An Introduction to Networking

Network+ Guide to Networks 7th Edition

Objectives

- Identify types of applications and protocols used on a network
- Distinguish between the client-server and peer-topeer models used to control access to a network
- Describe various networking hardware devices and the most common physical topologies
- HVAC system and protecting against ESD

How Networks Are Used

- A network is a group of computers and other devices connected by some type of transmission media.
- Network services the resources a network makes available to its users
 - Includes applications and the data provided by these applications
- Types of applications found on most networks:
 - Client-Server
 - File and Print Services
 - Communications Services

Client-Server Applications

- Client computer requests data or a service from a second computer, called the server
- List of several popular client-server applications:
 - Web service
 - Email services
 - FTP service
 - Telnet service
 - Remote Desktop
 - Remote applications

Client-Server Applications- Web services

Figure 1-1 A Web browser (client application) requests a Web page from a Web server (server application); the Web server returns the requested data to the client

- HTTP HyperText Transfer Protocol:protocol used between server and clients (browser), if layered on top of SSL (Secure Socket Layer) or TLS(Transport Layer Security) result is HTTPS.
- Example of web server: Apache (Unix), IIS(Windows server)

Client-Server Applications - email services

Figure 1-2 SMTP is used to send email to a recipient's mail server, and POP3 or IMAP4 is used by the cli-

- A Client server application that involves two servers
 SMTP(Simple Mail Transfer Protocol): used to send an email message to a server
- POP3(Post Office Protocol), IMAP4(Internet Message Access Protocol): deliver the message to the receiving client.

Client-Server Applications

- FTP service: Transfers files between two computers, using File transfer protocol, FTP, SFTP
- Telnet service: A command-line used to control a computer remotely, not secured, Linux uses SSH protocol (Secure Shell)
- Remote Desktop: secure transmission usually used by vendor technician to access Client computer, both use RDP to establish a client-server communication
- Remote Applications: Application installed on a server, easy for maintenance and backup of applications.

File and Print Services

- File services a server's ability to share data files and disk storage space
- File server a computer that provides file services
- Print services ability to share printers across a network
 - With one printer, less time is spent on maintenance and management

Communication Services

- Convergence using the same network to deliver multiple types of communications services (video, voice, fax)
- A similar term-Unified communication (UC) refers to the centralized management of multiple network-based communications- one software for long-distance calls and intra-office phone calls.
- Three types of communication services:
 - Conversational voice VoIP (Voice over IP): Can use point-to-point model (skype,..) or point-to-multipoint model (on Conference call).
 - Streaming live audio and video (Skype, Google Talk, or live sport:client-server model)
 - Streaming stored audio and video (YouTube:client-server model)

Communication Services

- Voice and video transmissions are delay-sensitive
 - You don't want to hear or see breaks in transmission
- Voice and video transmission are considered losstolerant (accept skipping video frames)
- Network administrators must pay attention to the quality of service (QoS) a network provides for voice and video
- Bandwidth the amount of traffic, or data transmission activity, on the network

Controlling Network Access

- Topology how parts of a whole work together
- Physical topology mostly applies to hardware and describes how computers, other devices, and cables fit together to form the physical network
- Logical topology has to do with software and describes how access to the network is controlled
 - How users and programs initially gain access to the network (how applications and databases are shared on the network)
- Network operating system controls access to the entire network (Windows server 2012R2.. 2016, Ubuntu, Red Hat)

11

Peer-to-Peer Model

- Peer-to-peer (P2P) network model the OS of each computer on the network is responsible for controlling access to its resources
 - No centralized control
- Computers, called hosts, form a logical group of computers and users
 - May share resources
 - May prevent access to resources
- Each computer user has a Windows local account
 - Works only on that one computer

Peer-to-Peer Model

Figure 1-4 In a peer-to-peer network, no computer has more authority than another; each computer controls its own resources, and communicates directly with other computers

Peer-to-Peer Model

Advantages

- Simple configuration (using Homegroup)
- Less expensive
 - Compared to other network models

Disadvantages

- Not scalable
- Not necessarily secure
- Not practical for large installations

- Resources are managed by the network operating system (NOS) via a centralized directory database
- Windows domain a logical group of computers that a Windows Server can control
- Active Directory (AD) the centralized directory database that contains user account information and security for the entire group of computers
- Global account (a.k.a. global username or network ID) - a domain-level account assigned by the network administrator and is kept in AD

- A user can sign on to the network from any computer on the network and gain access to the resources that AD allows
 - This process is managed by Active Directory Domain Services (AD DS)
- Clients don't share their resources directly with each other
 - Access is controlled by entries in the centralized domain database

Figure 1-5 A Windows domain uses the client-server model to control access to the network, where security on each computer or device is controlled by a centralized database on a domain controller

- The NOS is responsible for:
 - Manages client data, resources
 - Ensures authorized user access
 - Controls user file access
 - Restricts user network access
 - Dictates computer communication rules
 - Supplies application to clients
- Server examples
 - Windows Server 2012 R2, Ubuntu Server, or Red Hat Linux

