SELECTIVE INATTENTION TO INTEREST RATES

 $\begin{array}{c} \text{Pierfrancesco Mei} \\ \text{Harvard} \rightarrow \text{Goldman Sachs} \end{array}$

Tim de Silva Stanford GSB & SIEPR

April 2025

- Households' macro expectations suggest they are very uninformed on average
 - Level of expectations is often systematically biased Weber et al. 22
 - Substantial dispersion in expectations across people Mankiw et al. 04
 - Errors in their expectations are predictable ex-ante Bordalo et al. 20
- Motivated macro models with info. frictions Auclert et al. 20, McKay-Wieland 21, Beraja-Wolf 22
 - ⇒ Average expectation is slow-moving and under-reacts Coibion-Gorodnichenko 12, 15

- Households' macro expectations suggest they are very uninformed on average
 - Level of expectations is often systematically biased Weber et al. 22
 - Substantial dispersion in expectations across people Mankiw et al. 04
 - Errors in their expectations are predictable ex-ante Bordalo et al. 20
- Motivated macro models with info. frictions Auclert et al. 20, McKay-Wieland 21, Beraja-Wolf 22
- Introspection: macro expectations much more important for "big" decisions
 - These big decisions also tend to occur less frequently
 - Example: interest rates important when **buying a house**, but less so for groceries

- Households' macro expectations suggest they are very uninformed on average
 - Level of expectations is often systematically biased Weber et al. 22
 - Substantial dispersion in expectations across people Mankiw et al. 04
 - Errors in their expectations are predictable ex-ante Bordalo et al. 20
- Motivated macro models with info. frictions Auclert et al. 20, McKay-Wieland 21, Beraia-Wolf 22
- Introspection: macro expectations much more important for "big" decisions
- Question: Do HHs select into paying attention based on types of decisions?

- Households' macro expectations suggest they are very uninformed on average
 - Level of expectations is often systematically biased Weber et al. 22
 - Substantial dispersion in expectations across people Mankiw et al. 04
 - Errors in their expectations are predictable ex-ante Bordalo et al. 20
- Motivated macro models with info. frictions Auclert et al. 20, McKay-Wieland 21, Beraja-Wolf 22
- Introspection: macro expectations much more important for "big" decisions
- Question: Do HHs select into paying attention based on types of decisions?
- If yes, how does this selection affect the transmission of shocks?
 - Belief heterogeneity ⇒ average may not be the relevant object Miller 77, Afrouzi et al. 24

THIS PAPER

Is there selective inattention to interest rates based on <u>durables purchases</u>?

"decision-making" (DM)

- 1 Use existing surveys to study how interest rate expectations differ based on DM
 - Benefit: high-quality data on expectations
 - Cost: hard to identify DM status + hard to isolate attention

THIS PAPER

Is there selective inattention to interest rates based on <u>durables purchases</u>?

"decision-making" (DM)

- Use existing surveys to study how interest rate expectations differ based on DM
- Conduct a new survey to identify how macro attention changes based on DM
 - Benefit: better identify **DM status** + elicit information acquisition directly
 - Cost: hard to study accuracy in expectations given one cross-section

THIS PAPER

Is there selective inattention to interest rates based on durables purchases? \checkmark

How does selective inattention affect aggregate responses to interest rates?

- Use existing surveys to study how interest rate expectations differ based on DM
- Conduct a new survey to identify how macro attention changes based on DM

DM in model

- $oldsymbol{3}$ Develop a PE incomplete markets model with $oldsymbol{2}$ durables $oldsymbol{2}$ + dynamic IA about rates
 - Use patterns in IA from survey to discipline information cost parameter(s)
 - Compare model IRFs to level and volatility of rates with exogenous inattention

 $DM \perp beliefs \Rightarrow no selection$

Is there selective inattention to interest rates based on durables purchases?

- 1 Interest rate expectations of decision-makers are more accurate
 - Nowcast and forecast errors of interest rates are 50% lower
 - Dispersion of beliefs is 70% lower and subjective uncertainty decreases

Is there selective inattention to interest rates based on durables purchases?

- 1 Interest rate expectations of decision-makers are more accurate
 - Nowcast and forecast errors of interest rates are 50% lower
 - Dispersion of beliefs is 70% lower and subjective uncertainty decreases
- Information acquisition is concentrated prior to purchases
 - Purchase in \leq 6 months \Rightarrow twice as likely to acquire information
 - Information acquisition focuses on current values of decision-relevant rates

How does selective inattention affect aggregate responses to interest rates?

