Analyse I

David Wiedemann

Table des matières

1	Inti	roduction	3
	1.1	Buts du Cours	3
2	Def	inir $\mathbb R$	4
	2.1	Exemple d'utilisation	6
\mathbf{L}	\mathbf{ist}	of Theorems	
	1	Theorème (env400)	3
	2	Lemme (Lemme)	3
		Preuve	3
		Preuve	3
	3	Axiom (Nombres Reels)	4
	4	Lemme (Theorem name)	5
		Preuve	5
	5	Proposition (Annulation de l'element neutre)	5
		Preuve	5
	6	Corollaire (x fois moins 1 egale -x)	5
		Preuve	5
	7	Axiom (Nombres Reels II)	6
	1	Definition (valeur absolue)	6
	8		6
		Preuve	6
	2		7
	9	•	7
	3	- /	7
	14		8
		•	8
	15		8
	-	,	8
	16		8

	Preuve	. 8
18	Proposition (\mathbb{Q} est dense dans \mathbb{R})	. 9
19	Lemme	. 9
	Preuve	. 9
	Preuve (Preuve de la densite)	. 10

Lecture 1: Introduction

Mon 14 Sep

1 Introduction

1.1 Buts du Cours

Officiel:

Suites, series, fonctions, derivees, integrales, ...

Secrets:

Apprendre le raisonnement rigoureux

Creativite

Esprit Critique

Ne croyez rien tant que c'est pas prouve

On construit sur ce qu'on a fait, on recommence pas toujours a 0, par rapport a d'autres domaines(lettres par exemple)

Theorème 1 (env. -400)

Il n'existe aucin nombre (fraction) x tel que $x^2 = 2$.

Ca contredit pythagore nn?

On va demontrer le theoreme. ¹

Lemme 2 (Lemme)

Soit $n \in \mathbb{N}$ Alors n pair $\iff n^2$ pair.

Preuve

 \Rightarrow Si n pair \Rightarrow n² pair.

Hyp. $n = 2m (m \in \mathbb{N})$

Donc $n^2 = 4m^2$, pair.

Par l'absurde, n impair. $n = 2k + 1 (k \in \mathbb{N})$.

$$n^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1$$

impair. Donc si n est impair, alors n^2 est forcement impair. Absurde.

Preuve

Supposons par l'absurde $\exists x \ t.q. \ x^2=2 \ et \ x=\frac{a}{b}(a,b\in\mathbb{Z},b\neq 0).$

On peut supposer a et b non tous pairs.(sinon reduire).

$$x^2=2\Rightarrow \frac{a^2}{b^2}=2\Rightarrow a^2=2b^2\Rightarrow a^2$$

^{1.} On demontre d'abord un lemme

pair.

Lemme : a pair, i.e. $a = 2n(n \in \mathbb{N})$.

$$a^2 = 4n^2 = 2b^2 \Rightarrow 2n^2 = b^2, i.e.b^2$$
 pair.

Lemme: b pair.

Donc a et b sont les deux pairs, on a une contradiction.

En conclusion, le theoreme est bel et bien vrai, et contredit donc pythagore. Donc les fractions (\mathbb{Q}) ne suffisent pas a decrire/mesurer les longueurs geometriques. Il faut les nombres reels, on les comprends seulement vraiment depuis 2 siecles

C'est important de chercher ce genre d'erreurs.

Prochain but : definir les nombres reels (\mathbb{R}). L'interaction entre les fractions et les nombres reels.

2 Definir \mathbb{R}

On commence avec la definition axiomatique des nombres reels.

Axiom 3 (Nombres Reels)

 \mathbb{R} est un corps, en d'autres termes :

Ils sont munis de deux operations : plus et fois.

- Associativite $x + (y + z) = (x + y) + z(x, y, z \in \mathbb{R})^2$
- Commutativite x + y = y + x.
- Il existe un element neutre 0 t.q. $0 + x = x, x \in \mathbb{R}$.
- Distributivite x(yz) = (xy)z
- Il existe un element inverse, unique $-x \in \mathbb{R}$ t.q. x + (-x) = 0

Remarque : Il existe beaucoup d'autres corps que $\mathbb{R},$ par exemple $\mathbb{Q},\mathbb{C},$ $\{0,1,2\}\mod 3$

Attention: $\{0, 1, 2, 3\} \mod 4$ n'est pas un corps! Presque tous marchent, ils satisfont 8 des 9 axiomes.

