RS.

KWAME NKRUMAH UNIVERSITY OF SCIENCE AND TECHNOLOGY, KUMASI COLLEGE OF ENGINEERING

BSc. (Mechanical Engineering) End of Second Semester Examination

EE 252: ELECTRICAL ENGINEERING MACHINES MARCH, 2018

Time allowed: ONE HOUR

INSTRUCTIONS FOR CANDIDATES:

- 1. Answer ALL questions.
- 2. Circle your answer on the question paper and on the Scannable sheet.
- 3. Indicate your index number on the question paper.

CAUTION: DO NOT TAKE AWAY ANY EXAMINATION MATERIAL PROVIDED TO YOU, UNLESS YOU ARE TOLD TO DO SO.

An eight -pole armature is wound with 480 conductors. The magnetic flux and speed are such that the average emf generated in each conductor is 2.2V and each conductor is capable of carrying a full load current of 100A. ected. Lps put = pog ; 60 Use the above information to answer questions 1 to 4 1. Find the terminal voltage on no load in volts if the armature is lap-connected. a)162 b) 153 c)132 d)None of the above Find the output current on full load in amperes if the armature winding is lap-connected. (a)800 b)750d) None of the above Find the terminal voltage on no load in volts if the armature winding is wave-connected. a)556 b)544d)None of the above 4. Find the output current on full load in amperes if the armature is wave-connected. a)200 b)180 d)None of the above c)1405. The volt-ampere equation for a long shunt compound generator is given by $a)V_t = E_a + I_a r_a$ b) $V_t = E_a - I_a r_a$ $(0) y_t = E_a - I_a(r_a + r_s)$ d) $V_t = E_a - I_a r_a - I_L r_s$ 6 Armature winding is the one in which a) flux is produced by field current b) m.f. is produced by the working flux c) flux is produced by the working e.m.f. d e.m.f. is produced by the leakage flux The armature of a d.c machine has a resistance of 0.1 Ω and is connected to a 230 V supply. Use the above information to answer questions 7 and 8. 7. Calculate the generated E.M.F when it is running as a generator giving 80A. a) 218V b)265V d)None of the above 8. Caculate the generated E.M.F when it is running as a motor taking 60A. a)190V b)245V d)None of the above A solenoid relay is operated from a 220-V, dc supply and the 1000-turn coil resistance is 5.5 k Ω . The core diameter of the relay is 20 mm and the gap length is 1.5 mm, the armature being

> Es 1 + Ia Ra = 230 # 60 (0.1) = 238 = Pcu/CoE/midsem/275-18

	De _[
stationary. The ga	p faces may be taken as	parallel and the peri	neability of the ferromagnetic parts	
as very high. Take	$e \mu_0 = 4\pi \times 10^{-7}$. Use the all	oove information to	answer questions 9 to 13.	
9.Determine the c	urrent that will flow thro	ough the relay coil.		
(a)0004A	b)0.004A	c)0.05A	d)None of the above	
10.Determine the	mmf of the magnetic sy	stem		
(a)40.0 At	b) 80.0 At	c) 120.0 At	d)None of the above	
11.Determine the	air gap flux density		. 6. 6320 342 V	
a) 0.0107Wb/i		n ² c) 0.107Wb/m ²	(a) None of the above	
12.Determine the		c) 0.656H		
a)0.804 H	b) 0.084H	<i>c)</i> 0.03011	(d)None of the above	
a)0.95N	b) 0.88N	c) 0.69N	d)None of the above	
a) becomes n	compound D.C. generally the series field windings nore than 0.0001 Wb s than 0.0001 Wb	s is caused to be zero	themains 0.0001 Wb Themains 0.0001 Wb Themains 0.0001 Wb Themains 0.0001 Wb Themains 0.0001 Wb	
15.111 a d.c. scries	generator, are	,		
b) remains unchanged				
d) varies with drooping characteristic 6. A four pole d.c motor is fed at 440V and takes an armature current of 50A. The resistance of				
			ve –connected with 888 conductors	
and the useful f	flux per pole is 0.023Wb	. Calculate the spec	ed.	
a)567rev/min	(b)626rev/min	c)545 rev/min	d)None of the above	
			culate the approximate speed when	
the machine is co	nnected across a 200V s	supply. Assume the	new flux is to be 0.7 of the original	
flux				
•		3		

a)367rev/min	b)648 rev/min	©559 rev/min	d) None of the above				
18. Which of the following explains why the armature current of a shunt motor decreases as the							
motor accelerate	es?						
· 例)The high:	speed of the motor	will cause the flux in	the motor to decrease.				
The high speed of the motor will cause the flux in the motor to decrease. b) The supply voltage decreases because the back emf has increased.							
	to the state of th						
		se the back emf has in					
19. A D.C shunt	generator when dri	ven without any exci	tation showed an open circuit	voltage			
			voltage dropped to zero . It has				
because							
a) The field res	istance was higher	r than the critical resis	stance				
b) There was break in the armature circuit Field winding was wrongly connected							
d) There was no residual magnetism in the field circuit							
	or runs at a rated s		it gets open -circuited, then so	on after			
a) decrease	o) remain ungagge	d (increase d)	fluctuate around its previous	speed			
A 250V compound	A 250V compound generator has armature, series field and shunt -field resistances of 0.4 Ω , 0.2 Ω						
and 125Ω respective		d generator supplies	10kW at rated voltage. Use the				
21. Calculate the l	oad current						
(a)40.0A	b)50.54A	c)42.00A	d)None of the above	2			
22. Calculate the shunt field current if the generator is connected a long shunt							
a)2.04A	b)3.54A	(O)200A	d)None of the above				
				27			
				A			

			artment			
. Calculate the armature current if the generator is connected a long shunt						
a)32.04 <i>A</i>	Λ	b)43.54A	(c)42.00A	d)None of the above		
4. Calculate the shunt field current if the generator is connected short shunt 2.06 + A.						
a)1.852	A	b)1.936A	c)1.978A	None of the above		
25. Calculate the armature current if the generator is connected short shunt						
a)45.6	7A	(b)42.00A	c)47.20A	None of the above		
26. Calculate the generated emf if the generator is connected short shunt						
a)27	5.34V	(b)274.8V	c)267.34A	d)None of the above		
27. Calculate the generated emf if the generator is connected long shunt						
a)′	270.45V	b)265.9V	(c)273.20V	d)None of the above		
A four-pole armature is wound with 564 conductors and driven at 800rev/min, the flux per pole						
being 20mWb.The current in each conductor is 60A. Use the above information to answer questions 28 to 30.						
28.Calculate the armature if the conductors are connected wave.						
а)240A	b)60A	(C)120A	d)None of the above		
29. Calculate the emf generated in the armature if the conductors are connected wave.						
	1)300.8V	b) 358.0V	c)420V	d)None of the above		
30.Calculate the power generated in the armature if the conductors are connected wave.						
	a)36,096W	b) 21,480W				
				3.		

