STATS 300B Notes

Kenneth Tay

1 Preliminaries

- (Lec 1) **SLLN and CLT:** If $X \stackrel{iid}{\sim} P$, $Cov(X_i) = \Sigma = \mathbb{E}[(X_i \mu)(X_i \mu)^T]$, $\mu = \mathbb{E}X_i$, then $\frac{1}{n} \sum_{i=1}^n X_i \stackrel{a.s.}{\to} \mu$ and $\frac{1}{\sqrt{n}} \sum_{i=1}^n (X_i \mu) \stackrel{a.s.}{\to} \mathcal{N}(0, \Sigma)$.
- (Lec 1) Continuous mapping theorem: Let g be continuous on a set B such that $\mathbb{P}(X \in B) = 1$. Then $X_n \stackrel{a.s.}{\to} X \Rightarrow g(X_n) \stackrel{a.s.}{\to} g(X), X_n \stackrel{P}{\to} X \Rightarrow g(X_n) \stackrel{P}{\to} g(X), \text{ and } X_n \stackrel{d}{\to} X \Rightarrow g(X_n) \stackrel{d}{\to} g(X).$
- (Lec 1) Slutsky's theorem:
 - If c is constant, then $X_n \stackrel{d}{\to} c \iff X_n \stackrel{P}{\to} c$.
 - If $X_n \stackrel{d}{\to} X$ and $d(X_n, Y_n) \stackrel{P}{\to} 0$, then $Y_n \stackrel{d}{\to} X$.
 - If $X_n \stackrel{d}{\to} X$, $Y_n \stackrel{P}{\to} c$, then $\begin{pmatrix} X_n \\ Y_n \end{pmatrix} \stackrel{d}{\to} \begin{pmatrix} X \\ c \end{pmatrix}$.
 - If $X_n \xrightarrow{d} X$ and $Y_n \xrightarrow{d} c$, then $X_n + Y_n \xrightarrow{d} X + c$, $Y_n X_n \xrightarrow{d} cX$, and $\frac{X_n}{Y_n} \xrightarrow{d} \frac{X}{c}$ if $c \neq 0$. (This holds even for matrices.)
- (Lec 2) Uniform tightness: A collection of random vectors $\{X_{\alpha}\}_{{\alpha}\in A}$ is uniformly tight if

$$\lim_{M \to \infty} \sup_{\alpha} \left[\sup_{\alpha} \mathbb{P}(\|X_{\alpha}\| \ge M) \right] = 0.$$

A single random vector is uniformly tight. If $X_n \stackrel{d}{\to} X$, then $\{X_n\}$ is uniformly tight.

- (Lec 1) O notation: Let X_n be random vectors, R_n be random variables.
 - We say that $X_n = o_p(R_n)$ if there are random vectors Y_n such that $X_n = Y_n R_n$ and $Y_n \stackrel{P}{\to} 0$.
 - We say that $X_n = O_p(R_n)$ if there are random vectors Y_n such that $X_n = Y_n R_n$ and $Y_n = O_p(1)$, i.e. $\{Y_n\}$ uniformly tight.
 - $-o_p(1) + o_p(1) = o_p(1).$
 - $O_p(1) + o_p(1) = O_p(1).$
 - $-O_p(1) + O_p(1) = O_p(1).$
 - $O_p(1)o_p(1) = o_P(1).$
 - $[1 + o_p(1)]^{-1} = O_p(1).$
 - $o_p(O_p(1)) = o_p(1).$

- Let $R: \mathbb{R}^d \to \mathbb{R}^k$ be a function with R(0) = 0, and assume $X_n \stackrel{P}{\to} 0$. If $R(h) = o(\|h\|^p)$ as $h \to 0$, then $R(X_n) = o_p(\|X_n\|^p)$. If $R(h) = O(\|h\|^p)$ as $h \to 0$, then $R(X_n) = O_p(\|X_n\|^p)$.
- (Lec 2) **Prohorov's theorem:** A collection of random vectors $\{X_{\alpha}\}_{{\alpha}\in A}$ is uniformly tight iff it is sequentially compact for weak convergence, i.e. \forall sequences $\{X_n\}_{n\in\mathbb{N}}\subset \{X_{\alpha}\}_{{\alpha}\in A}$, there exist a subsequence n_k and a random vector X such that $X_{n_k} \stackrel{d}{\to} X$.
- (Lec 2) Portmanteau theorem: Let X_n , X be random vectors. The following are equivalent:
 - 1. $X_n \stackrel{d}{\to} X$.
 - 2. $\mathbb{E}(f(X_n)) \to \mathbb{E}(f(X))$ for all bounded and continuous f.
 - 3. $\mathbb{E}(f(X_n)) \to \mathbb{E}(f(X))$ for 1-Lipschitz f with $f \in [0,1]$.
 - 4. $\liminf_{n\to\infty} \mathbb{E}(f(X_n)) \geq \mathbb{E}(f(X))$ for non-negative and continuous f.
 - 5. $\liminf_{n\to\infty} \mathbb{P}(X_n\in O) \geq \mathbb{P}(X\in O)$ for all open sets O.
 - 6. $\limsup_{n\to\infty} \mathbb{P}(X_n \in C) \leq \mathbb{P}(X \in C)$ for all closed sets C.
 - 7. $\lim_{n \to \infty} \mathbb{P}(X_n \in B) = \mathbb{P}(X \in B)$ for all sets B such that $\mathbb{P}(X \in \partial B) = 0$.

2 Delta Method

- (Lec 2) Let $r_n \to \infty$ be a deterministic sequence and $\phi : \mathbb{R}^d \to \mathbb{R}^k$ be differentiable at θ . Assume that $r_n(T_n \theta)$ converges in distribution to some random vector $T \in \mathbb{R}^d$. Then,
 - 1. $r_n(\phi(T_n) \phi(\theta)) \xrightarrow{d} \phi'(\theta)T$, and
 - 2. $r_n(\phi(T_n) \phi(\theta)) r_n\phi'(\theta)(T_n \theta) \stackrel{P}{\to} 0.$

Here $\phi'(\theta) \in \mathbb{R}^{k \times d}$ is the Jacobian matrix of derivatives $[\phi'(\theta)]_{ij} = \frac{\partial \phi_i(\theta)}{\partial \theta_i}$.

- (Lec 2) If $\phi'(\theta) = 0$, we can do a higher order Taylor expansion to get more power results/faster rate of convergence.
- (Lec 2) Let $r_n \to \infty$ be a deterministic sequence and $\phi : \mathbb{R}^d \to \mathbb{R}^k$ be twice differentiable at θ such that $\nabla \phi(\theta) = 0$. Then,

$$r_n^2(\phi(T_n) - \phi(\theta)) \stackrel{d}{\to} \frac{1}{2} T^T \nabla^2 \phi(\theta) T,$$

where $\nabla^2 \phi(\theta)$ is the Hessian matrix.

- (Lec 5) Restatement of CLT: Assume $X_1, \ldots, X_n \stackrel{iid}{\sim} P_{\theta_0}$. Let $f: \mathcal{X} \mapsto \mathbb{R}^d$ with $P_{\theta_0} \|f\|_2^2 < \infty$. Then CLT says that under $P_{\theta_0}, \sqrt{n}(P_n f P_{\theta_0} f) \stackrel{d}{\to} \mathcal{N}(0, \operatorname{Cov}_{\theta_0}(f))$.
- (Lec 5) **Delta method for method of moments:** Suppose that $e(\theta) = P_{\theta}f$ is one-to-one on an open set $\Theta \subseteq \mathbb{R}^d$ and continuously differentiable at θ_0 with non-singular derivative e'_{θ_0} . Assume also that $P_{\theta_0} \|f\|_2^2 < \infty$. Then $P_n f \in \text{dom } (e^{-1})$ eventually, and if $\hat{\theta}_n = e^{-1}(P_n f)$, under P_{θ_0} we have

$$\sqrt{n}(\hat{\theta}_n - \theta_0) \stackrel{d}{\to} \mathcal{N}\left(0, [e'(\theta_0)]^{-1} \operatorname{Cov}_{\theta_0}(f)([e'(\theta_0)]^{-1})^T\right).$$

3 Asymptotic Normality

Set-up: Model family $\{P_{\theta}\}_{{\theta}\in\Theta}$, where $\Theta\subseteq\mathbb{R}^d$. Assume P_{θ} has density p_{θ} w.r.t. some base measure μ . We denote the log-likelihood by $\ell_{\theta}(x) = \log p_{\theta}(x)$.

Say we observe $X_i \stackrel{iid}{\sim} P_{\theta_0}$, where θ_0 is unknown and we wish to estimate it.

- (Lec 3) Score function: $\nabla \ell_{\theta}(x) := \left[\frac{\partial}{\partial \theta_{j}} \log p_{\theta}(x)\right]_{j=1}^{d} \in \mathbb{R}^{d}$. Also written as $\dot{\ell}_{\theta}$. We always have $\mathbb{E}_{\theta}[\nabla \ell_{\theta}(x)] = 0$.
- (Lec 3) Fisher information: $I_{\theta} = \text{Cov}_{\theta} \nabla \ell_{\theta} = \mathbb{E}_{\theta} \left[\nabla \ell_{\theta} \nabla \ell_{\theta}^{T} \right] = -\mathbb{E}_{\theta} [\nabla^{2} \ell_{\theta}].$
 - (Lec 4) For a function h, $I(h(\theta)) = \frac{I(\theta)}{h'(\theta)^2}$.
 - (Lec 4) Fisher information is additive (if stuff is independent).
- (Lec 3) MLE estimation: The MLE estimate is

$$\hat{\theta}_n \in \underset{\theta \in \Theta}{\operatorname{argmax}} P_n \ell_{\theta}(x) = \underset{\theta \in \Theta}{\operatorname{argmax}} \frac{1}{n} \sum_{i=1}^n \log p_{\theta}(x_i)$$

.

