Assignment 1

Question 1

Determine if each set below is convex.

- 1. $\{(x,y) \in R_{++}^2 | x/y \le 1\}$
- 2. $\{(x,y) \in R_{++}^2 | x/y \ge 1\}$
- 3. $\{(x,y) \in R^2_{++} | xy \ge 1\}$
- 4. $\{(x,y) \in R^2_{++} | xy \le 1\}$
- 5. $S = \{x \in \mathbb{R}^n | x^T y \leq 1 \text{ for all } x \in \mathbb{C}\}, \text{ where } \mathbb{C} \text{ is a set (may not be convex)}.$
- 6. The ellipsoid $\{x|x^TP^{-1}x \leq 1\}$ where $P \in S_{++}^n$.

Question 2

Give an example of two closed convex sets that are disjoint but cannot be strictly separated.

Question 3

Supporting hyperplanes.

- 1. Express the closed convex set $\{x \in \mathbb{R}^2_+ | x_1 x_2 \ge 1\}$ as an intersection of halfspaces.
- 2. Let $C = \{x \in \mathbb{R}^n | ||x||_{\infty} \leq 1\}$, the l_{∞} -norm unit ball in \mathbb{R}^n , and let \hat{x} be a point in the boundary of C. Identify the supporting hyperplanes of C at \hat{x} explicitly.
- 3. Express the ball $B = \{x \in \mathbb{R}^n | ||x||_2 \le 1\}$ as an intersection of halfspaces.

Question 4

Perspective function $P: \mathbb{R}^{n+1} \to \mathbb{R}^n$ is defined as:

$$P(x,t)=x/t,\quad \operatorname{dom} P=\{(x,t)\mid t>0\}$$

where $x \in \mathbb{R}^n, t > 0$ (i.e. $dom(P) = \{(x, t) | x \in \mathbb{R}^n, t > 0\}$.) Prove:

- If $C \subset dom(P)$ is convex, then P(C) is convex.
- If $D \subset \mathbb{R}^n$ is convex, then $P^{-1}(D)$ is convex.