國立清華大學 Analog Circuit Design

Homework 4
Two-Stage OPA

學號:111063548

姓名:蕭方凱

目錄

(a)		Operation point	4
	1.	Please DESIGN your bias (Mb1 - Mb3) and amplifier (M1 – M5) size to mak	e
	the	gain at DC larger than 60dB	4
	2.	Print out the results from .op command. And make sure all the devices are	
	pro	perly biased	4
	3.	Use .tf command to print out the voltage gain	5
	4.	Verify your DC gain with hand calculation	5
(b)		AC response before compensation	6
	1.	Please simulate and plot the frequency response (magnitude and phase) o	f
	you	ur design in (a). Mark the (i) DC gain (ii) unity gain frequency, and (iii) phase	
	ma	rgin on figure	6
	2.	Use .pz to identify the poles and zeros, and mark them on bode plot	7
	3.	Verify the first and second dominant poles and first RHP zeros with hand	
	cal	culation	8
(c)		AC response after Cc compensation	9
	1.	Please design your value of Cc and simulate the AC response in (b). (please	
	not	e, your Cc must be smaller than 10pF, and the phase margin must larger tha	n
	0 ir	n this case)	9
	2.	Please print .pz output of the new poles (first and second dominant) and	
	zer	os (first RHP), and mark them on bode plot1	0
	3.	Verify the compensation with hand calculation1	1
(d)		AC response after Cc-Rc compensation1	2
	1.	Please design your value of Rc to shift the RHP zero and simulate the AC	
	res	ponse in (c). (please note, your unity gain frequency must be larger than	
	501	MHz and phase margin must larger than 45 in this case)1	2
	2.	Please print .pz output of the new poles and zeros, and mark them on bod	e
	plo	t as (c)1	3
	3.	Verify the compensation with hand calculation1	4
(e)		Closed-loop transfer function1	5
	1.	Please simulation the closed-loop DC transfer curve when input from 0 to	
	1.5	V, and plot the closed-loop gain and mark the slope1	5
	2.	Print .tf output to discuss the gain and input/output impedance1	5
	3.	Please calculate the closed-loop DC gain with the real op-amp gain in your	
	des	sign1	5
(f)	Clo	sed-loop AC response1	6
	1.	Please simulation the closed-loop AC response. Draw the bode plot and	

	ma	k its DC gain and -3dB frequency	16
	2.	Put this bode plot with open-loop response and compare the results	17
(g)		Closed-loop linearity response	18
	1.	Please simulation the closed-loop THD when input with 0.7Vpp 10kHz	
	sinu	usoidal waveform. (THD has to be smaller than -60dB)	18
	2.	Please plot the input and output waveforms.	18
(h)		Closed-loop step response	19
	1.	Please plot the output waveform when input with a step- from 0.3V to	
	1.2	V, and a step+ from 1.2V to 0.3V, with rise/fall time of 10ns	19
	2.	Please mark slew rate (slope between 10% - 90% of final value), and the	جَ ح
	set	ling time (to within 10mV error) on your step+ and step- responses	19
	3.	Compare slew rate simulation results with hand calculation	19
(i)	Clo	sed-loop transfer function with diff R	20
	1.	Print .tf output to discuss the gain and input/output impedance	20
	2.	Please discuss the difference	20
(j)	Dis	cussion	21
	1.	Please fill the following table. and discuss your design for frequency	
	con	npensation and for best FoM	21

(a) Operation point

1. Please DESIGN your bias (Mb1- Mb3) and amplifier (M1 - M5) size to make the gain at DC larger than 60dB.

表格 1 MOS size

	W/L(μm/μm)	m
Mb1(pmos)	20/0.18	1
Mb2(pmos)	10/0.18	1
Mb3(pmos)	10/0.18	1
M1(pmos)	10/0.4	1
M2(pmos)	10/0.4	1
M3(nmos)	10/0.8	1
M4(nmos)	10/0.8	1
M5(nmos)	27.5/0.4	1

