10

15

20

25

30

Claims

 An organic semiconducting layer formulation, which comprises: an organic binder which has a permittivity, ε, at 1,000 Hz of 3.3 or less; and a polyacene compound of Formula A:

$$R_9$$
 R_7
 R_8
 R_7
 R_8
 R_8
 R_8
 R_8

Formula A

wherein:

each of R_1 , R_2 , R_3 , R_4 , R_5 , R_6 , R_7 , R_8 , R_9 , R_{10} , R_{11} and R_{12} , which may be the same or different, independently represents hydrogen; an optionally substituted C_1 - C_{40} carbyl or hydrocarbyl group; an optionally substituted C_1 - C_{40} alkoxy group; an optionally substituted C_6 - C_{40} aryloxy group; an optionally substituted C_7 - C_{40} alkoxycarbonyl group; an optionally substituted C_7 - C_{40} aryloxycarbonyl group; a cyano group (-CN); a carbamoyl group (-C(=O)NH₂); a haloformyl group (-C(=O)-X, wherein X represents a halogen atom); a formyl group (-C(=O)-H); an isocyano group; an isocyanate group; a thiocyanate group or a thioisocyanate group; an optionally substituted amino group; a hydroxy group; a nitro group; a CF_3 group; a halo group (CI, Br, F); or an optionally substituted silyl group; and wherein independently each pair of R_2 and R_3 and/or R_8 and R_9 , may be cross-

wherein independently each pair of R_2 and R_3 and/or R_8 and R_8 , may be cross-bridged to form a C_4 - C_{40} saturated or unsaturated ring, which saturated or unsaturated ring may be intervened by an oxygen atom, a sulphur atom or a group shown by formula -N(R_8)- (wherein R_8 is a hydrogen atom or an optionally substituted hydrocarbon group), or may optionally be substituted; and

wherein one or more of the carbon atoms of the polyacene skeleton may optionally be substituted by a heteroatom selected from N, P, As, O, S, Se and Te; and wherein independently any two or more of the substituents R_1 - R_{12} which are located on adjacent ring positions of the polyacene may, together, optionally constitute a further C_4 - C_{40} saturated or unsaturated ring optionally interrupted by

constitute a further C_4 - C_{40} saturated or unsaturated ring optionally interrupted by O, S or -N(R_a) where R_a is as defined above) or an aromatic ring system, fused to the polyacene; and wherein

n is 0, 1, 2, 3 or 4.

2. An organic semiconducting layer formulation as claimed in claim 1 wherein the

polyacene compound is selected from Compound Groups 1 or 8 or isomers thereof wherein:

compound Group 1 is represented by Formula 1:

Formula 1

and

5

10

15

20

25

compound Group 8 is represented by Formula 8:

Formula 8

wherein, R_8 and R_{13} in Group 1 and R_1 , R_2 , R_3 , R_4 , R_8 , R_9 , R_{10} , R_{11} , R_{15} , R_{18} , R_{17} and R_{18} , in Group 8 are each independently the same or different and each independently represents: H; an optionally substituted C₁-C₄₀ carbyl or hydrocarbyl group; an optionally substituted C₁-C₄₀ alkoxy group; an optionally substituted C₆-C₄₀ aryloxy group; an optionally substituted C7-C40 alkylaryloxy group; an optionally substituted C2-C40 alkoxycarbonyl group; an optionally substituted C₇-C₄₀ aryloxycarbonyl group; a cyano group (-CN); a carbamoyl group (-C(=O)NH₂); a haloformyl group (-C(=O)-X, wherein X represents a halogen atom); a formyl group (-C(=O)-H); an isocyano group; an isocyanate group; a thiocyanate group or a thioisocyanate group; an optionally substituted amino group; a hydroxy group; a nitro group; a CF₃ group; a halo group (Cl, Br, F); or an optionally substituted silyl group; and wherein independently each pair of R₁ and R₂, R₂ and R_3 , R_3 and R_4 , R_8 and R_9 , R_9 and R_{10} , R_{10} and R_{11} , R_{15} and R_{18} and R_{18} and R_{17} may be cross-bridged with each other to form a C₄-C₄₀ saturated or unsaturated ring, which saturated or unsaturated ring may be intervened by an oxygen atom, a sulphur atom or a group shown by formula: $-N(R_a)$ - (wherein R_a is a hydrogen atom or a hydrocarbon group), or may optionally be substituted; and wherein A represents Silicon or Germanium.

