

TEST REPORT

Report Reference No.: 171208003RFC-1

R/C....: 68626

FCC ID: 2AEY7-S8A003

Applicant's name: Bak USA Technologies Corp.

Address: 425 Michigan Avenue, Buffalo, New York 14203, USA

Manufacturer....: Bak USA Technologies Corp.

Address..... 425 Michigan Avenue, Buffalo, New York 14203, USA

Test item description....: **Tablet PC**

Trade Mark....:

Model/Type reference: Seal8Pro

Listed Model(s):

Standard....: FCC CFR Title 47 Part 15 Subpart E Section 15.407

Date of receipt of test sample.....: Dec.08, 2017

Date of testing..... Dec.08, 2017- Dec.13, 2017

Date of issue..... Dec.14, 2017

Result: PASS

Tested by: Senior Engineer: Kevin Liang

Reviewed by.....: RF Manager: Jim Long

Approved by..... Technical Director: Billy Li

Testing Laboratory Name....: Shenzhen UnionTrust Quality and Technology 60.,

16/F, Block A, Building 6, Baonang Science and Address....:

Park, Qingxiang Road No.1, Longhua New District. Shenzhen.

China

Page 2 of 75

Report No.: 171208003RFC-1

Contents

<u>1.</u>	TEST STANDARDS AND REPORT VERSION	3
1.4 2.4	Test Standards Report Version	3
<u>2.</u>	TEST DESCRIPTION	4
<u>3.</u>	SUMMARY	5
1.4 2.4 3.4 4.4 5.4	Client Information Product Description Operation state EUT configuration Modifications	5 5 6 7 7
<u>4.</u>	TEST ENVIRONMENT	8
1.4 2.4 3.4 4.4 5.4	Address of the test laboratory Test Facility Equipments Used during the Test Environmental conditions Statement of the measurement uncertainty	8 8 9 10 10
<u>5.</u>	TEST CONDITIONS AND RESULTS	11
5.1. 5.2. 5.3. 5.4. 5.5. 5.6. 5.7. 5.8.	Antenna requirement Conducted Emissions (AC Main) Maximum Conducted Output Power Maximum Power Spectral Density 99% Occupy bandwidth & 26dB bandwidth 6dB Bandwidth Radiated Emissions & Band edge Dynamic Frequency Selection(DFS)	11 12 15 18 33 46 51
<u>6.</u>	TEST SETUP PHOTOS OF THE EUT	7 4
7.	EXTERNAL AND INTERNAL PHOTOS OF THE EUT	75

Page 3 of 75 Report No.: 171208003RFC-1

1. TEST STANDARDS AND REPORT VERSION

1.4 Test Standards

The tests were performed according to following standards: FCC Rules Part 15.407: General technical requirements.

ANSI C63.10-2013: American National Standard for Testing Unlicensed Wireless Devices

KDB789033 D02 v01r04: GUIDELINES FOR COMPLIANCE TESTING OF UNLICENSED NATIONAL INFORMATION INFRASTRUCTURE (U-NII) DEVICES PART 15, SUBPART E

2.4 Report Version

Version No.	Date of issue	Description
00	Dec.14, 2017	Original

Page 4 of 75 Report No.: 171208003RFC-1

2. TEST DESCRIPTION

Test Item	FCC Rule	Result	Test Engineer
Antenna Requirement	15.203	Pass	William Wang
Line Conducted Emissions (AC Main)	15.207	Pass	William Wang
Maximum Conducted Output Power	15.407 (a.1)(a.3)	Pass	Baozhu Hu
Maximum Power Spectral Density	15.407 (a.1)(a.3)	Pass	Baozhu Hu
6dB&26dB Bandwidth	15.407(a.5)	Pass	Baozhu Hu
Radiated Emissions & Band edge	15.407(b.6) &(b.1)(b.4)	Pass	Baozhu Hu

Remark: 1.The measurement uncertainty is not included in the test result.

2.The EUT is a client device without radar detection.a TPC mechanism is not required for systems with an e.i.r.p. of less than 500mW.

Page 5 of 75 Report No.: 171208003RFC-1

3. **SUMMARY**

1.4 Client Information

Applicant:	Bak USA Technologies Corp.	
Address:	425 Michigan Avenue,Buffalo,New York 14203,USA	
Manufacturer: Bak USA Technologies Corp.		
Address:	425 Michigan Avenue, Buffalo, New York 14203, USA	

2.4 Product Description

Name of EUT	Tablet PC					
Trade Mark:	-					
Model No.:	Seal8Pro					
Listed Model(s):	-					
Power supply:	DC 3.7V From exchange	battery				
Advite Street	Input: 100-240Va.c., 50/6	0Hz, 0.6A				
Adapter information :	Output: 5Vd.c.,5A					
5G WIFI						
Supported type:	⊠ 802.11a	⊠ 802.11n(HT20)				
	☐ 802.11ac(HT20)	☐ 802.11ac(HT40)	☐ 802.11ac(HT80)			
Function:	Outdoor AP	☐ Indoor AP	☐ Fixed P2P			
	⊠ Client					
DFS type:	master devices	Slave devices with radar detection	⊠ Slave devices without radar detection			
Modulation:	BPSK, QPSK, 16QAM, 64	4QAM				
Operation frequency:	⊠ Band I:	5150MHz~5250MHz				
	⊠ Band II:	5250MHz~5350MHz				
	⊠ Band III:	5470MHz~5725MHz				
	⊠ Band IV:	5725MHz~5850MHz				
Supported Bandwidth	20MHz:	802.11a, 802.11n				
	40MHz:	802.11n				
Antenna type:	Integral antenna					
Antenna gain:	2.0dBi					

Page 6 of 75 Report No.: 171208003RFC-1

3.4 Operation state

♦ Frequency list

According to section 15.31(m), regards to the operating frequency range over 10 MHz, must select three channel which were tested. the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, please see the above gray bottom.

	Toot	201	ЛНz	Hz 40MI	
Band	Test Channel	Channel	Frequency (MHz)	Channel	Frequency (MHz)
	CH∟	36	5180	38	5190
I	СНм	40	5200	-	-
	СНн	48	5240	46	5230
	CHL	52	5260	54	5270
II	СНм	м 56 5280 -	-		
	СНн	64	5320	62	5310
	CHL	100	5500	102	5510
III	СНм	120	5600	118	5590
	СНн	140	5700	134	5670
	CH∟	149	5745	151	5755
IV	СНм	157	5785	-	-
	СНн	165	5825	159	5795

Data Rated

Preliminary tests were performed in different data rate, and found which the below bit rate is worst case mode, so only show data which it is a worst case mode.

Mode	Data rate (worst mode)
802.11a	6Mbps
802.11n(HT20)	MCS0
802.11n(HT40)	MCS0

Test mode

For RF test items:

the engineering test program was provided and enabled to make EUT continuous transmit/receive. The EUT was programmed to be in continuously transmitting mode and the transmit duty cycle is not less than 98%. For AC power line conducted emissions:

the EUT was set to connect with the WLAN AP under large package sizes transmission.

Page 7 of 75 Report No.: 171208003RFC-1

4.4 EUT configuration

The following peripheral devices and interface cables were connected during the measurement:

- supplied by the manufacturer
- supplied by the lab

	N/A	Manufacturer :	N/A
	IV/A	Model No.:	N/A
○ N/A	Manufacturer:	N/A	
		Model No.:	N/A

5.4 Modifications

No modifications were implemented to meet testing criteria.

Page 8 of 75 Report No.: 171208003RFC-1

4. TEST ENVIRONMENT

1.4 Address of the test laboratory

Shenzhen UnionTrust Quality and Technology Co., Ltd.

Address: 16/F, Block A, Building 6, Baoneng Science and Technology Park, Qingxiang Road No.1, Longhua

New District, Shenzhen, China 518109

Phone: +86 (0) 755 2823 0888 Fax: +86 (0) 755 2823 0886

2.4 Test Facility

CNAS-Lab Code: L9069

The measuring equipment utilized to perform the tests documented in this report has been calibrated once a year or in accordance with the manufacturer's recommendations, and is traceable under the ISO/IEC/EN 17025 to international or national standards. Equipment has been calibrated by accredited calibration laboratories.

