Algoritmos y Complejidad Algoritmos greedy

Pablo R. Fillottrani

Depto. Ciencias e Ingeniería de la Computación Universidad Nacional del Sur

Primer Cuatrimestre 2017

Algoritmos y Complejidad

Generalidades

Generalidades

- ▶ los algoritmos greedy son algoritmos que toman decisiones de corto alcance, basadas en información inmediatamente disponible, sin importar consecuencias futuras.
- ▶ se usan generalmente para resolver problemas de optimización.
- ▶ en general son algoritmos eficientes y fáciles de implementar, si es que funcionan (no siempre son correctos!!).

Algoritmos greedy

Generalidades

Problema de la mochila

Scheduling de procesos

Códigos de Huffman

Algoritmos y Complejidad

Generalidades

Ejemplo

Problema: Dado un conjunto de monedas, ¿cuál es la mínima cantidad de monedas necesarias para pagar *n* centavos?. Solución *greedy*: Dar en lo posible monedas de denominación grande.

Algoritmos y Complejidad

Generalidades

Características generales de todo algoritmo *greedy*

- ▶ se dispone de un conjunto C de candidatos de los cuales se debe seleccionar un subconjunto que optimice alguna propiedad.
- a medida que avanza el algoritmo, se van seleccionando candidatos y se los coloca en el conjunto S de candidatos aceptados, o R de candidatos rechazados.

Algoritmos y Complejidad

Generalidades

Esquema general para un algortimo greedy

```
C ::= conjunto de candidatos; S ::= {}
WHILE (C != {} and ! esSolución(S))
  x ::= selección(C); C ::= C - \{x\}
   IF esViable(S + \{x\})
      S := S + \{x\}
   ENDIF
ENDWHILE
IF esSolución(S)
   RETURN S
ELSE
   RETURN "No encontré soluciones"
ENDIF
```


Características generales de todo algoritmo *greedy*

- ▶ existe una función esSolución () que determina si un conjunto de candidatos es una solución, no necesariamente optimal, del problema.
- existe una función esViable () que determina si un conjunto de candidatos es posible de ser extendido para formar una solución, no necesariamente optimal, del problema.
- ▶ existe una función selección () que devuelve el candidato más promisorio del conjunto de aquellos que todavía no han sido considerados.

Algoritmos y Complejidad

Problema de la mochila

Problema de la mochila

Problema: se tienen n objetos (cada objeto i tiene un peso w_i y un valor v_i); y una mochila con capacidad máxima de W. Se pretende encontrar la manera de cargar la mochila de forma que se maximice el valor de lo transportado y se respete su capacidad máxima.

▶ se quiere encontrar valores x_i , $0 \le x_i \le 1$ de forma que

$$\text{maximice } \sum_{i=1}^{n} x_i v_i$$

$$\text{maximice } \sum_{i=1}^{n} x_i v_i \qquad \qquad \text{siempre que } \sum_{i=1}^{n} x_i w_i \leq W$$

Problema de la mochila

- ▶ claramente, si $\sum_{i=1}^{n} w_i \le W$ entonces $x_i = 1$ es optimal.
- ▶ los casos interesantes aparecen cuando $\sum_{i=1}^{n} w_i > W$.
- ▶ se puede implementar un algoritmo *greedy* con diversas estrategias de selección.

Algoritmos y Complejidad

Problema de la mochila

Algoritmo *greedy*

```
FOR i ::=1 TO n
    x[i] ::= 0
ENDFOR
peso ::= 0
WHILE peso<W
    i ::= seleccion() //no definido cómo
IF peso+w[i]<W
     x[i] ::= 1; peso ::= peso+w[i]
ELSE
    x[i] ::= (W-peso)/w[i]; peso ::= W
ENDIF
ENDWHILE; RETURN x</pre>
```


Algoritmos y Complejidad

Problema de la mochila

Algoritmo greedy

- datos de entrada: arreglos w [1..n], y v [1..n] contienen con los pesos y valores de los objetos.
- → datos de salida: arreglo x [1..n] con la porción de cada elemento que se carga en la mochila.
- ▶ x[i]=1 significa que el objeto i se lleva completo; x[i]=0 que nada se lleva del objeto i; yx[i]=r, 0 < r < 1 significa que el elemento i se lleva fraccionado.

