Sistemi di controllo:

Analisi economiche per le decisioni e la valutazione della performance

INDICE

LA NATURA DEL PROBLEMA TEMPO E COMPARABILITÀ DEI FLUSSI DI CASSA IL COSTO DI OPPORTUNITÀ **DEL CAPITALE** IL VALORE ATTUALE NETTO **MONOPERIODALE** IL VALORE ATTUALE NETTO DI UNA SERIE DI FLUSSI DI CASSA LE RENDITE PERPETUE E **TEMPORANEE** L'INFLAZIONE

QUANDO È CONVENIENTE UN INVESTIMENTO?

QUANDO È CONVENIENTE UN INVESTIMENTO?

QUANDO È CONVENIENTE UN INVESTIMENTO?

CHE COSA È UN INVESTIMENTO

- Un investimento è un impegno di risorse monetarie per un lungo periodo e in relazione al quale si ipotizza:
 - il recupero del denaro inizialmente investito o «recupero dell'investimento»
 - un ritorno adeguato alla durata e al rischio dell'operazione o «rendimento dell'investimento»
 - o rendimento e ritorno non sono spesso distinguibili
 - La valutazione economica di un investimento utilizza specifiche tecniche denominate di «capital budgeting»
- L'analisi richiede la conoscenza di **incassi ed esborsi** differenziali, non dei ricavi e costi differenziali

ALCUNI INVESTIMENTI TIPICI

Sostituzione di un impianto

È conveniente sostituire un vecchio impianto con uno nuovo e più efficiente?

Automazione

È conveniente acquistare un macchinario per effettuare operazioni svolte in modo manuale?

Espansione

È conveniente realizzare un nuovo stabilimento per aumentare la capacità produttiva e i ricavi?

Ampliamento offerta

È conveniente progettare, sviluppare e aggiungere un nuovo prodotto all'attuale gamma per incrementare i ricavi complessivi?

IL VALOTE ECONOMICO DEL TEMPO

L'esborso (iniziale) e i flussi di cassa generati da un investimento hanno manifestazione in tempi diversi e quindi non possono essere posti a confronto direttamente

Sul mercato finanziario esistono infatti investimenti privi di rischio

BOT: il rendimento nominale e la solvibilità dell'emittente sono sostanzialmente «certi»

IL VALOTE ECONOMICO DEL TEMPO

L'esborso (iniziale) e i flussi di cassa generati da un investimento hanno manifestazione in tempi diversi e quindi non possono essere posti a confronto direttamente

Sul mercato finanziario esistono infatti investimenti privi di rischio

Un € disponibile oggi vale più di un € disponibile domani

UN ESEMPIO: START-UP PER SERVIZI A COLONNINE DI RICARICA ELETTRICA

Ipotesi:

- Il pagamento per l'acquisto della start-up (€300.000) è per contante
- Il progetto prevede l'assunzione di due ingegneri informatici e un service designer
- La remunerazione del personale e gli altri costi di gestione per il periodo sono di € 265.000 e devono essere pagati anticipatamente
- La start-up può con certezza essere rivenduta dopo un anno con certezza per € 570.000
- L'investimento è conveniente?

UN ESEMPIO: START-UP PER SERVIZI A COLONNINE DI RICARICA ELETTRICA

	In € all'istante iniziale		In € dopo un anno
Incasso da cessione (A)			570.000
Esborso per l'acquisto	300.000	1,02	306.000
Esborsi per costi di gestione	265.000	1,02	270.300
Esborsi totali	565.000		576.300
Risultato economico (A-B)			-6.300
Differenza algebrica fra incassi ed esborsi			+ 5.000

UN ESEMPIO: START-UP PER SERVIZI A COLONNINE DI RICARICA ELETTRICA

	In € all'istante iniziale		In € dopo un anno
Incasso da cessione (A)			570.000
Esborso per l'acquisto	300.000	1,02	306.000
Esborsi per costi di gestione	265.000	1,02	270.300
Esborsi totali	565.000		576.300
Risultato economico (A-B)			-6.300
Differenza algebrica fra incassi ed esborsi			+ 5.000

Poiché un € di oggi vale più di un € di domani sarebbe effettuare una semplice somma algebrica dei flus: direttamente i flussi di cassa In tal modo, infatti, s'ipotizzerebbe l'equivalenza di con un € di domani