- 3 Like exogenous inattention, selection dampens some responses
 - Aggregate beliefs are slow-moving and underreact
 - Non-durable consumption responds sluggishly to rate changes

How does selective inattention affect aggregate responses to interest rates?

- 3 Like exogenous inattention, selection dampens some responses
 - Aggregate beliefs are slow-moving and underreact
 - Non-durable consumption responds sluggishly to rate changes
- **4 Unlike** exogenous inattention, selection implies that **rate cuts** generate:
 - Faster increases in durables spending that are closer to rational expectations
 - Increases in durables + non-durables that are non-linear in the size of shock

How does selective inattention affect aggregate responses to interest rates?

- 3 Like exogenous inattention, selection dampens some responses
 - Aggregate beliefs are slow-moving and underreact
 - Non-durable consumption responds sluggishly to rate changes
- **4 Unlike** exogenous inattention, selection implies that **rate cuts** generate:
 - Faster increases in durables spending that are closer to rational expectations
 - Increases in durables + non-durables that are non-linear in the size of shock
- **5** Unlike exogenous inattention, selection implies that more volatility causes:

Aggregate beliefs to update twice as frequently

How does selective inattention affect aggregate responses to interest rates?

- 3 Like exogenous inattention, selection dampens some responses
 - Aggregate beliefs are slow-moving and underreact
 - Non-durable consumption responds sluggishly to rate changes
- **4 Unlike** exogenous inattention, selection implies that **rate cuts** generate:
 - Faster increases in durables spending that are closer to rational expectations
 - Increases in durables + non-durables that are non-linear in the size of shock
- **6** Unlike exogenous inattention, selection implies that more volatility causes:
 - Aggregate beliefs to update twice as frequently
 - Total spending to fall by much less, closer to the data
 - Consumption to become more (not less) sensitive to rates

OUTLINE

- 1 Existing Surveys: Expectations Accuracy around Decision-Making
- 2 New Survey: Information Acquisition around Decision-Making
- 3 Incomplete Markets Model with Selective Inattention
- 4 Interest Rate Passthrough with Selective Inattention
- 6 Conclusion

OUTLINE

- 1 Existing Surveys: Expectations Accuracy around Decision-Making
- New Survey: Information Acquisition around Decision-Making
- Incomplete Markets Model with Selective Inattention
- 4 Interest Rate Passthrough with Selective Inattention
- 5 Conclusion

NY FED SURVEY OF CONSUMER EXPECTATIONS

- Sample: \sim 8K respondents between 2014 and 2022 from annual housing module
- Variables of interest:
 - 1 Nowcasts of current average 30-year fixed mortgage rate
 - Porecasts of one-year ahead average 30-year fixed mortgage rate
 - 3 DM status based on distance from past or (expected) future home purchase
- Construct errors using average 30-year fixed rate in Freddie Mac PMMS
- Run the following regression:

$$\log |\mathsf{Error}_{it}| = \sum_{s} eta_{s} \cdot \mathbf{1} \left(\mathsf{DM} \; \mathsf{Status}_{it} = s \right) + \mathsf{Controls}_{it} + \delta_{t} + \epsilon_{it}$$

DECISION-MAKERS HAVE MORE ACCURATE BELIEFS

Errors of prospective buyers \approx 50% lower than those with no purchase plan

DECISION-MAKERS HAVE MORE ACCURATE BELIEFS

Over half of forecasting gain comes from nowcasting improvement

LESS DISPERSION AMONG DECISION-MAKERS' BELIEFS

Disagreement of prospective buyers \approx 70% lower than those with no purchase plan

DIFFERENCE DATA SOURCE: ECB CES

DIFFERENCE DATA SOURCE: ECB CES

DIFFERENCE DATA SOURCE: ECB CES

OUTLINE

- Existing Surveys: Expectations Accuracy around Decision-Making
- 2 New Survey: Information Acquisition around Decision-Making
- Incomplete Markets Model with Selective Inattention
- 4 Interest Rate Passthrough with Selective Inattention
- 5 Conclusion

We design and conduct a cross-sectional survey of U.S. households via Prolific

We design and conduct a cross-sectional survey of U.S. households via Prolific

Survey Innovations

- Direct measure of distance from durable adjustments
 - Primary home purchase
 - Car purchases
- Measures of information acquisition other than forecasting performance
 - Last active search for information about key variables

We design and conduct a cross-sectional survey of U.S. households via Prolific

Survey Innovations

- Direct measure of distance from durable adjustments
 - Primary home purchase
 - Car purchases
- Measures of information acquisition other than forecasting performance
 - Last active search for information about key variables

