

Vysoké Učení Technické v Brně Fakulta Informačních Technologií

Modelování a simulace - Bydlení nebo správa budov

Růst domácností a jeho dopad na energetiku

Bogdan Shaposhnik, xshapo04 Nikita Smirnov, xsmirn02 11. listopadu 2024

Obsah

1	Uvod								
	1.1	Autory	3						
	1.2	Validita dat	3						
2	Roz	Rozbor tématu a použitých technologií							
	2.1	Popis použitých postupů	4						
	2.2	Popis původu použitých metod	4						
3	Koı	Koncepce modelu							
	3.1	Vyjádření modelu	5						
	3.2	Princip činnosti	6						
4	Architektura simulačního modelu								
	4.1	Simulační proces	6						
		4.1.1 Vstupní bod	6						
		4.1.2 Pomocné funkce	6						
		4.1.3 Konstanty	6						
	4.2	mapování abstraktního modelu	7						
	4.3	Data	7						
5	Podstata simulačních experimentů a jejich průběh								
	5.1	Použití simulačního programu	7						
	5.2	Experiment č 1	7						
	5.3	Experiment č 2	8						
	5.4	Experiment č 3	8						
6	Shr	nutí simulačních experimentů a závěr	9						
	6.1	Přílohy k experimentům	10						

1 Úvod

Naše práce se zabývá otázkou růstu měst a jeho dopadu na energetiku, konkrétně na spotřebu elektřiny. Vzhledem k tomu, že na domácnosti připadá přibližně 25 % všech výdajů na elektřinu v zemi, je dopad sektoru domácností na energetiku v zemi velmi významný.

Přestože energetická krize dnes není tak jednoznačně na pořadu dne, při současném tempu urbanizace a digitalizace je těžké předvídat, jak velkým problémem bude v budoucnu. To se týká jak nákladů na rozšiřování komplexu výroby energie, tak i problému emisí odpadů, které vznikají při výrobě většího množství energie. V tomto článku se pokusíme sestavit a namodelovat[10, s. 8] systém[10, s. 7] který dokáže předpovědět nárůst spotřeby elektřiny při současném tempu růstu domácností.

1.1 Autory

Shaposhnik Bogdan (xshapo04) - autor Smirnov Nikita (xsmirn02) - autor

Při psaní této práce jsme využili jak otevřené zdroje informací, z nichž byly čerpány statistické údaje(například statista.com[12], fred.stlouisfed.org[5] a ourworldindata.org[8]), tak vědecké práce, například práce věnované analýze faktorů ovlivňujících poptávku po elektřině ze strany spotřebitelského sektoru[6].

1.2 Validita dat

Experimentální ověření modelu [10] bylo provedeno v prostředí regresní analýzy s využitím historických údajů o ceně elektřiny, HDP a spotřebě energie na domácnost. K výpočtu koeficientů elasticity [9] použitých pro výpočet spotřeby elektřiny byla použita metoda vícenásobné lineární regrese[11]. Historické údaje byly získány z veřejně dostupných zdrojů, konkrétně ze statistiky růstu počtu domácností ve Spojených státech v letech 2000-2020[2] a statistiky spotřeby energie na domácnost v letech 2000-2017[1].

2 Rozbor tématu a použitých technologií

V našem případě model na základě studie zpracované Yueyanem Chenem[6] považuje za nejdůležitější faktory vztah mezi počtem domácností, spotřebou energie, cenou energie, HDP a energetickou účinností. Vliv mají také parametry, jako je klima a faktor zařízení používaných obyvatelstvem, které mají velký dopad při analýze konkrétní oblasti země. Za zmínku stojí také vliv nepředvídaných okolností a politiky dané země týkající se spotřeby energie.

2.1 Popis použitých postupů

Pro vytvoření modelu byla použita regresní analýza[11] v logaritmickém prostoru k určení vlivu klíčových faktorů (cena energie, HDP a energetická efektivita) na spotřebu energie na domácnost. Tento přístup je vhodný, protože umožňuje zachytit nelineární závislosti a kvantifikovat jejich vliv pomocí elastičností.

