

NAVAL POSTGRADUATE SCHOOL

Monterey, California

THESIS

A STABILITY ANALYSIS
OF THE PROPOSED
CIRCULATION CONTROL ROTOR (CCR) PROTOTYPE

by

John Hendrix Cline

March 1977

Thesis Advisor:

L. V. Schmidt

Approved for public release; distribution unlimited.

DUDLEY KNOX LIBRARY
NAVAL POSTGRAD MATE SCHOOL

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM	
REPORT NUMBER	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER	
A Stability Analysis of the Proposed Circulation Control Rotor (CCR) Prototype		5. Type of Report & Period Covered Master's Thesis; March 1977 6. Performing org. Report Number 8. Contract or Grant Number(s)	
John Hendrix Cline		o. Contract on Grant Number(s)	
Naval Postgraduate School Monterey, California 93940		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS	
Naval Postgraduate School Monterey, California 93940		March 1977 13. NUMBER OF PAGES 60	
. MONITORING AGENCY HAME & ADDRESS(II ditt	erent from Controlling Office)	15. SECURITY CLASS. (of this report) Unclassified 15a. DECLASSIFICATION/DOWNGRADING SCHEDULE	

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

13. KEY WORDS (Continue on reverse side if necessary and identify by block number)

Circulation Control Rotor (CCR) XH-2/CCR BASMAT

20. ABSTRACT (Continue on reverse side if necessary and identify by block mumber)

The rotor system of the proposed XH-2/CCR (Circulation Control Rotor) prototype aircraft and the state variable format of the airframe equations of motion are described. Through a study of the eigenvalues and eigenvectors of the basic airframe, the effects of uncoupling and cross-coupling the helicopter equations of motion were analyzed. The

DD 1 JAN 73 1473 (Page 1)

EDITION OF | NOV 68 IS OBSOLETE S/N 0102-014-6601 |

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

(20. ABSTRACT Continued)

control matrix for the CCR was then generated using an applicable pneumatic lead angle for Coanda blowing. Feedback gains, to give the aircraft acceptable flying qualities, were calculated for the Stability Augmentation System (SAS) and finally the aircraft's sensitivity to changes in pneumatic lead angles were studied. The programs used in the above study (capable of handling up to 10x10 matrices) are listed for both the IBM-360 and HP-9830 mini-computer.

Approved for public release; distribution unlimited

A Stability Analysis of the Proposed Circulation Control Rotor (CCR) Prototype

by

John Hendrix Cline Lieutenant, United States Navy B.S., United States Naval Academy, 1967

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN AERONAUTICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
March 1977

CS14 C.1

ABSTRACT

The rotor system of the proposed XH-2/CCR (Circulation Control Rotor) prototype aircraft and the state variable format of the airframe equations of motion are described. Through a study of the eigenvalues and eigenvectors of the basic airframe, the effects of uncoupling and cross-coupling the helicopter equations of motion were analyzed. The control matrix for the CCR was then generated using an applicable pneumatic lead angle for Coanda blowing. Feedback gains, to give the aircraft acceptable flying qualities, were calculated for the Stability Augmentation System (SAS) and finally the aircraft's sensitivity to changes in pneumatic lead angles were studied. The programs used in the above study (capable of handling up to 10 x 10 matrices) are listed for both the IBM-360 and HP-9830 mini-computer.

TABLE OF CONTENTS

I.	INTROD	UCTION	9
II.	BACKGR	OUND	12
III.	DISCUS	SION	14
	A. TH	E PLANT MATRIX	15
	B. TH	E CONTROL MATRIX	22
	C. TH	E FEEDBACK LAW	30
	D. PN	EUMATIC LEAD ANGLE SENSITIVITY CHECK	36
IV.	CONCLU	SIONS	40
APPENI	OIX A:	The basic plant matrix of the aircraft linearized equations of motion in the state variable format	42
APPENI	DIX B:	The modified "BASMAT" program for the W.R. CHURCH Computer Center IBM-360	43
APPEND	OIX C:	The modified "BASMAT" program for the Hewlett-Packard mini-computer (HP-9830)	50
APPEND	DIX D:	Sample "BASMAT" computer output	54
BIBLIC	GRAPHY		59
INITIA	AL DIST	RIBUTION LIST	60

LIST OF TABLES

Į.	Eigenvalues of the basic XH-2/CCR Airframe	18
II.	Aircraft mode shape summary	23
III.	Calculations of the pneumatic lead angle vs. airspeed	31
IV.	Coefficients for the basic control matrix, B _{xl} and B _{x2} , at velocities of: Hover; 35; 72; 110 and 130 knots	32
V.	Eigenvalues of the augmented matrix, A', with the feedback gain matrix equal to	
	k = [0, 0, 0.45, 0.85, 0, 0, 0, 0]	37
VI.	Variations in the control matrix coefficients with variations in the pneumatic lead angle	38

LIST OF FIGURES

1.	Cross-coupling effects upon airframe (hover)	19
2.	Cross-coupling effects upon airframe modes (130 knots)	20
3.	Visualization of the Plenum pressure lead angle	29

LIST OF SYMBOLS AND ABBREVIATIONS

g	Acceleration due to gravity
L	Rolling moment about the x-axis due to aerodynamic torques
М	Pitching moment about the y-axis due to aerodynamic torques
N	Yawing moment about the z-axis due to aerodynamic torques
p	Roll rate, angular velocity about the x-axis (positive right wing down) p = ϕ
q	Pitch rate, angular velocity about y-axis (positive nose up) $q = \dot{\theta}$
r	Yaw rate, angular velocity about z-axis (positive nose right)
u	Linear perturbation velocity along x-axis (positive forward)
U	Linear steady-state velocity along the x-axis (positive forward)
v	Linear perturbation velocity along y-axis (positive out right wing)
W	Linear perturbation velocity along z-axis (positive down)
X	Aerodynamic force along x-axis (positive forward)
Y	Aerodynamic force along y-axis (positive out right wing)
Z	Aerodynamic force along z-axis (positive down)
φ	Phase angle of control system
Ψ	Blade aximuth angle from aft position

I. INTRODUCTION

In the early 1970's the David W. Taylor Naval Ship
Research and Development Center (DTNSRDC) initiated a
research program into the feasibility of incorporating a
Circulation Controlled Rotor (CCR) system in a Navy helicopter. The concept of the CCR and of improving airfoil
lift-to-drag ratios using Coanda flows had been proven
earlier by some of the world's leading aerodynamicist's
and as early as 1959 Dorand had published in the Journal of
the Helicopter Association of Great Britain an article on
the application of a jet flap to control a helicopter rotor
(Ref. 1). Studies and tests continued throughout the 1960's
with more papers published in both the United States and
in Europe on the improved performance and possible
applications of a CCR (Ref. 2).

The Aviation and Surface Effects Division of DTNSRDC continued the research with further tests involving detailed pressure measurements of two-dimensional elliptical sections in their 15 x 20-inch subsonic wind tunnel. These tests reconfirmed that extremely high lift-to-drag ratios could be achieved by tangentially injecting air through a slot in the trailing edge of an airfoil. The results of these tests were incorporated in both two-and four-bladed model rotor systems for evaluation in the DTNSRDC 8 x 10 foot windtunnel (Ref. 3).

The incorporation of a CCR system in a full-size aircraft could conceivably offer other advantages over the conventional rotor system, in addition to the potentially improved aerodynamic performance traits. The conventional rotating mechanical swashplate system would be replaced by a non-rotating pneumatic plate in a plenum chamber located in the blade hub region. Collective control would be accomplished by changing the plenum chamber pressure, which increases or decreases the Coanda blowing equally at all blades via the individual blade supply or collector tubes. Cyclic control would be provided by tilting the pneumatic swashplate so that there is an azimuthal variation in Coanda blowing in each blade. This variation in blowing is a result of the changes in volume of air allowed to the collector tubes because of changes in the gap between the collector tubes and the non-rotating swashplate. non-rotating swashplate and variations in Coanda blowing would replace the mechanical cyclic feathering required by conventional rotors and therefore eliminate the vibrations caused by this one-per-revolution cyclic mechanical move-Another important point to recognize is that the CCR concept, with the Coanda blowing, will dictate a torsionally stiff rotor blade or rigid rotor system. is a result of the disparity between the two lift generation centroids. The center of pressure due to Coanda blowing is near the blade midchord region, while the blade aerodynamic center remains near the rotor blade quarter chord point.

The proposed helicopter, with a simple hub and rigid rotor blades free of flapping and lag hinges, would result in a relatively clean aerodynamic hub system. The reduction in rotor and hub drag would be beneficial to the helicopter from a performance standpoint. The reduction in moving parts in the hub and blade system would also mean a quieter helicopter with a lower vibration level than that of a conventional rotor system. This latter effect has a favorable potential of improving the "ilities" (maintainability and reliability) for helicopter operations.

II. BACKGROUND

Early in 1973 the Naval Air Systems Command (NAVAIR) contracted the Lockheed Aircraft Company and Kaman Aerospace Corporation to investigate the feasibility of developing a full-scale flightworthy Circulation Controlled Rotor demonstrator aircraft. In the summer of 1974, some twelve months later, both companies returned reports to DTNSRDC and NAVAIR stating that: "the concept, while innovative, is completely safe in operation" (Ref. 4) and "that there is no fundamental flaw or deficiency in the CCR concept and that construction of a full scale CCR helicopter is feasible and practical" (Ref. 5). Lockheed Aircraft proposed the use of its L286/CCR while Kaman suggested "that the Kaman/Navy H-2 aircraft is an ideal test vehicle for the CCR concept" (Ref. 4).

With the additional goal of being able to incorporate a CCR system on any off-the-shelf helicopter with no major airframe or equipment changes, NAVAIR awarded a contract to Kaman Aerospace to "develop, build and test" a prototype CCR vehicle incorporating the use of the Navy/Kaman H-2 aircraft. This technology demonstration aircraft will tentatively be designated as the Navy XH-2/CCR.

Preliminary studies by Kaman promoted the belief that acceptable flying qualities would be sustained with the installed Stability Augmentation System (SAS) of the Kaman

H-2 with only minor changes in the gains of the feedback amplifiers (Ref. 5). Acceptable flying qualities does not necessarily mean all stable roots of the aircraft motion modes, since a weak oscillatory instability with a time-to-double amplitude of greater than three seconds can be tolerated by a proficient rotor-wing aircraft pilot. The objectives of this research was to confirm that Kaman's beliefs were in fact true and to find a suitable feedback law for the SAS of the XH-2/CCR such that within the aircraft's flight envelope the aircraft flying qualities will be acceptable to the evaluation pilot.

III. DISCUSSION

The study of the helicopter flight dynamics were conducted using the conventional non-dimensionalized state variable format of the aircraft linearized equations of motion (Ref. 6), modified to allow coupling of the longitudinal with the lateral-directional motions. This modification is a fairly elementary record-keeping operation when using state vector formulations. The basic plant matrix, A, of the aircraft linearized equations of motion in the state variable format is given in Appendix A.

The stability derivatives for the XH-2/CCR airframe were computer generated by the contractor using the MOSTAB-HFA program (Ref. 7) modified for the pertinent characteristics of the SH-2F airframe and the XH-2/CCR main rotor system. The flight conditions analyzed were for 1.0g level flight at sea level standard conditions. The aircraft gross weight was given as 11,000 pounds and a rotor tip speed of 615 feet per second (267 RPM) was used throughout the calculations. Stability derivatives were generated for airspeeds of: Zero (hover), 35, 72, 110, and 130 knots. These derivatives were computed in May of 1976 and then updated in November of the same year. The calculations made in this research effort are based on the updated, November 1976, data.

