Robert Davidson Complex Analysis Notes

60% Exam40% Continuous Assessment (3 parts)

Contents

1	Prelim: The Exponential Function and Hyperbolic Functions		
	1.1	Exponential Function	
	1.2	Hyperbolic Functions	
	1.3	Partial Fraction Decomposition	
2	Lap	place Transforms	
	2.1	What is a Laplace Transform?	
	2.2	Common Laplace Transforms	
	2.3	Linearity of the Laplace Transform	
	2.4	The First Shift Theorem	
	2.5	Existence of the Laplace Transform	
	2.6	Integration by Parts	
	2.7	Table of Laplace Transforms	
	2.8	Laplace Transforms of Derivatives	
	2.9	Solving Initial Value Problems	
3	Exa	am Paper	
	3.1	Common Questions (Section A)	

1 Prelim: The Exponential Function and Hyperbolic Functions

1.1 Exponential Function

Derivative

$$\frac{d}{dt}(e^{at}) = a e^{at}$$

$$\int e^{at} dt = \frac{1}{a} e^{at} + C$$

1.2 Hyperbolic Functions

Definitions:

$$\sinh(at) = \frac{e^{at} - e^{-at}}{2} \mid \cosh(at) = \frac{e^{at} + e^{-at}}{2} \mid \tanh(at) = \frac{\sinh(at)}{\cosh(at)}$$

Derivatives

$$\frac{d}{dt}\big(\sinh(at)\big) = a\,\cosh(at), \, \left| \, \frac{d}{dt}\big(\cosh(at)\big) = a\,\sinh(at), \, \left| \, \frac{d}{dt}\big(\tanh(at)\big) = a\,\sinh^2(at).$$

Integrals

$$\int \sinh(at) dt = \frac{1}{a} \cosh(at) + C$$

$$\int \cosh(at) dt = \frac{1}{a} \sinh(at) + C,$$

$$\int \tanh(at) dt = \frac{1}{a} \ln|\cosh(at)| + C.$$

Common Identities

$$\cosh^2 x - \sinh^2 x = 1,$$

$$\sinh(2x) = 2 \sinh x \cosh x,$$

$$\cosh(2x) = \cosh^2 x + \sinh^2 x,$$

$$\tanh(2x) = \frac{2 \tanh x}{1 + \tanh^2 x}.$$

1.3 Partial Fraction Decomposition

Unrepeated Linear Factors: A linear factor is of form (ax + b)

$$\frac{s+1}{s(s-2)(s+3)} = \frac{A}{s} + \frac{B}{s-2} + \frac{C}{s+3}$$

Repeated LinearFactors:

$$\frac{3}{(s+2)^2(s-3)} = \frac{A}{s+2} + \frac{B}{(s+2)^2} + \frac{C}{s-3}$$

Unrepeated Quadratic Factors with complex roots: Where the discriminant $(b^2 - 4ac)$ is negative (complex roots) but the factor is not repeated

$$\frac{3}{(s^2 - s + 1)(s + 2)} = \frac{As + B}{s^2 - s + 1} + \frac{C}{s + 2}$$

Repeated Quadratic Factors with complex roots:

$$\frac{1}{(s^2+1)^2(s-1)} = \frac{As+B}{(s^2+1)^2} + \frac{Cs+D}{s^2+1} + \frac{E}{s-1}$$

2

2 Laplace Transforms

2.1 What is a Laplace Transform?

The Laplace Transform, defined for $t \geq 0$, is given by

$$L\{f(t)\}(s) = F(s) = \int_0^\infty e^{-st} dt$$

2.2 Common Laplace Transforms

Example Find the Laplace Transform of f(t) = 1

We have:

$$L\{1\} = \int_0^\infty 1 \cdot e^{-st} dt = \lim_{R \to \infty} \int_0^R e^{-st} dt$$

This integral is equal to:

$$\int_{0}^{R} e^{-st} dt = \frac{e^{-st}}{-s} \bigg|_{t=0}^{t=R} = -\frac{1}{s} [e^{-sR} - 1] = \frac{1 - e^{-sR}}{s}$$