Se confrontassimo l'investimento sembrerebbe conveniente

Ipotesi: r = rendimento di progetti alternativi di pari rischio (nullo) = 0,5%

	In € all'istante iniziale		In € dopo un anno
Incasso da cessione (A)			570.000
Esborso per l'acquisto	300.000	1,005	301.500
Esborsi per costi di gestione	265.000	1,005	266.325
Esborsi totali	565.000		567.825
Risultato economico (A-B)			+ 2.175
Differenza algebrica fra incassi ed esborsi			+ 5.000

In questo caso l'investimento risulterebbe conveniente

Ipotesi: r = rendimento di progetti alternativi di pari rischio (nullo) = 0,5%

	In € all'istante iniziale			In € dopo un anno	
Incasso da cessione (A)				570.000	
Esborso per l'acquisto	300.000		1,005	301.500	
Esborsi per costi di gestione	265.000		1,005	266.325	
Esborsi totali	565.000				
Risultato economico (A-B)			Fattore di conversione coefficiente di capitalizzazione		
Differenza algebrica fra incassi ed esborsi					

In questo caso l'investimento risulterebbe conveniente

Ipotesi: r = rendimento di progetti alternativi di pari rischio (nullo) = 0,5%

		In € stante iziale		In € dopo un anno
Incasso da cessione (A)				570.000
Esborso per l'acquisto	30	0.000	1,005	301.500
Esborsi per costi di gestione	26	5.000	1,005	266.325
Esborsi totali	56			567.825
Risultato economico (A-B)		Valore generato dall'investimento		+ 2.175
Differenza algebrica fra incassi ed esborsi				+ 5.000

In questo caso l'investimento risulterebbe conveniente

Ipotesi: r = rendimento di progetti alternativi di pari rischio (nullo) = 0,5%

		In € stante siziale		In € dopo un anno
Incasso da cessione (A)				570.000
Esborso per l'acquisto	30	0.000	1,005	301.500
Esborsi per costi di gestione	26	5 000 II v	1 005	266.325
Esborsi totali	56		valore può essere giudicato solo	567.825
Risultato economico (A-B)		attraverso il confronto con investimenti alternativi dello stesso rischio		+ 2.175
Differenza algebrica fra incassi ed esborsi				+ 5.000

In questo caso l'investimento risulterebbe conveniente

VALORI ECONOMICAMENTE EQUIVALENTI

Valore attuale = valore futuro x coefficiente di attualizzazione

Valore futuro (montante) = valore attuale x coefficiente di capitalizzazione

Esempio:

- Due offerte per un terreno:

 (alternativa 1) € 98.000 subito;
 (alternativa 2) €103.000 fra 1 anno

 Ipotesi:
 - incasso dopo un anno privo di rischio
 - costo opportunità di investimenti privi di rischio = r =3,5%

Quale delle due soluzioni è la più conveniente?

```
Montante (alternativa 1) =  € 98.000 \times (1 + 0.035) =  € 101.430 <  € 103.000
```

Valore attuale (alternativa 2) = $€ 103.000 \times 1/(1 + 0.035) = € 99.517 > € 98.000$

IL MONTANTE DI UN FLUSSO DOPO N PERIODI

- Tasso di interesse = 5%
- Capitalizzazione composta

Periodo	Saldo iniziale	Interessi guadagnati	Saldo finale
1	1.000	50,00	1.050,00
2	1.050	52,50	1.102,50
3	1.103	55,13	1.157,63
4	1.158	57,88	1.215,51
5	1.216	60,78	1.276,28
6	1.276	63,81	1.340,10
7	1.340	67,00	1.407,10
8	1.407	70,36	1.477.46
9	1.477	73,87	1.551,33
10	1.551	77,57	1.628,89

Montante = $VA \times (1 + r)^n$

Montante = $€ 1.000 \times (1 + 0.05)^{10} = € 1.000 \times 1.62889 = € 1.628,89$

MONTANTE SU UN ORIZZONTE DI N ANNI

Montante (1 anno) =
$$F_0 + F_0 \times r = F_0 \times (1 + r)^1$$

Montante (2 anni) = montante (1 anno)
$$x (1 + r)$$

Montante (2 anni) =
$$F_0 \times (1 + r) \times (1 + r) = F_0 \times (1 + r)^2$$

Montante (3 anni) =
$$F_0 \times (1 + r) \times (1 + r) \times (1 + r) = F_0 \times (1 + r)^3$$

