CS 240 - Data Structures and Data Management

Assignment Project Exam Help

Mark Petrick Olga Veksler

Bls 25 lective Cole Offa Sevi Cole 21 instructors

David R. Cheriton School of Computer Science, University of Waterloo

WeChat: westworks

References: Goodrich & Tamassia 10.3

version 2020-04-01 04:54

Outline

Assignment Project Exam Help

- Encoding Basics
- Huffman Codes //tutorcs.com
 Run Debat Descoding utorcs.com
- bzip2
- Burrows-Wheeler Transform
- Lem Welchat: cstutorcs

Outline

Assignment Project Exam Help

- Encoding Basics
- Runhttps://tutorcs.com
- bzip2
- Burrows-Wheeler Transform
- Lem We Chat: cstutorcs

Data Storage and Transmission

The problem: How to store and transmit data?

Asserte in the projector Example Help

Coded text The encoded data, string C of characters from the

Encoding An algorithm mapping source texts to coded texts

Decoding An algorithm mapping coded texts

back to their original source text eChat: CStutorcs

Note: Source "text" can be any sort of data (not always text!)

Usually the coded alphabet Σ_C is just binary: $\{0,1\}$.

Judging Encoding Schemes

We can always measure efficiency of encoding/decoding algorithms.

Assignment Project Exam Help

https://tutorcs.com

Judging Encoding Schemes

We can always measure efficiency of encoding/decoding algorithms.

Assignmenter Project Exam Help

- Reliability (e.g. error-correcting codes)
- Securiteps. The security of the security of
- Size

Judging Encoding Schemes

We can always measure efficiency of encoding/decoding algorithms.

Assignmenter Project Exam Help Processing speed

- Reliability (e.g. error-correcting codes)
- · Security to Security to torcs.com
- Size (main objective here)

Encoding schemes that try to minimize the size of the coded text perform data comples fib. Va MI measure the domination ratio:

$$rac{|C| \cdot \log |\Sigma_C|}{|S| \cdot \log |\Sigma_S|}$$

Types of Data Compression

Logical vs. Physical

A S 1 Senimente gesting the meaning of the data and only applies th

 Physical Compression only knows the physical bits in the data, not the meaning behind them

Lossy vshteps://tutorcs.com

- Lossy Compression achieves better compression ratios, but the decoding is approximate; the exact source text *S* is not recoverable
- Loss et Compressiont always decodes Sexactly

For media files, lossy, logical compression is useful (e.g. JPEG, MPEG)

We will concentrate on *physical*, *lossless* compression algorithms. These techniques can safely be used for any application.

Character Encodings

A character encoding (or more precisely character by character of percoding maps each character in the source alphabet to a string in coded alphabet.

For
$$c \in \mathfrak{A}$$
 the second function of some $E: \Sigma_{\mathcal{S}} \to \Sigma_{\mathcal{C}}^*$

Two possibilities:

- Fixed-length codeworth have the come length.
- Variable-length code: Codewords may have different lengths.

Fixed-length codes

ASCII (American Standard Code for Information Interchange), 1963:

	char	null	start of heading	start of text	end of text		0	1		А	В		~	delete	İ
	code	0	11 1	2	3	₄ T	48	49		4 65	66_		126	127	110
F	155	bits	to en	code	128	poss	ible d	hara	cters	ιI	$\mathbf{C}\mathbf{X}$	al	II .	П	sib
	"control codes" chacos letters digits punctuation														

"control codes", spaces, letters, digits, punctuation

A-Phttps://www.nonen.non

- Standard in all computers and often our source alphabet.
- Not well-suited for non-English text: ISO-8849 Extends for bits, hardet most Western languages

Other (earlier) examples: Caesar shift, Baudot code, Murray code

To decode a fixed-length code (say codewords have k bits), we look up each k-bit pattern in a table.

Variable-Length Codes

Example 1: Morse code.

Pictures taken from http://eaple.latu.has.act.com/arccles/latu.tatt.hos.acc.cs.kanl

Example 2: UTF-8 encoding of Unicode:

 Encodes any Unicode character (more than 107,000 characters) using 1-4 bytes

Encoding

Assume we have some character encoding $E: \Sigma_S \to \Sigma_C^*$.

• Note that E is a dictionary with keys in Σ_S .

Assignment Project Exam Help Encoding (E, S[0..n-1])E: the encoding dictionary, S: text with characters in Σ_S https://example.com

3. $x \leftarrow E.search(S[i])$ 4. C.append(x)Teturn C

We Chat: Cstutorcs

Example: encode text "WATT" with Morse code:

Winter 2020

Decoding

The **decoding algorithm** must map Σ_C^* to Σ_S^* .

• The code must be *uniquely decodable*.

Assignment decided with a local man Help (Morse code uses 'end of character' pause to avoid ambiguity.)

From now on only consider prefix-free codes E:
 no condemonding prefix of throther S. COM

• This corresponds to a *trie* with characters of Σ_S only at the leaves.

• The codewords need no end-of-string symbol \$ if E is prefix-free.

Decoding of Prefix-Free Codes

Any prefix-free code is uniquely decodable (why?)

```
Prefix Free Decoding (T. 150. n - 11) Cat w Exam Help
      initialize empty string S
       i \leftarrow 0
              -// teltores.com
               if i = n return "invalid encoding"
               c \leftarrow \text{child of } r \text{ that is labelled with } C[i]
                at: cstutores
           S.append(character stored at r)
       return S
 11.
```

Run-time: O(|C|).

Encoding from the Trie

We can also encode directly from the trie.

```
L \leftarrow \text{array of nodes in } T \text{ indexed by } \Sigma_S
       for all leaves \ell in T
      L[character at \ell] \leftarrow \ell
           w \leftarrow \text{empty string}; v \leftarrow L[S[i]]
           while v is not the root
             Now w is the encoding of S[i].
           C.append(w)
      return C
 11.
```

Run-time: $O(|T| + |C|) = O(|\Sigma_S| + |C|)$.

Example: Prefix-free Encoding/Decoding

Decode 111000001010111

Example: Prefix-free Encoding/Decoding

- Decode 111000001010111 \rightarrow TO_IEAT

Outline

Assignment Project Exam Help

- Encoding Basics
- Huffman Codes //tutorcs.com
- bzip2
- Burrows-Wheeler Transform
- Lem We Chat: cstutorcs

Character Frequency

Overall goal: Find an encoding that is short.

observation: Some letters in Σ occur more often than others. Help

For example, the frequency of letters in typical English text is:

ht	t p 3%//t	11tტ1	4.25%	com	1.93%
t	19.06%	αίγι	4.03%	b	1.49%
а	8.17%	С	2.78%	V	0.98%
T	7,51%	u	2.76%	k	0.77%
W	e ^{7.51} %	t: 68	54414C	rcs	0.15%
n	6.75%	W	2.36%	Х	0.15%
S	6.33%	f	2.23%	q	0.10%
h	6.09%	g	2.02%	Z	0.07%
r	5.99%	у	1.97%		

Huffman's Algorithm: Building the best trie

For a given source text S, how to determine the "best" trie that minimizes the length of C?

Assignment Project Exam Help

- **②** For each $c \in \Sigma$, create "c" (height-0 trie holding c).
- Our tries have a weight: sum of frequencies of all letters in trie. Initially, these are just the character frequencies.
- Find the two tries with the minimum weight.
- Merge these tries with new interior node; new weight is the sum. (Corresponds to adding one bifte the doing of each character.)
- Repeat last two steps until there is only one trie left

What data structure should we store the tries in to make this efficient?

Huffman's Algorithm: Building the best trie

For a given source text S, how to determine the "best" trie that minimizes the length of C?

Assignment Project Exam Help

- **②** For each $c \in \Sigma$, create "c" (height-0 trie holding c).
- Our tries have a weight: sum of frequencies of all letters in trie. Initially, these are just the character frequencies.
- Find the two tries with the minimum weight.
- Merge these tries with new interior node; new weight is the sum. (Corresponds to acting one bift the anading of each character.)
- Repeat last two steps until there is only one trie left

What data structure should we store the tries in to make this efficient? A min-ordered heap! Step 4 is two *delete-mins*, Step 5 is *insert*

Example text: GREENENERGY, $\Sigma_{\mathcal{S}} = \{\textit{G},\textit{R},\textit{E},\textit{N},\textit{Y}\}$

 $Character\ frequencies:\ {\tt G}:2, \qquad {\tt R}:2, \qquad {\tt E}:4, \qquad {\tt N}:2 \qquad {\tt Y}:1$

Assignment Project Exam Help

https://tutorcs.com

Y

Example text: GREENENERGY, $\Sigma_S = \{G, R, E, N, Y\}$

 $Character\ frequencies:\ {\tt G:2,} \qquad {\tt R:2,} \qquad {\tt E:4,} \qquad {\tt N:2} \qquad {\tt Y:1}$

Assignment Project Exam Help

chttps://tutorcs.com

N

Example text: GREENENERGY, $\Sigma_S = \{G, R, E, N, Y\}$

Character frequencies: G:2, R:2, E:4, N:2 Y:1

Assignment Project Exam Help

https://tutorcs.com

Example text: GREENENERGY, $\Sigma_S = \{G, R, E, N, Y\}$

 $Character\ frequencies:\ G:2, \qquad R:2, \qquad E:4, \qquad \mathbb{N}:2 \qquad \mathbb{Y}:1$

Assignment, Project Exam Help

https://tutercsecom

Example text: GREENENERGY, $\Sigma_{\mathcal{S}} = \{\textit{G},\textit{R},\textit{E},\textit{N},\textit{Y}\}$

 $Character\ frequencies:\ G:2, \qquad R:2, \qquad E:4, \qquad \mathbb{N}:2 \qquad \mathbb{Y}:1$

Assignment Project Exam Help

https://tutorcs.com WeChat: cstutorcs

 ${\tt GREENENERGY}
ightarrow$

Example text: GREENENERGY, $\Sigma_S = \{G, R, E, N, Y\}$

Character frequencies: G:2, R:2, E:4, N:2 Y:1

Assignment Project Exam Help

GREENENERGY \rightarrow 000 10 01 01 11 01 11 01 10 000 001

Compression ratio: $\frac{25}{11 \cdot \log 5} \approx 97\%$

(These frequencies are not skewed enough to lead to good compression.)

Winter 2020

Huffman's Algorithm: Pseudocode

```
Huffman-Encoding(S[0..n-1])
S: text over some alphabet \Sigma_S
Sision requirements by Dripitial pall of Examíred le lois
        Q \leftarrow min-oriented priority queue that stores tries // initialize PQ
 3.
       for all c \in \Sigma_S with f[c] > 0 do
 4.
           12111 sert (single-lade there a with velghan [c])
 5.
        while \lozenge. size > 1 do
                                                           // build decoding trie
 6
              T_1 \leftarrow Q.deleteMin(), f_1 \leftarrow weight of T_1
 7.
              T_2 \leftarrow Q delete Min(), f_2 \leftarrow weight of T_2
 8.
               \mathcal{T}_{\mathbf{p}} ert (rewith \mathcal{T}_{\mathbf{p}} ) as subtres and weight f_1+f_2)
 9.
        T \leftarrow Q.deleteMin
 10.
 11. C \leftarrow PrefixFreeEncodingFromTrie(T, S)
      return C and T
 12
```

Huffman Coding Evaluation

- Note: constructed trie is not unique (why?)

 So decoding trie must be transmitted along with the coded text C.

 Sols Marker Ling bigger to Court Lexical Help
- Encoding must pass through text twice (to compute frequencies and to encode)
- · Enchritp-Sme:/tutatatasasom
- Decoding run-time: O(|C|)
- The top-tructed trie is coptimal in the sense that C is shortest (among all prefix-free character encodings with $\Sigma_C = \{0,1\}$). We will not go through the proof.
- Many variations (give tie-breaking rules, estimate frequencies, adaptively change encoding,)

Outline

Assignment Project Exam Help

- Encoding Basics
- Runned gt Descoding tutores.com
- bzip2
- Burrows-Wheeler Transform
- Lem We Chat: cstutorcs

Run-Length Encoding

- Variable-length code
- Example of multi-character encoding: multiple source-text

Stigtmine ent color ject Exam Help The Source alphabet and coded alphabet are both binary: {0,1}.

Decoding dictionary is uniquely defined and not explicitly stored.

Encoding idea:

- Give the first bit of S (either 0 or 1)
 Then give a sequence of integers indicating run lengths.
- We don't have to give the bit for runs since they alternate.

Example becomes: 0, 5, 3, 4

Question: How to encode a run length k in binary?

Prefix-free Encoding for Positive Integers

Use **Elias gamma coding** to encode *k*:

Assing representation of Providents with Exam Help

1 , k	log k	k in binary	encoding
https:	//tut	Orcs ₁ (com
2	1	10	010
3	1	11	011
11 / ₂ (41)	$\frac{2}{2}$	100	00100
VV EC	Hal.	cstudio	100101
6	2	110	00110
:	:	:	:

RLE Encoding

```
RLE-Encoding(S[0...n-1])
S: bitstring
is initialize output string C \leftarrow S[0]

ignimient Projectex Existen Help
             k \leftarrow 1
                                        // length of run
             while (i + k < n \text{ and } S[i + k] = S[i]) do k++
            ) **: // tutores.com
// compute and append Elias gamma code
             K \leftarrow \text{empty string}
             while k > 1
                   Partend (O) Stutores
K. prepend (k mod 2)
                   k \leftarrow |k/2|
 11.
             K.prepend(1)
                                        //K is binary encoding of k
 12.
 13.
             C.append(K)
       return C
 14
```

RLE Decoding

```
RLE-Decoding(C)
C: stream of bits
    man but the feet Exam Help

b 
C. pop()

b 
C. pop()
      repeat
                         _{\cdot \cdot \cdot} // length of base-2 number -1
       S. whiterofes. com
k \leftarrow 1 // base-2 number converted
           for (j \leftarrow 1 \text{ to } \ell) do k \leftarrow k * 2 + C.pop()
VeChat: cstutores
      until C has no more bits left
      return S
```

If C.pop() is called when there are no bits left, then C was not valid input.

RLE Example

Encoding:

```
Assignment Project Exam Help
```

https://tutorcs.com

Decoding:

c = 0000110100101010 **WeChat: cstutorcs**

S =

RLE Example

Encoding:

```
Assignment Project Exam Help
```

https://tutorcs.com

```
Decoding:
```

c = 00001101001001010 **WeChat: cstutorcs**

S =

Encoding:

```
Assignment Project Exam Help
```

https://tutorcs.com

Decoding:

```
c = 00001101001001010 WeChat: cstutorcs
```

Encoding:

https://tutorcs.com

```
Decoding:
```

c = 00001101001001010 **WeChat: cstutorcs**

Encoding:

https://tutorcs.com

Decoding:

c = 0000110100101010 **WeChat: cstutorcs**

Encoding:

```
Assignment Project Exam Help
```

https://tutorcs.com

```
Decoding:
```

```
c = 0000110100101010 WeChat: cstutorcs
```

```
Encoding:
```

Assignment Project Exam Help

Compression ratio: $26/41 \approx 63\%$ https://tutorcs.com

Decoding:

c = 0000110100101010 **WeChat:** cstutorcs

```
Encoding:
```

Assignment Project Exam Help

Compression ratio: $26/41 \approx 63\%$ https://tutorcs.com

Decoding:

c = 0000110100101010 **WeChat:** cstutorcs

Encoding:

Assignment Project Exam Help

Compression ratio: $26/41 \approx 63\%$ https://tutorcs.com

Decoding:

Encoding:

Assignment Project Exam Help

Compression ratio: $26/41 \approx 63\%$ https://tutorcs.com

Decoding:

$$S =$$

Encoding:

Assignment Project Exam Help

Compression ratio: 26/41 ≈ 63% https://tutorcs.com

Decoding:

```
b = 0 We Chat: cstutores
```

 $\ell = 3$

k = 13

Encoding:

Assignment Project Exam Help

Compression ratio: $26/41 \approx 63\%$ https://tutorcs.com

Decoding:

 $\ell = 2$

k =

Encoding:

Assignment Project Exam Help

Decoding:

 $\ell = 2$

k = 4

Encoding:

Assignment Project Exam Help

Compression ratio: $26/41 \approx 63\%$ https://tutorcs.com

Decoding:

 $\ell = 0$

k =

Encoding:

Assignment Project Exam Help

Compression ratio: 26/41 ≈ 63% https://tutorcs.com

Decoding:

```
b = 0 We Chat: cstutores
```

 $\ell = 0$

k = 1

Encoding:

```
Assignment Project Exam Help
```

Compression ratio: $26/41 \approx 63\%$ https://tutorcs.com

Decoding:

k =

Encoding:

Assignment Project Exam Help

 $\begin{array}{c} \text{Compression ratio: } 26/41 \approx 63\% \\ \hline \\ \text{$https://tutorcs.com} \end{array}$

Decoding:

RLE Properties

Salgana entire Project Exam Help

- Usually, we are not that lucky:
 - No compression until run-length $k \ge 6$
- Used in some image formats (e.g. TIFF)
- Method can be adapted to larger alphabet sizes (but then the encoding of each run must also store the character)
- Method can be adapted to encode only runs of 0 (we will need this soon)

Outline

Assignment Project Exam Help

- Encoding Basics
- Runhttps://tutorcs.com
- bzip2
- Burrows-Wheeler Transform
- Lem We Chat: cstutorcs

bzip2 overview

To achieve even better compression, bzip2 uses text transform: Change input into a different text that is not necessarily shorter, but that has

other desirable qualities. Assignment Project Exam Help
Burrows-Wheeler If To has repeated substrings, then T1 has long runs of characters. transform tutorcasio Coma characters, then T_2 has long runs of zeros and skewed fretransform quencies. text 7 at: Estilitorics eroes, then T3 is shorter. Skewed frequencies remain. text T_3 Compresses well since frequencies are Huffman encoding skewed. text T_4

Move-to-Front transform

Recall the MTF heuristic for self-organizing search:

• Dictionary *L* is stored as an unsorted array or linked list

A Softe graph the introduction of the start of the district of the start of the sta

https://tutorcs.com

WeChat: cstutorcs

Move-to-Front transform

Recall the MTF heuristic for self-organizing search:

Dictionary L is stored as an unsorted array or linked list

A S A Ste Can I Fine Consider the Constant of the How can we use this idea for transforming a text with repeat characters?

