Zusammenfassung Algorithmische Mathematik II

12. Juli 2013

0.1 Zufallsvariablen und ihre Verteilung

Definition. • Eine diskrete Zufallsvariable ist eine Abbildung

$$X: \Sigma \to S$$
,

wobei S abzählbar sei.

• Die Verteilung von X ist die Wahrscheinlichkeitsverteilung μ_X auf S mit Gewichten

$$p_X(a) := P[X^{-1}(a)]$$

Bemerkung. Wir scheiben $\{X = a\}$ für $X^{-1}(a)$ und P[X = a] statt $P[\{X = a\}]$. Ist $A \subseteq S$, so kann $\mu x(A)$ als die Wahrscheinlichkeit interpretiert werden, mit der ein Element aus A ausgespuckt wird.

0.2 Binomialverteilung

Motivation: Man zieht eine Kugel aus einer Urne mit m Kugeln und legt sie wieder zurück. Das macht man n mal. Das mathematische Modell sieht folgendermaßen aus:

Die Kugeln werden mit 1, 2, ..., m durchnummeriert. Die Menge dieser Kugeln sei $S := \{1, 2, ..., m\}$ Der Ereignisraum ist dann $\Omega = S^n$, ein Elementarereignis ist dann $(x_1, x_2, ..., x_n) = \omega \in \Omega$, wobei $x_i \in S \forall i \in \{1, 2, ..., n\}$. (das sind die einzelnen Kugeln)

Es wird angenommen, dass die ω gleichverteilt sind, dh. für alle $\omega, \omega' \in \Omega$ gilt $p(\omega) = p(\omega') = \frac{1}{|S|^n}$.

Die Funktion $X_i: \Omega \to S: \omega = (x_1, x_2, ..., x_n) \to x_i$ gibt das *i*-te Ereignis zurück, also die Kugel, die als *i*-tes gezogen wurde.

Sei $E \subseteq S$ ein Teil der m Kugeln mit einer besonderen Eigenschaft (schwarze Kugeln, etc.). Die Wahrscheinlichkeit, dass beim i-ten Zug eine solche Kugel gezogen wird, ist gerade

$$P[x_i \in E] = \mu_{X_i}(E) = \frac{|E|}{|S|} =: p,$$

was als Erfolgswahrscheinlichkeit bezeichnet wird.

Die Wahrscheinlichkeit, dass dieser Erfolg k mal eintritt, wobei $k \in \{1, ..., n\}$, ist

$$P[N=k] = \binom{n}{k} p^k (1-p)^{n-k} =: p_{n,p}(k)$$

Ist dies die Massenfunktion einer Wahrscheinlichkeitsverteiling auf $\{0, ..., n\}$, so heißt diese Verteilung Binomialverteilung mit Parameter n und p. Sie gibt aus, mit welcher Wahrscheinlichkeit bei n-maligem Ziehen aus einer Urne genau k mal ein Erfolg gezogen wird. Für kleine Erfolgswahrscheinlichkeiten $\frac{\lambda}{n}$ und große n nähert sich die Binomialverteilung an die **Poisson-**

verteilung mit Parameter λ an:

$$p(k) := \frac{\lambda^k}{k!} e^{-\lambda} = \lim_{n \to \infty} p_{n, \frac{\lambda}{n}}(k)$$

0.3 Hypergeometrische Verteilung

Motivation: Man zieht eine Kugel aus einer Urne mit m Kugeln (r rote, m-r schwarze) und legt sie nicht wieder zurück. Das macht man n mal. Das mathematische Modell ist im Wesentlichen analog zur Binomialverteilung. Für die Ereignisse gilt diesmal zusätzlich $x_i \neq x_j \forall i, j \in \{1, ..., m\}$. $N(\omega) :=$ Anzahl der roten Kugeln in ω . Die Wahrscheinlichkeit, dass $N(\omega) = k$ ist (k rote Kugeln in ω), ist

$$P[N=k] = \frac{\binom{r}{k} \binom{m-r}{n-k}}{\binom{m}{n}}$$

für $k \in \{0,...,n\}$. Diese Verteilung heißt **hypergeometrische Verteilung** mit Parametern m,r,n.

