Mathematik für Biologie

Uni Bern

HS 2015

Contents

1	Erste Woche			
	1.1	Lineares Wachstum	1	
	1.2	Exponentielles Wachstum	3	
2	Zweite Woche			
	2.1	Wachstumsrate	5	
	2.2	Kontinuierliche Wachstumsrate	6	
	2.3	Logarithmisches Wachstum	8	
3	Dritte Woche			
	3.1	Logarithmisches Wachstum (vort.)	11	
		Logistisches Wachstum		
4	Vierte Woche			
	4.1	Ernte und Jagd	17	
		Diskretisierung	19	

1 Erste Woche

1.1 Lineares Wachstum

Bsp: Ein Baum wächst 20cm pro Jahr.

rekursiv (indirekte Berechnung): H(x) = H(x-1) + 20

explizit (direkte Berechnung): $H(x) = 20 \cdot x$

 $x, n \in \mathbb{N}$, wobei H(x) die Höhe des Baums nach x Jahren in cm.

 $H_n = H(n) = 20 \cdot n$

Allgemeines diskretes lineares Wachstums Modell (WM):

rekursiv: $N_n = N_{n-1} + a$

explizit: $N_n = N_0 + a \cdot n$

 $a \in \mathbb{R}, n \in \mathbb{N}$

a > 0: N_n zunehmend

a < 0: N_n abnehmend

a = 0: N_n konstant

 $N: \mathbb{N} \to \mathbb{R}$ Folge (ist eine Funktion / Abbildung)

Vom rekursiven zum expliziten:

$$N_{n+1} = N_n + 1a = N_{n-1} + a + a = N_{n-1} + 2a = N_{n-2} + a + 2a = N_{n-2} + 3a = \dots = N_0 + (n+1)a$$

Beispiel (Dolbearsche Gesetz)

$$T_n = 1/7n + 40/9$$

 T_n : Temperatur gemessen in °C

n: die Anzahl der Zirplaute in einer Minute

$$n = 7$$
: $T = \dots = 5.\overline{4}$

$$n = 14$$
: $T = \dots = 6.\overline{4}$

...

$$n = 105$$
: $T = \dots = 19.\overline{4}$

Bereich: 5°C - 30°C

Beispiel: Gewicht einer Insektenlarve zu jeder vollen Stunde:

$$G(n) = 0.01n + 1, n \in \mathbb{N}$$

$$G(t) = 0.01t + 1, t \in \mathbb{R} +$$

Allgemeines kontinuierliches lineares Wachstums Modell (WM):

$$N_t = N_0 + t \cdot a, t \in \mathbb{R} +$$

Wachstumsrate (Wachstum relativ zur Gesamtgrösse)

diskret:
$$r_n = \frac{N_{n+1} - N_n}{N_n} = \frac{a}{N_n} = \frac{a}{N_0 + n \cdot a}$$

$$N_{n+1} - N_n = \frac{N_{n+1} - N_n}{(n+1) - n}$$

kontinuierlich:
$$r = \frac{N'(t)}{N(t)} = \frac{(N_0 + t \cdot a)'}{N_0 + t \cdot a} = \frac{a}{N_0 + t \cdot a}, t \in \mathbb{R} +$$

$$\tfrac{N(t+\Delta t)-N(t)}{(t+\Delta t)-t}$$

1.2 Exponentielles Wachstum

Beispiel (Zellteilung)

Eine Zelle teile sich zweimal pro Stunde

N(n): die Anzahl Zellen nach n Stunden

$$N_0 = 1, N_1 = 4, N_2 = 16, N_3 = 64, \dots$$

rekursiv: $N_n = 4N_{n-1}, n = 1, 2, 3, 4, ...$

explizit: $N_n = 4(4N_{n-2}) = 4^2N_{n-2} = \dots = 4^nN_0 = 4^n$

Allgemeines diskretes exponentielles Wachstums Modell (WM):

rekursiv: $N_n = b \cdot N_{n-1}, b \in \mathbb{R}+$

0 < b < 1: N_n abnehmend

b > 1: N_n zunehmend

b=1: N_n konstant

 $b=\frac{N_n}{N_{n-1}}\frac{\leftrightarrow y}{\leftrightarrow x}$ Gleichung einer Gerade durch den Ursprung mit Steigung b

