Technion – Israel Institute of Technology

HW5

Vision Aided Navigation 086761

Alon Spinner	305184335	alonspinner@gmail.com
Sher Hazan	308026467	sherhazan@campus.technion.ac.il

December 22, 2021

Question 1: Factor graph, variable elimination and Bayes net.

Consider a SAM problem where a robot travels through an unknown environment and captures observations using its onboard sensors. Assume the robot starts at time t_0 , with a known prior p(x) and consider motion and observation models $p(x_k|x_{k-1},u_{k-1})$ and $p(z_{k,i}|x_k,l_i)$, respectively, where l_i denotes the i^{th} landmark. The robot moves according to given controls and observes a single landmark at time instances t_1 and t_2 .

a: Write the joint pdf corresponding to the above scenario until time

$$t_4$$
: $p(x_{0:4}, l|u_{0:3}, z_1, z_2)$

$$p(x_k|x_{k-1},u_{k-1}) \sim motion \ model$$

$$p(z_k|x_k, l_i) \sim measurement\ model$$

$$p(x_{0:4}, l|u_{0:3}, z_1, z_2) \underset{\substack{cond.\\+indep.}}{=} p(x_4|x_3u_3)p(x_3|x_2, u_2) \cdot \underbrace{p(x_{0:2}, l|u_{0:1}, z_{1:2})}_{known \, structure} =$$

$$=p(x_4|x_3u_3)p(x_3|x_2,u_2)\cdot p(x_0)\prod_{i=1}^2\eta_ip(z_i|x_i,l)p(x_i|u_{i-1},x_{i-1})=$$

$$\left\{\eta = \prod_{i=1}^2 \eta_i \colon \text{not a function of } x \text{ or } l, \text{the varibles we optimize on} \right\}$$

$$= \eta \cdot p(x_4|x_3u_3)p(x_3|x_2,u_2) \cdot p(x_0) \prod_{i=1}^2 p(z_i|x_i,l)p(x_i|u_{i-1},x_{i-1})$$

b: Draw the corresponding factor graph.

 $p(x_{0:4}, l|u_{0:3}, z_{1:2}) = \eta \cdot p(x_0)p(x_1|x_0, u_0)p(x_2|x_1, u_1)p(x_3|x_2, u_2)p(x_4|x_3, u_3)p(z_1|x_1, l)p(z_2|x_2, l)$ $\propto f_0(x_0)f_1(x_0, x_1)f_2(x_1, x_2)f_3(x_2, x_3)f_4(x_3, x_4)f_{l1}(x_1, l)f_{l2}(x_2, l)$

c: Eliminate the factor graph into a Bayes net, assuming elimination order:

$$x_0, x_1, x_2, x_3, x_4, l$$

 $p(x_{0:4}, l|u_{0:3}, z_{1:2}) = \eta \cdot p(x_0)p(x_1|x_0, u_0)p(x_2|x_1, u_1)p(x_3|x_2, u_2)p(x_4|x_3, u_3)p(z_1|x_1, l)p(z_2|x_2, l)$ $p(x_{0:4}, l|u_{0:3}, z_{1:2}) \propto f_0(x_0)f_1(x_0, x_1)f_2(x_1, x_2)f_3(x_2, x_3)f_4(x_3, x_4)f_{l1}(x_1, l)f_{l2}(x_2, l)$

Elinination of x_0 :

$$f_{joint}(x_0, x_1) = f_0(x_0) f_1(x_0, x_1) \propto p(x_0|x_1) \cdot f_{1-new}(x_1)$$

After the elimination of x_0 we get:

 $p(x_{0:4}, l|u_{0:3}, z_{1:2}) \propto p(x_0|x_1) \cdot f_{1-new}(x_1) f_2(x_1, x_2) f_3(x_2, x_3) f_4(x_3, x_4) f_{l1}(x_1, l) f_{l2}(x_2, l)$

Elinination of x_1 :

$$f_{joint}(x_1, x_2, l) = f_{1-new}(x_1) f_2(x_1, x_2) f_{l1}(x_1, l) \propto p(x_1 | x_2, l) \cdot f_{2-new}(x_2, l)$$

After the elimination of x_1 we get:

$$p(x_{0:4}, l|u_{0:3}, z_{1:2}) \propto p(x_0|x_1)p(x_1|x_2, l) \cdot f_{2-new}(x_2, l)f_3(x_2, x_3)f_4(x_3, x_4)f_{l2}(x_2, l)$$

Elinination of x_2 :

$$f_{joint}(x_2,x_3,l) = f_{2-new}(x_2,l)f_3(x_2,x_3)f_{l2}(x_2,l) \propto p(x_2|x_3,l) \cdot f_{3-new}(x_3,l)$$

