IS61C1024AL IS64C1024AL

128K x 8 HIGH-SPEED CMOS STATIC RAM

DECEMBER 2017

FEATURES

- High-speed access time: 12, 15 nsLow active power: 160 mW (typical)
- Low standby power: 1000 μW (typical) CMOS standby
- Output Enable (OE) and two Chip Enable (CE1 and CE2) inputs for ease in applications
- Fully static operation: no clock or refresh required
- TTL compatible inputs and outputs
- Single 5V (±10%) power supply
- Commercial, industrial, and automotive temperature ranges available
- · Lead free available

DESCRIPTION

The *ISSI* IS61C1024AL/IS64C1024AL is a very high-speed, low power, 131,072-word by 8-bit CMOS static RAMs. They are fabricated using *ISSI*'s high-performance CMOS technology. This highly reliable process coupled with innovative circuit design techniques, yields higher performance and low power consumption devices.

When CE1 is HIGH or CE2 is LOW (deselected), the device assumes a standby mode at which the power dissipation can be reduced by using CMOS input levels.

Easy memory expansion is provided by using two Chip Enable inputs, $\overline{\text{CE1}}$ and CE2. The active LOW Write Enable $(\overline{\text{WE}})$ controls both writing and reading of the memory.

The IS61C1024AL/IS64C1024AL is available in 32-pin 300-mil SOJ, 32-pin 400-mil SOJ, 32-pin TSOP (Type I, 8x20), and 32-pin sTSOP (Type I, 8 x 13.4) packages.

FUNCTIONAL BLOCK DIAGRAM

Copyright © 2017 Integrated Silicon Solution, Inc. All rights reserved. ISSI reserves the right to make changes to this specification and its products at any time without notice. ISSI assumes no liability arising out of the application or use of any information, products or services described herein. Customers are advised to obtain the latest version of this device specification before relying on any published information and before placing orders for products.

Integrated Silicon Solution, Inc. does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless Integrated Silicon Solution, Inc. receives written assurance to its satisfaction, that:

a.) the risk of injury or damage has been minimized;

b.) the user assume all such risks; and

c.) potential liability of Integrated Silicon Solution, Inc is adequately protected under the circumstances

PIN CONFIGURATION 32-Pin SOJ

32 VDD NC 1 A16 🗌 2 31 A15 A14 🗌 30 CE2 29 WE A12 🛮 4 A7 🛮 5 28 🛮 A13 27 🛮 A8 А6 П 6 26 A9 A5 🗌 25 A11 A4 🛮 8 24 🛮 ŌĒ аз П 9 A2 ∏ 10 23 A10 22 TCE1 A1 🗌 11 21 1/07 A0 🗌 12 I/O0 🛮 13 20 1/06 I/O1 [19 **1**/O5 14 I/O2 🛮 15 18 **1**/O4 17 1/03 GND □ 16

PIN CONFIGURATION 32-Pin TSOP (Type 1) (T) and sTSOP (Type 1) (H)

PIN DESCRIPTIONS

A0-A16	Address Inputs
CE1	Chip Enable 1 Input
CE2	Chip Enable 2 Input
ŌĒ	Output Enable Input
WE	Write Enable Input
1/00-1/0	7 Input/Output
VDD	Power
GND	Ground

OPERATING RANGE (IS61C1024AL)

Range	Range Ambient Temperature	
Commercial	0°C to +70°C	5V ± 10%
Industrial	-40°C to +85°C	5V ± 10%

OPERATING RANGE (IS64C1024AL)

Range	Ambient Temperature	V DD
Automotive	-40°C to +125°C	5V ± 10%

TRUTH TABLE

Mode	\overline{WE}	CE1	CE2	ŌĒ	I/O Operation	VDD Current
Not Selected	Χ	Н	Х	Х	High-Z	ISB1, ISB2
(Power-down)	Χ	Χ	L	Χ	High-Z	ISB1, ISB2
Output Disabled	Н	L	Н	Н	High-Z	lcc1, lcc2
Read	Н	L	Н	L	D out	lcc1, lcc2
Write	L	L	Н	Χ	DIN	lcc1, lcc2

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Parameter	Value	Unit
VTERM	Terminal Voltage with Respect to GND	-0.5 to +7.0	V
Тѕтс	Storage Temperature	-65 to +150	°C
Рт	Power Dissipation	1.5	W
Іоит	DC Output Current (LOW)	20	mA

Notes:

 Stress greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

CAPACITANCE^(1,2)

Symbol	Parameter	Conditions	Max.	Unit
Cin	Input Capacitance	VIN = 0V	5	pF
Соит	Output Capacitance	Vout = 0V	7	pF

Notes:

- 1. Tested initially and after any design or process changes that may affect these parameters.
- 2. Test conditions: $TA = 25^{\circ}C$, f = 1 MHz, VDD = 5.0V.

