Homotopy Theory and Characteristic Classes

CUI Jiaqi East China Normal University

May 28, 2025

Abstract

This is the notes of a course given by Prof. Ma Langte in 25spring at Shanghai Jiaotong University. The main textbook is $Algebraic\ Topology$ by Tammo tom Dieck.

Contents

I	Ho	omotopy Theory	3
1	Cof	fibrations and Fibrations	4
	1.1	Cofibrations	4
		1.1.1 Push-Out of Cofibration	5
		1.1.2 Replacing a Map by a Cofibration	7
		1.1.3 The Cofibre Sequence (Puppe's Sequence)	8
	1.2	Fibrations	11
		1.2.1 Pull-back of Fibration	13
		1.2.2 Replacing Maps by Fibration	13
		1.2.3 Fibre Exact Sequence (Puppe's Sequence)	15
	1.3	Duality of Cofibration and Fibration	17
		1.3.1 Duality of Reduced Suspension and Loop Space	17
		1.3.2 Duality of HLP and HEP	18
		1.3.3 Duality of Two Puppe's Sequences	18
2	Hor	motopy Groups	19
	2.1		19
	2.2	-	20
	2.3	•	21
	2.4	Higher Connectivity	22
	2.5		23
	2.6		24
II	G	Generalized Homology	27
3	Hor	mology Theory and CW-Complexes	27
	3.1	-	27
			28
	3.2	1 1	29
	3.3		30
	3.4	Eilenberg-MacLane Space	31

		3.4.1 Remarks about Compactly Generated Spaces	31
	3.5	Spectral Homology	34
4	Coh	00	36
	4.1	Axiomatic Cohomology	36
		4.1.1 Mayer-Vietoris Sequence	36
		1	37
	4.2	*	38
	4.3	Singular Cohomology	39
		4.3.1 Existence of Thom Class	41
			41
	4.4		42
			42
		0 0,	43
	4.5	0.0	43
		1	44
	4.6		45
			45
		4.6.2 Obstruction of Lifting	48
5	Prin	ncipal Bundle and Characteristic classes	18
	5.1	Principal Bundle and Classifying Space	48
		5.1.1 Functorial Property of BG	52
	5.2	Stiefel-Whitney Classes	52
		5.2.1 Construction of Stiefel-Whitney Classes	53
		5.2.2 Construction of w_i from obstruction theory	55
	5.3	Euler Class	56
		5.3.1 Euler class as obstruction	57
	5.4		58
			58
			58
		1 30	59
	5.5	Pontrjagin Classes	59

Part I

Homotopy Theory

Let **TOP** be the category of topological spaces. Then we can take a quotient of **TOP** and get the homotopy category $h - \mathbf{TOP}$. The quotient may bring more algebraic structures. For example, Mor (S^1, X) , the homotopy classes of maps from S^1 to X, is the fundamental group of X. Our goal is to study functors from hmotopy category to some algebraic categories.

Let \mathbf{TOP}^o be the pointed topological category, where the sum is wedge sum $(X, x_0) \land (Y, y_0) = X \sqcup Y/x_0 \sim y_0$ and the product is the smash product $(X, x_0) \lor (Y, y_0) = X \times Y/\{x_0\} \times Y \cup X \times \{y_0\}$. Similarly, we can take a quotient to get $h - \mathbf{TOP}^o$.

Let TOP(2) be the category of pairs and h - TOP(2) be its quotient.

Fix $K \in \text{Ob}(\mathbf{TOP})$. Let's consider \mathbf{TOP}^K , the category of spaces under K. Its objects are maps $f \colon K \to X$ and morphisms are maps $\alpha \colon X \to Y$ such that $\alpha \circ f = g$.

If $K = \{*\}$ is a single point set, then $\mathbf{TOP}^{\{*\}} = \mathbf{TOP}^o$ is the pointed topological category. Take X = K. A morphism from $f: K \to X$ to id: $K \to K$ is $r: X \to K$ such that $r \circ f = \mathrm{id}$.

When $K \subset X$, $f = i : K \hookrightarrow X$, we say that r is a retraction.

We have $r: X \to K$ is a deformation retraction, if and only if $i \circ r \simeq \mathrm{id}_X$ rel K, if and only if $r: X \to K$ is a homotopy equivalence in \mathbf{TOP}^K .

Fix $B \in \text{Ob}(\mathbf{TOP})$. Let's consider \mathbf{TOP}_B , the category of spaces over B, where the objects are $p: X \to B$ and morphisms are $f: X \to Y$ such that $p = q \circ f$.

Take X = B. A morphism from id: $B \to B$ to $q: Y \to B$ is $s: B \to Y$ such that $q \circ s = \mathrm{id}_B$.

Then s is called a section of q.

Similarly, we can define $h - \mathbf{TOP}^K$ and $h - \mathbf{TOP}_B$.

1 Cofibrations and Fibrations

1.1 Cofibrations

Definition 1.1. A map $i: A \to X$ has the homotopy extension property (HEP) for a space Y if for all homotopy $h: A \times I \to Y$ and $f: X \to Y$ with $f \circ i(a) = h(a, 1)$, there exists $H: X \times I \to Y$ satisfies

We say $i: A \to X$ is a cofibration if it has HEP for each $Y \in \text{Ob}(\mathbf{TOP})$.

Recall the mapping cylinder: if $i: A \to X$ is a map, then $Z(i) := (A \times I) \sqcup X/(a,1) \sim i(a)$.

Proposition 1.2. Given a map $i: A \to X$. The followings are equivalent:

- 1. $i: A \to X$ is a cofibration.
- 2. i has HEP for Z(i).
- 3. The map

$$s \colon Z(i) \to X \times I$$
$$(a,t) \mapsto (i(a),t),$$
$$x \mapsto (x,1)$$

has a retraction.

Proof. $(1)\Longrightarrow(2)$ is only by definition.

(2) \Longrightarrow (1): By definition, there exists $K \colon X \times I \to Z(i)$ such that the following diagram is commutative.

For any Y and homotopy $h: A \times I \to Y$ and $f: X \to Y$ with $f \circ i(a) = h(a, 1)$, we define

$$F: Z(i) \to Y$$

 $(a,t) \mapsto h(a,t)$
 $x \mapsto f(x).$

Then $F \circ K$ is as desired.

(2) \Longrightarrow (3): We can easily check that the extension $K: X \times I \to Z(i)$ in the proof of (2) \Longrightarrow (1) is a retraction of s.

(3) \Longrightarrow (2): Let r be a retraction of s. For any homotopy $h: A \times I \to Z(i)$ and $f: X \to Z(i)$ with $f \circ i(a) = h(a, 1)$, we define

$$\sigma \colon Z(i) \to Z(i)$$
$$(a,t) \mapsto h(a,t)$$
$$x \mapsto f(x).$$

Then we can verify that $H = \sigma \circ r \colon X \times I \to Z(i)$ extends h.

Corollary 1.3. When $A \subset X$ is a close subset, $i: A \hookrightarrow X$ is the inclusion map. Then $i: A \to X$ is a cofibration $\iff Z(i) = A \times I \cup X \times \{1\}$ is a retraction of $X \times I$.

Therefore, we can construct many cofibrations. For example, let (X, A) be a manifold with boundary, then $i \colon A \hookrightarrow X$ is a cofibration.

1.1.1 Push-Out of Cofibration

Given a commutative diagram,

$$\begin{array}{ccc}
A & \xrightarrow{f} & B \\
\downarrow j & & \downarrow J \\
X & \xrightarrow{F} & Y
\end{array}$$

the push-out of j along f is the initial object of this diagram, i.e. $j: B \to Y, F: X \to Y$, s.t. $\forall Z$ with $J': B \to Z, F': X \to Z$ satisfying $J' \circ f = F' \circ j$, $\exists !$ map $p: Y \to Z$ such that the diagram is commutative.

In our setting, we can construct $Y = X \sqcup B/f(a) \sim j(a)$ directly.

Proposition 1.4. If $j: A \to X$ is a cofibration, then the push-out of j along $f: B \to Y$ is also a cofibration.

Proof. For any $Z, g: Y \to Z, h: B \times I \to Z$ such that $g \circ J = h \circ (i_1 \times id)$, we need to find $H: Y \times I \to Z$ such that the following diagram is commutative.

Because $j:A\to X$ is a cofibration, we have $G\colon X\times I\to Z$ such that the following diagram is commutative.

Using the fact that $J \times \text{id} : B \times I \to Y \times I$ is also the push-out of $j \times \text{id} : A \times I \to X \times I$ along $f \times \text{id} : A \times I \to B \times I$, we have unique $H : Y \times I \to Z$ such that the following diagram is commutative.

The $H: Y \times I \to Z$ is the extension of $h: B \times I \to Z$, as desired.

In terms of categorical language, let $\Pi(A, B)$ be a category, whose objects are continue maps from A to B and morphisms are homotopy of maps from A to B. Consider $\mathbf{COF}^B \subset \mathbf{TOP}^B$ the subcategory of cofibrations under B (i.e. $J \colon B \to Y$). Then we have homotopy category $h - \mathbf{COF}^B$. Given a cofibration $i \colon A \to X$, we get a contravariant functor

$$\beta \colon \Pi(A,B) \to h - \mathbf{COF}^B$$
.

In fact, we only need to check that if $f_0 \simeq f_1 \colon A \to B$, then we get a morphism from $J_0 \colon B \to Y_0$ to $J_1 \colon B \to Y_1$. Firstly, consider the homotopy $J_0 \circ f_t \colon A \times I \to Y_0$, we get its extension $\Psi \colon X \times I \to Y_0$.

Then by the universal property of the push-out $J_1: B \to Y_1$ of i along f_1 for $J_0: B \to Y_0$ and $\Psi_1: X \to Y_0$, we get a map $K: Y_1 \to Y_0$, as desired.

1.1.2 Replacing a Map by a Cofibration

Given a map $f: X \to Y$, consider the mapping cylinder Z(f). We can notice that Z(f) is the push-out.

$$X \xrightarrow{f} Y$$

$$\downarrow s$$

$$X \times I \xrightarrow{a} Z(f)$$

We also have a map

$$q \colon Z(f) \to Y$$

 $(x,t) \mapsto f(x).$

Note that by Proposition 1.2, $i_1: X \hookrightarrow X \times I$ is a cofibration $\iff X \times \{1\} \times I \cup X \times I \times \{1\}$ is a retraction of $X \times I \times I$, we have $s: Y \to Z(f)$ is a cofibration.

Proposition 1.5. Let

$$j: X \to Z(f)$$

 $x \mapsto (x, 0),$

we have

- 1. $j: X \to Z(f)$ is a cofibration.
- 2. $s \circ q \simeq \mathrm{id}_{Z(f)}$ rel Y.
- 3. If f is a cofibration, then $q: Z(f) \to Y$ is a homotopy equicalence in \mathbf{TOP}^X .

Proof. (1). We construct a retraction $R: Z(f) \times I \to X \times I \cup Z(f) \times \{1\}$ as follow. Let $R': I \times I \to I \times \{1\} \cup \{0\} \times I$ be a retraction. Then we define

$$\begin{aligned} R \colon Z(f) \times I &\to X \times I \cup Z(f) \times \{1\} \\ ((x,s),t) &\mapsto (x,R'(s,t)) \\ (y,t) &\mapsto (y,1) \end{aligned}$$

is as desired. By Proposition 1.2, $j: X \to Z(f)$ is a cofibration.

(2). The homotopy

$$h_t \colon Z(f) \to Z(f)$$

 $(x, \sigma) \mapsto (x, (1-t)\sigma + t)$

is as desired.

(3). By Proposition 1.2, there is a retraction $r: Y \times I \to Z(f)$. Define

$$g \colon Y \to Z(f)$$

 $y \mapsto r(y, 1).$

One can verifies that g is the homotopy inverse of q.

Summery 1. Any map $f: X \to Y$ factors into

$$X \xrightarrow{j} Z \xrightarrow{q} Y$$

where $j \colon X \to Z$ is a cofibration and $q \colon Z \to Y$ is a homotopy equivalence. Moreover, such a factorization is unique up to homotopy equivalence. In particular, we can choose Z = Z(f). We define $C_f = Z(f)/\operatorname{im} j$ as the homotopy cofibre of f, i.e. $C_f = X \times I \sqcup Y/(x,0) \sim *, (x,1) \sim f(x)$, is called the mapping cone of f.

$$X \xrightarrow{f} Y \xrightarrow{s} C_f$$

1.1.3 The Cofibre Sequence (Puppe's Sequence)

To get finer structure, we work in \mathbf{TOP}^o . Given a map $f: (X, x_0) \to (Y, y_0)$, we get an induced map

$$f^* \colon [Y, B]^o \to [X, B]^o$$

 $[\alpha] \mapsto [f \circ \alpha],$

where $[X, B]^o$ is the homotopy class of basepoint preserving maps. In particular, we have the constant map

$$[*]: X \to B$$

 $x \mapsto b_0.$

Definition 1.6. We say a sequence

$$(X, x_0) \xrightarrow{f} (Y, y_0) \xrightarrow{g} (Z, z_0)$$

in \mathbf{TOP}^o is h-coexact if $\forall (B, b_0) \in \mathrm{Ob}(\mathbf{TOP}^o)$,

$$[Z,B]^o \xrightarrow{g^*} [Y,B]^o \xrightarrow{f^*} [X,B]^o$$

is exact, i.e. $(f^*)^{-1}([*]) = \text{im } g^*$.

In **TOP**^o, we consider the reduced mapping cone $CX := X \times I/X \times \{0\} \cup \{x_0\} \times I$. The basepoint of CX is $X \times \{0\} \cup \{x_0\} \times I$. And we consider the reduced mapping cone: For $f: (X, x_0) \to (Y, y_0)$, $C(f) := CX \vee Y/(x, 1) \sim f(x)$. It is equivalent to the following push-out diagram.q

$$X \xrightarrow{f} Y$$

$$\downarrow_{i_1} \qquad \qquad \downarrow_{f_1}$$

$$CX \longrightarrow C(f)$$

In fact, f_1 maps y to (y, 1).

We will also use symbol X instead of (X, x_0) in \mathbf{TOP}^o for short.

Proposition 1.7. The sequence

$$X \xrightarrow{f} Y \xrightarrow{f_1} C(f)$$

is h-coexact.

Proof. Consider the following sequence

$$[C(f), B]^o \xrightarrow{f_1^*} [Y, B]^o \xrightarrow{f^*} [X, B]^o$$

for any (B, b_0) .

Assume that $[\alpha] \in [Y,B]^o$ s.t. $[\alpha \circ f] = [*] \in [X,B]^o$, i.e. $\alpha \circ f$ is null-homotopic. This is equivalent that there exists a map $h \colon CX \to B$. The mapping cone C(f) is the push-out of

$$X \xrightarrow{f} Y$$

$$\downarrow_{i_1} \qquad \qquad \downarrow_{f_1}$$

$$CX \longrightarrow C(f)$$

Using the universal property of push-out, we have the following commutative diagram,

i.e. $\alpha = \beta \circ f_1$. Therefore $[\alpha] = f_1^*[\beta]$ and this proposition follows.

Iterate the procedure, we get a long h-coexact sequence:

$$X \xrightarrow{f} Y \xrightarrow{f_1} C(f) \xrightarrow{f_2} C(f_1) \xrightarrow{f_3} C(f_2) \xrightarrow{} \cdots$$

Consider the injection $j_1: CY \to C(f_1)$, we have that

$$C(f_1)/j_1(CY) = X \times I/X \times \partial I \cup \{x_0\} \times I = \Sigma X$$

 $q(f) \colon C(f_1) \to \Sigma X.$

is the reduced suspension of X. Then we get a quotient map

$$\begin{vmatrix}
f & & \\
X & Y & C(f)
\end{vmatrix}$$

$$C(f_1) & \Sigma X$$

Claim 1. q(f) is a homotopy equivalence.

Denote by $s(f): \Sigma X \to C(f_1)$ the homotopy inverse of q(f). Then our original sequence becomes

$$X \xrightarrow{f} Y \xrightarrow{f_1} C(f) \xrightarrow{f_2} C(f_1) \xrightarrow{f_3} C(f_2)$$

$$\downarrow^{q(f)} \downarrow^{q(f)}$$

$$\Sigma X$$

Consider the following diagram.

$$C\left(f_{1}\right) \xrightarrow{f_{3}} C\left(f_{2}\right)$$

$$q(f) \middle| \begin{matrix} \downarrow \\ s(f) \end{matrix} \middle| \begin{matrix} \downarrow \\ s(f) \end{matrix} \middle| \begin{matrix} \downarrow \\ q(f_{1}) \end{matrix}$$

$$\Sigma X \xrightarrow{-} \xrightarrow{-} \Sigma Y$$

$$q(f_{1}) \circ f_{3} \circ s(f)$$

Claim 2. Consider $\tau \colon \Sigma X \to \Sigma X$ which maps (x,t) to (x,1-t), we have $q(f_1) \circ f_3 \circ s(f) \simeq \Sigma f \circ \tau$ To prove it, denote $p(f_1) = q(f_1) \circ f_3$. In fact, $p(f_1)$ retracts the left triangle, i.e. CX to a point.

In the following diagram, s(f) is the union of id and $f \times id$, i.e. id maps the left triangle of ΣX to the left triangle of $C(f_1)$, $f \times id$ maps the right triangle of ΣX to the right triangle of $C(f_1)$. Then $\Sigma f = p(f_1) \circ s(f)$ naturally. Notice that τ flips ΣX left and right. Therefore, by symmetry, we have $p(f_1) \circ s(f) \simeq \Sigma f \circ \tau$, as desired.

Now we get

$$X \xrightarrow{\quad f \quad} Y \xrightarrow{\quad f_1 \quad} C(f) \xrightarrow{p(f) \quad} \Sigma X \xrightarrow{\quad \Sigma f \quad} \Sigma Y \xrightarrow{\quad (\Sigma f)_1} C(\Sigma f)$$

Claim 3. There is a homeomorphism $\tau_1 \colon C(\Sigma f) \to \Sigma C(f)$ such that the following diagram is commutative.

$$\Sigma Y \xrightarrow{(\Sigma f)_1} C(\Sigma f)$$

$$\downarrow^{\tau_1}$$

$$\Sigma C(f)$$

In fact, regard both $C(\Sigma f)$ and $\Sigma C(f)$ as the quotient spaces of $X \times I \times I$ unioned with Y, τ_1 is induced from interchanging the two I-factors.

As conclusion, we have

Theorem 1.8 (Puppe's Sequence). The sequence

$$X \xrightarrow{f} Y \xrightarrow{f_1} C(f) \xrightarrow{p(f)} \Sigma X \xrightarrow{\Sigma f} \Sigma Y \xrightarrow{\Sigma f_1} \Sigma C(f) \xrightarrow{p(\Sigma f)} \Sigma^2 X \longrightarrow \Sigma^2 Y \longrightarrow \cdots$$

is h-coexact.

1.2 Fibrations

Definition 1.9. A map $p: E \to B$ has the homotopy lifting property (HLP) for the space X if \forall homotopy $h: X \times I \to B$ and $a: X \to E$ s.t. $p \circ a(x) = h(x, 0)$, there exists a homotopy $H: X \times I \to E$ s.t. $p \circ H = h$. H is called a lifting of h.

$$X \xrightarrow{a} E$$

$$\downarrow i_0 \downarrow H \nearrow \downarrow p$$

$$X \times I \xrightarrow{h} B$$

A map $p: E \to B$ is called a fibration if it has HLP for all spaces X.

Definition 1.10. Given maps $f: A \to B$ and $p: E \to B$. The pull-back of p along f is the terminal object of the following diagram,

$$f^*E \longrightarrow E$$

$$\downarrow \qquad \qquad \downarrow^p$$

$$A \longrightarrow B$$

i.e. for any $C, g: C \to E, h: C \to A$, there exists unique r such that the following diagram is commutative.

Explicity,

$$f^*E = \{(a, e) \in A \times E : f(a) = p(e)\}$$

and $\pi \colon f^*E \to A$ is the projection.

Denote $B^I = \text{Map}(I, B)$. Consider the pull-back

$$W(p) \coloneqq \left\{ (x, w) \in E \times B^I : p(x) = w(0) \right\}$$

which is given by the pull-back

$$W(p) \xrightarrow{k} B^{I}$$

$$\downarrow b \qquad \qquad \downarrow e^{0}$$

$$E \xrightarrow{n} B$$

where e^0 maps w to w(0).

Proposition 1.11. Given a map $p: E \to B$, the followings are equivalence:

- 1. $p \colon E \to B$ is a fibration.
- 2. p has HLP for W(p).

3.

$$r \colon E^I \to W(p)$$

 $\alpha \mapsto (\alpha(0), p \circ \alpha)$

admits a section.

Proof. $(1) \Longrightarrow (2)$ is by definition.

(2) \Longrightarrow (3): Because W(p) is a pull-back, by its universal property, we have the following diagram and we want to find s such that $r \circ s = \mathrm{id}$.

Notice that Map $(W(p), E^I) = \text{Map}(W(p) \times I, E)$, because p has HLP for W(p), we have the following commutative diagram.

$$W(p) \xrightarrow{b} E$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow p$$

$$W(p) \times I \xrightarrow{k} B$$

We have $b \circ r \circ s = e^0 \circ s = b$ and $k \circ r \circ s = p^I s = k$. Using the universal property (uniqueness) of pull-back W(p) for W(p), we must have $r \circ s = \mathrm{id}$, i.e. s is a section of r.

(3) \Longrightarrow (1): Let s be the section of r. For any X, a, h as in the definition of fibration, we want to find H such that the following diagram is commutative.

$$X \xrightarrow{a} E$$

$$\downarrow i_0 \qquad \downarrow f \qquad \downarrow p$$

$$X \times I \xrightarrow{h} B$$

Using the universal property of pull-back W(p), we have unique f such that the following diagram is commutative, where $h: X \to B^I$ is the same as $h: X \times I \to B$.

Then because Map $(W(p), E^I) = \text{Map}(W(p) \times I, E)$, one can check that $H = s \circ f$ is as desired. In fact,

$$p \circ H(x,t) = (p \circ H(x))(t) = (k \circ r \circ s \circ f(x))(t) = (k \circ \operatorname{id} \circ f(x))(t) = h(x,t)$$

and $H \circ i_0 = a$ is similar.

1.2.1 Pull-back of Fibration

Proposition 1.12. If $p: E \to B$ is a fibration, then $f^*E \to A$ is also a fibration.

Proof. In the following diagram, F is induced by HLP for fibration $p: E \to B$ and then H is induced by universal property of pull-back f^*E .

1.2.2 Replacing Maps by Fibration

Proposition 1.13. The evaluation $e^1: Y^I \to Y$, $w \mapsto w(1)$ is a fibration.

