SISTEM PERINGATAN GEMPA BUMI DAN TSUNAMI BERBASIS *IoT*

PRA PROPOSAL PROYEK TINGKAT

Diajukan sebagai syarat untuk mengikuti Sidang Komite Proyek tingkat

oleh:

KEVIN SIMBOLON 6705180094

D3 TEKNOLOGI TELEKOMUNIKASI
FAKULTAS ILMU TERAPAN
UNIVERSITAS TELKOM
2020

Latar Belakang

Perkembangan teknologi pada jaman sekarang sangat pesat sehingga mendorong banyak pihak untuk mengembangkan atau menciptakan teknologi yang mempermudah pekerjaan manusia, baik perangkat lunak (*software*) maupun perangkat keras (*hardware*) yang tentunya berguna bagi manusia. Gempa bumi dan Tsunami untuk wilayah Indonesia merupakan masalah yang sering muncul sebagai salah satu sumber bencana alam. Dilansir dari data CNBC Indonesia terhitung dari Desember 2018 sudah terjadi gempa bumi yang mengakibatkan tsunami sebanyak 6 kali di Indonesia dari tahun 2004 hingga 2018.

Pada penelitian ini akan dirancang dan mensimulasikan suatu Sistem peringatan Gempa dan Tsunami yang menggunakan Software Arduino ide, Aplikasi Blynk-IoT for Arduino, ESP8266/32, WeMos D1, Water Level Sensor, Viration Motion Sensor, LED Traffic Light, Buzzer.

Dengan dibuatnya alat peringatan gempa dan tsunami berbasis *IoT* ini diharapkan mengetahui cara kerja dari *Software Arduino ide, Aplikasi Blynk-IoT for Arduino, ESP8266/32, WeMos D1 Wifi ESP8266, Water Level Sensor,* dan *Vibration Motion Sensor*, Mengetahui hasil dari simulasi alat tersebut melihat kinerja dari alat tersebut, dan juga dengan dibuatnya alat peringatan gempa dan tsunami berbasis *IoT* diharapkan dapat memberikan peringatan secepat mungkin pada masyarakat dengan tujuan menekan jumlah korban jiwa menjadi lebih kecil.

Studi Literatur Penelitian Terkait

Tabel 1 Merupakan hasil studi literature terhadap penelitian yang terkait dengan judul yang diangkat.

Tabel 1 Hasil Studi Literatur

No	Judul Penelitian /Karya Ilmiah	Tahun	Keterangan
1.	Pembuatan Alat Pendekteksi Gempa	2018	Dalam penelitian ini penulis membuat suatu alat pendekteksi gempa yang
	Menggunakan Accelerometer Berbasis		menggunakan sensor Accelerometer yang berbasis Arduino, Belum
	Arduino [1]		Terhubung ke Teknologi <i>IoT</i>
2.	Rancangan Detektor Gempa Berpotensi	2015	Dalam penelitian ini penulis merancang detektor gempa bumi yang
	Tsunami Berbasis Wireless Sensor		berpotensi tsunami berbasis wireless sensor network dengan sistem
	Network Dengan Sistem Magnetic		magnetic altitude.
	Altitude (Kajian Teori) [2]		
3.	Sistem Peringatan Dini Gempa Bumi	2019	Dalam Penelitian ini penulis membuat sistem sensor gempa bumi
	Multi Node Sensor Berbasis Fuzzy dan		menggunakan jaringan sensor nirkabel dan juga menggunakan teknologi
	Komunikasi <i>IoT</i> [3]		Internet Of Things (IoT).

Rancangan Sistem

Pada bab ini akan dijelaskan mengenai perancangan Sistem Peringatan Gempa dan Tsunami yang Berbasis IoT dengan menggunakan Blynk-IoT for Arduino, ESP8266/32, Rasberry Pi. yang terdiri dari Software Arduino ide, Aplikasi Blynk-IoT for Arduino, ESP8266/32, WeMos D1, Water Level Sensor, Vibration Motion Sensor, LED Traffic Light, Buzzer. Adapun model sistem monitoring yang telah dibuat dapat dilihat pada Gambar 1 dibawah ini.

Gambar 1. Model Sistem Peringatan Gempa dan Tsunami Berbasis *IoT*

WeMos D1 akan menjadi alat yang menyambungkan Laptop, Aplikasi Blynk-IoT for Arduino, ESP8266/32, dan juga alat Microcontroller, Vibration Motion Sensor akan diletakkan di tempat yang kering dan water level sensor akan di letakkan di wadah yang berisikan air, LED Traffic Light dan Buzzer akan menjadi alat peringatan jikalau getaran atau ketinggian air melebihi batas yang telah di atur, untuk Aplikasi Blynk-IoT for Arduino, ESP8266/32 akan menjadi monitoring seberapa besar getaran atau tinggi air yang terjadi.

