Основы молекулярно-кинетической теории (МКТ)

Основные положения

- **1.** Все вещества состоят из частиц (молекул, атомов), разделенных промежутками. Доказательства:
- фотографии атомов и молекул, сделанные с помощью электронного микроскопа;
- возможность механического дробления вещества, растворение вещества в воде, диффузия, сжатие и расширение газов.
- 2. Частицы всех веществ беспорядочно и хаотично движутся.

Доказательства:

- диффузия явление взаимного проникновения частиц одного вещества между частицами другого вещества вследствие их теплового движения.
- броуновское движение мелких, инородных, взвешенных в жидкости частиц под действием не скомпенсированных ударов молекул.
- 3. Частицы всех веществ взаимодействуют между собой: одновременно действуют силы взаимного притяжения и отталкивания (природа сил носит электромагнитный характер).

Доказательства:

- сохранение формы твердыми телам, для их разрыва необходимо усилие;
- жидкие и твердые тела трудно сжимаемы;
- капли жидкости, помещенные в непосредственной близости друг от друга, сливаются;
- явления смачивания и несмачивания.

График зависимости силы взаимодействия двух молекул от расстояния между ними.

 F_r - сила взаимодействия молекул, r – расстояние между их центрами. F_r

 F_{om} - сила отталкивания, положительная.

 F_{np} - сила притяжения, отрицательная.

На расстоянии $r = r_0$ результирующая сила $F_r = 0$,

т.е. силы притяжения и отталкивания уравновешивают друг друга. Поэтому расстояние r_0 соответствует равновесному расстоянию между молекулами.

Основные понятия.

Атом — мельчайшая частица химического элемента, являющаяся носителем его химических свойств.

Молекула — наименьшая частица химического соединения, обладающая его основными химическими свойствами и состоящая из двух или нескольких атомов.

Ион – атом или молекула, которые потеряли или присоединили один или несколько электронов.

 $m_0 - \text{масса молекулы}, \qquad m_0 \sim 10^{-26} - 10^{-27} \; \text{кг.}$ $d_0 - \text{диаметр молекулы}, \qquad d_0 \sim 10^{-10} \; \text{м}.$

 v_0 – скорость молекулы, $v_0 \sim 200 - 2000$ м/с.

Связи физических величин

Величина	Единица	Формула	
Моль – количество вещества,	Единица	Формула	
содержащее одно и то же число		$N_A=6,022\cdot 10^{23}$ моль-1	
частиц, названное постоянной		1\A-0,022 \ 10 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
Авогадро			
Молярная масса – масса			
вещества, взятого в количестве		M-M 10 ⁻³ $M-m$ N	
1 моль	<u> </u>	$M = M_r \cdot 10^{-3} , M = m_0 N_A$	
Mr – относительная атомная	моль		
масса			
Количество вещества		N m	
11001111001120 20111001120	МОЛЬ	$v = \frac{N}{N_A}, v = \frac{m}{M}$	
	MOJIB	N_A M	
N-число молекул (атомов)		N = N $N = m$	
		$N = v \cdot N_A$, $N = \frac{m}{M} N_A$	
т-масса вещества	ΚΓ	$m = M V$, $m = m_0 N_A V$	
Масса молекулы (атома)		m M	
	ΚΓ	$m_0 = \frac{m}{N}$, $m_0 = \frac{m}{\nu N_A}$, $m_0 = \frac{M}{N_A}$	
Концентрация частиц – число	\mathcal{M}^{-3}	N	
частиц в единичном объеме	JVI.	$n = \frac{N}{V}$	
Плотность вещества – масса	<i>W2</i>	m m N	
приходящаяся на единицу	<u>кг</u> м ³	$ \rho = \frac{m}{V}, \rho = \frac{m_0 N}{V}, \rho = m_0 n $	
объема, V ₀ – объем молекулы	\mathcal{M}	V, V , V	
(атома)			
Температура по шкале	К	$T = t^0 + 273$	
Кельвина		$I = \iota + 2IJ$	
Средняя кинетическая			
энергия поступательного	Дж	$\overline{E_{\kappa}} = \frac{m_0 \overline{v^2}}{2}, \overline{E_{\kappa}} = \frac{3}{2} kT$	
движения частицы			
Среднее значение квадрата	2	$\frac{1}{2}$ $v^2 + v^2 + \cdots + v^2$	
скорости движения частиц	$\frac{M^2}{c^2}$	$\overline{\upsilon^2} = \frac{\upsilon_1^2 + \upsilon_2^2 + \ldots + \upsilon_N^2}{N}$	
1	$\frac{M}{C}$	$\overline{\upsilon} = \sqrt{\overline{\upsilon^2}} \ , \ \ \overline{\upsilon} = \sqrt{\frac{3kT}{m_0}} \ , \ \ \overline{\upsilon} = \sqrt{\frac{3RT}{M}}$	
скорость		$\sqrt{m_0}$, $\sqrt{m_0}$	
Давление идеального газа		1 - 2 - 2 -	
(основное уравнение МКТ	Па	$p = \frac{1}{3}m_0n\overline{v^2}, \qquad p = \frac{1}{3}\rho\overline{v^2}, \qquad p = \frac{2}{3}n\overline{E_k},$	
идеального газа)			
		p = nkT	

Замечание:

- -молярная масса воздуха $M = 29 \cdot 10^{-3}$ кг/моль;
- -для двухатомных газов (O₂, H₂, N₂, Cl₂) молярная масса $M = Mr \cdot 2 \cdot 10^{-3}$ кг/моль.

