Generative Image Inpainting with Contextual Attention

7107053114 沈佳詠

Abstract

- Approach: a new deep generative model-based approach
 - Filling missing pixels of an image
 - Utilize surrounding image features as references during network training
- Model: a feed-forward fully convolutional neural network
 - Process image with multiple holes at arbitrary locations and with variable sizes

Contextual Attention Layer

Improved generative inpainting Network

Parameter

- x = real image
- $z = \text{input image}, x \odot m$
- \tilde{x} = inpainting output, G(z)
- $\hat{x} = (1 t)x + t\tilde{x}$, $t \sim U[0, 1]$
- G: generator
- *D* : discriminator
- \mathcal{D} : the set of 1-Lipschitz function
- P_r : the model distribution defined by x
- P_g : the model distribution implicitly defined by \tilde{x}

Parameter

- λ : set to 10
- m: input and mask

```
0, for missing pixels1, for elsewhere
```

- $P_{\hat{x}}$: the model distribution defined by \hat{x}
- $\nabla_{\hat{x}} D(\hat{x})$: the gradient penalty apply to pixels inside the holes

Improved WGAN

•
$$\min_{G} \max_{D \in \mathcal{D}} E_{x \sim P_r}[D(x)] - E_{\tilde{x} \sim P_g}[D(\tilde{x})]$$
$$+ \lambda E_{\hat{x} \sim P_{\hat{x}}}(\|\nabla_{\hat{x}}D(\hat{x})\odot(1-m)\|_2 - 1)^2$$

• m :
$$\begin{cases} 0, \text{ for missing pixels} \longrightarrow Local \ Critic \\ 1, \text{ for elsewhere } \longrightarrow Global \ Critic \end{cases}$$

Results

Places2

Method	l_{1} Loss	l_2 Loss	PSNR	TV Loss
Patch Match	16.1%	3.9%	16.62	25.0%
Baseline model	9.4%	2.4%	18.15	25.7%
Our method	8.6%	2.1%	18.91	25.3%