Exercises from $Matrix\ Groups\ for\ Undergraduates$ by Kristopher Tapp

Tyler Jensen | tyjensen222@gmail.com

January 17, 2025

Contents

1	Matrices
	Exercise 1.1 [Complete]
	Exercise 1.2 [Complete]
	Exercise 1.3 [Complete]
	Exercise 1.4 [Complete]
	Exercise 1.5 [Complete]
	Exercise 1.6 [Complete]
	Exercise 1.7 [WIP]
	Exercise 1.8 [Complete]
	Exercise 1.9 [Complete]
	Exercise 1.10 [Complete]
	Exercise 1.11 [TODO]
	Exercise 1.12 [Complete]
	Exercise 1.13 [WIP]
	Exercise 1.14 [TODO]
	Exercise 1.15 [Complete]
	Exercise 1.16 [Complete]
	Exercise 1.17 [Complete]
	Exercise 1.18 [Complete]
2	All matrix groups are real matrix groups
	2.1 Exercises
	Exercise 2.1 [Complete]
	Exercise 2.2 [TODO]
	Exercise 2.3 [TODO]
	Exercise 2.4 [TODO]
	Exercise 2.5 [Complete]
	Exercise 2.6 [Complete]
	Exercise 2.7 [TODO]
	Exercise 2.8 [TODO]
	Exercise 2.9 [TODO]
	Exercise 2.10 [TODO]
	Exercise 2.11 [TODO]
	Exercise 2.12 [TODO]

iv CONTENTS

3	The orthogonal groups									1
3	.1 Exercises		 		 	 				 1
	Exercise 3.1 [Complete]		 		 	 				 1
	Exercise 3.2 [Complete]									
	Exercise 3.3 [WIP]		 		 	 				 1
	Exercise 3.4 [Complete]									
	Exercise 3.5 [Complete]									
	Exercise 3.6 [Complete]									
	Exercise 3.7 [WIP]									
	Exercise 3.8 [TODO]									
	Exercise 3.9 [TODO]									
	Exercise 3.10 [Complete] .									
	Exercise 3.11 [Complete] .									
	Exercise 3.12 [Complete] .									
	Exercise 3.13 [Complete] .									
	Exercise 3.14 [Complete] .									
	Exercise 3.15 [Complete] .									
	Exercise 3.16 [Complete] .									
	Exercise 3.17 [Complete] .									
	Exercise 3.18 [WIP]									
4	The topology of matrix group	\mathbf{ps}								2
4	.1 Exercises		 		 	 				 2
	Exercise 4.1 [TODO]		 		 	 				 2
										_
	ie algebras									2
٤	.1 Exercises									
	Exercise 5.1 [TODO]									
	Exercise 5.2 [Complete]									
	Exercise 5.3 [TODO]									
	Exercise 5.4 [TODO]									2
	Exercise 5.5 [Complete]									2
	Exercise 5.6 [Complete]									2
	Exercise 5.7 [Complete]									2
	Exercise 5.8 [TODO]									2
	Exercise 5.9 [TODO]		 		 	 				 2
	Exercise $5.10 [TODO]$		 		 	 				 2
	Exercise 5.11 [TODO]		 		 	 				 2
	Exercise 5.12 [TODO]		 		 	 				 2
	Exercise 5.13 [TODO]		 		 	 				 2
	Exercise 5.14 [TODO]		 		 	 				 2
	Exercise 5.15 [TODO]		 		 	 				 2
	Exercise 5.16 [TODO]		 		 	 				 2

CONTENTS v

6 N	Лat	crix exponentiation
6	.1	Exercises
		Exercise 6.1 [WIP]
		Exercise 6.2 [Complete]
		Exercise 6.3 [Complete]
		Exercise 6.4 [WIP]
		Exercise 6.5 [Complete]
		Exercise 6.6 [WIP]
		Exercise 6.7 [WIP]
		Exercise 6.8 [WIP]
		Exercise 6.9 [WIP]
		Exercise 6.10 [TODO]
		Exercise 6.11 [Complete]
		Exercise 6.12 [Complete]
		Exercise 6.13 [Complete]
		Exercise 6.14 [TODO]
		t j
		crix groups are manifolds
7	.1	Exercises
		Exercise 7.1 [Complete]
		Exercise 7.2 [WIP]
\mathbf{r}	[he	Lie bracket
	.1	Exercises
		Exercise 8.1 [Complete]
		Exercise 8.2 [Complete]
		Exercise 8.3 [WIP]
		Exercise 8.4 [TODO]
		Exercise 8.5 [TODO]
		Exercise 8.6 [TODO]
		Exercise 8.7 [TODO]
	.	
		ximal tori Exercises
9	.1	Exercises
.0 F	Ion	nogeneous manifolds
1	0.1	Exercises
l1 F	<u>}</u>	ots
		Exercises

vi *CONTENTS*

Chapter 1

Matrices

Exercise 1.1 [Complete]

Describe a natural 1-to-1 correspondence between elements of SO(3) and elements of

$$T^1S^2 = \{(p, v) \in \mathbb{R}^3 \times \mathbb{R}^3 : |p| = |v| = 1 \text{ and } p \perp q\}$$

Solution. Using the globe analogy from Question 1.2, fix a point r to be the north pole, and a point e that lies on the equator induced by the choice of r, and assert this as the arbitrary 'identity'.

Next, given some $A \in SO(3)$, identify an element in T^1S^2 via $A \mapsto (Ar, Av)$, as in first where A maps the north pole r, and then how A rotates the globe about the axis induced by r and its antipodal point.

Exercise 1.2 [Complete]

Prove equation 1.3:

$$(A \cdot B)^T = B^T \cdot A^T$$

Solution. First,

$$(A \cdot B)_{ij}^{T} = (A \cdot B)_{ji}$$
$$= \sum_{k=1}^{n} A_{jk} B_{ki}$$

Next,

$$(B^T \cdot A^T)_{ij} = \sum_{k=1}^n (B^T)_{ik} (A^T)_{kj}$$
$$= \sum_{k=1}^n B_{ki} A_{jk}$$
$$\stackrel{*}{=} \sum_{k=1}^n A_{jk} B_{ki}$$

Note the $\stackrel{*}{=}$ step uses the commutativity of multiplication, hence the above proof does not work when $\mathbb{K} = \mathbb{H}$.

Exercise 1.3 [Complete]

Prove equation 1.4:

$$trace(A \cdot B) = trace(B \cdot A)$$

Solution. First,

$$\operatorname{trace}(A \cdot B)_{ii} = \sum_{i=1}^{n} \sum_{k=1}^{n} A_{ik} B_{ki}$$

Next,

$$\operatorname{trace}(B \cdot A)_{ii} = \sum_{i=1}^{n} (B \cdot A)_{ii}$$
$$= \sum_{i=1}^{n} \sum_{k=1}^{n} B_{ik} A_{ki}$$

Carefully reindexing and resumming gives the result.

Note that the 'careful reindexing and resumming process' implies trace() is invariant under cyclic permutation, e.x.:

$$trace(A \cdot B \cdot C) = trace(C \cdot A \cdot B)$$

Exercise 1.4 [Complete]

Let $A, B \in M_n \mathbb{K}$. Prove that if $A \cdot B = I$ then $B \cdot A = I$.

Solution. Note that

$$A \cdot B = I \iff A = B^{-1}$$
.

The result follows.

Exercise 1.5 [Complete]

Suppose that the determinant of $A \in M_n(\mathbb{H})$ were defined as in Equation 1.5. Show for

$$A = \begin{pmatrix} \mathbf{i} & \mathbf{j} \\ \mathbf{i} & \mathbf{j} \end{pmatrix} \in M_n(\mathbb{H})$$

that $det(A) \neq 0$ but

$$R_A:H^2\to H^2$$

is not invertible.

Solution. Given the definition from Equation 1.5:

$$det(A) = det \begin{pmatrix} \mathbf{i} & \mathbf{j} \\ \mathbf{i} & \mathbf{j} \end{pmatrix}$$
$$= \mathbf{i}\mathbf{j} - \mathbf{j}\mathbf{i}$$
$$= (1) - (-1)$$
$$= 2 \neq 0$$

However,

$$R_A((-\mathbf{i},\mathbf{i})) = (-\mathbf{i},\mathbf{i}) \cdot \begin{pmatrix} \mathbf{i} & \mathbf{j} \\ \mathbf{i} & \mathbf{j} \end{pmatrix} = (-\mathbf{i}^2 + \mathbf{i}^2, -\mathbf{i}\mathbf{j} + \mathbf{i}\mathbf{j}) = (1 - 1, -\mathbf{k} + \mathbf{k}) = (0,0)$$

Hence, R_A has a non-zero determiant, but is not invertible as the kernel is non-trivial. Similarly, clearly the columns of A are linearly dependent.

Exercise 1.6 [Complete]

Find $B \in M_2(\mathbb{R})$ such that $R_B : \mathbb{R}^2 \to \mathbb{R}^2$ is a counter-clockwise rotation through an angle θ .

Solution. Note that we can 'represent' both 1 and i in $M_2(\mathbb{R})$ via

$$1 \to \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I \text{ and } i \to \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

where the latter works since

$$\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}^2 = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} = -I$$

capturing the fact that $i^2 = -1$. Building on this, we can represent any $a + bi \in \mathbb{C}$ via

$$\rho: a+bi \mapsto a \cdot I + b \cdot \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} = \begin{pmatrix} a & b \\ -b & a \end{pmatrix}.$$

Next, note that the function $f_{\theta}(z) = ze^{i\theta}$ rotates elements counter-clockwise in \mathbb{C} by an angle θ . To see this, letting $z = re^{i\varphi}$,

$$f_{\theta}(z) = ze^{i\theta} = re^{i\varphi}e^{i\theta} = re^{i(\varphi+\theta)}$$

Applying ρ gives

$$\rho_1(e^{i\theta}) = \rho_1(\cos(\theta) + i\sin(\theta))$$
$$= \begin{pmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{pmatrix} = B$$

Exercise 1.7 [WIP]

Describe all elements $A \in GL_n(\mathbb{R})$ with the property AB = BA for all $B \in GL_n(\mathbb{R})$. **Solution.** Matrices A that commute with all matrices in $GL_n(\mathbb{R})$ are scalar multiples of the identity

$$A = \lambda I$$

where $\lambda \in \mathbb{R}$ and $\lambda \neq 0$.

Exercise 1.8 [Complete]

Let $\mathrm{SL}_2(\mathbb{Z})$ denote 2 by 2 matrices with integer entries and determinant 1. Prove that $\mathrm{SL}_2(\mathbb{Z})$ is a subgroup of $\mathrm{GL}_n(\mathbb{Z})$. Is $SL_n(\mathbb{Z})$ a subgroup of $\mathrm{GL}_n(\mathbb{R})$ in general?

Solution. Fixing $A, B \in \mathrm{SL}_2(\mathbb{Z})$, its clear that $A \cdot B$ must have all integer entries. Since

$$\det(AB) = \det(A)\det(B) = 1 \cdot 1 = 1$$

we have that $A \cdot B \in \mathrm{SL}_2(\mathbb{Z})$ (closure). Next, fix

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}_2(\mathbb{Z})$$

Using Cramer's Rule to compute the inverse of A we get

$$A^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

where ad - bc = 1 since det A = 1, so A^{-1} has all integer entries, and is a member of $SL_2(\mathbb{Z})$. Therefore, $SL_2(\mathbb{Z})$ is a subgroup of $GL_2(\mathbb{R})$.

