

DEMANDE INTERNATIONALE PUBLIEE EN VERTU DU TRAITE DE COOPERATION EN MATIERE DE BREVETS (PCT)

(51) Classification internationale des brevets ⁶ : C07D 413/04, 413/14, A61K 31/445		A1	(11) Numéro de publication internationale: WO 97/17345 (13) Date de publication internationale: 15 mai 1997 (15.05.97)
(21) Numéro de la demande internationale: PCT/FR96/01730 (22) Date de dépôt international: 5 novembre 1996 (05.11.96)		(74) Mandataire: LUDWIG, Jacques; Synthelabo, 22, avenue Galilée, F-92350 Le Plessis-Robinson (FR).	
(30) Données relatives à la priorité: 95/13252 9 novembre 1995 (09.11.95) FR 95/13253 9 novembre 1995 (09.11.95) FR 96/02663 4 mars 1996 (04.03.96) FR		(81) Etats désignés: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, US, UZ, VN, brevet ARIGO (KE, LS, MW, SD, SZ, UG), brevet eurasien (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), brevet européen (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), brevet OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).	
(71) Déposant (pour tous les Etats désignés sauf US): SYNTHE-LABO [FR/FR]; 22, avenue Galilée, F-92350 Le Plessis-Robinson (FR).		Publiée Avec rapport de recherche internationale.	
(72) Inventeurs; et (75) Inventeurs/Déposants (US seulement): JEGHAM, Samir [TN/FR]; 65, rue du Lieutenant-Colonel-Prudhon, F-95100 Argenteuil (FR). LOCHHEAD, Alistair [GB/FR]; 95, rue de Paris, F-94220 Charenton (FR). GALLI, Frédéric [FR/FR]; 3, résidence de l'Orangerie, F-78170 La Celle-Saint-Cloud (FR). NEDELEC, Alain [FR/FR]; 97, rue Victor-Hugo, F-92700 Colombes (FR). SOLIGNAC, Axelle [FR/FR]; 93, boulevard Beaumarchais, F-75003 Paris (FR). DE CRUZ, Laurence [FR/FR]; 4, rue Halifax, F-94340 Joinville-le-Pont (FR).			
(54) Titre: 5-PHENYL-3-(PIPERIDIN-4-YL)-1,3,4-OXADIAZOL-2(3H)-ONE DERIVATIVES FOR USE AS 5-HT ₄ OR H ₃ RECEPTOR LIGANDS			
(54) Titre: DERIVES DE 5-PHENYL-3-(PIPERIDIN-4-YL)-1,3,4-OXADIAZOL-2(3H)-ONE, UTILES COMME LIGANDS DES RECEPTEURS 5-HT ₄ OU H ₃			
(57) Abstract			
<p>Compounds of general formula (I), wherein R₁ is a (C₁₋₄) alkyl or (C₃₋₇) cycloalkylmethyl group, X₁ is a hydrogen or halogen atom or a (C₁₋₄) alkoxy group, or OR₁ and X₁ together form a group of formula -OCH₂O-, -O(CH₂)₂-, -O(CH₂)₃O- or -O(CH₂)₃O-, X₂ is a hydrogen atom or an amino group, X₃ is a hydrogen or halogen atom, and R₂ is a hydrogen atom, an optionally substituted (C₁₋₆) alkyl group, phenyl (C₁₋₄) alkyl group optionally substituted on the phenyl ring, a phenyl (C₂₋₃) alkenyl group, a phenoxy (C₂₋₄) alkyl group, a cyclo (C₃₋₇) alkylmethyl group, a 2,3-dihydro-1<i>H</i>-inden-1-yl or 2,3-dihydro-1<i>H</i>-inden-2-yl group, or a group having general formula -(CH₂)_nCO-Z, wherein n is a number from 1 to 6 and Z is a piperidin-1-yl or 4-(dimethylamino)piperidin-1-yl group, are disclosed. Said compounds may be used for treating and preventing disorders in which 5-HT₄ and/or H₃ receptors are involved, particularly in the central nervous system, the gastro-intestinal system, the lower urinary organs or the cardiovascular system.</p>			
<p>(57) Abrégé</p> <p>Composés répondant à la formule générale (I), dans laquelle R₁ représente un groupe (C_{1-C₄})alkyle ou (C_{3-C₇})cycloalkylméthyle, X₁ représente un atome d'hydrogène ou d'halogène ou un groupe (C_{1-C₄})alcoxy ou bien OR₁ et X₁ représentent ensemble un groupe de formule -OCH₂O-, -O(CH₂)₂-, -O(CH₂)₃O- ou -O(CH₂)₃O-, X₂ représente un atome d'hydrogène ou un groupe amino, X₃ représente un atome d'hydrogène ou d'halogène, et R₂ représente soit un atome d'hydrogène, soit un groupe (C_{1-C₆})alkyle éventuellement substitué, soit un groupe phényle(C_{1-C₄})alkyle éventuellement substitué sur le noyau phényle, soit un groupe phényle(C_{2-C₃})alécényle, soit un groupe phenoxy(C_{2-C₄})alkyle, soit un groupe cyclo(C_{3-C₇})alkylméthyle, soit un groupe 2,3-dihydro-1<i>H</i>-indén-1-yle ou 2,3-dihydro-1<i>H</i>-indén-2-yle, soit un groupe de formule générale -(CH₂)_nCO-Z dans laquelle n représente un nombre de 1 à 6 et Z représente un groupe pipéridin-1-yle ou 4-(diméthylamino)pipéridin-1-yle. Ces composés peuvent être utilisés pour le traitement et la prévention des désordres dans lesquels les récepteurs 5-HT₄ et/ou H₃ sont impliqués, notamment au niveau du système nerveux central, du système gastro-intestinal, du système du bas appareil urinaire ou du système cardiovasculaire.</p>			

UNIQUEMENT A TITRE D'INFORMATION

Codes utilisés pour identifier les Etats parties au PCT, sur les pages de couverture des brochures publient des demandes internationales en vertu du PCT.

AT	Arménie	GB	Royaume-Uni	MW	Malawi
AT	Autriche	GE	Géorgie	MX	Mexique
AU	Australie	GN	Guinée	NE	Niger
BB	Barbade	GR	Grèce	NL	Pays-Bas
BE	Belgique	HU	Hongrie	NO	Norvège
BF	Burkina Faso	IE	Irlande	NZ	Nouvelle-Zélande
BG	Bulgarie	IT	Italie	PL	Pologne
BJ	Bénin	JP	Japon	PT	Portugal
BR	Brésil	KE	Kenya	RO	Roumanie
BY	Bélarus	KG	Kirghizistan	RU	Fédération de Russie
CA	Canada	KP	République populaire démocratique de Corée	SD	Soudan
CF	République centrafricaine	KR	République de Corée	SE	Suède
CG	Congo	KZ	Kazakhstan	SG	Singapour
CH	Suisse	LJ	Lichtenstein	SI	Slovénie
CI	Côte d'Ivoire	LK	Sri Lanka	SK	Slovaquie
CM	Cameroun	LR	Liberia	SN	Sénégal
CN	Chine	LT	Lithuanie	SZ	Swaziland
CS	Tchécoslovaquie	LU	Luxembourg	TD	Tchad
CZ	République tchèque	LV	Lettonie	TG	Togo
DE	Allemagne	MC	Monaco	TJ	Tadjikistan
DK	Danemark	MD	République de Moldova	TT	Trinité-et-Tobago
EE	Estonie	MG	Madagascar	UA	Ukraine
ES	Espagne	ML	Mali	UG	Ouganda
FI	Finlande	MN	Mongolie	US	Etats-Unis d'Amérique
FR	France	MR	Mauritanie	UZ	Ouzbékistan
GA	Gabon			VN	Viet Nam

**DERIVES DE 5-PHENYL-3-(PIPERIDIN-4-YL)-1,3,4-OXADIAZOL-2(3H)-ONE UTILES
COMME LIGANDS DES RECEPTEURS 5-HT4 OU H3**

La présente invention a pour objet des composés répondant à
5 la formule générale (I)

10

dans laquelle

R₁ représente un groupe (C₁-C₄) alkyle ou (C₁-C₇) cycloalkyl-méthyle,

15 X₁ représente un atome d'hydrogène ou d'halogène ou un groupe (C₁-C₄) alcoxy ou bien

OR₁ et X₁ représentent ensemble un groupe de formule -OCH₂O-, -O(CH₂)₂-, -O(CH₂)₃-, -O(CH₂)₂O- ou -O(CH₂)₂O-,

X₂ représente un atome d'hydrogène ou un groupe amino,

20 X₃ représente un atome d'hydrogène ou d'halogène, et

R₂ représente soit un atome d'hydrogène, soit un groupe (C₁-C₆) alkyle éventuellement substitué, soit un groupe phényl(C₁-C₄) alkyle éventuellement substitué sur le noyau phényle, soit un groupe phényl(C₁-C₃) alcényle, soit un groupe

25 phenoxy(C₁-C₄) alkyle, soit un groupe cyclo(C₁-C₇) alkylméthyle, soit un groupe 2,3-dihydro-1H-indén-1-yle ou 2,3-dihydro-1H-indén-2-yle, soit un groupe de formule générale -(CH₂)_nCO-Z dans laquelle n représente un nombre de 1 à 6 et Z représente un groupe pipéridin-1-yle ou 4-(diméthylamino)pipéridin-1-

30 yle.

Lorsque R₁ représente un groupe alkyle éventuellement substitué, un tel groupe est, de préférence, un groupe 2-éthoxy-2-oxoéthyle, un groupe 2-(diméthylamino)-2-oxoéthyle, un groupe 2-[(méthylsulfonyl)amino]éthyle, un groupe 2-oxo-2-phényléthyle, un groupe 2-hydroxy-2-phényléthyle, un groupe butyle, un groupe 4,4,4-trifluoro-butyle ou un groupe 4-trifluoro-3-hydroxybutyle.

Lorsque R₂ représente un groupe phényl (C₆-C₆) alkyle éventuellement substitué sur le noyau phényle, un tel groupe est, de préférence un groupe éventuellement substitué sur le noyau phényle par un atome d'halogène, par un groupe trifluorométhyle ou par un ou deux groupes méthoxy.

Lorsque R₂ représente un groupe de formule générale -(CH₂)_nCO-Z, un tel groupe est, de préférence un groupe 4-oxo-4-(pipéridin-1-yl)butyle, un groupe 2-[4-(diméthylamino)pipéridin-1-yl]-2-oxoéthyle, un groupe 4-[4-(diméthylamino)pipéridin-1-yl]-4-oxobutyle, un groupe 5-[4-(diméthylamino)pipéridin-1-yl]-5-oxopentyle ou un groupe 6-[4-(diméthylamino)pipéridin-1-yl]-6-oxohexyle.

Les composés de l'invention peuvent exister à l'état de bases libres ou de sels d'addition à des acides. Par ailleurs, certains substituents R₂ contiennent un atome de carbone asymétrique ; les composés peuvent donc exister sous forme d'énantriomères purs ou de mélanges d'énantriomères.

Conformément à l'invention on peut préparer les composés de formule générale (I) par un procédé illustré par le schéma qui suit.

On fait réagir un ester de formule générale (II), dans laquelle R₁, X₁, X₂ et X₃ sont tels que définis ci-dessus et R₃ représente un groupe méthyle ou éthyle, avec l'hydrate d'hydrazine, en l'absence de solvant ou dans un solvant polaire protique, par exemple l'éthanol, pour obtenir un hydrazide de formule générale (III) dont on obtient la cyclisation en oxadiazole de formule générale (IV) soit au moyen de phosgène, dans un solvant aprotique, par exemple le dioxane, soit au moyen de chloroformiate de phényle, dans un solvant aprotique, par exemple le toluène. Lorsque, dans la formule générale (III), X₃ représente un groupe amino, ce dernier réagit avec le phosgène, et on estérifie le produit obtenu avec de l'alcool benzylique, le groupe amino étant ainsi protégé par un groupe benzyloxycarbonyle.

