解: 由于 $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$, 根据均值不等式, 有

$$1 = \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} \geqslant 3\sqrt[3]{\frac{x^2y^2z^2}{a^2b^2c^2}}.$$

因此

$$xyz \leqslant \frac{1}{3\sqrt{3}}abc,$$

等号在 $x=\frac{a}{\sqrt{3}}, y=\frac{b}{\sqrt{3}}, z=\frac{c}{\sqrt{3}}$ 时成立.

所以, 当 $x = \frac{a}{\sqrt{3}}$, $y = \frac{b}{\sqrt{3}}$, $z = \frac{c}{\sqrt{3}}$ 时, xyz 取最大值 $\frac{1}{3\sqrt{3}}abc$.

第 0 章习题

习题 0.1

- 1. 判断下列所给关系是否正确, 并说明理由:
- (1) \mathcal{U} $A = \{1\}, B = \{1, 2\}$:
 - (a) $A \subset B$, (b) $A \in B$, (c) $1 \in A$, (d) $1 \subset B$;
- (2) $\ \mathcal{C} = \{1, 2\}, B = \{\{1\}, \{2\}\}, C = \{\{1\}, \{1, 2\}\}, D = \{\{1\}, \{2\}, \{1, 2\}\}: \}$
 - (a) A = B, (b) $A \subset B$, (c) $A \subset C$, (d) $A \in C$, (e) $A \subset D$,
 - (f) $B \subset C$, (g) $B \subset D$, (h) $B \in D$, (i) $A \in D$.
- 2. 设集合 $S = \{1, 2, 3, 4\}$, 列出 S 的所有子集.
- 3. 设 $A = \left\{ x \left| x \in \mathbb{R}, x(x^2 1)(x 2) \left(x + \frac{1}{4} \right) (x 7) = 0 \right. \right\}, B = \mathbb{N},$

 $C = \mathbb{Z}_+, D = \mathbb{Q}. \ \ \ \ \ \ \ A \cup B, A - C \ \ \ \ \ \ \ A \cap D.$

4. 设
$$A = \{x | x \in \mathbb{R}, 1 \leqslant x < 3\}, B = \{x | x \in \mathbb{R}, \frac{1}{2} < x \leqslant 2\}, 求 A \cup B,$$

 $A \cap B$ 及 A - B.

- 5. 设 A, B, C 为集合, 用草图说明 (验证) 以下集合运算的正确性:
- (1) $A \cup \emptyset = A$, $A \cap \emptyset = \emptyset$;
- (2) $A \cap B \subset A \subset A \cup B$;
- (3) $A \cup (A \cap B) = A$, $A \cap (A \cup B) = A$;
- (4) $A B = A (A \cap B) = (A \cup B) B;$
- (5) $A \cap (B C) = (A \cap B) (A \cap C);$
- (6) $A (A B) = A \cap B$.
- 6. 证明以下等式:
- (1) $(A B) C = A (B \cup C)$;
- (2) $A (B C) = (A B) \cup (A \cap C);$
- (3) $(A B) \cap (C D) = (A \cap C) (B \cup D);$
- (4) $(A \cup B) C = (A C) \cup (B C)$.

- 7. 等式 $(A-B) \cup C = A (B-C)$ 成立的充要条件是什么?
- 8. 设 $A = \{1, 2, 3\}, B = \{u, v\},$ 写出 $A \times B, A^2, B^2$.
- 9. 设 $A = \{x | x \in \mathbb{R}, 0 \le x \le 1\}$, 写出 A^3 .
- $(1)\ A\times (B\cup C)=(A\times B)\cup (A\times C);$ 证之:
 - (2) $A \times (B \cap C) = (A \times B) \cap (A \times C);$
 - (3) $A \times (B C) = (A \times B) (A \times C)$.
- 11. 设 $A = \{1, 2, 3, 4\}, B = \{a, b, c, d, e\},$ 试问下面哪些法则 f 定义了从 A到 B 内的一个映射? 为什么?
 - (a) f(1) = b, f(2) = c, f(3) = d;
 - (b) f(2) = a, f(3) = b, f(4) = c, f(1) = d, f(2) = e;
 - (c) f(2) = d, f(4) = a, f(3) = b, f(1) = e;
 - (d) f(1) = a, f(2) = a, f(3) = c, f(4) = d.
- 12. 设 $A = \{x, y, z\}, B = \{0, 1\},$ 试列出所有的从 A 到 B 的映射, 共有多 少个?
- 13. 试找出下列 $f:A\to B$ 映射中的单射、满射、双射. 对双射, 写出其迹 映射:
 - (1) $A = \mathbb{R}, B = \{x \in \mathbb{R} | x \ge 0\}, f(x) = x^2;$
 - (2) $A = B = \mathbb{Q}$, f(x) = x + c, 其中 c 是一个有理数;
 - (3) $A = \{x \in \mathbb{R} | 0 \le x \le 1\}, B = \{x \in \mathbb{R} | 0 \le x \le 2\}, f(x) = 2x;$
 - (4) $A = B = \mathbb{Z}$, $f(x) = x^3$.
- 14. 设 \mathbb{Z}_+ 是正整数全体, $A = \{2, 4, 6, 8, \cdots\}$ 是正偶数全体, 试作一映射 $f: \mathbb{Z}_+ \to A$ 使之成为双射, 再写出该映射的逆映射.
- 15. 设 \mathbb{Z}_+ 是正整数全体, \mathbb{Z} 是整数全体, 试构造一个映射 $f: \mathbb{Z}_+ \to \mathbb{Z}$ 使 之成为双射.
- 16. 设 A, B 都是有限集合, 且 A 的元素个数为 n, B 的元素个数为 m, \exists 在下面三种情况下分别确定 n 与 m 的大小关系:
 - (1) 存在一个单射 $f: A \to B$;
 - (2) 存在一个满射 $f: A \to B$;
 - (3) 存在一个双射 $f: A \to B$.
 - 17. 设 $A=B=C=\{a,b,c,d\},\,f:A\to B,\,g:B\to C$ 如下:

$$f(a) = b$$
, $f(b) = c$, $f(c) = d$, $f(d) = a$; $g(a) = b$, $g(b) = b$, $g(c) = c$, $g(d) = c$.

试写出复合映射 $g \circ f : A \to C$.

18. 设 $A = \{x \in \mathbb{R} | -1 \le x \le 1\}, B = \{x \in \mathbb{R} | 0 \le x \le 2\}, C = \{x \in \mathbb{R} | 0 \le$ $\mathbb{R}|-1\leqslant x\leqslant 2\}$. 映射 $f:A\to B$ 及 $g:B\to C$ 分别定义为 $f(x)=x^2$, $g(x) = \sqrt{x}$, 试写出复合映射 $g \circ f : A \to C$.

- 19. 设 A, B 是两个非空集合, $A \times B$ 是积集, 记 $p_1: A \times B \to A$, $p_1(x, y) =$ $x; p_2: A \times B \to B, p_2(x,y) = y$ 为两个投影, 证明: p_1, p_2 都是满射. 问: p_1 是 单射的充要条件是什么? p2 是单射的充要条件是什么?
 - 20. 证明: √2 是无理数.
 - 21. 若正整数 p 不是完全平方数, 证明: √p 为无理数.
 - 22. 若 p,q 为互异的素数, 证明: $\sqrt{p} + \sqrt{q}$ 为无理数.

习题 0.2

23. 求下列函数的定义域:

(1)
$$f(x) = \frac{1}{|x| - x};$$
 (2) $f(x) = \frac{1}{\sqrt{|x - 1| - 2}};$ (3) $f(x) = \ln\left(\sin\frac{x}{2}\right);$ (4) $f(x) = \arccos(2^x - 3) + \ln(\ln x).$

24. 求下列函数的反函数, 并指出反函数的定义域:

(1)
$$f(x) = \frac{1}{x}$$
, $x > 0$;
(2) $f(x) = \sqrt{4 - x^2}$, $-2 \le x \le 0$;
(3) $f(x) = \frac{2x - 1}{x + 1}$, $x \ne -1$;
(4) $f(x) = \begin{cases} x^2, & x < 0, \\ -x, & 0 \le x \le 1, \\ -x^3, & x > 1; \end{cases}$

(5)
$$f(x) = \sqrt[3]{x + \sqrt{1 + x^2}} + \sqrt[3]{x - \sqrt{1 + x^2}}, \quad -\infty < x < +\infty.$$

25. 已知
$$f\left(\frac{1}{x}\right) = x + \sqrt{1+x^2}$$
, 求 $f(x)$ 的表达式.

26. 分析下列函数的单调性:

(1)
$$f(x) = 2x^2$$
, $x \in (-\infty, 0)$; (2) $f(x) = x^3$, $x \in \mathbb{R}$;
(3) $f(x) = \frac{|x| - x}{2}$, $x \in \mathbb{R}$; (4) $f(x) = x^2 - 2x + 1$, $x \geqslant 1$.

27. 分析下列函数的奇偶性:

(1)
$$f(x) = \ln(x + \sqrt{x^2 + a^2})$$
 (a 为常数, 且 $a > 0$);

(2)
$$f(x) = \ln \frac{1-x}{1+x}$$
;

(3)
$$f(x) = |x| + x$$
;

$$(3) f(x) = |x| + x;$$

$$(4) f(x) = \operatorname{sgn} x = \begin{cases} 1, & x > 0, \\ 0, & x = 0, \\ -1, & x < 0. \end{cases}$$

28. 证明下列结论:

- (1) 两个偶函数的乘积是偶函数;
- (2) 两个奇函数的乘积是偶函数;
- (3) 一个偶函数与一个奇函数的乘积是奇函数.
- 29. 设 f 是定义在 \mathbb{R} 上的函数,证明 f 可以表示成一个偶函数和一个奇函 数之和,且表示法唯一.

30. 证明不存在定义在 ℝ 上严格单调增加的偶函数.

