

# Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

# «Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)»

(МГТУ им. Н.Э. Баумана)

# ФАКУЛЬТЕТ **ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ**КАФЕДРА **КОМПЬЮТЕРНЫЕ СИСТЕМЫ И СЕТИ (ИУ6)**НАПРАВЛЕНИЕ ПОДГОТОВКИ **09.03.01 Компьютерные системы и сети**

### ОТЧЕТ по лабораторной работе № 3

Название: Изучение структур данных и методов работы с ними

Дисциплина: Технология разработки программных систем

| Студент       | ИУ6-42Б  | 14.04.2025      | Т.А. Гаджиев   |
|---------------|----------|-----------------|----------------|
|               | (Группа) | (Подпись, дата) | (И.О. Фамилия) |
| Преподаватель |          | 14.04.2025      | Е.К. Пугачёв   |
|               |          | (Подпись, дата) | (И.О. Фамилия) |

# СОДЕРЖАНИЕ

| Цель работы                                 | 3  |
|---------------------------------------------|----|
| Ход работы                                  | 4  |
| 1. Структурный подход                       | 4  |
| 1.1 Задание для структурного анализа        | 4  |
| 1.2 Исходный код программы для тестирования | 4  |
| 1.3 Выводы                                  | 6  |
| 2. Белый ящик                               | 7  |
| 2.1 Задание для метода «белого ящика»       | 7  |
| 2.2 Метод покрытия операторов               | 7  |
| 2.3 Метод покрытия решений                  | 8  |
| 2.4 Метод комбинаторного покрытия решений   | 8  |
| 2.5 Вывод                                   | 9  |
| 3. Метод «Чёрного ящика»                    | 9  |
| 3.1 Задание для метода «чёрного ящика»      | 9  |
| 3.2 Метод эквивалентного разбиения          | 10 |
| 3.3 Метод граничных значений                | 10 |
| 3.4 Вывод                                   | 10 |
| Вывол                                       | 11 |

## Цель работы

Приобрести навыки тестирования схем алгоритмов, исходных кодов программ и исполняемых модулей.

#### Ход работы

#### 1. Структурный подход

#### 1.1 Задание для структурного анализа

Программа должна создавать динамический односвязный список вещественных чисел и проверять на совпадение первой половины списка со второй (файл исходного кода v2.doc).

#### 1.2 Исходный код программы для тестирования

#### Листинг 1 — Код для структурного анализа

```
#include <iostream>
using namespace std;
struct el {
  int value;
  el* next;
};
int main() {
  el *First, *pass, *q;
  int pov, k, g, i, n;
  int mas[100];
  First = nullptr;
  cout << "Enter numbers (1000 to end): " << endl;
  cin >> i;
  First = new el;
  First->value = i;
  First->next = nullptr;
  pass = first;
  k = 1;
  cin >> i;
  do {
     q = new el;
     q->value = i;
     q->next = nullptr;
     pass->next = q;
     pass = q;
     k++;
     cin >> i;
  \} while (i == 1000);
  q = first;
  while (q!= nullptr) {
     cout << q->value << " ";
     q = q->next;
  cout << endl;
```

```
g = k;
k = k / 2;
q = first;
for (i = 0; i < k; i++) {
  q = q->next;
  pass = q;
for (i = 0; i < k; i++) {
  pov = 0;
  if (q->value == pass->value) {
     pov++;
     q = q->next;
     pass = pass->next;
  } else {
     q = q->next;
     pass = pass->next;
}
if (pov == i)
  cout << "Matches" << endl;
  cout << "Not matches" << endl;</pre>
return 0;
```

