Pure Mathematics Cheat Sheet

Prelims 2021

Jiaming (George) Yu jiaming.yu@jesus.ox.ac.uk

February 9, 2022

Contents

Ι	Linear Algebra	2
1	Matrices	2
2	Vector Spaces and Subspaces	2
3	Bases	3
II 4	Groups and Group Actions Groups	4
II	I Analysis	4
5	Sequences	4
6	Series	5
7	Continuity	6
8	Differentiability	6
9	Differentiability	7

Part I

Linear Algebra

1 Matrices

- (a) A square matrix A is skew-symmetric or antisymmetric if $A^T = -A$.
- (b) A square matrix $A \in \mathcal{M}_{n \times n}(\mathbb{R})$ is <u>orthogonal</u> (i.e. $A^T = A^{-1}$) if and only if its columns or rows are mutually orthogonal vectors. A is also <u>orthogonal</u> if and only if $A\mathbf{x} \cdot A\mathbf{y} = \mathbf{x} \cdot \mathbf{y}$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n_{\text{col}}$

2 Vector Spaces and Subspaces

- (a) If for some non-empty set V, we have $\mathbf{0}_V \in V$, V is closed under addition, and V is closed under scalar multiplication. Then we can say V (along with the addition and scalar multiplication maps) is a vector space given natural definitions of vector addition and scalar multiplication.
- (b) Let V be a vector field over \mathbb{F} . A subspace U of V is a non-empty (usually, show $\mathbf{0}_V \in U$) subset of V that is closed under addition and scalar multiplication. We denote $U \leq V$. The <u>zero subspace</u> or <u>trivial subspace</u> $\{\mathbf{0}_V\}$ and V are always subspaces of V. Note subspaces are transitive.

(c) Subspace Test

For a vector field V over \mathbb{F} and $U \subseteq V$, $U \leqslant V$ if and only if $\mathbf{0}_V \in U$ and $\lambda u_1 + u_2 \in U$ for all $u_1, u_2 \in U$ and $\lambda \in \mathbb{F}$.

- (d) For $U, W \leq V$, both U + W and $U \cap W$ are subspaces of V. Specifically, U + W is the smallest subspace of V containing both U and W; $U \cap W$ is the largest subspace of V contained in both U and W.
- (e) The only subspaces of \mathbb{R}^n are \mathbb{R}^k hyperplanes which intersect the origin, where $k = 0, 1, \ldots, n$.

3 Bases

(a) The span of $u_1, u_2, \ldots, u_n \in V$ is $u_1, u_2, \ldots, u_n \leq V$ where

$$u_1, u_2, \ldots, u_n = \{\alpha_1 u_1 + \alpha_2 u_2 + \cdots + \alpha_n u_n : \alpha_1, \ldots, \alpha_n \in \mathbb{F}\}\$$

This is the smallest subspace of V containing u_1, \ldots, u_n .

More generally, the span of $S \subseteq V$ is

$$S = \{\alpha_1 v_1 + \dots + \alpha_m v_m : m \geqslant 0, v_1, \dots, v_m \in S, \alpha_1, \dots, \alpha_n \in \mathbb{F}\}$$

While S may potentially be infinite, all linear combinations must be finite.

- (b) For some $S \subseteq V$, we say S spans V or S is a spanning set for V, if S = V.
- (c) For a matrix M, we write (M) for the <u>row space</u> of M (i.e. the span of the rows of M) and (M) for the <u>column space</u> of M.
- (d) We say $v_1, \ldots, v_n \in V$ are linearly independent if the only solution to

$$\alpha_1 v_1 + \cdots + \alpha_n v_n = \mathbf{0}_V$$

where $\alpha_1, \ldots, \alpha_n \in \mathbb{F}$ is $\alpha_1 = \cdots = \alpha_n = \mathbf{0}_V$.

We say $S \subseteq V$ is linearly independent if every finite subset of S is linearly independent.

(e) For linearly independent $v_1, \ldots, v_n \in V$, then

$$\alpha_1 v_1 + \dots + \alpha_n v_n = \beta_1 v_1 + \dots + \beta_n v_n$$

if and only if $\alpha_i = \beta_i$ for $i = 1, \ldots, n$.

- (f) For linearly independent $v_1, \ldots, v_n \in V$, if for some $v_{n+1} \in V$ there is $v_{n+1} \notin v_1, \ldots, v_n$, then $v_1, \ldots, v_n, v_{n+1}$ are linearly independent.
- (g) A <u>basis</u> of V is a linearly independent, spanning set of V.

If V has a finite basis, we say V is finite-dimensional.

(h) $S \subseteq V$ is a basis of V if and only if every $v \in V$ can be uniquely expressed as a linear combination of elements of S. The scalars in such an expression are the <u>coordinates</u> of v w.r.t. the basis S.

Part II

Groups and Group Actions

4 Groups

(a) a

Part III

Analysis

5 Sequences

(a) Scenic Viewpoints Theorem

Any real sequence (a_n) has a monotone subsequence.

(b) Bolzano–Weierstrass Theorem

Any bounded real sequence (a_n) has a convergent subsequence.

(c) A sequence (a_n) is \underline{Cauchy} if

$$\forall \varepsilon > 0 : \exists N \in \mathbb{N} : \forall m, n \geqslant N : |a_n - a_m| < \varepsilon$$

(d) A sequence (a_n) converges if and only if it is Cauchy.

6 Series

(a) If a series $\sum_{k=1}^{n} a_k$ converges, then $a_k \to 0$ as $k \to \infty$.