Alternativně by bylo možné použít simulaci Monte Carlo[13], ale ta je výpočetně náročnější a méně přehledná pro interpretaci elastičností. Proto je regresní analýza efektivnějším řešením, zejména proto, že do modelu nezahrneme náhodné faktory.

2.2 Popis původu použitých metod

K analýze závislosti spotřeby energie na ceně, HDP a energetické účinnosti byla použita metoda logaritmické regrese. Tato metoda byla zvolena pro svou schopnost lineárně vyjádřit proporcionální změny mezi proměnnými. V literatuře se hojně používá k modelování energetických a ekonomických systémů, kde proměnné mají exponenciální nebo multiplikativní vztahy.

K předpovědi růstu ceny energie byl použit model exponenciálního růstu, který zohledňuje analýzu otevřených zdrojů[4] a trendy růstu cen elektřiny v posledních letech[3].

K předpovědi trendů růstu počtu domácností byl použit model proporcionálního růstu počtu domácností váženého HDP na základě trendů za posledních 50 let[2].

3 Koncepce modelu

Při tvorbě konceptuálního modelu jsme se rozhodli omezit na klíčové faktory, které mají dlouhodobý a významný vliv na spotřebu energie v rámci země. Mezi tyto faktory patří hrubý domácí produkt (HDP), ceny energie a počet domácností. Tento přístup zohledňuje makroekonomické ukazatele, které lze spolehlivě měřit a modelovat, přičemž jsme záměrně zanedbali méně podstatné faktory, jako jsou například změny klimatu, míra digitalizace nebo regionální rozdíly ve spotřebě.

Tato rozhodnutí byla vedena snahou zjednodušit model a zajistit jeho použití na úrovni celostátního měřítka. Faktory, jako je například digitalizace nebo regionální disparity, jsou sice relevantní na lokální úrovni, avšak jejich vliv na celkový trend energetické spotřeby v dlouhodobém horizontu je marginální a jejich zahrnutí by přineslo nadměrnou složitost bez přímého zlepšení prediktivní schopnosti modelu. Podobně i faktory spojené s klimatickými změnami byly v této fázi analýzy zanedbány, protože jejich vliv je zpravidla zahrnut v dlouhodobém vývoji cen a HDP.

Za zmínku také stojí, že náš model se snaží využít poskytnutá data pro přesnější výpočet, ale z důvodu jejich nedostatku počítáme data za běhu. Pro zjednodušení modelu byl také zjednodušen výpočet energetické účinnosti. Výzkum[7] na toto téma však byl zohledněn.

3.1 Vyjádření modelu

1. Funkce pro výpočet počtu domácností:

$$H(t) = H_{prev} \cdot \left(1 + r_H \cdot \frac{GDP(t)}{GDP_{prev}}\right)$$

kde:

- \bullet H_{prev} počet domácností v předchozím roce.
- r_H 0.015, vypočtený standardní procento růstu domácností.
- $\frac{GDP(t)}{GDP_{prev}}$ faktor růstu HDP za poslední rok.
- 2. Funkce pro výpočet ceny elektřiny:

$$P(t) = P_{prev} \cdot e^{\beta \cdot (t - t_{prev})}$$

kde:

- P_{prev} cena elektřiny v předchozím roce.
- β 0.015, vypočtený faktor růstu ceny pro exponenciální funkci.
- 3. Funkce pro výpočet HDP:

$$GDP(t) = GDP_{prev} \cdot (1 + r_{GDP} \cdot (t - t_{prev}))$$

kde:

- \bullet GDP_{prev} HDP v předchozím roce.
- β 0.025, faktor růstu HDP.
- 4. Funkce pro výpočet spotřeby energie pro jednu domácnost:

$$E_h(t) = E_{hvrev} \cdot P(t)^{\beta_P} \cdot GDP(t)^{\beta_{GDP}} \cdot Eff(t)^{\beta_{eff}}$$

kde:

- \bullet E_{hprev} spotřeba energie v předchozím roce.
- $P(t)^{\beta_P}$ cena energie v tomto roce, s ohledem na koeficient elasticity.
- $GDP(t)^{\beta_{GDP}}$ HDP v tomto roce, s ohledem na koeficient elasticity.
- $Eff(t)^{\beta_{eff}}$ energetická účinnost, s ohledem na koeficient elasticity.
- $\beta_P, \beta_{GDP}, \beta_{eff}$ jsou koeficienty elasticity, které popisují, jak změna každého faktoru ovlivňuje poptávku po energii.

Výpočet koeficientů elasticity:

$$\ln(E_h(t)) = \beta_P \cdot \ln(P(t)) + \beta_{GDP} \cdot \ln(GDP(t)) + \beta_{eff} \cdot \ln(Eff(t))$$

- $\beta_P = -0.331492$
- $\beta_{GDP} = 0.06471$
- $\beta_{eff} = 0.3781476$
- 5. Funkce pro výpočet celkové spotřeby energie v rámci posuzovaných údajů:

$$E_{total}(t) = H(t) \cdot E_h(t)$$

kde:

- H(t) počet domácností.
- $E_h(t)$ spotřeba energie na domácnost.

3.2 Princip činnosti

Pro zvýšení přesnosti výpočtu se model snaží vycházet ze známých údajů. Pokud žádné údaje nenajde, začne je počítat sám na základě dříve uvedených vzorců.

Díky tomu je možné s údaji z jiných přesnějších simulací, např. růstu HDP nebo cen elektřiny se zohledněním možných krizí, použít náš model k přesnějšímu výpočtu potenciální změny spotřeby energie v sektoru domácností.

4 Architektura simulačního modelu

4.1 Simulační proces

4.1.1 Vstupní bod

Simulace začíná od vstupního bodu - funkce **simulate()**. Poté se pro každý rok vypočítají potřebné parametry pro další výpočet modelu spotřeby energie.

4.1.2 Pomocné funkce

Pro každý parametr je přiřazena samostatná výpočetní funkce (například: pro HDP - calculateGDP(), pro domácnosti - calculateHouseholds()), aby byl model flexibilnější a zvýšila se věrohodnost výsledku.

4.1.3 Konstanty

Konstanty použité při výpočtu jsou uloženy v souboru - data.h

4.2 mapování abstraktního modelu

Funkce **calculate**EnergyConsumptionPerHousehold() implementuje model pro výpočet spotřeby energie na domácnost ve vztahu k dříve vypočteným parametrům a jejich koeficientům elasticity.

4.3 Data

Simulace se snaží použít stávající data uložená ve vektoru struktur knownData typu YearData, která jsou popsána v souboru data.h. Můžete přidat data o známých letech, pokud není k dispozici nějaký parametr, můžete zadat hodnotu -1. Použitím různých modelů určených pouze pro výpočet jeho parametru můžeme dosáhnout výrazného zvýšení přesnosti výpočtu spotřeby elektřiny v naší simulaci.

5 Podstata simulačních experimentů a jejich průběh

Experimenty sloužily k potvrzení validity modelu[10, s. 10], nebo jinak k jeho dopracování k pracovnímu druhu. Poté bylo možné použít tento model k předpovídání budoucích trendů ve spotřebě energie (tj. experiment č. 2) Podmínky simulace, konkrétně časový úsek, se zadávají v hlavní funkci programu (main).

5.1 Použití simulačního programu

- make preloží program
- make run vykoná program

5.2 Experiment č 1.

Experiment č. 1 slouží k ověření validity výsledného modelu. Modrá čára ukazuje data, která byla výsledkem modelu, oranžová označuje data získaná výpočtem na základě statistik počtu domácností[2] a energie[1], které tyto domácnosti odebírají (protože v otevřených zdrojích chybí informace o celkové spotřebě energie) na základě podobnosti výsledných grafů lze říct , že model je validní.

