Сеть и сетевые протоколы: NAT

Александр Гришин

О спикере:

• Инженер в компании YADRO

Цели занятия

- Познакомиться с базовыми представлениями технологии трансляции сетевых адресов и предпосылками к появлению NAT.
- Узнать о различных способах реализации NAT и особенностях применения
- Получить практический навык базовой настройки NAT в Linux

План занятия

- Приватные и публичные сети
- 2 Static NAT / Dynamic NAT
- 3 Source NAT
- 4 <u>Destination NAT</u>
- 5 <u>Примеры настройки NAT</u>
- 6 ИТОГИ
- 7 Домашнее задание

Приватные и публичные сети

Цели темы

- Вспомнить диапазоны IPv4 адресов, их назначение
- Закрепить знания об адресации в публичных сетях
- Поговорить о проблематике взаимодействия публичных и частных адресов

IPv4 адреса бывают двух типов:

Публичные (public)

Белые или внешние

Приватные (private)

Серые, частные или внутренние

Почему IPv4 адреса разделили на два типа?

Предпосылки к созданию приватных сетей

Ограниченное количество IP-адресов (4,3 млрд) Сети, которым не нужно ни с кем взаимодействовать

Идентификация устройств в интернете

Число уникальных адресов ограничено, поэтому было определено так называемое частное пространство IP-адресов

Частные IPv4-адреса

Используются в локальных компьютерных сетях

Не маршрутизируются в глобальную сеть интернет

Частные IPv4-адреса
не являются уникальными
и могут использоваться
во внутренней сети

Блоками частных адресов являются:

Адреса в этих блоках адресов не допустимы для использования в Интернете и должны отклоняться интернет-маршрутизаторами

Виды сетей

Публичные (почти все остальные)

Приватные/частные

Ситуация

Вы выдали сотрудникам в офисе много приватных адресов

Вопрос:

Как сотрудники будут сидеть в интернет?

Ситуация

Способы выхода в интернет с приватных адресов

1

Использование сервера PROXY (2)

Подмена адресов NAT

Использование PROXY для выхода в интернет с приватных адресов

Использование **NAT** для выхода в интернет с приватных адресов

Дословный перевод **NAT**

Network Address
Translation

Преобразование сетевых адресов

NAT

специальный механизм, реализованный в сетях TCP/IP, который позволяет изменять IP-адреса и/или номера портов TCP/UDP в пересылаемых пакетах

4>

Механизм NAT

Реализуется через маршрутизатор, на программном уровне

Виды NAT

Static NAT / One to one NAT

Source NAT / NAT Overload / Masquerade / Many to one

Dynamic NAT

Destination NAT (PAT)

Преимущества NAT

- Под одним внешним IPv4 адресом может сидеть в глобальной паутине множество пользователей одновременно
- Скрывает ваш настоящий внутренний IP в частной сети и показывает лишь внешний. Так, все устройства из вне видят только ваш общедоступный IP
- В определенной степени выполняет функции фаервола если на устройство с NAT извне приходит пакет, который не ожидался — то он категорически не будет допущен

Недостатки NAT

- Невысокая скорость передачи данных для протоколов реального времени, например, для VoIP. Когда NAT переделывает заголовки пакета — происходят задержки
- Проблемы с идентификацией под одним IP может находится сразу несколько человек.
- Сервис может заблокировать внешний IP-адрес из-за злоумышленника (который, например, подбирает пароли), а работать перестанет у всех, кто закрывается этим адресом

Итоги темы

- Ограниченность адресного пространства IPv4
 подтолкнула к широкому использованию частных IP
 адресов
- Адресацию частных адресов можно решать двумя путями: через proxy-сервер или через подменут адресов (NAT)
- В отличии от прокси-серверов использование NAT не ограничивает использование протоколов, что лучше для конечных пользователей

Итоги темы

- 4 Существует множество реализаций NAT, одним из самых востребованных является Source NAT или Masquerade
- Преимущества и недостатки NAT заключаются в одном – за одним IP адресом может скрываться большое количество пользователей. Поэтому с экономией адресного пространства приходит риск общей блокировки из-за действий одного пользователя

Static NAT / Dynamic NAT

Цели темы

- Узнать о принципах работы Static NAT
- Понять, как происходит подмена адресов
- Познакомиться с особенностями Dynamic NAT и его ограничениями

Static NAT

сопоставление локального IP-адреса с глобальным IP-адресом на основании один к одному

Принцип действия Static NAT

Для всемирной паутины

Static NAT

используется при необходимости «опубликовать» внутренний сервер компании в интернет, причём не один, а все сервисы сразу

Несмотря на то, что у сервера «серый» адрес, он полноценно отвечает на запросы извне (по другому, «белому» адресу)

