Chapitre 18

Dérivabilité

18 Dérivabilité	1
18.13Condition nécessaire du premier ordre pour l'existence d'un extremum	2
18.43 Théorème de prolongement de classe \mathcal{C}^n - HP $\ \dots \ \dots$	2
18.45IAF pour les fonctions à valeurs dans \mathbb{C}	3

18.13 Condition nécessaire du premier ordre pour l'existence d'un extremum

Théorème 18.13

Soit f une fonction définie sur I un intervalle ouvert et $x_0 \in I$. Si f est dérivable en x_0 et admet un extremum local en x_0 , alors $f'(x_0) = 0$.

On suppose que f atteint un maximum local en x_0 . On choisit $U \in \mathcal{V}(x_0)$ tel que :

$$\forall x \in U \cap I, f(x) \leq f(x_0)$$

En particulier:

$$\forall x \in U, x > x_0, \frac{f(x) - f(x_0)}{x - x_0} \le 0$$
$$\forall x \in U, x < x_0, \frac{f(x_0) - f(x)}{x_0 - x} \ge 0$$

D'après le TCILPPL :

$$f'_{\text{droite}}(x_0) \le 0 \text{ et } f'_{\text{gauche}}(x_0) \ge 0$$

Donc f est dérivable en x_0 . Donc $f'_q(x_0) = f'_d(x_0) = 0$.

18.43 Théorème de prolongement de classe C^n - HP

Théorème 18 43 - HP

Soit I un intervalle et $x_0 \in I$. Soit f une fonction définie de classe C^n sur $I \setminus \{x_0\}$. Si $f^{(n)}$ admet une limite finie en x_0 , alors f est prolongeable en une fonction de classe C^n sur I.

— On prouve le théorème pour n=1. On suppose $f\in \mathcal{C}^1(I\backslash\{x_0\},\mathbb{R})$ et que f' admet une limite finie en x_0 .

On prolonge f' en une fonction g par continuité en x_0 . Ainsi, $g \in \mathcal{C}^0(I, \mathbb{R})$.

On remarque que pour tout $x \neq x_0$:

$$f(x) = f(a) + \int_{a}^{x} f'(t) dt$$

où $a \in I \setminus \{x_0\}$ quelconque.

$$f(x) = \underbrace{f(a) + \int_{a}^{x} g(t) dt}_{\text{Admet une limite finie quand } x \to x_0}$$

Donc f(x) admet également une limite finie quand $x \to x_0$. On prolonge alors f par continuité en \tilde{f} , de classe \mathcal{C}^1 sur I.

— On raisonne par récurrence. Pour $n \in \mathbb{N},$ on pose :

P(n): "Pour tout $f \in \mathcal{C}^n(I \setminus \{x_0\}, \mathbb{R})$, si $f^{(n)}$ admet une limite finie en x_0 , alors f se prolonge en $\tilde{f} \in \mathcal{C}^n(I, \mathbb{R})$ ".

Pour n=0, c'est le prolongement par continuité.

Pour n = 1, c'est fait.

On suppose P(n) vraie pour $n \geq 1$.

Soit $f \in \mathcal{C}^{n+1}(I \setminus \{x_0\}, \mathbb{R})$, etc...

Donc $f' \in \mathcal{C}^n(I \setminus \{x_0\}, \mathbb{R})$ et $f^{(n)}$ admet une limite finie en x_0 .

D'après P(n), on prolonge f' en $g \in \mathcal{C}^n(I, \mathbb{R})$.

En particulier, g est continue sur I. Donc f' admet une limite finie en x_0 . On applique P(1). On prolonge f en $\tilde{f} \in \mathcal{C}^{n+1}(I, \mathbb{R})$. Or $\tilde{f}' = g \in \mathcal{C}^n(I, \mathbb{R})$. Donc $\tilde{f} \in \mathcal{C}^{n+1}(I, \mathbb{R})$.

18.45 IAF pour les fonctions à valeurs dans $\mathbb C$

Théorème 18.45

Soit $f \in \mathcal{C}^1([a,b],\mathbb{C})$ et M un réel tel que $|f'| \leq M$ sur]a,b[. Alors

$$|f(b) - f(a)| \le M|b - a|$$

Si $f \in C^1([a, b], \mathbb{R})$, alors :

$$f(b) - f(a) = \int_a^b f'(t) dt$$

D'après l'inégalité triangulaire intégrale :

$$|f(b) - f(a)| = \left| \int_{a}^{b} f'(t) dt \right|$$

$$\leq \int_{a}^{b} |f'(t)| dt$$

$$\leq \int_{a}^{b} M dt$$

$$= M|b - a|$$