Azizul Inlam CT-02 22.11.2020 011201262 Question-01 NEW! 2895E 00 THOM Here, NO.24 M = quanterly 0.2625 26. 25 % So, we will now considers Seri=00,26251 ton doing (140,0189) P.T. (

Project P;

Jean	0	100	2	3	4	5
cash	-56137	19956	30000	15688	19588	26457
Discouri cash How	-5(137	15806.73	18821.68	7796.03	1710.18	8248.66
comulation Corsh 610W	-56137	-40330. ²]	-21508:59)	1911/2:56	6002:38	2246.28

$$P_{1} = \frac{F_{1}}{(1+i)^{N_{1}}} = \frac{19956}{(1+0.2625)^{1}} = 15806.73$$

$$P_{2} = \frac{F_{2}}{(1+i)^{N_{2}}} = \frac{30000}{(1+0.2625)^{2}} = 18821.68$$

$$P_{3} = \frac{F_{3}}{(1+i)^{N_{3}}} = \frac{15688}{(1+0.2625)^{3}} = 7796.03$$

$$P_{4} = \frac{F_{4}}{(1+i)^{N_{4}}} = \frac{19588}{(1+0.2625)^{4}} = 7710.18$$

$$P_{5} = \frac{F_{5}}{(1+i)^{N_{4}}} = \frac{26457}{(1+0.2625)^{4}} = 7710.18$$

P.T.O

(HO.2625

Pay back Persiod = 4+ 6002.38
8248.66

= 4.73 > 4.5 years

Project Qi

Hear	157	317	2 n	3	4 3	5
cash	77771	497	46689	26458	27701	M
flow	11/4	1507	9600	245	27781	48751
Discount	_17771	12591.68	2929219	13148.10	10935.09	a W
flow		4 4 4	2)2	1314	109%	150199.41
cumula- tive	11771	65/19,32	9/1/2	20,	094	1
6000		1651	5.75 g	25/30,	11803.94	3395.
	A TOTAL			A		1

P.T.0

$$P_{1} = \frac{F_{1}}{(1+i)^{N_{1}}} = \frac{15897}{(1+0.2625)^{4}} = 12591.68$$

$$P_{2} = \frac{F_{2}}{(1+i)^{N_{2}}} = \frac{46689}{(1+0.2625)^{2}} - 29292.19$$

$$P_{3} = \frac{F_{3}}{(1+i)^{N_{3}}} = \frac{26458}{(1+0.2625)^{3}} = 13148.10$$

$$P_{4} = \frac{F_{4}}{(1+i)^{N_{4}}} = \frac{27781}{(1+0.2625)^{4}} = 10935.09$$

$$P_{5} = \frac{F_{5}}{(1+i)^{N_{5}}} = \frac{48751}{(1+0.2625)^{5}} = 15199.41$$

$$P_{4} = \frac{F_{5}}{(1+i)^{N_{5}}} = \frac{48751}{(1+0.2625)^{5}} = 15199.41$$

$$P_{5} = \frac{4778}{(1+i)^{N_{5}}} = \frac{47$$

Though both Projects are Independent, we cannot chope any of them, because their Pay back Periods are greaters than 4.5 years. So, two projects will be rejected in this case. (it) profit Question (2) NPV of Project P. + 15688 + 10588 126457 (1+0.2625)3 + (1+0.2623)4 + (1+0.2625)5 2246.29 >0.

NPN of Project 9; Po 4 P1+ P2+P3+P4 = -777771 + F1 + F2 + F3 (1+i)N2 + (1+i)N3 attoology out Ripe (s) motton Fy (1+i) Ny + (+i) N5 77771+ 15897 + 46689 (1+0.2625)2 (1+0.2625)3 + 27781 (1+0.2625)4 (1+0.2625) 0 4 00,0000

Both Projects have NPV greater than 0, but the Projects are mutually enclusive. So, only one Project can be belected. So, we will relect the NPV with higher Popitive value. AD, NPVP L NPVQ, Project Q will be relected. So, when we consider NPV method the answers Will appolutely rehanged.