

MATHÉMATIQUES

APPLIQUÉES À L'INFORMATIQUE

Avant de commencer

▶ Rappel des règles ...

- ► Florian BERLIAT
- ► Contact: florian.berliat13@ynov.com

Présentation

Avant de commencer Programme

- Arithmétique
 - Notion de base
 - Manipulations et calculs
- Logique Mathématique
 - Algèbre de boole et calcul propositionnel
- Les matrices
 - ► Le calcul matriciel et les systèmes linéaires
 - Les matrices particulières
 - ► Les opérations sur les matrices
 - ▶ Les systèmes linéaires
- Les ensembles
 - ► Caractérisation de la notion d'ensemble
 - ▶ Les relations entre les ensembles
 - Les outils d'analyse et de dénombrement
- Statistiques et probabilités
 - Probabilités conditionnelles ou non conditionnelles

NOTION DE BASE

Il n'y a que 10 types de gens dans le monde : ceux qui connaissent le binaire et les autres ...

- Les informations traitées par les ordinateurs sont de différentes natures :
 - Nombres, texte, images, sons, vidéos, programmes...
- Dans un ordinateur, elles sont toujours représentées sous forme binaire(BIT = Binary digIT)
 - ▶ Une suite de 0 et de 1

- Définition : le codage de l'information
 - ▶ Le codage de l'information permet d'établir une correspondance qui permet sans ambiguïté de passer d'une représentation (dite externe) d'une information à une autre représentation (dite interne : sous forme binaire) de la même information, suivant un ensemble de règles précises.
- Exemple:
 - ▶ Le nombre 35 : 35 est la représentation externe du nombre trente cinq
 - ▶ La représentation interne de 35 sera une suite de 0 et de 1 : 00100011

- ► En informatique, le codage de l'information s'effectue principalement en trois étapes:
 - L'information sera exprimée par une suite de nombres (Numérisation)
 - ► Chaque nombre est codé sous forme binaire (suite de 0 et 1)
 - ► Chaque élément binaire est représenté par un état physique
- État physique ??
 - ► Charge électrique (RAM):
 - ► chargé (bit à 1)
 - ▶ non chargé (bit à 0)
 - Magnétisation (DD, disquette) :
 - polarisation Nord (bit à 1)
 - ▶ polarisation Sud (bit à 0)
 - ► Fréquences (Modem) dans un signal sinusoïdal :
 - Fréquence f1 (bit à 1) : s(t) = a sin(2πf₁ t + Ψ)
 - Fréquence f2 (bit à 0) : $s(t) = a \sin(2\pi f_2 t + \Psi)$

Remarque: ne pas confondre nombre et chiffre

- Un système de numération décrit la façon avec laquelle les nombres sont représentés
- Un système de numération est défini par :
 - Un alphabet A : les signes ou symboles disponibles pour la représentation des nombres.
 - ▶ Des règles d'écritures des nombres : juxtaposition de symboles. Elles définissent comment un nombre est construit à partir des symboles de l'alphabet.

Exemple 1 : la Numération Romaine

Système romain	I	V	X	L	С	D	M
Valeur décimal	1	5	10	50	100	500	1000

- Lorsqu'un symbole est placé à la droite d'un symbole plus fort ou égal à lui, sa valeur s'ajoute : CCLXXI = 271 ou plus simple VI = 6
- Un symbole placé immédiatement à la gauche d'un symbole plus fort que lui, indique que le nombre qui lui correspond doit être retranché au nombre qui suit : CCXLIII = 243 ou plus simple IV = 4
- On ne place jamais 4 symboles identiques à la suite
- ► Le plus grand nombre exprimable est 3999 (MMMCMXCIX)

<u>Remarque :</u> Système non adapté au calcul

- Exemple 2 : la Numération Babylonienne
- ► Chez les Babyloniens (environ 2000 ans avant J.C.), les symboles utilisés sont le clou pour l'unité et le chevron pour les dizaines.
- C'est un système de position.

2	9	12 53	
77	 	< 7 7 < <	<<< Y Y Y

- ▶ A partir de 60, la position des symboles entre en jeu :
 - **▶** 204 : **!!!**

!!! **<<!!!**

(3*60)+(24)

▶ 7392 : **1 1**

(2*3600)+(3*60)+(12)

(3600=60*60)

▶ Le nombre 60 constitue la base du système

- Exemple 3 : la Numération décimale
 - C'est le système de numération le plus pratique actuellement.
 - \blacktriangleright L'alphabet est compose de dix chiffres : $A = \{0,1,2,3,4,5,6,7,8,9\}$
 - Le nombre 10 est la base de cette numération
 - ▶ Pourquoi décimale (10) ? Car on a tous dix doigts, pardi!! Ou presque...
 - C'est un système positionnel. Chaque position possède un poids
 - ▶ Par exemple, le nombre 4134 s'écrit comme :

$$4134 = 4 \times 10^{3} + 1 \times 10^{2} + 3 \times 10^{1} + 4 \times 10^{0}$$

$$4000 + 100 + 30 + 4$$

Un système de numération positionnel à base b est défini sur un alphabet de b chiffres :

$$A = \{c_0, c_1, ..., c_{b-1}\}$$
 avec $0 \le c_i < b$

- ▶ Soit $N = a_{n-1} a_{n-2} ... a_1 a_{0 (b)}$ la représentation en base b sur n chiffres
 - ▶ a_i: est un chiffre de l'alphabet de poids i (position i).
 - ▶ a₀ : chiffre de poids 0 appelé le chiffre de <u>poids faible</u>
 - ▶ a_{n-1}: chiffre de poids n-1 appelé le chiffre de poids fort
- ▶ La valeur de N en base 10 est donnée par :

$$N = a_{n-1}.b^{n-1} + a_{n-2}.b^{n-2} + \dots + a_0.b^0_{(10)} = \sum_{i=0}^{n-1} a_i b^i$$