explizit: $N_n = b^n \cdot N_0, b \in \mathbb{R}+$

$$log(N_n) = log(b^n \cdot N_0)$$

$$log(N_n) = log(b^n) + log(N_0)$$

$$log(N_n) = n \cdot log(b) + log(N_0)$$

In der log Skala erscheint exponentielles Wachstum linear

Zellteilung:

$$log(N_n) = n \cdot log(4) + log(1)$$

$$log(N_n) = n \cdot log(4)$$

2 Zweite Woche

2.1 Wachstumsrate

Diskrete Wachstumsrate

$$r_n = \frac{N_{n+1} - N_n}{N_n} = \frac{\frac{N_{n+1} - N_n}{n+1-n}}{N_n}$$

Im diskreten exponentiellen Modell:

$$r_n = \frac{b \cdot N_n - N_n}{N_n} = b - 1$$
 konstant

(diskretes exponentielles Wachstum $\Rightarrow r_n$ konstant)

<u>Frage</u>: r_n konstant $\stackrel{?}{\Rightarrow} N_n$ wächst exponentiell

$$r_n$$
 konst. $\Rightarrow r_n = c \Rightarrow \frac{N_{n+1} - N_n}{N_n} = c \Rightarrow N_{n+1} - N_n = c \cdot N_n \Rightarrow N_{n+1} = (c+1)N_n$ (diskr. exp. W.)

<u>Fazit</u>: Ein diskretes exponentielles WM ist durch eine konstante Wachstumsrate charakterisiert.

Bemerkungen

- b-1>0 exp. Wachstum
- b-1 < 0 exp. Zerfall

• b-1=0 N_n bleibt konstant

2.2 Kontinuierliche Wachstumsrate

 $N: \mathbb{R}+ \to \mathbb{R}$ reele Funktion N(t)

durchschnittliche Änderung pro Zeiteinheit im Bereich von t bis $t+\Delta t$, wobei $\Delta t>0$: $\frac{N(t+\Delta t)-N(t)}{\Delta t}$

momentane Wachstumsgeschwindigkeit zum Zeitpunkt t

$$\lim_{\Delta t \to 0} \frac{N(t+\Delta t)-N(t)}{\Delta t} = N'(t)$$

konkay? konvex?

Kontinuierliche Wachstumsrate

$$r(t) = \frac{N'(t)}{N(t)}$$

kont. exp. WM

Konstante Wachstumsrate

$$\frac{N'(t)}{N(t)} = c$$

Differentialgleichung (DG): gesucht ist die Funktion N(t). In dieser Gleichung finden wir auch die Ableitung N'(t) von N(t)

$$N'(t) = c \cdot N(t)$$

 $N(t) = e^{c \cdot t}$ ist eine Lösung der DG.

Überprüfung: $N'(t) = (e^{ct})' = c \cdot e^{ct} = c \cdot N(t)$

Anfangsbedingung: $N(0) = N_0$

$$N(t) = e^{ct} \cdot N_0$$

$$t = 0: 1 \cdot N_0 = N_0 \checkmark$$

$$N'(t) = (N_0 \cdot e^{ct})' = c \cdot (N_0 \cdot e^{ct}) = c \cdot N(t) \checkmark$$

ist eine (der vielen??) Lösung der DG mit Anfangsbedingung $N(0) = N_0$

Kontinuierliches exponentielles Wachstumsmodell

$$\frac{N'(t)}{N(t)} = r \qquad \text{DG}$$

 $N(t) = e^{rt}$ ist eine Lösung der DG

 $N(0) = N_0$ Anfangsbedingung

 $N(t) = N_0 \cdot e^{rt}$ ist eine Lösung der DG mit Anfangsbedingung $N(0) = N_0$

Konvex: Steigung nimmt zu oder $\underbrace{N''(t)}_{=r^2 \cdot N_0 \cdot e^{rt}} > 0$

Eindeutig? Antwort:

Sei X(t) eine beliebige Lösung der DG

D.h.
$$\frac{X'(t)}{X(t)} = r \Leftrightarrow X'(t) = r \cdot X(t)$$

$$N'(t) = r \cdot N(t)$$

$$(\frac{X(t)}{e^{rt}})' = (e^{-rt} \cdot X(t))' = (e^{-rt})' \cdot X(t) + e^{-rt} \cdot (X(t))' = -r \cdot e^{-rt} \cdot X(t) + e^{-rt} \cdot X'(t) = -r \cdot e^{-rt} \cdot X(t) + e^{-rt} \cdot r \cdot X(t) = 0$$

d.h. $\frac{X(t)}{e^{rt}} = c \Leftrightarrow X(t) = c \cdot e^{rt}$ die exponentielle Funktion ist eindeutig Anfangsbedingung $X(0) = N_0$

$$c \cdot e^{r \cdot 0} = N_0$$

$$c = N_0$$

d.h. $X(t) = N_0 \cdot e^{rt}$ ist eine eindeutige Lösung der DG $X'(t) = r \cdot X(t)$ mit A.B. $X(0) = N_0$

2.3 Logarithmisches Wachstum

$$\frac{55-50}{50} = \frac{5}{50} = 0.1 = 10\%$$

$$\frac{5005 - 5000}{5000} = \frac{5}{5000} = 0.001 = 0.1\%$$

Ein relativer Gewichtsunterschied von $\sim 2\%$ eines in einer ruhenden Hand gehaltenen Gegenstands wird erkannt. D.h. bei 50gr ein Gewichtsunterschied von 1gr.

Gesetz von Weber und Fechner

(Beziehung zwischen Stimulus und Wahrnehmung)

Unsere Wahrnehmung einer Intensitätsänderung ist proportional zur relativen Änderung des Stimulus.

Mathematisch formuliert:

S die Intensität des Stimulus

 ΔS die Änderung dieser Intensität

W(S) die (von S abh.) Stärke der Wahrnehmung

$$\Delta W(S) = K \cdot \frac{\Delta S}{S}$$
, K Konstante

umgeformt:
$$\frac{\Delta W(S)}{\Delta S} = \frac{K}{S}$$

für klein werd. ΔS : $\lim_{\Delta S \to 0} \frac{\Delta W(S)}{\Delta S} = W'(S) = \frac{K}{S}$

gesucht ist W(S). In der Gleichung taucht W'(S) auf \to D.G.

$$\int K \cdot \frac{1}{S} dS = K \cdot \int \frac{1}{S} dS = K \cdot \ln(S) + c$$
$$(K \cdot \ln(S))' = K \cdot \frac{1}{S} = \frac{K}{S}$$

Definition der Ableitung:

$$W'(S) = \lim_{\Delta S \to 0} \frac{W(S + \Delta S) - W(S)}{\Delta S} = \lim_{\Delta S \to 0} \frac{\Delta W(S)}{\Delta S}$$

$$W(S) = K \cdot ln(S) + c$$

 S_0 : die grösste Intensitätsgrenze, bei der keine Wahrnehmung möglich ist.

$$W(S_0) = K \cdot ln(S_0) + c = 0$$

$$c = -K \cdot ln(S_0)$$

$$W(S) = K \cdot ln(S) - K \cdot ln(S_0)$$

$$W(S) = K \cdot ln(\frac{S}{S_0})$$

$$W(S) = a \cdot ln(b \cdot S), a, b \text{ konst.}$$

Beispiel:

$$a = 1, b = 2$$

$$W(S) = \ln(2S)$$

$$S = 1/2$$

$$W(S) = \ln(1) = 0$$

Darstellung:

$$W(S) = a \cdot \ln(bS) = a \cdot (\ln(b) + \ln(S)) = a \cdot \ln(b) + a \cdot \ln(S)$$
$$\log_{10}(S) = \frac{\ln(S)}{\ln(10)}$$

 $\underbrace{a \cdot ln(b)}_{\substack{\text{konst.} \\ y\text{-Achsenabschnitt}}} + \underbrace{a \cdot ln(10)}_{\substack{\text{Steigung}}} \cdot log_{10}(S)$

