GCGGAGTTGTAATGC

AGGT A LT GOOD THE TOTAL OF GCGCGATCGACACAGGACCCTCGCAGCTCAA
CAUGTGTTACTGAGCCGTACCATGTTGGCGCGCTCTAGTTGGAGATTCAGCCCAAGCCAAGACCGGCAACATCACA
ACCCGTTCAGGGAACCCCO TCCGCGAGAGATCAAATCATTGAGGACGAGACACACGGAATTGAGC
AGGACAACACGAAATGGCO TAGGGACATCAAACGTGACTGAGCAAAAATCGTCTACAGAACAGACGAATTGACATTGCCCTGCC

Puzzle from the Lab

16 October 2025

Prof. Dr. Sebastian Wild

CS594 (Winter 2025-26) Philipps-Universität Marburg version 2025-10-16 22:26 H

Outline

Puzzle from the Lab

- 1.1 Protein Sequencing
- 1.2 The Turnpike Problem
- 1.3 Backtracking Algorithm
- 1.4 A Pseudopolynomial Algorithm
- 1.5 Back to the Lab

1.1 Protein Sequencing

Proteins: The Workhorses of the Cell

▶ What are they? Chains of amino acids, folded into specific 3D shapes. The shape determines the function.

- ► What do they do? Almost everything!
 - ► They act as *enzymes* (catalyzing chemical reactions)
 - provide structural support (cell walls, muscles!),
 - transport molecules (e. g., hemoglobin),
 - ▶ send signals (some *hormones*, e. g., *insulin*)
 - and more
- Target of many activities across bioinformatics
 - analyzing amino acid sequence
 - predicting structure (AlphaFold)
 - study interaction networks
 - design new proteins as potential drugs

. . .

3D Structure of hemoglobin

https://commons.wikimedia.org/wiki/File:1GZX_Haemoglobin.png

Amino Acids

Amino acid	3-letter code	Molecular formula	Mass (Da)		
Alanine	Ala	C ₃ H ₅ NO	71.03711		
Cysteine	Cys	C ₃ H ₅ NOS	103.00919		
Aspartic acid	Asp	$C_4H_5NO_3$	115.02694		
Glutamic acid	Glu	$C_5H_7NO_3$	129.04259		
Phenylalanine	Phe	C ₉ H ₉ NO	147.06841		
Glycine	Gly	C ₂ H ₃ NO	57.02146		
Histidine	His	$C_6H_7N_3O$	137.05891		
Isoleucine	Ile	$C_6H_{11}NO$	113.08406		
Lysine	Lys	$C_6H_{12}N_2O$	128.09496		
Leucine	Leu	$C_6H_{11}NO$	113.08406		
Methionine	Met	C ₅ H ₉ NOS	131.04049		
Asparagine	Asn	$C_4H_6N_2O_2$	114.04293		
Proline	Pro	C ₅ H ₇ NO	97.05276		
Glutamine	Gln	$C_5H_8N_2O$	128.05858		
Arginine	Arg	$C_6H_{12}N_4O$	156.10111		
Serine	Ser	$C_3H_5NO_2$	87.03203		
Threonine	Thr	$C_4H_7NO_2$	101.04768		
Valine	Val	C ₅ H ₉ NO	99.06841		
Tryptophan	Trp	$C_{11}H_{10}N_2O$	186.07931		
Tyrosine	Tyr	$C_9H_9NO_2$	163.06333		

- ▶ Dalton (Da): unit of molecular mass.
- ► 1 Da = $\frac{1}{12}$ of a carbon-12 atom $\approx 1.66 \times 10^{-27}$ kg.
 - We will use rounded integer weights
- ► Monoisotopic mass: sum of atomic masses of most abundant isotopes.
- ► Only shows 20 *proteinogenic* amino acids (those encoded in DNA)

Protein Sequencing

How to determine the sequence of amino acids in a protein?

- ▶ indirect option: via *genes*
 - ... we will come back to that
 - ▶ not always possible (e. g., for *non-ribosomal peptides*)
- ▶ (more) direct option: *mass spectrometry*
 - 1. Shatter (many copies) molecule into pieces
 - 2. Measure spectrum of particle masses* (which masses occur how often)

■ Mass Spectrometry https://youtu.be/mBT73Pesiog

→ from this, reconstruct what the molecule was!?