Algoritmos y Complejidad

Problema de la mochila

- la función selección () no está especificada.
- para definirla se pueden considerar tres estrategias diferentes:
 - 1. seleccionar el elemento de mayor valor
 - 2. seleccionar el elemento de menor peso
 - 3. seleccionar el elemento que tenga mayor valor por unidad de peso

Ejemplo de aplicación

▶ sea n = 5, W = 100 y objetos con los siguientes pesos y valores:

	obj. 1	obj. 2	obj. 3	obj. 4	obj. 5
W	10	20	30	40	50
V	20	30	66	40	60

las soluciones con las tres estrategias de selección son:

	obj. 1	obj. 2	obj. 3	obj. 4	obj. 5	Valor
Max v _i	0	0	0 1	0 0,5	0 1	146
Min <i>w_i</i>	0 1	0 1	0 1	0 1	0	156
$\text{Max } v_i/w_i$	0 1	0 1	0 1	0	0 0,8	164

Algoritmos y Complejidad

Problema de la mochila

Correctitud

Teorema 1 (Correctitud del algoritmo greedy para la mochila)

El algoritmo greedy para el problema de la mochila con selección por mayor v_i/w_i siempre encuentra una solución optimal.

Prueba.

Sea $X=(x_1,x_2,\ldots,x_n)$ la solución que encuentra el algoritmo, y $Y=(y_1,y_2,\ldots,y_n)$ cualquier otra solución viable (o sea tal que $\sum_{i=1}^n y_i w_i \leq W$). Se prueba que $valor(X)-valor(Y) \geq 0$, luego X es una solución optimal.

Problema de la mochila

- el ejemplo anterior demuestra que las dos primeras estrategias resultan en algoritmos que no son correctos.
- ¿es correcta la tercer estrategia?

Algoritmos y Complejidad

Problema de la mochila

Análisis del tiempo de ejecución

- ▶ si se ordenan los elementos antes del ciclo *greedy*, la selección en cada iteración puede hacerse en tiempo constante y el algoritmo es entonces de $\Theta(n \log n)$, determinado por el ordenamiento.
- ▶ si se usa un *heap* ordenado por la estrategia de selección, el tiempo de inicialización cae a $\Theta(n)$, pero cada selección obliga a mantener la estructura (*heapify*) por lo que el algoritmo también resulta de $\Theta(n\log n)$.
- ▶ ¿Cuál de estas dos implementaciones es más conveniente?

Definición del problema

- ▶ se tiene un servidor (que puede ser un procesador, un cajero en un banco, un surtidor de nafta, etc.) que tiene *n* clientes que servir.
- ▶ el tiempo de servicio requerido por cada cliente es conocido previamente: t_i , $1 \le i \le n$.
- <u>Problema:</u> SCHEDULING se quiere encontrar una secuencia de atención al cliente que minimice el tiempo total de espera de los clientes:

Tiempo de espera =
$$\sum_{i=1}^{n}$$
 (tiempo del cliente i en el sistema)

Algoritmos y Complejidad

Scheduling de procesos

Algoritmo greedy

el ejemplo anterior sugiere un algoritmo greedy en donde la selección se hace en base el menor tiempo de servicio restante siempre devuelve un algoritmo optimal.

Teorema 2 (Correctitud del algoritmo greedy para scheduling) El algoritmo greedy para SCHEDULING es correcto.

Prueba.

ejercicio Ayuda: se prueba por el absurdo, suponiendo que existe una mejor solución que la encontrada por el algoritmo greedy, y se llega a una contradicción.

Algoritmos y Complejidad

Scheduling de procesos

Ejemplo

▶ tres clientes numerados 1,2,3 con tiempos $t_1 = 5, t_2 = 10, t_3 = 3$

Scheduling		Tiempo de espera	
	123:	5+ (5+10) + (5+10+3) = 38	
	132:	5+(5+3)+(5+3+10)=31	
	213:	10+(10+5)+(10+5+3)=43	
	231:	10+(10+3)+(10+3+5)=41	
	312:	3+(3+5)+(3+5+10)=29	\leftarrow optimal
	321:	3+(3+10)+(3+10+5)=34	

Algoritmos y Complejidad

Scheduling de procesos

► Implementación:

- se ordenan los procesos por orden creciente de tiempo de servicio, y se implementa el ciclo greedy.
- como el cuerpo del ciclo *greedy* es de $\Theta(1)$, y el ciclo no se repite más de n veces, el tiempo del algoritmo en general estará dominado por el tiempo del ordenamiento: $\Theta(n \log n)$.

(ejercicio)

existen numerosas variantes de este problema (con más de un procesos, con límites a la espera de los procesos, con ganancia por la ejecución del proceso antes del límite, etc.), la mayoría de las cuales tienen algoritmos greedy correctos.

