

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

Facultad de Ingeniería Mecánica y Eléctrica PE Doctorado en Ingeniería de Sistemas

PROGRAMA ANALÍTICO										
I. Datos de Identificación de la Unidad de Aprendizaje:										
1. lave y nombre de la Unidad de Aprendizaje: PD135 Complejidad computacional										
2. Frecuencia semanal: horas de trabajo presencial 4										
3. Horas de trabajo extra aula por semana: 2										
4. Modalidad: ⊠ Escolarizada □ No escolarizada □ Mixto										
5. Período académico: ⊠ Semestral □ Tetramestral □ Modular										
6. LGAC: Sistemas estocásticos y simulación										
7. Ubicación semestral: 1-8										
8. Área curricular: formación, libre elección										
9. Créditos: 4										
10. Requisito: Ninguno										
11. Fecha de elaboración: 20/01/2010										
12. Fecha de la última actualización: 10/06/2021										
13. Responsable(s) del diseño: 095012 Dr. José Arturo Berrones Santos 096633 Dra. Satu Elisa Schaeffer										

Revisión: 1 Página 1 de 7

II. Presentación:

La complejidad computacional que es el campo de la teoría de la computación que estudia teóricamente la complejidad inseparable a la resolución de un problema.

III. Propósito(s):

Introducir al estudiante con conceptos básicos de la complejidad computacional acorde de las necesidades que presenta su trabajo de tesis.

IV. Competencias del perfil de egreso:

14. Competencias del perfil de egreso

P1) Realizar investigación original y resolver problemas en el área de toma de decisiones en ambientes operativos que pueden ser dinámicos o inciertos para lograr una asignación más efectiva de recursos y decidir el curso de acción óptimo para lograr objetivos establecidos.

15. Competencias generales a que se vincula la Unidad de Aprendizaje:

Declaración de la competencia general vinculada a la unidad de aprendizaje	Evidencia
C2) Utiliza los lenguajes lógico, formal, matemático, icónico, verbal y no verbal de acuerdo a su etapa de vida en el área de las ciencias para comprender, interpretar y expresar ideas, sentimientos, teorías y corrientes de pensamiento con un enfoque ecuménico.	Tareas
C3) Maneja las tecnologías de la información de acuerdo a los usos del campo de las ciencias y la comunicación como herramientas para el acceso a la información y su transformación en conocimiento, así como para el aprendizaje y trabajo colaborativo con técnicas de vanguardia que le permitan su participación constructiva en la sociedad.	Tareas
C5) Emplea pensamiento lógico, crítico, creativo y propositivo, siguiendo los modelos de pensamiento científico para analizar fenómenos naturales y sociales que le permitan tomar decisiones pertinentes en su ámbito de influencia con responsabilidad social.	Tareas, proyecto
C12) Construye propuestas innovadoras basadas en la comprensión holística de la realidad incluyendo los diferentes campos científicos para contribuir a superar los retos del ambiente global interdependiente.	Tareas, proyecto
C13) Asume el liderazgo que le ha otorgado el dominio de las ciencias, comprometido con las necesidades sociales y profesionales para promover el cambio social pertinente.	Tareas, proyecto

Revisión: 1 Página 2 de 7

16. Competencias específicas y nivel de dominio a que se vincula la unidad de aprendizaje:

Competencia Espe- cífica	Nivel I Inicial	Evidencia	Nivel II Básico	Evidencia	Nivel III Autónomo	Evidencia	Nivel IV Estratégico	Evidencia
E1) Realizar investigación original y resolver problemas en el área de toma de decisiones en ambientes operativos que pueden ser dinámicos o inciertos para lograr una asignación más efectiva de recursos y decidir el curso de acción óptimo para lograr objetivos establecidos.			Resuelve problemas de libro de texto en el área de toma de decisiones con bases científicas.	Tareas.	Encuentra soluciones para la consecución de objetivos establecidos para un problema dado, revisando literatura científica de frontera.	Tareas, proyec- to.		

V. Representación gráfica:

Competencias generales

VI. Estructuración en capítulos, etapas o fases de la unidad de aprendizaje:

17. Desarrollo de las fases de la Unidad de Aprendizaje:

Se cubren los principios teóricos de la *complejidad computacional*. Se busca desarrollar habilidades en la resolución en casos prácticos concretos. Se necesita contar con un buen entendimiento de varios los conceptos matemáticos, especialmente de matemáticas discretas y probabilidad, o en el caso contrario, estar preparado a estudiarlos según necesidad. También se necesita conocimiento de programación.