Proof. We can define H directly:

$$\begin{aligned} T \colon X \times I \to Y^I \\ (x,s) \mapsto \begin{cases} [t \mapsto a|_X((1+s)t)], & when \ 0 \le (1+s)t \le 1 \\ [t \mapsto h(x,(1+s)t-1)], & when \ (1+s)t \ge 1. \end{cases} \\ X \xrightarrow{a \to Y^I} V \xrightarrow{b \to Y} V \xrightarrow{b \to Y} V$$

Given $f: X \to Y$, consider the following pull-back.

$$W(f) = f^*Y^I \longrightarrow Y^I$$

$$\downarrow_{e^1}$$

$$X \xrightarrow{f} Y$$

In fact,

$$W(f) = \{(x, w) \in X \times Y^I : f(x) = w(1)\}.$$

Denote $p: W(f) \to Y$, $(x, w) \mapsto w(0)$ and $s: X \to W(f)$, $x \mapsto (x, k_{f(x)})$ where $k_{f(x)}$ is a constant path at f(x), and $q: W(f) \to X$, $(x, w) \mapsto x$. We can check that the following diagram is commutative.

$$W(f) = f^*Y^I \longrightarrow Y^I$$

$$\downarrow i_0 \mid \uparrow s \qquad p \qquad \downarrow e^1$$

$$X \longrightarrow Y$$

Theorem 1.14. In the following commutative diagram,

s is a homotopy equivalence and p is a fibration.

Proof. Consider the following fibration

$$\begin{array}{c|c} (f \times \mathrm{id})^* Y^I & \longrightarrow Y^I \\ \downarrow (q,p) & & \downarrow (e^1,e^0) \\ X \times Y & \xrightarrow{f \times \mathrm{id}} Y \times Y \end{array}$$

Claim 4. $(f \times id)^*Y^I = W(f)$.

To see that, notice that

$$(f \times id)^* Y^I = \{(x, y, w) \in X \times Y \times Y^I : f(x) = w(1), y = w(0)\},\$$

we can construct a map from W(f) to $(f \times id)^*Y^I$ that maps (x, w) to (x, w). It's one to one.

Then $p: W(f) \to Y$ is a fibration if and only if $(f \times id)^*Y^I \xrightarrow{(q,p)} X \times Y \xrightarrow{p_2} Y$ is a fibration. It's a composition of two fibration and then a fibration, as desired.

Claim 5. q is a homotopy inverse of s.

By this theorem, given any $f: X \to Y$, we can replace it by a fibration $p: W(f) \to Y$ homotopically. Then we can define the homotopy fibre at y_0 of $f: X \to Y$ to be

$$F(f) := p^{-1}(y_0) = \{(x, w) \in X \times Y^I : f(x) = w(1), y_0 = w(0)\}.$$

Remark 1.15. Apply HLP again, we can prove the factorization $f = s \circ p \colon X \to Y$ such that $s \colon X \to W$ is a homotopy equivalence and $p \colon W \to Y$ is a fibration. And this factorization is unique up to homotopy equivalence.

Theorem 1.16. Let $p: E \to B$ be a fibration and B is path-connected. Then all fibres $p^{-1}(b)$ are homotopy equivalent.

Proof. Given a path $\alpha: I \to B$, $\alpha(0) = b_0$ and $\alpha(1) = b_1$. Consider HLP property:

$$p^{-1}(b_0) \xrightarrow{F} E$$

$$\downarrow \qquad \qquad \downarrow p$$

$$p^{-1}(b_0) \times I \xrightarrow{h} B$$

where $h(x,t) = \alpha(t)$. Consider $H_1: p^{-1}(b_0) \to p^{-1}(b_1)$ the restriction of H at t = 1. Similarly, consider the reversed path $\overline{\alpha}$ of α , we get $\overline{H_1}: p^{-1}(b_1) \to p^{-1}(b_0)$.

Claim 6. $\overline{H_1} \circ H_1 \simeq id$.

It's by applying homotopy lifting to the homotopy from $\overline{\alpha}\alpha$ to k_{b_0} . Therefore, all fibres $p^{-1}(b)$ are homotopy equivalent.

1.2.3 Fibre Exact Sequence (Puppe's Sequence)

Definition 1.17. We say a sequence of pointed maps

$$(X, x_0) \xrightarrow{f} (Y, y_0) \xrightarrow{g} (Z, z_0)$$

is h-coexact if $\forall (B, b_0)$, the induced sequence

$$[B,X]^o \xrightarrow{f_*} [B,Y]^o \xrightarrow{g_*} [B,Z]^o$$

is exact, i.e. $g_*^{-1}([c_{z_0}]) = \operatorname{im} f_*$.

Recall the homotopy fibre of $f: X \to Y$ is

$$F(f) := p^{-1}(y_0) = \{(x, w) \in X \times Y^I : f(x) = w(1), y_0 = w(0)\}.$$

Denote $f^1: F(f) \to X$, $(x, w) \mapsto x$.

Proposition 1.18. For any $f: (X, x_0) \to (Y, y_0)$, the sequence

$$F(f) \xrightarrow{f^1} X \xrightarrow{f} Y$$

is h-coexact.

Proof. Assume $\alpha: B \to X$ satisfies $f \circ \alpha: B \to Y$ is null-homotopic and $f_*[\alpha] = [c_{y_0}]$. Apply HLP property:

$$B \longrightarrow FY = \{ w \in Y^I : w(0) = y_0 \}$$

$$\downarrow e^1$$

$$B \times I \longrightarrow Y$$

where h is a null-homotopy from $f \circ \alpha$ to c_{y_0} . Notice that $H_0: B \times \{1\} \to FY$ satisfies

where β is induced by the universal property of the pull-back F(f), such that $f^1 \circ \beta = \alpha$. Therefore, $f_*^1([\beta]) = [\alpha]$.

Iterate the procedure, we get a long h-exact sequence

$$\cdots \longrightarrow F(f^2) \xrightarrow{f^3} F(f^1) \xrightarrow{f^2} F(f) \xrightarrow{f^1} X \longrightarrow Y$$
.

Question 1.19. How to understand $F(f^n) \xrightarrow{f^{n+1}} F(f^{n-1})$?

We consider the loop space

$$\Omega Y := \{ w \in Y^I : w(0) = w(1) = y_0 \}.$$

Notice that

$$\left(f^{1}\right)^{-1}(x_{0})=\left\{ (x_{0},w)\in X\times Y^{I}:w(0)=y_{0},w(1)=f\left(x_{0}\right)=y_{0}\right\} ,$$

we have $\Omega Y = (f^1)^{-1}(x_0)$. We write $i(f): \Omega Y \to F(f)$ for the inclusion.

Theorem 1.20 (The puppe's fibre sequence). The sequence

$$\Omega^k F(f) \xrightarrow{\Omega^k f^1} \Omega^k X \xrightarrow{\Omega^k f} \Omega^k Y \xrightarrow{\Omega^k f} \Omega^k Y \xrightarrow{i \left(\Omega^{k-1} f\right)} \cdots \longrightarrow \Omega X \longrightarrow \Omega Y \longrightarrow F(f) \xrightarrow{f^1} X \longrightarrow Y$$

is h-exact.

Proof. Step 1:

$$F(f^{1}) = \{(x, w, v) \in X \times Y^{I} \times X^{I} : w(0) = y_{0}, v(0) = x_{0}, w(1) = f(x), v(1) = x\}$$
$$= \{(w, v) \in Y^{I} \times X^{I} : w(0) = g_{0}, v(0) = x_{0}, w(1) = f(v(1))\}.$$

Define $j(f): \Omega Y \to F(f^1), w \mapsto (w, k_{x_0}).$

Claim 7. j(f) is a homotopy equivalence.

In fact, define $r(f) \colon F\left(f^1\right) \to \Omega Y$, $(w,v) \mapsto w * \overline{(f \circ v)}$, then $r(f) \circ j(f) = \mathrm{id}$. The homotopy from $\mathrm{id}_{F(f^1)}$ to $j(f) \circ r(f)$ is $h_t(w,v) = \left(h_t^1,h_t^2\right)$, where $h_t^1(s) = \begin{cases} w(s(1+t)), \ s(1+t) \leq 1, \\ f(v(2-(1+t)s)), \ s(1+t) \geq 1 \end{cases}$ and $h_t^2(s) = v(s(1-t))$.

Step 2: From $F\left(f^{1}\right) \xrightarrow{f^{2}} F(f) \xrightarrow{f^{1}} X$, we get

$$F\left(f^{2}\right) \xrightarrow{f^{3}} F\left(f^{1}\right)$$

$$j(f^{1}) \uparrow \qquad \downarrow j(f^{1}) \qquad \uparrow j(f)$$

$$\Omega X \xrightarrow{\Omega f} \Omega Y$$

Because $j\left(f^{1}\right)$ is a homotopy equivalence, we have $i\left(f^{1}\right)\simeq j(f)\circ\Omega f.$

Step 3: Now we have $\Omega X \xrightarrow{\Omega f} \Omega Y i(f) \longrightarrow F(f)$. Then we get $F\Omega f \longrightarrow \Omega X \xrightarrow{\Omega f} \Omega Y$.

Claim 8. $F(\Omega f)$ is homotopy equivalent to $\Omega F(f)$.

To see that, notice that $F(\Omega f)$ and $\Omega F(f)$ are all quotient of $\operatorname{Map}(I \times I, Y)$. Finally, we get the h-exact sequence

$$\Omega F(f) \longrightarrow \Omega X \longrightarrow \Omega Y \longrightarrow F(f) \longrightarrow X \longrightarrow Y$$
.

1.3 Duality of Cofibration and Fibration

1.3.1 Duality of Reduced Suspension and Loop Space

Write $Y^X = \text{Map}(X, Y)$ equipped with compact-open topology. We define the adjunction

$$\alpha \colon Z^{X \times Y} \to \left(Z^Y\right)^X$$

$$f \mapsto [x \mapsto f(x, \cdot)].$$

Theorem 1.21. Suppose that X and Y are locally compact. Then α is a homeomorphism.

In the pointed version, we replace $X \times Y$ by $X \wedge Y = X \times Y / \{x_0\} \times Y \cup X \times \{y_0\}$ and $\operatorname{Map}^o(X,Y)$ is the space of basepoint preserving maps. Then $\alpha^o \colon \operatorname{Map}^o(X \wedge Y,Z) \to \operatorname{Map}^o(X,\operatorname{Map}^o(Y,Z))$ is a homeomorphism. Therefore, α^o induces a bijection $\alpha_*^o \colon [X \wedge Y,Z]^o \to [X,\operatorname{Map}^o(Y,Z)]^o$.

Choose $Y = S^1 = I/\partial I$, then $X \wedge Y = X \times I/X \times \partial I \cup \{x_0\} \times I = \Sigma X$ is the reduced suspension of X and $\operatorname{Map}^o(Y, Z) = \Omega Z$ is the loop space of Z. Therefore, we get a bijection $\alpha_*^o : [\Sigma X, Z]^o \to [X, \Omega Z]^o$. On $[\Sigma X, Z]^o$, we have a group structure:

Let τ be the inversion of ΣX . For any [f], $-[f] = [f \circ \tau]$. On $[X, \Omega Z]^o$, we have

$$\begin{split} m\colon \Omega Z\times \Omega Z &\to \Omega Z \\ (u,v) &\mapsto u*v. \end{split}$$

Define

$$[f] +_m [g] := [m \circ (f \times g) \circ d],$$

where

$$d \colon X \to X \times X$$

 $x \mapsto (x, x)$

is the diagonal embedding.

One can verify that

$$\alpha_*^o([f] +_M [g]) = \alpha_*^o([f]) +_m \alpha_*^o([g]).$$

Then the adjunction map $\alpha_*^o: [\Sigma X, Z]^o \to [X, \Omega Z]^o$ is an isomorphism. In categorical language, this means $\operatorname{Mor}(\Sigma X, Z) = \operatorname{Mor}(X, \Omega Z)$ in $\operatorname{\mathbf{TOP}}^o$. As conclusion, $\Sigma: \operatorname{\mathbf{TOP}}^o \to \operatorname{\mathbf{TOP}}^o$ and $\Omega: \operatorname{\mathbf{TOP}}^o \to \operatorname{\mathbf{TOP}}^o$ are dual functors.

1.3.2 Duality of HLP and HEP

Given a homotopy lifting diagram,

notice that $\operatorname{Map}(X \times I, Z) = \operatorname{Map}(X, Z^I)$, it is equivalent to

Dualize it, also by, $\operatorname{Map}(X \times I, Z) = \operatorname{Map}(X, Z^I)$, we have

It is equivalent to

which is the homotopy extension diagram.

1.3.3 Duality of Two Puppe's Sequences

Notice that $[id] \in [\Sigma X, \Sigma X]^o$, it induces $\alpha_*^o[id] = \eta \colon X \to \Omega \Sigma X$. For each map $f \colon X \to Y$, it induces

$$\begin{split} \eta \colon F(f) &\to \Omega C(f) \\ (x,w) &\mapsto \begin{cases} (x,2t), \ t \leq \frac{1}{2}, \\ w(2-2t), \ t \geq \frac{1}{2}, \end{cases} \end{split}$$

where $C(f) = X \times I \sqcup Y/\{x_0\} \times I$, $f(x) \sim (x,1)$ is the reduced cone of f. Then we get a diagram commutative up to homotopy.

$$\begin{array}{cccc} \Omega Y & \longrightarrow F(f) & \longrightarrow X \\ \downarrow & & \downarrow & & \downarrow \\ \Omega Y & \longrightarrow \Omega C(f) & \longrightarrow \Omega \Sigma X \end{array}$$

2 Homotopy Groups

2.1 Definitions and Properties

Given (X, x_0) , define *n*-th homotopy group

$$\pi_n\left(X,x_0\right) := \left[\left(I^n,\partial I^n\right),\left(X,x_0\right)\right],\,$$

where the identity element is the constant map and [f] + [g] can be represented by

$$f +_{i} g \colon (t_{1}, \dots, t_{n}) \mapsto \begin{cases} f(t_{1}, \dots, 2t_{i}, \dots, t_{n}), \ t_{i} \leq \frac{1}{2} \\ g(t_{1}, \dots, 2t_{i} - 1, \dots, t_{n}), \ t_{i} \geq \frac{1}{2} \end{cases}$$

for any i. The following picture shows that $f +_i g$ and $f +_j g$ are homotopy equivalent for any $i \neq j$, where the red parts are mapped into the base point so the homotopies work. Sometimes, we write $\pi_n(X)$ for short.

Given a pair (X, A, x_0) , $J^n = \partial I^n \times I \cup I^n \times \{0\} = I^n - I^n \times \{1\} \subset I^{n+1}$,

define the n + 1-th relative homotopy group to be

$$\pi_{n+1}\left(X,A,x_0\right) \coloneqq \left[\left(I^{n+1},\partial I^{n+1},J^n\right),\left(X,A,x_0\right)\right].$$

Similarly, we sometimes use $\pi_{n+1}(X, A)$ for short.

Proposition 2.1. When $n \geq 2$, $\pi_n(X, x_0)$ and $\pi_{n+1}(X, A, x_0)$ are both abelian.

Proof. Exchanging f and g in the picture after the definition of $\pi_n(X, x_0)$, we can know that $\pi_n(X, x_0)$ is abelian for $n \geq 2$. For the relative case, we can not process homotopy in the top red region. But for $n \geq 3$, the squares of f and g should be cubes, then we can place the cubes in front and behind to get new homotopy. Therefore, $\pi_n(X, A, x_0)$ is abelian for $n \geq 3$.

Theorem 2.2 (Exact Homotopy Sequence). Given a pair (X, A), we have a long exact sequence

$$\longrightarrow \pi_{n}\left(A,x_{0}\right) \xrightarrow{i_{*}} \pi_{n}\left(X,x_{0}\right) \xrightarrow{j_{*}} \pi_{n}\left(X,A,x_{0}\right) \xrightarrow{\partial} \pi_{n-1}\left(A,x_{0}\right) \longrightarrow \cdots \longrightarrow \pi_{0}\left(A,x_{0}\right) \xrightarrow{i_{*}} \pi_{0}\left(X,x_{0}\right),$$

where $j:(X,x_0,x_0)\to (X,A,x_0)$ is the inclusion and ∂ is induced from the restriction of I^n on $I^{n-1}\times\{1\}$.

Proof. Notice that each map $f: (I^n, \partial I^n) \to (X, x_0)$ induces a map

$$\overline{f_k} \colon I^{n-k} \to \Omega^k \left(X, x_0 \right)$$

$$(u_1, \dots, u_{n-k}) \mapsto \left[(t_1, \dots, t_k) \mapsto f \left(t_1, \dots, t_k, u_1, \dots, u_{n-k} \right) \right].$$

Then we get an isomorphism $\pi_n\left(X,x_0\right) \to \pi_{n-k}\left(\Omega^k X,c_{x_0}\right)$. This is because $\pi_n\left(X,x_0\right) = \left[S^n,X\right]^o$ and $\Sigma S^{n-1} = S^n$, then $\left[S^n,X\right]^o = \left[\Sigma S^{n-1},X\right]^o \cong \left[S^{n-1},\Omega X\right]^o \cong \left[S^{n-k},\Omega^k X\right]^o$ by duality (Section 1.3.1). Given a pair (X,A), the homotopy fibre of $\iota\colon A \hookrightarrow X$ is

$$F(\iota) = \{(a, w) \in A \times X^I : w(0) = x_0, w(1) = a\} = \{w \in X^I : w(0) = x_0, w(1) \in A\} := F(X, A).$$

Each map $f: (I^{n+1}, \partial I^{n+1}, J^n) \to (X, A, x_0)$ induces a map

$$\hat{f} \colon I^n \to F(X, A)$$
$$(t_1, \dots, t_n) \mapsto [t \mapsto f(t_1, \dots, t_n, t)],$$

induces an isomorphism $\pi_{n+1}(X, A, x_0) \to \pi_n(F(X, A), x_0)$.

The fibre sequence of $\iota \colon A \hookrightarrow X$ is

$$\Omega^n F(\iota) \longrightarrow \Omega^n A \longrightarrow \Omega^n X \longrightarrow \cdots \longrightarrow F(\iota) \longrightarrow A \stackrel{\iota}{\longrightarrow} X$$
.

Appling $[S^1,\cdot]^o$, we have

$$[S^{1}, \Omega^{n} F(\iota)]^{o} = \pi_{1} (\Omega^{n} F(\iota)) = \pi_{n+1}(F(\iota)) = \pi_{n+2}(X, A),$$
$$[S^{1}, \Omega^{n} A]^{o} = \pi_{1} (\Omega^{n} A) = \pi_{n+1}(A),$$
$$[S^{1}, \Omega^{n} X]^{o} = \pi_{1} (\Omega^{n} X) = \pi_{n+1}(X).$$

Then we get exact sequence

$$\pi_{n+2}(X,A) \longrightarrow \pi_{n+1}(A) \longrightarrow \pi_{n+1}(X) \longrightarrow \pi_1(X) \longrightarrow \pi_1(X,A) \longrightarrow \pi_0(A) \longrightarrow \pi_0(X)$$
,

where the exactness of the last a few places is straightforward to verify.

2.2 Change of Basepoint

Assume $v: I \to X$ is a continuous path with $v(0) = x_0$ and $v(1) = x_1$. We regard v as a homotopy

$$\hat{v}_t \colon I^n \to X$$

 $u \mapsto v(t).$

Note that $\partial I^n \hookrightarrow I^n$ is a cofibration (by Corollary 1.3), by HEP, we have the following commutative diagram,

where $[f] \in \pi_n(X, x_0)$.

Proposition 2.3. The map

$$v_{\sharp} \colon \pi_n (X, x_0) \to \pi_n (X, x_1)$$

 $[v_0] \mapsto [v_1]$

only depends on the homotopy class of v rel ∂_1 and defines an isomorphism.

Proof. Use HEP again.

Proposition 2.4. Suppose $f:(X,A) \to (Y,B)$ is a homotopy equivalence. Then $f_*: \pi_n(X,A,x_0) \to \pi_n(Y,B,f(x_0))$ is an isomorphism.

Proof. We only prove that homotopic maps induce isomorphic maps on π_n . Assume we have a homotopy $g_t : (X, A) \to (Y, B)$, we get a path in Y

$$w \colon I \to Y$$

 $t \mapsto g_t(x_0)$.

Then we have the following commutative diagram by HEP.

Remark 2.5. By the proposition, we get a right action of $\pi_1(X, x_0)$ on $\pi_n(X, x_0)$.

2.3 Serre Fibration

Definition 2.6. We say $p: E \to B$ is a Serre fibration, if it has HLP for all cube I^n , $\forall n \geq 0$.

Theorem 2.7. Let $p: E \to B$ be a Serre fibration. Fix $b_0 \in B$ and $e_0 \in E$ such that $p(e_0) = b_0$. Given $B_0 \subset B$, write $E_0 = p^{-1}(B_0)$. Then $p_*: \pi_n(E, E_0, e_0) \to \pi_n(B, B_0, b_0)$ is an isomorphism for all $n \ge 1$.

Proof. Surjectivity: Given $h: (I^n, \partial I^n, J^{n-1}) \to (B, B_0, b_0)$. Consider the lifting problem.

$$I^{n-1} \times \{0\} \cup \partial I^{n-1} \overset{c_{e_0}}{\times} I \xrightarrow{F} E$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow p$$

$$I^{n-1} \times I \xrightarrow{h} B$$

Notice that $I^{n-1} \times \{0\} \cup \partial I^{n-1} \times I \cong I^{n-1} \times \{0\}\}$, the map of the first line is c_{e_0} . Then we have the lifting $H: I^n \to E$ such that $H(\partial I^n) \subset E_0 = p^{-1}(B_0)$ and $H(J^{n-1}) = e_0$.

Injectivity: Assume $p_*[f_0] = p_*(f_1]$. We get a homotopy ϕ_t : $(I^n, \partial I^n, J^{n-1}) \to (B, B_0, b_0)$. Consider the lifting problem.

$$I^{n} \times \partial I \cup J^{n-1} \times I \xrightarrow{\phi} E$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$I^{n} \times I \xrightarrow{\phi_{t}} B$$

Notice that $I^n \times \partial I \cup J^{n-1} \times I \cong I^n$, we have the lifting ϕ .

Corollary 2.8. Given a Serre fibration $F \longrightarrow E \xrightarrow{p} B$ where F is a regular fibre, we have a long exact sequence

$$\pi_n(F) \xrightarrow{i_*} \pi_n(E) \xrightarrow{p_*} \pi_n(B) \longrightarrow \pi_{n-1}(F) \longrightarrow \cdots \longrightarrow pi_0(E) \longrightarrow \pi_0(B)$$
.

Proof. Consider the pair (E, F). By Theorem 2.2, we have exact sequence

$$\pi_n(F) \xrightarrow{i_*} \pi_n(E) \xrightarrow{p_*} \pi_n(B) \longrightarrow \pi_{n-1}(F) \longrightarrow \cdots$$

Choose $B_0 = b_0$ and $F = E_{b_0}$, we have $\pi_n(E, F, b_0) \cong \pi_n(E, b_0, b_0) \cong \pi_n(B, b_0)$ and this corollary follows.

Proposition 2.9. Every fibre bundle is a Serre fibration.

Proof. Given the lifting problem.

$$I^{n} \times \{0\} \xrightarrow{a} E$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$I^{n} \times I \xrightarrow{b} B$$

We choose an open cover $\{U_{\alpha}\}_{{\alpha}\in\Lambda}$ of B such that finitely many U_{α} 's cover im h and over each U_{α} , $E|_{U_{\alpha}}$ is trivialized. Choose a subdivision $\{I_{\beta}^n\}$ of I^n and partition $\{I_{\lambda}\}$ of I, such that $\forall \beta, \lambda, h\left(I_{\beta}^n \times I_{\lambda}\right) \subset U_{\alpha}$ for some α . Over each $I_{\beta}^n \times I_{\lambda}$, we consider

$$I_{\beta}^{n} \times \partial I_{\lambda} \cup \partial I_{\beta}^{n} \times I_{\lambda} \longrightarrow U_{\alpha} \times F$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$I_{\beta}^{n} \times I_{\lambda} \xrightarrow{\qquad \qquad \downarrow} U_{\alpha}$$

where $I_{\beta}^{n} \times \partial I_{\lambda} \cup \partial I_{\beta}^{n} \times I_{\lambda} \cong I_{\beta}^{n} \times \{0\}$ and $U_{\alpha} \times F \cong E|_{U_{\alpha}}$. We construct the lifting of h inductively on β and λ .

