MODULE IV

TREES

Trees

- Non-Linear Data Structure
- Requires a two dimensional representation
- Tree is used when a hierarchical relationship among data is to be preserved
- Ancestor/Predecessor Successor relationship

Node

- This is the main Component of any tree
- Node stores the actual data and links to other nodes

Parent

Parent of a node is the immediate predecessor of a node

Child

Child of a node is the immediate Successor of a node

Link (also known as edge or branch)

- This is a pointer to a node in a tree
- There may have more than one links from a node

Root

Specially designated node – which has no parent

- Leaf (also known as terminal nodes)
 - Node which is at the end of a tree which do not have any child
- Level (level of a node)
 - It is the rank in the hierarchy
 - Root has level 0
 - If Parent is at level "L", its child will be at Level "L+1"
- Height (also known as Depth)
 - Maximum number of nodes that is possible in a path starting from the root node to a leaf node
 - Height $H = L_{max} + 1$, where L_{max} is the Maximum level

- Degree (degree of a node)
 - Maximum number of children that is possible for a node
- Sibling
 - Nodes which have same parent
- Internal and External nodes
 - Leaf nodes are known as external nodes, other nodes are known as internal nodes
- There will be <u>only one path</u> from one node to another in a tree

Tree - definition

- A tree is a finite set of one or more nodes such that
 - There is a specially designated node called the root
 - ii. The remaining nodes are portioned into n disjoined sets T₁,T₂,....,T_n (n>0) where each T_i (i = 1,2,...,n) is a tree. T₁,T₂,....,T_n are called the subtrees of the root

String notation of a Tree

$$T \rightarrow (A(T_1,T_2))$$
 $T_1 \rightarrow (B(T_{11},E,F))$
 $T_2 \rightarrow (C(G,H))$
 $T_{11} \rightarrow (D(I))$

String Notation

$$T \rightarrow (A(B(D(I),E,F),C(G,H)))$$

Module IV

Trees

String notation of a Tree

$$T-> (A(B(C(E),F,D),G(H,I(J))))$$

T-> (A(B(C(E),F,D),G(H,I(J))))

Module IV

Trees

Binary Trees

- Is a special form of Tree
- Binary tree T can be defined as a finite set of nodes, such that:
 - T is empty (called the empty binary tree) or
 - ii. T contains a specially designated node called the root of T and the remaining nodes of T form two disjoint binary trees T_1 and T_2 which are called the left subtree and right subtree respectively.
- Each node can have maximum 2 children
 - Left Child and Right Child

Tree and Binary Tree

- Tree cannot be empty, where a Binary Tree
 Can be Empty
- Node in a tree can have Any number of children. In a binary tree a node can have at most two children, so degree of a node will not exceed 2
- Every Binary tree is a tree. But every tree may not be a binary tree.

Binary Tree

Full Binary Tree

- A binary tree is a full binary tree if it contains the maximum possible number of nodes at all levels
 - Except leaf nodes all have two children

Complete Binary Tree

- A binary tree is a Complete binary tree if all its levels, except possibly the last level have the maximum number of possible nodes.
- Also all the nodes in the last level appear as far left as possible
- A full binary tree is a complete binary tree. But a complete binary tree may not be a full binary tree always

Full Binary Tree

Complete Binary Tree

Binary Tree

- The maximum number of nodes on level "l" is 2^l where l >= 0
- The maximum number of nodes possible in a binary tree of height "h" is 2^h-1
- The minimum number of nodes possible in a binary tree of height "h" is h
- For any non-empty binary tree, if there are n nodes there will be n-1 edges
- For any non-empty binary tree, if n_0 is the number of leaf nodes (degree = 0) and n_2 is the number of internal nodes (degree = 2), then $n_0 = n_2 + 1$

Module IV

Binary Tree Representation

- Hierarchical relationship between parent and child should be maintained
- Two approaches
 - Arrays Representation
 - Linear or sequential representation
 - Do not require the overhead of maintaining pointers or links
 - Linked List Representation
 - Using pointers

- Static representation a block of memory for an array is allocated before storing the actual tree.
- Once allocated, the size of the tree is restricted as permitted by the memory
- Nodes are stored level by level (from Level 0)
- Root node is stored in first memory (index 1)

- Rules to decide the location of each node in a binary tree
- The root node is at location 1 (Index 1)
- For any node with index i, 1 < i <= n (for some n nodes)
 - a) Parent(i) = i/2 // if i = 5, parent will be in the index $5/2 = 2.5 \approx 2$
 - For the node when i = 1, there is no parent // ie. Root node
 - b) Left Child(i) = 2 * i
 - If 2*i > n, then i has no left child
 - c) Right Child(i) = (2 * i)+1
 - If 2*i + 1 > n, then i has no Right child

