1. Сформулировать определение общего решения ОДУ п-го порядка

Для ОДУ вида $F(x,y,y',...,y^{(n)})=0$, где x – независимая переменная, y = неизвестная функция, $y',...,y^{(n)}$ – производные соответствующих порядков, решением называется функция $y=y(x,C_1,...,C_n)$, заданная на некоторой области D (n+1)-мерного пространства переменных $x,C_1,...,C_n$. Условие: при любых фиксированных C, для которых существует хотя бы один интервал I такой, что точка $(x,C_1,...,C_n)$ лежит в области D, данная функция является решением данного уравнения на любом таком интервале.

Сформулировать определение задачи Коши для ОДУ п-го порядка

Задача решения уравнения $y^{(n)} = f(x, y, y', ..., y^{(n-1)})$, удовлетворяющего начальным условиям $y(x_0) = y_0, \ y'(x_0) = y_0', ... \ y^{(n-1)}(x_0) = y^{(n-1)}$, называется задачей Коши

3. Сформулировать определение линейного ОДУ п-го порядка

Линейным ДУ п порядка называется уравнение вида $y^{(n)} + a_1(x)y^{(n-1)} + \cdots + a_n(x)y = b(x)$, где функции a1(x)...an(x), b(x) определены и непрерывны на некотором промежутке I числовой прямой.

4. Сформулировать определение линейной зависимости и независимости системы функций на промежутке

Система функций $y_1 = y_1(x), ..., y_n = y_n(x)$, заданная на промежутке I, называется линейно зависимой (независимой), если существует (не существует) нетривиальная равная нулю линейная комбинация этих функций $a_1y_1 + \cdots + a_ny_n \equiv 0, \ a_1^2 + \cdots + a_n^2 > 0$.

<u>5.</u> Сформулировать определение определителя Вронского системы функций

Если система функций y_1, \dots, y_n , заданных на промежутке I, состоит из n-1 раз дифференцируемых функций, то определителем Вронского этой системы называют определитель $W(x) = \begin{vmatrix} y_1 & \dots & y_n \\ \vdots & \ddots & \ddots \\ y_1^{(n-1)} & \dots & y_n^{(n-1)} \end{vmatrix}$.

6. Сформулировать определение фундаментальной системы решений линейного однородного ОДУ

Фундаментальной системой решений линейного однородного ДУ называется базис решений этого уравнения. Если $y_1(x)$, ..., $y_n(x) - \Phi$ CP линейного однородного ДУ, то общее решение можно записать в виде $y(x) = C_1 y_1(x) + \dots + C_n y_n(x)$, где C – произвольные постоянные.

7. Сформулировать определение характеристического уравнения линейного ОДУ с постоянными коэффициентами

Характеристическим уравнением линейного ОДУ с постоянными коэффициентами $y^{(n)} + a_1 y^{(n-1)} + \cdots + a_n y = 0$ является уравнение $\lambda^n + a_1 \lambda^{n-1} + \cdots + a_{n-1} \lambda + a_n = 0$.

1. Сформулировать и доказать теорему о вронскиане системы линейно зависимых функций

<u>Теорема:</u> Если система n-1 раз дифференцируемых на промежутке I функций линейно зависима, то определитель Вронского этой системы функций тождественно равен нулю.

<u>Доказательство:</u> Т.к. функции $y_1, ..., y_n$ линейно зависимы, то существует нетривиальная комбинация этих функций, тождественно равная нулю: $a_1y_1 + a_1y_1' + \cdots + a_ny_n' \equiv 0$,

 $\cdots + a_n y_n \equiv 0$. Дифференцируя это равенство n-1 раз, получим $a_1 y^{(n-1)} + \cdots + a_n y^{(n-1)} \equiv 0$. Столбцы определителя Вронского рассматриваемой системы

функций линейно зависимы, и следовательно, определитель равен нулю.

2. Сформулировать и доказать теорему о вронскиане системы линейно независимых частных решений линейного однородного ОДУ

<u>Теорема:</u> Пусть $y_1, ..., y_n$ - линейно независимая система решений уравнения $y^{(n)} + a_1 y^{(n-1)} + \cdots a_n y = 0$, где $a_i = a_i(x)$ - функции, непрерывные на промежутке I. Тогда определитель Вронского этой системы решений не равен нулю ни в одной точке промежутка I.

