L7.3 Policy-based RL

Zonghua Gu 2021

Acknowledgement: slides based on https://www.coursera.org/specializations/reinforcement-learning And textbook by Sutton and Barto http://incompleteideas.net/book/the-book-2nd.html

Policy-based RL

CH13 Policy Gradient Methods

- Value Based
 - Learnt Value Function
 - Implicit policy (e.g. ϵ -greedy)
- Policy Based
 - No Value Function
 - Learnt Policy
- Actor-Critic
 - Learnt Value Function
 - Learnt Policy

Policy-based RL Pros and Cons

• Pros:

- Effective in high-dimensional or continuous action space.
 - Value-based RL is only applicable to discrete action space; inefficient to discretize continuous actions for high-dim action space, as taking $argmax_a Q(s, a)$ may be expensive.
- Can learn stochastic policies
 - Value-based RL learns a near-deterministic policy (greedy or ϵ -greedy).
 - For the game rock-paper-scissors, deterministic policy does not work well.
- Better convergence properties.

Disadvantages:

- Typically converges to a local rather than global optimum.
- Evaluating a policy is typically inefficient and high variance.

Mountain Car Example

- Middle: a complex value function
- Right: a simple policy that works well: accelerate in the direction of current velocity.

Function Approximation for Action Value Function vs. Policy

- Left: function approximation for action value function $\hat{q}(s, a, \mathbf{w})$.
- Right: function approximation for policy $\pi(a|s, \theta)$:
 - Probability that action a is taken in state s, with parameter θ .
 - $-\pi(a|s, \mathbf{\theta}) \ge 0, \forall a \in \mathcal{A} \land \forall s \in \mathcal{S}$
 - $-\sum_{a\in\mathcal{A}}\pi(a|s,\mathbf{\theta})=1, \forall s\in\mathcal{S}$

Example: Aliased Gridworld

- Agent cannot observe its position directly; it can only observe features of the following form (for all directions $d_1, d_2, ... \in (N, E, S, W)$):
 - $-\phi(s)=\mathbf{1}$ (wall to d_1,d_2 ...) (if there are walls in each direction)
 - $-\mathbf{1}(x)$ is indicator function: $\mathbf{1}(x) = \mathbf{1}$ if x = true
 - Hence agent cannot differentiate between the 2 grey states (it is a Partially Observable MDP (POMDP))
- Value-based RL: $\hat{q}(s, a, \mathbf{w}) = f(\phi(s), \mathbf{w})$
- Policy-based RL: $\pi(a|s, \theta) = g(\phi(s), \theta)$

Example: Aliased Gridworld

- An optimal deterministic policy:
 - Either move W in both grey states (red arrows), or move E in both grey states; Either way, it can get stuck and never reach the money
 - Value-based RL learns a near-deterministic policy (greedy or ϵ -greedy), So it may traverse the corridor for a long time.
- An optimal stochastic policy:
 - $-\pi(\text{move }E|\text{wall to N and S}, \theta) = \pi(\text{move }W|\text{wall to N and S}, \theta) = 0.5$
 - Randomly move E or W in grey states.
- It will reach the goal state in a few steps with high probability

Opt det policy

Opt Sto policy

Optimal ϵ -Soft Policy

- The optimal ϵ -soft policy is the policy with the highest value in each state among all ϵ -soft policies. It performs worse than the optimal greedy deterministic policy π_* in general.
- But it often performs reasonably well, and avoids exploring starts.

SoftMax Policy for Discrete Actions

•
$$\pi(a|s, \theta) \doteq \frac{e^{h(s, a, \theta)}}{\sum_{a \in \mathcal{A}} e^{h(s, a, \theta)}}$$

- $h(s, a, \theta)$ is action preference, which may be linear function $\theta^T \mathbf{x}(s, a)$, or a Deep Neural Network.
- ϵ -greedy:
 - No distinction between policies that are not the optimal one.

