Agudantia 06 - MAT1107

Problema 1. Sea $f:[a,b] \to \mathbb{R}$ una función estrictamente creciente, es decir, si $x_1, x_2 \in [a,b]$ y $x_1 < x_2$, entonces $f(x_1) < f(x_2)$.

- a) Demuestre que f es invectiva y por tanto invertible (en algún conjunto).
- b) Demuestre que f⁻¹ es estrictamente creciente.

Solución

- a) Si $x_1 \neq x_2$, entonces, o bien $f(x_1) < f(x_2)$, o bien $f(x_1) > f(x_2)$. En cualquier caso, $f(x_1) \neq f(x_2)$ y, por lo tanto, f es inyectiva.
- b) Sean $y_1 < y_2$ en el dominio de f^{-1} . Supongamos que $f^{-1}(y_1) \ge f^{-1}(y_2)$. Como f es estrictamente creciente, se tiene que $f(f^{-1}(y_1)) \ge f(f^{-1}(y_2))$, es decir, $y_1 \ge y_2$. Esto es una contradicción.

Problema 2. Sea $g : \mathbb{R} \to \mathbb{R}$ una función definida por:

$$g(x) = \sqrt[3]{x + \sqrt{1 + x^2}} + \sqrt[3]{x - \sqrt{1 + x^2}}$$

- a) Encuentre la inversa de g
- b) Sea $f = g^{-1}$, demuestre que $g \circ f = id$ y $f \circ g = id$.

$$y^{3} = \left[x + \sqrt{1 + x^{2}} \right] + \left[x - \sqrt{1 + x^{2}} \right] + 3 \left[\sqrt[3]{x + \sqrt{1 + x^{2}}} \right] \left[\sqrt[3]{x + \sqrt{1 + x^{2}}} + \sqrt[3]{x + \sqrt{1 + x^{2}}} + \sqrt[3]{x + \sqrt{1 + x^{2}}} \right]$$

$$y'' = 2x + 3\sqrt[3]{x^2 - (1+x^2)} \left(\sqrt[3]{x + \sqrt{1+x^2}} + \sqrt[3]{x - \sqrt{1+x^2}} \right)$$

$$y^3 = 2x + 3\sqrt[3]{-1}y$$

$$= \frac{y^3 + 3y}{2} = \infty$$

$$f: R \rightarrow R$$

$$f(\alpha) = \frac{x^3 + 3x}{2}$$

b) Notar que
$$(f \circ g)(x) = f(g(x))$$

$$= \int (3\sqrt{x+\sqrt{n+x^2}} + 3\sqrt{x-\sqrt{n+x^2}})$$

=
$$(g(x))^3 + 3g(x) = x$$
 (por los cálculos)
de la porte
anterior)

$$(g \circ f)(x) = g(f(x)) = \sqrt{f(x) + \sqrt{1 + [f(x)]^2 + \sqrt[3]{1 + [f(x)]^2}}}$$

$$= \frac{1}{3} = 2f(\alpha) - 3y$$

$$= \frac{1}{3} + 3y = f(\alpha) = \frac{1}{2} = \frac{1}{2} = \frac{3}{2} = \frac{3}{$$

=>
$$iy=x$$
? estoprobaría que $(9^{\circ}f)(x)=x$.
 $(y-x)(y^2+xy+x^2+3)=0$

Donde
$$y^2 + xy + x^2 + 3$$

= $y^2 + x^2 + (x+y)^2 + 3 > 0$
... $(x-y)=0 \Rightarrow x=y=(g \cdot f)(x)$
... $g \cdot f = id_R$

Problema 3. Sea $f:A\to B,\,g:B\to C$ y $h:C\to D,$ demuestre que:

$$h \circ (g \circ f) = (h \circ g) \circ f$$

Solución En efecto:

$$(h\circ (g\circ f))(x)=h((g\circ f)(x))=h(g(f(x)))=(h\circ g)(f(x))=((h\circ g)\circ f)(x)$$

Observación: Este argumento parece artificial, pero lo importante es que cuando nos piden demostrar la igualdad entre dos funciones, este se de horer evaluando en los elementos del dominio (x e A en este caso).

Obs 2: Revise con cuidado cada igualdad de la demostración.

Problema 4. Consideremos ahora dos funciones, $f : A \rightarrow B \ y \ g : B \rightarrow C$, ambas invertibles (biyecciones):

$$f : A \rightarrow B$$
, $g : B \rightarrow C$
 $f^{-1} : B \rightarrow A$, $g^{-1} : C \rightarrow B$

Demuestre que:

 $g \circ f$ es invertible. Además $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.

Solución La invertibilidad de $g \circ f$ es directa pues la composición de biyecciones es una biyección. Veamos la expresión de la inversa:

$$f^{-1} \circ g^{-1} : C \to A, \quad g \circ f : A \to C$$

Se tiene

$$(g\circ f)\circ \left(f^{-1}\circ g^{-1}\right)=g\circ \left(f\circ f^{-1}\right)\circ g^{-1}=g\circ g^{-1}=id_C.$$

Como la inversa es única, concluimos $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.

inversade (gof)

notación para la calcular la inversa como una composición.

Problema 5. Sean $f: A \to B$, $g: B \to A$ dos funciones tales que $f \circ g = id_B$. Demuestre que f es sobreyectiva y que g es inyectiva.

· f: A >> B es sobregeetiva:

Sea b & B, queremos un a & A talque f(a) = b. Como fog = idB, tenemos que (fog)(b) = idg(b)

(=) f (q(b)) = b

Con g(b) EA. Basta elegir a = g(b).

• $g: B \rightarrow A$ es inyectivos: Seon $b_1, b_2 \in B$ tales que $g(b_1) = g(b_2)$ Gueremos que $b_1 = b_2$. En efecto: $f(g(b_1)) = f(g(b_2))$ $\Rightarrow (d_B(b_1) = id_B(b_2)$ $\Rightarrow b_1 = b_2$. • g es inyectiva.

Problema 6. Sea $f:A \to B$ una función.

q (b) = a.

- a) Demuestre que si f es inyectiva, entonces existe una función sobreyectiva $g:B\to A.$
- b) Demuestre que si f es sobreyectiva, entonces existe una función inyectiva $h: B \to A$.

a) Como fes inyectiva, existe una bigección entre A & Im(f) & B. En este coso podemos definir g(b) = f⁻¹(b) \ \text{be} Im(f). \
Más precisamente, \text{VaeA, definimos}
\[
q(f(a)) = a.
\]
Sea ao \(\epsilon A. \) Para \(\text{be} B \) \(\text{Im}(f) \) definimos

$$Asi$$
, tenemos $g:B\rightarrow A$
 $g(b) = \begin{cases} a & \text{si} f(a) = b \\ a & \text{si} b \notin Im(f). \end{cases}$

Como (g.f) = idA, q es sobregectiva. Definir g(b) en B\Im(f) es muy importante para que g:B>A esté bien definida.

b) Ahora, si f ez sobreyectiva (y mo necesoria_
mente imyectiva), tenemos que VbEB, FaEA

tal que f(a) = b (no tiene por qué ser
único). Entonces, para cada be B, elegimos un
a, e f^{-t}([b]) y definionos h(b) = 96.

Así, h:B->A está bien definida (pues f'(rbf) + p

poro cada b GB). ¿Es inyectiva? Para b CB,
f(h(b)) = b, o sea, foh = idB, así que hes
inyediva.