After the elimination of x_2 we get:

$$p(x_{0:4}, l|u_{0:3}, z_{1:2}) \propto p(x_0|x_1)p(x_1|x_2, l)p(x_2|x_3, l) \cdot f_{3-new}(x_3, l)f_4(x_3, x_4)$$

Elinination of x_3 :

$$f_{joint}(x_3, x_4, l) = f_{3-new}(x_3, l) f_4(x_3, x_4) \propto p(x_3 | x_4, l) \cdot f_{4-new}(x_4, l)$$

After the elimination of x_3 we get:

$$p(x_{0:4},l|u_{0:3},z_{1:2}) \propto p(x_0|x_1)p(x_1|x_2,l)p(x_3|x_4,l) \cdot f_{4-new}(x_4,l)$$

Elinination of x_4 :

$$f_{joint}(x_4, l) = f_{4-new}(x_4, l) \propto p(x_4|l) \cdot f_{l-new}(l)$$

After the elimination of x_4 we get:

$$p(x_{0:4}, l|u_{0:3}, z_{1:2}) \propto p(x_0|x_1)p(x_1|x_2, l)p(x_2|x_3, l)p(x_4|l) \cdot f_{l-new}(l)$$

Elinination of 1:

$$f_{joint}(l) = f_{l-new}(l) \propto p(l)$$

After the elimination of l we get:

$$p(x_{0:4},l|u_{0:3},z_{1:2}) \propto p(x_0|x_1)p(x_1|x_2,l)p(x_3|x_4,l)p(l)$$

d: Repeat the previous clause using a different variable elimination order:

$$x_4, x_3, x_2, l, x_1, x_0$$

 $p(x_{0:4}, l|u_{0:3}, z_{1:2}) = \eta \cdot p(x_0)p(x_1|x_0, u_0)p(x_2|x_1, u_1)p(x_3|x_2, u_2)p(x_4|x_3, u_3)p(z_1|x_1, l)p(z_2|x_2, l)$ $p(x_{0:4}, l|u_{0:3}, z_{1:2}) \propto f_0(x_0)f_1(x_0, x_1)f_2(x_1, x_2)f_3(x_2, x_3)f_4(x_3, x_4)f_{l1}(x_1, l)f_{l2}(x_2, l)$

Elinination of x_4 :

$$f_{joint}(x_3, x_4) = f_4(x_3, x_4) \propto p(x_4|x_3) \cdot f_{3-new}(x_3)$$

After the elimination of x_4 we get:

 $p(x_{0:4},l|u_{0:3},z_{1:2}) \propto p(x_4|x_3) \cdot f_{3-new}(x_3) f_0(x_0) f_1(x_0,x_1) f_2(x_1,x_2) f_3(x_2,x_3) f_{l1}(x_1,l) f_{l2}(x_2,l)$

Elinination of x_3 :

$$f_{ioint}(x_2, x_3) = f_{3-new}(x_3) f_3(x_2, x_3) \propto p(x_3 | x_2) \cdot f_{2-new}(x_2)$$

After the elimination of x_3 we get:

 $p(x_{0:4},l|u_{0:3},z_{1:2}) \propto p(x_4|x_3)p(x_3|x_2) \cdot f_{2-new}(x_2)f_0(x_0)f_1(x_0,x_1)f_2(x_1,x_2)f_{l1}(x_1,l)f_{l2}(x_2,l)$

Elinination of x_2 :

$$f_{joint}(x_1,x_2,l) = f_{2-new}(x_2)f_2(x_1,x_2)f_{l2}(x_2,l) \propto p(x_2|x_1,l) \cdot f_{l-new}(x_1,l)$$

After the elimination of x_2 we get:

$$p(x_{0:4}, l|u_{0:3}, z_{1:2}) \propto p(x_4|x_3)p(x_3|x_2)p(x_2|x_1, l) \cdot f_{l-new}(x_1, l)f_0(x_0)f_1(x_0, x_1)f_{l1}(x_1, l)$$

Elinination of 1:

$$f_{joint}(x_1, l) = f_{l-new}(x_1, l) f_{l1}(x_1, l) \propto p(l|x_1) \cdot f_{1-new}(x_1)$$

After the elimination of x_3 we get:

$$p(x_{0:4}, l|u_{0:3}, z_{1:2}) \propto p(x_4|x_3)p(x_3|x_2)p(l|x_1) \cdot f_{1-new}(x_1)f_0(x_0)f_1(x_0, x_1)$$

Elinination of x_1 :

$$f_{joint}(x_0,x_1) = f_{1-new}(x_1)f_1(x_0,x_1) \propto p(x_1|x_0) \cdot f_{0-new}(x_0)$$

After the elimination of x_1 we get:

$$p(x_{0:4}, l|u_{0:3}, z_{1:2}) \propto p(x_4|x_3) p(x_3|x_2) p(l|x_1) p(x_1|x_0) \cdot f_{0-new}(x_0) f_0(x_0)$$

Elinination of x_0 :

$$f_{joint}(x_0) = f_{0-new}(x_0) f_0(x_0) \propto p(x_0)$$

After the elimination of x_0 we get:

$$p(x_{0:4},l|u_{0:3},z_{1:2}) \propto p(x_4|x_3)p(x_3|x_2)p(l|x_1)p(x_1|x_0)p(x_0)$$

e: Which of the two elimination orders you would prefer in terms of estimation accuracy and computational aspects?

