

Benchmarking Large Language Models for Zero-Shot Automated Information Extraction from Scientific Literature

Felix Karg | 12. October 2023

Reviewer: T.T.-Prof. Dr. Pascal Friederich; Second Reviewer: Prof. Jan Niehues; Advisor: Tobias Schlöder

Motivation

Machine Learning (ML) models are increasingly used in screening steps for materials discovery and property prediction [2–4]. Yet, most previous research is not available in a machine-readable format.

Image Source: [1]

Introduction

Background

Language Models

Approach

Results

Conclusion

Outlook

Scientific Questions

There are three main questions this work aims to answer:

- Oan I demonstrate high accuracy in zero-shot automated information extraction from scientific literature using open-access Large Language Models (LLMs)?
- Mow do currently available open-access LLMs compare for this task?
- 4 How easy is it to fine-tune open-access LLMs for this task? How much does the accuracy increase from fine-tuning?

While we're at it, create an automated pipeline for information extraction from unstructured text.

Introduction

Background

Language Models

Approach

Results

Conclusion

Outlook

Natural Language Processing

Goal: Make computers "understand" documents.

Introduction

Background •ooooo Language Models

Approach

Results

Conclusion

Outlook

Information Extraction for Automated Experimentation

Information Extraction is the Natural Language Processing (NLP) task of extracting structured (machine-readable) information from unstructured text.

Image Source: [5]

Introduction

Background

Language Models

Approach

Results

Conclusion

Outlook

Namend Entity Recognition

Named Entity Recognition (NER) is the NLP task of extracting structured (machine-readable) information from unstructured text.

```
Effects of the silica MAT content and temperature on the magnetic properties PRO of

Fe4NiO8Zn MAT / O2Si MAT nanocomposites psc have been studied by electron paramagnetic resonance CMT ( EPR CMT ) technique.
```

MAT stands for Materials, **PRO** stands for Material Property, **DSC** is Descriptor and **CMT** is Characterization method. The goal of NER is to automatically detect entities that fall into these pre-defined semantic types.

Example and partial description taken from [6] (supposedly taken from [7]), visualized using the spaCy python library [8].

Introduction

Background

Language Models

Approach

Results

Conclusion

Outlook

Rule-Based Entity Recognition

Easy: Regular Expressions! ChemTagger [9], and others [10, 11] demonstrated that it works! Except ...

- "The mixture was filtered and the filterate was kept at room temperature to obtained needle like colorless crystals of 1 after a month." [12]
- "... distilled water, and dried at ambient temperature to give 39 mg of ..." [13]
- "... was added into 1 mL boiling methanol solution of btpe ..." [14]

Introduction

Background റററ∙്ററ

Language Models

Approach

Conclusion

Outlook

Language Models for Information Extraction

NER modeled as a sequence-to-sequence labeling problem can achieve high accuracy using Bidirectional Encoder Representation from Transformers (BERT)-based Language Models (LMs). Image Source: [6]

Introduction

Background ററററ്റ

Language Models

Approach

Results

Conclusion

Outlook

Large Language Models for Structured Information Extraction

Other work focused on Entity Relation extraction, with mixed results for NER.

Image Source: [15]

Introduction

Background ○○○○○● Language Models

Approach

Results

Conclusion

Outlook

Basic Terminology

- **Token:** String of arbitrary length, usually 3-4 characters
 - Refer to my previous talk about the transformer architecture for more details on internals
- Single-shot / Multi-shot: Evaluation setting in which a LLM is being provided with one or multiple examples of the task to fulfill
- Zero-shot: Evaluation setting in which no task examples are provided, or the model has been fine-tuned for

The Transformer Architecture

Original Transformer Architecture Image Source: [16]

Most Prominent Changes:

- Activation Function: Swish Gated Linear Unit (SwiGLU) [17] instead of Rectified Linier Unit (ReLU)
- Positional Encoding: Rotary Positional Encoding (RoPE) [18], and on each layer
- Normalization with RMSNorm [19] before instead of after each layer
- Attention: Often a variant of Sparse Attention
 [20] or FlashAttention [21]
- Most Recently: The usage of Grouped Query Attention (GQA) [22]

Modern Transformer Architecture

Introduction

Background

Language Models

Approach

Results

Conclusion

Outlook

Large Language Model Parameter Count

Introduction

Background ററററ്ററ

Language Models

Approach

Results

Conclusion

Outlook

Large Language Model Parameter Count (logscale)

Introduction

Background

Language Models

Approach

Results

Conclusion

Outlook

Training Large Language Models

Image Source: [23]

Introduction

Background 000000 Language Models

Approach

Results

Conclusion

Outlook

Criteria for Models

- It is possible to get the full model weights.
- The selected models ought to be decently capable causal language models.
- Octeris paribus, a smaller model is better.

Approach •oooooo

Results

Conclusion

Outlook

Language Models

- LLaMa 7B, 13B, 30B, 65B
- Vicuna 7B, 13B, 33B
- LLaMa 2 7B, 13B, 70B
- Falcon 7B, 40B
- Falcon-instruct 7B, 40B

Introduction

16/40

12.10.2023

Background

Language Models

Approach

Results

Conclusion

Outlook

Schema

The schema provided for the model to follow. Model output termination would happen after generation of a token for '"' for strings or ',' for numbers, or a number of other dedicated 'end of generation' tokens, e.g. <E0S>.

```
schema = {
    "type": "object".
    "properties": {
        "additive": {"type": "string"},
        "solvent": {"type": "string"},
        "temperature": {"type": "number"},
        "temperature_unit": {"type": "string"},
        "time": {"type": "number"},
        "time_unit": {"type": "string"},
    },
```

Introduction

Background

Language Models 00000

Approach 0.000000 Results

Conclusion

Outlook

Prompt

Prompt used to generate output. "{output}" delineates where the model provides an answer.

```
prompt = "{paragraph}\nOutput result in the following JSON schema format:\n{schema}\nResult: {output}"
```

Introduction

Background

Language Models

Approach

Results 00000000000000 Conclusion

Outlook

Output

Exemplary output based on the prompt and schema shown before.

```
output = {
    "additive": "acid",
    "solvent": "water",
    "temperature": 80,
    "temperature_unit": "C",
    "time": 24,
    "time_unit": "h",
}
```

Introduction

Background

Language Models

Approach

Results

Conclusion

Outlook

Data Source

- SynMOF M [3]
 - Publicly Accessible
 - Manually Extracted
 - 778 Labels
 - Temperature Information is in °C
 - Timeframe (Durations) in h.
 - Chemical Compounds via cid
- Corresponding Synthesis Paragraphs

Background

Language Models റററ്ററ

Approach 0.0000000 Results

Conclusion

Outlook

Compound Equality: cid

Foreshadowing:

- 'water'
- cid 962
- 'Synonyms': 319
- Includes 'distilled water' and 'H2O'
- But not 'distilled H2O'
- Even though this occurs verbatim in eight synthesis paragraphs

Accuracy Overview I

Introduction

Background

Language Models

Approach

Results

Conclusion

Outlook

Accuracy Overview II

Introduction 00

Background 000000

Language Models

Approach

Results •••00000000000 Conclusion 000

Outlook

Accuracy Overview III

Introduction 00

12.10.2023

Background 000000

Language Models

Approach

Results •••00000000000 Conclusion 000

Outlook

Note on Interesting Outliers

7B

- LLaMa-7B accuracy on temperature and time vary substantially across models, but are mostly similar within one model
- solvent accuracy of Vicuna bad somehow
- Bad temperature and time accuracy of Falcon-instruct
- Decent performance from LLaMa 2 overall

13B

- Vicuna still lagging behind, though while Falcon does not have a 13B variant, it should still be worse
- Accuracy on solvent seems to have gotten worse, on average and for individual models

30B+

- Average Accuracy very high
- solvent accuracy only 72% though, that was higher in 7B models!

