semestre 1

Inverse d'une matrice carrée

Définition 1. Une matrice **carrée** A de taille n est **inversible** lorsqu'il existe une matrice B carrée de taille n telle que $A \times B = B \times A = I_n$.

Exercice 1. Soit $A = \begin{pmatrix} 3 & 4 \\ -4 & -5 \end{pmatrix}$ et $B = \begin{pmatrix} -5 & -4 \\ 4 & 3 \end{pmatrix}$. Vérifier que A et B sont inverses l'une de l'autre.

Remarque 1. – La matrice inverse de A, quand elle existe, est unique et notée A^{-1} .

– Soit A et B deux matrices carrées d'ordre p. Si A et B sont inversibles alors AB est inversible et $(AB)^{-1} = B^{-1}A^{-1}$.

Exercice 2. Écrire une fonction is inverse qui prend en entrée deux matrices A et B de tailles n puis teste si elles sont inverses l'une de l'autre.

Déterminant d'une matrice carrée de taille 2×2

Définition 2. Soit $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ une matrice carrée d'ordre 2. Le **déterminant** de A est le réel, noté $\det(A)$, défini par $\det(A) = ad - bc$.

Exercice 3. Calculer le déterminant de $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$.

Le calcul du déterminant d'une matrice est important notamment pour le résultat qui suit :

Proposition 1. Une matrice carrée est inversible si et seulement si son déterminant est non nul.

En particulier, si $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ est inversible, alors

$$A^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}.$$

Exercice 4. Calculer l'inverse de $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$.

Exercice 5. 1. Écrire une fonction determinant2x2 qui prend en entrée une matrice A de taille 2 puis calcule son déterminant.

2. Écrire une fonction **inverse** qui prend en entrée une matrice A de taille 2, détermine si elle est inversible, puis calcule son inverse le cas échéant.

Exercices d'entraînement

Pour certains de ces exercices vous pouvez vous aider, au besoin, de vos codes en Python.

Exercice 6. Dans chaque cas, vérifier que les matrices A et B sont inverses l'une de l'autre

1.
$$A = \begin{pmatrix} 3 & 4 \\ -4 & -5 \end{pmatrix}$$
 et $B = \begin{pmatrix} -5 & -4 \\ 4 & 3 \end{pmatrix}$,
2. $A = \begin{pmatrix} 1 & 1 & -1 \\ 2 & 0 & 2 \\ -2 & 2 & -1 \end{pmatrix}$ et $B = \frac{1}{10} \begin{pmatrix} 4 & 1 & -2 \\ 2 & 3 & 4 \\ -4 & 4 & 2 \end{pmatrix}$.

Exercice 7. La matrice $A = \begin{pmatrix} 3 & 5 \\ -3 & -8 \end{pmatrix}$ est-elle inversible?

Si oui, déterminer son inverse.

Exercice 8. On pose
$$A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$
...

- 1. Calculer A^2 , A^3 , A^4 .
- 2. En déduire que A est inversible et déterminer A^{-1} .

Exercice 9. Soit
$$a$$
 et b deux réels et $A = \begin{pmatrix} a & 1 \\ b & 2 \end{pmatrix}$.

- 1. Quelle relation existe-t-il entre a et b quand A n'est pas inversible?
- 2. Déterminer a et b tels que A soit inversible et $A = A^{-1}$.

Exercice 10. Soit
$$A = \begin{pmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{pmatrix}$$
.

- 1. Montrer que $A^2 = 2I_3 A$.
- 2. En déduire que A est inversible et déterminer A^{-1} .

Exercice 11. Soit
$$A = \begin{pmatrix} 4 & 1 & 1 \\ 1 & 4 & 1 \\ 1 & 1 & 4 \end{pmatrix}$$
.

1. Démontrer qu'il existe deux réels α et β tels que :

$$A^2 = \alpha A + \beta I_3.$$

- 2. En déduire que la matrice A est inversible et exprimer A^{-1} en fonction de A et I_3 .
- 3. Déterminer la matrice A^{-1} .

Exercice 12. Soit
$$A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & -1 & 1 \end{pmatrix}$$
.

- 1. Calculer $(A I_3)^3$.
- 2. En déduire que A est inversible et préciser A^{-1} .