Diskretna matematika 1

16. oktober 2024

1 Kombinatorika

1.1 Osnovna načela kombinatorike

Trditev 1.1 (Načelo produkta). Če sta A, B končni množici, potem je

$$|A \times B| = |A| \cdot |B|.$$

Trditev 1.2 (Posplošeno načelo produkta). Če so A_1, \ldots, A_k končne, potem je

$$|\Pi_{i=1}^k A_i| = \Pi_{i=1}^k |A_i|.$$

Trditev 1.3 (Načelo vsote). Če sta A in B končni in disjunktni množici, potem je

$$|A \cup B| = |A| + |B|.$$

Trditev 1.4 (Posplošeno načelo vsote). Če so A_1, \ldots, A_k končne, paroma disjunktne množice, potem je

$$\bigcup_{i=1}^k A_i = \sum_{i=1}^k |A_i|.$$

Trditev 1.5 (Načelo enakosti). Če obstaja bijekcija $A \rightarrow B$, potem je

$$|A| = |B|$$
.

Označimo z $[k] = \{1, 2, ..., k\}.$

Primer. Naj bo A končna množica, |A| = n, $A = \{a_1, a_2, \dots, a_n\}$. Naj bo 2^A potenčna množica. Določi moč 2^A .

Trditev 1.6 (Načelo dvojnega preštevanja). Z njim pokažemo, da sta dva izraza/formuli enaka, če z obema na različna načina preštejemo elemente iste množice.

Primer (Eulorjeva funkcija ϕ). Za $n \in \mathbb{N}$ definiramo $\phi(n) =$ število števil iz [n], ki so tuji z n. Določi $\sum_{d|n} \phi(d)$.

Trditev 1.7 (Dirichletovo načelo). Če sta $n, m \in \mathbb{N}$ in je n > m, potem ne obstaja injektivna preslikava $[n] \to [m]$.

Opomba (Kombinatorična interpretacija). Če n predmetov razporedimo v m predalov in je n > m, potem sta vsak v enem predalu vsaj dva predmeta.

Primer. Naj bo $X \subset [100], |X| = 10$. Pokaži, da X vsebuje dve disjunktni podmnožici z isto vsoto.

1.2 Število preslikav

Definicija 1.1. Množica $B^A = \{f : A \to B\}$ je množica vseh preslikav iz $A \ v \ B$.

Definicija 1.2. Definiramo:

- $n^{\underline{k}} = \underbrace{n(n-1)\dots(n-k+1)}_{k \text{ faktorjev}}$ je $padajoča \ potenca.$
- $n^{\overline{k}} = n(n+1) \dots (n+k-1)$ je naraščajoča potenca.
- $n! = \frac{n}{n}$ je n fakulteta.
- Množica z n elementi se imenuje n-množica.

Trditev 1.8. Naj bosta N in K končni množici z |N| = n, |K| = k. Tedaj velja:

- 1. $|K^N| = k^n$.
- 2. Število injektivnih preslikav iz N v K je $k^{\underline{n}}$.
- 3. Število bijekcij iz N v K je n!, če n = k in je 0 sicer.

Dokaz. Za 1. in 2. točko uporabimo načelo enakosti. V 3. točki upoštevamo, kadar je preslikava iz končne množice v končno množico bijektivna.

Binomski koeficienti in binomski izrek

Definicija 1.3. Naj bo $x \in \mathbb{C}$. Naj bo $k \in \mathbb{N}_0 = \{1, 2, \ldots\}$. Definiramo $\binom{x}{k} = \frac{x^{\underline{k}}}{k!} = \frac{x(x-1)\dots(x-k+1)}{k!}$. Števila $\binom{x}{k}$ so *binomski koeficienti*. Če je $k \notin \mathbb{N}_0$ definiramo $\binom{x}{k} = 0$.

Trditev 1.9. Če je $n \in \mathbb{N}_0$ in $k \leq n$, $k \in \mathbb{N}_0$, potem je

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}.$$

 $\check{S}tevila \binom{n}{k}$ so binomska števila.

Dokaz. Definicija binomskega koeficienta.

Opomba. Tudi $\binom{0}{0} = 1$. Razlaga: 0! = 1 je število bijektivnih preslikav iz \emptyset v \emptyset .

Opomba. Če je $0 \le k \le n$, potem $\binom{n}{k} = \binom{n}{n-k}$.

Definicija 1.4. Definiramo $\binom{N}{k} = \{A : A \subseteq N, |A| = k\}.$

Trditev 1.10. Če je N n-množica in je $0 \le k \le n$, potem je

$$\left| \binom{N}{k} \right| = \binom{n}{k}.$$

Dokaz. Definiramo $X = \{(n_1, n_2, \dots, n_k); n_i \in \mathbb{N} \text{ paroma različni}\}$. Označimo $X_{n,k} = \binom{N}{k}$. Preštejemo elementi množici X na 2 načina.

