Overview of Machine Learning

in particular, Supervised Learning

Chris Cornwell

Mar 13, 2025

Machine Learning

Supervised learning

Machine Learning

Supervised learning

What is Machine Learning?

Definition by Tom Mitchell:

A "computer program" is said to **learn** from experience E, with respect to some task T and performance measure P if: its performance on T, as measured by P, improves with experience E.

- ► The definition is intentionally general. Often, could think of *E* as "training" (updates to how program runs), based on observed data.
- "computer program" (for us) means a procedure or function, implemented on a computer, that produces output from given input. The output is how the program is supposed to achieve the task T.
- The procedures discussed in class linear regression and the Perceptron algorithm for half-space model – fit into this paradigm...kind of.

What is Machine Learning?

Definition by Tom Mitchell:

A computer program is said to **learn** from experience E, with respect to some task T and performance measure P if: its performance on T, as measured by P, improves with experience E.

Examples:

- 1. Linear regression.
 - program": the process taking input (x, potentially multiple variables), "predicting" a label \hat{y} . (with $\hat{y} = \hat{m}x + \hat{b}$.)
 - T: fit observed points $(x_1, y_1), \ldots, (x_n, y_n)$ well with predictions $(x_1, \hat{y}_1), \ldots, (x_n, \hat{y}_n)$, with expectation of good fit on *unobserved* data.
 - ► E: ??

The data are used to get \hat{m} and \hat{b} , but you don't really "improve" with repeated use of data.

A <u>closed form</u> for best choice of \hat{m} , \hat{b} : compute $(A^TA)^{-1}A^Ty$.

P: Mean squared error.

One should not expect nice closed form in general.

What is Machine Learning?

Definition by Tom Mitchell:

A computer program is said to **learn** from experience E, with respect to some task T and performance measure P if: its performance on T, as measured by P, improves with experience E.

Examples:

- 2. The Perceptron algorithm.
 - ▶ "program": the process taking input $(\mathbf{x} \in \mathbb{R}^d)$, or something turned into $\mathbf{x} \in \mathbb{R}^d$), "predicting" a label +1 or -1. (using $W = (\mathbf{w}, \mathbf{b}) \in \mathbb{R}^{d+1}$ to decide label.)
 - T: predicting labels correctly...including on unobserved data.
 - E: looking through observed data $X_i = (\mathbf{x}_i, 1)$, label y_i , and updating $W^{(t+1)} = W^{(t)} + y_i X_i$ when i found with $W^{(t)} \cdot (y_i X_i) \le 0$.
 - ► P: ??

Whether its labels on all observed data are correct. But, only two results: *True* or *False*.

If data is linearly separable, enough of experience *E* improves this measure (changing to *True*). Only happens if linearly separable.

Machine Learning

Supervised learning

Linearly separable

Figure: The hyperplane $H = \{(x_1, x_2) \in \mathbb{R}^2 : x_1 + x_2 + 1 = 0\}$, corresponding positive and negative regions, $\mathbf{w} = (1, 1), b = 1$

Not linearly separable

Figure: A data set in \mathbb{R}^2 that is not linearly separable.

Not linearly separable

Figure: A data set in \mathbb{R}^2 that is not linearly separable.

A criterion (checkable, in theory) that is equivalent to "not linearly separable"?

Machine Learning

Supervised learning

Setup for Perceptron algorithm

Labeled data: $(\mathbf{x}_1, y_1), \ldots, (\mathbf{x}_n, y_n)$, with $\mathbf{x}_i \in \mathbb{R}^d$ and $y_i \in \{\pm 1\}$ for all i. Assuming labeled data is linearly separable, the Perceptron algorithm is a procedure that is guaranteed to find a hyperplane that separates the data.¹

¹Introduced in The perceptron: A probabilistic model for information storage and organization in the brain, F. Rosenblatt, Psychological Review **65** (1958), 386–407.

Setup for Perceptron algorithm

Labeled data: $(\mathbf{x}_1, y_1), \ldots, (\mathbf{x}_n, y_n)$, with $\mathbf{x}_i \in \mathbb{R}^d$ and $y_i \in \{\pm 1\}$ for all i. Assuming labeled data is linearly separable, the Perceptron algorithm is a procedure that is guaranteed to find a hyperplane that separates the data.¹

To describe it: for each x_i , use X_i to denote the (d+1)-vector consisting of x_i with 1 appended at the end;

Additionally, use W to denote the vector \mathbf{w} with b appended at the end.

¹Introduced in The perceptron: A probabilistic model for information storage and organization in the brain, F. Rosenblatt, Psychological Review **65** (1958), 386–407.

Setup for Perceptron algorithm

Labeled data: $(\mathbf{x}_1, y_1), \ldots, (\mathbf{x}_n, y_n)$, with $\mathbf{x}_i \in \mathbb{R}^d$ and $y_i \in \{\pm 1\}$ for all i. Assuming labeled data is linearly separable, the Perceptron algorithm is a procedure that is guaranteed to find a hyperplane that separates the data.¹

To describe it: for each x_i , use X_i to denote the (d + 1)-vector consisting of x_i with 1 appended at the end;

Additionally, use W to denote the vector \mathbf{w} with b appended at the end.

