

Introduction

• Variation of salary with time:

Notation

- Given a data set of N points.
- Input data comprise D features, suppose they are $x_1, x_2,, x_D$.
- Representation of the *i*th input data point:

$$\mathbf{x}^{(i)} = [x_1^{(i)}, x_2^{(i)}, ..., x_D^{(i)}]^{\mathrm{T}}$$

• Set of input data points:

$$\mathbf{X} = {\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, ... \mathbf{x}^{(N)}}$$

• Set of outputs for the N data points:

$$\mathbf{y} = \{y^{(1)}, y^{(2)}, ..., y^{(N)}\}$$

Linear Regression

• Input variables can be written in vectorial form as:

$$\mathbf{x} = [x_1, x_2,, x_D]^T$$

• Prediction: Linear combination of input variables

$$z(\mathbf{x}, p_0, p_1, \dots, p_D) = p_0 + p_1 x_1 + p_2 x_2 + \dots + p_D x_D$$

• Vectorial representation of weights:

$$\mathbf{p} = [p_0, p_1, p_2,, p_D]^T$$

Simplest case

• One input variable: x_1

Using basis functions

• Output: Linear combination of functions of input variables

$$z(\mathbf{x}, p) = p_0 + \sum_{i=1}^{Q} p_i f_i(\mathbf{x})$$

where $f_1(\mathbf{x}), f_2(\mathbf{x}),, f_Q(\mathbf{x})$ are the basis functions.

• Taking $f_0 = 1$, can write

$$z(\mathbf{x}, p) = \sum_{i=0}^{Q} p_i f_i(\mathbf{x})$$

• Vectorial representation:

$$z(\mathbf{x}, \mathbf{p}) = \mathbf{p}^T \mathbf{f}(\mathbf{x})$$

where
$$\mathbf{p} = [p_0, p_1, ..., p_Q]^{\mathrm{T}}$$
 and $\mathbf{f}(\mathbf{x}) = [f_0(\mathbf{x}), f_1(\mathbf{x}), ..., f_Q(\mathbf{x})]^{\mathrm{T}}$

Basis functions

• Polynomial basis functions (with single input x_1) have the form:

$$f_0(x_1) = 1,$$
 $f_1(x_1) = x_1,$ $f_2(x_1) = x_1^2,$ $f_Q(x_1) = x_1^Q,$

and therefore

$$\mathbf{f}(x_1) = \begin{bmatrix} 1, & x_1, & x_1^2, & \dots, & x_1^Q \end{bmatrix}^{\mathrm{T}}.$$

- More complex functions can be generated by increasing the degree of the polynomial Q.
- Some other popular choices of basis functions:
 - Spline functions (piecewise polynomial curves)
 - Gaussian basis functions

Error

- Dataset comprise N data points.
- Outputs at the training locations: $\mathbf{y} = \{y^{(1)}, y^{(2)}, ..., y^{(N)}\}.$
- Predictions at the training locations: $\mathbf{z} = \{z^{(1)}, z^{(2)}, ..., z^{(N)}\}.$
- Sum of squared errors:

$$SE = \sum_{n=1}^{N} (y^{(n)} - z^{(n)})^{2}$$
$$= \sum_{n=1}^{N} (y^{(n)} - \mathbf{p}^{T} \mathbf{f}(\mathbf{x}^{(n)}))^{2}$$

- Mean squared error $MSE = \frac{SE}{N}$
- Often the error function is written in the following form that is more amenable to differentiation

$$E = \frac{1}{2} \sum_{n=1}^{N} \left(y^{(n)} - \mathbf{p}^{T} \mathbf{f}(\mathbf{x}^{(n)}) \right)^{2}$$

Parameter values

• Optimal weights – Setting the gradient of $E(\mathbf{p})$ to zero:

$$\nabla E(\mathbf{p}) = 0$$

which yields

$$\sum_{n=1}^{N} y^{(n)} \mathbf{f}(\mathbf{x}^{(n)})^{\mathrm{T}} - \mathbf{p}^{\mathrm{T}} \left(\sum_{n=1}^{N} \mathbf{f}(\mathbf{x}^{(n)}) \mathbf{f}(\mathbf{x}^{(n)})^{\mathrm{T}} \right) = 0$$

Let

$$\mathcal{F} = \begin{bmatrix} \mathbf{f}(\mathbf{x}^{(1)})^{\mathrm{T}} \\ \mathbf{f}(\mathbf{x}^{(2)})^{\mathrm{T}} \\ \vdots \\ \mathbf{f}(\mathbf{x}^{(N)})^{\mathrm{T}} \end{bmatrix} = \begin{bmatrix} f_0(\mathbf{x}^{(1)}) & f_1(\mathbf{x}^{(1)}) & \cdots & f_Q(\mathbf{x}^{(1)}) \\ f_0(\mathbf{x}^{(2)}) & f_1(\mathbf{x}^{(2)}) & \cdots & f_Q(\mathbf{x}^{(2)}) \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ f_0(\mathbf{x}^{(N)}) & f_1(\mathbf{x}^{(N)}) & \cdots & f_Q(\mathbf{x}^{(N)}) \end{bmatrix}$$

