Announcements

- pset1 out today, due in two weeks.
 - Submit on Gradescope
- No screens (laptops, tablets, phones) during the class.

Last time: Supervised Learning

Nearest Neighbor Classifier

Variants of this algorithm:

- K-nearest neighbor classifier (k-NN)
- Approx nearest neighbor

K-Nearest Neighbor Classifier

Diving deeper into model analysis

Predicted Predicted "0" "1" **False** True **Positive** Negative **GT Label** (TP) (FN) **False** True **GT Label Positive** Negative "0" (FP) (TN)

slido

What is precision?

(i) Click **Present with Slido** or install our <u>Chrome extension</u> to activate this poll while presenting.

What is precision?

Quiz question 77 answers 77 participants

83%

TP / (TP + FN) - 6 answers

8%

TP / (FP + TN) - 7 answers

9%

TP / (FN + TN) - 0 answers

slido

0%

Precision and Recall

Precision:

- a. The percentage of predictions that are correct
- b. The ability to identify **only** relevant data points

$$Precision = \frac{TP}{TP + FP}$$

Recall:

a. The percentage of relevant data points that are correctly identified $Recall = \frac{TP}{TP + FN}$

$$Recall = \frac{TP}{TP + FN}$$

b. The ability to identify all relevant data points

Hypothesis γ

 γ : function parametrized by θ , e.g.,

$$\gamma(x) = \operatorname{sign}(\mathbf{a}x + \mathbf{b})$$

$$\theta_{0,1} \quad \theta_2$$

Goal: input
$$x \longrightarrow \left(\gamma_{a,b}^*\right) \longrightarrow$$
 output y

Linear Regression

Linear hypothesis:

$$\gamma_{a,b}(x) = \text{sign}(ax + b)$$

Error Function:

Portion of incorrect predictions

$$Error(\gamma_{a,b}, D\{x, y\}) = \frac{1}{N} \sum_{i=1}^{N} \gamma_{a,b}(x_i) \neq y_i$$

Goal: minimize $Error(\gamma_{a,b}, D\{x, y\})$

Alternative View:

"Maximum Likelihood"

Maximum likelihood way of estimating model parameters θ

In general, assume data is generated by some distribution $U \sim p(U|\theta)$

Observations (i.i.d.)

$$D = \{u^{(1)}, u^{(2)}, \dots, u^{(m)}\}\$$

Maximum likelihood estimate

$$\mathcal{L}(D) = \prod_{i=1}^{N} p(u^{(i)}|\theta)$$

$$\theta_{ML} = \underset{\theta}{\operatorname{argmax}} \mathcal{L}(D)$$

$$= \underset{\xi_{i}(x)}{\operatorname{Likelihood}}$$

$$= \underset{\theta}{\operatorname{Likelihood}}$$

$$= \underset{\theta}{\operatorname{Log likelihood}}$$
Note: p replaces γ ,

and max replaces min

ML: Another example

- Observe a dataset of points $D = \{x^i\}_{i=1:10}$
- Assume x is generated by Normal distribution, $x \sim N(x|\mu, \sigma)$
- Find parameters $\theta_{ML} = [\mu, \sigma]$ that maximize $\prod_{i=1}^{10} N(x^i | \mu, \sigma)$

What is the right distribution that fits the given datapoints?

i Click **Present with Slido** or install our <u>Chrome extension</u> to activate this poll while presenting.

What is the right distribution that fits? Multiple Choice Poll

☐ 79 votes
☐ 79 participants Blue N(10,2.25) - 56 votes 71% Yellow-green: N(10,9) - 12 votes 15% Magenta: N(10,0.25) - 11 votes 14% Green: N(8,2.25) - 0 votes

slido

0%

Types of data distribution: Bernoulli

$$P(X = 1) = p, \quad P(X = 0) = 1 - p$$

Comparison of Bernoulli Distributions

Probability Mass Functions for different p values

Types of data distribution: Normal

$$f(x)=rac{1}{\sqrt{2\pi\sigma^2}}e^{-rac{(x-\mu)^2}{2\sigma^2}}$$

Parameters:

- Mean (μ)
- Deviation (σ)

How to choose a particular distribution?

Distribution	
Bernoulli	Discrete data samples, with binary outcomes.Eg: Coin tosses
Normal	 Data is primarily centered around a value, eg: mean Most other data points fall very close to the mean. Eg: Weights of a mouse

Problem with Maximum Likelihood: Bias

MLE =
$$\underset{\theta}{\operatorname{argmax}} \sum_{i=1}^{N} \log p(u^{(i)}|\theta)$$

- Depends on the number of datapoints (N)
- When N is small, the estimate may not be an accurate reflection of the true model

One issue: Overfitting

MLE =
$$\underset{\theta}{\operatorname{argmax}} \sum_{i=1}^{N} \log p(u^{(i)} | \theta)$$

- Let K denote the complexity of the model estimator: $\theta = \{\theta_1, \theta_2, ..., \theta_K\}$
 - K = 1 denotes a line.
 - K = 15 denotes a 15-degree polynomial function.