A. THE PLANT MATRIX

The plant matrix, A, was developed for the longitudinal and lateral-directional components and then the fully-coupled equations of motion using the contractor generated stability derivatives. The plant matrix, A, was partitioned into:

$$A = \begin{bmatrix} A_{11} & A_{12} \\ - & - \\ A_{21} & A_{22} \end{bmatrix}$$

where $[A_{11}]$ represented the coefficients of the long-itudinal stability derivatives and $[A_{22}]$ represented the coefficients of the lateral-directional stability derivatives. The cross-coupling stability derivatives were represented by the coefficients of $[A_{12}]$ and $[A_{21}]$.

The homogeneous form of the state equations took on the conventional form of:

$$\dot{x} = \begin{cases} \dot{x}_1 \\ \vdots \\ \dot{x}_2 \end{cases} = A x = A \begin{cases} x_1 \\ \vdots \\ x_2 \end{cases}$$

where the state vector, x, included the partitioned longitudinal airframe state vector:

$$x_1^T = [u, w, q, \theta]$$

and the lateral-directional airframe state vector respectively:

$$x_2^T = [p, r, v, \phi]$$

Normally in airframe dynamics the fact that most "fixed wing" aircraft approach symmetric conditions enables one to eliminate the cross coupling terms [A12] and [A21] and then to represent the aircraft by the decoupled equations of motion in the longitudinal and lateral-directional modes. Neglecting these cross-coupling terms allows analysis of the individual fourth-order systems and the size and shape of the applicable longitudinal and lateral-directions modes changes only slightly when the more complicated computations are made for the fully coupled eighth-order systems. Unfortunately, helicopters do not enjoy these conditions of symmetry and the effects of completely cross-coupling the longitudinal and lateral-directional equations are quite significant.

The fact that the helicopter had large cross-coupling effects was shown by the significant change in the eigenvalues for the uncoupled and fully-coupled computations and modal identification could not be completed from the results of the cross-coupled forms alone. The conclusion, therefore, was that the stability problem could not be solved by studying only the uncoupled components of the

equations of motion but must be undertaken using the fully coupled, eighth-order equations of motion.

Using the Basic Matrix Control Theory (BASMAT) computer program (Ref. 8) modified for the HP-9830 minicomputer and the IBM-360 digital computer located at the Naval Postgraduate School's W. R. Church Computer Center; calculations were made at the above stated airspeeds and the eigenvalues and eigenvectors of the plant matrix, A, were obtained for both the uncoupled and fully-coupled equations of motion. The revised programs for both the IBM-360 and the HP-9830 are included as part of this paper in Appendix B and C respectively.

The existence of a longitudinal unstable root in the uncoupled form was confirmed at all calculated speeds and the identification of the different modes in the fully-coupled eighth-order system was completed by slowly introducing the cross-coupling derivatives into the aircraft equations of motion. The eigenvalues and eigenvectors were traced and modes identified by letting A_{21} and A_{12} equal zero in the eighth-order system and then slowly increasing their values until they reached the final values of the basic plant matrix, A. The values of the uncoupled eigenvalues from the fourth-order solutions and the final eighth-order system results are included in Table I.

A modified root-locus is shown in Figures 1 and 2 for the airspeed conditions of hover and 130 knots respectively. The trajectory of the roots is shown as the amount

TABLE I

Eigenvalues of Basic XH-2/CCR Airframe

Note: Uncoupled airframe listing shows four longitudinal roots first followed by four lateral-directional roots.

Hover (uncoupled)	(coupled)
$\lambda = 0.00159 \pm i 0.10077$ $= -0.23713$ $= -2.64654$ $= 0.02949 \pm i 0.27626$ $= -0.44778$ $= -7.71637$	$\lambda = -0.28206 \pm i \ 0.01601$ $= 0.01867$ $= -0.05189$ $= -0.00634 \pm i \ 0.20903$ $= -5.18781 \pm i \ 2.53260$
35 Knots (uncoupled)	(coupled)
$\lambda = -0.00971 \pm i \ 0.16470$ $= -0.30077$ $= -2.37101$ $= -0.24771 \pm i \ 0.81760$ $= -0.05339$ $= -6.61402$	$\lambda = 0.01046 \pm i 0.13193$ = -0.24564 = -4.50717 \pm i 2.34599 = -0.27651 \pm i 0.85642 = -0.06194
72 Knots (uncoupled)	(coupled)
$\lambda = -0.79763$ $= -0.14599$ $= -0.11719$ $= -2.19846$ $= -0.41632 \pm i 1.42319$ $= -0.05296$ $= -6.10178$	$\lambda = -0.05862 \pm i \ 0.15912$ $= -0.27382$ $= -4.40993 \pm i \ 2.33811$ $= -0.42956 \pm i \ 1.53113$ $= -0.05781$
110 Knots (uncoupled)	(coupled)
\(= -0.38109 \pm i 0.26126 \) = 0.31503 = -2.92894 = -0.54931 \pm i 1.97156 = -0.04699 = -5.59397	$\lambda = -0.15433 \pm i \ 0.25617$ $= 0.36151$ $= -4.52643 \pm i \ 2.93431$ $= -0.53360 \pm i \ 2.10332$ $= -0.04816$
130 Knots (uncoupled)	(coupled)
$\lambda = -0.30712 \pm i \ 0.29749$ $= 0.31242$ $= -3.02559$ $= -0.63733 \pm i \ 2.22591$ $= -0.05636$ $= -5.00383$	$\lambda = -0.07151 \pm i \ 0.20758$ $= 0.41211$ $= -4.35708 \pm i \ 2.81962$ $= -0.56744 \pm i \ 2.34661$ $= -0.08227$

of cross-coupling increased from 0.0 to 1.0 with the latter limit corresponding to a fully cross-coupled system. The Dutch-roll and long period oscillatory roots are omitted for sake of clarity, but their values do not vary significantly with cross-coupling as shown in Table I.

The uncoupled non-oscillatory lateral-directional roots may be identified as spiral and roll subsidence roots by both the mode shape and time constants using familiar analogies from fixed wing aircraft. The remaining two non-oscillatory roots from the uncoupled longitudinal degrees of freedom would normally correspond to a short period situation in fixed wing aircraft.

It was observed that the low time constant-real roots, one each from the longitudinal and lateral-directional degrees of freedom respectively remain almost invariant with the amount of cross-coupling until they reach the neighborhood of full cross-coupling. At that time the longitudinal root becomes weakly unstable with a time-to-double amplitude of approximately 37 and 1.68 seconds at hover and 130 knots respectively. The latter situation definitely required improvement by means of stability augmentation. These two real roots could have been expected to coalesce into an oscillatory pair as cross-coupling varied, but possibly the close proximity to the almost invariant oscillatory long period and Dutch-roll roots prevented this action from occurring.

The second real-longitudinal root and the roll subsidence root may be observed to coalesce into a pair of complex conjugate (oscillatory roots) almost mid-range in the cross-coupling. The coalesced roots have a mode shape similar to a pendulum type of motion, but it was noted that this mode (in the fully-coupled situations) was quite heavily damped.

The aircraft mode shapes are defined in Table II for hover and 130 knots velocities in both the uncoupled and fully coupled situations. Without these mode shapes, there would be difficulties involved in interpreting the Characteristic root migrations as shown in Figures 1 and The symbol (O) is used on the figures to identify a 2. longitudinal plunging subsidence mode which will be spotted in Table II with the (w) velocity perturbation being the dominant term. This root, which in conventional airframe systems would be combined with the rocking mode root () to yield the conventional oscillatory short period mode, is the "culprit" which becomes unstable in the fully coupled situation. As will be noted in Figures 1 and 2, the longitudinal rocking and the lateral roll subsidence modes .coalesce into an oscillatory pendulum type mode.

B. THE CONTROL MATRIX

In addition to the definition of the airframe plant,
the contractor provided the MOSTAB generated control
matrices. The derivative information, presumably the result

TABLE II

MODE SHAPE SUMMARY

- A. Hover Conditions
 - 1. Zero Cross-Coupling
 - a. Longitudinal-oscillatory long period

```
 \begin{cases} u \\ v \\ q \\ \theta \end{cases} = \begin{cases} 0.0016 \pm i \ 0.1008 & \text{Period} = 62.3 \text{ sec} \quad T_2 = 435.94 \text{ sec.} \\ 0.0196; \text{ arg.} & 0.0 \text{ deg.} \\ 0.0003; \text{ arg.} & 83.8 \text{ deg.} \\ 0.0031; \text{ arg.} & -5.4 \text{ deg.} \end{cases}
```

b. Longitudinal-plunging subsidence

$$\lambda = -0.2371$$

$$\begin{cases} u \\ w \\ q \\ \theta \end{cases} = \begin{cases} 0.0700 \\ 1.0000 \\ 0.0000 \\ 0.0000 \end{cases}$$

$$\frac{1}{2} = 2.92 \text{ sec}$$

c. Longitudinal-fore/aft rocking subsidence

$$\lambda = -2.647$$

$$\begin{cases}
u \\
w \\
q \\
\theta
\end{cases} = \begin{cases}
1.0000 \\
-0.0090 \\
-0.1830 \\
0.0690
\end{cases}$$

$$T_{1} = 0.26 \text{ sec.}$$

d. Lateral-Directional-Dutch Roll

$$\lambda = 0.0295 \pm i \ 0.2762$$
 Period = 22.8 sec. $T_2 = 23.4 \text{ sec.}$
$$\begin{cases} p \\ r \\ v \\ \phi \end{cases} = \begin{cases} 0.0025; \text{ arg. } 166.4 \text{ deg.} \\ 0.0250; \text{ arg. } -34.4 \text{ deg.} \\ 1.0000; \text{ arg. } 0.0 \text{ deg.} \\ 0.0090; \text{ arg. } 82.4 \text{ deg.} \end{cases}$$

e. Directional-Spiral subsidence

$$\begin{cases}
p \\
r \\
v \\
\phi
\end{cases} = \begin{cases}
0.0044 \\
-0.1650 \\
1.000 \\
0.0099
\end{cases}$$
T₁ = 1.55 sec

f. Lateral-Roll Subsidence

$$\lambda = -7.716$$

$$\begin{cases}
p \\
r \\
v \\
\phi
\end{cases} = \begin{cases}
1.0000 \\
-0.0294 \\
0.8669 \\
-0.1296
\end{cases}$$

$$T_{1} = 0.090 \text{ sec.}$$

A. 2. Full Cross-coupling

a. Longitudinal-oscillatory long period

```
\lambda = -0.2821 \pm i \ 0.0160
                                    Period = 392.7 sec.
                                    T_1 = 2.46 \text{ sec}
      1.0000; arg.
                       0.0 deg.
u
                                     2
      0.7102; arg.
                      14.1 deg.
W
      0.0025; arg.
                    173.4 deg.
q
θ
      0.0089; arg. - 3.3 \deg.
      0.0008; arg.
                      176.0 deg.
p
r
      0.0490; arg. 174.5 deg.
      0.1924; arg. 182.6 deg.
V
      0.0028; arg. - 0.7 deg.
```

b. Cross-coupled Pendulum Mode

```
\lambda = -5.1878 \pm i \ 2.5326
                                    Period = 2.48 sec.
                                    T_1 = 0.13 \text{ sec}
      0.6181; arg. -141.88 deg.
                                     2
      0.0798; arg. 155.40 deg.
W
      0.4219; arg.
                      2.14 deg.
q
      0.0731; arg. -155.84 deg.
θ
p
      0.7618; arg. - 42.92 deg.
      0.0386; arg. 177.95 deg.
r
                      0.0 deg.
V
      1.0000; arg.
ф
      0.1320; arg.
                     163.10 deg.
```

c. Lateral-Direction - Coupled Dutch Roll Mode

```
\lambda = -0.0063 \pm i \ 0.2090
                                   Period = 30.1 sec.
                                      = 109.26 \text{ sec.}
      1.0000; arg.
                     0.00 deg.
                                    2
      0.0162; arg. -171.87 deg.
W
q
      0.0014; arg.
                       3.04 deg.
θ
      0.0065; arg. - 88.70 deg.
      0.0006; arg. 145.88 deg.
p
r
      0.0126; arg.
                      1.69 deg.
                     33.20 deg.
V
      0.4099; arg.
      0.0028; arg. 122.38 deg.
```

d. Lateral-

```
\lambda = -0.0519
                                           = 13.36 sec.
       1.0000
u
W
      -0.0358
      -0.0000
q
θ
       0.0016
p
      -0.0000
r
      -0.0077
      -0.1992
V
       0.0003
```


e. Longitudinal

$$\lambda = 0.0187$$

$$\begin{bmatrix}
u \\ w \\ q \\ \theta \\ p \\ r \\ \phi
\end{bmatrix} = \begin{bmatrix}
1.0000 \\ -0.0224 \\ -0.0000 \\ -0.0006 \\ -0.0000 \\ -0.2016 \\ -0.0001
\end{bmatrix}$$

