CAP 5415 Computer Vision

Dr. Mubarak Shah Univ. of Central Florida

Filtering

Lecture-2

Filtering/Smoothing/Removing Noise

- Filtering/Smoothing/Removing Noise
- Convolution/Correlation

- Filtering/Smoothing/Removing Noise
- Convolution/Correlation
- Image Derivatives

- Filtering/Smoothing/Removing Noise
- Convolution/Correlation
- Image Derivatives
- Histogram

- Filtering/Smoothing/Removing Noise
- Convolution/Correlation
- Image Derivatives
- Histogram
- Some Matlab Functions

Binary

Binary

Gray Scale

Binary

Gray Scale

Color

Binary Images

Gray Level Image

Gray Scale Image

Color Image Red, Green, Blue Channels

Image Histogram

- Histogram captures the distribution of gray levels in the image.
- How frequently each gray level occurs in the image

Histogram Code

Histogram Code

```
C Code:
for (i=0;i<m,i++)
for (j=0;j<n,j++)
hist[I[i,j]]++;
```

Histogram Code

```
C Code:
for (i=0;i<m,i++)
for (j=0;j<n,j++)
hist[I[i,j]]++;
```

MATLAB: imhist(I)

Light Variations

- Light Variations
- Camera Electronics

- Light Variations
- Camera Electronics
- Surface Reflectance

- Light Variations
- Camera Electronics
- Surface Reflectance
- Lens

- Light Variations
- Camera Electronics
- Surface Reflectance
- Lens

Noise is random, it occurs with some probability

- Light Variations
- Camera Electronics
- Surface Reflectance
- Lens

- Noise is random, it occurs with some probability
- It has a distribution

• I(x,y): the true pixel values

- I(x,y): the true pixel values
- n(x,y): the noise at pixel (x,y)

- I(x,y): the true pixel values
- n(x,y): the noise at pixel (x,y)

Additive noise

- I(x,y): the true pixel values
- n(x,y): the noise at pixel (x,y)

$$\hat{I}(x, y) = I(x, y) + n(x, y)$$
 Additive noise

- I(x,y): the true pixel values
- n(x,y): the noise at pixel (x,y)

$$\hat{I}(x, y) = I(x, y) + n(x, y)$$
 Additive noise

• I(x,y): the true pixel values

- I(x,y): the true pixel values
- n(x,y): the noise at pixel (x,y)

- I(x,y): the true pixel values
- n(x,y): the noise at pixel (x,y)

Multiplicative noise

Image Noise

- I(x,y): the true pixel values
- n(x,y): the noise at pixel (x,y)

$$\hat{I}(x, y) = I(x, y) \times n(x, y)$$
 Multiplicative noise

Image Noise

- I(x,y): the true pixel values
- n(x,y): the noise at pixel (x,y)

$$\hat{I}(x, y) = I(x, y) \times n(x, y)$$
 Multiplicative noise

Gaussian Noise

$$n(x, y) \approx g(n) = e^{\frac{-n^2}{2\sigma^2}}$$

n

Gaussian Noise

$$n(x, y) \approx g(n) = e^{\frac{-n^2}{2\sigma^2}}$$

Probability Distribution *n* is a random variable

Gaussian Noise

$$n(x, y) \approx g(n) = e^{\frac{-n^2}{2\sigma^2}}$$

Probability Distribution *n* is a random variable

Uniform Distribution

Salt and Pepper Noise

 Each pixel is randomly made black or white with a uniform probability distribution

- Really important!
 - Enhance images
 - Denoise, resize, increase contrast, etc.

- Really important!
 - Enhance images
 - Denoise, resize, increase contrast, etc.
 - Extract information from images
 - Texture, edges, distinctive points, etc.

- Really important!
 - Enhance images
 - Denoise, resize, increase contrast, etc.
 - Extract information from images
 - Texture, edges, distinctive points, etc.
 - Detect patterns
 - Template matching

Image Derivatives & Averages

Definitions

Definitions

- Derivative: Rate of change
 - Speed is a rate of change of a distance
 - Acceleration is a rate of change of speed

Definitions

- Derivative: Rate of change
 - Speed is a rate of change of a distance
 - Acceleration is a rate of change of speed
- Average (Mean)
 - Dividing the sum of N values by N

Derivative

$$\frac{df}{dx} = \lim_{\Delta x \to 0} \frac{f(x) - f(x - \Delta x)}{\Delta x} = f'(x) = f_x$$