IC-Registration No.: 21600-1

The 3m Semi-anechoic chamber of Shenzhen UnionTrust Quality and Technology Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 21600-1

A2LA-Lab Certificate No.: 4312.01

Shenzhen UnionTrust Quality and Technology Co., Ltd. has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC Accredited Lab

Designation Number: CN1194
Test Firm Registration Number: 25948

Page 9 of 75 Report No.: 171208003RFC-1

3.4 Equipments Used during the Test

	Radiated Emission Test Equipment List					
Used	Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm dd, yyyy)	Cal. Due date (mm dd, yyyy)
~	3M Chamber & Accessory Equipment	ETS-LINDGREN	3M	N/A	Dec. 20, 2015	Dec. 19, 2018
V	Receiver	R&S	ESIB26	100114	Dec. 22, 2016	Dec. 22, 2017
V	EXA Spectrum Analyzer	KEYSIGHT	N9010A	MY51440197	Dec. 22, 2016	Dec. 22, 2017
V	Loop Antenna	ETS-LINDGREN	6502	00202525	Jun. 24, 2015	Jun. 23, 2018
V	Broadband Antenna	ETS-LINDGREN	3142E	00201566	Jul. 24, 2015	Jul. 23, 2018
V	Preamplifier	HP	8447F	2805A02960	Dec. 22, 2016	Dec. 22, 2017
•	Broadband Antenna (Pre-amplifier)	ETS-LINDGREN	3142E-PA	00201891	Dec. 30, 2016	Dec. 30, 2017
	Horn Antenna	ETS-LINDGREN	3117	00164202	Jul. 24, 2015	Jul. 23, 2018
V	Horn Antenna (Pre-amplifier)	ETS-LINDGREN	3117-PA	00201874	Dec. 30, 2016	Dec. 30, 2017
	Horn Antenna	ETS-LINDGREN	3116C	00200180	Jul. 28, 2015	Jul. 27, 2018
V	Horn Antenna (Pre-amplifier)	ETS-LINDGREN	3116C-PA	00202652	Jul. 29, 2015	Jul. 28, 2018
•	Multi device Controller	ETS-LINDGREN	7006-001	00160105	N/A	N/A
	Band Rejection Filter (2400MHz~2500MHz)	Micro-Tronics	BRM50702	G248	Jun. 21, 2017	Jun. 20, 2018
<u> </u>	Band Rejection Filter (5150MHz~5880MHz)	Micro-Tronics	BRM50716	G1868	Jun. 15, 2017	Jun. 14, 2018
V	Test Software	Audix	e3	Sof	tware Version: 9.16	0323

	Conducted RF test Equipment List					
Used	Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm dd, yyyy)	Cal. Due date (mm dd, yyyy)
>	EXA Spectrum Analyzer	KEYSIGHT	N9010A	MY51440197	Dec. 22, 2016	Dec. 22, 2017
~	Receiver	R&S	ESR7	1316.3003K07 -101181-K3	Dec. 22, 2016	Dec. 22, 2017
•	USB Wideband Power Sensor	KEYSIGHT	U2021XA	MY55430035	Dec. 22, 2016	Dec. 22, 2017
•	USB Wideband Power Sensor	KEYSIGHT	U2021XA	MY55430023	Dec. 22, 2016	Dec. 22, 2017
	EXG-B RF Analog Signal Generator	KEYSIGHT	N5171B	MY53051777	Jan. 09, 2016	Jan. 08, 2018
•	MXG X-Series RF Vector Signal Generator	KEYSIGHT	N5182B	MY51350267	Jan. 08, 2016	Jan. 07, 2018
V	Temp & Humidity chamber	Votisch	VT4002	58566133290 020	Jun. 19, 2017	Jun. 18, 2018

Page 10 of 75 Report No.: 171208003RFC-

			= .			
		Conducted E	mission Test	Equipment List		
Used	Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm dd, yyyy)	Cal. Due date (mm dd, yyyy)
•	Receiver	R&S	ESR7	1316.3003K07 -101181-K3	Dec. 22, 2016	Dec. 22, 2017
>	Pulse Limiter	R&S	ESH3-Z2	0357.8810.54	Dec. 22, 2016	Dec. 22, 2017
>	LISN	R&S	ESH2-Z5	860014/024	Dec. 22, 2016	Dec. 22, 2017
~	Test Software	Audix	e3	Sof	tware Version: 9.16	0323

4.4 Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15~35°C
Relative Humidity:	30~60 %
Air Pressure:	950~1050mba

5.4 Statement of the measurement uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the Product as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2

No.	Item	Measurement Uncertainty
1	Conducted emission 9KHz-150KHz	±3.8 dB
2	Conducted emission 150KHz-30MHz	±3.4 dB
3	Radiated emission 9KHz-30MHz	±4.9 dB
4	Radiated emission 30MHz-1GHz	±4.7 dB
5	Radiated emission 1GHz-18GHz	±5.1 dB
6	Radiated emission 18GHz-26GHz	±5.2 dB
7	Radiated emission 26GHz-40GHz	±5.2 dB

Report No.: 171208003RFC-

5. TEST CONDITIONS AND RESULTS

5.1. Antenna requirement

Requirement

FCC CFR Title 47 Part 15 Subpart C Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of anantenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Test Result:

The directional gain of the antenna less than 6 dBi, please refer to the below antenna photo.

Report No.: 171208003RFC-

5.2. Conducted Emissions (AC Main)

LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.207:

Eroguepov rongo (MHz)	Limit (d	BuV)
Frequency range (MHz)	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

^{*} Decreases with the logarithm of the frequency.

TEST CONFIGURATION

TEST PROCEDURE

- 1. The EUT was setup according to ANSI C63.10:2013 requirements.
- 2. The EUT was placed on a platform of nominal size, 1 m by 1.5 m, raised 80 cm above the conducting ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 80 cm from any other grounded conducting surface.
- 3. The EUT and simulators are connected to the main power through a line impedances stabilization network (LISN). The LISN provides a 50 ohm /50uH coupling impedance for the measuring equipment.
- 4. The peripheral devices are also connected to the main power through a LISN. (Please refer to the block diagram of the test setup and photographs)
- 5. Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor,was individually connected through a LISN to the input power source.
- 6. The excess length of the power cord between the EUT and the LISN receptacle were folded back and forth at the center of the lead to form a bundle not exceeding 40 cm in length.
- 7. Conducted Emissions were investigated over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9 kHz.
- 8. During the above scans, the emissions were maximized by cable manipulation.

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

Note:

- 1) Transd=Cable lose+ Pulse Limiter Factor + Artificial Mains Factor
- 2) Margin= Limit -Level

QP

13.30

56.00

Remark:

6

1. Margin=Limit - Result

3.770

2. An initial pre-scan was performed on the Phase and neutral lines with peak detector. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

10.40

42.70

32.30

Report No.: 171208003RFC-

5.3. Maximum Conducted Output Power

LIMIT

FCC CFR Title 47 Part 15 Subpart E Section 15.407(a):

For the 5.15~5.25GHz band:

Outdoor AP

The maximum conducted output power (P_{out}) shall not exceed the lesser of 1W (30dBm). if G_{Tx} >6dBi, then P_{out} =30-(G_{Tx} -6). e.i.r.p. at any elevation angle above 30 degrees \leq 125mW (21dBm)

Indoor AP

The maximum conducted output power (P_{out}) shall not exceed the lesser of 1W (30dBm). if G_{Tx} >6dBi, then Pout =30-(G_{Tx} -6).

Point-to-point AP

The maximum conducted output power (P_{out}) shall not exceed the lesser of 1W (30dBm). if G_{Tx} >23dBi, then Pout =30-(G_{Tx} -23).

Client devices

The maximum conducted output power (P_{out}) shall not exceed the lesser of 250W (24dBm). if G_{Tx} >6dBi, then $Pout = 24-(G_{Tx}-6)$.

