

NAME: <u>AYESHA FATIMA</u>

ROLL NUMBER: <u>CF-004</u>

ASSIGNMENT: STOCHASTIC MODELS IN FINANCE

COURSE INSTRUCTOR: MISS MALIHA

DEPENDANT SERIES: <u>IMPORTS</u>

INDEPENDENT SERIES: <u>EXPORTS & WORKERS' REMITTANCES</u>

DEPENDENT SERIES:

M (Imports)

INDEPENDENT SERIES:

X (Exports)

I) ESTIMATING REGRESSION:

T-stats of Beta is greater than 2 which means regression coefficients are statistically significant.

R-squared is nearly close to 1, which means that model is good fitted.

II) ESTIMATING EQUATIONS:

II) CHECKING AUTOCORRELATION:

Since DW-Stat is less than 2 hence it means that there is Autocorrelation in the model.

III) REMOVING AUTOCORRELATION (APPLYING LAG):

Since the DW-stat is now greater than 2 which means series has no Autocorrelation.

IV) ESTIMATING LAGGED EQUATIONS:

V) CHECKING HETEROSCADESTICITY:

Since the P-value of OBS* R-squared is less than 0.05 hence there is no heteroscedasticity. Hence reject the null hypothesis that there exists heteroscedasticity.

V) CHECKING STATIONARITY:

i) Graphical method:

It shows trend which means the series is non-stationary.

ii) Augmented Dicky Fuller Test:

Since the probability of Dicky Fuler Statistics is greater than 0.05 hence the series is non-stationary.

iii) Correlogram:

Since Correlogram shows the systematic decay in the Auto Correlation Function. Hence the series is non-stationary

V) MAKING SERIES STATIONARY (APPLYING DIFFERENCE):

I) Checking Graphically:

Ii) Checking Augmented Dicky Fullar Stats:

Iii) Checking Correlogram:

Since all above statistics show that now series has become stationary and is good for forcasting.

DEPENDENT SERIES:

M (Imports)

INDEPENDENT SERIES:

WR (Worker Remittances)

I) ESTIMATING REGRESSION:

T-stats of Beta is greater than 2 which means regression coefficients are statistically significant. R-squared is not nearly close to 1, which means that model is not good fitted.

II) ESTIMATING EQUATIONS:

II) CHECKING AUTOCORRELATION:

Since DW-Stat is less than 2 hence it means that there is Autocorrelation in the model.

III) REMOVING AUTOCORRELATION (APPLYING LAG):

Since the DW-stat is now greater than 2 which means series has no Autocorrelation.

IV) ESTIMATING LAGGED EQUATIONS:

V) CHECKING HETEROSCADESTICITY:

Since the P-value of OBS* R-squared is less than 0.05 hence there is no heteroscedasticity. Hence reject the null hypothesis that there exists heteroscedasticity.

V) CHECKING STATIONARITY:

i) Graphical method:

It shows trend which means the series is non-stationary.

ii) Augmented Dicky Fuller Test:

Since the probability of Dicky Fuler Statistics is greater than 0.05 hence the series is non-stationary.

iii) Correlogram:

Since Correlogram shows the systematic decay in the Auto Correlation Function. Hence the series is non-stationary

V) MAKING SERIES STATIONARY (APPLYING DIFFERENCE):

I) Checking Graphically:

Ii) Checking Augmented Dicky Fullar Stats:

Iii) Checking Correlogram:

Since all above statistics show that now series has become stationary and is good for forcasting.