- Encode each character of source text S by its index in L.
- Aftender presding, the aleques Moc That heuristic.
- Example: S = GOOD becomes C = 1, 2, 0, 2

Move-to-Front transform

Recall the MTF heuristic for self-organizing search:

• Dictionary L is stored as an unsorted array or linked list

As Steginine intersect my Act of the toxt after dictional from the same use this idea for transforming a text with repeat characters?

- Encode each character of source text S by its index in L.
- Aftender Disching, Thate Ower Shore That heuristic.
- Example: S = GOOD becomes C = 1, 2, 0, 2

Observe: A character in *S* repeats k times $\Leftrightarrow C$ has run of k-1 zeroes

Observe: C contains lots of small numbers and few big ones.

C has the same length as S, but better properties.

Move-to-Front Encoding/Decoding

MTF-encode(S)

- $L \leftarrow \text{array with } \Sigma_S \text{ in some pre-agreed, fixed order (usually ASCII)}$
- while S has more characters do

ment Project Exam Help **output** index *i* such that L[i] = c

- **for** i = i 1 down to 0
- swap L[j] and L[j+1]6.

Decoding works in *exactly* the same way:

```
MTF-decode(C)
```

- may with a in some Sri-Igreed of Red Seder (usually ASCII) 1.
- 2.
- 3. $i \leftarrow \text{next integer from } C$
- output L[i]4.
- **for** i = i 1 down to 0 5.
- swap L[j] and L[j+1]6.

Winter 2020

Outline

Assignment Project Exam Help

- Encoding Basics
- Runhttps://tutorcs.com
- bzip2
- Burrows-Wheeler Transform
- Lem We Chat: cstutorcs

Burrows-Wheeler Transform

Idea:

- Permute the source text S: the coded text C has the exact same

 Setters (and the same length) but in a different order Help

 Goal of S has repeated substrings, then C should have long runs of characters.
 - \bullet We need to choose the permutation carefully, so that we can decode correctly. COM

Details:

- Assume that the source text *S* ends with end-of-word character \$ that occur. Control of the estate: CStutorcs
- A cyclic shift of S is the concatenation of S[i+1..n-1] and S[0..i], for $0 \le i < n$.
- The encoded text C consists of the last characters of the cyclic shifts of S after sorting them.

Assignment Projectal Haring Help

Write all cyclic shifts

alfieatsialfalfa\$ lfieatsialfalfa\$a f_eats_alfalfa\$al

ats alfalfa\$alf e tsualfalfa\$alfuea sualfalfa\$alfueat

falfa\$alf_eats_al alfa\$alf, eats, alf lfa\$alf_eats_alfa

WeChat: cstuffer alfalf \$alf, eats, alfalfa

Assignment Project Linkship Help

Write all cyclic shifts

WeChat: cstlftfaffaffgeats_a

_eatsualfalfa\$alf alfa\$alf_eats_alf alfalfa\$alf⊔eats⊔ atsualfalfa\$alfie falfa\$alf⊔eats⊔al lfueatsualfalfa\$a lfa\$alf_eats_alfa

\$alf, eats, alfalfa ⊔alfalfa\$alf⊔eats

tsualfalfa\$alfuea

Assignment Project and the Assignment Project an

- Write all cyclic shifts
- sorted shifts

 $C = asff f_{\sqcup} e_{\sqcup} lllaaata$

WeChat: cstlftfffffeatsua

\$alf, eats, alfalfa ⊔alfalfa\$alf⊔eat<mark>s</mark> _eatsualfalfa\$alf

alfa\$alf_eats_alf alfalfa\$alf_eats_1 atsualfalfa\$alfue falfa\$alf⊔eats⊔a<mark>l</mark>

lfueatsualfalfa\$<mark>a</mark> lfa\$alf_eats_alfa

tsualfalfa\$alfuea

Help

Assignment Project at Landing

- Write all cyclic shifts
- sorted shifts

 $C = asff f_{\sqcup} e_{\sqcup} lllaaata$

WeChat: cstifficeatsua

\$alf, eats, alfalfa ⊔alfalfa\$alf⊔eats _eats⊔alfalfa\$alf

Help

alfa\$alf_eats_alf alfalfa\$alf_eats__ atsualfalfa\$alfue Sort cyclic shifts
 Extractlas Distracter transformed the same and same as a same falfa\$alf⊔eats⊔al lfueatsualfalfa\$a lfa\$alf_eats_alfa

tsualfalfa\$alfuea

Observe: Substring alf occurs three times and causes runs 111 and aaa in C (why?)

