Analysis I

1 Vollständige Induktion

 A_n : Aussage über natürliche Zahlen $n \in \mathbb{N}$. Zu zeigen:

- 1. A_{n_0} gilt (Induktionsanfang)
- 2. Für jedes A_n mit $n > n_0$ gilt A_{n+1} (Induktionsschritt)
- $\Rightarrow A_n$ gilt für alle $n > n_0$

2 Die reellen Zahlen

2.1 Körperaxiome

2.1.1 Axiome der Addition

- A1: Assotiativgesetz: (x + y) + z = x + (y + z)
- A2: Kommutativgesetz: x + y = y + x
- A3: Neutrales Element: x + 0 = 0 + x = x
- A4: Inverses Element: $\exists -x \in \mathbb{R} : x + (-x) = 0$

2.2 Axiome der Mulitplikation

- M1: Assotiativgesetz: $(x \cdot y) \cdot z = x \cdot (y \cdot z)$
- M2: Kommutativgesetz: $x \cdot y = y \cdot x$
- M3: Neutrales Element: $x \cdot 1 = 1 \cdot x = x$
- M4: Inveres Element : $\exists \frac{1}{x} \in \mathbb{R} : x \cdot \frac{1}{x} = 1$ D: Distributivgesetz: $x \cdot (y + z) = x \cdot y + x \cdot z$

2.3 Anordnungsaxiome

1. Trichotomie: Für jedes $x \in \mathbb{R}$ gilt genau eine der 3 Beziehungen:

$$x > 0, x = 0, -x > 0$$

- 2. Addivität: $x > 0 \land y > 0 \Rightarrow x + y > 0$
- 3. Muliplikativität: $x > 0 \land y > 0 \Rightarrow x \cdot y > 0$

2.4 Vollständigkeitsaxiom

Jede nach oben beschränkte nichtleere Teilmenge von ℝ besitzt ein Supremum (Jede Cauchy-Folge konvergiert)

2.5 Betrag

2.5.1 Multiplikativität

$$|x \cdot y| = |x| \cdot |y|$$

2.5.2 Dreiecksungleichung

$$|x+y| \le |x| + |y|$$

2.6 Archimedisches Axiom

Zu je zwei reellen Zahlen x, y > 0 existiert eine natürliche Zahl n mit nx > y.

2.7 Bernoullische Ungleichung

Sei
$$x \ge -1$$
:
 $(1+x)^n \ge 1 + n \cdot x$
für alle $n \in \mathbb{N}$

2.8 Binomischer Lehrsatz

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k$$

2.9 Beschränkte Menge

Eine Teilmenge $T \in \mathbb{R}$ heißt nach oben beschränkt, falls ein $k \in \mathbb{R}$ existiert mit $t \leq k$ für alle $t \in T$. T heißt beschränkt falls T nach oben und nach unten beschränkt ist.

2.10 Supremum (Infimum)

Sei $T \subset \mathbb{R}$. Eine Zahl $k \in \mathbb{R}$ heißt Supremum von T wenn gilt:

- 1. k ist obere Schranke von T
- 2. k ist kleinste obere Schranke , d.h. is $k' \in \mathbb{R}$ eine weitere obere Schranke dann gilt $k' \geq k$

$$\Rightarrow k = \sup T$$

3 Folgen

Eine Folge reeller Zahlen ist eine Abbildung $\mathbb{N} \to \mathbb{R}$, $n \mapsto a_n$.

3.1 Konvergenz

Eine Folge (a_n) heißt konvergent gegen a falls:

Für alle $\epsilon > 0$ existiert ein $N \in \mathbb{N}$ mit $|a_n - a| < \epsilon$ für alle n > N.

(Für alle $\epsilon > 0$ liegen fast alle (alle bis auf endlich viele) Folgenglieder im Intervall $(a - \epsilon, a + \epsilon)$).

Falls (a_n) gegen a konvergiert so schreibe $\lim_{n\to\infty} a_n = a$.

Eine Folge (a_n) heißt divergent, falls sie gegen kein $a \in \mathbb{R}$ konvergiert.

Eine Folge (a_n) heißt bestimmt divergent, falls sie gegen $\pm \infty$ divergiert.

3.2 Beschränkheit von Folgen

 (a_n) heißt nach oben beschränkt wenn es eine Konstante $K \in \mathbb{R}$ gibt mit: $a_n \leq K$ für alle $n \in \mathbb{N}$.

(Analog für nach unten beschränkt)

 a_n heißt beschränkt wenn a_n nach oben und unten beschränkt ist.

 $(|a_n| \le K)$

Jede konvergente Folge ist beschränkt.

3.3 Cauchy Folge

Eine Folge $(a_n)_{n\in\mathbb{N}}$ heißt Cauchy Folge falls $\forall \epsilon > 0$ ein $N \in \mathbb{N}$ existiert mit $|a_n - a_m| < \epsilon \, \forall n, m \geq N$

Eine Folge ist genau dann konvergent wenn sie eine Cauchy Folge ist.

3.4 Limes superior (inferior)

$$\limsup_{n\to\infty} a_n := \lim_{n\to\infty} (\sup\{a_k: k\geq n\})$$

$$\liminf_{n\to\infty} a_n := \lim_{n\to\infty} (\inf\{a_k: k\geq n\})$$

3.5 Teilfolgen

Sei $(a_n)_{n \in \mathbb{N}}$ eine Folge dann ist $(a_{n_k})_{k \in \mathbb{N}}$ eine Teilfolge von (a_n) . $(a_{n_k}) = (a_{n_0}, a_{n_1}, a_{n_2}, ...)$ mit $n_0 < n_1 < n_2 < ...$

3.6 Bolzano-Weierstraß

Jede beschränkte Folge (a_n) reeller Zahlen besitzt eine konvergente Teilfolge.

