Supplementary Information

Tree height and leaf drought tolerance traits shape growth responses across droughts in a temperate broadleaf forest

Ian R. McGregor, Ryan Helcoski, Norbert Kunert, Alan J. Tepley, Erika B. Gonzalez-Akre, Valentine Herrmann, Joseph Zailaa, Atticus E.L. Stovall, Norman A. Bourg, William J. McShea, Neil Pederson, Lawren Sack, Kristina J. Anderson-Teixeira

List of Tables

	Table S1. Monthly Palmer Drought Severity Index (PDSI), and its rank among all years between 1950 and 2009 (driest=1), for focal droughts	3
2	Table S2. Species-specific regression equations for bark thickness (mm) as a function of diameter at breast height without bark (mm).	4
3	Table S3. Species-specific regression equations for height (m) as a function of DBH (cm)	5
4	Table S4. Individual tests of species traits as drivers of drought resistance, where Rt is used as the response variable	6
5	Table S5. Individual tests of species traits as drivers of drought resistance, where Rt_{ARIMA} is used as the response variable	7
6	Table S6. Individual tests of species traits as drivers of drought recovery (Rc)	8
7	Table S7. Individual tests of species traits as drivers of drought resilience (Rs)	9
8	Table S8. Summary of top full models for each drought instance, where Rt is used as the response variable	10
9	Table S9. Summary of top models for each drought instance, where Rt_{ARIMA} is used as the response variable	11
10	Table S10. Summary of top models for each drought instance, where Rc is used as the response variable	12
11	Table S11. Summary of top models for each drought instance, where Rs is used as the response variable	13
List	of Figures	
1	Figure S1. Time series of Palmer Drought Severity Index (PDSI) for each focal drought year \pm 2 years	14
2	Figure S2. Map of ForestGEO plot showing topographic wetness index (color scale) and location of cored trees. Scale units are in meters	15

3	Figure S3. Distribution of reconstructed tree heights across drought years	16
4	Figure S4. Distribution of independent variables by species. Species that are assigned the same letter are not significantly different from each other with regard to the tested variable. Letter groupings do not transfer between variables	17
5	Figure S5. Comparison of Rt and Rt_{ARIMA} results, with residuals, for each drought scenario	18
6	Figure S6. Density plot of drought recovery (Rc) values for each focal drought year.	19
7	Figure S7. Drought recovery (Rc) across species for the three focal droughts. Species that are assigned the same letter are not significantly different from each other with regard to the tested variable. Letter groupings do not transfer between variables.	20
	variables	_

Methods S1. Further Package Citations

Warning: package 'knitr' was built under R version 3.6.3

Warning: package 'kableExtra' was built under R version 3.6.3

Table S1. Monthly Palmer Drought Severity Index (PDSI), and its rank among all years between 1950 and 2009 (driest=1), for focal droughts.

year	month	PDSI	rank
1966	May	-2.98	2
	June	-3.40	2
	July	-4.08	2
	August	-4.82	1
1977	May	-2.96	3
	June	-3.28	3
	July	-3.61	3
	August	-3.68	3
1999	May	-3.63	1
	$\overline{\mathrm{June}}$	-4.21	1
	July	-4.53	1
	August	-4.64	2

Table S2. Species-specific regression equations for bark thickness (mm) as a function of diameter at breast height without bark (mm).

Species	Equations	R^2
Carya cordiformis Carya glabra Carya ovalis Carya tomentosa Fagus grandifolia	$ln[r_{bark}] = -1.56 + 0.416 * ln[DBH]$ $ln[r_{bark}] = -0.393 + 0.268 * ln[DBH]$ $ln[r_{bark}] = -2.18 + 0.651 * ln[DBH]$ $ln[r_{bark}] = -0.477 + 0.301 * ln[DBH]$	0.226 0.04 0.389 0.297
Fraxinus americana Juglans nigra Liriodendron tulipifera Quercus alba Quercus prinus	$ln[r_{bark}] = 0.418 + 0.268 * ln[DBH]$ $ln[r_{bark}] = 0.346 + 0.279 * ln[DBH]$ $ln[r_{bark}] = -1.14 + 0.463 * ln[DBH]$ $ln[r_{bark}] = -2.09 + 0.637 * ln[DBH]$ $ln[r_{bark}] = -1.31 + 0.528 * ln[DBH]$	0.256 0.246 0.545 0.603 0.577
Quercus rubra Quercus velutina	$ln[r_{bark}] = -0.593 + 0.292 * ln[DBH]$ $ln[r_{bark}] = 0.245 + 0.219 * ln[DBH]$	$0.101 \\ 0.087$

