烷烃

一、烷烃的定义、分类和构造异构

烃: 仅由碳和氢两种元素组成的化合物称为烃

烷烃:分子中所有碳原子彼此以单键连接成链状,碳的其余价键都与氢原子相连的烃称为烷烃,其通式为 C_nH_{2n+2} 。如:

 $\mathrm{CH_{3}CH_{2}CH_{2}CH_{3}}$

CH₃CHCH₂CH₃

二、烷烃的命名

		命名原则	实 例
普通命名法	天干(癸)作 上词原 个碳原 (2)月	(1~10 个碳原子的直链烷烃,用甲、乙、丙、丁、戊、己、庚、辛、壬、 甲、乙、丙、丁、戊、己、庚、辛、壬、 年词头,表示碳原子的个数,再加强"烷",即为烷烃的名称。从含 11 强子起用汉字数字表示 目词头正(normal或 n-)、异(iso和新(neo)来区分同分异构体	CH ₃ CH ₂ CH ₂ CH ₂ CH ₃ 正戊烷 n-pentane CH ₃ CH ₃ CH ₃ -C-CH ₃ CH ₃ -C-CH ₃ CH ₃ F戊烷 i-pentane STĈ烷 neopentane
	直链烷烃	根据分子中的碳原子数称某烷, 某烷前面不需加"正"字	CH ₃ CH ₂ CH ₂ CH ₃ 丁烷(butane) CH ₃ CH ₂ CH ₂ CH ₂ CH ₃ 戊烷(pentane)
系统命名法	支链烷烃	(1)主链的选择:选择连有最多取代基的最长碳链为主链,按主链所含的碳原子数称为某烷(2)主链的编号:从靠近取代基的一端开始,用阿拉伯数字对主链上的碳原子依次编号,使取代基的位次最小。如果在主链两端相等位次同时遇到两个不排列小的取代基具有较小的编号(3)把取代基内位次和名称依次写在母体名称某烷的前面,较优基团后列出。英文名称中,取代基按其首字母的字母次序排列先后顺序(4)主链上连有相同的取代基时,则将它们合并	CH ₃ CH ₂ CHCH ₂ CH ₂ CHCH ₂ CH ₃ CH ₂ CH ₃ CH ₃ 3- 甲基 -6- 乙基辛烷 3-ethyl-6-methyloctane CH ₃ CH ₃ CHCH ₂ CHCHCH ₃ CH ₃ CH ₃ 2,3,5- 三甲基己烷 2,3,5-trimethylhexane CH ₃ CHCH ₂ CHCH ₂ CH ₃ CH ₃ CHCH ₃

四、烷烃的结构

五、烷烃的构象

定义	围绕 σ 键旋转而产生的分子的各种立体形象称为构象。各种不同的构象互称为构象 异构体
乙烷的构象	围绕乙烷的 C — C σ 键旋转会产生无数种构象。其中,有两种典型的构象: H H H H H H H H

六、烷烃 的物理性质

	50.70		
	在烷烃同分异构体中,分子结构越对称的异构体熔点越高。例如:		
熔点	正戊烷 异戊烷 新戊烷		
	熔点 (℃) -130 -160 -17		
相对	烷烃是所有有机物中密度最小的一类化合物,它们的相对密度都小于1。虽然附		
密度	着相对分子质量的增加,密度有所增加,但增加不明显		
溶解	烷烃易溶于非极性或极性较小的苯、氯仿、四氯化碳、乙醚等有机溶剂,而难		
度	溶于水和其他强极性有机溶剂		

七、烷烃及环烷烃的化学性质

性 质	反应式	备注
氧化和 燃烧	$C_nH_{2n+2}+\left(\frac{3n+1}{2}\right)O_2$ 点燃 $\rightarrow nCO_2+(n+1)H_2O+$ 热量 燃烧热:标准状态下 1 摩尔烷烃完全燃烧所放出的热量为该烷烃的燃烧热	烷烃是人类可利用的重 要能源之一 燃烧热可用于判断物质 的内能大小
热裂反应	$\begin{array}{c} \text{CH}_3\text{CH}_2\text{CH}_3 \xrightarrow{600^{\circ}\!\text{C}} \text{CH}_4\text{+CH}_3\text{CH}_3\text{+CH}_3\text{CH}_2\text{CH}_3 \\ +\text{CH}_2\text{=CH}_2\text{+CH}_3\text{CH=CH}_2\cdots \end{array}$	主要用于生产燃料、低 分子量的烷烃和烯烃等 化工原料
卤代反应	$CH_4 + X_2 \xrightarrow{h\nu} CH_3X + HX$ $+ Br_2 \xrightarrow{h\nu} Br + HBr$	卤素的反应活性顺序是: F ₂ > Cl ₂ > Br ₂ > I ₂ 甲烷的氯代反应较难停 留在一氯代阶段

八、烷烃卤代反应机制

反应机制 的定义	反应机制(reaction mechanism): 又称反应历程, 是描述反应物如何逐步转变成产物的过程,包括 反应分几步进行、每步反应中旧键如何断裂、新 键如何形成以及反应条件对反应速率的影响等等	反应机制是在综合实验 事实后提出的理论假设,现在公认的反应机 制符合目前已观察到的 反应事实。反应机制是 不断发展完善的
甲烷氯反加制	链引发: $Cl \xrightarrow{h\nu} 2Cl \cdot$ 链增长: $Cl \cdot + H \xrightarrow{C} CH_3 \longrightarrow \cdot CH_3 + HCl \cdot CH_3 + Cl \longrightarrow CH_3Cl + Cl \cdot$ 链终止: $Cl \cdot + Cl \cdot \longrightarrow Cl_2 \cdot CH_3 + \cdot CH_3 \longrightarrow CH_3CH_3 \longrightarrow CH_3Cl$	反应经由自由基中间体, 在链增长阶段,每一步 都消耗一个活泼的自由 基,同时又为下一步反 应产生一个新的活泼。 基,整个反应就像一 条锁链,一经引发,就 一环和一环地进行下 去,因此称自由基链锁 反应 链增长是整个链锁反应 的重要阶段
甲基自由基的结构	120° C° $C^$	三个σ键在同一平面 上,单电子所占的ρ射 道与σ键所在平面垂直 其他烷基自由基也都 具有类似甲基自由基 的结构

