SC1004 Part 2

Lectured by Prof Guan Cuntai (teaching materials by Prof Chng Eng Siong)

Email: ctguan@ntu.edu.sg

Quiz 2 and Exam:

1. Quiz 2

- Coverage: Ch 6,7,8

- Time/Date: Week 13, last lecture time (10:30-11.20am, 17th April

2024)

2. Final Exam

- Coverage : Ch 6, 7, 8 (Q3 & Q4)

- Date/Time: 2 May 2024 (Thursday), 1.00-3.00pm

(Ch 9 will not be tested)

Syllabus for Part 2

Chapte r	Topics	Week (Lecture)	Week (Tut)
6	Orthogonality	8-9	9-10
7	Least Squares	9-10	10-11
8	EigenValue and Eigenvectors	11-12	12-13
9	Singular Value Decomposition (SVD)	13	

Table 1: schedule

Online Video learning Schedule

https://www.youtube.com/channel/UCBzG5jg3huxiPkCt-Serrjw

Week	Part	Topic	Notes
8	6.1.1-6.2.3	Orthogonality, Normalization, Dot-Product, Inequalities,	Lecture 1: 6.1.1 - 6.1.3 Lecture 2: 6.1.4 - 6.2.3
9	6.2.4-6.3.2	Orthogonal/Orthonormal Sets, Basis, Gram Schmidt and QR Decomposition	Lecture 3: 6.2.4 Lecture 4: 6.2.5 – 6.3.2
10	7.1.1-7.2.1	Least Squares and Normal Eqn, Projection Matrix, Applications	Lecture 5: 7.1.1 – 7.1.3 Lecture 6: 7.1.4 – 7.2.1
11	8.1.1-8.1.2	Eigenvectors, Eigen-values, Characteristics Eqn	Lecture 7: 8.1.1 Lecture 8: 8.1.2
12	8.1.3-8.1.5	Diagonalisation, Power of A, Change of basis	Lecture 9: 8.1.3 Lecture 10: 8.1.4 – 8.1.5
13	9.1.1-9.2	Introduction to SVD and PCA (Not examined in quiz/exam)	Lecture 11: 9.1.1 – 9.2 Lecture 12: Quiz 2

How will we conduct the course?

- 1) Before the lectures, watch the videos according to the schedule in Table 1
 - You can watch past years zoom video recordings at https://www.youtube.com/@linearalgebra1884/playlists?view=50&sort=dd&shelf_id=2

- 2) During lecture hours
 - We will summarize the lectures and highlight the key points
 - Q&A.

References

Linear Algebra and Its Applications by David Lay, Steven Lay, Judi McDonald

3Blue1Brown on YouTube

Essence of linear algebra preview

https://www.youtube.com/playlist?list=PLZ HQObOWTQDPD3MizzM2xVFitgF8hE_ab

Lecture (Week 8)

(Chapter 6.1.1- 6.2.3)

Key points – 6.1.1 Geometric Vectors

• Vector
$$oldsymbol{v} = egin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix}$$

Vector direction & length

$$0 \| \boldsymbol{v} \| = \sqrt{v_1^2 + v_2^2 + \dots + v_n^2}$$

Vector addition & subtraction

$$\circ \boldsymbol{u} = \boldsymbol{v}_1 + \boldsymbol{v}_2$$

$$0 u = v_1 - v_2$$

• Euclidean space: $R^n - n$ dimensional real numbers

<u>Key points – 6.1.2 Norm (Euclidean Norm)</u>

- Norm: $\|v\| = \sqrt{v_1^2 + v_2^2 + \dots + v_n^2}$ • $\|v\| \ge 0$ • $\|v\| = 0$ iif v = 0• $\|kv\| = |k| \|v\|$
- Normalizing a vector (unit length vector)

$$\circ \boldsymbol{u} = \frac{v}{\|v\|}$$

Vector distance

$$0 dist (u, v) = ||u - v|| = \sqrt{(u_1 - v_1)^2 + \dots + (u_n - v_n)^2}$$

<u>Key points – 6.1.3 Dot Product/Inner Product</u>

Definition

$$\circ \boldsymbol{v} = \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix}, \boldsymbol{u} = \begin{bmatrix} u_1 \\ \vdots \\ u_n \end{bmatrix}$$

 \circ Geometric formula: $u \cdot v = ||u|| \, ||v|| \, cos\theta$

$$\circ \cos\theta = \frac{u \cdot v}{\|u\| \|v\|}$$

$$0 if ||\mathbf{u}|| = 1, ||\mathbf{v}|| = 1, \cos\theta = \mathbf{u} \cdot \mathbf{v}$$

$$\|u\|^2 = u \cdot u$$
, or $\|u\| = \sqrt{u \cdot u}$

o Projection:
$$\boldsymbol{u} \cdot \boldsymbol{v} = \|\boldsymbol{u}\| (\|\boldsymbol{v}\| \cos \theta) = \|\boldsymbol{v}\| (\|\boldsymbol{u}\| \cos \theta)$$

$$\circ$$
 Perpendicular: $oldsymbol{u}\cdotoldsymbol{v}=0$

<u>Key points – 6.1.3 Dot Product/Inner Product (2).</u>

Properties of dot product

Dot products have many of the same algebraic properties as products of real numbers.

