Christopher Keyes (Emory University) joint work with Lea Beneish (UC Berkeley) https://arxiv.org/abs/2111.04697

Algebra, Geometry, and Number Theory Seminar University of South Carolina April 8, 2022

•00000000

car solubility

Let C/\mathbb{Q} be a curve and v a place of \mathbb{Q} (i.e. v = p or $v = \infty$).

Definition

C is **locally soluble at v** if $C(\mathbb{Q}_{\nu})$ is nonempty.

C is **everywhere locally soluble (ELS)** if $C(\mathbb{Q}_{\nu}) \neq \emptyset$ for all ν .

Local solubility

Let C/\mathbb{Q} be a curve and v a place of \mathbb{Q} (i.e. v = p or $v = \infty$).

Definition

C is **locally soluble at v** if $C(\mathbb{Q}_{\nu})$ is nonempty.

C is **everywhere locally soluble (ELS)** if $C(\mathbb{Q}_{\nu}) \neq \emptyset$ for all ν .

Question

What proportion of curves over \mathbb{Q} (in some family) are ELS?

Known for genus 1 curves [BCF21], plane cubics [BCF16], some families of hypersurfaces e.g. [BBL16], [FHP21], [PV04], [Bro17].

Motivation

Setup

00000000

(Everywhere) local solubility is necessary for existence of \mathbb{Q} -points,

$$C(\mathbb{Q})\subset C(\mathbb{Q}_{\nu})$$

but not sufficient!

Motivation

Setup

00000000

(Everywhere) local solubility is *necessary* for existence of Q-points,

$$C(\mathbb{Q})\subset C(\mathbb{Q}_{\nu})$$

but not sufficient!

Curves which are ELS but $C(\mathbb{Q}) = \emptyset$ violate the *Hasse principle*.

00000000

Consider hyperelliptic curves given by (weighted) homog. equation

C:
$$y^2 = f(x, z) = c_{2g+2}x^{2g+2} + \cdots + c_0z^{2g+2}$$
.

Theorem (Poonen–Stoll, Bhargava–Cremona–Fisher)

A pos. prop. of hyperelliptics C/\mathbb{Q} are ELS [PS99b].

75.96% of genus 1 curves of this form are ELS [BCF21].

Motivation: hyperelliptic curves

Consider hyperelliptic curves given by (weighted) homog. equation

C:
$$y^2 = f(x, z) = c_{2g+2}x^{2g+2} + \cdots + c_0z^{2g+2}$$
.

Theorem (Poonen–Stoll, Bhargava–Cremona–Fisher)

A pos. prop. of hyperelliptics C/\mathbb{Q} are ELS [PS99b].

75.96% of genus 1 curves of this form are ELS [BCF21].

Theorem (Bhargava–Gross–Wang [BGW17]

A positive proportion of everywhere locally soluble hyperelliptic curves C/\mathbb{Q} have no points over any odd degree extension k/\mathbb{Q} .

Fix a positive integer $m \ge 2$.

Definition

Setup

000000000

A superelliptic curve C/\mathbb{Q} is a smooth projective curve with a cyclic Galois cover of \mathbb{P}^1 of degree m.

Such C has an equation in weighted projective space

$$C: y^m = f(x,z) = c_d x^d + \cdots + c_0 z^d$$

where f is a binary form of degree d.

Superelliptic curves

Fix a positive integer $m \ge 2$.

Definition

A superelliptic curve C/\mathbb{Q} is a smooth projective curve with a cyclic Galois cover of \mathbb{P}^1 of degree m.

Such C has an equation in weighted projective space

$$C: y^m = f(x,z) = c_d x^d + \cdots + c_0 z^d$$

where f is a binary form of degree d.

Warning

Some authors assume $m \mid d$ (or not!), or that f is m-th power free.

Question

Setup

000000000

What proportion of superelliptic curves over \mathbb{Q} are ELS?

For $\mathbf{c} = (c_i)_{i=0}^d \in \mathbb{Z}^{d+1}$, we associate a binary form and SEC

$$f(x,z) = \sum_{i=0}^{d} c_i x^i z^{d-i}, \quad C_f: y^m = f(x,z).$$

Definition

We define

$$\rho_{m,d} = \lim_{B \to \infty} \frac{\#\{\mathbf{c} \in ([-B,B] \cap \mathbb{Z})^{d+1} \mid C_f \text{ is ELS}\}}{\#\{\mathbf{c} \in ([-B,B] \cap \mathbb{Z})^{d+1}\}},$$

the proportion of ELS superelliptic curves of this form.

Fix $(m, d) \neq (2, 2)$ such that $m \mid d$.

Theorem (Beneish–K. [<mark>BK21</mark>])

(A) $0 < \rho_{m,d} < 1$, and $\rho_{m,d}$ is product of local densities,

$$\rho_{m,d} = \rho_{m,d}(\infty) \prod_{p} \rho_{m,d}(p).$$

 $\rho_{m,d}(p)$ is (normalized) Haar measure of space of the \mathbb{Q}_p -soluble curves C_f : $y^m = f(x, z)$, with coefficients in \mathbb{Z}_p .

Main results

Fix $(m, d) \neq (2, 2)$ such that m is prime and $m \mid d$.

Theorem (Beneish–K. [BK21], continued)

(B) We can find explicit (and sometimes good) bounds for $\rho_{m,d}(p)$ and hence $\rho_{m,d}$. In particular,

$$\liminf_{d \to \infty} \rho_{m,d} \ge \left(1 - \frac{1}{m^{m+1}}\right) \prod_{p \equiv 1(m)} \left(1 - \left(1 - \frac{p-1}{mp}\right)^{p+1}\right) \prod_{p \not\equiv 0,1(m)} \left(1 - \frac{1}{p^{2(p+1)}}\right).$$

Fix $(m, d) \neq (2, 2)$ such that m is prime and $m \mid d$.

Theorem (Beneish–K. [BK21], continued)

(B) We can find explicit (and sometimes good) bounds for $\rho_{m,d}(p)$ and hence $\rho_{m,d}$. In particular,

$$\liminf_{d \to \infty} \rho_{m,d} \geq \left(1 - \frac{1}{m^{m+1}}\right) \prod_{\rho \equiv 1(m)} \left(1 - \left(1 - \frac{p-1}{mp}\right)^{p+1}\right) \prod_{\rho \not\equiv 0, 1(m)} \left(1 - \frac{1}{\rho^{2(\rho+1)}}\right).$$

When m > 2, we have

 $0.83511 \leq \liminf_{d \to \infty} \rho_{m,d}$ and $\limsup_{d \to \infty} \rho_{m,d} \leq 0.99804$.