On fait ensuite réagir l'oxadiazole de formule générale (IV)

Schéma

avec un pipéridin-4-ol de formule générale (V), dans laquelle
 35 R₂ est tel que défini à propos de la formule générale (I),
 mais différent d'un atome d'hydrogène, ou bien représente un
 groupe protecteur (1,1-diméthyléthoxy)carbonyle, en présence
 de triphénylphosphine et d'azodicarboxylate d'éthyle, dans un
 solvant aprotique, par exemple le tétrahydrofurane, puis s'il

y a lieu, on déprotège l'azote du cycle pipéridine au moyen d'acide trifluoroacétique et, lorsque R₁ représente un atome d'hydrogène, et si on le désire, on fait réagir le composé obtenu avec un dérivé de formule générale R₂-X, dans laquelle 5 X représente un groupe partant ou fonctionalisable, par exemple un atome d'halogène, un groupe méthanesulfonate, 4-méthylbenzénésulfonate ou une fonction carbonyle et R₂ est tel que défini à propos de la formule générale (I), mais différent d'un atome d'hydrogène, en présence de triéthyl-10 amine, dans un solvant aprotique, par exemple l'acétonitrile. Dans le cas particulier où R₁ représente un groupe 2,3-dihydro-1*H*-indényle, on effectue une amination réductive avec un composé de formule générale (I) dans laquelle R₁ représente un atome d'hydrogène et l'indanone correspondante.

15 Les esters de départ de formule générale (II), ou les acides correspondants, sont connus et décrits, notamment, dans les demandes de brevets EP-0231139, EP-0234872, WO-8403281, WO-9316072 et WO-9419344.

20 Les pipéridin-4-ols de formule générale (V) sont connus et/ou peuvent être préparés selon des méthodes analogues à celles décrites dans *J. Mol. Pharmacol.* (1992) 41(4) 718-726 et dans les demandes de brevets WO-9303725 et EP-0309043.

25 Les exemples suivants illustrent en détail la préparation de quelques composés selon l'invention. Les microanalyses élémentaires et les spectres IR et RMN confirment les structures des composés obtenus. Les numéros des composés indiqués entre 30 parenthèses dans les titres correspondent à ceux du tableau donné plus loin. Dans les noms des composés, le tiret "—" fait partie du mot, et le tiret "_" ne sert que pour la coupure en fin de ligne ; il est à supprimer en l'absence de coupure, et ne doit pas être remplacé par un tiret normal ou 35 par un espace.

Exemple 1 (Composé N°1).

Bromhydrate de 5-(4-Amino-5-chloro-2-méthoxyphényl)-3-pipéridin-4-yl-1,3,4-oxadiazol-2(3H)-one.

5 1.1. Hydrazide de l'acide 4-amino-5-chloro-2-méthoxybenzoïque.

Dans un réacteur de 1 l on introduit 51,5 g (0,239 mole) de 4-amino-5-chloro-2-méthoxybenzoate de méthyle en suspension dans 460 ml d'éthanol. On ajoute, en 15 min, 119 g (2,39 moles) d'hydrate d'hydrazine et on chauffe le mélange au reflux pendant 15h.

On refroidit le mélange à l'aide d'un bain de glace, on collecte le précipité par filtration, on le rince à l'éthanol et on le sèche sous pression réduite à 80°C pendant 2h30.

15 On obtient ainsi 47,5 g de produit.

Point de fusion : 211°C.

1.2. [2-Chloro-5-méthoxy-4-(5-oxo-4,5-dihydro-1,3,4-oxadiazol-2-yl)phényl]carbamate de phényleméthyle.

20 Dans un réacteur de 3 l on ajoute, goutte à goutte, en l'espace d'une heure, à température ambiante et sous agitation magnétique, 461 ml (0,875 mole) d'une solution de phosgène 1,93M dans le toluène, à une suspension de 37,7 g (0,175 mole) d'hydrazide de l'acide 4-amino-5-chloro-2-méthoxybenzoïque dans 1200 ml de dioxane.

25 On agite le mélange à température ambiante pendant une nuit, puis on le chauffe à 80°C pendant 1h. On chasse l'excès de phosgène par passage d'un courant d'argon à cette température pendant 2h. On ajoute alors 72 ml (0,7 mole) d'alcool benzylique et on continue à chauffer pendant 1h à 100°C. On refroidit, on concentre sous pression réduite et on triture le résidu dans l'éther isopropylique. On collecte le solide obtenu par filtration et on le sèche. On obtient ainsi 60,3 g de produit.

35 Point de fusion : 214°C.

1.3. [2-Chloro-4-[4-[1-[(1,1-diméthyléthoxy)carbonyl]_
pipéridin-4-yl]-5-oxo-4,5-dihydro-1,3,4-oxadiazol-2-
yl]-5-méthoxyphényl]carbamate de phényleméthyle.

Dans un ballon tricol de 500 ml on introduit 15,03 g (40
5 mmoles) de [2-chloro-5-méthoxy-4-(5-oxo-4,5-dihydro-1,3,4-
oxadiazol-2-yl)phényl]carbamate de phényleméthyle en solution
dans 200 ml de tétrahydrofurane, 13,64 g (52 mmoles) de
triphenylphosphine et 9,66 g de 1-[(1,1-diméthyléthoxy)_
carbonyl]pipéridin-4-ol, tout en agitant le mélange à 0°C.

10 On ajoute 9,76 g (56 mmoles) d'azodicarboxylate d'éthyle, on
poursuit l'agitation à 0°C pendant 1h et à température am-
biante pendant 2h30.

On concentre le mélange sous pression réduite, on dissout le
résidu dans de l'acétate d'éthyle, on lave la solution

15 plusieurs fois à l'eau, on la sèche et on évapore le solvant
sous pression réduite. On purifie le résidu par chromato-
graphie sur colonne de gel de silice en éluant avec un mé-
lange 30/70 d'acétate d'éthyle et d'hexane.

On obtient 15 g de composé sous forme de solide blanc.

20 Point de fusion : 140°C.

1.4. [2-Chloro-4-(5-oxo-4-pipéridin-4-yl-4,5-dihydro-
1,3,4-oxadiazol-2-yl)-5-méthoxyphényl]carbamate de
phényle méthyle.

25 Dans un ballon tricol de 500 ml on introduit 6,52 g (12
mmoles) de [2-chloro-4-[4-[1-[(1,1-diméthyléthoxy)carbonyl]_
pipéridin-4-yl]-5-oxo-4,5-dihydro-1,3,4-oxadiazol-2-yl]-5-
méthoxyphényl]carbamate de phényleméthyle en solution dans
140 ml de dichlorométhane et 13,64 g (120 mmoles) d'acide
30 trifluoroacétique et on agite le mélange à température am-
biante pendant une nuit.

On ajoute de la glace, puis du chloroforme, puis de
l'ammoniaque aqueuse à 25%, on sépare la phase organique et
on extrait la phase aqueuse quatre fois avec du chloroforme.

35 On lave la phase organique avec une solution aqueuse saturée
de chlorure de sodium, on la sèche et on évapore le solvant
sous pression réduite.

On obtient 6,26 g de composé brut qu'on utilise tel quel.

Point de fusion : 180°C.

1.5. Bromhydrate de 5-(4-amino-5-chloro-2-méthoxyphényl)-3-pipéridin-4-yl-1,3,4-oxadiazol-2(3H)-one.

Dans un ballon de 25 ml on place 1 g (2,8 mmoles) de 2-chloro-4-(5-oxo-4-pipéridin-4-yl-4,5-dihydro-1,3,4-oxadiazol-2-

5 yl)-5-méthoxyphényl]carbamate de phényleméthyle dissous dans 5,8 ml d'acide bromhydrique à 33% dans l'acide acétique, et on agite le mélange à température ambiante pendant 1h.

On ajoute de l'éther diéthylique et on sépare le précipité par filtration.

10 On obtient 0,67 g de bromhydrate.

Point de fusion : 278-280°C.

Par traitement avec de l'ammoniaque on récupère 0,52 g de base libre.

15 Exemple 2 (Composé N°5).

5-(4-Amino-5-chloro-2-méthoxyphényl)-3-[1-(cyclohexyl-méthyl)pipéridin-4-yl]-1,3,4-oxadiazol-2(3H)-one.

A une solution de 1,13 g (3,48 mmoles) de 5-(4-amino-5-chloro-2-méthoxyphényl)-3-pipéridin-4-yl-1,3,4-oxadiazol-2(3H)-one dans 40 ml d'acetonitrile on ajoute successivement, à température ambiante, sous atmosphère d'argon et sous agitation magnétique, 2,01 ml (13,92 mmoles) de triéthylamine puis 0,92 g (5,2 mmoles) de bromure de cyclohexyleméthyle dans 25 5 ml d'acetonitrile et on agite le mélange à 70°C pendant 2 jours.

On évapore le solvant sous pression réduite, on reprend le résidu avec du chloroforme, on lave la solution plusieurs fois à l'eau, on la sèche, on évapore le solvant sous pression réduite et on fait cristalliser le résidu dans l'acétone.

30 On obtient 0,7 g de solide blanc.

Point de fusion : 186,5-186,7°C.

Exemple 3 (Composé N°9).

5-(4-Amino-5-chloro-2-méthoxyphényl)-3-[1-(2-phénylethyl)-
pipéridin-4-yl]-1,3,4-oxadiazol-2(3H)-one.

5 3.1 [2-Chloro-5-méthoxy-4-[5-oxo-4-[1-(2-phénylethyl)-
pipéridin-4-yl]-4,5-dihydro-1,3,4-oxadiazol-2-
yl]phényl]carbamate de phénylethyle.

Dans un ballon de 100 ml on place 1,84 g (4 mmoles) de
[2-chloro-4-(5-oxo-4-pipéridin-4-yl)-4,5-dihydro-1,3,4-
10 oxadiazol-2-yl]-5-méthoxyphényl]carbamate de phénylethyle et
1,67 ml (12 mmoles) de triéthylamine en suspension dans 40 ml
d'acetonitrile, on ajoute 0,96 g (5,2 mmoles) de (2-bromo-
éthyl)benzène dans 1 ml d'acetonitrile, on chauffe le mélange
à 60°C pendant 3h, on ajoute encore 0,3 ml de (2-bromoéthyl)-
15 benzène et on chauffe à 80°C pendant une nuit.

On évapore le solvant sous pression réduite, on extrait le
résidu trois fois avec du chloroforme, on lave la phase organique
plusieurs fois à l'eau, on la séche sur sulfate de sodium, on évapore le solvant sous pression réduite et on
20 purifie le résidu par chromatographie sur colonne de gel de silice en éluant avec un mélange 80/20 d'acétate d'éthyle et d'hexane.

On obtient 2,18 g de composé pur sous forme de solide blanc.

Point de fusion : 150°C.

25

3.2. 5-(4-Amino-5-chloro-2-méthoxyphényl)-3-[1-(2-phénylethyl)-
pipéridin-4-yl]-1,3,4-oxadiazol-2(3H)-one.

Dans un ballon de 100 ml on place 2,18 g (3,87 mmoles) de
[2-chloro-5-méthoxy-4-[5-oxo-4-[1-(2-phénylethyl)pipéridin-4-
30 yl]-4,5-dihydro-1,3,4-oxadiazol-2-yl]phényl]carbamate de phénylethyle dissous dans une solution de 7 ml d'acide bromhydrique à 33% dans l'acide acétique et on agite le mélange à température ambiante pendant 3h.

On ajoute de l'éther diéthylique et on isole le précipité par
35 filtration.

On obtient 1,73 g de bromhydrate.

On reprend ce dernier avec de l'eau et du chloroforme et on neutralise le mélange en ajoutant de la soude. Après séparation de la phase organique, extraction de la phase aqueuse et

traitement habituel on obtient 1,44 g de composé à l'état de base libre.

Point de fusion : 184,5°C.

5 Exemple 4 (Composé N°2).

Chlorhydrate de 5-(4-amino-5-chloro-2-méthoxyphényle)-3-(1-méthylpipéridin-4-yl)-1,3,4-oxadiazol-2(3H)-one.

4.1. [2-Chloro-4-[4-(1-méthylpipéridin-4-yl)-5-oxo-4,5-dihydro-1,3,4-oxadiazol-2-yl]-5-méthoxyphényle]carbamate de phénylméthyle.

