pro	Val	Leu	Ala 320

WO 2004/074468 PCT/EP2003/005726 169/178

Val	Trp	Asp	Gly	Lys 325	Ser	Tyr		tina Gly				Gly	Asp	Asp 335	Leu
Gln	Pro	Tyr	11e 340	Asp	Asp	Ile	Met	Asn 345	Glu	Leu	Glu	Tyr	Leu 350	Leu	Gly
Pro	Val	Asn 355	Ser	Thr	Tyr	Gly	Ser 360	Met	Arg	Ala	Gln	Asn 365	Gly	Arg	Ser
Lys	Pro 370	Trp	Ser	Ile	Asn	Туг 375	Ile	Glu	Ile	Gly	Asn 380	Glu	Asp	Asp	Phe
Thr 385	Gly	Gly	Cys	Asp	Thr 390	Tyr	Pro	Asp	Arg	Phe 395	Tyr	Gln	Ile	Tyr	Asn 400
Ala	Ile	Ser	Asn	Ser 405	Tyr	Pro	Asn	Ile	Thr 410	Leu	Ile	Ala	Ser	Asn 415	Ile
Asp	Tyr	Leu	Cys 420	Leu	Pro	Ile	Glu	Pro 425	Pro	Pro	Gly	Leu	Ile 430	Tyr	Asp
Tyr	His	Tyr 435	Tyr	Arg	Lys	Pro	Asp 440	Asp	Leu	Val	Ala	Met 445	Phe	Asp	Tyr
Trp	Asp 450	Asn	Gln	Pro	Arg	Thr 455	Gln	Pro	Ile	Met	Val 460	Gly	Glu	Tyr	Gly
Cys 465	Arg	Asp	Thr	Ser	Glu 470	Ala	Asp	Gly	Ile	Phe 475	Trp	Ser	Ser	Met	Gln 480
Cys	Ser	Cys	Ser	Glu 485	Ala	Ala	His	Met	Ile 490	Gly	Leu	Glu	Arg	Asn 495	Ser
Asp	Val	Val	Lys 500	Met	Ala	Ala	Tyr	Ala 505	Pro	Leu	Leu	Gln	His 510	Phe	Gly
Tyr	Thr	Gln 515	Trp	Ser	Pro	Thr	Leu 520	Phe	Gly	Phe	Asp	Ser 525	Ser	Pro	Asp

WO 2004/074468 PCT/EP2003/005726 170/178

pectinases.ST251 Ser Leu Thr Pro Ser Thr Ser Tyr Tyr Val Gln Arg Met Phe Ser Thr 530 535 Asn Arg Gly Asp Thr Ile Leu Pro Val Asn Thr Thr Ala Thr Phe Gly 545 550 555 560 Pro Leu Tyr Trp Val Ala Ser Arg Thr Asn Ser Thr Tyr Phe Val Lys 565 570 Leu Ala Asn Tyr Gly Ala Gln Asn Gln Thr Val Arg Val Lys Val Pro 580 585 Gln Thr Lys Thr Gly His Val Glu Met Leu Tyr Gly Pro Gln Asn Ala 595 Thr Asn Leu Val His Asn Ile Thr Val Gln Pro Thr Val Lys Asn Val 615 Thr Ser Ser Arg Gly Ile Tyr Ser Leu Asp Met Pro Pro Trp Gly Val 635 Ala Val Leu Ser Val Trp <210> 93 <211> 396 <212> PRT <213> Aspergillus niger <400> 93 Met Pro Ala Thr Glu Ala Ala Ser Thr Val His Ser Pro Pro Val Ser 5 10 His Ser Ile Pro Pro Pro Met Asn Leu Val Leu His Gly Phe Ser Ser Val Pro Gly Leu Val Ala Gly Asn Gly His Asp Cys His Phe Pro Ile

