

=> fil reg
FILE 'REGISTRY' ENTERED AT 15:46:30 ON 31 OCT 2007
USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.
PLEASE SEE "HELP USAGETERMS" FOR DETAILS.
COPYRIGHT (C) 2007 American Chemical Society (ACS)

Property values tagged with IC are from the ZIC/VINITI data file provided by InfoChem.

STRUCTURE FILE UPDATES: 29 OCT 2007 HIGHEST RN 951883-76-4
DICTIONARY FILE UPDATES: 29 OCT 2007 HIGHEST RN 951883-76-4

New CAS Information Use Policies, enter HELP USAGETERMS for details.

TSCA INFORMATION NOW CURRENT THROUGH June 29, 2007

Please note that search-term pricing does apply when conducting SmartSELECT searches.

REGISTRY includes numerically searchable data for experimental and predicted properties as well as tags indicating availability of experimental property data in the original document. For information on property searching in REGISTRY, refer to:

<http://www.cas.org/support/stngen/stndoc/properties.html>

=> d his nofile
(FILE 'HOME' ENTERED AT 15:01:30 ON 31 OCT 2007)

FILE 'HCAPLUS' ENTERED AT 15:01:37 ON 31 OCT 2007
L1 1 SEA ABB=ON PLU=ON US2006204202/PN
SEL RN

FILE 'REGISTRY' ENTERED AT 15:02:14 ON 31 OCT 2007
L2 20 SEA ABB=ON PLU=ON (120-12-7/BI OR 217-59-4/BI OR
229-87-8/BI OR 230-27-3/BI OR 230-46-6/BI OR 243-17-4/BI
OR 271-58-9/BI OR 271-89-6/BI OR 271-95-4/BI OR 3682-35-7
/BI OR 477-75-8/BI OR 493-77-6/BI OR 56-55-3/BI OR
66-71-7/BI OR 82-05-3/BI OR 85-01-8/BI OR 86-73-7/BI OR
9011-14-7/BI OR 92-24-0/BI OR 92-82-0/BI)
D SCA

L3 1 SEA ABB=ON PLU=ON 229-87-8/RN
D SCA
L4 1 SEA ABB=ON PLU=ON BENZOFURAN/CN
D SCA
L5 1 SEA ABB=ON PLU=ON BENZOXAZOLE/CN
D SCA
L6 1 SEA ABB=ON PLU=ON 217-59-4/RN
D SCA
L7 1 SEA ABB=ON PLU=ON 86-73-7/RN
D SCA
L8 1 SEA ABB=ON PLU=ON 85-01-8/RN
D SCA
L9 1 SEA ABB=ON PLU=ON 230-46-6/RN
D SCA
L10 1 SEA ABB=ON PLU=ON 66-71-7/RN
D SCA

L11 1 SEA ABB=ON PLU=ON 56-55-3/RN
 D SCA
 L12 1 SEA ABB=ON PLU=ON "11H-BENZO(A) FLUORENE"/CN
 D SCA
 L13 10 SEA ABB=ON PLU=ON (L3 OR L4 OR L5 OR L6 OR L7 OR L8 OR
 L9 OR L10 OR L11 OR L12)

FILE 'HCAPLUS' ENTERED AT 15:30:01 ON 31 OCT 2007

L14 44811 SEA ABB=ON PLU=ON L13
 L15 QUE ABB=ON PLU=ON WAVEGUID? OR (WAVE# OR WAVING) (2A) GUI
 D?
 L16 24 SEA ABB=ON PLU=ON L14 AND L15
 L17 QUE ABB=ON PLU=ON OPTIC? OR LIGHT? OR SPECTROSCOP?
 L18 24 SEA ABB=ON PLU=ON L16 AND L17
 L19 15 SEA ABB=ON PLU=ON L18 AND (PY<=2003 OR PRY<=2003 OR
 AY<=2003)
 L20 1 SEA ABB=ON PLU=ON "11H-BENZO(B) FLUORENE"/CN
 L21 600 SEA ABB=ON PLU=ON L20
 L22 1 SEA ABB=ON PLU=ON L21 AND L15
 L23 15 SEA ABB=ON PLU=ON L19 OR L22
 L24 14 SEA ABB=ON PLU=ON L23 NOT L1

=> fil hap
 'HAP' IS NOT A VALID FILE NAME
 SESSION CONTINUES IN FILE 'REGISTRY'
 Enter "HELP FILE NAMES" at an arrow prompt (>) for a list of files
 that are available. If you have requested multiple files, you can
 specify a corrected file name or you can enter "IGNORE" to continue
 accessing the remaining file names entered.

=> fil hcap
 FILE 'HCAPLUS' ENTERED AT 15:46:35 ON 31 OCT 2007
 USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.
 PLEASE SEE "HELP USAGETERMS" FOR DETAILS.
 COPYRIGHT (C) 2007 AMERICAN CHEMICAL SOCIETY (ACS)

Copyright of the articles to which records in this database refer is held by the publishers listed in the PUBLISHER (PB) field (available for records published or updated in Chemical Abstracts after December 26, 1996), unless otherwise indicated in the original publications. The CA Lexicon is the copyrighted intellectual property of the American Chemical Society and is provided to assist you in searching databases on STN. Any dissemination, distribution, copying, or storing of this information, without the prior written consent of CAS, is strictly prohibited.

FILE COVERS 1907 - 31 Oct 2007 VOL 147 ISS 19
 FILE LAST UPDATED: 30 Oct 2007 (20071030/ED)

New CAS Information Use Policies, enter HELP USAGETERMS for details.

This file contains CAS Registry Numbers for easy and accurate substance identification.

=> => fil hcap
 FILE 'HCAPLUS' ENTERED AT 15:52:49 ON 31 OCT 2007
 USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.
 PLEASE SEE "HELP USAGETERMS" FOR DETAILS.

COPYRIGHT (C) 2007 AMERICAN CHEMICAL SOCIETY (ACS)

Copyright of the articles to which records in this database refer is held by the publishers listed in the PUBLISHER (PB) field (available for records published or updated in Chemical Abstracts after December 26, 1996), unless otherwise indicated in the original publications. The CA Lexicon is the copyrighted intellectual property of the American Chemical Society and is provided to assist you in searching databases on STN. Any dissemination, distribution, copying, or storing of this information, without the prior written consent of CAS, is strictly prohibited.

FILE COVERS 1907 - 31 Oct 2007 VOL 147 ISS 19
 FILE LAST UPDATED: 30 Oct 2007 (20071030/ED)

New CAS Information Use Policies, enter HELP USAGETERMS for details.

This file contains CAS Registry Numbers for easy and accurate substance identification.

=> d l24 ibib abs hitstr hitind 1-14

L24 ANSWER 1 OF 14 HCPLUS COPYRIGHT 2007 ACS on STN
 ACCESSION NUMBER: 2005:474844 HCPLUS
 DOCUMENT NUMBER: 143:3696
 TITLE: Method and apparatus using a surface-selective nonlinear optical technique for detection of probe-target interactions without labels
 INVENTOR(S): Salafsky, Joshua S.
 PATENT ASSIGNEE(S): USA
 SOURCE: U.S. Pat. Appl. Publ., 46 pp., Cont.-in-part of U.S. Ser. No. 907,038, abandoned.
 CODEN: USXXCO
 DOCUMENT TYPE: Patent
 LANGUAGE: English
 FAMILY ACC. NUM. COUNT: 2
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
-----	----	-----	-----	-----
US 2005118731	A1	20050602	US 2004-970754	200410 21
US 2002127563	A1	20020912	US 2001-907038	200107 17
PRIORITY APPLN. INFO.:			US 2001-260261P	P 200101 08
			US 2001-260300P	P 200101 08
			US 2001-262214P	P

200101

17

<--
US 2001-907038

B2

200107

17

<--

AB A surface-selective nonlinear optical technique, such as second harmonic or sum frequency generation, is used to detect target-probe binding reactions or their effects, at an interface, in the presence of indicators. In addition, the direction of the nonlinear light is scattered from the interface in a well-defined direction and therefore its incidence at a detector some distance from the interface may be easily mapped to a specific and known location at the interface.