Main Blocks

Home decision-making: distance from primary home purchase

We design and conduct a cross-sectional survey of U.S. households via Prolific

Survey Innovations

- Direct measure of distance from durable adjustments
 - Primary home purchase
 - Car purchases
- Measures of information acquisition other than forecasting performance
 - Last active search for information about key variables

Main Blocks

- Home decision-making
- Other decisions: distance from car purchase + other major financial decisions

We design and conduct a cross-sectional survey of U.S. households via Prolific

Survey Innovations

- Direct measure of distance from durable adjustments
 - Primary home purchase
 - Car purchases
- Measures of information acquisition other than forecasting performance
 - Last active search for information about key variables

Main Blocks

- 1 Home decision-making
- Other decisions
- Information acquisition: time since last search + type/source of info searched

We design and conduct a cross-sectional survey of U.S. households via Prolific

Survey Innovations

- Direct measure of distance from durable adjustments
 - Primary home purchase
 - Car purchases
- Measures of information acquisition other than forecasting performance
 - Last active search for information about key variables

Main Blocks

- Home decision-making
- Other decisions
- 3 Information acquisition
- Macro expectations: beliefs about mortgage rates, T-Bill rates, and inflation

We design and conduct a cross-sectional survey of U.S. households via Prolific

Survey Innovations

- Direct measure of distance from durable adjustments
 - Primary home purchase
 - Car purchases
- Measures of information acquisition other than forecasting performance
 - Last active search for information about key variables

Main Blocks

- Home decision-making
- 2 Other decisions
- 3 Information acquisition
- 4 Macro expectations
- 6 Background & financial situation: info on household's balance-sheet using SCF format, demographics, job relocations

► Questions

Information Acquisition is Concentrated Pre-Decision

Tim de Silva, Stanford

10

Information Acquisition is Concentrated Pre-Decision

Tim de Silva, Stanford

11

IA IS CONCENTRATED ON DECISION-RELEVANT VARIABLES

Info. Acquisition_i = $\sum_{d} \frac{\beta_{d} \cdot \mathbf{1}}{\beta_{d} \cdot \mathbf{1}}$ (Home Distance_i = d) + Controls_i + Other Distances_i + ϵ_{i}

PATTERNS IN INFORMATION ACQUISITION ARE DECISION-SPECIFIC

PATTERNS IN INFORMATION ACQUISITION ARE DECISION-SPECIFIC

ENDOGENEITY OF DECISION-MAKING

- Concern: decision-making is **endogenous** to information acquisition and beliefs
- Solution: IV = anticipated moves due to job relocations

ENDOGENEITY OF DECISION-MAKING

- Concern: decision-making is **endogenous** to information acquisition and beliefs
- Solution: IV = anticipated moves due to job relocations

Dependent Variable: Information Acquisition

Variable	OLS	First Stage	IV	OLS	First Stage	IV
Home Decision-Maker	0.33***		0.83***	0.32***		0.88***
	(0.07)		(0.29)	(0.07)		(0.29)
Job Relocation		0.28***			0.28***	
		(80.0)			(80.0)	
N	749	749	749	749	749	749
Controls				\checkmark	\checkmark	\checkmark
F-stat		12.14			4.43	

As households get closer to durable choices

As households get closer to durable choices

Information is acquired more frequently...

As households get closer to durable choices

Information is acquired more frequently...

... about current values of about decision-relevant interest rates

As households get closer to durable choices

Information is acquired more frequently...

... about current values of about decision-relevant interest rates

Interest rate beliefs become more accurate and less dispersed

As households get closer to durable choices

 \downarrow

Information is acquired more frequently...

... about current values of about decision-relevant interest rates

 $\downarrow \downarrow$

Interest rate beliefs become more accurate and less dispersed

 \Downarrow

?

OUTLINE

- Existing Surveys: Expectations Accuracy around Decision-Making
- New Survey: Information Acquisition around Decision-Making
- 3 Incomplete Markets Model with Selective Inattention
- 4 Interest Rate Passthrough with Selective Inattention
- **5** Conclusion

Partial equilibrium incomplete markets model + durables + dynamic info. acquisition

household block of McKay-Wieland 2021 ≈ rational inattention

Partial equilibrium incomplete markets model + durables + dynamic info. acquisition

Decision-Making

Given beliefs, HHs choose non-durables **c** and durables **d**' subject to:

- Income risk + collaterized borrowing
- Stochastic interest rate r
- Depreciation of durables stock
- Durables adjustment costs
- Operating + maintenance costs
- Match-quality shocks (e.g. job change)

Partial equilibrium incomplete markets model + durables + dynamic info. acquisition

Decision-Making

Given beliefs, HHs choose non-durables **c** and durables **d**' subject to:

- Income risk + collaterized borrowing
- Stochastic interest rate r
- Depreciation of durables stock
- Durables adjustment costs
- Operating + maintenance costs
- Match-quality shocks (e.g. job change)

Rich model of how beliefs about $r \longrightarrow \mathbf{c}, \mathbf{d}'$

Partial equilibrium incomplete markets model + durables + dynamic info. acquisition

Decision-Making

Given beliefs, HHs choose non-durables **c** and durables **d**' subject to:

- Income risk + collaterized borrowing
- Stochastic interest rate r
- Depreciation of durables stock
- Durables adjustment costs
- Operating + maintenance costs
- Match-quality shocks (e.g. job change)

Rich model of how beliefs about $r \longrightarrow \mathbf{c}, \mathbf{d}'$

Information Acquisition

HHs receive signals of endogenous precision about current *r*

- Cost of signals = $\omega \times$ mutual info.
- Benefit of signals = better choice of c, d'
- Interest rate is persistent ⇒ prior beliefs are state variables

Partial equilibrium incomplete markets model + durables + dynamic info. acquisition

Decision-Making

Given beliefs, HHs choose non-durables **c** and durables **d**' subject to:

- Income risk + collaterized borrowing
- Stochastic interest rate r
- Depreciation of durables stock
- Durables adjustment costs
- Operating + maintenance costs
- Match-quality shocks (e.g. job change)

Rich model of how beliefs about $r \longrightarrow \mathbf{c}, \mathbf{d}'$

Information Acquisition

HHs receive signals of endogenous precision about current *r*

- Cost of signals = $\omega \times$ mutual info.
- Benefit of signals = better choice of c, d'
- Interest rate is persistent ⇒ prior beliefs are state variables

Endogenous beliefs about *r* that come from dynamic information acquisition

• Define belief errors about next period states:

$$\Delta_r = \rho \left[\widehat{\mathbf{E}}(r) - r \right], \quad \Delta_b = b \left[\exp \widehat{\mathbf{E}}(r) - \exp(r) \right]$$

Define belief errors about next period states:

$$\Delta_r = \rho \left[\widehat{\mathbf{E}}(r) - r \right], \quad \Delta_b = b \left[\exp \widehat{\mathbf{E}}(r) - \exp(r) \right]$$

• Given beliefs, households solve at state $\mathbf{x} = (b, d, r, y, \xi, \text{beliefs})$:

Define belief errors about next period states:

$$\Delta_r = \rho \left[\widehat{\mathbf{E}}(r) - r \right], \quad \Delta_b = b \left[\exp \widehat{\mathbf{E}}(r) - \exp(r) \right]$$

• Given beliefs, households solve at state $\mathbf{x} = (b, d, r, y, \xi, \text{beliefs})$:

$$\mathbf{c}(\mathbf{x}), \mathbf{d}'(\mathbf{x}) = \operatorname*{arg\ max}_{c,d'} U(c, m(d')) + \beta \cdot \mathbf{E} V\left(b' + \Delta_b, d', r' + \Delta_r, y', \xi', \mathsf{beliefs'}\right)$$

- Define belief errors about next period states: Δ_r , Δ_b
- Given beliefs, households solve at state $\mathbf{x} = (b, d, r, y, \xi, \text{beliefs})$:

$$\mathbf{c}(\mathbf{x}), \mathbf{d}'(\mathbf{x}) = \argmax_{c,d'} U(c, m(d')) + \beta \cdot \mathbf{E}V\left(b' + \Delta_b, d', r' + \Delta_r, y', \xi', \mathsf{beliefs'}\right)$$

$$c + b' + d' = y + [\exp(r) + \tau_b \mathbf{1}_{b < 0}] b + (1 - \delta) d - A(d, d'),$$

- Define belief errors about next period states: Δ_r , Δ_b
- Given beliefs, households solve at state $\mathbf{x} = (b, d, r, y, \xi, \text{beliefs})$:

$$\mathbf{c}(\mathbf{x}), \mathbf{d}'(\mathbf{x}) = \argmax_{c,d'} U(c, m(d')) + \beta \cdot \mathbf{E} V\left(b' + \Delta_b, d', r' + \Delta_r, y', \xi', \mathsf{beliefs'}\right)$$

$$c + b' + d' = y + [\exp(r) + \tau_b \mathbf{1}_{b < 0}] b + (1 - \delta) d - A(d, d'), \quad b' \ge -\lambda d'$$

