E.N.A.C Ingénieurs

FILIERE M

COMPOSITION DE MATHEMATIQUES. OPTION

- PARTIE I -

- a) 1) E est le noyau d'une forme linéaire et donc E est un sous-espace vectoriel de $\mathbb{R}[X]$. D est un endomorphisme de $\mathbb{R}[X]$ et par restriction $d \in \mathcal{L}(E, \mathbb{R}[X])$.
- Soit $P \in E$. Si $P \in \text{Ker}(d)$, P' = 0 et donc $P \in \mathbb{R}_0[X]$. L'égalité $\int_0^1 P(t) \ dt = 0$ impose alors P = 0. Par suite $\text{Ker}(d) = \{0\}$ et d est injective.
- Soit $Q \in \mathbb{R}[X]$. Pour $x \in \mathbb{R}$, posons

$$P(x) = \int_0^x Q(t) dt + \int_0^1 (t-1)Q(t) dt.$$

D'une part, D(P) = P' = Q et d'autre part

$$\begin{split} \int_0^1 P(x) \ dx &= \int_0^1 \left(\int_0^x Q(t) \ dt + \int_0^1 (t-1)Q(t) \ dt \right) \ dx = \int_0^1 \left(\int_0^x Q(t) \ dt \right) \ dx + \int_0^1 (x-1)Q(x) \ dx \\ &= \int_0^1 \left(\int_0^x Q(t) \ dt + (x-1)Q(x) \right) dx = \int_0^1 \left((x-1)\int_0^x Q(t) \ dt \right)' \ dx \\ &= \left[(x-1)\int_0^x Q(t) \ dt \right]_{x=0}^{x=1} = 0. \end{split}$$

Donc $P \in E$ et ainsi d(P) = Q. On a montré que tout élément de $\mathbb{R}[X]$ a un antécédent par d dans E et donc que d est surjective. Finalement

d est un isomorphisme de E sur $\mathbb{R}[X]$.

2) D'après 1)

$$\forall Q\in\mathbb{R}[X],\;\forall x\in\mathbb{R},d^{-1}(Q)(x)=\int_0^xQ(t)\;dt+\int_0^1(t-1)Q(t)\;dt.$$

$$\begin{array}{c} \mathbf{b)} \ \mathbf{1)} \ \mathrm{Pour} \ x \in \mathbb{R}, \ B_1(x) = \int_0^x \mathrm{d}t + \int_0^1 (t-1) \ \mathrm{d}t = x + \left(\frac{1}{2} - 1\right) = x - \frac{1}{2}. \\ \mathrm{Pour} \ x \in \mathbb{R}, \ B_2(x) = \int_0^x (t - \frac{1}{2}) \ \mathrm{d}t + \int_0^1 (t-1)(t - \frac{1}{2}) \ \mathrm{d}t = \frac{1}{2}x^2 - \frac{1}{2}x + \left(\frac{1}{3} - \frac{3}{4} + \frac{1}{2}\right) = \frac{1}{2}x^2 - \frac{1}{2}x + \frac{1}{12}. \\ \hline B_1 = X - \frac{1}{2} \ \mathrm{et} \ B_2 = \frac{1}{2}X^2 - \frac{1}{2}X + \frac{1}{12}. \end{array}$$

2) Soit n un entier naturel supérieur ou égal à 2.

$$B_n(1) - B_n(0) = \int_0^1 B_n'(t) \ dt = \int_0^1 B_{n-1}(t) \ dt.$$

Maintenant, puisque $n-1 \ge 1$, $B_{n-1} = \Phi(B_{n-2})$ et donc $B_{n-1} \in E$ ou encore $B_n(1) - B_n(0) = \int_0^1 B_{n-1}(t) dt = 0$. Finalement

$$\forall n \in \mathbb{N} \setminus \{0,1\}, \ B_n(0) = B_n(1).$$

c) 1) Soit $n \in \mathbb{N}$.

$$\begin{split} P'_{n+1} &= \left((-1)^{n+1} B_{n+1} (1-X) \right)' = - (-1)^{n+1} B'_{n+1} (1-X) = (-1)^n B_n (1-X) = P_n. \\ \\ &\boxed{\forall n \in \mathbb{N}, \; P'_{n+1} = P_n. \end{split}}$$

2) Soit $n \in \mathbb{N}$. D'après 1), $D(P_{n+1}) = P_n$. De plus

$$\begin{split} \int_0^1 P_{n+1}(t) \ dt &= (-1)^{n+1} \int_0^1 B_{n+1}(1-t) \ dt = (-1)^{n+1} \int_0^1 B_{n+1}(u) \ du \ (\mathrm{en \ posant} \ u = 1-t) \\ &= 0 \ \mathrm{car} \ B_{n+1} \in E \ \mathrm{pour} \ n \in \mathbb{N}. \end{split}$$

Donc $P_{n+1} \in E$ et finalement $d(P_{n+1}) = P_n$ ou encore $\Phi(P_n) = P_{n+1}$.

$$\forall n \in \mathbb{N}, \ \Phi(P_n) = P_{n+1}.$$

3) $P_0 = B_0 = 1$. Par suite, pour tout entier naturel n,

$$P_n = \Phi^n(P_0) = \Phi^n(B_0) = B_n.$$

On a montré que

$$\forall n \in \mathbb{N}, \ B_n(1-X) = (-1)^n B_n.$$

d) 1) Soient $p \in \mathbb{N}^*$ et $n \in \mathbb{N}$.

