Variational Formulation

1. Suppose $u \in V$ is the solution to the following problem in its variational form

$$b(u,v) = l(v)$$
 $v \in V$

where b(u, v) is a bilindear form that maps $V \times V$ to \mathbb{R} . l is a linear operator that maps V to \mathbb{R} . Here V is a Hilbert space. To obtain a numerical solution, we use the Galerkin method, and search for a solution in a subspace $V_h = \operatorname{span} \{\phi_1, \phi_2, \dots, \phi_N\} \subset V$

$$b(u_h, v) = l(v)$$
 $v \in V_h$

In the linear algebra form, it is written as

$$\underline{A} \boldsymbol{\cdot} \underline{U} = \underline{F}$$

- (a) Find the specific form of \underline{A} and \underline{F} .
- (b) If b is symmetric, show \underline{A} is symmetric.
- (c) Give the definition of the coercivity condition, and show if b is coercive, \underline{A} is positive definite.
- (d) Still assume b is coercive and denote M and γ the bounded coefficient and coercive coefficient, respectively, show

$$||u - u_h|| \le \frac{M}{\gamma} \inf_{v \in V} ||u - v||$$

(e) For the following equation in $\Omega \in \mathbb{R}^2$ with zero Dirichlet boundary condition (Ω is compactly supported), write down its variational form, determine the space V, and show whether b satisfied the coercivity condition. Find M and γ , respectively.

$$-\vec{\nabla} \cdot (a\vec{\nabla}u) + cu = f$$

with $0 < \underline{a} \le a < \bar{a}$ and $0 \le \underline{c} \le c < \bar{c}$.

(f) For the problem above, if we choose V_h to be a piecewise linear function space, show

$$||u - u_h||_{H^1} = \mathcal{O}(h)$$

and that if a is a constant and c = 0

$$||u - u_h||_{L_2} = \mathcal{O}(h^2)$$

(g) For the same equation in $\Omega \in \mathbb{R}^2$ with Neumann boundary contition

$$\partial_n u|_{\partial\Omega} = g$$

Write down its variational form, determine V, and show whether b satisfies the coercivity condition.

Euler-Bernoulli equation

2. Consider the Euler-Bernoulli equation

$$\frac{\partial^4 u}{\partial x^4} = f(x) \qquad 0 < x < 1$$

It is used to describe the deflection of u of a clamped beam subject to a transversal force with intensity f.

(a) Show the equivalent variational form would be to find u such that

$$\langle u'', v'' \rangle = \langle f, v \rangle \qquad \forall v \in V$$

where $V = \{v : v \in C_1[0, 1], v(0) = v'(0) = v(1) = v'(1) = 0, v \text{ piecewise continuous and bounded}\}$

- (b) For an interval, I = [a, b], define $P_3(I) = \{v : v(x) = c_0 + c_1x + c_2x^2 + c_3x^3, x \in I\}$. Show that $v \in P_3(I)$ is uniquely determined by the values v(a), v'(a), v(b), and v'(b). Find the corresponding local basis functions. (Hint: count the nuber of degrees of freedom and use the values to fix the coefficients.)
- (c) Construct a finite-dimensional subspace V_h consisting of piecewise cubic polynomials on the mesh $0 = x_0 < x_1 < \cdots < x_{N+1} = 1$.
- (d) Derive the error estimate

$$\|(u-u_h)''\|_2 \le \|(u-v)''\|_2 \qquad \forall v \in V_h$$

You are given the estimate that cubic Hermite interpolation of u, denoted as $I_h u \in V_h$, satisfies the following

$$||u''(x) - (I_h u)''(x)|| \lesssim h^2 \max_{0 \le \xi \le 1} |u^{(4)}(\xi)|$$

show that

$$\|(u - u_h)''\| \le Ch^2 \max_{0 \le \xi \le 1} |u^{(4)}(\xi)|$$

(e) Write a computer program to solve

$$\begin{cases} \frac{\mathrm{d}^4 u}{\mathrm{d}x^4} = g(x) \\ u(0) = u'(0) = u'(1) = u'(1) = 0 \end{cases}$$

If we use

$$g(x) = \frac{\mathrm{d}^4}{\mathrm{d}x^4} \left(e^x x^2 (1-x)^2 \right) = e^x \left(x^4 + 14x^3 + 49x^2 + 32x - 12 \right)$$

the exact solution is $u(x) = e^x x^2 (1-x)^2$.

- i. Give a brief description of your algorithm, in particular, the method you use to evaluate the load vector \underline{b} (choose your favorite numerical integral method, but make sure the error here is not too big, and the error from \underline{A} still dominates)
- ii. Tabulate the max-norm errors $e_N = \max |u_h(x_j) u(x_j)|$ and show the numerical convergence order by performing linear regression of $\log e_N$ vs $\log N$
- iii. Plot your finite element solution u_h along with the real solution.
- iv. Attach your code.