Reazioni chimiche

Reazione chimica:

trasformazione di un sistema termodinamico che prevede la rottura di alcuni legami chimici e la formazione di altri (con scambio di calore). La trasformazione è governata da

$$\Delta G_R = \Delta H_R - T\Delta S_R \qquad \overline{\Delta G_R}$$

$$\Delta G_R = G_{Prod} - G_{Read}$$

Oltre che da T, il valore di ΔG_R è determinato dallo stato di avanzamento della reazione, cioè dalla composizione del sistema (quantità relativa delle sostanze)

L'andamento di G al variare della composizione del sistema ha un tipico andamento ad U (dimostrabile)

G. Sotgiu

1

Andamento di G vs avanzamento reazione

per la generica reazione

$$\alpha A + \beta B = \gamma C + \delta D$$

In generale la reazione tende a procedere spontaneamente fino a quando la miscela di sostanze raggiunge la composizione per la quale si ha G minima.

equilibrio chimico (dinamico)

nel punto z $\Delta G = 0$

G. Sotgiu

Andamento di G vs avanzamento reazione

per la generica reazione

$$\alpha A + \beta B = \gamma C + \delta D$$

equilibrio chimico <u>dinamico</u>
si ha continua trasformazione di
reagenti in prodotti ma anche dei
prodotti in reagenti: i due flussi di
reazione si controbilanciano e la
composizione complessiva,
all'equilibrio, rimane costante.

 $\langle \dot{\mathbf{p}} \rangle \alpha \mathbf{A} + \beta \mathbf{B} \longrightarrow \gamma \mathbf{C} + \delta \mathbf{D}$

si arriva all'equilibrio anche partendo dai prodotti

G. Sotgiu

5

Legge dell'equilibrio chimico

per la generica reazione allo stato gassoso

 $\Delta G_R = 0$ <u>all'equilibrio</u>

$$\alpha A + \beta B = \gamma C + \delta D$$

 G_i° indichiamo con G_i° l'energia libera molare standard di ciascuna specie chimica coinvolta nella reazione

p° = 1,0 atm T = 298,15 K pure e stabili

 G_i indichiamo con G_i l'energia libera molare standard di ciascuna specie chimica alla composizione d'equilibrio, cioè alla pressione parziale p_i

T = 298,15 K

Per una mole di gas che, a T = cost, subisce una variazione di pressione (da p_1 a p_2) si ha

$$\begin{array}{ll} dG = Vdp - SdT = V \cdot dp & ma \ V = R \cdot T/p \\ dG = Vdp = R \cdot T \cdot dp/p & integrando \ tra \ stato \ iniziale \ e \ finale \end{array}$$

 $\Delta G = R \cdot T \cdot ln(p_2/p_1)$

la variazione di energia libera per α moli di A che a T = cost passa da stato iniziale = sostanza pura (e p°) a stato finale = sostanza in miscela gassosa (e pressione parziale p_A)

$$\Delta G_A = \alpha \cdot G_A - \alpha \cdot G_A^{\circ} = \alpha \cdot R \cdot T \cdot In(p_A/p^{\circ})$$

$$\alpha \cdot G_A = \alpha \cdot G_A^{\circ} + \alpha \cdot R \cdot T \cdot In(p_A/p^{\circ})$$

G. Sotgiu

$$\alpha A + \beta B = \gamma C + \delta D$$

$$\begin{split} \alpha \cdot G_{A} &= \alpha \cdot G_{A}{}^{\circ} + \alpha \cdot R \cdot T \cdot In(p_{A}/p^{\circ}) & \gamma \cdot G_{C} &= \gamma \cdot G_{C}{}^{\circ} + \gamma \cdot R \cdot T \cdot In(p_{C}/p^{\circ}) \\ \beta \cdot G_{B} &= \beta \cdot G_{B}{}^{\circ} + \beta \cdot R \cdot T \cdot In(p_{B}/p^{\circ}) & \delta \cdot G_{D} &= \delta \cdot G_{D}{}^{\circ} + \delta \cdot R \cdot T \cdot In(p_{D}/p^{\circ}) \end{split}$$

