Manual de Usuario Paleta de Componentes LazFilters

Contenido

Visión General de los Componentes	1
Units	2
Tipos de datos	3
Estructura de Clases	4
Clase TFilter	4
Diseño	4
Propiedades	4
Métodos	4
Clase TFilterIIR	6
Diseño	6
Propiedades	6
Clase TFilterIIRLP	7
Diseño	7
Propiedades	7
Métodos	7
Clase TFilterIIRHP	8
Diseño	8
Propiedades	8
Métodos	8
Clase TFilterIIRBP	9
Diseño	9
Propiedades	9
Métodos	9
Clase TFilterIIRBS	. 10
Diseño	. 10
Propiedades	. 10
Métodos	
Clase TFilterIIRLPButterworth	
Diseño	. 11
Método	. 11
Clase TFilterIIRLPChebyshev	. 12
Diseño	
Propiedades	
Método	
Clase TFilterIIRI PBessel	13

	Diseño	13
	Método	13
	Clase TFilterIIRHPButterworth	14
	Diseño	14
	Método	14
	Clase TFilterIIRHPChebyshev	15
	Diseño	15
	Propiedades	15
	Método	15
	Clase TFilterIIRHPBessel	16
	Diseño	16
	Método	16
	Clase TFilterIIRBPButterworth	17
	Diseño	17
	Método	17
	Clase TFilterIIRBPChebyshev	18
	Diseño	18
	Propiedades	18
	Método	18
	Clase TFilterIIRBPBessel	19
	Diseño	19
	Método	19
	Clase TFilterIIRBSButterworth	20
	Diseño	20
	Método	20
	Clase TFilterIIRBSChebyshev	21
	Diseño	21
	Propiedades	21
	Método	21
	Clase TFilterIIRBSBessel	22
	Diseño	22
	Método	22
D	seño Global de Clases	23

Visión General de los Componentes

La paleta contiene 12 componentes que tienen la siguiente nomenclatura :

Nomenclatura

Filter: Indica que es un filtro.

FilterIIR: Indica que es un filtro de respuesta infinita al impulso.

FilterIIRLP: Indica que es un filtro de respuesta infinita al impulso pasa bajo.

FilterIIRHP: Indica que es un filtro de respuesta infinita al impulso pasa alto.

FilterIIRBP: Indica que es un filtro de respuesta infinita al impulso pasa banda.

FilterIIRBS: Indica que es un filtro de respuesta infinita al impulso supresor de banda.

FilterIIRLPButterworth: Indica que es un filtro de respuesta infinita al impulso pasa bajo Butterworth.

FilterIIRLPChebyshev: Indica que es un filtro de respuesta infinita al impulso pasa bajo Chebyshev.

FilterIIRLPBessel: Indica que es un filtro de respuesta infinita al impulso pasa bajo Bessel.

FilterlIRHPButterworth: Indica que es un filtro de respuesta infinita al impulso pasa alto Butterworth.

FilterIIRHPChebyshev: Indica que es un filtro de respuesta infinita al impulso pasa alto Chebyshev.

FilterIIRHPBessel: Indica que es un filtro de respuesta infinita al impulso pasa alto Bessel.

FilterIIRBPButterworth: Indica que es un filtro de respuesta infinita al impulso pasa banda Butterworth.

FilterIIRBPChebyshev: Indica que es un filtro de respuesta infinita al impulso pasa banda Chebyshev.

FilterIIRBPBessel: Indica que es un filtro de respuesta infinita al impulso pasa banda Bessel.

FilterIIRBSButterworth: Indica que es un filtro de respuesta infinita al impulso supresor de banda Butterworth.

FilterIIRBSChebyshev: Indica que es un filtro de respuesta infinita al impulso supresor de banda Chebyshev.

FilterIIRBSBessel: Indica que es un filtro de respuesta infinita al impulso supresor de banda Bessel.

Units

Filter: Contiene propiedades y métodos que posee cualquier tipo de filtro.

FilterIIR: Contiene propiedades y métodos que poseen los filtros (IIR).

FilterIIRLP: Contiene propiedades y métodos que poseen los filtros (IIR) pasa bajos.

FilterIIRHP: Contiene propiedades y métodos que poseen los filtros (IIR) pasa altos.

FilterIIRBP: Contiene propiedades y métodos que poseen los filtros (IIR) pasa bandas.

FilterIIRBS: Contiene propiedades y métodos que poseen los filtros (IIR) supresores de bandas.

FilterIIRLPButterworth: Contiene propiedades y métodos que poseen los filtros (IIR) pasa bajo Butterworth.

FilterIIRLPChebyshev: Contiene propiedades y métodos que poseen los filtros (IIR) pasa bajo Chebyshev.

FilterIIRLPBessel: Contiene propiedades y métodos que poseen los filtros (IIR) pasa bajo Bessel.

FilterlIRHPButterworth: Contiene propiedades y métodos que poseen los filtros (IIR) pasa alto Butterworth.

FilterlIRHPChebyshev: Contiene propiedades y métodos que poseen los filtros (IIR) pasa alto Chebyshev.