Theorem (Beneish–K. [BK21], continued)

(C) In the case (m, d) = (3, 6), we compute $\rho_{3,6} \approx 96.94\%$.

Setup

000000000

Theorem (Beneish-K. [SK21], continued)

(C) In the case (m, d) = (3, 6), we compute $\rho_{3,6} \approx 96.94\%$. Moreover, \exists rational functions $R_1(t)$ and $R_2(t)$ such that

$$\rho_{3,6}(p) = \begin{cases} R_1(p), & p \equiv 1 \pmod{3} \text{ and } p > 43 \\ R_2(p), & p \equiv 2 \pmod{3} \text{ and } p > 2. \end{cases}$$

Asymptotically,

$$1 - R_1(t) \sim \frac{2}{3}t^{-4},$$

 $1 - R_2(t) \sim \frac{53}{144}t^{-7}.$

```
\left(1296p^{57} + 3888p^{56} + 9072p^{55} + 16848p^{54} + 27648p^{53} + 39744p^{52} + 53136p^{51} + 66483p^{50} + 80019p^{49} + 93141p^{48} + 107469p^{47} + 120357p^{46} + 135567p^{45} + 148347p^{44} + 162918p^{43} + 176004p^{42} + 190278p^{41} + 203459p^{40} + 218272p^{39} + 232083p^{38} + 243639p^{37} + 255267p^{36} + 261719p^{35} + 264925p^{34} + 265302p^{33} + 261540p^{32} + 254790p^{31} + 250736p^{30} + 241384p^{29} + 226503p^{28} + 214137p^{27} + 195273p^{26} + 170793p^{25} + 151839p^{24} + 136215p^{23} + 261540p^{32} + 
\begin{array}{l} + 241364\rho^{-1} + 226503\rho^{26} + 214137\rho^{27} + 195273\rho^{26} + 170793\rho^{25} + 151839\rho^{24} + 136215\rho^{23} \\ + 118998\rho^{22} + 105228\rho^{21} + 94860\rho^{20} + 80471\rho^{19} + 67048\rho^{18} + 52623\rho^{17} + 40617\rho^{16} + 28773\rho^{15} + 19247\rho^{14} \\ + 12109\rho^{13} + 7614\rho^{12} + 3420\rho^{11} + 756\rho^{10} - 2248\rho^{9} - 4943\rho^{8} - 6300\rho^{7} - 6894\rho^{6} - 5994\rho^{5} - 2448\rho^{4} - 648\rho^{3} \\ + 324\rho^{2} + 1296\rho + 1296 \Big) / \Big( 1296\Big(\rho^{12} - \rho^{11} + \rho^{9} - \rho^{8} + \rho^{6} - \rho^{4} + \rho^{3} - \rho + 1\Big) \Big(\rho^{8} - \rho^{6} + \rho^{4} - \rho^{2} + 1\Big) \\ \times \Big(\rho^{6} + \rho^{5} + \rho^{4} + \rho^{3} + \rho^{2} + \rho + 1\Big) \Big(\rho^{4} + \rho^{3} + \rho^{2} + \rho + 1\Big) \frac{3}{2} \Big(\rho^{4} - \rho^{3} + \rho^{2} - \rho + 1\Big) \Big(\rho^{2} + \rho + 1\Big) \\ \times \Big(\rho^{2} + 1\Big) \rho^{11} \Big) , \end{array}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            (mod 3)
                                                                         \left(144\rho^{57} + 432\rho^{56} + 1008\rho^{55} + 1872\rho^{54} + 3168\rho^{53} + 4608\rho^{52} + 6336\rho^{51} + 8011\rho^{50} + 9803\rho^{49} + 11357\rho^{48} + 13061\rho^{47} + 14525\rho^{46} + 16295\rho^{45} + 17875\rho^{44} + 19654\rho^{43} + 21212\rho^{42} + 23030\rho^{41} + 24563\rho^{40} + 26320\rho^{39} + 124664\rho^{43} + 124664\rho^{44} + 124644\rho^{44} + 124664\rho^{44} + 12
                                                                                      +\,27771\rho^{38} + 29711\rho^{37} + 30859\rho^{36} + 31135\rho^{35} + 31525\rho^{34} + 31510\rho^{33} + 29436\rho^{32} + 28502\rho^{31} + 28616\rho^{30} + 29436\rho^{32} + 28616\rho^{30} 
                                                                                      +\ 26856 \rho^{29} + 25087 \rho^{28} + 25057 \rho^{27} + 23041 \rho^{26} + 19921 \rho^{25} + 18119 \rho^{24} + 16287 \rho^{23} + 13798 \rho^{22}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                (mod 3)
                                                                                      +\ 12140\rho^{21}+10844\rho^{20}+9191\rho^{19}+7480\rho^{18}+5839\rho^{17}+4265\rho^{16}+2909\rho^{15}+1943\rho^{14}+1109\rho^{13}
                                                                                 +590 \rho ^{12}+604 \rho ^{11}+372 \rho ^{10}-144 \rho ^{9}-87 \rho ^{8}-84 \rho ^{7}-678 \rho ^{6}-618 \rho ^{5}-144 \rho ^{4}-168 \rho ^{3}-156 \rho ^{2}-124 \rho ^
                                                                    +144\rho + 144 \Big) / \Big( 144 \Big( \rho^{12} - \rho^{11} + \rho^{9} - \rho^{8} + \rho^{6} - \rho^{4} + \rho^{3} - \rho + 1 \Big) \Big( \rho^{8} - \rho^{6} + \rho^{4} - \rho^{2} + 1 \Big) \\ \times \Big( \rho^{6} + \rho^{5} + \rho^{4} + \rho^{3} + \rho^{2} + \rho + 1 \Big) \Big( \rho^{4} + \rho^{3} + \rho^{2} + \rho + 1 \Big) \Big( \rho^{4} - \rho^{3} + \rho^{2} - \rho + 1 \Big) \Big( \rho^{2} + \rho + 1 \Big)
```

Outline

Setup

- Set up and state main results,
- Local densities $\rho_{m,d}(p) \to \text{global density } \rho_{m,d}$,
- Study local densities $\rho_{m,d}(p)$,
- Sketch exact computations of $\rho_{3,6}(p)$.