Referensi

- [1] Muhammad Aditya Tisnadinata, Novian Anggis Suwastika, Rahmat Yasirandi. (2019). Sistem Peringatan Gempa Bumi *Multi Node Sensor* Berbasis *Fuzzy* dan Komunikasi *IoT. Indonesia Journal of Computing*, 2460-9056.
- [2] Nuzul Imam Fadlilah & Ahmad Arifudin. (2018). Pembuatan Alat Pendekteksi Gempa Menggunakan *Accelerometer* Berbasis *Arduino*. Jurnal Evolusi Volume 6 No 1.
- [3] Putu Artawan & I Ketut Purnamawan. (2015). Rancangan Detektor Gempa Berpotensi Tsunami Berbasis *Wireless Sensor Network* dengan Sistem *Magnetic Altitude* (Kajian Teori). *Proceedings Seminar Nasional FMIPA UNDIKSHA V*.

Tanggal

: 10 Desember 2020

Form Kesediaan Membimbing Proyek Tingkat

PROYEK TINGKAT SEMESTER GANJIL|GENAP* TA 2020/2021

Kami yan	g bertanda tangan	dibawah in i:
CALON P	EMBIMBING 1	
Kode	: DNN	
Nama	: Dwi Andi Nı	ırmantis,S.T.,M.T.
CALON P	EMBIMBING 2	
Kode	: ASM	
Nama	: Asep Mulyar	na.S.T.,M.T.
Menyatak	an bersedia menja	adi dosen pembimbing Proyek Tingkat bagi mahasiswa berikut,
NIM		: 6705180094
Nama		: Kevin Simbolon
Prodi / Pe	minatan	: D3TT/(contoh: MI / SDV)
Calon Ind	111 P.A	

Dengan ini akan memenuhi segala hak dan kewajiban sebagai dosen pembimbing sesuai dengan Aturan Proyek Tingkat yang berlaku.

Calon Pembimbing 1

Calon Pembimbing 2

(Dwi Andi Nurmantis,S.T.,M.T.)

 $(\boldsymbol{Asep\ Mulyana.S.T.,M.T.}\)$

SISTEM PERINGATAN GEMPA BUMI DAN TSUNAMI BERBASIS IoT

NIP: 14850075 NIP: 94570011

CATATAN:

- 1. Aturan Proyek Akhir versi terbaru dapat diunduh dari : http://dte.telkomuniversity.ac.id/panduan-proyek-akhir/
- 2. Keputusan akhir penentuan pembimbing berada di tangan Ketua Kelompok Keahlian dengan memperhatikan aturan yang berlaku.
- 3. Pengajuan pembimbing boleh untuk kedua pembimbing sekaligus atau untuk salah satu pembimbing saja

Telkom University Jl.Telekomunikasi No.1, Terusan Buah Batu Bandung 40257 Indonesia

DAFTAR NILAI HASIL STUDI MAHASISWA

NIM (Nomor Dosen Wali : HPT / HASANAH Induk : D2 Talmal

Mahasiswa)

