微积分 A (1)

姚家燕

第 16 讲

在听课过程中,

严禁使用任何电子产品!

期中考试内容、时间及地点

内容: 第1、2、3、4章

时间: 11 月 14 日星期六晚 19:20-21:20

地点: 见网络学堂

重要提示: 考试时需且只需带学生证和文具!

学生证上的照片必须清晰可辨, 否则逐出考场.

千万不要迟到或无故缺考!

考前答疑: 11 月 13 日星期五晚 18:00-20:00

考前答疑地点: 理科楼数学科学系 A 216

第 15 讲回顾: Taylor 公式

• (带 Peano 余项的 Taylor 公式)

设 $n \ge 1$ 为整数, $x_0 \in \mathbb{R}$, $B(x_0)$ 为点 x_0 的邻域, 函数 $f: B(x_0) \to \mathbb{R}$ 为 n-1 阶可导且在点 x_0 为 n 阶可导. 则当 $x \to x_0$ 时,

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + o((x - x_0)^n).$$

注: 定理条件等价于 f 在点 x_0 处 n 阶可导.

• 主要应用: 计算函数极限.

带 Peano 余项的基本 Taylor 公式

当
$$x \to 0$$
 时. 我们有

•
$$e^x = \sum_{k=0}^n \frac{x^k}{k!} + o(x^n)$$
.

•
$$\sin x = \sum_{k=0}^{n} \frac{(-1)^k x^{2k+1}}{(2k+1)!} + o(x^{2n+1}), \cos x = \sum_{k=0}^{n} \frac{(-1)^k x^{2k}}{(2k)!} + o(x^{2n}).$$

•
$$\log(1+x) = \sum_{k=1}^{n} (-1)^{k-1} \frac{x^k}{k} + o(x^n).$$

•
$$(1+x)^{\alpha} = \sum_{k=0}^{n} \frac{\alpha(\alpha-1)\cdots(\alpha-k+1)}{k!} x^{k} + o(x^{n}),$$

 $\frac{1}{1-x} = \sum_{k=0}^{n} x^{k} + o(x^{n}).$

• (带 Lagrange 余项的 Taylor 公式) 设 $n \ge 1$ 为整数, $f \in \mathcal{C}^{(n)}[a,b]$ 在 (a,b) 上 n+1 阶可导. 则 $\forall x_0, x \in [a,b]$, 存在 ξ 严格介于 x_0, x 使得

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_0)^{n+1},$$

通常也将 ξ 写成 $x_0 + \theta(x - x_0)$, $\theta \in (0, 1)$.

- 主要应用: 证明等式或不等式.
- 若 $f \in \mathcal{C}^{(n)}[a,b]$ 在 (a,b) 上的 n+1 阶导数 恒为零,则 f 为次数不超过 n 的多项式.

带 Lagrange 余项的基本 Taylor 公式 $(0 < \theta < 1)$

•
$$e^x = \sum_{k=0}^n \frac{x^k}{k!} + \frac{e^{\theta x}}{(n+1)!} x^{n+1}$$
.

•
$$\sin x = \sum_{k=0}^{n} (-1)^k \frac{x^{2k+1}}{(2k+1)!} + (-1)^{n+1} \frac{\cos \theta x}{(2n+3)!} x^{2n+3}$$
.

•
$$\cos x = \sum_{k=0}^{n} (-1)^k \frac{x^{2k}}{(2k)!} + (-1)^{n+1} \frac{\cos \theta x}{(2n+2)!} x^{2n+2}.$$

•
$$\log(1+x) = \sum_{k=1}^{n} (-1)^{k-1} \frac{x^k}{k} + \frac{(-1)^n x^{n+1}}{(n+1)(1+\theta x)^{n+1}}.$$

•
$$(1+x)^{\alpha} = \sum_{k=0}^{n} \frac{\alpha(\alpha-1)\cdots(\alpha-k+1)}{k!} x^{k} + \frac{\alpha(\alpha-1)\cdots(\alpha-n)}{(n+1)!} (1+\theta x)^{\alpha-n-1} x^{n+1}.$$

回顾: 函数的单调性

- 若 $f \in \mathcal{C}[a,b]$ 在 (a,b) 内可导,则 (1) f 递增当且仅当 $\forall x \in (a,b), f'(x) \ge 0;$ (2) f 递减当且仅当 $\forall x \in (a,b), f'(x) \le 0.$
- 若 $f \in \mathcal{C}[a,b]$ 在 (a,b) 内可导,则 f 为严格 递增当且仅当 $\forall x \in (a,b)$, $f'(x) \ge 0$ 并且 f' 在 (a,b) 的任意子区间上不恒为零.
- 常利用单调性证明不等式.

如何研究 (初等) 函数的单调性?

- 函数 f 的导数为零的点称为 f 的驻点.
- 驻点和导数不存在的点称为临界点.

确定 (初等) 函数单调性的具体步骤

- 计算导数, 找出临界点.
- 以临界点为端点来分割函数的定义域.
- 判断导函数在每个子区间的符号,由此确定 函数在每个子区间的单调性.