2. Print out the results from .op command. And make sure all the devices are properly biased.

```
**** mosfets
subckt
element
         0:mb1
                     0:mb2
                                0:mb3
                                            0:m3
                                                        0:m4
                                                                   0:mm1
                                                                                0:mm2
                                                                                           0:m5
model
         0:p_18.1
                     0:p_18.1
                                0:p_18.1
                                            0:n_18.1
                                                        0:n_18.1
                                                                   0:p_18.1
                                                                                0:p_18.1
                                                                                           0:n_18.1
         Saturation Saturation Saturation
                                                        Saturation
                                                                   Saturation
                                                                                Saturation
                                                                                           Saturation
region
                                                                     -15.7390u
 id
          -100.0000u
                      -31.4780u
                                  -44.2051u
                                              15.7390u
                                                          15.7390u
                                                                                 -15.7390u
                                                                                             44.2051u
          9.559e-21
                      3.153e-21
                                  4.427e-21
                                             2.547e-21
                                                         2.547e-21
                                                                     1.576e-21
                                                                                 1.576e-21
                                                                                           -6.707e-21
ibs
          544.5851a
                       65.7418a
                                  305.8655a
                                             365.1456a
                                                         365.1456a
                                                                     430.5029a
                                                                                 430.5029a
                                                                                              -1.8924f
ibd
                                                                    -613.4546m
          -592.5381m
                     -592.5381m
                                             469.3420m
                                                         469.3420m
                                                                                -613.4546m
                                                                                            469.3420m
                                 -592.5381m
 vgs
vds
         -592.5381m
                     -136.5454m
                                 -635.2596m
                                             469.3420m
                                                         469.3420m
                                                                   -894.1125m
                                                                                 894.1125m
                                                                                            864.7404m
                                                                                              Θ
vbs
                        0.
                                    Θ.
                                               Θ.
                                                           0.
                                                                       0.
                                                                                -508.7514m
                                                                                            456.8274m
          -511.8655m
                     -524.0868m
                                -520.7778m
                                             402.6254m
                                                         402.6254m -508.7514m
vth
                                                                                -137.3087m
                                                                                             78.7924m
         -143.6360m
                     -135.0348m
                                -137.4774m
                                              98.8056m
                                                          98.8056m
                                                                   -137.3087m
vdsat
          -80.6726m
                      -68.4513m
                                  -71.7603m
                                              66.7166m
                                                          66.7166m
                                                                     104.7032m
                                                                                -104.7032m
                                                                                             12.5147m
vod
                                                                                   1.8956m
                                                                                             24.7437m
           12.9675m
                                   6.3733m
                        6.3669m
                                               3.9300m
                                                           3.9300m
                                                                       1.8956m
beta
                                                                                 557.0846m
                                                                                            507.4460m
 gam eff
          557.0846m
                      557.0846m
                                                         507.4460m
                                                                     557.0846m
                                             507.4460m
                                  557.0846m
                                                                                 204.1590u
                                                                                            875.2120u
                                                         257.1132u
            1.3390m
                                             257.1132u
                                                                     204.1590u
 qm
                      421.3208u
                                  615.5177u
                                                                                   1.6168u
                                                                                             14.7371u
 gds
           43.0482u
                       69.5846u
                                  18.4967u
                                               3.3270u
                                                           3.3270u
                                                                       1.6168u
                                                                                  60.2327u
                                                                                            162.8779u
 gmb
          394.5544u
                      124.1025u
                                  179.9585u
                                              52.3678u
                                                          52.3678u
                                                                      60.2327u
                                                                                  11.1135f
                                                                                             38.6263f
 cdtot
           23.2689f
                       13.5122f
                                  11.6118f
                                              13.9282f
                                                          13.9282f
                                                                      11.1135f
                                                                                  27.8915f
                                                                                             71.6704f
 cgtot
           36.2227f
                       18.0572f
                                  17.9060f
                                              53.1474f
                                                          53.1474f
                                                                      27.8915f
                                                                                  35.4176f
                                                                                             88.5196f
 cstot
           50.6197f
                       24.8541f
                                   25.0556f
                                              60.4859f
                                                          60.4859f
                                                                      35.4176f
                                                                                  24.5192f
                                                                                             80.1173f
 cbtot
           44.2775f
                       23.6867f
                                   22.1920f
                                              34.5609f
                                                          34.5609f
                                                                      24.5192f
                                                                                  22.3486f
                                                                                             49.2129f
           26.2682f
                       12.8747f
                                   12.8501f
                                              44.6522f
                                                          44.6522f
                                                                      22.3486f
cgs
                                                                                   3.5887f
                                                                                             11.1682f
            7.0826f
                        3.7395f
                                    3.5420f
                                               3.6010f
                                                           3.6010f
                                                                       3.5887f
cgd
```

