集合的基数

School of Computer Wuhan University

内容

- 可数集合和不可数集合
 - 自然数的定义
 - 等势
 - 有限集和无限集
 - 可数集
 - 不可数集

集合的基数

基数

- 从一到无穷大
- 一一对应——双射

基数

- 从一到无穷大
- 一一对应——双射

定义-后继集合

• 任意集合S的后继集合定义为: $S^+ = S \cup \{S\}$

- $\bullet \ \{a,b\}^+ = \{a,b\} \cup \{\{a,b\}\} = \{a,b,\{a,b\}\}$
- $(\varnothing^+)^+ = \{\varnothing\}^+ = \{\varnothing\} \cup \{\{\varnothing\}\} = \{\varnothing, \{\varnothing\}\}\}$
-

定义-后继集合

任意集合S的后继集合定义为: S⁺ = S∪ {S}

$$\bullet \ \{a,b\}^+ = \{a,b\} \cup \{\{a,b\}\} = \{a,b,\{a,b\}\}$$

$$\bullet \varnothing^+ = \varnothing \cup \{\varnothing\} = \{\varnothing\}$$

•
$$(\varnothing^+)^+ = \{\varnothing\}^+ = \{\varnothing\} \cup \{\{\varnothing\}\} = \{\varnothing, \{\varnothing\}\}\}$$

定义-后继集合

• 任意集合S的后继集合定义为: $S^+ = S \cup \{S\}$

- $\bullet \ \{a,b\}^+ = \{a,b\} \cup \{\{a,b\}\} = \{a,b,\{a,b\}\}$
- $\bullet \varnothing^+ = \varnothing \cup \{\varnothing\} = \{\varnothing\}$
- $(\varnothing^+)^+ = \{\varnothing\}^+ = \{\varnothing\} \cup \{\{\varnothing\}\} = \{\varnothing, \{\varnothing\}\}\}$
-

定义-后继集合

• 任意集合S的后继集合定义为: $S^+ = S \cup \{S\}$

- $\bullet \ \{a,b\}^+ = \{a,b\} \cup \{\{a,b\}\} = \{a,b,\{a,b\}\}$
- $\bullet \varnothing^+ = \varnothing \cup \{\varnothing\} = \{\varnothing\}$
- $(\varnothing^+)^+ = \{\varnothing\}^+ = \{\varnothing\} \cup \{\{\varnothing\}\} = \{\varnothing, \{\varnothing\}\}\}$
-

定义-后继集合

任意集合S的后继集合定义为: S⁺ = S∪ {S}

$$\bullet \ \{a,b\}^+ = \{a,b\} \cup \{\{a,b\}\} = \{a,b,\{a,b\}\}$$

$$\bullet \varnothing^+ = \varnothing \cup \{\varnothing\} = \{\varnothing\}$$

•
$$(\varnothing^+)^+ = \{\varnothing\}^+ = \{\varnothing\} \cup \{\{\varnothing\}\} = \{\varnothing, \{\varnothing\}\}\}$$

自然数的构造

公理

存在集合N满足以下条件:

- $\mathbf{0} \ \varnothing \in \mathbb{N};$
- ② if $n \in \mathbb{N}$, $n \cup \{n\} \in \mathbb{N}$.

Table: 自然数集合

集合	编号
Ø	0
$\{\varnothing\}$	1
$\{\varnothing,\{\varnothing\}\}$	2
	n
$n \cup \{n\}$	n + 1

自然数的构造

公理

存在集合N满足以下条件:

- $\mathbf{0} \ \varnothing \in \mathbb{N};$

Table: 自然数集合

集合	编号
Ø	0
$\{\varnothing\}$	1
$\{\varnothing,\{\varnothing\}\}$	2
	n
$n \cup \{n\}$	n + 1

Peano自然数公理

- $\mathbf{0} \in \mathbb{N}$:
- ② 如果 $n \in \mathbb{N}$,则存在惟一的n的后继 $n' \in \mathbb{N}$; (后继惟一性)
- ③ 0不是任何自然数的后继;
- 如果n' = m',那么n = m; (直接前驱惟一性)

- 常以②和④来检验一个序列有没有"自然数性质",如:
- 序列 0,1,2,3,4,5,.....
- 序列 0, 2, 4, 6,, 1, 3, 5, 7,

Peano自然数公理

- $0 \in \mathbb{N}$:
- ② 如果 $n \in \mathbb{N}$,则存在惟一的n的后继 $n' \in \mathbb{N}$; (后继惟一性)
- ③ 0不是任何自然数的后继;
- 如果n' = m',那么n = m; (直接前驱惟一性)

- 常以②和④来检验一个序列有没有"自然数性质",如:
- 序列 0,1,2,3,4,5,.....
- 序列 0, 2, 4, 6,, 1, 3, 5, 7,

Peano自然数公理

- $0 \in \mathbb{N}$:
- ② 如果 $n \in \mathbb{N}$,则存在惟一的n的后继 $n' \in \mathbb{N}$; (后继惟一性)
- 3 0不是任何自然数的后继;
- ① 如果n' = m', 那么n = m; (直接前驱惟一性)

- 常以②和④来检验一个序列有没有"自然数性质",如:
- 序列 0,1,2,3,4,5,.....
- 序列 0,2,4,6,.....,1,3,5,7,.....

Peano自然数公理

- $0 \in \mathbb{N}$:
- ② 如果 $n \in \mathbb{N}$,则存在惟一的n的后继 $n' \in \mathbb{N}$; (后继惟一性)
- ③ 0不是任何自然数的后继;
- 如果n' = m',那么n = m; (直接前驱惟一性)

- 常以②和④来检验一个序列有没有"自然数性质",如:
- 序列 0,1,2,3,4,5,.....
- 序列 0, 2, 4, 6,, 1, 3, 5, 7,

Peano自然数公理

- $0 \in \mathbb{N}$:
- ② 如果 $n \in \mathbb{N}$,则存在惟一的n的后继 $n' \in \mathbb{N}$; (后继惟一性)
- ③ 0不是任何自然数的后继;
- 如果n' = m',那么n = m; (直接前驱惟一性)

- 常以❷和母来检验一个序列有没有"自然数性质",如:
- 序列 0,1,2,3,4,5,.....
- 序列 0, 2, 4, 6,, 1, 3, 5, 7,

Peano自然数公理

- $\mathbf{0} \in \mathbb{N}$:
- ② 如果 $n \in \mathbb{N}$,则存在惟一的n的后继 $n' \in \mathbb{N}$; (后继惟一性)
- ③ 0不是任何自然数的后继;
- 如果n' = m',那么n = m; (直接前驱惟一性)

- 常以2和4来检验一个序列有没有"自然数性质",如:
- 序列 0,1,2,3,4,5,.....
- 序列 0, 2, 4, 6,, 1, 3, 5, 7,

Peano自然数公理

- $\mathbf{0} \in \mathbb{N}$:
- ② 如果 $n \in \mathbb{N}$,则存在惟一的n的后继 $n' \in \mathbb{N}$; (后继惟一性)
- ③ 0不是任何自然数的后继;
- 如果n' = m',那么n = m; (直接前驱惟一性)

- 常以❷和母来检验一个序列有没有"自然数性质",如:
- 序列 0,1,2,3,4,5,.....
- 序列 0,2,4,6,.....,1,3,5,7,.....

自然数的大于和小于

定义-小于

• $\overline{a}m, n \in \mathbb{N}$, 使得 $m \in n$, 则称 $m \rightarrow Tn$ (或n大于m), 记为 m < n (or: n > m).

定义-自然数初始段

• 集合 $\mathbb{N}_n = \{0, 1, 2, ..., n-1\}$, 称为自然数的前n初始段。

自然数的大于和小于

定义-小于

• $\overline{A}m, n \in \mathbb{N}$,使得 $m \in n$,则称m小于n(或n大于m),记为m < n (or: n > m).

定义-自然数初始段

- 定义:集合A和集合B等势,iff,集合A和B之间存在双射,记为 $A \sim B$;否则,称集合A,B不等势,记为 $A \sim B$.
- 等势关系是一个等价关系。

- 例: 试证明: 集合(-1,1)与 $(-\infty,\infty)$ 等势。

- 定义:集合A和集合B等势,iff,集合A和B之间存在双射,记为 $A \sim B$;否则,称集合A,B不等势,记为 $A \sim B$.
- 等势关系是一个等价关系。

- 例: 试证明: 集合(-1,1)与 $(-\infty,\infty)$ 等势。

- 定义: 集合A和集合B等势, iff, 集合A和B之间存在双射, 记为 $A \sim B$; 否则, 称集合A, B不等势, 记为 $A \sim B$.
- 等势关系是一个等价关系。

- 例: 试证明: 集合(-1,1)与 $(-\infty,\infty)$ 等势。

- 定义:集合A和集合B等势,iff,集合A和B之间存在双射,记为 $A \sim B$;否则,称集合A,B不等势,记为 $A \sim B$.
- 等势关系是一个等价关系。

- 例: 试证明: 集合(-1,1)与 $(-\infty,\infty)$ 等势。
- 证: 令 $f: (-1,1) \to (-\infty,\infty), f(x) = tan(\frac{\pi}{2}x)$ $\forall y \in (-\infty,\infty), x = arctan(y) * \frac{2}{\pi}, f(x) = y :: f是满射;$ 又, :: 若 $x_1 \neq x_2$, 则 $f(x_1) = tan(\frac{\pi}{2}x_1) \neq tan(\frac{\pi}{2}x_2) = f(x_2),$:: f是单射:

定义-等势

● 定义:集合A和集合B等势,iff,集合A和B之间存在双射,

记为 $A \sim B$: 否则、称集合A. B不等势、记为 $A \sim B$.