Obrázek 1: Experiment č 1.

5.3 Experiment č 2.

Experiment č. 2 slouží k předpovědi nárůstu spotřeby energie v domácnostech v USA v letech 2025-2030. V grafu je patrná jasná linearita tohoto nárůstu.

Obrázek 2: Experiment č 2.

5.4 Experiment č 3.

Jelikož experiment č. 2 ukázal jasnou linearitu tohoto grafu, bylo rozhodnuto provést experiment č. 3, který by ukázal růst spotřeby energie v letech 2017-2024. Jelikož graf v tomto období vykazoval podobný trend, bylo rozhodnuto, že model funguje správně.

Obrázek 3: Experiment č 3.

6 Shrnutí simulačních experimentů a závěr

Prvním experimentem jsme prokázali platnost našeho modelu. Poté jsme přistoupili k experimentu č. 2, ve kterém jsme předpověděli nárůst spotřeby energie v období 2025-2030. V experimentu č. 3 jsme ověřili platnost získaných údajů. Výsledkem experimentů bylo pochopení lineárního růstu spotřeby energie v budoucnu, a to při absenci vnějších faktorů (například krize v roce 2008, kvůli které jsme museli zohlednit chybu v tomto období a několika následujících letech po něm). Důvodem lineárního růstu je skutečnost, že náš model zohledňuje stabilní růst počtu domácností a HDP.

6.1 Přílohy k experimentům

Rok		Model(kWh)	Skutečná data(kWh)	Rozdil(%)
	2001	1163270000,00	1168657200,00	-0,46%
	2002	1219240000,00	1191337300,00	2,29%
	2003	1272310000,00	1234058000,00	3,01%
	2004	1327820000,00	1293200000,00	2,61%
	2005	1365220000,00	1330775900,00	2,52%
	2006	1371990000,00	1357114560,00	1,08%
	2007	1375400000,00	1350205180,00	1,83%
	2008	1355060000,00	1333661860,00	1,58%
	2009	1333170000,00	1342894260,00	-0,73%
	2010	1319880000,00	1341687000,00	-1,65%
	2011	1310970000,00	1335175100,00	-1,85%
	2012	1312620000,00	1334032400,00	-1,63%
	2013	1311730000,00	1324803100,00	-1,00%
	2014	1303150000,00	1323196100,00	-1,54%
	2015	1303270000,00	1315539600,00	-0,94%
	2016	1315700000,00	1328845200,00	-1,00%
	2017	1327720000,00	1300107200,00	2,08%

Obrázek 4: Příloha k experimentu č1.

Rok		Celková spotřeba(kWh)
2	2025	1545750000,00
2	2026	1578620000,00
2	2027	1612820000,00
2	2028	1648400000,00
2	2029	1685420000,00
2	2030	1723940000,00