- Define belief errors about next period states: Δ_r , Δ_b
- Given beliefs, households solve at state $\mathbf{x} = (b, d, r, y, \xi, \text{beliefs})$:

$$\mathbf{c}(\mathbf{x}), \mathbf{d}'(\mathbf{x}) = \underset{c,d'}{\arg\max} \ U(c, m(d')) + \beta \cdot \mathbf{E} V \left(b' + \Delta_b, d', r' + \Delta_r, y', \xi', \text{beliefs'} \right)$$

$$c + b' + d' = y + \left[\exp(r) + \tau_b \mathbf{1}_{b < 0} \right] b + (1 - \delta) d - \mathbf{A}(\mathbf{d}, \mathbf{d}'), \quad b' \ge -\lambda d'$$

$$\mathbf{A}(\mathbf{d}, \mathbf{d}') = \begin{cases} \underbrace{\nu \cdot d}_{\text{op. costs}} & \text{if } d' = \underbrace{(1 - \delta)d}_{\text{depreciation}} + \underbrace{\delta \cdot \chi \cdot d}_{\text{maint. costs}} \\ \underbrace{\nu \cdot d}_{\text{op. costs}} + \underbrace{f \cdot (1 - \delta)d}_{\text{fixed adi. cost}} & \text{else} \end{cases}$$

- Define belief errors about next period states: Δ_r , Δ_b
- Given beliefs, households solve at state $\mathbf{x} = (b, d, r, y, \xi, \text{beliefs})$:

$$\begin{aligned} \mathbf{c}(\mathbf{x}), \mathbf{d}'(\mathbf{x}) &= \operatorname*{max}_{c,d'} U(c, \mathbf{m}(d')) + \beta \cdot \mathbf{E} V \left(b' + \Delta_b, d', r' + \Delta_r, y', \xi', \mathrm{beliefs'} \right) \\ c + b' + d' &= y + \left[\exp(r) + \tau_b \mathbf{1}_{b < 0} \right] b + (1 - \delta) d - A(d, d'), \quad b' \geq -\lambda d' \\ \mathbf{m}(d') &= d' \times \max \left\{ \xi, \mathbf{1}_{d' \neq (1 - \delta + \delta \cdot \chi) d} \right\}, \quad \xi \sim \mathrm{Bern}(\overline{\xi}) = \mathrm{match-quality\ shock} \end{aligned}$$

 $\xi = 0 \Rightarrow$ have to adjust for **exogenous** reasons (e.g. job relocation)

- Define belief errors about next period states: Δ_r , Δ_b
- Given beliefs, households solve at state $\mathbf{x} = (b, d, r, y, \xi, \text{beliefs})$:

$$\mathbf{c}(\mathbf{x}), \mathbf{d}'(\mathbf{x}) = \argmax_{c,d'} U(c, m(d')) + \beta \cdot \mathbf{E} V\left(b' + \Delta_b, d', r' + \Delta_r, y', \xi', \mathsf{beliefs'}\right)$$

$$c + b' + d' = y + [\exp(r) + \tau_b \mathbf{1}_{b < 0}] b + (1 - \delta) d - A(d, d'), \quad b' \ge -\lambda d'$$

- log y follows AR1 + observed by households
- r follows an AR1 + HHs know DGP, but do not observe current rate

- Simplifying assumption: HHs can only acquire Gaussian signals about current r
 - \Rightarrow Prior beliefs in each period can be summarized by: $r \sim N(\mu, \Sigma)$

- Simplifying assumption: HHs can only acquire Gaussian signals about current r
- Households choose signal variance Σ_e , anticipating choices of **c** and **d**':

$$V(\mathbf{x}) = \max_{\Sigma_{e}} \mathbf{E} \Big[U(\mathbf{c}, m(\mathbf{d}')) + \beta V(\mathbf{x}') \Big]$$

- Simplifying assumption: HHs can only acquire Gaussian signals about current r
- Households choose signal variance Σ_e , anticipating choices of **c** and **d**':

$$egin{aligned} V(\mathbf{x}) &= \max_{\Sigma_e} \mathbf{E} \Big[U(\mathbf{c}, m(\mathbf{d}')) + eta V\left(\mathbf{x}'
ight) \Big] + \omega \cdot \underbrace{\log\left(1 - G
ight)}_{ ext{mutual info.}} \ G &= rac{\Sigma}{\Sigma + \Sigma_e} \ \widehat{\mathbf{E}}(r) &= (1 - G)\mu + G(r + e) \,, \quad e \sim N(0, \Sigma_e) \end{aligned}$$