IT 273-53-0D, Benzoxazole, derivs.

RL: ARG (Analytical reagent use); ANST (Analytical study); USES (Uses)

(method and apparatus using a surface-selective nonlinear optical technique for detection of probe-target interactions without labels)

RN 273-53-0 HCAPLUS

CN Benzoxazole (CA INDEX NAME)

IC ICM G01N033-543

INCL 436518000

CC 9-1 (Biochemical Methods)

Section cross-reference(s): 1

ST app nonlinear optics probe target interaction detection

IT Cyanine dyes

(hemicyanine; method and apparatus using a surface-selective nonlinear optical technique for detection of probe-target interactions without labels)

IT Cell

Charge coupled devices

Cyanine dyes

Drug screening

Drugs

Fiber optics

Fluorescent indicators

Liposomes

Optical waveguides

Sum-frequency generation

Surface plasmon resonance

Virus

(method and apparatus using a surface-selective nonlinear optical technique for detection of probe-target interactions without labels)

IT Antibodies and Immunoglobulins

Antigens

Carbohydrates, biological studies

G protein-coupled receptors

Hormones, animal, biological studies

Nucleic acids

Nucleosides, biological studies

Oligosaccharides, biological studies

Peptide nucleic acids

Proteins

Receptors

Toxins

RL: BSU (Biological study, unclassified); BIOL (Biological study)
 (method and apparatus using a surface-selective nonlinear
 optical technique for detection of probe-target
 interactions without labels)

IT Polarizability

(optical, hyperpolarizability; method and apparatus using a
 surface-selective nonlinear optical technique for
 detection of probe-target interactions without labels)

IT Ion channel

RL: BSU (Biological study, unclassified); BIOL (Biological study)
 (receptors; method and apparatus using a surface-selective nonlinear
 optical technique for detection of probe-target
 interactions without labels)

IT 61-73-4, Methylene blue 79-41-4D, Methacrylic acid, salts and
 esters, polymers of 92-84-2D, Phenothiazine, reaction with
 stilbazole 198-55-0D, Perylene, derivs. 273-53-0D,
 Benzoxazole, derivs. 288-42-6D, Oxazole, derivs. 1283-93-8
 2321-07-5D, Fluorescein, derivs. 5998-92-5D, 5-aryl derivative
 38620-93-8D, Stilbazole, reaction with phenothiazine 70380-75-5D,
 2-aryl derivative

RL: ARG (Analytical reagent use); ANST (Analytical study); USES
 (Uses)
 (method and apparatus using a surface-selective nonlinear
 optical technique for detection of probe-target
 interactions without labels)

L24 ANSWER 2 OF 14 HCAPLUS COPYRIGHT 2007 ACS on STN

ACCESSION NUMBER: 2003:913395 HCAPLUS

DOCUMENT NUMBER: 139:393104

TITLE: Kit for bioaffinity assay development and serial
 analysis including arrays of reference substance

INVENTOR(S): Duveneck, Gert L.; Oroszlan, Peter; Pawlak,
 Michael

PATENT ASSIGNEE(S): Zeptosens A.-G., Switz.

SOURCE: PCT Int. Appl., 85 pp.

CODEN: PIXXD2

DOCUMENT TYPE: Patent

LANGUAGE: German

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
-----	----	-----	-----	-----
-----	-----	-----	-----	-----
WO 2003096018	A2	20031120	WO 2003-EP4717	200305 06
				<--
WO 2003096018	A3	20040318		
W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ,				

NO, NZ, PL, PT, RO, RU, SD, SE, SG, SK, SL, TJ, TM, TR, TT,
 TZ, UA, UG, US, UZ, VN, YU, ZA, ZW
 RW: GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW, AM, AZ,
 BY, KG, KZ, MD, RU, TJ, TM, AT, BE, BG, CH, CY, CZ, DE, DK,
 EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE,
 SI, SK, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR,
 NE, SN, TD, TG

AU 2003242251 A1 20031111 AU 2003-242251

200305
06

EP 1506403 A2 20050216 EP 2003-729981

200305
06

R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC,
 PT, IE, SI, LT, LV, FI, RO, MK, CY, AL, TR, BG, CZ, EE, HU,
 SK

US 2005163659 A1 20050728 US 2004-514166

200411
12

PRIORITY APPLN. INFO.:

CH 2002-791

A
200205
13

WO 2003-EP4717

W
200305
06

AB The invention relates to a kit for assay development and for carrying out a plurality of analyses, comprising: a carrier substrate and a placement body jointly forming an arrangement of a plurality of sample containers, consisting of said carrier substrate as a base plate, in addition to a plurality of immobilized bonding partners for the detection of one or several analytes in one or several samples in a bioaffinity assay, said bonding partners being arranged and immobilized on the carrier substrate inside the sample containers in resp. two-dimensional arrays of discrete measuring areas, wherein resp. at least one measuring area of an array or a partial surface inside an array or sample container is provided on the carrier substrate for referencing purposes, and the surface d. of the immobilized bonding partners, in relation to the surface of the measuring areas, is less than the surface d. of a full, i.e. extensive monolayer of said bonding partners. The composition of the inventive kit is such that, surprisingly, it enables a full series of measurements to be carried out on an individual carrier substrate. The invention also relates to an anal. system wherein the inventive kit is used, and to anal. detection methods based thereon and the use thereof. Thus an array kit was prepared for the determination of IL-4 using immobilized antibodies to IL-4. Thus a glass substrate, that had been previously modulated with gratings was coated with a tantalum pentoxide layer; the hydrophilic metal oxide surface was coated with a self-assembled mono-dodecyl phosphate layer and plotted in arrays with monoclonal mouse antibodies of various concns. Reference arrays were plotted along the antibody arrays; the reference substance was Cy5-BSA.

IT 229-87-8D, Phenanthridine, derivs., alkaloids
 271-89-6D, Benzofuran, derivs.

RL: ANT (Analyte); ARG (Analytical reagent use); ANST (Analytical

study); USES (Uses)
 (kit for bioaffinity assay development and serial anal. including
 arrays of reference substance)

RN 229-87-8 HCAPLUS
 CN Phenanthridine (CA INDEX NAME)

RN 271-89-6 HCAPLUS
 CN Benzofuran (CA INDEX NAME)

IC ICM G01N033-543
 ICS C12Q001-68
 CC 9-1 (Biochemical Methods)
 Section cross-reference(s): 3, 4, 5, 17
 IT Affinity
 Agrochemicals
 Aptamers
 Blood analysis
 CCD cameras
 Clinical analysis
 DNA microarray technology
 Diagnosis
 Diffraction gratings
 Drug screening
 Egg white
 Egg yolk
 Environmental analysis
 Eubacteria
 Fluorometry
 Food analysis
 Human
 Immunoassay
 Nucleic acid hybridization
 Optical waveguides
 Photodiodes
 Photolithography
 Plant analysis
 Protein microarray technology
 Saliva
 Salmonella
 Self-assembly
 Soil analysis
 Surfactants
 Test kits
 Transparency

Urine analysis

Virus

(kit for bioaffinity assay development and serial anal. including arrays of reference substance)