• Finally, the value of the weights **p** are obtained as:

$$\mathbf{p} = (\mathcal{F}^{\mathrm{T}}\mathcal{F})^{-1}\mathcal{F}^{\mathrm{T}}\mathbf{y}$$

Probabilistic approach

• Assumption: Gaussian noise model

$$y^{(n)} \sim \mathcal{N}(\mathbf{p}^{\mathrm{T}}\mathbf{x}^{(n)}, \sigma^2)$$

Maximum likelihood estimator

• Training data comprise N data points:

$$\mathbf{X} = \{\mathbf{x}^{(1)}, \mathbf{x}^{(2)},, \mathbf{x}^{(N)}\}, \qquad \mathbf{y} = \{y^{(1)}, y^{(2)},, y^{(N)}\}$$

Likelihood function

$$p(\mathbf{y}|\mathbf{X}, \mathbf{p}, \sigma^2) = \prod_{n=1}^{N} \mathcal{N}(y^{(n)}|\mathbf{p}^T \mathbf{f}(\mathbf{x}^{(n)}), \sigma^2)$$

• Taking log on both sides:

$$\ln p(\mathbf{y}|\mathbf{X}, \mathbf{p}, \sigma^2) = \sum_{n=1}^{N} \ln \mathcal{N}(y^{(n)}|\mathbf{p}^T \mathbf{f}(\mathbf{x}^{(n)}), \sigma^2)$$
$$= -\frac{N}{2} \ln (2\pi) - \frac{N}{2} \ln (\sigma^2) - \frac{1}{2\sigma^2} \sum_{n=1}^{N} (y^{(n)} - \mathbf{p}^T \mathbf{f}(\mathbf{x}^{(n)}))^2$$

• For a linear model with conditional Gaussian noise distribution, maximizing likelihood with respect to weights is equivalent to minimizing the sum-of-squared error.

Maximum likelihood estimator

• Weights for maximum likelihood – setting the gradient of log likelihood to zero:

$$\nabla \ln p(\mathbf{y}|\mathbf{X}, \mathbf{p}, \sigma^2) = \sum_{n=1}^{N} (y^{(n)} - \mathbf{p}^{\mathrm{T}} \mathbf{f}(\mathbf{x}^{(n)})) \mathbf{f}(\mathbf{x}^{(n)})^{\mathrm{T}} = 0$$

finally yields

$$\mathbf{p} = (\mathcal{F}^{\mathrm{T}}\mathcal{F})^{-1}\mathcal{F}^{\mathrm{T}}\mathbf{y}$$

• The noise variance σ^2 can also determined by maximizing (log) likelihood with respect to σ^2 , yielding:

$$\sigma^2 = \frac{1}{N} \sum_{n=1}^{N} \left(y^{(n)} - \mathbf{p}^{\mathrm{T}} \mathbf{f}(\mathbf{x}^{(n)}) \right)^2$$

• This is the residual variance of the outputs around the predictions

Geometrical interpretation

- Consider an N-dimensional space, whose axes indicate the N output values of the training dataset.
- Let f_j be the j-th column of \mathcal{F} , i.e. $f_j = [f_j(\mathbf{x}^{(1)}), f_j(\mathbf{x}^{(2)}), ..., f_j(\mathbf{x}^{(N)})]^T$.

• In the N-dimensional space consider a subspace S spanned by Q basis vectors $\{f_1, f_2, .., f_Q\}$.

Geometrical interpretation

- Let **z** be an arbitrary linear combination of the basis vectors.
- The vector \mathbf{z} can lie anywhere in the subspace \mathcal{S} .
- The least squares algorithm yields solution \mathbf{z} lying on the subspace \mathcal{S} which is closest to the vector \mathbf{y} .

R²

- R^2 : Coefficient of determination
- Fraction of the total variation in the outputs that is accounted for by preforming regression of the outputs w.r.t.input variables.
- Mathematically R^2 is defined as

$$R^2 = 1 - \frac{S_R}{S_T}$$

- The total variation S_T is taken as the sum of squared deviations of each y value from the mean of y.
 - The mean \overline{y} is the best guess when the values of the input variables are unknown.
 - The mean \overline{y} can be computed as

$$\overline{y} = \frac{1}{N} \sum_{n=1}^{N} y^{(n)}$$

- The total variation can be thought of as how good the predictions of y can be without the knowledge of \mathbf{x} .