Local densities

Theorem (Beneish-K. [BK21])

(A) $\rho_{m,d}$ exists and is given by the product of local densities,

$$\rho_{m,d} = \rho_{m,d}(\infty) \prod_{p} \rho_{m,d}(p) > 0.$$

 $\rho_{m,d}(p)$ is (normalized) Haar measure of space of the \mathbb{Q}_p -soluble curves C_f : $y^m = f(x,z)$, with coefficients in \mathbb{Z}_p .

Local densities

Theorem (Beneish-K. [SK21])

(A) $\rho_{m,d}$ exists and is given by the product of local densities,

$$\rho_{m,d} = \rho_{m,d}(\infty) \prod_{p} \rho_{m,d}(p) > 0.$$

 $\rho_{m,d}(p)$ is (normalized) Haar measure of space of the \mathbb{Q}_p -soluble curves C_f : $y^m = f(x,z)$, with coefficients in \mathbb{Z}_p .

Idea

In good situations, imposing conditions at different primes looks independent...even if there's infinitely many.

Local densities look independent

Idea

Setup

In good situations, imposing conditions at different primes looks independent...even if there's infinitely many.

 Poonen–Stoll [PS99a] give criterion for when natural density is product of local densities.

Idea

Setup

In good situations, imposing conditions at different primes looks independent...even if there's infinitely many.

- Poonen–Stoll [PS99a] give criterion for when natural density is product of local densities.
- Apply to ELS in families of hyperelliptic curves [PS99b]; uses sieve of Ekedahl [Eke91].

Local densities look independent

Idea

Setup

In good situations, imposing conditions at different primes looks independent...even if there's infinitely many.

- Poonen–Stoll [PS99a] give criterion for when natural density is product of local densities.
- Apply to ELS in families of hyperelliptic curves [PS99b]; uses sieve of Ekedahl [Eke91].
- Bright-Browning-Loughran [BBL16] give geometric criteria when family comes from fibers of a morphism.

Geometric picture

Setup

A geometric criterion

Theorem (Bright–Browning–Loughran [BBL16])

Let $\pi: X \to \mathbb{A}^n$ a dominant, quasiproj. morphism of \mathbb{Q} -varieties with geom. int. gen. fiber. Suppose

- (i) fibers above each codim. 1 point of \mathbb{A}^n are geom. integral,
- (ii) $X(\mathbf{A}_{\mathbb{Q}}) \neq \emptyset$,
- (iii) For all $B \geq 1$ we have $B\pi(X(\mathbb{R})) \subseteq \pi(X(\mathbb{R}))$.

Theorem (Bright–Browning–Loughran [BBL 16])

Let $\pi: X \to \mathbb{A}^n$ a dominant, quasiproj. morphism of \mathbb{Q} -varieties with geom. int. gen. fiber. Suppose

- (i) fibers above each codim. 1 point of \mathbb{A}^n are geom. integral,
- (ii) $X(\mathbf{A}_{\mathbb{O}}) \neq \emptyset$,
- (iii) For all $B \geq 1$ we have $B\pi(X(\mathbb{R})) \subseteq \pi(X(\mathbb{R}))$.

Let $\Psi' \subset \mathbb{R}^n$ be a bounded subset of positive measure lying in $\pi(X(\mathbb{R}))$ whose boundary has measure zero. Then the limit

$$\lim_{B \to \infty} \frac{\# \left\{ P \in \mathbb{Z}^n \cap B\Psi' \mid X_P(\mathbf{A}_{\mathbb{Q}}) \neq \emptyset \right\}}{\# \left\{ P \in \mathbb{Z}^n \cap B\Psi' \right\}}$$

exists, is nonzero, and is equal to a product of local densities,

$$\prod_{p\nmid\infty}\mu_p\left(\left\{P\in\mathbb{Z}_p^n\mid X_P(\mathbb{Q}_p)\neq\emptyset\right\}\right).$$

Geometric setup

Setup

We consider

$$\mathbb{A}^{d+1}_{\mathbb{Q}} = \operatorname{Spec} \mathbb{Q}[c_0, \dots, c_d],$$

$$\mathcal{P}_{\mathbb{Q}} = \mathbb{P}_{\mathbb{Q}}(1, d, 1) \text{ with coordinates } [x : y : z].$$

The variety

$$X: y^m = c_d x^d + \cdots + c_0 z^d \subset \mathbb{A}^{d+1}_{\mathbb{Q}} \times \mathcal{P}_{\mathbb{Q}}$$

comes with a projection map $\pi: X \to \mathbb{A}^{d+1}_{\mathbb{O}}$.

Geometric picture

Think

- A \mathbb{Q} -point $(\mathbf{c}, [x:y:z])$ of X is the data of superelliptic curve C_f/\mathbb{Q} and a \mathbb{Q} -point $[x:y:z] \in C_f(\mathbb{Q})$.
- The fiber X_P of π over a point $P \in \mathbb{A}^{d+1}(\mathbb{Q})$ is a superelliptic curve C_f/\mathbb{Q} whose coefficients are encoded in P.

Check that π is dominant, projective, and has geom. int. gen. fiber.

Check that π is dominant, projective, and has geom. int. gen. fiber.

(i) Codim. 1 points of \mathbb{A}^{d+1} = single relation on coeffs c_i . Not enough to be reducible. (Unless (m, d) = (2, 2)!)

Check that π is dominant, projective, and has geom. int. gen. fiber.

- (i) Codim. 1 points of $\mathbb{A}^{d+1} = \text{single relation on coeffs } c_i$. Not enough to be reducible. (Unless (m, d) = (2, 2)!)
- (ii) $X(\mathbb{Q}) \neq \emptyset$; e.g. $y^m = x^d + z^d$ has the point [1:1:0].

Check that π is dominant, projective, and has geom. int. gen. fiber.

