We claim:

 An acylated 1,2,3,4-tetrahydronaphthyl amine according to the general formula (I) in any of its stereoisomeric forms or a mixture thereof in any ratio or a pharmaceutically acceptable salt thereof

$$R^2$$
 R^3
 R^4
 R^5
 R^5
 R^5
 R^5

wherein

 R^1 and R^4 are independently of each other selected from the group consisting of: H; unsubstituted and at least monosubstituted C_1 - C_{10} -alkyl, C_2 - C_{10} -alkenyl and C_2 - C_{10} -alkynyl, the substituents of which are selected from the group consisting of F, OH, C_1 - C_8 -alkoxy, $(C_1$ - C_8 -alkyl)mercapto, CN, $COOR^6$, $CONR^7R^8$, and unsubstituted and at least monosubstituted phenyl and heteroaryl, the substituents of which are selected from the group consisting of halogens, pseudohalogens, C_1 - C_3 -alkyl, C_1 - C_3 -alkoxy and CF_3 ; unsubstituted and at least monosubstituted phenyl and heteroaryl, the substituents of which are selected from the group consisting of halogens, pseudohalogens, C_1 - C_3 -alkyl, C_1 - C_3 -alkoxy and CF_3 ; R^9 - C_1 0; R^{10} 0 or R^{11} 1; R^{11} 2; R^{11} 3; R^{12} 4; R^{11} 5, R^{11} 5; R^{11} 6; R^{11} 6; R^{11} 7; R^{11} 8; and R^{11} 9; R^{11} 9;

 R_2 and R_3 are independently of each other selected from the group consisting of: H; halogens; pseudohalogens; unsubstituted and at least monosubstituted C_1 - C_{10} -alkyl the substituents of which are selected from the group consisting of OH, phenyl, and heteroaryl; OH; C_1 - C_{10} -alkoxy; phenoxy; $S(O)_m R^{19}$; CF_3 ; CN; NO_2 ; $(C_1$ - C_{10} -alkyl)amino; $di(C_1$ - C_{10} -alkyl)amino; $(C_1$ - C_6 -alkyl)-CONH-; unsubstituted and at least monosubstituted phenyl-CONH- and phenyl- SO_2 -O-, the substituents of which are selected from the group consisting of halogens, pseudohalogens, CH_3 and methoxy; $(C_1$ - C_6 -alkyl) SO_2 -O-; unsubstituted and at least monosubstituted $(C_1$ - C_6 -alkyl)CO, the substituents of which are selected from the group consisting of F, $di(C_1$ - C_3 -alkyl)amino, pyrrolidinyl and piperidinyl; and phenyl-CO, the phenyl part of which can be substituted by one or more substituents from the group consisting of C_1 - C_3 -alkyl, halogens and methoxy;

A is selected from the group consisting of CH_2 , CHOH and CH_1 -(C_1 - C_3 -alkyl); B is selected from the group consisting of CH_2 and CH_1 -(C_1 - C_3 -alkyl); C independently has the same meaning as B;

 R^5 is a group Hetar which can be unsubstituted or carry one or more substituents selected from the group consisting of: halogens; pseudohalogens; NH₂; unsubstituted and at least monosubstituted C_1 - C_{10} -alkyl, C_2 - C_{10} -alkenyl, C_2 - C_{10} -alkynyl, C_1 - C_{10} -alkoxy, (C_1 - C_{10} -alkyl)amino, and di(C_1 - C_{10} -alkyl)amino, the substituents of which are selected from the group consisting of F, OH, C_1 - C_8 -alkoxy, aryloxy, (C_1 - C_8 -alkyl)mercapto, NH₂, (C_1 - C_8 -alkyl)amino, and di(C_1 - C_8 -alkyl)amino; C_3 - C_5 -alkandiyl; phenyl; heteroaryl; aryl- or heteroaryl-substituted C_1 - C_4 -alkyl; CF_3 ; NO₂; OH; phenoxy; benzyloxy; (C_1 - C_{10} -alkyl)COO; S(O)_mR²⁰; SH; phenylamino; benzylamino; (C_1 - C_1 0-alkyl)-CONH-; (C_1 - C_1 0-alkyl)- $CON(C_1$ - C_4 -alkyl)-; phenyl-CONH-; phenyl- $CON(C_1$ - C_4 -alkyl)-; heteroaryl-CONH-; heteroaryl- $CON(C_1$ - C_4 -alkyl)-; (C_1 - C_1 0-alkyl)-CO; phenyl-CO; heteroaryl-CO; CF_3 -CO; $COCH_2O$ -; $COCF_2O$ -

OCH₂CH₂O-; -CH₂CH₂O-; COOR²¹; CONR²²R²³; CNH(NH₂); SO₂NR²⁴R²⁵; R²⁶SO₂NH-; R²⁷SO₂N(C₁-C₆-alkyl)-; and saturated and at least monounsaturated aliphatic, mononuclear 5- to 7-membered heterocycles containing 1 to 3 heteroatoms selected from the group consisting of N, O, and S, which heterocycles can be substituted by one or more substituents selected from the group consisting of halogens, C₁-C₃-alkyl, C₁-C₃-alkoxy, OH, oxo and CF₃, and wherein said heterocycles can optionally be condensed to the said group Hetar; and wherein all aryl, heteroaryl, phenyl, aryl-containing, heteroaryl-containing and phenyl-containing groups, which are optionally present in the said substituents of the said group Hetar, can be substituted by one or more substituents selected from the group consisting of halogens, pseudohalogens, C₁-C₃-alkyl, OH, C₁-C₃-alkoxy, and CF₃;

R⁶ is selected from the group consisting of:

H; C_1 -C10-alkyl, which can be substituted by one or more substituents selected from the group consisting of F, C_1 - C_8 -alkoxy, and $di(C_1$ - C_8 -alkyl)amino; aryl- $(C_1$ - C_4 -alkyl) and heteroaryl- $(C_1$ - C_4 -alkyl), which can be substituted by one or more substituents selected from the group consisting of halogens, C_1 - C_4 -alkoxy, and $di(C_1$ - C_6 -alkyl)amino;

R⁷ is selected from the group consisting of:

H; C_1 -C10-alkyl which can be substituted by one or more substituents, selected from the group consisting of F, C_1 - C_8 -alkoxy, di(C_1 - C_8 -alkyl)amino and phenyl; phenyl; indanyl; and heteroaryl; and wherein each of the aforementioned aromatic groups can be unsubstituted or carry one or more substituents from the group consisting of halogens, pseudohalogens, C_1 - C_3 -alkyl, C_1 - C_3 -alkoxy and CF_3 ;

R⁸ is H or C₁-C₁₀-alkyl;

 R^9 is selected from the group consisting of: C_1 - C_{10} -alkyl which can be unsubstituted or carry one or more substituents from the group consisting of: F, $(C_1$ - $C_4)$ -alkoxy, $di(C_1$ - C_3 -alkyl)amino; and unsubstituted and at least monosubstituted phenyl and heteroaryl, the substituents of which are selected from the group consisting of C_1 - C_3 -alkyl, C_1 - C_3 -alkoxy, halogens, pseudohalogens, and CF_3 ;

R¹⁰ independently has the same meaning as R⁷;

R¹¹ independently has the same meaning as R⁸;

R¹² independently has the same meaning as R⁶;