Dans un ballon de 2,5 l on place 7,5 g de [2-chloro-5-méthoxy-4-(5-oxo-4,5-dihydro-1,3,4-oxadiazol-2-yl)phényle]carbamate de phénylméthyle en suspension dans 150 ml de tétrahydrofurane, 6,82 g (26 mmoles) de triphénylphosphine et 2,3 g (20 mmoles) de 1-méthylpipéridin-4-ol, on ajoute 4,39 g (28 mmoles) d'azodicarboxylate d'éthyle à 0°C et sous agitation magnétique, et on maintient l'agitation pendant 20h.

On concentre le mélange sous pression réduite, on reprend le résidu avec de l'acétone, on refroidit à 0°C, et on isole le précipité par filtration.

On obtient 5,02 g de composé sous forme de solide blanc.

Point de fusion : 142°C.

25 4.2. 5-(4-Amino-5-chloro-2-méthoxyphényle)-3-(1-méthylpipéridin-4-yl)-1,3,4-oxadiazol-2(3H)-one.

Dans un ballon de 100 ml on place 2 g (4,23 mmoles) de [2-chloro-4-[4-(1-méthylpipéridin-4-yl)-5-oxo-4,5-dihydro-1,3,4-oxadiazol-2-yl]-5-méthoxyphényle]carbamate de phénylméthyle dissous dans 20 ml d'acide acétique, on ajoute lentement 20 ml d'acide bromhydrique à 33% dans l'acide acétique et on agite le mélange à température ambiante pendant 18h. On ajoute de l'éther diéthylique et on isole le solide par filtration.

35 On obtient 2 g de bromhydrate.

On le dissout dans 30 ml d'eau, on neutralise la solution avec de la soude, on sépare le précipité par filtration, on le lave à l'eau et on le séche sous pression réduite.

On obtient 1,05 g de composé sous forme de base libre.

Point de fusion : 162°C.

Par traitement avec l'acide chlorhydrique dans l'éthanol on obtient le chlorhydrate.

Point de fusion : 212-218°C.

5

Exemple 5 (Composé N°19).

Chlorhydrate de 5-[4-amino-5-chloro-2-(cyclopropylméthoxy)-phényl]-3-(1-butyliplipéridin-4-yl)-1,3,4-oxadiazol-2(3H)-one.

10 5.1. 4-Amino-5-chloro-2-(cyclopropylméthoxy)benzoate de méthyle.

Dans un ballon tricol de 1 l on introduit 29,1 g (0,120 mole) d'acide 4-amino-5-chloro-2-(cyclopropylméthoxy)benzoïque et 340 ml de méthanol, on refroidit la solution à -40°C, on ajoute, goutte à goutte, 44 ml (0,602 mole) de chlorure de thionyle, et on chauffe le mélange au reflux pendant 1h30. On le refroidit, on évapore le solvant, on reprend le résidu avec de l'eau et une solution aqueuse de carbonate de sodium, on extrait au dichlorométhane et on purifie le produit brut par chromatographie sur colonne de gel de silice en éluant avec un mélange de n-heptane et d'acétate d'éthyle de 90/10 à 80/20.

On obtient 8,3 g de composé sous forme de solide jaune pâle.

Point de fusion : 115°C.

25

5.2. Hydrazide de l'acide 4-amino-5-chloro-2-cyclopropyl-méthoxybenzoïque.

Dans un ballon de 250 ml on introduit 6,0 g (23,5 mmoles) de 4-amino-5-chloro-2-(cyclopropylméthoxy)benzoate de méthyle et 30 54 ml d'éthanol, on ajoute, à 40°C, 118g (235 mmoles) d'hydrate d'hydrazine et on chauffe le mélange au reflux pendant 18h.

On le refroidit avec un bain de glace, on isole le précipité par filtration, on le rince à l'éthanol et on le sèche sous 35 pression réduite à 70°C pendant 4h.

On obtient 4,7 g de composé.

Point de fusion : 172°C.

5.3. 5-[4-Amino-5-chloro-2-(cyclopropylméthoxy)phényl]-
1,3,4-oxadiazol-2(3H)-one.

Dans un ballon de 100 ml on introduit 2,0 g (7,8 mmoles)
d'hydrazide de l'acide 4-amino-5-chloro-2-(cyclopropyl-

5 méthoxy)benzoïque, 17 ml de toluène et 1,9 ml (8,6 mmoles) de
chloroformate de phényle et on chauffe le mélange au reflux
pendant 4h.

On le refroidit à température ambiante, on ajoute 2,5 ml
(16,4 mmoles) de triéthylamine, on chauffe au reflux pendant

10 3h, on refroidit à température ambiante, on ajoute de l'eau,
on extrait avec du chloroforme. Après traitement habituel et
purification par chromatographie sur colonne de gel de silice
en éluant avec un mélange 98/2/0,2 de chloroforme, méthanol
et ammoniaque, on obtient 0,80 g de solide blanc.

15 Point de fusion : 153-154°C.

5.4. Chlorhydrate de 5-[4-amino-5-chloro-2-(cyclopropyl-
méthoxy)phényl]-3-(1-butyliplipéridin-4-yl)-1,3,4-
oxadiazol-2(3H)-one.

20 A partir de 5-[4-amino-5-chloro-2-(cyclopropylméthoxy)phé-
nyl]-1,3,4-oxadiazol-2(3H)-one et de 1-butyliplipéridin-4-ol,
en opérant selon la méthode décrite dans l'exemple 4.1, on
obtient le composé final à l'état de base et, après traite-
ment avec une solution d'acide chlorhydrique dans l'éthanol
25 et recristallisation dans l'éthanol, on obtient le chlo-
hydrate.

Point de fusion : 237-238°C.

Exemple 6 (Composé N°28).

30 Bromhydrate de 5-(8-Amino-7-chloro-2,3-dihydro-1,4-benzo-
dioxin-5-yl)-3-pipéridin-4-yl-1,3,4-oxadiazol-2(3H)-one.

6.1. 8-Amino-2,3-dihydro-1,4-benzodioxine-5-carboxylate
d'éthyle.

35 Dans un ballon tricol de 2 l contenant 772 ml d'éthanol
refroidi à -40°C, sous agitation, on introduit lentement
23,5 g (0,198 mole) de chlorure de thionyle, on maintient
l'agitation à cette température pendant 1h, on ajoute lente-
ment, en 15 min, 38,6 g (0,198 mole) d'acide 6-amino-2,3-

dihydro-1,4-benzodioxine-5-carboxylique en solution dans 100 ml d'éthanol, et on laisse le mélange revenir à température ambiante pendant une nuit.

On le chauffe au reflux pendant 4h, on évapore le solvant
5 sous pression réduite, on reprend le résidu avec de l'eau et du carbonate de sodium et on l'extract avec du chloroforme. Après lavage, séchage et évaporation de la phase organique on obtient 34,06 g d'ester sous forme de solide blanc.

Point de fusion : 112°C.

10

6.2. 8-Amino-7-chloro-2,3-dihydro-1,4-benzodioxine-5-carboxylate d'éthyle.

Dans un ballon de 1 l on introduit 37 g (0,165 mole) de 8-amino-2,3-dihydro-1,4-benzodioxine-5-carboxylate d'éthyle
15 en solution dans 370 ml de dioxane, on ajoute, à température ambiante et sous agitation magnétique, 23,2 g (0,174 mole) de N-chlorosuccinimide et on maintient l'agitation pendant une nuit.

On dilue le mélange à l'eau, on l'extract à l'acétate
20 d'éthyle et, après traitement habituel de la phase organique, on obtient 42 g de composé qu'on recristallise dans un mélange d'éther diéthylique et d'éther diisopropylique.

Point de fusion : 105-106°C.

25 6.3. Hydrazide de l'acide 8-amino-7-chloro-2,3-dihydro-1,4-benzodioxine-5-carboxylique.

Dans un réacteur de 1 l on introduit 38,4 g (0,149 mole) de 8-amino-7-chloro-2,3-dihydro-1,4-benzodioxine-5-carboxylate
30 d'éthyle en suspension dans 150 ml d'éthanol, on ajoute, en 15 min, 149 g (2,98 mole) d'hydrate d'hydrazine et on chauffe le mélange au reflux pendant 1h.

On le refroidit à l'aide d'un bain de glace,, on recueille le précipité par filtration, on le lave à l'éthanol et on le sèche sous pression réduite.

35 On obtient 33 g de composé.

Point de fusion : 227-231°C.

6.4. [6-Chloro-8-(5-oxo-4,5-dihydro-1,3,4-oxadiazol-2-yl)-
2,3-dihydro-1,4-benzodioxin-5-yl]carbamate de phényl-
méthyle.

Dans un réacteur de 1 l, à température ambiante et sous agitation magnétique, on introduit 32,6 g d'hydrazide de l'acide 8-amino-7-chloro-2,3-dihydro-1,4-benzodioxine-5-carboxylique et 330 ml de dioxane, on ajoute à cette suspension, goutte à goutte, et en l'espace d'une heure et demie, 310 ml (0,4 mole) d'une solution de phosgène 0,193M dans le toluène, on agite le mélange à température ambiante pendant une nuit et on le chauffe au reflux pendant 5h.

On chasse l'excès de phosgène à cette température par passage d'un courant d'argon pendant 2h, on refroidit le mélange, on le concentre sous pression réduite, on reprend le résidu avec 200 ml d'alcool benzylique, on le chauffe à 100°C pendant une nuit, on refroidit le mélange, on le concentre sous pression réduite et on triture le résidu dans l'éther diisopropylique. Après filtration et séchage on obtient 52,6 g de composé.

Point de fusion : 230°C.

20

6.5. [6-Chloro-8-[4-[1-[(1,1-diméthyléthoxy)carbonyl]pipéridin-4-yl]-5-oxo-4,5-dihydro-1,3,4-oxadiazol-2-yl]-2,3-dihydro-1,4-benzodioxin-5-yl]carbamate de phényl- méthyle.

Dans un ballon tricol de 250 ml, à 0°C et sous agitation magnétique, on introduit 8,07 g (20 mmoles) de [6-chloro-8-(5-oxo-4,5-dihydro-1,3,4-oxadiazol-2-yl)-2,3-dihydro-1,4-benzodioxin-5-yl]carbamate de phénylméthyle, 160 ml de tétrahydrofurane, 6,83 g (26 mmoles) de triphénylphosphine, 4,83 g (24 mmoles) de 1-[(1,1-diméthyléthoxy)carbonyl]pipéridin-4-ol, puis 4,52 g (26 mmoles) d'azodicarboxylate d'éthyle.

Après 1h d'agitation à 0°C et 2h30 d'agitation à température ambiante, on concentre le mélange sous pression réduite, et on recristallise le résidu une première fois dans l'éther diéthylique et une seconde fois dans l'acétate d'éthyle.

On obtient 5,5 g de composé sous forme de solide blanc.

Point de fusion : 206°C.

6.6. [6-Chloro-8-(5-oxo-4-pipéridin-4-yl-4,5-dihydro-1,3,4-oxadiazol-2-yl)-2,3-dihydro-1,4-benzodioxin-5-yl]carbamate de phénylethyle.

Dans un ballon tricol de 250 ml on introduit 5,3 g (9 mmoles) de [6-chloro-8-[4-[(1,1-diméthyléthoxy)carbonyl]pipéridin-4-yl]-5-oxo-4,5-dihydro-1,3,4-oxadiazol-2-yl]-2,3-dihydro-1,4-benzodioxin-5-yl]carbamate de phénylethyle, 100 ml de dichlorométhane et 10,3 g (90 mmoles) d'acide trifluoroacétique, et on agite le mélange à température ambiante pendant une nuit.

On concentre le mélange sous pression réduite, on triture le résidu dans l'acétone, on le collecte par filtration, on le lave à l'éther diéthylique, on le traite par addition lente de 17 ml d'ammoniaque aqueuse à 25%, et on l'extrait quatre fois avec du chloroforme. Après lavage avec de l'eau puis avec une solution saturée de chlorure de sodium, séchage et évaporation du solvant, on obtient 4,4 g de composé qu'on utilise tel quel dans l'étape suivante.

Point de fusion : 128-130°C.

20

6.7. 5-(8-Amino-7-chloro-2,3-dihydro-1,4-benzodioxin-5-yl)-3-pipéridin-4-yl-1,3,4-oxadiazol-2(3H)-one.