- Functional invariance of MLE: If $\hat{\theta}$ is MLE for θ , then for any function f, $f(\hat{\theta})$ is MLE for $f(\theta)$.
- (Lec 3) Consistency: An estimator $\hat{\theta}_n$ is consistent if $\hat{\theta}_n \stackrel{P}{\to} \theta_0$ as $n \to \infty$.
- (Lec 3) **Identifiability:** A model $\{P_{\theta}\}_{\theta \in \Theta}$ is identifiable if $P_{\theta_1} \neq P_{\theta_2}$ for all $\theta_1, \theta_2 \in \Theta$ with $\theta_1 \neq \theta_2$.
- (Lec 3) Consistency of MLE for finite Θ : Suppose $\{P_{\theta}\}_{\theta \in \Theta}$ is identifiable and $|\Theta| < \infty$. Then, if $\hat{\theta}_n := \operatorname{argmax}_{\theta \in \Theta} P_n \ell_{\theta}(x), \ \hat{\theta}_n \stackrel{P}{\to} \theta_0 \text{ when } X_i \stackrel{iid}{\sim} P_{\theta_0}.$
- (Lec 4) Asymptotic normality of the MLE: Let $X_i \stackrel{iid}{\sim} P_{\theta_0}$, where $\theta_0 \in \text{int } \Theta$. Assume that:
 - 1. $\ell_{\theta}(x) = \log p_{\theta}(x)$ is smooth enough that $\mathbb{E}_{\theta_0}[\nabla \ell_{\theta_0} \nabla \ell_{\theta_0}^T]$ exists,
 - 2. The Hessian $\nabla^2 \ell_{\theta}(x)$ is M(x)-Lipschitz in θ , i.e. $\|\nabla^2 \ell_{\theta_1}(x) \nabla^2 \ell_{\theta_2}(x)\|_{\text{op}} \leq M \|\theta_1 \theta_2\|$, with $\mathbb{E}_{\theta_0}[M(X)^2] < \infty$,
 - 3. The MLE $\hat{\theta}_n$ is consistent, i.e. $\hat{\theta}_n \stackrel{P}{\to} \theta_0$ under P_{θ_0} .

Then, $\sqrt{n}(\hat{\theta}_n - \theta_0) \stackrel{d}{\to} \mathcal{N}\left(0, I_{\theta_0}^{-1}\right)$, where $I_{\theta} = \mathbb{E}_{\theta}[\nabla \ell_{\theta} \nabla \ell_{\theta}^T]$ is the Fisher information. (Exponential family version of this theorem is in VdV Thm 4.6 p39.)

- (Lec 4) Covariance lower bound: For any decision procedure $\delta : \mathcal{X} \mapsto \mathbb{R}$ and any function $\psi : \mathcal{X} \mapsto \mathbb{R}$ (\mathcal{X} is where the data lives, \mathbb{R} is where the parameter lives), we have $\operatorname{Var}(\delta) \geq \frac{\operatorname{Cov}(\delta, \psi)^2}{\operatorname{Var}(\psi)}$. (Proof by Cauchy-Schwarz.)
- (Lec 4) **1-Dimensional information inequality:** Assume that $\mathbb{E}_{\theta}[\delta] = g(\theta)$ is differentiable at θ and density P_{θ} is regular enough so that we can interchange differentiation and integration. Then $\operatorname{Var}_{\theta}(\delta) \geq \frac{[g'(\theta)]^2}{I(\theta)}$.

Implication: In 1 dimension, any unbiased estimator has $MSE \ge 1/I(\theta)$.

- (Lec 4) Multi-dimensional covariance lower bound: Assume we have $\delta : \mathcal{X} \mapsto \mathbb{R}^d$ and any function $\psi : \mathcal{X} \mapsto \mathbb{R}^d$ with $\mathbb{E}_{\theta}[\psi] = 0$. Let $\gamma = [\text{Cov}(\delta, \psi_j)]_{j=1}^d$, and $C = \text{Cov}_{\theta}(\psi) = \mathbb{E}_{\theta}[\psi\psi^T]$. Then $\text{Var}_{\theta}(\delta) \geq \gamma^T C^{-1} \gamma$.
- (Lec 4) Multi-dimensional information inequality: Assume that $\mathbb{E}_{\theta}[\delta] = g(\theta) \in \mathbb{R}^d$, and that we have enough regularity so that we can interchange differentiation and integration. Then $\operatorname{Var}_{\theta}(\delta) \succeq \nabla g(\theta)^T I(\theta)^{-1} \nabla g(\theta)$.

4 Efficiency of Estimators

- (Lec 5) An estimator $\hat{\theta}_n$ is **efficient** if $\sqrt{n}(\hat{\theta}_n \theta) \xrightarrow{d} \mathcal{N}(0, I_{\theta}^{-1})$ under P_{θ} .
- (Lec 5) Asymptotic relative efficiency (ARE): Let $\hat{\theta}_n$ and T_n be estimators of parameter $\theta \in \mathbb{R}$. Assume that $\sqrt{n}(\hat{\theta}_n \theta) \stackrel{d}{\to} \mathcal{N}(0, \sigma^2(\theta))$. Let $m(n) \to \infty$ be such that $\sqrt{n}(T_{m(n)} \theta) \stackrel{d}{\to} \mathcal{N}(0, \sigma^2(\theta))$. Then the **asymptotic relative efficiency** of $\hat{\theta}_n$ with respect to T_n is $\liminf_{n \to \infty} \frac{m(n)}{n}$.
- (Lec 5) Bigger ARE means that $\hat{\theta}_n$ is a better (more efficient) estimator than T_n .
- (Lec 5) ARE is related to the relative length of confidence intervals.
- (Lec 5) Suppose $\hat{\theta}_n$ and T_n are estimators of θ such that $\sqrt{n}(\hat{\theta}_n \theta) \xrightarrow{d} \mathcal{N}(0, \sigma^2(\theta))$ and $\sqrt{n}(T_n \theta) \xrightarrow{d} \mathcal{N}(0, \tau^2(\theta))$. Then the ARE of $\hat{\theta}_n$ with respect to T_n is $\frac{\tau^2(\theta)}{\sigma^2(\theta)}$. (In higher dimensions, it is roughly $\operatorname{tr}\left(\tau^2(\theta)(\sigma^2(\theta)^{-1})\right)$.)
- (Lec 6) **Super-efficiency:** An estimator $\hat{\theta}_n$ is super-efficient if $\sqrt{n}(\hat{\theta}_n \theta) \stackrel{d}{\to} \mathcal{N}(0, \sigma^2(\theta))$ under P_{θ} , with $\sigma^2(\theta) \leq I(\theta)^{-1}$ for all θ and $\sigma^2(\theta_0) < I(\theta_0)^{-1}$ for some θ_0 .

5 U-Statistics (VdV Ch 12)

- (Lec 6) Let $h: X^r \mapsto \mathbb{R}$ be symmetric. For $X_i \stackrel{iid}{\sim} P$, define $\theta(P) := \mathbb{E}_P \left[h \left(X_1, \dots, X_r \right) \right]$ and associated **U-statistic** $U_n := \frac{1}{\binom{n}{r}} \sum_{|\beta| = r, \beta \subseteq [n]} h(X_\beta)$, where β ranges over size r subsets of $[n] = \{1, \dots, n\}$, $X_\beta = (X_{i_1}, \dots, X_{i_r})$ for $\beta = (i_1, \dots, i_r)$.
- (Lec 6) $\mathbb{E}_P[U_n] = \theta(P)$, i.e. the U-statistic is unbiased.
- (Lec 6) Let $h: X^r \to \mathbb{R}$ be symmetric. For c < r, Define the following quantities:

$$h_c(X_1, \dots, X_c) := \mathbb{E}\left[h\left(\underbrace{X_1, \dots, X_c}_{\text{fixed}}, \underbrace{X_{c+1}, \dots, X_r}_{\text{i.i.d. P}}\right)\right],$$
$$\hat{h}_c := h_c - \mathbb{E}[h_c] = h_c - \theta(P),$$
$$\zeta_c := \text{Var}[h_c(X_1, \dots, X_c)] = \mathbb{E}\left[\hat{h}_c^2\right].$$

• (Lec 7) If $\alpha, \beta \subseteq [n]$, $S = \alpha \cap \beta$, c = |S|, then $\mathbb{E}\left[\hat{h}(X_{\alpha})\hat{h}(X_{\beta})\right] = \zeta_c$.

- (Lec 7) Let U_n be an r^{th} order U-statistic. Then $\operatorname{Var} U_n = \frac{r^2}{n} \zeta_1 + O(n^{-2})$.
- (Lec 7) **Projections:** Let \mathcal{V} be a Hilbert space, and let $C \subseteq \mathcal{V}$ be a convex and closed set. Define the **projection of** w **onto** C as $\pi_C(w) := \underset{v \in C}{\operatorname{argmin}} \{ \|w v\|_2^2 \}.$

 $\pi_C(w)$ exists, is unique, and is characterized by the inequality $\langle w - \pi_C(w), v - \pi_C(w) \rangle \leq 0$.

- (Lec 7) Suppose C is a linear subspace of V. Then $\pi_C(w)$ is the projection of w onto C iff for all $v \in C$, $\langle w \pi_C(w), v \rangle = 0$.
- (Lec 7, VdV Thm 11.1) If S is a linear subspace of $L_2(P)$, then $\hat{S} \in S$ is the projection of $T \in L_2(P)$ onto S iff for all $S \in S$, $\mathbb{E}[(T \hat{S})S] = 0$.

Every two projections of T onto S are a.s. equal. If the linear space S contains the constant variables, then $\mathbb{E}T = \mathbb{E}\hat{S}$ and $\text{Cov}(T - \hat{S}, S) = 0$ for every $S \in S$.

• (Lec 7) Let T_n be statistics, and let \hat{S}_n be the projections of T_n onto subspaces S_n which contain constant random variables.

If
$$\frac{\operatorname{Var} T_n}{\operatorname{Var} \hat{S}_n} \to 1$$
, then $\frac{T_n - \mathbb{E}T_n}{\sqrt{\operatorname{Var} T_n}} - \frac{\hat{S}_n - \mathbb{E}\hat{S}_n}{\sqrt{\operatorname{Var} \hat{S}_n}} \overset{P}{\to} 0$.

- (Lec 7) **Hájek Projections**: Let X_1, \ldots, X_n be independent. Let $\mathcal{S} = \left\{ \sum_{i=1}^n g_i(X_i) : g_i \in L_2(P) \right\}$. If $\mathbb{E}T^2 < \infty$, then the projection \hat{S} of T onto \mathcal{S} is given by $\hat{S} = \sum_{i=1}^n \mathbb{E}[T \mid X_i] (n-1)\mathbb{E}T$.
- (Lec 8) **Asymptotic normality of U-statistics:** Let h be a symmetric kernel (function) of order r with $\mathbb{E}[h^2] < \infty$, and let U_n be the associated U-statistic. Then $\sqrt{n}(U_n \theta) \stackrel{d}{\to} \mathcal{N}(0, r^2\zeta_1)$, where $\theta = \mathbb{E}[U_n] = \mathbb{E}h(X_1, \dots, X_n)$.

