(2º parcial) 15 de enero de 2021

1. (2 ptos.) Dado el siguiente fragmento de un programa en C.

```
#include<stdio.h>
int a;
int f1(int p1, float p2, int p3) {
   float b;
   b = p2 * p1 +p3;  // <--- PUNTO DE CONTROL
   return b; }
int main () {
   int c = 2;
   printf( "%d\n", f1(c, c*2, c*3)); }</pre>
```

- a) (0,75 ptos.) Mostrad el contenido completo de la TDS en el PUNTO DE CONTROL.
- b) (0,5 ptos.) Indicad el desplazamiento relativo de los parámetros p1 y p2 que aparecen en la instrucción del PUNTO DE CONTROL.
- c) (0,75 ptos.) Mostrad el contenido de los frames (RA) que se encuentran en la pila de ejecución cada vez que se pasa por el PUNTO DE CONTROL.
- 2. (1,5 ptos.) Contestad brevemente a las siguientes cuestiones:
 - a) (1 pto.) Construid el grafo de interferencias para el siguiente bloque de instrucciones, sabiendo que las variables activas a la entrada son $\{y,d\}$ y a la salida son $\{x,y\}$

c = y * d x = y - 2 b = x + y x = 5 * by = c + x

- b) (0,5 ptos.) Indicad cual de las siguientes afirmaciones es FALSA (error = -0.33)
 - 1) El calculo previo de constantes es una transformación algebraica que mejora el código
 - 2) Durante la carga de un registro de activación la dirección de retorno la apila el bloque llamador.
 - 3) Para poder asignar memoria estática a un objeto es necesario conocer su tamaño en tiempo de compilación.
 - 4) El k-coloreado de un grafo de interferencias se emplea en el proceso de selección de instrucciones mediante revestimiento o análisis sintáctico

3. (3,5 ptos.) Dada la siguiente gramática,

La instrucción repeat indica que la instrucción que le sigue, E, debe ejecutarse un total de E veces, donde E debe ser una expresión de tipo entero. La instrucción break, si aparece, supone la finalización del bucle. Diseñad un ETDS que realice las comprobaciones semánticas y genere código intermedio asociado.

4. (1 pto.) Dado el siguiente fragmento de código intermedio de un bloque básico, construid su GDA y aplicad las optimizaciones locales, a partir de este GDA. Considerad activas a la salida del bloque las variables: A, x.

(100)	$t_1 = 0$	(105)	$t_5 = x * 4$	(110)	$t_9 = t_8 * 4$
(101)	$k = t_1$	(106)	$t_6 = A[t_5]$	(111)	$A[t_9] = t_7$
(102)	$t_2 = x + k$	(107)	$t_7 = t_4 + t_6$	(112)	$t_{10} = k * 4$
(103)	$t_3 = t_2 * 4$	(108)	k = x	(113)	$t_{11} = A[t_{10}]$
(104)	$t_4 = A[t_3]$	(109)	$t_8 = k * 1$	(114)	$x = t_{11}$

5. Dado el siguiente fragmento de código intermedio,

(100) B = 0	$(104) \ t_1 = i * 2$	$(108) \ t_3 = t_2 - B$	$(112) \ t_4 = t_2 - B$
(101) N = 100	(105) M = A * 5	$(109) \ z = X[t_3]$	$(113) \ z = Y[t_4]$
(102) A = 2	$(106) \ t_2 = t_1 + 4$	(110) goto 114	$(114) \ i = i + 1$
(103) i = 0	$(107) \text{ if } t_2 > M \text{ goto } 111$	(111) B = 10	(115) if $i \leq N$ goto 104

- a) (0,5 ptos.) Determinad los bloques básicos que forman el bucle. Extraed el código invariante e indicad las variables de inducción y sus ternas asociadas.
- b) (0,75 ptos.) Aplicad el algoritmo de reducción de intensidad
- c) (0,75 ptos.) Aplicad el algoritmo de eliminación de variables de inducción.

1.

a)

TDS

Lexema	Categoría	Tipo	Nivel	desp
а	variable	tentero	0	0
p1	parámetro	tentero	1	-10
p2	parámetro	treal	1	-14
р3	parámetro	tentero	1	-16
f1	función	tentero	0	
b	variable	treal	1	0

TdArgumento

|--|

b) $desp_{p1}$: -10 $desp_{p2}$: -14

c)

2.a.-

Entrada = Salida - Def + Usa

	Def	Usa	Ent[]	Sal[]
c:= y*d	С	y,d	y,d	с,у
x:= y-2	X	У	с,у	c,x,y
b:= x+y	b	х,у	c,x,y	c,b
x := 5*b	X	b	c,b	C,X
y:=c+x	У	C,X	C,X	X,V

Para dibujar el grafo, ir tachando las salidas y unir con la primera entrada

2.b.-

FALSA: "El k-coloreado de un grafo de interferencias se emplea en el proceso de selección de instrucciones mediante revestimiento o análisis sintáctico"