2.4 Higher Connectivity

Proposition 2.10. Let (X, A) be a pair, and $f: (I^n, \partial I^n) \to (X, A)$ a pointed map. The followings are equivalent.

- 1. f is null-homotopic.
- 2. f is homotopic rel ∂I^n to a map in A.

Proof. (1) \Longrightarrow (2): Consider a surjective continuous map $\lambda \colon I^n \times I \to I^n \times I$ such that $\lambda|_{\partial I^n \times I} \colon (x,t) \mapsto (x,0)$ and $\lambda|_{I^{\{0\}}} = \operatorname{id}_{I^n}$. Consider a null-homotopy $F \colon I^n \times I \to X$ of f, we let $H = F \circ \lambda \colon I^n \times I \to X$. Then H is a homotopy of f such that $H|_{\partial I^n \times I^*} = \operatorname{id}_{\partial I^n}$ and $H_1(I^n) \subset A$.

Then H is a homotopy of f such that $H|_{\partial I^n \times \{t\}} = \mathrm{id}_{\partial I^n}$ and $H_1(I^n) \subset A$. (2) \Longrightarrow (1): We may assume $f(I^n) \subset A$. J^{n-1} is a deformation retract of I^n . This is equivalent to that we get a homotopy $h_t \colon I^n \to I^n$ such that im $h_1 = J^{n-1}$ and $h_0 = \mathrm{id}$. Then $f \circ h_t$ is a homotopy from f to c_{x_0} .

Remark 2.11. By (2), $\pi_n(A, A) \to \pi_n(X, A)$ is trivial.

Definition 2.12. We say a pair (X, A) is n-connected if $\pi_q(X, A) = 0$, $\forall 1 \le q \le n$ and $\pi_0(A) \to \pi_0(X)$ is surjective. Note that $\pi_q(X, A) = 0$ is computed for all basepoints.

Proposition 2.13. The followings are equivalent.

- 1. (X, A) is n-connected.
- 2. $j_*: \pi_q(A,*) \to \pi_q(X,*)$ is an isomorphism for q < n and is an epimorphism for q = n.

Proof. The proof follows from exact sequence of the pair (X, A) (Proposition 2.2).

Definition 2.14. We say $f: X \to Y$ is n-connected if $f_*: \pi_k(X) \to \pi_k(Y)$ is an isomorphism for $1 \le k \le n-1$ and is an epimorphism for k=n.

Proposition 2.15. $f: X \to Y$ is n-connected if and only if (Z(f), X) is n-connected.

Proof. The proof follows from exact sequence of the pair (Z(f), X) (Proposition 2.2) and $Z(f) \simeq Y$. \square

2.5 Excision and Suspension

Theorem 2.16 (Blaskers-Massey). Let $Y = Y_1 \cup Y_2$ be union of two open subsets and $Y_0 = Y_1 \cap Y_2 \neq \emptyset$. Suppose $\pi_i(Y_1, Y_0) = 0$ for any 0 < i < p, $p \ge 1$ and $\pi_j(Y_2, Y_0) = 0$ for any 0 < j < q, $q \ge 1$. Then the map $\iota \colon \pi_n(Y_2, Y_0) \to \pi_n(Y, Y_1)$ is an isomorphism for $1 \le n \le p + q - 3$ and is an epimorphism for n = p + q - 2.

Proof. See textbook \S 6.7.

Proposition 2.17. Let $j: A \hookrightarrow X$ be a cofibration. Consider a push-out diagram

$$\begin{array}{ccc}
A & \xrightarrow{f} & B \\
\downarrow J & & \downarrow J \\
X & \xrightarrow{F} & Y
\end{array}$$

where $Y = X \sqcup B/f(a) \sim j(a)$. Suppose $\pi_i(X,A) = 0$, $\forall 0 < i < p$ and $\pi_i(Z(f),A) = 0$, $\forall 0 < i < q$. Then the induced map $(F,f)_*: \pi_n(X,A) \to \pi_n(Y,B)$ is an isomorphism for $1 \le n \le p+q-3$ and is an epimorphism for n = p+q-2.

Proof. Replace f by a cofibration

$$A \xrightarrow{k} Z(f) \xrightarrow{p} B$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$X \xrightarrow{K} Z \xrightarrow{P} Y$$

where $Z = Z(f) \sqcup X/(a,0) \sim j(a)$, $f = p \circ k$, $F = P \circ K$. Since $p: Z(f) \to B$ is a homotopy equivelence and $P: Z \to Y$ is given by push-out, P is also a homotopy equivalence. Let $Z = Z_1 \cup Z_2$ where $Z_2 = X \sqcup A \times (\varepsilon, 1]/\sim$ and $Z_1 = B \sqcup A \times [0, \varepsilon)/\sim$. Then $Z_1 \cap Z_2 = A \times (\varepsilon, 1 - \varepsilon)$. Applying excision (Theorem 2.16),

$$\pi_n(X,A) \cong \pi_n(Z_2,Z_0) \to \pi_n(Z,Z_1) \cong \pi_n(Y,B)$$

has desired properties.

Theorem 2.18 (Quotient). Let $A \hookrightarrow X$ be a cofibration. Suppose $\pi_i(CA, A) = 0$ for 0 < i < p and $\pi_i(X, A) = 0$ for 0 < i < q. Then $p_* : \pi_n(X, A) \to \pi_n(X/A, *)$ is an isomorphism for $1 \le n \le p + q - 3$ and is an epimorphism for n = p + q - 2.

Proof. Note $X \cup CA$ fits into the following push-out diagram.

$$\begin{array}{ccc}
A & \longrightarrow CA \\
\downarrow & & \downarrow \\
X & \longrightarrow X \cup CA
\end{array}$$

Then we get the result for

$$\pi_n(X,A) \to \pi_n(X \cup CA,CA).$$

Since $A \hookrightarrow X$ is a cofibration, $CA \hookrightarrow X \cup CA$ is also a cofibration. Notice that because CA is contractible, $X \cup CA \to X \cup CA/CA$ is a homotopy equivalence (This is left as an exercise). Then

$$\pi_n(X, A) \to \pi_n(X \cup CA, CA) \cong \pi_n(X \cup CA/CA, *) \cong \pi_n(X/A, *)$$

has desired properties.

Definition 2.19. We say (X, x_0) is well-pointed if $x_0 \hookrightarrow X$ is a cofibration.

Example 2.20. • For any CW-complex or manifold, it is well-pointed for any point.

• $X = \left\{\frac{1}{n} : n \in \mathbb{Z}^+\right\} \cup \{0\}, x_0 = 0 \text{ is not well-pointed.}$

Theorem 2.21 (Freudenthal Suspension). Let (X, x_0) be a well-pointed *n*-connected space. Then $\Sigma_* \colon \pi_j(X) \to \pi_{j+1}(\Sigma X)$ is an isomorphism for $0 \le j \le 2n$ and is an epimorphism for j = 2n + 1.

Proof. The suspension map is given by

$$\pi_j(X) = \left[S^j, X\right]^o \xrightarrow{\Sigma_*} \left[S^{j+1}, \Sigma X\right]^o = \pi_{j+1}(X) \ .$$

We factor Σ_* into

$$\Sigma_* \colon \pi_j(X) \underset{\cong}{\longleftarrow} \pi_{j+1}(CX, X)$$

$$\downarrow^{p_*}$$

$$\pi_{j+1}(\Sigma X)$$

To use Theorem 2.18, we verify $X \hookrightarrow CX$ is a cofibration. Consider the push-out diagram

$$X \times \partial I \cup \{x_0\} \times f \longrightarrow X$$

$$\downarrow \qquad \qquad \downarrow$$

$$X \times I \longrightarrow CX$$

where $CX = X \times I/X \times \{0\} \cup \{x_0\} \times I$. Because $\partial I \hookrightarrow I$ and $x_0 \hookrightarrow X$ are cofibrations, we have $\{x_0\} \times I \cup X \times \partial X \hookrightarrow X \times I$ is also a cofibration. By push-out diagram, $X \hookrightarrow CX$ is a cofibration. Now we have exact sequence

$$\pi_{j}(CX, X)\pi_{j-1}(X^{\hat{\partial}}) \longrightarrow 0$$

$$\uparrow \qquad \qquad \qquad \uparrow$$

$$\pi_{j}(CX) = 0$$

$$\uparrow \qquad \qquad \qquad \uparrow$$

$$\pi_{j}(X)$$

Then (CX, X) is (n+1)-connected. And $p_*: \pi_j(CX, X) \to \pi_j(\Sigma X)$ is isomorphism for $j \leq 2n-1$ and is an epimorphism for j = 2n. Then we apply Theorem 2.18 with p = q = n+2 and get the desired properties for $\Sigma_*: \pi_{j-1}(X) \to \pi_j(X)$.

2.6 Computation of Homotopy Groups

Example 2.22.

$$\pi_k \left(S^n \right) \cong \begin{cases} 0, k < n \\ \mathbb{Z}, k = n \end{cases}.$$

$$\pi_1 \left(S^1 \right) \cong \mathbb{Z}, \quad \pi_1 \left(S^n \right) \cong 0, \ \forall n \ge 2.$$

To compute $\pi_2(S^2)$, consider the Hopf fibration

$$S^1 \longrightarrow S^2$$
.

This is given by the fibre bundle

$$S^2 = \mathbb{CP}^1 = \mathbb{C}^2 - \{0\}/\mathbb{C}^* = S^3/S^1.$$

We have the following fibre sequence

$$\pi_{2}(S^{1}) \longrightarrow \pi_{2}(S^{3}) \longrightarrow \pi_{2}(S^{2}) \xrightarrow{\partial} \pi_{1}(S^{1}) \longrightarrow \pi_{1}(S^{3})$$

$$\parallel \qquad \qquad \parallel \qquad \qquad \parallel$$

$$0 \qquad \qquad \mathbb{Z} \qquad 0$$

Because S^1 is 0-connected, by Suspension Theorem, $\pi_1\left(S^1\right) \to \pi_2\left(S^2\right)$ is an epimorphism. Then $\pi_2\left(S^2\right) \cong \mathbb{Z}$ and $\pi_2\left(S^3\right) = 0$.

For $n \geq 2$, assume S^n is (n-1)-connected, by Freudenthal's Suspension, $\pi_j(S^n) \to \pi_{j+1}(S^{n+1})$ is an isomorphism for $j \leq n \leq 2n$. By induction, $\pi_n(S^n) \cong \mathbb{Z}$ and $\pi_j(S^n) = 0$ for j < n.

Example 2.23. Notice that

$$\mathbb{CP}^n = \mathbb{C}^{n+1} - \{0\}/\mathbb{C}^* = S^{2n+1}/U(1)$$

for $n \geq 2$, we get a fibre bundle

$$U(1) \hookrightarrow S^{2n+1} \longrightarrow \mathbb{CP}^n$$
.

Then we have fibre sequence

$$\pi_j\left(S^{2n+1}\right) \longrightarrow \pi_j\left(\mathbb{CP}^n\right) \pi_{j-1}(U(1)) \longrightarrow \pi_{j-1}\left(S^{2n+1}\right).$$

Then when $j=2, \, \pi_2\left(\mathbb{CP}^n\right)\cong\mathbb{Z}$. When $2\neq j\leq 2n, \, \pi_j\left(\mathbb{CP}^n\right)=0$. Consider $\mathbb{CP}^{\infty}=\bigcup_{n\geq 1}\mathbb{CP}^n,$

$$\begin{array}{cccc}
\mathbb{CP}^n & \mathbb{CP}^{n+1} \\
\uparrow & & \uparrow \\
S^{2n+1} & \mathbb{S}^{2n+3} \\
\downarrow & & \downarrow \\
U(1) & U(1)
\end{array}$$

is induced from Five-Lemma. Then $i_* \colon \pi_2\left(\mathbb{CP}^n\right) \to \pi_2\left(\mathbb{CP}^{n+1}\right)$ is an isomorphism. As conclusion,

$$\pi_n\left(\mathbb{CP}^\infty\right) \cong \begin{cases} \mathbb{Z}, & n=2\\ 0, & n\neq 2. \end{cases}$$

Example 2.24. We have the following fibre bundle by transitive group action.

$$O(n) \xrightarrow{j} O(n+1) \longrightarrow S^n$$
.

Since S^n is (n-1)-connected, the homotopy exact sequence for fibrations show $j \colon \mathcal{O}(n) \hookrightarrow \mathcal{O}(n+1)$ is (n-1)-connected.

Write
$$O(\infty) = \bigcup_{n=1}^{\infty} O(n)$$
.

Theorem 2.25 (Bott-Periodicity).

$$\pi_k(\mathcal{O}(\infty)) \cong \pi_{k+8}(\mathcal{O}(\infty)).$$

Example 2.26 (Stiefel Manifolds). Denote $V_k(\mathbb{R}^n)$ be the orthogonal k-frames in \mathbb{R}^n . Then we have

$$V_k(\mathbb{R}^n) = O(n)/O(n-k).$$

Then we get a fibration

$$O(n-k) \hookrightarrow O(n) \longrightarrow V_k(\mathbb{R}^n)$$
.

Notice that in

$$O(n-k)$$
 $O(n > k+1)$ $O(n)$,

j is (n-k-1)-connected, then

$$\pi_i(\mathcal{O}(n-k)) \xrightarrow{\cong} \pi_i(\mathcal{O}(n)) \longrightarrow \pi_i(\mathcal{V}_k(\mathbb{R}^n))$$

for $i \leq n-k-2$. Therefore, $\pi_i\left(\mathbf{V}_k\left(\mathbb{R}^n\right)\right) = 0$ when $i \leq n-k-1$.

Claim 9. $V_k(\mathbb{R}^n)$ is (n-k-1)-connected.

Consider the projection

$$p \colon V_{k+1}\left(\mathbb{R}^{n+1}\right) \to V_1\left(\mathbb{R}^{n+1}\right) \cong S^n$$
$$(v_1, \dots, v_{k+1}) \mapsto v_{k+1}.$$

The fibre is $V_k(\mathbb{R}^n)$. We know S^n is (n-1)-connected, then $j \colon V_k(\mathbb{R}^n) \to V_{k+1}(\mathbb{R}^{n+1})$ is (n-1)-connected. Therefore, we have $\pi_{n-k}(V_k(\mathbb{R}^n)) \cong \pi_{n-k}(V_2(\mathbb{R}^{n-k+2}))$. We know that $\pi_1(V_2(\mathbb{R}^{n-k+2})) = 0$. By Hurewicz Theorem, $H_i(V_2(\mathbb{R}^{n-k+2})) \cong \pi_i(V_2(\mathbb{R}^{n-k+2}))$ for $2 \le i \le n-k$, which is non-trivial. We will do these calculations later.

Part II

Generalized Homology

3 Homology Theory and CW-Complexes

3.1 Homology Theory

Denote $R - \mathbf{MOD}$ be the category of left R-modules and $\mathbf{TOP}(2)$ be the category of pairs (X, A) and

$$k \colon \mathbf{TOP}(2) \to \mathbf{TOP}(2)$$

 $(X, A) \mapsto (A, \varnothing)$

be the forgetful functor.

Definition 3.1 (Eilenberg-Steenrod Axioms). A homology theory on **TOP**(2) consists

- 1. a family of functors $h_n : \mathbf{TOP}(2) \to R \mathbf{MOD}$,
- 2. a family of natural transformations $\partial_n : h_n \to h_{n-1} \circ k$ such that
 - (a) Homotopy invariance: $h_n(f_0) = h_n(f_1)$ for $f_0 \simeq f_1$.
 - (b) Exact sequence:

$$\cdots \longrightarrow h_{n+1}(X,A) \xrightarrow{\partial_{n+1}} h_n(A) \longrightarrow h_n(X) \longrightarrow h_n(X,A) \longrightarrow \cdots$$

for any pair (X, A).

(c) Excison: Given a pair (X, A), for any $U \subset A$ such that $\overline{U} \subset \text{Int}(A)$, then inclusion induces an isomorphism $h_n(X - U, A - U) \to h_n(X, A)$.

Proposition 3.2. Given two pairs (X_i, A_i) , i = 1, 2, we get an isomorphism

$$\bigoplus_{i=1}^{2} h_n\left(X_i,A_i\right) \to h_n\left(X_1 \sqcup X_2,A_1 \sqcup A_2\right).$$

Proof. Consider the commutative diagram for $A_i = \emptyset$.

Injectivity of $i_1 \oplus i_2$ is easy to check. For its surjectivity, take $c \in h_n(X_1 \sqcup X_2)$, we have $j_1(c) = j_1 \circ i_1 \circ a_1^{-1}(j_1(c))$. Then $c - i_1 \circ a_1^{-1}(j_1(c)) \in \ker j_1$. Therefore, there exists $x \in h_n(X_2)$ such that $i_2(x) = c - i_1(a_1^{-1} \circ j_1(c))$. Then $c = i_1(y) + i_2(x)$ where $y = a_1^{-1} \circ j_1(c) \in h_n(X_1)$.

The general case will be proved later.

Let A = * be a single point. Define $\widetilde{h}(X) := h(X, *)$.

Assume there is a map $r: X \to A$ such that $r \circ i \simeq id$. Then $i_*: h_n(A) \to h_n(X)$ is injective. We get short exact sequences

$$0 \longrightarrow h_n(A) \xrightarrow{i_*} h_n(X) \longrightarrow h_n(X,A) \longrightarrow 0.$$

Then we have splitting $h_n(X) \cong h_n(A) \oplus h_n(X,A)$ and $h_n(X,A) = \ker r_*$. When A = *, take $r = c \colon X \to *$, then $\widetilde{h_n}(X) = h_n(X,*) = \ker (c_* \colon h_n(X) \to h_n(*))$.

Proposition 3.3. Let $A \hookrightarrow X$ be a cofibration. Then the quotient map induces an isomorphism $j_*: h_n(X,A) \to h_n(X/A,*)$.

Proof. Apply excision to $(X \cup CA, CA)$ for U = the cone point of CA, we have $h_n(X, A) \cong h_n(X \cup CA, CA)$. When $A \hookrightarrow X$ is a cofibration, $CA \hookrightarrow X \cup CA$ is a cofibre. Since CA is contractible, $X \cup CA/CA \cong X \cup CA$. Then $h_n(X \cup CA, CA) \cong h_n(X/A, *)$.

Proposition 3.4. Let (X,*) and (Y,*) be well-pointed spaces and $f: X \to Y$ is a pointed map. Then the cofibre sequence $X \xrightarrow{f} Y \xrightarrow{f^1} C(f)$ induces an exact sequence

$$\widetilde{h_n}(X) \xrightarrow{f_*} \widetilde{h_n}(Y) \xrightarrow{f_*^1} \widetilde{h_n}(C(f))$$
.

Proof. The proof follows the commutative diagrams

$$\widetilde{h_n}(X) \longrightarrow \widetilde{h_n}(Z(f)) \longrightarrow \widetilde{h_n}(Z(f), X)$$

$$\cong \bigvee_{\cong} \bigvee_{\cong} \bigvee_{\cong} \bigvee_{\cong} \bigvee_{\widetilde{h_n}(X) \longrightarrow \widetilde{h_n}(Y) \longrightarrow \widetilde{h_n}(C(f))}$$

and

$$\begin{array}{c} X \times \partial I \xrightarrow{(\mathrm{id},f)} X \sqcup Y \\ \downarrow & \downarrow \\ X \times I \longrightarrow Z(f) \end{array}$$

Proposition 3.5. Given a triple (X, A, B). Assume $B \hookrightarrow X$ is a cofibration, we get an exact sequence

$$\cdots \longrightarrow h_n(A,B) \longrightarrow h_n(X,B) \longrightarrow h_n(X,A) \xrightarrow{\partial} h_{n-1}(A,B) \longrightarrow \cdots$$

Proof. Applying excision, we know that (X, A, B) and $(X \cup CB, A \cup CB, CB)$ have the same sequence. Applying homotopy equivalence, $(X \cup CB, A \cup CB, CB)$ and (X, A, *) have the same sequence. The triple sequence of (X, A, *) is the reduced pair sequence of (X, A).

3.1.1 Suspension Isomorphism

Given a pair (X, A), we have the suspension isomorphism

$$\sigma: h_n(X, A) \to h_n(\partial I \times X \cup I \times A, \{0\} \times X \cup I \times A)$$

by excision for $U=(0,1]\times A\cup\{0\}\times X$. Consider the boundary map $\partial_{n+1}\colon h_{n+1}(I\times X,\partial I\times X\cup I\times A)\to h_n(\partial I\times X\cup I\times A,\{0\}\times X\cup I\times A)$. Notice that $X\simeq I\times X\simeq\{0\}\times X\cup I\times A$, we have the exact sequence

$$h_{n+1}(I\times X,\partial I\times X\cup I\times A)\xrightarrow{\partial_{n+1}}h_n(\partial I\times X\cup I\times A,\{0\}\times X\cup I\times A)\xrightarrow{}h_n(I\times X,\{0\}\times X\cup I\times A)=0\ .$$

Then ∂_{n+1} is an isomorphism and so is ∂_{n+1}^{-1} . We get isomorphisms

$$h_n(x,A) \longrightarrow h_n(\partial I \times X \cup I \times A, \{0\} \times X \cup I \times A)^{-1} \longrightarrow h_{n+1}((I,\partial I) \times (X,A))$$
.

Choose A = *, define the suspension isomorphism by

$$h_n(X, *) \longrightarrow h_{n+1}^{\sigma}(X \times I, \partial I \times X \cup I \times *)$$

$$\cong \bigvee_{\text{quotient}} \bigvee_{\text{quotient}} (\Sigma X)$$

Assume (X,*) is well-pointed, by Hurwicz map, we have the commutative diagram

$$\pi_n(X) \xrightarrow{\Sigma_*} \pi_n(\Sigma X)$$

$$\downarrow \qquad \qquad \downarrow$$

$$\widetilde{h_n}(X) \xrightarrow{\widetilde{\sigma}} \widetilde{h_{n+1}}(X)$$

3.2 CW-Complex

Definition 3.6. We say X is obtained from A by attaching an n-cell if there exists a push-out diagram

$$S^{n-1} \xrightarrow{\varphi} A$$

$$\downarrow \qquad \qquad \downarrow$$

$$D^n \xrightarrow{\Phi} X$$

where φ is called attaching map and Φ is called characteristic map.

A CW-decomposition of (X, A) is a filtration $A = X^{-1} \subset X^0 \subset \cdots \subset X$ such that

- 1. $X = \bigcup_{n \ge -1} X^n$,
- 2. X^n is obtained from X^{n-1} by attaching n-cells,
- 3. X carries the colimit topology (weak topology).

Proposition 3.7. Let (Y, B) be an n-connected pair, (X, A) be a relative CW-complex of dimension $\leq n$. Then each map $(F, f): (X, A) \to (Y, B)$ is homotopic rel. A to a map into B. When dimension < n, the homotopy class rel. A of maps $X \to B$ is unique.

