

Climate in the Light of Mathematical **Equations**

Valeriia Baranivska, Ilaria Astrid Bartsch, Janne Finn Heibel, Patrícia Marques

Instructor: Dr. Davor Kumozec (University of Novi Sad)

Goal and Approaches

Predicting weather features for Kaunas on a certain day (31st of December 2024)

Approaches:

- PDEs-Based Simulation: Modeling weather evolution using the 1D Euler equations with solar forcing.
- Hybrid SARIMAX-LSTM Model: Statistical and machine learning methods for time series forecasting.

Governing PDEs: Conservation Laws for Fluid Dynamics

Fluid behavior is modeled using the 1D Euler equations, initialized and constrained by real meteorological data.

$$\begin{cases} \partial_t \rho + \partial_x m = 0 & \text{(Mass conservation)} \\ \partial_t m + \partial_x (mu + P) = 0 & \text{(Momentum conservation)} \\ \partial_t E + \partial_x ((E + P)u) = Q(t) & \text{(Energy conservation)} \end{cases}$$

where

- $E = \frac{P}{\gamma 1} + \frac{1}{2}\rho v^2$: energy density
- ρ : air density
- v: velocity
- P: pressure
- $\gamma \approx 1.4$: air heat capacity ratio
- Q(t): time-dependent solar heating source.

For a numerical solution, apply the Lax–Friedrichs scheme.

Weather Data: Spatial Distribution

To validate the simulation, and to set initial and boundary conditions on the simulation, we use real atmospheric data collected on the specified day (31 December 2024).

- 23 weather stations
- almost in a straight line
- $\approx 13 \ km$ apart

Results from PDEs-based approach (1)

Figure: Heatmap of simulated variables on 31 December 2024 for whole domain

Results from PDEs-based approach (2)

Figure: Comparison between simulated and real data for Kaunas on 31 December 2024

Machine Learning: Hybrid SARIMAX-LSTM Model

- SARIMAX (Seasonal Autoregressive Integrated Moving Average with Exogenous Regressors) – extends ARIMA framework - which combines autoregressive (AR), differencing (I), and moving average (MA) components by modeling seasonality and incorporating external variables.
- LSTMM (Long-Short-Term Memory Model) is a recurrent neural network (RNN) architecture widely used in Deep Learning. It excels at capturing long-term dependencies, making it ideal for sequence prediction tasks.

Hybrid SARIMAX-LSTM Model Algorithm

8/12

Results from Hybrid Machine Learning Approach (1)

Figure: Heat map for comparison of real and predicted data (31/12/2024)

Results from Hybrid Machine Learning Approach (2)

Figure: Comparison by years for 31 December, Kaunas

PDEs-Based Simulation vs Hybrid ML Method Results

Figure: Comparison of both model testing results with real data and predicted data. Date that exists in the real data records (31 December 2024)

Climate in the Light of Mathematical Equations

Valeriia Baranivska, Ilaria Astrid Bartsch, Janne Finn Heibel, Patrícia Marques

Instructor: Dr. Davor Kumozec (University of Novi Sad)