6 Testing and Confidence Intervals

• (Lec 9) Let T_n be a sequence of tests for some model $\{P_\theta\}_{\theta\in\Theta}$, and let $H_0:\theta\in\Theta_0\subset\Theta$. Then T_n is asymptotically level α if

$$\lim_{n\to\infty} \sup_{\theta\in\Theta_0} P_{\theta}(T_n \text{ rejects } H_0) \le \alpha.$$

- (Lec 8) Suppose $\sqrt{n}(\hat{\theta}_n \theta_0) \stackrel{d}{\to} \mathcal{N}(0, I_{\theta_0}^{-1})$. Assume that I_{θ} is continuous and invertible. Let $C_{n,\gamma} := \left\{\theta : \mathbb{R}^d : (\theta \hat{\theta}_n)^T I_{\hat{\theta}_n} (\theta \hat{\theta}_n) \le \frac{\gamma}{n}\right\}$. Then as $n \to \infty$, $P_{\theta_0} \{\theta_0 \in C_{n,\gamma}\} \to \alpha$. $C_{n,\gamma}$ is called a **Wald confidence ellipsoid**. (We have $n(\theta \hat{\theta}_n)^T I_{\hat{\theta}_n} (\theta \hat{\theta}_n) \stackrel{d}{\to} \chi_d^2$.)
- In one-dimension, the Wald confidence interval is $\hat{\theta}_n \pm \frac{1}{\sqrt{n}} \sqrt{I(\hat{\theta}_n)^{-1}} \cdot z^{1-\alpha/2}$.
- (Lec 9) Wald tests: Let $u_{d,\alpha}^2$ be the value such that $\mathbb{P}(\chi_d^2 \geq u_{d,\alpha}^2) = \alpha$. Then the Wald test rejects if $\hat{\theta}_n \notin C_{n,\gamma}$ with $\gamma = u_{d,\alpha}^2$.

If H_0 is a point null (just θ_0), we can replace $I_{\hat{\theta}_n}$ with I_{θ_0} in the confidence ellipsoid.

• (Lec 8) Generalized Likelihood Ratio Test: Suppose we are testing $H_0: \theta \in \Theta_0$ vs. $H_1: \theta \in \Theta$, where Θ_0 is a strict subset of Θ . Define statistic

$$T(x) = \log \frac{\sup_{\theta \in \Theta} p(x, \theta)}{\sup_{\theta \in \Theta_0} p(x, \theta)} = \log \frac{p(x, \hat{\theta}_{\text{MLE}})}{\sup_{\theta \in \Theta_0} p(x, \theta)}.$$

The Generalized Likelihood Ratio test rejects H_0 if T(X) > t.

- (Lec 8) Wilk's Theorem: Setting as above, where $\Theta_0 = \{\theta_0\}$ is a point null and $\Theta = \mathbb{R}^d$. Assume that the usual asymptotic normality conditions hold (log-likelihood is twice-differentiable, Hessian is Lipschitz-continuous). Let $X = (X_1, \dots, X_n)$, where $X_i \stackrel{iid}{\sim} P_{\theta_0}$. Then $2T_n(X) \stackrel{d}{\to} \chi_d^2$ under the null.
- (Lec 9) Assume a point null $H_0: \theta = \theta_0$. Under the CLT, $\sqrt{n}P_n\nabla\ell_{\theta_0} \stackrel{d}{\to} \mathcal{N}(0, I_{\theta_0})$, so $n(P_n\nabla l_{\theta_0})^T I_{\theta_0}^{-1}(P_n\nabla l_{\theta_0}) \stackrel{d}{\to} \mathcal{N}(0, I_{\theta_0})$, so $n(P_n\nabla l_{\theta_0})^T I_{\theta_0}^{-1}(P_n\nabla l_{\theta_0}) \stackrel{d}{\to} \mathcal{N}(0, I_{\theta_0})$. Rao score test for H_0 vs. $H_1: \theta \neq \theta_0$ is reject if $(P_n\nabla l_{\theta_0})^T I_{\theta_0}^{-1}(P_n\nabla l_{\theta_0}) \geq u_{d,\alpha}^2/n$. Rao score test is useful if MLE is difficult to compute. $(\sqrt{n}P_n\nabla \ell_{\theta_0} \text{ could potentially be used for a one-sided test.})$

6.1 Testing with Nuisance Parameters

Assume that our model family is parametrized by $\theta \in \mathbb{R}^p$. Let $\theta = (\eta, \nu)$, where $\eta \in \mathbb{R}^k$. Say we are only interested in η and not ν . We have to modify our tests above to account for the nuisance parameters.

Assume that we are testing $\eta = \eta_0$ vs. $\eta \neq \eta_0$.

- Write the Fisher information matrix in block form: $I_{\theta} = \begin{pmatrix} I_{\eta\eta} & I_{\eta\nu} \\ I_{\nu\eta} & I_{\nu\nu} \end{pmatrix}$. Then the upper left block of I_{θ}^{-1} is $(I_{\eta\eta} I_{\eta\nu}I_{\nu\eta}^{-1}I_{\nu\eta})^{-1}$.
- Wald test: We now have $\sqrt{n}(\hat{\eta} \eta) \stackrel{d}{\to} \mathcal{N}(0, (I_{nn} I_{n\nu}I_{n\nu}^{-1}I_{\nu n})^{-1}).$
- Score test: Let $\hat{\nu}_0$ be the MLE for ν when η is fixed at η_0 . Let $\nabla_{\eta}\ell(\eta,\nu)$ denote the gradient of the score function w.r.t. just the parameters we care about. Then the new score statistic is $Z_n = \sqrt{n} P_n \nabla_{\eta} \ell(\eta_0, \hat{\nu}_0)$. Under the null, $Z_n \stackrel{d}{\to} \mathcal{N}(0, I_{\eta\eta} I_{\eta\nu} I_{\nu\nu}^{-1} I_{\nu\eta})$.
- Likelihood ratio test: $R_n = 2\ell(\hat{\theta}) 2\ell(\eta_0, \hat{\nu}_0) \stackrel{d}{\to} \chi^2_{p-k}$. For more details, see TSH Thm 12.4.2 p515.

7 Uniform Laws of Large Numbers (ULLN)

- (TSH Thm 11.2.17 p441, HW1) Glivenko-Cantelli Theorem: Suppose X_1, \ldots, X_n are i.i.d. real-valued random variables with cdf F. Let \hat{F}_n be the ECDF defined by $\hat{F}(t) = \frac{1}{n} \sum_{i=1}^n 1\{X_i \leq t\}$. Then $\sup |\hat{F}_n(t) F(t)| \stackrel{a.s.}{\to} 0$.
- (Lec 10) X is a mean zero σ^2 -sub-Gaussian random variable if $\mathbb{E}\left[e^{\lambda X}\right] \leq \exp\left(\frac{\lambda^2\sigma^2}{2}\right)$ for all $\lambda \in \mathbb{R}$.

- $-\mathcal{N}(0,\sigma^2)$ is σ^2 -sub-Gaussian.
- If $X \in [a, b]$, then X is $\frac{(b-a)^2}{4}$ -sub-Gaussian.
- If $|X| \le c$, then X is c^2 -sub-Gaussian.
- If X_i 's are independent σ_i^2 -sub-Gaussian random variables, then $\sum X_i$ is a $\sum \sigma_i^2$ -sub-Gaussian random variable.
- X is a sub-Gaussian random vector with variance proxy σ^2 if $\mathbb{E}X = 0$ and $u^T X$ is σ^2 -sub-Gaussian for all unit vectors u on the unit sphere in \mathbb{R}^d .
- (Lec 11, HW1) If X_1, \ldots, X_n are mean 0 σ^2 -sub-Gaussian random variables, then $\mathbb{E}\left[\max_{1 \le k \le n} X_k\right] \le \sqrt{2\sigma^2 \log n}$ and $\mathbb{E}\left[\max_{1 \le k \le n} |X_k|\right] \le \sqrt{2\sigma^2 \log(2n)}$.
- (Lec 10) If X is σ^2 -sub-Gaussian, then $\max[\mathbb{P}(X \mathbb{E}X \ge t), \mathbb{P}(X \mathbb{E}X \le -t)] \le \exp\left(-\frac{t^2}{2\sigma^2}\right)$.
- (Lec 10) Hoeffding's inequality: Let X_i 's be independent σ_i^2 -sub-Gaussian random variables. Then

$$\mathbb{P}\left(\frac{1}{n}\sum_{i=1}^{n}(X_{i} - \mathbb{E}X_{i}) \ge t\right) \le \exp\left[\frac{-n^{2}t^{2}}{2\sum_{i=1}^{n}\sigma_{i}^{2}}\right] \quad \text{for } t \ge 0,$$

$$\mathbb{P}\left(\frac{1}{n}\sum_{i=1}^{n}(X_{i} - \mathbb{E}X_{i}) \le -t\right) \le \exp\left[\frac{-n^{2}t^{2}}{2\sum_{i=1}^{n}\sigma_{i}^{2}}\right] \quad \text{for } t \le 0.$$

When we have $X_i \in [a, b]$ for all i, the bound on the RHS becomes $\exp \left[-\frac{2nt^2}{(b-a)^2} \right]$.

