I

П

Paulson et al.

Serial No. 08/063,181

Page 2

96. The method of claim 95, wherein the carbohydrate compound is an oligosaccharide.

97. The method of claim 96, wherein the oligosaccharide includes a sialic acid residue.

98. The method of claim 97, wherein the oligosaccharide includes a moiety having the formula:

NeuAcα2,3Galβ1,4(Fucα1,3)GlcNAcβ1——

8/ 99. The method of claim 95, wherein the carbohydrate compound is selected from the group consisting of compounds of formula I and compounds of formula II,

 \mathcal{A}

Paulson et al. Serial No. 08/063,181 Page 3

in which:

R1 is selected from the group consisting of/an oligosaccharide, a monosaccharide and a group having the formula III

CO₂H

Ш

in which:

R4 and R5 taken individually are the same or different and are selected from the group consisting of H, C1-C8 alkyl, hydroxy- $(C_1-C_8 \text{ alkyl})$, aryl- $(C_1-C_8 \text{ alkyl})$, and (C₁-C₈ alkoxy)-(C₁-C₈ alkyl), substituted or unsubstituted,

R4 and R5 form/a single radical which is selected from the group consisting of

 \mathbb{R}^d and \mathbb{R}^7 _q $\mathbb{C}^{(R^8)}$ _r

in which R6 is C3-C7 divalent alkyl, substituted or unsubstituted, R7 and R8 are the same or different and are C1-C6 divalent alkyl, substituted or unsubstituted, and q and r are the same or different and are zero or 1 such that the sum of q and r is at least 1;

the substitutions in the substituted groups being selected from the group consisting of hydroxy, hydroxy(C₁-C₄ alkyl), polyhydroxy(C₁-C₄ alkyl), and alkanoamido;

R² is selected from the group consisting of (C₁-C₈ alkyl)carbonyl, (C₁-C₈ alkoxy)carthonyl, and (C2-C, alkenyloxy)carbonyl;

Paulson et al. Serial No. 08/063,181 Page 4

R³ is selected from the group consisting of an oligosaccharide, a monosaccharide, H, OH, C₁-C₂₀ alkyl, C₁-C₂₀ alkoxy, aryl-(C₁-C₈ alkyl), (C₁-C₈ alkyl)-aryl, and alkylthio.

100. The method of claim 99, wherein the carbohydrate compound has formula I.

101. The method of claim 100, wherein R1 is a group having formula III.

102. The method of claim 101, wherein R^4 and R^5 are selected from the group consisting of H and C_1 - C_8 alkyl.

103. The method of claim 101, wherein R⁴ and R⁵ are each H.

The method of claim/101, wherein R^4 and R^5 form a single radical having the formula $\frac{}{-(R^7)_q - O - (R^8)_r}$

in which R^7 and R^8 are the same or different and are C_1 - C_6 divalent alkyl, substituted or unsubstituted, and q and r are each 1.

105. The method of claim 104, wherein the radical is a monosaccharide.

106. The method of claim 105, wherein the monosaccharide is a sialic acid.

107. The method of claim 106, wherein the sialic acid is selected from the group consisting of NeuAc α 2,3 and NeuGc α 2,3.

 α^{\prime}

Paulson et al. Serial No. 08/063,181

Page 5

- 108. The method of claim 100, wherein R³ is selected from a group consisting of an oligosaccharide and a monosaccharide.
- 109. The method of claim 108, wherein R^3 is an oligosaccharide and is $\beta 1,3Gal\beta 1,4Glc$.
- 110. The method of claim 108, wherein R³ is a monosaccharide and is selected from the group consisting of Man, GalNAc, and Gal.
- 111. The method of claim 110, wherein the monosaccharide is selected from the group consisting of $\alpha 1,2Man$, $\alpha 1,6GalNAc$, $\alpha 1,2Man$ —R⁹, $\alpha 1,6GalNAc$ —R⁹, and $\beta 1,3Gal$ —R⁹,

wherein R^9 is attached to the anomeric carbon and is selected from the group consisting of —OH, C_1 - C_{20} alkyl, C_1 - C_{20} alkoxy, aryl- $(C_1$ - C_8 alkyl), $(C_1$ - C_8 alkyl)-aryl, and alkylthio.

- 112. The method of claim 111, wherein the monosaccharide is β 1,3GalR9.
 - 113. The method of claim 112, wherein R⁹ is C₁-C₂₀ alkoxy.
- 114. A method for inhibiting selectin-mediated intercellular adhesion in a mammal, the method comprising administering to the mammal a therapeutically effective dose of a pharmaceutical composition comprising a pharmaceutically acceptable carrier and a compound having the formula:

Paulson et al.

Serial No. 08/063,181

Page 6

wherein R^{10} is selected from the group consisting of a carboxylic acid moiety and a carboxylic acid salt, R^{11} is selected from the group consisting of an acetyl and a glycolyl radical and R^{12} is C_1 - C_{20} alkoxy.

115. The method of claim 114, wherein R¹² is ethoxy.

116. The method of claim 114, wherein R¹⁰ is a salt of carboxylic acid.

117. The method of claim 116, wherein the salt is a sodium salt.

118. The method of claim 114, wherein R¹¹ is acetyl.

119. The method of claim 114, wherein the compound has the formula:

