上海大学 2013~2014 学年春季学期试卷	(A	卷
	\	٠ ت

成绩

课程名: <u>概率论与数理统计(A)</u>课程号: <u>01014016</u>学分: <u>5</u> 应试人声明:

我保证遵守《上海大学学生手册》中的《上海大学考场规则》,如有考试违纪、作 弊行为,愿意接受《上海大学学生考试违纪、作弊行为界定及处分规定》的纪律处分。

应试人 应试人学号 应试人所在院系

题号	_	1 1	三	四	五.
得分	10	30	10	40	10

一、是非题 (2 分×5=10 分)

- 1、事件 $A \cap B$ 若满足条件 P(AB) = 0,则它们一定是互不相容的。
- 2、若事件A的概率P(A) = 0,则A与任意事件B一定是相互独立的。
- 3、二维随机变量(X,Y) 的协方差函数cov(X,Y)=0,则X与Y一定独立。
- 4、设 X_1 ,K, X_n 是总体X的一个简单样本,那么统计量 $\frac{1}{n-1}\sum_{i=1}^n(X_i-\bar{X})^2$ 一定是总体方差 σ^2 的一个无偏估计。
- 5、总体 X 的分布函数含未知参数 θ ,则 θ 的最大似然估计一定是唯一的。

- 二、填空题 (3 分×10=30 分)
- 6、设 $P(A) = \frac{1}{2}$, $P(B|A) = \frac{1}{3}$,则 $P(BA) = \underline{\hspace{1cm}}$ 。
- 7、某人在射击比赛中命中十环的概率为0.8,每次射击是独立的,那么在第三次射击才命中十环的概率为____。
- 8、随机变量 X ~ N(-1,2), Y ~ N(2,3), 且 X 与 Y 独立, 记 Z = X − Y, 则 Z ~ _____。
- 9、五个球分别具有编号 1,2,3,4,5。现在把它们随意排成一列。如果编号为k 的球恰好在第k 个位置,就称有一个巧合出现。记X 为巧合出现的次数,则EX = 0。
- 10、罐中有红球 6 只,黑球 4 只。现在有人从中拿走了一只球。为判断拿走的是红球还是黑球,从中抽取两球,发现都是红球,那么拿走的是红球的概率为:。
- 11、设随机变量 X 的概率密度函数为 $f(x) = \begin{cases} axe^{-x}, & x > 0 \\ 0, & x < 0 \end{cases}$,则 a =___。
- 12、设随机变量 X 与 Y 独立,且都服从参数为 1 的指数分布,则 $P(\min\{X,Y\} \le 1) =$ _____。
- 13、设随机变量 X ~ B(2,0.5), Y ~ B(3,0.5),则 X + Y ~ _____。
- 14、如果总体 $X \sim N(\mu, \sigma^2)$,其中 μ 和 σ^2 都是未知参数,总体的样本均值和样本方差的观测值分别为 \overline{x} 和 s^2 ,样本容量为 n,则参数 μ 的双侧置信区间为
- **15**、设 α 和 β 分别是假设检验中犯第一类和第二类错误的概率, H_0 为原假设, H_1 为备选假设。则在假设 H_0 成立条件下接受假设 H_1 的概率为__。

三、选择题 (共2分×5=10分)

16、设 P(B) > 0, P(A|B) = 1,那么一定有。

;

(A) A和B互不相容:

(B) A和B独立:

(C) $B \subset A$

(D) $P(A \cup B) = P(A)$.

17、设随机变量 X 的分布函数为 F(x),则 P(a < X < b) 的概率一定为

(A)
$$F(b) - F(a)$$
; (B) $F(a) - F(b)$; (C) $F(b-0) - F(a)$; (D) $F(b) - F(a-0)$.

