Risk and Insurance in Village India

Robert M. Townsend (1994)

Presented by Chi-hung Kang

November 14, 2016

Motivation

- Poor agricultural villages in Southern India face high risk from weather and crop diseases
 - ▶ Are landless labors more vulnerable than the landlords?
 - Does consumption fluctuate with the income shocks?
 - ► Are people fully insured at the village level?
 - Which economic activity is better insured?
- Is there any scope for policy reform?

Data

- Data of southern India villages from International Crops Research Institute of the Semi-Arid Tropics (ICRISAT)
 - Annual data 1975–1984
 - ► Three villages: Aurepalle, Shirapur, Kanzara
 - ▶ 40 households for each village
 - Panel data for 35, 32, 36 households respectively

Table I: Composition of Income

 $\label{eq:table_interpolation} TABLE\ I$ Composition of Income, by Source and Landholdings a

Village	Income Source	None	Small	Landholdings Medium	Large	All
Aurepalle	Crop	0.0225	0.2623	0.3967	0.5645	0.4476
-	Labor	0.6527	0.3363	0.1623	0.0429	0.1538
	Trade & Handicrafts	0.2799	0.2919	0.3033	0.1242	0.1957
	Animal Husbandry	0.0449	0.1095	0.1373	0.2685	0.2029
Shirapur	Crop	0.4364	0.3735	0.5293	0.5617	0.4992
-	Labor	0.4897	0.3825	0.3305	0.2268	0.3209
	Trade & Handicrafts	0.0002	0.0142	0.0000	0.0372	0.0189
	Animal Husbandry	0.0736	0.2298	0.1404	0.1743	0.1610
Kanzara	Crop	0.0529	0.2603	0.5002	0.6429	0.5109
	Labor	0.8506	0.5962	0.3513	0.1424	0.3056
	Trade & Handicrafts	0.0664	0.1144	0.0248	0.0034	0.0307
	Animal Husbandry	0.0301	0.0290	0.1237	0.2113	0.1528

^a Figures reported are proportions of income from a given source, given village and landholdings.

Figure 1 and Figure 3: Deviation From the Village Average

- Deviation of individual income from the village average income is quite volatile
- Deviation of individual consumption from the village average consumption is relatively small

Prediction From the Model

Proposition

By Wilson (1968) and Diamond (1967), if the following assumptions hold,

- Preferences are time separable
- Weak risk aversion
- All individuals have the same discount rate
- 4 All information is held in common

then a Pareto optimal allocation of risk bearing of a single good in a stochastic environment implies that all individual consumption is determined by aggregate consumption

- Idiosyncratic shocks should not influence individual consumption
- The implication holds in a multiple commodity world under separable preferences

The Model: Individual Preferences

(1)
$$W^{k}(c_{t}^{k}, l_{t}^{k}) = U^{k}(c_{t}^{k}) + V^{k}(l_{t}^{k})$$

(2)
$$U^{k}(c_{t}^{k}) = -\frac{1}{\sigma_{i}}e^{-\sigma_{i}c_{t}^{k}}$$

- c_t^k consumption of individual k of household i at time t
- I_t^k leisure of individual k of household i at time t
- Utility function is separable between consumption and leisure
- All individuals in household *i* are equally risk averse

For a househould i with M individuals, the maximization problem is:

$$\begin{aligned} \max \sum_{k=1}^{M} \lambda^k \left(\sum_{t=1}^{T} \beta^t E_0 \Big[U^k(c_t^k) + V^k(I_t^k) \Big] \right) \\ s.t. & \sum_{k=1}^{M} c_t^k \leq \bar{c}_t; \ \sum_{k=1}^{M} I_t^k \leq \bar{I}_t, \\ & c_t^k \geq 0; \ 0 \leq I_t^k \leq T_t^k, \\ & 0 < \lambda^k < 1, \ \sum_{k=1}^{M} \lambda^k = 1 \end{aligned}$$

• λ^k is the utility weight of individual k in the household

For any two individuals k and j in household i at time t, the weighted marginal utility should be the same to achieve Pareto optimal within the household:

$$\lambda^k \frac{\partial U^k}{\partial c_t^k} = \lambda^j \frac{\partial U^j}{\partial c_t^j} = \mu_c$$

ullet μ_c Lagrange multiplier for consumption constraint

Assume that $\sigma_i = \sigma$, summing over the FOC of total individuals in household i and total households N in the village gives Pareto optimal consumption of household i:

(3)
$$c_t^i = \frac{1}{N_t^i} \sum_{k=1}^{N_t^i} c_t^k = -\frac{1}{\sigma} \left(\ln(\lambda^i) - \frac{1}{N} \sum_{i=1}^N \ln(\lambda^i) \right) + \bar{c}_t$$

$$\bar{c}_t = \frac{1}{N} \sum_{i=1}^{N} c_t^i$$

Assume that λ^i are the same for each household, then

$$c_t^i = \bar{c}_t$$

Equivalence Scales

- c_t^i is adjusted by household size
 - ▶ Is $c_t^i = \frac{\sum_{k=1}^{N_t^i} c_t^k}{N_t^i}$ a good adjustment ?
- Deaton (2003) Simply deflating by total household size has two major problems
 - Ignoring the household composition
 - Ignoring any economies of scale in consumption within the household; "public goods" of the household
- Browning, Chiappori and Lewbel (2010)
 - Equivalence scales measure the ratio of costs of attaining the same utility level

Equivalence Scales

• Construct the equivalence scale A_t^k for individual k at time t according to the caloric intake from the survey of Ryan, Bidinger, Pushpamma and Rao (1985)

Age-sex categories	Equivalence Scales
Adult Males	1.00
Adult Females	0.90
Males aged 13–18	0.94
Females aged 13–18	0.83
Children aged 7–12	0.67
Children aged 4–6	0.52
Toddlers	0.32
Infants	0.05

• Incorporate the equivalence scale A_t^k in the individual utility function:

$$W^{k}(c_t^k, I_t^k, A_t^k) = U^{k}(c_t^k, A_t^k) + V^{k}(I_t^k, A_t^k)$$

$$U^{k}(c_t^k, A_t^k) = -\frac{1}{\sigma_i} e^{-\frac{\sigma_i c_t^k}{A_t^k}},$$

$$\frac{\partial U^k}{\partial \Delta^k} = -\frac{c_t^k}{(\Delta^k)^2} e^{-\frac{\sigma_i c_t^k}{A_t^k}} < 0$$

• Given the same consumption, with a higher equivalence scale A_t^k , individual k has a lower utility level.

• The Pareto optimal consumption of household *i* can be rewritten as:

(5)
$$c_{t}^{*i} = \bar{c}_{t} - \frac{1}{\sigma} A_{t}^{i}$$

$$c_{t}^{*i} = \frac{\sum_{k=1}^{N_{t}^{i}} c_{t}^{k}}{\sum_{k=1}^{N_{t}^{i}} A_{t}^{k}}, \ \bar{c}_{t} = \frac{1}{N} \sum_{i=1}^{N} c_{t}^{*i}$$

• Where A_t^i is defined as:

(6)
$$A_{t}^{i} = \frac{\sum_{k=1}^{N^{i}} A_{t}^{k} \ln(A_{t}^{k})}{\sum_{k=1}^{N^{i}} A_{t}^{k}} - \frac{1}{N} \sum_{i=1}^{N} \frac{\sum_{k=1}^{N^{i}} A_{t}^{k} \ln(A_{t}^{k})}{\sum_{k=1}^{N^{i}} A_{t}^{k}}$$

Time Series Estimation

Estimate the following equation for each household:

(7)
$$c_t^{*i} = \alpha + \beta \bar{c}_t + \delta H_t^i + \zeta X_t^i + u_t^i$$

- H_t^i are control variables for household composition, e.g. number of household members, number of kids, and number of adults
- X_t^i is one control variable, such as income source
- One β for each household. For example, Aurepalle has 44 households, so it generates 44 β estimates for Aurepalle
- ullet By the model derivation, eta=1 and $\delta=-rac{1}{\sigma}$

Figure 5: Time Series Estimates

• For each village, rank households according to the magnitude of β . The dots in the figure are β for each household i, and the lines are 95% confidence interval

Table IV: Null Hypothesis Test for β

Table IV: Number of Times Failing to Reject the Null

	Population	N	$\beta < 1$	$\beta = 1$	$\beta > 1$	$\overline{\beta} < 0$	$\beta = 0$	$\beta > 0$
	All	133	22	107	4	9	55	69
	Aurepalle	44	5	38	1	2	24	18
	Shirapur	45	8	35	2	3	14	28
	Kanzara	44	9	34	1	4	17	23

- \bullet Fail to reject $\beta=1$ for 107 households, and fail to reject $\beta=0$ for 55 households
- ullet Impose eta=1 for the panel estimation

