به نام خدا

گزارش پروژه اختیاری درس هوش مصنوعی

دانشجو:

محمد مهدى شرف بيانى - 401521372

توضیح کد های نوشته شده:

: KNN_Classifier کلاس

کلاس KNNClassifierپیادهسازی سفارشی از الگوریتم **انزدیکترین همسایه K-Nearest Neighbors) یا** (K-Nearest Neighbors) استفاده میکند، به این (Instance-Based Learning) استفاده میکند، به این معنی که در مرحله آموزش، فقط داده های ورودی ذخیره میشوند و در هنگام پیش بینی، شباهت نمونه جدید با داده های آموزشیافته سنجیده میشود.

جزئيات عملكرد كلاس:

1. سازنده کلاس(__init__)

مقدار که تعداد همسایه های مورد بررسی است را ذخیره میکند.

2. متد (fit(X, y

o دادههای ورودی (X) و برچسبهای مربوط به آن (y) را به آرایههای numpy تبدیل و ذخیره میکند.

3. متد predict(X)

- ی برای هر نمونه در مجموعه دادهی تست، فاصله آن با تمام نمونههای آموزش محاسبه میشود.
 - o فاصله اقلیدسی (Euclidean Distance) برای اندازهگیری شباهت استفاده شده است.
 - o انمونه ای که کمترین فاصله را دارند، انتخاب شده و برچسبهای آنها جمع آوری می شود.
- o برچسب غالب (بیشترین تعداد وقوع) از بین این انها این این این این این انتخاب می شود.

: Preproccess Data متد

متد load_and_preprocess_data وظیفه بارگذاری و پیش پر دازش داده های مربوط به و ام ها را بر عهده دارد. این متد شامل چندین مرحله کلیدی است که در ادامه توضیح داده شده اند:

۱ بارگذاری دادهها

• داده ها از فایل CSV خوانده می شوند و شکل اولیه دیتافریم چاپ می شود تا بررسی شود که داده ها به درستی بارگذاری شده اند.

۲ .بررسی و انتخاب ستونهای مورد نیاز

- تنها ستونهای ضروری شامل 'grade'، 'term'، 'grade'، 'home_ownership'، 'bad_loans'، 'bad_loans'
 - در صورت عدم وجود هر یک از این ستونها، یک خطای ValueError ایجاد می شود.

۳ مدیریت مقادیر از دست رفته

- برای ویژگی 'emp_length'مقدار NaNبا مقدار 'missing'جایگزین میشود.
 - سایر ویژگیهای دسته ای با مقدار 'unknown'جایگزین می شوند.

۴ متعادلسازی مجموعه داده

توزیع کلاس 'bad_loans'بررسی میشود.

• برای جلوگیری از عدم توازن در کلاسها، از هر کلاس تعداد برابر نمونه انتخاب می شود.

۵ .تبدیل ویژگیهای دستهای به مقادیر عددی

• ستون های دسته ای با استفاده از LabelEncoderر مزگذاری می شوند.

۶ . تقسیم داده ها به مجموعه های آموزشی، اعتبار سنجی و تست

- دادهها به سه بخش تقسیم میشوند:
 - o ۷۰٪ آموزش(train)
- o ۱۵٪ اعتبارسنجی (validation)
 - (test)تست ۱۵٪ 。
- تقسیم داده ها به صورت Stratified انجام می شود تا توزیع کلاس ها حفظ شود.

۷ استانداردسازی ویژگیهای عددی

• داده های ورودی با استفاده از StandardScalerنر مال سازی می شوند تا مدل ها بهتر عمل کنند.

۸ .خروجی متد

متد در نهایت موارد زیر را بازمیگرداند:

متد در نهایت موارد زیر را بازمیگرداند:

- ، X_test_scaled ،X_val_scaled ،X_train_scaled کے استاندار دشدہ کی ہای استاندار دشدہ
 - y_test·y_val ،y_train برچسبهای دستهبندیشده
 - نام ستونها، دیکشنری رمزگذارهای ویژگیهای دستهای، و استانداردساز (Scaler)

این متد فرآیند کاملی از پردازش داده ها را شامل می شود و تضمین میکند که داده ها پاکسازی، متعادلسازی و آماده استفاده در مدل های یادگیری ماشین هستند.

متد های یادگیری:

متد یادگیری درخت تصمیم:

- این تابع یک مدل درخت تصمیم (Decision Tree)را با مقدار حداکثر عمق أموزش میدهد.
 - ابتدا یک نمونه از DecisionTreeClassifier با مقدار becisionTreeClassifier
 - سپس مدل با استفاده از مجموعه آموزشی X_train) و (y_train آموزش داده می شود.
 - در نهایت، مدل آموزشدیده شده بازگر دانده می شود.