Taking the limit as $R \to \infty$ gives:

$$L\{1\} = \lim_{R \to \infty} \frac{1 - e^{-sR}}{s} = \frac{1}{s}$$

Example Find the Laplace Transform of $f(t) = e^{2t}$

$$\begin{split} L\{e^{2t}\} &= \int_0^\infty e^{2t} e^{-st} \, dt = \int_0^\infty e^{-(s-2)t} \, dt \\ &= \lim_{R \to \infty} \int_0^R e^{-(s-2)t} \, dt \\ &= \lim_{R \to \infty} \left[\frac{e^{-(s-2)t}}{-(s-2)} \right]_{t=0}^{t=R} \\ &= \lim_{R \to \infty} \left(\frac{e^{-(s-2)R} - e^0}{-(s-2)} \right) = \lim_{R \to \infty} \left(\frac{e^{-(s-2)R} - 1}{-(s-2)} \right) \\ &= \frac{1}{s-2} \quad \text{(since } e^{-(s-2)R} \to 0 \text{ as } R \to \infty \text{ provided } s > 2 \text{)} \end{split}$$

Example Find the Laplace Transform of $f(t) = \cosh(at)$

We have:

$$\begin{split} L\{\cosh(at)\} &= L\left\{\frac{e^{at} + e^{-at}}{2}\right\} \quad \text{from the definition of } \cosh(at) \\ &= \frac{1}{2}L\{e^{at}\} + \frac{1}{2}L\{e^{-at}\} \quad \text{by linearity of the Laplace Transform} \\ &= \frac{1}{2}\left(\frac{1}{s-a}\right) + \frac{1}{2}\left(\frac{1}{s+a}\right) \end{split}$$

Hence:

$$L\{\cosh(at)\} = \frac{s}{s^2 - a^2}$$

Noting that $sinh(at) = (e^{at} - e^{-at})/2$, we can find that:

$$L\{\sinh(at)\} = \frac{a}{(s^2 - a^2)}$$

Example Find the Laplace Transform of $\cos(wt)$ and $\sin(wt)$ where w is a constant.

We first compute the Laplace Transform of e^{iwt} using its definition:

$$L\{e^{iwt}\} = \int_0^\infty e^{-st} e^{iwt} dt = \int_0^\infty e^{-(s-iw)t} dt = \frac{1}{s-iw}, \text{ for } \Re(s) > 0.$$

To express this in terms of real and imaginary parts, we multiply the numerator and denominator by the complex conjugate of the denominator:

$$\frac{1}{s - iw} = \frac{s + iw}{(s - iw)(s + iw)} = \frac{s + iw}{s^2 + w^2}.$$

Since Euler's formula gives:

$$e^{iwt} = \cos(wt) + i\sin(wt),$$

the linearity of the Laplace Transform yields:

$$L\{e^{iwt}\} = L\{\cos(wt)\} + iL\{\sin(wt)\}.$$

Equating the two representations of $L\{e^{iwt}\}$, we have:

$$L\{\cos(wt)\} + iL\{\sin(wt)\} = \frac{s+iw}{s^2 + w^2}.$$

Since the equality must hold for both the real and imaginary parts, we equate them separately:

$$L\{\cos(wt)\} = \frac{s}{s^2 + w^2}$$
 and $L\{\sin(wt)\} = \frac{w}{s^2 + w^2}$

2.3 Linearity of the Laplace Transform

The Laplace Transform is a linear operator, i.e. for any constants a and b:

$$L\{af(t) + bg(t)\} = aL\{f(t)\} + bL\{g(t)\}$$

Proof

$$\begin{split} L\{af(t) + bg(t)\} &= \int_0^\infty e^{-st} (af(t) + bg(t)) \, dt \\ &= a \int_0^\infty e^{-st} f(t) \, dt + b \int_0^\infty e^{-st} g(t) \, dt \\ &= a L\{f(t)\} + b L\{g(t)\} \end{split}$$

2.4 The First Shift Theorem

Theorem First Shift Theorem

If f(t) has a Laplace Transform, F(s), defined for s > k, then e^{at} f(t) has a Laplace Transform, F(s-a) defined for s-a > k and is given by:

$$L\{e^{at}f(t)\} = F(s-a)$$

or, taking the inverse Laplace Transform of both sides:

$$e^{at}f(t) = L^{-1}\{F(s-a)\}\$$

Example Find the Laplace Transform of $e^{at}\cos(wt)$, where a, w are constants.

We know that $L\{\cos(wt)\} = \frac{s}{s^2+w^2}$, so by the First Shift Theorem:

$$L\{e^{at}\cos(wt)\} = \frac{s-a}{(s-a)^2 + w^2}$$
$$= \frac{s-a}{s^2 - 2as + a^2 + w^2}$$

2.5 Existence of the Laplace Transform

Existence of a Laplace transform is not always guaranteed because we're integrating over an infinite integral. For a Laplace Transform to exist for a given s, then the integral must exist:

$$\int_0^\infty e^{-st} f(t) \, dt$$

Theorem Existence Theorem of Laplace Transforms

Suppose f(t) is a piecewise continuous function on $[0, \infty)$. If f(t) satisfies:

$$|f(t)| \le Me^{kt} \ (0 \le t \le \infty)$$

for some constants, M, k, then the Laplace Transform of f(t) exists for s > k. In other words, the Laplace Transform of f(t) exists if f(t) is bounded by an exponential function.

