IT Security #6

Organizational IT Security Policy & Analysis & Implementation Theme C (ii) on Management issues

Niels Christian Juul

Roskilde Universitet Niels Christian Juul Hus 08.2-071 Universitetsvej 1 4000 Roskilde ncjuul@ruc.dk

IT-security

Course book

Chapter 14 + 15 today

Next time:

- Selected parts of Chapter 16, 17, 18 Student presentations, eg.
- 17.3 on e-mail policy (compare to RUC)
- ??

Learning outcome

Be able to

- manage information security in an organization
- conduct a thorough risk analysis wrt organizational information security
- select relevant security controls
- create an security implementation plan

Exam themes/questions:

- What is Security Policy and how should it be managed?
- How to conduct a Detailed Security Risk Assessment?
- How to make a Security Implementation Plan?

Agenda

- 1. Intro
- 2. Organizational IT Security Policy, Ch. 14.1-2
- 3. Risk Assessment, Overview, Ch. 14.3
- 4. Detailed Risk Analysis, Ch. 14.4
- 5. Case: Silver Mine, Ch. 14.5
- 6. Security Controls, Ch. 15.2 (Monica)
- 7. Security Planning, Ch. 15.3
- 8. Implementing Controls and Risk Management, Ch. 15.4-5
- 9. Silver Mine Case, Ch. 15.6

IT Security Management Overview

Is the formal process of answering the questions:

What assets need to be protected

Roskilde Universitet

Datalog

How are those assets threatened

What can be done to counter those threats

- Ensures that critical assets are sufficiently protected in a costeffective manner
- Security risk assessment is needed for each asset in the organization that requires protection
- Provides the information necessary to decide what management, operational, and technical controls are needed to Informeduce the risks identified

2019-03-18

Table 14.1 27000 Series of Standards on IT Security Techniques

"Information security management systems - Overview and vocabulary"
provides an overview of information security management systems, and
defines the vocabulary and definitions used in the 27000 family of standards.
"Information security management systems – Requirements" specifies the
requirements for establishing, implementing, operating, monitoring,
reviewing, maintaining and improving a documented Information Security
Management System.
"Code of practice for information security management" provides guidelines
for information security management in an organization and contains a list of
best-practice security controls. It was formerly known as ISO17799.
"Information security management system implementation guidance" details
the process from inception to the production of implementation plans of an
Information Security Management System specification and design.
"Information security management – Measurement" provides guidance to
help organizations measure and report on the effectiveness of their
information security management system processes and controls.
"Information security risk management" provides guidelines on the
information security risk management process. It supersedes ISO13335-3/4.
"Requirements for bodies providing audit and certification of information
security management systems" specifies requirements and provides guidance
for these bodies.

27000: 2018	Information security management systems Overview and vocabulary
27001:2013	Information security management systems Requirements
27002:2013	Code of practice for information security controls
27003:2017	Information security management systems Guidance
<u>27004:2016</u>	Information security management Monitoring, measurement, analysis and evaluation
27005:2018	Information security risk management
<u>27006: 2015</u>	Requirements for bodies providing audit and certification of information security management systems
27007:2017	Guidelines for information security management systems auditing
27008:2019	Guidelines for the assessment of information security controls
27009:2016	Sector-specific application of 27001 Requirements
27010: 2015	Information security management for inter-sector and inter- organizational communications
formatile -	

2019-03-18 Niels Christian Juul

ISO 27000 ISMS family of standards relationship

27011:2016	Code of practice for Information security controls based on 27002 for telecommunications organizations
<u>27013:2015</u>	Guidance on the integrated implementation of 27001 and 20000-1
27014:2013	Governance of information security
27016:2014	Information security management Organizational economics
<u>27017: 2015</u>	Code of practice for information security controls based on 27002 for cloud services
27018:2019	Code of practice for protection of personally identifiable information (PII) in public clouds acting as PII processors
27019:2017	Information security controls for the energy utility industry
27021:2017	Competence requirements for information security management systems professionals
27023:2015	Mapping the revised editions of 27001 and 27002
27030 [U]	Guidelines for security and privacy in Internet of Things (IoT)
27031:2011	Guidelines for information and communication technology
formatik	readiness for business continuity