Module IV

Trees

Module IV

•
$$(A - B) + C * (D/E)$$
 // Expression tree

Module IV

Trees

Binary Tree - Linked List Representation

- Data is the information content of the node
- LC and RC are the two link fields used to store the addresses of Left child and Right child of a node
- If one knows the address of the root node, then from it any other node can be accessed

Binary Tree Representation

- Check limitations and advantages of Array representation
- Compare that with linked List

Binary Tree Traversals

- Traversal operation is used to visit each node in the tree exactly once
- A full traversal on a binary tree gives a linear ordering of the data in the tree
- If the binary tree contains an arithmetic expression then its traversal may give the expression in infix notation, prefix notation and postfix notation.

Binary Tree Traversals

• Inorder (LR₀R)

- Traverse the left sub tree of the root node in inorder
- Visit the Root node
- Traverse the Right sub tree of the root node in inorder

Preorder (R₀ L R)

- Visit the Root node
- Traverse the left sub tree of the root node in preorder
- Traverse the Right sub tree of the root node in preorder

Postorder (L R R₀)

- Traverse the left sub tree of the root node in postorder
- Traverse the Right sub tree of the root node in postorder
- Visit the Root node

Inorder Traversal

Algorithm Inorder(Ptr)

- 1) If(Ptr ≠ NULL) then
 - a) Inorder (Ptr \rightarrow LC)
 - b) Visit (Ptr)
 - c) Inorder (Ptr \rightarrow RC)
- 2) Endif
- 3) Stop

(LR_0R)

```
// initially Ptr will be Root

//Start from Root node

// If it is not an empty node

// Traverse left sub tree in inorder

// Visit the node

// Traverse right sub tree in inorder
```

Preorder Traversal (R₀ L R)

Algorithm Preorder(Ptr)

```
// initially Ptr will be Root
// Start from Root
```

- 1) If(Ptr ≠ NULL) then
 - a) Visit (Ptr)
 - b) Preorder (Ptr \rightarrow LC)
 - c) Preorder (Ptr \rightarrow RC)
- 2) Endif
- 3) Stop

```
// Start from Root

// If it is not an empty node

// Visit the node

// Traverse left sub tree in preorder

// Traverse left sub tree in preorder
```

Postorder Traversal (LRR₀)

Algorithm Postorder (Ptr)

// initially Ptr will be Root

// Start from Root node

- 1) If(ptr ≠ NULL) then
 - a) Postorder (Ptr \rightarrow LC)
 - b) Postorder (Ptr \rightarrow RC)
 - c) Visit (Ptr)
- 2) Endif
- 3) Stop

```
// If it is not an empty node
```

```
// Traverse left sub tree in postorder
```

// Traverse left sub tree in postorder

// Visit the node

Formation of Binary Tree From Traversals

- From a single traversal it is not possible to create a unique binary tree
- Two traversals are essential
 - One should be inorder traversal
 - Other can be Preorder or Postorder

Basic Principle

- If Preorder is given First node is the root node
- If Postorder is given Last node is Root node
- Once root is identified, its left and right sub trees can be identified from the inorder traversal

(The same method is repeated in the sub-trees)

Non Recursive B.T Traversals (Iterative)

Preorder

- 1) Push(Root)
- 2) While (Top \neq 0) do // while stack is not empty
 - 1) Ptr = Pop()
 - **2)** If(Ptr ≠ NULL)
 - i. Visit (Ptr)
 - ii. Push(RChild[Ptr]), if there is a RChild for Ptr
 - iii. Push(LChild[Ptr]), if there is a LChild for Ptr
 - 3) EndIf
- 3) End While
- 4) Stop

Non Recursive B.T Traversals (Iterative)

> Inorder

- 1) Create an empty stack S.
- 2) Initialize **current** node as root
- 3) Push the current node to Stack S and set current = current → Left_Child until current is NULL (ie. If current is NULL stop Step 3, go to step 4)
- 4) If current is NULL and stack is not empty then
 - a) X= Pop() // Pop the top item from stack.
 - b) Print the popped item X
 - c) Set **current = X** → **Right_Child** // Right Child of Popped Item
 - d) Go to step 3.
- 5) If current is NULL and stack is empty then Finished

Module IV

Trees

Inorder – iterative

- 1) Set curr = Root 2) While (curr != NULL || Stack s is not empty) 1) While (curr != NULL) s.push(curr) curr = curr->left /* Reach the left most Node of the *curr* Node */ 2) End While 3) X = s.pop()Display X 4) 5) curr = X->right; /* we have visited the node and its left subtree. Now, it's right subtree's turn */
- 3) End While

Non Recursive B.T Traversals (Iterative)

Postorder

- // Here Two Stacks are used St1 and St2
- 1) Push Root into St1
- 2) While(St1 is not empty)
 - 1) X = St1.Pop() // Pop the node from St1
 - 2) St2.Push(X) // Push it into St2.
 - 3) St1.Push(X \rightarrow LC), if Left child is not NULL
 - 4) St1.Push(X →RC) , if Right Child is not NULL//Push the left and right child nodes of popped node into St1.
- 3) EndWhile
- 4) Pop out all the nodes from St2 and print it.

