Topological Vector Spaces 2

Uncultured Tramp
July 28, 2022

Contents

1	Abs	Abstract Topological Vector Spaces			
	1.1 Locally Convex Spaces			3	
		1.1.1	Intro and Definition	3	
		1.1.2	Absorbent and Balanced Sets	4	
		1.1.3	Topology and Convexity	7	
		1.1.4	Semimetrization	11	
		1.1.5	Completion	12	
		1.1.6	Continuous Decompositions	14	
		1.1.7	Finite Dimension Conditions	16	
		1.1.8	Case of Ultravalued Field	19	
		1.1.9	Some Interesting Examples	27	
1.2 To		Towar	ards Bornology		
	1.3	Hahn-	Banach Theory	29	
	1.4	Dualit	y and Weak Notions	29	
	1.5	Vector	-Valued Hahn-Banach Theorems	29	
	1.6	1			
	1.7				
	1.8	Closed	Graph Theory	29	
	1.9	Reflex	ivity	29	
	1.10	Norm	Convexity	29	
2	2 Spaces of Distributions			29	
3 Ordered Topological Vector Spaces			29		

1 Abstract Topological Vector Spaces

1.1 Locally Convex Spaces

1.1.1 Intro and Definition

```
\begin{aligned} & \operatorname{TopologicalVectorSpace} \ :: \ \prod k : \operatorname{TopologicalField} \ . \ ? \sum_{V \in k \text{-VS}} \operatorname{Topology}(V) \\ & (V,\tau) : \operatorname{TopologicalVectorSpace} \ \Longleftrightarrow \ \cdot_{V} \in \operatorname{TOP}\Big(k \times (V,\tau), (V,\tau)\Big) \ \& \ +_{V} \in \operatorname{TOP}\Big((V,\tau) \times (V,\tau), (V,\tau)\Big) \\ & \& :: \operatorname{TopologicalField}; \end{aligned}
& \text{VectorTopology} := \Lambda V \in k \text{-VS} \ . \ \operatorname{TopologicalVectorSpace}(V) : \prod_{V \in k \text{-VS}} V \ . \ ? \operatorname{Topology}(V);
& \operatorname{categoryOfTopologicalVectorSpaces} \ :: \ \operatorname{TopologicalField} \to \operatorname{CAT} \\ & \operatorname{categoryOfTopologicalVectorSpaces} \ :: \ \operatorname{TopologicalVectorSpaces} \ :: \ \operatorname{TopologicalVectorSpaces} \ :: \ \operatorname{TopologicalField} \to \operatorname{CAT} \\ & \operatorname{categoryOfTopologicalVectorSpaces} \ :: \ \operatorname{TopologicalField} \to \operatorname{CAT} \\ & \operatorname{categoryOfHausdorffTopologicalVectorSpaces} \ :: \ \operatorname{TopologicalField} \to \operatorname{CAT} \\ & \operatorname{categoryOfHausdorffTopologicalVectorSpaces} \ (k) \ & \ \text{T2}, k \text{-VS} \cap \operatorname{TOP}, \circ, \operatorname{id}) \end{aligned}
& \operatorname{asTopologicalGroup} \ :: \ k \text{-TVS} \to \operatorname{TGRP} \\ & \operatorname{asTopologicalGroup} \ :: \ k \text{-TVS} \to k \text{-VS} \\ & \operatorname{asVectorSpace} \ :: \ k \text{-TVS} \to k \text{-VS} \\ & \operatorname{asVectorSpace} \ (V) = V := V \end{aligned}
```

1.1.2 Absorbent and Balanced Sets

```
k :: AbsoluteValueField(\mathbb{R});
Balanced :: \prod_{V:k-\text{TVS}} ??V
B: \mathtt{Balanced} \iff \mathbb{D}_k(0,1)B \subset B
Absorbent :: \prod k : AbsoluteValueField(\mathbb R) . \prod ??V
A: \mathtt{Absorbent} \iff \forall v \in V \ . \ \exists \rho \in \mathbb{R}_{++} \ . \ \forall \alpha \in \mathbb{D}_k(0,\rho) \ . \ \alpha v \in A
VectorSubspaceIsBalanced :: \forall V \in k-TVS . \forall U \subset_{k\text{-VS}} V . Balanced(V, U)
Proof =
 Obvious.
 {\tt AbsorbentVectorSubspaceIswhole} \ :: \ \forall V \in k \text{-}\mathsf{TVS} \ . \ \forall U \subset_{k \text{-}\mathsf{VS}} V \ . \ \mathsf{Absorbent}(V,U) \Rightarrow V
Proof =
 Take v \in V.
 By definition of absorbent there is \alpha \in k_* such that \alpha v \in U.
 But then v = \alpha^{-1} \alpha v \in U.
 So, U = V.
 {\tt BalancedSetsAreDedikindComplete} :: \forall V \in k{\text{-}\mathsf{TVS}} \;. \; {\tt OrderDedekindComplete} \Big( {\tt Balanced}(V) \Big)
Proof =
Assume \beta is a set of balanced sets in V.
 If v \in \bigcup \beta, then there is a B \in \beta such that v \in B.
 And by definition of balanced \alpha v \in B \subset \bigcup \beta for any \alpha \in \mathbb{B}_k(0,1).
 So \mid \beta \mid is Balanced.
 if v \in \bigcap \beta, then v \in B for any B \in \beta.
 And by definition of balanced \alpha v \in B \subset \bigcup \beta for any \alpha \in \mathbb{B}_k(0,1) and for all B \in \beta.
 So \bigcap \beta is Balanced.
 Proof =
 This is obvious.
```

AbsorbentAreClosedUnderFiniteIntersections ::

$$:: \forall V \in k ext{-TVS} \ . \ \forall \alpha : \mathtt{Finite}\Big(\mathtt{Absorbent}(V)\Big) \ . \ \mathtt{Absorbent}\Big(V,\bigcap\alpha\Big)$$

Proof =

Say $n = |\alpha|$.

if n = 0, then $\bigcap \alpha = V$ which is always absorbent.

otherwise represent $\alpha = \{A_1, \dots, A_n\}$ and assume $v \in V$.

Select a finite sequence $\rho: \{1, \ldots, n\} \to \mathbb{R}_{++}$, with ρ_i absorbing v for A_i .

Let $\sigma = \min\{\rho_1, \dots, \rho_n\}.$

Then σ is absorbing for every A_i , so it is absorbing for $\bigcap \alpha$.

In case of infinite intersiction the minimum may not exit.

$$\texttt{balancedHull} :: \prod_{V:k\text{-TVS}} 2^V \to \texttt{Balanced}(V)$$

$$\texttt{balancedHull}\,(A) = \mathrm{bal}\,A := \bigcap \Big\{B : \mathtt{Balanced}(V), A \subset B\Big\}$$

BalancedHullProductExpression :: $\forall_{V \in k\text{-TVS}} \forall A \subset V$. bal $A = \mathbb{B}_k(0,1)A$

Proof =

Clearly $\mathbb{B}_k(0,1)A$ is balanced.

Assume that B is a balanced set such that $A \subset B$.

Then $\mathbb{B}_k(0,1)A \subset \mathbb{B}_k(0,1)B \subset B$ as B as balanced.

This proves the result as balanced hull of A may be viewed as the smallest balanced set containing A.

$$\texttt{balancedCore} \ :: \ \prod_{V:k\text{-TVS}} 2^V \to \texttt{Balanced}(V)$$

$${\tt balancedCore}\,(A) = A^{\tt bal} := \bigcup \Big\{B : {\tt Balanced}(V), B \subset A\Big\}$$

$${\tt BalancedCoreAsIntersction} :: \forall_{V \in k \text{-TVS}} \forall A \subset V \text{ . } \text{bal} \ A = \bigcap_{\alpha \in \mathbb{B}^{\complement}_k(0,1)} \alpha A$$

Proof =

Firstly, I show that
$$B = \bigcap_{\alpha \in \mathbb{B}^{0}(0,1)} \alpha A$$
 is balanced.

Assume $v \in B$.

Then, $v \in \alpha A$ for all $\alpha \in \mathbb{B}_k^{\complement}(0,1)$.

Thus $\mathbb{B}_k(0,1)v \subset A$.

By definition A^{bal} as a union this means, that $v \in A^{\text{bal}}$, so $B \subset A^{\text{bal}}$.

Assume now that $v \in A^{\text{bal}}$.

Then $\mathbb{B}_k(0,1)v \subset \mathbb{B}_k(0,1)A^{\text{bal}} \subset A^{\text{bal}} \subset A$ As A^{bal} is a union of subsets.