ویژگیها:

- کنترل پیچیدگی مدل: مقدار max_depthتعیین میکند که درخت چقدر عمیق باشد. عمق بیش از حد ممکن است به overfittingمنجر شود.
 - بازتولیدپذیری :مقدار random_state=42ثابت نگه داشته شده تا نتایج یکسانی در اجرای مجدد داشته باشیم.

متد یادگیری KNN :

- این تابع یک مدل **۸نزدیکترین همسایه** (KNN)را با مقدار المشخص آموزش میدهد.
 - ابتدا یک نمونه از کلاس KNNClassifierبا مقدار هایجاد می شود.
 - سپس مدل بر روی داده های آموزشی (X_train) و (Y_train) آموزش داده می شود.
 - در نهایت، مدل آموزشیافته بازگردانده می شود.

ویژگیها:

• کنترل دقت و تعمیم مدل: مقدار الاتعیین میکند که تصمیمگیری بر اساس چند همسایه نزدیک صورت گیرد. مقادیر کوچک ممکن است به overfittingمنجر شوند، در حالی که مقادیر بسیار بزرگ میتوانند باعث underfittingشوند.

: AdaBoost متد یادگیری

عملكرد:

- این تابع یک مدل AdaBoostرا با n_estimatorsمشخص آموزش میدهد.
- ابتدا یک نمونه از AdaBoostClassifierبا تعداد مضعیف آموز (weak learners) ایجاد می شود.
 - سپس مدل روی مجموعه آموزشی (X_train) و (Y_train) و میشود.
 - در نهایت، مدل آموزشدیدهشده بازگردانده میشود.

ویژگیها:

- افزایش دقت مدل :مقدار n_estimatorsتعیین میکند که چندین مدل ضعیف در کنار هم استفاده شوند تا قدرت کلی افزایش یابد.
- مقاومت در برابر: overfitting آدا بوست به تدریج روی نمونه های دشوار تمرکز میکند، که ممکن است باعث کاهش دقت در داده های نویزی شود.

: Random Forest متد یادگیری

عملکرد:

- این تابع یک مدل جنگل تصادفی (Random Forest)را با استفاده از جستجوی شبکهای (GridSearchCV) آموزش میدهد.
- یک شبکه جستجو (GridSearchCV)برای پیدا کردن بهترین مقادیر n_estimators(تعداد درختها) و max_depth (حداکثر عمق درختها) اجرا می شود.
 - مدل نهایی با بهترین هایپرپارامترها آموزش داده شده و همراه با بهترین مقادیر هایپرپارامتر بازگردانده میشود.

ویژگیها:

- تنظیم خودکار هایپرپارامترها: به جای تعیین دستی مقدار n_estimators و max_depth، بهترین مقادیر آنها از طریق جستجوی شبکه ای انتخاب می شود.
- افزایش دقت و تعمیم مدل: جنگل تصادفی با استفاده از نمونهگیری تصادفی و رای گیری میان چندین درخت تصمیم، دقت و پایداری را افزایش میدهد.

: Main تابع

در تابع main به ازای هر کدام از 3 مدل DT,KNN,AdaBoost برای tune کردن هایپرپارامتر هایشان در قالب یک حلقه هربار یک مدل را با train data اموزش دادیم و سپس دقت آن را با validation data اندازه گرفتیم و هایپر پارامتری که بیشترین دقت را دارد انتخاب کرده ایم و سپس best_model را با آن ساختیم

برای مدل RF نیز که برای tune کردن هابیرپارامتر ها از gridsearch با cv=5 استفاده کردیم پس دیگر نیازی به جدا کردن دیتای آموزش و ولیدیشن نیست و آن ها را ادغام میکنیم و به تابع train_rf می دهیم و در آنجا با gridsearch بهترین مدل را می سازد و خروجی می دهد.

نحوه کارکرد گرید سرچ:

Cv=5 یعنی دیتای آموزش را به 5 قسمت تقسیم میکند(برای همین نیاز نیست که دیتای ترین را با ولیدیشن جدا کنیم) و هربار 4 قسمت را برای آموزش و یک قسمت را برای ولیدیشن انتخاب می کند .

```
Data: [Fold 1] [Fold 2] [Fold 3] [Fold 4] [Fold 5]

Round 1: [Train] [Train] [Train] [Valid]

Round 2: [Train] [Train] [Valid] [Train]

Round 3: [Train] [Train] [Valid] [Train] [Train]

Round 4: [Train] [Valid] [Train] [Train]

Round 5: [Valid] [Train] [Train] [Train]
```

برای هر ترکیب از هایپرپارامتر ها این 5 پیمایش را انجام می دهد و در هر قسمت دقت را حساب کرده و در نهایت برای آن با یافتن میانگین این دقت ها دقت کلی برای ان ترکیب از هایپرپارامتر هارا میابد و در ترکیبی را انتخاب میکند که بیشترین میانگین دقت را داشته باشد و مدل بهینه را با همین ترکیب می سازد.