IT 57-50-1, Sugar, analysis 74-86-2D, Acetylene, derivs. 76-78-8D, Quassin, derivs. 84-65-1D, Anthraquinone, derivs. 87-66-1, Pyrogallol 90-47-1, 9-Oxoxanthene 90-47-1D, Xanthenone, derivs. 91-22-5D, Quinoline, derivs. 91-64-5D, 2H-1-Benzopyran-2-one, derivs. 94-41-7D, Chalcone, derivs. 106-57-0D, Diketopiperazine, derivs. 107-43-7D, Betaine, derivs. 108-73-6D, Phloroglucine, derivs. 109-97-7D, Pyrrole, derivs. 119-61-9D, Benzophenone, derivs. 120-72-9D, Indole, derivs. 120-80-9D, Catechol, derivs. 123-31-9D, Hydroquinone, derivs. 130-15-4D, 1,4-Naphthalenedione, derivs. 229-87-8D, Phenanthridine, derivs., alkaloids 271-89-6D, Benzofuran, derivs. 288-32-4D, Imidazole, derivs., alkaloids 524-97-0D, Pterocarpine, derivs. 544-25-2D, Tropilidene, derivs., alkaloids 588-59-0D, Stilbene, oligo derivs. 970-73-0D, Gallocatechin, derivs. 5375-87-1D, Pyranocoumarin, derivs. 8001-81-8D, Carboline, derivs. 9004-34-6D, Cellulose, derivs. 9005-25-8, Starch, analysis 9005-32-7D, Alginic acid, derivs. 20342-64-7D, 1H-Indole-4,7-dione, derivs. 29565-36-4D, Cardenolide, derivs. 62996-74-1D, Staurosporine, derivs. 79392-34-0, Saframycin

RL: ANT (Analyte); ARG (Analytical reagent use); ANST (Analytical study); USES (Uses)

(kit for bioaffinity assay development and serial anal. including arrays of reference substance)

L24 ANSWER 3 OF 14 HCAPLUS COPYRIGHT 2007 ACS on STN

ACCESSION NUMBER: 2003:506901 HCAPLUS

DOCUMENT NUMBER: 139:92495

TITLE: Plastic optical waveguiding material and optical waveguide

INVENTOR(S): Miyao, Kenji

PATENT ASSIGNEE(S): Sumitomo Bakelite Co., Ltd., Japan

SOURCE: Jpn. Kokai Tokkyo Koho, 7 pp.

CODEN: JKXXAF

DOCUMENT TYPE: Patent

LANGUAGE: Japanese

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
-----	-----	-----	-----	-----
JP 2003185857	A	20030703	JP 2001-380649	200112 13

PRIORITY APPLN. INFO.: JP 2001-380649

200112
13

<--

AB The invention refers to a plastic optical waveguiding material and optical waveguide

, comprising polyoxazole compound with repeating unit

- (C:ONHXNHC:OY)n- [n = 1 - 1000; X = divalent organic group; Y = n-alkane, hexane, halo-substituted or unsubstituted Ph, naphthalene, or two Ph rings bridged by O, SO₂ or halo].

IT 273-53-0, Benzoxazole

RL: DEV (Device component use); USES (Uses)
 (derivs., polymers; plastic optical waveguiding
 material and optical waveguide)
 RN 273-53-0 HCAPLUS
 CN Benzoxazole (CA INDEX NAME)

IC ICM G02B006-12
 ICS C08G073-22; G02B006-13
 CC 73-11 (Optical, Electron, and Mass Spectroscopy and Other Related Properties)
 ST polymer optical waveguide polybenzoxazole
 IT Optical waveguides
 (polymeric; plastic optical waveguiding material and optical waveguide)
 IT 273-53-0, Benzoxazole
 RL: DEV (Device component use); USES (Uses)
 (derivs., polymers; plastic optical waveguiding material and optical waveguide)
 IT 31475-82-8 32201-94-8D, polybenzoxazoles 72123-18-3D,
 polybenzoxazoles 325828-94-2 554455-41-3 554455-43-5
 554455-44-6 554455-50-4D, polybenzoxazoles 554455-52-6D,
 polybenzoxazoles 554455-54-8D, polybenzoxazoles
 RL: DEV (Device component use); USES (Uses)
 (plastic optical waveguiding material and optical waveguide)

L24 ANSWER 4 OF 14 HCAPLUS COPYRIGHT 2007 ACS on STN
 ACCESSION NUMBER: 2003:497449 HCAPLUS
 DOCUMENT NUMBER: 139:44221
 TITLE: Preparation of photo-sensitive SiO₂ gel film for fine-patterning in manufacture of optical waveguide
 INVENTOR(S): Zhao, Gaoyang; Zhao, Guirong; Hu, Xiongwei
 PATENT ASSIGNEE(S): Xian University of Sciences & Technology, Peop. Rep. China
 SOURCE: Faming Zhuanli Shenqing Gongkai Shuomingshu, 16 pp.
 DOCUMENT TYPE: Patent
 LANGUAGE: Chinese
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
-----	----	-----	-----	
CN 1359032	A	20020717	CN 2001-145262	200112 28
<--				
PRIORITY APPLN. INFO.: CN 2001-145262				200112 28

<--

AB The photo-sensitive film is prepared by stirring a solution containing tetraethoxysilane 1, H₂O 2-4, HCl 0.05-0.2, ethanol 10-40, and phenanthroline 0.5-2 parts for 4 h, and forming a film on a glass of Si substrate by pulling method. The prepared film is soluble in ethanol but insol. after UV irradiation, and fine patterns are thus manufactured

IT 66-71-7, 1,10-Phenanthroline
 RL: MOA (Modifier or additive use); USES (Uses)
 (preparation of photo-sensitive SiO₂ gel film for fine-patterning)

RN 66-71-7 HCPLUS

CN 1,10-Phenanthroline (CA INDEX NAME)

IC ICM G03F007-004
 ICS G03F007-16

CC 74-5 (Radiation Chemistry, Photochemistry, and Photographic and Other Reprographic Processes)

IT Waveguides
 (preparation of photo-sensitive SiO₂ gel film for fine-patterning in manufacture of optical waveguide)

IT 66-71-7, 1,10-Phenanthroline
 RL: MOA (Modifier or additive use); USES (Uses)
 (preparation of photo-sensitive SiO₂ gel film for fine-patterning)

L24 ANSWER 5 OF 14 HCPLUS COPYRIGHT 2007 ACS on STN

ACCESSION NUMBER: 2002:522159 HCPLUS
 DOCUMENT NUMBER: 137:59858
 TITLE: Method and apparatus using a surface-selective nonlinear optical technique
 INVENTOR(S): Salafsky, Joshua S.
 PATENT ASSIGNEE(S): USA
 SOURCE: PCT Int. Appl., 88 pp.
 CODEN: PIXXD2
 DOCUMENT TYPE: Patent
 LANGUAGE: English
 FAMILY ACC. NUM. COUNT: 2
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
-----	-----	-----	-----	-----
WO 2002054071	A1	20020711	WO 2001-US22441	200107 17

<--

W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH,
 CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD,
 GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ,
 LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ,
 NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR,
 TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW
 RW: GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW, AT, BE, CH,

CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE,
 TR, BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN,
 TD, TG

CA 2434076 A1 20020711 CA 2001-2434076
 200107
 17

AU 2001276947 A1 20020716 AU 2001-276947
 200107
 17

EP 1358482 A1 20031105 EP 2001-954721
 200107
 17

R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC,
 PT, IE, SI, LT, LV, FI, RO, MK, CY, AL, TR
 JP 2004530105 T 20040930 JP 2002-554718
 200107
 17

PRIORITY APPLN. INFO.: US 2001-260261P P
 200101
 08

<--
 US 2001-260300P P
 200101
 08

<--
 US 2001-262214P P
 200101
 17

<--
 WO 2001-US22441 W
 200107
 17

<--
 AB A surface-selective nonlinear optical technique, such as second harmonic or sum frequency generation, is used to detect target-probe binding reactions or their effects, at an interface, without the use of labels. In addition, the direction of the nonlinear light is scattered from the interface in a well-defined direction and therefore its incidence at a detector some distance from the interface may be easily mapped to a specific and known location at the interface.

