Architecture de la matière – chapitre 3

Solides cristallins

Différents types de cristaux

Les solides cristallins présentent des propriétés macroscopiques très diversifiées. Par exemple, mécaniquement on distingue :

- la dureté : résistance à la pénétration ;
- la **malléabilité** : capacité à se déformer (par choc ou pression) sans rompre;
- la **ductilité** : capacité à être étiré sans casser.

On trouve également des propriétés électriques et chimiques (solubilité, température de fusion).

On peut alors les regrouper par famille, selon leur structure microscopique dont émergent les propriétés macro : c'est l'objectif des paragraphes suivants.

Cristaux métalliques

IV.A.1 Description

On peut décrire un cristal métallique comme une structure dans laquelle les nœuds du réseau sont occupés par des **cations** (M^+ ou M^{2+} , perte d'un ou deux électrons de valence), et tous les électrons cédés sont **délocalisés** sur l'ensemble du cristal. Cette délocalisation assure la cohésion du cristal. Ainsi,

Liaison métallique -

Électronégativité

À partir de ces propriétés macroscopiques, on peut expliquer les propriétés macroscopiques; voir Tableau 3.1.

Lycée Pothier 1/7 MPSI – 2022/2023

Tableau 3.1 – Propriétés des cristaux métalliques

Propriété microscopique		Propriété macroscopique
Liaison métallique forte	donc	
Liaison isotrope donc atomes déplaçables	donc	
Électrons libres	donc	
Électrons facilement arrachés	donc	

IV.A.2 Alliages métalliques

Définition

On dit aussi parfois qu'un alliage est une « solution solide » : la base serait le solvant, les autres les solutés. L'intérêt des alliages est de faire varier les propriétés du matériau de base, notamment mécaniques et anti-corrosives. On peut les réaliser de deux manières :

- 1) par substitution : un atome se substitue à un autre en certains points du réseau;
- 2) par insertion : des atomes s'insèrent dans les sites cristallographiques du réseau métallique.

Tableau 3.2 – Exemples d'alliages courants et utilisations

Nom de l'alliage	Élément principal	Éléments ajoutés	Propriétés et utilisations
Acier	Fer	Carbone 2%	Plus dur que le fer. Très répandu, notamment en construction ou dans l'industrie automo- bile.
Acier inoxydable	Fer	Carbone 2%, chrome et nickel	Plus résistant à la corrosion que l'acier simple.
Alliages d'aluminium	Aluminium	Cobalt, nickel, tantale	Alliages durs mais légers, utilisés notamment en aéronautique.
Bronze	$\mathrm{Cuivre} > 60\%$	Étain	Plus résistant que le cuivre à l'usure. Utilisé pour la décoration , la lutherie, la sculpture.
Laiton	$\mathrm{Cuivre} > 60\%$	Zinc	Plus dur et plus facile à usiner que le cuivre. Utilisé en horlogerie, serrurerie, robinetterie, lutherie.
Or rose	Or	Cuivre 20%, argent 5%	Utilisé en joaillerie.
Or blanc	Or	Argent	Utilisé en joaillerie, recouvert d'une couche de rhodium pour le rendre plus brillant.

Cristal ionique

Déterminer la formule brute d'un cristal contenant les ions $\operatorname{Fe_3}^+$ et $\operatorname{O_2}^-$.

Exercice

La cohésion est alors assurée par les forces coulombiennes entre les charges, à la fois d'attraction pour les charges opposées mais aussi de répulsion pour les charges de même signe. Ainsi,

Liaison ionique

Pour assurer leur stabilité, il est favorable qu'un maximum d'anions entoure de manière compacte chaque cation. Ainsi, un cristal ionique est souvent décrit comme un réseau d'anions où les cations occupent les sites cristallographiques (ou inversement). Avec le modèle des sphères dures, on décrit le rayon des entités par leur rayon ionique, et on considère le rayon des anions plus grand que celui des cations (plus d'électrons en périphérie). On a donc

Stabilité d'un cristal ionique de sphères dures

À partir de ces propriétés macroscopiques, on peut expliquer les propriétés macroscopiques :

Tableau 3.3 – Propriétés des cristaux ioniques

Propriété microscopique		Propriété macroscopique
Liaison ionique forte	donc	
Liaison isotrope mais répulsive, ions fixes	donc	
Électrons dans les liaisons	donc	
Ions attirés par solvants polaires	donc	

IV.B.2 Exemples de cristaux ioniques

La structure CsCl (chlorure de césium) est une structure cubique centrée. En prenant le césium au centre et le chlore sur les sommets, on a la géométrie suivante :

- ♦ Formule chimique :
- ♦ Coordinence :
- Condition géométrique :

La structure NaCl (chlorure de sodium) est une structure cubique faces centrées. Les ions chlorure sont sur les nœuds, les ions sodium sur les sites octaédriques (forme également un réseau CFC).

- 1) Dénombrer les anions et cations dans la maille. En déduire la formule brute dans la maille.
- 2) Déterminer la coordinence anions/cations.
- 3) Montrer que la structure est stable : il y a contact entre ions de charges opposées mais pas entre ions de même charge. On donne $r_+=95\,\mathrm{pm}$ et $r_-=181\,\mathrm{pm}$.

xercice

La structure ZnS (sulfure de zinc) est une structure cubique faces centrées. Les ions sulfure sont sur les nœuds, les ions zinc sur un site tétraédrique sur deux.

- ♦ Formule chimique :
- ♦ Coordinence :
- Condition géométrique :

C Cristaux covalents ou macrovalents

 \bigcirc

Cristal covalent

On trouvera ainsi principalement des éléments qui ne font peu d'ions, mais qui font beaucoup de liaisons : ceux avec une couche de valence environ à moitié pleine, donc bloc d et la gauche du bloc p (carbone, silicium...).

Liaison covalente

À partir de ces propriétés macroscopiques, on peut expliquer les propriétés macroscopiques; voir Tableau 3.4.

Exercice

Le cas du carbone diamant est un cristal covalent, qui forme un réseau CFC avec la moitié des sites tétraédriques également occupés par des atomes de carbone.

- 1) Déterminer sa compacité.
- 2) Déterminer sa masse volumique. On donne $a=356,7\,\mathrm{pm}$.

Tableau 3.4 – Propriétés des cristaux covalents

Propriété microscopique	Propriété macroscopique
Liaison covalente très forte	donc
Liaison directionnelle donc atomes fixes	donc
Électrons dans les liaisons	donc

D Cristaux moléculaires

Cristal moléculaire

Le modèle des sphères dures n'est pas toujours adapté dans ce cas, puisque leur géométrie est souvent anisotrope : les motifs sont **orientés** dans la maille, de telle sorte qu'ils maximisent l'énergie de liaison.

V. Bilan 7

Liaison moléculaire

À partir de ces propriétés macroscopiques, on peut expliquer les propriétés macroscopiques; voir Tableau 3.5.

Tableau 3.5 – Propriétés des cristaux moléculaires

Propriété microscopique	Propriété macroscopique
Liaisons VdW et LH faibles	done
Liaison directionnelle mais faible donc déplaçable	donc
Électrons localisés dans les molécules	done
Interactions intérieures similaires aux solvants	donc

Bilan

Tableau 3.6 – Bilan des différents types de cristaux.

Cristaux métalliques	Cristaux ioniques	Cristaux covalents	Cristaux moléculaires
Fe, Ca, Zn	NaCl, KOH	Diamant, Si, Ge	H_2O, I_2, CO_2
	métalliques	métalliques ioniques	métalliques ioniques covalents