Künstliche Intelligenz

Teil II: Schwache Problemlösemethoden¹

Robert Jäschke Gerhard Gossen

FG Wissensbasierte Systeme/Forschungszentrum L3S Leibniz Universität Hannover

Sommersemester 2015

¹Dieser Foliensatz basiert auf Material von Mirjam Minor, Humboldt-Universität Berlin, WS 2000/01

Agenda

- 2 Suche
 - Einführung
 - Blinde Suche
 - Heuristische Suche
 - Problemzerlegung
 - Suche in Spielbäumen

Agenda^l

- 2 Suche
 - Einführung
 - Blinde Suche
 - Heuristische Suche
 - Problemzerlegung
 - Suche in Spielbäumen

Künstliche Intelligenz und Suche

- Auswahl: Rucksackproblem
- Planung: z.B. Klötzchen-Welt, Routen, TSP, Agenten, Roboter
- Problemlöser: Beweise/Ableitungen Logik/Prolog; VLSI Layout
- intelligente Spielerprogramme Gewinnstrategien
- Informationsbeschaffung/Recherche Diagnose

Mögliche Ziele einer Suche

- finde eine Lösung
- finde alle Lösungen
- finde die kürzeste Lösung
- finde eine optimale Lösung

In allen genannten Fällen kann zudem der Lösungsweg von Interesse sein.

Zustandsraumsuche

Bevor ein Suchverfahren eingesetzt werden kann, muss das Suchproblem zunächst auf adäquate Weise beschrieben werden. Eine Möglichkeit ist die *Zustandsraumrepräsentation*. Sie enthält:

Zustände: Beschreibungen der verschiedenen möglichen Situationen Zustandsübergänge: Operatoren die einen Zustand in einen anderen überführen

Es gibt zwei Mengen ausgewählter Zustände: *Startzustände* und *Zielzustände*. Die Zielzustände können implizit (durch Kriterium) oder explizit (durch Aufzählung) gegeben sein.

Die Angabe einer expliziten Zielmenge kann evtl. genauso aufwendig sein wie die Suche selbst!

Interpretation des Zustandsraums als Graph/Baum

Beispiele für Zustandsraumbeschreibungen

Beweis eines Theorems

Zustände: Faktenmenge (Lemmata, Zwischenresultate)

Operatoren: Inferenzregeln (Faktenmenge wird erweitert)

Anfangszustand: Axiome

Zielzustände: Faktenmengen, die das Theorem enthalten

Rubik's Cube ("Zauber-Würfel")

Zustände: $8! \times 12! \times 3^8 \times 2^{12}$ Stellungen

Operatoren: 6×3 Drehungen

Anfangszustand: Anfangsstellung

Zielzustände: geordnete Stellung

Beispiele für Zustandsraumbeschreibungen

Prolog

 ${\color{blue} \textbf{Zust"ande:}} \ \ \textbf{Datenbasis} \ + \ \textbf{Abarbeitungszust"and (offene Subgoals;}$

alternative Klauseln)

Operatoren: Übergang zu einem Subgoal

Anfangszustand: initiales Programm + Anfrage

Zielzustände: Programmziel

Schiebepuzzle (8-er Puzzle/15-er Puzzle)

Zustände: Positionen aller Steine

Operatoren: mögliche Bewegungen des leeren Feldes

Anfangszustand: aktuelle Stellung

Zielzustände: geordnete Stellung

Beispiele für Zustandsraumbeschreibungen

Prolog

Zustände: Datenbasis + Abarbeitungszustand (offene Subgoals;

alternative Klauseln)

Operatoren: Übergang zu einem Subgoal

 $An fangszustand: initiales \ Programm \ + \ An frage$

Zielzustände: Programmziel

Schiebepuzzle (8-er Puzzle/15-er Puzzle)

Zustände: Positionen aller Steine

Operatoren: mögliche Bewegungen des leeren Feldes

Anfangszustand: aktuelle Stellung

Zielzustände: geordnete Stellung

Warum bewegen wir das Leerfeld und nicht die anderen Teile?

Das wäre komplexer zu modellieren und es wäre mehr zu überprüfen. **Fazit:** Die Modellierung beeinflusst, wie kompliziert die Suche wird.

Generate and Test?

= bei den Anfangszuständen beginnend sukzessive Nachfolgezustände generieren und auf Zielbedingung testen.

Problem: kombinatorische Explosion

8-er Puzzle: 9! Zustände (davon 9!/2 erreichbar)

bei durchschnittlich 3 Nachfolgern in jedem Zustand und einer typischen Lösungsweglänge von 20: $3^{20}\approx 3,5$ Mrd.

Knoten

Rubik's Cube: rund $4,3 \times 10^{19}$ erreichbare Zustände

kürzeste Lösungsfolge max. 20 Züge (Rokicki, Davidson,

Dethridge und Kociemba, 2010)

 ${\color{red} {\rm Dame:}} \ \ {\rm ca.} \ 10^{40} \ {\rm Spiele} \ {\rm durchschnittlicher} \ {\rm L\ddot{a}nge}$

Schach: ca. 10^{120} Spiele durchschnittlicher Länge

Go: $\leq 3^{361}$ Stellungen

Fazit: Heuristik wird benötigt.