IT 273-53-0D, Benzoxazole, derivs.

RL: ARU (Analytical role, unclassified); ANST (Analytical study)
 (method and apparatus using a surface-selective nonlinear optical technique)

RN 273-53-0 HCAPLUS

CN Benzoxazole (CA INDEX NAME)

IC ICM G01N033-543

CC 9-1 (Biochemical Methods)
Section cross-reference(s): 1
ST app surface selective nonlinear optical technique; biochip
optical imaging hybridization drug screening protein DNA RNA
IT Cooperative phenomena
(antagonism; method and apparatus using a surface-selective nonlinear
optical technique)
IT Apparatus
(array; method and apparatus using a surface-selective nonlinear
optical technique)
IT Surface electric charge
(biol.; method and apparatus using a surface-selective nonlinear
optical technique)
IT Unsaturated compounds
RL: ARU (Analytical role, unclassified); ANST (Analytical study)
(cyanines; method and apparatus using a surface-selective nonlinear
optical technique)
IT Second-harmonic generation
(electrooptical; method and apparatus using a surface-selective
nonlinear optical technique)
IT Imaging
(endoscopy; method and apparatus using a surface-selective nonlinear
optical technique)
IT Wave
(evanescent, reflection; method and apparatus using a
surface-selective nonlinear optical technique)
IT Cyanine dyes
(hemicyanine; method and apparatus using a surface-selective nonlinear
optical technique)
IT Cyanine dyes
(indodicarbo-; method and apparatus using a surface-selective
nonlinear optical technique)
IT Ion channel
RL: ANT (Analyte); ARG (Analytical reagent use); ANST (Analytical
study); USES (Uses)
(ligand-gated; method and apparatus using a surface-selective
nonlinear optical technique)
IT Proteins
RL: PRP (Properties)
(membrane; method and apparatus using a surface-selective nonlinear
optical technique)
IT Affinity
Animal cell
Animal tissue
Azo dyes
Cyanine dyes
Electrostatic force
Fiber optics
Interface
Labels
Latex
Mathematical methods
Microarray technology
Molecular recognition
Nanoparticles
Optical detectors
Optical sensors
Planar waveguides (optical)
Protein sequences
Semiconductor materials

Simulation and Modeling
 Sum-frequency generation
 UV radiation
 Virus
 (method and apparatus using a surface-selective nonlinear
 optical technique)
 IT Neuropeptides
 RL: ANT (Analyte); ANST (Analytical study)
 (method and apparatus using a surface-selective nonlinear
 optical technique)
 IT Antibodies and Immunoglobulins
 Antigens
 Carbohydrates, analysis
 Enzymes, analysis
 Haptens
 Hormones, animal, analysis
 Ligands
 Nucleic acids
 Nucleosides, analysis
 Oligonucleotides
 Oligosaccharides, analysis
 Peptide nucleic acids
 Peptides, analysis
 Polynucleotides
 Receptors
 Toxins
 cDNA
 RL: ANT (Analyte); ARG (Analytical reagent use); ANST (Analytical
 study); USES (Uses)
 (method and apparatus using a surface-selective nonlinear
 optical technique)
 IT Proteins
 RL: ANT (Analyte); ARG (Analytical reagent use); PRP (Properties);
 ANST (Analytical study); USES (Uses)
 (method and apparatus using a surface-selective nonlinear
 optical technique)
 IT DNA
 RNA
 RL: ARG (Analytical reagent use); ANST (Analytical study); USES
 (Uses)
 (method and apparatus using a surface-selective nonlinear
 optical technique)
 IT Polyenes
 RL: ARU (Analytical role, unclassified); ANST (Analytical study)
 (method and apparatus using a surface-selective nonlinear
 optical technique)
 IT Polyimides, analysis
 RL: ARU (Analytical role, unclassified); ANST (Analytical study)
 (method and apparatus using a surface-selective nonlinear
 optical technique)
 IT Glass, uses
 RL: DEV (Device component use); USES (Uses)
 (method and apparatus using a surface-selective nonlinear
 optical technique)
 IT Metals, uses
 RL: DEV (Device component use); USES (Uses)
 (method and apparatus using a surface-selective nonlinear
 optical technique)
 IT Polyamide fibers, uses
 RL: DEV (Device component use); USES (Uses)

(method and apparatus using a surface-selective nonlinear optical technique)

IT Phospholipids, properties
RL: PRP (Properties)
(method and apparatus using a surface-selective nonlinear optical technique)

IT Fluids
(microfluids; method and apparatus using a surface-selective nonlinear optical technique)

IT Egg
(oocyte; method and apparatus using a surface-selective nonlinear optical technique)

IT Biosensors
(optical; method and apparatus using a surface-selective nonlinear optical technique)

IT Silanes
RL: DEV (Device component use); USES (Uses)
(organosilanes; method and apparatus using a surface-selective nonlinear optical technique)

IT Nucleic acid bases
RL: BSU (Biological study, unclassified); BIOL (Biological study)
(pairing; method and apparatus using a surface-selective nonlinear optical technique)

IT Phosphates, analysis
RL: ARU (Analytical role, unclassified); ANST (Analytical study)
(phosphoramidates; method and apparatus using a surface-selective nonlinear optical technique)

IT Electrooptical effect
(second-harmonic generation; method and apparatus using a surface-selective nonlinear optical technique)

IT 61-73-4, Methylene blue 92-84-2, Phenothiazine 103-33-3D,
derivs. 103-33-3D, Azobenzene, sulfonyl derivs. 108-78-1D,
Melamine, derivs. 198-55-0D, Perylene, derivs. 273-53-0D
, Benzoxazole, derivs. 288-42-6D, Oxazole, cycloalkano and diaryl
derivs. 1283-93-8 2321-07-5D, Fluorescein, derivs. 3784-99-4D,
Stilbazium, derivs. 5998-92-5D, aryl derivs. 17082-33-6D,
derivs. 25087-26-7D, Polymethacrylic acid, derivs. 25265-76-3D,
Diaminobenzene, derivs. 38620-93-8, Stilbazole 70380-75-5D, aryl
derivs. 110360-50-4 155862-95-6 155863-00-6 439858-43-2
439858-44-3D, derivs.
RL: ARU (Analytical role, unclassified); ANST (Analytical study)
(method and apparatus using a surface-selective nonlinear optical technique)

IT 1303-00-0, Gallium arsenide, uses 1306-23-6, Cadmium sulfide, uses
1306-24-7, Cadmium selenide, uses 7440-06-4, Platinum, uses
7440-22-4, Silver, uses 7440-57-5, Gold, uses 13463-67-7,
Titanium oxide, uses 14014-97-2, Gallium phosphate 14693-82-4,
Indium phosphate
RL: DEV (Device component use); USES (Uses)
(method and apparatus using a surface-selective nonlinear optical technique)

REFERENCE COUNT: 4 THERE ARE 4 CITED REFERENCES AVAILABLE FOR
THIS RECORD. ALL CITATIONS AVAILABLE IN
THE RE FORMAT

L24 ANSWER 6 OF 14 HCAPLUS COPYRIGHT 2007 ACS on STN
ACCESSION NUMBER: 2001:399458 HCAPLUS
DOCUMENT NUMBER: 135:220319
TITLE: Synthetic receptors as sensor coatings for
molecules and living cells

AUTHOR(S): Dickert, Franz L.; Hayden, Oliver; Halikias, Konstantinos P.

