

Matching and synthetic controls

Nils Droste

2022 ClimBEco course

Introduction

exact match

distance match machine-learning model comparison example

Synthetic Control

estimation current development example

References

Synopsis: Today, we will be looking into methods that help us find (aka *match*) or simulate (aka *synthesize*) a control group for inferring causal effects from observational data, and its recent developments

In particular, we will develop an understanding of

Introduction

exact match

distance match machine-learning model comparison example

Synthetic Control

estimation current development example

References

Synopsis: Today, we will be looking into methods that help us find (aka *match*) or simulate (aka *synthesize*) a control group for inferring causal effects from observational data, and its recent developments

In particular, we will develop an understanding of

matching approaches

Introduction

Matching

exact match distance match machine-learning model comparison example

Synthetic Control

estimation current developmen

References

Synopsis: Today, we will be looking into methods that help us find (aka *match*) or simulate (aka *synthesize*) a control group for inferring causal effects from observational data, and its recent developments

In particular, we will develop an understanding of

- matching approaches
 - classical
 - machine-based learning

Introduction

Synopsis: Today, we will be looking into methods that help us find (aka match) or simulate (aka synthesize) a control group for inferring causal effects from observational data, and its recent developments

In particular, we will develop an understanding of

- matching approaches
 - classical
 - machine-based learning
- synthetic controls

Intuition

Introduction

Matching

exact match distance match machine-learning model compariso

Synthetic Control

intuition

current developmen

References

Consider a situation where the untreated are very different from the treated:

Image source: Schleicher et al. 2020

Intuition

Introduction

Matching

exact match distance match machine-learnin

Synthetic Control

Synthetic Contro

current developme

References

Consider a situation where the untreated are very different from the treated:

Matching, def: any method that strategically subsamples dataset to balance covariate distribution in treated and control groups such that after matching both groups share an equal probability of treatment.

Non-Random Treatment Assignment

Average Treatment Effect on the Treated + Selection Bias

Image source: Image source: Sizemore and Alkurdi 2019

Intuition

Introduction

Matching

exact match distance match

model compariso

Synthetic Contro

Jatuitien

current developme

References

Consider a situation where the untreated are very different from the treated:

Matching, def: any method that strategically subsamples dataset to balance covariate distribution in treated and control groups such that after matching both groups share an equal probability of treatment.

Non-Random Treatment Assignment

Average Treatment Effect on the Treated + Selection Bias

Image source: Image source: Sizemore and Alkurdi 2019

 \rightarrow matching is a *pre-analytical procedure*, allowing unbiased inference.

Procedure

Introduction

Matching

model comparison

References

5/40

Procedure

Introduction

Matching

exact match distance match machine-learning model comparison

Semale atta Cambral

Synthetic Control

estimation

example

References

Image source: Schleicher et al. 2020

Introduction

Matching

exact match distance match machine-learning model comparison example

Synthetic Control

estimation current development example

References

- stable unit treatment value assumption (SUTVA)
 - treating one individual unit does not affect another's (potential) outcome
 - treatment is comparable [no (strong) variation in treatment]

Introduction

Matching

distance match machine-learning model comparison example

Synthetic Control

estimation current development example

References

- stable unit treatment value assumption (SUTVA)
 - treating one individual unit does not affect another's (potential) outcome
 - treatment is comparable [no (strong) variation in treatment]
- unconfoundedness (strong ignorability)
 - $(Y(1), Y(0)) \perp D$: treatment assignment is independent of the outcomes
 - i.e. no omitted variable bias (recall the storch example)
 - \blacksquare or, at least, conditional unconfoundedness $(Y(1), Y(0)) \perp D|X$

Introduction

- stable unit treatment value assumption (SUTVA)
 - treating one individual unit does not affect another's (potential) outcome
 - treatment is comparable [no (strong) variation in treatment]
- unconfoundedness (strong ignorability)
 - $(Y(1), Y(0)) \perp D$: treatment assignment is independent of the outcomes
 - i.e. no omitted variable bias (recall the storch example)
 - or, at least, conditional unconfoundedness $(Y(1), Y(0)) \perp D|X$

$$\rightarrow \pi(X_i) = Pr(D_i = 1|X_i)$$
 or propensity score can be used for matching

