Note there will be no part marking below what has been shown.

 A coal burning burner is fed with powdered coal (assume pure carbon) preheated to 1800K and dry air (N2:O2=79:21, by volume) preheated to 1200K. The coal to air ratio is such that the product is only a gas containing CO and N2. Perform a material balance and a heat balance and calculate the adiabatic flame temperature (of the product gas).

Take only 1 mol (12g) carbon as the mass basis. You need to present data as mass and heat balance tables. (Only the entries in the table may be seen for valuation)

4 marks

 $\frac{\text{Solution:}}{\text{Reaction:}} \frac{\text{Solution:}}{\text{C(3)} + \frac{1}{2}O_{2}(g)} = \frac{\text{CO}_{(g)}}{\text{C(2g)}} \frac{\text{AH}_{298} = -111000\text{ J/mol}}{\text{(12g)} + 16(g)} = \frac{18(g)}{\text{(12g)}}$

Input.	mol	mak,	ought of	mol	mass,
C Air: 02	1 1/2	12.	CO N2	1 1-8810	28
1 mark N2 for correct & N2 complete table	$\frac{1}{2} \times \frac{0.79}{0.21} = 1.8810$	16 52:67		1.9810	3287
Complete		80.67			80.67

Input		outful	
Sensible Heat C 1 (23.5 × 1800 - 11800)	30500	Sessible Hear CO 1(36.6T-1640D)	
$\frac{Ai \times 1200K}{O_2} = \frac{1}{2} (36.27 - 13500)$		CO 1(36.6T-1640D) N2 1.881(36.4T-1650D)	72.439 135157
N2 1.881 (36.47 - 16500)	51126		
Mark for correct compled tob // mark of R. H.S entries not me	111000	Loss adiabatic	0
1 mark for correct complet take 1/2 mark of R. H.S entries not me	ile Lek		
	207596		207596

$$T(36.6+68.47) - (16400 + 31037) = 207596$$

 $T = \frac{207596+47437}{105.07} - 2427.3K = 2/54.2°C$
 $(\pm 5°)$ 2 may ks

2. 1 mole of a super-cooled material is adiabatically contained at 400 K at constant pressure. If it spontaneously freezes, what is the final temperature? What fraction of the material freezes?

$$\Delta H_m^o = 2000 \frac{J}{mol}$$
. $at T_m = 600 K$
 C_p : liq : $34.7 - 9.2 \times 10^{-3} T$ J/mol.K
 Sol : $18.5 + 2.6 \times 10^{-3}$ T J/mol.K

[Note that starting from a temperature lower than the melting point, an adiabatically contained material cannot cross the melting point by releasing the latent heat and heating itself. This would violate the second law as we will see later. Hence the maximum temperature can be 600K. It can be lower]. 2marks

+2 marks bonus, if the numerical answer is rigorous conceptually! There is a standard mistake that people commit.

Solution:

There are two options: (i) datent head relieved is sufficient to heat porducts to m. pt.: 600 K; some liquid remains.

(ii) Even after full solidification; temp. does not reach 600k.

Explore option(i): Final temp 600k. Fraction solidified: x.

Adiabatic geometant pr; $q_p = \Delta H = 0$. Since enthalpy calculation, path does not matter

$$AH = \int G dT + (AH_{m,600K}) x$$

$$+ 600$$

$$= \left[34.7T - \frac{9.2 \times 10^{-3}}{2}\right]^{-600}$$

$$= 400$$

ark

= 6940 - 920 - 2000 x = 0. = D x = 3.01. Not possible Premise wrong

 A mixture of steam at 400K and oxygen at 300K, both at 1 atm., react with a bed of graphite granules at 1000K to yield a mixture of H₂ and CO at 1000K. Calculate the composition of the CO/H₂ mixture, if the above process should be adiabatic (i.e. no heat effect). Answer in tables

4 marks

Further data

	$H_T^o - H_{298}^o$, J/mol	ΔH_{298}^f , J/mol
СО	36.6T - 16400	-111000
CO ₂	61.0T - 30500	-394000
H ₂ O(g)	47.4T - 22200	-242000
N ₂	36.4T - 16500	27
O ₂	36.2T - 13500	-
С	23.5T - 11800	-
H ₂	35.2T - 17200	-

Note : $H_T^o - H_{298}^o = \int_{298}^T C_p \, dT$; that is, it is an integrated expression.

Input	kmof	kg		1	
H20	1	18	60	1+2x = 2.589	72.40
. 02	x = 0.79433	25.42	H2	1	2
orised the C	1+2=2:589	31.06			
		74.48			
H20.	+C= H2+CO; A1128 -	111000 +2	42000 =	131000	74.4
	7 -18	AT I		15/1-00	1
H20 (400K)	1(47.4×400-22200)	-5240	co	(1+2x) (36.6×1000 -16400	5229
02	x (36.2 × 300 - 13500)	- 2077	H2-	1 (35.2+1000-17200) 1800
correct C	+2x)(235×1000-11800)	30287		(
complet Rkn Hf	1(242000)+052X)X	45341		x=0.7943 ±0.01:2 mag	do
-		70291		200/12/1/	702

NOTE: H2O+C = H2+CO; $\Delta H_{298} = H_{CO}^f - H_{H2O}^f$ (since at 298K, $H_{element} = 0$)