But this mean that $v \in B$, so A = B.

```
Proof =
Multiplication by non-zero scalar is a homeomorphism.
So result follows from intersection representation as \alpha F will be closed.
LinearMapsBalancedToBalanced ::
   :: \forall V, W : k\text{-TVS} . \forall T \in k\text{-VS}(V, W) . \forall B : Balanced(V) . Balanced(W, T(B))
Proof =
 Assume w \in T(B) and \alpha \in \mathbb{D}_k(0,1).
 Then there is v \in B such that T(v) = w.
as B is balanced \alpha v \in B.
 Thus \alpha w = \alpha T(v) = T(\alpha v) \in T(B).
 This proves that T(B) is balanced.
LinearSurjectiveMapsAbsorbentToAbsorbent ::
   :: \forall V, W : k-TVS . \forall T \in k-VS & Surjective(V, W) . \forall A : Absorbent(V) . Absorbent(W, T(A))
Proof =
 Assume w \in W.
 Then there is v \in V such that T(v) = w as T is surjective.
 Then there exists \rho \in \mathbb{R}_{++} such that \mathbb{D}(0,\rho)v \subset A as A is absorbent.
 Take \alpha \in \mathbb{D}(0, \rho).
 Then \alpha w = \alpha T(v) = T(\alpha v) \in T(A).
 This proves that T(A) is absorbent.
BalancedPreimageIsBalanced ::
   :: \forall V, W : k\text{-TVS} \ . \ \forall T \in k\text{-VS}(V,W) \ . \ \forall B : \mathtt{Balanced}(W) \ . \ \mathtt{Balanced}\left(V, T^{-1}(B)\right)
Proof =
 Take v \in T^{-1}(B) and \alpha \in \mathbb{D}_k(0,1).
 Then T(v) \in B, but also T(\alpha v) = \alpha T(v) \in B as B is balanced.
But this means that \alpha v \in T^{-1}(B).
BalancedPreimageIsBalanced ::
   :: \forall V, W : k\text{-TVS} . \forall T \in k\text{-VS}(V, W) . \forall A : Absorbent(W) . Absorbent(V, T^{-1}(A))
Proof =
 Take v \in V.
Then there is \rho \in \mathbb{R}_{++} such that T(\alpha v) = \alpha T(v) \in A for any \alpha \in \mathbb{D}_k(0,\rho) as A is absorbent.
 But this means that \alpha v \in T^{-1}(A).
```

 ${\tt ClosedBalancedCoreIsOpen} \ :: \ \forall V : k{\text{-TVS}} \ . \ \forall F : {\tt Closed}(V) \ . \ {\tt Closed}(V,F^{\rm bal})$

1.1.3 Topology and Convexity

$$\mathtt{Disc} := \Lambda V \in k\text{-TVS} \;.\; \mathtt{Convex} \;\&\; \mathtt{Balanced}(V) : \prod_{V \in k\text{-TVS}} ??V;$$

DiscCharacterization ::

$$:: \forall V \in k\text{-TVS} \ . \ \forall D \subset V \ . \ \mathsf{Disc}(V,D) \iff \forall v,w \in D \ . \ \forall \alpha,\beta \in k \ . \ |\alpha| + |\beta| \leq 1 \Rightarrow \alpha v + \beta w \in D$$

$$\mathsf{Proof} \ = \ \mathsf{Proof} \ = \ \mathsf{Proof$$

Firstly, assume that D is a Disc.

Take $v, w \in D$ and $\alpha, \beta \in k$ such that $|\alpha| + |\beta| \le 1$.

 $\alpha v, \beta w \in D$ as D is balanced.

So if $\alpha = 0$ or $\beta = 0$ then $\alpha v + \beta w = \alpha v \in V$ or $\alpha v + \beta w = \beta w \in V$.

Otherwise,
$$|\alpha| + |\beta| \neq 0$$
 and $\frac{|\alpha|}{|\alpha| + |\beta|} + \frac{|\beta|}{|\alpha| + |\beta|} = 1$.

Also,
$$\frac{|\alpha| + |\beta|}{|\alpha|} \alpha v$$
, $\frac{|\alpha| + |\beta|}{|\beta|} \beta w \in D$ as $|\alpha| + |\beta| \le 1$ and D is absorbent.

Then
$$\alpha v + \beta w = \frac{|\alpha|}{|\alpha| + |\beta|} \frac{|\alpha| + |\beta|}{|\alpha|} \alpha v + \frac{|\beta|}{|\alpha| + |\beta|} \frac{|\alpha| + |\beta|}{|\beta|} \beta w \in D$$
 as D is convex.

Now assume that the condition holds.

Then convexity and being balanced is obvious.

$${\tt DiskedHull} \, :: \, \forall V \in K \text{-TVS} \, . \, \forall A \subset V \, . \, \bigcap \Big\{ D : {\tt Disc}(V), A \subset D \Big\} = \operatorname{conv} \operatorname{bal} A$$

Proof =

Firstly we need to show that conv bal A is balanced.

Assume $v \in \text{conv bal } A \text{ and } \alpha \in \mathbb{D}_k(0,1)$.

If $\alpha = 0$ then $\alpha v = 0 \in \text{bal } A \subset \text{conv bal } A$.

Otherwise, if C is convex in V, then $\frac{\alpha}{|\alpha|}C$ is also convex.

Also if bal $A \subset C$ then bal $A = \frac{\alpha}{|\alpha|}$ bal $A \subset \frac{\alpha}{|\alpha|}C$ as bal A is balanced.

Thus, $\frac{\alpha}{|\alpha|}v \in \text{conv bal } A$.

Also, as it was said $0 \in \text{bal } A \subset \text{conv bal } A$.

So $\alpha v = \frac{|\alpha|}{|\alpha|} \alpha v + (1 - |\alpha|) 0 \in \text{conv bal } A \text{ as conv bal } A \text{ is convex.}$

So conv bal A is a disk and $B = \bigcap \Big\{ D : \mathtt{Disc}(V), A \subset D \Big\} \subset \operatorname{conv} \operatorname{bal} A.$

Now assume that D is a disk such that $A \subset D$.

Then bal $A \subset D$ as D is balanced.

Furthermore, conv bal $A \subset D$ as D is convex.

Thus conv bal A = B.

```
TVSIsConnected :: \forall V \in k-TVS . Connected(k) \Rightarrow Connected(V)
Proof =
 Note that V = \bigcup_{v \in V} kv.
 Each kv is connected as continuous image of connected k.
 Then all lines kv intersect at 0, so V is connected.
 AbsorbentNeighborhoodsOfZero :: \forall V \in k-TVS . \forall U \in \mathcal{U}_V(0) . Absorbent(V, U)
Proof =
 Assume v \in V.
 Then \lim \alpha v = 0.
 So, there exists \rho \in \mathbb{R}_{++} such that \mathbb{B}_k(0,\rho)v \subset U.
Then \mathbb{D}_k\left(0,\frac{\rho}{2}\right)v\subset\mathbb{B}_k(0,\rho)v\subset U.
 Thus, U is absorbent.
NeighborhoodsOfZeroScaling :: \forall V \in k-TVS . \forall U \in \mathcal{U}_V(0) . \forall \alpha \in k_* . \alpha U \in \mathcal{U}_V(0)
Proof =
 \alpha \cdot \bullet is a homeomorphism, so \alpha U is open.
 Obviously, 0 = \alpha 0 \in \alpha U as 0 \in U.
 Thus, U \in \mathcal{U}_V(0).
 {\tt EachNeighborhoodsOfZeroContainsBalancedNeighborhoods} ::
    :: \forall V \in k\text{-TVS} . \forall U \in \mathcal{U}_V(0) . \exists W \in \mathcal{U}_V(0) . W \subset U \& \mathtt{Balanced}(V, W)
Proof =
 (\cdot)^{-1}(U) is open in k \times V.
 So there exist W \in \mathcal{U}_V(0) and \rho \in \mathbb{R}_{++} such that \mathbb{B}_k(0,\rho) \times W \subset (\cdot)^{-1}(U) as 0 \in (\cdot)^{-1}(U).
 This means that \mathbb{B}_k(0,\rho)W \subset U.
 Also, note that \mathbb{B}_k(0,\rho)W = \bigcup \alpha W \in \mathcal{U}_V(0).
 Assume v \in \mathbb{B}_k(0, \rho)W and \alpha \in \mathbb{D}_k(0, 1).
 Then there is w \in W and \beta \in \mathbb{B}_k(0, \rho) such that v = w\beta.
 But \alpha\beta is also in \mathbb{B}_k(0,\rho) and so \alpha v = \alpha\beta w \in \mathbb{B}_k(0,\rho)W.
 Thus, \mathbb{B}_k(0,\rho)W is balanced.
 ClosedAndBlancedNeighborhoodBase ::
    :: \forall V \in k	ext{-TVS} \ . \ \exists \mathcal{F} : \mathtt{Filterbase}(V, \mathcal{U}_V(0)) \ . \ \forall F \in \mathcal{F} \ . \ \mathtt{Closed} \ \& \ \mathtt{Balanced}(V, F)
Proof =
Pretty obvious.
```

```
LocallyConvexSpace ::?k-TVS
V: \texttt{LocallyConvexSpace} \iff \exists \mathcal{F}: \texttt{Filterbase}\Big(V, \mathcal{N}_V(0)\Big) \; . \; \forall F \in \mathcal{F} \; . \; \texttt{Convex}(F, \mathcal{F})
categoryOfLocallyConvexSpaces :: AbsoluteValueField(\mathbb{R}) \to CAT
categoryOfLocallyConvexSpaces (k) = k-LCS :=
    := (LocallyConvexSpace(k), k-VS \cap TOP, \circ, id)
categoryOfTopologicalVectorSpaces :: AbsoluteValueField(\mathbb{R}) \to CAT
categoryOfHausdorffTopologicalVectorSpaces (k) = k-LCHS :=
    := (LocallyConvexSpace(k) \& T2, k-VS \cap TOP, \circ, id)
NormedSpaceIsLocallyConvex :: NORM(k) \subset k-LCHS
Proof =
 Balls in normed spaces are convex.
 Also they are metric space, hence Hausdorff.
NormedSpaceIsLocallyConvex :: NORM(k) \subset k-LCHS
Proof =
Balls in normed spaces are convex.
Also they are metric space, hence Hausdorff.
\texttt{LCSHasDiscBase} \ :: \ \forall V \in k \text{-LCS} \ . \ \exists \mathcal{F} : \texttt{Filterbase}\Big(V, \mathcal{N}_V(0), \mathcal{F}\Big) \ . \ \forall F \in \mathcal{F} \ . \ \texttt{Disc}(V, F)
Proof =
Take U \in \mathcal{N}_V(0).
 Then there exists a convex neighborhood C \in \mathcal{N}_V(0) with C \subset U as V is locally convex.
 Then there is B \subset C which is a balanced neiborhood which was proved for all topological vector spaces.
 Then conv B \subset C is convex and still an neighborhood of zero.
 But convex hull of the balanced set is balanced, hence conv B is a disc.
\texttt{LCSHasOpenDiscBase} :: \ \forall V \in k\text{-LCS} \ . \ \exists \mathcal{F} : \texttt{Filterbase}\Big(V, \mathcal{N}_V(0), \mathcal{F}\Big) \ . \ \forall F \in \mathcal{F} \ . \ \texttt{Disc} \ \& \ \texttt{Open}(V, F)
Proof =
. . .
\texttt{LCSHasClosedDiscBase} :: \ \forall V \in k \text{-LCS} \ . \ \exists \mathcal{F} : \texttt{Filterbase}\Big(V, \mathcal{N}_V(0), \mathcal{F}\Big) \ . \ \forall F \in \mathcal{F} \ . \ \texttt{Disc} \ \& \ \texttt{Closed}(V, F)
Proof =
. . .
```