Für $n \to \infty$ nähert sie sich an die Binoialverteilung an:

$$P[N=k] \to \binom{n}{k} p^k (1-p)^k$$

0.4 Bedingte Wahrscheinlichkeiten

Definition. Für Ereignisse A und B eines Wahrscheinlichkeitsraums (Ω, \mathcal{A}, P) mit $P[B] \neq 0$ heißt

$$P[A|B] := \frac{P[A \cap B]}{P[B]}$$

die bedingte Wahrscheinlichkeit von A gegeben B ("die Wahrscheinlichkeit dafür, dass A eintritt, wenn wir schon wissen, dass B eintritt").

Bemerkung.

- $P[\blacktriangle|B]: A \mapsto P[A|B]$ ist eine Wahrscheinlichkeitsverteilung auf (Ω, A) , die bedingte Verteilung gegeben B.
- Der Erwartungswert $E[X|B] = \sum_{a \in S} a \cdot P[X = a|B]$ einer diskreten Zufallsvariable $X : \Omega \to S$ bezüglich der bedingten Verteilung heißt **bedingte Erwartung von** X gegeben B.
- Im Fall der Gleichverteilung auf einer endlichen Menge gilt $P[A|B] = \frac{|A \cap B|}{|B|}$.

0.4.1 Berechnung von Wahrscheinlichkeiten durch Fallunterscheidung

Im Folgenden sei $\Omega = \bigcup H_i$ eine disjunkte Zerlegung von Ω in abzählbar viele Fälle ("Hypothesen").

Satz. Für alle $A \in \mathcal{A}$ gilt $P[A] = \sum_{i \in I, P[H_i] \neq 0} P[A|H_i] \cdot P[H_i]$.

Beweis. Man verwendet die σ -Additiviät und rechnet rum.

Die Zerlegung in Hypothesen kann eventuell mehr Information als der Gesamtüberblick der Situation liefern (vgl. "Simpson-Paradoxon" bei Bewerbungen in Berkeley).

0.4.2 Bayessche Regel

Wenn man wissen will, wie wahrscheinlich die Hypothesen H_i sind, kann man zuerst $P[H_i]$ einschätzen ("a priori defree of belief"). Wenn man dann zusätzlich weiß, dass ein Ereignis $A \in \mathcal{A}$ mit $P[A] \neq 0$ eintritt und die bedingte Wahrscheinlichkeit $P[A|H_i]$ ("likelyhood") für jedes H_i kennt, dann kann man eine neue Einschätzung ("a posteriori degree of belief") erhalten, und zwar gemäß dem folgenden

Korollar. (Bayessche Regel). Für $A \in \mathcal{A}$ mit $P[A] \neq 0$ gilt

$$P[H_i|A] = \frac{P[A|H_i] \cdot P[H_i]}{\sum_{j \in I, P[H_j] \neq 0} P[A|H_j] \cdot P[H_j]}$$

für alle $i \in I$ mit $P[H_i] \neq 0$, d.h. $P[H_i|A] = c \cdot P[H_i] \cdot P[A|H_i]$, wobei c eine von i unabhängige Konstante ist.

(Man schätzt $P[H_i]$ ein. Mit Hilfe von der obigen Formel rechnet man dann aus P[A] und den "likelyhoods" die "neue" Einschätzung $P[H_i|A]$. Also erhält man theoretisch keine neue Information, aber diese "Wahrscheinlichkeiten" sind häufig nur empirische Werte und in dem Fall kann man mit dieser Formel die bedingten Wahrscheinlichkeiten $P[H_i|A]$ einschhätzen.)

