Privacy Homomorphism and Applications through Symmetric Key Encryption Algorithms

Devesh C Jinwala, Professor, SVNIT, Surat and Adjunct Professor, IIT Jammu

Sardar Vallabhbhai National Institute of Technology Surat

1

Asymmetric Key Homomorphic Algorithms

- Deterministic Algorithms
 - $\, \square \,$ RSA Algorithm
- Probabilistic Algorithms
 - □ The Goldwasser-Micali Algorithm
 - $\hfill \square$ The Paillier Encryption Algorithm
 - □ The ElGamal Cryptosystem
 - □ The Okamoto-Uchiyama Cryptosystem

Mr D C Jinwala, CS614, Machine Learning in Security, MTech - I (2nd Sem), DoCSE, SVNIT, Surat, Spring 2022-23

2/75

Asymmetric Key Homomorphic Algorithms

- Deterministic Algorithms
 - □ RSA Algorithm
- Probabilistic Algorithms
 - □ The Goldwasser-Micali Algorithm
 - □ The Paillier Encryption Algorithm
 - □ The ElGamal Cryptosystem
 - □ The Okamoto-Uchiyama Cryptosystem

Mr D C Jinwala, CS614, Machine Learning in Security, MTech - I (2nd Sem), DoCSE, SVNIT, Surat, Spring 2022-23

3/7

3

RSA - Key Generation

- Select primes: *p*=17 & *q*=11
- Compute $n = pq = 17 \times 11 = 187$
- Compute $\phi(n)=(p-1)(q-1)=16\times 10=160$
- Select e : gcd(e,160)=1; choose e=7
- Determine d: d * e = 1 mod 160 and d < 160 Value is d=23
 since 23×7=161= 10×160+1
- Publish public key P_k={7,187}
- Keep secret private key S_k={23,17,11}

Mr D C Jinwala, CS614, Machine Learning in Security, MTech - I (2nd Sem), DoCSE, SVNIT, Surat, Spring 2022-23

RSA Algorithm

```
Algorithm RSA ()
```

Key Generation: Choose two distinct prime numbers p and q.

Compute n=pq.

Compute $\Phi(n) = (p-1)(q-1)$, where Φ is Eulers totient

function.

Choose an integer e such that $1 < e < \Phi(n)$ and

 $gcd(e, \Phi(n)) = 1,$

i.e. e and $\Phi(n)$ are co primes.

Determine $d=e^{-1}mod \Phi(n)$;

i.e. d is the multiplicative inverse of $e \mod \Phi(n)$.

Message Encryption: $c = m^e \pmod{n}$

Decryption: $m = c^d \pmod{n}$

Mr D C Jinwala, CS614, Machine Learning in Security, MTech - I (2nd Sem), DoCSE, SVNIT, Surat, Spring 2022-23

5/7

5

RSA – Algorithm – Homomorphic Property

$$C_1 * C_2 \mod n = E(m_1 * m_2) \mod n$$

Mr D C Jinwala, CS614, Machine Learning in Security, MTech - I (2nd Sem), DoCSE, SVNIT, Surat, Spring 2022-23

9/7

9

Asymmetric Key Homomorphic Algorithms

- Deterministic AlgorithmsRSA Algorithm
- Probabilistic Algorithms
 - □ The Goldwasser-Micali Algorithm
 - □ The Paillier Encryption Algorithm
 - □ The ElGamal Cryptosystem
 - □ The Okamoto-Uchiyama Cryptosystem

Mr D C Jinwala, CS614, Machine Learning in Security, MTech - I (2nd Sem), DoCSE, SVNIT, Surat, Spring 2022-23

