Introduction to ML

Definitions

- Artificial Intelligence
 - Human Intelligence Exhibited by Machines
- Machine Learning
 - An Approach to Achieve Artificial Intelligence
- Deep Learning
 - A Technique for Implementing Machine Learning

ARTIFICIAL INTELLIGENCE

A program that can sense, reason, act, and adapt

MACHINE LEARNING

Algorithms whose performance improve as they are exposed to more data over time

DEEP Learning

Subset of machine learning in which multilayered neural networks learn from vast amounts of data

History of Al

Al has experienced several hype cycles, where it has oscillated between periods of excitement and disappointment.

Modern Al

Deep Learning Breakthroughs (2012 – Present)

- In 2012, deep learning beats previous benchmark on the ImageNet competition.
- In 2013, deep learning is used to understand "conceptual meaning" of words.
- In 2014, similar breakthroughs appeared in language translation.
- These have led to advancements in Web Search, Document Search, Document Summarization, and Machine Translation.

Image classification

Google Translate

Deep Learning Breakthroughs (2012 – Present)

- In 2014, computer vision algorithm can describe photos.
- In 2015, Deep learning platform TensorFlow is developed.
- In 2016, DeepMind's AlphaGo, developed by Aja Huang, beats Go master Lee Se-dol.

Autonomous Mars rover

Modern AI (2012 – Present): Deep Learning Impact

Computer vision

Self-driving cars: object detection

Healthcare: improved diagnosis

Natural language

Communication: language translation

Al Applications

Al Usage Growth

Data Science Workflow

CRiSP-DM (Data Science work flow)

The cross industry standard process for data mining, CRISP-DM, is a data mining process model that data mining experts use to tackle problems

Very iterative process

Approach for Data Science Projects

Business Problem

Definition

Understand SYSTEMS, Data and processes

Evaluate and choose Solution approach

Implement, Test, Validate

- Define business objectives and frame the problem
- Layout project plans
- Validate with stake-holders

- Understand systems involved and business process
- Gain domain knowledge
- Collect, describe and explore the available data
- Verify data quality

- Develop/implement chosen algorithm, validate
- Pilot & ensure the solution properly addresses business problem
- Produce deployment plan that meets sustainability needs

Data Science Skill Sets

Machine Learning

Machine Learning

Machine Learning relates with the study, design, and development of models and algorithms that give computers the capability to learn from data, instead of requiring explicit programming of hard-coded rules/logic.

Machine Learning algorithms

Supervised vs. unsupervised learning

Supervised

- Begin with data we already know the desired output
- Use Training data to derive relationships between the input features and desired output
- Predict future outcomes from derived relationships from training data

Unsupervised

- Begin with little or no idea what our results should look like
- Derive **structure** from data where we don't necessarily know the effect of the variables.

Images: https://www.quora.com/What-is-the-difference-between-supervised-and-unsupervised-learning-algorithms

Machine Learning algorithms Image Classification

Supervised Learning – Classification

Input / observation / attribute: categorical or numeric

Output / response / label: categorica

2.4 Iris-virginica

IRIS DATA

Iris setosa

Iris versicolor

3.1

color Iris virginica

sepal length sepal width petal width Flowername petal length 5.1 0.2 Iris-setosa 4.9 1.4 0.2 Iris-setosa 4.7 3.2 1.3 0.2 Iris-setosa 3.2 4.7 1.4 Iris-versicolor 6.4 4.5 1.5 Iris-versicolor 6.9 3.1 4.9 1.5 Iris-versicolor 4.8 1.8 Iris-virginica 6.9 5.4 2.1 Iris-virginica

5.6

Target: Columns to be predicted

Features: Attributes of the Data

6.7

Supervised Learning – linear Regression Example

Evaluation Metric

There are many metrics available* to measure performance, such as:

Accuracy: how well predictions match true values.

 Mean Squared Error: average square distance between prediction and true value.

$$\min_{\beta_0,\beta_1} \frac{1}{m} \sum_{i=1}^{m} \left(\left(\beta_0 + \beta_1 x_{obs}^{(i)} \right) - y_{obs}^{(i)} \right)^2$$

Accuracy target

^{*}The wrong metric can be misleading or not capture the real problem.

Which Model?

Some considerations when choosing are:

- Time needed for training
- Speed in making predictions
- Amount of data needed
- Type of data
- Problem complexity
- Ability to solve a complex problem
- Tendency to overcomplicate a simple one

Supervised Learning Algorithms

Algorithm	Classification/Regression	Comments	
K-Nearest Neighbors	Classification & Regression	Instance based, suffers from curse of dimensionality	
Linear Regression	Regression	Need follow certain assumptions	
Naïve Bayes	Classification	Probability based. Inputs need to independent from each other.	
Logistic Regression	Classification	Need follow certain assumptions	
Support Vector Machines	Classification & Regression	Where class boundaries are well separated.	
Decision Trees	Classification & Regression	Tree based. Not effective with low covariance.	
Neural Networks	Classification & Regression	Non-linear functional approximation. Also used for unsupervised learning (DBNs)	
Ensemble (Random Forests, Boosting, Bagging, Bucket of models, Stacking, etc)	Classification & Regression	Improved prediction performance from multiple hypothesis.	

