AMATH 352: Problem Set 3

Dave Moore, dmmfix@uw.edu

January 25, 2017

Due: Friday January 27, 2017

Instructions:

Complete the following problems. Turn in a write up of these problems digitally (via Canvas) by $5:00\mathrm{pm}$ of the due date.

Linear dependence and independence:

 $1. \ \, {\rm Determine} \ {\rm whether} \ {\rm the} \ {\rm given} \ {\rm vectors} \ {\rm or} \ {\rm functions} \ {\rm are} \ {\rm linearly} \ {\rm independent}.$ Justify your answers.

(a)
$$\begin{bmatrix} -1 \\ -3 \\ 3 \end{bmatrix}, \begin{bmatrix} -1 \\ 5 \\ -3 \end{bmatrix}$$

(b)
$$\begin{bmatrix} 1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\2\\1 \end{bmatrix}, \begin{bmatrix} 2\\1\\2 \end{bmatrix}$$

(c)
$$f_1(x) = x^2 + 3$$
, $f_2(x) = 1 - x$, and $f_3(x) = (x+1)^2$

(d)
$$f_1(x) = 1$$
, $f_2(x) = \sin(\pi x)$, and $f_3(x) = \cos(\pi x)$

Solution:

(a) These vectors are linearly independent, since we can see that a linear combination equal to $\mathbf{0}$

$$\alpha \begin{bmatrix} -1 \\ -3 \\ 3 \end{bmatrix} + \beta \begin{bmatrix} -1 \\ 5 \\ -3 \end{bmatrix} = 0$$

means that $-\alpha+-\beta=0 \implies \alpha=\beta$ from the first component of the sum. But if that is true, the second component

$$-3\alpha + 5\beta = 0$$
$$-3\alpha + 5\alpha = 0$$
$$2\alpha = 0$$

implies that α must be zero. Since we know that $\alpha = \beta$, only the trivial combination satisfies the original equation and the vectors are linearly independent.

(b)

$$\left(3 \begin{bmatrix} 1\\1\\1 \end{bmatrix} - \begin{bmatrix} 1\\2\\1 \end{bmatrix} - \begin{bmatrix} 2\\1\\2 \end{bmatrix}\right) = \begin{bmatrix} 0\\0\\0 \end{bmatrix}$$

Is a non-trivial combination that yields $\mathbf{0}$, so these vectors are not linearly independent.

(c) These elements of \mathcal{P}^2 are not linearly dependent. If we evaluate

$$\alpha f_1 + \beta f_2 + \delta f_3$$

with $\alpha = 1, \beta = -2, \delta = -1$, we find

$$\alpha f_1 + \beta f_2 + \delta f_3 = (x^2 + 3) - 2(1 - x) - (x + 1)^2$$

$$= x^2 + 3 - 2 + 2x - (x^2 + 2x + 1)$$

$$= x^2 - x^2 + 2x - 2x + 3 - 2 - 1$$

$$= 0$$

Since this is a non-trivial combination, the functions are not linearly independent.

(d) Looking for $\alpha, \beta, \delta \in \mathbb{R}$ such that

$$\alpha + \beta sin(\pi x) + \delta cos(\pi x) = 0$$

This must hold $\forall x \in \mathbb{R}$. If we take x = 0, we find that

$$\alpha + \beta 0 + \delta 1 = 0 \implies \delta = -\alpha$$

If we take x = 1, we find

$$\alpha + \beta 1 + \delta 0 = 0 \implies \beta = -\alpha$$

Evaluating at, say x = 1/4, we find

$$\alpha + \frac{2}{\sqrt{2}}\beta + \frac{2}{\sqrt{2}}\delta = 0$$
$$(1 - \sqrt{2})\alpha = 0$$

Only $\alpha=0$, and therefore $\beta=0, \delta=0$ satisfy this equation. Since only the trivial combination yields $\mathbf{0}$, the functions are linearly independent.