11/7

11

Goldwasser-Micali – Key Generation

- Select primes: p=23 & q=37, where p \neq q
- Select some Quadratic non-residue $a = 80 \ni \binom{a}{p} = \binom{a}{q} = -1$
- ...
- $\left(\frac{a}{p}\right) = \begin{cases} 1 \text{ if } a \text{ is a quadratic residue modulo } p \text{ and } a \not\equiv 0 \pmod{p} \\ -1 \text{ if } a \text{ is a quadratic non-residue modulo } p \\ 0 \text{ if } a \equiv 0 \pmod{p}. \end{cases}$

security of the scheme is based on the hardness of determining whether a number x is a QR modulo n, when the factoring of n is unknown and the Jacobi symbol $\left(\frac{x}{n}\right)$ is 1

If p is an odd prime and if α is a generator of Z_p^* . Then, $a \in Z_p^*$ is a QR modulo p iff $a = \alpha^i \mod p$, where i is an even integer.

Mr D C Jinwala, CS614, Machine Learning in Security, MTech - I (2nd Sem), DoCSE, SVNIT, Surat, Spring 2022-23

Multiplicative Group

- A multiplicative group Z^{*}_n
 - □ A group whose group operation is identified with multiplication.

 - □ In a multiplicative group, the identity element is denoted 1, and the inverse of the element g is written as g⁻¹, voiced "g inverse."
 - □ If n is prime, then $Z_n^* = \{a \mid 1 \le a \le n-1\}$

Mr D C Jinwala, CS614, Machine Learning in Security, MTech - I (2nd Sem), DoCSE, SVNIT, Surat, Spring 2022-23

13/7

13

Multiplicative Group

- A multiplicative group Z^{*}_n & Euler's Totient function
- The order of a multiplicative group Z_n^* denoted $|Z_n^*|$ is defined as $|Z_n^*|$ i.e. the number of elements in Z_n^*
- Illustration:
 - □ Let n = 21. Then, Z_{21}^* = {1,2,4,5,8,10,11,13,16,17,19,20}
 - \square Now, $\emptyset(21) =$
 - $\emptyset(7).\emptyset(3)=6.2=12=|Z^*_{21}|$

Mr D C Jinwala, CS614, Machine Learning in Security, MTech - I (2nd Sem), DoCSE, SVNIT, Surat, Spring 2022-23

Euler's theorem

- Let $n \ge 2$ be an integer. Then if $a \in Z_n^*$, $a^{\emptyset(n)} \equiv 1 \pmod{n}$
- e.g.

```
a=3; n=10; \emptyset (10)=4;
hence 3^4 = 81 \equiv 1 \mod 10
```

What about a=7 i.e. 7⁴ mod 10?
And a=5?

a=2; n=11; $\emptyset(11)=10$; hence $2^{10} = 1024 = 1 \mod 11$

- If n is a product of distinct primes,
 - \square and if $r \equiv s \pmod{\emptyset(n)}$, then $a^r \equiv a^s \pmod{n}$
 - $\ \ \,$ i.e. when working with modulo such as n, exponents can be reduced modulo $\ \ \,$ $\ \ \,$ modulo $\ \ \,$ $\ \ \,$

Mr D C Jinwala, CS614, Machine Learning in Security, MTech - I (2nd Sem), DoCSE, SVNIT, Surat, Spring 2022-23

15/75

15

Order of elements of an MG

- Let $a \in Z_{n}^*$. Then, the order of a, denoted by ord(a),
 - is the <u>least</u> positive integer t such that $a^t \equiv I \pmod{n}$
 - e.g. consider again $Z_{21}^* = \{1,2,4,5,8,10,11,13,16,17,19,20\}$
 - $\phi(21) = 12 = |Z^*_{21}|.$
 - Now the orders of various elements in Z_{21}^{*} are:

a	1	2	4	5	8	10	11	13	16	17	19	20
Ord(a)	1	6	3	6	2	6	6	2	3	6	6	2

- Ord(a) = mod(power(a, Ai), 21) in Excel sheet

Mr D C Jinwala, CS614, Machine Learning in Security, MTech - I (2nd Sem), DoCSE, SVNIT, Surat, Spring 2022-23

Generator, Cyclic group

- Let $\alpha \in Z_n^*$.
 - if the order of α is $\emptyset(n)$, then α is said to be a generator or a primitive element of Z_n^* .
 - Are there any generators in the group Z_{2l}^* ?