Idea: Given C, we can reconstruct the *first* and *last column* of the array of cyclic shifts by sorting. ssignment Project Exam Help I ast column: C https://tutorcs.com....* WeChat: cstutorcsbb

Idea: Given C, we can reconstruct the *first* and *last column* of the array of cyclic shifts by sorting. ssignment Project Exam Help a....d Last column: C • First Ptutores.com...r b....a WeChat: cstutorcs a d....a r....b

r....b

	FIRSTPUMDS SOMEULOTCS.C	(a,811r,4
3	Disambiguate by row-index	a,9c,5
	Can argue: Repeated characters are in	b,10a,6
	the same order in the first and the last column (the sort was table). Stutt	b.11a,7
	column (the sort was stable). Stull	1c,55a,8
		d,2a,9
		r,1b,10
		r,4b,11

Winter 2020

Idea: Given C, we can reconstruct the *first* and *last column* of the array of cyclic shifts by sorting. ssignment Project Exam Help a,6....d,2 Last column: C a,7....\$,3 First outorcs.co.m.....r,4 Oisambiguate by row-index a,9....c,5 Can argue: Repeated characters are in b,10....a,6 the same order in the first and the last orc, S.....a, 7 d,2....a,9 Starting from \$, recover S r,1....b,10

	First Pulps syletutores.	a,8,1r,4
3	Disambiguate by row-index	a,9c,5
	Can argue: Repeated characters are in	b,10a,6
	the same order in the first and the last column (the sort was table). Stuto	b. 11 _C a,7
	column (the sort was stable). Stull	1 _{c,5} 5a,8
4	Starting from \$, recover S	d,2a,9
- 2	•	r,1b,10

S = a

Petrick, Veksler (SCS, UW)

r,4....b,11

29 / 42

Idea: Given C, we can reconstruct the *first* and *last column* of the array of cyclic shifts by sorting. ssignment Project Exam Help a,6....d,2 Last column: C a,7.....\$,3 First outorcs.co.m.....r,4 Oisambiguate by row-index a,9....c,5 Can argue: Repeated characters are in b,10....a,6 the same order in the first and the last torc, S.....a, 8

S = ab

Starting from \$, recover S

d,2....a,9

r,1....b,10

Idea: Given C, we can reconstruct the *first* and *last column* of the array of cyclic shifts by sorting. ssignment Project Exam Help a,6....d,2 Last column: C a,7.....\$,3 First outorcs.com......r,4 Oisambiguate by row-index a,9....c,5 Can argue: Repeated characters are in b,10....a,6 the same order in the first and the last Orc, S.....a, 7 d,2....a,9 Starting from \$, recover S r,1....b,10 S = abr

r,4....b,11

Idea: Given C, we can reconstruct the *first* and *last column* of the array of cyclic shifts by sorting. ssignment Project Exam Help a,6....d,2 Last column: C a,7.....\$,3 First of the State of the First of the State Oisambiguate by row-index a,9....c,5 Can argue: Repeated characters are in b,10....a,6 the same order in the first and the last tor<mark>ç</mark>5.....a,7 column the sort was stable CSUU d,2....a,9 Starting from \$, recover S r,1....b,10 S = abracadabra\$

BWT Decoding

```
BWT-decoding(C[0..n-1])
C: string of characters over alphabet \Sigma_s comman Help
           A[i] \leftarrow (C[i], i) // store character and index
       Stably sort A by character
      PS - / tutor CS b G Stan char?
       S \leftarrow \text{empty string}
      erehat: scesitutores
           S.append(C[j])
 10.
     until C[j] = $
 12
      return S
```

BWT Overview

Encoding cost: $O(n(n + |\Sigma_S|))$ (using MSD or LSD radix sort) and often better

Ancoding is the pretically possible in S(a) time, Issuming S(a) = S(a). Sorting cyclic shifts of S(a) is equivalent to sorting the suffixes of S(a).

- Sorting cyclic shifts of S is equivalent to sorting the suffixes of $S \cdot S$ that have length > n
- This can be done by/traversing the suffix tree of $S \cdot S$. Decoding cost $O(n + |\Sigma_S|)$ (faster than encoding)

Encoding and decoding both use O(n) space.

They need all of the text (no streaming possible). BWT is a block compression method.

BWT tends to be slower than other methods, but (combined with MTF, modified RLE and Huffman) gives better compression.

Outline

Assignment Project Exam Help

- Encoding Basics
- Runhttps://tutorcs.com
- bzip2
- Burrows-Wheeler Transform
- Lem Welchat: cstutorcs

Longer Patterns in Input

Assignment Project Fxam Help

been and RLE take advantage of frequent/repeated single characters.

Certain Substrings are just more frequent than others.

- English text:

 Most frequent digraphs: THER ON AN RETHE IN, ED, ND, HA

 Most frequent trigraphs: THE, AND, THA, ENT, TON, TIO, FOR, NDE
- HTML: "<a href", "<img src", "
"
- Video: repeated background between frames, shifted sub-image Chat. CSTULORCS

Ingredient 1 for Lempel-Ziv-Welch compression: take advantage of such substrings *without* needing to know beforehand what they are.

