ANALIZA MATEMATYCZNA

LISTA ZADAŃ 8

29.11.2021

- 1. Niech $f(x) = \sqrt[3]{x^2}$. Korzystając z definicji oblicz f'(8).
- 2. Niech $f(x) = x^5$. Korzystając z definicji wyprowadź wzór na f'(x).
- 3. Niech $n \in \mathbb{N}$. Dobierz stałe a, b, c tak, aby funkcja

$$f_n(x) = \begin{cases} |x| & : & |x| \ge 1/n, \\ ax^2 + bx + c & : & |x| < 1/n \end{cases}$$

była różniczkowalna. Oblicz pochodną $f'_n(x)$, naszkicuj wykres funkcji $f_n(x)$ oraz wykres pochodnej.

4. Oblicz pochodną następujących funkcji. Podaj w jakim zbiorze istnieje pochodna:

(a)
$$f(x) = 3x^2 - 5x + 1$$
,

(b)
$$f(x) = (\sqrt{x} + 1) \left(\frac{1}{\sqrt{x}} - 1 \right)$$
,

(c)
$$f(x) = \frac{1-x^3}{1+x^3}$$
,

(d)
$$f(x) = (1 + \sqrt{x})(1 + x^{1/3})(1 + x^{1/4}),$$

(e)
$$f(x) = (x^2 + 1)^4$$
,

(f)
$$f(x) = \frac{x+1}{x-1}$$
,

(g)
$$f(x) = \frac{x}{x^2 + 1}$$
,

(h)
$$f(x) = (1+2x)^{30}$$

(i)
$$f(x) = \left(\frac{1}{1+x^2}\right)^{1/3}$$
,

(j)
$$f(x) = \frac{1}{\sqrt{1 - x^4 - x^8}}$$
,

$$(k) \quad f(x) = 2^{x+3}$$

$$(1) \quad f(x) = x10^x,$$

(m)
$$f(x) = \frac{x}{e^x}$$
,

(n)
$$f(x) = x^2(x+1)e^x$$
,

(o)
$$f(x) = e^x \log x,$$

(p)
$$f(x) = \frac{\log x}{e^x}$$
,

(q)
$$f(x) = e^{x^2}$$
,
(s) $f(x) = e^{e^x}$,

$$(r) \quad f(x) = x^{10} \log x.$$

(q)
$$f(x) = e^x$$

(t)
$$f(x) = x \log x$$

(t) $f(x) = \log \log x$

(s)
$$f(x) = e^{-x}$$
,
(u) $f(x) = \log_{10}(x - 1)$,
(w) $f(x) = 2^{3^x}$,
(y) $f(x) = e^{\sqrt{\log x}}$,

(v)
$$f(x) = 10^{2x-3}$$
.

(w)
$$f(x) = 2^{3^x}$$
,

$$f(x) = \log_2 |\log_2 |$$

$$(w) \quad f(x) = 2 \quad ,$$

$$(v) \quad f(x) = e^{\sqrt{\log x}}$$

(r)
$$f(x) = x^{16} \log x$$
,
(t) $f(x) = \log \log x$,
(v) $f(x) = 10^{2x-3}$,
(x) $f(x) = \log_2 |\log_3(\log_5 x)|$,
(z) $f(x) = x^{x^2}$,
(ab) $f(x) = e^{-x^2} \log x$,

(y)
$$f(x) = e^{\sqrt{\log x}}$$

(aa) $f(x) = x^{x^x}$,

$$(z) \quad f(x) = x^{\omega} ,$$

(ac)
$$f(x) = (\log x)^x$$
,

$$(ad) \quad f(x) = e^{-x^2} \log x,$$

(ae)
$$f(x) = \left(\sqrt{x} - \frac{1}{\sqrt{x}}\right)^{10}$$
,

(af)
$$f(x) = x^5(x^6 - 8)^{1/3}$$

(ag)
$$f(x) = e^{2x+3} \left(x^2 - x + \frac{1}{2} \right)$$
,
(ai) $f(x) = \frac{e^{x^2}}{e^x + e^{-x}}$,

$$(ah) \quad f(x) = \log \frac{1}{1+x},$$

(ai)
$$f(x) = \frac{e^{x^2}}{e^x + e^{-x}}$$

$$(aj) \quad f(x) = |x|^3,$$

(ak)
$$f(x) = \operatorname{sgn} x$$
,

(al)
$$f(x) = \begin{cases} 0 & \text{dla } x < 0, \\ x^2 & \text{dla } x \ge 0 \end{cases}$$

