Database Technologies

Contents

- Data Redundancy
- Data Anomalies
- Database Constraints (Unique, Not Null, Foreign Key, Default, Check*)
- Functional Dependency
- Normalization
- Need for Normalization
- Normal Forms (1st NF, 2nd NF, 3rd NF, BCNF) with examples, Introduction to 4th and 5th NF
- DML (INSERT/UPDATE/DELETE)

Normalization

- Normalization is a data analysis technique to design a database system.
 - An analytical technique used during logical database design
 - Offers a strategy for constructing relations and identifying keys
- Normalization is a technique for producing relational schema with the following properties:
 - No Information Redundancy
 - No Update Anomalies

emp code	emp name	join date	dept code	dept name	dept mngr	dept bdgt
7369	shah	17-Dec-80	prch	purchase	roy	5
7499	ray	20-Feb-81	prch	purchase	roy	5
7521	jain	02-Apr-82	prch	purchase	roy	5
7654	gupta	28-Sep-79	info	infoserv	rao	6.5

redundancy

	emp code	emp name	join date	dept code	dept name	dept mngr	dept bdgt
	7369	shah	17-Dec-80	prch	purchase	roy	5
	7499	ray	20-Feb-81	prch	purchase	roy	5
	7521	jain	02-Apr-82	prch	purchase	roy	5
)	7654	gupta	28-Sep-79	info	infoserv	rao	6.5

attributes are lost because of the deletion of other attributes

deletion anomaly

emp code	emp name	join date	dept code	dept name	dept mngr	dept bdgt
7369	shah	17-Dec-80	prch	purchase	roy	5
7499	ray	20-Feb-81	prch	purchase	roy	5
7521	jain	02-Apr-82	prch	purchase	roy	5

deletion anomaly

emp code	emp name	join date	dept code	dept name	dept mngr	dept bdgt
7369	shah	17-Dec-80	prch	purchase	roy	5
7499	ray	20-Feb-81	prch	purchase	roy	5
7521	jain	02-Apr-82	prch	purchase	roy	5
7654	gupta	28-Sep-79	info	infoserv	rao	6.5

Update Anomaly exists when one or more instances of duplicated data is updated, but not all. update anomaly

emp code	emp name	join date	dept code	dept name	dept mngr	dept bdgt
7369	shah	17-Dec-80	prch	purchase	apte	5
7499	ray	20-Feb-81	prch	purchase	apte	5
7521	jain	02-Apr-82	prch	purchase	apte	5
7654	gupta	28-Sep-79	info	infoserv	rao	6.5

update anomaly

emp code	emp name	join date	dept code	dept name	dept mngr	dept bdgt
7369	shah	17-Dec-80	prch	purchase	roy	5
7499	ray	20-Feb-81	prch	purchase	roy	5
7521	jain	02-Apr-82	prch	purchase	roy	5
			info	infoserv	rao	6.5

Insert Anomaly occurs when certain attributes cannot be inserted into the database without the presence of other attributes

insertion anomaly

Normalisation Stages

- Process involves applying a series of tests on a relation to determine whether it satisfies or violates the requirements of a given normal form.
 - When a test fails, the relation is decomposed into simpler relations that individually meet the normalization tests.
 - The higher the normal form the less vulnerable to update anomalies

Normal Form??

a relation that satisfies certain rules/conditions

 a relation that exhibits certain properties

 depending on the conditions it satisfies/the properties it exhibits, the relation is said to be in the "nth Normal Form"

Normal Forms

- 1 NF
- 2 NF
- 3 NF
- BCNF

Functional Dependency

• 4NF Multi-valued Dependency

Join Dependency

5NF

Hierarchy of Normal Forms

Normal Forms are INCREMENTAL

Hierarchy of Normal Forms

- It must be emphasised here, that the definition of a Normal Form is INCREMENTAL.
- You cannot have some relation that is in Xnormal form, but not in (X-1) Normal Form.
- If a relation is in 3 NF, it also has to be in 2NF, which means it is also in 1NF.