3 Dritte Woche

3.1 Logarithmisches Wachstum (vort.)

$$W(S) = a \cdot ln(b \cdot S), a, b \text{ konst.}$$

$$a = 1, b = 2$$
: $W(S) = ln(2S)$

$$(ln = log_e, e \simeq 2.7 \text{ die Eulersche Zahl})$$

$$ln(x) = y \Leftrightarrow e^y = x$$

$$W(1) = ln(2) \simeq 0.69$$

$$W(2000) = ln(4000) \simeq 8.3$$

$$W(10000) = ln(20000) \simeq 9.9$$

$$W(S) = a \cdot ln(b) + a \cdot ln(S) = \underbrace{a \cdot ln(b)}_{\text{konst.}} + \underbrace{a \cdot ln(10)}_{\text{Steigung}} \cdot log_{10}(S)$$

$$W(S) = ln(2) + ln(10) \cdot log_{10}(S) \simeq 0.69 + 2.3 \cdot log_{10}(S)$$

$$ln(S) \stackrel{?}{=} ln(10) \cdot log_{10}(S)$$

Hinweis:
$$10^{\log_{10}(S)} = S$$

$$ln(10^{log_{10}(S)}) = ln(S)$$

$$log_{10}(S) \cdot ln(10) = ln(S)$$

Eindeutigkeit der Lösung der DG $W'(S) = \frac{K}{S}$ mit A.B. $W(S_0) = 0$ Wir haben schon die Lösung $W(S) = k \cdot ln(\frac{S}{S_0})$ gefunden Sei X(S) eine beliebige Lösung, d.h. $X'(S) = \frac{K}{S}$ und $X(S_0) = 0$ $W'(S) - X'(S) = 0 \Leftrightarrow W(S) - X(S) = c$ für eine Konstante c (1) für $S = S_0$: $W(S_0) - X(S_0) = c \Leftrightarrow 0 - 0 = c \Leftrightarrow c = 0$ (2) $\stackrel{(1)(2)}{\Rightarrow} X(S) = W(S)$

3.2 Logistisches Wachstum

exp. Wachstum
$$\frac{N'(t)}{N(t)} = \underbrace{r}_{\text{konst.}} + \underbrace{a}_{\text{neg. konst.}} \cdot N(t)$$
 (1)

Kommt das Wachstum zum Stehen?

$$0 = r + a \cdot \underbrace{K}_{\text{obere Schranke}}$$

d.h.:
$$a = \frac{-r}{K}$$
 (2)

$$\stackrel{(1)(2)}{\Rightarrow} \frac{N'(t)}{N(t)} = r - \frac{r}{K} \cdot N(t) = r(1 - \frac{N(t)}{K})$$

$$\frac{N'(t)}{N(t)} = r(1 - \frac{N(t)}{K}) \text{ DG}, N(t) =?$$

exp. WM $\frac{N'(t)}{N(t)} = r$, eine obere Schranke K einführen

$$\frac{N'(t)}{N(t)} = r + \underbrace{a}_{\text{neg. konst.}} \cdot N(t)$$

$$\frac{N'(t)}{N(t)} = r - \frac{r}{K} \cdot N(t) = r(1 - \frac{N(t)}{K})$$
 DG (1)

A.B.
$$N(0) = N_0$$

Qualitative Analyse von
$$N'(t) = r \cdot N(t) \cdot (1 - \frac{N(t)}{K})$$
 mit $N_0 < K$

Anfangsphase: N(t) ist relativ klein im Vergleich zu K dann ist $\frac{N^2(t)}{K}$ relativ klein

d.h.
$$N'(t) = r \cdot N(t) - r \cdot \frac{N^2(t)}{K} \simeq r \cdot N(t)$$

d.h. N(t) wächst ungefähr exponentiell

z.B.
$$N_0 = 10, K = 10000$$

Mittlere Wachstumsphase der Term $\frac{N^2(t)}{K}$ ist wichtiger. Das Wachstum wird abgebremst aber die Population wächst immer noch.

$$N'(t) = \underbrace{r \cdot N(t)}_{>0} \underbrace{1 - \frac{N(t)}{K}}_{>0}$$

Abflachungsphase N(t) nähert sich der Zahl K an und das Wachstum kommt fast zum stehen.

$$\underbrace{N'(t)}_{\simeq 0} = r \cdot N(t)(1 - \underbrace{\frac{N(t)}{K}}_{\simeq 1})$$

Behauptung: K ist die kleinste obere Schranke für N(t)