Suchen in Graphen und Bäumen

Probleme:

Überführung eines Graphen in einen Baum durch Abwicklung:

Schema S zur Suche nach irgendeinem Weg

```
S0 : Sei z_0 Anfangszustand. Falls dieser bereits Zielzustand ist: EXIT(yes) OPEN := \{z_0\}, CLOSED := \{\} S1 : Falls OPEN = \{\}: EXIT(no) S2 : Sei z der erste Zustand in OPEN OPEN := OPEN\\{z\}, CLOSED := CLOSED \cup \{z\} Bilde Nachfolgermenge SUCC(z); Falls SUCC(z) = \{\}: GOTO S1
```

- S3: Falls SUCC(z) einen Zielzustand enthält: EXIT(yes)
- S4 : Reduziere ${\tt SUCC}(z)$ auf ${\tt NEW}(z)$ durch Streichen nicht weiter zu betrachtender Elemente; Füge ${\tt NEW}(z)$ in OPEN ein, GOTO S1

Schema S zur Suche nach irgendeinem Weg (Forts.)

- OPEN enthält generierte, noch nicht expandierte Knoten
- CLOSED enthält die expandierten Knoten
- S0: Start
- S1: negative Abbruchbedingung
- S2: Expandieren
- S3: positive Abbruchbedingung
- S4: Organisation von OPEN

Die Organisation von OPEN ist noch nicht spezifiziert, deswegen "Schema".

Strategien zur Expansion

- Expansionsrichtung: vorwärts, rückwärts, bidirektional
- Verwendung von Zusatzinformationen: blinde/heuristische Suche
- Entfernung der Knoten vom Start beachten
- Verwendung aller/einiger Nachfolger
- Modifikationen bzgl. der Elemente in OPEN und CLOSED

Vermeidung wiederholter Zustände

- Problem tritt bei Baum als Suchraum nicht auf.
- Wiederholte Zustände sind u.a. unvermeidbar, wenn Aktionen umkehrbar sind (bspw. Routensuche oder Schiebepuzzle). Der Suchbaum ist dann unendlich, kann aber durch Stutzen auf endliche Größe gebracht werden.
- "Algorithmen, die ihren Verlauf vergessen, neigen dazu, ihn zu wiederholen." D.h., man muss zwischen Speicher- und Zeitaufwand abwägen.

Vermeidung wiederholter Zustände

- Vermeidung wird in Schema S durch Ignorieren der Knoten in CLOSED erreicht.
- Wenn nach einem kürzesten Pfad gesucht wird, muss i.A. für Knoten in CLOSED, die erneut erreicht werden, überprüft werden, ob der neue Weg kürzer ist als der alte (siehe schwacher A*-Algorithmus).

Bewertungskriterien für die Qualität eines Suchverfahrens

Vollständigkeit: Wird eine existierende Lösung immer gefunden?

Optimalität: Wird die beste Lösung gefunden?

Platzbedarf: Wieviele Knoten müssen gleichzeitig gespeichert werden?

Zeitbedarf: Wieviele Knoten müssen expandiert werden? (im besten

Fall, im schlimmsten Fall, im Durchschnitt)

Die vorgestellten Suchverfahren setzen voraus, dass das Problem *statisch*, *beobachtbar*, *diskret* und *deterministisch* ist.

Agenda^l

- 2 Suche
 - Einführung
 - Blinde Suche
 - Heuristische Suche
 - Problemzerlegung
 - Suche in Spielbäumen

Breitensuche (BFS)

- in S4 alle Nachfolger ans *Ende* von OPEN stellen
- \bullet Platzbedarf b^d ; Zeitbedarf $O(b^d)$; vollständig; Lösung mit min. Anzahl von Zustandsübergängen wird zuerst gefunden

Tiefensuche (DFS)

- in S4 alle Nachfolger an den *Anfang* von OPEN stellen
- Platzbedarf $b \times m = O(m)$; Zeitbedarf $O(b^d)$; nicht optimal, bei unendlichen Pfaden im Suchraum nicht vollständig;
 - b Verzweigungsgrad
 - d Tiefe der Lösung
 - m maximale Tiefe des Suchbaumes

Iterative Tiefensuche (IDS)

- In S4 nur die Nachfolger am Anfang einfügen, wenn maximale Suchtiefe c noch nicht überschritten.
- c sukzessive erhöhen.
- Platzbedarf $b \times d$; Zeitbedarf $O(b^d)$; vollständig; optimal
- Zeitverhalten in Relation zur Tiefensuche:

$$1 \leqslant \frac{\text{Zeitbedarf}(IDS)}{\text{Zeitbedarf}(DFS)} = \frac{b+1}{b-1} \leqslant 3$$

Iterative Tiefensuche (IDS)

- In S4 nur die Nachfolger am Anfang einfügen, wenn maximale Suchtiefe c noch nicht überschritten.
- c sukzessive erhöhen.
- Platzbedarf $b \times d$; Zeitbedarf $O(b^d)$; vollständig; optimal
- Zeitverhalten in Relation zur Tiefensuche:

$$1 \leqslant \frac{\text{Zeitbedarf}(IDS)}{\text{Zeitbedarf}(DFS)} = \frac{b+1}{b-1} \leqslant 3$$

- Knoten in niedrigen Suchtiefen werden wiederholt erzeugt.
- Hiervon gibt es (bei ungefähr gleichbleibendem Verzweigungsgrad) jedoch relativ wenige.
- IDS ist bevorzugte uninformierte Such-Methode bei großem Suchraum, wenn die Tiefe der Lösung nicht bekannt ist.