Dans un ballon de 50 ml on introduit 3,68 g (27,5 mmoles) de [6-chloro-8-(5-oxo-4-pipéridin-4-yl-4,5-dihydro-1,3,4-oxadiazol-2-yl)-2,3-dihydro-1,4-benzodioxin-5-yl]carbamate de phénylethyle et 35 ml d'acide acétique, on ajoute 11 ml d'acide bromhydrique à 33% dans l'acide acétique, et on agite le mélange à température ambiante pendant 22h.

On ajoute de l'éther diéthylique au précipité qui s'est formé, et on le recueille par filtration. On obtient 4 g de bromhydrate.

Point de fusion >260°C.

Par traitement avec de la soude on récupère le composé sous forme de base libre.

35 Point de fusion : 213-215°C.

Exemple 7 (Composé N°37)

5-(8-Amino-7-chloro-2,3-dihydro-1,4-benzodioxin-5-yl)-3-[1-[(4-(trifluorométhyl)phényl)méthyl]pipéridin-4-yl]-1,3,4-oxadiazol-2(3H)-one.

5

A une solution de 1 g (2,84 mmoles) de 5-(8-amino-7-chloro-2,3-dihydro-1,4-benzodioxin-5-yl)-3-pipéridin-4-yl-1,3,4-oxadiazol-2(3H)-one dans 60 ml d'acetonitrile, à température ambiante, sous agitation magnétique et sous atmosphère

10 d'argon, on ajoute successivement 1,58 ml (11,38 mmoles) de triéthylamine et 0,88 g (5,68 mmoles) de bromure de (4-trifluorométhyl)benzyle en solution dans 5 ml d'acetonitrile, et on agite le mélange pendant 2h.

On évapore le solvant sous pression réduite, on reprend le 15 résidu avec du chloroforme, on lave la solution plusieurs fois à l'eau, on la sèche et on évapore le solvant sous pression réduite.

On fait cristalliser le résidu dans l'acétone et on obtient 1,14 g de solide blanc.

20 Point de fusion : 198°C.

Exemple 8 (Composé N°32).

5-(8-Amino-7-chloro-2,3-dihydro-1,4-benzodioxin-5-yl)-3-[1-(4,4,4-trifluorobutyl)pipéridin-4-yl]-1,3,4-oxadiazol-2(3H)-one.

8.1. [6-Chloro-8-[5-oxo-4-[1-(4,4,4-trifluorobutyl)pipéridin-4-yl]-4,5-dihydro-1,3,4-oxadiazol-2-yl]-2,3-dihydro-1,4-benzodioxin-5-yl]carbamate de phénylméthyle.

Dans un ballon de 100 ml on introduit 2 g (4,1 mmoles) de [6-chloro-8-(5-oxo-4-pipéridin-4-yl-4,5-dihydro-1,3,4-oxadiazol-2-yl)-2,3-dihydro-1,4-benzodioxin-5-yl]carbamate de phénylméthyle, 40 ml d'acetonitrile et 2,3 ml (16 mmoles) de 30 triéthylamine, on ajoute 1,5 g (6,67 mmoles) de bromure de 4,4,4-trifluorobutyle dans 1 ml d'acetonitrile, et on chauffe le mélange à 80°C pendant une nuit.

On évapore le solvant sous pression réduite, on extrait le résidu trois fois avec du chloroforme, on lave, sèche et

évapore le phase organique.

Après purification du résidu par chromatographie sur colonne de gel de silice en éluant avec un mélange 97/3/0,3 de dichlorométhane, de méthanol et d'ammoniaque on obtient 2,4 g
5 de composé sous forme de solide blanc.

Point de fusion : 158°C.

8.2. 5-(8-Amino-7-chloro-2,3-dihydro-1,4-benzodioxin-5-yl)-3-[1-(4,4,4-trifluorobutyl)pipéridin-4-yl]-1,3,4-
10 oxadiazol-2(3H)-one.

Dans un ballon de 100 ml on introduit 1,72 g (2,88 mmoles) de [6-chloro-8-[5-oxo-4-[1-(4,4,4-trifluorobutyl) pipéridin-4-yl]-4,5-dihydro-1,3,4-oxadiazol-2-yl]-2,3-dihydro-1,4-benzodioxin-5-yl]carbamate de phényleméthyle, 17 ml d'acide acétique, on ajoute 5 ml d'acide bromhydrique à 33% dans l'acide acétique, et on agite à température ambiante pendant 7h. On ajoute de l'éther diéthylique au précipité qui s'est formé et, par filtration, on recueille 1,8 g de bromhydrate. On le reprend avec de l'eau et du chloroforme, on ajoute de la soude pour libérer la base et, après traitement habituel de la phase organique on obtient 1,19 g de composé.
20 Point de fusion : 188°C.

Exemple 9 (Composé N°29).

25 Bromhydrate de 5-(8-amino-7-chloro-2,3-dihydro-1,4-benzodioxin-5-yl)-3-(1-méthylpipéridin-4-yl)-1,3,4-oxadiazol-2(3H)-one.

9.1. [6-Chloro-8-[4-(1-méthylpipéridin-4-yl)-5-oxo-4,5-dihydro-1,3,4-oxadiazol-2-yl]-2,3-dihydro-1,4-benzodioxin-5-yl]carbamate de phényleméthyle.

Dans un ballon de 250 ml on introduit 6,27 g (15,53 mmoles) de [6-chloro-8-(5-oxo-4,5-dihydro-1,3,4-oxadiazol-2-yl)-2,3-dihydro-1,4-benzodioxin-5-yl]carbamate de phényleméthyle en suspension dans 80 ml de tétrahydrofurane, 6,12 g (23,3 mmoles) de triphénylphosphine, 2,24 g (19,4 mmoles) de 1-méthylpipéridin-4-ol, et, à 0°C et sous agitation, on ajoute lentement 4,06 ml (23,3 mmoles) d'azodicarboxylate d'éthyle, et on agite le mélange pendant 48h.

On concentre le mélange sous pression réduite, on le reprend avec de l'eau, on ajoute 1,6 ml d'acide chlorhydrique à 37% puis 60 ml d'acétate d'éthyle, on agite le mélange pendant 1h, puis on l'extrait quatre fois à l'acétate d'éthyle. On 5 évapore le solvant sous pression réduite, on traite le résidu avec de l'ammoniaque jusqu'à pH=10, et on collecte le précipité par filtration.

On obtient 3,16 g de composé sous forme de solide blanc.

Point de fusion : 177°C.

10

9.2. Bromhydrate de 5-(8-amino-7-chloro-2,3-dihydro-1,4-benzodioxin-5-yl)-3-(1-méthylpipéridin-4-yl)-1,3,4-oxadiazol-2(3H)-one.

Dans un ballon de 100 ml on introduit 1,71 g (3,41 mmoles) de 15 [6-chloro-8-[4-(1-méthylpipéridin-4-yl)-5-oxo-4,5-dihydro-1,3,4-oxadiazol-2-yl]-2,3-dihydro-1,4-benzodioxin-5-yl]carbamate de phényleméthyle en solution dans 30 ml d'acide acétique, on ajoute lentement 3 ml d'acide bromhydrique à 33% dans l'acide acétique et on agite le mélange pendant 5h.

20 On ajoute de l'éther diéthylique au précipité qui s'est formé, et on recueille ce dernier par filtration.

On obtient 1,72 g de bromhydrate.

Point de fusion : 248°C.

25 Exemple 10 (Composé N°31).

Chlorhydrate de 5-(8-amino-7-chloro-2,3-dihydro-1,4-benzodioxin-5-yl)-3-(1-butylpipéridin-4-yl)-1,3,4-oxadiazol-2(3H)-one.

30 10.1. [8-[4-(1-Butylpipéridin-4-yl)-5-oxo-4,5-dihydro-1,3,4-oxadiazol-2-yl]-6-chloro-2,3-dihydro-1,4-benzodioxin-5-yl]carbamate de phényleméthyle.

On opère comme décrit dans l'exemple 9.1, à partir de

[6-chloro-8-(5-oxo-4,5-dihydro-1,3,4-oxadiazol-2-yl)-2,3-

35 dihydro-1,4-benzodioxin-5-yl]carbamate de phényleméthyle et de 1-butylpipéridin-4-ol.

10.2. Chlorhydrate de 5-(8-amino-7-chloro-2,3-dihydro-1,4-benzodioxin-5-yl)-3-(1-butyloxy)pyridin-4-one, 1,3,4-oxadiazol-2(3H)-one.

On opère comme décrit dans l'exemple 9.2, à partir de [8-(4-(1-butyloxy)pyridin-4-yl)-5-oxo-4,5-dihydro-1,3,4-oxadiazol-2-yl]-6-chloro-2,3-dihydro-1,4-benzodioxin-5-yl] carbamate de phényle et d'acide bromhydrique, et on forme le chlorhydrate par traitement à l'acide chlorhydrique dans l'éthanol.

10 Point de fusion : 280-283°C.

Exemple 11 (Composé N°62).

Chlorhydrate de 5-(5-chloro-2,3-dihydrobenzofuran-7-yl)-3-pyridin-4-yl-1,3,4-oxadiazol-2(3H)-one.

15

11.1. Hydrazide de l'acide 5-chloro-2,3-dihydrobenzofuran-7-carboxylique.

A 25,14 g (0,118 mole) de 5-chloro-2,3-dihydrobenzofuran-7-carboxylate de méthyle en suspension dans 300 ml de méthanol 20 on ajoute 57,3 ml (1,18 mole) d'hydrate d'hydrazine et on chauffe le mélange au reflux pendant 4 h.

On le refroidit à l'aide d'un bain de glace, on recueille le précipité par filtration, on le lave à l'éthanol et on le séche sous pression réduite.

25 On obtient 24,34 g de composé.

Point de fusion : 182°C.

11.2. 5-(5-Chloro-2,3-dihydrobenzofuran-7-yl)-1,3,4-oxadiazol-2(3H)-one.

30 Dans un réacteur de 1 l, à température ambiante et sous agitation magnétique, on introduit 24,34 g (0,115 mole) d'hydrazide de l'acide 5-chloro-2,3-dihydrobenzofuran-7-carboxylique et 500 ml de dioxane, on ajoute, au moyen d'une ampoule à brome, 178 ml (0,343 mole) de phosgène 0,193 M dans 35 le toluène, on agite le mélange à température ambiante pendant 24 h, puis au reflux pendant 4 h pour chasser l'excès de phosgène.

On évapore le solvant sous pression réduite, on reprend le résidu avec de l'éther diéthylique, on le collecte par fil-

tration et on le sèche.

On obtient 27 g de composé.

Point de fusion : 270°C.

5 11.3. 5-(5-Chloro-2,3-dihydrobenzofuran-7-yl)-3-[1-[(1,1-diméthyléthoxy)carbonyl]pipéridin-4-yl]-1,3,4-oxadiazol-2(3H)-one.

Dans un ballon tricol de 500 ml, refroidi à 0°C et placé sous agitation magnétique, on introduit 20 g (0,08 mole) de

10 5-(5-chloro-2,3-dihydrobenzofuran-7-yl)-1,3,4-oxadiazol-2(3H)-one en suspension dans 250 ml de tétrahydrofurane, on ajoute 10,06 g (0,05 mole) de 1-[(1,1-diméthyléthoxy)carbonyl]pipéridin-4-ol, 18,36 g de triphénylphosphine, et 14,81 g (0,085 mole) d'azodicarboxylate d'éthyle, et on agite le

15 mélange à température ambiante pendant 4 h.

On concentre le mélange sous pression réduite et on recristallise le résidu dans un mélange de dichlorométhane et d'éther diéthylique.

On obtient 14,7 g de solide beige.

20 Point de fusion : 203°C.

11.4. Chlorhydrate de 5-(5-chloro-2,3-dihydrobenzofuran-7-yl)-3-pipéridin-4-yl-1,3,4-oxadiazol-2(3H)-one.

Dans un ballon de 500 ml on dissout 14,7 g (0,035 mole) de

25 5-(5-chloro-2,3-dihydrobenzofuran-7-yl)-3-[1-[(1,1-diméthyléthoxy)carbonyl]pipéridin-4-yl]-1,3,4-oxadiazol-2(3H)-one dans 150 ml de dichlorométhane, on ajoute, à 0°C, 26,8 ml d'acide trifluoroacétique et on agite le mélange à température ambiante pendant 3 h.