Gaussian Policy for Continuous Actions

• Gaussian Policy $\pi(a|s, \theta) \doteq$

$$\frac{1}{\sigma(s,\boldsymbol{\theta})\sqrt{2\pi}}\exp\left(-\frac{\left(a-\mu(s,\boldsymbol{\theta})\right)^2}{2\sigma(s,\boldsymbol{\theta})^2}\right)$$

– Mean $\mu(s, \mathbf{\theta})$, variance $\sigma(s, \mathbf{\theta})$

An Example MDP (Det Env)

- Always left policy π_L :
 - Geometric series: $V_{\pi_L}(S) = 1 + \gamma^5 + \gamma^{10} + \dots = \frac{1}{1 \gamma^5}$
 - $\quad \text{Recursion:} V_{\pi_L}(S) = 1 + \gamma \left(0 + \gamma \left(0 + \gamma \left(0 + \gamma \left(0 + \gamma V_L(s) \right) \right) \right) \right), V_L(S) = \frac{1}{1 \gamma^5}$
- Always right policy π_R :
 - Geometric series: $V_{\pi_R}(S) = 2\gamma^4 + 2\gamma^9 + \dots = \frac{2\gamma^4}{1-\gamma^5}$
 - Recursion: $V_{\pi_R}(S) = 0 + \gamma \left(0 + \gamma \left(0 + \gamma \left(0 + \gamma \left(2 + \gamma V_R(s) \right) \right) \right) \right)$, $V_R(S) = \frac{2\gamma^4}{1 \gamma^5}$
- Optimal policy depends on discount factor γ . $V_{\pi_L}(S) = V_{\pi_R}(R) \Rightarrow \gamma = 2^{-\frac{1}{4}} \approx 0.841$
- If the cycles are longer, say each with 100 states, then $\gamma = 2^{-\frac{1}{99}} \approx 0.993$
- Larger values of γ result in larger and more variables sums, which may be difficult to learn with RL.

γ	$V_{\pi_L}(S)$	$V_{\pi_R}(S)$	Opt. Pol.
0.5	≈ 1	≈ 0.1	π_L
0.841	≈ 0.58	≈ 0.58	π_L or π_R
0.9	≈ 2.4	≈ 3.2	π_R

Average Reward Objective

- Average Reward $r(\pi) \doteq \lim_{h \to \infty} \frac{1}{h} \sum_{t=1}^{h} \mathbb{E}[R_t | S_0, A_{0:t-1} \sim \pi] = \sum_s \mu_{\pi}(s) \sum_a \pi(a|s) \sum_{s',r} p(s',r|s,a) r$
 - $-\sum_{s',r} p(s',r|s,a)r = \mathbb{E}[R_t|S_t=s,A_t=a]$: expected reward if we start in state s and take action a, taking exp over all possible s',r.
 - $-\sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) r = \mathbb{E}_{\pi}[R_{t}|S_{t}=s]: \text{ expected}$ reward under policy π from state s, taking exp over all possible a.
 - $-r(\pi) = \mathbb{E}_{\pi}[R_t]$: average reward under policy π by weighting expected reward of each state s under policy π with $\mu_{\pi}(s)$, fraction of time spent in state s under policy π .
 - Measures "rate of reward" or "reward per timestep".
- Recall: Bellman Exp Equation for State Value Function w. cumulative discounted reward: $v_{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) [r + \gamma v_{\pi}(s')]$

Return vs. Differential Return

- Differential Return for continuing task: $G_t \doteq \sum_{k=0}^{\infty} (R_{t+k+1} r(\pi))$
 - It measures how much better it is to take an action in a state than average reward $r(\pi)$ under a certain baseline policy π . It is used to compare actions if the same policy π is followed on subsequent time steps.
- c.f. return for regular MDP w. discount factor γ : return (discounted cumulative reward): $G_t \doteq \sum_{k=0}^{T-1} \gamma^k R_{t+k+1}$
 - Episodic task with finite T, or continuing task with $T\to\infty$

Differential Return

- Average reward $r(\pi_L)=0.2$ (1 reward every 5 steps); $r(\pi_R)=0.4$ (2 reward every 5 steps)
- For policy π_L :
 - Take L action, then follow π_L forever: $q_{\pi_L}(s,L) = G_t = 1 .2 + 0 .2 + 0 .2 + 0 .2 + 0 .2 + \cdots = 0.4$ (Cesàro Sum)
 - Take R action, then follow π_L forever: $q_{\pi_L}(s,R) = G_t = 0 .2 + 0 .2 + 0 .2 + 2 .2 + .4 = 1.4$
 - Optimal action is R.
- For policy π_R :
 - Take R action, then follow π_R forever: $q_{\pi_R}(s,R) = G_t = 0 .4 + 0 .4 + 0 .4 + 2 .4 + \cdots = -0.8$ (Cesàro Sum)
 - Take L action, then follow π_R forever: $q_{\pi_R}(s,L) = G_t = 1 .4 + 0 .4 + 0 .4 + 0 .4 + 0 .4 .8 = -1.8$
 - Optimal action is R.

