A Primer in Econometric Theory

Lecture 1: Vector Spaces

John Stachurski Lectures by Akshay Shanker

May 5, 2017

Overview

Linear algebra is an important foundation for mathematics and, in particular, for Econometrics:

- · performing basic arithmetic on data
- solving linear equations using data
- advanced operations such as quadratic minimisation

Focus of this chapter:

- 1. vector spaces: linear operations, norms, linear subspaces, linear independence, bases, etc.
- 2. orthogonal projection theorem

Vector Space

The symbol \mathbb{R}^N represents set of all vectors of length N, or N vectors

An N-vector \mathbf{x} is a tuple of N real numbers:

$$\mathbf{x} = (x_1, \dots, x_N)$$
 where $x_n \in \mathbb{R}$ for each n

We can also write x vertically, like so:

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_N \end{pmatrix}$$

Figure: Three vectors in \mathbb{R}^2

The vector of ones will be denoted 1

$$\mathbf{1} := \left(\begin{array}{c} 1 \\ \vdots \\ 1 \end{array}\right)$$

Vector of zeros will be denoted 0

$$\mathbf{0} := \left(egin{array}{c} 0 \\ drainline 0 \\ 0 \end{array}
ight)$$

Linear Operations

Two fundamental algebraic operations:

- 1. Vector addition
- 2. Scalar multiplication
- 1. Sum of $\mathbf{x} \in \mathbb{R}^N$ and $\mathbf{y} \in \mathbb{R}^N$ defined by

$$\mathbf{x} + \mathbf{y} :=: \left(egin{array}{c} x_1 \\ x_2 \\ \vdots \\ x_N \end{array}
ight) + \left(egin{array}{c} y_1 \\ y_2 \\ \vdots \\ y_N \end{array}
ight) := \left(egin{array}{c} x_1 + y_1 \\ x_2 + y_2 \\ \vdots \\ x_N + y_N \end{array}
ight)$$

Example 1:

$$\begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix} + \begin{pmatrix} 2 \\ 4 \\ 6 \\ 8 \end{pmatrix} := \begin{pmatrix} 3 \\ 6 \\ 9 \\ 12 \end{pmatrix}$$

Example 2:

$$\begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} := \begin{pmatrix} 2 \\ 3 \\ 4 \\ 5 \end{pmatrix}$$

Figure: Vector addition

2. Scalar product of $\alpha \in \mathbb{R}$ and $\mathbf{x} \in \mathbb{R}^N$ defined by

$$\alpha \mathbf{x} = \alpha \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_N \end{pmatrix} := \begin{pmatrix} \alpha x_1 \\ \alpha x_2 \\ \vdots \\ \alpha x_N \end{pmatrix}$$

Example 1:

$$0.5 \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix} := \begin{pmatrix} 0.5 \\ 1.0 \\ 1.5 \\ 2.0 \end{pmatrix}$$

Example 2:

$$-1\begin{pmatrix}1\\2\\3\\4\end{pmatrix} := \begin{pmatrix}-1\\-2\\-3\\-4\end{pmatrix}$$

Figure: Scalar multiplication

Subtraction performed element by element, analogous to addition

$$\mathbf{x} - \mathbf{y} := \begin{pmatrix} x_1 - y_1 \\ x_2 - y_2 \\ \vdots \\ x_N - y_N \end{pmatrix}$$

Definition can be given in terms of addition and scalar multiplication

$$\mathbf{x} - \mathbf{y} := \mathbf{x} + (-1)\mathbf{y}$$

Figure: Difference between vectors

Inner Product

The inner product of two vectors \mathbf{x} and \mathbf{y} in \mathbb{R}^N is denoted by $\langle \mathbf{x}, \mathbf{y} \rangle$, and defined as the sum of the products of their elements:

$$\langle \mathbf{x}, \mathbf{y} \rangle := \sum_{n=1}^{N} x_n y_n$$

Fact. (2.1.2)

For any $\alpha, \beta \in \mathbb{R}$ and any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^N$, the following statements are true:

- 1. $\langle \mathbf{x}, \mathbf{y} \rangle = \langle \mathbf{y}, \mathbf{x} \rangle$,
- 2. $\langle \alpha \mathbf{x}, \beta \mathbf{y} \rangle = \alpha \beta \langle \mathbf{x}, \mathbf{y} \rangle$, and
- 3. $\langle \mathbf{x}, \alpha \mathbf{y} + \beta \mathbf{z} \rangle = \alpha \langle \mathbf{x}, \mathbf{y} \rangle + \beta \langle \mathbf{x}, \mathbf{z} \rangle$.

Properties easy to check using definitions of scalar multiplication and inner product

For example, to show 2., pick any $\alpha, \beta \in \mathbb{R}$ and any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^N$:

$$\langle \alpha \mathbf{x}, \beta \mathbf{y} \rangle = \sum_{n=1}^{N} \alpha x_n \beta y_n = \alpha \beta \sum_{n=1}^{N} x_n y_n = \alpha \beta \langle \mathbf{x}, \mathbf{y} \rangle$$

Norms and Distance

The (Euclidean) **norm** of $\mathbf{x} \in \mathbb{R}^N$ is defined as

$$\|\mathbf{x}\| := \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle}$$

Interpretation:

- ullet $\|x\|$ represents the "length" of x
- $\|x y\|$ represents distance between x and y

Fact. (2.1.2) For any $\alpha \in \mathbb{R}$ and any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^N$, the following statements are true:

- 1. $\|\mathbf{x}\| \ge 0$ and $\|\mathbf{x}\| = 0$ if and only if $\mathbf{x} = \mathbf{0}$
- $2. \|\alpha \mathbf{x}\| = |\alpha| \|\mathbf{x}\|$
- 3. $\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\|$ (triangle inequality)
- 4. $|x'y| \le ||x|| ||y||$ (Cauchy-Schwarz inequality)