Notions : le système binaire

- Un mot binaire de « n » bits s'écrit avec des éléments binaires prenant pour valeur 0 ou 1
- On appelle LSB (Least Significant Bit) le bit de poids le plus faible.
- On appelle MSB (Most Significant Bit) le bit de poids le plus fort.
- Exemple pour un mot de 8 bits

$$10101001 = 1 \times 2^{7} + 0 \times 2^{6} + 1 \times 2^{5} + 0 \times 2^{4} + 1 \times 2^{3} + 0 \times 2^{2} + 0 \times 2^{1} + 1 \times 2^{0}$$

$$128 + 32 + 8 + 1 = 169$$

- ▶ Bases de numération : Binaire, Octale, Hexadécimale
 - Système binaire (b=2) utilise deux chiffres : {0,1}
 - ► C'est avec ce système que fonctionnent les ordinateurs
 - Système Octale (b=8) utilise huit chiffres: {0,1,2,3,4,5,6,7}
 - ▶ Utilisé il y a un certain temps en Informatique
 - ▶ Il permet de coder 3 bits par un seul symbole
 - Système Hexadécimale (b=16) utilise 16 chiffres: {0,1,2,3,4,5,6,7,8,9,A=10₍₁₀₎,B=11₍₁₀₎,C=12₍₁₀₎,D=13₍₁₀₎,E=14₍₁₀₎,F=15₍₁₀₎}
 - Cette base est très utilisée dans le monde de la micro informatique
 - ▶ Il permet de coder 4 bits par un seul symbole.

▶ Le transcodage (ou conversion de base) est l'opération qui permet de passer de la représentation d'un nombre exprimé dans une base à la représentation du même nombre, mais exprimé dans une autre base.

Notions: conversion de la base 10 vers une base b

- La règle à suivre est celle des divisions successives :
 - On divise le nombre par la base b
 - Puis le quotient par la base b
 - ► Ainsi de suite jusqu'à l'obtention d'un quotient nul
 - La suite des restes correspond aux symboles de la base visée.
 - On obtient en premier le chiffre de poids faible et en dernier le chiffre de poids fort

Transcodage: conversion décimale vers binaire

- Soit N le nombre d'étudiants d'une classe représenté en base décimale par : N = 73₍₁₀₎
- Quelle est sa représentation binaire? En utilisant l'algorithme précédent :

$$73_{(10)} = 1001001_{(2)}$$

Transcodage: conversion décimale vers octale

- Soit N le nombre d'étudiants d'une classe représenté en base décimale par : N = 73₍₁₀₎
- Quelle est sa représentation octale? En utilisant l'algorithme précédent :

$$73_{(10)} = 111_{(8)}$$

Transcodage: conversion décimale vers hexadécimale

- Soit N le nombre d'étudiants d'une classe représenté en base décimale par : N = 73₍₁₀₎
- Quelle est sa représentation hexadécimale? En utilisant l'algorithme précédent :

$$73_{(10)} = 49_{(16)}$$

Arithmétique Exercices

Donner l'écriture en base 2 des nombres suivants :

$$M = 19_{(10)}$$
 $N = 31_{(10)}$ $O = 256_{(10)}$ $P = 729_{(10)}$

Donner l'écriture en base 8 des nombres suivants :

$$Q = 18_{(10)}$$
 $R = 76_{(10)}$ $S = 729_{(10)}$
22 114 1 331

Donner l'écriture en base 16 des nombres suivants :

$$T = 70_{(10)}$$
 $U = 471_{(10)}$ $V = 718_{(10)}$ $W = 51727_{(10)}$
46 1D7 2CE CAOF

Notions: conversion de la base 2 vers une base b

- ▶ Il existe deux solutions selon les cas :
- Solution1: valable dans tous les cas
 - Convertir le nombre en base binaire vers la base décimale, puis convertir ce nombre en base 10 vers la base b
- ▶ Solution 2:2,8,16
 - ▶ Binaire vers décimale : par définition $\sum_{i=0}^{n-1} a_i b^i$
 - Binaire vers octale: regroupement des bits en des sous-ensembles de trois bits puis remplacer chaque groupe par le symbole correspondant dans la base 8
 - Binaire vers Hexadécimale : regroupement des bits en des sous ensembles de quatre bits puis remplacer chaque groupe par le symbole correspondant dans la base 16

