MESON THE CANCING THE SECOND

「电计 2203 班 | 周常规知识整理共享

125 no

日期: 2024-9-13 学科: 计算机网络

本文档列出了计算机网络前四节课知识要点梗概。

第一部分 计算机网络总体内容

内容概述

本部分内容包括:

1. 网络与协议的介绍

2. 网络边缘: 主机、接入网、物理媒体

3. 网络核心: 分组交换、电路交换

4. 网络结构:「网络的网络」

5. 网络性能:延迟、丢包、吞吐量

6. 协议栈分层

1 网络与协议的介绍

网络由设备、交换机、通信链路构成。因特网是「网络的网络」。

协议:定义了网络实体之间收发消息的格式、顺序,以及收发报文或其他 时间所采取的操作。协议的三个要素是:语法、语义、同步(或时序)。

整个互联网划分为边缘部分和核心部分。

无线接入网有无线局域网(WLAN)和广域蜂窝接入网等。

2 网络边缘

网络边缘有**客户端**(client)和**服务器**(server)。或分为主机、接入网络、物理媒介。

主机发送数据包的传输延迟等于 $\frac{\text{数据长度}}{\text{传输速率}} = \frac{L_{(\text{bits})}}{R_{(\text{bits/s})}}$ (单位:s)

网络边缘有两种通信方式:

- 客户一服务器方式 (Client-Server, C-S)
- 对等方式 (Peer-to-Peer, P2P)

3 网络核心

网络核心有**交换机**和**数据链路**。其中交换机也叫做网络提供商(Internet Service Provider, ISP)。

网络报文交换分为两种方式:

- **分组交换**。这是交换机将数据包<u>存储、转发、传输</u>的一种方式。整个数据包需要完全到达路由器才能开始下一轮传输。数据包可能会排队、丢失。
- 电路交换。相当于单开一条从起点到终点的专属电路来进行报文交换。分为频分复用(FDM)和时分复用(TDM)两种类型。

4 网络结构

因特网是「网络的网络」。

在全球的网络中,只有网络提供商 (ISP) 还不够,可能需要辗转于几个大的 ISP 之间的网络交换点 (Internet Exchange Point, IXP)。

5 延迟、吞吐量

在分组交换中,数据包可能会延迟、丢包。

网络延迟由四部分组成: $d_{\text{nodal}} = d_{\text{proc}} + d_{\text{queue}} + d_{\text{trans}} + d_{\text{prop}}$.

- 1. d_{proc} : 处理 (processing), 数据包在节点里等待处理的用时
- 2. d_{queue}:排队 (queue),数据包排队时的时间
- 3. d_{trans}: 传输(transmission),数据包从节点「发出去」用时
- $4.~d_{\text{prop}}$: 传播 (propagation),数据包从节点送到另一节点的用时,较长

时延与网络利用率的关系:利用率 La/R 趋于 1 则时延迅速增加,大于 1 则开始拥堵。

吞吐量 (Throughput) 表示单位时间内传输的字节数 : $\frac{字节数}{\Pi}$ (单位 : $\mathrm{bit/s}$) 当发送端吞吐量 R_s 和接收端吞吐量 R_c 不一样时,总吞吐量依据「短板效应」取较小者: $\mathrm{min}\{R_s,R_c\}$ 。

图 1: 分组交换的四部分时延图解(摘自课堂笔记)

6 协议栈分层

序号	名称	英文名	作用	相关协议
1	应用层	Application	支持应用	HTTP, FTP, DNS 等
2	传输层	Transport	数据传输	TCP, UDP
3	网络层	Network	源到目标之路由	IP
4	链路层	Link	网络间连接	802.11(WiFi)
5	物理层	Physical	比特流动	没什么协议

表 1: 协议栈分层

报文在各个层级间传递时, 名称也不尽相同:

在应用层:报文 (message)
在传输层:报文段 (segment)
在网络层:数据报 (datagram)

4. 在链路层: 帧 (frame)

最后,可以用 tracert 命令观察一个 IP 地址经历了多少路由器。

第二部分 应用层

内容概述

本部分内容包括:

- 1. 应用层总体介绍
- 2. Web 服务和 HTTP 协议、万维网的工作流程
- 3. 域名解析系统(DNS)

7 应用层总体介绍

应用层对标的是端系统;网络核心设备不含应用层。

应用进程间的服务模式:

- 客户一服务器模式 (C-S): 客户端间歇性连接; 服务器需要一直打开。 主要支持协议有 HTTP, FTP, DNS, Web 协议等。
- 对等模式 (P2P): 主要支持协议: BT 种子等。

进程通信协议采用「套接字」(socket)。进程 = IP 地址 + 端口号。 网络运输服务分为 TCP 和 UDP 两种。

安全的 TCP 可能会使用虚拟的「安全套接字层」(SSL)。

8 Web 服务与 HTTP 协议

WWW 又称万维网 (World Wide Web), 简称 Web。它以**客户一服务器模式**工作。

万维网的工作大致流程:

- 1. 输入 URL
- 2. 浏览器向域名系统(DNS)请求解析地址
- 3. DNS 解析出来了 IP 地址
- 4. 浏览器与服务器建立 TCP 连接
- 5. 浏览器发出 HTTP 请求报文. 服务器返回 HTTP 响应报文
- 6. 释放 TCP 连接

HTML 即超文本标记语言,简单易上手,成品如老师的随机点名网站。 HTTP 即超文本传输协议:

- 不持续的 HTTP: 报文响应时间 = $2 \times RTT +$ 文件传输时间。
- 持续的 HTTP——HTTP1.1: 能保持连接, 弊端是队头拥堵 (HOL blocking)。
- HTTP2: 把文件分割成帧传输,不拥堵,弊端是安全性不够

• HTTP3: 如今的版本

HTTP 的请求和响应报文有特定的格式,也有如 404、200 等返回状态值。

保持连接顺畅的利器: Cookie

加速连接的代理服务器:网络缓存(cache)

9 域名解析系统

域名解析系统 (DNS) 是一种映射表,用于建立从域名到 IP 地址的映射。 因特网的域名呈树状结构,格式为从低级写到高级。mail.dlut.edu.cn中, mail 是四级域名,dlut 是三级域名,edu 是二级域名,cn 是一级域名。

将域名转换为 IP 地址的过程称为域名解析。

本地域名服务器采用迭代查询或递归查询的方式。

英语缩略词表					
英文简称	英文全称	中文全称			
C-S	Client-Server	客户一服务器通信模式			
DNS	Domain Name System	域名解析系统			
FDM	Frequency-Division Multiplexing	频分复用			
FTP	File Transfer Protocol	文件传输协议			
HTML	Hypertext Markup Language	超文本标记语言			
HTTP	Hypertext Transfer Protocol	超文本传输协议			
IP	Internet Protocol	互联网协议			
ISP	Internet Service Provider	网络提供商			
IXP	Internet Exchange Point	网络交换点			
P2P	Peer-to-Peer	对等通信模式			
TCP	Transmission Control Protocol	传输控制协议			
TDM	Time-Division Multiplexing	时分复用			
UDP	User Datagram Protocol	用户数据报协议			
WLAN	Wireless Local Area Network	无线局域网			
WWW	World Wide Web	万维网			