第 16 讲

例 4. 求证: $\forall x \in \mathbb{R} \setminus \{0\}$, 均有 $e^{-x^2} < \frac{1}{1+x^2}$.

证明: $\forall y \in \mathbb{R}$, 令 $f(y) = (1+y)e^{-y} - 1$. 则 f 为 初等函数, 因此可导. 又 $\forall y > 0$, 均有

$$f'(y) = e^{-y} - (1+y)e^{-y} = -ye^{-y} < 0,$$

因而 f 在 $[0, +\infty)$ 上为严格递减,从而 $\forall y > 0$,我们有 f(y) < f(0) = 0,也即 $e^{-y} < \frac{1}{1+y}$. 于是 $\forall x \in \mathbb{R} \setminus \{0\}$,均有 $e^{-x^2} < \frac{1}{1+x^2}$.

例 5. 求证: 当 x > -1 时, $\frac{x}{1+x} \le \log(1+x) \le x$, 且等号成立当且仅当 x = 0.

证明: $\forall x > -1$, $\diamondsuit f(x) = x - \log(1+x)$. 则 f可导, 且我们有 $f'(x) = 1 - \frac{1}{1+x} = \frac{x}{1+x}$, 于是 f'在 $(0,+\infty)$ 上取正号,同时在(-1,0)上取负号, 于是 f 在 $[0,+\infty)$ 上严格递增, 而在 (-1,0] 上 严格递减, 从而 $\forall x \in (-1, +\infty) \setminus \{0\}$, 我们均有 f(x) > f(0) = 0. 也即当 x > -1 时,我们总有 $\log(1+x) \leq x$, 且等号成立当且仅当 x=0.

$$\forall x > -1$$
, 令 $g(x) = \log(1+x) - \frac{x}{1+x}$. 则 g 可导且 $\forall x > -1$, 均有 $g'(x) = \frac{1}{1+x} - \frac{1}{(1+x)^2} = \frac{x}{(1+x)^2}$. 故 g' 在 $(0, +\infty)$ 上取正号, 同时在 $(-1, 0)$ 上取负号. 因此 g 在 $[0, +\infty)$ 上严格递增, 而在 $(-1, 0]$ 上严格递减. 从而 $\forall x \in (-1, +\infty) \setminus \{0\}$, 我们有 $g(x) > g(0) = 0$. 也即当 $x > -1$ 时, 我们均有 $\log(1+x) \geqslant \frac{x}{1+x}$ 且等号成立当且仅当 $x = 0$.

作业题: 第 4.4 节第 114 页第 4 题第 (3), (7) 题, 第 5 题第 (5) 题.

函数的极值

- 定理 1. 假设 $x_0 \in (a, b)$, 并且函数 $f \in \mathcal{C}(a, b)$ 在 $(a, b) \setminus \{x_0\}$ 上可导.
- (1) 若 f' 在 (a, x_0) 上非负而在 (x_0, b) 上非正,则 x_0 为 f 的最大值点,也为极大值点.
- (2) 若 f' 在 (a, x_0) 上非正而在 (x_0, b) 上非负,则 x_0 为 f 的最小值点,也为极小值点.
- 证明: (1) 由于 f 在 $(a, x_0]$ 上递增, 在 $[x_0, b)$ 上递减, 故所证成立. 由 (1) 立刻可得 (2).
- 注: 两侧单调性不同的点必为极值点.

定理 2. 假设 $f:(a,b) \to \mathbb{R}$ 可导, 而 $x_0 \in (a,b)$ 使得 $f'(x_0) = 0$, 且 $f''(x_0)$ 存在.

- (1) 若 $f''(x_0) < 0$, 则 x_0 为 f 的极大值点.
- (2) 若 $f''(x_0) > 0$, 则 x_0 为 f 的极小值点.
- (3) 若 $f''(x_0) = 0$, 无法判断.

证明: (1) 由带 Peano 余项的 Taylor 的公式以及 题设条件. 我们立刻可得

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{\frac{1}{2}f''(x_0)(x - x_0)^2} = 1 > 0,$$

于是由函数极限的保序性可得知, $\exists \delta > 0$ 使得 $\forall x \in (a,b)$, 当 $0 < |x-x_0| < \delta$ 时, 我们均有

$$\frac{f(x) - f(x_0)}{\frac{1}{2}f''(x_0)(x - x_0)^2} > 0,$$

故 $f(x) < f(x_0)$, 因此 x_0 为 f 的极大值点.

- (2) 对 -f 应用 (1) 中结论可知所证结论成立.
- (3) 选取 $f(x) = x^3$, 则 f''(0) = 0, 但 0 不是 f 的极值点. 再取 $g(x) = x^4$, 则 0 为 g 的极小值点且 g''(0) = 0. 上述例子表明所证结论成立.

作业题: 假设函数 f 在点 x_0 处 n 阶可导使得

$$f^{(n)}(x_0) > 0$$
, $\coprod f^{(k)}(x_0) = 0 \ (1 \leqslant k \leqslant n-1)$.

- (1) 若 n 为偶数,则点 x_0 为 f 的极小值点,
- (2) 若 n 为奇数,则点 x_0 不是 f 的极值点.