$$D(Q_{n+1}) = p^n \sum_{j=0}^{p-1} \frac{1}{p} B'_{n+1} \left(\frac{X+j}{p} \right) = p^{n-1} \sum_{j=0}^{p-1} B_n \left(\frac{X+j}{p} \right) = Q_n.$$

De plus,

$$\int_0^1 Q_{n+1}(t) \ dt = p^n \sum_{j=0}^{p-1} \int_0^1 B_{n+1} \left(\frac{t+j}{p} \right) \ dt = p^n \sum_{j=0}^{p-1} \int_{j/p}^{(j+1)/p} B_{n+1}(u) \ p du = p^{n+1} \int_0^1 B_{n+1}(u) \ du = 0 \ (\operatorname{car} \ n+1 \geq 1).$$

Donc $d(Q_{n+1}) = Q_n$ ou encore $\Phi(Q_n) = Q_{n+1}$.

$$\forall p \in \mathbb{N}^*, \ \forall n \in \mathbb{N}, \ \Phi(Q_n) = Q_{n+1}.$$

2) $Q_0 = \frac{1}{p} \sum_{i=0}^{p-1} 1 = 1 = B_0$ et donc, comme en c)3), pour tout entier naturel n, $Q_n = B_n$.

$$\forall n \in \mathbb{N}, \ \forall p \in \mathbb{N}^*, \ B_n = p^{n-1} \sum_{j=0}^{p-1} B_n \left(\frac{X+j}{p} \right).$$

e) 1) Soit $n \in \mathbb{N}$.

$$R_{n+1}' = B_{n+2}'(X+1) - B_{n+2}' = B_{n+1}(X+1) - B_{n+1} = R_n,$$

De plus d'après b)2), $R_{n+1}(0) = B_{n+2}(1) - B_{n+2}(0) = 0$. Ainsi, R_{n+1} est la primitive de R_n qui s'annule en 0 et finalement,

$$\forall n \in \mathbb{N}, \ \forall x \in \mathbb{R}, \ R_{n+1}(x) = \int_0^x R_n(t) \ dt.$$

2) $R_0 = \left(X + \frac{1}{2}\right) - \left(X - \frac{1}{2}\right) = 1$ et donc par récurrence

$$\forall n \in \mathbb{N}, \ R_n = \frac{X^n}{n!}.$$

3) Soit $(m, n) \in (N^*)^2$.

$$\sum_{k=1}^m k^n = n! \sum_{k=1}^m R_n(k) = n! \sum_{k=1}^m (B_{n+1}(k+1) - B_{n+1}(k)) = n! (B_{n+1}(m+1) - Bn + 1(1)) = n! (B_{n+1}(m+1) - Bn + 1(0)).$$

$$\forall (m,n) \in (\mathbb{N}^*)^2, \ \sum_{k=1}^m k^n = n! (B_{n+1}(m+1) - Bn + 1(0)).$$

- PARTIE II -

a) 1) B_n est un polynôme de degré n. La formule de TAYLOR fournit

$$B_n = \sum_{j=0}^n \frac{B_n^{(j)}(0)}{j!} X^j = \sum_{j=0}^n \frac{B_{n-j}(0)}{j!} X^j = \sum_{j=0}^n b_{n-j} \frac{X^j}{j!}.$$

$$\forall n \in \mathbb{N}, \ B_n = \sum_{j=0}^n b_{n-j} \frac{X^j}{j!}.$$

2) $b_0 = B_0(0) = 1$. Soit $n \in \mathbb{N}^*$. Puisque $B_n \in E$, on a

$$0 = \int_0^1 B_n(x) \ dx = \sum_{j=0}^n b_{n-j} \int_0^1 \frac{x^j}{j!} \ dx = \sum_{j=0}^n \frac{b_{n-j}}{(j+1)!},$$

et donc

$$b_0=1 \ \mathrm{et} \ \forall n \in \mathbb{N}^*, \ b_n=-\sum_{j=1}^n \frac{b_{n-j}}{(j+1)!}.$$

3) Soit $k \in \mathbb{N}^*$. Puisque $2k+1 \ge 2$, d'après I.b)2), $B_{2k+1}(0) = B_{2k+1}(1)$ et d'après I.c)3), $B_{2k+1}(0) = (-1)^{2k+1}B_{2k+1}(1) = -B_{2k+1}(1)$. Par suite, $B_{2k+1}(0) = B_{2k+1}(1) = 0$.

$$\forall k \in \mathbb{N}^*, \ b_{2k+1} = 0.$$

b) • Soit $n \in \mathbb{N}$. D'après I.d)2), pour tout réel x, on a

$$B_n(x) = 2^{n-1} \left(B_n \left(\frac{x}{2} \right) + B_n \left(\frac{x+1}{2} \right) \right),$$

et en particulier pour x = 0, on obtient

$$b_n = 2^{n-1} \left(b_n + B_n \left(\frac{1}{2} \right) \right)$$
 et donc $B_n \left(\frac{1}{2} \right) = b_n (2^{1-n} - 1)$.

$$\forall n \in \mathbb{N}, \ B_n\left(\frac{1}{2}\right) = b_n(2^{1-n} - 1).$$

En particulier, $\forall k \in \mathbb{N}^*, \ B_{2k+1}\left(\frac{1}{2}\right) = 0.$

