

FACULTAD DE CIENCIAS

FUNDAMENTOS DE BASES DE DATOS - 7094

T A R E A 5

EQUIPO:

DEL MONTE ORTEGA MARYAM MICHELLE - 320083527

SOSA ROMO JUAN MARIO - 320051926

CASTILLO HERNÁNDEZ ANTONIO - 320017438

ERIK EDUARDO GÓMEZ LÓPEZ - 320258211

FECHA DE ENTREGA:
5 DE NOVIEMBRE DE 2024

Profesor:

M. EN I.Z GERARDO AVILÉS ROSAS

AYUDANTES:

LUIS ENRIQUE GARCÍA GÓMEZ KEVIN JAIR TORRES VALENCIA RICARDO BADILLO MACÍAS ROCÍO AYLIN HUERTA GONZÁLEZ

Tarea 5

1. Dada una relación R(A, B, C, D, E, G) y el siguiente conjunto de dependencias funcionales F:

$$\mathbf{F} = \{ \mathbf{AB} \rightarrow \mathbf{C}, \, \mathbf{BC} \rightarrow \mathbf{D}, \, \mathbf{D} \rightarrow \mathbf{EG}, \, \mathbf{CG} \rightarrow \mathbf{BD}, \, \mathbf{C} \rightarrow \mathbf{A}, \, \mathbf{ACD} \rightarrow \mathbf{B}, \, \mathbf{BE} \rightarrow \mathbf{C}, \, \mathbf{CE} \rightarrow \mathbf{AG} \, \}$$

Para las siguientes sentencias, determina si son **verdaderas** o **falsas**. Para aquellas sentencias que resulten falsas, deberás **explicar** por qué consideras que no se cumplen:

No.	Sentencia	Verdadera	Falsa	Justificación
1	La cerradura de BC es $\{A, D, E, G\}$			
2	Todos los atributos de R están en la cerradura de BC			
3	La cerradura de AC es $\{A, C\}$			
4	ABC es una superllave de R			
5	ABC es una llave candidata de R			
6	BC es la única llave candidata de R			

2.

3. Para cada uno de los **esquemas** que se muestran a continuación, con su respectivo **conjunto de dependencias funcionales**:

a.
$$R(A, B, C, D, E, F, G)$$
 con $F = \{AB \rightarrow C, AB \rightarrow F, A \rightarrow D, A \rightarrow E, B \rightarrow G\}$

b.
$$R(A, B, C, D, E, F)$$
 con $F = \{AB \rightarrow C, BC \rightarrow AD, D \rightarrow E, CF \rightarrow B\}$

- Indica alguna llave candidata para la relación R.
- Especifica todas las violaciones a la BCNF.
- Normaliza de acuerdo con BCNF, asegúrate de indicar cuáles son las relaciones resultantes con sus respectivas dependencias funcionales.
- 4. Para cada uno de los esquemas que se muestran a continuación, con su respectivo conjunto de dependencias funcionales:

a)
$$R(A,B,C,D,E,F,G)$$
 con $F = \{AB \rightarrow C,AB \rightarrow F,A \rightarrow D,A \rightarrow E,B \rightarrow G\}$.

b)
$$R(A, B, C, D, E, F, G)$$
 con $F = \{A \rightarrow B, CD \rightarrow FG, G \rightarrow E, B \rightarrow D, A \rightarrow C, E \rightarrow A\}$.

Inciso a)

- Indica alguna llave candidata para la relación R.
 Una llave candidata para la relación R podría ser AB, ya que:
 - $AB \rightarrow C$
 - $AB \rightarrow F$
 - $A \to D$ y $A \to E$ implican que, conociendo A, se puede determinar D y E.
 - $B \to G$ implica que, conociendo B, se puede determinar G.

Por lo tanto, AB es una llave candidata.

- Indica las violaciones a 3NF que encuentres en R.
 Las siguientes dependencias violan la 3NF:
 - $A \to D$: D no es parte de una llave candidata y A no es superllave.
 - $A \to E$: E no es parte de una llave candidata y A no es superllave.
 - $B \to G$: G no es parte de una llave candidata y B no es superllave.
- lacktriangle Encuentra el conjunto mínimo de dependencias funcionales equivalente a F.
 - Paso a paso:
 - \circ AB \to C: No es redundante, ya que necesitamos AB para determinar C.
 - o $AB \to F$: No es redundante, necesitamos AB para determinar F.
 - o $A \to D$: No es redundante, ya que no podemos deducir D de ninguna otra dependencia sin A.
 - o $A \to E$: No es redundante, ya que necesitamos A para determinar E.
 - $\circ B \to G$: No es redundante, necesitamos B para determinar G.

Por lo tanto, el conjunto mínimo equivalente a F es:

$$F_{\min} = \{AB \rightarrow C, AB \rightarrow F, A \rightarrow D, A \rightarrow E, B \rightarrow G\}$$

- Normaliza de acuerdo con la 3NF. Indica claramente las relaciones resultantes y, en cada esquema, las dependencias funcionales que se cumplen.
 - Relación 1: $R_1(A, B, C, F)$ con las dependencias $AB \to C$ y $AB \to F$.
 - Relación 2: $R_2(A, D, E)$ con las dependencias $A \to D$ y $A \to E$.
 - Relación 3: $R_3(B,G)$ con la dependencia $B \to G$.

Estas relaciones cumplen con la 3NF, ya que todas las dependencias están cubiertas.

Inciso b)

 \blacksquare Indica alguna llave candidata para la relación R.