Постоянная Больцмана $k = 1{,}38 \cdot 10^{-23} \frac{\text{Дж}}{K}$;

Универсальная газовая постоянная $R = N_A k$, $R = 8.31 \frac{\text{Дж}}{\text{моль}K}$.

Агрегатные состояния вещества.

	Газы	Жидкости	Твердые тела
Свойства.	Занимают весь предоставленный объем. Не сохраняют форму. Легко сжимаются.	Сохраняют объем. Обладают свойством текучести. Принимают форму сосуда.	Сохраняют форму и объем.
Расположе- ние молекул.	Нет порядка в расположении молекул. Расстояние между молекулами гораздо больше размеров молекул.	Упорядоченное расположение ближайших соседних молекул (ближний порядок). Расстояние между молекулами сравнимо с их размерами.	В кристаллических твердых телах молекулы располагаются в определенном порядке (дальний порядок). Расстояние между молекулами порядка размеров молекул.
Силы взаимодейств ия.	$F_{\text{прит}} = 0$ и $F_{\text{отталт}} = 0$	$F_{np} < F_{or}$ внутри жидкости $F_{np} > F_{or}$ поверх. слой	$F_{np} pprox F_{or}$
Движение молекул.	Молекулы свободно движутся во всех направлениях, столкновения относительно редки.	Молекулы колеблются вблизи положений равновесия, время от времени переходя в соседнее положение равновесия.	Молекулы колеблются вблизи положений равновесия, что обуславливает сохранение формы.
Энергия молекул.	Кинетическая энергия теплового движения молекул много больше потенциальной энергии их взаимодействия. $W_p << W_k$	Кинетическая энергия теплового движения молекул сравнима с потенциальной энергией их взаимодействия. $W_p \approx W_k$	Потенциальная энергия взаимодействия молекул много больше кинетической энергии их теплового движения. $W_p >> W_k$

Твердые тела

Кристаллические	Аморфные		
Атомы (молекулы) расположены в строго	Отсутствует дальний порядок в		
определенном порядке, не меняющемся во всем	расположении молекул (стекло, смолы).		
объеме кристалла (соль, лед, кварц, медь).			
Проявляют упругость при механических	При кратковременных механических		
воздействиях, как кратковременных, так и	воздействиях проявляют упругие свойства,		
длительных.	при длительных воздействиях текучи		
$T_{nn} = const$	(проявляют свойства жидкостей).		
Обладают определенной температурой	Нет определенной температуры		
плавления T_{nn} . При $T < T_{nn}$ тело останется	плавления. Переход из твердого		
твердым, при $T > T_{nn}$ становится жидким.	состояния в жидкое происходит		
	постепенно – вещество размягчается,		
	растет текучесть.		

Монокриста	Монокристаллы Поликристаллы				
Состоят	ИЗ	Состоят	ИЗ	множества	Изотропны.
одиночных		одиночных	X	кристаллов	
кристаллов	(алмаз,	(металлы,		caxap-	
турмалин).		рафинад)			
Анизотроп	опны. Изотропны.		пны.		

Анизотропия — зависимость физических свойств вещества (механических, тепловых, электрических, магнитных, оптических) от направления в кристалле.

Изотропия – независимость физических свойств вещества от направления в кристалле.

Экспериментальное определение скоростей молекул.

Опыт Штерна (1920г) – измерена скорость движения молекул серебра. В середине двух цилиндров находится платиновая проволока, покрытая серебром, по которой протекает электрический ток. Атомы серебра, испаряясь, оседают в виде полосок на внутренней поверхности второго цилиндра:

- без вращения внешнего цилиндра в области точки M₀;
- при вращении в области точки М, образуя более широкую полоску.

Тогда
$$\upsilon_{\scriptscriptstyle M} = \frac{R_2 - R_1}{\Delta t}$$
, но $\omega R_2 \Delta t = x$, поэтому $\upsilon_{\scriptscriptstyle M} = \frac{\omega R_2 (R_2 - R_1)}{x}$

Результаты опыта подтвердили теоретические выкладки.

Ат , но 22 ч, но 153 Выводы: наблюдаемое в опыте размытие полосок, говорит о различных скоростях атомов серебра при данной температуре. Атомы, движущиеся медленно, смещаются больше, чем атомы, движущиеся быстро. Толщина слоя серебра зависит от места конденсации атомов, а значит число атомов в этом месте зависит от их скорости.

