Biegung elastischer Stäbe

Clara Rittmann Anja Beck

Durchführung: 03.11.15

Inhaltsverzeichnis

1	The	rie		
2	Aufbau und Ablauf des Experiments			
3	Auswertung			
	3.1	Statistische Formeln		
		3.1.1 Fehlerrechnung		
		8.1.2 Regression		
	3.2	Auswertung der Messdaten		
4	Dis	ission		

1 Theorie

Eine Reckstange verbiegt sich, wenn ein Turner daran hängt. Wird an den Enden eines länglichen Stücks Gummi gezogen, wird dieses länger und dünner. Derartige Verformungen werden durch Kräfte verursacht, die an der Körperoberfläche angreifen. Die Spannung

 $\sigma = \frac{dF}{dA} \, {}^{1} \tag{1}$

beschreibt hierbei die angreifende Kraft pro Fläche. Für hinreichend kleine relative Änderungen einer Größe $\frac{\Delta x}{x}$ kann die Spannung auch mit dem Hookeschen Gesetz

 $\sigma = E \frac{\Delta x}{x} \tag{2}$

beschrieben werden. Der Elastizitätsmodul E ist dabei eine Materialkonstante. Soll allerdings der Elastizitätsmodul einer Metallstange, wie der des Turners, bestimmt werden, kann die Änderung der Länge oder des Durchmessers nur sehr mühsam bestimmt werden. In diesem Fall bietet sich die Verwendung des Zusammenhangs

 $D(x) = \frac{F}{48 \cdot EI} \left(3L^2 x - 4x^3 \right) \tag{3}$

an. F ist die wirkende Kraft, also die Gewichtskraft des Turners. Sie übt einen Drehmoment auf die Stange aus. Das Flächenträgheitsmoment

$$I = \int_{O} y^2 dq \quad , \tag{4}$$

mit der Querschnittsfläche Q und dem dazugehörigen Flächenelement dq, verursacht im Inneren des Körpers ein entgegengesetzt gerichtetes, gleich großes Drehmoment, sodass sich ein Gleichgewicht einstellt.

¹D. Meschede: "Gerthsen Physik", Kapitel 3.1.4

2 Aufbau und Ablauf des Experiments

3 Auswertung

3.1 Statistische Formeln

3.1.1 Fehlerrechnung

Im folgenden wurden Mittelwerte von N Messungen der Größe x berechnet

$$\bar{x} = \frac{1}{N} \sum_{i=1}^{N} x_i \tag{5}$$

sowie die Varianz

$$V(x) = \frac{1}{N} \sum_{i=1}^{N} (x_i - \bar{x})^2$$
 (6)

woraus die Standartabweichung folgt

$$\sigma_x = \sqrt{V(x)}. (7)$$

Die Standartabweichung des Mittelwertes, kürzer auch Fehler des Mittelwertes genannt, bezieht noch die Anzahl der Messungen mit ein. Mehr Messungen führen zu einem kleineren Fehler

$$\Delta_x = \frac{\sigma_x}{\sqrt{N}}. (8)$$

3.1.2 Regression

Nachfolgend wird eine lineare Regression für Wertepaare (x_i, y_i) durchgeführt. Dafür müssen die Steigung

$$m = \frac{n \cdot \sum_{i=1}^{n} x_i y_i - \sum_{i=1}^{n} x_i \cdot \sum_{i=1}^{n} y_i}{n \cdot \sum_{i=1}^{n} x_i^2 - \left(\sum_{i=1}^{n} x_i\right)^2}$$
(9)

und der y-Achsenabschnitt

$$b = \frac{\sum_{i=1}^{n} x_i^2 \cdot \sum_{i=1}^{n} y_i - \sum_{i=1}^{n} x_i \cdot \sum_{i=1}^{n} x_i y_i}{n \cdot \sum_{i=1}^{n} x_i^2 - \left(\sum_{i=1}^{n} x_i\right)^2}$$
(10)

berechnet werden. Den jeweiligen Fehler erhält man mit

$$s_m^2 = s_y^2 \cdot \frac{n}{n \cdot \sum_{i=1}^n x_i^2 - \left(\sum_{i=1}^n x_i\right)^2}$$
 (11)

$$s_b^2 = s_y^2 \cdot \frac{\sum_{i=1}^n x_i^2}{n \cdot \sum_{i=1}^n x_i^2 - \left(\sum_{i=1}^n x_i\right)^2} . \tag{12}$$

 $\boldsymbol{s}_{\boldsymbol{y}}$ ist hierbei die Abweichung der Regressionsgeraden in y-Richtung.

$$s_y^2 = \frac{\sum_{i=1}^n (\Delta y_i)^2}{n-2} = \frac{\sum_{i=1}^n (y_i - b - mx_i)^2}{n-2}$$
 (13)

3.2 Auswertung der Messdaten

4 Diskussion