Project Planning Phase Project Planning Template (Product Backlog, Sprint Planning, Stories, Story points)

Date	30 October 2022
Team ID	PNT2022TMID00928
Project Name	Smart waste management system for metropolitan cities
Maximum Marks	8 Marks

Product Backlog, Sprint Schedule, and Estimation (4 Marks)

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task Story Points		Priority	Team Members	
Sprint-1	IBM cloud platform	USN-1	To create the IBM cloud used in the	10	Medium	Akash M	
			process of project			Buvanesh M	
			And configure the IBM cloud			Dinesh M	
						Hariharan M	
Sprint-1		USN-2	Create and configure the IBM Watson IOT	10	High	Akash M	
			platform for the processing of sensor data			Buvanesh M	
			and create a system for waste			Dinesh M	
			management			Hariharan M	
Sprint-2		USN-3	Create a Node-RED service.	5	High	Akash M	
			Connect the Node-RED service to IBM			Buvanesh M	
			Watson With the API keys from IBM IOT			Dinesh M	
			platform			Hariharan M	

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Members	
Sprint-2	Python IDLE	USN-4	Develop the python code to find the GPS	15	High	Akash M	
	IBM Watson		location using Latitude and Longitude			Buvanesh M	
	Node Red services		(random values) and send it to Node red			Dinesh M	
			using IBM Watson platform and view			Hariharan M	
			location of bins on map				
Sprint-3	IBM Watson	USN-5	Create a IOT device to sense the level of	20	High	Akash M	
	Node Red services		bins and do code for device and send to			Buvanesh M	
			Node Red using the API keys from Watson			Dinesh M	
			platform			Hariharan M	
Sprint-4	Python IDLE	USN-6	Develop an application using Node Red to	10	Medium	Akash M	
	IBM Watson		monitor the Bin values			Buvanesh M	
	Node Red services					Dinesh M	
						Hariharan M	
Sprint-4		USN-7	Test the created web UI using the random	10	High	Akash M	
			values to sensors			Buvanesh M	
						Dinesh M	
						Hariharan M	

Project Tracker, Velocity & Burndown Chart: (4 Marks)

Sprint	Total Story	Duration	Sprint Start	Sprint End Date	Story Points Completed	Sprint Release
	Points		Date	(Planned)	(as on Planned End Date)	Date (Actual)
Sprint-1	20	6 Days	24 Oct 2022	29 Oct 2022	20	29 Oct 2022
Sprint-2	20	6 Days	31 Oct 2022	05 Nov 2022	20	05 Nov 2022
Sprint-3	20	6 Days	07 Nov 2022	12 Nov 2022	20	12 Nov 2022
Sprint-4	20	6 Days	14 Nov 2022	19 Nov 2022	20	19 Nov 2022

Velocity:

Imagine we have a 10-day sprint duration, and the velocity of the team is 20 (points per sprint). Let's calculate the team's average velocity (AV) per iteration unit (story points per day)

$$AV = \frac{sprint\ duration}{velocity} = \frac{20}{10} = 2$$