Montante (n anni) =
$$M = F_0 \times (1 + r)^n$$

Valore attuale =
$$\frac{M}{(1 + r)^n}$$

MONTANTE SU UN ORIZZONTE DI N ANNI

Unico flusso di cassa

Montante (n anni) =
$$M = F_0 \times (1 + r)^n$$

Esempio:

Importo versato in banca € 1.000

Costo opportunità del capitale = 5%

Montante dopo 10 anni:

€
$$1.000 \times (1 + 0.05)^{10} = 1.000 \times 1.628 = € 1.628$$

VALORE ATTUALE SU UN ORIZZONTE DI N ANNI

Unico flusso di cassa

Valore attuale =
$$\frac{M}{(1+r)^n}$$

Esempio:

Incasso fra 15 anni di € 25.000

Costo opportunità del capitale = 7%

Valore attuale di un incasso di € 25.000 fra 15 anni:

€ 25.000 x
$$\frac{1}{(1+0.05)^{10}}$$
 = € 25.000 x 0,362 = € 9.061

IL VALORE ATTUALE DI UNA SERIE DI FLUSSI DI CASSA

- Il Valore Attuale al momento t₀ si ottiene attualizzando al momento t₀ tutti i flussi futuri
- Il Valore Attuale in t₀ è la somma economicamente equivalente a tutti i flussi di cassa futuri
- Per un attore razionale **è indifferente** disporre del VA in t₀ oppure di flussi di cassa futuri economicamente equivalenti

IL VALORE ATTUALE NETTO DI UN INVESTIMENTO

Il caso di un singolo incasso dopo 1 periodo

Valore attuale netto = VAN =
$$-I_0 + F \times \frac{1}{(1+r)}$$

Il VAN **misura operativamente** il valore generato da un progetto:

VAN > 0 il progetto **produce** valore

VAN < 0 il progetto **distrugge** valore

IL VALORE ATTUALE NETTO DEL PROGETTO START-UP

Ipotesi: r = rendimento di progetti alternativi di pari rischio = 0,5%

	In € all'istante iniziale	Coefficiente di attualizzazione	In € dopo un anno
Incasso da cessione (A)	567.164	1/(1+0,005) x	570.000
Esborso per l'acquisto	300.000	1,005	301.500
Esborsi per costi di gestione	265.000	1,005	266.325
Esborsi totali	565.000		567.825
Risultato economico	2.164	1/(1+0,005) x	+ 2.175
Differenza algebrica fra incassi ed esborsi			+ 5.000

IL VALORE ATTUALE NETTO DEL PROGETTO START-UP

Ipotesi: r = rendimento di progetti alternativi di pari rischio = 0,5%

	In € all'istante iniziale	Coefficiente di attualizzazione	In € dopo un anno	
Incasso da cessione (A)	567.164	1/(1+0,005) x	570.000	
Esborso per l'acquisto	Valore Attu	301.500		
Esborsi per costi di gestione	aisponib	ili fra un anno	266.325	
Esborsi totali	565.000		567.825	
Risultato economico	2.164	1/(1+0,005) x	+ 2.175	
Differenza algebrica fra incassi ed esborsi	Valoro	Attuala Notto	+ 5.000	
	Valore Attuale Netto (VAN =VA - Esborso)			

IL VALORE ATTUALE NETTO: UN ESEMPIO

- Una proposta di investimento di € 1.000 prospetta incassi annuali pari a € 625 per i prossimi due anni
- Il costo opportunità del capitale è il 14%.
- L'investimento è economicamente conveniente?