VectorTopologyByAbsorbentAndBalancedSets ::

$$:: \forall V \in k\text{-VS} \; . \; \forall \mathcal{F} : \texttt{GroupFilterbase}(V) \; . \; \forall \aleph : \mathcal{F} \subset \texttt{Balanced} \; \& \; \texttt{Absorbent}(V) \; . \; \left(V, \langle \mathcal{F} \rangle_{\mathsf{TGRP}}\right) \in k\text{-TVS}$$

Proof =

As $F \in \mathcal{F}$ is balanced, then F = -F, so $\langle \mathcal{F} \rangle_{\mathsf{TGRP}}$ is a group topology for (V, +).

Now assume $F \in \mathcal{F}$ and $\alpha \in k_*$.

Then there exists balanced $U \in \langle \mathcal{F} \rangle_{\mathsf{TGRP}}$ such that $0 \in U$ and $2U \subset U + U \subset F$.

Then there exists balanced $U \in \langle \mathcal{F} \rangle_{\mathsf{TGRP}}$ such that $0 \in U$ and $2U \subset U + U \subset F$.

This can be generalized to the case when $U \in \langle \mathcal{F} \rangle_{\mathsf{TGRP}}$ and $2^n U \subset F$.

So, we can take such U that $|\alpha| \leq 2^n$ and $\alpha U \subset 2^n U \subset F$ for any $\alpha \in k_*$ and $F \in \mathcal{F}$.

Now consider $\alpha \in k_*$, $v \in V$ and $F \in \mathcal{F}$.

There exists $U \in \mathcal{F}(0)$ such that $U + U + U \subset F$.

As U is absorbent there is $\rho \in (0,1)$ such that $\mathbb{B}(0,\rho)v \subset U \subset F$.

Thus, $Cell(0,\rho)(v+U) = \mathbb{B}(0,\rho)v + \mathbb{B}(0,\rho)U = U + U \subset F$.

Now, assume $\alpha \neq 0$.

There is $U' \in \mathcal{F}$ such that $\alpha U' \subset U$.

Then there is also a $W \in \mathcal{F}$ such that $W \subset U' \cap U$.

Thus, $\mathbb{B}(\alpha, \rho)(v + W) = \alpha v + \alpha W + \mathbb{B}(0, \rho)(v + W) \subset \alpha v + U + U + U \subset \alpha v + F$.

This proves that scalar multiplication is continuous.

LocallyConvexTopologyByDiscFilterbase ::

$$:: \forall V \in k\text{-VS} . \ \forall \mathcal{F} : \mathtt{Filterbase}(V) . \ \forall \aleph : \mathcal{F} \subset \mathtt{Disc} \ \& \ \mathtt{Absorbent}(V) .$$

.
$$\forall \exists : \forall F \in \mathcal{F} : \exists \alpha \in (0, 1/2) : \alpha F \in \mathcal{F} : (V, \langle \mathcal{F} \rangle_{\mathsf{TGRP}}) \in k\text{-LCS}$$

Proof =

We need to show that \mathcal{F} is a group filterbase.

Assume $F \in \mathcal{F}$.

By assumption there are $\alpha \in (0, 1/2)$ such that $\alpha F \in \mathcal{F}$.

Then, as αF is convex and F is absorbent $\alpha F + \alpha F = 2\alpha F \subset F$.

Thus, by previous theorem $(V, \langle \mathcal{F} \rangle_{\mathsf{TGRP}})$ is a topolofical vector space.

And it is locally convex as there is a filterbase consising of disks by construction.

1.1.4 Semimetrization

Proof =

FSeminorm ::
$$\prod V \in k\text{-VS} \cdot ?(V \to \mathbb{R}_+)$$
 $\sigma : \text{FSeminorm} \iff \left(\forall \alpha \in \mathbb{D}_k(0,1) \cdot \forall v \in V \cdot \sigma(\alpha v) \leq \sigma(v) \right) \& \& \left(\forall v \in V \cdot \lim_{n \to \infty} \sigma\left(\frac{v}{n}\right) \right) \& \left(\forall v, w \in V \cdot \sigma(v+w) \leq \sigma(v) + \sigma(w) \right)$ FNorm :: $\prod V \in k\text{-VS} \cdot ?\text{FSeminorm}(V)$ $\sigma : \text{FNorm} \iff \forall v \in V \cdot \sigma(v) = 0 \iff v = 0$ FSeminormSemimetrization :: $\forall V \in k\text{-VS} \cdot \forall \sigma : \text{FSeminorm} \cdot \exists \tau : \text{VectorTopology}(V) \cdot \sigma \in C(V,\tau)$ Proof = 1 will show that σ is a value. Firstly, note that $\sigma(-v) \leq \sigma(v)$ and $\sigma(v) \leq \sigma(-v)$, so $\sigma(v) = \sigma(-v)$. Also $\sigma(0) = \sigma\left(\frac{\sigma}{n}\right) \to 0$, so $\sigma(0)$. Other properties of value follows trivially by commutativity of $+v$. Now I show that scalar multiplication is continuous in topology defined by semimetric $\rho(v,w) = \sigma(v-w)$. There are neighborgoods of zero defined by relation $\sigma(v) < \varepsilon$. By first property of F-seminorm these balls are ballanced. And by second property of F-seminorm these balls are absorbent. So produced topology of ρ is a vector space topology.

FNormSemimetrization :: $\forall V \in k\text{-VS} \cdot \forall \sigma : \text{FNorm} \cdot \exists \tau : \text{VectorTopology}(V) \cdot \sigma \in C(V,\tau) \& \text{T2}(V,\tau)$ Proof = 1 this case ρ is a metric, so resulting topology musy be Hausdorff.

