DISTRIBUIÇÕES CONTÍNUAS

Distribuições contínuas assumem valores em intervalos da reta:

- 1.Tempo de vida de um equipamento até falha
- 2. Pressão diastólica
- 3.Altura

Figura 1 – Distribuição Normal

Fonte: google

- média (μ) e desvio padrão (σ) definem as probabilidades utilizando a tabela normal.
- X assume valores entre $-\infty$ e ∞ , mas é mais provável próximos à média e concentramos em torno do desvio padrão.
- Assimetria 0 e curtose 0.2631. Essa distribuição serve de referência para as demais (Normal e não Normal).
- área total abaixo da curva é 1 ou 100%
- exemplos de comportamento normal: "pressão arterial", 'altura", erros astronômicos Caire (2012).
- é usada para quase todos os testes estatísticos
- qualquer distribuição normal pode ser transformada em uma distribuição normal com $\mu = 0$ e $\sigma = 1$, fazendo:

$$Z = \frac{X - \mu}{\sigma}$$

 $\bullet\,$ os pontos de σ acima ou abaixo da média são pontos de inflexão

Com isso, podemos obter qualquer proabilidade. Considere X uma variável aleatória com o padrão normal $X \sim N(\mu = 500, \sigma = 100)$. Desejamos obter a probabilidade P(400 < X < 800). Vamos descobrir quais sãos os valores 400 e 800 na normal $Z \sim N(\mu = 0, \sigma = 1)$, por meio da transformação:

$$z_1 = \frac{400 - \mu}{\sigma} = \frac{400 - 500}{100} = \frac{-100}{100} = -1$$

$$z_2 = \frac{800 - \mu}{\sigma} = \frac{800 - 500}{100} = \frac{300}{100} = +3$$

$$P(400X < X < 800) = P(-1 < Z < 3) = P(-1 < Z < 0) + P(0 < Z < 3).$$

Tabela Normal

 $P(0 < Z < z_c)$

Estamos procurando 1,00.

Na linha: 1,0

Na coluna: 0,00

	0 \$	0.01 \$	0.02 \$	0.03 \$	0.04 \$	0.05 \$	0.06 \$	0.07 \$	0.08 ≑	0.09 \$
0	0	0.003989	0.007978	0.011966	0.015953	0.019939	0.023922	0.027903	0.031881	0.035856
0.1	0.039828	0.043795	0.047758	0.051717	0.05567	0.059618	0.063559	0.067495	0.071424	0.075345
0.2	0.07926	0.083166	0.087064	0.090954	0.094835	0.098706	0.102568	0.10642	0.110261	0.114092
0.3	0.117911	0.12172	0.125516	0.1293	0.133072	0.136831	0.140576	0.144309	0.148027	0.151732
0.4	0.155422	0.159097	0.162757	0.166402	0.170031	0.173645	0.177242	0.180822	0.184386	0.187933
0.5	0.191462	0.194974	0.198468	0.201944	0.205401	0.20884	0.21226	0.215661	0.219043	0.222405
0.6	0.225747	0.229069	0.232371	0.235653	0.238914	0.242154	0.245373	0.248571	0.251748	0.254903
0.7	0.258036	0.261148	0.264238	0.267305	0.27035	0.273373	0.276373	0.27935	0.282305	0.285236
8.0	0.288145	0.29103	0.293892	0.296731	0.299546	0.302337	0.305105	0.30785	0.31057	0.313267
0.9	0.31594	0.318589	0.321214	0.323814	0.326391	0.328944	0.331472	0.333977	0.336457	0.338913
1	0.341345	0.343752	0.346136	0.348495	0.35083	0.353141	0.355428	0.35769	0.359929	0.362143
1.1	0.364334	0.3665	0.368643	0.370762	0.372857	0.374928	0.376976	0.379	0.381	0.382977
1.2	0.38493	0.386861	0.388768	0.390651	0.392512	0.39435	0.396165	0.397958	0.399727	0.401475
1.3	0.4032	0.404902	0.406582	0.408241	0.409877	0.411492	0.413085	0.414657	0.416207	0.417736
1.4	0.419243	0.42073	0.422196	0.423641	0.425066	0.426471	0.427855	0.429219	0.430563	0.431888

Tabela Normal

 $P(0 < Z < z_c)$

Estamos procurando 1,00.