- (Lec 10) Setting for coverings and packings: Let (Θ, d) be a metric space with distance measure $d: \Theta \times \Theta \mapsto \mathbb{R}$.
- (Lec 10) For any $\varepsilon > 0$, $\{\theta_i\}_{i=1}^N$ is an ε -cover of Θ if $\min_i d(\theta, \theta_i) < \varepsilon$ for all $\theta \in \Theta$. (We do not require that $\theta_i \in \Theta$.)
- (Lec 10) For $\varepsilon > 0$, the **covering number** of Θ for metric d is $N(\Theta, d, \varepsilon) := \inf\{N : \exists \text{ an } \varepsilon \text{cover } \{\theta_i\}_{i=1}^N \text{ of } \Theta\}$. $\log N(\Theta, d, \varepsilon)$ is called the **metric entropy**.
- (Lec 10) For any $\varepsilon > 0$, $\{\theta_i\}_{i=1}^M$ is an ε -packing of Θ if $\min_{i,j} d(\theta_i, \theta_j) > \varepsilon$. (We require $\theta_i \in \Theta$.)
- (Lec 10) For $\varepsilon > 0$, the **packing number** of Θ for metric d is $M(\Theta, d, \varepsilon) := \sup\{M : \exists \text{ an } \varepsilon \text{packing } \{\theta_i\}_{i=1}^M \text{ of } \Theta\}$. log $M(\Theta, d, \varepsilon)$ is called the **packing entropy**.
- (Lec 10, Quals Ex 4) For all ε , $M(2\varepsilon) \leq N(\varepsilon) \leq M(\varepsilon)$.
- (Lec 10) Let $\Theta \subseteq \mathbb{R}^d$ be compact. Then $N(\Theta, \|\cdot\|, \varepsilon) < \infty$ for any $\varepsilon > 0$.
- (Lec 10) **Balls in** \mathbb{R}^d with Euclidean norm: If the ball has radius r, then $M(\Theta, \|\cdot\|, \varepsilon) \leq \left(1 + \frac{2r}{\varepsilon}\right)^d$, and $\left(\frac{r}{\varepsilon}\right)^d \leq N(\Theta, \|\cdot\|, \varepsilon) \leq \left(1 + \frac{2r}{\varepsilon}\right)^d$. Thus, $\log N(\Theta, \|\cdot\|, \varepsilon) \approx d\log\left(1 + \frac{r}{\varepsilon}\right)$.
- (Lec 10) Let $\mathcal{F} \subseteq \{f : \mathcal{X} \mapsto \mathbb{R}\}$ be a collection of functions with measure μ on \mathcal{X} . A set $\{[l_i, u_i]\}_{i=1}^N$ of functions $\mu_i, l_i : \mathcal{X} \to \mathbb{R}$ is an ε -bracketing of \mathcal{F} in the $L_p(\mu)$ norm if

- 1. $\int [u_i(x) l_i(x)]^p d\mu(x) \le \varepsilon^p$ for all i, and
- 2. For all $f \in \mathcal{F}$, there is an i s.t. $l_i(x) \leq f(x) \leq u_i(x)$ for all x.
- (Lec 10) The **bracketing number** of \mathcal{F} is $N_{[\]}(\mathcal{F},L_p(\mu),\varepsilon):=\inf\{N:\exists \text{ an } \varepsilon\text{-bracketing of }\mathcal{F}\ \{[l_i,u_i]\}_{i=1}^N\}.$
- (HW7) The collection of functions $f:[0,1] \mapsto [0,1]$ which are 1-Lipschitz has bracketing number (w.r.t. sup norm) bounded by $\exp(C/\varepsilon)$.
- (Lec 10) Let $\mathcal{F} = \{m_{\theta} : \theta \in \Theta\}$, where the m_{θ} are L-Lipschitz in θ , with $\mathbb{E}[L(X)^p] < \infty$. Then $N_{[1]}(\mathcal{F}, L_p, \varepsilon || L(X) ||_p) \leq N(\Theta, || \cdot ||, \varepsilon/2)$.
- (Lec 10) Uniform convergence with bracketing numbers: Let \mathcal{F} satisfy $N_{[]}(\mathcal{F}, L_1(P), \varepsilon) < \infty$. Then under i.i.d. sampling, $\sup_{f \in \mathcal{F}} |P_n f - Pf| \stackrel{P}{\to} 0$.
- (Lec 11) For a function class \mathcal{F} , we define the \mathcal{F} -norm $||P_n P||_{\mathcal{F}} := \sup_{f \in \mathcal{F}} |P_n f Pf|$. \mathcal{F} satisfies a uniform law of large numbers if $\lim_{n \to \infty} ||P_n P||_{\mathcal{F}} = 0$.
- (Lec 11) A function class \mathcal{F} is a Glivenko-Cantelli (GC) class w.r.t. P if $||P_n P||_{\mathcal{F}} \stackrel{P}{\to} 0$.
- (Lec 11) **Symmetrization:** If $X_1, ..., X_n$ are random vectors in a vector space equipped with a norm $\|\cdot\|$ and $\varepsilon_1, ..., \varepsilon_n$ are i.i.d. Rademacher random variables which are independent of the X_i 's, then for $p \geq 1$,

$$\mathbb{E}\left[\left\|\sum_{i=1}^{n} X_{i} - \mathbb{E}[X_{i}]\right\|^{p}\right] \leq 2^{p} \mathbb{E}\left[\left\|\sum_{i=1}^{n} \varepsilon X_{i}\right\|^{p}\right]$$

• (Lec 11) Symmetrization inequality: If \mathcal{F} is a function class, then by symmetrization,

$$\frac{1}{2}\mathbb{E}\left[\sup_{f\in\mathcal{F}}|P_nf-Pf|\right] \leq \mathbb{E}\left[\sup_{f\in\mathcal{F}}\left|\frac{1}{n}\sum_{i=1}^n\varepsilon_if(X_i)\right|\right].$$

The term on the right is known as the **Rademacher complexity** of \mathcal{F} , denoted $R_n(\mathcal{F})$. (See HW6 for Rademacher complexity for some collections of functions.)

- (HW6) Ledoux-Talagrand Rademacher contraction inequality: Let $\phi \circ \mathcal{F} = \{h : h(x) = \phi(f(x)), f \in \mathcal{F}\}$. If ϕ is an L-Lipschitz function, then $R_n(\phi \circ \mathcal{F}) \leq LR_n(\mathcal{F})$.
- (Lec 11) Let (T,d) be a metric space. We say $\{X_t\}_{t\in T}$ is a **sub-Gaussian process** if $\log \mathbb{E}\left[\exp\left(\lambda(X_s-X_t)\right)\right] \leq \frac{\lambda^2 d(s,t)^2}{2}$ for all $\lambda>0, s,t\in T$.
- (Lec 11) Gaussian processes are sub-Gaussian processes.
- (Lec 11) Let T be a vector space with a norm $\|\cdot\|$, $X_i \in \mathcal{X}$ be random variables and loss function $\ell: T \times \mathcal{X} \mapsto \mathbb{R}$ be Lipschitz in its first argument, i.e. $|\ell(s,x) \ell(t,x)| \leq ||t-s||$ for all $x \in \mathcal{X}, s, t \in T$. If we define $Z_t = \sum_{i=1}^n \epsilon_i \ell(t,x_i)$, where $\varepsilon_1, \ldots, \varepsilon_n$ are i.i.d. Rademacher random variables, then the stochastic process $\{X_t\}_{t \in T}$ is $n||\cdot||^2$ -sub-Gaussian.
- (Lec 11) **Entropy integral:** For a metric space (T,d), the entropy integral is defined as $J(T,d) := \int_0^{\operatorname{diam} T} \sqrt{\log N(T,d,\varepsilon)} d\varepsilon$. (N is covering number.)

- (Lec 11) **Dudley's Theorem:** If $\{X_t\}_{t\in T}$ is a separable sub-Gaussian process for metric $d(\cdot,\cdot)$, then $\mathbb{E}\left[\sup_{t\in T}X_t\right]\leq CJ(T,d)$, for some numerical constant C. (C can be taken to be $4\sqrt{2}$.)
- (Lec 12) **Empirical norm:** For empirical distribution P_n , let $L_p(P_n)$ be the L_p norm w.r.t. P_n , i.e. $||f||_{L_p(P_n)} = \left[\frac{1}{n}\sum_{i=1}^n |f(X_i)|^p\right]^{1/p}$. We often use $L_2(P_n)$ for symmetrized processes.
- (Lec 12) If $\sqrt{n}P_n^o f = \frac{1}{\sqrt{n}}\sum_{i=1}^n \varepsilon_i f(X_i)$, then $f \mapsto \sqrt{n}P_n^o f$ is an $\|\cdot\|_{L_2(P_n)}^2$ sub-Gaussian process, so

$$\mathbb{E}\left[\sup_{f\in\mathcal{F}}\left|\sqrt{n}P_n^o f\right|\left|X_1\ldots,X_n\right]\right] = \mathbb{E}\left[\sup_{f\in\mathcal{F}}\left|\frac{1}{\sqrt{n}}\sum \varepsilon_i f(X_i)\right|\left|X_1\ldots,X_n\right|\right] \le C\int_0^\infty \sqrt{\log N(\mathcal{F},L_2(P_n),\varepsilon)}d\varepsilon.$$

• (Lec 12) **ULLNs with entropies:** For $M < \infty$, let $f_M(x) = f(x) 1_{\{|f(x)| \le M\}}$. For a collection of functions \mathcal{F} with envelope F (i.e. $|f(x)| \le F(x)$ for all x), let $\mathcal{F}_M := \{f_M : f \in \mathcal{F}\}$.

If
$$\sqrt{\log N(\mathcal{F}_M, L_1(P_n), \varepsilon)} = o_p(n)$$
 for all $M < \infty$ and $\varepsilon > 0$, then $\|P_n - P\|_{\mathcal{F}} \stackrel{P}{\to} 0$, ie. \mathcal{F} is G.C. class.

- (VdV Thm 19.4) Every class \mathcal{F} of measurable functions such that $N_{[]}(\mathcal{F}, L_1(P), \varepsilon) < \infty$ for every $\varepsilon > 0$ is a P-G.C. class.
- (VdV Thm 19.5) Every class \mathcal{F} of measurable functions with $\int_0^1 \sqrt{\log N_{[]}(\mathcal{F}, L_2(P), \varepsilon) d\varepsilon} < \infty$ is P-Donsker.

8 Concentration Inequalities

- (Lec 10) If X is σ^2 -sub-Gaussian, then $\max[\mathbb{P}(X \mathbb{E}X \ge t), \mathbb{P}(X \mathbb{E}X \le -t)] \le \exp\left(-\frac{t^2}{2\sigma^2}\right)$.
- (Lec 10) Hoeffding's inequality: Let X_i 's be independent σ_i^2 -sub-Gaussian random variables. Then

$$\mathbb{P}\left(\frac{1}{n}\sum_{i=1}^{n}(X_{i}-\mathbb{E}X_{i})\geq t\right)\leq \exp\left[\frac{-nt^{2}}{2\sum_{i=1}^{n}\sigma_{i}^{2}}\right]\quad \text{for } t\geq 0,$$

$$\mathbb{P}\left(\frac{1}{n}\sum_{i=1}^{n}(X_i - \mathbb{E}X_i) \le t\right) \le \exp\left[\frac{-nt^2}{2\sum_{i=1}^{n}\sigma_i^2}\right] \quad \text{for } t \le 0.$$

When we have $X_i \in [a, b]$ for all i, the bound on the RHS becomes $\exp\left[-\frac{2nt^2}{(b-a)^2}\right]$.