Bidirektionale Suche

- Suche gleichzeitig von Start- und Endzustand; Stop, wenn beide Suchprozesse sich treffen
- Motivation: Der besuchte Bereich wird sehr viel kleiner, da $b^{\frac{d}{2}} + b^{\frac{d}{2}} \ll b^d$
- Abgleich ob Überlappung gefunden mit Hash-Tabelle in konstanter Zeit.

Bidirektionale Suche

- Suche gleichzeitig von Start- und Endzustand; Stop, wenn beide Suchprozesse sich treffen
- Motivation: Der besuchte Bereich wird sehr viel kleiner, da $b^{\frac{d}{2}} + b^{\frac{d}{2}} \ll b^d$
- Abgleich ob Überlappung gefunden mit Hash-Tabelle in konstanter Zeit.
- Mindestens einer der beiden Suchbäume muss im Speicher gehalten werden, d.h. Speicherbedarf $O(b^{\frac{d}{2}})$. Größte Schwäche dieses Ansatzes.
- Die Rückwärtssuche ist nur effizient durchführbar, wenn die Vorgänger eines Knotens effizient berechnet werden können.
- Ansatz ist schwierig, wenn die Zielzustände nur implizit gegeben sind.
 Bsp.: Schach-Matt.

Blinde Suche: Verwendung einer Kostenfunktion

- Jede Zustandsüberführung verursacht Kosten.
 Verlängert sich der Weg, erhöhen sich die Kosten.
 Die Kosten sind nicht negativ und können nicht beliebig klein werden.
- Jedem Operator werden Kosten $c(n \to n') \ge \varepsilon > 0$ zugeordnet.
- Kosten eines Pfades:

$$g(n_0 n_1 \dots n_k) = \sum_{i=0}^{k-1} c(n_i \to n_{i+1})$$

Kosten zum Erreichen von z:

$$g^*(z) = \min\{g(s) \mid s \text{ ist Weg von } z_0 \text{ nach } z\}$$

Gleiche-Kosten-Suche (UCS – Uniform Cost Search)

- In S4 alle Nachfolger einfügen und OPEN nach Kosten zum Erreichen der Zustände (Wegkosten) sortieren.
- Ermittelte Kosten g(n) stellen eine obere Schranke für die tatsächlichen Kosten $g^*(n)$ dar: $g^*(n) \leq g(n)$
- Platzbedarf $O(b^d)$; Zeitbedarf $O(b^d)$; vollständig; optimal
- BFS ist ein Spezialfall von UCS ist ein Spezialfall von A*

Gleiche-Kosten-Suche (UCS – Uniform Cost Search)

- In S4 alle Nachfolger einfügen und OPEN nach Kosten zum Erreichen der Zustände (Wegkosten) sortieren.
- Ermittelte Kosten g(n) stellen eine obere Schranke für die tatsächlichen Kosten $g^*(n)$ dar: $g^*(n) \leq g(n)$
- ullet Platzbedarf $O(b^d)$; Zeitbedarf $O(b^d)$; vollständig; optimal
- BFS ist ein Spezialfall von UCS ist ein Spezialfall von A*

Fragen:

- Welches Problem gibt es, wenn keine untere Schranke ε existiert?
- Wieso ist Breitensuche ein Spezialfall von Gleiche-Kosten-Suche?

Blinde Suche: Aufwand

- Alle vorgestellten blinden Suchverfahren haben Zeitverhalten von $O(b^d)$.
- Hopcroft/Ullman 1979 "Introduction to Automata Theory": das gilt für jedes blinde Suchverhalten.
- Verzweigungsgrad b und Tiefe der Lösung d werden empirisch abgeschätzt, sie sind domänenabhängig.

Agenda^l

- 2 Suche
 - Einführung
 - Blinde Suche
 - Heuristische Suche
 - Problemzerlegung
 - Suche in Spielbäumen

Verwendung einer heuristischen Schätzfunktion (Heuristik)

- Um ein besseres Zeitverhalten zu erreichen, soll Wissen über das konkrete Suchproblem genutzt werden. Zustände, die nahe am Ziel liegen, werden bei der Expansion bevorzugt.
- Ideal: Funktion $h^*(n)$, die die *tatsächlichen Kosten* des kürzesten Weges von einem Zustand n zu einem Zielzustand angibt. Die Ermittlung von h^* ist leider oft zu aufwendig.
- h(n) liefert eine Abschätzung der Kosten für den kürzesten Pfad zum Ziel.
- Die Heuristik ist jeweils problemspezifisch.

Anforderungen an eine Heuristik h

- die Heuristik soll stets nicht-negative Werte liefern: $h(n) \ge 0$
- Falls n Zielzustand ist, soll h(n) = 0 gelten.
- Bei tatsächlicher Annäherung an einen Zielzustand wird kleinere Distanz signalisiert.
- h soll mit möglichst geringem Aufwand zu errechnen sein.

