Devoir facultatif n° 7

Partie 1 - Localisation des racines positives d'un polynôme

Soit P un polynôme de $\mathbb{R}[X]$ ne s'annulant pas en zéro, que l'on écrit sous la forme

$$P = a_0 + a_1 X^{b_1} + \dots + a_n X^{b_n}$$

avec

$$0 = b_0 < b_1 < \cdots < b_n$$

et $a_k \neq 0$ pour tout $0 \leqslant k \leqslant n$.

On désigne par Z l'ensemble des racines de P.

Soit V(P) le nombre de changements de signes parmi les coefficients de P, i.e.

$$V(P) = \text{card}\{0 \le k < n \mid a_k a_{k+1} < 0\}.$$

On désigne par $n_+(P)$ le nombre de racines de P strictement positives comptées avec multiplicités. Autrement dit, si m_r est la multiplicité de la racine r alors

$$n_+(P) = \sum_{r \in Z \text{ et } r > 0} m_r.$$

On cherche à montrer le résultat suivant (règle de Descartes).

Si P est un polynôme de $\mathbb{R}[X]$ n'admettant pas 0 pour racine alors $n_+(P) \leq V(P)$.

- 1) Établir la règle de Descartes si n=0 ou n=1.
- 2) Montrer que X^{b_1-1} divise P'.

Dans toute la suite de cette partie, on note Q le quotient de la division de P' par X^{b_1-1} et

$$r_1 < \cdots < r_\ell$$

les racines strictement positives de P.

On suppose également que la règle de Descartes est vraie au rang n-1 avec $n \ge 1$.

3) Montrer que

$$n_+(Q) \geqslant n_+(P) - 1$$

4) Montrer que $n_{+}(P) \leq V(P)$ si $a_0 a_1 < 0$.

- 5) On suppose dans cette question $a_0a_1 > 0$.
 - a) Montrer que si $a_0 > 0$, P est croissante au voisinage de 0 à droite.
 - b) Montrer que si $a_0 < 0$, -P est croissante au voisinage de 0 à droite.
 - c) En déduire que Q admet une racine dans l'intervalle $[0, r_1[$.
 - **d)** Montrer que $n_+(P) \leq V(P)$.

On cherche maintenant à affiner cette règle de Descartes dans un cas particulier.

- 6) Soit $P^- = P(-X)$ et $c_k = (-1)^{b_k} a_k$ le coefficient de X^{b_k} dans P^- .
 - a) Montrer que si $c_k c_{k+1} < 0$ et si $a_k a_{k+1} < 0$, alors $b_{k+1} b_k \ge 2$.
 - b) On désigne par $V(P, P^-)$ le nombre d'indice k tels que $c_k c_{k+1} < 0$ et $a_k a_{k+1} < 0$. Montrer que

$$b_n = \sum_{k=0}^{n-1} (b_{k+1} - b_k)$$

 $\geqslant (V(P) - V(P, P^-)) + (V(P^-) - V(P, P^-)) + 2V(P, P^-).$

Indication: on pourra partitionner l'intervalle d'entiers [0, n-1] en quatre, selon que l'on a, ou non, $a_k a_{k+1} < 0$ et que l'on a, ou non, $c_k c_{k+1} < 0$.

c) En déduire que si P a toutes ses racines réelles, $n_+(P) = V(P)$.

Partie 2 - Localisation des racines d'un polynôme

On considère dans cette partie un polynôme P à coefficients complexes, *unitaire*, de degré n>0 et de coefficient constant a_0 non nul. On écrit :

$$P = a_0 + a_1 X + \dots + a_{n-1} X^{n-1} + X^n.$$

On définit aussi

$$\gamma_1 = 1 + \max_{0 \le k < n} |a_k|$$
 et $\gamma_2 = \max\left(1, \sum_{0 \le k < n} |a_k|\right)$.

On suppose dans les quatre premières questions de cette partie que P est à coefficients réels avec

$$a_0 < 0, a_1 \le 0, \cdots, a_{n-1} \le 0$$

- 7) Montrer que P admet une unique racine strictement positive, que l'on notera ρ . Indication : on pourra considérer $\frac{P(x)}{x^n}$ ou utiliser la première partie.
- 8) Montrer que pour tout nombre complexe z, $|P(z)| \ge P(|z|)$.
- 9) Montrer que $\rho \leqslant \gamma_1$ et $\rho \leqslant \gamma_2$.
- **10)** Montrer que pour toute racine r de P, on a $|r| \leq \min(\gamma_1, \gamma_2)$.

11) On retourne au cas général.

Montrer que toute racine r de P vérifie $|r| \leq \min(\gamma_1, \gamma_2)$.

$$Indication: \text{on considérera } Q = X^n - \sum_{k=0}^{n-1} |a_k| X^k.$$

Partie 3 - Isolement des zéros d'une fonction

Soit I un intervalle de \mathbb{R} et f une fonction définie sur I à valeurs dans \mathbb{R} et de classe \mathscr{C}^2 . On suppose que f et sa dérivée f' n'ont pas de zéros communs. On note Z l'ensemble des zéros de f.

- 12) Soient a < b deux réels dans I et $c = \frac{a+b}{2}$.
 - a) Montrer que si f admet un zéro dans [a, b] alors

$$|f(c)| \le \frac{b-a}{2} \sup_{a \le t \le b} |f'(t)|.$$

b) Montrer que si f admet deux zéros dans [a, b] alors

$$|f'(c)| \leqslant \frac{b-a}{2} \sup_{a \leqslant t \leqslant b} |f''(t)|.$$

- **13)** a) Montrer que les zéros de f sont isolés, *i.e.* pour tout zéro r de f, il existe un $\varepsilon_r > 0$ tel que r soit le seul zéro de f dans $[r \varepsilon_r, r + \varepsilon_r]$.
 - b) En déduire que l'intersection de Z avec tout segment inclus dans I est fini.
 - c) Donner un exemple de fonction g de classe C^2 , sans racine en commun avec sa dérivée sur un intervalle borné et qui admet un nombre infini de zéros.
- 14) On suppose dorénavant que I est un segment.
 - a) Soient α et β des majorants respectifs de |f'| et |f''| dans I. Montrer qu'il existe un entier naturel n tel que pour tout $t \in [a, b]$, on ait l'une ou l'autre des inégalités suivantes :

$$|f(t)| > \alpha \frac{b-a}{2^n}$$

 $|f'(t)| > \beta \frac{b-a}{2^n}$

- **b)** Montrer qu'il existe une subdivision $(c_k)_{0 \le k \le p}$ à pas constant telle que, pour tout $0 \le k < p$, f a au plus un zéro sur $[c_k, c_{k+1}]$.
- c) Écrire un algorithme qui sépare les zéros (un pseudo-code suffira). (On supposera f', α et β donnés.)

On s'attachera à montrer qu'il s'arrête au bout d'un nombre fini d'itérations.