نتايج:

همانطور که مشاهده میشود هیچکدام از مدل ها overfit نشده اند:

دقت روی داده تست : dt>rf>adaboost>knn

نمایش گرافیکی درخت تصمیم بهینه:

نمودار زمان اجرا برای هر مدل:

knn>rf>adaboost>dt : (time complexity) زمان اجر

ضمیمه : مقایسه دقیق تر این 4 مدل :

سرعت اجرا (Inference)	سرعت اجرا (Training)	پیچیدگی محاسباتی (Inference)	پیچیدگی محاسباتی (Training)	مدل
کند (به دلیل جستجو در کل دادهها)	بسیار سریع (چون مدلی یاد نمیگیرد)	جستجو) ($d\cdot O(n$ در کل دادهها)	بدون نیاز به $O(1)$ (موزش)	KNN (K-Nearest Neighbors)
بسیار سریع	نسبتاً سريع	عبور از $O(d)$ (عبور از	$(d \log n \cdot O(n$	Decision Tree (DT)
نسبتاً سریع (چون چند درخت را بررسی میکند)	کندتر از DT (بسته به تعداد درختها)	$(d \cdot O(m$	$\cdot n \cdot O(m$ m (با $d \log n$ تعداد درختها)	Random Forest (RF)
نسبتاً سريع	نسبتاً کند (نیاز به یادگیری چندین مدل ضعیف)	$(d \cdot O(T$	T با) $(d\cdot n\cdot O(T$ تعداد تکرارها)	AdaBoost

:KNN .1

- در مرحلهی آموزش عملاً نیازی به محاسبات ندارد، چون فقط داده ها را ذخیره می کند.
- در مرحله ی پیشبینی (Inference)، باید فاصله ی نمونه جدید را با تمام داده های آموزشی محاسبه کند
 که بسیار کند است، به ویژه برای دیتاست های بزرگ.

:Decision Tree (DT) .2

- در مرحله ی آموزش، ساخت درخت نیازمند مرتبسازی داده ها و محاسبه ی بهترین ویژگی ها است که پیچیدگی آن حدود $(d \log n \cdot O(n))$ است.
- در مرحله ی پیشبینی، فقط باید از ریشه تا یکی از برگهای درخت حرکت کند، که معمولاً بسیار سریع (O(d)).

:Random Forest (RF) .3

- نسخهای از Bagging است که چندین درخت را یاد میگیرد. هر درخت بهطور جداگانه یاد گرفته شده و ترکیب آنها خروجی را تولید میکند.
 - در مرحله ی آموزش، چون چندین درخت ساخته می شود، زمان بیشتری نسبت به یک درخت DT صرف می شود ($d \log n \cdot n \cdot O(m)$).
- در مرحله ی پیشبینی، میانگین نتایج چندین درخت گرفته می شود، که زمان بیشتری نسبت به یک درخت
 DT می برد، اما همچنان نسبتاً سریع است.

:AdaBoost .4

- چندین مدل ضعیف (معمولاً درختهای تصمیم بسیار کوچک) را به صورت سریالی آموزش می دهد و در هر مرحله وزن دادههای ورودی را تغییر می دهد.
 - این باعث افزایش پیچیدگی یادگیری نسبت به یک درخت تصمیم ساده می شود $(d \cdot n \cdot O(T))$.
 - در مرحله ی پیشبینی، نتایج T مدل ضعیف ترکیب می شوند که کندتر از یک درخت ولی سریعتر از Random Forest است.

نتيجەگيرى

- KNN برای پیشبینی بسیار کند است و فقط در دیتاستهای کوچک استفاده میشود.
- Decision Tree سریعترین مدل است، اما دقت کمتری نسبت به مدلهای Ensemble دارد.
- Random Forest دقت بالاتر ولى زمان آموزش بيشترى نياز دارد، مخصوصاً وقتى تعداد درختها زياد شود.
 - AdaBoost پیچیدگی بیشتری در آموزش دارد ولی پیشبینی آن سریعتر از Random Forest است.