- Servers that have a NOS installed require:
 - More memory, processing, storage capacity
 - Equipped with special hardware
 - Provides network management functions
- Advantages relative to peer-to-peer networks
 - User credential assigned from one place
 - Multiple shared resource access centrally controlled
 - Central problem monitoring, diagnostics, correction capabilities
 - More scalable

Networking Hardware and Physical Topologies

Figure 1-6 This LAN has five computers, a network printer, a local printer, a scanner, and a switch, and is using a star topology

- Local area network (LAN) usually contained in a small space
 - Such as an office or building
- Switch receives incoming data from one of its ports and redirects it to another port or multiple ports
 - Will send the data to its intended destination
- Star topology all devices connect to one central device (usually a switch)
- Network interface card (NIC) a network port used to attach a device to a network

- A LAN can have several switches
- Backbone a central conduit that connects the segments (pieces) of a network
 - Might use higher transmission speeds and different cabling than network cables connected to computers

Figure 1-10 This local network has three switches, and is using a star-bus topology

Three switches daisy-chained together in a single line is said to use a bus topology

- However, each switch is connected to computers via a star topology, making it a star-bus topology
- A topology that combines topologies is known as a hybrid topology

- Router a device that manages traffic between two or more networks
 - Can help find the best path for traffic to get from one network to another
- Routers can be used in small home networks to connect the home LAN to the Internet
- Industrial-grade routers can have several network ports, one for each network it connects to
- Difference between router and switch:
 - Router is like a gateway between networks

Figure 1-13 Three LANs connected by a router

MANs and WANs

- Metropolitan area network (MAN) a group of connected LANs in the same geographical area
 - Also known as a campus area network (CAN)
- WAN (wide area network) a group of LANs that spread over a wide geographical area
 - Internet is the largest and most varied WAN
- MANs and WANs often use different transmission methods and media than LANs
- PAN (personal area network) smallest network
 - A network of personal devices

MANs and WANs

Figure 1-14 A WAN connects two LANs in different geographical areas

Staying Safe When Working with Networks and Computers

- Network and computer technicians need to know how to protect themselves
 - As wells as protect sensitive electronic components
- This section takes a look at some best practices for safety

Emergency Procedures

- Know the best escape route or emergency exit
- Fire Suppression Systems have a fire suppression system in the data center that includes:
 - Emergency alert system
 - Portable fire extinguishers
 - Emergency power-off switch
 - Suppression agent
- Fail Open or Fail Close does the security system allow access during a failure (fail open) or deny access during the failure (fail close)

HVAC Systems

- Heating, ventilation, and air conditioning (HVAC) system - controls the environment in a data center
 - Including the temperature, humidity, airflow, and air filtering
- HVAC system must provide acceptable temperature and humidity ranges for devices that might overheat or fail due to high humidity
- HVAC systems and network cabling often occupy the space above the ceiling or below the floor in a data center
 - Called the plenum

Protecting Against Static Electricity

- Computer components are grounded inside a computer case
- Sensitive electronic components can be damaged by electrostatic discharge (ESD)
- Static electricity can cause two types of damage:
 - Catastrophic failure destroyed beyond use
 - Upset failure shorten the life of a component

Protecting Against Static Electricity

- Before touching a component, ground yourself by:
 - Wearing an ESD strap around your wrist that clips onto the chassis or computer case
 - Touching the case before touching any component inside the case
 - Storing a component inside an antistatic bag
- In addition to protecting against ESD, always shut down and unplug a computer before working inside it

Troubleshooting Network Problems

- Troubleshooting steps used by most expert networking troubleshooters:
 - Identify problem
 - Gather information
 - Identify symptoms
 - Question users
 - Determine if anything has changed
 - Establish theory of probable cause
 - Question the obvious

Troubleshooting Network Problems

- Troubleshooting steps (cont'd)
 - Test theory to determine cause
 - If theory confirmed, determine next steps
 - If theory not confirmed, establish new theory or escalate
 - Establish action plan
 - Implement solution or escalate the problem
 - Verify full functionality
 - Implement preventative measures if applicable
 - Document findings, actions, outcomes

Summary

- Networks provide a wide range of services, including client-server applications, file and print services, and communications services
- File and print services enable multiple users to share data, storage areas, and printers
- Traditional peer-to-peer networks are usually simple and inexpensive to set up
- The client-server model for access control relies on a centrally administered server using a NOS that manages shared resources for multiple clients
 - More complex and expensive to install

Summary

- A LAN is a network of computers and other devices that can directly address all other nodes
- In a star topology, all computers and network devices connect to one central device
- A backbone is a central conduit that connects parts of a network and might use the bus topology
- A router manages traffic between two or more LANS
- LANS can be interconnected to form WANS, which traverse longer distances in two or more geographical areas
- When working with sensitive components, protect against ESD by using an ESD strap