Hardening application security with SGX

•••

Introductory Presentation, Master's Thesis
Operating Systems and Middleware Group, HPI

Introduction

Introduction

Overview

Background

Related Work

My Thesis

- scope of thesis
- approaches
- case studies

Secure Remote Computing

Fully Homomorphic Encryption

Secure Remote Computing

Trusted Computing

Trusted Computing

Software Attestation

TrustZone

Windows

IUM

SGX

Commercial Solutions

system split into normal and

secure worlds via bus signal

(incl. memory, peripherals)

software (hypervisor) based

secure memory enclaves

version of TrustZone

within process

entire secure

applications

enclave (security

sensitive part of

application)

stack

world software

tech- nology	concept	granularity	тсв	limitations	security	# of TEE				
ТРМ	security module (coprocessor) as root of trust for measured launch	entire software stack (BIOS, OS, all apps)	entire software stack + hardware	TPM is slow, entire software stack measured (delicate)	system is in guaranteed state (remote attestation)	1				
Intel TXT, AMD SVM	late loading of trusted app (requires TPM)	trusted app (typically VMM)	trusted app + hardware (+ loaded VMs)	late load is "expensive", TPM is slow, (entire VM still in TCB)	trusted app is in guaranteed state (remote attestation)	1				

secure world software

+ world switching SW

+ hardware

hypervisor

+ secure Kernel

enclave code

+ processor package

single secure world

limited to Windows.

isolation of secure apps

Hypervisor based,

licensing, security

issues

normal world cannot access

secure world boots first

no attestation, hypervisor

enclave is in guaranteed

state (remote attestation),

enclave memory is protected

n

enforces separation

secure world.

Research Landscape: Enclaves (like SGX)							
	HW ¹	VMM ² -	attest	data	trusted	paralle	comments

ation

Χ

Χ

4

Χ

Χ

based

Χ

Χ

SGX

CPU

 TZ^3

TPM

TPM

TPM

² virtual machine monitor / hypervisor

⁴ possible, but not implemented

sealing

Χ

Χ

Χ

Χ

Χ

1/0

lism

Χ

Χ

Χ

CPU extensions, PAL memory encrypted in DRAM

PAL runs in secure execution mode (Intel TXT/AMD SVM way to

dynamically establish secure environment) -> slow/limited

secure kernel runs PALs (shared memory between PALs)

12

PALs and legacy each in own virtual guest memory

like SGX, but without DRAM encryption

no trusted I/O: don't want drivers in TCB

use cache-as-ram for secrets

.NET containers in secure world

provides virtual TPM to each PAL

like a software version of TrustZone

SGX^a

Oasis^b

TLR^c

Flickerd

Fides^f

³ TrustZone

TrustVisor^e

¹ hardware foundation

Research Landscape: Applications (like IUM)

	HW ¹	VMM ² - based	attest ation	data sealing	trusted I/O	paralle lism	comments
GP TEE	-			X	X	Х	reference model, maps well to TrustZone implementations exist for Android (Trustonic)
Haven	SGX		X	X		Х	unmodified applications with library OS in enclave protects from lago attacks by OS
InkTag	-	Х				Х	trusted hypervisor monitors OS
MiniBox	TPM	Х	Х	Х		Х	TrustVisor for entire application (also provides virtual TPM) adds sandbox: OS protected as well

¹ hardware foundation

² virtual machine monitor / hypervisor

³ GlobalPlatform reference model for Trusted Execution Environments: describes TEE internal and external API for building trusted applications

Research Landscape: Virtual Machines (like TPM/TXT)

	HW ¹	VMM ² - based	attest ation	data sealing	trusted I/O	paralle lism	comments
CloudVisor	TPM	X	(X) ³			X	small monitor underneath VMM (nested virtualization) enforces isolation
Nova		X				X	μ-hypervisor built from scratch decomposed like kernel, principle of least privilege
NoHype	4	(X)			(X)	Х	static resource allocation: 1 VM per core, static memory slice no hypervisor interaction while executing needs hardware features that no product offers
vTPM	TPM	Х	Х	X		Х	provide virtual TPM to each VM vTPM can be stored and migrated

¹ hardware foundation

² virtual machine monitor / hypervisor

³ attestation only of CloudVisor monitor, not of individual VMs

⁴ hardware virtualization support by CPU (extended page tables, VMM ring -1), devices with virtualization support

Intel SGX Programming Model

Intel SGX

- instruction set extension (mostly microcode)
- OS schedules resources

Intel SGX

- instruction set extension (mostly microcode)
- OS schedules resources
- orthogonal to existing virtualization
 - x86 privilege levels
 - virtual memory

Intel SGX

- instruction set extension (mostly microcode)
- OS schedules resources
- orthogonal to existing virtualization
 - x86 privilege levels
 - virtual memory 0

Intel SGX SDK

- C, C++
- interface: ecalls, ocalls
 - edl -> stub (pointer handling)
- no syscalls inside enclave

```
// demo.edl
enclave {
        trusted {
            void get_secret([out] secret_t* secret);
            void get_secret([user_check] secret_t* secret);
        };
        untrusted {
            void dump_secret([in] const secret_t* secret);
        };
};
```

Related Work

- Secure Databases
- Applications secured with SGX
- Application Partitioning Design Space

Secure Databases Design Space

encryption scheme

secure location

	non homomorphic	partially homomorphic	fully homomorphic		
-		CryptDB	?		
client	Arx	Monomi			
co-processor		TrustedDB			
FPGA		Cipherbase			
SGX	?	?			

https://intelledger.github.io/introduction.html#proof-of-elapsed-time-poet Felix Schuster, Manuel Costa et al. "VC3: Trustworthy data analytics in the cloud using SGX". Stefan Brenner, Colin Wulf et al. "SecureKeeper: Confidential ZooKeeper using Intel SGX". Sergei Arnautov, Bohdan Trach et al. "SCONE: Secure linux containers with Intel SGX".