Идеальный газ.

Идеальный газ — молекулярно-кинетическая модель газа, в которой пренебрегают размерами молекул газа и потенциальной энергией их взаимодействия.

Давление газа в МКТ обусловлено ударами молекул о стенки сосуда. Это давление зависит от числа ударившихся молекул и температуры газа.

Термодинамическая система (ТДС) – любое макроскопическое тело или система тел. ТДС при неизменных условиях самопроизвольно переходит в состояние теплового равновесия.

Термодинамическое равновесие – это состояние, при котором все макроскопические параметры (параметры, описывающие поведение большого числа молекул) сколь угодно долго остаются неизменными.

Температура характеризует состояние теплового равновесия макроскопической системы: во всех частях системы, существующих в состоянии теплового равновесия, температура имеет одно и то же значение. При описании физических законов используют шкалу Кельвина.

Абсолютная температура измеряется в кельвинах (К). Она является мерой средней кинетической энергии движения молекул. ${\bf 1}^0{\bf C} = {\bf 1}~{\bf K}$ $\Delta {\bf t} = \Delta {\bf T}$

Абсолютный нуль температуры (T = 0 K) — значение температуры, соответствующе $273,15^{\circ}C$ ниже нуля температуры по шкале Цельсия. Абсолютный ноль недостижим, так как в этом случае скорость теплового движения молекул равна нулю, чего не может быть.

Нормальные условия: $t = 0^{\circ} C$, T = 273 K, $p_{atm} = 10^{5}$ Па = 1 атм.

Уравнение состояния идеального газа.

Уравнение Клапейрона (для данного газа при m = const) связывает несколько состояний газа.

описывает одно состояние

 $\frac{pV}{T} = const$

$$\frac{pV}{T} = \frac{m}{M}R$$

Для смеси газов:

$$\frac{p_{cM}V_{cM}}{T_{cM}} = (v_1 + v_2)R$$

 $p_{\rm cm} = p_1 + p_2 + ... + p_n$ - закон Дальтона (давление смеси газов равно сумме парциальных давлений каждого газа в отдельности в объеме V).

Газовые законы.

Взаимные превращения жидкостей.

Парообразование – процесс перехода вещества из жидкого или твердого состояния в газообразное.

Конденсация – процесс перехода вещества из газообразного состояния в жидкое.

Способы парообразования.

Испарение.

Это котором процесс, при свободной поверхности жидкости или твердого тела вылетают молекулы, у которых кинетическая энергия максимальна. Испарение охлаждением сопровождается вылетают самые жидкости, т. к. быстрые молекулы. Испарение происходит при любой температуре.

Кипение.

Это процесс парообразования, происходящий как со свободной поверхности, так и по всему объему жидкости при помощи образующихся в ней пузырьков пара. Кипение происходит в случае, если давление насыщенного пара внутри пузырька пара равно или больше внешнего давления. Кипение происходит только при определённой для данного вещества температуре. Температура кипения зависит от внешнего давления.

Динамическое равновесие — состояние, в котором может находиться пар (жидкость) при превращении в жидкость (пар); при этом число частиц, вылетающих с поверхности жидкости в единицу времени, равно числу частиц, возвращающихся в жидкость.

Насыщенный пар – пар, находящийся в состоянии динамического равновесия со своей жидкостью (существует только в закрытом сосуде). Концентрация молекул и давление насыщенного пара не зависят от его объема при постоянной температуре. С повышением температуры будут увеличиваться концентрация молекул и давление насыщенного пара (см. рис.).

Ненасыщенный пар – пар, плотность и давление которого меньше

плотности и давления насыщенного пара при данной температуре; пар, не находящийся в динамическом равновесии со своей жидкостью.

Точка росы — температура, при которой водяной пар, содержащийся в воздухе, становится насыщенным в результате охлаждения.

Парциальное давление водяного пара – давление, которое производил бы водяной пар, если бы все остальные газы в воздухе отсутствовали.

Влажность воздуха – характеризует содержание водяного пара в воздухе.

Абсолютная влажность воздуха — масса водяного пара в $1 \, \text{м}^3$ воздуха при данной температуре (плотность).

Относительная влажность равна отношению парциального давления пара (или плотности) к давлению (или плотности) насыщенного пара при данной температуре. Относительная влажность показывает насколько далёк пар от насыщения.

Связи физических величин

Величина	Единица	Формула
Абсолютная влажность (плотность водяного пара)	$\frac{\kappa 2}{M^3}$	$ \rho_{nap} = \frac{m}{V} $
Относительная влажность	%	$\varphi = \frac{\rho_{nap}}{\rho_{hac}} \cdot 100\% , \qquad \varphi = \frac{p_{nap}}{p_{hac}} \cdot 100\%$

Для определения влажности воздуха служат психрометр и гигрометр.