3.7 Häufungspunkte

Eine Zahl a heißt Häufungspunkt von (a_n) wenn es eine Teilfolge von (a_n) gibt, die gegen a konvergiert.

⇒ Jede beschränkte Folge besitzt mindestens einen Häufungspunkt.

3.8 Monotone Folgen

Eine Folge (a_n) heißt:

- monoton wachsend falls $a_n \leq a_{n+1}$
- streng monoton wachsend falls $a_n < a_{n+1}$
- monoton fallend falls $a_n \ge a_{n+1}$
- streng monoton fallend falls $a_n > a_{n+1}$

für alle $n \in \mathbb{N}$.

Jede monotone beschränkte Folge reeller Zahlen konvergiert.

3.9 Wurzeln

Seien a > 0 und $x_0 > 0$ relle Zahlen. Die Folge (x_n) sei durch $x_{n+1} := \frac{1}{2}(x_n + \frac{a}{x_n})$ rekursiv definiert. Dann kovergiert x_n gegen \sqrt{a} . Seien a > 0, $x_0 > 0$ und k > 2 relle Zahlen. Die Folge (x_n) sei durch $x_{n+1} := \frac{1}{k}((k-1)x_n + \frac{a}{x_n^{k-1}})$ rekursiv definiert. Dann kovergiert x_n gegen $\sqrt[k]{a}$.

4 Intervalle

$$diam([a,b]) := b - a$$

4.1 Intervallschachtelungsprinzip

Sei $I_0 \supset I_1 \supset I_2 \supset ...$ eine absteigende Folge von abgeschlossenen Intervallen mit $\lim_{n \to \infty} \text{diam } I_n = 0$. Dann existiert genau eine reelle Zahl $x \in \mathbb{R}$ mit $x \in I_n \forall n$.

4.2 Abgeschlossene Intervalle

Sei $T \subset \mathbb{R}$. T ist offen : $\Leftrightarrow \forall t \in T \ \exists \epsilon > 0 \ \text{mit} \ (t - \epsilon, t + \epsilon) \subset T$. T heißt abgeschlossen wenn $\mathbb{R} \setminus T$ offen ist.

 $T \subset \mathbb{R}$ abgeschlossen \Leftrightarrow Ist $(a_n)_{n \in \mathbb{N}}$ eine konvergente Folge mit Werten in T so ist $\lim_{n \to \infty} a_n \in T$.

4.3 Abschluss

Ist
$$T \subset \mathbb{R}$$
, so ist $\overline{T} := \{ a \in \mathbb{R} | \exists (a_n)_{n \in \mathbb{N}} \in T : \lim_{n \to \infty} a_n = a \}$

- 1. \overline{T} ist abgeschlossen
- 2. $T \subset \overline{T}$
- 3. $S\subset \mathbb{R}$ abgeschlossen und $T\subset S$ dann ist $\overline{T}\subset S$
- 4. \overline{T} ist die kleinste abgeschlossene Menge die T enthält

4.4 Berührpunkt/Häufungspunkt

a heißt Berührpunkt von $A \subset \mathbb{R}$ falls in jeder ϵ -Umgebung von a mindestens ein Punkt von A liegt.

a heißt Häufungspunkt von $A \subset \mathbb{R}$ falls in jeder ϵ -Umgebung von a unendlich viele Punkte von A liegen.

Jeder Punkt $a \in A$ ist Berührpunkt von A.

a ist dann Berührpunkt wenn eine Folge (a_n) mit $a_n \in A$ gegen a konvergiert.

a ist dann Häufungspunkt wenn eine Folge (a_n) mit $a_n \in A \setminus \{a\}$ gegen a konvergiert.

4.5 Kompaktes Intervall

Ein kompaktes Intervall ist ein abgeschlossenes und beschränktes Intervall

5 Reihen

Sei (a_n) eine Folge. $\sum_{k=n_0}^n a_k$ ist die Reihe, die die von a_{n_0} bis a_n alle Glieder der Folge summiert.

5.1 Geometrische Reihe

Für
$$x \neq 1$$
 ist $\sum_{k=0}^{n} x^k = \frac{1-x^{n+1}}{1-x}$
Für $|x| < 1$ ist $\sum_{k=0}^{\infty} x^k = \frac{1}{1-x}$

5.2 Harmonische Reihe

$$\sum_{k=1}^{\infty} \frac{1}{k}$$
 divergiert obwohl $a_n = \frac{1}{n}$ konvergiert.

5.3 Linearkombination konvergenter Reihen

Seien
$$\sum_{n=0}^{\infty} a_n$$
 und $\sum_{n=0}^{\infty} b_n$ konvergente Reihen. Dann konvergiert auch $\sum_{n=0}^{\infty} (\lambda a_n + \mu b_n)$ mit $\lambda, \mu \in \mathbb{R}$

5.4 Teleskopsummen

Jede Folge
$$a_n$$
 lässt sich als Reihe $\sum_{k=1}^{\infty} (a_k - a_{k-1})$

5.5 Cauchysches Konvergenz-Kriterium

Eine Reihe $\sum_{n=0}^{\infty} a_n$ konvergiert genau dann wenn gilt:

Zu jedem $\epsilon > 0$ existiert ein $N \in \mathbb{N}$ so dass: $\left| \sum_{k=m}^{n} a_k \right| < \epsilon$ für alle $n \geq m \geq N$.