 $\begin{aligned} &\text{Pour } x = \frac{1}{2}, \text{ on obtient aussi } B_n\left(\frac{1}{2}\right) = 2^{n-1}\left(B_n\left(\frac{1}{4}\right) + B_n\left(\frac{3}{4}\right)\right) = 2^{n-1}(1+(-1)^n)B_n\left(\frac{1}{4}\right). \text{ Si de plus } n = 2k \text{ est un nombre pair, on obtient } B_{2k}\left(\frac{1}{4}\right) = 2^{-2k}B_{2k}\left(\frac{1}{2}\right) = 2^{-2k}(2^{-2k}-1)b_{2k}. \end{aligned}$

$$\text{Pour } x = \frac{1}{3}, \text{ on obtient } B_n\left(\frac{1}{3}\right) = 2^{n-1}\left(B_n\left(\frac{1}{6}\right) + B_n\left(\frac{2}{3}\right)\right) = 2^{n-1}\left(B_n\left(\frac{1}{6}\right) + (-1)^nB_n\left(\frac{1}{3}\right)\right) \text{ et donc } B_n\left(\frac{1}{6}\right) = (2^{1-n} - (-1)^n)B_n\left(\frac{1}{3}\right).$$

• D'après I.d)2), pour tout réel x, on a aussi

$$B_{n}(x) = 3^{n-1} \left(B_{n} \left(\frac{x}{3} \right) + B_{n} \left(\frac{x+1}{3} \right) + B_{n} \left(\frac{x+2}{3} \right) \right)$$

 $x = 0 \text{ fournit alors } b_n = B_n(0) = 3^{n-1} \left(B_n(0) + B_n \left(\frac{1}{3} \right) + B_n \left(\frac{2}{3} \right) \right) = 3^{n-1} \left(b_n + (1 + (-1)^n) B_n \left(\frac{1}{3} \right) \right) \text{ et donc si } n = 2k \text{ est pair, }$

$$B_{2k}\left(\frac{1}{3}\right) = \frac{1}{2}(3^{1-2k}-1)b_{2k} \ \mathrm{et} \ B_{2k}\left(\frac{1}{6}\right) = \frac{1}{2}(2^{1-2k}-1)(3^{1-2k}-1)b_{2k}.$$

$$\forall k \in \mathbb{N}, \ B_{2k}\left(\frac{1}{4}\right) = 2^{-2k}(2^{-2k}-1)b_{2k}, \ B_{2k}\left(\frac{1}{3}\right) = \frac{1}{2}(3^{1-2k}-1)b_{2k} \ \mathrm{et} \ B_{2k}\left(\frac{1}{6}\right) = \frac{1}{2}(2^{1-2k}-1)(3^{1-2k}-1)b_{2k}.$$

c) 1) Pour $x \in]0, \frac{1}{2}[, (-1)^1B_1(x) = \frac{1}{2} - x > 0.$

Pour
$$m = 1$$
, $\forall x \in]0, \frac{1}{2}[, (-1)^1B_1(x) > 0.$

 $\textbf{2)} \text{ Soit } \mathfrak{m} \in \mathbb{N}^*. \text{ Supposons que } \forall x \in]0, \frac{1}{2}[,\, (-1)^{\mathfrak{m}} B_{2\mathfrak{m}-1}(x) > 0.$

La dérivée de $(-1)^m B_{2m}$ est $(-1)^m B_{2m-1}$ et donc la fonction $(-1)^m B_{2m}$ est une fonction strictement croissante sur $[0, \frac{1}{2}]$. De plus, d'après II.b)2),

$$(-1)^{m}B_{2m}(0) \times (-1)^{m}B_{2m}\left(\frac{1}{2}\right) = b_{2m}^{2}(2^{1-2m}-1) \le 0.$$

D'autre part, on ne peut avoir $(-1)^m B_{2m}(0) \times (-1)^m B_{2m}\left(\frac{1}{2}\right) = 0$ car $B_{2m}(0)$ et $B_{2m}\left(\frac{1}{2}\right)$ seraient simultanément nuls (toujours d'après II.b)2)) contredisant ainsi la stricte croissance de la fonction $(-1)^m B_{2m}$ sur $[0, \frac{1}{2}]$. Par suite, la fonction $(-1)^m B_{2m}$ s'annule une et une seule fois sur $[0, \frac{1}{2}]$ en un certain réel θ_m de $[0, \frac{1}{2}]$.

3) Puisque la fonction $(-1)^m B_{2m}$ est strictement croissante sur $[0,\frac{1}{2}]$, la fonction $(-1)^m B_{2m}$ est strictement négative sur $[0,\theta_m[$ et strictement positive sur $]\theta_m,\frac{1}{2}[$ et puisque $((-1)^{m+1}B_{2m+1})'=-(-1)^m B_{2m},$ la fonction $(-1)^{m+1}B_{2m+1}$ est strictement croissante sur $[0,\theta_m]$ et strictement décroissante sur $[\theta_m,1]$. Enfin, puisque $m\geq 1$, $B_{2m+1}(0)=0$ d'après II.a)3) et d'après II.b), $B_{2m+1}\left(\frac{1}{2}\right)=0$. Finalement, la fonction $(-1)^{m+1}B_{2m+1}$ est strictement positive sur $[0,\frac{1}{2}]$.

