Tugas Aljabar I

Teosofi Hidayah Agung 5002221132

1. Buatlah contoh grup.

Jawab:

Himpunan bilangan rasional $\mathbb{Q} \setminus \{0\}$ terhadap operasi perkalian (\cdot) .

- (1) Sifat **asosiatif**. jelas karena $\mathbb{Q} \setminus \{0\} \subset \mathbb{R}$ yang dimana bilangan real \mathbb{R} sudah terbukti sifat asosiatifnya.
- (2) Eksistensi **identitas** Terdapat identitas $e \in \mathbb{Q} \setminus \{0\}$ yaitu $1 \in \mathbb{Q} \setminus \{0\}$, sedemikian sehingga untuk sembarang $a \in \mathbb{Q} \setminus \{0\}$ berlaku $1 \cdot a = a \cdot 1 = a$
- (3) Eksistensi **invers** Untuk setiap $a \in \mathbb{Q} \setminus \{0\}$ terdapat $a^{-1} \in \mathbb{Q} \setminus \{0\}$ yaitu $\frac{1}{a} \in \mathbb{Q} \setminus \{0\}$ yang saling invers, sehingga $a \cdot \frac{1}{a} = \frac{1}{a} \cdot a = e = 1$
- :. Himpunan bilangan rasional $\mathbb{Q} \setminus \{0\}$ termasuk grup terhadap operasi perkalian (\cdot) .
- 2. Buatlah contoh bukan grup.

Jawab:

Didefinisikan $G = \{a, b \in \mathbb{R} | a \heartsuit b = ab + a + b\}$. Mempunyai identitas yaitu $0 \in G$ sebab $a \heartsuit 0 = 0 \heartsuit a = a(0) + a + 0 = (0)a + 0 + a = a$. Sekarang perhatikan untuk $-1 \in G$. Asumsikan $-1 \in G$ mempunyai invers yaitu $p \in G$, Sehingga nilai b:

$$-1 \heartsuit p \Longleftrightarrow (-1)p + (-1) + p = 0$$

$$-p - 1 + p = 0$$

$$p - p - 1 + p = p + 0$$

$$0 - 1 + p = p$$

$$-1 + p - p = p - p$$

$$-1 = 0 \quad \text{(Kontradiksi)}$$

Karena pembuktian mendapati kontradiksi, maka kesimpulannya adalah bahwa asumsi awalnya salah. Oleh karena itu, haruslah $-1 \in G$ tidak mempunyai invers.

- $\therefore G$ bukan termasuk grup
- 3. Tunjukkan bahwa bila G adalah grup komutatif, maka untuk semua $a, b \in G$ dan untuk semua bilangan bulat n, $(ab)^n = a^n b^n$.

Jawab:

$$(ab)^n \stackrel{\text{def}}{=} \underbrace{(ab) \cdot (ab) \cdot (ab) \cdot \dots \cdot (ab)}_n$$

Perhatikan untuk n=0, diperoleh $a^0=b^0=(ab)^0=a^0b^0=e\in G$. Selanjutnya akan digunakan induksi matematika untuk membuktikan setiap $n\in\mathbb{N}$ memenuhi.

Untuk setiap $a, b \in G$, misalkan $P(k) : (ab)^n = a^n b^n$. Untuk P(1) terbukti benar karena $(ab)^1 = ab = a^1 b^1$. Selanjutnya anggap benar untuk $P(k) : (ab)^k = a^k b^k$ dan akan dibuktikan benar pula untuk P(k+1).

$$(ab)^{k+1} = (ab)^k (ab)$$
 (Definisi)
 $= (a^k b^k)(ab)$ (Asumsi $P(k)$ benar)
 $= (a^k b^k)(ba)$ (Komutatif)
 $= a^k (b^k (ba))$ (Asosiatif)
 $= a^k ((b^k b)a)$ (Asosiatif)
 $= a^k (b^{k+1}a)$ (Definisi)
 $= a^k (ab^{k+1})$ (Komutatif)
 $= (a^k a)b^{k+1}$ (Asosiatif)
 $= a^{k+1}b^{k+1}$ (Definisi)

Oleh karena itu, P(n) terbukti benar untuk setiap $n \in \mathbb{N}$.