Adaptive Dictionaries

ASCII, UTF-8, and RLE use fixed dictionaries. ssignment Project Exam Help the same for the entire encoding/decoding.

• There is a fixed initial dictionary D_0 . (Usually ASCII.)

- For i > 0, D_i is used to determine the *i*th output character
- After writing the inhalteractor of out that, both encoder and decoder update D_i to D_{i+1}

Encoder and decoder must both know how the dictionary changes.

LZW Overview

- Start with dictionary D_0 for $|\Sigma_S|$. Usually $\Sigma_S = ASCII$, then this uses codenumbers $0, \dots, 127$. Solve the step of the step codenumbers 128, 129, . . .
 - Encoding:
 - Stated apprent dictionary Diagrantie. Parse this to find longest prefix w already in D_i
 - So all of w can be encoded with one number.
 - Add to dictionary the *substring that would have been useful*: of WK where K is the character that follows w in S.
 This creates one child in the at the leaf where we stopped.
 - Output is a list of numbers. This is usually converted to bit-string with fixed-width encoding using 12 bits.
 - This limits the codenumbers to 4096.

Assignment Project Exam Help

https://tutorcs.com

Dictionar Wechat: cstutorcs

Assignment Project Exam Help

https://tutorcs.com

Dictionar Wechat: cstutorcs

83

Assignment Project Exam Help https://tutorcs.com 65 hati-estutores 83

65

65

128

78

128

83

129

LZW encoding pseudocode

```
LZW-encode(S)
S: stream of characters.
          nenti-Project Exam Help
      while there is input in S do
           v \leftarrow \text{root of trie } D
               v \leftarrow c; S.pop()
               if there is no more input in S break
8.
                                                     (goto 10)
                K ← • .peek() ← + 1 1
          if there is more input in S
11.
12.
               create child of v labelled K with codenumber idx
13.
               idx++
```

- Same idea: build dictionary while reading string.
- Dictionary maps numbers to strings.

As significant triprojecte fix Examical Help

- Same idea: build dictionary while reading string.
- Dictionary maps numbers to strings.

Assignmentri Projecti Examct Help

- Same idea: build dictionary while reading string.
- Dictionary maps numbers to strings.

Street tribroje (refix Example: 67 65

- Same idea: build dictionary while reading string.
- Dictionary maps numbers to strings.

As significant tripe of the Example: 67 65 78

- Same idea: build dictionary while reading string.
- Dictionary maps numbers to strings.

As Foispenne en trippe of the Example: 67 65 78 32

	Code #	ps.	//1	tut	Dires	. Ç.Q #	String (numan)	String (computer)
	• • •	•		67	C			
	65			65	A	128	CA	67, A
D =	16A 7	A		78	N	129	AN	65, N
<i>D</i> _			าว	32	CHI	CHOC	N⊔	78, ⊔
	67 🔻		10	•••	2014	COLC		
	• • •							
	78	N						
	83	S						

- Same idea: build dictionary while reading string.
- Dictionary maps numbers to strings.

As sispense of tripe of tripe to the Example: 67 65 78 32 66

[Code #	String String	//1	tut	Olices	. C .Q#	String (human)	String (computer)
}	• •			67	C			
	65	A		65	A	128	CA	67, A
D =	160 /	B		78	N	129	AN	65, N
<i>D</i> –			าภ	32	CCITI	(1)0(N⊔	78, ⊔
}			10	66	D B CO	131	⊔B	32, B
	78	N						
	83	S						

- Same idea: build dictionary while reading string.
- Dictionary maps numbers to strings.

As Toispense on trippe of trippe of trippe of the Example: 67 65 78 32 66 129

	Code #	String String	//1	tut	Dires	. Ç.Q #	String (numan)	String (computer)
	• •			67	C			
	65	A		65	A	128	CA	67, A
D =	05 A 6V C B		78	N	129	AN	65, N	
<i>D</i> –		าว	32		(110)	N⊔	78, ⊔	
				66	D B C	131	⊔B	32, B
	78 N			129	AN	132	BA	66, A
	70	IN						
	•••					•		
	83	S						

- Same idea: build dictionary while reading string.
- Dictionary maps numbers to strings.

As Tois perpendent tripped tri

	Code # String	//1	tut	Dires	. Ç.Q #	String (numan)	String (computer)
			67	C			
	65 A		65	A	128	CA	67, A
D =	60 7 A		78	N	129	AN	65, N
<i>D</i> –			32		(110)	N⊔	78, ⊔
		10	66	-DFM	131	⊔B	32, B
	78 N		129	AN	132	BA	66, A
			133	???	133		
			,				
	83 S						

- In this example: Want to decode 133, but not yet in dictionary!
- What happened during the corresponding encoding?

