

Analog Engineer's Circuit: Data Converters

ZHCA921-December 2018

具有低侧基准的双线 PT100 RTD 测量电路

Joseph Wu

电源					
AVDD	AVSS、DGND	DVDD\ IOVDD			
3.3V	0V	3.3V			

设计 说明

该指导设计介绍了如何使用 ADS124S08 对双线 RTD 进行温度测量。此设计针对 PT100 型 RTD 使用比例测量,温度测量范围为 -200°C 至 850°C。该设计包含 ADC 配置寄存器设置以及用于配置和读取器件的伪代码。该电路 可用于 适用于 PLC 的模拟输入模块、实验室仪表 和工厂自动化 等应用。有关使用各种 RTD 接线配置进行精确 ADC 测量的更多信息,请参阅《RTD 测量基本指南》。

设计说明

- 1. 为模拟和数字电源使用电源去耦电容器。必须使用连接到 AVSS 的至少为 330nF 的电容器对 AVDD 进行去耦。必须使用连接到 DGND 的至少为 0.1μF 的电容器对 DVDD 和 IOVDD (在未与 DVDD 连接时)进行去耦。有关电源建议的详细信息,请参阅《具有 PGA 和电压基准的 ADS124S0x 低功耗、低噪声、高集成度、6 通道和 12 通道、4kSPS、24 位 Δ-Σ ADC》数据表。
- 2. 不要使用与 ADC 输入和 IDAC 电流源输出相同的引脚使激励电流流过输入滤波电阻器。与串联电阻发生 反应的激励电流会增加测量误差。
- 3. REFOUT 和 REFCOM 之间需要一个 1µF 电容器,以启用 IDAC 电流的内部基准。
- 4. 使用具有高精度和低漂移的精密基准电阻器。由于测量是比例式的,因此精度取决于该基准电阻器的误差。0.01% 的电阻器会产生类似于 ADC 的增益误差。
- 5. 如果可能,使用 COG (NPO) 陶瓷电容器进行输入滤波。这些电容器中使用的电介质可在电压、频率和温度变化时提供最稳定的电气特性。
- 6. 使用标准电容器值和 1% 电阻器值选择 ADC 输入和基准输入的输入滤波。《使用 ADS1148 和 ADS1248 系列器件进行 RTD 比例测量和滤波》应用报告中提供了这些滤波器的示例设计和分析。
- 7. 该设计显示了与 ADC 多路复用器的三个输入引脚的连接。其余的模拟输入可用于 RTD、热电偶或其他测量。
- 8. 双线 RTD 测量是 RTD 测量中精度最低的,因为无法消除引线电阻误差。有关使用更精确的 RTD 接线配置进行测量的更多信息,请参阅《RTD 测量基本指南》。

组件选择

1. 确定 RTD 的工作范围。

例如,如果温度测量范围是 -200°C 至 850°C,那么 PT100 RTD 具有大约 20Ω 至 400Ω 的范围。基准电阻器必须大于最大 RTD 值。基准电阻和 PGA 增益决定了测量的正满量程范围。

2. 确定 IDAC 激励电流和基准电阻器的值。

该设计中的激励电流源选择为 1mA。这可以最大程度地增大 RTD 电压的值,同时使 RTD 的自发热保持在低水平。对于小型薄膜元件,RTD 自发热系数的典型范围为 2.5mW/°C,对于较大的线绕元件,该范围为 65mW/°C。在最大 RTD 电阻值下激励电流为 1mA 时,RTD 中的功率耗散小于 0.4mW,并将自发热导致的测量误差保持在 0.01°C 以内。

在选择 IDAC 电流大小之后,设置 R_{REF} = 1620 Ω 。这会将基准设为 1.62V,最大 RTD 电压为 400mV。基准电压用于电平转换,以使输入测量接近中位电压,从而使测量处于 PGA 输入工作范围之内。使用这些值,可以将 PGA 增益设置为 4,这样最大 RTD 电压就接近正满量程范围而不超过它。

基准电阻器 R_{REF} 必须是具有高精度和低漂移的精密电阻器。 R_{REF} 中的任何误差都会在 RTD 测量中反映相同的误差。REFPO 和 REFNO 引脚显示为作为开尔文连接与 R_{REF} 电阻器相连,以获得最精确的基准电压测量值。这可以消除作为基准电阻测量产生的误差的串联电阻。

