TEMA 09 – DER A MODELO RELACIONAL (MAPEO A TABLAS)

Paso a modelo relacional

- Entidades y atributos
 - Toda entidad genera una tabla (casi siempre)
 - Cada atributo se corresponde con otro de la tabla
 - Excepciones:
 - Atributos compuestos
 - El modelo relacional solo admite atributos atómicos.
 - La tabla tendrá los atributos que componen el atributo compuesto
 - Atributos multivaluados
 - Generan una nueva tabla
 - Clave primaria: la de la entidad origen junto al atributo multivaluado (mínimo uno de ellos)
 - Parte de la clave primera de la nueva tabla será una clave ajena de la tabla de la entidad


```
TELEFONOS = dni + telefono
C.P(dni + telefono)
C.Aj(dni) → PERSONA(dni)
```

- Atributos obligatorios: además de crear la columna, se indica VNN(atributo)
- Atributos derivados: podría incluirse la fórmula con la que se calcula
- Entidades débiles
 - o Generan tabla (la relación NUNCA genera tabla)
 - Primero vamos generando tablas desde las más fuertes hasta las más débiles (en caso de haber una cadena de relaciones débiles)
 - En las débiles, incluimos en su clave primaria la clave de la fuerte (o fuertes)
 - Se une junto a su clave parcial (si la tiene) para identificarse
 - Las claves primarias de las propietarias, que forman la clave primaria de la débil, son además claves ajenas de las tablas de las entidades fuertes

Relaciones

- Relaciones binarias
 - Cardinalidad N:N
 - En relaciones muchos a muchos siempre se genera tabla

- A y B siguen igual (cada una hace su tabla)
- R genera una tabla con:
 - Sus atributos
 - Clave primaria: a0, b0
 - A su vez son claves ajenas de sus respectivas tablas
- o Cardinalidad 1:1
 - No genera tabla
 - La clave de una entidad pasa a la otra como clave ajena
 - Si en una fila no hay relación, la alternativa queda como null
 - Los atributos de la relación (r0) también se van a la tabla de la entidad del lado al que pasamos la ajena

A = a0 + ...

$$CP(a0)$$

B = b0 + a0 + ...
 $CP(b0)$
 $C.Alt(a0)$
 $C.Aj: a0 \rightarrow A(a0)$

- o Cardinalidad 1:N
 - No genera tabla
 - La clave primaria de la entidad con cardinalidad 1 va a la tabla de la entidad con cardinalidad N (clave ajena)
 - Los atributos de la relación (r0) también se van a la tabla de la entidad del lado N

- Relaciones unarias
 - o Cardinalidad N:N
 - Es una binaria: en vez de 2 entidades hay 1 y a los atributos (no pueden repetirse) se les cambia su nombre por el de rol
 - Tabla 1: la de A
 - Tabla 2: la de R (A + roles + r0)

- o Cardinalidad 1:1
 - 1 tabla

- o Cardinalidad 1:N
 - 1 tabla
 - Se almacenan en A los de rol y los r0

- Relaciones ternarias
 - o Cardinalidad 1:N:N
 - Tabla A: normal con todos sus atributos
 - Tabla B: normal con todos sus atributos
 - Tabla C: normal con todos sus atributos
 - Tabla R:
 - Coge las primarias de las 3 tablas (claves ajenas)
 - Coge los atributos propios
 - Las claves primarias son las 2 de la cardinalidad N
 - La de la cardinalidad 1 (B) se pone VNN para evitar que sea una binaria
 - Si además queremos evitar que un mismo B tenga más de una pareja de (a,c), podemos añadir C.Alt(b0)

- Cada pareja (a,c) puede, como máximo, relacionarse con un elemento de B
- o Cardinalidad 1:1:N
 - Tabla A: normal con todos sus atributos
 - Tabla B: normal con todos sus atributos
 - Tabla C: normal con todos sus atributos
 - Tabla R:
 - Coge las primarias de las 3 tablas (claves ajenas)
 - Coge los atributos propios
 - Las claves primarias son la de la cardinalidad N y una de la 1
 - Las de cardinalidad 1 son clave alternativa (a0, c0)
 - La clave ajena que no está como primaria es VNN

