TensorFlow - Getting Started -

2019 - 2020

Ando Ki, Ph.D. adki@future-ds.com

Table of contents

- Getting started with some examples
 - ► TensorFlow programming
 - Constant
 - ► Adding constants
 - Adding two variables using placeholders
 - Linear regression
 - Adopt loss function
 - Adopting optimizer

TensorFlow programming

- Step 0: Import necessary modules
- Step 1: Build a computational graph
 - 'tf.Session()'
 - The graph contains followings
 - parameter specifications
 - model architecture
 - optimization process
 - and so on
- Step 2: Initialize a session
 - ▶ If there are any variables, use 'tf.global_variables_initializer()' and 'Session.run()'.
- Step 3: Fetch and feed data with 'Session.run(fetch, feed)'
 - ► Fetch: list of graph nodes; return the outputs of those nodes
 - ► Feed: dictionary mapping from graph nodes to concrete values
 - Specifies the value of each graph node given in the dictionary.
 - Followings happens at this step
 - compilation
 - optimization
 - and so on

TensorFlow does not actually run any computation until the session is created and the run function is called.

Python dict, {...}

Python list, [...]

3

Getting started with some examples

- 'getting_const.py'
 - Two constants case
- 'getting add.py'
 - Add two constants case
- 'getting_pla.py'
 - Add two variables using placeholders
- 'getting_var.py'
 - ► W*x+b
- 'getting_los.py'
 - ▶ W*x+b with loss function
- 'getting tra.py'
 - W*x+b with gradient descent optimizer

See: ~/tensorflow-projects/getting

A simple TensorFlow program: getting_const.py

A simple TensorFlow program: getting_const.py

- This example shows how to use constant in TensorFlow
 - Step 1: go to your project directory
 - [user@host] cd \$(PROJECT)/codes/tensorflow-project/getting
 - ► Step 2: see the codes: getting_const.py
 - ► Step 3: run Python under virtual environment
 - (do not forget to run '\$ source ~/tensorflow/bin/activate')
 - [user@host] python getting_const.py

[user@host] cd \$(PROJECT)/codes/tensorflow-project/getting [user@host] source ~/tensorflow/bin/activate (tensorflow) [user@host] python getting_const.py (tensorflow) [user@host] deactivate [user@host]

A simple TensorFlow program: getting_add.py

- This example shows how to add two constants in TensorFlow
 - Step 1: go to your project directory
 - [user@host] cd \$(PROJECT)/codes/tensorflow-project/getting
 - Step 2: see the codes: getting_add.py
 - ► Step 3: run Python under virtual environment
 - (do not forget to run '\$ source ~/tensorflow/bin/activate')
 - [user@host] python getting_add.py
 - ► Step 4: run tensorboard to see graph

[user@host] cd \$(PROJECT)/codes/tensorflow-project/getting [user@host] source ~/tensorflow/bin/activate (tensorflow) [user@host] python getting_add.py (tensorflow) [user@host] deactivate [user@host]

9

A simple TensorFlow program: getting_pla.py (1/2)

A simple TensorFlow program: getting_pla.py (2/2)

[adki@ando-ubuntu] source ~/tensorflow/bin/activate
(tensorflow)\$ python getting_pla.py
7.5
[3. 7.]
(tensorflow)\$ tensorboard --logdir=/tmp/tensorflow
Starting TensorBoard 54 at http://ando-ubuntu:6006
(Press CTRL+C to quit)

Run the model

Run program for TensorBoard

- After running 'tensorboard' program,
- Open a web-browser and go to 'http://localhost:6006'

-1

A simple TensorFlow program: getting_pla.py

- This example shows how to add two variables in TensorFlow
 - Step 1: go to your project directory
 - [user@host] cd \$(PROJECT)/codes/tensorflow-project/getting
 - ► Step 2: see the codes: getting_pla.py
 - ► Step 3: run Python under virtual environment
 - (do not forget to run '\$ source ~/tensorflow/bin/activate')
 - [user@host] python getting_pla.py
 - Step 4: run tensorboard to see graph

[user@host] cd \$(PROJECT)/codes/tensorflow-project/getting [user@host] source ~/tensorflow/bin/activate (tensorflow) [user@host] python getting_pla.py (tensorflow) [user@host] deactivate [user@host]

A simple TensorFlow program: getting_var.py (1/2)

1.

A simple TensorFlow program: getting_var.py (2/2)

- After running 'tensorboard' program.
- Open a web-browser and go to 'http://localhost:6006'

A simple TensorFlow program: getting_var.py

- This example shows how to use variables in TensorFlow
 - Step 1: go to your project directory
 - [user@host] cd \$(PROJECT)/codes/tensorflow-project/getting
 - Step 2: see the codes: getting_var.py
 - Step 3: run Python under virtual environment
 - (do not forget to run '\$ source ~/tensorflow/bin/activate')
 - [user@host] python getting_var.py
 - ► Step 4: run tensorboard to see graph

[user@host] cd \$(PROJECT)/codes/tensorflow-project/getting [user@host] source ~/tensorflow/bin/activate (tensorflow) [user@host] python getting_var.py (tensorflow) [user@host] deactivate [user@host]

15

A simple TensorFlow program: getting_los.py (1/2)

A simple TensorFlow program: getting_los.py (2/2)

[adki@ando-ubuntu] source ~/tensorflow/bin/activate (tensorflow)\$ python getting_los.py

(tensorflow)\$ tensorboard --logdir=/tmp/tensorflow Starting TensorBoard 54 at http://ando-ubuntu:6006 (Press CTRL+C to quit)

- After running 'tensorboard' program,
- Open a web-browser and go to 'http://localhost:6006'