Properties 1. and 2. are straight-forward to prove (exercise)

Property 4. is addressed in ET exercise 3.5.33

To show property 3, by properties of the inner product in fact 2.1.1

$$\|\mathbf{x} + \mathbf{y}\|^2 = \langle \mathbf{x} + \mathbf{y}, \mathbf{x} + \mathbf{y} \rangle$$
$$= \langle \mathbf{x}, \mathbf{x} \rangle + 2 \langle \mathbf{x}, \mathbf{y} \rangle + \langle \mathbf{y}, \mathbf{y} \rangle$$
$$\leq \langle \mathbf{x}, \mathbf{x} \rangle + 2 |\langle \mathbf{x}, \mathbf{y} \rangle| + \langle \mathbf{y}, \mathbf{y} \rangle$$

Apply the Cauchy-Schwarz inequality

$$||x + y||^2 \le (||x|| + ||y||)^2$$

Taking the square root gives the triangle inequality

A linear combination of vectors $\mathbf{x}_1, \dots, \mathbf{x}_K$ in \mathbb{R}^N is a vector

$$\mathbf{y} = \sum_{k=1}^K \alpha_k \mathbf{x}_k = \alpha_1 \mathbf{x}_1 + \dots + \alpha_K \mathbf{x}_K$$

where $\alpha_1, \ldots, \alpha_K$ are scalars

Example.

$$0.5 \begin{pmatrix} 6.0 \\ 2.0 \\ 8.0 \end{pmatrix} + 3.0 \begin{pmatrix} 0 \\ 1.0 \\ -1.0 \end{pmatrix} = \begin{pmatrix} 3.0 \\ 4.0 \\ 1.0 \end{pmatrix}$$

Figure: Linear combinations of x_1, x_2

Span

Let $X \subset \mathbb{R}^N$ be any nonempty set

Set of all possible linear combinations of elements of X is called the **span** of X, denoted by $\operatorname{span}(X)$

For finite $X := \{\mathbf{x}_1, \dots, \mathbf{x}_K\}$ the span can be expressed as

$$\mathrm{span}(X) := \left\{ \text{ all } \sum_{k=1}^K \alpha_k \mathbf{x}_k \text{ such that } (\alpha_1, \dots, \alpha_K) \in \mathbb{R}^K \right\}$$

Example. The four vectors labeled ${\bf y}$ in the previous figure lie in the span of $X=\{{\bf x}_1,{\bf x}_2\}$

Can any vector in \mathbb{R}^2 be created as a linear combination of x_1, x_2 ?

The answer is affirmative. We'll prove this in §2.1.5

Example. Let
$$X = \{1\} \subset \mathbb{R}^2$$
, where $\mathbf{1} := (1,1)$

The span of X is all vectors of the form

$$\alpha \mathbf{1} = \begin{pmatrix} \alpha \\ \alpha \end{pmatrix} \quad \text{with} \quad \alpha \in \mathbb{R}$$

Constitutes a line in the plane that passes through

- the vector **1** (set $\alpha = 1$)
- the origin $\mathbf{0}$ (set $\alpha = 0$)

Figure: The span of $\mathbf{1} := (1,1)$ in \mathbb{R}^2

Example. The set of canonical basis vectors $\{\mathbf{e}_1, \dots, \mathbf{e}_N\}$ is linearly independent in \mathbb{R}^N

Proof.Let $\alpha_1, \ldots, \alpha_N$ be coefficients such that $\sum_{k=1}^N \alpha_k \mathbf{e}_k = \mathbf{0}$ Equivalently,

$$\begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_N \end{pmatrix} = \sum_{k=1}^N \alpha_k \mathbf{e}_k = \mathbf{0} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

In particular, $\alpha_k = 0$ for all k

Example. Let
$$\mathbf{x}_1 = (3,4,2)$$
 and let $\mathbf{x}_2 = (3,-4,0.4)$

By definition, the span is all vectors of the form

$$\mathbf{y} = lpha \left(egin{array}{c} 3 \ 4 \ 2 \end{array}
ight) + eta \left(egin{array}{c} 3 \ -4 \ 0.4 \end{array}
ight) \quad ext{where} \quad lpha,eta \in \mathbb{R}$$

This is a plane that passes through

- the vector x₁
- the vector x₂
- the origin 0

Figure: Span of x_1, x_2

Example. Consider the vectors $\{\mathbf{e}_1,\ldots,\mathbf{e}_N\}\subset\mathbb{R}^N$, where

$$\mathbf{e}_1 := \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \quad \mathbf{e}_2 := \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix}, \dots, \mathbf{e}_N := \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}$$

That is, \mathbf{e}_n has all zeros except for a 1 as the *n*-th element

Vectors $\mathbf{e}_1, \dots, \mathbf{e}_N$ are called the **canonical basis vectors** of \mathbb{R}^N

Figure: Canonical basis vectors in \mathbb{R}^2

Example. (cont.)

The span of $\{\mathbf{e}_1,\ldots,\mathbf{e}_N\}$ is equal to all of \mathbb{R}^N

Proof for N = 2:

Pick any $\mathbf{y} \in \mathbb{R}^2$, we have

$$\mathbf{y} := \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} y_1 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ y_1 \end{pmatrix}$$
$$= y_1 \begin{pmatrix} 1 \\ 0 \end{pmatrix} + y_2 \begin{pmatrix} 0 \\ 1 \end{pmatrix} = y_1 \mathbf{e}_1 + y_2 \mathbf{e}_2$$

Thus, $\mathbf{y} \in \text{span}\{\mathbf{e}_1, \mathbf{e}_2\}$

Since \mathbf{y} arbitrary, we have shown $\mathrm{span}\{\mathbf{e}_1,\mathbf{e}_2\}=\mathbb{R}^2$

Example. Consider the set

$$P := \{(x_1, x_2, 0) \in \mathbb{R}^3 : x_1, x_2 \in \mathbb{R}\}\$$

Graphically, P= flat plane in \mathbb{R}^3 , where height coordinate =0

Example. (cont.)