<u>Доказательство:</u> Пусть вопреки утверждению теоремы в некоторой точке $x_0 \in I$ $W(x_0) = \begin{vmatrix} y_1(x_0) & \dots & y_n(x_0) \\ \vdots & \vdots & \ddots & \vdots \\ y_1^{(n-1)}(x_0) & \dots & y_n^{(n-1)}(x_0) \end{vmatrix} = 0$.. Из этого равенства следует,

что столбцы определителя W(x0) линейно зависимы, т.е. существует нетривиальный набор чисел $a_1, \dots a_n$ такой, что $a_1 y_1^{(j)}(x_0) + \dots a_n y_n^{(j)}(x_0) = 0$, $j = \overline{0, n-1}$ Рассмторим функцию $y(x) = a_1 y_1(x) + \dots + a_n y_n(x)$; по теореме о пространстве решений линейного ОДУ эта функция есть решение уравнения. Функция, тождественно равная нулю на промежутке I, также удовлетворяет этому уравнению и начальным условиям. ПО теореме существования и единственности получаем, что $y(x) \equiv 0$, т.е. существует нетривиальная равная нулю линейная комбинация функий y_1, \dots, y_n , что противоречит линейной независимости этих функций. Полученное противоречие доказывает теорему.

3. Сформулировать и доказать теорему о существовании ФСР линейного однородного ОДУ п порядка

Теорема: Для любого линейного однороднго дифференциального уравнения порядка n существует ФСР.

<u>Доказательство:</u> Рассмотрим определитель $\begin{vmatrix} a_{11} & \dots & a_{1n} \\ a_{11} & \dots & a_{1n} \end{vmatrix} \neq 0$. Построим п частных решений, удовлетворяющих в некоторой точке х0 следующим начальным условиям: $y_i(x0) = a_{1i}, \ y_i'(x0) = a_{2i}, \dots \ y_i^{(n-1)}(x0) = a_{ni}, \ i = \overline{1,n}$. Таким образом, система решений $y_1(x) \dots y_n(x)$ – линейно независимая система решений, и значит образует Φ CP.

4. Сформулировать и доказать теорему о структуре общего решения линейного однородного ОДУ п порядка

<u>Теорема:</u> Пусть имеется дифференциальное уравнение $y^{(n)} + a1(x)y^{(n-1)} + \dots + an(x)y = 0$, где функции a1(x)...an(x) определены и непрерывны на промежутке I. Тогда совокупность всех решений этого уравнения есть линейное пространство размерности n.

<u>Локазательство</u>: То, что совокупность X всех решений данного дифференциального уравнения образует линейное пространство доказано в теореме о линейном пространстве решений линейного однородного уравнения. Чтобы доказать, что dim X=n, достаточно указать в X базис из n векторов. Рассмотрим решения y1(x) ... yn(x) данного дифференциального уравнения, удовлетворяющие начальным условиям

Сформулировать и доказать теорему о структуре общего решения линейного неоднородного ОДУ п порядка

<u>Теорема:</u> Общее решение уравнения (1) $y^{(n)} + a1(x)y^{(n-1)} + \dots + a_n(x)y = b(x)$ может быть записано в виде (2) $y = y0(x) + C1y1(x) + \dots + C_ny_n(x)$, где y0(x) — частное решение уравнения, а y1...yn — ФСР соответствующего однородного уравнения; С — произвольные постоянные. Доказательство: Уравнение ЖЖ с помощью дифференциального оператора можно записать L[y] = b(x); соответствующее однородное уравнение

запишется в виде L[y]=0. Применяя этот дифференциальный оператор к (2), получим: $L[y]=L[y0+C1y1+\cdots+C_ny_n]=L[y0]+\cdots+C_nL[y_n]=b(x)$, и при любых С функция у, определяемая равенством (2) является решением уравнения.