CORPORATE SOURCE: Institute of Analytical Chemistry, Vienna University, Vienna, A-1090, Austria

SOURCE: Analyst (Cambridge, United Kingdom) (2001), 126(6), 766-771

CODEN: ANALAO; ISSN: 0003-2654

PUBLISHER: Royal Society of Chemistry

DOCUMENT TYPE: Journal

LANGUAGE: English

AB Noncovalent molecularly imprinted polymers are applied as sensitive coatings to planar waveguides and mass-sensitive devices for the selective detection of various groups of analytes in the gaseous and aqueous phases. Cavity imprinting in the bulk of the sensor material as well as surface imprinting techniques were used to enrich analytes ranging from sub-nanometers to micrometers in analyte size. The coated devices provide sensitivity to e.g. polycyclic aromatic hydrocarbons, xanthine derivs., complex coffee samples and whole microorganisms.

IT 85-01-8, Phenanthrene, analysis

RL: ANT (Analyte); ANST (Analytical study)
(analytes and imprinting mols.; synthetic receptors as sensor coatings for mols. and living cells)

RN 85-01-8 HCPLUS

CN Phenanthrene (CA INDEX NAME)

IT 56-55-3, Benz[a]anthracene

RL: ANT (Analyte); ANST (Analytical study)
(analytes; synthetic receptors as sensor coatings for mols. and living cells)

RN 56-55-3 HCPLUS

CN Benz[a]anthracene (CA INDEX NAME)

CC 80-2 (Organic Analytical Chemistry)

Section cross-reference(s): 10, 17, 37

IT Optical sensors

Surface acoustic wave sensors

(synthetic receptors as sensor coatings for mols. and living cells)

IT 58-08-2, Caffeine, analysis 58-55-9, Theophylline, analysis

83-32-9, Acenaphthene 85-01-8, Phenanthrene, analysis

91-20-3, Naphthalene, analysis 120-12-7, Anthracene, analysis

129-00-0, Pyrene, analysis 198-55-0, Perylene
 RL: ANT (Analyte); ANST (Analytical study)
 (analytes and imprinting mols.; synthetic receptors as sensor
 coatings for mols. and living cells)

IT 56-55-3, Benz[a]anthracene 218-01-9, Chrysene
 RL: ANT (Analyte); ANST (Analytical study)
 (analytes; synthetic receptors as sensor coatings for mols. and
 living cells)

REFERENCE COUNT: 23 THERE ARE 23 CITED REFERENCES AVAILABLE
 FOR THIS RECORD. ALL CITATIONS AVAILABLE
 IN THE RE FORMAT

L24 ANSWER 7 OF 14 HCPLUS COPYRIGHT 2007 ACS on STN
 ACCESSION NUMBER: 1995:692957 HCPLUS
 DOCUMENT NUMBER: 123:288647
 TITLE: Polymeric waveguides for passive and
 active optical interconnection
 AUTHOR(S): Yardley, James T.; Beeson, Karl W.; Ferm, Paul;
 Knapp, Charles; McFarland, Michael; Nahata,
 Ajay; Wu, Chengjiu
 CORPORATE SOURCE: Allied-Signal Inc., Morristown, NJ, 07962, USA
 SOURCE: Polymer Preprints (American Chemical Society,
 Division of Polymer Chemistry) (1994),
 35(2), 92
 CODEN: ACPPAY; ISSN: 0032-3934
 PUBLISHER: American Chemical Society, Division of Polymer
 Chemistry
 DOCUMENT TYPE: Journal
 LANGUAGE: English
 AB Electrooptic response and thermal stability of a member of a new
 family of fluorene-based cardo polymers were reported. The
 materials described come very close to providing the required
 performance characteristics for practical waveguide
 devices.
 IT 86-73-7D, Fluorene, derivs., cardo polymers
 RL: DEV (Device component use); PRP (Properties); USES (Uses)
 (electrooptic response and thermal stability of fluorene-based
 cardo polymers as waveguides for passive and active
 optical interconnection)
 RN 86-73-7 HCPLUS
 CN 9H-Fluorene (CA INDEX NAME)

CC 38-3 (Plastics Fabrication and Uses)
 Section cross-reference(s): 73
 ST polymeric waveguide electrooptic thermal stability;
 fluorene based cardo polymer electrooptic thermal
 IT Waveguides
 (electrooptic response and thermal stability of fluorene-based
 cardo polymers as waveguides for passive and active
 optical interconnection)
 IT Cardo polymers
 RL: DEV (Device component use); PRP (Properties); USES (Uses)
 (fluorene-based; electrooptic response and thermal stability of

fluorene-based cardo polymers as waveguides for passive
and active optical interconnection)

IT 86-73-7D, Fluorene, derivs., cardo polymers
RL: DEV (Device component use); PRP (Properties); USES (Uses)
(electrooptic response and thermal stability of fluorene-based
cardo polymers as waveguides for passive and active
optical interconnection)

L24 ANSWER 8 OF 14 HCAPLUS COPYRIGHT 2007 ACS on STN

ACCESSION NUMBER: 1993:467276 HCAPLUS

DOCUMENT NUMBER: 119:67276

TITLE: Device and method for detection of compounds
which intercalate with nucleic acids

INVENTOR(S): Weetall, Howard H.

PATENT ASSIGNEE(S): United States Dept. of Commerce, USA

SOURCE: PCT Int. Appl., 28 pp.

CODEN: PIXXD2

DOCUMENT TYPE: Patent

LANGUAGE: English

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
-----	----	-----	-----	
-----	-----	-----	-----	
WO 9310266	A1	19930527	WO 1992-US9916	
				199211
				20

<--

W: AU, CA, JP

RW: AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, SE

AU 9331402	A	19930615	AU 1993-31402	
				199211
				20

<--

PRIORITY APPLN. INFO.:	US 1991-796391	A
		199111
		22

<--

WO 1992-US9916	A
	199211
	20

<--

AB A compound which intercalates with a nucleic acid is detected or determined in a sample by placing a fluorescent intercalating agent and a sample in close proximity to a **waveguide** coated with a nucleic acid and allowing them to react so that the sample competes with the fluorescent intercalating agent for nucleic acid binding sites. Excitation light is passed through the **waveguide** to excite the fluorescent intercalating agent coming within the evanescent wave; radiated light is detected from the fluorescent intercalating agent at the initiating end with a photodetector, and compared with that observed in the absence of sample. The **waveguide** may be an optical fiber or a plate. The method may be used to detect toxic substances in air, groundwater, etc. Thus, 1 μ mol ethidium bromide in a 10- μ L sample of rainwater was placed in contact with a silica fiber optic **waveguide** coated with double-stranded DNA and reacted for 15 min. Light of wavelength 500 nm was passed through the fiber, and all radiation

exiting the end face was collected with a lens and directed to a photodetector.

IT 85-01-8D, Phenanthrene, metal derivs. 86-73-7D,
9H-Fluorene, derivs.
RL: ANST (Analytical study)
(nucleic acid-intercalating, intercalating agent determination by competition with, on nucleic acid-coated waveguide)

RN 85-01-8 HCPLUS
CN Phenanthrene (CA INDEX NAME)

RN 86-73-7 HCPLUS
CN 9H-Fluorene (CA INDEX NAME)

IC ICM C12Q001-68
ICS C12M001-34
CC 9-5 (Biochemical Methods)
Section cross-reference(s): 4
ST DNA intercalator detn optic fiber; nucleic acid
intercalator detn waveguide
IT Dyes
(acridine, nucleic acid-intercalating, intercalating agent determination
by competition with, on nucleic acid-coated waveguide)
IT Poisons
(determination of, by nucleic acid intercalation, nucleic acid-coated
waveguide and competing fluorescent intercalating agent
for)
IT Actinomyces
(intercalating agent determination by competition with, on nucleic
acid-coated waveguide)
IT Nucleic acids
RL: ANST (Analytical study)
(intercalating agents for, determination of, waveguide and
competing fluorescent intercalating agent for)
IT Optical fibers
Plates and Trays
(nucleic acid-coated, as waveguides for nucleic
acid-intercalating agent determination, competing fluorescent
intercalating agent in relation to)
IT Waveguides
(nucleic acid-coated, for nucleic acid-intercalating agent determination,
fluorescent intercalating agent for)
IT Air analysis
Blood analysis
(nucleic acid-intercalating compds. determination in, nucleic acid-coated

waveguide and competing fluorescent intercalating agent
for)

