

Primera Parte

- 1. Lee detenidamente la definición de función abordada en la teoría y partir de ello responde si las siguientes afirmaciones son Verdaderas o Falsas. Expresa una justificación para cada una de tus respuestas.
 - a) Si f es una función definida de un conjunto A en otro conjunto B, a dos elementos distintos de A no puede corresponderle el mismo elemento en B.
 - b) Si f es una función definida de un conjunto A en otro conjunto B, dos elementos distintos de B pueden ser imagen del mismo elemento en A.
 - c) Si f es una función definida de un conjunto A en otro conjunto B, dos elementos distintos de A no pueden tener como imagen el mismo elemento en B.
 - d) Sea f una función definida de un conjunto A en otro conjunto B, existen elementos de A que no tienen imagen en B.
 - e) Sea f una función definida de un conjunto A en otro conjunto B, existen elementos de B que no son imagen de ningún elemento de A.
- 2. Si avanzas en la lectura de la teoría encontrarás la definición de Dominio e Imagen de una función, con estos conceptos completa las siguientes afirmaciones:
 - a) Sea f una función definida de un conjunto A en otro conjunto B. Al conjunto A se lo llamade la función.
 - b) Sea f una función definida de un conjunto A en otro conjunto B. Al conjunto B se lo llamade la función.
 - c) Sea f una función definida de un conjunto A en otro conjunto B. Llamaremos imagen de una función al conjunto formado por
 - d) El conjunto imagen de una función es igual o está incluido en el conjunto
- 3. Responde las siguientes preguntas:
 - a) ¿Una recta vertical representa el gráfico de una función?

Trabajo Práctico 1: Funciones

- b) ¿Cómo se define el gráfico de una función?
- c) ¿Por qué en el gráfico de una función una recta vertical debe cortar en un solo punto a dicho gráfico?
- 4. Responde las siguientes preguntas:
 - a) Una función lineal es una función definida $f: \mathbb{R} \to \mathbb{R}/f(x) = ax + b \text{ con } a \in \mathbb{R} \text{ y } b \in \mathbb{R}.$ ¿Qué gráfico tiene esta función?
 - b) En la ecuación de la función lineal a se llama y b se llama
 - c) Describe el gráfico de $f: \mathbb{R} \to \mathbb{R}/f(x) = ax + b$ con $a \in \mathbb{R}$ y $b \in \mathbb{R}$ para los siguientes casos:
 - $a = 0 \ y \ b = 0$
 - a = 0 y $b \neq 0$
 - a = 1 y b = 0
 - d) Si la pendiente de una función lineal es positiva, la función es:
 - 1) Decreciente
 - 2) Creciente.
 - 3) Constante.
- 5. La gráfica de una función cuadrática es:.....
- 6. La abscisa del vértice de una función cuadrática es:.....
- 7. ¿Cómo se relaciona el coeficiente de segundo grado de una función cuadrática con el gráfico de la función?
- 8. La función valor absoluto se define como:
- 9. El valor absoluto de un número real es siempre un número
- 10. Diremos que una función $f: \mathbb{R} \to \mathbb{R}/y = f(x)$ es par si
- 11. Diremos que una función $f: \mathbb{R} \to \mathbb{R}/y = f(x)$ es impar si
- 12. Sean $f: A \to B \ y \ g: D \to C$, con $A \subset \mathbb{R}$, $B \subset \mathbb{R}$, $C \subset \mathbb{R}$ $y \ D \subset \mathbb{R}$, entonces $g \circ f$ es posible si......
- 13. Sean $f:A\to B$ y $g:D\to C$, con $A\subset\mathbb{R},\,B\subset\mathbb{R},\,C\subset\mathbb{R}$ y $D\subset\mathbb{R},$ entonces $f\circ g$ es posible si......

- 15. Dadas las siguientes afirmaciones:
 - i) Toda función inyectiva es sobreyectiva.
 - ii) Toda función biyectiva es sobreyectiva.
 - iii) Toda función biyectiva es inyectiva.

De ellas son verdaderas:

- Sólo la ii)
- Sólo la ii) y iii)
- Sólo la iii)
- Sólo la *i*) y *ii*)
- 16. Considera las siguientes proposiciones:
 - a) El dominio de toda función que tiene inversa es el dominio de la inversa
 - b) El dominio de toda función biyectiva es el dominio de su inversa.
 - c) El dominio de toda función que tiene inversa es igual al codominio de esa inversa.

De ellas son verdaderas:

- Sólo la a) y b)
- Sólo la a)
- Sólo la c)
- Sólo la b) y c)
- 17. ¿Cuál de las siguientes proposiciones es la verdadera? Expresa una justificación para tu respuesta.
 - a) Toda función biyectiva tiene inversa.
 - b) Toda función cuadrática tiene inversa.
 - c) La inversa de la función constante es ella misma.
 - d) Todas las funciones tienen inversa.

18. Qué condición necesaria y suficiente debe cumplir una función para que exista su inversa?

Segunda Parte

1. Cuál de los siguientes gráficos de la figura representan gráficos de funciones. En caso de serlo, indique el dominio de cada una.

 $2.\,$ Determinar el dominio de las siguientes funciones:

a)
$$f(x) = 3(x-3)^3 + 2x^2$$

$$b) \ f(x) = \frac{3x}{4x - 1}$$

$$c) \ f(x) = \sqrt{3 - 3x}$$

$$d) \ f(x) = \frac{x-3}{\sqrt{1-x^2}}$$

e)
$$f(x) = \frac{\sqrt{7-x}}{\sqrt{x-1}\sqrt{x}}$$
f)
$$f(x) = \frac{x}{|x-1|}$$

$$f) \ f(x) = \frac{x}{|x-1|}$$

3. Para cada uno de los siguientes gráficos de funciones, determinar: dominio, imagen, ceros o raíces, ordenada al origen, intervalos de positividad y negatividad.

