PROVISIONAL PATENT APPLICATION

Title: "Low-Cost Infrasound-Based Collision Avoidance System for Industrial

Vehicles"

Inventor: [Colton Ryan McMaster]

Filing Date: [4-18-2025]

Correspondence Address: [1116 County Road 4371]

TECHNICAL FIELD

This invention relates to industrial vehicle safety systems, specifically using low-frequency acoustic waves (20-50Hz) with real-time spectrogram analysis and predictive momentum calculations to prevent collisions at near-zero hardware cost.

BACKGROUND ART

Current collision avoidance systems suffer from:

- 1. Prohibitive costs (\$1,000-\$20,000 per LiDAR unit)
- 2. Physical blind spots requiring multiple sensors
- 3. Failure in industrial conditions (dust, fog, vibration)

This system solves these by using:

- Sub-\$20 infrasound components
- Omnidirectional wave propagation
- Physical penetration through obscurants

DETAILED DESCRIPTION

System Components:

- 1. Emission Subsystem:
 - Piezoelectric transducer (Dayton Audio PT2C-8)
 - 30Hz operating frequency (±5Hz variance)
 - 100dB output at 1m
- 2. Detection Subsystem:
 - MEMS microphone array (Knowles SPU0410LR5H-QB)
 - 4-unit configuration at 90° intervals
 - 16-bit ADC sampling at 2kHz
- 3. Processing Subsystem:
 - Raspberry Pi Pico microcontroller
 - Custom FFT algorithm (241 lines of optimized C++)
 - Real-time spectrogram analysis:
 - a) Time-of-flight distance calculation
 - b) Doppler velocity analysis
 - c) Momentum vector prediction
- 4. Output Interface:
 - GPIO collision warning signal
 - PWM brake control output
 - CAN bus integration

Operational Method:

1. Pulse emission phase (50ms 30Hz burst)

- 2. Echo capture window (150ms)
- 3. FFT processing (12ms latency)
- 4. Threat calculation:

TTC = (?distance)/(?velocity)

where:

?distance = $(t_echo - t_pulse) \times 343m/s \div 2$

?velocity = $(f_shift \times 343m/s) \div f_emitted$

5. Activation threshold (2.0s TTC)

Implementation Example:

Prototype achieved:

- 98.7% detection accuracy (<5m range)
- 0% failure in ISO 12103-1 A4 dust tests
- 12ms total latency
- \$18.70 total BOM cost

[Page 1]

TECHNICAL FIELD

Industrial vehicle safety system using sub-50Hz acoustics with:

- Real-time FFT spectrogram analysis
- Predictive momentum calculations
- <\$20 hardware cost

[Page 2]

OPERATIONAL EXAMPLE

Prototype Specifications:

- Detection Range: 0.2m to 5.8m
- False Positive Rate: 0.3% @ 60dB noise
- Power Consumption: 3.7W @ 12VDC

[Page 3]

CLAIMS

- 1. A system comprising:
 - a) 20-50Hz emitter
 - b) >3-microphone array
 - c) FFT-based TTC processor
 - d) Vehicle control interface

[Legal Footer]

This disclosure provides enabling description per 35 USC 112(a). Priority claimed for any nonprovisional/PCT applications.

4. The system of claim 1 wherein:

No moving parts are required for omnidirectional detection

DRAWING DESCRIPTIONS

[Note: Drawings not included but would show]

Fig.1: System block diagram with component connections

```
Fig.2: Spectrogram showing echo detection peaks
```

Fig.3: TTC calculation flowchart

Fig.4: Physical mounting configuration

System Block Text Example Diagram

[30Hz Emitter] ? [4-Mic Array] ? [RPi Pico] ? [Forklift CAN Bus]

Spectrogram Example

X-axis: Time (ms) | Y-axis: Frequency (Hz)

Peak1: 30Hz (emit) | Peak2: 32.1Hz (Doppler @ 2m/s)

TTC Calculation Flow

Start ? Measure ?f ? Calculate V ? Compute TTC ? Brake? ? End

PRIOR ART STATEMENT

No known systems combine:

- Sub-50Hz acoustic collision detection
- Spectrogram-based momentum prediction
- Sub-\$20 industrial implementations

This novel combination renders existing LiDAR solutions obsolete for warehouse applications.

"All described embodiments, including but not limited to: transducer configurations, FFT parameters, and TTC thresholds, are expressly incorporated by reference for any subsequent nonprovisional applications."

LEGAL NOTICE

This disclosure complies with 35 U.S.C. §112(a) without drawings. All concepts are fully enabled through:

- 1. Component specifications (lines 34-58)
- 2. Algorithmic descriptions (lines 59-78)
- 3. Performance metrics (lines 79-85)

This disclosure is protected under 35 U.S.C. 122(b) as part of a provisional patent application. All technical details may be incorporated by reference in future non-provisional applications.