Derivative

$$\frac{df}{dx} = \lim_{\Delta x \to 0} \frac{f(x) - f(x - \Delta x)}{\Delta x} = f'(x) = f_x$$

$$v = \frac{ds}{dt}$$
 speed $a = \frac{dv}{dt}$ acceleration

Examples: Analytic Derivatives

Examples: Analytic Derivatives

$$y = x^2 + x^4$$

$$\frac{dy}{dx} = 2x + 4x^3$$

Examples: Analytic Derivatives

$$y = x^2 + x^4$$

$$\frac{dy}{dx} = 2x + 4x^3$$

$$y = \sin x + e^{-x}$$

$$\frac{dy}{dx} = \cos x + (-1)e^{-x}$$

$$\frac{df}{dx} = \lim_{\Delta x \to 0} \frac{f(x) - f(x - \Delta x)}{\Delta x} = f'(x)$$

$$\frac{df}{dx} = \lim_{\Delta x \to 0} \frac{f(x) - f(x - \Delta x)}{\Delta x} = f'(x)$$

$$\frac{df}{dx} = \frac{f(x) - f(x-1)}{1} = f'(x)$$

$$\frac{df}{dx} = \lim_{\Delta x \to 0} \frac{f(x) - f(x - \Delta x)}{\Delta x} = f'(x)$$

$$\frac{df}{dx} = \frac{f(x) - f(x-1)}{1} = f'(x)$$

$$\frac{df}{dx} = f(x) - f(x-1) = f'(x)$$

$$\frac{df}{dx} = f(x) - f(x-1) = f'(x)$$

$$\frac{df}{dx} = f(x) - f(x-1) = f'(x)$$
 Backy

Backward difference

$$\frac{df}{dx} = f(x) - f(x-1) = f'(x)$$

Backward difference

$$\frac{df}{dx} = f(x) - f(x+1) = f'(x)$$

$$\frac{df}{dx} = f(x) - f(x-1) = f'(x)$$

Backward difference

$$\frac{df}{dx} = f(x) - f(x+1) = f'(x)$$

Forward difference

$$\frac{df}{dx} = f(x) - f(x-1) = f'(x)$$

Backward difference

$$\frac{df}{dx} = f(x) - f(x+1) = f'(x)$$

Forward difference

$$\frac{df}{dx} = f(x+1) - f(x-1) = f'(x)$$

$$\frac{df}{dx} = f(x) - f(x-1) = f'(x)$$

Backward difference

$$\frac{df}{dx} = f(x) - f(x+1) = f'(x)$$

Forward difference

$$\frac{df}{dx} = f(x+1) - f(x-1) = f'(x)$$

Central difference

$$f(x) = 10 15 10 10 25 20 20 20$$

$$f(x) = 10 15 10 10 25 20 20 20$$

$$f(x) = 10$$
 15 10 10 25 20 20 20 $f'(x) = 0$ 5 -5 0 15 -5 0 0

$$f(x) = 10$$
 15 10 10 25 20 20 20 $f'(x) = 0$ 5 -5 0 15 -5 0 0

Example

$$f(x) = 10$$
 15 10 10 25 20 20 20 $f'(x) = 0$ 5 -5 0 15 -5 0 0 $f''(x) = 0$ 5 10 5 15 -20 5 0

Example

$$f(x) = 10$$
 15 10 10 25 20 20 20 $f'(x) = 0$ 5 -5 0 15 -5 0 0 $f''(x) = 0$ 5 10 5 15 -20 5 0

Example

$$f(x) = 10$$
 15 10 10 25 20 20 20 $f'(x) = 0$ 5 -5 0 15 -5 0 0 $f''(x) = 0$ 5 10 5 15 -20 5 0

Derivative Masks

Backward difference [-1 1]
Forward difference [1 -1]
Central difference [-1 0 1]

Given function

Given function

Gradient vector

$$\nabla f(x, y) = \begin{bmatrix} \frac{\partial f(x, y)}{\partial x} \\ \frac{\partial f(x, y)}{\partial y} \end{bmatrix} = \begin{bmatrix} f_x \\ f_y \end{bmatrix}$$

Given function

Gradient vector

$$\nabla f(x, y) = \begin{vmatrix} \frac{\partial f(x, y)}{\partial x} \\ \frac{\partial f(x, y)}{\partial y} \end{vmatrix} = \begin{bmatrix} f_x \\ f_y \end{bmatrix}$$

Gradient magnitude

$$\left|\nabla f(x,y)\right| = \sqrt{f_x^2 + f_y^2}$$

Given function

Gradient vector

$$\nabla f(x, y) = \begin{vmatrix} \frac{\partial f(x, y)}{\partial x} \\ \frac{\partial f(x, y)}{\partial y} \end{vmatrix} = \begin{bmatrix} f_x \\ f_y \end{bmatrix}$$