FilterIIRHPBessel: Contiene propiedades y métodos que poseen los filtros (IIR) pasa alto Bessel.

FilterIIRBPButterworth: Contiene propiedades y métodos que poseen los filtros (IIR) pasa banda Butterworth.

FilterIIRBPChebyshev: Contiene propiedades y métodos que poseen los filtros (IIR) pasa banda Chebyshev.

FilterIIRBPBessel: Contiene propiedades y métodos que poseen los filtros (IIR) pasa banda Bessel.

FilterlIRBSButterworth: Contiene propiedades y métodos que poseen los filtros (IIR) supresor de banda Butterworth.

FilterIIRBSChebyshev: Contiene propiedades y métodos que poseen los filtros (IIR) supresor de banda Chebyshev.

FilterIIRBSBessel: Contiene propiedades y métodos que poseen los filtros (IIR) supresor de banda Bessel.

Uconst: Contiene la declaraciones de las constates.

UOperator: Contiene un conjunto de funciones para trabajar con números complejos.

UType: Contiene las declaraciones de los tipos de datos.

Tipos de datos

TfreqType: Tipo de dato para especificar frecuencias.

FilterOrder: Tipo de dato para el orden del filtro.

TfreqCutArray: Tipo de dato para arreglo de frecuencias.

PFreqCutArray: Tipo de dato para puntero a un arreglo de frecuencias.

TComplexArray: Tipo de dato para arreglo de números complejos.

PComplexArray: Tipo de dato para puntero a arreglo de números complejos.

TAS_Sample: Tipo de dato para números flotantes.

TAS_SampleArray: Tipo de dato para arreglo de números flotantes.

PTAS_SampleArray: Tipo de dato para puntero a arreglo de números flotantes.

TAS_Float: Tipo de dato para especificar la frecuencia de muestreo.

FilterProc: Tipo de dato para el procesamiento del valor de entrada de acuerdo a los parámetros del filtro. El resultado es el valor filtrado. Los datos pueden ser procesados en tiempo real.

Estructura de Clases

Clase TFilter

La clase TFilter hereda de la clase TComponent, y constituye la clase base para creación de cualquier tipo de filtro digital, ya sea IIR ó FIR.

Diseño

Figura 1 Clase TFilter

Propiedades

property FreqCutCount : Cantidad de frecuencias de corte que tendrá el filtro.

property FreqCut: Frecuencia de corte.

property Order: Orden del filtro.

property SampleRate: Frecuencia de muestreo.

property Gain: Ganancia de la señal de salida.

property Info: Esta propiedad contiene información del filtro (ganancia de

entrada y coeficientes de salida).

Métodos

procedure Reset; virtual

Borra el buffer interno.

procedure SetupFilter(); virtual

Tiene la función de configurar el filtro, se declara virtual en esta clase y será redefinido en cada componente de acuerdo a sus funcionalidades.

procedure SetOrder(AOrder: FilterOrder)

Permite especificar el orden del filtro.

procedure SetSampleRate(ASampleRate: TAS_Float)

Permite especificar la frecuencia de muestreo.

function FilterPassAll(InputValue: TAS_Sample): TAS_Sample; virtual

Tipo de filtro que deja pasar hacia la salida lo mismo que esta en su entrada. **function** FilterPassNothing(InputValue: TAS_Sample): TAS_Sample; **virtual** Tipo de filtro en el cual la salida siempre es 0, independientemente de la entrada.

function FilterFilter(InputValue: TAS_Sample): TAS_Sample; virtual

Permite filtrar la señal en función de la configuración realizada previamente.

function FGetInfo: String

Devuelve la información del filtro.

function GetFrequencyResponse(FreqCut1: TFreqType): TFreqType Devuelve la respuesta del filtro en el dominio de la frecuencia.

Clase TFilterIIR

La clase TFilterIIR hereda de la clase TFilter, y encapsula todo lo concerniente a los filtros digitales de respuesta infinita al impulso.

Diseño

Figura 2 Clase TFilterIIR

Propiedades

property ManualReset:

Esta propiedad se debe Establecer en true si desea cambiar los parámetros del filtro (frecuencias y el tipo de filtro) durante el procesamiento de datos. Por lo general, (ManualReset = false) ya que cuando los parámetros del filtro se cambian los búferes internos se borran, así se puede conseguir algunas distorsiones en el procesamiento de la señal.

property LastError: Descripción del error.

Clase TFilterIIRLP

La clase TFilterIIRLP hereda de la clase TFilterIIR, y encapsula todo lo concerniente a los filtros digitales de respuesta infinita al impulso pasa bajo.

Diseño

Figura 3 Clase TFilterIIRLP

Propiedades

property FreqCut1: Frecuencia de corte 1.

Métodos

procedure SetFreqCut1(const InputValue: TFreqType); virtual

Permite insertar el valor de la frecuencia de corte uno.

procedure ResponseLowPass

Implementa la respuesta de un filtro pasa bajo.

function GetFreqCut1() : TfreqType

Devuelve la frecuencia de corte uno.