The critical step in the above proof is discerning that the factor extracted from A^{-1} is $1/\det A = 1$, which ensures the entries of the inverse are all in \mathbb{Z} . This factor is the same for any n, so $\mathrm{SL}_n(\mathbb{Z})$ is always a subgroup of $\mathrm{GL}_n(\mathbb{R})$ for all n.

Exercise 1.9 [Complete]

Describe the block matrix blah blabh blabh TODO write this out Solution. Suppose A and B are block matrices in $M_n(\mathbb{K})$, given by

$$A = \begin{pmatrix} A_1 & 0 & \cdots & 0 \\ 0 & A_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & A_n \end{pmatrix}, B = \begin{pmatrix} B_1 & 0 & \cdots & 0 \\ 0 & B_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & B_n \end{pmatrix}$$

where $\sum \dim A_i = \dim A = \sum \dim B_i = \dim B$, and $\dim A_i = \dim B_i$ for each i. Then,

$$A \cdot B = \begin{pmatrix} A_1 \cdot B_1 & 0 & \cdots & 0 \\ 0 & A_2 \cdot B_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & A_n \cdot B_n \end{pmatrix}$$

Which can be applied to the above question to derive a simple answer.

Exercise 1.10 [Complete]

If $G_1 \subset GL_{n_1}(\mathbb{K})$ and $G_2 \subset GL_{n_2}(\mathbb{K})$ are subgroups, describe a subgroup of $GL_{n_1+n_2}(\mathbb{K})$ isomorphic to $G_1 \times G_2$.

Solution. Define a map

$$\varphi: G_1 \times G_2 \to \mathrm{GL}_{n_1+n_2}(\mathbb{K})$$

given by

$$(A_1, A_2) \mapsto \begin{pmatrix} A_1 & 0 \\ 0 & A_2 \end{pmatrix}$$

The image of φ is a subset of $GL_{n_1+n_2}(\mathbb{K})$ since

$$\det \begin{pmatrix} A_1 & 0 \\ 0 & A_2 \end{pmatrix} = \det A_1 \cdot \det A_2 \neq 0$$

so $\varphi(A_1, A_2) \in GL_{n_1+n_2}(\mathbb{K})$. To prove φ is a group homomorphism, observe

$$\varphi((A_1, A_2) \cdot (B_1, B_2)) = \varphi(A_1 \cdot B_1, A_2 \cdot B_2)$$

$$= \begin{pmatrix} A_1 \cdot B_1 & 0 \\ 0 & A_2 \cdot B_2 \end{pmatrix}$$

$$= \begin{pmatrix} A_1 & 0 \\ 0 & A_2 \end{pmatrix} \cdot \begin{pmatrix} B_1 & 0 \\ 0 & B_2 \end{pmatrix}$$

$$= \varphi(A_1, A_2) \cdot \varphi(B_1, B_2)$$

hence the result.

Exercise 1.11 [TODO]

Exercise 1.12 [Complete]

Show that for purely imaginary $q_1, q_2 \in \mathbb{H}$, $-\text{Re}(q_1 \cdot q_2)$ is the vector dot product in $\mathbb{R}^3 = \text{span}(\mathbf{i}, \mathbf{j}, \mathbf{k})$ and $\text{Im}(q_1 \cdot q_2)$ is the vector cross-product.

Solution. First,

$$-\text{Re}(q_1 \cdot q_2) = -\text{Re}((b_1 \mathbf{i} + c_1 \mathbf{j} + d_1 \mathbf{k}) \cdot (b_2 \mathbf{i} + c_2 \mathbf{j} + d_2 \mathbf{k}))$$

= -\text{Re}((-b_1 b_2 - c_1 c_2 - d_1 d_2) + \dots)
= b_1 b_2 + c_1 c_2 + d_1 d_2

Next,

$$Im(q_1 \cdot q_2) = Im((b_1 \mathbf{i} + c_1 \mathbf{j} + d_1 \mathbf{k}) \cdot (b_2 \mathbf{i} + c_2 \mathbf{j} + d_2 \mathbf{k}))$$

= $(c_1 d_2 - d_1 c_2) \mathbf{i} + (d_1 b_2 - b_1 d_2) \mathbf{j} + (b_1 c_2 - c_1 b_2) \mathbf{j}$

Mapping span $(\mathbf{i}, \mathbf{j}, \mathbf{k})$ to the standard basis in \mathbb{R}^3 gives both desired results.

Exercise 1.13 [WIP]

Prove that non-real elements $q_1, q_2 \in \mathbb{H}$ commute if and only if their imaginary parts are parallel; that is, $\operatorname{Im}(q_1) = \lambda \cdot \operatorname{Im}(q_2)$ for some $\lambda \in \mathbb{R}$.

Solution. (\Longrightarrow) Let $\operatorname{Im}(q_1) = \lambda \cdot \operatorname{Im}(q_2)$ for some $\lambda \in \mathbb{R}$, so that

$$\operatorname{Im}(q_1) = b\mathbf{i} + c\mathbf{j} + d\mathbf{k} = \lambda b\mathbf{i} + \lambda c\mathbf{j} + \lambda d\mathbf{k} = \operatorname{Im}(q_2)$$

then,

$$q_1 \cdot q_2 = (a_1 + b\mathbf{i} + c\mathbf{j} + d\mathbf{k}) \cdot (a_2 + \lambda b\mathbf{i} + \lambda c\mathbf{j} + \lambda d\mathbf{k})$$

$$= (a_1 a_2 - \lambda (b^2 + c^2 + d^2))b(a_1 \lambda + a_2)\mathbf{i}c(a_1 \lambda + a_2)\mathbf{j}d(a_1 \lambda + a_2)\mathbf{k}$$

$$= (a_2 + \lambda b\mathbf{i} + \lambda c\mathbf{j} + \lambda d\mathbf{k}) \cdot (a_1 + b\mathbf{i} + c\mathbf{j} + d\mathbf{k})$$

$$= q_2 \cdot q_1.$$

 (\longleftarrow) Let $q_1 \cdot q_2 = q_2 \cdot q_1$ where

$$q_1 = (a_1 + b_1 \mathbf{i} + c_1 \mathbf{j} + d_1 \mathbf{k}), q_2 = (a_2 + b_2 \mathbf{i} + c_2 \mathbf{j} + d_2 \mathbf{k}).$$

Then the following equalities must hold:

Exercise 1.14 [TODO]

Charachterize the pairs $q_1, q_2 \in \mathbb{H}$ which anti-commute, that is $q_1q_2 = -q_2q_1$.

Exercise 1.15 [Complete]

If $q \in \mathbb{H}$ satisfies $q\mathbf{i} = \mathbf{i}q$, prove that $q \in \mathbb{C}$.

Solution. Let $q = a + b\mathbf{i} + c\mathbf{j} + d\mathbf{k}$. Then,

$$q\mathbf{i} = a\mathbf{i} + b\mathbf{i}\mathbf{i} + c\mathbf{j}\mathbf{i} + d\mathbf{k}\mathbf{i} = -b + a\mathbf{i} + d\mathbf{j} - c\mathbf{k}$$

and

$$\mathbf{i}q = \mathbf{i}a + b\mathbf{i}\mathbf{i} + c\mathbf{i}\mathbf{j} + d\mathbf{i}\mathbf{k} = -b + a\mathbf{i} - d\mathbf{j} + c\mathbf{k}.$$

Identifying terms gives

$$d = -d \implies d = 0$$

$$c = -c \implies c = 0$$

hence $q = a + bi \in \mathbb{C}$.

Exercise 1.16 [Complete]

Prove that complex multiplication in $\mathbb{C} \cong \mathbb{R}^2$ does not extend to a multiplication operation on \mathbb{R}^3 that makes \mathbb{R}^3 into a real division algebra.

Solution. Assume such an extension exists. Consider the map analogous to the extension of \mathbb{R}^2 given by

$$(a,b,c)\mapsto a+b\mathbf{i}+c\mathbf{j}$$

with $\mathbf{i}^2 = \mathbf{j}^2 = -1$. Then there must exist a linear map

$$T: \mathbb{R}^3 \to \mathbb{R}^3$$

with $T^2 = -I$. Represent T by a 3×3 real matrix M. Then -1 is in the spectrum of M^2 since $M^2 = -I$, thus $\pm i$ is in the spectrum of M. Since $\det(M) = \prod \lambda_k$ where λ_k is an eigenvalue of M, there must exist some real value λ such that

$$\det(M) = (i)(-i)(\lambda) = \lambda$$

where λ must be in $\mathbb R$ since complex eigenvalues come in pairs. Thus, we must have

$$\det(M^2) = \det(-I) = -1$$

and

$$\det(M^2) = \det(M)^2 = \lambda^2$$

thus $\lambda^2 = -1$, which contradicts λ being real.

Exercise 1.17 [Complete]

Describe a subgroup of $GL_{n+1}(\mathbb{R})$ that is isomorphic to \mathbb{R}^n under vector-addition.

Solution. Consider the matrices of the form

$$\begin{pmatrix} 1 & x_1 & x_2 & \cdots & x_n \\ 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{pmatrix} \in GL_{n+1}(\mathbb{R})$$

and the map that takes such matrices to $(x_1, \ldots, x_n) \in \mathbb{R}^n$.

Exercise 1.18 [Complete]

If $\lambda \in \mathbb{H}$ commutes with every element of \mathbb{H} , prove that $\lambda \in \mathbb{R}$.

Solution. Let λ have the property that $\lambda \cdot w = w \cdot \lambda$ for all $w \in \mathbb{H}$. Letting $w = \mathbf{i}$, $\lambda \in \mathbb{C}$ per Exercise 1.15. Letting $\lambda = a + b\mathbf{i}$ and $w = \mathbf{j}$, we must have

$$(a+b\mathbf{i})\cdot\mathbf{j} = a\mathbf{j} + b\mathbf{k} = a\mathbf{j} - b\mathbf{k} = \mathbf{j}(a+b\mathbf{i})$$

hence $b = -b \implies b = 0$, therefore $\lambda = a \in \mathbb{R}$.

Chapter 2

All matrix groups are real matrix groups

2.1 Exercises

Exercise 2.1 [Complete]

Prove that ρ_n makes the diagram in 2.1 commute.

Solution. First, note the definition of ρ_n , that is

$$\rho_1(a+b\mathfrak{i}) := \begin{pmatrix} a & b \\ -b & a \end{pmatrix}$$

Say $A \in M_n(\mathbb{C})$, then the map $\rho_n : M_n(\mathbb{C}) \to M_{2n}$ is simply given by

$$\rho_n(A) = \rho_n \begin{pmatrix} \begin{bmatrix} z_{11} & z_{12} & \cdots & z_{1n} \\ z_{21} & z_{22} & \cdots & z_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ z_{n1} & z_{n2} & \cdots & z_{nn} \end{bmatrix} := \begin{bmatrix} \rho_1(z)_{11} & \rho_1(z)_{12} & \cdots & \rho_1(z)_{1n} \\ \rho_1(z)_{21} & \rho_1(z)_{22} & \cdots & \rho_1(z)_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \rho_1(z)_{n1} & \rho_1(z)_{n2} & \cdots & \rho_1(z)_{nn} \end{bmatrix}$$

where each $\rho_1(z)_{ij}$ is a 2 × 2 block matrix as defined above. We want to show the following diagram commutes:

$$\begin{array}{ccc}
\mathbb{C}^n & \xrightarrow{f_n} & \mathbb{R}^{2n} \\
 & \downarrow & & \downarrow \\
 & \mathbb{C}^n & \xrightarrow{f_n} & \mathbb{R}^{2n}
\end{array}$$

where

$$f_n(a_1 + b_1 \mathbf{i}, \dots, a_n + b_n \mathbf{i}) := (a_1, b_1, \dots, a_n, b_n)$$

and $A \in M_n(\mathbb{C})$. Let $z = a + b\mathbf{i} \in \mathbb{C}^1$ and $A = c + d\mathbf{i} \in \mathbb{C}^1$. Then,

$$f_1 \circ R_A(z) = f_1((ac - bd) + (ad + bc)\mathbf{i}) = (ac - bd, ad + bc)$$

and

$$R_{\rho_1(A)} \circ f_1(z) = R_{\rho_1(A)}(a,b) = (ac - bd, ad + bc).$$

Inducting over n using the definition of matrix multiplication and block matrix multiplication produces the result.