For the 5.25~5.35GHz band:

The maximum conducted output power (P_{out}) shall not exceed the lesser of 250mW (24dBm) or 11dBm+10 log B, where B is the 26dB emission bandwith in MHz.

if G_{Tx} >6dBi, then P_{out} =24-(G_{Tx} -6).

For the 5.47~5.725GHz band:

The maximum conducted output power (P_{out}) shall not exceed the lesser of 250mW (24dBm) or 11dBm+10 log B, where B is the 26dB emission bandwith in MHz. if G_{Tx} >6dBi, then P_{out} =24-(G_{Tx} -6).

For the 5.725~5.85GHz band:

Point-to-multipoint systems (P2M)
 The maximum conducted output power (Pout) shall not exceed the lesser of 1W (30dBm).
 if G_{Tx}>6dBi, then Pout = 30-(G_{Tx}-6).

Point-to-point systems (P2P)

The maximum conducted output power (Pout) shall not exceed the lesser of 1W (30dBm).

TEST CONFIGURATION

TEST PROCEDURE

- 1. The EUT was tested according to KDB789033 requirements.
- 2. The maximum conducted output power may be measured using a broadband AVG RF power meter.
- 3. Average power measurements were performed only when the EUT was transmitting at its maximum power control level using a broadband power meter with a pulse sensor. The power meter implemented triggering and gating capabilities which were set up such that power measurements were recorded only during the ON time of the transmitter. The trace was averaged over 100 traces to obtain the final measured average power
- 4. Record the measurement data.

Shenzhen UnionTrust Quality and Technology Co., Ltd.

Page 16 of 75 Report No.: 171208003RFC-

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

□ Passed

■ Not Applicable

Page 17 of 75

Report No.: 171208003RFC-

Band	Bandwidth (MHz)	Туре	Channel	Output power (dBm)	Limit (dBm)	Result			
			CHL	14.21		Pass			
		802.11n	СНМ	14.29	24.00				
	00	20	СНН	14.53					
	20	802.11a	CHL	15.11					
'			802.11a	802.11a	802.11a	802.11a	СНМ	15.26	24.00
			CHH	15.34					
	40	902 11p	CHL	13.60	24.00	Doos			
	40 802.11n	40 802.11n		CHH	13.88	24.00	Pass		

Band	Bandwidth (MHz)	Туре	Channel	Output power (dBm)	Limit (dBm)	Result
			CHL	14.51		
	00	802.11n	СНМ	14.59	24.00	Pass
		20	СНН	14.98		
п	20	20	CHL	14.60		
"		802.11a	CHM	14.44	24.00	Pass
			СНН	15.01	15.01	
	40	902 11p	CHL	13.37	24.00	Door
		802.11n	СНН	13.54	24.00	Pass

Band	Bandwidth (MHz)	Туре	Channel	Channel Output power (dBm)		Result
			CHL	14.75		
		802.11n	СНМ	14.11	24.00	Pass
1	20		CHH	14.16		
	20		CHL	14.81		
III		802.11a	CHM	14.98	24.00	Pass
			CHH	15.19		
			CHL	12.55		
	40	802.11n	СНМ	12.32	24.00	Pass
			CHH	12.47		

Band	Bandwidth (MHz)	Туре	Channel Output power (dBm)		Limit (dBm)	Result
			CHL	14.37	30.00	Pass Pass
		802.11n 20 802.11a	CHM	14.76		
IV	20		CHH	14.76		
IV	20		CHL	14.47		
			СНМ	14.85		
			CHH	14.67		

Page 18 of 75 Report No.: 171208003RFC-

40	802.11n	CHL	12.43	30.00	Pass
40	002.1111	CHH	12.53	30.00	F a 5 5

5.4. Maximum Power Spectral Density

LIMIT

FCC CFR Title 47 Part 15 Subpart E Section 15.407:

For the 5.15~5.25GHz band:

Outdoor AP

The peak power spectral density (PSD) shall not exceed the lesser of 17dBm/MHz. if G_{Tx} >6dBi, then PSD =17-(G_{Tx} -6).

Indoor AP

The peak power spectral density (PSD) shall not exceed the lesser of 17dBm/MHz. if G_{Tx} >6dBi, then PSD =17-(G_{Tx} -6).

Point-to-point AP

The peak power spectral density (PSD) shall not exceed the lesser of 17dBm/MHz. if G_{Tx} >23dBi, then PSD =17-(G_{Tx} -23).

Client devices

The peak power spectral density (PSD) shall not exceed the lesser of 11dBm/MHz. if G_{Tx} >6dBi, then PSD =11-(G_{Tx} -6).

For the 5.25~5.35GHz band:

The peak power spectral density (PSD) shall not exceed the lesser of 11dBm/MHz. if G_{Tx} >6dBi, then PSD =11-(G_{Tx} -6).

For the 5.47~5.725GHz band:

The peak power spectral density (PSD) shall not exceed the lesser of 11dBm/MHz. if G_{Tx} >6dBi, then PSD =11-(G_{Tx} -6).

For the 5.725~5.85GHz band:

Point-to-multipoint systems (P2M)

The peak power spectral density (PSD) shall not exceed the lesser of 30dBm/500kHz. if $G_{Tx}>6dBi$, then PSD = $30-(G_{Tx}-6)$.

Point-to-point systems (P2P)

The peak power spectral density (PSD) shall not exceed the lesser of 30dBm/500kHz.

TEST CONFIGURATION

TEST PROCEDURE

According KDB 789033 D02 - Section F

- 1. Analyzer was set to the center frequency of the UNII channel under investigation
- 2. Span was set to encompass the entire emission bandwidth of the signal
- 3. For devices operating in the bands 5.15-5.25 GHz, 5.25-5.35 GHz, and 5.47-5.725 GHz, the above procedures make use of 1 MHz RBW to satisfy directly the 1 MHz reference bandwidth For devices operating in the band 5.725-5.85 GHz, the rules specify a measurement bandwidth of 500 kHz.
- 4. Set VBW ≥ 3 RBW.Number of sweep points > 2 x (span/RBW)
- 5. Sweep time = auto
- 6. Detector = power averaging (RMS)

Shenzhen UnionTrust Quality and Technology Co., Ltd.

Page 19 of 75 Report No.: 171208003RFC-

- 7. Trigger was set to free run for all modes
- 8. Trace was averaged over 100 sweeps
- 9. The peak search function of the spectrum analyzer was used to find the peak of the spectrum.

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

■ Not Applicable

Bandwidth **Power Spectral Density** Limit Band Channel Result Type (dBm/MHz) (MHz) (dBm/MHz) CHL 5.35 11.00 802.11n CHM 6.04 Pass CHH 6.69 20 CHL 6.26 I 802.11a CHM 11.00 6.14 **Pass** CHH 6.36 CHL 0.03 40 802.11n 11.00 Pass CHH 0.29

Report No.: 171208003RFC-

Band	Bandwidth (MHz)	Туре	Channel	Power Spectral Density (dBm/MHz)	Limit (dBm/MHz)	Result
			CHL	6.45		
	00	802.11n	CHM	6.48	11.00	Pass
		20	СНН	7.54		
l II	20	802.11a	CHL	5.90	11.00	Pass
"			CHM	5.48		
			CHH	6.41		
	40 8	902 11p	CHL	-0.17	11.00	Pass
		802.11n	СНН	0.07	11.00	Pass

Band	Bandwidth (MHz)	Туре	Channel	Power Spectral Density (dBm/MHz)	Limit (dBm/MHz)	Result
			CHL	6.16		Pass
		802.11n	СНМ	6.14	11.00	
	20		СНН	5.85		
	20		CHL	6.29		
III	802.	802.11a	CHM	6.18	11.00	Pass Pass
			СНН	6.26		
	40		CHL	-1.17		
		40 802.11n	CHM	-1.55	11.00	
			CHH	-1.02		