 R^{13} is selected from the group consisting of: H; C_1 - C_6 -alkyl; unsubstituted and substituted phenyl, benzyl, heteroaryl, (C_1 - C_6 -alkyl)-CO, phenyl-CO, and heteroaryl-CO, the substituents of which are selected from the group consisting of halogens, pseudohalogens, C_1 - C_3 -alkyl, C_1 - C_3 -alkoxy, and CF_3 , and wherein one or more of these substituents can be present;

R¹⁴ independently has the same meaning as R¹³;

 R^{15} is selected from the group consisting of: H; C_1 - C_{10} -alkyl; (C_1 - C_3 -alkoxy)- C_1 - C_3 -alkyl; and substituted and unsubstituted benzyl, phenyl and heteroaryl, the substituents of which are selected from the group consisting of halogens, pseudohalogens, C_1 - C_3 -alkyl, C_1 - C_3 -alkoxy, and CF_3 , and wherein one or more of these substituents can be present;

 R^{16} is selected from the group consisting of: C_1 - C_{10} -alkyl which can be substituted by one or more substituents selected from the group consisting of F, OH, C_1 - C_8 -alkyl)mercapto, $(C_1$ - C_8 -alkyl)amino and di(C_1 - C_8 -alkyl)amino;

 CF_3 , and substituted and unsubstituted phenyl and heteroaryl, the substituents of which are selected from the group consisting of halogens, pseudohalogens, C_1 - C_3 -alkyl, C_1 - C_3 -alkoxy and CF_3 , and wherein one or more of these substitutents can be present;

R¹⁷ independently has the same meaning as R⁷;

R¹⁸ independently has the same meaning as R⁸;

R¹⁹ independently has the same meaning as R¹⁶;

R²⁰ independently has the same meaning as R¹⁶;

R ²¹ independently has the same meaning as R⁶;

 R^{22} independently has the same meaning as R^7 ;

R²³ independently has the same meaning as R⁸;

 R^{24} independently has the same meaning as R^{7} ;

R²⁵ independently has the same meaning as R⁸;

R ²⁶ independently has the same meaning as R¹⁶;

R²⁷ independently has the same meaning as R¹⁶;

heteroaryl is a 5 to 10-membered, aromatic, mono- or bicyclic heterocycle containing one or more heteroatoms selected from the group consisting of N, O, and S;

the group Hetar is a 5 to 10-membered, aromatic, mono- or bicyclic heterocycle containing one or more heteroatoms selected from the group consisting of N, O, and S; aryl is phenyl, naphth-1-yl or naphth-2-yl;

m is 0, 1 or 2;

with the proviso that, in case R¹, R², R³ and R⁴ are hydrogen or one of the

- substituents, R^1 R^2 , R^3 or R^4 is C_1 - C_6 -alkoxy, R^5 is not unsubstituted pyridyl or unsubstituted or substituted 4-oxoquinolinyl.
- 2. An acylated 1,2,3,4-tetrahydronaphthyl amine in any of its stereoisomeric forms or a mixture thereof in any ratio or a pharmaceutically acceptable salt thereof according to claim 1, wherein in the formula (I)

R¹ is selected from the group consisting of: H; C₁-C₄-alkyl; C₁-C₄-alkoxy; CF₃; halogens; pseudohalogens; (C₁-C₄-alkyl)-S(O)_m-; and unsubstituted and at least monosubstituted phenyl and heteroaryl, the substituents of which are selected from the group consisting of halogens, pseudohalogens, C₁-C₃-alkyl, C₁-C₃-alkoxy and CF₃, and wherein heteroaryl is selected from the group consisting of 5- and 6-membered heterocycles containing one or more heteroatoms from the group consisting of N, O, and S;

 R^2 and R^3 are independently of each other selected from the group consisting of: H; halogens; pseudohalogens; and C_1 - C_3 -alkyl;

R⁴ independently has the same meaning as R¹;

A is selected from the group consisting of CH₂ and CHOH;

B and C are independently of each other selected from the group consisting of CH₂ and CH-CH₃;

 R^5 is a group Hetar which can be unsubstituted or carry one or more substituents selected from the group consisting of: halogens; CN; NH₂; unsubstituted and at least monosubstituted C₁-C₈-alkyl, C₂-C₈-alkenyl, C₂-C₈-alkynyl, C₁-C₈-alkoxy, (C₁-C₈-alkyl)amino, and di(C₁-C₈-alkyl)amino, the substituents of which are selected from the group consisting of F, C₁-C₆-alkoxy, phenoxy, (C₁-C₆-alkyl)mercapto, NH₂, (C₁-C₆-alkyl)mercapto, NH₂, (C₁-C₆-alkyl)mercapto, NH₂, (C₁-C₁-alkyl)mercapto, NH₂, (

C₆-alkyl)amino, and di(C₁-C₆-alkyl)amino; C₃-C₅-alkandiyl; phenyl; heteroaryl; phenyl- or heteroaryl-substituted C₁-C₂-alkyl; CF₃; OH; phenoxy; benzyloxy; (C₁-C₆alkyl)COO; $S(O)_m(C_1-C_6)$ -alkyl; $S(O)_m$ -phenyl; $S(O)_m$ -heteroaryl; SH; phenylamino; benzylamino; (C₁-C₆-alkyl)-CONH-; (C₁-C₆-alkyl)-CON(C₁-C₄-alkyl)-; phenyl-CONH-; phenyl-CON(C₁-C₄-alkyl)-; heteroaryl-CONH-; heteroaryl-CON(C₁-C₄-alkyl)-; (C₁-C₆alkyl)-CO; phenyl-CO; heteroaryl-CO; CF₃-CO; -OCH₂O-; -OCF₂O-; -OCH₂CH₂O-; $-CH_2CH_2O$ -; $COO(C_1-C_6-alkyl)$; $-CONH_2$; $-CONH(C_1-C_6-alkyl)$; $-CON(di(C_1-C_6-alkyl))$; $CNH(NH_2)$; $-SO_2NH_2$; $-SO_2NH(C_1-C_6-alkyl)$; $-SO_2NH(phenyl)$; $-SO_2N(di(C_1-C_6-alkyl))$; $(C_1-C_6-alkyl)SO_2NH-$; $(C_1-C_6-alkyl)SO_2N(C_1-C_6-alkyl)-$; phenyl-SO₂NH-; phenyl- $SO_2N(C_1-C_6-alkyl)$ -; heteroaryl- SO_2NH -; heteroaryl- $SO_2N(C_1-C_6-alkyl)$ -; and saturated and at least monounsaturated aliphatic, mononuclear 5- to 7-membered heterocycles containing 1 to 3 heteroatoms selected from the group consisting of N. O, and S, which heterocycles can be substituted by one or more substituents selected from the group consisting of halogens, C₁-C₃-alkyl, C₁-C₃-alkoxy, OH, oxo. and CF₃, and wherein said heterocycles can optionally be condensed to the said group Hetar; and wherein all heteroaryl, phenyl, heteroaryl-containing and phenylcontaining groups, which are optionally present in the said substituents of the said group Hetar, can be substituted by one or more substituents selected from the group consisting of halogens, pseudohalogens, C₁-C₃-alkyl, OH, C₁-C₃-alkoxy, and CF₃: heteroaryl is a 5 to 10-membered, aromatic, mono- or bicyclic heterocycle

neteroaryl is a 5 to 10-membered, aromatic, mono- or bicyclic heterocycle containing one or more heteroatoms selected from the group consisting of N, O, and S;

the group Hetar is a 5 to 10-membered, aromatic, mono- or bicyclic heterocycle containing one or more heteroatoms selected from the group consisting of N, O and S; and

m is O or 2.