a	1	2	3	4	5	6	7	8	9	10
Ord(a)	1	6	-	3	6	-	-	2	_	6
a	11	12	13	14	15	16	17	18	19	20
Ord(a)	6	_	2	_	-	3	6	_	6	2

Mr D C Jinwala, CS614, Machine Learning in Security, MTech - I (2nd Sem), DoCSE, SVNIT, Surat, Spring 2022-23

17/75

17

Generator, Cyclic group

- IF Z_n^* has a generator, then Z_n^* is said to be a cyclic group.
 - In the above example, Z_{21}^* is not a cyclic group, since no generator is equal to $\emptyset(n)$ i.e. 12.

a	1	2	4	5	8	10	11	13	16	17	19	20
Ord(a)	1	6	3	6	2	6	6	2	3	6	6	2

Mr D C Jinwala, CS614, Machine Learning in Security, MTech - I (2nd Sem), DoCSE, SVNIT, Surat, Spring 2022-23

Generator, Cyclic group (contd)

- □ Consider now a group Z₂₅*
 - $\ \ \, \square \,\, Z_{25}{}^* = \{1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14, 16, 17, 18, 19, 21, 22, 23, 24\}$
 - \Box i.e. $\Phi(25) = |Z_{25}^*| = 20$
 - \square Now the orders of various elements in \mathbb{Z}_{25}^* are:

Use	Use the formula Ord(a) = mod(power(a,Ai),25) in Excelsheet											
a	1	2	3	4	6	7	8	9	10	11	12	13
Ord(a)	1	20	20	10	5	5	20	10	-	5	?	?
a	14	15	16	17	18	19	21	23	24			
Ord(a)	?	?	?	?	?	?						

 \square Thus, Z_{25} * is indeed a cyclic group because 2,3,8,... are the generators of the group.

Mr D C Jinwala, CS614, Machine Learning in Security, MTech - I (2nd Sem), DoCSE, SVNIT, Surat, Spring 2022-23

19/75

19

Generator, Cyclic group (contd)

- □ Consider now a multiplicative group Z₁₃*
 - $Z_{13} = \{1, 2, 3, 4, 6, 7, 8, 9, 11, 12\}$
 - \Box i.e. $\Phi(13) = |Z_{13}^*| = 12$
 - \Box Compute the orders of various elements in \mathbb{Z}_{13} *:

α	0	1	2	3	4	5	6	7	8	9	10	11
α^i mod 13	1	6	12	3	7	4	12	12	4	3	6	12

- □ Thus,
 - $\alpha = 2, 6, 7, 11$ are the generators of the group.
 - \square Note the case of 5^t mod 13 with t=4,12.

Mr D C Jinwala, CS614, Machine Learning in Security, MTech - I (2nd Sem), DoCSE, SVNIT, Surat, Spring 2022-23

21/75

21

Generators.....

- How many Generators can be there of a group if Z_n^* is a cyclic group ? □ if Z_n^* is cyclic, then the number of generators is $\Phi(\Phi(n))$.
 - e.g. Z_{21}^* is not cyclic doesn't have a generator because n does not satisfy any of the conditions above in first
- Are $Z_{11}^*, Z_7^*, Z_{13}^*, Z_{17}^*, Z_{19}^*$ cyclic?
- Is Z_{30}^* cyclic ? $\Phi(30)$ is $\Phi(6)^* \Phi(5) = 2*4=8$.

Mr D C Jinwala, CS614, Machine Learning in Security, MTech - I (2nd Sem), DoCSE, SVNIT, Surat, Spring 2022-23

How to test for a given number to be a Generator?