We used linear regression on log-transformed data to relate r_{bark} to the diameter inside bark from 2008 data. These were then used to determine r_{bark} in the DBH_Y reconstruction (DBH in year Y). No bark correction was applied for $Fagus\ grandifolia$, which has thin bark.

Table S3. Species-specific regression equations for height (m) as a function of DBH (cm)

Species	Equations	R^2
Carya cordiformis	ln[H] = 0.332 + 0.808*ln[DBH]	0.874
Carya glabra	$\ln[H] = 0.685 + 0.691 \cdot \ln[DBH]$	0.841
Carya ovalis	$\ln[H] = 0.533 + 0.741 \ln[DBH]$	0.924
Carya tomentosa	$\ln[H] = 0.726 + 0.713 \ln[DBH]$	0.897
Fagus grandifolia	$\ln[H] = 0.708 + 0.662 * \ln[DBH]$	0.857
Liriodendron tulipifera	ln[H] = 1.33 + 0.52*ln[DBH]	0.771
Quercus alba	$\ln[H] = 0.74 + 0.645 * \ln[DBH]$	0.719
Quercus prinus	$\ln[H] = 0.41 + 0.757 \cdot \ln[DBH]$	0.886
Quercus rubra	$\ln[H] = 1.00 + 0.574 \cdot \ln[DBH]$	0.755
all	ln[H] = 0.839 + 0.642*ln[DBH]	0.857

Table S4. Individual tests of species traits as drivers of drought resistance, where Rt is used as the response variable.

		all droughts		1966		1977		1999	
variable	category	$\Delta { m AICc}$	coefficients						
xylem porosity	R	-0.8	0.0630	2.29**	0.190	1.92	-0.152	3.36**	0.1500
	D/SR		0.0000		0.000		0.000		0.0000
PLA		6.7**	-0.0140	9.13**	-0.025	-0.32	-0.010	-0.95	-0.0070
LMA		-2.01	0.0002	-1.9	0.001	-1.68	-0.002	-2.03	0.0003
π_{tlp}		1.33	-0.1740	-1.65	-0.107	1.23	-0.245	-0.1	-0.1690
WD		-1.97	-0.0310	-1.26	-0.206	-1.44	-0.154	0.66	0.2720

^{**} $\Delta AICc > 2$: variable considered significant as an individual predictor

Table S5. Individual tests of species traits as drivers of drought resistance, where Rt_{ARIMA} is used as the response variable.

		all o	all droughts		1966		1977		1999
variable	category	$\Delta { m AICc}$	coefficients	$\Delta AICc$	coefficients	$\Delta { m AICc}$	coefficients	$\Delta AICc$	coefficients
xylem porosity	R	-1.47	0.0420	0.95	0.1520	2.84**	-0.171	2.27**	0.155
	D/SR		0.0000		0.0000		0.000		0.000
PLA	•	4.48**	-0.0120	10.15**	-0.0240	-0.9	-0.008	-1.67	-0.005
LMA		-1.99	-0.0003	-2.02	0.0005	-0.42	-0.003	-1.9	0.001
π_{tlp}		0.42	-0.1510	-1.94	-0.0530	-0.53	-0.179	0.04	-0.200
WD		-1.94	-0.0390	-0.08	-0.3040	-1.57	-0.142	0.83	0.316

^{**} $\Delta AICc > 2$: variable considered significant as an individual predictor

Table S6. Individual tests of species traits as drivers of drought recovery (Rc).

