Trabalho Individual 2

Operações morfológicas e estimação de movimento

Lucas Mariano Carvalho - 16/0133661 Universidade de Brasília Introdução ao processamento de imagens Brasília, Brasil

Abstrato — Este documento tem o intuito de resumir e apresentar o segundo trabalho individual de introdução ao processamento de imagens, é feito uma pequena introdução teórica, a metodologia utilizada para resolver os problemas, a mostra dos resultados obtidos e uma conclusão final sobre trabalho.

Palavras-chave — Morfologia; Erosão; Dilatação; Segmentação; Binarização; DPCM;

I. RESUMO

O trabalho consiste em duas questões. Para a primeira questão foi pedido inicialmente que se binarizasse a imagem, para que fosse aplicado certas operações morfológicas em um determinado elemento estruturante pedido. O intuito dessa operação é remover um dos 'cookies' incompletos da imagem. Após feita a remoção do cookie foi pedido a concatenação da imagem resultante sem o cookie incompleto com a imagem original afim de obter uma imagem final que não contivesse o cookie incompleto em níveis de cinza já a segunda questão diz para criar um programa que leia um vídeo YUV pegue quaisquer dois frames deste vídeo e faça a estimação de movimento dele (DPCM) através da diferenciação do fluxo óptico obtido. O desenvolvido usando trabalho foi a plataforma desenvolvimento OCTAVE.

II. INTRODUÇÃO TEÓRICA

A. Operações morfológicas

Trata-se da extração de uma região de uma imagem e representar as formas de uma determinada região. As operações morfológicas são erosão, dilatação e suas combinações.

B. Erosão e Dilatação

Para ambas as operações eu defino um elemento estruturante (ES) (normalmente uma matriz) e o centro desse ES (nas imagens em níveis de cinza, níveis de cinza para definir o que é objeto e o que é fundo deve ser definido pelo próprio programador, nas binárias por padrão 0 representa o fundo e 1 representa o objeto), no caso da erosão, nos lugares onde o ES "encaixar" no objeto o ponto central (da matriz) vai se manter como objeto após a operação e onde o ES não "encaixar" o ponto central vai virar fundo. Na dilatação o ES é definido, e quando o ponto central do ES estiver em um objeto, todo os pontos do ES se tornarão objetos (se era fundo vira objeto, se era objeto continua objeto).

C. DPCM

Estima onde um objeto vai estar em um vídeo, usando o fluxo óptico do objeto, esse algoritmo é usado em compressão de vídeos.

D. Segmentação de Imagens

A segmentação de uma imagem é análoga a separar a imagem em diferentes regiões. Tais regiões podem ser definidas a partir das transições presentes em uma imagem ou a partir da semelhança entre regiões, dado que essas regiões semelhantes foram pré-estabelecidas por quem deseja fazer a segmentação.

E. Watershed

É um algoritmo de segmentação. Supondo que níveis altos de brilhos são montanhas e níveis baixos são vales. O algoritmo consiste em pegar pontos de brilho mínimos (vales) e começar a "inundar", onde a "inundação" de dois pontos de mínimo se encostar o algoritmo cria uma barreira, ele segmenta aquela região. A "inundação" significa aumentar o nível de brilho do ponto mínimo e quando ele atinge o mesmo brilho dos pixels em volta, todos os pixels (o mínimo e os em volta) começam a ser "inundados" (aumentam o nível de brilho).

III. METODOLOGIA

A. Questão 1

Na questão 1 foi feito de primeiro a binarização da imagem 'cookie.tif' para tal operação foi utilizada a função graythresh() para a obtenção de um bom limiar para binarizar a imagem de modo que os objetos lá presentes (cookies) permanecessem brancos e o fundo ficasse preto, após a obtenção do limiar foi utilizada a função im2bw() que recebe a imagem a ser binarizada e como segundo argumento o limiar (já obtido pela função graythresh()). Depois de terminado o processo de binarização foi definido um elemento estruturante para que fosse possível a remoção do cookie incompleto, portanto a imagem binarizada foi recortada afim de ficar apenas o cookie completo em sua composição. Em seguida já definido o elemento estruturante foi feita a operação morfológica de erosão do mesmo afim de obter a eliminação dos pixels que não pertencem ao objeto. O resultado deste processo foi a eliminação quase por completo do cookie completo do elemento estruturante. Para a recuperação do objeto então foi feita a dilatação da imagem erodida recuperando por inteiro o formato do cookie completo. E por fim foi feito a operação AND com a imagem dilatada e a imagem

original o que permitiu que apenas o cookie completo em níveis de cinza ficasse na imagem terminando assim todas as instruções pedidas na questão 1 do trabalho.

B. Questão 2

Apesar da questão 2 não ter sido solucionada foi tentado solucioná-la através da obtenção de 2 quadros consecutivos no vídeo foreman.yuv, os quadros pegos foram os dois primeiros frames. Os quadros foram pegos com o auxílio da função yuvRead(). Após a obtenção destes dois quadros foi pretendido implementar um algoritmo de DPCM (estimação de movimento) já detalhado na introdução teórica, e infelizmente não foi obtido sucesso em sua implementação.

IV. RESULTADOS

- A. Questão 1
- 1. Foram obtidos resultados da binarização da imagem.
- a) Imagem original de entrada

b) Imagem binarizada

Percebe-se que o com a função graythresh() obtemos um bom limiar para a binarização.

c) A imagem a seguir representa, o elemento estruturante definido para que se pudesse se realizar a operação de erosão sobre a imagem binarizada.

d) Imagem resultante obtida após ter sido aplicado a operação morfológica de erosão sobre a imagem binarizada já com elemento estruturante.

Observa-se que apenas o pixel central do cookie completo permanece na imagem assegurando a teoria apresentada na introdução teórica.

e) A seguir temos o resultado contendo a imagem obtida após ser aplicada a operação de dilatação sobre a imagem erodida.

Nota-se que nessa etapa foi recuperado por completo a imagem do cookie não mordido.

f) E por fim temos o resultado final da figura com a operação AND aplicada com intuito de remoção do cookie incompleto.

Com a operação AND aplicada a imagem original e a imagem binária dilatada podemos assim realizar a remoção do cookie incompleto da imagem original.

B. Questão 2

- 1. Foram obtidos os 2 primeiros frames do vídeos.
- a) Primeiro frame.

b) Segundo frame.

V. CONCLUSÃO

Conclui-se que com este trabalho foi possível entender mais sobre as utilidades das operações morfológicas tanto para melhorar a qualidade subjetiva de uma imagem quanto para possibilitar outras operações em uma imagem, aprender um pouco mais sobre como funciona o processamento de imagens em vídeos e um bom entendimento da teoria de compressão e segmentação de vídeos e imagens fazendo uso da estimação de movimento de próximos frames na questão 2 e de diversas operações morfológicas na questão 1.