Complexity Theory Exercise 2

Submitter: Daniel Alfasi 308399542

Question 1:

We call $L_1 \in C$ a complete language in C if for every other language $L_2 \in C$,

 L_2 is reducible to L_1 .

A. Prove or disprove, there exist a complete language in $RE \cup coRE$:

Suppose that there exist a complete language L_1 in $RE \cup coRE$ and divide into 3 different situations:

- 1. If $L_1 \in RE/R$, one can choose $L_2 = \overline{L_1}$. By definition of RE and coRE we have that $L_2 \in coRE/R$. By the assumption we have that L_2 is reducible to L_1 which means that is also in RE/R which is not possible! since RE/R and coRE/R are disjoint sets.
- 2. If $L_1 \in coRE/R$ we can use the same claim as (1).
- 3. $L_1 \in R$, one can choose $L_2 \in RE / R$. By the assumption any language in $RE \cup coRE$ is reducible to L_1 but we have that $L_2 \in RE / R \subseteq RE \cup coRE$ is not reducible to L_1 . Since then we have that $L_2 \in R$ by the reduction which is not possible!
- B. Prove or disprove, there exist a complete language in coRE: We have that any language $L_2 \in RE$ is reducible to $HP \Rightarrow HP \geq L_2$, By the reduction rules also $\overline{HP} \geq \overline{L_2} \in coRE$. Therefore \overline{HP} is an example for complete language in coRE.
- C. Prove or disprove, there exist two non-trivial languages L_1, L_2 such that neither of them is reducible to the other:

One can choose $L_1 = HP$ and $L_2 = \overline{HP}$, we have that $L_1 \in RE / R$ and $L_2 \in coRE / R$ which means neither of them is reducible to the other (We showed that idea also in A).

Question 2:

For each language prove or disprove if it's in R and if it is in RE:

A.
$$L = \{ < M > | L(M) \in R \}$$

We have that property S=R is not trivial, therefore the given language is not in R. Now, we have that $\varnothing \in R \Rightarrow \varnothing \in S$ (one can build a Turing machine which decides \varnothing), by Rice theorem for RE we have that $L \notin RE$.

B. $L = \{ \langle M \rangle | M \text{ halts on all inputs} \}$

 $L \notin RE$

We show by reduction that $\overline{HP} \leq L$ using the following reduction function f(< M'>, < w>) = < M>. The reduction function is actually a Turing machine which acts very simply, for input x run M in the following way M(x):

- Run M' on w for |x| steps:
- If M' halts (during the |x| steps) then enter a **endless loop**
- Otherwise, if M'didn't stop after |x| steps (we are on the step |x|+1) then halt

Correctness of f:

- If $(< M'>, < w>) \in \overline{HP}$ then M'(w) never halts, so M(x) will eventually stop after |x| steps so $M \in L$
- If $(\langle M' \rangle, \langle w \rangle) \notin \overline{HP}$ then M'(w) will halt eventually, so M(x) should never halt! since $M \notin L$ (language description, we accept Turing machines which halts on all inputs).
- C. $L = \{ < M > | L(M) \in coRE \}$

We have that the property S = coRE is not trivial, therefore, $L \notin R$. Since we know that there exist such a Turing machine which accept L for each $L(M) \in coRE$ **from our language** (which is M), we have that $S' = L_s \cap RE = R \Rightarrow$ we are dealing with the same language as (A). therefore, $L \notin RE$.

Question 3:

A. If $L_1 \leq_T L_2$ and $L_2 \in R$ then $L_1 \in R$, **proof**:

One can build a Turing machine M_1 which decide the language L_1 , denote M_2 as the Turing machine which decides L_2 (We know that exist one as $L_2 \in R$).

 M_1 acts in the following way for input x:

- 1. run x on M_{12}
- 2. Denote y as the input (the characters in the left side of the 2nd tape)
- 3. Whenever M_{12} gets into the special state q_{ask} :
 - 1. **instead of** running the "magical computation" on y **run** M_2 with y
 - 2. If $M_2(y) = accept$ then move to q_{ves}
 - 3. Otherwise, move to q_{no}
- 4. Continue the computation and if M_{12} gets again to the special state q_{ask} jump to (3)
- 5. Output same as M_{12}

Note that the building of M_1 is valid since we no more using the magical computation. Instead of that as we know that $L_2 \in R$ we use it's machine for this part of computation and continue "normally" the computation, this is no more a "magical Turing machine".

B. If $L_1 \leq_T L_2$ and $L_2 \in RE$ then $L_1 \in RE$, disproof:

Let $L_2 = HP$ and $L_1 = \overline{HP}$, since we know that $L_1 \notin RE$ we have to show such a Turing machine M_{12} (which disproof the claim).

The machine M_{12} takes an input <M>,<x> and acts in the following way:

- 1. Start the computation by copy the input from the first tape to the second tape
- 2. After copying the input move to q_{ask} (Where the magic happens :))
- 3. If the machine move to q_{ves} then the next move will be to q_{reject}
- 4. Otherwise, the machine moved to q_{no} and out next move will be to q_{accept}

This example work since we know that $M_{\rm 12}$ is able to decide RE languages, no extra power were added to the machine offered above.

Since we can decide HP one can use this fact to decide \overline{HP} just by "flipping" the answer.