Trditev 1.11. Za $n \in \mathbb{N}$ in $1 \le k \le n$ velja:

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}.$$

 $\begin{array}{l} \textit{Dokaz.} \ \text{Naj bo } \textit{N} \ \textit{n}\text{-množica.} \ \text{Naj bo } \textit{x} \in \textit{N} \ \text{poljuben fiksen element.} \\ \text{Definiramo } \mathcal{A} = \left\{ A \in \binom{\textit{N}}{\textit{k}}; \ \textit{x} \in \textit{A} \right\} \ \text{in } \mathcal{B} = \left\{ B \in \binom{\textit{N}}{\textit{k}}; \ \textit{x} \notin \textit{B} \right\}. \ \text{Potem } \binom{\textit{N}}{\textit{k}} = \mathcal{A} \cup \mathcal{B}. \ \text{Uporabimo prejšnjo trditev in} \end{array}$ načelo vsote.

Definicija 1.5. Pascalov trikotnik je trikotnik oblike

Opomba. S pomočjo Paskalovega trikotnika se lahko spomnimo rekurzivno formulo za $\binom{n}{k}$ (n je številka vrstice, k je številka diagonale, ki jo gledamo z leve proti desni).

Izrek 1.12 (Binomski izrek). Za vsak $n \in \mathbb{N}_0$ velja:

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}.$$

Dokaz. Izberimo k-krat a izmed n oklepajev.

1.4 Izbori

Naj bo N n-mnižica. Opazujemo izbori k-elementov.

- 1. Izbor je urejen (važno v kakšnem vrstnem redu izberimo elementi):
 - 1.1 Elementi si lahko ponavljajo: n^k .
 - 1.2 Elementi se ne smejo ponavljati: $n^{\underline{k}}$.
- 2. Izbor je neurejen:
 - 2.1 Elementi si lahko ponavljajo [trditev]: $\binom{n+k-1}{k}$.
 - 2.2 Elementi se ne smejo ponavljati: $\binom{n}{k}$.

Trditev 1.13. Število neurejenih izborov s ponavljanjem dolžine k iz n-množice N je

$$\binom{n+k-1}{k}$$
.

Dokaz. Naj bo $N = \{x_1, x_2, ..., x_n\}.$

Neurejenemu izboru
$$\underbrace{x_1 \dots x_1}_{k_1} \underbrace{x_2 \dots x_2}_{k_2} \dots \underbrace{x_n \dots x_n}_{k_n}$$
 priredimo niz $\underbrace{1 \dots 1}_{k_1} \underbrace{0 \underbrace{1 \dots 1}_{k_2}}_{k_2} \underbrace{0 \dots 0 \underbrace{1 \dots 1}_{k_n}}_{k_n}$.

1.5 Permutacije in permutacije s ponavljanjem

Definicija 1.6. Naj bo A n-množica. Permutacija množice A je bijektivna preslikava $\pi: A \to A$.

Množico vseh permutacij velikosti n (permutacij na [n]) označimo z S_n . Množico vseh permutacij množice A označimo z S_A .

Trditev 1.14. $|S_n| = n!$.

$$Dokaz.$$
 Z indukcijo pokažemo, da je $|S_n|=n|S_{n-1}|$ in $|S_1|=1.$

Trditev 1.15. Vsako permutacijo lahko zapišemo kot produkt disjunknih ciklov.

Definicija 1.7. Naj bo $\pi \in S_n$. Par je *inverzija*, če velja: i < j in $\pi(i) > \pi(j)$.

Definicija 1.8. Permutacija $\pi \in S_n$ je soda (oz. liha), če ima sodo mnogo inverzij (oz. liho mnogo inverzij).

1.5.1 Multimnožice

Definicija 1.9. Multimnožica z elementi v množici S je preslikava $\mu: S \to \mathbb{N}_0$. Pri tem številu $\mu(a), a \in S$, rečemo kratnost elementa a v multimnožici μ , vsoti $\sum_{a \in S} \mu(a)$ pa moč multimnožice μ . Multimnožica je končna, če je njena moč končna.

Opomba. Multimnožico M formalno podamo z urejenim parom (S, μ) . Namesto da elemente zapišemo večkrat, lahko kratnost označimo tudi s formalno potenco: $M = \{a, a, b, c, c, c\} = \{a^2, b, c^3\}$.

Multimnožica je isto kot neurejen izbor s ponavljanjem. Tojer obstaja $\binom{n+k-1}{k}$ k-elementnih multimnožic v množici z n elementi.

1.5.2 Permutacije multimnožic

Permutacija multimnožice $M=(S,\mu)$ moči n je zaporedje (x_1,\ldots,x_n) , kjer je $x_i\in S$ in se vsak $a\in S$ v zaporedju pojavi $\mu(a)$ -krat.