If $e_1 = (1,0,0)$ and $e_2 = (0,1,0)$, then span $\{e_1,e_2\} = P$

To verify the claim, let $\mathbf{x} = (x_1, x_2, 0)$ be any element of P. We can write \mathbf{x} as

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ 0 \end{pmatrix} = x_1 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + x_2 \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = x_1 \mathbf{e}_1 + x_2 \mathbf{e}_2$$

In other words, $P \subset \text{span}\{\mathbf{e}_1, \mathbf{e}_2\}$

Conversely we have span $\{e_1, e_2\} \subset P$ (why?)

Figure: span $\{\mathbf{e}_1, \mathbf{e}_2\} = P$

Fact. (2.1.3) If X and Y are non-empty subsets of \mathbb{R}^N and $X \subset Y$, then $\mathrm{span}(X) \subset \mathrm{span}(Y)$

Proof. Pick any nonempty $X \subset Y \subset \mathbb{R}^N$

Let $\mathbf{z} \in \operatorname{span}(X)$, we have

$$\mathbf{z} = \sum_{k=1}^K \alpha_k \mathbf{x}_k$$
 for some $\mathbf{x}_1, \dots, \mathbf{x}_K \in X$, $\alpha_1, \dots, \alpha_K \in \mathbb{R}$

Proof.(cont.) Since $X \subset Y$, each x_k is also in Y, giving us

$$\mathbf{z} = \sum_{k=1}^K \alpha_k \mathbf{x}_k$$
 for some $\mathbf{x}_1, \dots, \mathbf{x}_K \in Y$, $\alpha_1, \dots, \alpha_K \in \mathbb{R}$

Hence $\mathbf{z} \in \operatorname{span}(\Upsilon)$

Vector Space Orthogonality

Linear Independence

Important applied questions:

- When is a matrix invertible?
- When do regression arguments suffer from collinearity?
- When does a set of linear equations have a solution?

All of these questions closely related to linear independence

Definition

A nonempty collection of vectors $X := \{x_1, \dots, x_K\} \subset \mathbb{R}^N$ is called **linearly independent** if

$$\sum_{k=1}^K \alpha_k \mathbf{x}_k = \mathbf{0} \implies \alpha_1 = \dots = \alpha_K = \mathbf{0}$$

Informally, linearly independent sets span large spaces

Example. Consider the two vectors $\mathbf{x}_1 = (1.2, 1.1)$ and $\mathbf{x}_2 = (-2.2, 1.4)$

Suppose α_1 and α_2 are scalars with

$$\alpha_1 \left(\begin{array}{c} 1.2 \\ 1.1 \end{array} \right) + \alpha_2 \left(\begin{array}{c} -2.2 \\ 1.4 \end{array} \right) = \mathbf{0}$$

This translates to a linear, two-equation system, where the unknowns are α_1 and α_2

The only solution is $\alpha_1=\alpha_2=0$

 $\{x_1, x_2\}$ is linearly independent

Figure: The only solution is $\alpha_1 = \alpha_2 = 0$

Example. The set of canonical basis vectors $\{\mathbf{e}_1, \dots, \mathbf{e}_N\}$ is linearly independent in \mathbb{R}^N

To see this, let $\alpha_1, \ldots, \alpha_N$ be coefficients such that $\sum_{k=1}^N \alpha_k \mathbf{e}_k = \mathbf{0}$. We have

$$\begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_N \end{pmatrix} = \sum_{k=1}^N \alpha_k \mathbf{e}_k = \mathbf{0} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

In particular, $\alpha_k = 0$ for all k

Hence $\{\mathbf{e}_1, \ldots, \mathbf{e}_N\}$ linearly independent

Theorem. (2.1.1) Let $X := \{\mathbf{x}_1, \dots, \mathbf{x}_K\} \subset \mathbb{R}^N$. For K > 1, the following statements are equivalent:

- 1. X is linearly independent
- 2. X_0 is a proper subset of $X \implies \operatorname{span} X_0$ is a proper subset of $\operatorname{span} X$
- No vector in X can be written as a linear combination of the others

Proof is an exercise. See ET ex. 2.4.15 and solution

Example. Dropping any of the canonical basis vectors reduces span Consider the N=2 case

We know span $\{\mathbf{e}_1, \mathbf{e}_2\} = \mathbb{R}^2$

• removing either element of $span\{\boldsymbol{e}_1,\boldsymbol{e}_2\}$ reduces the span to a line

However, let $\mathbf{x}_1 = (1,0)$ and $\mathbf{x}_2 = (-2,0)$

The pair are not linearly independent since $x_2 = -2x_1$

- dropping either vector does not change the span—the span remains the horizontal axis
- we have $x_2 = -2x_1$, which means that each vector can be written as a linear combination of the other

Fact. (2.1.4) If $X := \{x_1, \dots, x_K\}$ is linearly independent, then

- 1. every subset of *X* is linearly independent,
- 2. X does not contain **0**, and
- 3. $X \cup \{x\}$ is linearly independent for all $\mathbf{x} \in \mathbb{R}^N$ such that $\mathbf{x} \notin \operatorname{span} X$.

