Statistik och Dataanalys I

Föreläsning 16 - Sannolikhetsmodeller för kontinuerliga variabler

Mattias Villani

Statistiska institutionen Stockholms universitet

Översikt

- Likformig fördelning
- Normalfördelning
- Poissonfördelning
- Exponentialfördelning
- Student-*t*

Kontinuerliga slumpvariabler och täthetsfunktionen

- **Kontinuerlig slumpvariabel** antar alla värden, men P(X = x) = 0 för alla x!
- **Täthetsfunktion**: f(x).
- Positiv f(x) > 0 för alla x.
- **T**äthetsfunktion ger **inte** sannolikheter. OK om f(x) > 1.
- Täthetsfunktionen används för att beräkna sannolikheter:

$$P(a \le X \le b) = \text{arean under } f(x) \text{ mellan } a \text{ och } b$$

SDAIII: räkna arean under funktion med integration.

Likformig fördelning

Normalfördelning

 $X \sim N(\mu, \sigma)$

$$E(X) = \mu$$
$$SD(X) = \sigma$$

■ 68-95-99.7% regeln

Normalfördelning - standardisering

Standardisering

$$X \sim N(\mu, \sigma) \Rightarrow Z = \frac{X - \mu}{\sigma} \sim N(0, 1)$$

Sannolikhet via standardisering för $X \sim N(2,3)$

$$P(X \le 5) = P(X - 2 \le 5 - 2) = P\left(\frac{X - 2}{3} \le \frac{5 - 2}{3}\right) = P(Z \le 1)$$

Normalfördelning - Z-tabell

Normalfördelning

Tabellen ger sannolikheten $\Phi(z)=P(Z\leq z)$ för olika z där Z är standardnormal, $Z\sim N(0,1)$. Sannolikheter i den vänstra svansen fås genom symmetri: $P(Z\leq -z)=1-P(Z\leq z)$.

Andra decimalen i z

	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817

Normalfördelning - symmetri

- Negativa z-värden finns inte i Z-tabellen.
- Vi utnyttjar normalfördelningens symmetri för negativa z

$$P(Z \le -2) = 1 - P(Z \le 2)$$

Normalfördelning - intervall via standardisering

Sannolikhet via standardisering för $X \sim N(2,3)$

$$P(0 \le X \le 5) = P\left(\frac{0-2}{3} \le \frac{X-2}{3} \le \frac{5-2}{3}\right)$$
$$= P(-0.667 \le Z \le 1)$$
$$= P(Z \le 1) - P(Z \le -0.667)$$

och pga symmetri

$$P(Z \le -0.667) = 1 - P(Z \le 0.667)$$

Normalfördelningen - interaktivt

Normalfördelning - egenskaper

Linjärkombination av normalfördelad slumpvariabel.

Om $X \sim \mathrm{N}(\mu, \sigma)$ och Y = c + aX så gäller

$$Y \sim N(c + a\mu, |a|\sigma)$$

Summa av oberoende normalfördelade slumpvariabler.

Om $X \sim \mathrm{N}(\mu_X, \sigma_X)$ och $Y \sim \mathrm{N}(\mu_Y, \sigma_Y)$ är oberoende slumpvariabler så är även summan normalfördelad:

$$X + Y \sim N(\mu_X + \mu_Y, \sqrt{\sigma_X^2 + \sigma_Y^2})$$

- Fördelningarna för linjärkombination och summa är normal!
- Summan är fortfarande normal om X och Y är beroende.

Poissonfördelning

- Poissonfördelningen är en fördelning för räknedata (antal):
 - antal buggar i en mjukvara
 - antal budgivare i en eBay auktion
 - antal besök till läkaren
- lacksquare Om $X \sim \operatorname{Pois}(\lambda)$ så

$$P(X = x) = \frac{e^{-\lambda} \lambda^{x}}{x!},$$
 för $x = 0, 1, 2, ...$

- $e \approx 2.71$ är Eulers tal.
- Poisson har samma väntevärde och varians:

$$E(X) = \lambda$$
$$Var(X) = \lambda$$

Poissonfördelning - interaktivt

Poissonfördelning för antal bud på eBay

- Data från 1000 eBay-auktioner av samlarmynt.
- nBids är antalet budgivare i en given auktion.
- Olika värdefulla och olika reservationspris (lägsta pris).
- Fokus här på de 550 observationer med lägst reservationspris.
- **Modell** för nBids: $X_1, \ldots, X_n \stackrel{\text{ober}}{\sim} \operatorname{Pois}(\lambda)$.