SubspaceSeminorm :: $\prod V \in k\text{-VS} \cdot \prod U \subset_{k\text{-VS}} V \cdot \text{FSeminorm}(V) \to \text{FSeminorm}\left(\frac{V}{U}\right)$ subspaceSeminorm (σ) = $[\sigma]_U := \Lambda[v] \in \frac{V}{U} \cdot \inf_{u \in U} \sigma(v+u)$

1.1.5 Completion

```
\texttt{Completion} :: \prod_{V \in k \text{-TVS}} ? \sum_{W \in k \text{-TVS}} \texttt{TopologicalEmbedding}(V, W)
(W,\iota): \texttt{Completion} \iff \texttt{Complete}(V) \ \& \ \texttt{Dense}\Big(W,\iota(V)\Big)
EveryTVSHasACompletion :: \forall V \in k-TVS . \existsCompletion(V)
Proof =
As with topological Groups.
{\tt TopologicalVectorSpaceSubset} :: \prod_{V \in k \text{-TVS}} ??V
U: \texttt{TopologicalVectorSpaceSubset} \iff U \subset_{k-\mathsf{TVS}} V \iff U \subset_{k-\mathsf{VS}} V \& \texttt{Closed}(V,U)
{\tt CompleteteQuotient} \ :: \ \forall V \in k \text{-TVS} \ . \ \forall U \subset k \text{-TVS}V \ . \ {\tt Complete}(V) \Rightarrow {\tt Complete}\left(\frac{V}{U}\right)
Proof =
As with topological groups.
BalancedHullOfTotallyBoundedIsTotallyBounded ::
    :: \forall V \in k\text{-TVS} . \forall B : \text{TotallyBounded}(V) . \text{TotallyBounded}(V, \text{bal } B)
Proof =
 Embed B in a completion of \hat{V} of V.
 Then \operatorname{cl} B is a compact in \hat{V}.
 As \mathbb{D}_k(0,1) is comapet in k, then \mathbb{D}_k(0,1)\operatorname{cl}_{\hat{V}}B is compact is continuous image of compact \mathbb{D}_k(0,1)\times\operatorname{cl}_{\hat{V}}B.
 Then bal B = \mathbb{D}_k(0,1)B is totally bounded as a subset of compact \mathbb{D}_k(0,1)\operatorname{cl}_{\hat{V}}B.
 BalancedHullOfCompactIsCompacts ::
    :: \forall V \in k\text{-TVS} . \forall K : \texttt{CompactSubset}(V) . \texttt{CompactSubset}(V, \text{bal } K)
Proof =
 \mathbb{D}_k(0,1)K is compact as am image of compact \mathbb{D}_k(0,1)\times K.
```

ConvexHullofTotallyBoundedAsTotallyBounded ::

$$\forall V \in k$$
-LCS . $\forall B : \mathtt{TotallyBounded}(V)$. $\mathtt{TotallyBounded}(V, \mathtt{conv}\,B)$

Proof =

In order to show that conv B is totally bounded we need to show that convB can be covered by finite number of translates $(U + v_i)_{i=1}^n$ for any $U \in \mathcal{U}_V(0)$.

Select disc $D \in \mathcal{U}_V(0)$ such that $D + D \subset U$.

This is possible as V is locally convex.

As K totally bounded there are a finite set of translates such that $K \subset (D+v_i)_{i=1}^n \subset \operatorname{conv}\{v_1,\ldots,v_n\} + D$.

As sum of convex sets is convex conv $K \subset \text{conv}\{v_1, \dots, v_n\} + D$.

As $\operatorname{conv}\{v_1,\ldots,v_n\}$ is compact it is possible to select a finite set of m translates u_i of D such that

$$\operatorname{conv} K \subset \bigcup_{i=1}^{m} (D + u_i).$$

So $\operatorname{conv} K$ is totally bounded.

${\tt ConvexHullofTotallyBoundedAsTotallyBounded} ::$

$$:: \forall V \in k$$
-LCSComplete . $\forall K : \mathtt{CompactSubset}(V)$. $\mathtt{CompactSubset}(V, \mathtt{conv}\ K)$

Proof =

 $\operatorname{conv} K$ is closed.

And as it was shown in the previous theorem conv K is also totally bounded, hence compact.

1.1.6 Continuous Decompositions

Thus, $U = \ker P_{W,U}$ is closed.

```
{\tt TopologicalComplement} :: \prod V : k{\tt -TVS} \;.\; ?{\tt LinearComplement}(V)
(U,W): \texttt{TopologicalComplement} \iff V =_{k-\texttt{TVS}} U \oplus W \iff
     \iff Homeomorphism \left(U\oplus W,V,\Lambda(u,w)\in U\oplus W\;.\;u+w\right)
TopologicalComplementsByContinuousProjection ::
    :: \forall V \in k	ext{-TVS} : \forall U, W : \mathtt{LinearComplement}(V) : U \oplus W =_{k	ext{-TVS}} V \iff P_{U,W} \in \mathrm{End}_{\mathsf{TOP}}(V)
Proof =
 Define T: U \oplus W \to V by T(u, w) = u + w.
 (\Rightarrow): Assume that T is a homeomorphism.
 There is an expression P_{U,W} = T^{-1}P_1I_U, where P_1: U \oplus W \to U is a projection,
 and I_U: U \to V is a natural embedding.
 Thus, P_{U,W} is continuous as composition of continuous functions.
 (\Leftarrow): Assume (\Delta, u_{\delta} + w_{\delta}) is a net in V converging to 0.
 Then by continuity 0 = P_{U,W}(0) = P_{U,W}(\lim_{\delta \in \Delta} u_{\delta} + w_{\delta}) = \lim_{\delta \in \Delta} P_{U,W}(u_{\delta} + w_{\delta}) = \lim_{\delta \in \Delta} u_{\delta}.
 Also E - P_{U,W} = P_{W,U} is continuous.
 So by the argument similar to one above \lim_{\delta \in \Lambda} w_{\delta} = 0.
 Thus, \lim_{\delta \in \Lambda} (u_{\delta}, w_{\delta}) = 0 and T^{-1} is continuous meaning that T is homeomorphism.
 TopologicalComplementsByIsomorphicQuotient ::
    v: \forall V \in k	ext{-TVS} : \forall U, W: \mathtt{LinearComplement}(V) : U \oplus W =_{k	ext{-TVS}} V \iff \mathtt{Homeomorphism}\left(W, \frac{V}{U}, \pi_{U|W}\right)
Proof =
 \pi_U is a quotient map, and hence continuous.
 (\Rightarrow): Assume (\Delta, [U+w_{\delta}]) is a net in \frac{V}{U} converging to zero.
 But this means that \lim_{\delta} w_{\delta} = 0 and \lim_{\delta} \pi_{U|W}^{-1}[U + \mathbf{w}_{\delta}] = \lim_{\delta} w_{\delta} = 0.
 So \pi_{U|W} is homeomorphism.
 (\Leftarrow): write P_{U,W} = \pi_U \pi_{U|W}^{-1} I_W.
 This is continuous a as composition of continuous functions.
 So by the previous theorem V = U \oplus_{k\text{-TVS}} W.
ComplementedImpliesClosed :: \forall V \in k\text{-TVS} \forall (U, W) : TopologicalComplement(V) . Closed(V, U)
Proof =
 By previous theorem P_{W,U} is continuous.
```

```
\begin{aligned} & \texttt{MaximalSubspace} &:: & \prod_{V \in k\text{-VS}} ? \texttt{VectorSubspace}(V) \\ & U : \texttt{MaximalSubspace} &\iff \forall W \subset_{k\text{-VS}} V \;.\; U \subsetneq W \Rightarrow W = V \end{aligned}
```

MaximalClosedSubspace ::

 $:: \forall V \in k$ -TVS . $\forall U \subset_{k$ -VS V .

. MaximalSubspace & Closed $(V,U) \iff \exists f \in \mathsf{TOP}(V,k) \ . \ U = \ker f \ \& \ f \neq 0$

Proof =

 (\Rightarrow) : Assume U is closed and maximal subspace in V.

As U is maximal it should have a codimension 1.

So where exists $v \in U^{\complement}$ such that $V = U \oplus \langle v \rangle$.

As U is closed, where exists a balanced open subset $O \in \mathcal{U}_V(0)$ such that $(O+v) \cap U = \emptyset$.

assume $u + \alpha v \in O$ is such that $|\alpha| > 1$ and $u \in U$.

Then, as O is balanced, $\alpha^{-1}u + v \in O$.

But, then $(\alpha^{-1}u + v) - v = \alpha^{-1}u \in (O + v) \cap U$, which is a contradiction.

Thus, $u + \alpha t \in \sigma O$ implies that $|\alpha| < |\sigma|$.

Define $f(u + \alpha v) = \alpha : V \to k$.

Consider a net $v_{\delta} = u_{\delta} + \alpha_{\delta}v$ converging to zero with u_{δ} in U.

But the previous remark shows that $f(v_{\delta}) = \alpha_{\delta}$ converges to zero.

SchroederBernsteinTHM ::

 $:: \forall V, V' \in k\text{-TVS} . \ \forall \aleph : V \cong_{k\text{-TVS}} V \oplus V . \ \forall \beth : V' \cong_{k\text{-TVS}} V' \oplus V' .$

. $\forall \gimel$: TopologicalComplement(V,V') . $\forall \urcorner$: TopologicalComplement(V',V') . $V\cong_{k\text{-TVS}} V'$ Proof =

Write $V \cong V' \oplus U = (V' \oplus V') \oplus U \cong V' \oplus (V' \oplus U) \cong V' \oplus V$.

Symmetricaly, $V'\cong V'\oplus V$.

Thus, $V \cong V \oplus V' \cong V'$.