_ W * x +	b = Ir	m y	lm-y	square	loss
0.3	0	0 .3 .6 .9	0 1.3 2.6 3.9	0 1.69 6.76 15.21	23.66

Perfect value will be W=-1, b=1

17

A simple TensorFlow program: getting_los.py

- This example shows how to use loss function in TensorFlow
 - Step 1: go to your project directory
 - [user@host] cd \$(PROJECT)/codes/tensorflow-project/getting
 - ► Step 2: see the codes: getting_los.py
 - ► Step 3: run Python under virtual environment
 - (do not forget to run '\$ source ~/tensorflow/bin/activate')
 - [user@host] python getting_los.py
 - Step 4: run tensorboard to see graph

[user@host] cd \$(PROJECT)/codes/tensorflow-project/getting [user@host] source ~/tensorflow/bin/activate (tensorflow) [user@host] python getting_los.py (tensorflow) [user@host] deactivate [user@host]

A simple TensorFlow program: getting_tra.py (1/3)

```
import tensorflow as tf
W = tf.Variable([.3], dtype=tf.float32, name="W")
                                                        # Running the computational graph
b = tf.Variable([-.3], dtype=tf.float32, name="b")
                                                        x_{train} = [1,2,3,4]
x = tf.placeholder(tf.float32, name="x")
                                                        y_expect = [0,-1,-2,-3]
linear model = W * x + b
                                                        for i in range(1000):
                                                           sess.run(train, {x:x train, y:y expect})
                                                           if i%100==0:
y = tf.placeholder(tf.float32, name="y")
                                                             cW, cb, closs =\
squared_deltas = tf.square(linear_model - y)
                                                             sess.run([W, b, loss], {x:x_train, y:y_expect})
loss = tf.reduce_sum(squared_deltas, name="loss")
                                                             print("W: %s b: %s loss: %s"%(cW, cb, closs))
# optimizer using gradient descent
optimizer = tf.train.GradientDescentOptimizer(0.01)
                                                        # Evaluate current accuracy
train = optimizer.minimize(loss)
                                                        cW, cb, closs =\
                                                        sess.run([W, b, loss], {x:x_train, y:y_expect})
sess = tf.Session()
                                                        print("W: %s b: %s loss: %s"%(cW, cb, closs))
init = tf.global_variables_initializer()
sess.run(init) # actually initialized at this point
tf.summary.FileWriter('/tmp/tensorflow', sess.graph)
```

19

A simple TensorFlow program: getting_tra.py (2/3)

(tensorflow)\$ tensorboard --logdir=/tmp/tensorflow Starting TensorBoard 54 at http://ando-ubuntu:6006 (Press CTRL+C to quit) Perfect value will be W=-1, b=1 See the loss is very small.

A simple TensorFlow program: getting_tra.py (3/3)

2

A simple TensorFlow program: getting_tra.py

- This example shows how to use train function in TensorFlow
 - Step 1: go to your project directory
 - [user@host] cd \$(PROJECT)/codes/tensorflow-project/getting
 - ► Step 2: see the codes: getting_tra.py
 - ► Step 3: run Python under virtual environment
 - (do not forget to run '\$ source ~/tensorflow/bin/activate')
 - [user@host] python getting_tra.py
 - Step 4: run tensorboard to see graph

[user@host] cd \$(PROJECT)/codes/tensorflow-project/getting [user@host] source ~/tensorflow/bin/activate (tensorflow) [user@host] python getting_tra.py (tensorflow) [user@host] deactivate [user@host]

Your project 1

- Make your own TensorFlow program, using 'tf.placeholder()', 'tf.add()', 'tf.multiply()'.
- Make sure to call 'sess.run()'
- Give values of 'x1/x2/x3'.
- And print result of 'y1/y2'.

See: ~/tensorflow-projects/getting/proj_placehold.py

23

Your project 2: counter

See: ~/tensorflow-projects/getting/proj_counter.py

- Make your own TensorFlow program, using 'tf.Variable()', 'tf.add()', 'tf.assign()'.
- Make sure to call 'sess.run()'

Importing TensorFlow import tensorflow as tf

counter = tf.Variable(0, name="counter")
new_value = tf.add(counter, tf.constant(1))
update = tf.assign(counter, new_value)

with tf.Session() as sess:

tf.summary.FileWriter('./log', sess.graph) sess.run(tf.global_variables_initializer()) print(sess.run(counter))

for _ in range(3):

sess.run(update) # running 'update' graph
print(sess.run(counter)) # get value of 'counter'

Tenforflow

- tf.constant()
- print()
- tf.Session.run()
- tf.add()
- tf.placeholder()
- tf.Variable()
- tf.global_variables_initializer()
- tf.square()
- tf.reduce_sum()
- ff.assign()
- tf.train.GradientDescentOptimizer()
- minimize()

- Functions
 - mathematical operators: add, sub, mul, div, abs, mod, neg
 - array: concat, slice, split, constant, rank, shape, shuffle
 - matrix: diag, transpose, matmul, matrix_determinant, matrix_inverse
 - neural net: softmax, sigmoid, ReLU, Convlution2D, MaxPool
 - session: save, restore
 - queuing, synchronization: enqueue, dequeue, MutexAcquire, MutexRelease
 - flow control: merge, switch, enter, leave, NextIteration

2

㈜퓨쳐디자인시스템 34051 대전광역시 유성구 문지로 193, KAIST 문지캠퍼스, F723호 (042) 864-0211~0212 / contact@future-ds.com / www.future-ds.com

Future Design Systems, Inc. Faculty Wing F723, KAIST Munji Campus, 193 Munji-ro, Yuseong-gu, Daejeon 34051, Korea +82-042-864-0211~0212 / contact@future-ds.com / www.future-ds.com