2019-03-18

Datalogi

Roskilde Universitet

- 27032 [U] IT Security Techniques -- Cybersecurity -- Guidelines for Internet Security
- 27033-1:2015 Network security
 - Part 1: Overview and concepts
- 27033-2:2012 Part 2: Guidelines for the design and implementation of network security
- 27033-3:2010 Part 3: Reference networking scenarios -- Threats, design techniques and control issues
- 27033-4:2014 Part 4: Securing communications between networks using security gateways
- 27033-5: 2013 Part 5: Securing communications across networks using Virtual Private Networks (VPNs)
- 27033-6: 2016 Part 6: Securing wireless IP network access

10

```
27034-1:2011 Application security
              Part 1: Overview and concepts
27034-2:2015 Part 2: Organization normative framework
27034-3: 2018 Part 3: Application security management process
27034-4 [U] Part 4: Validation and verification
27034-5: 2017 Part 5: Protocols and application security controls data
              structure
27034-6: 2016 Part 6: Case studies
27034-7: 2018 Part 7: Assurance prediction framework
27035-1:2016 Information security incident management
              Part 1: Principles of incident management
27035-2:2016 Part 2: Guidelines to plan and prepare for incident response
27035-3 [U] Part 3: Guidelines for incident response operations
```


2019-03-18 Niels Christian Juul

11

27036-1:2014 Information security for supplier relationships Part 1: Overview and concepts
27036-2:2014 Part 2: Requirements
27036-3:2013 Part 3: Guidelines for information and communication technology supply chain security
27036-4:2016 Part 4: Guidelines for security of cloud services
27037:2012 Guidelines for identification, collection, acquisition and preservation of digital evidence
27038: 2014 Specification for digital
27039: 2015 Selection, deployment and operations of intrusion detection and prevention systems (IDPS)
27040: 2015 Storage security
27041: 2015 Guidance on assuring suitability and adequacy of incident investigative method
27042:2015 Guidelines for the analysis and interpretation of digital evidence
27043: 2015 Incident investigation principles and processes
Informatik

2019-03-18

Datalogi

Roskilde Universitet

<u>27045</u> [U]	Big data security and privacy Processes
27050-1:2016	Electronic discovery
	Part 1: Overview and concepts
27050-2:2018	Part 2: Guidance for governance and management of electronic discovery
27050-3:2017	Part 3: Code of practice for electronic discovery
27050-4 [U]	Part 4: Technical readiness
<u>27070</u> [U]	Security requirements for establishing virtualized roots of trust
<u>27099</u> [U]	Public key infrastructure Practices and policy framework
<u>27100</u> [U]	Cybersecurity Overview and concepts
27101 [U]	Cybersecurity Framework development guidelines
27102 [U]	Information security management guidelines for cyber insurance
27103:2018	Cybersecurity and ISO and IEC Standards

13

<u>27550</u> [U]	Privacy engineering
<u>27551</u> [U]	Requirements for attribute-based unlinkable entity authentication
<u>27552</u> [U]	Extension to 27001 and 27002 for privacy information management Requirements and guidelines
<u>27553</u> [U]	Security requirements for authentication using biometrics on mobile devices
27554 [U]	Application of ISO 31000 for assessment of identity management-related risk
27555 [U]	Establishing a PII deletion concept in organizations
27570 [U]	Privacy guidelines for Smart Cities

And you should also look for security techniques at other series in ISO, eg. 9700, 10100, 11000, 13000, 15000, 18000, 19000, 24000, and 29000

ISO/IEC JTC 1/SC 27 IT Security techniques

Information Security Management System

7 - Support

ACT Maintain & Improve ISMS

10 - Improvement

ISO 27001 Information Security Management System

8 - Operation

DO Implement & Operate ISMS

9 - Performance Evaluation

CHECK Monitor & Review ISMS

Informatik Datalogi Roskilde Universitet

Figure 14.1 Overview of IT Security Management

Organizational Context and Security Policy

- Maintained and updated regularly
 - Using periodic security reviews
 - Reflect changing technical/risk environments
- Examine role and importance of IT systems in organization

First examine organization's IT security:

Objectives - wanted IT security outcomes

Strategies - how to meet objectives

Policies - identify what needs to be done

2019-03-18

Security Policy Needs to address:

- Scope and purpose including relation of objectives to business, legal, regulatory requirements
- IT security requirements
- Assignment of responsibilities
- Risk management approach
- Security awareness and training
- General personnel issues and any legal sanctions
- Integration of security into systems development
- Information classification scheme
- Contingency and business continuity planning
- Incident detection and handling processes
- How and when policy reviewed, and change control to it

Management Support

- IT security policy must be supported by senior management
- Need IT security officer (CISO)
 - To provide consistent overall supervision
 - Liaison with senior management
 - Maintenance of IT security objectives, strategies, policies
 - Handle incidents
 - Management of IT security awareness and training programs
 - Interaction with IT project security officers
- Large organizations need separate IT project security officers associated with major projects and systems
 - Manage security policies within their area

2019-03-18 Niels Christian Juul

Agenda

- 1. Intro
- 2. Organizational IT Security Policy, Ch. 14.1-2
- 3. Risk Assessment, Overview, Ch. 14.3
- 4. Detailed Risk Analysis, Ch. 14.4
- 5. Case: Silver Mine, Ch. 14.5
- 6. Security Controls, Ch. 15.2 (Monica)
- 7. Security Planning, Ch. 15.3
- 8. Implementing Controls and Risk Management, Ch. 15.4-5
- 9. Silver Mine Case, Ch. 15.6

Niels Christian Juul

Security Risk Assessment

Critical component of process

Ideally examine every organizational asset

Not feasible in practice

Approaches to identifying and mitigating risks to an organization's IT infrastructure:

- Baseline
- Informal
- Detailed risk
- Combined

Baseline Approach

- Goal is to implement agreed controls to provide protection against the most common threats
- Forms a good base for further security measures
- Use "industry best practice"
 - Easy, cheap, can be replicated
 - Gives no special consideration to variations in risk exposure
 - May give too much or too little security
- Generally recommended only for small organizations without the resources to implement more structured approaches

nformatik Datalogi

Informal Approach

Involves conducting an informal, pragmatic risk analysis on organization's IT systems

Exploits knowledge and expertise of analyst

Fairly quick and cheap

Judgments can be made about vulnerabilities and risks that baseline approach would not address

2019-03-18

Some risks may be incorrectly assessed

Skewed by analyst's views, varies over time

Suitable for small to medium sized organizations where IT systems are not necessarily essential

Detailed Risk Analysis

Most comprehensive approach

Significant cost in time, resources, expertise

May be a legal requirement to use

Assess using formal structured process

- •Number of stages
- •Identify threats and vulnerabilities to assets
- •Identify likelihood of risk occurring and consequences

Suitable for large organizations with IT systems critical to their business objectives

2019-03-18 Niels Christian Juul 26

Combined Approach

- Combines elements of the baseline, informal, and detailed risk analysis approaches
- Aim is to provide reasonable levels of protection as quickly as possible then to examine and adjust the protection controls deployed on key systems over time
- Approach starts with the implementation of suitable baseline security recommendations on all systems
- Next, systems either exposed to high risk levels or critical to the organization's business objectives are identified in the high-level risk assessment
- A decision can then be made to possibly conduct an immediate informal risk assessment on key systems, with the aim of relatively quickly tailoring controls to more accurately reflect their requirements
- Lastly, an ordered process of performing detailed risk analyses of these systems can be instituted
- Over time, this can result in the most appropriate and cost-effective security controls being selected and implemented on these systems

2019-03-18 Niels Christian Juul

27

Agenda

- 1. Intro
- 2. Organizational IT Security Policy, Ch. 14.1-2
- 3. Risk Assessment, Overview, Ch. 14.3
- 4. Detailed Risk Analysis, Ch. 14.4
- 5. Case: Silver Mine, Ch. 14.5
- 6. Security Controls, Ch. 15.2 (Monica)
- 7. Security Planning, Ch. 15.3
- 8. Implementing Controls and Risk Management, Ch. 15.4-5
- 9. Silver Mine Case, Ch. 15.6

Detailed Security Risk Analysis

Provides the most accurate evaluation of an organization's IT system's security risks