Proof. Consider

$$\bigsqcup_{k} S_{k}^{q-1} \longrightarrow A \longrightarrow B$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\bigsqcup_{k} D_{k}^{q} \xrightarrow{\Phi^{q}} X^{q} \xrightarrow{F^{q}} Y$$

For any $q \leq n$, $\pi_q(Y, B) = 0$. Then $F^q \circ \Phi^q$ can be homotoped into B rel. $\bigsqcup_k S_k^{q-1}$.

$$\bigsqcup_{k} S_{k}^{q-1} \longrightarrow A \longrightarrow B$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\bigsqcup_{k} D_{k}^{q} \xrightarrow{\Phi^{q}} X^{q} \xrightarrow{F^{q}} Y$$

When dimension of (X,A) < n, apply the argument to $(X \times I, X \times \partial I \cup A \times I)$ which is a relative CW-complex of dimension < n + 1.

Theorem 3.8. Suppose $h: B \to Y$ is n-connected. Then for a CW-complex $X, h_*: [X, B] \to [X, Y]$ is bijective when dim X < n and surjective when dim X = n.

Proof. We map replace Y by Z(h): $B \longrightarrow Z(h) \xrightarrow{\cong} Y$.

Surjectivity: Let $A = \emptyset$. Apply Proposition 3.7 to $(X, \emptyset) \to (Z(h), B)$.

Injectivity: Apply Proposition 3.7 to $(X \times I, X \times \partial I)$.

Theorem 3.9 (Whitehead). Let $f: Y \to Z$ be a map between CW-complexes with dim Y, dim $Z \le n \le \infty$. If $f_*: \pi_q(Y) \to \pi_q(Z)$ is an isomorphism for $0 \le q \le n$, then f is a homotopy equivalence.

Proof. The map $f: Y \to Z$ is n-connected. By Theorem 3.8, $f_*: [Z,Y] \to [Z,Z]$ is surjective. Then there exists $g: Z \to Y$ such that $f \circ g \simeq \operatorname{id}_Z$ and g is n-connected. Use Theorem 3.8 again, there exists $h: Y \to Z$ such that $g \circ h \simeq \operatorname{id}_Y$. Therefore, g is a homotopy equivalence.

Theorem 3.10 (Suspension Theorem). Suppose Y is n-connected and X is a CW-complex. Then $\Sigma_*: [X,Y]^o \to [\Sigma X, \Sigma Y]^o$ is bijective if dim $X \leq 2n$ and is surjective if dim X = 2n + 1.

Proof. We know that $[\Sigma X, \Sigma Y]^o \cong [X, \Omega \Sigma Y]^o$. By Freudethal's Suspension Theorem, Σ_* : $[S^k, Y]^o \to [S^{k-1}, \Sigma Y]^o$ is an isomorphism when $k \leq 2n$ and epimorphism if k = 2n + 1. Notice that $\pi_{k+1}(\Sigma Y) \cong \pi_k(\Omega \Sigma Y)$, σ_* : $[S^k, Y]^o \to [S^k, \Omega \Sigma Y]^o$ is adjoint to Σ_* and is reduced from

$$\begin{split} \sigma \colon Y &\to \Omega \Sigma Y \\ y &\mapsto [t \mapsto (y,t)]. \end{split}$$

Therefore, σ is (2n+1)-connected. Apply Theorem 3.8 to $\sigma_*: [X,Y]^o \to [X,\Omega\Sigma Y]^o$.

3.3 CW-Approximation

Proposition 3.11. Suppose X is obtained from A by attaching (n+1)-cell. Then (X, A) is n-connected. *Proof.* Consider the push-out diagram

$$S^n \longrightarrow A$$

$$\downarrow \qquad \qquad \downarrow$$

$$D^{n+1} \longrightarrow X$$

The Excision Theorem of push-out shows that $\pi_0(X, A) = 0$ and $\pi_q(D^{n+1}, S^n) = 0$ for any $1 \le q \le n$. Then $(\Phi, \varphi) \colon (D^{n+1}, S^n) \to (X, A)$ is (n-1)-connected. When $k \le n-1$, $0 = \pi_k(D^{n+1}, S^n) \to \pi_n(X, A)$ is an isomorphism.

Theorem 3.12. Let $f: A \to Y$ be a k-connected map. Then for each n > k, there exists a relative CW-complex (X, A) with cells in dim $\in \{k + 1, \dots, n\}$ and an n-connected extension $F: X \to Y$ of f.

Proof. When $n=1,\ k=0$, the proof is trivial. Consider $k=n-1,\ n\geq 2$. Assume $f\colon A\to Y$ is (n-1)-connected. Replace Y by Z(f):

Assume $f: A \to Y$ is an inclusion. Let $(\Phi_j, \varphi_j): (D^n, S^{n-1}) \to (Y, A)$ be a set of generators of $\pi_n(Y, A)$. Attach n-cells on A using φ_j . Regard Φ_j as a null-homotopy of $f \circ \varphi_j$. F is obtained by push-out property.

And then $F_*: \pi_n(X, A) \to \pi_n(Y, A)$ is an epimorphism. Chosider the diagram

$$\pi_{n}(A) \longrightarrow \pi_{n}(X) \longrightarrow \pi_{n}(X, A) \longrightarrow \pi_{n-1}(A) \longrightarrow \pi_{n-1}(X) \longrightarrow 0$$

$$\downarrow \cong \qquad \qquad \downarrow F_{*} \qquad \qquad \downarrow$$

Notice that $F_*: \pi_n(X) \to \pi_n(Y)$ is also an epimorphism. Then by chasing diagram, we know that $F_*: \pi_{n-1}(X) \to \pi_{n-1}(Y)$ is an isomorphism.

Corollary 3.13. Given any space Y, there exists a CW-complex X and a map $F: X \to Y$ such that $F_*: \pi_n(X) \to \pi_n(Y)$ is an isomorphism for any $n \ge 0$. Such X is called a CW-approximation of Y.

Theorem 3.14. Let Y be a k-connected CW-complex. Then there exists a CW-complex X such that

- 1. X is homotopy equivalent to Y;
- 2. $X^k = \{*\}.$

Proof. Apply Theorem3.12 to $A = \{*\} \hookrightarrow Y$ which is a k-connected map.

3.4 Eilenberg-MacLane Space

3.4.1 Remarks about Compactly Generated Spaces

Definition 3.15. A Hausdorff space X is said to be compactly generated if for any compact subset K, a subset $A \subset X$ satisfies $A \cap K$ is closed, then A is closed in X.

Example 3.16. There spaces are compactly generated spaces:

- locally compact Hausdorff spaces,
- metric spaces,
- CW-complexes with finite cells in each dimension.

Given a Hausdorff space X, we can put a new topology \mathcal{T} on X by imposing:

$$A \subset X$$
 is \mathcal{T} -closed $\iff A \cap K$ is closed for any compact subset $K \subset X$

such that X is compactly generated under \mathcal{T} .

Fact 3.17. If X, Y are both compactly generated spaces, then $X \times Y$ needs not to be compactly generated.

Definition 3.18. We denote by $X \times_k Y$ the product with compactly generated topology. We denote by kF(X,Y) the space of continuous maps from X to Y, equipped the compactly generated topology.

Theorem 3.19. Let X, Y, Z be compactly generated spaces. Then

1. The evaluation map

$$kF(Y,Z) \times_k Y \to Z$$

 $(f,g) \mapsto f(g)$

is continuous.

2. The adjoint map

$$kF(X, kF(Y, Z)) \rightarrow kF(X \times_k Y, Z)$$

is a homeomorphism.

Proposition 3.20. Suppose $\pi_j(Y) = 0$ for j > n. Let X be obtained from A by attaching cells of $\dim \geq n + 2$. Then $\iota_* \colon [X,Y] \to [A,Y]$ is a bijection.

Proof. Surjectivity: Given $f: A \to Y$ and attaching map $\varphi: S^k \to A, k \ge n+1$. Then $f \circ \varphi: S^k \to Y$ is null-homotopic which can be extended over X.

Injectivity: Apply the argument to $(X \times I, X \times \partial I \cup A \times I)$.

Definition 3.21. Let π be an abelian group. An Eilenberg-MacLane space of type $K(\pi, n)$ is a CW-complex such that

$$\pi_j(X) = \begin{cases} \pi, & i = j; \\ 0, & n \neq j. \end{cases}$$

Proposition 3.22. Suppose X_1, X_2 are (n-1)-connected CW-complex with $n \geq 2$. Then

$$\pi_n(X_1) \oplus \pi_n(X_2) \to \pi_n(X_1 \vee X_2)$$

is an isomorphism.

Proof. We can assume $X_i^{n-1} = \{*\}$ by CW-approximation. Therefore, cells in $X_1 \times X_2$ have dimension $0, n, \geq 2n$. Then $X_1 \times X_2$ is obtained from $X_1 \vee X_2$ by attaching cells of dim $\geq 2n$. We have $\pi_n(X_1 \vee X_2) \to \pi_n(X_1 \times X_2) = \pi_n(X_1) \oplus \pi_n(X_2)$ is an isomorphism.

Theorem 3.23. Let X be a (n-1)-connected CW-complex. Suppose Y satisfies $\pi_j(Y) = 0, \forall j > n \geq 2$. Then the map $h_* \colon [X,Y]^o \to \operatorname{Hom}(\pi_n(X),\pi_n(Y))$ is a bijection.

Proof. We can assume $X^{n-1} = \{*\}$ by Proposition 3.20. Then $[X,Y]^o = [X^{n+1},Y]^o$. Notice that $\pi_n\left(X^{n+1}\right) = \pi_n(X)$, we only need to prove $h_X \colon \left[X^{n+1},Y\right]^o \to \operatorname{Hom}\left(\pi_n\left(X^{n+1}\right),\pi_n(Y)\right)$ is a bijection. We know $X^n = \bigvee_j S_j^n \coloneqq B$. Applying homotopy, we may assume all attaching maps of (n+1)-cells are cased. Then X^{n+1} is the mapping cone $f \colon A \coloneqq \bigvee_k S_k^n \to \bigvee_j S_j^n = B$.

We have the cofibre sequence

$$[A,Y]^o \longleftarrow [B,Y]^o \longleftarrow \left[X^{n+1},Y\right]^o \longleftarrow \left[\Sigma A,Y\right]^o \longleftarrow \cdots$$

Notice that

$$[\Sigma A, Y]^o = \left[\Sigma \bigvee_k S_k^n, Y\right]^o = \left[\bigvee_k \Sigma S_k^n, Y\right]^o = \left[\bigvee_k S_k^{n+1}, Y\right]^o = 0$$

because $[h] = \sum_{k} [h_k]$ and $\pi_{n+1}(Y) = 0$.

Claim 10.

$$\pi_n(A) \xrightarrow{f_*} \pi_n(B) \longrightarrow \pi_n(X^{n+1}) \longrightarrow 0$$

is exact.

Proof of Claim. Consider the push-out diagram:

$$\begin{array}{ccc}
A & \xrightarrow{f} & B \\
\downarrow & & \downarrow \\
CA & \xrightarrow{} & X^{n+1}
\end{array}$$

We know

$$\pi_m(A) \longrightarrow \pi_m(CA) \longrightarrow \pi_m(CA, A) \xrightarrow{\cong} \pi_{m-1}(A) \longrightarrow 0$$

Then $\pi_m(CA, A) = 0$ for any $m \le n$. We know f is (n-1)-connected. Applying excision, $\pi_m(CA, A) \to \pi_m(X^{n+1}, B)$ is an isomorphism for $m \le 2n - 1$. We have an exact sequence

$$\pi_m(B) \longrightarrow \pi_m\left(X^{n+1}\right) \longrightarrow \pi_m\left(X^{n+1}, B\right) \longrightarrow \pi_{m-1}(B)0$$

when $m \leq n$. Then

$$\pi_{n+1}(CA, A) \xrightarrow{\text{excision}} \pi_{n+1} \left(X^{n+1}, B \right) \longrightarrow \pi_n(B) \longrightarrow \pi_n(X) \longrightarrow 0$$

$$\downarrow \cong \qquad \qquad \downarrow \pi_n(A)$$

Apply $\operatorname{Hom}(-, \pi_n(Y))$, we get an exact sequence

Claim 11. h_A and h_B are bijections.

Proof of Claim. We have

$$\operatorname{Hom}\left(\pi_{n}(A), \pi_{n}(Y)\right) = \operatorname{Hom}\left(\pi_{n}\left(\bigvee_{j} S_{j}^{n}\right), \pi_{n}\left(Y\right)\right) = \operatorname{Hom}\left(\bigoplus_{j} \pi_{n}\left(S_{j}^{n}\right), \pi_{n}\left(Y\right)\right)$$
$$= \prod_{j} \operatorname{Hom}\left(\pi_{n}\left(S_{j}^{n}\right), \pi_{n}\left(Y\right)\right) \cong \prod_{j} \pi_{n}(Y)$$

and

$$[A,Y]^o = \left[\bigvee_j S_j^n,Y\right]^o = \prod_j \left[S_j^n,Y\right]^o = \prod_j \pi_n(Y).$$

Finally, by claim that $\left[X^{n+1},Y\right]^o \to [B,Y]^o$ is injective, we get our conclusion by something like Five Lemma.

Theorem 3.24. Let π be an abelian group and $n \geq 2$. Then the Eilenberg-MacLane space $K(\pi, n)$ exists and is unique up to homotopy.

Proof. Uniqueness: Assume X, Y are both $K(\pi, n)$. Then by Theorem 3.23,

$$h_X : [X, Y]^o \to \operatorname{Hom}(\pi_n(X), \pi_n(Y)) = \operatorname{Hom}(\pi, \pi)$$

is a bijection. Choose $f: X \to Y$ such that $h_X([f]) = \mathrm{id}$. Then f is a weak homotopy equivalence. Whitehead Theorem gives us that f is in fact a homotopy equivalence.

Existence: Consider a free resolution

$$F_1 \longrightarrow F_0 \longrightarrow \pi \longrightarrow 0$$

with relators F_1 and generators F_0 . Construct X^{n+1} as the mapping cone of $g\colon F_1\hookrightarrow\bigvee_k S_k^n\to\bigvee_j S_j^n \hookleftarrow F_0$. Therefore, X^{n+1} is (n+1)-connected and $\pi_n\left(X^{n+1}\right)=\pi$. We attach cells of dim $\geq n+2$ to eliminate $\pi_m(X)$ for $m\geq n+1$, by Zorn's Lemma, we finish our construction.

Definition 3.25. $K(\pi,0) := \pi$ equipped with discrete topology. $K(\pi,1)$ is constructed similar to Theorem 3.24, but the uniqueness will be proved later.

3.5 Spectral Homology

In this section, we assume that π is finitely generated and X is compactly generated.

Definition 3.26. A spectrum is a sequence of pairs $\{(E_n, e_n)\}_{n\geq 0}$ where E(n) is a pointed space, $e_n \colon \Sigma E(n) \to E(n+1)$ is a pointed map. We say a spectrum is an Ω -spectrum if $\varepsilon_n \colon E(n) \to \Omega E(n+1)$ is a homotopy equivalence, where ε_n is the adjoint of e_n .

Example 3.27. 1. Sphere Spectrum: $E(n) = S^n$, $e_n : \Sigma S^n \to S^{n+1}$ is the identity map

$$\Sigma S^n = S^n \wedge S^1 \cong S^{n+1}$$
$$\mathbb{R}^{n+1} \times I \hookrightarrow \mathbb{R}^{n+2}.$$

- 2. Eilenberg-MacLane Spectrum: Fix an abelian group π . Let $E(n) = K(\pi, n)$. Construct $e_n : \Sigma K(\pi, n) \to K(\pi, n + 1)$ as follows:
 - (a) Milnor: $\Omega K(\pi, n+1)$ is a CW-complex. Then $\left[S^k, \Omega K(\pi, n+1)\right]^o = \left[S^{k+1}, K(\pi, n+1)\right]^o$ and then $\Omega K(\pi, n+1) \cong K(\pi, n)$. Define $e_n \colon \Sigma K(\pi, n) \to K(\pi, n+1)$ as the adjoint map; or
 - (b) Notice that $\pi_k(\Sigma K(\pi, n)) = \begin{cases} 0, & k \leq n \\ \pi, & k = n + 1 \end{cases}$ because $\pi_k(K(\pi, n)) \to \pi_{k+1}(\Sigma K(\pi, n))$ is an isomorphism when $k \leq 2n 2$. Then $K(\pi, n + 1)$ is obtained from $\Sigma K(\pi, n)$ by attaching cells of dim $\geq n + 3$. Take $e_n : \Sigma K(\pi, n) \to K(\pi, n + 1)$ to be the inclusion map.

Definition 3.28. A reduced homology theory consists of a family of functors $\widetilde{h}_n \colon \mathbf{TOP}^o \to R - \mathbf{MOD}$ and isomorphisms $\sigma_n \colon \widetilde{h}_n \to \widetilde{h}_{n+1} \circ \Sigma$ that satisfy

- 1. Homotopy invariance: $\widetilde{h}_n(f_0) = \widetilde{h}_n(f_1)$ if $f_0 \simeq f_1$.
- 2. Exactness: each cofibre sequence

$$X \xrightarrow{f} Y \xrightarrow{f'} C(f)$$

induces an exact sequence

$$\widetilde{h}_*(X) \longrightarrow \widetilde{h}_*(Y) \longrightarrow \widetilde{h}_*(C(f)) \ .$$

Remark 3.29. Unreduced theory \iff reduced theory. To see that, define $h_n(X) = \widetilde{h}_n(X \sqcup \{*\})$ and $h_n(X,A) = \widetilde{h}_n(C(X,A))$.

Let $E = \{(E(n), e_n)\}$ be a spectrum. We get suspension maps

$$\left[S^{n+k}, E(n) \wedge X\right]^o = \pi_{n+k}(E(n) \wedge X) \to \pi_{n+k+1}(E(n+1) \wedge X) = \left[S^{n+k+1}, E(n+1) \wedge X\right]^o$$

and

$$\Sigma(E(n) \wedge X) = S^1 \wedge (E(n) \wedge X) = \Sigma E(n) \wedge X.$$

Define $E_n(X) := \operatorname{colim}_{k \to \infty} \pi_{n+k}(E(k) \wedge X)$, and $\sigma_n : E_n(X) \to E_{n+1}(\Sigma X)$ is defined via $[S^{n+k}, E(n) \wedge X] \to [S^{n+k+1}, E(n) \wedge \Sigma X]$.

Theorem 3.30. $\{(E_n(X), \sigma_n)\}$ defines a reduced homology theory.

Proof. Homotopy invariance is by definitions.

Injectivity of σ_n : Suppose $x \in \ker \sigma_n$, there exists $[f] \in [S^{n+k}, E(k) \wedge X]^o$ such that [f] represents x and $f \wedge \operatorname{id}_{S^1} : S^{n+k} \wedge S^1 \to (E(k) \wedge X) \wedge S^1$ is null-homotopic. Then

$$S^{n+k} \wedge S^1 \xrightarrow{f \wedge \mathrm{id}} E(k) \wedge \Sigma X \xrightarrow{e_k \wedge \mathrm{id}} E(k+1) \wedge X$$

is null-homotopic. Note that $[(e_k \wedge id) \circ (f \wedge id)]$ represents x as well. We must have x = 0. Surjectivity of σ_n : Given $g: S^{n+k+1} \to E(k) \wedge X \wedge S^1$. Then define

$$f \colon \mathrel{S^{n+k+1}} \stackrel{g}{-\!\!\!-\!\!\!-\!\!\!-} E(k) \wedge X \wedge S^1 \stackrel{e_k}{-\!\!\!\!-\!\!\!\!-\!\!\!\!-} E(k+1) \wedge X$$

and we have $\sigma_n([f]) = [g]$.

Exactness of Cofibre Sequence: Consider

$$E_n(X) \xrightarrow{f_n} E_n(Y) \xrightarrow{f'_n} E_n(C(f))$$
.

Suppose $z \in \ker f'_n$ and write $h: S^{n+k} \to E(k) \wedge Y$ to represent z. Then $(\operatorname{id}_{E(k)} \wedge f') \circ h: S^{n+k} \to E(k) \wedge C(f)$ is null-homotopic. Consider cofibre sequences:

$$S^{n+k} \longrightarrow C(\mathrm{id}) \longrightarrow S^{n+k} \wedge S^1 \longrightarrow S^{n+k} \wedge S^1$$

$$\downarrow h \qquad \downarrow \beta \qquad \downarrow h \wedge \mathrm{id} \wedge \mathrm{id} \qquad \downarrow h \wedge \mathrm{id} \wedge \mathrm{id} \qquad \downarrow h \wedge \mathrm{id} \wedge \mathrm{id}$$

where H is given by null-homotopy of $(id \land f') \circ h$ and β is the quotient of H and the first two squares are commutative. These indece $h \land id$ such that the last square is commutative up to homotopy. Therefore, under $\operatorname{colim}_{k \to \infty}$, we have

$$f_*[\beta] = [(\mathrm{id} \wedge f) \circ \beta] = [h \wedge \mathrm{id}] = [h].$$

Remark 3.31. In Example 3.27,

1. When $E = \{(S^n, \Sigma)\}_{n > 0}$,

$$E_n(X) = \operatorname{colim}_{k \to \infty} \pi_{n+k} \left(S^k \wedge X \right) = \operatorname{colim}_{k \to \infty} \pi_{n+k} \left(\Sigma^k X \right) = \pi_n^s(X),$$

which is the stable homotopy group.

2. When $E = \{(K(\mathbb{Z}, n), \sigma_n)\}_{n > 0}$,

$$E_n(X) = \operatorname{colim}_{k \to \infty} \pi_{n+k} \left(K(\mathbb{Z}, n) \wedge X \right) \cong \widetilde{H}_n(X, \mathbb{Z}),$$

which is the reduced singular homology.

Theorem 3.32 (Brown's Representation Theory). Let $\{(h_n, \partial_n)\}$ be a homology theory. Then there exists a sectrum $E = \{(E(n), e_n)\}$ and natural isomorphisms $h_n(X, A) \cong \operatorname{colim}_{k \to \infty} \pi_{n+k} (E(k) \wedge (X^+/A^+))$ for all finite CW-complexes (X, A), where $X^+ = X \sqcup \{*\}$ and $A^+ = A \sqcup \{*\}$.

4 Cohomology

4.1 Axiomatic Cohomology

Definition 4.1. A cohomology theory consists of

- 1. a family of contravariant functors $h^n : \mathbf{TOP}(2) \to R \mathbf{MOD}$,
- 2. a family of natural transformations $\delta^n : h^{n-1} \circ K \to h^n$, where $K : (X, A) \to (A, \emptyset)$ is the restriction, that satisfy
 - (a) H-Invariance: $h^n(f_0) = h^n(f_1)$ if $f_0 \simeq f_1$.
 - (b) Exact Sequence: Given (X, A),

$$\cdots \longrightarrow h^{n-1}(A) \xrightarrow{\delta} h^n(X,A) \longrightarrow h^n(X) \longrightarrow h^n(A)$$

is exact.

(c) Excision: Given a pair (X, A) with $U \subset A$ and $\overline{U} \subset Int(A)$, then the restriction $h^n(X, A) \to h^n(X - U, A - U)$ is an isomorphism for any n.

Definition 4.2. A reduced cohomology theory is given by $\widetilde{h}^n(X) := \ker(h^n(X) \to h^n(\{*\}))$ which fits into a splitting exact sequence

$$0 \longrightarrow h^n(X, *) \longrightarrow h^n(X) \longrightarrow h^n(*) \longrightarrow 0.$$

And we have $\widetilde{h}^n(X) \cong h^n(X,*)$.