 $T_2 = 37.13 \text{ sec.}$

B. 130 Knots

- 1. Zero Cross-coupling
 - a. Longitudinal-oscillatory Long Period Mode

$$\lambda = -0.3071 \pm i \ 0.2975 \quad \text{Period} = 21.1 \text{ sec.} \quad T_1 = 2.26 \text{ sec.}$$

$$\begin{cases} u \\ w \\ q \\ \theta \end{cases} = \begin{cases} 0.5812; \text{ arg.} & -67.70 \text{ deg.} \\ 1.0000; \text{ arg.} & 0.0 \text{ deg.} \\ 0.0026; \text{ arg.} & 39.45 \text{ deg.} \\ 0.0061; \text{ arg.} & -96.46 \text{ deg.} \end{cases}$$

b. Longitudinal -

$$\lambda = 0.3124$$

$$\begin{cases}
u \\ w \\ q \\ \theta
\end{cases} = \begin{cases}
1.0000 \\
-0.7721 \\
-0.0043 \\
-0.0138
\end{cases}$$

 $T_2 = 2.22 \text{ sec.}$

c. Longitudinal -

$$\lambda = -3.0256$$

$$\begin{cases}
u \\ w \\ q \\ \theta
\end{cases} = \begin{cases}
0.0185 \\
1.0000 \\
-0.0108 \\
0.0036
\end{cases}$$

 $T_{\frac{1}{2}} = 0.23 \text{ sec.}$

d. Lateral-Directional Dutch Roll Mode

$$\lambda = -0.6373 \pm i \ 2.2259 \quad \text{Period} = 2.8 \text{ sec.} \quad T_1 = 1.09 \text{ sec.}$$

$$\begin{cases} p \\ r \\ v \\ \phi \end{cases} = \begin{cases} 0.0185; \text{ arg.} & 0.02 \text{ deg.} \\ 1.0000; \text{ arg.} & 0.0 \text{ deg.} \\ 0.0107; \text{ arg.} & 179.96 \text{ deg.} \\ 0.0036; \text{ arg.} - 0.0 \text{ deg.} \end{cases}$$

e. Lateral-

$$\begin{cases}
p \\ r \\ v \\ \phi
\end{cases} = \begin{cases}
-0.0564 \\
-0.0077 \\
0.0203 \\
1.0000 \\
0.1363
\end{cases}$$

 $T_{\frac{1}{2}} = 12.29 \text{ sec.}$

f. Lateral-

$$\lambda = -5.0038$$

$$\begin{cases}
p \\
r \\
v \\
\phi
\end{cases} = \begin{cases}
1.0000 \\
-0.0381 \\
-0.0674 \\
-0.1999
\end{cases}$$

 $r_{\frac{1}{2}} = 0.14 \text{ sec.}$

- B. 2. Full Cross-coupling
 - a. Longitudinal-oscillatory Long Period Mode

$$\lambda = -0.0715 \pm i \ 0.2076 \quad \text{Period} = 30.3 \text{ sec.} \quad T_1 = 9.69 \text{ sec.}$$

$$\begin{cases} u \\ w \\ q \\ \theta \\ p \\ r \\ v \\ \phi \end{cases} = \begin{cases} 1.0000; \text{ arg.} & 0.0 \text{ deg.} \\ 0.4987; \text{ arg.} & 10.05 \text{ deg.} \\ 0.0014; \text{ arg.} & 34.18 \text{ deg.} \\ 0.0064; \text{ arg.} & -74.83 \text{ deg.} \\ 0.0027; \text{ arg.} & 81.22 \text{ deg.} \\ 0.3260; \text{ arg.} & 25.33 \text{ deg.} \\ 0.2051; \text{ arg.} & 883.34 \text{ deg.} \end{cases}$$

b. Lateral-Directional - Coupled Dutch Roll Mode

```
\lambda = -0.5674 \pm i 2.3466
                         Period = 2.7 sec.
       0.0111; arg. -109.36 deg.
u
       0.2045; arg. - 20.66 deg.
W
       0.0023; arg. - 74.39 deg.
q
       0.0009; arg. 88.99 deg.
θ
       0.0045; arg. 159.81 deg.
p
       0.0110; arg. - 76.86 deg.
r
       1.0000; arg.
                      0.0 deq.
V
       0.0019; arg. 56.22 deg.
```


c. Cross-couple Pendulum Mode

d. Longitudinal-

 $\lambda =$ 0.4121 $T_2 = 1.68 \text{ sec.}$ -0.7732W 1.0000 0.0006 q 0.0014 θ -0.0031 p -0.0014 r -0.0342 V

-0.0075

d. Lateral

$$\lambda = -0;0823 \quad T_{1} = 8.42 \text{ sec.}$$

$$\begin{cases} u \\ w \\ q \\ \theta \\ p \\ r \\ v \\ \phi \end{cases} = \begin{cases} 1.0000 \\ 0.0781 \\ -0.0000 \\ 0.0009 \\ -0.0041 \\ 0.0076 \\ 0.5428 \\ 0.0504 \end{cases}$$

of pneumo-dynamic modeling in the hub and blade blowing sections, was supplied as airframe forces and moments per unit (3060 psf) pressure variation at the pneumatic swash-plate referenced to the aircraft axis. The cyclical variation of the plenum pressure upon control was given by:

- C (2) .. The coefficient of the cosine ψ type variation in the control matrix.
- C (3) .. The coefficient of the sine ψ type variation in the control matrix.

where, ψ, represents the blade azimuthal angle. One can visualize the longitudinal and lateral cyclic controls as rotating the pneumatic swashplate about an orthogonal set of axes that leads the blade azimuthal angle by some angle, φ, in an analogous manner to the practise on mechanical swashplates. Then, as shown in Figure 3, the apparent longitudinal and lateral cyclic control matrices become, by a coordinate rotation, as follows:

- B (1) = C (2) $\cos \phi C$ (3) $\sin \phi$
- B (2) = C (2) $\sin \phi + C$ (3) $\cos \phi$

where B(1) and B(2) are the longitudinal and lateral cyclic control matrices respectively. No attempt was made to relate these control matrices to actual control stick motions, although reasonable estimates could have been made.

The criteria employed in selecting the control lead angle was the following:

FIGURE 3. VISUALIZATION OF THE PLENUM PRESSURE LEAD ANGLE

- o Longitudinal cyclic .. produced negligible rolling moment.
- o Lateral cyclic .. produced negligible pitching moment.

Although absolute satisfaction of these constraints concurrently with one choice of lead angle, ϕ , was not physically realizable, it was remarkable that a single value of lead angle, ϕ = 40 degrees, provided a satisfactory solution in an engineering sense.

Table III lists the variation of pneumatic lead angle versus airspeed for satisfaction of the longitudinal and lateral cyclic constraints respectively. The selection of forty (40) degrees as an engineering answer is in accord with independent analysis done by Kaman Aerospace. The tabulation of the B(1) and B(2) control matrices for a pneumatic lead angle of forty (40) degrees are presented in Table IV. Inspection of the fifth row of B(1) and third row of B(2) provides an indication of the reasonableness of the solution.

The effects of plus and minus five (5) degree changes in pneumatic lead angle will be described during the analysis. This type of sensitivity analysis will provide an indication of the airframe stability root sensitivity in the compensated mode.

C. THE FEEDBACK LAW

The study of the impact of various feedback control laws for reducing or removing the longitudinal instability

TABLE III

Calculations of the Pneumatic Lead Angle vs. Airspeed

$$B(1) = C(2) \cos \phi - C(3) \sin \phi$$

$$B(1) = \arctan \frac{C(2)_{L}}{C(3)_{L}}$$

$$B(2) = C(2) \sin \phi - C(3) \cos \phi$$

$$\phi_{B2} = \arctan \frac{-C(3)_{N}}{C(2)_{N}}$$

HOVER
$$\phi_{B1} = 42.32^{\circ}$$
 $\phi_{B2} = 43^{\circ}50^{\circ}$

35 KNOTS $\phi_{B1} = 37.16^{\circ}$
 $\phi_{B2} = 39.36^{\circ}$

72 KNOTS $\phi_{B1} = 40.87^{\circ}$
 $\phi_{B2} = 33.09^{\circ}$

110 KNOTS $\phi_{B1} = 39.83^{\circ}$
 $\phi_{B2} = 36.63^{\circ}$

130 KNOTS $\phi_{B1} = 40.61^{\circ}$
 $\phi_{B2} = 42.56^{\circ}$

Coefficients of the Control Matrix B_{lx} and B_{2x} for pneumodynamic lead angle of (40) degrees

35 KTS

HOVER

72 KTS 110 KTS

130 KTS

TABLE IV

B ₁₁	-12.96	-11.13	-8.474	-7.593	-5.121
B ₂₁	-8.697	-13.08	-9.193	-22.13	-27.61
B ₃₁	9.356	7.565	6.911	7.223	6.726
B ₄₁	0.0	0.0	0.0	0.0	0.0
B ₅₁	1.164	-1.124	0.295	-0.053	0.174
B ₆₁	-0.267	-0.055	-1.446	-0.905	-1.098
B ₇₁	4.897	2.816	2.842	3.049	2,030
B ₈₁	0.0	0.0	0.0	0.0	0.0
B ₁₂	5.486	3.860	2.086	0.639	1.711
B ₂₂	-0.765	5.042	2.296	11.21	11.53
B ₃₂	-0.572	0.084	0.837	0.425	0.304
B ₄₂	0.0	0.0	0.0	0.0	0.0
`B ₅₂	28.72	22.68	19.52	18.30	16.52
B ₆₂	-0.106	-0.643	0.521	0.965	0.585
B ₇₂	12.94	10.36	9.244	10.60	9.996
B ₈₂	0.0	0.0	0.0	0.0	0.0

began with an attempt to vary the available longitudinal feedback gains and to investigate the eigenvalues and eigenvectors as these gains were varied.

