

(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES
PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum
Internationales Büro

(43) Internationales Veröffentlichungsdatum
26. September 2002 (26.09.2002)

PCT

(10) Internationale Veröffentlichungsnummer
WO 02/074256 A1

(51) Internationale Patentklassifikation⁷: A61K 7/00, (74) Gemeinsamer Vertreter: BEIERSDORF AG; Unnastrasse 48, 20245 Hamburg (DE).

(21) Internationales Aktenzeichen: PCT/EP02/02852

(81) Bestimmungsstaaten (national): JP, US.

(22) Internationales Anmeldedatum:

14. März 2002 (14.03.2002)

(84) Bestimmungsstaaten (regional): europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR).

(25) Einreichungssprache: Deutsch

Erklärungen gemäß Regel 4.17:

- hinsichtlich der Berechtigung des Anmelders, ein Patent zu beantragen und zu erhalten (Regel 4.17 Ziffer ii) für die folgenden Bestimmungsstaaten JP, europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR)
- Erfindererklärung (Regel 4.17 Ziffer iv) nur für US

(26) Veröffentlichungssprache: Deutsch

Veröffentlicht:

— mit internationalem Recherchenbericht

(30) Angaben zur Priorität:

101 13 048.1 15. März 2001 (15.03.2001) DE

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

(71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US); BEIERSDORF AG [DE/DE]; Unnastrasse 48, 20245 Hamburg (DE).

(72) Erfinder; und

(75) Erfinder/Anmelder (nur für US): BLECKMANN, Andreas [DE/DE]; Richard-Dehmel-Strasse 33, 22926 Ahrensburg (DE). KRÖPKE, Rainer [DE/DE]; Achtern Diek 23, 22869 Schenefeld (DE). RIEDEL, Heidi [DE/DE]; Lokstedter Steindamm 24, 22529 Hamburg (DE).

(54) Title: SELF-FOAMING OR FOAMY PREPARATIONS COMPRISING PARTICULATE HYDROPHOBIC AND/OR HYDROPHOBIZED AND/OR OIL-ABSORBENT SOLID SUBSTANCES

(54) Bezeichnung: SELBSTSCHÄUMENDE ODER SCHAUMFÖRMIGE ZUBEREITUNGEN MIT PARTIKULÄREN HYDROPHOBEN UND/ODER HYDROPHOBISIERTEN UND/ODER ÖLABSORBIERENDEN FESTKÖRPERSUBSTANZEN

(57) Abstract: The invention relates to self-foaming and/or foamy cosmetic or dermatological preparations, which contain I) an emulsifier system comprised of: A) at least one emulsifier (A) selected from the group consisting of completely, partially or unneutralized, branched and/or unbranched, saturated and/or unsaturated fatty acids with a chain length ranging from 10 to 40 carbon atoms; B) at least one emulsifier (B), selected from the group consisting of polyethoxylated fatty acid esters with a chain length ranging from 10 to 40 carbon atoms and with a degree of ethoxylation ranging from 5 to 100, and; C) at least one co-emulsifier (C) selected from the group consisting of saturated and/or unsaturated, branched and/or unbranched fatty alcohols with a chain length ranging from 10 to 40 carbon atoms. The inventive preparations also contain: II) up to 30 wt. %, with regard to the total weight of the preparation, of a lipid phase; III) 1 to 90 vol. %, with regard to the total volume of the preparation, of at least one gas selected from the group consisting of air, oxygen, nitrogen, helium, argon, nitrous oxide (N₂O) and carbon dioxide (CO₂), and; IV) 0.01 - 10 wt. % of one or more particulate hydrophobic and/or hydrophobized and/or oil-absorbent solid substances.

A1

6

02

074256

W

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Beschreibung

Selbstschäumende oder schaumförmige Zubereitungen mit partikulären hydrophoben und/oder hydrophobisierten und/oder ölabsorbierenden Festkörpersubstanzen

Die vorliegende Erfindung betrifft selbstschäumende und/oder schaumförmige kosmetische und dermatologische Zubereitungen, insbesondere hautpflegende kosmetische und dermatologische Zubereitungen.

Schäume bzw. schaumförmige Zubereitungen gehören zu den dispersen Systemen.

Das bei weitem wichtigste und bekannteste disperse System stellen Emulsionen dar. Emulsionen sind Zwei- oder Mehrphasensysteme von zwei oder mehr ineinander nicht oder nur wenig löslichen Flüssigkeiten. Die Flüssigkeiten (rein oder als Lösungen) liegen in einer Emulsion in einer mehr oder weniger feinen Verteilung vor, die im allgemeinen nur begrenzt stabil ist.

Schäume sind Gebilde aus gasgefüllten, kugel- oder polyederförmigen Zellen, welche durch flüssige, halbflüssige, hochviskose oder feste Zellstege begrenzt werden. Die Zellstege, verbunden über sogenannte Knotenpunkte, bilden ein zusammenhängendes Gerüst. Zwischen den Zellstegen spannen sich die Schaumlamellen (geschlossen-zelliger Schaum). Werden die Schaumlamellen zerstört oder fließen sie am Ende der Schaumbildung in die Zellstege zurück, erhält man einen offenzelligen Schaum. Auch Schäume sind thermodynamisch instabil, da durch Verkleinerung der Oberfläche Oberflächenenergie gewonnen werden kann. Die Stabilität und damit die Existenz eines Schaums ist somit davon abhängig, wieweit es gelingt, seine Selbstzerstörung zu verhindern.

- Kosmetische Schäume sind in der Regel dispergierte Systeme aus Flüssigkeiten und Gasen, wobei die Flüssigkeit das Dispergiermittel und das Gas die dispergierte Substanz darstellen. Schäume aus niedrigviskosen Flüssigkeiten werden temporär durch oberflächenaktive Substanzen (Tenside, Schaumstabilisatoren) stabilisiert. Solche Tensidschäume haben aufgrund ihrer großen inneren Oberfläche ein starkes Adsorptionsvermögen, welches beispielsweise bei Reinigungs- und Waschvorgängen ausgenutzt wird. Dementsprechend finden kosmetische Schäume insbesondere in den Bereichen der Reinigung, beispielsweise als Rasierschaum, und der Haarpflege Verwendung.
- 5
- 10 Zur Erzeugung von Schaum wird Gas in geeignete Flüssigkeiten eingeblasen, oder man erreicht die Schaumbildung durch heftiges Schlagen, Schütteln, Verspritzen oder Rühren der Flüssigkeit in der betreffenden Gasatmosphäre, vorausgesetzt, daß die Flüssigkeiten geeignete Tenside oder andere grenzflächenaktive Stoffe (sogenannte Schaumbildner) enthalten, die außer Grenzflächenaktivität auch ein gewisses Filmbildungs-
- 15 vermögen besitzen.
- 20 Kosmetische Schäume haben gegenüber anderen kosmetischen Zubereitungen den Vorteil, daß sie eine feine Verteilung von Wirkstoffen auf der Haut erlauben. Allerdings sind kosmetische Schäume in der Regel nur durch Verwendung besonderer Tenside, welche darüberhinaus oft wenig hautverträglich sind, zu erreichen.
- Ein weiterer Nachteil des Standes der Technik ist es, daß derartige Schäume nur wenig 25 stabil sind, weshalb sie üblicherweise innerhalb von etwa 24 Stunden zusammenfallen. Eine Anforderung an kosmetische Zubereitungen ist aber, daß diese eine möglichst jahrelange Stabilität besitzen. Diesem Problem wird im allgemeinen dadurch Rechnung getragen, daß der Verbraucher den eigentlichen Schaum erst bei der Anwendung mit Hilfe eines geeigneten Sprühsystems selbst erzeugt, wozu beispielsweise Sprühdosen verwendet werden können, in denen ein verflüssigtes Druckgas als Treibgas dient. Beim Öffnen des Druckventils entweicht das Treibmittel-Flüssigkeitsgemisch durch eine feine 30 Düse, das Treibmittel verdampft und hinterläßt einen Schaum.
- Auch nachschäumende kosmetische Zubereitungen sind an sich bekannt. Sie werden zunächst in fließförmiger Form aus einem Aerosolbehälter auf die Haut aufgetragen und entwickeln nach kurzer Verzögerung erst dort unter dem Einfluß des enthaltenen Nach-

schäummittels den eigentlichen Schaum, beispielsweise einen Rasierschaum. Nach-schäumende Zubereitungen liegen oft in speziellen Ausführungsformen wie etwa nach-schäumenden Rasiergele oder dergleichen vor.

- 5 Allerdings kennt der Stand der Technik keinerlei kosmetische oder dermatologische Zu-bereitungen, welche bereits bei der Herstellung aufgeschäumt werden könnten und dennoch eine genügend hohe Stabilität aufweisen, um in üblicher Weise verpackt, gela-gert und in den Handel gebracht zu werden.
- 10 Eine Aufgabe der vorliegenden Erfindung war also, den Stand der Technik zu berei-chem und kosmetische oder dermatologische selbstschäumende und/oder schaumför-mige Zubereitungen zur Verfügung zu stellen, die die Nachteile des Standes der Tech-nik nicht aufweisen.
- 15 Die Deutsche Offenlegungsschrift DE 197 54 659 offenbart, daß Kohlendioxid ein ge-eigneter Wirkstoff zur Stabilisierung oder Erhöhung der epidermalen Ceramid-syntheserate ist, welcher der Stärkung der Permeabilitätsbarriere, der Verminderung des transepidermalen Wasserverlusts und der Steigerung der relativen Hautfeuchtigkeit dien-en kann. Zur Behandlung der Haut wird das CO₂ beispielsweise in Wasser gelöst, mit
20 welchem anschließend die Haut gespült wird. Allerdings kennt der Stand der Technik bislang keinerlei kosmetische oder dermatologische Grundlagen, in die ein gasförmiger Wirkstoff in ausreichender, d. h. wirksamer Konzentration eingearbeitet werden könnte.

Eine weitere Aufgabe der vorliegenden Erfindung war es also, kosmetische oder der-matologische Grundlagen zu finden, in die sich wirksame Mengen an gasförmigen Wirk-stoffen einarbeiten lassen.

- Es war überraschend und für den Fachmann nicht vorauszusehen, daß
selbstschäumende und/oder schaumförmige kosmetische oder dermatologische Zu-
30 bereitungen, welche
I. ein Emulgatorsystem, welches aus
 A. mindestens einem Emulgator A, gewählt aus der Gruppe der ganz-, teil- oder
 nichtneutralisierten, verzweigten und/oder unverzweigten, gesättigten

- und/oder ungesättigten Fettsäuren mit einer Kettenlänge von 10 bis 40 Kohlenstoffatomen,
- B. mindestens einem Emulgator B, gewählt aus der Gruppe der polyethoxylierten Fettsäurester mit einer Kettenlänge von 10 bis 40 Kohlenstoffatomen und mit einem Ethoxylierungsgrad von 5 bis 100 und
- C. mindestens einem Coemulgator C, gewählt aus der Gruppe der gesättigten und/oder ungesättigten, verzweigten und/oder unverzweigten Fettalkohole mit einer Kettenlänge von 10 bis 40 Kohlenstoffatomen,
- besteht,
- 10 II. bis zu 30 Gew.-% – bezogen auf das Gesamtgewicht der Zubereitung – einer Lipidphase,
- III. 1 bis 90 Vol.-%, bezogen auf das Gesamtvolumen der Zubereitung, mindestens eines Gases, gewählt aus der Gruppe Luft, Sauerstoff, Stickstoff, Helium, Argon, Lachgas (N_2O) und Kohlendioxid (CO_2)
- 15 IV 0,01 - 10 Gew. % an einem oder mehreren partikulären hydrophoben und/oder hydrophobisierten und/oder ölabsorbierenden Festkörpersubstanzen enthalten,
- den Nachteilen des Standes der Technik abhelfen.
- 20 Nach dem bisherigen Stand der Technik sind schaumförmige kosmetische Emulsionen, die sich durch einen hohen Lufteintrag auszeichnen, ohne Treibgas nicht zu formulieren bzw. technisch herzustellen. Dieses gilt insbesondere für Systeme, die auf klassischen Emulgatoren basieren und durch Scherung (Rühren, Homogenisierung) einen Schaum mit einer außerordentlich hohen Stabilität entwickeln. Durch die erfindungsgemäß verwendeten Puderrohstoffe und Pigmente (Füllstoffe) wird der Eintrag der Gase außerordentlich erhöht. Hierdurch wird eine Schaumverstärkung mit bis zu 100%ig erhöhtem Gasvolumen erzielt, ohne nach dem Stand der Technik übliche Schäummittel wie Tenside zu enthalten. Hierdurch ist es erstmals möglich, Rezepturen mit einer herausragenden, neuartigen kosmetischen Performance mit außerordentlich hohem Gasvolumen (Luft und / oder andere Gase wie Sauerstoff, Kohlendioxid, Stickstoff, Helium, Argon, Lachgas u.a.) herzustellen, die sich durch eine überdurchschnittlich gute Hautpflege sowie sehr guten sensorischen Eigenschaften auszeichnen.

Unter „selbstschäumend“ bzw. „schaumförmig“ ist im Sinne der vorliegenden Erfindung zu verstehen, daß die Gasbläschen (beliebig) verteilt in einer (oder mehreren) flüssigen Phase(n) vorliegen, wobei die Zubereitungen makroskopisch nicht notwendigerweise das Aussehen eines Schaumes haben müssen. Erfindungsgemäße selbstschäumende und/oder schaumförmige kosmetische oder dermatologische Zubereitungen können z. B. makroskopisch sichtbar dispergierte Systeme aus in Flüssigkeiten dispergierten Gasen darstellen. Der Schaumcharakter kann aber beispielsweise auch erst unter einem (Licht-) Mikroskop sichtbar werden. Darüber hinaus sind erfindungsgemäße selbstschäumende und/oder schaumförmige Zubereitungen – insbesondere dann, wenn die Gasbläschen zu klein sind, um unter einem Lichtmikroskop erkannt zu werden – auch an der starken Volumenzunahme des Systems erkennbar.

Die erfindungsgemäßen Zubereitungen stellen in jeglicher Hinsicht überaus befriedigende Präparate dar. Es war insbesondere überraschend, daß die erfindungsgemäßen schaumförmigen Zubereitungen – auch bei einem ungewöhnlich hohen Gasvolumen – außerordentlich stabil sind. Dementsprechend eignen sie sich ganz besonders, um als Grundlage für Zubereitungsformen mit vielfältigen Anwendungszwecken zu dienen. Die erfindungsgemäßen Zubereitungen zeigen sehr gute sensorische Eigenschaften, wie beispielsweise die Verteilbarkeit auf der Haut oder das Einzugsvermögen in die Haut, und zeichnen sich darüberhinaus durch eine überdurchschnittlich gute Hautpflege aus.

Gegenstand der Erfindung ist ferner

die Verwendung selbstschäumender und/oder schaumförmiger kosmetischer oder dermatologischer Zubereitungen, welche

25 I. ein Emulgatorsystem, welches aus

A. mindestens einem Emulgator A, gewählt aus der Gruppe der ganz-, teil- oder nicht neutralisierten, verzweigten und/oder unverzweigten, gesättigten und/oder ungesättigten Fettsäuren mit einer Kettenlänge von 10 bis 40 Kohlenstoffatomen,

30 B. mindestens einem Emulgator B, gewählt aus der Gruppe der polyethoxylierten Fettsäurester mit einer Kettenlänge von 10 bis 40 Kohlenstoffatomen und mit einem Ethoxylierungsgrad von 5 bis 100 und

- C. mindestens einem Coemulgator C, gewählt aus der Gruppe der gesättigten und/oder ungesättigten, verzweigten und/oder unverzweigten Fettalkohole mit einer Kettenlänge von 10 bis 40 Kohlenstoffatomen besteht,
und
5 II. bis zu 30 Gew.-% einer Lipidphase, bezogen auf das Gesamtgewicht der IV 0,01 - 10 Gew. % an einem oder mehreren partikulären hydrophoben und/oder hydrophobisierten und/oder ölabsorbierenden Festkörpersubstanzen enthalten, als kosmetische oder dermatologische Grundlagen für gasförmige Wirkstoffe.
- 10 Der oder die Emulgatoren A werden vorzugsweise gewählt aus der Gruppe der Fettsäuren, welche ganz oder teilweise mit üblichen Alkalien (wie z. B. Natrium- und/oder Kaliumhydroxid, Natrium- und/oder Kaliumcarbonat sowie Mono- und/oder Triethanolamin) neutralisiert sind. Besonders vorteilhaft sind beispielsweise Stearinsäure und Stearate, 15 Isostearinsäure und Isostearate, Palmitinsäure und Palmitate sowie Myristinsäure und Myristate.
- Der oder die Emulgatoren B werden vorzugsweise gewählt aus der folgenden Gruppe:
PEG-9-Stearat, PEG-8-Distearat, PEG-20-Stearat, PEG-8 Stearat, PEG-8-Oleat, 20 PEG-25-Glyceryltrioleat, PEG-40-Sorbitanolanat, PEG-15-Glycerylricinoleat, PEG-20-Glycerylstearat, PEG-20-Glycerylisostearat, PEG-20-Glyceryloleat, PEG-20-Stearat, PEG-20-Methylglucosesesquistearat, PEG-30-Glycerylisostearat, PEG-20-Glyceryllaurat, PEG-30-Stearat, PEG-30-Glycerylstearat, PEG-40-Stearat, PEG-30-Glyceryllaurat, 25 PEG-50-Stearat, PEG-100-Stearat, PEG-150-Laurat. Besonders vorteilhaft sind beispielsweise polyethoxylierte Stearinsäureester.

Der oder die Coemulgatoren C werden erfindungsgemäß vorzugsweise aus der folgenden Gruppe gewählt: Butyloctanol, Butyldecanol, Hexyloctanol, Hexyldecanol, Octyldodecanol, Behenylalkohol ($C_{22}H_{45}OH$), Cetearylalkohol [eine Mischung aus Cetylalkohol ($C_{16}H_{33}OH$) und Stearylalkohol ($C_{18}H_{37}OH$)], Lanolinalkohole (Wollwachsalkohole, die die unverseifbare Alkoholfraktion des Wollwachses darstellen, die nach der Verseifung von Wollwachs erhalten wird). Besonders bevorzugt sind Cetyl- und Cetylstearylalkohol.

Es ist erfindungsgemäß vorteilhaft, die Gewichtsverhältnisse von Emulgator A zu Emulgator B zu Coemulgator C (A : B : C) wie a : b : c zu wählen, wobei a, b und c unabhängig voneinander rationale Zahlen von 1 bis 5, bevorzugt von 1 bis 3 darstellen können. Insbesondere bevorzugt ist ein Gewichtsverhältnis von etwa 1 : 1 : 1.

5

Es ist vorteilhaft im Sinne der vorliegenden Erfindung, die Gesamtmenge der Emulgatoren A und B und des Coemulgators C aus dem Bereich von 2 bis 20 Gew.-%, vorteilhaft von 5 bis 15 Gew.-%, insbesondere von 8 bis 13 Gew.-%, jeweils bezogen auf das Gesamtgewicht der Formulierung, zu wählen.

10

Besonders bevorzugt im Sinne der vorliegenden Erfindung ist es, wenn die Gasphase der Zubereitungen Kohlendioxid enthält bzw. ganz aus Kohlendioxid besteht. Es ist insbesondere vorteilhaft, wenn Kohlendioxid einen oder den Wirkstoff in den erfindungsgemäß Zubereitungen darstellt.

15

Erfindungsgemäße Zusammensetzungen entwickeln sich bereits während ihrer Herstellung – beispielsweise während des Rührrens oder bei der Homogenisierung – zu feinblasigen Schäumen. Erfindungsgemäß sind feinblasige, reichhaltige Schäume von hervorragender kosmetischer Eleganz erhältlich. Weiterhin sind erfindungsgemäß besonders gut hautverträgliche Zubereitungen erhältlich, wobei wertvolle Inhaltsstoffe besonders gut auf der Haut verteilt werden können.

20

Es ist gegebenenfalls vorteilhaft, wenngleich nicht notwendig, wenn die Formulierungen gemäß der vorliegenden Erfindung weitere Emulgatoren enthalten. Vorzugsweise sind solche Emulgatoren zu verwenden, welche zur Herstellung von W/O-Emulsionen geeignet sind, wobei diese sowohl einzeln als auch in beliebigen Kombinationen miteinander vorliegen können.

25

Vorteilhaft werden der oder die weiteren Emulgatoren aus der Gruppe gewählt, die die folgenden Verbindungen umfaßt:

Polyglyceryl-2-Dipolyhydroxystearat, PEG-30-Dipolyhydroxystearat, Cetyltrimethiconopolyl, Glykoldistearat, Glykoldilaurat, Diethylenglykoldilaurat, Sorbitantrioleat, Glykololeat, Glyceryldilaurat, Sorbitantristearat, Propylenglykolstearat, Propylenglykollaurat, Propylenglykoldistearat, Sucrosedistearat, PEG-3 Castor Oil, Pentaerythritylmonostearate-

rat, Pentaerythritylsesquioleat, Glyceryloleat, Glycerylstearat, Glyceryldiisostearat, Pentaerythritylmonooleat, Sorbitansesquioleat, Isostearyl diglycerylsuccinat, Glycerylcaprat, Palm Glycerides, Cholesterol, Lanolin, Glyceryloleat (mit 40 % Monoester), Polyglyceryl-2-Sesquiosstearat, Polyglyceryl-2-Sesquioleat, PEG-20 Sorbitan Beeswax, Sorbitano-
5 leat, Sorbitanisostearat, Trioleylphosphat, Glyceryl Stearate und Ceteareth-20 (Tegina-
cid von Th. Goldschmidt), Sorbitanstearat, PEG-7 Hydrogenated Castor Oil, PEG-5-So-
yasterol, PEG-6 Sorbitan Beeswax, Glycerylstearat SE, Methylglucosesesquistearate,
PEG-10 Hydrogenated Castor Oil, Sorbitanpalmitat, PEG-22/Dodecylglykol Copolymer,
Polyglyceryl-2-PEG-4-Stearat, Sorbitanlaurat, PEG-4-Laurat, Polysorbat 61, Polysorbat
10 81, Polysorbat 65, Polysorbat 80, Triceteareth-4-Phosphat, Triceteareth-4 Phosphate
und Natrium C₁₄₋₁₇ Alkyl Sec Sulfonat (Hostacerin CG von Hoechst), Glycerylstearat und
PEG-100 Stearate (Arlacel 165 von ICI), Polysorbat 85, Trilaureth-4-Phosphat, PEG-35
Castor Oil, Sucroestearat, Trioleth-8-Phosphat, C₁₂₋₁₅ Pareth-12, PEG-40 Hy-
drogenated Castor Oil, PEG-16 Soya Sterol, Polysorbat 80, Polysorbat 20, Polyglyceryl-
15 3-methylglucose Distearat, PEG-40 Castor Oil, Natriumcetearylulfat, Lecithin, Laureth-
4-Phosphat, Propylenglykolstearat SE, PEG-25 Hydrogenated Castor Oil, PEG-54
Hydrogenated Castor Oil, Glycerylstearat SE, PEG-6 Caprylic/Capric Glycerides, Glyce-
ryloleat und Propylenglykol, Glyceryllanolat, Polysorbat 60, Glycerylmyristat, Glyceryl-
isostearat und Polyglyceryl-3 Oleat, Glyceryllaurat, PEG-40-Sorbitanperoleat, Laureth-4,
20 Glycerinmonostearat, Isostearylglycerylether, Cetearyl Alcohol und Natriumcetearylulfat,
PEG-22-Dodecylglykolcopolymer, Polyglyceryl-2-PEG-4-Stearat, Pentaerythrityl-
isostearat, Polyglyceryl-3-Diisostearat, Sorbitanoleat und Hydrogenated Castor Oil und
Cera alba und Stearinsäure, Natriumdihydroxyctetylphosphat und Isopropylhydroxy-
ctylether, Methylglucosesesquistearat, Methylglucosedioleat, Sorbitanoleat und PEG-2
25 Hydrogenated Castor Oil und Ozokerit und Hydrogenated Castor Oil, PEG-2 Hydroge-
nated Castor Oil, PEG-45-/Dodecylglykolcopolymer, Methoxy-PEG-22-/Dodecylglykolco-
polymer, Hydrogenated Coco Glycerides, Polyglyceryl-4-Isostearat, PEG-40-Sorbitan-
peroleat, PEG-40-Sorbitanperisostearat, PEG-8-Beeswax, Laurylmethiconcopolyol, Po-
lyglyceryl-2-Laurat, Stearamidopropyl-PG-dimoniumchloridphosphat, PEG-7 Hydrogena-
30 ted Castor Oil, Triethylcitrat, Glycerylstearatcitrat, Cetylphosphat, Polyglycerolmethylglu-
cosedistearat, Poloxamer 101, Kaliumcetylphosphat, Glycerylisostearat, Polyglyceryl-3-
Diisostearate.

Bevorzugt werden der oder die weiteren Emulgatoren im Sinne der vorliegenden Erfindung aus der Gruppe der hydrophilen Emulgatoren gewählt. Erfindungsgemäß besonders bevorzugt sind Mono-, Di-, Trifettsäureestern des Sorbitols.

- 5 Die Gesamtmenge der weiteren Emulgatoren wird erfindungsgemäß vorteilhaft kleiner als 5 Gew.-%, bezogen auf das Gesamtgewicht der Formulierung, gewählt.

Die Liste der genannten weiteren Emulgatoren, die im Sinne der vorliegenden Erfindung eingesetzt werden können, soll selbstverständlich nicht limitierend sein.

10

Besonders vorteilhafte selbstschäumende und/oder schaumförmige Zubereitungen im Sinne der vorliegenden Erfindung sind frei von Mono- oder Diglycerylfettsäureestern. Insbesondere bevorzugt sind erfindungsgemäße Zubereitungen, welche kein Glycerylstearat, Glycerylisostearat, Glyceryldiisostearat, Glyceryloleat, Glycerylpalmitat, Glycerylmyristat, Glyceryllanolat und/oder Glyceryllaurat enthalten.

Die Ölphase der erfindungsgemäßen Zubereitungen wird vorteilhaft gewählt aus der Gruppe der unpolaren Lipide mit einer Polarität $\geq 30 \text{ mN/m}$. Besonders vorteilhafte unpolare Lipide im Sinne der vorliegenden Erfindung sind die im folgenden aufgelisteten.

20

Hersteller	Handelsname	INCI-Name	Polarität mN/m
Total SA	Ecolane 130	Cycloparaffin	49,1
Neste PAO N.V. (Lief. Hansen & Rosenthal)	Nexbase 2006 FG	Polydecene	46,7
Chemische Fabrik Lehrte	Polysynlane	Hydrogenated Polyisobutene	44,7
Wacker	Wacker Silikonöl AK 50	Polydimethylsiloxan	46,5
EC Erdölchemie (Lieferant Bayer AG)	Solvent ICH	Isohexadecane	43,8
DEA Mineralöl (Lief. Hansen & Rosenthal) Tudapetrol	Pionier 2076	Mineral Oil	43,7
DEA Mineralöl (Lief. Hansen & Rosenthal) Tudapetrol	Pionier 6301	Mineral Oil	43,7
Wacker	Wacker Silikonöl AK 35	Polydimethylsiloxan	42,4
EC Erdölchemie GmbH	Isoeikosan	Isoeikosan	41,9
Wacker	Wacker Silikonöl AK 20	Polydimethylsiloxan	40,9
Condea Chemie	Isofol 1212 Carbonat		40,3

Hersteller	Handelsname	INCI-Name	Polarität
Gattefossé	Softcutol O	Ethoxydiglycol Oleate	40,5
Creaderm	Lipodermanol OL	Decyl Olivate	40,3
Henkel	Cetiol S	Diocetylhexane	39,0
DEA Mineralöl (Lief. Hansen & Rosenthal)	Pionier 2071	Mineral Oil	38,3
Tudapetrol			
WITCO BV	Hydrobrite 1000 PO	Paraffinum Liquidum	37,6
Goldschmidt	Tegosoft HP	Isocetyl Palmitate	36,2
Condea Chemie	Isofol Ester 1693		33,5
Condea Chemie	Isofol Ester 1260		33,0
Dow Coming	Dow Corning Fluid 245	Cyclopentasiloxan	32,3
-- Unichema	Prisorine 2036	Octyl Isostearate	31,6
Henkel Cognis	Cetiol CC	Dicaprylyl Carbonate	31,7
ALZO (ROVI)	Dermol 99	Trimethylhexyl Isononanoate	31,1
ALZO (ROVI)	Dermol 89	2-Ethylhexyl Isononanoate	31,0
Unichema	Estol 1540 EHC	Octyl Cocoate	30,0

Von den Kohlenwasserstoffen sind insbesondere Paraffinöl sowie weitere hydrierte Polyolefine wie hydriertes Polyisobutene, Squalan und Squalen vorteilhaft im Sinne der vorliegenden Erfindung zu verwenden.

5

Die Gehalt der Lipidphase wird vorteilhaft kleiner als 30 Gew.-% gewählt, bevorzugt zwischen 2,5 und 30 Gew.-%, insbesondere bevorzugt zwischen 5 und 15 Gew.-%, jeweils bezogen auf das Gesamtgewicht der Zubereitung. Es ist gegebenenfalls ferner vorteilhaft, wenngleich nicht zwingend, wenn die Lipidphase bis zu 40 Gew.-% – bezogen auf

10 das Gesamtgewicht der Lipidphase – an polaren Lipiden (mit einer Polarität \leq 20 mN/m) und/oder mittelpolaren Lipiden (mit einer Polarität von 20 bis 30 mN/m) enthält.

Besonders vorteilhafte polare Lipide im Sinne der vorliegenden Erfindung sind alle nativen Lipide, wie z. B. Olivenöl, Sonnenblumenöl, Sojaöl, Erdnußöl, Rapsöl, Mandelöl,

15 Palmöl, Kokosöl, Rizinusöl, Weizenkeimöl, Traubenkernöl, Distelöl, Nachtkerzenöl, Macadamianußöl, Maiskeimöl, Avocadoöl und dergleichen sowie die im folgenden aufgelisteten.

Hersteller	Handelsname	INCI-Name	Polarität mN/m

Condea Chemie	Isofol 14 T	Butyl Decanol (+) Hexyl Octanol (+) Hexyl Decanol (+) Butyl Octanol	19,8
Lipochemicals INC. / USA (Induchem)	Lipovol MOS-130	Tridecyl Stearate(+) Tridecyl Trimellitate(+) Dipentaerythrityl Hexacaprylate/Hexacaprate	19,4
	Ricinusoel		19,2
CONDEA Chemie	Isofol Ester 0604		19,1
Huels CONDEA Chemie	Miglyol 840	Propylene Glycol Dicaprylate/Dicaprante	18,7
CONDEA Chemie	Isofol 12	Butyl Octanol	17,4
Goldschmidt	Tegosoft SH	Stearyl Heptanoate	17,8
	Avocadooel		14,5
Henkel Cognis	Cetiol B	Dibutyl Adipate	14,3
ALZO (ROVI)	Dermol 488	PEG 2 Diethylenhexanoate	10,1
Condea Augusta S.P.A.	Cosmacol ELI	C ₁₂₋₁₃ Alkyl Lactate	8,8
ALZO (ROVI)	Dermol 489	Diethylen Glycol Dioctanoate(/ Diisooctanoate	8,6
Condea Augusta S.P.A.	Cosmacol ETI	Di-C ₁₂₋₁₃ Alkyl Tartrate	7,1
Henkel Cognis	Emerest 2384	Propylene Glycol Monoisostearate	6,2
Henkel Cognis	Myritol 331	Cocoglycerides	5,1
Unichema	Prisorine 2041 GTIS	Triisostearin	2,4

Besonders vorteilhafte mittelpolare Lipide im Sinne der vorliegenden Erfindung sind die im folgenden aufgelisteten.

