Lecture 14, Oct. 7

14.1 Theorem. Bolzano-Weierstrass Theorem Every bounded sequences has a convergent sub-sequence.

14.2 Definition. We say that $\alpha \in \mathbb{R}$ is a **limit point** of $\{a_n\}$ if there exists a sub-sequence $\{a_{n_k}\}$ with $\lim_{n\to\infty}a_{n_k}=\alpha$

LET $LIM(\{a_n\}) = \{\alpha \in \mathbb{R} \mid \alpha \text{ is a limit point of } \{a_n\}$

14.3 Example. $a_n = (-1)^{n+1} \to \{1, -1, 1, -1, \dots\}$

$$LIM({a_n}) = {1, -1}$$

14.4 Example. $a_n = n \to \{1, 2, 3, \dots\}$

$$LIM(\{a_n\}) = \emptyset$$

Fact If $\{a_n\}$ converges with $\lim_{n\to\infty} a_n = L$, then $LIM(\{a_n\}) = \{L\}$

14.5 Question. If $\{a_n\}$ is such that $LIM(\{a_n\})$ contains only one value α , does $\{a_n\}$ converges to α ?

No. Counterexample:

$${a_n} = {1, \frac{1}{2}, 3, \frac{1}{4}, 5, \dots}$$

14.6 Proposition. α is a limit point of $\{a_n\}$ if for every $(\alpha - \epsilon, \alpha + \epsilon)$ contains infinite many terms of the sequence.

Assume α is a limit point of $\{a_n\}$, then there exists a sub-squence $\{a_{n_k}\}$ with $a_{n_k} \to \alpha$. There exists $K_0 \in \mathbb{N}$ so that $k \ge K_0 \to |a_{n_k} - \alpha| < \epsilon \to a_{n_k} \in (\alpha - \epsilon, \alpha + \epsilon)$

Proof. Assume that $\forall \epsilon > 0$, $(\alpha - \epsilon, \alpha + \epsilon)$ contains infinitely many terms of $\{a_b\}$

For $\epsilon=1$ we can find n_1 so that $a_{n_1}\in(\alpha-1,\alpha+1)$

$$a_{n_2}\in(\alpha-\frac{1}{2},\alpha+\frac{1}{2})$$

Suppose we have $n_1 < n_2 < n_3 < \cdots < n_k$ with

$$a_{n_j} \in (\alpha - \frac{1}{j}, \alpha + \frac{1}{j})$$

Since $(\alpha - \frac{1}{k+1}, \alpha + \frac{1}{k+1})$ contains infinitely many $a_n s$. there is $n_{k+1} > n_k$ with $a_{n_{k+1}} \in (\alpha - \frac{1}{k+1}, \alpha + \frac{1}{k+1})$

We proceed recursively to get a sub-sequence $\{a_{n_k}\}$ with

$$a_{n_k} = (\alpha - \frac{1}{k}, \alpha + \frac{1}{k})$$

$$\alpha - \frac{1}{k} < a_{n_k} < \alpha + \frac{1}{k}$$

By the squeeze theorem, $a_{n_k} o lpha$

14.7 Question.

1. Suppose $\{a_n\}$ is bounded and $LIM(\{a_n\}) = \{L\}$, does $\lim_{n\to\infty} L$?

2. Does there exists $\{a_n\}$ with $LIM(\{a_n\}) = \{R\}$

3. For which subsets S of R does there exists $\{a_n\}$ with $LIM(\{a_n\}) = S$?

Cauchy Sequence

14.8 Question. Is there an intrinsic way to characterize a convergent sequence?

Note. If $\lim_{n\to\infty} a_n = L$ and if $\epsilon > 0$ then we can find N_0 so that if $n \ge N_0$ m

$$|a_n-L|<rac{\epsilon}{2}$$

If $n, m \geq N_0$, then

$$|a_n - a_m| = |(a_n - L) + (L - a_m)|$$

$$\leq |a_n - L| + |L - a_m|$$

$$< \frac{\epsilon}{2} + \frac{\epsilon}{2}$$

$$= \epsilon$$

14.9 Definition. A sequence $\{a_n\}$ is **Cauchy** is for every $\epsilon > 0$, then there exists $N_0 \in \mathbb{N}$ so that if $n, m \geq N_0$, then

$$|a_n - a_m| < \epsilon$$

14.10 Proposition. Every convergent sequence is Cauchy

14.11 Question. Does every Cauchy sequence Converges?

14.12 Lemma. Every Cauchy Sequence is bounded.

Proof. Let $\epsilon=1$ and choose N_0 so that if $n,m\geq N_0$, then $|a_n-a_m|<\epsilon$

Hence, if $n \geq N_0$ then

$$|a_n - a_{N_0}| < 1 \rightarrow |a_n| \le |a_{N_0}| + 1$$

Let $M = max\{|a_1|, |a_q|, \dots, |a_{N_0-1}|, |a_{N_0}| + 1\}$

14.13 Lemma. Let $\{a_n\}$ be Cauchy. Assume that $\{a_{n_k}\}$ is such that $\lim_{k\to\infty}a_{n_k}=L$, then

$$\lim_{n\to\infty}a_n=L$$

Proof. Let $\epsilon > 0$. We can find a N_0 so that if $n, m \ge N_0$, then

$$|a_n-a_m|<\frac{\epsilon}{2}$$

Let $n \geq N_0$

$$|a_n - L| = |(a_n - a_{n_k}) + (a_{n_k} - L)|$$

$$\leq |a_n - a_{n_k}| + |a_{n_k} - L|$$

$$< \frac{\epsilon}{2} + \frac{\epsilon}{2}$$

$$= \epsilon$$

14.14 Theorem. Completeness Property for \mathbb{R} *Every Cauchy Sequence Converges.*

Proof. If a_n is Cauchy, then a_n is bounded. By BWT, a_n has a convergent sub-sequence $\{a_{n_k}\}$. Hence a_n converges. (by Lemma 2.)