5.6 Notwendige Bedingung für Konvergenz einer Reihe

(aber nicht hinreichend) $\lim a_n = 0$

5.7 Leibnizsches Konvergenzkriterium

Sei (a_n) eine monoton fallende Folge nicht-negativer Zahlen mit $\lim_{n\to\infty} a_n = 0$.

Dann konvergiert die alternierende Reihe $\sum_{n=0}^{\infty} (-1)^n a_n$.

5.8 Cauchysches Verdichtungskriterium

$$\sum\limits_{n=0}^{\infty}a_{n}$$
konvergiert wenn $\sum\limits_{k=0}^{\infty}2^{k}a_{2^{k}}$ konvergiert

5.9 Absolute Konvergenz

Eine Reihe $\sum_{n=0}^{\infty} a_n$ konvergiert absolut wenn $\sum_{n=0}^{\infty} |a_n|$ konvergiert. Eine absolut konvergierte Reihe konvergiert.

5.10 Majoranten-Kriterium

Sei $\sum_{n=0}^{\infty} c_n$ eine konvergente Reihe mit nur nicht-negativen Gliedern und a_n eine Folge

mit: $|a_n| \le c_n$ für alle $n \in \mathbb{N}$ Dann kovergiert $\sum_{n=0}^{\infty} a_n$ absolut.

 $\sum_{n=0}^{\infty} c_n$ ist eine Majorante von $\sum_{n=0}^{\infty} a_n$

5.11 Quotienten-Kriterium

 $\sum_{n=0}^{\infty} a_n$ mit $a_n \neq 0$ und $n \geq n_0$. Gibt es eine relle Zahl θ mit $1 < \theta < 0$ so dass $\left| \frac{a_{n+1}}{a_n} \right| < \theta$

für alle $n \ge n_0$. Dann konvergiert $\sum_{n=0}^{\infty} a_n$ absolut.

5.12 Wurzelkriterium

Eine Reihe $\sum_{n=0}^{\infty} a_n$ konvergiert absolut wenn $\limsup_{n\to\infty} \sqrt[n]{a_n} < 1$.

5.13 Umordnung von Reihen

Sei $\sum_{n=0}^{\infty} a_n$ eine Reihe und $\tau: \mathbb{N} \to \mathbb{N}$ eine bijektive Abbildung. Dann ist $\sum_{n=0}^{\infty} a_{\tau(n)}$ eine Umordnung. Sie besteht aus den selben Summanden nur in einer anderen Reihenfolge.

5.13.1 Umordnungssatz

Die Umordnung einer absolut konvergenten Reihe konvergiert absolut gegen den selben Grenzwert.

5.14 Exponentialreihe

$$exp(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$
 konvergiert absolut.

5.14.1 Abschätzung des Restgliedes

$$\begin{split} \exp(x) &= \sum_{n=0}^{N} \frac{x^n}{n!} + R_{N+1}(x) \\ |R_{N+1}(x)| &\leq 2 \frac{|x|^{N+1}}{(N+1)!} \text{ für alle } x \text{ mit } |x| \leq 1 + \frac{1}{2} N \end{split}$$

5.15 Cauchy Produkt von Reihen

Seien
$$\sum_{n=0}^{\infty} a_n$$
 und $\sum_{n=0}^{\infty} b_n$ absolut konvergente Reihen. $c_n = \sum_{k=0}^{n} a_k b_{n-k}$

Dann ist auch die Reihe $\sum_{n=0}^{\infty} c_n$ absolut konvergent mit:

$$\sum_{n=0}^{\infty} c_n = (\sum_{n=0}^{\infty} a_n)(\sum_{n=0}^{\infty} b_n)$$

6 Funktionen

6.1 Operationen auf Funktionen

$$f: D \to \mathbb{R} \text{ und } g: E \to \mathbb{R}$$

$$(f+g)(x) = f(x) + g(x)$$

$$(\lambda f)(x) = \lambda f(x)$$

$$(fg)(x) = f(x)g(x)$$

$$(\frac{f}{g})(x) = \frac{f(x)}{g(x)}$$

$$g \circ f : D \to \mathbb{R}$$

 $(g \circ f)(x) = g(f(x))$

6.2 Stetigkeit

Sei $f: D \to \mathbb{R}$, $a \in D$ f ist stetig im Punkt a wenn: $\lim_{x \to a} f(x) = f(a)$ f ist stetig in D falls f in jedem Punkt von D stetig ist. Linearkombinationen von stetigen Funktionen sind stetig.

6.2.1 $\epsilon - \delta$ -Definition

f ist genau dann in D stetig wenn gilt: Zu jedem $\epsilon > 0$ existiert ein $\delta > 0$, so dass $|f(x) - f(p)| < \epsilon$ für alle $x \in D$ mit $|x - p| < \delta$.

6.2.2 Gleichmäßige Stetigkeit

f ist genau dann in D gleichmäßig stetig wenn gilt: Zu jedem $\epsilon > 0$ existiert ein $\delta > 0$, so dass $|f(x) - f(p)| < \epsilon$ für alle $x, p \in D$ mit $|x - p| < \delta$.

Unterschied zu stetig: Bei gleichmäßiger Stetigkeit ist δ nur von ϵ abhängig und nicht von p.

