

Ministério da Educação Universidade Tecnológica Federal do Paraná Campus Apucarana

Engenharia De Computação CDCO5A- Comunicação de Dados

Projeto de Comunicação de Dados

DEIVID DA SILVA GALVÃO EDUARDO YUJI YOSHIDA YAMADA JOÃO VITOR LEVORATO DE SOUZA JOÃO VITOR NAKAHODO YOSHIDA SÉFORA DAVANSO DE ASSIS

DEIVID DA SILVA GALVÃO EDUARDO YUJI YOSHIDA YAMADA JOÃO VITOR LEVORATO DE SOUZA JOÃO VITOR NAKAHODO YOSHIDA SÉFORA DAVANSO DE ASSIS

Projeto de Comunicação de Dados

Relatório Técnico do Trabalho Disciplinar apresentado como requisito parcial à obtenção de nota na disciplina de Comunicação de Dados do Curso Superior de Engenharia de Computação da Universidade Tecnológica Federal do Paraná.

Orientador: Prof: Luiz Fernando Carvalho

SUMÁRIO

1. INTRODUÇÃO	4
2. OBJETIVO.	
3. DESENVOLVIMENTO	5
4. EXEMPLOS DE TESTE	6
5. CONCLUSÃO	8
6. REFERÊNCIAS	9

1. INTRODUÇÃO

Abordaremos a comunicação de dados entre dois dispositivos por meio de sinais luminosos. Esta tecnologia, conhecida como Visible Light Communication (Li-Fi), é uma alternativa promissora às tecnologias de comunicação sem fio tradicionais, como Wi-Fi, e tem o potencial de revolucionar a maneira como transmitimos e recebemos dados. A Li-Fi utiliza a luz visível, para transmitir dados ou seja é diferente das tecnologias sem fio tradicionais, que utilizam ondas de rádio ou micro-ondas para transmitir dados. A Li-Fi tem a vantagem de não interferir com outros dispositivos que utilizam ondas de rádio, como radares, e pode oferecer velocidades de transmissão de dados mais altas e maior alcance.

Neste relatório, exploraremos em detalhes a tecnologia Li-Fi, incluindo suas técnicas de modulação, a eficácia de sua comunicação de dados e suas aplicações potenciais. Também discutiremos os desafios e limitações da Li-Fi e as possíveis soluções para esses problemas. Além disso, apresentaremos um estudo de caso de um sistema de comunicação Li-Fi em funcionamento em um arduino e discutiremos suas implicações para a comunicação de dados

2. OBJETIVO

O objetivo deste projeto é utilizar os conhecimentos adquiridos durante a disciplina para realizar a comunicação entre dois dispositivos por meio de sinais luminosos.

Para isso, utilizamos os seguintes materiais:

- 1 Protoboard
- 4 Jumpers
- 1 LED
- 2 Arduinos UNO
- 1 Resistor de 330 Ω
- 1 Resistor de 3,3 kΩ
- 1 Fotoresistor

Imagem 1 – Projeto montado.

Fonte: Autoria Própria (2023).

3. DESENVOLVIMENTO

Neste relatório, vamos discutir a construção de uma interface projetada para transmitir e receber dados, baseada nas habilidades adquiridas durante as aulas. O projeto tem como objetivo a criação de um sistema que possa realizar transmissões de dados utilizando os métodos de codificação de sinal NRZ-L e NRZ-I.

Para a execução deste projeto, utilizamos dois Arduinos Uno. A ideia principal é que um dos Arduinos seja responsável por codificar uma palavra fornecida pelo usuário e enviar os sinais luminosos correspondentes à palavra. O outro Arduino é responsável por receber os sinais, decodificá-los e exibir a palavra recebida.

O propósito deste trabalho é demonstrar a capacidade de transmissão de dados entre dois dispositivos Arduino utilizando sinais luminosos, uma técnica conhecida como Visible Light Communication (Li-Fi).

Codificação NRZ-L(Non-Return-to-Zero Level) o bit 0 é representado por um nível de tensão constante, enquanto o bit 1 é representado por outro nível de tensão constante, já a codificação NRZ-I(Non-Return-to-Zero Inverted) a transição ocorre no início de cada bit, onde se o próximo bit for 0 não haverá inversão de tensão, mantendo o nível atual, caso o próximo bit seja 1, há uma inversão na tensão.

No emissor, os caracteres são transformados em valores binários através da tabela ASCII, sendo apenas letras de a até z, e apenas minúsculas. Já no receptor, o código em binário é recebido e transformado em seu respectivo caractere a partir da função de conversão para tabela ASCII.

Para o receptor diferenciar se a codificação é em NRZ-L ou NRZ-I, o primeiro bit da palavra o define. Caso o primeiro bit enviado seja "a", o receptor realizará a codificação e decodificação NRZ-L, caso o primeiro bit seja "b", o receptor realizará a codificação e a decodificação NRZ-I. Antes da mensagem ser enviada, os primeiros dois segundos são para diferenciar qual método de codificação será utilizado, caso seja NRZ-L, o led ficará aceso por 2 segundos, caso seja o NRZ-I, o led ficará aceso por 1 segundo e apagado por 1 segundo.

