Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»

Факультет программной инженерии и компьютерной техники

Направление подготовки 09.03.04 «Программная инженерия» — Системное и прикладное программное обеспечение

Курсовая работа

Часть 1
По дисциплине «Дискретная математика»
Вариант: 82

Выполнил: Васильев Артём Евгеньевич

Группа: 3119

Преподаватель:

Поляков Владимир Иванович

Санкт-Петербург 2023 г.

Функция $f(x_1, x_2, x_3, x_4, x_5)$ принимает значение 1 при $x_1x_2 + x_3x_4x_5 = 0, 5, 6, 7, 8$ и неопределенное зна-чение при $x_1x_2 + x_3x_4x_5 = 3$

Inh	114117	IACTIA	11110	CTIA
iaw	ІИЦА	исти	HHU	СІИ
			••••	•

№	x_1	x_2	x_3	x_4	x_5	x_1x_2	$x_3x_4x_5$	x_1x_2	$x_3x_4x_5$	f
0	0	0	0	0	0	0	0	0	0	1
1	0	0	0	0	1	0	1	0	1	0
2	0	0	0	1	0	0	2	0	2	0
3	0	0	0	1	1	0	3	0	3	d
4	0	0	1	0	0	0	4	0	4	0
5	0	0	1	0	1	0	5	0	5	1
6	0	0	1	1	0	0	6	0	6	1
7	0	0	1	1	1	0	7	0	7	1
8	0	1	0	0	0	1	0	1	0	0
9	0	1	0	0	1	1	1	1	1	0
10	0	1	0	1	0	1	2	1	2	d
11	0	1	0	1	1	1	3	1	3	0
12	0	1	1	0	0	1	4	1	4	1
13	0	1	1	0	1	1	5	1	5	1
14	0	1	1	1	0	1	6	1	6	1
15	0	1	1	1	1	1	7	1	7	1
16	1	0	0	0	0	2	0	2	0	0
17	1	0	0	0	1	2	1	2	1	d
18	1	0	0	1	0	2	2	2	2	0
19	1	0	0	1	1	2	3	2	3	1
20	1	0	1	0	0	2	4	2	4	1
21	1	0	1	0	1	2	5	2	5	1
22	1	0	1	1	0	2	6	2	6	1
23	1	0	1	1	1	2	7	2	7	0
24	1	1	0	0	0	3	0	3	0	d
25	1	1	0	0	1	3	1	3	1	0
26	1	1	0	1	0	3	2	3	2	1
27	1	1	0	1	1	3	3	3	3	1
28	1	1	1	0	0	3	4	3	4	1
29	1	1	1	0	1	3	5	3	5	1
30	1	1	1	1	0	3	6	3	6	0
31	1	1	1	1	1	3	7	3	7	0

Аналитический вид

КДНФ:

 $f = \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, x_3 \, \overline{x_4} \, x_5 \vee \overline{x_1} \, \overline{x_2} \, x_3 \, x_4 \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, x_3 \, x_4 \, x_5 \vee \overline{x_1} \, x_2 \, x_3 \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, x_2 \, x_3 \, \overline{x_4} \, x_5 \vee \overline{x_1} \, x_2 \, x_3 \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, x_4 \, x_5 \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \,$

ККНФ:

 $f = (x_1 \lor x_2 \lor x_3 \lor x_4 \lor \overline{x_5}) (x_1 \lor x_2 \lor x_3 \lor \overline{x_4} \lor x_5) (x_1 \lor x_2 \lor \overline{x_3} \lor x_4 \lor x_5) (x_1 \lor \overline{x_2} \lor x_3 \lor x_4 \lor x_5)$ $(x_1 \lor \overline{x_2} \lor x_3 \lor x_4 \lor \overline{x_5}) (x_1 \lor \overline{x_2} \lor x_3 \lor \overline{x_4} \lor \overline{x_5}) (\overline{x_1} \lor x_2 \lor x_3 \lor x_4 \lor x_5) (\overline{x_1} \lor x_2 \lor x_3 \lor \overline{x_4} \lor x_5)$ $(\overline{x_1} \lor x_2 \lor \overline{x_3} \lor \overline{x_4} \lor \overline{x_5}) (\overline{x_1} \lor \overline{x_2} \lor x_3 \lor x_4 \lor \overline{x_5}) (\overline{x_1} \lor \overline{x_2} \lor \overline{x_3} \lor \overline{x_4} \lor x_5)$

Минимизация булевой функции методом Квайна-Мак-Класки

Кубы различной размерности и простые импликанты

K⁰(f)									
m ₀	00000								
m ₅	00101	+							
m ₆	00110	+							
m ₁₂	01100	+							
m ₂₀	10100	+							
m ₃	00011	+							
m ₁₀	01010	+							
m ₁₇	10001	+							
m ₂₄	11000	+							
m ₇	00111	+							
m ₁₃	01101	+							
m ₁₄	01110	+							
m ₁₉	10011	+							
m ₂₁	10101	+							
m ₂₂	10110	+							
m ₂₆	11010	+							
m ₂₈	11100	+							
m ₁₅	01111	+							
m ₂₇	11011	+							
m ₂₉	11101	+							

	K ¹ (f)	
m_6-m_7	0011X	+
m5-m7	001X1	+
m ₃ -m ₇	00X11	
m ₁₂ -m ₁₃	0110X	+
m ₁₂ -m ₁₄	011X0	+
m ₁₀ -m ₁₄	01X10	
m ₅ -m ₁₃	0X101	+
m ₆ -m ₁₄	0X110	+
m ₁₇ -m ₁₉	100X1	
m ₂₀ -m ₂₁	1010X	+
m ₂₀ -m ₂₂	101X0	
m ₁₇ -m ₂₁	10X01	
m ₂₄ -m ₂₆	110X0	
m ₂₄ -m ₂₈	11X00	
m ₂₀ -m ₂₈	1X100	+
m ₃ -m ₁₉	X0011	
m ₅ -m ₂₁	X0101	+
m ₆ -m ₂₂	X0110	
m ₁₀ -m ₂₆	X1010	
m ₁₂ -m ₂₈	X1100	+
m ₁₄ -m ₁₅	0111X	+
m ₁₃ -m ₁₅	011X1	+
m ₇ -m ₁₅	0X111	+
m ₂₆ -m ₂₇	1101X	
m ₂₈ -m ₂₉	1110X	+
m ₁₉ -m ₂₇	1X011	
m ₂₁ -m ₂₉	1X101	+
m ₁₃ -m ₂₉	X1101	

K ² (f)	
m ₁₂ -m ₁₃ -m ₁₄ -m ₁₅	011XX
m ₆ -m ₇ -m ₁₄ -m ₁₅	0X11X
m ₅ -m ₇ -m ₁₃ -m ₁₅	0X1X1
m ₂₀ -m ₂₁ -m ₂₈ -m ₂₉	1X10X
m ₁₂ -m ₁₃ -m ₂₈ -m ₂₉	X110X
m ₅ -m ₁₃ - m ₂₁ -m ₂₉	XX101

Z(f)
00000
00X11
01X10
100X1
101X0
10X01
110X0
11X00
X0011
X0110
X1010
1101X
1X011
011XX
0X11X
0X1X1
1X10X
X110X
XX101

Таблица импликант

Вычеркнем строки, соответствующие существенным импликантам (это те, которые покрывают верши-ны, не покрытые другими импликантами), а также столбцы, соответствующие вершинам, покрываемым существенными импликантами. Также вычеркнем столбцы — надмножества других столбцов. Затем вы-черкнем импликанты, не покрывающие ни одной вершины.