Seien h_1 und h_2 Heuristiken. Dann heißt h_2 besser informiert als h_1 , wenn gilt: $\forall n:h_1(n)\leqslant h_2(n)$

Beispiele für Heuristiken

- die am schlechtesten informierte Heuristik: $\forall n : h(n) = 0$
- für Routenplanung: Luftlinie
- für Schiebepuzzle: Anzahl der falsch liegenden Steine oder Manhattan-Distanz (Summe der horizontalen und vertikalen Entfernungen aller Steine von ihren Zielpositionen)

Frage: Welche Informationen über das Suchproblem werden jeweils verwendet?

Heuristische Suche mit schrittweiser lokaler Verbesserung

Bergsteigen (Hill Climbing with Backtracking – BTHC)

- In S4 alle Elemente aus $\mathrm{SUCC}(z)$ gemäß ihrer Bewertung durch h ordnen und an den Anfang von OPEN stellen.
- nicht vollständig in unendlichen Räumen

optimistisches Bergsteigen (Strict Hill Climbing – SHC)

- In S4 nur das am besten bewertete Element aus ${\tt SUCC}(z)$ an den Anfang von OPEN stellen.
- nicht vollständig

Strahlensuche (Beam Search – BS)

- ullet In S4 die m am besten bewerteten Elemente aus SUCC(z) gemäß ihrer Bewertung ordnen und an den Anfang von OPEN stellen
- nicht vollständig

Bergsteiger . . .

- ullet Der Suchraum wird als Landschaft interpretiert, h gibt Höhe an.
- Man läuft nach unten (Abstieg gehört ja auch zum Bergsteigen): Finden (lokaler) Minima.
- diskrete Version eines Gradienten-Abstiegs (je nachdem ob man die Heuristik als Kosten- oder Qualitätsfunktion ansieht); Optimierung

...und Pfadfinder

- SHC "abwärts" ist analog zu der Pfadfinderregel: Wenn man sich verlaufen hat, immer bergab laufen. Irgendwann findet man Tal oder Gewässer (= bevorzugte Siedlungsplätze).
- Raum-/Zeitbedarf sind abhängig von der Heuristik
- Übung: Expansion der Suchbäume bei verschiedenen Verfahren zeigen

Vorteile und Nachteile lokaler Verfahren

Vorteile:

- geringer Speicherbedarf (häufig konstant),
- finden Lösungen auch in unendlichen Suchräumen (z.B. bei stetigen Problemen).

Nachteile:

- Sie merken sich nicht den Pfad zur Lösung, sind also nur sinnvoll einzusetzen, wenn es allein auf die Endkonfiguration ankommt (z.B. Damenproblem).
- Keine Nutzung globaler Merkmale der Heuristik (siehe nächste Folie).

Probleme beim Bergsteigen

lokale Minima – vorübergehend keine Verbesserung möglich

Plateaus - keine Unterschiede in der Bewertung

enge Talsohlen – vorhandene Operatoren erfassen den Abstieg nicht

Heuristische Suche mit schrittweiser lokaler Verbesserung

Um die genannten Probleme zu umgehen, werden die Verfahren modifiziert.

Randomisiertes Verfahren (Random Restart Hill Climbing – RRHC)

- Wenn kein Fortschritt mehr erzielt werden kann, wird das Verfahren in einem zufällig gewählten Zustand neu gestartet. Der Zustand mit der bislang besten Bewertung wird gespeichert.
- Globales Minimum wird gefunden, wenn genug Neustarts. Anzahl der notwendigen Neustarts abhängig von Anzahl der lokalen Minima.

Heuristische Suche mit schrittweiser lokaler Verbesserung

Simulated Annealing (Simuliertes Abkühlen)

- Modelliert das Erstarrungsverhalten von Flüssigkeiten. Erfahrung vom Stahlkochen: erst stark erhitzen, dann langsam abkühlen ergibt guten Stahl
- Mit bestimmter Wahrscheinlichkeit dürfen auch Schritte in Richtungen ausgeführt werden, die nicht zu einer weiteren Minimierung führen. Mit zunehmender Dauer des Verfahrens nimmt diese Wahrscheinlichkeit ab.
- Auswahl: Folgezustand zufällig wählen. Wenn er Abstieg bedeutet, wird er auf alle Fälle gewählt, sonst nur mit vorgegebener Wahrscheinlichkeit.

Weiterer Ansatz: bisherige Richtung zu einem gewissen Teil beibehalten (kontinuierlicher Raum); Schrittweite verändern

Heuristische Suche

Greedy Search (GS)

- Idee: Um schneller zum Ziel zu kommen und lokale Minima zu vermeiden, werden alle Zustände in OPEN zur Bewertung herangezogen.
- Gierig (greedy), weil ohne Rücksicht auf die Kosten jeweils mit dem vielversprechendsten Zustand weitergemacht wird
- In S4 alle Elemente aus $\mathrm{SUCC}(z)$ in OPEN übernehmen und die gesamte Liste OPEN gemäß der Bewertung durch h sortieren.
- ullet Unvollständig; nicht optimal; Zeit- und Raumbedarf $O(b^m)$; kann durch gute Heuristik deutlich verbessert werden.

