04-05 Modèles à espace d'états

NOUS ÉCLAIRONS. VOUS BRILLEZ.

FORMATION CONTINUE ET SERVICES AUX ENTREPRISES

Sommaire

- 1. Modèles à espace d'états
- 2. Commande **ets**
- 3. Références

Modèles à espace d'états

Introduction

- Les méthodes de lissage exponentiel que l'on vient de voir fournissent des algorithmes permettant de calculer des prévisions successives
- Les **modèles à espace d'états** génèrent aussi des prévisions, mais également des intervalles de prévisions
 - Un processus stochastique est introduit pour modéliser la loi des prévisions

Introduction

- Chaque modèle comprend une équation d'observation et une équation d'états, une pour chaque état (erreur, tendance, saisonnalité). C'est un modèle dit à espace d'états
- Il y a 18 modèles pour chaque méthode (dont 2 modèles pour chaque méthode suivant que l'erreur soit additive ou multiplicative)

```
Erreur = {A, M}

Tendance = {N, A, A<sub>a</sub>}

Saisonnalité = {N, A, M}
```

Les 18 modèles

	Composante saisonnière		
Tendance	N (sans)	A (additive)	M (multiplicative)
N (sans)	N,N	N,A	N,M
A (additive)	A,N	A,A	A,M
A _a (additive amortie)	$A_{a'}N$	A _a ,A	A _a ,M

Les 18 modèles - exemples

- (N,N) Lissage exponentiel simple
- (A,N) Lissage de Holt
- (A,A) Méthode additive de Holt-Winters
- (A,M) Méthode multiplicative de Holt-Winters
- (A_a,M) Méthode multiplicative de Holt-Winters amortie

La commande ets

- **ets** est l'acronyme de "Erreur, Tendance, Saisonnalité". La commande ets est automatisée et donne d'excellents résultats!
- Elle permet de choisir entre différents modèles de lissage exponentiel basés sur des modèles à espace d'états
- Le critère de choix entre les différents modèles est essentiellement fait via la minimisation des critères d'information AIC, AIC ou BIC

La commande ets

- Les états initiaux sont sélectionnés de manière heuristique
- Les paramètres de lissage sont estimés en utilisant le maximum de vraisemblance
- La meilleure méthode est sélectionnée via le critère AIC_c
- Les prévisions sont obtenues en utilisant la meilleure méthode retenue

Exemple Holt-Winters additif (AAA)

Nombre mensuel total de médicaments antidiabétiques

Exemple Holt-Winters additif (AAA)

Code R

Exemple Holt-Winters additif (AAA)

Nombre mensuel total de médicaments antidiabétiques

Exemple de sélection automatique (ZZZ)

- On peut laisser la commande ets sélectionner automatiquement le meilleur modèle
- Code R

```
ets(diab, model="ZZZ") %>%
forecast(h=24) %>%
autoplot() +
   ggtitle("Nombre mensuel total de médicaments antidiabétiques") +
   xlab("Temps") +
   ylab("Nombre de médicaments en millions")
```

Exemple de sélection automatique (ZZZ)

Nombre mensuel total de médicaments antidiabétiques

Exemple de sélection automatique (ZZZ)

■ Le modèle sélectionné est ets(M,N,M)

Code R

```
fit2diab <- ets(diab, model="ZZZ")</pre>
                      *****
summary(fit2diab)
```

```
ETS (M, N, M)
Call:
 ets(v = diab, model = "ZZZ")
  Smoothing parameters:
    alpha = 0.169
    qamma = 1e-04
  Initial states:
    1 = 0.8121
    s = 1.246 \ 1.2076 \ 1.1985 \ 1.1274 \ 1.074 \ 1.0105
            0.8696 0.8308 0.75 0.7496 0.6761 1.2598
  sigma: 0.0663
               AICc
      AIC
                            BIC
-97.02194 - 91.44054 - 57.64735
```

. . .

Comparaison des deux approches

RMSE	0.05417285
MAE	0.04436907
MAPE	5.27636
MASE	0.7167734

RMSE	0.0515159
MAE	0.0423964
MAPE	4.900056
MASE	0.6849053

Pull de https://github.com/mswawola-cegep/420-a58-sf.git
04-05-TP

Références

[1] Cours "R et la prévision de séries temporelles" de Michel Carbon - Université Laval