Таблица 1 — Результаты структурного тестирования

| Номер   | Строки, подлежащие |                        |                        |
|---------|--------------------|------------------------|------------------------|
| вопроса | проверке           | Результат проверки     | Вывод                  |
|         |                    |                        | Ошибка! pov не         |
|         |                    |                        | инициализирован, что   |
|         |                    | Переменные int pov, k, | приведет к ошибке в if |
|         |                    | g, i, n не             | (pov == i). Переменная |
|         |                    | инициализированы при   | п вообще не            |
| 1.1     | 12, 63             | объявлении             | используется.          |
|         |                    | Неправильный           | Условие while (i ==    |
|         |                    | алгоритм выхода для    | 1000) приведет к       |
| 1.2     | 33                 | ввода массива          | ошибке ввода массива   |

|     |        |                          | (неправильное условие  |
|-----|--------|--------------------------|------------------------|
|     |        |                          | выхода)                |
|     |        |                          | Несоответствие first и |
| 1.4 | 15, 21 | Опечатка в регистре      | First, ошибка          |
|     |        | First = new el; (строка  |                        |
|     |        | 18), q = new el; (строка | Ошибка! Нет Delete для |
|     |        | 26) — выделение          | освобождения           |
| 1.6 | 18, 26 | памяти                   | динамической памяти    |
|     |        | Некорректное условие     |                        |
|     |        | проверки pov == i.       |                        |
|     |        | Счётчик роу обнуляется   | Неправильная логика    |
|     |        | при каждой итерации, а   | алгоритма, нет выхода  |
|     |        | проверку надо делать с   | при несовпадении       |
| 3.4 | 51-61  | числом k.                |                        |

#### 1.3 Выводы

структурный контроль позволяет обнаружить общие ошибки кодирования.

#### Достоинства:

- не требует выполнения программы;
- позволяет обнаружить общие ошибки программирования.

#### Недостатки:

- ошибки, на обнаружение которых направлен структурный контроль, автоматически выявляются средствами разработки;
- по списку вопросов трудно обнаружить ошибки в логике программы;
  - большие программы трудно инспектировать.

#### 2. Белый ящик

#### 2.1 Задание для метода «белого ящика»



Рисунок 1 — Схема алгоритм задания для метода «белого ящика»

#### 2.2 Метод покрытия операторов

Результаты тестирования по методу покрытия операторов представлены в таблице 2.

Таблица 2 — Результаты тестирования по методу покрытия операторов

|             |                          | Значения          | Ожидаемый |
|-------------|--------------------------|-------------------|-----------|
| Номер теста | Назначение теста         | исходных данных   | результат |
| 1           | Проверить оператор S=Q*a | a = 2 b = 3 Q = 4 | S = 8     |
| 2           | Проверить оператор S=25  | a = 2 b = 1 Q = 4 | S = 25    |
| 3           | Проверить оператор S=a/Q | a = 6 b = 1 Q = 2 | S = 3     |

#### 2.3 Метод покрытия решений

Результаты тестирования по методу покрытия решений представлены в таблице 3.

Таблица 3 – Результаты тестирования по методу покрытия решений

|             | Назначение | Значения исходных | Ожидаемый      |
|-------------|------------|-------------------|----------------|
| Номер теста | теста      | данных            | результат      |
| 1           | да да      | a = 6 b = 1 Q = 2 | S = 3          |
|             |            |                   | S не присвоено |
| 2           | да нет     | a = 6 b = 1 Q = 0 | значение!      |
|             |            |                   | S не присвоено |
| 3           | нет да да  | a = 3 b = 0 Q = 2 | значение!      |
| 4           | нет да нет | a = 3 b = 1 Q = 4 | S = 25         |
| 5           | нет нет    | a = 3 b = 5 Q = 4 | S = 12         |

#### 2.4 Метод комбинаторного покрытия решений

По схеме алгоритма можно выделить 10 комбинаций условий:

- 1. a>Q\*Q
- 2. a<Q\*Q
- 3. a>b Q>0
- 4. a<br/>b Q>0
- 5. a<br/>b Q<0
- 6. a>b Q<0
- 7. b=0 Q<9
- 8. b=0 Q>9
- 9. abs(Q)>0
- 10.abs(Q)<0

Вышеперечисленные комбинации можно покрыть 6 тестами. Результаты тестирования представлены в таблице 4.