Hersteller	Handelsname	INCI-Name	Polarität (Wasser) mN/m
Henkel Cognis	Cetiol OE	Dicaprylyl Ether	30,9
	Dihexylcarbonat	Dihexyl Carbonate	30,9
Albemarie S.A.	Silkflo 366 NF	Polydecene	30,1
Stearinerie Dubois Fils	DÜB VCI 10	Isodecyl Neopentanoate	29,9
ALZO (ROVI)	Dermol IHD	Isohexyldecanoate	29,7
ALZO (ROVI)	Dermol 108	Isodecyl Octanoate	29,6
	Dihexyl Ether	Dihexyl Ether	29,2
ALZO (ROVI)	Dermol 109	Isodecyl 3,5,5 Trimethyl Hexanoate	29,1

Hersteller	Handelsname	INCI-Name	Polarität (Wasser)
Henkel Cognis	Cetiol SN	Cetearyl Isononanoate	28,6
Unichema	Isopropylpalmitat	Isopropylpalmitat	28,8
Dow Corning	DC Fluid 345	Cyclomethicone	28,5
Dow Corning	Dow Corning Fluid 244	Cyclopolydimethylsiloxan	28,5
Nikko Chemicals Superior Jojoba Oil Gold	Jojobaöl Gold		26,2
Wacker	Wacker AK 100	Dimethicone	26,9
ALZO (ROVI)	Dermol 98	2- Ethylhexanosäure 3,5,5 Trimethyl-ester	26,2
Dow Corning	Dow Corning Fluid 246	Offen	25,3
Henkel Cognis	Eutanol G	Octyldodecanol	24,8
Condea Chemie	Isofol 16	Hexyl Decanol	24,3
ALZO (ROVI)	Dermol 139	Isotridecyl 3,5,5 Trimethylhexanona-noate	24,5
Henkel Cognis	Cetiol PGL	Hexyldecanol (+) Hexyl Decyl Laurate	24,3
	Cegesoft C24	Octyl Palmitate	23,1
Gattefossé	M.O.D.	Octyldodecyl Myristate	22,1
	Macadamia Nut Oil		22,1
Bayer AG, Dow Corning	Silikonöl VP 1120	Phenyl Trimethicone	22,7
CONDEA Chemie	Isocarb 12	Butyl Octanoicacid	22,1
Henkel Cognis	Isopropylstearat	Isopropyl Stearate	21,9
WITCO, Goldschmidt	Finsolv TN	C12-15 Alkyl Benzoate	21,8
Dr. Straetmans	Dermofeel BGC	Butylene Glycol Caprylate/Caprate	21,5
Unichema Hüls	Miglyol 812	Caprylic/Capric Triglyceride	21,3
Trivent (Über S. Black)	Trivent OCG	Tricaprylin	20,2
ALZO (ROVI)	Dermol 866	PEG „ Diethylhexanoate/ Diisononanoate/ Ethylhexyl Isononanoate	20,1

Die anorganischen partikulären hydrophoben und/oder hydrophobisierten und/oder öl-absorbierenden Festkörpersubstanzen können beispielsweise vorteilhaft gewählt werden aus der Gruppe

- der modifizierten oder unmodifizierten Schichtsilikate.
 - 5 - der modifizierten Kohlenhydratderivate wie Cellulose und Cellulosederivate, mikro-crystalline Cellulose, Stärke und Stärke-Derivate (Distärkephosphat, Natrium- bzw. Aluminium-Stärkeoctenylsuccinat, Weizenstärke, Maisstärke (Amidon De Mais MST (Wackherr), Argo Brand Maisstärke (Corn Products), Pure-Dent (Grain Processing), Purity 21C (National Starch), Reisstärke (D.S.A. 7 (Agrana Stärke), Oryzapearl (Ichimaru Pharcos), Hydroxypropylstärkephosphat Distärkephosphat (Corn PO4 (Agrana Stärke) Com PO4 (Tri-K) Natriummaisstärkeoctenylsuccinat (C* EmCap - Instant 12639 (Cerestar USA)) Aluminium-Stärkeoctenylsuccinat (Covafluid AMD (Wackherr) Dry Flo-PC (National Starch) Dry Flo Pure (National Starch) Fluidamid DF 12 (Roquette))
 - 10 - der anorganischen Füllstoffe (wie Talkum, Kaolin, Zeolith, Bornitrid)
 - der anorganischen Pigmente auf Basis von Metalloxiden und / oder anderen in Wasser schwerlöslichen bzw. unlöslichen Metallverbindungen (insb. Oxide des Titans, Zinks, Eisens, Mangans, Aluminium, Cers)
 - der anorganischen Pigmente auf Basis von Siliciumoxiden (wie insbesondere die Typen Aerosil-200, Aerosil 200 V).
 - 20 - der Silikat-Derivate (wie Natrium Silicoaluminate, Magnesiumsilicate, Natriummagnesiumsilicate (Laponite-Typen), Magnesiumaluminumsilikate (Sebumasse) oder Fluoro Magnesium Silicate (Submica-Typen), Calcium Aluminium Borsilicate). Bevorzugt ist hierbei insbesondere Silica Dimethyl Silylate (Aerosil R972).
 - 25
- Mikrokristalline Cellulose ist ein vorteilhaftes Festkörpersubstanzen im Sinne der vorliegenden Erfindung. Sie ist beispielsweise von der "FMC Corporation Food and Pharmaceutical Products" unter der Handelsbezeichnung Avicel® erhältlich. Ein besonders vorteilhaftes Produkt im Sinne der vorliegenden Erfindung ist der Typ Avicel® RC-591, bei dem es sich um modifizierte mikrokristalline Cellulose handelt, die sich zu 89% aus mikrokristalliner Cellulose und zu 11% aus Natrium Carboxymethyl Cellulose zusammensetzt. Weitere Handelsprodukte dieser Rohstoffklasse sind Avicel® RC/ CL, Avicel® CE-15, Avicel® 500.

Weitere erfindungsgemäß vorteilhafte ölabsorbierende Festkörpersubstanzen sind microsphärische Partikel, die auf quervernetzten Polymethylmethacrylate (INCI: Crosslinked Methylmethacrylate) basieren. Diese werden von SEPPIC unter den Handelbezeichnungen Micropearl® M305, Micropearl® 201, Micropearl® M 310 und Micropearl® MHB vertrieben und zeichnen sich durch ein Ölaufnahmevermögen von 40-100 g / 100g aus.

Aerosile (fumed Silica) = durch thermische Zersetzung von Ethylsilicat gewonnenes Siliciumdioxid) sind hochdisperse Kieselsäuren mit häufig irregulärer Form, deren spezifische Oberfläche in der Regel sehr groß ist ($200 - 400 \text{ m}^2/\text{g}$) und abhängig vom Herstellverfahren gesteuert werden kann.

Erfindungsgemäß vorteilhaft zu verwendende Aerosile sind beispielsweise erhältlich unter den Handelsnamen: Aerosil® 130 (Degussa Hüls) Aerosil® 200 (Degussa Hüls) 15 Aerosil 255 (Degussa Hüls) Aerosil® 300 (Degussa Hüls) Aerosil® 380 (Degussa Hüls) B-6C (Suzuki Yushi) CAB-O-SIL Fumed Silica (Cabot) CAB-O-SIL EH-5 (Cabot) CAB-O-SIL HS-5 (Cabot) CAB-O-SIL LM-130 (Cabot) CAB-O-SIL MS-55 (Cabot) CAB-O-SIL M-5 (Cabot) E-6C (Suzuki Yushi) Fossil Flour MBK (MBK) MSS-500 (Kobo) Neosil CT 11 (Crosfield Co.) Ronosphere (Rona/EM Industries) Silica, Anhydrous 31 (Whittaker, Clark & Daniels) Silica, Crystalline 216 (Whittaker, Clark & Daniels) Silotrat-1 (Vevy) Sorbosil 20 AC33 (Crosfield Co.) Sorbosil AC 35 (Crosfield Co.) Sorbosil AC 37 (Crosfield Co.) Sorbosil AC 39 (Crosfield Co.) Sorbosil AC77 (Crosfield Co.) Sorbosil TC 15 (Crosfield Co.) Spherica (Ikeda) Spheriglass (Potters-Ballotini) Spheron L-1500 (Presperse) Spheron N-2000 (Presperse) Spheron P-1500 (Presperse) Wacker HDK H 30 (Wacker-Chemie) 25 Wacker HDK N 20 (Wacker-Chemie) Wacker HDK P 100 H (Wacker Silicones) Wacker HDK N 20P (Wacker-Chemie) Wacker HDK N 25P (Wacker-Chemie) Wacker HDK S 13 (Wacker-Chemie) Wacker HDK T 30 (Wacker-Chemie) Wacker HDK V 15 (Wacker-Chemie) Wacker HDK V 15 P (Wacker-Chemie) Zelec Sil (DuPont)

30 Weiterhin ist vorteilhaft, solche SiO_2 -Pigmente zu verwenden, bei welchen die freien OH Gruppen an der Teilchenoberfläche (ganz oder teilweise) organisch modifiziert worden sind. Man erhält z.B. durch die Addition von Dimethylsilyl-Gruppen Silica Dimethyl Silylate (z.B. Aerosil® R972 (Degussa Hüls) Aerosil® R974 (Degussa Hüls) CAB-O-SIL TS-610 (Cabot) CAB-O-SIL TS-720 (Cabot) Wacker HDK H15 (Wacker-Chemie) Wacker

HDK H18 (Wacker-Chemie) Wacker HDK H20 (Wacker-Chemie)). Durch die Addition von Trimethylsilyl-Gruppen erhält man Silica Silylate (z.B. Aerosil R 812 (Degussa Hüls) CAB-O-SIL TS-530 (Cabot) Sipernat D 17 (Degussa Hüls) Wacker HDK H2000 (Wacker-Chemie)).

5

Polymethylsilsesquioxane werden beispielsweise unter den Handelsnamen Tospearl® 2000 B von GE Bayer Silikones, Tospearl 145A von Toshiba, AEC Silicone Resin Spheres von A & E Connock oder Wacker - Belsil PMS MK von der Wacker-Chemie angeboten.

10

Die erfindungsgemäßen kosmetischen und/oder dermatologischen Zubereitungen können wie üblich zusammengesetzt sein. Besonders vorteilhaft im Sinne der vorliegenden Erfindung sind Zubereitungen zur Pflege der Haut: sie können dem kosmetischen und/oder dermatologischen Lichtschutz, ferner zur Behandlung der Haut und/oder der Haare und als Schminkprodukt in der dekorativen Kosmetik dienen. Eine weitere vorteilhafte Ausführungsform der vorliegenden Erfindung besteht in After-Sun-Produkten.

Entsprechend ihrem Aufbau können kosmetische oder topische dermatologische Zusammensetzungen im Sinne der vorliegenden Erfindung, beispielsweise verwendet werden als Hautschutzcrème, Tages- oder Nachtcrème usw. Es ist gegebenenfalls möglich und vorteilhaft, die erfindungsgemäßen Zusammensetzungen als Grundlage für pharmazeutische Formulierungen zu verwenden.

Ebenso wie Emulsionen von flüssiger und fester Konsistenz als kosmetische Reinigungslotionen bzw. Reinigungscremes Verwendung finden, können auch die erfindungsgemäßen Zubereitungen „Reinigungsschäume“ darstellen, welche beispielsweise zum Entfernen von Schminken und/oder Make-up oder als milder Waschschaum – ggf. auch für unreine Haut – verwendet werden können. Derartige Reinigungsschäume können vorteilhaft ferner als sogenannte „rinse off“ Präparate angewendet werden, welche nach der Anwendung von der Haut abgespült werden

Die erfindungsgemäßen kosmetischen und/oder dermatologischen Zubereitungen können auch vorteilhaft in Form eines Schaums zur Pflege des Haars bzw. der Kopfhaut

vorliegen, insbesondere eines Schaums zum Einlegen der Haare, eines Schaums, der beim Fönen der Haare verwendet wird, eines Frisier- und Behandlungsschaums.

- Zur Anwendung werden die erfindungsgemäß kosmetischen und dermatologischen
- 5 Zubereitungen in der für Kosmetika üblichen Weise auf die Haut und/oder die Haare in ausreichender Menge aufgebracht.

Die kosmetischen und dermatologischen Zubereitungen gemäß der Erfindung können kosmetische Hilfsstoffe enthalten, wie sie üblicherweise in solchen Zubereitungen verwendet werden, z. B. Konservierungsmittel, Konservierungshelfer, Bakterizide, Parfüme, Farbstoffe, Pigmente, die eine färbende Wirkung haben, anfeuchtende und/oder feucht-haltende Substanzen, Füllstoffe, die das Hautgefühl verbessern, Fette, Öle, Wachse oder andere übliche Bestandteile einer kosmetischen oder dermatologischen Formulie-
10 rung wie Alkohole, Polyole, Polymere, Schaumstabilisatoren, Elektrolyte, organische Lö-
sungsmittel oder Silikonderivate.
15

Vorteilhafte Konservierungsmittel im Sinne der vorliegenden Erfindung sind beispielsweise Formaldehydabspalter (wie z. B. DMDM Hydantoin), Iodopropylbutylcarbamate (z. B. die unter den Handelsbezeichnungen Koncyl-L, Koncyl-S und Konkaben LMB von
20 der Fa. Lonza erhältlichen), Parabene, Phenoxyethanol, Ethanol, Benzoesäure und der gleichen mehr. Üblicherweise umfaßt das Konservierungssystem erfindungsgemäß fer-
ner vorteilhaft auch Konservierungshelfer, wie beispielsweise Octoxyglycerin, Glycine Soja etc.

25 Besonders vorteilhafte Zubereitungen werden ferner erhalten, wenn als Zusatz- oder Wirkstoffe Antioxidantien eingesetzt werden. Erfindungsgemäß enthalten die Zuberei-
tungen vorteilhaft eines oder mehrere Antioxidantien. Als günstige, aber dennoch fakul-
tativ zu verwendende Antioxidantien können alle für kosmetische und/oder dermatologi-
sche Anwendungen geeigneten oder gebräuchlichen Antioxidantien verwendet werden.
30

Vorteilhaft werden die Antioxidantien gewählt aus der Gruppe bestehend aus Aminosäu-
ren (z. B. Glycin, Histidin, Tyrosin, Tryptophan) und deren Derivate, Imidazole (z. B. Uro-
caninsäure) und deren Derivate, Peptide wie D,L-Carnosin, D-Carnosin, L-Carnosin und

- deren Derivate (z. B. Anserin), Carotinoide, Carotine (z. B. α -Carotin, β -Carotin, Lycopin) und deren Derivate, Liponsäure und deren Derivate (z. B. Dihydroliponsäure), Aurothioglucose, Propylthiouracil und andere Thiole (z. B. Thioredoxin, Glutathion, Cystein, Cystin, Cystamin und deren Glycosyl-, N-Acetyl-, Methyl-, Ethyl-, Propyl-, Amyl-, Butyl- und
- 5 Lauryl-, Palmitoyl-, Oleyl-, γ -Linoleyl-, Cholesteryl - und Glycerylester) sowie deren Salze, Dilaurylthiodipropionat, Distearylthiodipropionat, Thiodipropionsäure und deren Derivate (Ester, Ether, Peptide, Lipide, Nukleotide, Nukleoside und Salze) sowie Sulfoximinverbindungen (z. B. Buthioninsulfoximine, Homocysteinsulfoximin, Buthioninsulfone, Penta-, Hexa-, Heptathioninsulfoximin) in sehr geringen verträglichen Dosierungen (z. B.
- 10 pmol bis μ mol/kg), ferner (Metall)-Chelatoren (z. B. α -Hydroxyfettsäuren, Palmitinsäure, Phytinsäure, Lactoferrin), α -Hydroxysäuren (z. B. Zitronensäure, Milchsäure, Apfelsäure), Huminsäure, Gallensäure, Gallenextrakte, Bilirubin, Biliverdin, EDTA, EGTA und deren Derivate, ungesättigte Fettsäuren und deren Derivate (z. B. γ -Linolensäure, Linolsäure, Ölsäure), Folsäure und deren Derivate, Ubichinon und Ubichinol und deren Derivate, Vitamin C und Derivate (z. B. Ascorbylpalmitat, Mg - Ascorbylphosphat, Ascorbylacetat), Tocopherole und Derivate (z. B. Vitamin E - acetat), Vitamin A und Derivate (Vitamin A - palmitat) sowie Konyferylbenzoat des Benzoeharzes, Rutinsäure und deren Derivate, Ferulasäure und deren Derivate, Butylhydroxytoluol, Butylhydroxyanisol, Nordihydroguajakharzsäure, Nordihydroguajaretsäure, Trihydroxybutyrophonen, Hamsäure
- 15 und deren Derivate, Mannose und deren Derivate, Zink und dessen Derivate (z. B. ZnO, ZnSO₄) Selen und dessen Derivate (z. B. Selenmethionin), Stilbene und deren Derivate (z. B. Stilbenoxid, Trans-Stilbenoxid) und die erfindungsgemäß geeigneten Derivate (Salze, Ester, Ether, Zucker, Nukleotide, Nukleoside, Peptide und Lipide) dieser genannten Wirkstoffe.
- 20
- 25 Besonders vorteilhaft im Sinne der vorliegenden Erfindung können wasserlösliche Antioxidantien eingesetzt werden, wie beispielsweise Vitamine, z. B. Ascorbinsäure und deren Derivate.
- 30 Eine erstaunliche Eigenschaft der erfindungsgemäße Zubereitungen ist, daß diese sehr gute Vehikel für kosmetische oder dermatologische Wirkstoffe in die Haut sind, wobei bevorzugte Wirkstoffe Antioxidantien sind, welche die Haut vor oxidativer Be-

anspruchung schützen können. Bevorzugte Antioxidantien sind dabei Vitamin E und dessen Derivate sowie Vitamin A und dessen Derivate.