$$\Delta G_{R} = \gamma \cdot G_{C} + \delta \cdot G_{D} - [\alpha \cdot G_{A} + \beta \cdot G_{B}]$$

$$\Delta G_{\mathsf{R}} = \gamma \cdot G_{\mathsf{C}}{}^{\mathsf{o}} + \delta \cdot G_{\mathsf{D}}{}^{\mathsf{o}} - [\alpha \cdot G_{\mathsf{A}}{}^{\mathsf{o}} + \beta \cdot G_{\mathsf{B}}{}^{\mathsf{o}}] + \gamma \cdot G_{\mathsf{C}} + \delta \cdot \Delta G_{\mathsf{D}} - [\alpha \cdot \Delta G_{\mathsf{A}} + \beta \cdot \Delta G_{\mathsf{B}}]$$

$$\Delta G_{\rm R} = \gamma \cdot G_{\rm C}^{\circ} + \delta \cdot G_{\rm D}^{\circ} - \left[\alpha \cdot G_{\rm A}^{\circ} + \beta \cdot G_{\rm B}^{\circ}\right] + {\rm R} \cdot {\rm T} \cdot \ln \left[\frac{p_{\rm C}^{\gamma} \cdot p_{\rm D}^{\delta}}{p_{\rm A}^{\alpha} \cdot p_{\rm B}^{\beta}} \left(\frac{1}{p^{\circ}}\right)^{\sigma}\right] \quad \sigma = \gamma + \delta - \alpha - \beta$$

$$\Delta G_{R} = \Delta G_{R}^{\circ} + R \cdot T \cdot \ln \left[\frac{p_{C}^{\gamma} \cdot p_{D}^{\delta}}{p_{A}^{\alpha} \cdot p_{B}^{\beta}} \left(\frac{1}{p^{\circ}} \right)^{\sigma} \right] \quad \text{all'equilibrio } \Delta G_{R} = 0$$

$$\Delta G_{R}^{\circ} = -R \cdot T \cdot \ln \left[\frac{p_C^{\gamma} \cdot p_D^{\delta}}{p_A^{\alpha} \cdot p_B^{\beta}} \left(\frac{1}{p^{\circ}} \right)^{\sigma} \right]$$
 se T = cost

$$\left[\frac{p_C^{\gamma} \cdot p_D^{\delta}}{p_A^{\alpha} \cdot p_B^{\beta}} \left(\frac{1}{p^{\circ}}\right)^{\sigma}\right] = cost = K_{p^{\circ}} \qquad \frac{p_C^{\gamma} \cdot p_D^{\delta}}{p_A^{\alpha} \cdot p_B^{\beta}} = K_{p}$$

G. Sotgiu

7

Legge dell'equilibrio chimico

$$\frac{p_C^{\gamma} \cdot p_D^{\delta}}{p_A^{\alpha} \cdot p_B^{\beta}} = K_p \qquad \alpha A + \beta B = \gamma C + \delta D$$

Analogamente per soluzioni (liquide o gassose) si può definire ΔG in funzione delle concentrazioni molari; condizione standard $C^{\circ}=1,0$ mol/L

$$\Delta G_{\rm R} = \Delta G_{\rm R}{}^{\circ} + {\rm R} \cdot {\rm T} \cdot \ln \left[\frac{[C]^{\gamma} \cdot [D]^{\delta}}{[A]^{\gamma} \cdot [B]^{\beta}} \left(\frac{1}{C^{\circ}} \right)^{\sigma} \right] \quad \text{all'equilibrio } \Delta G_{\rm R} = 0$$