0.5 Mehrstufige diskrete Modelle

Für ein n-stufiges Zufallsexperiment mit abzählbaren Stichprobenräume $\Omega_1, \ldots, \Omega_n$ von Teilexperimenten kann $\Omega = \prod \Omega_i$ als der Stichprobenraum des Gesamtexperiments aufgefasst werden.

Für $\omega \in \Omega$ und $k \in \{1, ..., n\}$ sei $X_k(\omega) = \omega_k$ der Ausgang des k-ten Experiments. Angenommen, wir kennen $P[X_1 = x_1] = p_1(x_1)$ für alle $x_1 \in \Omega_1$ und $P[X_k = x_k | X_1 = x_1, ..., X_{k-1} = x_{k-1}] = p_k(x_k | x_1, ..., x_{k-1})$ für alle $k \in \{1, ..., n\}$. Dann können wir die gesamte Wahrscheinlichkeitsverteilung P auf Ω folgendermaßen erhalten:

Satz. Seien p_1 und $p_k(\blacktriangle|x_1,\ldots,x_{k+1})$ für jedes $k=2,\ldots,n$ und $x_i\in\Omega_i$ die Massenfunktion einer Wahrscheinlichkeitsverteilung auf Ω_k . Dann existiert genau eine Wahrscheinlichkeitsverteilung P auf $(\Omega,\mathcal{P}(\Omega))$, die die obige Eigenschaften hat. Diese ist bestimmt durch die Massenfunktion

$$p(x_1,\ldots,x_n)=p_1(x_1)p_2(x_2|x_1)p_3(x_3|x_1,x_2)\cdots p_n(x_n|x_1,\ldots,x_{n-1}).$$

Beweis. Rumrechnerei. Die Eindeutigkeit folgt aus der Existenz.

0.5.1 Produktmodelle

Ist der Ausgang des *i*-ten Experiments unabhängig von x_1, \ldots, x_{i-1} , so gilt $p_i(x_i|x_1, \ldots, x_{i-1}) = p_i(x_i)$ mit einer von x_1, \ldots, x_{i-1} unabhängigen Massenfunktion p_i einer Wahrscheinlichkeitsverteilung P_i auf Ω_i . In diesem Fall gilt $p(x_1, \ldots, x_n) = \prod_{i=1}^n p_i(x_i)$ für alle $(x_1, \ldots, x_n)\Omega$.

Definition. Die Wahrscheinlichkeitsverteilung P auf $\Omega = \prod \Omega_i$ mit obiger Massenfunktion heißt **Produkt** von P_1, \ldots, P_n und wird mit $P_1 \otimes \ldots \otimes P_n$ notiert.

Beispiel. Bernouilliverteilung.

Satz. Im Produktmodell gilt für beliebige Ereignisse $A_i \subseteq \Omega_i$

$$P[A_1 \times \dots A_n] = P[X_1 \in A_1, \dots, X_n \in A_n] = \prod_{i=1}^n P[X_i \in A_i] = \prod_{i=1}^n P_i[A_i],$$

 $d.h. X_1, \ldots, X_n$ sind unabhängige Zufallsvariablen (s. nächstes Kapitel).

Beweis. Rechnung.
$$\Box$$

0.5.2 Markov-Ketten

Wir wollen eine zufaällige Entwicklung mit abzählbarem Zustandsraum S modellieren. Dazu betrachten wir den Stichprobenraum $\Omega = S^{n+1}$. Häufig hängt die Weiterentwicklung des Systems nur vom gegenwärtigen Zustand ab, d.h. es gilt $p_k(x_k|x_0,\ldots,x_{k-1})=p_k(x_{k-1},x_k)$ ("Bewegungsgesetz"), wobei für $p_k: S \times S \to [0,1]$

1.
$$p_k(x,y) \ge 0$$
 für alle $x,y \in S$ und

2.
$$\sum_{y \in S} p_k(x, y) = 1$$

gelten. (Dies bedeutet, dass $p_k(x, \blacktriangle)$ für jedes $x \in S$ die Massenfunktion einer Wahrscheinlichkeitsverteilung auf S ist.)