6.2.3 Zwischenwertsatz

Sei $f:[a,b] \to \mathbb{R}$ eine stetige Funktion mit f(a) < 0 und f(b) > 0. Dann existiert ein $p \in [a,b]$ mit f(p) = 0. \Rightarrow Sei c eine reelle Zahl zwischen f(a) und f(b) dann existiert ein p mit f(p) = c.

6.3 Kompaktes Intervall

Jede in einem kompakten Intervall stetige Funktion nimmt ihr Maximum und Minimum an

Jede in einem kompakten Intervall stetige Funktion ist dort gleichmäßig stetig.

6.4 Logarithmus- und Exponentialfunktion

$$\begin{split} f(x) &= e^x \\ f^{-1}(x) &= \log(x) \\ \exp_a(x) &= \exp(x(\log(a)) = a^x \\ \text{für } a &> 0 \text{ gilt: } \lim_{n \to \infty} \sqrt[n]{a} = 1 \\ \log(xy) &= \log(x) + \log(y) \\ \log(\frac{x}{y}) &= \log(x) - \log(y) \\ \log(x+y) &= \log(x) + \log(1+\frac{y}{x}) \\ \log(x-y) &= \log(x) + \log(1-\frac{y}{x}) \\ \log(x^r) &= r \log(x) \end{split}$$

6.5 Sinus und Kosinus

$$\begin{split} \cos(x) &= Re(e^{ix}) = \frac{1}{2}(e^{ix} + e^{-ix}) = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k}}{(2k)!} \\ \sin(x) &= Im(e^{ix}) = \frac{1}{2i}(e^{ix} - e^{-ix}) = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k+1}}{(2k+1)!} \\ &\Rightarrow e^{ix} = \cos(x) + i\sin(x) \\ \cos(-x) &= \cos(x) \\ \sin(-x) &= -\sin(x) \\ \sin^2(x) + \cos^2(x) &= 1 \\ \sin(x+y) &= \sin(x)\cos(y) + \sin(y)\cos(x) \\ \cos(x+y) &= \cos(x)\cos(y) - \sin(y)\sin(x) \\ \tan(x) &= \frac{\sin(x)}{\cos(x)} \\ \cot(x) &= \frac{\cos(x)}{\sin(x)} \\ \cos^{-1}(x) &= \arccos(x) : [-1,1] \to [0,\pi] \\ \sin^{-1}(x) &= \arcsin(x) : [-1,1] \to [-\frac{\pi}{2},\frac{\pi}{2}] \\ \tan^{-1}(x) &= \arctan(x) : \mathbb{R} \to -[\frac{\pi}{2}] \end{split}$$

6.5.1 Polarkoordinaten

 $z = re^{i\varphi}$ mit φ Winkel im Bogenmaß des Vektors und r = |z|

6.6 Differentation

Eine Funktion f heißt im Punkt x differenzierbar, falls der Grenzwert $f'(x) = \lim_{\xi \to x} \frac{f(\xi) - f(x)}{\xi - x}$ existiert.

$$(f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h})$$

 $f'(x) = \frac{df(x)}{dx}$ heißt Ableitung oder Differentialquotient von f. f heißt differenzierbar in D wenn f in jedem Punkt $x \in D$ differenzierbar ist. Der Differenzialquotient $\frac{f(\xi)-f(x)}{\xi-x}$ ist die Steigung der Sekante durch die Punkte

(x, f(x)) und $(\xi, f(\xi))$.

f heißt stetig differenzierbar wenn f(x) differenzierbar ist und f'(x) stetig ist.

$$\frac{d^k f(x)}{dk^2} = f(k)(x) \text{ heißt zweite Ableitung von } f.$$

6.7 Lineare Approximierbarkeit

f ist dann in a differenzierbar wenn es eine Konstante c gibt so dass:

$$f(x) = f(a) + c(x - a) + \varphi(x)$$

mit: $\lim_{x \to a} \frac{\varphi(x)}{x - a} = 0$

6.8 Differentationsregeln

6.8.1 Produktregel

$$(fg)'(x) = f'(x)g(x) + f(x)g'(x)$$

6.8.2 Quotientenregel

$$\left(\frac{f}{g}\right)'(x) = \frac{f'(x)g(x) - f(x)g'(x)}{g(x)^2}$$

6.8.3 Ableitung der Umkehrfunktion

$$(f^{-1})'(y) = \frac{1}{f'(x)} = \frac{1}{f'(f^{-1}(y))}$$

6.8.4 Kettenregel

$$(f \circ g) = g'(f(x))f'(x)$$

6.8.5 P-Norm

Sei $p \geq 1$ eine relle Zahl. Dann definiert man für Vektoren $x = (x_1, ..., x_n) \in \mathbb{C}^n$ eine Norm $||x||_p \in \mathbb{R}_+$ durch $||x||_p = (\sum_{v=1}^n |x_v|^p)^{\frac{1}{p}}$

6.8.6 l'Hospital

$$\lim_{x\to a}\frac{f(x)}{g(x)}=\lim_{x\to a}\frac{f'(x)}{g'(x)} \text{ wenn } g'\neq 0 \text{ und } g(x)\neq 0 \text{ und } \lim_{x\to a}g(x)=\lim_{x\to a}f(x)=0 \text{ oder } \lim_{x\to a}g(x)=\pm\infty$$

6.9 Lokales Extremum

f hat in]a,b[ein Maximum(Minimum) falls gilt: $f(x) \geq f(\xi)$ (bzw. $f(x) \geq f(\xi)$) für alle ξ mit $|x - \xi| < \epsilon$. Wenn f im Punkt x ein Maximum besitzt und in x differenzierbar ist, dann ist f'(x) = 0.