4.1.1 Mayer-Vietoris Sequence

Definition 4.3. Given $A, B \subset X$, we say the pair (A, B) is excisive if the restriction $h^*(A \cup B, A) \to h^*(B, A \cap B)$ is an isomorphism.

Lemma 4.4. The followings are equivalent:

- 1. (A, B) is excisive.
- 2. (B, A) is excisive.

Proof. The proof is given by chasing the following diagram, where the "crossing" diagram is given by the exact sequences of triples $(A \cup B, A, A \cap B)$ and $(A \cup B, B, A \cap B)$.

Assume a is an isomorphism.

Injectivity of b: Assume b(x) = 0. Then $g \circ \beta(x) = b(x) = 0$. Therefore, there is y such that $\alpha(y) = \beta(x)$. Then $a(y) = f \circ \alpha(y) = f \circ \beta(x) = 0$. Note that a is an isomorphism, y = 0. Therefore $\beta(x) = \alpha(y) = 0$.

Then there is z such that $\eta(z) = x$ where $\eta \colon h^*(B, A \cap B) \to h^*(A \cup B, B)$. Note that $z = a\left(a^{-1}(z)\right) = f \circ \alpha\left(a^{-1}(z)\right)$. Then we have $x = \eta \circ f\left(\alpha\left(a^{-1}(z)\right)\right) = 0$.

Surjectivity of b: Take $x \in h^*(A, A \cap B)$. Note that $a(\delta(x)) = f \circ \alpha \circ \delta(X) = 0$ where $\delta \colon h^*(A, A \cap B) \to h^*(A \cup B, A)$. Then $\delta(x) = 0$ and then there exists y such that g(y) = x. Note that $f(y - \alpha \circ a^{-1} \circ f(y)) = f(y) - f(y) = 0$. Then there exists $z \in h^*(A \cup B, B)$ such that $\beta(z) = y - \alpha \circ a^{-1} \circ f(y)$. Therefore $b(z) = g \circ \beta(z) = g(y - \alpha \circ a^{-1} \circ f(y)) = g(y) = x$.

Assume (X_0, X_1) is an excisive pair such that $X = X_0 \cup X_1$. We get a connecting map

$$\Delta : h^{n-1}(X_0 \cap X_1) \to h^n(X_0, X_0 \cap X_1) \cong h^n(X, X_1) \to h^n(X).$$

Then we have the Mayer-Vietoris exact sequence

$$\leftarrow$$
 $\Delta h^n(X_0, X_1) \leftarrow h^n(X_0) \oplus h^n(X_1) \leftarrow h^n(X) \leftarrow \Delta h^{n-1}(X_0, X_1) \leftarrow \Delta h^n(X_0, X_1) \leftarrow \Delta h^n(X$

$$i_0^* x_0 - i_1^* x_1 \leftarrow (x_0, x_1)$$

4.1.2 Multiplicative Structure

Definition 4.5. A cup product on (h^*, δ^*) consists of a family of R-linear maps

$$h^m(X,A) \otimes_R h^n(X,B) \to h^{m+n}(X,A \cup B)$$

for excisive pairs (A, B), which satisfies

- 1. Naturality: $f^*(x \cup y) = f^*(x) \cup f^*(y)$.
- 2. Stability: $\delta(a) \cup x = S_A (a \cup \tau_A x)$ where $S_A : h^m(A, A \cap B) \stackrel{\cong}{\to} h^m(A \cup B, B) \stackrel{\delta}{\to} h^{r+1}(X, A \cap B)$ and $\tau_A : h^n(X, B) \to h^n(A, A \cap B)$.
- 3. Unity: There is $1 \in h^0(\{*\})$ with $1_X = c^*(1)$, where $c: X \to \{*\}$ is contraction map, satisfies

$$1_X \cup x = x \cup 1_X = x.$$

- 4. Associativity: $(x \cup y) \cup z = x \cup (y \cup z)$.
- 5. Commutativity: $x \cup y = (-1)^{|x| \cdot |y|} y \cup x$.

Definition 4.6. A cross product consists of *R*-linear maps

$$h^m(X,A) \otimes_B h^n(Y,B) \xrightarrow{\times} h^{m+n}((X,A) \times (Y,B))$$

that satisfies

- 1. Naturality: $(f \times g)^*(a \times b) = f^*a \times g^*b$.
- 2. Stability: $\delta x \times y = \delta'(x \times y)$ where $x \in h^*(A)$ and $y \in h^*(Y, B)$ and $\delta' : h^k(A \times (Y, B)) \xrightarrow{\cong} h^k(A \times Y \cup X \times B, X \times B) \xrightarrow{\delta} h^k((X, A) \times (Y, B))$.
- 3. Unity: There is $1 \in h^0(\{*\})$ such that $1 \times x = x \times 1 = x$.
- 4. Associativity: $(x \times y) \times z = x \times (y \times z)$.

5. Commutativity: $x \times y = (-1)^{|x| \cdot |y|} \tau^*(y \times x)$ where $\tau \colon X \times Y \to Y \times X$, $(x, y) \mapsto (y, x)$.

In fact, the two products are equivalent. If we have a cup product, we can get a cross product by

$$x \times y := \operatorname{pr}_1^*(x) \cup \operatorname{pr}_2^* y, \quad x \in h^m(X, Z), y \in h^n(Y, B)$$

where pr_i is the projection map. If we have a cross product, let $d\colon X\to X\times X$ be the diagonal map. We can define

$$x \cup y \coloneqq d^*(x \times y).$$

When either (1) or (2) is imposed, we say the cohomology theory (h^*, δ^*) is multiplicative.

4.2 The Thom Isomorphism

Denote $h^* := h^*(\{*\})$. The coefficient group $h^a st(-)$ is additive and multiplicative cohomology. Then $h^*(X, A)$ is a h^* -module given by

$$a \cdot x \coloneqq c^*(a) \cup X$$
,

where $c: X \to \{*\}$ is the contraction.

Theorem 4.7 (Leray-Hirsch). Let $(E, E') \stackrel{p}{\rightarrow} B$ be relative filtration over a CW-complex B. Assume there are finitely many elements $t_j \in h^*(E, E')$ such that $t_j|_b \in h^*(E_b, E'_b)$ forms a basis as h^* -modules for any $b \in B$. Then $h^*(E, E')$ is a free $h^*(B)$ -module with basis $\{t_j\}$ given by $a \cdot x \mapsto p^*(a) \cup x$.

Proof. Given $C \subset B$, we write $h^*(C) \langle t \rangle$ for the free $h^*(C)$ -module generated by formal variables $\{t_j\}$. We get a R-linear map

$$\varphi(C) \colon h^*(C) \langle t \rangle \to h^* (E|_C, E'|_C)$$
$$\sum a_j t_j \mapsto \sum p^* (a_j) \cup t_j.$$

Notice that the results holds for B^0 . Assume the result holds on B^{n-1} . Decompose $B^n = U \cup V$ where $U = B^n$ – one point from each n-cell and V is the union of all open n-cells.

Notice that $U \cap V$ is disjoint unions of S^{n-1} , $\varphi(U \cap V)$: $h^*(U \cap V) \langle t \rangle \to h^*(E_{U \cap V}, E'|_{U \cap V})$ is an isomorphism by induction.

Notice that U deformation retracts into B^{n-1} , $\varphi(U): h^*(U) \langle t \rangle \to h^*(E|_U, E'|_V)$ is an isomorphism. Similarly, because V deformation retracts onto disjoint of points, $\varphi(V)$ is also an isomorphism.

Appling Mayer-Virtoris sequence

$$h^{*}(U \cup V) \langle t \rangle \xrightarrow{\varphi} h^{*}(E|_{U \cup V}, E'|_{U \cup V})$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$h^{*}(U) \langle t \rangle \oplus h^{*}(V) \langle t \rangle \xrightarrow{\varphi} h^{*}(E|_{U}) \oplus h^{*}(E'|_{V})$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$h^{*}(U \cup V) \langle t \rangle \xrightarrow{\varphi} h^{*}(E|_{U \cap V}, E|_{U \cap V})$$

we know that $\varphi(U \cup V)$ is an isomorphism and $h^*(U \cup V) \langle t \rangle$ is a free module.

Definition 4.8. Given a relative filtration $p: (E, E') \to B$, we say $t(p) \in h^n(E, E')$ is a Thom class if $t(p)|_b$ generates $h^n(E_b, E'_b)$ for each $b \in B$.

Theorem 4.9 (Thom Isomorphism). Let $p: (E, E') \to B$ be a relative filtration. Suppose $t(p) \in h^n(E, E')$ is a Thom class. Then

$$\Phi \colon h^k(B) \to h^{k+n} (E, E')$$
$$b \mapsto p^*(b) \cup t(p)$$

is an isomorphism.

Proof. Apply Leray-Hirsch Theorem (Theorem 4.7) to $\{t_j\} = t(p)$.

Definition 4.10. We further assume $p^* : h^*(B) \to h^*(E)$ is an isomorphism. We define the Euler class $e(p) \in h^(B)$ by

$$h^n(E, E') \longrightarrow h^n(E) \xrightarrow{(p^*)^{-1}} h^*(B)$$
.

$$t(p) \longmapsto e(p)$$

Theorem 4.11 (Gysin Sequence). Assume $t(p) \in h^n(E, E')$ is a Thom class and $p^* : h^*(B) \to h^*(E)$ is an isomorphism. Then we have the Gysin's sequence

$$\longrightarrow h^{k-1}\left(E'\right) \longrightarrow h^{k-n}(B) \xrightarrow{\cup e(p)} h^k(B) \xrightarrow{p^*} h^k\left(E'\right) \longrightarrow$$

Proof. Consider the exact sequence of pair (E, E')

$$\begin{split} h^{k-1}\left(E'\right) & \stackrel{\delta}{\longrightarrow} h^{k}\left(E,E'\right) & \stackrel{j}{\longrightarrow} h^{k}(E) & \longrightarrow h^{k}\left(E'\right) & \longrightarrow \\ & \cong \left| \Phi \right| & \cong \left| p^{*} \right. \\ & h^{k-n}(B) & \stackrel{\cup e(p)}{\longrightarrow} h^{k}(B). \end{split}$$

For any $b \in h^{k-n}(B)$,

$$j(\Phi(b)) = j(p^*(b) \cup t(p)) = p^*(b) \cup p^*(e(p)).$$

Let $\xi \colon E \to B$ be a real vector bundle of rank n, $E^0 = \text{complement of zero section of } E$. Then $\left(E_b, E_b^0\right) = (\mathbb{R}^n, \mathbb{R}^n - \{0\}) = \left(D^n, S^{n-1}\right)$.

Proposition 4.12. Assume $\xi \colon E \to B$ admits a nowhere vanishing section. Then $e(\xi) = 0$.

Proof. Take $s: B \to E^0$. The Euler class factors through $p \circ s = id$. Chasing the diagram,

$$h^{n}\left(E,E^{0}\right) \xrightarrow{j_{1}} h^{n}(E) \xrightarrow{(p^{*})^{-1}} h^{n}(B)$$

$$\downarrow^{j_{2}} \qquad \downarrow^{s^{*}}$$

$$h^{n}\left(E^{0}\right)$$

$$t(s) \longmapsto e(s)$$

 $j_2 \circ j_1 = 0$. Then $e(\xi) = 0$.

4.3 Singular Cohomology

Let (X, A) be a pair of spaces. Then we have singular chain complexes $S_*(X)$ and $S_*(X, A) := S_*(X)/S_*(A)$. Given an R-module M. We define

$$S^n(X, A; M) := \operatorname{Hom}_R(S_n(X, A), M)$$
.

We have the cohomology map

$$\delta \colon S^n(X,A) \mapsto S^{n+1}(X,A)$$

$$\varphi \mapsto (-1)^{n+1} \varphi \circ \partial.$$

Since $\partial^2 = 0$, $\delta^2 = 0$. Define $H^n(X, A; M) := \ker \delta / \operatorname{im} \delta$.

Theorem 4.13 (Universal Coefficient Theorem). We have exact sequences:

1.

$$0 \longrightarrow \operatorname{Ext}(H_{n-1}(X,A;R),M) \longrightarrow H^n(X,A,M) \longrightarrow \operatorname{Hom}_R(H_n(X,A),M) \longrightarrow 0$$
.

It splits but does not split naturally.

2.

$$0 \longrightarrow H^n(X, A; R) \otimes M \longrightarrow H^n(X, A, M) \longrightarrow \operatorname{Tor} (H^{n+1}(X, A; R), M) \longrightarrow 0$$
.

It splits but does not split naturally.

On the cochain level, we define

$$S^{k}(X,R) \otimes S^{l}(S;R) \to S^{k+l}(X;R)$$
$$\varphi \otimes \psi \mapsto \varphi \cup \psi$$

by

$$\varphi \cup \psi(\sigma) \coloneqq (-1)^{kl} \varphi \left(\sigma|_{[e_0, \cdots, e_k]}\right) \cdot \psi \left(\sigma|_{[e_{k+1}, \cdots, e_{k+l}]}\right)$$

for any simplex $\sigma \colon \Delta^{k+l} \to X$.

Claim 12. $\delta(\varphi \cup \psi) = \delta\varphi \cup \psi + (-1)^{|\varphi|}\varphi \cup \delta\psi$.

Proof. This claim can be checked by definition.

This Claim shows that cup product descends to the cohomology level: The homomorphism

$$\cup : H^k(X;R) \otimes H^l(X;R) \to H^{k+l}(X;R)$$

is well-defined.

Fact 4.14. When (A, B) is an excisive pair, we get a chain equivalence:

$$S_*(A) + S_*(B) \to S_*(A \cup B).$$

We can define relative cohomology:

$$S^*(X,A) \otimes S^*(X,B) \longrightarrow \operatorname{Hom}(S_*(X)/S_*(A) + S_*(B),R) \longrightarrow \operatorname{Hom}(S_*(X)/S_*(A \cup B),R) = S^*(X,A \cup B).$$

Then we have a well-defined homomorphism

$$\cup : H^k(X, A) \otimes H^l(X, B) \to H^{k+l}(X, A \cup B).$$

We need to check that singular cohomology satisfies cohomology axioms. It is only non-trivial to verify

$$[\varphi] \cup [\psi] = (-1)^{|\varphi| \cdot |\psi|} \cdot [\psi] \cup [\varphi].$$

Consider

$$\rho \colon S_n(X) \to S_n(X)$$
$$\sigma \mapsto (-1)^{\frac{n(n+1)}{2}} \overline{\sigma},$$

where $\overline{\sigma} = \sigma|_{[e_n, \dots, e_0]}$.

Fact 4.15. ρ is chain homotopic to id.

Denote $\rho^{\vee} : S^n(X; R) \to S^n(X; R)$ for the map induced by ρ . Then we have $\rho^{\vee}(\varphi \cup \psi) = (-1)^{|\varphi| \cdot |\psi|} \cdot \psi \cup \varphi$.

4.3.1 Existence of Thom Class

Recall $p: (E, E') \to B$ is a relative fibration over a CW-complex. Suppose $t \in H^n(E, E')$ restricts to a basis of the $H^*(\{*\})$ -module $H^n(E_b, E'_b)$, $\forall b \in B$. Then we say $t \in H^n(E, E')$ is a Thom class.

For singular cohomology, $H^*(\{*\}, R) = R$. A necessary condition for the existence of t is $H^n(E_b, E'_b) \cong R$.

Given a path $\gamma: I \to B$ from b_0 to b_1 . We get a transport map

$$\gamma^{\sharp} \colon \ H^{n}\left(E_{b_{0}}, E_{b_{0}}'\right) \overset{i_{b_{0}}^{*}}{\underset{\simeq}{\longleftarrow}} H^{n}\left(\gamma^{*}E, \gamma^{*}E'\right) \xrightarrow{i_{b_{1}}^{*}} \to H^{n}\left(E_{b_{1}}, E_{b_{1}}'\right) \, .$$

Proposition 4.16. Assume $H^n(E_b, E_b') \cong R$. Then a Thom class $t \in H^n(E, E')$ exists if and only if the transport map γ^{\sharp} is independent of γ .

Proof. Assume $t \in H^n(E, E')$ is a Thom class. Then $\gamma^{\sharp}(t|_{b_0}) = t|_{b_1}$ which is independent of the choices of γ .

Conversely, if γ^{\sharp} is independent of γ ,we can apply the argument of Leray-Hirsch Theorem (Theorem 4.7). It is ensured by fixing a generator/basis t_0 of $H^n\left(E_{b_0}, E'_{b_0}\right)$. For any $b \in B$, we get a $t_b = \gamma^{\sharp}\left(t_0\right) \in H^n\left(E_b, E'_b\right)$ where γ connects from b_0 to b. Then use Mayer-Vietoris sequence to glue t.

4.3.2 Orientation

Suppose $\Sigma \hookrightarrow V$ is a linearly embedden n-simplex with ordered vertices A_0, \dots, A_n . Define the orientation of V by $v_1 = A_1 - A_0, v_2 = A_2 - A_1, \dots, v_n - A_n - A_0$.

Fix Δ^n as the standard *n*-simplex. Choose a linear embedding $f: \Delta^n \to V$ such that f sends the barycenter of Δ^n to $o \in V$. Then $[f] \in H_n(V, V^0; \mathbb{Z})$ is a generator where $V^0 = V - \{0\}$. In fact, we have

generator of
$$H_n(V, V^0, \mathbb{Z}) \stackrel{1:1}{\longleftrightarrow}$$
 orientation of V .

Given an orientation generator $o_V \in H_n(V, V^0, \mathbb{Z})$, we get a generator $u_V \in H^n(V, V^0, \mathbb{Z})$ such that $u_V(o_V) = 1$. Then we get

generator of
$$H^n(V, V^0, \mathbb{Z}) \stackrel{1:1}{\longleftrightarrow}$$
 orientation of V .

Let $\xi \colon E \to B$ be a real vector bundle of rank n. An orienting bundle atlas on ξ consists $\{(U_{\alpha}, \varphi_{\alpha})\}$ with $\varphi_{\alpha} \colon \xi^{-1}(U_{\alpha}) \to U_{\alpha} \times \mathbb{R}^{n}$ such that the transition maps $g_{\beta\alpha} \colon U_{\alpha} \cap U_{\beta} \to \mathrm{GL}_{n}(\mathbb{R})$ have positive determinant.

After fixing an orientation on \mathbb{R}^n , an orienting atlas induces an orientation on $\xi \colon E \to B$.

Definition 4.17. An orientation on ξ is an assignment of orientations on E_b such that for any $b \in B$, there is a neighborhood U and a trivialization $\varphi \colon \xi^{-1}(U) \to U \times \mathbb{R}^n$ which is fibrewise orientation-preserving.

Proposition 4.18. Let $\xi: E \to B$ be a real vector bundle. Then ξ is orientable if and only if ξ admits a Thom class $t(\xi) \in H^n(E, E^0, \mathbb{Z})$.

Proof. Given an orienting atlas. We define $t_{U_{\alpha}} = \varphi_{\alpha}^{*}(t_{\alpha})$, where $t_{\alpha} \in H^{n}(U_{\alpha} \times (\mathbb{R}^{n}, \mathbb{R}^{n} - \{0\}))$, $t_{\alpha} = p^{*}t_{\mathbb{R}^{n}}$, $p: U_{\alpha} \times \mathbb{R}^{n} \to \mathbb{R}^{n}$ is the projection, $t_{\mathbb{R}^{n}} \in H^{n}(\mathbb{R}^{n}, \mathbb{R}^{n} - \{0\}; \mathbb{Z})$ is a fixed generator. Then $t_{U_{\alpha}}|_{b} = t_{U_{\beta}}|_{b}$ for any $b \in U_{\alpha} \cap U_{\beta}$. Mayer-Vietoris sequence glues these $t_{U_{\alpha}}$ to a Thom class $t(\xi)$. The proof of another direction is more straightforeward.

Motivated by this proposition, we have

Definition 4.19. Given a ring R, we define an R-orientation of $\xi \colon E \to B$ to be a Thom class $t(\xi) \in H^n(E, E^0; R)$.

4.4 Homology and Homotopy

4.4.1 Hurewicz Theorem

We fix generators $z_n \in H_n(S^n; \mathbb{Z})$ and $\widetilde{z}_n \in H_n(D^n, S^{n-1}; \mathbb{Z})$ such that $\partial \widetilde{z}_n = z_{n-1}$ and $q_* \widetilde{z}_n = z_n$ where $q: D^n \to D^n/S^{n-1} \cong S^n$ is the quotient map. Define the Hurewicz homomorphisms

$$h: \pi_n(X, *) \to H_n(X, \mathbb{Z})$$

 $[f] \mapsto f_* z_n,$

and

$$h: \pi_n(X, A, *) \to H_n(X, A, \mathbb{Z})$$

 $[f] \mapsto f_* \widetilde{z}_n.$

Recall that we have a left action of $\pi_1(A,*)$ on $\pi_n(X,A,*)$: Any path $v\colon I\to A$ 1:1 corresponds to a homotopy $J^{n-1}\to v(t)$ of constant maps. Then $J^{n-1}\hookrightarrow \partial I^n$ is a cofibration and $\partial I^n\hookrightarrow I^n$ is a fibration. We extends this homotopy to $V\colon \left(I^n,\partial I^n,J^{n-1}\right)\times I\to (X,A,*)$. Given $\alpha=[v]\in\pi_1(A,*)$, define $[f]\cdot\alpha=[v_1]$ where $v_0=f$. Suppose $[g]=[f]\cdot\alpha$, then $g\simeq f$.

Define $\pi_n^{\sharp}(X, A, *) := \pi_n(X, A, *)/\pi_1(A, *) = \pi_n(X, A, *)/\{x - x \cdot \alpha : \alpha \in \pi_1(A)\}$. Then the Hurewicz map descends to

$$h^{\sharp} \colon \pi_n^{\sharp}(X, A, *) \to H_n(X, A, \mathbb{Z}).$$

Theorem 4.20 (Hurewicz Theorem). Assume X is (n-1)-connected, $n \ge 1$. Then $h^{\sharp} : \pi_n^{\sharp}(X, *) \to H_n(X, \mathbb{Z})$ is an isomorphism.

Proof. When n = 1, for any $\alpha, x \in \pi_1(X, *)$, $x \cdot \alpha := \alpha^{-1}x\alpha$. Then by definition, $\pi_1^{\sharp}(X, *)$ is the abelianization of $\pi_1(X, *)$, where is isomorphism to $H_1(X, \mathbb{Z})$.

When $n \geq 2$, X is simply-connected, we know $\pi_n(X, *) = \pi_n^{\sharp}(X, *)$.

Fact 4.21. A weak homotopy equivalence induces isomorphism on homology groups.

We may assume X is a CW-complex such that $X^{n-1} = \{*\}$. Then X^{n+1} is the cone of a map $\varphi \colon \bigvee S_j^n \to \bigvee S_k^n$. The conclusion holds for spheres. Additivity of π_n and H_n shows that h is an isomorphism for $\bigvee S_k^n$, we get exact sequence

$$\pi_n\left(\bigvee S_j^n\right) \xrightarrow{\varphi_*} \pi_n\left(\bigvee S_k^n\right) \longrightarrow \pi_n(X) \longrightarrow 0 .$$

$$\downarrow \cong \qquad \qquad \downarrow \cong \qquad \qquad \downarrow \cong \qquad \qquad \downarrow \cong$$

$$H_n\left(\bigvee S_j^n\right) \longrightarrow H_n\left(\bigvee S_k^n\right) \longrightarrow \pi_n(X) \longrightarrow 0$$

Therefore h is an isomorphism for X^{n+1} .