Assignment Project Exam Help

https://tutorcs.com

WeChat: cstutorcs

- In this example: Want to decode 133, but not yet in dictionary!
- What happened during the corresponding encoding?

WeChat: cstutorcs

- In this example: Want to decode 133, but not yet in dictionary!
- What happened during the corresponding encoding?

Assignment Project Exam Help

Dictionarhttps: 65/tu20138.com (parts omitted): B 66-A-132

• We know: 133 encodes ANx_1 (for unknown x_1)

CSTUTOTCS

- In this example: Want to decode 133, but not yet in dictionary!
- What happened during the corresponding encoding?

Dictionar https://tueores.com (parts omitted):

- We know: 133 encodes ANx_1 (for unknown x_1)
 We know: Wext x_1 and x_2 x_3 x_4 x_4 x_5 x_4 x_5 x_4 x_5 x_4 x_5 x_5 x_4 x_5 x_5

- In this example: Want to decode 133, but not yet in dictionary!
- What happened during the corresponding encoding?

- We know: 133 encodes ANx_1 (for unknown x_1)
- We know that hates 16 Stuttores
- So $x_1 = A$ and 133 encodes ANA

- In this example: Want to decode 133, but not yet in dictionary!
- What happened during the corresponding encoding?

Dictionar https://twoofes.com

(parts omitted):

| Gol-A-132|

- We know: 133 encodes ANx_1 (for unknown x_1)
- We know that hate 16 Stutores
- So $x_1 = A$ and 133 encodes ANA

Generally: If code number is about to be added to D, then it encodes

"previous string + first character of previous string"

LZW decoding pseudocode

```
LZW-decode(C)
              C: stream of integers
                    D \leftarrow \text{dictionary that maps } \{0, \dots, 127\} \text{ to ASCII}
Assignment Project Exam Help
                    code \leftarrow C.pop(); s \leftarrow D(code); S.append(s)
                    while there are more codes in C do
                   os: % tutores com
                             s \leftarrow D(code)
                         else if code = idx // special situation!
                          124. Sestellores
Encoding was invalid
               12.
                        S.append(s)
                        D.insert(idx, s_{prev} + s[0])
              13.
                        idx++
               14.
                    return S
               15.
```

LZW decoding example revisited

Assignment Project Exam Help

	$\overline{}$			•			
				decodes		String	ſ
D =	32	ш	input	to	Code #	(human)	L
	10444	1/	67	C	0.010		ſ
	ALUDS.) \$.//	65	DICS	128	CA	
	66	B	78	N	129	AN	ſ
	67		32	П	130	N⊔	Ī
	07		66	В	131	⊔B	Ī
	1 7		129	AN	132	BA	ſ
	We		133	A I A	130	ANA	ſ
	83	S	83	S	134	ANAS	

Winter 2020

String (computer)

67, A
65, N
78,

32, B
66, A
129, A
133, S

Lempel-Ziv-Welch discussion

• Encoding: O(|S|) time, uses a trie of encoded substrings to store the dictionary

Decoding: O(|S|) time, uses an array indexed by code numbers to S and S are S and S are S are S and S are S are S and S are S are S and S are S and S are S are S and S are S are S and S are S and S are S and S are S are S and S are S are S and S are S are S are S and S are S and S are S and S are S and S are S and S are S are S and S are S and S are S and S are S and S are S are S and S are S are S and S are S

- Encoding and decoding need to go through the string only once and do not need to see the whole string
- \Rightarrow can the compression while streaming the text. Compresses quite well ($\approx 45\%$ on English text).

Brief history:

mat: "estutorcs

Derivatives: LZSS, LZFG, LZRW, LZP, DEFLATE, ...

DEFLATE used in (pk)zip, gzip, PNG

LZ78 Second (slightly improved) version Derivatives: LZW, LZMW, LZAP, LZY, . . . LZW used in compress, GIF (patent issues!)

Compression summary

Huffman	Run-length	Lempel-Ziv-	bzip2 (uses		
•	encoding	Welch	Burrows-Wheeler)		
ASSI SINN	खिनं भी de len gth 🏻 🔾	Receigt EXa	Mi-sep e p		
single-character	multi-character	multi-character	multi-step		
2-pass, must send dictionary	1-pass/tiltor	cs.com	not streamable		
60% compression on English text optimal 01-prefix-	bad on text good on long runs	45% compression on English text good on English	70% compression on English text better on English		
requires uneven feet quencies		tent Orcested substrings	text requires repeated substrings		
rarely used directly	rarely used directly	frequently used	used but slow		
part of pkzip, JPEG, MP3	fax machines, old picture-formats	GIF, some variants of PDF, compress	bzip2 and variants		