4) Pour m = 1, la fonction $(-1)^m B_{2m-1}$ est strictement positive sur $]0, \frac{1}{2}[$ et si pour $m \ge 1$, la fonction $(-1)^m B_{2m-1}$ est strictement positive sur $]0, \frac{1}{2}[$ alors d'après 3), la fonction $(-1)^{m+1} B_{2m+1}$ est strictement positive sur $]0, \frac{1}{2}[$. On vient de montrer par récurrence que,

$$\forall m \in \mathbb{N}^*, \ \mathrm{la\ fonction}\ (-1)^m B_{2m-1}\ \mathrm{est\ strictement\ positive\ sur\ }]0, \frac{1}{2}[.$$

Mais alors, d'après 2),

 $\forall \mathfrak{m} \in \mathbb{N}^*, \text{ la fonction } (-1)^{\mathfrak{m}} B_{2\mathfrak{m}} \text{ s'annule une fois et une seule sur } [0,\frac{1}{2}] \text{ en un certain réel } \theta_{\mathfrak{m}} \in]0,\frac{1}{2}[.$

5) Soit $m \in \mathbb{N}^*$.

$$B_{2m}\left(\frac{1}{4}\right)B_{2m}\left(\frac{1}{6}\right) = \frac{1}{2}(2^{1-2m}-1)(3^{1-2m}-1)2^{-2m}(2^{-2m}-1)b_{2m}^2 < 0,$$

 $(B_{2m}\left(\frac{1}{4}\right) \text{ et } B_{2m}\left(\frac{1}{6}\right) \text{ ne pouvant être simultanément nuls) ce qui montre que$

$$\forall m \in \mathbb{N}^*, \ \theta_m \in]\frac{1}{6}, \frac{1}{4}[.$$

d) 1) Soit $\mathfrak{m} \in \mathbb{N}^*$. D'après l'étude des variations de la fonction $(-1)^{\mathfrak{m}}B_{2\mathfrak{m}}$ faite à la question c)2),

$$\operatorname{Max} \left\{ |B_{2\mathfrak{m}}(x)|, \; x \in [0,\frac{1}{2}] \right\} = \operatorname{Max} \left\{ |B_{2\mathfrak{m}}(0)|, |B_{2\mathfrak{m}}\left(\frac{1}{2}\right)| \right\}.$$

 $\mathrm{Mais}\; |B_{2\mathfrak{m}}\left(\frac{1}{2}\right)| = (1-2^{1-2\mathfrak{m}})|B_{2\mathfrak{m}}(0)| \leq |B_{2\mathfrak{m}}(0)|\; \mathrm{et}\; \mathrm{donc}\; \mathrm{Max}\left\{|B_{2\mathfrak{m}}(0)|, |B_{2\mathfrak{m}}\left(\frac{1}{2}\right)|\right\} = |B_{2\mathfrak{m}}(0)| = |b_{2\mathfrak{m}}|.\; \mathrm{Finalement},$

$$\forall m \in \mathbb{N}^*, \text{ Max}\left\{|B_{2m}(x)|, \ x \in [0, \frac{1}{2}]\right\} = |b_{2m}|.$$

 $\begin{aligned} \textbf{2)} \ \operatorname{Soit} \ \mathfrak{m} \in \mathbb{N}^*. \ \operatorname{Max} \left\{ |B_{2\mathfrak{m}}(x)|, \ x \in [\frac{1}{2},1] \right\} &= \operatorname{Max} \left\{ |B_{2\mathfrak{m}}(1-x)|, \ x \in [0,\frac{1}{2}] \right\} = \operatorname{Max} \left\{ |B_{2\mathfrak{m}}(x)|, \ x \in [0,\frac{1}{2}] \right\}. \ \operatorname{Par} \ \operatorname{suite}, \\ \operatorname{Max} \{ |B_{2\mathfrak{m}}(x)|, \ x \in [0,1] \} &= \operatorname{Max} \left\{ |B_{2\mathfrak{m}}(x)|, \ x \in [0,\frac{1}{2}] \right\} = |b_{2\mathfrak{m}}|. \end{aligned}$

$$\forall m \in \mathbb{N}^*, \ \max\{|B_{2m}(x)|, \ x \in [0,1]\} = |b_{2m}|.$$

- PARTIE III -

a) La restriction de \tilde{P} à]0,1[est classe C^1 sur]0,1[et se prolonge en une fonction de classe C^1 sur [0,1]. \tilde{P} est donc de classe C^1 par morceaux sur [0,1] puis sur $\mathbb R$ par 1-périodicité.

 \tilde{P} est continue sur $\mathbb{R} \setminus \mathbb{Z}$ et d'autre part

$$\frac{1}{2}(\tilde{P}(0^+) + \tilde{P}(0^-)) = \frac{1}{2}(P(0) + P(1)) = \tilde{P}(0).$$

Par 1-périodicité, P vérifie

$$\forall x \in \mathbb{R}, \ \frac{1}{2}(\tilde{P}(x^+) + \tilde{P}(x^-)) = \tilde{P}(x).$$

D'après le théorème de DIRICHLET, la série de FOURIER de \tilde{P} converge simplement vers \tilde{P} sur \mathbb{R} . Donc,

$$\begin{split} \forall x \in \mathbb{R}, \ \tilde{P}(x) &= \frac{\alpha_0}{2} + \sum_{k=1}^{+\infty} (\alpha_k \cos(2k\pi x) + b_k \sin(2k\pi x)) \ \text{où} \\ \forall k \in \mathbb{N}, \ \alpha_k &= 2 \int_0^1 P(t) \cos(2k\pi t) \ dt \ \text{et} \ \forall k \in \mathbb{N}^*, \ b_k &= 2 \int_0^1 P(t) \sin(2k\pi t) \ dt. \end{split}$$

