Selected topics of lattice gauge theory

CHRISTIAN HÖLBLING, LUKAS VARNHORST Sheet 5 in WiSe 19/20

https://moodle.uni-wuppertal.de/course/view.php?id=18653

1. Gauge transformation and the plaquette

Consider a gauge field $U_{\mu}(\vec{n}) \in U(1)$ on an $N_s \times N_t$ lattice. Every element in U(1) has an absolute square of 1 and can be represented by a complex phase, that is one real number. Therefore, the gauge field can be stored as one real number per lattice site \vec{n} and direction μ . A gauge configuration is given by all the values of $U_{\mu}(\vec{n})$ for every \vec{n} and μ on the lattice.

a) Write a routine that takes as input a gauge configuration and calculates the plaquette

$$P_{\mu\nu}(\vec{n}) = U_{\mu}(\vec{n})U_{\nu}(\vec{n} + \hat{\mu})U_{\mu}^{\dagger}(\vec{n} + \hat{\nu})U_{\nu}^{\dagger}(\vec{n}). \tag{1}$$

b) Write a routine that takes as input a gauge configuration and a gauge transformation $\Omega(\vec{n})$ and outputs the transformed gauge configuration

$$U_{\mu}(\vec{n}) \to U'_{\mu}(\vec{n}) = \Omega(\vec{n})U_{\mu}(\vec{n})\Omega^{\dagger}(\vec{n} + \hat{\mu}). \tag{2}$$

c) Write a routine that calculates for a given gauge configuration the action

$$S_E^{\text{gauge}} = \beta \sum_{\vec{n} \in \Lambda} \sum_{\mu < \nu} \mathfrak{Re} \left(1 - P_{\mu\nu}(\vec{n}) \right)$$
 (3)

- d) Start with an initial gauge configuration where every link is equal 1 and calculate $S_E^{\rm gauge}$ for that configuration. Construct a gauge transformation where the phase of $\Omega(\vec{n})$ is a random number between 0 and 2π for each lattice site \vec{n} . Apply that transformation to the initial configuration and verify that $S_E^{\rm gauge}$ does not change.
- e) Generate a random gauge configuration where the phase of $U_{\mu}(\vec{n})$ is a random number between 0 and 2π for each lattice site \vec{n} and each μ . Calculate the action. Verify that, while it is different from the action in d), it does not change, when one applies, again, random gauge transformations.