(am)
$$f(x) = e^{-|x|}$$
,

(an)
$$f(x) = \sqrt{\sqrt{1+x^2}-1}$$
,

(ao)
$$f(x) = \{x\},\$$

(an)
$$f(x) = \sqrt{\sqrt{1 + x^2} - 1},$$

(ap) $f(x) = \begin{cases} x & \text{dla } x < 0, \\ x^2 & \text{dla } x \ge 0, \end{cases}$

(aq)
$$f(x) = \text{sgn}(x^5 - x^3),$$

(ar)
$$f(x) = \frac{\pi^{10}}{\pi - e}$$
,

(as)
$$f(x) = \begin{cases} e^x & \text{dla } x < 0, \\ 1 + x & \text{dla } x \ge 0, \end{cases}$$
 (at) $f(x) = x^7 + e^2,$

(at)
$$f(x) = x^7 + e^2$$

(au)
$$f(x) = (x+e)^{20}$$
,

(av)
$$f(x) = e^e$$

- 5. Potrzebna jest kadź w kształcie walca, otwarta od góry, której dno i bok wykonane są z tego samego materiału. Kadź ma mieć pojemność 257 hektolitrów. Jaki powinien być stosunek średnicy dna do wysokości kadzi, aby do jej wykonania zużyć jak najmniej materialu?
- 6. Znajdź najmniejszą i największą wartość funkcji określonej podanym wzorem w podanym przedziale:

(a)
$$f(x) = x^2 + 2x + 21$$
, $[-2, 7]$,

(b)
$$f(x) = |x^2 - 1| + 3x$$
, $[-2, 2]$

(c)
$$f(x) = |x+1| + x^2$$
, $[-10, 10]$

(d)
$$f(x) = |10x - 1| + x^3$$
, $[0, 1]$,

(a)
$$f(x) = x^2 + 2x + 21$$
, $[-2, 7]$, (b) $f(x) = |x^2 - 1| + 3x$, $[-2, 2]$, (c) $f(x) = |x + 1| + x^2$, $[-10, 10]$, (d) $f(x) = |10x - 1| + x^3$, $[0, 1]$, (e) $f(x) = \log(x) - \frac{x}{10}$, $[1, e^3]$, (f) $f(x) = |\sin(x)| + \frac{x}{2}$, $[0, 2\pi]$,

(f)
$$f(x) = |\sin(x)| + \frac{x}{2}$$
, $[0, 2\pi]$,

(g)
$$f(x) = x^{1/x}$$
, $[2, 4]$

(h)
$$f(x) = 3\sin(x) + \sin(3x)$$
, $[0, 2\pi]$.

7. Oblicz granice:

(a)
$$\lim_{x \to 0} \left(\frac{1}{x} - \frac{1}{\sin(x)} \right),$$
(c)
$$\lim_{x \to 0} \frac{e^x - e^{-x}}{\sin(x)},$$

(b)
$$\lim_{x \to \infty} x^{1/x},$$

(c)
$$\lim_{x \to 0} \frac{e^x - e^{-x}}{\sin(x)}$$
,

(d)
$$\lim_{x\to 0} \frac{2\cos(x) + x^2 - 2}{x\sin(x) - x^2}$$
,

(e)
$$\lim_{x \to \infty} xe^{-x}$$

(f)
$$\lim_{x \to \infty} \frac{\log(x)}{x}$$

(g)
$$\lim_{x \to 0} \frac{e^x - 1}{x},$$

(h)
$$\lim_{x \to 0} \frac{e^{e^x} - e}{x}$$

(i)
$$\lim_{x \to 0} \frac{e^x - 1 - x}{x^2}$$

$$\begin{array}{ccc}
 & x \to 0 & x \\
 & \lim_{x \to 1} \frac{\log(x)}{x - 1}
\end{array}$$

(e)
$$\lim_{x \to \infty} xe^{-x}$$
,
(g) $\lim_{x \to 0} \frac{e^x - 1}{x}$,
(i) $\lim_{x \to 0} \frac{e^x - 1 - x}{x^2}$,
(k) $\lim_{x \to 1} \frac{\log(x) - x + 1}{(x - 1)^2}$,
(m) $\lim_{x \to \infty} \frac{x^4}{e^x}$,

(f)
$$\lim_{x \to \infty} \frac{x \sin(x)}{x},$$
(h)
$$\lim_{x \to 0} \frac{e^{e^x} - e}{x},$$
(j)
$$\lim_{x \to 1} \frac{\log(x)}{x - 1},$$
(l)
$$\lim_{x \to e} \frac{\log \log(x)}{x - e},$$
(n)
$$\lim_{x \to 2} \frac{x^x - 4}{x - 2}.$$

(m)
$$\lim_{x \to \infty} \frac{x^4}{e^x}$$

(n)
$$\lim_{x \to 2} \frac{x^x - 4}{x - 2}$$