3. An acylated 1,2,3,4-tetrabydronaphthyl amine in any of its stereoisomeric forms or a mixture thereof in any ratio or a pharmaceutically acceptable salt thereof according to claim 1, wherein in the formula (I)

R¹ is H, halogen or C₁-C₄-alkyl;

R² and R³ are each H;

R⁴ independently has the same meaning as R¹;

A is CH₂;

 R^5 is a group Hetar which can be unsubstituted or carry one or more substituents selected from the group consisting of: halogens; CN; NH₂; unsubstituted and at least monosubstituted CI-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl, C₁-C₃-alkoxy, (C₁-C₄-alkyl)amino, and di(C₁-C₄-alkyl)amino, the substituents of which are selected from the group consisting of F, C₁-C₃-alkoxy, (C₁-C₃-alkyl)mercapto, and NH₂; C₃-C₅-alkandiyl; phenyl; heteroaryl; phenyl- or heteroaryl-substituted C₁-C₂-alkyl; CF₃; OH; (C₁-C₄-alkyl)COO; S(O)_m(C₁-C₄)-alkyl; (C₁-C₄-alkyl)-CONH-; (C₁-C₄-alkyl)-CON(C₁-C₄-alkyl)-; (C₁-C₄-alkyl)-CO; phenyl-CO; heteroaryl-CO; CF₃-CO; -OCH₂O-; -OCF₂O-; -OCH₂CH₂O-; -CH₂CH₂O-; COO(C₁-C₆-alkyl); -CONH₂; -CONH(C₁-C₄-alkyl); -CON(di(C₁-C₄-alkyl)); CNH(NH₂); -SO₂NH₂; -SO₂NH(C₁-C₄-alkyl); -SO₂N(di(C₁-C₄-alkyl)); (C₁-C₄-alkyl)SO₂NH-; (C₁-C₄-alkyl)SO₂N(C₁-C₄-alkyl)-; and saturated and at least monounsaturated aliphatic, mononuclear 5- to

7-membered heterocycles containing 1 to 3 heteroatoms selected from the group consisting of N, O, and S, which heterocycles can be substituted by one or more substituents selected from the group consisting of halogens, C₁-C₃-alkyl, C₁-C₃-alkoxy, OH, oxo and CF₃, and wherein said heterocycles can optionally be condensed to the said group Hetar; and wherein all heteroaryl, phenyl., heteroaryl-containing and phenyl-containing groups, which are optionally present in the said substituents of the said group Hetar, can be substituted by one or more substituents selected from the group consisting of halogens, pseudohalogens, C₁-C₃-alkyl, OH, C₁-C₃-alkoxy, and CF₃;

heteroaryl is a 5 to 10-membered, aromatic, mono- or bicyclic heterocycle containing one, two or three heteroatoms selected from the group consisting of N, O, and S;

the group Hetar is a 5 to 10-membered, aromatic, mono- or bicyclic heterocycle containing one, two or three heteroatoms selected from the group consisting of N, O, and S; and

m is 0 or 2.

4. An acylated 1,2,3,4-tetrahydronaphthyl amine in any of its stereoisomeric forms or a mixture thereof in any ratio or a pharmaceutically acceptable salt thereof according to claim 1, wherein in the formula (I)

R¹ is H, halogen or C₁-C₄-alkyl;

R² and R³ are each H;

R⁴ independently has the same meaning as R¹;

A and B are each CH₂;

C is CH₂ or CH-CH₃;

R⁵ is a group Hetar which can be unsubstituted or carry one or more substituents selected from the group consisting of: F; C₁; Br; C₁-C₃-alkyl; C₁-C₃-alkoxymethyl; 2amino-3,3,3-trifluoro-propyl-; CF₃; C₃-C₅-alkandiyl; phenyl; heteroaryl; benzyl; heteroaryl-methyl; OH; C₁-C₃-alkoxy; phenoxy; trifluoromethoxy; 2,2,2trifluoroethoxy; (C₁-C₄-alkyl)COO; (C₁-C₃-alkyl)mercapto; phenylmercapto; (C₁-C₃alkyl)sulfonyl; phenylsulfonyl; NH₂; (C₁-C₄-alkyl)amino; di(C₁-C₄-alkyl)amino; (C₁-C₃alkyl)-CONH-; (C₁-C₃-alkyl)-SO₂NH-; (C₁-C₃-alkyl)-CO; phenyl-CO; -OCH₂O-., - OCF_2O -; $-CH_2CH_2O$ -; $COO(C_1-C_4-alkyl)$; $-CONH_2$; $-CONH(C_1-C_4-alkyl)$; $-CON(di(C_1-C_4-alkyl))$; $-CON(di(C_1-C_4-a$ C_4 -alkyl)); CN; $-SO_2NH_2$; $-SO_2NH(C_1-C_4-alkyl)$; $-SO_2N(di(C_1-C_4-alkyl))$; pyrrolidinyl; piperidinyl; morpholinyl; and thiomorpholinyl; and wherein all heteroaryl, phenyl, heteroaryl-containing and phenyl -containing groups, which are optionally present in the said substituents of the said group Hetar, can be substituted by one or more substituents selected from the group consisting of halogens, pseudohalogens, C₁-C₃-alkyl, OH, C₁-C₃-alkoxy, and CF₃; heteroaryl is selected from the group consisting of: furyl, pyrrolyl, thienyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, pyrazolyl, imidazolyl, pyridazinyl, pyrazinyl, pyridyl, pyrimidinyl, benzoimidazolyl, benzthiazolyl, benzoxazolyl, quinolinyl, isoquinolinyl, guinoxalinyl, guinazolyl, indolyl, benzofuranyl, benzothiophenyl, and indazolyl; the group Hetar is selected from the group consisting of: furyl, pyrrolyl, thienyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, pyrazolyl, imidazolyl, pyridazinyl, pyrazinyl, pyridyl, pyrimidinyl, benzoimidazolyl, benzothiazolyl, benzoxazolyl, quinolinyl,

isoquinolinyl, quinoxalinyl, quinazolyl, indolyl, benzofuranyl, benzothiophenyl, and indazolyl.