Transcodage: conversion binaire vers décimale

- ▶ Soit N un nombre représenté en base binaire par : N = 1010011101₍₂₎
- Représentation décimale ?
- ▶ Solution:

```
N = 1010011101
N = 1 \times 2^{9} + 0 \times 2^{8} + 1 \times 2^{7} + 0 \times 2^{6} + 0 \times 2^{5} + 1 \times 2^{4} + 1 \times 2^{3} + 1 \times 2^{2} + 0 \times 2^{1} + 1 \times 2^{0}
= 512 + 0 + 128 + 0 + 0 + 16 + 8 + 4 + 0 + 1
= 669_{(10)}
```

$$1010011101_{(2)} = 669_{(10)}$$

Notions: correspondance binaire/octale

Suite binaire	Symbole octale
000	0
001	1
010	2
011	3
100	4
101	5
110	6
111	7

Notions : correspondance binaire/hexadécimale

Suite binaire	Symbole Hexadécimal
0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
1000	8
1001	9
1010	A
1011	В
1100	С
1101	D
1110	E
1111	F

Transcodage: conversion binaire vers octale

- ▶ Soit N un nombre représenté en base binaire par : N = 1010011101₍₂₎
- ▶ Représentation Octale ?
- ▶ Solution:

$$N = 001 \ 010 \ 011 \ 101$$

= 1 2 3 5
= 1235₍₈₎

$$1010011101_{(2)} = 1235_{(8)}$$

Transcodage: conversion binaire vers hexadécimale

- ▶ Soit N un nombre représenté en base binaire par : N = 1010011101₍₂₎
- Représentation Hexadécimale ?
- ▶ Solution:

$$N = 0010 1001 1101$$

= 2 9 D
= $29D_{(16)}$

$$1010011101_{(2)} = 29D_{(16)}$$

Exercices

Donner l'écriture des nombres suivants en base 2, puis en base 8 et 16 :

$$A = 47_{(10)}$$
 $B = 425_{(10)}$ $C = 9019_{(10)}$ $D = 127_{(10)}$

Représentation de l'information

- Codage des entiers naturels :
 - Utilisation du code binaire pur :
 - L'entier naturel (positif ou nul) est représenté en base 2,
 - ▶ Les bits sont rangés selon leur poids, on complète à gauche par des 0.
 - ► Exemple: sur un octet, 10₍₁₀₎ se code en binaire pur ?

00001010₍₂₎

- Codage des entiers naturels :
 - ▶ Étendu du codage binaire pur :
 - ► Codage sur n bits: représentation des nombres de 0 à 2ⁿ-1
 - ▶ Sur 1 octet (8 bits): codage des nombres de 0 à 2^8 1 = 255
 - \blacktriangleright sur 2 octets (16 bits): codage des nombres de 0 à 2^{16} 1 = 65535
 - ▶ sur 4 octets (32 bits) : codage des nombres de 0 à 2^{32} 1 = 4 294 967 295

- Codage des entiers relatifs :
 - ▶ Il existe au moins trois façons pour coder :
 - ► Code binaire signé (par signe et valeur absolue)
 - ▶ Code complément à 1
 - ▶ Code complément à 2 (utilisé sur ordinateur)

- Codage des entiers relatifs : binaire signé
 - Le bit le plus significatif est utilisé pour représenter le signe du nombre :
 - ▶ si le bit le plus fort = 1 alors nombre négatif
 - ▶ si le bit le plus fort = 0 alors nombre positif
 - Les autres bits codent la valeur absolue du nombre
 - ► Exemple: Sur 8 bits, codage des nombres -24 et 128
 - ▶ -24 est codé en binaire signé par : 1 0 0 1 1 0 0 0_(bs)

Signe -

▶ 128 ne peut pas être codé en binaire signé sur 8 bits

Exercices

- ► Coder $100_{(10)}$ et $-100_{(10)}$ en binaire signé sur 8 bits
 - ightharpoonup 100₍₁₀₎ = 0110 0100 (bs)
 - ightharpoonup -100₍₁₀₎ = 1110 0100 (bs)
- ▶ Décoder en décimal 1100 0111 (bs) et 0000 1111 (bs)
 - ightharpoonup 1100 0111_(bs) = -71₍₁₀₎
 - \triangleright 0000 1111_(bs) = 15₍₁₀₎

- Codage des entiers relatifs : complément à 1
 - ▶ Aussi appelé Complément Logique (CL) ou Complément Restreint (CR) :
 - Les nombres positifs sont codés de la même façon qu'en binaire pure
 - Un nombre négatif est codé en inversant chaque bit de la représentation de sa valeur absolue
 - ▶ Le bit le plus significatif est utilisé pour représenter le signe du nombre :
 - ▶ si le bit le plus fort = 1 alors nombre négatif
 - ▶ si le bit le plus fort = 0 alors nombre positif

Arithmétique Codage des nombres

- ► Exemple: -24 en complément a 1 sur 8 bits
 - ► |-24| en binaire pur 00011000₍₂₎
 - ▶ Puis on inverse les bits 11100111 (cà1)
- Limitation:
 - deux codages différents pour 0 (+0 et -0)

 - ▶ La multiplication et l'addition sont moins évidentes.