Band	Bandwidth (MHz)	Туре	Channel	Power Spectral Density (dBm/500KHz)	Limit (dBm/500KHz)	Result
			CHL	4.41		
		802.11n	СНМ	5.00	30.00	Pass Pass
	IV 20 802.1		CHH	3.94		
IV		802.11a	CHL	3.72	30.00	
			CHM	3.35		
			CHH	3.87		
	40	802.11n	CHL	-2.64	30.00	Pass

Page 21 of 75 Report No.: 171208003RFC-

CHH -2.86

802.11a #Avg Type: RMS Avg|Hold: 100/100 Auto Tun Ref Offset 2.06 dB Ref 20.00 dBm CH_L Freq Offse er Freq 5.220000000 GHz #Avg Type: RMS Avg|Hold: 100/100 Ref Offset 2.11 dB Ref 20.00 dBm Center Fre CH_M Span 30.00 MHz Sweep 1.000 ms (1001 pts) #VBW 3.0 MHz* PNO: Fast --- Trig: Free Run #Avg Type: RMS Avg|Hold: 100/100 Ref Offset 2.11 dB Ref 20.00 dBm СНн

802.11a #Avg Type: RMS Avg|Hold: 100/100 Auto Tun Ref Offset 2.06 dB Ref 20.00 dBm CH_L CF Ste Freq Offse Span 30.00 MHz Sweep 1.000 ms (1001 pts #Avg Type: RMS Avg|Hold: 100/100 Ref Offset 2.08 dB Ref 20.00 dBm Center Fre CH_M CF Ste Span 30.00 MHz Sweep 1.000 ms (1001 pts) #VBW 3.0 MHz* #Avg Type: RMS Avg|Hold: 100/100 Ref Offset 2.06 dB Ref 20.00 dBm СНн

Report No.: 171208003RFC-

5.5. 99% Occupy bandwidth & 26dB bandwidth

LIMIT

The bandwidth at 26dB down from the highest in-band spectral density is measured with a spectrum analyzer connected to the antenna terminal while the EUT is operating at its maximum duty cycle, at its maximum power control level, as defined in KDB 789033 D02, and at the appropriate frequencies. The spectrum analyzer's bandwidth measurement function is configured to measure the 26dB bandwidth.

TEST CONFIGURATION

TEST PROCEDURE

According KDB 789033 D02 - Section C

- 1. The signal analyzers' automatic bandwidth measurement capability was used to perform the 26dB bandwidth measurement. The "X" dB bandwidth parameter was set to X = 26. The automatic bandwidth measurement function also has the capability of simultaneously measuring the 99% occupied bandwidth. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
- 2. RBW = approximately 1% of the emission bandwidth
- 3. $VBW > 3 \times RBW$
- 4. Detector = Peak
- 5. Trace mode = max hold

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

Page 34 of 75

36.08

Report No.: 171208003RFC-

40.55

Band	Bandwidth (MHz)	Туре	Channel	99% Occupy bandwith (MHz)	26dB bandwidth (MHz)	Result
		802.11n	CH _L 16.51 20.71	20.71		
	20		СНм	17.80	21.29	Pass
			СНн	17.81	21.45	
			CH∟	16.55	21.07	
'		802.11a	СНм	16.55	21.14	Pass
			СНн	16.55	21.15	
	40 802.11	902 11n	CHL	36.12	40.62	Door
		002.1111	OLL	20.00	40.55	Pass

СНн

Band	Bandwidth (MHz)	Туре	Channel	99% Occupy bandwith (MHz)	26dB bandwidth (MHz)	Result
			CH∟	17.78	21.30	
		802.11n 20 802.11a	СНм	17.79	21.32	Pass
	20		СНн	17.79	21.43	
ш	20		CH∟	16.51	20.72	
II			СНм	16.51	20.74	Pass
			СНн	16.50	20.68	
	40	902 11p	CHL	36.14	40.44	Page
		40 802.11n		36.07	40.49	Pass

Band	Bandwidth (MHz)	Туре	Channel	99% Occupy bandwith (MHz)	26dB bandwidth (MHz)	Result
III	20	802.11n	CHL	17.81	21.42	Pass
			СНм	17.78	21.29	
			СНн	17.81	21.27	
		802.11a	CH∟	16.51	20.84	Pass
			СНм	16.52	20.78	
			СНн	16.53	20.82	
	40	802.11n	CH∟	36.06	40.01	Pass
			CH _M	36.15	40.59	
			СНн	36.17	40.55	

Page 39 of 75

Page 43 of 75

Page 46 of 75 Report No.: 171208003RFC-

5.6. 6dB Bandwidth

LIMIT

FCC CFR Title 47 Part 15 Subpart E Section 15.407(e) Within the 5.725-5.85 GHz band, the minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz

TEST CONFIGURATION

TEST PROCEDURE

- 1. Connect the antenna port(s) to the spectrum analyzer input.
- Configure the spectrum analyzer as shown below (enter all losses between the transmitter output and the spectrum analyzer).

Center Frequency = DTS channel center frequency

Span=2 x DTS bandwidth

RBW = 100 kHz, VBW ≥ 3 × RBW

Sweep time= auto couple

Detector = Peak

Trace mode = max hold

- 3. Place the radio in continuous transmit mode, allow the trace to stabilize, view the transmitter wave form on the spectrum analyzer.
- 4. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission, and record the pertinent measurements.

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

Page 47 of 75

Band	Bandwidth (MHz)	Туре	Channel	99% Occupy bandwith (MHz)	6dB bandwidth (MHz)	Result
			CH∟	17.42	17.13	
		802.11n	СНм	17.68	17.73	Pass
	20		CH _H	17.69	17.73	
IV	20	20	CH∟	16.36	16.42	
IV		802.11a	СНм	16.42	16.43	Pass
			СНн 16.42		16.42	
	40	40 902.115		35.90	35.35	Pass
	40	40 802.11n		35.87	35.36	F d S S

5.7. Radiated Emissions & Band edge

LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.209

1 CC CITY Title 47 Fait 13 Subpart C Sect	1011 13.203	
Frequency	Limit (dBuV/m @3m)	Value
30MHz-88MHz	40.00	Quasi-peak
88MHz-216MHz	43.50	Quasi-peak
216MHz-960MHz	46.00	Quasi-peak
960MHz-1GHz	54.00	Quasi-peak
Above 1GHz	54.00	Average
Above 1GHz	74.00	Peak

Operating Band	Frequency	EIRP Limit	Value
5150-5250MHz	Above 1GHz	-27dBm/MHz(68.2dBuV/m)@3m	Peak
5250-5350MHz	Above 1GHz	-27dBm/MHz(68.2dBuV/m)@3m	Peak
5470-5725MHz	Above 1GHz	-27dBm/MHz(68.2dBuV/m)@3m	Peak
	1GHz-5.65GHz	-27 dBm/MHz(68.2dBuV/m)@3m	Peak
	5.65GHz-5.7GHz	-27*dBm/MHz to 10dBm/MHz (68.2* dBuV/m to 105.6dBuV/m)	Peak
	5.7GHz-5.72GHz	10*dBm/MHz to 15.6dBm/MHz (105.6*dBuV/m to 110.8dBuV/m)	Peak
5705 5050 MU-	5.72GHz-5.725GHz	15.6*dBm/MHz to 27dBm/MHz (110.8dBuV/m to* 122.2dBuV/m)	Peak
5725-5850 MHz	5.85GHz-5.855GHz	27dBm/MHz to 15.6*dBm/MHz (122.2dBuV/m to110.8* dBuV/m)	Peak
	5.855GHz-5.875GHz	15.6dBm/MHz to 10*dBm/MHz (110.8dBuV/m to 105.6* dBuV/m	Peak
	5.875GHz-5.925GHz	10dBm/MHz to -27*dBm/MHz (105.6dBuV/m to 68.2* dBuV/m)	Peak
	Above 5.925GHz	-27 dBm/MHz(68.2dBuV/m)@3m	Peak

^{*} Increase/Decreases with the linearly of the frequency.

For emission above 1GHz and in restricted band, according to FCC KDB 789033 D02 General UNII Test Procedure, all emission that complies with both the average and peak limits of Section 15.209 is not required to satisfy the -27 dBm/MHz peak emission limit. E[dBµV/m] = EIRP[dBm] + 95.2, for d = 3 meters.

