Rethinking the generalization of drug target affinity prediction algorithms via similarity aware evaluation

Chenbin Zhang*, Zhiqiang Hu*, Chuchu Jiang*, Wen Chen, Jie Xu, Shaoting Zhang

Oral in 2025 at

29.04.2025 Clemence Reda

Background

- 1. The drug-target binding affinity prediction problem
- 2. Of the importance of proper data splitting
- 3. Issues with random splitting
- 4. SotA on fair predictive evaluation

The drug-target binding affinity prediction problem screens drugs for interactions on a specific target.

e.g., **Protein docking** connect molecule and target and compute how strong the connection is

- A prefiltering task in drug discovery / repurposing
- Lots of literature (structure-based, sequence-based, similarity-based, ...)

A classifier can be trained with text or tabular data, and evaluated on R² or MSE metrics

[1] Kochnev, ... & Durrant. (2024). MolModa: accessible and secure molecular docking in a web browser. *Nucleic Acids Research*, 52(W1), W498-W506. https://durrantlab.pitt.edu/molmoda/#

Of the importance of proper data splitting related to fair evaluation of model generalizability.

From Fig. 4 in Backenköhler et al. (2025). Assay-Based Machine Learning: Rethinking Evaluation in Drug Discovery. ChemRxiv.

Issues with random splitting and why and when random splitting can be applied.

Random splitting "balances out" the sample similarity between the train/test sets if the samples are drawn iid = strong assumption which does not hold for drugs (too optimistic)

Tested drugs:

- Different exposure times and doses but same molecule
- Some drugs are more common (with potentially similar mechanisms of action) e.g., cancer
- Assay-related batch effect
- Relatively small data sets (< 5k drugs per target in open data sets)

Observations still stand for other data sets, drug features, predictive models, evaluation metrics and similarity measures

- GCN on atom graphs
- NNs on fingerprints
- Transformers

Fair predictive evaluation in SotA alternatives to random splitting in related works.

<u>Scaffold splitting</u> = identify (e.g., Markush, Murcko [2]) scaffolds and segregate molecules with the same scaffolds (≈ in the same structural class) in the train or test sets

Pros

Scaffolds are a quick way to assess the structural similarity between drugs

Cons [4]

No standard scaffold-finding algorithm

Scaffolds are not necessarily relevant to the mechanism of action

- [2] Bemis, & Murcko. (1996). The properties of known drugs. 1. Molecular frameworks. *Journal of medicinal chemistry*, 39(15), 2887-2893.
- [3] https://lifechemicals.com/screening-libraries/scaffolds-and-scaffold-based-compounds
- [4] https://greglandrum.github.io/rdkit-blog/posts/2024-05-31-scaffold-splits-and-murcko-scaffolds1.html

Fair predictive evaluation in SotA alternatives to random splitting in related works.

Similarity splitting = identify similarity groups of drugs (e.g., Taylor-Butina clustering, UMAP [5] or stratification [6] on features) and segregate same-group molecules in the train or test sets

Cons

No standard dimensionreduction / clustering

No control on the distribution of similarities in the train and test set

[5] Guo, ... & Ballester . (2024, September). Scaffold Splits Overestimate Virtual Screening Performance. In *International Conference on Artificial Neural Networks* (pp. 58-72). Cham: Springer Nature Switzerland.

[6] Farias, ... & Bastos-Filho. (2020). Similarity Based Stratified Splitting: an approach to train better classifiers. ArXiv.

[7] Backenköhler et al. (2025). Assay-Based Machine Learning: Rethinking Evaluation in Drug Discovery. ChemRxiv.

Fair predictive evaluation in SotA alternatives to random splitting in related works.

<u>SIMPD</u> [8] = use a multi-objective genetic algorithm to mimic time-based-splitting, where assays produced within the same time frame are grouped together

Candidate: Cluster drugs and assign clusters to train/test at random until |test| is 20% of all data Fitness: Chemical requirements (e.g., median #heavy atoms)
Criteria: For train and test Entropy < 0.9 x log2(#clusters)

- At each iteration, recombine the fittest candidates to produce new solutions
- Stop when a solution fits the criteria

Pros [8]

Less pessimistic than similarity-based splits

Adapted from **Fig. 4** in the paper. Sample similarity histograms b/w train and test sets.

Sometimes produces the same similarity distribution as random

[8] Landrum, ... & Riniker. (2023). SIMPD: an algorithm for generating simulated time splits for validating machine learning approaches. *Journal of cheminformatics*, 15(1), 119.