- Consider a MG Z*, where p is a prime.
- Then, it is easy to test whether a given element is its generator or not. How?
 - \Box As p is a prime, $\Phi(p) = p-1$, and
 - \Box the number of generators in it is $\Phi(p-1)$,
 - - g is a generator of Z_p^* if and only if

$$g^{(p-1)/pi} \neq 1 \mod p$$
 for all $p_i \leq 1 \leq k$

Mr D C Jinwala, CS614, Machine Learning in Security, MTech - I (2nd Sem), DoCSE, SVNIT, Surat, Spring 2022-23

23/7

23

How to test for a given number to be a Generator?

- e.g. consider Z_{13}^* . Check whether 7 is a generator or not.
- Now,
 - $\Phi(13) = p-1 = 12$, and
 - \Box the number of generators in it is $\Phi(p-1) = \Phi((12) = 4$.
 - □ Also, the distinct prime factors of p-1 i.e. 12 are 2,3. Hence, p_1 =2, p_2 =3.
 - □ Then,
 - $g^{(p-1)/p_1} = 7^{12/2} = 7^6 \mod 13 = 12 \mod 13 \neq 1 \mod 13$, and
 - $g^{(p-1)/p_2} = 7^{12/3} = 7^4 \mod 13 = 9 \mod 13 \neq 1 \mod 13$
- Hence, 7 is indeed a generator of Z_{13}^*

$$g^{(p-1)/pi} \neq 1 \mod p$$
 for all $p_i \leq 1 \leq k$

Mr D C Jinwala, CS614, Machine Learning in Security, MTech - I (2nd Sem), DoCSE, SVNIT, Surat, Spring 2022-23

24/75

How to test for a given number to be a Generator?

- e.g. consider Z_{13}^* . Now, check whether 8 is a generator or not.
- Now,
 - $\Phi(13) = p-1 = 12$, and
 - \Box the number of generators in it is $\Phi(p-1) = \Phi((12) = 4$.
 - □ Also, the distinct prime factors of p-1 i.e. 12 are 2, 3. Hence, p_1 =2, p_2 =3.
 - □ Then,
 - $g^{(p-1)/p_1} = 8^{12/2} = 8^6 \mod 13 = 12 \mod 13 \neq 1 \mod 13$, and
 - $g^{(p-1)/p_2} = 8^{12/3} = 8^4 \mod 13 = 1 \mod 13$
- Hence, 8 is NOT a generator of Z_{13}^*

$$g^{(p-1)/pi} \neq 1 \mod p$$
 for all $p_i \leq i \leq k$

Mr D C Jinwala, CS614, Machine Learning in Security, MTech - I (2nd Sem), DoCSE, SVNIT, Surat, Spring 2022-23

25/75

25

Quadratic Residues – an illustration

- e.g. for Z_{13}^* , one of its generator is 6 (since $6^{\Phi(13)} \mod 13 = 1 \mod 13$)...
- Hence,

$6^2 \mod 13 = 10$	$6^4 \mod 13 = 9$	$6^6 \mod 13 = 12$
$6^8 \mod 13 = 3$	$6^{10} \mod 13 = 4$	$6^{12} \mod 13 = 1$
$6^{14} \mod 13 = 10$	$6^{16} \mod 13 = 9$	$6^{18} \mod 13 = \dots$

- □ Therefore,
 - the Quadratic Residues set is $Q_{13} = \{1,3,4,9,10,12\}$ and
 - the Quadratic non-Residues set \overline{Q}_{13} is = {2,5,6,7,8,11}

Mr D C Jinwala, CS614, Machine Learning in Security, MTech - I (2nd Sem), DoCSE, SVNIT, Surat, Spring 2022-23

Goldwasser-Micali – Key Generation

- Select primes: p=23 & q=37, where p \neq q
- Select some a such that (i.e. \ni) $\binom{a}{p} = \binom{a}{q} = -1$. i.e. a is quadratic non-residue modulo p and is quadratic non-residue modulo q
- Choose a=80.
- Compute N = p * q = 851
- Public Key $P_k = (a, N) = (80, 851)$, Secret Key $S_k = (p, q) = (23, 37)$

If p is an odd prime and if α is a generator of Z_p^* . Then, $a \in Z_p^*$ is a QR modulo p iff $a = \alpha^i \mod p$, where i is an even integer.

