P1 Chapter 4: Transforming Graphs

Chapter Practice

Key Points

- 1 If p is a root of the function f(x), then the graph of y = f(x) touches or crosses the x-axis at the point (p, 0).
- **2** The graphs of $y = \frac{k}{x}$ and $y = \frac{k}{x^2}$, where k is a real constant, have asymptotes at x = 0 and y = 0.
- **3** The *x*-coordinate(s) at the points of intersection of the curves with equations y = f(x) and y = g(x) are the solution(s) to the equation f(x) = g(x).
- **4** The graph of y = f(x) + a is a translation of the graph y = f(x) by the vector $\begin{pmatrix} 0 \\ a \end{pmatrix}$.
- **5** The graph of y = f(x + a) is a translation of the graph y = f(x) by the vector $\begin{pmatrix} -a \\ 0 \end{pmatrix}$.
- 6 When you translate a function, any asymptotes are also translated.
- **7** The graph of y = af(x) is a stretch of the graph y = f(x) by a scale factor of a in the vertical direction.
- **8** The graph of y = f(ax) is a stretch of the graph y = f(x) by a scale factor of $\frac{1}{a}$ in the horizontal direction.
- **9** The graph of y = -f(x) is a reflection of the graph of y = f(x) in the x-axis.
- **10** The graph of y = f(-x) is a reflection of the graph of y = f(x) in the y-axis.

- 1 a On the same axes sketch the graphs of $y = x^2(x-2)$ and $y = 2x x^2$.
 - **b** By solving a suitable equation find the points of intersection of the two graphs.
- 2 a On the same axes sketch the curves with equations $y = \frac{6}{x}$ and y = 1 + x.
 - **b** The curves intersect at the points A and B. Find the coordinates of A and B.
 - c The curve C with equation $y = x^2 + px + q$, where p and q are integers, passes through A and B. Find the values of p and q.
 - d Add C to your sketch.
- 3 The diagram shows a sketch of the curve y = f(x). The point B(0,0) lies on the curve and the point A(3,4)is a maximum point. The line y = 2 is an asymptote. Sketch the following and in each case give the coordinates of the new positions of A and B and state the equation of the asymptote:

b
$$\frac{1}{2}$$
f(x)

b
$$\frac{1}{2}$$
f(x) **c f**(x) - 2

d
$$f(x+3)$$
 e $f(x-3)$ **f** $f(x)+1$

e
$$f(x-3)$$

$$\mathbf{f} \quad \mathbf{f}(x) + 1$$

4 The diagram shows the curve with equation $y = 5 + 2x - x^2$ and the line with equation y = 2. The curve and the line intersect at the points A and B.

Find the x-coordinates of A and B.

- 5 $f(x) = x^2(x-1)(x-3)$.
 - a Sketch the graph of y = f(x). (2 marks)
 - **b** On the same axes, draw the line y = 2 x. (2 marks)
 - c State the number of real solutions to the equation $x^2(x-1)(x-3) = 2-x$. (1 mark)
 - **d** Write down the coordinates of the point where the graph with equation y = f(x) + 2 crosses the y-axis. (1 mark)
- **6** The figure shows a sketch of the curve with equation y = f(x).

On separate axes sketch the curves with equations:

$$\mathbf{a} \quad y = \mathbf{f}(-x)$$

(2 marks)

b
$$y = -f(x)$$

(2 marks)

Mark on each sketch the x-coordinate of any point, or points, where the curve touches or crosses the x-axis.

- 7 The diagram shows the graph of the quadratic function f(x). The graph meets the x-axis at (1, 0) and (3, 0) and the minimum point is (2, -1).
 - a Find the equation of the graph in the form $y = ax^2 + bx + c$ (2 marks)
 - **b** On separate axes, sketch the graphs of **i** y = f(x + 2) **ii** y = (2x). (2 marks)
 - c On each graph label the coordinates of the points at which the graph meets the x-axis and label the coordinates of the minimum point.

