Лабораторная работа №3.4.5 Петля гистерезиса (динамический метод) Джокер Бэтмен, Б02-000, 18.09.2021

Введение

Цель работы: изучение петель гистерезиса раличных ферромагнитных материалов в переменных токах.

В работе используются: автотрансформатор, понижающий трансформатор, интегрирующая цепочка, амперметр, вольтметр, электронный осциллограф, делитель напряжения, тороидальные образцы с двумя обмотками (с сердечниками из феррита, пермаллоя и кремнистого железа).

Теоретическая справка

Магнитная индукция B и напряжённость поля H в ферромагнитном материале неоднозначно связаны между собой: индукция зависит не только от напряжённости, но и от предыстории образца. Связь между B и H типичного ферромагнетика иллюстрирует рисунок 1.

Если к ферромагнитному образцу прикладывать переменное внешнее магнитное поле, то его состояние на плоскости H-B будет изменяться по замкнутой кривой — $nemne\ eucmepesuca$. Резмер петли определяется максимальным значением напряжённости H в цикле (например, петля AA', обозначенная пунктиром на рисунке 1). Если амплитуда напряжённости достаточно велика, то образец будет периодически достигать nacumetus, что на рисунке соответствует кривой CERC'E'F'C (npedentus $nemns\ eucmepesuca$). Пересечение предельной петли с вертикальной осью соответствует остаточной индукции B_r , пересечение с горизонтальной осью – коэрцитивному полю H_c . Крайние точки петель, соответствующие амплитудным значениям H (например, точка A на рисунке 1), лежат на navantuvueanus (OAC).

Измерение магнитной индукции. Магнитную индукцию B удобно определять с помощью ЭДС, возникающей при измерении магнитного потока Φ в катушке, намотанной на образец. Пусть катушка с N витками плотно охватывает образец сечением S, и индукция B в образце однородна. Тогда

$$|B| = \frac{1}{SN} \int \varepsilon \mathrm{d}t.$$

Таким образом, для определения B нужно проинтегрировать сигнал, наведённый меняющимся магнитным полем в измерительной катушке, намотанной на образец.

Для интегрирования в работе используется интегрирующая RC-цепочка. Входное напряжение от источника $U_{\rm Bx}(t)$ подаётся на последовательно соединённые резистор $R_{\rm u}$ и конденсатор $C_{\rm u}$. Выходное напряжение $U_{\rm выx}(t)$

Рис. 1 — Петля гистерезиса ферромагнетика

снимается с конденсатора. Предположим, что (1) сопротивление источника мало по сравнению с $R_{\rm u}$; (2) выходное сопротивление (сопротивление на входе осциллографа), напротив, велико: $R_{\rm вых}\gg R_{\rm u}$; и, наконец, (3) сопротивление $R_{\rm u}$ достаточно велико, так что почти всё падение напряжения приходится на него, а $U_{\rm вых}\ll U_{\rm вx}$. В таком случае ток цепи равен $I=\frac{U_{\rm вx}-U_{\rm выx}}{R_{\rm u}}\approx \frac{U_{\rm вx}}{R_{\rm u}}$, и входное и выходное сопротивление связаны соотношением

$$U_{\text{\tiny BMX}} \frac{q}{C_{\text{\tiny M}}} = \frac{1}{C_{\text{\tiny M}}} \int_0^t I \mathrm{d}t \approx \frac{1}{\tau_{\text{\tiny M}}} \int_0^t U_{\text{\tiny BX}} \mathrm{d}t,$$

где $\tau_{\tt u} = R_{\tt u} C_{\tt u}$ – постоянная времени RC-цепочки. Для индукции поля получаем

$$|B| = \frac{1}{SN} \int U_{\text{\tiny BX}} \mathrm{d}t = \frac{\tau_{\text{\tiny M}}}{SN} U_{\text{\tiny BX}}.$$

Экспериментальная установка

Схема установки приведена на рисунке 2. Напряжение сети (220 Вт, 50 Γ ц) с помощью регулировочного автотрансформатора Ат через разделительный понижающий трансформатор Γ р подаётся на намагничивающую обмотку N_0 исследуемого образца.

Действующее значение переменного тока в обмотке N_0 измеряется амперметром A (мультиметром GDM). Последовательно с амперметром вклю-

Рис. 2 — Схема установки для исследования намагничивания образцов

чено сопротивление R_0 , напряжение с которого подаётся на вход X электронного осциллографа (ЭО). Это напряжение пропорционально току в обмотке N_0 , а следовательно и напряжённости H магнитного поля в образце.

Для измерения магнитной индукции B с измерительной обмотки $N_{\rm H}$ на вход интегрирующей RC-цепочки подаётся напряжение $U_{\rm H}$ ($U_{\rm Bx}$), пропорциональное производной \dot{B} , а с выхода снимается напряжение U_C ($U_{\rm Bbx}$), пропорциональное величине B, и подаётся на вход Y осциллографа.