Highest cost

Initially focused on addressing defense security concerns

Often mandated by government organizations and associated businesses

Figure 14.3 Risk Assessment Process

Step 1: Establishing the Context

- Initial step
 - Determine the basic parameters of the risk assessment
 - Identify the assets to be examined
- Explores political and social environment in which the organization operates
 - Legal and regulatory constraints
 - Provide baseline for organization's risk exposure
- Risk appetite
 - The level of risk the organization views as acceptable

Figure 14.4 Generic Organizational Risk Context

Informatik

Datalogi

Roskilde Universitet

2019-03-18 Niels Christian Juul

33

Asset Identification

- Last component is to identify assets to examine
- Draw on expertise of people in relevant areas of organization to identify key assets
 - Identify and interview such personnel

2019-03-18

Asset

• "anything that needs to be protected" because it has value to the organization and contributes to the successful attainment of the organization's objectives

Step 2: Conduct Risk Analysis

- Identify the threats or risks the assets are exposed to
- Vulnerability Identification
- Likelihood of occurrence
- Cost to organization in case of incident
- Determine risk

Threat Identification

A threat is:

Integrity

Confidentiality

Anything that might hinder or prevent an asset from providing appropriate levels of the key security services

Availability

Accountability

Reliability

Authenticity

Threat Sources

- Threats may be
 - Natural "acts of God"
 - Man-made
 - Accidental or deliberate

Evaluation of human threat sources should consider:

- Motivation
- Capability
- Resources
- Probability of attack
- Deterrence
- Any previous experience of attacks seen by the organization also needs to be considered

Vulnerability Identification

- Identify exploitable flaws or weaknesses in organization's IT systems or processes
 - Determines applicability and significance of threat to organization
- Need combination of threat and vulnerability to create a risk to an asset
- Outcome should be a list of threats and vulnerabilities with brief descriptions of how and why they might occur

Analyze Risks

- Specify likelihood of occurrence of each identified threat to asset given existing controls
- Specify consequence should threat occur
- Derive overall risk rating for each threat
 - Risk = probability threat occurs x cost to organization
- Hard to determine accurate probabilities and realistic cost consequences
- Use qualitative, not quantitative, ratings

Analyze Existing Controls

- Existing controls used to attempt to minimize threats need to be identified
- Security controls include:
 - Management
 - Operational
 - Technical processes and procedures
 - Use checklists of existing controls and interview key organizational staff to solicit information

2019-03-18 Niels Christian Juul

Table 14.2 Risk Likelihood.

Rating	Likelihood Description	Expanded Definition
1	Rare	May occur only in exceptional circumstances and may be deemed as "unlucky" or very unlikely.
2	Unlikely	Could occur at some time but not expected given current controls, circumstances, and recent events.
3	Possible	Might occur at some time, but just as likely as not. It may be difficult to control its occurrence due to external influences.
4	Likely	Will probably occur in some circumstance and one should not be surprised if it occurred.
5	Almost Certain	Is expected to occur in most circumstances and certainly sooner or later.

Rating	Consequence	Expanded Definition	
1	Insignificant	Generally a result of a minor security breach in a single area.	
		Impact is likely to last less than several days and requires only	
		minor expenditure to rectify. Usually does not result in any tangible	
		detriment to the organization.	
2	Minor	Result of a security breach in one or two areas. Impact is likely to	
		last less than a week but can be dealt with at the segment or project	
		level without management intervention. Can generally be rectified	
		within project or team resources. Again, does not result in any	
		tangible detriment to the organization, but may, in hindsight, show	hm 1 1 1 6 7 8
		previous lost opportunities or lack of efficiency.	Table 14.3
3	Moderate	Limited systemic (and possibly ongoing) security breaches. Impact	15 WIWAIW - 25 2 50W
		is likely to last up to 2 weeks and will generally require	
		management intervention, though should still be able to be dealt	
		with at the project or team level. Will require some ongoing	
		compliance costs to overcome. Customers or the public may be	
	3.7	indirectly aware or have limited information about this event.	
4	Major	Ongoing systemic security breach. Impact will likely last 4-8 weeks	
		and require significant management intervention and resources to	5 FG 0 - FT
		overcome. Senior management will be required to sustain ongoing] <u>Rig</u> k
		direct management for the duration of the incident and compliance	5272338272
		costs are expected to be substantial. Customers or the public will be	
		aware of the occurrence of such an event and will be in possession	
		of a range of important facts. Loss of business or organizational	Para avarati Para ava
		outcomes is possible, but not expected, especially if this is a once off.	Consequences
5	Catastrophic	Major systemic security breach. Impact will last for 3 months or	.1 1.
3	Catastropine	more and senior management will be required to intervene for the	
		duration of the event to overcome shortcomings. Compliance costs	
		are expected to be very substantial. A loss of customer business or	
		other significant harm to the organization is expected. Substantial	
		public or political debate about, and loss of confidence in, the	
		organization is likely. Possible criminal or disciplinary action	
		against personnel involved is likely.	
6	Doomsday	Multiple instances of major systemic security breaches. Impact	
Ü	Doomsaay	duration cannot be determined and senior management will be	
		required to place the company under voluntary administration or	
		other form of major restructuring. Criminal proceedings against	
		senior management is expected, and substantial loss of business and	
		failure to meet organizational objectives is unavoidable.	(Table can be found on pages
		Compliance costs are likely to result in annual losses for some	476-477 in textbook)Christian Juul 45
		years, with liquidation of the organization likely.	
		,	

