MODELAGEM DE BANK MARKETING POR REGRESSÃO LOGÍSTICA

Andressa Luiza Cordeiro & Jayme Gomes dos Santos Junior & Luciana Helena Kowalski

Universidade Federal do Paraná

20 de novembro, 2019

Sumário

- Introduão
- Material e Métodos
- Resultados e Discussões

Introdução

Marketing Bancário

- Objetivo
 - Modelar uma regressão logística a fim de predizer se potenciais clientes assinarão ou não com o banco.

Ferramentas e Métodos

- age: idade do cliente numérica;
- job: emprego do cliente nominal;
- marital: estado civil do cliente nominal;
- education: nível educacional do cliente nominal;
- default: cliente possui crédito binária;
- balance: balanço anual médio do cliente em euro numérica;
- housing: cliente possui empréstimo habitacional binária;
- loan: cliente possui empréstimo pessoal binária;
- contact: forma de contato com o cliente nominal;
- day: dia do mês numérica;
- month: mês do ano nominal;
- duration: duração do último contato com o cliente numérica;
- campaing: número de contatos feitos com o cliente numérica;
- pdays: número de dias desde o último contato feito com o cliente - numérica:

Material e Métodos

- Ajuste do modelo GLM da família binomial para resposta binária com as funções de ligação logito, probito, complemento log-log (clog-log) e cauchit;
- Seleção por métodos computacionais;
- Algorítmo de redução de níveis para ajuste de variáveis categóricas baseado nas idéias de Tutz(2013);
- Avaliação do poder preditivo do modelo;

SELEÇÃO POR MÉTODOS COMPUTACIONAIS

Função de Ligação	AIC	${\rm N}^{\circ}$ de Parâmetros
Probito	1821.418	34
Logito	1833.575	34
Cauchit	1941.460	23
Clog-log	1967.442	35

REAGRUPAMENTO DE NÍVEIS - VARIÁVEL MONTH

REAGRUPAMENTO DE NÍVEIS - VARIÁVEL JOB

REAGRUPAMENTO VARIÁVEL MONTH $\lambda=0.165$

Niveis	Coeficientes
may	-0.28
jan	-0.03
jun	-0.03
jul	-0.03
nov	-0.03
aug feb	0.09 0.29
apr	0.29
mar	0.91
sep	0.91
dec	0.91
oct	1.12

REAGRUPAMENTO VARIÁVEL JOB $\lambda=0.086$

Niveis	Coeficientes
blue-collar	-0.31
entrepreneur	-0.06
services	-0.06
technician	-0.06
admin.	0.10
housemaid	0.10
management	0.10
self-employed	0.10
unemployed	0.10
unknown	0.10
retired	0.44
student	0.56

COMPARAÇÃO DE NOVOS AJUSTES

Função de Ligação	AIC	${\rm N}^{\circ}$ de Parâmetros
Probito *	1821.418	34
Probito	1863.186	17
Logito	1872.035	21
Cauchit	1985.838	20
Complemento log-log	2012.095	18

COEFICIENTES E ERROS PADRÕES

	Estimativa	Erro Padrão
(Intercept)	-1.895	0.200
duration	0.002	0.000
monthmonth2	0.156	0.101
monthmonth3	0.446	0.124
monthmonth4	0.402	0.119
monthmonth5	1.096	0.169
contacttelephone	0.054	0.131
contactunknown	-0.424	0.107
jobjob2	0.166	0.209
jobjob3	0.338	0.108
jobjob4	0.764	0.167
jobjob5	0.339	0.104
pdays	0.001	0.000
housingyes	-0.290	0.076
campaign	-0.051	0.016
loanyes	-0.339	0.107
age	-0.007	0.004

EQUAÇÃO DO MODELO AJUSTADO

$$\Phi^{-1}(\pi_{i}) = \hat{\beta}_{0} + \hat{\beta}_{1}x_{1} + \hat{\beta}_{2}x_{2} + \hat{\beta}_{3}x_{3} + \hat{\beta}_{4}x_{4} + \hat{\beta}_{5}x_{5} + \hat{\beta}_{6}x_{6} + \hat{\beta}_{7}x_{7} + \hat{\beta}_{8}x_{8} + \hat{\beta}_{9}x_{9} + \hat{\beta}_{10}x_{10} + \hat{\beta}_{11}x_{11} + \hat{\beta}_{12}x_{12} + \hat{\beta}_{13}x_{13} + \hat{\beta}_{14}x_{14} + \hat{\beta}_{15}x_{15} + \hat{\beta}_{16}x_{16} + \hat{\beta}_{17}x_{17}$$

GRÁFICOS DE EFEITO DAS COVARIÁVEIS NO PREDITOR

GRÁFICOS DE EFEITO DAS COVARIÁVEIS NO PREDITOR

TABELAS DE COMPARAÇÃO PONTO DE CORTE - 0.5

	no	yes
no	17	18
yes	772	97

PONTO DE CORTE - 0.89

	no	yes
no	4	2
yes	785	113

PONTO DE CORTE - 0.3

	no	yes
no	52	46
yes	737	69

COMPARATIVO DE SENSIBILIDADE E ESPECIFICIDADE

	Sensibilidade	Especificidade
pc=0,89	0.0050697	0.9826087
pc=0,5	0.0215463	0.8434783
pc=0,3	0.0659062	0.6000000

CURVA ROC

REGRA DE DECISÃO INCORPORANDO CUSTOS

Custo de Classificação

