A Semiparametric Inverse Reinforcement Learning Approach to Characterize Decision Making for Mental Disorders

Xingche Guo¹ Donglin Zeng² Yuanjia Wang^{1,3}

¹Dept. of Biostatistics, Columbia University

²Dept. of Biostatistics, Michigan University

²Dept. of Psychiatry, Columbia University

Probabilistic reward task and EMBARC study

Probabilistic reward task (PRT) is a computer-based behavioral experiment that measures the subject's ability to modify behavior in response to rewards.

- Two states: Subjects see a cartoon face with a short or long mouth on each trial. Difference in size between the short and long mouths is small.
- Task: Subjects indicate whether a short or long mouth was presented. Correct responses have chances to be rewarded (not always rewarded).
- Imbalanced rewards: The correct response (rich reward state) to a short mouth was rewarded more frequently than the correct response to a long mouth (lean reward state).
- Response bias: Subjects tend to prioritize states with higher rewards.

EMBARC study is a randomized trial for patients with Major depressive disorder (MDD).

Exploratory analysis

We estimated P(Action = State|State = j), j = 0,1 for the MDD and Control group. We observed an **increase** of **response bias** as the trial progresses.

Our goal

- Characterize agent's heterogeneous decision making behavior (Behavioral Cloning).
- Identify the difference in reward learning abilities between 1. the patients with MDD vs the healthy Control group.
- 2. Antidepressant sertraline (SERT) vs placebo (PBO) for the MDD patients.
- Investigate the cause of abnormalities in reward learning for the MDD patients.

Problem setups

- State and action space: $S_{it} \in \{0, \dots, m-1\}$, $A_{it} \in \{0, 1\}$ (PRT is a special case for m=2).
- Problem size: subjects $(i=1,\ldots,n)$ from a subgroup, trials $(t=1,\ldots,T)$ for each subject.
- Decision dynamics: ..., $\rightarrow S_{it-1} \rightarrow A_{it-1} \rightarrow R_{it-1} \rightarrow S_{it} \rightarrow A_{it} \rightarrow R_{it} \rightarrow ...$
- State-generating: State S_{it} is generated independent of S_{it-1} and A_{it-1} .

Semiparametric inverse RL model

1. RL model

- $Q_{it}(a,s)$: the **expected reward** of taking action a at state s.
- The reward prediction error between obtained and expected reward:

$$\delta_{it} = \rho_i R_{it} - Q_{it}(a, s).$$

- $\rho_i > 0$: reward sensitivity.
- Expected reward evolves based on the stochastic gradient descent

$$Q_{i,t+1}(a,s) = Q_{it}(a,s) + \beta_i \delta_{it} I_{it}(a,s)$$

• $\beta_i \in (0,1)$: learning rate.

2. Decision making model

• The "belief" of the expected reward characterizing the uncertainty of current state:

$$W_{it}(a,s) = \omega_{ss}Q_{it}(a,s) + \sum_{r \neq s} \omega_{sr}Q_{it}(a,r),$$

• The **contrast** between two actions:

$$Z_{it} = W_{it}(1, S_{it}) - W_{it}(0, S_{it}).$$

• The **probability** of $A_{it} = 1$ conditional on history \mathcal{H}_{it} and S_{it} :

logit
$$P(A_{it} = 1 \mid S_{it}, \mathcal{H}_{it}) = f(Z_{it}),$$

• $f(\cdot)$: an unknown non-decreasing reward sensitivity function satisfying f(0) = 0.

3. Subject specific heterogeneity

• Transformed (β_i, ρ_i) :

$$(\nu_i, \gamma_i) \stackrel{iid}{\sim} N(\boldsymbol{\mu}, \boldsymbol{\Sigma}),$$
 where $\nu_i = \log(\beta_i/(1-\beta_i))$ and $\gamma_i = \log(\rho_i)$

- Let $\mu_{\gamma} \equiv 1$ to ensure **identifiability**.
- γ_i : the **relative sensitivity** of the *i*-th subject.

Model implementation

• Maximizing the log-likelihood of actions **conditional** on states and rewards

$$\sum_{i=1}^{n} \log \left[\iint \left\{ \prod_{t=1}^{T} P(A_{it} \mid S_{it}, \mathcal{H}_{it}; \nu_i, \gamma_i) \right\} \phi(\nu_i, \gamma_i | \boldsymbol{\mu}, \boldsymbol{\Sigma}) d\nu_i d\gamma_i \right],$$

where $\phi(\cdot, \cdot | \boldsymbol{\mu}, \boldsymbol{\Sigma})$ denotes the density of $N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$.

- The double integral is approximated by bivariate Gauss-Hermite quadrature.
- The non-decreasing function $f(\cdot)$ is approximated using monotone **I-splines**

$$\tilde{f}(x) = \sum_{k=1}^{K} \{I_k(x) - I_k(0)\} b_k$$

- Nonparametric bootstrap is used for inference.
- The 95% pointwise confidence band (PCB) and the 95% simultaneous confidence band (SCB) is constructed by bootstrap samples.

Application to EMBARC Study

MDD Group vs Control Group:

- The difference of **learning rate** between MDD group and control group is **not significant**.
- The Control group has a larger probability of taking correct actions at rich reward states than the MDD group when subjects in both groups receive adequate rewards in rich reward states.

SERT Group vs PBO Group:

- The one-week changes in learning rate between PBO and SERT groups are not significantly different.
- There might be a **positive impact of sertraline** on MDD patients, potentially bringing their reward learning sensitivity **closer to** that of **healthy individuals** at the rich state.

In general:

- The abnormalities in reward learning for the MDD patients are more likely due to reduced sensitivity to received rewards.
- The fitted reward sensitivity functions are **nonlinear**.