Data Transformation and Discretization

Hazim Fitri

2024-12-18

Contents

Oata Transformation and Discretization	2
Normalization	2
Min-Max Normalization	2
Z-score Normalization	4
Decimal Scaling	4
Normaling Data Distribution	5
Assessing Normality	7
Histogram & Boxplot	7
Normal Quantile Plot (Q-Q Plot)	7
Goodnes-of-fit test	7
Kolmogorov-Smirnov	7
Shapiro-Wilk	7
Anderson-Darling	7
Discretization	7
Unsupervised Learning	7
2 category	8
More than 2 category	9
Equal-width	9
Equal Frequency	12
Supervised Learning	12
Chi2	12
Attribute formation	12
Smoothing	19

Data Transformation and Discretization

Normalization

Min-Max Normalization

```
dataAP3 <- read.csv('dataAP3.csv', header = T)</pre>
head(dataAP3)
     X Month Day_of_month Day_of_week ozone_ppm pressure_height.hPA Wind_speed.mph
## 1 1
                         1
                                             3.01
                                                                  5480
## 2 2
                         2
                                      5
                                             3.20
                                                                                      6
           1
                                                                  5660
## 3 3
           1
                         3
                                      6
                                             2.70
                                                                                      4
                                                                  5710
                                      7
                                                                                      3
## 4 4
                         4
                                             5.18
                                                                  5700
## 5 5
           1
                         5
                                      1
                                             5.34
                                                                  5760
                                                                                     3
## 6 6
           1
                         6
                                      2
                                             5.77
                                                                  5720
                                                                                      4
     Temperature_Celcius Inversion_base_height.IBH Pressure_gradient.Psi.ft
                       30
                                                5000
## 2
                       38
                                                 1601
                                                                            -14
## 3
                       40
                                                 2693
                                                                            -25
## 4
                       45
                                                 590
                                                                            -24
## 5
                       54
                                                 1450
                                                                             25
## 6
                       35
                                                 1568
                                                                             15
     Inversion_temperature.ivC Visibility_pAerosol
## 1
                          30.56
## 2
                          46.94
                                                 300
## 3
                          47.66
                                                 250
## 4
                          55.04
                                                  100
## 5
                          57.02
                                                  60
## 6
                          53.78
                                                  60
```

```
dataAP3 = dataAP3[,-c(1)]
head(dataAP3)
```

```
Month Day_of_month Day_of_week ozone_ppm pressure_height.hPA Wind_speed.mph
## 1
                       1
                                   4
                                           3.01
                                                                5480
## 2
                       2
                                   5
                                           3.20
                                                                                   6
         1
                                                                5660
## 3
                       3
                                   6
                                           2.70
                                                                5710
                                                                                   4
         1
                                   7
## 4
         1
                       4
                                           5.18
                                                                5700
                                                                                   3
                       5
                                   1
                                                                                   3
## 5
         1
                                           5.34
                                                                5760
                       6
                                   2
                                                                5720
                                           5.77
     Temperature_Celcius Inversion_base_height.IBH Pressure_gradient.Psi.ft
## 1
                                                5000
## 2
                       38
                                                1601
                                                                            -14
## 3
                       40
                                                2693
                                                                            -25
## 4
                       45
                                                 590
                                                                            -24
## 5
                       54
                                                1450
                                                                             25
                       35
## 6
                                                1568
                                                                             15
     Inversion_temperature.ivC Visibility_pAerosol
## 1
                          30.56
                                                 200
## 2
                          46.94
                                                 300
```

hist(dataAP3\$ozone_ppm)

Histogram of dataAP3\$ozone_ppm

$$V = \frac{\left[X - \min\left(X \right) \right] \times \left[baru _ \max\left(X \right) - baru _ \min\left(X \right) \right]}{\max\left(X \right) - \min\left(X \right)} + baru _ \min\left(X \right)$$

```
min_ozone = min(dataAP3$ozone_ppm)
max_ozone = max(dataAP3$ozone_ppm)
v = ((dataAP3$ozone_ppm - min_ozone) * (1 - 0)) / (max_ozone-min_ozone)
head(v)
```

[1] 0.06146001 0.06655931 0.05314010 0.11969941 0.12399356 0.13553408

hist(v)