提示: 考虑带 Peano 余项的 Taylor 展式.

例 6. 求函数 $f(x) = |x|^{\frac{2}{3}}(x-1)$ 的极值点.

解: 由于 $f(x) = \sqrt[3]{x^2}(x-1)$, 则 f 为连续函数, 它在 $\mathbb{R}\setminus\{0\}$ 上可导且 $f'(x)=\frac{5x-2}{3\sqrt[3]{x}}$. 于是 f 的 临界点为 $0, \frac{2}{5}$, 且 f' 在 $(-\infty, 0)$ 和 $(\frac{2}{5}, +\infty)$ 上 取正号, 而在 $(0,\frac{2}{5})$ 上取负号, 故 f 在点 x=0取极大值 0, 而在点 $x = \frac{2}{5}$ 取极小值 $-\frac{3}{5}(\frac{2}{5})^{\frac{2}{3}}$.

最大值与最小值

回顾: 如果 $f \in \mathcal{C}[a,b]$ 在 (a,b) 上可导, 则 f 的最值点或者为端点, 或者为 f 的驻点.

确定最值的具体方法

- 求函数 *f* 在临界点处的值以及端点处的值, 比较大小以便确定最值.
- •若已知最值存在且在内部取到,并且函数又只有一个临界点(驻点),则该点为所求解.

例 7. 求函数 $V(x) = x(50-2x)^2$ 在 [0,25] 上的最大值.

解: 由于 V 为初等函数, 故连续, 则在 [0,25] 上有最大值. 又 V(1) > 0, 并且 V(0) = V(25) = 0, 于是 V 的最大值在 (0,25) 内取到. 但

$$V'(x) = (50 - 2x)^2 + x \times 2(50 - 2x) \times (-2)$$
$$= (50 - 2x)(50 - 6x).$$

则 $\frac{25}{3}$ 为 V 在 (0,25) 内的唯一驻点, 因此它是 V 的最大值点, 故最大值为 $V(\frac{25}{3}) = \frac{250000}{27}$.

例 8. 求函数 $f(x) = xe^{-2x^2}$ 在 \mathbb{R} 上的最值.

解:由于 f 为初等函数,因此为无穷可导,并且 $f'(x) = (1 - 4x^2)e^{-2x^2}$. 于是知 f 的驻点为 $\pm \frac{1}{2}$, 并且 f' 在 $(-\infty, -\frac{1}{2})$ 和 $(\frac{1}{2}, +\infty)$ 上取负号, 而 在 $\left(-\frac{1}{2},\frac{1}{2}\right)$ 上取正号, 从而知 f 在 $\left(-\infty,-\frac{1}{2}\right]$ 和 $[\frac{1}{2}, +\infty)$ 上递减, 而在 $[-\frac{1}{2}, \frac{1}{2}]$ 上递增, 因此:

(1) 函数 f 在 $(-\infty, -\frac{1}{2}]$ 上没有最大值, 且它的上确界为 0, 最小值为 $f(-\frac{1}{2}) = -\frac{1}{2}e^{-\frac{1}{2}}$;

- (2) 函数 f 在 $[\frac{1}{2}, +\infty)$ 上没有最小值, 并且它的下确界为 0, 最大值为 $f(\frac{1}{2}) = \frac{1}{2}e^{-\frac{1}{2}}$;
- (3) f 在 $[-\frac{1}{2}, \frac{1}{2}]$ 上的最小值为 $f(-\frac{1}{2}) = -\frac{1}{2}e^{-\frac{1}{2}}$, 最大值为 $f(\frac{1}{2}) = \frac{1}{2}e^{-\frac{1}{2}}$.

因此 f 在 \mathbb{R} 上的最大值点为 $\frac{1}{2}$, 相应最大值为 $\frac{1}{2}e^{-\frac{1}{2}}$; 最小值点为 $-\frac{1}{2}$, 相应最小值为 $-\frac{1}{2}e^{-\frac{1}{2}}$.

作业题: 第 4.4 节第 115 页第 6 题第 (2) 小题.

§5. 凸函数

定义 1. 设 I 为区间, 而 $f:I\to\mathbb{R}$ 为函数.

- 若 $\forall x, y \in I$ 以及 $\forall \lambda \in (0,1)$, 均有 $f(\lambda x + (1-\lambda)y) \leq \lambda f(x) + (1-\lambda)f(y),$ 则称 f 为 I 上的下凸函数, 简称凸函数.
- 若 $\forall x, y \in I \ (x \neq y)$ 以及 $\forall \lambda \in (0,1)$, 均有 $f(\lambda x + (1 \lambda)y) < \lambda f(x) + (1 \lambda)f(y),$ 则称 f 为 I 上严格下凸函数, 也称严格凸.

