Splitting lines in \mathbb{R}^3

Notation

- $B_r(p)$ is the (closed) ball centered in p of radius r.
- $X := S^3 \times S^3 \times S^3$ as a subset of polynomials $\mathbb{R}[t_1, t_2, t_3]$ (product of three affine polynomials).
- X is a metric space with the distance:

$$d(x,y) = \max_{i \in I} |x_i - y_i|$$

i.e. the distance between two polynomials is the biggest difference in their coefficients (it is always finite since the set of possible multi-indices is finite).

- Given $x \in X$, $Z(x) := \{ p \in \mathbb{R}^3 | x(p) = 0 \}$ is the plane configuration induced by x
- Given $x \in X$ and $\omega \in G$, the orthant $\mathcal{O}(x,\omega)$ is the (potentially empty) open set in $\mathbb{R}^3 \setminus Z(x)$ defined as:

$$\mathcal{O}(x,\omega) := \{ p \in \mathbb{R}^3 | (-1)^{\omega_i} x_i(p) > 0 \ \forall i \}$$

- The degenerate set in X is $A := \{x \in X | \text{at least one orthant is empty} \}$
- $G_{\pm} := (\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2) \rtimes \mathbb{S}_3$ where \mathbb{S}_3 is the permutation group on three elements
- $G := \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$
- Γ is a collection of *n* different (affine) lines in \mathbb{R}^3
- Given $\varepsilon > 0$, the cut-off function $\eta_{\varepsilon} : \mathbb{R} \to \mathbb{R}$ is:

$$\eta_{\varepsilon}(x) = \begin{cases} 0 & \text{if } x \leq \varepsilon \\ \frac{1}{\varepsilon}x - 1 & \text{if } \varepsilon \leq x \leq 2\varepsilon \\ 1 & \text{if } x \geq 2\varepsilon \end{cases}$$

1 Preamble: G_+ -representations

Before starting it is useful to clarify how G_{\pm} acts on the target space (either \mathbb{R}^G or $\mathbb{R}^{G\setminus 0}$).

The group acts on the two vector spaces differently. On the first space $V := \mathbb{R}^G$, the action is a permutation of the coordinates according to the following rule:

$$((\alpha \rtimes \sigma) \cdot v)_{\omega} = v_{\alpha + \sigma^{-1} \cdot \omega}$$

On the other end, the action on the space $W := \mathbb{R}^{G\setminus 0}$ is given by:

$$((\alpha \rtimes \sigma) \cdot v)_{\omega} = (-1)^{(\alpha|\sigma^{-1} \cdot \omega)} v_{\sigma^{-1} \cdot \omega}$$

There is a G_{\pm} -linear map between the two representations, the alternate sum map, $T:V\to W$ defined as:

$$(Tv)_{\omega} = \sum_{\alpha \in G} (-1)^{(\alpha|\omega)} v_{\alpha}$$

It is an easy computation to see that ker(T) is the linear space generated by $\mathbbm{1}$ (the vector of all 1s).

2 Proof

The goal of this notes is to prove the following fact:

Theorem 1. Suppose Γ is not degenerate (i.e. $\nexists x \in X$ such that $\bigcup \Gamma \subseteq Z(x)$). Then $\exists x \in X$ such that every orthant intersect at most $\frac{n}{2}$ lines in Γ .

Recall that the Guth function of parameter $\delta > 0$ is defined as $I_{\delta}: X \to V$:

$$(I_{\delta}(x))_{\omega} = \sum_{\gamma \in \Gamma} \eta_{\varepsilon} \left(\int_{N_{\delta} \gamma \cap \mathcal{O}(x,\omega) \cap B_R} \eta_{\varepsilon}(|x(p)|) \delta^{-3} dp \right)$$

Where $\varepsilon := \varepsilon(\delta)$ and $R := R(\delta)$ are suitable functions (see [guth'polynomial'2015]). Since the Guth functions point-wise converge to the counting function for intersections, if we show that, for all sufficiently small $\delta > 0$, $T \circ I_{\delta}$ has a zero we obtain that $\exists x \in X$ for which the counting function is multiple (up to integer rounding) of $\mathbb{1}$; by intersection counting the correct multiple is $\frac{n}{2}$.

