

LECTURE 5: MORE APPLICATIONS WITH PROBABILISTIC ANALYSIS, BINS AND BALLS

Agenda

- Review: Coupon Collector's problem and Packet Sampling
- Analysis of Quick-Sort
- Birthday Paradox and applications
- The Bins and Balls Model

Coupon Collector Problem

- Problem: Suppose that each box of cereal contains one of n different coupons. Once you obtain one of every type of coupon, you can send in for a prize.
- Question: How many boxes of cereal must you buy before obtaining at least one of every type of coupon.
- Let X be the number of boxes bought until at least one of every type of coupon is obtained.
- \bullet E[X] = nH(n) = nInn

Application: Packet Sampling

- Sampling packets on a router with probability p
 - The number of packets transmitted after the last sampled packet until and including the next sampled packet is geometrically distributed.
- From the point of destination host, determining all the routers on the path is like a coupon collector's problem.
- ◆ If there's n routers, then the expected number of packets arrived before destination host knows all of the routers on the path = nln(n).

DoS attack

IP traceback

- Marking and Reconstruction
 - Node append vs. node sampling

Expected Run-Time of QuickSort

Quicksort Algorithm:

Input: A list $S = \{x_1, ..., x_n\}$ of n distinct elements over a totally ordered universe.

Output: The elements of *S* in sorted order.

- 1. If S has one or zero elements, return S. Otherwise continue.
- **2.** Choose an element of *S* as a pivot; call it *x*.
- **3.** Compare every other element of *S* to *x* in order to divide the other elements into two sublists:
 - (a) S_1 has all the elements of S that are less than x:
 - **(b)** S_2 has all those that are greater than x.
- **4.** Use Quicksort to sort S_1 and S_2 .
- **5.** Return the list S_1, x, S_2 .

Analysis

- ♦ Worst-case: n².
- Depends on how we choose the pivot.
- Good pivot (divide the list in two nearly equal length sub-lists) vs. Bad pivot.
- In case of good pivot -> nlg(n). [by solving recurrence]
- ◆If we choose pivot point randomly, we will have a randomized version of QuickSort.

Analysis

- X_{ii} be a random variable that
 - Takes value 1 if y_i and y_i are compared with each other
 - 0 if they are not compared.
- $E[X_{ii}] = 2/(j-i+1)$
 - Consider when the set $Y_{ij} = \{y_i, y_{i+1}, ..., y_j\}$ is "touched" by a pivot the first time. If this pivot is either y_i or y_j then the two will be compared, otherwise Never a (S_1, S_2) split
- \bullet Using k = j-i+1, we can compute E[X] = 2nln(n)

Detail analysis

$$\mathbf{E}[X] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j-i+1}$$

$$= \sum_{i=1}^{n-1} \sum_{k=2}^{n-i+1} \frac{2}{k}$$

$$= \sum_{k=2}^{n} \sum_{i=1}^{n+1-k} \frac{2}{k}$$

$$= \sum_{k=2}^{n} (n+1-k) \frac{2}{k}$$

$$= \left((n+1) \sum_{k=2}^{n} \frac{2}{k} \right) - 2(n-1)$$

$$= (2n+2) \sum_{k=1}^{n} \frac{1}{k} - 4n.$$

Birthday "Paradox"

What is the probability that two persons in a room of 30 have the same birthday?

Birthday Paradox

Ways to assign k different birthdays without duplicates:

$$N = 365 * 364 * ... * (365 - k + 1)$$
$$= 365! / (365 - k)!$$

Ways to assign k different birthdays with possible duplicates:

$$D = 365 * 365 * ... * 365 = 365^{k}$$

Birthday "Paradox"

Assuming real birthdays assigned randomly:

N/D = probability there are no duplicates

1 - N/D = probability there is a duplicate

$$= 1 - 365! / ((365 - k)!(365)^k)$$

Generalizing Birthdays

$$P(n, k) = 1 - n!/(n-k)!n^k$$

Given k random selections from n possible values, P(n, k) gives the probability that there is at least 1 duplicate.

