3 - combinational circuits - analysis

* storage elements of previous inputs and feedback paths are in sequential circuits

analysis

literal analysis

from the schema and the truth table - we assign values to the inputs by trace the results La repeat until reach output that matches with the output in the truth table

Symbolic analysis

from the schema -> truth table > we assign expression instead of values -> logic expression by we get the output function and expression we construct the truth table as we go

Symbolic analysis is more work but gives us complete information.

standard (canonical) expression forms

Sum of products: sum form disjunctive normal form or of and terms $F[A_1B_1C] = (\bar{A}.\bar{B}.\bar{C}) + (\bar{A}.\bar{B}.\bar{C}) + (\bar{A}.\bar{B}.\bar{C}) + (\bar{A}.\bar{B}.\bar{C}) + (\bar{A}.\bar{B}.\bar{C})$ I product of sums: product form conjunctive normal form and of or terms $\mathsf{F}\left[\bar{\mathsf{A}}_{i}\mathsf{B},\mathsf{C}\right] = \left(\mathsf{A} + \mathsf{G} + \bar{\mathsf{C}}\right) \cdot \left(\bar{\mathsf{A}} + \bar{\mathsf{B}} + \mathsf{C}\right) \cdot \left(\bar{\mathsf{A}} + \mathsf{B} + \bar{\mathsf{C}}\right) \cdot \left(\bar{\mathsf{A}} + \mathsf{B} + \bar{\mathsf{C}}\right)$

each mintern -> one 1 in each maxtern -> one 0 in the truth table the truth table

the truth table

Fin both forms, each 1st level operator corresponds to one row of truth table # each variable appears exactly once

example =
$$F(A,B,C) = ?$$

E vsing minterns (m)

A+B+C M₁

A+B+C M₂

A+B+C M₄

A+B+C M₅

ABC m₆

ABC m₇

ABC m₇

ABC m₇

ABC m₇

ABC m₇

$$F(A,B,C) = (\overline{A}.\overline{B}.\overline{C}) + (\overline{A}BC) + (\overline{A}BC) + (\overline{A}BC) = (A+B+\overline{C}).(\overline{A+B+C}).(\overline{A+C}).(\overline{A+C}).(\overline{A+C}).(\overline{A+C}).(\overline{A+C}).(\overline{A+C}).(\overline{A+C}).(\overline{A+C}).(\overline{A+C}).(\overline{A+C}).(\overline{A+C}).($$

$$m_0 + m_3 + m_6 + m_7 = M_1 \cdot M_2 \cdot M_4 \cdot M_5$$

 $\sum_{m} (0,3,6,7) = \prod_{m} M(1,2,4,5)$

Karnaugh map (k-map) minimization

* application of adjacency

guarantees a minimal expression

adjacent terms = differ in one variable

- group size is a power of 2, and they are rectangular (1,2,4,8)
- * the inputs are always arranged in Gray code sequence
- * it is simply rearronged truth table

I's are grouped

O's are grouped

expression form:

abc+abc+abc

(m+n+k). (m+n+k). (m+n+k)

variable value is 1: variable value is 0:

A B

A B

if variable changes within the group do not include in both

* they both will give the same answer.

implicants= single cells or groups that could be part of a larger group. Prime implicant= a group that is as large as possible

0

essential prime implicant = there is at least single I which cannot be combined in any other way

Secondary/nonessential prime implicant = a prime implicant that is not essential

If the smallest set of prime implicants that covers all values forms a minimal expression for the desired function be more than one minimal set.

examples

minimize $F(a_1b_{1,C_1}d) = \sum_{m} (0,2,8,10)$

don't cares = -/x can be assigned 0 or 1