• 等势关系是一个等价关系。

例

- 例: 试证明: 集合(-1,1)与 $(-\infty,\infty)$ 等势。
- $\mathrm{i} \mathbf{L}$: $\diamondsuit f: (-1,1) \to (-\infty,\infty), f(x) = \tan(\frac{\pi}{2}x)$

$$\forall y \in (-\infty, \infty), x = arctan(y) * \frac{2}{\pi}, f(x) = y : f \not\in \mathbf{A}\mathbf{h};$$

又, \therefore 若 $x_1 \neq x_2$, 则 $f(x_1) = tan(\frac{\pi}{2}x_1) \neq tan(\frac{\pi}{2}x_2) = f(x_2)$, \therefore f是单射:

- 定义:集合A和集合B等势,iff,集合A和B之间存在双射,记为 $A \sim B$;否则,称集合A,B不等势,记为 $A \sim B$.
- 等势关系是一个等价关系。

- 例: 试证明: 集合(-1,1)与 $(-\infty,\infty)$ 等势。

定义-有限集和无限集

• 集合A为有限集,iff, $\exists n \in \mathbb{N}$,使得 $\mathbb{N}_n \sim A$,称集合A的基数为n,记为|A|=n;反之,集合A称为无限集。

例

- 例: 试证明自然数集N是无限集。
- 证明: (反证法)

设 \mathbb{N} 为有限集,则 $\exists f: \mathbb{N}_n \to \mathbb{N}, (n \in \mathbb{N}), 是双射,$

- :.f不是满射,与f是双射矛盾。
- 广自然数集N是无限集。

定义-有限集和无限集

• 集合A为有限集,iff, $\exists n \in \mathbb{N}$,使得 $\mathbb{N}_n \sim A$,称集合A的基数为n,记为|A|=n;反之,集合A称为无限集。

例

- 例: 试证明自然数集N是无限集。
- 证明: (反证法)

设 \mathbb{N} 为有限集,则 $\exists f: \mathbb{N}_n \to \mathbb{N}, (n \in \mathbb{N}), 是双射,$

- :.f不是满射,与f是双射矛盾。
- 广自然数集N是无限集。

定义-有限集和无限集

• 集合A为有限集,iff, $\exists n \in \mathbb{N}$,使得 $\mathbb{N}_n \sim A$,称集合A的基数为n,记为|A|=n;反之,集合A称为无限集。

例

- 例: 试证明自然数集N是无限集。
- 证明: (反证法)

设 \mathbb{N} 为有限集,则 $\exists f: \mathbb{N}_n \to \mathbb{N}, (n \in \mathbb{N})$,是双射,设 $k \in \max(f(0),...,f(n-1))+1$,则 $k \in \mathbb{N}$,但不存在×使f(x)=k,

- :.f不是满射,与f是双射矛盾。
- 二自然数集N是无限集。

定义-有限集和无限集

• 集合A为有限集,iff, $\exists n \in \mathbb{N}$,使得 $\mathbb{N}_n \sim A$,称集合A的基数为n,记为|A|=n;反之,集合A称为无限集。

例

- 例: 试证明自然数集№是无限集。
- 证明: (反证法)

设 \mathbb{N} 为有限集,则 $\exists f: \mathbb{N}_n \to \mathbb{N}, (n \in \mathbb{N}),$ 是双射,

- :.f不是满射,与f是双射矛盾。
- 二自然数集N是无限集。

定义-有限集和无限集

• 集合A为有限集,iff, $\exists n \in \mathbb{N}$,使得 $\mathbb{N}_n \sim A$,称集合A的基数为n,记为|A|=n;反之,集合A称为无限集。

例

- 例: 试证明自然数集N是无限集。
- 证明: (反证法)

设 \mathbb{N} 为有限集,则 $\exists f: \mathbb{N}_n \to \mathbb{N}, (n \in \mathbb{N}),$ 是双射,

- :.f不是满射,与f是双射矛盾。
- :自然数集N是无限集。

定义-有限集和无限集

• 集合A为有限集, iff, $\exists n \in \mathbb{N}$, 使得 $\mathbb{N}_n \sim A$, 称集合A的基 数为n,记为|A|=n;反之,集合A称为无限集。

例

- 例: 试证明自然数集N是无限集。
- 证明: (反证法)

设N为有限集、则 $\exists f: \mathbb{N}_n \to \mathbb{N}, (n \in \mathbb{N})$,是双射、

设 $k \in \max(f(0), ..., f(n-1)) + 1$, 则 $k \in \mathbb{N}$, 但不存在x使 f(x) = k

- : f不是满射,与f是双射矛盾。

定义-有限集和无限集

• 集合A为有限集,iff, $\exists n \in \mathbb{N}$,使得 $\mathbb{N}_n \sim A$,称集合A的基数为n,记为|A|=n;反之,集合A称为无限集。

- 例: 试证明自然数集N是无限集。
- 证明: (反证法) 设 \mathbb{N} 为有限集,则 $\exists f: \mathbb{N}_n \to \mathbb{N}, (n \in \mathbb{N}), \mathbb{Z}$ 及射, 设 $k \in max(f(0), ..., f(n-1)) + 1$,则 $k \in \mathbb{N}$,但不存在x使 f(x) = k,
 - ∴f不是满射,与f是双射矛盾。
 - :自然数集N是无限集。

有限集和无限集的性质

性质

- 任何有限集都不能与其真子集等势。
- 任何无限集都能与其真子集等势。
- 有限集的子集都是有限集。
- 无限集的父集一定是无限集。

性质

- 任何有限集都不能与其真子集等势。
- 任何无限集都能与其真子集等势。
- 有限集的子集都是有限集。
- 无限集的父集一定是无限集。

性质

- 任何有限集都不能与其真子集等势。
- 任何无限集都能与其真子集等势。
- 有限集的子集都是有限集。
- 无限集的父集一定是无限集。

性质

- 任何有限集都不能与其真子集等势。
- 任何无限集都能与其真子集等势。
- 有限集的子集都是有限集。
- 无限集的父集一定是无限集。

有限集的子集都是有限集。

Proof

● 证: 设A是有限集, $C \subseteq A$, 分两种情况:

若C是∅,则C是有限集;

若C非空,则A也非空,可将A中的元素列为:

现构造一个双射函数 $g: \mathbb{N}_i \to C, (j \in \mathbb{N}),$ 算法如下:

- 0 i = 0, i = 0
- ② 检查 a_i 是否在子集C中,若 $a_i \in C$,转0,否则转0;
- ③ $g(j) = a_i, j + +, i + +; 若i < n, 转②, 否则结束;$
- ① i++;若i < n,转②, 否则结束.</p>

有限集的子集都是有限集。

Proof

● 证: 设A是有限集, $C \subseteq A$,分两种情况: 若C是 \emptyset ,则C是有限集;

若C非空,则A也非空,可将A中的元素列为: $a_0, a_1, a_2, \ldots, a_{n-1}$,其中 $n \in \mathbb{N}, n \geqslant 1$ 现构造一个双射函数 $g: \mathbb{N}_i \to C, (j \in \mathbb{N})$,算法如下:

- 0 i = 0, i = 0;
- ② 检查 a_i 是否在子集C中,若 $a_i \in C$,转 \mathfrak{g} ,否则转 \mathfrak{g} ;
- ③ $g(j) = a_i, j + +, i + +; 若i < n, 转②, 否则结束;$
- ① i++;若i < n,转❷, 否则结束.

有限集的子集都是有限集。

Proof

证: 设A是有限集, C⊆A, 分两种情况:
 若C是∅, 则C是有限集;
 若C非空,则A也非空,可将A中的元素列为:

 $a_0, a_1, a_2, \dots, a_{n-1}$, 其中 $n \in \mathbb{N}, n \geqslant 1$ 现构造一个双射函数 $g: \mathbb{N}_i \to C, (j \in \mathbb{N})$, 算法如下:

- 0 i = 0, j = 0;
- ② 检查a;是否在子集C中, 若a; ∈ C, 转③, 否则转④;
- ③ $g(j) = a_i, j + +, i + +; 若i < n, 转②, 否则结束;$
- i++;若i < n,转❷, 否则结束.

有限集的子集都是有限集。

Proof

- 证: 设A是有限集, $C \subseteq A$, 分两种情况: 若C是Ø,则C是有限集; 若C非空,则A也非空,可将A中的元素列为: $a_0, a_1, a_2,, a_{n-1}$,其中 $n \in \mathbb{N}, n \geqslant 1$ 现构造一个双射函数 $g: \mathbb{N}_i \to C$. $(i \in \mathbb{N})$, 算法如下:
- **1** i = 0, j = 0
- ② 检查a;是否在子集C中, 若a; ∈ C, 转3, 否则转4;
- ③ $g(j) = a_i, j + +, i + +; 若i < n, 转②, 否则结束;$
- ① i++;若i < n,转❷, 否则结束.

