INTRODUCTION TO MACHINE LEARNING

INTRODUCTION TO MACHINE LEARNING

Sai Chandra, PhD
Department of Computer Science @ UNLV

^{*} Some contents are adapted from Dr. Hung Huang and Dr. Chengkai Li at UT Arlington

Begin with DATA and data mining

- Lots of data is being collected and warehoused
 - Web data, e-commerce
 - purchases at department/ grocery stores
 - Bank/Credit Card transactions
 - Social Network

How much data?

- □ Google processed 20 PB a day (2008)
- □ Wayback Machine has 3 PB + 100 TB/month (3/2009)
- □ Facebook has 2.5 PB of user data + 15 TB/day (4/2009)
- \square eBay has 6.5 PB of user data + 50 TB/day (5/2009)

-> unlv.edu

KB: 2¹0 bytes

MB: 2^20 bytes

GB: 2^{^30} bytes

TB: 2⁴0 bytes

PB: 2⁵⁰ bytes

EB: 2⁶⁰ bytes

ZB: 2^70 bytes

YB: 2⁸⁰ bytes

Type of Data

- Relational Data (Tables/Transaction/Legacy Data)
- Text Data (Web)
- Semi-structured Data (XML)
- Graph Data
 - Social Network, Semantic Web (RDF), ...
- Streaming Data

What to do with these data?

- Aggregation and Statistics
 - Data warehouse and OLAP (Online analytical processing)
- Indexing, Searching, and Querying
 - Keyword based search
 - Pattern matching (XML/RDF)
- □ Knowledge discovery
 - Data Mining
 - Statistical Modeling

DATA

SORTED

ARRANGED

PRESENTED VISUALLY

EXPLAINED WITH A STORY

Al with DATA

- □ Data Mining
- □ Machine Learning
- Pattern Recognition
- □ Data Science

Data mining?

- Lots of data is being collected and stored at enormous speeds (GB/hour)
 - Web data (web crawler)
 - Credit Card Transactions
 - Social Network Services
 - Wireless sensors
 - Genomic data
- Computers have become cheaper and powerful
- There is often "hidden" information in the data
- Traditional techniques infeasible for raw data

Data mining?

- Data Mining!!
 - KNOWLEDGE DISCOVERY FROM DATA
 - Extraction of interesting patterns or knowledge from huge amount of data

What's data mining?

Questions!

- What is (not) data mining?
 - Look up phone number in phone directory
 - Certain names are more prevalent in certain US locations (O'Brien, O'Rurke, O'Reilly... in Boston)
 - Query a web search engine for information about "Amazon"
 - Group together similar documents returned by search engine according to their context
 - Certain words are prevalent in positive expression.

Data Mining: Confluence of Multiple Disciplines

- Herbert A. Simon
 - "Learning is any process (algorithm) by which a system (model) improves performance (accuracy) from experience (data)"
- Data may include hidden knowledge that explains laws/rules/logics of a certain complex phenomenon

Turing Award, 1975 Nobel Prize in Economics, 1978

- Algorithms that train data and improve the performance by using the knowledge
- □ Why?
 - It is often too difficult to design a set of rules "by hand"
 - Machine learning is about automatically extracting relevant information from data and applying it to analyze new data
- Examples
 - Face Recognition
 - Speech recognition
 - Stock market prediction

Ramanathan and Chellappa, "Modeling Age Progression in Young Faces", 2006

Face dataset

IMDb Wikipedia

Wikipedia

A60,723 images

Wikipedia

62,328 images

- Let a machine find certain patterns automatically to make a decision
 - Very related to Optimization
- However, machine learning is not "MAGIC"
- We should give a minimum guideline to a machine
 - Data
 - Model
- Machine will find the best setting of the model computationally

Types of Learning

- Supervised learning (Classification and Regression)
 - Given labeled data, classifying or predicting unlabeled new data
- Unsupervised learning (Clustering)
 - Given unlabeled data, inferring a function to describe hidden patterns
- Feature Selection/Feature Reduction
 - Selecting a subset of relevant features
- Semi-supervised learning
 - Given both labeled/unlabeled data, classifying or predicting unlabeled new data
- Ensemble Learning
- And many topics...

Foundation of Machine Learning

- Which Skills Are Most Valuable In Machine Learning? (Forbes)
 - Fundamentals of Statistics
 - Optimization (Mathematics, but don't be scared)
 - Building quantitative models
 - Understanding how models and data analysis actually apply to products and businesses
 - Knowing how to write high quality software
 - Working with large data sets

Examples: Object detection/regression

- Google Vision API
 - https://cloud.google.com/vision/
- Age estimation from facial images

Examples: Classification

Cat vs Dog from images

Sample of cats & dogs images from Kaggle Dataset

Examples: Classification

□ Vehicle Types from images

https://car-brand-names.com/types-of-cars/

Examples: Inference/Classification

Network Inference

Sky	Temp	Humid	Wind	Water
Sunny	Warm	Normal	Strong	Warm
Sunny	Warm	High	Strong	Warm
Rainy	Cold	High	Strong	Warm
Sunny	Warm	High	Strong	Cool

http://www.cs.umd.edu/hcil/science20/

Decision Trees

https://www.cs.cmu.edu/~bhiksha/courses/10-601/decisiontrees/

Examples: Classification

Handwritten Digit Recognition

https://en.wikipedia.org/wiki/MNIST_database

Examples: Regression

Stock Market

https://towardsdatascience.com/stock-market-forecasting-using-time-series-c3d21f2dd37f

Examples: Clustering

Image segmentation

Break up the image into similar regions

https://www.cc.gatech.edu/~hays/compvision2 017/lectures/17.pdf

Discussion

- Let's discuss about machine learning examples
 - Problem?
 - Why should we consider machine learning for the problem?
 - What dataset do we need?

Discussion

- Algorithms are machine learning??
 - Shortest path algorithm (e.g., Dijkstra's algorithm)
 - Sorting algorithms
- Performance
 - Efficiency vs Accuracy

Al vs Data Mining vs Machine Learning

- There is considerable overlap among these, but some distinction can be made.
- Artificial Intelligence
 - Study of how to create intelligent agent. Not necessary to involve learning or induction.
- Machine Learning
 - Computer programs that learn some tasks from experience to improve performances.
- Data Mining
 - Study that has taken much of its inspiration and techniques from machine learning (and some, also, from statistics), but is put to different ends.

Relationships with...

- Big Data Analytics
- Data Mining
- Computer Vision
 - Image processing?
- □ Biomedical/Bioinformatics/Healthcare
- Text mining
- Natural Language Processing (NLP)

Journal/Conference

- Machine Learning
 - Conferences
 - ICML, NIPS, CVPR, ICCV, AAAI, IJCAI, ECML, ECCV, KDD, UAI, COLT
 - Journals
 - Journal of Machine Learning Research, Machine Learning, IEEE PAMI, IEEE TKDE

See "Google Scholar Metrics"

More details

- More details of Journals/Conferences
 - Scopes¹
 - Paper types²
 - Original Papers, Discovery Notes, Application Notes, and Reviews (Survey)
 - Open-access journals
 - Otherwise via UNLV Online Library

¹ https://www.computer.org/web/tkde/about

² https://www.computer.org/web/tkde/author