The first part of the proof will be dedicated to show that for a small enough δ the Guth function I_{δ} is G_{\pm} -homotopic to the induced function f for a measure, hence TI_{δ} and Tf are G_{\pm} -homotopic. What is more, we will show that this holds on a manifold with boundary $E\subseteq X\setminus A$ of dimension 7; since E avoids A, the action of G_{\pm} is free on E.

The zero set of the homotopy is going to be a free G_{\pm} -manifold of dimension 1 with (non-empty) boundary in $E \times I$ and we will show that it has to avoid $\partial E \times I$. By choosing a clever measure we get that there has to be exactly one orbit of zeros on the final level of the homotopy. By the fact that G_{\pm} -homotopies can change the number of zeros only by multiples of $|G_{\pm}|$, the function TI_{δ} has to have at least one zero on E as desired.

2.1 Find the δ

The goal of this section is to find the suitable $\delta > 0$ as previously mentioned.

Definition 1. Given $x \in X$ and $\gamma \in \Gamma$, $\delta > 0$ is acceptable for x with witness $p \in \mathbb{R}^3$ if:

- $p \in \gamma$ and $(1 + \delta) \|p\| < R(\delta)$ (i.e. $B_{\delta}(p) \subseteq int(B_R)$)
- $\min_{q \in B_{\delta}(p)} |x(q)| > 2\varepsilon$

The first useful remark is that $\forall x \in X$ there is $\delta_x > 0$ admissible. In fact, fix $x \in X$, then there is $\gamma \in \Gamma$ such that γ is not contained in Z(x) thus it is possible to pick $p \in \gamma \setminus Z(x)$. Since $R \to \infty$, $\varepsilon \to 0$ and $\min_{q \in B_{\delta}(p)} |x(q)| \to |x(p)| > 0$ with $\delta \to 0$ eventually there will be a $\delta_x > 0$ for which all the conditions will be satisfied simultaneously $\Rightarrow \delta_x$ is acceptable.

Lemma 1. There is $\tilde{\delta} > 0$ such that $\tilde{\delta}$ is acceptable $\forall x \in X$.

Proof. $\forall \delta > 0$ define $U(\delta) := \{x \in X | \delta \text{ is acceptable for } x\}$. Since $X = \bigcup_{\delta > 0} U_{\delta}$ and $U_{\alpha} \subseteq U_{\beta}$ whenever $\alpha \leq \beta$, in order to obtain the thesis it is sufficient by compactness to show that U_{δ} is open $\forall \delta$.

Fix $x \in U_{\delta}$ and p a witness. Then it is enough to show:

Claim: If y is close enough to x, δ is acceptable for y with witness p.

Proof: The only condition we need to verify is that $\min_{q \in B_{\delta}(p)} |y(q)| > 2\varepsilon$. $\forall q \in B_{\delta}(p)$, we have that:

$$|y(q)| \ge ||x(q)| - |x(q) - y(q)||$$

Since $m: y \mapsto \max_{q \in B_{\delta}(p)} |x(q) - y(q)|$ is continuous (lemma 3), it is possible to pick y close enough to x so that $m(y) < \frac{1}{2} \left(\max_{q \in B_{\delta}(p)} |x(q)| - 2\varepsilon \right)$; thus $|y(q)| > 2\varepsilon \quad \forall q \in B_{\delta}(p)$ as desired.

From now on, fix δ to be a value $\tilde{\delta} \geq \delta > 0$.

2.2 Find the homotopy

Since the space of bounded Borel measures on \mathbb{R}^3 is convex, the convex combination of any two measure gives a G_{\pm} -homotopy between the two induced functions. What is more, such an homotopy is never 0 on the degenerate set A by construction; hence, if we can construct an homotopy between the Guth

function and a measure avoiding zeros on A then we can do the same with any other measure.