Die Menge der Antioxidantien (eine oder mehrere Verbindungen) in den Zubereitungen
5 beträgt vorzugsweise 0,001 bis 30 Gew.-%, besonders bevorzugt 0,05 bis 20 Gew.-%,
insbesondere 0,1 bis 10 Gew.-%, bezogen auf das Gesamtgewicht der Zubereitung.

Sofern Vitamin E und/oder dessen Derivate das oder die Antioxidantien darstellen, ist
vorteilhaft, deren jeweilige Konzentrationen aus dem Bereich von 0,001 bis 10 Gew.-%,
10 bezogen auf das Gesamtgewicht der Formulierung, zu wählen.

Sofern Vitamin A bzw. Vitamin-A-Derivate, bzw. Carotine bzw. deren Derivate das oder
die Antioxidantien darstellen, ist vorteilhaft, deren jeweilige Konzentrationen aus dem
Bereich von 0,001 bis 10 Gew.-%, bezogen auf das Gesamtgewicht der Formulierung,
15 zu wählen.

Erfindungsgemäß können die Wirkstoffe (eine oder mehrere Verbindungen) auch sehr
vorteilhaft gewählt werden aus der Gruppe der lipophilen Wirkstoffe, insbesondere aus
folgender Gruppe:

20 Acetylsalicylsäure, Atropin, Azulen, Hydrocortison und dessen Derivaten, z. B. Hydrocortison-17-valerat, Vitamine der B- und D-Reihe, sehr günstig das Vitamin B₁, das Vitamin B₁₂ das Vitamin D₁, aber auch Bisabolol, ungesättigte Fettsäuren, namentlich die essentiellen Fettsäuren (oft auch Vitamin F genannt), insbesondere die gamma-Linolensäure,
25 Ölsäure, Eicosapentaënsäure, Docosahexaënsäure und deren Derivate, Chloramphenicol, Coffein, Prostaglandine, Thymol, Campher, Extrakte oder andere Produkte pflanzlicher und tierischer Herkunft, z. B. Nachtkerzenöl, Borretschöl oder Johanniskernöl, Fischöle, Lebertran aber auch Ceramide und ceramidähnliche Verbindungen und so weiter.

30 Vorteilhaft ist es auch, die Wirkstoffe aus der Gruppe der rückfettenden Substanzen zu wählen, beispielsweise Purcellinöl, Eucerit® und Neocerit®.

Besonders vorteilhaft werden der oder die Wirkstoffe ferner gewählt aus der Gruppe der

NO-Synthasehemmer, insbesondere wenn die erfindungsgemäßen Zubereitungen zur Behandlung und Prophylaxe der Symptome der intrinsischen und/oder extrinsischen Hautalterung sowie zur Behandlung und Prophylaxe der schädlichen Auswirkungen ultravioletter Strahlung auf die Haut dienen sollen.

5

Bevorzugter NO-Synthasehemmer ist das Nitroarginin.

- Weiter vorteilhaft werden der oder die Wirkstoffe gewählt aus der Gruppe, welche Catechine und Gallensäureester von Catechinen und wäßrige bzw. organische Extrakte aus Pflanzen oder Pflanzenteilen umfaßt, die einen Gehalt an Catechinen oder Gallensäureestern von Catechinen aufweisen, wie beispielsweise den Blättern der Pflanzenfamilie Theaceae, insbesondere der Spezies *Camellia sinensis* (grüner Tee). Insbesondere vorteilhaft sind deren typische Inhaltsstoffe (wie z. B. Polyphenole bzw. Catechine, Coffein, Vitamine, Zucker, Mineralien, Aminosäuren, Lipide).

15

- Catechine stellen eine Gruppe von Verbindungen dar, die als hydrierte Flavone oder Anthocyanidine aufzufassen sind und Derivate des „Catechins“ (Catechol, 3,3',4',5,7-Flavanpentaol, 2-(3,4-Dihydroxyphenyl)-chroman-3,5,7-triol) darstellen. Auch Epicatechin ((2R,3R)-3,3',4',5,7-Flavanpentaol) ist ein vorteilhafter Wirkstoff im Sinne der vorliegenden Erfindung.

- Vorteilhaft sind ferner pflanzliche Auszüge mit einem Gehalt an Catechinen, insbesondere Extrakte des grünen Tees, wie z. B. Extrakte aus Blättern der Pflanzen der Spezies *Camellia spec.*, ganz besonders der Teesorten *Camellia sinensis*, *C. assamica*, *C. taliensis* bzw. *C. irrawadiensis* und Kreuzungen aus diesen mit beispielsweise *Camellia japonica*.

- Bevorzugte Wirkstoffe sind ferner Polyphenole bzw. Catechine aus der Gruppe (-)-Catechin, (+)-Catechin, (-)-Catechingallat, (-)-Gallocatechingallat, (+)-Epicatechin, (-)-Epicatechin, (-)-Epicatechin Gallat, (-)-Epigallocatechin, (-)-Epigallocatechingallat.

Auch Flavon und seine Derivate (oft auch kollektiv „Flavone“ genannt) sind vorteilhafte Wirkstoffe im Sinne der vorliegenden Erfindung. Sie sind durch folgende Grundstruktur gekennzeichnet (Substitutionspositionen angegeben):

Einige der wichtigeren Flavone, welche auch bevorzugt in erfindungsgemäßen Zubereitungen eingesetzt werden können, sind in der nachstehenden Tabelle aufgeführt:

5

	OH-Substitutionspositionen								
	3	5	7	8	2'	3'	4'	5'	
Flavon	-	-	-	-	-	-	-	-	-
Flavonol	+	-	-	-	-	-	-	-	-
Chrysin	-	+	+	-	-	-	-	-	-
Galangin	+	+	+	-	-	-	-	-	-
Apigenin	-	+	+	-	-	-	+	-	-
Fisetin	+	-	+	-	-	+	+	-	-
Luteolin	-	+	+	-	-	+	+	-	-
Kämpferol	+	+	+	-	-	-	+	-	-
Quercetin	+	+	+	-	-	+	+	-	-
Morin	+	+	+	-	+	-	+	-	-
Robinetin	+	-	+	-	-	+	+	+	-
Gossypetin	+	+	+	+	-	+	+	-	-
Myricetin	+	+	+	-	-	+	+	+	-

In der Natur kommen Flavone in der Regel in glycosidierter Form vor.

Erfnungsgemäß werden die Flavonoide bevorzugt gewählt aus der Gruppe
10 der Substanzen der generischen Strukturformel

- wobei Z_1 bis Z_7 unabhängig voneinander gewählt werden aus der Gruppe H, OH, Alkoxy- sowie Hydroxyalkoxy-, wobei die Alkoxy- bzw. Hydroxyalkoxygruppen verzweigt und unverzweigt sein und 1 bis 18 C-Atome aufweisen können, und wobei Gly gewählt wird
- 5 aus der Gruppe der Mono- und Oligoglycosidreste.

Erfnungsgemäß können die Flavonoide aber auch vorteilhaft gewählt werden aus der Gruppe der Substanzen der generischen Strukturformel

- 10 wobei Z_1 bis Z_6 unabhängig voneinander gewählt werden aus der Gruppe H, OH, Alkoxy- sowie Hydroxyalkoxy-, wobei die Alkoxy- bzw. Hydroxyalkoxygruppen verzweigt und unverzweigt sein und 1 bis 18 C-Atome aufweisen können, und wobei Gly gewählt wird aus der Gruppe der Mono- und Oligoglycosidreste.
- 15 Bevorzugt können solche Strukturen gewählt werden aus der Gruppe der Substanzen der generischen Strukturformel

wobei Gly₁, Gly₂ und Gly₃ unabhängig voneinander Monoglycosidreste oder darstellen. Gly₂ bzw. Gly₃ können auch einzeln oder gemeinsam Absättigungen durch Wasserstoffatome darstellen.

5

- Bevorzugt werden Gly₁, Gly₂ und Gly₃ unabhängig voneinander gewählt aus der Gruppe der Hexosylreste, insbesondere der Rhamnosylreste und Glucosylreste. Aber auch andere Hexosylreste, beispielsweise Allosyl, Altrosyl, Galactosyl, Gulosyl, Idosyl, Mannosyl und Talosyl sind gegebenenfalls vorteilhaft zu verwenden. Es kann auch erfindungsgemäß vorteilhaft sein, Pentosylreste zu verwenden.

10

Vorteilhaft werden Z₁ bis Z₅ unabhängig voneinander gewählt aus der Gruppe H, OH, Methoxy-, Ethoxy- sowie 2-Hydroxyethoxy-, und die Flavonglycoside haben die Struktur

- 15 Besonders vorteilhaft werden die erfindungsgemäßen Flavonglycoside aus der Gruppe, welche durch die folgende Struktur wiedergegeben werden:

wobei Gly₁, Gly₂ und Gly₃ unabhängig voneinander Monoglycosidreste oder darstellen. Gly₂ bzw. Gly₃ können auch einzeln oder gemeinsam Absättigungen durch Wasserstoffatome darstellen.

5

Bevorzugt werden Gly₁, Gly₂ und Gly₃ unabhängig voneinander gewählt aus der Gruppe der Hexosylreste, insbesondere der Rhamnosylreste und Glucosylreste. Aber auch andere Hexosylreste, beispielsweise Allosyl, Altrosyl, Galactosyl, Gulosyl, Idosyl, Mannosyl und Talosyl sind gegebenenfalls vorteilhaft zu verwenden. Es kann auch erfindungsgemäß vorteilhaft sein, Pentosylreste zu verwenden.

Besonders vorteilhaft im Sinne der vorliegenden Erfindung ist, das oder die Flavonglycoside zu wählen aus der Gruppe α-Glucosylrutin, α-Glucosylmyricetin, α-Glucosylisoquercitrin, α-Glucosylisoquercetin und α-Glucosylquercitrin.

15

Erfindungsgemäß besonders bevorzugt ist α-Glucosylrutin.

Erfindungsgemäß vorteilhaft sind auch Naringin (Aurantiin, Naringenin-7-rhamnoglucosid), Hesperidin (3',5,7-Trihydroxy-4'-methoxyflavanon-7-rutinosid, Hesperidosid, Hesperitin-7-O-rutinosid). Rutin (3,3',4',5,7-Pentahydroxyflyvon-3-rutinosid, Quercetin-3-rutinosid, Sophorin, Birutan, Rutabion, Taurutin, Phytomelin, Melin), Troxerutin (3,5-Dihydroxy-3',4',7-tris(2-hydroxyethoxy)-flavon-3-(6-O-(6-deoxy-α-L-mannopyranosyl)-β-D-glucopyranosid)), Monoxerutin (3,3',4',5-Tetrahydroxy-7-(2-hydroxyethoxy)-flavon-3-(6-O-(6-deoxy-α-L-mannopyranosyl)-β-D-glucopyranosid)), Dihydrorobinetin (3,3',4',5',7-Penta-hydroxyflavanon), Taxifolin (3,3',4',5,7-Pentahydroxyflavanon), Eriodictyol-7-glucosid (3',4',5,7-Tetrahydroxyflavanon-7-glucosid), Flavanomarein (3',4',7,8-Tetrahydroxyflava-

non-7-glucosid) und Isoquercetin (3,3',4',5,7-Pentahydroxyflavanon-3-(β -D-Glucopyranosid).

- Vorteilhaft ist es auch, dem oder die Wirkstoffe aus der Gruppe der Ubichinone und
 5 Plastoquinone zu wählen.

Ubichinone zeichnen sich durch die Strukturformel

- 10 aus und stellen die am weitesten verbreiteten und damit am besten untersuchten Biochinone dar. Ubichinone werden je nach Zahl der in der Seitenkette verknüpften Isopren-Einheiten als Q-1, Q-2, Q-3 usw. oder nach Anzahl der C-Atome als U-5, U-10, U-15 usw. bezeichnet. Sie treten bevorzugt mit bestimmten Kettenlängen auf, z. B. in einigen Mikroorganismen und Hefen mit n=6. Bei den meisten Säugetieren einschließlich des
 15 Menschen überwiegt Q10.

Besonders vorteilhaft ist Coenzym Q10, welches durch folgende Strukturformel gekennzeichnet ist:

Plastoquinone weisen die allgemeine Strukturformel

auf. Plastoschinone unterscheiden sich in der Anzahl n der Isopren-Reste und werden entsprechend bezeichnet, z. B. PQ-9 (n=9). Ferner existieren andere Plastochinone mit unterschiedlichen Substituenten am Chinon-Ring.

5

Auch Kreatin und/oder Kreatinderivate sind bevorzugte Wirkstoffe im Sinne der vorliegenden Erfindung. Kreatin zeichnet sich durch folgende Struktur aus:

Bevorzugte Derivate sind Kreatinphosphat sowie Kreatinsulfat, Kreatinacetat, Kreatin-10 ascorbat und die an der Carboxylgruppe mit mono- oder polyfunktionalen Alkoholen veresterten Derivate.

Ein weiterer vorteilhafter Wirkstoff ist L-Carnitin [3-Hydroxy-4-(trimethylammonio)-buttersäurebetaïn]. Auch Acyl-Carnitine, welche gewählt aus der Gruppe der Substanzen der 15 folgenden allgemeinen Strukturformel

wobei R gewählt wird aus der Gruppe der verzweigten und unverzweigten Alkylreste mit bis zu 10 Kohlenstoffatomen sind vorteilhafte Wirkstoffe im Sinne der vorliegenden Erfindung. Bevorzugt sind Propionylcarnitin und insbesondere Acetylcarnitin. Beide Entantiomere (D- und L-Form) sind vorteilhaft im Sinne der vorliegenden Erfindung zu verwenden.

den. Es kann auch von Vorteil sein, beliebige Enantiomerengemische, beispielsweise ein Racemat aus D- und L-Form, zu verwenden.

5 Weitere vorteilhafte Wirkstoffe sind Sericosid, Pyridoxol, Vitamin K, Biotin und Aroma-
stoffe.

Die Liste der genannten Wirkstoffe bzw. Wirkstoffkombinationen, die in den erfindungs-
gemäßen Zubereitungen verwendet werden können, soll selbstverständlich nicht limitie-
rend sein. Die Wirkstoffe können einzeln oder in beliebigen Kombinationen miteinan-
der verwendet werden.
10

Hautalterung wird z. B. durch endogene, genetisch determinierte Faktoren verursacht. In
Epidermis und Dermis kommt es alterungsbedingt z. B. zu folgenden Strukturschäden
und Funktionsstörungen, die auch unter den Begriff „Senile Xerosis“ fallen können:
15

- a) Trockenheit, Rauhigkeit und Ausbildung von (Trockenheits-) Fältchen,
- b) Juckreiz und
- c) verminderte Rückfettung durch Talgdrüsen (z. B. nach dem Waschen).