Definition. Eine "Matrix" $p_k(x, y)$ mit den obigen Eigenschaften heißt **stochastische Matrix** (oder **stochastischer Kern**) auf S.

(Im Mehrstufenmodell gilt in dieser Situation $p(x_0, ..., x_n) = p_0(x_0)p_1(x_1, x_2) \cdots p_n(x_{n-1}, x_n)$.) Der Fall, in dem $p_k(x, y) = p(x, y)$ unabhängig von k ist, nennt man **zeitlich homogen**.

Beispiel.

- Produktmodell
- Random Walk auf \mathbb{Z}^d
- Urnenmodelle

0.5.3 Berechnung von Wahrscheinlichkeiten

Satz. (Markov-Eigenschaft) Für alle $0 \le k < l \le n \text{ und } x_0, \dots, x_l \in S \text{ mit } P[X_0 = x_0, \dots, X_k = x_k] \ne 0 \text{ gilt}$

$$P[X_l = x_l | X_0 = x_0, \dots, X_k] = P[X_l = x_l | X_k = x_k] = (p_{k+1} p_{k+2} \cdots p_l)(x_k, x_l),$$

wobei $(pq)(x,y) := \sum_{z \in S} p(x,z) q(z,y)$ das Produkt der Matrizen p und q ist.

Beweis. Indexschlacht und Rechnungskampf.

0.6 Unabhängigkeit von Ereignissen

Definition. Zwei Ereignisse heissen unabhängig, falls

$$P[A \cap B] = P[A] \cdot P[B]$$

gilt.

Eine beliebige (nicht notwendig endlich oder abzählbar!) Kollektion von Ereignissen A_i ($i \in I$) heisst unabhängig, falls

 $P[A_{i_1} \cap ... \cap A_{i_n}] = \prod_{k=1}^n P[A_{i_k}]$ für alle $n \in \mathbb{N}$ und alle paarweise verschiedenen $i_1, ..., i_n \in I$ gilt.

Satz. Sind die Ereignisse $A_1, ..., A_n \in A$ unabhängig und $B_j = A_j$ oder $B_j = A_j^C$ für alle $j \in \{1, ..., n\}$, so sind auch die Ereignisse $B_1, ..., B_n$ unabhängig.

Seien $A_1, A_2, ...$ unabhängige Ereignisse mit jeweils Wahrscheinlichkeit p. Wir definieren die Wartezeit auf das erste Eintreten eines Ereignisses durch

$$T(\omega) = \min\{n \in \mathbb{N} : \omega \in A_n\}$$

Es gilt $P[T = n] = p \cdot (1 - p)^{n-1}$.

Definition. Die Wahrscheinlichkeitsverteilung auf \mathbb{N} mit Massenfunktion

$$p(n) = p \cdot (1 - p)^{n-1}$$

heisst geometrische Verteilung zum Parameter p.

Die Wahrscheinlichkeit, dass unter n Ereignissen k eintreten ist gleich der Binomialverteilung. Sei S_n gleich der Anzahl der eingetretenen Ereignisse innerhalb der ersten n Ereignisse.

Satz. (Bernstein-Ungleichung)

$$\forall \epsilon > 0 \forall n \in \mathbb{N}P\left[\frac{S_n}{n} \ge p + \epsilon\right] \le e^{-2\epsilon^2 n}$$

 $(analog f \ddot{u}r \ge p - \epsilon)$

0.7 Unabhängige Zufallsvariablen und Random Walk

Definition. Seien $X_i: \Omega \to S_i, i \in \{1, ..., n\}$ diskrete Zufallsvariablen auf dem Wahrscehinlichkeitsraum (Ω, A, P) . Dann ist $(X_1, ..., X_n): \Omega \to S_1 \times ... \times S_n$ eine Zufallsvariable.