Sei f im Punkt x zweimal differenzierbar und ist f'(x) = 0 und f''(x) < 0 (bzw. f''(x) > 0). Dann ist x ein Maximum bzw. Minimum von f.

6.9.1 Satz von Rolle

Sei f:[a,b] eine stetige Funktion mit f(a)=f(b) und in]a,b[differenzierbar dann existiert ein $\xi\in]a,b[$ mit $f'(\xi)=0.$

10

6.10 Mittelwertsatz

Sei $f:[a,b]\to\mathbb{R}$ eine stetige Funktion, die in]a,b[differenzierbar ist, dann existiert ein $\xi\in]a,b[$ mit:

$$\frac{f(b)-f(a)}{b-a} = f'(\xi)$$

6.10.1 Folgerungen aus dem Mittelwertsatz

Sei f:[a,b] stetig und differenzierbar in]a,b[ungelte: $m \leq f'(x) \leq M$ für bestimmte Konstanten $m,M \in \mathbb{R}$. Dann gilt für alle x_1,x_2 : $m(x_2-x_1) \leq f(x_2) - f(x_1) \leq M(x_2-x_1)$

6.10.2 Folgerungen aus dem Mittelwertsatz

Sei f'(x) = 0 für alle $x \in]a, b[$. Dann ist f konstant.

6.11 Konvexität

Eine Funktion $f: D \to \mathbb{R}$ heißt konvex wenn für alle $x_1, x_2 \in D$ und alle λ mit $0 < \lambda < 1$ gilt:

$$f(\lambda x_1 + (1 - \lambda)x_2) \le \lambda f(x_1) + (1 - \lambda)f(x_2)$$

f heißt konkav wenn -f konvex ist.

f ist genau dann konvex wenn $f''(x) \ge 0$

(konvex ist linksgekrümmt, konkav rechtsgekrümmt)

6.12 Riemannsches Integral

6.12.1 Integral für Treppenfunktionen

Sei $\varphi: [a,b] \to \mathbb{R}$ Treppenfunktion mit Unterteilung $a = x_0 < \dots < a_n = b$ konstant auf $]x_{k-1}, x_k[$ und $c_k = f(x)$ für $x \in]x_{k-1}, x_k[$. Dann ist $\int_a^b \varphi(x) dx = \sum_{k=1}^n c_k(x_k - x_{k-1})$.

6.12.2 Oberintegral, Unterintegral

$$\int_{a}^{b} {}^*f(x)dx = \inf\{\int_{a}^{b} \varphi(x)dx : \varphi \ge f\}$$
$$\int_{a}^{b} {}_*f(x)dx = \sup\{\int_{a}^{b} \varphi(x)dx : \varphi \le f\}$$

f(x) heißt Riemann intergrierbar wenn $\int_a^b {}^*f(x)dx = \int_a^b {}_*f(x)dx$

$$\Rightarrow \int_{a}^{b} f(x)dx = \int_{a}^{b} f(x)dx$$

6.12.3 Integrierbare Funtkionen

Jede stetige Funktion ist integrierbar.

Jede monotone Funktion ist integrierbar.

6.12.4 Mittelwertsatz der Integralrechnung

Seien $f, \varphi : [a, b] \to \mathbb{R}$ stetige Funktionen und $\varphi \ge 0$. Dann existiert ein $\xi \in [a, b]$, so dass $\int_a^b f(x)\varphi(x)dx = f(\xi)\int_a^b \varphi(x)dx$.

6.12.5 Riemannsche Summen

Sei $f:[a,b] \to \mathbb{R}$ eine Funktion mit Unterteilung $a=x_0 < ... < a_n=b$ und ξ_k ein Punkt(Stützstelle) aus $[x_{k-1},x_k]$. Dann ist $S(Z,f):=\sum\limits_{k=1}^n f(\xi_k)(x_k-x_{k-1})$ die Riemannsche Summe der Funktion f bzgl. Z.

Für R-integrierbare Funktionen gilt: $\int_{a}^{b} f(x)dx = \lim_{Max(x_{k}-x_{k-1})\to 0} \sum_{k=1}^{n} f(\xi_{k})(x_{k}-x_{k-1}).$

6.13 Integral

Sei $f: I \to \mathbb{R}$ eine stetige Funtkion und $a \in I$. Für $x \in I$ sei $F(x) = \int_a^x f(t) dt$. Dann ist $F: I \to \mathbb{R}$ differenzierbar und es gilt F' = f. F heißt Stammfunktion von f. Seien $F, G: I \to \mathbb{R}$ Stammfunktionen von f. Dann ist F - G konstant.

6.13.1 Fundamentalsatz der Integralrechnung

 $f:I\to\mathbb{R}$ stetig und F Stammfunktion von f. Dann gilt für alle $a,b\in I$: $\int\limits_a^b f(x)=F(b)-F(a).$

6.13.2 Substitutionsregel

Sei $f: I \to \mathbb{R}$ stetige und $\varphi: [a, b] \to \mathbb{R}$ stetig differenzierbar mit $\varphi([a, b]) \subset I$. Dann gilt: $\int_a^b f(\varphi(t))\varphi'(t)dt = \int_{\varphi(a)}^{\varphi(b)} f(x)dx$.