5. An acylated 1,2,3,4-tetrahydronaphthyl amine in any of its stereoisomeric forms or a mixture thereof in any ratio or a pharmaceutically acceptable salt thereof according to claim 1, wherein in the formula (I)

R¹ is H, halogen or C₁-C₄-alkyl;

R² and R³ are each H;

R⁴ independently has the same meaning as R¹;

A and B are each CH₂;

C is CH₂ or CH-CH₃;

R⁵ is selected from the group consisting of: benzo[1,3]dioxol-5-yl, 2,2-difluorobenzo[1,3]dioxol-5-yl, 2,3-dihydrobenzofuran-5-yl, 1-(4-chloro-phenyl)-5-trifluoromethyl-1H-pyrazole-4-yl, 1-(4-fluoro-phenyl)-3,5-dimethyl-1H-pyrazole-4-yl, 1H-benzotriazole-5-yl, 1H-indole-6-yl, 1-isopropyl-2-trifluoromethyl-1H-benzoimidazole-5-yl, 1-methyl-3 -oxo- 1,2,3,4-tetrahydro-quinoxaline-6-yl, 1-phenyl-5-trifluoromethyl-1H-pyrazole-4-yl, 2-(2-hydroxy-pyridin-4-yl)-1H-benzoimidazole-5-yl, 2-(4-cyano-phenyl)-1H-benzoimidazole-5-yl, 2,4-dimethyl-oxazole-5-yl, 2,4-dimethyl-pyrimidine-5-yl, 2,4-dimethyl-thiazole-5-yl, 2,5-dimethyl-1H-pyrrole-3-yl, 2,5-dimethyl-1H-pyrrole-3-yl, 2,5-dimethyl-1H-pyrrolyl, 2,5-dimethyl-2H-pyrazole-3-yl, 2,6-dichloro-pyrid-3-yl, 2,6-dimethyl-pyrid-3-yl, 2-amino-4,6-dimethyl-pyrid-3-yl, 2-amino-6-chloro-pyrid-3-yl, 2-amino-9-f-methyl-pyrid-3-yl, 2-chloro-pyrid-4-yl, 2-cyclopropyl-4-methyl-thiazole-5-yl, 2-dimethylamino-4-methyl-thiazole-5-yl, 2-dimethyl-thiazole-5-yl, 2-dimethyl

vl. 2-dimethylamino-pyrid-4-yl, 2-ethyl-5-methyl-2H-pyrazole-3-yl, 2-hydroxy-6methyl-pyrid-3-yl, 2-methyl-1H-benzoimidazole-5-yl, 2-methyl-3H-benzoimidazole-5vl. 2-methyl-pyrid-3-yl, 2-methyl-6-trifluoromethyl-pyrid-3-yl, 2-methyl-thiazole-5-yl, 2morpholin-4-yl-pyridin-4-yl, 2-morpholin-4-yl-pyrimidine-5-yl, 2-pyrrolidin-1-yl-pyridin-4-yl, 3,5-dimethyl-1H-pyrazole-4-yl, 3-amino-5,6-dimethyl-pyrazine-2-yl, 3-amino-5methyl-pyrazine-2-yl, 3-amino-pyrazine-2-yl, 3H-benzoimidazole-5-yl, 1Hbenzoimidazole-5-yl, 3-methyl-isoxazole-4-yl, 4,6-dimethyl-pyrid-3-yl, 4-amino-2ethylsulfanyl-pyrimidine-5-yl, 4-amino-2-methyl-pyrimidine-5-yl, 4-methyl-thiazole-5yl, pyridine-2-yl, pyridine-3-yl, pyridine-4-yl, 5-thiophen-2-yl-pyrid-3-yl, 2-methyl-4trifluoromethyl-thiazol-5-yl, 5,6,7,8-tetrahydro-quinoline-3-yl, 5 -amino-1-phenyl-1Hpyrazole-4-yl, 5-methyl-1-phenyl-1H-pyrazole-4-yl, 5-methyl-isoxazole-3-yl, 5-methylpyrid-3-yl, 5-methyl-pyrazine-2-yl, 6-chloro-pyrid-3-yl, 6-cyano-pyrid-3-yl, 6dimethylamino-pyrid-3-yl, 6-ethynyl-pyrid-3-yl, 6-methoxymethyl-pyrid-3-yl, 6methoxy-pyrid-3-yl, 6-methyl-2-methylamino-pyrid-3-yl, 6-methylamino-pyrazine-2-yl, 6-methyl-pyrid-3-yl, 6-morpholin-4-yl-pyrid-3-yl, 6-pyrrolidin-1-yl-pyrid-3-yl, imidazo[1,2-a]pyridine-2-yl, 6-trifluoromethyl-pyrid-3-yl, and pyrimidine-4-yl.

6. A method of stimulating the expression of endothelial NO-synthase in a mammal, which method comprises administering to said mammal a physiologically active amount of a compound according to the general formula (I) in any of its stereoisomeric forms or a mixture thereof in any ratio or a pharmaceutically acceptable salt thereof

$$R^2$$
 R^3
 R^4
 R^5
 R^5
 R^5

wherein, in the formula (I),

R¹ and R⁴ are independently from each other selected from the group consisting of: H; unsubstituted and at least monosubstituted C_1 - C_{10} -alkyl, C_2 - C_{10} -alkenyl and C_2 -C₁₀-alkynyl, the substituents of which are selected from the group consisting of F, OH, C₁-C₈-alkoxy, (C₁-C₈-alkyl)mercapto, CN, COOR⁶, CONR⁷R⁸, and unsubstituted and at least monosubstituted phenyl and heteroaryl, the substituents of which are selected from the group consisting of halogens, pseudohalogens, C₁-C₃-alkyl, C₁-C₃alkoxy and CF₃; unsubstituted and at least monosubstituted phenyl and heteroaryl, the substituents of which are selected from the group consisting of halogens, pseudohalogens, C₁-C₃-alkyl, C₁-C₃-alkoxy and CF₃; R⁹CO; CONR¹⁰R¹¹; COOR¹²; CF₃; halogens; pseudohalogens; NR¹³R¹⁴; OR¹⁵; S(O)_mR₁₆; SO₂NR¹⁷R¹⁸; and NO₂; R² and R³ are independently from each other selected from the group consisting of: H; halogens; pseudohalogens; unsubstituted and at least monosubstituted C₁-C₁₀alkyl the substituents of which are selected from the group consisting of OH, phenyl, and heteroaryl; OH; C_1 - C_{10} -alkoxy; phenoxy; $S(O)_mR^{19}$; CF_3 ; CN; NO_2 ; $(C_1$ - C_{10} alkyl)amino; di(C_1 - C_{10} -alkyl)amino; (C_1 - C_6 -alkyl)-CONH-; unsubstituted and at least monosubstituted phenyl-CONH- and phenyl-SO₂-O-, the substituents of which are selected from the group consisting of halogens, pseudohalogens, CH₃ and methoxy; (C₁-C₆-alkyl)SO₂-O-; unsubstituted and at least monosubstituted (C₁-C₆-alkyl)CO,

the substituents of which are selected from the group consisting of F, $di(C_1-C_3-alkyl)$ amino, pyrrolidinyl and piperidinyl; and phenyl-CO, the phenyl part of which can be substituted by one or more substituents from the group consisting of $C_1-C_3-alkyl$, halogens and methoxy;

A is selected from the group consisting of CH_2 , CHOH and CH_2 -(C_1 - C_3 -alkyl); B is selected from the group consisting of CH_2 and CH_2 -(C_1 - C_3 -alkyl); C independently has the same meaning as B;