有限集的子集都是有限集。

Proof

- 证: 设A是有限集, C⊆A, 分两种情况:
 若C是Ø,则C是有限集;
 若C非空,则A也非空,可将A中的元素列为:
 a₀, a₁, a₂,....., a_{n-1},其中n∈N,n≥1
 现构造一个双射函数g:N_i→C,(j∈N),算法如下:
- **1** i = 0, j = 0
- ② 检查 a_i 是否在子集C中,若 $a_i \in C$,转O,否则转O;
- ③ $g(j) = a_i, j + +, i + +; 若i < n, 转②, 否则结束;$
- ① i++;若i < n,转②, 否则结束.

有限集的子集都是有限集。

Proof

- 证:设A是有限集,C⊆A,分两种情况:若C是Ø,则C是有限集;若C非空,则A也非空,可将A中的元素列为:a₀,a₁,a₂,.....,a_{n-1},其中n∈N,n≥1
 现构造一个双射函数g:N_i→C,(j∈N),算法如下:
- 0 i = 0, j = 0;
- ② 检查 a_i 是否在子集C中,若 $a_i \in C$,转 Θ ,否则转 Θ ;
- ③ $g(j) = a_i, j + +, i + +; 若i < n, 转②, 否则结束;$
- ① i++;若i < n,转②, 否则结束.

有限集的子集都是有限集。

Proof

- 证: 设A是有限集, C⊆A, 分两种情况:
 若C是Ø,则C是有限集;
 若C非空,则A也非空,可将A中的元素列为:
 a₀, a₁, a₂,....., a_{n-1},其中n∈N,n≥1
 现构造一个双射函数g:N_i→C,(j∈N),算法如下:
- **1** i = 0, j = 0;
- ② 检查a;是否在子集C中,若a; ∈ C,转❸,否则转❹;
- ③ $g(j) = a_i, j + +, i + +; 若i < n, 转②, 否则结束;$
- i++;若i < n,转②, 否则结束.</p>

有限集的子集都是有限集。

Proof

- 证: 设A是有限集, C⊆A, 分两种情况:
 若C是Ø,则C是有限集;
 若C非空,则A也非空,可将A中的元素列为:
 a₀, a₁, a₂,....., a_{n-1},其中n∈N,n≥1
 现构造一个双射函数g:N_i→C,(j∈N),算法如下:
- **1** i = 0, j = 0;
- ② 检查a;是否在子集C中,若a; ∈ C,转❸,否则转❹;
- ③ g(j) = a_i, j++, i++;若i < n, 转❷, 否则结束;

有限集的子集都是有限集。

Proof

- 证: 设A是有限集, C⊆A, 分两种情况:
 若C是Ø,则C是有限集;
 若C非空,则A也非空,可将A中的元素列为:
 a₀, a₁, a₂,....., a_{n-1},其中n∈N,n≥1
 现构造一个双射函数g:N_i→C,(j∈N),算法如下:
- **1** i = 0, j = 0;
- ② 检查a;是否在子集C中, 若a; ∈ C, 转❷, 否则转④;
- ③ g(j) = a_i, j++, i++;若i < n, 转❷, 否则结束;
- i + +;若i < n,转❷, 否则结束.
 </p>

性质

定理

有限集的子集都是有限集。

Proof

- 证:设A是有限集、C⊂A、分两种情况: 若C是 \varnothing 、则C是有限集; 若C非空,则A也非空,可将A中的元素列为: 现构造一个双射函数 $g: \mathbb{N}_i \to C, (i \in \mathbb{N})$ 、算法如下:
- **1** i = 0, i = 0:
- ② 检查 a_i 是否在子集C中、若 $a_i \in C$ 、转 Θ 、否则转 Φ ;
- **3** $g(i) = a_i, i + +, i + +; 若 i < n, 转 2, 否则结束;$
- ① i + + : 若 i < n.转②, 否则结束.

定义-可数无限集

• 集合A为可数无限集,iff,集合A与自然数集 \mathbb{N} 等势,其基数 \mathbb{H}_0 表示 (读作阿列夫零),记为 $|A|=\aleph_0$.

例

• 集合 $\mathbb{N}, \mathbb{Z}_+, \mathbb{Z}$ 的基数均为 \mathbb{N}_0 .

- 集合A是不可数集, iff, A不是有限集且不是可数无限集。
- 集合可分为:
 - 可数集----有限集和可数无限集
 - 不可数集

定义-可数无限集

• 集合A为可数无限集,iff,集合A与自然数集 \mathbb{N} 等势,其基数 \mathbb{H}_0 表示(读作阿列夫零),记为 $|A|=\mathbb{N}_0$.

例

• 集合 $\mathbb{N}, \mathbb{Z}_+, \mathbb{Z}$ 的基数均为 \aleph_0 .

- 集合A是不可数集, iff, A不是有限集且不是可数无限集。
- 集合可分为:
 - 可数集——有限集和可数无限集
 - 不可数集

定义-可数无限集

• 集合A为可数无限集,iff,集合A与自然数集 \mathbb{N} 等势,其基数 \mathbb{H}_0 表示(读作阿列夫零),记为 $|A|=\mathbb{N}_0$.

例

• 集合 $\mathbb{N}, \mathbb{Z}_+, \mathbb{Z}$ 的基数均为 \aleph_0 .

- 集合A是不可数集, iff, A不是有限集且不是可数无限集。
- 集合可分为:

定义-可数无限集

• 集合A为可数无限集,iff,集合A与自然数集 \mathbb{N} 等势,其基数 \mathbb{H}_0 表示 (读作阿列夫零),记为 $|A|=\mathbb{N}_0$.

例

• 集合 $\mathbb{N}, \mathbb{Z}_+, \mathbb{Z}$ 的基数均为 \aleph_0 .

- 集合A是不可数集, iff, A不是有限集且不是可数无限集。
- 集合可分为:
 - 可数集——有限集和可数无限集
 - 不可数集

定义-可数无限集

• 集合A为可数无限集,iff,集合A与自然数集 \mathbb{N} 等势,其基数 \mathbb{H}_0 表示 (读作阿列夫零),记为 $|A|=\mathbb{N}_0$.

例

• 集合 $\mathbb{N}, \mathbb{Z}_+, \mathbb{Z}$ 的基数均为 \mathbb{N}_0 .

- 集合A是不可数集,iff, A不是有限集且不是可数无限集。
- 集合可分为:
 - 可数集----有限集和可数无限集
 - 不可数集

定义-可数无限集

• 集合A为可数无限集,iff,集合A与自然数集 \mathbb{N} 等势,其基数 \mathbb{H}_0 表示 (读作阿列夫零),记为 $|A|=\mathbb{N}_0$.

例

• 集合 $\mathbb{N}, \mathbb{Z}_+, \mathbb{Z}$ 的基数均为 \mathbb{N}_0 .

- 集合A是不可数集,iff, A不是有限集且不是可数无限集。
- 集合可分为:
 - 可数集----有限集和可数无限集
 - 不可数集

定理

- 定理:集合A为可数无限集,iff,A的全部元素可以无重复地排列为一个序列a₀,a₁,a₂,......
- 证明: \leftarrow 集合A可表示为 $A = \{a_0, a_1, a_2, \dots\}$,则 a_n 与自然数n对应,即可定义从A到 \mathbb{N} 的双射, $f: A \to \mathbb{N}$, $f(a_n) = n$, A 为可数无限集。

若A为可数无限集,则存在双射 $f: \mathbb{N} \to A, f(n) = a_n$,即f(n)对应的元素为 a_n ,

 \therefore A 的元素可以无重复地排列为f(0), f(1), ..., f(n), ... 即排列为 $a_0, a_1, a_2, ...$

- "重复排列"等价于"无重复排列"。(构造算法)
- 此序列具有"自然数性质"。

定理

- 定理: 集合A为可数无限集, iff, A的全部元素可以无重复 地排列为一个序列a₀, a₁, a₂,......
- 证明: ←

集合A可表示为 $A = \{a_0, a_1, a_2, \dots\}$,则 a_n 与自然数n对应,即可定义从A到 \mathbb{N} 的双射, $f: A \to \mathbb{N}$, $f(a_n) = n$, A 为可数无限集。

 \Longrightarrow

若A为可数无限集,则存在双射 $f: \mathbb{N} \to A, f(n) = a_n$,即f(n)对应的元素为 a_n , ... A 的元素可以无重复地排列为f(0), f(1), ..., f(n), ...

- "重复排列"等价于"无重复排列"。(构造算法)
- 此序列具有"自然数性质"。

定理

- 定理:集合A为可数无限集,iff,A的全部元素可以无重复地排列为一个序列a₀,a₁,a₂,......
- 证明: \Leftarrow 集合A可表示为 $A = \{a_0, a_1, a_2, \dots, \}$,则 a_n 与自然数n对应,即可定义从A到N的双射, $f: A \to N$, $f(a_n) = n$,A 为可数无限集。

若A为可数无限集,则存在双射 $f: \mathbb{N} \to A, f(n) = a_n$,即f(n)对应的元素为 a_n , $\therefore A$ 的元素可以无重复地排列为f(0), f(1), ..., f(n), ...