Die Verteilung des Zufallsvektors $(X_1,...,X_n)$ heißt **gemeinsame Verteilung** der Zufallsvariablen $X_1,...,X_n$. Ihre Mssenunktion ist

$$p_{X_1,...,X_n}(a_1,...,a_n) = P[X_1 = a_1,...,X_n = a_n].$$

Die diskreten Zufallsvariablen $(X_1,...,X_n)$ heißen **unabhängig**, falls gilt

$$P[X_1 = a_1, ..., X_n = a_n] = \prod_{i=1}^n P[x_i = a_i] \forall a_i \in S_i, i \in \{1, ..., n\}$$

Unendlich viele diskrete Zufallsvariablen $X_i: \Omega \to S_i, i \in I$ heißen **unabhängig**, falls die Ereignisse $\{X_i = a_i\}, i \in I$ für alle $a_i \in S$ unabhängig sind.

Satz. Die folgenden Aussagen sind äquivalent:

- $X_1, ..., X_n$ sind unabhängig.
- $p_{X_1,...,X_n}(a_1,...,a_n) = \prod_{i=1}^n p_{X_i}(a_i)$
- $\mu_{X_1,...,X_n} = \mu_{X_1} \times ... \times \mu_{X_n}$
- Die Ereignisse $\{X_1 \in A_1\}, ..., \{X_n \in A_n\}$ sind unabhängig für alle $A_i \subseteq S_i, i \in \{1, ..., n\}$.
- Die Ereignisse $\{X_1 = a_1\}, ..., \{X_1 = a_1\}$ sind unabhängig für alle $a_i \in S_i, i \in \{1, ..., n\}$

Dabei wird immer wieder dieselbe Aussage getroffen, für einzelne Werte der Zufallsvariablen, oder für Teilmengen von Werten der Zufallsvariablen.

0.7.1 Der Random Walk auf $\mathbb Z$

Wir laufen auf der Zahlengeraden mit ganzzahligen Einträgen, beginnend beim Startwert a, mit Wahrscheinlichkeit p um 1 vorwärts und mit Wahrscheinlichkeit 1-p um 1 rückwärts. Die mathematische Modellierung ist wie folgt: Der Ereignisraum Ω ist die Menge aller Random Walks, also alle Folgen $(S_i)_{i\in\mathbb{N}}$, mit $S_0 = a \in \mathbb{Z}$ und $|S_j - S_{j+1}| = 1 \forall j \in \mathbb{N}$.

Der i-1-te Schritt wird durch die Zufallsvariable $X_i: \Omega \to \{-1,+1\}$ angegeben. Es gilt $P[X_i=+1]=p, P[X_i=-1]=1-p \forall i \in \mathbb{N}\setminus\{0\}, p\in(0,1)$. Dann gilt $S_0=a, S_{n+1}=S_n+X_{n+1}$. Induktiv folgt $S_n=a+\sum_{i=1}^n X_i$.

Klar ist, dass man in einer geraden Anzahl von Schritten stets ein Element aus $a + 2\mathbb{Z}$ erreicht und in einer ungeraden Anzahl von Schritten stets ein Element aus $a + 1 + 2\mathbb{Z}$ erreicht. Es gilt

Lemma. Sei $k \in \mathbb{Z}$. Dann gilt

$$P[S_n = a + k] = \begin{cases} 0 & falls \ n + k \ ungerade \ oder \ |k| > n, \\ \left(\frac{n}{n+k}\right)p^{\frac{n+k}{2}}(1-p)^{\frac{n-k}{2}} & sonst. \end{cases}$$

0.7.2 Symmetrischer Random Walk

Wir betrachten nun den Fall $p = \frac{1}{2}$.

