第五章 可编程逻辑器件 PLD

可编程逻辑器件PLD (Programmable logic Device),是由用户自己编程来决定最终逻辑功能和结构的器件。

为什么使用PLD?

将这些部件放在一个芯片FPGA中。

现代数字系统由三种积木块构成: CPU + PLD + RAM

标准、通用芯片


```
PLA (Programmable Logic Array);
PAL (Programmable Array Logic);
GAL (Generic Array Logic);
ISP (In System Porgrammable);
```


- CPLD (Complex Programmable Logic Device);
- FPGA (Field Programmable Gates Array);
- SoPC (System On a Programmable Chip)

按集成度分类PLD:

排名→	公司名称↩	标志₽	说明↔
1+>	XILIXN₽	XILINX°,	FPGA 的发明者₽
2.0	ALTERA₽		¢2
3+2	Lattice	Lattice Semiconductor Corporation	ISP 技术的发明者₽
40	ACTEL=	Actel	反熔丝(一次性烷写)PLD 的领导者。
5₽	Cypress₽	CYPRESS	ي
647	Quicklogic	QUICKLOGIC	42
7₽	Lucent+3	Lucent Technologies Belluis Importure	+2
8+9	ATME1₽	AIMEL	t)

§ 5.1 PLD的基本概念

PLD的基本结构

1. 基本门电路的PLD表示法

与阵列:N个输入变量,有2N条列线,一个与项最多有N个编程点。

$$\begin{cases} Y_1 = \overline{A}\overline{B}\overline{C} + \overline{A}\overline{B}C + \overline{A}B\overline{C} \\ Y_2 = \overline{A}\overline{B}\overline{C} + \overline{A}B\overline{C} \\ Y_3 = \overline{A}\overline{B}\overline{C} + \overline{A}\overline{B}C \end{cases}$$

2 按可编程的部位分类PLD:

类型	与阵列	或阵列	输出电路
PROM(即可编程 ROM)	固定	可编程	固定
PLA(即 Programmable Logic Array,可编程逻辑阵列)	可编程	可编程	固定
PAL(即 Programmable Array Logic,可编程阵列逻辑)	可编程	固定	固定
GAL(即 <mark>G</mark> eneric Array Logic,通 用阵列逻辑)	可编程	固定	可组态

按编程方法分类PLD:

先设计、再仿真,看占用资源数,最后去买器件.

2. 可编程器件的PLD表示

1) PROM

实现组合逻辑的最小项表达式

用PROM构成一个将 4 位二进制码转换为格雷码的逻辑电路。

需要ROM容量:

16×4

列转换的真值表

$$G_3 = \sum m(8,9,10,11,12,13,14,15)$$

$$G_2 = \sum m(4,5,6,7,8,9,10,11)$$

$$G_1 = \sum m(2,3,4,5,10,11,12,13)$$

$$G_0 = \sum m(1,2,5,6,9,10,13,14)$$

В3	B2	B1	B0	G_3 G_2 G_1 G_0
0	0	0	0	0 0 0 0
0	0	0	1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
0	0	1	0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
0	0	1	1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
0	1	0	0	0 1 1 0
0	1	0	1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
0	1	1	0	$egin{array}{cccccccccccccccccccccccccccccccccccc$
0	1	1	1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
1	0	0	0	1 1 0 0
1	0	0	1	1 1 0 1
1	0	1	0	1 1 1 1
1	0	1	1	1 1 1 0
1	1	0	0	1 0 1 0
1	1	0	1	1 0 1 1
1	1	1	0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
1	1	1	1	1 0 0 0

$$G_3 = \sum m(8,9,10,11,12,13,14,15)$$

$$G_2 = \sum m(4,5,6,7,8,9,10,11)$$

$$G_1 = \sum m(2,3,4,5,10,11,12,13)$$

$$G_0 = \sum m(1,2,5,6,9,10,13,14)$$

PALS and GALS

macrocell

§ 5.2 CPLD, FPGA

目前,使用较广泛的PLD有CPLD和FPGA两大类。

CPLD

- 可编程逻辑阵列块LAB, Logic Array Block (与或结构较复杂)
- 可编程I/0模块(I/0 Cell)
- 可编程内部连线(PIA: programmable interconnect array)(固定长度的金属线)
- 内部延时时间固定,可预测

Macrocells 宏单元

FPGA

- 可编程逻辑功能块 CLB(Cell Logic Block),实现用户功能的基本单元,由"查找表LUT(look up table)(16×1的SRAM作为函数发生器)+触发器+进位控制逻辑"构成。
- 可编程I/0模块(IOB)

• 可编程互连资源(PIR(global interconnects、local interconnects))(不同长度的金

属线)

• 内部延时时间不固定, 预测性差

	CPLD	FPGA	
内部结构	Product - term	Look - up Table	
程序存储	内部E2PROM (flash)	SRAM,外挂E2PROM	
资源类型	组合电路资源丰富	触发器资源丰富	
集成度	低	高	
使用场合	完成控制逻辑	能完成比较复杂的算法	
速度	慢	快	
其他资源	_	EAB (Embeded Array Block 嵌入式阵列块),锁相环	
保密性	可加密	一般不能保密	

§ 5.3 在系统可编程ISP

一. 在系统可编程技术 (ISP)

- · 传统的PLD在用于生产时,是先编程后装配。
- · isp则可以在装配之前、装配过程中和装配之后再编程。