1.1.7 Finite Dimension Conditions

```
OneDimTVS :: \forall V \in k-HTVS . \dim V = 1 \iff V \cong_{k\text{-TVS}} k
Proof =
As dimension is invarint for linear isomorphism (\Leftarrow) is obvious.
 (\Rightarrow): As dim V=1 there is a v\in V such that v\neq 0 and V=kv.
Then the map T(\alpha v) = \alpha is a linear isomorphism.
fix some \rho \in \mathbb{R}_{++}.
 As V is Hausdorff there must exist an open set U \in \mathcal{U}_V(0) such that \rho v \notin U.
 Furthermore, U must have a balanced subset W \in \mathcal{U}_V(0).
 As W is balanced, W \subset \mathbb{B}(0, \rho)v.
 So, \alpha_{\delta}v \to 0 \iff \alpha_{\delta} \to 0.
Thus, T must be a homeomorphism.
FinDimIsomorphism ::
   \forall V \in k-HTVS . \forall n \in \mathbb{N} . \dim V = n \iff V \cong_{k\text{-TVS}} (k^n, \| \bullet \|_{\infty})
Proof =
I modify the proof of the previous theorem.
By algebraic there must exist a base \mathbf{e} = (e_1, \dots, e_n) of V.
fix \rho in \mathbb{R}_{++}.
 As V is Hausdorff and each e_i \neq 0 there U \subset \mathcal{U}_V(0) such \rho e_i \notin U for any i \in \{1, \ldots, n\}.
 So there exists a blanced subset W of U such that W \subset \mathbb{B}_{k^n, \|\bullet\|_{\infty}}(0, \rho) \cdot \mathbf{e}.
Thus, the mapping \alpha \cdot \mathbf{e} \mapsto \alpha is continuous.
 Also, if U \in \mathcal{U}_V(0) the set U must be absorbent,
so there is a sequence \rho_1, \ldots, \rho_n \in \mathbb{R}_{++} such that \mathbb{D}_k(0, \rho_i)e_i \subset U.
 Let \sigma = \min(e_1, \dots, e_n) \in \mathbb{R}_{++}.
 Then \mathbb{B}_{k^n,\|\bullet\|_{\infty}}(0,\sigma)\cdot\mathbf{e}\subset U.
 So, the inverse \alpha \mapsto \alpha \cdot \mathbf{e} is also continuous.
FDimdSubspaceIsClosed :: \forall V \in k-HTVS . \forall U \subset_{k\text{-VS}} V . \dim U < \infty \Rightarrow \texttt{Closed}(V, U)
Proof =
U is Hausdorff as a subset of Hausdorff space.
Then U is isomorphic to \ell_{k,\dim U}^{\infty} which is complete.
So, U can be viewed as an uniform embedding of complete space into V, and hence must be closed.
```

As U is closed in V the quotient $\frac{V}{U}$ must be Hausdorff.

As dim $P_U(W) \leq \dim \dim W$ the image $P_U(W)$ is still finite dimensional.

So by previous theorem $P_U(W)$ is closed in $\frac{V}{U}$.

But then the preimage $U + W = P_U^{-1}P_U(W)$ is closed as quotient map P_U is continuous.

 $\texttt{FiniteDimensionalDomain} \, :: \, \forall V, U \in k \text{-HTVS} \, . \, \forall T \in k \text{-VS}(V, U) \, .$

.
$$\dim V < \infty \Rightarrow T \in k\text{-TVS}(V, U)$$

Proof =

 $\dim T(V) \leq \dim V$, thus T(V) must be finite dimensional.

Thus both V and T(V) are isomorphic to copies of l_k^{∞} with coresponding finite dimensions.

And T must be continuous as any mapping between such spaces does.

FiniteDimensionalCodomain :: $\forall V, U \in k$ -HTVS . $\forall T \in k$ -TVS & Surjective(V, U) .

.
$$\dim U < \infty \Rightarrow \mathsf{Open}(V, U, T)$$

Proof =

By isomorphism theorem $\frac{V}{\ker T} \cong_{k\text{-VS}} T(V) = U$.

So dim
$$\frac{V}{\ker T} < \infty$$
.

Also $\frac{V}{\ker T}$ is Haussdorf as T is continuous .

So by prvious theorem the isomorphism must $\frac{V}{\ker T} \cong_{k\text{-VS}} U$ must be continuous.

So U is also finite dimensional Hausdorff this bijection is homeomorphism and so $\frac{V}{\ker T} \cong_{k\text{-TVS}} U$.

Denote this homeomorphism by S.

Then T factors as $P_{\ker T}S$ and both these maps are open.

FDimIffLocallyCompact :: $\forall V \in k$ -HTVS . $\dim V < \infty \iff \text{LocallyCompact}(V)$

Proof =

 $(\Rightarrow):V$ is homeomorphic to $l^{\infty}_{k,\dim V}$ and this space is locally compact..

This can be easily shown by considering a base of closed cubes.

So V is locally compact.

 (\Leftarrow) : now consider the case when V is locally compact.

Then there exists a compact balansed neighborhood of zero, say K.

Take K to be any another open neighborhood and choose $W \in \mathcal{U}_V(0)$ such balanced set that $W + W \subset U$.

As K is compact, it is totally bounded and hence can be covered by a finite set of translates $K \subset \bigcup_{i=1}^{n} W + v_i$.

As W is absorbent and balanced there is $\rho \in (1, +\infty)$ such that each $v_i \in \rho U$.

Then
$$K \subset \bigcup_{i=1}^{n} W + v_i \subset W + \rho W \subset \rho W + \rho W = \rho(W+W) \subset \rho U$$
.

Thus, sets of form $2^{-n}K$ form base at zero.

As K is totally bounded it can can be covered by a finite set of translates $K \subset \bigcup_{i=1}^{n} \frac{1}{2}K + e_i$.

 $F = \operatorname{span} e$ is finite-dimensional and hence closed.

$$K \subset \bigcup n_{i=1} \frac{1}{2} K + e_i \subset \frac{1}{2} K + F.$$

But also $\alpha F = F$ or any non-zero scalar α .

So
$$\frac{1}{2}K \subset \frac{1}{4}K + F$$
.

Iterating this relation and substituting we get the result that $K \subset \frac{1}{2^n}K + F$ for any $n \in \mathbb{N}$.

This can be rewriten as $K \subset \bigcap_{n=1}^{\infty} \frac{1}{2^n} K + F = F$.

But K spans whole V, and so V = F which is finite dimensional.

FDimCompactConvexHullIsCompact ::

$$:: \forall V \in k\text{-TVS} : \forall K : \mathtt{CompactSubset}(V) : \dim V < \infty \Rightarrow \mathtt{CompactSubset}(V, \operatorname{conv} K) .$$

Proof =

Let $n = \dim V$.

 $\operatorname{conv} K \text{ consists of convex combination of form } \sum_{i=1}^{2n+1} \lambda_i x_i \text{ where } \lambda \geq 0 \text{ and } \sum_{i=1}^{2n+1} \lambda_i = 1 \text{ and } x_i \in K \text{ .}$

This condition can be express as $\lambda \in \triangle_{2n+1} \subset k^{2n+1}$.

But \triangle_{2n+1} is also compact, and so is $\triangle_{2n+1} \times K^{2n+1}$ by Tychonoff's theorem.

So conv $K = (\cdot)(\triangle_{2n+1} \times K^{2n+1})$ is compact as a continuous image of a compact.

1.1.8 Case of Ultravalued Field

```
k: UltravaluedField;
```

AbsolutelyKConvex :: \prod ??V

 $A: \texttt{AbsolutelyKConvex} \iff \mathbb{D}_k(0,1)A + \mathbb{D}_k(0,1)A = A$

 $\texttt{KConvex} :: \prod_{V:k\text{-TVS}} ??V$

 $V: \mathtt{KConvex} \iff \exists v \in V \ . \ \exists A: \mathtt{AbsolutelyKConvex}(V) \ . \ C = A + v$

C must be a translate of absolutely K-Convex set, so write C = A + v.

As A is absolutely K-Convex, then $\alpha(x+v) + \beta(y+v) - v \in C$ for any $x, y \in C$ and $\alpha, \beta \in \mathbb{D}_k(0,1)$.

Take $\alpha = \beta = 1, y = 0$.

Then the expression above reduces to $x + v \in C$.

But this means that $A \subset C$.

On the other hand, $\alpha(x+v) + \beta(y+v) \in A$ for any $x,y \in C$ and $\alpha,\beta \in \mathbb{D}_k(0,1)$.

Taking $\alpha = 1, \beta = -1, y = 0$, produces $x \in A$.

Thus $C \subset A$ and C = A is absolutely K-convex.

TripleCombinationKConvexityCondition ::

 $:: \forall V \in k$ -TVS . $\forall C \subset V$.