Décimal	+	_
0	0000	1111
1	0001	1110
2	0010	1101
3	0011	1100
4	0100	1011
5	0101	1010
6	0110	1001
7	0111	1000

Exercices

- ► Coder 100₍₁₀₎ et -100₍₁₀₎ en complément à 1 sur 8 bits
 - ightharpoonup 100₍₁₀₎ = 0110 0100 (Cà1)
 - \rightarrow -100₍₁₀₎ = 1001 1011 (Cà1)
- Décoder en décimal 1100 0111 (Cà1) et 0000 1111 (Cà1)
 - ightharpoonup 11000111_(Cà1) = -56₍₁₀₎
 - ightharpoonup 00001111_(Cà1) = 15₍₁₀₎

Arithmétique Codage des nombres

- Codage des entiers relatifs : complément à 2
 - Aussi appelé Complément Vrai (CV) :
 - Les nombres positifs sont codés de la même manière qu'en binaire pure
 - un nombre négatif est codé en ajoutant la valeur 1 à son complément à 1
 - ▶ Le bit le plus significatif est utilisé pour représenter le signe du nombre
- ► Exemple: -24 en complément à 2 sur 8 bits
 - ▶ 24 est codé par : 000 11000₍₂₎
 - -24 est codé par : 11100111_(cà1)
 - ▶ donc -24 est codé par : 1 1 1 0 1 0 0 0_(cà2)

Arithmétique Codage des nombres

- Codage des entiers relatifs : complément à 2
 - ▶ Un seul codage pour 0. Par exemple sur 8 bits :

► +0 est code par : 0000000_(cà2)

→ -0 est code par:
1111111111_(cà1)

▶ Donc -0 sera représenté par : 0 0 0 0 0 0 0 0 0 0 (cà2)

▶ Étendu de codage :

 \blacktriangleright Avec n bits, on peut coder de -(2ⁿ⁻¹) à (2ⁿ⁻¹-1)

▶ Sur 1 octet (8 bits), codage des nombres de -128 a 127

→ +0 = 00000000

-0 = 00000000

▶ +1 = 00000001

-1 = 1111111111

...

..

▶ +127= 01111111

-128=10000000

Exercices

- Coder 100₍₁₀₎ et -100₍₁₀₎ par complément à 2 sur 8 bits
 - ightharpoonup 100₍₁₀₎ = 0110 0100_(Cà2)
 - ightharpoonup -100₍₁₀₎ = 1001 1100_(Cà2)
- ▶ Décoder en décimal 1100 1001_(Cà2) et 0110 1101_(Cà2)
 - ► $11001001_{(C\grave{a}2)} = -55_{(10)}$
 - ightharpoonup 01101101_(Cà2) = 109₍₁₀₎

Codage des nombres réels

- Les formats de représentation des nombres réels sont :
 - ► Format à virgule fixe
 - ▶ Utilisé par les premières machines
 - ▶ Possède une partie 'entière' et une partie 'décimale' séparés par une virgule. La position de la virgule est fixe d'où le nom.
 - Exemple: 54,25₍₁₀₎; 10,001₍₂₎; A1,F0B₍₁₆₎
 - Format à virgule flottante (utilisé actuellement sur machine)
 - \blacktriangleright défini par : $\pm m.b^e$
 - ▶ Un signe : + ou -
 - ▶ Une mantisse : m (en virgule fixe)
 - ▶ Un exposant : e (un entier relatif)
 - ▶ Une base : b(2,8,10,16, ...)
 - \blacktriangleright Exemple: 0,5424.102₍₁₀₎; 10,1.2-1₍₂₎; A0,B4.16-2₍₁₆₎

- Étant donné une base b, un nombre x est représenté, en format virgule fixe, par :
 - $X = a_{n-1}a_{n-2}...a_1a_0, a_{-1}a_{-2}...a_{-p}$
 - \triangleright a_{n-1} est le chiffre de poids fort (MSB)
 - ▶ a_{-p} est le chiffre de poids faible (LSB)
 - n est le nombre de chiffres avant la virgule
 - p est le nombre de chiffres après la virgule
 - ▶ La valeur de x en base 10 est : $x = \sum_{-p}^{n-1} a_i b^i$ (10)
 - ► Exemple: $101,01_{(2)}=1.2^2+0.2^1+1.2^0+0.2^{-1}+1.2^{-2}=5,25_{(10)}$

Codage des nombres réels : Codage en virgule fixe

- \triangleright Conversion de base b \rightarrow 10
 - ▶ La valeur de x en base 10 est : $x = \sum_{-p}^{n-1} a_i b^i$ (10)
 - ▶ Exemple :

$$101,01_{(2)} = 1.2^2 + 0.2^1 + 1.2^0 + 0.2^{-1} + 1.2^{-2} = 5,25_{(10)}$$

Même chose pour les bases $8 \rightarrow 10$, $16 \rightarrow 10$, ...

- \triangleright Conversion de base 10 \rightarrow 2
- ▶ Le passage de la base 10 à la base 2 est défini par :
 - ▶ Partie entière est codée sur p bits (division successive par 2)
 - ▶ Partie décimale est codée sur q bits en multipliant par 2 successivement jusqu'à ce que la partie décimale soit nulle ou que le nombre de bits q désiré soit atteint (i.e. que l'on obtienne la précision demandée)
- Exemple 1: $4.25_{(10)} = ?_{(2)}$ format virgule fixe
 - $ightharpoonup 4_{(10)} = 100_{(2)}$
 - ▶ $0.25 \times 2 = 0.5 \rightarrow 0$
 - ▶ $0.5 \times 2 = 1.0 \rightarrow 1$
 - ightharpoonup Donc $4.25_{(10)} = 100.01_{(2)}$