Histogram of v

Z-score Normalization

```
mean_hpa = mean(dataAP3$pressure_height.hPA)
sd_hpa = sd(dataAP3$pressure_height.hPA)
z_score_hpa = (dataAP3$pressure_height.hPA - mean_hpa) / sd_hpa
head(z_score_hpa)
```

[1] -2.58185122 -0.87803114 -0.40474779 -0.49940446 0.06853557 -0.31009112

Decimal Scaling

```
pHnew = dataAP3$pressure_height.hPA/1000
head(pHnew)
```

[1] 5.48 5.66 5.71 5.70 5.76 5.72

Normaling Data Distribution

dataAP3\$Visibility_pAerosol

```
[1] 200 300 250 100
                          60
                              60 100 250 120 120 120 150
                                                            40 200 250 200 200 150
##
##
    [19]
         10 140 250 200 150 140
                                   50
                                          70 150 150 120
                                                            40 120
                                                                        30 100 200
                                        0
    [37]
                                                                 2 300 300 300 300
##
          60 350 250 350 300 300 300 200 100 250 200 200
                                                            40
##
    [55] 300 150 150
                      80
                          40
                               40
                                  80 300 200 500 140 140 140 100 140 200 120 300
    [73] 300 150
                      50
                          70
                               17 140 140 300 200 250
                                                        80
                                                            60 100 150 150 200 100
   [91] 300 120 100 200 200 200 300 300 250 120 140 200 140
                                                                80 300 100 300 200
## [109] 120 100 120
                      60 120 100 100
                                       27
                                           40 140 150
                                                       100 100 120 150 100 120
                      70
                          80
                                       20
                                               40
                                                    50
                                                        50
  [127] 120 140 120
                               70
                                   40
                                           17
                                                            70
                                                                80 120 120 100 120
  [145] 120 200 120
                      40
                          70 100 120 100 120
                                                70
                                                    80 100 100 120 120 120 150 140
                                                                             80 140
## [163] 140 140 140
                      60
                          30
                               17
                                   80
                                       60 100 120 150 120 140 140 120 120
  [181] 140 150 120 120 140 100
                                   50
                                       40 100
                                               80 100
                                                        60
                                                            50
                                                                70
                                                                    80
                                                                        80
                                                                             80
## [199] 120 120 100
                      60
                                       70
                                           80
                                               80
                                                    80
                                                        80
                                                            80 100 120 150 200 150
                          40
                               50
                                   40
                                   30
                                       80
                                           70
  [217] 150 150 150 100 100 100
                                               60 150 200 200 200 250 300
## [235] 150 300
                                   20
                                           70
                  30 100 100
                               17
                                        4
                                               30
                                                    70
                                                        60
                                                            40
                                                                50
                                                                    70 140 100 120
## [253] 100
                          70
                                   70 120 140 140 100
                                                        50
                                                            70
              70 150
                      50
                               40
                                                                40
                                                                    40 100 120 120
## [271] 140 120
                  70 150 200 200 200
                                       70
                                           40
                                               50
                                                    17
                                                        80 250 200
                                                                      2
                                                                         20
                                                                                 30
## [289]
          50
              70
                  17
                      80
                          50
                               60
                                   60
                                       80
                                           50
                                                50
                                                    40
                                                        40 300
                                                               200 150 100 100
## [307] 150 150 200 300 120
                                       50
                                           20 200 120 300 200
                               30 100
                                                                70 140 150 200
                                                                                  4
## [325]
          40
              30
                  30
                       2
                            0
                               30
                                   60 150 100 250 150 200 200 200
                                                                    80
                                                                         60 300 200
                                  70 200 120 150 150
## [343] 300
              50
                  40
                      70 150 150
                                                        60
                                                           70 150 300 100
## [361] 140 200
                  70
                      40 100
```

hist(dataAP3\$Visibility_pAerosol)

Histogram of dataAP3\$Visibility_pAerosol

vis2 = sqrt(dataAP3\$Visibility_pAerosol)
hist(vis2)

Histogram of vis2

Assessing Normality

Histogram & Boxplot

Normal Quantile Plot (Q-Q Plot)

