From Generalized Linear Models to GPs

Consider

$$f(\mathbf{x}) = \sum_{k=1}^{K} w_k \phi_k(\mathbf{x})$$

with nonlinear functions $\phi_k(\mathbf{x})$ of \mathbf{x} , but which is is linear in the parameters $w_k!$

A zero mean Gaussian prior
$$p(\mathbf{w}) = \prod_{k=1}^d \left(\frac{1}{\sqrt{2\pi\lambda_k}} e^{-\frac{w_k^2}{2\lambda_k}} \right)$$
 induces a

Gaussian prior distribution over the space of functions f(x) making f a zero mean Gaussian process with covariance kernel

$$K(\mathbf{x}, \mathbf{x}') = E[f(\mathbf{x})f(\mathbf{x}')] = \sum_{k=1}^{K} \lambda_K \phi_k(\mathbf{x}) \phi_k(\mathbf{x}') = \sum_{k=1}^{k} \Psi_k(\mathbf{x}) \Psi_k(\mathbf{x}') \quad (11)$$

with $\Psi_k(\mathbf{x}) = \sqrt{\lambda_k} \phi_k(\mathbf{x})$. For proper choices of ϕ_k and λ_k , we can study models with $K = \infty$!

Gaussian Processes

Family (possibly infinite) of random variables f(x), such that for any finite collection $\mathbf{f} = (f(x_1), f(x_2), \dots, f(x_n))$ their joint distribution is Gaussian.

For zero mean, this joint density reads:

$$p(\mathbf{f}) = \frac{1}{(2\pi)^{\frac{n}{2}} |\mathbf{K}|^{\frac{1}{2}}} \exp\left\{-\frac{1}{2}\mathbf{f}^T\mathbf{K}^{-1}\mathbf{f}\right\}$$

with the covariance matrix $K_{ij} = K(x_i, x_j)$.

This prior distribution depends only on the kernel K(x,x'), NOT on the individual functions ϕ_k . Hence, as a simple alternative start right-away by defining a sensible covariance kernel K for GPs. This must be a positive semidefinite kernel which means that for any vector $\mathbf{a}=(a_1,\ldots,a_n)$, and any n we have $\mathbf{a}^{\top}\mathbf{K}\mathbf{a}\geq 0$. Mercer's theorem then guarantees that the kernel K(x,x') will always have a representation (11), for some **often infinite dimensional set** ϕ_k and we can construct a Gaussian process from this. But there is no real need to find these explicitly, because all computations can be done using the kernel directly!

Samples from the GP prior

By choosing specific kernels we can express our prior belief or knowledge about the typical shape (smoothness) of the functions f(x).

Samples from a GP with $K(x, x') = e^{-|x-x'|}$

3 random samples from GPs with $K(x,x')=e^{-3(x-x')^2}$ and $K(x,x')=e^{-10(x-x')^2}$

Of course, kernels can be constructed for d dimensional inputs $\mathbf{x} = (x(1), x(2), x(3), \dots, x(d))$ where x(i) is the i-the coordinate of \mathbf{x} . A popular choice is the RBF-kernel

$$K(\mathbf{x}, \mathbf{x}') = \prod_{k=1}^{d} e^{-\lambda_k (x(k) - x'(k))^2}$$

allowing for different hyperparameters (lengthscales) λ_k .

Gaussian Process Regression

Assume a Gaussian noise model with a likelihood

$$P(D|f(x)) \propto \exp\left[-\sum_{i} \frac{1}{\sigma^2} (y_i - f(x_i))^2\right]$$

Given the training set $D = \{y(x_1), y(x_2), \dots, y(x_n)\}$ and **test point** x, we are interested in the *posterior density* of the unknown function values $f(x_i)$ which we denote by the augmented vector $\mathbf{f}_+ = (\mathbf{f}, f(x))^T$. Defining $\mathbf{k} = (K(x, x_1), K(x, x_2), \dots, K(x, x_n))^T$ and the covariance matrix $\mathbf{K}_+ = \begin{pmatrix} \mathbf{K} & \mathbf{k}^\top \\ \mathbf{k} & K(x, x) \end{pmatrix}$, we get

$$p(\mathbf{f}_{+}|D) \propto \exp\left[-\frac{1}{2}\mathbf{f}_{+}^{T}\mathbf{K}_{+}^{-1}\mathbf{f}_{+} - \frac{1}{\sigma^{2}}\sum_{i=1}^{n}(y_{i} - f(x_{i}))^{2}\right]$$
 (12)

Samples from the GP posterior

After we observe data $D=(y(x_1),\ldots,y(x_n))$, the uncertainty changes. The form of eq. (12) remains essentially the same for an arbitrary number of augmented test points \mathbf{x} . By sampling from the *joint* posterior of function values $\{f(x_{j,\text{test}})\}_{j=1}^{M}$ for a large number of (test) points, we can display the typical shape of random functions from the posterior.