Introduction

Background

Language Models

Approach

Results

Conclusion

Outlook

Unit Confusion I

Introduction

Background

Language Models

Approach

Results

Conclusion

Outlook

Unit Confusion II

Introduction

Background

Language Models

Approach

Results

Conclusion

Outlook

Note on Unit Confusion

Does happen in fewer than 0.5% (0-4 cases) for models sized 13B or more

Introduction

12, 10, 2023

Background 000000 Language Models

Approach

Results

Conclusion

Outlook

Solvent Resolution I

Introduction

Background

Language Models

Approach

Results

Conclusion

Outlook

Solvent Resolution II

Overview of Large Models Accuracy on Solvents

Introduction

Background

Language Models

Approach

Results

Conclusion

Outlook

Solvent Resolution?

One hypothesis: Models *are* getting more accurate, but there is a failure in resolving the compounds.

Remember 'distilled H2O'?

This may be true in particular for the solvent N,N-DIMETHYLACETAMIDE (cid 31374), where the synthesis paragraphs contain none of its 125 synonyms in 34 cases (or about 4.37% of the dataset).

Introduction

Background

Language Models

Approach

Results

Conclusion

Outlook

Fine-Tuning: Excerpt 1

Excerpt of what could be found in a custom dataloader. text describes any string the model may be provided as input. The tokenizer converts any string to a list of tokens and an attention mask, among other things.

Similar code can be found in tutorials and official sources, e.g. Microsoft [24]

```
text_encodings = tokenizer(text, ...)

return {
    "input_ids": text_encodings["input_ids"],
    "attention_mask": text_encodings["attention_mask"],
    "label": text_encodings["input_ids"],
}
```

Introduction

32/40

Background

Language Models

Approach

Results

Conclusion

Outlook

Fine-Tuning: Failure 1

A model fine-tuned like this returns the following. The " where actually inserted during conversion to json from jsonformer.

```
output = {
    "additive": "",
    "solvent": ""
    "temperature": "",
    "temperature_unit": "",
    "time": "".
    "time_unit": "",
```

Fundamentally, no idea what is going on. It works for others, and it could still be one of many different things that actuatly happened.

Introduction

Background

Language Models 00000

Approach

Results Conclusion

Outlook

Fine-Tuning: Excerpt 2

- Using the HuggingFace trl (Transformer Reinforcement Learning) library
- DataCollator are used for batch-processing inputs
- DataCollatorForLanguageModeling abstracting away tokenization, uses "text"-key for training in other examples
- Specifically, the example uses DataCollatorForCompletionOnlyLM, deriving from it

Approach

Results

Conclusion

Outlook

Fine-Tuning: Failure 2

Error when providing DataCollatorForCompletionOnlyLM with a dataloader similar to those in examples. Counterintuitively, this is not a **KeyError**.

It also fails when manually tokenizing before the DataCollator (providing tokenized "input_ids" etc. as key, using this or a different DataCollator).

Introduction

Background 000000 Language Models

Approach

Results

Conclusion

Outlook

Conclusion

- Zero-shot automated information extraction from scientific literature was successfully demonstrated.
- Capabilities of different open-access LLMs where measured and compared.
 Furthermore, frequent mistakes where analyzed and provided insight in failure modes.
- Fine-Tuning was substantially harder than initially assumed, and eventually abandoned for this work.

Approach

Results

Conclusion

Outlook

Surprises

Introduction

Background

Language Models

Approach

Results

Conclusion ○●○ Outlook

Surprises: Implications

GPU requirements for 4-bit quantized LLaMA models

LLaMA Model	Minimum VRAM Requirement	Recommended GPU Examples
LLaMA-7B	6GB	RTX 3060, GTX 1660, 2060, AMD 5700 XT, RTX 3050
LLaMA-13B	10GB	AMD 6900 XT, RTX 2060 12GB, 3060 12GB, 3080, A2000

Image Source: [25]

Modern consumer hardware can achieve throughputs of 30 to 40 tokens per second, depending on the specific GPU used [25].