- (i) Codim. 1 points of $\mathbb{A}^{d+1} = \text{single relation on coeffs } c_i$. Not enough to be reducible. (Unless (m, d) = (2, 2)!)
- (ii) $X(\mathbb{Q}) \neq \emptyset$; e.g. $y^m = x^d + z^d$ has the point [1:1:0].
- (iii) $\pi(X(\mathbb{R}))$ closed under scaling by $B \geq 1$: C_f has a \mathbb{R} -point $\implies C_{Bf}$: $y^m = Bf(x,z)$ has \mathbb{R} -point.

Check that π is dominant, projective, and has geom. int. gen. fiber.

- (i) Codim. 1 points of $\mathbb{A}^{d+1} = \text{single relation on coeffs } c_i$. Not enough to be reducible. (Unless (m, d) = (2, 2)!)
- (ii) $X(\mathbb{Q}) \neq \emptyset$; e.g. $y^m = x^d + z^d$ has the point [1:1:0].
- (iii) $\pi(X(\mathbb{R}))$ closed under scaling by $B \ge 1$: C_f has a \mathbb{R} -point $\implies C_{Bf}$: $y^m = Bf(x,z)$ has \mathbb{R} -point.

Finally, choose $\Psi' = [-1,1] \cap \pi(X(\mathbb{R}))$ (verifying $\mu_{\infty}(\partial \Psi') = 0$), and see this agrees with original definition of $\rho_{m,d}$.

Outline

Setup

- Set up and state main results,
- Local densities $\rho_{m,d}(p) \to \text{global density } \rho_{m,d}$,
- Bound local densities $\rho_{m,d}(p)$,
- Sketch exact computations of $\rho_{3,6}(p)$.

Computing local densities

Question

Setup

Once we know

$$\rho_{m,d} = \rho_{m,d}(\infty) \prod_{p} \rho_{m,d}(p),$$

how do we compute/estimate local densities $\rho_{m,d}(p)$?

Question

Setup

Once we know

$$\rho_{m,d} = \rho_{m,d}(\infty) \prod_{p} \rho_{m,d}(p),$$

how do we compute/estimate local densities $\rho_{m,d}(p)$?

 $\rho_{m,d}(\infty)$: Euclidean measure of \mathbb{R} -soluble C_f with coeffs $\in [-1,1]$.

- If m or d is odd, then $\rho_{m,d}(\infty) = 1$.
- If m, d even, no analytic solution known for d > 2, but rigorous estimates exist, e.g.

$$0.873914 \le \rho_{2,4}(\infty) \le 0.874196$$
 [BCF21]

 $\rho_{m,d}(p)$ is (normalized) Haar measure of space of the \mathbb{Q}_p -soluble curves C_f : $y^m = f(x, z)$, with coefficients in \mathbb{Z}_p .

Computing local densities — finite places

 $\rho_{m,d}(p)$ is (normalized) Haar measure of space of the \mathbb{Q}_p -soluble curves C_f : $y^m = f(x,z)$, with coefficients in \mathbb{Z}_p .

Think

Setup

Look mod p and check \mathbb{Q}_p -solubility with **Hensel's lemma**!

 $\rho_{m,d}(p)$ is (normalized) Haar measure of space of the \mathbb{Q}_p -soluble curves C_f : $y^m = f(x,z)$, with coefficients in \mathbb{Z}_p .

Think

Setup

Look mod p and check \mathbb{Q}_p -solubility with **Hensel's lemma**!

Theorem (Hensel's lemma)

Let $F(t) \in \mathbb{Z}_p[t]$ reduce to $\overline{F}(t) \in \mathbb{F}_p[t]$. If $\exists \ \overline{t_0} \in \mathbb{F}_p$ such that

$$\overline{F}(\overline{t_0})=0 \quad \text{and} \quad \overline{F}'(\overline{t_0})\neq 0,$$

then $\exists \ t_0 \in \mathbb{Z}_p \text{ such that } F(t_0) = 0 \text{ and } t_0 \equiv \overline{t_0} \pmod{p}$.

i.e. smooth \mathbb{F}_p -points on $\overline{C_f}/\mathbb{F}_p$ lift to \mathbb{Z}_p -points on C_f/\mathbb{Q}_p .

Example

Setup

Consider (m, d) = (3, 6), family of genus 4 curves

$$C_f: y^3 = f(x, z) = c_6 x^6 + c_5 x^5 z + \dots + c_1 x z^5 + c_0 z^6.$$

When does $\overline{C_f}$ have smooth \mathbb{F}_p -points?

An extended example

Example

Setup

Consider (m, d) = (3, 6), family of genus 4 curves

$$C_f: y^3 = f(x, z) = c_6 x^6 + c_5 x^5 z + \dots + c_1 x z^5 + c_0 z^6.$$

When does $\overline{C_f}$ have smooth \mathbb{F}_p -points?

<u>Theorem</u> (Hasse–Weil bound)

If $\overline{C_f}$ is irreducible and smooth of genus g, then

$$\#\overline{C_f}(\mathbb{F}_p) \geq p + 1 - g \cdot 2\sqrt{p}$$
.

Example

Setup

Consider (m, d) = (3, 6), family of genus 4 curves

$$C_f: y^3 = f(x, z) = c_6 x^6 + c_5 x^5 z + \dots + c_1 x z^5 + c_0 z^6.$$

When does $\overline{C_f}$ have smooth \mathbb{F}_p -points?

Theorem (Hasse-Weil bound, refined)

If $\overline{C_f}$ is irreducible and smooth of genus g, then

$$\#\overline{C_f}(\mathbb{F}_p) \geq p + 1 - g \cdot \lfloor 2\sqrt{p} \rfloor.$$

Whenever p > 61, we have

Setup

$$p+1-8\sqrt{p}>0,$$

Whenever p > 61, we have

Setup

$$p+1-8\sqrt{p}>0,$$

Bounding local densities

000000000

so if $\overline{C_f}/\mathbb{F}_p$ is smooth for p>61, C_f has \mathbb{Q}_p -point!

• $\overline{C_f}^{\mathrm{sm}}(\mathbb{F}_p) \neq \emptyset$ whenever $\overline{C_f}/\mathbb{F}_p$ geom. irr. and p > 61.

Whenever p > 61, we have

Setup

$$p+1-8\sqrt{p}>0,$$

- $\overline{C_f}^{\mathrm{sm}}(\mathbb{F}_p) \neq \emptyset$ whenever $\overline{C_f}/\mathbb{F}_p$ geom. irr. and p > 61.
- Refinement of H–W \implies p = 61 is OK.