Mr D C Jinwala, CS614, Machine Learning in Security, MTech - I (2nd Sem), DoCSE, SVNIT, Surat, Spring 2022-23

27/75

a Q non-

residue?

27

Calculating Lagrange's number

Definition 3.1.6. An integer a is said to be a quadratic residue modulo n if there exists 0 < x < n such that

$$x^2 \equiv a \mod n$$
.

Otherwise, a is said to be a non-quadratic residue modulo n.

If n is an odd prime, then determining whether or not an integer a is a quadratic residue modulo p is equivalent to calculating the Legendre symbol

which can be efficiently calculated by the formula

$$\left(\frac{a}{p}\right) = a^{\frac{p-1}{2}} \mod p.$$

Mr D C Jinwala, CS614, Machine Learning in Security, MTech - I (2nd Sem), DoCSE, SVNIT, Surat, Spring 2022-23

Aids to the calculations

- Power Mod calculator:
 https://www.mtholyoke.edu/courses/quenell/s2003/ma139/js/powermod.html
- Quadratic residues calculator:
 https://asecuritysite.com/encryption/modsq?aval=44&pval=83
- Primitive roots calculator:
 http://www.bluetulip.org/2014/programs/primitive.html

Mr D C Jinwala, CS614, Machine Learning in Security, MTech - I (2nd Sem), DoCSE, SVNIT, Surat, Spring 2022-23

29/7

29

эт

Goldwasser-Micali – Algorithm – Homomorphic Property

$$C_1 * C_2 \bmod n = E(m_1 + m_2) \bmod 2$$

Mr D C Jinwala, CS614, Machine Learning in Security, MTech - I (2nd Sem), DoCSE, SVNIT, Surat, Spring 2022-23

33/75

33

Asymmetric Key Homomorphic Algorithms

- Deterministic AlgorithmsRSA Algorithm
- Probabilistic Algorithms
 - □ The Goldwasser-Micali Algorithm
 - □ The Paillier Encryption Algorithm
 - □ The ElGamal Cryptosystem
 - □ The Okamoto-Uchiyama Cryptosystem

Mr D C Jinwala, CS614, Machine Learning in Security, MTech - I (2nd Sem), DoCSE, SVNIT, Surat, Spring 2022-23

35/7

35

What are the primitive roots?

- def: Primitive root: A primitive root of a prime p is an integer g such that g (mod p) has multiplicative order p-1.
 - Let $\alpha \in \mathbb{Z}^*$ n, the multiplicative order of α is \emptyset (n).
 - So, what do we mean by saying that g is a primitive root if g (mod p) has multiplicative order p-1?
 - So, we can test for an element to a primitive as we did before.
 - Find ø(p) and find its distint prime factors and test whether each mod p is not I mod p.

Mr D C Jinwala, CS614, Machine Learning in Security, MTech - I (2nd Sem), DoCSE, SVNIT, Surat, Spring 2022-23

What are the primitive roots in this example?

- Finding primitive roots of GF(107)
 - Find $\emptyset(p)$ and find its distinct prime factors and test whether each mod p is not I mod p.
 - Here, $\phi(p) = \phi(107) = 106$.
 - And prime factors of 106 are 53 and 2.
 - Let us start from 2,
 - $2^{106/53} \mod 107 = 2^2 \mod 107 = 4 \mod 107 \not\equiv 1 \mod 107$
 - $2^{106/2} \mod 107 = 2^{53} \mod 107 \not\equiv 1 \mod 107$.
 - Therefore, 2 is indeed primitive root of GF(107).

