#### Conversations in TV shows

Team name: NTU\_b04902105\_TarngLaolaNo2

Members: b04902025 施博瀚、b04902043 謝宏祺、b04902105 戴培倫

Work division:

RNN model: 謝宏祺、戴培倫

Word2Vec model: 施博瀚、謝宏祺、戴培倫 Report: 施博瀚、謝宏祺、戴培倫

## Preprocessing / Feature Engineering:

1. 我們先將所有training data用jieba斷詞。

- 2. 使用jieba/extra\_dict中的stop\_words.txt做了兩種實驗。
  - a. 去掉stopwords。
  - b. 保留stopwords。
- 3. 考慮到斷詞後很多行只有少數幾個單詞,單一行沒辦法表達什麼意思,且 training data為連續劇台詞,上下句多有關聯,而因為gensim Word2Vec的預 設的window size為5,因此我們將全部句子上下句相連直到每一行長度皆大於 等於5個單詞。



## Model Description (At least two different models)

#### 1. RNN model

由於資料量太大,每次只將10%的data轉成word vector丟進RNN裡train。

#### 1.1. 一層LSTM

activation='relu', loss='cosine proximity', optimizer='adam', 約train 5 個epoch便收斂。

| Layer (type)                           | Output Shape    | Param # |
|----------------------------------------|-----------------|---------|
| lstm_1 (LSTM)                          | (None, 66, 200) | 320800  |
| ====================================== |                 |         |

#### 1.2. 三層LSTM

activation='relu', loss='cosine proximity', optimizer='adam', 約train 5 個epoch便收斂。

| Layer (type)                                                            | Output Shape    | Param # |
|-------------------------------------------------------------------------|-----------------|---------|
| lstm_1 (LSTM)                                                           | (None, 66, 200) | 320800  |
| lstm_2 (LSTM)                                                           | (None, 66, 200) | 320800  |
| lstm_3 (LSTM)                                                           | (None, 66, 200) | 320800  |
| Total params: 962,400 Trainable params: 962,400 Non-trainable params: 0 |                 |         |

### 2. Gensim Word2Vec model

- 2.1. 使用gensim的Word2Vec訓練詞向量, training data為5個劇本 (1\_train.txt ~ 5\_train.txt) 的merge版本(將每句連接至5個詞以上)。
- 2.2. 將testing data中的每個問題、選項經過 jieba 斷詞之後再使用 Word2Vec model 將其轉變成為 vector後進行比對,若是遇到不在字典 裡的單字,則直接忽略它,將他轉為零向量。
- 2.3. Train Word2Vec時設定iter=20。
- 2.4. 比較相似度方法為將每個句子取平均,比如說一句長度為5個單詞, Word2Vec 輸出為200維,則將這5個單詞取平均,這一句即變成1個200 維的向量,最後再將這200維做cosine similarity轉換,相似度最高的即 為我們預測的答案。

## Experiments and Discussion (8)

- 1. 不同的比較相似度的方法(以下實驗皆使用這兩種方法選答案)
  - 1.1. 使用助教手把手中的方法,將每個單詞作 Word2Vec.similarity比較之後 大於threshold的加總起來,最後再來比較相似度,相似度最高的選項為 答案。
  - 1.2. 將一個句子的每個單詞先轉為向量之後,取平均,最後再比較相似度, 相似度最高的選項為答案。

#### 2. RNN

- 2.1. 用gensim的Word2Vec將training data轉成100維
- 2.2. 以training data的前一句為source,下一句為target,希望能學出前後句的對應關係。
- 2.3. 用1、3層的LSTM, activation='relu', loss='cosine proximity', optimizer='adam', 約train 5個epoch便收斂。
- 2.4. 使用1.2的方法選出最相似的選項
- 2.5.

| Model              | Kaggle Public Score |
|--------------------|---------------------|
| 一層Istm、包含stopwords | 0.26284             |
| 一層lstm、去掉stopwords | 0.26640             |
| 三層Istm、包含stopwords | 0.25494             |
| 三層lstm、去掉stopwords | 0.26324             |

- 2.6. 都沒辦法train出好的結果,但發現去掉stopwords成績會稍微好一點點, 進步不顯著可能是因為jieba的stopwords量滿少的,只有18個。還有很 多不太能代表意義的詞沒有被收錄。
- 2.7. 参考了很多網路上的方法,也試過加上attention,但做出來的結果都很差,應該算是完全失敗的。因此最後轉而直接使用gensim的Word2Vec比較相似度。

#### 3. Word2Vec CBOW

3.1. 在最一開始時我們使用的是 CBOW 的model, Word2Vec預設的模式即 為CBOW, 因此我們只有將iter設為20. 並調整size做實驗。

## 3.2. 下表為我們測試幾種不同輸出維度的 Word2Vec的結果

# 3.2.1. (1.1的相似度比較方法)

| Dimension  | Kaggle Public Score |                   |
|------------|---------------------|-------------------|
| Dillension | With Stopwords      | Without Stopwords |
| 100        | 0.40988             | 0.40513           |
| 200        | 0.41422             | 0.40553           |
| 250        |                     | 0.41264           |
| 300        | 0.42845             | 0.42648           |
| 500        | 0.40909             |                   |

