Your name i	5:
	

Please circle your recitation:

1)	M2	2-131	PO. Persson	2-088	2-1194	persson
2)	M2	2-132	I. Pavlovsky	2-487	3-4083	igorvp
3)	М3	2-131	I. Pavlovsky	2-487	3-4083	igorvp
4)	T10	2-132	W. Luo	2-492	3-4093	luowei
5)	T10	2-131	C. Boulet	2-333	3-7826	cilanne
6)	T11	2-131	C. Boulet	2-333	3-7826	cilanne
7)	T11	2-132	X. Wang	2-244	8-8164	xwang
8)	T12	2-132	P. Clifford	2-489	3-4086	peter
9)	T1	2-132	X. Wang	2-244	8-8164	xwang
10)	T1	2-131	P. Clifford	2-489	3-4086	peter
11)	Т2	2-132	X. Wang	2-244	8-8164	xwang

- 1 (36 pts.)
 - What are the eigenvalues of the 5 by 5 matrix A = ones(5) with all entries $a_{ij} = 1$? Please look at A, not at $\det(A - \lambda I)$.
 - (b) Solve this differential equation to find $\boldsymbol{u}(t) \colon$

$$\frac{d\mathbf{u}}{dt} = A\mathbf{u}$$
 starting from $\mathbf{u}(0) = (0, 1, 1, 1, 2)$.

First split $\mathbf{u}(0)$ into two eigenvectors of A.

(c) Using part (a), what are the eigenvalues and trace and determinant of the matrix B = same as A except zeros on the diagonal.

- **2 (20 pts.)** (a) If A is similar to B show that e^A is similar to e^B . First define "similar" and $e^A!!$
 - (b) If A has 3 eigenvalues $\lambda = 0, 2, 4$, find the eigenvalues of e^A . Using part (a) explain this connection with determinants:

determinant of $e^A = e^{\text{trace of } A}$

3 (22 pts.) Suppose the SVD $A = U\Sigma V^{\mathrm{T}}$ is

$$A = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} 9 & 0 \\ 0 & 4 \end{bmatrix} \begin{bmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{bmatrix}$$

- (a) For which angles θ and α (0 to $\frac{\pi}{2}$) is A a positive definite symmetric matrix? No computing needed.
- What are the eigenvalues and eigenvectors of $A^{T}A$? No computing!

4 (22 pts.) Multinational companies in the US, Asia, and Europe have assets of \$ 12 trillion. At the start, \$ 6 trillion are in the US, \$ 6 trillion in Europe. Each year half the US money stays home, $\frac{1}{4}$ each goes to Asia and Europe. For Asia and Europe, half stays home and half is sent to the US.

$$\begin{bmatrix} \text{US} \\ \text{Asia} \\ \text{Europe} \end{bmatrix}_{\text{year } k+1} = \begin{bmatrix} .5 & .5 & .5 \\ .25 & .5 & 0 \\ .25 & 0 & .5 \end{bmatrix} \begin{bmatrix} \text{US} \\ \text{Asia} \\ \text{Europe} \end{bmatrix}_{\text{year } k}$$

(a) The eigenvalues and eigenvectors of this singular matrix A are

(1) The limiting distribution of the \$ 12 trillion as the world ends is