UNIVERSITY OF CALIFORNIA, DAVIS

BERKELEY • DAVIS • IRVINE • LOS ANGELES • MERCED • RIVERSIDE • SAN DIEGO • SAN FRANCISCO

SANTA BARBARA • SANTA CRUZ

UNIVERSITY OF CALIFORNIA

ENVIRONMENTAL SCIENCES

COLLEGE OF AGRICULTURAL AND

STABLE ISOTOPE FACILITY DEPARTMENT OF PLANT SCIENCES ONE SHIELDS AVE DAVIS, CALIFORNIA 95616 530-752-8100

¹³C and/or ²H of Methane (CH₄) by GasBench-PreCon-IRMS

Methodology

Analysis of atmospheric methane (CH₄) is performed using 12 mL Labco Exetainer vials on a Thermo Scientific GasBench II + PreCon trace gas concentration system coupled to a Thermo Scientific Delta V Plus isotope-ratio mass spectrometer [1]. Gas samples are purged from vials through a double-needle sampler into a helium carrier stream (12 mL/min). The gas sample passes through a CO₂ scrubber (Ascarite), and then CH₄ is trapped and concentrated on segments of GS-Q capillary column (Agilent, 0.32 mm) inside two LN₂ cryo-traps operated in series, such that CH₄ is held in the first trap until the noncondensing portion of the sample gas has been replaced by helium before passing to the second trap. When the second trap is warmed to ambient temperature, CH₄ is carried by helium to an Agilent GS-CarbonPLOT capillary column (30 m x 0.32 mm ID x 3 µm film thickness, 30 °C, 1.0 mL/min) that separates CH₄ from residual CO₂ and other gases trapped in LN₂. Finally, CH₄ is either combusted to CO₂ (for ¹³C analysis) using an alumina reactor containing NiO and Pt wires at 1000 °C or is thermally decomposed to H₂ (for ²H analysis) using a hollow alumina reactor heated to 1400 °C. Water is subsequently removed through a Nafion dryer before CO₂ or H₂ is transferred to the IRMS. Samples with CH₄ concentrations above 500 ppm can be analyzed via a sample loop or following dilution with helium into a second Exetainer vial.

Sample replicates are the responsibility of the client and must be paid for as individual samples. Replicates of the quality control and assurance reference materials are measured every ten samples.

Calibration and Reporting of Stable Isotope Ratios

Calibration procedures for CH₄ are applied identically across reference and sample materials and are directly traceable to the primary isotopic reference material for each element (i.e., VPDB for δ^{13} C and VSMOW for δ^{2} H).

First, a pure CO₂ or H₂ reference gas is used to calculate provisional isotopic values of the sample peaks. Next, isotopic values are adjusted for changes in linearity and instrumental drift using in-house reference materials UCDM1 and UCDM2. Finally, measurements are scale-normalized using four secondary reference materials available from Airgas: H-iso, L-iso, B-iso, and T-iso. There are no certified standard reference materials for ¹³C or ²H measurements of CH₄, so our secondary reference materials were calibrated against gas mixtures (i.e., HCG-1, HCG-2, and HCG-3) anchored to the VPDB and VSMOW scales.

Final quality assessment is based on the accuracy and precision of unbiased quality control materials, including δ^{13} C- and δ^{2} H-calibrated in-house reference materials Beecher, AH024079, 043332T, and Scotty.

Quality assurance reference materials: UCDM1, UCDM2, H-iso, L-iso, B-iso, T-iso Quality control reference materials: Beecher, AH024079, 043332T, Scotty, HCG-1, HCG-2, HCG-

Measurement Uncertainty

Sample materials are inherently variable in composition, and measurement error may vary between different sample types due to differences in composition. Mean measurement error (σ) and accuracy, as determined by replicate measurements of the quality control and assurance material, must fall below expected measurement error (\pm 0.20 % for δ^{13} C and \pm 2.0 % for δ^{2} H). Accuracy and precision of the comeasured calibrated quality control and assurance materials are provided with data reports. Limit of quantification (LOQ), based on total peak area, is 3 V-s for δ^{13} C and 6 V-s for δ^{2} H.

Revision Date

September 6, 2019

Approved By

Richard Doucett

Richard Dovett

References

[1] Yarnes C. δ^{13} C and δ^{2} H measurement of methane from ecological and geological sources by gas chromatography/combustion/pyrolysis isotope-ratio mass spectrometry. *Rapid Commun Mass Spectrom*. 2013;27(9):1036–1044. doi: 10.1002/rcm.6549.