- 8 f(x) = (x-1)(x-2)(x+1).
 - a State the coordinates of the point at which the graph y = f(x) intersects the y-axis. (1 mark)
 - **b** The graph of y = af(x) intersects the y-axis at (0, -4). Find the value of a. (1 mark)
 - c The graph of y = f(x + b) passes through the origin. Find three possible values of b. (3 marks
- **9** The point P(4, 3) lies on a curve y = f(x).
 - a State the coordinates of the point to which P is transformed on the curve with equation:
 - **i** y = f(3x) **ii** $\frac{1}{2}y = f(x)$ **iii** y = f(x-5) **iv** -y = f(x) **v** 2(y+2) = f(x)
 - **b** P is transformed to point (2, 3). Write down two possible transformations of f(x).
 - c P is transformed to point (8, 6). Write down a possible transformation of f(x) if
 i f(x) is translated only
 ii f(x) is stretched only.
- 10 The curve C_1 has equation $y = -\frac{a}{x^2}$ where a is a positive constant. The curve C_2 has the equation $y = x^2(3x + b)$ where b is a positive constant.
 - a Sketch C_1 and C_2 on the same set of axes, showing clearly the coordinates of any point where the curves touch or cross the axes. (4 marks)
 - **b** Using your sketch state, giving reasons, the number of solutions to the equation $x^4(3x+b)+a=0$. (2 marks)
- 11 a Factorise completely $x^3 6x^2 + 9x$. (2 marks)
 - **b** Sketch the curve of $y = x^3 6x^2 + 9x$ showing clearly the coordinates of the points where the curve touches or crosses the axes. (4 marks)
 - c The point with coordinates (-4, 0) lies on the curve with equation $y = (x k)^3 6(x k)^2 + 9(x k)$ where k is a constant. Find the two possible values of k. (3 marks)

12 $f(x) = x(x-2)^2$

Sketch on separate axes the graphs of:

$$\mathbf{a} \quad y = \mathbf{f}(x) \tag{2 marks}$$

$$\mathbf{b} \quad y = \mathbf{f}(x+3) \tag{2 marks}$$

Show on each sketch the coordinates of the points where each graph crosses or meets the axes.

- 13 Given that $f(x) = \frac{1}{x}$, $x \neq 0$,
 - a Sketch the graph of y = f(x) 2 and state the equations of the asymptotes. (3 marks)
 - **b** Find the coordinates of the point where the curve y = f(x) 2 cuts a coordinate axis. (2 marks)
 - c Sketch the graph of y = f(x + 3). (2 marks)
 - d State the equations of the asymptotes and the coordinates of the point where the curve cuts a coordinate axis. (2 marks)

Challenge

The point R(6, -4) lies on the curve with equation y = f(x). State the coordinates that point R is transformed to on the curve with equation y = f(x + c) - d.

Chapter Answers

1 a

b x = 0, -1, 2; points (0, 0), (2, 0), (-1, -3)

2 a

b A(-3, -2), B(2, 3)

 $y = x^2 + 2x - 5$

3 a

b

 \mathbf{c}

d

 \mathbf{e}

f

Chapter Answers

4 a
$$x = -1$$
 at $A, x = 3$ at B

5 a, b

a

b

7 **a**
$$y = x^2 - 4x + 3$$

b i

ii

9 **a i**
$$(\frac{4}{3}, 3)$$

$$\mathbf{v} = (4, -\frac{1}{2})$$

b
$$f(2x)$$
, $f(x + 2)$

c i
$$f(x-4) + 3$$
 ii $2f(\frac{1}{2}x)$

10 a

b 1; only one intersection of the two curves

11 a
$$x(x-3)^2$$

b

iii (9, 3)

$$c$$
 -4 and -7

Chapter Answers

12 a

b

13 a Asymptotes at x = 0 and y = -2

b $(\frac{1}{2}, 0)$

c

d Asymptotes at y = 0 and x = -3; intersection at $(0, \frac{1}{3})$

Challenge

$$(6-c, -4-d)$$