- Exemple 2: 1234,347 $_{(10)}$ = ? $_{(2)}$ format virgule fixe
 - \blacktriangleright 1234₍₁₀₎ = 10011010010₍₂₎
 - ► $0.347 \times 2 = 0.694 \rightarrow 0$
 - \rightarrow 0,694 x 2 = 1,388 \rightarrow 1
 - ightharpoonup 0,388 x 2 = 0,766 ightharpoonup 0
 - \triangleright 0,766 x 2 = 1,552 \rightarrow 1
 - \triangleright 0,552 x 2 = 1,104 \rightarrow 1
 - $ightharpoonup 0,104 \times 2 = 0,208 \rightarrow 0$
 - \rightarrow 0,208 x 2 = 0,416 \rightarrow 0
 - **...**
 - On continue ainsi jusqu'à la précision désirée (que le nombre de bit soit atteint)

- Exemple 3: 13,4 $_{(10)}$ = ? $_{(2)}$ format virgule fixe
 - \blacktriangleright 13₍₁₀₎ = 1101₍₂₎
 - \rightarrow 0,4 x 2 = 0,8 \rightarrow 0
 - \triangleright 0,8 x 2 = 1,6 \rightarrow 1
 - \triangleright 0,6 x 2 = 1,2 \rightarrow 1
 - $> 0.2 \times 2 = 0.4 \rightarrow 0$
 - \rightarrow 0,4 x 2 = 0,8 \rightarrow 0
 - \triangleright 0,8 x 2 = 1,6 \rightarrow 1
 - \triangleright 0,6 x 2 = 1,2 \rightarrow 0
 - **...**
 - ▶ La séquence se reproduit indéfiniment

Codage des nombres réels : Codage en virgule fixe

- Un problème se pose : l'arrondi en binaire !!
 - ▶ Si le premier symbole abandonné est 0, on fait une troncature on abandonne les symboles suivants (arrondi par défaut)
 - ▶ Si le premier symbole abandonné est 1, on ajoute 1 au dernier symbole conservé (arrondi par excès).

 $13,4 = 1101,01100110... \rightarrow 1101,0110$

Premier symbole abandonné est un zéro

Codage des nombres réels : Codage en virgule flottante

$$x = \pm M.2^E$$

- où M est la mantisse (virgule fixe) et E l'exposant (signé).
- ▶ Le codage en base 2, format virgule flottante, revient à coder le signe, la mantisse et l'exposant.
- Exemple : Codage en base 2, format virgule flottante de (3,25)
- ► 3,25₍₁₀₎ = 11,01₍₂₎ (en virgule fixe)
- $= 1,101.2^{1}_{(2)}$
- $= 110, 1.2^{-1}_{(2)}$

Un problème se pose : on a différentes manières de représenter E et M → normalisation

Codage des nombres réels : Codage en virgule flottante – normalisation

- ▶ Le signe est codé sur 1 bit ayant le poids fort :
 - ▶ Le signe : bit 1
 - ▶ Le signe + : bit 0
- Exposant biaisé (Eb)
 - ▶ Placé avant la mantisse pour simplifier la comparaison
 - Codé sur p bits et biaisé pour être positif (ajout de $2^{p-1}-1$) (pour 8 bit : $2^{8-1}-1=127$)
- Mantisse normalisé(M)

- D → déplacement algébrique de la virgule B → décalage ou biais = 2^{p-1}-1
- Normalisé : virgule est placé après le bit à 1 ayant le poids fort
- ▶ M est codé sur q bits
- ▶ Exemple: 11,01 \rightarrow 1,101 donc M = 101

SM	Eb	M
1 bit	p bits	q bits

Codage des nombres réels : Codage en virgule flottante – normalisation

▶ Notre formule devient alors :

$$x = (-1)^{S} \cdot 2^{D+B} \cdot (1+F)$$

- Sest le bit de signe et l'on comprend alors pourquoi 0 est positif $(-1^0=1)$
- D+B = Eb (décalage ou exposant biaisé ou biais)
- F est la partie fractionnaire (mantisse)

Arithmétique Standard IEEE 754 (1985)

- Simple précision sur 32 bits :
 - ▶ 1 bit de signe de la mantisse
 - ▶ 8 bits pour l'exposant
 ▶ 23 bits pour la mantisse
 1 bit
 8 bits
 23 bits
- Double précision sur 64 bits :
 - ▶ 1 bit de signe de la mantisse
 - ▶ 11 bits pour l'exposant
 - ▶ 52 bits pour la mantisse

SM	Eb	M
1 bit	11 bits	52 bits

Arithmétique Standard IEEE 754 (1985)

- Certaines conditions sont toutefois à respecter pour les exposants :
 - ▶ L'exposant 00000000 est interdit.
 - L'exposant 11111111 est interdit. On s'en sert toutefois pour signaler des erreurs, on appelle alors cette configuration du nombre NaN, ce qui signifie « Not a Number ».
 - ▶ Il faut rajouter 127 (01111111) à l'exposant pour une conversion de décimal vers un nombre réel binaire. Les exposants peuvent ainsi aller de -254 à 255.

Conversion décimale > IEEE754 (Codage d'un réel)

- $\rightarrow 35.5_{(10)} = ?$ (IEEE 754 simple précision)
- \blacktriangleright Nombre positif, donc SM = 0
- \triangleright 35,5 = 100011,1₍₂₎ (virgule fixe)
- $= 1,000111.2^{5}_{(2)}$ (virgule flottante)
- \triangleright Exposant: Eb = D + B \rightarrow Eb = 5+127, donc Eb = 132
- \rightarrow 1,M = 1,000111 donc M = 00011100...