The modified plant matrix, A', was developed in the traditional matrix manner in the uncoupled and fully-coupled state variable format where:

$$A^{\bullet} = A - Bk$$

When only longitudinal cyclic control is considered, the control effectiveness matrix [B] becomes an eight-by-one matrix while the feedback gain coefficient matrix [k] becomes a one-by-eight matrix. The matrix product, B k, is an eight-by-eight matrix.

$$B^{T} = [U, W, Q, \theta, P, R, V, \phi]$$

$$k = [k_{u}, k_{w}, k_{q}, k_{\theta}, k_{p}, k_{r}, k_{v}, k_{\phi}]$$

The earlier confirmation that the unstable root was primarily associated with the longitudinal airframe modes was the reason for only employing feedback in the longitudinal cyclic control when developing the modified plant matrix,

[A']. An arbitrary set of moderately damped oscillatory stable roots were selected:

$$\lambda_{1.2} = 1.68 \pm i 8.21$$

which corresponded to:

 ω_n = undamped natural frequency = 8.38 sec⁻¹

ζ = dimensionless damping ratio = 0.2

Since it had been established in the basic plant matrix that the short period mode was the dominant instability, the arbitrarily selected second-order system (a form of modal control) was applied to the augmented two-by-two matrix, A', and the closed form solution calculated to yield values of k_w and k_q . Gain values of $k_w = 0.05$ and $k_q = 0.22$ were determined to yield the desired results but the application of these gains alone, to the uncoupled four-by-four matrix and the fully-coupled eight-by-eight state variable problem failed to produce favorable results and the instability remained with the aircraft matrix at all of the calculated speeds.

The search for the acceptable feedback law using gains of k_w and k_q continued using the HR-9830 with a further modified BASMAT program that would automatically search for acceptable feedback gains in the range of k_w and k_q equal to minus one (-1) to plus one (+1.0). Although values of k_w and k_q could be found that would drive the augmented matrix stable (negative real parts of the eigenvalues) at each calculated speed, these values were not sequentially related to speed and, furthermore, were random in nature, often changing signs more than once as speed increased from hover.

The decision was then made to employ pitch attitude and pitch rate $(k_A$ and k_G) feedback respectively based on the knowledge that both pitch and pitch rate information were presently available in the H-2 aircraft. Programs existed for both the IBM-360 and the HP-9830 for accomplishing this search for acceptable feedback gains of k_{q} and ka, but while the IBM-360 was much faster in the actual computations (approximately twenty seconds of CPU time were required for the computations of the eigenvalues and eigenvectors for one set of plant, control and feedback gain coefficients vice twenty-five minutes for the HP-9830), the HP-9830 allowed for a much more convenient search. HP-9830 allowed the programmer to make "in-line" decisions on changes in the feedback gains based on the previous results with approximately thirty minutes between output results. This removed the problem of the long delays encountered because of the turnaround time of the IBM-360. Typical turnaround times were two to five hours depending upon the computer usage at the time of program input. This long turnaround time was a result of the low job priority assigned the program by the computer center, a result of the complexity of the program and the large amount of core memory required.

The rationale of feeding back k_q and k_θ proved fruitful for values of:

$$k_{G} = 0.45$$
 and $k_{\theta} = 0.85$

or the feedback matrix taking the form of:

$$k = [0, 0, 0.45, 0.85, 0, 0, 0, 0]$$

producing stable eigenvalues at all speeds calculated with the exception of hover. These gains did leave an unstable oscillatory root in hover, with a time to double amplitude of 18.15 seconds, over six times the three second minimum time to double amplitude allowed.

D. PNEUMATIC LEAD ANGLE SENSITIVITY CHECK

Concern had been shown over the possibility that variations in the pneumatic lead angle (\$\phi\$) blowing could cause dramatic changes in the stability characteristics of the aircraft. It was recognized that changes in pneumatic lead angle would result in direct changes to the control matrix, B. In order to study the sensitivity to changes in lead angle, new values of the control matrix were computed for pneumatic lead angles of thirty-five (35) and forty-five (45) degrees. The results of these calculations are listed in Table VI. The IBM-360 program was further modified to compute the new eigenvalues and eigenvectors using the basic plant matrix, A, the computed feedback gains, k, given above, and allowing the longitudinal pneumatic control matrix, B, to vary for values of \$\phi\$ equal to thirty-five and forty-five degrees. The computed results

TABLE V

Eigenvalues of the augmented matrix, A', at velocities of: Hover, 35, 72, 110 and 130 Knots

Hover:

 λ = -0.00019 = -0.24473 = -0.47775 = -0.97459 = 0.03819 $\stackrel{+}{-}$ i 0.27676 = -6.78748 $\stackrel{+}{-}$ i 3.60274

35 Knots:

= -0.01709 = -0.04164 = -0.24762 ± i 0.81412 = -0.67857 ± i 0.13139 = -5.67357 ± i 3.42617

72 Knots:

= -0.01445 = -0.07094 = -0.63074 + i 0.37790 = -0.43457 + i 1.47940 = -5.45309 + i 3.07803

110 Knots:

= -0.00326 = -0.04764 = -0.49037 +_ i 0.55734 = -0.54836 +_ i 2.06899 = -5.61868 +_ i 3.46986

130 Knots:

= -0.01401 = -0.07035 = -0.39270 + i 0.61107 = -0.59046 + i 2.34511 = -5.31913 + i 3.22033

TABLE VI

Variations in the control matrix coefficients with variations in the pneumatic lead angle

B ₈₁	000	000	0.00	0.00	0.00
B ₇₁	6.006	3.709.	3.637	3.961	2.893
	4.897	2.816	2.842	3.049	2.030
	3.75	1.903	2.025	2.114	1.151
B ₆₁	-0.275	-0.635	-1.171	-1.167	-1.071
	-0.267	-0.643	-1.237	-1.232	-1.125
	-0.256	-0.645	-1.293	-1.288	-1.170
B ₅₁	3.662	0.857	1.995	1.542	1.613
	1.164	-1.124	0.295	-0.053	0.714
	-1.344	-3.097	-1.407	-1.648	-1.266
B41	0.00	0.00	0.00	0.00	0.00
B ₃₁	9.730	7.543	6.957	7.232	6.733
	9.356	7.565	6.911	7.223	6.726
	9.370	7.529	6.812	7.158	6.674
B ₂₁	-8.730	-9.950	-11.597	-21.071	-26.501
	-8.697	-6.778	-12.151	-22.132	-27.611
	-8.597	-10.215	-12.612	-23.024	-28.511
B ₁₁ .	-12.428	-10.750	-8.260	-7.508	-4.953
	-12.955	-11.129	-8.474	-7.593	-5.121
	-13.384	-11.423	-8.624	-7.620	-5.251
нОиг	35° 40° 45°	35 KTS 35° 40° 45°	72 KTS 35° 40° 45°	110 KTS 35° 40° 45°	130 KTS 35° 40° 45°

showed that the variation of the pneumatic lead angle by plus or minus five (5) degrees had very little effect on the stability characteristics of the augmented plant matrix.

IV. CONCLUSIONS

A study has been made of the basic stability traits of the Kaman Aerospace Corporation XH-2/CCR helicopter, which is presently being constructed under NAVAIR contract as a technology demonstrator for the Circulation Control Rotor concept.

The airframe was defined by contractor generated stability and control derivatives which were then used to develop eigenvalues and eigenvectors for the system. The plant matrix (which characterizes the airframe) was generated by the MOSTAB program as modified to accommodate the CCR system, and the matrix coefficients represent the output from the program when it was operating in the 18 degree-offeredom situation, i.e., six airframe degrees-of-freedom plus flapping, torsion and lead/lag degrees-of-freedom for the four blades (6 + 3 x 4 = 18). The uncompensated airframe characteristic roots at hover are in close accord with results obtained by the contractor for the six degree-offeredom airframe, including a mild non-oscillatory instability (t₂ = 37.1 sec.) that has been identified as due to a longitudinal short period type mode.

A feedback law has been identified using pitch attitude and pitch rate feedback into the longitudinal cyclic control that provides reasonable characteristic roots for the airframe. Presumably, further improvements could be obtained

by providing feedback in the lateral cyclic control system.

The effect of varying the cyclic control lead angle on the pneumatic swashplate was investigated and found to be slight.

It should be noted that a unique feedback control law is not possible in modal control theory, when multiple control inputs (longitudinal and lateral cyclic) are available. Another way of stating this fact is that it is possible with several control inputs (and feedback laws) to have the same eigenvalues, but with different eigenvectors.

Finally, the characterization of the eigenvectors and identification of the eigenvalues with relevant modes was made possible by using a form of root locus analysis where the prime parameter was the amount of cross coupling. The trajectory of the characteristic roots as cross-coupling was linearly altered provided a physical insight into the history of the various roots.

Future studies are suggested to include estimating the mechanical gearing to the cockpit controls and then obtaining airframe response time histories for selected control inputs such as stick doublet type motions. Time histories can be generated quite readily using principles from control theory combined with calculated relations for system's transition matrices. It is quite possible that time history calculations for the compensated airframe will provide a better guide for selecting the control law. In any event, such studies will enhance satisfaction as to the question of airframe response behavior being reasonable.

APPENDIX A

The basic plant matrix of the aircraft linearized equations of motion in the state variable format

THE COUPLED "A" MATRIX

n n	3	ק	Φ	Q	н	>	+
0.0	0.0	0.0	0.0	0.0	0.0	32.2	0.0
×>	$^{\rm Z}_{\rm v}$	M	0.0	L V	Z >	${\bf v}_{\bf v}$	0.0
×	z z	M	0.0	L r	N N	r - u	0.0
×°	Z P	Z, O	0.0	n d	Z O	Y P	1.0
-32.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0
× b	$p^2 + U$	$M_q + M_w (U+Z_q)$	1.0	L	b' Z	۵ ۲	0.0
×××	Z M	$M_{W} + M_{W}^{Z}$	0.0	Lw	N N	$\overset{\mathbf{A}}{\times}$	0.0
ת	n Z	Mn + Zn M	0.0	n n	N N	Yu	0.0
٠,5	۰۶	ים	• 0	·d	• 14	•>	•

U = Aircraft velocity in fps.

IBM-360 MODIFIED "BASMAT" PROGRAM

APPENDIX B

0004 0005 2007 2008 2009 0008 0009 0010 00113 00114 00116 00116 00117 00113 000122 000223 TE (MI.EC.O) GC TO 14 PRINT 2012 0030 0031 0032 0033 0034 3001 00 6 1=1.N 9E40 2002. (9(1.K).K=1.M1) 5 PRINT 2020, (8(1.K).K=1.M1) 7 PRINT 2012 PRINT 2012 0035 0037 PETNT 2022 00 3 (=1,41 8E40 2002, (3(T,K),K=1,N) PENT 2020, (G(T,K),K=1,N) PRINT 2023 C0 13 (=1,N) 2239 0040 CO 13 1=1.4 D1 12 K=1.4 TE 49 = 1. P1 1 J = 1.41 TE 40 = TE 49 + d (I.J) *G (J.K) A (I.K) = 1 (I.K) - TE 40 PRINT 2020 (A (I.K) - K=1.4) IF (IDET . NE. J) GD TD 5 D=111 2033 - D IF (INY . NE. J) CD TD 15 PRINT 2001 CILL SIMED(1.C.N.AIMV.C. IE29) TE (INY . NE. J) GD TD 15 PRINT 2011 CILL SIMED(1.C.N.AIMV.C. IE29) TE (ISSE VECA) GD TD 15 DD 2J = 1.0 00445 00446 00446 00551 00551 00551 00555 00555 0057 0053 TE (1788 TC) OT 2J 7=1.N OT 2J 7=1.N CALL CHRES((1, N.C.N) CALL CHRES((1, N.C.N) CALL CHRES((1, N.C.N) TE (1703.N=.0) CT TT 30 005 9 006 1 006 1 006 2 PS 117 2005 PRINT 2003, (C(1), [=1,NN) IF ([EIG.NE.C]) 37 77 35 0069 0069 0070 0071 0073 99141 2012 99141 2006 99141 2007 FTRAIT (193515.4) FTRAIT (1965X.20HTHE CONTROL MATRIX 3./) FTRAIT (196.5X.17HTHE GAIN MATRIX G./) FTRAIT (196.5X.31HTHE MODIFIED PLANT MATRIX, 4-36./) 2021 2022 <u>2322</u> 2023 END