Introduction

Matching

distance match machine-learning model comparison example

Synthetic Contro

estimation current developme

References

- stable unit treatment value assumption (SUTVA)
 - treating one individual unit does not affect another's (potential) outcome
 - treatment is comparable [no (strong) variation in treatment]
- unconfoundedness (strong ignorability)
 - \blacksquare $(Y(1), Y(0)) \perp D$: treatment assignment is independent of the outcomes
 - i.e. no omitted variable bias (recall the storch example)
 - \blacksquare or, at least, conditional unconfoundedness $(Y(1), Y(0)) \perp D|X$
- $\rightarrow \pi(X_i) = Pr(D_i = 1|X_i)$ or propensity score can be used for matching
- → but should maybe not (King and Nielsen 2019), we will see alternatives

Overview

Here is a general overview of possible matching methods

minoduction

Matching exact match

distance match machine-learning model compariso

Synthetic Contro

Synthetic Contro

estimation current developmen

example

References

Image source: Sizemore and Alkurdi 2019

Introduction

Matching

exact match distance match machine-learning model comparison

Synthetic Controls

Synthetic Controls

estimation current developmen

References

Consider that we aim to estimate *conditional average treatment effect* (CATE) (cf. Abrevaya, Hsu and Lieli 2015)

$$CATE = E(Y(1) - Y(0)|X = x)$$
(1)

Introduction

Matching exact match

distance match machine-learning model compariso

Synthetic Controls

estimation current developmen

Reference

Consider that we aim to estimate *conditional average treatment effect* (CATE) (cf. Abrevaya, Hsu and Lieli 2015)

$$CATE = E(Y(1) - Y(0)|X = x)$$
 (1)

How to find the sufficiently similar subsamples?

ntroductio

Matching

exact match distance match machine-learning model comparison

Synthetic Control

estimation

current developm example

References

Consider that we aim to estimate *conditional average treatment effect* (CATE) (cf. Abrevaya, Hsu and Lieli 2015)

$$CATE = E(Y(1) - Y(0)|X = x)$$
 (1)

King and Nielsen (2019) formulate a general pruning (*matching*) function *M*:

$$X_{\ell} = M(X|A_{\ell}, T_i = 1, T_j = 0, \delta) \equiv M(X|A_{\ell}) \subseteq X$$
 (2)

providing X_{ℓ} , subset of matched observation based on condition A_{ℓ} .

Introduction

Matching

exact match distance match machine-learning model compariso

Synthetic Control

estimation current developmen

References

Consider that we aim to estimate *conditional average treatment effect* (CATE) (cf. Abrevaya, Hsu and Lieli 2015)

$$CATE = E(Y(1) - Y(0)|X = x)$$
(1)

King and Nielsen (2019) formulate a general pruning (*matching*) function *M*:

$$X_{\ell} = M(X|A_{\ell}, T_i = 1, T_j = 0, \delta) \equiv M(X|A_{\ell}) \subseteq X$$
 (2)

providing X_{ℓ} , subset of matched observation based on condition A_{ℓ} .

 \rightarrow in what follows we will look at different pruning method ℓ to produce the best matched subset δ .

Exact matching

Introductio

Matching

exact match

machine-learning

example

Synthetic Controls

Cymanotic Commo

estimation current developmen

References

For exact matching we find exactly equal pairs

$$X_{EM} = M(X|X_i = X_j) \tag{3}$$

Note: X can be a vector of covariates.

Coarsened Exact Matching (CEM)

ntroduction

evact match

exact match

machine-learning

model comparis example

Synthetic Control

estimation

current developme example

References

For coarsened exact matching we approximate

$$X_{CEM} = M(X|C_{\delta}(X_i) = C_{\delta}(X_i))$$
 (4)

where C_{δ} is a vector of same dimensions as X, but coarsened values, e.g. at "natural breakpoints" such as years in one school type, levels of income, etc.

Mahalanobis Distance Method (MDM)

For multidimensional data, we can identify nearest neighbours in an n-dimensional space.

exact match

distance match

model comparise

Synthetic Contro

Synthetic Contro

current developme

example

References

$$md(X_i, X_j) = \{(X_i - X_j)^{\top} S^{-1} (X_i - X_j)\}^{\frac{1}{2}}$$

(Above) Mahalanobis distance measure, where S denotes the covariance matrix of X. [24]

(Left) A contour plot is overlaid on a Mahalanobis distance scatter plot of 100 observations randomly drawn from a bivariate normal distribution. The centroid, in blue, is the reference point for distance between two points.

