

Bancos de Dados Geográficos

Curso de Verão - Geoinformática 27 de Janeiro de 2020

Geo Web Services

Gilberto Ribeiro de Queiroz

This work is licensed under a Creative Commons "Attribution-NonCommercial-ShareAlike 3.0 Unported" license.

World Wide Web

- No final dos anos 90 presenciamos sua evolução:
 - De simples páginas com conteúdo estático, para páginas com conteúdos dinâmicos, extraídos, principalmente, de Sistemas Gerenciadores de Bancos de Dados (SGBDs)
- Tecnologias que emergiram no final da década passada:
 - Common Gateway Interface (CGI)
 - Active Server Pages (ASP)
 - Java Server Pages (JSP)
 - Hypertext Preprocessor (PHP)
 - •

Páginas Dinâmicas PHP: Acessando o SGBD

```
<html>
<body>
 <?php
       $conexao = pg connect("host=localhost port=5432 dbname=bdgeo
              user=postgres password=tdk696");
       $query = "SELECT codmuni, nommuni, AsText(the geom) FROM mg municipios";
       $resultado = pg query($conexao, $query);
       $nlinhas = pg num rows($resultado);
       print("\n");
       print("<b>Código IBGE</b>
        <b>Nome Município</b>
        ");
       for(\$i = 0; \$i < \$nlinhas; ++\$i)
            $codigo_municipio = pg_fetch_result($resultado, $i, 0);
            $nome municipio = pg fetch result($resultado, $i, 1);
            $limite municipal = substr(pg fetch result(
                $resultado, $i, 2), 0, 50) . "...":
            $limite municipal");
  print("");
       pg free result($resultado);
  pg close($conexao);
  ?>
</body>
</html>
```

Saída Entregue ao Navegador

Arquitetura Tradicional

Interface de Acesso a Dados Geoespaciais

Interface de Acesso a Dados Geoespaciais

Interface de Acesso a Dados Geoespaciais

Prática: GeoServer

 Geoserver é um servidor de código aberto escrito em Java que permite aos Vector data GeoJSON, KML, GML, ... usuários compartilhar e editar dados geoespaciais

 Projetado para a interoperabilidade pública de dados de qualquer fonte utilizando os principais padrões abertos

Styled Maps

PNG, JPG, SVG, PDF, ...

Rasters

GeoTIFF, ArcGrid, ...

 Implementa padrões OGC: WMS, WFS, WCS, etc

Utiliza SLD (Styled Layer GeoJSON, KML, GML, ...
 Descriptor) para formatação de estilos

Rasters

GeoTIFF, ArcGrid, ...

Styled Maps

PNG, JPG, SVG, PDF, ...

Quadro Resumo			
Site Oficial	http://geoserver.org/		
Suporte	OSGeo		
Código Fonte	Linguagem Java		
API de Programação	REST API		
Padrões OGC	SFS (PostGIS e Oracle Spatial)		
	WMS, WFS, WMC, WCS,WPS, WMTS, CSW, SLD, GML, SOS		
	TIFF/GeoTIFF, NetCDF, MrSID, ECW, outros via GDAL		
	ESRI Shapfiles, PostGIS, SpatialLite, ESRI ArcSDE, Oracle Spatial, Mysql e outros via OGR		

- Workspaces: espaço para organização lógica dos dados.
- Criar workspace: bdgeo

 Workspaces: espaço para organização lógica dos dados.

New Workspace • Criar workspace: bdgeo Configure a new workspace 🏠 GeoServer aula Namespace URI Workspaces www.inpe.br/aula **About & Status** The namespace uri associated with this workspace Manage GeoServer workspaces Server Status Default Workspace Add new workspace GeoServer Logs Remove selected workspace(s) Isolated Workspace Contact Information About GeoServer Submit Cancel << | [< | [1] [>] [>>] Results 1 to 8 (out of 8 items) Data **Workspace Name Default Isolated** Layer Preview Workspaces cite \checkmark Stores it.geosolutions Lavers Layer Groups nurc Styles Services sf WMTS WCS WCS tiger WFS WFS WMS << < 1 > >> Results 1 to 8 (out of 8 items)

 Stores: conexão com as fontes de dados (arquivo, grupo de arquivos, tabela, etc)

Type Icon	Description	
Œ	raster data in a file	
	vector data in a file	
	vector data in a database	
H	vector server (web feature server)	

- Stores: conexão com as fontes de dados (arquivo, grupo de arquivos, tabela, etc)
- Abrir no OpenLayers