Since X is obtained from X^{n+1} by attaching cells of dim $\geq n+2$, $\pi_n(X) \cong \pi_n(X^{n+1})$ and $H_n(X) \cong H_n(X^{n+1})$. Then h is an isomorphism for X. Let

Corollary 4.22. Let (X, A) be a pair of simply-connected CW-complexes. Suppose $H_i(X, A) = 0$ for any i < n, $n \ge 2$. Then $\pi_i(X, A) = 0$ for any i < n and $h: \pi_n(X, A) \to H_n(X, A)$ is an isomorphism.

Proof. Apply induction on n: When $n \geq 2$, we have

Theorem 4.23 (Whitehead). Suppose X, Y are simply-connected. If $f: X \to Y$ induces isomorphisms on H_* , then f is a weak homotopy equivalence.

Proof. We may assume X, Y are CW-complexes. Apply Corollary 4.22 to (Z(f), X).

4.4.2 Singular Cohomology and Eilenberg-MacLane Spaces

Let G be an abelian group and $n \geq 1$. Denote K := K(G, n). Define a natural transformation $\lambda \colon [-, K(G, n)] \to H^n(-; G)$ as follows: We have a sequence of isomorphisms

$$H^n(K;G) \cong \operatorname{Hom}(H_n(K),G) \cong \operatorname{Hom}(\pi_n(K),G) = \operatorname{Hom}(G,G)$$

where the first isomorphism is by Universal Coefficient Theorem and the second is by Hurewicz Theorem. Suppose $id \in Hom(G, G)$ corresponds to $\iota_n \in H^n(K; G)$. Define

$$\lambda(X) \colon [X, K(G, n)] \to H^n(X; G)$$

 $[f] \mapsto f^* \iota_n.$

Notice that $K(G, n) = \Omega K(G, n + 1)$, $\lambda(X)$ is a homomorphism.

Theorem 4.24. Let (X,*) be a based CW-complexes. Then $\lambda(X): [X,K(G,n)]^o \to \widetilde{H^n}(X;G)$ is an isomorphism.

Proof. Note that the conclusion holds for spheres: If $m \neq n$, $[S^m, K(G, n)]^o = 0$ and $\widetilde{H^n}(S^m; G) = 0$. For n, it follows from definition.

Consider cofibre sequence

$$\bigvee S_i^{k-1} \longrightarrow X^{k-1} \longrightarrow X^k \longrightarrow X^k/X^{k-1} \longrightarrow \Sigma X^{k-1}$$
.

Apply $[-, K(G, n)]^o$ and $\widetilde{H^n}$, we get corresponding exact sequences. Use induction on k to conclude (to be continue...)

4.5 Homology with Local Coefficient

Let X be a path-connected space. Recall that its fundamental groupoid $\Pi(X)$ is a category whose objects are points in X and morphisms $x \to y$ are homotopy class of path $\gamma \colon I \to X$, $\gamma(0) = x, \gamma(1) = y$ rel ∂I .

Definition 4.25. A local coefficient system is a functor $\mathcal{E} \colon \Pi(X) \to \mathcal{A}[$ such that $\mathcal{E}(x) \cong \mathcal{E}(y)$ for any $x, y \in X$.

Definition 4.26 (Homology with Coefficient \mathcal{E}). We define the *Homology with Coefficient* \mathcal{E} as follows: The chain complex $S_k(X;\mathcal{E})$ consists of formed sums $\sum_{i=1}^m a_i \sigma_i$ where $\sigma_i \colon \Delta^k \to X$ is a k-simplex and $a_i \in \mathcal{E}(\sigma_i(e_0)), e_0 = (1, 0 \cdots, 0) \in \Delta^k$.

Recall that we have the face maps:

$$\begin{split} f_m^k \colon \Delta^{k-1} &\to \Delta^k \\ (t_0, \cdots, t_{k-1}) &\mapsto (t_0, \cdots, t_{m-1}, 0, t_m, \cdots, t_{k-1}) \,. \end{split}$$

Then we have $f_i^k(1,0,\cdots,0)=(1,0,\cdots,0)$ for any $i\geq 1$ and $f_0^k(1,0,\cdots,0)=(0,1,0,\cdots,0)\coloneqq e_1$. Given a simplex $\sigma\colon\Delta^k\to X$, we get a path

$$\gamma_{\sigma} \colon [0,1] \to X$$

$$t \mapsto \sigma(t, 1-t, 0, \cdots, 0)$$

with $\gamma_{\sigma}(0) = \sigma(e_1)$ and $\gamma_{\sigma}(1) = \sigma(e_0)$. Define

$$\partial \colon S_k(X;\mathcal{E}) \to S_{k-1}(X;\mathcal{E})$$

$$a \cdot \sigma \mapsto \mathcal{E}\left(\gamma_{\sigma}\right)^{-1}(a) \cdot \left(\sigma \circ f_{0}^{k}\right) + \sum_{m=1}^{k} (-1)^{m} a \cdot \left(\sigma \circ f_{m}^{k}\right),$$

where $\mathcal{E}(\gamma_{\sigma}): \mathcal{E}(\sigma(e_1)) \to \mathcal{E}(\sigma(e_1))$.

Claim 13. $\partial^2 = 0$.

We define $H_*(X; \mathcal{E}) := H_*(S_*(X; \mathcal{E}), \partial)$.

Definition 4.27 (Cohomology with Coefficient \mathcal{E}). We define the *Cohomology with Coefficient* \mathcal{E} as follows:

The cochain complex $S^k(X;\mathcal{E})$ is generated by

$$c: \{ \text{singular } k \text{-simplex} \} \to \bigoplus_{x \in X} \mathcal{E}(x)$$

such that $c(\sigma) \in \mathcal{E}(\sigma(e_0))$. The coboundary map $\delta \colon S^k(X;\mathcal{E}) \to S^{k+1}(X;\mathcal{E})$ is defined by

$$\delta(c)(\sigma) \coloneqq (-1)^k \left(\mathcal{E}\left(x_0\right) \cdot c\left(\sigma \circ f_0^{k+1}\right) + \sum_{m=1}^{k+1} (-1)^m c\left(\sigma \circ f_m^{k+1}\right) \right).$$

Claim 14. $\delta^2 = 0$.

We define $H^*(X; \mathcal{E}) := H^*(S^*(X; \mathcal{E}), \delta)$.

Proposition 4.28. (Co)homology with local coefficients is a (co)homology theory.

4.5.1 An Equivalent Definition

Assume X admits a universal cover \widetilde{X} . Given a local system \mathcal{E} on X. We fix an abelian group A such that $A \cong \mathcal{E}(x), \forall x \in X$. We get a representation

$$\rho_{\mathcal{E}} : \pi_1(X, *) \to \operatorname{Aut}(\mathcal{E}(x)) \cong \operatorname{Aut}(A).$$

Write $\pi = \pi_1(X, *)$. We can regard A as left $\mathbb{Z}[\pi]$ -module by

$$\gamma \cdot a := \rho_{\mathcal{E}}(\gamma)(a).$$

Note that $\pi_1(X,*)$ have a right action on \widetilde{X} , $S_*\left(\widetilde{X}\right)$ is a right $\mathbb{Z}[\pi]$ -module. Define the chain complex

$$S_*\left(X;\rho_{\mathcal{E}}\right) \coloneqq S_*\left(\widetilde{X}\right) \otimes_{\mathbb{Z}[\pi]} A$$

and the boundary map

$$\partial_{\mathcal{E}}\sigma\otimes a\mapsto (\partial\sigma)\otimes a.$$

We claim that $\partial_{\mathcal{E}}^2 = 0$. Then we define $H_*(X; \rho_{\mathcal{E}}) := H_*(S_*(X; \rho_{\mathcal{E}}), \partial_{\mathcal{E}})$. Regard $S_k(\widetilde{X})$ as left $\mathbb{Z}[\pi]$ -module by $\gamma \cdot \sigma := \sigma \cdot \gamma^{-1}$. Define

$$S^*\left(X; \rho_{\mathcal{E}}\right) \coloneqq \operatorname{Hom}_{\mathbb{Z}[\pi]}\left(S_k\left(\widetilde{X}\right), A\right)$$

and

$$\delta_{\mathcal{E}}c(\sigma) := c(\rho_{\mathcal{E}}\sigma)$$
.

We claim that $\delta_{\mathcal{E}}^2 = 0$. Then we define $H^*(X; \rho_{\mathcal{E}}) := H^*(S^*(X; \rho_{\mathcal{E}}), \delta_{\mathcal{E}})$.

Theorem 4.29. Let X be a connected space admitting a universal cover \widetilde{X} . Assume \mathcal{E} is a local system on X and $\rho_{\mathcal{E}} \colon \pi_1(X) \to \operatorname{Aut}(A)$. Then $H_*(X; \mathcal{E}) \cong H_*(X; \rho_{\mathcal{E}})$ and $H^*(X; \mathcal{E}) \cong H^*(X; \rho_{\mathcal{E}})$.

Proof. We have pairwise 1 to 1 corresponding of the following three items:

- 1. local system \mathcal{E} ,
- 2. covering space $\widetilde{X}_{\mathcal{E}}$ with fibre A,
- 3. representation $\rho \colon \pi_1(X) \to \operatorname{Aut}(A)$.
- $(1) \Rightarrow (3)$ is by our construction.
- For $(2) \Rightarrow (3)$, ρ is given by the endpoint of lifts of π_1 .
- For (3) \Rightarrow (2), $\widetilde{X}_{\mathcal{E}} = \widetilde{X} \times A/(\widetilde{x}, a) \sim (\widetilde{x} \cdot \gamma^{-1}, \rho(\gamma)a)$ is called Borel construction. For (2) \Rightarrow (1), lifts give the morphisms. For $a \cdot \sigma \in S_k(X, \mathcal{E})$, we lift the simplex $a \cdot \sigma$ to a π -equivalent simplex on $S_*(\widetilde{X})$.

Example 4.30. 1. The local system is \mathcal{E} trivial $(\mathcal{E}:\mathcal{E}(x_0)\to\mathcal{E}(x_1))$ is independent of γ). Then we have

$$S_*(X; \rho_{\mathcal{E}}) = S_*(\widetilde{X}) \otimes_{\mathbb{Z}[\pi]} A = S_*(X) \otimes A.$$

Therefore $H_*(X; \rho_{\mathcal{E}}) = H_*(X; A)$ is the singular homology.

2. Let $A = \mathbb{Z}[\pi]$. We have a tautological representation

$$\rho \colon \pi_1(X, *) \mapsto \operatorname{Aut}(\pi)$$
$$g \mapsto L_g.$$

Then
$$S_*(X;\rho) = S_*\left(\widetilde{X}\right) \otimes_{\mathbb{Z}[\pi]} A = S_*\left(\widetilde{X}\right)$$
 and $H_*(X;\rho) = H_*\left(\widetilde{X}\right)$. Generally,

Lemma 4.31. Let $H < \pi_1(X, *)$ be a subgroup. Choose $A = \mathbb{Z}[\pi/H]$ which admits a representation $\rho_A \colon \pi \to \operatorname{Aut}(A)$ be left multiplication. Then $H_*(X; \rho_A) \cong H_*(\widetilde{X}_H)$ where $\widetilde{X}_H \to X$ is the H-covering of X.

- 3. Let X be a connected and closed n-manifold. Then we get the orientation local system \mathcal{O}_X . Its objects are orientations $\mathcal{O}_X(x) = H_n(X, X - \{x\}) \cong \mathbb{Z}$ and morphisms are orientation transport: $H_n(X, X - \{x\}) \cong H_n(X, X - U) \cong H_n(X, X - \{x'\})$ for $x, x' \in U$ where U is a small neighborhood. We have \mathcal{O}_X is trivial if and only if X is orientable, if and only if $w_1 \colon \pi_1(X, *) \to \operatorname{Aut}(\mathbb{Z}) \cong \mathbb{Z}_2$ is trivial, if and only if $w_1 = 0 \in H^1(X; \mathbb{Z}_2)$. In fact, w_1 is the first Stefeil-Whitney class of X. Then we know $H_n(X; w_1) \cong \mathbb{Z}$.
 - If w_1 is trivial, then $H_n(X; w_1) = H_n(X, \mathbb{Z}) = \mathbb{Z}$.
 - If w_1 is non-trivial, then $H_n\left(X;w_1\right)\cong H_n\left(\widetilde{X}_{w_1},\mathbb{Z}\right)\cong \mathbb{Z}$ where $\widetilde{X}_{w_1}\to X$ is the orientable double cover..

4.6 Obstruction

Obstruction of Extension

Question 4.32. Suppose $f: A \to Y$ and X is obtained by attaching cells on A. Is there a extension g of f on X?

$$A \xrightarrow{f} Y$$

$$\downarrow \qquad \qquad \exists ?g$$

$$X$$

Assume $\pi_1(Y) = 1$ and (X, A) is a relative CW-complex. For each (n+1)-cell e^{n+1} , we have

$$S^{n} \xrightarrow{\varphi} X^{n}$$

$$\downarrow \qquad \qquad \downarrow$$

$$D^{n} \xrightarrow{\Phi} X$$

Assume we have a map $g: X^n \to Y$. We wish to extend g over X^{n+1} .

For each (n+1)-cell e_i^{n+1} , g extends over e_i^{n+1} if and only if $S^n \xrightarrow{\varphi_i} X^n \xrightarrow{g} Y$ is null-homotopic in $[S^n,Y]=\pi_n(Y)$. For each g, we get a cochain $\theta^{n+1}(g)\in C^{n+1}(X,A;\pi_n(Y))=:H^{n+1}(X^{n+1},X^n;\pi_n(Y))$ by setting $\theta^{n+1}(g)(e_i^{n+1})=[g\circ\varphi_i]\in\pi_n(Y)$.

Lemma 4.33. g extends over X^{n+1} if and only if $\theta^{n+1}(g) = 0$.

We will give an algebraic definition of $\theta^{n+1}(g)$.

Lemma 4.34. We have the factorization

$$\pi_{n+1}(X^{n+1}, X^n) \xrightarrow{\partial} \pi_n(X^n) \xrightarrow{g_*} \pi_n(Y)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad$$

Proof. Recall that

$$\pi_{n+1}^{\sharp}(X^{n+1},X^n) = \pi_{n+1}(X^{n+1},X^n)/\left\langle x - x \cdot \alpha : \alpha \in \pi_1(X^n) \right\rangle.$$

Then

$$g_* \circ \partial(x \cdot \alpha) = g_*((\partial(x)) \cdot \alpha) = (g_* \circ \partial(x)) \cdot g_*(\alpha) = g_* \circ \partial(x).$$

Since (X^{n+1}, X^n) is n-connected, $h: \pi_{n+1}^{\sharp}(X^{n+1}, X^n) \stackrel{\cong}{\to} H_{n+1}(X^{n+1}, X^n; \mathbb{Z}) := C_{n+1}(X^{n+1}, X^n)$. Define

$$\theta^{n+1}(g) := \overline{g_* \circ \partial} \circ h^{-1} \in \mathrm{Hom}_{\mathbb{Z}}(C_{n+1}(X^{n+1}, X^n), \pi_n(Y)) = C^{n+1}(X^{n+1}, X^n; \pi_1(Y)).$$

Lemma 4.35. $\theta^{n+1}(g)$ is a cocycle.

Proof. Consider the commutative diagram

Then $\delta\theta^{n+1}(g)=0$ if and only if $\theta^{n+1}(g)\circ i\circ \partial=0$. Note that the vertical arrows are surjective. Since $g_*\circ(\partial\circ i)\circ\alpha=g_*\circ(0)\circ\alpha=0$. Then $\theta^{n+1}(g)\circ i\circ \partial=0$.

We call $[\theta^{n+1}(g)] \in H^{n+1}(X, A; \pi_n(Y))$ the obstruction class of $g: X^n \to Y$.

Question 4.36. What kind of geometric information does $[\theta^{n+1}(g)] = 0$ tell us?

Answer. $[\theta^{n+1}(g)] = 0$ if and only if $g|_{X^{n-1}}: X^{n-1} \to Y$ extends over X^{n+1} .

Lemma 4.37. Suppose $g_0, g_1 \colon X^n \to Y$ are two maps such that $g_0|_{X^{n-1}} \simeq g_1|_{X^{n-1}}$. Then each homotopy $G \colon X^{n-1} \times I \to Y$ determines a cochain $d(g_0, G, g_1) \in C^n(X, A; \pi_n(Y))$ such that $\theta^{n+1}(g_0) - \theta^{n+1}(g_1) = \delta d(g_0, G, g_1)$.

Proof. The maps g_0, G, g_1 combine to a map

$$\widetilde{G} \colon X^{n-1} \times I \cup X^n \times \partial I \to Y.$$

Note that $X^{n-1} \times I \cup X^n \times \partial I$ is the *n*-skeleton of $X \times I$. Consider $\theta^{n+1}(\widetilde{G}) \in H^{n+1}((X,A) \times I, \pi_n(Y))$. We define

$$d(g_0, G, g_1)(e_i^n) := \theta^{n+1}(\widetilde{G})(e_i^n \times I) \in \pi_n(Y).$$

Then

$$\begin{split} & \left(\delta d(g_0,G,g_1) + \theta^{n+1}(g_1) - \theta^{n+1}(g_0)\right)(e_i^{n+1}) \\ &= d(g_0,G,g_1)(\partial e_i^{n+1}) + \theta^{n+1}(g_1)(e_i^{n+1}) - \theta^{n+1}(g_0)(e_i^{n+1}) \\ &= \theta^{n+1}(\widetilde{G})(\partial e_i^{n+1} \times I) + \theta^{n+1}(\widetilde{G})(e_i^{n+1} \times \partial I) \\ &= \delta \theta^{n+1}(\widetilde{G})(e_i^{n+1} \times I) \\ &= 0. \end{split}$$

Lemma 4.38. Given a map $g_0: X^n \to Y$ and a homotopy $G: X^{n-1} \times I \to Y$ such that $G|_{X^{n-1} \times \{0\}} = g_0|_{X^{n-1}}$, then for any $d \in C^n(X, A; \pi_n(Y))$, we can find $g_1: X^n \to Y$ such that

1. $g_1|_{X^{n-1}} = G|_{X^{n-1} \times \{1\}},$

2. $\delta d = \theta^{n+1}(g_0) - \theta^{n+1}(g_1)$.

Proof. Let e_i^n be a *n*-cell of X.

$$S^{n_1} \xrightarrow{\varphi_i} X^{n-1}$$

$$\downarrow \qquad \qquad \downarrow$$

$$D^n \xrightarrow{\Phi_i} X$$

Composing with g_0 and G, we get a map $f_i: D^n \times \{0\} \cup S^{n-1} \times I \to Y$.

Wirte $[k_i] := d(e_i^n) \in \pi_n(Y) = [\partial(D^{n+1}), Y] = [\partial(D^n \times I), Y]$. Then k_i can be seen as a map $k_i : \partial(D^n \times I) \to Y$. Since $D^n \times \{0\} \cup S^{n-1} \times I$ is contractible, then $f_i \simeq k_i|_{D^n \times \{0\} \cup S^{n-1} \times I}$. Since $D^n \times \{0\} \cup S^{n-1} \times I \hookrightarrow \partial(D^n \times I)$ is a cofibration, we get an extension $H_i : \partial(D^n \times I) \times I \to Y$. Define $g_1 : X^n \to Y$ by

$$q_1(\Phi_i(x)) := H_i(x, 1, 1) \in \partial(D^n \times I).$$

Then

$$d(g_0, G, g_1)(e_i^n) = \theta^{n+1}(\widetilde{G})(e_i^n \times I) = [k_i] = d(e_i^n).$$

Theorem 4.39 (Obstruction Theorem). Let $g: X^n \to Y$ be a continuous map (with $\pi_1(Y) = 1$). Then $[\theta^{n+1}(g)] = 0$ if and only if $g|_{X^{n-1}}$ extends over X^{n+1} .

Proof. (\Rightarrow): If $\theta^{n+1}(g) = \delta d$, then apply Lemma 4.38 to $(g, g|_{x^{n-1}} \times \mathrm{id}, d)$, we get $g' \colon X^n \to Y$ such that $g'|_{X^{n-1}} = g$ and $\theta^{n+1}(g) - \theta^{n+1}(g') = \delta d$. Then $\theta^{n+1}(g') = 0$, i.e. g' extends over X^{n+1} .

(\Leftarrow): Write $g': X^{n+1} \to Y$ such that $g'|_{X^{n-1}} = g|_{X^{n-1}}$. Denote by $\widetilde{g} = g'|_{X^n}$. Then $\theta^{n+1}(\widetilde{g}) = 0$ and $\theta^{n+1}(g) - \theta^{n+1}(g') = \delta d$.

When Y is n-connected, then any map $f: A \to Y$ can be extends to $g: X^{n+1} \to Y$, since $H^{n+1}(X, A; \pi_k(Y)) = 0, \forall k \leq n$. In this case, we define

$$\alpha(f) := \theta^{n+2}(g) \in H^{n+2}(X, A; \pi_{n+1}(Y))$$

as the primary obstruction of f.

For homotopy extension, suppose $f_0, f_1 \colon X^n \to Y$ such that $f_0|_{X^{n-1}} \simeq f_1|_{X^{n-1}}$. We apply the discussion to $(X^n \times I, X^n \times \partial I \cup X^{n-1} \times I)$. We get an obstruction $d^n(f_0, f_1) \in H^n(X, A; \pi_n(Y))$.

4.6.2 Obstruction of Lifting

Question 4.40. Suppose $f: X \to B$ and $p: E \to B$ is a fibration. Is there a lifting g of f on X?

$$X \xrightarrow{\exists ?g} A \downarrow p$$

$$X \xrightarrow{f} B$$

Proposition 4.41. Let $p: E \to B$ be a fibration with fibre F such that $\pi_1(F) = 1$. Then for each $n \ge 0$, we get a local system

$$\rho_n \colon \pi_1(B) \to \operatorname{Aut}(\pi_n(F)).$$

Proof. $\pi_1(B)$ contains homotopy classes of homotopy self-equivalence of F. They induce $\operatorname{Aut}(\pi_n(F))$.

Assume we have a lift on X^n .

$$X \xrightarrow{g} \downarrow_{p}$$

$$X \xrightarrow{f} B$$

Given an (n+1)-cell e_i^{n+1} , we get $g \circ \varphi_i \colon S^n \to E$. Note that $p \circ g \circ \varphi_i = f \circ \varphi_i$ extends over X^{n+1} . Then $f \circ \varphi_i$ is null-homotopic: $f \circ \varphi_i \simeq \mathbf{const}_{f \circ \Phi_i(0)}$. Apply homotopy lifting, we know $g \circ \varphi_i \colon S^n \to E$ is homotopic to $f_i \colon S^n \to E_{f \circ \Phi_i(0)}$. Define $\theta^{n+1}(g)(e_i^{n+1}) \coloneqq [f_i] \in \pi_n(E_{f \circ \Phi_i(0)})$. Then $\theta^{n+1}(g) \in C^{n+1}(X; f^*\rho_n)$.

Then $[\theta^{n+1(g)}] = 0 \in H^{n+1}(X; f^*\rho_n)$ if and only if $g|_{X^{n-1}}$ extends over X^{n+1} , which deduces that f lifts over X^{n+1} .