His Ala Thr Pro Ala Cys Pro Leu Ala Asp Tyr Arg Cys Leu His Gly

40

pectinases.ST251
50 55 60

Arg Pro Ser Tyr Thr Cys Ser Cys Leu Asn Phe Cys Gln Thr Glu Leu Ser Thr Gln Leu Phe Arg His Ile Arg Ser Ser Ser Ala Gly Gly Ala 90 Ala Asp Ser Ile Pro Cys Arg Ala His Leu Ser Arg Gly Gly His Phe 105 100 Phe Ser Phe Glu Leu Glu Asp Glu Gly Tyr Ser Tyr Lys Asn Leu Lys 120 115 Gly Gln Ser Gln Ala Leu Glu Thr Ile Leu Ala Glu Ala Gly Ile Asn 140 130 135 Ser Val Arg Gln Arg Val Trp Gly Gln Phe Gln Ser Trp His Leu Gln 155 160 145 150 Phe Gly Leu Gln Leu Gly Ala Gly Lys Arg Val Lys Ala Ala Gly Met 170 165 Ser Ile Tyr Leu Asp Leu His Leu Asn Asn Asn Ile Asp Ile Glu Ile 190 180 Ile Ser Ile Gly Asn Glu Ile Arg Ala Gly Leu Leu Trp Pro Leu Gly 200 205 195 Glu Thr Ser Ser Tyr Ser Asn Ile Gly Ala Leu Leu Tyr Ser Gly Ala 215 Trp Gly Val Lys Asp Ser Asn Leu Ala Thr Leu Pro Lys Ile Ile Ile His Leu Asp Asp Gly Trp Ser Trp Asp Gln Gln Ser Tyr Phe Tyr Lys 245 250

Thr Val Leu Ser Thr Gly Glu Leu Leu Asn Thr Asp Phe Asp Tyr Phe

WO 2004/074468 PCT/EP2003/005726 172/178

26	60	pectinases.ST251 265	270
Gly Val Leu Ty	yr Tyr Leu Phe	Tyr Ser Ala Ser V	Val Asn Ile Ala Ser
275		280	285
Leu Lys Thr Se 290	er Leu Ala Asn 295		Tyr Asn Lys Pro Val
Val Val Val Gl	Lu Met Asn Trp	Pro Val Pro Cys F	Pro Asn Pro Glu Tyr
305	310	315	320
Ser Cys Phe Se	er Asp Pro Arg	Leu Ile Ser Phe S	Ser Val Ala Gly Gln
	325	330	335
Gln Gln Phe Le	eu Glu Lys Leu	Ala Ala Val Val 6	Slu Ala Thr Thr Asp
34	10	345	350
Gly Gln Gly Va	al Tyr Tyr Trp	Glu Pro Ala Trp I	le Thr Asn Ala Gly
355		360	365
Val Gly Ser Se	er Cys Asp Glu		sp Arg Ser Thr Asp
370	375		80
Glu Val Tyr Al	a Ser Phe Asp	Ile Leu Gly Lys L	eu
385	390	395	
<210> 94 <211> 379 <212> PRT <213> Aspergi	llus niger		
<400> 94			
Met Lys Tyr Se:	r Thr Ile Phe	Ser Ala Ala Ala A	la Val Phe Ala Gly
	5	10	15
Ser Ala Ala Ala	a Val Gly Val	Ser Gly Ser Ala G	lu Gly Phe Ala Glu
20		25	30
Gly Val Thr Gly	y Gly Gly Asp	Ala Thr Pro Val Ty	yr Pro Asp Thr Ile
35		40	45

Asp	Glu 50	Leu	Val	Ser	Tyr	Leu 55	Gly	Asp	Asp	Glu	Ala 60	Arg	Val	Ile	Val
Leu 65	Thr	Lys	Thr	Phe	Asp 70	Phe	Thr	Asp	Ser	Glu 75	Gly	Thr	Thr	Thr	Gly 80
Thr	Gly	Суз	Ala	Pro 85	Trp	Gly	Thr	Ala	ser 90	Ala	Cys	Gln	Val	Ala 95	Ile
Asp	Gln	Asp	Asp 100	Trp	Cys	Glu	Asn	Tyr 105	Glu	Pro	Asp	Ala	Pro 110	Ser	Ile
Ser	Val	Glu 115	Tyr	Tyr	Asn	Ala	Gly 120	Val	Leu	Gly	Ile	Thr 125	Val	Thr	Ser
Asn	Lys 130	Ser	Leu	Ile	Gly	Glu 135	Gly	Ser	Ser	Gly	Ala 140	Ile	Lys	Gly	Lys
Gly 145	Leu	Arg	Ile	Val	Ser 150	Gly	Ala	Glu	Asn	Ile 155	Ile	Ile	Gln	Asn	Ile 160
Ala	Val	Thr	Asp	Ile 165	Asn	Pro	Lys	Tyr	Val 170	Trp	Gly	Gly	Asp	Ala 175	Ile
Thr	Leu	Asp	Asp 180	Cys	Asp	Leu	Val	Trp 185	Ile	Asp	His	Val	Thr 190	Thr	Ala
Arg	Ile	Gly 195	Arg	Gln	His	Tyr	Val 200	Leu	Gly	Thr	Ser	Ala 205	Asp	Asn	Arg
Val	Ser 210	Leu	Thr	Asn	Asn	Tyr 215	Ile	Asp	Gly	Val	Ser 220	Asp	Tyr	Ser	Ala
Thr 225	Cys	Asp	Gly	Tyr	His 230	Tyr	Trp	Gly	Ile	Tyr 235	Leu	Asp	Gly	Asp	Ala 240
Asp	Leu	Val	Thr	Met 245	Lys	Gly	Asn	Tyr	Ile 250	Tyr	His	Thr	Ser	Gly 255	Arg