The proof is a solved exercise (ex. 2.4.16 in ET)

Linear Independence and Uniqueness

Linear independence is the key condition for existence and uniqueness of solutions to system of linear equations

Theorem. (2.1.2) Let $X := \{x_1, ..., x_K\}$ be any collection of vectors in \mathbb{R}^N . The following statements are equivalent:

- 1. X is linearly independent
- 2. For each $\mathbf{y} \in \mathbb{R}^N$ there exists at most one set of scalars $\alpha_1, \dots, \alpha_K$ such that

$$\mathbf{y} = \alpha_1 \mathbf{x}_1 + \dots + \alpha_K \mathbf{x}_K \tag{1}$$

Proof.
$$(1. \implies 2.)$$

Let X be linearly independent and pick any \mathbf{y}

Suppose by contradiction that (1) holds for more than one set of scalars; we have

$$\exists \alpha_1, \ldots, \alpha_K \text{ and } \beta_1, \ldots, \beta_K \text{ s.t. } \mathbf{y} = \sum_{k=1}^K \alpha_k \mathbf{x}_k = \sum_{k=1}^K \beta_k \mathbf{x}_k$$

$$\therefore \quad \sum_{k=1}^K (\alpha_k - \beta_k) \mathbf{x}_k = \mathbf{0}$$

$$\therefore \quad \alpha_k = \beta_k \quad \text{for all} \quad k$$

Proof.(2. \Longrightarrow 1.)

If 2. holds, then there exists at most one set of scalars such that

$$\mathbf{0} = \sum_{k=1}^K \alpha_k \mathbf{x}_k$$

Because $\alpha_1=\cdots=\alpha_k=0$ has this property, no nonzero scalars yield $\mathbf{0}=\sum_{k=1}^K \alpha_k \mathbf{x}_k$

We can then conclude X is linearly independent, by the definition of linear independence

Vector Space Orthogonality

Linear Subspaces

A nonempty subset S of \mathbb{R}^N is called a **linear subspace** (or just subspace) of \mathbb{R}^N if

$$\mathbf{x}, \mathbf{y} \in S \text{ and } \alpha, \beta \in \mathbb{R} \implies \alpha \mathbf{x} + \beta \mathbf{y} \in S$$

In other words, $S \subset \mathbb{R}^N$ is "closed" under vector addition and scalar multiplication

Example. If X is any nonempty subset of \mathbb{R}^N , then span X is a linear subspace of \mathbb{R}^N

Example. \mathbb{R}^N is a linear subspace of \mathbb{R}^N

Example. Given any $\mathbf{a} \in \mathbb{R}^N$, the set $A := \{ \mathbf{x} \in \mathbb{R}^N : \langle \mathbf{a}, \mathbf{x} \rangle = 0 \}$ is a linear subspace of \mathbb{R}^N

To see this, let $\mathbf{x}, \mathbf{y} \in A$, let $\alpha, \beta \in \mathbb{R}$ and define $\mathbf{z} := \alpha \mathbf{x} + \beta \mathbf{y} \in A$

We have

$$\langle \mathbf{a}, \mathbf{z} \rangle = \langle \mathbf{a}, \alpha \mathbf{x} + \beta \mathbf{y} \rangle = \alpha \langle \mathbf{a}, \mathbf{x} \rangle + \beta \langle \mathbf{a}, \mathbf{y} \rangle = 0 + 0 = 0$$

Hence $\mathbf{z} \in A$

Fact. (2.1.5) If S is a linear subspace of \mathbb{R}^N , then

- **1**. **0** ∈ *S*
- 2. $X \subset S \implies \operatorname{span} X \subset S$, and
- 3. span S = S

Theorem. (2.1.3) Let S be a linear subspace of \mathbb{R}^N . If S is spanned by K vectors, then any linearly independent subset of S has at most K vectors

Example. Recall the canonical basis vectors $\{e_1,e_2\}$ spanned \mathbb{R}^2 . As such, from Theorem 2.1.3, the three vectors below are linearly dependent

Example. The plane $P:=\{(x_1,x_2,0)\in\mathbb{R}^3:x_1,x_2\in\mathbb{R}\}$ from example 2.1.5 in ET can be spanned by two vectors

By theorem 2.1.3, the three vectors in the figure below are linearly dependent

Bases and Dimension

Theorem. (2.1.4) Let $X := \{x_1, ..., x_N\}$ be any N vectors in \mathbb{R}^N . The following statements are equivalent:

- 1. span $X = \mathbb{R}^N$
- 2. X is linearly independent

For a proof see page 22 in ET

Let S be a linear subspace of \mathbb{R}^N and let $B \subset S$

The set B is called a **basis** of S if

- 1. B spans S and
- 2. B is linearly independent

The plural of basis is bases

From theorem 2.1.2, when B is a basis of S, each point in S has exactly one representation as a linear combination of elements of B

From theorem 2.1.4, any N linearly independent vectors in \mathbb{R}^N form a basis of \mathbb{R}^N

Example. Recall the plane from the example above

$$P := \{(x_1, x_2, 0) \in \mathbb{R}^3 : x_1, x_2 \in \mathbb{R}\}\$$

We showed span $\{\mathbf{e}_1, \mathbf{e}_2\} = P$ for

$$\mathbf{e}_1 := \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \quad \mathbf{e}_2 := \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$

Moreover, $\{e_1, e_2\}$ is linearly independent (why?)

Hence $\{\mathbf{e}_1, \mathbf{e}_2\}$ is a basis for P

Theorem. (2.1.5) If S is a linear subspace of \mathbb{R}^N distinct from $\{\mathbf{0}\}$, then

- 1. S has at least one basis and
- 2. every basis of S has the same number of elements.

If S is a linear subspace of \mathbb{R}^N , then the common number identified in theorem 2.1.5 is called the **dimension** of S, and written as $\dim S$

Example. For $P := \{(x_1, x_2, 0) \in \mathbb{R}^3 : x_1, x_2 \in \mathbb{R}\}$, dim P = 2 because

$$\mathbf{e}_1 := \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \quad \mathbf{e}_2 := \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$

is a basis with two elements

Example. A line $\{\alpha \mathbf{x} \in \mathbb{R}^N : \alpha \in \mathbb{R}\}$ through the origin is one dimensional

In \mathbb{R}^N the singleton subspace $\{\mathbf{0}\}$ is said to have zero dimension If we take a set of K vectors, then how large will its span be in terms of dimension?