Introduction

Background

Language Models

Approach

Results

Conclusion ○○● Outlook

Outlook

A number of questions where answered, this newfound knowledge provides the opportunity to ask better questions.

- How many of the unresolved solvent cases where actually correct?
- What is the accuracy of a correctly modeled additive?
- How can the prompt be improved?
- How does zero-shot accuracy compare with fine-tuned models?
- How do these models compare with next-gen models such as GPT4 or Falcon-180B?
- How do LLMs compare to established masked language models for NER?

Background

Language Models

Approach

Results

Conclusion

Outlook

What are your Questions?

All code and artifacts can be found at https://github.com/fkarg/mthesis. A tagged commit marks the state of submission.

Image Source: [16]

Introduction

Background

Language Models

Approach

Results

Conclusion

Outlook

Sources I

- Himanen, L., Geurts, A., Foster, A. S. & Rinke, P. Data-Driven Materials Science: Status, Challenges, and Perspectives. en. Advanced Science 6, 1900808. ISSN: 2198-3844. doi:10.1002/advs.201900808. https://onlinelibrary.wiley.com/doi/abs/10.1002/advs.201900808 (2023-10-10) (2019).
- Saal, J. E., Oliynyk, A. O. & Meredig, B. Machine Learning in Materials Discovery: Confirmed Predictions and Their Underlying Approaches. *Annual Review of Materials Research* 50, 49–69. doi:10.1146/annurev-matsci-090319-010954 (2020).
- 3. Luo, Y., Bag, S., Zaremba, O., Cierpka, A., Andreo, J., Wuttke, S., Friederich, P. & Tsotsalas, M. MOF Synthesis Prediction Enabled by Automatic Data Mining and Machine Learning**. en. *Angewandte Chemie International Edition* 61, e202200242. ISSN: 1521-3773. doi:10.1002/anie.202200242. https://onlinelibrary.wiley.com/doi/abs/10.1002/anie.202200242 (2023-02-01) (2022).

Sources II

- 4. Choudhary, K., DeCost, B., Chen, C., Jain, A., Tavazza, F., Cohn, R., Park, C. W., Choudhary, A., Agrawal, A. & Billinge, S. J. Recent Advances and Applications of Deep Learning Methods in Materials Science. *npj Computational Materials* 8, 59. doi:10.1038/s41524-022-00734-6 (2022).
- 5. Shi, Y., Prieto, P. L., Zepel, T., Grunert, S. & Hein, J. E. Automated Experimentation Powers Data Science in Chemistry. *Accounts of Chemical Research* **54**, 546–555. doi:10.1021/acs.accounts.0c00736 (2021).
- 6. Zhao, X., Greenberg, J., An, Y. & Hu, X. T. Fine-Tuning BERT Model for Materials Named Entity Recognition. in 2021 IEEE International Conference on Big Data (Big Data) (2021-12), 3717–3720. doi:10.1109/BigData52589.2021.9671697.
- 7. Weston, L., Tshitoyan, V., Dagdelen, J., Kononova, O., Trewartha, A., Persson, K. A., Ceder, G. & Jain, A. Named Entity Recognition and Normalization Applied to Large-Scale Information Extraction from the Materials Science Literature. *Journal of chemical information and modeling* **59**, 3692–3702. doi:10.1021/acs.jcim.9b00470 (2019).

