Chapitre 6 Espaces de Hilbert

1 Rappels

Dans tout ce chapitre, les espaces vectoriels considérés sont sur $I\!\!K=I\!\!R$ ou $I\!\!C.$

1. Espace préhilbertien

Soit H un espace vectoriel sur $I\!\!K = I\!\!R$ ou $C\!\!\!C$ et φ une application de $H \times H$ dans $I\!\!K$

Definition 1. On dit que φ est un *produit scalaire* sur H si elle vérifie les propriétés suivantes :

- 1. $\varphi(x+y,z) = \varphi(x,z) + \varphi(y,z)$, pour tous $x,y,z \in H$
- 2. $\varphi(\lambda x, y) = \lambda \varphi(x, y)$, pour tous $x, y \in H$ et $\lambda \in \mathbb{K}$
- 3. $\varphi(x,y) = \overline{\varphi(y,x)}$
- 4. Pour tout $x \neq 0$, on a $\varphi(x,x) > 0$

Example 2. Sur $\mathcal{C}([0,1],\mathcal{C})$, l'application définie par :

$$\varphi(u,v) = \int_0^1 u(x) \overline{v(x)} dx$$

est un produit scalaire.

Notation. Un produit scalaire sera noté : $\langle x, y \rangle, \langle x/y \rangle, (x, y)...$

Definition 3. Un espace vectoriel muni d'un produit scalaire est appelé *espace* préhilbertien

Proposition 4 (Inégalité de Cauchy-Schwartz). $Si\ E$ est un préhilbertien, alors :

$$|< x, y>| \le \sqrt{< x, x>} \sqrt{< y, y>}$$

pour tous $x, y \in E$.

Démonstration Si < x/y >= 0, l'inégalité est évidente. Supposons que $< x, y > \neq 0$. Pour tout complexe λ et tous x et y éléments de E, on a :

$$0 \leq < x + \lambda y/x + \lambda y > = < x/x >$$

$$+2Re(\bar{\lambda} < x/y >) + |\lambda|^2 < y/y >.$$

Si on pose $\lambda = \frac{\langle x/y \rangle}{|\langle x/y \rangle|} t$, avec $t \in \mathbb{R}$, alors :

$$0 \le < x + \lambda y/x + \lambda y > = < x/x > + 2| < x/y > |t + < y/y > t^2$$

et donc,

$$|\langle x/y \rangle|^2 - \langle x/x \rangle \langle y/y \rangle \le 0.$$

Corollary 5. Si E est un préhibertien, alors l'application N définie par $N(x) = \sqrt{\langle x, x \rangle}$ est une norme sur E.

Corollary 6. Le produit scalaire est une application continue sur $E \times E$

Definition 7. Un espace préhilbertien complet est appelé un *Hilbertien* ou encore espace de *Hilbert*.

Theorem 8. Soient deux vecteurs x et y d'un espace préhilbertien, on a les identités suivantes :

$$||x + y||^2 + ||x - y||^2 = 2(||x||^2 + ||y||^2),$$

(parallèlogramme) et

$$\frac{1}{2}||x - y||^2 = ||x||^2 + ||y||^2 - 2||\frac{x + y}{2}||^2$$

(médiane)

2 Orthogonalité

2. Orthogonalité

Definition 9. Deux vecteurs x et y d'un espace préhilbertien sont dits *orthogonaux* si l'on a $\langle x/y \rangle = 0$.

Definition 10. Deux parties non vides M et N d'un espace préhilbertien E sont dites orthogonales si l'on a :

$$\langle x/y \rangle = 0, \ \forall (x,y) \in M \times N.$$

Definition 11. Soit une partie non vide M d'un espace préhilbertien E, on appelle orthogonal de M le sous-ensemble M^{\perp} défini par :

$$M^{\perp} = \{ x \in E / \langle x/y \rangle = 0, \ \forall y \in M \}$$

Propriétés Soit E un préhilbertien et M est une partie non vide de E. Alors

- 1. M^{\perp} est un sous-espace vectoriel de E.
- 2. $M \subseteq M^{\perp \perp}$.
- 3. $M^{\perp} = (\overline{\operatorname{vect}(M)})^{\perp}$
- 4. Si N est une partie non vide de M, alors $M^{\perp} \subset N^{\perp}$

Theorem 12 (Théorème de Pythagore). Soient x_1, x_2, \dots, x_n n vecteurs, deux à deux orthogonaux, d'un espace préhilbertien E; alors on a:

$$\|\sum_{i=1}^{n} x_i\|^2 = \sum_{i=1}^{n} \|x_i\|^2.$$

3 Projection orthogonale

3. Projection orthogonale

Proposition 13. Soit E un préhilbertien sur C et F une partie convexe de E. Pour tous $x \in E$ et $a \in F$, les propositions suivantes sont équivalentes.