Weitere mögliche Eigenschaften einer Heuristik

- Eine Heuristik h heißt fair, falls es zu einem beliebigen $k \ge 0$ nur endlich viele Zustände n gibt mit $h(n) \le k$.
- eine Heuristik h heißt zulässig oder optimistisch, falls $\forall n: h(n) \leq h^*(n)$.
- eine Heuristik h heißt konsistent, falls für alle n gilt: $h(n) \leqslant c(n \to n') + h(n').$ Diese Eigenschaft wird auch als Monotonie-Beschränkung bezeichnet.

Weitere mögliche Eigenschaften einer Heuristik

- Fairness + Zyklenvermeidung durch Abgleich mit CLOSE → Greedy wird vollständig
- bei endlichen Suchräumen ist Fairness automatisch erfüllt
- optimistisch: keine Überschätzung der Kosten
- Konsistenz: geschätzte Distanz zum Ziel schrumpft langsamer, als die Kosten durch diesen Schritt wachsen.
- Heuristiken "Anzahl falsche Steine" und "Manhattandistanz" im Schiebepuzzle sind optimistisch

Heuristische Bestensuche – Algorithmus A

- A4 : Für alle $z' \in \mathrm{SUCC}(z)$: g(z') gemäß aktuellem Suchbaum neu berechnen.
- $\mathsf{A5} \,:\, \mathsf{NEW}(z) := \mathsf{SUCC}(z) \backslash \{z' \in \mathsf{CLOSED} \mid g(z') \geqslant g_{alt}(z')\}$
- A6 : OPEN := OPEN \cup NEW(z), OPEN nach aufsteigendem g(z')+h(z') sortieren, Wiederholungen in OPEN streichen GOTO A1

Heuristische Bestensuche – Algorithmus A*

- Ohne genauere Angaben zur Heuristik lässt sich wenig über das Verhalten von A sagen.
- Wenn die Heuristik zulässig ist, lässt sich beweisen, dass der Algorithmus optimal ist.
- Wir nennen den Algorithmus dann weiche Form des A*-Algorithmus.
- Die harte Form von A* verlangt eine konsistente Heuristik. Dafür kann auf die Tests bereits expandierter Knoten verzichtet werden, denn es gilt: Der zuerst entdeckte Pfad zu einem Knoten ist auch der kürzeste.
- A*4 : Für alle $z' \in \mathrm{SUCC}(z) \backslash \mathrm{CLOSED}$: g(z') gemäß aktuellem Suchbaum neu berechnen.
- $A*5 : NEW(z) := SUCC(z) \setminus CLOSED$

Heuristische Bestensuche – Algorithmus A*

- A* entspricht A mit zusätzlichen Anforderungen an die Heuristik
- Beweise in Nilsson, 1982: Principles of Artificial Intelligence
- Zeitbedarf ist ausser bei sehr strengen Anforderungen an h, die in der Praxis meist nicht zu erfüllen sind – immer noch exponentiell in der Länge der Lösung. D.h. dass man optimale Lösungen oft nicht erwarten darf.
- Da A* alle Zwischenergebnisse speichert, ist häufig bereits der Speicher der Engpass.

Eigenschaften und Verbesserungen von A*

- vollständig, optimal, Speicherbedarf schlimmstenfalls $O(b^d)$, Zeitbedarf im allgemeinen (z.B. bei h(n)=0 für alle n) auch $O(b^d)$
- Bessere Eigenschaften lassen sich für den allgemeinen Fall nur bei sehr hohen Anforderungen an h zeigen, die häufig nicht zu erfüllen sind. Für ein konkretes Suchproblem und eine gute Heuristik wird A* oft wesentlich besser sein.
- Iterativ Deepening A* (IDA*) führt eine iterative Tiefensuche durch, wobei als Abbruchkriterium gilt: g(n)+h(n)>C. Die Schranke C wird bei jedem Durchlauf erhöht. Speicherbedarf O(n) bei leicht erhöhtem Zeitaufwand. Pro Durchlauf werden nicht mehr Knoten als durch A* expandiert. Das Verfahren ist ebenfalls vollständig und optimal.

Agenda^l

- 2 Suche
 - Einführung
 - Blinde Suche
 - Heuristische Suche
 - Problemzerlegung
 - Suche in Spielbäumen

Ein weiteres Modell zur Formulierung von Suchproblemen ist die Problemzerlegung. Sie arbeitet auf Mengen von (Teil-)Problemen. Der Übergang zwischen zwei Problemmengen kann auf unterschiedliche Weisen erfolgen:

- Die Zerlegung in Teilprobleme, von denen alle zu lösen sind.
- Die Auswahl von Alternativen, von denen eine zu lösen ist.

Teilprobleme, die sich nicht weiter zerlegen lassen, sind entweder direkt lösbar (primitiv/terminal) oder unlösbar (nicht-terminal).

Interpretation als Und-Oder-Baum bzw. -Graph

- Anfangsknoten: stellt das Ausgangsproblem dar
- Und-Verzweigung: repräsentiert Problemzerlegung
- Oder-Verzweigung: repräsentiert Alternativen
- Knoten ohne Nachfolger (Endknoten): entweder primitive oder unlösbare Probleme

Häufig wird die Normierung vorgenommen, dass sich die Verzweigungsarten abwechseln müssen.