Birthday Probabilities

P(no two match) = 1 - P(all are different) P(2 chosen from N are different)= 1 - 1/N P(3 are all different)= (1 - 1/N)(1 - 2/N) P(n trials are all different)= $(1 - 1/N)(1 - 2/N) \dots (1 - (n-1)/N)$

$$= \ln (1 - 1/N) + \ln (1 - 2/N) + ... \ln (1 - (k-1)/N)$$

In (*P*)

Happy Birthday Bob!

$$\ln(P) = \ln(1 - 1/N) + ... + \ln(1 - (k - 1)/N)$$

For 0 < x < 1: $\ln (1 - x) \le x$

$$\ln(P) \le -(1/N + 2/N + \dots + (n-1)/N)$$

Gauss says:

$$1 + 2 + 3 + 4 + \dots + (n-1) + n = \frac{1}{2}n(n+1)$$

So,

$$\ln (P) \le \frac{1}{2} (k-1) k/N$$

$$P \leq e^{1/2(k-1)k/N}$$

Probability of match $\geq 1 - e^{\frac{1}{2}(k-1)k/N}$

Applying Birthdays

$$P(n, k) > 1 - e^{-k*(k-1)/2n}$$

© For n = 365, k = 20:

$$P(365, 20) > 1 - e^{-20*(19)/2*365}$$

 $P(365, 20) > .4058$

© For
$$n = 2^{64}$$
, $k = 2^{32}$: $P(2^{64}, 2^{32}) > .39$

© For
$$n = 2^{64}$$
, $k = 2^{33}$: $P(2^{64}, 2^{33}) > .86$

© For
$$n = 2^{64}$$
, $k = 2^{34}$: $P(2^{64}, 2^{34}) > .9996$

Digital Signature Scheme: Using Hash Functions

- A hash function H maps a message of variable length n bits to a fingerprint of fixed length m bits, with m < n.</p>
 - This hash value is also called a digest (of the original message).
 - Since n>m, there exist many X which are map to the same digest → collision.

DS schemes with hash functions

Main properties

Given a hash function H: $X \rightarrow Y$

- ◆ Long message → short, fixed-length hash
- ♦ One-way property: given y ∈ Yit is computationally infeasible to find a value x∈Xs.t. H(x) = y
- Collision resistance (collision-free) it is computationally infeasible to find any two distinct values x', x ∈ X s.t. H(x') = H(x)
 - This property prevent against signature forgery

Collisions

- Avoiding collisions is theoretically impossible
 - Dirichlet principle: n+1 rabbits into n cages → at least 2 rabbits go to the same cage
 - This suggest exhaustive search: try |Y|+1 messages then must find a collision (H:X→Y)
- In practice
 - Choose |Y| large enough so exhaustive search is computational infeasible.
 - |Y| not too large or long signature and slow process
 - However, collision-freeness is still hard

Birthday attack

- Can hash values be of 64 bits?
 - Look good, initially, since a space of size 2⁶⁴ is too large to do exhaustive search or compute that many hash values
 - However a birthday attack can easily break
 a DS with a 64-bit hash function
 - In fact, the attacker only need to create a bunch of 2³² messages and then launch the attack with reasonably high probability for success.

How is the attack

- Goal: given H, find x, x' such that H(x)=H(x')
- Algorithm:
 - pick a random set S of q values in X
 - for each $x \in S$, computes $h_x = H(x)$
 - if $h_x = h_{x'}$ for some $x' \neq x$ then collision found: (x,x'), else fail
- The average success probability is $\varepsilon = 1 \exp(q(q-1)/2|y|)$
 - Suppose Y has size 2^m , choose $q \approx 2^{m/2}$ then ϵ is almost 0.5!