Схема Static NAT

Схема Static NAT

Преобразование

src IP	dst IP	 src IP	dst IP	 src IP	dst IP
10.0.0.2	8.8.8.8	62.217.185.18	8.8.8.8	62.217.185.18	8.8.8.8

Преобразование

src IP	dst IP	 src IP	dst IP		src IP	dst IP	
8.8.8.8	10.0.0.2	8.8.8.8	10.0.0.2	1	8.8.8.8	62.217.185.18	

Из локальной сети в интернет

- Наш сервер 10.0.0.2 обращается ко внешнему серверу на 8.8.8.8, отправляет пакет данных на шлюз
- Шлюз 10.0.0.1, на котором настроен NAT переписывает в пакете IP-адрес отправителя (поле "source ip" IP-пакета) в белый адрес 62.217.185.15 (выдан провайдером)
- Всё взаимодействие этого компьютера в интернете идёт через белый IP-адрес 62.217.185.15, ответ от сервера 8.8.8.8 отправляется также на этот адрес, т.к. в интернете никто ничего не знает про 10.0.0.2 благодаря трансляции

Из локальной сети в интернет

- Из интернета происходит попытка подключения к нашему серверу по адресу 62.217.185.15 (т.к. про 10.0.0.2 никто ничего не знает, т.к. сеть немаршрутизируемая и пакеты до неё ни от кого не дойдут)
- На нашем шлюзе есть трансляция, преобразующая все пакеты из 10.0.0.2 в 62.217.185.15 и из 62.217.185.15 в 10.0.0.2
- На основании этого правила шлюз преобразовывает в IPпакете поле destination IP из 62.217.185.15 в 10.0.0.2 и отправляет его уже в локальной сети

Dynamic NAT

динамическая адресная трансляция, в которой адреса сопоставляются по принципу «многие ко многим»

Принцип действия Dynamic NAT

Реальные адреса выдаются динамически каждому нуждающемуся пользователю во внутренней сети, а не одному определенному узлу

Схема Dynamic NAT

Схема Dynamic NAT

Таблица преобразований

src IP	dst IP	src IP local		src IP global		dst IP		src IP		dst IP
10.0.0.2	8.8.8.8	10.0.0.2		62.217.185.3		8.8.8.8		62.217.185.3		8.8.8.8
10.0.0.3	8.8.8.8	10.0.0.3		62.217.	185.4	8.8.8.8		62.217.18!	5.4	8.8.8.8
src IP	dst IP	src IP	dst II	local	dst IF	global		src IP	dst IP	
8.8.8.8	10.0.0.2	8.8.8.8	10.0.	0.2	62.21	7.185.3	<u></u>	8.8.8.8	62.217	7.185.3
8.8.8.8	10.0.0.3	8.8.8.8	10.0.	0.3	62.21	7.185.4		8.8.8.8	62.217	7.185.4

Ограничения Dynamic NAT

Вопрос:

Если внешних адресов, например, 10, а пользователей 300?

Ограничения Dynamic NAT

Вопрос:

Если внешних адресов, например, 10, а пользователей 300?

Ответ:

Те хосты, кто успел первым, те и смогут их использовать

Ограничения Dynamic NAT

Вопрос:

Если внешних адресов, например, 10, а пользователей 300?

Ответ:

Те хосты, кто успел первым, те и смогут их использовать

Dynamic NAT – используется редко

Итоги темы

- Использование Static NAT целесообразно, когда нам необходимо полностью опубликовать все сервисы узла в публичной сети
- Подмена адреса отправителя/получателя
 осуществляется маршрутизатором на границе сетей
- Отличие Dynamic NAT заключается в динамическом сопоставлении внешних адресов по внутренним клиентам

Source NAT

Цели темы

- Познакомиться с особенностями Source NAT
- Разобраться с ключевыми отличиями Source NAT от других реализаций
- Узнать об отличиях Source NAT и Masquerading

Mexaнизм Source NAT (SNAT)

позволяет изменить исходный IP-адрес сетевого пакета на другой IP-адрес, а также увеличить безопасность

и сохранить конфиденциальность, поскольку маскируются и скрываются частные IP-адреса устройств

Source NAT

используются для выхода в интернет группы компьютеров с внутренними адресами через один внешний адрес

Снаружи на внешний адрес пропускаются только пакеты, содержащиеся в таблице трансляций

Схема Source NAT

Схема Source NAT

Таблица преобразований (динамическая)

src IP:port	dst IP:port		
10.0.0.2:2001	87.250.250.242:80		
10.0.0.3:4999	87.250.250.242:80		

src IP local:port	src IP global:port	dst IP:port		
10.0.0.2:2001	62.217.185.3:3500	87.250.250.242:80		
10.0.0.3:4999	62.217.185.3:2999	87.250.250.242:80		