- o Cardinalidad 1:1:1
 - Cada tabla normal
 - Tabla R:
 - Coge las primarias de las 3 tablas (claves ajenas)
 - Coge los atributos propios
 - 2 de las claves forman la clave primaria (a0, b0)
 - Las otras dos combinaciones son claves alternativas (a0, c0) y (b0, c0)

- o Cardinalidad N:N:N
 - Cada tabla normal
 - Tabla R:
 - Coge las primarias de las 3 tablas (claves ajenas)
 - Coge los atributos propios
 - La clave primaria son las 3: CP(a0, b0, c0)
 - Cada pareja puede relacionarse con muchos elementos de la otra entidad

- Especializaciones
 - Solapada (no disjunta) y parcial
 - Tabla A normal
 - Tabla A1: clave de A (CP) y sus atributos exclusivos
 - Tabla A2: clave de A (CP) y sus atributos exclusivos
 - Tabla A3: clave de A (CP) y sus atributos exclusivos

- o Exclusiva (disjunta) y parcial
 - Tabla A normal
 - Tabla A1: clave de A (CP) y sus atributos exclusivos
 - Tabla A2: clave de A (CP) y sus atributos exclusivos
 - Tabla A3: clave de A (CP) y sus atributos exclusivos
 - Aserciones
 - ASERCIÓN 1: A1[a] \cap A2[a] = \emptyset (intersección, conjunto vacío)
 - o Que no tienen valores en común
 - ASERCIÓN 2: A1[a] ∩ A3[a] = Ø
 - ASERCIÓN 3: A2[a] ∩ A3[a] = ∅
 - NO equivalen a: A1[a] \cap A2[a] \cap A3[a] = \emptyset

- Relaciones obligatorias
 - Relaciones binarias
 - Cardinalidad N:N y 1 lado participación total
 - Se obliga a la entidad B a que se relacione a través de B con A
 - Tabla A: igual
 - Tabla B: Igual
 - Tabla R:
 - o Claves primarias de A y B más sus atributos propios
 - Claves ajenas de A y B
 - ASERCIÓN 1: B[b0] ⊆ R[b0] (está incluida sí o sí)

A =
$$\underline{a0}$$
 +
B = $\underline{b0}$ +
R = $\underline{a0}$ + $\underline{b0}$ + r0
C.Aj: $\underline{a0}$ \rightarrow A
C.Aj; $\underline{b0}$ \rightarrow B
ASERCIÓN 1: B[$\underline{b0}$] \subset R[$\underline{b0}$]

- Cardinalidad N:N y 2 lados participación total
 - Se obliga a la entidad B a que se relaciones a través de R con A y viceversa
 - Tabla A: igual
 - Tabla B: igual
 - Tabla R:
 - o Claves primarias de A y B más sus atributos propios
 - o Claves ajenas de A y B
 - ASERCIÓN 1: $B[b0] \subseteq R[b0]$
 - o ASERCIÓN 2: A[a0] ⊆ R[a0]

ASERCIÓN 1: B[b0] ⊆ R[b0] ASERCIÓN 2: A[a0] ⊆ R[a0]

- Cardinalidad 1:1 y 1 participación total
 - Tabla A:
 - Clave de A y sus atributos
 - Clave ajena de B (clave alternativa)
 - VNN(b0)
 - o Atributos de R
 - Tabla B: clave de B y sus atributos

A =
$$\underline{a0}$$
 + ... + $b0$ + $r0$
C.Alt($b0$)
VNN($b0$)
C.Aj: $b0 \rightarrow B$
B = $\underline{b0}$ + ...