Lösung eines Problems im Und-Oder-Graphen

Ein zyklenfreier, endlicher Teilgraph, der folgende Bedingungen erfüllt:

- der Anfangsknoten ist enthalten
- alle Endknoten sind primitiv
- für alle anderen Knoten des Lösungsgraphen gilt:
 - bei einer Und-Verzweigung sind alle Nachfolger enthalten
 - bei einer Oder-Verzweigung ist genau ein Nachfolger enthalten

Beispiele für Problemzerlegungen

Prolog

Teilprobleme: Subgoals einer Klausel

Problemzerlegung: Anwendung einer Klausel

Alternativen: Klauseln einer Prozedur

primitive Probleme: Fakten

symbolische Integration

Teilprobleme: Teilintegrale

Problemzerlegung: Teilintegrationen (Summen, Partielle Integration,

Substitution) und Umformungen

Alternativen: unterschiedliche Zerlegungen

primitive Probleme: bekannte Standardformen (aus Tabellen)

Lösung ist nicht nur true/false, sondern Ableitung bzw. Vorgehensweise bei Integration

Beispiele für Problemzerlegungen

SAINT – Symbolic Automatic INTegrator, Slagle 1963

- Dauer 11 Minuten (Rechner von Anfang der 60er Jahre;
 LISP-Interpreter); heute bei gleichem Programm im Sekundenbereich
- Vorgehen:
 - 1 Integrale mittels Tabelle von Standardformen lösen
 - algorithmenartige Umformungen versuchen (Faktoren herausziehen; in Summe zerlegen)
 - heuristische Umformungen (Umformung des Integranten, Substitution, partielle Integration) Analyse des Integranten auf bestimmte Eigenschaften (Zuhilfenahme problemspezifischen Wissens) z.B. Schwierigkeitsabschätzung mittels maximaler Tiefe der Funktionsverschachtelung

Beispiele für Problemzerlegungen

Spiele

Teilprobleme: mögliche Spielzustände

Problemzerlegung: gegnerische Züge

Alternativen: eigene Züge

primitive Probleme: Endzustände des Spiels mit Gewinn

Rubik's Cube (Zauber-Würfel)

Teilprobleme: zu erledigende Aufgaben

Problemzerlegung: 1., 2., 3. Schicht ordnen; Ecken ordnen, Kanten

ordnen

Alternativen: Auswahl bestimmter Schichten und Steine

primitive Probleme: durch bekannte Zugfolge zu lösen

Äquivalenz zwischen Zustandsraumbeschreibung und Problemzerlegung

```
"⇒" Und-Knoten auf den Kanten einfügen (trivial)
```

Zustände: Menge offener Teilprobleme

Operatoren: Ersetzung eines Problems in der Menge durch seine

Teilprobleme (Problemzerlegung);

Alternative Zerlegungen als Verzweigung;

Primitive Probleme werden aus der Menge gestrichen

Anfangszustand: Menge mit Ausgangsproblem

Zielzustand: Leere Menge

Modellierung der Türme von Hanoi

 t_i sind Türme; s_i sind Scheiben; Die Scheiben liegen geordnet auf dem ersten Turm und sollen geordnet auf den letzten Turm gebracht werden. Es darf nie eine größere auf einer kleineren Scheibe liegen.

als Zustandsraum

Zustände: alle Funktionen $f: \{s_1, \dots, s_n\} \rightarrow \{t_1, t_2, t_3\}$

 (3^n Zustände)

Operatoren: $t_i \mapsto t_j$ für $i, j \in \{1, 2, 3\}$ und $i \neq j$ – oberste Scheibe von t_i nach t_j legen (pro Zustand max. 3 Operatoren

anwendbar)

Anfangszustand: $f(s_i) = t_1$ für i = 1, ..., nEndzustand: $f(s_i) = t_3$ für i = 1, ..., n

Modellierung der Türme von Hanoi

 t_i sind Türme; s_i sind Scheiben; Die Scheiben liegen geordnet auf dem ersten Turm und sollen geordnet auf den letzten Turm gebracht werden. Es darf nie eine größere auf einer kleineren Scheibe liegen.

als Problemzerlegung

Ausgangsproblem: n Scheiben von t_1 nach t_3

Problemzerlegung: m Scheiben von t_i nach t_j

- (m-1) Scheiben von t_i nach t_k
- 1 Scheibe von t_i nach t_i
- ullet (m-1) Scheiben von t_k nach t_j

Primitive Probleme: 1 Scheibe von t_i nach t_j

Modellierung der Türme von Hanoi

 t_i sind Türme; s_i sind Scheiben; Die Scheiben liegen geordnet auf dem ersten Turm und sollen geordnet auf den letzten Turm gebracht werden. Es darf nie eine größere auf einer kleineren Scheibe liegen.

- Zustandsraumbeschreibung: Funktion ordnet den Scheiben ihre Plätze zu; von 6 möglichen Operatoren max. 3 anwendbar, wegen Bedingung, dass nur kleine auf großen Scheiben liegen dürfen
- Problemzerlegung: keine Alternativen → Lösungsbaum wird direkt konstruiert

Bewertung der Knoten

lösbare Knoten

- terminale Knoten
- Knoten mit Und-Verzweigungen: alle Nachfolger lösbar
- Knoten mit Oder-Verzeigungen: mindestens ein Nachfolger lösbar

unlösbare Knoten

- nicht-terminale Knoten
- Knoten mit Und-Verzweigungen: mindestens ein Nachfolger unlösbar
- Knoten mit Oder-Verzeigungen: alle Nachfolger unlösbar

Für endliche Bäume ergibt sich bei Festlegung für die Bewertung der Endknoten eine eindeutige Zerlegung in lösbare und unlösbare Knoten.

