Álgebra lineal I, Grado en Matemáticas

Febrero 2020, Segunda semana

No se permite el uso de material impreso (libros, apuntes) ni ningún tipo de calculadora.

Todas las soluciones tendrán que darse suficientemente razonadas.

Defina los siguientes conceptos: (2 puntos)

Utilice sólo una cara para estas definiciones

- (a) Matriz.
- (b) Coordenadas.
- (c) Espacio vectorial cociente.
- (d) Aplicación lineal.

Ejercicio 1: (2 puntos)

Si C es una matriz de orden n y rango n, entocnes $\operatorname{rg}(AC)=\operatorname{rg}(A)$ para toda matriz A de orden $m\times n$.

Ejercicio 2: (2 puntos) Calcule la inversa, cuando exista, de la matriz de orden n

$$A = \begin{pmatrix} 0 & \cdots & \cdots & 0 & \lambda_1 \\ 0 & \cdots & 0 & \lambda_2 & 0 \\ \vdots & & & \vdots \\ 0 & \lambda_{n-1} & 0 & \cdots & 0 \\ \lambda_n & 0 & \cdots & \cdots & 0 \end{pmatrix}, \quad \lambda_1, \dots, \lambda_n \in \mathbb{K}$$

Las entradas de A son $a_{ij}=0$ si $i+j\neq n+1$ y $a_{i,n-i+1}=\lambda_i$ para $i=1,\ldots,n$.

Ejercicio 3: (1 punto)

Sean u, v y w vectores linealmente independientes de un \mathbb{K} —espacio vectorial V de dimensión mayor que 3, con $\mathbb{K} = \mathbb{R}$ o $\mathbb{K} = \mathbb{C}$. Estudie para qué valores de $a \in \mathbb{K}$ los siguientes vectores son linealmente independientes.

$$au + 3v + w$$
, $u - v - w$, $2u - av - w$

Ejercicio 4: (3 puntos)

Sea $f: \mathbb{K}_3[x] \to \mathbb{K}_3[x]$ la aplicación lineal definida por f(p(x)) = p(x) - xp'(x). Determine:

- (a) la matriz de f en la base $\{1, 1+x, 1+x^2, 1+x^3\}$,
- (b) si es inyectiva, sobreyectiva y/o biyectiva;
- (c) si el subespacio generado por el polinomio $p(x)=x+x^2+x^3$ está contenido en el subespacio imagen de f.