R^2

- R^2 : Coefficient of determination
- Fraction of the total variation in the outputs that is accounted for by preforming regression of the outputs w.r.t.input variables.
- Mathematically R^2 is defined as

$$R^{2} = 1 - \frac{S_{R}}{S_{T}}$$

$$= 1 - \frac{\sum_{n=1}^{N} (z^{(n)} - y^{(n)})^{2}}{\sum_{n=1}^{N} (y^{(n)} - \overline{y})^{2}}$$

• The sum of square of residuals S_R is a measure of "unexplained variability" and is defined as

$$S_R = \sum_{n=1}^{N} (z^{(n)} - y^{(n)})^2$$

• The difference between S_T and S_R can be considered as the "explained variability" i.e. the amount of variability in the outputs that is explained by performing regression on the inputs.

Least mean squares algorithm

- Useful for large datasets, real-time applications.
- Predictions can be made before the whole dataset is seen.
- Updates of **p** are made using the data points in the training set, separately.
- The objective function to be minimized:

$$E(\mathbf{p}) = \sum_{n=1}^{N} \frac{1}{2} (y^{(n)} - \mathbf{p}^{T} f(\mathbf{x}^{(n)}))^{2}$$
$$= \sum_{n=1}^{N} E_{n}(\mathbf{p})$$

Stochastic gradient descent

- Initialize the learning rate ζ and \mathbf{p} (say $\mathbf{p}^{(0)}$).
- The weight vector $\mathbf{p}^{(\tau+1)}$ at the τ -th iteration can be updated using the stochastic gradient descent algorithm:

$$\mathbf{p}^{(\tau+1)} = \mathbf{p}^{(\tau)} - \zeta \nabla E_n(\mathbf{p})$$

- On substitution of $\nabla E_n(\mathbf{p})$ we have

$$\mathbf{p}^{(\tau+1)} = \mathbf{p}^{(\tau)} + \zeta \left(y^{(n)} - (\mathbf{p}^{(\tau)})^{\mathrm{T}} f(\mathbf{x}^{(n)}) \right) f(\mathbf{x}^{(n)})^{\mathrm{T}}$$

Bayesian linear regression

• The posterior distribution of the weights $p(\mathbf{p}|\mathbf{y})$ is computed using the Bayes rule

$$p(\mathbf{p}|\mathbf{y}) = \frac{p(\mathbf{y}|\mathbf{p})p(\mathbf{p})}{p(\mathbf{y})}$$

• Assume the prior distribution of the weights $p(\mathbf{p})$ to be a multivariate Gaussian distribution, i.e.

$$p(\mathbf{p}) = \mathcal{N}(\mathbf{p}|\boldsymbol{\mu}_0, \boldsymbol{\Sigma}_0)$$

where μ_0 is the mean vector and Σ_0 is the covariance matrix.

- If $\Sigma_0 = \alpha^{-1} \mathbf{I}$, then the variances of all the weights are equal to α^{-1} , while the covariances are zero.
- Assume Gaussian likelihood, i.e.

$$p(\mathbf{y}|\mathbf{p}, \mathbf{X}, \beta) = \prod_{n=1}^{N} \mathcal{N}(y^{(n)}|\mathbf{p}^{T}\mathbf{f}(\mathbf{x}^{(n)}), \beta^{-1})$$

- Take β (noise precision) to be a fixed constant.

Bayesian linear regression

- Since the prior $p(\mathbf{p})$ and the likelihood $p(\mathbf{y}|\mathbf{p}, \mathbf{X}, \beta)$ are both Gaussian, the posterior distribution $p(\mathbf{p}|\mathbf{y}, \mathbf{X}, \beta)$ is also Gaussian.
- The posterior distribution is obtained as

$$p(\mathbf{p}|\mathbf{y}, \mathbf{X}, \beta) = \mathcal{N}(\mathbf{p}|\boldsymbol{\mu}_N, \boldsymbol{\Sigma}_N)$$

where

$$\boldsymbol{\mu}_N = \boldsymbol{\Sigma}_N (\boldsymbol{\Sigma}_0^{-1} \boldsymbol{\mu}_0 + \beta \boldsymbol{\mathcal{F}}^{\mathrm{T}} \mathbf{y})$$

is the mean of the posterior distribution and

$$\Sigma_N^{-1} = \Sigma_0^{-1} + \beta \mathcal{F}^{\mathrm{T}} \mathcal{F}$$

is the covariance matrix of the posterior distribution.

• For infinitely broad prior $\Sigma_0 = \alpha^{-1} \mathbf{I}$ with $\alpha \to 0$, the mean μ_N of the posterior distribution reduces to the maximum likelihood solution

$$oldsymbol{\mu}_N = \left(\mathcal{F}^{\mathrm{T}}\mathcal{F}\right)^{-1}\mathcal{F}^{\mathrm{T}}\mathbf{y}$$