Chapter 8

- 3.) Let (G,*) and (H,\circ) be groups with respective identity elements e_G and e_H . Consider $f:G\to G\bigoplus\{e_H\}$ where $g\mapsto (g,e_H)$. We can show that f is bijective. Let $g_1,g_2\in G$ where $f(g_1)=f(g_2)$, thus $(g_1,e_H)=(g_2,e_H)$, thus $g_1=g_2$, thus f is injective. Next, for all $(g,e_H)\in G\bigoplus\{e_H\}$, $f(g)=(g,e_H)$, thus f is injective, and thus bijective, and thus is an isomorphism from G to $G\bigoplus\{e_H\}$, thus $G\cong G\bigoplus\{e_H\}$. A similar argument shows that $h\mapsto (h,e_G)$ is an isomorphism from H to $H\bigoplus\{e_G\}$, thus $H\cong H\bigoplus\{e_G\}$.
- 6.) awd
- 14.) awd
- 20.) awd
- 55.) awd