- 若 $\forall x, y \in I$ 以及 $\forall \lambda \in (0,1)$, 均有 $f(\lambda x + (1-\lambda)y) \geqslant \lambda f(x) + (1-\lambda)f(y),$ 则称 f 为 I 上的上凸函数, 也称凹函数.
- 若 $\forall x, y \in I \ (x \neq y)$ 以及 $\forall \lambda \in (0,1)$, 均有 $f(\lambda x + (1 \lambda)y) > \lambda f(x) + (1 \lambda)f(y),$ 则称 f 为 I 上严格上凸函数, 也称严格凹.
- 注: f 凹当且仅当 -f 凸. 故下面仅讨论凸性.

定理 1. 函数 f 为区间 I 上的凸函数当且仅当对任意整数 $n \ge 1$, 对任意的 $x_1, x_2, \ldots, x_n \in I$, 对任意 $\lambda_1, \ldots, \lambda_n \ge 0$, 若 $\lambda_1 + \cdots + \lambda_n = 1$, 则

$$f\left(\sum_{k=1}^{n} \lambda_k x_k\right) \leqslant \sum_{k=1}^{n} \lambda_k f(x_k).$$

证明: 充分性. 取 n = 2 即得到凸函数的定义. 必要性. 下面对 $n \ge 1$ 应用数学归纳法来证明: 对任意 $x_1, \ldots, x_n \in I$ 以及对任意 $\lambda_1, \ldots, \lambda_n \ge 0$, 若 $\sum_{k=1}^{n} \lambda_k = 1$, 则 $f\left(\sum_{k=1}^{n} \lambda_k x_k\right) \le \sum_{k=1}^{n} \lambda_k f(x_k)$. 当 n=1 时, 所证为恒等式.

当 n=2 时,所证源于凸函数定义.

现假设所证结论对 $n \ge 2$ 成立. 那么对任意的

$$x_1, \ldots, x_{n+1} \in I$$
以及对任意的 $\lambda_1, \ldots, \lambda_{n+1} \geqslant 0$,

当
$$\sum_{k=1}^{n+1} \lambda_k = 1$$
时,若 $\lambda_{n+1} = 1$,则 $\lambda_k = 0 (1 \leqslant k \leqslant n)$,

此时所证为恒等式.

下面假设 $\lambda_{n+1} < 1$. 则我们有

$$f\left(\sum_{k=1}^{n+1} \lambda_k x_k\right) = f\left(\lambda_{n+1} x_{n+1} + (1 - \lambda_{n+1}) \sum_{k=1}^{n} \frac{\lambda_k}{1 - \lambda_{n+1}} x_k\right)$$

$$\leq \lambda_{n+1} f(x_{n+1}) + (1 - \lambda_{n+1}) f\left(\sum_{k=1}^{n} \frac{\lambda_k}{1 - \lambda_{n+1}} x_k\right)$$

$$\leq \lambda_{n+1} f(x_{n+1}) + (1 - \lambda_{n+1}) \sum_{k=1}^{n} \frac{\lambda_k}{1 - \lambda_{n+1}} f(x_k)$$

$$= \lambda_{n+1} f(x_{n+1}) + \sum_{k=1}^{n} \lambda_k f(x_k).$$

综上所述可知所证结论对所有 $n \ge 1$ 均成立.

定理 2. 函数 f 为区间 I 上的凸函数当且仅当

$$\forall x_1, x_2, x_3 \in I$$
, 当 $x_1 < x_2 < x_3$ 时, 均有
$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} \leqslant \frac{f(x_3) - f(x_1)}{x_3 - x_1} \leqslant \frac{f(x_3) - f(x_2)}{x_3 - x_2}.$$

证明: 充分性.
$$\forall x, y \in I \ (x < y)$$
 以及 $\lambda \in (0,1)$, 令 $x_1 = x$, $x_2 = \lambda x + (1 - \lambda)y$, $x_3 = y$. 由题设可知 $\frac{f(\lambda x + (1 - \lambda)y) - f(x)}{\lambda x + (1 - \lambda)y - x} \leqslant \frac{f(y) - f(x)}{y - x}$, 也即我们有

$$f(\lambda x + (1 - \lambda)y) \leqslant (1 - \lambda)(f(y) - f(x)) + f(x)$$
$$= \lambda f(x) + (1 - \lambda)f(y).$$

必要性. $\forall x_1, x_2, x_3 \in I$, 当 $x_1 < x_2 < x_3$ 时, 令 $\lambda = \frac{x_3 - x_2}{x_3 - x_1}$, 则 $x_2 = \lambda x_1 + (1 - \lambda)x_3$. 于是

$$f(x_2) \leqslant \frac{x_3 - x_2}{x_3 - x_1} \cdot f(x_1) + \left(1 - \frac{x_3 - x_2}{x_3 - x_1}\right) \cdot f(x_3)$$

$$= \frac{x_3 - x_2}{x_3 - x_1} \cdot f(x_1) + \frac{x_2 - x_1}{x_3 - x_1} \cdot (f(x_3) - f(x_2))$$

$$+ \frac{x_2 - x_1}{x_3 - x_1} \cdot f(x_2),$$

故 $\frac{f(x_2)-f(x_1)}{x_2-x_1} \leqslant \frac{f(x_3)-f(x_2)}{x_3-x_2}$, 进而可得 $\frac{f(x_2)-f(x_1)}{x_2-x_1} \leqslant \frac{f(x_3)-f(x_1)}{x_3-x_1} \leqslant \frac{f(x_3)-f(x_2)}{x_3-x_2}.$

定理 3. 如果函数 $f \in \mathcal{C}[a,b]$ 在 (a,b) 上可导,则 f 为凸函数当且仅当 f' 在 (a,b) 上递增.

