Министерство образования Республики Беларусь Учреждение образования БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ

Факультет компьютерных систем и сетей Кафедра программного обеспечения информационных технологий Дисциплина: Основы алгоритмизации и программирования (ОАиП)

ОТЧЕТ

по лабораторной работе №1

Тема работы: Расчет функции

Выполнил

студент: гр. 151004 Башлыков В.В.

Проверил: Фадеева Е.П.

СОДЕРЖАНИЕ

1 Постановка задачи	3
2 Ход решения	4
3 Текстовый алгоритм решения задачи	
4 Структура данных	
5 Схема алгоритма решения задачи по Гост 19.701-90	8
6 Результаты расчетов	9
Приложение А	
Приложение Б	11

1 ПОСТАНОВКА ЗАДАЧИ

Для заданной функции

$$f\left(k,x
ight) = \sqrt[3]{x + rac{n-3}{n}} + \sum_{k=1}^{n} \left(rac{20 + \sqrt[k]{e^{kx-2}}}{\ln(kx) + rac{3}{5 + \log_2(kx)}}
ight)$$

Место для уравнения. вычислить её значение для n=10;11...15 и значении x, изменяющемся от $x_{\rm H}=0.6$ до $x_{\rm K}=1.1$ с шагом h=0.1. Вывести на печать результаты расчётов:

$$n =$$
 значение $x =$ значение $f =$ значение

2 ХОД РЕШЕНИЯ

Так как в данной лабораторной работе не можем воспользоваться библиотекой Math, то чтобы возвести выражение в степень, использую свойство логарифма $x^y = e^{y*\ln(x)}$.

Для решения этой функции было использовано три цикла: While , For, For. Цикл While используется для изменений значения х.

Первый цикл For реализует подсчет и сохранение значения математической суммы с значениями n = 1,2,...,9; Для этого был выведен следующий код: sum := sum + (20 + exp(Ln(exp(n * x - 3)) / n)) / (Ln(n * x) + 3 / (5 + Ln(n * x) / Ln(2)));

Второй цикл For реализует подсчет финальных значений функции, и вывод их на экран. Для этого к значению от первого цикла For прибавляется 1,2,...,5 раз значение математической суммы, а так же каждую итерацию прибавляется значение первой части уравнения. Каждую итерацию значение n=10,11,...,15;

Вывод финальных значений функции пронумерован. Нумерация осуществляется за счет отдельной переменной, и отображается как 1),2),3) и т.д.

3 ТЕКСТОВЫЙ АЛГОРИТМ РЕШЕНИЯ ЗАДАЧИ

Таблица 1 – Алгоритм решения

,	тыпоритм решения
Nº	
шага	Назначение шага
1	x := 0.6;
2	k := 0.1;
3	counter := 0;
4	while x <= 1.1 do (цикл до x <= 1.1)
5	sum := 0;
	for n := 1 to 9 do (цикл, вычисляющий математическую
6	сумму от 1 до 9)
7	sum := sum + (20 + exp(Ln(exp(n * x - 3)) / n)) / (Ln(n * x) + 3 / (5 + Ln(n * x) / Ln(2))); (Вычисление значения второй части функции
8	for n := 10 to 15 do (цикл, вычисляющий значение функции от 10 до 15
9	sum := sum + (20 + exp(Ln(exp(n * x - 3)) / n)) / (Ln(n * x) + 3 / (5 + Ln(n * x) / Ln(2))); (Вычисление значения второй части функции

10	f := sum + exp(Ln(x + (n - 3) / n) / 3); (вычисление финального значения функции)
11	writeln(counter, ')', ' x:= ', x:2:2, ' n:= ', n, ' f(k,x):= ', f:6:6); (Вывод значений x, n и f(k,x))
12	x := x + k; (Вычисление значения x для следующих итераций цикла)

4 СТРУКТУРА ДАННЫХ

Таблица 2 – Данные

Элементы данных	Рекомендуемый тип	Назначение	
X	Real		
		Начальное значение аргумента х, потом принимает все после-	
		дующие значения этого аргу-	
		мента	
k	Real	Шаг по х	
f	Real	Финальное значение функции	
		f(k,x)	
counter	Integer	Счетчик решений	
n	Integer	Количество слагаемых	
sum	Real	Переменная для временного	
		хранения значения математиче-	
		ской суммы	

