WEIGHTED SET COVER

1

INPUT: Set U s.t. |U| = n $S_1, S_2, ..., S_m \subseteq U$ weight $\omega_1, ..., \omega_m$.

output: find a minimum weight Set cover.

Key lemma

 $\forall i$, total charge on elements of $S_i \leq w_i \left(\sum_{i=1}^{|S_i|} \frac{1}{i} \right)$ $\leq w_i \left(\sum_{i=1}^{n} \frac{1}{i} \right)$

Si covers 3 elements
and charges each 's' wi

 S_j covers $\frac{2}{m}$ new elements. and charges each element $w_j/2$.

Recall that the lotal of all charges = weight of greedy set cover.

We would like to show: weight of greedy set cover $\leq \omega^* \left(\sum_{i=1}^{N-1} \frac{1}{i} \right) \approx \omega^* \log(n)$.

Suppose $U = S_1 U S_2 U S_3 U S_4$ Set cover $S_4, ..., S_4$ is the optimal

step 1

Total charge we pick up on elements of $S_1 \leq \omega_1 H_n$

step 2

Total charge we pick up on elements of S2 < W2 Hn

SO ON

Adding up our inequalities, we get Echange (Si) \leq w* Hn

22

Last time, we showed that there is an example on which our algorithm achieves this log(n) approximation ratio.

WEIGHTED VERTEX COVER (SECTIONS 11.4, 11.6)

VERTEX COVER IS A SPECIAL CASE OF THE SET COVER PROBLEM.

INPUT: $G = (V, E, \omega: E \rightarrow IR_{>0})$

OUTPUT: A vertex cover C s.t.

≥ wo

is minimized.

How to view this as a set cover problem - view the vertices as sets!

easy to see (via reducing to the weighted set cover problem) we can get an approximation ratio of size Hd where d is max degree.

 $n \log d. \leq \log (|v|-1).$ (max deg $\leq |v|-1$).

We can get a 2-approx for weighted vertex cover.

Algorithm presented in section 11.4 is again based on charges.

- · We will maintain a non-negative charge ce for each edge e.
- · Initialize ce := 0 Ve EE
- . Maintain invariant that $\forall u \in V \sum_{(u,v)} \leq w_u$: (#)
- of the vertices. If inequality for a vertex is

 tight (i.e. an equality), then color is red

 else color is blue

 inequality tight (i) RED

 not tight (i) BLUE

Algorithm:

while $\exists (u,v) \in E$ such that u,v are $\exists LUE$ while $\exists (u,v) \in E$ such that u,v are $\exists LUE$ increase C(u,v) until at least one of u,vbecomes RED

Note (*) is preserved | work this out. Return the set of RED vertices.

Let U* be an optimal vertex cover with w (u*) = w* let U be the output of our algorithm. want to show $\omega(U) \leq 2 \omega^*$. daim 1 w(4) > \(\text{Ce} = SUM OF ALL EDGE CHARGES Proof idea - vertex [← elements. of (This happens because the Maintain invariant & W1 + W2 + W3 +. maintained for the charges At the same lime, pick up charges TOTAL CHARGE ON EDGES > ADJACENT TO 1 remaining total/charge on edges adjacent > total

claim 2: $w(u) \le 2 \sum_{e \in E} c_e$ $= 2 \times \{ \text{TOTAL OF ALL CHARGES} \}$ Set of RED Vertices

Proof idea:

\$ \$

Bag of \$ on each vertex.

at the end of our algorithm

put c(u,v) \$
into each bag
at a & at o

observe that total \$ in bag at u = wu if uf U.

[this is because at the red vertices,

the inequality is tight.]

Total \$ distributed = $\Sigma w_u = W(u)$ to vertices in U ufy - Also 2 × TOTAL OF ALL CHARGES = TOTAL & DISTRIBUTED

2
$$\sum C_e > total & distributed = \sum \omega_u = W(u)$$

eff to vertices in U uf U

The result follows from claim 1 2 claim 2.

11.6 Another 2-approx for weighted vertex cover.

"LP-rounding" lechnique.

O WRITE WEIGHTED. V.C. PROBLEM
AS AN INTEGER LINEAR PROGRAM

min Z Xuwu = GIVEN

VARIABLE

Xu E PON3

edge-many } xu+xv >1 \ (4,v) \ E inequalities

2) "RELAX" INTEGRALITY CONSTRAINTS TO

replace Xe foils with Xu >0 Yu EU

After you relax the ILP you get an LP that can be solved in polynomial time.

solve to get an optimal fractional solution.

(3) "ROUND" Your fractional solution to get a solution in your integral fearible space.

The entry of the space of the spa

"round" to xi's 0,1.

if $x_u y/y_2$ add u to the vertex cover $x_u < 1/y_2$ do not add u back.

when you do this, the objective for goes up by at most 2 x. .
because you replaced all xxx/2 by 1.
and just got rid of all xx<1/2.