证明: 充分性. $\forall x, y \in [a, b]$, 不失一般性, 可设 x < y. $\forall \lambda \in (0, 1)$, 定义 $z = \lambda x + (1 - \lambda)y$. 于是 由 Lagrange 中值定理可得知, $\exists \xi_1 \in (x,z)$ 使得 $f'(\xi_1) = \frac{f(z) - f(x)}{z - x}$. 同样也可知 $\exists \xi_2 \in (z, y)$ 使得 $f'(\xi_2) = \frac{f(y) - f(z)}{y - z}$. 又由题设可知 $f'(\xi_1) \leq f'(\xi_2)$, 故 $\frac{f(z)-f(x)}{z-x} \leqslant \frac{f(y)-f(z)}{y-z}$,即 $f(z) \leqslant \frac{y-z}{y-x} f(x) + \frac{z-x}{y-x} f(y)$,由此立刻可知 f 为凸函数.

必要性. 对于
$$a < x < z < y < b$$
, 由定理 2 得
$$\frac{f(z) - f(x)}{z - x} \leqslant \frac{f(y) - f(x)}{y - x} \leqslant \frac{f(y) - f(z)}{y - z}.$$

于是由函数极限的保序性可知

$$f'(x) = f'_{+}(x) \leqslant \frac{f(y) - f(x)}{y - x} \leqslant f'_{-}(y) = f'(y),$$

因此 f' 为单调递增函数.

定理 4. 如果 $f \in \mathcal{C}[a,b]$ 在 (a,b) 上二阶可导, 则 f 为凸函数当且仅当 $\forall x \in (a,b)$, 均有

$$f''(x) \geqslant 0.$$

证明: 由前面定理可知 f 为凸函数当且仅当 f' 在 (a,b) 上递增, 而在题设条件下, 这等价于说 $\forall x \in (a,b)$, 均有 $f''(x) \ge 0$.

定理 5. 如果 $f \in \mathcal{C}[a,b]$ 在 (a,b) 上二阶可导, 则 f 为严格凸函数当且仅当 $\forall x \in (a,b)$, 均有

$$f''(x) \geqslant 0,$$

且 f'' 在 (a,b) 的任意子区间上不恒为零.

证明: 由定义可知, 函数 f 为严格凸函数当且 仅当函数 f 为凸函数, 并且其图像不含直线段, 也即 f' 为严格递增, 由此可知所证结论成立.

如何研究 (初等) 函数的凸凹性?

定义 2. 函数图像凸凹性发生改变的点为拐点.

命题 1. 若函数 f 可导且点 $(x_0, f(x_0))$ 为 f 的图像的拐点, 则 x_0 为 f' 的极值点.

证明: 由题设可知 f 在点 x_0 的两侧有不同的凸凹性,则 f' 在点 x_0 的两侧有不同的单调性,从而该点为 f' 的极值点.

推论. 若 f 在点 x_0 处二阶可导且点 $(x_0, f(x_0))$ 为 f 的函数图像的拐点, 则 $f''(x_0) = 0$.

注: 该结论的逆命题不成立. 考虑 $f(x) = x^4$.

确定 (初等) 函数凸凹性的具体步骤

- 计算二阶导数, 找出二阶导数为零的点.
- 以这些点为端点来分割函数的定义域.
- 判断二阶导数在每个子区间上的符号,由此确定函数的凸凹性,并判别拐点.

例 1. 确定 $f(x) = 3x^4 - 16x^3 + 24x^2 - x + 2$ 的 凸凹区间.

解:由于 f 为初等函数,故二阶可导且

$$f'(x) = 12x^3 - 48x^2 + 48x - 1,$$

 $f''(x) = 36x^2 - 96x + 48 = 12(3x - 2)(x - 2),$

从而 f'' 的零点为 $\frac{2}{3}$, 2. 又函数 f'' 在 $(-\infty, \frac{2}{3})$, $(2, +\infty)$ 上取正号,则 f 在这些区间上严格凸;而 f'' 在 $(\frac{2}{3}, 2)$ 上取负号,因此 f 在该区间上为严格凹;从而 f 的拐点为 $(\frac{2}{3}, \frac{212}{27})$, (2, 16).

例 2. 确定旋轮线 $\begin{cases} x = a(t - \sin t) \\ y = a(1 - \cos t) \end{cases}$ $(0 \le t \le 2\pi)$ 的 凸凹性, 其中 a > 0. 解: 函数 x(t), y(t) 在 $[0, 2\pi]$ 上均为连续, 另外, 当 $t \in (0, 2\pi)$ 时, 我们有

 $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{y'}{x'} = \frac{\sin t}{1 - \cos t},$

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\sin t}{1 - \cos t} \right) \cdot \frac{1}{x'} = -\frac{1}{a(1 - \cos t)^2} < 0,$$

因此旋轮线在 $t \in [0, 2\pi]$ 时为严格凹.
作业题· 第 4 5 节第 119 页第 1 题第 (4) 小题

作业题: 第 4.5 节第 119 页第 1 题第 (4) 小题, 第 120 页第 4 题 (将 y 表示成 x 的函数).