The key observation is that the Guth function is already almost an induced function of a measure, the only difference is the cut-off function wrapping the integral and the function under the integral sign; hence the strategy is to construct homotopy for these two functions that respect the properties we are interested in at all times.

Define thus the two homotopies:

$$\alpha_t(x) = t + (1 - t)\eta_{\varepsilon}(x)$$

$$\beta_t(x) = tx + (1 - t)\eta_{\varepsilon}(x)$$

Finally, we can define the combined homotopy; that is, on the coordinate ω :

$$(H_t(x))_{\omega} := \sum_{\gamma \in \Gamma} \beta_t \left(\int_{N_{\delta} \gamma \cap \mathcal{O}(x,\omega) \cap B_R} \alpha_t(|x(p)|) \delta^{-3} dp \right)$$

This is clearly G_{\pm} -equivariant, $H_0 \equiv I_{\delta}$, $H_1 \equiv \int_{N_{\delta}\Gamma \cap \mathcal{O}(x,\omega) \cap B_R} \delta^{-3} dp$ (the induced function for the measure supported on $N_{\delta}\Gamma \cap B_R$); the only property left to check is that it is never a multiple of the 1 vector on degenerate configurations.

Fix $x \in A$. Then, there is $\omega_x \in G$ such that $\mathcal{O}(x, \omega_x)$ is empty $\Rightarrow H_t(x)_{\omega_x} \equiv 0$ at every t.

Claim: There is an element ξ and ϵ such that $H_t(x)_{\xi} \geq \epsilon > 0$ at all times.

Since the argument of β_t is always positive, H_t is a sum of positive functions hence it is enough to prove that $\exists \gamma \in \Gamma$ and $\xi \in G$ such that

$$\beta_t \left(\int_{N_\delta \gamma \cap \mathcal{O}(x,\xi) \cap B_R} \alpha_t(|x(p)|) \delta^{-3} dp \right) \ge \epsilon > 0$$

Let $\tilde{p} \in \gamma \ (\gamma \in \Gamma)$ be a witness for the acceptability of δ and let ξ be the index of the orthant containing \tilde{p} . Then, $\forall t \in [0,1]$:

$$\min_{p \in B_{\delta}(\tilde{p})} |x(p)| > 2\varepsilon \Rightarrow \alpha_t(|x(p)|) = 1$$

Hence:

$$\int_{N_\delta\gamma\cap\mathcal{O}(x,\xi)\cap B_R}\alpha_t(|x(p)|)\delta^{-3}dp\geq \int_{B_\delta(\tilde{p})}\delta^{-3}dp=\frac{4\pi}{3}$$

Since $\beta_t(x)$ is monotone increasing in t if $x \geq 1$

$$\beta_t(\int_{N_\delta \gamma \cap \mathcal{O}(x,\xi) \cap B_R} \alpha_t(|x(p)|) \delta^{-3} dp) \ge \eta_\varepsilon \left(\frac{4\pi}{3}\right) = 1$$

As a result, the map $T \circ H_t$ is a G_{\pm} -homotopy between the test maps that doesn't have any zeros on A. Without loss of generality we can assume that $T \circ H_t$ is an homotopy between I_{δ} and the induced function of the target measure defined in lemma 4.

2.3 Find E - Conclusion

By compactness of $X \times I$, there is an $\varepsilon > 0$ such that $\forall \alpha \in G \setminus 0$, $(T \circ H_t|_A)_\alpha > \varepsilon$. It is thus possible to choose a small G_{\pm} -invariant tubolar neighborhood N_A such that $(T \circ H_t|_{N_A})_\alpha > \frac{2\varepsilon}{3}$. For convenience, choose N_A to be closed and denote by U_A its interior.

Let $P := \{x \in X | \text{ one of the planes is parallel to the plane } t_1 = 0\}$. By construction $P = (S^1 \times S^3 \times S^3) \times (S^3 \times S^1 \times S^3) \times (S^3 \times S^3 \times S^1)$ and thus it is not a manifold.