Panel Estimation

• Fixed effect estimation:

(8)
$$c_t^{*i} - \bar{c}_t = \alpha^i + \delta H_t^i + \zeta_w X_t^i + e_t^i$$

First-difference estimation

(9)
$$\Delta c_t^{*i} - \Delta \bar{c}_t = \delta \Delta H_t^i + \zeta_{\Delta}^i \Delta X_t^i + \Delta e_t^i$$

- $ightharpoonup \alpha^i$ is household fixed effect
- H_t are the control variables for household composition, e.g. Number of household members, number of kids, number of adults
- $\triangleright X_t^i$ is one control variable
- ζ_w^i Within-village estimate
- $\triangleright \zeta_{\Lambda}^{i}$ First-difference estimate
- Regress with one control variable each time

Table VIII: Panel Estimates From Equation (8) and (9)

• One coefficient represents one regression

Village:		Aurepalle		
		(A) Std.	(B) First Diff	(C) 2 IV G – H
	Variable	ζw	50	ζ
1	All Income	0.0772*	0.0469	
		(0.0221)	(0.0236)	[0.768]
2	Crop Profit	-0.0150	-0.0380	
		(0.0312)	(0.0299)	[0.380]
3	Labor Income	0.0401	0.2597*	
		(0.0647)	(0.0830)	[-1.543]
4	Profit from	0.2363*	0.1495*	
	Trade and	(0.0352)	(0.0389)	[1.197]
	Handicrafts		,	
5	Profit from	0.0485	-0.0276	
	Animal	(0.0676)	(0.0689)	[-0.116]
	Husbandry	***************************************	(/	[0.110]
6	Full Income	-0.0123*	0.0016	
		(0.0027)	(0.0058)	[-1.412]
7	Wage	-10.269	-7.1232	,,
		(8.4114)	(10.2640)	[0.004]
	# **			
13	#Household	-45.778*	-49.071*	
	Members	(6.3693)	(7.1571)	[0.333]
14	#Adults	-30.459*	- 32.304*	
		(9.7187)	(12.8311)	[0.115]
15	#Children	-47.880*	-32.815*	
		(11.9590)	(12.9499)	[-0.781]

Panel Estimation: Control for All Income Sources

Fixed effect estimation with income sources:

(10)
$$c_t^{*i} - \bar{c}_t = \alpha^i + \delta H_t^i + \zeta_w X_t^i + Y_t^i \Gamma + e_t^i$$

- ullet H_t^i are the controls of household composition
- X_t^i average village labors
- Y_t^i is a vector of income variables, including crop profit, labor income, trade and handicrafts, and animal husbandry
- If the consumption is fully insured against income shocks, the coefficients of income variables should be jointly zero

Table IX: Control for All Income Sources

Village:	Aurepalle
δ	111.1106
	(322.1838)
#Household	-9.3984
Members	(16.2527)
Average Village	0.1967
Labor	(0.5399)
Crop Profit	0.0149
	(0.0338)
Labor Income	0.1265
	(0.0903)
Profit from Trade	0.1664*
and Handicrafts	(0.0497)
Profit from Animal	-0.1894*
Husbandry	(0.0894)
F-Prob	0.0037

Effect of Landholding on Insurance

ullet Estimate the effect of village consumption on the landless household ℓ

(11)
$$c_t^{*\ell} = \alpha^{\ell} + \beta \bar{c}_t + \delta H_t^{\ell} + \gamma y_t^{\ell} + u_t^{\ell}$$

- α^{ℓ} is household fixed effect
- ullet H_t^ℓ are the controls for household composition
- y_t^{ℓ} all income of landless household ℓ
- ullet eta=1 if the idiosyncratic shocks are fully insured at the village level
- $oldsymbol{\circ} \gamma = 0$ if the income shocks are fully insured

Table X: Effect of Landholding on Insurance

Farmers

a. Effect o	F LANDHOLDING	ON INSURANCE (ALL COM	NSUMPTION) ^a	
Village	Land Class	Village Consumption	All Income	
Aurepalle	Landless	0.3172*	0.3553*	
		(0.1413)	(0.0762)	
	Farmers	1.0485*	0.0421*	
*****		(0.1070)	(0.0205)	
b. Effect of	Landholding	on Insurance (Grain Co	nsumption)h	
Village	Land Class	Village Consumption	All Income	
Aurepalle	Landless	0.0513	0.3214*	
-		(0.1818)	(0.0625)	

0.0009

(0.0170)

1.2431*

(0.1241)

Kinship and Financial Networks, Formal Financial Access, and Risk Reduction

Cynthia Kinnan and Robert Townsend (2012)

Presented by Chi-hung Kang

November 14, 2016

Motivation

- Access to borrowing and lending can be helpful to insure against short-term idiosyncratic risks
 - Informal credit: borrowing from relatives
 - ► Formal financial institution: banks
- What are the effect of these two channels on consumption smoothing?