• (TSH Thm 11.2.18 p442) **Dvoretzky-Kiefer-Wolfowitz (DKW) inequality:** Suppose X_1, \ldots, X_n are i.i.d. real-valued random variables with cdf F. Let \hat{F}_n be the ECDF. Then, for any d > 0 and any positive n,

$$\mathbb{P}\left(\sup_{t}|\hat{F}_{n}(t) - F(t)| > d\right) \le 2\exp(-2nd^{2}).$$

• (HW6) **Azuma's inequality:** A martingale $\{Z_k\}$ adapted to $\{X_1, \ldots, X_k\}$ is σ_k^2 -sub-Gaussian if for $\Delta_k = Z_k - Z_{k-1}$, we have $\mathbb{E}\left[\exp(\lambda \Delta_k) \mid \mathcal{F}_{k-1}\right] \leq \exp\left(\frac{\lambda^2 \sigma_k^2}{2}\right)$.

Let Δ_k be a σ_k^2 -sub-Gaussian martingale difference sequence with $Z_k = \sum_{i=1}^k \Delta_i$. Then Z_k is $\sum_{i=1}^k \sigma_i^2$ -sub-Gaussian, and for $t \geq 0$,

$$\mathbb{P}(Z_k \ge t) \vee \mathbb{P}(Z_k \le -t) \le 2 \exp\left(-\frac{t^2}{2\sum_{i=1}^k \sigma_i^2}\right).$$

• (HW6) **McDiarmid's Inequality:** Let X_1, \ldots, X_n be independent random variables. Let $f: \mathbb{R}^n \to \mathbb{R}$ be a measurable function such that there exist c_1, \ldots, c_n with the property that for all $x_1, \ldots, x_n, x'_1, \ldots, x'_n, |f(x_1, \ldots, x_n) - f(x_1, \ldots, x'_i, \ldots, x_n)| \le c_i$.

Let $W = f(X_1, \ldots, X_n)$. Then for all t > 0,

$$P(W - \mathbb{E}W \ge t) \le \exp\left(-\frac{2t^2}{\sum_{i=1}^n c_i^2}\right), \qquad P(W - \mathbb{E}W \le -t) \le \exp\left(-\frac{2t^2}{\sum_{i=1}^n c_i^2}\right).$$

• (HW6) Let \mathcal{F} be a collection of functions $f: \mathcal{X} \mapsto \mathbb{R}$, and let $R_n(\mathcal{F})$ be its Rademacher complexity. If \mathcal{F} satisfies envelope condition $\sup_{x \in \mathcal{X}} \sup_{f \in \mathcal{F}} |f(x) - Pf| \leq M$, then

$$\mathbb{P}\left(\sup_{f\in\mathcal{F}}|P_nf - Pf| \ge 2R_n(\mathcal{F}) + t\right) \le 2\exp\left(-\frac{cnt^2}{M^2}\right),$$

for some numerical constant c and for all $t \ge 0$. (We can take c = 1/2.)

Thus, if $R_n(\mathcal{F}) = o(1)$, then \mathcal{F} is G.C. class.

• (Tail Bounds Thm 2.4) Let (X_1, \ldots, X_n) be i.i.d. standard Gaussian random variables, and let $f: \mathbb{R}^n \to \mathbb{R}$ be L-Lipschitz w.r.t. Euclidean norm. Then the variable $f(X) - \mathbb{E}[f(X)]$ is L^2 -sub-Gaussian, and for all $t \geq 0$,

$$\mathbb{P}\left(|f(X) - \mathbb{E}[f(X)]| \ge t\right) \le 2\exp\left(-\frac{t^2}{2L^2}\right).$$

9 VC Dimension

- (Lec 12) Let \mathcal{C} be a collection of sets and $X = \{X_1, \dots, X_n\}$ be a collection of points. A vector $y \in \{+1, -1\}^n$ is a labeling of X. We say that \mathcal{C} shatters X if for all labelings y of X, \exists a set $A \in \mathcal{C}$, i.e., $X_i \in A$ if $y_i = 1$ and $X_i \notin A$ if $y_i = -1$.
- (Lec 12) The **VC** dimension of a collection of sets, VC(C), is the size of the largest set $\{x_1, \ldots, x_n\}$ s.t. C shatters $\{x_1, \ldots, x_n\}$.

The **subgraph** of a function: $\mathcal{X} \to \mathbb{R}$ is sub $f := \{(x,t) : t < f(x)\} = (\text{epi } f)^c$ (the part of $\mathcal{X} \times \mathbb{R}$ below the graph of f(x)).

 \mathcal{F} is a VC-class/VC-subgraph-class if sub $f: f \in \mathcal{F}$ is VC.

- Half-spaces in \mathbb{R}^d have $VC(\mathcal{C}) = d+1$.
- (Lec 13) Let $\mathcal{F} = \{ f = \langle \theta, x \rangle : \theta \in \mathbb{R}^d \}$. Then $VC(\mathcal{F}) \leq d + 2$.

- (Lec 13) If \mathcal{F} is a linear space of functions with dim $\mathcal{F} < \infty$, then $VC(\mathcal{F}) = O(\dim \mathcal{F})$.
- (Lec 13) If \mathcal{C} and \mathcal{D} are VC classes of sets, then $\mathcal{C} \cap \mathcal{D}$ and $\mathcal{C} \cup \mathcal{D}$ are as well.
- (Lec 13) If \mathcal{F} is a VC class of functions and $\phi: \mathbb{R} \to \mathbb{R}$ is monotone, then $\{\phi \circ f: f \in \mathcal{F}\}$ is VC.
- (Lec 12) Let $\Delta_n(\mathcal{C}, \{x_1, \dots, x_n\})$:= the number of labellings \mathcal{C} realizes on $\{x_i\}$. Then $VC(\mathcal{C})$:= $\sup_{x_1, \dots, x_n} \Delta_n(\mathcal{C}, \{x_1, \dots, x_n\}) = 2^n\}$.
- (Lec 12) Sauer-Shelah Lemma: For any class C, $\max_{x_1,...,x_n} \Delta_n(C, \{x_i\}) \leq \sum_{k=0}^{VC(C)} \binom{n}{k} = O(n^{VC(C)})$. Consequently, if $\sup_{x_1,...,x_n} \Delta_n(C, \{x_i\}) < 2^n$, then $\Delta_n(C, \{x_i\})$ is polynomial in n.
- (Lec 13) VC bound on uniform covering number: For sets A and B, define $||A B||_{L_r(P)} = ||1_A 1_B||_{L_r(P)} = \left(\int |1_A 1_B|^r dP\right)^{1/r}$. Then there is a universal constant $K < \infty$ s.t. for all $\varepsilon > 0$,

$$\sup_{P} N(\mathcal{C}, L_r(P), \epsilon) \le K \cdot VC(\mathcal{C}) \cdot (4e)^{VC(\mathcal{C})} \left(\frac{1}{\epsilon}\right)^{r \cdot VC(\mathcal{C})},$$

which implies that $\log N(\mathcal{C}, L_r(P), \epsilon) \leq c \cdot r \cdot VC(\mathcal{C}) \cdot \log(1/\epsilon)$.

- (Lec 13) Using VC to get GC Theorem: Let $\mathcal{F} = \{f(x) = 1_{x \leq t}, t \in \mathbb{R}^d\}$. Then $VC(\mathcal{F}) = O(d)$, implying $\sup_{\mathcal{P}} \log N(\mathcal{F}, L_2(\mathcal{P}), \varepsilon) \leq Kd \log(1/\varepsilon)$.
- (Lec 13) If $VC(\mathcal{F}) < \infty$ and \mathcal{F} has envelope $F: \mathcal{X} \mapsto \mathbb{R}_+$, then

$$\sup_{P} N(\mathcal{F}, L_r(P), ||F||_{L_r(P)}\varepsilon) \le \operatorname{const} \cdot VC(\mathcal{F}) (16e)^{VC(\mathcal{F})} (\frac{1}{\varepsilon})^{rVC(\mathcal{F})}.$$

10 Convergence in Distribution & Uniform CLTs

- (Lec 13) Let $\mathbb D$ be a metric space. X is a random variable on $\mathbb D$ if $X:\Omega\mapsto\mathbb D$.
- (Lec 13) Say X is \mathbb{D} -valued. Given sequence $X_n : \Omega_n \to \mathbb{D}$, we say that $X_n \xrightarrow{d} X$ if $\mathbb{E}[f(X_n)] \to \mathbb{E}[f(X)]$ for all bounded and continuous $f : \mathbb{D} \to \mathbb{R}$ (even Lipschitz).
- (Lec 13) Let (T, d) be a compact metric space. Let $L_{\infty}(T)$ denote the set of bounded functions $f: T \mapsto \mathbb{R}$. For $f, g \in L_{\infty}(T)$, define $||f g||_{\infty} = \sup_{t \in T} |f(t) g(t)|$. Let $\ell: T \times \mathcal{X} \mapsto \mathbb{R}$ be continuous in t. Let X, X_1, \ldots, X_n be \mathcal{X} -valued random variables. Define

$$Z_n(\cdot) := \frac{1}{\sqrt{n}} \sum_{i=1}^n [\ell(\cdot, X_i) - \mathbb{E}\ell(\cdot, X)].$$

Then Z_n is a $L_{\infty}(T)$ -valued random variable. (Since $t \mapsto Z_n(t)$ is continuous, we have $\sup_{t \in T} |Z_n(t)| < \infty$.)

- If T_0 is a countable and dense subset of T, then Z_n is completely determined by $\{Z_n(t), t \in T_0\}$.
- For fixed t_1, \ldots, t_k , by the CLT we get $(Z_n(t_1) \ldots Z_n(t_k))^T \stackrel{d}{\to} \mathcal{N}\left(0, (\operatorname{Cov}(\ell(t_i, X), \ell(t_j, X)))_{i,j=1}^k\right)$.

• (Lec 13) A random variable $X : \Omega \to \mathbb{D}$ is **tight** if for all $\varepsilon > 0$, there is a compact set $K \subseteq \mathbb{D}$ such that $\mathbb{P}(X \notin K) < \varepsilon$.

A sequence random variables $X_n: \Omega \to \mathbb{D}$ is **asymptotically tight** if for all $\varepsilon > 0$, there is a compact set $K \subseteq \mathbb{D}$ such that $\limsup \mathbb{P}(X_n \notin K^{\delta}) \le \varepsilon$ for all $\delta > 0$. (Here, $K^{\delta} = \{x : d(x, K) < \delta\}$.)