		all droughts		1966		1977		1999	
variable	category	$\Delta { m AICc}$	coefficients	$\Delta { m AICc}$	coefficients	$\Delta { m AICc}$	coefficients	$\Delta AICc$	coefficients
xylem porosity	R	15.25**	-0.280	9.9**	-0.474	-1.67	-0.0370	17.06**	-0.3380
	D/SR		0.000		0.000		0.0000		0.0000
PLA		-1.98	0.002	-1.33	0.014	1.10	-0.0090	-2.03	0.0010
LMA		-1.35	-0.002	0.32	-0.008	-2.04	-0.0001	-2.03	-0.0005
π_{tlp}		-1.13	-0.149	-1.94	-0.101	1.08	-0.1630	-1.14	-0.2020
WD		-1.86	-0.088	-1.6	0.278	-1.68	-0.0980	-1.03	-0.2950

^{**} $\Delta {\rm AICc} > 2$: variable considered significant as an individual predictor

Table S7. Individual tests of species traits as drivers of drought resilience (Rs).

		all droughts			1966		1977		1999
variable	category	$\Delta { m AICc}$	coefficients						
xylem porosity	R	0.24	-0.147	-1.29	-0.110	1.42	-0.263	-1.11	-0.0840
	D/SR		0.000		0.000		0.000		0.0000
PLA		1.09	-0.016	1.09	-0.020	-0.51	-0.017	0.67	-0.0130
LMA		-1.9	-0.001	-1.00	-0.004	-1.95	-0.001	-2.02	-0.0004
π_{tlp}		2.5**	-0.347	-1.11	-0.212	1.57	-0.468	6.11**	-0.3730
WD		-1.83	-0.109	-2.05	-0.020	-1.37	-0.298	-2.02	0.0360

^{**} $\Delta {\rm AICc} > 2$: variable considered significant as an individual predictor

Table S8. Summary of top full models for each drought instance, where Rt is used as the response variable.

drought	$\Delta { m AICc}$	$MarginalR^2$	$Conditional R^2$	Intercept	ln[H]	ln[TWI]	ln[H] * ln[TWI]	PLA	π_{tlp}
		<u> </u>		1					
all	0.000	0.08	0.12	1.131	-0.057	-0.086	_	-0.012	-0.113
	0.583	0.06	0.11	1.423	-0.055	-0.086	-	-0.013	_
	0.726	0.08	0.12	1.537	-0.202	-0.326	0.082	-0.012	-0.114
	1.352	0.06	0.11	1.826	-0.198	-0.324	0.081	-0.013	-
1966	0.000	0.16	0.25	1.622	-0.135	-	-	-0.025	-
1977	0.000	0.06	0.22	0.503	_	-0.144	-	_	-0.24
	0.908	0.01	0.21	1.069	-	-0.144	-	-	-
	0.988	0.06	0.22	0.568	-0.03	-0.139	-	-	-0.246
	1.144	0.08	0.24	0.684	-	-0.142	-	-0.007	-0.204
	1.267	0.04	0.22	1.211	-	-0.141	-	-0.01	-
1999	0.000	0.01	0.18	1.061	_	-0.102	_	_	_
	0.023	0.04	0.19	0.659	-	-0.101	-	-	-0.169
	0.954	0.02	0.19	1.157	-	-0.1	-	-0.007	-
	1.513	0.05	0.21	0.783	-	-0.1	-	-0.005	-0.145
	1.803	0.01	0.18	1.024	0.013	-0.103	-	-	-
	1.901	0.04	0.19	0.635	0.011	-0.102	-	-	-0.166

Models are ranked by AICc. Shown are all models whose AICc value falls within 2.0 (Δ AICc<1) of the best model (bold). R^2 refers to conditional R^2 . Year was included in the model for all drought years and appeared in all its top models, but coefficients were small (1966: 0, 1977: -0.019, 1999: -0.005; same values in all top models).