		0-кубы															
		ф	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
		0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
Пр	остые импликанты	0	1	1	1	1	1	1	1	0	1	1	1	0	0	1	1
		0	0	1	1	0	0	1	1	1	0	0	1	1	1	0	0
		0	1	0	1	0	1	0	1	1	0	1	0	0	1	0	1
		0	5	6	7	12	13	14	15	19	20	21	22	26	27	28	29
	00000	X															
A	00X11				X												
В	01X10							X									
С	100X1									X							
D	101X0										X		X				
E	10X01											X					
F	110X0													X			
G	11X00															X	
Н	X0011									X							
I	X0110			X									X				
J	X1010													X			
K	1101X													X	X		
L	1X011									X					X		
M	011XX					X	Х	X	X								
N	0X11X			X	X			X	X								
О	0X1X1		X		X		X		X								
Р	1X10X										X	X				X	X
Q	X110X					X	Х									X	X
R	XX101		X				X					X					X

Ядро покрытия: $T = \{00000\}$

Получим следующую упрощенную импликантную таблицу:

							0-ь	убы						
	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	0	0	0	1	1	1	0	0	0	0	1	1	1	1
Простые импликанты	1	1	1	1	1	1	0	1	1	1	0	0	1	1
	0	1	1	0	1	1	1	0	0	1	1	1	0	0
	1	0	1	0	0	1	1	0	1	0	0	1	0	1
	5	6	7	12	14	15	19	20	21	22	26	27	28	29
A 00X11			X											
B 01X10					X									
C 100X1							X							
D 101X0								X		X				
E 10X01									X					
F 110X0											X			
G 11X00													X	
H X0011							X							
I X0110		X								X				
J X1010											X			
K 1101X											X	X		
L 1X011							X					X		
M 011XX				X	X	X								
N 0X11X		X	X		X	X								
O 0X1X1	X		X			X								
P 1X10X								X	X				X	X
Q X110X				X									X	X
R XX101	X								X					X

Метод Петрика:

Запишем булево выражение, определяющее условие покрытия всех вершин:

 $Y = (O \lor R) (I \lor N) (A \lor N \lor O) (M \lor Q) (B \lor M \lor N) (M \lor N \lor O) (C \lor H \lor L) (D \lor P)$ $(E \lor P \lor R) (D \lor I) (F \lor J \lor K) (K \lor L) (G \lor P \lor Q) (P \lor Q \lor R)$

Приведем выражение в ДНФ:

Y = C D K N Q R V C I K M O P V D F L N Q R V D H K N Q R V D J L N Q R V D K L N Q R V V F I L M O P V H I K M O P V I J L M O P V I K L M O P V ... (термы высших рангов)

Возможны следующие покрытия:

$$C_1 = \begin{cases} T \\ C \\ D \\ D \\ D \\ C \\ D \\ D \\ C \\$$

Рассмотрим следующее минимальное покрытие:

$$C_{\min} = \begin{cases} 00000 \\ 100X1 \\ 101X0 \\ 1101X \\ 0X11X \\ X110X \\ XX101 \end{cases}$$
$$S^{a} = 26$$
$$S^{b} = 33$$

Этому покрытию соответствует следующая МДНФ:

$$f = \overline{x_1}\,\overline{x_2}\,\overline{x_3}\,\overline{x_4}\,\overline{x_5} \lor x_1\,\overline{x_2}\,\overline{x_3}\,x_5 \lor x_1\,\overline{x_2}\,x_3\,\overline{x_5} \lor x_1\,x_2\,\overline{x_3}\,x_4 \lor \overline{x_1}\,x_3\,x_4 \lor x_2\,x_3\,\overline{x_4} \lor x_3\,\overline{x_4}\,x_5$$

Минимизация булевой функции на картах Карно

Определение МДНФ

 $f = \overline{x_1}\,\overline{x_2}\,\overline{x_3}\,\overline{x_4}\,\overline{x_5} \lor x_1\,\overline{x_2}\,\overline{x_3}\,x_5 \lor x_1\,\overline{x_2}\,x_3\,\overline{x_5} \lor x_1\,x_2\,\overline{x_3}\,x_4 \lor \overline{x_1}\,x_3\,x_4 \lor x_2\,x_3\,\overline{x_4} \lor x_3\,\overline{x_4}\,x_5$