在使用最大 RTD 电阻的情况下,可以使用以下公式来计算 ADC 输入电压。

 $V_{AIN1} = I_{IDAC1} \bullet (R_{RTD} + R_{REF}) = 1 \text{mA} \bullet (400\Omega + 1620\Omega) = 2.02 \text{V}$

 $V_{AIN2} = I_{IDAC1} \bullet R_{REF} = 1 \text{mA} \bullet 1620 \Omega = 1.62 \text{V}$

 $V_{INMAX} = 1 \text{mA} \cdot 400 \Omega = 400 \text{mV}$

3. 验证设计是否处于 ADC 的工作范围之内。

首先,验证当增益为 4 并且 AVDD 为 3.3V、AVSS 为 0V 时 V_{AIN1} 和 V_{AIN2} 是否处于 PGA 的输入范围内。如《具有 PGA 和电压基准的 ADS124S0x 低功耗、低噪声、高集成度、6 通道和 12 通道、

4kSPS、24 位 Δ-Σ ADC》数据表中所示,绝对输入电压必须满足以下条件:

 $\begin{array}{l} \text{AVSS} + 0.15 \text{V} + [|V_{\text{INMAX}}| \bullet (\text{Gain} - 1)/2] < V_{\text{AIN1}}, \ V_{\text{AIN2}} < \text{AVDD} - 0.15 \text{V} - [|V_{\text{INMAX}}| \ (\text{Gain} - 1)/2] \\ \text{0V} + 0.15 \text{V} + [|V_{\text{INMAX}}| \bullet (\text{Gain} - 1)/2] < V_{\text{AIN1}}, \ V_{\text{AIN2}} < 3.3 \text{V} - 0.15 \text{V} - [|V_{\text{INMAX}}| \ (\text{Gain} - 1)/2] \\ \text{0.75} < V_{\text{AIN1}}, \ V_{\text{AIN2}} < 2.55 \text{V} \end{array}$

由于在 AIN1 和 AIN2 上看到的最大和最小输入电压(2.02V 和 1.62V)介于 0.75V 和 2.55V 之间,因此输入处于 PGA 工作范围之内。

第二,验证 IDAC 输出引脚上的电压是否处于电流源顺从电压范围之内。IDAC 引脚是 AIN0,其电压与 AIN1 相同。在最大电压下,V_{AIN0} 为

2.02V。如《具有 PGA 和电压基准的 ADS124S0x 低功耗、低噪声、高集成度、6 通道和 12 通道、 4kSPS、24 位 Δ - Σ ADC》数据表中的电气特性表所示,对于 1mA 的 IDAC 电流,IDAC 的输出电压必须介于 AVSS 和 AVDD - 0.6V 之间。在该示例中,当 AVDD = 3.3V 时,IDAC 输出必须满足以下条件:

$$\begin{aligned} & \text{AVSS} < \text{V}_{\text{AIN0}} = \text{V}_{\text{AIN1}} < \text{AVDD} - 0.6\text{V} \\ & \text{0V} < \text{V}_{\text{AIN0}} < 2.7\text{V} \end{aligned}$$

结合之前的结果, IDAC 的输出顺从性得到满足。

4. 选择 ADC 输入和基准输入的差分和共模滤波值。

此设计包含差分和共模输入 RC 滤波。差分输入滤波的带宽设置为至少是 ADC 的数据速率的 10 倍。将共模电容器选择为差分电容器值的 1/10。由于电容器选择,共模输入滤波带宽大约是差分输入滤波带宽的 20 倍。虽然串联滤波电阻器会提供一定程度的输入保护,但应使输入电阻器保持低于 10kΩ,以便为 ADC 提供适当的输入采样。

在进行输入滤波的情况下,差分信号以低于共模信号的频率衰减,后者会被器件的 PGA 显著抑制。共模电容器的失配会导致非对称噪声衰减,这会表现为差分输入噪声。差分信号的带宽较低,从而可以降低输入共模电容器失配的影响。ADC 输入和基准输入的输入滤波是针对相同的带宽进行设计的。