R⁵ is a group Ar or a group Hetar both of which can be unsubstituted or carry one or more substituents selected from the group consisting of: halogens; pseudohalogens; NH₂; unsubstituted and at least monosubstituted C₁-C₁₀-alkyl, C₂- C_{10} -alkenyl, C_2 - C_{10} -alkynyl, C_1 - C_{10} -alkoxy, $(C_1$ - C_{10} -alkyl)amino, and di(C_1 - C_{10} alkyl)amino, the substituents of which are selected from the group consisting of F, OH. C₁-C₈-alkoxy, aryloxy, (C₁-C₈-alkyl)mercapto, NH₂, (C₁-C₈-alkyl)amino, and di(C₁-C₈-alkyl)amino; C₃-C₅-alkandiyl; phenyl; heteroaryl; aryl- or heteroaryl substituted C₁-C₄-alkyl; CF₃; NO₂; OH; phenoxy; benzyloxy; (C₁-C₁₀-alkyl)COO; $S(O)_m R^{20}$: SH: phenylamino: benzylamino: $(C_1-C_{10}-alkyl)-CONH-$; $(C_1-C_{10}-alkyl)-alkyl)$ $CON(C_1-C_4-alkyl)$ -; phenyl-CONH-; phenyl- $CON(C_1-C_4-alkyl)$ -; heteroaryl-CONH-; heteroaryl-CON(C₁-C₄-alkyl)-; (C₁-C₁₀-alkyl)-CO; phenyl-CO; heteroaryl-CO; CF₃-CO; -OCH₂O-; -OCF₂O-; -OCH₂CH₂O-; -CH₂CH₂O-; COOR²¹; CONR²²R²³; $CNH(NH_2)$; $SO_2NR^{24}R^{25}$; $R^{26}SO_2NH_{-}$; $R^{27}SO_2N(C_1-C_6-alkyl)_{-}$; and saturated and at least monounsaturated aliphatic, mononuclear 5- to 7-membered heterocycles containing 1 to 3 heteroatoms selected from the group consisting of N, O, and S, which heterocycles can be substituted by one or more substituents selected from

the group consisting of halogens, C₁-C₃-alkyl, C₁-C₃-alkoxy, OH, oxo and CF₃, and wherein said heterocycles can optionally be condensed to the said group Ar or the said group Hetar; and wherein all aryl, heteroaryl, phenyl, aryl-containing, heteroaryl-containing and phenyl-containing groups, which are optionally present in the said substituents of the said group Ar or the said group Hetar, can be substituted by one or more substituents selected from the group consisting of halogens, pseudohalogens, C₁-C₃-alkyl, OH, C₁-C₃-alkoxy, and CF₃;

R⁶ is selected from the group consisting of:

H; C_1 - C_{10} -alkyl, which can be substituted by one or more substituents selected from the group consisting of F, C_1 - C_8 -alkoxy, and $di(C_1$ - C_8 -alkyl)amino; aryl- $(C_1$ - C_4 -alkyl) and heteroaryl- $(C_1$ - C_4 -alkyl), which can be substituted by one or more substituents selected from the group consisting of halogens, C_1 - C_4 -alkoxy, and $di(C_1$ - C_6 -alkyl)amino;

R⁷ is selected from the group consisting of:

H; C_1 - C_{10} -alkyl which can be substituted by one or more substituents selected from the group consisting of F, C_1 - C_8 -alkoxy, $di(C_1$ - C_8 -alkyl)amino and phenyl; phenyl; indanyl; and heteroaryl; and wherein each of the aforementioned aromatic groups can be unsubstituted or carry one or more substituents from the group consisting of halogens, pseudohalogens, C_1 - C_3 -alkyl, C_1 - C_3 -alkoxy and CF_3 ;

 R^8 is H or C_1 - C_{10} -alkyl;

 R^9 is selected from the group consisting of: C_1 - C_{10} -alkyl which can be unsubstituted or carry one or more substituents from the group consisting of: F, $(C_1$ - $C_4)$ -alkoxy, $di(C_1$ - C_3 -alkyl)amino; and unsubstituted and at least monosubstituted phenyl and

heteroaryl, the substituents of which are selected from the group consisting of C₁-C₃-alkyl, C₁-C₃-alkoxy, halogens, pseudohalogens, and CF₃;

R¹⁰ independently has the same meaning as R⁷;

R¹¹ independently has the same meaning as R⁸;

R¹² independently has the same meaning as R⁶;

 R^{13} is selected from the group consisting of: H; C_1 - C_6 -alkyl; unsubstituted and substituted phenyl, benzyl, heteroaryl, (C_1 - C_6 -alkyl)-CO, phenyl-CO, and heteroaryl-CO, the substituents of which are selected from the group consisting of halogens, pseudohalogens, C_1 - C_3 -alkyl, C_1 - C_3 -alkoxy, and CF_3 , and wherein one or more of these substituents can be present;

R¹⁴ independently has the same meaning as R¹³;

R¹⁵ is selected from the group consisting of: H; C₁-C₁₀-alkyl; (C₁-C₃-alkoxy)-C₁-C₃-alkyl; and substituted and unsubstituted benzyl, phenyl and heteroaryl, the substituents of which are selected from the group consisting of halogens, pseudohalogens, C₁-C₃-alkyl, C₁-C₃-alkoxy, and CF₃, and wherein one or more of these substituents can be present;

 R^{16} is selected from the group consisting of: C_1 - C_{10} -alkyl which can be substituted by one or more substituents selected from the group consisting of F, OH, C_1 - C_8 -alkyl)mercapto, (C_1 - C_8 -alkyl)amino and di(C_1 - C_8 -alkyl)amino; CF_3 ; and substituted and unsubstituted phenyl and heteroaryl, the substituents of which are selected from the group consisting of halogens, pseudohalogens, C_1 - C_3 -alkyl, C_1 - C_3 -alkoxy and CF_3 , and wherein one or more of these substitutents can be present;

```
R<sup>17</sup> independently has the same meaning as R<sup>7</sup>;
R<sup>18</sup> independently has the same meaning as R<sup>8</sup>:
R<sup>19</sup> independently has the same meaning as R<sup>16</sup>;
R<sup>20</sup> independently has the same meaning as R<sup>16</sup>;
R<sup>21</sup> independently has the same meaning as R<sup>6</sup>;
R<sup>22</sup> independently has the same meaning as R<sup>7</sup>;
R<sup>23</sup> independently has the same meaning as R<sup>8</sup>:
R<sup>24</sup> independently has the same meaning as R<sup>7</sup>;
R<sup>25</sup> independently has the same meaning as R<sup>8</sup>;
R<sup>26</sup> independently has the same meaning as R<sup>16</sup>;
R<sup>27</sup> independently has the same meaning as R<sup>16</sup>:
heteroaryl is a 5 to 10-membered, aromatic, mono- or bicyclic heterocycle
containing one or more heteroatoms selected from the group consisting of N, O, and
S;
the group Hetar is a 5 to 10-membered, aromatic, mono- or bicyclic heterocycle
containing one or more heteroatoms selected from the group consisting of N, O, and
S;
aryl is phenyl, naphth-1-yl or naphth-2-yl;
the group Ar is phenyl, naphth-1-yl or naphth-2-yl; and
m is 0, 1 or 2.
```

7. The method according to claim 6, wherein in the formula (I)

R¹ is selected from the group consisting of: H; C₁-C₄-alkyl; C₁-C₄-alkoxy; CF₃;

halogens; pseudohalogens; (C₁-C₄-alkyl)-S(O)_m-; and unsubstituted and at least

monosubstituted phenyl and heteroaryl, the substituents of which are selected from the group consisting of halogens, pseudohalogens, C_1 - C_3 -alkyl, C_1 - C_3 -alkoxy and CF_3 , and wherein heteroaryl is selected from the group consisting of 5- and 6-membered heterocycles containing one or more heteroatoms from the group consisting of N, O, and S;