Obrázek 5: Příloha k experimentu č $2. \label{eq:constraint}$

```
Year: 2001 Households: 106310 GDP: $37133.6
                                              Energy Price: $7.29
                                                                     E Con per house: 10942.2 kWh Total cons: 1.16327e+09 kWh
Year: 2002 Households: 107942 GDP: $37997.7
                                              Energy Price: $7.2
                                                                     E_Con per house: 11295.3 kWh Total cons: 1.21924e+09 kWh
Year: 2003 Households: 109625 GDP: $39490.3
                                              Energy Price: $7.44
                                                                     E_Con per house: 11606.1 kWh Total cons: 1.27231e+09 kWh
Year: 2004 Households: 111362 GDP: $41724.6 Energy Price: $7.61
                                                                     E_Con per house: 11923.4 kWh Total cons: 1.32782e+09 kWh
Year: 2005 Households: 113129 GDP: $44123.4 Energy Price: $8.14
                                                                     E_Con per house: 12067.8 kWh Total cons: 1.36522e+09 kWh
Year: 2006 Households: 114909 GDP: $46302
                                              Energy Price: $8.9
                                                                     E_Con per house: 11939.8 kWh Total cons: 1.37199e+09 kWh
Year: 2007 Households: 116698 GDP: $48050.2 Energy Price: $9.13
                                                                     E_Con per house: 11786 kWh
                                                                                                Total cons: 1.3754e+09 kWh
Year: 2008 Households: 118468 GDP: $48570.1 Energy Price: $9.74
                                                                    E_Con per house: 11438.2 kWh Total cons: 1.35506e+09 kWh
Year: 2009 Households: 120194 GDP: $47195
                                              Energy Price: $9.82
                                                                     E_Con per house: 11091.8 kWh Total cons: 1.33317e+09 kWh
Year: 2010 Households: 122053 GDP: $48650.7 Energy Price: $9.83
                                                                     E_Con per house: 10814 kWh Total cons: 1.31988e+09 kWh
Year: 2011 Households: 123937 GDP: $50066
                                              Energy Price: $9.9
                                                                     E_Con per house: 10577.7 kWh Total cons: 1.31097e+09 kWh
Year: 2012 Households: 125860 GDP: $51784.4 Energy Price: $9.84
                                                                     E_Con per house: 10429.2 kWh Total cons: 1.31262e+09 kWh
Year: 2013 Households: 127807 GDP: $53409.8 Energy Price: $10.07
                                                                     E_Con per house: 10263.4 kWh Total cons: 1.31173e+09 kWh
Year: 2014 Households: 129792 GDP: $55304.3 Energy Price: $10.44
                                                                    E_Con per house: 10040.3 kWh Total cons: 1.30315e+09 kWh
Year: 2015 Households: 131800 GDP: $57040.2 Energy Price: $10.41
                                                                     E_Con per house: 9888.25 kWh    Total cons: 1.30327e+09 kWh
Year: 2016 Households: 133817 GDP: $58206.6 Energy Price: $10.27
                                                                     E_Con per house: 9832.08 kWh Total cons: 1.3157e+09 kWh
Year: 2017 Households: 135898 GDP: $60322.3 Energy Price: $10.48
                                                                     E_Con per house: 9769.99 kWh  Total cons: 1.32772e+09 kWh
Year: 2018 Households: 138033 GDP: $63201
                                               Energy Price: $10.53
                                                                     E_Con per house: 9758.93 kWh Total cons: 1.34706e+09 kWh
Year: 2019 Households: 140181 GDP: $65548.1 Energy Price: $10.54
                                                                     E_Con per house: 9804.66 kWh Total cons: 1.37442e+09 kWh
Year: 2020 Households: 142244 GDP: $64317.4 Energy Price: $10.66
                                                                     E_Con per house: 9838.62 kWh  Total cons: 1.39948e+09 kWh
Year: 2021 Households: 144431 GDP: $65925.3 Energy Price: $10.8211 E_Con per house: 9876.54 kWh Total cons: 1.42648e+09 kWh
Year: 2022 Households: 146652 GDP: $67573.5 Energy Price: $10.9846 E_Con per house: 9918.45 kWh Total cons: 1.45456e+09 kWh
Year: 2023 Households: 148906 GDP: $69262.8 Energy Price: $11.1507 E_Con per house: 9964.41 kWh Total cons: 1.48376e+09 kWh
Year: 2024 Households: 151196 GDP: $70994.4 Energy Price: $11.3192 E_Con per house: 10014.5 kWh Total cons: 1.51414e+09 kWh
Year: 2025 Households: 153520 GDP: $72769.2 Energy Price: $11.4902 E_Con per house: 10068.7 kWh Total cons: 1.54575e+09 kWh
Year: 2026 Households: 155881 GDP: $74588.5 Energy Price: $11.6639 E_Con per house: 10127.1 kWh Total cons: 1.57862e+09 kWh
Year: 2027 Households: 158277 GDP: $76453.2 Energy Price: $11.8402 E_Con per house: 10189.8 kWh Total cons: 1.61282e+09 kWh
Year: 2028 Households: 160711 GDP: $78364.5
                                              Energy Price: $12.0191 E_Con per house: 10256.9 kWh Total cons: 1.6484e+09 kWh
Year: 2029 Households: 163182 GDP: $80323.6
                                              Energy Price: $12.2008 E_Con per house: 10328.5 kWh Total cons: 1.68542e+09 kWh
Year: 2030 Households: 165691 GDP: $82331.7 Energy Price: $12.3852 E_Con per house: 10404.6 kWh Total cons: 1.72394e+09 kWh
```