Exercise 2.2 [TODO]

Exercise 2.3 [TODO]

Prove proposition 2.6.

Exercise 2.4 [TODO]

Prove proposition 2.7.

Exercise 2.5 [Complete]

Prove that for any $A \in M_1(\mathbb{H})$, $det(A) \in \mathbb{R}$.

Solution. Let $A = z + w\mathbf{j} \in M_n(\mathbb{H})$. Then,

$$\det(A) = \det \circ \Psi_1(A)$$

$$= \det \begin{pmatrix} z & w \\ -\bar{w} & \bar{z} \end{pmatrix}$$

$$= z \cdot \bar{z} + w \cdot \bar{w}$$

$$= \operatorname{Re}(z)^2 + \operatorname{Im}(z)^2 + \operatorname{Re}(w)^2 + \operatorname{Im}(z)^2 \in \mathbb{R}$$

Exercise 2.6 [Complete]

Prove that $SL_n(\mathbb{H}) = \{A \in GL_n(\mathbb{H}) : \det(A) = 1\}$ is a subgroup. Describe a natural bijection between elements of $SL_1(\mathbb{H})$ and elements of the 3-sphere S^3 .

Solution. Fix $A, B \in SL_n(\mathbb{H})$. Then,

$$\det(AB) = \det \circ \Psi_n(AB)$$

$$= \det (\Psi_n(A) \cdot \Psi_n(B))$$

$$= \det (\Psi_n(A)) \cdot \det (\Psi_n(B))$$

$$= (1) \cdot (1) = 1$$

hence, $SL_n(\mathbb{H})$ is closed. Next,

$$1 = \det(I)$$

$$= \det(AA^{-1})$$

$$= \det \circ \Psi_n(AA^{-1})$$

$$= \det \left(\Psi_n(A) \cdot \Psi_n(A^{-1})\right)$$

$$= \det(\Psi_n(A)) \cdot \det(\Psi_n(A^{-1}))$$

$$= (1) \cdot \det(\Psi_n(A^{-1}))$$

$$\implies \det(A^{-1}) = 1 \implies A^{-1} \in \operatorname{SL}_n(\mathbb{H})$$

hence $\mathrm{SL}_n(\mathbb{H})$ is a subgroup. From Exercise 2.6, we have that for any $A = a + b\mathbf{i} + c\mathbf{j} + d\mathbf{k} \in \mathrm{SL}_n(\mathbb{H})$ we have that

$$1 = \det(A) = a^2 + b^2 + c^2 + d^2$$

2.1. EXERCISES 11

hence, the map

$$a + b\mathbf{i} + c\mathbf{j} + d\mathbf{k} \mapsto (a, b, c, d) \in S^3$$

is obviously a bijection.

Exercise 2.7 [TODO]

Exercise 2.8 [TODO]

Exercise 2.9 [TODO]

Exercise 2.10 [TODO]

Exercise 2.11 [TODO]

Exercise 2.12 TODO

Let $q \in \mathbb{H}$ and define $\mathbb{C} \cdot q := \{\lambda \cdot q : \lambda \in \mathbb{C}\}$ and $q \cdot \mathbb{C} := \{q \cdot \lambda : \lambda \in \mathbb{C}\}.$

- 1. With $g_1: \mathbb{H} \to \mathbb{C}^2$ defined as in section Section 2, show that $g_1(\mathbb{C} \cdot q)$ is a one-dimensional \mathbb{C} -subspace of \mathbb{C}^2 .
- 2. Define a natural identification $\hat{g}_1 : \mathbb{H} \to \mathbb{C}^2$ so that $\hat{g}_1(q \cdot \mathbb{C})$ is a one-dimensional \mathbb{C} -subspace of \mathbb{C}^2 .

Solution. (1). Let $q = z + w\mathbf{j} \in \mathbb{H}$ and $z, w \in \mathbb{C}$. Then,

$$g_{1}(\mathbb{C} \cdot q) = \{g_{1}(\lambda \cdot q) : \lambda \in \mathbb{C}\}$$

$$= \{g_{1}(\lambda z + \lambda w \mathbf{j}) : \lambda, z, w \in \mathbb{C}\}$$

$$= \{(\lambda z, \lambda w) : \lambda, z, w \in \mathbb{C}\}$$

$$= \{\lambda \cdot (z, w) : \lambda, z, w \in \mathbb{C}\}$$

where z and w are determined by q (hence they are fixed), and so $g_1(\mathbb{C} \cdot q)$ is clearly a one-dimensional \mathbb{C} -subspace of \mathbb{C}^2 .

(2). Let $\iota : \mathbb{H} \to \mathbb{H}$ be given by $\iota(q) = \iota(z+w\mathbf{j}) = \iota(z+\mathbf{j}w)$ with $z, w \in \mathbb{C}$ and $f_1 : \mathbb{H} \to \mathbb{C}^2$ given by

$$f_1(w+\mathbf{j}z):=(w,z).$$

Then, let $\hat{g}_1 = f_1 \circ \iota$. Therefore,

$$\hat{g}_{1}(q \cdot \mathbb{C}) = \{\hat{g}_{1}(q \cdot \lambda) : \lambda \in \mathbb{C}\}\$$

$$= \{f_{1} \circ \iota(q \cdot \lambda) : \lambda \in \mathbb{C}\}\$$

$$= \{f_{1}(z\lambda + \mathbf{j}w\lambda) : \lambda, z, w \in \mathbb{C}\}\$$

$$= \{(z\lambda, w\lambda) : \lambda, z, w \in \mathbb{C}\}\$$

$$= \{\lambda \cdot (z, w) : \lambda, z, w \in \mathbb{C}\}\$$

which is the same subspace from part (1), hence the result.

Chapter 3

The orthogonal groups

3.1 Exercises

Exercise 3.1 [Complete]

Prove part (4) of Proposition 3.3:

$$\overline{\langle X, Y \rangle} = \langle Y, X \rangle$$

Solution.

$$\overline{\langle X, Y \rangle} = \overline{\langle (x_1, \dots, x_n), (y_1, \dots, y_n) \rangle}$$

$$= \overline{x_1 \overline{y_1} + \dots + x_n \overline{y_n}}$$

$$= \overline{x_1 \overline{y_1} + \dots + \overline{x_n \overline{y_n}}}$$

$$= y_1 \overline{x_1} + \dots + y_n \overline{x_n}$$

$$= \langle (y_1, \dots, y_n), (x_1, \dots, x_n) \rangle$$

$$= \langle Y, X \rangle$$

Exercise 3.2 [Complete]

Prove Equations 3.5 and 3.6:

$$(3.5): \langle X, Y \rangle_{\mathbb{C}} = \langle f(X), f(Y) \rangle_{\mathbb{R}} + \mathbf{i} \langle f(X), f(\mathbf{i}Y) \rangle_{\mathbb{R}}$$

$$(3.6): |X|_{\mathbb{C}} = |f(X)|_{R}$$

where

$$f = f_n : \mathbb{C}^n \to \mathbb{R}^{2n}$$

is given by

$$f(a_1 + b_1 \mathbf{i}, \dots, a_n + b_n \mathbf{i}) := (a_1, b_1, \dots, a_n, b_n).$$

Solution. First, for Equation 3.5,

$$\langle X, Y \rangle_{\mathbb{C}} = \langle (a_1 + b_1 \mathbf{i}, \dots, a_n + b_n \mathbf{i}), (c_1 + d_1 \mathbf{i}, \dots, c_n + d_n \mathbf{i}) \rangle_{\mathbb{C}}$$

$$= (a_1 + b_1 \mathbf{i}) \overline{(c_1 + d_1 \mathbf{i})} + \dots + (a_n + b_n \mathbf{i}) \overline{(c_n + d_n \mathbf{i})}$$

$$= (a_1 + b_1 \mathbf{i}) (c_1 - d_1 \mathbf{i}) + \dots + (a_n + b_n \mathbf{i}) (c_n - d_n \mathbf{i})$$

$$= [(a_1 c_1 + b_1 d_1) + (-a_1 d_1 + b_1 c_1) \mathbf{i}] + \dots + [(a_n c_n + b_n d_n) + (-a_n d_n + b_n c_n) \mathbf{i}]$$

$$= (a_1 c_1 + b_1 d_1 + \dots + a_n c_n + b_n d_n) + (-a_1 d_1 + b_1 c_1 + \dots - a_n d_n + b_n c_n) \mathbf{i}$$

$$= \langle (a_1, b_1, \dots, a_n, b_n), (c_1, d_1, \dots c_n, d_n) \rangle_{\mathbb{R}} + \mathbf{i} \langle (a_1, b_1, \dots, a_n, b_n), (-d_1, c_1, \dots, -d_n, c_n) \rangle_{\mathbb{R}}$$

$$= \langle f(X), f(Y) \rangle_{\mathbb{R}} + \mathbf{i} \langle f(X), \underbrace{f(\mathbf{i}Y)}_{\mathbb{R}} \rangle_{\mathbb{R}}$$

where the equality of $\underbrace{f(\mathbf{i}Y)}_{\cdot}$ is due to

$$f(\mathbf{i}Y) = f(\mathbf{i}(c_1 + d_1\mathbf{i}, \dots, c_n + d_n\mathbf{i}))$$

= $f((-d_1 + \mathbf{i}c_1, \dots, -d_n + \mathbf{i}c_n))$
= $(-d_1, c_1, \dots, -d_n, c_n)$

Next, for Equation 3.6,

$$|X|_{\mathbb{C}} = \sqrt{\langle X, X \rangle_{\mathbb{C}}}$$

$$= \sqrt{\langle (a_1 + b_1 \mathbf{i}, \dots, a_n + b_n \mathbf{i}), (a_1 + b_1 \mathbf{i}, \dots, a_n + b_n \mathbf{i}) \rangle_{\mathbb{C}}}$$

$$= \sqrt{(a_1 + b_1 \mathbf{i})(a_1 - b_1 \mathbf{i}) + \dots + (a_n + b_n \mathbf{i})(a_n - b_n \mathbf{i})}$$

$$= \sqrt{a_1^2 + b_1^2 + \dots + a_n^2 + b_n^2}$$

$$= \sqrt{\langle (a_1, b_1, \dots, a_n, b_n), (a_1, b_1, \dots, a_n, b_n) \rangle}$$

$$= \sqrt{\langle f(X), f(X) \rangle_{\mathbb{R}}}$$

$$= |f(X)|_{\mathbb{R}}$$

Exercise 3.3 [WIP]

Prove Proposition 3.5, that is $\{X_1, \ldots X_n\} \in \mathbb{C}^n$ is an orthonormal basis if and only if $\{f(X_1), f(\mathbf{i}X_1), \ldots, f(X_n), f(\mathbf{i}X_n)\}$ is an othonormal basis of \mathbb{R}^{2n} .