0001	SUPPOUTING CHREQ(4,N.C,MRM) O THIS SUPPOUTING FINDS THE CORRESCIENTS OF THE CHARACTERISTIC
0002	CONMIN ZED(10-10-10)
3004 0005	OIMENSIAN A(16.131.6(11).ATEMP(10.10).PRCD(10.10) CATA ATEMP/100*0.0/ 1000 FORMAT (140.5%.31HTHE MATRIX CREFFICIENTS OF THE ,
0005	1001 FORMAT (IHO. 5X.29HTHE MATRIX COEFFICIENT OF S**.11/)
0008	1302 F03MAT (19652C.7)
0009 0011	CALL CHRECA(4.N.C)
0012	70 00 30 I=1, N
0014 0015 0016	30 ZEC(N, I, J) = 4T E YP (Y, J) TE (NRM, NE, O) GO TO 71
0017	WPITE (5,1003) WPITE (6,1000) WPITE (6,1000)
0019	WRITE (6,1001) M DC 35 (=1,N 35 WRITE (5,1322) (ATEMP(1,J),J-1,N)
3021 0022 2023	71 07 40 1=1.8
0025	
3326 0027 3029	IF (1.EQ.1) GO TO 55 IF (NRM.NE.O) GO TO 60
0030	00 45 J=1, A
0031 0032 0033	60 N2=1N1+1 00 90 11=1.A
0035	90 ZSC(NP, [], J)=ATEMP([',J)
0036 0037 0038	99 15 X=1.4 99 15 X=1.4 PRG0(J.K)=0.3
0039	$\frac{15 \text{ L= 1,N}}{15 \text{ PRID}(J,K) = PRID}(J,K) + (A(J,L) = ATEMP(L,K))$
0042 0043	07 13 J=1, N CO 13 K=1, N 13 ATEMP(J,K)=FRCD(J,K)
0045 0045	55 NO 10 J=1.N
0046	ENC ENC
0001	SUBSCUTINE CHEEGA(1,N,C) OTYCNSION J(11).C(11).B(10,10).4(10,10).D(300)
0003 0004 	00 20 I=1, NA
0006 0007	C(\N)=1.0 0C 14 W=1.A
0008 0009	N=0 L=L
0011	1 J(1)=1 1 J(1)=J(1)+1 2 J(1)=41 3.5.5.2
0014 0015	3 4/4 = 1 - 1
3316 0017	
0019	5 00 10 T=1,V 00 10 K=1,W
0020 0021 0022 0023	N2 = J(T) NC = J(KK) 10 B(I,KK) = Δ(N3,NC)
0023	K=K+1
3324 0325 0325 0327	() () () () () () () () () ()
0028	<u> </u>
0031 0031 0032	ቦች [፡- [.K 14
0033	50 PRINT 2000 2000 FRAMAT (IHC.5*.15HFRACK IN CHREQA)
003 E	E. C.

0001	SUBROUTINE TIMED ('.XBOT, KG.STIV.X.TERR) THIS SUBROUTING FITOS THE LAVEST DETHE MATRIX A USING
0002	0.4=20.00 = ([0,10]) = ([0,10]) × 0.1 ([11])
0004	T = 2 → 4 C T = 2 → 4 C
0007	0 1 J=1.*C 2 N V (' · J) = 0 1 G (' · J) = ' (' · J)
0010	0 2 =1,61 6 \ \ (i + \) = 1
0011 0013	2. X(T) = X (T) = X (T
0015	6 7F(85 (8(k.1))-485 (6048))5.5.4 6 6748=6(4,1)
3317 3013	************************************
2013 2021	7 (F(A(), 1) E.51.8 7 (F(A(), 1) E.51.8 2 (F()-1) 51.12.9
2022	9 (7 + 1) (4 - 1 + 4) 7 = 0 (7 + 1) 9 (7 + 1) = 3 (3 + 2)
C)25 2025 2027	7(\)="F"C 7=\0,\'\(\'\)
0029	1) (T; y(T, Y) = TS MO T = Y (T, Y) (T, Y) = TS MO
0030 0031 0032	\(\frac{\tau}{\tau}\) = \(\frac{\tau}{\tau}\) = \(\frac{\tau}{\tau}\) = \(\frac{\tau}{\tau}\) = \(\frac{\tau}{\tau}\)
0033 0034 0035	7: V = T(T,T)
0035 0037	00 16 J=1,K0
7339	1: '=(3(1:1)15:16:15 1: '=(3(1:1)15:16:15 1: '(',) = (1:1)-6(1:1)+(1)
0041	できること(()。) の
0043 0044 0045	17 7(),() = 3(),) = 72 MP = 2(T,)) (4 00 \ 7 T,)) =
0046 0047 0043	51 print 52
0049	र्दे हर्नेपर (- ४४,22,4745 अटर (४००६ र १८,53) ४०) । त्र-=0 । ०-१०८०
3752	6 11 2 · · · · · · · · · · · · · · · · ·

0001	SUBROUTINE STAST (N.4.EIGR.EIGI.IKYDW) O THIS SUBROUTINE CETERMINES THE STATE FRANSITION MATRIX USING
0002	C SYLVESTER = 3 EXPANSI 1, PECREM. COMMON CHI (10:10:10)
0003 0004	07 YENS(3N À (10,10), E1G2(10), E1G2(10), SPS(10,10), COMPLEX C4(10,10), C41(10,10), C42(10,10), TC4(10,10),
	# DENOM(10).CETG(10)
0005	+ 13H TRANSTITION MATRIX OF THE STATE , 1001 FORMAT (LHO, 5X,25HTHE MATRIX COFFERING OF ,
0006	54 FXP(.19513.6.78) T*CCS(.19F13.5.2H)T/)
0007	1002 FCRMAT(198F15.4) 1003 FDRMAT(190: 5x-25HTHE MATRIX CORFFICIENT OF
0009	* 5H EXP(, [PE[2.5,7h]T*SIN(,[PE[3.6,2H]T/)] 1004 FORMAT(LHO, 5X,25HTHE MATRIX COEFFICIENT OF
0010	1005 FORMAT (1HC,45(1H*))
3312	TE(IKNOW.NE.O) GO TO 800
0013	300 CC 10 K=1*V PRINT 1335
2015	$D \cap \{0, 1, 1, 1, \dots, n\}$
0016	17 (318,61) = (396,814(8,61,0.0)
0019	TE(IKNOW - ME - C) GO TO 700 PSINT 1000
0021 0021	70) 00 15 K=1.A 15 DENTM(K)=CEIG(T)-CEIG(K)
0022	15 (J-1) 100.500.200
0023 0024 0025	170 if (j-1) [10,150 200 ff (i-1) 300,300,400
0026	300 if (j-i-1) ii(.ii0.i50 400 if (j-i-1) ii0.i50.i50
0027 3323	113 DG 5 K=1.Y
0029	5 CAL(K+L) = CALK+L)
0032	00 20 K=1.N C11(K,K)=C4(K.K)-CEIG(J)
0033 0034	20 CAI(K,L)=CAI(K,L)/DEHOM(J)
0035	GC TC 500
0037	67 40 L=1.N 40 C/2(K-L)=SA(K-L)
0040	DC 25 K=1,N C\2(K,K)=CA(K,K)-CEIG(J)
0041	25 CAZ(K,L)=CAZ(K,L)/DENOM(J)
0042	0° 30 K=1.
0045	D7 30 L=1.A TC1(K,L)=(C.0.C.O)
0046 3347	30 TC4(K+L) = TC4(K+L) + C41(K+M) = C22(M+L)
0048	00 35 K=1+N
0050	35 CAI(K+L)="CA(K+L) 500 CONTINUE
0052	1 F (41446(CE16(1))) 45.50.45
2255	Ţ = Ţ + 1
0056	TE(TRADW.NE.S) GO TO BOL PRINT 1001, ETGR(I), ETGI(I)
2258	301 07 65 X=1.N D3 55 X=1.N
0060	65 \$7\$(K,L) = 954L(CAL(K,L)) #2.0
0061	D: 061=1, N CHILIX-K-L)=SPS (K-L)
0063 0064	66 CDATINUS. IF(IKNOW.NE.C) GO TO 802
6965 9366	0° 30 <=1.↑
0063	3) PO THT 1002: (SPS(K.L).L=1.V) PO THT 1003: SICO(I).STGI(I)
2269	07 55 L=1.N
0071	00 56 K=1.A

0072	DO 56 L=1.N CHI(I .K.L)=SPS(K.L)
0074 0075 -0076	56 CONTINUE TE(TKNON-NE.3) GD TO 600
0077	95 POTÑÍ ÌOÔŽ: (SPS(K,L),L=1,N) C ** CALCULATE CEMPLEX EIGENVECTOR (3 MODIFICATION)
0078 0079 0080	210 PATHT 1007 220 DC 221 K=1.N 555(K,1)=5C3T(CHI(IM,K,1)=#2 + CHI(I,K,1)##2)
0081 9082 9083	\$95(K,2)=AT3N2(CHI(!,K,1),CHI(IH,K,1)) =(-57,2958) PRINT 1007,SPS(K,1),SPS(K,2) 221
0084	1005 FCRMAT(THO.5X.25HTHE COMPLEX ETGENVECTOR IS./3X.9HMAGNITUDE.
7035	1007 FC3*17(122620.7) 2 ** END 3F MODIFICATION. G2 70 600
0086 0087 0088 0089	50 TR (KYDW NE 0) GD TO 804 PRINT 1004, EIGR(!)
0090 0091	00 60 E=1.A 60 SES(K,L) =854L (CA1(K,L))
0092 0093 0094	CHIT, K, L) = SPS(K, L)
0095 0096 0097	61 CANTINUE IF (IKNAW NE.O) GO TO 600
6600	75 PRINT 1002. (SPS(K.L).L=1.N) 600 [F (1.GE.N) RETURN
0100 0101 0102	1=1+1 60 TC 700 EYD