Theorem. (2.1.6) If
$$X := \{\mathbf{x}_1, \dots, \mathbf{x}_K\} \subset \mathbb{R}^N$$
, then

- 1. $\operatorname{dim}\operatorname{span}X \leq K$ and
- 2. $\operatorname{dim}\operatorname{span}X=K$ if and only if X is linearly independent.

For a proof, see exercise 2.4.19 in ET

Fact. (2.1.6) The following statements are true:

- 1. Let S and S' be K-dimensional linear subspaces of \mathbb{R}^N . If $S\subset S'$, then S=S'
- 2. If S is an M-dimensional linear subspace of \mathbb{R}^N and M < N, then $S \neq \mathbb{R}^N$

Vector Space Orthogonality

Linear Maps

A function $T \colon \mathbb{R}^K \to \mathbb{R}^N$ is called **linear** if

$$T(\alpha \mathbf{x} + \beta \mathbf{y}) = \alpha T \mathbf{x} + \beta T \mathbf{y} \qquad \forall \, \mathbf{x}, \mathbf{y} \in \mathbb{R}^K, \, \forall \, \alpha, \beta \in \mathbb{R}$$

Notation:

- Linear functions often written with upper case letters
- Typically omit parenthesis around arguments when convenient

Example. $T: \mathbb{R} \to \mathbb{R}$ defined by Tx = 2x is linear

To see this, take any α, β, x, y in \mathbb{R} and observe

$$T(\alpha x + \beta y) = 2(\alpha x + \beta y) = \alpha 2x + \beta 2y = \alpha Tx + \beta Ty$$

Example. The function $f \colon \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^2$ is nonlinear

To see this, set $\alpha = \beta = x = y = 1$. We then have

$$f(\alpha x + \beta y) = f(2) = 4$$

However, $\alpha f(x) + \beta f(y) = 1 + 1 = 2$

Remark: Thinking of linear functions as those whose graph is a straight line is not correct

Example. Function $f \colon \mathbb{R} \to \mathbb{R}$ defined by f(x) = 1 + 2x is nonlinear

Take $\alpha = \beta = x = y = 1$. We then have

$$f(\alpha x + \beta y) = f(2) = 5$$

However,
$$\alpha f(x) + \beta f(y) = 3 + 3 = 6$$

This kind of function is called an affine function

By definition, if T is linear, then the exchange of order in

$$T[\sum_{k=1}^{K} \alpha_k \mathbf{x}_k] = \sum_{k=1}^{K} \alpha_k T \mathbf{x}_k$$

will be valid whenever K=2

Inductive argument extends this to arbitrary K

Fact. (2.1.7) If $T: \mathbb{R}^K \to \mathbb{R}^N$ is a linear map, then

$$\operatorname{rng}(T) = \operatorname{span}(V)$$
 where $V := \{T\mathbf{e}_1, \dots, T\mathbf{e}_K\}$

where \mathbf{e}_k is the k-th canonical basis vector in \mathbb{R}^K

Proof. Any $\mathbf{x} \in \mathbb{R}^K$ can be expressed as $\sum_{k=1}^K \alpha_k \mathbf{e}_k$. Hence $\operatorname{rng}(T)$ is the set of all points of the form

$$T\mathbf{x} = T \left| \sum_{k=1}^{K} \alpha_k \mathbf{e}_k \right| = \sum_{k=1}^{K} \alpha_k T \mathbf{e}_k$$

as we vary $\alpha_1, \ldots, \alpha_K$ over all combinations. This coincides with the definition of $\operatorname{span}(V)$

The **null space** or **kernel** of linear map $T \colon \mathbb{R}^K \to \mathbb{R}^N$ is

$$\ker(T) := \{ \mathbf{x} \in \mathbb{R}^K : T\mathbf{x} = \mathbf{0} \}$$

Fact. (2.1.7) If $T: \mathbb{R}^K \to \mathbb{R}^N$ is a linear map, then $\operatorname{rng} T = \operatorname{span} V, \quad \text{where } V:=\{T\mathbf{e}_1,\ldots,T\mathbf{e}_K\}$

Proofs are straight-forward (complete as exercise)

Vector Space Orthogonality

Linear Independence and Bijections

Many scientific and practical problems are "inverse" problems

- we observe outcomes but not what caused them
- how can we work backwards from outcomes to causes?

Examples

- what consumer preferences generated observed market behavior?
- what kinds of expectations led to given shift in exchange rates?

Loosely, we can express an inverse problem as

- does this problem have a solution?
- is it unique?

Answers depend on whether F is one-to-one, onto, etc.

The best case is a bijection

But other situations also arise

Theorem. (2.1.7) If T is a linear function from \mathbb{R}^N to \mathbb{R}^N , then all of the following are equivalent:

- 1. T is a bijection.
- **2**. *T* is onto.
- 3. *T* is one-to-one.
- 4. $\ker T = \{0\}.$
- 5. $V := \{T\mathbf{e}_1, \dots, T\mathbf{e}_N\}$ is linearly independent.
- 6. $V := \{T\mathbf{e}_1, \dots, T\mathbf{e}_N\}$ forms a basis of \mathbb{R}^N .

See exercise 2.4.21 in ET for proof

If any one of these conditions is true, then T is called **nonsingular**. Otherwise T is called **singular**

Vector Space Orthogonality

Figure: The case of N=1, nonsingular and singular

If T is nonsingular, then, being a bijection, it must have an inverse function T^{-1} that is also a bijection (fact 15.2.1 on page 410)

Fact. (2.1.9) If $T: \mathbb{R}^N \to \mathbb{R}^N$ is nonsingular, then so is T^{-1} .

