www.nasa.gov

Fundamental Aeronautics Program Supersonics Project **Plasma Actuators for Jet Excitation** Cliff Brown 2012 Technical Conference March 13-15, 2012 Cleveland, Ohio

Outline

- Background
 - Jet Excitation
 - Localized Arc Filament Plasma Actuators (LAFPA)
 - Collaborative Agreement (NRA) to Develop Excitation for Jet Noise Reduction
 - NASA's Role: Scalability of Actuator System
- FY '12 Plasma Actuator Jet Excitation Test at GRC
 - Comparison OSU Results
 - Metric to Determine Scalability
 - Test Scale Factor of 3 Constant Actuator Density
 - Test Scale Factor of 6.5 Half Actuator Density
- Conclusions and Future Work

Background – Instability Waves

- Free shear layer in a jet is naturally unstable
- Instabilities grow and decay as the jet mixes with the ambient
 - Shear layer instabilities scale with the thickness of the initial free shear layer
 - Jet column instabilities scale with the jet diameter
 - Characterized by:
 - Amplification rate (linear stability theory)
 - Energy saturation limit (non-linear effects)
 - Described in terms of:
 - Mode (spatial)
 - Frequency (temporal)
- Instability waves govern the growth and decay of turbulent structures
 - Turbulent structures responsible for energy transport in the jet
 - Unsteady turbulent structures are responsible for much of the noise produced

^{*} Image from Van Dyke, "An Album of Fluid Motion", 1982

Background – Jet Excitation

Jet Excitation: Amplification of particular instability naturally present in a jet by some perturbing force that alters the characteristic of the downstream development of the jet

- Seed instability waves you want to grow rather than letting the jet choose
- Use natural instabilities Small energy input gives big changes to the flow
- Why use jet excitation?
 - Enhanced mixing for chemical processes, heat transfer, plume reduction
 - Study of jet dynamics, particularly related to largescale structures
 - Noise mitigation
- Research has been limited by the jet actuator technology available
 - Need high frequency bandwidth and high amplitude actuator

^{*} Images from Van Dyke, "An Album of Fluid Motion", 1982

Background – Plasma Actuators

NASA

- Localized Arc Filament Plasma Actuators (LAFPA)
- Developed at Ohio State University, Mo Samimy
- Arc Regime Plasma short rapid pulses
- High frequency bandwidth (10 Hz to 20 kHz)
- Demonstrated control on small-scale (D_j=1") high-speed (M_j=1.3) jet with Re_{Dj} > 1x10⁶
- Currently testing 2nd generation system
 - Efficiency increases allow many more actuators

24 actuators system at NASA GRC

Unexcited

LAFPA effects on flow field

Background - NRA Collaborative Agreement

- NRA Collaborative Agreement awarded in 2006
- Three track approach:
 - 1. Optimization for Noise Reduction using LES and Adjoint Solvers
 - U. Illnois Urbana-Champagne, Bodony and Freund (Co-Pi's)
 - 2. Actuator Development and Small-Scale Testing
 - Ohio State University, Samimy (PI)
 - 3. Actuator System Scalability
 - NASA GRC, Brown (COTR)

Background – History of System Scalability

- 2006 First LAFPA test at GRC
 - Scale from $D_i=1"$ (OSU) to $D_i=7.5"$ ($M_i=0.9$)
 - 1st generation LAFPAs limited to 8 actuators
 - Learning experience
 - EMI and instrumentation issues
 - Test procedures
- 2007-2010 Scalability by CFD
 - Range of time scales limited simulations
 - How do actuators couple to flow?
- 2011 GRC test using 2nd generation LAFPAs
 - Scale from Dj=1" (OSU) to D_i=6.5" (M_i=1.3)
 - 2nd generation LAFPAs allow 48 actuators
 - Many LAFPA development issues
- 2012 Retested 2nd generation LAFPAs at GRC
 - Scale from $D_i=1"$ (GRC) to 6.5" ($M_i=0.9$)
 - Use 8 to 24 actuators
 - Results to follow

Comparison to OSU Data

- Metric: Pressure fluctuations on nozzle lipline as a function of axial location
 - Extract the amplitude at the forcing frequency from spectra at each point
- Jet configuration:
 - Jet diameter (D_i) is 1"
 - 2.55 actuators / inch $(N/\pi D_i)$
- Excitation at:
 - Mode (m) 0
 - Strouhal frequency (St_{Di}=f*D_i/U) 0.3
- Results
 - Similar peak location and amplitude with excitation
 - Similar amplification from LAFPA inputs
 - Sensitivity to probe radial position?
 - SHJAR baseline higher how does nozzle boundary change response?