0001		SUBSOUTINE PROCT(N,A,U,V,TR) S SUBSOUTINE USES A MODIFIED BARSTOW METHOD TO FIND THE
0002		COTS OF A FCLYNOMIAL. DIMENSION A (20), U(20), V(20), H(21), 3(21), C(21)
0002		126A=16
0004		NC =N+1
0006		001I=1,NC H(I)=4(!)
0007		P=C.
3338		Q = C
0009	3	R=C. TF(H(1))4,2,4
001 i	·	NC=VC=1
0012		y(\chi_c) =0.
0013 0014		U(NC)=0. C110027=1.NC
0015	1002	H(T) = H(T + L)
3316		G7 17 3
0017	4 5	TE (NC-1) 5, 100, 5 IF (NC-2) 7, 6, 7
0012	<u>.</u>	2=-d(\)/h(\(\hat{z}\)
0020	7	GC1350
0022		TF(NC-3)5,8,9 P=F(2)/H(3)
0023		Q=H(1)/H(3)
3324		GOTO70 TE(49S (H(NC-1)/H(NC))-48S (H(2)/H(1)))10.19.19
0025 0025		186A=-136A 186A=-136A
9927		M = \(\frac{1}{2} \)
0023		DC11 I=1, M
0030	·	NL = NC + 1 - I R= F(ML)
0031		H(NL) = H(T)
0033		H(1)=F 15(0)13.12.13
0033	12	P=C.
2035		6717 15
0036	1.3	9=1./0
0038	15	1F(7)15,19,16
0039	1.5	Q = 1 • / °.
0041	19	E=6.E-10 B(NC)=H(NC)
0042		C(NC) = H(NC)
2743		9(NC+1)=G.
0044		C(NC+L)=0. NP=NC-1
0046	20	\$749J=1,1007
2247		002111=1-NE
0049		[=\(\frac{1}{2} - \frac{1}{2} \) 2([]=\(\frac{1}{2} + \frac{1}{2} + \frac{1}{2} \)
0050	21	$\hat{C}(\hat{t}) = 9(\hat{t}) + 9 + C(\hat{t} + \hat{t})$
2051	37	TE (C (2)) 22 22 22 25 150 -50 - 50 - 24
0052	24 22	T5(C(2))23,22,23 R=3+1.
0054		<u>ign 1930</u>


```
R=R-B([)/C(2)

DD27[]=1,NP

I=NC-T[

B(I)=H(I)-P*P(I+1)-O*B(I+2)

C(I)=B(I)-P*C(I+1)-C*C(I+2)

IF(H(2))32.31.32

IF(ABS (B(2)/F(1))-E)33.23.34

IF(ABS (B(1)/F(1))-E)33.23.34

IF(ABS (B(1)/F(1))-E)33.23

IF(ABS (B(1)/F(1))-E)33

IF(ABS (B(1)/F(1))-E)33

IF(ABS (B(1)/F(1))-E)33

IF(ABS (B(1)/F(1))-E)33
   0055
0057
0057
0058
0058
0058
0061
   0062
0063
0064
0065
                                                                                                                                                                                                                                                                                                                                                                                          32
33
34
   0066
3367
0069
0069
3071
0071
0072
3073
0075
3075
                                                                                                                                                                                                                                                                                                                                                                                                                                                          GC1749

Q=Q+(-8(2)*C(3)+8(1)*C(4)1/0

Q=Q+(-8(2)*C912+8(1)*C(3))/0

CONTINUE

F=E*10.

GOTO20

NC=NG=1

V(NG)=0.
                                                                                                                                                                                                                                                                                                                                                                                   V(NC)=9.

IF(ICEV)51.52.52

51 U(NC)=1./2

GTT153

52 U(NC)=R

53 DT547=1.AC

54 H(I)=B(I+I)

GTT147
0077
0078
0079
0080
0081
0083
0084
0086
0087
                                                                                                                                                                                                                                                                                                                                                                                79 NO=NC=2

IF ('REY) 71.72.72

71 QP=1.79

PO=P/(Q=2.C)

GOT773

PP=P/2.0

73 F=(PP)**2-C)

1F(F)*4.75.75

74 U(NC+1)=-PP

U(NC)=-PP

V(NC)=-PP

V(NC)=-P
      0089
0089
0090
   PE TURN
                                                                                                                                                                                                                                                                                                                                                                  100
```


APPENDIX C

MODIFIED "BASMAT" PROGRAM FOR HP-9830

```
1 CIM A(E,8),3(8,8)
2 CIM M(8,1),Y(1,8)
4 CIM Z(8,8)
6 FIXEC 6
7 CATA
8 CATA
10 CATA
11 CATA
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       11 CATA
12 CATA
13 CATA
14 CATA
15 DATA
16 MAT READ O
17 PRINT "CCR
18 MAT PRINT C
19 PRINT
                                                                                                        130 KNOTS THE BASIC A MATRIXM
                              PRINT

PAT REAC M

PRINT MTHE BASIC CONTROL MATRIX ISM

MAT PRINT M

FOR 15=-1 TO 1 STEP C.1

FOR J5=-1 TO 1 STEP C.1

Y(1,1)=Y(1,2)=Y(1,5)=Y(1,6)=Y(1,7)='
Y(1,3)=15

Y(1,4)=J5

MAT Z-M+Y

MAT J-C-7
                  20222345
                                                                                                   TO 1 STEP C.1
TO 1 STEP C.1
.2)=Y(1,5)=Y(1,6)=Y(1,7)=Y(1,8)=0
27 Y(1,3)=[5
28 Y(1,4)=J5
29 MAT Z=C-Z
31 Gl=C
33 N=8
34 PRINT**IHE REVISEC PLANT MATRIX AT 130 KTS, WITH K(Ql=*,15
35 PRINT**IHE REVISEC PLANT MATRIX AT 130 KTS, WITH K(Ql=*,15
36 MAT PRINT A
37 REOIM K(0,0)
38 PRINT
43 FOR I=1 TO N
44 F(I,I)=M(I,I)
46 NEXT I
48 FCR I=2 TO N
50 FGR J=1 TO N
50 FGR K=1 TO N
61 NEXT J
62 NEXT K
61 NEXT J
63 FGR I=1 TO N
64 FGR J=1 TO N
65 K(I,J)=A(I,J)
66 A(I,J)=F(I,J)
67 NEXT J
68 GSSUB 1000
70 IF E NCI ECUAL TO ZERO THEN 76
11 GGSLB 2000
71 PRINT **MATRIX IS UNCONTROLLABLE**
72 FGR I=1 TO N
73 FGR I=1 TO N
74 FGR I=1 TO N
75 GGR I=1 TO N
76 FGR I=1 TO N
77 FGR I=1 TO N
78 FGR I=1 TO N
78 FGR I=1 TO N
79 FGR I=1 TO N
                  27
28
            76 FCR I=1 TC N
78 FCR J=1 TO N
75 O(I,J)=1
80 FCR K=1 TO N
d1 Q(I,J)=Q(I,J)+F(I,K)*P(K,J)
28 NEXT K
62 NEXT K
64 NEXT I
86 E1=C
90 FCR I=1 TO N
92 FCR J=1 TO N
93 A(I,J)=K(I,J)
94 IF (I,J) NCT ECUAL TC ZERC THEN 100
95 E2=ABS(C(I,J)=1)
100 E2=ABS(C(I,J)=1)
101 IF ABS(E1)>ABS(E2) THEN 104
102 E1=ABS(E1)
103 GCTC 1C5
104 E1=ABS(E1)
105 NEXT I
107 PKINT
106 IF (E1-1E-C5)<0 THEN IC
107 PKINT
108 IF (E1-1E-C5)<0 THEN IC
109 PRINT "PLATNI IS NUMERICALLY UNCONTROLLABLE, DEVIATION=";E1
110 GCSUE-2CCC
112 PRINT "DPEN LCCP CALCULATIONS"
114 PRINT "TENCH CCEF IN ASCENDING POWERS OF S"
                                                                             - "CENCY COEF IN ASCENDING POWERS OF S"
```



```
BASC0990
BASC0910
BASC0910
BASC0930
BASC0930
BASC0940
                                                                                     BASC0950
BASC0950
BASC0980
BASC0990
BASC1010
BASC1010
BASC1010
                                                                                    ****************
```



```
3221 J(II)=J(I)+1
3223 NEXI I
3225 FCR I=1 IC M
3237 FGR KI=1 TG M
3237 FGR KI=1 TG M
3241 NI=J(KI)
3241 NI=J(KI)
3243 NEXI I
3245 NEXI KI
3245 NEXI KI
3247 NEXI I
3245 NEXI I
3247 NEXI I
3247 NEXI I
3248 A=A+1
3257 FGR I=1 TG M
3257 FGR I=1 TG M
3257 FGR I=1 TG M
3257 FGR I=1 TG A
3265 FGR I=1 TG A
3267 C(M2)=C(M2)+C(I)*(-1)EXP(M)
3277 PRINT FERROR IN CFRECAM
3279 RETURN
3311 F (K-M) C THEN 3355
3311 F (K-M) C THEN 3259
3313 IF (I-K) D THEN 3259
3315 IF (K-M) C THEN 3259
3315 IF (I-K) D THEN 3259
3316 FGR M4-I TG MEN 3365
3317 FGR M4-I TG MEN 3365
3318 FGR M4-I TG MEN 3344
3327 FGR M4-I TG MEN 3345
3328 FGR M4-I TG MEN 3345
3329 II=I+1
3329 FGR M4-I TG M
3319 T=B(M4-I)/B(I,I)
3321 FGR M4-I TG M
3325 FGR M4-I TG M
3327 T=B(M4-I)/B(I,I)
3341 B(M4-M-I)/B(I,I)
3343 NEXT M
3343 NEXT M
3344 NEXT M
3347 B=I TG M
3347 B=I TG M
3355 C=G*B(I,I)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      BASSCCIBBOD
BBASSCCIBBOD
BBASSCCIBDOD
BBASSCCIBDOD
BBASSCCIBDOD
BBASSCCIDDOD
BBASSC
                         3344 NEX! M4

3347 D=1

3349 FCR I=1 TC M

3351 C=C*B(I,1)

3353 NEXT I

3355 C=((-1)*EXP(I3)*D

3357 RETURN

3355 D=C

3361 RETURN
          3355 C=((-1)*EXP(I3)*D

3357 RETURN

3359 D=C

3361 RETURN

3369 I3-1

3403 FCR I=1 IC N1

3405 PCR I=1 IC N1

3405 P=C=R=0

3411 IF D(1) NOT EQUAL TO ZERO THEN 3425

0 THEN 3425

3413 N=N1-1

3415 V(N1)=U(N1)=C

3417 FCR I=1 IC N1

3419 D(I)=D(I+1)

3421 NEXT I

3423 GCTC 3411

2425 IF (N1-1)=C THEN 3615

2427 IF (N1-2) NCT EQUAL TC ZERO THEN 3433

2429 FCC(I)/C(3)

2437 C=C(I)/C(3)

2437 C=C(I)/C(3)

2437 C=C(I)/C(3)

2437 C=C(I)/C(3)

2443 IF (ABS(C(N1-10/D(N1)-ABS(C(2)/O(1)) >= 0 THEN 3437

3443 IF (ABS(C(N1-10/D(N1)-ABS(C(2)/O(1)) >= 0 THEN 3437

3444 IF (ABS(C(N1-10/D(N1)-ABS(C(2)/O(1)) >= 0 THEN 3437

3445 F=N1/2

3447 FCR I=1 IC M
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           BASS CC22444 850 000 BASS CC22444 455 525 5780 000 BASS CC2244 445 55 5780 000 BASS CC2245 55 56 66 66 400 BASS CC246 66 400 BASS CC24
                         3443 13=-13

3447 FCR I=1 TC M

3449 N2=N1+1-I

3451 F=U(NZ)

3453 C(NZ)=U(I)

3453 C(NZ)=U(I)
```



```
3455 C(1)=F
3457 NEXT I
3459 IF 2 NOT ECLAL TO ZERO THEN 3465
3461 P=C
3463 GC IC 3469
                                                                                                                                                                                                                                                                                                                                                                                                           3469 PC
3463 GC TC 3469
3465 F=P/G
3465 F=P/G
3467 C=1/C
3469 IE R=C I+EN 3473
3471 R=1/R
3473 Z=5E-1C
2475 J(N1)=C(N1)
3477 W(N1)=C(N1)
3477 W(N1)=C(N1)
3477 FCR I=1 TC N3
3483 N3=N1-1
3485 FCR L=1 TC 1000
3487 FCR II=1 TC N3
3469 I-N1-II
3451 J(I)=C(I)+R*J(I+1)
3453 W(I)*J(I)+R*b(I+1)
3453 NEXT II
3457 IF (ABS(J(1)/D(1)-E)<= 0 T+EN 3549
3459 IF M(2) NOI ECUAL IC ZERO THEN 3505
3497 IF (ABS(J(1)/D(1)-E)<= O THEN 3549
3499 IF h(2) NOI EQUAL IC ZERO THEN 3505
35C1 R=R+1
35C3 GCTC 35C7
35C5 R=R-J(1)/W(2)
35C7 FCR II=1 TC N3
35C5 I=NI-II
3511 J(I)=C(I)-F*J(I+I)-C*J(I+2)
3513 W(I)=J(I)-F**(I+I)-G**(I+2)
3513 W(I)=J(I)-F**(I+I)-G**(I+2)
3515 NEXI I
3517 IF C(2) NOI EQUAL TO ZERO THEN 3523
3518 IF (ABS(J(2)/D(1))-E) <= THEN 3527
3523 IF (ABS(J(2)/D(1))-E) <= THEN 3527
3523 IF (ABS(J(2)/D(1))-E) <= O THEN 3527
3525 IF (ABS(J(2)/D(1))-E) <= O THEN 3567
3527 CI=W(2)-J(2)
3529 D=W(3)*EXF(2)-C1*W(4)
3531 IF D NOI EQUAL TO ZERO THEN 3539
3533 P=P-2
3535 C=C*(C+1)
3537 GFTC 3543
3539 P=P+(J(2)*C1+J(1)*W(4))/C
3541 Q=Q+(-J(2)*C1+J(1)*W(2))/D
3543 NEXI L
3545 E=E*10
3547 GCTC 3485
3549 N=NI-NI-I
SCIS RETURN
SCC1 PRINT
SCC2 PRINT THE ROOTS ARE:
SCC4 PRINT TO N
SCC6 PRINT TO N
SCC6 PRINT TO N
                                                                                                                                                                                                                                                                                                                            INAGINARY"
                                                                                                                                                                                                                                  REAL
                                                                                                                                                                                                                                                                                                                                                                                                            BASC3450
BASC35C0
BASC3510
BASC3520
BASC3530
                                                                                                                                                            ";U(I), V(I))
                             NEXT
    SOLO PRINT
5012 RETURN
```