IT Fluorescent substances
Aflatoxins
Epoxides
RL: ANST (Analytical study)
(nucleic acid-intercalating, intercalating agent determination by competition with, on nucleic acid-coated waveguide)

IT Deoxyribonucleic acids
Ribonucleic acids
RL: ANST (Analytical study)
(waveguide coated with, for intercalating agent determination by competition with fluorescent intercalating agent)

IT Quinones
RL: ANST (Analytical study)
(anthracyclines, nucleic acid-intercalating, intercalating agent determination by competition with, on nucleic acid-coated waveguide)

IT Molecular association
(intercalation, agents, determination of, competing fluorescent intercalating agent and nucleic acid-coated waveguide for)

IT Aromatic compounds
RL: ANT (Analyte); ANST (Analytical study)
(polycyclic, determination of, by nucleic acid intercalation, nucleic acid-coated waveguide and competing fluorescent intercalating agent for)

IT Hydrocarbons, uses
RL: ANST (Analytical study)
(polycyclic, nucleic acid-intercalating, intercalating agent determination by competition with, on nucleic acid-coated waveguide)

IT 7732-18-5, Water, analysis
RL: ANST (Analytical study)
(nucleic acid-intercalating compds. determination in, nucleic acid-coated waveguide and competing fluorescent intercalating agent for)

IT 65-61-2, Acridine orange 66-97-7D, Furocoumarin, derivs.
85-01-8D, Phenanthrene, metal derivs. 86-73-7D,
9H-Fluorene, derivs. 91-22-5D, Quinoline, derivs. 92-62-6,
3,6-Acridinediamine 92-82-0D, Phenazine, derivs. 92-84-2D,
Phenothiazine, derivs. 147-14-8 260-94-6D, Acridine, derivs.
486-25-9D, Fluorenone, derivs. 492-22-8D, Thianthrenone, derivs.
1239-45-8, Ethidium bromide 1404-00-8, Mitomycin 4440-80-6D,
derivs. 4803-27-4, Anthramycin 7440-06-4D, Platinum, complexes
65589-70-0, Acriflavine 148937-53-5, Norphilin A
RL: ANST (Analytical study)
(nucleic acid-intercalating, intercalating agent determination by competition with, on nucleic acid-coated waveguide)

L24 ANSWER 9 OF 14 HCPLUS COPYRIGHT 2007 ACS on STN

ACCESSION NUMBER: 1993:120431 HCPLUS

DOCUMENT NUMBER: 118:120431

TITLE: Miniaturized sensor for ionizing radiation,
especially for biomedical applications

INVENTOR(S): Lefkowitz, Steven M.; Leugers, Mary A.;
Brownell, Steven J.; Helmer, Deborah C.; Kastl,
Patrick E.; Chrisman, Ray; Langvardt, Patrick W.

PATENT ASSIGNEE(S): Dow Chemical Co., USA

SOURCE: U.S., 8 pp.

CODEN: USXXAM
 DOCUMENT TYPE: Patent
 LANGUAGE: English
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
-----	----	-----	-----	
US 5166073	A	19921124	US 1989-347692	198905 05

PRIORITY APPLN. INFO.:		US 1989-347692		
		198905 05		

- AB An optical sensor is disclosed which is useful for the detection of ionizing radiation emitted from an analyte in a fluid. The sensor is composed of a permeable scintillator having a high surface area to scintillator volume ratio and an optical waveguide located in working relation to the scintillator to collect light photons generated in response to an ionizing radiation source. The sensor is especially useful for biomedical applications. Increased sensitivity allows for miniaturization and implantation in a blood vessel of a small exptl. animal. The scintillator may be anthracene, naphthacene, pyrene, carbazole, etc. Schematics of the sensor are included. When the sensor of the invention was used to measure ¹⁴C-labeled 1-methoxy-2-propanol in samples of rat blood, the obtained log-log plot of the results was linear with relatively little scatter, indicating that the sensor was stable over a wide range of activity. The sensor was also used to determine ¹⁴C-labeled salicylic acid in the hepatic-portal and peripheral circulation of a dog. The pharmacokinetic results showed that the measured absorption rate, steady-state concentration, and elimination rate for salicylic acid in the blood corresponded to values using *in vitro* methods.
- IT 85-01-8, Phenanthrene, uses 86-73-7, 9H-Fluorene
 RL: USES (Uses)
 (as scintillator, in sensor for ionizing radiation-emitting analyte in fluid, for pharmacokinetic and other biomedical applications)
- RN 85-01-8 HCAPLUS
 CN Phenanthrene (CA INDEX NAME)

RN 86-73-7 HCAPLUS
 CN 9H-Fluorene (CA INDEX NAME)

IC H01L070-00
 INCL 436057000
 CC 9-1 (Biochemical Methods)
 Section cross-reference(s): 1, 8
 IT Optical fibers
 Scintillators
 (in sensor for ionizing radiation-emitting analyte in fluid, for pharmacokinetic and other biomedical applications)
 IT Waveguides
 (optical, in sensor for ionizing radiation-emitting analyte in fluid, for pharmacokinetic and other biomedical applications)
 IT 85-01-8, Phenanthrene, uses 86-73-7, 9H-Fluorene
 86-74-8, Carbazole 91-20-3, Naphthalene, uses 92-24-0,
 Naphthacene 120-12-7, Anthracene, uses 129-00-0, Pyrene, uses
 132-64-9, Diphenylene oxide 135-48-8, Pentacene 206-44-0,
 Fluoranthene 213-46-7, Picene 218-01-9, Chrysene 258-31-1,
 Hexacene
 RL: USES (Uses)
 (as scintillator, in sensor for ionizing radiation-emitting analyte in fluid, for pharmacokinetic and other biomedical applications)

L24 ANSWER 10 OF 14 HCPLUS COPYRIGHT 2007 ACS on STN
 ACCESSION NUMBER: 1991:546206 HCPLUS
 DOCUMENT NUMBER: 115:146206
 TITLE: Correlation of single-mode fiber radiation response and fabrication parameters
 AUTHOR(S): Friebel, E. Joseph; Askins, Charles G.; Shaw, Cathy M.; Gingerich, Michael E.; Harrington, Calvin C.; Griscom, David L.; Tsai, Tsung Ein; Paek, Un Chul; Schmidt, William H.
 CORPORATE SOURCE: AT and T Bell Lab., Princeton, NJ, 08540, USA
 SOURCE: Applied Optics (1991), 30(15), 1944-57
 CODEN: APOPAL; ISSN: 0003-6935
 DOCUMENT TYPE: Journal
 LANGUAGE: English
 AB Statistically significant correlations were established between certain fabrication parameters of matched clad, single-mode optical fiber waveguides and their response to an ionizing radiation dose of 2000 rad. The recovery data measured at -35° following exposure were fit to nth-order kinetic behavior where the adjustable parameters are the initial and permanent incremental losses (A_0 and A_f , resp.), the half-life of attenuation τ , and the order of kinetics n . The set of fibers chosen for anal. had Ge-doped silica cores. In fibers with Ge-F doped silica clads, A_0 correlates with the concentration of Ge-doped into the fiber core; A_f correlates with the ratio of oxygen to reagent used during core deposition; and τ and n correlate with a two-way interaction of core oxygen and fiber draw speed. In P-F-doped clad fibers, the P concentration correlates with the order of the kinetics of recovery.
 IT 86-73-7, Fluorene