- How to control the value of K?
- MLE does not offer a way to directly control model complexity.
 - It will always choose the solution with K = 15.

One issue: Overfitting

MLE =
$$\underset{\theta}{\operatorname{argmax}} \sum_{i=1}^{N} \log p(u^{(i)}|\theta)$$

- Let K denote the complexity of the model estimator: $\theta = \{\theta_1 \theta_2, ..., \theta_K\}$
 - K = 1 denotes a line.
 - K = 15 denotes a 15-degree polynomial function.

- How to control the value of K?
- Solution: use a Bayesian method--define a prior distribution over the parameters (results in regularization)

Bayesian Modeling

Prior distribution

- Prior distributions $p(\theta)$ are probability distributions of model parameters based on some a **priori knowledge** about the problem at hand.
- Prior distributions are assumed before any data is observed.

Examples:

- A coin toss is random (50% heads, 50% tails).
- Assumed prior : Binomial distribution
 - bernoulli is a special case of binomial.

What information is this prior (θ) is giving?

The prior takes a uniform probability distribution.

What information is this prior (θ) is giving?

The coin is likely to have a outcome of heads with 50% probability

Informative v/s uninformative priors

 Important to choose a prior that is is more likely to be aligned with the expected outcomes.

Reminder: Coin Toss Experiment

- n=10 coin tosses
- y (target) =4 number of heads

- P(head) = 4/10 = 0.4
- P(tail) = 1-0.4 = 0.6

Likelihood (estimated purely from data)

Prior and Likelihood

Posterior Distribution

$$Posterior = \frac{Prior}{} \times Likelihood$$

Your mental model of the target distribution

Your estimate from the observed data

$$P(\theta|y) = P(\theta)P(y|\theta)$$

Posterior Distribution

Evaluating your model

Setting up an experiment

Size	Price
2104	400
1600	330
2400	369
1416	232
3000	540
1985	300
1534	315
1427	199
1380	212
1494	243
	2104 1600 2400 1416 3000 1985 1534 1427 1380

- 1. For each value of a hyperparameter
- train on the train set
- evaluate learned parameters on the validation set.
- 2. Pick the model (hyper parameters) that achieved the **lowest validation error.**
- 3. Report this model's test set error.

Train-test-val framework

Pro: Computationally efficient

Con: This split of data may introduce a bias

slido

How to avoid bias due to the way training data was split?

i Click **Present with Slido** or install our <u>Chrome extension</u> to activate this poll while presenting.

How to avoid bias due to the way training data was split?

Quiz question

✓ 81 answers

⇔ 81 participants

Do not split the data, use all of it! - 2 answers

Split the data randomly many times find hyper parameter that works well most times 59 answers

73%

Split the data randomly many times and report the average test metric - 69 answers

slido

85%

What is the right way to split the data?

- Solution: use M-fold cross validation.
- Split training set into train/validation sets M times
- Option-1: Report average predictions
- Option-2: Pick hyper-parameters that work well across most of M splits

Pro: More robust to split bias

Con: Requires training M different models

slido

What do you call the scenario when a classifier is performing poorly on training data?

i Click **Present with Slido** or install our <u>Chrome extension</u> to activate this poll while presenting.

What do you call the scenario when a classifier is performing poorly on training data?

slido

What do we call a classifier performing well on training data but poorly on test data?

i Click **Present with Slido** or install our <u>Chrome extension</u> to activate this poll while presenting.

What do we call a classifier performing well on training data but poorly on test data?

Overfitting

100%

Underfitting

Both

None

slido

What do classifiers work best on?

i Click **Present with Slido** or install our <u>Chrome extension</u> to activate this poll while presenting.

What do classifiers work best on? Training data 49% All of the above 46% Validation data 4% Test data 1%

Reasons for underfitting

- Not enough training samples.
- Model too simple.
- Training samples too diverse.

Reasons for overfitting

- Model overparameterized.
- Not correctly cross-validated.
- Training data from a very different distribution than test data.

Learning the right decision boundary

Separating two classes

- Many possibilities!
- Which one to pick?

Decision boundary: $w^T x + b = 0$

$$y = \begin{cases} +1 \text{ [red] if } \operatorname{sign}(a^T x + b \ge 0) \\ -1 \text{ [blue] if } \operatorname{sign}(a^T x + b < 0) \end{cases}$$

Separating two classes

Goal: Avoid misclassifying new test points generated from the same distribution as the training points

Maximum margin classification

Intuition: Instead of fitting all the points, focus on boundary points

Aim: learn a boundary that leads to the largest margin (buffer) from points on both sides

Why: make the decision boundary robust to small perturbations

The subset of vectors that support (determine boundary) are called the support vectors (circled)

Next Class

Classification III:

Regularization, stochastic gradient descent, multiclass SVM

Reading: Forsyth Ch 2.1.3-2.1.7