Coronal Heating and the Magnetic Field in Solar Active Regions

David Falconer, Sanjiv Tiwari, Amy Winebarger, and Ron Moore

Previous Results

- Falconer 1997 found that coronal X-ray luminosity was correlated with length of strong-shear, strong-field neutral line.
- Fisher et al 1998 found that coronal X-ray luminosity was correlated with several magnetic parameters, many of these were correlated with each other. The parameter with the best correlation was total magnetic flux. Once the luminosity correlation with total magnetic flux was controlled for, none of the others showed a strong correlation with luminosity.
 - Fisher did not have a neutral line length measure

Modern Observations

- With high cadence SDO/AIA observations, and SDO/HMI vector magnetograms observations, it is easy to do a fall up study with a huge sample.
- To simulate X-ray luminosity, we use 94H Warren et al (2012), which subtracts off an estimate of the cooler lines intensity in the 94 angstrom filter.
- Only use non-Flaring times.

Correlation of Measurements

	ф	A	L _S	WL _{SG1}	WL _{SG2}	WL _{SS}	R	α_{G}	INBAL
ф	1.00	0.97	0.78	0.70	0.602	0.74	0.68	-0.09	0.16
Α	0.97	1.00	0.70	0.62	0.519	0.69	0.59	-0.10	0.09
L _S	0.78	0.70	1.00	0.96	0.88	0.95	0.93	0.13	0.25
WL _{SG1}	0.70	0.62	0.96	1.00	0.971	0.93	0.97	0.22	0.31
WL _{SG2}	0.60	0.52	0.88	0.97	1.000	0.86	0.95	0.29	0.35
WL _{ss}	0.75	0.69	0.95	0.93	0.858	1.00	0.89	0.22	0.20
R	0.68	0.59	0.93	0.97	0.948	0.89	1.00	0.23	0.33
$lpha_{\sf G}$	-0.09	-0.10	0.13	0.22	0.286	0.22	0.23	1.00	-0.03
INBAL	0.16	0.09	0.25	0.31	0.35	0.20	0.33	-0.03	1.00

Magnetic Measurements Defined

Symbol	Equation	Integral over	Name
ф	∫ B _z da	B _z >100G	Total Magnetic Flux
Α	∫da	B _z >100G	Magnetic Area
L _s	\[\] \[\]	pBH>150	Neutral Line Length
WL _{SG1}	$\int (\nabla B_z) dI$	pBH>150	Gradient Weighted
			Neutral Line Length
WL _{SG2}	$\int (\nabla B_z)^2 dI$	pBH>150	Gradient Weighted
			Neutral Line Length
WL _{SS}	θ	pBH>150	Sheer Weighted
			Neutral Line Length
R	weighted flux near	Neutral line	Scriver's R
$lpha_{G}$	$\alpha_{\mathbf{g}} = \frac{\sum \left(\frac{\partial By}{\partial x} + \frac{\partial Bx}{\partial y}\right) Bz}{\sum_{B_Z^2}}$	B _Z >100G	Magnetic Field Weighted Twist
INBAL	$1- \phi_{\scriptscriptstyle +}- \phi_{\scriptscriptstyle -} (\phi_{\scriptscriptstyle +}- \phi_{\scriptscriptstyle -})$	B _z >100G	Flux imbalance

94 H luminosity versus Single Magnetic Parameters

Best Fit L_S is best, but other measures are almost as good

Tag	Fit		Standa	rd devia	tion		Spear					
							man					
	А	В	Avg	dif	Unc	sg	%	Avg	Dif	Unc	Sg	%
L _s	2.07	1.36	0.302					0.810				
WL _{SG1}	0.55	1.09	0.312	-0.010	0.007	-1.51	4	0.788	-0.022	0.012	-1.86	3
ф	-26.94	1.43	0.313	-0.011	0.019	-0.56	31	0.805	-0.005	0.033	-0.14	42
WL _{SS}	2.72	1.18	0.318	-0.016	0.010	-1.63	7	0.793	-0.017	0.013	-1.29	12
R	1.76	0.78	0.323	-0.021	0.010	-2.04	1	0.775	-0.035	0.017	-2.04	3
Α	-20.92	1.31	0.343	-0.040	0.022	-1.81	3	0.760	-0.050	0.039	-1.27	10
WL _{SG2}	0.51	0.74	0.346	-0.044	0.012	-3.79	0	0.724	-0.086	0.023	-3.69	0
Inbal	5.21	3.46	0.479	-0.177	0.027	-6.49	0	0.325	-0.485	0.086	-5.66	0
α_{G}	5.66	0.08	0.510	-0.208	0.028	-7.31	0	0.063	-0.747	0.067	-11.2	0