1.2 The Turnpike Problem

Turnpike Problems

■ The Sopranos Opening https://youtu.be/mJpNmYeooQE

- → Turnpike = toll road
- ▶ typically, price for road ∞ length of segment on road
- ► Can enter and leave at any pair of exits

Ideal Spectra

Back to mass spectrometry . . .

Simplifying assumptions

- perfect integer molecular weights, no isotopes
- ▶ all breakpoints realized
- multiplicities of weights correctly observed
- ▶ no contamination

```
Definition 1.1 (Difference multiset)
Given P = P[0..n) \in \mathbb{N}_{\geq 1}^n a sequence of numbers, define the prefix sums S[0..n] = \operatorname{prefSum}(P[0..n)) via S[i] = P[0] + \cdots + P[i-1].
```

The *difference multiset* ΔS is the multiset

$$\Delta S = \{ \{S[j] - S[i] : 0 \le i < j \le n \} \}.$$

Important: Keep duplicates / multiplicities of distances! $\rightsquigarrow |\Delta S[0..n]| = \binom{n+1}{2}$

The Turnpike Problem

Definition 1.2 (Turnpike Problem)

Given: a multiset *D* with $|D| = \binom{n}{2}$

Goal: Find sequence P with $\Delta(\text{prefSum}(P)) = D$ (or state that no such P exists).

Examples:

1.
$$P_1 = [3,5,1,2]$$

 $\Rightarrow S_1 = [0,3,8,9,11]$
 $\Rightarrow D_1 = \Delta S_1 = \{\{1,2,3,3,5,6,8,8,9,11\}\}$

2.
$$P_2 = [1, 1, 1, 1, 1]$$

 $\Rightarrow S_2 = [0, 1, 2, 3, 4, 5]$
 $\Rightarrow D_2 = \Delta S_2 = \{\{1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 4, 4, 5\}\}$

3. For $D = \{\{1, 1, 1\}\}$ no set S exists such that $D = \Delta S$ Any two points a < b will give $\Delta(0, a, b) = \{\{a, b, b - a\}\}$ $\{a \neq b\}$

1.3 Backtracking Algorithm

Systematic Solution

Consider $\Delta S = \{\{1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 13, 14, 15, 17, 18\}\}.$

Backtracking Turnpike

```
procedure turnpikeBacktracking(D)
        d := \max D
        S := \{0, d\} // sorted set of prefSums
        return turnpikeRec(S, D)
5
6 procedure turnpikeRec(S, D)
       // Invariant: \Delta S \subseteq D
        if \Delta S == D
            return S
       d := \max(D \setminus \Delta S)
10
       // Option 1: Distance d from left end
11
       S' := S \cup \{d\}
12
       if \Delta S' \subseteq D
13
            R := turnpikeRec(S', D)
14
            if R \neq NO DIFFERENCE MULTISET
15
                 return R
16
       // else try Option 2: Distance d from right
17
        S' := S \cup \{(\max D) - d\}
18
        if \Delta S' \subset D
19
            return turnpikeRec(S', D)
20
        else // no option worked!
21
            return NO DIFFERENCE MULTISET
22
```

Correctness

- After placing a few points in prefix sums S, largest remaining distance must be measured from one endpoint.
- Otherwise we are immediately missing a larger distance ¶
- → only two checked options are possible
- invariant explicitly checked for recursive calls
- invariant at return guarantees correct answer

Running time

- ▶ worst case: exponential! → see tutorials
- not known whether problem is NP-hard(!)

1.4 A Pseudopolynomial Algorithm

Algebra to the Rescue

Few other algorithmic approaches known for the Turnpike Problem . . . but one seemingly magic one does!

