Double Integrals

1. Find the area between the curves $y = x^2$ and $x = y^2$.

2. Find the area between the curves x + 2y = 1 and $x = y^2 - 2$.

- 3. Given the equations below,
 - Draw a picture of the curve formed by the equation.
 - Write down an integral in rectangular coordinates that would give the area inside the curve.
 - Convert the equation to polar coordinates.
 - Write down an integral in polar coordinates that would give the area inside the curve.

(a)
$$x^2 + y^2 = 4$$

(b)
$$(x-1)^2 + y^2 = 1$$

(c)
$$9x^2 + 4y^2 = 36$$

(d)
$$x^2 + (y-2)^2 = 4$$

4. Draw a picture of the graphs of the following $r=2\cos\theta$ and r=1 on the axes below. Write down the points (x,y) where the graphs intersect.

Find the area inside both curves.