- "重复排列"等价于"无重复排列"。(构造算法)
- 此序列具有"自然数性质"。

- 定理:集合A为可数无限集,iff,A的全部元素可以无重复 地排列为一个序列an, a1, a2,
- 证明: === 集合A可表示为 $A = \{a_0, a_1, a_2, \dots \}$, 则 a_n 与自然数n对应, 即可定义从A到N的双射、 $f: A \to \mathbb{N}, f(a_n) = n$, : A 为可数无限集。

 若A为可数无限集、则存在双射 $f: \mathbb{N} \to A, f(n) = a_n,$ 即f(n)对应的元素为an

 $\therefore A$ 的元素可以无重复地排列为f(0), f(1), ..., f(n), ...

- "重复排列"等价于"无重复排列"。(构造算法)
- 此序列具有"自然数性质"。

定理

- 定理:集合A为可数无限集,iff,A的全部元素可以无重复 地排列为一个序列a₀,a₁,a₂,.......
- 证明: \leftarrow 集合A可表示为 $A = \{a_0, a_1, a_2, \dots \}$,则 a_n 与自然数n对应,即可定义从A到 \mathbb{N} 的双射, $f: A \to \mathbb{N}$, $f(a_n) = n$, A 为可数无限集。

- "重复排列"等价于"无重复排列"。(构造算法)
- 此序列具有"自然数性质"。

定理

- 定理:集合A为可数无限集,iff,A的全部元素可以无重复地排列为一个序列a₀,a₁,a₂,......
- 证明: \Leftarrow 集合A可表示为 $A = \{a_0, a_1, a_2, \ldots\}$,则 a_n 与自然数n对应,即可定义从A到 \mathbb{N} 的双射, $f: A \to \mathbb{N}$, $f(a_n) = n$,A 为可数无限集。

 \Longrightarrow

若A为可数无限集,则存在双射 $f: \mathbb{N} \to A, f(n) = a_n$,即f(n)对应的元素为 a_n , $\therefore A$ 的元素可以无重复地排列为 $f(0), f(1), \dots, f(n), \dots$

- "重复排列"等价于"无重复排列"。(构造算法)
- 此序列具有"自然数性质"。

定理

- 定理:集合A为可数无限集,iff,A的全部元素可以无重复地排列为一个序列a₀,a₁,a₂,......
- 证明: \leftarrow 集合A可表示为 $A = \{a_0, a_1, a_2, \ldots\}, 则 a_n$ 与自然数n对应,即可定义从A到 \mathbb{N} 的双射, $f: A \to \mathbb{N}, f(a_n) = n,$ $\therefore A$ 为可数无限集。

 \Longrightarrow

若A为可数无限集,则存在双射 $f: \mathbb{N} \to A$, $f(n) = a_n$, 即f(n)对应的元素为 a_n , ... A 的元素可以无重复地排列为f(0), f(1), ..., f(n), ... 即排列为 a_0 , a_1 , a_2 ,

- "重复排列"等价于"无重复排列"。(构造算法)
- 此序列具有"自然数性质"。

定理

- 定理:集合A为可数无限集,iff,A的全部元素可以无重复地排列为一个序列a₀,a₁,a₂,......
- 证明: \leftarrow 集合A可表示为 $A = \{a_0, a_1, a_2, \ldots\}, 则 a_n$ 与自然数n对应,即可定义从A到 \mathbb{N} 的双射, $f: A \to \mathbb{N}, f(a_n) = n,$ $\therefore A$ 为可数无限集。

 \Longrightarrow

若A为可数无限集,则存在双射 $f: \mathbb{N} \to A, f(n) = a_n$, 即f(n)对应的元素为 a_n ,

:: A 的元素可以无重复地排列为f(0), f(1), ..., f(n), ... 即排列为 $a_0, a_1, a_2,$

- "重复排列"等价于"无重复排列"。(构造算法)
- 此序列具有"自然数性质"。

- 定理:集合A为可数无限集、iff、A的全部元素可以无重复 地排列为一个序列an, a1, a2,
- 证明: === 集合A可表示为A = $\{a_0, a_1, a_2, \dots, \}$, 则 a_n 与自然数n对应, 即可定义从A到N的双射、 $f: A \to \mathbb{N}, f(a_n) = n$, ∴ A 为可数无限集。

 \Longrightarrow

若A为可数无限集、则存在双射 $f: \mathbb{N} \to A, f(n) = a_n$ 即f(n)对应的元素为 a_n , A 的元素可以无重复地排列为f(0), f(1), ..., f(n), ...

即排列为 a0, a1, a2,

- "重复排列"等价于"无重复排列"。(构造算法)
- 此序列具有"自然数性质"。

- 定理:集合A为可数无限集、iff、A的全部元素可以无重复 地排列为一个序列an, a1, a2,
- 证明: === 集合A可表示为A = $\{a_0, a_1, a_2, \dots, \}$, 则 a_n 与自然数n对应, 即可定义从A到N的双射、 $f: A \to \mathbb{N}, f(a_n) = n$, ∴ A 为可数无限集。

 \Longrightarrow

若A为可数无限集、则存在双射 $f: \mathbb{N} \to A, f(n) = a_n$ 即f(n)对应的元素为 a_n , A 的元素可以无重复地排列为f(0), f(1), ..., f(n), ...即排列为an, a1, a2,

- "重复排列"等价于"无重复排列"。(构造算法)
- 此序列具有"自然数性质"。

- 定理:集合A为可数无限集、iff、A的全部元素可以无重复 地排列为一个序列an, a1, a2,
- 证明: === 集合A可表示为A = $\{a_0, a_1, a_2, \dots, \}$, 则 a_n 与自然数n对应, 即可定义从A到N的双射、 $f: A \to \mathbb{N}, f(a_n) = n$, ∴ A 为可数无限集。

 \Longrightarrow

若A为可数无限集、则存在双射 $f: \mathbb{N} \to A, f(n) = a_n$ 即f(n)对应的元素为 a_n , A 的元素可以无重复地排列为f(0), f(1), ..., f(n), ...即排列为an, a1, a2,

- "重复排列"等价于"无重复排列"。(构造算法)
- 此序列具有"自然数性质"。

- 定理:集合A为可数无限集、iff、A的全部元素可以无重复 地排列为一个序列an, a1, a2,
- 证明: === 集合A可表示为A = $\{a_0, a_1, a_2, \dots, \}$, 则 a_n 与自然数n对应, 即可定义从A到 \mathbb{N} 的双射、 $f: A \to \mathbb{N}, f(a_n) = n$, ∴ A 为可数无限集。

 \Longrightarrow

若A为可数无限集、则存在双射 $f: \mathbb{N} \to A, f(n) = a_n$ 即f(n)对应的元素为an, : A 的元素可以无重复地排列为f(0), f(1), ..., f(n), ...即排列为an, a1, a2,

- "重复排列"等价于"无重复排列"。(构造算法)
- 此序列具有"自然数性质"。

枚举的定义

定义-枚举

- 集合A的枚举是从自然数集N(N的初始段)到A的一个满射函 数; 若该满射也是单射, 则是一个无重复枚举, 若为非单 射,则是重复枚举。
- 通常、枚举f表示为< f(0), f(1), f(2),..., f(n),...>
- 集合A是可数的, iff, 集合A可枚举。

定义-枚举

- 集合A的枚举是从自然数集N(N的初始段)到A的一个满射函 数; 若该满射也是单射,则是一个无重复枚举,若为非单 射,则是重复枚举。
- 通常, 枚举f表示为< f(0), f(1), f(2), ..., f(n), ... >
- 集合A是可数的, iff, 集合A可枚举。

定义-枚举

- 集合A的枚举是从自然数集N(N的初始段)到A的一个满射函数;若该满射也是单射,则是一个无重复枚举,若为非单射,则是重复枚举。
- 通常, 枚举f表示为< f(0), f(1), f(2), ..., f(n), ... >
- 集合A是可数的, iff, 集合A可枚举。

Table: N×N的枚举

< 0,0 > ₀	< 0, 1 > ₁	$<0,2>_{3}$	•••	•••
$<1,0>_{2}$	$<1,1>_{4}$	< 1, 2 >	•••	
$<2,0>_{5}$	< 2, 1 >	<2,2>	•••	
•••	•••	•••	•••	
•••	•••	•••	< m, n >	•••
•••	•••	•••	•••	

- N×N是可数无限集.
- $f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}, f(m, n) = \frac{(m+n)(m+n+1)}{2} + m$

Table: N×N的枚举

< 0, 0 > ₀	< 0, 1 > ₁	$<0,2>_{3}$	•••	•••
$<1,0>_{2}$	$<1,1>_{4}$	< 1, 2 >	•••	
$<2,0>_{5}$	< 2, 1 >	<2,2>	•••	
•••	•••	•••	•••	
•••	•••	•••	< m, n >	
•••	•••	•••	•••	

