МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МОЭВМ

ОТЧЕТ

по лабораторной работе №3

по дисциплине «Методы статистической обработки данных»
Тема: Обработка выборочных данных. Нахождение интервальных
оценок параметров распределения. Проверка статистической гипотезы
о нормальном законе распределения.

Студент гр. 5381	 Лянгузов А. А.
Преподаватель	Середа В.И.

Санкт-Петербург 2019

Цель работы.

Получение практических навыков вычисления интервальных статистических оценок параметров распределения выборочных данных и проверки «справедливости» статистических гипотез.

Основные теоретические положения.

Доверительный интервал – интервал, который с заданной надежностью γ покрывает заданный параметр.

Доверительный интервал для математического ожидания при неизвестном СКО σ вычисляется по формуле (1):

$$\bar{x}_{\scriptscriptstyle B} - \frac{S}{\sqrt{n}} t_{\gamma} < a < \bar{x}_{\scriptscriptstyle B} - \frac{S}{\sqrt{n}} t_{\gamma}$$
, где (1)

a — оцениваемый параметр (математическое ожидание), \bar{x}_{s} — выборочное среднее, S — исправленное СКО, n — объем выборки, t_{γ} — табличное значение.

Точность оценки вычисляется по формуле (2):

$$\delta = \frac{S}{\sqrt{n}} t_{\gamma} \tag{2}$$

Доверительный интервал для среднеквадратического отклонения вычисляется по формуле (3):

$$S(1-q) < \sigma < S(1+q), где$$
 (3)

 σ — интервальная оценка среднеквадратического отклонения, S — исправленное СКО, q — табличное значение.

Критерий согласия Пирсона (χ^2) применяют для проверки гипотезы о соответствии эмпирического распределения предполагаемому теоретическому распределению.

Критерий Пирсона представлен в формуле (4):

$$\chi^2 = \sum_{i=1}^k \frac{(n_i - n_i')^2}{n_i'}$$
,где (4)

k — номер интервала, n_i — интервальные частоты, n_i' - теоритические частоты для нормального распределения.

Если $\chi^2 > \chi^2_{\kappa p}$, где $\chi^2_{\kappa p}$ – табличное значение, то гипотеза отвергнута.

Примечание: при выполнении работы, некоторые из вышеприведенных формул не были использованы. Вместо них использовались альтернативные подходы, ввиду особенностей (или личного опыта) работы с языком R.

Задание.

Для заданной надежности определить (на основании выборочных данных и результатов выполнения лабораторной работы $\mathbb{N}2$) границы доверительных интервалов для математического ожидания и среднеквадратического отклонения случайной величины. Проверить гипотезу о нормальном распределении исследуемой случайной величины с помощью критерия Пирсона χ^2 . Дать содержательную интерпретацию полученным результатам.

Ход выполнения.

І. Интервальные оценки для мат.ожидания.

Зададим надежность оценки $\gamma = 0.95$.

Далее вычислим значение t_{γ} (точность) как квантиль распределения Стьюдента с N-1 степенью свободы, где N – объем выборки:

$$\mathbb{P}\left(\left|\frac{(\bar{x}_B - a)\sqrt{N}}{S}\right| \le t_{\gamma}\right) = \gamma$$

Поскольку распределение Стьюдента симметричное и оценка двусторонняя, вычисляем (1+y)/2 (или -(1-y)/2) квантиль.

При объеме выборки в 107 измерений, $t_{\gamma} = 1.983$.

Далее доверительные интервалы строятся по формулам:

$$a \in \left(\bar{x_B} - \frac{S}{\sqrt{N}}t_{\gamma}; \bar{x_B} + \frac{S}{\sqrt{N}}t_{\gamma}\right).$$

1. Для величины v.

В ходе предыдущей лабораторной работы были получены точечные оценки мат.ожидания $\bar{x_R}$ и СКВО S для величины v:

$$\bar{x_e} = 449.74299065$$
.

$$S = 54.04939061$$
.

