Introduction and structure of *ipmr*

ipmr

Vital rate modelling left outside the package

Designed to reflect mathematical notation

init_ipm()
 define_kernel()
 define_impl()
 define_domains()
 define_pop_state()
 make_ipm()

Reduces required time and coding knowledge for building IPMs

```
init_ipm()
  define_kernel()
  define_impl()
  define_domains()
  define_pop_state()
    make_ipm()
```

```
define kernel()
     ipmr structure
                                                     define_impl()
my_ipm <- define_kernel(proto_ipm = my_ipm,</pre>
                                                   define domains()
                   name
                   family = "cc".
                                                   define pop state()
                                                      make ipm()
                   formula
                              (plogis)s_int + s_slope *(dbh_1)
                   S
                               dnorm(dbh_2) g_mu, g_sd),
                             = g_int + g_slope * dbh_1,
                   g_mu
                  data_list = named_data_list,
                                 = list(c('dbh')),
                   states
                   evict_cor
                                 = TRUE,
                                 = truncated_distributions("norm", "g")
                   evict_fun
```

init ipm()

Math formula	R formula	ipmr
$\mu_G = \alpha_G + \beta_G * Z$	size_2 ~ size_1, family =gaussian()	mu_G = G_int + G_slope * z
$G(z',z) = f_G(z', \mu_G, \sigma_G)$	$G = dnorm(z_2, mu_G, sd_G)$	$G = dnorm(z_2, mu_G, sd_G)$
$logit(s(z)) = \alpha_s + \beta_s * z$	surv ~size_1, family = binomial()	s = plogis(s_int + s_slope * z)
$\log\left(\int_{n}(z)\right) = \alpha_{r_{n}} + \beta_{r_{n}} * z$	fec ~size_1, family = poisson()	r_n = exp(r_n_int + r_n_slope * z)
$\operatorname{logit}\left(r_{p}\left(z\right)\right) = \alpha_{r_{p}} + \beta_{r_{p}} * z$	repr ~ size_1, family = binomial()	r_p = plogis(r_p_int + r_p_slope * z)
$r_d(z') = f_{r_d}(z', \mu_{r_d}, \sigma_{r_d})$	dnorm(z_2, mu_f_d, sigma_f_d)	$r_d = dnorm(z_2, f_d_mu, f_d_sigma)$

Levin et al., 2021 – (part of) Table 1

```
my_ipm <- define_impl(</pre>
  proto_ipm = my_ipm,
  kernel_impl_list = list(
    P = list(int_rule = "midpoint",
             state_start = "dbh",
             state_end = "dbh"),
    F = list(int_rule = "midpoint",
             state_start = "dbh",
             state_end = "dbh")
```

```
init_ipm()
  define_kernel()
  define_impl()
  define_domains()
  define_pop_state()
    make_ipm()
```

```
my_ipm <- define_domains(my_ipm,</pre>
              # c(L, U, n_meshpoints)
 dbh = c(1, 30, (200))
my_ipm <- define_pop_state(my_ipm,</pre>
 n_dbh = rep(1/200, (200))
my_ipm <- make_ipm(my_ipm,</pre>
 iterations = 100
```

```
init_ipm()
  define_kernel()
  define_impl()
  define_domains()
  define_pop_state()
    make_ipm()
```