Homework 5

1.
$$f(x,y) = 3x^2 - y^2 = 0$$

 $g(x,y) = 3xy^2 - x^3 - 1 = 0$

(a)
$$x_0 = y_0 = 1$$
, iterate using the following,
$$\begin{bmatrix} X_{n+1} \end{bmatrix} = \begin{bmatrix} X_n \end{bmatrix} - \begin{bmatrix} 1/0 & 1/18 \end{bmatrix} \begin{bmatrix} f(X_n, y_n) \end{bmatrix}, \quad N = 0, 1, 2, ... \\ y_{n+1} \end{bmatrix} \begin{bmatrix} y_n \end{bmatrix} \begin{bmatrix}$$

this method converges to Co.5, 0.8660254] in 33 iterations

(b) provide some motivation for the choice of the 2×2 matrix in (a)

$$J(x,y) = \begin{bmatrix} 6x & -2y \\ 3y^2 - 3x^2 & 6xy \end{bmatrix}$$

$$J(1,1) = \begin{bmatrix} 6 & -2 \\ 0 & 6 \end{bmatrix}$$

$$J^{-1}(1,1) = \frac{1}{36} \begin{bmatrix} 6 & 2 \\ 0 & 6 \end{bmatrix} = \begin{bmatrix} 1/6 & 1/18 \\ 0 & 1/6 \end{bmatrix}$$

this iteration is the same as 'Lazy Newton' where the jacobian of the initial guess is used for each iteration.

(1) use Newtons method and compare

Newton converges to the same not in 5 iterations, much less than 1924 Newton from part (a)

(d) from your numerical result, find the exact solution

f(x,y)-g(x,y)=0, should be true at (0.5,0.866...) $3x^2-y^2-3xy^2+x^5+1=0$ $5(0.5)^2-(0.86603)^2-3(0.5)(0.86603)^2+(0.5)^3+1=0$ $1.63871\times10^{-8}\approx0$ thus, the results are accurate

2. find a region D in the xy plane where the fixed boint iteration

will converge for any (x...y.) & D

$$G(x,y) = \begin{cases} g_1(x,y) = \frac{1}{12} \sqrt{1+(x+y)^2} - \frac{2}{3} \\ g_2(x,y) = \frac{1}{12} \sqrt{1+(x-y)^2} - \frac{2}{3} \end{cases}$$

G(x,y) & IR2 and G(x,y) continuous want: DCIR2 St G(x,y) & D when (x,y) & D

fix
$$(x,y) \in [0,1]$$

 $0.040 \approx \frac{1}{12} - \frac{2}{3} \leq g_1(x,y) \leq \frac{16}{12} - \frac{2}{3} \approx 0.914$
 $0.040 \approx \frac{1}{12} - \frac{2}{3} \leq g_2(x,y) \leq \frac{12}{12} - \frac{2}{3} \approx 0.333$
 $0 = [0,1] \times [0,1]$
 $3 = [0,1] \times$

3. let f(x,y) be a smooth function st f(x,y)=0 defines a smooth curve in the xy-plane

(a) derive the iteration scheme

$$\begin{cases} X_{n+1} = X_n - df_x, & \text{where } d = \frac{f}{f_x^2 + f_y^2} \\ y_{n+1} = y_n - df_y & f_x^2 + f_y^2 \end{cases}$$

Xn. yn. fx. fy are constants

$$\begin{aligned}
18t & q(x,y) = x - x_n - y - y_n = 0 \\
q_x &= \frac{1}{f_x} & q_y = -\frac{1}{f_y} \\
J &= \begin{bmatrix} f_x & f_y \\ 1/f_x & -1/f_y \end{bmatrix} \\
J^{-1} &= \frac{1}{-f_x/f_y} - \frac{1}{f_y/f_x} - \frac{1}{f_x} - \frac{1}{f_x} \\
&= \frac{1}{f_x^2 + f_y^2} \begin{bmatrix} -1/f_y & -f_y \\ -1/f_x & f_x \end{bmatrix} \\
&= \frac{1}{f_x^2 + f_y^2} \begin{bmatrix} -1/f_y & f_y \\ -1/f_x & f_x \end{bmatrix} \\
&= \frac{1}{f_x^2 + f_y^2} \begin{bmatrix} -1/f_y & f_y \\ -1/f_x & f_x \end{bmatrix}
\end{aligned}$$

$$\begin{bmatrix} X_{NH} \\ Y_{NH} \end{bmatrix} = \begin{bmatrix} X_{N} \\ Y_{N} \end{bmatrix} - \frac{f_{x}f_{y}}{f_{x}^{2} + f_{y}^{2}} \begin{bmatrix} Y_{fy} & f_{y} \\ Y_{fx} & -f_{x} \end{bmatrix} \begin{bmatrix} f(x,y) \\ 0 \end{bmatrix}$$

$$= \begin{bmatrix} x_n \\ y_n \end{bmatrix} - \frac{f_x f_y}{f_x^2 + f_y^2} \begin{bmatrix} f(x,y)/f_y \\ f(x,y)/f_x \end{bmatrix}$$

$$= \begin{bmatrix} x_n \\ y_n \end{bmatrix} - \frac{1}{f_x^2 + f_y^2} \begin{bmatrix} f_x f(x,y) \\ f_y f(x,y) \end{bmatrix}$$

$$= \begin{bmatrix} x_n \\ y_n \end{bmatrix} - \frac{f(x,y)}{f_x^2 + f_y^2} \begin{bmatrix} f_x \\ f_y \end{bmatrix}$$
Which is equal to
$$\begin{bmatrix} x_{n+1} \\ y_{n+1} \end{bmatrix} = \begin{bmatrix} x_n \\ y_n \end{bmatrix} - d \begin{bmatrix} f_x \\ f_y \end{bmatrix}$$

(b) use this iteration on $x^2+4y^2+4z^2=10$ with $x_0=y_0=z_0=1$