EECS 205003 Session 16

Che Lin

Institute of Communications Engineering

Department of Electrical Engineering

Orthogonality of the Four subspaces Looking ahead(part I)(part II)

Figure 24: Two pairs of orthogonal subspaces. The dimensions add to n and add to m. This is an important picture—one pair of subspaces is in \mathbb{R}^n and one pair is in \mathbb{R}^m .

Orthogonal vectors

Two vectors are orthogonal (= perpendicular)

$$\begin{split} &\text{if } \mathbf{u^Tw} = 0 \text{ or } \|\mathbf{u} + \mathbf{w}\|^2 = \|\mathbf{u}\|^2 + \|\mathbf{w}\|^2 \\ &\mathbf{(}(\mathbf{u} + \mathbf{w})^T(\mathbf{u} + \mathbf{w}) = \mathbf{u^Tu} + \mathbf{w^Tw} + \mathbf{w^Tu} + \mathbf{u^Tw} \\ &= \|\mathbf{u}\|^2 + \|\mathbf{w}\|^2 \Rightarrow \mathbf{w^Tu} = \mathbf{u^Tw} = 0 \mathbf{)} \end{split}$$

Note: All vectors are orthogonal to zero vector

Orthogonal subspaces

Def

Subspace S is orthogonal to subspace T if every vector in ${\bf S}$

is orthogonal to every vectors in T

$$(\mathbf{u}^{\mathbf{T}}\mathbf{w} = 0 \ \forall \mathbf{u} \in S, \ \forall \mathbf{w} \in T)$$

Figure 23: Orthogonality is impossible when dim $V + \dim W >$ dimension of whole space.

(If $S \cap T$ contains any vector (except 0)

- $\Rightarrow S \cap T$ cannot be orthogonal)
- (0 is orthogonal to itself $0^{T}0 = 0$)

Nullspace is orthogonal to row space

 $N(A)\ \&\ C(A^T)$ are orthogonal subspace of R^n

Why?
$$\forall \ \mathbf{x} \in N(A)$$
, $A\mathbf{x} = \mathbf{0}$

$$A\mathbf{x} = \begin{bmatrix} row \ 1 \\ row \ 2 \\ \vdots \\ row \ m \end{bmatrix} \mathbf{x} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix} \begin{array}{l} \leftarrow row \ 1 \cdot \mathbf{x} = 0 \\ \leftarrow row \ 2 \cdot \mathbf{x} = 0 \\ \vdots \\ \leftarrow row \ m \cdot \mathbf{x} = 0 \end{array}$$

 \Rightarrow x is orthogonal to every row of A so it's also orthogonal to all combination of rows of A \Rightarrow $N(A) \perp C(A^T)$

Left Nullspace is orthogonal to column space

 $N(A) \perp C(A^T)$: both orthogonal subspaces of R^m Reason: $\forall \mathbf{y} \in N(A^T), A^T\mathbf{y} = \mathbf{0}$

$$A^{T}\mathbf{y} = \begin{bmatrix} \cot 1^{T} \\ \cot 2^{T} \\ \vdots \\ \cot n^{T} \end{bmatrix} \mathbf{y} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

- \Rightarrow y is orthogonal to every column of A
- \Rightarrow y is orthogonal to all combination of columns of A

$$\Rightarrow N(A^T) \perp C(A)$$

Orthogonal complements

Def

The orthogonal complement V^\perp (V perp) of subspace V contains every vector perpendicular to V

Figure 24: Two pairs of orthogonal subspaces. The dimensions add to n and add to m. This is an important picture—one pair of subspaces is in \mathbb{R}^n and one pair is in \mathbb{R}^m .

Fundamental Theorem of Linear Algebra (part II)

- (1) N(A) is orthogonal complement of $C(A^T)$ (in R^n)
- (2) $N(A^T)$ is orthogonal complement of C(A) (in R^m)

Reason for (1):

 $\forall \mathbf{x}$ orthogonal to rows of A, $A\mathbf{x} = \mathbf{0}$ $\Rightarrow \mathbf{x} \in N(A) \Rightarrow N(A) = C(A)^{\perp}$

(reverse is also true, i.e., $C(A^T) = N(A)^{\perp}$ prove by

contradiction : if $\exists \mathbf{v}$ orthogonal to N(A) but not in $C(A^T)$, we

can add ${\bf u}$ as a new row of matrix: $A^{'}=\left[\begin{array}{c}A\\{\bf u^T}\end{array}\right]$ without

changing N(A))