TEST CONFIGURATION

● 9KHz ~30MHz

Shenzhen UnionTrust Quality and Technology Co., Ltd.

• 30MHz ~ 1GHz

Above 1GHz

TEST PROCEDURE

- 1. The EUT was tested according to ANSI C63.10:2013 for compliance to FCC 47CFR 15.247 requirements.
- 2. The EUT is placed on a turn table which is 0.8/1.5 meter above ground plane. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3. The EUT waspositioned such that the distance from antenna to the EUT was 3 meters.
- 4. The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna.
- 5. Use the following spectrum analyzer settings
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Below 1GHz, RBW=120KHz, VBW=300KHz, Sweep=auto, Detector function=peak, Trace=max hold; If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.
 - (3) Above 1GHz, RBW=1MHz, VBW=3MHz Peak detetor for Peak value RBW=1MHz, VBW=3MHz RMS detetor for Average value.

Remark: "floor-standing equipment" Where possible, the antenna(s) of the EUT shall be located at a height of 1.5 m above the floor, and the intentional radiator circuitry shall be located within the system at a height of at least 0.8 m above the floor.

Page 53 of 75

Report No.: 171208003RFC-

TEST RESULTS

Measurement data:

9kHz ~ 30MHz

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported.

Pre-scan all of the 802.11a/n(HT20) /n(HT40) mode at U-NII band I/II/III and IV. And found 802.11a mode was the worst case at this four bands. So only the worst data was shown on the report.

30MHz ~ 1GHz

No.	Frequency (MHz)	Reading (dBuV) Correction factor (dB/m)		Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
1	54.135	31.95	-20.44	11.51	40.00	28.49	QP
2	108.546	34.15	-17.96	16.19	43.50	27.31	QP
3	200.043	32.47	-15.52	16.95	43.50	26.55	QP
4	804.252	29.96	-1.40	28.56	46.00	17.44	QP
5	850.760	34.41	-1.73	32.68	46.00	13.32	QP
6*	912.695	33.68	-0.02	33.66	46.00	12.34	QP

No.	Frequency (MHz)	Reading (dBuV)	Correction factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
1	64.532	31.32	-19.85	11.47	40.00	28.53	QP
2	68.264	33.88	-19.74	14.14	40.00	25.86	QP
3	102.612	30.85	-18.79	12.06	43.50	31.44	QP
4	311.452	30.63	-11.06	19.57	46.00	26.43	QP
5*	850.760	31.16	-1.84	29.32	46.00	16.68	QP
6	906.304	28.99	-0.31	28.68	46.00	17.32	QP

Remark:Result=Reading+ Correction factor; Margin=Limit -Result

Page 55 of 75

Report No.: 171208003RFC-

■ Above 1GHz

	Low channel for 802.11a Band I												
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin Limit (dB)	Polarization	Test value				
4022.24	21.85	29.74	8.80	38.06	32.33	74.00	-41.67	Vertical	Peak				
7738.21	19.30	36.10	13.09	35.04	43.45	74.00	-30.55	Vertical	Peak				
10126.05	20.03	39.13	13.55	34.28	48.43	68.20	-19.77	Vertical	Peak				
3065.24	22.00	28.73	7.56	38.22	30.07	68.20	-38.13	Horizontal	Peak				
5502.17	19.50	31.90	10.20	36.32	35.28	68.20	-32.92	Horizontal	Peak				
11345.12	19.23	40.30	13.43	33.95	49.01	74.00	-24.99	Horizontal	Peak				

	Middle channel for 802.11a Band I												
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin Limit (dB)	Polarization	Test value				
3869.11	21.64	29.67	8.60	38.19	31.72	74.00	-42.28	Vertical	Peak				
7526.61	19.66	36.13	12.48	34.92	43.35	74.00	-30.65	Vertical	Peak				
9686.67	20.37	39.10	13.70	35.39	47.78	68.20	-20.42	Vertical	Peak				
3222.10	22.70	28.67	7.75	38.24	30.88	68.20	-37.32	Horizontal	Peak				
6233.32	19.53	32.97	11.01	35.29	38.22	68.20	-29.98	Horizontal	Peak				
9686.67	20.37	39.10	13.70	35.39	47.78	68.20	-20.42	Horizontal	Peak				

			Hi	gh channe	l for 802.11a	a Band I			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin Limit (dB)	Polarization	Test value
3405.82	22.05	28.25	7.97	38.54	29.73	68.20	-38.47	Vertical	Peak
6945.12	19.10	34.97	11.78	34.84	41.01	68.20	-27.19	Vertical	Peak
9240.69	20.29	38.84	13.54	35.74	46.93	68.20	-21.27	Vertical	Peak
3763.30	20.84	29.49	8.46	38.24	30.55	74.00	-43.45	Horizontal	Peak
7402.44	19.50	36.30	12.08	34.82	43.06	74.00	-30.94	Horizontal	Peak
11065.53	19.09	40.35	13.54	33.73	49.25	74.00	-24.75	Horizontal	Peak

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3. Measuring frequencies from 1 GHz to 40GHz of highest fundamental frequency.

Low channel for 802.11a Band II Read Antenna Cable Preamp Margin Frequency Level Limit Line Test Factor Polarization Level Loss Factor Limit (dBuV/m) (MHz) (dBuV/m) value (dBuV) (dB/m) (dB) (dB) (dB) 3550.45 21.09 29.15 8.19 68.20 -38.11 38.34 30.09 Vertical Peak 6773.96 19.70 34.05 11.57 35.04 40.28 68.20 -27.92 Vertical Peak 10614.76 39.94 13.59 49.03 74.00 -24.97 18.82 33.32 Vertical Peak 4158.32 21.18 29.96 8.91 37.75 32.30 74.00 -41.70 Horizontal Peak 6906.72 19.42 34.74 11.73 34.88 41.01 68.20 -27.19Horizontal Peak 11282.38 20.25 40.30 13.46 33.69 50.32 74.00 -23.68Horizontal Peak

			Mid	dle channe	el for 802.11	a Band II			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin Limit (dB)	Polarization	Test value
3784.23	21.88	29.55	8.48	38.23	31.68	74.00	-42.32	Vertical	Peak
7022.57	19.31	35.37	11.85	34.82	41.71	68.20	-26.49	Vertical	Peak
11219.99	18.73	40.30	13.48	33.44	49.07	74.00	-24.93	Vertical	Peak
3890.62	21.02	29.69	8.63	38.18	31.16	74.00	-42.84	Horizontal	Peak
6736.50	20.19	34.13	11.52	35.11	40.73	68.20	-27.47	Horizontal	Peak
9266.34	19.96	39.00	13.56	35.67	46.85	68.20	-21.35	Horizontal	Peak

	High channel for 802.11a Band II												
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin Limit (dB)	Polarization	Test value				
3377.60	21.52	28.20	7.93	38.51	29.14	68.20	-39.06	Vertical	Peak				
6534.15	18.86	34.07	11.24	35.34	38.83	68.20	-29.37	Vertical	Peak				
10673.79	20.16	39.91	13.59	33.74	49.92	74.00	-24.08	Vertical	Peak				
3901.42	21.35	29.70	8.64	38.17	31.52	74.00	-42.48	Horizontal	Peak				
7042.07	19.54	35.43	11.85	34.85	41.97	68.20	-26.23	Horizontal	Peak				
10943.48	20.30	40.53	13.57	34.11	50.29	74.00	-23.71	Horizontal	Peak				

Remark:

UninTrust

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.
- Measuring frequencies from 1 GHz to 40GHz of highest fundamental frequency.