30 On ajoute 200 ml d'eau et 47 ml de soude à 30% dans 300 ml d'eau, on extrait le mélange avec du chloroforme, on sèche la phase organique et on évapore le solvant sous pression réduite.

On obtient 10,8 g de base sous forme d'un solide blanc.

35 Point de fusion : 180°C.

Par traitement de 5 g de base avec une solution d'acide chlorhydrique gazeux dans l'éthanol on obtient 3,5 g de chlorhydrate.

Point de fusion : >260°C.

Exemple 12 (Composé N°67).

Chlorhydrate de 5-(5-chloro-2,3-dihydrobenzofuran-7-yl)-3-[1-(2-phényléthyl)pipéridin-4-yl]-1,3,4-oxadiazol-2(3H)-one.

5 Dans un ballon tricol de 250 ml on introduit 2,5 g (7,77
mmoles) de 5-(5-chloro-2,3-dihydrobenzofuran-7-yl)-3-
pipéridin-4-yl-1,3,4-oxadiazol-2(3H)-one en solution dans
50 ml de butan-2-one, on ajoute 2,67 g (15,5 mmoles) de
bromure de phénylethyle puis 2,36 g (23,3 mmoles) de
10 triéthylamine et on agite le mélange au reflux pendant 20 h.
On collecte le précipité formé par filtration, on évapore le
filtrat sous pression réduite, on reprend le résidu avec de
l'eau, on l'extract deux fois avec du chloroforme, et on
évapore la phase organique sous pression réduite.
15 On dissout le résidu dans une solution d'acide chlorhydrique
gazeux dans l'éthanol, on ajoute de l'éther diéthylique, on
recueille le précipité par filtration, et on le recristallise
dans l'éthanol. On obtient 2,0 g de chlorhydrate.
Point de fusion : 255-257°C.

20

Exemple 13 (Composé N°65).

5-(5-Chloro-2,3-dihydrobenzofuran-7-yl)-3-(1-butylpipéridin-
4-yl)-1,3,4-oxadiazol-2(3H)-one.

25 Dans un ballon tricol de 250 ml, refroidi à 0°C et placé sous
agitation magnétique, on introduit 2,38 g (0,01 mole) de
5-(5-chloro-2,3-dihydrobenzofuran-7-yl)-1,3,4-oxadiazol-
2(3H)-one en suspension dans 80 ml de tétrahydrofurane, on
ajoute 1,57 g (0,01 mole) de 1-butylpipéridin-4-ol, 3,41 g
30 (0,013 mole) de triphénylphosphine puis 2,44 g (0,014 mole)
d'azodicarboxylate d'éthyle, et on agite le mélange à
température ambiante pendant 3 h puis à 40°C pendant 3 h.
On évapore le solvant sous pression réduite, on reprend le
résidu avec de l'eau et on l'extract cinq fois avec de
35 l'éther diéthylique.
On sèche la phase organique sur sulfate de magnésium, on la
filtre, on évapore le solvant sous pression réduite et on
purifie le résidu par chromatographie sur colonne de gel de
silice en éluant avec un mélange 80/20 d'acétate d'éthyle et

d'heptane.

On obtient 3 g de composé.

Point de fusion : 133,8-134°C.

5 Exemple 14 (Composé N°71).

Chlorhydrate de 5-(6-chloro-3,4-dihydro-2H-benzopyran-8-yl)-3-pipéridin-4-yl-1,3,4-oxadiazol-2(3H)-one.

14.1. 10 Hydrazide de l'acide 6-chloro-3,4-dihydro-2H-benzo-pyran-8-carboxylique.

A 34 g (0,15 mole) de 6-chloro-3,4-dihydro-2H-benzopyrane-8-carboxylate de méthyle en solution dans 250 ml d'éthanol on ajoute 72,8 ml (1,5 mole) d'hydrate d'hydrazine, et on chauffe le mélange au reflux pendant 8 h.

15 On le refroidit à l'aide d'un bain de glace, on recueille le précipité par filtration, on le lave à l'éthanol et on le séche sous pression réduite.

On obtient 31 g de composé.

Point de fusion : 149°C.

20

14.2. 1,3,4-oxadiazol-2(3H)-one.

Dans un réacteur de 1 l, à température ambiante et sous agitation magnétique, on introduit 31 g (0,137 mole) 25 d'hydrazide de l'acide 6-chloro-3,4-dihydro-2H-benzopyrane-8-carboxylique et 500 ml de dioxane, on ajoute, au moyen d'une ampoule à brome, 212,7 ml (0,411 mole) de phosgène 0,139 M dans le toluène, et on chauffe le mélange au reflux pendant 2 h.

30 On recueille le précipité par filtration, et on le séche.

On obtient 26 g de composé.

Point de fusion : 246°C.

14.3. 35 Chlorhydrate de 5-(6-chloro-3,4-dihydro-2H-benzo-pyran-8-yl)-3-pipéridin-4-yl-1,3,4-oxadiazol-2(3H)-one.

Dans un ballon tricol de 500 ml, refroidi à 0°C et placé sous agitation magnétique, on introduit 20 g (0,08 mole) de 5-(6-chloro-3,4-dihydro-2H-benzopyran-8-yl)-1,3,4-oxadiazol-

2(3H)-one en suspension dans 300 ml de tétrahydrofurane, on ajoute 15,94 g (0,08 mole) de 1-[(1,1-diméthyléthoxy)carbonyl]pipéridin-4-ol, 35,36 g (0,134 mole) de triphénylphosphine, et 21,1 ml (0,134 mole) d'azodicarboxylate d'éthyle,
5 et on agite le mélange à température ambiante pendant 4 h. On concentre le mélange sous pression réduite, on dissout le résidu dans 250 ml de dichlorométhane, on refroidit la solution à 0°C, on ajoute 100 ml d'acide trifluoroacétique et on agite le mélange à température ambiante pendant 2 h.
10 On le concentre sous pression réduite, on ajoute 100 ml d'une solution 1 N d'acide chlorhydrique aqueux, on recueille le précipité par filtration et on le séche. On obtient 19 g de chlorhydrate.
Point de fusion : 297°C.
15
Exemple 15 (Composé N°77).
Chlorhydrate de 5-(6-chloro-3,4-dihydro-2H-benzopyran-8-yl)-
3-[1-[4-[4-(diméthylamino)pipéridin-1-yl]-4-oxobutyl]
pipéridin-4-yl]-1,3,4-oxadiazol-2(3H)-one.
20
Dans un ballon tricol de 250 ml on introduit 1 g (2,68
mmoles) de chlorhydrate de 5-(6-chloro-3,4-dihydro-2H-
benzopyran-8-yl)-3-pipéridin-4-yl-1,3,4-oxadiazol-2(3H)-one
en solution dans 50 ml d'acetonitrile, on ajoute 1,24 ml
25 (5,36 mmoles) de 1-(4-chloro-1-oxobutyl)-N,N-diméthyl-
pipéridin-4-amine et 1,12 ml (8 mmoles) de triéthylamine, et
on agite le mélange à température ambiante pendant une nuit.
On évapore le mélange sous pression réduite, on reprend le
résidu avec de l'eau et on l'extract trois fois avec du
30 chloroforme. On séche la phase organique sur sulfate de
magnésium, on la filtre, on évapore le solvant sous pression
réduite, et on purifie le résidu par chromatographie sur
colonne de gel de silice en éluant avec des mélanges 98/2,
95/5 puis 90/10 de dichlorométhane et de méthanol.
35 On obtient un solide blanc qu'on traite dans une solution
d'acide chlorhydrique gazeux dans l'éthanol et, après
recristallisation dans l'éthanol, on isole finalement 0,22 g
de chlorhydrate.
Point de fusion : 193°C.

Exemple 16 (Composé N°74).

Chlorhydrate de 5-(6-chloro-3,4-dihydro-2H-benzopyran-8-yl)-3-[1-(1-méthyléthyl)pipéridin-4-yl]-1,3,4-oxadiazol-2(3H)-one.

5

A partir de 0,5 g (1,34 mmole) de chlorhydrate de 5-(6-chloro-3,4-dihydro-2H-benzopyran-8-yl)-3-pipéridin-4-yl-1,3,4-oxadiazol-2(3H)-one et de 0,378 g (1,34 mmole) de 1-bromo-1-méthyléthane, et en opérant comme décrit dans l'exemple 15,
10 on obtient 0,33 g de composé.

Point de fusion : 241°C.

Exemple 17 (Composé N°81)

Chlorhydrate de 5-(6-chloro-3,4-dihydro-2H-benzopyran-8-yl)-
15 3-[1-(2,3-dihydro-1H-indén-2-yl)pipéridin-4-yl]-1,3,4-oxadiazol-2(3H)-one.

A une solution de 1,13 g (8,60 mmoles) d'indan-2-one dans
15 ml de méthanol contenant 0,169 ml d'acide acétique on
20 ajoute 1,0 g (2,68 mmoles) de chlorhydrate de 5-(6-chloro-3,4-dihydro-2H-benzopyran-8-yl)-3-pipéridin-4-yl-1,3,4-oxadiazol-2(3H)-one et, à une température de 5°C, on ajoute 0,709 g (1,13 mmole) de cyanoborohydrure de sodium et on agite le mélange pendant 18 h.
25 On ajoute 15 ml d'acide chlorhydrique aqueux et, après 30 min d'agitation, on neutralise le mélange avec de la soude aqueuse 2M.

On extrait le mélange au dichlorométhane, on sépare la phase organique, on la sèche et on évapore le solvant sous pression réduite. On purifie le résidu par chromatographie sur couche mince préparative en éluant avec un mélange 98/2 de dichlorométhane et de méthanol.
30

On obtient un solide blanc dont on prépare le chlorhydrate de façon habituelle. On isole 0,8 g de sel.

35 Point de fusion : 283-284°C.

Exemple 18 (Composé N°75)

Fumarate (2:1) de 5-(6-chloro-3,4-dihydro-2H-benzopyran-8-yl)-3-[1-{5-[4-(diméthylamino)pipéridin-1-yl]-5-oxopentyl}-
· pipéridin-4-yl]-1,3,4-oxadiazol-2(3H)-one.

5

On chauffe une suspension de 2,0 g (5,37 mmoles) de chlorhydrate de 5-(6-chloro-3,4-dihydro-2H-benzopyran-8-yl)-3-pipéridin-4-yl-1,3,4-oxadiazol-2(3H)-one dans 75 ml d'acetonitrile contenant 2,24 ml (16 mmoles) de triéthylamine et

10 1,44 g (5,37 mmoles) de 1-(5-chloro-1-oxopentyl)-N,N-diméthylpipéridin-4-amine au reflux pendant 2 h.

On ajoute 2,88 g (10,74 mmoles) de 1-(5-chloro-1-oxopentyl)-N,N-diméthylpipéridin-4-amine supplémentaire et on continue de chauffer pendant 18 h.

15 On évapore le solvant sous pression réduite, on reprend le résidu avec de l'eau et on l'extract au chloroforme. Après séchage de la phase organique on purifie le résidu par chromatographie sur colonne de gel de silice en éluant avec un mélange 98/2 à 90/10 de dichlorométhane et de méthanol.

20 On obtient 0,4 g de produit à l'état de base, dont on prépare le difumarate de façon habituelle.

Point de fusion : 127°C.

25 Le tableau qui suit illustre les structures chimiques et les propriétés physiques de quelques composés selon l'invention.

Dans les colonnes R₁ et R₂, cC₆H₅ désigne un groupe cyclopropyle, cC₆H₁₁ un groupe cyclohexyle, C₆H₅ un groupe phényle, C₆H₄-n-X un groupe phényle substitué par X en position n, C₆H₃-m,n-X₂ un groupe phényle disubstitué par X en positions m et n, 1-C₉H₇ un groupe 2,3-dihydro-1H-indén-1-yle, 2-C₉H₉ un groupe 2,3-dihydro-1H-indén-2-yle, NC₆H₁₀ un groupe pipéridin-1-yle et NC₆H₉-4-N(CH₃)₂ un groupe 4-(diméthylamino)-pipéridin-1-yle.

30 Dans la colonne Sel, - désigne la base, HBr désigne un bromhydrate, HCl un chlorhydrate, 2HCl un chlorhydrate (2:1), fum. un fumarate, 2fum. un fumarate (2:1) et tar. un tartrate.

Dans la colonne F (°C), (d) désigne un point de fusion avec décomposition.