Solution. (\Longrightarrow) Let $\{Y_1, \ldots Y_{2n}\} = \{f(X_1), f(\mathbf{i}X_1), \ldots, f(X_n), f(\mathbf{i}X_n)\}$ be an orthonorml basis of \mathbb{R}^{2n} . Then,

$$\langle Y_i, Y_j \rangle_{\mathbb{R}} = \delta_{ij}$$

where δ_{ij} is the Kronecker Delta. Next, consider

$$\langle f^{-1}(Y_i), f^{-1}(Y_j) \rangle_{\mathbb{R}} = f^{-1}()$$

 (\longleftarrow) Let $X,Y\in\mathbb{C}^n$ be orthogonal. Then,

$$\langle X,Y\rangle_{\mathbb{C}}=\langle f(X),f(Y)\rangle_{\mathbb{R}}+\mathbf{i}\langle f(X),f(\mathbf{i}Y)\rangle_{\mathbb{R}}=0$$

3.1. EXERCISES 15

Since $\langle f(X), f(\mathbf{i}Y) \rangle_{\mathbb{R}} \in \mathbb{R}$, and hence $\mathbf{i} \langle f(X), f(\mathbf{i}Y) \rangle_{\mathbb{R}} \in \mathbb{C}$, both factors must vanish. Hence, f maps \mathbb{C}^n to an orthonormal basis of \mathbb{R}^{2n} .

Exercise 3.4 [Complete]

Prove Proposition 3.18, that is, for any $X \subset \mathbb{R}^n$, $\operatorname{Symm}^+(X) \subset \operatorname{Symm}(X)$ is a subgroup with index 1 or 2.

Solution. First, to show Symm⁺(X) is a subgroup, let $A, B \in \text{Symm}^+(X)$. Then,

$$det(AB) = det(A) det(B) = 1 \cdot 1 = 1 \implies AB \in Symm^+(X)$$

and

$$1 = \det(I) = \det(AA^{-1}) = \det(A)\det(A^{-1}) = \det(A^{-1}) \implies A - 1 \in \text{Symm}^+(X)$$

so $\operatorname{Symm}^+(X)$ is a subgroup. It's clear that $\operatorname{Symm}^+(X)$ has at most 2 cosets given the symmetry of the determinant, and has 1 if $\operatorname{Symm}^+(X) = \operatorname{Symm}(X)$, hence it's index is 1 or 2.

Exercise 3.5 [Complete]

Let $A \in GL_n(\mathbb{K})$. Prove that $A \in O_n(\mathbb{K})$ if and only if the columns of A are an orthonormal basis of \mathbb{K}^n .

Solution. (\Longrightarrow) Let the columns of A form an orthonormal basis $\{v_1, \ldots, v_n\}$ of \mathbb{K}^n . Thus,

$$\langle v_i, v_j \rangle = \delta_{ij}$$

where δ_{ij} is the Kronecker Delta. Next,

$$(A^*A)_{ij} = \sum_{k=1}^n A_{ij}^* A_{kj} = \sum_{k=1}^n A_{ki} A_{kj}$$

where A_{ki} is the kth component of v_i , hence

$$(A^*A)_{ij} = \langle v_i, v_j \rangle = \delta_{ij} \implies A^*A = I$$

(\iff) Fix some $A \in O_n(\mathbb{K})$ with columns $\{v_1, \ldots, v_n\}$. Since A is an element of a group, A^{-1} is defined, and so the columns are linearly independent. Next,

$$(I)_{ij} = (A^*A)_{ij}$$
$$= \langle v_i, v_j \rangle$$
$$= \delta_{ij}$$

Hence, the columns are orthonormal.

Exercise 3.6 [Complete]

1. Show that for every $A \in O(2) - SO(2)$, $R_A : \mathbb{R}^2 \to \mathbb{R}^2$ is a flip about some line through the origin. How is this line determined by the angle of A?

2. Let $B = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \in SO(2)$. Assume θ is not an integer multiple of π . Prove that B does not commute with any $A \in O(2) - SO(2)$.

Solution. (1). First, note that given some $X = (x_1, x_2) \in \mathbb{R}^2$,

$$(x_1, x_2) \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = (x_1, -x_2)$$

hence, $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ corresponds to a flip through the x-axis. Per Equation 3.8, we have

$$A = \begin{pmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{pmatrix}$$

where $\theta \in [0, 2\pi)$. Using this, observe that

$$A = \begin{pmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}$$

where the second factor on the RHS is in SO(2) and corresponds to a counter-clockwise rotation of θ . Hence, A is a rotation flip then rotation.

(2) Let $B \in SO(2)$. Then

$$R_{AB}((x_1, x_2)) = XAB = (x_{1,\theta}, -x_{2,\theta})B = (x_{1,\theta+\omega}, -x_{2,\theta+\omega})$$

is given by the flip of the first factor of A, then the rotations θ and φ of the next two factors. However,

$$R_{BA}((x_1, x_2)) = XBA = (x_{1,\varphi}, x_{2,\varphi})A.$$

In this case, $x_{2,\varphi}$ will first be flipped and then rotated by θ , and so we cannot assert that it is equal to $-x_{2,\varphi+\theta}$, hence the matrices cannot commute.

Exercise 3.7 [WIP]

Describe the product of any two elements in O(2) in terms of their angles.

Solution. Let $A, B \in SO(2)$ and $C, D \in O(2) - SO(2)$. We need to describe R_{AB} , R_{CD} , and R_{AC} . First,

$$R_{AB} = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} \cos \varphi & \sin \varphi \\ -\sin \varphi & \cos \varphi \end{pmatrix}$$
$$= \begin{pmatrix} \cos \theta \cos \varphi - \sin \theta \sin \varphi & -\sin \theta \cos \varphi - \sin \varphi \cos \theta \\ \cos \theta \sin \varphi + \cos \varphi \sin \theta & -\sin \theta \sin \varphi + \cos \theta \cos \varphi \end{pmatrix}$$
$$= \begin{pmatrix} \cos(\theta + \varphi) & \sin(\theta + \varphi) \\ -\sin(\theta + \varphi) & \cos(\theta + \varphi) \end{pmatrix}$$

3.1. EXERCISES 17

Exercise 3.9 [TODO]

Exercise 3.10 [Complete]

Prove that $Trans(\mathbb{R}^n)$ is a normal subgroup of $Isom(\mathbb{R}^n)$.

Solution. Fix $\begin{pmatrix} A & 0 \\ X & 1 \end{pmatrix} \in \text{Isom}(\mathbb{R}^n)$. Then,

$$A \cdot \operatorname{Trans}(\mathbb{R}^n) = \begin{pmatrix} A & 0 \\ X & 1 \end{pmatrix} \cdot \left\{ \begin{pmatrix} I & 0 \\ Y & 1 \end{pmatrix} : Y \in \mathbb{R}^n \right\}$$
$$= \left\{ \begin{pmatrix} A & 0 \\ X + Y & 1 \end{pmatrix} : Y \in \mathbb{R}^n \right\}$$

and

$$\operatorname{Trans}(\mathbb{R}^n) \cdot A = \left\{ \begin{pmatrix} I & 0 \\ Y & 1 \end{pmatrix} : Y \in \mathbb{R}^n \right\} \cdot \begin{pmatrix} A & 0 \\ X & 1 \end{pmatrix}$$
$$= \left\{ \begin{pmatrix} A & 0 \\ X + R_A(Y) & 1 \end{pmatrix} : Y \in \mathbb{R}^n \right\}$$

 R_A is one-to-one and onto, so we can always identify $X + Y_1$ with some $X + R_A(Y_2)$ with Y_1, Y_2 unique, hence both cosets are equivalent, and $Trans(\mathbb{R}^n)$ is normal.

Exercise 3.11 [Complete]

Prove that the Affine group

$$\operatorname{Aff}_n(\mathbb{K}) = \left\{ \begin{pmatrix} A & 0 \\ V & 1 \end{pmatrix} : A \in \operatorname{GL}_n(\mathbb{K}), V \in \mathbb{K}^n \right\}$$

- 1. Is a subgroup of $GL_{n+1}(\mathbb{K})$
- 2. Prove that $f(X) := R_A(X) + V$ sends translated lines to translated lines

Solution. (1). First, note that

$$\begin{pmatrix} A_1 & 0 \\ V_1 & 1 \end{pmatrix} \cdot \begin{pmatrix} A_2 & 0 \\ V_2 & 1 \end{pmatrix} = \begin{pmatrix} A_1 \cdot A_2 & 0 \\ R_{A_2}(V_1) + V_2 & 1 \end{pmatrix}$$

so $Aff_n(\mathbb{K})$ is closed. Next,

$$\begin{pmatrix} A & 0 \\ V & 1 \end{pmatrix} \cdot \begin{pmatrix} A^{-1} & 0 \\ -R_{A^{-1}}(V) & 1 \end{pmatrix} = \begin{pmatrix} AA^{-1} & 0 \\ R_{A^{-1}}(V) - R_{A^{-1}}(V) & 1 \end{pmatrix} = \begin{pmatrix} I & 0 \\ 0 & 1 \end{pmatrix}$$

hence $\mathrm{Aff}_n(\mathbb{K})$ is a subgroup.

(2). This is trivial since $\mathrm{Aff}_n(\mathbb{K})$ is a subgroup.

Exercise 3.12 [Complete]

Is $Aff_1(\mathbb{R})$ abelian?

Solution. Think of $Aff_1(\mathbb{R})$ as maps $f_{\lambda,V}(X) = \lambda X + V$. Then

$$f_{\lambda_2, V_2} \circ f_{\lambda_1, V_1}(X) = f_{\lambda_2, V_2}(\lambda_1 X + V_1)$$

= $\lambda_2 \lambda_1 X + \lambda_2 V_1 + V_2$

$$f_{\lambda_1, V_1} \circ f_{\lambda_2, V_2}(X) = f_{\lambda_1, V_1}(\lambda_2 X + V_2)$$

= $\lambda_1 \lambda_2 X + \lambda_1 V_2 + V_1$

which are equal if and only if $\lambda_1 = \lambda_2 = 1$, hence elements in $\mathrm{Aff}_1(\mathbb{R})$ do not commute in general, so $\mathrm{Aff}_1(\mathbb{R})$ is not abelian.

Exercise 3.13 [Complete]

Let

$$A = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

- 1. Calculate $R_A(x, y, z, w)$.
- 2. Define a subgroup H of O(4) that is isomorphic to S_4 .
- 3. Describe a subgroup H of O(n) that is isomorphic to S_n . What is $H \cap SO(n)$?
- 4. Prove that every finite group is a subgroup of O(n) for some n.

