如何降低递归算法复杂度

- 代数变换减少子问题个数
 - 。 例子:

位乘问题: 设 $X,\ Y$ 是两个 n 位二进制数, $n=2^k$,求 XY

■ 若采用一般分治算法:

$$X = A2^{n/2} + B, \ \ Y = C2^{n/2} + D$$
 $XY = AC2^n + (AD + BC)2^{n/2} + BD$
 $W(n) = 4W(n/2) + cn, \ \ W(1) = 1$
 $\Rightarrow W(n) = O(n^{log4}) = O(n^2)$

■ 采用代数变换:

$$AD+BC=(A-B)(D-C)+AC+BD$$
 $now \ \ W(n)=3W(n/2)+cn$
 $zW(1)=1$
 $\Rightarrow W(n)=O(n^{log3})=O(N^{1.59})$

- 预处理减少递归的操作
 - 。例子

平面最近点对算法:对于平面上n个点的集合P,求最近的两个点及其距离

- 采用一般递归算法:
 - 先把所有点按照 X, Y 排序 O(nlogn)
 - 然后作垂线将点集分为左右两个规模相等的部分 $P_L,\ P_R$ O(1)
 - ullet 递归求出左右两边的最近点对,将两边的最近距离对比求出所有点的最近距离 δ 。 2T(n/2)
 - 对于在垂直线两边距离 δ 范围内的每个点,检查是否有点与它的距离现于 δ 如果存在则将 δ 修改为新值。 O(n)
 - 递推方程:

$$T(n) = 2T(/2) + O(nlogn) \ \Rightarrow T(n) = O(nlog^2n)$$

■ 预处理提前排好序:

$$T(n) = 2T(n/2) + O(n)$$

 $\Rightarrow T(n) = O(nlogn)$

典型案例

- 找第 K 大的数:
 - 。 找最大和最小值:

分治算法:

- 将 n 个元素两两一组分成 | n/2 | 组,
- 分别求各组内的最大值和最小值
 O(|n/2|)
- 最后在 $\lceil n/2 \rceil$ 个最大值中直接比较选出最大值,在 $\lceil n/2 \rceil$ 个最小值中直接比较选出最小值 。 $O(2\lceil n/2 \rceil 2)$
- 复杂度:

$$W(n) = \lceil 3n/2 \rceil - 2$$

。 找第二大:

分治算法:

- 将所有元素两两一组
- 每组两个元素比较大小,将较小的元素记录在较大元素指向的链表中
- 最后在最大值的链表中直接比较找最大值
- 复杂度:

$$W(n) = n - 1 + \lceil logn \rceil - 1 = n + \lceil logn \rceil - 2$$

。 找第 k 小的数

分治算法 Select(S,k): 首先类似于快速排序的做法选出一个轴值,并将这个轴值放在正确的位置,设为第 q 个数。如果 q = k 则这个数就是所求值,若 q > k 则在轴值左侧较小的元素中递归求第 k 小的值,若 q < k 则在轴值右侧较大的元素中递归求第 k-q 小的元素。下面的算法唯一的改进在于轴值的选取让划分更均匀。

- 将所有数划分为 5 个一组,共 $n_M = \lceil n/5 \rceil$ 个组
- 每组找中位数, n_M 个中位数构成集合 M
- 递归调用 $Select(M,\lceil |M|/2\rceil)$ 求出 M 的中位数 m^* 。
- 中位数小于 m^* 的五元组中 **小于** 其中位数的数必定小于 m^* ,中位数大于 m^* 的五元组中 **大于** 其中位数的数必定大于 m^* 。将中位数小于 m^* 的五元组中 **大于** 其中位数的数和中位数大于 m^* 的五元组中 **小于** 其中位数的数逐个与 m^* 比较,最终找出所有大于 m^* 的数和 所有小于 m^* 的数。
- 这时可以将所有元素分成值较大和较小的两组,并按照前述方法完成选择。