- N×N是可数无限集.
- $f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}, f(m, n) = \frac{(m+n)(m+n+1)}{2} + m$

Table: ℚ+的枚举(一)

$1/1_{0}$	$1/2_{1}$	$1/3_{3}$	
$2/1_{2}$	$2/2_{4}$	2/3	
3/15	3/2	3/3	
•••	•••	•••	
•••	•••	m/n	
•••	•••	•••	

Table: ℚ+的枚举(二)

$1/1_{0}$	$1/2_{1}$	$1/3_{4}$	
$2/1_{3}$	$2/2_2$	$2/3_{5}$	•••
3/1 ₈	3/27	3/36	•••
•••	•••	•••	•••
•••	•••	m/n	•••
•••	•••	•••	

- Q+是可数无限集。
- 是有重复的序列,等价于无重复的序列。

Table: ℚ+的枚举(一)

$1/1_{0}$	$1/2_{1}$	$1/3_{3}$	
$2/1_{2}$	$2/2_{4}$	2/3	
$3/1_{5}$	3/2	3/3	
•••	•••	•••	
•••	•••	m/n	
•••	•••	•••	

Table: ℚ+的枚举(二)

$1/1_{0}$	$1/2_{1}$	$1/3_{4}$	
$2/1_{3}$	$2/2_2$	$2/3_{5}$	•••
3/18	3/27	3/36	•••
•••	•••	•••	•••
•••	•••	m/n	•••
•••	•••	•••	•••

- Q+是可数无限集。
- 是有重复的序列,等价于无重复的序列。

例

• 字母表 $\Sigma = \{a, b\}$, 其中 $a \prec b$, 则 Σ^* 是可数无限集。 Σ^* 的元素可以排成序列 ϵ , a, b, aa, ab, ba, bb, ..., 则 $|\Sigma^*| = \aleph_0$

词典序和标准序

- 词典序

 (s ≺ t)
 - @ 5是t的前缀;或者
 - **◎** $s = zu, t = zv, (z \in \Sigma^* \mathcal{L}s, t)$ the \mathbb{R} $\mathbb{R$
- 分中U的另一个子付用了V的另一个子付.
- - 9 ||5|| < || 川, 或有
 - ② ||s|| = ||t||, 且在词典序中s前于t.

例

• 字母表 $\Sigma=\{a,b\}$,其中 $a \prec b$,则 Σ^* 是可数无限集。 Σ^* 的元素可以排成序列 $\epsilon,a,b,aa,ab,ba,bb,...$,则 $|\Sigma^*|=\aleph_0$

词典序和标准序

设有限字母表 Σ 指定了字母线序,对于 $s, t \in \Sigma^*$

• 词典序≼ (s ≺ t)

- 序中u的第一个字符前于v的第一个字符。
- - ② ||s|| = ||t||, 且在词典序中s前于tb

例

• 字母表 $\Sigma = \{a, b\}$,其中 $a \prec b$,则 Σ^* 是可数无限集。 Σ^* 的元素可以排成序列 ϵ , a, b, aa, ab, ba, bb, ..., 则 $|\Sigma^*| = \aleph_0$

词典序和标准序

- 词典序≼ (s ≺ t)
 - ① S是空串;或者
 - ② s是t的前缀;或者
 - ③ $s = zu, t = zv, (z \in \Sigma^* \downarrow z, t)$ 的最长公共前缀),且在字母线序中u的第一个字符前于v的第一个字符.
- 标准序

 (s < t)
 - ||s|| < ||t||, 或者</p>
 - ||s|| = ||t||, 且在词典序中s前于t

例

• 字母表 $\Sigma = \{a, b\}$,其中 $a \prec b$,则 Σ^* 是可数无限集。 Σ^* 的元素可以排成序列 ϵ , a, b, aa, ab, ba, bb, ..., 则 $|\Sigma^*| = \aleph_0$

词典序和标准序

- 词典序≼ (s ≺ t)
 - ❶ 5是空串;或者
 - ② s是t的前缀;或者
 - ③ $s = zu, t = zv, (z \in \Sigma^* \downarrow s, t)$ 的最长公共前缀),且在字母线序中u的第一个字符前于v的第一个字符.
- 标准序

 < (s ≺ t)
 - ||s|| < ||t||, 或者</p>
 - ② ||s|| = ||t||, 且在词典序中s前于t

例

• 字母表 $\Sigma = \{a, b\}$,其中 $a \prec b$,则 Σ^* 是可数无限集。 Σ^* 的元素可以排成序列 ϵ , a, b, aa, ab, ba, bb, ..., 则 $|\Sigma^*| = \aleph_0$

词典序和标准序

- 词典序
 ≼ (s ≺ t)
 - ❶ 5是空串;或者
 - ② s是t的前缀;或者
 - ③ $s = zu, t = zv, (z \in \Sigma^* \downarrow z, t)$ 的最长公共前缀),且在字母线序中u的第一个字符前于v的第一个字符.
- - ||s|| < ||t||、或者</p>
 - ② ||s|| = ||t||, 且在词典序中s前于;

• 字母表 $\Sigma=\{a,b\}$,其中 $a \prec b$,则 Σ^* 是可数无限集。 Σ^* 的元素可以排成序列 $\epsilon,a,b,aa,ab,ba,bb,...$,则 $|\Sigma^*|=\aleph_0$

词典序和标准序

- 词典序≼ (s ≺ t)
 - 5是空串;或者
 - ② s是t的前缀;或者
 - ③ $s = zu, t = zv, (z \in \Sigma^* \not = zs, t$ 的最长公共前缀),且在字母线序中u的第一个字符前于v的第一个字符.
- 标准序

 (s < t)

• 字母表 $\Sigma = \{a,b\}$,其中 $a \prec b$,则 Σ^* 是可数无限集。 Σ^* 的元素可以排成序列 $\epsilon,a,b,aa,ab,ba,bb,...$,则 $|\Sigma^*| = \aleph_0$

词典序和标准序

- 词典序≼ (s ≺ t)
 - 5是空串;或者
 - ② s是t的前缀;或者
 - ③ $s = zu, t = zv, (z \in \Sigma^* \neq s, t)$ 的最长公共前缀),且在字母线序中u的第一个字符前于v的第一个字符.
- 标准序≼ (s ≺ t)
 - ① ||s|| < ||t||, 或者
 - ② ||s|| = ||t||, 且在词典序中s前于t.

• 字母表 $\Sigma = \{a,b\}$,其中 $a \prec b$,则 Σ^* 是可数无限集。 Σ^* 的元素可以排成序列 $\epsilon,a,b,aa,ab,ba,bb,...$,则 $|\Sigma^*| = \aleph_0$

词典序和标准序

- 词典序≼ (s ≺ t)
 - ❶ 5是空串;或者
 - ② s是t的前缀;或者
 - ③ $s = zu, t = zv, (z \in \Sigma^* \neq s, t)$ 的最长公共前缀),且在字母线序中u的第一个字符前于v的第一个字符.
- 标准序

 (s

 t)
 - ||s|| < ||t||, 或者</p>
 - ② ||s|| = ||t||, 且在词典序中s前于t

• 字母表 $\Sigma = \{a, b\}$,其中 $a \prec b$,则 Σ^* 是可数无限集。 Σ^* 的元素可以排成序列 ϵ , a, b, aa, ab, ba, bb, ...,则 $|\Sigma^*| = \aleph_0$

词典序和标准序

- 词典序≼ (s ≺ t)
 - ❶ 5是空串;或者
 - ② s是t的前缀;或者
 - ③ $s = zu, t = zv, (z \in \Sigma^* \neq s, t)$ 的最长公共前缀),且在字母线序中u的第一个字符前于v的第一个字符.
- 标准序

 (s

 t)
 - ||s|| < ||t||, 或者</p>
 - ② ||s|| = ||t||, 且在词典序中s前于t.