Definición del problema

- ▶ los códigos de Huffman se usan para comprimir información eficientemente, logrando una reducción del 20 % al 90 % (dependiendo de los información original)
- la información es representada como una secuencia de caracteres, donde cada caracter tiene una frecuencia conocida
- suponemos que cada caracter es representado en binario

Algoritmos y Complejidad

Códigos de Huffman

Definición del problema

- no todas las codificaciones variables son aceptables. Para que la decodificación no produzca ambigüedades, se debe asegurar que ningún codigo debe ser prefijo de otro
- se puede demostrar siempre se puede alcanzar una compresión optimal usando estos códigos prefijos
- es muy fácil representar los códigos prefijos con un árbol binario en donde cada camino representa el código de la hoja
- ▶ toda codificación optimal es representada por un árbol completo, donde cada nodo interno tiene exactamente dos hijos
- esto significa que si C son los caracteres, se necesita un árbol binario de |C| hojas y |C|-1 nodos internos (ejercicio)

Ejemplo

- ▶ se tienen 6 caracteres: a,..., f. Si se quiere codificar información escrita en estos caracteres con códigos de longitud fija se necesitan [log₂6] = 3 bits por código.
- un archivo de 1.000 caracteres necesitará 3.000 bits
- si se permiten códigos de longitud variable, se pueden asignar códigos cortos a caracteres frecuentes y códigos más largos a caracteres poco frecuentes. Es necesario conocer de antemano la frecuencia con la que aparecen los caracteres
- por ejemplo:

	а	b	C	d	е	f
Frecuencia (%)	45	13	12	16	9	5
Código variable	0	101	100	111	1101	1100

▶ sólo $(45 \cdot 1 + 13 \cdot 3 + 12 \cdot 3 + 16 \cdot 3 + 9 \cdot 4 + 5 \cdot 4) \cdot 10 = 2,200$ son necesarios con esta codificación

Algoritmos y Complejidad

Códigos de Huffman

Definición del problema

- ▶ sea para cada $c \in C$, c.freq la frecuencia de c. Si usamos una codificación representada por un árbol T, entonces sea $\delta_T(c)$ la profundidad en T de la hoja con caracter c, o lo que es lo mismo la cantidad de dígitos de la codificación de c
- ightharpoonup el número de bits necesarios para codificar usando T es

$$B(T) = \sum_{c \in C} c. \textit{freq} * \delta_T(c)$$

- ▶ tomaremos a *B*(*T*) como el costo de la codificación *T*
- el problema algorítmico HUFFMAN consiste entonces en dada una serie de caracteres C con sus frecuencias, encontrar una codificación T optimal en B(T)

Códigos de Huffman

Algoritmo de codificación de Huffman

► Huffman diseñó un algoritmo *greedy* de $O(n \log n)$ (ejercicio) basado en la E.D. heap

```
n ::= |C|; Q.construirHeap(C)
FOR i ::=1 TO n
    x ::= Q.extraerMin(); y ::= Q.extraerMin()
    z ::= nuevo Nodo
    z.left ::= x; z.right ::= y
    z.freq ::= x.freq+y.freq
    Q.insertar(z)
ENDFOR
RETURN O
```


Algoritmos y Complejidad

Códigos de Huffman

Correctitud

▶ sea C' el alfabeto basado en C que se obtiene eliminando x e y, y agregando un nuevo caracter z tal que z.freq = x.freq + y.freq.

Lema 4

Sea T' una codificación optimal para C'. Entonces se puede obtener una codificación optimal T para C reemplazando en T' el nodo hoja de z por un nodo interno con dos hijos x e y.

Prueba.

Se muestra por contradicción que a partir de T'' obtenido de aplicar el lema 3 a una codificación mejor que T en C, se obtiene una codificación mejor que T'.

Algoritmos y Complejidad

Códigos de Huffman

Correctitud

▶ sea C un alfabeto en donde cada $c \in C$ tiene frecuencia c.freq; y sean $x, y \in C$ los caracteres con menores frecuencias en C.

Lema 3

C tiene una codificación prefija optimal en la cual x e y son los hermanos de máxima profundidad.

Prueba.

Sea T una codificación optimal y $a,b \in C$ los caracteres hermanos de máxima profundidad en T. Suponemos $a.freq \leq b.freq$ y $x.freq \leq y.freq$, luego $x.freq \leq a.freq$ y $y.freq \leq b.freq$. Construimos T' intercambiando en T a con x; y T'' intercambiando en T' b con y. Se muestra $B(T) - B(T') \geq 0$ y $B(T') - B(T'') \geq 0$. Como T exoptimal, entonces T'' también.

Algoritmos y Complejidad

Códigos de Huffman

Correctitud

Teorema 5

El algoritmo de Huffman produce una codificación optimal.

Prueba.

Por inducción en las iteraciones aplicando el lema 4.