 $^{2.\} L'associativite n'est pas forcement vraie$ (octonions)

^{3.} Il y a aucune difference entre les regles pour l'addition que pour la multiplication.

Lemme 4 (Theorem name)

 $\forall x \exists ! y \ t.q. \ x + y = 0.$

Preuve

Supposons x + y = 0 = x + y'

A voir: y = y'.

y = y + 0 = y + (x + y') = (y + x) + y'= (x + y) + y' = 0 + y' = y'

CQFD.

Exercice

Demontrer que 0 est unique.

Proposition 5 (Annulation de l'element neutre)

 $0 \cdot x = 0$

Preuve

 $x = x \cdot 1 = x(1+0) = x \cdot 1 + x \cdot 0 = x + x \cdot 0$

 $0 = x + (-x) = x + (-x) + x \cdot 0$

 $\Rightarrow 0 = x \cdot 0$

Corollaire 6 (x fois moins 1 egale -x)

 $x + x \cdot (-1) = 0$

Preuve

A voir : $x \cdot (-1)$ satisfait les proprietes de -x.

Or

 $x + x(-1) = x(1-1) = x \cdot 0 = 0.$

Exercice

Montrer que $\forall x : -(-x) = x$ et que ceci implique (-a)(-b) = ab.

Rien de tout ca n'a quelque chose a voir avec \mathbb{R} .

Il nous faut plus d'axiomes!!

4. a - b = a + (-b)

Axiom 7 (Nombres Reels II)

 \mathbb{R} est un corps ordonne. Ce qui revient a dire que les assertions suivantes sont verifiees.

- $\ x \leq y \ et \ y \leq z \ impliquent \ x \leq z$
- $(x \le yety \le x) \Rightarrow x = y$
- pour tout couple de nombres reels x et y: ou bien $x \leq y$ ou bien $x \geq y$.

Exemple de corps ordonnnes :

(1) \mathbb{R} , (2) \mathbb{Q} , (3) $\{0,1,2\} \mod 3$ n'est pas un corps ordonne.

Exercice

 $x \le y \iff -x \ge -y$ Exercice

$$x \le y$$
 et $z \ge 0 \Rightarrow xz \le yz$

$$x \le y$$
 et $z \le 0 \Rightarrow xz \ge yz$.

Il nous manque encore un axiome, et c'est le dernier : pour mercredi!

Lecture 2: Cours Mercredi

Wed 16 Sep

2.1 Exemple d'utilisation

Definition 1 (valeur absolue)

$$|x| = \begin{cases} x & \text{si } x \ge 0 \\ -x & \text{si } x < 0 \end{cases}$$

Proposition 8 (Inegalite du triangle)

Elle dit que

$$\forall x, y : |x + y| \le |x| + |y|$$

Preuve

 $Cas\ x,y\geq 0\ :\ alors\ x+y\geq 0$

$$\iff x + y \le x + y$$

Ce qui est toujours vrai.

 $Cas \ x \ge 0 \ et \ y < 0.$

 $Si \ x + y \ge 0, \ alors$

$$\iff |x+y| \le x - y$$

$$\iff x + y \le x - y$$

$$y \le -y$$

c'est vrai car y < 0.

 $Si \ x + y < 0, \ alors$

$$\iff -x - y \le x - y$$

 $Donc -x \le x \ vrai \ car \ x \ge 0$.

Definition 2 (Bornes)

 $Terminologie: Soit \ A \subseteq E \ , \ E \ corps \ ordonne.$

— Une borne superieure (majorant) pour A et un nombre b tq

$$a \le b \forall a \in A$$
.

— Une borne inferieure (minorant) pour A et un nombre b tq

$$a \ge b \forall a \in A$$
.

On dira que l'ensemble A est borne si il admet une borne.

Axiom 9 (Axiome de completude)

$$\forall A\subseteq \mathbb{R}\neq\emptyset$$

et majoree $\exists s \in \mathbb{R} \ t.q$

1. s est un majorant pour A.

2. \forall majorant b de A, $b \geq s$.

Cet axiome finis la partie axiomatique du cours.

Remarque 10

1.
$$\forall s' < s \exists a \in A : a > s'$$
.

2. s est unique.

Definition 3 (Supremum)

Ce s s'appelle le supremum de A, note sup(A).

Remarque 11

 \exists (pour A minore et \neq \emptyset) une borne inferieure plus grande que toutes les autres, notee inf(A) (infimum).

$$\inf(A) = -\sup(-A)$$

Remarque 12

 $Si \operatorname{sup}(A) \in A$, on l'appelle le maximum.