6.13.3 Partielle Integration

 $f,g:[a.b] \to \mathbb{R}$ stetig differenzierbar. Dann gilt: $\int_a^b f(x)g'(x)dx = [f(x)g(x)]_a^b - \int_a^b f'(x)g'(x)dx$

6.13.4 Wallissches Produkt

$$\frac{\pi}{2} = \prod_{n=1}^{\infty} \frac{4n^2}{4n^2 - 1}$$

6.13.5 Trapezregel

Sei
$$f:[0,1] \to \mathbb{R}$$
 und $\xi \in [0,1]$. $\int_{0}^{1} f(x)dx = \frac{1}{2}(f(0) + f(1)) - \frac{1}{12}f''(\xi)$

6.14 Uneigentliche Integrale

1. Eine Integrationsgrenze unendlich

Sei $f:[a,\infty[\to\mathbb{R}$ eine Funktion die auf jedem Intervall $[a,R],a< R<\infty$

R-integrierbar ist. Falls $\lim_{R\to\infty}\int_a^R f(x)dx$ existert ist das Integral $\int_a^\infty f(x)dx$ konvergent

und
$$\lim_{R \to \infty} \int_{a}^{R} f(x) dx = \int_{a}^{\infty} f(x) dx$$
.

2. Eine Integrationsgrenze nicht definiert

Sei $f:]a,b] \to \mathbb{R}$ eine Funktion die auf jedem Intervall $[a+\epsilon,b], 0<\epsilon< b-a$ R-integrierbar ist. Falls $\lim_{\epsilon \to 0} \int_{a+\epsilon}^b f(x)dx$ existert ist das Integral $\int_a^b f(x)dx$ konvergent und

$$\lim_{\epsilon \searrow 0} \int_{a+\epsilon}^{b} f(x)dx = \int_{a}^{b} f(x)dx.$$

3. Beide Integrationsgrenzen kritisch

Sei $f:]a, b[\to \mathbb{R}. \ a, b \in \mathbb{R} \cup \{\infty\}$ eine Funktion die über jedem kompakten Teilintervall

13

$$[\alpha, \beta] \subset]a, b[$$
 R-integrier bar ist und sei $c \in]a, b[$. Falls $\int_a^c f(x)dx = \lim_{\alpha \searrow a} \int_{\alpha}^c f(x)dx$ und

$$\int_{c}^{b} f(x)dx = \lim_{\beta \nearrow b} \int_{c}^{\beta} f(x)dx \text{ heißt } \int_{a}^{b} f(x)dx \text{ konvergent und}$$

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx.$$

6.14.1 Integralvergleichskriterium

Sei $f:[1,\infty[\to\mathbb{R}_+]]$ eine monoton fallende Funktion.

Dann gilt: $\sum_{n=1}^{\infty} f(n)$ konvergiert $\Leftrightarrow \int_{1}^{\infty} f(x) dx$ konvergiert.

6.15 Gamma Funktion

$$\begin{split} \Gamma(x) &= \int\limits_0^\infty t^{x-1} e^{-1} dt \\ \Gamma(n+1) &= n! \text{ für alle } n \in \mathbb{N} \\ x\Gamma(x) &= \Gamma(x+1) \text{ für alle } x \in \mathbb{R}_+^* \end{split}$$

$$\Gamma(x) = \lim_{n \to \infty} \frac{n! n^x}{x(x+1) \cdot \dots \cdot (x+n)}$$
 für alle $x < 0$

6.15.1 Logarithmisch konvex

 $f: I \to \mathbb{R}_+^*$ heißt logarithmisch konvex wenn log $f: I \to \mathbb{R}$ Die Gammmafunktion ist logarithmisch konvex.

6.16 Funktionenfolgen

6.16.1 Gleichmäßige Konvergenz

Sei K eine Menge und $f_n: K \to \mathbb{C}, n \in \mathbb{N}$ Funktionen.

1. Die Folge (f_n) konvergiert punktweise gegen eine Funktion $f: K \to \mathbb{C}$ falls für jedes $x \in K$ die Folge $(f_n(x))$ gegen f(x) konvergiert d.h. wenn gilt:

Zu jedem $x \in K$ und $\epsilon > 0$ existiert ein $N = N(x, \epsilon)$, so dass $|f_n(x) - f(x)| < \epsilon$ für alle n > N.

2. Die Folge (f_n) konvergiert gleichmäßig gegen eine Funktion $f: K \to \mathbb{C}$ falls gilt: Zu jedem $\epsilon > 0$ existiert ein $N = N(\epsilon)$, so dass $|f_n(x) - f(x)| < \epsilon$ für alle $x \in K$ und alle $n \ge N$.

6.16.2 Stetigkeit und gleichmäßige Konvergenz

Sei $K \subset \mathbb{C}$ und $f_n : K \to \mathbb{C}, n \in \mathbb{N}$, eine Folge stetiger Funktionen, die gleichmäßig gegen die Funktion $f : K \to \mathbb{C}$ konvergiere. Dann ist auch f stetig.

6.16.3 Supremumsnorm

Sei K eine Menge und $f: K \to \mathbb{C}$ eine Funktion. $||f||_K = \sup\{|f(x)|: x \in K\}$

6.16.4 Konvergenzkriterium von Weierstraß

Wenn $\sum_{n=0}^{\infty}||f_n||_K<\infty$ dann konvergiert die Reihe $\sum_{n=0}^{\infty}f_n$ absolut und gleichmäßig auf K gegen eine Funktion $f:K\to\mathbb{C}$

6.16.5 Integration

Sei $f_n:[a,b]\to\mathbb{R}, n\in\mathbb{N}$ eine Folge stetiger Funktionen. Die Folge konvergiere auf [a,b] gleichmäßig gegen die Funktion $f:[a,b]\to\mathbb{R}$. Dann gilt:

$$\int_{a}^{b} f(x)dx = \int_{a}^{b} \lim_{n \to \infty} f_n(x)dx = \lim_{n \to \infty} \int_{a}^{b} f_n(x)dx.$$

6.16.6 Differentation

Sei $f_n:[a,b]\to\mathbb{R}, n\in\mathbb{N}$ eine Folge stetig differenzierbarer Funktionen, die punktweise gegen $f:[a,b]\to\mathbb{R}$ konvergieren. Die Folge der Ableitungen f'_n konvergiere gleichmäßig. Dann ist f differenzierbar und es gilt: $f'(x)=\lim_{n\to\infty}f'_n(x)$ für alle $x\in[a,b]$.