- Simplifying assumption: HHs can only acquire Gaussian signals about current r
- Households choose signal variance Σ_e , anticipating choices of **c** and **d**':

$$\begin{split} V(\mathbf{x}) &= \max_{\Sigma_e} \mathbf{E} \Big[U(\mathbf{c}, m(\mathbf{d}')) + \beta V\left(\mathbf{x}'\right) \, \Big] + \omega \cdot \underbrace{\log\left(1 - G\right)}_{\text{mutual info.}} \\ G &= \frac{\Sigma}{\Sigma + \Sigma_e} \\ \widehat{\mathbf{E}}(r) &= (1 - G)\mu + G\left(r + e\right), \quad e \sim N(0, \Sigma_e) \\ \mu' &= (1 - \rho)\overline{r} + \rho \widehat{\mathbf{E}}(r), \quad \Sigma' = \rho^2 \Sigma(1 - G) + \sigma^2 \end{split}$$

INFORMATION ACQUISITION PROBLEM TO DETERMINE BELIEFS

- Simplifying assumption: HHs can only acquire Gaussian signals about current r
- Households choose signal variance Σ_e , anticipating choices of **c** and **d**':

$$\begin{split} V(\mathbf{x}) &= \max_{\Sigma_e} \mathbf{E} \Big[U(\mathbf{c}, m(\mathbf{d}')) + \beta V\left(\mathbf{x}'\right) \, \Big] + \omega \cdot \underbrace{\log\left(1 - G\right)}_{\text{mutual info.}} \\ G &= \frac{\Sigma}{\Sigma + \Sigma_e} \\ \widehat{\mathbf{E}}(r) &= (1 - G)\mu + G(r + e) \,, \quad e \sim N(0, \Sigma_e) \\ \mu' &= (1 - \rho)\overline{r} + \rho \widehat{\mathbf{E}}(r), \quad \Sigma' = \rho^2 \Sigma(1 - G) + \sigma^2 \end{split}$$

- c, d' maximize objective with belief errors
 - Lower $\Sigma_e \Rightarrow \widehat{\mathbf{E}}(r) \longrightarrow r \Rightarrow \mathbf{errors} \longrightarrow 0 \Rightarrow \mathbf{smaller}$ utility loss from \mathbf{c}, \mathbf{d}'

CALIBRATED PARAMETERS

Parameter	Description	Value	Source			
Internally-Calibrated						
β	Discount factor	0.9829	Asset-to-GDP ratio			
ψ	Non-durables exponent	0.627	Durable-to-nondurable consumption ratio			
f	Fixed cost	0.11	Adjustment probability			
$1-\overline{\xi}$	Match-quality shock probability	0.034	Share of adjustments from MQ shocks			
ω	Marginal information cost	$10^{-3.627}$	Concentration in information acquisition			
Externally-Calibrated						
γ	RRA (and inverse EIS)	2	Standard value			
ε	Durables elasticity of substitution	0.5	McKay & Wieland (2021)			
$1 - \lambda$	Required downpayment	0.2	McKay & Wieland (2021)			
δ	Depreciation rate	0.017	McKay & Wieland (2021)			
χ	Maintenance share	0.35	McKay & Wieland (2021)			
ν	Operating cost	0.012	McKay & Wieland (2021)			
ρ_y	Income persistence	0.977	Flodén and Lindé (2001)			
σ_{ϵ}	Income shock std. dev.	0.058	Flodén and Lindé (2001)			
\overline{r}	Real rate mean	0.0143	10-Year Treasury Rate: 1961-2024			
ρ	Real rate persistence	0.979	10-Year Treasury Rate: 1961-2024			
σ	Real rate shock std. dev.	0.0014	10-Year Treasury Rate: 1961-2024			
$ au_b$	Borrowing spread	0.004156	30-Year Fixed Mortgage Rate: 1971-2024			

EFFECT OF INFORMATION COST ON INFORMATION ACQUISITION

SELECTIVE INATTENTION AT THE MICRO-LEVEL

EXTENSIVE MARGIN OF INFO. ACQUISITION IN EVENT-TIME

Households acquire information in all periods...

► Durables Share

► Information Acquisition sS

EXTENSIVE MARGIN OF INFO. ACQUISITION IN EVENT-TIME

... but this information acquisition is concentrated around durables adjustments

► Durables Share ► Information Acquisition sS

21

Intensive Margin of Info. Acquisition in Event-Time

Increase in information acquisition is even larger on intensive margin

► Durables Share ► Information Acquisition sS

22

ENDOGENOUS ADJUSTMENTS ⇒ INFO. ACQUISITION PRE-CHOICE

Information acquisition increases in anticipation of **state-dependent** adjustments...