Intel SGX Applications

- Proof of elapsed Time
 - Blockchain
- Microsoft VC3
 - Verifiable Confidential Cloud Computing
 - o in-band encrypted MapReduce
- Secure Zookeeper
- SCONE: Secure Linux Containers
 - user-level threading, syscall service workers
 - o musl libc, transparent shielding

Enclave Interface Design Space

Application Separation Design Space

a) whole application

b) separate functionality

c) separate secrets

Application Memory Management

Scope

- comparison of available solutions (qualitative)
- design decisions (SGX)
- case study (DBMS)

Case Study: KissDB

- key value store
 - vanilla C
 - ~400 SLOC
 - test
- use case for SGX Lib https://github.com/ftes/sgx-lib
 - o rapid migration helper (libc shim)
- missing
 - attestation + secure communication
 - extract only security critical functionality into enclave?

Case Study: KissDB

a) whole application

Case Study: KissDB File

header

KDB2 number of hash-table entries key size (bytes) value size (bytes)

hash table page 1

hash offset

0

1
...
next page

key: 53, value: ...
key: 317, value: ...

data block 1

hash table page 2

data block 2

key: 704, value: ...

SQLite

- 113K SLOC
- hardening approaches
 - Virtual Machine
 - User Defined Functions

SQLite: Extracting the Virtual Machine

Conclusion

- timeline
 - implementation completed
- if there was more time
 - implement SQLite approach
 - benchmarks
 - SGX + partially homomorphic encryption
 - attestation

Backup

Intel SGX Two Stage EPC Paging

Software Attestation Chain of Trust

SGX Remote Attestation

TPM SRTM

ARM TrustZone Access Control

ARM TrustZone Worlds

Secure Databases

Security Features Overview

Attack	TrustZone	TPM	TPM+TXT	SGX	XOM	Aegis	Bastion	Ascend, Phantom	Sanctum
Malicious containers (direct probing)	N/A (secure world is trusted)		N/A (Does not allow concurrent containers)	Access checks on TLB misses	Identifier tag checks	Security kernel separates containers	Access checks on each memory access	OS separates containers	Access checks on TLB misses
Malicious OS (direct probing)	Access checks on TLB misses	N/A (OS measured and trusted)	Host OS preempted during late launch	Access checks on TLB misses	OS has its own identifier	Security kernel measured and isolated	Memory encryption and HMAC	Х	Access checks on TLB misses
Malicious hypervisor (direct probing)	Access checks on TLB misses	N/A (Hypervisor measured and trusted)	Hypervisor preempted during late launch	Access checks on TLB misses	N/A (No hypervisor support)	N/A (No hypervisor support)	Hypervisor measured and trusted	N/A (No hypervisor support)	Access checks on TLB misses
Malicious firmware	N/A (firmware is a part of the secure world)	CPU microcode measures PEI firmware	SINIT ACM signed by Intel key and measured	SMM handler is subject to TLB access checks	N/A (Firmware is not active after booting)	N/A (Firmware is not active after booting)	Hypervisor measured after boot	N/A (Firmware is not active after booting)	Firmware is measured and trusted
Malicious containers (cache timing)	N/A (secure world is trusted)	N/A (Does not allow concurrent containers)	N/A (Does not allow concurrent containers)	х	Х	Х	X	Х	Each enclave its gets own cache partition
Malicious OS (page fault recording)	Secure world has own page tables	N/A (OS measured and trusted)	Host OS preempted during late launch	х	N/A (Paging not supported)	X	X	Х	Per-enclave page tables
Malicious OS ⊈cache timing)	x	N/A (OS measured and trusted)	Host OS preempted during late launch	Х	х	Х	x	X	Non-enclave software uses a separate cache partition
DMA from malicious peripheral	On-chip bus bounces secure world accesses	Х	IOMMU bounces DMA into TXT memory range	IOMMU bounces DMA into PRM	Equivalent to physical DRAM access	Equivalent to physical DRAM access	Equivalent to physical DRAM access	Equivalent to physical DRAM access	MC bounces DMA outside allowed range
Physical DRAM read	Secure world limited to on- chip SRAM	X	x	Undocumented memory encryption engine	DRAM encryption	DRAM encryption	DRAM encryption	DRAM encryption	X
Physical DRAM write	Secure world limited to on- chip SRAM	Х	x	Undocumented memory encryption engine	HMAC of address and data	HMAC of address, data, timestamp	Merkle tree over DRAM	HMAC of address, data, timestamp	X
Physical DRAM rollback write	Secure world limited to on- chip SRAM	X	x	Undocumented memory encryption engine	Х	Merkle tree over HMAC timestamps	Merkle tree over DRAM	Merkle tree over HMAC timestamps	X
Physical DRAM address reads	Secure world in on-chip SRAM	X	Х	Х	Х	X	x	ORAM	x
Hardware TCB size	CPU chip package	Motherboard (CPU, TPM, DRAM, buses)	Motherboard (CPU, TPM, DRAM, buses)	CPU chip package	CPU chip package	CPU chip package	CPU chip package	CPU chip package	CPU chip package
Software TCB size	Secure world (firmware, OS, application)	All software on the computer	SINIT ACM + VM (OS, application)	Application module + privileged containers	Application module + hypervisor	Application module + security kernel	Application module + hypervisor	Application process + trusted OS	Application module + security monitor