例 3. $\forall x_1, x_2, \ldots, x_n > 0$, 求证:

$$\sqrt[n]{x_1x_2\cdots x_n} \leqslant \frac{1}{n}(x_1+x_2+\cdots+x_n).$$

证明: $\forall x > 0$, 定义 $f(x) = \log x$, 那么 f 为初等函数, 因此无穷可导且 $f''(x) = -\frac{1}{x^2} < 0$, 于是 f 为凹函数, 从而 $\forall x_1, x_2, \ldots, x_n > 0$, 均有

$$f\left(\sum_{k=1}^{n} \frac{1}{n} x_k\right) \geqslant \sum_{k=1}^{n} \frac{1}{n} f(x_k),$$

由此立刻可得 $\frac{1}{n}\sum_{k=1}^{n}x_{k} \geqslant \sqrt[n]{x_{1}x_{2}\cdots x_{n}}$.

作业题: 第 4.5 节第 120 页第 5 题第 (2) 小题.

§6. 函数作图

定义 1. 设曲线 Γ 由方程 y = f(x) 给出.

- (1) 若 $\lim_{x \to -\infty} f(x) = L$ 或 $\lim_{x \to +\infty} f(x) = L$, 则称 y = L 为曲线 Γ 的水平渐近线, 其中 $L \in \mathbb{R}$.
- (2) 若 $x_0 \in \mathbb{R}$ 使 $\lim_{x \to x_0^-} f(x) = \infty$ 或 $\lim_{x \to x_0^+} f(x) = \infty$, 则称 $x = x_0$ 为曲线 Γ 的竖直渐近线.
- (3) 若 $\exists k, b \in \mathbb{R}$ 使得 $\lim_{x \to +\infty} (f(x) kx b) = 0$ 或 $\lim_{x \to -\infty} (f(x) kx b) = 0$,称 y = kx + b 为曲线 Γ 的 斜渐近线, 其中假设 $k \neq 0$.

评注

由斜渐近线的定义, 曲线 y = f(x) 有斜渐近线 y = kx + b (其中 $k \neq 0$) 当且仅当我们有

$$k = \lim_{x \to +\infty} \frac{f(x)}{x} \neq 0, \ b = \lim_{x \to +\infty} (f(x) - kx),$$

或者我们有

$$k = \lim_{x \to -\infty} \frac{f(x)}{x} \neq 0, \ b = \lim_{x \to -\infty} (f(x) - kx).$$

例 1. 求函数 $f(x) = \frac{(x-1)^3}{(x+1)^2}$ 的渐近线.

解: 由题设可知 f 为初等函数, 其自然定义域为 $\mathbb{R}\setminus\{-1\}$. 因为 $\lim_{x\to\infty}\frac{(x-1)^3}{(x+1)^2}=\infty$, 由此知曲线 y=f(x) 没有水平渐近线. 又 $\lim_{x\to-1}\frac{(x-1)^3}{(x+1)^2}=\infty$, 则上述曲线有竖直渐近线 x=-1. 最后

$$\lim_{x \to \infty} \frac{f(x)}{x} = 1, \lim_{x \to \infty} (f(x) - x) = -5,$$

故该曲线的斜渐近线为 y = x - 5.

函数作图的步骤

- 确定函数的定义域.
- 确定函数的奇偶性, 对称性, 周期性等.
- 求曲线的渐近线 (水平, 竖直, 斜渐近线).
- 求导数, 确定临界点, 单调区间, 极值点.
- 计算二阶导数, 确定凸凹区间和拐点.
- 指出特殊点 (端点与坐标轴的交点等).

例 2. 研究 $f(x) = \frac{(x+1)^2}{x}$ 的性态, 并作示意图.

解: 由题设可知 f 为初等函数, 其自然定义域为 $\mathbb{R}\setminus\{0\}$, 且 f(-1)=0. 由于 $\lim_{x\to\infty}f(x)=\infty$, 故曲线 y=f(x) 无水平渐近线. 又 $\lim_{x\to0}f(x)=\infty$, 则上述曲线有竖直渐近线 x=0. 最后

$$\lim_{x \to \infty} \frac{f(x)}{x} = \lim_{x \to \infty} \frac{(x+1)^2}{x^2} = 1,$$

$$\lim_{x \to \infty} \left(f(x) - x \right) = \lim_{x \to \infty} \frac{2x+1}{x} = 2,$$

因此该曲线有斜渐近线 y = x + 2.

