Metrologia Elétrica

Gean Marcos Geronymo

25 de julho de 2023

Dedication

ii DEDICATION

Copyright

iv COPYRIGHT

Acknowledgements

vi ACKNOWLEDGEMENTS

Sumário

D	edication	i				
C	Copyright					
A	cknowledgements	v				
Ι	Noções de Metrologia Elétrica	1				
1	Introdução	3				
2	Padronização 2.1 Resistência Elétrica	5 5 5 5 5				
3	Calibração de Medidores e Fontes	7				
\mathbf{A}	First and only appendix	9				
Bi	Bibliography					
O	Other titles in this collection					

viii SUMÁRIO

Lista de Figuras

X LISTA DE FIGURAS

Lista de Tabelas

xii LISTA DE TABELAS

Parte I Noções de Metrologia Elétrica

Capítulo 1

Introdução

Capítulo 2

Padronização

2.1 Resistência Elétrica

Segundo a Lei de Ohm, a resistência elétrica R de um condutor, em ohms (Ω) , é a razão da diferença de potencial V, em volts (V), aplicada a esse condutor, e da corrente elétrica I em amperes (A) fluindo através do mesmo condutor:

$$R = \frac{V}{I} \tag{2.1}$$

A resistência elétrica também pode ser determinada em função das características do material, através da equação:

$$R = \rho \cdot \frac{l}{A} \tag{2.2}$$

onde ρ é a resistividade elétrica do condutor, em ohm-metro $(\Omega \cdot \mathbf{m})$, l é o comprimento do condutor, em metros, e A é área da seção transversal do condutor, em metros quadrados.

Entretanto, experimentos mais precisos mostram que a resistência elétrica também é função da temperatura e até mesmo da presença de tensão mecânica no condutor. Com base nesses fenômenos, foram desenvolvidos trandutores¹ para a medição de temperatura, pequenos deslocamentos, pressão em líquidos, dentre outros. Além disso, a corrente elétrica, que é uma grandeza de base do SI, normalmente é medida através da diferença de potencial em um resistor conhecido. De fato, uma grande parte das grandezas elétricas é medida usando métodos que envolvem de alguma forma a medição de resistência.

2.2 Capacitância e Indutância

2.3 Tensão Elétrica

2.4 Transferência AC-DC

¹Transdutor é um dispositivo utilizado em conversão de energia de uma natureza para outra. São muito utilizados para converter grandezas como posição, velocidade, temperatura, luz, pressão, etc. em sinais elétricos.

Capítulo 3

Calibração de Medidores e Fontes

Apêndice A

First and only appendix

Bibliography

12 BIBLIOGRAPHY

Other titles in this collection