Descriptive Statistics With R Software

Moments

• •

Skewness and Kurtosis

Shalabh

Department of Mathematics and Statistics
Indian Institute of Technology Kanpur

Skewness

Literal meaning of skewness: Lack of symmetry

Skewness gives an idea about the

- shape of curve obtained by frequency distribution (frequency curve) of data.
- nature and concentration of observations towards higher/lower values of variables.

Skewness

A distribution is said to be 'skewed' if the frequency curve of the distribution is not bell shaped curve and it is stretched more to one side than to the other.

A symmetric curve has no or zero skewness.

Skewness

Frequency distribution for which the curve has longer tail towards the

- right hand side is said to be positively skewed.
- <u>left hand</u> side is said to be <u>negatively skewed</u>.

A symmetric curve has no or zero skewness.

$$\beta_1 = \frac{\mu_3^2}{\mu_2^3}$$

where μ_2 and μ_3 are the second and third central moments respectively.

Another coefficient of skewness is

$$\gamma_1 = \pm \sqrt{\beta_1}$$

 β_1 measures the magnitude only.

 γ_1 gives information on magnitude as well as signs as positive (+) or negative (-).

Sample based coefficients of skewness are

$$\beta_{1s} = \frac{\left(\frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^3\right)^2}{\left(\frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^2\right)^3}$$

$$\gamma_{1s} = \pm \sqrt{\beta_{1s}} = \frac{\frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^3}{\left(\frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^2\right)^{3/2}}$$

Interpretations:

- If $\gamma_1 = 0$, it means the distribution is symmetric.
- If $\gamma_1 > 0$, it means the distribution is positively skewed.
- If γ_1 < 0, it means the distribution is negatively skewed.

Same interpretations are considered for sample based coefficients of skewness.

- If $\gamma_{1s} = 0$, it means the distribution is symmetric.
- If $\gamma_{1s} > 0$, it means the distribution is positively skewed.
- If γ_{1S} < 0, it means the distribution is negatively skewed.

Negatively skewed distribution Mode > Median > Mean

Another coefficient of skewness is defined as

$$S_{sk} = \frac{\overline{x} - \overline{x}_{mode}}{\sigma_{x}} ; -3 \le S_{sk} \le 3$$

$$S_{sk} = \frac{3(\overline{x} - \overline{x}_{median})}{\sigma_{x}} ; -3 \le S_{sk} \le 3$$

- $S_{sk} > 0$ for positively skewed distribution
- S_{sk} < 0 for negatively skewed distribution
- $S_{sk} = 0$ for symmetric distribution

Other variants of coefficeient of skewness based on quartiles (Q_1 , Q_2 , Q_3 , Q_4) and percentiles (P_{10} , P_{50} , P_{90}) are

$$S_{qsk} = \frac{(Q_3 - Q_2) - (Q_2 - Q_1)}{(Q_3 - Q_2) + (Q_2 - Q_1)} ; -1 \le S_{qsk} \le 1$$

$$S_{psk} = \frac{(P_{90} - P_{50}) - (P_{50} - P_{10})}{(P_{90} - P_{50}) + (P_{50} - P_{10})} ; -1 \le S_{psk} \le 1$$

Kurtosis

Observe the following curve. The three curves are representing three frequency distributions.

Kurtosis describes the peakedness ar flatness of a frequency curve.

Normal Distribution

Normal Distribution : $N(\mu, \sigma^2)$

Probability distribution function

$$f(x) = \frac{1}{(2\pi\sigma^2)^{1/2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right); -\infty < x < \infty$$

 μ, σ^2 : Parameters

 μ : Mean, σ^2 : Variance

Bell Shaped Curve, Symmetric around mean, Skewness=0, Kurtosis=0

Kurtosis

Shape of the hump (middle part of the curve or frequency distribution) of the normal distribution has been accepted as a standard.

Kurtosis examines the hump or flatness of the given frequency curve or distribution with respect to the hump or flatness of the normal distribution.

Kurtosis

Curves with hump like of normal distribution curve are called mesokurtic.