For a proof, see ex. 2.4.20

Vector Space Orthogonality

Maps Across Different Dimensions

Remember that the above results apply to maps from \mathbb{R}^N to \mathbb{R}^N Things change when we look at linear maps across dimensions

The general rules for linear maps are

- maps from lower to higher dimensions cannot be onto
- maps from higher to lower dimensions cannot be one-to-one

In either case they cannot be bijections

Theorem. (2.1.8) For a linear map T from $\mathbb{R}^K \to \mathbb{R}^N$, the following statements are true:

- 1. If K < N, then T is not onto.
- 2. If K > N, then T is not one-to-one.

Proof.(part 1)

Let K < N and let $T \colon \mathbb{R}^K \to \mathbb{R}^N$ be linear

Letting $V := \{T\mathbf{e}_1, \ldots, T\mathbf{e}_K\}$, we have

$$\dim(\operatorname{rng}(T)) = \dim(\operatorname{span}(V)) \le K < N$$

$$\therefore$$
 rng $(T) \neq \mathbb{R}^N$

Hence T is not onto

Proof.(part 2)

Suppose to the contrary that T is one-to-one

Let $\alpha_1, \ldots, \alpha_K$ be a collection of vectors such that

$$\alpha_1 T \mathbf{e}_1 + \dots + \alpha_K T \mathbf{e}_K = \mathbf{0}$$

$$\therefore \quad T(\alpha_1 \mathbf{e}_1 + \dots + \alpha_K \mathbf{e}_K) = \mathbf{0} \quad \text{(by linearity)}$$

$$\therefore \quad \alpha_1 \mathbf{e}_1 + \dots + \alpha_K \mathbf{e}_K = \mathbf{0} \quad \text{(since } \ker(T) = \{\mathbf{0}\})$$

$$\therefore \quad \alpha_1 = \dots = \alpha_K = 0 \quad \text{(by independence of } \{\mathbf{e}_1, \dots \mathbf{e}_K\})$$

We have shown that $\{T\mathbf{e}_1,\ldots,T\mathbf{e}_K\}$ is linearly independent

But then \mathbb{R}^N contains a linearly independent set with K>N vectors — contradiction

Example. Cost function $c(k,\ell)=rk+w\ell$ cannot be one-to-one

Vector Space Orthogonality

Orthogonal Vectors and Projections

A core concept in the course is orthogonality – not just of vectors, but random variables

Let \mathbf{x} and \mathbf{z} be vectors in \mathbb{R}^N

If $\langle \mathbf{x}, \mathbf{z} \rangle = 0$, then we call \mathbf{x} and \mathbf{z} orthogonal

Write $\mathbf{x} \perp \mathbf{z}$

In \mathbb{R}^2 , orthogonal means perpendicular

Figure: $\mathbf{x} \perp \mathbf{z}$

Let S be a linear subspace

We say that x is orthogonal to S if $x \perp z$ for all $z \in S$

Write $\mathbf{x} \perp S$

Figure: $\mathbf{x} \perp S$

Fact. (2.2.1) (Pythagorian law)

If $\{\mathbf{z}_1,\ldots,\mathbf{z}_K\}$ is an orthogonal set, then

$$\|\mathbf{z}_1 + \dots + \mathbf{z}_K\|^2 = \|\mathbf{z}_1\|^2 + \dots + \|\mathbf{z}_K\|^2$$

Proof is an exercise

Fact. (2.2.2) If $O \subset \mathbb{R}^N$ is an orthogonal set and $\mathbf{0} \notin O$, then O is linearly independent

An orthogonal set $O\subset\mathbb{R}^N$ is called an **orthonormal set** if $\|\mathbf{u}\|=1$ for all $\mathbf{u}\in O$

An orthonormal set spanning a linear subspace S of \mathbb{R}^N is an **orthonormal basis** of S

• example of an orthonormal basis for all of \mathbb{R}^N is the canonical basis $\{\mathbf{e}_1,\ldots,\mathbf{e}_N\}$

Fact. (2.2.3) If $\{\mathbf{u}_1, \dots, \mathbf{u}_K\}$ is an orthonormal set and $\mathbf{x} \in \text{span}\{\mathbf{u}_1, \dots, \mathbf{u}_K\}$, then

$$\mathbf{x} = \sum_{k=1}^{K} \langle \mathbf{x}, \mathbf{u}_k \rangle \, \mathbf{u}_k$$

Given $S \subset \mathbb{R}^N$, the **orthogonal complement** of S is

$$S^{\perp} := \{ \mathbf{x} \in \mathbb{R}^N : \mathbf{x} \perp S \}$$

Fact. (2.2.4) For any nonempty $S \subset \mathbb{R}^N$, the set S^{\perp} is a linear subspace of \mathbb{R}^N

Proof.If $\mathbf{x}, \mathbf{y} \in S^{\perp}$ and $\alpha, \beta \in \mathbb{R}$, then $\alpha \mathbf{x} + \beta \mathbf{y} \in S^{\perp}$ because, for any $\mathbf{z} \in S$

$$\langle \alpha \mathbf{x} + \beta \mathbf{y}, \mathbf{z} \rangle = \alpha \langle \mathbf{x}, \mathbf{z} \rangle + \beta \langle \mathbf{y}, \mathbf{z} \rangle = \alpha \times 0 + \beta \times 0 = 0$$

Fact. (2.2.5) For $S \subset \mathbb{R}^N$, we have $S \cap S^{\perp} = \{\mathbf{0}\}$

Figure: Orthogonal complement of S in \mathbb{R}^2

ector Space Orthogonality

The Orthogonal Projection Theorem

Problem:

Given $\mathbf{y} \in \mathbb{R}^N$ and subspace S, find closest element of S to \mathbf{y}

Formally: Solve for

$$\hat{\mathbf{y}} := \underset{\mathbf{z} \in S}{\operatorname{argmin}} \|\mathbf{y} - \mathbf{z}\| \tag{2}$$

Existence, uniqueness of solution not immediately obvious

Orthogonal projection theorem: $\hat{\mathbf{y}}$ always exists, unique

Also provides a useful characterization

Theorem. (2.2.1) [Orthogonal Projection Theorem I]

Let $\mathbf{y} \in \mathbb{R}^N$ and let S be any nonempty linear subspace of \mathbb{R}^N .

