Lista de Exercícios Avaliativa 5

MC458 - 2s2020 - Tiago de Paula Alves - 187679

1.

a) Considere a operação " \oplus " como a concatenação de cadeias e " X_i " como a notação de prefixo adotada em aula.

Teorema (subestrutura ótima). Sejam n e m inteiros positivos e considere $X = \langle x_1, \ldots, x_m \rangle$, $Y = \langle y_1, \ldots, y_n \rangle$ e $Z = \langle z_1, \ldots, z_{m+n} \rangle$ como cadeias de caracteres de Σ . Então, Z é uma intercalação de X e Y se e somente se pelo menos uma das condições a seguir for atendida:

- 1. $x_m = z_{n+m} \ e \ Z_{m+n-1} \ \acute{e} \ intercalação \ X_{m-1} \ e \ Y;$
- 2. $y_n = z_{n+m} \ e \ Z_{m+n-1} \ \acute{e} \ intercalação \ X \ e \ Y_{n-1}$.

Demonstração. Considere $Z' = Z_{m+n-1}$, $X' = X_{m-1}$ e $Y' = Y_{n-1}$.

 (\rightarrow) Suponha que Z é uma intercalação de X e Y e que a condição 1 não foi atendida. Então temos os seguintes casos:

Caso 1: $x_m \neq z_{m+n}$. Assim, se $y_n \neq z_{m+n}$, então Z não poderia ser uma intercalação de X e Y, logo, $y_n = z_{m+n}$. Suponha agora que Z' não é uma intercalação de X e Y', ou seja, não é possível decompor Z' em subcadeias disjuntas iguais a X e Y'.

Para que exista uma subcadeia S de $Z=Z'\oplus \langle z_{m+n}\rangle$ tal que $S=Y'\oplus \langle y_n\rangle=Y$, temos que z_{m+n} deverá ser parte de S. Se X não é subcadeia de Z', como z_{m+n} seria parte da subcadeia igual a Y, então X também não seria subcadeia de Z. Por outro lado, se Y' não é subcadeia de Z', então $Y=Y'\oplus \langle y_n\rangle$ também não poderá ser subcadeia de Z.

Portanto, temos que Z' deve ser uma intercalação de X e Y', ou seja, a condição 2 deve ser atendida.

Caso 2: $x_m = z_{m+n}$ e Z' não é intercalação de X' e Y. Suponha que z_{m+n} é parte da subcadeia S de Z que é igual a X. No entanto, como Z' não é intercalação de X' e Y, temos que $Z = Z' \oplus \langle z_{m+n} \rangle$ não pode ser intercalação de $X = X' \oplus \langle x_m \rangle = S$ e Y. Portanto, z_{m+n} deve ser parte de Y.

Como z_{m+n} é o último elemento de Z, então $y_n = z_{m+n}$. Além disso, assim como no caso anterior, temos que z_{m+n} é parte da subcadeia igual a Y, então Z' deve ser uma intercalação de X e Y'.

Por fim, como os casos são exaustivos, temos que se a condição 1 é falsa, a condição 2 deve ser verdade. Logo, para que Z seja a intercalação proposta, uma das condições deve ser atendida.

(\leftarrow) Considere agora que a condição 1 é verdade. Como $Z = Z' \oplus \langle z_{m+n} \rangle$, $X = X' \oplus \langle x_m \rangle$ e $z_{m+n} = x_m$, então as operações de concatenação mantêm a propriedade da intercalação, nesse caso. Portanto, Z é uma intercalação de X e Y.

A demonstração a partir da condição 2 é similar.