Side Note: Cesàro Summation

- Grandi's series: $G = \sum_{n=0}^{\infty} a_n = 1 1 + 1 1 + \cdots$
 - One view: $G = (1 1) + (1 1) + \cdots = 0$
 - Another view: $G = 1 + (-1 + 1) + (-1 + 1) + \cdots = 1$
 - Another view: $G = 1 (1 1 + 1 1 + \cdots) = 1 G \Rightarrow G = 0.5$
- Cesàro Summation:
 - Sequence of partial sums $s_k = \sum_{i=0}^k a_i$, $(s_k) = (1,0,1,0,...)$
 - Cesàro Sum: $t_n = \lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} s_k = 0.5$

n	t_n
1	$\frac{1}{1} = 1$
2	$\frac{1+0}{2} = .5$
3	$\frac{1+0+1}{3} \approx .67$
4	$\frac{1+0+1+0}{4} = .5$
5	$\frac{1+0+1+0+1}{5} = .6$
6	$\frac{1+0+1+0+1+0}{6} = .5$
∞	≈ .5

Bellman Equations for Average Reward

Bellman Expectation Equations:

$$- v_{\pi}(s) = \sum_{a} \pi(a|s) \sum_{r,s'} p(r,s'|s,a) \left[r - r(\pi) + v_{\pi}(s') \right]$$

$$- q_{\pi}(s,a) = \sum_{r,s'} p(r,s'|s,a) \left[r - r(\pi) + \sum_{a'} \pi(a'|s') q_{\pi}(s',a') \right]$$

Bellman Optimality Equations:

$$- v_*(s) = \max_{a} \sum_{r,s'} p(r,s'|s,a) \left[r - \max_{\pi} r(\pi) + v_*(s') \right]$$

$$- q_*(s,a) = \sum_{r,s'} p(r,s'|s,a) \left[r - \max_{\pi} r(\pi) + \max_{a'} q_*(s',a') \right]$$

- Differences from Bellman Equations for discounted cumulative reward:
 - Remove γ , and replace all rewards by difference between the reward and the true average reward.
- Recall: Bellman Expectation Equations:

$$- v_{\pi}(s) = \sum_{a} \pi(a|s) \sum_{r,s'} p(r,s'|s,a) [r + \gamma v_{\pi}(s')] =$$

$$- q_{\pi}(s,a) = \sum_{r,s'} p(r,s'|s,a) [r + \gamma \sum_{a'} \pi(a'|s') q_{\pi}(s',a')]$$

Recall: Bellman Optimality Equations:

$$-v_*(s) = \max_{a} \sum_{r,s'} p(r,s'|s,a) [r + \gamma v_*(s')]$$
$$-q_*(s,a) = \sum_{r,s'} p(r,s'|s,a) [r + \gamma \max_{a'} q_*(s',a')]$$

Policy Optimization w. Average Reward Objective

- $r(\pi) \doteq \sum_{s} \mu_{\pi}(s) \sum_{a} \pi(a|s, \theta) \sum_{s',r} p(s',r|s,a) r$
- Gradient ascent to maximize $r(\pi)$:
 - $-\nabla r(\pi) = \nabla \sum_{s} \mu_{\pi}(s) \sum_{a} \pi(a|s, \mathbf{\theta}) \sum_{s',r} p(s', r|s, a) r$
 - We cannot move the gradient ∇ inside the expectation over $\mu_{\pi}(s)$, since it depends on the policy params θ , i.e., modifying the policy $\pi(a|s,\theta)$ changes distribution $\mu_{\pi}(s)$.
- Recall gradient descent for optimizing value function under a fixed policy π :
 - $-\nabla \overline{VE} = \nabla \sum_{s \in \mathcal{S}} \mu(s) [v_{\pi}(s) \hat{v}(s, \mathbf{w})]^{2} = \sum_{s \in \mathcal{S}} \mu(s) \nabla [v_{\pi}(s) \hat{v}(s, \mathbf{w})]^{2}$
 - We can move the gradient ∇ inside the expectation over $\mu(s)$, since distribution $\mu(s)$ does not depend on the value params \mathbf{w} .

