Air quality index

In [1]: import pandas as pd # Not limiting the column number when displaying dataframe pd.set_option("display.max_columns", None)

In [2]:

df = pd.read_csv("C:/Users/nisho/Documents/SEM 5/ML and core applications/Air_Quality.c df.head()

Out[2]:		id	country	state	city	station	pollutant_id	last_update	pollutant_min	pollutan
	0	1	India	Andhra_Pradesh	Amaravati	Secretariat, Amaravati - APPCB	PM2.5	21-10-2021 01:00:00	69.0	
	1	2	India	Andhra_Pradesh	Amaravati	Secretariat, Amaravati - APPCB	PM10	21-10-2021 01:00:00	82.0	
	2	3	India	Andhra_Pradesh	Amaravati	Secretariat, Amaravati - APPCB	NO2	21-10-2021 01:00:00	10.0	
	3	4	India	Andhra_Pradesh	Amaravati	Secretariat, Amaravati - APPCB	NH3	21-10-2021 01:00:00	4.0	
	4	5	India	Andhra_Pradesh	Amaravati	Secretariat, Amaravati - APPCB	SO2	21-10-2021 01:00:00	16.0	
	<									>
- 503										

In [3]: | df.tail()

Out[3]:		id	country	state	city	station	pollutant_id	last_update	pollutant_min	pollutant_r
	1831	1832	India	West_Bengal	Kolkata	Victoria, Kolkata - WBPCB	NO2	21-10-2021 01:00:00	10.0	i
	1832	1833	India	West_Bengal	Kolkata	Victoria, Kolkata - WBPCB	NH3	21-10-2021 01:00:00	1.0	
	1833	1834	India	West_Bengal	Kolkata	Victoria, Kolkata - WBPCB	SO2	21-10-2021 01:00:00	6.0	;

```
city station pollutant_id last_update pollutant_min pollutant_r
                 id country
                                   state
                                                Victoria,
                                                                     21-10-2021
                                                 Kolkata
                                                                CO
         1834 1835
                       India West_Bengal Kolkata
                                                                                        34.0
                                                                       01:00:00
                                                 WBPCB
                                                Victoria,
                                                 Kolkata
                                                                     21-10-2021
                       India West_Bengal Kolkata
                                                             OZONE
         1835 1836
                                                                                        10.0
                                                                                                     1
                                                                       01:00:00
                                                 WBPCB
In [4]:
         print(df.columns)
         Index(['id', 'country', 'state', 'city', 'station', 'pollutant_id',
                 'last_update', 'pollutant_min', 'pollutant_max', 'pollutant_avg'],
               dtype='object')
In [5]:
         rows = df.shape[0]
         cols = df.shape[1]
         print("Before cleaning, there are " + str(rows) + " rows and " + str(cols) + " columns
         Before cleaning, there are 1836 rows and 10 columns in this dataframe.
In [6]:
         dupRows = df.duplicated().sum()
         print("There are " + str(dupRows) + " duplicated rows in the dataframe.")
         There are 0 duplicated rows in the dataframe.
In [7]:
         df.isnull().sum()
         id
                            0
Out[7]:
         country
                            0
         state
                            0
         city
                            0
         station
         pollutant_id
                            0
         last update
                            0
         pollutant_min
                           98
         pollutant_max
                           98
         pollutant_avg
                           98
         dtype: int64
In [8]:
         df.nunique()
         id
                           1836
Out[8]:
         country
                              1
                             26
         state
         city
                            142
                            281
         station
         pollutant id
                              7
         last_update
                              1
         pollutant_min
                            149
         pollutant max
                            340
```

pollutant_avg 237 dtype: int64

```
In [9]: df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1836 entries, 0 to 1835
Data columns (total 10 columns):

#	Column	Non-Null Count	Dtype
0	id	1836 non-null	int64
1	country	1836 non-null	object
2	state	1836 non-null	object
3	city	1836 non-null	object
4	station	1836 non-null	object
5	pollutant_id	1836 non-null	object
6	last_update	1836 non-null	object
7	pollutant_min	1738 non-null	float64
8	pollutant_max	1738 non-null	float64
9	<pre>pollutant_avg</pre>	1738 non-null	float64
<pre>dtypes: float64(3),</pre>		int64(1), object	(6)

memory usage: 143.6+ KB

```
In [10]: df.dtypes.value_counts()
```

Out[10]: object 6 float64 3 int64 1 dtype: int64

In [11]: df.describe()

Out[11]: id pollutant_min pollutant_max pollutant_avg

ponatant_arg	ponaran-	P		
1738.000000	1738.000000	1738.000000	1836.000000	count
54.100690	96.873418	28.414269	918.500000	mean
60.824158	104.765094	34.403811	530.151865	std
1.000000	1.000000	1.000000	1.000000	min
12.000000	21.000000	5.000000	459.750000	25%
31.000000	63.000000	14.000000	918.500000	50%
70.000000	124.000000	39.000000	1377.250000	75%
314.000000	500.000000	217.000000	1836.000000	max

```
In [12]: df.memory_usage()
```

Out[12]: Index 128 id 14688 country 14688 state 14688 city 14688 station 14688

```
pollutant_id 14688
last_update 14688
pollutant_min 14688
pollutant_max 14688
pollutant_avg 14688
dtype: int64

df.corr()
```

In [13]: df.corr(

```
Out[13]:
                                     pollutant_min pollutant_max pollutant_avg
                           1.000000
                       id
                                          -0.038355
                                                          -0.034367
                                                                        -0.023175
            pollutant_min -0.038355
                                           1.000000
                                                          0.788666
                                                                         0.892249
           pollutant_max -0.034367
                                           0.788666
                                                          1.000000
                                                                         0.935664
            pollutant_avg -0.023175
                                           0.892249
                                                          0.935664
                                                                         1.000000
```

