Floyed - Warshall

Idea: Think of each ventex as a resource which gets releand one by one.

Everytime we ask what is the best that can do with recounces at hand

D(0) = W when the vertex k is released $D(\hat{s},\hat{s}) = min(D(\hat{s},\hat{s}))$ the vertex k is released $D(\hat{s},\hat{s}) = min(D(\hat{s},\hat{s}))$

Apparant Conqueion: R 10 getting energy only now

then how come we know D(i,k) from D(k,j)

Say we an optimal path $\beta = \{\hat{x}, \{4, 2, 1, 2, 1\}\}, \hat{y}$ we would not have found this path. At at K-1 Till k time pieces. joining the ahl

FLOYD-WARSHALL (W) $D^{(0)} \subseteq W$ $D^{(0)} \subseteq W$

NOT THE ACTUAL
ARAPH

We are only showing a snapshort: how path from this release order of vertices.

At to $D_{(o)}$ Via 1

via 2, no activity

	1_	2	3	4	5	_
1						
2						_
3						
4						
5	+					
	1					

	1	2	3	4	5	_
1						_
2						<u> </u>
3						
4						
5						
	·					

Destination D(0) Source - 4 \otimes ∞ ∞ ∞ \mathcal{A} ∞ -5 \emptyset

Pae decellor (how)
bestination

Son	urce	1	2	3	4	5	
_		1		1	N	1	
	1	N	1		2	2	-
	2	N	N	N			—
	3	N	3	<i>N</i>	N	N	
	4	4	N	4	N	N	
	5	~	N	N	5	N	
		1					

Via 1

Can something bettier happen.

-5 = min(-5, 2+8)

Pae decellor (how)
Destination

,			a t : 1	าชา	T(1) Destination									
D(T)		Des	uratio		<u>, </u>	5	• •	nusce	1	2	3	4	5	_
_		1	2	3	•		- ⇒bnænot	1	N	1_	1	\sim	1	
Source	1	0	3	8	2	- 4	> Does not make sense	7	/ 4			2_	2	_
	2	8	D	∞	1	7	No pur to 2	2	N	N	N			
-							NO Path to 1	3	N	3	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	N	N	
	3	\mathcal{D}	4	0	\sim	00	Hab a path		4	1	/1	N	1	
	4	, 2	5	-5	D	-2	·	_ 7	14		7	5		
	5	00	8	8	6	0	No path to	5	\ \tag{ \}	N	N		N	
			+								1	1	1	١

so hange

is destination

No change better pair

Exercise'. Complete the nest.

Taan sitive closure:

$$6 * = (\lor, E^*)$$

$$6n^* = (7, t)$$

 $t^* = (7, t)$
 $t^* = (7, t$

Solution I: Floyd-Warshau with edges as 1 $\begin{array}{c} (n) \\ Dii \end{array} < m \longrightarrow E^*(i,i) = 1$ $D_{ij}^{(n)} = 0 \qquad \rightarrow \qquad E^* (i,j) = 0$

Socution I. we and and or min $D^{(k)}(i,j) = D^{(k,j)} OR \left(D^{(k,j)}(k,j) + ND^{(k,j)}(k,j)\right)$ hit 0/1 bit operations.