- b) 1) Soient $x \in \mathbb{R}$ et $n \in \mathbb{N}^*$.
- \bullet Si $x\in\mathbb{Z},$ puisque \tilde{B}_{2n} est 1-périodique, on a $\tilde{B}_{n}(-x)=\tilde{B}_{2n}(x).$
- Si $x \notin \mathbb{Z}$, on a E(x) < x < E(x) + 1 et donc 0 < -x + E(x) + 1 < 1. Puisque \tilde{B}_{2n} est 1-périodique

$$\begin{split} \tilde{B}_{2n}(-x) &= \tilde{B}_{2n}(-x + E(x) + 1) = B_{2n}(-x + E(x) + 1) = (-1)^{2n}B_{2n}(1 - (-x + E(x) + 1)) \\ &= B_{2n}(x - E(x)) = \tilde{B}_{2n}(x - E(x)) = \tilde{B}_{2n}(x). \end{split}$$

Finalement, la fonction \tilde{B}_{2n} est paire.

 \tilde{B}_{2n} est continue sur]0, 1[. De plus, d'après I.b)2),

$$\tilde{B}_{2n}(0) = \frac{1}{2}(B_{2n}(0) + B_{2n}(1)) = B_{2n}(0) = B_{2n}(0^+) = \tilde{B}_{2n}(0^+),$$

et

$$\tilde{B}_{2n}(1) = \tilde{B}_{2n}(0) = B_{2n}(0^+) = B_{2n}(1^-) = \tilde{B}_{2n}(1^-).$$

Ainsi, \tilde{B}_{2n} est continue sur [0,1] et donc sur \mathbb{R} par 1-périodicité.

 $\forall n \in \mathbb{N}, \ \tilde{B}_{2n} \text{ est continue sur } \mathbb{R} \text{ et paire.}$

2) Soient $x \in \mathbb{R}$ et $n \in \mathbb{N}^*$. L'égalité $\tilde{B}_{2n-1}(-x) = -\tilde{B}_{2n-1}(x)$ est vraie quand $x \in \mathbb{Z}$ par 1-périodicité. Si $x \notin \mathbb{Z}$, d'après I.c.)3)

$$\tilde{B}_{2n-1}(-x) = \tilde{B}_{2n-1}(-x + E(x) + 1) = -B_{2n-1}(x - E(x)) = -\tilde{B}_{2n-1}(x - E(x)) = -\tilde{B}_{2n-1}(x).$$

Finalement, B_{2n-1} est impaire.

Soit $n \geq 2$. D'après I.b)2), $B_{2n-1}(0) = B2n - 1(1) = 0$ et comme en 1), \tilde{B}_{2n-1} est continue sur \mathbb{R} .

$$\forall n \in \mathbb{N}^*, \ \tilde{B}_{2n-1} \ \mathrm{est \ impaire \ et} \ \forall n \in \mathbb{N}^* \setminus \{1\}, \ \tilde{B}_{2n-1} \ \mathrm{est \ continue \ sur} \ \mathbb{R}.$$

 $\mathbf{c)} \ \, \mathbf{1)} \ \, \mathrm{Soit} \, \, n \in \mathbb{N}^*. \, \, I_0(n) = \int_0^1 B_{2n}(x) \, \, dx = 0 \, \, (\mathrm{car} \, \, B_{2n} \in E).$

$$\forall n \in \mathbb{N}^*, \ I_0(n) = 0.$$

2) Soit $(n,k) \in (\mathbb{N}^*)^2$. Deux intégrations par parties fournissent

$$\begin{split} I_k(n+1) &= \int_0^1 B_{2n+2}(x) \cos(2k\pi x) \ dx = \frac{1}{2k\pi} \left(\left[B_{2n+2}(x) \sin(2k\pi x) \right]_0^1 - \int_0^1 B_{2n+2}'(x) \sin(2k\pi x) \ dx \right) \\ &= -\frac{1}{2k\pi} \int_0^1 B_{2n+1}(x) \sin(2k\pi x) \ dx = \frac{1}{4k^2\pi^2} \left(\left[B_{2n+1}(x) \cos(2k\pi x) \right]_0^1 - \int_0^1 B_{2n}(x) \cos(2k\pi x) \ dx \right) \\ &= -\frac{1}{4k^2\pi^2} I_k(n) \ (\text{car pour } n \geq 1, \ B_{2n+1}(1) = B_{2n+1}(0) = 0). \end{split}$$

$$\forall (k,n) \in (\mathbb{N}^*)^2, \ I_k(n+1) = -\frac{1}{4k^2\pi^2}I_k(n).$$

3) Soit $k \in \mathbb{N}^*$. Deux nouvelles intégrations par parties fournissent

$$\begin{split} I_k(1) &= \int_0^1 B_2(x) \cos(2k\pi x) \ dx = \frac{1}{2k\pi} \left(\left[B_2(x) \sin(2k\pi x) \right]_0^1 - \int_0^1 B_1(x) \sin(2k\pi x) \ dx \right) = -\frac{1}{2k\pi} \int_0^1 B_1(x) \sin(2k\pi x) \ dx \\ &= \frac{1}{4k^2\pi^2} \left(\left[B_1(x) \cos(2k\pi x) \right]_0^1 - \int_0^1 B_0(x) \cos(2k\pi x) dx \right) = \frac{1}{4k^2\pi^2} (B_1(1) - B_1(0) - I_k(0)) \\ &= \frac{1}{4k^2\pi^2}. \end{split}$$