Image credit and description: Statistics How To: Mahalanobis Distance, Simple Definitions, Examples. Retrieved 10-08-2019 from: https://www.statisticshowto.datasciencecentral.com/mahalanobis-distance/

Propensity score matching (PSM)

Introduction

exact match

distance match

distance mater

model comparis

Synthetic Control

lander a

estimation

current developm

References

<u>Advantages</u>	<u>Disadvantages</u>
solves matching problem for high dimensions	misspecification of PS model = bad matches
many available R packages for easy implementation	matched pairs may be dissimilar across X

Else, we can estimate probability of being treated, aka propensity score

Image source: Sizemore and Alkurdi 2019

ntroduction

exact match

distance match

macnine-learni model compari

model comparis example

Synthetic Control

Intellion

estimation

current developme example

References


```
library(tidyverse)
library(MatchIt)

data("lalonde")
lalonde <- lalonde %>% as_tibble()

m.out <- matchit(treat ~ age + educ + race + married + nodegree + re74 + re75, data = lalonde,</pre>
```

method = "full")

Introductio

exact match

distance match

model compari

model comparis example

Synthetic Control

intuition

estimation current developme

References

> m.out

A matchit object

- method: Optimal full matching

- distance: Propensity score

- estimated with logistic regression

- number of obs.: 614 (original), 614 (matched)

- target estimand: ATT

- covariates: age, educ, race, married, nodegree, re74, re75

Introduction

Matching

exact match

distance match

model comparis

Synthetic Control

Synthetic Control

estimation

example

References

WANGO CONTROL OF STATE OF STAT

plot(m.out, type = "ecdf", which.xs = c("age", "re74", "married")

Code source: Greifer 2020

ntroduction

exact match

distance match

machine-learni

model compariso example

Synthetic Control

oynanoao conac

estimation current developme

example

Introduction

Matching exact match

distance match

machine-learnir

model comparise example

Synthetic Contro

estimation

current developme example

References

Code source: Greifer 2020

Intermediate discussion

introduction

exact match

distance match

machine-learni

model compariso

Synthetic Control

intuition estimation

current development

References

There is a bit of critique on PSM

- King and Nielsen (2019)
 - "PSM is ... uniquely blind to the often large portion of imbalance"
 - "easy to avoid by switching to one of the other popular methods of matching"
 - i.e.: CEM and MDM
- Sizemore and Alkurdi (2019)
 - test PSM against machine learning based methods
 - logistic PSM > random forest PSM > genetic matching
 - CEM ???

Random forest (RF)

RF are multiple regression trees classifying the data by partitioning

Code source: Wikipedia

We can use this to predict treatment (aka propensity scores)

Introduction

evact match

distance match

machine-learning

example

Synthetic Contro

estimation current developmen

eXtreme Gradient Boosting (XGBoost)

Machine learning such as XGBoost or even ensembles can also be used to

Original Train Dataset Updated Weights in dataset Updated Weights in dataset Final Classifier XGBoost Classifier 1 XGBoost Classifier 2 XGBoost Classifier 3

Code source: Quant Insti

20/40

→ predict treatment (aka propensity scores)

Causal Inference 2022 ClimBEco course

. . . .

Matching exact match

distance match machine-learning

example

Synthetic Contro

estimation current development

example

Genetic matching

Genetic Matching combines PSM and MDM

$GMD(X_i, X_j, W) = \sqrt{(X_i)^T (S^{-\frac{1}{2}})^T W S^{-\frac{1}{2}} (X_i - X_j)}$ (5)

Image source: Sizemore and Alkurdi 2019

Introduction

watening

distance match

machine-learning

model comparise

Synthetic Control

Synthetic Control

estimation

current developr

example

comparison - fitting distributions

Introduction

Matching exact match

distance match machine-learning

model comparison example

Synthetic Control

Synthetic Contro

estimation current development

comparison - mean absolute error

Matching

model comparison

comparison - summary

Introductio

Matching

distance match

model comparison

example

Synthetic Controls

estimation
current development

References

for the comparison above I used nearest neighbour matching, reducing sample size

comparison - summary

introduction

exact match

distance match machine-learning

model comparison example

Synthetic Control

Javillan

current developme

- for the comparison above I used nearest neighbour matching, reducing sample size
- maximizing post-match balance does not necessarily improve explanatory model power (Colson et al. 2016)

Introduction

exact match

exact match
distance match
machine-learning
model comparison

example

Synthetic Control

estimation current development example

- for the comparison above I used nearest neighbour matching, reducing sample size
- maximizing post-match balance does not necessarily improve explanatory model power (Colson et al. 2016)
- possibly both sample size and balance need to be taken into account (King, Lucas and Nielsen 2017)

