Improved Estimation of Canonical Vectors in Canonical Correlation Analysis

Nicholas Asendorf, Ph.D. asendorf@umich.edu

Prof. Raj Nadakuditi rajnrao@umich.edu

Department of Electrical Engineering and Computer Science University of Michigan

Asilomar Conference on Signals, Systems, and Computers

November 11, 2015

Motivation

Multiple Datasets

- * Audio-Video
- * Audio-Audio

Machine Learning

- * emotion identification
- * shopping predictions
- * music genre classification

Medical Signal Processing

Multiple Datasets

- * Audio-Video
- * Audio-Audio

Machine Learning

- * emotion identification
- * shopping predictions
- * music genre classification

Medical Signal Processing

Multiple Datasets

- * Audio-Video
- * Audio-Audio

Machine Learning

- * emotion identification
- * shopping predictions
- * music genre classification

Medical Signal Processing

Multiple Datasets

- * Audio-Video
- * Audio-Audio

Machine Learning

- * emotion identification
- * shopping predictions
- * music genre classification

Medical Signal Processing

Multiple Datasets

- * Audio-Video
- * Audio-Audio

Machine Learning

- * emotion identification
- * shopping predictions
- * music genre classification

Medical Signal Processing

- * disco influences
- * danceable grooves
- repetitive melodic phrasing
- * extensive vamping
- * minor key tonality

Canonical Correlation Analysis

What is it?

- * Dimensionality reduction algorithm for exactly 2 datasets, X, Y
- * Correlation coefficients, linear transformations

What is it not?

* Data fusion algorithm

Covariance matrices

*
$$R_{xx} = \mathbb{E}\left[xx^H\right]$$

*
$$R_{yy} = \mathbb{E}\left[yy^H\right]$$

*
$$R_{xy} = \mathbb{E}\left[xy^H\right]$$

Variable Transformation

$$* f = R_{xx}^{1/2} w_x$$

*
$$g = R_{yy}^{1/2} w_y$$

Optimization problem

Canonical Correlation Analysis

What is it?

- ★ Dimensionality reduction algorithm for exactly 2 datasets
- * Correlation coefficients, linear transformations

What is it not?

* Data fusion algorithm

Optimization problem

Canonical Vectors

$$* w_x = R_{xx}^{-1/2} f$$

*
$$w_y = R_{yy}^{-1/2} g$$

Insight

correlated signals = $k = \text{rank}(C_{cca})$

Empirical CCA

Training Datasets

- * $X = [x_1, \ldots, x_n]$
- $* Y = [y_1, \ldots, y_n]$

Sample Covariance Matrices

- * $\widehat{R}_{XX} = \frac{1}{n}XX^H$
- * $\widehat{R}_{yy} = \frac{1}{n} YY^H$
- * $\widehat{R}_{xy} = \frac{1}{n}XY^H$

Estimate

$$\widehat{C}_{cca} = \widehat{R}_{xx}^{-1/2} \widehat{R}_{xy} \widehat{R}_{yy}^{-1/2}$$
$$= \widehat{F} \widehat{K} \widehat{G}^{H}$$

Data SVDs

- $* X = \widehat{U}_X \widehat{\Sigma}_X \widehat{V}_X^H$
- $* Y = \widehat{U}_{y} \widehat{\Sigma}_{y} \widehat{V}_{y}^{H}$
- $* \ \sigma\left(\widehat{C}_{\text{cca}}\right) = \sigma\left(\widehat{V}_{X}^{H}\widehat{V}_{Y}\right)$

Motivational Example - Flashing Light Video

Left Camera

Right Camera

System parameters

- * Vectorize 135 \times 240 image $\Rightarrow p = q = 32400$ pixels
- * 30 fps @ 30 seconds $\Rightarrow n = 900$ frames