Consumption-smoothing specification

$$\Delta c_{ivt} = \alpha_1 \Delta y_{ivt} + \alpha_2 \Delta y_{ivt} d_{i,B} + \alpha_3 \Delta y_{ivt} r_{i,B}$$
$$+ \alpha_4 \Delta y_{ivt} k_i + \alpha_5 \Delta y_{ivt} \bar{w}_i + \delta_{B,t} + \epsilon_{it}$$

- ullet Δc_{ivt} Difference of consumption for household i in village v at time t
- Δy_{ivt} Difference of income for household i in village v at time t
- $d_{i,B} = 1$ if i borrows directly from the bank
- $r_{i,B} = 1$ if i borrows from someone who borrows from the bank
- $k_i = 1$ if having any kin in the village
- ullet $ar{w}_i$ household i's average net worth over the sample period
- \bullet $\delta_{B,t}$ common time effect of households directly connected to the bank

Result for Consumption-smoothing specification

$$\Delta c_{ivt} = 0.0078 \Delta y_{ivt} - 0.1658 \Delta y_{ivt} d_{i,B} - 0.1643 \Delta y_{ivt} r_{i,B} + 0.0102 \Delta y_{ivt} k_i - 0.00021 \Delta y_{ivt} \bar{w}_i + \delta_{B,t} + \epsilon_{it}$$

- ullet Δc_{ivt} Difference of consumption for household i in village v at time t
- Δy_{ivt} Difference of income for household i in village v at time t
- $d_{i,B} = 1$ if i borrows directly from the bank
- $r_{i,B} = 1$ if i borrows from someone who borrows from the bank
- $k_i = 1$ if having any kin in the village
- ullet $ar{w}_i$ household i's average net worth over the sample period
- \bullet $\delta_{B,t}$ common time effect of households directly connected to the bank

Investment-smoothing specification

$$\left(\frac{I}{A}\right)_{ivt} = \alpha_1 \left(\frac{y}{A}\right)_{ivt} + \alpha_2 \left(\frac{y}{A}\right)_{ivt} r_{i,B} + \alpha_4 \left(\frac{y}{A}\right)_{ivt} k_i + \alpha_5 \left(\frac{y}{A}\right)_{ivt} \bar{w}_i
+ \beta_1 r_{i,B} + \beta_2 k_{i,B} + \beta_3 \bar{w}_i + \delta_v + \delta_{B,t} + \epsilon_{it}$$

- I is total household investment
- y is total household income
- A is total household assets
- $r_{i,B} = 1$ if i borrows from someone who borrows from the bank
- $k_i = 1$ if having any kin in the village
- \bar{w}_i household i's average net worth over the sample period
- $\delta_{\rm v}$ village fixed effect
- $\delta_{B,t}$ common time effect of households directly connected to the bank

Table 1: Kinship, Financial Access, and Investment

TABLE 1—KINSHIP, FINANCIAL ACCESS, AND INVESTMENT

	No controls (1)	All house- holds (2)	Above- median investment size (3)	Below- median investment size (4)
Income	0.1078* (0.0649)	0.6526*** (0.1950)	0.6370*** (0.2102)	0.0077 (0.3359)
Income X Any link to bank		-0.1268 (0.1288)	-0.0821 (0.1292)	0.2931 (0.3983)
X Kin in village		-0.4136*** (0.1549)	-0.5056*** (0.1599)	0.4543 (0.3256)
X Net worth (mill. baht)		-0.1087 (0.0762)	$-0.0405** \\ (0.0205)$	-0.3710 (0.2357)
Observations	6,055	5,794	2,319	3,463

Note: Heteroskedasticity-robust standard errors in parentheses.

^{***}Significant at the 1 percent level.

^{**}Significant at the 5 percent level.

^{*}Significant at the 10 percent level.

Extension

- An indicator for having a kin in the village does not capture the whole effects of personal networks
 - Network characteristics rather than just an indicator
- The indicator for direct connection to the bank can be endogenous
 - For US data, use the total banks around the neighborhood as a proxy for formal financial access