Table S9. Summary of top models for each drought instance, where Rt_{ARIMA} is used as the response variable.

drought	$\Delta AICc$	$Marainal R^2$	$Conditional R^2$	Intercept	ln[H]	ln[TWI]	ln[H] * ln[TWI]	PLA	π_{tlp}
					***[]	***[= /	***[==] * ***[= ** =]		···tip
all	0.000	0.05	0.09	2.113	-0.307	-0.506	0.14	-0.012	_
	0.419	0.06	0.10	1.872	-0.31	-0.508	0.141	-0.011	-0.096
	1.217	0.05	0.09	1.395	-0.06	-0.1	-	-0.012	-
	1.698	0.06	0.10	1.153	-0.062	-0.1	-	-0.011	-0.095
1966	0.000	0.17	0.23	1.660	-0.154	_	_	-0.024	_
1500	1.393	0.17	0.23	1.735	-0.154	-0.047		-0.024	_
	1.457	0.16	0.23	1.859	-0.152	-	-	-0.025	0.078
1977	0.000	0.01	0.16	1.130	_	-0.18			
1977							0.05	-	-
	0.424 0.688	0.02 0.03	0.16 0.17	2.453 0.720	-0.461	-0.896 -0.179	0.25	-	- -0.173
	0.088 0.922	0.03	0.17	2.040	- -0.466	-0.179 -0.898	- 0.251	-	-0.173
	0.922 0.927	0.04	0.17	1.248	-0.400 -	-0.898 -0.177	0.231	-0.008	-0.16
	1.322	0.03	0.17	2.569	-0.461	-0.177	0.25	-0.008	
	1.709	0.03	0.17	1.183	-0.401	-0.893 -0.177	0.25		-
	1.709	0.01	0.13	1.100	-0.02	-0.177	-	=	-
1999	0.000	0.04	0.20	0.563	-	-0.076	-	-	-0.2
	0.064	0.03	0.19	0.421	-	-	-	-	-0.202
	0.127	0.00	0.18	1.036	-	-0.077	-	-	-
	0.256	0.00	0.18	0.899	-	-	-	-	-
	1.777	0.04	0.20	0.529	0.016	-0.078	-	-	-0.195
	1.797	0.01	0.20	1.101	-	-0.076	-	-0.004	-
	1.815	0.00	0.18	0.986	0.018	-0.079	-	-	-
	1.838	0.01	0.20	0.972	-	-	-	-0.005	-
	1.933	0.03	0.19	0.391	0.012	-	-	-	-0.199
	1.979	0.04	0.21	0.612	-	-0.075	-	-0.002	-0.19
	1.999	0.04	0.21	0.482	-	-	-	-0.002	-0.19

Models are ranked by AICc. Shown are all models whose AICc value falls within 2.0 (Δ AICc<1) of the best model (bold). R^2 refers to conditional R^2 . Year was included in the model for all drought years and appeared in all its top models, but coefficients were small (1966: 0, 1977: -0.03, 1999: 0.008; same values in all top models).

Table S10. Summary of top models for each drought instance, where Rc is used as the response variable.

drought	$\Delta AICc$	$Marginal R^2$	$Conditional R^2$	Intercept	ln[H]	ln[TWI]	ln[H] * ln[TWI]	PLA	π_{tlp}
all	0.000	0.05	0.17	0.434	0.345	0.844	-0.269	-	-
	0.995	0.05	0.17	1.913	-0.126	-	-	-	-
	1.135	0.06	0.17	0.077	0.344	0.845	-0.269	-	-0.152
	1.991	0.05	0.18	0.410	0.346	0.843	-0.269	0.002	-
1000	0.000	0.04	0.00	0.00	0.00	1 000	0.455		
1966	0.000	0.01	0.28	-0.797	0.89	1.263	-0.475	-	-
	1.040	0.00	0.25	1.577	-	-		-	-
	1.367	0.02	0.30	-0.984	0.888	1.257	-0.474	0.013	-
	1.785	0.00	0.26	1.781	-	-0.114	-	-	-
	1.956	0.01	0.30	-1.025	0.89	1.261	-0.475	-	-0.097
1977	0.000	0.17	0.17	2.485	-0.482	_	_	_	-0.157
1011	0.299	0.17	0.17	2.943	-0.47	_	_	-0.008	-
	0.716	0.17	0.18	2.657	-0.477	_	_	-0.006	-0.114
	0.807	0.17	0.18	1.152	0.071	1.026	-0.308	-0.009	-
	0.875	0.17	0.18	2.729	-0.47	0.124	-	-0.009	_
	0.891	0.17	0.18	2.271	-0.479	0.115	_	-	-0.158
	0.910	0.17	0.18	0.712	0.054	1.004	-0.304	_	-0.159
	1.315	0.17	0.18	0.871	0.065	1.023	-0.308	-0.006	-0.112
	1.331	0.16	0.17	2.805	-0.464	-	-	-	-
	1.372	0.17	0.18	2.445	-0.475	0.122	_	-0.006	-0.112
	1.974	0.16	0.17	2.597	-0.466	0.118	-	-	-
1999	0.000	0.00	0.16	1.281	-	-	-	-	-
	0.532	0.00	0.17	1.093	-	0.105	-	-	-
	1.091	0.02	0.19	0.779	-	-	-	-	-0.212
	1.609	0.02	0.19	0.578	-	0.106	-	-	-0.217
	1.755	0.00	0.17	1.200	0.027	-	-	-	-
	1.996	0.00	0.18	1.251	-	-	-	0.002	-