Note that $W \cdot X_i = \mathbf{w} \cdot \mathbf{x}_i + b$.

For linearly separable data, our goal is to find $W \in \mathbb{R}^{d+1}$ so that $W \cdot X_i$ and y_i have the same sign (both positive or both negative), for all 1 < i < n.

Equivalently, we need $y_i W \cdot X_i > 0$ for all $1 \le i \le n$.

¹Introduced in The perceptron: A probabilistic model for information storage and organization in the brain, F. Rosenblatt, Psychological Review **65** (1958), 386–407.

Perceptron algorithm

Suppose the data is linearly separable. Also, x is an $n \times d$ array of points, with ith row equal to x_i , and y is array of the labels. The Perceptron algorithm finds W iteratively as follows.²

²Recall, in pseudo-code block, left-facing arrow means assign to variable on left.

Perceptron algorithm

Suppose the data is linearly separable. Also, x is an $n \times d$ array of points, with i^{th} row equal to x_i , and y is array of the labels. The Perceptron algorithm finds W iteratively as follows.²

```
\begin{array}{l} \textbf{input} \colon x, \ y \quad \#\# \ x \ \text{is } n \ \text{by } d, \ y \ \text{is } 1d \ \text{array} \\ X \leftarrow \text{append } 1 \ \text{to each row of } x \\ W \leftarrow (0,0,\ldots,0) \quad \#\# \ \text{Initial } W \\ \textbf{while } (\text{exists } i \ \text{with } y[i]*\text{dot}(W,\ X[i]) \leq 0) \{ \\ W \leftarrow W + y[i]*X[i] \} \\ \text{return } W \end{array}
```

²Recall, in pseudo-code block, left-facing arrow means assign to variable on left.

Under our assumptions for Perceptron algorithm, a guarantee on eventually stopping.

Theorem

Define $R = \max_i |X_i|$ and $B = \min_i \{|V| : \forall i, y_i V \cdot X_i \ge 1\}$. Then, the Perceptron algorithm stops after at most $(RB)^2$ iterations and, when it stops with output W, then $y_i W \cdot X_i > 0$ for all $1 \le i \le n$.

Under our assumptions for Perceptron algorithm, a guarantee on eventually stopping.

Theorem

Define $R = \max_i |X_i|$ and $B = \min_i \{|V| : \forall i, y_i V \cdot X_i \ge 1\}$. Then, the Perceptron algorithm stops after at most $(RB)^2$ iterations and, when it stops with output W, then $y_i W \cdot X_i > 0$ for all $1 \le i \le n$.

Idea of proof: Write W^* for vector that realizes the minimum B. Also, write $W^{(t)}$ for the vector W on the t^{th} step, with $W^{(1)}=(0,0,\ldots,0)$.

Under our assumptions for Perceptron algorithm, a guarantee on eventually stopping.

Theorem

Define $R = \max_i |X_i|$ and $B = \min_i \{|V| : \forall i, y_i V \cdot X_i \ge 1\}$. Then, the Perceptron algorithm stops after at most $(RB)^2$ iterations and, when it stops with output W, then $y_i W \cdot X_i > 0$ for all $1 \le i \le n$.

Idea of proof: Write W^* for vector that realizes the minimum B. Also, write $W^{(t)}$ for the vector W on the t^{th} step, with $W^{(1)}=(0,0,\dots,0)$. Using how $W^{(t+1)}$ is obtained from $W^{(t)}$, can show that $W^*\cdot W^{(T+1)}\geq T$ after T+1 iterations. Also, using the condition on $W^{(T)}$ that necessitates an update, can show that $|W^{(T+1)}|\leq \sqrt{T}R$. (Both statements, use induction.)

Under our assumptions for Perceptron algorithm, a guarantee on eventually stopping.

Theorem

Define $R = \max_i |X_i|$ and $B = \min_i \{|V| : \forall i, y_i V \cdot X_i \ge 1\}$. Then, the Perceptron algorithm stops after at most $(RB)^2$ iterations and, when it stops with output W, then $y_i W \cdot X_i > 0$ for all $1 \le i \le n$.

Idea of proof: Write W^* for vector that realizes the minimum B. Also, write $W^{(t)}$ for the vector W on the t^{th} step, with $W^{(1)}=(0,0,\ldots,0)$. Using how $W^{(t+1)}$ is obtained from $W^{(t)}$, can show that $W^*\cdot W^{(T+1)}\geq T$ after T+1 iterations. Also, using the condition on $W^{(T)}$ that necessitates an update, can show that $|W^{(T+1)}|\leq \sqrt{T}R$. (Both statements, use induction.)

Now, by Cauchy-Schwarz inequality, $T \leq BR\sqrt{T}$, which we can rearrange to $T \leq (BR)^2$.