圖 1 lis file result(.op)

3. Use .tf command to print out the voltage gain.

```
**** small-signal transfer characteristics

v(vout)/vac = 1.0787k
input resistance at vac = 1.000e+20
output resistance at v(vout) = 30.0937k
```

圖 2 lis file result(.tf)

4. Verify your DC gain with hand calculation.

根據上頁.op result,可得:

ro2=618.506K; ro4=300.571K; ro5=67.856K; rob3=54.064K

$$rac{Vo}{Vac} = gm1gm5(ro2 \parallel ro4)(ro5 \parallel rob3)$$

$$= 204.159\mu \times 875.212\mu \times 202.273K \times 30.09K$$

$$= 1.0875K \ V/V$$
 誤差值= $rac{1.0875-1.0787}{1.0787} = \mathbf{0.816}\%$

(b) AC response before compensation

1. Please simulate and plot the frequency response (magnitude and phase) of your design in (a). Mark the (i) DC gain (ii) unity gain frequency, and (iii) phase margin on figure.

圖 3 frequency response

```
****** ac analysis tnom= 25.000 temp= 25.000 ******
phase=-191.6099
phase_margin= -11.6099
gmax= 60.6578
bw= 1.7072x
unit_gain_frequency= 261.2712x
```

DC gain=60.7dB; unity gain frequency=261.27MHz; Phase margin=-12 degree 2. Use .pz to identify the poles and zeros, and mark them on bode plot.

*****	pole/zero analy	sis	
input =	0:vac	output = v(vout)	
poles	(rad/sec)	poles (hertz)
real	imag	real	imag
-10.7673x	Θ.	-1.71366x	0.
-275.740x	Θ.	-43.8854x	0.
-2.40375g	Θ.	-382.569x	0.
-5.63484g	Θ.	-896.812x	0.
-17.5327g	Θ.	-2.79042g	0.
zeros	(rad/sec)	zeros (hertz)
real	imag	real	imag
-4.37480g	0.	-696.272x	0.
-9.39933g	11.9207g	-1.49595g	1.89724g
-9.39933g	-11.9207g	-1.49595g	-1.89724g
-13.1761g	0.	-2.09704g	0.
84.7344g	Θ.	13.4859g	Θ.

圖 4 .pz result

First pole	Second pole	Zero
1.714MHz	43.89MHz	13.485GHz

圖 5 bode plot

3. Verify the first and second dominant poles and first RHP zeros with hand calculation.

	Simulation	Hand Calculate	誤差值
Pole1	1.7MHz	2.2MHz	29%
Pole2	43.9MHz	10.58MHz	76%
zero	13.49GHz	12.47GHz	7.5%

(c) AC response after Cc compensation

1. Please design your value of Cc and simulate the AC response in (b). (please note, your Cc must be smaller than 10pF, and the phase margin must larger than 0 in this case).

圖 6 frequency response

```
****** ac analysis tnom= 25.000 temp= 25.000 ******
phase=-152.4286
phase_margin= 27.5714
gmax= 60.1145
bw= 181.7721k
unit_gain_frequency= 134.3915x
```

Design Cc=0.15pf, phase margin=27.57° → meet the requirement

2. Please print .pz output of the new poles (first and second dominant) and zeros (first RHP), and mark them on bode plot.

*****	pole/zero analy	sis	
input =	0:vac	output = v(vout)	
poles	(rad/sec)	poles (hertz)
real	imag	real	imag
-1.14491x	0.	-182.217k	0.
-970.035x	0.	-154.386x	0.
-2.34178g	0.	-372.706x	0.
-5.76619g	0.	-917.717x	0.
-17.5381g	Θ.	-2.79127g	0.
zeros	(rad/sec)	zeros (hertz)
real	imag	real	imag
-4.36085g	0.	-694.052x	0.
5.30708g	0.	844.648x	0.
-10.9830g	12.5556g	-1.74799g	1.99828g
-10.9830g	-12.5556g	-1.74799g	-1.99828g
-13.6191g	0.	-2.16755g	0.