Una posible llave candidata para la relación R es CD, ya que:

- $CD \to FG$: Nos da acceso a $F \neq G$.
- $G \to E$ implica que podemos determinar E si conocemos G.
- $E \to A$ permite determinar A.
- $A \to B$ y $A \to C$ permiten determinar B y C.

Por lo tanto, CD es una llave candidata.

Indica las violaciones a 3NF que encuentres en R.
 Las siguientes dependencias violan la 3NF:

- $G \to E$: E no es parte de una llave candidata y G no es superllave.
- $B \to D$: D no es parte de una llave candidata y B no es superllave.
- $A \to C$: C no es parte de una llave candidata y A no es superllave.
- Encuentra el conjunto mínimo de dependencias funcionales equivalente a F.
 Pasos:
 - $A \to B$: No es redundante, ya que necesitamos A para determinar B.
 - $CD \to FG$: No es redundante, necesitamos CD para determinar $F \neq G$.
 - $G \to E$: No es redundante, necesitamos G para determinar E.
 - $B \to D$: No es redundante, necesitamos B para determinar D.
 - $A \to C$: No es redundante, necesitamos A para determinar C.
 - $E \to A$: No es redundante, necesitamos E para determinar A.

El conjunto mínimo equivalente a F es:

$$F_{\min} = \{A \to B, CD \to FG, G \to E, B \to D, A \to C, E \to A\}$$

- Normaliza de acuerdo con la 3NF. Indica claramente las relaciones resultantes y, en cada esquema, las dependencias funcionales que se cumplen.
 - Relación 1: $R_1(A, B, C)$ con las dependencias $A \to B$ y $A \to C$.
 - Relación 2: $R_2(C, D, F, G)$ con la dependencia $CD \to FG$.
 - Relación 3: $R_3(G, E)$ con la dependencia $G \to E$.
 - Relación 4: $R_4(B,D)$ con la dependencia $B \to D$.
 - Relación 5: $R_5(E,A)$ con la dependencia $E \to A$.

Estas relaciones cumplen con la 3NF, ya que todas las dependencias están cubiertas.

- 5. Para cada uno de los esquemas que se muestran a continuación, con su respectivo conjunto de dependencias funcionales:
 - a) R(A, B, C, D) con $F = \{AB \rightarrow C, B \rightarrow D\}$.
 - b) R(A, B, C, D, E) con $F = \{A \rightarrow B, AB \rightarrow C, C \rightarrow D, D \rightarrow E\}$.
 - a) Encuentra todas las violaciones a la BCNF.
 - b) Normaliza de acuerdo con la BCNF.

Para cada uno de los esquemas presentados, aplicaremos la cuarta forma normal sigiuendo estos pasos:

- 1. Identificamos la llave candidata.
- 2. Determinamos las violaciones a la 4NF.
- 3. Descomponemos la relación para eliminar dichas violaciones.

Esquema (a): R(A, B, C, D)

Paso 1: Determinar la llave candidata

Las dependencias funcionales dadas son:

$$AB \to C$$
 y $B \to D$

Para determinar la llave candidata, observamos que AB es suficiente para determinar C y, dado $B \to D$, concluimos que AB es la llave candidata para esta relación.

Paso 2: Identificar violaciones a la 4NF

La 4NF exige que cualquier dependencia multivaluada o funcional no trivial tenga como determinante una superllave. En este caso:

• La dependencia funcional $B \to D$ viola la 4NF porque B no es una superllave.

Paso 3: Descomposición en 4NF

Para normalizar esta relación, descomponemos R(A,B,C,D) en dos relaciones, de modo que cada dependencia funcional se maneje por separado:

$$R_1(A, B, C) : AB \to C$$

 $R_2(B, D) : B \to D$

En R_1 , AB es la clave primaria, mientras que en R_2 , la clave primaria es B. Ambas relaciones ahora cumplen con la 4NF.

Relaciones finales para el esquema (a):

- \blacksquare $R_1(A,B,C)$: relación donde AB es la clave primaria y determina C.
- $R_2(B,D)$: relación donde B es la clave primaria y determina D.

Esquema (b): R(A, B, C, D, E)

Paso 1: Determinar la llave candidata

Las dependencias funcionales son:

$$A \to B$$
, $AB \to C$, $A \to D$, $AB \to E$

Dado que $AB \to C$ y $AB \to E$, concluimos que AB es una superllave para esta relación.

Paso 2: Identificar violaciones a la 4NF

Verificamos las dependencias para encontrar violaciones a la 4NF:

- La dependencia $A \to B$ es una violación a la 4NF porque A no es una superllave.
- \blacksquare La dependencia $A \to D$ también viola la 4NF por la misma razón.

Paso 3: Descomposición en 4NF

Para normalizar el esquema, descomponemos la relación en varias sub-relaciones:

$$R_1(A,B):A\to B$$

$$R_2(A,D):A\to D$$

$$R_3(A,B,C,E):AB\to C \quad \text{y} \quad AB\to E$$

En R_1 , A es la clave primaria y determina B. En R_2 , A es la clave primaria y determina D. En R_3 , AB es la clave primaria y determina C y E. Todas estas relaciones cumplen con la 4NF.

Relaciones finales para el esquema (b):

- $R_1(A, B)$: relación donde A es la clave primaria y determina B.
- $R_2(A, D)$: relación donde A es la clave primaria y determina D.
- \blacksquare $R_3(A, B, C, E)$: relación donde AB es la clave primaria y determina C y E.