# 정규성 검정

• 정규 분포를 따르는지 검정

```
import matplotlib.pyplot as plt
import seaborn as sns
df = sns.load_dataset('iris')
plt.hist(df['sepal_width'])
from scipy.stats import shapiro
print(shapiro(df['sepal_width']))
```

→ ShapiroResult(statistic=0.9849168062210083, pvalue=0.10112646222114563)



# ∨ 등분산 검정

• 각 데이터가 같은 분산을 가지는지(등분산) 검정

```
df
from scipy.stats import bartlett
a = df.loc[df['species'] == 'setosa', 'sepal_length']
b = df.loc[df['species'] == 'versicolor', 'sepal_length']
bartlett(a,b)

BartlettResult(statistic=6.891726740802407, pvalue=0.008659557933880048)
```

# 두 집단 검정



# ∨ T 검정 (평균값 검정)

가정: 모집단이 정규분포를 이루고 종속변수가 연속형이다

- 일표본 T검정 (One sample T-Test)
  - 기준이 되는 평균값이 문제에 주어짐
  - ∘ 귀무가설(H0): 모평균과 표본 평균이 같다.(차이가 없다)
  - ∘ 대립가설(H1): 모평균과 표본 평균에 유의미한 차이가 있다.

### ∨ 1) anscombe데이터에서 x의 평균이 8.0점인지 통계적 검정을 수행하라. (단, 유의수준은 0.5)

```
# anscombe 데이터에서 X의 평균이 8.0점인지 통계적 검정을 수행 import seaborn as sns from scipy.stats import shapiro from scipy import stats data = sns.load_dataset('anscombe') print('shapiro result : ', shapiro(data['x'])) #모평균 mean = 8.0 t_stat , p_value = stats.ttest_1samp(data['x'],mean) print(p_value) shapiro result : ShapiroResult(statistic=0.9406659603118896, pvalue=0.024983162060379982) 0.04413626555962819
```

- 이표본 T 검정
  - ∘ 독립 T 검정 : 두 개의 독립된 그룹의 평균이 통계적으로 유의미하게 다른지 확인
    - 정규성, 등분산성 검정 필요
  - 。 대응표본 T검정 : 같은 집단의 두 조건에서의 평균을 비교하기 위해 사용
    - 1) A 평균 ≠ B 평균 (양측검정)
    - 2) A 평균 > B 평균 (우단측검정)
    - 3) A 평균 < B 평균 (좌단측검정)

data.info()

< class 'pandas.core.frame.DataFrame'>
RangeIndex: 44 entries, 0 to 43
Data columns (total 3 columns):
# Column Non-Null Count Dtype

```
0 dataset 44 non-null
                                  object
                  44 non-null
                                  float64
                  44 non-null
                                  float64
     dtypes: float64(2), object(1)
     memory usage: 1.2+ KB
# 독립 T 검정
t_stat, p_value = stats.ttest_ind(data['x'], data['y'])# alternative = 'greater' : 우단측 검정 / 'less' : 좌단측 검정
print(p_value)
→ 0.00954231937757824
# 대응 표본 T검정
import pandas as pd
from scipy.stats import ttest_rel
data = pd.read_csv('paired_t.csv')
t_stat, p_val = ttest_rel(data['Before Treatment'],data['After Treatment'])
print(p_val)
0.033760144362093514
```

## 순위합 검정

- 두 독립 표본 간의 차이를 비교하는 비모수적 검정
- 두 집단 간의 위치 차이를 평가하기 위해 순위를 사용.

```
# iris에서 setosa, versicolor의 꽃받침 길이 차이가 통계적으로 유의한지 검정 import seaborn as sns iris = sns.load_dataset('iris') setosa_sepal_length = iris.loc[iris['species'] == 'setosa', 'sepal_length'] versicolor_sepal_length = iris.loc[iris['species'] == 'versicolor', 'sepal_length'] from scipy.stats import ranksums stat, p_value = ranksums(setosa_sepal_length, versicolor_sepal_length) print(p_value)

>> 8.941486415112091e-14
```

## Anova 테스트

### 일원분산분석(One-way ANOVA)

- 세 개 이상의 그룹 평균 간의 차이를 검정
- 각 샘플이 독립성, 정규성, 등분산성을 만족하는지 확인 필요

```
import seaborn as sns
data = sns.load_dataset('diamonds')
from scipy import stats
f_stat, p_value = stats.f_oneway(data['x'],data['y'],data['z'])
print(p_value)
```