First pole	Second pole	Zero1
182.217kHz	154.386MHz	844.65MHz

圖 7 bode plot

3. Verify the compensation with hand calculation.

	Simulation	Hand Calculate	誤差值
Pole1	182.217KHz	196.254KHz	7.7%
Pole2	154.386MHz	253.625MHz	64.3%
zero	844.65MHz	928.63MHz	10%

(d) AC response after Cc-Rc compensation

1. Please design your value of Rc to shift the RHP zero and simulate the AC response in (c). (please note, your unity gain frequency must be larger than 50MHz and phase margin must larger than 45 in this case).

圖 8 frequency response

```
****** ac analysis tnom= 25.000 temp= 25.000 ******

phase=-134.3518

phase_margin= 45.6482

gmax= 60.1145

bw= 181.5066k

unit_gain_frequency= 204.5289x
```

Cc=0.15pf and Rc=9.5K, unit gain frequency=204.53MHz;

phase margin=45.65° → meet the requirement

2. Please print .pz output of the new poles and zeros, and mark them on bode plot as (c).

*****	pole/zero analy	sis	
	,		
İ			
input =	0:vac	output = v(vout)	
211641	0.140	output I(Iout)	
poles	(rad/sec)	poles (hertz)
real	imag	real	imag
-1.14322x	0.	-181.950k	0.
-1.12921g	785.509x	-179.719x	125.018x
-1.12921g	-785.509x	-179.719x	-125.018x
-2.51954g	0.	-400.998x	0.
-5.54682g	0.	-882.804x	0.
-17.5336g	0.	-2.79056g	0.
		ū	
zeros	(rad/sec)	zeros (hertz)
real	imag	real	imag
120.704k	0.	19.2106k	0.
-123.456k	0.	-19.6486k	0.
1.76212g	0.	280.451x	0.

First pole	Second pole	Zero
181.95kHz	401MHz	280.45MHz

圖 9 bode plot

3. Verify the compensation with hand calculation.

	Simulation	Hand Calculate	誤差值
Pole1	182.217KHz	196.254KHz	7.7%
Pole2	401MHz	253.625MHz	36.75%
zero	280.45MHz	126.957MHz	54.73%

(e) Closed-loop transfer function

1. Please simulation the closed-loop DC transfer curve when input from 0 to 1.5V, and plot the closed-loop gain and mark the slope.

圖 10 DC transfer curve

2. Print .tf output to discuss the gain and input/output impedance.

3. Please calculate the closed-loop DC gain with the real op-amp gain in your design.

Simulation	Hand Calculate	誤差值
-0.9977	-0.9981	0.05%

(f) Closed-loop AC response

1. Please simulation the closed-loop AC response. Draw the bode plot and mark its DC gain and-3dB frequency.

DC gain = -20.4mdB; -3db frequency = 180MHz

*****	pole/zero analys:	is		
input =	0:vacin	output = v(vout)		
poles	(rad/sec)	poles (hertz)	
real	imag	real	imag	
-356.552x	858.783x	-56.7471x	136.680x	
-356.552x	-858.783x	-56.7471x	-136.680x	
-681.861x	0.	-108.522x	Θ.	
-2.25902g	699.509x	-359.534x	111.330x	
-2.25902g	-699.509x	-359.534x	-111.330x	
-4.90037g	0.	-779.918x	Θ.	
-17.6823g	0.	-2.81423g	Θ.	
zeros	(rad/sec)	zeros (hertz)		
real	imag	real	imag	
-798.275x	0.	-127.049x	Θ.	
-4.36580g	0.	-694.839x	Θ.	
-11.9162g	13.8639g	-1.89652g	2.20651g	
-11.9162g	-13.8639g	-1.89652g	-2.20651g	
-12.1972g	0.	-1.94124g	Θ.	
61.2050g	0.	9.74108g	Θ.	