可数集的性质(一)

性质

- 可数集的任何子集都是可数集.
- ② 可数个可数集的并集是可数集. 证明: 分两种情况: 见下表

Table: 有限个可数集

A 0	a 00 ₀	$a01_{n+1}$	a 02	
A 1	a 10 ₁	$a11_{n+2}$	a 12	
A 2	a 20 ₂	$a21_{n+3}$	a22	
		•••		
An	an0 _n			

Table: 可粉无限个可粉集

A 0	a 00 ₀	a 01 ₁	a 02 ₃			
A 1	a 10 ₂	a11 ₄	a 12			
A 2	$a20_{5}$	a 21	a22			
			•••			
An	an0					

- 若A, B是可数集,则A×B是可数集;
- 若A是可数集,则Aⁿ是可数集
- 例子
- ① Q是可数集
- ② N², Zⁿ, Qⁿ是可数集;
- ③ 有理系数的所有(n次)多项式的集合是可数集;
- ④ 以有理数为元素的所有m×n矩阵(任意有限维的矩阵)的集合是可数集。

- 若A, B是可数集,则A×B是可数集;
- 若A是可数集,则Aⁿ是可数集
- 例子
- ① Q是可数集
- ② N², Zⁿ, Qⁿ是可数集;
- ③ 有理系数的所有(n次)多项式的集合是可数集;
- ④ 以有理数为元素的所有m×n矩阵(任意有限维的矩阵)的集合是可数集。

- 若A, B是可数集,则A×B是可数集;
- 若A是可数集,则Aⁿ是可数集
- 例子
- ① ②是可数集
- ② N², Zⁿ, Qⁿ是可数集;
- ③ 有理系数的所有(n次)多项式的集合是可数集;
- ④ 以有理数为元素的所有m×n矩阵(任意有限维的矩阵)的集合是可数集。

- 若A, B是可数集,则A×B是可数集;
- 若A是可数集,则Aⁿ是可数集
- 例子
- ① □是可数集
- $\mathbb{N}^2,\mathbb{Z}^n,\mathbb{O}^n$ 是可数集:
- 有理系数的所有(n次)多项式的集合是可数集;
- 以有理数为元素的所有m×n矩阵(任意有限维的矩阵)的 集合是可数集。

- 若A, B是可数集,则A×B是可数集;
- 若A是可数集,则Aⁿ是可数集
- 例子
- ① Q是可数集
- ② $\mathbb{N}^2, \mathbb{Z}^n, \mathbb{Q}^n$ 是可数集;
- ③ 有理系数的所有(n次)多项式的集合是可数集;
- ④ 以有理数为元素的所有m×n矩阵(任意有限维的矩阵)的集合是可数集。

- 若A, B是可数集,则A×B是可数集;
- 若A是可数集,则Aⁿ是可数集
- 例子
- ① D是可数集
- ② $\mathbb{N}^2, \mathbb{Z}^n, \mathbb{Q}^n$ 是可数集;
- 有理系数的所有(n次)多项式的集合是可数集;
- 以有理数为元素的所有m×n矩阵(任意有限维的矩阵)的 集合是可数集。

- 若A, B是可数集,则A×B是可数集;
- 若A是可数集,则Aⁿ是可数集
- 例子
- ① Q是可数集
- ② $\mathbb{N}^2, \mathbb{Z}^n, \mathbb{Q}^n$ 是可数集;
- 有理系数的所有(n次)多项式的集合是可数集;
- 以有理数为元素的所有m×n矩阵(任意有限维的矩阵)的 集合是可数集。

- 定理: 任一无限集A, 必会有可数无限子集。
- 证明:
 若A为无限集,则A非空,可任取出一元素a₁ ∈ A,
 A {a₁}仍为无限集,再取出一元素a₂ ∈ A {a₁},
 所得集合仍为无限集;
 - 如此继续,得A的可数无限子集 $\{a_1, a_2, a_3, \dots \}$ 。

定理

- 定理: 任一无限集A, 必会有可数无限子集。
- 证明:

若A为无限集,则A非空,可任取出一元素 $a_1 \in A$, $A - \{a_1\}$ 仍为无限集,再取出一元素 $a_2 \in A - \{a_1\}$,所得集合仍为无限集:

如此继续, 得A的可数无限子集{a1, a2, a3,}。

定理

- 定理: 任一无限集A, 必会有可数无限子集。
- 证明:

若A为无限集,则A非空,可任取出一元素 $a_1 \in A$,

 $A - \{a_1\}$ 仍为无限集,再取出一元素 $a_2 \in A - \{a_1\}$,

所得集合仍为无限集;

如此继续,得A的可数无限子集 $\{a_1, a_2, a_3, \dots \}$ 。

定理

- 定理: 任一无限集A, 必会有可数无限子集。
- 证明:

若A为无限集,则A非空,可任取出一元素 $a_1 \in A$,

 $A - \{a_1\}$ 仍为无限集,再取出一元素 $a_2 \in A - \{a_1\}$,

所得集合仍为无限集;

如此继续,得A的可数无限子集 $\{a_1, a_2, a_3, \dots \}$ 。

定理

- 定理: 任一无限集A, 必会有可数无限子集。
- 证明:

若A为无限集,则A非空,可任取出一元素 $a_1 \in A$,

 $A - \{a_1\}$ 仍为无限集,再取出一元素 $a_2 \in A - \{a_1\}$,

所得集合仍为无限集;

如此继续, 得A的可数无限子集{a1, a2, a3,}。

定理

- 定理: 任一无限集A, 必会有可数无限子集。
- 证明:

若A为无限集,则A非空,可任取出一元素 $a_1 \in A$,

 $A - \{a_1\}$ 仍为无限集,再取出一元素 $a_2 \in A - \{a_1\}$,

所得集合仍为无限集;

如此继续,得A的可数无限子集 $\{a_1, a_2, a_3, \dots \}$ 。

可数集性质 (三)

定理

- 定理: 任一无限集M, 必与自己的某真子集等势。
- 证明:

由上可得
$$M$$
有可数无限子集 $A = \{a_0, a_1, a_2, \dots, \}$,令 $M - A = B$,

定义函数
$$f: M \rightarrow M - \{a_0\}$$
;

①
$$f(a_n) = a_{n+1}; (a_n \in A);$$

②
$$f(b) = b; (b \in B);$$

则,易证
$$f$$
是双射, $: M \sim M - \{a_0\}$

定理

- 定理: 任一无限集M、必与自己的某真子集等势。
- 证明:

由上可得
$$M$$
有可数无限子集 $A = \{a_0, a_1, a_2, \dots, a_n\}$,令 $M - A = B$,

定义函数
$$f: M \rightarrow M - \{a_0\}$$
;

①
$$f(a_n) = a_{n+1}; (a_n \in A);$$

②
$$f(b) = b; (b \in B);$$

则,易证f是双射, $: M \sim M - \{a_0\}$

定理

- 定理: 任一无限集M, 必与自己的某真子集等势。
- 证明:

由上可得M有可数无限子集 $A = \{a_0, a_1, a_2, \ldots, \}$,

$$A = B$$

定义函数 $f: M \rightarrow M - \{a_0\}$;

①
$$f(a_n) = a_{n+1}; (a_n \in A);$$

②
$$f(b) = b; (b \in B);$$

则,易证f是双射, $: M \sim M - \{a_0\}$

可数集性质 (三)

定理

- 定理: 任一无限集M, 必与自己的某真子集等势。
- 证明:

由上可得M有可数无限子集 $A = \{a_0, a_1, a_2, \dots, \}$,令M - A = B,

定义函数 $f: M \to M - \{a_0\};$

①
$$f(a_n) = a_{n+1}; (a_n \in A);$$

②
$$f(b) = b; (b \in B);$$

则,易证f是双射, $: M \sim M - \{a_0\}$

可数集性质 (三)

定理

- 定理: 任一无限集M, 必与自己的某真子集等势。
- 证明:

由上可得
$$M$$
有可数无限子集 $A = \{a_0, a_1, a_2, \dots, \}$,令 $M - A = B$,

定义函数
$$f: M \rightarrow M - \{a_0\};$$

①
$$f(a_n) = a_{n+1}; (a_n \in A);$$

②
$$f(b) = b; (b \in B);$$

则,易证
$$f$$
是双射, $: M \sim M - \{a_0\}$

定理

- 定理: 任一无限集M, 必与自己的某真子集等势。
- 证明:

由上可得
$$M$$
有可数无限子集 $A = \{a_0, a_1, a_2, \dots, \}$,令 $M - A = B$,

定义函数
$$f: M \rightarrow M - \{a_0\};$$

①
$$f(a_n) = a_{n+1}; (a_n \in A);$$

②
$$f(b) = b; (b \in B);$$

则,易证
$$f$$
是双射, $: M \sim M - \{a_0\}$

4□ > 4□ > 4 = > 4 = > = 900

可数集性质(三)

定理

- 定理: 任一无限集M, 必与自己的某真子集等势。
- 证明:

定义函数
$$f: M \rightarrow M - \{a_0\};$$

①
$$f(a_n) = a_{n+1}; (a_n \in A);$$

②
$$f(b) = b; (b \in B);$$

则,易证f是双射, $: M \sim M - \{a_0\}$

可数集性质 (三)

定理

- 定理: 任一无限集M, 必与自己的某真子集等势。
- 证明:

定义函数
$$f: M \rightarrow M - \{a_0\};$$

①
$$f(a_n) = a_{n+1}; (a_n \in A);$$

②
$$f(b) = b; (b \in B);$$

则,易证
$$f$$
是双射, $\therefore M \sim M - \{a_0\}$

可数集性质 (三)

定理

- 定理: 任一无限集M, 必与自己的某真子集等势。
- 证明:

定义函数
$$f: M \rightarrow M - \{a_0\};$$

①
$$f(a_n) = a_{n+1}; (a_n \in A);$$

②
$$f(b) = b; (b \in B);$$

则,易证
$$f$$
是双射, $\therefore M \sim M - \{a_0\}$

定义-可数无限集

● 集合A为可数无限集、iff、集合A与自然数集N等势、其基数 用 \aleph_0 表示(读作"阿列夫零"),记为 $|A|=\aleph_0$.

例

• 集合 $\mathbb{N}, \mathbb{Z}_+, \mathbb{Z}$ 的基数均为 \mathbb{N}_0 .