Sekarang akan dibuktikan P(n) benar untuk n bilangan bulat negatif. Selanjutnya ambil sembarang $a,b\in G$ yang berakibat $(ab)^{-k}$ merupakan invers dari $(ab)^k$, Sehingga notasi (-k) dapat mempresentasikan bilangan bulat negatif untuk $k\in\mathbb{N}$.

$$(ab)^{-k} = b^{-k}a^{-k}$$
 (Invers a^kb^k)
= $a^{-k}b^{-k}$ (Komutatif)

Juga P(n) terbukti benar untuk setiap n bilangan bulat negatif.

$$(ab)^n = a^n b^n$$
 terbukti benar $\forall n \in \mathbb{Z}$

4. Dapatkan invers masing-masing elemen dari $\mathbb{U}(10)$ dan $\mathbb{U}(15)$. $Catatan: \mathbb{U}(n) = \{[u]_n \in \mathbb{Z} \mid \mathrm{fpb}(u,n) = 1\} \subset \mathbb{Z}_n$

Jawab:

Identitas masing-masing adalah $[1]_{10} \in \mathbb{U}(10)$ dan $[1]_{15} \in \mathbb{U}(15)$.

$$\mathbb{U}(10) = \{[1]_{10}, [3]_{10}, [7]_{10}, [9]_{10}\}$$

×	$[1]_{10}$	$[3]_{10}$	$[7]_{10}$	$[9]_{10}$
$[1]_{10}$	$[1]_{10}$	$[3]_{10}$	$[7]_{10}$	$[9]_{10}$
$[3]_{10}$	$[3]_{10}$	$[9]_{10}$	$[1]_{10}$	$[7]_{10}$
$[7]_{10}$	$[7]_{10}$	$[1]_{10}$	$[9]_{10}$	$[3]_{10}$
$[9]_{10}$	$[9]_{10}$	$[7]_{10}$	$[3]_{10}$	$[1]_{10}$

- $[1]_{10}^{-1} = [1]_{10}$ $[3]_{10}^{-1} = [7]_{10}$
- $[7]_{10}^{-1} = [3]_{10}$
- $[9]_{10}^{-1} = [9]_{10}$

$$\mathbb{U}(15) = \{[1]_{15}, [2]_{15}, [4]_{15}, [7]_{15}, [8]_{15}, [11]_{15}, [13]_{15}, [14]_{15}\}$$

×	$[1]_{15}$	$[2]_{15}$	$[4]_{15}$	$[7]_{15}$	$[8]_{15}$	$[11]_{15}$	$[13]_{15}$	$[14]_{15}$
$[1]_{15}$	$[1]_{15}$	$[2]_{15}$	$[4]_{15}$	$[7]_{15}$	[8] ₁₅	$[11]_{15}$	$[13]_{15}$	$[14]_{15}$
$[2]_{15}$	$[2]_{15}$	$[4]_{15}$	$[8]_{15}$	$[14]_{15}$	$[1]_{15}$	$[7]_{15}$	$[11]_{15}$	$[13]_{15}$
$[4]_{15}$	$[4]_{15}$	$[8]_{15}$	$[1]_{15}$	$[13]_{15}$	$[2]_{15}$	$[14]_{15}$	$[7]_{15}$	$[11]_{15}$
$[7]_{15}$	$[7]_{15}$	$[14]_{15}$	$[13]_{15}$	$[4]_{15}$	$[11]_{15}$	$[2]_{15}$	$[1]_{15}$	$[8]_{15}$
$[8]_{15}$	$[8]_{15}$	$[1]_{15}$	$[2]_{15}$	$[11]_{15}$	$[4]_{15}$	$[13]_{15}$	$[14]_{15}$	$[7]_{15}$
$[11]_{15}$	$[11]_{15}$	$[7]_{15}$	$[14]_{15}$	$[2]_{15}$	$[13]_{15}$	$[1]_{15}$	$[8]_{15}$	$[4]_{15}$
$[13]_{15}$	$[13]_{15}$	$[11]_{15}$	$[7]_{15}$	$[1]_{15}$	$[14]_{15}$	$[8]_{15}$	$[4]_{15}$	$[2]_{15}$
$[14]_{15}$	$[14]_{15}$	$[13]_{15}$	$[11]_{15}$	$[8]_{15}$	$[7]_{15}$	$[4]_{15}$	$[2]_{15}$	$[1]_{15}$

- $[1]_{15}^{-1} = [1]_{15}$
- $[2]_{15}^{-1} = [8]_{15}$
- $[4]_{15}^{-1} = [4]_{15}$
- $[7]_{15}^{-1} = [13]_{15}$ $[8]_{15}^{-1} = [2]_{15}$
- $[11]_{15}^{-1} = [11]_{15}$
- $[13]_{15}^{-1} = [7]_{15}$
- $\bullet \ [14]_{15}^{-1} = [14]_{15}$
- 5. Apakah $H_{2\times 2}(\mathbb{R})=\left\{A=\begin{bmatrix} a & b \\ c & d\end{bmatrix} \ \middle| \ \det(A)=2 \ \mathrm{dan} \ a,b,c,d\in\mathbb{R}\right\}$ merupakan grup?

Jawab:

 $H_{2 imes2}(\mathbb{R})$ bukan merupakan grup karena elemen identitas $I=\begin{bmatrix}1&0\\0&1\end{bmatrix}\notin H_{2 imes2}(\mathbb{R})$ dikarenakan $\det(I)=1\neq 2$, sehingga $H_{2 imes2}(\mathbb{R})$ tidak mempunyai elemen identitas.

 $\therefore H_{2\times 2}(\mathbb{R})$ bukan merupakan grup.