Zentrale Informatik

Python: Data Analysis and Data Visualization

David Pinezich

Learning Targets

- Import data and pre process
 - formats, parse data, use suited data structures
- Aggregate
 - Perform basic analysis
 - descriptive statistics
 - text analysis
- Visualization types
 - Tables, x-y Plot, Normal distribution, Pie chart, Spider diagram, Word cluster, Histogram, 3D Plot

Schedule Today

Recap & Questions ~ 15min
 Intro population.io, JSON & HTTP-Requests ~ 30min
 Break ~ 15min
 Exercise Population (individual breaks) ~ 75min

JSON

- Basics
 - Hierarchical Data
 - Structures
 - XML-Like

```
"firstName": "John",
"lastName": "Smith",
},
"phoneNumbers": [
  "type": "home",
  "number": "212 555-1234"
 },
  "type": "office",
  "number": "646 555-4567"
"children": [],
"spouse": null
```

HTTP Requests

- If a simple website is called, the Browser fires a HTTP Request. The HTTP response contains HTML and CSS. The Browser turns this data into the representation you are looking at.
- By HTTP Requests also non-graphical data can be transmitted.

HTTP Requests

Python examples – Showtime!

```
import requests

r = requests.get('https://api.github.com/events')
print(r.text)
```

```
import requests

countries = requests.get("http://api.population.io:80/1.0/countries")

countries_list = countries.json()["countries"]
```

Population.io

What's my place in the world population? How long will I live?

- http://population.io
- http://api.population.io => http://d6wn6bmjj722w.population.io

Exercise 1

- Done together step by step
 - Learn how to structure a program
 - Learn how to use pickle
 - Learn how to extract data from population io

Exercise 2-6

- Read the json strings of the python files
 - 2: Find the top 10 countries with the largest population
 - 3: Find the top 10 countries with the largest relative growth (from today to tomorrow)
 - 4: Find the top 10 countries with the longest life expectancy (Average between woman/men) for people born on "2015-06-30"
 - 5: Extract the correlation (see next slide) between relative growth and the life expectancy
 - 6: Calculate further correlations & have fun with the data

Correlation

• Source: https://www.mathsisfun.com/data/images/correlation-calc1.gif

	1		A	-	*	*
emp °C	Sales	"a"	"b"	a×b	a ²	b ²
14.2	\$215	-4.5	-\$187	842	20.3	34,969
16.4	\$325	-2.3	-\$77	177	5.3	5,929
11.9	\$185	-6.8	-\$217	1,476	46.2	47,089
15.2	\$332	-3.5	-\$70	245	12.3	4,900
18.5	\$406	-0.2	\$4	-1	0.0	16
22.1	\$522	3.4	\$120	408	11.6	14,400
19.4	\$412	0.7	\$10	7	0.5	100
25.1	\$614	6.4	\$212	1,357	41.0	44,944
23.4	\$544	4.7	\$142	667	22.1	20,164
18.1	\$421	-0.6	\$19	-11	0.4	361
22.6	\$445	3.9	\$43	168	15.2	1,849
17.2	\$408	-1.5	\$6	-9	2.3	36
18.7	\$402			5,325	177.0	174,757

$$\frac{5,325}{\sqrt{177.0 \times 174,757}} = 0.9575$$

- 1 is a perfect positive correlation
- 0 is no correlation (the values don't seem linked at all)
- -1 is a perfect negative correlation