- ► Consider again $S = [0, 3, 8, 9, 11] \rightarrow D = \Delta S = \{\{1, 2, 3, 3, 5, 6, 8, 8, 9, 11\}\}$
- ▶ We can get all pairwise combinations (distances) via *convolutions*

• Write
$$S(z) = \sum_{s \in S} z^s = z^{11} + z^9 + z^8 + z^3 + z^0$$

Now observe that

$$S(z) \cdot S(z^{-1}) = \left(\frac{1}{z^{11}} + \frac{1}{z^9} + \frac{1}{z^8} + \frac{1}{z^3} + 1\right) \left(z^{11} + z^9 + z^8 + z^3 + 1\right)$$

$$= z^{11} + z^9 + 2z^8 + z^6 + z^5 + 2z^3 + z^2 + z^1$$

$$+ \frac{1}{z^{11}} + \frac{1}{z^9} + \frac{2}{z^8} + \frac{1}{z^6} + \frac{1}{z^5} + \frac{2}{z^3} + \frac{1}{z^2} + \frac{1}{z} + 5$$

$$= \sum_{s \in S} \sum_{t \in S} z^{s-t}$$

$$= \sum_{d \in D} z^d + \sum_{d \in D} z^{-d} + |S|$$

9

Factoring Polynomials

- ► The expanded product depends only on *D*
 - → can be constructed from the input
- ▶ Use polynomial factorization to check if it can be written as a product $S(z)S(z^{-1})$
 - this can be done in *pseudopolynomial time*
 - ▶ polynomial running time in terms of n = |D|, but exponential in $b = \log(\max D)$ b is the number of bits in the occurring numbers

Ideal vs. Real Spectra

Real protein sequencing tasks unfortunately need additional work . . .

Compeau & Pevzner, Bioinformatics Algorithms, Fig. 4.13 https://cogniterra.org/lesson/29918/step/2?unit=22015

Values of peaks

372.2	397.2	402.0	406.3	415.1	431.2	448.3	449.3	452.		
471.3	486.3	488.2	500.5	505.3	516.1	536.1	544.2	545.		
562.5	571.3	599.2	614.4	615.4	616.4	618.2	632.0	655.5		
656.3	672.5	673.3	677.3	691.4	692.4	712.1	722.3	746.		
760.4	761.6	762.5	771.6	788.4	802.3	803.3	818.5	819.		
831.4	836.3	853.3	875.5	876.5	901.5			917.		
918.4	933.4	934.7	935.5	949.4	966.2	995.4	1015.6	1027.		
1029.5	1031.5	1044.5	1046.5	1061.5	1063.4	1079.2	1083.7			
1088.4	1093.5	1096.5	1098.4	1158.5	1159.5	1176.6	1177.7			
	1192.7									
1271.5	1278.6	1279.6	1295.6	1305.6	1306.5	1307.5	1309.6			

Compeau & Pevzner, Bioinformatics Algorithms, Fig 4.14 https://cogniterra.org/lesson/29918/step/3?unit=22015

Ideal Spectrum

*											
0	97	99	113	114	128	128	147	147	163	186	227
241	242	244	260	261	262	283	291	333	340	357	388
389	390	390	405	430	430	447	485	487	503	504	518
543	544	552	575	577	584	631	632	650	651	671	672
690	691	738	745	747	770	778	779	804	818	819	835
837	875	892	892	917	932	932	933	934	965	982	989
1031	1039	1060	1061	1062	1078	1080	1081	1095	1136	1159	1175
1175	1194	1194	1208	1209	1223	1225	1322				

Compeau & Pevzner, Bioinformatics Algorithms, Fig 4.7 https://cogniterra.org/lesson/29912/step/5?unit=22009

Complications:

- ► inaccuracy of "weights"
- weights are actually mass/charge ratios (often not so bad)
- missing/missed peaks
- ▶ false peaks, e.g., from contamination

Dealing with Real Spectra

Typical situation in bioinformatics!

- Inaccuracies in the data
 - can sometimes be cleaned
 - or avoided with better lab techniques
 - or averaged out by producing more repetitions
 - ▶ and/or be worked around by **better algorithms**!
- ► For example, we can
 - ► Find *best fitting* sequence instead of Yes/No (robust algorithms)
 - Use further domain knowledge (range of molecular weights of amino acids!)
- → Must deal with possibilities of incorrect results
 - learn how to judge
 - learn how to communicate shortcomings of methods clearly