4. Para las siguientes funciones calcular, si es posible, lo indicado:

a)
$$f(x) = x^2 - 4$$

- 1) f(-1)
- f(0)
- 3) f(-2)
- 4) f(x+h) f(h)
- 5) $x \in \mathbb{R}$ tal que f(x) = 5

$$b) f(x) = \frac{x}{x^2 - 1}$$

- 1) $f(\frac{-1}{2})$
- f(0)
- 3) f(-1)
- 4) $x \in \mathbb{R}$ tal que f(x) = 0

c)

$$f(x) = \begin{cases} 2x - 3 & \text{si } x < 2\\ 5 - x^2 & \text{si } x \ge 2 \end{cases}$$

- 1) $f(\frac{5}{2})$
- (2) f(0)
- 3) f(-1)
- 4) $x \in \mathbb{R}$ tal que f(x) = 0

5. Indicar en cada caso la pendiente y la ordenada al origen de las siguientes funciones lineales:

a)
$$y = 2x - 4$$

- $b) \ 3y = x + 6$
- c) 7x 3y + 4 = 0
- $d) \ 4y = 3$

6. Graficar, sin hacer tabla de valores, las funciones lineales del ejercicio anterior.

7. Hallar, analíticamente, una función lineal que satisfaga:

a)
$$f(-1) = 2 \text{ y } f(1) = 4$$

b)
$$f(0) = 2 \text{ y } Im(f) = 2$$

- c) El gráfico de la función corta al eje x en -2 y al eje y en 2
- 8. A partir de la gráfica de f(x) = |x| representar:
 - a) 2f(x)
 - b) f(x-1)
 - c) f(2x)
 - d) f(x) + 2
 - e) $f(\frac{1}{2}x) 2$
- 9. A partir de la gráfica de f(x) = [x] representar:
 - a) 2f(x)
 - b) f(x-1)
 - c) -f(x) + 2
- 10. Sea la función definida:

$$f(x) = \begin{cases} 4x + 11 & \text{si } x < -2\\ 3 & \text{si } -2 \le x \le 1\\ \frac{-1}{2}x + \frac{7}{2} & \text{si } x > 1 \end{cases}$$

- a) Calcular f(-3); f(-2); f(1) y f(3)
- b) Graficar
- c) Indicar el dominio, la imagen y los ceros de la función.
- 11. Dadas las siguientes funciones:

$$a)f(x) = -2x + 1; \quad b)f(x) = \frac{x^2}{(x^2 + 1)}; \quad c)f(x) = 3x^3 - x;$$

$$d)f(x) = 1 \quad x^2; \quad c)f(x) = \sqrt{x}, \quad 1; \quad f)f(x) = \frac{x^2}{(x^2 + 1)}; \quad c)f(x) = \frac{$$

$$d)f(x) = 1 - x^2; \ e)f(x) = \sqrt{x} - 1; \ f)f(x) = \frac{x^2}{1 - |x|}$$

- Estudiar si la función es par, impar o no tiene paridad en cada caso.
- \bullet Graficar f
- Indicar el dominio, la imagen y los ceros de la función.

- 12. Dadas las siguientes funciones: f(x) = -2x+1 y $g(x) = \sqrt{x+7}$. Indicar el dominio de cada una de ellas, hallar cada una de las operaciones indicadas a continuación y el dominio de la función resultante.
 - a) f + g
 - b) f-g
 - c) f.g
 - $d) \frac{f}{g}$
- 13. Encontrar, si es posible, las siguientes funciones compuestas $f \circ g$ y $g \circ f$. Indicar el dominio de las funciones compuestas.

a)
$$f(x) = x^2 - 1$$
 y $g(x) = x + \frac{1}{x}$

b)
$$f(x) = \sqrt{x-1} y g(x) = x - \sqrt{x+1}$$

c)
$$f(x) = \sqrt{1 - x^2}$$
 y $g(x) = \frac{x - 2}{x}$

d)
$$f(x) = \frac{1}{x-1} y g(x) = x^2$$

14. Dadas las siguientes funciones:

a)
$$f: \mathbb{R} \to \mathbb{R}/f(x) = \frac{x^5 - 3}{2}$$

b)
$$f:[2,+\infty) \to \mathbb{R}/f(x) = \sqrt{x-2}$$

c)
$$f: \mathbb{R} \to \mathbb{R}/f(x) = 4 - x^2$$

d)
$$f: \mathbb{R} - \{6\} \to \mathbb{R} - \{1\} / f(x) = \frac{x+12}{x-6}$$

$$e) f: \mathbb{R} \to \mathbb{R}/f(x) = 2^x + 3$$

$$f)$$
 $f:(3,+\infty)\to \mathbb{R}/f(x)=ln(x-3)$

- Hallar dominio e imagen y clasificar cada una de las funciones
- Restringir el dominio y el conjunto de llegada, si es necesario, de tal manera que resulten biyectivas y hallar su inversa.
- 15. Hallar todos los valores de $x \in [0; 2\pi]$ que satisfacen

$$a)cosx = \frac{1}{2}; \quad b)senx = -\frac{\sqrt{2}}{2}; \quad c)senx > 0$$

$$d)senx = 0; \ e)cosx < 0; \ f)tanx = -1$$

Trabajo Práctico 1: Funciones

16. Graficar las siguientes funciones. Indicar dominio, imagen e intersecciones con los ejes cartesianos.

$$a)f(x) = sen(3x); \ b)g(x) = 2cos(x - \pi); \ c)h(x) = 3tan(2x)$$