1994 HG1

試求 x 的最小值,使得 |1-2x|+|1-3x|+|1-5x|=1。

Find the least value of x so that |1-2x|+|1-3x|+|1-5x|=1.

2000 HG4

設 x = |y - m| + |y - 10| + |y - m - 10| , 其中 0 < m < 10 和 $m \le y \le 10$ 。 求 x 的最小值。

Let x = |y - m| + |y - 10| + |y - m - 10|, where $0 \le m \le 10$ and $m \le y \le 10$. Find the minimum value of x.

2000 FG5.2

設 b 是函數 $y = |x^2 - 4| - 6x$ (其中 $-2 \le x \le 5$) 的最大值,求 b 的值。 Let b be the maximum of the function $y = |x^2 - 4| - 6x$ (where $-2 \le x \le 5$), find the value of b.

2001 HG9

如果 x 滿足方程 |x-3|+|x-5|=2 , 求 x 的最小值。

If x satisfies the equation |x-3|+|x-5|=2, find the minimum value of x.

2002 FG4.3

若方程 ||x-2|-1|=c 只有 3 個整數解,求c的值。

Given that the equation ||x-2|-1| = c has only 3 integral solutions, find the value of c.

2004 FI3.2

設
$$b > 1$$
, $f(b) = \frac{2}{\log_2 b}$ 及 $g(b) = 1 + \frac{1}{\log_2 b}$ 。

若 b 满足方程 |f(b) - g(b)| + f(b) + g(b) = 3, 求 b 的值。

If
$$b > 1$$
, $f(b) = \frac{2}{\log_2 b}$ and $g(b) = 1 + \frac{1}{\log_3 b}$.

If b satisfies the equation |f(b) - g(b)| + f(b) + g(b) = 3, find the value of b.

2004 FG4.2

設 f(x) = |x-a| + |x-15| + |x-a-15|, 其中 $a \le x \le 15$ 及 0 < a < 15。 若 Q 是 f(x) 的最小值,求 Q 的值。

Let f(x) = |x - a| + |x - 15| + |x - a - 15|, where $a \le x \le 15$ and 0 < a < 15. If Q is the smallest value of f(x), find the value of Q.

2005 HI2

已知 x = 2005 及 $y = |4x^2 - 5x + 9| - 4|x^2 + 2x + 2| + 3x + 7$,求 y 的值。 Given that x = 2005 and $y = |4x^2 - 5x + 9| - 4|x^2 + 2x + 2| + 3x + 7$, find the value of y.

2005 FG4.2

若方程|x-|2x+1|=3有b個不同的解,求b的值。

Suppose there are *b* distinct solutions of the equation |x - |2x + 1| = 3, find the value of *b*.

2006 FI2.2

已知
$$R = \frac{9}{25} \cdot \frac{|k+R|}{|R|} = 0$$
,若 $S = \frac{|k+2R|}{|2k+R|}$,求 S 的值

Given that $R = \frac{9}{25}$, $\frac{|k+R|}{|R|} = 0$. If $S = \frac{|k+2R|}{|2k+R|}$, find the value of S.

2006 FI2.4

已知
$$x_0$$
 和 y_0 是實數且滿足方程組
$$\begin{cases} y = \frac{1}{x} \\ y = |x| + 1 \end{cases}$$
,若 $W = x_0 + y_0$,求 W 的值。

Given that x_0 and y_0 are real numbers satisfying the system of equations

$$\begin{cases} y = \frac{1}{x} \\ y = |x| + 1 \end{cases}$$
. If $W = x_0 + y_0$, find the value of W .

2006 FG1.4

設 a 為整數。若不等式 |x+1| < a-1.5 沒有整數解,求 a 最大可能的值。 Let a be an integer. If the inequality |x+1| < a-1.5 has no integral solution, find the greatest value of a.

2007 HI9

設
$$f(x) = \frac{1}{2} (4x^2 - 60x + 9 + |4x^2 - 60x + 9|)$$

若
$$k = f(1) + f(2) + f(3) + \cdots + f(15) + f(16)$$
 ,求 k 的值。

Let
$$f(x) = \frac{1}{2} (4x^2 - 60x + 9 + |4x^2 - 60x + 9|)$$
.

If
$$k = f(1) + f(2) + f(3) + \cdots + f(15) + f(16)$$
, find the value of k.

2008 HI8

設
$$x$$
 為有理數及 $w = \left| x + \frac{2007}{2008} \right| + \left| x - \frac{2007}{2008} \right|$ 。求 w 的最小可能值。

Let x be a rational number and
$$w = \left| x + \frac{2007}{2008} \right| + \left| x - \frac{2007}{2008} \right|$$
.

Find the smallest possible value of w.

2008 FI1.3

已知有
$$C$$
 個整數滿足方程 $|x-2|+|x+1|=3$,求 C 的值。

Given that there are C integers that satisfy the equation |x-2| + |x+1| = 3, find the value of C.

2008 FI4.1

已知
$$x$$
及 y 為實數,且滿足 $|x|+x+y=10$ 及 $|y|+x-y=10$ 。 若 $P=x+y$,求 P 的值。

Given that x and y are real numbers such that |x| + x + y = 10 and |y| + x - y = 10. If P = x + y, find the value of P.

2009 HG9

若滿足
$$||x^2-6x-16|-10|=f$$
 的相異實數 x 恰有 6 個,求 f 的值。

If there are 6 different values of real number x that satisfies $||x^2 - 6x - 16| - 10| = f$, find the value of f.

2009 FG1.2

已知方程
$$|x| - \frac{4}{x} = \frac{3|x|}{x}$$
 有 k 個相異實根, 求 k 的值。

Given that the equation $|x| - \frac{4}{x} = \frac{3|x|}{x}$ has k distinct real root(s).

Find the value of k.

2010 HG6

求以下函數的最小值:
$$f(x) = |x-1| + |x-2| + \cdots + |x-1000|$$
,其中 x 是一實數。

Find the minimum value of the following function:

$$f(x) = |x - 1| + |x - 2| + ... + |x - 1000|$$
, where x is a real number.

2011 FI4.2

若
$$b$$
 及 y 滿足 $|b-y|=b+y-2$ 及 $|b+y|=b+2$ 。求 b 的值。

Find the value of b if b and y satisfy |b - y| = b + y - 2 and |b + y| = b + 2.

2011 FGS.1

設 α 及 β 為方程 $y^2 - 6y + 5 = 0$ 的實根。設 m 為 $|x - \alpha| + |x - \beta|$ 對任何 實數 x 的最小值。求 m 的值。

Let α and β be the real roots of $y^2 - 6y + 5 = 0$. Let m be the minimum value of $|x - \alpha| + |x - \beta|$ over all real values of x. Find the value of m.

2011 FGS.3

設
$$y = |x+1| - 2|x| + |x-2|$$
及 $-1 \le x \le 2$ 。設 α 為 y 的最大值,求 α 的值。
Let $y = |x+1| - 2|x| + |x-2|$ and $-1 \le x \le 2$. Let α be the maximum value of y . Find the value of α .

2012 FG2.3

若
$$\ell$$
 為 $|x-2|+|x-47|$ 的最小值,求 ℓ 的值。

If ℓ is the minimum value of |x-2|+|x-47|, find the value of ℓ .

2012 FG4.2

若
$$Q > 0$$
 並滿足 $|3Q - |1 - 2Q| = 2$,求 Q 的值。

If Q > 0 and satisfies |3Q - |1 - 2Q|| = 2, find the value of Q.

2015 FG2.3

求以下方程的所有實根之和 |x+3| - |x-1| = x+1。

Determine the sum of all real roots of the equation |x + 3| - |x - 1| = x + 1.

2016 FI4.3

若
$$1.5 < x < 2.5$$
,求 $c = \sqrt{x^2 - 2x + 1} + \sqrt{x^2 - 6x + 9}$ 的值。

If $1.5 \le x \le 2.5$, determine the value of $c = \sqrt{x^2 - 2x + 1} + \sqrt{x^2 - 6x + 9}$.

2017 FI1.2

若 x 為實數及 b 為 -|x-9|-|10-x| 的最大值,求 b 的值。

If x is a real number and b is the maximum value of -|x-9|-|10-x|, determine the value of b.

2017 FG1.2

If
$$|x-|2x-1| = \frac{1}{2}$$
 is a real equation,

determine the value of b, the number of real solutions of the equation.

2018 FI1.2

且
$$B$$
 是 v 的最小值, 求 B 的值。

Given that
$$y = \sqrt{9 \times 4^2 - 12 \times 4 + 4} \pm \sqrt{4^2 - 4 \times 4 + 4} \pm \sqrt{4^2 + 6 \times 4 + 9}$$
, and *B* is the least value of *y*, determine the value of *B*.

Answers

1994 HG1 1/5	2000 HG4 10	2000 FG5.2 12	2001 HG9 3	2002 FG4.3 1
2004 FI3.2	2004 FG4.2	2005 HI2	2005 FG4.2	2006 FI2.2
9	15	-20042	2	l
2006 FI2.4 $\sqrt{5}$	2006 FG1.4 1	2007 HI9 82	$ \begin{array}{r} 2008 \text{ HI8} \\ \hline 2007 \\ \hline 1004 \end{array} $	2008 FI1.2 4
2008 FI4.1	2009 HG9	2009 FG1.2	2010 HG6	2011 FI4.2
4	10	1	250000	1
2011 FGS.1	2011 FGS.3	2012 FG2.3	2012 FG4.2	2015 FG2.3
4	3	45	1	-3
2016 FI4.3	2017 FI1.1	2017 FG1.2	2018 FI1.2	
2	-1	3	1	