DC ELECTRICAL CHARACTERISTICS (Over Operating Range)

Symbol	Parameter	Test Conditions		Min.	Max.	Unit
Vон	Output HIGH Voltage	$V_{DD} = Min., IoH = -4.0 mA$		2.4		V
Vol	Output LOW Voltage	V _{DD} = Min., I _{OL} = 8.0 mA			0.4	V
VIH	Input HIGH Voltage			2.2	V _{DD} + 0.5	V
VIL	Input LOW Voltage(1)			-0.3	0.8	V
ILI	Input Leakage	$GND \leq V_IN \leq V_DD$	Com.	-1	1	μA
			Ind.	-2	2	
			Auto.	– 5	5	
ILO	Output Leakage	GND ≤ Vout ≤ Vdd	Com.	-1	1	μA
		Outputs Disabled	Ind.	-2	2	-
		·	Auto.	– 5	5	

Note

1. $V_{IL} = -3.0V$ for pulse width less than 10 ns.

IS61C1024AL/IS64C1024AL POWER SUPPLY CHARACTERISTICS⁽¹⁾ (Over Operating Range)

Symbol	Parameter	Test Conditions		-12 r Min.	ns Max.	-15 n Min.	ıs Max.	Unit
Icc1	V _{DD} Operating	$V_{DD} = V_{DD} \text{ max., } \overline{CE1} = V_{IL}$	Com.	_	35			mA
	Supply Current	IOUT = 0 mA, f = 0	Ind.	_	40			
			Auto.			_	45	
lcc2	VDD Dynamic Operating	$V_{DD} = V_{DD} \text{ max.}, \overline{CE1} = V_{IL}$	Com.	_	45			mA
	Supply Current	IOUT = 0 mA, f = fMAX	Ind.	_	50			
			Auto.			_	55	
			typ. ⁽²⁾	_	32			
IsB1	TTL Standby Current	VDD = VDD MAX.,	Com.	_	1			mA
	(TTL Inputs)	VIN = VIH Or VIL	Ind.	_	1.5			
	, ,	$\overline{CE1} \ge V_{IH}, f = 0 \text{ or }$	Auto.			_	2	
		$CE2 \le V_{IL}, f = 0$						
IsB2	CMOS Standby	VDD = VDD MAX.,	Com.	_	400			μA
	Current (CMOS Inputs)	$\overline{CE1} \ge V_{DD} - 0.2V$	Ind.	_	450			•
	, , ,	CE2 ≤ 0.2V	Auto.			_	500	
		$V_{IN} \ge V_{DD} - 0.2V$, or $V_{IN} \le 0.2V$, $f = 0$	typ. ⁽²⁾	_	200			

Note:

At f = fMAX, address and data inputs are cycling at the maximum frequency, f = 0 means no input lines change.
 Typical Values are measured at VDD = 5V, TA = 25°C and not 100% tested.

READ CYCLE SWITCHING CHARACTERISTICS⁽¹⁾ (Over Operating Range)

		-12		-1	5	
Symbol	Parameter	Min.	Max.	Min.	Max.	Unit
trc	Read Cycle Time	12	_	15	_	ns
taa	Address Access Time	_	12	_	15	ns
tона	Output Hold Time	3	_	3	_	ns
tace1	CE1 Access Time	_	12	_	15	ns
tace2	CE2 Access Time	_	12	_	15	ns
t DOE	OE Access Time	_	6	_	7	ns
tLZOE ⁽²⁾	OE to Low-Z Output	0	_	0	_	ns
thzoe(2)	OE to High-Z Output	0	6	0	6	ns
tLZCE1 ⁽²⁾	CE1 to Low-Z Output	2	_	2	_	ns
tLZCE2 ⁽²⁾	CE2 to Low-Z Output	2	_	2	_	ns
thzce ⁽²⁾	CE1 or CE2 to High-Z Output	0	7	0	8	ns
t PU ⁽³⁾	CE1 or CE2 to Power-Up	0	_	0	_	ns
t PD ⁽³⁾	CE1 or CE2 to Power-Down	_	12	_	12	ns

Notes:

- 1. Test conditions assume signal transition times of 3 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V and output loading specified in Figure 1.

 2. Tested with the load in Figure 2. Transition is measured ±500 mV from steady-state voltage. Not 100% tested.
- 3. Not 100% tested.

ACTEST CONDITIONS

Parameter	Unit
Input Pulse Level	0V to 3.0V
Input Rise and Fall Times	3 ns
Input and Output Timing and Reference Level	1.5V
Output Load	See Figures 1 and 2

ACTEST LOADS

AC WAVEFORMS

READ CYCLE NO. 1^(1,2)

READ CYCLE NO. 2^(1,3)

Notes:

- WE is HIGH for a Read Cycle.
 The device is continuously selected. OE, CE1 = VIL, CE2 = VIH.
- 3. Address is valid prior to or coincident with $\overline{\text{CE1}}$ LOW and CE2 HIGH transitions.