 $\ensuremath{\mathsf{R}}^2$ and $\ensuremath{\mathsf{R}}^3$ are independently from each other selected from the group consisting of:

H; halogens; pseudohalogens; and C₁-C₃-alkyl;

R⁴ independently has the same meaning as R¹;

A is selected from the group consisting of CH₂ and CHOH;

B and C are independently from each other selected from the group consisting of CH₂ and CH-CH₃;

 R^5 is a group Ar or a group Hetar both of which can be unsubstituted or carry one or more substituents selected from the group consisting of: halogens; CN; NH₂; unsubstituted and at least monosubstituted C_1 - C_8 -alkyl, C_2 - C_8 -alkenyl, C_2 - C_8 -alkynyl, C_1 - C_8 -alkoxy, $(C_1$ - C_8 -alkyl)amino, and $di(C_1$ - C_8 -alkyl)amino, the substituents of which are selected from the group consisting of F, C_1 - C_6 -alkoxy, phenoxy, $(C_1$ - C_6 -alkyl)mercapto, NH₂, $(C_1$ - C_6 -alkyl)amino, and $di(C_1$ - C_6 -alkyl)amino; C_3 - C_5 -alkandiyl; phenyl; heteroaryl; phenyl- or heteroaryl-substituted C_1 - C_2 -alkyl; C_3 ; OH; phenoxy; benzyloxy; $(C_1$ - C_6 -alkyl)COO; C_1 - C_6 -alkyl)COO; C_1 - C_6 -alkyl)COO; C_1 - C_6 -alkyl)COO+ C_1 - C_6 -alkyl)COO+ C_1 - C_6 -alkyl)COO+ C_1 - C_6 -alkyl)COO+ C_1 - C_1 - C_1 - C_1 - C_1 - C_2 -alkyl)COO+ C_1 - C_2 -alkyl)COO+ C_1 - C_2 -alkyl)COO+ C_1 - C_3 -alkyl)COO+COO+ C_1 - C_3 -alkyl)COO+COO

alkyl); -CON(di(C₁-C₆-alkyl)); CNH(NH₂); -SO₂NH₂; -SO₂NH(C₁-C₆-alkyl); -SO₂NH(phenyl); -SO₂N(di(C₁-C₆-alkyl)); (C₁-C₆-alkyl)SO₂NH-; (C₁-C₆-alkyl)SO₂N(C₁-C₆-alkyl)-; phenyl-SO₂NH-; phenyl-SO₂N(C₁-C₆-alkyl)-; heteroaryl-SO₂NH-; heteroaryl-SO₂N(C₁-C₆-alkyl)-; and saturated and at least monounsaturated aliphatic, mononuclear 5- to 7-membered heterocycles containing 1 to 3 heteroatoms selected from the group consisting of N, O, and S, which heterocycles can be substituted by one or more substituents selected from the group consisting of halogens, C₁-C₃-alkyl, C₁-C₃-alkoxy, OH, oxo and CF₃, and wherein said heterocycles can optionally be condensed to the said group Ar or the said group Hetar; and wherein all heteroaryl, phenyl, heteroaryl-containing and phenyl-containing groups, which are optionally present in the said substituents of the said group Ar or the said group Hetar, can be substituted by one or more substituents selected from the group consisting of halogens, pseudohalogens, C₁-C₃-alkyl, OH, C₁-C₃-alkoxy, and CF₃;

heteroaryl is a 5 to 10-membered, aromatic, mono- or bicyclic heterocycle containing one or more heteroatoms selected from the group consisting of N, O, and S;

the group Hetar is a 5 to 10-membered, aromatic, mono- or bicyclic heterocycle containing one or more heteroatoms selected from the group consisting of N, O, and S;

the group Ar is phenyl, naphth-1-yl or naphth-2-yl; and m is 0 or 2.

8. The method according to claim 6, wherein in the formula (I)

R¹ is H, halogen, or C₁-C₄-alkyl;

R² and R³ are each H;

R⁴ independently has the same meaning as R¹;

A is CH₂;

R⁵ is phenyl or a group Hetar both of which can be unsubstituted or carry one or more substituents selected from the group consisting of: halogens; CN; NH2; unsubstituted and at least monosubstituted C₁-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl, C_1 - C_3 -alkoxy, $(C_1$ - C_4 -alkyl)amino, and di $(C_1$ - C_4 -alkyl)amino, the substituents of which are selected from the group consisting of F, C₁-C₃-alkoxy, (C₁-C₃alkyl)mercapto, and NH₂; C₃-C₅-alkandiyl; phenyl; heteroaryl; phenyl- or heteroarylsubstituted C_1 - C_2 -alkyl; CF_3 ; OH; $(C_1$ - C_4 -alkyl)COO; $S(O)_m(C_1$ - C_4)-alkyl; $(C_1$ - C_4 alkyl)-CONH-; (C_1 - C_4 -alkyl)-CON(C_1 - C_4 -alkyl)-; (C_1 - C_4 -alkyl)-CO; phenyl-CO; alkyl); -CONH₂; -CONH(C₁-C₄-alkyl); -CON(di(C₁-C₄-alkyl)); CNH(NH₂); -SO₂NH₂; - $SO_2NH(C_1-C_4-alkyl)$; $-SO_2NH(phenyl)$; $-SO_2N(di(C_1-C_4-alkyl))$; $(C_1-C_4-alkyl)SO_2NH-$; (C₁-C₄-alkyl)SO₂N(C₁-C₄-alkyl)-; and saturated and at least monounsaturated aliphatic, mononuclear 5- to 7-membered heterocycles containing 1 to 3 heteroatoms selected from the group consisting of N, O, and S, which heterocycles can be substituted by one or more substituents selected from the group consisting of halogens, C_1 - C_3 -alkyl, C_1 - C_3 -alkoxy, OH, oxo and CF $_3$, and wherein said heterocycles can optionally be condensed to the said phenyl or the said group Hetar; and wherein all heteroaryl, phenyl, heteroaryl-containing and phenylcontaining groups, which are optionally present in the said substituents of the said

phenyl or the said group Hetar, can be substituted by one or more substituents; selected from the group consisting of halogens, pseudohalogens, C_1 - C_3 -alkyl, OH, C_1 - C_3 -alkoxy, and CF_3 ;

heteroaryl is a 5 to 10-membered, aromatic, mono- or bicyclic heterocycle containing one, two or three heteroatoms selected from the group consisting of N, O, and S;

the group Hetar is a 5 to 10-membered, aromatic, mono- or bicyclic heterocycle containing one, two or three heteroatoms selected from the group consisting of N, O, and S; and

m is 0 or 2.