Из локальной сети в интернет

- Наши компьютеры 10.0.0.0/24 обращаются ко внешним серверам, например на 87.250.250.242:80, отправляют пакеты на шлюз, подставляя рандомный порт в качестве src port
- Шлюз 10.0.0.1, на котором настроен NAT, переписывает в пакете IP-адрес и порт отправителя (поля "source ip", "source port" IP-пакета) в белый адрес 62.217.185.3 и рандомный src port
- Дальше он записывает в таблицу NAT трансляций запись:

10.0.0.2:2001 - 62.217.185.3:3500 - 87.250.250.242:80

для того, чтобы правильно обработать ответный пакет

Из локальной сети в интернет

Запись в таблицу NAT трансляций:

10.0.0.2:2001 - 62.217.185.3:3500 - 87.250.250.242:80

Из интернета в локальную сеть

Шлюз пропустит только пакеты, соответствующие существующим NAT трансляциям, остальные будут отброшены

```
10.0.0.2:2001 - 62.217.185.3:3500 - 87.250.250.242:80
10.0.0.3:4999 - 62.217.185.3:2999 - 87.250.250.242:80
```

Разрешены будут пакеты:

src IP:port	dst IP:port		
87.250.250.242:80	62.217.185.3:3500		
87.250.250.242:80	62.217.185.3:2999		

^{*} Через некоторый таймаут строка из таблицы трансляций удалится

NAT Masquerading

тип трансляции сетевого адреса, при которой внешний адрес отправителя подставляется динамически,

в зависимости от назначенного провайдером адреса

NAT Masquerading
используются для выхода в
интернет группы компьютеров
с внутренними адресами
через один внешний адрес

IP-адрес, в который происходит подмена, должен быть прописан на интерфейсе

Итоги темы

- Source NAT использует таблицу трансляции для идентификации потоков. Благодаря этому через один внешний сетевой адрес может подключаться множество клиентов
- ² B Source NAT можно подставлять любой внешний адрес
- Отличие Masquerade в том, что подставляется адрес, привязанный к внешнему интерфейсу маршрутизатора

Destination NAT

Цели темы

- Узнать о назначении технологии Destination NAT
- Разобраться в особенностях ее реализации

Destination NAT / PAT (DNAT)

технология трансляции сетевого адреса в зависимости от TCP/UDP-порта получателя

Destination NAT / PAT используются для публикации сервиса (port), находящегося внутри сети, для внешних пользователей

Схема Destination NAT

Схема Destination NAT

Таблица преобразований (статическая)

src IP:port	dst IP:port
100.1.1.5:2222	62.217.185.3:80

src IP	dst IP global:port	dst IP local:port
100.1.1.5:2222	62.217.185.3:80	10.0.0.5:8080

Снаружи в локальную сеть

Существует одна статическая трансляция, которая преобразовывает трафик снаружи на конкретный хост внутри сети

62.217.185.3:80 - 10.0.0.5:8080

Порты могут быть разными, они не обязаны совпадать

Снаружи в локальную сеть

Статическая трансляция

62.217.185.3:80 - 10.0.0.5:8080

Порты могут быть разными, они не обязаны совпадать

Итоги темы

- Destination NAT применяется для того, чтобы опубликовать в сети доступ к внутреннему ресурсу с частным адресом
- Destination NAT используют, если доступ нужно открыть к ограниченному количеству сервисов по их транспортным адресам (портам)

Примеры настройки NAT

Цели темы

- Узнать о способах настройки NAT в Linux
- Получить практический навык настройки SNAT
- Совместно настроить DNAT в Linux

NAT в Linux реализуется с помощью

iptables оперирует сущностями

Настройка SNAT: доступ из LAN в интернет

SNAT

SNAT

- IP пакет поступил на внутренний интерфейс eth1 сервера gw-server01
- После для IP пакета определяется исходящий сетевой интерфейс, с которого он должен быть отправлен, это отмечено желтым цветом
- В конце IP пакет проходит цепочку POSTROUTING, в которой происходит подмена IP адреса источника, на IP адрес внешнего интерфейса eth0 сервера gw-server01

Команды routing в Linux

Для начала необходимо разрешить пересылку пакетов с одного интерфейса на другой (по умолчанию в Linux это отключено)

```
# до перезагрузки
sudo sysctl -w net.ipv4.ip_forward=1
# на постоянной основе
/etc/sysctl.conf =>
net.ipv4.ip_forward = 1
$ sudo sysctl -p /etc/sysctl.conf
```

Команды routing в Linux

```
# до перезагрузки sudo sysctl -w net.ipv4.ip_forward=1

# на постоянной основе /etc/sysctl.conf => net.ipv4.ip_forward = 1

$ sudo sysctl -p /etc/sysctl.conf
```