Gradient magnitude

$$\left|\nabla f(x,y)\right| = \sqrt{f_x^2 + f_y^2}$$

Gradient direction

$$\theta = \tan^{-1} \frac{f_x}{f_y}$$

$$f_x \Rightarrow \frac{1}{3} \begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix}$$

$$f_x \Rightarrow \frac{1}{3} \begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix}$$

$$f_x \Rightarrow \frac{1}{3} \begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix} \qquad f_y \Rightarrow \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ -1 & -1 & -1 \end{bmatrix}$$

$$f_x \Rightarrow \frac{1}{3} \begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix}$$

$$f_{x} \Rightarrow \frac{1}{3} \begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix} \qquad f_{y} \Rightarrow \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ -1 & -1 & -1 \end{bmatrix}$$

$$I = \begin{bmatrix} 10 & 10 & 20 & 20 & 20 \\ 10 & 10 & 20 & 20 & 20 \\ 10 & 10 & 20 & 20 & 20 \\ 10 & 10 & 20 & 20 & 20 \\ 10 & 10 & 20 & 20 & 20 \end{bmatrix}$$

$$f_x \Rightarrow \frac{1}{3} \begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix}$$

$$f_{x} \Rightarrow \frac{1}{3} \begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix} \qquad f_{y} \Rightarrow \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ -1 & -1 & -1 \end{bmatrix}$$

$$I = \begin{bmatrix} 10 & 10 & 20 & 20 & 20 \\ 10 & 10 & 20 & 20 & 20 \\ 10 & 10 & 20 & 20 & 20 \\ 10 & 10 & 20 & 20 & 20 \\ 10 & 10 & 20 & 20 & 20 \end{bmatrix}$$

$$f_x \Rightarrow \frac{1}{3} \begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix}$$

$$f_{x} \Rightarrow \frac{1}{3} \begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix} \qquad f_{y} \Rightarrow \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ -1 & -1 & -1 \end{bmatrix}$$

$$f_x \Rightarrow \frac{1}{3} \begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix}$$

$$\begin{vmatrix}
f_x \Rightarrow \frac{1}{3} & -1 & 0 & 1 \\
-1 & 0 & 1 \\
-1 & 0 & 1
\end{vmatrix}
\qquad f_y \Rightarrow \frac{1}{3} \begin{vmatrix}
1 & 1 & 1 \\
0 & 0 & 0 \\
-1 & -1 & -1
\end{vmatrix}$$

$$f_x \Rightarrow \frac{1}{3} \begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix}$$

$$f_{x} \Rightarrow \frac{1}{3} \begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix} \qquad f_{y} \Rightarrow \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ -1 & -1 & -1 \end{bmatrix}$$

$$f_x \Rightarrow \frac{1}{3} \begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix}$$

$$f_{x} \Rightarrow \frac{1}{3} \begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix} \qquad f_{y} \Rightarrow \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ -1 & -1 & -1 \end{bmatrix}$$

$$I = \begin{bmatrix} 10 & 10 & 20 & 20 & 20 \\ 10 & 10 & 20 & 20 & 20 \\ 10 & 10 & 20 & 20 & 20 \\ 10 & 10 & 20 & 20 & 20 \\ 10 & 10 & 20 & 20 & 20 \end{bmatrix}$$

$$I = \begin{bmatrix} 10 & 10 & 20 & 20 & 20 \\ 10 & 10 & 20 & 20 & 20 \\ 10 & 10 & 20 & 20 & 20 \\ 10 & 10 & 20 & 20 & 20 \\ 10 & 10 & 20 & 20 & 20 \end{bmatrix}$$

