מבוא למרחבים מטריים וטופולוגיים --- תרגול 8

ו טופולוגיות חלשות

תהי (X_α, au_α) כאשר $f_\alpha: X o X_\alpha$ יש פונקציה $\alpha \in \Lambda$ טופולוגי. נסמן $F = \{f_\alpha\}_{\alpha \in \Lambda}$ טופולוגי. נסמן

-המינימ- $au(\mathcal{F})$ הטופולוגיה הטופולוגיה ע"י המשפחה הנוצרת ע"י המינימ- הגדרה: הטופולוגיה החלשה הנוצרת ע"י המשפחה ב- רציפות.

למעשה $au(\mathcal{F})$ היא הטופולוגיה הנוצרת ע"י תת הבסיס

$$S = \left\{ f_{\alpha}^{-1}(U_{\alpha}) \mid \alpha \in \Lambda, U_{\alpha} \in \tau_{\alpha} \right\}$$

 $f_{lpha}\circ f:Y o$ טענה 1.1 יהי (Y, au) מרחב טופולוגי, הראו כי f:Y o X כי מרחב טופולוגי, מרחב טופולוגי, הראו כי $lpha\in\Lambda$ רציפות לכל A

רציפות עם $f:Y\to X$ הוכחה: הוכחה רציפות האי ברור הול $f:Y\to X$ הכיות הוכחה: הטופולוגיה על Xנבתרה בדיוק בדיוק בדיוק בדיוק הטופולוגיה אל

כדי לבדוק ש-fרציפה, מספיק לבדוק את על איברי תת הבסיס. היי: \Longrightarrow , $V=f_{\alpha}^{-1}(U_{\alpha})\in S$

$$f^{-1}(V) = f^{-1}(f_{\alpha}^{-1}(U_{\alpha})) = (f_{\alpha} \circ f)^{-1}(U_{\alpha}) \in \tau_{Y}$$

דוגמאות: 1. טופולוגיית תת המרחב היא הטופולוגיה החלשה ביחס להעתקת השיכון. 2. טופולוגיית המכפלה היא הטופולוגיה החלשה הנוצרת על ידי העתקות ההטלה לרכיבי המכפלה. כלומר ההעתקות

$$\pi_{\beta}: \prod_{\alpha \in A} X_{\alpha} \rightarrow X_{\beta}$$

$$\pi_{\beta}((x_{\alpha})_{\alpha \in A}) = x_{\beta}$$

2 האוסדורף

-הוא האוסדורף, אם לכל אם קיימות סבר הגדרה (X, au) הוא האוסדורף, אם לכל מרחב מרחב מרחב הגדרה ג $x\in U,\,y\in V,\,U\cap V=\emptyset$ כן כלומר קיימים ליימים על היימים ליימים ליימים

טענה $X \times X$ מרחב טופולוגי X הוא האוסדורף אם"ם האלכסון בX הוא סגור. (כאשר $\Delta = \{(x,x) \, | x \in X\} \subset X \times X$ ככאשר

הוכחה: \Rightarrow יהיו $x,y \in X$, אזי A, כלומר $(x,y) \in A$, לכן קיים איבר $x \neq y \in X$, לכן קיים איבר $(x,y) \in U \times V \subset \Delta^c$ כך ש $(x,y) \in U \times V \subset \Delta^c$. בסיס המפריד את בדיוק כמו לומר $(x,y) \in U \cap V = \emptyset$

את $X=\prod_{\alpha}X_{\alpha}$ נסמן ונסמן מרחבים אל מרחבים שפחה (X_{α}, au_{α}) טענה 2.3 יהיו יהיו אוסדורף (עם טופולוגיית המכפלה האוסדורף לכל מרחב המכפלה עם טופולוגיית המכפלה (עם טופולוגיית המכפלה אחיד.

הוכחה: X_{α_0} , $x_{\alpha_0}\neq y_{\alpha_0}$ כך ש- α_0 כך ש- α_0 הוא האור $(x_\alpha)\neq (y_\alpha)\in X$ הוא האו : $(x_\alpha)\neq (y_\alpha)\in X$ הוא האור לכן קיימים $U_{\alpha_0},V_{\alpha_0}\in T_{\alpha_0}$ סביבות זרות של $(x_\alpha),(y_\alpha)$ בהתאמה. ולכן סביבות זרות של $(x_\alpha),(y_\alpha)$ בהתאמה.

3 אקסיומות הפרדה

 $x
eq y \in X$ אם "הטופולוגיה מבחינה בין נקודות": לכל T_0 אם הוא מרחב מרחב טופולוגי לכל $y \notin U \ni x$ או $x \notin U \ni y$ -שימת U פתוחה כך ש

U קיימת $x\neq y\in X$ לכל לכל סגורים": אם "יחידונים אם T_1 אם הוא מרחב מופולוגי אות מרחב $x\notin U\ni y$

מרחב טופולוגי X הוא מקיים את הוא T_2 אם הוא מקיים את תכונת האוסדורף. דוגמאות:

- T_0 עם הטופולוגיה הדיסקרטית אינו $X = \{1,2\}$.1
- T_1 שאינו T_0 המרחב T_0 הוא מרחב T_0 הטופולוגיה T_0 שאינו T_0 המרחב T_0 שאינו T_0
- המינימלית הטופולוגיה הקו-סופית (זאת הטופולוגיה המינימלית ג. המרחב אינסופי עם הטופולוגיה הקו-סופית לא T_1 הוא בורה אול הוא T_1 הוא הוא T_1 הוא הוא בורה אול הוא היא
 - T_2 אוא מטרי מטרי מרחב T_2