Background Noise Transmission Quality for Wideband Systems

H. W. Gierlich, S. Völl, F. Kettler (HEAD acoustics GmbH)
P. Jax
(IND, RWTH Aachen)

Outline

- General aspects of speech quality in wideband systems
- Subjective tests on background noise transmission
- Objective evaluations
 - Test procedures
 - Test signals
- Summary

Speech Quality Parameters

... from the user's perspective

talking situation speech quality conversational situation

listening situation

ŀ

Auditory Parameters

Outline

- General aspects of speech quality in wideband systems
- Subjective tests on background noise transmission
- Objective evaluations
 - Test procedures
 - Test signals
- Summary

Background noise tests

Recording listening samples:

- Listening: test persons listen to artificial head recordings
- ACR scale:
 excellent good fair poor bad

Results

 3 quality levels with significantly different MOS - values

- narrowband
- good "intelligibility" of music

- mostly wideband
- bad "intelligibility" of music

Outline

- General aspects of speech quality in wideband systems
- Subjective tests on background noise transmission
- Objective evaluations
 - Test procedures
 - Test signals
- Summary

Comparision FFT – Hearing model

→ Hearing model in general gives a better representation of the impairments perceived

Hearing Model & Relative Approach

Model of the "Relative Approach":

Hearing model and calculation of the energy differences in critical bands

Hearing Model Based Approaches

Objective Analysis

Hearing model output – referenced to hearing model output of input signal

Background Noise Testsignal

Mathematically defined signal based on major chords

representing time and frequency structure of tonal background noises

Results

Classification

of the different disturbances (based on the hearing model output)

Spectral distortion			Distortion	Expected
50-300 Hz	300-3400 Hz	3400-7000 Hz	in time	MOS- score
< 3 dB	< 3 dB	< 3 dB		> 3,5
< 3 dB	< 12 dB	> 12dB		2-3
< 3 dB	> 12dB	< 12 dB		1 – 2
< 3 dB	> 12dB	> 12dB		1-2
< 12 dB	< 3 dB	> 12dB	X	1 – 2
	< 3 dB	< 3 dB		3 - 3,5
	< 3 dB	> 12dB	X	1-2
< 3 dB	< 3 dB			2-3
< 12 dB	< 3 dB			2-3
	< 3 dB			2-3

Conclusions

 Proposed test signal in combination with the hearing model based reference analysis approach is very promising for the evaluation of (tonal) background noise

To do:

- Additional subjective testing
- Use additional background noises
- Further development of the test procedure