ENDOGENOUS ADJUSTMENTS ⇒ INFO. ACQUISITION PRE-CHOICE

... but is concentrated around the choice for time-dependent adjustments Afrouzi et al. 24

Nowcast Errors in Event-Time

Forecast errors remain lower **post-choice** because beliefs are a "stock" not "flow"

Welfare Loss from Inattention

- Natural question: how large are welfare losses from selective inattention?
- Compute two welfare metrics in basis points of lifetime consumption
 - **1** Static: loss from not having full-information in current period, ignoring info. cost
 - 2 Dynamic: loss from not having full-information in all periods, ignoring info. cost

► CG Coefficients

Welfare Loss from Inattention

- Natural question: how large are welfare losses from selective inattention?
- Compute two welfare metrics in basis points of lifetime consumption
 - **1** Static: loss from not having full-information in current period, ignoring info. cost
 - 2 Dynamic: loss from not having full-information in all periods, ignoring info. cost
- Losses are small, but still have aggregate effects (next)!

Akerlof-Yellen 85

Maćkowiak-Wiederholt 15

	Static	Dynamic		
Mean	0.04	1.94		
Median	0.03	1.56		

► CG Coefficients

OUTLINE

- Existing Surveys: Expectations Accuracy around Decision-Making
- New Survey: Information Acquisition around Decision-Making
- Incomplete Markets Model with Selective Inattention
- 4 Interest Rate Passthrough with Selective Inattention
- 5 Conclusion

RESPONSES TO INTEREST RATE CUTS

IMPULSE RESPONSE OF BELIEFS TO RATE CUT

Rational Expectations: $\omega = 0 \Rightarrow \widehat{\mathbf{E}}(r) = r$

► Decomposition

IMPULSE RESPONSE OF BELIEFS TO RATE CUT

Exogenous Inattention: constant G set to match CG 15 coefficient in baseline model

► Decomposition

IMPULSE RESPONSE OF BELIEFS TO RATE CUT

Selective Inattention: baseline model with endogenous information acquisition

► Decomposition

► Aggregate Expenditure

► Incorporating GE Effects

► Non-Linearity

► Aggregate Expenditure

► Incorporating GE Effects

► Non-Linearity

27

Non-durable consumption response \approx exogenous inattention...

► Aggregate Expenditure ► Incorporating GE Effects ► Non-Linearity

27

... but durable responses is closer to rational expectations in short-run!

27

EFFECTS OF CHANGES IN INTEREST RATE VOLATILITY

MOTIVATION: RECENT RISE IN RATE VOLATILITY

MOTIVATION: RECENT RISE IN RATE VOLATILITY

⇒ Next counterfactual: double interest rate volatility

EFFECTS OF INCREASE IN VOLATILITY ON BELIEFS

Increase in volatility \Rightarrow more information acquisition \Rightarrow less belief rigidity

IMPULSE RESPONSE OF SPENDING TO INCREASE IN VOLATILITY

Increase in volatility ⇒ spending falls due to precautionary motives... Sandmo 70

IMPULSE RESPONSE OF SPENDING TO INCREASE IN VOLATILITY

... which is stronger with exogenous inattention because of additional uncertainty

IMPULSE RESPONSE OF SPENDING TO INCREASE IN VOLATILITY

Selective inattention undoes over 50% of this fall due to ↑ info. acquisition!

RESPONSE OF AGGREGATE SPENDING IS CLOSER TO THE DATA

OUTLINE

- Existing Surveys: Expectations Accuracy around Decision-Making
- New Survey: Information Acquisition around Decision-Making
- Incomplete Markets Model with Selective Inattention
- 4 Interest Rate Passthrough with Selective Inattention
- **5** Conclusion

CONCLUSION

- Households are selectively inattentive to interest rates
 - IA is concentrated around durables purchases, where beliefs are more accurate
- Both exogenous and selective inattention ⇒ slow-moving aggregate beliefs

Conclusion

- Households are selectively inattentive to interest rates
 - IA is concentrated around durables purchases, where beliefs are more accurate
- Both exogenous and selective inattention ⇒ slow-moving aggregate beliefs
- But unlike exogenous inattention, selective inattention implies:
 - 1 Larger short-run responses of durables spending to rate cuts
 - 2 Non-linear responses of durables and non-durables to rate cuts
 - 3 Increases in volatility have smaller effects because of increased info. acquisition

Conclusion

- Households are selectively inattentive to interest rates
 - IA is concentrated around durables purchases, where beliefs are more accurate
- Both exogenous and selective inattention ⇒ slow-moving aggregate beliefs
- But unlike exogenous inattention, selective inattention implies:
 - 1 Larger short-run responses of durables spending to rate cuts
 - 2 Non-linear responses of durables and non-durables to rate cuts
 - 3 Increases in volatility have smaller effects because of increased info. acquisition
- Takeaways:
 - Micro-level patterns in attention are useful identifying moments
 - Endogenizing HH (in)attention is important, especially for changes in volatility

THANK YOU!

tdesilva@stanford.edu

Main Survey Questions

Eliciting our main measure of information acquisition

Step 1: In the last 3 years, did you actively search for information about any of the following economic variables in the U.S.?