Begründung

1. K ist eine obere Schranke

Es gibt kein \bar{t} so dass N(t) zu diesem Zeitpunkt \bar{t} über K hinauswächst Gäbe es einen solchen Zeitpunkt \bar{t} , dann würde Folgendes gelten:

$$N(\bar{t}) = K$$

$$N'(\bar{t}) > 0$$

$$N'(\bar{t}) = r \cdot K(1 - \frac{K}{K}) = 0$$
 Wiederspruch

Unsere Annahme ist falsch. Es gibt keinen solchen Zeitpunkt.

d.h. K ist eine obere Schranke für N(t)

2. K ist die kleinste obere Schranke

Solange
$$0 < N(t) < K$$
 gilt $N'(t) > 0$

Gleichgewichtszustände

$$N'(t) = 0 \Leftrightarrow r \cdot N(t)(1 - \frac{N(t)}{K}) = 0$$

a.
$$N(t) = 0$$

b.
$$N(t) = K$$

d.h. falls $N_0 = 0$ oder $N_0 = K$ dann bleibt N(t) konstant.

Explizite Lösung von (1)

Gesucht ist N(t)

Ansatz:
$$N(t) = \frac{e^{rt}}{f(t)}$$

$$N'(t) = \frac{r \cdot e^{rt} \cdot f(t) - e^{rt} \cdot f'(t)}{(f(t))^2}$$

$$\stackrel{(1)}{=} r \cdot \frac{e^{rt}}{f(t)} (1 - \frac{e^{rt}}{f(t) \cdot K}) = r \cdot N(t) (1 - \frac{N(t)}{K})$$

$$\Leftrightarrow r \cdot e^{rt} \cdot f(t) - e^{rt} \cdot f'(t) = r \cdot e^{rt} \cdot f(t) (1 - \frac{e^{rt}}{k \cdot f(t)})$$

$$\Leftrightarrow r \cdot e^{rt} \cdot f(t) - e^{rt} \cdot f'(t) = r \cdot e^{rt} \cdot f(t) - r \cdot \frac{(e^{rt})^2}{K}$$

$$\Leftrightarrow f'(t) = \frac{r \cdot e^{rt}}{K}$$

$$f(t) = \frac{1}{K}e^{rt} + c$$

(überpr.
$$f'(t) = \frac{1}{K} \cdot r \cdot e^{rt} = \frac{r \cdot e^{rt}}{K} \checkmark$$
)

$$N(t) = \frac{e^{rt}}{\frac{1}{K} \cdot e^{rt} + c}$$
 (2)

$$\Leftrightarrow \frac{1}{N_0} = \frac{1}{K} + c$$

$$N(0) = \frac{1}{\frac{1}{K} + c} = N_0$$

$$\Leftrightarrow c = \frac{1}{N_0} - \frac{1}{K} = \frac{K - N_0}{K \cdot N_0}$$
 (3)

$$\overset{(2)(3)}{\Rightarrow} N(t) = \frac{e^{rt}}{\frac{1}{K} \cdot e^{rt} + \frac{K - N_0}{K \cdot N_0}}$$

$$\Leftrightarrow N(t) = \frac{K \cdot N_0 \cdot e^{rt}}{N_0 \cdot e^{rt} + K - N_0}$$
 logistisches WM

Graphische Darstellung

$$t = 0$$
: $N(0) = \frac{K \cdot N_0 \cdot 1}{N_0 \cdot 1 + K - N_0} = \frac{K \cdot N_0}{K} = N_0 \checkmark$