18、设总体 $X \sim U(\theta, 2\theta)$ (均匀分布), 其中 θ 是未知参数, X_1, L_1, X_2 是来自该总体 的简单样本,记 $T = \frac{2}{3n} \sum_{i=1}^{n} X_i$,则下面正确的是_____。

- (A) $T \to \theta$ 的矩估计,是无偏估计: (B) $T \to \theta$ 的最大似然估计,是无偏估计:
- (C) $T \to \theta$ 的矩估计,是有偏估计: (D) $T \to \theta$ 的最大似然估计,是有偏估计。

19、如果两个独立的随机变量 X_1 和 X_2 的分布函数分别为 $F_1(x)$ 和 $F_2(x)$,那么 (X,Y)的联合分布函数是。

(A) $(1-F_1(x))(1-F_1(x))$;

(B) $F_1(x)F_2(x)$;

(C) $1-F_1(x)F_2(x)$;

(D) $1-(1-F_1(x))(1-F_2(x))$.

20、对随机变量(X,Y),与协方差函数为cov(X,Y)=0 不 等价的是 。

- (A) D(X+Y) = DX + DY;
- (B) D(X-Y) = DX + DY;
- (C) E(XY) = EXEY;
- (D) *X* 与 *Y* 独立。

四、计算题(共40分)

21、(本题 10 分) 两台机床加工同样的零件,第一台出现不合格品的概率是0.03。第二 台出现不合格品的概率是0.06。现在把加工的零件放在一起,且已知第一台机床加工的 零件数是第二台机床加工零件数的两倍。现在从中随机取一个零件,计算

- (1)(+6分)取到的零件是次品的概率:
- (2)(+4分)如果已知取到的是次品,是第一台机床加工概率是多大?

22、(本题 10 分) 设到某银行的顾客等待服务的时间 X (以分钟计) 服从参数为 $\lambda=0.2$ 的指数分布,即

$$f(x) = \begin{cases} 0.2e^{-0.2x}, & x > 0 \\ 0, & x < 0 \end{cases}$$

有一个顾客每月要去该银行5次等待服务,但如果等待服务的时间超过10分钟,他就离 开,以Y记他一个月未接受服务就离开的次数,

- (1)(+3分)计算每次这位顾客未接受服务就离去的概率:
- (2)(+5分)给出Y的分布律;
- (3)(+2分)计算每月平均未接受服务就离去的次数。

23、(本题 12 分)设二维随机变量(X,Y)的分布律为

X Y	-1	1	2
-1	1 10	а	$\frac{3}{10}$
2	<u>1</u> 5	$\frac{1}{10}$	$\frac{1}{10}$

- (1) (+3 %) 确定常数 $a \cap X = Y$ 的边际分布律;
- (2) (+4 分) 计算 $Z_1 = X + Y 与 Z_2 = \max\{Y,Y\}$ 的分布律;
- (3)(+5分)计算 X 与 Y 的相关系数。

24、(本题 8 分)有一批袋装盐,先从中随机取 16 袋,称得重量(单位为克)如下,

506	508	499	503	504	510	497	512
514	505	493	496	506	502	509	496

正常情况下,包装重量服从正态分布 $N(500, \sigma^2)$ 。由以上的数据,在显著性水平为 **0.05** 时,能否认为处于正常情况。

(附分位数: $u_{0.025} = 1.96$, $u_{0.05} = 1.65$;

 $t_{0.025}(15) = 2.1314$, $t_{0.025}(16) = 2.1190$, $t_{0.05}(15) = 1.7531$, $t_{0.05}(16) = 1.7459$)

五、	证明题	(共10	分)

25、(本题 5 分)设随机变量 $X \sim \pi(\lambda)$ (服从参数为 λ 的泊松分布),即

$$P(X = k) = \frac{\lambda^k}{k!} e^{-\lambda}, \quad k = 0,1,2,L$$
.

证明: 参数 λ 的最大似然估计 $\hat{\lambda} = \bar{X}$,其中 \bar{X} 是样本均值。