WEASEL 2.0 - A Random Dilated Dictionary Transform for Fast, Accurate and Memory

Constrained Time Series Classification

Patrick Schäfer Humboldt-Universität zu Berlin Berlin, Germany patrick.schaefer@hu-berlin.de

Ulf Leser Humboldt-Universität zu Berlin Berlin, Germany leser@informatik.hu-berlin.de

Time Series Classification (TSC)

- Assign label to a time series (TS) based on model trained from labelled samples
- State of the art TSC can be divided into:
 - Dictionary (D): BOSS, cBOSS, WEASEL, TDE;
 - Hybrid (H): HiveCote 2.0, HiveCote 1.0, TS CHIEF,
 - Deep-Learning (DL): InceptionTime;
 - Shapelets (S): R-DST, MrSQM SFA k5;
 - Kernel (K): Arsenal, MiniRocket, Multi-Rocket, Rocket, Hydra

Dictionary Models

- Aim: Generate vector of word counts as features
- Rationale: Distinguishes TS by the frequency of occurrence of substructures
- Words are generated using discretization from substructures
- Are part of all SotA Hybrid-methods

(2) Discretization (3) Bag-of-Patterns model

Dicti

0

Word Generation

- Aim: Transform real-valued window into sequence of symbols
- Building blocks:
 - **Approximation** using Fourier Transform (for noise reduction)
 - **Binning** (equal-depth, equal-width) for obtaining symbols

Limitations of Dictionary Models

- 1. Typically have huge memory-footprint (size of feature vector), due to a large variance in generated words
- 2. Lower accuracy than SotA

WEASEL 2.0 - Building Blocks

- Apply novel dilation mapping prior to downstream processing
- **Constrained memory footprint**
 - Fixed-Size Dictionary: only 128 to 256 distinct words for each dictionary
 - Word length $w \in \{7,8\}$ and alphabet size=2
 - Ensemble over random hyper-parameters to increase variance: ~70k features total
 - window length, dilation factor, word length, binning, first order differences
- Ridge Regression classifier

Dilation

- Dilation increases receptive field by inserting gaps
- Similar to **down-sampling**
- But: keep the **total number of** values in each window constant

First used in kernel-based approaches (convolution, Rocket et al.)

Dilation Mapping

- Novel dilation mapping as transformation
- Applied as pre-processing step by three lines of python code
- def dilation(X, d): $X^{d} = X[:, 0::d]$
- It results in a dilation operation applied by down-stream classification model

Example for d=2

Dilation Mapping – How it Works

Sliding a sliding window along the transformed time series (right) yields the same result as applying a dilated sliding window to the raw time series (left).

Experimental Evaluation

- Compare WEASEL 2.0 to 15 SotA TSC methods on 114 UCR datasets
- Used implementations available in aeon/sktime, or published by the authors
- All reported numbers are test accuracy on test split

Rank on Test Accuracy on 114 UCR problems

- WEASEL 2.0 is the most accurate dictionary-based TSC
- It is **not significantly** worse than SotA
- in test accuracy Most better methods
- are hybrids (ensembles)
- Best on datasets, for which frequency of patterns is important for classification

Constrained Memory Footprint (Vector Size)

WEASEL 2.0 has up to 70k features - comparable to Rocket et al.

Runtime

2.0

Dilation

WEASEL 2.0 is fast in train and test times, yet, accurate

Conclusion

- Dictionary methods are part of all hybrid state of the art classifiers
- WEASEL 2.0 is a novel TSC method following the dictionary approach
 - Combines randomization over hyper-parameters with dilation
 - Proposes a novel dilation mapping, applicable as pre-processing step
 - It is the most accurate dictionary method
- Excellent initial choice when datasets contain repetitive, phase-invariant, and noisy patterns