Machine Learning algorithms

Un Supervised – Customer Segmentation

TYPES OF CUSTOMER SEGMENTS

NPV PER CUSTOMER

All Customers data from previous Transactions

Few example features Extracted

- #of times visits per month
- Customer Gender and age
- 4. #of Referrals generated

- VALUE CONVENIENCE IN DELIVERY, ORDERING
- LONG RELATIONSHIP, LARGE REFERRALS

Apply Unsupervised Algorithm

- NOT CONCERNED WITH PERISHABLES OR DELIVERY TIME WINDOWS

- PRICE IS PRIMARY AND PERISHABLES ARE NOT IMPORTANT
- SMALL PURCHASES

SOURCE: BAIN/MAINSPRING ONLINE RETAILING SURVEY

Un Supervised – Market Basket Analysis

Market Basket Analysis

Machine Learning algorithms

Elements of Reinforcement Learning

Agent: A robot / system/ a game player - capable of taking action

Environment: The universe the agent interacts with. Could be rules of a game for game playing, or other objects on road for a self driving car.

Policy: Defines the learning agent's way of behaving at a given time & environmental conditions.

Reward signal: Defines the goal in a reinforcement learning problem. On each time step, the environment sends to the reinforcement learning agent a single number, a *reward*. The agent's sole objective is to maximize the total reward it receives over the long run.

Value function: Specifies what is good in the long run. The value of a state is the total amount of reward an agent can expect to accumulate over the future, starting from that state. Whereas rewards determine the immediate, intrinsic desirability of environmental states

Reinforcement learning algorithms try to find the best ways to earn the greatest reward. Rewards can be winning a game, earning more money or beating other opponents. They present state-of-art results on very human task

In a nutshell, it is used to determine how to navigate uncertain environments in the most effective way.

Quick 1

- · Labeled data
- · Direct feedback
- · Predict outcome/future

- No labels
- · No feedback
- · "Find hidden structure"

- Decision process
- · Reward system
- Learn series of actions
 Algorithm learns to react to an environment

Source: https://www.saagie.com/blog/machine-learning-pour-les-grand-meres

Machine Learning in our Daily Lives

SPAM FILTERING

WEB SEARCH

POSTAL MAIL ROUTING

FRAUD DETECTION

MOVIE RECOMMENDATIONS

VEHICLE DRIVER ASSISTANCE

WEB ADVERTISEMENTS

SOCIAL NETWORKS

SPEECH RECOGNITION

Training and Testing Data

Using the dataset for training

Training Set: Data used during the training process.

Test Set: Data used to measure performance, simulating unseen data*.

sepal length	sepal width	petal length	petal width	species
6.7	3.0	5.2	2.3	virginica
6.4	2.8	5.6	2.1	virginica
4.6	3.4	1.4	0.3	setosa
6.9	3.1	4.9	1.5	versicolor
4.4	2.9	1.4	0.2	setosa
4.8	3.0	1.4	0.1	setosa
5.9	3.0	5.1	1.8	virginica
5.4	3.9	1.3	0.4	setosa
4.9	3.0	1.4	0.2	setosa
5.4	3.4	1.7	0.2	setosa

Training Set

Testing Set

*Not used during the training process.

Curve Fitting Problem(Over & Under fit)

Problem: Unseen data isn't available during training.

How can performance be estimated?

When measuring performance on the training data, there is a tendency to overfit.

Deep Learning

Neural Networks

Neural Networks: Algorithms that try to mimic Human brain, was widely used in 80's and early 90's and popularity diminished in late 90's. Recent resurgence due to availability of Compute and Data.

DEEP LEARNING

Deep Learning, refers to training Neural Networks, sometimes very large Neural Networks.

What is Deep Neural Network?

logistic regression

1 hidden layer

2 hidden layers

5 hidden layers

Why is Deep learning required

Machine Learning

Deep Learning

FEATURE REPRESENTATION FOR IMAGES IS

COMPLEX

- Consider a face image of size 200 x 200 pixels
- A color (RGB) image has three channels
- Total pixels in the image are 200 x 200 x 3
- Feature extraction and representation from 120000 pixels per image becomes exceedingly complex
- Too many combinations to consider when trying to hand-craft features from so many pixels manually for machine learning

MANUAL FEATURE Extraction FOR IMAGES IS COMPLEX

E, E1: outer corner of the eyebrow

D, D1: inner corner of the evebrow

A, A1: outer corner of the eye

B, B1: inner corner of the eye

F, F1: top of the eye

G, G1: bottom of the eye

H, H1: outer corner of the nostril

K: top of the upper lip

L: bottom of the lower lip

I, J: mouth corner

M: tip of the chin

P1: top of the forehead

P2: eyebrow arcade

P3: root of the nose

P4: tip of the nose

P5: upper jaw

P6: upper lip

P7: lips attachment (if tongue is visible:

P7: tongue-lip attachment

P7': tip of the tongue

P7": tongue-lip attachment)

P8: lower lip P9: lower jaw

P10: tip of the chin

DEEP LEARNING ENABLES AUTOMATED FEATURE EXTRACTION with ease

Deep neural networks learn hierarchical feature representations

Classification and Detection

Detect and label the image

- Person
- Motor Bike

Speech Recognition and Language Translation

The same architecture is used for English and Mandarin Chinese speech recognition

Scale drives deep learning progress