First pole	Second pole	Zero
148MHz	376MHz	9.7GHz

2. Put this bode plot with open-loop response and compare the results.

	DC gain	-3DB frequency
Closed loop	-20.4mdB	180MHZ
Open loop	60.7dB	1.68MHz

(g) Closed-loop linearity response

1. Please simulation the closed-loop THD when input with 0.7Vpp 10kHz sinusoidal waveform. (THD has to be smaller than-60dB).

harmonic	frequency	fourier	normalized	phase	normalized
no	(hz)	component	component	(deg)	phase (deg)
1	10.0000k	349.1586m	1.0000	89.9937	0.
2	20.0000k	26.7238u	76.5378u	497.4838m	-89.4963
3	30.0000k	6.7526u	19.3397u	91.8743	1.8805
4	40.0000k	520.6543n	1.4912u	-179.4715	-269.4653
5	50.0000k	283.6153n	812.2822n	-121.6149	-211.6087
6	60.0000k	147.6689n	422.9279n	179.9770	89.9832
7	70.0000k	153.1823n	438.7182n	175.6610	85.6673
8	80.0000k	152.6075n	437.0721n	179.9997	90.0060
9	90.0000k	152.4715n	436.6827n	-179.7252	-269.7189
total ha	rmonic dist	ortion = (0.00789664	percent	

圖 11 THD result

THD = -83.1dB

2. Please plot the input and output waveforms.

(h) Closed-loop step response

- 1. Please plot the output waveform when input with a step- from 0.3V to 1.2V, and a step+ from 1.2V to 0.3V, with rise/fall time of 10ns.
- 2. Please mark slew rate (slope between 10%- 90% of final value), and the settling time (to within 10mV error) on your step+ and step- responses.

$$\frac{I_{\rm ss}}{Cc} = \frac{31.478\mu}{0.15p} = 209.85M$$

$$-\frac{\min(I5, I_{b2})}{Cc} = \frac{-31.48\mu}{0.5p} = -62.96M$$

3. Compare slew rate simulation results with hand calculation.

	Simulation	Hand Calculate	誤差值	settle time
$SR^+(\frac{V}{\mu s})$	55.1M	209.85M	280.85%	35ns
$SR^{-}(\frac{v}{\mu s})$	-91.2M	-62.96M	30.96%	19.7ns

(i) Closed-loop transfer function with diff R

1. Print .tf output to discuss the gain and input/output impedance

圖 12 transfer curve

2. Please discuss the difference.

Ri、Rf 為 1k 時,Vout transfer curve 與 Ri、Rf 為 100k 時不同,在 Vin=0-0.75 間,無法上升到 VDD。

推測是因放大器回授增益因 $Ri \times Rf$ 電阻降低而降低,表現較不理想。 回授增益 $A_f = Ao/1 + Ao\beta$,而其中 $\beta = 1/Rf$,若 Rf 不夠大,將導致 $A_f = 1/\beta$,會變成與 open loop 無關,直接由 β 決定電路回授增益。

(j) Discussion

1. Please fill the following table. and discuss your design for frequency compensation and for best FoM.

V _{DD}	1.5V			
I _{DD} (total current exclude of I _{mb1}) *1	75.683 μΑ			
I _{mb2} ,I _{mb3}	31.478 μΑ	44.205 μΑ		
Rc, Cc(<10pF)	9.5K 0.15pF			
Open-loop performance(after final compensation)				
DC gain(>60dB)	60.1dB			
Unity gain frequency *2	204.53MHz			
Phase margin	45.65			
Closed-loop performance(after final compensation)				
T.H.D	-83.1dB			
S.R.+ *3	55.1 V/ <i>μ</i> S			
S.R *4	-91.2V/ μ S			
Settling time	35ns			
Figure of merit(after final compensation)				
*2/*1	2.7			
*3/*1	0.73			
*4/*1	1.21			

這次主要分為 slew rate、unity gain frequency、IDD 三者關係去調便 FOM。 調大 slew rate 方法為小 Cc 和大電流,Cc 小有助於 slew rate 的表現,但會使得 phase margin 表現變差,較容易使電路不穩定。而大電流就要看到底是 slew rate 成長幅度較大還是電流下降程度較多。

至於 Rc 的功能,是用於使零點頻率更大,zero = $\frac{1}{Cc(\frac{1}{am}-Rc)}$, Rc 越大,便可使

zero 落在左半平面, phase margin 會更穩定;反之若 zero 落在右半平面, 會使電路不穩定,輸出將有可能發散。

實際測試幾組下來,發現此次作業的電流太小,弊大於利。固本次作業在做取 捨時選擇捨棄電流,採取大電流大頻寬大 slew rate 的設計方向設計。