МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ им. Н.Э. Баумана

Факультет «Информатика и системы управления» Кафедра «Систем обработки информации и управления»

ОТЧЕТ

Рубежный контроль № <u>2</u> по дисциплине «Методы машинного обучения»

ИСПОЛНИТЕЛЬ:	Егоров С.А.
группа ИУ5-22М	ФИО
	""2020 г.
ПРЕПОДАВАТЕЛЬ:	<u>Гапанюк Ю.Е.</u>
	подпись
	""2020 г.

Москва - 2020

Задание

Необходимо решить задачу классификации текстов на основе любого выбранного Вами датасета (кроме примера, который рассматривался в лекции). Классификация может быть бинарной или многоклассовой. Целевой признак из выбранного Вами датасета может иметь любой физический смысл, примером является задача анализа тональности текста.

Необходимо сформировать признаки на основе CountVectorizer или TfidfVectorizer.

В качестве классификаторов необходимо использовать два классификатора, не относящихся к наивным Байесовским методам (например, LogisticRegression, LinearSVC), а также Multinomial Naive Bayes (MNB), Complement Naive Bayes (CNB), Bernoulli Naive Bayes.

Для каждого метода необходимо оценить качество классификации с помощью хотя бы двух метрик качества классификации (например, Accuracy, ROC-AUC).

Сделайте выводы о том, какой классификатор осуществляет более качественную классификацию на Вашем наборе данных.

Реализация задания

Подключение используемых библиотек и набора данных:

```
import numpy as np
from sklearn.datasets import fetch_20newsgroups
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics import accuracy_score, confusion_matrix, plot_confusion_matrix
from sklearn.svm import LinearSVC
from sklearn.linear_model import LogisticRegression
from sklearn.naive_bayes import MultinomialNB, ComplementNB, BernoulliNB
import matplotlib.pyplot as plt

newsgroups_train = fetch_20newsgroups(subset='train', remove=('headers', 'footers'))
newsgroups_test = fetch_20newsgroups(subset='test', remove=('headers', 'footers'))
```

Для формирования признаков я выбрал TfidfVectorizer:

Создадим функцию для оценки каждого классификатара, а в качестве метрик оценки точности возьмём Accuracy и Confusion_matrix:

Классификатор LogisticRegression:

```
fig, ax = plt.subplots(figsize=(20,10))
test(LogisticRegression(), ax)
```

Результат:

```
LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True, intercept_scaling=1, l1_ratio=None, max_iter=100, multi_class='auto', n_jobs=None, penalty='l2', random_state=None, solver='lbfgs', tol=0.0001, verbose=0, warm_start=False)

Accuracy: 0.774429102496017
```


Классификатор LinearSVC:

```
fig, ax = plt.subplots(figsize=(20,10))
test(LinearSVC(), ax)
```

Результат:

LinearSVC(C=1.0, class_weight=None, dual=True, fit_intercept=True, intercept_scaling=1, loss='squared_hinge', max_iter=1000,
multi_class='ovr', penalty='l2', random_state=None, tol=0.0001, verbose=0)

Accuracy: 0.8048327137546468

Классификатор Multinomial Naive Bayes:

```
fig, ax = plt.subplots(figsize=(20,10))
test(MultinomialNB(),ax)
```

Результат:

MultinomialNB(alpha=1.0, class_prior=None, fit_prior=True) Accuracy: 0.72623473181094

Классификатор Complement Naive Bayes:

```
fig, ax = plt.subplots(figsize=(20,10))
test(ComplementNB(),ax)
```

Результат:

ComplementNB(alpha=1.0, class_prior=None, fit_prior=True, norm=False) Accuracy: 0.8089484864577802

alt.atheisn	-2e+	c 0	0	0	1	0	0	0	0	0	2	2	0	4	9	62	2	11	2	9
comp.graphic	. 0	Be+0	14	11	10	22	3	1	2	1	1	9	3	0	6	5	2	1	1	0
comp.os.ms-windows.mise	6	16	.8e+0	33	9	15	1	1	1	1	1	5	0	3	6	7	0	2	2	1
comp.sys.ibm.pc.hardware	- 0	7	32	3e+0	19	6	9	2	0	0	1	4	13	0	1	0	0	0	0	0
comp.sys.mac.hardware	3	6	11	31	9e+(4	5	6	0	0	1	7	8	1	4	0	3	0	2	0
comp.windows.	(- 1	36	16	5	0	2e+	3	0	0	1	0	2	2	0	3	0	2	0	0	0
misc.forsale	6	1	3	37	14	0	9e+(10	5	3	1	1	6	0	4	2	2	0	4	0
rec.auto:	; - 3	1	1	0	1	0	4	.5e+(8	1	2	2	13	1	2	0	4	0	2	1
rec.motorcycle	, 1	1	0	0	2	0	2	11	7e+0	1	0	0	3	3	0	1	0	0	0	0
rec.sport.basebal	0	0	0	0	0	0	1	0	3	7e+0	19	1	0	0	1	1	0	0	3	0
rec.sport.hockey	, - o	0	0	0	0	0	0	1	0	6	9e+0	0	0	0	0	3	0	0	1	0
sci.cryp	t - 0	1	3	2	1	1	0	0	1	0	0	.7e+(3	1	1	1	6	1	0	0
sci.electronic	2	3	8	26	10	1	8	8	9	0	0	36	.6e+0	9	5	2	3	3	1	0
sci.med	8 -	2	0	0	0	1	1	3	1	6	4	0	8	3e+0	5	13	4	2	6	0
sci.space	3	6	1	1	0	1	0	1	0	0	0	3	3	4	6e+(1	2	2	3	0
soc.religion.christiar	4	1	2	0	0	0	1	0	1	0	0	0	0	3	2	8e+(0 0	1	1	0
talk.politics.guns	1	0	1	0	0	1	1	1	1	2	2	3	0	2	4	5	.2e+0	5	11	2
talk.politics.mideas	4	1	0	0	0	0	0	1	3	2	0	4	0	0	0	4	4	.5e+0	6	0
talk.politics.misc	5	1	0	0	1	0	0	1	0	3	1	4	1	4	8	8	1e+02	2 61	6e+0	2 1
talk.religion.misc	- 35	1	2	0	0	0	0	0	0	2	0	1	1	5	9	90	22	7	7	69
ē	it.addme	diz Okrali	a da iyesinin	ipioskys	corbiana	docimi	boyfers	sedie.ub					dectrs	on ja se	sd.spä	gidicip	ediki (ixts	tigitis pr	talites	stgis
		Predicted label																		

Классификатор Bernoulli Naive Bayes:

```
fig, ax = plt.subplots(figsize=(20,10))
test(BernoulliNB(),ax)
```

Результат:

BernoulliNB(alpha=1.0, binarize=0.0, class_prior=None, fit_prior=True)
Accuracy: 0.5371747211895911

Выводы

Для выбранного набора данных более качественная классификация была получена при помощи метода Complement Naive Bayes.