Root Type Determinant Formulae

 $(b^2 - 4ac)$

Quadratic Equation Formulae

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Cubic Equation Formulae

$$x = \sqrt[3]{\left(\frac{-b^3}{27a^3} + \frac{bc}{6a^2} - \frac{d}{2a}\right) + \sqrt{\left(\frac{-b^3}{27a^3} + \frac{bc}{6a^2} - \frac{d}{2a}\right)^2 + \left(\frac{c}{3a} - \frac{b^2}{9a^2}\right)^2}} + \sqrt[3]{\left(\frac{-b^3}{27a^3} + \frac{bc}{6a^2} - \frac{d}{2a}\right) - \sqrt{\left(\frac{-b^3}{27a^3} + \frac{bc}{6a^2} - \frac{d}{2a}\right)^2 + \left(\frac{c}{3a} - \frac{b^2}{9a^2}\right)^2} - \frac{b}{3a}}$$

Binomial Theorem
$$(a+b)^n = C_{(n,0)}a^nb^0 + C_{(n,1)}a^{n-1}b^1 + C_{(n,2)}a^{n-2}b^2 + \dots + C_{(n,n)}a^{n-n}b^n$$

Polar Form Conversion

$$x + iy = r\cos\theta + ir\sin\theta$$
 $x + iy = r(\cos\theta + i\sin\theta)$

Geometric Progression

Arithmetic Progression

$$\{x_n\} = x_1 + (n-1)d$$

$$\{x_n\} = x_1 r^{n-1}$$

$$\sum_{k=0}^{n} or \{S_n\} = \frac{n}{2} (2x_1 + (n-1)d)$$

$$\{x_n\} = x_1 r^{n-1}$$

$$\sum_{k=0}^{n} or \{S_n\} = \frac{x_1 (1 - r^n)}{1 - r}$$

Combinatorials

Permutations:

 $P_{(n,r)} = \frac{n!}{(n-r)!}$ $C_{(n,r)} = \frac{n!}{(n-r)! r!}$ **Combinations:**

Vectors

Scalar Product: Vector Product:

 $\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| \cdot |\mathbf{b}| \cos \theta$ $\mathbf{a} \times \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \sin \theta \, \hat{\mathbf{n}}$

 $\mathbf{a} \cdot \mathbf{b} = (a_2b_3 - a_3b_2)i - (a_3b_1 - a_1b_3)j$ $\boldsymbol{a} \cdot \boldsymbol{b} = a_1 b_1 + a_2 b_2 + a_3 b_3$ $+(a_1b_2-a_2b_1)k$

Trigonometric Functions and Identities

Right triangle definitions, where $0 < \theta < \frac{\pi}{2}$.

$$sin \theta = \frac{opposite}{hypotenuse} \qquad cos \theta = \frac{adjacent}{hypotenuse} \qquad tan \theta = \frac{opposite}{adjacent}$$

$$csc \theta = \frac{hypotenuse}{opposite} \qquad sec \theta = \frac{hypotenuse}{adjacent} \qquad cot \theta = \frac{adjacent}{opposite}$$

Circular function definitions, where $oldsymbol{ heta}$ is any angle.

$$\sin \theta = \frac{y}{r}$$

$$\csc \theta = \frac{y}{r}$$

$$\cos \theta = \frac{x}{r}$$
$$\sec \theta = \frac{r}{r}$$

$$tan \theta = \frac{y}{x}$$
$$cot \theta = \frac{x}{y}$$

Pythagorean Identities:

Sum or Difference of two angles:

 $sin(\theta \pm \varphi) = sin \theta cos \varphi \pm cos \theta sin \varphi$

 $cos(\theta \pm \varphi) = cos \theta cos \varphi \mp sin \theta sin \varphi$

$$sin^{2}\theta + cos^{2}\theta = 1$$

$$tan^{2}\theta + 1 = sec^{2}\theta$$

$$cot^{2}\theta + 1 = csc^{2}\theta$$

Reduction Formulae: $sin(-\theta) = -sin \theta$

$$cos(-\theta) = -sin \theta$$

 $cos(-\theta) = cos \theta$
 $tan(-\theta) = -tan \theta$
Half-Angle Formulae:

Double-Angle Formulae:

$$sin^{2}\theta = \frac{1}{2}(1 - cos 2\theta)$$
$$cos^{2}\theta = \frac{1}{2}(1 + cos 2\theta)$$

$\sin 2\theta = 2 \sin \theta \cos \theta$ $\cos 2\theta = 2\cos^2\theta - 1$ $=1-2sin^2\theta$ $= cos^2\theta - sin^2\theta$

$\tan(\theta \pm \varphi) = \frac{\tan \varphi}{1 \mp \tan \theta \tan \varphi}$

Reciprocal Identities:

$$\csc \theta = \frac{1}{\sin \theta}$$
$$\sec \theta = \frac{1}{\cos \theta}$$
$$\cot \theta = \frac{1}{\tan \theta}$$

Quotient Identities:

$$tan \theta = \frac{\sin \theta}{\cos \theta}
\cot \theta = \frac{\sin \theta}{\sin \theta}$$

Reduction Formulae:			
Function:	Quadrant II	Quadrant III	Quadrant IV
sin heta	$sin(180^{\circ} - \theta)$	$-\sin(\theta-180^\circ)$	$-\sin(360^{\circ}-\theta)$
$\cos \theta$	$-\cos(180^{\circ}-\theta)$	$-\cos(\theta-180^{\circ})$	$cos(360^{\circ} - \theta)$
tan heta	$-tan(180^{\circ}-\theta)$	$tan(\theta-180^{\circ})$	$-tan(360^{\circ}-\theta)$
$\cot \theta$	$-\cot(180^{\circ}-\theta)$	$cot(\theta-180^\circ)$	$-\cot(360^{\circ}-\theta)$
sec θ	$-sec(180^{\circ}-\theta)$	$sec(\theta-180^{\circ})$	$-sec(360^{\circ}-\theta)$
csc θ	$-csc(180^{\circ}-\theta)$	$csc(\theta-180^{\circ})$	$-csc(360^{\circ}-\theta)$

Hyperbolic Functions and Identities

Hyperbolic Function: $\sinh x = \frac{e^x - e^{-x}}{1 + e^{-x}}$

Hyperbolic Identities:

$$\cosh^2 x - \sinh^2 x = 1$$

 $\sinh 2x = 2 \sinh x \cosh x$

$$\cosh 2x = \cosh^2 x + \sinh^2 x$$

 $sinh(x + y) = sinh x \cdot cosh y + sinh y \cdot cosh x$ $\cosh(x + y) = \sinh x \cdot \sinh y + \cosh x \cdot \cosh y$

$$\cosh^2 \frac{x}{2} = \frac{1 + \cosh x}{2}$$
$$\sinh^2 \frac{x}{2} = \frac{\cosh x - 1}{2}$$

Interest & Depreciation		
Simple Interest	$F_v = P_v(1 + rt)$	
Compound Interest	$F_v = P_v (1+r)^t$	
Compound Interest Rate	$r = (1 + \frac{i}{m})^m - 1$	
Straight Line Depreciation	$F_v = P_v(1 - rt)$	
Reducing Balance Depreciation	$F_v = P_v (1 - r)^t$	

Annuities		
Ordinary Certain	Overdue	
$F_v = R(\frac{(1+i)^n - 1}{i})$	$F_{v} = R(\frac{((1+i)^{n}-1)(1+i)}{i})$	
$P_{v} = R(\frac{1 - (1 + i)^{-n}}{i})$	$P_{v} = R(\frac{(1 - (1 + i)^{-n})(1 + i)}{i})$	