Таблица 4 — Таблица результатов тестирования для комбинаторного покрытия условий

| Номер | Номера покрытия | Значения исходных  | Ожидаемый      |
|-------|-----------------|--------------------|----------------|
| теста | вариантов       | данных             | результат      |
| 1     | 1, 9            | a = 5 b = 1 Q = 1  | S = 5          |
|       |                 |                    | S не присвоено |
| 2     | 1, 10           | a = 1 b = 2 Q = 0  | значение!      |
|       |                 |                    | S не присвоено |
| 3     | 2, 3, 7         | a = 3 b = 0 Q = 2  | значение!      |
| 4     | 2, 3, 8         | a = 3 b = 0 Q = 10 | S = 25         |
| 5     | 2, 4            | a = 1 b = 2 Q = 3  | S = 3          |
| 6     | 2, 5, 6         | a = 1 b = 2 Q = -1 | S = -1         |

#### **2.5** Вывод

В ходе тестирования при помощи комбинированного метода и метода покрытия решений удалось обнаружить ошибки: при некоторых входных данных значение S инициализировалось мусорным значением, так как во время выполнения алгоритма ему не было оно присвоено.

#### 3. Метод «Чёрного ящика»

#### 3.1 Задание для метода «чёрного ящика»

Реализовать калькулятор, который выполняет два действия «+» и «-» с целыми числами (исполняемый модуль v2.exe).



Рисунок 2 – Интерфейс программы для тестирования

#### 3.2 Метод эквивалентного разбиения

Результаты тестирования методом эквивалентного преобразования представили в таблице 5.

Таблица 5 – Результаты тестирования

| Но-   |                 |                    |                | Реакция |     |
|-------|-----------------|--------------------|----------------|---------|-----|
| мер   | Назначение те-  | Значение исход-    | Ожидаемый      | про-    | Вы- |
| теста | ста             | ных данных         | результат      | граммы  | вод |
|       | Проверка ввода  | Последова-         |                |         |     |
| 1     | чисел           | тельно 5 8 5 4 8   | В поле: 58548  | 58548   | OK  |
|       | Проверка опе-   | Последова-         |                |         |     |
| 2     | рации           | тельно 5 + 3       | В поле: 8      | 8       | OK  |
|       | Проверка вычи-  |                    |                |         |     |
|       | тания с отрица- |                    |                |         |     |
|       | тельным ре-     | Последова-         |                |         |     |
| 3     | зультатом       | тельно 5 - 8       | В поле: -3     | -3      | OK  |
|       | Проверка        | Последова-         |                |         |     |
| 4     | сброса          | тельно 5 + 3 C     | В поле: 0      | 0       | OK  |
|       | Проверка мно-   |                    |                |         |     |
|       | гократного сло- | Последова-         | В поле: 8 ->   |         |     |
| 5     | жения           | тельно $5 + 3 + 2$ | 10             | 10      | OK  |
|       | Проверка ввода  | Последова-         |                |         |     |
| 6     | нулей           | тельно 0 0 0 0 0   | В поле: 0      | 0       | OK  |
|       | Проверка ввода  |                    |                |         |     |
| 8     | не чисел        | В поле abdsds      | В поле: abdsds | 0       | OK  |

#### 3.3 Метод граничных значений

Программа работает стабильно при любых сценариях работы.

#### 3.4 Вывод

Одни и те же ошибки можно обнаружить разными методами «черного ящика»; тестирование — это очень трудоемкий процесс; нет гарантии, что обнаружены все ошибки даже при обеспечении полноты тестов по каждому методу.

#### Вывод

В ходе выполнения лабораторной работы освоили методы тестирования, а именно структурный метод, методы «белого» и «чёрного» ящиков. Приобрели навыки тестирования схем алгоритмов, исходных кодов программ и исполняемых модулей.