Непрерывность функции в точке. Точки разрыва и их классификация. Теоремы о свойствах функций, непрерывных на отрезке Задание 1.

Исследовать на непрерывность функцию
$$f(x) = \begin{cases} x, & \text{при } x \le -\pi \\ \sin x, & \text{при } x \le -\pi \\ 1, & \text{при } x > \frac{\pi}{2} \end{cases}$$

Решение.

Функции y = x, $y = \sin x$, y = 1 непрерывны на всей числовой прямой, поэтому f(x) может иметь разрывы только в точках смены аналитического выражения функции.

1)
$$x_1 = -\pi$$
: $\lim_{x \to -\pi \to 0} f(x) = \lim_{x \to -\pi \to 0} x = -\pi$, $\lim_{x \to -\pi \to 0} f(x) = \lim_{x \to -\pi \to 0} \sin x = 0$, $f(-\pi) = -\pi$. $\lim_{x \to -\pi \to 0} f(x) = f(-\pi) \neq \lim_{x \to -\pi \to 0} f(x)$.

Следовательно, f(x) в точке $x_1 = -\pi$ имеет разрыв 1-ого рода и непрерывна слева. Скачок функции f(x) в этой точке равен $\lim_{x \to -\pi + 0} f(x) - \lim_{x \to -\pi - 0} f(x) = \pi$. Разрыв не устраним.

2)
$$x_2 = \frac{\pi}{2}$$
: $\lim_{x \to \frac{\pi}{2} - 0} f(x) = \limsup_{x \to \frac{\pi}{2} - 0} x = 1$, $\lim_{x \to \frac{\pi}{2} + 0} f(x) = \lim_{x \to \frac{\pi}{2} + 0} 1 = 1$, значение $f\left(\frac{\pi}{2}\right)$ не

определено.

$$\lim_{x \to \frac{\pi}{2} - 0} f(x) = \lim_{x \to \frac{\pi}{2} + 0} f(x) = 1.$$

Следовательно, точка $x_2 = \frac{\pi}{2}$ — точка устранимого разрыва для функции f(x).

Таким образом, функция f(x) непрерывна на $(-\infty; -\pi) \cup \left(-\pi; \frac{\pi}{2}\right) \cup \left(\frac{\pi}{2}; +\infty\right)$, $x_1 = -\pi$ точка разрыва 1-го рода, скачок, $x_2 = \frac{\pi}{2}$ точка разрыва 1-го рода, устранимый разрыв.

График функции f(x) изображен на рис. 1.

Рис.1

Задание 2.

Исследовать на непрерывность функцию $f(x) = \frac{\sin x}{x}$.

Решение.

В точке $x_0 = 0$ функция $f(x) = \frac{\sin x}{x}$ не определена.

 $\lim_{x\to 0^-}\frac{\sin x}{x}=\lim_{x\to 0^+}\frac{\sin x}{x}=1$, следовательно, $x_0=0$ — точка разрыва 1-го рода, устранимый разрыв.

График функции f(x) изображен на рис. 2.

Положим значение функции в точке 0 равным 1, тогда новая функция $F(x) = \begin{cases} \frac{\sin x}{x} & \text{при } x \neq 0 \\ 1 & \text{при } x = 0 \end{cases}$ будет непрерывной в точке $x_0 = 0$.

Задание 3.

Исследовать на непрерывность функцию $f(x) = e^{\frac{1}{x+1}}$.

Решение.

$$D(f) = (-\infty; -1) \cup (-1; \infty).$$

$$\lim_{x \to -1 \to 0} e^{\frac{1}{x+1}} = 0 \quad \left(\lim_{x \to -1 \to 0} \frac{1}{x+1} = -\infty \right)$$

$$\lim_{x \to -1 \to 0} e^{\frac{1}{x+1}} = +\infty \quad \left(\lim_{x \to -1 \to 0} \frac{1}{x+1} = +\infty \right);$$

Следовательно, $x_0 = -1$ — точка разрыва 2-ого рода, так как предел справа бесконечный. График функции f(x) представлен на рис. 3.

Задание 4.

Исследовать на непрерывность функцию $f(x) = \frac{x^2 - 3x}{x^2 - 4x + 3}$.

Решение.

$$D(f) = (-\infty; 1) \cup (1; 3) \cup (3; \infty)$$
.

Определим, характер разрыва функции в точках: $x_1 = 1$ и $x_2 = 3$.

1) Точка $x_1 = 1$ является точкой разрыва 2-ого рода, так как:

$$\lim_{x \to 1^{-}} \frac{x^{2} - 3x}{x^{2} - 4x + 3} = \lim_{x \to 1^{-}} \frac{x(x - 3)}{(x - 1)(x - 3)} = \lim_{x \to 1^{-}} \frac{x}{x - 1} = -\infty, \quad \lim_{x \to 1^{+}} \frac{x^{2} - 3x}{x^{2} - 4x + 3} = \lim_{x \to 1^{+}} \frac{x}{x - 1} = +\infty.$$

2) Точка $x_2 = 3$ является точкой устранимого разрыва, так как:

$$\lim_{x \to 3} \frac{x^2 - 3x}{x^2 - 4x + 3} = \lim_{x \to 3} \frac{x(x - 3)}{(x - 1)(x - 3)} = \lim_{x \to 3} \frac{x}{x - 1} = 1,5.$$

Таким образом, функция непрерывна на $(-\infty;1) \cup (1;3) \cup (3;\infty)$; точка $x_1=1$ является точкой разрыва 2-ого рода; точка $x_2=3$ является точкой 1-ого рода, а именно, точкой устранимого разрыва.

Дополнительные задачи

Задание.

Исследовать на непрерывность функции:

1)
$$f(x) = \frac{\sin(x-1)}{x^2 - 3x + 2}$$
;

2)
$$f(x) = \frac{x^3 - 8}{x - 2}$$
;

3)
$$f(x) = \operatorname{arctg} \frac{1}{x}$$
.

Ответы:

- 1) f(x) непрерывна на $(-\infty;1)\cup(1;2)\cup(2;+\infty)$, x=1 точка разрыва 1-ого рода (точка устранимого разрыва), x=2 точка разрыва 2-ого рода;
- 2) f(x) непрерывна на $(-\infty;2)\cup(2;+\infty)$, x=2 точка разрыва 1-ого рода (точка устранимого разрыва);
- 3) f(x) непрерывна на $(-\infty;0)\cup(0;+\infty)$, x=0 точка разрыва 1-ого рода (скачок).