

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

«Применение машинного обучения в поисковых системах» НАУЧНО-ИССЛЕДОВАТЕЛЬСКАЯ РАБОТА НА ТЕМУ:

Студент: Волков Г.В. Руководитель: Шаповалова М.С.

Цель и задачи работы

Цель работы - изучить алгоритмы машинного обучения, применяемые в поисковых системах Для достижения поставленной цели следует решить следующие задачи:

- изучить основные понятия алгоритмов обучения ранжированию
- описать и классифицировать существующие алгоритмы
- произвести сравнительный анализ рассмотренных алгоритмов

Машинное обучение

подобранных обучающих данных, которую потом используются для решения Алгоритмы формируют статистическую модель на основе специально Машинное обучение — раздел информатики, посвященный созданию алгоритмов, опирающихся на набор данных о каком-либо явлении. практических задач.

Выделяется три основных способа обучения: с учителем, без учителя и с подкреплением.

Обучение ранжированию

ранжирующей модели, которая способна наилучшим образом приблизить и обучение ранжированию с учителем. Целью этих методов является подбор Существует множество методов подбора формулы для ранжирования, но один из самых популярных – на основе машинного обучения, а именно обобщить способ ранжирования на новые данные. Для получения набора примеров используют асессоров, которые оцениваю степень релевантности документа запросу.

Классификация алгоритмов

Существующие алгоритмы обучения ранжированию делятся на три группы по подходу к обучению:

- поточечный
- попарный
- СПИСОЧНЫЙ

Алгоритмы обучения ранжированию

В данной работе рассмотрено несколько популярных алгоритмов:

- Linear Regression (поточечный)
- Ranking SVM (попарный)
- LambdaRank (попарный)
- ListNet (списочный)

документа вычисляется рейтинг релевантности, который зависит от вектора сортируются по убыванию и получается ранжированный список документов. признаков документа и параметров метода ранжирования. Затем рейтинги На этапе ранжирования методы имеют схожий алгоритм. Для каждого

Linear Regression

Метод обучения на основе регрессии для решения задачи оптимизации метрик DCG. Для решения проблемы ранжирования можно использовать простой подход, основанный на регрессии.

$$\hat{f} = \arg\min_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} L(f, S_i, \{y_{i,j}\}_j)$$

$$L(f, S, \{y_j\}) = \sum_{j=1}^{m} w(x_j, S) (f(x_j, S) - y_j)^2 + u \max_{j} w'(x_j, S) (f(x_j, S) - \delta(x_j, S))_+^2$$

Ranking SVM

Ключевая идея алгоритма заключается в использовании метода SVM для попарного сравнения документов на то, какой из них более релевантный.

Теперь рассматривая разность векторов как новые объекты, получаем стандартную постановку SVM алгоритма.

$$\begin{cases} \frac{1}{2} ||\omega||^2 + C \sum_{i=1}^{N} \xi_i \to \min, \\ y_i(\omega, x_i^1 - x_i^2) \le 1 - \xi_i, \\ \xi_i \ge 0, \end{cases}$$

LambdaRank

В поточечных и попарных методах ранжирования итоговый функционал при определяет непрерывный приближенный функционал, вместо этого он обучении обычно не дифференцируемый. Алгоритм LambdaRank не определяет градиент функционала на всем списке документов:

$$\frac{\partial L}{\partial s_i} = -\lambda(s_1, y_1, \dots, s_n, y_n)$$

$$\lambda_i = \frac{\partial L}{\partial s_i} = \frac{1}{G_{max}} \sum_j (\frac{1}{1 + \exp(s_j - s_i)}) (G(y_j) - G(y_i)) (D(\pi_j) - D(\pi_i))$$

LambdaRank

 λ — показывает насколько надо увеличить рейтинг i-го документа. Для этого надо изменить веса ω :

$$\frac{\partial L}{\partial \omega} = \sum_{i=1}^n \frac{\partial s_i}{\partial \omega} \sum_{j \in P_i} \frac{\partial L(s_i, s_j)}{\partial s_i} + \sum_{j=1}^n \frac{\partial s_j}{\partial \omega} \sum_{i \in P_j} \frac{\partial L(s_i, s_j)}{\partial s_j}$$

Таким образом, алгоритм LambdaRank заключается в итерационном пересчете весов:

$$\omega = \omega - \eta \frac{\partial \omega}{\partial \omega}$$

ListNet

Цель обучения формализована как минимизация общих потерь в отношении обучающих данных. В данном алгоритме используется вероятностные модели для вычисления функции потерь по списку.

$$P_{z^{(i)}(f_{\omega})}(x_j^{(i)}) = \frac{\exp(f_{\omega}(x_j^{(i)}))}{\sum_{k=1}^{n^{(i)}} \exp(f_{\omega}(x_k^{(i)}))}$$

$$L(y^{(i)}, z^{(i)}(f_{\omega})) = -\sum_{j=1}^{n^{(i)}} P_{y^{(i)}}(x_j^{(i)}) \log(P_{z^{(i)}(f_{\omega})}(x_j^{(i)}))$$

ListNet

Градиент функции потери можно найти по следующей формуле:

$$\Delta \omega = \frac{\partial L(y^{(i)}, z^{(i)}(f_{\omega}))}{\partial \omega} = -\sum_{j=1}^{n^{(i)}} P_{y^{(i)}}(x_j^{(i)}) \frac{\partial f_{\omega}(x_j^{(i)})}{\partial \omega} + \frac{1}{\sum_{j=1}^{n^{(i)}} \exp(f_{\omega}(x_j^{(i)}))} \sum_{j=1}^{n^{(i)}} \exp(f_{\omega}(x_j^{(i)})) \frac{\partial f_{\omega}(x_j^{(i)})}{\partial \omega}.$$

Для минимизации целевой функции используется градиентный спуск

Критерии сравнения

В качестве критериев сравнения используются основные метрики оценки качества ранжирования: МАР, NDCG МАР — метрика средней точности нахождения релевантных документов.

NDCG — мера качества

$$map@N = \frac{1}{K} \sum_{j=1}^{K} ap@N_j$$

$$DCG@N = \sum_{k=1}^{N} \frac{2^{r_t(P'(k))} - 1}{\log_2(k+1)}$$

Сравнение

количество алгоритмов, которое алгоритм может превзойти на наборе используется показатель «выигрышное число». Оно определяется как Для оценки общей эффективности обучения методам ранжирования датасетов

Мощон	NDCG@3	r@3	NDCG@5	.@5	NDCG@10	@10	MAP	Ь
Тотам	NMN	К.Д	NWN K.A	К.Д	NWN к.д.	К.Д.	NMN	К.Д.
Linear Regression	0,1053	6	0,2105	6	0	∞	0	∞
Ranking SVM	0,5000	11	0,4000	10	10 0,5217	16	0,5500	13
LambdaRank	0,8000	3	0,8000	က	0,6250	ಬ	0,3333	3
ListNet	0,8000	10	0,8000	10	0,8500	10	0,8824	9

Заключение

Цель, которая была поставлена в начале научно-исследовательской работы, была достигнута: рассмотрены алгоритмы машинного обучения, применяемые в поисковых системах.

Решены все поставленные задачи:

- изучены основные понятия алгоритмов обучения ранжированию
- описаны и классифицированы существующие алгоритмы
- произведён сравнительный анализ рассмотренных алгоритмов