Proof

If s > k, then from the equation above, we have:

$$|F(s)| = \left| \int_0^\infty f(t) e^{-st} \ dt \right| \leq \int_0^\infty |f(t)| e^{-st} \ dt \leq \int_0^\infty M e^{(k-s)t} \ dt = \frac{M}{s-k}$$

2.6 Integration by Parts

Starting with the product rule:

$$\frac{d}{dx}[uv] = u'v + uv',$$

we can express this in differential form as:

$$d(uv) = u \, dv + v \, du.$$

Integrate both sides with respect to x:

$$\int d(uv) = \int_a^b u \, dv + \int_a^b v \, du.$$

The Fundamental Theorem of Calculus tells us that the left-hand side is simply:

$$uv = \int_a^b u \, dv + \int_a^b v \, du.$$

Rearrange to solve for the desired integral:

$$\int_{a}^{b} u \, dv = uv - \int_{a}^{b} v \, du,$$

Example Use integration by parts to find the Laplace of f(t) = t

$$L\{t\} = \int_0^\infty t e^{-st} dt$$

We integrate by parts by setting:

$$u = t$$
, $dv = e^{-st}$, $du = 1$, $v = -\frac{e^{-st}}{s}$

Then intengrating by parts gives:

$$L\{t\} = \left[-\frac{te^{-st}}{s} \right]_0^\infty + \frac{1}{s} \int_0^\infty e^{-st} dt$$
$$= 0 + \frac{1}{s} \left[-\frac{e^{-st}}{s} \right]_0^\infty$$

Hence:

$$L\{t\} = \frac{1}{s^2}$$

Example Use integration by parts to find the Laplace of $f(t) = \cos(t)$

Let:

$$u = e^{-st}$$
, $du = -se^{-st}$, $dv = \cos(t)$, $v = \sin(t)$

Then:

$$\int_{0}^{\infty} e^{-st} \cos(t) \ dt = \left[e^{-st} \sin(t) \right]_{0}^{\infty} + \int_{0}^{\infty} \sin(t) \cdot s e^{-st} dt = 0 + s \int_{0}^{\infty} e^{-st} \sin(t) dt$$

Considering the sin part:

$$u = e^{-st}$$
, $du = -se^{-st}$, $dv = \sin(t)$, $v = -\cos(t)$

$$\int_0^\infty e^{-st} \sin(t) \ dt = 1 - s \int_0^\infty e^{-st} \cos(t) \ dt$$

Substituting this back into the original integral gives:

$$\int_0^\infty e^{-st} \cos(t) \ dt = 1 - s \int_0^\infty e^{-st} \cos(t) \ dt = s - s^2 \int_0^\infty e^{-st} \cos(t) \ dt$$

$$L\{cos(t)\} = \frac{s}{1+s^2}$$

2.7 Table of Laplace Transforms

f(t)	$L\{f(t)\}$
1	$\frac{1}{s}$, $s > 0$
t	$\frac{1}{s^2}, s > 0$
$t^n, n = 0, 1, 2, 3$	$\frac{n!}{s^{n+1}}, s > 0$
e^{at}	$\frac{1}{s-a}$, $s>a$
$\cos(\omega t)$	$\frac{s}{s^2 + \omega^2}$
$\sin(\omega t)$	$\frac{\omega}{s^2 + \omega^2}$
$\cosh(at)$	$\frac{s}{s^2 - a^2}, s > a \ge 0$
$\sinh(at)$	$\frac{a}{s^2 - a^2}, s > a \ge 0$
$e^{at}\cos(\omega t)$	$\frac{s-a}{(s-a)^2+\omega^2}$
$e^{at}\sin(\omega t)$	$\frac{\omega}{(s-a)^2+\omega^2}$
$e^{at}f(t)$	F(s-a)

2.8 Laplace Transforms of Derivatives

Theorem Laplace Transform of Derivatives

Suppose that f(t) and f'(t) are continous and that $|f(t)| \le Me^{kt}$, $\forall t \ge 0$ and for constans M, k. Then the Laplace Transform of f'(t) exists for s > k and is given by:

$$L\left\{\frac{df}{dt}\right\} = sL\left\{f\right\} - f(0) \text{ for } s > k$$

We can easily extend this to higher order derivatives. Assume the Laplace Transform of $f^{(n)}(t)$ exists for s > k and is given by:

$$L\left\{\frac{df^n}{dt^n}\right\} = s^n L\left\{f\right\} - s^{n-1}f(0) - s^{n-2}f'(0) - \dots - f^{(n-1)}(0) \quad \text{for } s > k$$