APPENDIX D
Sample BASMAT computer program output.

	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	3,19051210 01
	2.23 2.23 2.23 2.23 2.23 2.23 2.23 2.23	0.0	2.23162-C3 -1.73862-C3 -1.3360-C3 -1.3150-C3 -2.660502-C2	36 OT 1.35
	-2.73500 -6.57400-01 -6.8800-01 -2.74800-01 -3.66100-01 5.60800-01	0.6	-2.73500-01 6.5740C=01 1.6880C=01 0.0 -3.6610C-01 -3.6610C-01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	572.5 00
	7.69300-01 6.72CC0-01 6.99100 30 7.713C0 00 -7.713C0 00 -2.477C0 00 1.00CCC 33	6.0	7.69300-01 -6.72000-01 -1.98100 00 -7.71300 00 -2.54770 00 1.00000	1.02599750
0.1	-3.2200D 01 0.0000000000000000000000000000000000	9.0	-3.22330 01 0.0 0.0 0.0 0.0 0.0	ING PTHERS OF S 1.41522992 01 1.60000000000000000000000000000000000
**************************************	2.3570 CC -1.41700-C1 -2.64230 e3 -2.64230 e3 -2.64230 e3 -4.45900 00 1.31530-01 7.25100-01	# C)	2 3 15 3 16 2 16 2 16 2 16 2 16 2 16 2 16 2 16	IM ASCENE
+ C	-2.34600-03 -2.34600-04 -3.19600-04 -1.40600-03 -1.42400-03 -1.42400-03 -1.42400-03	91 X G	-1.442305-03 -2.34600=01 -3.19600=01 -1.90600=03 -1.90600=03 -1.90600=03	3.)00 04 3.)00 01-05
PPGPLE TOENTE	1. 73900 -03 -5.03300-03 8.29276-64 -4.39900-03 -2.64000-03 -2.64000-03 The CONTRO! The CONTRO! -1.25550 01 -8.69760 00 -8.69760 00 -1.16600 00 -1.16600 00	. 6 CAIN M	769CD - 03 633CD - 03 633CD - 04 29270 - 04 2990D - 03 520CD - C5 0400D - 03	. T+F CH -1.127 -3.980

	-8.3820 C2 1.27220 C2 1.27220-03 4.96630-03 1.80420-03 1.65640 00 5.65910-02	-35-778250 CZ -6-14650 -01 -1-57650 -02 -1-73-50-02 -1-54660 00 -1-54660 00	-5.73430 31 1.01850 00 1.01850 00 1.028150 33 1.028150 00 1.028150 00 1.038445 01 1.038445 01 1.038445 01	2.37215 0.2 -4.33120 0.3 -4.35135-0.1 -5.46135-0.1 -1.46115-0.1 -1.53615-0.1 -1.53615-0.1
	41. 41. 41. 41. 41. 41. 41. 41.	12.25.00 12.	- 22	20.000 mm
	-7.04936 01 1.54070-03 7.4670-03 4.17626-03 1.43580-04 4.5656-01 1.57146 61 3.12446-03	-3.616.20 01 -3.6376 06 -7.17156 -32 1.39356 -61 -1.51496 -03 -6.66316 -31 -1.714.86 01	1.1770 C3 -1.56890-63 1.61790-63 -2.0450-13 -2.0450-03 -2.0450-03 1.4571E-62 1.4571E-62	3.41820-01 3.78180-01 3.68360-04 7.68360-03 7.18370-03 3.67210-03 -1.47030-01
	-4.81(23) 01 1.97(23) 01 1.97(20) 05 2.95(20) 05 2.05(20) 01 5.55(10) 13	-6.02C70 01 -6.042C-03 -6.6240-02 -1.042C-03 -4.66240-03 -4.66240-03 -4.66240-03 -4.66240-03	-9.22530 00 9.83161-02 -1.65450-02 -2.63230-01 -2.63230-01 -1.63270-03 -1.6426-03 6.43646-02	2.17450.01 -3.17560.01 -3.063100-02 -1.3170-02 -2.77520-01 -5.55560.00
×		3.02620 72 3.02620 72 4.65790-01 -2.36790-03 -2.36790	-1.52830 01 2.25420-02 3.25420-02 3.71360-03 -4.47340 3) -4.47340 3) -4.47340 3)	-4.53936.01 -4.3716f-01 -5.92460-02 -5.25750-01 -2.1769f-02 -2.1769f-02
CC - 51 CC - 51 CC - 51 CC - 51 CC - 60 CC - 6	7.41650 02 2.41650 02 2.41650 03 1.43140 01 4.57540 04 1.54410 01 2.78150 01 2.78150 01	2000 2000 2000 2000 2000 2000 2000 200	⊣ರಪರಜಚ−∽ .	7.74720 01 -6.76519-02 -1.66519-02 -2.15619-02 -2.26519-02 -3.3390 01 -3.49674-01
1	11.1.2.4.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0	1	2559-01 2559-0	1.015.00.00.00.00.00.00.00.00.00.00.00.00.00
38 200 8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	97210-01 193210-01 193210-01 112140-04 17980-07 174500-02 15570-03	4. 37720-01 -1. 37720-01 -1. 05430-05 -2. 52920-05 -3. 71590-02 -3. 71590-02 -3. 71590-02	3.74460-01 -5.47460-03 -4.47610-04 -1.00690-04 -1.37190-04 -1.37190-01 -2.10360-04	1.16.460-63 -1.10.460-63 -1.12010-04 -2.12010-63 -3.37120-63 -3.37120-63

			4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		2.85.10 2.34.650 1.34.650 1.24.650 1.24.650 1.10120 1.10120 1.10120 1.10120 1.10120 1.10120	
- management - management			24-20-21-1		1. 1. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.	
			-1.66286 01 5.46656-03 -1.51626-03 -1.51626-03 1.19186 02 -7.61136 02		-1.68830 -1.87010 -5.87010 -5.86160 -3.66180 -1.49190 -1.49190 -1.49190 -1.69190	
	a .	1220-0211	DOSANTOO	1226-0211	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
		1114678(1.60112	9.79926-01 3.79256 00 2.81627-03 - 2.81627-03 - 3.93100-04 - 3.42190-01 - 3.42190-01	CIPT*SIN(1.601	1.23400 01 1.61240 01 1.61240 01 1.61240 02 1.61240 02 1.61240 02 1.61240 02 1.61240 02 1.61240 02 1.61240 02	
([:(:)	2420 2466 2466 2466 2566 2566 2766 2766 2766 2766 2766 27	XF (-2.820595F-C	11.3568.031 4.1858.060 4.1.2475.0-62 11.2476.01 1.1878.062 1.465.90 60	XF (-2.820585D-	6.67100 6.677100 6.677100 6.67820 6	
FICHAVE LA 19	000 000 000 000 000 000 000 000 000 00	HEFFFY TENT RE F	2. 62.50 - 0.1 - 2. 60.510 - 0.1 - 2. 60.510 - 0.1 - 3. 60.510 - 0.1 - 4. 67.50 - 0.1 - 7. 67.50 - 0.1 - 1. 27.50 - 0.1	REFE	2.38210 -2.38220 -3.096216-03 -2.80130-03 -1.77226-01 -6.86(40-03	
ACUTING W	3.4438412E 4.5647385E 4.24286533E 1.342867E 1.4418567E 1.41132567E	THE MATHEX (443200 172200 173200 17580 18430 18740 18740 18740 18740 18740	THE MA	1.59510-01 -3.9980-01 -3.9590-04 -1.41620-04 -7.781520-04 -3.95590 -3.95590 -3.95590 -3.95590 -3.95590 -3.95590 -3.95590 -3.95590 -3.95590 -3.95590 -3	

20 - C3 50 - C4 51 - C4 52 455 - 03 50 - C4 50 - C5 50 - C5	20 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -		0.0	00 - C3 00 - C3 00 - C3 00 - C2 00	1.06346330 02
22 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2	0022 0032 0032 0032 0032 0032 0032 0032		J • J	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1. BOOK 537C 01
1.28 30 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	5.14590= 1.31670= 2.64921670= 1.347570= 1.146570= 2.0250= 2.02		0.0	-2.7350D 6.5740B 1.6880D -2.7480D -3.6610G 5.6080B	50 01
6.715Ch-01 6.824h-02 6.824h-02 5.9574h-03 9.95745-03 -5.27856-03 -7.99556-02	9.27176-01 1.31670-01 1.2140-01 1.21766-01 -9.96610-01 7.12826-06 -1.8576-02 -1.81310-01		0.0	7.693CD-01 -1.981GD 00 -7.712CD 00 -2.045CC-01 -2.045CC-01 -2.045CC-01 -2.045CC-01 -2.045CC-01 -2.045CC-01	1.161737
6.07840-03 4.68810-03 7.2780-04 2.2880-04 -2.2880-04 -8.68916-03 -8.68916-03 -8.68916-03	-9.54280:04 -6.46570-04 -1.31620-03 -7.21670-03 -7.21670-04 -4.895210-04		8.50000-01	-2.11880 01 -7.59250 00 -7.55260 00 -9.49400-01 -2.26950-01	* ACING- BCWERS DE 3.39335660 00 1.800600606 00 **
Exp (-5, 18.7) 600 - 6, 318.10 00 - 7, 318.10 00 - 6, 318.10 00 - 6, 318.10 00 - 7, 318.1	2.259461-01 5.559411-01 5.56941-01 7.556411-02 -2.54371-02 -2.54371-02 -2.54371-02 -2.54371-02	** ** ** ** ** ** ** ** ** ** ** ** **	4.50000 -01	- 3 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4	**************************************
2.41C2D=04 -6.03E5C=05 -6.03E5C=05 -1.55C2D=05 -1.25C2D=04 -2.224E0=05	1.81230 1.832100 1.666100 1.666100 1.683260 6.432800 6.432800	-03 -04 -04 -05 -05 -05 -05 -05 -05 -05 -05 -05 -05	0.0	1.442305-10-23-10-10-10-10-10-10-10-10-10-10-10-10-10-	7. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
1.05440-03 -4-51460-04 1.05260-04 1.05280-04 1.92380-04 3.72380-05 7.23250-05	4330=04 1880=04 1880=04 9220=05 4250=05 4120=04 60 PL	1.10310800 1.423163707 1.5538637007 1.35531307 1.35531307 1.35531307 1.35531307 1.35531307 1.35531307 1.45531307 1.45531307	D HE MOBIFE	1. 709 011 - 03 4. 2. 92 70 - 04 6. 0 7. 99 00 - 03 7. 52 00 - 05 7. 640 00 - 03	**************************************