Проверим теперь, что при соответствующем подборе констант С можно получить решение, удовлетворяющее любым начальным условиям $y(x0) = y(x0) + \cdots + C_n y_n(x0) = y0$

 $y_0, \ \ y'(x_0) = y_0', \dots, y_0^{(n-1)}(x_0) = y_0^{(n-1)}$. Для определения констант С имеем систему $y(x_0)^{(n-1)} + \dots + \mathcal{C}_n y_n(x_0)^{(n-1)} = y_0^{(n-1)}$. Определитель этой системы

 $W(x0) = \begin{vmatrix} y1(x0) & \dots & y_n(x0) \\ \vdots & \vdots & \ddots & \vdots \\ y1^{(n-1)}(x0) & \dots & y_n^{(n-1)}(x0) \end{vmatrix} \neq$, т.к. $y1,\dots$ уп – Φ CP однородного уравнения, соответствующего уравнению (1). Поэтому требуемый набор

<u>6.</u> Сформулировать и доказать теорему о наложении частных решений линейного неоднородного ОДУ

Теорема: Пусть имеются два линейных неоднородных уравнения L[y] = b1(x) и L[y] = b2(x);, где $L[y] = y^{(n)} + \cdots + a_n y$, и пусть y1, y2 - решения эих уравнений. Тогда y1 + y2 будет решением уравнения L[y] = b1(x) + b2(x).

<u>Доказательство:</u> L[y1 + y2] = L[y1] + L[y2] = b1(x) + b2(x), т.е. y1+y2 - решение уравнения L[y] = b1(x) + b2(x) Теорема доказана.

Сформулировать и доказать свойства частных решений линейного однородного ОДУ

//замечание автора: вот тут я абсолютно ниипу что имеется в виду, по идее это то что я доказываю v, однако в нескольких местах ещё встречал вдобавок кэтому и теоремы про определитель вронского для линейно зависимых\независимых

<u>Теорема:</u> Совокупность всех решений линейного однородного уравнения п порядка образует линейное пространство.

<u>Доказательство:</u> Уравнение $y^{(n)} + a_1(x)y^{(n-1)} + \dots + a_n(x)y = b(x)$ при b(x) можно записать в виде L[y] = 0. Если y,y1,y2 — произвольные решения этого уравнения и α — вещественное число, то в силу линейности оператора L имеем, где $L[y1+y2]=L[y1]+L[y2]=\overline{0}$, где $\overline{0}$ обозначает функцию, тождественно равную нулю на промежутке І. Мы видим, что у1+у2 и ау – также решения уравнения. Прочие условия из определения линейного пространства также проверяются без труда. Поэтому совокупность решений уравнения образует линейное пространство.

Вывести формулу Остроградского – Лиувилля для линейного ОДУ 2 порядка

Пусть y_1 и y_2 - решения линейного ОДУ второго порядка $y'' + a_1(x)y' + a_2(x)y = 0$. Для определителя Вронского указанных решений имеем $W'(x) = \frac{d}{dx}\begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix} = \begin{vmatrix} y_1' & y_2' \\ y_1' & y_2' \end{vmatrix} = \begin{vmatrix} y_1 & y_2 \\ y_1'' & y_2'' \end{vmatrix} = \begin{vmatrix} y_1 & y_2 \\ y_1'' & y_2'' \end{vmatrix} = \begin{vmatrix} y_1 & y_2 \\ y_1'' & y_2'' \end{vmatrix} = \begin{vmatrix} y_1 & y_2 \\ y_1'' & y_2'' \end{vmatrix} = \begin{vmatrix} y_1 & y_2 \\ -a_1(x)y_1' - a_2(x)y_1 & -a_1(x)y_2' - a_2(x)y_2 \end{vmatrix} = -a_1(x)W(x)$, т. е. $W'(x) + a_1(x)W(x) = 0$ Определитель Вронского удовлетворяет уравнению $y' + a_1(x)y = 0$. Непосредственной проверкой можно убедиться, что этому же уравнению

удовлетворяет и функция $W(x) = y(x) = W(x_0)e^{-\int_{x_0}^x a_1(t)dt}$, причем $y(x_0) = W(x_0)$ где x0 – произвольная точка промежутка І. Из теоремы существования и единственности для уравнения $y' + a_1(x)y = 0$ получаем что для всех $x \in I$ выполняется равенство $W(x) = W(x_0)e^{-\int_{x_0}^x a_1 \text{ыны}(t)dt}$. Данное равенство называется формулой Остроградского-Лиувилля.