Goal

Identify correlated pixels between camera views

Empirical CCA Results - Canonical Vectors

* After 900 frames = 30 seconds of video

Two-Dataset Model

Linear Subspace Model

$$x_i = U_x s_{x,i} + z_{x,i}$$

$$y_i = U_y s_{y,i} + z_{y,i}$$

Parameters

- $* U_x^H U_x = I_{k_x}, U_y^H U_y = I_{k_y}$
- $\label{eq:substitute} * \ \, z_{x,i} \overset{i.i.d.}{\sim} \mathcal{CN}(0,I_p), \ \, z_{y,i} \overset{i.i.d.}{\sim} \mathcal{CN}(0,I_q)$
- $* \mathbb{E}\left[\left[\begin{array}{c} s_{x,i} \\ s_{y,i} \end{array}\right] \left[\begin{array}{cc} s_{x,i}^H & s_{y,i}^H \end{array}\right]\right] = \left[\begin{array}{cc} \Theta_x & K_{xy} \\ K_{xy}^H & \Theta_y \end{array}\right]$
- * $K_{xy} = \Theta_x^{1/2} P_{xy} \Theta_y^{1/2}$
- $* \; \Theta_{\mathbf{X}} = \operatorname{diag}\left(\left(\theta_{1}^{(\mathbf{X})}\right)^{2}, \ldots, \left(\theta_{k_{\mathbf{X}}}^{(\mathbf{X})}\right)^{2}\right), \; \; \Theta_{\mathbf{Y}} = \operatorname{diag}\left(\left(\theta_{1}^{(\mathbf{Y})}\right)^{2}, \ldots, \left(\theta_{k_{\mathbf{Y}}}^{(\mathbf{Y})}\right)^{2}\right)$
- * P_{xy} contains correlations ρ_{kj} between signals of x_i and y_i
- * $\widetilde{K}_{xy} = (\Theta_x + I_{k_x})^{-1/2} K_{xy} (\Theta_y + I_{k_y})^{-1/2}$, with singular values $\kappa_1, \dots, \kappa_{\min(k_x, k_y)}$

Informative CCA (ICCA)

Not all singular vectors are informative! (Nadakuditi, 2011)

- $* \ \sigma_i\left(\widehat{C}_{\text{cca}}\right) = \sigma_i\left(\widehat{V}_{x}^H\widehat{V}_{y}\right)$
- * Trim data SVD's to only use informative components
 - 1. Trim data SVD's: $X = \widehat{U}_X \, \widehat{\Sigma}_X \, \widehat{V}_X^H$ and $Y = \widehat{U}_Y \, \widehat{\Sigma}_Y \, \widehat{V}_Y^H$

$$*\ \overset{\circ}{U}_{X} = \widehat{U}_{X}\left(:,1:\widehat{k}_{X}\right),\,\overset{\circ}{U}_{y} = \widehat{U}_{y}\left(:,1:\widehat{k}_{y}\right)$$

*
$$\mathring{V}_{x} = \widehat{V}_{x} \left(:, 1 : \widehat{k}_{x}\right), \mathring{V}_{y} = \widehat{V}_{y} \left(:, 1 : \widehat{k}_{y}\right)$$

- 2. Form $\widehat{C}_{icca} = \overset{\circ}{U}_{x} \overset{\circ}{V}_{x}^{H} \overset{\circ}{V}_{y} \overset{\circ}{U}_{y}$
- 3. Take SVD: $\widehat{C}_{icca} = \widetilde{F}\widetilde{K}\widetilde{G}^H$
- 4. $\widehat{\rho}_{icca}^{(i)} = \widetilde{k}_i$
- $5. \ \widetilde{w}_{x}^{(i)} = \widehat{R}_{xx}^{-1/2} \widetilde{f}_{i}$
- 6. $\widetilde{w}_{y}^{(i)} = \widehat{R}_{yy}^{-1/2} \widetilde{g}_{i}$

New Algorithm: ICCA+

Motivation

- * We expect ICCA to outperform CCA
- * However, we expect ICCA to be suboptimal because we substitute \widehat{U}_X and \widehat{U}_Y without considering accuracy

Proposed Estimate

$$\begin{split} \widehat{w}_{x,i}^{\text{loca+}} &= \overset{\circ}{U}_{\!X} \operatorname{diag} \left(\lambda_{x,i}^{\text{opt}} \right) \widehat{U}_{\widetilde{K}} \left(:,i \right) \\ \widehat{w}_{y,i}^{\text{loca+}} &= \overset{\circ}{U}_{\!Y} \operatorname{diag} \left(\lambda_{y,i}^{\text{opt}} \right) \widehat{V}_{\widetilde{K}} \left(:,i \right), \end{split}$$

Optimization Problem

$$\lambda_{x,i}^{\text{opt}} = \underset{\lambda_{x}}{\operatorname{argmin}} \left\| w_{x}^{(i)} - \widehat{U}_{x} \operatorname{diag}(\lambda_{x}) \widehat{U}_{\widetilde{K}}(:,i) \right\|_{F}$$
$$\lambda_{y,i}^{\text{opt}} = \underset{\lambda_{y}}{\operatorname{argmin}} \left\| w_{y}^{(i)} - \widehat{U}_{y} \operatorname{diag}(\lambda_{x}) \widehat{V}_{\widetilde{K}}(:,i) \right\|_{F}.$$

Closed Form Soluation

Proposition

The solutions to the previous optimization problem is given by

$$\lambda_{x,i}^{\textit{opt}} = \operatorname{diag}\left(\mathring{U}_{x}^{H} U_{x} \left(\Theta_{x} + I_{k_{x}}\right)^{-1/2}\right)$$

$$\lambda_{y,i}^{\textit{opt}} = \operatorname{diag}\left(\mathring{U}_{y}^{H}U_{y}\left(\Theta_{y} + \mathit{I}_{\mathit{k}_{y}}\right)^{-1/2}\right).$$