WRITE CYCLE SWITCHING CHARACTERISTICS^(1,2) (Over Operating Range, Standard and Low Power)

		-12	2 ns	-15 ns		
Symbol	Parameter	Min.	Max.	Min. Ma	x. Unit	
twc	Write Cycle Time	12	_	15 —	- ns	
tsce1	CE1 to Write End	10	_	12 —	- ns	
tsce2	CE2 to Write End	10	_	12 —	- ns	
taw	Address Setup Time to Write End	10	_	12 —	- ns	
t HA	Address Hold from Write End	0	_	0 —	- ns	
t sa	Address Setup Time	0	_	0 —	- ns	
tpwE ⁽³⁾	WE Pulse Width	10	_	12 —	- ns	
tsp	Data Setup to Write End	7	_	10 —	- ns	
t HD	Data Hold from Write End	0	_	0 —	- ns	
thzwe ⁽⁴⁾	WE LOW to High-Z Output	_	7	<u> </u>	ns	
tLZWE ⁽⁴⁾	WE HIGH to Low-Z Output	2	_	2 –	- ns	

Notes:

^{1.} Test conditions assume signal transition times of 5 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V and output loading specified in Figure 1.

^{2.} The internal write time is defined by the overlap of CE1 LOW, CE2 HIGH and WE LOW. All signals must be in valid states to initiate a Write, but any one can go inactive to terminate the Write. The Data Input Setup and Hold timing are referenced to the rising or falling edge of the signal that terminates the Write.

^{3.} Tested with OE HIGH.

^{4.} Tested with the load in Figure 2. Transition is measured ±500 mV from steady-state voltage. Not 100% tested.

AC WAVEFORMS

WRITE CYCLE NO. 1 (CE1 Controlled, OE is HIGH or LOW) (1)

WRITE CYCLE NO. 2 (OE is HIGH During Write Cycle) (1,2)

Notes:

- 1. The internal write time is defined by the overlap of $\overline{\text{CE1}}$ LOW, CE2 HIGH and $\overline{\text{WE}}$ LOW. All signals must be in valid states to initiate a Write, but any one can go inactive to terminate the Write. The Data Input Setup and Hold timing are referenced to the rising or falling edge of the signal that terminates the Write.
- 2. I/O will assume the High-Z state if $\overline{OE} = V_{IH}$.

WRITE CYCLE NO. 3 (OE is LOW During Write Cycle) (1)

DATA RETENTION SWITCHING CHARACTERISTICS

Symbol	Parameter	Test Condition		Min.	Typ. ⁽¹⁾	Max.	Unit
V _{DR}	VDD for Data Retention	See Data Retention Waveform		2.0		5.5	V
IDR	Data Retention Current	$\begin{aligned} V_{DD} &= 2.0V, \ \overline{CE1} \ge V_{DD} - 0.2V \\ \text{or CE2} &\leq 0.2V \end{aligned}$	Com. Ind.	_	200 —	400 450	μA
		$V_{IN} \ge V_{DD} - 0.2V$, or $V_{IN} \le V_{SS} + 0.2V$	Auto.	_	_	500	
tsdr	Data Retention Setup Time	See Data Retention Waveform		0		_	ns
t RDR	Recovery Time	See Data Retention Waveform		t RC		_	ns

Note:

DATA RETENTION WAVEFORM (CE1 Controlled)

DATA RETENTION WAVEFORM (CE2 Controlled)

^{1.} Typical Values are measured at $V_{DD} = 5V$, $T_A = 25^{\circ}C$ and not 100% tested.

ORDERING INFORMATION: IS61C1024AL

Industrial Range: -40°C to +85°C

Speed (ns)	Order Part No.	Package
12	IS61C1024AL-12JLI	300-mil Plastic SOJ, Lead-free
	IS61C1024AL-12KLI	400-mil Plastic SOJ, Lead-free
	IS61C1024AL-12HLI	sTSOP (Type I), Lead-free
	IS61C1024AL-12TLI	TSOP (Type I), Lead-free

ORDERING INFORMATION: IS64C1024AL

Automotive Range: -40°C to +125°C

Speed (ns)	Order Part No.	Package
15	IS64C1024AL-15KLA3	400-mil Plastic SOJ, Lead-free
	IS64C1024AL-15TLA3	TSOP (Type I), Lead-free

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ISSI:

IS61C1024AL-12TLI IS61C1024AL-12TLI-TR IS61C1024AL-12HLI IS61C1024AL-12HLI-TR