Content of the paper

"SAE [...] a framework of similarity aware evaluation in which a novel split methodology is proposed to adapt to any desired distribution"

Objectives:

- Split drugs into train / test subsets according to their similarity
- "Controllable" and tractable approach even for larger data sets

Competitive advantages wrt SotA:

Target similarity distribution is often uniform but SAE can reproduce the distribution in an external test set

Content of the paper

"SAE [...] a framework of **similarity aware evaluation** in which a novel split methodology is proposed to adapt to any desired distribution"

- 1. Target optimization problem
- 2. Tractable optimization algorithm for data splitting
- 3. Experimental results

Target optimization problem find a test subset of size αN matching a target sample similarity histogram.

 $o_k^c = \#drugs i with$ $c_i=1 and in bin k$

 e_k = target %drugs in bin k e.g., balanced would yield e_k = 1/K Fig. 4 in paper.

$$\min_{\substack{\mathbf{c} \in \{0,1\}^{N} \\ |\mathbf{c}|^{1} = [\alpha N]}} f(\mathbf{c}) = \sum_{k < K} (o^{c}_{k} - \alpha N e_{k})^{2} / (\alpha N e_{k})$$

< max similarity with training samples for each test sample

Compute $(e_k)_k$ from target histogram

2. Solve the minimization problem in **c**

3. Use the elements associated with 1's in c as testing subset

f(c) looks like the Pearson χ^2 statistic with K-1 degrees of freedom

Target optimization problem find a test subset of size αN matching a target sample similarity histogram.

K = #similarity bins
N = #drugs in total

External Test Set

$$f(\mathbf{w}) = \sum_{k < K} (o_k^{\mathbf{w}} - \alpha N e_k)^2 / (\alpha N e_k)$$
+ $\lambda \ell_{entropy}(\mathbf{w})$


```
\approx |\{i \mid c_i=1 \text{ and } max_{c_i=0} \text{ sim}(i,j) \in [bin_{k-1}, bin_k] \}|
```


$$\min_{\substack{\mathbf{w} \in [0,1]^{N} \\ |\mathbf{w}|^{1} = [\alpha N]}}$$


```
 \begin{split} &\approx \left|\left\{i \mid c_i = 1 \text{ and } \right. \right. \\ &\left. \mathsf{max}_{cj = 0} \mathsf{sim}(i, j) \in \left[\mathsf{bin}_{k - 1}, \, \mathsf{bin}_k\right] \right. \right\} \\ &\approx \sum_{i < N} w_i \, \mathsf{I}\left(\left. \mathsf{max}_{cj = 0} \, \mathsf{sim}(i, j) \in \left[\mathsf{bin}_{k - 1}, \, \mathsf{bin}_k\right] \right. \right) \end{aligned}
```



```
\min_{\substack{\mathbf{w} \in [0,1]^{N} \\ |\mathbf{w}|^{1} = [\alpha N]}}
```

```
f(\mathbf{w}) = \sum_{k < K} (o_k^{\mathbf{w}} - \alpha N e_k)^2 / (\alpha N e_k)
+ \lambda \ell_{entropy}(\mathbf{w})
```

```
Fig. 4 in paper.

0.4

0.3

0.2

0.1

0.0

0.1

0.0

0.1

0.0

0.1

0.0

0.1

0.0

0.1

0.0

0.1

0.0

0.1

0.0

0.1

0.0

0.1

0.0

0.1

0.0

0.1

0.0

0.1

0.0

0.1

0.0

0.1

0.0

0.1

0.0

0.1

0.0

0.1

0.0

0.1

0.0

0.1

0.0

0.1

0.0

0.1

0.0

0.1

0.0

0.1

0.0

0.1

0.0

0.1

0.0

0.1

0.0

0.1

0.0

0.1

0.0

0.1

0.0

0.1

0.0

0.1

0.0

0.1

0.0

0.1

0.0

0.1

0.0

0.1

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0
```

```
 \begin{split} &\approx \left|\left\{i \mid c_i=1 \text{ and } \right. \right. \\ &\max_{c_j=0} \mathsf{sim}(i,j) \in \left[\mathsf{bin}_{k-1}, \, \mathsf{bin}_k\right] \right\} \right| \\ &\approx \sum_{i < N} w_i \, \mathsf{I}\left( \, \mathsf{max}_{c_j=0} \, \mathsf{sim}(i,j) \in \left[\mathsf{bin}_{k-1}, \, \mathsf{bin}_k\right] \, \right) \\ &\approx \sum_{i < N} w_i \, \mathsf{I}\left( \, \mathsf{max}_j \, (1-w_j) \mathsf{sim}(i,j) \in \left[\mathsf{bin}_{k-1}, \, \mathsf{bin}_k\right] \, \right) \end{split}
```