$$f \otimes h = \sum_{k} \sum_{l} f(k, l) h(k, l)$$

$$f \otimes h = \sum_{k} \sum_{l} f(k, l) h(k, l)$$

f = Image

h = Kernel

$$f \otimes h = \sum_{k} \sum_{l} f(k,l)h(k,l)$$

f = Image

h = Kernel

f

f_1	f_2	f_3
f_4	f_5	f_6
f_7	f_8	f_9

$$f \otimes h = \sum_{k} \sum_{l} f(k, l) h(k, l)$$

f = Image

h = Kernel

f

f_1	f_2	f_3	
f_4	f_5	f_6	\otimes
f_7	f ₈	f_9	

$$f \otimes h = \sum_{k} \sum_{l} f(k, l) h(k, l)$$

f = Image

h = Kernel

f

f_1	f_2	f_3
f_4	f_5	f_6
\mathbf{f}_7	f_8	f_9

h

h_1	h_2	h ₃
h_4	h_5	h_6
h ₇	h ₈	h ₉

 \otimes

$$f \otimes h = \sum_{k} \sum_{l} f(k,l)h(k,l)$$

f = Image

h = Kernel

f

f_1	f_2	f_3
f_4	f_5	f_6
f_7	f_8	f_9

h

h_1	h_2	h ₃	
h_4	h_5	h_6	
h ₇	h ₈	h ₉	

$$f \otimes h = \sum_{k} \sum_{l} f(k, l) h(k, l)$$

f = Image

h = Kernel

f

f_1	f_2	f_3	
f_4	f_5	f_6	\otimes
f_7	f_8	f_9	

h

h_1	h_2	h_3	
h_4	h_5	h_6	
h_7	h ₈	h ₉	

 $f \otimes h = f_1 h_1 + f_2 h_2 + f_3 h_3 + f_4 h_4 + f_5 h_5 + f_6 h_6$

$$+ f_7 h_7 + f_8 h_8 + f_9 h_9$$

$$f * h = \sum_{k} \sum_{l} f(k,l)h(-k,-l)$$

$$f * h = \sum_{k} \sum_{l} f(k, l) h(-k, -l)$$

f = Image

h = Kernel

$$f * h = \sum_{k} \sum_{l} f(k, l) h(-k, -l)$$

f = Image

h = Kernel

h

h ₁	h_2	h_3
h_4	h_5	h_6
h ₇	h ₈	h ₉

$$f * h = \sum_{k} \sum_{l} f(k, l) h(-k, -l)$$

f = Image

h = Kernel

X-flip	h ₁	h_2	h ₃
<i>11 Jup</i>	h_4	h_5	h_6
	h ₇	h ₈	h ₉

$$f * h = \sum_{k} \sum_{l} f(k, l) h(-k, -l)$$

f = Image

h = Kernel

h ₇	h ₈	h ₉
h_4	h ₅	h_6
h_1	h ₂	h ₃

	h_1	h_2	h_3
-	h_4	h_5	h_6
	h_7	h_8	h_9

$$f * h = \sum_{k} \sum_{l} f(k, l) h(-k, -l)$$

f = Image

h = Kernel

h ₇	h ₈	h ₉
h_4	h_5	h_6
h ₁	h_2	h ₃

X - flip

h_1	h_2	h ₃
h_4	h_5	h_6
h_7	h_8	h_9

$$Y-flip$$

$$f * h = \sum_{k} \sum_{l} f(k,l)h(-k,-l)$$

f = Image

h = Kernel

h ₇	h ₈	h ₉
h_4	h_5	h_6
h_1	h_2	h ₃

X	 flip	9

	h_1	h_2	h_3
$\frac{1}{2}$	h_4	h_5	h_6
	h ₇	h ₈	h ₉

<i>Y</i> -	- flip

h_9	h ₈	h_7
h_6	h_5	h_4
h_3	h_2	h_1

Convolution

$$f * h = \sum_{k} \sum_{l} f(k, l) h(-k, -l)$$

f = Image

h = Kernel

h ₇	h ₈	h ₉
h_4	h_5	h_6
h ₁	h_2	h ₃

X - flip

h_1	h_2	h_3
h_4	h_5	h_6
h ₇	h_8	h_9

f

f_1	f_2	f_3
f_4	f_5	f_6
f_7	f_8	f_9

Y-flip

h ₉	h ₈	h ₇
h_6	h_5	h_4
h_3	h_2	h_1

Convolution

*

$$f * h = \sum_{k} \sum_{l} f(k, l) h(-k, -l)$$

f = Image

h = Kernel

h ₇	h ₈	h ₉
h_4	h_5	h_6
h ₁	h ₂	h ₃

X - flip

h_1	h_2	h ₃
h_4	h_5	h_6
h_7	h_8	h_9

f

f_1	f_2	f_3
f_4	f_5	f_6
f_7	f_8	f_9

Y-flip

h_9	h_8	h_7
h_6	h_5	h_4
h ₃	h_2	h_1

Convolution

*

$$f * h = \sum_{k} \sum_{l} f(k, l) h(-k, -l)$$

f = Image

h = Kernel

h ₇	h ₈	h ₉
h_4	h_5	h_6
h_1	h_2	h ₃

X - flip

	h_1	h_2	h_3
-	h_4	h_5	h_6
	h_7	h_8	h_9

h

f

f_1	f_2	f_3
f_4	f_5	f_6
f_7	f_8	f_9

Y-flip

h ₉	h ₈	h ₇
h_6	h_5	h_4
h ₃	h_2	h_1

 $f * h = f_1 h_9 + f_2 h_8 + f_3 h_7$ $+ f_4 h_6 + f_5 h_5 + f_6 h_4$ $+ f_7 h_3 + f_8 h_2 + f_9 h_1$