(Note: X_n individually tight does **not** imply that $\{X_n\}$ is asymptotically tight.)

- (Lec 13) **Prohorov's Theorem:** Let $X_n : \Omega \to \mathbb{D}$ and $X : \Omega \to \mathbb{D}$.
 - 1. If $X_n \stackrel{d}{\to} X$, where X is tight, then $\{X_n\}$ is asymptotically tight.
 - 2. If $\{X_n\}$ is asymptotically tight, then there is a subsequence $\{n_k\}$ and a tight $X: \Omega \to \mathbb{D}$ such that $X_{n_k} \stackrel{d}{\to} X$.
- (Lec 13) For a function $f: T \mapsto \mathbb{R}$, its modulus of continuity is $w_f(\delta) := \sup_{d(s,t) < \delta} |f(t) f(s)|$.
- (Lec 13) A collection of functions \mathcal{F} is **uniformly equicontinuous** if $\limsup_{s\downarrow 0} w_f(\delta) = 0$.
- (Lec 13) Arzelà-Ascoli Theorem: Let (T, d) be a compact metric space. Let $\mathcal{C}(T, \mathbb{R})$ be the set of continuous functions $f: T \mapsto \mathbb{R}$. Then the following are equivalent:
 - 1. $\mathcal{F} \subseteq \mathcal{C}(T, \mathbb{R})$ is compact (or equivalently, sequentially compact).
 - 2. \mathcal{F} is uniformly equicontinuous and there is a $t_0 \in T$ s.t. $\sup_{f \in \mathcal{F}} |f(t_0)| < \infty$.
- (Lec 14) Let $\{X_n\}$ be $L_{\infty}(T)$ -valued random variables. (Recall $L_{\infty}(T)$ is the set of bounded functions $f: T \mapsto \mathbb{R}$.) We say that $\{X_n\}$ are **asymptotically equicontinuous** if for all $\eta, \varepsilon > 0$, there is a finite partition T_1, \ldots, T_k of T such that

$$\limsup_{n\to\infty} \mathbb{P}\left(\max_{i} \sup_{s,t\in T_i} |X_{n,s} - X_{n,t}| \ge \varepsilon\right) \le \eta.$$

• (Lec 14) Let $Z_i \in \mathbb{R}^d$ with $Z_i \stackrel{iid}{\sim} P$. Assume that $\mathbb{E}[\|Z_i\|^2] < \infty$ and $\mathbb{E}[Z_i] = 0$.

Let T be a compact subset of \mathbb{R}^d . For $t \in T$, define $X_{n,t} := \frac{1}{\sqrt{n}} \sum_{i=1}^n Z_i^T t$. Then $\{X_n\}$ is asymptotically equicontinuous.

- (Lec 14) The following are equivalent:
 - (i) $X_i \in L_{\infty}(T)$ and $X_n \stackrel{d}{\to} X \in L_{\infty}(T)$, where X is tight.
 - (ii) (a) Finite dimensional convergence (FIDI): $(X_{n,t_1},\ldots,X_{n,t_k}) \stackrel{d}{\to}$ something for any $t_1,\ldots,t_k \in T$, and $k < \infty$.
 - (b) X_n are (asymptotically) stochastically equicontinuous.
- (Lec 15) Uniform limits via entropy integral: Suppose (T,d) is a totally bounded metric space with $\lim_{\delta \downarrow 0} \limsup_{n \to \infty} \mathbb{P}\left(\sup_{d(s,t) \le \delta} |X_{n,s} X_{n,t}| \ge \epsilon\right) = 0$, and we have FIDI (finite dimensional convergence of X_n to X). Then $X_n \stackrel{d}{\to} X$ in $L_{\infty}(T)$.
- (Lec 15) **Donsker class:** Consider a collection of functions \mathcal{F} . $L_{\infty}(\mathcal{F})$ is the collection of bounded functionals $m: \mathcal{F} \mapsto \mathbb{R}$. The process $\sqrt{n}(P_n P)$ is a member of $L_{\infty}(\mathcal{F})$.

 \mathcal{F} is P-Donsker if the empirical process $\mathbb{G}_n = \sqrt{n}(P_n - P)$ converges to a tight limit in $L_{\infty}(\mathcal{F})$.

• (Lec 15, VdV Thm 19.3) **Donsker's Theorem:** In the above setting, the limit \mathbb{G}_n , which we denote by \mathbb{G}_P must be a Gaussian process because by the CLT, $\sqrt{n}(P_n - P)f \stackrel{d}{\to} \mathcal{N}(0, \operatorname{Var}_P(f))$. We have

$$\mathbb{E}[\mathbb{G}_P f] = 0, \qquad \mathbb{E}[\mathbb{G}_P f \mathbb{G}_P g] = \text{Cov}_P(f, g) = P(fg) - Pf \cdot Pg.$$

- (Lec 15) \mathbb{P} -Brownian bridge: Let $F(t) = \mathbb{P}(X \leq t)$, $F_n(t) = \mathbb{P}_n(X \leq t)$ and $\mathcal{F} = \{1\{\cdot \leq t\}, t \in \mathbb{R}\}$. Then $\sqrt{n}(F_n(\cdot) - F(\cdot)) \stackrel{d}{\to} \mathbb{G}_P$ in $L_\infty(\mathbb{R})$. We have $\text{Cov}(1\{X \leq t\}, 1\{X \leq s\}) = F(s \wedge t) - F(s)F(t)$.
- (Lec 15) Uniform CLT via entropy integral: Let \mathcal{F} be a collection of functions. Assume there exists an envelope function $B: X \mapsto \mathbb{R}_+$ such that $\mathbb{P}[B^2] < \infty$ and

$$\int_{0}^{\infty} \sup_{Q} \sqrt{\log N(\mathcal{F}, L_{2}(Q), \|B\|_{L_{2}(Q)} \varepsilon)} d\varepsilon < \infty,$$

where the supremum is taken over all Q such that $Q[F^2] > 0$. Then \mathcal{F} is \mathbb{P} -Donsker.

• (HW7) Kolmogorov-Smirnov statistic: Let $X_1, \ldots, X_m \stackrel{iid}{\sim} F$ and $Y_1, \ldots, Y_n \stackrel{iid}{\sim} G$. The K-S statistic is the sup distance between the 2 empirical distributions, i.e. $K_{m,n} = \|F_m - G_n\|_{\infty}$. As $m, n \to \infty$, $\sqrt{\frac{mn}{m+n}} K_{m,n} \stackrel{d}{\to} \|\mathbb{G}\|_{\infty}$, where \mathbb{G} is the Brownian bridge generated from F.

11 Modulus of Continuity

- (Lec 15) Say we have a criterion function $m_{\theta}: \mathcal{X} \mapsto \mathbb{R}$. Let $M_n(\theta) = \mathbb{P}_n m_{\theta}$ and $M(\theta) = \mathbb{P} m_{\theta}$. Then the **M-estimator** is $\hat{\theta}_n \in \operatorname{argmax}_{\theta \in \Theta} M_n(\theta)$. (For example, maximum likelihood uses $m_{\theta}(x) = \log p_{\theta}(x)$.)
- (Lec 15) Say we have a criterion function $\psi_{\theta}: \mathcal{X} \mapsto \mathbb{R}$. Let $\Psi_n(\theta) = \mathbb{P}_n \psi_{\theta}$ and $\Psi(\theta) = \mathbb{P}\psi_{\theta}$. Then the **Z-estimator** is $\hat{\theta}_n$ such that $\Psi(\hat{\theta}_n) = 0$. (For example, maximum likelihood uses $\psi_{\theta}(x) = \nabla_{\theta} \log p_{\theta}(x)$.)
- (Lec 15, VdV Thm 5.7) Consistency of M-estimators (Argmax consistency theorem): Suppose we have $\sup_{\theta \in \Theta} |M_n(\theta) M(\theta)| \stackrel{P}{\to} 0$, and that for all $\varepsilon > 0$, $\sup_{\theta : d(\theta, \theta_0) \ge \varepsilon} M(\theta) < M(\theta_0)$.

Then $\hat{\theta}_n \stackrel{P}{\to} \theta_0$.

See VdV Thm 5.9 p46 for corresponding theorem for Z-estimators.

- (Lec 15) **Idea:** If $M(\theta)$ shrinks quickly away from θ_0 but $[M_n(\theta) M(\theta)] [M_n(\theta_0) M(\theta_0)]$ is well-behaved (i.e. small error), then the M-estimator cannot be bad.
- (Lec 16) **Theorem:** Suppose $M(\theta_0) \ge M(\theta) + d(\theta, \theta_0)^2$ near θ_0 . Let ϕ be such that $\phi(c\delta) \le c^{\alpha}\phi(\delta)$ for some $\alpha \in (0, 2)$. Assume that we have a bound on the modulus of continuity:

$$\mathbb{E}\left[\sup_{d(\theta,\theta_0)\leq \delta}\left|\left[M_n(\theta)-M(\theta)\right]-\left[M_n(\theta_0)-M(\theta_0)\right]\right|\right]\leq \frac{\phi(\delta)}{\sqrt{n}}.$$

Let $r_n \to +\infty$ such that $r_n^2 \phi\left(\frac{1}{r_n}\right) \leq \sqrt{n}$. If $\hat{\theta}_n \stackrel{P}{\to} \theta_0$, then $r_n d(\hat{\theta}_n, \theta_0) = O_P(1)$.

- If $\phi(\delta) = \delta^{\alpha}$, we can solve to get $r_n = n^{\frac{1}{2(2-\alpha)}}$.
- More generally, if we have $M(\theta_0) \geq M(\theta) + d(\theta, \theta_0)^{\beta}$, we could choose r_n so that $r_n^{\beta} \left(\frac{1}{r_n}\right) \leq \sqrt{n}$. We would then obtain $r_n = n^{\frac{1}{2(\beta \alpha)}}$. (We need $\beta > \alpha$ in order for $r_n \to \infty$.)

