Examenul de bacalaureat național 2017 Proba E. c)

Matematică *M_tehnologic*

Clasa a XI-a

BAREM DE EVALUARE ȘI DE NOTARE

Simulare

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$a_1 = \left(a_1 + 2r\right) - 6$	2p
	r = 3	3 p
2.	$f(1) = 3 \Leftrightarrow 2 + m = 3$	3 p
	m=1	2 p
3.	$3^{x}\left(1+3^{2}\right)=10 \Leftrightarrow 3^{x}=1$	3 p
	x = 0	2 p
4.	$p - \frac{15}{100} \cdot p = 17$, unde p este prețul stiloului înainte de ieftinire	2p
	p = 20 de lei	3 p
5.	$m_d = -1, \ m_{d'} = a$	2p
	$(-1) \cdot a = -1 \Leftrightarrow a = 1$	3 p
6.	$\frac{AC}{AB} = \frac{3}{4} \Rightarrow AB = 20$	2p
	$\mathcal{A}_{\Delta ABC} = \frac{20 \cdot 15}{2} = 150$	3 p

SUBIECTUL al II-lea

(30 de puncte)

1.a)	$D(0) = \begin{vmatrix} 3 & 1 & 2 \\ 1 & 0 & 2 \\ 1 & 3 & 2 \end{vmatrix} =$	2p
	=0+6+2-0-18-2=-12	3 p
b)	D(a) = 6a + 6(a+1) + 2 - 2a - 18 - 2(a+1) = 8a - 12	2p
	$a^2 - 8a + 12 = 0 \Leftrightarrow a = 2 \text{ sau } a = 6$	3 p
c)	$\begin{vmatrix} 3 & 1 & 1 \\ n+1 & n & 1 \\ 1 & 3 & 1 \end{vmatrix} = \frac{1}{2}D(n) \Rightarrow \mathcal{A}_{\Delta ABC} = \frac{1}{2} \cdot \frac{1}{2} D(n) = 2n-3 $	3p
	2n-3 =1, de unde obținem $n=1$ sau $n=2$	2p
2.a)	$A(0) + A(2) = \begin{pmatrix} -1 & 0 \\ 2 & -3 \end{pmatrix} + \begin{pmatrix} -1 & 2 \\ 2 & -1 \end{pmatrix} = \begin{pmatrix} -2 & 2 \\ 4 & -4 \end{pmatrix} =$	3p
	$=2\begin{pmatrix} -1 & 1\\ 2 & -2 \end{pmatrix} = 2A(1)$	2p

	$A(1) \cdot A(x) = \begin{pmatrix} -1 & 1 \\ 2 & -2 \end{pmatrix} \cdot \begin{pmatrix} -1 & x \\ 2 & x - 3 \end{pmatrix} = \begin{pmatrix} 3 & -3 \\ -6 & 6 \end{pmatrix}$	3p
	$A(1) \cdot A(x) + 3A(1) = \begin{pmatrix} 3 & -3 \\ -6 & 6 \end{pmatrix} + \begin{pmatrix} -3 & 3 \\ 6 & -6 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = O_2, \text{ pentru orice număr real } x$	2 p
c)	$B = \begin{pmatrix} 1-a & a \\ 2a & 1-2a \end{pmatrix}, \text{ deci det } B = \begin{vmatrix} 1-a & a \\ 2a & 1-2a \end{vmatrix} = 1-3a$	3p
	$1-3a=0 \Leftrightarrow a=\frac{1}{3}$, deci matricea B este inversabilă pentru orice $a \in \mathbb{R} \setminus \left\{\frac{1}{3}\right\}$	2p

SUBIECTUL al III-lea

(30 de puncte)

1.a)	$\lim_{x \to -1} f(x) = \lim_{x \to -1} \frac{x+5}{x^2 + x + 2} = \frac{-1+5}{(-1)^2 + (-1) + 2} =$	3p
	$=\frac{4}{2}=2$	2p
b)	$\lim_{x \to +\infty} ((2x-1)f(x)) = \lim_{x \to +\infty} \frac{(2x-1)(x+5)}{x^2 + x + 2} = \lim_{x \to +\infty} \frac{x^2 \left(2 - \frac{1}{x}\right) \left(1 + \frac{5}{x}\right)}{x^2 \left(1 + \frac{1}{x} + \frac{2}{x^2}\right)} =$ = 2	3p 2p
c)	$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{x+5}{x^2 + x + 2} = \lim_{x \to +\infty} \frac{1 + \frac{5}{x}}{x \left(1 + \frac{1}{x} + \frac{2}{x^2}\right)} = 0$	3p
	Dreapta de ecuație $y = 0$ este asimptotă orizontală spre $+\infty$ la graficul funcției f	2p
2.a)	$f\left(-2\right) = -7$	2p
	$f(5) = 4 \Rightarrow f(-2) \cdot f(5) = -28$	3 p
b)	$\lim_{\substack{x \to 0 \\ x < 0}} f(x) = \lim_{\substack{x \to 0 \\ x < 0}} (x^3 + 1) = 1$	1p
	$\lim_{\substack{x \to 0 \\ x > 0}} f(x) = \lim_{\substack{x \to 0 \\ x > 0}} (\sqrt{3x+1}) = 1$	1p
	Cum $f(0)=1$, obținem $\lim_{x\to 0} f(x) = f(0)$, deci funcția f este continuă în punctul $x=0$	3 p
c)	$f(x)=0 \Leftrightarrow x=-1$ şi, cum funcția f este continuă pe \mathbb{R} , obținem că funcția f are semn constant pe fiecare din intervalele $(-\infty,-1)$ şi $(-1,+\infty)$, şi cum $f(-2)<0$ şi $f(5)>0$, obținem $f(x)<0$ pentru $x\in (-\infty,-1)$ şi $f(x)>0$ pentru $x\in (-1,+\infty)$	3 p
	$(p+1)(q+1) < 0 \Rightarrow p \in (-\infty,-1)$ şi $q \in (-1,+\infty)$ sau $p \in (-1,+\infty)$ şi $q \in (-\infty,-1)$, de unde obţinem că $f(p)$ şi $f(q)$ au semne diferite, deci $f(p) \cdot f(q) < 0$	2 p