**→** 0.0

#### ∨ 이워배치분산분석

• 두 개의 범주형 독립 변수와 한 개의 연속형 종속 변수 간의 평균차이를 분석하는 통계 방법

!pip install pingouin

```
Requirement already satisfied: pingouin in /usr/local/lib/python3.10/dist-packages (0.5.4)
Requirement already satisfied: numpy in /usr/local/lib/python3.10/dist-packages (from pingouin) (1.25.2)
Requirement already satisfied: scipy in /usr/local/lib/python3.10/dist-packages (from pingouin) (1.11.4)
Requirement already satisfied: pandas>=1.5 in /usr/local/lib/python3.10/dist-packages (from pingouin) (2.0.3)
Requirement already satisfied: matplotlib in /usr/local/lib/python3.10/dist-packages (from pingouin) (3.7.1)
Requirement already satisfied: seaborn in /usr/local/lib/python3.10/dist-packages (from pingouin) (0.13.1)
Requirement already satisfied: statsmodels in /usr/local/lib/python3.10/dist-packages (from pingouin) (0.14.2)
```

```
Requirement already satisfied: scikit-learn in /usr/local/lib/python3.10/dist-packages (from pingouin) (1.2.2)
Requirement already satisfied: pandas-flavor in /usr/local/lib/python3.10/dist-packages (from pingouin) (0.6.0)
Requirement already satisfied: tabulate in /usr/local/lib/python3.10/dist-packages (from pingouin) (0.9.0)
Requirement already satisfied: python-dateutil>=2.8.2 in /usr/local/lib/python3.10/dist-packages (from pandas>=1.5->pingouin) (2.8.2)
Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (from pandas>=1.5->pingouin) (2023.4)
Requirement already satisfied: tzdata>=2022.1 in /usr/local/lib/python3.10/dist-packages (from pandas>=1.5->pingouin) (2024.1)
Requirement already satisfied: contourpy>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib->pingouin) (1.2.1)
Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.10/dist-packages (from matplotlib->pingouin) (0.12.1)
Requirement already satisfied: fonttools>=4.22.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib->pingouin) (4.51.0)
Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib->pingouin) (1.4.5)
Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib->pingouin) (24.0)
Requirement already satisfied: pillow>=6.2.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib->pingouin) (9.4.0)
Requirement already satisfied: pyparsing>=2.3.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib->pingouin) (3.1.2)
Requirement already satisfied: xarray in /usr/local/lib/python3.10/dist-packages (from pandas-flavor->pingouin) (2023.7.0)
Requirement already satisfied: joblib>=1.1.1 in /usr/local/lib/python3.10/dist-packages (from scikit-learn->pingouin) (1.4.2)
Requirement already satisfied: threadpoolctl>=2.0.0 in /usr/local/lib/python3.10/dist-packages (from scikit-learn->pingouin) (3.5.0)
Requirement already satisfied: patsy>=0.5.6 in /usr/local/lib/python3.10/dist-packages (from statsmodels->pingouin) (0.5.6)
Requirement already satisfied: six in /usr/local/lib/python3.10/dist-packages (from patsy>=0.5.6->statsmodels->pingouin) (1.16.0)
```

!pip install scikit\_posthocs

Requirement already satisfied: scikit\_posthocs in /usr/local/lib/python3.10/dist-packages (0.9.0) Requirement already satisfied: numpy in /usr/local/lib/python3.10/dist-packages (from scikit\_posthocs) (1.25.2) Requirement already satisfied: scipy>=1.9.0 in /usr/local/lib/python3.10/dist-packages (from scikit\_posthocs) (1.11.4) Requirement already satisfied: statsmodels in /usr/local/lib/python3.10/dist-packages (from scikit\_posthocs) (0.14.2) Requirement already satisfied: pandas>=0.20.0 in /usr/local/lib/python3.10/dist-packages (from scikit\_posthocs) (2.0.3) Requirement already satisfied: seaborn in /usr/local/lib/python3.10/dist-packages (from scikit\_posthocs) (0.13.1) Requirement already satisfied: matplotlib in /usr/local/lib/python3.10/dist-packages (from scikit\_posthocs) (3.7.1) Requirement already satisfied: python-dateutil>=2.8.2 in /usr/local/lib/python3.10/dist-packages (from pandas>=0.20.0->scikit\_posthocs) (2.8.2) Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (from pandas>=0.20.0->scikit\_posthocs) (2023.4) Requirement already satisfied: tzdata>=2022.1 in /usr/local/lib/python3.10/dist-packages (from pandas>=0.20.0->scikit\_posthocs) (2024.1) Requirement already satisfied: contourpy>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib->scikit\_posthocs) (1.2.1) Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.10/dist-packages (from matplotlib->scikit\_posthocs) (0.12.1) Requirement already satisfied: fonttools>=4.22.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib->scikit\_posthocs) (4.51.0) Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib->scikit\_posthocs) (1.4.5) Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib->scikit\_posthocs) (24.0) Requirement already satisfied: pillow>=6.2.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib->scikit\_posthocs) (9.4.0) Requirement already satisfied: pyparsing>=2.3.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib->scikit\_posthocs) (3.1.2) Requirement already satisfied: patsy>=0.5.6 in /usr/local/lib/python3.10/dist-packages (from statsmodels->scikit\_posthocs) (0.5.6) Requirement already satisfied: six in /usr/local/lib/python3.10/dist-packages (from patsy>=0.5.6->statsmodels->scikit\_posthocs) (1.16.0)