12 Asymptotic Testing

- (Lec 17) A sequence of tests based on statistics T_n and rejection regions K_n is asymptotically level (size) α if $\limsup_{n\to\infty}\sup_{\theta\in\Theta_0}\mathbb{P}_{\theta}(T_n\in K_n)\leq \alpha$.
- (Lec 17) Suppose that there exists a mean function $\mu(\theta)$ and a variance function $\sigma^2(\theta)$ such that $\sqrt{n}\left(\frac{T_n \mu(\theta_n)}{\sigma(\theta_n)}\right) \xrightarrow[\theta_n]{d} \mathcal{N}(0,1)$. Suppose we are testing $\theta = 0$ vs. $\theta > 0$. If $\mu'(0)$ exists, $\sigma\left(\frac{h}{\sqrt{n}}\right) \to \sigma(0)$ as $n \to \infty$, then the level α test rejecting large values of $\sqrt{n}\frac{T_n \mu(0)}{\sigma(0)}$ satisfies:

Power
$$\pi_n\left(\frac{h}{\sqrt{n}}\right) \xrightarrow{n \to \infty} 1 - \Phi\left(z_\alpha - h\frac{\mu'(0)}{\sigma(0)}\right)$$
,

where Φ is the standard normal distribution function.

• (Lec 17) Slope of a test: If $\sqrt{n} \left(\frac{T_n - \mu(\theta_n)}{\sigma(\theta_n)} \right) \xrightarrow[\theta_n]{d} \mathcal{N}(0,1)$ where $\theta_n = \frac{h}{\sqrt{n}}$, the slope of the tests T_n is defined as $\frac{\mu'(0)}{\sigma(0)}$.

A bigger slope means a better test.

- (Lec 17) **Distinguishing numbers:** For $\nu \in \mathbb{N}$, consider a sequence of tests $H_0: \theta = 0$ vs. $H_1: \theta = \theta_{\nu}$, where $\theta_{\nu} \to 0$ as $\nu \to \infty$. Fix a level α and power $\beta \in (\alpha, 1)$. Define the **distinguishing number** $n_{\nu} := \inf\{n \in \mathbb{N} : \pi_n(0) \leq \alpha, \pi_n(\theta_{\nu}) \geq \beta\}$, i.e. the smallest number of observations necessary to distinguish H_0 from H_1 at level α and power β .
- (Lec 17) **ARE/Pitman Efficiency:** Let tests $T_n^{(1)}, T_n^{(2)}$ have distinguishing numbers $n_{\nu}^{(1)}, n_{\nu}^{(2)}$, respectively. Then the ARE/Pitman efficiency of $T^{(1)}$ relative to $T^{(2)}$ is defined as $\lim_{\nu \to \infty} \frac{n_{\nu}^{(1)}}{n_{\nu}^{(1)}}$. Larger ARE means $T^{(1)}$ is better than $T^{(2)}$.
- (Lec 17) Let models $\{P_{n,\theta}\}_{\theta\geq 0}$ satisfy $\lim_{\theta\to 0} \|P_{n,\theta}-P_{n,0}\|_{TV}=0$ for every n. Let tests $T^{(1)}$, $T^{(2)}$ be such that as $\theta_n\downarrow 0$,

$$\sqrt{n}\left(\frac{T_n^{(i)} - \mu_i(\theta_n)}{\sigma_i(\theta_n)}\right) \xrightarrow[\theta_n]{d} \mathcal{N}(0,1),$$

where $i \in \{1, 2\}$, σ_i is continuous at 0, $\sigma_i(0) > 0$ and $\mu'_i(0) > 0$. Then the ARE of tests rejecting $H_0: \theta = 0$ against $H_1: \theta > 0$ when $T_n^{(i)}$ is large $(T_n^{(1)})$ relative to $T_n^{(2)}$ is

$$\left(\frac{\mu_1'(0)/\sigma_1(0)}{\mu_2'(0)/\sigma_2(0)}\right)^2$$
.

- See TSH E.g. 13.2.2 p537 for the ARE of t-test, Wilcoxon test and sign test in location model.
- (Lec 18) Let M be the joint measure (law) of the pair $(X, V) := \left(X, \frac{dQ}{dP}\right)$ under distribution P (so M is defined on $\mathcal{X} \times \mathbb{R}_+$). Then $V \geq 0$, $\mathbb{E}_M[V] = 1$, and $Q(B) = \mathbb{E}_P\left[1_{\{B\}}(X)\frac{dQ}{dP}\right] = \mathbb{E}_P[1_{\{B\}}(X)V] = \int_{B \times \mathbb{R}_+} V dM(x, v)$.

- (Lec 18) Contiguity: A sequence $\{Q_n\}$ of distributions is contiguous w.r.t. $\{P_n\}$, written $Q_n \triangleleft P_n$, if $P_n(A_n) \to 0$ implies $Q_n(A_n) \to 0$ for any sequence of sets A_n . Sequences $\{Q_n\}$ and $\{P_n\}$ are mutually contiguous, written $Q_n \triangleleft \triangleright P_n$, if $Q_n \triangleleft P_n$ and $P_n \triangleleft Q_n$.
- (HW9) If $||P_n Q_n||_{TV} \to 0$, then P_n and Q_n are mutually contiguous.
- (Lec 18) Even if $Q_n \not\ll P_n$, we can still consider $Q_n = Q_n^{\parallel} + Q_n^{\perp}$, where $Q_n^{\parallel} \ll P$ and $Q_n^{\perp} \perp P$. If we define $\frac{dQ_n}{dP_n} := \frac{dQ_n^{\parallel}}{dP_n}$, then $\frac{dQ_n}{dP_n} \geq 0$ and $\mathbb{E}_{P_n} \left[\frac{dQ_n}{dP_n} \right] = Q_n^{\parallel}(\Omega) = 1 Q_n^{\perp}(\Omega) \leq 1$. Thus, under P_n , the sequence $\frac{dQ_n}{dP_n}$ is tight.
- (Lec 18) We can always assume without loss of generality that P_n and Q_n all have densities p_n and q_n with respect to some finite base measure μ . One suitable measure is $\mu = \sum_{n=1}^{\infty} 2^{-n} (P_n + Q_n)$, which has total mass 2.

We can also without loss of generality take $\frac{dQ_n}{dP_n} = \frac{q_n}{p_n}$, so that $\int \frac{q_n}{p_n} dP_n = \int q_n 1_{\{p_n>0\}} d\mu = Q_n^{\parallel}(\Omega)$.

- We can think of $\frac{dP_n}{dQ_n}$ as a function $f_n: \mathcal{X} \mapsto \mathbb{R}_+$. When we say $\frac{dP_n}{dQ_n} \xrightarrow[Q_n]{d} U$, what we mean is U is the limiting distribution of $f_n(X_n)$, where $X_n \sim Q_n$.
- (Lec 18, VdV Lem 6.4) Le Cam's First Lemma: The following are equivalent:
 - 1. $Q_n \triangleleft P_n$
 - 2. If $\frac{dP_n}{dQ_n} \xrightarrow{d} U$ along a subsequence, then $\mathbb{P}(U > 0) = 1$.
 - 3. If $\frac{dQ_n}{dP_n} \xrightarrow{d} V$ along a subsequence, then $\mathbb{E}[V] = 1$.
 - 4. If $T_n \xrightarrow{P_n} 0$, then $T_n \xrightarrow{Q_n} 0$.
- (Lec 18, VdV Eg 6.5) **Asymptotic log normality**: Suppose that $\log \frac{dP_n}{dQ_n} \xrightarrow[Q_n]{d} \mathcal{N}(\mu, \sigma^2)$. Then $Q_n \triangleleft P_n$. Further, $P_n \triangleleft Q_n$ iff $\mu = -\frac{\sigma^2}{2}$.
- (Lec 18) **Smooth likelihoods:** Suppose $\{P_{\theta}\}_{\theta \in \Theta}$ has densities p_{θ} which are smooth enough in θ such that $\log p_{\theta}$ has a Taylor expansion around $\theta_0 \in \operatorname{int} \Theta$. Then $P_{\theta_0}^n \triangleleft P_{\theta_0+h/\sqrt{n}}^n$.
- (Lec 18, VdV Thm 6.6) Let P_n , Q_n be distributions on $X_n \in \mathbb{R}^d$. If $Q_n \triangleleft P_n$ and $\left(X_n, \frac{dQ_n}{dP_n}\right) \xrightarrow{d} (X, V)$, then $L(B) := \mathbb{E}[1\{B\}(X)V]$ is a probability measure (ie. $\mathbb{E}[V] = 1$ and $V \ge 0$) and $X_n \xrightarrow{d} W$, where $W \sim L$.
- (Lec 18, TSH Cor 12.3.2 p500, VdV Eg 6.7) Le Cam's Third Lemma: If $\left(X_n, \log \frac{dQ_n}{dP_n}\right) \xrightarrow{d} \mathcal{N}\left(\begin{pmatrix} \mu \\ -\frac{1}{2}\sigma^2 \end{pmatrix}, \begin{pmatrix} \Sigma & \tau \\ \tau^T & \sigma^2 \end{pmatrix}\right)$, then $P_n \triangleleft \triangleright Q_n$ and $X_n \xrightarrow{d} \mathcal{N}(\mu + \tau, \Sigma)$.
- (Lec 19) **Hellinger distance:** For probability distributions P and Q with densities p and q w.r.t. some dominating μ , we define $d_{hel}^2(P,Q) = \frac{1}{2} \int (\sqrt{p} \sqrt{q})^2 d\mu$.

$$- d_{hel}^{2}(P,Q) = 1 - \int \sqrt{pq} d\mu.$$

$$- (HW8) d_{hel}^{2}(P,Q) \le ||P - Q||_{TV} \le d_{hel}(P,Q) \sqrt{2 - d_{hel}^{2}(P,Q)}.$$

$$- (Lec 19) d_{hel}^{2}(P^{n}, Q^{n}) = 1 - (1 - d_{hel}^{2}(P,Q))^{n}.$$

- (Lec 19) When testing P_0 vs. P_1 , the associated **best error** is $\inf_{\Phi: \mathcal{X} \mapsto \{0,1\}} (P_0(\Phi \neq 0) + P_1(\Phi \neq 1)) = 1 ||P_0 P_1||_{TV} > 1 \sqrt{2} d_{hel}(P_0, P_1).$
- (Lec 19) Given sequences of tests $P_{0,n}$ versus $P_{1,n}$, we are interested in considering when the asymptotic error does not vanish, i.e. $\liminf_{n\to\infty}\inf_{\psi_n}[P_{0,n}(\psi_n\neq 0)+P_{1,n}(\psi_n\neq 1)]>0$. This happens whenever $\liminf_{n\to\infty}1-\sqrt{2}d_{hel}(P_{0,n},P_{1,n})>0$, i.e. $\limsup_{n\to\infty}d_{hel}(P_{0,n},P_{1,n})<\frac{1}{\sqrt{2}}$.
- (Lec 19) Quadratic mean differentiability: A family $\{P_{\theta}\}_{\theta \in \Theta}$ is quadratic mean differentiable (QMD) at $\theta \in \text{int } \Theta$ if there is a score function $\dot{\ell}_{\theta} : \mathcal{X} \to \mathbb{R}^d$, so that

$$\int \left(\sqrt{p_{\theta+h}} - \sqrt{p_{\theta}} - \frac{1}{2}\dot{\ell}_{\theta}^T h \sqrt{p_{\theta}}\right)^2 d\mu = o\left(\|h\|^2\right) \quad \text{as } h \to 0.$$

- (Lec 19) For QMD families, $P_{\theta}\dot{\ell}_{\theta} = 0$ and $P_{\theta}\dot{\ell}_{\theta}\dot{\ell}_{\theta}^{T}$ is well-defined.
- (Lec 19) Exponential families $p_{\theta}(x) = \exp\left[\theta^T T(x) A(\theta)\right]$ are QMD with score $\dot{\ell}_{\theta}(x) = T(x) \mathbb{E}[T(x)]$.
- (VdV Eg 7.8 p96) A location model family $\{f(x-\theta): \theta \in \mathbb{R}\}$ is QMD if f is positive, continuously differentiable, with finite Fisher information for location $I_f = \int (f'/f)^2(x)f(x)dx$. Score function can be taken to be $-(f'/f)(x-\theta)$.