- Cardinalidad 1:1 y 2 participaciones totales
 - Fusiona todos los elementos en una única tabla
 - Es el único caso en el que las entidades no generan tablas
 - Tabla R:
 - o CP de A y sus atributos
 - o CP de B y sus atributos
 - o CP(a0)
 - C.Alt(b0)
 - o VNN(b0)

R =
$$a0 + ... + b0 + ... + r0$$

C.Alt(b0)
VNN(b0)

- Cardinalidad 1:N y participación total en el lado N
 - Tabla A: igual
 - Tabla B:
 - Su CP y atributos
 - o C.Aj. de A
 - o Atributos de R
 - o VNN(a0)

A =
$$a0 + ...$$

B = $b0 + ... + a0 + r0$
C.Aj: $a0 \rightarrow A$;
VNN(a0)

- Cardinalidad 1:N y participación total en el lado 1
 - Tabla A: igual
 - Tabla B:
 - o Su CP y atributos
 - o C.Aj. de A
 - ASERCIÓN 1: A[a0] \subseteq B[a0]

A = a0 + ...B = b0 + ... + a0 + r0C.Ai: $a0 \rightarrow A$:

- Cardinalidad 1:N y participación total en ambos lados
 - Tabla A: igual
 - Tabla B:
 - Su CP y atributos
 - o C.Aj. de A
 - o Atributos de R
 - o VNN(a)
 - ASERCIÓN 1: $A[a0] \subseteq B[a0]$
- Relaciones unarias
- Generalización

RESUMEN RELACIONES

Entidades débiles:

Binarias

- N:N

Unarias

Relaciones ternarias (0 mínima)

В

C

Α

Especializaciones

- No disjunta/solapada y parcial

- Disjunta/exclusiva y parcial

Relaciones obligatorias binarias

- N:N y 1 participación total

A =
$$a0 + ...$$

B = $b0 + ...$
R = $a0 + b0 + r0$
C.Aj: $a0 \rightarrow A$
C.Aj; $b0 \rightarrow B$

ASERCIÓN 1: B[b0] ⊆ R[b0]

- N:N y 2 participaciones totales

A =
$$\underline{a0}$$
 +
B = $\underline{b0}$ +
R = $\underline{a0}$ + $\underline{b0}$ + $\underline{r0}$
C.Aj: $\underline{a0} \rightarrow A$
C.Aj; $\underline{b0} \rightarrow B$

ASERCIÓN 1: $B[b0] \subseteq R[b0]$ ASERCIÓN 2: $A[a0] \subseteq R[a0]$

- 1:1 y 1 participación total

A =
$$a0 + ... + b0 + r0$$

C.Alt(b0)
VNN(b0)
C.Aj: b0 \to B
B = $b0 + ...$

- 1:1 y 2 participaciones totales

Es el único caso en que las entidades no generan tablas.

- 1:N y participación total en el lado N

A =
$$a0 + ...$$

B = $b0 + ... + a0 + r0$
C.Aj: $a0 \rightarrow A$;
VNN(a0)

- 1:N y participación total en el lado 1

A =
$$\underline{a0}$$
 + ...
B = $\underline{b0}$ + ... + $a0$ + $r0$
C.Aj: $a0 \rightarrow A$;
ASERCIÓN 1: A[$a0$] \subseteq B[$a0$]
A 1 R N B

- 1:N y 2 participaciones totales

Relaciones obligatorias y unarias

- N:N y 1 participación total

- N:N y 2 participaciones totales

- 1:1 y 2 participaciones totales

1:N y participación total en N

$$A = \underline{a0} + \dots + rol + r0$$
C.Aj: rol \rightarrow A;
VNN(rol)

1:N y participación total en 1

A = <u>a0</u> + ... + rol + r0 C.Aj: rol→A; ASERCIÓN 1: A[a0]⊆A[rol]

1:N y 2 participaciones totales

ASERCIÓN 1: A[a0]⊆A[rol]

Relaciones obligatorias y ternarias

1 sola participación total

Sea cual sea la cardinalidad, hay que usar aserciones.

EJEMPLO N:N:N.

Generalizaciones

- No disjunta y total

 $\textbf{ASERCION1: A[a]} \subseteq \textbf{A1[a]} \cup \textbf{A2[a]} \cup \textbf{A3[a]}$

- Disjunta y total

ASERCIÓN 1: A1[a] \cap A2[a] = \emptyset ASERCIÓN 2: A1[a] \cap A3[a] = \emptyset ASERCIÓN 3: A2[a] \cap A3[a] = \emptyset

ASERCIÓN 4: A[a] \subseteq A1[a] \cup A2[a] \cup A3[a]