import pingouin as pg
import scikit posthocs

```
# 이원 배치 분산분석 모델
```

aov = pg.anova(data = data, dv='price', between = ['cut', 'color'], detailed = True) aov

| <b>→</b> | Source |             | SS           | DF      | MS           | F          | p-unc         | np2      |
|----------|--------|-------------|--------------|---------|--------------|------------|---------------|----------|
|          | 0      | cut         | 9.699679e+09 | 4.0     | 2.424920e+09 | 159.356253 | 7.880786e-136 | 0.011687 |
|          | 1      | color       | 2.550704e+10 | 6.0     | 4.251174e+09 | 279.370558 | 0.000000e+00  | 0.030158 |
|          | 2      | cut * color | 1.653455e+09 | 24.0    | 6.889396e+07 | 4.527442   | 1.000780e-12  | 0.002012 |
|          | 3      | Residual    | 8.202709e+11 | 53905.0 | 1.521697e+07 | NaN        | NaN           | NaN      |

posthoc1 = pg.pairwise\_tukey(data = data, dv = 'price', between = 'cut')
posthoc1

| ₹ |   | А         | В         | mean(A)     | mean(B)     | diff         | se         | Т          | p-tukey  | hedges    |  |
|---|---|-----------|-----------|-------------|-------------|--------------|------------|------------|----------|-----------|--|
| C |   | Ideal     | Premium   | 3457.541970 | 4584.257704 | -1126.715734 | 43.224592  | -26.066544 | 0.000000 | -0.279710 |  |
|   | 1 | Ideal     | Very Good | 3457.541970 | 3981.759891 | -524.217921  | 45.050188  | -11.636309 | 0.000000 | -0.135992 |  |
|   | 2 | Ideal     | Good      | 3457.541970 | 3928.864452 | -471.322481  | 62.703206  | -7.516721  | 0.000000 | -0.124513 |  |
|   | 3 | Ideal     | Fair      | 3457.541970 | 4358.757764 | -901.215794  | 102.411549 | -8.799943  | 0.000000 | -0.237674 |  |
|   | 4 | Premium   | Very Good | 4584.257704 | 3981.759891 | 602.497814   | 49.393867  | 12.197826  | 0.000000 | 0.144782  |  |
|   | 5 | Premium   | Good      | 4584.257704 | 3928.864452 | 655.393253   | 65.893298  | 9.946281   | 0.000000 | 0.156623  |  |
|   | 6 | Premium   | Fair      | 4584.257704 | 4358.757764 | 225.499940   | 104.395211 | 2.160060   | 0.195059 | 0.052763  |  |
|   | 7 | Very Good | Good      | 3981.759891 | 3928.864452 | 52.895439    | 67.104998  | 0.788249   | 0.934115 | 0.013688  |  |
|   | 8 | Very Good | Fair      | 3981.759891 | 4358.757764 | -376.997873  | 105.164224 | -3.584849  | 0.003112 | -0.096819 |  |
|   | 9 | Good      | Fair      | 3928.864452 | 4358.757764 | -429.893312  | 113.849404 | -3.775982  | 0.001499 | -0.117700 |  |

posthoc2 = pg.pairwise\_tukey(data=data, dv = 'price', between = 'color')
posthoc2