Store	Store type	Path
focos_2020	Shapefile	D:\Dados\focos_2020.shp
Uf	PostGIS	

OGC Web Services

Fonte: Adaptado de Baumann (2010)

Web Map Service

WMS: Web Map Service

WMS: Web Map Service

- Coverages e Features → Figuras
 - Disponibiliza imagens para visualização

- Requisições:
 - GetCapabilities
 - GetMap
 - GetFeatureInfo

Ministério Meio Ambiente (MMA): Florestas Nacionais

INPE/CPTEC Focos Incêndio

IBGE Limites Municipais

WMS: Web Map Service

WMS: GetMap

url?service=wms&version=1.1.0&request=GetMap

&layers=map&srs=EPSG:32623&bbox=x0,y0,xf,yf

&width=800&height=600&format=image:png

Parâmetro	Valores	Requerido
service	wms	Sim
version	1.0.0, , 1.3.0	Sim
request	GetMap	Sim
layers	Lista separada por ","	Sim
styles	Lista separada por ","	Sim
srs ou crs	EPSG:nnnn	Sim

Parâmetro	Valores	Requerido
bbox	x0,y0,xf,yf	Sim
width	800	Sim
height	600	Sim
format	image/png, image/jpeg,	Sim
transparent	true, false	No
bgcolor	Default: #FFFFFF	No

WMS: Prática

- Visualizar Layers criados
 - OpenLayers
 - GetCapabilities
 - DescribeLayer
 - GetMap
 - 。 QGIS
 - Programa Queimadas

Geography Markup Language

```
<gml:coord>
  <gml:X>100</gml:X>
  <gml:Y>50</gml:Y>
  </gml:coord>

<gml:pos>100 50</gml:pos>

<gml:coordinates>-45.3,-22.8 -47.4,-22.1</gml:coordinates>

<gml:posList>-45.3 -22.8 -47.4 -22.1</gml:posList>
```

```
<gml:posList srsDimension="2" srsName="EPSG:29193">
209875.37 7786108.83 209932.91 7785823.73 210330.08
7783858.70 209966.27 7781855.12
</gml:posList>
```

```
<gml:Point>
 <gml:pos srsDimension="2">326358.80 7397825.65
 </gml:pos>
</gml:Point>
<gml:Curve>
 <gml:segments>
  <qml:LineStringSegment>
   <gml:posList srsDimension="2">209875.37
7786108.83 209932.91 7785823.73 210330.08
7783858.70 209966.27 7781855.12
   </gml:posList>
  </gml:LineStringSegment>
 </gml:segments>
</gml:Curve>
<gml:LineString>
 <gml:coordinates>324576.16,7382767.53
324552.72,7382700.51 324504.21,7382669.83
324352.02,7382352.69</gml:coordinates>
</gml:LineString>
```



```
<microreg>
 <TeGeometry>
  <gml:MultiSurface srsName="EPSG:29193">
   <gml:surfaceMember>
     <gml:Surface>
      <gml:patches>
       <gml:PolygonPatch>
        <gml:exterior><gml:LinearRing>
           <gml:posList srsDimension="2">
            263850.35 7309279.21 ...
           </gml:posList></gml:LinearRing>
        </gml:exterior>
       </gml:PolygonPatch>
      </gml:patches>
     </gml:Surface>
   </gml:surfaceMember>
   <gml:surfaceMember> ...
     <gml:posList srsDimension="2">
      306642.38 7300712.22 ...
     </gml:posList>
   </gml:surfaceMember>
  </gml:MultiSurface>
 </TeGeometry>
 <nome>ITANHAEM</nome>
</microreq>
```

Web Feature Service

WFS: Web Feature Service

- WFS Básico:
 - ✓ GetCapabilities:
 - ✓ DescribeFeatureType
 - ✓ GetFeature

- WFS Transacional (WFS-T):
 - ✓ Transaction
 - ✓ LockFeature (opcional)

WFS: Operações Suportadas

WFS: GML é o principal formato


```
<microreg>
  <TeGeometry>
    <gml:MultiSurface srsName="EPSG:29193">
      <gml:surfaceMember>
        <gml:Surface>
          <qml:patches>
            <qml:PolygonPatch>
              <gml:exterior>
                <gml:LinearRing>
                  <gml:posList srsDimension="2">
                    263850.35 7309279.21 ...
                  </gml:posList>
                </gml:LinearRing>
              </gml:exterior>
            </gml:PolygonPatch>
          </gml:patches>
        </gml:Surface>
      </gml:surfaceMember>
      <gml:surfaceMember>
        <gml:posList srsDimension="2">
          306642.38 7300712.22 ...
        </gml:posList>
      </gml:surfaceMember>
    </gml:MultiSurface>
  </TeGeometry>
  <nome>ITANHAEM</nome>
</microreq>
```