	Standard De	rivatives	
$\frac{d}{dx}cu = c\frac{du}{dx}$	$\frac{d}{dx}u \pm v = \frac{d}{dx}c$	$=\frac{du}{dx}\pm\frac{dv}{dx}$	$\frac{d}{dx}uv = u\frac{dv}{dx} + v\frac{du}{dx}$
$\frac{d}{dx}\frac{u}{v} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$ $\frac{d}{dx}u^n = nu^{n-1}\frac{du}{dx}$ $\frac{d}{dx}a^u = (\ln a)a^u\frac{du}{dx}$ $\frac{d}{dx}\log_a x = \frac{1}{(\ln a)x}$ $\frac{d}{dx}\ln u = \frac{1}{u}\frac{du}{dx}$			$\frac{d}{dx}uv = u\frac{dv}{dx} + v\frac{du}{dx}$ $\frac{d}{dx}x = 1$
$\frac{d}{dx}u^n = nu^{n-1}\frac{du}{dx}$	$(If \ u \neq 0) \frac{d}{dx}$ $(If \ a = e) \frac{d}{dx}$ $\frac{d}{dx} \log_a u = 0$	$ u = \frac{u}{ u } \frac{du}{dx}$	$\frac{d}{dx}a^{x} = (\ln a) a^{x}$ $\frac{d}{dx}e^{u} = e^{u}\frac{du}{dx}$ $(If a = e)\frac{d}{dx}\ln x = \frac{1}{x}$
$\frac{d}{dx}a^u = (\ln a) a^u \frac{du}{dx}$	$(If \ a = e)_{a}$	$\frac{d}{dx}e^x = e^x$	$\frac{d}{dx}e^u = e^u \frac{du}{dx}$
$\frac{d}{dx}\log_a x = \frac{1}{(\ln a)x}$	$\frac{d}{dx}log_a u =$	$\frac{1}{(\ln a)u} \frac{du}{dx}$	$(If \ a = e) \frac{d}{dx} \ln x = \frac{1}{x}$
$\frac{d}{dx}\ln u = \frac{1}{u}\frac{du}{dx}$			
$\frac{d}{dx}\csc u = -\csc u \cot x$	$u\frac{du}{dx}$	$\frac{d}{dx}\sin^{-1}u = \frac{d}{dx}c$	$arcsin u = \frac{1}{\sqrt{1 - u^2}} \frac{du}{dx}$ $arctan u = \frac{1}{1 + u^2} \frac{du}{dx}$ $arcsec u = \frac{1}{ u \sqrt{u^2 - 1}} \frac{du}{dx}$
$\frac{d}{dx}\cos^{-1}u = \frac{d}{dx}\arccos u = \frac{-1}{\sqrt{1 - u^2}}$	$\frac{du}{dx}$	$\frac{d}{dx}tan^{-1}u = \frac{d}{dx}$	$\arctan u = \frac{1}{1 + u^2} \frac{du}{dx}$
$\frac{d}{dx}\cos^{-1}u = \frac{d}{dx}\arccos u = \frac{-1}{\sqrt{1 - u^2}}$ $\frac{d}{dx}\cot^{-1}u = \frac{d}{dx}\operatorname{arccot}u = \frac{1}{\sqrt{1 - u^2}}$	$\frac{-1}{1+u^2}\frac{du}{dx}$	$\frac{d}{dx}sec^{-1}u = \frac{d}{dx}$	$arcsec u = \frac{1}{ u \sqrt{u^2 - 1}} \frac{du}{dx}$
$\frac{d}{dx}csc^{-1}u = \frac{d}{dx}arccscu = \frac{-1}{ u \sqrt{u^2}}$	$\frac{du}{-1} \frac{dx}{dx}$		

Standard Trigonometry Derivatives			
$\frac{d}{dx}\sin u = \cos u \frac{du}{dx}$	$\frac{d}{dx}\cos u = -\sin u \frac{du}{dx}$	$\frac{d}{dx}\tan u = \sec^2 u \frac{du}{dx}$	
$\frac{d}{dx}\cot u = -\csc^2 u \frac{du}{dx}$	$\frac{d}{dx}\sec u = \sec u \tan u \frac{du}{dx}$	$\frac{d}{dx}\csc u = -\csc u \cot u \frac{du}{dx}$	

