1. Класифікація інтегральних схем

Основним складовим елементом мікро- і наноелементної бази є інтегральна схема (IC), що являє собою конструктивно завершений виріб електронної техніки, який містить сукупність електрично зв'язаних у функціональну схему транзисторів, діодів, конденсаторів, резисторів та інших електрорадіоелементів, виготовлених в єдиному технологічному циклі.

IC ϵ основним продуктом мікроелектронного виробництва та елементною базою засобів електронної техніки, призначеної для перетворення, обробки і зберігання інформації.

Умовне графічне зображення інтегральної схеми залежить від стандарту окремих країн, які випускають IC.

ІС можна класифікувати за рядом незалежних параметрів:

- 1. за конструктивно технологічним виконанням;
- 2. за ступенем інтеграцій;
- 3. за функціональним призначенням;
- 4. за використанням в апаратурі;
- 5. за конструктивним виконанням;
- 6. за технологією виробництва.

За конструктивно-технологічним виконанням ІС діляться на три групи:

- А) монолітні (напівпровідникові):
 - а) уніполярні (*n*-канальні, *p*-канальні, КМОН);
- б) біполярні (РТЛ, ДТЛ, ТТЛ, ТТЛШ, $И^2$ Л- інтегрально-інжекційна логіка, ИЗЛ-інтегрально-зв'язна логіка);
 - в) комбіновані БіМОН.
 - Б) *гібридні*:
 - а) тонкоплівкові;
 - б) товстоплівкові.
 - В) <u>інші</u>:
 - а) вакуумні;
 - б) керамічні;
 - в) плівкові.

Наступною незалежною ознакою класифікації ϵ ступінь інтеграції K, який визначається як показник степені числа елементів N в IC:

$$K = \lg N$$
.

За ступенем інтеграції IC поділяються на:

- А) <u>малі ІС (МІС)</u> містять до 100 елементів і компонентів на кристалі $(N \le 2)$;
 - Б) $\underline{cepedhi\ IC\ (CIC)}$ містять до 1000 елементів на кристалі ($N \le 3$);
 - В) великі ІС (ВІС) містять до 10 000 елементів на кристалі ($N \le 4$);
- Γ) <u>надвеликі ІС (НВІС)</u> являють собою завершений мікроелектронних пристрій, здатний виконувати функції апаратури і містить до 1 000 000 елементів на кристалі ($N \le 6$);

- Д) <u>ультравеликі ІС (УНВІС)</u> до них належать ІС із ступенем інтеграції $N \ge 6$.
 - За функціональним призначенням ІС поділяються на:
- А) *цифрові* призначені для обробки сигналів, заданих у вигляді дискретних функцій:
 - а) логічні;
 - б) запам'ятовуючі пристрої;
 - в) тригери;
 - г) пристрої для обробки цифрової інформації.
- Б) <u>аналогові</u> призначені для обробки сигналів, заданих у вигляді неперервних функцій:
 - а) генератори;
 - б) підсилювачі;
 - в) детектори;
 - г) пристрої застилки сигналів;
 - д) пристрої селекції;
 - е) фільтри частот;
 - ϵ) формувачі;
 - ж) перетворювачі;
 - з) модулятори.
 - В) обчислювальні пристрої:
 - а) пристрої обробки;
 - б) мікропроцесорні комплекти.
 - Г) <u>джерела вторинного живлення</u>:
 - а) перетворювачі;
 - б) випрямлячі;
 - в) стабілізатори напруги;
 - г) стабілізатори струму;
 - д) пристрої керування напругою;
 - е) пристрої вторинного живлення;
 - ϵ) інші пристрої.
 - Д) багатофункціональні пристрої:
 - а) матриці;
 - б) комутатори;
 - в) набори елементів.
 - Е) фоточутливі пристрої із зарядовим зв'язком:
 - а) матричні;
 - б) лінійні;
 - в) інші.
 - ϵ) <u>базові матричні кристали</u>.
 - За використанням в апаратурі ІС поділяються на:
 - А) загального використання;
 - Б) спеціального використання.

За конструктивним виконанням ІС поділяються на:

- А) корпусні;
- Б) безкорпусні.

Існує 5 типів корпусів, які відрізняються як формою (прямокутна, кругла, овальна), так і матеріалом (пластмасові, керамічні, металоскляні, металокерамічні, металополімерні).

За технологією виробництва ІС поділяються на:

- А) кремнієва;
- Б) гібридна;
- В) кремній-германієва;
- Г) арсенід-галієва.