$$\lim_{t\to\infty} N(t) = \lim_{t\to\infty} \frac{K \cdot N_0 \cdot e^{rt}}{N_0 \cdot e^{rt} + K - N_0} = \lim_{t\to\infty} \frac{K \cdot N_0}{N_0 + \underbrace{\left(\frac{K - N_0}{e^{rt} \to \infty}\right)}^{\to 0}} = \frac{K \cdot N_0}{N_0 + \underbrace{\left(\frac{K - N_0}{e^{rt} \to \infty}\right)}^{\to 0}} = \frac{K \cdot N_0}{N_0 + \underbrace{\left(\frac{K - N_0}{e^{rt} \to \infty}\right)}^{\to 0}} = \frac{K \cdot N_0}{N_0 + \underbrace{\left(\frac{K - N_0}{e^{rt} \to \infty}\right)}^{\to 0}} = \frac{K \cdot N_0}{N_0 + \underbrace{\left(\frac{K - N_0}{e^{rt} \to \infty}\right)}^{\to 0}} = \frac{K \cdot N_0}{N_0 + \underbrace{\left(\frac{K - N_0}{e^{rt} \to \infty}\right)}^{\to 0}} = \frac{K \cdot N_0}{N_0 + \underbrace{\left(\frac{K - N_0}{e^{rt} \to \infty}\right)}^{\to 0}} = \frac{K \cdot N_0}{N_0 + \underbrace{\left(\frac{K - N_0}{e^{rt} \to \infty}\right)}^{\to 0}} = \frac{K \cdot N_0}{N_0 + \underbrace{\left(\frac{K - N_0}{e^{rt} \to \infty}\right)}^{\to 0}} = \frac{K \cdot N_0}{N_0 + \underbrace{\left(\frac{K - N_0}{e^{rt} \to \infty}\right)}^{\to 0}} = \frac{K \cdot N_0}{N_0 + \underbrace{\left(\frac{K - N_0}{e^{rt} \to \infty}\right)}^{\to 0}} = \frac{K \cdot N_0}{N_0 + \underbrace{\left(\frac{K - N_0}{e^{rt} \to \infty}\right)}^{\to 0}} = \frac{K \cdot N_0}{N_0 + \underbrace{\left(\frac{K - N_0}{e^{rt} \to \infty}\right)}^{\to 0}} = \frac{K \cdot N_0}{N_0 + \underbrace{\left(\frac{K - N_0}{e^{rt} \to \infty}\right)}^{\to 0}} = \frac{K \cdot N_0}{N_0 + \underbrace{\left(\frac{K - N_0}{e^{rt} \to \infty}\right)}^{\to 0}} = \frac{K \cdot N_0}{N_0 + \underbrace{\left(\frac{K - N_0}{e^{rt} \to \infty}\right)}^{\to 0}} = \frac{K \cdot N_0}{N_0 + \underbrace{\left(\frac{K - N_0}{e^{rt} \to \infty}\right)}^{\to 0}} = \frac{K \cdot N_0}{N_0 + \underbrace{\left(\frac{K - N_0}{e^{rt} \to \infty}\right)}^{\to 0}} = \frac{K \cdot N_0}{N_0 + \underbrace{\left(\frac{K - N_0}{e^{rt} \to \infty}\right)}^{\to 0}} = \frac{K \cdot N_0}{N_0 + \underbrace{\left(\frac{K - N_0}{e^{rt} \to \infty}\right)}^{\to 0}} = \frac{K \cdot N_0}{N_0 + \underbrace{\left(\frac{K - N_0}{e^{rt} \to \infty}\right)}^{\to 0}} = \frac{K \cdot N_0}{N_0 + \underbrace{\left(\frac{K - N_0}{e^{rt} \to \infty}\right)}^{\to 0}} = \frac{K \cdot N_0}{N_0 + \underbrace{\left(\frac{K - N_0}{e^{rt} \to \infty}\right)}^{\to 0}} = \frac{K \cdot N_0}{N_0 + \underbrace{\left(\frac{K - N_0}{e^{rt} \to \infty}\right)}^{\to 0}} = \frac{K \cdot N_0}{N_0 + \underbrace{\left(\frac{K - N_0}{e^{rt} \to \infty}\right)}^{\to 0}} = \frac{K \cdot N_0}{N_0 + \underbrace{\left(\frac{K - N_0}{e^{rt} \to \infty}\right)}^{\to 0}} = \frac{K \cdot N_0}{N_0 + \underbrace{\left(\frac{K - N_0}{e^{rt} \to \infty}\right)}^{\to 0}} = \frac{K \cdot N_0}{N_0 + \underbrace{\left(\frac{K - N_0}{e^{rt} \to \infty}\right)}^{\to 0}} = \frac{K \cdot N_0}{N_0 + \underbrace{\left(\frac{K - N_0}{e^{rt} \to \infty}\right)}^{\to 0}} = \frac{K \cdot N_0}{N_0 + \underbrace{\left(\frac{K - N_0}{e^{rt} \to \infty}\right)}^{\to 0}} = \frac{K \cdot N_0}{N_0 + \underbrace{\left(\frac{K - N_0}{e^{rt} \to \infty}\right)}^{\to 0}} = \frac{K \cdot N_0}{N_0 + \underbrace{\left(\frac{K - N_0}{e^{rt} \to \infty}\right)}^{\to 0}} = \frac{K \cdot N_0}{N_0 + \underbrace{\left(\frac{K - N_0}{e^{rt} \to \infty}\right)}^{\to 0}} = \frac{K \cdot N_0}{N_0 + \underbrace{\left(\frac{K - N_0}{e^{rt} \to \infty}\right)}^{\to 0}} = \frac{K \cdot N_0}{N_0 + \underbrace{\left(\frac{K - N_0}{e^{rt} \to \infty}\right)}^{\to 0}} = \frac{K \cdot N$$