Определение МКНФ

$$f = (x_1 \vee \overline{x_2} \vee x_3) (x_1 \vee x_3 \vee \overline{x_4}) (x_3 \vee x_4 \vee \overline{x_5}) (\overline{x_1} \vee \overline{x_3} \vee \overline{x_4} \vee \overline{x_5})$$
$$(\overline{x_1} \vee \overline{x_2} \vee \overline{x_3} \vee \overline{x_4}) (\overline{x_1} \vee x_2 \vee x_3 \vee x_5) (x_1 \vee x_2 \vee \overline{x_3} \vee x_4 \vee x_5)$$

Преобразование минимальных форм булевой функции

Факторизация и декомпозиция МДНФ

$$f = \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, x_5 \vee x_1 \, \overline{x_2} \, x_3 \, \overline{x_5} \vee x_1 \, x_2 \, \overline{x_3} \, x_4 \vee \overline{x_1} \, x_3 \, x_4 \vee x_2 \, x_3 \, \overline{x_4} \vee x_3 \, \overline{x_4} \, x_5 \qquad S_Q = 33 \quad \tau = 2$$

$$f = x_1 \, \overline{x_3} \, (\overline{x_2} \, x_5 \vee x_2 \, x_4) \vee x_3 \, \overline{x_4} \, (x_2 \vee x_5) \vee \overline{x_1} \, x_3 \, x_4 \vee x_1 \, \overline{x_2} \, x_3 \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \qquad S_Q = 31 \quad \tau = 4$$

$$\varphi = \overline{x_2} \, \overline{x_5}$$

$$\overline{\varphi} = x_2 \vee x_5$$

$$f = x_1 \, \overline{x_3} \, (\overline{x_2} \, x_5 \vee x_2 \, x_4) \vee x_3 \, \overline{x_4} \, \overline{\varphi} \vee \overline{x_1} \, x_3 \, x_4 \vee \varphi \, x_1 \, x_3 \vee \varphi \, \overline{x_1} \, \overline{x_3} \, \overline{x_4} \qquad S_Q = 30 \quad \tau = 4$$

Факторизация и декомпозиция МКНФ

$$f = (x_1 \vee \overline{x_2} \vee x_3) (x_1 \vee x_3 \vee \overline{x_4}) (x_3 \vee x_4 \vee \overline{x_5}) (\overline{x_1} \vee \overline{x_3} \vee \overline{x_4} \vee \overline{x_5}) (\overline{x_1} \vee \overline{x_2} \vee \overline{x_3} \vee \overline{x_4})$$

$$(\overline{x_1} \vee x_2 \vee x_3 \vee x_5) (x_1 \vee x_2 \vee \overline{x_3} \vee x_4 \vee x_5)$$

$$f = (x_1 \vee x_3 \vee \overline{x_2} \overline{x_4}) (x_3 \vee x_4 \vee \overline{x_5}) (\overline{x_1} \vee \overline{x_3} \vee \overline{x_4} \vee \overline{x_2} \overline{x_5}) (\overline{x_1} \vee x_2 \vee x_3 \vee x_5)$$

$$(x_1 \vee x_2 \vee \overline{x_3} \vee x_4 \vee x_5)$$

$$\varphi = \overline{x_2} \overline{x_5}$$

$$\overline{\varphi} = x_2 \vee x_5$$

$$f = (x_1 \vee x_3 \vee \overline{x_2} \overline{x_4}) (x_3 \vee x_4 \vee \overline{x_5}) (\overline{x_1} \vee \overline{x_3} \vee \overline{x_4} \vee \varphi) (\overline{\varphi} \vee \overline{x_1} \vee x_3) (\overline{\varphi} \vee x_1 \vee \overline{x_3} \vee x_4)$$

$$S_Q = 33 \quad \tau = 2$$

$$S_Q = 38 \quad \tau = 3$$

$$S_Q = 28 \quad \tau = 3$$

$$S_Q = 28 \quad \tau = 3$$

Синтез комбинационных схем

Будем анализировать схемы на следующих наборах аргументов:

$$f([x_1 = 0, x_2 = 0, x_3 = 0, x_4 = 0, x_5 = 1]) = 0$$

$$f([x_1 = 0, x_2 = 0, x_3 = 0, x_4 = 1, x_5 = 0]) = 0$$

$$f([x_1 = 0, x_2 = 0, x_3 = 0, x_4 = 0, x_5 = 0]) = 1$$

$$f([x_1 = 0, x_2 = 0, x_3 = 1, x_4 = 0, x_5 = 1]) = 1$$

Булев базис

Схема по упрощенной МДНФ:

$$f = x_1 \,\overline{x_3} \,(\overline{x_2} \,x_5 \vee x_2 \,x_4) \vee x_3 \,\overline{x_4} \,\overline{\varphi} \vee \overline{x_1} \,x_3 \,x_4 \vee \varphi \,x_1 \,x_3 \vee \varphi \,\overline{x_1} \,\overline{x_3} \,\overline{x_4} \quad (S_Q = 30, \tau = 4)$$
$$\varphi = \overline{x_2} \,\overline{x_5}$$

Схема по упрощенной МКНФ:

$$f = (x_1 \lor x_3 \lor \overline{x_2} \, \overline{x_4}) \, (x_3 \lor x_4 \lor \overline{x_5}) \, (\overline{x_1} \lor \overline{x_3} \lor \overline{x_4} \lor \varphi) \, (\overline{\varphi} \lor \overline{x_1} \lor x_3) \, (\overline{\varphi} \lor x_1 \lor \overline{x_3} \lor x_4) \quad (S_Q = 27, \tau = 4)$$
$$\varphi = \overline{x_2} \, \overline{x_5}$$

Сокращенный булев базис (И, НЕ)

Схема по упрощенной МДНФ в базисе И, НЕ:

Схема по упрощенной МКНФ в базисе И, НЕ:

$$f = \overline{x_1} \, \overline{x_3} \, \overline{\overline{x_2} \, x_4} \, \overline{x_3} \, \overline{x_4} \, x_5 \, \overline{x_1} \, x_3 \, x_4 \, \overline{\varphi} \, \overline{\varphi} \, x_1 \, \overline{x_3} \, \overline{\varphi} \, \overline{x_1} \, x_3 \, \overline{x_4} \quad (S_Q = 33, \tau = 5)$$

$$\varphi = \overline{x_2} \, \overline{x_5}$$

Универсальный базис (И-НЕ, 2 входа)

Схема по упрощенной МДНФ в базисе И-НЕ с ограничением на число входов:

$$f = \overline{\overline{x_3}} \overline{\overline{\overline{x_4}} \varphi} \overline{\overline{\overline{\overline{x_1}} x_4}} \overline{\overline{\overline{\varphi}} \overline{x_1}} \overline{\overline{x_3}} \overline{\overline{\overline{x_1}} \overline{\overline{\overline{x_2}} x_5}} \overline{\overline{x_2} x_4} \overline{\varphi} \overline{\overline{\overline{x_1}} \overline{x_4}}$$
 $(S_Q = 38, \tau = 8)$
$$\varphi = \overline{\overline{x_2}} \overline{\overline{x_5}}$$

Схема по упрощенной МКНФ в базисе И-НЕ с ограничением на число входов:

$$f = \overline{\overline{x_3}} \overline{\overline{x_1}} \overline{\overline{x_2}} \overline{\overline{x_4}} \overline{\overline{\overline{x_4}}} \overline{\overline{\overline{x_4}}} \overline{\overline{\overline{x_5}}} \overline{\overline{\overline{x_1}}} \overline{\overline{x_4}} \overline{\overline{\overline{y}}} \overline{\overline{\overline{x_1}}} \overline{\overline{x_4}}$$
 $(S_Q = 40, \tau = 9)$
$$\varphi = \overline{\overline{x_2}} \overline{x_5}$$