9. The method according to claim 6, wherein in the formula (I)

 R^1 is H, halogen, or C_1 - C_4 -alkyl;

R² and R³ are each H;

R⁴ independently has the same meaning as R¹;

A and B are each CH₂;

C is CH₂ or CH-CH₃;

 R^5 is phenyl or a group Hetar both of which can be unsubstituted or carry one or more substituents selected from the group consisting of: F; CI; Br; C₁-C₃-alkyl; C₁-C₃-alkoxymethyl; 2-amino-3,3,3-trifluoro-propyl-; CF₃; C₃-C₅-alkandiyl; phenyl; heteroaryl; benzyl; heteroaryl-methyl; OH; C₁-C₃-alkoxy; phenoxy; trifluoromethoxy; 2,2,2-trifluoroethoxy; (C₁-C₄-alkyl)COO; (C₁-C₃-alkyl)mercapto; phenylmercapto; (C₁-C₃-alkyl)sulfonyl; phenylsulfonyl; NH₂; (C₁-C₄-alkyl)amino; di(C₁-C₄-alkyl)amino; (C₁-C₃-alkyl)-CONH-; (C₁-C₃-alkyl)-SO₂NH-; (C₁-C₃-alkyl)-CO; phenyl-CO; -OCH₂O-; -

OCF₂O-: -CH₂CH₂O-: COO(C_1 - C_4 -alkyl); -CONH₂: -CONH(C_1 - C_4 -alkyl); -CON(di(C_1 - C_4 -alkyl)); CN; $-SO_2NH_2$; $-SO_2NH(C_1-C_4-alkyl)$; $-SO_2N(di(C_1-C_4-alkyl))$; pyrrolidinyl; piperidinyl; morpholinyl; and thiomorpholinyl; and wherein all heteroaryl, phenyl, heteroaryl-containing and phenyl-containing groups, which are optionally present in the said substituents of the said phenyl or the said group Hetar, can be substituted by one or more substituents selected from the group consisting of halogens. pseudohalogens, C₁-C₃-alkyl, OH, C₁-C₃-alkoxy, and CF₃; heteroaryl is selected from the group consisting of: furyl, pyrrolyl, thienyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, pyrazolyl, imidazolyl, pyridazinyl, pyrazinyl, pyridyl, pyrimidinyl, benzoimidazolyl, benzothiazolyl, benzoxazolyl, quinolinyl, isoquinolinyl, quinoxalinyl, quinazolyl, indolyl, benzofuranyl, benzothiophenyl, and indazolyl; the group Hetar is selected from the group consisting of: furyl, pyrrolyl, thienyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, pyrazolyl, imidazolyl, pyridazinyl, pyrazinyl, pyridyl, pyrimidinyl, benzoimidazolyl, benzothiazolyl, benzoxazolyl, quinolinyl, isoguinolinyl, guinoxalinyl, guinazolyl, indolyl, benzofuranyl, benzothiophenyl, and indazolyl.

10. The method according to claim 6, wherein in the formula (I)

R¹ is H, halogen or C₁-C₄-alkyl;

R² and R³ are each H;

R⁴ independently has the same meaning as R¹;

A and B are each CH₂:

C is CH₂ or CH-CH₃;

R⁵ is selected from the group consisting of: 4-fluorophenyl, 4-chlorophenyl, 4bromophenyl, 4-(C₁-C₃-alkoxy)-phenyl, 4-trifluoromethoxyphenyl, 2-bromo-4fluorophenyl, 2-chloro-4-fluorophenyl, 3,4-dimethylphenyl, 2,4-dimethylphenyl, 4chloro-2-methylphenyl, 2-hydroxy-4-methylphenyl, 2-hydroxy-4-ethoxyphenyl, 2methoxy-4-methylphenyl, 4-phenoxyphenyl, 3-fluoro-4-methylphenyl, benzo[1,3]dioxol-5-yl, 2,2-difluoro-benzo[1,3]dioxol-5-yl, 2,3-dihydrobenzofuran-5-yl, 1-(4-chloro-phenyl)-5-trifluoromethyl-1H-pyrazole-4-yl, 1-(4-fluoro-phenyl)-3,5dimethyl-1H-pyrazole-4-yl, 1H-benzotriazole-5-yl, 1H-indole-4-yl, 1H-indole-6-yl, 1isopropyl-2-trifluoromethyl- | H-benzoimidazole-5-yl, 1-methyl-3-oxo-1,2,3,4tetrahydro-quinoxaline-6-yl, 1-phenyl-5-trifluoromethyl-1H-pyrazole-4-yl, 2-(2hydroxy-pyridin-4-yl)-1H-benzoimidazole-5-yl, 2-(4-cyano-phenyl)- I Hbenzoimidazole-5-yl, 2,4-dimethyl-oxazole-5-yl, 2,4-dimethyl-pyrimidine-5-yl, 2,4dimethyl-thiazole-5-yl, 2,5-dimethyl-1H-pyrrole-3-yl, 2,5-dimethyl-1-phenyl-1Hpyrrole-3-yl, 2,5-dimethyl-1-pyridin-4-ylmethyl-1H-pyrrolyl, 2,5-dimethyl-2H-pyrazole-3-yl, 2,6-dichloro-pyrid-3-yl, 2,6-dimethoxy-pyrid-3-yl, 2,6-dimethyl-pyrid-3-yl, 2amino-4,6-dimethyl-pyrid-3-yl, 2-amino-6-chloro-pyrid-3-yl, 2-amino-pyrid-3-yl, 2chloro-6-methyl-pyrid-3-yl, 2-chloro-pyrid-4-yl, 2-cyclopropyl-4-methyl-thiazole-5-yl, 2-dimethylamino-4-methyl-thiazole-5-yl, 2-dimethylamino-pyrid-4-yl, 2-ethyl-5methyl-2H-pyrazole-3-yl, 2-hydroxy-6-methyl-pyrid-3-yl, 2-methyl-1Hbenzoimidazole-5-yl, 2-methyl-3H-benzoimidazole-5-yl, 2-methyl-pyrid-3-yl, 2methyl-6-trifluoromethyl-pyrid-3-yl, 2-methyl-thiazole-5-yl, 2-morpholin-4-yl-pyridin-4yl, 2-morpholin-4-yl-pyrimidine-5-yl, 2-pyrrolidin-1-yl-pyridin-4-yl, 3,5-dimethyl-1Hpyrazole-4-yl, 3 -amino- 5,6-dimethyl-pyrazine-2-yl, 3-amino-5-methyl-pyrazine-2-yl,

3-amino-pyrazine-2-yl, 3-dimethylamino-4-methyl-phenyl, 3-dimethylamino-phenyl, 3H-benzoimidazole-5-yl, 1H-benzoimidazole-5-yl, 3-methanesulfonylamino-2methyl-phenyl, 3-methanesulfonylamino-phenyl, 3-methyl-isoxazole-4-yl, 3morpholin-4-yl-phenyl, 3-piperidin-1-yl-phenyl, 3-pyrrolidin-1-yl-phenyl, 4-(2,2,2trifluoro-ethoxy)-phenyl, 4,6-dimethyl-pyrid-3-yl, 4-amino-2-ethyl sulfanyl-pyrimidine-5-yl, 4-amino-2-methyl-pyrimidine-5-yl, 4-chloro-3-methanesulfonylamino-phenyl, 4chloro-3-sulfamoyl-phenyl, 4-methyl-3-methylamino-phenyl, 4-methyl-thiazole-5-yl, pyridine-2-yl, pyridine-3-yl, pyridine-4-yl, 5-thiophen-2-yl-pyrid-3-yl, 2-methyl-4trifluoromethyl-thiazol-5-yl, 5,6,7,8-tetrahydro-quinoline-3-yl, 5-amino-1-phenyl-1Hpyrazole-4-yl, 5-methanesulfonyl-2-methyl-phenyl, 5-methyl-1-phenyl-1H-pyrazole-4yl, 5-methyl-isoxazole-3-yl, 5-methyl-pyrid-3-yl, 5-methyl-pyrazine-2-yl, 6-chloropyrid-3-yl, 6-cyano-pyrid-3-yl, 6-dimethylamino-pyrid-3-yl, 6-ethynyl-pyrid-3-yl, 6methoxymethyl-pyrid-3-yl, 6-methoxy-pyrid-3-yl, 6-methyl-2-methylamino-pyrid-3-yl, 6-methylamino-pyrazine-2-yl, 6-methyl-pyrid-3-yl, 6-morpholin-4-yl-pyrid-3-yl, 6pyrrolidin-1-yl-pyrid-3-yl, imidazo[1,2-a]pyridine-2-yl, 6-trifluoromethyl-pyrid-3-yl, and pyrimidine-4-yl.