Models are ranked by AICc. Shown are all models whose AICc value falls within 2.0 (Δ AICc<1) of the best model (bold). R^2 refers to conditional R^2 . Year was included in the model for all drought years and appeared in all its top models (1966: 0, 1977: -0.14, 1999: -0.217; same values in all top models).

Table S11. Summary of top models for each drought instance, where Rs is used as the response variable.

drought	$\Delta AICc$	$MarginalR^2$	$Conditional R^2$	Intercept	ln[H]	ln[TWI]	ln[H] * ln[TWI]	PLA	π_{tlp}
all	0.000	0.10	0.17	-0.265	0.348	0.864	-0.291	-0.012	-0.287
	0.176	0.08	0.16	-0.572	0.347	0.859	-0.291	-	-0.347
	1.518	0.07	0.16	0.458	0.354	0.866	-0.292	-0.016	-
	1.552	0.09	0.17	1.253	-0.166	-	-	-0.011	-0.288
	1.698	0.08	0.16	0.940	-0.166	-	-	-	-0.348
1000	0.000	0.04	0.15	1.004	0.005			0.00	
1966	0.000	0.04	0.15	1.834		-	-	-0.02	-
	0.402	0.03	0.16	1.589	- 0.000	-	-	-0.02	-
	1.189	0.00	0.14	1.534	-0.082	-	-	-	-
	1.313	0.00	0.15	1.293	- 0.005	-	-	- 0.010	- 0.110
	1.692	0.04	0.16	1.534	-0.085	-	-	-0.018	-0.116
1977	0.000	0.14	0.28	-0.932	0.294	1.207	-0.384	_	-0.467
	0.497	0.13	0.28	1.194	-0.383	-	-	_	-0.469
	1.304	0.15	0.30	-0.648	0.294	1.208	-0.383	-0.011	-0.411
	1.542	0.13	0.28	1.026	-0.387	0.095	-	-	-0.472
	1.555	0.09	0.28	0.138	0.304	1.211	-0.385	_	_
	1.852	0.14	0.29	1.467	-0.381	-	-	-0.01	-0.416
1999	0.000	0.07	0.13	0.237	-	-	-	-	-0.366
	0.313	0.08	0.14	0.472	-	-	-	-0.008	-0.317
	0.503	0.07	0.13	0.358	-0.048	-	-	-	-0.376
	0.532	0.07	0.13	0.394	-	-0.086	-	-	-0.364
	0.726	0.09	0.14	0.588	-0.047	-	-	-0.008	-0.328
	1.079	0.09	0.15	0.602	-	-0.081	-	-0.008	-0.319
	1.249	0.07	0.13	0.495	-0.044	-0.08	-	-	-0.374
	1.706	0.09	0.14	0.699	-0.044	-0.075	-	-0.007	-0.329

Models are ranked by AICc. Shown are all models whose AICc value falls within 2.0 (Δ AICc<1) of the best model (bold). R^2 refers to conditional R^2 . Year was included in the model for all drought years and appeared in all its top models (1966: 0, 1977: -0.099, -0.099, -0.099, -0.097, -0.097; 1999: -0.174, -0.174, -0.174, -0.173, -0.172).