在此设计中,将数据速率选择为 20SPS(使用 ADS124S08 的低延迟滤波器)。此滤波可提供低噪声测量以及单周期稳定,并且能够抑制 50Hz 和 60Hz 线路噪声。对于 ADC 输入滤波,可以通过以下公式近似计算差分滤波和共模滤波的带宽频率。

$$\begin{split} f_{\text{IN_DIFF}} &= 1/[2 \bullet \pi \bullet C_{\text{IN_DIFF}} \left(R_{\text{RTD}} + 2 \bullet R_{\text{IN}} \right)] \\ f_{\text{IN_CM}} &= 1/[2 \bullet \pi \bullet C_{\text{IN_CM}} \left(R_{\text{RTD}} + R_{\text{IN}} + R_{\text{REF}} \right)] \end{split}$$

对于 ADC 输入滤波, R_{IN} = 4.99 $k\Omega$, C_{IN_DIFF} = 47nF, C_{IN_CM} = 4.7nF。这会将差分滤波器带宽设置为 330Hz,将共模滤波器带宽设置为 5kHz。

类似地,可以通过以下公式近似计算基准输入滤波的带宽。

$$f_{\text{REF_DIFF}} = 1/[2 \cdot \pi \cdot C_{\text{REF_DIFF}} \cdot (R_{\text{REF}} + 2 \cdot R_{\text{IN_REF}})]$$

$$f_{\text{REF_CM}} = 1/[2 \cdot \pi \cdot C_{\text{REF_CM}} \cdot (R_{\text{REF}} + R_{\text{IN_REF}})]$$

对于基准输入滤波, R_{IN_REF} = 4.32k Ω , C_{REF_DIFF} = 47nF, C_{REF_CM} = 4.7nF。这会将差分滤波器带宽设置为 330Hz,将共模滤波器带宽设置为 5.7kHz。可能无法匹配 ADC 输入和基准输入滤波。不过,保持带宽接近可能会降低测量中的噪声。

有关输入滤波的组件选择的深入分析,请参阅《使用 ADS1148 和 ADS1248 系列器件进行 RTD 比例测量和滤波》应用报告。

测量转换

RTD 测量通常是比例测量。使用比例测量,无需将 ADC 输出代码转换为电压。这意味着输出代码仅将测量值作为与基准电阻器值的比例进行提供,不需要激励电流的精确值。唯一的要求是流经 RTD 和基准电阻器的电流相等。

下面显示了针对 24 位 ADC 的测量转换公式:

Output Code =
$$2^{23} \cdot \text{Gain} \cdot (V_{RTD}/V_{REF}) = 2^{23} \cdot \text{Gain} \cdot (I_{IDAC1} \cdot R_{RTD})/(I_{IDAC1} \cdot R_{REF}) = 2^{23} \cdot \text{Gain} \cdot (R_{RTD}/R_{REF})$$
 (1)

$$R_{RTD} = R_{REF} \bullet [Output Code/(Gain \bullet 2^{23})]$$
 (2)

ADC 将测量值转换为 RTD 等效电阻。由于 RTD 响应的非线性,电阻到温度的转换需要通过公式或查找表进行计算。有关 RTD 电阻到温度转换的更多信息,请参阅《*RTD 测量基本指南*》。

寄存器设置

使用 ADS124S08 且具有低侧基准的双线 PT100 RTD 测量电路的配置寄存器设置

寄存器地址	寄存器名称	正在设置	说明
02h	INPMUX	12h	选择 AIN _P = AIN1,AIN _N = AIN2
03h	PGA	0Ah	启用 PGA,增益 = 4
04h	DATARATE	14h	连续转换模式,低延迟滤波器, 20SPS 数据速率
05h	REF	02h	启用正负基准缓冲器,选择 REFPO 和 REFNO 基准输入,内部基准始终开启
06h	IDACMAG	07h	IDAC 大小设置为 1mA
07h	IDACMUX	F0h	IDAC1 设置为 AIN0,禁用 IDAC2
08h	VBIAS	00h	VBIAS 未用于任何输入
09h	SYS	10h	正常工作模式

