COSMO J. CHOU | Mechanical Engineer. Prosthetics & Orthotics.

cosmo.j.chou@gmail.com • (205) 561 – 9097 • www.linkedin.com/in/cjchou

OBJECTIVE

Seeking entry into a doctoral program to continue my education in an environment that allows me to continue researching and publishing within my fields of interest and acquire the requisite skills and experience to progress to a postdoctoral research position.

RESEARCH INTERESTS

Prosthesis design, control, and instrumentation; orthosis design and instrumentation; bio-inspired and soft robotics; inertial sensing; sensor fusion; gait dynamics and kinematics; machine learning-aided stance prediction.

RESEARCH

Human-Inspired Biorobotics (HUB) Laboratory	Dr. Xiangrong Shen	May 2015 – present
Blast Furnace Flow Optimization	American Cast Iron Pipe Company	Jan. 2015 – Dec. 2015
Agile Robotics Laboratory	Dr. Vishesh Vikas	May 2016 – present
Instrumentation for Synthesis of Bipedal Gait	personal interest	Jan. 2017 – present
Gesture Recognition Suite for ASL Translation	personal interest	Aug. 2017 – present

DEVELOPMENT

Transfemoral Prosthetic Torque Sensor	HUB Laboratory	May 2015
Parametric Design of Power-Optimized Carbon Fiber R	otors personal interest	August 2015
Gait / Stance Capture Sensor Orthotic	HUB Laboratory	October 2016
Perturbance Rejection Control in Knee Flexion-Extension	n Cycles HUB Laboratory	January 2017
Pneumatic Sit-to-Stand Assist Orthosis	HUB Laboratory; asst. Tao Shen	August 2017
Rapid Silicon-Casting Medical Prototyping	HUB & Agile Robotics Labs	September 2017
Internal-lattice Flexible Orthosis Design	personal interest	September 2017
Driftless Digital Gyroscope Synthesis	Agile Robotics Laboratory; asst. David Leech	October 2017
TensorFlow Stance Prediction Library	personal interest	October 2017

PUBLICATIONS & PATENTS

Novel design of transfermoral prosthetic knee torque sensor	patent	submission pending
Fused deposition modeling raster parameter effects on mechanical properties of Taulman bridge nylon	Rapid Prototyping	submitted
INDEX: A gesture recognition prototype for robotics control	Robotics and Autonomous Systems	submitted

EDUCATION

M.S., Mechanical Engineering
University of Alabama, 2018
B.S., Mechanical Engineering
Minors; Aerospace Engineering, Mathematics
University of Alabama, 2016
GRE: Verbal 164 / Quantitative 164

EXPERIENCE

The University of Alabama
Graduate Teaching Assistant (August 2016 – present)
ME 450 – Dynamic Machine Components
Graduate Lab Instructor (August 2016 – December 2016)
ME 360 – Instrumentation and Control Components
Undergraduate Lab Instructor (May 2014 – August 2016)
ME 350 – Static Machine Components

PROFICIENCIES

C++, Python (TensorFlow), Matlab / SIMULINK; Arduino, Beagleboard, Raspberry Pi; SolidWorks / SolidWorks Simulation, ANSYS / ANSYS Fluent, EAGLE; Additive manufacturing (FDM), TAZ 6, Ultimaker 2, Stratasys Objet30; Design of molds, prosthetic and orthotic components; Silicon, epoxy-substrate carbon fiber, and foam casting; Custom CNC-based PCB fabrication; Class 4 laser certification; Human subject testing