Figure S1. Time series of Palmer Drought Severity Index (PDSI) for each focal drought year \pm 2 years

Figure S2. Map of ForestGEO plot showing topographic wetness index (color scale) and location of cored trees. Scale units are in meters

Figure S3. Distribution of reconstructed tree heights across drought years.

Figure S4. Distribution of independent variables by species. Species that are assigned the same letter are not significantly different from each other with regard to the tested variable. Letter groupings do not transfer between variables.

Figure S5. Comparison of Rt and Rt_{ARIMA} results, with residuals, for each drought scenario

Figure S6. Density plot of drought recovery (Rc) values for each focal drought year.

Figure S7. Drought recovery (Rc) across species for the three focal droughts. Species that are assigned the same letter are not significantly different from each other with regard to the tested variable. Letter groupings do not transfer between variables.

Methods S1. Further Package Citations

While there were several R-packages we used for a specific purpose in our methods, numerous packages were immensely helpful for this research behind the scenes. R-packages not already cited in the main manuscript include the following, listed alphabetically by corresponding package name:

R base (R Core Team 2019); broom (Robinson and Hayes 2020); car (Fox, Weisberg, and Price 2019); cowplot (Wilke 2019); data.table (Dowle and Srinivasan 2019); devtools (Wickham, Hester, and Chang 2020); dplR (Bunn et al. 2019); dplyr (Wickham, François, et al. 2020); extrafont (Winston Chang 2014); ggplot2 (Wickham, Chang, et al. 2019); ggpubr (Kassambara 2020); ggthemes (Arnold 2019); gridExtra (Auguie 2017); knitr (Xie 2020); lubridate (Spinu, Grolemund, and Wickham 2018); MuMIn (Barton 2019); piecewiseSEM (Lefcheck, Byrnes, and Grace 2019); png (Urbanek 2013); purrr (Henry and Wickham 2019); raster (Hijmans 2020); rasterVis (Perpinan Lamigueiro and Hijmans 2019); RCurl (Temple Lang 2020); readxl (Wickham and Bryan 2019); reshape2 (Wickham 2017); rgdal (Bivand, Keitt, and Rowlingson 2019); rgeos (Bivand and Rundel 2019); rmarkdown (Allaire et al. 2020); sf (Pebesma 2020); stringi (Gagolewski et al. 2020); stringr (Wickham 2019); tidyr (Wickham and Henry 2020)

References

Allaire, JJ, Yihui Xie, Jonathan McPherson, Javier Luraschi, Kevin Ushey, Aron Atkins, Hadley Wickham, Joe Cheng, Winston Chang, and Richard Iannone. 2020. *Rmarkdown: Dynamic Documents for R.* https://CRAN.R-project.org/package=rmarkdown.

Arnold, Jeffrey B. 2019. *Ggthemes: Extra Themes, Scales and Geoms for 'Ggplot2'*. https://CRAN.R-project.org/package=ggthemes.

Auguie, Baptiste. 2017. *GridExtra: Miscellaneous Functions for "Grid" Graphics*. https://CRAN.R-project.org/package=gridExtra.

Barton, Kamil. 2019. MuMIn: Multi-Model Inference. https://CRAN.R-project.org/package=MuMIn.

Bivand, Roger, Tim Keitt, and Barry Rowlingson. 2019. Rgdal: Bindings for the 'Geospatial' Data Abstraction Library. https://CRAN.R-project.org/package=rgdal.

Bivand, Roger, and Colin Rundel. 2019. Rgeos: Interface to Geometry Engine - Open Source ('Geos'). https://CRAN.R-project.org/package=rgeos.

Bunn, Andy, Mikko Korpela, Franco Biondi, Filipe Campelo, Pierre Mérian, Fares Qeadan, and Christian Zang. 2019. *DplR: Dendrochronology Program Library in R.* https://CRAN.R-project.org/package=dplR.