Tableau

N°	OR ₁	X ₁	X ₂	R ₂	Sel	F (°C)
		C1	NH ₂			
1	-OCH ₃	H	NH ₂	C1	-	162
2	-OCH ₃	H	NH ₂	-CH ₃	HC1	212-218
3	-OCH ₃	H	NH ₂	-CH(CH ₃) ₂	HC1	248-251
4	-OCH ₃	H	NH ₂	-(CH ₂) ₃ CH ₃	HC1	230 (d)
5	-OCH ₃	H	NH ₂	-CH ₂ CC ₆ H ₅	-	186,5-186,7
6	-OCH ₃	H	NH ₂	- (CH ₂) ₂ CH(OH)CF ₃ (R)	HC1	226
7	-OCH ₃	H	NH ₂	-CH ₂ C ₆ H ₅	HC1	166
8	-OCH ₃	H	NH ₂	-CH ₂ COC ₆ H ₅	-	188,2
9	-OCH ₃	H	NH ₂	-(CH ₂) ₂ C ₆ H ₅	-	184,5
10	-OCH ₃	H	NH ₂	-(CH ₂) ₃ C ₆ H ₅	-	149,3-149,4
11	-OCH ₃	H	NH ₂	-CH ₂ CH:CHC ₆ H ₅	-	118,4-118,6
12	-OCH ₃	H	NH ₂	-CH ₂ CO ₂ CH ₂ CH ₃	HC1	223-224

N°	OR ₁	X ₁	X ₂	X ₃	R ₂	Sel.	F (°C)
13	-OCH ₃	H	NH ₂	C1	-CH ₂ CON(CH ₃) ₂	HC1	212-213
14	-OCH ₃	H	NH ₂	C1	-(CH ₂) ₂ NHSO ₂ CH ₃	-	167
15	-OCH ₃	H	NH ₂	C1	-(CH ₂) ₃ CONC ₅ H ₉ -4-N(CH ₃) ₂	-	152
16	-OCH ₃	H	NH ₂	C1	-(CH ₂) ₃ CONC ₅ H ₁₀	-	209-211
17	-OCH ₃	H	H	C1	-(CH ₂) ₃ CH ₃	-	82, 2-82, 4
18	-OCH ₃	H	H	C1	-CH ₃	HC1	255
19	-OCH ₂ CC ₃ H ₅	H	NH ₂	C1	-(CH ₂) ₃ CH ₃	HC1	237-238
20	-OCH ₃	C1	NH ₂	C1	-(CH ₂) ₃ CH ₃	HC1	225-230
21	-OCH ₃	H	NH ₂	C1	-CH ₂ CH(OH)C ₆ H ₅ (±)	-	200
22	-OCH ₃	-OCH ₃	H	H	-(CH ₂) ₂ C ₆ H ₅	HC1	205
23	-OCH ₃	H	NH ₂	H	-(CH ₂) ₂ C ₆ H ₅	-	181-182
24	-OCH ₃	H	NH ₂	C1	2-C ₉ H ₉	HBr	282-283
25	-OCH ₃	H	NH ₂	C1	1-C ₉ H ₉	HC1	207
26	-OCH ₃	-OCH ₃	H	H	-(CH ₂) ₄ CO-NC ₅ H ₉ -4-N(CH ₃) ₂	fum.	100-105
27	-OCH ₃	H	NH ₂	C1	-(CH ₂) ₄ CO-NC ₅ H ₉ -4-N(CH ₃) ₂	fum.	180-182
28	-O(CH ₂) ₂ O-		NH ₂	C1	H	-	213-215
29	-O(CH ₂) ₂ O-	NH ₂	C1		-CH ₃	HBr	>260
30	-O(CH ₂) ₂ O-	NH ₂	C1		-CH(CH ₃) ₂	-	207
						HC1	292-297

N°	OR ₁	X ₁	X ₂	X ₃	R ₂	sel	F (°C)
31	-O(CH ₂) ₂ O-	NH ₂	C1		-(CH ₂) ₃ CH ₃	-	158-159
32	-O(CH ₂) ₂ O-	NH ₂	C1		-(CH ₂) ₃ CF ₃	-	188
33	-O(CH ₂) ₂ O-	NH ₂	C1		-CH ₂ C ₆ H ₅	-	198, 3-199, 9
34	-O(CH ₂) ₂ O-	NH ₂	C1		-(CH ₂) ₂ C ₆ H ₅	HC1	264, 8-266, 5
35	-O(CH ₂) ₂ O-	NH ₂	C1		-(CH ₂) ₃ CO-NC ₅ H ₉ -4-N(CH ₃) ₂	-	165
36	-O(CH ₂) ₂ O-	H	C1		-(CH ₂) ₂ C ₆ H ₅	-	181, 3-181, 4
37	-O(CH ₂) ₂ O-	NH ₂	C1		-CH ₂ C ₆ H ₄ -4-CF ₃	-	198
38	-O(CH ₂) ₂ O-	NH ₂	C1		-CH ₂ C ₆ H ₄ -4-F	HC1	230-240
39	-O(CH ₂) ₂ O-	NH ₂	C1		-CH ₂ C ₆ H ₄ -4-OCH ₃	-	171
40	-O(CH ₂) ₂ O-	H	C1		-(CH ₂) ₂ C ₆ H ₅ -3, 4-(OCH ₃) ₂	-	140
41	-O(CH ₂) ₂ O-	NH ₂	C1		-CH ₂ CC ₃ H ₅	-	166
42	-O(CH ₂) ₂ O-	NH ₂	C1		-CH ₂ CC ₆ H ₁₁	-	241
43	-O(CH ₂) ₂ O-	H	C1		-(CH ₂) ₃ CH ₃	-	122
44	-O(CH ₂) ₂ O-	H	C1		-(CH ₂) ₂ C ₆ H ₄ -4-F	-	173
45	-O(CH ₂) ₂ O-	H	C1		-(CH ₂) ₂ C ₆ H ₄ -4-CF ₃	-	134
46	-O(CH ₂) ₂ O-	NH ₂	H		-CH ₃	-	165
47	-O(CH ₂) ₂ O-	H	H		-(CH ₂) ₃ CH ₃	-	104
48	-O(CH ₂) ₂ O-	H	H		-(CH ₂) ₂ C ₆ H ₅	HC1	227-228
49	-O(CH ₂) ₂ O-	H	H		H	HC1	>260

N°	OR ₁	X ₁	X ₂	X ₃	R ₂	Sel	F (°C)
						HCl	225 (d)
50	-OCH ₂ O-	H	H	H	-(CH ₂) ₂ C ₆ H ₅	-	151
51	-O(CH ₂) ₂ O-	NH ₂	C1	-CH(CH ₃) ₂	-	HBr	245
52	-O(CH ₂) ₃ O-	NH ₂	C1	-(CH ₂) ₂ C ₆ H ₅	-	HBr	160
53	-O(CH ₂) ₄ O-	NH ₂	C1	-CH ₂ C ₆ H ₅	-	HBr	>340
54	-O(CH ₂) ₅ O-	NH ₂	C1	H	-	HBr	126
55	-O(CH ₂) ₆ O-	NH ₂	C1	-(CH ₂) ₂ CH ₃	-	HCl	237
56	-O(CH ₂) ₇ O-	NH ₂	C1	(±) -CH ₂ CH(OH)C ₆ H ₅	-	DMSO	240-245
				(S) [α] _D ²⁰ =+17, 39° c=1 ; DMSO	-	HCl	240-245
				(R) [α] _D ²⁰ =-17, 3° c=1 ; DMSO	-	HCl	240-245
57	-O(CH ₂) ₂ O-	NH ₂	C1	-CH ₂ COC ₆ H ₅	-	HCl	207
58	-O(CH ₂) ₂ O-	NH ₂	C1	-(CH ₂) ₂ O-C ₆ H ₄ -4-F	-	HCl	147
59	-O(CH ₂) ₂ O-	NH ₂	C1	-(CH ₂) ₄ CO-NC ₃ H ₉ -4-N(CH ₃) ₂	fum.	HCl	128-132
60	-O(CH ₂) ₂ O-	H	H	-(CH ₂) ₄ CO-NC ₃ H ₉ -4-N(CH ₃) ₂	fum.	HCl	193-195
61	-OCH ₂ O-	H	H	-(CH ₂) ₄ CO-NC ₃ H ₉ -4-N(CH ₃) ₂	fum.	HCl	217-220
62	-O(CH ₂) ₂ -	H	C1	H	-	HCl	>260
63	-O(CH ₂) ₂ -	H	C1	-CH ₃	-	HCl	222
64	-O(CH ₂) ₂ -	H	C1	-CH(CH ₃) ₂	-	HCl	279
65	-O(CH ₂) ₂ -	H	C1	-(CH ₂) ₂ CH ₃	-	HCl	133, 8-134
66	-O(CH ₂) ₂ -	H	C1	-CH ₂ C ₆ H ₅	-	HCl	253-256
67	-O(CH ₂) ₂ -	H	C1	-(CH ₂) ₂ C ₆ H ₅	-	HCl	255-257

N°	OR ₁	X ₁	X ₂	X ₃	R ₂	sel.	F (°C)
68	-O(CH ₂) ₂ -	H	H	H	-(CH ₂) ₂ C ₆ H ₅	HCl	222
69	-O(CH ₂) ₂ -	H	H	H	-(CH ₂) ₃ CH ₃	-	(huile)
70	-O(CH ₂) ₃ -	H	C1	H	-CH ₂ C ₆ H ₅	HCl	259
71	-O(CH ₂) ₃ -	H	C1	H	H	HCl	297
72	-O(CH ₂) ₃ -	H	C1	H	-(CH ₂) ₂ C ₆ H ₅	HCl	148
73	-O(CH ₂) ₃ -	H	C1	H	-(CH ₂) ₃ CH ₃	HCl	243
74	-O(CH ₂) ₃ -	H	C1	H	-CH(CH ₃) ₂	HCl	241
75	-O(CH ₂) ₃ -	H	C1	H	-(CH ₂) ₄ CO-NC ₅ H ₉ -4-N(CH ₃) ₂	2 fum.	127
76	-O(CH ₂) ₃ -	H	H	H	-(CH ₂) ₂ C ₆ H ₅	HCl	227
77	-O(CH ₂) ₃ -	H	C1	H	-(CH ₂) ₃ CO-NC ₅ H ₉ -4-N(CH ₃) ₂	HCl	193
78	-O(CH ₂) ₂ -	H	C1	H	-(CH ₂) ₄ CO-NC ₅ H ₉ -4-N(CH ₃) ₂	fum.	116-118
79	-O(CH ₂) ₃ -	H	C1	H	-CH ₂ CO-NC ₅ H ₉ -4-N(CH ₃) ₂	tar.	156-158
80	-O(CH ₂) ₃ -	H	C1	H	-(CH ₂) ₅ CO-NC ₅ H ₉ -4-N(CH ₃) ₂	tar.	199-201
81	-O(CH ₂) ₃ -	H	C1	H	2-C ₃ H ₉	HCl	283-284
82	-O(CH ₂) ₃ -	H	C1	H	-(CH ₂) ₂ CO-NC ₅ H ₉ -4-N(CH ₃) ₂	tar.	138-140

Les composés de l'invention ont fait l'objet d'essais qui ont mis en évidence leur intérêt comme substances à activités thérapeutiques.

5 Ainsi les composés de l'invention ont été étudiés quant à leur affinité vis-à-vis des récepteurs 5-HT₄ dans le striatum de cobaye selon la méthode décrite par Grossman et coll. dans *Br. J. Pharmacol.* (1993) 109 618-624.

On euthanasie des cobayes (Hartley, Charles River, France) de 10 300 à 400 g, on prélève les cerveaux, on excise les striata et on les congèle à -80°C.