Вывести формулу для общего решения линейного однородного ОДУ 2 порядка с постоянными коэффициентами в случае простых действительных корней характеристического уравнения

Рассмотрим линейное ОДУ y'' + a1y' + a2y = 0, где a1 и a2 – вещественные числа. Характеристическое уравнение имеет вид $\lambda^2 + a1\lambda + a2 = 0$. Пусть корни характеристического уравнения вещественны и различны, $\lambda 1$ и $\lambda 2$. Тогда ФСР дифференциального уравнения образуют функции $y1=e^{\lambda 1x}$ и $y2=e^{\lambda 2x}$, а общее решение имеет вид $y=C1e^{\lambda 1x}+C2e^{\lambda 2x}$. Определитель Вронского данной системы $W(x)=\begin{vmatrix} e^{\lambda 1x}&e^{\lambda 2x}\\\lambda 1e^{\lambda 1x}&\lambda 2e^{\lambda 2x}\end{vmatrix}=e^{\lambda 1x}e^{\lambda 2x}\begin{vmatrix} 1&1\\\lambda 1&\lambda 2\end{vmatrix}=e^{(\lambda 1+\lambda 2)x}*(\lambda 1-\lambda 2)\neq 0$. Таким образом, y1 и y1 ЛНЗ и образуют ФСР данного ДУ.

10. Вывести формулу для общего решения линейного однородного ОДУ 2 порядка с постоянными коэффициентами в случае комплексных корней характеристического уравнения

Рассмотрим линейное ОДУ y'' + a1y' + a2y = 0, где a1 и a2 — вещественные числа. Характеристическое уравнение имеет вид $\lambda^2 + a1\lambda + a2 = 0$. Пусть характеристическое уравнение имеет один вещественный корень кратности 2, λ 0. Тогда ФСР этого уравнения образуют функции $y1 = e^{\lambda 0x}$ и y2 = $xe^{\lambda0x}$, а общее решение уравнения - $y=(C1+C2)e^{\lambda0x}$. Т.к. $\lambda0$ – корень кратности 2 характеристического уравнения, то $\lambda0^2+a1\lambda0+a2=0$; $2\lambda0+a1=0$. Далее $y2'=(1+\lambda0x)e^{\lambda0x}$, $y2''=(2\lambda0+\lambda0^2x)e^{\lambda0x}$. Отсюда $y2''+a1y2'+a2y2=e^{\lambda0x}(2\lambda0+\lambda0^2x+a1+a1\lambda0x+x2x)=e^{\lambda0x}(2\lambda0+a1+x(\lambda0^2+a1\lambda0+x2x))=e^{\lambda0x}(2\lambda0+x(\lambda0^2+a1\lambda0+x2x))=e^{\lambda0x}(2\lambda0+x(\lambda0^2+a1\lambda0+x2x))=e^{\lambda0x}(2\lambda0+x(\lambda0^2+a1\lambda0+x2x))=e^{\lambda0x}(2\lambda0+x(\lambda0^2+a1\lambda0+x2x))=e^{\lambda0x}(2\lambda0+x(\lambda0^2+x2x))=e^{\lambda0x}(2\lambda0+x(\lambda0^2+x2x))=e^{\lambda0x}(2\lambda0+x(\lambda0^2+x2x))=e^{\lambda0x}(2\lambda0+x(\lambda0^2+x2x))=e^{\lambda0x}(2\lambda0+x(\lambda0^2+x2x))=e^{\lambda0x}(2\lambda0+x(\lambda0^2+x2x))=e^{\lambda0x}(2\lambda0+x(\lambda0^2+x2x))=e^{\lambda0x}(2\lambda0+x(\lambda0^2+x2x))=e^{\lambda0x}(2\lambda0+x(\lambda0^2+x2x))=e^{\lambda0x}(2\lambda0+x(\lambda0^2+x2x))=e^{\lambda0x}(2\lambda0+x(\lambda0^2+x2x))=e^{\lambda0x}(2\lambda0+x(\lambda0^2+x2x))=e^{\lambda0x}(2\lambda0+x(\lambda0^2+x2x))=e^{\lambda0x}(2\lambda0+x(\lambda0^2+x2x))=e^{\lambda0x}(2\lambda0+x(\lambda0^2+x2$ a2)) = 0, т. е. у2 - решение дифференциального уравнения. Определитель Вронского (//комментарий автора: аналогично ^) не равен нулю, и у1 и у2 образуют ФСР ДУ.