Binary Search Tree

- It's a Binary Tree
- For any node "n", value of "n" is Larger than every node in Left Subtree and Smaller than every node in Right Subtree
- All the elements in a BST will be unique. Ie. there will not be any duplicate elements.

Searching an Item in BST

- Suppose ITEM is the item to be searched in a binary search tree.
- We will start from root node R.
 - If ITEM is the data in the node we will stop success
 - If ITEM is less than the value in the node, we will proceed to the left child
 - If ITEM is larger, we will proceed to the right child
- This process will be continued until we reach a dead end (ITEM is not Present)

Searching an Item in BST - Algorithm

Steps:

```
    ptr = ROOT, flag = FALSE

                                                                                                                                                                                                                                                                                                               // Start from the root
                    While (ptr \neq NULL) and (flag = FALSE) do
    3.
                                  Case: ITEM < ptr→DATA
                                                                                                                                                                                                                                                                                                // Go to the left sub-tree
                                                ptr = ptr \rightarrow LCHILD
    4.
    5.
                                  Case: ptr→DATA = ITEM
                                                                                                                                                                                                                                                                                                          // Search is successful
    6.
                                               flag = TRUE
                                  Case: ITEM > ptr→DATA
    7.
                                                                                                                                                                                                                                                                                        // Go to the right sub-tree
                                               ptr = ptr \rightarrow RCHILD
    9.
                                  EndCase
10.
                   EndWhile
                  If (flag = TRUE) then
                                                                                                                                                                                                                                                     // Search is successful
                    Print "ITEM has found at the node", ptr
12.
13.
                Else
                                                                                                               THE SELECTION OF THE RESERVE OF THE PARTY OF
                                 Print "ITEM does not exist: Search is unsuccessful"
                 EndIf
```

Binary Search Tree - Searching

If Search item is 10

- o Root 12
- \circ **10** < 12 --- 12 \rightarrow LC is 8
- \circ 10 > 8 --- 8 \rightarrow RC is 10
- 10 = 10 ---- Success

If Search item is 17

- o Root 12
- \circ 17 > 12 --- 12 \rightarrow RC is 18
- \circ 17 < 18 --- 18 \rightarrow LC is 15
- \circ 17 > 15 ---- 15→RC is NULL
- Search Failed

Binary Search Tree - Insertion

- While inserting a new node initially the binary tree is searched (with the item is to be inserted) from its Root node.
- If the item is to be inserted already exists, do nothing.
- Otherwise the item will be inserted at the dead end where the search halts.

BST Insertion - Algorithm

- // Let X be the data of the node to be inserted, initially Root
 will be NULL (empty tree)
- 1) Ptr = Root, Flag = False
- 2) While (Ptr ≠ NULL) and (Flag = False) do // Start from Root
 - 1) If $(X < Ptr \rightarrow Data)$ then // Go to Left Subtree
 - 1) Ptr1 = Ptr
 - 2) Ptr = Ptr \rightarrow LChild
 - 2) Else If $(X > Ptr \rightarrow Data)$ // Go to Right Subtree
 - 1) Ptr1 = Ptr
 - 2) Ptr = Ptr \rightarrow RChild
 - 3) Else
 - 1) Flag = True
 - 2) Print "Item X already exists"
 - 3) Exit // Quit the execution
 - 4) EndIf
- 3) End While

Module IV

Trees

// Node exists

BST Insertion - Algorithm

- 4) If (Ptr = NULL) then
 - 1) Create a new node New
 - 2) New \rightarrow Data = X
 - 3) New \rightarrow LChild = NULL
 - 4) New \rightarrow RChild = NULL
 - 5) If (Root = NULL) Root = New
 - 6) Else If $(X > Ptr1 \rightarrow Data)$ then $Ptr1 \rightarrow RChild = New$
 - 7) Else

 $Ptr1 \rightarrow LChild = New$

- 8) End if
- 5) Endif
- 6) Stop

BST Insertion - Example

 If Item 10 is to be added It will check as in the figure and item will be added as a Right Child of node 8