Conversion IEEE754 > décimal (évaluation d'un réel)

- \triangleright S = 0, donc nombre positif
- \blacktriangleright Eb = 129, donc D = Eb 127 = 2
- \rightarrow 1,M = 1,111

$$1,111.2^{2}_{(2)} = 111,1_{(2)} = 7,5_{(10)}$$

Exercices

- ▶ Traduire le nombre -6,625 en utilisant la norme IEEE 754
- $6.6\overline{25}_{(10)} = 110.1010_{(2)}$ (virgule fixe)
- ▶ On met ce nombre sous sa forme fractionnaire 1, partie fractionnaire
- ► 110,1010₍₂₎ = 1,101010x2²₍₂₎ (2² décale la virgule de 2 chiffres vers la droite)
- La partie fractionnaire étendue sur 23 bits est donc 101 0100 0000 0000 0000
- \blacktriangleright Eb = 2+127 = 129₍₁₀₎ = 1000 0001₍₂₎
- ▶ Le résultat est donc

Arithmétique Fin

Pour ceux que cela intéresse, vous pouvez faire des recherches sur l'architecture des ordinateurs (les portes logiques, les circuits logiques, le langage assembleur MIPS ...)

MANIPULATIONS ET CALCULS

Arithmétique Addition Binaire

Les additions en base 2 s'effectuent comme dans le système décimal, avec la notion de retenue ou carry (ici en rouge) en utilisant la table d'addition suivante :

+	0	1
0	0	1
1	1	10

0 + 0 = 0	0 ₍₁₀₎
0 + 1 = 1	1 (10)
1 + 0 = 1	1 ₍₁₀₎
1 + 1 = 10	2 ₍₁₀₎
1 + 1 + 1 = 11	3 ₍₁₀₎

Addition Binaire élémentaire

+	0	1
0	0	1
1	1	10

Addition Binaire élémentaire

Exercice

Addition en binaire élémentaire de: $(9)_{(10)} + (4)_{(10)} = (44)_{(10)} + (17)_{(10)} = (43)_{(10)} + (19)_{(10)}$

Soustraction Binaire élémentaire

Exercices

► Effectuer les additions suivantes :

$$B = 1111 + 0101$$

$$10100$$

$$D = 11001101 + 11100011$$

$$110110000$$

▶ Effectuer les soustractions suivantes :

$$F = 1100 - 0011$$

$$H = 11001101 - 01100011$$

Addition et soustraction Binaire signées

Une soustraction peut toujours, si on rend négatif son second terme, se ramener à une addition, ainsi :

$$[A-B] = [A+(-B)]$$

- La méthode la plus utilisée pour rendre négatif un nombre binaire est le complément à 2
- C'est cette méthode qui est utilisée par les machines

<u>Remarque</u>: en représentation signée binaire, le MSB représente le signe (0 si + et 1 si -). Les nombres signés sont également formatés,

Addition et soustraction Binaire signées

- ► Soit l'opération suivante : 195 96
 - \blacktriangleright 195₍₁₀₎ = 11000011₍₂₎
 - \triangleright 96₍₁₀₎ = 01100000₍₂₎
- ► En représentation signée binaire, +195 doit être représenté sur plus de 8 bits si l'on veut que son bit de signe soit positif. On va donc travailler sur 9 bits pour représenter son signe

$$\blacktriangleright$$
 +195₍₁₀₎ = 011000011₍₂₎

$$\blacktriangleright$$
 +96₍₁₀₎ = 001100000₍₂₎

$$ightharpoonup$$
 -96₍₁₀₎ = 110100000_(Cà2)

Comme on travail sur 9 bits, cette retenue est négligée

Addition et soustraction Binaire signées

- L'opération de base des calculateurs électroniques est l'addition
- Le résultat d'une soustraction de deux nombres binaires est en fait obtenu par l'addition du premier nombre par le complément à 2 du deuxième.
- Dans le cas d'un automate programmable, les nombres entiers sont stockées dans des mots formatés généralement sur 8, 16 ou 32 bits.
- Le bit de poids le plus fort (MSB) représente le signe (0 pour positif et 1 pour négatif).
- Étudions les différents cas possibles pour l'opération D = A B

Addition et soustraction Binaire signées

- Cas 1 : deux nombres positifs
 - ► Exemple : A = +9 et B = +4
 - ► Sur 5 bits : A = 01001 et B = 00100
 - ▶ A + B
 - ▶ L'addition est immédiate

Bits de signe

Remarque : En complément à 2, les nombres doivent toujours avoir le même nombre de bits

Addition et soustraction Binaire signées

- Cas 2 : un nombre positif et un nombre négatif plus petit
 - ► Exemple : A = +9 et B = -4
 - \blacktriangleright Sur 5 bits : A = 01001 et B = -(00100)
 - A + B = A + (-B)
 - ► $B_{(C\grave{a}2)} = 11100$

Addition et soustraction Binaire signées

- Cas 3 : un nombre positif et un nombre négatif plus grand
 - ► Exemple : A = -9 et B = +4
 - ► Sur 5 bits : A = -(01001) et B = 00100
 - \rightarrow -A + B = +(-A) + B
 - $All A_{(Ca2)} = 10111$

