209. Dala Association

* Summing of L10 SLAM: Online SLAM uning EKF $p(x_{t}, m \mid Z, \mathcal{U})$ $g(y_t, \mathcal{U}_t) = \begin{bmatrix} g^x \\ m_t \end{bmatrix}, \quad Z_c = h(y_t, C_t)$ $\bar{m}_{new} = h^{-1}(x_t, \bar{z}_t) \Big|_{\bar{M}_t} \qquad \mathcal{M}_t = \begin{bmatrix} \mathcal{M}_t \\ \mathcal{M}_{new} \end{bmatrix}$ $Z_t = \frac{1}{m_t} \sum_{new} z_{new}$

H= [H, O, ... O, H, O..., O]

* Euclidean nearest neighbour

$$C_{\epsilon}^{i} = \operatorname{argmin} \| \mathbf{m}_{i} - \mathbf{Z}_{\epsilon}^{i} \|_{Z}$$

$$\int_{0}^{\infty} \mathbf{r} = \mathbf{1}_{1} \dots \mathbf{N} \qquad (\mathbf{Z} \circ \mathbf{b}_{i})$$

$$\int_{0}^{\infty} \mathbf{r} = \mathbf{1}_{1} \dots \mathbf{N} \qquad (\mathbf{Z} \circ \mathbf{b}_{i})$$

$$C_{\epsilon}^{i} = \min \left(\| \mathbf{m}_{i} - \mathbf{Z}_{\epsilon}^{i} \|_{Z}^{2} \right)$$

$$O(\mathbf{N} \cdot \mathbf{N})$$

Mailchen each observation to closest landmark

Easy and fast o(KW)

X Greedy data amounties.

very complicated! Segmence of all correspondences should be re-evaluated company for all observes from.

* Aproximation 1: Solve DA incrementally

p(4 | Zt, yt) the history of correspondences G:T only depends on the last anoti computer.

Assumer previous correspondences werecovert.

p(Ct | Zt, yt) & p(Zt | Ct, yt)

posterios likalihood for a given Ct

C* = arg max of p(Ze | Ce, ye) & Marximum like-Ct

y gran. lihood ulinglar.

P(Zol G, yt) = P(Zt | Zt. yt, Ct) op(2€ 1 Zt, ye, CE) · P (23 124: K)

P (Zt | yt, Ct)

Approximation 2: Independence assumption $p(z_t \mid C_t, y_t) \simeq \prod_{i} p(z_t^i \mid \mathcal{E}, y_t)$ $C_t^* = argmax \prod_{i} p(z_t^i \mid \mathcal{E}, y_t)$ $C_t^* = argmax \prod_{i} p(z_t^i \mid \mathcal{E}, y_t)$

where, $C_t = \frac{1}{2} C_t^2 = m_{j1}$, $C_t^2 = m_{j2}$, ... $C_t^2 = m_{ji}$, ... $\frac{1}{2}$ Since C_t are independent:

 $\max\left(\prod_{i=1}^{k} p(z_{t}^{i}|C_{t}^{i},y_{t})\right) = \prod_{i=1}^{k} \max_{C_{t}^{i}} p(z_{t}^{i}|C_{t}^{i},y_{t})$ evaluate C_{t}^{i} individually.

Zt ~ N(Zt; h(Mt, Ci), Ht Zt Ht + Qt)

New landmark:

momork: (ProbReb 327) $P(2i \mid Ci = \text{new}, yi) = x \text{ herd to time.}$

If we den't set this Y.H. to ox, then the new landmark won't be created.

We exerte a landmark only of destance to all other budmants is higher then ix.

Z1 to ull

meilcher

Efficient way to upress DA: Tree representation.

$$Z^{1} = m_{1}, \zeta$$
 $Z^{2} = m_{2}, \zeta$
 $Z^{2} = m_{2}, \zeta$
 $Z^{2} = m_{2}, \zeta$
 $Z^{2} = m_{1}, \zeta$
 $Z^{3} = m_{1}, \zeta$
 $Z^{3} = m_{1}, \zeta$
 $Z^{3} = m_{1}, \zeta$

Best first explosorion (from graph rearch). Greedy but eightent True dimensionally of the tree: exponential O(N+1)*)!!

* Individual compatibility

日表

xi squered test. (a confidence level) $d_{11}^{2} = 11 \text{ my} - z^{4} 11_{z} < \chi_{x}^{2}$ $d_{32}^{2} < \chi_{x}^{2}$ $d_{13}^{2} = 11 \text{ mn} - z^{3} 1_{z} < \chi_{x}^{2}$ fast filter to reject clearly in wheat hipsthesis.

* Joint Compalibility (Ja) (Neise and Tardis 2001) Context provider more accurate soleilions is constellations Ex: Stars

Set of hypothems & size exponential (later).

$$H_i = \langle Z_1 = m_1, Z_2 = m_3, Z_3 = m_{new} \rangle$$
 (C^2)
 (C^2)

We will evaluate joint candidates based on their joint conjustibility

$$1 \int_{\mathbb{R}^2} \frac{1}{2} \left(\chi^2_{\alpha} \right)$$

- for Individual comparishelity: (IC)

Innovation vector (ideally 1,0)

$$f_{Ale}(y_1z) = \begin{cases} f_{Ale}(y_1z) \\ f_{Ale}(y_1z) \end{cases}$$

$$f_{Ale}(y_1z) = \begin{cases} f_{Ale}(y_1z) \\ f_{Ale}(y_1z) \end{cases}$$

hypothers, He= 1 c1, c3, c3, ..., ck5

If we rewrite
$$f_{He}(y,z)$$
 incrementally:
 $f_{He}(y,z) = \begin{cases} f_{He}(y,z) \\ f_{He}(y,z) \end{cases}$
 $f_{He}(y,z) + G_{He}(y,z) + G_{He}(y,z)$
 $f_{He}(z,z)$
 $f_{He}(y,z) + G_{He}(y,z) + G_{He}(z,z)$

Covariance of the joint innovation

Xparmi X Xchild

This allows as to discard bromeher without ovaluating!

CHE captures aconscorrelations of the observations, while ML doesn't Canused independence)

More accurate and probabilistically more complete

Slow (not exponential, but it is on the worst-case)

Les pare felter!