Graduate Trade (II): ECON 8433

Sergey Nigai University of Colorado Boulder Fall Semester 2020

Organizational details

 $\label{eq:lecture: Mon. & Wed., 1:55pm - 3:10pm} \\ \text{Lecture:} \qquad \text{Mon. & Wed., 1:55pm - 3:10pm}$

EMAIL: sergey.nigai@colorado.edu

Web-site: Canvas

OFFICE HOURS: Mon., 9:30am-11:30pm, and by appointment (same ZOOM link)

WHY TRADE?

Why trade?

International trade is a field that studies movement of goods and factors of production across borders. What makes international trade special?

1. Large variety of topics to study.

The field is on the cross-over of different fields:

- Trade and IO
- ► Trade and Macro
- ► Trade and Labor
- ► Trade and Development

Why trade?

2. Data sources

You can choose to examine trade issues at the world-, regional-, country-, state-, industry-, firm-, and worker-level

- ► Aggregate trade data exist virtually for all countries and sectors
- Many countries also have firm-level data sets
- ► There are also transaction-level data
- Household scanner data

Why trade?

3. Unique convergence of theory and empirics

There is a unique synergy between theory and empirics in trade. Empirical findings and stylized facts (e.g. heterogeneity of firm-level balance sheet data) lead to development of trade models (e.g. Melitz, 2003). On the other hand, theory often informs estimation.

Main objectives and expectations

This course is designed to:

- Get you started on your research early
 - By the end of the semester you will have a good basis for one of the chapters in your dissertation
 - You should <u>aim</u> for original research publishable in a decent field journal (I will inform you in the end of the semester if I think you should polish and submit your work somewhere)
- Introduce to you econometric and computational techniques used to answer questions in international economics in a structural quantitative way

Main objectives and expectations

I expect you to:

- Read the relevant materials, complete assignments and participate in discussions
- ► Make three presentations
 - Introduction
 - Intermediate
 - Final
- Write a report (close to an actual paper)

Main objectives and expectations

You will also make *many* presentations throughout this course on your take home assignments.

- ► Typically, we will have one assignment per week
- Your assignment presentations will take place on Mondays
- You will work in groups (or alone).
- ▶ If time permits, each group will have a chance to present. If we are pressed for time, I will randomly choose a group.

All further details are in the syllabus.

Software and Hardware

This is a quantitative course and you will learn a lot about calibration and estimation. You should have access to:

- ► STATA
- MATLAB

In principle, you can use any other software but I won't be able to help you should you have difficulties with coding. I also expect you to make presentations and the final report in LATEX. Sample LATEX codes are on Canvas.

Plan

Week	TOPIC
Week 1	Introduction to Structural Gravity Equation
Week 2	Calibration and Estimation
Week 3	Mapping Models to the Data
Week 4	Designing Counterfactual Experiments in General Equilibrium
Week 5	Presentations (I) and Catch-up
Week 6	Heterogeneous Firms (I)
Week 7	Heterogeneous Firms (II)
Week 8	Ricardian Models
Week 9	Presentations (II) and Catch-up
Week 11	Extensions: Demand Side
Week 12	Extensions: Supply Side
Week 13	Extensions: Migration and Geography
Week 14	Presentations (III) and Catch-up

STRUCTURAL GRAVITY EQUATION

Many trade models (and all models that we will cover in this class) lead to a log-additive gravity equation. This means that the bilateral trade between countries i (exporter) and j (importer) can be written as:

$$Trade_{ij} = EX_i \times PAIR_{ij} \times IM_j$$

In it's simplest form, it is equivalent to:

$$Trade_{ij} = CONSTANT \times \frac{GDP_i \times GDP_j}{DISTANCE_{ii}}$$

Jan Tinbergen was the first one to propose this equation for trade in 1962. The first formal models were Armington (1969) and Anderson (1979).

ARMINGTON MODEL

Armington model: Set-up

- ▶ There are *S* countries in the world
- ▶ Each country $i \in S$ has L_i workers. The number of workers is exogenous and constant.
- Workers supply their labor inelastically. (What does that imply?)
- Workers/consumers are identical within each country. There is a representative consumer
- ► There are exogenous productivity differences across countries captured by the t.f.p. parameter, *A_i*

Trade costs

In this course, we will talk a lot about trade costs. Trade costs are specified as in Samuelson (1954). Here is what he wrote:

"I now propose to come directly to grips with transport costs. The simplest assumption is the following: To carry each good across the ocean you must pay some of the good itself. Rather than set up elaborate models of a merchant marine, invisible items, etc., we can achieve our purpose by assuming that just as only a fraction of ice exported reaches its destination as unmelted ice, so will a_x and a_y be the fractions of exports X and Y that respectively reach the other country as imports. Of course, $a_x < 1$ and $a_y < 1$, except in the costless model, where they were each unity."