伪代码示例

下面显示了伪代码序列以及设置器件和微控制器所需的步骤,该微控制器与 ADC 相连,以便在连续转换模式下从 ADS124S0x 获取后续读数。专用的 DRDY 引脚指示新转换数据的可用性。显示的伪代码中未使用 STATUS 字节和 CRC 数据验证。ADS124S08 产品文件夹中提供了 ADS124S08 固件示例代码。

```
Configure microcontroller for SPI mode 1 (CPOL = 0, CPHA = 1)
Configure microcontroller GPIO for /DRDY as a falling edge triggered interrupt input
Set CS low;
   Send 06;
              // RESET command to make sure the device is properly reset after power-up
Set CS high;
Set CS low;
             // Configure the device
            // WREG starting at 02h address
   Send 42
        // Write to 6 registers
   0.5
        // Select AINP = AIN1 and AINN = AIN2
   12
        // PGA enabled, Gain = 4
        // Continuous conversion mode, low-latency filter, 20-SPS data rate
         // Positive and negative reference buffers enabled,
         07
         // IDAC magnitude set to 1 mA
   FO;
         // IDAC1 set to AIN0, IDAC2 disabled
Set CS high;
Set CS low;
               // For verification, read back configuration registers
            // RREG starting at 02h address
   Send 22
       // Read from 6 registers
   00 00 00 00 00 00;
                      // Send 6 NOPs for the read
Set CS high;
Set CS low;
   Send 08;
              // Send START command to start converting in continuous conversion mode;
Set CS high;
Loop
   Wait for DRDY to transition low;
   Set CS low;
       Send 12
                 // Send RDATA command
       00 00 00; // Send 3 NOPs (24 SCLKs) to clock out data
   Set CS high;
Set CS low;
               //STOP command stops conversions and puts the device in standby mode;
   Send OA;
Set CS to high;
```


RTD 电路比较表

RTD 电路拓扑	优势	劣势	
双线 RTD,低侧基准	最经济	精度最低, 无引线电阻消除	
三线 RTD,低侧基准,两个 IDAC 电流源	允许引线电阻消除	对 IDAC 电流失配敏感,可以通过交换 IDAC 电流并对两次测量求平均值来消除失配	
三线 RTD,低侧基准,一个 IDAC 电流源	允许引线电阻消除	需要进行两次测量,第一次用于 RTD 测量,第二次用于引线电阻消除	
三线 RTD,高侧基准,两个 IDAC 电流源	允许引线电阻消除,对 IDAC 失配的敏感度低于使用低侧基准	需要额外的电阻器以用于偏置,增加的电压可能与低电 源操作不兼容	
四线 RTD,低侧基准 精度最高,无引线电阻误差		最昂贵	

设计中采用的器件

器件	主要 特性	链接	其他可能的器件
ADS124S08	适用于精密传感器测量且具有 PGA 和电压基准的 24 位、4kSPS、12 通道 Δ - Σ ADC	www.ti.com.cn/product/cn/ADS124S 08	指向类似器件的链接
ADS114S08 ⁽¹⁾	适用于精密传感器测量且具有 PGA 和电压基准的 16 位、4kSPS、12 通道 Δ - Σ ADC	www.ti.com.cn/product/cn/ADS114S 08	指向类似器件的链接

⁽¹⁾ ADS114S08 是 ADS124S08 的16位版本,可用于类似的 应用。

设计参考资料

请参阅《模拟工程师电路说明书》,了解有关 TI 综合电路库的信息。

其他资源

- 德州仪器 (TI), ADS124S08 评估模块
- 德州仪器 (TI), 《ADS1x4S08 评估模块用户指南》
- 德州仪器 (TI), ADS1x4S08 固件示例代码
- 德州仪器 (TI), 《RTD 测量基本指南应用报告》
- 德州仪器 (TI), 《使用 ADS1148 和 ADS1248 系列器件进行 RTD 比例测量和滤波应用报告》

如需 TI 工程师的直接支持,请使用 E2E 社区

e2echina.ti.com

重要声明和免责声明

TI 均以"原样"提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示担保。

所述资源可供专业开发人员应用TI产品进行设计使用。您将对以下行为独自承担全部责任:(1)针对您的应用选择合适的TI产品;(2)设计、验证并测试您的应用;(3)确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI对您使用所述资源的授权仅限于开发资源所涉及TI产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI及其代表造成的损害。

TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn/上或随附TI产品提供的其他可适用条款的约束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。

邮寄地址: 上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码: 200122 Copyright © 2019 德州仪器半导体技术(上海)有限公司

重要声明和免责声明

TI 均以"原样"提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示担保。

所述资源可供专业开发人员应用TI产品进行设计使用。您将对以下行为独自承担全部责任: (1)针对您的应用选择合适的TI产品; (2)设计、验证并测试您的应用; (3)确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI对您使用所述资源的授权仅限于开发资源所涉及TI产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI及其代表造成的损害。

TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。

邮寄地址: 上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码: 200122 Copyright © 2019 德州仪器半导体技术(上海)有限公司