Introductio

Matching

exact match
distance match
machine-learning
model comparison

example

Synthetic Control

estimation current developmer example

- for the comparison above I used nearest neighbour matching, reducing sample size
- maximizing post-match balance does not necessarily improve explanatory model power (Colson et al. 2016)
- possibly both sample size and balance need to be taken into account (King, Lucas and Nielsen 2017)
- latest approaches include almost exact matching (Dieng et al. 2018; Dieng et al. 2021), text matching (Roberts, Stewart and Nielsen 2020), generalized optimal matching (Kallus 2020)

Introductio

Motobing

exact match distance match machine-learning

model comparison example

Synthetic Contro

estimation current developme example

- for the comparison above I used nearest neighbour matching, reducing sample size
- maximizing post-match balance does not necessarily improve explanatory model power (Colson et al. 2016)
- possibly both sample size and balance need to be taken into account (King, Lucas and Nielsen 2017)
- latest approaches include almost exact matching (Dieng et al. 2018; Dieng et al. 2021), text matching (Roberts, Stewart and Nielsen 2020), generalized optimal matching (Kallus 2020)
- R packages include MatchIt, Matching, and PanelMatch

Introduction

exact match

distance match machine-learning model comparison

example

Synthetic Contro

estimation current development example

- for the comparison above I used nearest neighbour matching, reducing sample size
- maximizing post-match balance does not necessarily improve explanatory model power (Colson et al. 2016)
- possibly both sample size and balance need to be taken into account (King, Lucas and Nielsen 2017)
- latest approaches include almost exact matching (Dieng et al. 2018; Dieng et al. 2021), text matching (Roberts, Stewart and Nielsen 2020), generalized optimal matching (Kallus 2020)
- R packages include <u>MatchIt</u>, <u>Matching</u>, and <u>PanelMatch</u>
- for the debate around propensity score matching (King and Nielsen 2019), see also Hünermund, (2019)

an example

Introduction

exact match

distance match
machine-learning

example

Synthetic Control

estimation current developmen

References

Ferraro and Hanauer (2014) use matching approach (MDM) to assess the effect of protected areas on poverty reduction

Causal model of PA on poverty effects, source: Ferraro and Hanauer 2014

Synthetic Controls

What if we do only have one treated unit?

California introduces tobacco control in 1988, cf. Abadie et al. 2010

introductio

Matching

exact match distance match machine-learning model compariso

Synthetic Controls

intuition

estimation current development example

a case and an idea

How about we compare to a weighted average of untreated?

California introduces tobacco control in 1988, cf. Abadie et al. 2010

intuition

and a notation

Introduction

ovact match

distance match machine-learning model comparison

Synthetic Control

Synthetic Contro

estimation current developmen

References

$\hat{Y}_{t,post}(0) = \mu + \sum_{i=1}^{N} w_i Y_{i,T}^{obs}$ (6)

"In other words, the imputed control outcome for the treated unit is a linear combination of the control units, with intercept μ and weights w_i for control unit i." (Doudchenko and Imbens 2020: 7)

the process

We compare the treated to the non-treated

California

introduction

exact match

distance match machine-learning model comparisor

Synthetic Control

intuition

estimation current developmen example

Figure 5. Per-capita cigarette sales gaps in California and placebo gaps in 34 control states (discards states with pre-Proposition 99 MSPE twenty times higher than California's).

the process

and compute the difference to a counterfactual weighted set of untreated

exact match

intuition

Figure 3. Per-capita cigarette sales gap between California and synthetic California.

Recall the ordinary least square estimate (OLS)

OLS, img source: Gavrilova, 2020

Introduction

Matching

exact match
distance match
machine-learning
model comparison

Synthetic Controls

estimation

current developr

ntroduction

exact match

exact match distance match machine-learning model comparison

Synthetic Control

Synthetic Contro

estimation

current developme example

References

For $\hat{Y}_{t,post}(0) = \mu + \sum_{i=1}^{N} w_i Y_{i,T}^{obs}$

 μ and w_i can, in principle, be estimate with OLS (cf. Doudchenko and Imbens 2020)

$$(\hat{\mu}^{ols}, \hat{w}^{ols}) = \arg\min_{\mu, w} \sum_{s=1}^{T_0} \left(Y_{0, T_0 - s + 1}^{obs} - \mu - \sum_{i=1}^{N} w_i \cdot Y_{0, T_0 - s + 1}^{obs} \right)^2 \tag{7}$$