- 11. The method according to claim 6, wherein the mammal is a human.
- 12. The method of treating in a mammal a disease from the group consisting of cardiovascular diseases, stable or unstable angina pectoris, coronary heart disease, Prinzmetal angina, acute coronary syndrome, heart failure, myocardial infarction, stroke, thrombosis, peripheral artery occlusive disease, endothelial dysfunction, atherosclerosis, restenosis, endothelial damage after PTCA, hypertension, essential hypertension, pulmonary hypertension, secondary hypertension, renovascular

13.

hypertension, chronic glomerulonephritis, erectile dysfunction, ventricular arrhythmia, diabetes, diabetes complications, nephropathy, retinopathy, angiogenesis, asthma bronchiale, chronic renal failure, cirrhosis of the liver, osteoporosis, restricted memory performance or a restricted ability to learn, or the lowering of cardiovascular risk of postmenopausal women or after intake of contraceptives, which method comprises administering to said mammal a physiologically active amount of a compound according to the general formula (I) as defined in claim 6, in any of its stereoisomeric forms or a mixture thereof in any ratio or a pharmaceutically acceptable salt thereof.

The method of treating in a mammal a disease from the group consisting of cardiovascular diseases, stable or unstable angina pectoris, coronary heart disease, Prinzmetal angina, acute coronary syndrome, heart failure, myocardial infarction, stroke, thrombosis, peripheral artery occlusive disease, endothelial dysfunction, atherosclerosis, restenosis, endothelial damage after PTCA, hypertension, essential hypertension, pulmonary hypertension, secondary hypertension, renovascular hypertension, chronic glomerulonephritis, erectile dysfunction, ventricular arrhythmia, diabetes, diabetes complications, nephropathy, retinopathy, angiogenesis, asthma bronchiale, chronic renal failure, cirrhosis of the liver, osteoporosis, restricted memory performance or a restricted ability to learn, or the lowering of cardiovascular risk of postmenopausal women or after intake of contraceptives, which method comprises administering to said mammal a physiologically active amount of a compound according to the general formula (I) as

defined in claim 7, in any of its stereoisomeric forms or a mixture thereof in any ratio or a pharmaceutically acceptable salt thereof.

- 14. The method of treating in a mammal a disease from the group consisting of cardiovascular diseases, stable or unstable angina pectoris, coronary heart disease, Prinzmetal angina, acute coronary syndrome, heart failure, myocardial infarction, stroke, thrombosis, peripheral artery occlusive disease, endothelial dysfunction, atherosclerosis, restenosis, endothelial damage after PTCA, hypertension, essential hypertension, pulmonary hypertension, secondary hypertension, renovascular hypertension, chronic glomerulonephritis, erectile dysfunction, ventricular arrhythmia, diabetes, diabetes complications, nephropathy, retinopathy, angiogenesis, asthma bronchiale, chronic renal failure, cirrhosis of the liver, osteoporosis, restricted memory performance or a restricted ability to learn, or the lowering of cardiovascular risk of postmenopausal women or after intake of contraceptives, which method comprises administering to said mammal a physiologically active amount of a compound according to the general formula (I) as defined in claim 8, in any of its stereoisomeric forms or a mixture thereof in any ratio or a pharmaceutically acceptable salt thereof.
- 15. The method of treating in a mammal a disease from the group consisting of cardiovascular diseases, stable or unstable angina pectoris, coronary heart disease, Prinzmetal angina, acute coronary syndrome, heart failure, myocardial infarction, stroke, thrombosis, peripheral artery occlusive disease, endothelial dysfunction, atherosclerosis, restenosis, endothelial damage after PTCA, hypertension, essential hypertension, pulmonary hypertension, secondary hypertension, renovascular

16.

hypertension, chronic glomerulonephritis, erectile dysfunction, ventricular arrhythmia, diabetes, diabetes complications, nephropathy, retinopathy, angiogenesis, asthma bronchiale, chronic renal failure, cirrhosis of the liver, osteoporosis, restricted memory performance or a restricted ability to learn, or the lowering of cardiovascular risk of postmenopausal women or after intake of contraceptives, which method comprises administering to said mammal a physiologically active amount of a compound according to the general formula (I) as defined in claim 9, in any of its stereoisomeric forms or a mixture thereof in any ratio or a pharmaceutically acceptable salt thereof.

The method of treating in a mammal a disease from the group consisting of cardiovascular diseases, stable or unstable angina pectoris, coronary heart disease, Prinzmetal angina, acute coronary syndrome, heart failure, myocardial infarction, stroke, thrombosis, peripheral artery occlusive disease, endothelial dysfunction, atherosclerosis, restenosis, endothelial damage after PTCA, hypertension, essential hypertension, pulmonary hypertension, secondary hypertension, renovascular hypertension, chronic glomerulonephritis, erectile dysfunction, ventricular arrhythmia, diabetes, diabetes complications, nephropathy, retinopathy, angiogenesis, asthma bronchiale, chronic renal failure, cirrhosis of the liver, osteoporosis, restricted memory performance or a restricted ability to learn, or the lowering of cardiovascular risk of postmenopausal women or after intake of contraceptives, which method comprises administering to said mammal a physiologically active amount of a compound according to the general formula (I) as

- defined in claim 10, in any of its stereoisomeric forms or a mixture thereof in any ratio or a pharmaceutically acceptable salt thereof.
- 17. The method according to any one of claims 12 to 16, wherein the mammal is a human.
- 18. A pharmaceutical preparation comprising an effective dose of at least one compound of the formula (I) as defined in claim I in any of its stereoisomeric forms or a mixture thereof in any ratio and/or a pharmaceutically acceptable salt thereof and a pharmaceutically acceptable carrier.
- 19. A pharmaceutical preparation according to claim 18, which pharmaceutical preparation is in the form of a pill, tablet, lacquered tablet, sugar-coated tablet, granule, hard or soft gelatin capsule, aqueous, alcoholic or oily solution, syrup, emulsion or suspension, suppository, solution for injection or infusion, ointment, tincture, spray, transdermal therapeutic systems, nasal spray, aerosol mixture, microcapsule, implant or rod.
- 20. A method for the synthesis of a compound according to claim 1, which method comprises the coupling reaction of the respective 1,2,3,4-tetrahydronaphthyl amine with an appropriate acid or acid chloride in the presence of an appropriate base and/or an appropriate coupling agent, optionally followed by a functionalization of the thus-obtained compound.