第四章

例 4.13

一浮点数表示格式为: 12 位浮点数,阶码 4 位,包含 1 位阶符,尾数 8 位,包含 1 位数符,用补码表示,阶码在前,尾数(包括数符)在后,已知:

$$X=(-0.1001011) \times 2^{001} Y=0.1100101 \times 2^{-010}$$
 求 $Z=X+Y$ 。

解:按照浮点数的格式分别写出它们的表示形式,为计算方便,阶码和尾数均采用双符号位:

$$[X]_{\mathbb{F}} = 00, 001 11.0110101$$

 $[Y]_{\mathbb{F}} = 11, 110 00.1100101$

(1) 对阶

$$\Delta E=E_X-E_Y=[E_X]_{lambda+}[-E_Y]_{lambda+}=00$$
, $001+00$, $010=00$, 011 $\Delta E=3>0$, 则 $E_Y, 将 M_Y 右移 3 位, E_Y 加 3: $[Y]_{\coloredge}=00$, 001 00.0001100 $(101)$$

(2) 尾数相加

$$\begin{array}{cccc} & & & & & & & & \\ & & [M_X]_{\frac{1}{7}h} & & & & & & \\ + & [M_Y]_{\frac{1}{7}h} & & & & & & \\ \hline [M_X + M_Y]_{\frac{1}{7}h} & & & & & \\ \end{array} \quad \begin{array}{cccc} & & & & & \\ & & & & & \\ \end{array}$$

$$[M_Z]_{?} = 11.1000001 (101)$$

(3) 结果规格化

左规一位,阶码减1;无溢出:

$$[M_Z]_{\frac{1}{2}} = 11.0000011 (01)$$
 $[E_Z]_{\frac{1}{2}} = 00, 001 + 11, 111 = 00, 000$

(4) 舍入

按照0舍1入法,尾数多余位舍去,结果为:

$$[Z]_{\text{pp}} = 0$$
, 000 1.0000011

例 4.14

一浮点数表示格式为: 10 位浮点数,阶码 4 位,包含 1 位阶符,用移码表示,尾数 6 位,包含 1 位数符,用补码表示,阶码在前,尾数(包括数符)在后,已知: $X=(-0.11001)\times 2^{011}$ Y= 0.10011×2^{-001} ,求 $Z=X\cdot Y$ 。要求阶码用移码计算,尾数用补码 Booth 算法计算。

解:按照浮点数的格式分别写出它们的表示形式,为计算方便,阶码采用双符号位移码,尾数采用双符号位补码:

$$[X]_{\mathbb{F}} = 01, 011 \quad 11.00111$$

 $[Y]_{\mathbb{F}} = 00, 111 \quad 00.10011$

(1) 阶码相加

$$[E_Z]_{\emptyset} = [E_X]_{\emptyset} + [E_Y]_{\mathring{\wedge}} = 01, 011 + 11, 111 = 01, 010$$
结果无溢出, $[E_Z]_{\emptyset} = 1, 010$ 。

(2) 尾数相乘

采用补码 Booth 算法计算 $[M_X \cdot M_Y]_{i}$,首先写出下例数据:

$$\begin{split} [M_X]_{\nmid\!\!\!\!\uparrow} &= 11.00111 \quad [M_Y]_{\nmid\!\!\!\uparrow} = 0.10011 \\ [-M_X]_{\nmid\!\!\!\!\uparrow} &= 00.11001 \end{split}$$

部分积	乘数Y (Y _n Y _{n+1})	操作说明
00.00000	0.1 0 0 1 <u>1 0</u>	$Y_5Y_6=10$, $+[-X]_{i}$
$+\ 00.11001$		
00.11001		
00.01100	1 0.1 0 0 <u>1 1</u>	右移一位
+ 00.00000		$Y_4Y_5=11$, +0
00.01100		
00.00110	0 1 0. 1 0 <u>0 1</u>	右移一位
+ 11.00111		$Y_3Y_4=01$, $+[X]_{h}$
11.01101		
11.10110	1 0 1 0. 1 <u>0 0</u>	右移一位
+ 00.00000		$Y_2Y_3=00, +0$
11.10110		
11.11011	0 1 0 1 0. <u>1 0</u>	右移一位
+ 00.11001		$Y_1Y_2=10$, $+[-X]_{\hat{k}}$
00.10100		2 2 2 3 11
00.01010	0 0 1 0 1 <u>0. 1</u>	右移一位
+ 11.00111		$Y_0Y_1=01$, $+[X]_{i}$
11.10001	0 0 1 0 1	

 $[M_Z]_{\mbox{\tiny k}} = 1.10001 \ 00101$

(3) 结果规格化

 M_z 左规一次得: $[M_z]_{\mbox{\tiny k}}=1.00010$ 01010 E_z 减 1 得: $[E_z]_{\mbox{\tiny k}}=01$, 010 + 11, 111 = 01, 001

(4) 舍入

对尾数 M_z 进行 0 舍 1 入,最后得 $[Z]_{\mathbb{F}}=1$,001 1.00010

对于例 4.13 中的浮点数 X 和 Y,求 $Z=X\div Y$ 。要求阶码用移码计算,尾数用原码加减交替除法计算。

解:按照浮点数的格式分别写出它们的表示形式为:

$$[X]_{\mathbb{F}} = 1$$
, 011 1.00111
 $[Y]_{\mathbb{F}} = 0$, 111 0.10011

(1) 阶码相减

$$\begin{split} [E_Z]_{i\!\!/\!\!\!\!/} &= [E_X]_{i\!\!/\!\!\!\!/} + [-E_Y]_{i\!\!/\!\!\!\!/} = 01, \ 011 + 00, \ 001 = 01, \ 100 \\ & \qquad \qquad \underbrace{ \begin{bmatrix} E_X \end{bmatrix}_{i\!\!/\!\!\!\!/} \quad 01, \ 011 \\ + \quad [-E_Y]_{i\!\!/\!\!\!\!/} \quad 00, \ 001 }_{ \begin{bmatrix} E_X + E_Y \end{bmatrix}_{i\!\!/\!\!\!\!/}} \quad 01, \ 100 \end{split}$$

(2) 尾数相除

采用原码加减交替法计算 $|M_X|$ ÷ $|M_Y|$,首先写出下例数据:

 $|M_Z| = |M_X| \div |M_Y| = 1.01010$

(3) 结果规格化

由于 $|M_X| > |M_Y|$,所以 $|M_Z| > 1$,必须右规一位,得 $|M_Z| = 0.10101$ 0 E_Z 加 1 得: $[E_Z]_{\Re} = 01$,100 + 00,001 = 01,101

(4) 舍入

对 $|M_z|$ 进行 0 舍 1 入,得 $|M_z|$ = 0.10101 $[M_z]_{\text{原}}$ = 1.10101 $[M_z]_{\text{孙}}$ = 1.01011 最后: $[Z]_{\text{浮}}$ = 1, 101 1.01011