Top-Down Verfahren zur Lösungsbaumsuche (1)

- OPEN := {Startknoten}, CLOSED := { }
 Falls Startknoten terminal: EXIT(yes)
- Sei k der erste Knoten aus OPEN OPEN := OPEN\{k\}, CLOSED := CLOSED \cup {k}, SUCC(k) := Nachfolger von k SUCC(k) an den Anfang von OPEN (Tiefensuche) bzw. SUCC(k) an das Ende von OPEN (Breitensuche)
- 2 Falls SUCC(k) = { }: GOTO(6) /* Markiere k als unlösbar */
- **3** Falls in SUCC(k) keine terminalen Knoten sind: GOTO(1)
- ullet Markiere die terminalen Knoten in SUCC(k) als lösbar. Falls dadurch k und weitere Vorgänger von k lösbar werden, so markiere auch diese als lösbar

Top-Down Verfahren zur Lösungsbaumsuche (2)

- Falls Startknoten als lösbar markiert: EXIT(yes) Entferne alle Knoten aus OPEN, die einen mit lösbar markierten Vorgänger besitzen GOTO(1)
- ullet Markiere k als unlösbar. Falls dadurch weitere Vorgänger von k unlösbar werden, so markiere auch diese als unlösbar.
- Falls Startknoten als unlösbar markiert: EXIT(no)
 Entferne alle Knoten aus OPEN, die einen mit unlösbar markierten Vorgänger besitzen
 GOTO(1)

- Zeitkomplexität $O(b^m)$
- Speicherkomplexität $O(b^m)$ (Breitensuche) oder O(m) (Tiefensuche).
- Zeitkomplexität ist impraktikabel für Anwendungen → Heuristiken nötig.
- Kann angepasst werden, so dass anstelle von lösbar/nicht lösbar Bewertungen der Spielsituationen bestimmt werden.

Agenda^l

- 2 Suche
 - Einführung
 - Blinde Suche
 - Heuristische Suche
 - Problemzerlegung
 - Suche in Spielbäumen

Wir betrachten ein 2-Personenspiel. Die Spieler A und B ziehen abwechselnd. Am Ende wird der Gewinn bzw. Verlust von A und B numerisch bewertet.

Beispiele für Bewertungen

- Schach: 1/-1 (A gewinnt), 0/0 (Remis), -1/1 (B gewinnt)
- Backgammon: Werte zwischen -192 und +192
- nicht unbedingt antagonistisch: 10/2 3/-8 4/6 (Absprachen, Koalitionen möglich)
- Gefangenendilemma: 2/2 (beide leugnen) 5/5 (beide gestehen) 0/10 bzw. 10/0 (einer von beiden gesteht)

Warum Spiele?

- Abstrakter Wettbewerb, gut repräsentierbar, oft vollständige Informationen, klare Regeln, begrenzte Anzahl von Zügen/Handlungsweisen
- Trotzdem komplex / nicht überschaubar

Erste Schachprogramme Anfang der 50er Jahre (Shannon/Turing):

 Beweis(?) für die Intelligenz(?) eines Programms: "Es kann Schach spielen!"

Suchproblem: günstige Spielzüge finden

Notwendige Komponenten für die Suche

- Anfangszustand
- Operatoren, die die zulässigen Züge beschreiben
- Test ob Endzustand erreicht
- Resultatfunktion (payoff) für die Endknoten, die den Gewinn bzw. Verlust von A und B als numerischen Wert wiedergibt

Darstellung als Baum bzw. Graph möglich

Probleme beim Suchen nach einer Strategie

- Unsicherheit bezüglich gegnerischer Aktionen
- Unüberschaubarkeit durch Komplexität
 - Beispiel Schach: durchschnittlich 35 mögliche Züge, pro Partie ca. 50 Züge (Halbzüge) pro Spieler $\rightarrow 35^{100}$ Knoten (bei ca. 10^{40} unterschiedlichen zulässigen Stellungen)
- begrenzte Zeit für Entscheidungsfindung
- Zufallselemente

Vereinbarungen für die folgenden Verfahren

Es wird verlangt:

- vollständige Informationen
- Nullsummenspiel (resultat(B) = -resultat(A)),
 d.h. Angabe für A reicht
- Spielbaum aus der Sicht von A

Ausgangspunkt: A (*Maximierer*) will maximal mögliches Ergebnis erzielen, B (*Minimierer*) wird versuchen, das Ergebnis von A möglichst gering zu halten (optimale Spielweise von B vorausgesetzt).

Ziel: Strategie, die A in jeder Situation sagt, welcher nächste Zug der beste ist, unter Berücksichtigung aller möglichen Züge von B.