Na linha: 1,0

Na coluna: 0,00

				•						
	0 4	0.01 \$	0.02 \$	0.03 \$	0.04 \$	0.05 \$	0.06 \$	0.07 \$	0.08 ≑	0.09 \$
0	0	0.003989	0.007978	0.011966	0.015953	0.019939	0.023922	0.027903	0.031881	0.035856
0.1	0.039828	0.043795	0.047758	0.051717	0.05567	0.059618	0.063559	0.067495	0.071424	0.075345
0.2	0.07926	0.083166	0.087064	0.090954	0.094835	0.098706	0.102568	0.10642	0.110261	0.114092
0.3	0.117911	0.12172	0.125516	0.1293	0.133072	0.136831	0.140576	0.144309	0.148027	0.151732
0.4	0.155422	0.159097	0.162757	0.166402	0.170031	0.173645	0.177242	0.180822	0.184386	0.187933
0.5	0.191462	0.194974	0.198468	0.201944	0.205401	0.20884	0.21226	0.215661	0.219043	0.222405
0.6	0.225747	0.229069	0.232371	0.235653	0.238914	0.242154	0.245373	0.248571	0.251748	0.254903
0.7	0.258036	0.261148	0.264238	0.267305	0.27035	0.273373	0.276373	0.27935	0.282305	0.285236
8.0	0.288145	0.29103	0.293892	0.296731	0.299546	0.302337	0.305105	0.30785	0.31057	0.313267
0.9	0.31594	0.318589	0.321214	0.323814	0.326391	0.328944	0.331472	0.333977	0.336457	0.338913
1	0.341345	0.343752	0.346136	0.348495	0.35083	0.353141	0.355428	0.35769	0.359929	0.362143
1.1	0.364334	0.3665	0.368643	0.370762	0.372857	0.374928	0.376976	0.379	0.381	0.382977
1.2	0.38493	0.386861	0.388768	0.390651	0.392512	0.39435	0.396165	0.397958	0.399727	0.401475
1.3	0.4032	0.404902	0.406582	0.408241	0.409877	0.411492	0.413085	0.414657	0.416207	0.417736
1.4	0.419243	0.42073	0.422196	0.423641	0.425066	0.426471	0.427855	0.429219	0.430563	0.431888

Tabela Normal

 $P(0 < Z < z_c)$

Estamos procurando 3,00.

Na linha: 3,0

Na coluna: 0,00

2.1	0.482136	0.482571	0.482997	0.483414	0.483823	0.484222	0.484614	0.484997	0.485371	0.485738
2.2	0.486097	0.486447	0.486791	0.487126	0.487455	0.487776	0.488089	0.488396	0.488696	0.488989
2.3	0.489276	0.489556	0.48983	0.490097	0.490358	0.490613	0.490863	0.491106	0.491344	0.491576
2.4	0.491802	0.492024	0.49224	0.492451	0.492656	0.492857	0.493053	0.493244	0.493431	0.493613
2.5	0.49379	0.493963	0.494132	0.494297	0.494457	0.494614	0.494766	0.494915	0.49506	0.495201
2.6	0.495339	0.495473	0.495604	0.495731	0.495855	0.495975	0.496093	0.496207	0.496319	0.496427
2.7	0.496533	0.496636	0.496736	0.496833	0.496928	0.49702	0.49711	0.497197	0.497282	0.497365
2.8	0.497445	0.497523	0.497599	0.497673	0.497744	0.497814	0.497882	0.497948	0.498012	0.498074
2.9	0.498134	0.498193	0.49825	0.498305	0.498359	0.498411	0.498462	0.498511	0.498559	0.498605
3	0.49865	0.498694	0.498736	0.498777	0.498817	0.498856	0.498893	0.49893	0.498965	0.498999
3.1	0.499032	0.499065	0.499096	0.499126	0.499155	0.499184	0.499211	0.499238	0.499264	0.499289
3.2	0.499313	0.499336	0.499359	0.499381	0.499402	0.499423	0.499443	0.499462	0.499481	0.499499
3.3	0.499517	0.499534	0.49955	0.499566	0.499581	0.499596	0.49961	0.499624	0.499638	0.499651
3.4	0.499663	0.499675	0.499687	0.499698	0.499709	0.49972	0.49973	0.49974	0.499749	0.499758
3.5	0.499767	0.499776	0.499784	0.499792	0.4998	0.499807	0.499815	0.499822	0.499828	0.499835
3.6	0.499841	0.499847	0.499853	0.499858	0.499864	0.499869	0.499874	0.499879	0.499883	0.499888
3.7	0.499892	0.499896	0.4999	0.499904	0.499908	0.499912	0.499915	0.499918	0.499922	0.499925
3.8	0.499928	0.499931	0.499933	0.499936	0.499938	0.499941	0.499943	0.499946	0.499948	0.49995
3.9	0.499952	0.499954	0.499956	0.499958	0.499959	0.499961	0.499963	0.499964	0.499966	0.499967

Outra distribuição de probabilidade para variáveis aleatórias contínuas é a expoencial, que tem aplicações em confiabilidade de sistemas. Se X tem distribuição exponencial com parâmetro λ , então X é estritamente positiva e a função de distribuição de probabilidade é expressa por:

$$f(X=x) = \frac{e^{-\frac{x}{\lambda}}}{\lambda}, x \ge 0 \tag{3.3}$$

A média e variância de uma variável aleatória com distribuição exponecial é:

$$E(X) = \lambda \tag{3.4}$$

$$V(X) = \lambda^2 \tag{3.5}$$

Escala (B) - Curva 1 - Vermelha

2

Escala (B) - Curva 2 - Azul

4

A média e variância de uma variável aleatória com distribuição exponecial é:

$$E(X) = \lambda \tag{3.4}$$

$$V(X) = \lambda^2 \tag{3.5}$$

A distribuição acumulada é

$$F(X = x) = \int_{-\infty}^{x} f(X = x) = 1 - e^{-\lambda x}$$
(3.6)