Sources III

- 8. Montani I spaCy, H. M. Natural Language Understanding with Bloom Embeddings, Convolutional Neural Networks and Incremental Parsing. 2017. 2017.
- 9. Hawizy, L., Jessop, D. M., Adams, N. & Murray-Rust, P. ChemicalTagger: A Tool for Semantic Text-Mining in Chemistry. *Journal of Cheminformatics* 3, 17. ISSN: 1758-2946. doi:10.1186/1758-2946-3-17. https://doi.org/10.1186/1758-2946-3-17 (2023-02-01) (2011-05).
- 10. Beard, E. J., Sivaraman, G., Vazquez-Mayagoitia, A., Vishwanath, V. & Cole, J. M. Comparative Dataset of Experimental and Computational Attributes of UV/Vis Absorption Spectra. en. *Scientific Data* 6, 307. ISSN: 2052-4463. doi:10.1038/s41597-019-0306-0. https://www.nature.com/articles/s41597-019-0306-0 (2023-02-20) (2019-12).
- 11. Huang, S. & Cole, J. M. A Database of Battery Materials Auto-Generated Using ChemDataExtractor. en. *Scientific Data* **7**, 260. ISSN: 2052-4463. doi:10.1038/s41597-020-00602-2. https://www.nature.com/articles/s41597-020-00602-2 (2023-02-20) (2020-08).

Sources IV

- 12. Vishnoi, P. & Murugavel, R. A Flexible Tri-carboxylic Acid Derived Zinc(II) 3D Helical Metal-Organic-Framework and a Cadmium(II) Interwoven 2D Layered Framework Solid. en. *Zeitschrift für anorganische und allgemeine Chemie* **640**, 1075–1080. ISSN: 1521-3749. doi:10.1002/zaac.201300677. https://onlinelibrary.wiley.com/doi/abs/10.1002/zaac.201300677 (2023-10-10) (2014).
- 13. Lin, Z., Jiang, F., Chen, L., Yuan, D. & Hong, M. New 3-D Chiral Framework of Indium with 1,3,5-Benzenetricarboxylate. *Inorganic Chemistry* 44, 73–76. ISSN: 0020-1669. doi:10.1021/ic0494962. https://doi.org/10.1021/ic0494962 (2023-10-10) (2005-01).
- 14. Wang, N., Ma, J.-G., Shi, W. & Cheng, P. Two Novel Cd(II) Complexes with Unprecedented Four- and Six-Fold Interpenetration. en. *CrystEngComm* 14, 5198–5202. ISSN: 1466-8033. doi:10.1039/C2CE25282A. https://pubs.rsc.org/en/content/articlelanding/2012/ce/c2ce25282a (2023-10-10) (2012-07).

Sources V

- Dunn, A., Dagdelen, J., Walker, N., Lee, S., Rosen, A. S., Ceder, G., Persson, K. & Jain, A. Structured Information Extraction from Complex Scientific Text with Fine-Tuned Large Language Models. arXiv:2212.05238. doi:10.48550/arXiv.2212.05238. arXiv: 2212.05238 [cond-mat]. http://arxiv.org/abs/2212.05238 (2023-02-01) (2022-12).
- 16. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L. & Polosukhin, I. Attention Is All You Need. *Advances in neural information processing systems* **30** (2017).
- 17. Shazeer, N. Glu Variants Improve Transformer. arXiv preprint arXiv:2002.05202. arXiv: 2002.05202 (2020).
- 18. Su, J., Lu, Y., Pan, S., Murtadha, A., Wen, B. & Liu, Y. RoFormer: Enhanced Transformer with Rotary Position Embedding. *arXiv:2104.09864*. arXiv: 2104.09864 [cs]. http://arxiv.org/abs/2104.09864 (2023-04-03) (2022-08).

