Math 623: Homework 4

- 1. Exercise 4, p.90
- 2. Exercise 17, p. 93
- 3. Exercise 18, p.93
- 4. Exercise 19, p.93
- 5. Compute and justify your computations
 - (a) $\lim_{n\to\infty} \int_0^\infty (1+(x/n))^{-n} \sin(x/n) dm$.
 - (b) $\lim_{n\to\infty} \int_0^\infty \frac{n\sin(x/n)}{x(1+x^2)} dm$.
 - (c) $\lim_{n\to\infty} \int_a^\infty n(1+n^2x^2)^{-1} dm$. Distinguish between a>0, a=0 and a<0.
- 6. Consider the function $f(x,y) = ye^{-(1+x^2)y^2}$ if $x \ge 0$ and $y \ge 0$ and 0 otherwise. Integrate this function over $\mathbf{R} \times \mathbf{R}$ to show that $\int_0^\infty e^{-x^2} dx = \sqrt{\pi}/2$
- 7. Investigate the existence and equality of the integral $\int_{[0,1]\times[0,1]} f(x,y)dm(x,y)$, and the iterated integrals $\int_{[0,1]} (\int_{[0,1]} f(x,y)dm(x))dm(y)$, and $\int_{[0,1]} (\int_{[0,1]} f(x,y)dm(y))dm(x)$ for the following functions
 - (a) $f(x,y) = \frac{x^2 y^2}{(x^2 + y^2)^2}$
 - (b) $f(x,y) = (x \frac{1}{2})^{-3}$ if $0 < y < |x \frac{1}{2}|$, f(x,y) = 0 otherwise.
- 8. Let E be subset of \mathbf{R}^d with finite measure. For any two functions f, g measurable on E let $\rho_E(f,g) = \int_E \frac{|f-g|}{1+|f-g|} dm$.
 - (a) Show that $\rho_E(f,g)$ defines a metric on the set of measurable functions defined on E.
 - (b) Let $\{f_n\}$ be a sequence of measurable functions defined on E. Show that $\lim_{n\to\infty}\rho_E(f_n,g)=0$ if and only if f_n converges to f in measure.
 - (c) Show that the assumption that E has finite measure is necessary. Hint: Consider $f_n(x) = nx^{-1}$.
- 9. Suppose that f_n converge to f in measure and that there exists a function $g \in L^1$ such that $|f_n| \leq g$ a.e. for all n. Show that f is integrable and $\lim_{n\to\infty} \int |f f_n| dm = 0$.
- 10. The following result about sequences is often very useful. Let $\{x_n\}$ be a sequence of real numbers. Show that $\lim_n x_n = x$ if and only if every subsequence of $\{x_n\}$ has a subsequence which converges to x.
- 11. Let $\{f_n\}$ be a sequence of nonnegative functions such that $f_n \to f$ a.e and $\int f_n dm \to \int f dm$. Show that for any measurable set E,

$$\lim_{n\to\infty} \int_E f_n dm \,=\, \int_E f dm \,.$$

Hint: Apply Fatou's Lemma to $f\chi_E$ and $f\chi_{E^c}$ and use the previous problem.

1