Le jour de l'expérience on décongèle le tissu à +4°C dans 33 volumes de tampon HEPES-NaOH (50 mM, pH = 7,4 à 20°C), on l'homogénéise à l'aide d'un broyeur Polytron™, on centrifuge 15 l'homogénat à 48000 g pendant 10 min, on récupère le culot, on le remet en suspension, on le centrifuge de nouveau dans les mêmes conditions et on remet le culot final en suspension dans du tampon HEPES-NaOH, à raison de 30 mg de tissu par ml. On fait incuber 100 µl de cette suspension membranaire à 0°C 20 pendant 120 min en présence de [³H]GR113808 (ligand décrit dans l'article cité, activité spécifique 80-85 Ci/mmol) dans un volume final de 1 ml de tampon HEPES-NaOH (50 mM, pH = 7,4), en présence ou en absence de composé à tester. On arrête l'incubation par filtration sur filtre Whatman GF/B 25 préalablement traité avec de la polyéthylèneimine à 0,1%, on rince chaque tube avec 4 ml de tampon à 0°C, on filtre de nouveau et on mesure la radioactivité retenue sur le filtre par scintigraphie liquide.

On détermine la liaison non spécifique en présence de séro-tonine 30 µM. La liaison spécifique représente 90% de la radioactivité totale récupérée sur le filtre.

Pour chaque concentration de composé étudié on détermine le pourcentage d'inhibition de la liaison spécifique du [³H]GR113808 puis la CI₅₀, concentration du composé testé qui 35 inhibe 50% de la liaison spécifique.

Les CI₅₀ des composés les plus actifs se situent entre 0,1 et 10 nM.

Les composés de l'invention ont aussi été étudiés quant à

leurs effets agonistes ou antagonistes vis-à-vis des récepteurs 5-HT₄ dans l'oesophage de rat selon la méthode décrite par Baxter et coll. dans *Naunyn Schmied. Arch. Pharmacol.* (1991) 343 439.

- 5 On utilise des rats mâles Sprague-Dawley pesant de 300 à 450 g. On prélève rapidement un fragment d'environ 1,5 cm de la partie terminale de l'oesophage, on élimine la couche musculaire, on ouvre longitudinalement la tunique muqueuse musculaire interne, on la monte dans une cuve à organe isolé
- 10 contenant une solution de Krebs-Henseleit à 32°C oxygénée par un courant carbogène (95% O₂ et 5% CO₂), et on la connecte à un transducteur isométrique sous une tension basale de 0,5 g. On induit une contraction du tissu par l'addition de 0,5 µM de carbachol, on attend que la contraction se stabilise
- 15 (15 min), puis on expose la préparation à la sérotonine (1 µM) afin de quantifier la relaxation maximale. On lave le tissu et, après de 20 min, on ajoute à nouveau 0,5 µM de carbachol, et on expose la préparation au composé à étudier, en concentrations cumulées croissantes de 0,1 à 1 µM.
- 20 Les composés qui induisent une relaxation sont considérés comme des agonistes 5-HT₄. Pour les composés qui n'induisent pas de relaxation, la préparation est exposée à la sérotonine en concentrations cumulées croissantes, de 0,1 nM jusqu'à une concentration
- 25 induisant une relaxation maximale, et la courbe de relaxation due à la sérotonine, en présence du composé à étudier, est alors comparée à une courbe témoin établie en l'absence dudit composé. Si sa présence induit un déplacement de la courbe vers la droite, le composé étudié est alors considéré comme
- 30 un antagoniste 5-HT₄.

Les résultats de ces deux essais biologiques montrent que les composés de l'invention sont de puissants ligands des récepteurs sérotoninergiques de type 5-HT₄, et qu'ils agissent sur ces récepteurs soit comme des agonistes, soit comme des antagonistes.

Enfin les composés de l'invention ont fait l'objet d'une étude *in vitro* quant à leur affinité pour les récepteurs

histaminergiques H₃ du cerveau du rat, essentiellement comme décrit par Korte A. et coll., *Biochem. Phys. Res. Commun.* (1990) 168 979-986, et West R. E. et coll., *Mol. Pharmacol.* (1990) 38 610-613.

5

Des rats mâles Sprague Dawley (OFA, Iffa Credo, France), d'un poids de 250 à 300 g, sont euthanasiés et leur cerveau est prélevé. Les tissus sont homogénéisés à l'aide d'un broyeur Polytron™ (position 7, pendant 20 s) dans 20 volumes de tampon Tris-HCl (50 mM, pH 7,4 à 22°C). L'homogénat est centrifugé à 1000 g pendant 10 min, puis le surnageant est soumis à une nouvelle centrifugation à 45000 g pendant 20 min à 4°C. Le culot est ensuite lavé par remise en suspension dans du tampon, homogénéisation et centrifugation. Le culot final est remis en suspension dans le tampon à raison de 100 mg de tissu initial par millilitre, puis réparti en fractions aliquotes de 11 ml, qui sont congelées à -80°C. Le jour de l'expérience, la suspension membranaire (100 µl, 300 à 400 µg de protéines) est incubée à 30°C pendant 60 min en présence de 0,5 nM de [³H]N³-méthylhistamine (activité spécifique 75 à 80 Ci/mmol, New England Nuclear, Du Pont de Nemours, Boston, USA) dans un volume final de 500 µl de tampon Tris-HCl, en présence ou en absence de composé à tester. L'incubation est arrêtée par filtration sur filtres Whatman GF/B™ préalablement traités à la polyéthylenimine (0,4%). Chaque tube réactionnel est rincé 3 fois avec 4 ml de tampon Tris-HCl froid (0°C). Les filtres sont séchés dans une étuve à 120°C pendant 5 min. La radioactivité retenue sur les filtres est déterminée par scintigraphie liquide. La liaison non spécifique est déterminée en présence de 10 µM de thioperamide (*N*-cyclohexyl-4-(1*H*-imidazol-4-yl)pipéridine-1-carbothioamide. Pour chaque concentration de composé étudié, le pourcentage d'inhibition de la liaison spécifique de la [³H]N³-méthylhistamine est calculé, puis la concentration CI₅₀ de composé inhibant 50% de la liaison est déterminée.

Les composés de l'invention les plus actifs dans cet essai ont une CI₅₀ de l'ordre de 5 nM.

Les résultats des divers essais biologiques effectués sur les composés de l'invention montrent qu'ils sont des ligands des récepteurs 5-HT₄ et/ou des récepteurs H₃.

Ces résultats suggèrent que les composés peuvent être utilisés pour le traitement et la prévention des désordres dans lesquels les récepteurs 5-HT₄ et/ou H₃ sont impliqués, notamment au niveau du système nerveux central, du système gastro-intestinal, du système du bas appareil urinaire ou du système cardiovasculaire.

10

Au niveau du système nerveux central, ces désordres et troubles comprennent notamment les troubles neurologiques et psychiatriques tels que les troubles cognitifs, les psychoses, les comportements compulsifs et obsessionnels et les états de dépression et d'anxiété. Les troubles cognitifs comprennent, par exemple, les déficits de mémoire et d'attention, les états de démence (démences séniiles du type de la maladie d'Alzheimer ou démences liées à l'âge), les déficiences cérébrales vasculaires, la maladie de Parkinson.

Les psychoses comprennent, par exemple, la paranoïa, la schizophrénie, la manie et l'autisme. Les comportements compulsifs et obsessionnels comprennent, par exemple, les troubles alimentaires du type de la boulimie ou de la perte d'appétit. Les états de dépression et d'anxiété comprennent, par exemple, les anxiétés de type anticipatoire (avant intervention chirurgicale, avant traitement dentaire, etc), l'anxiété causée par la dépendance ou le sevrage d'alcool ou de drogue. Enfin on peut citer encore la manie, l'épilepsie, les troubles du sommeil, les désordres affectifs saisonniers, les migraines.

Au niveau du système gastro-intestinal, ces désordres et troubles comprennent notamment les troubles directs ou indirects de la gastromotilité de l'oesophage, de l'estomac ou des intestins, les nausées, les maladies spécifiques comme la dyspepsie, l'ulcère, le reflux gastro-oesophagien, la flatulence, le syndrome du côlon irritable, les troubles de la sécrétion intestinale, les diarrhées, par exemple celles induites par le choléra ou par le syndrome carcinoïde, les

désordres liés ou non à la pollution atmosphérique, tels que l'asthme, les rhinites et les difficultés respiratoires.

Au niveau du système du bas appareil urinaire, ces désordres 5 et troubles comprennent notamment les incontinences urinaires, la dysurie, la rétention urinaire.

Au niveau du système cardiovasculaire, ces désordres et troubles comprennent notamment les pathologies liées, directement ou indirectement, aux arythmies cardiaques, à 10 l'hypertension, à l'ischémie, à l'infarctus du myocarde, à l'angine instable, les problèmes de réocclusion après recanalisation, par exemple après thérapie fibrinolytique ou thrombolytique, angioplastie ou chirurgie coronaire. 15 Le glaucome est également un désordre susceptible d'être traité par les composés de l'invention.

Les composés de l'invention peuvent être présentés sous toutes formes de compositions appropriées à l'administration 20 entérale ou parentérale, telles que comprimés, dragées, gélules, capsules, suspensions ou solutions buvables ou injectables telles que sirops ou ampoules, etc, associés à des excipients convenables, et dosés pour permettre une administration journalière de 0,001 à 20 mg/kg.

Revendications.

1. Composé, éventuellement sous forme d'isomère optique pur ou de mélange de tels isomères, répondant à la formule
 5 générale (I)

10

dans laquelle

15 R₁ représente un groupe (C₁-C₄)alkyle ou (C₁-C₄)cycloalkyl-méthyle,

X₁ représente un atome d'hydrogène ou d'halogène ou un groupe (C₁-C₄)alcoxy ou bien

OR₁ et X₁ représentent ensemble un groupe de formule -OCH₂O-, -O(CH₂)₂-, -O(CH₂)₃-, -O(CH₂)₂O- ou -O(CH₂)₃O-,

20 X₂ représente un atome d'hydrogène ou un groupe amino,

X₃ représente un atome d'hydrogène ou d'halogène, et

R₂ représente soit un atome d'hydrogène, soit un groupe (C₁-C₆)alkyle éventuellement substitué, soit un groupe phényl(C₁-C₄)alkyle éventuellement substitué sur le noyau

25 phényle, soit un groupe phényl(C₂-C₄)alcényle, soit un groupe phenoxy(C₂-C₄)alkyle, soit un groupe cyclo(C₃-C₇)alkylméthyle, soit un groupe 2,3-dihydro-1H-indén-1-yle ou 2,3-dihydro-1H-indén-2-yle, soit un groupe de formule générale -(CH₂)_nCO-Z

30 dans laquelle n représente un nombre de 1 à 6 et Z représente un groupe pipéridin-1-yle ou 4-(diméthylamino)pipéridin-1-yle,

à l'état de base libre ou de sel d'addition à un acide.

2. Composé selon la revendication 1, caractérisé en ce que R₂
 35 représente un groupe 2-éthoxy-2-oxoéthyle, un groupe 2-(diméthylamino)-2-oxoéthyle, un groupe 2-[(méthylsulfonyl)amino]-éthyle, un groupe 2-oxo-2-phényléthyle, un groupe 2-hydroxy-2-phényléthyle, un groupe butyle, un groupe 4,4,4-trifluorobutyle ou un groupe 4-trifluoro-3-hydroxybutyle.

3. Composé selon la revendication 1, caractérisé en ce que R₂ représente un groupe phényl(C₁-C₃)alkyle éventuellement substitué sur le noyau phényle par un atome d'halogène, par un groupe trifluorométhyle ou par un ou deux groupes méthoxy.

5

4. Composé selon la revendication 1, caractérisé en ce que R₂ représente un groupe 4-oxo-4-(pipéridin-1-yl)butyle, un groupe 2-[4-(diméthylamino)pipéridin-1-yl]-2-oxoéthyle, un groupe 4-[4-(diméthylamino)pipéridin-1-yl]-4-oxobutyle, un groupe 5-[4-(diméthylamino)pipéridin-1-yl]-5-oxopentyle ou un groupe 6-[4-(diméthylamino)pipéridin-1-yl]-6-oxohexyle.

