Note bem: A justificação <u>clara</u> e <u>concisa</u> das afirmações e cálculos mais relevantes que fizer, será um factor determinante na classificação da sua prova. Responda (**apenas no espaço a elas destinado**) às seguintes questões:

No circuito da Figura 1 (a), R_S é um sensor que conhece e cuja característica se apresenta na Figura 1 (b). Calcule a tensão de saída ($v_{\text{saída}}$) para uma temperatura de. 50 °C.

Figura 1

2 Esboce, para o circuito da Figura 2, a forma de onda de saída ($v_{\text{saída}}$).

Figura 2

3 A tensão de saturação do AmpOp da Figura 3 é $V_{\text{sat}} = \pm 10\text{V}$. Admitindo que o sinal aplicado à sua entrada (v_{ent}) é que se apresenta na figura ao lado, esboce o sinal obtido na saída (v_{saída}).

 $v_{\rm ent}$ 0V

Figura 3

Um amplificador operacional (AmpOP) apresenta a curva de resposta em frequência (assimptotas) da Figura 4 (a). 4 Possui ainda, entre outras, as seguintes características: taxa de inclinação (ou *slew-rate*) SR = 20 V/ μ s; A_{mc} = 5.

Figura 4

4.1 O AmpOP é utilizado na montagem amplificadora da Figura 4 (b) que possui uma largura de banda de 1 kHz. Qual é ganho em malha aberta (A_0) do AmpOp para baixas frequências?

4.2 Qual é o CMRR do AmpOp (em dB)?

4.3	Supondo que à entrada do amplificador da Figura 4 (b) é aplicado um sinal sinusoidal com uma amplitude d	$d\epsilon$
	1V _m qual é a largura de banda de potência do amplificador?	

4.4 Na montagem da Figura 4 (b) mediu-se, para
$$V_{\text{ent}} = 0\text{V}$$
, $V_{\text{saida}} = 2\text{ mV}$. Qual é a tensão de desvio (V_{OS}) à entrada do AmpOp?

5 Considere que para os MOSFET da Figura 5, $V_t = 1.5 \text{ V e } \text{k}'_n \text{ W/L} = 1 \text{ mA/V}^2$.

- **6** Uma fonte de alimentação de 12V / 1A apresenta a característica de saída da figura ao lado.
- 6.1 Qual é a tensão em vazio da fonte de alimentação?

6.2 Qual é a sua regulação (para a corrente nominal)? E qual é a sua resistência interna?

7 Considere o circuito da Figura 6.

- Figura 6
- 7.1 Esboce as formas de onda de Q_0 , Q_1 e Q_2 .
- 7.2 O que faz o circuito da Figura 6?__

8	Pretende-se obter a informação digitalizad 0 °C a 100°C e uma resolução de 0,1 °C.	la do sensor do circuito da Figura 1 para uma gama de temperaturas de
8.1	Qual deveria ser o número de bits do conv	ersor?
8.2		do conversor da questão 8.1 é +5 V, diga se seria possível ligar 1 à entrada do conversor. Em caso negativo, esboce uma solução para o
8.3	Suponha que o conjunto da Figura 1 apresenta a resposta em frequência da figura ao lado. Qual deveria ser, no mínimo, a frequência de amostragem do conversor A/D utilizado?	20 A (dB) 0 -20 -40 -40 -0,01 0,1 1 10 100 1000 Hz

Indique quais das seguintes afirmações são verdadeiras. Tenha em atenção que uma resposta errada anula uma certa (responda apenas se souber).

<u>T1</u>	Relativamente ao sensor do circuito da Figura 1 qual (ou quais) das seguintes afirmações são verdadeiras?
	Dos sensores de temperatura é dos mais rápidos.
Щ	Dos sensores de temperatura é dos mais sensíveis.
	É um sensor passivo.
	Apresenta uma característica excelente em termos de linearidade.
T2	Na Figura 4 (b), a resistência de 10 k Ω ligada à entrada "+" do AmOp serve para
Щ	aumentar a largura de banda da montagem
Щ	limitar a corrente na entrada
Щ	minimizar o erro na saída devido às correntes de polarização do AmpOP
	estabilizar o ganho da montagem
T3	O resultado da soma, em complemento para 2, de 10100101 + 01001001 é, em decimal,
	+128
	-18
	+20
	-33

Formulário

Corrente de dreno de um MOSFET de depleção funcionando na saturação	$i_D = \frac{1}{2} k_n' \frac{W}{L} (v_{GS} - V_T)^2$
Corrente de dreno de um MOSFET de depleção funcionando como tríodo	$i_D \approx k_n' \frac{W}{L} (v_{GS} - V_t) v_{DS}$ (para valores de v_{DS} pequenos)
Comparador não-inversor com histerese	$V_{CEN} = V_{REF} \frac{R_1 + R_2}{R_2}$, $\Delta h = 2V_{sat} \frac{R_1}{R_2}$
Comparador inversor com histerese	$V_{CEN} = V_{REF} \frac{R_2}{R_1 + R_2}, \qquad \Delta h = 2V_{sat} \frac{R_1}{R_1 + R_2}$