Balls into Bins

- We have m balls that are thrown into n bins, with the location of each ball chosen independently and uniformly at random from n possibilities.
- What does the distribution of the balls into the bins look like
 - "Birthday paradox" question: is there a bin with at least 2 balls
 - How many of the bins are empty?
 - How many balls are in the fullest bin?

Answers to these questions give solutions to many problems in the design and analysis of algorithms

The maximum load

- When n balls are thrown independently and uniformly at random into n bins, the probability that the maximum load is more than 3 ln*n*/lnln*n* is at most 1/*n* for *n* sufficiently large.
 - By Union bound, Pr [bin 1 receives \geq M balls] $\leq {n \choose M} {1 \choose n}^M$.
 - Note that:

$$\binom{n}{M} \left(\frac{1}{n}\right)^M \le \frac{1}{M!} \le \left(\frac{e}{M}\right)^M$$

Now, using Union bound again, Pr [any ball receives ≥ M balls] is at most

$$n\left(\frac{\mathrm{e}}{M}\right)^M \le n\left(\frac{\mathrm{e}\ln\ln n}{3\ln n}\right)^{3\ln n/\ln\ln n}$$

which is $\leq 1/n$

Application: Bucket Sort

- lack A sorting algorithm that breaks the $\Omega(nlogn)$ lower bound under certain input assumption
- Bucket sort works as follows:
 - Set up an array of initially empty "buckets."
 - Scatter: Go over the original array, putting each object in its bucket.
 - Sort each non-empty bucket.
 - Gather: Visit the buckets in order and put all elements back into the original array.

- A set of $n = 2^m$ integers, randomly chosen from $[0,2^k),k \ge m$, can be sorted in expected time O(n)
 - Why: will analyze later! 28

The Poisson Distribution

- Consider m balls, n bins
 Pr [a given bin is empty] = $\left(1 \frac{1}{n}\right)^m \approx e^{-m/n}$:
 - Let X_i is a indicator r.v. that os 1 if bin j empty, 0 otherwise
 - Let X be a r.v. that represents # empty bins

$$\mathbf{E}[X] = \mathbf{E}\left[\sum_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} \mathbf{E}[X_i] = n\left(1 - \frac{1}{n}\right)^m \approx ne^{-m/n}.$$

Generalizing this argument, Pr [a given bin has r balls] =

$$\binom{m}{r} \left(\frac{1}{n}\right)^r \left(1 - \frac{1}{n}\right)^{m-r} = \frac{1}{r!} \frac{m(m-1)\cdots(m-r+1)}{n^r} \left(1 - \frac{1}{n}\right)^{m-r}$$

- Approximately, $p_r \approx \frac{\mathrm{e}^{-m/n}(m/n)^r}{r!}$
- **Definition 5.1:** A discrete Poisson random variable X with parameter μ is given by the following probability distribution on j = 0, 1, 2, ...:

$$\Pr(X=j) = \frac{e^{-\mu}\mu^j}{j!}.$$

Limit of the Binomial Distribution

We have shown that, when throwing m balls randomly into b bins, the probability p_r that a bin has r balls is approximately the Poisson distribution with mean m/b. In general, the Poisson distribution is the limit distribution of the binomial distribution with parameters n and p, when n is large and p is small. More precisely, we have the following limit result.

Theorem 5.5: Let X_n be a binomial random variable with parameters n and p, where p is a function of n and $\lim_{n\to\infty} np = \lambda$ is a constant that is independent of n. Then, for any fixed k,

$$\lim_{n\to\infty} \Pr(X_n = k) = \frac{e^{-\lambda}\lambda^k}{k!}.$$

This theorem directly applies to the balls-and-bins scenario. Consider the situation where there are m balls and b bins, where m is a function of b and $\lim_{n\to\infty} m/b = \lambda$. Let X_n be the number of balls in a specific bin. Then X_n is a binomial random variable with parameters m and 1/b. Theorem 5.5 thus applies and says that

$$\lim_{n\to\infty} \Pr(X_n = r) = \frac{e^{-m/n} (m/n)^r}{r!},$$