

Some important points to understand before proceeding

What are Independent & Dependent Variables?

A dependent variable denotes a number whose value is reliant on how the independent variable is modified/manipulated.

For example: in a credit card payment default problem, variable of interest will be default status (whether a person will default or not) or in loan applications data, variable of interest can be loan amount approved or approval status depending upon the business requirement.

What is a model?

In machine learning, a model is a set of steps based on mathematical/statistical concepts & assumptions to predict values of a dependent variable. Ex: Linear Regression Model

What are Predicted and Actual Values?

Predicted value is the result/output of the Model predictions. This may be either in 0s &1s or continuous or multi-label

The original value provided in the data set is Actual value. For example:

In a loan application, actual amount approved is \$400,000 while your model predicted \$340,500. Actual value is \$400,000 and predicted value is \$340,500.

Introduction

In Predictive Analytics, we try to establish a relationship between the Independent & Dependent Variables to get predictions

With only one independent variable and one dependent variable (fig 1)

With multiple independent Variables and a dependent variable (fig 2)

The difference in Actual Value and Predicted Value is called Error

• In Predictive Analytics, we try to establish a relationship between the Independent & Dependent

 X_1

 X_3

Fig 2

Variables to get predictions

• With only one independent variable and one dependent variable (fig 1)

With multiple independent Variables and a dependent variable (fig 2)

The difference in Actual Value and Predicted Value is called Error

Correlation

Correlation gives the degree of relationship between two variables and is quantified by the correlation coefficient (Pearson's r) $\gamma = \alpha + \sqrt{1 + (1 + 1)^2}$

When the independent variables are highly correlated with each other, it is called Multi-collinearity

It becomes difficult for the model to determine the true effect of Independent variables on Dependent variable in case of high multi-collinearity

Example: Cost pudiction/ nodels for 2-wheeley Y = total cost X, = no. of engues X2 = no. of wheels Y = 1,000 + (40) x x, + 4 x x2 =1,000 + 40 * X, + 4 × 2 × X, =1,000+40x,+8x, =1000+(18)x,+0x, = (1200 + 60× 2 + AX = (,000 + 20 x + 4 x2 = 1,000 + 0 x, 7 = Po (B)X,+Bixz = coeff unsthele

Solution - PCA

- PCA helps us address this problem of multicollinearity.
- The principal components are orthogonal to each other which means they are uncorrelated. Hence, multicollinearity is removed.

(1) Dr not include correbbed varieties

2. Y= \beta. + \beta. PC) + \beta. PC2

PC, & PC2

are independent