A transmissão é feita da seguinte forma: cada sinal possui duração de 500 ms, dessa forma os tempos de "escrita" e "leitura" são iguais. O receptor ficará sempre recebendo o sinal de luz mas nunca executando as funções de decodificação. Quando o receptor captar um sinal de luz maior que 500, ele irá iniciar o processo de recebimento da mensagem. Após verificar qual dos dois modos de codificação está sendo utilizado, ele irá ler os bits e salvá-los em uma string. No NRZ-L a decodificação é feita logo ao receber 8 bits, no NRL-I a string inteira é salva e após isso é feita a decodificação e então a transformação dos bits em letras.

Para detecção de erro, foi implementado o CRC(Cyclic Redundancy Check) onde os blocos de dados que entram recebem um valor de verificação curto, com base no restante de uma divisão polinomial de seu conteúdo, e no receptor o cálculo é repetido e, caso os valores não correspondam, significa que houve interferência ou perda de dados ao longo do caminho. No caso dessa implementação ao detectar valores diferentes no CRC é exibida a mensagem de "Erro na transmissão dos dados", Já se o valor corresponder, é exibido a mensagem "Dados recebidos corretamente" e os dados são decodificados e a mensagem é mostrada pelo receptor.

4. EXEMPLOS DE TESTE

Enviando a palavra "ateste", temos:

Imagem 2 – Exemplo 1 com a palavra "ateste".

```
-----Leitor NRZ-L-----
                                    Letra: t
Mensagem para ser enviada
                                    Binario: 01110100
teste
                                    Letra: e
CRC: 11010000
                                    Binario: 01100101
Enviando NRZ-L:
                                    Letra: s
01110100
                                    Binario: 01110011
01100101
                                    Letra: t
01110011
                                    Binario: 01110100
01110100
                                    Letra: e
01100101
                                    Binario: 01100101
11010000
                                    Valor invalido
                                    Letra:
                                    Binario: 11010000
                                    CRC: 11010000
                                    Calculo do CRC: 11010000
                                    Dados recebidos corretamente
                                    Palavra recebida pelo NRZ-L: teste
```

Fonte: Autoria Própria (2023).

Onde do lado esquerdo mostra o emissor transmitindo o sinal e o código CRC de forma binária onde como o primeiro caractere é "a" ele faz a codificação NRZ-L, já do lado direito é mostrado o receptor recebendo os códigos, decodificando e exibindo a mensagem que foi recebida.

Testando a palavra "bdados", temos:

Imagem 3 – Exemplo 2 com a palavra "bdados".

```
-----Leitor NRZ-I-----
Mensagem para ser enviada
                                  Letra em Binario: 10111000
dados
                                  Letra em Binario: 01000001
CRC: 11001100
                                  Letra em Binario: 10111000
Enviando NRZ-I:
                                  Letra em Binario: 01001010
01100100
                                  Letra em Binario: 01011101
01100001
                                  Letra em Binario: 01110111
01100100
                                  Valor invalido
01101111
01110011
                                   CRC: 11001100
11001100
                                  Calculo do CRC: 11001100
                                   Dados recebidos corretamente
                                   Palavra recebida pelo NRZ-I: dados
```

Fonte: Autoria Própria (2023).

Agora para nesse exemplo o primeiro caractere é "b" , logo ele realiza a codificação NRZ-I.

Um teste realizado em vídeo mostra o funcionamento da transmissão de um sinal utilizando o NRZ-L: https://youtu.be/5K5APHQYy8M?si=KvAsmZ5okeHBO8JC

Mais detalhes do funcionamento do código podem ser visto a partir do seguinte link: https://github.com/eduardo-yuji/Projeto-Comunicacao

5. CONCLUSÃO

Neste relatório técnico, apresentamos os detalhes e resultados obtidos do nosso projeto final. O projeto executa corretamente em sua maioria dos casos, exceto com algumas palavras, em que o CRC vale "11111111" (como na palavra "ba"), ou em algumas letras sozinhas aleatórias, como ocorre em "a". Por outro lado, o projeto pode executar várias vezes seguidas, e com vários caracteres de uma única vez.

Houve dificuldade com o cálculo do CRC, sua transmissão e leitura. A inversão de sinal do NRZ-I também foi um problema, pois ela dificulta a lógica para a decodificação e o cálculo do CRC.

Obtivemos sucesso na codificação, transmissão e decodificação.

6. LINKS E REFERÊNCIAS

ARDUINO. Disponível em:

https://www.arduino.cc/reference/en/ Acesso em: 30 novembro 2023.

CDCO5A-EC-AP. [S.1].2023. Disponível em:

https://moodle.utfpr.edu.br/pluginfile.php/2499226/mod_resource/content/4/5%20-%20Transmissão_digital.pdf> Acesso em: 30 novembro 2023.

YAMADA, E. **Projeto-Comunicacao**. Disponível em:

https://github.com/eduardo-vuji/Projeto-Comunicacao Acesso em: 30 novembro 2023.

ARDUINO FORUM. Disponível em:

https://forum.arduino.cc Acesso em: 30 novembro 2023

YOUTUBE. Disponível em:

https://www.youtube.com/watch?v=wW5DMawWl6E> Acesso em: 28 novembro 2023