ntroduction

exact match

exact match distance match machine-learning model comparison example

Synthetic Control

described

estimation

current development example

References

For $\hat{Y}_{t,post}(0) = \mu + \sum_{i=1}^{N} w_i Y_{i,T}^{obs}$

 μ and w_i can, in principle, be estimate with OLS (cf. Doudchenko and Imbens 2020)

$$(\hat{\mu}^{ols}, \hat{w}^{ols}) = \arg\min_{\mu, w} \sum_{s=1}^{T_0} \left(Y_{0, T_0 - s + 1}^{obs} - \mu - \sum_{i=1}^{N} w_i \cdot Y_{0, T_0 - s + 1}^{obs} \right)^2$$
(7)

Abadie et al. 2010 impose conditions, $\mu = 0$, $\sum_{i=1}^{N} w_i = 1$, and $w_i \ge 0 \forall i$.

Introduction

exact match

distance match

model comparis example

Synthetic Control

intuition

estimation

example

References

For covariate vector X we would want to minimize (cf. Doudchenko and Imbens 2020)

$$\|Y_{t,pre}^{obs} - \mu - \mathbf{w}^T Y_{c,pre}^{obs}\|_2^2 = \left(Y_{t,pre}^{obs} - \mu - \mathbf{w}^T Y_{c,pre}^{obs}\right)^T \left(Y_{t,pre}^{obs} - \mu - \mathbf{w}^T Y_{c,pre}^{obs}\right)$$
(8)

This mathing is often performed on lagged outcomes $Y_{t-(1,...,T)}$ and other covariates.

Introduction

exact match

distance match machine-learni

model comparis example

Synthetic Control

estimation

example

References

For covariate vector X we would want to minimize (cf. Doudchenko and Imbens 2020)

$$\|Y_{t,pre}^{obs} - \mu - \mathbf{w}^T Y_{c,pre}^{obs}\|_2^2 = \left(Y_{t,pre}^{obs} - \mu - \mathbf{w}^T Y_{c,pre}^{obs}\right)^T \left(Y_{t,pre}^{obs} - \mu - \mathbf{w}^T Y_{c,pre}^{obs}\right)$$
(8)

This mathing is often performed on lagged outcomes $Y_{t-(1,...,T)}$ and other covariates. So, in simpler terms, $||X_{treat} - X_{control}W||$ which resembles a balancing approach (á la matching).

See Doudchenko and Imbens (2020) for a balanced, cross-validated, elastic net type penalty approach, combining Lasso and ridge regressions to regularize *w*.

current development

Arkhangelsky et al. 2019 suggest a synthetic diff-in-diff approach, where *W* denotes binary treatment, and

SynthControl:

$$(\hat{\mu}, \hat{\beta}, \hat{\tau}^{sc}) = \arg\min_{\mu, \beta, \tau} \sum_{i=1}^{N} \sum_{i=1}^{I} (Y_{it} - \mu - \beta_t - W_{it}\tau)^2 \, \hat{W}_i^{SC}$$
(9)

DiD:

$$(\hat{\mu}, \hat{\alpha}, \hat{\beta}, \hat{\tau}^{did}) = \arg\min_{\mu, \alpha, \beta, \tau} \sum_{i=1}^{N} \sum_{i=1}^{T} (Y_{it} - \mu - \alpha_i - \beta_t - W_{it}\tau)^2$$
(10)

SynthDiD:

$$(\hat{\mu}, \hat{\alpha}, \hat{\beta}, \hat{\tau}^{sdid}) = \arg\min_{\mu, \beta, \tau} \sum_{i=1}^{N} \sum_{i=1}^{I} (Y_{it} - \mu - \alpha_i - \beta_t - W_{it}\tau)^2 \hat{w}_i \hat{\lambda}_t$$
(11)

Introducti

Matching

exact match distance match

machine-learnin model comparis

model comparis example

Synthetic Controls

intuition

current development

intermediate summary

Introductio

exact match

distance match machine-learning model comparison example

Synthetic Control

estimation

current development

References

A synthetic control approach allows us to

- compare a single treated unit group with an untreated quasi-counterfactual
- you can compute placebo tests for the effect on an untreated unit
- so far, has not been widely applied (for examples see Abadie 2020)
- I think it is so far underestimated (i.e. by applied researchers)

software

Matching exact match

distance match model comparison

Synthetic Controls

example References

available packages

- Synth
- synthdid
- scul
- gsynth

an example

Bayer and Aklin (2020) use synthetic controls to assess the effect of EU

Emission Trading System (ETS) on CO₂ emissions

Effect of the EU ETS over time, source: Bayer and Aklin 2020

2022 ClimBEco course

example

an example

Bayer and Aklin (2020) use synthetic controls to assess the effect of EU Emission Trading System (ETS) on CO₂ emissions

Matching

exact match distance match machine-learnin

model comparis example

Synthetic Control

estimation

current developme example

References I

Introduction

exact match

distance match

model comparis

example

Synthetic Contro

intuition

estimation

example

References

Abadie, Alberto (2020). 'Using Synthetic Controls: Feasibility, Data Requirements, and Methodological Aspects'. In: *Journal of Economic Literature*.