Standard Inverse Trigonometry Derivatives		
d = 1 $d = 1$ du	d = d = -1 $d = -1$ du	
$\frac{du}{dx}$ sin $u = \frac{du}{dx}$ arcsin $u = \frac{du}{\sqrt{1 - u^2}} \frac{dx}{dx}$	$\frac{1}{dx}\cos^2 u = \frac{1}{dx}ar\cos u = \frac{1}{\sqrt{1-u^2}}\frac{1}{dx}$	
d d d d d d d d d d	$d = 1 \dots d = -1 du$	
$\frac{1}{dx}tan^{-1}u = \frac{1}{dx}arctan^{-1}u = \frac{1}{1+u^2}\frac{1}{dx}$	$\frac{1}{dx}\cot^{-1}u = \frac{1}{dx}arccotu = \frac{1}{1+u^2}\frac{1}{dx}$	
$d \qquad \qquad 1 \qquad d \qquad \qquad 1 \qquad du$	d = -1 $d = -1$ du	
$\frac{1}{dx} \sec^{-1} u = \frac{1}{dx} \operatorname{arcsec} u = \frac{1}{ u \sqrt{u^2 - 1}} \frac{1}{dx}$	$\frac{1}{dx}csc^{-1}u = \frac{1}{dx}arccsc^{-1}u = \frac{1}{ u \sqrt{u^2 - 1}}\frac{1}{dx}$	

Standard Hyperbolic Derivatives
$$\frac{d}{dx} \sinh u = \cosh u \frac{du}{dx} \qquad \frac{d}{dx} \cosh u = -\sinh u \frac{du}{dx} \qquad \frac{d}{dx} \tanh u = \operatorname{sech}^2 u \frac{du}{dx}$$

$$\frac{d}{dx} \coth u = -\operatorname{csch}^2 u \frac{du}{dx} \qquad \frac{d}{dx} \operatorname{sech} u = \operatorname{sech} u \tanh u \frac{du}{dx} \qquad \frac{d}{dx} \operatorname{csch} u = -\operatorname{csch} u \coth u \frac{du}{dx}$$

Standard Integrals
$$\int kf(u) \, du = k \int f(u) \, du$$

$$\int du = u + c$$

$$\int \ln u \, du = u \ln(u) - u + c$$

$$\int e^{u} \, du = e^{u} + c$$
Standard Integrals
$$\int f(u) \pm g(u) \, du = \int f(u) \, du \pm \int g(u) \, du$$

$$\int (If \, n \neq -1) \int u^{n} \, dx = \frac{u^{n+1}}{n+1} + c$$

$$\int e^{kx} \, dx = \frac{e^{kx}}{k} + c$$

$$\int x^{-1} \, dx = \int \frac{1}{x} dx = \ln|x| + c$$

Standard Trigonometry Integrals		
$\int \sin u du = -\cos u + c$	$\int \cos u du = \sin u + c$	
$\int tanudu = -ln cosu + c$	$\int \cot u du = \ln \sin u + c$	
$\int \sec u du = \ln \sec u + \tan u + c$	$\int \csc u du = -\ln \csc u + \cot u + c$	
$\int \sec^2 u du = \tan u + c$	$\int csc^2 u du = -\cot u + c$	
$\int \sec u \tan u du = \sec u + c$	$\int \csc u \cot u du = -\csc u + c$	
$\int \frac{1}{ax+b} dx = \frac{1}{a} \ln ac+b + c$	$\int \frac{1}{\sqrt{a^2 - u^2}} du = \sin^{-1}(\frac{u}{a}) + c$	
$\int \frac{1}{a^2 + u^2} du = \frac{1}{a} tan^{-1} (\frac{u}{a}) + c$	$\int \frac{1}{u\sqrt{u^2 - a^2}} du = \frac{1}{a} sec^{-1}(\frac{u}{a}) + c$	

Standard Hyperbolic Integrals		
$\int \sinh u du = \cosh u + c$	$\int \cosh u du = \sinh u + c$	
$\int \tanh u du = \ln \cosh u + c$	$\int coth u du = \ln \sinh u + c$	
$\int \operatorname{sech} u du = \tan^{-1} \sinh u + c$	$\int c s c h u du = \ln \left t a n h \frac{u}{2} \right + c$	