7 Potenzreihen

Sei (c_n) eine Folge komplexer Zahlen und $a \in \mathbb{C}$. Die Potenzreihe $f(z) = \sum_{n=0}^{\infty} c_n (z-a)^n$ konvergiere für ein $z_1 \in \mathbb{C}$, $z_1 \neq a$. Sei r eine relle Zahl mit $0 < r < |z_1 - a|$ und $K(a,r) = \{z \in \mathbb{C} : |z-a| \leq r\}$. Dann konvergiert die Potenzreihe absolut und gleichmäßig auf K(a,r).

Die formal differenzierte Potenzeihe $g(x) = \sum_{n=1}^{\infty} nc_n(z-a)^{n-1}$ konvergiert ebenfalls absolut und gleichmäßig auf K(a,r).

$$R = \sup\{|z-a| : \sum_{n=0}^{\infty} c_n(z-a)^n \text{ konvergient}\}\ \text{heißt Konvergenzradius}.$$

7.1 Hamardsche Formel

Sei
$$f(z) = \sum_{n=0}^{\infty} c_n (z-a)^n$$
 mit Konvergenzradius R. Dann gilt:
$$R = \frac{1}{\limsup \sqrt[n]{|c_n|}}$$

7.2 Folgerung aus Quotientenkriterium

Sei
$$f(z) = \sum_{n=0}^{\infty} c_n (z-a)^n$$
 mit Konvergenzradius R. Dann gilt: $R = \lim_{n \to \infty} \left| \frac{c_n}{c_{n+1}} \right|$ (Gilt nicht immer)

7.3 Ableitung von Potenzreihen

Sei $f(x) = \sum_{n=0}^{\infty} c_n (x-a)^n$ eine Potenzreihe mit dem Konvergenzradius r > 0. Dann gilt für alle $x \in]a-r, a+r[: f'(x) = \sum_{n=1}^{\infty} nc_n (x-a)^{n-1}$ $f:]a-r, a+r[\to \mathbb{R}$ ist beliebig oft differenzierbar und $c_n = \frac{1}{n!} f^{(n)}(a)$ für alle $n \in \mathbb{N}$.

7.4 Abelscher Grenzwertsatz

Sei $\sum_{n=0}^{\infty} c_n$ eine konvergente Reihe reeler Zahlen. Dann konvergiert $f(x) = \sum_{n=0}^{\infty} c_n x^n$

8 Taylor Reihen

Sei $f: I \to \mathbb{R}$ (n+1) -mal stetig differenzierbar und $a \in I$. Dann gilt für alle $x \in I$ $f(x) = f(a) + \frac{f'(a)}{1!}(x - a) + \frac{f''(a)}{2!}(x - a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x - a)^n + R_{n+1}(x)$ wobei $R_{n+1}(x) = \frac{1}{n!} \int_{a}^{x} (x-t)^n f^{(n+1)}(t) dt$

Sei $f:I\to\mathbb{R}$ (n+1) -mal stetig differenzierbar mit $f^{(n+1)}(x)=0$ für alle $x\in I$. Dann ist f ein Polynom vom Grad $\leq n$.

8.1 Lagrangesche Form des Restgliedes

Sei $f:I \to \mathbb{R}$ (n+1) -mal stetig differenzierbar und $a,x \in I.$ Dann existiert ein ξ zwischen a und x, so dass $f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^k + \frac{f^{(n+1)}(\xi)}{(n+1)!} (x-a)^{n+1}$ Sei $f: I \to \mathbb{R}$ (n+1) -mal stetig differenzierbar und $a \in I$. Dann gilt für alle $x \in I$: $f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^k + \varphi(x)(x-a)^n$ wobei $\lim_{x\to a} \varphi(x) = 0$ ist.

8.2 Unendliche Taylor-Reihe

Sei $f: I \to \mathbb{R}$ beliebig oft differenzierbar und $a \in I$.

$$T[f, a](x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!} (x - a)^k$$

Konvergenzradius ist nicht notwendig > 0

Falls die Taylor-Reihe konvergiert, nicht notwendigerweise gegen f.

Die Taylor-Reihe konvergiert für die $x \in I$ für die das Restglied gegen 0 konvergiert.

Fourier Reihen

9.1 Periodische Funktionen

 $f:\mathbb{R}\to\mathbb{R}$ heißt periodisch mit Periode L>0 wenn f(x+L)=f(x) für alle $x\in\mathbb{R}$ F wird definiert durch $F(x) = f(\frac{L}{2\pi}x)$ mit Periode 2π . \Rightarrow man kann sich auf Funktionen mit Periode 2π beschränken.