670518009

PUTRI Program Studi : D3 Teknologi

Vianasiswa)
4 Telekomunikasi
Nama : KEVIN SIMBOLON

Mata Kuliah yang Lulus

Semester	Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai
1	HUH1B2	PENDIDIKAN AGAMA KRISTEN DAN ETIKA	CHRISTIAN RELIGION AND ETHICS	2	A
1	DTH1D3	RANGKAIAN LISTRIK	ELECTRICAL CIRCUITS	3	С
1	DTH1B3	MATEMATIKA TELEKOMUNIKASI I	MATHEMATICS TELECOMMUNICATIONS I	3	AB
1	DUH1A2	LITERASI TIK	ICT LITERACY	2	AB
1	DTH1A2	K3 DAN LINGKUNGAN HIDUP	K3 AND ENVIRONMENT	2	AB
1	DTH1C3	DASAR TEKNIK KOMPUTER DAN PEMROGRAMAN	BASIC COMPUTER ENGINEERING AND PROGRAMMING	3	AB
1	DTH1F3	DASAR SISTEM TELEKOMUNIKASI	BASIC TELECOMMUNICATIONS SYSTEM	3	С
1	DTH1E2	BENGKEL MEKANIKAL DAN ELEKTRIKAL	MECHANICAL AND ELECTRICAL WORKSHOP	2	AB
2	DMH1A2	OLAH RAGA	SPORT	2	AB
2	LUH1B2	BAHASA INGGRIS I	ENGLISH I	2	A
2	HUH1G3	PANCASILA DAN KEWARGANEGARAAN	PANCASILA AND CITIZENSHIP	3	A
2	DTH1K3	ELEKTROMAGNETIKA	ELECTROMAGNETIC	3	С
2	DTH1J2	BENGKEL ELEKTRONIKA	ELECTRONICS WORKSHOP	2	A
2	DTH1G3	MATEMATIKA TELEKOMUNIKASI II	MATHEMATICS TELECOMMUNICATIONS II	3	В
2	DTH1H3	TEKNIK DIGITAL	DIGITAL TECHNIQUES	3	ВС
2	DTH1I3	ELEKTRONIKA ANALOG	ANALOG ELECTRONIC	3	AB

Jumlah SKS	81	3.25

Semester	Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai
3	DTH2D3	APLIKASI MIKROKONTROLER DAN ANTARMUKA	MICROCONTROLLER APPLICATIONS AND INTERFACES	3	AB
3	DTH2A2	BAHASA INGGRIS TEKNIK I	ENGLISH TECHNIQUE I	2	A
3	DTH2C2	BENGKEL INTERNET OF THINGS	INTERNET OF THINGS WORKSHOP	2	AB
3	DTH2B3	KOMUNIKASI DATA BROADBAND	BROADBAND DATA COMMUNICATIONS	3	В
3	DTH2E3	SISTEM KOMUNIKASI	COMMUNICATIONS SYSTEMS	3	ВС
3	DTH2G3	SISTEM KOMUNIKASI OPTIK	OPTICAL COMMUNICATION SYSTEMS	3	ВС
3	DTH2F3	TEKNIK TRANSMISI RADIO	RADIO TRANSMISSION TECHNIQUES	3	AB
4	DMH2A2	KERJA PRAKTEK	INTERSHIP	2	A
4	DTH2H3	JARINGAN DATA BROADBAND	BROADBAND DATA NETWORK	3	ВС
4	DTH2I3	DASAR KOMUNIKASI MULTIMEDIA	BASIC COMMUNICATION MULTIMEDIA	3	A
4	DTH2J2	TEKNIK TRAFIK	TRAFFIC ENGINEERING	2	В
4	DTH2K3	ELEKTRONIKA TELEKOMUNIKASI	ELECTRONICS TELECOMMUNICATIONS	3	AB
4	DTH2L3	TEKNIK ANTENNA DAN PROPAGASI	ANTENNA TECHNIQUES AND PROPAGATION	3	AB
4	DTH2M3	SISTEM KOMUNIKASI SELULER	CELLULAR COMMUNICATION SYSTEMS	3	AB
4	DMH1B2	PENGEMBANGAN PROFESIONALISME	PROFESSIONAL DEVELOPMENT	2	A
Jumlah SKS					3.25

Mata Kuliah yang Belum Lulus

Semester	Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai
3	VTI2G3	PENGOLAHAN SINYAL INFORMASI	INFORMATION SIGNAL PROCESSING	3	
4	THZTOGO	BAHASA INDONESIA	INDONESIAN LANGUAGE	2	
4	VTI2K3	JARINGAN TELEKOMUNIKASI BROADBAND	BROADBAND DATA NETWORKS	3	
	Juml	16			

Semester	Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai
4	VITIALIA	BAHASA INGGRIS TEKNIK II	ENGLISH TECHNIQUES II	2	
5	VITIOD 2	KEAMANAN JARINGAN	NETWORK SECURITY	3	
5	UWI3E1	HEI	HEI	1	
5	UWI3A2	KEWIRAUSAHAAN	ENTREPRENEURSHIP	2	
	16				

Tingkat I	: 41 SKS	Belum Lulus	IPK: 3.17
Tingkat II	: 81 SKS	Belum Lulus	IPK: 3.25
Tingkat III	: 81 SKS	Belum Lulus	IPK: 3.25
Jumlah SKS	: 81 SKS		IPK : 3.25

Total SKS dan IPK dihitung dari mata kuliah lulus dan mata kuliah belum lulus. Nilai kosong dan T tidak diikutkan dalam perhitungan IPK.

Pencetakan daftar nilai pada tanggal 10 Desember 2020 22:26:04 oleh KEVIN SIMBOLON