Sei $\lambda \in \mathbb{Z}$ fest. Wir definieren die Zufallsvariable

$$T_{\lambda}: \Omega \to mathbb{N} \cup \{\infty\}: \omega \mapsto T_{\lambda}(\omega) := \inf\{n \in \mathbb{N} \setminus \{0\} \mid S_n(\omega) = \lambda\}$$

 $T_{\lambda}(\omega)$ gibt den Zeitpunkt aus, an dem λ zum ersten Mal in ω erreicht wird. Wir wollen $P[T_{\lambda} \leq n] = P[bigcup_{i=1}^{n} \{S_{i} = \lambda\}]$ berechnen, die Wahrscheinlichkeit, dass λ innerhalb der ersten n Schritte erreicht wird.

Nach n Schritten abbrechende Random Walks können als Folgen mit n Folgenglieder interpretiert werden, wobei wieder $S_0 = a \in \mathbb{Z}$ und $|S_j - S_{j+1}| = 1 \forall j \in \{0, ..., n-1\}$ gilt. Bei gegebenem Startwert a gibt es genau 2^n verschiedene solche Random Walks. Jede solche Folge tritt dabei mit gleicher Wahrscheinlichkeit auf.

Satz. Reflektionsprinzip: Seien $\lambda, b \in \mathbb{Z}$. Es gelte entweder $(a < \lambda \text{ und } b \leq \lambda)$ oder $(a > \lambda \text{ und } b \geq \lambda)$ (dh. a und b liegen beide rechts oder beide links von λ). Dann gilt:

$$P[T_{\lambda} \le n, S_n = b] = P[S_n = b^*],$$

wobei $b^* := 2\lambda - b$ die Spiegelung von b an λ ist. (Dann muss ja $2\lambda = b + b^*$ gelten)

Der Satz besagt also, dass wenn man bereits λ erreicht hat, dann ist die Wahrscheinlichkeit, dass man nach einem beliebigen Schritt insgesamt k Schritte vorwärts gegangen ist, gleich der Wahrscheinlichkeit, dass man nach einem beliebigen Schritt insgesamt k Schritte rückwärts gegangen ist.

Satz. (Trefferzeitenverteilung) Wir erinnern, dass a der Startwert des Random Walks ist. Es gilt

$$P[T_{\lambda} \le n] = \begin{cases} P[S_n \ge \lambda] + P[S_n > \lambda], & falls \ \lambda > a \\ P[S_n \le \lambda] + P[S_n < \lambda], & falls \ \lambda < a \end{cases}$$

 $P[T_{\lambda} = n] = \begin{cases} \frac{1}{2}P[S_{n-1} = \lambda - 1] - \frac{1}{2}P[S_{n-1} = \lambda + 1], & falls \ \lambda > a \\ \frac{1}{2}P[S_{n-1} = \lambda + 1] - \frac{1}{2}P[S_{n-1} = \lambda - 1], & falls \ \lambda < a \end{cases} = \begin{cases} \frac{\lambda - a}{n} \binom{n}{n + \lambda - a} 2^{-n}, & falls \ \lambda \\ \frac{a - \lambda}{n} \binom{n}{n + \lambda - a} 2^{-n}, & falls \ \lambda \end{cases}$

Korollar. (Verteilung des Maximums) Sei $M_n := \max\{S_0, ..., S_n\}$. Für $\lambda > a$ gilt

$$P[M_n \ge \lambda] = P[T_\lambda \le n] = P[S_n \ge \lambda] + P[S_n > \lambda]$$

0.8 Varianz und Kovarianz

Sei (Ω, \mathcal{A}, P) ein Wahrscheinlichkeitsraum und $X : \Omega \to S$ eine Zufallsvariable auf (Ω, \mathcal{A}, P) , so dass E[|X|] endlich ist.

Definition.

$$Var(X) := E[(X - E[X])^2]$$

heißt Varianz von X und liegt in $[0, \infty]$.

$$\sigma(X) := Var(X)^{1/2}$$

heißt Standardabweichungvon X.