THEOREM 3.2.2 If \mathbf{u} , \mathbf{v} , and \mathbf{w} are vectors in \mathbb{R}^n , and if k is a scalar, then:

(a) $\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$ [Symmetry property]

(b) $\mathbf{u} \cdot (\mathbf{v} + \mathbf{w}) = \mathbf{u} \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{w}$ [Distributive property]

(c) $k(\mathbf{u} \cdot \mathbf{v}) = (k\mathbf{u}) \cdot \mathbf{v}$ [Homogeneity property]

(d) $\mathbf{v} \cdot \mathbf{v} \ge 0$ and $\mathbf{v} \cdot \mathbf{v} = 0$ if and only if $\mathbf{v} = \mathbf{0}$ [Positivity property]

Transformation on dot product

Key points – 6.1.4 Inequalities

- Inequalities
 - $|u \cdot v| \leq ||u|| \, ||v||$
 - \circ Triangular inequality: $||u+v|| \leq ||u|| + ||v||$

THEOREM 3.2.4 Cauchy–Schwarz Inequality

If
$$\mathbf{u} = (u_1, u_2, \dots, u_n)$$
 and $\mathbf{v} = (v_1, v_2, \dots, v_n)$ are vectors in \mathbb{R}^n , then
$$|\mathbf{u} \cdot \mathbf{v}| \le \|\mathbf{u}\| \|\mathbf{v}\| \tag{22}$$

or in terms of components

$$|u_1v_1 + u_2v_2 + \dots + u_nv_n| \le (u_1^2 + u_2^2 + \dots + u_n^2)^{1/2} (v_1^2 + v_2^2 + \dots + v_n^2)^{1/2}$$
(23)

Prove

Key points – 6.2.1 Orthogonality

Definition (vectors orthogonal to each other)

$$0 \mathbf{u} \cdot \mathbf{v} = 0$$

$$0 \cos \theta = 0 \rightarrow \theta = 90^{\circ}, \text{ or } \theta = \pi/2$$

- Orthonormal
 - u and v are orthogonal with unit length (||u||=1, ||v||=1)

<u>Key points – 6.2.2 Orthogonal Projection</u>

- Decomposition of a vector
 - \circ Standard basis in \mathbb{R}^n

- Projection theorem
 - $\mathbf{w}_1 = Proj_a \, \boldsymbol{u} = \frac{\boldsymbol{u} \cdot \boldsymbol{a}}{\boldsymbol{a} \cdot \boldsymbol{a}} \, \boldsymbol{a} \, \text{(projection)} \text{prove \& example}$

$$o w_2 = u - Proj_a u = u - \frac{u \cdot a}{a \cdot a} a$$
 (residual)

$$\circ u = w_1 + w_2$$

 \circ Distance from \boldsymbol{u} to \boldsymbol{a} : $\|\boldsymbol{u}-\boldsymbol{w}_1\| = \|\boldsymbol{w}_2\|$

Key points – 6.2.3 Orthogonal Sets and Basis

• A set of vectors $\{u_1, u_2 \cdots u_p\}$ in \mathbb{R}^n is said to be an orthogonal set if each pair of distinct vectors from the set is orthogonal, that is, if $u_i \cdot u_j = 0$, whenever $i \neq j$.

```
o If p = n, \{u_1, u_2 \cdots u_n\} spans R^n
```

- o If p < n, $\{u_1, u_2 \cdots u_p\}$ spans a subspace W in \mathbb{R}^n
 - $ho \{u_1, u_2 \cdots u_p\}$ are the basis of the subspace
 - > Standard basis for Euclidian space of R^3 : $u_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$, $u_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$, $u_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$

<u>Key points – 6.2.3 Orthogonal Decomposition</u>

- Project a vector ${m y}$ on to subpace spanned by $\{{m u}_1, {m u}_2 \cdots {m u}_p\}$ in R^n
 - Let W be a subspace of \mathbb{R}^n . Then each y in \mathbb{R}^n can be written **uniquely** in the form:

$$y = \hat{y} + z$$

Where \hat{y} is in W and z is in W^{\perp} .

If $\{u_1, u_2 \cdots u_p\}$ is any orthogonal basis of W, then

$$\widehat{\mathbf{y}} = Proj_{\mathbf{w}}\mathbf{y} = \frac{\mathbf{y} \cdot \mathbf{u}_1}{\mathbf{u}_1 \cdot \mathbf{u}_1} \mathbf{u}_1 + \dots + \frac{\mathbf{y} \cdot \mathbf{u}_p}{\mathbf{u}_p \cdot \mathbf{u}_p} \mathbf{u}_p$$

• Explain using: $\hat{\mathbf{y}} = \mathbf{y} - \mathbf{z} = c_1 \mathbf{u}_1 + c_2 \mathbf{u}_2 + \dots + c_p \mathbf{u}_p$

<u>Key points – for tutorial questions</u>

Orthogonal matrix A

- o If *A* is square with orthonormal columns (in fact, the row of an orthogonal matrix is also orthonormal)
- Vector orthogonal to a subspace
 - o If a vector u is orthogonal to every vector in a subspace W of \mathbb{R}^n , then u is said to be orthogonal to W all u called the orthogonal complement of W (W^{\perp})

End