Clase TFilterIIRHP

La clase TFilterIIRHP hereda de la clase TFilterIIR, y encapsula todo lo concerniente a los filtros digitales de respuesta infinita al impulso pasa alto.

Diseño

Figura 4 Clase TFilterIIRHP

Propiedades

property FreqCut1: Frecuencia de corte 1.

Métodos

procedure SetFreqCut1(const InputValue: TFreqType)

Permite insertar el valor de la frecuencia de corte 1.

procedure ResponseHighPass

Implementa la respuesta de un filtro pasa alto.

function GetFreqCut1(): TFreqType

Devuelve la frecuencia de corte 1.

Clase TFilterIIRBP

La clase TFilterIIRBP hereda de la clase TFilterIIR, y encapsula todo lo concerniente a los filtros digitales de respuesta infinita al impulso pasa banda.

Diseño

Figura 5 Clase TFilterIIRBP

Propiedades

property FreqCut1 : Frecuencia de corte 1.property FreqCut2 : Frecuencia de corte 2.

Métodos

procedure ResponseBandPass

Implementa la respuesta de un filtro pasa banda.

procedure SetFreqCut1(const InputValue: TFreqType); virtual

Permite especificar el valor de la frecuencia de corte 1.

procedure SetFreqCut2(const InputValue: TFreqType); virtual

Permite especificar el valor de la frecuencia de corte 2.

function GetFreqCut1(): TFreqType

Devuelve la frecuencia de corte uno.

function GetFreqCut2(): TFreqType

Devuelve la frecuencia de corte 2.

Clase TFilterIIRBS

La clase TFilterIIRBS hereda de la clase TFilterIIR, y encapsula todo lo concerniente a los filtros digitales de respuesta infinita al impulso, supresores de banda.

Diseño

Figura 6 Clase TFilterIIRBS

Propiedades

property FreqCut1 : Frecuencia de corte 1.property FreqCut2 : Frecuencia de corte 2.

Métodos

procedure ResponseBandStop

Implementa la respuesta de un filtro supresor de banda.

procedure SetFreqCut1(const InputValue: TFreqType); virtual

Permite especificar el valor de la frecuencia de corte 1.

procedure SetFreqCut2(const InputValue: TFreqType); virtual

Permite especificar el valor de la frecuencia de corte 2.

function GetFreqCut1(): TFreqType

Devuelve la frecuencia de corte 1.

function GetFreqCut2(): TFreqType

Devuelve la frecuencia de corte 2.

Clase TFilterIIRLPButterworth

Diseño

Figura 7 Clase TFilterIIRLPButterworth

Método

Clase TFilterIIRLPChebyshev

Diseño

Figura 8 Clase TFilterIIRLPChebyshev

Propiedades

property Ripple: La ondulación en la banda de paso en dB.

Método

procedure SetRipple(ARipple: TAS_Sample)

Permiter especificar el ripple.

procedure SetupForChebyshev()

Para el funcionamiento de los filtros Chebyshev.

Clase TFilterIIRLPBessel

Diseño

Figura 9 Clase TFilterIIRLPBessel

Método

Clase TFilterIIRHPButterworth

Diseño

Figura 10 Clase TFilterIIRHPButterworth

Método

Clase TFilterIIRHPChebyshev

Diseño

Figura 11 Clase TFilterIIRHPChebyshev

Propiedades

property Ripple: La ondulación en la banda de paso en dB.

Método

procedure SetRipple(ARipple: TAS_Sample)

Permiter especificar el ripple.

procedure SetupForChebyshev()

Para el funcionamiento de los filtros Chebyshev.

Clase TFilterIIRHPBessel

Diseño

Figura 12 Clase TFilterIIRHPBessel

Método

Clase TFilterIIRBPButterworth

Diseño

Figura 13 Clase TFilterIIRBPButterworth

Método

Clase TFilterIIRBPChebyshev

Diseño

Figura 14 Clase TFilterIIRBPChebyshev

Propiedades

property Ripple: La ondulación en la banda de paso en dB.

Método

procedure SetRipple(ARipple: TAS_Sample)

Permiter especificar el ripple.

procedure SetupForChebyshev()

Para el funcionamiento de los filtros Chebyshev.

Clase TFilterIIRBPBessel

Diseño

Figura 15 Clase TFilterIIRBPBessel

Método

Clase TFilterIIRBSButterworth

Diseño

Figura 16 Clase TFilterIIRBSButterworth

Método

Clase TFilterIIRBSChebyshev

Diseño

Figura 17 Clase TFilterIIRBSChebyshev

Propiedades

property Ripple: La ondulación en la banda de paso en dB.

Método

procedure SetRipple(ARipple: TAS_Sample)

Permiter especificar el ripple.

procedure SetupForChebyshev()

Para el funcionamiento de los filtros Chebyshev.

Clase TFilterIIRBSBessel

Diseño

Figura 18 Clase TFilterIIRBSBessel

Método

Diseño Global de Clases