$$\forall k \in \mathbb{N}^*, \ I_k(1) = \frac{1}{4k^2\pi^2}.$$

 $\textbf{4) Mais alors, pour } (k,n) \in (\mathbb{N}^*)^2, \ I_k(n) = \left(-\frac{1}{4k^2\pi^2}\right)^{n-1} \times \frac{1}{4k^2\pi^2} = \frac{(-1)^{n-1}}{(2k\pi)^{2n}}.$

$$\forall (k,n) \in (\mathbb{N}^*)^2, \ I_k(n) = \frac{(-1)^{n-1}}{(2k\pi)^{2n}}.$$

Soit $n \in \mathbb{N}^*$. Puisque la fonction \tilde{B}_{2n} est paire, $\forall k \in \mathbb{N}^*$, $\beta_k(\tilde{B}_{2n}) = 0$ puis pour $k \in \mathbb{N}$,

$$\alpha_k(\tilde{B}_{2n}) = 2 \int_0^1 \tilde{B}_{2n}(x) \ dx = 2 I_k(n) = \left\{ \begin{array}{l} 0 \ \mathrm{si} \ k = 0 \\ \frac{2(-1)^{n-1}}{(2k\pi)^{2n}} \ \mathrm{si} \ k \geq 1. \end{array} \right. .$$

Soit alors $x \in [0, 1]$. D'après III.a)

$$\tilde{B}_{2n}(x) = B_{2n}(x) = \frac{\alpha_0(\tilde{B}_{2n})}{2} + \sum_{k=1}^{+\infty} (\alpha_k(\tilde{B}_{2n})\cos(2k\pi x) + \beta_k(\tilde{B}_{2n})\sin(2k\pi x)) = 2(-1)^{n-1}\sum_{k=1}^{+\infty} \frac{1}{(2k\pi)^{2n}}\cos(2k\pi x).$$

$$\forall x \in [0,1], \ B_{2n}(x) = 2(-1)^{n-1} \sum_{k=1}^{+\infty} \frac{1}{(2k\pi)^{2n}} \cos(2k\pi x).$$

5) En particulier, si x = 0, on obtient

$$b_{2n} = \frac{2(-1)^{n-1}}{2^{2n}\pi^{2n}} \sum_{k=1}^{+\infty} \frac{1}{k^{2n}},$$

et donc

$$\forall n \in \mathbb{N}^*, \ \sum_{k=1}^{+\infty} \frac{1}{k^{2n}} = (-1)^{n-1} 2^{2n-1} \pi^{2n} b_{2n}.$$

d) 1) Soit $n \in \mathbb{N}^*$.

$$1 \leq 1 + \sum_{k=2}^{+\infty} \frac{1}{k^{2n}} \leq 1 + \sum_{k=2}^{+\infty} \int_{k-1}^{k} \frac{1}{t^{2n}} dt = 1 + \int_{1}^{+\infty} \frac{1}{t^{2n}} dt = 1 + \frac{1}{2n-1},$$

et d'après le théorème des gendarmes,

$$\lim_{n\to+\infty}\sum_{k=1}^{+\infty}\frac{1}{k^{2n}}=1.$$

2) D'après c)5) et d)1),

$$b_{2n} \underset{n \to +\infty}{\sim} \frac{2(-1)^{n-1}}{(2\pi)^n}.$$

3) On a vu que $\forall n \in \mathbb{N}, \ b_{2n} \neq 0$. Soit $x \in [0,1]$. D'après d)1) et 2)

$$\left| \frac{1}{b_{2n}} \sum_{k=2}^{+\infty} 2 \frac{(-1)^{n-1}}{(2k\pi)^n} \cos(2k\pi x) \right| \leq \frac{2}{|b_{2n}|} \sum_{k=2}^{+\infty} \frac{1}{(2k\pi)^n} \underset{n \to +\infty}{\sim} 2 \sum_{k=2}^{+\infty} \frac{1}{(2k\pi)^n} \frac{(2\pi)^n}{2} = \sum_{k=2}^{+\infty} \frac{1}{k^{2n}} \underset{n \to +\infty}{\to} 0.$$

Donc

$$\frac{B_{2n}(x)}{B_{2n}(0)} \underset{n \to +\infty}{=} 2 \frac{(-1)^{n-1}}{(2\pi)^n} \frac{\cos(2\pi x)}{b_{2n}} + o(1) = \cos(2\pi x) + o(1),$$

et donc

$$\forall x \in [0, 1] \lim_{n \to +\infty} \frac{B_{2n}(x)}{B_{2n}(0)} = \cos(2\pi x).$$

e) 1) \tilde{B}_1 est de classe C^1 par morceaux sur \mathbb{R} , 1-périodique et vérifie en tout réel x, $\tilde{B}_1(x) = \frac{1}{2}(\tilde{B}_1(x^+) + \tilde{B}_1(x^-))$ (car $\frac{1}{2}(\tilde{B}_1(0^+) + \tilde{B}_1(0^-)) = \frac{1}{2}(\frac{1}{2} - \frac{1}{2}) = 0 = \tilde{B}_1(0)$). D'après le théorème de Dirichlet, la série de Fourier de \tilde{B}_1 converge simplement sur \mathbb{R} vers \tilde{B}_1 .