	Anno	Importo	Coefficiente attualizzazione	Valore attuale	
Incasso	1	€ 625	0,877	€ 548	
Incasso	2	625	0,769	481	
Valore attuale degli incassi				1.029	
meno: Investimento (anno 0)				1.000	
Valore Attuale Netto (VAN)				€ 29	

UNA RENDITA PERPETUA

Serie illimitata di incassi tutti dello stesso importo «F»

Valore attuale =
$$\frac{r}{r}$$

Esempio:

Rata = F = € 1.000

r = costo opportunità del capitale = 5%

VA = 1.000/0,05 =£ 20.000

UNA RENDITA TEMPORANEA

Serie limitata di incassi tutti dello stesso importo «F»

... n n+1 n+2 ...
$$\infty$$
 $VA_B = \frac{F}{r} \times \frac{1}{(1+r)^n}$

Una rendita temporanea è la differenza fra due rendite perpetue

$$VA_A = \frac{F}{r}$$

$$VA_{B} = \frac{F}{r} \times \frac{1}{(1+r)^{n}}$$

$$VA_C = VA_A - VA_B = Fx\left(\frac{1}{r} - \frac{1}{(1+r)^n}\right)$$

fattore di rendita

IL VALORE DI MERCATO DELLE OBBLIGAZIONI

Valore nominale (€)	10
Obbligazioni acquistate (nr.)	2.000
Capitale (€)	20.000
Rendimento (%)	5%
Costo opportunità (ipotesi 1)	3%
Valore obbligazioni al 1° gennaio 2023	

	2020	2021	2022	2023	2024
Interessi	1.000	1.000	1.000	1.000	1.000
Restituzione capitale					20.000
Flussi di cassa	1.000	1.000	1.000	1.000	1.000
Coefficiente attualizzazione (ipotesi 1)					
Valori dei flussi attualizzati				0,97	0,94
Valore di mercato dei flussi obbligazionari				971	19.795

Valore di mercato delle obbligazioni (costo opportunità 3%) € 20.765

IL VALORE DI MERCATO DELLE OBBLIGAZIONI

Valore nominale (€)	10
Obbligazioni acquistate (nr.)	2.000
Capitale (€)	20.000
Rendimento (%)	5%
Costo opportunità (ipotesi 2)	8%
Valore obbligazioni al 1° gennaio 2023	

	2020	2021	2022	2023	2024
Interessi	1.000	1.000	1.000	1.000	1.000
Restituzione capitale					20.000
Flussi di cassa	1.000	1.000	1.000	1.000	1.000
Coefficiente attualizzazione (ipotesi 1)					
Valori dei flussi attualizzati				0,93	0,86
Valore di mercato dei flussi obbligazionari				926	18.004

Valore di mercato delle obbligazioni (costo opportunità 3%) € 18.930

L'INFLAZIONE

(1 + tasso di interesse nominale) = (1 + tasso interesse reale) x (1 + tasso di inflazione)

Esempio:

tasso di interesse reale =
$$\frac{(1 + 0.08)}{(1 + 0.03)} - 1 = 4.85\% \text{ diverso da } 5\% \text{ (8\% - 3\%)}$$

Trattare coerentemente flussi di cassa e tassi di interesse!

LE IPOTESI IMPLICTE DEL CAPITOLO

Situazioni prive di rischio cioè:

- Investimento assimilato a una sequenza di flussi di cassa dei quali si conosce entità e distribuzione temporale.
 Conseguentemente:
- I flussi sono attualizzati a un costo opportunità del capitale di investimenti «sicuri» cioè **privi di rischio**
- Esiste un unico momento decisionale, quello iniziale, dal quale dipende la manifestazione di tutti i flussi di cassa futuri

OSSERVAZIONI CONCLUSIVE

- Un investimento è un **impiego di risorse monetarie** da quale si attendono benefici monetari futuri
- L'analisi di un investimento richiede la conoscenza dei flussi di cassa (esborsi e incassi) generati dal progetto e non invece valori economici come costi, ricavi, reddito
- I costi, i ricavi il reddito e altri valori economici e patrimoniali sono però strumentali al calcolo dei flussi di cassa
- L'attualizzazione dei flussi di cassa è la tecnica attraverso la quale si ottiene la comparabilità tra flussi di cassa disponibili in momenti diversi
- Il processo di attualizzazione riconosce il valore economico del tempo, cioè la possibilità di investire ottenendo un rendimento nominale certo
- segue ...

OSSERVAZIONI CONCLUSIVE

- Il rendimento atteso da investimenti comparabili in termini di rischio è il costo opportunità del capitale
- Con le tecniche di analisi degli investimenti si giudica l'adeguatezza del rendimento o il ritorno generato da un investimento
- La misura di tale adeguatezza è il valore attuale netto o VAN dell'investimento
- Se il VAN è positivo, allora il progetto vale per l'investitore di più di quello che costa, genera cioè valore

Contatti docente

