Lab 5: Low Pass Filter Design and Implementation

1. **Task:**

A filter removes unwanted components or features from a signal. It generally involves removing some frequencies from the signal in order to suppress the interfering signals and remove the background noise.

In this task you will be designing a low-pass filter and implementing it using an operational amplifier. This lab involves: a) How to design a first order active low-pass filter; b) Sallen-key Low Pass Filter; c) How to implement a low pass filter to remove harmonics from a signal.

2. Pre-Lab:

Active Filter:

An active filter is a type of analog electronic filter, distinguished by the use of one or more active components such as voltage amplifiers or buffer amplifiers. The transfer function H(s) of a filter is the ratio of the output signal Y(s) to the input signal X(s) as a function of the complex frequency 's'.

$$H(s) = \frac{Y(s)}{X(s)} \tag{1}$$

The transfer function and the cut-off frequency of the first order active low pass filter shown in Figure 1 can be represented as follows:

> Transfer Function:
$$\frac{v_o(s)}{v_s(s)} = -\frac{R}{R_1} \frac{1}{(1 + sCR)}$$
 (2)

The transfer function and the design equations of the Sallen-key low pass filter shown in Figure 2 can be represented as follows:

Transfer Function:
$$\frac{v_o(s)}{v_s(s)} = \frac{\frac{K}{(RC)^2}}{s^2 + s\left(\frac{3-K}{RC}\right) + \frac{1}{(RC)^2}} = \frac{H_0\omega_0^2}{s^2 + \frac{\omega_0}{Q}s + \omega_0^2}$$
(4)

$$\omega_0 = \frac{1}{RC}$$

$$\Rightarrow \text{ Design Equations:} \qquad \frac{1}{Q} = 3 - K$$

$$H_0 = K$$
(5)

Figure 1: First Order Active Low-Pass Filter

Figure 2: Sallen-key Active Low-Pass Filter

In this lab, you will learn how to find out these parameters from the components given and to verify it experimentally.

3. Resources:

Table 1: List of Hardware

Name	Qty	Description
Signal Generator	1	To generate sinusoidal, square, triangle waveforms
Oscilloscope	1	To view the output and input waveforms
NI Elvis	1	Hardware test platform
DC Power Supply	1	Provide a constant voltage supply

Table 2: Component List

Name	Qty	Description
LM358	1	Operational Apmplifier
1/4W Resistor	-	Use resistors as mentioned in lab procedure
Capacitor	2	10 nF Ceramic Capacitor

4. Lab procedure and analysis:

4.1 First Order Active Low-Pass Filter

- Build the circuit on breadboard as shown in Figure.1. Choose C as 10nF, design R1 and R such that the 1st order active low pass filter exhibits gain of 3dB and cut-off frequency of 1kHz.
- 2. Connect signal generator to generate v_s : a sinusoidal signal with peak to peak amplitude of 100mV and frequency 50 Hz. Use oscilloscope to measure and record the peak to peak magnitude of v_o . Repeat this step for different frequencies to complete Table 3.
- 3. On the given semilog graph paper, plot gain (dB) versus frequency (Hz). Estimate the filter cutoff frequency from the plot.

4.2 Sallen-key Active Low-Pass Filter

- Build the Sallen-key low pass filter circuit on breadboard as shown in Figure.2.
 Choose C as 10nF, design K and R such that the filter has a Q of 0.7071 and cut-off frequency of 5kHz.
- 2. Connect signal generator to generate v_s : a sinusoidal signal with peak to peak amplitude of 100mV and frequency 50 Hz. Use oscilloscope to measure and record the peak to peak magnitude of v_o . Repeat this step for different frequencies to complete Table 4.
- 3. On the same semilog graph paper used for **4.1**, plot gain (dB) versus frequency (Hz). Estimate the filter cutoff frequency from the plot.