Nozzle Boundary Layer Energy

- Use Reticulated Foam Metal (RFM) to energize the nozzle boundary layer
- Metric: Pressure fluctuations on nozzle lipline as a function of axial location
 - Extract the amplitude at the forcing frequency from spectra at each point
- Jet configuration:

$$- D_i = 1$$
"

$$- N/\pi D_i = 2.55$$

- Excitation at:
 - -m=0
 - St_{Di} = 0.3
- Results
 - Initial growth rate is similar
 - RFM baseline is slightly lower
 - RFM peak response is slightly higher
 - Boundary layer energy has small effect
 - Turbulent boundary layer w/o RFM?
 - Is this the right metric?

System Scalability – SHJAR

- Jet configuration:
 - Both nozzles run on the SHJAR

$$D_j = 1$$
", $D_j = 2$ "

- $N/\pi D_i = 2.55$
- Excitation at:

$$- m = 0$$

$$-$$
 St_{Di} = 0.3

- Results
 - Lipline pressure measurement
 - Similar peak location and amplification when excited
 - D_j=2" nozzle has slightly higher baseline and excited lipline pressures
 - Far-field noise data
 - Strong actuator tone in both noise spectra
 - Broadband amplification in both cases expected for this excitation
 - Baseline spectra do not collapse as expected – nozzle lip effect?

System Scalability – SHJAR

- Jet configuration:
 - Both nozzles run on the SHJAR

$$D_i = 2$$
", $D_i = 3$ "

- $N/\pi D_i = 2.55$
- Excitation at:

$$- m = 0$$

$$-$$
 St_{Di} = 0.3

- Results
 - Lipline pressure measurement
 - Similar peak location and amplification when excited
 - D_j=3" nozzle has higher baseline and excited lipline pressures (remember D_j=2 was higher than D_i=1)
 - Far-field noise data
 - Actuator tone stronger in D_i=3"
 - Baseline spectra collapse
 - Broadband amplification in both cases expected for this excitation

System Scalability – SHJAR Summary

Jet configuration:

- Dj=1",
$$D_j = 2$$
", $D_j = 3$ "

- $N/\pi D_i = 2.55$
- Lipline pressure measurements
 - Unexcited level increases with nozzle diameter
 - Amplification is similar at each nozzle diameter
- Far-field noise data
 - Actuator tone strongest in D_i=3" data
 - Unexcited spectra from Dj=1" nozzle does not collapse with others
 - Broadband amplification in each case, as expected for this excitation
 - The amplification increases slightly with nozzle diameter
- Linear system scalability with jet diameter is reasonable to a scale factor of 3

Lipline Pressure

System Scalability – NATR

- Jet configuration:
 - D_i = 3.0", SHJAR, N/ π D_i = 1.27
 - D_i = 6.5", NATR, N/ π D_i = 1.18
- Excitation at:
 - m = 0
 - St = 0.3
- Results
 - Lipline pressure fluctuations do not scale
 - How does lipline pressure change as nozzle diameter increases?
 - Is this the right metric for larger nozzles?
 - Far-field noise scales nicely
 - Unexcited spectra collapse
 - Actuator tone not in D_i=6.5" data
 - 4 dB broadband amplification in both cases expected for this excitation
 - Linear scale-up to a factor of 6.5

Conclusions and Future Work

- The 2nd generation LAFPA system has been tested at NASA GRC with linear scaling to a factor of 6.5
- Lipline pressure data from GRC at D_i=1" agrees with measurements at OSU
- Experiments show linear scalability for broadband noise to a scale factor of 6.5
 - Lipline pressure measurements show linear scalability up to a factor of 3 but break down above that – Is this a good metric for scalability at larger scale factors?
- Future Work
 - How does the actuator couple to the flow?
 - Temperature, pressure, etc.
 - Optimization for noise reduction using simulations
 - How do you treat the actuator?
 - How can we use excitation with these actuators to better understand jet noise?

Clifford.A.Brown@NASA.gov