$$\frac{k \cdot N_0}{N_0} = K \checkmark$$

$$N'(t) = \dots = \frac{K \cdot N_0(K - N_0)r \cdot e^{et}}{(K + N_0(e^{rt} - 1))^2} > 0$$

$$N''(t) = \dots = \frac{K \cdot N_0(K - N_0)r^2 e^{rt}(K - N_0 - N_0 \cdot e^{rt})}{(K + N_0(e^{rt} - 1))^3}$$

$$N''(t) > 0$$
 für $t < \frac{ln(\frac{K-N_0}{N_0})}{r}$

$$N''(t) < 0$$
 für $t > \frac{ln(\frac{K-N_0}{N_0})}{r}$

4 Vierte Woche

4.1 Ernte und Jagd

$$\frac{N'(t)}{N(t)} = r(1 - \frac{N(t)}{K})$$

Ernte und Jagd

Beispiel N(t): Population von Fischen in einem geschlossenen Gewässer, die logistisch wächst.

F(t): Die zum Zeitpunkt t seit dem Anfang (t=0) gefangene Fische.

Annahme: Der Erfolg des Fischfangs pro ZE (Zeiteinheit) $t \to t + \Delta t$ ist proportional zur aktuellen Anzahl der Fische im Gewässer.

$$\lim_{\Delta t \to 0} \frac{N(t+\Delta t)-N(t)}{\Delta t} = E \cdot N(t)$$

$$F'(t) = E \cdot N(t) \Leftrightarrow \frac{F'(t)}{N(t)} = E$$
 (Fangrate)

$$\frac{N'(t)}{N(t)} = r(1 - \frac{N(t)}{K}) - \frac{F'(t)}{N(t)}$$

$$\tfrac{N'(t)}{N(t)} = r(1-\tfrac{N(t)}{K}) - E$$

$$N'(t) = r \cdot N(t)(1 - \tfrac{N(t)}{K}) - E \cdot N(t)$$

$$N'(t) = (r - E)N(t) - \frac{r}{K}(N(t))^2$$

$$N'(t) = (r-E)N(t) - \frac{r}{K}\frac{(r-E)}{(r-E)}(N(t))^2$$

$$N'(t) = (r-E)N(t)(1-\frac{r}{K(r-E)}N(t))$$

$$\frac{N'(t)}{N(t)} = (r-E)(1-\frac{r}{K\frac{(r-E)}{r}})$$
 neue obere Schranke

Wir setzen $\tilde{r} = r - E = r(1 - \frac{E}{r})$

&
$$\tilde{K} = \frac{K(r-E)}{r} = K(1 - \frac{E}{r})$$

und erhalten: $\frac{N'(t)}{N(t)} = \tilde{r}(1 - \frac{N(t)}{\tilde{K}})$

Egross / stark gefischt $\Rightarrow \tilde{K}$ klein / kleine Population \Rightarrow Fangertrag langfristig auch klein

Eklein / wenig gefischt \Rightarrow die Fische vermehren sich, man profitiert zu wenig

längerfristig: $\tilde{K} = K(1 - \frac{E}{r})$

der asymptotische Ertrag
$$V(E) = E \cdot K(1 - \frac{E}{r}) = E \cdot \tilde{K}$$