20 Exogene Faktoren, wie UV-Licht und chemische Noxen, können kumulativ wirksam sein
und z. B. die endogenen Alterungsprozesse beschleunigen bzw. sie ergänzen. In Epi-
dermis und Dermis kommt es insbesondere durch exogene Faktoren z. B. zu folgenden
Strukturschäden- und Funktionsstörungen in der Haut, die über Maß und Qualität der
Schäden bei chronologischer Alterung hinausgehen:
25

- d) Sichtbare Gefäßerweiterungen (Teleangiektasien, Cuperosis);
- e) Schläffheit und Ausbildung von Falten;
- f) lokale Hyper-, Hypo- und Fehlpigmentierungen (z. B. Altersflecken) und
- g) vergrößerte Anfälligkeit gegenüber mechanischem Stress (z. B. Rissigkeit).

30 Erstaunlicherweise können ausgewählte erfindungsgemäße Rezepturen auch eine An-
tifaltenwirkung aufweisen bzw. die Wirkung bekannter Antifaltenwirkstoffe erheblich
steigern. Dementsprechend eignen sich Formulierungen im Sinne der vorliegenden Er-
findung insbesondere vorteilhaft zur Prophylaxe und Behandlung kosmetischer oder

dermatologischer Hautveränderungen, wie sie z. B. bei der Hautalterung auftreten. Weiterhin vorteilhaft eignen sie sich gegen das Erscheinungsbild der trockenen bzw. rauen Haut.

- 5 In einer besonderen Ausführungsform betrifft die vorliegende Erfindung daher Produkte zur Pflege der auf natürliche Weise gealterten Haut, sowie zur Behandlung der Folgeschäden der Lichtalterung, insbesondere der unter a) bis g) aufgeführten Phänomene.

- Die Wasserphase der erfindungsgemäßen Zubereitungen kann vorteilhaft übliche kosmetische Hilfsstoffe enthalten, wie beispielsweise Alkohole, insbesondere solche niedriger C-Zahl, vorzugsweise Ethanol und/oder Isopropanol, Diole oder Polyole niedriger C-Zahl sowie deren Ether, vorzugsweise Propylenglykol, Glycerin, Ethylenenglykol, Ethylenenglykolmonoethyl- oder -monobutylether, Propylenglykolmonomethyl-, -monoethyl- oder -monobutylether, Diethylenenglykolmonomethyl- oder -monoethylether und analoge Produkte, Polymere, Schaumstabilisatoren, Elektrolyte sowie Moisturizer.

- Als Moisturizer werden Stoffe oder Stoffgemische bezeichnet, welche kosmetischen oder dermatologischen Zubereitungen die Eigenschaft verleihen, nach dem Auftragen bzw. Verteilen auf der Hautoberfläche die Feuchtigkeitsabgabe der Hornschicht (auch transepidermal water loss (TEWL) genannt) zu reduzieren und/oder die Hydratation der Hornschicht positiv zu beeinflussen.

- Vorteilhafte Moisturizer im Sinne der vorliegenden Erfindung sind beispielsweise Glycerin, Milchsäure, Pyrrolidoncarbonsäure und Harnstoff. Ferner ist es insbesondere von Vorteil, polymere Moisturizer aus der Gruppe der wasserlöslichen und/oder in Wasser quellbaren und/oder mit Hilfe von Wasser gelierbaren Polysaccharide zu verwenden. Insbesondere vorteilhaft sind beispielsweise Hyaluronsäure, Chitosan und/oder ein fucosreiches Polysaccharid, welches in den Chemical Abstracts unter der Registraturnummer 178463-23-5 abgelegt und z. B. unter der Bezeichnung Fucogel®1000 von der Gesellschaft SOLABIA S.A. erhältlich ist.

Die erfindungsgemäßen kosmetischen und dermatologischen Zubereitungen können Farbstoffe und/oder Farbpigmente enthalten, insbesondere wenn sie in Form von dekorativen Kosmetika vorliegen. Die Farbstoffe und -pigmente können aus der entsprechen-

- den Positivliste der Kosmetikverordnung bzw. der EG-Liste kosmetischer Färbemittel ausgewählt werden. In den meisten Fällen sind sie mit den für Lebensmittel zugelassenen Farbstoffen identisch. Vorteilhafte Farbpigmente sind beispielsweise Titandioxid, Glimmer, Eisenoxide (z. B. Fe_2O_3 , Fe_3O_4 , FeO(OH)) und/oder Zinnoxid. Vorteilhafte
- 5 Farbstoffe sind beispielsweise Carmin, Berliner Blau, Chromoxidgrün, Ultramarinblau und/oder Manganviolett. Es ist insbesondere vorteilhaft, die Farbstoffe und/oder Farbpigmente aus der folgenden Liste zu wählen. Die Colour Index Nummern (CIN) sind dem *Rowe Colour Index, 3. Auflage, Society of Dyers and Colourists, Bradford, England, 1971* entnommen.

10

Chemische oder sonstige Bezeichnung	CIN	Farbe
Pigment Green	10006	grün
Acid Green 1	10020	grün
2,4-Dinitrohydroxynaphthalin-7-sulfosäure	10316	gelb
Pigment Yellow 1	11680	gelb
Pigment Yellow 3	11710	gelb
Pigment Orange 1	11725	orange
2,4-Dihydroxyazobenzol	11920	orange
Solvent Red 3	12010	rot
1-(2'-Chlor-4'-nitro-1'-phenylazo)-2-hydroxynaphthalin	12085	rot
Pigment Red 3	12120	rot
Ceresrot; Sudanrot; Fettrot G	12150	rot
Pigment Red 112	12370	rot
Pigment Red 7	12420	rot
Pigment Brown 1	12480	braun
4-(2'-Methoxy-5'-sulfosäurediethylamid-1'-phenylazo)-3-hydroxy-5"-chloro-2",4"-dimethoxy-2-naphthoësäureanilid	12490	rot
Disperse Yellow 16	12700	gelb
1-(4-Sulfo-1-phenylazo)-4-amino-benzol-5-sulfosäure	13015	gelb
2,4-Dihydroxy-azobenzol-4'-sulfosäure	14270	orange
2-(2,4-Dimethylphenylazo-5-sulfosäure)-1-hydroxynaphthalin-4-sulfosäure	14700	rot
2-(4-Sulfo-1-naphthylazo)-1-naphthol-4-sulfosäure	14720	rot

Chemische oder sonstige Bezeichnung	CIN	Farbe
2-(6-Sulfo-2,4-xylylazo)-1-naphthol-5-sulfosäure	14815	rot
1-(4'-Sulfophenylazo)-2-hydroxynaphthalin	15510	orange
1-(2-Sulfosäure-4-chlor-5-carbonsäure-1-phenylazo)-2-hydroxy-naphthalin	15525	rot
1-(3-Methyl-phenylazo-4-sulfosäure)-2-hydroxynaphthalin	15580	rot
1-(4',(8')-Sulfosäurenaphthylazo)-2-hydroxynaphthalin	15620	rot
2-Hydroxy-1,2'-azonaphthalin-1'-sulfosäure	15630	rot
3-Hydroxy-4-phenylazo-2-naphthylcarbonsäure	15800	rot
1-(2-Sulfo-4-methyl-1-phenylazo)-2-naphthylcarbonsäure	15850	rot
1-(2-Sulfo-4-methyl-5-chlor-1-phenylazo)-2-hydroxy-naphthalin-3-carbonsäure	15865	rot
1-(2-Sulfo-1-naphthylazo)-2-hydroxynaphthalin-3-carbonsäure	15880	rot
1-(3-Sulfo-1-phenylazo)-2-naphthol-6-sulfosäure	15980	orange
1-(4-Sulfo-1-phenylazo)-2-naphthol-6-sulfosäure	15985	gelb
Allura Red	16035	rot
1-(4-Sulfo-1-naphthylazo)-2-naphthol-3,6-disulfosäure	16185	rot
Acid Orange 10	16230	orange
1-(4-Sulfo-1-naphthylazo)-2-naphthol-6,8-disulfosäure	16255	rot
1-(4-Sulfo-1-naphthylazo)-2-naphthol-3,6,8-trisulfosäure	16290	rot
8-Amino-2 -phenylazo- 1 -naphthol-3,6-disulfosäure	17200	rot
Acid Red 1	18050	rot
Acid Red 155	18130	rot
Acid Yellow 121	18690	gelb
Acid Red 180	18736	rot
Acid Yellow 11	18820	gelb
Acid Yellow 17	18965	gelb
4-(4-Sulfo-1-phenylazo)-1-(4-sulfophenyl)-5-hydroxy-pyrazolon-3-carbonsäure	19140	gelb
Pigment Yellow 16	20040	gelb
2,6-(4'-Sulfo-2", 4"-dimethyl)-bis-phenylazo)1,3-dihydroxybenzol	20170	orange
Acid Black 1	20470	schwarz
Pigment Yellow 13	21100	gelb

Chemische oder sonstige Bezeichnung	CIN	Farbe
Pigment Yellow 83	21108	gelb
Solvent Yellow	21230	gelb
Acid Red 163	24790	rot
Acid Red 73	27290	rot
2-[4'-(4"-Sulfo-1"-phenylazo)-7'-sulfo-1'-naphthylazo]-1-hydroxy-7-aminonaphthalin-3,6-disulfosäure	27755	schwarz
4'-[(4"-Sulfo-1"-phenylazo)-7'-sulfo-1'-naphthylazo]-1-hydroxy-8-acetyl-aminonaphthalin-3,5-disulfosäure	28440	schwarz
Direct Orange 34, 39, 44, 46, 60	40215	orange
Food Yellow	40800	orange
trans-β-Apo-8'-Carotinaldehyd (C ₃₀)	40820	orange
trans-Apo-8'-Carotinsäure (C ₃₀)-ethylester	40825	orange
Canthaxanthin	40850	orange
Acid Blue 1	42045	blau
2,4-Disulfo-5-hydroxy-4'-4"-bis-(diethylamino)triphenyl-carbinol	42051	blau
4-[(-4-N-Ethyl-p-sulfobenzylamino)-phenyl-(4-hydroxy-2-sulfophenyl)-(methylen)-1-(N-ethylN-p-sulfobenzyl)-2,5-cyclohexadienimin]	42053	grün
Acid Blue 7	42080	blau
(N-Ethyl-p-sulfobenzyl-amino)-phenyl-(2-sulfophenyl)-methylen-(N-ethyl-N-p-sulfo-benzyl)Δ ^{2,5} -cyclohexadienimin	42090	blau
Acid Green 9	42100	grün
Diethyl-di-sulfobenzyl-di-4-amino-2-chlor-di-2-methyl-fuchsonimmonium	42170	grün
Basic Violet 14	42510	violett
Basic Violet 2	42520	violett
2'-Methyl-4'-(N-ethyl-N-m-sulfobenzyl)-amino-4"--(N-diethyl)-amino-2-methyl-N-ethylN-m-sulfobenzyl-fuchsonimmonium	42735	blau
4'-(N-Dimethyl)-amino-4"--(N-phenyl)-aminonaphtho-N-dimethyl-fuchsonimmonium	44045	blau
2-Hydroxy-3,6-disulfo-4,4'-bis-dimethylaminonaphthofuchsonimmonium	44090	grün
Acid Red 52	45100	rot

Chemische oder sonstige Bezeichnung	CIN	Farbe
3-(2'-Methylphenylamino)-6-(2'-methyl-4'-sulfophenylamino)-9-(2"-carboxyphenyl)-xanthiumsalz	45190	violett
Acid Red 50	45220	rot
Phenyl-2-oxyfluoron-2-carbonsäure	45350	gelb
4,5-Dibromfluorescein	45370	orange
2,4,5,7-Tetrabromfluorescein	45380	rot
Solvent Dye	45396	orange
Acid Red 98	45405	rot
3',4',5',6'-Tetrachlor-2,4,5,7-tetrabromfluorescein	45410	rot
4,5-Diiodfluorescein	45425	rot
2,4,5,7-Tetraiodfluorescein	45430	rot
Chinophthalon	47000	gelb
Chinophthalon-disulfosäure	47005	gelb
Acid Violet 50	50325	violett
Acid Black 2	50420	schwarz
Pigment Violet 23	51319	violett
1,2-Dioxyanthrachinon, Calcium-Aluminiumkomplex	58000	rot
3-Oxypyren-5,8,10-sulfosäure	59040	grün
1-Hydroxy-4-N-phenyl-aminoanthrachinon	60724	violett
1-Hydroxy-4-(4'-methylphenylamino)-anthrachinon	60725	violett
Acid Violet 23	60730	violett
1,4-Di(4'-methyl-phenylamino)-anthrachinon	61565	grün
1,4-Bis-(o-sulfo-p-toluidino)-anthrachinon	61570	grün
Acid Blue 80	61585	blau
Acid Blue 62	62045	blau
N,N'-Dihydro-1,2,1',2'-anthrachinonazin	69800	blau
Vat Blue 6; Pigment Blue 64	69825	blau
Vat Orange 7	71105	orange
Indigo	73000	blau
Indigo-disulfosäure	73015	blau
4,4'-Dimethyl-6,6'-dichlorthioindigo	73360	rot
5,5'-Dichlor-7,7'-dimethylthioindigo	73385	violett

Chemische oder sonstige Bezeichnung	CIN	Farbe
Quinacridone Violet 19	73900	violett
Pigment Red 122	73915	rot
Pigment Blue 16	74100	blau
Phthalocyanine	74160	blau
Direct Blue 86	74180	blau
Chlorierte Phthalocyanine	74260	grün
Natural Yellow 6,19; Natural Red 1	75100	gelb
Bixin, Nor-Bixin	75120	orange
Lycopin	75125	gelb
trans-alpha-, beta- bzw. gamma-Carotin	75130	orange
Keto- und/oder Hydroxylderivate des Carotins	75135	gelb
Guanin oder Perlglanzmittel	75170	weiß
1,7-Bis-(4-hydroxy-3-methoxyphenyl)1,6-heptadien-3,5-dion	75300	gelb
Komplexsalz (Na, Al, Ca) der Karminsäure	75470	rot
Chlorophyll a und b; Kupferverbindungen der Chlorophylle und Chlorophylline	75810	grün
Aluminium	77000	weiß
Tonerdehydrat	77002	weiß
Wasserhaltige Aluminiumsilikate	77004	weiß
Ultramarin	77007	blau
Pigment Red 101 und 102	77015	rot
Bariumsulfat	77120	weiß
Bismutoxychlorid und seine Gemische mit Glimmer	77163	weiß
Calciumcarbonat	77220	weiß
Calciumsulfat	77231	weiß
Kohlenstoff	77266	schwarz
Pigment Black 9	77267	schwarz
Carbo medicinalis vegetabilis	77268:1	schwarz
Chromoxid	77288	grün
Chromoxid, wasserhaltig	77289	grün
Pigment Blue 28, Pigment Green 14	77346	grün
Pigment Metal 2	77400	braun

Chemische oder sonstige Bezeichnung	CIN	Farbe
Gold	77480	braun
Eisenoxide und -hydroxide	77489	orange
Eisenoxid	77491	rot
Eisenoxidhydrat	77492	gelb
Eisenoxid	77499	schwarz
Mischungen aus Eisen(II)- und Eisen(III)-hexacyanoferrat	77510	blau
Pigment White 18	77713	weiß
Mangananimoniumdiphosphat	77742	violett
Manganphosphat; Mn ₃ (PO ₄) ₂ · 7 H ₂ O	77745	rot
Silber	77820	weiß
Titandioxid und seine Gemische mit Glimmer	77891	weiß
Zinkoxid	77947	weiß
6,7-Dimethyl-9-(1'-D-ribityl)-isoalloxazin, Lactoflavin		gelb
Zuckerkulör		braun
Capsanthin, Capsorubin		orange
Betanin		rot
Benzopyryliumsalze, Anthocyane		rot
Aluminium-, Zink-, Magnesium- und Calciumstearat		weiß
Bromthymolblau		blau
Bromkresolgrün		grün
Acid Red 195		rot

Sofern die erfindungsgemäßen Formulierungen in Form von Produkten vorliegen, welche im Gesicht angewendet werden, ist es günstig, als Farbstoff eine oder mehrere Substanzen aus der folgenden Gruppe zu wählen: 2,4-Dihydroxyazobenzol, 1-(2'-Chlor-

- 5 4'-nitro-1'-phenylazo)-2-hydroxynaphthalin, Ceresrot, 2-(4-Sulfo-1-naphthylazo)-1-naphthol-4-sulfosäure, Calciumsalz der 2-Hydroxy-1,2'-azonaphthalin-1'-sulfosäure, Calcium- und Bariumsalze der 1-(2-Sulfo-4-methyl-1-phenylazo)-2-naphthylcarbonsäure, Calciumsalz der 1-(2-Sulfo-1-naphthylazo)-2-hydroxynaphthalin-3-carbonsäure, Aluminiumsalz der 1-(4-Sulfo-1-azo)-2-naphthol-6-sulfosäure, Aluminiumsalz der 1-(4-Sulfo-1-naphthylazo)-2-naphthol-3,6-disulfosäure, 1-(4-Sulfo-1-naphthylazo)-2-naphthol-6,8-di-sulfosäure, Aluminiumsalz der 4-(4-Sulfo-1-phenylazo)-1-(4-sulfophenyl)-5-hydroxy-pyrazolon-3-carbonsäure, Aluminium- und Zirkoniumsalze von 4,5-Dibromfluorescein, Alumi-
- 10

- nium- und Zirkoniumsalze von 2,4,5,7-Tetrabromfluorescein, 3',4',5',6'-Tetrachlor-2,4,5,7-tetrabromfluorescein und sein Aluminiumsalz, Aluminiumsalz von 2,4,5,7-Tetraiodfluorescein, Aluminiumsalz der Chinophthalon-disulfosäure, Aluminiumsalz der Indigo-disulfosäure, rotes und schwarzes Eisenoxid (CIN: 77 491 (rot) und 77 499 (schwarz)), Eisenoxidhydrat (CIN: 77 492), Manganammoniumdiphosphat und Titandioxid.
- 5

Ferner vorteilhaft sind öllösliche Naturfarbstoffe, wie z. B. Paprikaextrakte, β -Carotin oder Cochenille.