 $\forall x \in \mathbb{R} \setminus \{0\}$, 我们有

$$f'(x) = \frac{(x+1)^2}{x} \left(\frac{2}{x+1} - \frac{1}{x}\right) = \frac{(x-1)(x+1)}{x^2},$$

故函数 f 的驻点为 -1 和 1, 临界点为 -1,0,1. 又函数 f' 在 $(-\infty, -1)$, $(1, +\infty)$ 上取正号, 而 在 (-1,0), (0,1) 上取负号, 由此可得知函数 f在 $(-\infty, -1)$, $(1, +\infty)$ 上严格递增, 在 (-1, 0), (0,1) 上严格递减,于是 f 的极值点为 -1 和 1, f 在点 -1 取极大值 0, 在点 1 取极小值 4.

$$\forall x \in \mathbb{R} \setminus \{0\}$$
,我们有 $f'(x) = 1 - \frac{1}{x^2}$,从而
$$f''(x) = \frac{2}{x^3},$$

于是 f'' 在 $(0, +\infty)$ 上取正号, 而在 $(-\infty, 0)$ 上取负号, 由此可得知 f 在 $(0, +\infty)$ 上为严格凸, 在 $(-\infty, 0)$ 上为严格凹, 故函数 f 没有拐点.

例 3. 研究 $f(x) = 3x^5 - 5x^3 - 2$ 在 [-2, 2] 上的性态. 并作出示意图.

解: $\forall x \in [-2, 2]$, 均有 f(-x) + 2 = -(f(x) + 2), 故函数曲线关于点 (0, -2) 成中心对称. 又 f 为初等函数在 [-2, 2] 上的限制, 故 f 无穷可导且

$$f'(x) = 15x^{2}(x+1)(x-1),$$

$$f''(x) = 30x(\sqrt{2}x+1)(\sqrt{2}x-1).$$

于是f的驻点为0,-1,1,端点为-2,2,相应地

$$f(0) = -2$$
, $f(-1) = 0$, $f(1) = -4$, $f(-2) = -58$, $f(2) = 54$.

由于 f 为连续, 因此在 [-2,2] 上有最值, 它在点 -2 处取最小值 -58, 在点 2 处取最大值 54. 又 f' 在 (-2,-1), (1,2) 上为正, 而在 (-1,1) 上为负, 故 f 在前两区间上严格递增, 而在后一区间上严格递减, 则 f 在点 1 处取极小值 -4,

而在点 -1 取极大值 0. 另外, 可注意到 f'' 在 $(-2, -\frac{\sqrt{2}}{2})$, $(0, \frac{\sqrt{2}}{2})$ 上负, 在 $(-\frac{\sqrt{2}}{2}, 0)$, $(\frac{\sqrt{2}}{2}, 2)$ 上正, 因此 f 在前两个区间上为严格凹, 而在后两个区间上为严格凸, 故函数 f 拐点为

$$\left(-\frac{\sqrt{2}}{2}, \frac{7\sqrt{2}}{8} - 2\right), (0, -2), \left(\frac{\sqrt{2}}{2}, -\frac{7\sqrt{2}}{8} - 2\right).$$

最后我们还有 f(-1) = 0.

作业题: 第 4.6 节第 123 页第 2 题第 (6) 小题.

例 4. 设 $f(x) = \frac{x^3}{(1+x)^2}$, 求它的单调区间与极值、 凸凹区间与拐点以及渐近线.

解: 由题设可知 f 为 $\mathbb{R}\setminus\{-1\}$ 上的初等函数,

故无穷可导. 另外, $\forall x \in \mathbb{R} \setminus \{-1\}$,

$$f'(x) = \frac{3x^2}{(1+x)^2} - \frac{2x^3}{(1+x)^3} = \frac{x^2(x+3)}{(1+x)^3},$$

$$f''(x) = \frac{x^2(x+3)}{(1+x)^3} \left(\frac{2}{x} + \frac{1}{x+3} - \frac{3}{1+x}\right) = \frac{6x}{(1+x)^4}.$$

于是 f' 在 $(-\infty, -3)$ 和 $(-1, +\infty)$ 上取正号,

而在 (-3,-1) 上取负号, 从而 f 在 $(-\infty,-3]$ 和 $(-1,+\infty)$ 上为严格递增, 而在 [-3,-1) 上为严格递减, 因此 f 的极值点为 -3, 它在该点取极大值 $f(-3) = -\frac{27}{4}$.

函数 f'' 在 $(0, +\infty)$ 上正, 在 $(-\infty, 0)\setminus\{-1\}$ 上取负号,则 f 在 $(0, +\infty)$ 上严格凸,在 $(-\infty, -1)$ 和 (-1, 0) 上严格凹,故 f 的拐点为 (0, 0).

由于 $\lim_{x\to\infty} f(x) = \infty$, 因此曲线 y = f(x) 没有水平渐近线. 由于 f 在 $\mathbb{R}\setminus\{-1\}$ 上连续, 并且 $\lim_{x\to -1} f(x) = -\infty$, 则上述曲线 y = f(x) 的竖直渐进线为 x = -1.

最后因为
$$\lim_{x \to \infty} \frac{f(x)}{x} = 1$$
, 且
$$\lim_{x \to \infty} (f(x) - x) = \lim_{x \to \infty} \frac{-x(1+2x)}{(1+x)^2} = -2$$
,

于是上述曲线有斜渐近线 y = x - 2.