Setup

An extended example — bounds from geometry

Whenever p > 61, we have

$$p+1-8\sqrt{p}>0,$$

- $\overline{C_f}^{\mathrm{sm}}(\mathbb{F}_p) \neq \emptyset$ whenever $\overline{C_f}/\mathbb{F}_p$ geom. irr. and p > 61.
- Refinement of H–W \implies p = 61 is OK.
- Irreducibility over $\overline{\mathbb{F}_p} \iff \overline{f}(x,z) \neq h(x,z)^3$ (when $p \neq 3$).

An extended example — bounds from geometry

000000000

Whenever p > 61, we have

Setup

$$p+1-8\sqrt{p}>0,$$

- $\overline{C_f}^{\mathrm{sm}}(\mathbb{F}_p) \neq \emptyset$ whenever $\overline{C_f}/\mathbb{F}_p$ geom. irr. and p > 61.
- Refinement of H–W \implies p = 61 is OK.
- Irreducibility over $\overline{\mathbb{F}_p} \iff \overline{f}(x,z) \neq h(x,z)^3$ (when $p \neq 3$).

$$\rho_{3,6}(p) \ge \frac{p^7 - p^3}{p^7} = 1 - \frac{1}{p^4} \text{ for all } p \ge 61.$$

Exploit fact that cubing map $\mathbb{F}_p^{\times} \xrightarrow{(\cdot)^3} \mathbb{F}_p^{\times}$ is an isomorphism.

Lemma

Setup

If p > 2 and $p \equiv 2 \pmod{3}$ then C_f has a \mathbb{Z}_p -point whenever reduction \overline{f} is nonzero.

Bounding local densities

Exploit fact that cubing map $\mathbb{F}_p^{\times} \xrightarrow{(\cdot)^3} \mathbb{F}_p^{\times}$ is an isomorphism.

Lemma

Setup

If p > 2 and $p \equiv 2 \pmod{3}$ then C_f has a \mathbb{Z}_p -point whenever reduction \overline{f} is nonzero.

What goes wrong? $\overline{f}(x,z)$ has multiple roots everywhere.

Example

If p = 2, could have $f(x, z) = x^2(x + z)z^2$

An extended example

- $\rho_{3,6}(p) \ge 1 \frac{1}{p^4}$ when $p \equiv 1 \pmod{3}$ and p > 43
- $ho_{3,6}(p) \geq 1 \frac{1}{p^7}$ when $p \equiv 2 \pmod{3}$ and p > 2

- $\rho_{3,6}(p) \ge 1 \frac{1}{p^4}$ when $p \equiv 1 \pmod{3}$ and p > 43
- $ho_{3,6}(p) \geq 1 \frac{1}{p^7}$ when $p \equiv 2 \pmod{3}$ and p > 2
- Enumerate all $\overline{f}(x,z)$ in Magma and count liftable solutions:

p	$ ho_{3,6}(p) \geq$	р	$\rho_{3,6}(p) \geq$
2	$\tfrac{63}{64}\approx 0.98437$	19	$\frac{893660256}{893871739} \approx 0.99976$
3	$\tfrac{26}{27}\approx 0.96296$	31	$\frac{27512408250}{27512614111} \approx 0.99999$
7	$\frac{810658}{823543} \approx 0.98435$	37	$\frac{94931742132}{94931877133} \approx 0.999998$
13	$\frac{62655132}{62748517} \approx 0.99851$	43	$\frac{271818511748}{271818611107} \approx 0.9999996$

Put together, we find

$$\rho_{3,6} = \prod_{p=0}^{\infty} \rho_{3,6}(p) \ge 0.93134.$$

Setup

For d > 6 such that $3 \mid d$,

$$\begin{split} \rho_{3,d} \geq & \left(1 - \frac{1}{3^4}\right) \prod_{\substack{p \equiv 2(3) \\ p \leq d/2 - 1}} \left(1 - \frac{1}{\rho^{2(p+1)}}\right) \prod_{\substack{p \equiv 2(3) \\ p > d/2 - 1}} \left(1 - \frac{1}{\rho^{d+1}}\right) \\ & \times \prod_{\substack{p \equiv 1(3) \\ p < d}} \left(1 - \left(1 - \frac{p-1}{3\rho}\right)^{p+1}\right) \prod_{\substack{p \equiv 1(3) \\ d < p < 4(d-2)^2}} \left(1 - \left(1 - \frac{p-1}{3\rho}\right)^{d+1}\right) \prod_{\substack{p \equiv 1(3) \\ p \geq 4(d-2)^2}} \left(1 - \frac{1}{\rho^{\frac{2d}{3}}}\right) \end{split}$$

Setup

Bounds more generally for m = 3

For d > 6 such that $3 \mid d$,

$$\begin{split} \rho_{3,d} \geq & \left(1 - \frac{1}{3^4}\right) \prod_{\substack{p \equiv 2(3) \\ p \leq d/2 - 1}} \left(1 - \frac{1}{\rho^{2(p+1)}}\right) \prod_{\substack{p \equiv 2(3) \\ p > d/2 - 1}} \left(1 - \frac{1}{\rho^{d+1}}\right) \\ & \times \prod_{\substack{p \equiv 1(3) \\ p < d}} \left(1 - \left(1 - \frac{p-1}{3p}\right)^{p+1}\right) \prod_{\substack{p \equiv 1(3) \\ d < p < 4(d-2)^2}} \left(1 - \left(1 - \frac{p-1}{3p}\right)^{d+1}\right) \prod_{\substack{p \equiv 1(3) \\ p \geq 4(d-2)^2}} \left(1 - \frac{1}{\rho^{\frac{2d}{3}}}\right) \end{split}$$

Taking limit as $d \to \infty$ gives large genus limit

$$\liminf_{d \to \infty} \rho_{3,d} \ge \left(1 - \frac{1}{3^4}\right) \prod_{p \equiv 1(3)} \left(1 - \left(1 - \frac{p-1}{3p}\right)^{p+1}\right) \prod_{p \equiv 2(3)} \left(1 - \frac{1}{p^{2(p+1)}}\right) \approx 0.90061.$$

Outline

Setup

- Set up and state main results,
- Local densities $\rho_{m,d}(p) \to \text{global density } \rho_{m,d}$,
- Bound local densities $\rho_{m,d}(p)$,
- Sketch exact computations of $\rho_{3.6}(p)$.