2. Show that the following vectors are linearly independent:

$$\begin{bmatrix} a \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} b \\ c \\ 0 \end{bmatrix}, \begin{bmatrix} d \\ e \\ f \end{bmatrix},$$

where $a, b, c, d, e, f \in \mathbb{R}$, provided that $a, b, f \neq 0$. Does this set form a basis for \mathbb{R}^3 ? Why or why not?

Solution:

Since $dim(\mathbb{R}^3) = 3$, and we have 3 basis vectors, it suffices to show that they are linearly independent. By working backwards, we can show that no $\alpha, \beta, \delta \in \mathbb{R}$ satisfies the equation

$$\alpha \begin{bmatrix} a \\ 0 \\ 0 \end{bmatrix} + \beta \begin{bmatrix} b \\ c \\ 0 \end{bmatrix} + \delta \begin{bmatrix} d \\ e \\ f \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

other than the trivial solution. If we examine only the x_3 component of the sum, we can see that $\delta f = 0 \implies \delta = 0$. But in that case, $\beta c = 0$ as well, since the second component becomes

$$\beta c + \delta e = \beta c = 0 \implies \beta = 0$$

We can similarly argue that α must 0. Only the trivial combination satisfies the relation, the set is linearly indepedent, and forms a basis for \mathbb{R}^3 .

Basis and dimension:

3. Find the dimension of and a basis for the following real linear spaces. Justify your answers.

(a)
$$S = \{ \boldsymbol{x} \in \mathbb{R}^3 : x_1 + 3x_2 - 5x_3 = 0 \}$$

(b)
$$S = \{ \boldsymbol{x} \in \mathbb{R}^3 : x_1 = x_3 \}$$

(c)
$$S = \{ p \in \mathcal{P}_3 : p(1) = 0 \}$$

(d)
$$S = \{ p \in \mathcal{P}_3 : p(-1) = 0, p'(1) = 0 \}$$

Solution:

(a) By starting with $x_1 = 1$, we can immediately find two basis vectors by holding x_2 or x_3 to 0.

3

$$\begin{bmatrix} 1 \\ -1/3 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ -1/5 \end{bmatrix}$$

We started with $dim(\mathbb{R}^3) = 3$ and added one constraint, so we would expect dim(S) = 2.

Checking: TODO!

(b) If we chose $x_1 = 1$ and $x_1 = 0$ as our starting points, we can immediately generate two basis vectors

$$\begin{bmatrix} 1 \\ \alpha \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ \beta \\ 0 \end{bmatrix}$$

we know that $\beta \neq 0$, if it were, the second basis vector would be **0** which is disallowed. We can arbitrarily add $[101]^t$ to the set. To show that we then cannot add another basis vector for $\alpha \neq 0$, observe that if we did, we could form the sum

$$a \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} + b \begin{bmatrix} 1 \\ \alpha \\ 1 \end{bmatrix} + c \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = 0$$

By selecting a=-b and $c=-\alpha$, we can create a non-trivial combination summing to **0**. Therefore

$$\begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

Is a basis for S.

(c) p has the form $a+bx+cx^2+dx^3$. If we evaluate this at 1, we find that our constraint is a+b+c+d=0. By setting a=1, and holding all but one of the other components to zero, we can find 3 basis functions

$$1 - x, 1 - x^2, 1 - x^3$$

Checking: TODO!

(d) p has the form $a+bx+cx^2+dx^3$, which implies that $p'=b+2cx+3dx^2$. By evaluating our constraints, we find that

$$a - b + c - d = 0$$
$$b + 2c + 3d = 0$$

Beginning with a=1, c=-1, we can see that by substitution, b+d=0 and b+3d=2. By subtracting, we see that $2d=2 \implies d=1$, which means that b=-1, giving us

$$1 - x - x^2 + x^3$$

as our first basis function.

Choosing a=1,b=1, we conclude that c=d and $b=-5c \implies c=-1/5$ which yields

$$1 + x - \frac{1}{5}x^2 - \frac{1}{5}x^3$$

as our second basis function.

Checking: TODO!