Analysis Of Financial Time Series, Midterm Exam 2023/05/02

Problem A: Answer the following questions with detailed derivation.

- 1. Assume $(1 0.5B)X_t = (1 + 0.6B)(1 0.3B)a_t$, where $\{a_t\} \sim WN(0, 1)$.
 - (a) Express X_t as an $MA(\infty)$ process.
 - (b) Find the autocovariance generating function of X_t based on the result of (a).
 - (c) Find a recursive formula for the autocorrelation function of X_t and then derive the general formula for the acf, for $k \ge 3$.
- 2. Assume that the quarterly log return r_t of an asset follows the model:

$$(1 - 0.4B)(1 - B)(1 - B^4)r_t = (1 - 0.2B^4)a_t$$
, where $\{a_t\} \sim WN(0, 1)$.

- (a) What is the variance of the series $w_t = (1 B)(1 B^4)r_t$ with regular and seasonal differencing?
- (b) Suppose that $r_{799}=0.9, r_{798}=0.5, r_{797}=0.7, r_{796}=0.6, r_{795}=0.4,$ $r_{794}=0.3, a_{799}=0.1, a_{798}=0.3, a_{797}=-0.4, a_{796}=-0.5 \ and \ a_{795}=0.2$.

Find the 1-step ahead forecast of r_{800} at the forecast origin t = 799?

- (c) What is the forecast error of the above 1-step ahead prediction? What is the 95% 1-step ahead prediction interval of r_{800} ?
- 3. Consider the following AR(3) model, where $\{a_t\} \sim WN(0, 1)$:

$$(405 - 639B + 497B^2 - 196B^3)Z_t = a_t.$$

Do the above AR(3) model imply existence of a business cycle? If yes, derive the average period of the cycle.

4. Let $Z_t = U\sin(9t + \theta) + \cos(9t + \theta)$, where U and θ are independent

random variables, with E(U) = 0, var(U) = 1 and $\theta \sim Unif(-\pi, \pi)$.

Is $\{Z_t\}$ covariance stationary? State your reason.

Problem B: Using R or python to answer the following questions.

- 1. Consider the data "data_1" from 2022/1/3 to 2023/3/31. The columns are (date, AAPL price, INTC price, MSFT price), where AAPL price, INTC price and MSFT price are the adjusted prices of Apple, Intel and Microsoft, respectively. A portfolio in constructed form 2022/1/3 to 2022/12/30 with the initial capital \$100 and the following allocation: $w_{AAPL} = 30\%$, $w_{INTC} = 50\%$ and $w_{MSFT} = 20\%$. The invertor changes the portfolio capital allocation from 2023/1/3 to 2023/3/31, with $w_{AAPL} = 20\%$, $w_{INTC} = 20\%$ and $w_{MSFT} = 60\%$.
 - (a) What is the 4-period log-return of the portfolio from 2022-04-25 to 2022-04-29?
 - (b) What is the average daily simple return of the portfolio from 2022-04-01 to 2022-04-29?
 - (c) What is the cumulative simple return of the portfolio from 2022/1/3 to 2022/12/30?
 - (d) What is the cumulative log return of the portfolio from 2022/1/3 to 2023/3/31?
- 2. Consider the data "data_2". Use 5% significance level to answer the following questions for both time series:
 - (a) Build a regression model using ten_years_rate as the dependent variable and three_years_rate as independent variable. Perform the goodness of fit test on the residuals of the fitted model.
 - (b) Build a regression model using the first difference of ten_years_rate as the dependent variable and the first difference of three_years_rate as independent variable. Perform the goodness of fit test on the residuals of the fitted regression model.
 - (c) Build a regression with time series error model using the first difference of ten_years_rate as the dependent variable and the first difference of three_years_rate as independent variable. Perform the goodness of fit test on the residuals of the fitted regression model.
 - (d) Based on the results of (a), (b) and (c), which model would you suggest to use? Justify your answer.
 - (e) Set $X_t = \text{ten_years_rate}_t \text{three_years_rate}_t$. Build a time series model for X_t and check it goodness of fit test on the residuals.