Correlation and Convolution

Convolution is associative

Correlation and Convolution

Convolution is associative

$$F * (G * I) = (F * G) * I$$

Mean

Mean

$$I = \frac{I_1 + I_2 + \dots I_n}{n} = \frac{\sum_{i=1}^{n} I_i}{n}$$

Mean

$$I = \frac{I_1 + I_2 + \dots I_n}{n} = \frac{\sum_{i=1}^{n} I_i}{n}$$

Weighted mean

Mean

$$I = \frac{I_1 + I_2 + \dots I_n}{n} = \frac{\sum_{i=1}^{n} I_i}{n}$$

Weighted mean

$$I = \frac{w_1 I_1 + w_2 I_2 + \ldots + w_n I_n}{n} = \frac{\sum_{i=1}^{n} w_i I_i}{n}$$

$$g(x) = e^{\frac{-x^2}{2o^2}}$$

$$g(x) = e^{\frac{-x^2}{2o^2}}$$

$$g(x,y) = e^{\frac{-(x^2+y^2)}{2o^2}}$$

$$g(x) = e^{\frac{-x^2}{2o^2}}$$

$$g(x,y) = e^{\frac{-(x^2+y^2)}{2o^2}}$$

$$g(x) = \begin{bmatrix} .011 & .13 & .6 & 1 & .6 & .13 & .011 \end{bmatrix}$$

$$g(x) = e^{\frac{-x^2}{2o^2}}$$

$$g(x,y) = e^{\frac{-(x^2+y^2)}{2o^2}}$$

$$g(x) = \begin{bmatrix} .011 & .13 & .6 & 1 & .6 & .13 & .011 \end{bmatrix}$$

$$\sigma = 1$$

Most common natural model

- Most common natural model
- Smooth function, it has infinite number of derivatives

- Most common natural model
- Smooth function, it has infinite number of derivatives
- It is Symmetric

- Most common natural model
- Smooth function, it has infinite number of derivatives
- It is Symmetric
- Fourier Transform of Gaussian is Gaussian.

- Most common natural model
- Smooth function, it has infinite number of derivatives
- It is Symmetric
- Fourier Transform of Gaussian is Gaussian.
- Convolution of a Gaussian with itself is a Gaussian.

- Most common natural model
- Smooth function, it has infinite number of derivatives
- It is Symmetric
- Fourier Transform of Gaussian is Gaussian.
- Convolution of a Gaussian with itself is a Gaussian.
- Gaussian is separable; 2D convolution can be performed by two 1-D convolutions

- Most common natural model
- Smooth function, it has infinite number of derivatives
- It is Symmetric
- Fourier Transform of Gaussian is Gaussian.
- Convolution of a Gaussian with itself is a Gaussian.
- Gaussian is separable; 2D convolution can be performed by two 1-D convolutions
- There are cells in eye that perform Gaussian filtering.

Filtering

 Modify pixels based on some function of the neighborhood

10	30	10	f(p)		
20	11	20		5.7	
11	9	1			

Linear Filtering

 The output is the linear combination of the neighborhood pixels

1	3	0
2	10	2
4	1	1

Image

1	0	-1
1	0.1	-1
1	0	-1

Kernel

Filter Output

0	0	0
0	1	0
0	0	0

Alper Yilmaz, Mubarak Shah, UCF

*

0	0	0
0	0	1
0	0	0

Alper Yilmaz, Mubarak Shah, UCF

1	1	1
1	1	1
1	1	1

Alper Yilmaz, Mubarak Shah, UCF

	1	1	1	1	1
	1	1	1	1	1
5	1	1	1	1	1
)	1	1	1	1	1
	1	1	1	1	1

Alper Yilmaz, Mubarak Shah, UCF

Filtering Gaussian

Gaussian vs. Averaging

Gaussian Smoothing

Smoothing by Averaging

Alper Yilmaz, Mubarak Shah, UCF

Noise Filtering

After additive Gaussian Noise

After Averaging

After Gaussian Smoothing Alper Yilmaz, Mubarak Shah, UCF

Example: box filter

$$g[\cdot\,,\cdot\,]$$

$$\frac{1}{9}\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

Image filtering

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

$$h[m,n] = \sum_{l} g[k,l] f[m+k,n+l]$$

Image filtering

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

$$h[m,n] = \sum_{l} g[k,l] f[m+k,n+l]$$

Credit: S. Seitz

Image filtering

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$

Credit: S. Seitz

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

0	10	20			

$$h[m,n] = \sum_{l=1}^{n} g[k,l] f[m+k,n+l]$$

		_							
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

0	10	20	30			

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

0	10	20	30	30		

$$h[m,n] = \sum_{l=1}^{n} g[k,l] f[m+k,n+l]$$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

0	10	20	30	30		
			?			