			Lo	w channel	for 802.11a	Band III			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin Limit (dB)	Polarization	Test value
3340.35	22.01	28.20	7.89	38.45	29.65	68.20	-38.55	Vertical	Peak
7160.20	19.77	35.96	11.86	35.02	42.57	68.20	-25.63	Vertical	Peak
11408.21	18.88	40.29	13.42	34.13	48.46	74.00	-25.54	Vertical	Peak
3491.87	21.63	28.94	8.10	38.42	30.25	68.20	-37.95	Horizontal	Peak
8742.22	21.12	37.82	13.04	34.35	47.63	68.20	-20.57	Horizontal	Peak
11096.25	18.28	40.31	13.53	33.65	48.47	74.00	-25.53	Horizontal	Peak

	Middle channel for 802.11a Band III												
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin Limit (dB)	Polarization	Test value				
4112.46	20.31	29.91	8.87	37.85	31.24	74.00	-42.76	Vertical	Peak				
6680.70	19.96	34.20	11.46	35.21	40.41	68.20	-27.79	Vertical	Peak				
10673.79	20.16	39.91	13.59	33.74	49.92	74.00	-24.08	Vertical	Peak				
3434.26	21.41	28.48	8.01	38.50	29.40	68.20	-38.80	Horizontal	Peak				
8156.78	20.91	36.83	12.67	34.55	45.86	74.00	-28.14	Horizontal	Peak				
10182.36	18.74	39.18	13.56	34.79	46.69	68.20	-21.51	Horizontal	Peak				

			Hig	jh channel	for 802.11a	Band III			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin Limit (dB)	Polarization	Test value
4158.32	21.18	29.96	8.91	37.75	32.30	74.00	-41.70	Vertical	Peak
6925.89	19.65	34.86	11.76	34.86	41.41	68.20	-26.79	Vertical	Peak
10410.73	20.36	39.69	13.59	35.48	48.16	68.20	-20.04	Vertical	Peak
4506.48	20.91	30.71	9.31	37.38	33.55	74.00	-40.45	Horizontal	Peak
7120.61	18.93	35.72	11.86	34.96	41.55	68.20	-26.65	Horizontal	Peak
10792.82	18.69	40.23	13.58	34.58	47.92	74.00	-26.08	Horizontal	Peak

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3. Measuring frequencies from 1 GHz to 40GHz of highest fundamental frequency.

UninTrust

Low channel for 802.11a Band IV Read Antenna Cable Preamp Margin Frequency Level Limit Line Test Level Factor Loss Factor Limit Polarization (MHz) (dBuV/m) (dBuV/m) value (dBuV) (dB/m) (dB) (dB) (dB) 3742.49 21.61 29.43 8.43 38.24 31.23 74.00 -42.77Vertical Peak 6736.50 20.19 34.13 11.52 35.11 40.73 68.20 -27.47Vertical Peak 10556.06 19.47 39.97 49.28 68.20 -18.9213.59 33.75 Vertical Peak 3721.80 22.19 29.37 8.41 38.25 31.72 74.00 -42.28Horizontal Peak 6906.72 19.42 34.74 11.73 68.20 -27.1934.88 41.01 Horizontal Peak 10210.63 18.76 39.21 13.56 34.99 46.54 68.20 -21.66Horizontal Peak

			Midd	dle channe	l for 802.11a	a Band IV			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin Limit (dB)	Polarization	Test value
3966.87	20.49	29.70	8.73	38.13	30.79	74.00	-43.21	Vertical	Peak
6426.35	18.84	33.49	11.04	35.32	38.05	68.20	-30.15	Vertical	Peak
10070.06	19.78	39.10	13.55	33.78	48.65	68.20	-19.55	Vertical	Peak
3711.49	21.65	29.33	8.40	38.25	31.13	74.00	-42.87	Horizontal	Peak
6643.76	20.55	34.20	11.41	35.28	40.88	68.20	-27.32	Horizontal	Peak
10644.23	21.64	39.93	13.59	33.53	51.63	74.00	-22.37	Horizontal	Peak

	_		Hig	h channel	for 802.11a	Band IV			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin Limit (dB)	Polarization	Test value
4044.61	21.20	29.79	8.82	38.01	31.80	74.00	-42.20	Vertical	Peak
6588.73	19.93	34.18	11.34	35.36	40.09	68.20	-28.11	Vertical	Peak
11794.15	17.86	39.91	14.13	33.61	48.29	74.00	-25.71	Vertical	Peak
4022.24	21.85	29.74	8.80	38.06	32.33	74.00	-41.67	Horizontal	Peak
7003.13	21.57	35.31	11.85	34.79	43.94	68.20	-24.26	Horizontal	Peak
10973.87	20.39	40.49	13.57	34.00	50.45	74.00	-23.55	Horizontal	Peak

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3. Measuring frequencies from 1 GHz to 40GHz of highest fundamental frequency.

Bandedge

				В	and I&II					
Bandwidth:	Bandwidth: 20MHz			rst mode:	802.11a	a	Test chann	nel:	CH∟	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m	Limit	Polar	ization	Detector
5150.00	16.34	31.70	9.79	0.00	57.83	68.20	-10.37	Hori	zontal	Peak
5150.00	18.43	31.70	9.79	0.00	59.92	68.20	-8.28	Ve	rtical	Peak
5150.00	8.01	31.70	9.79	0.00	49.50	54.00	-4.50	Horizontal		Average
5150.00	8.33	31.70	9.79	0.00	49.82	54.00	-4.18	Vertical		Average

Bandwidth:	20	MHz	Woi	rst mode:	802.11a	a	Test chann	nel:	СНн	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Lin (dBuV/m	Llimit	Polar	ization	Detector
5350.00	14.31	31.40	10.06	0.00	55.77	68.20	-12.43	Horiz	zontal	Peak
5350.00	15.99	31.40	10.06	0.00	57.45	68.20	-10.75	Vei	tical	Peak
5350.00	7.38	31.40	10.06	0.00	48.84	54.00	-5.16	Horizontal		Average
5350.00	7.69	31.40	10.06	0.00	49.15	54.00	-4.85	Vei	tical	Average

Bandwidth:	40	MHz	Wor	rst mode:	802.11r		Test chann	nel: CH _L		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m	Limit	Polarization		Detector
5150.00	18.68	31.70	9.79	0.00	60.17	68.20	-8.03	Horiz	zontal	Peak
5150.00	18.66	31.70	9.79	0.00	60.15	68.20	-8.05	Ver	tical	Peak
5150.00	7.02	31.70	9.79	0.00	48.51	54.00	-5.49	Horizontal		Average
5150.00	8.79	31.70	9.79	0.00	50.28	54.00	-3.72	Ver	tical	Average

Bandwidth:		401	MHz	W	orst mode:	802.11	n	Test chann	nel:	СНн	
Frequency (MHz)	Rea Leve (dBu)	el	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line	Limit	Polarization		Detector
5350.00	19.2	9	31.40	10.06	0.00	60.75	68.20	-7.45	Hori	zontal	Peak
5350.00	18.2	7	31.40	10.06	0.00	59.73	68.20	-8.47	Ve	rtical	Peak
5350.00	8.53	3	31.40	10.06	0.00	49.99	54.00	-4.01	Horizontal		Average
5350.00	8.44	4	31.40	10.06	0.00	49.90	54.00	-4.10	Ve	rtical	Average

				E	Band III					
Bandwidth:	andwidth: 20MHz			rst mode:	802.11a	1	Test chanr	nel:	CH∟	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Limit	Polar	ization	Detector
5460.00	14.34	31.74	10.17	0.00	56.25	68.20	-11.95	Hori	zontal	Peak
5460.00	15.25	31.74	10.17	0.00	57.16	68.20	-11.04	Ve	rtical	Peak
5460.00	8.07	31.74	10.17	0.00	49.98	54.00	-4.02	Horizontal		Average
5460.00	7.88	31.74	10.17	0.00	49.79	54.00	-4.21	Ve	rtical	Average

Bandwidth:	20	MHz	Woi	rst mode:	802.11a	a	Test chann	nel:	СНн	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line	Limit	Polar	ization	Detector
5725.00	14.34	31.73	10.47	0.00	56.54	68.20	-11.66	Hori	zontal	Peak
5725.00	15.21	31.73	10.47	0.00	57.41	68.20	-10.79	Ve	rtical	Peak
5725.00	7.13	31.73	10.47	0.00	49.33	54.00	-4.67	Horizontal		Average
5725.00	7.25	31.73	10.47	0.00	49.45	54.00	-4.55	Ve	rtical	Average

