Total No. of Questions: 6

Total No. of Printed Pages:3

Enrollment No.....

Faculty of Engineering End Sem (Odd) Examination Dec-2019 EC3ET04 / EI3ET04 Data Structures

Programme: B.Tech. Branch/Specialisation: EC/EI

Duration: 3 Hrs. Maximum Marks: 60

	-	estions are con should be writ			if any, are indicated. Ans b, c or d.	swers of
Q.1	i.	Assuming int is of 4 bytes, what is the size of int arr[15]?			1	
		(a) 15	(b) 19	(c) 11	(d) 60	
	ii.	The postfix f	orm of the ex	pression (A+ I	(C*D-E)*F/G is?	1
		(a) AB+CD*	E-FG/**	(b) AB+CI)*E-F**G/	
		(c) AB+CD*	E-*F*G /	(d) AB + C	CDE * - * F *G /	
	iii. The no. of external nodes in a full binary tree with n int				ry tree with n internal no	odes 1
		is?				
		(a) n	(b) $n+1$	(c) 2n	(d) $2n + 1$	
	iv.	Why graph tr	aversal is dif	ficult than tree	traversal?	1
		(a) Because t	ree have root	(b) Becaus	e tree is binary	
		(c) Because t	ree is undefin	ed (d) All of t	hese	
	v. What is the maximum height of an AVL tree with p nodes					1
		(a) p		(b) $log(p)$		
		$(c) (\log(p))/2$		(d) $p/2$		
	vi.	vi. Why to prefer red-black trees over AVL trees?				
		anced				
		(b) AVL tree store balance factor in every node which costs space				,
		(c) AVL tree				
	(d) Red black is more efficient					
	vii.	•			early sorted, which of t	the 1
		following algorithm gives the best performance?				
		(a) Insertion		(b) Selection		
		(c) Quick sor	t	(d) Merge	sort	

P.T.O.

[2]

viii. Which of the following algorithms has lowest worst case time 1

1
1
5
l
5
-
. 5
`
• 6
d d ss s s s s s s s s s s s s s s s s

Draw the diagram of the final tree step by step. Also write down the

postorder traversal of the tree from the final tree

2.4	i.	Explain AVL tree and Leftist tree.	4
		[3]	
	ii.	Start with an empty red-black tree and insert the following keys in the given order [15,14,13,12,11,10] Draw tree figures in node format [colour, key] and depict—tree immediately after each insertion and following the rebalancing rotation or colour change (if any). Label all nodes with their colour and identify the rotation	6
)R	iii.	type(if any) that is done. What are the applications of Splay tree explain all types of rotation in a splay tree while inserting a key?	6
).5	i. ii.	Write algorithm of insertion sort. Build a max heap H from the following list of numbers: 46,34,52,21,64,56,79,56	4 6
OR	iii.	Explain different types of external and internal sorting in details.	6
2.6	i.	'a' is a linear array with 'n' elements, and 'item' is a given item of information. write algorithm to find the location 'loc' of 'item' in 'a', set loc=0 if the search is unsuccessful.	3
	ii.	What is Hash table and explain different types of uniform hash functions?	7
OR	iii.	Explain bucket overflow and write at least two types of approaches used for overflow resolution also Write down at least two application of each searching and indexing in computer field.	7

Marking Scheme EC3ET04 / EI3ET04 Data Structures

Q.1	i.	Assuming int is of 4 bytes, what is the size of int ar	r[15]?	1	
	ii.	(d) 60 The postfix form of the expression (A+ B)*(C*D- I	E)*F / G is?	1	
		(a) $AB+CD*E-FG/**$			
	iii.	The no. of external nodes in a full binary tree with	n internal nodes	1	
		is?			
		(b) n+1			
	iv.	Why graph traversal is difficult than tree traversal?		1	
		(a) Because tree have root		1	
	v.				
		(b) $log(p)$			
	vi.	Why to prefer red-black trees over AVL trees?		1	
		(b) AVL tree store balance factor in every node wh	•		
	vii.	If the given input array is sorted or nearly sorte	ed, which of the	1	
		following algorithm gives the best performance?			
		(a) Insertion sort		1	
	viii.	Which of the following algorithms has lowest	worst case time	1	
		complexity?			
		(d) Heap sort	1 1	1	
	ix.	In linear search with array, how many comparisons are needed 1 in best case			
	37	(b) 1 The method of access which uses key transformation	an is Iznavan as	1	
	х.	(b) Hash	on is known as	1	
		(b) Hash			
Q.2		Attempt any two:			
2.2	i.	Two differences between stack and queue	2 marks	5	
	1.	Disadvantages of an array	2 marks		
		How it can be overcome by linked list.	1 mark		
	ii.	Formula	1 mark	5	
		Calculation step and Address of element at location		-	
		a [6,2]=120	4 marks		
	iii.	Table of stack for question	(0.5 mark*10)	5	
		•	•		

Q.3	i.	Define Graph	1 mark	4
		(a) Connected component	1 mark	
		(b) Cycle	1 mark	
		(c) Degree	1 mark	
	ii.	Binary search tree with diagram	1.5 marks	6
		Threaded binary tree with diagram	1.5 marks	
		Complete binary tree with diagram	1.5 marks	
		Extended binary tree with diagram.	1.5 marks	
OR	iii.	Tree step by step (each step 1 mark)	5 marks	6
		Postorder traversal	1 mark	
Q.4	i.	AVL tree	2 marks	4
		Leftist tree.	2 marks	
	ii.	Each insertion of key	(1 mark*6)	6
OR	iii.	Applications of Splay tree	2 marks	6
		Types of rotation in a splay tree	4 marks	
Q.5	i.	Each step of algorithm (1 mark)	4 marks	4
	ii.	Tree step by step (each step 1 mark)	6 marks	6
OR	iii.	External sorting	2 marks	6
		Internal sorting	4 marks	
Q.6	i.	Each step of algorithm (1 mark)	3 marks	3
	ii.	Hash table	1 mark	7
		Different types of uniform hash functions	6 marks	
OR	iii.	Bucket overflow	1 mark	7
		Types of approaches used for overflow resolution	2 marks	
		Two application of each searching and indexing	(2 marks*2)	