Curves with greater peakedness (or less flatness) than of normal distribution curve are called <u>leptokurtic</u>.

Curves with less peakedness (or grater flatness) than of normal distribution curve are called platykurtic.

Karl Pearson's coefficient of kurtosis

$$\beta_2 = \frac{\mu_4}{\mu_2^2}$$

where μ_2 and μ_4 are the second and fourth central moments respectively.

$$\gamma_2 = \beta_2 - 3$$

For normal distribution, $\beta_2 = 3$, $\gamma_2 = 0$

For leptokurtic distribution, $\beta_2 > 3$, $\gamma_2 > 0$

For mesokurtic distribution, $\beta_2 = 3$, $\gamma_2 = 0$

For platykurtic distribution, $\beta_2 < 3$, $\gamma_2 < 0$

Few properties

- $\beta_2 \ge 1$
- $\beta_2 > \beta_1$
- $\beta_2 \ge \beta_1 + 1$

Sample based coefficients of kurtosis are

$$\beta_{2s} = \frac{\frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^4}{\left(\frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^2\right)^2}$$

$$\gamma_{2s} = \beta_{2s} - 3$$

For leptokurtic distribution, $\beta_{2s} > 3$, $\gamma_{2s} > 0$

For mesokurtic distribution, $\beta_{2s} = 3$, $\gamma_{2s} = 0$

For platykurtic distribution, $\beta_{2s} < 3$, $\gamma_{2s} < 0$

R Commands:

First we need to install a package 'moments'

- > install.packages("moments")
- > library(moments)

Sample based coefficient of skewness
$$\gamma_{1s} = \frac{\frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^3}{\left(\frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^2\right)^{3/2}}$$
skewness(x, na.rm = FALSE)

Sample based coefficient of kurtosis
$$\gamma_{2s} = \frac{\frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^4}{\left(\frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^2\right)^2} - 3$$
kurtosis(x, na.rm = FALSE)

Numeric vector, matrix or data frame. X

na.rm logical TRUE if missing values need to be removed

R Commands:

When data is missing and data vector is x.na

Sample based coefficient of skewness

```
skewness(xna, na.rm = TRUE)
```

Sample based coefficient of kurtosis

```
kurtosis(x.na, na.rm = TRUE)
```

Numeric vector, matrix or data frame containing NA values.logical TRUE if missing values need to be removed

Example:

Following are the time taken (in seconds) by 20 participants in a race: 32, 35, 45, 83, 74, 55, 68, 38, 35, 55, 66, 65, 42, 68, 72, 84, 67, 36, 42, 58.

```
> time = c(32, 35, 45, 83, 74, 55, 68, 38, 35, 55, 66, 65, 42, 68, 72, 84, 67, 36, 42, 58)
```

```
> skewness(time)
```

```
[1] 0.05759762
```

> kurtosis(time)

```
[1] 1.701762
```

Example:

```
> time
[1] 32 35 45 83 74 55 68 38 35 55 66 65 42 68 72 84 67 36 42 58
> skewness(time)
[1] 0.05759762
> kurtosis(time)
[1] 1.701762
```

Example: Handling missing values

Suppose two data points are missing in the earlier example where the time taken (in seconds) by 20 participants in a race. They are recorded as NA

```
<u>NA</u>, <u>NA</u>, 45, 83, 74, 55, 68, 38, 35, 55, 66, 65, 42, 68, 72, 84, 67, 36, 42, 58.
```

```
> time.na = c(NA, NA, 45, 83, 74, 55, 68, 38, 35, 55, 66, 65, 42, 68, 72, 84, 67, 36, 42, 58)
```

```
> skewness(time.na, na.rm = TRUE)
[1] -0.0614137
```

```
> kurtosis(time.na, na.rm = TRUE)
[1] 1.810021
```

Example: Handling missing values

```
> time.na
[1] NA NA 45 83 74 55 68 38 35 55 66 65 42 68 72 84 67 36 42 58
> skewness(time.na, na.rm = TRUE)
[1] -0.0614137
> kurtosis(time.na, na.rm = TRUE)
[1] 1.810021
```