Mr D C Jinwala, CS614, Machine Learning in Security, MTech - I (2nd Sem), DoCSE, SVNIT, Surat, Spring 2022-23

37/7

37

ElGamal – Key Generation

- Prime p = 107 and primitive root $\alpha = 2$
- Private key is chosen at random from $\{1..p-1\}$ i.e. $S_k = a = 67$
- $\beta = \alpha^a \mod p = 2^{67} \mod 107 = 94$
- Public Key is $\{p, \alpha, \beta\} = \{107, 2, 94\}$

 $\alpha \in GF(q)$ is called a primitive element of GF(q) if all the non-zero elements of GF(q) can be written as α^i for some (positive) integer i.

Mr D C Jinwala, CS614, Machine Learning in Security, MTech - I (2nd Sem), DoCSE, SVNIT, Surat, Spring 2022-23

ElGamal – Key Generation

- Key setup with some other element as a primtive root
- Let GF be GF(107).
- Is 3 a primtive root of GF(107)?
- Are 4, 8, 16 primitive roots of GF(107)?
- Is 5 a primitive root?

Mr D C Jinwala, CS614, Machine Learning in Security, MTech - I (2nd Sem), DoCSE, SVNIT, Surat, Spring 2022-23

42/75

ElGamal – Key Generation

- Prime p = 107 and primitive root $\alpha = 5$
- Private key is chosen at random from $\{1..p-1\}$ i.e. $S_k = a = 67$
- $\beta = \alpha^a \mod p = 5^{67} \mod 107 = 96$
- Public Key is $\{p, \alpha, \beta\} = \{107, 5, 96\}$

 $\alpha \in GF(q)$ is called a primitive element of GF(q) if all the non-zero elements of GF(q) can be written as α^i for some (positive) integer i.

Mr D C Jinwala, CS614, Machine Learning in Security, MTech - I (2nd Sem), DoCSE, SVNIT, Surat, Spring 2022-23

43/75

43

ElGamal Algorithm – Homomorphic Property

$$(C_{11} * C_{21}, C_{12}C_{22}) \mod p = E(m_1 * m_2) \mod p$$

Mr D C Jinwala, CS614, Machine Learning in Security, MTech - I (2nd Sem), DoCSE, SVNIT, Surat, Spring 2022-23

47/75

47

Asymmetric Key Homomorphic Algorithms

- Deterministic Algorithms □ RSA Algorithm
- Probabilistic Algorithms
 - □ The Goldwasser-Micali Algorithm
 - □ The Paillier Encryption Algorithm
 - □ The ElGamal Cryptosystem
 - □ The Okamoto-Uchiyama Cryptosystem

Mr D C Jinwala, CS614, Machine Learning in Security, MTech - I (2nd Sem), DoCSE, SVNIT, Surat, Spring 2022-23

49

Paillier Algorithm

Algorithm Paillier () Key Generation:

- Choose two large prime numbers p and q randomly and independently of each other such that $\gcd(pq,(p-1)(q-1))=1$.
- This property is assured if both primes are of equivalent length, i.e. $p,q \in 1 || \{0,1\}^{\{s-1\}}$ for security parameter s.
- Compute n=pq and $\lambda = lcm(p-1, q-1)$.
- Select random integer g where $g \in Z_{n^2}^*$. Ensure n divides the order of g by checking the existence of the following modular multiplicative inverse: $\mu = (L(g^{\lambda} \bmod n^2))^{-1} \bmod n,$ where function L is defined as, L(u) = (u-1)/n
- The public (encryption) key is (n,g).
- The private (decryption) key is (λ, μ) .

Message Encryption: Let m be a message to be encrypted where $m \in \mathbb{Z}_n$. Select a random r where $\mathbf{r} \in \mathbb{Z}_{n^*}$

Compute ciphertext as: $c = g^m . r^n \mod n^2$

Decryption: Ciphertext $c \in \mathbb{Z}_{n^2}^*$

Compute message: $m = L(c^{\lambda} \mod n^2).\mu \mod n$

Mr D C Jinwala, CS614, Machine Learning in Security, MTech - I (2nd Sem), DoCSE, SVNIT, Surat, Spring 2022-23