Question

Setup

How do we go from bounds to exact values for $\rho_{3.6}(p)$?

Question

Setup

How do we go from bounds to exact values for $\rho_{3.6}(p)$?

Let $F(x, y, z) = y^3 - f(x, z)$ and look at reduction modulo p.

Recall \overline{F} irreducible $/\overline{\mathbb{F}_p} \iff f(x,z) \neq h(x,z)^3$ over $\overline{\mathbb{F}_p}$.

Question

Setup

How do we go from bounds to exact values for $\rho_{3.6}(p)$?

Let $F(x, y, z) = y^3 - f(x, z)$ and look at reduction modulo p.

Recall \overline{F} irreducible $/\overline{\mathbb{F}_p} \iff f(x,z) \neq h(x,z)^3$ over $\overline{\mathbb{F}_p}$.

Factorization type	p = 3	$p \equiv 1 \pmod{3}$	$p \equiv 2 \pmod{3}$
1. Abs. irr.	2160	$p^3(p^4-1)$	$p^3(p^4-1)$
2. 3 distinct linear over \mathbb{F}_p	0	$\frac{1}{3}(p^3-1)$	0
3. Linear + conj.	0	0	$p^3 - 1$
4. 3 conjugate factors	0	$\frac{2}{3}(p^3-1)$	0
5. Triple factor	27	1	1
Total	37	p^7	p^7

Setup

Let ξ_i be the proportion of \overline{f} for which \overline{F} has type i.

Let σ_i be the probability that F(x, y, z) = 0 has \mathbb{Z}_p -solution when \overline{F} has type i. Then

$$\rho_{3,6}(p) = \sum_{i=1}^5 \xi_i \sigma_i.$$

Let ξ_i be the proportion of \overline{f} for which \overline{F} has type i.

Let σ_i be the probability that F(x, y, z) = 0 has \mathbb{Z}_p -solution when \overline{F} has type i. Then

$$\rho_{3,6}(p)=\sum_{i=1}^5\xi_i\sigma_i.$$

Proposition

We have

$$\sigma_1 = \sigma_2 = \sigma_3 = 1$$

for all primes $p \ge 61$ and $p \equiv 2 \pmod{3}$ except p = 2.

Proposition

We have

Setup

$$\sigma_1 = \sigma_2 = \sigma_3 = 1$$

for all primes $p \ge 61$ and $p \equiv 2 \pmod{3}$ except p = 2.

Proof. We (essentially) already did this! Use Hasse-Weil bound on all components, possibly avoiding desingularized points.

Proposition

We have

Setup

$$\sigma_1 = \sigma_2 = \sigma_3 = 1$$

for all primes $p \ge 61$ and $p \equiv 2 \pmod{3}$ except p = 2.

Proof. We (essentially) already did this! Use Hasse–Weil bound on all components, possibly avoiding desingularized points.

To improve on previous bounds, we

- carefully analyze σ_4 , σ_5 and
- deal with more delicate primes p = 2, 3, 7, 13, 19, 31, 37, 43.

Setup

Suppose $f(x,z) \equiv 0 \pmod{p}$, but $f(x,z) \not\equiv 0 \pmod{p^2}$.

Set $f(x,z) \equiv pf_1(x,z)$ for nonzero $f_1(x,z) \in \mathbb{F}_p[x,z]$.

An example: computing σ_5

Suppose $f(x,z) \equiv 0 \pmod{p}$, but $f(x,z) \not\equiv 0 \pmod{p^2}$.

Set $f(x, z) \equiv pf_1(x, z)$ for nonzero $f_1(x, z) \in \mathbb{F}_p[x, z]$.

Observation

Setup

 \mathbb{Z}_p -solution to C_f : $y^3 = f(x, z)$ must have $p \mid y$,

$$p^3 \mid f(x,z) \implies p^2 \mid f_1(x,z).$$

An example: computing σ_5

Suppose $f(x,z) \equiv 0 \pmod{p}$, but $f(x,z) \not\equiv 0 \pmod{p^2}$.

Set $f(x,z) \equiv pf_1(x,z)$ for nonzero $f_1(x,z) \in \mathbb{F}_p[x,z]$.

Observation

Setup

 \mathbb{Z}_p -solution to C_f : $y^3 = f(x, z)$ must have $p \mid y$,

$$p^3 \mid f(x,z) \implies p^2 \mid f_1(x,z).$$

(0) If $\overline{f_1}(x,z)$ has no roots modulo p, then C_f has no \mathbb{Z}_p -points.

An example: computing σ_5

Suppose $f(x,z) \equiv 0 \pmod{p}$, but $f(x,z) \not\equiv 0 \pmod{p^2}$.

Set $f(x,z) \equiv pf_1(x,z)$ for nonzero $f_1(x,z) \in \mathbb{F}_p[x,z]$.

Observation

Setup

 \mathbb{Z}_p -solution to C_f : $y^3 = f(x, z)$ must have $p \mid y$,

$$p^3 \mid f(x,z) \implies p^2 \mid f_1(x,z).$$

- (0) If $\overline{f_1}(x,z)$ has no roots modulo p, then C_f has no \mathbb{Z}_p -points.
- (1) If $\overline{f_1}(x,z)$ has a root of mult. 1, it lifts to \mathbb{Z}_p -point of C_f .

Suppose $f(x,z) \equiv 0 \pmod{p}$, but $f(x,z) \not\equiv 0 \pmod{p^2}$.

Set $f(x, z) \equiv pf_1(x, z)$ for nonzero $f_1(x, z) \in \mathbb{F}_p[x, z]$.

Observation

Setup

 \mathbb{Z}_p -solution to C_f : $y^3 = f(x, z)$ must have $p \mid y$,

$$p^3 \mid f(x,z) \implies p^2 \mid f_1(x,z).$$

- (0) If $\overline{f_1}(x,z)$ has no roots modulo p, then C_f has no \mathbb{Z}_p -points.
- (1) If $\overline{f_1}(x,z)$ has a root of mult. 1, it lifts to \mathbb{Z}_p -point of C_f .
- (2) Suppose $\overline{f_1}(x,z)$ has a double root (and no other roots).