Além do caso geral discutido acima, é possível que X ou Y seja vazia (\emptyset), isto é, m=0 ou n=0. O caso base acontece quando ambas são vazias. A partir da subestrutura ótima e dos casos com cadeias vazias, podemos ver que a recorrência para verificação de intercalação será dada por:

```
\varnothing é intercalação de \varnothing e \varnothing Z é intercalação de \varnothing e Y \leftrightarrow z_n = y_n e Z_{n-1} é intercalação de \varnothing e Y_{n-1} Z é intercalação de X e \varnothing \leftrightarrow z_m = x_m e Z_{m-1} é intercalação de X_{m-1} e \varnothing Z é intercalação de X e Y \leftrightarrow \begin{cases} z_{m+n} = x_m \text{ e } Z_{m+n-1} \text{ é intercalação de } X_{m-1} \text{ e } Y \\ z_{m+n} = y_n \text{ e } Z_{m+n-1} \text{ é intercalação de } X \text{ e } Y_{n-1} \end{cases}, ou
```

b) Considere VERDADEIRO como 1, FALSO como 0 e NULO como uma constante diferente de 1 e de 0.

```
INTERCALACAO(X, m, Y, n, Z)
    Seja I[0..m][0..n] uma matriz
1
2
3
   para i = 0 até m
        para j = 0 até n
4
             I[i][j] \leftarrow \text{NULO}
5
6
   retorna Intercalacao-Rec(X, m, Y, n, Z, I)
7
INTERCALACAO-REC(X, m, Y, n, Z, I)
     se I[m][n] \neq \text{NULO}
 1
         retorna I[m][n]
 2
 3
 4
     se m == 0 e n == 0
 5
         I[0][0] \leftarrow VERDADEIRO
 6
     senão
 7
         I[m][n] \leftarrow \text{FALSO}
 8
         se m \neq 0 e X[m] == Z[m+n]
 9
              I[m][n] \leftarrow I[m][n] ou Intercalacao-Rec(X, m-1, Y, n, Z, I)
         se n \neq 0 e Y[n] == Z[m+n]
10
              I[m][n] \leftarrow I[m][n] ou Intercalacao-Rec(X, m, Y, n-1, Z, I)
11
12
     retorna I[m][n]
13
```

c) Considerando m' e n' as entradas das chamadas recursivas de INTERCALAO-REC, é possível notar que $0 \le m' \le m$ e $0 \le n' \le n$. Além disso, cada nível da recursão faz no máximo duas novas chamadas, ou seja, o número de chamadas não cresce com o valor de m ou n.

Assim, a partir do momento que a matriz de memorização I está preenchida, qualquer chamada leva tempo constante. Portanto, a complexidade da função recursiva é limitada pelo tamanho da matriz, ou seja, é O((m+1)(n+1)) = O(mn).

Então, a função INTERCALAÇÃO, que inicializa a tabela e a recursão, tem tempo:

$$T(m,n) = \sum_{i=0}^{m} \sum_{j=0}^{n} \Theta(1) + O(mn)$$
$$= \Theta((m+1)(n+1)) + O(mn)$$
$$= \Theta(mn)$$

Para a complexidade de espaço, podemos ver que a função recursiva usa espaço constante em cada chamada. Como as chamadas são limitadas pelo tamanho da tabela de memorização, então o espaço utilizado é O(mn). Para a função final, a criação da tabela I, com dimensões $(m+1)\times (n+1)$, também determina a complexidade. Portanto, $E(m,n)=\Theta(mn)$.

a)

Teorema (subestrutura ótima). *Seja P um percurso da aldeia A*₁ *até A*_n *com custo mínimo. Então, todo subpercurso R* \subseteq *P que termina em A*_n *também é mínimo.*

Demonstração. Suponha um percurso P com custo c(P) mínimo de A_1 até A_n e uma aldeia $A_{1 \le k \le n}$ como parte do percurso. Logo, temos o subpercurso $R \subseteq P$ de A_k até A_n . Suponha também um percurso R' de A_k a A_n com custo c(R') mínimo.

Assim, se c(R') < c(R), então podemos formar o percurso total $P' = (P \setminus R) \cup R'$, tal que c(P') = c(P) - c(R) + c(R') < c(P). Ou seja, P não poderia ser considerado mínimo.