WFS: Expressões usam Filter Encoding

```
<Filter>
  <Intersects>
     <PropertyName>Geometry
     <gml:Polygon srsName="63266405">
        <gml:outerBoundaryIs>
           <qml:LinearRing>
              <gml:posList> ... </gml:posList>
           </gml:LinearRing>
        </gml:outerBoundaryIs>
     </gml:Polygon>
  </Intersects>
</Filter>
```

OGC: Web Feature Service (WFS)

GetFeature:

url?service=wfs&version=2.0.0&request=GetFeature&typeNames=feature&propertyName=nome,populacao,uf&count=10&sortBy=nome+D&outputFormat=application/json

Parâmetro	Valores	Requerido
service	wfs	Sim
version	1.0.0, 1.1.0, 1.1.1, 1.3.0	Sim
request	GetFeature	Sim
typeNames	Lista separada por ","	Sim
featureID	NNN	Não
maxFeatures	NNN (count: 2.0.0)	Não

Parâmetro	Valores	Requerido
sortBy	NomeAtributo(+A,+D)	Não
propertyName	Lista separada por ","	Não
bbox	x0,y0,xf0,yf	Não
srsName	image/png, image/jpeg,	Não
transparent	CRS	Não
outputFormat	GML2, GML3, application/json	Não

https://docs.geoserver.org/latest/en/user/services/wms/reference.html

OGC: Web Feature Service (WFS)

- Visualizar Layers criados
 - OpenLayers
 - GetCapabilities: http://localhost:8080/geoserver/wfs?request=getCapabilities
 - DescribeFeatureType:
 - http://localhost:8080/geoserver/bdgeo/wfs?service=WFS& version=1.1.1&request=DescribeFeatureType&typeNames=bdego:uf
 - GetFeature:
 - http://localhost:8080/geoserver/bdgeo/wfs?service=WFS& version=1.1.1&request=GetFeature&typeNames=bdgeo:uf&count=10
 - QGIS

OGC: Web Feature Service (WFS) - Prática

- Extra:GetCapabilities com CQL_Filter:
 - http://localhost:8080/geoserver/bdgeo/wfs?service=WFS&version=1.1.1& request=GetFeature&typeName=bdgeo:uf&count=10& CQL FILTER=uf:regiao='SUDESTE'
- Exercício:
 - Obter as 2 maiores feições (área)

Prática: GeoServer e QGIS

Web Coverage Service

Web Coverage Service (WCS)

• Definição:

Web Service descrito pelo OGC, cujo objetivo é obtenção e troca de informações espaciais sob a forma de coverages.

• Versões da Especificação:

1.0.0: 27/08/2003, 03-065r6, 67 páginas

1.1.0: 17/10/2006, 06-083r8, 143 páginas

WCS: Operações Suportadas

GetCapabilities:

Xml com os metadados do serviço e dos layers (coverages) oferecidos

DescribeCoverage:

Xml detalhado da coverage

GetCoverage:

O dado propriamente dito, no formato espercificado

WCS: Operações Suportadas

OGC: Web Coverage Service (WCS) - Prática

- Visualizar Layers criados
 - OpenLayers
 - GetCapabilities:
 http://localhost:8080/geoserver/wcs?request=getCapabilitie
 <u>S</u>
 - DescribeCoverage:

http://localhost:8080/geoserver/wcs?request=DescribeCoverage&service=WCS&version=2.0.1&coverageId=aula fusao cbers

GetCoverage:

http://localhost:8080/geoserver/wcs?request=GetCoverage&service=WCS&version=2.0.1&format=image/tiff&coverageId=aulafusaocbers

Exercício: baixe o fusao_cbers com ¼ do tamanho original

Web Processing Service

Catalog Service for Web

JSON e GeoJSON

JSON (Java Script Object Notation)

- JSON é um formato de dados que ficou muito popular nas aplicações Web, principalmente entre as APIs de serviços RESTful:
 - Maior facilidade para leitura e escrita de um documento JSON;
 - As aplicações em JavaScript podem facilmente manipular dados neste formato.
 - Ex: Google Elevation API:

JSON (Java Script Object Notation)

```
• Number:
```

```
12348.9
```

• String:

```
"inside double quotes"
```

• Boolean:

```
true ou false
```

```
Array:
```

```
["Gilberto", "Ribeiro"]
```

Object:

```
"name": "Gilberto",
    "age": 36,
    "country": "Brazil"
}
```

GeoJSON

 GeoJSON é um formato de intercâmbio geoespacial baseado na notação JSON.