Замкнутая кривая, возникающая на экране, воспроизводит в некотором масштабе (различном для осей X и Y) петлю гистерезиса. Чтобы придать этой кривой количественный смысл, необходимо установить масштабы изображения, т.е. провести калибровку каналов X и Y ЭО. Для этого, вопервых, надо узнать, каким напряжениям (или токам) соответствуют амплитуды сигналов, видимых на экране, и во-вторых, – каким значениям B и B и B соответствуют эти напряжения (или токи).

Измерения напряжения с помощью осциллографа. Исследуемый сигнал подаётся на вход X: длина 2x горизонтальной черты, наблюдаемой на экране, характризует удвоенную амплитуду сигнала.

Если известна чувствительность усилителя K_X в вольтах на деление шкалы экрана, то удвоенная амплитуда напряжения определяется произведением

$$2U_{X,0} = 2x \cdot K_X.$$

Напряжение, подаваемое на ось Y, измеряется аналогично.

Калибровку осей осциллографа (K_X и K_Y) можно использовать для построения кривой гистерезиса в координатах B и H: зная величину сопротивления R_0 , с которого снимается сигнал, можно определить чувствительность канала по току $K_{XI} = \frac{K_X}{R_0} \left[\frac{\mathbf{A}}{\mathrm{дел}} \right]$ и затем определить цену деления

шкалы в $\frac{A}{M}$.

Зная чувствительность K_Y , можно рассчитать цену деления вертикальной шкалы 90 в теслах.

Наличие в схеме амперметра и вольтметра позволяет провести *независимую калибровку* усилителей Θ О, т.е. проверить значения коэффициентов K_X и K_Y (ручки регулировки усиления Θ О могут быть сбиты).

Проверка калибровки горизонтальной оси 90 с помощью амперметра проводится при закороченной обмотке N_0 . Эта обмотка с помещённым в неё ферромагнитным образцом являеся нелинейным элементом, так что ток в ней не имеет синусоидальной формы, и это не позволяет связать амплитуду тока с показаниями амперметра.

При закороченной обмотке N_0 амперметр A измеряет эффективное значение синусоидального тока $I_{\text{эф}}$, текущего через известное сопротивление R_0 . Сигнал с этого сопротивления подаётся на вход X ЭО. Измерив 2x длину горизонтальной прямой на экране, можно рассчитать m_X – чувствительность канала X:

$$m_X = \frac{2\sqrt{2}R_0I_{3\Phi}}{2x} \quad \left[\frac{\mathrm{B}}{\mathrm{дел}}\right].$$

Проверка калибровки вертикальной оси ЭО с помощью вольтметра. Сигнал с обмотки 12,6 В понижающего трансформатора (2) подаётся на делитель напряжения. Часть этого напряжения снимается с делителя с коэффициентом деления K_{π} ($\frac{1}{10}$ или $\frac{1}{100}$) и подаётся на вход Y ЭО (вместо напряжения U_C). Мультиметр V измеряет напряжение $U_{\Rightarrow \varphi}$ на этих же клеммах делителя. Измерив 2y — длину вертикальной прямой на экране, можно рассчитать чувствительность канала Y:

$$m_Y = \frac{2\sqrt{2}R_0U_{\ni \Phi}}{2x} \quad \left[\frac{\mathrm{B}}{\mathrm{дел}}\right].$$

При этом тороид должен быть отключен, так как несинусоидальный ток нагрузки в первичной обмотке тороида приводит к искажению формы кривой напряжения и на обмотке трансформатора, питающей делитель.

Постоянную времени RC-цепочки можно определить экспериментально. С обмотки 6,3 В на вход интегрирующей цепочки подаётся синусоидальное напряжения $U_{\rm Bx}$. На вход Y осциллографа поочерёдно подаются сигналы со входа $(U_{\rm Bx})$ и выхода $(U_{\rm Bix})$ RC-цепочки. Измерив амплитуды этих сигналов с помощью осциллографа, можно рассчитать постоянную времени $\tau = RC$. Тогда

$$RC = \frac{U_{\text{BX}}}{\Omega U_{\text{BMX}}}.$$

Ход работы

І. Петля гистерезиса на экране ЭО

Соберём схему согласно 2 и подготовим приборы к работе. Подберём ток питания в намагничивающей обмотке с помощью реостата и коэффициенты усиления ЭО так, чтобы предельная петля гистерезиса занимала большую часть экрана. Получив предельную петлю, уменьшим ток до исчезновения

на ней "усов" – почти горизонтальных участков по краям. Отцентруем вертикальный и горизонтальный лучи.