Dealing with the double root

Assume $x^2 \mid \overline{f_1}$, giving *p*-adic valuations below (original coeffs of *f*):

Probability of lifting [0 : 0 : 1] in this case is

$$au_2 = rac{1}{p} = \text{Prob}\left(p^3 \mid c_0 : p^2 \mid c_0 \text{ and } p \mid\mid c_2\right).$$

Computing σ_5

Setup

$$\sigma_5 = \left(1 - \frac{1}{p^7}\right) \sum_{i=0}^9 \eta_i \tau_i + \left(\frac{1}{p^7} - \frac{1}{p^{14}}\right) \sum_{i=0}^9 \eta_i \theta_i + \frac{1}{p^{14}} \rho$$

- Index i indicates factorization type of $f_1(x,z)$ (or $f_2(x,z)$)
- $\eta_i = \text{proportion of sextic forms}/\mathbb{F}_p$ with *i*-th type
- τ_i (resp. θ_i) are proportion of f with f_1 (resp. f_2) of type i such that C_f has a \mathbb{Z}_p -point.

Factorization types

Setup

Fact. type	η_i	η_i' (monic forms only)
0. No roots	$\frac{\left(53p^4 + 26p^3 + 19p^2 - 2p + 24\right)(p-1)p}{144(p^6 + p^5 + p^4 + p^3 + p^2 + p + 1)}$	$\frac{\left(53\rho^4 + 26\rho^3 + 19\rho^2 - 2\rho + 24\right)(\rho - 1)}{144\rho^5}$
1. (1*)	$\frac{\left(91p^4 + 26p^3 + 23p^2 + 16p - 12\right)(p+1)p}{144(p^6 + p^5 + p^4 + p^3 + p^2 + p + 1)}$	$\frac{\left(91\rho^3 - 27\rho^2 + 50\rho - 48\right)(\rho+1)(\rho-1)}{144\rho^5}$
2. (1 ² 4) or (1 ² 22)	$\frac{\left(3p^2+p+2\right)(p+1)(p-1)p}{8\left(p^6+p^5+p^4+p^3+p^2+p+1\right)}$	$\frac{\left(3\rho^2+\rho+2\right)(\rho-1)}{8\rho^4}$
3. (1 ² 1 ² 2)	$\frac{(p+1)(p-1)p^2}{4(p^6+p^5+p^4+p^3+p^2+p+1)}$	$\frac{(p-1)^2}{4p^4}$
4. (1 ² 1 ² 1 ²)	$\frac{(p+1)(p-1)p}{6(p^6+p^5+p^4+p^3+p^2+p+1)}$	$\frac{(p-1)(p-2)}{6p^5}$
5. (1 ³ 3)	$\frac{(p+1)^2(p-1)p}{3(p^6+p^5+p^4+p^3+p^2+p+1)}$	$\frac{(p+1)(p-1)}{3p^4}$
6. (1 ³ 1 ³)	$\frac{(p+1)p}{2(p^6+p^5+p^4+p^3+p^2+p+1)}$	$\frac{p-1}{2p^5}$
7. (1 ⁴ 2)	$\frac{(p+1)(p-1)p}{2(p^6+p^5+p^4+p^3+p^2+p+1)}$	$\frac{p-1}{2p^4}$
8. (1 ² 1 ⁴)	$\frac{(p+1)p}{p^6+p^5+p^4+p^3+p^2+p+1}$	$\frac{\rho - 1}{\rho^5}$
9. (1 ⁶)	$\frac{p+1}{p^6+p^5+p^4+p^3+p^2+p+1}$	$\frac{1}{\rho^5}$

Type 9: yikes!

Setup

Type 9, e.g. $f(x,z) \equiv px^6 \pmod{p^2}$.

 τ_9 is a degree 44 rational function in p.

What is $\rho_{3,6}(p)$?

Setup

```
\left(1296\rho^{57} + 3888\rho^{56} + 9072\rho^{55} + 16848\rho^{54} + 27648\rho^{53} + 39744\rho^{52} + 53136\rho^{51} + 66483\rho^{50} + 80019\rho^{49} + 93141\rho^{48} + 9
                                                                     +\ 107469{\rho}^{47}+120357{\rho}^{46}+135567{\rho}^{45}+148347{\rho}^{44}+162918{\rho}^{43}+176004{\rho}^{42}+190278{\rho}^{41}+203459{\rho}^{40}
                                                                     +\ 218272\rho^{39} + 232083\rho^{38} + 243639\rho^{37} + 255267\rho^{36} + 261719\rho^{35} + 264925\rho^{34} + 265302\rho^{33} + 261540\rho^{32} + 264925\rho^{34} + 2664925\rho^{34} + 2664926\rho^{34} + 266496\rho^{34} + 26666\rho^{34} + 26
                                                                          +254790\rho^{31} + 250736\rho^{30} + 241384\rho^{29} + 226503\rho^{28} + 214137\rho^{27} + 195273\rho^{26} + 170793\rho^{25} + 151839\rho^{24} + 136215\rho^{23} + 1264790\rho^{24} + 1264
\begin{array}{c} & & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 (mod 3)
                                                                                                        \left(144\rho^{57} + 432\rho^{56} + 1008\rho^{55} + 1872\rho^{54} + 3168\rho^{53} + 4608\rho^{52} + 6336\rho^{51} + 8011\rho^{50} + 9803\rho^{49} + 11357\rho^{48} + 1186\rho^{54} + 11
                                                                                                   + 13061p^{47} + 14525p^{46} + 16295p^{45} + 17875p^{44} + 19654p^{43} + 21212p^{42} + 23030p^{41} + 24563p^{40} + 26320p^{39} + 24563p^{40} + 24565p^{40} + 24565p^{40} + 24565p^{40} + 24565p^{40} 
                                                                                                        +27771p^{38} + 29711p^{37} + 30859p^{36} + 31135p^{35} + 31525p^{34} + 31510p^{33} + 29436p^{32} + 28502p^{31} + 28616p^{30}
                                                                                                        +\ 26856 \rho^{29} + 25087 \rho^{28} + 25057 \rho^{27} + 23041 \rho^{26} + 19921 \rho^{25} + 18119 \rho^{24} + 16287 \rho^{23} + 13798 \rho^{22}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 (mod 3)
                                                                                                   +\ 590\rho^{12} + 604\rho^{11} + 372\rho^{10} - 144\rho^9 - 87\rho^8 - 84\rho^7 - 678\rho^6 - 618\rho^5 - 144\rho^4 - 168\rho^3 - 156\rho^2 + 166\rho^2 - 
                                                                                              \begin{split} &+144\rho+144\Big) \ \Big/ \ \Big(144\Big(\rho^{12}-\rho^{11}+\rho^{9}-\rho^{8}+\rho^{6}-\rho^{4}+\rho^{3}-\rho+1\Big)\Big(\rho^{8}-\rho^{6}+\rho^{4}-\rho^{2}+1\Big) \\ &\times \Big(\rho^{6}+\rho^{5}+\rho^{4}+\rho^{3}+\rho^{2}+\rho+1\Big)\Big(\rho^{4}+\rho^{3}+\rho^{2}+\rho+1\Big)^{3}\Big(\rho^{4}-\rho^{3}+\rho^{2}-\rho+1\Big)\Big(\rho^{2}+\rho+1\Big) \end{split}
```