10

Vorteilhaft im Sinne der vorliegenden Erfindung sind ferner Formulierungen mit einem Gehalt an Perlglanzpigmenten. Bevorzugt sind insbesondere die im folgenden aufgelisteten Arten von Perlglanzpigmenten:

1. Natürliche Perlglanzpigmente, wie z. B.
 - 15 ▪ „Fischsilber“ (Guänin/Hypoxanthin-Mischkristalle aus Fischschuppen) und
 - „Perlmutter“ (vermahlene Muschelschalen)
2. Monokristalline Perlglanzpigmente wie z. B. Bismutoxychlorid (BiOCl)
3. Schicht-Substrat Pigmente: z. B. Glimmer / Metalloxid

- 20 Basis für Perlglanzpigmente sind beispielsweise pulverförmige Pigmente oder Ricinusöldispersionen von Bismutoxychlorid und/oder Titandioxid sowie Bismutoxychlorid und/oder Titandioxid auf Glimmer. Insbesondere vorteilhaft ist z. B. das unter der CIN 77163 aufgelistete Glanzpigment.

- 25 Vorteilhaft sind ferner beispielsweise die folgenden Perlglanzpigmentarten auf Basis von Glimmer/Metalloxid:

Gruppe	Belegung / Schichtdicke	Farbe
Silberweiße Perlglanzpigmente	TiO_2 : 40 – 60 nm	silber
Interferenzpigmente	TiO_2 : 60 – 80 nm	gelb
	TiO_2 : 80 – 100 nm	rot
	TiO_2 : 100 – 140 nm	blau
	TiO_2 : 120 – 160 nm	grün
Farbglanzpigmente	Fe_2O_3	bronze

	Fe_2O_3	kupfer
	Fe_2O_3	rot
	Fe_2O_3	rotviolett
	Fe_2O_3	rotgrün
	Fe_2O_3	schwarz
Kombinationspigmente	$\text{TiO}_2 / \text{Fe}_2\text{O}_3$	Goldtöne
	$\text{TiO}_2 / \text{Cr}_2\text{O}_3$	grün
	$\text{TiO}_2 / \text{Berliner Blau}$	tiefblau
	$\text{TiO}_2 / \text{Carmin}$	rot

Besonders bevorzugt sind z.B. die von der Firma Merck unter den Handelsnamen Timiron, Colorona oder Dichrona erhältlichen Perlglanzpigmente.

- 5 Die Liste der genannten Perlglanzpigmente soll selbstverständlich nicht limitierend sein. Im Sinne der vorliegenden Erfindung vorteilhafte Perlglanzpigmente sind auf zahlreichen, an sich bekannten Wegen erhältlich. Beispielsweise lassen sich auch andere Substrate außer Glimmer mit weiteren Metalloxiden beschichten, wie z. B. Silica und dergleichen mehr. Vorteilhaft sind z. B. mit TiO_2 und Fe_2O_3 beschichtete SiO_2 -Partikel („Ronaspheren“), die von der Firma Merck vertrieben werden und sich besonders für die optische Reduktion feiner Fältchen eignen.
- 10

- Es kann darüber hinaus von Vorteil sein, gänzlich auf ein Substrat wie Glimmer zu verzichten. Besonders bevorzugt sind Eisenperlglanzpigmente, welche ohne die Verwendung von Glimmer hergestellt werden. Solche Pigmente sind z. B. unter dem Handelsnamen Sicopearl Kupfer 1000 bei der Firma BASF erhältlich.
- 15

- Besonders vorteilhaft sind ferner auch Effektpigmente, welche unter der Handelsbezeichnung Metasomes Standard / Glitter in verschiedenen Farben (yellow, red, green, blue) von der Firma Flora Tech erhältlich sind. Die Glitterpartikel liegen hierbei in Gemischen mit verschiedenen Hilfs- und Farbstoffen (wie beispielsweise den Farbstoffen mit den Colour Index (CI) Nummern 19140, 77007, 77289, 77491) vor.
- 20

- Die Farbstoffe und Pigmente können sowohl einzeln als auch im Gemisch vorliegen so- wie gegenseitig miteinander beschichtet sein, wobei durch unterschiedliche Beschichtungsdicken im allgemeinen verschiedene Farbeffekte hervorgerufen werden. Die Ge-
- 25

samtmenge der Farbstoffe und farbgebenden Pigmente wird vorteilhaft aus dem Bereich von z. B. 0,1 Gew.-% bis 30 Gew.-%, vorzugsweise von 0,5 bis 15 Gew.-%, insbesondere von 1,0 bis 10 Gew.-% gewählt, jeweils bezogen auf das Gesamtgewicht der Zubereitungen.

5

- Es ist auch vorteilhaft im Sinne der vorliegenden Erfindung, kosmetische und dermatologische Zubereitungen zu erstellen, deren hauptsächlicher Zweck nicht der Schutz vor Sonnenlicht ist, die aber dennoch einen Gehalt an UV-Schutzsubstanzen enthalten. So werden z. B. in Tagescremes oder Makeup-Produkten gewöhnlich UV-A- bzw. UV-B-Filtersubstanzen eingearbeitet. Auch stellen UV-Schutzsubstanzen, ebenso wie Antioxidantien und, gewünschtenfalls, Konservierungsstoffe, einen wirksamen Schutz der Zubereitungen selbst gegen Verderb dar. Günstig sind ferner kosmetische und dermatologische Zubereitungen, die in der Form eines Sonnenschutzmittels vorliegen.
- 10 Dementsprechend enthalten die Zubereitungen im Sinne der vorliegenden Erfindung vorzugsweise neben einer oder mehreren erfindungsgemäßen UV-Filtersubstanzen zusätzlich mindestens eine weitere UV-A- und/oder UV-B-Filtersubstanz. Die Formulierungen können, obgleich nicht notwendig, gegebenenfalls auch ein oder mehrere organische und/oder anorganische Pigmente als UV-Filtersubstanzen enthalten, welche in der
- 15 Wasser- und/oder der Ölphase vorliegen können.
- 20

Bevorzugte anorganische Pigmente sind Metalloxide und/oder andere in Wasser schwerlösliche oder unlösliche Metallverbindungen, insbesondere Oxide des Titans (TiO_2), Zinks (ZnO), Eisens (z. B. Fe_2O_3), Zirkoniums (ZrO_2), Siliciums (SiO_2), Mangans (z. B. MnO), Aluminiums (Al_2O_3), Cers (z. B. Ce_2O_3), Mischoxide der entsprechenden Metalle sowie Abmischungen aus solchen Oxiden.

Solche Pigmente können im Sinne der vorliegenden Erfindung vorteilhaft oberflächlich behandelt („gecoatet“) sein, wobei beispielsweise ein amphiphiler oder hydrophober Charakter gebildet werden bzw. erhalten bleiben soll. Diese Oberflächenbehandlung kann darin bestehen, daß die Pigmente nach an sich bekannten Verfahren mit einer dünnen hydrophoben Schicht versehen werden.

Erfindungsgemäß vorteilhaft sind z. B. Titandioxidpigmente, die mit Octylsilanol beschichtet sind. Geeignete Titandioxidpartikel sind unter der Handelsbezeichnung T805 bei der Firma Degussa erhältlich. Besonders vorteilhaft sind ferner mit Aluminiumstearat beschichtete TiO_2 -Pigmente, z. B. die unter der Handelsbezeichnung MT 100 T bei der Firma TAYCA erhältlichen.

Eine weitere vorteilhafte Beschichtung der anorganischen Pigmente besteht aus Dimethylpolysiloxan (auch: Dimethicon), einem Gemisch vollmethylierter, linearer Siloxanpolymere, die endständig mit Trimethylsiloxy-Einheiten blockiert sind. Besonders vorteilhaft im Sinne der vorliegenden Erfindung sind Zinkoxid-Pigmente, die auf diese Weise beschichtet werden.

Vorteilhaft ist ferner eine Beschichtung der anorganischen Pigmente mit einem Gemisch aus Dimethylpolysiloxan, insbesondere Dimethylpolysiloxan mit einer durchschnittlichen Kettenlänge von 200 bis 350 Dimethylsiloxy-Einheiten, und Silicagel, welches auch als Simethicone bezeichnet wird. Es ist insbesondere von Vorteil, wenn die anorganischen Pigmente zusätzlich mit Aluminiumhydroxid bzw. Aluminiumoxidhydrat (auch: Alumina, CAS-Nr.: 1333-84-2) beschichtet sind. Besonders vorteilhaft sind Titandioxide, die mit Simethicone und Alumina beschichtet sind, wobei die Beschichtung auch Wasser enthalten kann. Ein Beispiel hierfür ist das unter dem Handelsnamen Eusolex T2000 bei der Firma Merck erhältliche Titandioxid.

Vorteilhaftes organisches Pigment im Sinne der vorliegenden Erfindung ist das 2,2'-Methylen-bis-(6-(2H-benzotriazol-2-yl)-4-(1,1,3,3-tetramethylbutyl)-phenol) [INCI: Bisoctyltriazol], welches durch die chemische Strukturformel

gekennzeichnet ist und unter der Handelsbezeichnung Tinosorb® M bei der CIBA-Chemie GmbH erhältlich ist.

- Vorteilhaft enthalten erfindungsgemäße Zubereitungen Substanzen, die UV-Strahlung
- 5 im UV-A- und/oder UV-B-Bereich absorbieren, wobei die Gesamtmenge der Filtersubstanzen z. B. 0,1 Gew.-% bis 30 Gew.-%, vorzugsweise 0,5 bis 20 Gew.-%, insbesondere 1,0 bis 15,0 Gew.-% beträgt, bezogen auf das Gesamtgewicht der Zubereitungen, um kosmetische Zubereitungen zur Verfügung zu stellen, die das Haar bzw. die Haut vor dem gesamten Bereich der ultravioletten Strahlung schützen. Sie können auch als Sonnenenschutzmittel fürs Haar oder die Haut dienen.
- 10

Vorteilhafte UV-A-Filtersubstanzen im Sinne der vorliegenden Erfindung sind Dibenzoylmethanderivate, insbesondere das 4-(tert.-Butyl)-4'-methoxydibenzoylmethan (CAS-Nr. 70356-09-1), welches von Givaudan unter der Marke Parsol® 1789 und von Merck unter

15 der Handelsbezeichnung Eusolex® 9020 verkauft wird.

Weitere vorteilhafte UV-A-Filtersubstanzen sind die Phenyl-1,4-bis-(2-benzimidazyl)-3,3'-5,5'-tetrasulfonsäure

- 20 und ihre Salze, besonders die entsprechenden Natrium-, Kalium- oder Triethanolammonium-Salze, insbesondere das Phenyl-1,4-bis-(2-benzimidazyl)-3,3'-5,5'-tetrasulfonsäure-bis-natriumsalz

- mit der INCI-Bezeichnung Bisimidazylate, welches beispielsweise unter der Handelsbezeichnung Neo Heliolan AP bei Haarmann & Reimer erhältlich ist.
- 25

- Ferner vorteilhaft sind das 1,4-di(2-oxo-10-Sulfo-3-bornylidenmethyl)-Benzol und dessen Salze (besonders die entsprechenden 10-Sulfato-verbindungen, insbesondere das entsprechende Natrium-, Kalium- oder Triethanolammonium-Salz), das auch als Benzol-1,4-di(2-oxo-3-bornylidenmethyl-10-sulfonsäure) bezeichnet wird und sich durch die folgende Struktur auszeichnet:

Vorteilhafte UV-Filtersubstanzen im Sinne der vorliegenden Erfindung sind ferner sogenannte Breitbandfilter, d.h. Filtersubstanzen, die sowohl UV-A- als auch UV-B-Strahlung absorbieren.

10

Vorteilhafte Breitbandfilter oder UV-B-Filtersubstanzen sind beispielsweise Bis-Resorcinyltriazinderivate mit der folgenden Struktur:

- wobei R¹, R² und R³ unabhängig voneinander gewählt werden aus der Gruppe der ver-
15 zweigten und unverzweigten Alkylgruppen mit 1 bis 10 Kohlenstoffatomen bzw. ein einzelnes Wasserstoffatom darstellen. Insbesondere bevorzugt sind das 2,4-Bis-[{4-(2-Ethyl-hexyloxy)-2-hydroxy]-phenyl}-6-(4-methoxyphenyl)-1,3,5-triazin (INCI: Aniso Tria-

zin), welches unter der Handelsbezeichnung Tinosorb® S bei der CIBA-Chemikalien GmbH erhältlich ist.

- Besonders vorteilhafte Zubereitungen im Sinne der vorliegenden Erfindung, die sich
- 5 durch einen hohen bzw. sehr hohen UV-A-Schutz auszeichnen, enthalten bevorzugt mehrere UV-A- und/oder Breitbandfilter, insbesondere Dibenzoylmethanderivate [beispielsweise das 4-(tert-Butyl)-4'-methoxydibenzoylmethan], Benzotriazolderivate [beispielsweise das 2,2'-Methylen-bis-(6-(2H-benzotriazol-2-yl)-4-(1,1,3,3-tetramethylbutyl)-phenol)], Phenyl-1,4-bis-(2-benzimidazyl)-3,3'-5,5'-tetrasulfonsäure und/oder ihre Salze,
- 10 ze, das 1,4-di(2-oxo-10-Sulfo-3-bornylidenmethyl)-Benzol und/oder dessen Salze und/oder das 2,4-Bis-[{[4-(2-Ethyl-hexyloxy)-2-hydroxy]-phenyl}-6-(4-methoxyphenyl)-1,3,5-triazin, jeweils einzeln oder in beliebigen Kombinationen miteinander.