- 集合A是不可数集、iff, A不是有限集、且不是可数无限集。
- 集合可分为:

定义-可数无限集

● 集合A为可数无限集, iff, 集合A与自然数集N等势, 其基数 用 \aleph_0 表示(读作"阿列夫零"),记为 $|A|=\aleph_0$.

例

• $A \in \mathbb{N}, \mathbb{Z}_+, \mathbb{Z}$ 的基数均为 \mathbb{N}_0 .

- 集合A是不可数集、iff, A不是有限集、且不是可数无限集。
- 集合可分为:

定义-可数无限集

• 集合A为可数无限集,iff,集合A与自然数集 \mathbb{N} 等势,其基数 用 \aleph_0 表示(读作"阿列夫零"),记为 $|A|=\aleph_0$.

例

• 集合 $\mathbb{N}, \mathbb{Z}_+, \mathbb{Z}$ 的基数均为 \mathbb{N}_0 .

- 集合A是不可数集, iff, A不是有限集, 且不是可数无限集。
- 集合可分为:

定义-可数无限集

● 集合A为可数无限集, iff, 集合A与自然数集N等势, 其基数 用 \aleph_0 表示(读作"阿列夫零"),记为 $|A|=\aleph_0$.

例

• $A \in \mathbb{N}, \mathbb{Z}_+, \mathbb{Z}$ 的基数均为 \mathbb{N}_0 .

- 集合A是不可数集、iff, A不是有限集、且不是可数无限集。
- 集合可分为:
 - 可数集: 有限集和可数无限集
 - 不可教集

定义-可数无限集

• 集合A为可数无限集,iff,集合A与自然数集 \mathbb{N} 等势,其基数 用 \mathbb{N}_0 表示(读作"阿列夫零"),记为 $|A|=\mathbb{N}_0$.

例

• 集合 $\mathbb{N}, \mathbb{Z}_+, \mathbb{Z}$ 的基数均为 \mathbb{N}_0 .

定义-不可数集

- 集合A是不可数集,iff, A不是有限集,且不是可数无限集。
- 集合可分为:
 - 可数集: 有限集和可数无限集
 - 不可数集

定义-可数无限集

• 集合A为可数无限集,iff,集合A与自然数集 \mathbb{N} 等势,其基数 用 \mathbb{N}_0 表示(读作"阿列夫零"),记为 $|A|=\mathbb{N}_0$.

例

• 集合 $\mathbb{N}, \mathbb{Z}_+, \mathbb{Z}$ 的基数均为 \mathbb{N}_0 .

定义-不可数集

- 集合A是不可数集,iff, A不是有限集,且不是可数无限集。
- 集合可分为:
 - 可数集: 有限集和可数无限集
 - 不可数集

集合 $[0,1] \subseteq \mathbb{R}$ 是不可数集 (对角线法证明)

- 证明: [0,1]是不可数集。
- 证: (反证法)

假设[0,1]为可数无限集,则 \mathbb{N} 与[0,1]之间存在双射f,

则可将价值顺序排列为十进制小数:

$$f(0) = 0.a_{00}a_{01}a_{02}.....$$

$$f(1) = 0.a_{10}a_{11}a_{12}.....$$

$$f(2) = 0.a_{20}a_{21}a_{22}.....$$

.

$$f(n) = 0.a_{n0}a_{n1}a_{n2}...a_{nn}.....$$
 , 现构造一个实数:

$$r = 0.b_0b_1b_2.....b_n...$$
 , 其中 $b_i = \begin{cases} 1, & \text{if} \ a_{ii} \neq 1 \\ 2, & \text{if} \ a_{ii} = 1 \end{cases}$

集合 $[0,1] \subseteq \mathbb{R}$ 是不可数集 (对角线法证明)

- 证明: [0,1]是不可数集。
- 证: (反证法)

假设[0,1]为可数无限集,则 \mathbb{N} 与[0,1]之间存在双射f,则可将f的值顺序排列为十进制小数:

$$f(0) = 0.a_{00}a_{01}a_{02}.....$$

$$f(1) = 0.a_{10}a_{11}a_{12}....$$

$$f(2) = 0.a_{20}a_{21}a_{22}.....$$

.

$$f(n)=0.a_{n0}a_{n1}a_{n2}...a_{nn}.....$$
 ,现构造一个实数:
$$r=0.b_0b_1b_2......b_n...$$
 ,其中 $b_i=\begin{cases} 1, & \text{if} \ a_{ii}\neq 1 \\ 2, & \text{if} \ a_{ii}=1 \end{cases}$ 则, $r\in[0,1]$,但 $r\notin f(\mathbb{N})$,所以 f 不是双射,矛盾。证毕。

集合 $[0,1] \subseteq \mathbb{R}$ 是不可数集 (对角线法证明)

- 证明: [0,1]是不可数集。
- 证: (反证法)

假设[0,1]为可数无限集,则 \mathbb{N} 与[0,1]之间存在双射f,

则可将的值顺序排列为十进制小数:

$$f(0) = 0.a_{00}a_{01}a_{02}....$$

$$f(1) = 0.a_{10}a_{11}a_{12}....$$

$$f(2) = 0.a_{20}a_{21}a_{22}.....$$

.

$$f(n) = 0.a_{n0}a_{n1}a_{n2}...a_{nn}.....$$
 ,现构造一个实数:
$$r = 0.b_0b_1b_2.....b_n...$$
 ,其中 $b_i = \begin{cases} 1, & \text{if} \ a_{ii} \neq 1 \\ 2, & \text{if} \ a_{ii} = 1 \end{cases}$

集合 $[0,1] \subseteq \mathbb{R}$ 是不可数集 (对角线法证明)

- 证明: [0,1]是不可数集。
- 证: (反证法)

假设[0,1]为可数无限集,则 \mathbb{N} 与[0,1]之间存在双射f,则可将f的值顺序排列为十进制小数:

$$f(0) = 0.a_{00}a_{01}a_{02}....$$

$$f(1) = 0.a_{10}a_{11}a_{12}....$$

$$f(2) = 0.a_{20}a_{21}a_{22}.....$$

.

$$f(n)=0.a_{n0}a_{n1}a_{n2}...a_{nn}.....$$
,现构造一个实数:
$$r=0.b_0b_1b_2......b_n...$$
,其中 $b_i=egin{cases} 1, & \text{if} & a_{ii} \neq 1 \\ 2, & \text{if} & a_{ii} = 1 \end{cases}$

则, $r \in [0,1]$,但 $r \notin f(N)$,所以f不是双射,矛盾。证毕。

集合 $[0,1]\subseteq\mathbb{R}$ 是不可数集 (对角线法证明)

- 证明: [0,1]是不可数集。
- 证: (反证法)

假设[0,1]为可数无限集,则 \mathbb{N} 与[0,1]之间存在双射f,

则可将f的值顺序排列为十进制小数:

$$f(0) = 0.a_{00}a_{01}a_{02}.....$$

$$f(1) = 0.a_{10}a_{11}a_{12}....$$

$$f(2) = 0.a_{20}a_{21}a_{22}.....$$

.

$$f(n)=0.a_{n0}a_{n1}a_{n2}...a_{nn}.....$$
,现构造一个实数:
$$r=0.b_0b_1b_2.....b_n...$$
,其中 $b_i=egin{cases} 1, & \text{if} & a_{ii}
eq 1 \\ 2, & \text{if} & a_{ii} = 1 \end{cases}$

集合 $[0,1] \subseteq \mathbb{R}$ 是不可数集 (对角线法证明)

- 证明: [0,1]是不可数集。
- 证: (反证法)

假设[0,1]为可数无限集,则 \mathbb{N} 与[0,1]之间存在双射f,

则可将f的值顺序排列为十进制小数:

$$f(0) = 0.a_{00}a_{01}a_{02}.....$$

$$f(1) = 0.a_{10}a_{11}a_{12}....$$

$$f(2) = 0.a_{20}a_{21}a_{22}.....$$

.

$$f(n)=0.a_{n0}a_{n1}a_{n2}...a_{nn}.....$$
,现构造一个实数:
$$r=0.b_0b_1b_2......b_n...$$
,其中 $b_i=egin{cases} 1, & \text{if} & a_{ii}
eq 1 \\ 2, & \text{if} & a_{ii} = 1 \end{cases}$

集合 $[0,1]\subseteq\mathbb{R}$ 是不可数集 (对角线法证明)

- 证明: [0,1]是不可数集。
- 证: (反证法)

假设[0,1]为可数无限集,则 \mathbb{N} 与[0,1]之间存在双射f,

则可将f的值顺序排列为十进制小数:

$$f(0) = 0.a_{00}a_{01}a_{02}.....$$

$$f(1) = 0.a_{10}a_{11}a_{12}....$$

$$f(2) = 0.a_{20}a_{21}a_{22}.....$$

.

$$f(n) = 0.a_{n0}a_{n1}a_{n2}...a_{nn}.....$$
 ,现构造一个实数:
$$r = 0.b_0b_1b_2.....b_n...$$
 ,其中 $b_i = \begin{cases} 1, & \text{if} \ a_{ii} \neq 1 \\ 2, & \text{if} \ a_{ii} = 1 \end{cases}$