What is $\rho_{3.6}(p)$? Small primes edition

Setup

```
\rho(2) = \frac{45948977725819217081}{46164832540903014400} \approx 0.99532
  \rho(3) = \frac{900175334869743731875930997281}{908381960435133191895132960000} \approx 0.99096
   \rho(7) = \frac{63104494755178622851603292623187277054743730183645677893972}{64083174787206696882429945655801281538844149896400159815375} \approx 0.98472
                        \frac{7877728357244577414025901931296747409682076255666526984515273526822853}{7890643570620106747776737292792780623510727026420779539893772399701475} \approx 0.99836
\rho(13) =
\rho(19) = \frac{{}_{3122673715489206150449285868243361150392235799365815266879438393279346795671}}{{}_{3123410013311365155035964479837966797560851333614271490136481337080636454180}}
                                                                                                                                                             \approx 0.99976
\rho(31) = \frac{9196796457678318869139089936786462146535210039832850454297877482020635073857159758299}{9196865061587843544830989041473808798913128587425995645857828572610918436035833907250}
                                                                                                                                                              \approx 0.999992
                        \frac{171128647900820194784458101787952920169924464886519055453844647154184805036447476640345735119}{171128889636157060536894474187017088464271236509977199491208939449738127658679723715588944500} \approx 0.999998
\rho(43) = {\scriptstyle \frac{84000121343283090388653356431804100707331364779290664490547105768867844862712134447832720508750281}{84000151671513555191647712567596101710800846209116830568013729377404991150901973105093039939237500}}
                                                                                                                                                                 \approx 0.9999996
```

Use Magma to help when Hasse-Weil doesn't apply, modify calculations accordingly.

What is $\rho_{3,6}$?

Setup

Theorem (Beneish-K.)

(C) We have determined $\rho_{3,6}(p)$ exactly for all p.

Taking product over $p \le 10000$ gives

$$\rho_{3,6} \approx \prod_{p \le 10000} \rho_{3,6}(p) = 0.96943,$$

with error of $O(10^{-14})$.

Further questions

Setup

What proportion of superelliptic curves C_f : $y^m = f(x, z)$

- are globally soluble?
- satisfy/fail the Hasse principle?
- satisfy/fail weak approximation?

Analogs to theorems like a pos. prop. of loc. sol. hyperelliptic curves over \mathbb{O} have no odd degree points [BGW17].

Study these/other solubility questions for more families. Can methods be adapted to integral pts. on stacky curves (see [BP20])?

Thank you I

Setup

Thank you for the invitation and for your attention!

M. J. Bright, T. D. Browning, and D. Loughran, Failures of weak approximation in families, Compos. Math. 152 (2016), no. 7, 1435–1475. MR 3530447

Manjul Bhargava, John Cremona, and Tom Fisher, <u>The proportion of plane cubic curves over ℚ that</u> everywhere locally have a point, Int. J. Number Theory **12** (2016), no. 4, 1077–1092. MR 3484299

_____, The proportion of genus one curves over $\mathbb Q$ defined by a binary quartic that everywhere locally have a point, Int. J. Number Theory 17 (2021), no. 4, 903–923. MR 4262272

Manjul Bhargava, Benedict H. Gross, and Xiaoheng Wang, A positive proportion of locally soluble hyperelliptic curves over ℚ have no point over any odd degree extension, J. Amer. Math. Soc. 30 (2017), no. 2, 451–493, With an appendix by Tim Dokchitser and Vladimir Dokchitser. MR 3600041

Lea Beneish and Christopher Keyes, On the proportion of locally soluble superelliptic curves, https://arxiv.org/abs/2111.04697, 2021.

Manjul Bhargava and Bjorn Poonen, <u>The local-global principle for integral points on stacky curves</u>, https://arxiv.org/abs/2006.00167, 2020.

T. D. Browning, Many cubic surfaces contain rational points, Mathematika 63 (2017), no. 3, 818–839. MR 3731306

Thank you II

Torsten Ekedahl, An infinite version of the Chinese remainder theorem, Comment. Math. Univ. St. Paul. 40 (1991), no. 1, 53–59. MR 1104780

Tom Fisher, Wei Ho, and Jennifer Park, Everywhere local solubility for hypersurfaces in products of projective spaces, Res. Number Theory 7 (2021), no. 1, Paper No. 6, 27. MR 4199457

Bjorn Poonen and Michael Stoll, <u>The Cassels-Tate pairing on polarized abelian varieties</u>, Ann. of Math. (2) **150** (1999), no. 3, 1109–1149. MR 1740984

______, A local-global principle for densities, Topics in number theory (University Park, PA, 1997), Math. Appl., vol. 467, Kluwer Acad. Publ., Dordrecht, 1999, pp. 241–244. MR 1691323

Bjorn Poonen and José Felipe Voloch, <u>Random Diophantine equations</u>, Arithmetic of higher-dimensional algebraic varieties (Palo Alto, CA, 2002), Progr. Math., vol. 226, Birkhäuser Boston, Boston, MA, 2004, With appendices by Jean-Louis Colliot-Thélène and Nicholas M. Katz, pp. 175–184. MR 2029869