Auch andere UV-Filtersubstanzen, welche das Strukturmotiv

15

aufweisen, sind vorteilhafte UV-Filtersubstanzen im Sinne der vorliegenden Erfindung, beispielsweise die in der Europäischen Offenlegungsschrift EP 570 838 A1 beschriebenen s-Triazinderivate, deren chemische Struktur durch die generische Formel

wiedergegeben wird, wobei

R einen verzweigten oder unverzweigten C₁-C₁₈-Alkylrest, einen C₅-C₁₂-Cycloalkylrest, gegebenenfalls substituiert mit einer oder mehreren C₁-C₄- Alkylgruppen, darstellt,

X ein Sauerstoffatom oder eine NH-Gruppe darstellt,

R₁ einen verzweigten oder unverzweigten C₁-C₁₈-Alkylrest, einen C₅-C₁₂-Cycloalkylrest, gegebenenfalls substituiert mit einer oder mehreren C₁-C₄- Alkylgruppen, oder ein Wasserstoffatom, ein Alkalimetallatom, eine Ammoniumgruppe oder eine Gruppe der Formel

bedeutet, in welcher

A einen verzweigten oder unverzweigten C₁-C₁₈-Alkylrest, einen C₅-C₁₂-Cycloalkyl- oder Arylrest darstellt, gegebenenfalls substituiert mit einer oder mehreren C₁-C₄- Alkylgruppen,

R₃ ein Wasserstoffatom oder eine Methylgruppe darstellt,

n eine Zahl von 1 bis 10 darstellt,

R₂ einen verzweigten oder unverzweigten C₁-C₁₈-Alkylrest, einen C₅-C₁₂-Cycloalkylrest, gegebenenfalls substituiert mit einer oder mehreren C₁-C₄- Alkylgruppen, darstellt, wenn X die NH-Gruppe darstellt, und

einen verzweigten oder unverzweigten C₁-C₁₈-Alkylrest, einen C₅-C₁₂-Cycloalkylrest, gegebenenfalls substituiert mit einer oder mehreren C₁-C₄-Alkylgruppen, oder ein Wasserstoffatom, ein Alkalimetallatom, eine Ammoniumgruppe oder eine Gruppe der Formel

5

bedeutet, in welcher

- A einen verzweigten oder unverzweigten C₁-C₁₈-Alkylrest, einen C₅-C₁₂-Cycloalkyl- oder Arylrest darstellt, gegebenenfalls substituiert mit einer oder mehreren C₁-C₄-Alkylgruppen,
- 10 R₃ ein Wasserstoffatom oder eine Methylgruppe darstellt,
- n eine Zahl von 1 bis 10 darstellt,
- wenn X ein Sauerstoffatom darstellt.

Besonders bevorzugte UV-Filtersubstanz im Sinne der vorliegenden Erfindung ist ferner
15 ein unsymmetrisch substituiertes s-Triazin, dessen chemische Struktur durch die Formel

wiedergegeben wird, welches im Folgenden auch als Dioctylbutylamidotriazon (INCI: Dioctylbutamidotriazole) bezeichnet wird und unter der Handelsbezeichnung UVA-SORB HEB bei Sigma 3V erhältlich ist.

- 5 Vorteilhaft im Sinne der vorliegenden Erfindung ist auch ein symmetrisch substituiertes s-Triazin, das 4,4',4''-(1,3,5-Triazin-2,4,6-triylimino)-tris-benzoësäure-tris(2-ethylhexyl-ester), synonym: 2,4,6-Tris-[anilino-(p-carbo-2'-ethyl-1'-hexyloxy)]-1,3,5-triazin (INCI: Octyl Triazole), welches von der BASF Aktiengesellschaft unter der Warenbezeichnung UVINUL® T 150 vertrieben wird.

10

Auch in der Europäischen Offenlegungsschrift 775 698 werden bevorzugt einzusetzende Bis-Resorcinyltriazinderivate beschrieben, deren chemische Struktur durch die generische Formel

15

wiedergegeben wird, wobei R₁, R₂ und A₁ verschiedenste organische Reste repräsentieren.

- Vorteilhaft im Sinne der vorliegenden Erfindung sind ferner das 2,4-Bis-[[4-(3-sulfonato)-2-hydroxy-propyloxy]-2-hydroxy]-phenyl]-6-(4-methoxyphenyl)-1,3,5-triazin Natriumsalz, das 2,4-Bis-[[4-(3-(2-Propyloxy)-2-hydroxy-propyloxy)-2-hydroxy]-phenyl]-6-(4-methoxyphenyl)-1,3,5-triazin, das 2,4-Bis-[[4-(2-ethyl-hexyloxy)-2-hydroxy]-phenyl]-6-[4-(2-methoxyethyl-carboxyl)-phenylamino]-1,3,5-triazin, das 2,4-Bis-[[4-(3-(2-propyloxy)-2-hydroxy-propyloxy)-2-hydroxy]-phenyl]-6-[4-(2-ethyl-carboxyl)-phenylamino]-1,3,5-triazin, das 2,4-Bis-[[4-(2-ethyl-hexyloxy)-2-hydroxy]-phenyl]-6-(1-methyl-pyrrol-2-yl)-1,3,5-triazin, das 2,4-Bis-[[4-tris(trimethylsiloxy-silylpropyloxy)-2-hydroxy]-phenyl]-6-(4-methoxyphenyl)-1,3,5-triazin, das 2,4-Bis-[[4-(2"-methylpropenyloxy)-2-hydroxy]-phenyl]-6-(4-meth-

xyphenyl)-1,3,5-triazin und das 2,4-Bis-[{4-(1',1',1',3',5',5',5'-Heptamethylsiloxy-2"-methyl-propyloxy)-2-hydroxy]-phenyl]-6-(4-methoxyphenyl)-1,3,5-triazin.

- Ein vorteilhafter Breitbandfilter im Sinne der vorliegenden Erfindung ist das 2,2'-Methylen-bis-(6-(2H-benzotriazol-2-yl)-4-(1,1,3,3-tetramethylbutyl)-phenol), welches durch die chemische Strukturformel

gekennzeichnet ist und unter der Handelsbezeichnung Tinosorb® M bei der CIBA-Chemikalien GmbH erhältlich ist.

10

Vorteilhafter Breitbandfilter im Sinne der vorliegenden Erfindung ist ferner das 2-(2H-benzotriazol-2-yl)-4-methyl-6-[2-methyl-3-[1,3,3,3-tetramethyl-1-[(trimethylsilyl)oxy]disiloxanyl]propyl]-phenol (CAS-Nr.: 155633-54-8) mit der INCI-Bezeichnung Drometrizole Trisiloxane, welches durch die chemische Strukturformel

15

gekennzeichnet ist.

Die UV-B- und/oder Breitband-Filter können öllöslich oder wasserlöslich sein. Vorteilhafte öllösliche UV-B- und/oder Breitband-Filtersubstanzen sind z. B.:

- 20 ▪ 3-Benzylidencampher-Derivate, vorzugsweise 3-(4-Methylbenzyliden)campher, 3-Benzylidencampher;

- 4-Aminobenzoësäure-Derivate, vorzugsweise 4-(Dimethylamino)-benzoësäure(2-ethylhexyl)ester, 4-(Dimethylamino)benzoësäureamylester;
- 2,4,6-Trianilino-(p-carbo-2'-ethyl-1'-hexyloxy)-1,3,5-triazin;
- Ester der Benzalmalonsäure, vorzugsweise 4-Methoxybenzalmalonsäuredi(2-ethylhexyl)ester;
- Ester der Zimtsäure, vorzugsweise 4-Methoxizimtsäure(2-ethylhexyl)ester, 4-Methoxizäureisopentylester;
- Derivate des Benzophenons, vorzugsweise 2-Hydroxy-4-methoxybenzophenon, 2-Hydroxy-4-methoxy-4'-methylbenzophenon, 2,2'-Dihydroxy-4-methoxybenzophenon
- 10 ▪ sowie an Polymere gebundene UV-Filter.

Vorteilhafte wasserlösliche UV-B- und/oder Breitband-Filtersubstanzen sind z. B.:

- Salze der 2-Phenylbenzimidazol-5-sulfonsäure, wie ihr Natrium-, Kalium- oder ihr Triethanolammonium-Salz, sowie die Sulfonsäure selbst;
- 15 ▪ Sulfonsäure-Derivate des 3-Benzylidencampfers, wie z. B. 4-(2-Oxo-3-bornylidenmethyl)benzolsulfonsäure, 2-Methyl-5-(2-oxo-3-bornylidenmethyl)sulfonsäure und deren Salze.

Eine weiterere erfindungsgemäß vorteilhaft zu verwendende Lichtschutzfiltersubstanz ist
20 das Ethylhexyl-2-cyano-3,3-diphenylacrylat (Octocrylen), welches von BASF unter der Bezeichnung Uvinul® N 539 erhältlich ist und sich durch folgende Struktur auszeichnet:

Es kann auch von erheblichem Vorteil sein, polymergebundene oder polymere UV-Filter-
25 substanzen in Zubereitungen gemäß der vorliegenden Erfindung zu verwenden, insbesondere solche, wie sie in der WO-A-92/20690 beschrieben werden.

Ferner kann es gegebenenfalls von Vorteil sein, erfindungsgemäß weitere UV-A- und/oder UV-B-Filter in kosmetische oder dermatologische Zubereitungen einzuarbeiten, beispielsweise bestimmte Salicylsäurederivate wie 4-Isopropylbenzylsalicylat, 2-Ethylhexylsalicylat (= Octylsalicylat), Homomenthylsalicylat.

5

Die Liste der genannten UV-Filter, die im Sinne der vorliegenden Erfindung eingesetzt werden können, soll selbstverständlich nicht limitierend sein.

- Vorteilhaft enthalten die erfindungsgemäßen Zubereitungen die Substanzen, die UV-
- 10 Strahlung im UV-A- und/oder UV-B-Bereich absorbieren, in einer Gesamtmenge von z. B. 0,1 Gew.-% bis 30 Gew.-%, vorzugsweise 0,5 bis 20 Gew.-%, insbesondere 1,0 bis 15,0 Gew.-%, jeweils bezogen auf das Gesamtgewicht der Zubereitungen, um kosmetische Zubereitungen zur Verfügung zu stellen, die das Haar bzw. die Haut vor dem gesamten Bereich der ultravioletten Strahlung schützen. Sie können auch als Sonnenschutzmittel fürs Haar oder die Haut dienen.
- 15

- Die nachfolgenden Beispiele sollen die vorliegende Erfindung verdeutlichen, ohne sie einzuschränken. Alle Mengenangaben, Anteile und Prozentanteile sind, soweit nicht anders angegeben, auf das Gewicht und die Gesamtmenge bzw. auf das Gesamtgewicht
- 20 der Zubereitungen bezogen.

Beispiel 1 (schaumförmige O/W-Creme):

	Gew.-%	Vol.-%
Emulsion I		
Stearinsäure	3,00	
Cetylalkohol	8,50	
PEG-20-Stearat	8,50	
Talkum	2,00	
SiO ₂	2,00	
C ₁₂₋₁₅ Alkylbenzoat	4,00	
Paraffinöl	5,00	
Isohexadecan	2,00	
Glycerin	5,00	
Natriumhydroxid	q.s.	
Konservierung	q.s.	
Parfum	q.s.	
Wasser, demineralisiert	ad 100,00	
pH-Wert eingestellt auf 6,5-7,5		
Emulsion I		70
Stickstoff		30

- Vereinigung der auf 75 °C aufgeheizten Fettphase mit der auf 70 °C aufgeheizten Was-
serphase. Zugabe der partikulären hydrophoben und/oder hydrophobisierten und/oder
 5 ölabsorbierenden Festkörpersubstanzen (Pigmente) unter Rühren. Homogenisierung
mittels einer Zahnkranzdispergiermaschine (Rotor-Stator-Prinzip) bei 65°C. 45 min Rüh-
ren unter Begasung mit Stickstoff bei 0,7bar und Kühlung. Zugabe der Additive bei
30 °C (Parfüm, Wirkstoffe). Homogenisierung mittels einer Zahnkranzdispergiermaschi-
ne (Rotor-Stator-Prinzip) bei 27°C.

Beispiel 2 (schaumförmige O/W-Lotion):

	Gew.-%	Vol.-%
Emulsion II		
Stearinsäure	2,00	
Myristylalcohol	1,50	
Cetylstearylalcohol	0,50	
PEG-100 Stearate	3,00	
TiO ₂	1,00	
Kaolin	5,00	
Mineralöl	5,00	
Hydriertes Polyisobuten	15,0	
Glycerin	3,00	
Natriumhydroxid	q.s.	
Konservierung	q.s.	
Parfum	q.s.	
Wasser,demineralisiert	ad 100,00	
pH-Wert eingestellt auf 5,0-6,5		
Emulsion II		50
Gas (Kohlendioxid)		50

- 5 Vereinigung der auf 80°C aufgeheizten Fettphase mit der auf 72°C aufgeheizten Was-
serphase. Zugabe der partikulären hydrophoben und/oder hydrophobisierten und/oder
ölabsorbierenden Festkörpersubstanzen (Pigmente) unter Rühren. Homogenisierung
mittels einer Zahnkranzdispersiermaschine (Rotor-Stator-Prinzip) bei 65°C. 45 min Rüh-
ren unter Begasung mit Kohlendioxid bei 1.2 bar und Kühlung. Zugabe der Additive bei
10 30°C (Parfüm). Homogenisierung mittels einer Zahnkranzdispersiermaschine (Rotor-
Stator-Prinzip) bei 30°C.

Bispiel 3 (schaumförmig O/W-Lotion):

	Gew.-%	Vol.-%
Emulsion III		
Stearinsäure	5,00	
Cetylstearylalkohol	5,50	
PEG-30-Stearat	1,00	
Aluminium-Stärkeoctenylsuccinat	3,00	
Al ₂ O ₃	0,50	
Cyclomethicon	3,00	
Isoeikosan	10,00	
Polydecen	10,00	
Citronensäure	0,10	
Glycerin	3,00	
Parfüm, Konservierungsmittel,	q.s.	
Natriumhydroxid	q.s.	
Farbstoffe usw.	q.s.	
Wasser	ad 100,00	
pH-Wert eingestellt auf 6,0-7,5		
Emulsion III		65
Gas (Luft)		35

- Vereinigung der auf 80°C aufgeheizten Fettphase mit der auf 75°C aufgeheizten Was-
- 5 serphase. Zugabe der partikulären hydrophoben, hydrophobisierten Festkörpersubstan-
- zen (Aluminimumoxid) unter Rühren. Homogenisierung mittels einer Zahnkranzdisper-
- giemaschine (Rotor-Stator-Prinzip) bei 65°C. 45 min Rühren in einem offenen Kessel
- bis auf 30°C. Zugabe der partikulären hydrophobisierten Festkörpersubstanzen (Alumi-
- nium-Stärkeoctenylsuccinat) sowie weitere Additive (Parfüm, Wirkstoffe) bei 30°C. Ho-
- 10 mogenisierung mittels einer Zahnkranzdispergiemaschine (Rotor-Stator-Prinzip) bei
- 25°C.

Beispiel 4 (schaumförmige O/W-Emulsions-Make-up):

Emulsion IV	Gew.-%	Vol.-%
Palmitinsäure	2,00	
Cetylalkohol	2,00	
PEG-100-Stearat	2,00	
Talkum	0,50	
Zeolith	0,75	
Dimethicon	0,50	
Paraffinöl	9,50	
Dicaprylylether	2,00	
Glycerin	3,00	
Glimmer	1,00	
Eisenoxide	1,00	
Titandioxid	4,50	
Vitamin-A-Palmitat	0,10	
Natriumhydroxid	q.s.	
Konservierung	q.s.	
Parfum	q.s.	
Wasser, demineralisiert	ad 100,00	
pH-Wert eingestellt auf 6,0 – 7,5		
Emulsion IV		37
Gas (Sauerstoff)		63

- Vereinigung der auf 78°C aufgeheizten Fett- und Farbpigmentphase mit der auf 75°C
5 aufgeheizten Wasserphase. Zugabe der partikulären hydrophoben, hydrophobisierten Festkörpersubstanzen (Talkum, Zeolith) unter Rühren. Homogenisierung mittels einer Zahnkranzdispersiermaschine (Rotor-Stator-Prinzip) bei 65°C. 45 min Rühren im Beco-mix unter Begasung mit Sauerstoff bei 1.3 bar unter Kühlung auf 30°C. Zugabe der Additive bei 30°C (Parfüm, Wirkstoffe). Homogenisierung mittels einer Zahnkranzdisper-
10 giermaschine (Rotor-Stator-Prinzip) bei 25°C.