Paillier – Key Generation

- Select Prime p = 7 and q = 11
- Compute n = p * q = 77.....n² = 5929
- Choose at random a number $g = 5652 \in \mathbb{Z}_{n^2}^*$
- Compute Carmichael's function $\lambda(n) = lcm[(p-1)(q-1)]$
- Compute $\mu = \left(L(g^{\lambda} \bmod n^2)\right)^{-1} \bmod n \dots Here, L(u) = (u-1)/n$
- The security is based on the decisional composite residuosity assumption (DCRA). The DCRA states that given a composite n and an integer z, it is hard to decide whether z is a n-residue modulo n^2 or not, i.e., whether there exists y such that $z \cong y^n \mod n^2$

Mr D C Jinwala, CS614, Machine Learning in Security, MTech - I (2nd Sem), DoCSE, SVNIT, Surat, Spring 2022-23

51/75

51

Paillier Algorithm – Homomorphic Property

$$(C_1 * C_2) \mod n^2 = E(m_1 + m_2) \mod n$$

Mr D C Jinwala, CS614, Machine Learning in Security, MTech - I (2nd Sem), DoCSE, SVNIT, Surat, Spring 2022-23

55/75

55

Asymmetric Key Homomorphic Algorithms

- Deterministic AlgorithmsRSA Algorithm
- Probabilistic Algorithms
 - □ The Goldwasser-Micali Algorithm
 - □ The Paillier Encryption Algorithm
 - □ The ElGamal Cryptosystem
 - □ The Okamoto-Uchiyama Cryptosystem

Mr D C Jinwala, CS614, Machine Learning in Security, MTech - I (2nd Sem), DoCSE, SVNIT, Surat, Spring 2022-23

57/7

57

Okamoto-Uchiyama Algorithm- Key Generation

- Choose two large primes p and q say p = 23, q = 7
- Let $n = p^2 * q = 529 * 7 = 3703$
- Choose $g \in \mathbb{Z}_n^* \ni g^{p(p-1)} \equiv 1 \mod p^2$ and $g^{p-1} \neq 1 \mod p^2$
 - say g = 1060.....then,
 - $1060^{23*22} \mod p^2 = ????$ and
 - $1060^{23*22} \mod p^2 = ???$
- $h = g^n \mod n = 10603703 \mod 3703 = 3440$
- Public Key is (n, g, h) = (3703, 1060, 3440)
- Private Key is (p, q) = (23, 7)

Mr D C Jinwala, CS614, Machine Learning in Security, MTech - I (2nd Sem), DoCSE, SVNIT, Surat, Spring 2022-23

Okamoto-Uchiyama Algorithm – Homomorphic Property

$$(C_1 * C_2) \bmod n = E(m_1 + m_2) \bmod n$$

Mr D C Jinwala, CS614, Machine Learning in Security, MTech - I (2nd Sem), DoCSE, SVNIT, Surat, Spring 2022-23

Cryptosystem	SKC/ PKC	Security Assumption	Homomorphic Operations	Message Expansion
Castelluccia	skc		0	1
Domingo-Ferrer	SKC		$\oplus \ominus \otimes \otimes_{c}$	d > 2
Stefeen Peter	SKC		\oplus \ominus \otimes \otimes_{c}	d > 2
RSA	PKC	RSA Problem	8	1
Goldwasser-Micali	PKC	Quadratic Residuosity Problem	X-OR	N
Paillier	PKC	Composite Residuosity Problem	⊕ ⊖ ⊗c	2
ElGamal	PKC	Discrete Logarithms and Diffie- Hellman Problem	8	2
Okamoto-Uchiyama	PKC	Integer Factorization and p- subgroup Problem	⊕ ⊝ ⊗ _c	3

Mr D C Jinwala, CS614, Machine Learning in Security, MTech - I (2nd Sem), DoCSE, SVNIT, Surat, Spring 2022-23

64

Limitations

- An inherent drawback of homomorphic cryptosystems is
 - that attacks on these systems might possibly exploit their additional structural information.
 - Inherent malleability
- For instance, using plain RSA for signing,
 - the multiplication of two signatures yields a valid signature of the product of the two corresponding messages
- There are ways to avoid such attacks, for instance,
 - by application of hash functions, the use of redundancy or probabilistic schemes,