11. Вывести формулу для общего решения линейного однородного ОДУ 2 порядка с постоянными коэффициентами в случае кратных корней характеристического уравнения

Рассмотрим линейное ОДУ y'' + a1y' + a2y = 0, где a1 и a2 – вещественные числа. Характеристическое уравнение имеет вид $\lambda^2 + a1\lambda + a2 = 0$. Пусть характеристическое уравнение имеет комплексно сопряженные корни $\lambda_{1,2}=\alpha\pm i\beta$, $\beta\neq 0$. Тогда ФСР ДУ имеет вид $y1=e^{\alpha x}\cos\beta x$, $y2=e^{\alpha x}\cos\beta x$ $e^{\alpha x} \sin \beta x$, общее решение запишется как $y = e^{\alpha x} (C1 \cos \beta x + C2 \sin \beta x)$. Здесь в проверке нуждается лишь линейная независимость решений у1 и у2. Имеем $W(x) = \begin{vmatrix} e^{\alpha x} \cos \beta x & e^{\alpha x} \sin \beta x \\ e^{\alpha x} (\alpha \cos \beta x - \beta \sin \beta x) & e^{\alpha x} (\alpha \sin \beta x + \beta \cos \beta x) \end{vmatrix} = e^{2\alpha x} \begin{vmatrix} \cos \beta x & \sin \beta x \\ \alpha \cos \beta x - \beta \sin \beta x & \alpha \sin \beta x + \beta \cos \beta x \end{vmatrix} = \beta e^{2\alpha x} (\cos^2 \beta x + \sin^2 \beta x) \neq 0$. Поэтому у1 и у2 линейно независимы и образуют ФСР.

12. Описать метод Лагранжа вариации произвольных постоянных для линейного неоднородного ОДУ 2-го порядка и вывести систему соотношений для варьируемых переменных

 $(1) \quad \mathcal{C}1(x)y1(x) + \dots + \mathcal{C}_n(x)y_n(x), \text{ где функции } \mathcal{C}1(x) \dots \mathcal{C}_n(x) \text{ определяются из системы} \quad \begin{aligned} & \dots & \dots \\ & \mathcal{C}_1y_1^{(n-2)} + \dots + \mathcal{C}_n'y_n^{(n-2)} = 0 \end{aligned} \quad \text{ Т.к.} \\ & \mathcal{C}_1'y_1^{(n-1)} + \dots + \mathcal{C}_n'y_n^{(n-1)} = b(x) \end{aligned}$

определитель $\begin{vmatrix} y_1 & \dots & y_n \\ \vdots & \ddots & \ddots \\ y_1^{(n-1)} & \dots & y_n^{(n-1)} \end{vmatrix} \neq 0$, то из этой системы $C_1' \dots C_n'$ определяются однозначно, а сами функции $C_1 \dots C_n$ — с точностью до произвольных $C_1' \dots C_n' = 0$.

постоянных. Если в (1) подставить именно эти функции, то получаем частное решение дифференциального уравнения. Докажем последнее утверждение для n=2. Уравнение в этом случае имеет вид y''+a1(x)y'+a2(x)y=b(x), где a1,a2,b- непрерывные на некотором промежутке функции. Частное решение данного уравнения ищем в виде y(x) = C1y1 + C2y2, где y1, y2 – фундаментальная система решений однородного

уравнения y'' + a1(x)y' + a2(x)y = 0, а C1=C1(x), C2=C2(x) — подлежащие определению функции. Предположим, что они удовлетворяют системе: $C_1'y1 + C_2'y2 = 0$ $y'(x) = C_1'y1 + C_2'y2 + C_1y1' + C_2y2' = C_1y1' + C_2y2'$ Отсюда $y'' + a1(x)y' + a2(x)y = b(x) + C_1y1'' + C_2y2''$ $= a1(x)(C_1y1' + C_2y2') + a2(x)(C_1y1 + C_2y2) = b(x) + C_1(y1'' + a2(x)y1' + a2(x)y1' + a2(x)y1' + a2(x)y2' + a2(x)y2') = b(x)$, т.е. y'' + a1(x)y' + a2(x)y = b(x), т.е. y'' + a1(x)y' + a2(x)y = b(x)b(x), и наше утверждение доказано.