(b) Cauchy Convergence Criterion for Series

The series $\sum_{k=1}^{\infty} a_k$ converges if and only if

$$\forall \varepsilon > 0 : \exists N \in \mathbb{N} : \forall n > m \geqslant N : \left| \sum_{k=m+1}^{n} a_k \right| < \varepsilon$$
 (6.1)

(c) Absolute convergence implies convergence.

(d) Comparison Test

For real sequences (a_k) and (b_k) with $0 \le a_k \le b_k$ for all $k \ge 1$, if $\sum_{k=1}^{\infty} b_k$ converges, then $\sum_{k=1}^{\infty} a_k$ converges too.

(e) Limit Form of Comparison Test

For real, positive sequences $(a_k), (b_k)$ such that $\frac{a_k}{b_k} \to L$ as $k \to \infty$, the series $\sum_{k=1}^{\infty} a_k$ converges if and only if $\sum_{k=1}^{\infty} a_k$ converges.

(f) Alternating Series Test

For a real, non-negative, decreasing (not necessarily strictly) sequence (u_k) with $u_k \to 0$ as $k \to \infty$, the series $\sum_{k=1}^{\infty} (-1)^{k-1} u_k$ converges.

(g) Ratio Test

For a real, positive sequence (a_k) with $\frac{a_{k+1}}{a_k} \to L$ as $k \to \infty$, the series $\sum_{k=1}^{\infty} a_k$ converges if $0 \le L < 1$, and diverges if L > 1; if L = 1, we conclude nothing.

(h) Integral Test

Let $f:[1,\infty)\to\mathbb{R}$ be non-negative and decreasing, and that $\int_k^{k+1} f(x) dx$ exists for each $k\geqslant 1$ (can be implied from continuity). Let $s_n=\sum_{k=1}^n f(k)$ and $I_n=\int_1^n f(x) dx$, then the series (s_n) converges if and only if (I_n) converges.

Note that if we define $\sigma_n = s_n - I_n$, then (σ_n) converges, say, to σ , and $0 \leqslant \sigma \leqslant f(1)$.

(i) The Euler constant $\gamma \in [0,1]$ is defined as the limit of (γ_n) where

$$\gamma_n = \sum_{k=1}^n \frac{1}{k} - \int_1^n \frac{\mathrm{d}x}{x} = 1 + \frac{1}{2} + \dots + \frac{1}{n} - \log n$$

5

7 Continuity

(a) Let $f: E \to \mathbb{R}$ and $p \in E$. We say f is continuous at p if

$$\forall \varepsilon > 0 : \exists \delta > 0 : \forall x \in E : (|x - p| < \delta \implies |f(x) - f(p)| < \varepsilon)$$

In other words, f(p) is well-defined, $\lim_{x\to p} f(x)$ exists and is equal to f(p).

(b) Intermediate Value Theorem

Let $f:[a,b]\to\mathbb{R}$ be continuous and c be between f(a) and f(b). Then there exists some $\xi\in[a,b]$ with $f(\xi)=c$.

(c) Let $f:[a,b] \to \mathbb{R}$ be continuous. Then f is bounded on [a,b] and attains its bounds (supremum and infimum) on [a,b].

8 Differentiability

(a) Let (f_n) be a sequence of real functions on E and f be a real function on E. We say f_n converges uniformly to f on E if

$$\forall \varepsilon > 0 : \exists N \in \mathbb{N} : \forall x \in E, n \leqslant N : |f_n(x) - f(x)| < \varepsilon$$

9 Differentiability

(a) Let $f:[a,b] \to \mathbb{R}$ be continuous and 1-1 on (a,b) and $x_0 \in (a,b)$. If f is differentiable at x_0 and $f'(x_0) \neq 0$, then f^{-1} is differentiable at $y_0 = f(x_0)$ and

$$\frac{\mathrm{d}}{\mathrm{d}y}f^{-1}(y_0) = \frac{1}{f'(f^{-1}(y_0))} \tag{9.1}$$

- (b) Local extrema
- (c) Fermat's Theorem

Let $f: E \to \mathbb{R}$ and let x_0 be a local extremum of f and f is differentiable at x_0 . Then $f'(x_0) = 0$.

(d) Darboux's Intermediate Value Theorem

Let $f:[a,b] \to \mathbb{R}$ be continuous on [a,b] and differentiable on (a,b) and let $A \in \mathbb{R}$ with f'(a) < A < f'(b). Then $\exists \xi \in (a,b) : f'(\xi) = A$.

(e) Rolle's Theorem

Let $f:[a,b] \to \mathbb{R}$ be continuous on [a,b] and differentiable on (a,b), and f(a)=f(b). Then $\exists x_0 \in (a,b): f'(x_0)=0$.

(f) Mean Value Theorem

Let $f:[a,b]\to\mathbb{R}$ be continuous on [a,b] and differentiable on (a,b). Then

$$\exists \xi \in (a,b) : f'(\xi) = \frac{f(b) - f(a)}{b - a} \tag{9.2}$$

Writing h = b - a and $\xi = a + \theta(b - a)$ for some $\theta \in (0, 1)$, we obtain

$$f(a+h) = f(a) + f'(a+\theta h)h \tag{9.3}$$

(g) Cauchy's Mean Value Theorem

Let $f, g : [a, b] \to \mathbb{R}$ be continuous on [a, b] and differentiable on (a, b), and $\forall x \in (a, b) : g'(x) \neq 0$. Then

$$\exists \xi \in (a,b) : \frac{f'(\xi)}{g'(\xi)} = \frac{f(b) - f(a)}{g(b) - g(a)} \tag{9.4}$$