Тогда доверительный интервал:

$$\bar{x_v} \in [439; 460]$$
.

2. Для величины Е.

Аналогично.

$$\bar{x}_{e} = 127.20133511$$

$$S = 21.88787065$$

Тогда доверительный интервал:

$$\bar{x_E} \in [123; 131]$$
.

II. Интервальные оценки для среднеквадратического отклонения.

Определим надежность оценки $\gamma = 0.95$.

Формулы для вычисления доверительного интервала для СКВО:

$$a \in \left(\sqrt{\frac{(N-1)D_{\theta}}{\chi_{N-1}^2\left(\frac{1+\gamma}{2}\right)}}; \sqrt{\frac{(N-1)D_{\theta}}{\chi_{N-1}^2\left(\frac{1-\gamma}{2}\right)}}\right).$$

 $\chi^2_{N-1}(r)$ – это r-квантиль распределения хи-квадрат со степенью свободы N-1;

 $D_{\scriptscriptstyle \theta}$ – исправленная выборочная дисперсия;

N – объем выборки.

(Замечание: сделано так, потому что это в языке R есть поддержка автоматизации вычисления r-квантили)

$$\chi_{N-1}^2 \left(\frac{1+\gamma}{2} \right) = 136.4;$$

$$\chi_{N-1}^2 \left(\frac{1-\gamma}{2} \right) = 79.4.$$

1. Для величины v.

В ходе предыдущей лабораторной работы была получена точечная оценка исправленной выборочной дисперсии для величины v:

$$D_{\scriptscriptstyle B} = 2921.33662493;$$

$$S = 54.04939061$$
.

Тогда доверительный интервал:

$$S_v \in [47.7; 62.4]$$
.

2. Для величины Е.

$$D_{\scriptscriptstyle \theta} = 479.07888153;$$

$$S = 21.88787065$$
.

Тогда доверительный интервал:

$$\bar{x_E} \in [19.3; 25.3].$$

Примечание: доверительные интервалы представляют собой *замкнутые* интервалы так как использовалось определение функции вероятности с нестрогим неравенством: $\mathbb{P}(X \leq x) = \alpha$.

III. Проверка простой гипотезы о нормальном распределении с помощью критерия Пирсона χ^2 .

Нулевая гипотеза H_0 : v_1 , v_2 , ..., $v_N \sim \mathcal{N}(\bar{x}_e, D_e)$ – для величины v.

Нулевая гипотеза H_0 : e_1 , e_2 , ..., $e_N \sim \mathcal{N}(\bar{x}_e, D_e)$ - для величины E.

Необходимо вычислить значение хи-квадрат для имеющегося интервального ряда и сравнить его с критическим значением. Критическое значение полагается равным квантили распределения хи-квадрат с (K-3) степенями свободы, где K — количество интервалов в интервальном ряду.

Если вычисленное по интервальному ряду значение превосходит критическое, то гипотеза отклоняется на данном уровне значимости.

Выберем уровень значимости $\alpha = 0.05$.

Тогда критическое значение:

$$X_{\kappa p}^2 = \chi_{K-3}^2 (1 - \alpha) = \chi_4^2 (0.95) = 9.487729$$

Для вычисления интервального хи-квадрат составим таблицу.

1. Для величины v.

 $F_{\rm th}$ — функция распределения для нормального закона с мат. ожиданием $\bar{x_e}=449.74299065$ и исправленной дисперсией $D_e=2921.33662493$.

Пятый и шестой столбец в таблице содержат соответствующие значения функции распределения в точках левой (leftB) и правой (rightB) границ интервалов (значения были получены с помощью встроенной функции pnorm в языке R).

Седьмой столбец таблицы содержит разницу между значениями шестой и пятой столбцов, а именно вероятность попадания в данный интервал.