Interpretation: Kennzahl für die Größe der Fluktuationen von X um E[X]; Maßfür Risiko bei Prognose des Ausgangs $X(\omega)$ durch E[X].

Bemerkung. • $Var(X) = \sum_{a \in S} (a - m)^2 p_X(a)$, wobei $m = E[X] = \sum_{a \in S} a \sum_a p_X(a)$.

- Var(X) = 0 gdw. P[X = E[X]] = 1].
- $Var(X) = E[X^2] E[X]^2$.
- $Var(aX + b) = Var(aX) = a^2Var(X)$.

Beispiel. • Sei X = 1 mit Wahrscheinlichkeit p und X = 0 mit Wahrscheinlichkeit 1 - p. Dann ist Var(X) = p(1 - p).

• Sei T geometrisch verteilt mit Parameter $p \in (0,1]$. Dann ist $Var(T) = \frac{1-p}{p^2}$.

Definition.

$$\mathcal{L}^2(\Omega, \mathcal{A}, P) := \{X : \Omega \to \mathbb{R} | E[X^2] < \infty\}$$

 $\textbf{Lemma.} \qquad \bullet \ \ \textit{F\"{u}r Zufallsvariablen} \ \ X,Y \in \mathcal{L}^2 \textit{gilt:} \ E[|XY|] \leq E[X^2]^{1/2} E[Y^2]^{1/2} < \infty$

- \mathcal{L}^2 ist ein Vektorraum und $(X,Y)_{\mathcal{L}^2} := E[XY]$ ist eine positiv semidefinite symmetrische Bilinearform (Skalarprodukt) auf \mathcal{L}^2 . Insbesondere gilt die Cauchy-Schwarz-Ungleichung.
- $F\ddot{u}r \ X \in \mathcal{L}^2 \ gilt \ E[|X|] < \infty$

Definition. Seien $X, Y \in \mathcal{L}^2$.

- Cov(X,Y) := E[(X E[X])(Y E[X])] = E[XY] E[X]E[Y] heißt **Kovarianz** von X und Y.
- Gilt $\sigma(X), \sigma(Y) \neq 0$, so heißt $\varrho(X,Y) := \frac{Cov(X,Y)}{\sigma(X)\sigma(Y)}$ Korrelationskoeffizientvon X und Y.
- X und Y heißen **unkorreliert**, falls Cov(X,Y) = 0, d.h falls $E[XY] = E[X] \cdot E[Y]$.

Satz. Seien $X: \Omega \to S$ und $Y: \Omega \to T$ diskrete Zufallsvariablen auf (Ω, \mathcal{A}, P) . Dann sind äquivalent:

- X und Y sind unabhängig
- f(X) und g(Y) sind unkorreliert für alle Funktionen $f: S \to \mathbb{R}$ und $g: T \to \mathbb{R}$ mit $f(X), g(Y) \in \mathcal{L}^2$.

Beispiel. Sei X = 1, 0, -1, jeweils mit Wahrscheinlichkeit $\frac{1}{3}$, und $Y = X^2$. Dann sind X und Y nicht unabhängig, aber unkorreliert. Intuition: Unkorelliertheit bedeutet nur kein linearer Zusammenhang. Hier liegt ein quadratischer Zusammenhang vor.

Satz. Für $X_1, ..., X_n \in \mathcal{L}^2$ gilt:

$$Var(X_1 + ... + X_n) = \sum_{i=1}^{n} Var(X_i) + 2\sum_{i,j=1,i< j}^{n} Cov(X_i, X_j)$$

0.9 Monte Carlo-Verfahren

Sei S eine abzählbare Menge und μ eine Wahrscheinlichkeitsverteilung auf S. Im folgenden bezeichnen wir auch die Massenfunktion mit μ , d.h. $\mu(x) := \mu(\{x\})$ für alle $x \in S$.