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

0	10	20	30	30			
	10		00				
					?		
			50				

$$h[m,n] = \sum_{l=1}^{n} g[k,l] f[m+k,n+l]$$

$$g[\cdot,\cdot]$$
 $\frac{1}{9}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

0	10	20	30	30	30	20	10	
0	20	40	60	60	60	40	20	
0	30	60	90	90	90	60	30	
0	30	50	80	80	90	60	30	
0	30	50	80	80	90	60	30	
0	20	30	50	50	60	40	20	
10	20	30	30	30	30	20	10	
10	10	10	0	0	0	0	0	

$$h[m,n] = \sum_{l=1}^{n} g[k,l] f[m+k,n+l]$$

Box Filter

What does it do?

$g[\cdot,\cdot]$				
1	1	1	1	
_ _	1	1	1	
9	1	1	1	

Box Filter

What does it do?

- Replaces each pixel with an average of its neighborhood
- Achieve smoothing effect (remove sharp features)

Smoothing with box filter

\mathbf{O}	rig	gir	nal
		>	

0	0	0
0	1	0
0	0	0

Original

Filtered (no change)

\mathbf{O}	rig	gir	nal
		>	

0	0	0
0	0	1
0	0	0

Original

Shifted left By 1 pixel

Original

0	0	0	1	1	1	1
0	2	0	■ 1 0	1	1	1
0	0	0	9	1	1	1

1 1 1

(Note that filter sums to 1)

0	0	0
0	2	0
0	0	0

Original

Sharpening filter

- Accentuates differences with local average

Sharpening

before after

1	0	-1
2	0	-2
1	0	-1

1	0	-1
2	0	- 2
1	0	-1

Sobel

Vertical Edge (absolute value)

1	2	1
0	0	0
-1	-2	-1

1	2	1
0	0	0
-1	-2	-1

Sobel

Horizontal Edge (absolute value)

Smoothing with Gaussian filter

Smoothing with box filter

Linearity:

```
filter(f_1 + f_2) = filter(f_1) + filter(f_2)
```


Linearity:

```
filter(f_1 + f_2) = filter(f_1) + filter(f_2)
```

Shift invariance: same behavior regardless of pixel location

```
filter(shift(f)) = shift(filter(f))
```


Linearity:

```
filter(f_1 + f_2) = filter(f_1) + filter(f_2)
```

Shift invariance: same behavior regardless of pixel location

```
filter(shift(f)) = shift(filter(f))
```

Any linear, shift-invariant operator can be represented as a convolution

- Commutative: a * b = b * a
 - Conceptually no difference between filter and signal
 - But particular filtering implementations might break this equality

Source: S. Lazebnik

- Commutative: *a* * *b* = *b* * *a*
 - Conceptually no difference between filter and signal
 - But particular filtering implementations might break this equality
- Associative: a * (b * c) = (a * b) * c
 - Often apply several filters one after another: $(((a * b_1) * b_2) * b_3)$
 - This is equivalent to applying one filter: a * $(b_1 * b_2 * b_3)$

- Commutative: *a* * *b* = *b* * *a*
 - Conceptually no difference between filter and signal
 - But particular filtering implementations might break this equality
- Associative: a * (b * c) = (a * b) * c
 - Often apply several filters one after another: $(((a * b_1) * b_2) * b_3)$
 - This is equivalent to applying one filter: a * $(b_1 * b_2 * b_3)$
- Distributes over addition: a * (b + c) = (a * b) + (a * c)

- Commutative: *a* * *b* = *b* * *a*
 - Conceptually no difference between filter and signal
 - But particular filtering implementations might break this equality
- Associative: a * (b * c) = (a * b) * c
 - Often apply several filters one after another: $(((a * b_1) * b_2) * b_3)$
 - This is equivalent to applying one filter: a * $(b_1 * b_2 * b_3)$
- Distributes over addition: a * (b + c) = (a * b) + (a * c)
- Scalars factor out: ka * b = a * kb = k (a * b)