RL: PRP (Properties)
 (optical fibers using, fabrication parameters and
 radiation response of)
 RN 86-73-7 HCPLUS
 CN 9H-Fluorene (CA INDEX NAME)

CC 73-12 (Optical, Electron, and Mass Spectroscopy and Other Related Properties)
 ST optical fiber waveguide radiation response
 fabrication
 IT Radiation, chemical and physical effects
 (on optical fiber waveguides)
 IT Waveguides
 (optical, fiber, fabrication parameters and radiation
 response of)
 IT 86-73-7, Fluorene 7440-56-4, Germanium, properties
 7631-86-9, Silica, properties
 RL: PRP (Properties)
 (optical fibers using, fabrication parameters and
 radiation response of)

L24 ANSWER 11 OF 14 HCPLUS COPYRIGHT 2007 ACS on STN
 ACCESSION NUMBER: 1990:541834 HCPLUS
 DOCUMENT NUMBER: 113:141834
 TITLE: Plasma-assisted deposition of integrated
 optic waveguides
 AUTHOR(S): Gawne, D. T.; Nourshargh, N.; Kandasamy, I.;
 Starr, E. M.
 CORPORATE SOURCE: Dep. Mater. Technol., Brunel Univ.,
 Uxbridge/Middlesex, UK
 SOURCE: Surface Engineering (1990), 6(2),
 107-12
 CODEN: SUENET; ISSN: 0267-0844
 DOCUMENT TYPE: Journal
 LANGUAGE: English

AB A plasma assisted CVD technique for fabrication of optical planar waveguides on silica substrates is described. Silica films doped with germania were deposited at 1000-1100° with <0.3 dB cm⁻¹ attenuation, sharp refractive index profiles, and satisfactory adhesion and integrity. Deposition was achieved at temps. down to 100°, but resultant film attenuation adhesion, and integrity are substantially inferior. Codeposition of F improves the mech. properties, while cladding and buffer layers are expected to enhance the optical performance of the waveguides.

IT 86-73-7, Fluorene
 RL: PEP (Physical, engineering or chemical process); PROC (Process)
 (codeposition of, in plasma assisted chemical vapor deposition of
 integrated optical waveguides)
 RN 86-73-7 HCPLUS
 CN 9H-Fluorene (CA INDEX NAME)

CC 73-11 (Optical, Electron, and Mass Spectroscopy and Other Related Properties)
 ST plasma chem vapor deposition silica waveguide; germania
 silica deposition waveguide
 IT Waveguides
 (optical, plasma-assisted chemical vapor deposition of germanium-doped silica films for)
 IT 86-73-7, Fluorene
 RL: PEP (Physical, engineering or chemical process); PROC (Process)
 (codeposition of, in plasma assisted chemical vapor deposition of integrated optical waveguides)
 IT 1310-53-8, Germanium dioxide, uses and miscellaneous
 RL: USES (Uses)
 (plasma-assisted chemical vapor deposition of optical waveguides from silica film and)
 IT 7631-86-9, Silica, uses and miscellaneous
 RL: USES (Uses)
 (plasma-assisted deposition of optical waveguides from germania and)

L24 ANSWER 12 OF 14 HCPLUS COPYRIGHT 2007 ACS on STN
 ACCESSION NUMBER: 1989:222220 HCPLUS
 DOCUMENT NUMBER: 110:222220
 TITLE: Signal dispersion in single-mode fiber-optic waveguides with a fluorine-doped cladding
 AUTHOR(S): Karasek, Miroslav
 CORPORATE SOURCE: Ustav Radiotech. Elektron., CSAV, Prague, Czech.
 SOURCE: Slaboproudý Obzor (1989), 50(1), 17-21
 CODEN: SLOZAE; ISSN: 0037-668X
 DOCUMENT TYPE: Journal
 LANGUAGE: Czech
 AB A comparison of the results of calculating the spectral characteristics of chromatic dispersion of single-mode fiber-optic waveguides with a F-doped cladding with those obtained by measurement is given. A math. model is used to study the effects of refractive index-profile defects of the waveguide core and cladding detected by measuring the refractive index profile of the preform. Chromatic dispersion was measured by the phase method. Good agreement was obtained between the calculated and measured values of com. types of optical waveguides.
 IT 86-73-7, Fluorene
 RL: PRP (Properties)
 (quartz optical fibers with cladding containing, signal dispersion in single-mode)
 RN 86-73-7 HCPLUS
 CN 9H-Fluorene (CA INDEX NAME)

CC 73-11 (Optical, Electron, and Mass Spectroscopy and Other Related Properties)
 ST fiber optical fluorine cladding dispersion
 IT Optical dispersion
 (in quartz single-mode optical fibers with fluorine-doped cladding)
 IT Optical fibers
 (quartz, single-mode, with fluorine-doped cladding, signal dispersion in)
 IT 60676-86-0, Vitreous silica
 RL: USES (Uses)
 (optical fibers from, with fluorene-doped cladding, signal dispersion in single-mode)
 IT 86-73-7, Fluorene
 RL: PRP (Properties)
 (quartz optical fibers with cladding containing, signal dispersion in single-mode)

L24 ANSWER 13 OF 14 HCAPLUS COPYRIGHT 2007 ACS on STN

ACCESSION NUMBER: 1987:81211 HCAPLUS
 DOCUMENT NUMBER: 106:81211
 TITLE: Single optical fiber sensor for measuring the partial pressure of oxygen
 INVENTOR(S): Murray, Richard C., Jr.; Lefkowitz, Steven M.
 PATENT ASSIGNEE(S): Gould, Inc., USA
 SOURCE: Eur. Pat. Appl., 21 pp.
 CODEN: EPXXDW
 DOCUMENT TYPE: Patent
 LANGUAGE: English
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
EP 190830	A2	19860813	EP 1986-300264	198601 16
<--				
EP 190830	A3	19880427		
R: BE, DE, FR, GB, IT, NL				
JP 61178646	A	19860811	JP 1986-21326	198602 04
<--				
PRIORITY APPLN. INFO.:			US 1985-698282	A
198502 04				
<--				

AB A miniaturized, fast, sensitive O₂ sensor for use in medical applications consists of a plastic optical waveguide having a cladding and a core. A portion of the core is exposed, plasticized, and a fluorescent, O₂-sensitive dye is integrated therein. A 250-μm diameter plastic optical fiber having a polyacrylic core and a fluorinated acrylic cladding was dipped at one end in AcOEt to dissolve the cladding. After removal of the cladding, the exposed core was dipped into a solution of (4,7-diphenyl-1,10-phenanthroline) Ru(II) perchlorate and a plasticizer (e.g. diisobutyl phthalate) in CH₂Cl₂. The other end of

the fiber is adapted receive light from a light source and to provide an outlet for fluoresced light to go to a signal detector. The intensity of fluorescence is dependent on the partial pressure of O₂ in the environment. The device is responsive to changes in the partial pressure of O₂ of 1-5 mmHg.

