

Ayudantía 9

Problema 1

Considere la función $f:\left\{(x,y)\in\mathbb{R}^2:x\neq0\right\}\to\mathbb{R}$ dada por la ecuación

$$f(x,y) = (x^2 + y^2) \arctan\left(\frac{y}{x}\right).$$

¿Es posible extender f de tal forma que sea continua en (0,1)?

Problema 2

Sea $f: \mathbb{R}^2 \to \mathbb{R}$ dada por la ecuación

$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y} & \text{si } x^2 \neq -y \\ 0 & \text{si } x^2 = -y \end{cases}.$$

Hallar $\frac{\partial f}{\partial x}$ y $\frac{\partial f}{\partial y}$ en todos los puntos que estas existan.

Problema 3

1) Determine para la siguiente función, si es que existe, $f_x(0,0)$:

$$f(x,y) = \sqrt[3]{x^3 + y^3}$$

Problema 4

En este problema se revisa la aplicación del teorema de Clairaut.

• Compruebe que las conclusiones del teorema son correctas para $u=e^{xy}\sin{(y)}$.

• Para la función:

$$f(x,y) = \begin{cases} \frac{x^3y - xy^3}{x^2 + y^2} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0) \end{cases}$$

Encuentre las derivadas parciales en todo \mathbb{R}^2 y las derivadas parciales cruzadas de segundo orden en (0,0). ¿Qué se puede decir sobre la conclusión del teorema de Clairaut?

Problema 5

Un estudio demostró que la temperatura en el suelo durante el año se puede modelar por:

$$T(x,t) = T_0 + T_1 e^{-\lambda x} \sin(\omega t - \lambda x)$$

Con t en días y x la profundidad.

- Encuentre $\frac{\partial T}{\partial x}$ y $\frac{\partial T}{\partial t}$. ¿Qué representan?
- Muestre que la función satisface la ecuación del calor $T_t = kT_{xx}$, para alguna constante k.

Problema 6 **

Sean $I = (t_0, t_1)$ y J = (a, b) intervalos (no necesariamente acotados), y $f: I \times J \to \mathbb{R}$ una función continua y acotada tal que

- 1. Para todo $x \in J$, f(t,x) es derivable con respecto a la primera variable en todo $t \in I$.
- 2. Existe una función continua y no-negativa $g: J \to \mathbb{R}$ tal que $\int_a^b g(x) dx < \infty$ y $|\frac{\partial f}{\partial t}(t,x)| \leq g(x)$ para todo $t \in I, x \in J$.

Entonces, es posible demostrar que

$$\frac{d}{dt} \int_a^b f(t,x) \, dx = \int_a^b \frac{\partial f}{\partial t}(t,x) \, dx .$$

Use este hecho para calcular las siguientes integrales:

a)
$$\int_0^\infty x^n e^{-x} dx$$
. Hint: defina $f(t, x) = e^{-tx}$.

$$b) \qquad \int_0^1 \frac{x^2 - 1}{\ln(x)} \, dx$$

c)
$$\int_{-\infty}^{\infty} \operatorname{sinc}(x) dx , \text{ donde } \operatorname{sinc}(x) = \frac{\sin(x)}{x} \text{ para todo } x \neq 0 \text{ y } \operatorname{sinc}(0) = 0.$$