Algorithm for Bresenham Line Drawing and Scaling it

Step 1:

Input the starting and ending points of the line:

- Starting point (x_0, y_0)
- Ending point (x_1, y_1)

Step 2:

Calculate the absolute differences between the coordinates:

- $-\Delta x = |x_1 x_0|$
- $-\Delta y = |y_1 y_0|$

Step 3:

Determine the step directions for x and y:

- sx = 1 if $x_1 > x_0$, otherwise -1
- sy = 1 if $y_1 > y_0$, otherwise -1

Step 4:

Initialize lists to store the points:

- $xes = [x_0]$
- $yes = [y_0]$

Step 5:

Determine whether the line is more horizontal ($\Delta x > \Delta y$) or vertical ($\Delta y >= \Delta x$):

- For horizontal lines ($\Delta x > \Delta y$):
- Initialize decision parameter $P = 2\Delta y \Delta x$
- Update points and decision parameter iteratively until x_0 equals x_1 :
- If P >= 0:
- Update y_0 : $y_0 = y_0 + sy$
- Update P: P = P + $2(\Delta y \Delta x)$
- Otherwise:

```
- Update P: P = P + 2\Delta y
```

- For vertical lines $(\Delta y \ge \Delta x)$:
- Initialize decision parameter $P = 2\Delta x \Delta y$
- Update points and decision parameter iteratively until y₀ equals y₁:

```
- If P >= 0:
```

- Update x_0 : $x_0 = x_0 + sx$
- Update P: P = P + $2(\Delta x \Delta y)$
- Otherwise:
- Update P: $P = P + 2\Delta x$

Step 6:

Apply 2D transformations to the line points using a transformation matrix:

- Define the scaling matrix:
- Scale x by 2 and y by 0.5
- Define the translation matrix:
- Translate by 3 units right and 2 units up
- Calculate the composite transformation matrix (scaling * translation)
- Transform the original line points using the composite matrix

Step 7:

Plot the original line and the transformed line:

- Use different colors and markers to distinguish between them
- Add gridlines, titles, and labels for clarity