

Chapter 2. Basic Structures

2.3 Functions

Some Function Terminology

- If it is written that f: A → B, and f(a) = b (where a∈A and b∈B), then we say:
 - A is the domain of f
 - B is the codomain of f
 - b is the image of a under f
 - a can not have more than 1 image
 - a is a pre-image of b under f
 - b may have more than 1 pre-image
 - The *range* $R \subseteq B$ of f is $R = \{b \mid \exists a \ f(a) = b \}$

Range versus Codomain

- The range of a function might not be its whole codomain.
- The codomain is the set that the function is declared to map all domain values into.
- The range is the particular set of values in the codomain that the function actually maps elements of the domain to.

Range vs. Codomain: Example

- Suppose I declare that: "f is a function mapping students in this class to the set of grades {A, B, C, D, F}."
- At this point, you know f 's codomain is:
 {A, B, C, D, F}, and its range is unknown!
- Suppose the grades turn out all As and Bs.
- Then the range of f is $\frac{\{A, B\}}{\{A, B, C, D, F\}!}$, but its codomain is $\frac{\text{still } \{A, B, C, D, F\}!}{\{A, B, C, D, F\}!}$

Function Operators

- + , × ("plus", "times") are binary operators over R. (Normal addition & multiplication.)
- Therefore, we can also add and multiply two real-valued functions $f,g: \mathbb{R} \to \mathbb{R}$:
 - (f+g): $\mathbb{R} \to \mathbb{R}$, where (f+g)(x) = f(x) + g(x)
 - (fg): $\mathbb{R} \to \mathbb{R}$, where (fg)(x) = f(x)g(x)
- Example 6:

Let f and g be functions from \mathbb{R} to \mathbb{R} such that $f(x) = x^2$ and $g(x) = x - x^2$. What are the functions f + g and fg?

Function Composition Operator

Note the match here. It's necessary!

- For functions $g: A \to B$ and $f: B \to C$, there is a special operator called **compose** (" \circ ").
 - It <u>composes</u> (creates) a new function from f and g by applying f to the result of applying g.
 - We say $(f \circ g)$: $A \rightarrow C$, where $(f \circ g)(a) = f(g(a))$.
 - Note: f ∘ g cannot be defined unless range of g is a subset of the domain of f.
 - Note $g(a) \in B$, so f(g(a)) is defined and $\in C$.
 - Note that ∘ is non-commuting. (Like Cartesian ×, but unlike +, ∧, ∪) (Generally, f ∘ g ≠ g ∘ f.)

Function Composition Illustration

• $g: A \rightarrow B, f: B \rightarrow C$

Function Composition: Example

• $g: A \rightarrow B, f: B \rightarrow C$

Function Composition: Example

Example 20: Let g: $\{a, b, c\} \rightarrow \{a, b, c\}$ such that g(a) = b, g(b) = c, g(c) = a.

Let
$$f: \{a, b, c\} \rightarrow \{1, 2, 3\}$$
 such that $f(a) = 3$, $f(b) = 2$, $f(c) = 1$.

What is the composition of f and g, and what is the composition of g and f?

• $f \circ g$: $\{a, b, c\} \rightarrow \{1, 2, 3\}$ such that $(f \circ g)(a) = 2$, $(f \circ g)(b) = 1$, $(f \circ g)(c) = 3$.

• $g \circ f$ is not defined (why?)

Function Composition: Example

If f(x) = x² and g(x) = 2x + 1, then what is the composition of f and g, and what is the composition of g and f?

•
$$(f \circ g)(x) = f(g(x))$$

= $f(2x+1)$
= $(2x+1)^2$

$$(g \circ f)(x) = g(f(x))$$

$$= g(x^2)$$

$$= 2x^2 + 1$$

Note that $f \circ g \neq g \circ f$. $(4x^2 + 4x + 1 \neq 2x^2 + 1)$

One-to-One Functions

- A function f is one-to-one (1–1), or injective, or an injection, iff f(a) = f(b) implies that a = b for all a and b in the domain of f (i.e. every element of its range has only 1 pre-image).
 - Formally, given f: A→B,
 "f is injective": ∀a,b (f(a) = f(b) → a = b) or equivalently ∀a,b (a ≠ b → f(a) ≠ f(b))
- Only <u>one</u> element of the domain is mapped <u>to</u> any given <u>one</u> element of the range.
 - Domain & range have the same cardinality.
 What about codomain?

One-to-One Illustration

Bipartite (2-part) graph representations of functions that are (or not) one-to-one:

Example 8:

Is the function $f : \{a, b, c, d\} \rightarrow \{1, 2, 3, 4, 5\}$ with f(a) = 4, f(b) = 5, f(c) = 1, and f(d) = 3 one-to-one?

Example 9:

Let $f: \mathbb{Z} \to \mathbb{Z}$ such that $f(x) = x^2$. Is f one-to-one?

4

Sufficient Conditions for 1–1ness

- For functions f over numbers, we say:
 - f is **strictly** (or **monotonically**) **increasing** iff $x > y \rightarrow f(x) > f(y)$ for all x, y in domain;
 - f is **strictly** (or **monotonically**) **decreasing** iff $x > y \rightarrow f(x) < f(y)$ for all x, y in domain;

- If f is either strictly increasing or strictly decreasing, then f is one-to-one.
 - E.g. x^3

Onto (Surjective) Functions

- A function f: A → B is onto or surjective or a surjection iff for every element b∈B there is an element a∈A with f(a) = b (∀b∈B, ∃a∈A: f (a) = b) (i.e. its range is equal to its codomain).
- Think: An onto function maps the set A onto (over, covering) the entirety of the set B, not just over a piece of it.
- E.g., for domain & codomain R, x³ is onto, whereas x² isn't. (Why not?)

Illustration of Onto

Some functions that are, or are not, onto their codomains:

■ Example13: Is the function f(x) = x + 1 from the set of integers to the set of integers onto?

Bijections and Inverse Function

A function f is said to be a one-to-one correspondence, or a bijection, or reversible, or invertible, iff it is both one-to-one and onto.

Let f: A → B be a bijection.
The *inverse function* of f is the function that assigns to an element b∈B the unique element a∈A such that f(a) = b.
The inverse function of f is denoted by f⁻¹: B → A. Hence, f⁻¹(b) = a when f(a) = b.

Inverse Function Illustration

Let f: A → B be a bijection

- Example 16: Let $f: \{a, b, c\} \rightarrow \{1, 2, 3\}$ such that f(a) = 2, f(b) = 3, f(c) = 1. Is f invertible, and if it is, what is its inverse? Yes. $f^{-1}(1) = c$, $f^{-1}(2) = a$, $f^{-1}(3) = b$
- **Example 18**: Let f be the function from \mathbb{R} to \mathbb{R} with $f(x) = x^2$. Is f invertible? No. f is not a one-to-one function. So it's not invertible.