Solution. (1).

$$R_A(x, y, z, w) = (x, y, z, w) \cdot \begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} = (y, z, w, x).$$

(2). Let $\{e_1, e_2, e_3, e_4\}$ be the standard basis of \mathbb{R}^4 and $\sigma \in S_4$ a permutation on 4 charachters. Then define a map $f: S_n \to O(4)$ via

$$f(\sigma) := \begin{bmatrix} | & | & | & | \\ e_{\sigma(1)} & e_{\sigma(2)} & e_{\sigma(3)} & e_{\sigma(4)} \\ | & | & | & | \end{bmatrix}.$$

Then,

$$f(\sigma_{1} \circ \sigma_{2}) = \begin{bmatrix} & & & & & & & & \\ e_{\sigma_{1} \circ \sigma_{2}(1)} & e_{\sigma_{1} \circ \sigma_{2}(2)} & e_{\sigma_{1} \circ \sigma_{2}(3)} & e_{\sigma_{1} \circ \sigma_{2}(4)} \\ & & & & & & & \end{bmatrix}$$

$$= \begin{bmatrix} & & & & & & & \\ e_{\sigma_{1}(1)} & e_{\sigma_{1}(2)} & e_{\sigma_{1}(3)} & e_{\sigma_{1}(4)} \\ & & & & & & \end{bmatrix} \cdot \begin{bmatrix} & & & & & & \\ e_{\sigma_{2}(1)} & e_{\sigma_{2}(2)} & e_{\sigma_{2}(3)} & e_{\sigma_{2}(4)} \\ & & & & & & & \end{bmatrix}$$

$$= f(\sigma_{1}) \circ f(\sigma_{2})$$

Hence f is a group homomorphism. Note that ker f is trivial, so $H = \text{Image} f \cong S_4$ is a subgroup of O(4).

(3). Let $\{e_1, \ldots, e_n\}$ be the standard basis of \mathbb{R}^n and $\sigma \in S_n$ a permutation on n charachters. Then define a map $f: S_n \to O(n)$ via

3.1. EXERCISES 19

$$f(\sigma) := \begin{bmatrix} | & | & | & | \\ e_{\sigma(1)} & e_{\sigma(2)} & \cdots & e_{\sigma(3)} & e_{\sigma(4)} \\ | & | & | & | \end{bmatrix}.$$

Let $H = \text{image } f \cong S_n$, which is a subgroup of O(n) generalizing the logic from step (2). Consider the diagram

f, sgn, and det are all group homomorphisms (where the operation in $\{\pm 1\}$ is multiplication), hence the diagram must commute. Therefore $H \cap SO(n)$ is the permutation matrices in H corresponding to permutations with positive sign in the pre-image of f.

(4). By Cayley's Theorem for finite groups G, $G \leq H \leq O(n)$, and since subgroups of subgroups are subgroups, $G \leq O(n)$.

Exercise 3.14 [Complete]

Let \mathfrak{g} be a \mathbb{K} -subspace of \mathbb{K}^n , with dimension d. Let $\beta = \{X_1, \ldots, X_d\}$ be an orthonormal basis of \mathfrak{g} . Let $f : \mathfrak{g} \to \mathfrak{g}$ be \mathbb{K} -linear. Let $A \in M_d(\mathbb{K})$ represent f over the basis β . Prove that the following are equivalent:

- 1. $A \in O_d(\mathbb{K})$
- 2. $\langle f(X), f(Y) \rangle = \langle X, Y \rangle$ for all $X, Y \in \mathfrak{g}$.

Show by example that this is false when β is not orthogonormal.

Solution. ((1) \Longrightarrow (2)). Let $A \in O_d(\mathbb{K})$. Then for any $X, Y \in \mathfrak{g}$,

$$\langle f(X), f(Y) \rangle = \langle R_A(X), R_A(Y) \rangle$$

= $\langle X \cdot A, Y \cdot A \rangle$
= $\langle X, Y \rangle$

by the definition of $O_d(\mathbb{K})$.

 $((2) \implies (1)). \text{ Let } \langle f(X), f(Y) \rangle = \langle X, Y \rangle \text{ for all } X, Y \in \mathfrak{g}. \text{ Then for any } X_i, X_j \in \beta,$

$$\langle f(X_i), f(X_j) \rangle = \langle X_i, X_j \rangle$$

= δ_{ij}

Thus, representing f as A must be done in a way so that A is invariant under the inner product. In other words, $A \in O_d(\mathbb{K})$. Hence, $(1) \iff (2)$.

Say that $\beta = \{1, 2\mathbf{i}\}$ is a basis of \mathbb{C} . Then let $f(z) = ze^{\mathbf{i}\pi/2}$, hence $A \in U(1) \cong O_2(\mathbb{R})$. Then,

$$\begin{split} \langle f(1), f(2\mathbf{i}) \rangle &= \langle e^{\mathbf{i}\pi/2}, 2\mathbf{i}e^{\mathbf{i}\pi/2} \rangle \\ &= \langle \mathbf{i}, -2 \rangle \\ &= -2\mathbf{i} \\ &\neq 2\mathbf{i} \\ &= \langle 1, 2\mathbf{i} \rangle \end{split}$$

Exercise 3.15 [Complete]

Prove that the symmetries of the tetrahedron form the group S_4 and the proper symmetries form the group A_4 .

Fix a vertex $v \in \{v_1, v_2, v_3, v_4\}$ of the tetrahedron. Consider the symmetries Solution. of the face opposite to v, which consist of 3 rotational symmetries and 3 flips. Hence there are $4 \cdot (3+3) = 4!$ elements. Since clearly the symmetries act on the set $\{v_1, v_2, v_3, v_4\}$, and there are 4! distinct actions, the symmetries of the tetrahedron must be isomorphic to S_4 .

Exactly 1/2 of the elements are the rotational symmetries described above, which are orientation preserving. There are 4!/2 of these, corresponding directly the subgroup A_4 .

Exercise 3.16 [Complete]

Think of Sp(1) as the group of unit length quarternions, that is Sp(1) = $\{q \in \mathbb{H} : |q| = 1\}$.

- 1. Show that the conjugation map $C_q: \mathbb{H} \to \mathbb{H}$ given by $C_q(v) := qv\bar{q}$ is an orthogonal linear transformation. Thus, w.r.t the natural basis $\{1, \mathbf{i}, \mathbf{j}, \mathbf{k}\}$, C_q can be regarded as an element of O(4).
- 2. For every $q \in \mathrm{Sp}(1)$, show that $C_q(1) = 1$ and therefore that C_q sends $\mathrm{span}\{\mathbf{i}, \mathbf{j}, \mathbf{k}\}$ to itself. Conclude that the restriction $C_q|_{\mathrm{Im}(\mathbb{H})}$ can be regarded as an element of O(3).
- 3. Define $\varphi : \mathrm{Sp}(1) \to \mathrm{O}(3)$ given by $\varphi(q) := C_q \Big|_{\mathrm{Im}(\mathbb{H})}$. Verify φ is a group homomorphism.
- 4. Verify that the kernel of φ is $\{1, -1\}$ and therefore φ is two-to-one.

Solution. (1). To show C_q is linear, let $v, w \in \mathbb{H}$, then

$$C_q(v+w) = q(v+w)\bar{q}$$

$$= q(v\bar{q} + w\bar{q})$$

$$= qv\bar{q} + qw\bar{q}$$

$$= c_q(v) + C_q(w).$$

Next, fix $\lambda \in \mathbb{R}$. Then,

$$C_q(\lambda v) = q(\lambda v)\bar{q}$$
$$= \lambda(qv\bar{q})$$
$$= \lambda C_q(v)$$

3.1. EXERCISES 21

hence C_q is a linear transformation. To show C_q is orthogonal, note that

$$\langle C_q(v), C_q(w) \rangle = \langle qv\bar{q}, qw\bar{q} \rangle$$

$$= \operatorname{Re}(\overline{qv\bar{q}} \cdot qw\bar{q})$$

$$= \operatorname{Re}(\overline{v\bar{q}}\bar{q} \cdot qw\bar{q})$$

$$= \operatorname{Re}(\overline{v\bar{q}}(\bar{q}q)w\bar{q})$$

$$= \operatorname{Re}(\overline{v\bar{q}}w\bar{q})$$

$$= \operatorname{Re}(\overline{v\bar{q}}w\bar{q})$$

$$= \operatorname{Re}(q\bar{v}w\bar{q})$$

$$\stackrel{*}{=} \operatorname{Re}(\bar{v}w)$$

$$= \langle v, w \rangle$$

where the $\stackrel{*}{=}$ step can be verified using

$$\operatorname{Re}(qx\bar{q}) = \frac{1}{2}q(x+\bar{x})\bar{q} = \frac{1}{2} \cdot 2\operatorname{Re}(x) \cdot q\bar{q} = \operatorname{Re}(x)$$

Therefore, C_q can be regaurded as an element of O(4) by identifying it with a matrix $A \in O(4)$ so that the following commutes:

where π and ρ are the obvious maps.

(2). Note that

$$C_q(1) = q(1)\bar{q} = q\bar{q} = 1$$

since C_q is linear,

$$C_q(v) = C_q(\operatorname{Re}(v) + \operatorname{Im}(v)) = C_q(\operatorname{Re}(v)) + C_q(\operatorname{Im}(v)) = \operatorname{Re}(v) + C_q(\operatorname{Im}(v))$$

fixing Re(v)=0, it follows that C_q maps $\text{span}\{\mathbf{i},\mathbf{j},\mathbf{k}\}$ to itself. Therefore, $C_q\big|_{\text{Im}(\mathbb{H})}$ can be regaurded as an element of O(3) by identifying it with a matrix $A\in \text{O}(3)$ so that the following commutes:

$$\{\mathbf{i}, \mathbf{j}, \mathbf{k}\} \xrightarrow{C_q|_{\operatorname{Im}(\mathbb{H})}} \operatorname{Im}(\mathbb{H})$$

$$\downarrow^{\rho}$$

$$\{e_1, e_2, e_3\} \xrightarrow{A} \mathbb{R}^3$$

where π and ρ are the obvious maps.

(3). To show φ is a group homomorphism, fix $q, r \in \mathrm{Sp}(1)$ and $v \in \mathrm{Im}(\mathbb{H})$. Then,

$$\varphi(qr)(v) = C_{qr} \Big|_{\operatorname{Im}(\mathbb{H})}(v)$$

$$= (qr)v(\overline{qr})$$

$$= (qr)v(\overline{rq})$$

$$= q(rv\overline{r})\overline{q}$$

$$= q \cdot C_r \Big|_{\operatorname{Im}(\mathbb{H})}(v) \cdot \overline{q}$$

$$= C_q \Big|_{\operatorname{Im}(\mathbb{H})} \circ C_r \Big|_{\operatorname{Im}(\mathbb{H})}(v)$$

$$= \varphi(q) \circ \varphi(r)(v)$$

(4) The kernel of φ is given by

$$\ker \varphi := \{ q \in \mathbb{H} : \varphi(q) = \mathbf{id} \}$$

where id is the identity map

$$\varphi(q)(v) = C_q \Big|_{\operatorname{Im}(\mathbb{H})}(v) = qv\bar{q} = v$$

for all v. Hence, if $\varphi(q) \in \ker \varphi$, we must have qv = vq, and so by Exercise 1.18, $q \in \mathbb{R}$, and since $q \in \operatorname{Sp}(1)$, |q| = 1, hence it must be the case that $\ker \varphi = \{1, -1\}$. Therefore, φ is two-to-one.

Exercise 3.17 [Complete]

Think of $\operatorname{Sp}(1) \times \operatorname{Sp}(1)$ as the group of pairs of unit length quarternions.