We show the elimination order and resulting R matrix for each section below.

{c}	{d}
Elimination Order: $\{x_0, x_1, x_2, x_3, x_4, l\}$	Elimination Order: $\{x_4, x_3, x_2, l, x_1, x_0\}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c cccccccccccccccccccccccccccccccc$

Regarding computation efficiency: We would prefer the elimination order in $\{d\}$, as it produces a sparser R matrix (12 non-zero elements vs 14), and with more structure – all rows but one contains two elements at the start of the row.

Regarding Accuracy: Both matrices contain the same information. As such, the solution of the LMS problem is independent of the elimination order, or which $\it R$ matrix we choose to use.

$$R_d^T R_d = R_c^T R_c = A^T A$$

Question 2: Incremental factorization.

Consider now the robot, from question 1, executes command u_4 and moves to a new location; denote its new pose by x_5 . Assume the robot observes again the landmark l from the new location.

a: Draw the factor graph of the problem and indicate the new factors and variable nodes.

We add one node for pose x_5 , and two additional nodes for the factors that need to be computed: one for the motion model, and one for the measurement model.

b: Consider the Bayes net from question 1(c) with elimination order $x_0, x_1, x_2, x_3, x_4, l$. Perform incremental factorization by updating this Bayes net with the new information using the elimination order:

$$x_0, x_1, x_2, x_3, x_4, l, x_5$$

 $p(x_{0:4}, \mathbf{x_5}, l | u_{0:3}, z_{1:2}, \mathbf{z_3}) = \eta \cdot p(x_0) p(x_1 | x_0, u_0) p(x_2 | x_1, u_1) p(x_3 | x_2, u_2) p(x_4 | x_3, u_3) p(x_5 | \mathbf{x_4}, \mathbf{u_4}) p(z_1 | x_1, l) p(z_2 | \mathbf{x_2}, l) p(\mathbf{z_3} | \mathbf{x_5}, l)$ $p(x_{0:4}, \mathbf{x_5}, l | u_{0:3}, z_{1:2}, \mathbf{z_3}) \propto f_0(x_0) f_1(x_0, x_1) f_2(x_1, x_2) f_3(x_2, x_3) f_4(x_3, x_4) f_5(\mathbf{x_4}, \mathbf{x_5}) f_{l1}(x_1, l) f_{l2}(\mathbf{x_2}, l) f_{l3}(\mathbf{x_5}, l)$

We need to reeliminate the factors x_4 and l because they involve the changes.

Back to Elimination of x_A :

$$f_{joint}(x_4, x_5, l) = f_{4-new}(x_4, l) f_5(x_4, x_5) \propto p(x_4 | x_5, l) \cdot f_{l-new}(x_5, l)$$

After the elimination of x_4 we get:

$$p(x_{0:4}, x_5, l|u_{0:3}, z_{1:2}, z_3) \propto p(x_0|x_1)p(x_1|x_2, l)p(x_2|x_3, l)p(x_4|x_5, l) \cdot f_{l3}(x_5, l)f_{l-new}(x_5, l)$$

Back to Elinination of 1:

$$f_{joint}(x_5, l) = f_{l-new}(x_5, l) f_{l3}(x_5, l) \propto p(l|x_5) \cdot f_{5-new}(x_5)$$

After the elimination of l we get:

$$p(x_{0:4}, x_5, l|u_{0:3}, z_{1:2}, z_3) \propto p(x_0|x_1)p(x_1|x_2, l)p(x_3|x_4, l)p(l|x_5) \cdot f_{5-new}(x_5)$$

Elinination of x_5 :

$$f_{joint}(x_5) = f_{5-new}(x_5) \propto p(x_5)$$

After the elimination of x_5 we get:

 $p(x_{0:4}, \textcolor{red}{x_5}, l|u_{0:3}, \textcolor{blue}{z_{1:2}, \textcolor{red}{z_3}}) \propto p(x_0|x_1)p(x_1|x_2, l)p(x_3|x_4, l)p(l|\textcolor{red}{x_5})\textcolor{blue}{p(x_5)}$

c: Show the corresponding updated square root information matrix R

The new non-zero elements, the boxes colored red in the new R matrix, describe states that depend on x_5 in the bayes-net graph.

In general, values in the red triangle are in the "update impact zone" and are subject to change when computing the new R matrix.

