Zmodyfikowana metoda Cholesky'ego-Banachiewicza dla macierzy trójdiagonalnych

Maja Andrzejczuk January 11, 2022

1 Wstęp

1.1 Opis zadania

Moim zadaniem było rozwiązanie układu równań Ax=b, gdzie $A \in R^{n \times n}$ - trójdiagonalna macierz symetryczna dodatnio określona, $b \in R^n$, zmodyfikowaną metodą Cholesky'ego-Banachiewicza (rozkład $A = L^T L$, gdzie L jest macierzą trójdiagonalną dolną) oraz obliczenie det(A) na podstawie wyznaczonego rozkładu. Moja metoda w pamięci komputera przechowywuje po dwie przekątne macierzy A i L(w postaci dwóch wektorów dla każdej z macierzy). Wyniki porównałam z otrzymanymi dzięki wbudowanym funkcjom Matlaba. Do porównywania wyników tworzyłam losowe macierze symetryczne dodatnio określone.

1.2 Charakterystyka macierzy symetrycznej trójdiagonalnej

Wyglad macierzy symetrycznej dodatnio określonej, z którego korzystałam w moim kodzie:

2 Opis programu Obliczeniowego

2.1 Funkcja - cholesky

Funkcja na wejściu przyjmuje: a, b - dwie przekątne macierzy A w postaci wektorów. Funkcja jest zmodyfikowaną wersją metody Cholesky'ego-Banachiewicza mająca za zadanie wyliczenie 2 przekątnych macierzy L i zapisanie ich jako wektory c i d. Dodatkowo funkcja liczy wyznacznik macierzy A. Korzystając z faktu, że $A = LL^T$ policzyłąm wyznacznik ze wzoru $\det(A) = \det(L)\det(L^T) = \det(L)^2.$

2.2 Funkcja - rownanie

Funkcja służy do obliczenia równania Ax=b, korzystając z wiedzy, że jest to równoważne równaniu $LL^Tx=b$. Na wejściu przyjmujemy dwie przekątne macierzy L jako wektory c i d oraz wektor b.

2.3 Funkcja - wektory

Funkcja na wejście przyjmuje macierz A i zwraca wektory a i b - będące przekątnymi potrzebnymi do korzystania ze zmodyfikowanej metody Cholesky'ego-Banachiewicza.

3 Porównanie wyników wyznacznika

Program przetestowałam dla różnych wielkości macierzy. Dla macierzy o rozmiarach większych niż około 1100 matlab pokazywał wartości równe "inf", dlategoteż w przykładach nie mogłam porównać błędów w macierzach większych od tego rozmiaru. W tabelece umieściłam średnie wyniki błędów dla

1000 różnych	macierzy.
--------------	-----------

Rozmiar macierzy	Średni błąd bezwzględny	Średni błąd procentowy
3	9.7030e-18	1.6889e-16
10	1.3438e-14	3.8739e-16
20	4.2333e-11	1.5278e-16
30	5.0398e-07	2.4356e-16
40	0.0037	2.4356e-15
60	$2.1863\mathrm{e}{+03}$	4.9454e-15
100	$1.0827\mathrm{e}{+15}$	3.2219e-16
120	$1.4481\mathrm{e}{+20}$	3.1886e-16
300	$3.9905\mathrm{e}{+72}$	8.7612e-15
500	$4.5343\mathrm{e}{+124}$	2.6643e-14
800	$8.9478\mathrm{e}{+208}$	1.7458e-14
1000	$3.5565\mathrm{e}{+255}$	6.3412e-15
1100	$4.5234\mathrm{e}{+278}$	5.9986e-14

4 Porównanie wyników układu równanań

Rozwiązywanie układów równań liniowych Ax=b. Podstawiając $A=LL^T$ otrzymujemy:

$$LL^Tx = b.$$

Rozwiązanie tego układu znajdujemy rozwiązując 2 układy z macierzami trójkątnymi:

$$Ly = b \text{ oraz } L^T x = y.$$

W tabele wpisałam maksymalną różnice pomiędzy wartościami w wektorach wynikowcyh równania (pomiędzy wynikiem z mojego algorytmu oraz wynikiem z matlabowej funkcji). Dla macierzy powyżej około 21000, matlab wyświetlał error - nie mogłam stworzyć macierzy powyżej tego rozmiaru, dlategoteż nie mogłam porównać wyników układów równań tych macierzy.

Rozmiar macierzy	Maksymalna różnica
6	1.1117e-16
12	2.1633e-17
30	1.4325e-16
60	3.6736e-16
100	2.1645e-16
150	3.1453e-16
500	4.3336e-15
700	8.6736e-16
1000	1.0842e-15
2000	5.4210e-15
4000	2.7105e-15
9000	1.2345e-15
10000	5.3635e-15
15000	3.5545e-15
20000	1.7545e-14

5 Analiza wyników

Widać, że w obu przypadkach im większy rozmiar macierzy tym większa różnica w wynikac mojej funkcji od wbudowanej funkcji matlabowej. Jednakże różnice w wynikach są na tyle niewielkie, że przy odpowiednich przybliżeniach wyniki będą równe.