# 3.2.2. (1.2的相似度比較方法)

| Dimension | Kaggle Public Score |                   |
|-----------|---------------------|-------------------|
| Dimension | With Stopwords      | Without Stopwords |
| 100       | 0.43913             |                   |
| 200       | 0.44207             | 0.44129           |
| 250       | 0.43504             |                   |
| 300       | 0.42371             | 0.42648           |

- 3.3. 結果發現輸出維度大約在200的時候有最好的準確率,原因應該是訓練 資料量不足的關係,由於訓練資料量不足夠,導致維度增加時overfit。
- 3.4. 由於kaggle有次數上傳限制,沒辦法將全部實驗做完。

## 4. Word2Vec skip-gram

- 4.1. 後來我們又測試了skip-gram model,在gensim Word2Vec中,只要設定 sg=1 就可以指定在訓練詞向量的時候使用的是 skip-gram。另外,我們將iter設為20,並調整size做實驗。
- 4.2. 下表為我們測試幾種不同輸出維度的 Word2Vec的結果
  - 4.2.1. (1.1的相似度比較方法)

| Dimension | Kaggle Public Score |                   |
|-----------|---------------------|-------------------|
| Dimension | With Stopwords      | Without Stopwords |
| 100       | 0.44624             | 0.41673           |
| 200       | 0.43083             | 0.40553           |
| 300       | 0.42608             | 0.39837           |

## 4.2.2. (1.2的相似度比較方法)

| Dimension | Kaggle Public Score |                   |
|-----------|---------------------|-------------------|
| Dimension | With Stopwords      | Without Stopwords |
| 100       | 0.50079             |                   |
| 200       | 0.50474             | 0.50000           |
| 250       | 0.49209             |                   |
| 300       | 0.49328             | 0.49130           |

- 4.3. 同樣發現大約在維度200的時候有著最好的準確率。
- 4.4. 由於kaggle有上傳次數限制,沒辦法將全部實驗做完。

#### 5. 針對不同長度句子處理方法

- 5.1. 整句填成一樣長度 flatten 之後作cosine similarity,比如說全部問題及選項全部填成長度50,flatten之後就是50\*dim下去做cosine similarity。
- 5.2. 整句先平均之後作cosine similarity,因此每個問題及選項都是只有長度 為1. dim維度的向量。
- 5.3. 第一種處理方法中我發現因為特別長的句子屬於少數,所以在填充之後,每個選項之間的已經幾乎沒有差別了(因為填充都是填同一個字),所以原本句子想表達的東西已經被我們的填充給弄不見了;而第二種處理方法比較能表達這個選項大約落在甚麼地方,原本的內容不至於被弄不見,而我們的實驗也表示出第二種處理方法比較好

5.4.

| Method              | 5.1  | 5.2  |
|---------------------|------|------|
| Kaggle Public Score | 0.31 | 0.44 |

#### 6. Word2Vec 可視化

- 6.1. 我們想藉由將 Word2Vec 可視化來觀察出training data出現頻率較高的 是基麼樣的詞類。
- 6.2. 下圖為 Word2Vec min\_count=3000的 model 所做出來的圖 (min\_count=3000代表training data中出現次數小於3000的單詞將不會被訓練到 )
- 6.3. 觀察出出現頻率高的單詞都是一些語助詞、人名、代稱等等,這是可以 預期到的,因為我們的training data是類似劇本的東西,劇本是人講的話 ,而我們平常講話本來就會帶有許多的助詞。
- 6.4. 我們上面所作的實驗 min\_count 皆設為1,原因是有很多單詞可能就只有在其中一句裡面出現過,而那個單詞又是那一句的精髓,因此如果設高一點的話,就會省略掉許多重點,因此我們設為1。



### 7. 結論

- 7.1. 直接用Word2Vec比較相似度做出的成果比RNN好非常多。
- 7.2. Word2Vec設定iter=20比預設的iter=5要好。
  - 7.2.1. 同樣用最好的參數做測試, (sg=1, size=200, 不去掉stopword),

iter = 5: kaggle public score = 0.49802

Iter = 20: kaggle public score = 0.50474

7.3. Skip-gram的Word2Vec比CBOW的好很多,因為要解決的題目是:給一個前句,推論出下一句。

CBOW是由附近的word vector選出此處最有可能的word vector, 而Skip-gram是input一個word vector, 選出附近最可能的其他word vector, 與題意較為相近。故Skip-gram結果比較好我們覺得相當合理。

7.4. 沒有去掉stopwords結果稍微好一點點。可能是因為jieba的stopwords量滿少的,只有18個。且可能有些字在這次的training data中是能代表某些意義的,而也有很多不太能代表意義的詞沒有被收錄。因此去掉jieba提供的stopwords反而造成一點反效果。