		-1.21460 01 -3.05456-01 -1.59290-08 -2.3130-02 -2.36130-02 -2.36130-02	8.14376 00 7.64280 C6 1.93676-02 5.73576-02 6.64140-02 1.71350 00 1.71350 00	5.21990 -2.02770 1.86710 -2.39350 -2.39350 -2.15510 6.80310 6.3510 6.3	
		20000000000000000000000000000000000000	25. 25. 25. 25. 25. 25. 25. 25.	-6.3804. -1.63804. -1.63804. -1.30804. -1.30824. -1.30824. -1.30824. -1.30834. -1.30834. -1.30834. -1.30834.	
		1.2600C 00 3.1690C-02 1.65380-05 8.51790-06 1.88956-03 2.45570-01 2.45570-01	-9.01510-02 9.27470-02 1.748500-03 1.69380-01 5.48650-03	-7.45510-01 -2.58430-01 -2.00500-03 -4.00500-04 -3.39200-02 -5.30800-00	
		-8.53300-31 2.13660-02 -1.30556-09 5.7462-09 1.65726-01 -6.45250-06	9.94110-01 -3.19620-31 -8.28740-03 -8.87500-33 -1.80000-01 -5.83520-32 -1.12110-01	7.66620-01 2.63710-03 2.63710-03 9.4010-03 -3.02570-02 2.65365-01 1.27250-01	
	X 4 1 T	-2.0309C 01 5.1680D-01 1.3730-04 1.37641D-04 1.3146D-01 1.54120-C4	-5.64(8) 00 1.76976 00 -1.21950-02 -6.94606-02 -8.94606-02 1.27826 00 -6.94120-01 -6.94120-01	-5.70920 00 -1.87690-00 -1.87690-02 -5.24240-01 -1.52600 00 -8.07570 01	
14	NANSITIGN MARRED XF (- 1.9399240-C	-2.56140 00 -3.36196-09 -3.36196-09 4.18420-05 4.18420-05 4.59210-01 -1.54389-05 -3.814589F-0	-1.54470-02 -1.54470-02 -2.54470-03 -2.54470-03 -2.5460-03 -5.4529-63 -5.4529-63	-2.C7110-C1 -6.59300-02 -5.260410-04 -6.584110-04 -6.547810-01 -1.839110-01	2-127-12
UES FF THE A RECOMMENDED TO BE A SECOND TO BE A SEC	OF THE STATE I	1.36560-02 -3.43450-04 1.86626-11 -2.06170-11 -8.88500-05 -2.66150-03 -2.66150-03	-6.23(30-03) -1.57(30-03) -1.57(30-03) -1.57(30-05) -1.57(30-05) -2.035(00-03) -5.97(00-03)	-2.21116-03 9.295650-04 -9.20500-05 -6.00500-05 1.6210-03 -1.6210-03 -1.6210-03 -1.6210-03 -1.6210-03	850.05 65
THE ELGENVAL -1.0/399244C -3.8/1958956 -2.4473216 -4.74594796 -6.78748156 -6.78748156	THE ELEMENTS THE MATRIX OF	9.92160-01 -2.49530-02 -1.30130-09 -6.46060-09 -6.42190-03 -6.42190-03 -7.52900-06 THE MATPLY (9	-3.86350-03 -3.86350-63 3.65210-05 1.6610-04 -4.99750-04 4.59150-03 2.01020-01 6.82890-05	-1.73950-02 -5.68440-03 -4.58940-05 -1.68940-05 -2.75190-03 -2.75190-03 -1.81510-03	1111111

2.23410-C 7.7473E 5.0881E-0	4.0855E-05 -5.78590-02 -6.3965E-01 -1.66540-04		4.5822C 00 -5.4726C CC -3.3958C-02 7.11570-02	1:2080C C 1:1120C 0 1:3547C-0		.50C50-C	-1.05.9552 -1.12465-62 -1.12465-62 -1.12465-62 -1.15410-01					
5.8862J-C	-3-10510-07 4-35750-04 -4-86150-03 1-26880-06			- 79245 - 64585 - 101010		1.05959-0	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	11.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		640004		
1.0485D-1 3.6360C 0 2.3880D=C	1.51740-05 -2.71550-02 3.00220-01 -7.83470-05		3.4008D 00 -4.6616D 00 -2.5231D-62 5.2811C-32	8:55560-0 8:25260 1:00556-0		.00040 .6678E-0	-6.5950-02 -6.5950-02 -6.5950-02 -6.5950-02 -6.5950-02 -6.5950-02	5.46.18 - 0.2 - 3.78 + 55 0.2 5.00 + 17 0.2 5.00 + 17 0.2 8.674.90 - 0.2 7.14.36 F - 0.3 7.14.36 F - 0.3 7.14.36 F - 0.3		-1.21(117-92 3.66896-32 -1.074806-32 -5.408406-32 -5.408406-32 -1.21780-32 -1.41570-32		
3.13.50-0 1.08746 0 7.14180-0 2.91820-0	5.73470-06 -12136-93 8.57680-02 -2.34320-05		9.24750-01 -1.13440 30 -6.86679-03 1.43600-02	2.24410 2.24410 2.7341C=0		2.76570-0	-4.85150-02 4.85150-02 4.84510-02 1.70731 00 -4.97310-02		0 0017	2.44.40 -6.86.140 -6.86.140 -0.86.160 -0.86.160 -8.54.160 -6.54.16		
2.1639E-0 -7.52120 -7.52120 -7.52120 -7.52120 -7.52120	-3.56610-05 5.61716-02 -6.21020-01 1.62060-04		1.05450 01 1.25940 01 7.82320-02 -1.63750-01	. 11760=0 . 11760=0	01)1	3.73710 0	1.20200 1.20200 1.2008E 00 1.2008E 00 1.22980 01 1.23216 00	-1.09336 -5.C1000-01 -5.C1000-01 -1.09596 -1.14130 -7.66438-02 -7.66438-02	138441 3	1.28280 00 2.3135.01 -4.2820-01 1.15770-01 1.5576-00 1.3590-03 1.35100-03		
1.80370-0 6.25480-0 4.10790-0 6.10790-0	5.29780-06 -4.67130-03 -1.5450-02 -1.34780-05	-4.7775	7.33670-01 7.33670-01 4.55750-03 -5.53940-03	.61950-0 .49070-0 .81620-0	EXP (-5.745 3680-	4.72770 0 E.(E84D-0	1.520(1) - 0.1 1.520(1) - 0.1 1.63280 - 0.1 1.63280 - 0.1 1.6558 70 - 0.1 1.6558 70 - 0.1	-1 - 7 2 2 2 9 - 01 -5 2 7 2 9 - 01 -1 1 4 5 4 9 - 01 -1 4 8 4 5 9 - 01 -6 6 7 8 7 0 - 02 -1 3 2 3 2 1 - 02	(-6.79748	- 6 51400 - 02 - 6 6100 - 02 - 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	(111)	443116 61 44376 31 64576 62 6466 62 6666 63 65121 61
7.97278-3 7.97278-3 1.03120 6.77260=0	5.43 £0 £ - 0 £ - 7.70 146 - 0 5 - 7.70 146 - 0 5 - 2.22 £00 - 0 5	ELC LE	2.85E70-02 -3.41.25C-02 -2.12C-02 -4.43C20-04 -4.0319C-C4	7.53646=6 6.93116-0 8.45180-0	CLEFFICTENT OF	6.4067B-C	2.00 E 10 - 04 - 2.00 E 10 - 04 - 04 - 04 - 04 - 04 - 04 - 04 -	1.2.2.2.4.2.4.2.4.2.4.2.4.2.4.2.4.2.4.2.	FICIEN -	1	FICHAMPTOR IS	25 - 25 - 25 - 25 - 25 - 25 - 25 - 25 -
1-05250-0 3-79950-0 2-48810-0	1.99780-07 -2.82940-04 3.12810-03	I	9.37490-03 -1.11976-02 -6.55520-05 1.45580-04	2:47:50-0 2:27:500-0 2:77:70-0	THE MATRIX	1.97820-0	3.340090-04 -3.46660-04 -3.72620-04 -3.72520-04 -3.5660-05	5.62930-C4 1.56050-C4 -3.07640-04 5.16780-05 2.85310-05 1.40730-05	THE MYTE	1.72550-04 2.1613530-04 -2.1613730-04 -5.25190=05 -5.2180-05 -5.5180-05	THE COMPLEX	5.76114960 1.88698930 4.97647878 6.60349139 2.62408640 6.00907878 8.58937639

BIBLIOGRAPHY

- 1. Dorand, R., "The Application of the Jet Flap to Helicopter Control," Journal of the Helicopter Association of Great Britain, V. 13, p. 30-36, December 1959.
- 2. Cheeseman, I.C. and Seed, A.R., "The Application of Circulation Control, By Blowing, to Helicopter Rotor," <u>Journal of the Royal Aeronautical Society</u>, V. 71, July 1967.
- 3. Williams, R., Recent Developments in Circulation Control Rotor Technology, a paper presented at the Fluid Dynamics Panel Specialists' Meeting, Marseilles, France, September 1972.
- 4. Lockheed-California Company, Report No. LR-26417, Design Study of a Helicopter with a Circulation Control Rotor, pg. vi. May 1974.
- 5. Kaman Aerospace Corporation, Report R-1036-2, Design Study of a Flightworthy Circulation Control Rotor System, pg. vi, July 1974.
- 6. Schmidt, L.V., Linearized Airframe Equations of Motion (State Variable Format), Naval Postgraduate School Class Handout, February 1976.
- 7. Mechanics Research Inc., MOSTAB-CCR User's Manual, pg. c 5-14,
- 8. Melsa, J.L. and Jones, S.K., Computer Programs for Computational Assistance in the Study of Linear Control Theory, McGraw-Hill, 1973.

INITIAL DISTRIBUTION LIST

		No.	Copies
1.	Defense Documentation Center Cameron Station Alexandria, Virginia 22314		2
2.	Library, Code 0142 Naval Postgraduate School Monterey, California 93940		2
3.	Department Chairman, Code 67 Department of Aeronautics Naval Postgraduate School Monterey, California 93940		1
4.	Professor L. V. Schmidt, Code 67Sx Department of Aeronautics Naval Postgraduate School Monterey, California 93940		1
5.	Commanding Officer Attn: Mr. R. F. Siewert, AIR-320D Naval Air Systems Command Washington, D.C. 20361		1
6.	Commanding Officer Attn: Dr. H. Chaplin, Code ASED David W. Taylor Naval Ship Research and Development Center Bethesda, Maryland 20084		1
7.	LT John H. Cline, USN 5 Norman Drive Poquoson, Virginia 23662		1

23 APR 79

25796

Thesis

C514 Cline

c.1 A stability analysis

of the proposed circulation control rotor (CCR)

prototype.

AFR 79 25796

Thesis

169546

C514 Cline

c.1 A stability analysis of the proposed circulation control rotor (CCR) prototype.

3 2768 002 10318 6
DUDLEY KNOX LIBRARY