Ser Pro Lys Val Gln Asp Asn Thr Leu Leu His Cys Val Asn Asn Tyr 265 260

Phe Tyr Asp Ile Ser Gly His Ala Phe Glu Ile Gly Glu Gly Tyr 280 275

Val Leu Ala Glu Gly Asn Val Phe Gln Asn Val Asp Thr Val Leu Glu 300 290

Thr Tyr Glu Gly Ala Ala Phe Thr Val Pro Ser Thr Thr Ala Gly Glu

Val Cys Ser Thr Tyr Leu Gly Arg Asp Cys Val Ile Asn Gly Phe Gly 325

Ser Ser Gly Thr Phe Ser Glu Asp Ser Thr Ser Phe Leu Ser Asp Phe 345

Glu Gly Lys Asn Ile Ala Ser Ala Ser Ala Tyr Thr Ser Val Ala Ser

Ser Val Val Ala Asn Ala Gly Gln Gly Asn Leu 375 370

<210> 95

<211> 379 <212> PRT

<213> Aspergillus niger

<400> 95

Met His Tyr Lys Leu Leu Phe Ala Ala Ala Ala Ser Leu Ala Ser

Ala Val Ser Ala Ala Gly Val Val Gly Ala Ala Glu Gly Phe Ala His

Gly Val Thr Gly Gly Gly Ser Ala Ser Pro Val Tyr Pro Thr Thr 45 40

Asp	Glu 50	Leu	Val	Ser	Tyr	Leu 55	Gly	Asp	Asn	Glu	Pro 60	Arg	Val	Ile	Ile
Leu 65	Asp	Arg	Thr	Phe	Asp 70	Phe	Thr	Gly	Thr	Glu 75	Gly	Thr	Glu	Thr	Thr 80