Results from random matrix theory: Eigenvector accuracy

$$|\langle \widehat{u}_i, u_i \rangle|^2 \xrightarrow{\text{a.s.}} \begin{cases} \frac{-2\varphi_{\mu_Z}(\rho)}{\theta_i^2 D'_{\mu_Z}(\rho)} & \theta_i^2 > 1/D_{\mu_Z}\left(b^+\right) \\ 0 & \text{otherwise} \end{cases}$$

$$\begin{split} D_{\mu}(z) &=: \left[\int \frac{z}{z^2 - t^2} d_{\mu}(t) \right] \times \left[c_X \int \frac{z}{z^2 - t^2} d_{\mu(t)} + \frac{1 - c_X}{z} \right] \\ \varphi_{\mu}(z) &=: \int \frac{z}{z^2 - t^2} d\mu(t) \end{split}$$

Main Theorem

Theorem

The solution to the optimal ICCA+weights exhibits the following behavior in the asymptotic regime where $p,q,n\to\infty$ with $p/n\to c_X$ and $q/n\to c_Y$. For $i=1,\ldots,k_X$,

$$\lambda_{x,opt}^{(i)} \xrightarrow{a.s.} \begin{cases} D_{\mu_{Z_{X}}}\left(\sigma_{x}^{(i)}\right)\sqrt{\frac{-2\varphi_{\mu_{Z_{X}}}\left(\sigma_{x}^{(i)}\right)}{D_{\mu_{Z_{X}}}'\left(\sigma_{x}^{(i)}\right)\left(1+D_{\mu_{Z_{X}}}\left(\sigma_{x}^{(i)}\right)\right)}} & \text{if } \left(\theta_{i}^{(x)}\right)^{2} > 1/D_{\mu_{Z_{X}}}(b_{x}^{+})\\ 0 & \text{otherwise} \end{cases}$$

where $\sigma_x^{(i)} = D_{\mu_{Z_X}}^{-1} \left(1 / \left(\theta_i^{(x)} \right)^2 \right)$ and the D-transform. A similar expression for $\lambda_{y, \text{opt}}$ exists by replacing subscripts of x with y.

Estimation using training data

* Using data X, Y, we can estimate \widehat{D} , \widehat{D}' , $\widehat{\varphi}_{\mu}$, and $\widehat{\varphi}_{\widetilde{\mu}}$

Canonical Vector Estimation

Data SVDs

- * $X = \widehat{U}_X \widehat{\Sigma}_X \widehat{V}_X^H$ with trimmed versions \mathring{U}_X , $\mathring{\Sigma}_X$, \mathring{V}_X
- * $U_{\widetilde{K}}$ left singular vectors of \widetilde{K}_{xy}
- st $\widehat{\mathcal{U}}_{\widetilde{K}}$ left singular vectors of $\widehat{\mathcal{C}}_{\text{cca}}$
- st $\overset{\circ}{U}_{\widetilde{K}}$ left singular vectors of $\widehat{C}_{\mathrm{icca}}$

Estimate	
Population	$W_{x} = U_{x} \left(\Theta_{x} + I_{k_{x}}\right)^{-1/2} U_{\widetilde{K}}$
Empirical CCA	$\widehat{W}_{x}^{\text{cca}} = \widehat{U}_{x} \left(\widehat{\Sigma}_{x}\right)^{-1} \widehat{U}_{\widetilde{K}}$
ICCA	$\widehat{W}_{x}^{\text{icca}} = \mathring{U}_{x} \mathring{\Sigma}_{x}^{-1} \mathring{U}_{\widetilde{K}}$
ICCA+	$\widehat{W}_{x}^{icca+} = \overset{\circ}{U}_{x} \Lambda_{x}^{opt} \overset{\circ}{U}_{\widetilde{K}}$

Numerical Simulations

- * Rank-2 setting $k_x = k_y = 2$, p = 200, q = 250,
- * $\Theta_X = \Theta_y = \text{diag}(16, 4), P_{Xy} = \text{diag}(0.9, 0.5)$
- * Plot the accuracy of the first canonical vector for empirical CCA, ICCA, and ICCA+

Canonical Vector Accuracy Experiment

Conclusion

- * Improved canonical vector accuracy in low-sample, low-SNR regime in Canonical Correlation Analysis (CCA)
- * Proposed a new algorithm: ICCA+
- ICCA+ uses insights from random matrix theory to optimally scale sample eigenvectors setting
- * ICCA+ is more robust to over estimation of number of signals