5 Principal Bundle and Characteristic classes

5.1 Principal Bundle and Classifying Space

Let G be a topological group and B a C_2 Haussdorff space.

Definition 5.1. A principal G-bundle $\pi: P \to B$ is a fibre bundle with a right G-action such that near each $b \in B$, \exists a neighborhood $U \subset B$ and a trivialization

$$\varphi \colon \pi^{-1}(U) \to U \times G$$

$$p \mapsto (\pi(p), \alpha(p))$$

such that $\varphi(p,g) = (\pi(p), \alpha(p)g)$.

We can generate fibre bundles using principal bundle. Assume F is a left G-space or we have a representation $\rho \colon G \to \operatorname{Aut}(F)$. We set $E = P \times_G F = P \times F/(p,f) \sim (p \cdot g,g^{-1}f)$. Then $E \to B$ is a fibre bundle with fibre F. We call this construction Borel construction.

To get vector bundles, consider $\rho \colon G \to \mathrm{GL}_n(\mathbb{F})$. We get vector bundles over \mathbb{F} of rank n.

Denote by $\mathcal{B}(B,G)$ the set of isomorphism class of principal G-bundles ober B.

Definition 5.2. We say EG is a universal (right) G-space if \forall right G-space admits, up to G-homology, a unique G-map to EG.

For any $\Phi: P \to EG$, take quotients,

$$P \xrightarrow{\Phi} EG .$$

$$\downarrow \qquad \qquad \downarrow$$

$$\downarrow \qquad \qquad \downarrow$$

$$B \xrightarrow{\overline{\Phi}} BG$$

Denote by BG = EG/G. We define

$$K_B \colon \mathcal{B}(B,G) \to [B,BG]$$

 $[P] \mapsto [\overline{\Phi}].$

We have another map

$$\iota_B \colon [B, BG] \to \mathcal{B}(B, G)$$

$$[f] \mapsto f^*EG$$

under the assumption that G acts freely and locally trivially on EG, where "locally trivially" means that for any $x \in EG$, there is a neighborhood U and a G-map $\varphi \colon U \to G$ (Then we have $U \cong U/G \times G$ by $x \mapsto (\overline{x}, \varphi(x))$).

Theorem 5.3. K_B and ι_B are inverse to each other. BG is called the classifying space of G.

Proof. $K_B \circ \iota_B = \mathrm{id}$:

Start with $f: B \to BG$, $\iota_B[f]$ is represented by f^*EG . Then we have

$$f^*EG \xrightarrow{F} EG$$

$$\downarrow \qquad \qquad \downarrow$$

$$B \xrightarrow{f} BG$$

Since EG is universal, F the unique map up to G-homotopy, then $[f] = K_B(f^*EG)$.

$$\iota_B \circ K_B = \mathrm{id}$$
:

Given $P \to B$ representing $[P] \in \mathcal{B}(B,G)$, we get

$$P \xrightarrow{\Phi} EG$$

$$\downarrow \qquad \qquad \downarrow$$

$$B \xrightarrow{\overline{\Phi}} BG$$

Then $\iota_B \circ K_B([p]) = [\overline{\Phi}^* EG]$. By universal property of pull-back, we have

$$P \xrightarrow{\overline{\Psi}} \Phi^* EG \xrightarrow{\Phi'} EG$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$B \xrightarrow{\mathrm{id}} B \xrightarrow{\overline{\Phi}} BG$$

where $\overline{\Psi}$ is given by

$$\begin{split} \overline{\Psi} \colon U \times G &\to U \times G \\ \overline{\Psi}(x,g \cdot h) &= \overline{\Psi}(xg) \cdot h = (x,\Psi(g) \cdot h). \end{split}$$

Then $\overline{\Psi}$ is an isomorphism due to G-equivalence.

Definition 5.4. Let X_1, X_2 be two spaces. The joint of X_1, X_2 is defined by

$$X_1 * X_2 := X_1 \times X_2 \times [0,1]/(x_1, x_2, 0) \sim (x_1, x_2', 0), (x_1, x_2, 1) \sim (x_1', x_2, 1).$$

Then the embedding $X_1 \hookrightarrow X_1 * X_2$ is given by

$$x_1 \mapsto [x_1, x_2, 0] = [(1, x_1), (0, x_2)].$$

Definition 5.5. The Milnor space if G is defined to be

$$EG := \operatorname{colim}_{n} G * \cdots * G = \left\{ \prod_{i \geq 1} (t_{i}, g_{i}) : \sum t_{i} = 1, \text{ only finitely } t_{i}\text{'s are non-zero} \right\}.$$

Define $G \curvearrowright EG$ by

$$g \cdot \left[\prod_{i \ge 1} (t_i, g_i) \right] = \left[\prod_{i \ge 1} (t_i, g_i g) \right].$$

Claim 15. G acts freely and locally trivially on EG.

Reason: Choose an atlas $\{V_j\}_{j\geq 1}$ of EG as follows:

$$V_j \coloneqq \left\{ \left[\prod_{i \ge 1} (t_i, g_i) \right] : t_j \in (0, 1] \right\}.$$

Define $p_j: V_j \to G$ by

$$\left[\prod_{i\geq 1} (t_i, g_i)\right] \mapsto g_j.$$

Then $\pi_G : EG \to BG = EG/G$ is a principal G-bundle.

Proposition 5.6. The Milnor space EG is contractible.

Proof. Step 1:

We start with the map

$$\alpha_0 \colon EG \to EG$$

 $[(t_1, g_1), (t_2, g_2), \cdots] \mapsto [(t_1, g_1), (0, e), (t_2, g_2), \cdots].$

Consider the homotopy

$$\alpha_t \colon EG \to EG$$

 $[(t_1, g_1), (t_2, g_2), \cdots] \mapsto [(t_1, g_1), (tt_2, g_2), ((1 - t)t_2, g_2), (t_3, g_3), \cdots].$

Then

$$\alpha_1 \colon EG \to EG$$

 $[(t_1, g_1), (t_2, g_2), \cdots] \mapsto [(t_1, g_1), (t_2, g_2), (0, e), (t_3, g_3), \cdots].$

Inductivilt, we get α_n which inserts (0, e) into the (n + 1)-th entry. Then take $\alpha_{\infty} = \operatorname{colim}_{\to} \alpha_n = \operatorname{id}$. Hence we have $\alpha_0 \simeq \alpha_{\infty}$.

Step 2:

Consider

$$f_t : [(t_1, g_1), \cdots] \mapsto [((1-t)t_1, g_1), (t, e), ((1-t)t_2, g_2), ((1-t)t_3, g_3), \cdots].$$

Then $f_0 = \alpha_0$, f_1 is the contraction onto $[(0, e), (1, e), (0, e), \cdots]$.

Theorem 5.7. The Milnor space $\pi_G : EG \to BG$ is the universal G-bundle.

Proof. Let $\pi: P \to B$ be a principal G-bundle with contractible trivialization charts

$$\pi^{-1}(U_i) \to U_i \times G$$

 $p \mapsto (\pi(p), \varphi_i(p)).$

Choose a partition of unity $\rho_i : U_i \to [0, 1]$ subordinate to $\{U_i\}$. Write $v_i = \rho_i \circ \pi$ which is G-invariant. We define

$$\Phi \colon P \to EG$$

$$p \mapsto \left[\prod_{i \ge 1} (v_i(p), \varphi_i(p)) \right].$$

Then $\sum_{i>1} v_i(p) = 1$ hence φ_i is a G-map.

We need to show $\Phi\colon P\to EG$ is defined uniquely up to G-homotopy. Suppose $\Psi\colon P\to EG$ is another G-map. Write

$$\Phi([\prod(t_i, g_i)]) = [\prod(\Phi^1(t_i), \Phi^2(g_i))],$$

$$\Psi([\prod(t_i, g_i)]) = [\prod(\Psi^n(t_i), \Psi^n(g_i))].$$

By Proposition 5.6, Φ is homotopic to

$$\Phi_1: [(t_1, g_1), (t_2, g_2), \cdots] \mapsto [(\Phi^1(t_1), \Phi^2(g_1)), (0, e), (\Phi^1(t_2), \Phi^2(g_2)), (0, e), (\Phi^1(t_3), \Phi^2(g_3)), (0, e), \cdots].$$

Apply the same procedure to odd entries, we get a homotopy Ψ to

$$\Psi_1 \colon [(t_1, g_1), (t_2, g_2), \cdots] \mapsto [(\Psi^1(t_1), \Psi^2(g_1)), (0, e), (\Psi^1(t_2), \Psi^2(g_2)), (0, e), (\Psi^1(t_3), \Psi^2(g_3)), (0, e), \cdots].$$

We know Φ_1 is homotopic to Ψ_1 by

$$\prod (t_i, g_i) \mapsto [(((1-t)\Phi^1(t_i), \Phi^2(g_i)), (t\Psi^1(t_i), \Psi^2(g_i))].$$

Therefore Φ is G-homotopic to Ψ .

Theorem 5.8. Let $\pi_G \colon E \to X$ be a principal G-bundle such that E is contractible. Then $\pi_G \colon E \to X$ is the universal G-bundle.

Proof. Let $\pi: P \to B$ be a principal G-bundle with B a CW-complex. We consider the fibre bundle $p \times_G E \to B$ with contractible fibres.

Consider Obstruction Theory.

$$\begin{array}{c|c} P \times_G E \\ \exists ?s & \checkmark \\ \downarrow & \downarrow \\ B & \xrightarrow{\mathrm{id}} B \end{array}$$

The obstruction of lifting on B^{n+1} lies in $H^{n+1}(B, \{\pi(\text{fibre})\}) = 0$. Then $P \times_G E \to B$ admits sections. Take a section

$$s \colon B \to P \times_G E = P \times E/(p,x) \sim (pg,xg)$$
$$b \mapsto [p,s^p(p)].$$

Then we get a G-map $S^p \colon P \to E$.

Suppose we have two G-maps $S_1^p, S_2^p: P \to E$. We get two sections $s_1, s_2: B \to P \times_G E$. Apply obstruction theory to $(P \times_G E) \times I \to B \times I$. We have $s_1 \simeq s_2$ hence s_1^p is G-homotopic to s_2^p .

5.1.1 Functorial Property of BG

Let $\alpha \colon H \to G$ be a continuous homomorphism. We regard G as a left H-space by $h \cdot g \coloneqq \alpha(h)g$. We get principal G-bundle $EH \times_{\alpha} G \to BH$. By universal property of EG, we have

$$EH \times_{\alpha} G \xrightarrow{E(\alpha)} EG$$

$$\downarrow \qquad \qquad \downarrow$$

$$BH \xrightarrow{B(\alpha)} BG$$

where $B(\alpha)$ is defined uniquely up to homotopy. We have $B(\alpha) \circ B(\beta) \simeq B(\alpha \circ \beta)$. Now we get a functor B(-).

When H < G is a subgroup, we get $B(i) \colon BH \to BG$. We can regard EG as a H-space. H acts freely and locally trivially on EG. Therefore $EG \to EG/H$ is a principal H-bundle. Note that EG is contractible. EG is a universal H-bundle. This means $BH \simeq EG/H$. Hence $B(i) \colon EG/H \to EG/G$ is a fibre bundle with fibre G/H.

Proposition 5.9. Let H < G be a subgroup such that G/H admits a CW-complex. Suppose $i: H \hookrightarrow G$ is a homotopy equivalence. Then $B(i): BH \to BG$ is a homotopy equivalence.

Proof. $i \colon H \to G$ is a homotopy equivalence, then G/H is weakly contractible. This is given by some directly calculations of homotopy exact sequence of $H \hookrightarrow G \to G/H$. Then G/H is contractible. Hence $BH \simeq BG$.

Example 5.10.

H	G
O(n)	$\mathrm{GL}_n(\mathbb{R})$
SO(n)	$\mathrm{GL}_n^*(\mathbb{R})$
U(n)	$\mathrm{GL}_n(\mathbb{C})$
SU(n)	$\mathrm{SL}_n^*(\mathbb{C})$

This means the classification of \mathbb{R}^n -bundles is equivalent to the classification of $\mathrm{O}(n)$ -bundles.

Definition 5.11. Let R be a ring. Then each non-zero element $c \in H^*(BG; R)$ is called a universal characteristic class.

Given any principal G-bundle $\pi\colon P\to B$, define the corresponding characteristic class to be $\overline{\Phi}^*c\in H^*(B;R)$ by

$$P \xrightarrow{\Phi} EG$$

$$\downarrow \qquad \qquad \downarrow$$

$$B \xrightarrow{\overline{\Phi}} BG$$

. $\overline{\Phi}^*$ is called the classifying map.

5.2 Stiefel-Whitney Classes

Denote by $\operatorname{Gr}_n(\mathbb{R}^N)$ the Grassmannian manifold consists of *n*-planes in \mathbb{R}^N , which is topologized as follows:

We have the Stiefel manifold $V_n(\mathbb{R}^N)$ consisting of n-planes in \mathbb{R}^N , i.e.

- 1. either identify $V_n(\mathbb{R}^N) := O(N)/O(N-n)$,
- 2. or regard as $V_n(\mathbb{R}^N) \subset (\mathbb{R}^N)^n$.

Then we get a quotient map

$$q: V_n(\mathbb{R}^N) \to Gr_n(\mathbb{R}^N)$$

with fibre $GL_n(\mathbb{R})$. We have dim $Gr_n(\mathbb{R}^N) = n(N-n)$.

Denote by

$$V_n(\mathbb{R}^\infty) := \operatorname{colim}_{N} V_n(\mathbb{R}^N)$$

and then

$$Gr_n(\mathbb{R}^{\infty}) := \operatorname{colim}_{\stackrel{\rightarrow}{N}} \operatorname{Gr}_n(\mathbb{R}^N)$$

is principal $GL_n(\mathbb{R})$ -bundle. Recall that $V_n(\mathbb{R}^N)$ is at least (N-n-1)-connected, then $V_n(\mathbb{R}^\infty)$ is contractible. Therefore, $V_n(\mathbb{R}^\infty)$ is the universal $GL_n(\mathbb{R})$ -bundle, and $Gr_n(\mathbb{R}^\infty)$ is the classifying space $B GL_n(\mathbb{R}) \simeq B O(n)$.

5.2.1 Construction of Stiefel-Whitney Classes

Let $\pi \colon E \to B$ be a real vector bundle of rank n. Consider the projectivization of E:

$$\mathbb{P}(E) := \left\{ (b, v) \in E : v \neq 0 \in E_b \right\} / (b, v) \sim (b, \lambda v), \lambda \neq 0.$$

Write $\rho \colon \mathbb{P}(E) \to B$ for the projection. Then we get a tautological line bundle

$$S(E) = \{((b, v), u) \in \mathbb{P}(E) \times E : u \in l_v\} \to \mathbb{P}(E).$$

The classifying space for line bundles is $\operatorname{Gr}_1(\mathbb{R}^{\infty}) = \mathbb{R}P^{\infty}$.

The cohomology of $\mathbb{R}P^{\infty}$ is $H^*(\mathbb{R}P^{\infty}; \mathbb{Z}_2) = \mathbb{Z}_2[a]$. Write $f: \mathbb{P}(E) \to \mathbb{R}P^{\infty}$ for the classifying map. Define $a_E := f^*a \in H^1(\mathbb{P}(E); \mathbb{Z}_2)$.

Proposition 5.12. $\{1, a_E, \dots, a_E^{n-1}\}$ is a free $H^*(B; \mathbb{Z}_2)$ -basis for $H^*(\mathbb{P}(E); \mathbb{Z}_2)$.

Proof. By Leray-Hirsch Theorem, we only need to prove $\{1, a_E, \cdots, a_E^{n-1}\}|_{\mathbb{P}(E_b)}$ generates $H^*(\mathbb{P}(E_b); \mathbb{Z}_2)$ for any $b \in B$.

Write $i_b \colon \mathbb{P}(E_b) \hookrightarrow \mathbb{P}(E)$ for the inclusion. $S(E)|_{\mathbb{P}(E_b)} \to \mathbb{P}(E_b) \simeq \mathbb{R}P^{n-1}$ is the tautological line bundle. Then $f \circ i_b \colon \mathbb{P}(E_b) \cong \mathbb{R}P^{n-1} \to \mathbb{R}P^{\infty}$ satisfies $(f \circ i_b)^* E_1(\mathbb{R}^{\infty}) = S(E)|_{\mathbb{P}(E_b)}$. Note that $E_1(\mathbb{R}^{\infty}) \to \mathbb{R}P^{\infty}$ is the tautological line bundle. By the uniqueness of classifying maps, $f \circ i_b \simeq i \colon \mathbb{R}P^{n-1} \hookrightarrow \mathbb{R}P^{\infty}$ and $a_E^k|_{\mathbb{P}(E_b)} = (f \circ i_b)^* a^k = a^k \in H^k(\mathbb{R}P^{n-1}, \mathbb{Z}_2)$.

Definition 5.13. We define Stiefel-Whitney classes $w_k(E) \in H^k(B; \mathbb{Z}_2)$ by

$$a_E^n = \sum_{k=1}^n w_k(E) \cup a_E^{n-k}$$

and $w_1(E) = 1$, $w_i(E) = 0$ for i > n.

Let $\pi: L \to B$ be a line bundle. Then $\mathbb{P}(L) = B$ and S(E) = L. Write $f: B \to \mathbb{R}P^{\infty}$ for the classifying map of $L \to B$. Then $a_L = f^*a = w_1(L) \in H^1(B, \mathbb{Z}_2)$. The transition maps of $\pi: L \to B$ $\{g_{\alpha\beta}\}$ form a cocycle in Čech cohomology. Then $[L] \in H^1(B; \mathbb{Z}_2)$.

Claim 16. $[L] = w_1(L)$.

By the claim, we have

Proposition 5.14. 1. Let L_1, L_2 be two line bundles over B. Then

$$w_1(L_1 \otimes L_2) = w_1(L_1) + w_1(L_2).$$

2. Let L^* be the dual bundle of L. Then

$$w_1(L^*) = w_1(L).$$

Now we discuss why the claim is true.

Proposition 5.15 (Naturality of w_k). $w_k(f^*E) = f^*w_k(E)$, where $f: B' \to B$ is a map.

Proof. Write $E' = f^*E \to B'$. Then $a_{E'} = F^*a_E$ where $F : \mathbb{P}(E') \to \mathbb{P}(E)$. Then relations specifying a_E^n pulls back to $a_{E'}^n$.

Then we consider w_1 of $E_1(\mathbb{R}^2) \to \mathbb{R}P^1$. Note that $H^1(\mathbb{R}P^1; \mathbb{Z}_2) = \langle a \rangle$, $\mathbb{P}(E_1(\mathbb{R}^2)) = \mathbb{R}P^1$, $S(E_1(\mathbb{R}^2)) = E_1(\mathbb{R}^2)$. Then the classifying space of $E_1(\mathbb{R}^2)$ is the inclusion $i : \mathbb{R}P^1 \hookrightarrow \mathbb{R}P^{\infty}$. Therefore, $w_1(E_1(\mathbb{R}^2)) = a \in H^1(\mathbb{R}P^1; \mathbb{Z}_2)$.

Let $L \to B$ be a line bundle, $f: B' \to B$ be a map. Then $[f^*L] = f^*[L] \in H^1(B; \mathbb{Z}_2)$ and $E_1(\mathbb{R}^2) \to \mathbb{R}P^1 = S^1$ is non-trivial. Therefore $[E_1(\mathbb{R}^2)] = a \neq 0 \in H^1(\mathbb{R}P^1; \mathbb{Z}_2)$. Then $w_1(L) = f^*a \in H^1(B; \mathbb{Z}_2)$ and $f: B \to \mathbb{R}P^{\infty}$ is the classifying map. We need $[E_1(\mathbb{R}^{\infty})] = a \in H^1(\mathbb{R}P^{\infty}; \mathbb{Z}_2) = \mathbb{Z}_2$. This is because $E_1(\mathbb{E}^{\infty})|_{\mathbb{R}P^1}$ is non-trivial.

Now we consider the Whitney sum of line bundles. Write $w(E) = 1 + w_1(E) + \cdots + w_n(E)$ for the total Stiefel-Whitney class of E.

Proposition 5.16. Suppose $E_{=}E_{1} \oplus E_{2}$. Then

$$w(E) = w(E_1) \cup w(E_2).$$

Lemma 5.17 (Splitting Principle). Let $\pi \colon E \to B$ be a real vector bundle. Then there exists a space F(E) and a map $\tau \colon F(E) \to B$ such that

- 1. $\tau^*E = L_1 \oplus \cdots \oplus L_n$ where $L_i \to F(E)$ is a line bundle.
- 2. $\tau^* : H^*(B; \mathbb{Z}_2) \to H^*(F(E); \mathbb{Z}_2)$ is injective.

Proof. We apply induction on the rank of E. When $\operatorname{rank}(E) = 1$, there is nothing to prove. When $\operatorname{rank}(E) = n$, we have the projectivization $\rho \colon \mathbb{P}(E) \to B$. Then $\rho^*E = S(E) \oplus Q(E)$ where Q(E) is an orthogonal complement of S(E), where $\operatorname{rank}(S(E)) = 1$ and $\operatorname{rank}(Q(E)) = n - 1$.

By induction, there exists $\tau_p \colon F(E) \to \mathbb{P}(E)$ such that $\tau_p^*Q(E) = L_1 \oplus \cdots \oplus L_{n-1}, \tau_p^* \colon H^*(\mathbb{P}(E); \mathbb{Z}_2) \to H^*(F(E); \mathbb{Z}_2)$ is injective. Then let $\tau = \rho \circ \tau_p$, we have $\tau^*E = \tau_p^*S(E) \oplus L_1 \oplus \cdots \oplus L_{n-1}$.

Proof of Proposition 5.16. We can find a τ : $F(E) \to B$ such that $\tau^*E_1 = L_1 \oplus \cdots \oplus L_k$ and $\tau^*E_2 = M_1 \oplus \cdots \oplus M_j$. Then $w(E) = w(E_1) \cup w(E_2)$ if and only if $w(\tau^*E) = w(\tau^*E_1) \cup w(\tau^*E_2)$.

We only need to prove if $E = L_1 \oplus L_2$, then $w(E) = (1 + w_1(L_1)) \cup (1 + w_1(L_2))$. Consider the exact sequence

$$0 \longrightarrow S(E) \longrightarrow \rho^*E \longrightarrow Q(E) \longrightarrow 0$$

$$\parallel$$

$$\rho^*L_1 \oplus \rho^*L_2$$

Tensoring with $S^*(E)$,

$$0 \longrightarrow \mathbb{R} \longrightarrow S^*(E) \otimes \rho^* L_1 \oplus S^*(E) \otimes \rho^* L_2 \longrightarrow \cdots$$

$$1 \longmapsto (s_1, s_2)$$

Then

$$w_1(S^*(E) \otimes \rho^* L_1) \cup w_1(S^*(E) \otimes \rho^* L_2) = 0,$$

i.e.

$$w_1(S(E) + \rho^* w_1(L_1)) \cup w_1(S(E) + \rho^* w_1(L_2)) = 0.$$

Note that $w_1(S(E)) = a_E$. We have

$$a_E^2 + \rho^*(w_1(L_1) + w_1(L_2)) \cdot a_E + \rho^*(w_1(L_1) \cup w_1(L_2)) = 0,$$

i.e.

$$w_1(E) = w_1(L_1) + w_1(L_2)$$

and

$$w_2(E) = w_1(L_1) \cup w_1(L_2).$$

Recall that $B O(n) = Gr_n(\mathbb{R}^n)$. Our goal is $H^*(Gr_n(\mathbb{R}^\infty); \mathbb{Z}_2) \cong \mathbb{Z}_2[w_1, \dots, w_n]$.