Trade costs

Let us use τ_{ij} to denote trade costs between i and j.

- We will use the inverse of Samuelson's a_x such that τ_{ij} reflects how much of a good you have to ship from i to receive one unit of that good in j
- ▶ In case of costless trade, $\tau_{ii} = 1$. In all other cases, $\tau_{ii} > 1$
- Usually, we also impose the triangularity condition: $\tau_{ij}\tau_{jk} > \tau_{ik}$. Why?

In more than 90% of all trade papers, preferences are CES (constant elasticity of substitution). You <u>must</u> know the properties and implications of CES functions:

- ► Homothetic
- Encompasses other special demand systems such as Cobb-Douglas and Leontieff
- Tractable

CES preferences are extremely convenient. However, as we'll see they are very special and generally do not come to grips with the data.

In each country, there is a representative consumer with the following CES preferences:

$$U_j = \left(\sum_{i \in \mathcal{S}} a_{ij}^{rac{1}{\sigma}} q_{ij}^{rac{\sigma-1}{\sigma}}
ight)^{rac{\sigma}{\sigma-1}},$$

where $\sigma > 0$ is the elasticity of substitution, a_{ij} is an exogenous demand shifter, and q_{ij} is the quantity of a good from i consumed in j. The utility is maximized subject to the budget constraint:

$$\sum_{i\in S}q_{ij}p_{ij}\leq Y_j,$$

where Y_i is total income of country j.

In each country, there is a representative consumer with the following CES preferences:

$$U_j = \left(\sum_{i \in \mathcal{S}} a_{ij}^{rac{1}{\sigma}} q_{ij}^{rac{\sigma-1}{\sigma}}
ight)^{rac{\sigma}{\sigma-1}},$$

where $\sigma > 0$ is the elasticity of substitution, a_{ij} is an exogenous demand shifter, and q_{ij} is the quantity of a good from i consumed in j. The utility is maximized subject to the budget constraint:

$$\sum_{i\in S}q_{ij}p_{ij}\leq Y_j,$$

where Y_i is total income of country j.

The Lagrangian can be formulated as follows:

$$\mathcal{L}: \left(\sum_{i \in \mathcal{S}} a_{ij}^{\frac{1}{\sigma}} q_{ij}^{\frac{\sigma-1}{\sigma}}\right)^{\frac{\sigma}{\sigma-1}} - \lambda \left(\sum_{i \in \mathcal{S}} q_{ij} p_{ij} - Y_j\right)$$

Then, the FOC's are:

$$\frac{\partial \mathcal{L}}{\partial q_{ij}}: \qquad \left(\sum_{i \in \mathcal{S}} a_{ij}^{\frac{1}{\sigma}} q_{ij}^{\frac{\sigma-1}{\sigma}}\right)^{\frac{1}{\sigma-1}} a_{ij}^{\frac{1}{\sigma-1}} q_{ij} = \lambda p_{ij}$$

$$\frac{\partial \mathcal{L}}{\partial \lambda}: \qquad \sum_{i \in \mathcal{S}} q_{ij} p_{ij} = Y_{j}$$

For any two countries i and i', the following must hold according to the FOC's:

$$\frac{a_{ij}^{\frac{1}{\sigma}}q_{ij}^{-\frac{1}{\sigma}}}{a_{i'j}^{\frac{1}{\sigma}}q_{i'j}^{-\frac{1}{\sigma}}} = \frac{p_{ij}}{p'_{ij}} \Rightarrow p_{i'j}q_{i'j} = \frac{1}{a_{ij}}q_{ij}p_{ij}^{\sigma}a_{i'j}p_{i'j}^{1-\sigma}$$

Summing up across i' and realizing that $\sum_{i' \in S} p_{i'j} q_{i'j} = Y_j$ gives the following:

$$Y_j = \frac{1}{a_{ij}} q_{ij} p_{ij}^{\sigma} \left(\sum_{i' \in S} a_{i'j} p_{i'j}^{1-\sigma} \right)$$

Note that $\left(\sum_{i'\in S} a_{i'j} p_{i'j}^{1-\sigma}\right)$ is j specific. We will establish the following relationship:

$$P_j^{1-\sigma} = \left(\sum_{i' \in S} a_{i'j} p_{i'j}^{1-\sigma}\right)$$

This is the CES price index (often called Spence-Dixit-Stiglitz or Dixit-Stiglitz).

CES preferences lead to the following demand equation:

$$q_{ij} = a_{ij} \frac{p_{ij}^{-\sigma}}{P_j^{1-\sigma}} Y_j,$$

where consumers take p_{ij} as given. We can also derive total expenditure of j on the good from i as:

$$p_{ij}q_{ij}\equiv X_{ij}=a_{ij}\frac{p_{ij}^{1-\sigma}}{P_j^{1-\sigma}}Y_j$$

How do we get p_{ij} ?