Sei $f: S \to \mathbb{R}$ mit $E_{\mu}[f^2] = \sum_{x \in S} f(x)^2 \mu(x) < \infty$. Dann kann man den Erwartungswert $\theta := E_{\mu}[f] = \sum_{x \in S} f(x) \mu(x)$ durch die Monte Carlo-Schätzer

$$\widehat{\theta}_n := \frac{1}{n} \sum_{i=1}^n f(X_i)$$

approximieren, wobei X_1, \ldots, X_n unabhängige Zufallsvariablen auf einem Wahrscheinlichkeitsraum (Ω, \mathcal{A}, P) mit Verteilung μ sind. Die Abschätzung aus dem Gesetz der großen Zahlen gibt uns für diese Folge das folgende

Korollar. $P[|\theta - \widehat{\theta}_n| \ge \varepsilon] \le \frac{1}{n\varepsilon^2 \operatorname{Var}_{\mu}[f]} \longrightarrow 0$ für $n \to \infty$, d.h. $\widehat{\theta}_n$ ist eine konsistente Schätzfolge für θ .

Bemerkung.

• $\widehat{\theta}_n$ ist ein erwartungstreuer Schätzer:

$$E[\widehat{\theta}_n] = \frac{1}{n} \sum_{i=1}^n E[f(X_i)] = E_{\mu}[f] = \theta,$$

• Für den mittleren quadratischen Fehler gilt

$$E[|\theta - \widehat{\theta}_n|^2] = \operatorname{Var}(\widehat{\theta}_n) = \frac{1}{n} \operatorname{Var}_{\mu}[f],$$

also insbesondere $\|\theta - \widehat{\theta}_n\|_{\mathcal{L}^2} = \sqrt{E[|\theta - \widehat{\theta}_n|^2]} = O(1/\sqrt{n}).$

Beispiel. Sei $B \subseteq S$. Für $p = \mu(B) = E_{\mu}[I_B]$ ist dann $\widehat{p}_n = \frac{1}{n} \sum_{i=1}^n I_B(X_i)$ ein Monte Carlo-Schätzer.

Bemerkung. Für kleine Wahrscheinlichkeiten braucht dieses einfache Monte Carlo-Verfahren sehr viele Stichproben, wenn man die Wahrscheinlichkeit mit einem kleinem Fehler bestimmen will.

0.9.1 Varianzreduktion durch Importance Sampling

Sei ν eine weitere Wahrscheinlichkeitsverteilung auf S mit $\nu(x) > 0$ für alle $x \in S$. Dann kann man θ auch bezüglich ν ausdrücken:

$$\theta = E_{\mu}[f] = \sum_{x \in S} f(x)\mu(x) = \sum_{x \in S} f(x)\frac{\mu(x)}{\nu(x)}\nu(x) = E_{\nu}[f\rho],$$

wobei $\rho(x) = \frac{\mu(x)}{\nu(x)}$.

Ein alternativer Monte Carlo-Schätzer für θ ist folglich $\widetilde{\theta}_n = \frac{1}{n} \sum_{i=1}^n f(Y_i) \rho(Y_i)$, wobei die Y_i unabhängige Zufallsvariablen mit Verteilung ν sind.

 $\widetilde{\theta}_n$ ist ebenfalls erwartungstreu. Für die Varianz erhält man

$$\operatorname{Var}(\widetilde{\theta}_n) = \frac{1}{n} \operatorname{Var}_{\nu}(f\rho) = \frac{1}{n} \left(\sum_{x \in S} f(x)^2 \rho(x)^2 \nu(x) - \theta^2 \right).$$

Bei geigneter Wahl von ν kann also die Varianz von $\widetilde{\theta}_n$ kleiner sein als die von $\widehat{\theta}_n$. ($\nu(x)$ soll groß sein, wenn |f(x)| groß ist.)