Stord (Ti.e. 1-preserving) continuous functions of from D to D' s.t. threne sexists a continuous function g = 1.0 - D with $g \circ f = TdD$ and $f \circ g = TdD$.

(iii) o is the usual function composition.

(iv) Ido is the Identity function on D.

Compared with the category Done of domains and continuous functions, this category Done? has a rather unusual notion of morphisms. In Done a morphism $f:D\to D'$ should be not just continuous, but also strict. Hore importantly, it should have $g:D'\to D$ s.t.

Intuitively, the resistence of such 9 meons that

Intuitively, the resistence of such 9 meons that

I D' 13 built by putting additional elements above

existing relements of D, f is just the rembedding of

D mto this larger D', and 9 maps all additional

elements to their best underapproximations in D. Hene is

elements to their best underapproximations in D. Hene is

some informer picture that carries shows this intuition.

early -- D-D (1) (1) g g maps elements of D dded to their best andwappion - makins in D.

what this means is that a morphism $f:D \rightarrow D'$ is neally saying that D' is larger than D.

A morphism f: D→D' in Dom^P is called rembedding
 and a corresponding g:D→D' is called projection

TIF you happen to take a course on program analysis.

this pair of embedding of and projection g is closely nelated

to the Galois connection there

Note that the definition doesn't say that there exists only one projection of for a given sembredding f. That is, there may be multiple projections. But this doesn't happen.

Lemmal For every embedding f and projections $g_i:D'\to D$ and $g_2:D'\to D$ for f_1 we have that

9,=92.

Proof. We will show that 9, = 90. A smilar argument can show the opposite maquality.

g, = Tdp · g, = (920f) · g, = 920 (fog,)

E 920 TdD1 = 92.

We write f^P to dienote the unique projection for an embedding f.

The category Dom^P has an initial object, which is

a singleton domain (\$13, E). It also has a co-limit

(TxEy iff x=4.)

for any w-chain. We will not prove tuis. But we point out

one important property of the co-limits.