Puisque \tilde{B}_1 est impaire, $\forall k \in \mathbb{N}^*$, $a_k(\tilde{B}_1) = 0$ et pour $k \in \mathbb{N}^*$,

$$b_k(\tilde{B}_1) = 2 \int_0^1 \left(t - \frac{1}{2}\right) \sin(2k\pi t) \ dt = \left[-(2t - 1)\frac{\cos(2k\pi t)}{2k\pi}\right]_0^1 + \frac{1}{k\pi} \int_0^1 \cos(2k\pi t) \ dt = -\frac{1}{k\pi}.$$

Donc

$$\forall x \in \mathbb{R}, \ \tilde{B}_1(x) = -\frac{1}{\pi} \sum_{k=1}^{+\infty} \frac{\sin(2k\pi x)}{k}.$$

- 2) Soit $n \geq 2$.
- On sait que la série de fonctions de terme général $f_k: x \mapsto 2\frac{(-1)^{n-1}}{(2k\pi)^{2n}}\cos(2k\pi x)$ converge simplement sur [0,1] vers la fonction B_{2n} .
- Chaque fonction f_n est dérivable sur [0,1] et pour $x \in [0,1]$,

$$f_n'(x) = 2\frac{(-1)^n}{(2k\pi)^{2n-1}}\sin(2k\pi x).$$

• Pour $x \in [0,1]$, $|f_k'(x)| \le \frac{2}{(2k\pi)^{2(n-1)}}$. Comme $\frac{2}{(2k\pi)^{2(n-1)}}$ est le terme général d'une série numérique convergente puisque $2n-1 \ge 3 > 1$, la série de fonctions de terme général f_n' converge normalement et donc uniformément sur [0,1]. D'après le théorème de dérivation terme à terme, pour $x \in [0,1]$,

$$B_{2n-1}(x) = B'_{2n}(x) = 2(-1)^n \sum_{k=1}^{+\infty} \frac{\sin(2k\pi x)}{(2k\pi)^{2n-1}}.$$

$$\forall n \in \mathbb{N} \setminus \{0,1\}, \ \forall x \in [0,1], \ B_{2n-1}(x) = 2(-1)^n \sum_{k=1}^{+\infty} \frac{\sin(2k\pi x)}{(2k\pi)^{2n-1}}.$$

- PARTIE IV -

a) 1) Deux intégrations par parties fournissent

$$\begin{split} J_1 &= \int_0^1 (B_2(t) - B_2(0)) f''(t) \ dt = \left[(B_2(t) - B_2(0)) f'(t) \right]_0^1 - \int_0^1 B_1(t) f'(t) \ dt = - \int_0^1 \left(t - \frac{1}{2} \right) f'(t) \ dt \\ &= \left[- \left(t - \frac{1}{2} \right) f(t) \right]_0^1 + \int_0^1 f(t) \ dt = - \frac{f(0) + f(1)}{2} + \int_0^1 f(t) \ dt, \end{split}$$

et donc

$$\int_0^1 f(t) dt = \frac{f(0) + f(1)}{2} + J_1.$$

2) Soit $k \ge 2$. Deux intégrations par parties fournissent

$$\begin{split} J_k &= \int_0^1 (B_{2k}(t) - B_{2k}(0)) f^{(2k)}(t) \ dt = \left[(B_{2k}(t) - B_{2k}(0) f^{(2k-1)}(t) \right]_0^1 - \int_0^1 B_{2k-1}(t) f^{(2k-1)}(t) \ dt \\ &= -\int_0^1 B_{2k-1}(t) f^{(2k-1)}(t) \ dt \ (\text{car } B_{2k}(1) - B_{2k}(0) = 0) \\ &= -\left[B_{2k-1}(t) f^{(2k-2)}(t) \right]_0^1 + \int_0^1 B_{2k-2}(t) f^{(2k-2)}(t) \ dt \\ &= \int_0^1 (B_{2k-2}(t) - B_{2k-2}(0)) f^{(2k-2)}(t) \ dt + \int_0^1 B_{2k-2}(0) f^{(2k-2)}(t) \ dt \ (\text{car pour } k \geq 2, \ B_{2k-1}(0) = B_{2k-1}(1) = 0) \\ &= J_{k-1} + b_{2k-2} \int_0^1 f^{(2k-2)}(t) \ dt = J_{k-1} + b_{2k-2}(f^{(2k-3)}(1) - f^{(2k-3)}(0)). \end{split}$$

Donc

$$\forall k \geq 2, \ J_k - J_{k-1} = b_{2k-2}(f^{(2k-3)}(1) - f^{(2k-3)}(0)).$$

3) Soit $n \geq 1$.

$$J_n - J_1 = \sum_{k=2}^n (J_k - J_{k-1}) = \sum_{k=2}^n b_{2k-2} \left(f^{(2k-3)}(1) - f^{(2k-3)}(0) \right) = \sum_{j=1}^{n-1} b_{2j} \left(f^{(2j-1)}(1) - f^{(2j-1)}(0) \right).$$

