"Scenario 15 - perfect insulation pressure rise then constant volume"

```
F$ = 'Steam_IAPWS'
                                                         "water"
"case A subcooled liquid - little change "
"case B two phase - both T and v change when pressure rises, not sure how to obtain work"
"Ignore cases A and B"
T[1] = 125[c]
                                                         "initial temperature inside and outside"
vol[1] = 1e-3[m3]
                                                         "1 liter volume"
                                                         "0.5 liter volume after pressure rised"
vol[2]=0.5e-3[m3]
                                                         "average Isentropic Exponent"
k=1.27[-]
A_P = pi*dia^2/4
                                                         "cross sectional area of the piston"
m2 = 100[kg]
                                                         "added mass"
dia = 0.1[m]
                                                          "piston diameter"
//delta P = m2*g#/A P*convert(Pa, kPa)
                                                         "added pressure from mass m2"
"Case C - superheated vapor"
"state 1C"
TC[1]=T[1]
                                                         "temperature at state 1"
PC[1] = 101.325[kPa]
                                                         "pressure at state 1"
vC[1] = volume(F\$, T=TC[1], P=PC[1])
                                                         "specific volume at state 1"
hC[1] = enthalpy(F\$, T=TC[1], P=PC[1])
                                                         "specific enthalpy at state 1"
uC[1] = intenergy(F\$, T=TC[1], P=PC[1])
                                                         "specific internal energy at state 1"
sC[1] = entropy(F\$, T=TC[1], P=PC[1])
                                                         "specific entropy at state 1"
mass C = vol[1]/vC[1]
                                                         "mass of H2O"
"state 2C"
vC[2] = vol[2]/mass_C
                                                         "specific volume at state 2"
//guess TC[2] to obtain PC[2] and uC[2], usinguC[2] - uC[1]=-(PC[2]*vC[2]-PC[1]*vC[1])/(1-k) to check
PC[2] = pressure(F\$, T=TC[2], v=vC[2])
                                                          "pressure at state 2"
uC[2] = intenergy(F\$, T=TC[2], v=vC[2])
                                                         "specific internal energy at state 2"
                                                         "determine heat transfer from 1st law"
uC[2] - uC[1]=-(PC[2]*vC[2]-PC[1]*vC[1])/(1-k)
hC[2] = enthalpy(F\$, T=TC[2], v=vC[2])
                                                         "specific enthalpy at state 2"
sC[2] = entropy(F\$, T=TC[2], v=vC[2])
                                                         "specific entropy at state 2"
"state 3C"
vC[3]=vC[2]
                                                         "constant volume"
//Q 23=-1[kW]
                                                         "rate of removing heat"
PC[3]=3[kPa]
                                                         "final pressure at state 3"
                                                         "temperature at state 3"
TC[3]=temperature(F$, v=vC[3], P=PC[3])
hC[3] = enthalpy(F\$, T=TC[3], v=vC[3])
                                                         "specific enthalpy at state 3"
uC[3] = intenergy(F\$, T=TC[3], v=vC[3])
                                                         "specific internal energy at state 3"
                                                         "specific entropy at state 3"
sC[3] = entropy(F\$, T=TC[3], v=vC[3])
//Q_23*time23C/mass_C = (uC[3] - uC[2])
                                                         "1st law at constant volume, no work"
SOLUTION
Unit Settings: SI C kPa kJ mass deg
A_P = 0.007854 \text{ [m}^2\text{]}
                                                             dia = 0.1 [m]
F$ = 'steam iapws'
                                                             k = 1.27
                                                             massc = 0.0005577 [kg]
m2 = 100 [kg]
```

No unit problems were detected.

|--|

	vol _i	T_i	PC_i	TC _i	hC _i	sC _i	uC _i	vC _i	
	[m ³]	[C]	[kPa]	[C]	[kJ/kg]	[kJ/kg-K]	[kJ/kg]	[m3/kg]	
1	0.001	125	101.3	125	2727	7.487	2545	1.793	
2	0.0005		200.4	125.2	2717	7.153	2537	0.8966	
3			3	24.08	148.9	0.5156	146.2	0.8966	

Parametric Table: Case C23

	PC ₃	vC ₃	TC ₃
	[kPa]	[m3/kg]	[C]
Run 1	202.8	0.8966	129.6
Run 2	180.6	0.8966	117
Run 3	158.4	0.8966	113
Run 4	136.2	0.8966	108.5
Run 5	114	0.8966	103.3
Run 6	91.8	0.8966	97.23
Run 7	69.6	0.8966	89.78
Run 8	47.4	0.8966	79.99
Run 9	25.2	0.8966	65.14
Run 10	3	0.8966	24.08