Bandwidth:	40	MHz	Woı	rst mode:	802.11r	l	Test chann	nel:	CH∟	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m	Limit	Polarization		Detector
5460.00	15.94	31.74	10.17	0.00	57.85	68.20	-10.35	Horiz	ontal	Peak
5460.00	16.88	31.74	10.17	0.00	58.79	68.20	-9.41	Ver	tical	Peak
5460.00	8.68	31.74	10.17	0.00	50.59	54.00	-3.41	Horizontal		Average
5460.00	8.42	31.74	10.17	0.00	50.33	54.00	-3.67	Vertical		Average

Bandwidth:		40MHz		Wo	rst mode:		802.11n		Test cha	nnel:	СНн	
Frequency (MHz)	Read Leve (dBu\	l Fa	enna ctor IB)	Cable Loss (dB)	Preamp Factor (dB)		Level BuV/m)	Limit Line (dBuV/m	I I imit		rization	Detector
5725.00	18.08	8 31	.73	10.47	0.00	6	60.28	68.20	-7.92	Hor	zontal	Peak
5725.00	18.26	6 31	.73	10.47	0.00	6	60.46	68.20	-7.74	Ve	rtical	Peak
5725.00	6.87	' 31	.73	10.47	0.00	4	49.07	54.00	-4.93	Hor	zontal	Average
5725.00	6.83	31	.73	10.47	0.00	4	49.03	54.00	-4.97	Ve	rtical	Average

				Е	Band IV					
Bandwidth:	andwidth: 20MHz			rst mode:	802.11a		Test chanr	nel:	CH∟	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m	Limit	Polar	ization	Detector
5725.00	17.33	31.73	10.47	0.00	59.53	68.20	-8.67	Hori	zontal	Peak
5725.00	17.17	31.73	10.47	0.00	59.37	68.20	-8.83	Vei	tical	Peak
5725.00	8.26	31.73	10.47	0.00	50.46	54.00	-3.54	Horizontal		Average
5725.00	8.05	31.73	10.47	0.00	50.25	54.00	-3.75	Vertical		Average

Bandwidth:		201	ЛНz	Wo	rst mode:		802.11a		Te	est chann	iel:	СНн	
Frequency (MHz)	Rea Leve (dBu)	el	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	l	Level BuV/m)	Limit Lin (dBuV/m		Margin Limit (dB)	Polar	ization	Detector
5850.00	15.8	5	32.20	10.61	0.00		58.66	68.20		-9.54	Horiz	zontal	Peak
5850.00	15.4	3	32.20	10.61	0.00		58.24	68.20		-9.96	Vei	tical	Peak
5850.00	6.48	3	32.20	10.61	0.00		49.29	54.00		-4.71	Horiz	zontal	Average
5850.00	6.26	6	32.20	10.61	0.00		49.07	54.00		-4.93	Vei	tical	Average

Bandwidth:	4	40MHz	Wo	rst mode:	802.11	า	Test chann	nel:	CH∟	
Frequency (MHz)	Read Level (dBuV	Factor	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m	Limit	Polar	ization	Detector
5725.00	17.68	31.73	10.47	0.00	59.88	68.20	-8.32	Hori	zontal	Peak
5725.00	17.41	31.73	10.47	0.00	59.61	68.20	-8.59	Vei	tical	Peak
5725.00	8.15	31.73	10.47	0.00	50.35	54.00	-3.65	Hori	zontal	Average
5725.00	8.34	31.73	10.47	0.00	50.54	54.00	-3.46	Vei	tical	Average

Bandwidth:	4	0MHz	Woi	rst mode:	802.11	า	Test chann	nel:	СНн	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line	limit	Polar	ization	Detector
5850.00	17.34	32.20	10.61	0.00	60.15	68.20	-8.05	Hori	zontal	Peak
5850.00	16.98	32.20	10.61	0.00	59.79	68.20	-8.41	Ve	rtical	Peak
5850.00	6.37	32.20	10.61	0.00	49.18	54.00	-4.82	Hori	zontal	Average
5850.00	6.48	32.20	10.61	0.00	49.29	54.00	-4.71	Ve	rtical	Average

5.8. Dynamic Frequency Selection(DFS)

Requirement

Table 1: Applicability of DFS Requirements Prior to Use of a Channel

	Operational Mode				
Requirement	Master	Client Without Radar Detection	Client With Radar Detection		
Non-Occupancy Period	Yes	Not required	Yes		
DFS Detection Threshold	Yes	Not required	Yes		
Channel Availability Check Time	Yes	Not required	Not required		
U-NII Detection Bandwidth	Yes	Not required	Yes		

Table 2: Applicability of DFS requirements during normal operation

	Operational Mode				
Requirement	Master Device or Client with Radar Detection	Client Without Radar Detection			
DFS Detection Threshold	Yes	Not required			
Channel Closing Transmission Time	Yes	Yes			
Channel Move Time	Yes	Yes			
U-NII Detection Bandwidth	Yes	Not required			

Additional requirements for devices with multiple bandwidth modes	Master Device or Client with Radar Detection	Client Without Radar Detection
U-NII Detection Bandwidth and Statistical Performance Check	All BW modes must be tested	Not required
Channel Move Time and Channel Closing Transmission Time	Test using widest BW mode available	Test using the widest BW mode available for the link
All other tests	Any single BW mode	Not required

Note: Frequencies selected for statistical performance check (Section 7.8.4) should include several frequencies within the radar detection bandwidth and frequencies near the edge of the radar detection bandwidth. For 802.11 devices it is suggested to select frequencies in each of the bonded 20 MHz channels and the channel center frequency.

LIMIT

1. DFS Detection Thresholds

Table 3: DFS Detection Thresholds for Master Devices and Client Devices With Radar Detection

Maximum Transmit Power	Value (See Notes 1, 2, and 3)
EIRP ≥ 200 milliwatt	-64 dBm
EIRP < 200 milliwatt and power spectral density < 10 dBm/MHz	-62 dBm
EIRP < 200 milliwatt that do not meet the power spectral density requirement	-64 dBm

Page 65 of 75 Report No.: 171208003RFC-

Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna.

Note 2: Throughout these test procedures an additional 1 dB has been added to the amplitude of the test transmission waveforms to account for variations in measurement equipment. This will ensure that the test signal is at or above the detection threshold level to trigger a DFS response.

Note3: EIRP is based on the highest antenna gain. For MIMO devices refer to KDB Publication 662911 D01.

2. DFS Response Requirements

Table 4: DFS Response Requirement Values

Table II BI C Tree office I recall officer					
Paramenter	Value				
Non-occupancy period	Minimum 30 minutes				
Channel Availability Check Time	60 seconds				
Channel Move Time	10 seconds See Note 1.				
Channel Closing Transmission Time	200 milliseconds + an aggregate of 60 milliseconds over remaining 10 second period. See Notes 1 and 2.				
U-NII Detection Bandwidth	Minimum 100% of the U-NII 99% transmission power bandwidth. See Note 3.				

Note 1: Channel Move Time and the Channel Closing Transmission Time should be performed with Radar Type 0. The measurement timing begins at the end of the Radar Type 0 burst.

Note 2: The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required facilitating a Channel move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.

Note 3: During the U-NII Detection Bandwidth detection test, radar type 0 should be used. For each frequency step the minimum percentage of detection is 90 percent. Measurements are performed with no data traffic.

RADAR TEST WAVEFORMS

This section provides the parameters for required test waveforms, minimum percentage of successful detections, and the minimum number of trials that must be used for determining DFS conformance. Step intervals of 0.1 microsecond for Pulse Width, 1 microsecond for PRI, 1 MHz for chirp width and 1 for the number of pulses will be utilized for the random determination of specific test waveforms.