The following statements are true:

- 1. The optimization problem (2) has exactly one solution
- 2. $\hat{\mathbf{y}} \in \mathbb{R}^N$ solves (2) if and only if $\hat{\mathbf{y}} \in S$ and $\mathbf{y} \hat{\mathbf{y}} \perp S$

The unique solution $\hat{\mathbf{y}}$ is called the **orthogonal projection of** \mathbf{y} **onto** S

Figure: Orthogonal projection

Proof.(sufficiency of 2.) Let $\mathbf{y} \in \mathbb{R}^N$ and let S be a linear subspace of \mathbb{R}^N

Let $\hat{\mathbf{y}}$ be a vector in S satisfying $\mathbf{y} - \hat{\mathbf{y}} \perp S$

Let z be any point in S. We have

$$\|\mathbf{y} - \mathbf{z}\|^2 = \|(\mathbf{y} - \hat{\mathbf{y}}) + (\hat{\mathbf{y}} - \mathbf{z})\|^2 = \|\mathbf{y} - \hat{\mathbf{y}}\|^2 + \|\hat{\mathbf{y}} - \mathbf{z}\|^2$$

The second equality follows from $\mathbf{y} - \hat{\mathbf{y}} \perp S$ and the Pythagorian law

Since \mathbf{z} was an arbitrary point in S, we have $\|\mathbf{y} - \mathbf{z}\| \ge \|\mathbf{y} - \hat{\mathbf{y}}\|$ for all $\mathbf{z} \in S$

Example. Let $\mathbf{y} \in \mathbb{R}^N$ and let $\mathbf{1} \in \mathbb{R}^N$ be the vector of ones

Let S be the set of constant vectors in \mathbb{R}^N — S is the span of $\{1\}$

Orthogonal projection of \mathbf{y} onto S is $\hat{\mathbf{y}} := \bar{y}\mathbf{1}$, where $\bar{y} := \frac{1}{N} \sum_{n=1}^{N} y_n$

Clearly, $\hat{\mathbf{y}} \in S$

To show $\mathbf{y} - \hat{\mathbf{y}}$ is orthogonal to S, we need to check $\langle \mathbf{y} - \hat{\mathbf{y}}, \mathbf{1} \rangle = 0$ (see ex. 2.4.14 on page 36). This is true because

$$\langle \mathbf{y} - \hat{\mathbf{y}}, \mathbf{1} \rangle = \langle \mathbf{y}, \mathbf{1} \rangle - \langle \hat{\mathbf{y}}, \mathbf{1} \rangle = \sum_{n=1}^{N} y_n - \bar{y} \langle \mathbf{1}, \mathbf{1} \rangle = 0$$

Holding subspace S fixed, we have a functional relationship

$$\mathbf{y} \; \mapsto \;$$
 its orthogonal projection $\hat{\mathbf{y}} \in S$

This is a well-defined function from \mathbb{R}^N to \mathbb{R}^N

The function is typically denoted by P

• P(y) or Py represents \hat{y}

 ${f P}$ is called the **orthogonal projection mapping onto** S and we write

$$\mathbf{P} = \operatorname{proj} S$$

Figure: Orthogonal projection under P

Theorem. (2.2.2) [Orthogonal Projection Theorem II] Let S be any linear subspace of \mathbb{R}^N , and let $\mathbf{P} = \operatorname{proj} S$. The following statements are true:

1. P is a linear function

Moreover, for any $\mathbf{y} \in \mathbb{R}^N$, we have

- 2. **Py** ∈ S,
- 3. $\mathbf{y} \mathbf{P}\mathbf{y} \perp S$,
- 4. $\|\mathbf{y}\|^2 = \|\mathbf{P}\mathbf{y}\|^2 + \|\mathbf{y} \mathbf{P}\mathbf{y}\|^2$,
- 5. $\|\mathbf{P}\mathbf{y}\| \leq \|\mathbf{y}\|$,
- 6. $\mathbf{P}\mathbf{y} = \mathbf{y}$ if and only if $\mathbf{y} \in S$, and
- 7. **Py** = **0** if and only if $\mathbf{y} \in S^{\perp}$.

For a discussion of the proof, see page 31 and exercise 2.4.29

The following is a fundamental result

Fact. (2.2.6) If $\{\mathbf{u}_1,\ldots,\mathbf{u}_K\}$ is an orthonormal basis for S, then, for each $\mathbf{y}\in\mathbb{R}^N$,

$$\mathbf{P}\mathbf{y} = \sum_{k=1}^{K} \langle \mathbf{y}, \mathbf{u}_k \rangle \, \mathbf{u}_k \tag{3}$$

Proof. First, the right-hand side of (3) lies in S since it is a linear combination of vectors spanning S

Next, we know $\mathbf{y} - \mathbf{P}\mathbf{y} \perp S$ if and only if $\mathbf{y} - \mathbf{P}\mathbf{y} \perp \mathbf{u}_j$ for each \mathbf{u}_j in the basis set (exercise ex. 2.4.14)

For any $\mathbf{y} - \mathbf{P}\mathbf{y} \perp \mathbf{u}_i$, the following holds

$$\langle \mathbf{y} - \mathbf{P} \mathbf{y}, \mathbf{u}_j \rangle = \langle \mathbf{y}, \mathbf{u}_j \rangle - \sum_{k=1}^K \langle \mathbf{y}, \mathbf{u}_k \rangle \langle \mathbf{u}_k, \mathbf{u}_j \rangle$$
$$= \langle \mathbf{y}, \mathbf{u}_j \rangle - \langle \mathbf{y}, \mathbf{u}_j \rangle = 0$$