Obrázek 6: Celkova data modelu

Odkazy

- [1] "Average annual electricity consumption of non-commercial customers in the U.S. from 1990 to 2017 (in kilowatt hours)". In: [ONLINE] (2019). URL: https://www.statista.com/statistics/203700/average-electricity-consumption-of-non-commercial-customers-in-the-us/.
- [2] "Census Bureau. Total Households [TTLHH], retrieved from FRED, Federal Reserve Bank of St. Louis". In: [ONLINE] (2024). URL: https://fred.stlouisfed.org/series/TTLHH.
- [3] EIA. "Average retail electricity prices in the United States in selected years from 1990 to 2023 (in U.S. dollar cents per kilowatt-hour)". In: [ONLINE] (2024). URL: https://www.statista.com/statistics/183700/us-average-retail-electricity-price-since-1990/.
- [4] EIA. "Projected average end-use electricity price in the United States from 2022 to 2050 (in U.S. cents per kilowatt-hour)". In: [ONLINE] (2023). URL: https://www.statista.com/statistics/630136/projection-of-electricity-prices-in-the-us/.
- [5] "Federal Reserve Economic Data." In: [ONLINE] (2024). URL: https://fred.stlouisfed.org/.

- [6] Yueyan Chen et al. "Econometric analysis of factors influencing electricity consumption in Spain: Implications for policy and pricing strategies". In: Heliyon 10.17 (2024), e36217. ISSN: 2405-8440. DOI: https://doi.org/10.1016/j.heliyon. 2024.e36217. URL: https://www.sciencedirect.com/science/article/pii/S2405844024122487.
- [7] Jia Li a Richard E. Just. "Modeling household energy consumption and adoption of energy efficient technology". In: *Energy Economics* 72 (2018), s. 404–415. ISSN: 0140-9883. DOI: https://doi.org/10.1016/j.eneco.2018.04.019. URL: https://www.sciencedirect.com/science/article/pii/S0140988318301440.
- [8] "Our World In Data is a project of the Global Change Data Lab." In: [ONLINE] (2024). URL: https://ourworldindata.org/.
- [9] Iva Pecáková. "Logistická regrese s vícekategoriální vysvětlovanou proměnnou". In: Acta Oeconomica Pragensia 1 (2007), s. 86–86.
- [10] Petr Peringer a Martin Hrubý. *Modelling and simulation IMS*. 2024. URL: http://perchta.fit.vutbr.cz:8000/vyuka-ims/uploads/1/IMS.pdf.
- [11] Miroslav Pokorny. "COMPLEX SYSTEMS MODELLING USING EXTENDED FUZZY NON-LINEAR REGRESSION ANALYSIS SOUSTAV, MODELOVÁNÍ KOMPLEXNÍCH and ANALÝZY, METODOU ROZŠÍŘENÉ FUZZY NELINEÁRNÍ REGRESNÍ". In: [ONLINE] (2015). URL: https://emijournal.cz/wp-content/uploads/2020/08/02_miroslav_pokorny_complex_system_modelling_using_extended_fuzzy.pdf.
- [12] "Statistics, consumer survey results and industry studies from over 22500 sources". In: [ONLINE] (2024). URL: https://www.statista.com/.
- [13] Tomáš Tichỳ. Simulace Monte Carlo ve financích: Aplikace při ocenění jednoduchých opcí. VŠB-TU Ostrava, 2010.