31. 设 f,g,h 均为 ℝ 上的单调递增函数,且满足

$$f(x) \leqslant g(x) \leqslant h(x), \quad \forall x \in \mathbb{R}.$$

证明:

$$f(f(x)) \le g(g(x)) \le h(h(x)), \quad \forall x \in \mathbb{R}.$$

- 32. 若函数 f,g 在定义域 D 上有界, 证明: $f+g,f-g,f\cdot g$ 也在 D 上有 界.
 - 33. 试问: 是否存在两个无界函数, 但它们的乘积是有界函数?
 - 34. 证明 $f(x) = \frac{1}{x}$ 在区间 (0,1) 内无界.
- 35. 设 f,g 均为 \mathbb{R} 上的周期函数, 试问: f+g 是否为 \mathbb{R} 上的周期函数? 为 什么?
 - 36. 写出下列周期函数在 [0, 2π] 上的表达式:
 - (1) $f(x) = \arcsin(\sin x)$;
 - (2) $g(x) = \arccos(\cos x)$.
 - 37. 证明关于取整函数 y = [x] 的如下不等式:

 - 38. 设 $a,b \in \mathbb{R}$, 证明:
 - (1) $\max\{a,b\} = \frac{1}{2}(a+b+|a-b|);$
 - (2) $\min\{a,b\} = \frac{1}{2}(a+b-|a-b|).$
 - 39. 设 $f(x) = x^2, g(x) = 2^x$, 求 f(g(x)) 及 g(f(x)).
 - 40. 将下列函数分解成基本初等函数的四则运算和复合:
 - (1) $f(x) = \arccos[\cos^2(e^x + \ln x)];$ (2) $f(x) = e^{-x^2 + 2\sin x};$

(3) $f(x) = \sin^2 \frac{1}{x}$;

- $(4) f(x) = \cot \sqrt[x]{x};$
- (5) $f(x) = \log_a \left(\frac{1}{\sqrt{1+x^2}} \right) + e^{\tan x^2} (a > 0, a \neq 1).$

习题 0.3

41. 画出以下极坐标方程表示的曲线草图:

(1)
$$r = \frac{1}{\cos \theta}$$
;

$$(2) r = 1 - \cos \theta;$$

(3)
$$r = \sin 2\theta$$
;

(4)
$$r = 4\cos 3\theta$$
;

$$(5) r = \frac{1}{1 - \cos \theta}.$$

42. 将以下直角坐标方程表示的曲线化为极坐标方程:

$$(1) x + 2y - 1 = 0;$$

(2)
$$\left(\frac{x}{a} + \frac{y}{b}\right)^3 = xy \ (a > 0, b > 0);$$

(3)
$$x^2 + (y-4)^2 = 16$$
;

(4)
$$(x^2 + y^2)^2 = a^2(x^2 - y^2)$$
 $(a > 0)$.

43. 证明柯西不等式:

对于任意 $2n(n \in \mathbb{N}_+)$ 个实数 $a_1, a_2, \dots, a_n; b_1, b_2, \dots, b_n$, 有

$$(a_1b_1 + a_2b_2 + \dots + a_nb_n)^2 \le (a_1^2 + a_2^2 + \dots + a_n^2)(b_1^2 + b_2^2 + \dots + b_n^2),$$

等号成立当且仅当存在常数 λ, μ 使得 $\lambda a_i + \mu b_i = 0$ $(i = 1, 2, \dots, n)$.

44. 证明伯努利不等式:

对于任意正整数 n 和实数 $a \in [-1, +\infty)$, 有

$$(1+a)^n \geqslant 1 + na.$$

45. 已知 $x^2 + y^2 = 1$, 求 $z = x^2 + y^2 + 2x + y + 1$ 的最大值与最小值.

46. 设正数 x, y, z 满足 3x + 4y + 5z = 1.

(1) 求证:
$$x^2 + y^2 + z^2 \ge \frac{1}{50}$$
;

(2)
$$\bar{x} \frac{1}{x+y} + \frac{1}{y+z} + \frac{1}{z+x}$$
 的最小值.

47. 设 $x, y \in \mathbb{R}$, 求 $(x-y)^2 + (2x-5)^2 + 4y^2$ 的最小值.

48. 求函数
$$y = \sqrt{x^2 - 8x + 25} + \sqrt{x^2 + 2x + 5}$$
 的最小值.

49. 设 $a,b,c \in \mathbb{R}_+$ (\mathbb{R}_+ 为全体正实数的集合), 证明:

$$\left|\sqrt{a^2+b^2}-\sqrt{a^2+c^2}\right|\leqslant |b-c|,$$

并说明此不等式的几何意义.

50. 设曲线
$$r = \frac{ep}{1 - e\cos\theta}$$
, $p > 0$, 验证

- (1) 当 0 < e < 1 时为椭圆;
- (2) 当 e = 1 时为抛物线;
- (3) 当 e > 1 时为双曲线.

【注】 椭圆、抛物线和双曲线可以统一定义为: 与一个定点 (焦点) 的距离和一条定直线 (准线) 的距离的比为常数 e (离心率) 的点的轨迹. $r=\frac{ep}{1-e\cos\theta}$ 中的 e 即为离心率, p 为定点 (焦点) 到定直线 (准线) 的距离.