Порядкові критерії

Порядкові критерії — це такі критерії, які для перевірки висунутих гіпотез про генеральну сукупність використовують не елементи вибірки, а лише їх порядок, співвідношення між ними. Зазвичай такі критерії застосовуються відразу принаймні до двох вибірок x_i , ..., x_n та y_i , ..., y_m . Порядок між елементами цих вибірок визначаємо нерівностями виду $x_i < y_j$ або $x_i > y_j$ (i = 1,...n, j = 1,..m). Такі критерії не залежать від функції розподілу генеральних сукупностей ξ і η , а тому їх часто називають критеріями, незалежними від розподілу або непараметричними критеріями.

Непараметричні критерії часто застосовують для порівняння двох методів. Нульова гіпотеза тоді формулюється у вигляді

 H_0 : нема різниці між двома методами.

Критерій знаків

Нехай (x_1, y_1) , (x_2, y_2) , ... (x_n, y_n) - n пар спостережень над деякою випадковою змінною, і в кожній з цих пар спостереження x_i, y_i - незалежні і з неперервними функціями розподілу, відповідно $F_i(x)$ та $G_i(y)$.

$$H_0$$
: $F_i(x) = G_i(y)$, $(i = 1,...n)$ (розподіли співпадають)

Вважаємо, що $x_i \neq y_i$ у всіх парах спостережень. Тоді у випадку істинності гіпотези H_0 , різниці $z_i = x_i - y_i$ повинні однаково часто бути додатними та від'ємними, тобто

$$P(x_i = y_i) = 0, \ P(z_i > 0) = P(z_i < 0) = \frac{1}{2}, \ i = 1,...n.$$

 $\kappa(+)$ - кількість додатніх різниць. Тому кількість $\kappa(+)$ появ події A у таких незалежних випробуваннях ϵ випадковою змінною, розподіленою за біномним законом, причому:

$$P(\kappa(+) = s) = C_n^s \frac{1}{2^s}$$
 $s = 0,1,...n.$

Межі прийому гіпотези (m, M) є розв'язками нерівностей:

(*)
$$\sum_{s=0}^{m-1} \frac{C_n^s}{2^s} \le \frac{\alpha}{2} \text{ та } \sum_{s=M+1}^n \frac{C_n^s}{2^s} \le \frac{\alpha}{2} \text{ , відповідно.}$$

Якщо при вибраному α значення $\kappa(+)$ попадає в інтервал (m, M), то вважатимемо, що експериментальні дані не суперечать сформульованій вище нульовій гіпотезі.

Статистика $\kappa(+)$ - біномно розподілена. Тому при великих n, $(n \ge 16)$, для визначення області прийому гіпотези (m, M) можна скористатися інтегральною теоремою Муавра-Лапласа. Наприклад, оцінивши так ліві частини нерівностей (*) при $n \ge 16$ та $\alpha = 0.05$ одержимо область прийому гіпотези:

$$(a-1,96\sigma; a+1,96\sigma)$$
, де $a = E(\kappa(+)) = \frac{n}{2}$, $\sigma^2 = D(\kappa(+)) = \frac{n}{4}$.

Отже, $m=[\frac{n}{2}-0.98\sqrt{n}],~M=\{\frac{n}{2}+0.98\sqrt{n}\},$ де [x] - ціла частина числа x, а $\{x\}$ - найменше ціле число $y\geq x$ (найближче до x ціле число)

Зауваження. Якщо серед пар (x_i, y_i) , i = 1,...n є такі, що $x_i = y_i$, то їх просто відкидаємо і n зменшуємо на кількість таких пар.

Гіпотеза про медіану

Критерій знаків можна використати для перевірки гіпотези про медіану неперервного розподілу генеральної сукупності: $H_0: Me = a$.

Нехай x_1 , ..., x_n - вибірка з генеральної сукупності. Утворимо пари $(x_1,a),(x_2,a),...(x_n,a)$. Будемо вважати, що у всіх цих парах $x_i \neq a$. Тоді у випадку істинності гіпотези H_0 , різниці $z_i = x_i - a$ повинні однаково часто бути додатними та від'ємними.

$$P(z_i = 0) = 0$$
, $P(z_i > 0) = P(z_i < 0) = \frac{1}{2}$, $i = 1,...n$.

Зауваження. Якщо серед пар (x_i, a) є такі, що $x_i = a$, то їх відкидаємо і зменшуємо n.

Критерій інверсій

Нехай x_1 , ..., x_n та y_1 , ..., y_m - незалежні вибірки незалежних спостережень з генеральних сукупностей, про які відомо, що вони описуються деякими неперервними функціями розподілу F(x) та G(y).

Нехай нульова гіпотеза H_0 : F(x)=G(y), (генеральні сукупності є стохастично еквівалентними випадковими змінними)

Ідея перевірки гіпотези H_0 за допомогою критерію інверсій полягає в тому, що у випадку істинності цієї гіпотези в середньому на кожному відрізку спільного варіаційного ряду з заданою кількістю елементів першої вибірки повинно бути приблизно стільки ж елементів другої вибірки. Якщо така пропорція буде значно порушуватися, то H_0 сумнівна.

Отже, критерієм обгрунтування H_0 може бути загальне число інверсій елементів однієї вибірки відносно іншої у спільному варіаційному ряді.

Елемент x_i однієї вибірки утворює одну інверсію з елементом y_k іншої вибірки, якщо він розміщений правіше від нього у спільному варіаційному ряду, тобто $x_i > y_k$.

