What is the hybridization of the central atom in each molecule?

IOF₅ CH₂O CIF₃

H₂O CO₂ XeF₄

Features of Hybrid Orbitals

The *number* of hybrid orbitals formed *equals* the number of atomic orbitals mixed.

The *type* of hybrid orbitals formed *varies* with the types of atomic orbitals mixed.

The **shape** and **orientation** of a hybrid orbital **maximizes** overlap with the other atom in the bond.

The sp² hybrid orbitals in BF₃.

Mixing one s and two p orbitals gives three sp^2 hybrid orbitals. The third 2p orbital remains unhybridized.

11-5

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

2p

sp²
B

sp²
T

F

2p

The three sp^2 orbitals point to the corners of an equilateral triangle, their axes 120° apart.

Each half-filled sp^2 orbital overlaps with the half-filled 2p orbital of a F atom.

Composition and Orientation of Hybrid Orbitals								
	Linear	Trigonal Planar	Tetrahedral	Trigonal Bipyramidal	Octahedral			
Atomic orbitals mixed	one s one p	one s two p	one s three p	one s three p one d	one s three p two d			
Hybrid orbitals formed	two sp	three sp ²	four sp ³	five sp³d	six sp³d²			
Unhybridized orbitals remaining	two p	one p	none	four d	three d			
Orientation								
11-12					\geq			

What is the orbital hybridization of the central atoms in the following molecules?

- (a) Methanol, CH₃OH (b) Sulfur tetrafluoride, SF₄

11-13

Limitations of the Hybridization Model

Hybridization is not always consistent with observed molecular shapes.

This is particularly true for the bonding of larger atoms.

The bond angle in $\rm H_2S$ is closer to the angle between unhybridized $\it p$ orbitals.

d-Orbitals do not hybridize effectively with *s* and *p* orbitals, which are much lower in energy and more stable.

Types of Covalent Bonds

A **sigma** (σ) bond is formed by **end-to-end** overlap of orbitals.

All single bonds are σ bonds.

A $pi(\pi)$ bond is formed by **sideways** overlap of orbitals.

A π bond is weaker than a σ bond because sideways overlap is less effective than end-to-end overlap.

A double bond consists of one σ bond and one π bond.

11-15

8

Molecular Orbital (MO) Theory

The combination of orbitals to form bonds is viewed as the combination of **wave functions**.

Atomic wave functions (AOs) combine to form **molecular** wave functions (MOs).

Addition of AOs forms a **bonding MO**, which has a region of **high** electron density between the nuclei.

Subtraction of AOs forms an **antibonding MO**, which has a **node**, or region of **zero** electron density, between the nuclei.

Contours and energies of H₂ bonding and antibonding MOs.

Antibonding MO, σ_{1s}^* Node

Subtract (1s-1s)Energy of isolated H atoms

Add (1s+1s)

The bonding MO is lower in energy and the antibonding MO is higher in energy than the AOs that combined to form them.

Bonding MO, o1s

11-25

Molecular Orbital Diagrams

An **MO diagram**, just like an atomic orbital diagram, shows the relative energy and number of electrons in each MO.

The MO diagram also shows the AOs from which each MO is formed.

Bond order is calculated as follows:

 $\frac{1}{2}[(\text{# of e}^- \text{ in bonding MO}) - (\text{# of e}^- \text{ in antibonding MO})]$

Electrons in Molecular Orbitals

Electrons are placed in MOs just as they are in AOs.

- · MOs are filled in order of increasing energy.
- An MO can hold a maximum of 2 e⁻, as long as they have opposite spins.
- Orbitals of equal energy are half-filled, with spins parallel, before pairing spins.

A molecular electron configuration shows the type of MO and the number of e^{-} each contains. For H₂ the configuration is $(\sigma_{1s})^2$.

Explain the following data with diagrams showing the occupancy of MOs:

_	N_2	N_2^+	O_2	O ₂ +
Bond energy (kJ/mol)	945	841	498	623
Bond length (pm)	110	112	121	112

Calculating bond orders:

For
$$N_2 \frac{1}{2}(8-2) = 3$$

For
$$N_2^+$$
 $\frac{1}{2}(7-2) = 2.5$

 N_2 ⁺ has a longer, weaker bond than N_2 because to form N_2 ⁺, a bonding electron is removed and the bond order decreases.

For
$$O_2 \frac{1}{2}(8-4) = 2$$

For
$$O_2^+$$
 $\frac{1}{2}(8-3)=2.5$

 O_2 ⁺ has a shorter, stronger bond than O_2 because to form O_2 ⁺, an antibonding electron is removed and the bond order increases.