15

25

- 3. An organic semiconducting layer formulation as claimed in claim 1 or 2 wherein n is 0 or 2.
- 4. An organic semiconducting layer formulation as claimed in claim 3 wherein n is 2.
- 5. An organic semiconducting layer formulation as claimed in any of the preceding claims wherein the optionally substituted C_{1} - C_{40} hydrocarbyl group is a saturated or unsaturated acyclic group, or a saturated or unsaturated cyclic group.
- An organic semiconducting layer formulation as claimed in any of preceding claims
 to 5 wherein the polyacene compound is 6, 13-bis(triisopropylsilylethynyl)pentacene of
 Formula 1,

Formula 1

An organic semiconducting layer formulation as claimed in any of preceding claims
 1 to 5 wherein the polyacene compound is 2,3,9,10-tetramethyl,6,13-bis
 (triisopropylsilylethynyl)pentacene of Formula 2:

Formula 2

8. An organic semiconducting layer formulation as claimed in any of preceding 1 to 5 wherein the polyacene compound of Formula 3:

20

Formula 3

wherein n and m is each independently 0,1, 2, 3 or 4, more preferably 0,1 or 2;

- 9. An organic semiconducting layer formulation as claimed in any of the preceding claims wherein the organic binder resin has a permittivity at 1,000 Hz of less than 3.0, preferably 2.9 or less.
- 10. An organic semiconducting layer formulation as claimed in claim 10 wherein the organic binder resin has a permittivity at 1,000 Hz greater than 1.7, especially a permittivity from 2.0 to 2.9.
 - 11. An organic semiconducting layer formulation as claimed in any one preceding claim wherein the organic binder resin is an insulating binder.
 - 12. An organic semiconducting layer formulation as claimed in claim 11 wherein the insulating binder is selected from $poly(\alpha-methylstyrene)$, polyvinylcinnamate, poly(4-vinylbiphenyl), poly(4-methylstyrene) and $Topas^{TM}$ 8007, more preferably $poly(\alpha-methylstyrene)$, polyvinylcinnamate and poly(4-vinylbiphenyl).
 - 13. An organic semiconducting layer formulation as claimed in any of claims 1 to 10 wherein the organic binder resin is a semiconductor binder.
- 14. An organic semiconducting layer formulation as claimed in claim 13 wherein the semiconductor binder comprises a number average molecular weight (M_n) of at least 1500-2000, more preferably at least 3000, even more preferably at least 4000 and most preferably at least 5000.
- 15. An organic semiconducting layer formulation as claimed in claims 13 or 14 wherein the semiconductor binder is selected from poly(9-vinylcarbazole) or PTAA1.

20

25

- 16. An organic semiconducting layer formulation as claimed in any of the preceding claims wherein the formulation further comprises a solvent.
- 17. An organic semiconducting layer formulation as claimed in any of the preceding claims wherein the solvent is selected from xylene(s), toluene, tetralin and odichlorobenzene.
 - 18. An organic semiconducting layer formulation as claimed in any of the preceding claims wherein the ratio of polyacence compound to binder is 20:1 to 1:20 by weight, preferably 10:1 to 1:10 more preferably 5:1 to 1:5, still more preferably 3:1 to 1:3 further preferably 2:1 to 1:2 and especially 1:1.
- 19. An organic semiconducting layer formulation as claimed in any of the preceding claims which comprises a solids content of 0.1 to 10% more preferably 0.5 to 5% by weight.
 - 20. A process for preparing an organic semiconducting layer formulation as claimed in any of the preceding claims which comprises: (i) depositing on a substrate a liquid layer of a mixture which comprises the polyacene compound, the organic binder resin or precursor thereof and optionally a solvent, and (ii) forming from the liquid layer a solid layer which is the organic semiconducting layer.
 - 21. An electronic device comprising an organic semiconducting layer formulation as claimed in any of preceding claims 1 to 19.
 - 22. An electronic device according to claim 21 which comprises a field effect transistor (FET), organic light emitting diode (OLED), photodetector, chemical detector, photovoltaic cell (PVs), capacitor sensor, logic circuit, display or memory device.
- 30 23. An OFET device comprising an organic semiconducting layer formulation wherein the organic semiconducting layer formulation comprises:
 - a compound of Formula 1;
 - a binder; and
 - a solvent,

10

15

20

Formula 1

wherein the binder is selected from $poly(\alpha-methylstyrene)$, $Topas^{TM}$ 8007, poly(4-methylstyrene), polystyrene and polystyrene-co- α -methylstyrene, most preferably $poly(\alpha-methylstyrene)$; and the solvent is selected from toluene, ethylcyclohexane, anisole and p-xylene; most preferably toluene.

24. An OFET device comprising an organic semiconducting layer formulation wherein the organic semiconducting layer formulation comprises:

a compound of Formula 2;

a binder; and

a solvent,

Formula 2

wherein the binder is selected from $poly(\alpha$ -methylstyrene), polyvinylcinnamate, and poly(4-vinylbiphenyl), most preferably $poly(\alpha$ -methylstyrene); and the solvent is 1,2-dichlorobenzene.

25. An OFET device comprising an organic semiconducting layer formulation wherein the organic semiconducting layer comprises:

a compound of Formula 3;

a binder; and

a solvent,

wherein:

5

n and m are each independently 0,1, 2, 3 or 4, more preferably 0,1 or 2; and the binder is $poly(\alpha\text{-methylstyrene})$; and the solvent is toluene.

26. A compound of Formula 3

wherein n and m are each independently 1 or 3, more preferably 1.