Physics Thinking

Casey Handmer and Jonathan Whitmore 2024-01-01

Table of contents

Pr	Preface 3		
1	Intro	oduction Solving Problems with the 7D's and the little S	4 5
_			
2		chanics	6
	2.1	Example Problem	6
		Diagram	6
		Directions	6
		Definitions & Data	6
		Diagnosis	6
		Derivation	7
		Determination	7
		Dimensions	7
		Limiting Cases	7
		Substitution	8
	2.2	Example Problem	8
		Diagram	8
		Directions	8
		Definitions & Data	9
		Diagnosis	9
		Derivation	9
		D'algebra	10
		Determination	10
		Dimensions	10
		Limiting Cases	10
		Substitution	11
3	Sum	nmary	12
Re	eferen	ices	13

Preface

Consider this as an option for developing (and publishing?) the book.

To learn more about Quarto books visit https://quarto.org/docs/books.

1 Introduction

This is a book created from markdown and executable code.

Table 1.1: SI units

Base Quantity	Base Unit	Symbol
length	meter	\overline{m}
time	second	s
mass	kilogram	kg
electric current	ampere	A
Thermodynamic temperature	Kelvin	K
Amount of substance	mole	mol
Luminous Intensity	candela	cd

Table 1.2: Fundamental Units

length	time	mass	charge	temperature
m	\mathbf{s}	kg	\mathbf{C}	K

Table 1.3: Combinations

Concept	Units
Force	$kg \ m \ s^{-2} = N$
Energy	$kg \ m^2 \ s^{-2} = N \ m = J$
Power	$kg \ m^2 \ s^{-3} = J \ s^{-1} = W$
Current	$C s^{-1}$

Dimensional analysis: always checking and fudging (?).

Same units go to the same side of the equation!

Vectors vs scalars

Math is a tool, not the be all and end all – don't simply formula fit.

Sensible answers! Check!

1.1 Solving Problems with the 7D's and the little S

- Diagram: Big! (2/3 of a page) and as many as you need. Graphs
- Directions: Mark it (negative/positive)
- Definitions & Data: Put it on the page (all of them)
- Diagnosis: Type (how) conservation principles, force laws, angular momentum.
- Derivation: Equations (diagnosis in symbols) as many equations as variables add to diagram dimensions
- Determination D'algebra box the answer.
- Dimensions Check and limiting cases if makes sense then possibly right (if not prob wrong). LHS = RHS then :grinning:.
- Substitution: if necessary do rough calc by hand an dunits include error!

2 Mechanics

2.1 Example Problem

Diagram

TODO

Directions

TODO

Definitions & Data

Variable	Description
\overline{m}	Mass of object
H	Initial height
h	Final height
k	Spring constant
g	Acceleration due to gravity
\dot{x}	Compression of spring
U_{qpe}	gravitational potential energy
U_E^{gpc}	elastic potential energy
E	energy

Diagnosis

Conservation of Energy (E is conserved).

$$U_{gpe} \to U_E$$

$$mgH = mgh + \frac{1}{2}kx^2$$

Derivation

$$F = -kx$$

$$U = -\int F dx$$
$$= -\int_{x_i}^{x_f} kx dx$$
$$= \frac{1}{2}kx_f^2$$

Determination

$$mg\left(H-h\right) =\frac{1}{2}kx^{2}$$

$$\frac{2mg\left(H-h\right) }{k}=x^{2}$$

$$\boxed{x = \sqrt{\frac{2mg(H-h)}{k}}}$$

Dimensions

$$\begin{split} L &= \sqrt{\frac{MLT^{-2}\left(L\right)}{MT^{-2}}} \\ &= \sqrt{L^2} \end{split}$$

Limiting Cases

$$H \to h$$

$$H - h = 0 \implies x = 0$$

makes sense!

$$m \to 0 \implies x \to 0$$

makes sense!

$$k \to \infty \implies x \to 0$$

makes sense!

$$k \to 0 \implies x \to \infty$$

makes sense!

Substitution

Not needed.

2.2 Example Problem

Title: Acceleration and Tension in a Two-Mass Pulley System on an Incline

A system consists of two masses, a man m and piano M, where m is connected by a string over the pulley to the piano M, which is positioned on an inclined plane with an angle θ from the horizontal. The mass M experiences kinetic friction characterized by a coefficient μ_k with the inclined plane. The piano M is heavy enough that its sliding down the ramp and pulling the man m up. Determine the acceleration a of the system.

Diagram

TODO: Create a diagram showing the two masses, m and M, the inclined plane with angle θ , and the direction of the frictional force opposing the motion of M up the incline.

Directions

TODO gravity points down

- Direction of a for man is vertically upwards.
- Direction of a for piano downward along the incline.

Definitions & Data

- m: Mass hanging from the pulley (kg)
- M: Mass on the inclined plane (kg)
- θ : Angle of the inclined plane from the horizontal (radians)
- μ_k : Coefficient of kinetic friction
- g: Acceleration due to gravity

Diagnosis

Consider the forces on each mass and draw a free body diagram:

TODO FBD

- Mass m: Gravitational force mg and tension T.
- Mass M: Gravitational force component along the incline, normal force, frictional force $f_k = \mu_k N$, and tension T.
- Conservation of String: string is the same length, so when pulled the forces are transmitted without diminishing.

Derivation

- 1. Write down the force equations for each mass.
 - For mass m: mg T = ma (Downward force tension = mass times acceleration).
 - For mass M: $Mg\sin(\theta)-f_k-T=Ma$ (Component of gravity along incline friction tension = mass times acceleration).

$$|F| = (m+M) * |a|$$

$$N = Mg\cos\theta$$

$$T = T$$

$$\therefore \sum F = Mg\sin\theta + \mu_k N - mg$$

D'algebra

$$|F| = (m+M)*|a| = Mg\sin\theta + \mu_k N - mg$$

$$\begin{split} |a| &= \frac{Mg\sin\theta + \mu_k N - mg}{(m+M)} \\ &= \frac{Mg\sin\theta + \mu_k Mg\cos\theta - mg}{(m+M)} \end{split}$$

Determination

$$\left| \left| a \right| = g \left(\frac{M \sin \theta + \mu_k M \cos \theta - m}{(m+M)} \right) \right|$$

Dimensions

$$LHS = LT^{-2}$$

$$RHS = LT^{-2} \left(\frac{M+M-m}{M} \right)$$

Looks right!

Limiting Cases

Consider extreme cases like:

- What happens when $\theta = 0$?
 - acceleration is difference in weight of the man from the frictional force. Makes sense.
- What happens when $\theta = 90^{\circ}$?
 - acceleration is the difference in masses divided by the sum of the masses times g.
 Makes sense.
- What happens when $\mu_k = 0$ or is very large?
 - Larger $\mu_k \implies$ smaller a.
- What happens if $M \gg m$?

- The piano will slide as though nothing is attached (only forces of friction and force due to gravity matter). Makes sense.
- What happens if $m \gg M$?
 - The weight of the man will pull the piano up the incline. Makes sense.

Substitution

TODO

3 Summary

A work in progress.

References