Interpretation als Und-Oder-Baum

Zug von A: Oder-Verzweigung (Alternativen)

Zug von B: Und-Verzweigung (man will allen Reaktionen von B begegnen)

Bei Spielen, die nur die Bewertung 1,-1 (Gewinn, Verlust) haben,

Lösungssuche analog zur Problemzerlegung:

lösbare Knoten: A gewinnt

unlösbare Knoten: B gewinnt

Strategie: im Lösungsbaum Zug zu einem lösbaren Knoten wählen

Theorem

Jedes Spiel mit endlicher Baumstruktur und nur Gewinn/Verlust besitzt entweder eine Gewinnstrategie für A oder eine Gewinnstrategie für B.

Die Minimax-Strategie

Voraussetzung: vollständig entwickelter Baum

- S0 : Endknoten mit resultat(A) bewerten
- S1: Wähle einen Knoten k, dessen Nachfolger alle bewertet sind
 - Wenn bei k eine Und-Verzweigung beginnt, erhält k die minimale Bewertung seiner Nachfolger
 - Wenn bei k eine Oder-Verzweigung beginnt, erhält k die maximale Bewertung seiner Nachfolger
- S2: Falls Wurzel bewertet: Stop GOTO S1

Strategie: A wählt in k den Zug zum maximal bewerteten Nachfolger.

Komplexität von Minimax

Zeitbedarf für vollständige Expansion des Spielbaumes: $O(b^m)$

Möglichkeiten zum Einsparen:

- Die Expansion des Spielbaumes wird vorzeitig abgebrochen; die Qualität des erreichten Zustandes wird abgeschätzt.
- Teilbäume, die aufgrund der bisher ermittelten Bewertungen ohnehin nicht in Frage kommen, werden nicht entwickelt.

Eine Kombination beider Verfahren ist möglich.

Entscheidung ohne vollständige Entwicklung des Baumes

Folgende Ersetzungen bei den Komponenten werden notwendig:

- Test auf Endzustand →
 Test ob Abbruch der Suche sinnvoll (cutoff)
- Resultatfunktion → heuristische Bewertung (utility) der Nützlichkeit/Qualität beliebiger Spielzustände

Bewertungen werden wie bisher per Minimax nach oben propagiert.

Wahl der Heuristik

Sie soll in den Endzuständen in ihrer Wertung mit der Resultatfunktion übereinstimmen, sie soll die Gewinnchancen von einem Zustand aus widerspiegeln und sie darf nicht zu aufwendig sein.

Häufig werden gewichtete lineare Funktionen verwendet: Es müssen also Kriterien und ihr Einfluss auf die Nützlichkeit der Stellung bestimmt werden. Alternativen: z.B. Neuronale Netze

Beispiel: Schach

- Materialwerte: Bauer (1), Springer u. Läufer (3), Turm (5), Dame (9)
- gute Verteilung der Bauern und Sicherheit des Königs (0,5)
- Werte für beide Spieler aufsummieren und gegeneinander verrechnen.

Wahl der Heuristik

Die Heuristik hilft alleine noch nicht viel

Beispiel: Schach

Annahmen:

- man kann pro Sekunde 1000 Stellungen durchsuchen (1995)
- im Turnierschach 150s Zeit zum Überlegen
- durchschnittlicher Verzweigungsgrad 35

Wahl der Heuristik

Die Heuristik hilft alleine noch nicht viel

Beispiel: Schach

Annahmen:

- man kann pro Sekunde 1000 Stellungen durchsuchen (1995)
- im Turnierschach 150s Zeit zum Überlegen
- durchschnittlicher Verzweigungsgrad 35

Ergebnis:

- Suchbaum hat Tiefe von 3 (42 875 Stellungen) bis 4 (ca. 1,5 Mio Stellungen) Halbzügen
- entspricht der Spielstärke eines Anfängers (durchschnittl. menschliche Schachspieler: 6-8 Halbzüge)

Probleme bei unvollständiger Suche

Probleme bei unvollständiger Suche:

Statische Bewertung: Verdichtung aller Bewertungskriterien auf eine Zahl Horizont-Effekt: entscheidender Spielzug wird wegen Abbruch der Suche nicht betrachtet

Mögliche Lösungen:

- Einsatz von Lernverfahren um gute Gewichtung zu finden
- dynamisches Abbruchkriterium: in unruhigen Situationen (starke Schwankungen in der Bewertung) weiter suchen, bei eindeutig schlechten Situationen vorher abbrechen

Spiele mit Zufallselementen

A und B werten in jedem Schritt zunächst ein Zufallsereignis (z.B. Würfeln bei Backgammon) aus. Das Ergebnis beeinflusst die Zugmöglichkeiten. Im Spielbaum werden zusätzlich Zufallsknoten eingefügt.

Sei c ein Zufallsknoten. Mit Wahrscheinlichkeit $P(d_i)$ tritt das Resultat d_i ein, welches zum Zustand s_i führt. Der Knoten c wird bewertet mit $value(c) = \sum_i P(d_i) value(s_i)$. Die Bewertung der A-(Maximierer) bzw. B-Knoten (Minimierer) erfolgt wie bisher.

Kompexität $O(b^d n^d)$ – dabei ist n Anzahl der möglichen unterschiedlichen Zufallsergebnisse.

Cubestormer III

17. März 2014: Weltrekord in 3.253 Sekunden