Mr D C Jinwala, CS614, Machine Learning in Security, MTech - I (2nd Sem), DoCSE, SVNIT, Surat, Spring 2022-23

65/7

65

Contents

- Introduction
- Privacy
- Motivation for Privacy homomorphism
- Secure Data Aggregation
- Privacy homomorphism Algorithms for Secure Data Aggregation
- Other application scenarios
- Concluding Remarks

Mr D C Jinwala, CS614, Machine Learning in Security, MTech - I (2nd Sem), DoCSE, SVNIT, Surat, Spring 2022-23

66/75

More Application Scenarios

- Protection of the mobile agents
- Cloud based secure processing
- Multiparty computation
- Secret sharing scheme
- Threshold schemes
- Zero-knowledge proofs
- Election schemes
- Watermarking and fingerprinting schemes
- Oblivious transfer
- Commitment schemes
- Lottery protocols
- Mix-nets

Mr D C Jinwala, CS614, Machine Learning in Security, MTech - I (2nd Sem), DoCSE, SVNIT, Surat, Spring 2022-23

67/7

67

Protection of the mobile agents

- One of the most interesting applications of homomorphic encryption is its use in protection of mobile agents.
- All conventional computer architectures are based on binary strings and only require multiplication and addition,
 - homomorphic cryptosystems would offer the possibility to encrypt a whole program so that it is still executable.
- Hence, it could be used to protect mobile agents against malicious hosts by encrypting them.
- Two scenarios are possible here
 - computing with encrypted functions and
 - computing with encrypted data.

Source: Homomorphic Encryption — Theory and Application. By Jaydip Sen, DOI: 10.5772/56687, Intech Publishers

Mr D C Jinwala, CS614, Machine Learning in Security, MTech - I (2nd Sem), DoCSE, SVNIT, Surat, Spring 2022-23

68/75

Protection of the mobile agents

- Computation with encrypted functions
 - □ a special case of protection of mobile agents.
 - a secret function is publicly evaluated in such a way that the function remains secret.
 - using homomorphic cryptosystems, the encrypted function can be evaluated which guarantees its privacy.

https://www.govinfo.gov/content/pkg/GOVPUB-C13-5e600e94dd9588c3cd717d5201830fdb/pdf/GOVPUB-C13-5e600e94dd9588c3cd717d5201830fdb.pdf

Mr D C Jinwala, CS614, Machine Learning in Security, MTech - I (2nd Sem), DoCSE, SVNIT, Surat, Spring 2022-23

69/75

69

Cloud based secure processing...

©Vinod Vaikunthnathan

Mr D C Jinwala, CS614, Machine Learning in Security, MTech - I (2nd Sem), DoCSE, SVNIT, Surat, Spring 2022-23

70/75

Spam filterring e-mail server with privacy...

The email recipient, who has a master secret key sk, gives a spam-filtering service a key sk[f] for the functionality f; this f satisfies f(x) = 1 whenever message x is marked as spam by a specific spam predicate, otherwise f(x) = 0. A sender encrypts an email message x to the recipient, but the spam filter blocks the message if it is spam. The spam filter learns nothing else about the contents of the message.

Brent Waters, CACM 2012

Mr D C Jinwala, CS614, Machine Learning in Security, MTech - I (2nd Sem), DoCSE, SVNIT, Surat, Spring 2022-23

73/75

73

Protection of the mobile agents

- Computation with encrypted data
 - □ homomorphic schemes also work on encrypted data
 - u the aim is to compute publicly while maintaining the privacy of the secret data.
 - u this can be done encrypting the data in advance and then exploiting the homomorphic property to compute with encrypted data.

Mr D C Jinwala, CS614, Machine Learning in Security, MTech - I (2nd Sem), DoCSE, SVNIT, Surat, Spring 2022-23