

# Ансамбли моделей ч.2

КУХАЛЬСКИЙ НИКОЛАЙ ГЕННАДЬЕВИЧ



# Вопросы занятия



# В конце занятия научимся:

- строить композиции моделей разных классов.

# Особо случайные деревья



Можно сделать деревья еще более случайными за счет применения случайных порогов для каждого признака вместо поиска наилучших возможных порогов (подобно тому, как поступают обыкновенные деревья принятия решений).

#### from sklearn.ensemble import ExtraTreesClassifier (ExtraTreesRegressor)

- более высокое смещение обменивается на низкую дисперсию;
- обучаются намного быстрее, чем обыкновенные случайные леса, поскольку нахождение наилучшего возможного порога для каждого признака в каждом узле является одной из самых затратных в плане времени задач по выращиванию дерева;
- имеет такой же API-интерфейс, как у класса RandomForestClassifier (RandomForestRegressor).



## ПРАКТИКА

Доработать код с использованием особо случайных деревьев

# ПРАКТИКА



## Композиции моделей разных классов

Линейной комбинацией альтернатив *P* и *Q* называется распределение *R* для которого справедливо:

$$R = \alpha \cdot P + (1 - \alpha) \cdot Q$$
, где  $0 \le \alpha \le 1$ .

Линейная комбинация моделей разного типа - смешаем дерево и логистическую регрессию.

Построить линейную комбинацию вида:

$$y = \alpha y_1 + (1 - \alpha)y_2$$

Параметр  $\alpha$  переберем по сетке от 0 до 1, оценивая качество на тестовой выборке



# СТЕКИНГ



















#### **АЛГОРИТМ**





#### **АЛГОРИТМ**

- 1. Разбиваем обучающую выборку на **К** фолдов по кроссвалидации
- 2. Обучаем алгоритм на *K-1* фолдах и предсказываем на оставшемся. Повторяем для каждого фолда.
- 3. Полученные out-of-fold предсказания используем в качестве новых признаков **мета-признаков**
- 4. Выполняем пункты 1-3 для разных ML моделей



#### **АЛГОРИТМ**

- 4. Получаем мета-признаки для тестовой выборки:
  - і. Обучаем алгоритм на всей обучающей выборке,
    предсказываем на тестовой
  - ii. Усредняем предсказания на тесте **К** моделей, обученных на шаге 2.
- 5. Обучаем алгоритм 2-го уровня на мета-признаках



#### ВАЖНО

- не допустить утечки информации от целевой переменной в признаки;
- мета-признаки часто сильно коррелированы, нужно использовать регуляризованные модели на втором уровне;
- использовать разные по природе модели, причем качество отдельной модели может быть небольшим, но давать большой прирост в стекинге.



#### **KAGGLE: MONSTER ENSEMBLE**





#### плюсы

- повышает качество модели, когда уже ничего не помогает;
- позволяет эффективно смешивать модели разных классов, позволяя объединить их сильные стороны и убрать слабые;
- поможет выиграть "золото" на kaggle.



#### **МИНУСЫ**

- сложность интерпретации;
- легко можно переобучиться, допустив утечку информации;
- хорошо работает только на достаточно больших выборках;
- большая вычислительная сложность, редко применяется в production системах.



# ПРАКТИКА

# **Многоуровневые** модели

#### ЧТО МЫ СЕГОДНЯ УЗНАЛИ



- как строятся композиция моделей разных классов.



# Ансамбли моделей ч.2

КУХАЛЬСКИЙ НИКОЛАЙ ГЕННАДЬЕВИЧ