The corner points are contained in A, hence $E = P \setminus U_A$ is a 7-dimensional manifold with boundary on which the action of G_{\pm} is free.

By choosing suitable small compatible G_{\pm} -triangulations for X, N_A , [0,1] and E, we there is a G_{\pm} -map $f: X \times [0,1] \to W$ that is:

- f is affine on every simplex of $X \times [0,1]$
- G_{\pm} -homotopic to $T \circ H$
- very close to $T \circ H$ (e.g. $\max_{x \in X, t \in I} ||f(x,t) TH_t(x)|| \leq \frac{\varepsilon}{3}$)
- There is a unique orbit $G_{\pm}x$ in X such that f(x,1)=0 and $x\neq A$
- $f|_E$ is generic (i.e. $f^{-1}(0)$ intersect only faces of dimension at least 7 = |G| 1)
- $||f|_{\partial E}|| \geq \frac{\varepsilon}{3}$

(see lemma 5 for a proof).

As a result, $Z := f^{-1}(0) \cap E \times I$ is a 1-dimensional PL-manifold with boundary that is G_{\pm} invariant.

If we choose a connected component starting from one of the point in $Z \cap E \times \{1\}$, this is an interval with exactly one endpoint on $E \times \{1\}$ and does not intersect $\partial E \times I$. It follows that the other endpoint has to be on $E \times \{0\}$ and thus we showed that $|Z \cap E \times \{0\}| = 1 \mod |G_{\pm}|$, hence non zero. Since this quantity is preserved under G_{\pm} -homotopies, the same has to be true for $T \circ H_0 = T \circ I_{\delta}$ as desired.

3 Technical Lemmas

Lemma 2 (convergence in X implies global ptwise convergence). Let $x_n \to x_\infty$ a converging sequence in X with the distance previously defined. Then $\forall p \in \mathbb{R}^3$, $x_n(p) \to x_\infty(p)$.

Proof. Fix $\varepsilon > 0$ and $p \in \mathbb{R}^3$ and denote by y^i the homogeneous component of degree i of a polynomial $y \in X$. If p = 0 then, for n big enough:

$$|x_n(0) - x_\infty(0)| = |x_n^0 - x_\infty^0| \le d(x_n, x_\infty) \le \varepsilon$$

Thus we can assume $||p|| \neq 0$ and denote by $\hat{p} := \frac{p}{||p||}$. If $0 < ||p|| \leq 1$; for n big enough we have:

$$|x_n(p) - x_\infty(p)| \le \sum_{i=0}^3 ||p||^i |x_n^i(\hat{p}) - x_\infty^i(\hat{p})| \le \sum_{i=0}^3 c_i d(x_n, x_\infty) \le C d(x_n, x_\infty) \le \varepsilon$$

for some constants c_i, C .

Analogously, if $1 \leq ||p||$, then:

$$|x_n(p) - x_{\infty}(p)| \le \sum_{i=0}^{3} ||p||^i |x_n^i(\hat{p}) - x_{\infty}^i(\hat{p})| \le \sum_{i=0}^{3} ||p||^i c_i d(x_n, x_{\infty}) \le ||p||^3 C d(x_n, x_{\infty})$$

However, since p is fixed, we can choose n big enough such that

$$d(x_n, x_\infty) \le \frac{\varepsilon}{\|p\|^3 C}$$

hence the sequence $x_n(p)$ converges to $x_{\infty}(p)$ as desired.

Lemma 3 (max function is continuous). Fix $x \in X$, $\delta > 0$ and $p \in \mathbb{R}^3$, then the function $m: X \to \mathbb{R}$, $m(y) = \max_{q \in B_{\delta}(p)} |y(q) - x(q)|$ is continuous.

Proof. It is enough to prove sequential continuity. Let $y_n \to y_\infty$ be a converging sequence in $X \Rightarrow y_n(p) \to y_\infty(p)$ (lemma 2).