- Um objeto GeoJSON pode representar:
 - Geometrias
 - Feições
 - Coleções de Feições

```
## Type": "MultiPolygon",

## Coordinates": [

## array-polygon,

## array-polygon

## array-poly
```

```
Geometry Collection
"type": "GeometryCollection",
"geometries": [
    \{geom_1\},
    \{geom_n\}
```

GeoJSON: Feições

```
{
    "type": "Feature",
    "geometry": {
        "type": "Point",
        "coordinates": [10.0, 10.0]
    },
    "properties": { "property-name": "value"}
}
```

GeoJSON: Coleção de Feições

```
"type": "FeatureCollection",
"features": [
         "type": "Feature",
         "geometry": {
              "type": "Point",
              "coordinates": [10.0, 10.0]
         },
         "properties": {
             "property-name": "value"
         }
```

PostGIS: GeoJSON

- ST_GeomFromGeoJSON
- ST_AsGeoJSON

bbox + CRS

• Exemplo:

```
SELECT ST_ASGeoJSON(ST_Centroid(geom), 2, 3)
FROM mg_municipios
```

2 casas decimais

A notação GeoJSON encontra-se em uso:

Bibliotecas:

- OpenLayers,
- GDAL/OGR: GeoJSON Driver
- MapFish
- Mapbender
- Programming languages: Java, PHP, Python, Ruby

Servidores/Serviços:

- GeoServer
- MongoDB
- Twitter
- PostGIS

Source: http://wiki.geojson.org/Users

Validação JSON e GeoJSON

http://jsonlint.com/

http://geojsonlint.com/

STAC (SpatioTemporal Asset Catalog)

SpatioTemporal Asset Catalog

- Nova especificação em desenvolvimento:
 - Versão atual: 0.8.x
- Voltada para construção de catálogos de imagens de sensoriamento remoto (satélites, drones, aviões etc.).
- Objetivo de fornecer uma solução mais simples para catalogação de dados geoespaciais.
- Apoiada em padrões e tecnologiascomo:
 - JSON, GeoJSON, REST

Assets

STAC API

 Define uma API RESTFul para descoberta de dados em um catálogo STAC.

Utiliza a iniciativa OpenAPI para descrição da API.

- Estende a especificação WFS 3 da OGC.
 - getCollections
 - describeCollections
 - getFeatures
 - getFeature
 - getSearchSTAC

Exemplo: Brazil Data Cube STAC

getCollections: /bdc-stac/0.7.0/collections

describeCollections: /bdc-stac/0.7.0/collections/C64mMEDIAN

getFeatures: /bdc-stac/0.7.0/collections/C64mMEDIAN/items

getFeature: /bdc-stac/0.7.0/collections/C64mMEDIAN/items/C64mMEDIAN-043049-2019-09-01-201

getSearchSTAC: /bdc-stac/0.7.0/stac/search

Exemplo: Brazil Data Cube Portal

Prática: STAC com Python

Utilizar o Jupyter Notebook stac.ipynb

Cliente STAC:

https://github.com/brazil-data-cube/stac.py

WTSS (Web Time Series Service)

TerraBrasilis

BDQueimadas

Portal Brazil Data Cube

Considerações Finais

Referências Bibliográficas

Artigos

• MÜLLER, M.; BERNARD, L.; BRAUNER, J. *Moving Code in Spatial Data Infrastructures – Web Service Based Deployment of Geoprocessing Algorithms*. Transactions in GIS, 2010, 14(S1): 101-118.

Padrões e Especificações

- BUTLER, H.; DALY, M.; DOYLE, A.; GILLIES, S.; SCHAUB, T.; SCHMIDT, C. *The GeoJSON Format Specification*. Disponivel em: http://geojson.org>. Acesso: Setembro 2013.
- OGC. Web Map Service. Disponível em: http://www.opengeospatial.org. Acesso em: 17 abril 2012.
- OGC. Web Feature Service. Disponível em: http://www.opengeospatial.org. Acesso em: 17 abril 2012.
- OGC. Web Coverage Service. Disponível em: http://www.opengeospatial.org. Acesso em: 17 abril 2012.