This confirms $\mathbf{y} - \mathbf{P}\mathbf{y} \perp S$

Fact. (2.2.7) Let S_i be a linear subspace of \mathbb{R}^N for i=1,2 and let $\mathbf{P}_i = \operatorname{proj} S_i$. If $S_1 \subset S_2$, then

$$\mathbf{P}_1\mathbf{P}_2\mathbf{y} = \mathbf{P}_2\mathbf{P}_1\mathbf{y} = \mathbf{P}_1\mathbf{y}$$
 for all $\mathbf{y} \in \mathbb{R}^N$

The Residual Projection

Project **y** onto S, where S is a linear subspace of \mathbb{R}^N

- Closest point to \mathbf{y} in S is $\hat{\mathbf{y}} := \mathbf{P}\mathbf{y}$ here $\mathbf{P} = \operatorname{proj} S$
- Unless y was already in S, some error y Py remains

Introduce operator \mathbf{M} that takes $\mathbf{y} \in \mathbb{R}^N$ and returns the residual

$$\mathbf{M} := \mathbf{I} - \mathbf{P} \tag{4}$$

where ${f I}$ is the identity mapping on ${\mathbb R}^N$

For any y we have My = Iy - Py = y - Py

In regression analysis M shows up as a matrix called the "annihilator"

We refer to M as the residual projection

Example. Recall the projection of $\mathbf{y} \in \mathbb{R}^N$ onto $\mathrm{span}\{\mathbf{1}\}$ is $\bar{y}\mathbf{1}$. The residual projection is $\mathbf{M}_c\mathbf{y}:=\mathbf{y}-\bar{y}\mathbf{1}$

 vector of errors obtained when the elements of a vector are predicted by its sample mean **Fact.** (2.2.8) Let S be a linear subspace of \mathbb{R}^N , let $\mathbf{P} = \operatorname{proj} S$, and let \mathbf{M} be the residual projection as defined in (4). The following statements are true:

- 1. $\mathbf{M} = \operatorname{proj} S^{\perp}$
- 2. $\mathbf{y} = \mathbf{P}\mathbf{y} + \mathbf{M}\mathbf{y}$ for any $\mathbf{y} \in \mathbb{R}^N$
- 3. $\mathbf{P}\mathbf{y} \perp \mathbf{M}\mathbf{y}$ for any $\mathbf{y} \in \mathbb{R}^N$
- 4. $\mathbf{M}\mathbf{y} = \mathbf{0}$ if and only if $\mathbf{y} \in S$
- $5. P \circ M = M \circ P = 0$

Figure: The residual projection

If S_1 and S_2 are two subspaces of \mathbb{R}^N with $S_1 \subset S_2$, then $S_2^{\perp} \subset S_1^{\perp}$. The result in fact 2.2.7 is reversed for \mathbf{M}

Fact. (2.2.9) Let S_1 and S_2 be two subspaces of \mathbb{R}^N and let $\mathbf{y} \in \mathbb{R}^N$. Let \mathbf{M}_1 and \mathbf{M}_2 be the projections onto S_1^\perp and S_2^\perp respectively. If $S_1 \subset S_2$, then

$$\mathbf{M}_1\mathbf{M}_2\mathbf{y} = \mathbf{M}_2\mathbf{M}_1\mathbf{y} = \mathbf{M}_2\mathbf{y}$$

ector Space Orthogonality

Gram - Schmidt Orthogonalization

Recall we showed every orthogonal subset of \mathbb{R}^N not containing $\mathbf{0}$ is linearly independent – fact 2.2.2

Here is an (important) partial converse

Theorem. (2.2.3) For each linearly independent set $\{\mathbf{b}_1,\ldots,\mathbf{b}_K\}\subset\mathbb{R}^N$, there exists an orthonormal set $\{\mathbf{u}_1,\ldots,\mathbf{u}_K\}$ with

$$span\{\mathbf{b}_1,\ldots,\mathbf{b}_k\} = span\{\mathbf{u}_1,\ldots,\mathbf{u}_k\} \quad for \ k=1,\ldots,K$$

Formal proofs are solved as exercises 2.4.34 to 2.4.36

The proof provides an important algorithm for generating the orthonormal set $\{\mathbf{u}_1, \dots, \mathbf{u}_K\}$

The first step is to construct orthogonal sets $\{\mathbf{v}_1, \dots, \mathbf{v}_k\}$ with span identical to $\{\mathbf{b}_1, \dots, \mathbf{b}_k\}$ for each k

The construction of $\{\mathbf{v}_1, \dots, \mathbf{v}_K\}$ uses the **Gram–Schmidt orthogonalization** procedure:

For each k = 1, ..., K, let

- 1. $B_k := \text{span}\{\mathbf{b}_1, \dots, \mathbf{b}_k\},\$
- 2. $\mathbf{P}_k := \operatorname{proj} B_k$ and $\mathbf{M}_k := \operatorname{proj} B_k^{\perp}$,
- 3. $\mathbf{v}_k := \mathbf{M}_{k-1} \mathbf{b}_k$ where \mathbf{M}_0 is the identity mapping, and
- 4. $V_k := \text{span}\{\mathbf{v}_1, \dots, \mathbf{v}_k\}.$

In step 3. we map each successive element \mathbf{b}_k into a subspace orthogonal to the subspace generated by $\mathbf{b}_1, \ldots, \mathbf{b}_{k-1}$

To complete the argument, define \mathbf{u}_k by $\mathbf{u}_k := \mathbf{v}_k / \|\mathbf{v}_k\|$

The set of vectors $\{\mathbf{u}_1,\ldots,\mathbf{u}_k\}$ is orthonormal with span equal to V_k