7 Integrations- und Ableitungstabelle

$\textbf{Ableitung} \tfrac{df}{dx} \qquad \leftarrow $	Funktion $f(x)$	\rightarrow Integral $\int f(x) dx$
Konstanten		
0	$c c \in \mathbb{R}$	cx
Potenzfunktionen		
c	$c \cdot x$	$\frac{c}{2}x^2$
$r \cdot x^{r-1}$	$x^r r \in \mathbb{R} \backslash \{-1\}$	$\frac{x^{r+1}}{r+1}$
$-x^{-2} = -\frac{1}{x^2}$	$\frac{1}{x} = x^{-1}$	$\ln x $
$-x^{-2} = -\frac{1}{x^2}$ $\frac{1}{2\sqrt{x}} = \frac{1}{2}x^{-\frac{1}{2}}$	$\sqrt{x} = x^{\frac{1}{2}}$	$\frac{2}{3}x^{\frac{3}{2}}$
Exponentialfunktionen		
e^x	e^x	e^x
$a e^{ax}$	e^{ax}	$\frac{1}{a} e^{ax}$
$a^x \ln a $	a^x	$\underline{a^x}$
Logarithmusfunktionen		$\ln a $
$\frac{1}{x}$	$\ln x $	$x\left(\ln x -1\right)$
$\frac{x}{\frac{1}{x \ln a }}$	$\log_a x $	$x \left(\log_a a - \log_a e \right)$
$\frac{x \ln a }{\text{Winkelfunktionen}}$	04 **	(84
$\cos(x)$	$\sin\left(x\right)$	$-\cos\left(x\right)$
$-\sin(x)$	$\cos\left(x\right)$	$\sin(x)$
$1 + \tan^2(x)$	$\tan(x)$	$-\ln \cos(x) $
$-1 - \cot^2(x)$	$\cot(x)$	$\ln \sin(x) $
Inverse Winkelfunktionen	. ,	
1	$\arcsin(x)$	$x \cdot \arcsin(x) + \sqrt{1 - x^2} + C$
$\sqrt{1-x^2}$, ,	
$-\frac{1}{\sqrt{1-x^2}}$	$\arccos(x)$	$x \cdot \operatorname{arccos}(\mathbf{x}) - \sqrt{1 - x^2} + C$
$\frac{1}{1+x^2}$	$\arctan(x)$	$x \cdot \arctan(x) - \frac{1}{2}\ln(1+x^2) + C$
$-\frac{1}{1+x^2}$	$\operatorname{arccot}(x)$	$x \cdot \arctan(x) + \frac{1}{2}\ln(1+x^2) + C$
Hyperbolische Funktionen		
$\cosh(x)$	$\sinh(x) = \frac{1}{2}(e^x - e^{-x})$	$\cosh(x) + C$
$\sinh(x)$	$\cosh(x) = \frac{1}{2}(e^x + e^{-x})$	$\sinh(x) + C$
$1 - \tanh^2(x)$	$\tanh(x) = \frac{\sinh(x)}{\cosh(x)}$	$\ln(\cosh(x)) + C$
Area Hyperbolische Funktione	en	
$\frac{1}{\sqrt{x^2+1}}$	$\operatorname{arsinh}(x) = \ln(x + \sqrt{x^2 + 1})$	$x \cdot \operatorname{arsinh}(x) - \sqrt{x^2 + 1} + C$
$ \frac{\sqrt{x^{2} + 1}}{\sqrt{x^{2} - 1}} $ $ \frac{1}{1 - x^{2}} $	$\operatorname{arcosh}(x) = \ln(x + \sqrt{x^2 - 1})$	$x \cdot \operatorname{arcosh}(x) - \sqrt{x^2 - 1} + C$
1 - 1	$\operatorname{artanh}(x) = \frac{1}{2} \ln \left(\frac{1+x}{1-x} \right)$	$x \cdot \operatorname{artanh}(x) - \frac{1}{2}\ln(1-x^2) + C$