First-order multi-agent epistemic logic:

 $\mathbf{K}_A \alpha = A \text{ knows } \alpha$ $\mathbf{O}_A \alpha = A \text{ knows } \alpha \text{ and nothing else}$

Example:

■ A knows A

- *B* knows *B*
- A knows that

A knows that she does not know B and that B does know B.

Formalisation:

$$\mathbf{O}_A \left(\mathbf{A} = 7 \land \forall x \left(\mathbf{B} = x \to \mathbf{O}_B \mathbf{B} = x \right) \right)$$
 entails

$$\mathbf{K}_A \exists z \left(\neg \mathbf{K}_A B = z \wedge \mathbf{K}_B B = z \right)$$

Reduction using classical FOL validity oracle:

- Replace each $\mathbf{O}_A \alpha(\vec{x})$ with a fresh atom $P_{\alpha}(\vec{x})$
- Replace each $\mathbf{K}_A \gamma(\vec{z})$ with a disjunction of $\exists \vec{x} \left(P_{\alpha}(\vec{x}) \wedge \mathsf{Valid}[\alpha(\vec{x}) \to \gamma(\vec{z})] \right)$ over all $\mathbf{O}_A \alpha(\vec{x})$
- Add axioms for $P_{\alpha}(\vec{x}), P_{\beta}(\vec{y})$

$$P_{\alpha}(\vec{x}) \to \left(P_{\beta}(\vec{y}) \leftrightarrow \mathsf{Valid}[\alpha(\vec{x}) \to \beta(\vec{y})]\right)$$

to mimic properties of \mathbf{O}_A

Valid $[\phi(\vec{x})]$ represents the \vec{x} for which ϕ is valid

C. Schwering & M. Pagnucco UNSW Sydney, Australia schwering@gmail.com morri@cse.unsw.edu.au

Reasoning in multi-agent epistemic KBs reduces to classical reasoning

 $\mathbf{O}_A \alpha$ is a <u>multi-agent knowledge base</u> \iff every model of α satisfies some $\mathbf{O}_B \beta$

$$\mathbf{X} \mathbf{O}_A \Big(p \to \mathbf{O}_B q \Big)$$
 $\mathbf{Y} \mathbf{O}_A \Big((p \to \mathbf{O}_B q) \land (\neg p \to \mathbf{O}_B r) \Big)$
 $\mathbf{Y} \mathbf{O}_A \forall x \Big(p(x) \to \mathbf{O}_B q(x) \Big)$

Allows for incomplete knowledge about other agent's knowldege!

For objective ϕ, ψ :

 $\mathbf{O}_A \phi$ entails $\mathbf{K}_A \psi \iff \phi \to \psi$ is valid

 $\mathbf{O}_A \alpha$ implies $\mathbf{O}_A \beta \iff \alpha, \beta$ equivalent

Reduction using classical FOL validity oracle:

1.
$$\mathbf{O}_A \left(\mathbf{A} = 7 \land \forall x \left(\mathbf{B} = x \to \mathbf{O}_B \mathbf{B} = x \right) \right)$$

$$\mathbf{K}_A \exists z \left(\neg \mathbf{K}_A \mathbf{B} = z \land \mathbf{K}_B \mathbf{B} = z \right)$$

2.
$$\mathbf{O}_A(\mathbf{A} = 7 \land \forall x (\mathbf{B} = x \to P(x)) \land \mathbf{\Omega})$$

$$\mathbf{K}_A \exists z \left(\neg \mathbf{K}_A \mathbf{B} = z \land \exists x (P(x) \land x = z) \right)$$

When is $B = x \rightarrow B = z$ valid? Use FOL validity oracle!

$$\Omega = \forall x \forall y (P(x) \to (P(y) \leftrightarrow x = y))$$

Oracle calls: [Levesque '84]

- if ϕ has no free variables: Valid $[\phi]$ = TRUE if ϕ valid Valid $[\phi]$ = FALSE otherwise
- if φ has free variable x, names n_1, \ldots, n_k :

 Valid $[\varphi] = (\text{Valid}[\varphi_{n_1}^x] \land x = n_1) \lor \ldots \lor$ $(\text{Valid}[\varphi_{n_k}^x] \land x = n_k) \lor$ $(\text{Valid}[\varphi_{n'}^x]_r^{n'} \land x \neq n_1 \land \ldots \land x \neq n_k)$