5 Samples from a GP posterior with $K(x,x')=e^{-3(x-x')^2}$ and 3 datapoints:

y(0.1) = y(0.5) = y(0.7) = 0 and noise $\sigma^2 = 0.01$ obtained at M = 100 equidistant input points.

Marginalisation & Conditioning

Let

$$p(x,y) \propto \exp\left[-\frac{1}{2}(x\ y)^{\top}\Omega\ (x\ y) + (x\ y)^{\top}\xi\right]$$

with the information matrix $\Omega = \begin{pmatrix} \Omega_{xx} & \Omega_{xy} \\ \Omega_{yx} & \Omega_{yy} \end{pmatrix}$ and $\xi = (\xi_x \, \xi_y)^\top$.

Then

$$\Sigma = \Omega^{-1}$$
$$\mu = \Sigma \xi$$

The marginal of x is

$$p(x) \propto \exp\left[-\frac{1}{2}x^{\top}\bar{\Omega}_{xx} \ x + x^{\top}\bar{\xi}_{x}\right]$$

where

$$\bar{\Omega}_{xx} = \Omega_{xx} - \Omega_{xy} \Omega_{yy}^{-1} \Omega_{yx}$$
$$\bar{\xi}_x = \xi_x - \Omega_{xy} \Omega_{yy}^{-1} \xi_y$$

and the conditional density

$$p(x|y) \propto \exp\left[-\frac{1}{2}x^{\top}\Omega_{xx} \ x + x^{\top}(\xi_x - \Omega_{xy}y)\right]$$

Inverse of partitioned matrix

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix}^{-1} = \begin{pmatrix} M & -MBD^{-1} \\ -D^{-1}CM & D^{-1} + D^{-1}CMBD^{-1} \end{pmatrix}$$

with

$$M = \left(A - BD^{-1}C\right)^{-1}$$

Predictions & Uncertainty

The *posterior mean* prediction at x (which equals the MAP for this model) is

$$\widehat{f}(x) = \int d\mathbf{f}_{+} p(\mathbf{f}_{+}) f(x) = \mathbf{k}^{T} (\mathbf{K} + \sigma^{2} \mathbf{I})^{-1} \mathbf{y}$$

with $\mathbf{y} = (y_1, y_2, \dots, y_n)^T$. The posterior variance (Bayesian error bar) is

$$\sigma_n^2(x) = K(x, x) - \mathbf{k}^T \left(\mathbf{K} + \sigma^2 \mathbf{I} \right)^{-1} \mathbf{k}$$

This gives a measure for the uncertainty of the prediction at point x.

Model selection using the "evidence"

Sensible values for **kernel hyperparameters** and noise σ^2 can be obtained by numerically maximising the evidence (Maximum Likelihood II)

$$p(D) = \int d\mathbf{f} \ p(\mathbf{f}) \ p(D|\mathbf{f})$$

$$= \frac{1}{(2\pi)^{n/2} |\det(\mathbf{K} + \sigma^2 \mathbf{I})|^{\frac{1}{2}}} \exp\left[-\frac{1}{2}\mathbf{y}^T(\mathbf{K} + \sigma^2 \mathbf{I})^{-1}\mathbf{y}\right]$$

Equivalent, we minimize $-\ln(p(D))$.

Further properties

- The **predictor** is of the form $\hat{f}(x) = \sum_i \alpha_i K(x, x_i)$ as for non–Bayesian kernel machines.
- Automatic Relevance Determination (ARD) : Consider

$$K(\mathbf{x}, \mathbf{x}') = \prod_{k=1}^{d} e^{-\lambda_k (x(k) - x'(k))^2}$$

If evidence maximisation leads to $\lambda_i \to 0$ for some input features i, the corresponding input has **no influence** on the prediction.

• Easy to include *derivatives* of f(x) or other linear functionals of f as (noisy) observations.