Maximum von V(E)

$$V(E) = E \cdot K(1 - \frac{E}{r}) = E \cdot K - E^{2} \frac{K}{r}$$

$$V'(E) = K - 2E\frac{K}{r}$$

$$V'(E) = 0 \Leftrightarrow K - 2E\frac{K}{r} = 0 \Leftrightarrow \underbrace{E = \frac{r}{2}}$$
 Fangrate für welche der asympt. Ertrag maximal ist

asympt. Ertrag maximal ist

$$V(\frac{r}{2}) = \frac{r}{2}K(1 - \frac{1}{2}) = \frac{r \cdot K}{4}$$

Zahlenbeispiel

$$N(0) = 10^4, K = 10^6, r = 0.12$$

$$V_{max} = \frac{r \cdot K}{4} = \dots = 3 \cdot 10^4 \text{ für } E = \frac{r}{2} = 0.06$$

 $\tilde{K} = K(1 - \frac{r}{2}) = \frac{K}{2} = 5 \cdot 10^5$

4.2 Diskretisierung

diskret	kontinuerling
Folge, $\mathbb{N} \to \mathbb{R}$	reele Funktion, $\mathbb{R}+\to\mathbb{R}$
linear	linear
exponentiell	exp. $N'(t)/N(t) = r(t) = r$ DG
(logarithmisch)	(logarithmisch)
	\leftarrow logistisch $N'(t)/N(t) = r(1 - N(t)/K)$ DG

Diskretisierung

$$N'(t) = r \cdot N(t)(1 - \frac{N(t)}{K}) \text{ DG}$$
 $\lim_{\Delta t \to 0} \frac{N(t + \Delta t) - N(t)}{\Delta t} = r \cdot N(t)(1 - \frac{N(t)}{K})$
(Annäherung) $\simeq \frac{N(t + \Delta t) - N(t)}{\Delta t} = r \cdot N(t)(1 - \frac{N(t)}{K})$
 $\Delta t = 1$

$$\frac{N(t + 1) - N(t)}{1} = r \cdot N(t)(1 - \frac{N(t)}{K}), t \in \mathbb{R} + \frac{N(n + 1) - N(n)}{1} = r \cdot N(n)(1 - \frac{N(n)}{K}), n \in \mathbb{N}$$
 $N_{n+1} - N_n = r \cdot N_n(1 - \frac{N_n}{K})$

 $N_{n+1} = N_n + r \cdot N_n (1 - \frac{N_n}{K})$ Diskretisierung des kontinuierlichen logistischen Modells (rekursiver Berechnungsvortschritt)

Zahlenbeispiel

Wir betrachten die diskrete logist. Gleichung mit $N_0 = 100$ und K = 1000

$$N_{n+1} = N_n + r \cdot N_n (1 - \frac{N_n}{1000})$$

$$r = 0.2: \ N_{n+1} = N_n + 0.2 \cdot N_n (1 - \frac{N_n}{1000})$$

$$r = 0.8: \ N_{n+1} = N_n + 0.8 \cdot N_n (1 - \frac{N_n}{1000})$$

 $\underline{\text{Frage}}$: Kann es sein, dass die obere Schranke K in einem Zeitschritt bei der Populationsgrösse überschritten wird?

 $N_n = K - \epsilon$, wobei ϵ eine relativ kleine positive Zahl ist

$$N_n + r \cdot N_n (1 - \frac{N_n}{K}) \stackrel{?}{>} K$$

 $N_{n+1} \stackrel{?}{>} K$

$$(K - \epsilon) + r(K - \epsilon)(1 - \frac{K - \epsilon}{K}) \stackrel{?}{>} K$$

$$(K - \epsilon) + r(K - \epsilon)(\frac{\epsilon}{K}) \stackrel{?}{>} K$$

$$K - \epsilon + r \cdot \epsilon - r \cdot \underbrace{\frac{\epsilon^2}{K}}_{\text{sehr klein } \to \text{ ignorieren}} \overset{?}{>} K$$

wenn $-\epsilon + r \cdot \epsilon > 0 \Leftrightarrow r > 1$, dann die obere Schranke überschritten werden

Qualitative Änderungen:

 $\frac{1 < r < 2}{\text{schwächer}}$ Die Oszillation wird mit wachsenden Zeitschritten immer

 $\underline{2\leqslant r<2.4}$ Es entstehen periodische 2
er-Zyklen. Die Amplitude der Oszillation bleibt konstant

 $2.4 \leqslant r < 2.5$ Die 2
er-Zyklen werden instabil

 $\underline{2.5\leqslant r<2.6}$ 4
er-, 8
er-, 16
er-Zyklen

 $r\geqslant 2.6$ Die Lösung wird chaotisch