Table 5 Short Pulse Radar Test Waveforms

Radar Type	Pulse Width (µsec)	PRI (µsec)	Number of Pulses	Minimum Percentage of Successful Detection	Minimum Number of Trials
0	1	1428	18	See Note 1	See Note 1
1	1	Test A: 15 unique PRI values randomly selected from the list of 23 PRI values in Table 5a	Roundup $ \left\{ \left(\frac{1}{360} \right) \cdot \left(\frac{19 \cdot 10^6}{\text{PRI}_{\mu \text{sec}}} \right) \right\} $	60%	30

Page 66 of 75 Report No.: 171208003RFC-

		Test B: 15 unique PRI values randomly selected within the range of 518-3066 µsec, with a minimum increment of 1 µsec, excluding PRI values selected in Test A			
2	1-5	150-230	23-29	60%	30
3	6-10	200-500	16-18	60%	30
4	11-20	200-500	12-16	60%	30
	Agg	gregate (Radar Types 1	80%	120	

Note 1: Short Pulse Radar Type 0 should be used for the detection bandwidth test, channel move time, and channel closing time tests.

A minimum of 30 unique waveforms are required for each of the Short Pulse Radar Types 2 through 4. If more than 30 waveforms are used for Short Pulse Radar Types 2 through 4, then each additional waveform must also be unique and not repeated from the previous waveforms. If more than 30 waveforms are used for Short Pulse Radar Type 1, then each additional waveform is generated with Test B and must also be unique and not repeated from the previous waveforms in Tests A or B. For example if in Short Pulse Radar Type 1 Test B a PRI of 3066 µsec is selected, the number of pulses

would be Round up
$$\left\{ \left(\frac{1}{360} \right) \cdot \left(\frac{19 \cdot 10^6}{3066} \right) \right\} = \text{Round up } \{17.2\} = 18.$$

Table 5a - Pulse Repetition Intervals Values for Test A

Pulse Repetition Frequency Number	Pulse Repetition Frequency (Pulses Per Second)	Pulse Repetition Interval (Microseconds)	
1	1930.5	518	
2	1858.7	538	
3	1792.1	558	
4	1730.1	578	
5	1672.2	598	
6	1618.1	618	
7	1567.4	638	
8	1519.8	658	
9	1474.9	678	
10	1432.7	698	
11	1392.8	718	
12	1355	738	
13	1319.3	758	
14	1285.3	778	
15	1253.1	798	
16	1222.5	818	
17	1193.3	838	

Shenzhen UnionTrust Quality and Technology Co., Ltd.

Page 67 of 75 Report No.: 171208003RFC-

		-
18	1165.6	858
19	1139	878
20	1113.6	898
21	1089.3	918
22	1066.1	938
23	326.2	3066

Table 6 - Long Pulse Radar Test Waveform

Radar Type	Pulse Width (µsec)	Chirp Width (MHz)	PRI (µsec)	Number of Pulses per Burst	Number of Bursts	Minimum Percentage of Successful Detection	Minimum Number of Trials
5	50-100	5-20	1000-2000	1-3	8-20	80%	30

The parameters for this waveforms are randomly chosen. Thirty unique waveforms are required for the Long Pulse Radar Type waveforms. If more than 30 waveforms are used for the Long Pulse Radar Type waveforms, then each additional waveform must also be unique and not repeated from the previous waveforms.

Table 7 - Frequency Hopping Radar Test Waveform

Radar Type	Pulse Width (µsec)	PRI (µsec)	Pulses per Hop	Hopping Rate (kHz)	Hopping Sequence Length (msec)	Minimum Percentage of Successful Detection	Minimum Number of Trials
6	1	333	9	0.333	300	70%	30

For the Frequency Hopping Radar Type, the same Burst parameters are used for each wave form. The hopping sequence is different for each wave form and a 100-length segment is selected from the hopping sequence defined by the following algorithm:

The first frequency in a hopping sequence is selected randomly from the group of 475 integer frequencies from 5250–5724MHz.Next,the frequency that was just chosen is removed from the group and a frequency is randomly selected from the remaining 474 frequencies in the group. This process continues until all 475 frequencies are chosen for the set. For selection of a random frequency, the frequencies remaining within the group are always treated as equally likely.

Calibration of Radar Waveform

Radar Waveform Calibration Procedure

- 1) A 50 ohm load is connected in place of the spectrum analyzer, and the spectrum analyzer is connected to place of the master
- 2) The interference Radar Detection Threshold Level is -62dBm + 0dBi +1dB = -61dBm that had been taken into account the output power range and antenna gain.
- 3) The following equipment setup was used to calibrate the conducted radar waveform. A vector signal generator was utilized to establish the test signal level for radar type 0. During this process there were no transmissions by either the master or client device. The spectrum analyzer was switched to the zero spans (time domain) at the frequency of the radar waveform generator.

Peak detection was used. The spectrum analyzer resolution bandwidth (RBW) and video bandwidth (VBW) were set to 3

MHz. The spectrum analyzer had offset -1.0dB to compensate RF cable loss 1.0dB.

4) The vector signal generator amplitude was set so that the power level measured at the spectrum analyzer was - -62dBm + 0dBi +1dB = -61dBm. Capture the spectrum analyzer plots on short pulse radar waveform.

Conducted Calibration Setup

UninTrust

5510 MHz

#VBW 3.0 MHz

Page 69 of 75

TEST CONFIGURATION

Setup for Client with injection at the Master

TEST PROCEDURE

- 1. The radar pulse generator is setup to provide a pulse at frequency that the master and client are operating. A type 0 radar pulse with a 1us pulse width and a 1428us PRI is used for the testing.
- 2. The vector signal generator is adjusted to provide the radar burst (18 pulses) at the level of approximately -61dBm at the antenna port of the master device
- 3. A trigger is provided from the pulse generator to the DFS monitoring system in order to capture the traffic and the occurrence of the radar pulse.
- 4. EUT will associate with the master at channel. The file "iperf.exe" specified by the FCC is streamed from the PC 2 through the master and the client device to the PC 1 and played in full motion video using Media Player Classic Ver. 6.4.8.6 in order to properly load the network for the entire period of the test.
- 5. When radar burst with a level equal to the DFS Detection Threshold +1dB is generated on the operating channel of the U-NII device. At time T0 the radar waveform generator sends a burst of pulse of the radar waveform at Detection Threshold +1dB.
- 6. Observe the transmissions of the EUT at the end of the radar Burst on the Operating Channel Measure and record the transmissions from the UUT during the observation time (Channel Move Time). One 15 seconds plot is reported for the Short Pulse Radar Type 0. The plot for the Short Pulse Radar Types start at the end of the radar burst. The Channel Move Time will be calculated based on the zoom in 600ms plot of the Short Pulse Radar Type
- 7. Measurement of the aggregate duration of the Channel Closed Transmission Time method. With the spectrum analyzer set to zero span tuned to the center frequency of the EUT operating channel at the radar simulated frequency, peak detection, and max hold, the dwell time per bin is given by: Dwell (0.3ms) =S (12000ms) / B (4000); where Dwell is the dwell time per spectrum analyzer sampling bin, S is sweep time and B is the number of spectrum analyzer sampling bins. An upper bound of the

1

aggregate duration of the intermittent control signals of Channel Closing Transmission Time is calculated by: C (ms)= N X Dwell (0.3ms); where C is the Closing Time, N is the number of spectrum analyzer sampling bins (intermittent control signals) showing a U-NII transmission and Dwell is the dwell time per bin.

8. Measurement the EUT for more than 30 minutes following the channel move time to verify that no transmission or beacons occur on this channel.

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

□ Passed □	■ Not Applicable
----------------	------------------

Uni

BW/Channel	Test Item	Test Result	Limit	Result
401411 (5040141)	Channel Move Time	4.0059869s	<10s	Pass
40MHz/5310MHz	Channel Closing Transmission Time	234.5053ms	<200+60ms	Pass
	Channel Move Time	3.9392267S	<10s	Pass
40MHz/5510MHz	Channel Closing Transmission Time	231.1298ms	<200+60ms	Pass

6. Test Setup Photos of the EUT

Conducted Emissions (AC Mains)

Radiated Emissions

7. External and Internal Photos of the EUT

Reference to Test Report No.: TRE1712001101.

-----End of Report-----