• 本章将向量和向量空间的概念抽象化,使概念推广应用。

线性空间

- 线性空间: 定义与向量空间相似。非空集合V中,对任意 $\alpha, \beta \in V$,数乘 $(\lambda, \mu \in R)$ 和加法封闭,有唯一的一个元素 γ 与之相对,并且满足下列八条运算规律。
- 运算规律:
 - 1. $\alpha + \beta = \beta + \alpha$
 - 2. $(\alpha + \beta) + \gamma = \alpha + (\beta + \gamma)$
 - 3. 任何 $\alpha \in V$, 都有 $\alpha + 0 = \alpha$
 - 4. 任何 $\alpha \in V$,都有 $\beta \in V$, $\beta = -\alpha$,使 $\alpha + \beta = 0$
 - 5. $1\alpha = \alpha$
 - 6. $\lambda(\mu\alpha) = (\lambda\mu)\alpha$
 - 7. $(\lambda + \mu)\alpha = \lambda\alpha + \mu\alpha$
 - 8. $\lambda(\alpha + \beta) = \lambda\alpha + \lambda\beta$
- 凡是满足上述规律的加法乘法运算,称为线性运算,定义了线性运算的 集合,就是线性空间。
- • ⑥: 线性空间是向量空间的抽象化推广,线性空间中的基不拘泥于向量,可应用于更多的数学对象,如多项式。线性空间只需满足: 1,非空集合V(线性空间),一个数域P(数乘)2.加法数乘封闭,八条运算规律。例4,5重新定义加法和乘法的运算规则,同样可以验证是否为线性空间。
- 线性空间的性质:
 - 1. 零元素是唯一的
 - 2. 任意元素的负元素是唯一的
 - 3. $0\alpha = 0; -1\alpha = -\alpha; \lambda 0 = 0$
 - 4. 如果 $\lambda \alpha = 0$,则 $\lambda = 0$,或 $\alpha = 0$

维数、基与坐标

• 线性空间V中,如果存在n个元素 $\alpha_1, \alpha_2, \ldots, \alpha_n$,满足 $\alpha_1, \alpha_2, \ldots, \alpha_n$ 线性无关,V中任一元素可由 $\alpha_1, \alpha_2, \ldots, \alpha_n$ 线性表示。

- \pm : $\alpha_1, \alpha_2, \ldots, \alpha_n$ 称为线性空间V中的一个基.
- 维数: n成为线性空间V的维数。
- n维线性空间: 维数为n的线性空间
- 坐标:对任一元素 α ,有且仅有一组有序数 x_1, x_2, \ldots, x_n 使 $\alpha = x_1\alpha_1 + x_2\alpha_2 + \cdots + x_n\alpha_n$, x_1, x_2, \ldots, x_n 成为该元素在 $\alpha_1, \alpha_2, \ldots, \alpha_n$ 这个基下的坐标。记作 $\alpha = (x_1, x_2, \ldots, x_n)^T$
- 🞯: 拓展到多项式的线性空间中,维数为最高次数+1。
- 同构:设V和U两个线性空间,他们的元素之间有意义对应关系,且这个对应关系保持线性组合的对应,则成为线性空间V和U同构。
 - 任何n维线性空间都与 R^n 同构,即维数相等的线性空间同构。

基变换和坐标变化

- 基变换公式: $\alpha_1, \alpha_2, \ldots, \alpha_n$ 和 $\beta_1, \beta_2, \ldots, \beta_n$ 是线性空间中的两个基, $(\beta_1, \beta_2, \ldots, \beta_n) = (\alpha_1, \alpha_2, \ldots, \alpha_n)P$
- 定理1: 坐标变换公式: 设向量 $\alpha \in V$ 在旧基 ϵ 下的坐标为 $X = (x_1, x_2, ..., x_n)^{\top}$,在新基 ϵ '下的坐标为 $X' = (x_1', x_2', ..., x_n')^{\top}$ 。则有如下坐标变换关系X = PX'或 $X' = P^{-1}X$,P是**过渡矩阵**。
 - **②**:线性空间的基线性无关,P可逆。证: $AX = \alpha = BX' = APX', X = PX'$

线性变换

- 映射: A、B为非空集合, $\forall a \in A$,按一定规则,B中有一确定元素 β 与之对应。称为从集合A到集合B的映射。 $\beta = T(\alpha)$ 或 $\beta = T\alpha$ 。
 - α 是在映射T下的源,是 α 在映射T下的像。
 - A是映射T的源集,B是映射T的像集。
- **线性变换**: T是从 V_n 到 U_m 的映射, $\alpha_i \in V$,判断是否为线性变换的核心是满足两个条件:
 - 1.保持加法运算: $T(\alpha_1 + \alpha_2) = T(\alpha_1) + T(\alpha_2)$
 - 2.保持数乘运算: $T(\lambda \alpha) = \lambda T(\alpha)$
 - **③**: 合并运算: $T(\lambda_1\alpha_1 + \lambda_2\alpha_2) = \lambda_1T(\alpha_1) + \lambda_2T(\alpha_2)$
- 基本性质:

1.
$$T0 = 0, T(-\alpha) = -T\alpha$$

- 2. 若 $eta=k_1lpha+k_2lpha_2+\cdots+k_mlpha_m$ 则 $Teta=k_1Tlpha+k_2Tlpha_2+\cdots+k_mTlpha_m$
- 3. 若 $\alpha_1, \alpha_1, \ldots, \alpha_m$ 线性相关,则 $T\alpha_1, T\alpha_1, \ldots, T\alpha_m$ 也线性相关。
 - 逆命题不成立。若 $\alpha_1, \alpha_1, \ldots, \alpha_m$ 线性无关, $T\alpha_1, T\alpha_1, \ldots, T\alpha_m$ 不一定线性无关。
- 4. 线性变换T的像集 $T(V_n)$ 也是一个线性空间,称为线性变换T的像空间
 - ②:证像集加法和数乘运算封闭,另 $eta_1,eta_2\in T(V_n)$,有 $lpha_1,lpha_2\in V_n$,使得; $Tlpha_1=eta_1,Tlpha_2=eta_2$,加法封闭: $eta_1+eta_2=Tlpha_1+Tlpha_2=T(lpha_1+lpha_2)\in T(V_n)$,数乘封闭: $keta_1=\lambda Tlpha_1=T(\lambdalpha_1)\in T(V_n)$
- 5. 线性变换的核:被T映射到零向量的原向量集合, $S_T=\{\alpha|\alpha\in V, T\alpha=0\}$ 。这个空间天然线性运算封闭。易证加法和数乘封闭。

线性变换的矩阵表达式

- **线性变换的矩阵表达式**: 在线性空间 V_n 中取一个基 $\alpha_1, \alpha_2, \ldots, \alpha_n$,这个基在线性变换T下的像: $T(\alpha_1, \alpha_2, \ldots, \alpha_n) = (\alpha_1, \alpha_2, \ldots, \alpha_n)A$,A称线性变换T在基 $\alpha_1, \alpha_2, \ldots, \alpha_n$ 下的矩阵。
 - $T(\alpha_i) = (\alpha_1, \alpha_2, \dots, \alpha_n)(a_{1i}, a_{2i}, \dots, a_{ni})^T$
 - **③**:通过基在线性变换T下的像,可确定唯一矩阵A,同样,矩阵A也可以确定唯一线性变换T。记 V_n 中任一元素 $\alpha = \sum\limits_{i=1}^n x_i a_i$,

$$egin{align} T(lpha) &= T(\sum_{i=1}^n x_i a_i) = \sum_{i=1}^n x_i T(a_i) \ &= (T(a_1), T(a_2), \dots, T(a_n)) (x_1, x_2, \dots, x_n)^T = (a_1, a_2, \dots, a_n) A(x_1, x_2, \dots, x_n)^T \end{array}$$

- x是基 $lpha_1,lpha_2,\ldots,lpha_n$ 的坐标, $x=(x_1,x_2,\ldots,x_n)^T$,T(x)=Ax
- 定理2: $\alpha_1, \alpha_2, \ldots, \alpha_n$ 和 $\beta_1, \beta_2, \ldots, \beta_n$ 是线性空间 V_n 的两个基,从基 α_i 到 β_i 的过渡矩阵为P, V_n 中线性变换在两个基下的矩阵依次为A和B, $B = P^{-1}AP$,此时过渡矩阵P是相似变换矩阵。
 - **③**: 同一线性变换在不同基下求得的矩阵是相似变换矩阵。证:已知: $(\beta_1,\beta_2,\ldots,\beta_n)=(\alpha_1,\alpha_2,\ldots,\alpha_n)P$, $T(\alpha_1,\alpha_2,\ldots,\alpha_n)=(\alpha_1,\alpha_2,\ldots,\alpha_n)A$, $T(\beta_1,\beta_2,\ldots,\beta_n)=(\beta_1,\beta_2,\ldots,\beta_n)B$ 。得:

$$T(eta_1,eta_2,\ldots,eta_n)=T[(lpha_1,lpha_2,\ldots,lpha_n)P]=[T(lpha_1,lpha_2,\ldots,lpha_n)]P$$
 $=(lpha_1,lpha_2,\ldots,lpha_n)AP=(eta_1,eta_2,\ldots,eta_n)P^{-1}AP$ $,eta_1,eta_2,\ldots,eta_n$ 线性 无关, $B=P^{-1}AP$

- 线性变换的秩:线性变换 T 的像空间 $T(V_n)$ 的维数,称为线性变换 T 的 秩。
 - 若A是T的矩阵,T的秩为R(A)
 - 若T的秩为r,则T的核 S_T 的维数为n-r