Thr Gly Cys Ala Pro Trp Gly Thr Ala Ser Gln Cys Gln Val Ala Ile 85 90 95

Asn Leu His Ser Trp Cys Asp Asn Tyr Gln Ala Ser Ala Pro Lys Val 100 105 110

Ser Val Thr Tyr Asp Lys Ala Gly Ile Leu Pro Ile Thr Val Asn Ser 115 120 125

Asn Lys Ser Ile Val Gly Gln Gly Thr Lys Gly Val Ile Lys Gly Lys 130 135 140

Gly Leu Arg Val Val Ser Gly Ala Lys Asn Val Ile Ile Gln Asn Ile 145 150 155 160

Ala Val Thr Asp Ile Asn Pro Lys Tyr Val Trp Gly Gly Asp Ala Ile 165 170 175

Thr Val Asp Asp Ser Asp Leu Val Trp Ile Asp His Val Thr Thr Ala 180 185 190

Arg Ile Gly Arg Gln His Ile Val Leu Gly Thr Ser Ala Asp Asn Arg 195 200 205

Val Thr Ile Ser Tyr Ser Leu Ile Asp Gly Arg Ser Asp Tyr Ser Ala 210 215 220

Thr Cys Asn Gly His His Tyr Trp Gly Val Tyr Leu Asp Gly Ser Asn 225 230 235 240

Asp Met Val Thr Leu Lys Gly Asn Tyr Phe Tyr Asn Leu Ser Gly Arg 245 250 255

Met Pro Lys Val Gln Gly Asn Thr Leu Leu His Ala Val Asn Asn Leu 260 265 270

Phe His Asn Phe Asp Gly His Ala Phe Glu Ile Gly Thr Gly Gly Tyr 275 280 285

Val Leu Ala Glu Gly Asn Val Phe Gln Asp Val Asn Thr Val Val Glu 290 295 300

Thr Pro Ile Ser Gly Gln Leu Phe Ser Ser Pro Asp Ala Asn Thr Asn 305 310 315 320

Gln Gln Cys Ala Ser Val Phe Gly Arg Ser Cys Gln Leu Asn Ala Phe 325 330 335

Gly Asn Ser Gly Ser Met Ser Gly Ser Asp Thr Ser Ile Ile Ser Lys 340 345 350

Phe Ala Gly Lys Thr Ile Ala Ala Ala His Pro Pro Gly Asn Ile Ala 355 360 365

Gln Trp Thr Met Lys Asn Ala Gly Gln Gly Lys 370 375

<210> 96

<211> 395

<212> PRT

<213> Aspergillus niger

<400> 96

Met Lys Val Pro Phe Leu Gln Leu Leu Cys Leu Asn Ala Ala Leu Ala 1 5 10 15

Ser Ala Asn Val Val Lys Gly Ala Ala Gln Gly Phe Ala Ala Gly Val 20 25 30

Thr Gly Gly Gly Asp Ile Thr Pro Ser Tyr Pro Lys Thr Asn Glu Glu 35 40 45

WO 2004/074468 PCT/EP2003/005726

pectinases.ST251 Leu Val Ser Leu Leu Glu Ser Asp Glu Pro Gln Val Val Leu Thr 55 .. Lys Thr Phe Glu Phe Ile Gly Thr Glu Gly Thr Thr Thr Glu Asn Gly 70 Cys Ala Pro Trp Gly Thr Gly Lys Ser Cys Gln Leu Ala Ile Asn Ser 90 85 Asn Gly Trp Cys Gly Lys Asn Pro Val Val Thr Ile Thr Tyr Asp Asn 100 105 110 Ala Ala Lys Asn Gly Ile His Ile Lys Ser Asn Lys Thr Leu Val Gly 115 Glu Gly Asp Lys Gly Val Leu Ser Gly Lys Gly Leu Tyr Phe Glu Gly Gly Val Ser Asn Ile Ile Val Gln Asn Ile Lys Ile Thr Asn Leu Asn 150 Pro Gly Phe Val Trp Gly Gly Asp Ala Phe Thr Phe Phe Gly Ala Asp 170 Leu Ile Trp Ile Asp His Cys Glu Thr Ser Leu Thr Gly Arg Gln His 180 185 Tyr Val Thr Gly Phe His Pro Asn Thr Arg Met Thr Trp Ser Asn Asn 195 200 205 Phe Leu Asn Gly Val Thr Thr His Ser Ala Gly Cys Asp Asp His His 210 215 Tyr Trp Thr Met Glu Leu Val Gly Pro Gly Asp Gln Ile Thr Phe Gln 225 230 235 Asn Asn Tyr Val Tyr His Thr Thr Gly Arg Gly Pro Ala Leu Ser Gly 245 250 255

WO 2004/074468 PCT/EP2003/005726 178/178

							pec	tina	ses.	ST25	1				
Thr	Thr	Leu	Phe 260	His	Ala	Val	Asn	Ser 265	Val	Trp	Ser	Ser	Ile 270	Pro	Gly
His	Ala	Ile 275	Glu	Gly	Gly	Asp	Lys 280	Gly	Arg	Gly	Leu	Phe 285	Glu	Gly	Cys
Phe	Phe 290	Glu	Asp	Val	Val	Glu 295	Ile	Ala	Pro	Ala	Lys 300	Pro	Glu	Asn	Gln
Leu 305	Phe	Ser	Ala	Ser	Glu 310	Ala	Asn	Ala	Ala	Ser 315	Cys	Lys	Ser	Ala	Leu 320
Gly	Arg	Ala	Cys	Gln 325	Ala	Asn	Ser	Tyr	Ser 330	Lys	Ser	Gly	Ala	Phe 335	Gly
Ser	Ser	Glu	Thr 340	Gly	Phe	Phe	Lys	Asp 345	Phe	Ala	Gly	Leu	Thr 350	Ile	Ala
Pro	Ala	Gly 355	Ser	Ala	Thr	Asp	Ala 360	Leu	Ala	Tyr	Val	Pro 365	Lys	Asn	Cys
Val	Cys 370	Ile	Lys	Gln	Glu	Gly 375	Gly	Phe	Ser	Lys	Ala 380	Arg	Asn	Phe	Leu
His 385	Val	Lys	Gln	Pro	Asn 390	Trp	Leu	Asp	Pro	Thr 395					