

Wireless Sensor Network Localization: Individual Group Updates—May 14, 2022

Trevor Fung
WES Spring 2022

Previous sprint progress: Demo

- 3 node network
 - String-of-pearls topology
- Demonstrates:
 - Full system operation
 - Farther node reports lower audio level (as expected)
 - Slight improvements to topology reconstruction

Overall system progress

Previous sprint progress

Previous sprint progress: Overview

Goals:

- Mic sensor integration:
 - Reports % full scale over USB to Pluto,
 Pluto propagates info to network
- Smarter link distance calculation
 - Bayesian fusion + Kalman filter
- More field testing
 - More topologies, environments
- More GUI work
 - Functional, but very laggy
 - Considering switching to PyQtGraph?

Previous sprint progress: Mic integration

- 2 interfaces to set up:
 - Mic to Pi:
 - I2S, easy Adafruit setup
 - o Pi to Pluto:
 - Ethernet over USB, so just scp'ing a file
- Bash script continually updates sensor data file using volume meter output of arecord
 - Reported as average percentage of full scale mic input
- Pluto polls file, reports value alongside link distances


```
graspberrypi:- $ arecord -D plughw:0 -c2 -r 48000 -f $32_E -t wav -V stereo -v file stereo.wav
Recording MAVE 'file_stereo.wav' : Signed 32 bit Little Endian, Rate 48000 Hz, $ tereo
Recording MAVE 'file_stereo.wav' : Signed 32 bit Little Endian, Rate 48000 Hz, $ tereo
Recording MAVE 'file_stereo.wav' : Signed 32 bit Little Endian, Rate 48000 Hz, $ tereo
Recording MAVE 'file_stereo.wav' : Signed 32 bit Little Endian, Rate 48000 Hz, $ tereo
Recording MAVE Recording File Endiang File
```

Previous sprint progress: Smarter link distance calculation

- End goal: Combine sensors w/ different sources of error to get cleaner combined output
- Previously just did pure average of RSSI- and ToF-based measurements, over all time
- Problems:
 - **a.** Throws away precision/uncertainty, e.g. if one measurement is more stable
 - **b.** Doesn't handle disagreement between two methods well
 - c. Doesn't handle node movement, i.e. changing measurements over time
- Solution: use two sensor fusion techniques
 - 1. Bayesian fusion w/ spurious rejection (solves **a**, **b**)
 - 2. Kalman filtering (solves c)

Previous sprint progress: Sources of error

- RSSI
 - Ideal: free space path loss equation
 - Errors from:
 - Non-ideal channel, different environments
 - Poor (unstable) TX power control
- ToF
 - Ideal: correlation peak of PN seq captured perfectly
 - Errors from:
 - Clock synch dependent
 - Peak strength affected by SNR/multipath
 - True peak can be anywhere within sample window
- So comparatively:
 - RSSI has higher environmental dependence—more likely to be spurious
 - ToF generally larger σ

Free Space Path Loss Model:-

$$PL(dB) = 32.5 + 20 \log_{10} (f \text{ in MHz}) + 20 \log_{10} (d \text{ in km})$$

Where.

f is carrier frequency (in MHz)

d is distance between transmitter and receiver (in Km)

Previous sprint progress: Bayesian fusion w/ spurious rejection

From "A Generalized Approach for Inconsistency Detection in Data Fusion from Multiple Sensors" by Kumar et al.

- High level concept:
 - \circ Assume input variables are normal, calculate (μ , σ)
 - \circ Combine via weighted average using ratio of σ_1 and σ_2 , skew result's variance by $(\mu_1 \mu_2)$
 - o If combined distribution has a smaller variance than the inputs, fusion is useful
 - If variance is larger, one sensor likely spurious, so return solely sensor w/ lower σ
- Applied to our data:
 - See improved accuracy in left, correct rejection on right

Previous sprint progress: Kalman filtering

- Method of estimating a system's state given a series of measurements over time
 - Usually used in robotics/controls
 - "Filtering" comes from deciding how to incorporate incoming measurements into existing state variables - dependent on uncertainty
- Have measurements w/ uncertainty from fusion step
- Can see that this leads to a nice smoothing-over-time effect

Next sprint progress: Overview

- Next (final!) sprint goals:
 - Scale up to 5 nodes
 - Finish GUI
 - Prep demo
 - Still 5 node demo measuring sound level out of a speaker at various points within the room

Category	Task	Quarter 2			
		Apr	May	June	
Project Management					
	Project scoping				
	Final presentation				
Systems Engineering					Key
	Operational requirements analysis				Complete
	System/Sub-System Specs + Architecture				To do
Development					Stretch
	Sensor evaluation				
	Algorithmic development (simulation)				
	Pluto bringup				
	Network setup				
	Link distance measurement				
	Algorithmic implementation				
	GUI				
	Sensor interface + calibration				
Test and Evaluation					
	Small scale indoor tests (+ debug)				
	Large scale field tests (+ debug)				

Questions?