. $\mathsf{KConvex}(V,C) \iff \forall x,y,z \in C \ . \ \forall \alpha,\beta,\gamma \in \mathbb{D}_k(0,1) \ . \ \alpha+\beta+\gamma=1 \Rightarrow \alpha x+\beta y+\gamma z \in C$

Proof =

- $1 (\Rightarrow)$: assume that C is K-convex.
- 1.1 C must be a translate of absolutely K-Convex set, so write C = A + v.
- 1.2 Then $\alpha x + \beta y + \gamma z = \alpha(x v) + \beta(y v) + \gamma(z v) + v \in C$.
- $2 (\Leftarrow)$.
- 2.1 If $C = \emptyset$ then it is trivially K-convex, so assume the contrary.
- 2.2 Take $v \in V$ and let A = C v.
- 2.3 A is absolutely K-convex.
- 2.3.1 Assume $x, y \in C$ and $\alpha, \beta \in \mathbb{D}_k(0, 1)$.
- $2.3.2 \ 1 \alpha \beta \in \mathbb{D}_k(0,1)$.
- $2.3.2.1 |1 \alpha \beta| \le \max\left(1, |\alpha|, |\beta|\right) = 1.$
- 2.3.3 Then by the hypothesis $\alpha x + \beta y + (1 \alpha \beta)v \in C$.
- 2.3.4 Translating by -v gives $\alpha(x-v) + \beta(y-v) = \alpha x + \beta y + (1-\alpha-\beta)v v \in A$.

convexCombinationKConvexityCondition ::

 $:: \forall V \in k\text{-TVS}$. $\forall \aleph$: res char $k \neq 2$. $\forall C \subset V$.

. $\mathsf{KConvex}(V,C) \iff \forall x,y \in C \ . \ \forall \alpha \in \mathbb{D}_k(0,1) \ . \ \alpha x + (1-\alpha)y + \gamma z \in C$

Proof =

 $1 \implies$ This direction is obvious.

1.1 The convex combination is a weaker form of triple combination in the previous result.

$$2 \iff$$

2.1 If $C = \emptyset$ then it is trivially K-convex, so assume the contrary.

2.2 Take
$$v \in V$$
 and let $A = C - v$.

2.3 A is absolutely K-convex.

2.3.1 Assume $x, y \in C$ and $\alpha, \beta \in \mathbb{D}_k(0, 1)$.

2.3.2 Rewrite
$$\alpha(x-v) + \beta(y-v) + v = \frac{1}{2}(2\alpha x + (1-2\alpha)v) + \frac{1}{2}(2\beta y + (1-2\beta)v).$$

2.3.3 Both
$$\frac{1}{2}(2\alpha x + (1-2\alpha)v)$$
 and $\frac{1}{2}(2betay + (1-2\beta)v)$ in C .

2.3.3.1 for ultravalue $|2\alpha| = |\alpha + \alpha| \le |\alpha| = 1$.

2.3.3.2 Same holds for β .

2.3.3.3 So the convex combination hypothesis can be applied.

2.3.4 clearly
$$\frac{1}{2} + \frac{1}{2} = 1$$
, so $\alpha(x - v) + \beta(y - v) \in A$.

2.3.4.1 $\left| \frac{1}{2} \right| = 1$ as residual characteristic of the field is not 2.

AbsolutelyKConvexIntersection :: $\forall V: k\text{-TVS} . \forall I \in \mathsf{SET}$.

. $\forall A:I o \mathtt{AbsolutelyKConvex}(V)$. $\mathtt{AbsolutelyKConvex}\left(V, \bigcap_{i \in I} A_i\right)$

Proof =

Obvious.

KConvexIntersection :: $\forall V : k\text{-TVS} . \forall I \in \mathsf{SET}$.

.
$$orall C:I
ightarrow { t KConvex}(V)$$
 . ${ t KConvex}\left(V, igcap_{i\in I}C_i
ight)$

Proof =

1 Assume that $\bigcap C_i \neq \emptyset$.

1.1 Otherwise the condition is trivial.

2 Take any
$$v \in \bigcap_{i \in I} C_i$$
.

3 Then
$$\left(\bigcap_{i\in I} C_i\right) - v$$
 is absolutely K-convex and $\bigcap_{i\in I} C_i$ is K-convex.

3.1
$$\left(\bigcap_{i \in I} C_i\right) - v = \bigcap_{i \in I} (C_i - v)$$
 as translation by v is bijective.

3.2 Then every $C_i - v$ are K-convex sets, which contain zero, so they are absolutely K-Convex.

3.3 So, the intersection
$$\bigcap_{i \in I} (C_i - v)$$
 is also absoluterly K-Convex.

kConvexHull ::
$$\prod_{V:h \text{ TVS}} (?V) \to \text{KConvex}(V)$$

$$\begin{aligned} & \texttt{kConvexHull} :: \prod_{V:k\text{-TVS}} (?V) \to \texttt{KConvex}(V) \\ & \texttt{kConvexHull}\left(X\right) = K\text{-}\mathrm{conv}\; X := \bigcap \Big\{C : \texttt{KConvex}(V), X \subset C\Big\} \end{aligned}$$

KConvexHullByLinearCombinations ::

$$:: \forall V \in k$$
-TVS . $\forall X \subset V$.

. K-conv
$$X = \left\{ x_{n+1} + \sum_{i=1}^{n} \alpha_i (x_i - x_{n+1}) \middle| n \in \mathbb{Z}_+, \alpha : \{1, \dots, n\} \to \mathbb{D}_k(0, 1), x : \{1, \dots, n+1\} \to X \right\}$$

Proof =

- 1 Let B denote the set defined above.
- 2 B is K-Convex.
- 2.1 Note, that x_{n+1} in definition can be fixed.
- 2.2 Then $B x_{n+1}$ is obviously absolutely K-convex.
- $3 X \subset B$.
- 3.1 Just take $n = 1, \alpha_1 = 1$.
- 4 So K-conv $X \subset B$.
- 5 If C is K-convex, then $B \subset C$.
- 5.1 Some $x_{n+1} \in X$ must also be contained in C.
- 5.2 So $C x_{n+1}$ is absolutely K-convex. .

5.3 So by induction
$$\sum_{i=1}^{n} \alpha_i(x_i - x_{n+1}) \in C - x_{n+1}.$$

6 Thus, $B \subset K$ -conv X, and so B = K-conv X.

```
kDiskHull :: \prod_{V, V, T, V'} (?V) \rightarrow AbsolutelyKConvex(V)
\texttt{kDiscHull}\left(X\right) = K\text{-}\mathrm{disc}\;X := \bigcap \left\{C: \texttt{AbsolutelyKConvex}(V), X \subset C\right\}
AbsolutelyKConvexInterior :: \forall V : k\text{-TVS}. \forall A : AbsolutelyKConvex(V). int A = \emptyset | \text{int } A = A
Proof =
 1 assume int A \neq \emptyset.
 2 Take v \in \text{int } A.
 3 Without loss of generality assume v = 0.
 3.1 Then A - v is an isomorphic absolutely convex set with 0 \in \text{int } A.
 4 Take any U \in \mathcal{U}_V(0) such that U \subset \operatorname{int} A \subset A.
 5 Now take arbitrary v \in A.
 6 Then U + v \subset A.
 6.1 U + v consists of elements u + v with u \in U \subset A.
 6.2 As v \in A also and A is absolutely K-convex it must be the case that u + v \in A.
 7 As translation is a homeomorphism U + v is open and so v \in \text{int } A.
 OpenKDiscHull :: \forall V : k\text{-TVS} . \forall U : Open(V) . Open(V, K\text{-}disc U)
Proof =
 1 K-disc U is absolutely K-convex.
 2 \ U \subset K-disc U, so int K-disc U \neq 0.
 3 But this means that K-disc U is open.
LocallyKConvexSpace ::?k-TVS
V: \texttt{LocallyKConvexSpace} \iff \exists \mathcal{F}: \texttt{Filterbase}\Big(V, \mathcal{U}_V(0)\Big) \;.\; \forall F \in \mathcal{F} \;.\; \texttt{KConvex}(V, F) = 0 \;.
```

```
\begin{aligned} & \texttt{NonarchimedeanVSHasZeroTopDim} :: \ \forall V : \texttt{LocallyKConvexSpace}(k) \ \& \ \texttt{T2} \ . \ \dim_{\mathsf{TOP}} V = 0 \\ & \texttt{Proof} = \\ & 1 \ V \ \text{has a base of closed K-discs.} \\ & 1.1 \ \mathsf{Consider} \ U \in \mathcal{U}_V(0). \\ & 1.2 \ \mathsf{Then there exists an open K-disic} \ D \ \mathsf{such that} \ 0 \in D \subset \overline{D} \subset U. \end{aligned}
```