Example Find $L\{t^2\}$ using the fact $L\{s\} = 1/s$ for s > 0

$$L\{f''\} = s^2 L\{f\} - sf(0) - f'(0)$$

With $f(t) = t^2$. Since f'(t) = 2t, f''(t) = 2, f'(0) = 0, f(0) = 0, gives:

$$L\{2\} = s^2 L\{t^2\} - s \cdot 0 - 0$$

So that:

$$L\{t^2\} = \frac{L\{2\}}{s^2} = \frac{2}{s^3}$$

Example Find $L\{\sin(t)\}$ and $L\{\cos(t)\}$

We again use ther equation:

$$L\{f''\} = s^2 L\{f\} - sf(0) - f'(0)$$

With $f(t) = \sin(t)$, $f'(t) = \cos(t)$, $f''(t) = -\sin(t)$, $\sin(0) = 0$, $\cos(0) = 1$. This gives:

$$L\{-\sin(t)\} = s^2 L\{\sin(t)\} - s \cdot 0 - 1$$

So that:

$$L\{\sin(t)\} = \frac{1}{s^2 + 1}$$

Similarly, we can find:

$$L\{\cos(t)\} = \frac{s}{s^2 + 1}$$

2.9 Solving Initial Value Problems

Consider an example from mechanics: A particle of mass m > 0 lies on rough table, attached to a spring of stiffness k > 0. At any time t > 0, the mass is a distance x(t) from the equillibrium position O, and x(t) is much less than the length of the spring.

The mass is subject to a driving force $F_d(t)$, from Newtons second law, we have:

$$F_d(t) - kx - \gamma \frac{dx}{dt} = m \frac{dx^2}{dt^2}$$

Where $\gamma > 0$ is the **damping constant** and the term $\gamma \frac{dx}{dt}$ models the **fricition due to roughness** of the table, which oppposes direction of motion. The **restoring force** due to the spring is -kx; and always points towards O. The term $m \frac{dx^2}{dt^2}$ is the **acceleration of the mass**. We can rewrite this as:

$$F_d(t) = m\frac{dx^2}{dt^2} + \gamma \frac{dx}{dt} + kx$$

In order to solve this, we also need initial displacement $v_0 = x(0)$ and initial velocity $v_0 = \frac{dx}{dt}(0)$.

Example

$$\frac{dx^2}{dt^2} = 3\frac{dx}{dt} + 2x = 0, \quad x(0) = 0, \quad \frac{dx}{dt}(0) = 1$$

1. Take Laplace of governing equation:

$$L\left\{\frac{dx^2}{dt^2}\right\} = s^2 L\{x\} - sx(0) - x'(0) = s^2 L\{x\} - 1$$

$$L\left\{\frac{dx}{dt}\right\} = sL\{x\} - x(0) = sLx$$

Hence:

$$s^{2}L\{x\} - 1 + 3sL\{x\} + 2L\{x\} = 0$$

This is known as the **subsidary equation**. Rearranging:

$$(s^2 + 3s + 2)L\{x\} = 1$$

2. Solve the subsidary equation:

$$L\{x\} = \frac{1}{s^2 + 3s + 2}$$

3. Find the inverse Laplace Transform:

$$x(t) = L^{-1} \left\{ \frac{1}{s^2 + 3s + 2} \right\} = L^{-1} \left\{ \frac{1}{(s+1)(s+2)} \right\}$$

$$\frac{1}{(s+1)(s+2)} = \frac{A}{s+1} + \frac{B}{s+2} = \frac{A(s+2) + B(s+1)}{(s+1)(s+2)}$$

Hence:

$$A(s+2) + B(s+1) = 1 \rightarrow A = 1, B = -1$$

Thus:

$$x = L^{-1} \left\{ \frac{1}{s+1} - \frac{1}{s+2} \right\} = L^{-1} \left\{ \frac{1}{s+1} \right\} - L^{-1} \left\{ \frac{1}{s+2} \right\} = e^{-t} - e^{-2t}$$

3 Exam Paper

Answer \mathbf{ONE} question from section A and \mathbf{TWO} questions from section B.

3.1 Common Questions (Section A)

- Prove First Shift Theorem
- Prove Second Shift Theorem
- Convolution theorem to find the inverse transform
- Initial Value Problems