Math 1152 Lecture Notes

June 1, 2022

1 Improper Integrals

Which functions are integrable?

What even is our definition of an integrable function?

Theorem 1. If f is continuous, then f is integrable.

If f is piecewise-continuous, then we break f up into the intervals where it is continuous and sum the integral over each of those.

Does this cover all the functions we would want to integrate?

What about $\frac{1}{x^{1/2}}$?

- Our definition of Riemann sum rules out unbounded functions.
- So $\frac{1}{x^{1/2}}$ is not (Riemann) integrable over any interval containing 0.
- But despite that, we "know" what the integral should be: $\int_a^b f(x), dx = 2\sqrt{x}|_a^b$ even when a<0 and b>0.
- Another situation is if we want to integrate $\int_1^\infty f(x) dx$ our Riemann sums are defined only over finite intervals, not $[a, \infty)$.
- Both of these problems are alleviated by using limits.

Improper Integrals

$$\int_{a}^{\infty} f(x) dx := \lim_{b \to \infty} \int_{a}^{b} f(x) dx,$$

and

If f has a vertical assymptote at c in [a, b], then

$$\int_a^b f(x) dx = \left(\lim_{s \to c^-} \int_a^s f(x) dx\right) + \left(\lim_{s \to c^+} \int_s^b f(x) dx\right).$$

These two types of improper integrals can be combined with one another. An improper integral **converges** if the limit exists and is finite, and **diverges** otherwise.

Exercise 1. Find $\int_0^1 \frac{1}{x^a} dx$ for different values of a. When does the integral exist? What about for $\int_1^\infty \frac{1}{x^a}$?

If an improper integral does not converge, weird behaviour is possible.

Exercise 2. Investigate

$$\int_{-1}^{1} \frac{1}{x} \, dx.$$

Does this integral converge or diverge?