Seite 1

Ferienkurs Quantenmechanik - Aufgaben Sommersemester 2014

Fabian Jerzembeck und Sebastian Steinbeißer Fakultät für Physik Technische Universität München

11. September 2015

Drehimpuls, Spin und H-Atom

Aufgabe 1 (*)

Beweise die Relationen

$$[L_+, L_-] = 2\hbar L_z, \quad [L_z, L_{\pm}] = \pm \hbar L_{\pm}, \quad [L^2, L_{\pm}] = 0$$

mithilfe der Vertauschungsrelationen für den Drehimpuls.

Aufgabe 2 (*)

Wir bezeichnen die simultanen Eigenkets von L^2 und L_z mit $|l,m\rangle$, $l \in \mathbb{N}$ und $-l \leq m \leq +l$. Für die Auf- und Absteigeoperatoren des Drehimpulses $L_{\pm} = L_x \pm iL_y$ gilt:

$$L_{\pm}|l,m\rangle = \hbar\sqrt{l(l+1) - m(m\pm 1)}|l,m\pm 1\rangle$$

Drücke L_x und L_y durch L_{\pm} aus und zeige die Relationen

$$\langle l, m | L_x L_y + L_y L_x | l, m \rangle = 0$$
$$\langle l, m | L_x^2 - L_y^2 | l, m \rangle = 0$$

Aufgabe 3 (*)

Der Hamiltonoperator eines starren Rotators in einem Magnetfeld ist gegeben durch:

$$H = \frac{L^2}{2\Theta} + \gamma \vec{L} \cdot \vec{B}$$

Dabei ist \vec{L} der Drehimpuls und \vec{B} das angelegte Magnetfeld. Θ (das Trägheitsmoment) und γ (der gyromagnetische Faktor) sind Konstanten. Das Magnetfeld sei konstant in z-Richtung: $\vec{B} = B\vec{e}_z$.

Wie lauten Energieeigenzustände des Systems? Berechne die Energieeigenwerte.

(Theoretische Physik III)

Tag 3

Aufgabe 4 (**)

Wir betrachten ein System in einem Eigenzustand zu \vec{L}^2 mit Eigenwert $2\hbar^2$, d.h. l=1.

- a) Bestimmen Sie, ausgehend von der bekannten Wirkung von Auf- und Absteigeroperatoren L_{\pm} , die Matrixdarstellung von L_x , L_y und L_z bezüglich der Standardbasis $|l,m\rangle$.
- b) Gesucht ist die Wahrscheinlichkeitsdichte, ausgedrückt in Kugelkoordinaten mit θ und φ , für ein System in einem Eigenzustand zu \vec{L}^2 und L_x mit den Quantenzahlen l=1 und $m_x=1$.

Aufgabe 5 (*)

Bestimme die Matrixexponentiale für die Matrizen:

a)

$$A = \begin{pmatrix} 0 & 1 & 3 \\ 0 & 0 & 4 \\ 0 & 0 & 0 \end{pmatrix}$$

b)

$$B = \begin{pmatrix} 0 & \theta \\ -\theta & 0 \end{pmatrix}$$

Aufgabe 6 (*)

Die normierten Wasserstoffeigenfunktionen für maximalen Bahndrehimpuls l=n-1 sind von der Form:

$$\Psi_{n,n-1,m}(\vec{r}) = \frac{u_{n,n-1}(r)}{r} Y_{lm}(\vartheta,\varphi), \quad u_{n,n-1}(r) = \sqrt{\frac{2}{n(2n)!a_B}} \left(\frac{2r}{na_B}\right)^n e^{-\frac{r}{na_B}}$$

 $mit \ a_B = \frac{\hbar}{m_e \alpha c}$.

- a) Bestimme den Abstand r_{max} an dem die radiale Wahrscheinlichkeitsdichte $P(r) = |u_{n,n-1}(r)|^2$ maximal wird und vergleiche r_{max} mit dem Mittelwert $\langle r \rangle$.
- b) Berechne die Unschärfe Δr . Wie hängt die relative Abweichung $\frac{\Delta r}{\langle r \rangle}$ von der Hauptquantenzahl n ab? Das Ergebnis verdeutlicht, dass für große n die Vorstellung einer Kreisbahn zulässig ist.

Hinweis: $\int_{0}^{\infty} dx x^{q} e^{-x} = q!$

Aufgabe 7 (*)

Drücke den Winkelanteil des Ortsvektors \vec{r} in Kugelkoordinaten durch geeignete Linearkombinationen der Kugelflächenfunktionen Y_{lm} aus.