Table 14.4

Risk Level Determination and Meaning

	Consequences							
Likelihood	Doomsday	Catastrophic	Major	Moderate	Minor	Insignificant		
Almost	Е	Е	Е	Е	Н	Н		
Certain								
Likely	Е	Е	E	Н	Н	M		
Possible	Е	Е	Е	Н	M	L		
Unlikely	Е	Е	Н	M	L	L		
Rare	Е	Н	Н	M	L	L		

Risk Level	Description
Extreme (E)	Will require detailed research and management planning at an executive/director
	level. Ongoing planning and monitoring will be required with regular reviews.
	Substantial adjustment of controls to manage the risk are expected, with costs
	possibly exceeding original forecasts.
High (H)	Requires management attention, but management and planning can be left to senior
	project or team leaders. Ongoing planning and monitoring with regular reviews are
	likely, though adjustment of controls are likely to be met from within existing
	resources.
Medium (M)	Can be managed by existing specific monitoring and response procedures.
) I	Management by employees is suitable with appropriate monitoring and reviews.
Low (L)	Can be managed through routine procedures.

Table 14.5

Risk Register

Asset	Threat/ Vulnerability	Existing Controls	Likelihood	Consequence	Level of Risk	Risk Priority
Internet router	Outside hacker attack	Admin password only	Possible	Moderate	High	1
Destruction of data center	Accidental fire or flood	None (no disaster recovery plan)	Unlikely	Major	High	2

2019-03-18

Roskilde Universitet

Risk Treatment Alternatives

Risk acceptance

Choosing to accept a risk level greater than normal for business reasons

Risk avoidance

Not proceeding with the activity or system that creates this risk

Risk transfer Sharing responsibility for the risk with a third party

Reduce consequence

Modifying the structure or use of the assets at risk to reduce the impact on the organization should the risk occur

Reduce likelihood Implement suitable controls to lower the chance of the vulnerability being exploited

Summary, chapter 14

- IT security management
- Organizational context and security policy
- Security risk assessment
 - Baseline approach
 - Informal approach
 - Detailed risk analysis
 - Combined approach

- Detailed security risk analysis
 - Context and system characterization
 - Identification of threats/risks/vulnerabilities

51

- Analyze risks
- Evaluate risks
- Risk treatment

2019-03-18 Niels Christian Juul

Agenda

- 1. Intro
- 2. Organizational IT Security Policy, Ch. 14.1-2
- 3. Risk Assessment, Overview, Ch. 14.3
- 4. Detailed Risk Analysis, Ch. 14.4
- 5. Case: Silver Mine, Ch. 14.5
- 6. Security Controls, Ch. 15.2 (Monica)
- 7. Security Planning, Ch. 15.3
- 8. Implementing Controls and Risk Management, Ch. 15.4-5
- 9. Silver Mine Case, Ch. 15.6

2019-03-18

Case Study: Silver Star Mines

- Fictional operation of global mining company
- Large IT infrastructure
 - Both common and specific software
 - Some directly relates to health and safety
 - Formerly isolated systems now networked
- Decided on combined approach
- Mining industry less risky end of spectrum
- Subject to legal/regulatory requirements
- Management accepts moderate or low risk

