- -Characterized by $C \equiv C$ triple bond(s)
- -Classified as unsaturated hydrocarbons
- -empirical formula = C_nH_{2n-2}

(applies when the molecule only has one triple bond)

Properties:

- -Are hydrophobic like all hydrocarbons
- -Have higher boiling points than alkanes and alkenes due to their ability to stack

Name	Formula	B.p. °C
Acetylene	НС≕СН	-75
Propyne	HC≡CCH ₃	-23
1-Butyne	HC≡CCH ₂ CH ₃	9
1-Pentyne	$HC \equiv C(CH_2)_2CH_3$	40
1-Hexyne	$HC \equiv C(CH_2)_3CH_3$	72
1-Heptyne	HC≡C(CH ₂) ₄ CH ₃	100
1-Octyne	$HC \equiv C(CH_2)_5 CH_3$	126
1-Nonyne	$HC \equiv C(CH_2)_6CH_3$	151
1-Decyne	$HC \equiv C(CH_2)_7 CH_3$	182
2-Butyne	CH ₃ C≡CCH ₃	27
2-Pentyne	CH ₃ C≡CCH ₂ CH ₃	55
2-Hexyne	$CH_3C \equiv C(CH_2)_2CH_3$	84
3-Hexyne	CH ₃ CH ₂ C≡CCH ₂ CH ₃	81
4-Octyne	$CH_3(CH_2)_2C \equiv C(CH_2)_2CH_3$	131
5-Decyne	$CH_3(CH_2)_3C \equiv C(CH_2)_3CH_3$	175

ethane	$C_2H_{6(g)}$	-88
propane	$C_3H_{8(g)}$	-42
butane	$C_4H_{10(g)}$	0
pentane	$C_5H_{12(1)}$	+36
hexane	$C_6H_{14(1)}$	+68
heptane	$C_7H_{16(1)}$	+98
octane	$C_8H_{18(1)}$	+126

Some IUPAC names of alkynes:

$$H-C\equiv C-H$$
 $H-C\equiv C-C-H$ $H-C=C-C=C-H$

ethyne

propyne

but-1-yne

All alkynes have the suffix "yne"

IUPAC naming system:

Ex: but-1-yne

IUPAC naming system:

Name the following alkynes:

$$H + H + H + H + H + H_{3}C$$
 $H - C - C - C - C = C - H + H_{3}C$
 $H_{3}C$
 $H_{3}C$
 $H_{3}C$

hex-1-yne

hex-3-yne

IUPAC naming system:

Name the following alkynes:

4-methylhex-2-yne

5-ethyl-4,6,7-trimethylnon-2-yne

The triple bond has a higher numbering priority than the alkyl and halide substituents

IUPAC naming system:

Name the following alkynes:

(4E)-hex-4-en-1-yne

3-ethylhept-1-en-4-yne

Alkenes are ordered first in the name, and the "e" ending is dropped.

Generally, double bonds and triple bonds have equal numbering priority* (aim to get the lowest numbers).

IUPAC naming system:

Name the following alkynes:

*Double bonds have higher priority than triple bonds whenever there is ambiguity in their numbers.

IUPAC naming system:

Name the following alkynes:

cyclononyne

(1Z)-cyclooct-1-en-4-yne

Why does this cycloalkene have a (Z)-?

CYCLOALKENE E AND Z

Why do cycloalkenes sometimes have a (Z)-?

For smaller rings...

Double bonds in cycloalkenes of 7 or fewer carbons are exclusively cis

The trans isomers are too strained to stable under ordinary conditions

For this reason, we can omit the cis- or (Z)- when naming a "cycloheptene"

CYCLOALKENE E AND Z

Why do cycloalkenes sometimes have a (Z)-?

For larger rings...

The *trans*- or (E)- isomer is possible.

For cycloalkenes containing 8 or more carbons, a non-ambiguous name should indicate the alkene stereochemistry

IUPAC naming system:

Name the following alkyne:

3,4,5-trichloro-8,9-diethyl-5,7,7-trifluorocyclononyne

<u>ALKYNES</u>

Drawing alkynes:

Draw the following alkynes using structural diagrams

4,5-dibromohex-2-yne (1Z)-1,2-dimethylcyclooct-1-en-4-yne

Drawing alkynes:

Draw the following alkynes using line diagrams

non-2-yne

non-1-yne

The triple bond cannot bend, so the bonds adjacent to a triple bond must be straight.