IT 66-71-7D, 1,10-Phenanthroline, derivs., transition metal complexes, salts

RL: ANST (Analytical study)
(in oxygen sensor, plasticized matrix on fiber-optic waveguide containing)

RN 66-71-7 HCPLUS

CN 1,10-Phenanthroline (CA INDEX NAME)

IC ICM G01N021-64
ICS G01N021-77

CC 9-1 (Biochemical Methods)
Section cross-reference(s): 79

ST oxygen sensor fluorescence waveguide; fiber optics
oxygen sensor fluorescence; ruthenium phenanthroline oxygen sensor

IT Paraffin waxes and Hydrocarbon waxes, biological studies

RL: BIOL (Biological study)
(polymer plasticizer, in oxygen sensor, oxygen-responsive fluorescent salt on fiber-optic waveguide in relation to)

IT Vinyl acetal polymers

RL: ANST (Analytical study)
(butyral, oxygen sensor optical waveguide core containing, oxygen-sensitive fluorescent salt in)

IT Transition metals, compounds

RL: ANST (Analytical study)
(complexes, phenanthroline derivative, salts, in oxygen sensor, plasticized matrix on fiber-optic waveguide containing)

IT Waveguides

(optical, fiber, plasticized polymer core containing oxygen-responsive fluorescent salt in, as oxygen sensor)

IT 141-78-6, Ethyl acetate, biological studies

RL: BIOL (Biological study)
(as solvent, for optical waveguide cladding removal in oxygen sensor manufacture)

IT 66-71-7D, 1,10-Phenanthroline, derivs., transition metal complexes, salts 7439-88-5D, Iridium, 1,10-phenanthroline derivative complexes, salts 7440-04-2D, Osmium, 1,10-phenanthroline derivative complexes, salts 7440-16-6D, Rhodium, 1,10-phenanthroline derivative complexes, salts 7440-18-8D, Ruthenium, 1,10-phenanthroline derivative complexes, salts 63373-04-6D, salts 75213-31-9

RL: ANST (Analytical study)
(in oxygen sensor, plasticized matrix on fiber-optic waveguide containing)

IT 9002-86-2, Polyvinyl chloride 9003-20-7, Polyvinyl acetate

RL: ANST (Analytical study)

(oxygen sensor optical waveguide core containing,
oxygen-sensitive fluorescent salt in)
IT 129-00-0D, Pyrene, derivs. 198-55-0D, Perylene, derivs.
RL: ANST (Analytical study)
(oxygen-sensitive fluorescent dye, in oxygen sensor, fiber-optic waveguide in relation to)
IT 65-85-0D, Benzoic acid, derivs. 84-69-5, Diisobutyl phthalate
88-99-3D, derivs. 111-20-6D, Sebacic acid, derivs. 124-04-9D,
Adipic acid, derivs.
RL: ANST (Analytical study)
(polymer plasticizer, in oxygen sensor, oxygen-responsive
fluorescent salt on fiber-optic waveguide in
relation to)
IT 7782-44-7, Oxygen, biological studies
RL: BIOL (Biological study)
(sensor for, plastic optical waveguide and
oxygen-sensitive fluorescent dye in plasticized matrix in
relation to)
IT 64-17-5, Ethanol, biological studies 67-64-1, Acetone, biological
studies
RL: BIOL (Biological study)
(solvent, for expansion of optical waveguide
core in oxygen sensor manufacture)
IT 75-09-2, Methylene chloride, biological studies 109-99-9,
Tetrahydrofuran, biological studies
RL: BIOL (Biological study)
(solvent, for expansion of, optical waveguide
core in oxygen sensor manufacture)

L24 ANSWER 14 OF 14 HCPLUS COPYRIGHT 2007 ACS on STN
ACCESSION NUMBER: 1987:46867 HCPLUS
DOCUMENT NUMBER: 106:46867
TITLE: Optical sensor for monitoring the
partial pressure of oxygen
INVENTOR(S): Murray, Richard C., Jr.; Lefkowitz, Steven M.
PATENT ASSIGNEE(S): Gould, Inc., USA
SOURCE: Eur. Pat. Appl., 21 pp.
CODEN: EPXXDW
DOCUMENT TYPE: Patent
LANGUAGE: English
FAMILY ACC. NUM. COUNT: 1
PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
EP 190829	A2	19860813	EP 1986-300263	198601 16 ---
EP 190829 R: BE, DE, FR, GB US 4752115	A3	19880427		
	A	19880621	US 1985-699515	198502 07 ---
JP 61182557	A	19860815	JP 1986-21327	198602 04 ---

PRIORITY APPLN. INFO.:

US 1985-699515

A

198502
07

<--

- AB An optical sensor for determination of pO₂ in various environments for medical applications consists of a miniature, easily fabricated device made of a single optical fiber designed for remote applications, which is not subject to the effects of membrane contamination, and is suitable for use in small channels such as blood vessels and single-lumen medical catheters. A 250-μm plastic optical fiber was cut at 1 end at a 20-30° angle from the fiber axis, and was dipped into a solution consisting of 0.0254 g tris(4,7-diphenyl-1,10-phenanthroline)ruthenium(II) perchlorate, 1.00 g PVC, and plasticizer (e.g. 1.00 g diethyl phthalate) in 25 g THF to form a plasticized polymer coating on the fiber containing O₂-sensitive fluorescent dye. The other end of the fiber was adapted to receive light and to provide an outlet for fluorescent light to go to a signal detector. The intensity of fluorescence is related to the pO₂ in the environment. The sensitivity of the device is .apprx.1-5 mm Hg of O₂.
- IT 66-71-7D, 1,10-Phenanthroline, derivs., transition metal complexes, salts
 RL: ANST (Analytical study)
 (in oxygen sensor, plasticized matrix on fiber-optic waveguide containing)
- RN 66-71-7 HCPLUS
- CN 1,10-Phenanthroline (CA INDEX NAME)

- IC ICM G01N021-64
 ICS G01N021-77
- CC 9-1 (Biochemical Methods)
 Section cross-reference(s): 79
- ST oxygen sensor fluorescence waveguide; fiber optics
 oxygen sensor fluorescence; ruthenium phenanthroline oxygen sensor
- IT Polymers, uses and miscellaneous
 Rubber, silicone, uses and miscellaneous
 Urethane polymers, uses and miscellaneous
 RL: USES (Uses)
 (plasticized, oxygen-responsive fluorescent salt in, on fiber-optic waveguide in oxygen sensor)
- IT Vinyl acetal polymers
 RL: USES (Uses)
 (butyral, plasticized, oxygen-responsive fluorescent salt in, on fiber-optic waveguide in oxygen sensor)
- IT Transition metals, compounds
 RL: ANST (Analytical study)
 (complexes, with phenanthroline derivs., in oxygen sensor, plasticized matrix on fiber-optic waveguide containing)
- IT Waveguides

- (optical, fiber, in oxygen sensor, oxygen-responsive
fluorescent salt immobilized on, with plasticized polymer)
- IT 7782-44-7, Oxygen, analysis
RL: ANT (Analyte); ANST (Analytical study)
(determination of, sensor for, oxygen-responsive fluorescent salt in
plasticized polymer on fiber-optic waveguide
in)
- IT 66-71-7D, 1,10-Phenanthroline, derivs., transition metal
complexes, salts 7439-88-5D, Iridium, phenanthroline derivative
complexes, salts 7440-04-2D, Osmium, phenanthroline derivative
complexes, salts 7440-16-6D, Rhodium, phenanthroline derivative
complexes, salts 7440-18-8D, Ruthenium, phenanthroline derivative
complexes, salts 63373-04-6 75213-31-9
RL: ANST (Analytical study)
(in oxygen sensor, plasticized matrix on fiber-optic
waveguide containing)
- IT 9002-86-2, Polyvinyl chloride 9003-53-6, Polystyrene 9011-14-7,
Polymethyl methacrylate
RL: ANST (Analytical study)
(plasticized, oxygen-responsive fluorescent salt in, on fiber-
optic waveguide in oxygen sensor)
- IT 84-61-7, Dicyclohexyl phthalate 84-77-5, Didecyl phthalate
119-06-2, Ditridecyl phthalate
RL: ANST (Analytical study)
(polymer plasticizer, in oxygen sensor, immobilized
oxygen-responsive fluorescent salt on fiber-optic
waveguide in relation to)
- IT 77-92-9D, Citric acid, derivs. 88-99-3D, Phthalic acid, derivs.
111-20-6D, Sebacic acid, derivs. 124-04-9D, Adipic acid, derivs.
RL: ANST (Analytical study)
(polymer plasticizers, in oxygen sensor, immobilized
oxygen-responsive fluorescent salt on fiber-optic
waveguide in relation to)

>