(If $A\mathbf{x} = \mathbf{0}$, then $A'\mathbf{x} = \mathbf{0}$ since $\mathbf{u}^{T}\mathbf{x} = \mathbf{0}$)

```
then dim\ C(A^{'T})=dim\ C(A^T)+1=r+1, but dim\ N(A^{'})=dim\ N(A)=n-r\Rightarrow (n-r)+(r+1)=n+1\neq n (contradiction!)
```

(Reason for (2) follows by changing A to A^T)

Ex:

$$A = \left[\begin{array}{ccc} 1 & 2 & 5 \\ 2 & 4 & 10 \end{array} \right]$$

$$dim \ C(A^T) = 1 \Rightarrow dim \ N(A) = 3 - 1 = 2$$

(basis: $(1 \ 2 \ 5)$) (basis: two special solutions)

By orthogonal complement, $N({\cal A})$ is the plane

perpendicular to $\begin{pmatrix} 1 & 2 & 5 \end{pmatrix}$

Row space & Nullspace components

Since $C(A^T)$ & N(A) are orthogonal complements

$$(C(A^T) = N(A)^{\perp} \& N(A) = C(A^T)^{\perp})$$

every $x \in \mathbb{R}^n$ can be splitted into

 $x = x_r + x_n$ (will prove it later)

 $\mathbf{x_r}$: row space component

 $\mathbf{x_n}$: nullspace component

Multiplying by A

Note 1: $Ax_n = 0$ (nullspace component goes to zero)

Note 2: $Ax_r = Ax = b$ (row space component goes to C(A))

Figure 25: This update of Figure 24 shows the true action of A on $x = x_r + x_n$. Row space vector x_r to column space, nullspace vector x_n to zero.

Note 3: Every vector $\mathbf{b} \in C(A)$ comes from a unique vector $\mathbf{x_r} \in C(A^T)$

$$\begin{aligned} & \text{pf: If } \exists \mathbf{x_r}, \mathbf{x_r^{'}} \in \mathbf{C}(\mathbf{A^T}) \quad \text{s.t.} \\ & A\mathbf{x_r} = A\mathbf{x_r^{'}} \Rightarrow A\mathbf{x_r} - A\mathbf{x_r^{'}} = \mathbf{0} \\ & \Rightarrow A(\mathbf{x_r} - \mathbf{x_r^{'}}) = \mathbf{0} \quad \Rightarrow \mathbf{x_r} - \mathbf{x_r^{'}} \in N(A) \\ & \text{since } \mathbf{x_r}, \mathbf{x_r^{'}} \in C(A^T) \quad \Rightarrow \ \mathbf{x_r} - \mathbf{x_r^{'}} \in C(A^T) \\ & \Rightarrow \mathbf{x_r} - \mathbf{x_r^{'}} = \mathbf{0}, \text{ since } N(A) \perp C(A^T) \end{aligned}$$

This implies that there is a $r \times r$ invertible matrix hiding inside A

(If we throw away two nullspaces)

From $C(A^T) \to C(A), \ A$ is invertible & pseudoinverse will invert it in sec. 7-3

Combining Bases from subspaces

Recall: Basis = independent + span the space

But when the count is right, we only need one of them, i.e.,

- Any n independent vector in \mathbb{R}^n must span $\mathbb{R}^n \Rightarrow$ they are basis
- Any n vectors that span \mathbb{R}^n must be independent \Rightarrow they are basis

Equivalent statements: $(A_{n \times n})$

- If n columns of \boldsymbol{A} are independent they span

$$R^n \Rightarrow A\mathbf{x} = \mathbf{b}$$
 solvable, $\forall \mathbf{b}$

- if n columns of A span \mathbb{R}^n , they are in independent
 - $\Rightarrow A\mathbf{x} = \mathbf{b}$ has only one solution
- pf: If n columns independent then no free var.s
 - \Rightarrow sol. x unique & n pivots
 - \Rightarrow back sub. solves $A\mathbf{x} = \mathbf{b}$
 - \Rightarrow solution exists
 - If n columns span R^n , $A\mathbf{x} = \mathbf{b}$ is solvable \forall \mathbf{b} (solution exists)
 - \Rightarrow elimination produces no zero rows
 - \Rightarrow n pivots \Rightarrow no free var.s
 - ⇒ solution unique

Combining bases from $C(A^T) \& N(A)$

we have
$$r$$
 basis from $C(A^T)$ in \mathbb{R}^n $(n-r)$ basis from $N(A)$ in \mathbb{R}^n

combined together

A total of r + (u - r) = u independent vectors in \mathbb{R}^n , they span \mathbb{R}^n

 $\Rightarrow a_1 = a_2 = \cdots = a_r = a_{r+1} = \cdots = a_n = 0 \ n$ vectors are independent

So for every ${\bf x}$ in R^n , we have ${\bf x}={\bf x_r}+{\bf x_n}$