 ${\bf Goodnes\text{-}of\text{-}fit\ test}$

 ${\bf Kolmogorov\text{-}Smirnov}$

Shapiro-Wilk

Anderson-Darling

Discretization

Unsupervised Learning

This method need the knowledge of the industry and can be made manually for example like the financial class (B40, M40, T20)

library(infotheo) data("USArrests") attach(USArrests) USArrests

2 category

##		Murder	Assault	UrbanPop	Rape
##	Alabama	13.2	236	58	21.2
##	Alaska	10.0	263	48	44.5
##	Arizona	8.1	294	80	31.0
##	Arkansas	8.8	190	50	19.5
##	California	9.0	276	91	40.6
##	Colorado	7.9	204	78	38.7
##	Connecticut	3.3	110	77	11.1
##	Delaware	5.9	238	72	15.8
##	Florida	15.4	335	80	31.9
##	Georgia	17.4	211	60	25.8
##	Hawaii	5.3	46	83	20.2
##	Idaho	2.6	120	54	14.2
##	Illinois	10.4	249	83	24.0
##	Indiana	7.2	113	65	21.0
##	Iowa	2.2	56	57	11.3
##	Kansas	6.0	115	66	18.0
##	Kentucky	9.7	109	52	16.3
##	Louisiana	15.4	249	66	22.2
##	Maine	2.1	83	51	7.8
##	Maryland	11.3	300	67	27.8
##	Massachusetts	4.4	149	85	16.3
##	Michigan	12.1	255	74	35.1
##	Minnesota	2.7	72	66	14.9
##	Mississippi	16.1	259	44	17.1
##	Missouri	9.0	178	70	28.2
##	Montana	6.0	109	53	16.4
##	Nebraska	4.3	102	62	16.5
##	Nevada	12.2	252	81	46.0
##	New Hampshire	2.1	57	56	9.5
##	New Jersey	7.4	159	89	18.8
##	New Mexico	11.4	285	70	32.1
##	New York	11.1	254	86	26.1
##	North Carolina	13.0	337	45	16.1
##	North Dakota	0.8	45	44	7.3
##	Ohio	7.3	120	75	21.4
##	Oklahoma	6.6	151	68	
##	Oregon	4.9	159		29.3
##	Pennsylvania	6.3	106	72	14.9
##	Rhode Island	3.4	174	87	8.3
##	South Carolina	14.4	279	48	
##	South Dakota	3.8	86	45	
##	Tennessee	13.2	188	59	
##	Texas	12.7	201	80	
##	Utah	3.2	120	80	22.9

```
## Virginia 8 5
                           48
                                     32 11.2
                  2.2 48
8.5 156
                                    63 20.7
                 4.0
                          145
                                   73 26.2
## Washington
## West Virginia 5.7
                           81
                                   39 9.3
                                     66 10.8
## Wisconsin
                   2.6
                           53
## Wyoming
                    6.8
                           161
                                     60 15.6
cutoff = 10 # Need domain explanation
status_m = ifelse(Murder<10, 'Low Risk', 'High Risk')</pre>
head(status_m)
## [1] "High Risk" "High Risk" "Low Risk" "Low Risk" "Low Risk" "Low Risk"
library(car)
More than 2 category
## Warning: package 'car' was built under R version 4.4.2
## Loading required package: carData
## Warning: package 'carData' was built under R version 4.4.2
status_den = Recode(UrbanPop, "0:50 = 'Low Density';
                             51:70 = 'Moderate Density';
                             else = 'High Density'")
head(status_den)
## [1] "Moderate Density" "Low Density"
                                           "High Density"
                                                             "Low Density"
## [5] "High Density"
                      "High Density"
assault_status = discretize(Assault, 'equalwidth', 4)
unique(assault_status)
Equal-width
    Х
##
## 1 3
## 3 4
## 4 2
## 7 1
head(assault_status)
```

```
## X ## 1 3 ## 2 3 ## 3 4 ## 4 2 ## 5 4 ## 6 3
```

barplot(table(assault_status\$X))

hist(assault_status\$X)

Histogram of assault_status\$X


```
barplot(table(discretize(Assault, 'equalfreq', 4)$X))
```


Equal Frequency

Supervised Learning

```
library(discretization)
data(iris)
iris2 = chi2(iris, alp=0.05)$Disc.data
head(iris2)
```

Chi2

```
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
##
## 1
                            3
## 2
                1
                            2
                                         1
                                                     1 setosa
## 3
                            2
                1
                                         1
                                                       setosa
## 4
                1
                            2
                                         1
                                                     1 setosa
## 5
                            3
                                                     1 setosa
## 6
                1
                                                     1 setosa
```

Attribute formation

Smoothing