DATA ATTRITION

TEAM MEMBERS

Nidhi Chovatiya Course Section : A Department : CS Level : Graduate CWID : 10457344 Janki Patel
Course Section : A
Department : CS
Level : Graduate
CWID : 10457365

Koral Kalathia Course Section : A Department : CS Level : Graduate CWID : 10457952

PROBLEM STATEMENT

- The **model** works by clustering/ classifying employee profiles based on various attributes such as age, sex, marital status, education level, work experience, group, etc.
- Attrition is a common issue that every company has to deal with. The goal of the data
 analytics project is to build a model that can help the company to predict whether or
 not a certain employee will leave as well as identify important factors of leave. The
 information can be vital in future recruitment and reduction in employee attrition.
- Through this kind of analysis, we can understand how many employees are likely to leave, while also determining which employees are at the highest risk and for what reasons.

DATASET DESCRIPTION

- This dataset contains all information about employees like ethnicity, annual and hourly rate, hiring month as well as termination year, also contain in which group they are working.
- Total number of Rows: 9612
- Total number of Columns: 27

```
colnames(deleted_data)
     "EMP_ID"
                                 "ANNUAL RATE"
                                 "JOBCODE"
     "HRLY_RATE"
                                 "SFX"
     "ETHNICITY"
 [5]
     "MARITAL_STATUS"
                                 "JOB_SATISFACTION"
 [9]
     "AGE"
                                 "NUMBER_OF_TEAM_CHANGED"
                                 "HIRE_MONTH"
[11]
     "REFERRAL_SOURCE"
Γ137
     "REHIRE"
                                 "TERMINATION_YEAR"
                                 "TRAVELLED_REQUIRED"
[15]
     "IS_FIRST_JOB"
                                 "DISABLED EMP"
Γ177
     "PERFORMANCE RATING"
[19]
     "DISABLED_VET"
                                 "EDUCATION_LEVEL"
     "STATUS"
                                 "JOB_GROUP"
[21]
[23]
     "PREVYR_1"
                                 "PREVYR_2"
                                 "PREVYR 4"
[25]
     "PREVYR_3"
     "PREVYR 5"
```

EXPLORATORY DATA ANALYSIS

 Total number or rows after omitting rows:

```
> deleted_data <- na.omit(file)
> nrow(deleted_data)
[1] 4218
```

• Summary of Status:

> summary(file\$STATUS) A T 5394 4218

EXPLORATORY DATA ANALYSIS

ANNUAL_RATE	HRLY_RATE	ETHNICITY	SEX M	ARITAL_STATUS	JOB_SATISFACTION	AGE
Min. :0.00000	Min. :0.00000	WHITE :582	20 F:5723	Divorced:1605	Min. :0.0000	Min. :0.0000
1st Qu.:0.02761	1st Qu.:0.03030	ASIAN :138	89 M:3889	Married :4027	1st Qu.:0.2500	1st Qu.:0.2174
Median :0.04653	Median :0.04882	BLACK :116	96	Single :3980	Median :0.5000	Median :0.4565
Mean :0.05883	Mean :0.06053	HISPA :106	57	•	Mean :0.4394	Mean :0.4816
3rd Qu.:0.07457	3rd Qu.:0.07576	TWO : 17	76		3rd Qu.:0.7500	3rd Qu.:0.7391
Max. :1.00000	Max. :1.00000	PACIF : 3	32		Max. :1.0000	Max. :1.0000
		(Other): 2	22			
		,				
REHIRE TRAVELLED_REQUIRED PERFORMANCE_RATING DISABLED_EMP DISABLED_VET EDUCATION_LEVEL STATUS						
	Mode : logical	Min. :0.00	_	_	_	
FALSE:8726	FALSE:7781	1st Qu.:0.25	600 FALSE:86	65 FALSE:86	82 LEVEL 2:1	739 T:4218
TRUE :886	TRUE :1831	Median :0.50		7 TRUE :930	DEVEL 3:2	710
		Mean :0.50	905		LEVEL 4:1	112
		3rd Qu.:0.75	600		LEVEL 5: (553
		Max. :1.00	900			
JOB_GROUP	PRI	VYR_1	PREVYR_2	PREVYR_3	PREVYR_4	PREVYR_5
Production & Ope	rations:1714 Min	n. ::0.0000	Min. :0.0000	Min. :0.000	9 Min:0.000	9 Min. :0.00000
Marketing - Dire	ct : 849 1st	Qu.:0.0000	1st Qu.:0.0000	1st Qu.:0.000	0 1st Qu.:0.000	0 1st Qu.:0.00000
Physical Flows	: 816 Med	dian :0.4000	Median :0.0000	Median :0.000	0.0000 Median	Median :0.00000
Finance	: 525 Mea	an :0.2692	Mean :0.2045	Mean :0.155	1 Mean : 0.1 23	5 Mean :0.09324
Human Resources	: 396 3rd	Qu.:0.6000	3rd Qu.:0.4000	3rd Qu.:0.4000	a 3rd Qu.:0.2000	3rd Qu.:0.00000
Customer Care	: 355 Max	(. :1.0000	Max. :1.0000	Max. :1.000	0 Max. :1.000	Max. :1.0000
(Other)	: 4957					

MODELS WE USED

- Naïve Bayes
- KNN
- SVM
- Neural Network
- Dtree

NAÏVE BAYES

Supervised Machine Learning algorithm

Based on the **Bayes Theorem** that is used to solve classification problems by following a **probabilistic approach**.