Glossary

°C degree Celsius

% percent

per mil; 1 ‰ is equivalent to 0.001 or 1 mUr
 natural gas reference obtained from CERSC
 stable isotope of hydrogen; mass number of 2
 stable isotope of carbon; mass number of 13

δ delta notation for isotopic composition; in per mil ("%") or mUr; 1 % equals 1 mUr

 μ m micron or micrometer σ standard deviation

AH024079 natural gas reference obtained from CERSC

Ascarite sodium hydroxide-coated silica; carbon dioxide adsorbent

Beecher natural gas reference obtained from CERSC

B-iso gas reference comprising 0.25 % methane with balance air; from Airgas, Air Liquide

CERSC USGS Central Energy Resources Science Center, Lakewood, Colorado

 ${\rm CH_4}$ methane ${\rm CO_2}$ carbon dioxide ${\rm H_2}$ dihydrogen

HCG-1 natural gas reference obtained from CERSC HCG-2 natural gas reference obtained from CERSC HCG-3 natural gas reference obtained from CERSC

H-iso gas reference comprising 0.25 % methane with balance air; from Airgas, Air Liquide

ID inner diameter

IRMS isotope-ratio mass spectrometry

L liter

L-iso gas reference comprising 0.25 % methane with balance air; from Airgas, Air Liquide

LN₂ liquid nitrogen

LOQ limit of quantification; minimum signal for analyte to meet required signal-to-noise ratio

m meter
mg milligram
min minute
mL milliliter
mm millimeter

mUr milliurey; 1 mUr is equivalent to 0.001 or 1 ‰

NiO nickel oxide

ppm parts per million; equivalent to mg/L

Pt platinum

QA quality assurance; overall laboratory measures to ensure measurement quality QC quality control; activities and procedures used to evaluate quality requirements

Scotty gas reference comprising 100 % methane; from Scott Gas, Air Liquide

T-iso gas reference comprising 0.25 % methane with balance air; from Airgas, Air Liquide

UCDM1 gas reference comprising 10 ppm methane with balance helium UCDM2 gas reference comprising 500 ppm methane with balance helium

USGS United States Geological Survey

VPDB Vienna PeeDee Belemnite; primary reference for measurements of carbon isotopes

V-s volt-second

VSMOW Vienna Standard Mean Ocean Water; primary reference for measurements of oxygen

and hydrogen isotopes

General Resources

Berglund M, Wieser ME. 2011. Isotopic compositions of the elements 2009 (IUPAC Technical Report). *Pure Appl Chem.* 83(2):397–410. doi: 10.1351/PAC-REP-10-06-02.

Brand WA, Coplen TB, Vogl J, Rosner M, Prohaska T. 2014. Assessment of international reference materials for isotope-ratio analysis (IUPAC Technical Report). *Pure Appl Chem.* 86(3):425–467. doi: 10.1515/pac-2013-1023.

Commission on Isotopic Abundances and Atomic Weights. c2007–2008. CIAAW/IUPAC. http://www.ciaaw.org/index.htm.

Coplen TB, Hopple JA, Böhlke JK, Peiser HS, Rieder SE, Krouse HR, Rosman KJR, Ding T, Vocke RD Jr, Revesz KM, et al. 2002. Compilation of minimum and maximum isotope ratios of selected elements in naturally occurring terrestrial materials and reagents. *US Geological Survey Water-Resources Investigations Report 2001-4222*. doi: 10.3133/wri014222.

Coplen TB. 2011. Guidelines and recommended terms for expression of stable-isotope-ratio and gas-ratio measurement results. *Rapid Commun Mass Spectrom*. 25(17):2538–2560. doi: 10.1002/rcm.5129.

de Groot PA, editor. 2004. *Handbook of Stable Isotope Analytical Techniques*. Vol. 1. Amsterdam (NL): Elsevier.

de Groot PA, editor. 2008. *Handbook of Stable Isotope Analytical Techniques*. Vol. 2. Amsterdam (NL): Elsevier.

Dunn PJH, Carter JF, editors. 2018. *Good Practice Guide for Isotope Ratio Mass Spectrometry*. 2nd ed. Bristol (GB): FIRMS. Available from: http://www.forensic-isotopes.org/gpg.html.

Fry B. 2006. Stable Isotope Ecology. New York (NY): Springer. doi: 10.1007/0-387-33745-8.

Meier-Augenstein W. 2017. Stable Isotope Forensics: Methods and Forensic Applications of Stable Isotope Analysis. 2nd ed. Hoboken (NJ): Wiley. doi: 10.1002/9781119080190.

Mook W, de Vries JJ, editors. 2001. Environmental Isotopes in the Hydrological Cycle: Principles and Applications. *IHP-V Technical Documents in Hydrology No. 39*. Paris (FR): UNESCO/IAEA; 6 vol. Available from: http://www-naweb.iaea.org/napc/ih/IHS_publication.html.

National Institute of Standards and Technology. Gaithersburg (MD): US Department of Commerce. https://www.nist.gov/.

Reference Products for Environment and Trade. c2009. Vienna (AT): International Atomic Energy Agency (IAEA). https://nucleus.iaea.org/rpst/index.htm.

Sharp Z. 2017. *Principles of Stable Isotope Geochemistry*. 2nd ed. Available from: https://digitalrepository.unm.edu/unm_oer/1/.