2019-03-18 Niels Christian Juul

Assets

2019-03-18 Niels Christian Juul

Table 14.6 Silver Star Mines Risk Register

Asset	Threat/ Vulnerability	Existing Controls	Likelihood	Conseque nce	Level of Risk	Risk Priority
Reliability and integrity of the SCADA nodes and network	Unauthorized modification of control system	Layered firewalls and servers	Rare	Major	High	1
Integrity of stored file and database information	Corruption, theft, loss of info	Firewall, policies	Possible	Major	Extreme	2
Availability and integrity of financial system	Attacks/errors affecting system	Firewall, policies	Possible	Moderate	High	3
Availability and integrity of procurement system	Attacks/errors affecting system	Firewall, policies	Possible	Moderate	High	4
Availability and integrity of maintenance/ production system	Attacks/errors affecting system	Firewall, policies	Possible	Minor	Medium	5
Availability, integrity and confidentiality of mail services	Attacks/errors affecting system	Firewall, ext mail gateway	Almost Certain	Minor	High	6

Agenda

- 1. Intro
- 2. Organizational IT Security Policy, Ch. 14.1-2
- 3. Risk Assessment, Overview, Ch. 14.3
- 4. Detailed Risk Analysis, Ch. 14.4
- 5. Case: Silver Mine, Ch. 14.5
- 6. Security Controls, Ch. 15.2 (Monica)
- 7. Security Planning, Ch. 15.3
- 8. Implementing Controls and Risk Management, Ch. 15.4-5
- 9. Silver Mine Case, Ch. 15.6

Agenda

- 1. Intro
- 2. Organizational IT Security Policy, Ch. 14.1-2
- 3. Risk Assessment, Overview, Ch. 14.3
- 4. Detailed Risk Analysis, Ch. 14.4
- 5. Case: Silver Mine, Ch. 14.5
- 6. Security Controls, Ch. 15.2 (Monica)
- 7. Security Planning, Ch. 15.3
- 8. Implementing Controls and Risk Management, Ch. 15.4-5
- 9. Silver Mine Case, Ch. 15.6

IT Security Plan

- Provides details of:
 - What will be done
 - What resources are needed
 - Who is responsible
- Goal is to detail the actions needed to improve the identified deficiencies in the risk profile

Should include

Risks, recommended controls, action priority

Selected controls, resources needed

Responsible personnel, implementation dates

Maintenance requirements

Table 15.4 Implementation Plan - example

Risk (Asset/Threat)	Hacker attack on Internet router
Level of Risk	High
Recommended	•Disable external telnet access
Controls	•Use detailed auditing of privileged command use
	•Set policy for strong admin passwords
	•Set backup strategy for router configuration file
	•Set change control policy for the router configuration
Priority	High
Selected Controls	•Implement all recommended controls
	•Update related procedures with training for affected staff
Required	•3 days IT net admin time to change & verify router configuration, write
Resources	policies;
	•1 day of training for network administration staff
Responsible	John Doe, Lead Network System Administrator,
Persons	Corporate IT Support Team
Start – End Date	February 6, 2017 to February 9, 2017
Other Comments	•Need periodic test and review of configuration and policy use

Agenda

- 1. Intro
- 2. Organizational IT Security Policy, Ch. 14.1-2
- 3. Risk Assessment, Overview, Ch. 14.3
- 4. Detailed Risk Analysis, Ch. 14.4
- 5. Case: Silver Mine, Ch. 14.5
- 6. Security Controls, Ch. 15.2 (Monica)
- 7. Security Planning, Ch. 15.3
- 8. Implementing Controls and Risk Management, Ch. 15.4-5
- 9. Silver Mine Case, Ch. 15.6

Security Plan Implementation

IT security plan documents:

- What needs to be done for each selected control
- Personnel responsible
- Resources and time frame

Identified personnel:

- Implement new or enhanced controls
- May need system configuration changes, upgrades or new system installation
- May also involve development of new or extended procedures
- Need to be encouraged and monitored by management

When implementation is completed management authorizes the system for operational use