K = #similarity bins
N = #drugs in total

External Test Set

$$\min_{\substack{\mathbf{w} \in [0,1]^{\mathbb{N}} \\ |\mathbf{w}|^1 = [\alpha \mathbb{N}]}}$$

$$f(\mathbf{w}) = \sum_{k < K} (o_k^{\mathbf{w}} - \alpha N e_k)^2 / (\alpha N e_k)$$

$$+ \lambda \ell_{entropy}(\mathbf{w})$$

LogSumExp(
$$x$$
) = β^{-1} log($\sum_{i< N}$ exp(βx_i)) = multivariate SoftPlus

$$\max_{i} x_{i} \leq \text{LogSumExp}(\mathbf{x}) \leq \max_{i} x_{i} + \log(N)/\beta$$

Controls the accuracy

$$\begin{split} &\approx \left|\left\{i \mid c_i = 1 \text{ and } \right. \right. \\ &\max_{c_j = 0} \mathsf{sim}(i, j) \in \left[\mathsf{bin}_{k-1}, \, \mathsf{bin}_k\right] \right\} \right| \\ &\approx \sum_{i < N} w_i \, \mathsf{I}\left(\, \mathsf{max}_{c_j = 0} \, \mathsf{sim}(i, j) \in \left[\mathsf{bin}_{k-1}, \, \mathsf{bin}_k\right] \, \right) \\ &\approx \sum_{i < N} w_i \, \mathsf{I}\left(\, \mathsf{max}_j \, (1 \text{-} w_j) \mathsf{sim}(i, j) \in \left[\mathsf{bin}_{k-1}, \, \mathsf{bin}_k\right] \, \right) \\ &\approx \sum_{i < N} w_i \, \mathsf{I}\left(\, \mathsf{LogSumExp}\big((1 \text{-} \boldsymbol{w}) \, x \, \boldsymbol{sim}(i, .) \big) \in \left[\mathsf{bin}_{k-1}, \, \mathsf{bin}_k\right] \, \right) \end{split}$$

 $(d) \sigma = 0.01$

Assume $Prob(r_i \in [bin_{k-1}, bin_k]) = Norm(r_i; c_k, \sigma_k)$ where $c_k = (bin_k + bin_{k-1})/2$ is the center of the bin and σ_k controls the accuracy

(b) $\sigma = 1$

Fig. 4 in paper.

0.3

(a) $\mathbb{I}(\frac{1}{3} < r \le \frac{2}{3})$

and σ_k controls the accuracy

 $\propto \sum_{i < N} w_i \text{ Norm}(r_i; c_k, \sigma_k)$

Experimental results Fairer evaluation and balanced similarity between the train and test subsets.

CNTS IBENS

Experimental results Reproduce similar conditions as in a target testing subset or condition ("any distribution").

Experimental results Reproduce similar conditions as in a target testing subset or condition ("any distribution").

Perspectives

- 1. Comments on the paper
- 2. Why is it interesting for BioComp?

My comments on the paper

Strengths:

- Paper is well-written
- Topic is interesting and their experiments on random splits are useful
- Algorithm is flexible and computationally efficient (even for large data sets)

Weaknesses:

- Experimental results on the "mimic" (unbalanced target distribution) are not impressive (Fig. 4 and 6)
- Does not address three-way splitting (training + testing + validation) but it is discussed in the OpenReview page [9]

Your comments?

[9] https://openreview.net/forum?id=j7cyANIAxV

Why is it interesting for BioComp? Fairer evaluation, model generalizability = better understanding.

Especially for biological data: random splits might be tricky

Need to remove / balance out confounders for the target outcome (like in clinical trials!)

Might be connected to active learning in biology: a careful selection of the training set is (iteratively) done (because the training phase is expensive or because data is scarce)

Published as a conference paper at ICLR 2025

Ihor Neporozhnii* 1,2 Julien Roy* 1 Emmanuel Bengio 1 Jason Hartford 1,3 1 Valence Labs 2 University of Toronto 3 University of Manchester ihor.neporozhnii@mail.utoronto.ca & julien.roy@valencelabs.com

ABSTRACT

In drug discovery, highly automated high-throughput laboratories are used to screen a large number of compounds in search of effective drugs. These experiments are expensive, so one might hope to reduce their cost by only experimenting on a subset of the compounds, and predicting the outcomes of the remaining ex-

Finding Drug Candidate Hits With a Hundred Samples: Ultra-low Data Screening With Active Learning

Jacob M. Nielsen¹, Maria H. Rasmussen², Casper Steinmann³, Nicolai Ree², Michael Gajhede¹, Jan Stenvang¹, and Jan H. Jensen²

¹Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences,
University of Copenhagen, Denmark

²Department of Chemistry, University of Copenhagen, Denmark

³Department of Chemistry and Bioscience, Aalborg University, Denmark

April 17, 2025

Abstract

Active learning (AL) can significantly accelerate drug discovery by iteratively selecting informative molecules, reducing experimental workload. However, existing AL studies typically