Sources VI

- Ba, J. L., Kiros, J. R. & Hinton, G. E. Layer Normalization. arXiv:1607.06450.
 doi:10.48550/arXiv.1607.06450. arXiv: 1607.06450 [cs, stat]. http://arxiv.org/abs/1607.06450 (2023-03-08) (2016-07).
- 20. Child, R., Gray, S., Radford, A. & Sutskever, I. Generating Long Sequences with Sparse Transformers. arXiv:1904.10509. doi:10.48550/arXiv.1904.10509. arXiv:1904.10509 [cs, stat]. http://arxiv.org/abs/1904.10509 (2023-03-02) (2019-04).
- 21. Dao, T., Fu, D. Y., Ermon, S., Rudra, A. & Ré, C. Flashattention: Fast and Memory-Efficient Exact Attention with Io-Awareness. *arXiv preprint arXiv:2205.14135*. arXiv: 2205.14135 (2022).
- 22. Ainslie, J., Lee-Thorp, J., de Jong, M., Zemlyanskiy, Y., Lebrón, F. & Sanghai, S. GQA: Training Generalized Multi-Query Transformer Models from Multi-Head Checkpoints. *arXiv preprint arXiv:2305.13245*. arXiv: 2305.13245 (2023).

Sources VII

- 23. Ghosh, B. Empowering Language Models: Pre-training, Fine-Tuning, and In-Context Learning. en. 2023-06. https://medium.com/@bijit211987/the-evolution-of-language-models-pre-training-fine-tuning-and-in-context-learning-b63d4c161e49 (2023-10-10).
- 24. DeepSpeedExamples/Applications/DeepSpeed-Chat/Training/Utils/Data/Data_utils.Py at Bae2afb8417697407ffe7cf6a21388a840679059 · Microsoft/DeepSpeedExamples. en. 2023. https://github.com/microsoft/DeepSpeedExamples/blob/bae2afb8417697407ffe7cf6a21388a840679059/applications/DeepSpeed-Chat/training/utils/data/data_utils.py (2023-09-16).
- 25. HardwareRequirements for LLaMA and Llama-2 Local Use (GPU, CPU, RAM). en-US. 2023-07. https://www.hardware-corner.net/guides/computer-to-run-llama-ai-model/ (2023-10-02).
- 26. Radford, A., Wu, J., Child, R., Luan, D., Amodei, D. & Sutskever, I. Language Models Are Unsupervised Multitask Learners. en. *published on GitHub* (2019).

Sources VIII

- Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G. & Askell, A. Language Models Are Few-Shot Learners. *Advances in neural information processing systems* 33, 1877–1901 (2020).
- 28. OpenAl. GPT-4 Technical Report. 2023. https://cdn.openai.com/papers/gpt-4.pdf (2023-03-14).
- 29. Convolutional Neural Networks (CNN): Step 4 Full Connection Blogs SuperDataScience | Machine Learning | AI | Data Science Career | Analytics | Success. 2018-08. https: //www.superdatascience.com/blogs/convolutional-neural-networks-cnn-step-4-full-connection (2023-10-07).
- 30. Ouyang, L. *et al.* Training Language Models to Follow Instructions with Human Feedback. *arXiv:2203.02155*. doi:10.48550/arXiv.2203.02155. arXiv: 2203.02155 [cs]. http://arxiv.org/abs/2203.02155 (2023-02-16) (2022-03).

Sources IX

- 31. Christiano, P. F., Leike, J., Brown, T., Martic, M., Legg, S. & Amodei, D. Deep Reinforcement Learning from Human Preferences. *Advances in neural information processing systems* **30** (2017).
- 32. ChatGPT: KI ist jetzt der natürlichen Ignoranz gewachsen Onlineportal von IT Management. de-DE. 2023-01. https://www.it-daily.net/it-sicherheit/cloud-security/chatgpt-ki-ist-jetzt-dernatuerlichen-ignoranz-gewachsen (2023-05-13).
- 33. What Is The Difference Between InstructGPT And ChatGPT?. en-US. 2023-05. https://www.theinsaneapp.com/2023/05/instructgpt-vs-chatgpt.html (2023-05-13).
- 34. Bai, Y. *et al.* Constitutional AI: Harmlessness from AI Feedback. *arXiv:2212.08073*. arXiv: 2212.08073 [cs]. http://arxiv.org/abs/2212.08073 (2023-05-11) (2022-12).

