Definition 1. A flexibly Markov strategy for a game $\langle G, M \rangle$ is a pair of functions $\langle \sigma, \rho \rangle \in M^{M \times \omega} \times M^{M^{<\omega}}$. Intuitively, σ is a Markov strategy using a single move of the opponent and the round number, and τ is a strategy which applies the Markov strategy to each of the opponent's previous moves individually each round.

Let $\sigma': M^{<\omega} \to M^{<\omega}$ be defined by $|\sigma'(s)| = |s|$ and $\sigma'(s)(m) = \sigma(s(m), |s|)$. Then more rigorously, $\langle \sigma, \rho \rangle$ is a winning flexibly Markov strategy if and only if $\tau: M^{<\omega} \to M$ defined by $\tau(s) = \rho \circ \sigma'(s)$ is a winning strategy.

Definition 2. A semi-flexibly Markov strategy for a game $\langle G, M \rangle$ is a pair of functions $\langle \sigma, \phi \rangle \in M^{M \times \omega} \times \omega^{\omega}$. Intuitively, σ is a Markov strategy using a single move of the opponent and the round number, and ϕ is a strategy for choosing how far in the past the move of the opponent should be chosen.

More rigorously, $\langle \sigma, \phi \rangle$ is a winning semi-flexibly Markov strategy if and only if $\tau: M^{<\omega} \to M$ defined by $\tau(s) = \sigma(s(|s|-1-\phi(|s|)),|s|)$ is a winning strategy.

Proposition 3.
$$\mathscr{F} \underset{semiflexmark}{\uparrow} Sch_{C,F}^{\cup}(\kappa)$$

Proof. Let ϕ satisfy $|\phi^{-1}(n)| = \omega$ and $\sigma(C, n) = C \upharpoonright n$. Then since σ sees every move of \mathscr{C} infinitely often, it follows that it covers every move of \mathscr{C} .

Proposition 4. For compact
$$X$$
, $\mathscr{D} \uparrow Bell_{D,P}^{\rightarrow}(X)$ if and only if $\mathscr{D} \uparrow_{flexmark} Bell_{D,P}^{\rightarrow}(X)$

Proof. The forward direction is the only interesting direction. In this case, X is Corson compact and embeddable in the Σ -product of reals. Let ϕ satisfy $|\phi^{-1}(n)| = \omega$, and let supp(x) be the countable support of x, with $supp_{n+1}(x) \supseteq supp_n(x)$ finite and $\bigcup_{n<\omega} supp_n(x) = supp(x)$.

Let $\sigma(x,n) = D(2^{-n}, supp_n(x))$. Then since σ sees every move infinitely often, the non-zero coordinates are all Cauchy and converge.