9.2 Trigonometrische Polynome

 $f: \mathbb{R} \to \mathbb{R}$ heißt trigonometrisches Polynom n-ten Grades wenn

$$f(x) = \frac{a_0}{2} + \sum_{k=1}^{n} (a_k \cos kx + b_k \sin kx)$$
mit reellen Konstanten a_k , b_k mit

$$a_k = \frac{1}{\pi} \int_{0}^{2\pi} f(x) \cos kx dx$$
 für $k = 0, 1, ..., n$

$$b_k = \frac{1}{\pi} \int_{0}^{2\pi} f(x) \sin kx dx$$
 für $k = 1, 2..., n$

f lässt sich auch schreiben als:

$$f(x) = \sum_{k=-n}^{n} c_k e^{ikx}$$

$$\text{mit } c_0 = \frac{a_0}{2}$$

$$c_k = \frac{1}{2}(a_k - ib_k) \text{ für } k \ge 1$$

$$c_{-k} = \frac{1}{2}(a_k + ib_k) \text{ für } k \ge 1$$

9.3 Fourier Koeffizienten

Sei $f:\mathbb{C}\to\mathbb{R}$ eine periodische über das Intervall $[0,2\pi]$ integrierbare Funktion. Dann

heißen die Zahlen
$$c_k = \frac{1}{2\pi} \int\limits_0^{2\pi} f(x) e^{-ikx} dx \ k \in \mathbb{Z}$$

Fourier-Koeffizienten von f.

$$\mathfrak{F}[f](x) = \sum_{k=-\infty}^{\infty} c_k e^{ikx}$$
 d.h. die Folge der Partialsummen $\mathfrak{F}_n[f](x) = \sum_{k=-n}^n c_k e^{ikx}$ heißt

Die Fourier-Reihe lässt sich auch in der Form $\frac{a_0}{2} + \sum_{k=1}^{\infty} (a_k \cos kx + b_k \sin kx)$

schreiben mit
$$a_k = \frac{1}{\pi} \int_0^{2\pi} f(x) \cos kx dx$$

$$b_k = \frac{1}{\pi} \int_{0}^{2\pi} f(x) \sin kx dx$$

Die Fourier-Reihe muss nicht konvergieren. Wenn sie konvergiert nicht unbedingt gegen f.

9.4 Skalarprodukt für periodische Funktionen

Sei V der \mathbb{C} - VR aller periodischen Funktionen $f:\mathbb{R}\to\mathbb{C}$ die über $[0,2\pi]$ integrierbar

Das
$$L^2$$
-Skalarprodukt wird definiert durch $< f,g> = \frac{1}{2\pi} \int\limits_0^{2\pi} \overline{f(x)} g(x) dx$ für $f,g \in V$

Eigenschaften:

$$< f + g, h > = < f, h > + < g, h >$$

$$< f, g + h > = < f, g > + < f, h >$$

$$\langle \lambda f, g \rangle = \overline{\lambda} \langle f, g \rangle$$

$$\langle \lambda f, g \rangle = \overline{\lambda} \langle f, g \rangle$$

$$\langle f, \lambda g \rangle = \underline{\lambda} \langle f, g \rangle$$

$$\langle f, g \rangle = \overline{\langle g, f \rangle}$$

$$\langle f, \lambda g \rangle = \lambda \langle f, g \rangle$$

$$\langle f, g \rangle = \overline{\langle g, f \rangle}$$

Für alle
$$f \in V$$
 gilt: $\langle f, f \rangle = \frac{1}{2\pi} \int_{0}^{2\pi} |f(x)|^2 dx = \frac{1}{2\pi} ||f||_2^2 \ge 0$

Aus
$$\langle f, f \rangle = 0$$
 folgt nicht dass $f = 0$

Für
$$f,g\in V$$
 gilt:

$$|< f,g>| \leq ||f||_2 \cdot ||g||_2$$
 (Cauchy-Schwartz)

 $||f+g||_2 \le ||f||_2 + ||g||_2$ (Dreiecksungleichung)

Sei
$$e_k : \mathbb{R} \to \mathbb{C}$$
 durch $e_k(x) = e^{ikx}$ definiert so ist $c_k = \langle e_k, f \rangle, k \in \mathbb{Z}$ $\langle e_k, e_l \rangle = \delta_{kl} \Rightarrow e_k$ ist Orthonormalsystem

9.5 Besselsche Ungleichung

Sei f periodisch und über $[0,2\pi]$ integrierbar mit Fouriere Koeffizienten c_k . Dann gilt:

$$\sum_{k=-\infty}^{\infty} |c_k|^2 \le \frac{1}{2\pi} \int_{0}^{2\pi} |f(x)|^2 dx$$

9.6 Quadratisches Mittel

 $f, f_n : \mathbb{R} \to \mathbb{C}$ periodische, über $[0, 2\pi]$ integrierbare Funktionen. (f_n) konvergiert im quadratischen Mittel gegen f falls $\lim_{n \to \infty} ||f - f_n||_2 = 0$

Konvergiert (f_n) gleichmäßig gegen f so auch im quadratischen Mittel.

9.7 Vollständigkeitsrelation

Sei f periodisch und auf $[0, 2\pi]$ integrierbar dann konvergiert die Fourier-Reihe von f im quadratischen Mittel gegen f. Es gilt die Vollständigkeitsrelation:

$$\sum_{k=-\infty}^{\infty} |c_k|^2 = \frac{1}{2\pi} \int_{0}^{2\pi} |f(x)|^2 dx$$

9.8 Gleichmäßige Stetigkeit

Sei f eine stetige periodische Funtkion die stückweise stetig differenzierbar ist, dann konvergiert die Fourier-Reihe gleichmäßig gegen f.