Policy Gradient Theorem

- $\nabla r(\pi) = \sum_{S} \mu_{\pi}(S) \sum_{a} \nabla \pi(a|S, \theta) q_{\pi}(S, a)$
- For a given state s: gradient ascent maximizes average reward $\sum_{a} \pi(a|s, \theta) q_{\pi}(s, a)$.
- For all states: gradient ascent maximizes overall average reward $r(\pi)$ by updating $\mathbf{\theta} \leftarrow \mathbf{\theta} + \alpha \nabla r(\pi)$.

SGD for Policy Gradient

- $\nabla r(\pi) = \sum_{S} \mu_{\pi}(S) \sum_{a} \nabla \pi(a|S, \mathbf{\theta}) q_{\pi}(S, a)$
- = $\mathbb{E}_{\pi}[\sum_{a} \nabla \pi(a|S_{t},\theta) q_{\pi}(S_{t},a)]$

• =
$$\mathbb{E}_{\pi} \left[\sum_{a} \pi(a|S_t, \mathbf{\theta}) \frac{\nabla \pi(a|S_t, \mathbf{\theta})}{\pi(a|S_t, \mathbf{\theta})} q_{\pi}(S_t, a) \right]$$

- = $\mathbb{E}_{\pi}[\nabla \log \pi(A_t|S_t, \mathbf{\theta})q_{\pi}(S_t, A_t)]$ (replace a by sample $A_t \sim \pi$)
- SGD update:
 - $-\mathbf{\theta} \leftarrow \mathbf{\theta} + \alpha \nabla \log \pi(A_t | S_t, \mathbf{\theta}) q_{\pi}(S_t, A_t)$
 - $-\nabla \log \pi(A_t|S_t,\boldsymbol{\theta})$: score function
 - $-q_{\pi}(S_t, A_t)$: action value function

Actor-Critic Algorithm

- Instead of $\theta \leftarrow \theta + \alpha \nabla \log \pi(A_t | S_t, \theta) q_{\pi}(S_t, A_t)$
- We use $\mathbf{\theta} \leftarrow \mathbf{\theta} + \alpha \nabla \log \pi (A_t | S_t, \mathbf{\theta}) [R_{t+1} \overline{R} + \hat{v}(S_{t+1}, \mathbf{w}) \hat{v}(S_t, \mathbf{w})] = \mathbf{\theta} + \alpha \nabla \log \pi (A_t | S_t, \mathbf{\theta}) \delta_t$
- We subtract the baseline reward $\hat{v}(S_t, w)$ to reduce update variance to get the TD error δ_t , since we only care about the relative ranking of different actions in state S_t . The baseline does not affect the expected update since $\mathbb{E}_{\pi}[\nabla \log \pi(A_t|S_t, \mathbf{\theta}) \, \hat{v}(S_t, \mathbf{w})|S_t = s] = 0$
- After we execute an action A_t in state S_t , critic uses TD error δ_t to decide how good the action was compared to the average for that state $\hat{v}(S_t, \mathbf{w})$. If $\delta_t > 0$, then it means A_t resulted in a higher value than expected, so actor updates policy parameters $\mathbf{0}$ to increase the probability of A_t in state S_t ; and vice versa if $\delta_t < 0$.
- Actor and Critic learn at the same time, constantly interacting. The actor is continually changing the policy params θ to exceed the critics expectation, and the critic is constantly updating its value function params w to evaluate the actors changing policy.

Actor-Critic Algorithm

- TD error $\delta_t = R_{t+1} \overline{R} + \hat{v}(S_{t+1}, w) \hat{v}(S_t, w)$
- Critic: $w = w + \alpha^w \delta \nabla \hat{v}(S_t, w)$ (semi-gradient TD)
- Actor: $\theta = \theta + \alpha^{\theta} \delta \nabla \log \pi (A_t | S_t, \theta)$ (Policy Gradient)

Actor-Critic (continuing), for estimating $\,\pi_{\!m{ heta}} pprox \,\pi_*$

Input: a differentiable policy parameterization $\pi(a \mid s, \theta)$

Input: a differentiable state-value function parameterization $\hat{v}(s, \mathbf{w})$

Initialize $\bar{R} \in \mathbb{R}$ to 0

Initialize state-value weights $\mathbf{w} \in \mathbb{R}^d$ and policy parameter $\boldsymbol{\theta} \in \mathbb{R}^{d'}$ (e.g. to 0)