₹

|    | Α | В | mean(A)     | mean(B)     | diff         | se        | Т          | p-tukey  | hedges    |
|----|---|---|-------------|-------------|--------------|-----------|------------|----------|-----------|
| 0  | D | Е | 3169.954096 | 3076.752475 | 93.201621    | 62.047242 | 1.502107   | 0.743743 | 0.027826  |
| 1  | D | F | 3169.954096 | 3724.886397 | -554.932301  | 62.385265 | -8.895246  | 0.000000 | -0.153574 |
| 2  | D | G | 3169.954096 | 3999.135671 | -829.181575  | 60.344704 | -13.740751 | 0.000000 | -0.217878 |
| 3  | D | Н | 3169.954096 | 4486.669196 | -1316.715100 | 64.287150 | -20.481777 | 0.000000 | -0.341665 |
| 4  | D | 1 | 3169.954096 | 5091.874954 | -1921.920858 | 71.553080 | -26.860072 | 0.000000 | -0.477893 |
| 5  | D | J | 3169.954096 | 5323.818020 | -2153.863924 | 88.132029 | -24.439060 | 0.000000 | -0.581089 |
| 6  | Ε | F | 3076.752475 | 3724.886397 | -648.133922  | 56.478996 | -11.475663 | 0.000000 | -0.181620 |
| 7  | Ε | G | 3076.752475 | 3999.135671 | -922.383196  | 54.216594 | -17.012931 | 0.000000 | -0.246661 |
| 8  | Ε | Н | 3076.752475 | 4486.669196 | -1409.916720 | 58.572975 | -24.071113 | 0.000000 | -0.374046 |
| 9  | Ε | 1 | 3076.752475 | 5091.874954 | -2015.122479 | 66.466525 | -30.317855 | 0.000000 | -0.517798 |
| 10 | Ε | J | 3076.752475 | 5323.818020 | -2247.065545 | 84.054805 | -26.733338 | 0.000000 | -0.621285 |
| 11 | F | G | 3724.886397 | 3999.135671 | -274.249274  | 54.603114 | -5.022594  | 0.000011 | -0.069755 |
| 12 | F | Н | 3724.886397 | 4486.669196 | -761.782799  | 58.930930 | -12.926706 | 0.000000 | -0.190852 |
| 13 | F | 1 | 3724.886397 | 5091.874954 | -1366.988557 | 66.782183 | -20.469360 | 0.000000 | -0.329445 |
| 14 | F | J | 3724.886397 | 5323.818020 | -1598.931623 | 84.304634 | -18.966118 | 0.000000 | -0.405487 |
| 15 | G | Н | 3999.135671 | 4486.669196 | -487.533524  | 56.766332 | -8.588427  | 0.000000 | -0.118278 |
| 16 | G | 1 | 3999.135671 | 5091.874954 | -1092.739283 | 64.880058 | -16.842452 | 0.000000 | -0.255277 |
| 17 | G | J | 3999.135671 | 5323.818020 | -1324.682349 | 82.805998 | -15.997420 | 0.000000 | -0.320646 |
| 18 | Н | 1 | 4486.669196 | 5091.874954 | -605.205758  | 68.562208 | -8.827104  | 0.000000 | -0.136826 |
| 19 | Н | J | 4486.669196 | 5323.818020 | -837.148824  | 85.721570 | -9.765906  | 0.000000 | -0.195894 |
| 20 | ı | J | 5091.874954 | 5323.818020 | -231.943066  | 91.297279 | -2.540526  | 0.144946 | -0.050119 |

## ∨ 카이제곱 검정

8

class

10 adult\_male

who

891 non-null

891 non-null

891 non-null 203 non-null

- 독립성 검정 : 두 범주형 변수 간의 독립성을 검정
- 동질성 검정: 여러 집단이 동일한 분포를 따르는지를 검정
- 적합도 검정: 관측된 빈도가 기대되는 분포와 얼마나 일치하는지 검정.

```
import seaborn as sns
from scipy.stats import chi2_contingency
import pandas as pd
tips = sns.load_dataset('tips')
chi2, p, dof, expected = chi2_contingency(pd.crosstab(tips['day'],tips['smoker']))
print(p)
    1.0567572499836523e-05
import seaborn as sns
titanic = sns.load_dataset('titanic')
titanic.info()
chi2, p, dof, expected = chi2_contingency(pd.crosstab(titanic['class'],titanic['embarked']))
print(p)
     <class 'pandas.core.frame.DataFrame'>
 ₹
     RangeIndex: 891 entries, 0 to 890
     Data columns (total 15 columns):
      # Column
                       Non-Null Count Dtype
          survived
                       891 non-null
          pclass
                       891 non-null
                                       int64
                       891 non-null
                                       object
          sex
      3
                       714 non-null
                                       float64
          age
          sibsp
                       891 non-null
                                       int64
                       891 non-null
                                       int64
          parch
      6
                       891 non-null
                                       float64
          fare
                       889 non-null
          embarked
                                       object
```

category

category

object

### 24. 5. 28. 오전 12:55

→ 0.9625657732472964

```
12 embark_town 889 non-null object
13 alive 891 non-null object
14 alone 891 non-null bool
dtypes: bool(2), category(2), float64(2), int64(4), object(5)
memory usage: 80.7+ KB
8.435267819894384e-26

import numpy as np
import scipy.stats as stats

observed = np.array([8,9,10,10,11,12])
expected = np.array([10,10,10,10,10])

chi2, p = stats.chisquare(f_obs = observed, f_exp = expected)
print(p)
```