5 СХЕМА АЛГОРИТМА РЕШЕНИЯ ЗАДАЧИ ПО ГОСТ 19.701-90

Рисунок 1 – Схема алгоритма решения задачи по ГОСТ 19.701-90

6 РЕЗУЛЬТАТЫ РАСЧЕТОВ

Вследствие результатов программы на экран выводятся следующие результаты расчетов:

```
□ D:\Универ\ОАиП\Win32\Debug\Project1.exe
1) x:= 0.60 n:= 10 f(k,x):= 234.410003
2) x:= 0.60 n:= 11 f(k,x):= 243.816283
3) x:= 0.60 n:= 12 f(k,x):= 252.912477
4) x:= 0.60 n:= 13 f(k,x):= 261.740407
5) x:= 0.60 n:= 14 f(k,x):= 270.333245
6) x:= 0.60 n:= 15 f(k,x):= 278.717821
7) x:= 0.70 n:= 10 f(k,x):= 182.905372
8) x:= 0.70 n:= 11 f(k,x):= 191.814882
9) x:= 0.70 n:= 12 f(k,x):= 208.841920
11) x:= 0.70 n:= 13 f(k,x):= 225.020246
13) x:= 0.70 n:= 15 f(k,x):= 158.330490
14) x:= 0.70 n:= 15 f(k,x):= 158.330490
14) x:= 0.80 n:= 10 f(k,x):= 158.330490
14) x:= 0.80 n:= 11 f(k,x):= 175.152550
16) x:= 0.80 n:= 13 f(k,x):= 198.796455
17) x:= 0.80 n:= 15 f(k,x):= 175.5153915
18) x:= 0.90 n:= 10 f(k,x):= 143.264910
20) x:= 0.90 n:= 12 f(k,x):= 174.983797
21) x:= 0.90 n:= 12 f(k,x):= 174.983797
22) x:= 0.90 n:= 13 f(k,x):= 182.461206
25) x:= 1.00 n:= 10 f(k,x):= 132.881514
26) x:= 1.00 n:= 10 f(k,x):= 143.714161
28) x:= 1.00 n:= 10 f(k,x):= 143.785840
30) x:= 1.00 n:= 15 f(k,x):= 163.785840
30) x:= 1.00 n:= 15 f(k,x):= 163.785840
30) x:= 1.00 n:= 15 f(k,x):= 155.233770
31) x:= 1.10 n:= 10 f(k,x):= 133.081460
32) x:= 1.10 n:= 11 f(k,x):= 140.726198
34) x:= 1.10 n:= 12 f(k,x):= 144.726198
34) x:= 1.10 n:= 14 f(k,x):= 155.501522
36) x:= 1.10 n:= 15 f(k,x):= 155.501522
36) x:= 1.10 n:= 15 f(k,x):= 155.501522
36) x:= 1.10 n:= 15 f(k,x):= 162.668650
```

Рисунок 2 – Результаты расчетов

ПРИЛОЖЕНИЕ А

(обязательное)

Исходный код программы

```
program Laba1;
    {$APPTYPE CONSOLE}
    var
      n, counter: integer;
      x, sum, f, k: real;
    begin
      x := 0.6;
      k := 0.1;
      counter := 0;
      while x \le 1.1 do
      begin
        sum := 0;
        for n := 1 to 9 do
          sum := sum + (20 + exp(Ln(exp(n * x - 3))) /
n)) / (Ln(n * x) + 3 / (5 + Ln(n * x) / Ln(2)));
        for n := 10 to 15 do
        begin
          counter := counter + 1;
          sum := sum + (20 + exp(Ln(exp(n * x - 3))) /
n)) / (Ln(n * x) + 3 / (5 + Ln(n * x) / Ln(2)));
          f := sum + exp(Ln(x + (n - 3) / n) / 3);
writeln(counter, ')', ' x:= ', x:2:2, ' n:= ', n,
    ' f(k,x) := ', f:6:6;
        end;
        writeln('');
        x := x + k;
      end;
      readln;
    end.
```

приложение б

(обязательное) Тестовые наборы

Ожидаемый результат в Mathcad15:

$f(a,n):=\sqrt[3]{a+\frac{n-3}{n}}+\sum_{k=1}^n$	$\frac{20 + \sqrt[k]{e^{k \cdot a - 3}}}{\ln(k \cdot a) + \frac{3}{5 + \frac{\ln(k \cdot a)}{\ln(2)}}}$			
22				
$\mathbf{f}(0.6, 10) = 234.410003$	f(0.7, 10) = 182.905372 $f(0.8, 10) = 158.330490$	f(0.9,10) = 143.264910	f(1.0, 10) = 132.881514	f(1.1,10) = 125.233770
$\mathbf{f}(0.6, 11) = 243.816283$	f(0.7,11) = 191.814882 $f(0.8,11) = 166.866982$	f(0.9,11) = 151.513915	f(1.0,11) = 140.905735	f(1.1,11) = 133.081460
$\mathbf{f}(0.6, 12) = 252.912477$	f(0.7, 12) = 200.448286 $f(0.8, 12) = 175.152550$	f(0.9,12) = 159.531502	f(1.0, 12) = 148.714161	$\mathbf{f}(1.1, 12) = 140.726198$
$\mathbf{f}(0.6, 13) = 261.740407$	f(0.7,13) = 208.841920 $f(0.8,13) = 183.219539$	f(0.9,13) = 167.346962	$\mathbf{f}(1.0, 13) = 156.333658$	$\mathbf{f}(1.1, 13) = 148.192862$
$\mathbf{f}(0.6, 14) = 270.333245$	$\mathbf{f}(0.7, 14) = 217.024737 \dots \mathbf{f}(0.8, 14) = 191.093815$	f(0.9,14) = 174.983797	f(1.0,14) = 163.785840	f(1.1, 14) = 155.501522
$\mathbf{f}(0.6, 15) = 278.717821$	f(0.7,15) = 225.020246 f(0.8,15) = 198.796455	f(0.9,15) = 182.461206	f(1.0, 15) = 171.088411	f(1.1, 15) = 162.668650