- 1.3 Then \overline{D} is a K-disk. 1.3.1 If $u, v \in \overline{D}$ it means that every their open neighborhood meet D.
- 1.3.2 Assume $\alpha, \beta \in \mathbb{D}_k(0,1)$.
- 1.3.3 Consider an open neighborhood W of $\alpha u + \beta v$.
- 1.3.4 Then there is an open neighborhood of zero $O + O \subset W \alpha u \beta v$.
- 1.3.5 Consider the case $\alpha \neq 0 \neq \beta$.
- 1.3.6 Then there must be some $u' \in D \cap \frac{1}{\alpha}(O + \alpha u)$.
- 1.3.7 Then there is also $v' \in D \cap \frac{1}{\beta}(O + \beta v)$.
- 1.3.8 Then $\alpha u' + \beta v' \in D$ as D is absoluterly K-convex.
- 1.3.9 Also $\alpha u' + \beta v' \in O + O + \alpha u + \beta v \subset W$.
- 1.3.10 As W was arbitrary this means that $\alpha u + \beta v \in \overline{D}$.
- $1.4 \ \overline{D} \subset U.$
- 1.4.1 This is true as V is Hausdorff, and Hence regular.
- 2 But then every K-disc in this base is clopen.
- 2.1 To be in base every K-disc D should contain an element of $U_V(0)$.
- 2.2 Hence D has non-empty interior.
- 2.3 But This means that D is open.
- 3 Thus $\dim_{\mathsf{TOP}} V = 0$.

$$\texttt{RelativelyKConvex} :: \prod_{V_k \text{-TVS}} \prod_{A \subset V} ?? A$$

 $R: \texttt{RelativelyKConvex} \iff \exists C: \texttt{KConvex}(K) \ . \ R = C \cap A$

$${\tt KConvexFilterbase} \, :: \, \prod V : k{\text{-TVS}} \, . \, \, \prod_{A \subset V} ?{\tt Filterbase}(A)$$

 $\mathcal{F}: \texttt{KConvexFilterbase} \iff \forall F \in \mathcal{F} \; . \; \texttt{RelativelyKConvex}(V,A,F)$

$$\texttt{CCompact} :: \prod_{V_k \texttt{-TVS}} ??V$$

 $K: { t CCompact} \iff orall {\mathcal F}: { t KConvexFilterbase}(V,K) \ . \ \exists { t AdherencePoint}\Big(V,{\mathcal F}\Big)$

$$|\cdot| \neq \Lambda\alpha \in k$$
 . $[\alpha \neq 0]$

```
EveryCompactIsCCompact :: \forall V : k\text{-TVS} . \forall K : \texttt{Compact}(V, K) . \texttt{CCompact}(V, K)
Proof =
1 Assume \mathcal{F} is a K-Convex filterbase on K.
2 Then associated ultrafilter must have a limit.
3 This limit is an adherence point of \mathcal{F}.
Proof =
1 Assume \mathcal{F} is a K-Convex filterbase on L.
2 Then the \mathcal{F} is also a K-Convex filterbase for K.
3 Then, there is an adherence point p \in K fo \mathcal{F}'.
4 p is also an adherence point for \mathcal{F}.
4.1 Take any U \in \mathcal{U}_V(p).
4.2 Then F \cap K \cap U \neq \emptyset for any F \in \mathcal{F}.
4.3 Bat all these F \subset L.
4.4 Thus p \in \underset{K}{\text{cl}} L = L.
MaximalConvexFilterbase ::
   \forall V : \texttt{LocallyKConvexSpace}(k) . \forall C : \texttt{KConvex}(V) . \forall \mathcal{F} \in \max \texttt{KConvexFilterbase}(V, C).
   . \forall p \in \mathcal{C} . AherencePoint(C, \mathcal{F}, p) \iff \lim \mathcal{F} = p
Proof =
1 (\Rightarrow): Assume p is an adherence point for \mathcal{F} in \mathcal{C}.
1.1 Then \forall F \in . \forall U \in \mathcal{U}_V(p) . U \cap F \neq \emptyset.
1.2 Assume that U \in \mathcal{U}_C(p).
1.3 Then there exist a K-convex D and open W \in \mathcal{U}_C(p) such that W \subset D \subset V.
1.4 Then \forall F \in \mathcal{F} : D \cap F \neq \emptyset.
1.4.1 \ \forall F \in \mathcal{F} \ . \ W \cap F \neq \emptyset.
1.4.2~W \subset D.
1.5 As \mathcal{F} is maximal D \in \mathcal{F}.
1.6 Thus, p = \lim \mathcal{F}.
2 \iff : Now Assume p = \lim \mathcal{F}.
2.1 Then \forall U \in \mathcal{U}_C(p). \exists F \in \mathcal{F}. F \subset U.
2.2 Take arbitrary U \in \mathcal{U}_C(p) and F \in \mathcal{F}.
2.3 Then by (2.1) there exits G \in \mathcal{F} such that G \subset Y.
2.4 As \mathcal{F} is a filterbase G \cap F \neq \emptyset.
2.5 Thus F \cap U \neq \emptyset.
2.6 This proves that p is and adherence point for \mathcal{F}.
```

KConvexAndCcompactIsClosed ::

 $:: \forall V : \texttt{LocallyKConvexSpace}(k) \ . \ \forall K : \texttt{CCompact} \ \& \ \texttt{KConvex}(V) \ . \ \texttt{Closed}(V,K)$

Proof =

- 1 Assume p is a Limit point for K.
- 2 Then there exists an filter \mathcal{F} in K such that $p = \lim \mathcal{F}$.
- 2.1 Take $\mathcal{N}_V(p) \cap K$ for example.
- 3 Then p is an adherence point of \mathcal{F} .
- 4 construct a K-convex filterbase \mathcal{C} from \mathcal{F} .
- 4.1 For example, use the fact that V is locally K-convex.
- 4.2 Let C be the intersections of K and K-convex neighborhoods of p.
- 5 Then p is still a limit point of C in V.
- 6 There also must exist an adherence point of \mathcal{C} in K, say q.
- 7 But as V is Hausdorff and C has a limit it must be the case q = p.
- 8 Thus K has all its limit points and must be closed.

$$\texttt{CCompactProduct} \ :: \ \forall I \in \texttt{Set} \ . \ \forall V : I \to k \texttt{-TVS} \ . \ \forall C : \prod_{i \in I} \texttt{CCompact}(V_i) \ . \ \texttt{CCompact}\left(\prod_{i \in I} V_i, \prod_{i \in I} C_i\right)$$

Proof =

Same proof as Tychonoff's theorem's proof with filters, but with k-convex sets.

 ${\tt CCompactCombination} :: \forall V : {\tt LocallyKConvexSpace} k : \forall n \in \mathbb{Z}_+ : \forall D : \{1, \dots, n\} \to {\tt AbsolutelyKConvex \& ConvexSpace} k : \forall n \in \mathbb{Z}_+ : \forall D : \{1, \dots, n\} \to {\tt AbsolutelyKConvex \& ConvexSpace} k : \forall n \in \mathbb{Z}_+ : \forall D : \{1, \dots, n\} \to {\tt AbsolutelyKConvex \& ConvexSpace} k : \forall n \in \mathbb{Z}_+ : \forall n \in \mathbb{Z$

Proof =

- 1 I will give a proof by induction.
- 2 K-conv $\bigcup_{i=1}^{n} D_i = \emptyset$ in case n = 0 and is trivially c-compact.
- 3 K-conv $\bigcup_{i=1}^{n+1} D_i = K$ -conv $\left(D_{n+1} + \bigcup_{i=1}^n D_i\right)$ by the result expressing K-convex hulls by linear combinations.
- 4 So for the induction step we need to prove case of two c-compacts D_1 and D_2 .
- 5 assume \mathcal{F} is a closed k-convex filterbase on K-conv $D_1 \cup D_2$.

6 Let
$$\mathcal{F}' = \left\{ \{(x,y) \in D_1 \times D_2 : \exists \alpha, \beta \in \mathbb{D}_k(0,1) : \alpha x + \beta y \in F\} \middle| F \in \mathcal{F} \right\}.$$

- 7 Then \mathcal{F}' is a k-convex fiterbase on $D_1 \times D_2$.
- 8 $D_1 \times D_2$ is c-compact.
- 9 So there is an adherence point (x, y) of \mathcal{F}' .
- 10 Let C = K-disc $\{x, y\}$.
- 11 Then C is c-compact K-disc.
- 12 Then $\overline{F} \cap C \neq \emptyset$ fo all $F \in \mathcal{F}$.
- 13 So $\mathcal{F}'' = {\overline{F} \cap C | F \in \mathcal{F}}$ is a filterbas on C.
- 14 So there exists and adherence point P of \mathcal{F}'' .
- 15 But p is als an adherence point of \mathcal{F} then.