(In particular, double exponential/Laplace location model is QMD with $sign(x - \theta)$.

- (HW9) The family $\{P_{\theta}\}_{\theta>0}$, where $P_{\theta} \sim \text{Unif}[0,\theta]$, is not QMD.
- (Lec 19, HW9) If $\{P_{\theta}\}$ is QMD, then $d_{hel}^{2}(P_{\theta+n}, P_{\theta}) = \frac{1}{8}h^{T}I_{\theta}h + o(\|h\|^{2})$, which implies that

$$\lim_{n \to \infty} d_{hel}^2(P_{\theta+h/\sqrt{n}}^n, P_{\theta}^n) = 1 - \exp\left(-\frac{1}{8}h^T I_{\theta}h\right).$$

• (Lec 19, TSH Thm 12.2.3 p489, VdV Dfn 7.14) Local asymptotic normality: A family $\{P_{\theta}, n\}_{\theta \in \Theta, n \in \mathbb{N}}$ is locally asymptotically normal (LAN) at $\theta \in \text{int } \Theta$ with precision/information matrix $K_{\theta} \succeq 0$ if there exists a sequence $\Delta_n \in \mathbb{R}^d$ such that for all $h \in \mathbb{R}^d$,

$$\log \frac{dP_{\theta+h/\sqrt{n},n}}{dP_{\theta,n}} = h^T \Delta_n - \frac{1}{2} h^T K_{\theta} h + o_{P_{\theta,n}}(\|h\|),$$

where $\Delta_n \xrightarrow[P_{\theta,n}]{d} \mathcal{N}(0,K_{\theta})$, and $o_P(\|h\|)$ means converging in probability to 0 uniformly, if $\|h\|$ is bounded.

- (Lec 19/20) LAN will imply continguity (by asymptotic log normality). Le Cam's Third Lemma then implies that if $Z_n = K_{\theta}^{-1} \Delta_n$, then $Z_n \xrightarrow[P_{\theta+h/\sqrt{n},n}]{d} \mathcal{N}(h, K_{\theta}^{-1})$.
- (Lec 19) Gaussian location family is LAN.

- (Lec 19, VdV Thm 7.2) QMD family is LAN with precision I_{θ} . Also, $\Delta_n = \sqrt{n} P_n \nabla \ell_{\theta} \xrightarrow{P_{\theta,n}} \mathcal{N}(0, I_{\theta})$.

From here, assume WLOG that $\theta_0 = 0$.

- (Lec 20) In an LAN family, let $Z_n = K^{-1}\Delta_n$. Then $\{Z_n\}$ is uniformly tight under $P_{h/\sqrt{n},n}$ whenever $||h|| \le C < \infty$.
- (Lec 20) Let $h \sim \mathcal{N}(0,\Gamma)$ with $\Gamma \succ 0$ and $Z|h \sim \mathcal{N}(Ah,\Sigma)$ with $\Sigma \succ 0$. Then

$$h|Z = z \sim \mathcal{N}\left((\Gamma^{-1} + A^T \Sigma^{-1} A)^{-1} A^T \Sigma^{-1} z, (\Gamma^{-1} + A^T \Sigma^{-1} A)^{-1}\right).$$

- (Lec 20) A function $L : \mathbb{R}^d \to \mathbb{R}$ is quasi-convex if for all $\alpha \in \mathbb{R}$, the α -sublevel set $\{x : L(x) \le \alpha\}$ is convex.
- (Lec 20) Let L be symmetric and quasi-convex. Let $A \in \mathbb{R}^{d \times k}$ and $X \sim \mathcal{N}(\mu, \Sigma)$. Then

$$\inf_{v \in \mathbb{R}^k} \mathbb{E}\left[L(AX - v)\right] = \mathbb{E}\left[L(A(X - \mu))\right] = \mathbb{E}\left[L(A\Sigma^{\frac{1}{2}}W)\right],$$

where $W \sim \mathcal{N}(0, I_k)$.

• (Lec 20, VdV Thm 8.11) Local asymptotic minimax theorem: Let $L : \mathbb{R}^d \to \mathbb{R}$ be quasi-convex, symmetric and bounded (i.e. bowl-shaped). Let $\{P_{\theta,n}\}$ be LAN at θ_0 with precision $K_{\theta_0} \succeq 0$. Then, with $W \sim \mathcal{N}(0, I_k)$,

$$\liminf_{c \to \infty} \inf_{n \to \infty} \inf_{\hat{\theta}_n} \sup_{||h|| \le c, \; \theta = \theta_0 + \frac{h}{\sqrt{n}}} \mathbb{E}_{P_{\theta,n}} \left[L(\sqrt{n}(\hat{\theta}_n - \theta)) \right] \ge \mathbb{E} \left[L(K_{\theta_0}^{-\frac{1}{2}}W) \right].$$

(For LAN families and bowl-shaped loss, the Fisher information gives a lower bound on estimation error.)

• (VdV Lem 8.14, Thm 5.39) For most QMD families (conditions in Thm 5.39), the MLE achieves the bound in the local asymptotic minimax theorem.

13 Other Stuff

- (Lec 2) **KL divergence:** Let P and Q be distributions with densities p, q w.r.t. μ . Then we define $D_{kl}(P \parallel Q) = \int p \log \left(\frac{p}{q}\right) d\mu = \mathbb{E}_P \left[\log \frac{P}{Q}\right]$. (For discrete probability distributions, we can write it as $D_{kl}(P \parallel Q) = \sum_{i} P(i) \log \frac{P(i)}{Q(i)}$.)
 - $-D_{kl}(P \parallel Q) \geq 0$, and $D_{kl}(P \parallel Q) = 0$ if and only if p = q almost everywhere.
 - KL divergence is not symmetric.
 - If P_1 and P_2 (Q_1 and Q_2 resp.) are independent distributions with joint distribution $P(x,y) = P_1(x)P_2(y)$ (Q resp.), then $D_{kl}(P \parallel Q) = D_{kl}(P_1 \parallel Q_1) + D_{kl}(P_2 \parallel Q_2)$.
 - Pinsker's inequality: If $\lim_{n\to\infty} D_{kl}(P_n \parallel P) = 0$, then $P_n \stackrel{TV}{\to} P$.
 - (HW2) For an exponential family $p_{\theta}(x) = \exp[\langle \theta, T(x) \rangle A(\theta)], A(\theta) = \log \int \exp(\langle \theta, T(x) \rangle) d\mu(x).$ It can be computed that $D_{kl}(P_{\theta_0} \parallel P_{\theta_1}) = A(\theta_1) - A(\theta_0) - \langle \nabla A(\theta_0), \theta_1 - \theta_0 \rangle.$

- (Lec 3) Operator norm: For $A \in \mathbb{R}^{k \times d}$, $u \in \mathbb{R}^d$, $||A||_{\text{op}} := \sup_{\|u\|_2 \le 1} \|Au\|_2$.
 - The operator norm is also equal to the largest singular value of A (which are defined to be the square root of the eigenvalues of A^TA). When A is a real symmetric matrix, this reduces to the absolute value of the largest eigenvalue (in absolute value).
 - For any $x \in \mathbb{R}^d$, $||Ax||_2 \le |||A||_{\text{op}} ||x||_2$.
 - $-A \leq ||A||_{\text{op}} I.$
- (Lec 10, HW5) **Logistic regression:** z = xy, where $x \in \mathbb{R}^d$ and $y \in \{-1,1\}$. Define $m_{\theta}(z) := \log [1 + \exp(-z^T \theta)] = \log [1 + \exp(-y\theta^T x)]$. This function is ||x||-Lipschitz in θ .
- (TSH Lem 11.2.1 p430) Convergence of quantiles: Assume that F is a distribution function such that F is continuous and strictly increasing at $y = F^{-1}(1 \alpha)$.
 - 1. If $\{F_n\}$ is a sequence of distribution functions s.t. $F_n \Rightarrow F$, then $F_n^{-1}(1-\alpha) \to F^{-1}(1-\alpha)$.
 - 2. If $\{\hat{F}_n\}$ is a sequence of random distribution functions s.t. $\hat{F}_n(x) \stackrel{P}{\to} F(x)$ for all x which are points of continuity of F, then $\hat{F}_n^{-1}(1-\alpha) \stackrel{P}{\to} F^{-1}(1-\alpha)$.
- (HW2) **Property of convexity:** If function f is convex and $\nabla^2 f(\theta) \succeq \lambda I$ for all θ satisfying $\|\theta \theta_0\| \le c$, then

$$f(\theta) \geq f(\theta_0) + \nabla f(\theta_0)^T (\theta - \theta_0) + \frac{\lambda}{2} \min \left\{ \|\theta - \theta_0\|^2, c \|\theta - \theta_0\| \right\}.$$

• (HW3) An estimator $\hat{\theta}_n$ is \sqrt{n} -consistent if $\sqrt{n}(\hat{\theta}_n - \theta_0) = O_{P_{\theta_0}}(1)$.