- Commutative: *a* * *b* = *b* * *a*
 - Conceptually no difference between filter and signal
 - But particular filtering implementations might break this equality
- Associative: a * (b * c) = (a * b) * c
 - Often apply several filters one after another: $(((a * b_1) * b_2) * b_3)$
 - This is equivalent to applying one filter: a * $(b_1 * b_2 * b_3)$
- Distributes over addition: a * (b + c) = (a * b) + (a * c)
- Scalars factor out: ka * b = a * kb = k (a * b)
- Identity: unit impulse e = [0, 0, 1, 0, 0],
 a * e = a

Median filters

- A Median Filter operates over a window by selecting the median intensity in the window.
- What advantage does a median filter have over a mean filter?
- Is a median filter a kind of convolution?

Comparison: salt and pepper noise

MATLAB Functions

MATLAB Functions

conv: 1-D Convolution.

C = conv(A, B) convolves vectors A and B.

conv: 1-D Convolution.

C = conv(A, B) convolves vectors A and B.

- conv2: Two dimensional convolution.
 - C = conv2(A, B) performs the 2-D convolution of matrices A and B.

• filter2: Two-dimensional digital filter.

- filter2: Two-dimensional digital filter.
 - Y = filter2(B,X) filters the data in X with the 2-D filter in the matrix B.

- filter2: Two-dimensional digital filter.
 - Y = filter2(B,X) filters the data in X with the 2-D filter in the matrix B.
 - The result, Y, is computed using 2-D correlation and is the same size as X.

- filter2: Two-dimensional digital filter.
 - Y = filter2(B,X) filters the data in X with the 2-D filter in the matrix B.
 - The result, Y, is computed using 2-D correlation and is the same size as X.
 - filter2 uses CONV2 to do most of the work. 2-D correlation is related to 2-D convolution by a 180 degree rotation of the filter matrix.

• gradient: Approximate gradient.

- gradient: Approximate gradient.
 - [FX,FY] = gradient(F) returns the numerical gradient of the matrix F. FX corresponds to dF/dx, FY corresponds to dF/dy.

- gradient: Approximate gradient.
 - [FX,FY] = gradient(F) returns the numerical gradient of the matrix F. FX corresponds to dF/dx, FY corresponds to dF/dy.
- mean: Average or mean value.

- gradient: Approximate gradient.
 - [FX,FY] = gradient(F) returns the numerical gradient of the matrix F. FX corresponds to dF/dx, FY corresponds to dF/dy.
- mean: Average or mean value.
 - For vectors, mean(X) is the mean value (average) of the elements in X.

• fspecial: Creates predefined 2-D filter

- fspecial: Creates predefined 2-D filter
 - H = fspecial(TYPE) creates a two-dimensional filter H of the specified type. Possible values for TYPE are:

- fspecial: Creates predefined 2-D filter
 - H = fspecial(TYPE) creates a two-dimensional filter H of the specified type. Possible values for TYPE are:
 - 'average' averaging filter;

- fspecial: Creates predefined 2-D filter
 - H = fspecial(TYPE) creates a two-dimensional filter H of the specified type. Possible values for TYPE are:
 - 'average' averaging filter;
 - 'gaussian' Gaussian lowpass filter

- fspecial: Creates predefined 2-D filter
 - H = fspecial(TYPE) creates a two-dimensional filter H of the specified type. Possible values for TYPE are:
 - 'average' averaging filter;
 - 'gaussian' Gaussian lowpass filter
 - 'laplacian' filter approximating the 2-D Laplacian operator

- fspecial: Creates predefined 2-D filter
 - H = fspecial(TYPE) creates a two-dimensional filter H of the specified type. Possible values for TYPE are:
 - 'average' averaging filter;
 - 'gaussian' Gaussian lowpass filter
 - 'laplacian' filter approximating the 2-D Laplacian operator
 - 'log' Laplacian of Gaussian filter

- fspecial: Creates predefined 2-D filter
 - H = fspecial(TYPE) creates a two-dimensional filter H of the specified type. Possible values for TYPE are:
 - 'average' averaging filter;
 - 'gaussian' Gaussian lowpass filter
 - 'laplacian' filter approximating the 2-D Laplacian operator
 - 'log' Laplacian of Gaussian filter
 - 'prewitt' Prewitt horizontal edge-emphasizing filter

- fspecial: Creates predefined 2-D filter
 - H = fspecial(TYPE) creates a two-dimensional filter H of the specified type. Possible values for TYPE are:
 - 'average' averaging filter;
 - 'gaussian' Gaussian lowpass filter
 - 'laplacian' filter approximating the 2-D Laplacian operator
 - 'log' Laplacian of Gaussian filter
 - 'prewitt' Prewitt horizontal edge-emphasizing filter
 - 'sobel' Sobel horizontal edge-emphasizing filter