Implementation Follow-Up

- Security management is a cyclic process
 - Constantly repeated to respond to changes in the IT systems and the risk environment
- Need to monitor implemented controls
- Evaluate changes for security implications
 - Otherwise increase chance of security breach

Includes a number of aspects

- Maintenance of security controls
- Security compliance checking
- Change and configuration management
- Incident handling

2019-03-18 Niels Christian Juul

Information Security Management System

PLAN Establish ISMS

- 4 Context
- 5 Leadership
- 6 Planning
- 7 Support

ACT Maintain & Improve ISMS

10 - Improvement

ISO 27001 Information Security Management System

8 - Operation

DO Implement & Operate ISMS

9 - Performance Evaluation

CHECK Monitor & Review ISMS

Maintenance

Datalogi

Roskilde Universitet

2019-03-18

- Need continued maintenance and monitoring of implemented controls to ensure continued correct functioning and appropriateness
- · Goal is to ensure controls perform as intended

Security Compliance

- Audit process to review security processes
- Goal is to verify compliance with security plan
- Use internal or external personnel
- Usually based on use of checklists which verify:
 - Suitable policies and plans were created
 - Suitable selection of controls were chosen
 - That they are maintained and used correctly
- Often as part of wider general audit

2019-03-18 Niels Christian Juul

Change and Configuration Management

Change management is the process to review proposed changes to systems

Configuration management is specifically concerned with keeping track of the configuration of each system in use and the changes made to them

May be informal or formal

Test patches to make sure they do not adversely affect other applications

Important component of general systems administration process

Evaluate the impact

Also part of general systems administration process

Know what patches or upgrades might be relevant

Keep lists of hardware and software versions installed on each system to help restore them following a failure

2019-03-18

Summary, Chapter 15

- IT security management implementation
- Security controls or safeguards
- IT security plan
- Implementation of controls
 - Implementation of security plan
 - Security awareness and training

- Monitoring risks
 - Maintenance
 - Security compliance
 - Change and configuration management

80

Incident handling

2019-03-18 Niels Christian Juul

Agenda

- 1. Intro
- 2. Organizational IT Security Policy, Ch. 14.1-2
- 3. Risk Assessment, Overview, Ch. 14.3
- 4. Detailed Risk Analysis, Ch. 14.4
- 5. Case: Silver Mine, Ch. 14.5
- 6. Security Controls, Ch. 15.2 (Monica)
- 7. Security Planning, Ch. 15.3
- 8. Implementing Controls and Risk Management, Ch. 15.4-5
- 9. Silver Mine Case, Ch. 15.6

Case Study: Silver Star Mines

- Given risk assessment, the next stage is to identify possible controls
- Based on assessment it is clear many categories are not in use
- General issue of systems not being patched or upgraded
- Need contingency plans
- SCADA: add intrusion detection system
- Info integrity: better centralize storage
- Email: provide backup system

2019-03-18 Niels Christian Juul

Silver Star Mines: Implementation Plan

Risk (Asset/Threat)	Level of Risk	Recommended Controls	Priority	Selected Controls
All risks (generally applicable)		 Configuration and periodic maintenance policy for servers Malicious code (SPAM, spyware) prevention Audit monitoring, analysis, reduction, and reporting on servers Contingency planning and incident response policies and procedures System backup and recovery procedures 	1	1. 2. 3. 4. 5.
Reliability and integrity of SCADA nodes and network	High	1. Intrusion detection and response system	2	1.
Integrity of stored file and database information	Extreme	 Audit of critical documents Document creation and storage policy User security education and training 	3	1. 2. 3.
Availability and integrity of Financial, Procurement, and Maintenance/ Production Systems	High	-	-	(general controls)
Availability, integrity and confidentiality of e-mail	High	1. Contingency planning – backup e-mail service	4	1.

Learning outcome

Be able to

- manage information security in an organization
- conduct a thorough risk analysis wrt organizational information security
- select relevant security controls
- create an security implementation plan

Exam themes/questions:

- What is Security Policy and how should it be managed?
- How to conduct a Detailed Security Risk Assessment?
- How to make a Security Implementation Plan?

IT-security

Next week:

Course book

 Selected parts of Chapter 16, 17, 18

Student presentations, eg.

- 17.3 on e-mail policy (compare to RUC)
- ??