$\texttt{CCompactIffSphericallyComplete} :: \texttt{CCompact}(k) \iff \texttt{SphericallyComplete}(k)$

Proof =

- $1 (\Rightarrow)$: Assume that k is c-compact.
- 1.1 Let $B: \mathbb{N} \to 2^k$ be a dearrising sequence of closed balls.
- 1.2 Then $\mathcal{B} = \{B_i | i \in \mathbb{N}\}$ is a k-convex filter.
- 1.3 So there must exist and adherence point β of \mathcal{B} .
- 1.4 Then $\beta \in B_n$ for every $n \in \mathbb{N}$.
- 1.4.1 $B_n \cap U \neq \emptyset$ for every $U \in \mathcal{U}_k(\beta)$.
- 1.4.2 This means that $\beta \in \overline{B}_n$.
- 1.4.3 But $B_n = \overline{B}_n$ as B_n is closed.
- 1.5 Which can be rendered as $\beta \in \bigcap_{n=1}^{\infty} B$.
- $2 \implies$: Assume that k is sphercally complete.
- 2.1 we claim that every k-convex set in k is either \emptyset or a ball.
- 2.1.1 Assume A is an absolutely k-convex set such that $\emptyset \neq A \neq k$.
- 2.1.2 Take $\omega \in A^{\complement}$.
- 2.1.3 Then $\omega \neq 0$.
- 2.1.4 Then every ω' such that $|\omega| \leq |\omega'|$ is not in A.
- 2.1.4.1 Assume there is some $\omega' \in A$ such that $|\omega| \leq |\omega'|$.
- $2.1.4.2 \text{ Then } \left| \frac{\omega}{\omega'} \right| \leq 1.$
- 2.1.4.3 Thus, as A is a k-disc, $\omega = \frac{\omega}{\omega'}\omega' \in A$.
- 2.1.5 So the set $R = \{ |\omega| | \omega \in A^{\complement} \}$ is bounded from above.
- 2.1.6 Let $r = \sup R$.
- 2.1.7 Take $\alpha \in A$ and $\beta \in k$ with $|\beta| \leq |\alpha|$.
- 2.1.8 Then $\beta \in A$.
- 2.1.9 so A is a ball of radius r open or closed depending on iclusion of r to R.
- 2.2 Also note, that in non-archimedian space any balls are either disjoin or contained in one or another.
- 2.3 So any k-convex filterbase \mathcal{F} in k can be represented as a decreasing sequence of balls, closed or open.
- 2.4 Construct sequence of closed balls \mathcal{B} by taking closures.
- 2.4.1 radii of balls will form a set R bounded from below by 0.
- $2.4.2 \text{ let } \delta = \inf R.$
- 2.4.3 Then there exists a decreasing sequence of balls B with respective radi r such that $\lim_{n\to\infty} r_n = \delta$.
- 2.4.3.1 This is true as all elements in the filterbase \mathcal{F} must have non-empty intersection.
- 2.5 Then there exists $\beta \in \bigcap \mathcal{B}$.
- 2.4.4 Take $\mathcal{B} = \{B_n | n \in \mathbb{N}\}$.
- 2.6β is an adherence point of \mathcal{F} .
- 2.6.1 There is some $B \in \mathcal{B}$ such $\beta \in B \subset \overline{F}$ for very element $F \in \mathcal{F}$.
- 2.6.2 Then $F \cap U \neq \emptyset$ for every $U \in \mathcal{U}_k(\beta)$.

1.1.9 Some Interesting Examples

k:: AbsoluteValueField

 $\texttt{NonLocallyConvexSpace} :: \exists V : k - \mathsf{TVS} . \neg \mathsf{LocallyConvexSpace}(V)$

Proof =

- 1 Let $V = L^p(\mathbb{R}, \lambda)$ for $p \in (0, 1)$.
- 2 Its topology can be metrized by the metroc $\rho(f,g) = \int |f-g|^p$.
- 2.1 we use inequality of form $\left(\sum_{i=1}^{n} \alpha_i\right)^p \leq \sum_{i=1}^{n} \alpha_i$ for $\alpha_i > 0$.
- 3 on the other hand conv $\mathbb{B}_V(0,\sigma) \subset \mathbb{B}_V(0,2^{p-1}\sigma)$.
- 3.1 Assume $f \in \mathbb{B}_V(0, \sigma)$.
- 3.2 Define $F(t) = \int_{-\infty}^{t} |f|^{p}$.
- 3.3 Then F is a continuou function on $[-\infty, +\infty]$ such that $F(-\infty) = 0$ and $F(+\infty) = \rho(0, f)$.
- 3.4 By intermidient value theorem there exists $t \in \mathbb{R}$ such that $F(t) = \frac{\rho(0, f)}{2}$.
- 3.5 Let $g(x) = f(x)\delta_x(-\infty, t), h(x) = f(x)\delta_x(t, +\infty).$
- 3.6 Then $\rho(g,0) \le \frac{\sigma}{2}$ and $\rho(h,0) \le \frac{\sigma}{2}$ and $f = h + g = \frac{2}{2}f + \frac{2}{2}g$.
- 3.7 But $2g, 2h \in \mathbb{B}_V(0, 2^{2p-1}\sigma)$, so $f \in \text{conv } \mathbb{B}_V(0, 2^{2p-1}\sigma)$.
- 4 By iterating one gets conv $\mathbb{B}_V(0,\sigma) = V$.
- 5 So there are no non-trivial convex neighborhoods of 0.

 ${\tt NonCompactConvexHullOfTheCompact} \ :: \ \exists V : k{\texttt{-TVS}} \ . \ \exists K : {\tt CompactSubset}(V) \ . \ \neg {\tt CompactSubset}(V, {\tt conv} \ K)$

Proof =

- 1 Let $V = \ell^1$.
- 2 Let $K = \left\{0, \delta_1^{\bullet}, \dots, \frac{1}{n} \delta_n^{\bullet}, \dots\right\}$.
- 3 Define $\xi_n = \frac{1}{\sum_{i=1}^n 2^{-i}} \sum_{t=1}^n \frac{2^{-t}}{t} \delta_t^{\bullet} \in \text{conv } K.$
- 4 Then $\zeta = \lim_{n \to \infty} \xi_n = \sum_{t=1}^{\infty} \frac{2^{-t}}{t} \delta_t^{\bullet}$.
- 5 But then $\zeta_i \neq 0$ for all $i \in \mathbb{N}$, but this means that $\zeta \not\in \operatorname{conv} K$, so K is not compact.

```
NoncomplimentedClosedSubpaceExist :: \exists V : k\text{-TVS} . \exists U \subset_{k\text{-TVS}} V . \neg \text{TopologicalComplement}(V, U)
Proof =
 1 Let V = \ell^{\infty} .
 2 Let U = c_0.
. . .
 k :: UltravaluedField
PathologicalConvexSet ::
    :: \operatorname{res\ char}(k) = 2 \Rightarrow \exists V : k\text{-TVS} \; . \; \exists A : \neg \texttt{KConvex}(V) \; . \; \forall a,b \in A \; . \; \forall \lambda \in \mathbb{D}_k(0,1) \; . \; \lambda a + (1-\lambda)b \in A
Proof =
 1 Let V = k^3 and let A = \{ a \in \mathbb{D}_k(0,1) : \exists i \in \{1,2,3\} : a_i \in \mathbb{B}_k(0,1) \}.
2 A has desired property for convex combinations of two elements.
 2.1 Assume \lambda \in \mathbb{D}_k(0,1) and a,b \in A.
 2.2 Note, either |\lambda| = 1 or |1 - \lambda| = 1.
 2.2.1 1 = [1] = [1 - \lambda + \lambda] = [1 - \lambda] + [\lambda] in a residue1 field \mathbb{F}_2.
 2.3 There exists some i, j \in \{1, 2, 3\} such that |a_i| < 1 and |b_j| < 1.
```

2.4 So $|\lambda a_i| = |\lambda||a_i| < 1$ and $|(1 - \lambda)b_j| = |1 - \lambda||b_j| < 1$. 2.5 so either $|\lambda a_i + (1 - \lambda)b_i| < 1$ or $|\lambda a_j + (1 - \lambda)b_j| < 1$.

3.2 on the othe hand $(-1, 1, 1) = -1 \cdot e_1 + 1 \cdot e_2 + 1 \cdot e_3 \in K$ -conv A.

3 A is not K-convex. 3.1 $(-1, 1, 1) \notin A$.

 $3.1.1 \mid -1 \mid = \mid 1 \mid = 1$.

- 1.2 Towards Bornology
- 1.3 Hahn-Banach Theory
- 1.4 Duality and Weak Notions
- 1.5 Vector-Valued Hahn-Banach Theorems
- 1.6 Barreled Spaces
- 1.7 Bornological Spaces
- 1.8 Closed Graph Theory
- 1.9 Reflexivity
- 1.10 Norm Convexity
- 2 Spaces of Distributions
- 3 Ordered Topological Vector Spaces

Sources

- 1. Horvath H. Topological Vector Spaces and Distributions (1966)
- 2. Köthe G. Topological Vector Spaces (1969)
- 3. Trevis F. Topological Vector Spaces, Distributions and Kernels (2010)
- 4. Grothendieck Topological Vector Spaces (1973)
- 5. Wilansky A. Modern Methods in Topological Vector Spaces (1978)
- 6. Rudin W. Functional Analysis (1991)
- 7. Fabian M. et al. Functional Analysis and infinite-dimensional geometry (2001)
- 8. Naricci L.; Beckenstein E. Topological Vector Spaces I (2010)
- 9. Богачев В.; Смолянов О.; Соболев В. И. Топологические Векторные пространства (2012)
- 10. Chernikov A.; Mennin A.; Combinatorial properties of non-archimedean convex sets (2021)