

FIG.1

PRIOR ART

FIG.2

PRIOR ART

FIG.3A

PRIOR ART

FIG.3B

PRIOR ART

FIG.4

PRIOR ART

FIG.5

PRIOR ART

FIG.7

PRIOR ART

FIG.6

PRIOR ART

FIG.8A
PRIOR ART

FIG.8B
PRIOR ART

FIG.9A

FIG.9B

902MHz INFORMATION CELLS DISTRIBUTED OVER TIME ONLY

FIG.10A

QAM (16) ENCODING RECTANGULAR MODULATION

FIG. 10B

1 CELL NOT USED
QAM (18) ENCODING
POLAR MODULATION
(BETTER SUITED SAW APPLICATION)

FIG.IIA

BEAM PATTERN COVERAGE USING PATCH
LIKE ANTENNA (PROJECTION VIEW)

FIG.IIB

POLARIZATION AXES
POLARIZATION COVERAGE

SPATIAL DISCRIMINA
TION MULTI-READ
POINTS
SPATIAL COVERAGE

FIG.IIC

R = READERS

FIG.I2A

FIG.I2B

FIG.I2C

FIG.I2D

FIG.I3

FIG.14

III TRANSUDER SELECTED FOR I OF N_f FREQ. BANDS
 \ HIGH EFFICIENCY CORNER REFLECTOR
 / PARTIAL 90 DEG. REFLECTOR
 & AMPLITUDE WEIGHTED DELAY PAD
 @ BROAD BAND PARTIAL REFLECTOR
 □ FREQUENCY SELECTIVE REFLECTOR

FIG.15

FIG.16

FIG.19A

FIG.19B

FIG.19C

Fig. 20

Fig. 21

Calculation of element reflection and resultant loss per tap (excluding transducer loss) for 16 tap RAC. (8 taps on each side of transducers)

Parameters: top = prop. loss between taps (200ns delay)

rsp_0 = refl. coeff. of 1st tap (one RAC element)

rl_0 = prop. loss of first tap (1 μ s delay)(dB)

$$top := 0.977$$

$$rp_0 = 0.04$$

$$rl_0 := 1.0$$

$$rsp_0 := \sqrt{rp_0}$$

$$i := 1..7 \quad rp_i := \frac{rp_{i-1}}{1 - rp_{i-1}} \cdot \frac{1}{top} \quad rl_i := (1 - rp_i) \cdot top \cdot \frac{rp_i}{rp_{i-1}} \quad rsp_i := \sqrt{rp_i}$$

$$tloss_i := 20 \cdot \log(rl_i \cdot rp_0) - 1.0 \quad tloss_0 := 20 \cdot \log(rp_0) - 1.0$$

$$rsp = \begin{bmatrix} 0.2 \\ 0.207 \\ 0.214 \\ 0.221 \\ 0.229 \\ 0.238 \\ 0.248 \\ 0.259 \end{bmatrix} \quad rl = \begin{bmatrix} 1 \\ 0.997 \\ 0.997 \\ 0.997 \\ 0.996 \\ 0.996 \\ 0.995 \\ 0.994 \end{bmatrix} \quad tloss = \begin{bmatrix} -28.959 \\ -28.983 \\ -28.986 \\ -28.989 \\ -28.993 \\ -28.998 \\ -29.004 \\ -29.011 \end{bmatrix}$$

Fig. 22

Calculation of element reflection and resultant loss per tap (excluding transducer loss) for 16 tap RAC. (8 taps on each side of transducers)

Parameters: top = prop. loss between taps (200ns delay)

rsp₀ = refl. coeff. of 1st tap (one RAC element)

r_{l0} = prop. loss of first tap (1 μs delay)(dB)

$$\text{top} := 0.977$$

$$rp_0 = 0.0625$$

$$rl_0 := 1.0$$

$$rsp_0 := \sqrt{rp_0}$$

$$i := 1..7 \quad rp_i := \frac{rp_{i-1}}{1 - rp_{i-1}} \cdot \frac{1}{\text{top}} \quad rl_i := (1 - rp_i) \cdot \text{top} \cdot \frac{rp_i}{rp_{i-1}} \quad rsp_i := \sqrt{rp_i}$$

$$tloss_i := 20 \cdot \log(rl_i \cdot rp_0) - 1.0 \quad tloss_0 := 20 \cdot \log(rp_0) - 1.0$$

$$rsp = \begin{bmatrix} 0.25 \\ 0.261 \\ 0.274 \\ 0.288 \\ 0.304 \\ 0.323 \\ 0.345 \\ 0.372 \end{bmatrix} \quad rl = \begin{bmatrix} 1 \\ 0.994 \\ 0.993 \\ 0.991 \\ 0.989 \\ 0.987 \\ 0.983 \\ 0.978 \end{bmatrix} \quad tloss = \begin{bmatrix} -25.082 \\ -25.136 \\ -25.145 \\ -25.158 \\ -25.174 \\ -25.197 \\ -25.228 \\ -25.275 \end{bmatrix}$$

Fig. 23

Fig. 24

Fig. 25

Fig. 26

Fig. 27

Fig. 28

Fig. 29

Fig. 30

Fig. 31

Fig. 32

Fig. 33

Fig. 34

Fig. 35A

Phase Splitting

$\frac{\pi}{2}$	+	+	-	-
$\frac{\pi}{4}$	+	-	+	-
result				

Fig. 35B