Glossary I

causal language model A causal language model predicts the likelihood of the next token based on a sequence of tokens (input). By sampling one of the predicted tokens and appending it to the input, output can be generated autoregressively. This in contrast to e.g. a masked language model. 15, 51

Falcon One of the LLMs used. Created by the Technology Innovation Institute (TII). 16, 25, 39

- GPT2 The second generation Generative Pretrained Transformer LM from OpenAI [26]. 52
- GPT3 The third generation Generative Pretrained Transformer LM from OpenAI [27]. 52
- GPT4 The fourth generation **G**enerative **P**retrained **T**ransformer LM from OpenAl [28]. Currently their most capable model. 39, 52

Glossary II

HuggingFace American deep learning ecosystem startup, having created the well established transformers framework which provides useful abstractions of most existing open-access Machine Learning models. 34

LLaMa A LLM from Meta. 16, 25, 51, 52

LLaMa 2 One of the LLMs used. It is the successor of LLaMa, also created by Meta. 16, 25

masked language model A masked language model predicts all masked (often missing) tokens in a sequence based on the context provided by the surrounding tokens. This in contrast to e.g. a causal language model. 39, 50

Meta Previously known as Facebook, Meta is a deep learning powerhose and regularly open-sources new state-of-the-art machine learning models. 51

Glossary III

Microsoft Tech Giant, well-known for its operating system. Microsoft recently started intensive cooperation with OpenAI through a \$10 Billion USD investment, and started integrating GPT4 and other models throughout their services. 32

OpenAI American AI company, trailblazer at the frontier of scaling deep learning architectures and corresponding algorithmic breakthroughs. Their currently most well-known models are the Generative Pretrained Transformer (GPT) family of models, particularly GPT2, GPT3 and GPT4. 50, 52

Technology Innovation Institute Abu Dhabi-based machine learning research institute. 50

Vicuna One of the LLMs used. Based on LLaMa. 16, 25

Acronyms I

BERT Bidirectional Encoder Representation from Transformers 8

GPT Generative Pretrained Transformer 52

GQA Grouped Query Attention 11

LLM Large Language Model 3, 10, 36, 39, 50-52, 55

LM Language Model 8, 50

ML Machine Learning 2

MLP Multi-Layer Perceptron 55

NER Named Entity Recognition 6, 8, 9, 39

NLP Natural Language Processing 5, 6

References

Glossarv

Acronyms

MLP

Acronyms II

ReLU Rectified Linier Unit 11, 55 RoPE Rotary Positional Encoding 11

SwiGLU Swish Gated Linear Unit 11, 55

References Glossary Acronyms MLP

Multi-Layer Perceptron

Multi-Layer Perceptron (MLP) with one fully connected layer. Alternative names include 'dense', 'fully connected' and 'mlp' layer. Figure from [29].

Common activation function: ReLU, or recently for LLMs: SwiGLU.

InstructGPT: Following Instructions

"In human evaluations on our prompt distribution, outputs from the 1.3B parameter InstructGPT model are preferred to outputs from the 175B GPT-3, despite having 100x fewer parameters. Moreover, InstructGPT models show improvements in truthfulness and reductions in toxic output generation while having minimal performance regressions on public NLP datasets."

Ouyang et. al. 2022 [30]

References

Glossary

Acronyms

MLP

Reinforcement Learning from Human Feedback

Image Source: [30]

RLHF originated from [31]

References Glossarv Acronvms

MI P

ChatGPT

Image Source: [32]

References Glossary Acronyms MLP

ChatGPT Training Steps

Image Source: [33]

References Glossary Acronyms MLP

Constitutional Al

- Prompt LLM with questions illiciting ethically questionable responses
- Ask it to "rewrite this to be more ethical"
- Fine-Tune to prefer rewritten response
- Repeat a few times

References

Glossary

Acronyms

MLP

Constitutional Results

Image Source: [34]

References

Glossary

Acronyms

MLP