Explanation of Columns

For each of 100 runs, we divide the sample into a control and experiential sample, calculate best fit from the control, and then predict the brightness of each experimental AR. We then find the standard deviation. For each run the difference between the reference (in this case $L_{\rm S}$) and the measure is determined

- The average of 100 runs is given under avg.
- The average difference is given next
- The standard deviation of the average difference is next.
- The ratio of the average difference and the standard deviation of the average difference is the next column, this indicates how significant the difference is.
- The percent of the runs that the non-reference was better is next.
- The Spearman rank coefficient for the control is done next, in the same way.

Comparison of Single Parameters as Predictors of AR Luminosity

- . Comparison of four parameters difference of standard deviation relative to L_S . Four histograms are shown WL_{SG1} (black), φ (gold), imbalance (green), blue α_G (blue) of the difference of the log of standard deviation relative to L_S from the 100 different runs.
- WL_{SG1} , φ are comparable to L_S in predicting AR luminosity, the other two are not

Best Two Parameter Fit to AR Luminosity Relative to Best Single Parameter

Tag	Standard deviation						Spearman				
	avg	Dif	unc	sg	%	Avg	dif	Unc	Sg	%	
Φ + WL _{SG1}	0.272	0.030	0.009	3.22	99	0.865	0.055	0.049	1.13	87	
Φ + L s	0.280	0.022	0.009	2.59	98	0.858	0.048	0.051	0.94	81	
Φ + WL _{SG2}	0.275	0.028	0.012	2.38	99	0.857	0.048	0.048	0.99	85	
Φ + WL ss	0.282	0.021	0.011	1.85	96	0.853	0.043	0.049	0.88	81	
Φ + R	0.274	0.028	0.012	2.29	99	0.862	0.052	0.048	1.08	86	
Ф + А	0.312	-0.009	0.017	-0.53	29	0.806	-0.004	0.054	-0.08	47	
Φ + α_G	0.307	-0.004	0.019	-0.23	41	0.815	0.005	0.052	0.09	55	
Φ+INBAL	0.302	0.000	0.020	0.02	49	0.818	0.008	0.049	0.17	57	
A+WL _{SG1}	0.273	0.029	0.009	3.19	100	0.860	0.050	0.049	1.02	85	

Best Two Parameter Fit to AR Luminosity Relative to Very Best Two Parameter Fit

- There are 4 pairs of measures within 1 sigma, of the very best 2 parameter fits
- When a measure is paired with ϕ , it is always slightly better than paired with A, though never significantly better.

Tag	Standard deviation						Spearman				
	avg	Dif	unc	sg	%	Avg	dif	Unc	Sg	%	
Φ + WL _{SG1}	0.272					0.865					
A + WL _{SG1}	0.273	-0.002	0.003	-0.565	29	0.860	-0.005	0.005	-0.960	17	
Φ + R	0.274	-0.003	0.004	-0.588	26	0.862	-0.003	0.005	-0.598	31	
Φ + WL _{SG2}	0.275	-0.003	0.003	-0.890	18	0.857	-0.007	0.004	-1.649	5	
A + R	0.275	-0.004	0.006	-0.616	24	0.858	-0.007	0.008	-0.836	19	
Φ + L _s	0.280	-0.008	0.004	-2.196	2	0.858	-0.007	0.005	-1.515	5	
A + WL _{SG2}	0.279	-0.007	0.005	-1.387	8	0.848	-0.017	0.009	-1.866	6	
A+ L _S	0.282	-0.010	0.005	-2.167	2	0.855	-0.010	0.005	-1.771	2	
Φ + WL _{SS}	0.282	-0.010	0.006	-1.784	6	0.853	-0.012	0.007	-1.695	3	

Best single and Double Parameter Predictor of AR Luminosity

Results

- AR 94H luminosity is correlated with several magnetic parameters
- Some of the magnetic parameters are correlated with each other
- The best single is length of strong field neutral line
- Total Magnetic Flux is almost as good
- The best pair are total magnetic flux and gradient weighted neutral line length, with several others pairs almost as good
 - Can replace total magnetic flux with magnetic area
 - Can replace WL_{SG1} with R or WL_{SG2}.
- Investigation of a 3rd Parameter only finds a 1 sigma improvement.
 - Not shown