第4章总复习

- 基本定理: Fermat 定理, Darboux 定理, Rolle 定理, Lagrange 中值定理, Cauchy 中值定理.
- 重要应用: 常值函数的刻画,不等式,单调性, 反函数定理,含导数的函数方程解的存在性 (零点或不动点), L'Hospital 法则.
- Taylor 公式: 定理内容, 基本 Taylor 展式.

- 极值与最值: 定义, 极值与最值之间的关系, 驻点, 临界点, 极值存在的必要条件 (Fermat), 极值存在的充分条件 (两侧的单调性不相同, 驻点处的二阶导数不为零), 最值的确定.
- 凸凹性: 定义, 借助于多个变量的等价表述, 借助三条割线斜率的刻画, 借助一阶导数的 刻画, 借助二阶导数的刻画.

• 作图: 定义域; 奇偶性, 对称性, 周期性等等; 水平渐近线. 竖直渐近线. 斜渐近线: 一阶

导数,驻点,临界点,单调性区间,极值点;

二阶导数, 凸凹区间, 拐点; 特殊点.

期中综合练习

例 1. 计算
$$\lim_{x\to 0^+} (1-\cos x)^{\frac{1}{\log x}}$$
.

$$\mathbf{\widetilde{R}}: \lim_{x \to 0^+} \log(1 - \cos x)^{\frac{1}{\log x}} = \lim_{x \to 0^+} \frac{\log(1 - \cos x)}{\log x}$$

$$= \lim_{x \to 0^+} \frac{\frac{\sin x}{1 - \cos x}}{\frac{1}{x}} = \lim_{x \to 0^+} \frac{x \sin x}{1 - \cos x} = \lim_{x \to 0^+} \frac{x^2}{\frac{1}{2}x^2} = 2,$$

于是我们有
$$\lim_{x\to 0^+} (1-\cos x)^{\frac{1}{\log x}} = e^2$$
.

例 2. 设 $f(x) = \begin{cases} \frac{g(x) - e^{-x}}{x}, & 若 x \neq 0 \\ a, & ដ x = 0 \end{cases}$, 其中 g 为

二阶连续可微, g(0) = 1, g'(0) = -1.

- (1) 问 a 为何值时 f 在 \mathbb{R} 上连续;
- (2) 问 f 连续时, 它是否可微, 若可微, 求 f'.

解: (1) 由题设知 f 在 $\mathbb{R} \setminus \{0\}$ 上二阶连续可微, 故 f 连续当且仅当 $f(0) = \lim_{x \to 0} f(x)$, 也即

$$a = \lim_{x \to 0} \frac{g(x) - e^{-x}}{x} = \lim_{x \to 0} (g'(x) + e^{-x})$$

= $g'(0) + 1 = 0$.

(2) 设f连续,则a = 0. 由题设知f在 $\mathbb{R}\setminus\{0\}$ 上二阶连续可微,且 $\forall x \in \mathbb{R}\setminus\{0\}$,均有

$$f'(x) = \frac{x(g'(x) + e^{-x}) - (g(x) - e^{-x})}{x^2}.$$

又由导数的定义可知

$$f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x} = \lim_{x \to 0} \frac{g(x) - e^{-x}}{x^2}$$
$$= \lim_{x \to 0} \frac{g'(x) + e^{-x}}{2x} = \lim_{x \to 0} \frac{g''(x) - e^{-x}}{2}$$
$$= \frac{1}{2}(g''(0) - 1).$$

例 3. 设 f 在 [0,1] 上可导使 f(0) = 0, f(1) = 1, 且 f(x) 不恒等于x. 求证: $\exists \xi \in (0,1)$ 使 $f'(\xi) > 1$.

证明: 方法 1. 因为 f(0) = 0, f(1) = 1 且 f(x) 不恒等于 x, 因此 $\exists x_0 \in (0,1)$ 使得 $f(x_0) \neq x_0$. 如果 $f(x_0) > x_0$, 则由 Lagrange 中值定理可知, $\exists \xi \in (0, x_0)$ 使得 $f'(\xi) = \frac{f(x_0) - f(0)}{x_0} = \frac{f(x_0)}{x_0} > 1$. 如果 $f(x_0) < x_0$, 同理可知 $\exists \xi \in (x_0, 1)$ 使得

$$f'(\xi) = \frac{f(1) - f(x_0)}{1 - x_0} = \frac{1 - f(x_0)}{1 - x_0} > 1.$$

故所证结论成立.

方法 2: 用反证法. 假设所证结论不成立, 那么 $\forall x \in (0,1)$, 我们有 $f'(x) \leq 1$. $\forall x \in [0,1]$, 定义 F(x) = f(x) - x. 则 F 可导, 并且 $\forall x \in (0,1)$, 均有 $F'(x) = f'(x) - 1 \leq 0$. 于是 F 在 [0,1] 上 单调递减, 从而 $\forall x \in [0,1]$, 我们均有

$$0 = F(0) \geqslant F(x) \geqslant F(1) = 0$$
,

即 f(x) = x 恒成立. 矛盾! 故所证结论成立.

谢谢大家!