Unidades temáticas

- 1. Principios téoricos de la complejidad computacional (8 semanas)
- 2. Clases de complejidad (P, NP, PSPACE, etc.; 9 semanas)
- 3. Aproximabilidad (1 semana)

Temario semanal

La sesiones son de cuatro horas cada una y son veinte semanas en total.

- 1. Introducción; selección de temas de proyecto (1 semana)
- 2. UT1: Problemas y algoritmos (2 semanas)
- 3. UT1: Lógica (2 semanas)
- 4. UT1: Máquinas Turing (3 semanas)
- 5. UT2: Clases de complejidad (9 semanas)
- 6. UT3: Esquemas de aproximación (1 semana)
- 7. Presentaciones de proyectos (1 semana)
- 8. Revisión de portafolios de evidencia (1 semana)

Revisión: 1

Vigente a partir del: 01 de agosto del 2016

Elementos de competencia

Evidencias de	Criterios de desem-	Actividades de	Contenidos	Recursos
aprendizaje	peño	aprendizaje		
Reporte escrito de	Calidad de la redac-	Lectura de material	Aspectos diversos de	Material en la pági-
la demostración	ción científica del re-	de apoyo; modifi-	complejidad compu-	na web de la uni-
de complejidad	porte; validez y clari-	cación de ejemplos;	tacional.	dad y la literatura ci-
computacional de	dad de la demostra-	análisis y reportaje		tada; paquete LATEX
un problema.	ción.	de ejercicios realiza-		para redacción cien-
		dos.		tífica; repositorios de
				GitHub.

VII. Evaluación integral de procesos y productos:

Las tareas son individuales; se recomienda estudiar juntos y discutir las soluciones, pero no se tolera ningún tipo de plagio en absoluto, ni de otros estudiantes ni de la red ni de libros — toda referencia bibliográfica tiene que ser apropiadamente citada. La entrega se realiza por un repositorio público que debe reflejar todas las fases del trabajo.

No habrá examen. Son 17 tareas (A1–A17) que reportan avances semanales de aplicación de la lectura de la semana para el proyecto del estudiante, otorgando por máximo 5 puntos por tarea:

NP = tarea omitida

5 =excede lo que se esperaba

4 = cumple con lo que se esperaba

3 = débil en alcance y/o calidad

2 = débil en ambos alcance y calidad

 $1 = \sin$ contribuciones o méritos aunque fue entregada

 $\mathbf{0} = \mathsf{completamente}$ inadecuado en alzance y calidad

El proyecto final (A18) otorga un máximo de 15 puntos, evaluados en los siguientes rubros

- 1. Variedad de técnicas de empleadas
- 2. Cobertura y validez de la experimentación
- 3. Claridad y relevancia de los resultados
- 4. Calidad de visualización científica
- 5. Calidad de redacción científica

con la escala:

3 = cumple con lo que se esperaba

2 = débil en alcance y/o calidad

1 = débil en ambos alcance y calidad

 $\mathbf{0}$ = inadecuado en alzance y calidad

Revisión: 1

Ponderación específica

Actividad	A1	A2	А3	A4	A5	A6	A7	A8	A9	A10	A11	A12	A13	A14	A15	A16	A17	A18	Total
Ponderación	5%	5 %	5%	5%	5 %	5 %	5 %	5%	5%	5 %	5%	5 %	5 %	5 %	5 %	5 %	5%	15 %	100%

VIII. Producto integrador de aprendizaje de la unidad:

18. Producto integrador de Aprendizaje:

Portafolio en un repositorio digital público que contiene los reportes escritos y los códigos de la implemetación de todas las tareas y el proyecto.

Revisión: 1 Página 6 de 7

IX. Fuentes de apoyo y consulta:

19. Fuentes de apoyo y consulta

19.1. Básicas

- C.H. PAPADIMITRIOU: Computational complexity. John Wiley and Sons Ltd., 2003.
- S. Arora & B. Boaz: Computational complexity: a modern approach. Cambridge University Press, 2009.
- M.R. GAREY & D.S. JOHNSON: Computers and intractability. Vol. 29. New York: Freeman, 2002.

19.2. Complementarias

Artículos científicos especializados relacionados a los temas tratados, de preferencia publicados en revistas internacionales indizados recientes.

Autorizó: Dr. César Emilio Villarreal Rodríguez

ALERE FLAMMAM VERITATIS

Ciudad Universitaria, 5 de julio de 2021

Dr. César Emilio Villarreal Rodríguez Coordinador Académico Posgrado en Ingeniería de Sistemas **Vo. Bo. Dr. Simón Martínez Martínez** Subdirector de Estudios de Posgrado Facultad de Ingeniería Mecánica y Eléctrica

Revisión: 1