Integrity Constraints

- Databases are structured stores of data
- Data must be accurate
 - Semantic accuracy v/s Syntactic accuracy
 - ■consider an attribute **age** of type **int**. Any integer would be **syntactically correct**; but if the attribute pertains to the age of say, drivers, then any value less than 18 would be **semantically incorrect**.
- Integrity constraints are the business rules of the problem-domain.

Domain Constraints

- Integrity constraints guard against accidental damage to the database, by ensuring that authorized changes to the database do not result in a loss of data consistency.
- Domain constraints are the most elementary form of integrity constraint.

Referential Integrity

- Ensures that a value that appears in one relation for a given set of attributes also appears for a certain set of attributes in another relation.
- Formal Definition
 - Let r 1 (R 1) and r 2 (R 2) be relations with primary keys K 1 and K 2 respectively.
 - The subset α of R 2 is a foreign key referencing K 1 in relation r 1 , if for every t 2 in r 2 there must be a tuple t 1 in r 1
 - such that t 1 [K 1] = t 2 [α].
 - Referential integrity constraint: $\Pi \alpha (r 2) \subseteq \Pi K 1 (r 1)$

more on Integrity Constraints

- 3 types of Integrity Constraints are of interest:
 - Functional Dependencies (FD)
 - Multi-Valued Dependency (MVD)
 - Join-Dependency (JD)
- FDs are the most commonly used integrity constraints in normalization.

Functional Dependencies

- Defines a constraint between two (sets of) attributes of a relation
- Require that the value for a certain set of attributes determines uniquely the value for another set of attributes.
- Written as "X→Y"* (read "X determines Y")

^{*} here, "X" is called the "determinant" and "Y", the "consequent"

Unnormalized

ס
σ
5
<u> </u>
_ D

emp code	emp name	grade code	grade stage	desig code	change date	grade descr	desig descr
7369	shah	12 	3 	slasst 	20-Feb-82 	Asst_A 	Sls Asst
7499	ray	23 	2 	supr 	17-Jan-95 	Offer A	Superint.

multi-valued attributes

Unnormalized 1NF

•Eliminate variable repeating fields and groups so that all attributes take atomic values

A relation is said to be in "first normal form" (1NF) if and only if all its attributes assume only atomic(indivisible) values.

Unnormalize 1NF

(ס	
	${f D}$	
	J	
2	2	_
{		
_	IJ	

emp code	emp name	grade code	grade stage	desig code	change date	grade descr	desig descr
7369	shah	12 	3 	slasst 	20-Feb-82 	Asst_A 	SIs Asst
7499	ray	23 	2 	supr 	17-Jan-95 	Offcr A 	Superint.

Unnormalized 1NF

emp

emp code name

7369 shah

7499

in

1NF!

emp_hist

	emp code		grade stage	desig code	change date	grade descr	desig descr
	7369	12	3	slas	20-Feb-82	Asst_A	Sls_Asst
	7369						
	7369						
	7369						
	7369						
	7499	23	2	supr	17-Jan-95	Offcr A	Superint.
	499						
n							
] [=!						

1NF 2NF

Eliminate fields that are facts about only a *subset* of the key so that all non-key domains are fully functionally dependent on the primary key.

A relation is said to be in 2NF if and only if it is in 1NF and every non-key attribute is **fully functionally dependent (No partial dependency)** on any key.

1NF

Grade_descr

is *not fully*functionally
dependent on the
primary key.

Normalization 25

7499

Eliminating partial dependencies

emp_hist

<u>1NF</u>

emp code	grade code	grade stage		change date	grade descr	desig descr
7369 7369	12	3	slas	20-Feb-82	Asst_A	Sls_Asst
7369						
7369 7369						
7499	23	2	supr	17-Jan-95	Offcr A	Superint.
7499						
7499						
7499						

Eliminating partial dependencies

emp_hist

<u>1NF</u>

emp_hist

emp code	grade code	grade stage		change date
7369	12	3	slas	20-Feb-82
7369				
7369				
7369				
7369				
7400	22		S. 1.15 K	17 lan 05
7499	23	2	supr	17-Jan-95
7499				
7499				
7499				

desig descr Sls_Asst

Superint.