Abadie, Alberto et al. (2010). 'Synthetic control methods for comparative case studies: Estimating the effect of California's Tobacco control program'. In: *Journal of the American Statistical Association* 105.490, pp. 493–505. DOI: 10.1198/jasa.2009.ap08746.

Abrevaya, Jason, Yu Chin Hsu and Robert P. Lieli (2015). 'Estimating Conditional Average Treatment Effects'. In: *Journal of Business and Economic Statistics* 33.4, pp. 485–505. DOI: 10.1080/07350015.2014.975555.

Arkhangelsky, Dmitry et al. (2019). 'Synthetic difference in differences'. URL: http://www.nber.org/papers/w25532.

Bayer, Patrick and Michaël Aklin (2020). 'The European Union Emissions Trading System reduced CO2 emissions despite low prices'. In: *Proceedings of the National Academy of Sciences of the United States of America* 117.16, pp. 8804–8812. DOI: 10.1073/pnas.1918128117.

Colson, K. Ellicott et al. (2016). 'Optimizing matching and analysis combinations for estimating causal effects'. In: *Scientific Reports* 6.March, pp. 1–11. DOI: 10.1038/srep23222. URL: http://dx.doi.org/10.1038/srep23222.

Dieng, Awa et al. (2018). 'Almost-Exact Matching with Replacement for Causal Inference'. In: *arXiv*, pp. 1–28. URL: http://arxiv.org/abs/1806.06802.

References II

Matching

- Dieng, Awa et al. (2021). 'Collapsing-Fast-Large-Almost-Matching-Exactly: A Matching Method for Causal Inference'. In: arXiv, pp. 1-27. URL: https://arxiv.org/pdf/1806.06802.pdf.
- Doudchenko, Nikolay and Guido W Imbens (2020), 'Balancing, Regression, Difference-In-Differences and Synthetic Control Methods: A Synthesis'. URL:
 - http://arxiv-export-lb.library.cornell.edu/pdf/1610.07748.
- Ferraro, Paul J. and Merlin M. Hanauer (2014), 'Quantifying causal mechanisms to determine how protected areas affect poverty through changes in ecosystem services and infrastructure'. In: Proceedings of the National Academy of Sciences of the United States of America 111.11. pp. 4332-4337. DOI: 10.1073/pnas.1307712111.
- Kallus, Nathan (2020). 'Generalized optimal matching methods for causal inference'. In: Journal of Machine Learning Research 21, pp. 1–54. arXiv: 1612.08321.
- King, Gary, Christopher Lucas and Richard A. Nielsen (2017), 'The Balance-Sample Size Frontier in Matching Methods for Causal Inference'. In: American Journal of Political Science 61.2, pp. 473–489. DOI: 10.1111/aips.12272.
- King, Gary and Richard Nielsen (2019), 'Why Propensity Scores Should Not Be Used for Matching', In: Political Analysis 27.4, pp. 435–454. DOI: 10.1017/pan.2019.11.
- Roberts, Margaret E., Brandon M. Stewart and Richard A. Nielsen (2020). 'Adjusting for Confounding with Text Matching'. In: American Journal of Political Science 64.4, pp. 887–903. DOI: 10.1111/ajps.12526.

References III

Introduction

exact match

distance match machine-learning model compariso

Synthetic Contro

Synthetic Control

estimation current developmen

example

References

Schleicher, Judith et al. (2020). 'Statistical matching for conservation science'. In: Conservation Biology 34.3, pp. 538–549. ISSN: 15231739. DOI: 10.1111/cobi.13448.

Sizemore, Samantha and Raiber Alkurdi (2019). Matching Methods for Causal Inference: A Machine Learning Update. URL: https://humboldt-wi.github.io/blog/research/applied{_}predictive{_}modeling{_}19/matching{_}methods/ (visited on 01/05/2021).

