Deep dive into Transformers

Amirhassan Amirmahani - Gholamreza Dar

Transformer Architecture

- Transformer architecture
- Encoder and Decoder stack
- Self-attention
- Multihead attention
- Positional encoding
- Residual connections
- Encoder Decoder Attention
- Encoder Attention Vs Decoder Attention (Masking)
- The final Linear and Softmax layers
- Training
 - One Hot Encoding
 - Loss Function
 - Another Training Method

Transformer as a black box

Inside a Transformer

Encoder and Decoder Stacks

Inside Encoder and Decoder Units

Encoding

Self-attention

"The animal didn't cross the street because it was too tired"

Tensor2Tensor by Google Brain team

<u>Tensor2Tensor</u>, or <u>T2T</u> for short, is a library of deep learning models and datasets designed to make deep learning more accessible and <u>accelerate ML research</u>.

https://colab.research.google.com/github/tensorflow/tensor2tensor/blob/master/tensor2tensor/notebooks/hello t2t.ipynb

Self-attention in more detail

Second step: Score

Second step: Score

Third step: Divide by 8

Fourth step : Softmax

google.com

Matrix Representations

Self-attention Formula

Multi-headed attention

Multi-headed attention

We only need one Z

Concatenation and Wo weight matrix

Multi-headed attention visualization

Positional Encoding

Residual Connections

Encoder Decoder Attention

Encoder Decoder Attention

Encoder Decoder Attention

Creates Queries matrix from the layer below it, and takes the Keys and Values matrix from the encoder stack.

https://arxiv.org/abs/1706.03762

Encoder Attention Vs Decoder Attention

Masking

The Final Linear and Softmax Layer

Training

- One Hot Encoding
- Loss Function
- Another Training Method

One Hot Encoding

Loss Function

Loss Function

Another Training Method

Another way to do it would be to hold on to, say, the top two words (say, 'I' and 'a' for example), then in the next step, run the model twice

Resources

<u>Illustrated-transformer</u>

<u>Illustrated Guide to Transformers Neural Network: A step by step explanation</u>

<u>A Deep Dive Into the Transformer Architecture - The Development of Transformer Models</u>

Attention Is All You Need

Transformers and Language Models - YouTube Playlist

Thanks

hasanmahani08@gmail.com

rezadar1378@gmail.com