Guliana	TP 2			HOJAN									
Ruffa				FECHA									
(9) A partir	la	signente	plan tilla,	sabiendo que:									
adb 1			amax = 1	dB									
		3 E S S F S F S F S F S F S F S F S F S F	WMIN = 350	B									
CLMAX -	,	P [HZ]	fp=3500H z	y f5=1KH2									
75	f P		TP-DOON Z	7 7 1 1									
1) Obtener pol	os y u	ros para	maiema	planiciolad									
en la ban													
2) lon porrar	con lo	polos de	teniolos en	el ejercicio									
3.3													
3) Im plementour	el wice	ita contest		asivas adap-									
Toeolas med	cant be	effers.											
4) Utilizando	una	roma de	insedar	ua 2N = 1K,									
dotenga el en	alos de	les comp	conentes.										
5) Active las	A 15-1	utilizano		estructura									
con OPAMPS.													
Resolución:													
1) Partimos	de & MA	× M amin	para de	terminar el									
vois "E" y	el oco	len "m" ol	e nees tro	filto.									
Recordamos	ue, par	a matein	a plani	wolad:									
2													
$ T(\omega) = 1$	s 2 w 2m												
· XMXX = X (W)) = -20 l	09 11 62											
	XMAX/		1/40										
o sea: E	= 10	-1. = 10	-1										

NOTA

Dulliano	TP2	HOJANº
Kuffa		FECHA
Pm 1		
To low	Co, nos quedamos con	
T(5) = 1	1.4	
Vo, 26	(52+2,195+1,4)(52+0,95+1,4)	14
Sus polos y	woos:	
P1,2 = -0,453 +	10938	
	1,0938; y P3,4=-1,0938±0,	
Es decios, los	del semiplano negali	vo.
Trans joine	mos a poesa-altos:	
5-110		
		K=1,97
Luego: T(5)		452
	(1,452+2,195+11) (1,452+0	195+17 14/0,26
+ (5) - 1	52	
V0,26	(52+1,565+1/1,4) (52+0,645	1-1/1,4)
3) Preoponemos	2 petros de 2000 ou	den en cascaola.
Como se t		
	erce or produces per	sevas, des pruvia-
no K.		
mego, plan	comos.	
	+167-5	
	52+5 F	2 + 4 C
2		
	22 = L9, pe	erca un peltrus
T(5) - 52	pasa altes.	
52 + 5 R	+LG-	

NOTA

Giuliana TP2 HOJA Nº Parca 21 23 25 23 = 1KN 24 = 1KN 25 = 1KM · L2 = 1562,5H Adoptamos: 21 = 1/1562,5F -> 22 = 1KN $2_{L_2} = 2_{2.24}$ $\overline{21.23.25}$ = 1 = 156255 1562,55 25 = 1 KM BONUS: · Valores de la red normalizados in freuencia e impedancia: 12 = 1KW. Nw = 1000.21 # 2 . R1 = 1N - R2 = 12 · L1 = 641 x 10-3 H · Lz = 1562, 5 mH. · C1 = 1,1 F. . c2' = 457 m F.

NOTA

D.	es	or	5	ol	lo			de		1	0			Re	er	. 0	ie	7	P	a	1	1		2	in	ree	le	26	ie	m	•		
+	(5)		To	1	7			6	4		2	2 0	5					2		7-0-1									- 12	1		
	3			VC	yer.				5		+	21	25	,5	+	4	14:	3 5		+	1	1 5	7	5	+	C	15	1			-	+	1
									5												,						7	3	1	19	1.5	1	Ť
-		1 2			12		-				-				-		-					. 1										1	
			-		1					-	-				+	-	-				1	-	1	-	-		1	9		10		1	+
				7	11	5		1.00							-						100	-	-	3	1				-	-			+
	755	2.3-																			58	1	1	3									
		-	-	-			-	-	-			-		-						10	51	-	10	1									I
								-	-			-		-	-	-		-				-	-									-	-
																		9								-					101	-	-
										l Y	-												100		- 8			E					
			22	-		-	-			-		-	-	32	-			5	1.1		11	1	=	1				45	5/3	4		1 = 19	
										1	-				-		-	-			200	3.	100	3									-
															-			1.5			38	E P	-										
																			7		The	1 1	=	- 34									
									-	-		-		-	-			-															
														-				-									-	-	-				
																														1	31	1	0
														(8)	-											57.						1.0	
		24		-									-8%	10.76	1.6	183	3.5	3.5	400	a.h	5		-		5.	Ü.	-		2	- 1	3	Ē.Š.	0
																						-				11	53			N.C	7-2		
-									1	_																			-				-
																											- >	12	9.10	-	- 32	- (6)	1
																							3	4	-			3.7	- 4		Ξ ξ	7 3	
200						100							- E																			1	
																													- F	2	70.	P	3
																													J	ì	=		
																																	L
+	-	-	-	-			_																			1		7	3	£,	9	ide.	Ŀ
	14																													100	ja.	12	+
																																	T
						1			- 3	树																			Te.	1	100	-0	1
-	_		-			-	-		-	UNIT																			-		-	_	+
+	1	+	+		-	-	-	-	+	-		-		-									-						4.13	(a)	- 10		
	1																																-
										- 1																				1			