Proposition 5.18. For the tautological bundle $E_n(\mathbb{R}^{\infty}) \to \operatorname{Gr}_n(\mathbb{R}^n)$, the Stiefel-Whitney classes w_1, \dots, w_n are algebraically independent.

Proof. By naturality, we prove the algebraic independence on the bundle $E = \bigoplus_{i=1}^n p_i^* E_1(\mathbb{R}^{\infty}) \to \mathbb{R}P^{\infty} \times \cdots \times \mathbb{R}P^{\infty}$.

Write $a_i = p_i^* a \in H^1(\mathbb{R}P^{\infty} \times \cdots \times \mathbb{R}P^{\infty}; \mathbb{Z}_2)$. Then

$$w(E) = 1 + w_1(E) + \dots + w_n(E) = \prod_{i=1}^{n} (1 + a_i) = \sum_{i=0}^{n} \sigma_i(a_1, \dots, a_n)$$

where σ_i is the *i*-th elementary symmetric polynomial. Therefore, $w_i(E) = \sigma_i(a_1, \dots, a_n)$ which are algebraically independent.

By Milnor-Stasheff, $\operatorname{Gr}_n(\mathbb{R}^{\infty})$ admits a CW-decomposition such that the number of k-cells = the number of partition of k into integers in [1,n] = the number of (p_1,\cdots,p_n) such that $p_1+2p_2+\cdots+np_n=k\Leftrightarrow w_1^{p_1}\cup w_2^{p_2}\cup\cdots\cup w_n^{p_n}\in H^k(\operatorname{Gr}_n(\mathbb{R}^{\infty});\mathbb{Z}_2)$. Note that the number of k-cells in $\operatorname{Gr}_n(\mathbb{R}^{\infty})$ = the rank of $C^k(\operatorname{Gr}_n(\mathbb{R}^{\infty});\mathbb{Z}_2)$ ≥ the rank of $H^k(\operatorname{Gr}_n(\mathbb{R}^{\infty});\mathbb{Z}_2)$ ≥ the number of k-cells in $\operatorname{Gr}_n(\mathbb{R}^{\infty})$. Hence the equality holds and then $H^k(\operatorname{Gr}_n(\mathbb{R}^{\infty});\mathbb{Z}_2)$ = Span $\{w_1^{p_1}\cup\cdots\cup w_n^{p_n}: \sum p_i=k\}$.

5.2.2 Construction of w_i from obstruction theory

Recall that $V_k(\mathbb{R}^n)$ is (n-k-1)-connected.

Fact 5.19.

$$\pi_{n-k}(V_k(\mathbb{R}^n)) = \begin{cases} \mathbb{Z}_2, & if \ n-k \ odd \ and \ k \ge 2; \\ \mathbb{Z}, & otherwise. \end{cases}$$
$$\pi_1(Gr_k(\mathbb{R}^n)) = \mathbb{Z}_2.$$
$$Gr_k(\mathbb{R}^n) \cong O(n)/O(k) \times O(n-k).$$

Let $\pi: E \to B$ be an \mathbb{R}^n -bundle. Then we get a $V_k(\mathbb{R}^n)$ -bundle $\pi^k: E_k \to B$. Assection of $E_k \to B$ is equivalent to a global k-frame of E. The primary obstruction of finding a section of E_k is $\widetilde{\alpha}_{n-k+1} \in H^{n-k+1}(B; \{\pi_{n-k}(E_k|_b)\})$. The local coefficient is

$$\rho_* \colon \pi_1(\operatorname{Gr}_k(\mathbb{R}^n)) \longrightarrow \operatorname{Aut}(\pi_{n-k}(V_k(\mathbb{R}^n))) \longrightarrow \operatorname{Aut}(\mathbb{Z}_2)$$

$$\parallel \qquad \qquad \parallel \qquad \qquad \parallel$$

$$\mathbb{Z}_2 \qquad \mathbb{Z} \text{ or } \mathbb{Z}_2 \qquad \{1\}$$

Therefore $\{\pi_{n-k}(E_k|_b)\}\mod 2$ is trivial. We get $\alpha_{n-k+1}\in H^{n-k+1}(B;\mathbb{Z}_2)$.

Theorem 5.20. Let $E \to B$ be a \mathbb{R}^n -bundle. Then

$$\alpha_k(E) = w_k(E) \in H^k(B; \mathbb{Z}_2).$$

Proof. Write $w_{k,n} = w_k(E_n(\mathbb{R}^n))$, $\alpha_{k,n} = \alpha_k(E_n(\mathbb{R}^\infty)) \in H^k(Gr_n(\mathbb{R}^\infty); \mathbb{Z}_2)$. Then $\alpha_{k,n} = p_{k,n}(w_{1,n}, \dots, w_{k-1,n}) + \lambda_{k,n} \cdot w_{k,n}$.

Consider $E = E_{k-1}(\mathbb{R}^{\infty}) \oplus \mathbb{R}^{n-k+1}$. We have

$$w_i(E) = \begin{cases} w_{i,n}|_{E_{n-1}(\mathbb{R}^{\infty})}, & 1 \le i \le k-1; \\ 0, & i = k. \end{cases}$$

Because $\alpha_k(E) = 0$, we have $p_{k,n} \equiv 0$. Then $\alpha_{k,n} = \lambda_{k,n} \cdot w_{k,n}$. Consider $E' = E_1(\mathbb{R}^{k+1}) \oplus \mathbb{R}^{n-1} \to \mathbb{R}P^k$.

Claim 17.

$$\alpha_k(E') \neq 0.$$

Therefore $\lambda_{k,n} = 1$.

In conclusion, Stiefel-Whitney classes

- 1. generate $H^*(B O(n); \mathbb{Z}_2)$;
- 2. constucted from projectivization $H^*(\mathbb{P}(E);\mathbb{Z}_2)$ admitting a free $H^*(B;\mathbb{Z}_2)$ basis;
- 3. primary obstruction of mod 2 global frames.

5.3 Euler Class

Let $\pi \colon E \to B$ be an oriented \mathbb{R}^n – bundle. Recall that the Euler class e(E) is defined by Thom isomorphism

$$\Phi_E \colon H^j(B; \mathbb{Z}) \to H^{n+j}(E, E_0; \mathbb{Z})$$

 $x \mapsto x \cup t_E$

where t_E is the Thom class, through

$$H^n(E, E_0; \mathbb{Z}) \longrightarrow H^n(E; \mathbb{Z}) \xrightarrow[(\pi^*)^{-1}]{\cong} H^n(B; \mathbb{Z})$$

$$t_E \longmapsto e(E)$$

Applying Thom isomorphism and Exact sequence of (E, E_0) , we get Gysin sequence

$$H^{j}(B;\mathbb{Z}) \xrightarrow{\cup e(E)} H^{j+n}(B;\mathbb{Z}) \xrightarrow{\pi_{0}^{*}} H^{j+n}(E_{0};\mathbb{Z}) \xrightarrow{\Phi_{E}^{-1} \circ \delta} H^{j+1}(B;\mathbb{Z})$$

Proposition 5.21. 1. $f^*e(E) = e(f^*E)$;

- 2. $e(E_1 \oplus E_2) = e(E_1) \cup e(E_2)$.
- 3. Suppose $-E \to B$ is bundle obtained form reversing the orientation of E. Then e(-E) = -e(E).

Proof. They can be deduced from properties of t_E .

Proposition 5.22. If rank E is odd, then 2e(E) = 0

Proof. Consider

$$\tau \colon E \to -E$$
$$(b,v) \mapsto (b,-v).$$

Note that τ is orientation-preserving, we have

$$e(E) = e(-E) = -e(E).$$

Theorem 5.23. Let $\pi: E \to B$ be an oriented bundle of rank n. Then $w_n(E) \equiv e(E) \mod 2$.

Proof. Applying Splitting Principle and naturality, it suffices to consider the line bundle $E_1(\mathbb{R}^2) \to \mathbb{R}P^1$. Note that $w_1(E_1(\mathbb{R}^\infty))|_{\mathbb{R}P^1} = w_1(E_1(\mathbb{R}^2))$ by the inclusion $\mathbb{R}P^1 \hookrightarrow \mathbb{R}P^\infty$, we have $w_1(E_1(\mathbb{R}^2)) = a \in H^1(\mathbb{R}P^1; \mathbb{Z}_2)$. We can find a section of $E_1(\mathbb{R}^2) \to \mathbb{R}P^1$ with a simple zero. Then $e(E_1(\mathbb{R}P^2)) = 1 \in H^1(\mathbb{R}P^1; \mathbb{Z}) \cong H^1(S^1; \mathbb{Z})$.

5.3.1 Euler class as obstruction

Recall that $\pi_1(\operatorname{Gr}_k(\mathbb{R}^n)) = \mathbb{Z}_2$. We consider the universal cover $\widetilde{\operatorname{Gr}}_k(\mathbb{R}^n) \to \operatorname{Gr}_k(\mathbb{R}^n)$ which is called the oriented Grassmannian consisting of oriented k-plane in \mathbb{R}^n . We get a principal bundle $\widetilde{\operatorname{V}}_k(\mathbb{R}^n) \to \widetilde{\operatorname{Gr}}_k(\mathbb{R}^n)$ and a group action $\operatorname{GL}_k^+(\mathbb{R}^n) \curvearrowright \widetilde{\operatorname{V}}_k(\mathbb{R}^n)$. Then $\widetilde{\operatorname{V}}_k(\mathbb{R}^\infty)$ is contractible. Therefore, $\widetilde{\operatorname{V}}_k(\mathbb{R}^\infty) \to \widetilde{\operatorname{Gr}}_k(\mathbb{R}^\infty)$ is the universal $\operatorname{SO}(k)$ -bundle. Define $o(E) \in H^n(B; \{\pi_{n-1}(\widetilde{\operatorname{V}}_1(E_b))\}) \cong H^n(B; \mathbb{Z})$ to be the primary obstruction of a global non-vanishing section because $\pi_{n-1}(\widetilde{\operatorname{V}}_1(E_b)) \cong \pi_{n-1}(\widetilde{\operatorname{V}}_1(\mathbb{R}^n)) \cong \pi_{n-1}(S^{n-1}) \cong \mathbb{Z}$.

Theorem 5.24. $o(E) = e(E) \in H^n(B; \mathbb{Z}).$

Proof. Denote $\pi_0: E_0 \to B$ for the restricted projection. Recall that $\pi_0^*E = \{(v,v) \in E_0 \times E : \pi_0(v) = \pi(v)\}$. Then the \mathbb{R}^n -bundle $\pi_0^*E \to E_0$ admits a tautological non-vanishing section. Then $\pi_0^*o(E) = o(\pi_0^*E) = 0$. Recall the Gysin sequence

$$H^0(B; \mathbb{Z}) \xrightarrow{\cup e(E)} H^n(B; \mathbb{Z}) \xrightarrow{\pi_0^*} H^n(E_0, \mathbb{Z})$$

$$\lambda_E \longmapsto o(E)$$

Therefore we have $o(E) = \lambda_E \cup e(E) = \lambda_E e(E)$. And by naturality, λ_E only depends on n. When $\operatorname{rank}(E) = n$ is odd, $o(E) \equiv w_n(E) \mod 2$. Note that we have commutative diagram

$$\pi_{n-1}(\widetilde{V}_1(\mathbb{R}^n)) \longrightarrow \pi_{n-1} V_1(\mathbb{R}^n)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\mathbb{Z} \longrightarrow \mathbb{Z}_2$$

Then $e(E) \equiv w_n(E) \mod 2$. Note that 2e(E) = 0, 2o(E) = 0, we have e(E) = o(E). When $\operatorname{rank}(E) = n = 2m$ is even, one can compute $e(TS^n) = o(TS^n) = 2$.

Remark 5.25. e(E) = 0 does not imply there exists a non-vanishing section, except for, for example, $\operatorname{rank}(E) \geq \dim B$. Especially, for *I*-bundle, it is right. This is because $\pi_k(S^{n-1})$ can be non-trivial for k > n - 1.

5.4 Chern Classes

In this section, we consider U(n) instead of O(n). The universal bundle of U(n) is similarly given by $V_n(\mathbb{C}^{\infty}) \to Gr_n(\mathbb{C}^{\infty})$.

Fact 5.26.

$$\pi_1(\operatorname{Gr}_n(\mathbb{C}^N)) = 1.$$

$$\pi_{2(n-k)+1}(\operatorname{V}_k(\mathbb{C}^n)) = \mathbb{Z}.$$

$$\operatorname{V}_k(\mathbb{C}^n) \text{ is } 2(n-k)\text{-connected}.$$

5.4.1 Obstruction construction of Chern classes

Let $\pi: E \to B$ be a \mathbb{C}^n -bundle. The primary obstruction of finding a (n-k+1)-frame is $\alpha_k(E) \in H^{2k}(B; \{\pi_{2k-1}(V_{n-k+1}(E_b))\})$. Note that $V_{n-k+1}(E_b)$ is 2(k-1)-connected. $\alpha_k(E) \in H^{2k}(B; \{\pi_{2k-1}(V_{n-k+1}(E_b))\}) \cong H^{2k}(B; \mathbb{Z})$ is the k-th Chern class of E

5.4.2 Projectivization construction of Chern class

Note that

$$Gr_1(\mathbb{C}^n) = \mathbb{C}P^n = S^{2n+1}/U(1) = \mathbb{C}^{n+1} - \{0\}/\mathbb{C}^*.$$

Denote by $c \in H^2(\mathbb{C}P^n; \mathbb{Z})$ for the Euler class of the Hopf fibration $S^{2n+1} \to \mathbb{C}P^n$. Consider Gysin sequence

$$H^{k+1}(S^{2n+1}) \longrightarrow H^k(\mathbb{C}P^n) \stackrel{\cup c}{\longrightarrow} H^{k+2}(\mathbb{C}P^n) \longrightarrow H^{k+2}(S^{2n+1})$$

When $k \leq 2n-2$, $H^k(\mathbb{C}P^n) \xrightarrow{\cup c} H^{k+2}(\mathbb{C}P^n)$ is an isomorphism. We have

$$\begin{array}{ccc}
^{C_0}(\mathbb{C}P^n) & \xrightarrow{\cup c} & H^2(\mathbb{C}P^n) & \xrightarrow{\cup c} & & \xrightarrow{\cup c} & H^{2n}(\mathbb{C}P^n) \\
\parallel & & & & & & & & & & & & \\
\mathbb{Z} & & & & & & & & & & & \\
\end{array}$$

and

$$H^{1}(\mathbb{C}P^{n}) \xrightarrow{\cup c} H^{3}(\mathbb{C}P^{n}) \xrightarrow{\cup c} \cdots \xrightarrow{\bigcup c} H^{2n+1}(\mathbb{C}P^{n})$$

Therefore $H^*(\mathbb{C}P^n; \mathbb{Z}) = \mathbb{Z}[i]/c^{n+1}$. Then $H^*(\mathrm{Gr}_1(\mathbb{C}^\infty)) = H^*(\mathbb{C}P^\infty) = \mathbb{Z}[c]$.

Given a \mathbb{C}^n -bundle $\pi\colon E\to B$. Denote $\rho\colon \mathbb{P}(E)\to B$ for the projectivization. We have a line bundle

$$S(E) = \{(b, [v], u) \in \mathbb{P}(E) \times E : u \in l_v\} \to \mathbb{P}(E).$$

There exists a classifying map $f: \mathbb{P}(E) \to \mathbb{C}P^{\infty}$. Denote $c_E = f^*c \in H^2(\mathbb{P}(E); \mathbb{Z})$. By Leray-Hirsch Theorem, $1, c_E, \dots, c_E^{n-1}$ is a free $H^*(B; \mathbb{Z})$ -basis of $H^*(\mathbb{P}(E); \mathbb{Z})$. Define Chern classes $c_k(E) \in H^{2k}(B; \mathbb{Z})$ by

$$\sum_{k=0}^{n} (-1)^{k} \rho^{*}(c_{k}(E)) \cup c_{E}^{n-k} = 0.$$

We require $c_0(E) = 1$ and $c_k(E) = 0$ when k > n.

5.4.3 c_1 from Čech cohomology

Let $\pi: E \to B$ be a a \mathbb{C}^n -bundle. We have a class $[E] \in H^1(B; U(n))$, called the Čech class of E. Consider the exact sequences

$$1 \longrightarrow SU(n) \longrightarrow U(n) \xrightarrow{\text{det}} U(1) \longrightarrow 1$$

and

$$1 \longrightarrow \mathbb{Z} \longrightarrow \mathbb{R} \longrightarrow \mathrm{U}(1) \longrightarrow 1$$

Consider \mathbb{R} as a locally constant sheaf, it is a fine sheaf. Then $H^*(B;\mathbb{R}) = 0$. Then we have a connecting map $\delta \colon H^1(B;\mathbb{U}(1)) \stackrel{\cong}{\to} H^2(B;\mathbb{Z})$. We define

$$c_1(E) := \delta \circ \det[E] \in H^2(B; \mathbb{Z}).$$

Then we have

$$c_1(L_1 \otimes L_2) = c_1(L_1) + c_1(L_2)$$

$$c_1(L_1 \oplus L_2) = c_1(L_1) + c_1(L_2)$$

and

$$c_1(L_1) = -c_1(\overline{L_1})$$

for any line bundles $L_1, L_2 \to B$, where $\overline{L_1}$ is the conjugate bundle of L_1 which is defined by $\overline{L_1} \otimes L_1 = \mathbb{C}$. Finally, we list some facts about chern classes here.

Denote $c(E) = 1 + c_1(E) + \cdots + c_n(E)$, we have

$$c(E_1 \oplus E_2) = c(E_1) \cup c(E_2).$$

Its proof is similar to Proposition 5.16.

For the Hopf fibration

$$U(1) \hookrightarrow S^3 = H(1) \to \mathbb{C}P^1,$$

we have

$$\langle c_1(H(1)), [\mathbb{C}P^1] \rangle = -1.$$

Denote E_k for the \mathbb{R}^{2n} -bundle corresponding to E. We have

$$c_n(E) = e(E) \in H^{2n}(B; \mathbb{Z}),$$

$$c_k(E) \equiv w_{2n}(E_{\mathbb{R}}) \mod 2.$$

5.5 Pontrjagin Classes

Definition 5.27. Let $\pi \colon E \to B$ be an \mathbb{R}^n -bundle. Denote by $E_{\mathbb{C}} \coloneqq E \otimes \mathbb{C}$ the complexification of E, which is a \mathbb{C}^* -bundle. Define the k-th Pontrjagin class

$$p_k(E) := (-1)^k c_{2k}(E_{\mathbb{C}}) \in H^{4k}(B; \mathbb{Z}).$$

For the oriented Grassmannian $\widetilde{\mathrm{Gr}}_n(\mathbb{R}^\infty)=B\,\mathrm{SO}(n),$ we have

$$H^*(\widetilde{\mathrm{Gr}}_n(\mathbb{R}^{\infty}); \mathbb{Z}) = \begin{cases} \mathbb{Z}[\frac{1}{2}][p_1, \cdots, p_k], & n = 2k + 1; \\ \mathbb{Z}[\frac{1}{2}][p_1, \cdots, p_{k-1}, e], & n = 2k, \end{cases}$$

where $e = c_{2k} = (-1)^k p_k$.

Denote $\widetilde{\Omega}_*$ for the oriented cobordism ring. It is the set of closed oriented smooth manifolds defined by taking a quotient of a equivalent relation \sim , which is defined by

$$M_1 \sim M_2 \Leftrightarrow -M_1 \sqcup M_2 = \partial W$$

for some manifold W. Its ring structure is defined by

$$[pt.] = 1,$$

$$[M_1] + [M_2] = [M_1 \sqcup M_2],$$

$$-[M] = [\overline{M}],$$

$$[M_1] \times [M_2] = [M_1 \times M_2],$$

where \overline{M} is M with reversed orientation. Then $\widetilde{\Omega}_n$ is an abelian group and $\widetilde{\Omega}_*$ is a commutative graded ring.

Fact 5.28.

$$\widetilde{\Omega}_0 = \mathbb{Z},$$
 $\widetilde{\Omega}_1 = 0,$
 $\widetilde{\Omega}_2 = 0,$
 $\widetilde{\Omega}_3 = 0$

because any 3-manifold are obtained from S^3 by integer surgery.

Question 5.29. What is $\widetilde{\Omega}_4$?

Consider $\widetilde{\Omega}_{4k}$. Given a partition $I=(i_1,\cdots,i_r)$ for k: $i_1+2i_2+\cdots+ri_r=k$. Pontrjagin and Thom show that

$$P_I \colon \widetilde{\Omega}_{4k} \to \mathbb{Z}$$

 $[M] \mapsto \langle p_1^{i_1} \cup \dots \cup p_r^{i_r}, [M] \rangle,$

where $p_j = p_j(TM)$, is a group homomorphism. Thom shows that when k = 1,

$$P_I : \widetilde{\Omega}_4 \to \mathbb{Z}$$

 $[M] \mapsto \langle p_1(M), [M] \rangle$

is an isomorphism. Therefore $\widetilde{\Omega}_4 = \langle [\mathbb{C}P^2] \rangle$.

Recall that the signature $\sigma \colon \widetilde{\Omega}_4 \to \mathbb{Z}$ is also a homomorphism. Hence $p_1(M) = \lambda \sigma$. We have $\lambda = 3$, i.e., for any 4-manifold M, $\frac{1}{3}p_1(M) = \sigma(M)$.

When k=2, Hirzebruch shows that $\sigma(M)=\frac{1}{45}(7p_2-p_1)^2$.

Question 5.30. Is there a general ralation between p_i and σ ?

For a formal power series $f(x) = 1 + a_1 x + \cdots + a_n x^n + \cdots \in \mathbb{Q}[x]$, denote

$$\prod_{i=1}^{n} f(x_i) = 1 + F_1(\sigma_1) + \dots + F_n(\sigma_1, \dots, \sigma_n) + \dots$$

where σ_i is the *i*-th elementary symmetric polynomial. We have $F_n(t\sigma_1, t^2\sigma_2, \dots, t^n\sigma_n) = t^nF_n(\sigma_1, \dots, \sigma_n)$. We get a corresponding

$$f \longleftrightarrow \{F_n\}_{n \ge 1} \coloneqq \stackrel{\rightarrow}{F}$$

Define the \overrightarrow{F} -genus

$$\overrightarrow{F}[M] := \langle F_n(p_1, \cdots, p_n), [M] \rangle$$

if dim M = 4n.

Theorem 5.31 (Hirzebruch Signature Theorem). Take $f(x) = \frac{\sqrt{x}}{\tanh \sqrt{x}} \in \mathbb{Q}[x]$. Then

$$\sigma(M) = \stackrel{\rightarrow}{F} [M]$$

when $\dim M = 4n$.

Theorem 5.32 (Atiyah-Singer). Take $f(x) = \frac{\sqrt{x}}{2}/\sinh\frac{\sqrt{x}}{2} \in \mathbb{Q}[x]$. Assume M is spin. Then

$$\overset{
ightarrow}{F}[M] = \operatorname{index} D$$

where D is the Dirac operator.