- 1. For every $q = (q_1, q_2) \in \operatorname{Sp}(1) \times \operatorname{Sp}(1)$ the map $F(q) : \mathbb{H} \to \mathbb{H}$ defined by $F(q) := q_1 v \bar{q}_2$ is an orthogonal linear transformation, and can thus be identified with an element of O(4) w.r.t the natural basis $\{1, \mathbf{i}, \mathbf{j}, \mathbf{k}\}$.
- 2. Show that the function $F: \mathrm{Sp}(1) \times \mathrm{Sp}(1) \to \mathrm{O}(4)$ is a group homomorphism.
- 3. Verify $\ker F = \{(1,1), (-1,-1)\}$ and is therefore two-to-one.
- 4. How is F related to φ from the previous exercise?

Solution. (1). To show F is a linear transformation, let $v, w \in \mathbb{H}$ and fix $q = (q_1, q_2) \in \operatorname{Sp}(1) \times \operatorname{Sp}(1)$. Then,

$$F(q)(v + w) = q_1(v + w)\bar{q}_2$$

= $q_1(v\bar{q}_2 + w\bar{q}_2)$
= $q_1v\bar{q}_2 + q_1w\bar{q}_2$
= $F(q)(v) + F(q)(w)$.

Next, fixing $\lambda \in \mathbb{R}$,

$$F(q)(\lambda v) = q_1(\lambda v)\bar{q}_2$$

= $\lambda(q_1v\bar{q}_2)$
= $\lambda \cdot F(q)(v)$

3.1. EXERCISES 23

hence F(q) is linear. Next,

$$\langle F(q)(v), F(q)(w) \rangle = \langle q_1 v \bar{q}_2, q_1 w \bar{q}_2 \rangle$$

$$= \operatorname{Re}(\overline{q_1 v \bar{q}_2} \cdot q_1 w \bar{q}_2)$$

$$= \operatorname{Re}(\overline{v \bar{q}_2} \bar{q}_1 \cdot q_1 w \bar{q}_2)$$

$$= \operatorname{Re}(\overline{v \bar{q}_2} (\bar{q}_1 q_1) w \bar{q}_2)$$

$$= \operatorname{Re}(\overline{v \bar{q}_2} w \bar{q}_2)$$

$$= \operatorname{Re}(q_2 \bar{v} w \bar{q}_2)$$

$$\stackrel{*}{=} \operatorname{Re}(\bar{v} w)$$

$$= \langle v, w \rangle$$

where the $\stackrel{*}{=}$ is justified in the same manner as Exercise 3.15.1. Hence, F(q) is othogonal and can be identified with an element $A \in O(4)$ diagramatically via

where π and ρ are the obvious maps.

(2). To show F is a group homomorphism, fix $q, r \in \text{Sp}(1) \times \text{Sp}(1)$ and $v \in \mathbb{H}$. Then,

$$F(qr)(v) = F((q_1, q_2) \cdot (r_1, r_2))(v)$$

$$= F((q_1r_1, q_2r_2))(v)$$

$$= (q_1r_1)v(\overline{q_2r_2})$$

$$= q_1(r_1v\overline{r_2})\overline{q_2}$$

$$= q_1 \cdot (F(r)(v)) \cdot \overline{q_2}$$

$$= F(q) \circ F(r)(v)$$

hence the result.

(3). The kernel of F is given by

$$\ker F := \{ q \in \mathbb{H} : F(q) = \mathbf{id} \}$$

where **id** is the identity map

$$F(q)(v) = q_1 v \bar{q}_2 = v$$

for all v. Hence, $q_1v = vq_2$, and using a similar argument to Exercise 3.16.4, the only solutions are (1,1) and (-1,-1), hence

$$\ker F = \{(1,1), (-1,-1)\}$$

(4). F is a double cover of O(4), and φ is a double cover of O(3). Moreover, we get the following diagram:

$$\begin{array}{c|c}
\operatorname{Sp}(1) \times \operatorname{Sp}(1) & \xrightarrow{F} & \operatorname{O}(4) \\
\downarrow^{\pi} & & \downarrow^{?} \\
\operatorname{Sp}(1) & \xrightarrow{\varphi} & \operatorname{O}(3)
\end{array}$$

where ? is an interesting map which maps both connected components of O(4) to the corresponding connected components of O(3).

Exercise 3.18 [WIP]

(Gram-Schmidt). For m < n, and $S = \{v_1, \ldots, v_m\} \subset \mathbb{K}^n$ an orthonormal set, show that

1. There exist vectors v_{m+1}, \ldots, v_n that form $\{v_1, \ldots, v_n\}$ into an orthonormal basis of \mathbb{K}^n .

Solution. (1). Let $v_i, v_j \in S$, and let x be a vector not in the span of S. Then, let

$$w = x - \sum_{i=1}^{m} \langle x, v_i \rangle v_i$$

which is orthogonal to all the vectors in S, hence $S \cup \{\frac{w}{||w||}\}$ is an orthonormal set. Inducting gives the result.

(2).

Chapter 4

The topology of matrix groups

4.1 Exercises

Exercise 4.1 [TODO]

Another exercise goes here.

Solution. Placeholder for your solution.

Chapter 5

Lie algebras

5.1 Exercises

Exercise 5.1 [TODO]

Exercise 5.2 [Complete]

Verify $\alpha'(0) = A$ in the proof of Theorem 5.9.

Solution. Note that

$$\gamma(t) := I + tA$$

where $A \in M_n(\mathbb{K})$ has trace 0. Then $\alpha(t)_{ij} = \gamma(t)_{ij}$ for all i, j, except when i = 0, in which case

$$\alpha(t)_{0j} = \frac{\gamma(t)}{\det \gamma(t)}$$

Therefore,

$$\alpha'(0)_{0j} = \frac{d}{dt} \frac{\gamma(t)_{0j}}{\det \gamma(t)}$$

$$= \frac{d}{dt} \frac{\gamma(t)_{0j} \cdot (\det \gamma(t))^{-1}}{1}$$

$$= \gamma'(0)_{0j} \cdot (\det \gamma(0))^{-1} - \gamma(0)_{0j} \cdot (\det \gamma(0))^{-1} \cdot (\det \gamma'(0)) \cdot (\det \gamma(0))^{-1}$$

$$= \gamma'(0)_{0j} - \gamma(0)_{ij} \cdot \operatorname{trace}(\gamma'(0))$$

$$= \gamma'(0)_{0j}$$

hence, $\alpha'(0) = A$, since all other entries are obviously equivalent.

Exercise 5.3 [TODO]

Exercise 5.4 [TODO]

Exercise 5.5 [Complete]

Describe the Lie algebra of the Affine group.

Solution. Consider the path

$$\gamma(t) = \begin{pmatrix} A(t) & 0 \\ V(t) & 1 \end{pmatrix}$$

then,

$$\frac{d}{dt}_{t=0}\gamma(t) = \begin{pmatrix} A'(0) & 0 \\ V'(0) & 0 \end{pmatrix} = \begin{pmatrix} T & 0 \\ v & 0 \end{pmatrix}$$

with $T \in gl_n(\mathbb{K})$ and $v \in \mathbb{K}^n$. So, the Lie algebra of the Affine group is isomorphic to $gl_n(\mathbb{K}) \oplus \mathbb{R}^n$ as a vector space.

Exercise 5.6 [Complete]

Describe the Lie algebra of $\text{Isom}(\mathbb{R}^n)$.

Solution. Using the same technique as Exercise 5.6, the Lie algebra is isomorphic to $o_n(\mathbb{R}) \oplus \mathbb{R}^n$.

Exercise 5.7 [Complete]

Describe the Lie algebra of $UT_n(\mathbb{K})$.

Solution. Let $\gamma(t)$ be given as follows. First, γ is given by the matrix

$$(\gamma(t))_{ij} = a_{ij}(t).$$

If i < j, then $a_{ij}(t) = 0$. If i > j, then $a_{ij}(0) = 0$. If i = j, then $a_{ij}(0) = 1$. Hence, the Lie algebra is again $UT_n(\mathbb{K})$.

Exercise 5.8 [TODO]

Describe the Lie algebra

Exercise 5.9 [TODO]

Exercise 5.10 [TODO]

Exercise 5.11 [TODO]

Exercise 5.12 [TODO]

Exercise 5.13 [TODO]

Exercise 5.14 [TODO]

Describe the Lie algebra of $SL_n(\mathbb{H})$.

Exercise 5.15 [TODO]

Exercise 5.16 TODO

Chapter 6

Matrix exponentiation

6.1 Exercises

Exercise 6.1 [WIP]

Prove Proposition 6.5, that is, suppose that $\sum A_l$ and $\sum B_l$ converge, at least one absolutely. Let $C_l = \sum_{k=0}^{l} A_k B_{l-k}$. Prove that

$$\sum C_l = (\sum A_l)(\sum B_l)$$

Solution.

$$(\sum_{l} C_{l})_{ij} = (\sum_{k=0}^{l} A_{k} B_{l-k})_{ij}$$
$$= (\sum_{k=0}^{l} \sum_{r=1} (A_{k}))$$

Exercise 6.2 [Complete]

Prove that $(e^A)^* = e^{A^*}$ for all $A \in M_n(\mathbb{K})$.

Solution. Using the fact that $(XY)^* = Y^*X^*$ and $(X + Y)^* = X^* + Y^*$,

$$e^{A^*} = \sum_{k=0}^{\infty} \frac{(A^*)^k}{k!}$$

$$= \sum_{k=0}^{\infty} \frac{A^* \cdot A^* \cdot \cdot \cdot A^*}{k!}$$

$$= \sum_{k=0}^{\infty} \frac{A^* \cdot A^* \cdot \cdot \cdot A^*}{k!}$$

$$= \sum_{k=0}^{\infty} \frac{A^* \cdot A^* \cdot \cdot \cdot A^*}{k!}$$

$$= \sum_{k=0}^{\infty} \frac{A^* \cdot A^* \cdot \cdot \cdot A^*}{k!}$$

$$= \sum_{k=0}^{\infty} \frac{A^* \cdot A^* \cdot \cdot \cdot A^*}{k!}$$

$$= \sum_{k=0}^{\infty} \frac{A^* \cdot A^* \cdot \cdot \cdot A^*}{k!}$$

$$= \sum_{k=0}^{\infty} \frac{A^* \cdot A^* \cdot \cdot \cdot A^*}{k!}$$

$$= \sum_{k=0}^{\infty} \frac{A^* \cdot A^* \cdot \cdot \cdot A^*}{k!}$$

$$= \sum_{k=0}^{\infty} \frac{A^* \cdot A^* \cdot \cdot \cdot A^*}{k!}$$

$$= \sum_{k=0}^{\infty} \frac{A^* \cdot A^* \cdot \cdot \cdot A^*}{k!}$$

$$= \sum_{k=0}^{\infty} \frac{A^* \cdot A^* \cdot \cdot \cdot A^*}{k!}$$

$$= \sum_{k=0}^{\infty} \frac{A^* \cdot A^* \cdot \cdot \cdot A^*}{k!}$$

$$= \sum_{k=0}^{\infty} \frac{A^* \cdot A^* \cdot \cdot \cdot A^*}{k!}$$

$$= \sum_{k=0}^{\infty} \frac{A^* \cdot A^* \cdot \cdot \cdot A^*}{k!}$$

$$= \sum_{k=0}^{\infty} \frac{A^* \cdot A^* \cdot \cdot \cdot A^*}{k!}$$

$$= \sum_{k=0}^{\infty} \frac{A^* \cdot A^* \cdot \cdot \cdot A^*}{k!}$$

$$= \sum_{k=0}^{\infty} \frac{A^* \cdot A^* \cdot \cdot \cdot A^*}{k!}$$

$$= \sum_{k=0}^{\infty} \frac{A^* \cdot A^* \cdot \cdot \cdot A^*}{k!}$$

$$= \sum_{k=0}^{\infty} \frac{A^* \cdot A^* \cdot \cdot \cdot A^*}{k!}$$

$$= \sum_{k=0}^{\infty} \frac{A^* \cdot A^* \cdot \cdot \cdot A^*}{k!}$$

$$= \sum_{k=0}^{\infty} \frac{A^* \cdot A^* \cdot \cdot \cdot A^*}{k!}$$

$$= \sum_{k=0}^{\infty} \frac{A^* \cdot A^* \cdot \cdot \cdot A^*}{k!}$$

$$= \sum_{k=0}^{\infty} \frac{A^* \cdot A^* \cdot \cdot \cdot A^*}{k!}$$

$$= \sum_{k=0}^{\infty} \frac{A^* \cdot A^* \cdot \cdot \cdot A^*}{k!}$$

Exercise 6.3 [Complete]

- 1. Let $A = \operatorname{diag}(a_1, \ldots, a_n) \in M_n(\mathbb{R})$. Calculate e^A and give a simple prove that $\operatorname{det}(e^A) = e^{\operatorname{trace}(A)}$ when A is diagonal.
- 2. Give a simple proof that $det(e^A) = e^{trace(A)}$ when A is conjugate to a diagonal matrix.