Na maioria dos casos, se X representa o tempo de vida de equipamentos, podemos definir a confiabilidade R(X):

$$R(X) = 1 - F(X = x) = e^{-\lambda x}$$
 (3.7)

O tempo de vida (em horas) de um transistor pode ser considerado uma variável aleatória com distribuição exponencial com média $E(X) = \lambda = 500h$. Qual a probabilidade do transistor durar mais do que o tempo médio?

Por meio da função acumulada, temos que

$$P(X < 500) = F(X = 500) = 1 - e^{-\frac{x}{500}} = 0.6321206$$
(3.8)

Essa é a probabilidade de falha até x = 500h, então a probabilidade do transistor durar mais de x = 500h é:

$$R(X) = 1 - 0.63212 = 0.36788 (3.9)$$

A distribuição Weibull é, principalmente, utilizada para modelar o tempo de vida e resistência de equipamentos e materiais, entre eles fadiga de aço ST-37 e forças das fibras de algodão Batista (1989).

Se X tem distribuição weibull com parâmetro α (parâmetro de forma) e β (parâmetro de escala), então X é estritamente positiva e a função de distribuição de probabilidade é expressa por:

$$f(X=x) = \alpha \beta^{-\alpha} x^{\alpha-1} e^{-\left(\frac{x}{\beta}\right)^{\alpha}}, x \ge 0$$
(3.10)

Diante da relação entre os parâmetros e a forma da distribuição, essa distribuição é muito utilizada. O parâmetro de escala β no ajuda a compreender a dimensão que a curva assume Batista (1989). Utilizando o aplicativo desenvolvido para fins pedagógicos, escolhendo $\beta=2$ e $\beta=3$ e $\alpha=3.6$, temos a figura 2:

Perceba que com $\alpha=3.6$ temos uma distribuição em formato de sino, semelhante à distribuição gaussiana. Caso esse valor seja menor do 3.6, temos uma distribuição mais assimétrica, conforme mostra a figura 3, com $\beta=3$ e $\alpha=1.7$ (vermelho) e $\alpha=3.6$ (azul).

Perceba que se o parâmetro de forma $\alpha = 1$, temos a distribuição Exponencial, com parâmetro $\lambda = \beta$.

$$f(X = x | \alpha = 1) = \beta^{-1} e^{-\left(\frac{x}{\beta}\right)}, x \ge 0$$
 (3.11)

Dessa forma, dizemos que a distribuição Expoencial é um caso particular da Weibull, quando o parâmetro de forma $\alpha=1$ é igual a 1, conforme mostra a figura 4

Cada uma dessas configurações de distribuições ajustam melhor alguns tipos de dados.

Se $\alpha < 1$ então há uma elevada probabilidade de falha no início da utilização, isto é, falhas precoces Dias (2014). Se α for próximo de 3.6, a distribuição é semalhante a distribuição Normal. Já para valores de α muito grandes, a distribuição se concentra em determinado instante da vida Dias (2014).

A média e variância de uma variável aleatória com distribuição Weibull é:

$$E(X) = \beta \Gamma \left(1 + \frac{1}{\alpha} \right) \tag{3.12}$$

Sendo Γ a função Gama.

A distribuição acumulada é

$$F(X = x) = \int_{-\infty}^{x} f(X = x) = 1 - e^{-\left(\frac{x}{\beta}\right)^{\alpha}}$$
(3.13)

Na maioria dos casos, se X representa o tempo de vida de equipamentos, podemos definir a confiabilidade R(X):

$$R(X) = 1 - F(X = x) = e^{-\left(\frac{x}{\beta}\right)^{\alpha}}$$
 (3.14)

O tempo de vida (em horas) de um motor pode ser considerado uma variável aleatória com distribuição weibull com $\alpha = 2.3$ e $\beta = 4.2$. Qual é o tempo médio? Qual a probabilidade do motor durar mais do que 5 anos?

A média é:

$$E(X) = \beta \Gamma\left(1 + \frac{1}{\alpha}\right) = 4.2\Gamma\left(1 + \frac{1}{2.3}\right) = 3.7208$$
 (3.15)

Por meio da função acumulada, temos que

$$P(X < 5) = F(X = 5) = 1 - e^{-\left(\frac{5}{4.2}\right)^{2.3}} = 0.775378$$
 (3.16)

Essa é a probabilidade de falha até x=5, então a probabilidade do motor durar mais de x=5 é:

$$R(X) = 1 - 0.775378 = 0.224622 (3.17)$$