Logo, $c(R) \le c(R')$, isto é, R deve ser mínimo. Além disso, como A_k era arbitrário, todo subpercurso de P também deve ter custo mínimo.

Considere que C_i é o menor custo de um percurso da aldeia A_i para a A_n , sendo $1 \le i < n$. Como os subpercursos são ótimos, podemos considerar todas as possíveis paradas $A_{i < j \le n}$ com seus percursos ótimos até A_n , tomando o menor deles como parte do percurso ótimo de A_i . Note que se i = n, então não resta nenhuma aldeia no percurso, ou seja, $C_i = 0$. Assim,

$$C_i = \min_{i < j \le n} \left\{ t_{i,j} + C_j \right\}$$

$$C_n = 0$$

Nessa relação, o custo ótimo C_i depende apenas dos custos C_j das aldeias seguintes, com i < j, já que $t_{i,j} > 0$ e não é possível alugar uma canoa de $A_{j>i}$ para A_i . Assim, podemos calcular os custo a partir da última aldeia A_n , sem necessidade de recursão ou memorização.

b)

```
CUSTO-MÍNIMO(t,n)
     Seja C[1..n-1] um novo vetor.
 1
 2
 3
     para i = n - 1 descendo até 1
          cmin \leftarrow t[i][n]
 4
 5
          para j = i + 1 até n - 1
 6
               custo \leftarrow t[i][j] + C[j]
 7
               cmin \leftarrow min(cmin, custo)
 8
          C[i] \leftarrow cmin
 9
10
     retorna C[1]
```

c) Vamos considerar que as linhas 1 e 10 executam em tempo constante a_1 , que a 4 e a 8 executam em a_2 e que 6 e 7 são em tempo a_3 . Assim, podemos descrever o tempo de execução do algoritmo por:

$$T(n) = a_1 + \sum_{i=1}^{n-1} \left(a_2 + \sum_{j=i+1}^{n-1} a_3 \right)$$

$$= a_1 + \sum_{i=1}^{n-1} a_2 + a_3 \sum_{i=1}^{n-1} n - a_3 \sum_{i=1}^{n-1} i - a_3 \sum_{i=1}^{n-1} 1$$

$$= a_1 + a_2(n-1) + a_3n(n-1) - a_3 \frac{n(n-1)}{2} - a_3(n-1)$$

$$= \frac{a_3}{2} n^2 + \frac{2a_2 - 3a_3}{2} n + a_1 - a_2 + a_3$$

Ou seja, $T(n) \in \Theta(n^2)$, como requerido. Além disso, o único espaço adicional é do vetor C de tamanho n-1. Então, a complexidade de espaço será dada por:

$$E(n) = n - 1 + \Theta(1) = \Theta(n)$$

3. Para conseguir a sequência de aldeias, podemos guardar os índices que minimizam o cálculo do custo, dado pela recorrência do item 2a). Assim, teremos um vetor P de tamanho n onde $C_i = t_{i,P_i} + C_{P_i}$, ou seja, P_i é o índice da próxima aldeia no caminho ótimo partindo de A_i .

Na prática, esse índice poderia ser acumulado em uma variável *pmin*, assim como é feito com *cmin* (linha 4), sendo trocado sempre que *cmin* fosse atualizado (linha 7). Ou seja, teríamos uma nova linha com "*pmin* \leftarrow j" se *custo* < *cmin*, mantendo a nova invariante de que

$$cmin = \min_{i < k \le j} \left\{ t_{i,k} + C_k \right\} = t_{i,pmin} + C_{pmin}$$

Ao final do laço da linha 5, teremos então que $P_i = pmin$, além de $C_i = cmin$, como já acontecia na linha 8.

Por fim, com esse vetor P, podemos montar o caminho ótimo M partindo de A_1 . Assim, teremos $M_1 = P_1$ e $M_{i+1} = P_{M_i}$, até encontrar um valor final $1 \le f \le n$ em que $M_f = n$, ou seja, a última aldeia. Esse caminho M de tamanho f seria o resultado do algoritmo.