1. A) The shortest distance between RI and P is: RI > RZ -> R4 -> R3 -> P. The smallest packet size to get through without fragmentation 75 512.

Ethan Wong 305 319 001

8) Distance (P,R) = Mm (Distance (R,N) + Distance (P,N))

To find the unnimum distance, calculate all possible paths from R to P through all people or N. Then relect the smallest distance.

MinMox Packet Size(P, R) = min(minmaxpacketsize(R,N), minmaxpacketsize(P,N))

We want to find the smallest packet size between neighbors and choose the smallest and.

c) +=0

+= 3

Final:

It takes 3 units of time

for all the estimates to converge at +=3,

d) += 7

+=9

It takes 2 units of time for estimates to convoye at + = 9.

2.0)	R4	R5	R6
	LSP	LSP	LSP
	R2,10	R4.1	R4,1
	R3,1	R6.5	R5.5
	R5,1 R6,1		

C) Once R5 receives the updated LSP from R4, it will notice that this LSP no lunger has the R2 -> R4 connection or the R3 -> R4 connection. Since this is the most recently received LSP, R5 will conclude that these links have crashed , despite having old (incorrect) LSPs from R2 and R3. These old LSPs will just be ignored.