Schedule

RIT Academic Calendar: https://www.rit.edu/calendar

Machine Learning Schedule: Fall 2022

W e e k	Topics	Delivera bles	Notes	Sourc es
1 A u g 2 2	Overview: What exactly is Machine Learning? Classificatio n vs. Regression: Choosing vs. Scoring/Ranki		Tues Aug 23 First Lecture	* Hasti e Ch. 1, 2.1- 2.3 * Revie w #ml- applic ations on disc ord
2 A u g 2 9	Least Squares: A parametric linear regression and classification model k-Nearest Neighbors: A non- parametric regression and classification model	Thursda y: Quiz 1	Mon Aug 29 Add/Dro p ends	
3 S e pt 5	Bayesian Decision Theory Example: parametric models using Gaussian feature distributions	Tuesday: Assignme nt 1 (Least Squares, Nearest N.) Thursda y: Quiz 2	Prof. Zanibbi away Lectures from TA/onlin e	Readin gs in MyCou rses: * Charni ak SLL Ch 2 * DuinEt Al Ch 2

S e pt 1 2	Bayesian Decision Theory, continued	Thursda y: Quiz 3		
5 S e pt 1 9	Support Vector Machines: Optimal linear binary classification (i.e., for two classes)	Thursda y: Quiz 4	Career Fair	Hastie Ch. 12.1- 12.1.3
6 S e pt 2 6	Ensembles: Combining classifiers, regression using multiple models (e.g., decision tree ensembles)	Thursda y: Quiz 5		Hastie Ch 9.2, 15 (skim) Crimini si 3.1- 3.4
7 O ct 3	Neural Networks: Overview Loss functions & Backpropagat ion Example Neuron: 'Classic' Perceptron	Tuesday: Assignme nt 2 (Bayesian) Thursda y: Quiz 6		Charni ak DL Chs 1 and 2
8 O ct 1 0	Backpropagat ion & Autogradient Data use and training networks		Mon- Tues (Oct 10-11): Fall Break Lecture Cancell ed Tuesda y	
9 O ct 1 7	Basic neural nets in TensorFlow	Tuesday : Assignme nt 3 (SVM/Ens) Thursda y: Quiz 7	Thursd ay: Group Project Overvie w	
1		Wednes day:		

O ct 2 4	TensorFlow	Group teams due		
1 1 0 ct 3 1	Convolution al Neural Networks CNNs, continued	Thursda y: Project Proposal		Charni ak DL, Ch 3
1 2 N 0 V 7	Recurrent Neural Networks		Registr ation Wk (for Spring 2023)	Charni ak DL, Ch 4
1 3 N 0 V 1 4		Tuesday : Quiz 8 Thursda y: Assign 4 (CNNs)	Tuesda y: Group Project Discussi on Course eval forms availabl e	
1 4 N 0 V 2 1		Tuesday: Quiz 9	Tuesda y: Group project discussi on Wed-Fri (Nov 23-25): Thanksg iving Break Lecture Cancell ed Thursd ay	
1 5 N o v 2	Final topics + Project	Friday : Quiz 10		
1	Exam Week:	Monday: Assign 5	Mon Dec 5 End of Classes Tues	

Exam Week:

Assign 5

Tues

6	No Lectures	(RNNs)	Dec 6	
D	Exam on	Friday	Reading	
е	Friday	(Exam):	Day	
С	1:30pm-	Project	Friday	
5	4pm	Presentat	Dec 9	
	-	ion	**Exam,	
			1:30-	
			4pm	
			·	

Wed Dec 14 1 Last Day 7 Monday: of D **Exam Week:** Project Exams report (Class е Fri Dec finished) + code С 16 1 Final 2 Grades Due

Machine Learning

Home & News

Syllabus

Schedule

Contact Instructor & TA

Resources

MyCourses