Supply Side

The optimal supply depends on the market structure. We can consider various set-ups:

- Perfect competition
- Monopolistic competition
- Endowment economy
- Others

We will focus on the first two structures.

Supply Side: Perfect Competition

There is one representative firm (or equivalently many identical small firms) with the following production function:

$$q_i = A_i L_i$$

where A_i is t.f.p. and L_i is labor. This implies that the factory gate price is:

$$p_i = \frac{w_i}{A_i}$$
.

However, we have to remember that there are trade costs such that the price of consuming the same one unit of good in country j is:

$$p_{ij} = \tau_{ij} \frac{w_i}{A_i}$$

Equilibrium: Perfect Competition

If we substitute optimal p_{ij} in X_{ij} we get the structural gravity equation:

$$X_{ij} = a_{ij} rac{\left(au_{ij} rac{w_i}{A_i}
ight)^{1-\sigma}}{P_j^{1-\sigma}} Y_j,$$

which can be rearranged as:

$$\textit{X}_{ij} = \left(\textit{A}_{i}^{\sigma-1}\textit{w}_{i}^{1-\sigma}\right) \times \left(\textit{a}_{ij}\tau_{ij}^{1-\sigma}\right) \times \left(\textit{Y}_{j}\textit{P}_{j}^{\sigma-1}\right),$$

which is equivalent to:

$$Trade_{ij} = EX_i \times PAIR_{ij} \times IM_j$$

Equilibrium: Perfect Competition

$$X_{ij} = \left(A_i^{\sigma-1} w_i^{1-\sigma}\right) \times \left(a_{ij} \tau_{ij}^{1-\sigma}\right) \times \left(Y_j P_j^{\sigma-1}\right),$$

The structural gravity equation captures several important features:

- ► Trade is increasing in the productivity of the exporter, market size of the importer, and preferences of *j* for the good from *i*
- Trade is decreasing in the wage of the exporter, price level of the importer and the level of trade costs

Closing the model: Perfect Competition

Total spending in j is $Y_j = L_j w_j$. Then the gravity equation is:

$$X_{ij} = \left(A_i^{\sigma-1} w_i^{1-\sigma}\right) \times \left(a_{ij} \tau_{ij}^{1-\sigma}\right) \times \left(w_j L_j P_j^{\sigma-1}\right)$$

What is the only variable that we do not know at this point? To close the model we need to solve for w_i !

In equilibrium, markets must clear such that total income must equal total expenditure! This is equivalent to the trade balance condition:

$$\sum_{j\in S} X_{ij} = \sum_{j\in S} X_{ji}$$

Closing the model: Perfect Competition

The trade balance condition:

$$\sum_{j\in S} X_{ij} = \sum_{j\in S} X_{ji}$$

can be rewritten as:

$$L_i w_i = \sum_{i \in S} X_{ij}.$$

Then, given a numeraire we can solve for unique $S \times 1$ wages using S conditions as:

$$w_i = \frac{\sum_{j \in S} X_{ij}}{L_i}.$$

Solving the model

Given primitives and parameters of the model:

- Number of countries: S
- Preferences parameters: a_{ii} , σ
- \triangleright Productivity parameters and labor endowment: A_i and L_i
- ▶ Trade costs: τ_{ij}

Equilibrium is a sequence of w_i such that the following relationships hold:

$$Y_{j} = w_{j}L_{j}$$

$$P_{j} = \left(\sum_{i \in S} a_{ij}A_{i}^{\sigma-1} (\tau_{ij}w_{i})^{1-\sigma}\right)^{\frac{1}{1-\sigma}}$$

$$X_{ij} = \left(A_{i}^{\sigma-1}w_{i}^{1-\sigma}\right) \times \left(a_{ij}\tau_{ij}^{1-\sigma}\right) \times \left(Y_{j}P_{j}^{\sigma-1}\right)$$

$$w_{i} = \sum_{i \in S} X_{ij}/L_{i}$$

Discussion

- ▶ Why do countries trade in the Armington model?
- If you fully believed the Armington model, would you expect to see zero flows between certain countries?
- ▶ Are a_{ij} and τ_{ij} distinguishable in the real world? Why/How ?
- ▶ When is it OK to use the Armington model and when is it not?

References

Anderson James E. 1979. "A Theoretical Foundation for the Gravity Equation", American Economic Review Vol. 69, No. 1, pp. 106-116

Armington Paul S. 1969. "A Theory of Demand for Products Distinguished by Place of Production," Staff Papers (International Monetary Fund) Vol. 16, No. 1, pp. 159-178

Samuelson, P. A. (1954). "The transfer problem and transport costs, ii: Analysis of effects of trade impediments," The Economic Journal, 64(254):264-289

Tinbergen, Jan. 1962. "An Analysis of World Trade Flows," in Shaping the World Economy, edited by Jan Tinbergen. New York, NY: Twentieth Century Fund.