Let q_n be a point that realizes $m(y_n)$ (i.e. $m(y_n) = |y_n(q_n) - x(q_n)|$), up to taking a sub-sequence we can assume q_n converges to some point $q_\infty \in B_\delta(p)$.

What is more, the family $\{y_n\}$ is equicontinuous as functions $y_n : B_{\delta}(p) \to \mathbb{R}$ (they are differentiable and have bounded derivative) and thus they converge uniformly on $B_{\delta}(p)$.

CLAIM: q_{∞} realizes $m(y_{\infty})$.

Assuming the claim, we get that for n big enough:

$$|m(y_n) - m(y_\infty)| = |y_n(q_n) - x(q_n) - y_\infty(q_\infty) + x(q_\infty)|$$

$$\leq |y_n(q_n) - y_n(q_\infty)| + |y_n(q_\infty) - y_\infty(q_\infty)| + |x(q_\infty) - x(q_n)|$$

$$\leq \varepsilon + \varepsilon + \varepsilon$$

where the last inequality holds by equicontinuity (first term), pointwise convergence (second term) and continuity of x (third term).

The only thing left to prove is the claim.

Lemma 4 (Target Measure). Let μ the probability measure with support on $S = \{(t, t^2, t^3) \in \mathbb{R}^3 | t \in [-1, 1]\}$ and uniform density. Then there is a unique G_{\pm} -orbit of points in P that equipartitions μ .

Equivalently, up to order and signs there is a unique triple of planes such that every orthant has the same measure and the first one is parallel to the horizontal plane $\{p \in \mathbb{R}^3 | p_1 = 0\}$.

Lemma 5 (Generic Homotopy). Let $TH_t: X \to W$ the homotopy constructed in section 2.2 and $\varepsilon > 0$ small enough. Then there are compatible G_{\pm} -triangulation for $X, E, I := [0,1], X \times I$ and a G_{\pm} -function $f: X \times I \to W$ with the following properties:

- 1. $\max_{(x,t)\in X\times I} ||f(x,t) TH_t(x)|| < \varepsilon$
- 2. f is G_{\pm} -homotopic to TH
- 3. f is affine on every simplex in $X \times I$
- 4. f is generic: i.e. $f^{-1}(0)$ intersects only simplices of dimension at least $7 = \dim W$
- 5. f(x,1) = 0 on exactly one orbit in E

Proof. By equivariant simplicial approximation we can find small enough triangulations for the spaces and an affine map g that is G_{\pm} -homotopic to TH and $\max_{(x,t)\in X\times I}\|f(x,t)-TH_t(x)\|<\frac{\varepsilon}{2}$. By lemma 6, the property of having exactly one orbit of zeros is preserved under perturbations small enough (since 0 is a regular value of the function on E) hence the only condition we need to show is that we can find a perturbation that is generic.

Lemma 6. Fix μ the measure defined in lemma 4 and denote by $g: X \to V$ the function $g(x)_{\omega} = \int_{\mathcal{O}(x,\omega)} \mu$, then g is smooth and its critical values are away from the diagonal of V (i.e. 0 is a regular value for Tg).

Proof. [Sketch / find a less convoluted proof for last point in lemma 5]

Smoothness is clear by the definition. The hard part is proving the regualrity of the zeros.

By lemma 4, $(Tg)^{-1}(0) = G_{\pm}\bar{x}$ where (up to normalization)

$$\bar{x} = \left((1, 0, 0, 0), (-\frac{5}{16}, \frac{1}{2}, 1, -\frac{3}{32}), (-\frac{5}{16}, -\frac{1}{2}, 1, \frac{3}{32}) \right)$$

Since G_{\pm} acts on the differential as multiplication with an invertible matrix, 0 is a regular value for Tg if and only if $D(Tg)_{\bar{x}}$ is full rank.

The 0-set of the function $E \times \mathbb{R} \to \mathbb{R}$ defined as

$$\phi(x_1, x_2, x_3, t) = x_1(t, t^2, t^3)x_2(t, t^2, t^3)x_3(t, t^2, t^3)$$

gives a parametrization of the intersections of (the zero sets of) points of E with the moment curve in a small neighborhood of \bar{x} by the implicit function theorem. Denote by z_i the implicit functions defined by ϕ in a neighborhood of $(\bar{x}, t_i := \frac{i}{4})$ for $|i| \leq 3$ integer.