	nBids	PowerSeller	VerifyID	Sealed	Minblem	MajBlem	LargNeg	LogBook	MinBidShare	Sold	low_res_price
1	2	0	0	0	0	0	0	-0.224	-0.209	True	low
2	6	1	0	0	0	0	0	0.607	-0.348	True	low
3	1	1	0	0	0	0	0	0.033	0.442	True	high
4	1	0	0	0	1	0	0	0.376	0.144	True	high
5	4	0	0	0	0	0	1	1.435	-0.41	True	low
6	2	0	0	0	0	0	0	-0.914	0.632	True	high
7	2	0	0	0	1	0	0	-0.248	0.295	True	high
8	2	0	0	0	0	0	0	-0.914	0.632	True	high
9	2	1	0	0	0	0	0	0.511	0.055	True	high
10	6	0	0	1	0	0	0	-0.362	0.025	True	high
11	n	1	0	n	n	n	n	-0 224	0.477	False	hinh

Wegmann, B. och Villani, M. (2011). Bayesian Inference in Structural Second-Price Common Value Auctions, Journal of Business and Economic Statistics

Punktskattning av modellparametrar

- Modell för nBids: $X_1, \ldots, X_n \stackrel{\text{ober}}{\sim} \operatorname{Pois}(\lambda)$.
- Hur väljer vi parametern λ ? Punktskattning. Estimat. $\hat{\lambda}$.
- **Momentmetoden**: Eftersom $\lambda = E(X)$ så är $\hat{\lambda} = \bar{x}$ rimligt.
- **Maximum likelihood**: välj det λ som maximerar sannolikheten för datamaterialet.
- Maximum likelihood-metoden funkar för alla modeller. 😎

Maximum likelihood för Poisson - interaktivt

Exponentialfördelning

Om $X \sim \text{Expon}(\lambda)$ så är täthetsfunktionen

$$f(x) = \lambda e^{-\lambda x}$$
, för $x > 0$

■ Väntevärde och varians

$$E(X) = \frac{1}{\lambda} \text{ och } Var(X) = \frac{1}{\lambda^2}$$

- Exponentialfördelning vanlig modell för väntetider.
 - ► Tid mellan samtal till stödlinje.
 - ► Tid mellan mjukvarureleaser.
- Exponential och Poisson-fördelningen hänger ihop:
 - ▶ Om antalet samtal till stödlinje per timme är $Poisson(\lambda = 6)$ så förväntar vi oss $\lambda = 6$ st samtal i timmen.
 - ▶ Då är tiden mellan samtal $\operatorname{Expon}(\lambda = 6)$ och vi förväntar oss $1/\lambda = 1/6$ timmar (10 minuter) mellan samtal.

Exponentialfördelning

Exponentialfördelning i R

 $X \sim \text{Expon}(\lambda = 3)$. Parametern λ kallas rate i R.

Beräkning	R kommando	Kommentar		
f(0.5)	dexp(x = 0.5, rate = 3)	f(x) vid $x = 0.5$		
$P(X \le 0.5)$	pexp(q = 0.5, rate = 3)			
Kvantil	qexp(p = 0.5, rate = 3)	Medianen		
10 slumptal	rexp(n = 10, rate = 3)			

- Täthetsfunktion heter density function på engelska.

 Därav namnet dexp.
- Se programkoden <u>exponential.R</u> på kurssidan.

Student-t fördelning (standard)

- $X \sim t_{\nu}(0,1)$ är en **student**-t fördelning med ν **frihetsgrader**.
- **Kontinuerliga symmetriska** variabler över $(-\infty, \infty)$.
- Student-t har mer sannolikhet på extrema utfall.
- **Student**-t fördelning alltmer lik normalfördelning när ν ökar.

Varför student-t är viktig för inferens

- X_1, X_2, \dots, X_n är oberoende data from $N(\mu, \sigma^2)$.
- Stickprovmedelvärdet

$$\bar{X} = \frac{\sum_{i=1}^{n} X_i}{n}$$

■ Inferens: fördelningen för det standardiserade medelvärdet

$$\frac{\bar{X} - \mu}{SD(\bar{X})}$$

- Om variansen i populationen σ^2 är känd så är det standardiserade medelvärdet normalfördelat.
- Om variansen i populationen σ^2 är okänd, och måste skattas med s^2 , så är det standardiserade medelvärdet student-t fördelad med $\nu = n 1$ frihetsgrader.

Student-t som modell för aktieavkastning

- Student-t fördelningen kommer visa sig viktig för inferens för väntevärdet μ i en normalpopulation. F18.
- Student-t är en bra modell för data med extremvärden.
- Daglig avkastning Ericsson B aktie under hela år 2022.
- Finansiella data har ofta extremvärden. Tunga svansar.
- Maximum likelihood: $\mu = 0.094$, $\phi = 1.279$ och $\nu = 2.706$.

Allmän Student-t fördelning för datamodellering

