- 1. **10 pts** Determine whether the statement is true or false. If the statement is false explain why.
 - a) If the f has an absolute maximum value at z, then the f'(z)>0 (TRUE / FALSE)
 - b) The function $f(x) = 2x(x+4)^3$ has inflection points at: (0,0) and (4,0)

(TRUE / FALSE)

- 2. $\bf 5$ pts Find two negative numbers that add up to -50 whos product is large as possible.
- 3. **5 pts** Find the local extrema and the intervals where the following function is increasing or decreasing: $f(x) = x^{\frac{2}{3}}(x-10)$

4. 10 pts A piano is suspended by a 90 ft rope through a pulley system that is vertically 40 ft above a man's arm. The piano is at some height above the ground. At t=0, the man is 30 ft horizontally from the piano and walks away at 12 ft/s. How fast is the piano being pulled up?

5. 10 pts Determine the critical numbers of the following functions:

a)
$$V(t) = 1 + 80t^3 + 5t^4 - 2t^5$$

b)
$$Q(t) = (2 - 8x)^4 (x^2 - 9)^3$$

6. 10 pts Use linear approximation to find the approximate value of $\sin(122^{\circ})$ HINT Rexpress degrees in terms of radian by using 120°

- 7. **20 pts** For the following functions answer each of the following
 - identify the critical points of the function and classify them as local maximum, local minimum, or neither
 - identify the intervals on which the function is increasing/decreasing
 - \bullet determine the interval on which the function is concave up or down
 - determine the inflection points of the function
 - use the information found to sketch the graph of the function

a)
$$g(t) = t^5 - 5t^4 + 8$$

b)
$$x^{4/3}(x-2)$$

8. 10 pts A car is heading "away" from the intersection at 5 m/s. And a bus is heading "towards" the intersection on the other street (at a right angle) at 4 m/s. How fast is the distance changing when the car is is 30 m away from the intersection and the bus is 40 m from the intersection? Additionally, is the distance increasing or decreasing?

9. 10 pts Find the horizontal asymptote(s) of the following functions:

a)
$$\frac{8 - 4x^2}{9x^2 + 5x}$$

b)
$$\frac{\sqrt{7 + 9x^2}}{1 - 2x}$$

10. **10 pts** Compute the differential dy of the following functions:

a)
$$f(x) = x^2 - \sec(x)$$

- b) Compute the dy and $\triangle y$ for $y = x^5 2x^3 + 7x$ as x changes from 6 to 5.9
- 11. **15 pts** Multiple Choice. Read each question and answer choice carefully and choose the ONE best answer.
 - a) A right cylindrical cone has a radius of 4 cm and a height of 2.0 cm. If the height increases at 0.5 cm/min, but the radius remains constant, then what will be the rate of change of the volume?
 - A) $8.4 \text{ cm}^3/\text{min}$
 - B) $1.1~\mathrm{cm^3/min}$
 - C) $4.2 \text{ cm}^3/\text{min}$
 - D) $2.1 \text{ cm}^3/\text{min}$

- b) Given that the cost function $C(x) = 144 + 0.1x + 0.04x^2$, what is the minimum average cost per unit?
 - A) 20 dollars
 - B) 40 dollars
 - C) 60 dollars
 - D) 80 dollars
- c) Find the approximate value of $(5.2)^3$ using linear approximation
 - A) 130
 - B) 140
 - C) 150
 - D) 160

- 1. **10 pts** Determine whether the statement is true or false. If the statement is false explain why.
 - a) If the f has an absolute maximum value at z, then the f'(z)>0 (TRUE / FALSE)
 - b) The function $f(x) = 2x(x+4)^3$ has inflection points at: (0,0) and (4,0)

(TRUE / FALSE)

- 2. $\bf 5$ pts Find two negative numbers that add up to -50 whos product is large as possible.
- 3. **5 pts** Find the local extrema and the intervals where the following function is increasing or decreasing: $f(x) = x^{\frac{2}{3}}(x-10)$

4. 10 pts A piano is suspended by a 90 ft rope through a pulley system that is vertically 40 ft above a man's arm. The piano is at some height above the ground. At t=0, the man is 30 ft horizontally from the piano and walks away at 12 ft/s. How fast is the piano being pulled up?

5. 10 pts Determine the critical numbers of the following functions:

a)
$$V(t) = 1 + 80t^3 + 5t^4 - 2t^5$$

b)
$$Q(t) = (2 - 8x)^4 (x^2 - 9)^3$$

6. 10 pts Use linear approximation to find the approximate value of $\sin(122^{\circ})$ HINT Rexpress degrees in terms of radian by using 120°

- 7. **20 pts** For the following functions answer each of the following
 - identify the critical points of the function and classify them as local maximum, local minimum, or neither
 - identify the intervals on which the function is increasing/decreasing
 - \bullet determine the interval on which the function is concave up or down
 - determine the inflection points of the function
 - use the information found to sketch the graph of the function

a)
$$g(t) = t^5 - 5t^4 + 8$$

b)
$$x^{4/3}(x-2)$$

8. 10 pts A car is heading "away" from the intersection at 5 m/s. And a bus is heading "towards" the intersection on the other street (at a right angle) at 4 m/s. How fast is the distance changing when the car is is 30 m away from the intersection and the bus is 40 m from the intersection? Additionally, is the distance increasing or decreasing?

9. 10 pts Find the horizontal asymptote(s) of the following functions:

a)
$$\frac{8 - 4x^2}{9x^2 + 5x}$$

b)
$$\frac{\sqrt{7 + 9x^2}}{1 - 2x}$$

10. **10 pts** Compute the differential dy of the following functions:

a)
$$f(x) = x^2 - \sec(x)$$

- b) Compute the dy and $\triangle y$ for $y = x^5 2x^3 + 7x$ as x changes from 6 to 5.9
- 11. **15 pts** Multiple Choice. Read each question and answer choice carefully and choose the ONE best answer.
 - a) A right cylindrical cone has a radius of 4 cm and a height of 2.0 cm. If the height increases at 0.5 cm/min, but the radius remains constant, then what will be the rate of change of the volume?
 - A) $8.4 \text{ cm}^3/\text{min}$
 - B) $1.1~\mathrm{cm^3/min}$
 - C) $4.2 \text{ cm}^3/\text{min}$
 - D) $2.1 \text{ cm}^3/\text{min}$

- b) Given that the cost function $C(x) = 144 + 0.1x + 0.04x^2$, what is the minimum average cost per unit?
 - A) 20 dollars
 - B) 40 dollars
 - C) 60 dollars
 - D) 80 dollars
- c) Find the approximate value of $(5.2)^3$ using linear approximation
 - A) 130
 - B) 140
 - C) 150
 - D) 160