EdX and its Members use cookies and other tracking technologies for performance, analytics, and marketing purposes. By using this website, you accept this use. Learn more about these technologies in the <u>Privacy Policy</u>.

Lecture 9: Introduction to Maximum

9. Worked Example: Concavity and

Course > Unit 3 Methods of Estimation > Likelihood Estimation

> Composition of Functions

Currently enrolled in **Audit Track** (expires December 25, 2019) <u>Upgrade (\$300)</u>

9. Worked Example: Concavity and Composition of Functions Worked Example: Hessian and Concavity

Combination of Convex functions

3/3 points (graded)

Let f_1, f_2 be convex functions on \mathbb{R} .

Determine if the following functions are necessarily convex or concave.

Hint: Recall a function $g:I o\mathbb{R}$ is convex in the interval I is an interval, if for all pairs of real numbers $x_1< x_2\in I$

$$g(tx_1 + (1-t)x_2) \le tg(x_1) + (1-t)g(x_2)$$
 for all $0 \le t \le 1$.

• $3f_1 + 2f_2$:

Convex			
C COM CA			

•
$$-10f_1$$
:

• f_2f_1 :

Convex

Cannot be determined without more information

Solution:

Given f_1, f_2 are convex, we have

$$f_{1}\left(tx_{1}+\left(1-t
ight)x_{2}
ight)\leq tf_{1}\left(x_{1}
ight)+\left(1-t
ight)f_{1}\left(x_{2}
ight) \qquad ext{ for all }0\leq t\leq 1$$

and the same holds for f_2 .

• The same inequality holds for $g=3f_1+2f_2$:

$$egin{array}{lll} g\left(tx_{1}+\left(1-t
ight)x_{2}
ight) &=& 3f_{1}\left(tx_{1}+\left(1-t
ight)x_{2}
ight)+2f_{2}\left(tx_{1}+\left(1-t
ight)x_{2}
ight) \ &\leq& 3\left(tf_{1}\left(x_{1}
ight)+\left(1-t
ight)f_{1}\left(x_{2}
ight)
ight)+2\left(tf_{2}\left(x_{1}
ight)+\left(1-t
ight)f_{2}\left(x_{2}
ight)
ight) \ &=& tg\left(x_{1}
ight)+\left(1-t
ight)g\left(x_{2}
ight). \end{array}$$

Hence $3f_1+2f_2$ is also convex.

Remark: In general, any function $c_1f_1+c_2f_2$ where $c_1,c_2>0$ is convex of $f_1,\,f_2$ are.

- ullet $-10f_1$ is concave, because it is negative of a convex function.
- f_1f_2 is not necessary convex For example, is $f_1(x) = x$, and $f_2 = x^2$, then $(f_1f_2)(x) = x^3$ which is neither convex nor concave. Other examples of f_1 and f_2 , e.g. $f_1 = f_2 = x^2$ will lead to f_1f_2 being convex.

Submit

You have used 2 of 2 attempts

