1 The given data is,

Feed = 100 mol

Distillate = 40mol

Residue = 60 mol

a) Differential Distillate: In
$$\frac{F}{W} = \int_{-\infty}^{\infty} \frac{dx}{y^* - x}$$

$$u_1 = \frac{0.6}{60} = \int_{-\infty}^{0.6} \frac{dx}{y^4 - x} = 0.511$$

We need to find x_w such that area under the curve of $\frac{1}{y^*-x}$ vs xie 0.511

is 0.511

For
$$K_W = 0.398$$
, Area = $\frac{1}{2}(0.2)(2.28+3.2) = 0.53$
 $K_W \approx 0.4$

$$FX_F = Dy_D + WXW$$

=7 60 = 40 $y_D + 0.4 \times 60$ =7 $y_D = 0.9$

b) Plotting x vs y+

Flash Distillation,
$$-\frac{W}{D} = -\frac{60}{40} = -\frac{3}{2} = \frac{4D-2F}{2W-2F}$$

At X = 2 = 0.6, line of slope -3/2 is drawn and where it intersects the curve is the point xw and corresponding yo. From graph, Xw = 0.43, yo = 0.86

2 Feed Basis = 100 mol $z_F = 0.6$, F = 100, $P_T = 760$ mm of Hg W = 50 , P = 50

W = 50, D =	50				125.6
	90.4	105	110	120	1540
T(°L)			1200	1350	160
PA (mm Hg)	160	417	561	650	10
PB (mm Hg)	333		0.311	0.157	٥
	. 1	0.656	0 -	~~~	o
$\times_A \left(\frac{P_T - P_A}{P_A - P_B} \right)$. 411	0.491	0.299	
	1	0.811			<i>a</i> 0
VA (PAXA)		****	5.556	8.197	
•	×	6 · 452	3		
NA-XA					

$$-\frac{W}{A} = -\frac{50}{50} = -1$$

Flash Distillation,

From
$$X$$
 ve Y^* , $X_w = 0.31$, $Y_D = 0.48$

Differential Distillation,

Area is 0.693 at approx, Nw = 0.27

$$w x_w + D y_D = F z_F$$

 $50 \times 0.27 + 50 y_D = 100 \times 0.4$
 $y_D = 0.53$

$$w = 40 \text{ mpl}$$

 $x = 2.16 \text{ (Relative volatility)}$

$$\log\left(\frac{F \kappa_F}{w \times w}\right) = \alpha \log\left(\frac{F}{w} \frac{(1-\kappa_F)}{(1-\kappa_W)}\right)$$

$$\frac{100 \times 0.5}{40 \times w} = \left[\frac{100}{40} \quad \frac{(1-0.5)}{(1-\times w)} \right]^{2.16}$$

$$\frac{1\cdot 25}{xw} = \frac{1}{(4(1-xw))^{2\cdot 16}}$$

(3)

@ 80°c, latin - distillation

component
$$V.P$$
 $m = P[460]$ $2F$

A 1302 $(.413)$ 0.1

B 184 1.036 0.8

C 364 0.479 0.1

Now, WKT,
$$y_0^{\dagger} = \frac{ZF(1+W_0)}{1+\frac{1}{m}(\frac{W}{p})}$$
 -(1)

Using trail and error method,

d error method,

$$A \cdot R - 1 \cdot 1748$$
 $A \cdot R \cdot 3 \cdot 319 \times 10^{-15}$
 $A \cdot R \cdot 3 \cdot 319 \times 10^{-15}$
 $A \cdot R \cdot 6 \cdot 593$
 $A \cdot R \cdot 0$

W/D	y*(A)	y*(B)	y*(C)	Total	
0.2	0.107				
0.4	0.113	0.808			
0.6	0.118	0.811	0.071	1.0	
0.8	0.123	0.813	0.067	1.003	
1.0	0.126	0.814	0.065	1.005	
1.2	0.129	0.815	0.063	1.008	
1.4	0.132	0.817	0.061	1.01	
W/D	x(A)	x(B)	x(C)	Total	
**/		11 (10)			
0.2	0.063	0.777	0.177	1.016	
0.2	0.063	0.777 0.78	0.177 0.159	1.016	
0.2	0.063 0.066	0.777 0.78 0.782	0.177 0.159 0.148	1.016 1.005 1.0	
0.2 0.4 0.6	0.063 0.066 0.069	0.777 0.78 0.782 0.784	0.177 0.159 0.148 0.141	1.016 1.005 1.0 0.997	
0.2 0.4 0.6 0.8 1.0	0.063 0.066 0.069 0.072	0.777 0.78 0.782 0.784 0.786	0.177 0.159 0.148 0.141 0.135	1.016 1.005 1.0 0.997 0.995	
0.2 0.4 0.6 0.8	0.063 0.066 0.069 0.072 0.074	0.777 0.78 0.782 0.784 0.786 0.787	0.177 0.159 0.148 0.141 0.135 0.131	1.016 1.005 1.0 0.997 0.995	

Table for Q5

component

A

B

C

1 21

that the Arean person

From material balance

on sowing,
$$D = 62.87$$
. $W_{b} = 0.6$
 $W = 37.57$.

D = 62.57.