Algorithm parameters: $\alpha^{\mathbf{w}} > 0$, $\alpha^{\theta} > 0$, $\alpha^{\bar{R}} > 0$

Initialize $S \in \mathcal{S}$

Loop forever (for each time step):

$$A \sim \pi(\cdot \mid S, \boldsymbol{\theta})$$

Take action A, observe S', R

$$\delta \leftarrow R - \bar{R} + \hat{v}(S', \mathbf{w}) - \hat{v}(S, \mathbf{w})$$

$$\bar{R} \leftarrow \bar{R} + \alpha^{\bar{R}} \delta$$

$$\mathbf{w} \leftarrow \mathbf{w} + \alpha^{\mathbf{w}} \delta \nabla \hat{\mathbf{v}}(S, \mathbf{w})$$

$$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \alpha^{\boldsymbol{\theta}} \delta \nabla \ln \pi (A \mid S, \boldsymbol{\theta})$$

$$S \leftarrow S'$$

Actor-Critic with Softmax Policies

- Softmax policy $\pi(a|s, \mathbf{\theta}) \doteq \frac{e^{h(s,a,\mathbf{\theta})}}{\sum_{b \in \mathcal{A}} e^{h(s,a,\mathbf{\theta})}}$
- Assume linear value function $\hat{v}(s, \mathbf{w}) \doteq \mathbf{w}^T \mathbf{x}(s)$ and linear preference function $h(s, a, \mathbf{\theta}) \doteq \mathbf{\theta}^T \mathbf{x}_h(s, a)$
- Critic update: $\mathbf{w} = \mathbf{w} + \alpha^w \delta \nabla \hat{v}(S_t, \mathbf{w}) = \mathbf{w} + \alpha^w \delta \mathbf{x}(s)$
- Actor update: $\mathbf{\theta} = \mathbf{\theta} + \alpha^{\theta} \delta \nabla \log \pi (A_t | S_t, \mathbf{\theta})$ $-\log \pi (A_t | S_t, \mathbf{\theta}) = x_h(s, a) - \sum_b \pi(b | s, \mathbf{\theta}) x_h(s, b)$

Many Variants of PG

- Original REINFORCE:
 - $-\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \alpha \nabla \log \pi (A_t | S_t, \boldsymbol{\theta}) v_{\pi}(S_t)$
- Q Actor-Critic:
 - $-\mathbf{\theta} \leftarrow \mathbf{\theta} + \alpha \nabla \log \pi(A_t | S_t, \mathbf{\theta}) q_{\pi}(S_t, A_t)$
- Advantage Actor-Critic:
 - $-\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \alpha \nabla \log \pi(A_t|S_t,\boldsymbol{\theta}) A_{\pi}(S_t,A_t)$
 - $-A_{\pi}(S_t, A_t) = q_{\pi}(S_t, A_t) v_{\pi}(S_t)$
- TD Actor-Critic:
 - $-\mathbf{\theta} \leftarrow \mathbf{\theta} + \alpha \nabla \log \pi (A_t | S_t, \mathbf{\theta}) \delta$
- Critic uses policy evaluation (e.g. MC or TD learning) to estimate $q_{\pi}(S_t, A_t), A_{\pi}(S_t, A_t)$

Pendulum Swingup

Continuing task

• State
$$s \doteq \begin{bmatrix} \beta \\ \dot{\beta} \end{bmatrix}$$

- $-\beta \in [-\pi,\pi]$: angular position;
- $-\dot{\beta} \in [-2\pi, 2\pi]$: angular velocity within userspecified range. If range is exceeded, it is reset to resting position $\beta = \pi$.
- Action $a \in \{-1,0,1\}$
- Reward $R \doteq -|\beta|$
 - Goal is to get the pendulum pointing directly up and keep it that way.