Based on the idea that the **predictor variables** in a Machine Learning model are independent of each other.

Outcome of a model depends on a set of independent variables that have nothing to do with each other.

```
> print(paste("Total bad Predictions:" , wrongprediction))
[1] "Total bad Predictions: 937"
> print(paste("Error rate :" , wrongpredictionrate))
[1] "Error rate : 0.390091590341382"
> print(paste("Accuracy :" , 100-(wrongpredictionrate*100)))
[1] "Accuracy : 60.9908409658618"
```

NAÏVE BAYES ACCURACY AND ERROR RATE

KNN

- KNN is a **Supervised Learning** algorithm.
- Uses labelled input data set to predict the output of the data points.
- Most simple Machine learning algorithm
- **Easily implemented** for a varied set of problems.
- Pased on **feature similarity**.
- Checks **similarity** of a data point between its **neighbour**
- Classifies data point into most similar classes.

KNN ACCURACY & ERROR RATE

```
> error<-sum(newk3 != train_data$STATUS) #error</pre>
       > error_rate <- sum(newk3 != train_data$STATUS)/length(newk3 != train_data$ST</pre>
       ATUS)
K=3
       > error_rate
        [1] 0.4418863
       > accuracy<-100-(error_rate*100)</pre>
       > accuracy
        [1] 55.81137
       > error<-sum(newk5 != train_data$STATUS) #error</pre>
       > error_rate <- sum(newk5 != train_data$STATUS)/length(newk5 != train_data$ST</pre>
       ATUS)
K=5
       > error_rate
       [1] 0.4335645
       > accuracy<-100-(error_rate*100)</pre>
       > accuracy
       [1] 56.64355
        > error<-sum(newk10 != train_data$STATUS) #error</pre>
        > error_rate <- sum(newk10 != train_data$STATUS)/length(newk10 != train_data</pre>
        $STATUS)
K=10
        > error_rate
        [1] 0.4171983
        > accuracy<-100-(error_rate*100)</pre>
        > accuracy
            58.28017
```


Used to classify data into different classes

Used to generate multiple separating hyperplanes.

Data is divided into segments

Each segment contains only one kind of data.

> SVM_wrong<- (test_data\$STATUS!=svm.pred)
> error_rate<-sum(SVM_wrong)/length(SVM_wrong)
> error_rate
[1] 0.3134888
> accuracy<-100-(error_rate*100)
> accuracy
[1] 68.65112

SVM ACCURACY & ERROR RATE

NEURAL NETWORK

Neural Networks and Data Mining.

Artificial Neural Network, often just called a neural network.

Mathematical model inspired by biological neural networks.

Consists of an interconnected group of artificial neurons, and it

Processes information using a connectionist approach to computation.

```
> error_rate
[1] 0.2872606
> accuracy<-100-(error_rate*100)
> accuracy
[1] 71.27394
```

NEURAL NETWORK ACCURACY & ERROR RATE

DTREE

Decision **tree** is a graph to represent choices and their results in form of a **tree**.

The decision tree classifier is a supervised learning algorithm which can use for both the classification and regression tasks.

The nodes in the graph represent an event or choice and the edges of the graph represent the decision rules or conditions.

```
> error<-sum(preds != test_data$STATUS) #error
> error_rate <- sum(preds != test_data$STATUS)/length(preds != test_data$STATUS)
> error_rate
[1] 0.3146067
> accuracy<-100-(error_rate*100)
> accuracy
[1] 68.53933
```

DTREE ERROR RATE AND ACCURACY

COMPARISON

KNN

COMPARISON

KNN

VISUALIZATION

STATUS OF EMPLOYEE

NO. OF ACTIVE EMPLOYEE

TERMINATION YEAR VS NO. OF EMPLOYEE

ASSIGNING PROBABILITY AND SETTING A MANUAL CUT-OFF OF P=0.5

JOB_GROUP VS JOB_SATISFACTION

FUTURE SCOPE

This analytics helps human resources to interpret data, find out the trends & help take required steps to keep the organization running smoothly & profitably.

Helps in future recruitment

Helps the companies to understand which group need more focus and employee

CONCLUSION

- ► Neural Net gives best accuracy rate of 71.27%
- * Help in making decisions to the company
- # Help to know number of active and terminated employee
- Help to predict the hiring rate
- Task management.
- Helps in future recruitment

THANK YOU