Dowle, Matt, and Arun Srinivasan. 2019. Data.table: Extension of 'Data.frame'. https://CRAN.R-project.org/package=data.table.

Fox, John, Sanford Weisberg, and Brad Price. 2019. Car: Companion to Applied Regression. https://CRAN.R-project.org/package=car.

Gagolewski, Marek, Bartek Tartanus, other contributors; IBM, Unicode, Inc., other contributors; Unicode, and Inc. 2020. Stringi: Character String Processing Facilities. https://CRAN.R-project.org/package=stringi.

Henry, Lionel, and Hadley Wickham. 2019. Purrr: Functional Programming Tools. https://CRAN.R-project.org/package=purrr.

Hijmans, Robert J. 2020. Raster: Geographic Data Analysis and Modeling. https://CRAN.R-project.org/package=raster.

Kassambara, Alboukadel. 2020. Ggpubr: 'Ggplot2' Based Publication Ready Plots. https://CRAN.R-project.org/package=ggpubr.

Lefcheck, Jon, Jarrett Byrnes, and James Grace. 2019. *PiecewiseSEM: Piecewise Structural Equation Modeling*. https://CRAN.R-project.org/package=piecewiseSEM.

Pebesma, Edzer. 2020. Sf: Simple Features for R. https://CRAN.R-project.org/package=sf.

Perpinan Lamigueiro, Oscar, and Robert Hijmans. 2019. Raster Vis: Visualization Methods for Raster Data. https://CRAN.R-project.org/package=rasterVis.

R Core Team. 2019. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/.

Robinson, David, and Alex Hayes. 2020. Broom: Convert Statistical Analysis Objects into Tidy Tibbles. https://CRAN.R-project.org/package=broom.

Spinu, Vitalie, Garrett Grolemund, and Hadley Wickham. 2018. Lubridate: Make Dealing with Dates a Little Easier. https://CRAN.R-project.org/package=lubridate.

Temple Lang, Duncan. 2020. RCurl: General Network (Http/Ftp/...) Client Interface for R. https://CRAN.R-project.org/package=RCurl.

Urbanek, Simon. 2013. Png: Read and Write Png Images. https://CRAN.R-project.org/package=png.

Wickham, Hadley. 2017. Reshape2: Flexibly Reshape Data: A Reboot of the Reshape Package. https://CRAN.R-project.org/package=reshape2.

——. 2019. Stringr: Simple, Consistent Wrappers for Common String Operations. https://CRAN.R-project.org/package=stringr.

Wickham, Hadley, and Jennifer Bryan. 2019. Readxl: Read Excel Files. https://CRAN.R-project.org/package=readxl.

Wickham, Hadley, Winston Chang, Lionel Henry, Thomas Lin Pedersen, Kohske Takahashi, Claus Wilke, Kara Woo, and Hiroaki Yutani. 2019. *Ggplot2: Create Elegant Data Visualisations Using the Grammar of Graphics*. https://CRAN.R-project.org/package=ggplot2.

Wickham, Hadley, Romain François, Lionel Henry, and Kirill Müller. 2020. Dplyr: A Grammar of Data Manipulation. https://CRAN.R-project.org/package=dplyr.

Wickham, Hadley, and Lionel Henry. 2020. *Tidyr: Tidy Messy Data*. https://CRAN.R-project.org/package=tidyr.

Wickham, Hadley, Jim Hester, and Winston Chang. 2020. Devtools: Tools to Make Developing R Packages Easier. https://CRAN.R-project.org/package=devtools.

Wilke, Claus O. 2019. Cowplot: Streamlined Plot Theme and Plot Annotations for 'Ggplot2'. https://CRAN.R-project.org/package=cowplot.

Winston Chang. 2014. Extrafont: Tools for Using Fonts. https://CRAN.R-project.org/package=extrafont. Xie, Yihui. 2020. Knitr: A General-Purpose Package for Dynamic Report Generation in R. https://CRAN. R-project.org/package=knitr.