10

5. Procédé de préparation de composés selon la revendication 1, caractérisé en ce qu'on fait réagir un ester de formule générale (II)

20

25

dans laquelle R₁, X₁, X₂ et X₃ sont tels que définis dans la revendication 1 et R₃ représente un groupe méthyle ou éthyle, avec l'hydrate d'hydrazine, pour obtenir un hydrazide de formule générale (III)

30

que l'on cyclise en oxadiazole de formule générale (IV)

35

puis on fait réagir ce dernier avec un pipéridin-4-ol de formule générale (V)

(V)

5

dans laquelle R₂ est tel que défini à propos de la formule générale (I), mais différent d'un atome d'hydrogène, ou bien représente un groupe protecteur (1,1-diméthyléthoxy)carbonyle, en présence de triphénylphosphine et d'azodicarboxylate d'éthyle, puis s'il y a lieu, on déprotège l'azote du cycle pipéridine et, lorsque R₂ représente un atome d'hydrogène, et si on le désire, on fait réagir le composé obtenu avec un dérivé de formule générale R₂-X, dans laquelle X représente un groupe partant ou fonctionalisable et R₂ est tel que défini à propos de la formule générale (I), mais différent d'un atome d'hydrogène, et lorsque'on désire un composé final où R₂ représente un groupe 2,3-dihydro-1H-indényle, on effectue un amination réductive avec un composé de formule générale (I), dans laquelle R₂ représente un atome d'hydrogène, et l'indanone correspondante.

6. Médicament caractérisé en ce qu'il est constitué d'un composé selon l'une des revendications 1 à 4.

25 7. Composition pharmaceutique caractérisée en ce qu'elle contient un composé selon l'une des revendications 1 à 4, associé à une excipient.

INTERNATIONAL SEARCH REPORT

In national regional
PCT/FR 96/01730

A. CLASSIFICATION OF SUBJECT MATTER
IPC 6 C07D413/04 C07D413/14 A61K31/445

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 6 C07D

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	WO 93 16072 A (SMITHKLINE BEECHAM PLC) 19 August 1993 cited in the application see the whole document ---	1-7
A	WO 93 03725 A (SMITHKLINE BEECHAM PLC) 4 March 1993 cited in the application voir le document en entier, en particulier page 42, exemple 30 ---	1-7
A	WO 94 05654 A (SMITHKLINE BEECHAM PLC) 17 March 1994 see the whole document ---	1-7
	-/-	

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

Special categories of cited documents:

- 'A' document defining the general state of the art which is not considered to be of particular relevance
- 'E' earlier document but published on or after the international filing date
- 'L' document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- 'O' document referring to an oral disclosure, use, exhibition or other means
- 'P' document published prior to the international filing date but later than the priority date claimed

- 'T' later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- 'X' document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- 'Y' document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- 'A' document member of the same patent family

1

Date of the actual completion of the international search	Date of mailing of the international search report
29 January 1997	10.02.97
Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (- 31-70) 340-2040, Tx. 31 651 epo nl. Fax (- 31-70) 340-3016	Authorized officer Allard, M

INTERNATIONAL SEARCH REPORT

In	ional Application No
PCT/FR 96/01730	

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	JP 06 157 518 A (YAMANOUCHI PHARMA CO LTD) 3 June 1994 voir le document en entier, en particulier page 220, exemple 8 & CHEMICAL ABSTRACTS, vol. 121, no. 23, 5 December 1994 Columbus, Ohio, US; abstract no. 280649k, page 1035; see abstract -----	1-7

1

INTERNATIONAL SEARCH REPORT

Information on patent family members

In 100123456789
PCT/FR 96/01730

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
WO-A-9303725		EP-A- 0604494	06-07-94	
		FI-A- 941178	11-03-94	
		WO-A- 9305038	18-03-93	
		HU-A- 70154	28-09-95	
		JP-T- 6510537	24-11-94	
		NO-A- 940874	11-03-94	
		NZ-A- 244282	28-08-95	
		PT-A- 100855	30-11-93	
		SK-A- 30294	07-12-94	
		US-A- 5580885	03-12-96	
-----	-----	-----	-----	-----
WO-A-9405654	17-03-94	AU-A- 4976493	29-03-94	
		CA-A- 2144423	17-03-94	
		CN-A- 1089946	27-07-94	
		EP-A- 0659183	28-06-95	
		JP-T- 8501293	13-02-96	
		NZ-A- 255535	28-10-96	
		ZA-A- 9306613	16-05-94	
-----	-----	-----	-----	-----
JP-A-6157518	03-06-94	NONE		
-----	-----	-----	-----	-----

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/FR 96/01730

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
WO-A-9316072	19-08-93	AP-A- 373 AU-B- 668102 AU-A- 2541892 AU-A- 3457293 AU-A- 6073596 BR-A- 9206599 CA-A- 2118812 CA-A- 2129112 CN-A- 1073173 CZ-A- 9400560 EP-A- 0604494 EP-A- 0625149 FI-A- 941178 WO-A- 9305038 HU-A- 70154 JP-T- 6510537 JP-T- 7503480 NO-A- 940874 NZ-A- 244282 NZ-A- 246915 SK-A- 30294 US-A- 5580885 ZA-A- 9300764	07-12-94 26-04-96 05-04-93 03-09-93 03-10-96 08-11-94 18-03-93 19-08-93 16-06-93 13-07-94 06-07-94 23-11-94 11-03-94 18-03-93 28-09-95 24-11-94 13-04-95 11-03-94 28-08-95 28-05-96 07-12-94 03-12-96 26-11-93
-----	-----	-----	-----
WO-A-9303725	04-03-93	AU-A- 2435092 AU-A- 5194496 CA-A- 2116024 EP-A- 0600955 JP-T- 6510283 NZ-A- 243993 PT-A- 100785 ZA-A- 9206208 AP-A- 373 AU-B- 668102 AU-A- 2541892 AU-A- 6073596 BR-A- 9206599 CA-A- 2118812 CN-A- 1073173 CZ-A- 9400560	16-03-93 18-07-96 04-03-93 15-06-94 17-11-94 26-10-94 29-04-94 24-05-93 07-12-94 26-04-96 05-04-93 03-10-96 08-11-94 18-03-93 16-06-93 13-07-94

RAPPORT DE RECHERCHE INTERNATIONALE

D de la demande No
PCT/FR 96/01730

A. CLASSEMENT DE L'OBJET DE LA DEMANDE
C1B 6 C07D413/04 C07D413/14 A61K31/445

Selon la classification internationale des brevets (CIB) ou à la fois selon la classification nationale et la CIB

B. DOMAINES SUR LESQUELS LA RECHERCHE A PORTE

Documentation minimale consultée (système de classification suivi des symboles de classement)
C1B 6 C07D

Documentation consultée autre que la documentation minimale dans la mesure où ces documents relèvent des domaines sur lesquels a porté la recherche

Base de données électronique consultée au cours de la recherche internationale (nom de la base de données, et si cela est réalisable, termes de recherche utilisés)

C. DOCUMENTS CONSIDERÉS COMME PERTINENTS

Catégorie	Identification des documents cités, avec, le cas échéant, l'indication des passages pertinents	no. des revendications visées
A	WO 93 16072 A (SMITHKLINE BEECHAM PLC) 19 Août 1993 cité dans la demande voir le document en entier ---	1-7
A	WO 93 03725 A (SMITHKLINE BEECHAM PLC) 4 Mars 1993 cité dans la demande voir le document en entier, en particulier page 42, exemple 30 ---	1-7
A	WO 94 05654 A (SMITHKLINE BEECHAM PLC) 17 Mars 1994 voir le document en entier ---	1-7 -/-

Voir la suite du cadre C pour la fin de la liste des documents

Les documents de familles de brevets sont indiqués en annexe

* Catégories spéciales de documents cités:

- 'A' document définissant l'état général de la technique, non considéré comme particulièrement pertinent
- 'E' document antérieur, mais publié à la date de dépôt international ou après cette date
- 'L' document pouvant poser un doute sur une revendication de priorité ou être pour déterminer la date de publication d'une autre citation ou pour une raison spéciale (telle qu'indiquée)
- 'O' document se référant à une divulgation orale, à un usage, à une exposition ou tous autres moyens
- 'P' document publié avant la date de dépôt international, mais postérieurement à la date de priorité revendiquée

- 'T' document ultérieur publié après la date de dépôt international ou la date de priorité et n'appartenant pas à l'état de la technique pertinent, mais cité pour comprendre le principe ou la théorie constituant la base de l'invention
- 'X' document particulièrement pertinent; l'invention revendiquée ne peut être considérée comme nouvelle ou comme impliquant une activité inventrice par rapport au document considéré seulement
- 'Y' document particulièrement pertinent; l'invention revendiquée ne peut être considérée comme impliquant une activité inventrice lorsque le document est associé à un ou plusieurs autres documents de même nature, cette combinaison étant évidente pour une personne du métier
- 'Z' document qui fait partie de la même famille de brevets

Date à laquelle la recherche internationale a été effectivement achevée 29 Janvier 1997	Date d'expédition du présent rapport de recherche internationale 10.02.97
Nom et adresse postale de l'administration chargée de la recherche internationale Office Europeen des Brevets, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+ 31-70) 340-2040, Telex 31 651 epo nl. Fax (+ 31-70) 340-3016	Fonctionnaire autorisé Allard, M

RAPPORT DE RECHERCHE INTERNATIONALE

Dépôt international No

PCT/FR 96/01730

C(suite) DOCUMENTS CONSIDERES COMME PERTINENTS

Catégorie	Identification des documents cités, avec, le cas échéant, l'indication des passages pertinents	no. des revendications visées
A	JP 06 157 518 A (YAMANOUCHI PHARMA CO LTD) 3 Juin 1994 voir le document en entier, en particulier page 220, exemple 8 & CHEMICAL ABSTRACTS, vol. 121, no. 23, 5 Décembre 1994 Columbus, Ohio, US; abstract no. 280649k, page 1035; voir abrégé -----	1-7

1

RAPPORT DE RECHERCHE INTERNATIONALE

Renseignements relatifs aux membres de familles de brevets

D de Int No
PCT/FR 96/01730

Document brevet cité au rapport de recherche	Date de publication	Membre(s) de la famille de brevet(s)	Date de publication
WO-A-9316072	19-08-93	AP-A- 373 AU-B- 668102 AU-A- 2541892 AU-A- 3457293 AU-A- 6073596 BR-A- 9206599 CA-A- 2118812 CA-A- 2129112 CN-A- 1073173 CZ-A- 9400560 EP-A- 0604494 EP-A- 0625149 FI-A- 941178 WO-A- 9305038 HU-A- 70154 JP-T- 6510537 JP-T- 7503480 NO-A- 940874 NZ-A- 244282 NZ-A- 246915 SK-A- 30294 US-A- 5580885 ZA-A- 9300764	07-12-94 26-04-96 05-04-93 03-09-93 03-10-96 08-11-94 18-03-93 19-08-93 16-06-93 13-07-94 06-07-94 23-11-94 11-03-94 18-03-93 28-09-95 24-11-94 13-04-95 11-03-94 28-08-95 28-05-96 07-12-94 03-12-96 26-11-93
WO-A-9303725	04-03-93	AU-A- 2435092 AU-A- 5194496 CA-A- 2116024 EP-A- 0600955 JP-T- 6510283 NZ-A- 243993 PT-A- 100785 ZA-A- 9206208 AP-A- 373 AU-B- 668102 AU-A- 2541892 AU-A- 6073596 BR-A- 9206599 CA-A- 2118812 CN-A- 1073173 CZ-A- 9400560	16-03-93 18-07-96 04-03-93 15-06-94 17-11-94 26-10-94 29-04-94 24-05-93 07-12-94 26-04-96 05-04-93 03-10-96 08-11-94 18-03-93 16-06-93 13-07-94

RAPPORT DE RECHERCHE INTERNATIONALE

Renseignements relatifs aux membres de familles de brevets

Cote internationale No

PCT/FR 96/01730

Document brevet cité au rapport de recherche	Date de publication	Membre(s) de la famille de brevet(s)	Date de publication
WO-A-9303725		EP-A- 0604494 FI-A- 941178 WO-A- 9305038 HU-A- 70154 JP-T- 6510537 NO-A- 940874 NZ-A- 244282 PT-A- 100855 SK-A- 30294 US-A- 5580885	06-07-94 11-03-94 18-03-93 28-09-95 24-11-94 11-03-94 28-08-95 30-11-93 07-12-94 03-12-96

WO-A-9405654	17-03-94	AU-A- 4976493 CA-A- 2144423 CN-A- 1089946 EP-A- 0659183 JP-T- 8501293 NZ-A- 255535 ZA-A- 9306613	29-03-94 17-03-94 27-07-94 28-06-95 13-02-96 28-10-96 16-05-94

JP-A-6157518	03-06-94	AUCUN	