By definition of the target measure, we have that (in a small neighborhood of \bar{x}) g can be expressed as:

$$\begin{split} g_{(0,0,0)}(x) &= 1 - z_3(x) \\ g_{(0,0,1)}(x) &= z_1(x) - z_0(x) \\ g_{(0,1,0)}(x) &= z_3(x) - z_2(x) \\ g_{(0,1,1)}(x) &= z_2(x) - z_1(x) \\ g_{(1,0,0)}(x) &= z_{-1}(x) - z_{-2}(x) \\ g_{(1,0,1)}(x) &= z_0(x) - z_{-1}(x) \\ g_{(1,1,0)}(x) &= z_{-2}(x) - z_{-3}(x) \\ g_{(1,1,1)}(x) &= z_{-3}(x) + 1 \end{split}$$

Since $(\partial_t \phi)(\bar{x}, t_i) \neq 0$ for all i, we can explicitly write the differential of g around \bar{x} using the partial derivatives of the functions t_i .

Fix $\psi: (-\pi, \pi) \times B_1(0) \times B_1(0) \to \{x_1 > 0\} \times \{x_4 < 0\} \times \{x_4 > 0\}$ chart in E around \bar{x} with parametrization:

$$\left(\theta, \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}, \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}\right) \mapsto \left(\begin{pmatrix} \cos(\theta) \\ 0 \\ \sin(\theta) \end{pmatrix}, \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ -\sqrt{1 - \|x\|^2} \end{pmatrix}, \begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ \sqrt{1 - \|y\|^2} \end{pmatrix}\right)$$

All the relevant derivatives are (in the chart around \bar{x}):

$$d_{0} := \partial_{t}\phi = \cos\theta \left(x_{1}t + x_{2}t^{2} + x_{3}t^{3} - \sqrt{1 - \|x\|^{2}}\right) \left(y_{1}t + y_{2}t^{2} + y_{3}t^{3} + \sqrt{1 - \|y\|^{2}}\right) + (t\cos\theta + \sin\theta) \left(x_{1} + 2x_{2}t + 3x_{3}t^{2}\right) \left(y_{1}t + y_{2}t^{2} + y_{3}t^{3} + \sqrt{1 - \|y\|^{2}}\right) + (t\cos\theta + \sin\theta) \left(x_{1}t + x_{2}t^{2} + x_{3}t^{3} - \sqrt{1 - \|x\|^{2}}\right) \left(y_{1}t + 2y_{2}t + 3y_{3}t^{2}\right)$$

$$d_{1} := \partial_{\theta}\phi = \left(-t\sin\theta + \cos\theta\right) \left(x_{1}t + x_{2}t^{2} + x_{3}t^{3} - \sqrt{1 - \|x\|^{2}}\right) \left(y_{1}t + y_{2}t^{2} + y_{3}t^{3} + \sqrt{1 - \|y\|^{2}}\right)$$

$$d_{1+i} := \partial_{x_{i}}\phi = \left(t\cos\theta + \sin\theta\right) \left(t^{i} + \frac{x_{i}}{\sqrt{1 - \|x\|^{2}}}\right) \left(y_{1}t + y_{2}t^{2} + y_{3}t^{3} + \sqrt{1 - \|y\|^{2}}\right)$$

$$d_{4+i} := \partial_{y_{i}}\phi = \left(t\cos\theta + \sin\theta\right) \left(x_{1}t + x_{2}t^{2} + x_{3}t^{3} - \sqrt{1 - \|x\|^{2}}\right) \left(t^{i} - \frac{y_{i}}{\sqrt{1 - \|y\|^{2}}}\right)$$

Thus by implicit function theorem it is sufficient to evaluate the derivatives on the zero points (z_i, t_i) .