► Le bit de signe de la somme est négatif, on doit complémenter à 2 le résultat : 1011 = 0101_(Cà2) = 5, comme le bit de signe est 1, on obtient -5

Addition et soustraction Binaire signées

- Cas 4 : deux nombres négatifs
 - ► Exemple : A = -9 et B = -4
 - \blacktriangleright Sur 5 bits : A = -(01001) et B = -(00100)
 - ightharpoonup -A B = +(-A) + (-B)
 - $All A_{(Ca2)} = 10111$
 - ► $B_{(C\grave{a}2)} = 11100$

▶ Le bit de signe de la somme est négatif, on doit complémenter à 2 le résultat : 0011 = 1101_(Cà2) = 13, comme le bit de signe est 1, on obtient -13

Addition et soustraction Binaire signées

Cas 5 : deux nombres égaux et opposés

$$\blacktriangleright$$
 Sur 5 bits : A = -(01001) et B = 01001

$$\rightarrow$$
 -A + B = +(-A) + B

$$All A_{(Ca2)} = 10111$$

▶ Le bit de signe de la somme est positif, on a donc +0

négligé

Addition et soustraction Binaire signées

- L'addition de deux nombres de même signe peut donner lieu à un dépassement de capacité (OverFlow)! Le résultat obtenu est alors faux!!
- On a un dépassement de capacité quand le bit de signe du résultat est différent de celui des deux nombres additionnés.
 - ▶ Le nombre de bits utilisés est insuffisant pour contenir le résultat
 - Autrement dit le résultat dépasse l'intervalle des valeurs sur les n bits utilisés (sur 8 bits, on dépasse l'intervalle -128 et +127)

Addition et soustraction Binaire signées

On est jamais confronté a un dépassement de capacité lorsque les signes des deux nombres sont opposés

Exercices

On dispose d'une machine travaillant sur des nombres binaires de longueur 8 (8 bits). Faire manuellement ce que l'additionneur de la machine ferait automatiquement, et donner les résultats obtenus en binaire. Eventuellement, en cas d'erreur, indiquer pourquoi.

$$A = -61 - 44$$
 $B = -61 - 72$ $C = 99 - 35$ $D = 99 + 35$

Exercices

Exercices

В			
	11000011	+(-61)	On supprime le bit de trop.
	+ 10111000	+(-72)	Le résultat est de signe +. Le résultat est faux!! Il y a débordement (overflow) : on est en dehors
	= 1 0 1 1 1 1 0 1 1	+(-133)	de la zone entre –128 et +127 correspondant aux nombres signés de 8 bits.
C			
	01100011	+(99)	On supprime le bit de trop.
	+ 11011101	+(-35)	Le résultat est de signe +. Le résultat est juste. C'est toujours le cas pour une addition de deux nombres
	= 1 0 1 0 0 0 0 0 0	+(64)	de signes opposés.
D			
	01100011	+(99)	On supprime le bit de trop.
	+ 00100011	+(35)	Le résultat est de signe Le résultat est faux!! Il y a débordement (overflow) : on est en dehors
	= 10000110	+(134)	de la zone entre -128 et +127 correspondant aux

nombres signés de 8 bits.

Addition Binaire: flottants

Addition Binaire: flottants

▶ Soit deux nombres réels N₁ et N₂ tel que

$$N_1 = M_1 \cdot b^{e_1}$$
 $N_2 = M_2 \cdot b^{e_2}$

- ▶ On veut calculer $N_1 + N_2$?
- Deux cas se présentent :
 - ▶ Si $e_1 = e_2$ alors $N_3 = (M_1 + M_2).b^{e_1}$
 - ▶ Si $e_1 \neq e_2$ alors élever au plus grand exposant et faire l'addition des mantisses et par la suite normalisée la mantisse du résultat.

Addition Binaire: flottants

- ► Exemple 1
- \triangleright Soient les nombres A = 1,5 et B = 0,5
- Représentation en IEEE :
 - \blacktriangleright A = +1,1₍₂₎ (virgule fixe) avec un signe + (donc S = 0)
 - \rightarrow A = +1,1 . 20 (virgule flottante)
 - ▶ $B = +0,1_{(2)}$ (virgule fixe)
 - \triangleright B = +1,0 . 2⁻¹ (virgule flottante)
 - ► A et B > 0 → $S_A = 0$ et $S_B = 0$
 - \blacktriangleright Eb_A = 0+127 = 127 Eb_B = -1 + 127 = 126

Addition Binaire: flottants

- On ramène les deux nombres au même exposant, le plus grand des deux.
- On décale donc les bits de la mantisse du nombre ayant le plus petit exposant d'autant de bits vers la droite que la différence entre les exposants, sans oublier le 1 avant la virgule.
- ▶ Dans l'exemple on veut augmenter de 1 l'exposant du deuxième terme B. La mantisse complète du second nombre passe donc de 1.0000000000... à 0.10000000000... (on supprime le zéro le plus à droite pour rester sur 23 bits).