Aufgabe 8 (**)

Der Hamiltonoperator des dreidimensionalen harmonischen Oszillators in Kugelkoordinaten lautet:

$$H = -\frac{\hbar^2}{2M}\Delta + \frac{M}{2}\omega^2 r^2$$

- a) Reduziere die stationäre Schrödingergleichung auf eine Radialgleichung mit dem üblichen Ansatz $\Psi(\vec{r}) = \frac{u(r)}{r} Y_{lm}(\vartheta, \varphi)$. Vereinfache sie durch die Substitution mit den dimensionslosen Größen $y = r \sqrt{\frac{M\omega}{\hbar}}$ und $\epsilon = \frac{E}{\hbar\omega}$.
- b) Zeige, dass das asymptotische Verhalten durch den Ansatz $u(y) = y^{l+1} e^{-y^2/2} v(y^2)$ berücksichtigt wird und bestimme die verbleibende Differentialgleichung für $v(y^2)$.
- c) Schreibe die DGL aus b) um, in eine DGL für $v(\rho)$ mit der Variablen $\rho = y^2$.
- d) Setze eine Potenzreihe für $v(\rho)$ an. Die Abbruchbedingung liefert das Energiespektrum $E_{nl} = \hbar\omega(2n+l+\frac{3}{2})$ mit den Quantenzahlen n,l.

Aufgabe 9 (**)

Wir betrachten den Spin eines Elektrons im magnetischen Feld \vec{B} . Der Hamiltonoperator lautet:

$$H = -\left(\frac{e}{m_e c}\right) \vec{S} \cdot \vec{B}$$

Wir wählen ein konstantes Magnetfeld in z-Richtung. Der Hamiltonoperator ist also gegeben durch

$$H = \omega S_z \quad mit \quad \omega = \frac{|e|B}{m_e c}.$$

- a) Was sind die Eigenzustände und Energieeigenwerte des Systems?
- b) Zum Zeitpunktpunkt t = 0 befinde sich das System in dem Zustand

$$|\alpha;t=0\rangle = \frac{1}{\sqrt{2}}|+\rangle + \frac{1}{\sqrt{2}}|-\rangle$$

also in dem $|S_x;+\rangle$ Eigenzustand der S_x -Komponente. Benutze die zeitabhängige Schrödingergleichung

$$i\hbar \frac{d}{dt} |\alpha; t\rangle = H |\alpha; t\rangle$$

 $um |\alpha; t\rangle$ zu bestimmen.

c) Was ist die Wahrscheinlichkeit, dass sich das Elektron zum Zeitpunkt t wieder im Zustand $|S_x; +\rangle = \frac{1}{\sqrt{2}} |+\rangle + \frac{1}{\sqrt{2}} |-\rangle$ befindet? Wie groß ist also $|\langle S_x; +|\alpha; t\rangle|^2$?

(Theoretische Physik III)

Aufgabe 10 (*)

Ein Elektron befinde sich im Spinzustand:

$$\chi = A \begin{pmatrix} 1-2i \\ 2 \end{pmatrix} = A \Big((1-2i) \left| + \right\rangle + 2 \left| - \right\rangle \Big)$$

bezüglich der Eigenzuständen von S_z .

- a) Bestimmen Sie die Konstante A so, dass χ korrekt normiert ist.
- b) Sie messen S_z bei diesem Elektron. Welche Werte können Sie prinzipiell erhalten? Wie groß ist die Wahrscheinlichkeit für jeden dieser möglichen Werte? Was ist der Erwartungswert von S_z ?
- c) Sie messen S_x bei diesem Elektron. Welche Werte können Sie prinzipiell erhalten? Wie groß ist die Wahrscheinlichkeit für jeden dieser möglichen Werte? Was ist der Erwartungswert von S_x ?

Aufgabe 11 (**)

Wir koppeln zwei 1/2 Spins und bezeichnen die Eigenzustände zum quadratischen Gesamtspinoperator S^2 mit $|s=0,1,m\rangle$. Wir definieren Auf- und Absteiger: $S_{\pm}:=S_{1\pm}+S_{2\pm}$.

- a) Wenden Sie S₋ auf den Triplet-Zustand $|s=1,m=0\rangle$ an und zeigen Sie damit, dass das Ergebnis $\sqrt{2}\hbar |1,-1\rangle$ folgt.
- b) Wenden Sie S_{\pm} auf den Singlet-Zustand $|s=0,m=0\rangle$ an und zeigen Sie damit, dass es keine weiteren Singlett-Zustände gibt.
- c) Zeigen Sie, dass $|1,1\rangle$ und $|1,-1\rangle$ Eigenzustände von S^2 mit den erwarteten Eigenwerten sind.