1NF

grade

grade code	grade descr	
12	Asst_A	
23	Offcr A	

emp_hist

emp code		grade stage	desig code	change date	desig descr
7369 7369 7369 7369 7369	12 	3	slas 	20-Feb-82 	Sls_Asst
7499 7499 7499 7499	23 	2 	supr 	17-Jan-95 	Superint.

Normalization 28

2NF 3NF

Eliminate non-key fields that are facts about other non-key fields, so that all non-key domains are mutually independent.

A relation is said to be in 3NF if and only if it is in 2NF and for every nonkey attribute is non transitively dependent on primary key.

2NF

emp_hist

✓ grade

desig_descr is
transitively
dependent on the
primary key.

not in

emp_hist							
emp code		grade stage	desig code	change date	desig descr		
7369 7369 7369 7369 7369	12 	3	slas 	20-Feb-82 	Sls_Asst 		
7499 7499 7499 7499	23	2	supr 	17-Jan-95 	Superint		

Eliminating Transitive Dependencies

<u>2NF</u>

✓ grade

emp_hist

	np de		grade stage	desig code	change date	desig descr
73	69	12	3	slas	20-Feb-82	Sls_Asst
73	69					
73	69					
73	69					
73	869					
74	.99	23	2	supr	17-Jan-95	Superint.
74	.99					
74	.99					
74	.99					

Eliminating Transitive Dependencies

2NF emp emp_hist **✓** grade 3NF desig desig desig descr code slas Sls_Asst Superint. supr

emp_hist

	emp code	grade code		desig code	change date
	7369	12	3	slas	20-Feb-82
	7369				
	7369				
	7369				
	7369				
İ					
	7499	23	2	supr	17-Jan-95
	7499				
	7499				
	7499				

A relation schema R is in BCNF with respect to a set F of functional dependencies if for all functional dependencies in F+ of the form $\alpha \to \beta$, where $\alpha \subseteq R$ at least one of the following holds:

- $\alpha \rightarrow \beta$ is trivial (i.e., $\beta \subseteq \alpha$)
- α is a superkey for R

Eliminate key fields that are facts about other (key) fields so that every determinant becomes a superkey.

*BCNF = Boyce Codd Normal Form

A relation is said to be in BCNF if and only if, for every nontrivial FD $A \rightarrow B$, 'A' is a superkey.

Problem-Domain (BCNF)

Consider a sales-management scenario:

- There are several product categories.
- Products are sold in several cities.
- Each city has several agents.
- Each product category is sold in each city by several retail outlets.
- A given product category is distributed in a given city by one and only one agent.
- A given agent will operate in one and only one city.
- A given agent can stock & sell more than one product category for the same city.

Problem-domain (BCNF)

An appropriate schema would be

Supply {Product, City, Outlets, Agent}

Supply

Product	City	Outlets	Agent
Noodles	Margao	155	Daulat
Chocolates	Margao	110	Keshav
Baby Foods	Margao	235	Daulat
Ketchup	Panjim	163	Magsons
Noodles	Panjim	195	Aletta
Chocolates	Vasco	102	Pranav

FDs:
$$\{P, C\} \rightarrow \{O, A\}$$

$$\{A\} \rightarrow \{C\}$$

$$\{A, P\} \rightarrow \{C\}$$

Supply

Product	City	Outlets
Noodles	Margao	155
Chocolates	Margao	110
Baby Foods	Margao	235
Ketchup	Panjim	163
Noodles	Panjim	195
Chocolates	Vasco	102

Agent	City
Daulat	Margao
Keshav	Margao
Magsons	Panjim
Aletta	Panjim
Pranav	Vasco

A_Product

Agent	Product
Daulat	Noodles
Daulat	Baby Foods
Keshav	Chocolates
Magsons	Ketchup
Aletta	Noodles
Pranav	Chocolates

 Schematic relation in 3NF but not in BCNF
 B being prime attribute (member of some candidate key)

Beyond BCNF...

- CTX is in BCNF, it has no functional dependency since it is an all key relation
- a course is taught by multiple teachers
- the course uses multiple textbooks
- there is redundancy

Schema CTX

CTX

course	teachers	texts
Phy	Green	T1
Phy	Green	T2
Phy	Brown	T1
Phy	Brown	T2
Math	Green	T1
Math	Green	T2

More redundancies ...