Для каждого образца сделаем фотографию предельной петли так, чтобы по ней можно было с хорошей точностью восстановить форму последней. Сфотографируем кривую при ещё двух различных значениях тока при его уменьшении, и полученные оттуда координаты концов частных петель используем для проведения кривой. Эта кривая будет проходить в непосредственной близости от начальной кривой намагничивания. Кривая намагничивания и предельная петля для каждого из образцов показаны на рисунках 3, 4 и 5. Кривые проведены с помощью кубических сплайнов.

Рассчитаем цену деления Θ О для петли в $\frac{A}{M}$ для оси X по формуле

$$H = \frac{N_0 K_X}{2\pi R R_0}$$

и в Тл для оси Y

$$B = \frac{R_{\scriptscriptstyle \rm H} C_{\scriptscriptstyle \rm H} K_Y}{S N_{\scriptscriptstyle \rm H}}.$$

Измерим по предельной петле двойные амплитуды для коэрцитивной силы $[2x\left(c\right)]$ и индукции насыщения $[2y\left(s\right)]$. Все измеренные и рассчитанные значения, равно как и параметры образца $(N_0,\ N_{\rm H},\ S\ u\ 2\pi R)$, значения коэффициентов усиления K_X и K_Y и ток $I_{\rm эф}$ в намагничивающей обмотке для каждого образца занесём в сводную талицу 1. Занесём туда также вычисленную из наклона кривых намагничивания дифференциальную магнитную проницаемость $\mu_{\rm диф}$ вблизи нуля и справочные величины для образцов.

Источником погрешностей в финальных ответах служат погрешности чувствительности каналов осциллографа и погрешности определения размеров по экранной сетке осциллографа. В погрешность магнитной проницаемости вносит вклад также неточность определения её по угловому коэффициенту касательной к графику. Опустим вычисление погрешностей ввиду его громоздкости, и приведём их непосредственно в таблице для последних трёх строк.

II. Проверка калибровки оси X ЭО с помощью амперметра

Отключим намагничивающую обмотку N_0 от цепи, соединив оба провода, идущих к обмотке, на одной из её клемм. С помощью R_1 подберём такой ток через сопротивление R_0 , при котором горизонтальная прямая занимает большую часть экрана ЭО для рабочего коэффицента $K_X=50,0\,\frac{\mathrm{MB}}{\mathrm{дел}}$. Ток через амперметр при этом равен $I_{\mathrm{эф}}=(0,583\pm0,004)\,$ А, сопротивление $R_0=0,3\,\Omega$, а горизонтальная прямая на экране занимает $(10,0\pm0,1)\,$ дел (здесь погрешность определения размер прямой на экране осциллографа равна половине цены малых делений экранной сетки, то есть $0,1\,$ дел, а погрешность мультиметра GDM равна $0,005I+15\,$ ед. мл. разряда). Тогда чувствительность канала равна $m_X=(49,5\pm0,6)\,\frac{\mathrm{MB}}{\mathrm{дел}},\,$ откуда можно заключить, что $m_X=K_X$ в пределах погрешности $\varepsilon_X=1,3\,\%.$

Таблица 1 — Параметры образцов из (A) пермаллоя, (B) феррита и (C) кремнистого железа

		_	
	A	В	C
N_0	35	40	40
$N_{\scriptscriptstyle \mathrm{H}}$	220	400	400
S , cm^2	3,8	3,0	1,2
$2\pi R$, cm	24	25	10
$I_{\text{эф}}, A$	0,158	0,119	0,455
K_X , $\frac{\text{MB}}{\text{дел}}$ K_Y , $\frac{\text{MB}}{\text{дел}}$ H , $\frac{A}{\text{M}}$	20,0	20,0	50,0
$K_Y, \frac{MB}{DEJ}$	100,0	10,0	50,0
$H, \frac{A}{M}$	9,72	10,67	66,7
В, Тл	0,478	0,033	0,417
$2x\left(c\right)$	2,37	0,61	0,73
$2y\left(s\right)$	1,86	1,64	1,54
$H_c, \frac{A}{M}$	$3,89 \pm 0,15$	$8,20 \pm 0,23$	$8,01 \pm 0,18$
B_s , Тл	$1,01 \pm 0,09$	$0,26 \pm 0,04$	$1,93 \pm 0,21$
$\mu_{\text{диф}}, 10^3$	$7,6 \pm 0,6$	$1,2 \pm 0,2$	$1,6 \pm 0,3$
$H_{c0}, \frac{A}{M}$	4,00	8,00	8,00
B_{s0} , Тл	1,08	0,25	2,00
$\mu_{\text{диф0}}, 10^3$	8,00	1,00	1,50