- For Critic: Value function $\hat{v}(s, \mathbf{w}) \doteq \mathbf{w}^T \mathbf{x}(s)$
- For Actor: Preference function $h(s, a, \theta) \doteq \theta^T \mathbf{x}_h(s, a)$
- We update critic at faster rate than actor: $\alpha^{\mathbf{\theta}} < \alpha^{\mathbf{w}}$

Advantages of Continuous Actions

- It might not be straightforward to choose a proper discrete set of actions
- Continuous actions allow us to generalize over actions
 - If an action is good, its neighboring actions are also likely to be good
 - Discrete actions lack generalization: each action is independent of others, including its neighbors (similar to value functions for discrete states)

Gaussian Policies for Continuous Actions

- Action $a \in [-3,3]$
- Gaussian Policy $\pi(a|s, \theta) \doteq$

$$\frac{1}{\sigma(s,\boldsymbol{\theta})\sqrt{2\pi}} \exp\left(-\frac{\left(a-\mu(s,\boldsymbol{\theta})\right)^2}{2\sigma(s,\boldsymbol{\theta})^2}\right)$$

- Mean $\mu(s, \mathbf{\theta}) \doteq \mathbf{\theta}_{\mu}^T x(s)$ (assumed to be linear func)
- Variance $\sigma(s, \mathbf{\theta}) \doteq \exp \mathbf{\theta}_{\sigma}^T x(s)$ (assumed to be exponential of linear func)

Policy variance $\sigma(s,\theta)$ initially large

 $\sigma(s,\theta)$ gradually reduced during learning w. PG, converging towards deterministic policy

Taking Gradients of Log Policy

- $\pi(a|s, \mathbf{\theta}) \doteq \frac{1}{\sigma(s, \theta)\sqrt{2\pi}} \exp\left(-\frac{\left(a \mu(s, \mathbf{\theta}_{\mu})\right)^{2}}{2\sigma(s, \mathbf{\theta}_{\sigma})^{2}}\right)$
- $\nabla \log \pi(a|s, \mathbf{\theta}_{\mu}) = \frac{1}{\sigma(s,\theta)^2} (a \mu(s, \mathbf{\theta})) x(s)$
- Proof: $\nabla \log \pi(a|s, \mathbf{\theta}_{\mu}) = \frac{\nabla \pi(a|s, \mathbf{\theta}_{\mu})}{\pi(a|s, \mathbf{\theta}_{\mu})} = \frac{\frac{1}{\sigma(s, \mathbf{\theta})\sqrt{2\pi}} \nabla \exp(-\frac{\left(a \mathbf{\theta}_{\mu}^{T} x(s)\right)}{2\sigma(s, \mathbf{\theta})^{2}})}{\frac{1}{\sigma(s, \mathbf{\theta})\sqrt{2\pi}} \exp(-\frac{\left(a \mathbf{\theta}_{\mu}^{T} x(s)\right)^{2}}{2\sigma(s, \mathbf{\theta})^{2}})} = \frac{1}{\sigma(s, \mathbf{\theta})^{2}} (a \mathbf{\theta}_{\mu}^{T} x(s))$
- $\nabla \log \pi(a|s, \mathbf{\theta}_{\sigma}) = \left(\frac{(a-\mu(s,\mathbf{\theta}))^2}{\sigma(s,\mathbf{\theta})^2} 1\right)x(s)$

• Proof:
$$\nabla \log \pi(a|s, \mathbf{\theta}_{\sigma}) = \frac{\nabla \pi(a|s, \mathbf{\theta}_{\sigma})}{\pi(a|s, \mathbf{\theta}_{\sigma})} = \frac{\nabla \frac{1}{\exp \mathbf{\theta}_{\sigma}^{T} x(s) \sqrt{2\pi}} \exp(-\frac{(a - \mu(s, \mathbf{\theta}))^{2}}{2 \exp 2\mathbf{\theta}_{\sigma}^{T} x(s)})}{\frac{1}{\exp \mathbf{\theta}_{\sigma}^{T} x(s) \sqrt{2\pi}} \exp(-\frac{(a - \mu(s, \mathbf{\theta}))^{2}}{2 \exp 2\mathbf{\theta}_{\sigma}^{T} x(s)})^{2}} = \frac{(-x(s) \exp -\mathbf{\theta}_{\sigma}^{T} x(s) x(s) (a - \mu(s, \mathbf{\theta}))^{2} \exp -2\mathbf{\theta}_{\sigma}^{T} x(s)) \exp(-\frac{(a - \mu(s, \mathbf{\theta}))^{2}}{2 \exp 2\mathbf{\theta}_{\sigma}^{T} x(s)})}} = \exp(-\frac{(a - \mu(s, \mathbf{\theta}))^{2}}{2 \exp 2\mathbf{\theta}_{\sigma}^{T} x(s)})^{2}} = (\frac{(a - \mu(s, \mathbf{\theta}))^{2}}{\sigma(s, \mathbf{\theta})^{2}} - 1)x(s)$$