COURSE	TEACHERS	TEXTS
Physics	Prof. Green Prof. Brown	Basic Mechanics Principles of Optics
Math	Prof. White	Basic Mechanics Vector Analysis Trigonometry

Note: There are no FDs in this relation.

More redundarjes ...

Redundandand

CTX

COURSE	TEACHERS	TEXTS
Physics	Prof. Green	Basic Mechanics
Physics	Prof. Green	Principles of Optics
Physics	Prof. Brown	Basic Mechanics
Physics	Prof. Brown	Principles of Optics
Math	Prof. White	Basic Mechanics
Math	Prof. White	Vector Analysis
Math	Prof. White	Trigonometry

Constraint: IF tuples (c, t1, x1), (c, t2, x2) both appear

THEN tuples (c, t1, x2), (c, t2, x1) both appear also

Redundancy:

- TO add information that a physics course can be taught by a new teacher
 - Insert two new tuples

Multi-valued Dependency

```
IF tuples (c, t1, x1), (c, t2, x2) both appear
THEN tuples (c, t1, x2), (c, t2, x1) both appear also
```

Course → teachers

Course → texts

They are independent MVDs

Multi-valued Dependency

- Defines a constraint between two (sets of) attributes of a relation
- Constraint in turn, defined by the semantics of the problemdomain
- Helps identify redundancy that cannot be identified by mere FD analysis
- MVDs are generalization of FDs
 - Every FD is MVD but converse is not true

■ Written as " $X \rightarrow Y$ " (read "X multidetermines Y")

- For a relation R (A,B,C) the MVD
 - A ---> B holds if and only if MVD A ---> C also holds

MVD: Defined

given a relation schema R, and two attribute sets X, Y such that

```
X \subseteq R, Y \subseteq R,
then, the MVD "X\rightarrow Y" means
\forall t1, t2, t3, t4 \in r \text{ ('r' is an instance of 'R')}
the following is true
t1 [X] = t2 [X] = t3 [X] = t4 [X]
t1 [Y] = t3 [Y]
t3 [R-Y] = t2 [R-Y]
t4 [Y] = t2 [Y]
t4 [R-Y] = t1 [R-Y]
```

BCNF 4NF

- A relation schema R is in 4NF with respect to a set D of functional and multivalued dependencies if for all multivalued dependencies in D+ of the form α →→ β, where α ⊆ R and β ⊆ R, at least one of the following hold:
 - $\alpha \rightarrow \beta$ is trivial (i.e., $\beta \subseteq \alpha$ or $\alpha \cup \beta = R$)
 - α is a superkey for schema R
- If a relation is in 4NF it is in BCNF

BCNF 4NF

Eliminating independent, multi-valued facts

 Not in 4NF because the following non trivial multivalued dependency holds on them and Course is not a superkey

 After decomposition the two relations are in 4NF because the MVD are trivial MVD(i.e their union produces the original relation)

Normalization: a recap

- leads to a design that caters to ad-hoc queries.
- prevents update anomalies and data inconsistencies.
- facilitates data independence.
- penalises data retrieval.
- rule-based, but intricately influenced by semantics of the attributes.

Normal Forms: a recap

Eliminate repeating groups; attributes must have only atomic values.

Eliminate partial dependencies; all non-key attributes must be functionally dependent on *entire* primary key, not on a subset thereof.

Eliminate transitive dependencies; all non-key domains must be mutually independent.

Normal Forms: a recap

Eliminate FDs with prime attributes in the consequent; all determinants must be super keys.

Eliminate independent, multi-valued attributes.

References - I

An Introduction to DB Systems (7/e)

C. J. Date

Addison-Wesley (Pearson-Asia Education)

Database System Concepts (3/e)

Silberschatz, Korth, Sudarshan

McGraw-Hill International Edition

Database Management Systems

Raghu Ramakrishnan

McGraw-Hill International Edition

Fundamental of Database Systems

Elmasri

Navathe