Refresher Math Course

Paul Dubois

September 2021

Contents

Ι	Set	theory and logical elements	4
	0.1	Set sizes: Finite, Countable, and Uncountable	5
		0.1.1 Definition of a set and elementary operations	5
	0.2	Spaces: Metric, Norm, and Inner Products	5
	0.3	Limit behavior: Convergence, Continuity, and Asymptotic	
		Analysis	5

Introduction

Appel?

Presentation

- Paul Dubois
- will be teaching this refresher math course
- email (for any question), answer within 1 working day

Course Format

Lectures

- 8*3h
- 1h20min lecture 1/3h break 1h20min lecture
- No pb class planned, but lectures will have integrated live exercises
- Interrupt if needed (but may also ask at the end of the lecture)
- Lectures are recorded (if ever needed)
- 1st lecture ever => too fast/too slow: let me know
- May assume you know a concept/notation that you have never heard of, let me know if this happens

Examination

- The course is pass/fail
- Most (in fact hopefully all) of you will pass
- There will be a full exercise sheet per lecture, it is advised to attempt it all (only one will be compulsory).
- Hand-in 1 exercise per lecture (i.e., 8 in total), due 2 weeks after the lecture
- Best (n-1)/n count (i.e., best 7/8 in our case), need avg $\geq 50\%$ to pass
- $\bullet\,$ In the unlikely event of not passing, will be able to do an extra work

Questions?

Part I Set theory and logical elements

- 0.1 Set sizes: Finite, Countable, and Uncountable
- 0.1.1 Definition of a set and elementary operations

SETS Set notation: \in , {True, False}, { $a \mid condition$ }, { $a, b, c \dots$ }, \emptyset Russell paradox FUNCTIONS predicate: function to

- 0.2 Spaces: Metric, Norm, and Inner Products
- 0.3 Limit behavior: Convergence, Continuity, and Asymptotic Analysis