Design and Analysis of Algorithms

Spring 2024 **Practice Problems**

Problem 1

Rank the following functions by order of growth; that is, find an arrangement $g_1, g_2, \dots g_{20}$ of the functions satisfying $g_1=O(g_2),g_2=O(g_3),\ldots,g_{19}=O(g_{20})$. Partition your list into equivalence classes such that functions f(n) and g(n) are in the same class if and only if f(n) = $\theta(g(n))$.

$\sqrt{2}^{lgn}$	n^2	n!	(lgn)!	$(3/2)^n$
n^3	$(lgn)^2$	$\lg(n!)$	2^{2^n}	lnln(n)
$n.2^n$	2^{lgn}	e^n	4^{lgn}	(n+1)!
n^n	2^2	nlgn	1	n

Problem 2

Indicate, for each pair of expressions .(A,B) in the table below, whether A is O,Ω or θ of B. Assume that $k \ge 1$, $\epsilon > 0$, and c > 1 are constants. Your answer should be in the form of the table with "yes" or "no" written in each box

there will jes of he willown action							
A	В	0	Θ	Ω			
$\log^{k}(n)$	n ^{1-€}						
n^k	5c ⁿ						
2 ⁿ	2 ⁿ⁺¹						
$2^{n/2}$	2 ⁿ						
n ^{lgc}	c ^{lgn}						
n ^{1/2}	lg(n ²)						
lg(n!)	lg(n ⁿ)						

Problem 3

Solve the following recurrences and compute the asymptotic upper bounds. Assume that T(n) is a constant for sufficiently small n. Make your bounds as tight as possible.

a.
$$T(n) = 2T\left(\frac{n}{2}\right) + n^4$$

a.
$$T(n) = 2T(\frac{n}{2}) + n^4$$

b. $T(n) = T(\frac{7n}{10}) + n$
c. $T(n) = 2T(n-1) + c$

c.
$$T(n) = 2T(n-1) + a$$