$$\Delta G_{\rm R}{}^{\circ} = -\operatorname{R}{\cdot}\operatorname{T}{\cdot}\ln\left[\frac{[C]^{\gamma}{\cdot}[D]^{\delta}}{[A]^{\gamma}{\cdot}[B]^{\beta}}\left(\frac{1}{C^{\circ}}\right)^{\sigma}\right] \quad \text{se T = cost}$$

$$\left\lceil \frac{[C]^{\gamma} \cdot [D]^{\delta}}{[A]^{\gamma} \cdot [B]^{\beta}} \left(\frac{1}{C^{\circ}} \right)^{\sigma} \right\rceil = K_{C^{\circ}} \qquad \frac{[C]^{\gamma} \cdot [D]^{\delta}}{[A]^{\gamma} \cdot [B]^{\beta}} = K_{C}$$

Legge di azione di massa

per una reazione omogenea (gassosa o in soluzione) reversibile all'equilibrio e a temperatura costante, il rapporto tra le pressioni parziali (o concentrazioni) dei prodotti e dei reagenti, ognuna elevata al proprio coefficiente stechiometrico, è costante (K detta costante d'equilibrio)

G. Sotgiu

Significato relativo di K

per la generica reazione

$$\alpha A + \beta B = \gamma C + \delta D$$
$$\frac{[C]^{\gamma} \cdot [D]^{\delta}}{[A]^{\gamma} \cdot [B]^{\beta}} = K_C$$

all'equilibrio

se K>1 allora la concentrazione dei prodotti è maggiore di quella dei reagenti (minimo spostato a ds)

se K>>1 (es. $K>1\cdot 10^6$) allora molto spostato a destra: la reazione è praticamente completa (quantità di reagenti rimaste trascurabile)

se K < 1 allora la concentrazione dei prodotti è minore di quella dei reagenti (minimo spostato a sin)

se $\underline{K} << \underline{1}$ (es. K $< 1\cdot 10^{-6}$) allora molto spostato a sinistra: la reazione praticamente non avviene (quantità di prodotti formati trascurabile)

G. Sotgiu

9

Espressione di K in funzione dell'equilibrio

Quando l'equazione che indica una reazione reversibile è scritta nella direzione inversa, la costante d'equilibrio diventa il $\underline{reciproco}$ della costante d'equilibrio originale

$$N_2O_4(g) \Longrightarrow 2NO_2(g) \qquad 2NO_2(g) \Longrightarrow N_2O_4(g)$$

$$K_1 = \frac{P_{\text{NO}_2}^2}{P_{\text{N}_2\text{O}_4}} = 0,115$$
 $K_{-1} = \frac{P_{\text{N}_2\text{O}_4}}{P_{\text{N}_2}^2} = 8,70$

Il valore di K dipende inoltre da come è bilanciata l'equazione d'equilibrio

$$\frac{1}{2} \mathrm{N}_2 \mathrm{O}_4(g) \iff \mathrm{N} \mathrm{O}_2(g) \quad K_2 = \frac{P_{\mathrm{NO}_2}}{P_{\mathrm{N}_2 \mathrm{O}_4}^{1/2}}$$

$$N_2O_4(g) \Longrightarrow 2NO_2(g) \quad K_1 = \frac{P_{NO_2}^2}{P_{N_2O_4}}$$

G. Sotgiu

Relazione tra K_p e K_C

Per l'equilibrio omogeneo gassoso

$$\alpha A + \beta B \longrightarrow \gamma C + \delta D$$

$$\frac{p_C^{\gamma} \cdot p_D^{\delta}}{p_A^{\alpha} \cdot p_B^{\beta}} = K_p$$
 ma $p_A = R \cdot T \cdot n_A / V$ quindi $p_A = R \cdot T \cdot n_A / V = R \cdot T \cdot [A]$

$$K_{p} = \frac{p_{C}^{\gamma} \cdot p_{D}^{\delta}}{p_{A}^{\alpha} \cdot p_{B}^{\beta}} = \frac{[C]^{\gamma} \cdot [D]^{\delta}}{[A]^{\gamma} \cdot [B]^{\beta}} (R \cdot T)^{\sigma}$$

$$K_p = K_C (R \cdot T)^{\sigma}$$

solo se $\sigma = 0$ (non varia il numero totale di particelle) $K_p = K_C$

G. Sotgiu

11

Prevedere la direzione di una reazione

Il quoziente di reazione (Q_c) viene calcolato sostituendo le concentrazioni iniziali (es [A]_i) dei reagenti e dei prodotti nell'espressione della costante di equilibrio (K_c)