Solution. (1). Let $A = \operatorname{diag}(a_1, \ldots, a_n) \in M_n(\mathbb{R})$. Then,

$$e^{A} = \sum_{k=0}^{\infty} \frac{\operatorname{diag}(a_{1}, \dots, a_{n})^{k}}{k!}$$

$$= \sum_{k=0}^{\infty} \frac{\operatorname{diag}(a_{1}^{k}, \dots, a_{n}^{k})}{k!}$$

$$= \operatorname{diag}\left(\sum_{k=0}^{\infty} \frac{a_{1}^{k}}{k!}, \dots, \sum_{k=0}^{\infty} \frac{a_{n}^{k}}{k!}\right)$$

$$= \operatorname{diag}(e^{a_{1}}, \dots, e^{a_{n}}).$$

Thus,

$$\det(e^A) = \det(\operatorname{diag}(e^{a_1}, \dots, e^{a_n}))$$

$$= \prod_{i=1}^n e^{a_i}$$

$$= e^{\sum_{j=1}^n a_j}$$

$$= e^{\operatorname{trace}(A)}$$

(2). Let $A \in M_n(\mathbb{R})$ be conjugate to a diagonal matrix, that is there exists a diagonal matrix $D = \operatorname{diag}(d_1, \ldots, d_n)$ and an invertible matrix P such that $A = PDP^{-1}$. Then,

$$\begin{split} e^{A} &= \sum_{k=0}^{\infty} \frac{A^{k}}{k!} \\ &= \sum_{k=0}^{\infty} \frac{(PDP^{-1})^{k}}{k!} \\ &= \sum_{k=0}^{\infty} \frac{(PDP^{-1}PDP^{-1} \cdots PDP^{-1})}{k!} \\ &= \sum_{k=0}^{\infty} \frac{PD(P^{-1}P)D(P^{-1}P) \cdots (P^{-1}P)DP^{-1})}{k!} \\ &= \sum_{k=0}^{\infty} \frac{PD^{k}P^{-1}}{k!} \\ &= P\left(\sum_{k=0}^{\infty} \frac{D^{k}}{k!}\right) P^{-1} \\ &= Pe^{D}P^{-1}. \end{split}$$

6.1. EXERCISES 31

Finishing it off:

$$det(e^A) = det(Pe^DP^{-1})$$

$$= det(P) \cdot det(e^D) \cdot det(P^{-1})$$

$$= e^{trace(D)}$$

$$= e^{trace(A)}$$

where the last equality holds since similar matrices have the same trace.

Exercise 6.4 [WIP]

Let
$$A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$
. Compute e^{tA} for arbitrary $t \in \mathbb{R}$.

Solution. First, consider the following table:

$$\begin{array}{c|cccc}
k & A^k \\
\hline
0 & I \\
1 & A \\
2 & \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \\
3 & \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \\
4 & I
\end{array}$$

Hence, A has periodicity 4. Therefore,

$$\begin{split} e^{tA} &= \sum_{k=0}^{\infty} \frac{(tA)^k}{k!} \\ &= \sum_{k=0}^{\infty} \frac{t^k A^k}{k!} \\ &= \sum_{i=0}^{\infty} \frac{t^{4i}}{i!} I + \sum_{j=0}^{\infty} \frac{t^{4j+1}}{j!} A^{4j+1} + \sum_{l=0}^{\infty} \frac{t^{4l+2}}{l!} A^{4l+1} + \sum_{r=0}^{\infty} \frac{t^{4r+3}}{r!} A^{4r+3} \\ &= \sum_{i=0}^{\infty} \frac{t^{4i}}{i!} I + \sum_{j=0}^{\infty} \frac{t^{4j+1}}{j!} A + \sum_{l=0}^{\infty} \frac{t^{4l+2}}{l!} A^2 + \sum_{r=0}^{\infty} \frac{t^{4r+3}}{r!} A^3 \\ &= \sum_{i=0}^{\infty} \frac{(t^4)^i}{i!} I + t \sum_{j=0}^{\infty} \frac{(t^4)^j}{j!} A + t^2 \sum_{l=0}^{\infty} \frac{(t^4)^l}{l!} A^2 + t^3 \sum_{r=0}^{\infty} \frac{(t^4)^r}{r!} A^3 \\ &= e^{t^4} I + t e^{t^4} A + t^2 e^{t^4} A^2 + t^3 e^{t^4} A^3 \\ &= e^{t^4} \left(I + t A + t^2 A^2 + t^3 A^3 \right) \\ &= e^{t^4} \left(1 - t^2 - t - t^3 - t^2 \right) \end{split}$$

Noticing that as $t \to 0$ we have $e^{tA} \to I$ is a good sanity check! **Exercise 6.5** [Complete]

Can a one-parameter group ever cross itself?

Solution. No - a one-parameter group is differentiable, hence any singularity would contradict its differentiability. Alternatively, by Proposition 6.17, every one-parameter group is described by $\gamma(t) = e^{tA}$ for some $A \in gl_n(\mathbb{K})$, and e^{tA} is injective.

Exercise 6.6 [WIP]

Describe all one-parameter groups of $GL_1(\mathbb{C})$. Draw several in the x-y plane. **Solution.** Let $z = a + b\mathbf{i} \in GL_1(\mathbb{C})$. Then, any one-parameter group has the form

$$\gamma_z(t) = e^{tz}
= e^{t(a+b\mathbf{i})}
= e^{at}e^{\mathbf{i}bt}$$

 e^{ibt} can always be identified with a point on the unit circle, scaled by e^{at} . Hence, $\gamma_z(t)$ makes a spiral that "spirals" exponentially faster as t increases that starts at $\gamma_z(0) = 1$. z determines the initial condition and initial "spiral rate".

Exercise 6.7 [WIP]

Let $G = \left\{ \begin{pmatrix} x & y \\ 0 & 1 \end{pmatrix} \in GL_2(\mathbb{R}) : x > 0 \right\}$. Describe the one-parameter groups in G, and draw several on the xy-plane.

Solution. First, note that given $A \in G$,

$$A = \begin{pmatrix} x & y \\ 0 & 1 \end{pmatrix}$$
$$A^{2} = \begin{pmatrix} x^{2} & y(x+1) \\ 0 & 1 \end{pmatrix}$$

and

$$A^3 = \begin{pmatrix} x^3 & y(x^2 + x + 1) \\ 0 & 1 \end{pmatrix}$$

It can be show inductively that

$$A^k = \begin{pmatrix} x^k & y(x^{k-1} + \dots + 1) \\ 0 & 1 \end{pmatrix}$$

and so,

$$\begin{split} e^{tA} &= \sum_{k=0}^{\infty} \frac{t^k A^k}{k!} \\ &= \sum_{k=0}^{\infty} \frac{t^k}{k!} \begin{pmatrix} x^k & y(x^{k-1} + \dots + 1) \\ 0 & 1 \end{pmatrix} \\ &= \sum_{k=0}^{\infty} \frac{t^k}{k!} \begin{pmatrix} x^k & y\frac{x^k - 1}{x - 1} \\ 0 & 1 \end{pmatrix} \\ &= \begin{pmatrix} e^{tx} & \frac{y}{x - 1} \sum_{k=0}^{\infty} (tx)^k / k! - t^k / k! \\ 0 & e^t \end{pmatrix} \\ &= \begin{pmatrix} e^{tx} & \frac{y}{x - 1} (e^{tx} - e^t) \\ 0 & e^t \end{pmatrix} \end{split}$$

6.1. EXERCISES 33

No fucking way am I drawing these.

Exercise 6.8 [WIP]

Visually describe the path $\gamma(t) = e^{t\mathbf{j}}$ in $Sp(1) \cong S^3$.

First, note that Solution.

$$\begin{array}{c|cc}
k & \mathbf{j}^k \\
\hline
0 & 1 \\
1 & \mathbf{j} \\
2 & -1 \\
3 & 1
\end{array}$$

hence, **j** has periodicity 3. Next,

$$\begin{split} \gamma(t) &= e^{t\mathbf{j}} \\ &= \sum_{k=0}^{\infty} \frac{t^k}{k!} \mathbf{j}^k \\ &= \sum_{i=0}^{\infty} \frac{t^i}{i!} 1 + \sum_{j=0}^{\infty} \frac{t^j}{j!} + \sum_{l=0}^{\infty} \frac{t^l}{l!} \end{split}$$

Exercise 6.9 [WIP]
Let
$$A = \begin{pmatrix} a & b \\ -b & a \end{pmatrix} \in gl_n \mathbb{R}$$
. Compute e^A .

Solution. First, note that

$$\begin{pmatrix} a & b \\ -b & a \end{pmatrix} = \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix} + \begin{pmatrix} 0 & b \\ -b & 0 \end{pmatrix}$$

is a decomposition of A into two commuting matrices. Thus,

$$e^{A} = \exp\begin{pmatrix} a & b \\ -b & a \end{pmatrix}$$

$$= \exp\begin{pmatrix} \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix} + \begin{pmatrix} 0 & b \\ -b & 0 \end{pmatrix} \end{pmatrix}$$

$$= \exp\begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix} \cdot \exp\begin{pmatrix} 0 & b \\ -b & 0 \end{pmatrix}$$

$$= \begin{pmatrix} \sum_{k=0}^{\infty} \frac{a^{k} I^{k}}{k!} \end{pmatrix} \cdot \begin{pmatrix} \sum_{j=0}^{\infty} \frac{b^{k}}{j!} \exp\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}^{j} \end{pmatrix}$$

$$= e^{a} I \cdot e^{b^{4}} \begin{pmatrix} 1 - b^{2} & b - b^{3} \\ -b + b^{3} & 1 - b^{2} \end{pmatrix}$$

$$= e^{b^{4} + a} \begin{pmatrix} 1 - b^{2} & b - b^{3} \\ -b + b^{3} & 1 - b^{2} \end{pmatrix}$$

Exercise 6.10 [TODO]

Repeat the previous problem with $A = \begin{pmatrix} a & b \\ b & a \end{pmatrix}$

Exercise 6.11 [Complete]

When A is in the Lie algebra of $UT_n(\mathbb{K})$, prove that $e^A \in UT_n(\mathbb{K})$.

