12. Sean $a, b \in \mathbb{R}$ tales que a < b. Encuentra una aplicación biyectiva explícita de $A = \{x \in \mathbb{R} : a < x < b\}$ en $B = \{y \in \mathbb{R} : 0 < y < 1\}$.

Solución. Si se representa en un plano cartesiano, es sencillo comprobar que la recta que une los puntos (a,0) y (b,1) es un ejemplo de grafo de tal aplicación biyectiva, la cual viene dada por la expresión

$$f(t) = \frac{t - a}{b - a},$$

cualquiera que sea $t \in \{x \in \mathbb{R} : a < x < b\}$.

13. Proporciona un ejemplo de dos funciones $f,g:\mathbb{R}\to\mathbb{R}$ tales que $f\neq g$ pero que verifiquen que $f\circ g=g\circ f$.

Solución. Basta considerar f y g dadas por f(x) = x y g(x) = -x para cualquier $x \in \mathbb{R}$. Claramente $f(1) = 1 \neq -1 = g(1)$, de forma que $f \neq g$ y, sin embargo, $(f \circ g)(x) = -x = (g \circ f)(x)$ para todo $x \in \mathbb{R}$. \square

- 14. Sean A y B dos conjuntos.
 - (1) Demuestra que si $f: A \to B$ es inyectiva y $E \subseteq A$, entonces se verifica la igualdad $f^{-1}(f(E)) = E$.
 - (2) Proporciona un ejemplo que muestre que la igualdad no se cumple necesariamente si la aplicación f no es inyectiva.
 - (3) Demuestra que si $f: A \to B$ es suprayectiva y $H \subseteq B$, entonces se verifica la igualdad $f(f^{-1}(H)) = H$.
 - (4) Proporciona un ejemplo que muestre que la igualdad no se cumple necesariamente si la aplicación f no es suprayectiva.

Solución. (1) (\subseteq) Sea $x \in f^{-1}(f(E))$, es decir, $x \in A$ es tal que $f(x) \in f(E)$, de forma que existe $y \in E$ tal que f(x) = f(y). Por la inyectividad de f deducimos que y = x y por tanto, $x = y \in E$, como queríamos probar.

- (\supseteq) Sea $x \in E$, de esta forma, $f(x) \in f(E)$ y por ende $x \in f^{-1}(f(E))$. Así, esta inclusión se cumple siempre, aunque f no sea inyectiva.
- (2) Supongamos que $A = \{1, 2\}$, $B = \{1\}$ y $E = \{1\} \subseteq E$, y sea f la función constante dada por $f(a) = 1 \in B$ para todo $a \in A$. Entonces, $f(E) = \{1\} = B$ pero $f^{-1}(f(E)) = f^{-1}(B) = A \not\subseteq E$
- (3) (\subseteq) Sea $y \in f(f^{-1}(H))$, lo que quiere decir que y = f(x) para cierto $x \in f^{-1}(H)$, es decir, tal que $f(x) \in H$, pero éste es $y = f(x) \in H$, como queríamos probar. Esta inclusión se cumple siempre, aunque f no sea inyectiva.
- (⊇) Sea $y \in H$. Dado que f es suprayectiva existe $x \in A$ tal que f(x) = y, de modo que $x \in f^{-1}(H)$ y por ende $y = f(x) \in f(f^{-1}(H))$.
- (4) Denotemos $A = \{1\}$ y $B = \{1, 2\}$, así como $H = \{2\}$, y definamos la función $f : A \to B$ como la dada por f(1) = 1. Con ello, $f^{-1}(H) = \emptyset$ y por ende $f(f^{-1}(H)) = \emptyset$, aunque $H = \{2\} \neq \emptyset$.
- **16.** Sean A, B y C tres conjuntos y sean $f:A\to B$ y $g:B\to C$ dos aplicaciones biyectivas. Demuestra que $g\circ f$ es una aplicación biyectiva de A en C.

Solución. Para probar que $g \circ f : A \to C$ es biyectiva hay que probar que es inyectiva y suprayectiva.

Para la primera propiedad, supongamos que $x, y \in A$ son dos elementos distintos, y veamos que $(g \circ f)(x)$ y $(g \circ f)(y)$ son, en efecto, distintos. Dado que f es inyectiva, x' = f(x) e y' = f(y) son distintos, pero entonces, dado que g es también inyectiva, $(g \circ f)(x) = g(x')$ y $(g \circ f)(y) = g(y')$ son distintos, como queríamos probar.

Para comprobar que $g \circ f$ es suprayectiva, sea $z \in C$ un elemento cualquiera, y veamos que existe $x \in A$ tal que $(g \circ f)(x) = z$. Dado que g es suprayectiva, existe $y \in B$ tal que g(y) = z, y dado que f es suprayectiva, existe $x \in A$ tal que f(x) = y, pero entonces $(g \circ f)(x) = g(f(x)) = g(y) = z$, como queríamos demostrar. \square

17. Sean A, B y C tres conjuntos y sean $f: A \to B$ y $g: B \to C$ dos aplicaciones. Demuestra que si H es un subconjunto de C, se verifica la igualdad $(g \circ f)^{-1}(H) = f^{-1}(g^{-1}(H))$.

Solución. Sea $x \in (g \circ f)^{-1}(H)$, por definición $g(f(x)) = (g \circ f)(x) \in H$, de modo que $f(x) \in g^{-1}(H)$ o, equivalentemente, $x \in f^{-1}(g^{-1}(H))$, como queríamos demostrar.

20. Demuestra que $1/(1\cdot 2)+1/(2\cdot 3)+\cdots+1/(n(n+1))=n/(n+1)$ cualquiera que sea $n\in\mathbb{N}$.

Solución. Lo demostraremos por inducción sobre n, de forma que el caso base consiste simplemente en comprobar que, para n=1, se verifica la fórmula. Esto es claro ya que $\frac{1}{1\cdot 2}=\frac{1}{2}$.

Supongamos ahora que se verifica la fórmula para cierto $n \in \mathbb{N}$, ésta es la conocida como hipótesis de inducción. Entonces, se verificará para n+1, como comprobaremos ahora, y el principio de inducción matemática nos proporcionará la veracidad de la fórmula para todos los números naturales. En efecto,

$$\frac{1}{1 \cdot 2} + \dots + \frac{1}{n(n+1)} + \frac{1}{(n+1)((n+1)+1)} = \left(\frac{1}{1 \cdot 2} + \dots + \frac{1}{n(n+1)}\right) + \frac{1}{(n+1)((n+1)+1)}$$
$$= \frac{n}{n+1} + \frac{1}{(n+1)(n+2)} = \frac{n(n+2)+1}{(n+1)(n+2)} = \frac{n^2 + 2n + 1}{(n+2)} = \frac{(n+1)^2}{(n+1)(n+2)} = \frac{n+1}{(n+1)+2},$$

como queríamos demostrar.