- fspecial: Creates predefined 2-D filter
 - H = fspecial(TYPE) creates a two-dimensional filter H of the specified type. Possible values for TYPE are:
 - 'average' averaging filter;
 - 'gaussian' Gaussian lowpass filter
 - 'laplacian' filter approximating the 2-D Laplacian operator
 - 'log' Laplacian of Gaussian filter
 - 'prewitt' Prewitt horizontal edge-emphasizing filter
 - 'sobel' Sobel horizontal edge-emphasizing filter

Example: H=fspecial('gaussian',7,1) creates a 7x7 Gaussian filter with variance 1.

Some practical matters

Practical matters How big should the filter be?

- Values at edges should be near zero
- Rule of thumb for Gaussian: set filter half-width to about 3 σ

- What about near the edge?
 - the filter window falls off the edge of the image
 - need to extrapolate
 - methods:
 - clip filter (black)
 - wrap around
 - copy edge
 - reflect across edge

- What about near the edge?
 - the filter window falls off the edge of the image
 - need to extrapolate
 - methods:
 - clip filter (black)
 - wrap around
 - copy edge
 - reflect across edge

- What about near the edge?
 - the filter window falls off the edge of the image
 - need to extrapolate
 - methods:
 - clip filter (black)
 - wrap around
 - copy edge
 - reflect across edge

- What about near the edge?
 - the filter window falls off the edge of the image
 - need to extrapolate
 - methods:
 - clip filter (black)
 - wrap around
 - copy edge
 - reflect across edge

- What about near the edge?
 - the filter window falls off the edge of the image
 - need to extrapolate
 - methods:
 - clip filter (black)
 - wrap around
 - copy edge
 - reflect across edge

- What about near the edge?
 - the filter window falls off the edge of the image
 - need to extrapolate
 - methods:
 - clip filter (black)
 - wrap around
 - copy edge
 - reflect across edge

- What about near the edge?
 - the filter window falls off the edge of the image
 - need to extrapolate
 - methods:
 - clip filter (black)
 - wrap around
 - copy edge
 - reflect across edge

- What about near the edge?
 - the filter window falls off the edge of the image
 - need to extrapolate
 - methods:
 - clip filter (black)
 - wrap around
 - copy edge
 - reflect across edge

- What about near the edge?
 - the filter window falls off the edge of the image
 - need to extrapolate
 - methods:
 - clip filter (black)
 - wrap around
 - copy edge
 - reflect across edge

- What about near the edge?
 - the filter window falls off the edge of the image
 - need to extrapolate
 - methods:
 - clip filter (black)
 - wrap around
 - copy edge
 - reflect across edge

- What about near the edge?
 - the filter window falls off the edge of the image
 - need to extrapolate
 - methods:
 - clip filter (black)
 - wrap around
 - copy edge
 - reflect across edge

- What about near the edge?
 - the filter window falls off the edge of the image
 - need to extrapolate
 - methods:
 - clip filter (black)
 - wrap around
 - copy edge
 - reflect across edge

- What about near the edge?
 - the filter window falls off the edge of the image
 - need to extrapolate
 - methods:
 - clip filter (black)
 - wrap around
 - copy edge
 - reflect across edge


```
– methods (MATLAB):
```

```
clip filter (black): imfilter(f, g, 0)
```

wrap around: imfilter(f, g, 'circular')

copy edge: imfilter(f, g, 'replicate')

reflect across edge: imfilter(f, g, 'symmetric')

```
– methods (MATLAB):
```

```
• clip filter (black): imfilter(f, g, 0)
```

wrap around: imfilter(f, g, 'circular')

copy edge: imfilter(f, g, 'replicate')

reflect across edge: imfilter(f, g, 'symmetric')

- What is the size of the output?
- MATLAB: filter2(g, f, shape)
 - shape = 'full': output size is sum of sizes of f and g
 - shape = 'same': output size is same as f
 - shape = 'valid': output size is difference of sizes of f and g

Reading Material

Reading Material

- Mubarak Shah, "<u>Fundamentals of Computer</u> <u>Vision</u>".
 - Chapter, 2

Reading Material

- Mubarak Shah, "<u>Fundamentals of Computer</u> <u>Visio</u>n".
 - Chapter, 2
- Richard Szeliski, "<u>Computer Vision:</u> <u>Algorithms and Applications</u>".
 - Section 3.1 and 3.2