Question bank for third internal

Part-1 (Similar problems)

Δ

1. Using suitable interpolation formula, find y(38) for the following data:

x	40	50	60	70	80	90
у	184	204	226	250	276	304

2. Find the polynomial interpolating the data

x	0	1	2	3
f(x)	1	2	1	10

3. The following data is on melting point of an alloy of lead and zine where t is temperature in celsius and P is percentage of lead alloy. Find the melting point of the alloy containing 86% of lead.

Р	40	50	60	70	80	90
t	184	204	226	250	276	304

4. Given

					5			8
f(x)	1	8	27	64	125	216	343	512

Estimate f(7.5) using Newton-Gregory Backward difference interpolation formula.

5. Using the Lagrange's formula find y(4).

x	0	1	2	5
y	2	3	12	147

6. The following table gives the premium payable at ages in years completed. Interpolate the premium payable at age 35 completed using Lagrange's formula. (5 Marks)

x = Age completed	25	30	40	60
y = Premium in Rs	50	55	70	95

В.

1. Given the values

x	5	7	11	13	17
f(x)	150	392	1452	2366	5202

Evaluate f(9), using Newton's divided difference formula.

2. Evaluate f(5) using divided difference formula, given f(0) = -5, f(1) = -14, f(4) = -125,

$$f(8) = -21, \ f(10) = 355$$

3. Evaluate $\int_0^1 \frac{dx}{1+x^2}$ using Simpson's one-third rule by taking 8 sub intervals.

4. Find an approximate value of $\log_e 5$, by Simpson's 1/3 rule, from $\int_0^5 \frac{dx}{4x+5}$, dividing the range into 6 equal parts.

5. Evaluate $\int_0^{\frac{\pi}{2}} \sqrt{\cos \theta} \ d\theta$ by Simpson's $\frac{3}{8}th$ rule by taking 7 ordinates.

6. Compute the value of $\int_{0.2}^{1.4} (\sin x - \log x + e^x) dx$ using Simpson's $\frac{3}{8}$ th rule taking six parts.

Part-2(Similar problems)

Α

- 1. Using Taylor's series method, solve $y' = x + y^2$, given y(0) = 1, at x = 0.1, considering upto 3^{rd} degree term.
- 2. Find an approximate value of y when x = 1.1, if $\frac{dy}{dx} = 1 x^2y$, given y(1) = 0, using Taylor's method.
- 3. Using modified Euler's method, find an approximate value of y when x = 0.1,

given
$$\frac{dy}{dx} = \frac{y-x}{y+x}$$
, $y(0) = 1$. Perform two iterations.

4. Using modified Euler's method, find an approximate value of y when x = 1.1,

given
$$\frac{dy}{dx} = 2x - \frac{y}{x}$$
, given $y(1) = 1$

В

- 1. Using fourth order Runge-Kutta method find the solution of $10 \frac{dy}{dx} = x^2 + y^2$, y(0) = 1 at x = 0.2.
- 2. Using Runge-Kutta method of fourth order, find an approximate value of y when x = 0.1,

given
$$\frac{dy}{dx} = \frac{y-x}{y+x}$$
, $y(0) = 1$.

C

- 1. Given $\frac{dy}{dx} = x y^2$ and y(0) = 0, y(0.2) = 0.02, y(0.4) = 0.0795, y(0.6) = 0.1762, evaluate y(0.8) by Milne's method.
- 2. Given $\frac{dy}{dx} = x^2(1+y)$ and y(1) = 1, y(1.1) = 1.233, y(1.2) = 1.548, y(1.3) = 1.979, evaluate y(1.4) by Milne's method.

Question paper pattern

Part- I					
1. a) 4 Marks	Or	2. a) 4 Marks			
b) 4 Marks		b) 4Marks			
Part- 2					
3. a) 4 Marks		4. a) 4 Marks			
b) 4 Marks	Or	b) 4 Marks			
c) 4 Marks		c) 4 Marks			