- 1. d(x,a) = d(x,F)
- 2. $Re < x a, y a > \le 0$, pour tout $y \in F$

Démonstration Soit $z = a + t(y - a) = (1 - t)a + ty \in F$. On a :

$$\begin{array}{ll} d(x,F)^2 & \leq d(x,z)^2 = \|x-z\|^2 \\ & = \|x-a\|^2 - 2tRe < x-a, y-a > +t^2\|y-a\|^2 \end{array}$$

On obtient :

$$2tRe < x - a, y - a > < t^2 ||y - a||^2$$

Si on divise par t et on passe à la limite en 0, on obtient le résultat. Réciproquement, on a : $\|x-y\|^2 = \|(x-a)-(y-a)\|^2 = \|x-a\|^2 + \|y-a\|^2 - 2Re < x-a, y-a> \ge \|x-a\|^2$

Theorem 14 (Théorème de la projection orthogonale). Soit F une partie convexe complète non vide dans un préhilbertien E. Pour tout $x \in E$, il existe un élément unique $a \in F$ tel que :

$$d(x, F) = ||a - x||.$$

a est appelé projection orthogonale de x sur F.

Démonstration Soit $(a_n)_n \subset F$ tel que $d(x,F) = \lim_n d(x,a_n) = \lim_n ||x - a_n||$. On a :

$$\frac{1}{2}||a_n - a_m||^2 = ||x - a_n||^2 + ||x - a_m||^2 - 2||x - \frac{a_n + a_m}{2}||^2$$

Or

$$||x - \frac{a_n + a_m}{2}||^2 \ge d(x, F)^2.$$

Donc,

$$\frac{1}{2}||a_n - a_m||^2 \le ||x - a_n||^2 + ||x - a_m||^2 - 2d(x, F)^2$$

On en déduit que $(a_n)_n$ est de cauchy dans F et donc elle converge vers $a \in F$. On a d(x, F) = d(x, a). Pour l'unicité si $b \in F$ répond à la question, on aura : $\frac{1}{2}||a-b||^2 = ||x-a||^2 + ||x-b||^2 - 2||x-\frac{a+b}{2}||^2 \le 0$. Donc a = b On notera $a = p_F(x)$. Donc, p_F est une application de E sur F.

Proposition 15. L'application :

$$p_F: E \longrightarrow F$$

 $x \longrightarrow p_F(x)$

vérifie la relation :

$$||p_F(x) - p_F(y)|| \le ||x - y||$$
, pour tout $(x, y) \in E \times E$.

Et, donc p_F est uniformément continue sur E.

Theorem 16. Soit un sous-espace vectoriel complet F d'un espace préhilbertien séparé E; alors pour tout $x \in E$, il existe un et un seul $x_0 \in F$ tel que :

$$d(x, F) = ||x - x_0|| \text{ et } x - x_0 \in F^{\perp}.$$

Proposition 17. Soient un espace de Hilbert E et une partie non vide A de E; les propriétés suivantes sont équivalentes :

- (i) A est totale dans E, c'est-à-dire que le sous-espace vectoriel engendré par A est partout dense dans E.
- (ii) $A^{\perp} = \{0\}.$

4 Théorème de représentation de Riesz

4. Théorème de représentation de Riesz

Theorem 18 (Théorème de représentation de Riesz). Soit E un espace de Hilbert. Pour toute forme linéaire continue f sur E, il existe un élément y unique de E tel que $f(x) = \langle x, y \rangle$, pour tout $x \in E$. De plus, on a ||f|| = ||y||.