集合 $[0,1]\subseteq\mathbb{R}$ 是不可数集 (对角线法证明)

- 证明: [0,1]是不可数集。
- 证: (反证法)

假设[0,1]为可数无限集,则 \mathbb{N} 与[0,1]之间存在双射f,

则可将f的值顺序排列为十进制小数:

$$f(0) = 0.a_{00}a_{01}a_{02}....$$

$$f(1) = 0.a_{10}a_{11}a_{12}....$$

$$f(2) = 0.a_{20}a_{21}a_{22}.....$$

.....

$$f(n)=0.a_{n0}a_{n1}a_{n2}...a_{nn}.....$$
 ,现构造一个实数:
$$r=0.b_0b_1b_2.....b_n...$$
 ,其中 $b_i=egin{cases} 1, & \text{if} & a_{ii}
eq 1 \\ 2, & \text{if} & a_{ii} = 1 \end{cases}$

集合[0,1] ⊆ \mathbb{R} 是不可数集(对角线法证明)

- 证明: [0,1]是不可数集。
- 证: (反证法)

假设[0,1]为可数无限集,则 \mathbb{N} 与[0,1]之间存在双射f,

则可将f的值顺序排列为十进制小数:

$$f(0) = 0.a_{00}a_{01}a_{02}....$$

$$f(1) = 0.a_{10}a_{11}a_{12}....$$

$$f(2) = 0.a_{20}a_{21}a_{22}.....$$

$$f(n) = 0.a_{n0}a_{n1}a_{n2}...a_{nn}.....$$
, 现构造一个实数:

$$r=0.$$
 $b_0b_1b_2.....b_n...$,其中 $b_i=egin{cases} 1, & ext{if} & a_{ii}
eq 1 \ 2, & ext{if} & a_{ii}=1 \end{cases}$

集合 $[0,1]\subseteq\mathbb{R}$ 是不可数集 (对角线法证明)

- 证明: [0,1]是不可数集。
- 证: (反证法)

假设[0,1]为可数无限集,则 \mathbb{N} 与[0,1]之间存在双射f,则可将f的值顺序排列为十进制小数:

$$f(0) = 0.a_{00}a_{01}a_{02}.....$$

$$f(1) = 0.a_{10}a_{11}a_{12}....$$

$$f(2) = 0.a_{20}a_{21}a_{22}.....$$

.....

$$f(n) = 0.a_{n0}a_{n1}a_{n2}...a_{nn}.....$$
 , 现构造一个实数:

$$r = 0.b_0b_1b_2.....b_n...$$
 , 其中 $b_i = \begin{cases} 1, & \text{if} & a_{ii} \neq 1 \\ 2, & \text{if} & a_{ii} = 1 \end{cases}$

集合 $[0,1]\subseteq\mathbb{R}$ 是不可数集 (对角线法证明)

- 证明: [0,1]是不可数集。
- 证: (反证法)

假设[0,1]为可数无限集,则 \mathbb{N} 与[0,1]之间存在双射f,则可将f的值顺序排列为十进制小数:

$$f(0) = 0.a_{00}a_{01}a_{02}....$$

$$f(1) = 0.a_{10}a_{11}a_{12}....$$

$$f(2) = 0.a_{20}a_{21}a_{22}....$$

.....

$$f(n) = 0.a_{n0}a_{n1}a_{n2}...a_{nn}.....$$
, 现构造一个实数:

$$r = 0.b_0b_1b_2.....b_n...$$
 , 其中 $b_i = \begin{cases} 1, & \text{if} & a_{ii} \neq 1 \\ 2, & \text{if} & a_{ii} = 1 \end{cases}$

集合 $[0,1]\subseteq\mathbb{R}$ 是不可数集 (对角线法证明)

- 证明: [0,1]是不可数集。
- 证: (反证法)

假设[0,1]为可数无限集,则 \mathbb{N} 与[0,1]之间存在双射f,则可将f的值顺序排列为十进制小数:

$$f(0) = 0.a_{00}a_{01}a_{02}....$$

$$f(1) = 0.a_{10}a_{11}a_{12}....$$

$$f(2) = 0.a_{20}a_{21}a_{22}....$$

.....

$$f(n) = 0.a_{n0}a_{n1}a_{n2}...a_{nn}.....$$
, 现构造一个实数:

$$r = 0.b_0b_1b_2.....b_n...$$
 , 其中 $b_i = \begin{cases} 1, & \text{if} & a_{ii} \neq 1 \\ 2, & \text{if} & a_{ii} = 1 \end{cases}$

定义

● 任一集合A具有连续统(Continuum)势, iff, A与集合
 [0,1]等势, A的基数为c, 即|A| = c.

- **1** [a, b]
- (0,1)
- **3** R

定义

● 任一集合A具有连续统(Continuum)势, iff, A与集合
 [0,1]等势, A的基数为c, 即|A| = c.

- **1** [a, b]
- (0,1)
- **3** R

定义

● 任一集合A具有连续统(Continuum)势,iff, A与集合
 [0,1]等势, A的基数为c, 即|A| = c.

- \bullet [a, b]
- (0,1)
- **3** R

定义

● 任一集合A具有连续统 (Continuum) 势, iff, A与集合 [0,1]等势, A的基数为c, 即|A|=c.

- **1** [a, b]
- (0,1)
- **③** ℝ

Example

- 试证明: 集合(0,1)与[0,1]等势。
- 证明:

$$f(x) = \begin{cases} 1/2 & \text{if } x = 0\\ 1/(n+2) & \text{if } x = 1/n, (n \ge 1, n \in \mathbb{N})\\ x & \text{if } x \in [0, 1] - A \end{cases}$$

Example

- 试证明: 集合(0,1)与[0,1]等势。
- 证明:

令
$$A = \{0, 1, 1/2, 1/3, \dots, 1/n, \dots\}$$
,则 $A \subseteq [0, 1]$,设 $f \colon [0, 1] \longrightarrow (0, 1)$

$$f(x) = \begin{cases} 1/2 & \text{if } x = 0\\ 1/(n+2) & \text{if } x = 1/n, (n \ge 1, n \in \mathbb{N}) \\ x & \text{if } x \in [0, 1] - A \end{cases}$$

Example

- 试证明: 集合(0,1)与[0,1]等势。
- 证明:

令
$$A = \{0, 1, 1/2, 1/3,, 1/n,\}$$
,则 $A \subseteq [0, 1]$,设 $f \colon [0, 1] \longrightarrow (0, 1)$

$$f(x) = \begin{cases} 1/2 & \text{if } x = 0\\ 1/(n+2) & \text{if } x = 1/n, (n \ge 1, n \in \mathbb{N})\\ x & \text{if } x \in [0, 1] - A \end{cases}$$

Example

- 试证明: 集合(0,1)与[0,1]等势。
- 证明:

令
$$A = \{0, 1, 1/2, 1/3,, 1/n,\}$$
,则 $A \subseteq [0, 1]$,设 $f \colon [0, 1] \longrightarrow (0, 1)$

$$f(x) = \begin{cases} 1/2 & \text{if } x = 0\\ 1/(n+2) & \text{if } x = 1/n, (n \ge 1, n \in \mathbb{N}) \\ x & \text{if } x \in [0, 1] - A \end{cases}$$

Example

- 试证明: 集合(0,1)与[0,1]等势。
- 证明:

令
$$A = \{0,1,1/2,1/3,.....,1/\textit{n},.....\}$$
,则 $A \subseteq [0,1]$,设 $f \colon [0,1] \longrightarrow (0,1)$

$$f(x) = \begin{cases} 1/2 & \text{if } x = 0\\ 1/(n+2) & \text{if } x = 1/n, (n \ge 1, n \in \mathbb{N})\\ x & \text{if } x \in [0, 1] - A \end{cases}$$

Example

- 试证明: 集合(0,1)与[0,1]等势。
- 证明:

令
$$A = \{0, 1, 1/2, 1/3,, 1/n,\}$$
,则 $A \subseteq [0, 1]$,设 $f \colon [0, 1] \longrightarrow (0, 1)$

$$f(x) = \begin{cases} 1/2 & \text{if } x = 0\\ 1/(n+2) & \text{if } x = 1/n, (n \ge 1, n \in \mathbb{N})\\ x & \text{if } x \in [0, 1] - A \end{cases}$$

连续统假设

- 连续统假设——在X₀和c之间不存在其它的"无穷大"基数?
- 连续统假设是否成立依赖于集合论的公理如何选择。
- https://en. wikipedia. org/wiki/Continuum_hypothesis

连续统假设

- 连续统假设——在\\0 和c之间不存在其它的"无穷大"基数?
- 连续统假设是否成立依赖于集合论的公理如何选择。
- https://en. wikipedia. org/wiki/Continuum_hypothesis

连续统假设

- 连续统假设──在[№]0和c之间不存在其它的"无穷大"基数?
- 连续统假设是否成立依赖于集合论的公理如何选择。
- https://en. wikipedia. org/wiki/Continuum_hypothesis

- 可数集合和不可数集合
 - 自然数的定义
 - 等势
 - 有限集和无限集
 - 可数集
 - 不可数集