Here there is the full matrix $(M_{i,j} = d_{i-1}(t_{4+j}))$ with the needed values:

$$M = \begin{bmatrix} -\frac{45}{463} & \frac{5}{463} & -\frac{1}{463} & -\frac{3}{463} & \frac{1}{463} & -\frac{5}{463} & \frac{45}{463} \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ \frac{248}{463} & 0 & -\frac{296}{4167} & 0 & 0 & -\frac{368}{4167} & 0 \\ -\frac{458}{463} & 0 & \frac{506}{4167} & 0 & 0 & \frac{488}{4167} & 0 \\ -\frac{2129}{926} & 0 & \frac{2051}{8334} & 0 & 0 & \frac{1012}{4167} & 0 \\ 0 & -\frac{272}{4167} & 0 & 0 & -\frac{344}{4167} & 0 & \frac{392}{463} \\ 0 & -\frac{536}{4167} & 0 & 0 & -\frac{518}{4167} & 0 & \frac{566}{463} \\ 0 & \frac{1036}{4167} & 0 & 0 & \frac{2045}{8334} & 0 & -\frac{1967}{926} \end{bmatrix}$$

A direct computation shows that the Jacobian matrix is:

$$D(Tg)_{\bar{x}} = \begin{bmatrix} 0 & \frac{544}{9} & -\frac{1000}{9} & -\frac{2072}{9} & 0 & 0 & 0\\ 0 & -\frac{640}{9} & \frac{1024}{9} & \frac{2030}{9} & -\frac{640}{9} & -\frac{1024}{9} & \frac{2066}{9}\\ 0 & 0 & 0 & 0 & -\frac{736}{9} & -\frac{1048}{9} & \frac{2024}{9}\\ 2 & \frac{1232}{45} & -\frac{1892}{45} & -\frac{4153}{45} & \frac{688}{9} & \frac{1036}{9} & -\frac{2045}{9}\\ 2 & -\frac{592}{9} & \frac{1012}{9} & \frac{2051}{9} & \frac{688}{9} & \frac{1036}{9} & -\frac{2045}{9}\\ -2 & \frac{592}{9} & -\frac{1012}{9} & -\frac{2051}{9} & \frac{1328}{45} & \frac{2204}{45} & -\frac{4039}{45}\\ -2 & \frac{1232}{45} & -\frac{1892}{45} & -\frac{4153}{45} & -\frac{1328}{45} & -\frac{2204}{45} & \frac{4039}{45} \end{bmatrix}$$

that is invertible, with inverse (reported just as a sanity check):

$$\begin{bmatrix} 0 & 0 & 0 & \frac{1}{4} & -\frac{1}{4} & -\frac{1}{4} & -\frac{1}{4} \\ -\frac{4465}{3} & -\frac{3}{7312} & -\frac{3}{7312} & \frac{3197}{29248} & \frac{3221}{29248} & \frac{3}{7312} & \frac{3}{7312} \\ -\frac{499}{7312} & \frac{46}{457} & \frac{467}{457} & \frac{1189}{7312} & \frac{283}{7312} & \frac{46}{457} & \frac{46}{457} \\ -\frac{21}{1828} & -\frac{89}{1828} & -\frac{89}{1828} & -\frac{91}{1828} & -\frac{89}{1828} & -\frac{89}{1828} \\ \frac{3}{7408} & -\frac{3}{7408} & -\frac{2495}{29632} & -\frac{3179}{7408} & \frac{3203}{29632} & \frac{3}{7408} \\ -\frac{46}{463} & \frac{463}{463} & \frac{7408}{7408} & \frac{463}{463} & -\frac{7408}{7408} & \frac{7408}{7408} & \frac{463}{463} \\ -\frac{95}{1852} & \frac{95}{1852} & -\frac{27}{1852} & \frac{95}{1852} & -\frac{1852}{1852} & \frac{1852}{1852} & \frac{1852}{1852} & \frac{1852}{1852} \end{bmatrix}$$

Hence 0 is a regular value for Tg as desired.