Solution. Let $A_1, A_2 \in UT_n(\mathbb{K})$ and k a positive integer. Then clearly $A_1 + A_2$ and $R_{A_1}(A_2)$ are in $UT_n(\mathbb{K})$. Thus, for any positive integer $k \in \mathbb{Z}$, $A^k \in UT_n(\mathbb{K})$. Further, $\frac{1}{k!}A_1$ is certainly in $UT_n(\mathbb{K})$. Hence, we can assert that

$$e^A = \sum_{k=0}^{\infty} \frac{A^k}{k!} \in UT_n(\mathbb{K}).$$

Exercise 6.12 [Complete]

When A is in the Lie algebra of $\text{Isom}(\mathbb{R}^n)$, prove that $e^A \in \text{Isom}(\mathbb{R}^n)$.

Solution. Let $A_1, A_2 \in \text{Isom}(\mathbb{R}^n)$ and k a positive integer. Then $A_1 + A_2$ and $R_{A_1}(A_2)$ are isometries. Thus, for any positive integer $k \in \mathbb{Z}$, A^k is an isometry. Further, $\frac{1}{k!}A_1$ is an isometry. Hence, we can assert that

$$e^A = \sum_{k=0}^{\infty} \frac{A^k}{k!} \in \text{Isom}(\mathbb{R}^n).$$

Exercise 6.13 [Complete]

Describe the one-parameter groups of $Trans(\mathbb{R}^n)$.

Solution. Fix $A = \begin{pmatrix} I & 0 \\ X & 1 \end{pmatrix} \in \text{Trans}(\mathbb{R}^n)$. Then it is clear that

$$A^k = \begin{pmatrix} I & 0 \\ X & 1 \end{pmatrix}^k = \begin{pmatrix} I & 0 \\ kX & 1 \end{pmatrix}$$

hence,

$$e^{tA} = \sum_{k=0}^{\infty} \frac{(tA)^k}{k!}$$
$$= \sum_{k=0}^{\infty} \frac{t^k}{k!} \begin{pmatrix} I & 0 \\ kX & 1 \end{pmatrix}$$
$$= e^t \begin{pmatrix} I & 0 \\ tX & 1 \end{pmatrix}.$$

Exercise 6.14 [TODO]

Matrix groups are manifolds

7.1 Exercises

Exercise 7.1 [Complete]

Define the **stereographic projection** as

$$f: S^2 - \{0, 0, 1\} \to \mathbb{R}^2$$

via shooting a lazer from the north pole of S^2 ; the lazer hits a point p = (x, y, z) on S^2 and a subsequent point on R^2 (given by the plane z = -1), identifying $p \in S^2 - \{0, 0, 1\}$ with $f(p) \in \mathbb{R}^2$.

1. Show that

$$f(x, y, z) = \frac{2}{1 - z}(x, y)$$

- 2. Find a formula for f^{-1}
- 3. Find a formula

$$q: S^2 - \{0, 0, -1\} \to \mathbb{R}^2$$

defined analogusly to f, but the plane of intersection is z = 1.

4. Find an explicit formula for the composition

$$g\circ f^{-1}:\mathbb{R}^2-\{0,0\}\to\mathbb{R}^2-\{(0,0)\}$$

Solution. (1). Fix the following lines:

- 1. ℓ_1 between (0,0,-1) and (0,0,1)
- 2. ℓ_2 between (0,0,1) and f(p) = f(x,y,z)
- 3. ℓ_3 between (0, 0, -1) and f(p) = f(x, y, z)
- 4. ℓ_4 between (0,0,1) and (0,0,1-z)

- 5. ℓ_5 between (0, 0, 1) and p = (x, y, z)
- 6. ℓ_6 between (0,0,1-z) and p=(x,y,z)

Its clear that $T_1 = \{\ell_1, \ell_2, \ell_3\}$ and $T_2 = \{\ell_4, \ell_5, \ell_6\}$ are similar. Morever, $\ell_1 = 2$ and $\ell_4 = 1 - z$. Therefore,

$$\frac{1-z}{2} = \frac{(x,y)}{f(x,y,z)} \implies f(x,y,z) = \frac{2}{1-z}(x,y).$$

(2). Let $f(x, y, z) = (u, v) \in \mathbb{R}^2$. Then, parameterize the line from (0, 0, 1) to (u, v) with L(t) = (0, 0, 1) + t(u, v, -2) = (tu, tv, 1 - 2t)

where $t \in [0,1]$. We want to know when L(t) intersects the sphere, as in when

$$(tu)^{2} + (tv)^{2} + (1 - 2t)^{2} = 1 \implies (u^{2} + v^{2})t^{2} - 4t + 4t^{2} = 0$$
$$\implies (u^{2} + v^{2} + 4)t^{2} - 4t = 0$$
$$\implies t \left[(u^{2} + v^{2} + 4)t - 4 \right] = 0$$

where $t = \frac{4}{u^2 + v^2 + 4}$ is clearly the relevant solution. Therefore,

$$f^{-1}(u,v) = (tu, tv, 1-2t) = \left(\frac{4u}{u^2 + v^2 + 4}, \frac{4v}{u^2 + v^2 + 4}, 1 - \frac{8}{u^2 + v^2 + 4}\right)$$

(3). We can recover step (1) by mapping $1-z\to z-1$, hence we get

$$g(x, y, z) = \frac{2}{z - 1}(x, y)$$

(4). Let $c = \frac{4}{u^2 + v^2 + 4}$. Composition gives

$$g \circ f^{-1}(u, v) = g(cu, cv, 1 - 2c)$$

$$= \frac{2}{1 - 1 - 2c}(cu, cv)$$

$$= -(u, v)$$

which is super chill!

Exercise 7.2 [WIP]

Prove that $S^n \subset \mathbb{R}^{n+1}$ is an n-dimensional manifold.

Solution. Define

$$V = \{(x_1, \dots, x_{n+1}) \in S^n : x_{n+1} > 0\}$$

which is a neigbourhood of $(0,0,\ldots,1) \in S^n$. Next, define

$$U = \{(a_1, \dots, a_n) : a_1^2 + \dots + a_n^2 < 1\}$$

and define

$$\varphi: U \to V$$

$$\varphi(a_1, \dots, a_n) := (a_1, a_2, \dots, a_n, \sqrt{1 - a_n^2 - \dots - a_1^2})$$

The Lie bracket

8.1 Exercises

Exercise 8.1 [Complete]

Prove that SO(3) is not abelian in two ways:

- 1. Find two elements in $\mathfrak{so}(3)$ that do not commute.
- 2. Find two elements in SO(3) that do not commute.

Which is easier? Prove that SO(n) is not abelian for n > 2.

Solution. (1). Consider the basis given for $\mathfrak{so}(3)$ in Theorem 5.12, that is

$$\mathfrak{so}(3) = \operatorname{span} \left\{ E_1 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix}, E_2 = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{bmatrix}, E_3 = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \right\}$$

then we have

$$[E_1, E_2] = E_3$$

hence E_1 and E_2 do not commute.

(2). Let

$$R_z(\theta) = \begin{bmatrix} \cos \theta & -\sin \theta & 0\\ \sin \theta & \cos \theta & 0\\ 0 & 0 & 1 \end{bmatrix}$$

and

$$R_x(\phi) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \phi & -\sin \phi \\ 0 & \sin \phi & \cos \phi \end{bmatrix}$$

then

$$R_z(\theta)R_x(\phi) = \begin{bmatrix} \cos\theta & -\sin\theta\cos\phi & \sin\theta\sin\phi \\ \sin\theta & \cos\theta\cos\phi & -\cos\theta\sin\phi \\ 0 & \sin\phi & \cos\phi \end{bmatrix}$$

but

$$R_x(\phi)R_z(\theta) = \begin{bmatrix} \cos\theta & -\sin\theta & 0\\ \sin\theta\cos\phi & \cos\theta\cos\phi & -\sin\phi\\ \sin\theta\sin\phi & \cos\theta\sin\phi & \cos\phi \end{bmatrix}$$

hence SO(()3) is not abelian.

to prove SO(n) is not abelian for n > 2, consider the basis $\{E_1, \ldots E_n\}$ as described in Theorem 5.2. Then if n > 2, we have that

$$[E_i, E_j] = E_k$$

for some $i \neq j \neq k$, hence $\mathfrak{so}(n)$ is not abelian, and so SO(3) is not abelian.

Exercise 8.2 [Complete]

Let G_1, G_2 be matrix groups with Lie algebras $\mathfrak{g}_1, \mathfrak{g}_2$. Suppose that $f: G_1 \to G_2$ is a smooth homomorphism. If $df_I: \mathfrak{g}_1 \to \mathfrak{g}_2$ is bijective, prove that $df_g: T_gG_1 \to T_{f(g)}G_2$ is bijective for all $g \in G_1$.

Solution. Given a group G with $g \in G$, let $L_g : G \to G$ be the left-multiplication map $L_g(G) := gG$. Then L_g is a group automomorphism. It is straightforward to show that

$$df_g = d\left(L_{f(g)}\right) \circ df_I \circ d\left(L_g^{-1}\right).$$

where the composition

$$T_gG_1 \xrightarrow{d(L_g^{-1})} \mathfrak{g}_1 \xrightarrow{df_I} \mathfrak{g}_1 \xrightarrow{d(L_{f(g)})} T_{f(g)}G_2$$

is a composition of linear maps, and hence linear, and hence bijective.

Exercise 8.3 [WIP]

Define $d: \operatorname{Sp}(1) \to \operatorname{Sp}(1) \times \operatorname{Sp}(1)$ as d(a) := (a, a). Explicitly describe the function $\iota: \operatorname{SO}(3) \to \operatorname{SO}(4)$ that makes the following diagram commute:

$$\begin{array}{ccc}
\operatorname{Sp}(1) & \xrightarrow{d} & \operatorname{Sp}(1) \times \operatorname{Sp}(1) \\
& & \downarrow^{F} \\
\operatorname{SO}(3) & \xrightarrow{\iota} & \operatorname{SO}(4)
\end{array}$$

Solution. Fix $(a, a) \in \operatorname{Sp}(1) \times \operatorname{Sp}(1)$. If $v \in \mathbb{H}$ is purely imaginary, then F is exactly the action Ad_a . If v is real, then F(a, a)(v) = v, hence the real axis is fixed pointwise when viewing F as acting on \mathbb{R}^4 . Therefore, given $M \in \operatorname{SO}(3)$ where M coincides with the action of Ad_a , ι is the inclusion

$$\iota(M) = \begin{pmatrix} 1 & 0 \\ 0 & M \end{pmatrix}$$

8.1. EXERCISES 39

Exercise 8.4 [TODO]

Another exercise goes here.

Exercise 8.5 [TODO]

Solution.

Exercise 8.6 [TODO]

Another exercise goes here.

Exercise 8.7 [TODO]

Another exercise goes here.

Maximal tori

9.1 Exercises

Exercise 9.1. Another exercise goes here.

Solution. Placeholder for your solution.

Homogeneous manifolds

10.1 Exercises

Exercise 10.1. Another exercise goes here.

Solution. Placeholder for your solution.

Roots

11.1 Exercises

Exercise 11.1. Another exercise goes here.

Solution. Placeholder for your solution.