Par suite, d'après IV.a)1)

$$\int_0^1 f(t) dt = \frac{1}{2} (f(0) + f(1)) + J_1 = \frac{1}{2} (f(1) + f(0)) - \sum_{j=1}^{n-1} b_{2j} (f^{(2j-1)}(1) - f^{(2j-1)}(0)) + J_n.$$

$$\begin{aligned} & \text{Formule sommatoire d'Euler-Mac Laurin} \\ \forall n \geq 2, \ \int_0^1 f(t) \ dt = \frac{1}{2} (f(1) + f(0)) - \sum_{j=1}^{n-1} b_{2j} (f^{(2j-1)}(1) - f^{(2j-1)}(0)) + \int_0^1 (B_{2n}(t) - B_{2n}(0)) f^{(2n)}(t) \ dt. \end{aligned}$$

b) 1) Soient $n \ge 2$ et α un nombre complexe non nul tel que $|\alpha| < 2\pi$. IV.a)3) appliqué à la fonction $f: t \mapsto e^{\alpha t}$ fournit

$$\frac{e^{\alpha}-1}{\alpha}=\frac{1}{2}(e^{\alpha}+1)-\sum_{j=1}^{n-1}b_{2j}\alpha^{2j-1}(e^{\alpha}-1)+\alpha^{2n}\int_{0}^{1}e^{\alpha t}(B_{2n}(t)-B_{2n}(0))\ dt.$$

Puisque $\alpha \notin 2i\pi \mathbb{Z}$, $e\alpha - 1 \neq 0$. Après multiplication des deux membres de l'égalité précédente par α et division par $e^{\alpha} - 1$, on obtient

$$1 = \frac{\alpha}{2} \frac{e^{\alpha} + 1}{e^{\alpha} - 1} - \sum_{i=1}^{n-1} b_{2i} \alpha^{2i} + \frac{\alpha^{2n+1}}{e^{\alpha} - 1} \int_{0}^{1} e^{\alpha t} (B_{2n}(t) - B_{2n}(0)) dt.$$

Finalement

$$\begin{split} \forall n \in \mathbb{N} \setminus \{0,1\}, \ \forall \alpha \in \mathbb{C}, \ 0 < |\alpha| < 2\pi \Rightarrow \frac{\alpha}{2} \frac{e^{\alpha}+1}{e^{\alpha}-1} = 1 + \sum_{j=1}^{n-1} b_{2j} \alpha^{2j} + \rho_n(\alpha) \\ \text{où } \rho_n(\alpha) = \frac{-\alpha^{2n+1}}{e^{\alpha}-1} \int_0^1 e^{\alpha t} (B_{2n}(t) - b_{2n}) \ dt. \end{split}$$

2) Soient $n \ge 2$ et α un nombre complexe non nul tel que $|\alpha| < 2\pi$.

$$\begin{split} |\rho_n(\alpha)| & \leq \frac{|\alpha|^{2n+1}}{|e^\alpha - 1|} \int_0^1 e^{\operatorname{Re}(\alpha)t} |B_{2n}(t) - B_{2n}(0)| \; dt \leq \frac{|\alpha|^{2n+1}}{|e^\alpha - 1|} \int_0^1 e^{|\alpha|t} |B_{2n}(t)| + |B_{2n}(0)| \; dt \\ & \leq \frac{2|\alpha|^{2n+1}|b_{2n}|}{|e^\alpha - 1|} \int_0^1 e^{|\alpha|t} \; dt \; (d\text{`après II.d})2)) \\ & \leq \frac{2|\alpha|^{2n+1}|b_{2n}|e^{|\alpha|}}{|e^\alpha - 1|}. \end{split}$$

Maintenant, d'après III.d)2)

$$\frac{2|\alpha|^{2n+1}|b_{2n}|e^{|\alpha|}}{|e^{\alpha}-1|}\underset{n\to+\infty}{\overset{\sim}{\longrightarrow}}4\frac{|\alpha|e^{|\alpha|}}{|e^{\alpha}-1|}\left(\frac{|\alpha|}{2\pi}\right)^{2n}\underset{n\to+\infty}{\overset{\rightarrow}{\longrightarrow}}0\text{ (puisque }|\alpha|<2\pi),$$

ce qui montre que $\lim_{n\to +\infty} \rho_n(\alpha)=0$. Ainsi, la série de terme général $\mathfrak{b}_{2j}\alpha^{2j}$ converge et

$$\forall \alpha \in \mathbb{C}, \ 0 < |\alpha| < 2\pi \Rightarrow \frac{\alpha}{2} \frac{e^{\alpha} + 1}{e^{\alpha} - 1} = 1 + \sum_{j=1}^{+\infty} b_{2j} \alpha^{2j}.$$

c) Soient $x \in]-\pi;\pi[$ puis $\alpha=2ix$. α est un complexe non nul de module strictement plus petit que 2π . D'après la question précédente, on a

$$x\cot x = \frac{2ix}{2}\frac{e^{2ix}+1}{e^{2ix}-1} = 1 + \sum_{i=1}^{+\infty}b_{2i}(2ix)^{2j} = 1 + \sum_{i=1}^{+\infty}b_{2i}(-1)^{j}2^{2j}x^{2j},$$

$$\forall x \in]-\pi, \pi[\setminus \{0\}, \ x \cot n \ x = 1 + \sum_{n=1}^{+\infty} (-1)^n 2^{2n} b_{2n} x^{2n}.$$

Le rayon de la série entière précédente est donc supérieur ou égal à π . Mais, quand x tend vers π par valeurs inférieures, $x \cot x$ tend vers $+\infty$ et donc $R = \pi$.