

Teste (Optimização de Redes) Elementos de Engenharia de Sistemas 2018/19 11 de Janeiro de 2019

Sem consulta. Duração: 1h30m.

1 (30%)

Considere a rede da figura.

- a) Apresente um modelo de programação linear para o problema do caminho mais curto entre 1 e 6.
- **b)** Apresente um modelo de programação inteira para o problema de determinar os dois caminhos (entre 1 e 6) disjuntos nos arcos cuja soma dos comprimentos é a menor possível.
- c) Com base num algoritmo adequado obtenha a árvore dos caminhos mais curtos com raiz em 1.
- d) Como poderia obter o segundo caminho mais curto com base no modelo da alínea a) e na solução obtida na alínea c)?

2 (30%)

A folha de cálculo seguinte foi construída para resolver um problema de caminho mais curto com um solver de programação inteira.

- 24	Α	В	C	D	E	F	G	Н	1	J	K	L	M	N	0	Р	Q	R
1																		
2		1	0	1	0	0	0	0	1	0	0	1	0					
3																		
4		1	1												1	=	1	
5		-1		1	1	1	1								0	=	0	
6			-1	-1				1	1	1					0	=	0	
7					-1			-1			1				0	=	0	
8						-1			-1			1			0	=	0	
9							-1			-1			1		0	=	0	
10											-1	-1	-1		-1	=	-1	
11																		
12		10	18	?	15	20	17	16	11	8	9	6	10		31			
13																		

- a) Quantos nodos e quantos arcos tem a rede do problema?
- b) Quais são as células que correspondem às variáveis de decisão?
- c) Represente a rede completa do problema.
- d) Indique a solução representada na folha de cálculo e o custo associado a essa solução.
- e) Qual a fórmula inserida na célula O6? E na célula O12?
- f) Determine o valor incógnito ("?" célula D12).
- g) Indique o valor da solução encontrada se o objetivo fosse o objetivo minmax.

3 (10%)

A Mónica que está em Gualtar - Braga pretende ir até Azurém - Guimarães, mas está indecisa quanto ao meio de transporte que deve utilizar. Pretende minimizar o tempo que demora a fazer a viagem e, também, minimizar o custo que a mesma pode implicar (em combustível, portagens ou bilhetes).

A Mónica na sua análise considera 6 opções:

Opção A -	Ir a pé com um tempo total de 5 horas, sem custos (0 euros);
Opção B -	Ir de bicicleta com um tempo total de 90 minutos, também sem custos (0
	euros);
Opção C -	Ir de carro próprio pela autoestrada com um tempo total de 30 minutos e um custo de 4,50 €;
Onaão D	Ir de carro próprio evitando portagens com um tempo total de 45
Opção D —	minutos e um custo de 3,00 €;
Opção E -	Ir de autocarro com um tempo total de 1 hora e um custo de 4,00 €;
Opção F -	Ir de táxi com um tempo total de 30 minutos e um custo de 30,00 €.

- a) Tendo em conta as alternativas e os objetivos propostos pela Mónica, determine as opções/soluções eficientes.
- **b)** Admitindo que a Mónica decidiu que vai de carro próprio (opções C e D) e está disposta a pagar até 15 cêntimos por cada minuto poupado, qual é a melhor opção?

4 (30%)

Considere o problema do caixeiro viajante simétrico com seis vértices e as distâncias dadas na tabela.

	1	2	3	4	5	6
1	-	3	6	4	12	1
2	3	•	9	14	10	11
3	6	9	•	5	8	13
4	4	14	5	1	3	6
5	12	10	8	3	•	7
6	1	11	13	6	7	•

- a) Obtenha uma solução aplicando a heurística do vizinho mais próximo começando no nodo 1.
- b) Obtenha uma solução aplicando a heurística da aresta de menor custo.
- c) Obtenha uma solução aplicando a heurística de inserção do vértice mais próximo partindo do subcircuito 1-2-3-4-1.
- d) Considerando a estrutura de vizinhança troca de duas arestas (2-Opt):
 - i. As soluções obtidas em 4a) e 4b) são soluções vizinhas?
 - ii. A solução obtida em 4a) é uma solução ótima local? Justifique.