Последний столбец вычисляется по формуле

$$n_{i}' = \left(F_{th}\left(rightB_{i}\right) - F_{th}\left(leftB_{i}\right)\right) *N,$$

где N – объем выборки, i – номер интервала.

Данный столбец содержит искомые теоретические частоты, то есть показывает, сколько «попаданий» (абсолютная частота) элементов выборки объема N должно быть в данном интервале, если элементы выборки действительно распределены по нормальному закону с заданными параметрами.

Интерва лы	Середи ны	Частоты абс.	Частоты отн.	F _{th} LB	F _{th} RB	F _{th} RB - F _{th} LB	Теор. частоты
[340; 375)	357,5	12	0.11214 953	0.00000 000	0.08335 319	0.08335 319	8.91879 1
[375; 410)	392,5	12	0.11214 953	0.08335 319	0.23107 574	0.14772 255	15.8063 13
[410; 445)	427,5	27	0.25233 645	0.23107 574	0.46503 654	0.23396 080	25.0338 06
[445; 480)	462,5	23	0.21495 327	0.46503 654	0.71219 308	0.24715 654	26.4457 50
[480; 515)	497,5	21	0.19626 168	0.71219 308	0.88635 301	0.17415 993	18.6351 12
[515; 550)	532,5	9	0.08411 215	0.88635 301	0.96819 580	0.08184 279	8.75717 8
[550; 585)	567,5	3	0.02803 738	0.96819 580	1.00000 000	0.03180 420	3.40305 0

Тогда значение хи-квадрат:

$$\chi^{2} = \sum_{i}^{K} \frac{\left(freq_{i} - n'_{i}\right)^{2}}{n'_{i}}$$

$$\chi^2 = 2.939051$$

Полученное значение хи-квадрат меньше критического $(X_{\kappa p}^2=9.487729)$, следовательно нулевая гипотеза принимается при уровне значимости $\alpha=0.05$.

2. Для величины Е.

Интерв алы	Середи ны	Частоты абс.	Частоты отн.	F _{th} LB	F _{th} RB	F _{th} RB - F _{th} LB	Теор. частоты
[71.9,87)	79.45714	5	0.046728 97	0.000000 00	0.033175 72	0.033175 72	3.549802
[87,102)	94.57143	8	0.074766 36	0.033175 72	0.125999 08	0.092823 36	9.932099
[102,117)	109.6857 1	19	0.177570 09	0.125999 08	0.324562 89	0.198563 81	21.24632 7
[117,132)	124.8000 0	32	0.299065 42	0.324562 89	0.593111 19	0.268548 30	28.73466 8
[132,147)	139.9142 9	26	0.242990 65	0.593111 19	0.822799 86	0.229688 68	24.57668 9
[147,163)	155.0285 7	10	0.093457 94	0.822799 86	0.947019 88	0.124220 02	13.29154 2
[163,178]	170.1428 6	7	0.065420 56	0.947019 88	1.000000 00	0.052980 12	5.668873

Тогда значение хи-квадрат:

$$\chi^{2} = \sum_{i}^{K} \frac{\left(freq_{i} - n'_{i}\right)^{2}}{n'_{i}}$$

$$\chi^2 = 2.786982$$

Полученное значение хи-квадрат меньше критического $(X_{\kappa p}^2=9.487729)$, следовательно нулевая гипотеза принимается при уровне значимости $\alpha=0.05$.

Выволы.

В работе были найдены границы доверительных интервалов для математического ожидания и среднеквадратического отклонения случайной величины для надежности $\gamma = 0.95$. Доверительный интервал для математического ожидания $\bar{x_v} \in [439; 460]$ и $\bar{x_E} \in [123; 131]$ покрывает значение математического ожидания $\bar{x_e} = 449.74299065$ и $\bar{x_e} = 127.20133511$ соответсвенно, те же выводы можно сделать и для доверительного интервала СКО. Проведенная оценка статистической гипотезы посредством критерия Пирсона принята для обеих исследуемых величин при уровне значимости $\alpha = 0.05$