III. Проверка калибровки оси Y ЭО с помощью вольтметра

Соединим вход Y ЭО с клеммами делителя " $\frac{1}{100}$ -земля". Не меняя рабочего коэффициента $K_Y=50,0$ $\frac{\mathrm{MB}}{\mathrm{дел}}$, подберём с помощью потенциометра R_2 напряжение, при котором вертикальная прямая занимает почти весь экран. Подключим вольтметр V к тем же точкам делителя и измерим эффективное значение напряжения. Получим $U=(0,145\pm0,003)$ В и длину вертикальной прямой $(8,0\pm0,1)$ дел, откуда $m_Y=(50,4\pm1,0)$ $\frac{\mathrm{MB}}{\mathrm{дел}}$, откуда можно заключить, что $m_Y=K_Y$ в пределах погрешности $\varepsilon_Y=2,0$ %.

IV. Определение τ – постоянной времени RC-цепочки

Для определения напряжений на входе и выходе интегрирующей ячейки соединим вход ячейки с обмоткой 6,3 В трансформатора. Подключим Y-вход ЭО ко входу интегрирующей ячейки и отключим X-вход ЭО. Установим чувствительность $K_Y=2,00~\frac{\rm B}{\rm дел}$ и подберём с помощью реостата такой ток, при котором вертикальная прямая занимает большую часть экрана, и определим входное напряжение на RC-цепочке как $U_{\rm вx}=2y\cdot K_Y=(16,0\pm0,2)$ В.

Теперь, не изменяя тока, переключим Y-вход Θ 0 к выходу ячейки (конденсатору C), установим $K_Y=20,0~\frac{\text{мB}}{\text{дел}}$ и аналогичным образом определим напряжение $U_{\text{вых}}=(124,0\pm2,0)~\text{мB}.$

Рассчитаем постоянную времени, получим $\tau=(0,408\pm0,008)$ с. Ту же величину через указанные на установке параметры $R_{\rm u}=20~{\rm k\Omega},~C_{\rm u}=20~{\rm kk}$ найдём как $\tau=0,400$ с. Видим, что полученные значения совпадают

Рис. 3 — Предельная петля гистерезиса и начальная кривая намагничивания для образца из пермаллоя. Восстановлено по точкам, снятым с экрана ЭО, с помощью кубических сплайнов

в пределах погрешности.

Несложно заметить, что R=20,0 к $\Omega,\,\frac{1}{\Omega C}=159,2$ $\Omega,$ потому условие $R\gg\frac{1}{\Omega C}$ выполняется.

Вывод

В данной работе были изучены петли гистерезиса различных ферромагнитных материалов в переменных токах.

В первой части работы были получены предельные петли и начальные кривые намагничивания для образцов из пермаллоя, феррита и кремнистого железа. По точкам, снятым с экрана ЭО, с помощью кубических сплайнов восстановлены петли и кривые (см. рисунки 3, 4 и 5). Были рассчитаны цены деления ЭО для петель в $\frac{\Delta}{M}$ для оси X и в Тл для оси Y, откуда были найдены коэрцитивная сила H_c , индукция насыщения B_s и дифференциальная магнитная проницаемость $\mu_{\text{диф}}$ образцов вблизи нуля (см. таблицу 1). Совпадение в пределах погрешности вычисленных значений со справочными для каждого из образцов говорит о хорошей точности используемого метода и корректности проведения эксперимента.

Во второй и третьей частях работы была проведена проверка калибровок осей ЭО с помощью вольтметра и амперметра. Для рабочих коэффициентов $K_X=50~\frac{\text{мB}}{\text{дел}}$ и $K_Y=50~\frac{\text{мB}}{\text{дел}}$ получены значения чувствительности каналов $m_X=(49,5\pm0,6)~\frac{\text{мB}}{\text{дел}}$ и $m_Y=(50,4\pm1,0)~\frac{\text{мB}}{\text{дел}}$ соответственно,

Рис. $4-\Pi$ редельная петля гистерезиса и начальная кривая намагничивания для образца из феррита. Восстановлено по точкам, снятым с экрана 90, с помощью кубических сплайнов

что означает, что в пределах погрешностей чувствительности каналов равны указанным на осциллографе, что ещё раз подтверждает исправность работы ЭО.

В последней части работы была экспериментально проверена постоянная времени интегрирующей цепочки, которая получилась равной $\tau=(0,408\pm0,008)$ с, т.е. в пределах погрешности совпадающей с $\tau=0,400$ с, рассчитанной по указанным на установке величинам. Также было подтверждено условие применимости приближений, в которых работает RC-цепочка. Полученный результат и его относительно невысокая погрешность подтверждают исправность работы цепочки.

Рис. 5 — Предельная петля гистерезиса и начальная кривая намагничивания для образца из кремнистого железа. Восстановлено по точкам, снятым с экрана 90, с помощью кубических сплайнов