STATS 2107

Statistical Modelling and Inference II Tutorial 1

Jono Tuke, Matt Ryan

Semester 2 2022

- 1. Suppose Y_1, Y_2, \ldots, Y_n are i.i.d. $N(\mu, \sigma^2)$ random variables and let \bar{Y} denote the sample mean. Using moment generating functions (MGFs), prove that $\bar{Y} \sim N(\mu, \sigma^2/n)$.
- 2. Let Z_1, Z_2, \ldots, Z_p be i.i.d. N(0,1) random variables.
- a. Show that the moment generating function $M_{Z_i^2}(t)$ of Z_i^2 is given by $(1-2t)^{-\frac{1}{2}}$ for each $i=1,2,\ldots,p$.
- b. Hence, show that the moment generating function of $X = \sum_{i=1}^{p} Z_i^2$ is

$$M_X(t) = \frac{1}{(1-2t)^{p/2}}.$$

3. Let $Y \sim Bin(n, p)$ and consider two estimators for p; namely

$$\hat{p}_1 = \frac{Y}{n} \text{ and } \hat{p}_2 = \frac{Y+1}{n+2}.$$

- a. Show that \hat{p}_1 is unbiased for p.
- b. Derive the bias of \hat{p}_2 .
- c. Find $MSE_{\hat{p}_1}(p)$ and $MSE_{\hat{p}_2}(p)$.
- d. If p = 0.5, which estimator has the largest MSE?