= 10,000000000000000000000000

Addition Binaire: flottants

- On renormalise ensuite le nombre obtenu.
- Dans l'exemple, le résultat a donc pour exposant 0 et pour mantisse 10.00000000...: on renormalise la mantisse, ce qui augmente l'exposant de 1.
- On a donc le résultat final :

Addition et soustraction Binaire : flottants

- ► Exemple 2
- \blacktriangleright Soient les nombres A = -1,5 et B = -0,5
- Représentation en IEEE :
 - \rightarrow A = -1,1₍₂₎ (virgule fixe) avec un signe + (donc S = 0)
 - \rightarrow A = -1,1 . 2° (virgule flottante)
 - ▶ $B = -0.1_{(2)}$ (virgule fixe)
 - \triangleright B = -1,0 . 2⁻¹ (virgule flottante)
 - ► A et B < 0 → $S_A = 1$ et $S_B = 1$
 - \blacktriangleright Eb_A = 0+127 = 127 Eb_B = -1 + 127 = 126

Addition et soustraction Binaire : flottants

- On ramène les deux nombres au même exposant, le plus grand des deux
- On ajoute ensuite les deux mantisses. Comme les deux mantisses sont de même signe, on les ajoute directement :

- ▶ On renormalise ensuite le nombre obtenu : 1,0000... x2¹
- ► Le signe de la mantisse est 1, donc A + B = -2

Addition Hexadécimales : entiers positifs

► Cas 1: sans retenue

Α	В	С	D	E	F
10	11	12	13	14	15

► Cas 2: avec la retenue

Addition Hexadécimales : entiers positifs

► Cas 2: avec la retenue

Arithmétique Exercices

► Effectuez les additions suivantes :

Α	В	С	D	E	F
10	11	12	13	14	15

Soustraction Hexadécimales : entiers positifs

Α	В	С	D	E	F
10	11	12	13	14	15

9 B 5
$$_{1}4$$
 4 - 9 = $(4 + 16) - 9 = 11 = B$
- 6 A 2 $_{1}$ 9 5 - 3 = 5 - $(2 + 1)$ de retenue = 2
B - A = $11 - 10 = 1$
= 3 1 2 B 9 - 6 = 3

A vous de jouer:

A
$$_{1}B$$
 $_{1}C$ $_{1}D$ $D-F=13-15=(13+16)-15=14=E$
- $_{2_{1}}F_{1}F_{1}F$ $C-(F+1)=12-(15+1)=(12+16)-(15+1)=12=C$
B - $_{1}B$ $_{2}C$ $_{3}D$ $_{4}B$ $_{5}C$ $_{5}B$ $_{7}C$ $_{1}B$ $_{1}C$ $_{1}D$ $_{1}B$ $_{2}C$ $_{3}B$ $_{3}C$ $_{4}B$ $_{5}C$ $_{5}B$ $_{5}C$ $_{5}B$ $_{6}C$ $_{6}B$ $_{7}C$ $_{7}B$ $_{7}C$ $_{7}C$ $_{7}B$ $_{7}C$ $_{7}C$

Multiplication Binaire : entiers positifs

*	0	1
0	0	0
1	0	1
* 10110		45 x 5
= 10110 000000 101101		
1110000	0 1 =	225

Multiplication Binaire : entiers signés

- Cas de deux nombres positifs :
 - on applique la même méthode que précédemment
- Cas de deux nombres négatifs :
 - On calcul le complément à 2 de chacun des nombres (pour les rendre positifs)
 - On multiplie ces deux nombres positifs comme précédemment
 - ► Le résultat obtenu est positif, on ne change rien
- Cas ou l'un des deux nombres est négatif :
 - On calcul le complément à deux du nombre négatif
 - On multiplie les deux nombres positifs
 - On complémente à deux le résultat, puisqu'il est négatif

Division Binaire: entiers positifs

Dans la division en binaire, on utilise une succession de soustractions.

100

- 1. On prend le premier bit du nombre à diviser. Si ce nombre est supérieure ou égal au diviseur, on note 1 dans le résultat et on fait la soustraction. Sinon, on note 0 dans le résultat et on test avec un bit en plus pour le nombre à diviser
- 2. On répète l'étape 1 tant que le nombre à diviser est inférieur au diviseur.
- 3. On abaisse un bit et on test si le nombre est plus grand. Si oui, on note 1 et on fait la soustraction, sinon, on note 0 et on abaisse le bit suivant. On répète, tant que le nombre est inférieur.
- 4. On répète le point 3 tant que le nombre de bit du nombre à diviser n'est pas atteint
- 5. On peut continuer on ajoutant une virgule au résultat est des zéros et on répète l'étape 3

1001100001/101 = 11111001,110011001100

Arithmétique Exercices

- Effectuez la division suivante :
 - ▶ 10001/100 100 reste 001
 - ▶ 11001/101 1100 reste 1001
 - ▶ 1111100/1001000111 0 reste 1111100
 - ▶ 11111111110010/1000011000 11111 reste 10001010

Multiplication et division par une puissance de 2 en binaire

- Pour multiplier (respectivement diviser) par 2ⁿ = 10...0₂ (n zéros) un nombre écrit en base 2, on décale tous ses chiffres de n rangs vers la gauche (ou la droite pour la division)
- Exemples:
 - \blacktriangleright 10010₍₂₎ x 100₍₂₎ = 1001000₍₂₎
 - \blacktriangleright 11,001₍₂₎ x 10 = 110,01₍₂₎
 - $ightharpoonup 10010_{(2)} / 100_{(2)} = 100,1_{(2)}$
 - ightharpoonup 11,011₍₂₎ / 10₍₂₎ = 1,1001₍₂₎