By "active search" we mean a deliberate effort to find information which could include searching online, reading news articles or reports, talking to a financial advisor or broker, or any other intentional effort to gather information.

Step 2: How many months ago did you last actively search for information about mortgage rates?

Eliciting households' distance from the primary home purchase

Owners: How many months ago did you finalize the purchase of your current primary residence?

Renters: How many months from now do you expect the closing on your primary residence purchase?

By "closing", we mean signing the final documents to officialize the purchase.

◆ Back

Sources of Information Acquisition

Back
 Back
 Back
 Back
 Back
 Back

HETEROGENEITY IN INFORMATION ACQUISITION

Back
 Back
 Back
 Back

HETEROGENEITY IN INFORMATION ACQUISITION OF OWNERS

IA IS PRIMARILY ABOUT CURRENT VALUES OF VARIABLES

Tim de Silva, Stanford 38

► Investment Decisions

◆ Back

IA IS PRIMARILY ABOUT CURRENT VALUES OF VARIABLES

Back
 Bac

STEADY-STATE SUMMARY STATISTICS

	Mean	SD	P10	P50	P90
Assets/Income: b/y	3.51	4.93	-0.91	1.90	10.25
Durable/Non-Durables: d'/c	2.55	0.40	1.99	2.58	3.01
Durables Gap	0.14	0.17	-0.05	0.11	0.38
Acquired Information	0.20	0.40	0.00	0.00	1.00
Kalman Gain: <i>G</i>	0.09	0.20	0.00	0.00	0.40
Kalman Gain Conditional on IA	0.44	0.20	0.30	0.40	0.80
Normalized Nowcast Error: $ \hat{\mathbb{E}}(r) - r / r $	0.30	7.84	0.02	0.10	0.34
Normalized Prior Variance: Σ/σ_r^2	0.36	0.19	0.15	0.34	0.64

◆ Back

ADJUSTMENT PROBABILITY AS A FUNCTION OF DURABLES GAP

◆ Back

CONCENTRATION IN INFO. ACQUISITION \(\square\) DURABLES SHARE

Baseline: $\psi = 0.63$

Low Durables Share: $\psi = 0.99$

◆ Back

DURABLES ADJUSTMENT SHIFT SS BANDS OF INFO. ACQUSITION

◆ Back

AGGREGATE BELIEFS ARE SLUGGISH, LIKE IN THE DATA...

• Direct evidence of information-rigidity = CG (2015) regression

$$\underbrace{r_{t+3} - \overline{F}_t r_{t+3}}_{\text{forecast error}} = \alpha + \beta_{CG} \underbrace{\left(\overline{F}_t r_{t+3} - \overline{F}_{t-1} r_{t+3}\right)}_{\text{forecast revision}} + \epsilon_t$$

- Common finding: $\beta_{CG} > 0 \Rightarrow$ aggregate expectations are **sluggish**
- In a sticky-information model (constant probability of updating expectations),

Implied Update Frequency =
$$3(1 + \beta_{CG})$$
 Months

⇒ Common target for calibrating sticky information models (e.g. McKay-Wieland 2021)

AGGREGATE BELIEFS ARE SLUGGISH, LIKE IN THE DATA...

Implied Update Frequency = 3 (1 + β_{CG}) Months

◆ Back

... But This Masks Substantial Selection into Attention!

Implied Update Frequency = 3 (1 + β_{CG}) Months

◆ Back

DECOMPOSITION OF AGGREGATE BELIEF RESPONSE

Beliefs of **decision-makers** respond ≥ 2 times as fast

◆ Back

IRFs to Romer-Romer Rate Cut with Agg. Y and P Response

Non-Linear Impact of Rate Cuts: On Impact

◆ Back

Non-Linear Impact of Rate Cuts: After 8 Quarters

◆ Back

EFFECTS OF INCREASED VOLATILTY ON 25 BPS RATE CUT RESPONSE

↑ volatility ⇒ consumption is less response to interest rates

EFFECTS OF INCREASED VOLATILTY ON 25 BPS RATE CUT RESPONSE

... but not with **selective inattention** because of increased info. acquisition!

STATE-DEPENDENCE ON VOLATILITY: AFTER 8 QUARTERS

◆ Back