Module IV

Trees

BST Insertion - Example

 If Item 15 is to be added It will check as in the figure and item will find that 15 already exists.
 So it will stop without inserting a new node

Module IV

Trees

Binary Search Tree - Deletion

- The deletion of a node N depends on the number of its children
- Three cases are there
 - 1) N is leaf node
 - 2) N has exactly one Child
 - 3) N has two children

Binary Search Tree - Deletion

N is a leaf node

 Here N is simply deleted from the Tree by setting the pointer of N in the Parent(N) by NULL value

N has exactly one child

 Here N is deleted from the Tree by replacing the pointer of N in Parent(N) by the pointer of the only child of N

Binary Search Tree - Deletion

N has two children

N is deleted from Tree by first deleting Succ(N)
from Tree (by using case 1 & case 2) and then
replacing the data content in node N by the data
content in node Succ(N).

(It should be verified that Succ(N) has no Left child)

Reset the left child of Parent of Succ(N) by the right child of Succ(N)

BST Deletion - Algorithm

Algorithm Delete_BST(X) //Let x be the data in the node to be deleted

- 1) Ptr = Root, Flag = False
- 2) While (Ptr ≠ NULL) and (Flag = False) do
- 3) If $(X < Ptr \rightarrow Data)$ then
 - 1) Parent = Ptr
 - 2) Ptr = Ptr \rightarrow Lchild
- 4) Else if $(X > Ptr \rightarrow Data)$ then
 - 1) Parent = Ptr
 - 2) Ptr = Ptr \rightarrow Rchild
- 5) Else if($X = Ptr \rightarrow Data$) then
 - 1) Flag = True
- 6) EndIf
- **7) End Wh**ile

```
// Steps to Find
// the location of
//the node
```

```
// Deciding the case of Deletion
8) If (Flag = False) then
                              // node does not exist
       Print "Item Not Found"
   2) Exit
9)
    EndIf
10) If (Ptr \rightarrow Lchild = NULL) and (Ptr \rightarrow Rchild = NULL) then
        Case = 1
                                  // node has no child
11) Else if(Ptr \rightarrow Lchild \neq NULL) and (Ptr \rightarrow Rchild \neq NULL) then
        Case = 3
                                  // node contains left and right child
12) Else
        Case = 2
                                  // node contains only one childe
13) EndIf
```

```
// Deletion in Case 1
14) If (Case = 1) then
   1) If(Parent → Lchild = Ptr) then // if node is a left child
          Parent → Lchild = NULL
      Else
   2)
                                          // if node is a right child
          Parent → Rchild = NULL
      EndIf
   3)
   4) Return Ptr (deleted node) to the memory bank
15) EndIf
```

```
// Deletion in Case 2
16) If (Case = 2) then
    1) If (Parent \rightarrow Lchild =Ptr) then // if node is a left child
        1) If (Ptr \rightarrow Lchild = NULL) then // if node has no left child
                  Parent \rightarrow Lchild = Ptr \rightarrow Rchild
             Else
        2)
                  Parent \rightarrow Lchild = Ptr \rightarrow Lchild
             EndIf
        3)
    2) Else If(Parent → Rchild = Ptr) then // if node is a right child
        1) If (Ptr \rightarrow Lchild = NULL) then // if node has no left child
                  Parent \rightarrow Rchild = Ptr \rightarrow Rchild
        2)
             Else
                  Parent \rightarrow Rchild = Ptr \rightarrow Lchild
        3) EndIf
    3) EndIf
         Return Ptr (deleted node) to the memory bank
17) EndIf
                               Module IV
                                                    Trees
```

```
//Deletion in Case 3
18) If (Case = 3) then
   1) Ptr1= Succ(Ptr)
                                  // Find the Inorder Successor of Ptr
      Item1 = Ptr1 \rightarrow Data
       Delete_BST(Item1) // Delete the Inorder Successor
       Ptr \rightarrow Data = Item1
               // Replace the data with the data of the inorder successor
19) EndIf
20) Stop
```

Finding Inorder Successor

Algorithm Succ(Ptr)

```
1) Ptr1 = Ptr \rightarrow Rchild
                                      // move to the right subtree
   1) If (Ptr1 \neq NULL) then // right subtree not empty
       1) While (Ptr1 \rightarrow Lchild \neq NULL) do \neg // move to the
       2) Ptr1 = Ptr1 \rightarrow Lchild
                                                 ├ // left most end
          EndWhile
       3)
   2)
       EndIf
   3) Return(Ptr1)
2) Stop
```

Check the application of Binary trees in the text book