Remarque 13

 $Si \inf(A) \in A$, on l'appelle le minimum.

Proposition 14

 $\forall x \in \mathbb{R} \exists n \in \mathbb{N} : n \ge x.$

Preuve

Par l'absurde,

Alors

$$\exists x \in \mathbb{R} \forall n \in \mathbb{N} : n < x$$

 $\Rightarrow \mathbb{N} \ borne \ et \neq \emptyset \Rightarrow \exists s = \sup(\mathbb{N})$

$$s - \frac{1}{2} < s \Rightarrow \exists n \in \mathbb{N} : n > s - \frac{1}{2}$$

 $n+1 \in \mathbb{N} \ et \ n+1 > s - \frac{1}{2} + 1 = s + \frac{1}{2}$

 $donc \ n+1 > s \ absurde.$

Corollaire 15 (Propriete archimedienne)

1. $\forall x \forall y > 0 \exists n \in \mathbb{N} : ny > x$.

2. $\forall \epsilon > 0 \exists n \in \mathbb{N} : \frac{1}{n} < \epsilon$

Preuve

Pour 2, appliquer la proposition a $x = \frac{1}{\epsilon} \exists n \in \mathbb{N} : n > x = \frac{1}{\epsilon}$

Alors

$$\Rightarrow \epsilon > \frac{1}{n}$$

Pour montrer le 1.

Considerer $\frac{x}{y}$

On peut maintenant montrer que la racine de deux existe.

Theorème 16 (La racine de deux existe)

$$\exists x \in \mathbb{R} : x^2 = 2$$

Preuve

$$A:=\{y|y^2<2\}$$

Clairement $A \neq \emptyset$ car $1 \in A$. De plus, A est majore : 2 est une borne. (si $y > 2, y^2 > 4 > 2 \Rightarrow y \notin A$).

 $Donc \exists x = \sup(A)$

Supposons (par l'absurde) que $x^2 < 2$

Soit $0 < \epsilon < 1, \frac{2-x^2}{4x}$.

Clairement, par hypothese $2-x^2>0$ et idem pour 4x car $x\geq 1$. Soit $y=x+\epsilon$, alors

$$y^2 = x^2 + 2\epsilon x + \epsilon^2 < x^2 + \frac{2 - x^2}{2} + \frac{2 - x^2}{2} = 2$$

 \Rightarrow $y \in A$ Mais $y = x + \epsilon > x$. Absurde car $x = \sup(A)$. Donc $x^2 \ge 2$. Deuxiemement, supposons (absurde) $x^2 > 2$.

Soit $0 < \epsilon < \frac{x^2 - 2}{2x} > 0$.

Posons $b = x - \epsilon$.

$$b < x \Rightarrow \exists y \in A : y > b$$

$$\Rightarrow y^2 > b^2 = x^2 - 2\epsilon x + \epsilon^2 > x^2 - \underbrace{2\epsilon x}_{< x^2 - 2}$$

$$> x^2 - (x^2 - 2) = 2.$$

Conclusion: $y^2 > 2$ contredit $y \in a$.

$$Donc \ x^2 = 2.$$

Remarque 17

Preuve similaire:

$$\forall y > 0 \exists ! x > 0 : x^2 = y$$

Proposition 18 (\mathbb{Q} est dense dans \mathbb{R})

$$\forall x < y \in \mathbb{R} \exists z \in \mathbb{Q} : x < z < y$$

Lemme 19

$$\forall x \exists n \in \mathbb{Z} : |n - x| \le \frac{1}{2}$$

Ou encore:

$$\forall x \exists [x] \in \mathbb{Z} tq$$

$$\begin{cases} [x] \le x \\ [x] + 1 > x \end{cases}$$

Preuve

$$\exists n \in \mathbb{Z} : n > x(Archimede).$$

$$Soit [x] = \inf\{n \in \mathbb{Z} : n > x\} - 1$$

Preuve (Preuve de la densite)

Archimede: $\exists q \in \mathbb{N} : q > \frac{1}{y-x}$.

Donc

$$qy - qx > 1.$$

$$\Rightarrow \exists p \in \mathbb{Z} : qx$$

 $par\ exemple$:

$$p = [qy]$$

 $si \ qy \notin \mathbb{Z} \ ou \ bien$

$$p = qy - 1$$

 $si \ qy \in \mathbb{Z}$