```
import seaborn as sns
import matplotlib.pyplot as plt

correlations = df.corr()

plt.figure(figsize = (16, 16))
plt.title("Heatmap displaying the correlations between all columns", fontsize = 20)
sns.heatmap(correlations, annot = True, cmap = "mako")
```

Out[14]: <AxesSubplot:title={'center':'Heatmap displaying the correlations between all columns'}>


```
In [15]:
    poll = df.corr()["pollutant_avg"]
    poll = pd.DataFrame(poll)
    poll
```

```
        out[15]:
        pollutant_avg

        id
        -0.023175

        pollutant_min
        0.892249

        pollutant_max
        0.935664

        pollutant_avg
        1.000000
```

```
In [16]: prices = df.value_counts(["pollutant_avg"])
```

```
prices
         pollutant_avg
Out[16]:
         5.0
                          52
         4.0
                          50
         6.0
                          46
         2.0
                          46
         12.0
                          40
         110.0
                           1
         163.0
                           1
         216.0
                           1
         218.0
                           1
         314.0
                           1
         Length: 237, dtype: int64
In [29]:
          import pandas_profiling
          from pandas_profiling import ProfileReport
          profile = ProfileReport(df, title = "Pandas Profiling Report", explorative = True)
          profile.to_file("your_report.html")
```

```
In [19]: df.head()
```

Out[19]:		id	country	state	city	station	pollutant_id	last_update	pollutant_min	pollutan
	0	1	India	Andhra_Pradesh	Amaravati	Secretariat, Amaravati - APPCB	PM2.5	21-10-2021 01:00:00	69.0	
	1	2	India	Andhra_Pradesh	Amaravati	Secretariat, Amaravati - APPCB	PM10	21-10-2021 01:00:00	82.0	
	2	3	India	Andhra_Pradesh	Amaravati	Secretariat, Amaravati - APPCB	NO2	21-10-2021 01:00:00	10.0	
	3	4	India	Andhra_Pradesh	Amaravati	Secretariat, Amaravati - APPCB	NH3	21-10-2021 01:00:00	4.0	
	4	5	India	Andhra_Pradesh	Amaravati	Secretariat, Amaravati - APPCB	SO2	21-10-2021 01:00:00	16.0	
	<									>

```
In [20]:

del df["last_update"]

df["country"] = df["country"].astype(str)

df["state"] = df["state"].astype(str)

df["city"] = df["city"].astype(str)

df["station"] = df["station"].astype(str)
```

```
from sklearn import preprocessing
           number = preprocessing.LabelEncoder()
           df["country"] = number.fit_transform(df["country"])
           df["state"] = number.fit_transform(df["state"])
            df["city"] = number.fit_transform(df["city"])
           df["station"] = number.fit_transform(df["station"])
           df.head()
Out[20]:
                                city station pollutant_id pollutant_min pollutant_max pollutant_avg
              id country state
           0
              1
                       0
                              0
                                   6
                                         215
                                                    PM2.5
                                                                    69.0
                                                                                  109.0
                                                                                                 86.0
           1
              2
                       0
                              0
                                   6
                                         215
                                                    PM10
                                                                    82.0
                                                                                  138.0
                                                                                                105.0
           2
              3
                       0
                              0
                                   6
                                         215
                                                     NO2
                                                                    10.0
                                                                                   42.0
                                                                                                 19.0
                       0
                              0
           3
                                   6
                                         215
                                                     NH3
                                                                     4.0
                                                                                    5.0
                                                                                                  4.0
              4
              5
                       0
                              0
                                   6
                                         215
                                                     SO<sub>2</sub>
                                                                    16.0
                                                                                   42.0
                                                                                                 27.0
In [21]:
            df.shape
           (1836, 9)
Out[21]:
In [22]:
            df = df.dropna()
           df.shape
           (1738, 9)
Out[22]:
In [23]:
            df = pd.get dummies(df)
           df.head()
Out[23]:
              id country state city station pollutant_min pollutant_max pollutant_avg pollutant_id_CO pollu
           0
              1
                       0
                              0
                                   6
                                                                     109.0
                                                                                                       0
                                         215
                                                       69.0
                                                                                    86.0
           1
              2
                       0
                              0
                                   6
                                         215
                                                       82.0
                                                                     138.0
                                                                                   105.0
                                                                                                       0
                                                                                                       0
           2
              3
                       0
                              0
                                   6
                                         215
                                                       10.0
                                                                      42.0
                                                                                    19.0
                       0
                              0
                                                                                     4.0
                                                                                                       0
           3
                                   6
                                         215
                                                        4.0
                                                                       5.0
              4
                       0
                              0
                                   6
                                         215
                                                       16.0
                                                                      42.0
                                                                                    27.0
                                                                                                       0
              5
In [24]:
            df.shape
           (1738, 15)
Out[24]:
In [25]:
```

```
X = df.drop(["pollutant_avg"], axis = 1).values
          y = df["pollutant_avg"].values
In [26]:
          from sklearn.model_selection import train_test_split
          X_train, X_test, y_train, y_test = train_test_split(X, y, random_state = 0, test_size =
In [27]:
          from sklearn.linear_model import LinearRegression
          model = LinearRegression()
          model.fit(X_train, y_train)
         LinearRegression()
Out[27]:
In [28]:
          model.score(X_test, y_test)
         0.9340928594638
Out[28]:
 In [ ]:
```