Число інверсій елемента x_i відносно іншої вибірки — це кількість елементів y_k другої вибірки, які менші за x_i .

 $W(x \, / \, y)$ - кількість інверсій елементів І вибірки відносно ІІ.

W(y/x) - кількість інверсій елементів ІІ вибірки відносно І.

$$0 \le W(x/y) \le n \cdot m \text{ i } 0 \le W(y/x) \le n \cdot m.$$

Рангом елемента називається порядковий номер цього елемента у спільному варіаційному ряді.

R(x) - сума рангів елементів вибірки І.

R(y) - сума рангів елементів вибірки II.

Наприклад, маємо такий спільний варіаційний ряд:

n=9 - кількість x, m=7 - кількість y.

$$W(y/x) = 1+2+3+3+3+5+5 = 22$$
 - кількість у, які є перед x

$$W(x/y) = 2+3+4+7+7+9+9 = 41$$
 - кількість x , які ϵ перед y .

$$R(x) = 1+2+4+6+8+9+10+13+14 = 67$$

$$R(y) = 3+5+7+11+12+15+16 = 69$$

Якщо всі елементи першої вибірки у спільному варіаційному ряді розташовані перед усіма елементами другої вибірки, то $R(x) = \frac{n(n+1)}{2}$

Коли ж усі елементи другої вибірки у спільному варіаційному ряді розміщені перед усіма елементами першої вибірки, то $R(x) = m \cdot n + \frac{n(n+1)}{2}$

Отже,
$$\frac{n(n+1)}{2} \le R(x) \le m \cdot n + \frac{n(n+1)}{2}$$

Аналогічно:
$$\frac{m(m+1)}{2} \le R(y) \le m \cdot n + \frac{m(m+1)}{2}$$

Tomy
$$W(y/x) = R(x) - \frac{n(n+1)}{2}$$
, $W(x/y) = R(y) - \frac{m(m+1)}{2}$, (**)

Отже,
$$W(y/x) + W(x/y) = m \cdot n$$
,

тобто статистики W(y/x) та W(x/y) є рівноцінними для перевірки гіпотези H_0 . З цією метою звичайно використовуємо одну з них, яку позначаємо W.

Критичні значення статистики W для малих m,n при рівні значущості $\alpha=0,05$ наведені в таблиці (додаток 13). Однак, коли $m\geq 4,\, n\geq 4,\, m+n\geq 20$, то статистика W приблизно нормально розподілена з математичним сподіванням $a=E(W)=\frac{mn}{2}$ та дисперсією $\sigma^2=D(W)=\frac{mn}{12}(m+n+1)$. Тому у таких випадках при $\alpha=0,05$ з високим ступенем точності можна вважати, що область прийняття гіпотези ε інтервал $(a-1,96\sigma;\, a+1,96\sigma)$.

Зауваження. Для великих вибірок легше обчислювати R(x) та R(y), а потім за формулами (**) знаходити W(y/x) або W(x/y), одне з яких приймаємо за емпіричне значення статистики W.

Завдання для самостійної роботи

1. Перевірялася швидкість десяти автомобілів за допомогою двох приладів. Результати представлені у вигляді наступної таблиці:

70	85	63	54	65	80	75	95	52	55
72	86	62	55	63	80	78	90	53	57

Чи можна сказати, що швидкості відрізняються незначимо?

2. Випадковим чином із класу вибрали 10 учнів і перевірили їх середні оцінки з математики і укр. мови. Дані подані по 100-бальній шкалі (перша оцінка в парі – з математики):

(80, 53), (48, 61), (62, 56), (53, 72), (45, 48), (72, 50), (60, 45), (41, 58), (53, 50), (57, 46).

Перевірити гіпотезу про те, що якщо учень має хороші оцінки з математики, то в нього хороші оцінки і з укр.мови.

3. Двома приладами вимірюють діаметри 16 однотипних деталей. Отримано такі результати:

Перевірити гіпотезу про те, що результати вимірювань відрізняються незначимо.

- 4. Перевірити гіпотезу про те, що медіана популяції, з якої взято вибірку рівна 10: 6, 12, 16, 20, 13, 8, 5, 13, 15, 19.
- 5. Перевірити гіпотезу, що медіана популяції, з якої взята вибірка Me = 15: 7; 8; 16; 14; 20; 19; 10; 17; 18; 12.
- 6. Перевірити гіпотезу про однорідність двох вибірок, отриманих в результаті вимірювань діаметрів втулок, що оброблялися станками.

Перша вибірка x: 0.28, 0.15, 0.25, 0.32, 0.23, 0.26, 0.29, 0.31, 0.34 Друга вибірка y: 0.30, 0.18, 0.35, 0.20, 0.24, 0.27, 0.14, 0.33, 0.22, 0.36, 0.12, 0.37

- 7. Перевірити гіпотезу про однорідність двох вибірок, отриманих в результаті вимірювань розмірів деталей, що оброблялися станками. Перша вибірка x: 15, 23, 25, 26, 28, 29 Друга вибірка y: 12, 14, 18, 20, 22, 24, 27, 30
- 8. Перевірити гіпотезу про однорідність вибірок, отриманих в результаті вимірювання діаметрів деталей, що оброблялись на двох станках. Перша вибірка х: 9; 12; 15; 16; 17; 18; 24; 27; 28; 29; 31. Друга вибірка у: 5; 6; 8; 10; 14; 19; 20; 21; 22; 23; 25; 26; 26; 30; 32.