Démonstration Soit $f \in E'$; si f est nulle, on prend g = 0. Supposons que f est non nulle et soit $g \in (Kerf)^{\perp}$ avec $g \neq 0$. L'application g définie par $g(x) = \langle x, a \rangle$ est une forme linéaire continue dont le noyau est Kerf. En effet, si pour tout $g \in E$, il existe $g \in E$ et $g \in E$ et $g \in E$ et $g \in E$ et $g \in E$.

$$x = x_1 + \alpha.a$$

Si f(x) = 0, alors $\alpha = 0$ et donc $x = x_1 \in kerf$; c'est-à-dire $\langle x, a \rangle = 0$ Réciproquement, si g(x) = 0, alors $\langle x_1, a \rangle + \alpha \|a\|^2 = 0$ ce qui implique $\alpha = 0$ et f(x)=0. On en déduit qu'il existe α tel que $f=\alpha.g$ Par suite, $y=\bar{\alpha}.a$ répond à la question.

5 Familles orthogonales. Bases orthonormales

5. Familles orthogonales. Bases orthonormales

Definition 19. La famille $(e_i)_{i \in I}$ est dite *orthonormale* dans E, si elle est orthogonale et $||e_i|| = 1$, pour tout $i \in I$.

Definition 20. Dans un espace de Hilbert E on appelle base hilbertienne toute famille **orthonormale totale** dans E.

Tout espace de Hilbert possède une base Hilbertienne.

Proposition 21. Si un espace de Hilbert est séparable, alors il contient une base orthonormale dénombrable.

6 Relation de Parseval et inégalité de Bessel

6. Relation de Parseval et inégalité de Bessel Soient E un espace de Hilbert et $(e_n)_{n\in\mathbb{N}}$ une famille orthonormale dénombrable de E. Pour tout $x\in E$, posons :

$$x_n = \langle x/e_n \rangle$$
, pour tout $n \in \mathbb{N}$

Definition 22. $(x_n)_n$ sont appelés coefficients de Fourier de x dans $(e_n)_{n\in\mathbb{N}}$

Theorem 23 (Inégalité de Bessel). Si E est un espace de Hilbert et $(e_n)_n$ est une famille orthonormale de E; alors, pour tout $x \in E$, on a:

$$\sum_{n=0}^{\infty} |\langle x, e_n \rangle|^2 \le ||x||^2 = \langle x/x \rangle.$$

Démonstration. La série $\sum_{p=0}^{n} |< x, e_p > |^2$ est croissante. d'autre part, on a :

$$\sum_{p=0}^{n} | \langle x, e_p \rangle |^2 = \| \sum_{p=0}^{n} \langle x, e_p \rangle e_p \|^2 = \| p(x) \|^2 \le \| x \|^2$$

où p est la projection orthogonale de E sur $\text{vect}(e_0, \dots, e_n)$ On en déduit que la série est convergente. Si n tend vers l'infini, on obtient le résultat.

Theorem 24 (Relation de Parseval). Si E est un espace de Hilbert séparable et $(e_n)_{n\in\mathbb{N}}$ est une base hilbertienne orthonormale de E; alors, pour tout $x\in E$, on a:

$$\sum_{n=0}^{\infty} |x_n|^2 = ||x||^2 = \langle x/x \rangle.$$

Démonstration. Si $x \in \text{vect}(e_p)_p$, alors $x = \sum_{p=0}^n \langle x, e_p \rangle e_p$; donc

$$||x||^2 = \sum_{p=0}^{n} |\langle x, e_p \rangle|^2 \le \sum_{p=0}^{\infty} |\langle x, e_p \rangle|^2 \le ||x||^2$$

Soit $x \in F = \overline{\text{vect}(e_n)_n}$, il existe $y \in \text{vect}(e_n)_n$ tel que $||x - y|| < \frac{\epsilon}{2}$. D'autre part,

$$x - \sum_{p=0}^{n} \langle x, e_p \rangle e_p = x - y + \sum_{p=0}^{n} \langle y - x, e_p \rangle e_p$$

On en déduit que :

$$\left\| x - \sum_{p=0}^{n} \langle x, e_p \rangle e_p \right\| \le \|x - y\| + \left\| \sum_{p=0}^{n} \langle y - x, e_p \rangle e_p \right\| < \epsilon$$

c'est-à-dire que la série $\sum_{p=0}^n < x, e_p > e_p$ est convergente et sa somme est x. En utilisant le théorème de Pythagore, on obtient le résultat.