Beispiel 5 (schaumf"rmig O/W-Creme):

Emulsion V	Gew.-%	Vol.-%
Stearinsäure	4,00	
Cetylalkohol	2,00	
PEG-30-Stearat	2,00	
Sorbitanmonostearat	1,50	
Talkum	2,50	
Paraffinöl	5,00	
Cyclomethicon	1,00	
Vitamin-E-Aacetat	1,00	
Retinylpalmitat	0,20	
Glycerin	3,00	
BHT	0,02	
Na ₂ H ₂ EDTA	0,10	
Parfüm, Konservierungsmittel,	q.s.	
Farbstoffe	q.s.	
Kaliumhydroxid	q.s.	
Wasser	ad 100,00	
pH-Wert eingestellt auf 5,0-7,0		
Emulsion V		43
Gas (Lachgas)		57

- Vereinigung der auf 80°C aufgeheizten Fettphase mit der auf 75°C aufgeheizten Was-
 5 serphase. Zugabe der partikulären hydrophoben, hydrophobisierten Festkörpersubstan-
 zen (Talkum) unter Rühren Homogenisierung mittels einer Zahnkranzdispersiermaschi-
 ne (Rotor-Stator-Prinzip) bei 65°C. 45 min Rühren im BeComix unter Begasung mit
 Lachgas bei 0,7 bar unter Kühlung auf 30°C. Zugabe der Additive bei 30°C (Parfüm,
 Wirkstoffe). Homogenisierung mittels einer Zahnkranzdispersiermaschine (Rotor-Stator-
 10 Prinzip) bei 26°C.

Beispiel 6 (schaumförmige O/W-Lotion):

Emulsion VI	Gew.-%	Vol.-%
Stearinsäure	4,00	
Cetylstearylalkohol	1,00	
PEG-100-Stearat	1,00	
Distärkephosphat	0,50	
SiO ₂		
Paraffinöl	6,50	
Dimethicon	0,50	
Vitamin-E-Aacetat	2,00	
Glycerin	3,00	
Parfüm, Konservierungsmittel, Farbstoffe usw.		q.s.
Natriumhydroxid		q.s.
Wasser	ad 100,00	
pH-Wert eingestellt auf 6,0-7,5		
Emulsion VI		35
Gas (Argon)		65

- Vereinigung der auf 80°C aufgeheizten Fettphase mit der auf 75°C aufgeheizten Was-
 5 serphase. Zugabe der partikulären hydrophoben, hydrophobisierten Festkörpersubstan-
 zen unter Rühren. Homogenisierung mittels einer Zahnkranzdispergiermaschine (Rotor-
 Stator-Prinzip) bei 65°C. 45 min Rühren in einem offenen Kessel bis auf 30°C. Zugabe
 der partikulären hydrophobisierten Festkörpersubstanzen (Distärkephosphat) sowie
 weitere Additive (Parfüm, Wirkstoffe) bei 30°C. Homogenisierung mittels einer
 10 Zahnkranzdispergiermaschine (Rotor-Stator-Prinzip) bei 23°C.

Beispiel 7 (schaumförmige Sonnenschutz-Creme):

	Gew.-%	Vol.-%
Emulsion VII		
Stearinsäure	1,00	
Cetylstearylalkohol	4,00	
Myristylalkohol	1,00	
Bornitrid	1,00	
Silicadimethylsilylat	1,50	
Kaolin	0,50	
PEG-20-Stearat	1,00	
Caprylsäure/Caprinsäuretriglyceride	2,00	
Paraffinöl	15,50	
Dimethicon	0,50	
Octylisostearat	5,00	
Glycerin	3,00	
Octylmethoxycinnamat	4,00	
Butylmethoxydibenzoylmethan	3,00	
Ethylhexyl Triazon	3,00	
BHT	0,02	
DiNatrium EDTA	0,10	
Parfüm, Konservierungsmittel,	q.s.	
Farbstoffe, usw.	q.s.	
Kaliumhydroxid	q.s.	
Wasser	ad 100	
pH-Wert eingestellt auf 5,0-6,0		
Emulsion VII		35
Gas (Helium)		65

- Vereinigung der auf 78°C aufgeheizten Fett- und Lichtschutzfilterphase mit der auf 75°C
5 aufgeheizten Wasser- und Lichtschutzfilterphase. Zugabe der partikulären hydropho-
ben, hydrophobisierten Festkörpersubstanzen unter Rühren. Homogenisierung mittels
einer Zahnkranzdispersiermaschine (Rotor-Stator-Prinzip) bei 65°C. 45 min Rühren im
Becomix unter Begasung mit Helium bei 1 bar unter Kühlung auf 30°C. Zugabe der Ad-

ditive bei 30°C (Parfüm). Homogenisierung mittels einer Zahnkranzdispergiermaschine (Rotor-Stator-Prinzip) bei 23°C.

Patentansprüche:

1. Selbstschäumende und/oder schaumförmige kosmetische oder dermatologische Zubereitungen, welche
 - 5 I. ein Emulgatorsystem, welches aus
 - A. mindestens einem Emulgator A, gewählt aus der Gruppe der ganz-, teil- oder nichtneutralisierten, verzweigten und/oder unverzweigten, gesättigten und/oder ungesättigten Fettsäuren mit einer Kettenlänge von 10 bis 40 Kohlenstoffatomen,
 - 10 B. mindestens einem Emulgator B, gewählt aus der Gruppe der polyethoxylierten Fettsäurester mit einer Kettenlänge von 10 bis 40 Kohlenstoffatomen und mit einem Ethoxylierungsgrad von 5 bis 100 und
 - C. mindestens einem Coemulgator C, gewählt aus der Gruppe der gesättigten und/oder ungesättigten, verzweigten und/oder unverzweigten Fettalkohole mit
 - 15 15 einer Kettenlänge von 10 bis 40 Kohlenstoffatomen,
besteht,
 - II. bis zu 30 Gew.-% – bezogen auf das Gesamtgewicht der Zubereitung – einer Lipidphase,
 - III. 1 bis 90 Vol.-%, bezogen auf das Gesamtvolumen der Zubereitung, mindestens 20 eines Gases, gewählt aus der Gruppe Luft, Sauerstoff, Stickstoff, Helium, Argon, Lachgas (N_2O) und Kohlendioxid (CO_2)
 - IV 0,01 - 10 Gew. % an einem oder mehreren partikulären hydrophoben und/oder hydrophobisierten und/oder ölabsorbierenden Festkörpersubstanzen enthalten.
- 25 25 2. Zubereitung nach nach Anspruch 1, dadurch gekennzeichnet, daß die Gewichtsverhältnisse von Emulgator A zu Emulgator B zu Coemulgator C (A : B : C) wie a : b : c gewählt wird, wobei a, b und c unabhängig voneinander rationale Zahlen von 1 bis 5, bevorzugt von 1 bis 3 darstellen.
- 30 30 3. Zubereitung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Gewichtsverhältnisse von Emulgator A zu Emulgator B zu Coemulgator C (A : B : C) wie etwa 1 : 1 : 1 gewählt wird

4. Zubereitung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Gesamtmenge der Substanzen gemäß A., B. und C. aus dem Bereich von 2 bis 20 Gew.-%, bezogen auf das Gesamtgewicht der Formulierung, gewählt werden.
5
2. 5. Zubereitung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß sie weitere Emulgatoren, gewählt aus der Gruppe der hydrophilen Emulgatoren, insbesondere Mono-, Di-, Trifettsäureestern des Sorbitols, enthalten.
- 10 6. Zubereitung nach Anspruch 5, dadurch gekennzeichnet, daß die Gesamtmenge der weiteren Emulgatoren kleiner als 5 Gew.-%, bezogen auf das Gesamtgewicht der Formulierung, gewählt wird.
- 15 7. Zubereitung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Volumenanteil des oder der Gase von 10 bis 80 Vol.-%, bezogen auf das Gesamtvolumen der Zubereitung, gewählt wird.
- 20 8. Zubereitung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß als Gas Kohlendioxid gewählt wird.
- 25 9. Zubereitung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß sie eine oder mehrere Substanzen, gewählt aus der Gruppe der Moisturizer, enthält.
- 30 10. Verwendung selbstschäumender und/oder schaumförmiger kosmetischer oder dermatologischer Zubereitungen, welche
 - I. ein Emulgatorsystem, welches aus
 - A. mindestens einem Emulgator A, gewählt aus der Gruppe der ganz-, teil- oder nichtneutralisierten, verzweigten und/oder unverzweigten, gesättigten und/oder ungesättigten Fettsäuren mit einer Kettenlänge von 10 bis 40 Kohlenstoffatomen,
 - B. mindestens einem Emulgator B, gewählt aus der Gruppe der polyethoxylierten Fettsäurester mit einer Kettenlänge von 10 bis 40 Kohlenstoffatomen und mit einem Ethoxylierungsgrad von 5 bis 100 und

- C. mindestens einem Coemulgator C, gewählt aus der Gruppe der gesättigten und/oder ungesättigten, verzweigten und/oder unverzweigten Fettalkohole mit einer Kettenlänge von 10 bis 40 Kohlenstoffatomen,
besteht,
- 5 II. bis zu 30 Gew.-% – bezogen auf das Gesamtgewicht der Zubereitung – einer Lipidphase,
- IV 0,01 - 10 Gew. % an einem oder mehreren partikulären hydrophoben und/oder hydrophobisierten und/oder ölabsorbierenden Festkörpersubstanzen enthalten, als kosmetische oder dermatologische Grundlagen für gasförmige Wirkstoffe.
- 10 11. Zubereitung oder Verwendung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die partikulären hydrophoben und/oder hydrophobisierten und/oder ölabsorbierenden Festkörpersubstanzen gewählt werden aus der Gruppe
- der modifizierten oder unmodifizierten Schichtsilikate.
 - 15 - der modifizierten Kohlenhydratderivate wie Cellulose und Cellulosederivate, mikrocrystalline Cellulose sowie Mischungen daraus, Stärke und Stärkerivate wie Distärkephosphat, Natrium- bzw. Aluminium-Stärkeoctenylsuccinat, Weizenstärke, Maisstärke, Reisstärke, Maniokstärke, Hydroxypropylstärkephosphat, Distärkephosphat, Natriummaisstärkeoctenylsuccinat, Aluminium-Stärkeoctenylsuccinat
 - der anorganischen Füllstoffe wie Talkum, Kaolin, Zeolith, Bornitrid
 - der anorganischen Pigmente auf Basis von Metalloxiden und / oder anderen in Wasser schwerlöslichen bzw. unlöslichen Metallverbindungen (insb. Oxide des Titans, Zinks, Eisens, Mangans, Aluminium, Cers)
- 20 25 - der anorganischen Pigmente auf Basis von Siliciumoxiden
- der Silikat-Derivate wie Natrium Silicoaluminate, Magnesium Silicate, Natriummagnesiumsilicate, Magnesiumaluminumsilikate oder Fluoromagnesiumsilicate, Calcium Aluminium Borsilicate, Silica Dimethyl Silylate
 - der microsphärischen Partikel basierend auf quervernetzten Polymethylmethacrylaten
- 30

INTERNATIONAL SEARCH REPORT

International Application No
PCT/EP 02/02852

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 A61K7/00 A61K7/06 A61K7/48

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 7 A61K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the International search (name of data base and, where practical, search terms used)

EPO-Internal, PAJ, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
E	EP 1 216 684 A (BEIERSDORF AG) 26 June 2002 (2002-06-26) example 4	1-11
X	EP 1 046 387 A (OREAL) 25 October 2000 (2000-10-25) claims 1,5,6 paragraphs '0009!, '0030!, '0031!, '0034! paragraphs '0004!-'0007!	1-11
A	DE 36 28 531 A (MERZ & CO GMBH & CO) 25 February 1988 (1988-02-25) examples	1-11
A	US 4 778 674 A (BOGARDUS RODGER E ET AL) 18 October 1988 (1988-10-18) claims	1-11

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

T later document published after the International filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

X document of particular relevance; the claimed Invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

Y document of particular relevance; the claimed Invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

& document member of the same patent family

Date of the actual completion of the International search

Date of mailing of the international search report

4 July 2002

11/07/2002

Name and mailing address of the ISA
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Simon, F

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/EP 02/02852

Patent document cited in search report	Publication date		Patent family member(s)	Publication date
EP 1216684	A 26-06-2002	DE EP	10063341 A1 1216684 A1	20-06-2002 26-06-2002
EP 1046387	A 25-10-2000	FR AT DE DE EP JP US US	2792545 A1 213615 T 60000076 D1 60000076 T2 1046387 A1 2001019859 A 6251954 B1 2001033826 A1	27-10-2000 15-03-2002 04-04-2002 04-07-2002 25-10-2000 23-01-2001 26-06-2001 25-10-2001
DE 3628531	A 25-02-1988	DE CA EP JP US	3628531 A1 1297038 A1 0257336 A2 63057511 A 4808388 A	25-02-1988 10-03-1992 02-03-1988 12-03-1988 28-02-1989
US 4778674	A 18-10-1988	AU AU CA EP JP NZ	589341 B2 7343387 A 1289034 A1 0247608 A2 62288679 A 220315 A	05-10-1989 03-12-1987 17-09-1991 02-12-1987 15-12-1987 27-09-1989

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen
PCT/EP 02/02852

A. KLASIFIZIERUNG DES ANMELDUNGSGEGENSTANDES
 IPK 7 A61K7/00 A61K7/06 A61K7/48

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierte Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole)
IPK 7 A61K

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der Internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

EPO-Internal, PAJ, WPI Data

C. ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
E	EP 1 216 684 A (BEIERSDORF AG) 26. Juni 2002 (2002-06-26) Beispiel 4	1-11
X	EP 1 046 387 A (OREAL) 25. Oktober 2000 (2000-10-25) Ansprüche 1,5,6 Absätze '0009!, '0030!, '0031!, '0034! Absätze '0004!-'0007!	1-11
A	DE 36 28 531 A (MERZ & CO GMBH & CO) 25. Februar 1988 (1988-02-25) Beispiele	1-11
A	US 4 778 674 A (BOGARDUS RODGER E ET AL) 18. Oktober 1988 (1988-10-18) Ansprüche	1-11

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentfamilie

- * Besondere Kategorien von angegebenen Veröffentlichungen :
- *A* Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist
- *E* älteres Dokument, das jedoch erst am oder nach dem Internationalen Anmeldedatum veröffentlicht worden ist
- *L* Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)
- *O* Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht
- *P* Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist
- *T* Spätere Veröffentlichung, die nach dem Internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist
- *X* Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden
- *Y* Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann nahelegend ist
- *Z* Veröffentlichung, die Mitglied derselben Patentfamilie ist

Datum des Abschlusses der Internationalen Recherche	Absendedatum des Internationalen Recherchenberichts
4. Juli 2002	11/07/2002
Name und Postanschrift der Internationalen Recherchenbehörde Europäisches Patentamt, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax (+31-70) 340-3016	Bevollmächtigter Bediensteter Simon, F

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Internationales Aktenzeichen
PCT/EP 02/02852

Im Recherchenbericht angeführtes Patentdokument		Datum der Veröffentlichung		Mitglied(er) der Patentfamilie		Datum der Veröffentlichung
EP 1216684	A	26-06-2002	DE EP	10063341 A1 1216684 A1		20-06-2002 26-06-2002
EP 1046387	A	25-10-2000	FR AT DE DE EP JP US US	2792545 A1 213615 T 60000076 D1 60000076 T2 1046387 A1 2001019859 A 6251954 B1 2001033826 A1		27-10-2000 15-03-2002 04-04-2002 04-07-2002 25-10-2000 23-01-2001 26-06-2001 25-10-2001
DE 3628531	A	25-02-1988	DE CA EP JP US	3628531 A1 1297038 A1 0257336 A2 63057511 A 4808388 A		25-02-1988 10-03-1992 02-03-1988 12-03-1988 28-02-1989
US 4778674	A	18-10-1988	AU AU CA EP JP NZ	589341 B2 7343387 A 1289034 A1 0247608 A2 62288679 A 220315 A		05-10-1989 03-12-1987 17-09-1991 02-12-1987 15-12-1987 27-09-1989