Differentiation and Integration Application

Rate of change = $\frac{Change \ in \ Position}{Change \ in \ Time}$ $Velocity \ Function = \frac{d}{dx} (Position \ Function)$ $Acceleration \ Function = \frac{d^2}{dx^2} (Position \ Function)$ $Mariginal \ revenue = \frac{d}{dx} (Revenue \ Function)$ $Mariginal \ cost = \frac{d}{dx} (Cost \ Function)$

 $Mariginal\ cost = \frac{d}{dx}(Cost\ Function)$ $Mariginal\ profit = \frac{d}{dx}(Profit\ Function)$

Volume of Solids of Revolution = $\int_{0}^{b} \pi y^{2} dx$

Arc Lenght of Surface of Revolution = $\int_{a}^{b} \sqrt{1 + \left(\frac{d}{dx}\right)^2} dx$

Area of Surface of Revolution = $2\pi \int_{a}^{b} (Radius Function) \left| 1 + \left(\frac{d}{dx} \right)^{2} dx \right|$

Work done by constant Force = (Force)(Distance)

Work Done by Variable Force = $\int_{a}^{b} F(x) dx$

Work done by Expanding Gas = $\int_{V}^{V_1} \frac{k}{V} dV$

Law of Universal Gravitation: $F = k \frac{m_1 m_2}{d^2}$

Hooke's Law: F = kdCoulomb's Law: $F = k\frac{q_1q_2}{d^2}$ Moment about the origin (One Dimension): $M_0 = m_1x_1 + m_2x_2 + \cdots + m_nx_n$

Centre of mass (One Dimension): $\bar{x} = \frac{M_0}{m}$

Moment about the y - axis and x - axis (Two Dimension):

 $M_{\mathcal{Y}} = m_1 x_1 + m_2 x_2 + \dots + m_n x_n$

 $M_x = m_1 y_1 + m_2 y_2 + \dots + m_n y_n$ Centre of mass (Two Dimension): $\bar{x} = \frac{M_y}{m}$ and $\bar{y} = \frac{M_x}{m}$ Moment about the y-axis and x-axis (Planar Lamina):

$$M_x = p \int_a^b \left(\frac{f(x) + g(x)}{2} \right) (f(x) - g(x)) dx$$

$$M_y = p \int_a^b x (f(x) - g(x)) dx$$

 $Fluid\ Force = PA$

Force exerted by fluid = $w \int_{a}^{a} h(y)L(y) dy$

Geometry Formulae

Sector of Circular Ring

 $h = a \sin \theta$

 $(p = average \ radius)$ w = width of ring, θ in radians) $Area = \theta pw$

Right Triangle

Triangle

(Pythagorean Theorem) $c^2 = a^2 + b^2$

Ellipse $Area = \pi ab$

Circumference $\approx 2\pi$

Equilateral Triangle

$$h = \frac{\sqrt{3x}}{2}$$

$$Area = \frac{\sqrt{3}x^2}{4}$$

(A = area of base)

$$Volume = \frac{Ah}{3}$$

Parallelogram

Area = bh

Right Circular Cone

$$Volume = \frac{\pi r^2 h}{3}$$
 Lateral Survace Area
$$= \pi r \sqrt{r^2 + h^2}$$

Trapezoid

$$Area = \frac{h}{2}(a+b)$$

Frustum of Right Circular Cone

Frustum of Right Circular Cone
$$Volume = \frac{\pi(r^2 + rR + R^2)h}{3}$$

$$Lateral Survace Area$$

$$= \pi s(R + r)$$

Circle

 $Area = \pi r^2$ $Circumference = 2\pi r$

Right Circular Cylinder

 $Volume = \pi r^2 h$ Lateral Surface Area = $2\pi rh$

Sector of Circle

(θ in radians) Area =

Sphere

$$Volume = \frac{4}{3}\pi r^3$$
$$Surface Area = 4\pi r^2$$

Circular Ring

 $(p = average \ radius)$ $w = width \ of \ ring)$ $Area = \pi(R^2 - r^2)$ $=2\pi pw$

Wedge

(A = area of upper face, $B = area \ of \ base$ $A = B \sec \theta$

