Uncertainty Quantification of Low-Dimensional Models

Anthony DeGennaro Scott Dawson Clarence W. Rowley III Princeton University

APS 68th Annual DFD Meeting Boston, MA November 2015

Outline

Introduction

Methodology

Example: Cylinder Flow

Topic

Introduction

- 2 Methodology
- Example: Cylinder Flow

Motivation

- Low-dimensional modeling is a useful method for examining high-dimensional data
 - Proper Orthogonal Decomposition (POD)
 - Dynamic Mode Decomposition (DMD)
 - Identify inexpensive models
 - Identify dominant system dynamics
- Uncertainty quantification is a useful method for investigating statistical variations
 - Polynomial Chaos Expansions (PCE)
 - Efficient algorithms for exploring uncertain parameter space
 - Accurate surrogate model
- Can we investigate statistical variations in low-dimensional models efficiently/accurately using uncertainty quantification tools?

Applications

- POD Galerkin Models of Fluid Flows
 - Computationally-inexpensive model
 - Collect data from simulations/experiments
 - Calculate POD of output data
 - Project governing flow equations onto POD modes
 - Performance of models is sensitive to parametric uncertainty/variations
- DMD Analysis of Fluid Flows
 - Determine linear modes/frequencies describing flow behavior
 - Spatial modes and frequencies can change with parametric uncertainty
- Examples of parametric variations/uncertainties
 - Physical parameters (eg. Reynolds number)
 - Boundary conditions

Topic

- Introduction
- 2 Methodology
- Example: Cylinder Flow

Background

- Proper Orthogonal Decomposition (POD)
 - Data compression, dominant spatial features
 - Modes are eigenvectors of the dataset covariance matrix
 - Modes describe dataset better than any other linear basis
- Dynamic Mode Decomposition (DMD)
 - Describe dataset as linear dynamical system
 - Spatial modes + (frequencies, growth/decay rates)
- Polynomial Chaos Expansions (PCE)
 - Method for quantifying parametric uncertainty efficiently
 - Spectral method in probability space
 - Expand output in terms of basis polynomial functions of random variables

Methodology

Quantify Uncertain Input

- Identify source of uncertainty
 - Physical parameters (eg. Reynolds number)
 - Boundary conditions
- Write a probabilistic description of uncertainty (ie. PDF)

Explore Uncertain Parameter Space

- Utilize efficient sampling of probability space
 - Quadrature nodes corresponding to a spectral basis
- Collect simulation data using discrete points in probability space
 - Immersed boundary projection method (IBPM) code

Quantify Uncertain Output

- Quantify uncertainty in outputs
 - POD modes
 - DMD modes
 - DMD eigenvalues

Polynomial Chaos Expansions (PCE)

- ullet We have an uncertain parameter $\xi=\mathcal{U}[-1,1]$ which maps to output $y(\xi)$
- What is the distribution of $y(\xi)$?

$$y(\xi) = a\xi^3 + b\xi^2 + c\xi + d$$

$$y \approx \delta(\xi - \xi_k)$$

• Function exists at discrete points

Polynomial Chaos

$$y\approx\sum_{i}^{Q}c_{i}\psi_{i}(\xi)$$

- Use Q quadrature points
- \bullet (Q-1) order polynomial fit

Polynomial Chaos Expansions (PCE)

Monte Carlo Sampling

Quadrature Sampling Grid

Topic

Introduction

- Methodology
- Example: Cylinder Flow

Setup

Medium Spike

Large Spike

- Assume spike height is uniformly distributed between limits shown
- Re = 100
- Output = wake POD modes, DMD eigenvalues

Range of Flow Behavior

Cylinder, Re = 100

Perturbed Cylinder, Re = 100

Statistical Variance in Modes

Projection Error

- ullet Choose the Q-1 points halfway between Q quadrature nodes
- ullet Calculate true modes and interpolated modes at Q-1 points
- Compare error between true modes and interpolated modes vs. true modes and mean modes

$$N(Y) \equiv max(||Y(\xi_k) - \Phi(\xi_k)||_2)$$
 , $k = 1...Q - 1$

MODE	$N(y_P)$	$N(\overline{y})$	$N(\overline{y})/N(y_P)$
1	4e-3	3e-1	75
2	3e-2	9e-1	30
3	2e-1	1.2	6
4	7e-1	1.5	2
5	2e-1	1.8	9

PCE model captures range of symmetrical to asymmetrical modes

DMD Eigenvalues

Low Frequency

| Compared | Compa

Conclusions

- Uncertainty quantification techniques provide a fast, efficient, and accurate methodology for quantifying how low-dimensional models change with parametric uncertainty
 - POD modes
 - DMD modes/eigenvalues