Trditev 1.16. Število permutacij multimnožice $M = \{1^{\alpha_1}, 2^{\alpha_2}, \dots, k^{\alpha_k}\}$ moči $n = \alpha_1 + \dots + \alpha_k$ je

$$\frac{n!}{\alpha_1!\alpha_2!\dots\alpha_k!}$$

Dokaz. Najprej izberimo položaje elementa 1, nato izberimo položaje elementa 2 itd.

Definicija 1.10. Številu $\frac{n!}{\alpha_1!\alpha_2!...\alpha_k!}$ rečemo *multinomski koeficient* in ga označimo z $\binom{n}{\alpha_1,\alpha_2,...,\alpha_k}$.

Opomba. Multinomski koeficient je posplošitev binomskega koeficienta.

Trditev 1.17 (Multinomski izrek). Velja

$$(x_1 + \ldots + x_k)^n = \sum \binom{n}{\alpha_1, \alpha_2, \ldots, \alpha_k} x_1^{\alpha_1} \ldots x_k^{\alpha_k},$$

kjer vsota teče po vseh izbirah naravnih števil $\alpha_1, \ldots, \alpha_k$, katerih vsota je n.

Dokaz. Število permutacij multimnožice moči n, kjer je S množica indeksov.

1.6 Kompozicije naravnega števila

Definicija 1.11. Kompožicija naravnega števila n je zaporedje pozitivnih naravnih števil $\lambda = (\lambda_1, \ldots, \lambda_l)$, za katero velja $\lambda_1 + \ldots + \lambda_l = n$. Dolžina kompozicije λ , $l(\lambda)$ je število elemetnov zaporedja, številu n pa rečemo velikost kompozicije. Števila $\lambda_1, \ldots, \lambda_l$ imenujemo členi kompozicije.

Trditev 1.18. Naj bo $n \ge 1$.

- 1. Število kompožicij števila n je enako 2^{n-1} .
- 2. Število kompožicij dolžine k števila n je enako $\binom{n-1}{k-1}$.

Dokaz. Število n lahko si predstavljamo kot zaporedje n kgoglic, kompozicijo pa s pregradami med kroglicami: $\bullet \mid \bullet \bullet \mid \bullet$.

Opomba. Lahko razumemo kompozicijo števila n s k členi kot rešitev enačbe $x_1 + \ldots + x_k = n$, kjer so $x_i \in \mathbb{N}$.

1.6.1 Šibke kompozicije

Šibka kompozicija števila n ima isto definicijo kot kompozicija, le da dovolimo med členi tudi ničle.

Trditev 1.19. Število šibkih kompozicij števila n s k členi je $\binom{n+k-1}{k-1} = \binom{n+k-1}{n}$.

Dokaz. 1. način. Rešujemo enačbo $x_1 + \ldots + x_k = n$, kjer so $x_i \in \mathbb{N}_0$.

- 2. način. Kroglice in pregrade.
- 3. način. Neurejeni izbori s ponavljanjem.

1.7 Razčlenitve naravnega števila

Definicija 1.12. Razčlenitev naravnega števila n je zaporedoje pozitivnih naravnih števil $\lambda = (\lambda_1, \ldots, \lambda_l)$, kjer je $\lambda_1 \geq \ldots \lambda_l$ in $\lambda_1 + \ldots + \lambda_l = n$. Dolžina razčlenitve λ , $l(\lambda)$ je število elemetnov zaporedja, številu n pa rečemo velikost razčlenitve. Števila $\lambda_1, \ldots, \lambda_l$ imenujemo členi razčlenitve. Razčlenitvam rečemo tudi particije.

Uvedemo oznake:

- p(n) je število razčlenitev števila n. Funkciji p(n) rečemo tudi razčlenitvena funkcija.
- $p_k(n)$ je število razčlenitev števila $n \le k$ členi.
- $\overline{p}_k(n)$ je število razčlenitev števila n z največ k členi.

Trditev 1.20. Za naravni števili n in k velja:

- 1. $p_k(n) = p_{k-1}(n-1) + p_k(n-k)$.
- 2. $p_k(n) = \overline{p}_k(n-k)$.
- 3. $\overline{p}_k(n) = \overline{p}_{k-1}(n) + \overline{p}_k(n-k)$.

Dokaz. Gledamo padajoči trikotnik:

 $\lambda_1 \square \square \square \square \square$ $\lambda_2 \square \square \square \square$ \vdots $\lambda_k \square$

- 1. Razbijemo razčlinitve na tiste, ki vsebujejo 1 in tiste, ki jo ne vsebujejo.
- 2. Odštejemo od prvega stolpca 1.
- 3. Razčlenitev n z največ k členi ima bodisi natanko k členov bodisi kvečjemi k-1 členov.