 $Q_C = \frac{[C]_i^{\gamma} \cdot [D]_i^{\delta}}{[A]_i^{\gamma} \cdot [B]_i^{\beta}}$

Equilibri eterogenei

Gli equilibri eterogenei sono reazioni d'equilibrio nelle quali le specie che prendono parte alla reazione si trovano in fasi differenti.

 $CaCO_3(s)$ \leftarrow $CaO(s) + <math>CO_2(g)$

I solidi costituiscono una fase a sè stante, quindi ogni fase solida è costituita da un composto puro, la cui concentrazione rimane costante durante tutto lo sviluppo della reazione

$$K'_{C} = \frac{[CaO]_{s} \cdot [CO_{2}]_{g}}{[CaCO_{3}]_{s}}$$
 poiché [CaO] = cost [CaCO₃] = cost

$$K_C = [CO_2]_g \qquad K_p = p_{CO}$$

il valore della costante d'equilibrio è indipendente dalle quantità di CaO e CaCO₃ presenti

G. Sotgiu

Legge di van't Hoff

Esprime la relazione tra la costante d'equilibrio e la temperatura

All'equilibrio
$$\Delta G_{Reaz} = 0$$

$$\frac{d(\ln K)}{dT} = \frac{\Delta H^{\circ}}{R \cdot T^{2}}$$
 equazione di van't Hoff

 $\Delta H^{\circ} > 0$ [reazione endotermica]: K cresce con la T

 ΔH° < 0 [reazione esotermica]: K diminuisce con la T

Principio di Le Châtelier

Variazioni di concentrazione

Variazione

L'equilibrio si sposta a

aumenta la concentrazione dei prodotti sinistra diminuisce la concentrazione dei prodotti destra aumenta la concentrazione dei reagenti destra diminuisce la concentrazione dei reagenti sinistra

Principio di Le Châtelier

Variazioni di pressione (e di volume)

 $N_2O_4(g) \rightleftharpoons 2NO_2(g)$

$$K_{p} = \frac{p_{tot}^{2} \cdot x_{NO_{2}}^{2}}{p_{tot} \cdot x_{NO_{2}}} = p_{tot} \cdot \frac{x_{NO_{2}}^{2}}{x_{NO_{2}}}$$

 $K_{p} = \frac{p_{NO_{2}}^{2}}{p_{N_{2}O_{4}}}$

In generale se

$$\sigma$$
 = $\Sigma c.s._{prodotti}$ - $\Sigma c.s._{reagenti}$

un aumento di pressione provoca uno $\sigma > 0$ spostamento a sinistra della reazione

$$N_2O_4(g) \iff 2NO_2(g)$$

un aumento di pressione provoca uno $\sigma < 0$ spostamento a destra della reazione

$$3H_2(g) + N_2(g) \Longrightarrow 2NH_3(g)$$

una variazione di pressione non influenza $\sigma = 0$ la composizione del sistema

$$\mathsf{H}_2(g)\,+\,\mathsf{Br}_2(g)\, \Longrightarrow 2\mathsf{HBr}(g)$$

G. Sotgiu

G. Sotgiu

Dissociazione

$$A \longrightarrow \gamma C + \delta D$$

per dissociazione si intende una reazione in cui una sostanza, date certe condizioni, si scinde *parzialmente* in particelle più piccole

due tipi di dissociazioni:

- dissociazione termica gassosa: una specie gassosa A ad una certa temperatura si dissocia parzialmente in due o più particelle più piccole; se la temperatura è ridotta la dissociazione è meno intensa
- dissociazione elettrolitica: una specie A sciolta in un adeguato solvente (acqua) si dissocia (totalmente o parzialmente) in ioni positivi e negativi;

 - ♦ elettroliti deboli se dissociazione parziale

grado di dissociazione
$$\alpha = \frac{moli(A)_dissociate}{moli(A)_iniziali}$$

$$\begin{array}{c|cccc} & A & \longrightarrow & \gamma C + \delta D \\ \hline \text{inizio} & n & 0 & 0 \\ \hline \text{eq.} & n - n\alpha & n\gamma \cdot \alpha & n\delta \cdot \alpha \end{array}$$

$$\begin{split} n_{tot} &= n - n\alpha + n\gamma\alpha + n\delta\alpha \\ n_{tot} &= n[1 + \alpha\cdot(v-1)] \\ v &= \Sigma c.s._{prodotti} \end{split}$$

termica gassosa

$$\begin{array}{c|cccc} & PCI_{5} \longrightarrow & PCI_{3} + CI_{2} \\ \hline inizio & n & 0 & 0 \\ \hline eq. & n-n\alpha & n\alpha & n\alpha \end{array}$$

$$K_C = \frac{[PCl_3] \cdot [Cl_2]}{[PCl_5]} = \frac{\frac{n\alpha}{V} \cdot \frac{n\alpha}{V}}{\frac{n(1-\alpha)}{V}} = \frac{n}{V} \cdot \frac{\alpha^2}{1-\alpha}$$

$$K_p = \frac{p_{PCl_3} \cdot p_{Cl_2}}{p_{PCl_5}}$$
 $P_i = x_i \cdot P_{tot}$ $x_i = n_i / n_{tot}$ $n_{tot} = n[1 + \alpha(v-1)]$

$$K_{p} = \frac{p \cdot x_{PCl_{3}} \cdot p \cdot x_{Cl_{2}}}{p \cdot x_{PCl_{5}}}$$

$$K_{p} = \frac{p \cdot x_{PCl_{3}} \cdot p \cdot x_{Cl_{2}}}{p \cdot x_{PCl_{5}}}$$

$$x(PCl_{3}) = x(Cl_{2}) = n\alpha / n(1 + \alpha) = \alpha / (1 + \alpha)$$

$$x(PCl_{5}) = n - n\alpha / n(1 + \alpha) = (1 - \alpha) / (1 + \alpha)$$

$$K_{p} = p \frac{\alpha^{2}}{1 - \alpha^{2}}$$

G. Sotgiu

Dissociazione

elettroliti deboli

$$K_C = \frac{[H^+] \cdot [CN^-]}{[HCN]} = \frac{\frac{n\alpha}{V} \cdot \frac{n\alpha}{V}}{\frac{n(1-\alpha)}{V}} = \frac{n}{V} \cdot \frac{\alpha^2}{1-\alpha} = C \cdot \frac{\alpha^2}{1-\alpha}$$

$$\begin{split} n_{tot} &= n - n\alpha + n\gamma\alpha + n\delta\alpha \\ n_{tot} &= n \cdot [1 + \alpha \cdot (v - 1)] \end{split}$$

 $\begin{array}{ll} \alpha = 0 & \textit{non elettroliti} \\ \alpha = 1 & \textit{elettroliti forti} \\ 0 < \alpha < 1 & \textit{elettroliti deboli} \end{array}$

19

Influenza sulle proprietà colligative (dipendono dal numero totale di particelle in soluzione)

Per elettroliti deboli

$$\Delta T_{eb} = K_{eb} \frac{n[1 + \alpha(\nu - 1)]}{Q_{solvente}} \qquad \Delta T_{cr} = K_{cr} \frac{n[1 + \alpha(\nu - 1)]}{Q_{solvente}} \qquad \Pi = RT \frac{n[1 + \alpha(\nu - 1)]}{V}$$