Tema II - Ex. 3

Ichim Teodora & Radu Mihai-Emilian - 2B1

a) Notam cu T arborele partial de cost minim al grafului

" \Longrightarrow " Consideram A o taietura si S si S' doua multimi disjuncte generate de A.

In arborele partial al grafului multimile S si S' sunt conectate.

Consideram e ϵ A muchia pe care o adaugam pentru a forma arborele partial.

Cum c(e) este cel mai mic din $A \implies e\epsilon T$.

$$\implies$$
 e=min(c(e')), $\forall e \epsilon A$

" \Leftarrow " Consideram $e \in E(T) \implies T - e$ va contine doua multimi stabile S si $S' \implies e \in A$, unde A este o taietura ce genereaza S si S'.

Cum T este arbore partial minim \implies muchia e a fost aleasa astfel incat ea sa fie de cost minim

$$\implies c(e)$$
 este cel mai mic din A.

b) Consideram T un arbore partial de cost minim.

" \Longrightarrow " Fie C un circuit din G, un arbore partial nu contine circuite $\Longrightarrow T$ nu contine circuite. \Longrightarrow va trebui sa eliminam o muchie e din circuitul C Si cum T este arbore partial de cost minim va trebui sa eliminam muchia cu cel mai mare cost

$$\implies$$
 daca $c(e)$ este maxim in $C, e \notin T$

" \Leftarrow " Consideram e muchia de cost maxim dintr-un circuit C. Presupunem ca e ϵ T, T este arbore partial \Longrightarrow alta muchie v ϵC va trebui eliminata pentru a elimina circuitul.

$$c(e) = maxim \implies c(v) < c(e) \implies T$$
nu este arbore partial.

- c) Cazul I G nu are circuite $\stackrel{G \ conex}{\Longrightarrow} G$ este arbore. $\Longrightarrow G$ arbore partial de cost minim \Longrightarrow toate muchiile vor fi colorate cu verde \Longrightarrow cand algoritmul se opreste nu va fi nici o muchie rosie.
- Cazul II G are circuite, algormitmul va colora cu albastru muchia de cost maxim din fiecare circuit \implies va ramane un arbore care va fi de cost minim \implies toate muchiile ramase vor fi colorate cu verde \implies la final nu va mai fi nici o muchie rosie.
- d) Dintr-un graf conex se obtine un graf partial indepartand circuitele. Pentru a face asta trebuie sa indepartam cate o muchie din fiecare circuit conform $\stackrel{b}{\Longrightarrow}$ muchia eliminata va fi cea de cost maxim.

Cum c injectiva $\Longrightarrow \forall x, y \in E(G), c(x) \neq c(y) \Longrightarrow$ toate grafurile partiale de cost minim vor indeparta aceleasi muchii \Longrightarrow exista un singur arbore partial de cost minim \Longrightarrow in \forall ordine am elimina muchiile algoritmul se va opri.