Создадим правило в iptables, разрешающее передачу пакетов между внутренним (eth1) и внешним (eth0) интерфейсом и разрешим передавать между интерфейсами пакеты, относящиеся к уже установленным соединениям

```
iptables -A FORWARD -i eth1 -o eth0 -j ACCEPT iptables -A FORWARD -m state --state RELATED,ESTABLISHED -j ACCEPT
```

- -A − add
- -i / -o input/output
- -m использовать доп.модуль
- -j − действие

iptables -A FORWARD -i eth1 -o eth0 -j ACCEPT iptables -A FORWARD -m state --state RELATED, ESTABLISHED -j ACCEPT

- -A add
- -i / -o input/output
- -m использовать доп.модуль
- -j действие

Включим SNAT:

iptables -t nat -A POSTROUTING -s 10.2.0.0/24 -o eth1 -j SNAT --to-source 84.201.168.122

- -A − add;
- -t таблица;
- -s source (необязательно);
- -j действие;
- --to-source должен быть адресом на интерфейсе, с которого планируется выпускать во внешнюю сеть IP пакеты

Команды NAT, iptables в Linux

Посмотрим получившуюся конфигурацию для таблицы filter и цепочки FORWARD (вывод обрезан):

```
iptables -L -n -v
Chain FORWARD (policy DROP 0 packets, 0 bytes)
pkts bytes target prot opt in out
                                                            destination
                                          source
 136 8863 ACCEPT all -- eth1 eth0
                                          0.0.0.0/0
                                                            0.0.0.0/0
  12 1234 ACCEPT all -- * *
                                          0.0.0.0/0
                                                            0.0.0.0/0
                                                                               state RELATED, ESTABLISHED
Chain OUTPUT (policy ACCEPT 96 packets, 10160 bytes)
pkts bytes target prot opt in
                                                            destination
                                  out
                                          source
```

и конфигурацию для таблицы nat (вывод обрезан):

```
iptables -t nat -L -n -v

Chain POSTROUTING (policy ACCEPT 8 packets, 556 bytes)
pkts bytes target prot opt in out source destination
0 0 SNAT all -- * eth0 10.2.0.0/24 0.0.0.0/0 to:84.201.168.122
```

Настройка DNAT: доступ из LAN в интернет

DNAT

- IP пакет поступил на внешний интерфейс eth0 сервера gw-server01
- После в IP пакете меняется destination IP и при необходимости destination port
- Дальше происходит маршрутизация в соответствии с правилами на сервере (таблица маршрутизации)

Сначала разрешим передачу пакетов с внешнего интерфейса (eth0) на внутренний (eth1) интерфейс:

При необходимости можно отдельным правилом запретить подключение через NAT для отдельных IP адресов или подсетей

iptables -A FORWARD -i eth0 -o eth1 -j ACCEPT

iptables -I FORWARD 1 -o eth1 -s 167.71.67.136 -j DROP

iptables -A FORWARD -i eth0 -o eth1 -j ACCEPT

iptables -I FORWARD 1 -o eth1 -s 167.71.67.136 -j DROP

- Теперь перенаправим все соединения на порт 80 интерфейса внешней сети (eth0) на IP адрес веб сервера внутренней сети web-server01
- И все соединения на порт 13389 перенаправлять на порт 3389 сервера внутренней сети (в целях безопасности)

iptables -t nat -A PREROUTING -p tcp --dport 80 -i eth0 -j DNAT --to-destination 10.2.0.11 iptables -t nat -A PREROUTING -p tcp --dport 13389 -i eth0 -j DNAT --to-destination 10.2.0.12:3389

iptables -t nat -A PREROUTING -p tcp --dport 80 -i eth0 -j DNAT --to-destination 10.2.0.11

iptables -t nat -A PREROUTING -p tcp --dport 13389 -i eth0 -j DNAT --to-destination 10.2.0.12:3389

Итоги темы

- Для того чтобы начать настройку NAT необходимо разрешить пересылку пакетов между интерфейсами с помощью переменной net.ipv4.ip_forward=1
- 2 В качестве инструмента настройки NAT в Linux используется iptables
- При настройке SNAT мы добавляем правила в цепочки FORWARD таблицы filter и POSTROUTING таблицы nat. А при настройке DNAT в цепочки FORWARD таблицы filter и PREROUTING таблицы nat

Общие итоги занятия

- Познакомились с базовыми представлениями технологии трансляции сетевых адресов и предпосылками к появлению NAT
- Узнали о различных способах реализации NAT и особенностях применения
- Получили практический навык базовой настройки NAT в Linux

Домашнее задание

Давайте посмотрим вашу практику после лекции

- (1) Практика: домашнее задание (обязательное) с проверкой от преподавателя
- (2) Вопросы по домашнему заданию задавайте в чате учебной группы
- Задачи можно сдавать по частям. Зачёт по домашней работе ставят после того, как приняты все задачи

Задавайте вопросы. Оставляйте обратную связь по вебинару

