Integrated development environments (IDEs) aim to integrate all such help. The choice of language used is subject to many considerations, such as company policy, suitability to task, availability of third-party packages, or individual preference. In the 9th century, the Arab mathematician Al-Kindi described a cryptographic algorithm for deciphering encrypted code, in A Manuscript on Deciphering Cryptographic Messages. This can be a non-trivial task, for example as with parallel processes or some unusual software bugs. Text editors were also developed that allowed changes and corrections to be made much more easily than with punched cards. For example, when a bug in a compiler can make it crash when parsing some large source file, a simplification of the test case that results in only few lines from the original source file can be sufficient to reproduce the same crash. Implementation techniques include imperative languages (object-oriented or procedural), functional languages, and logic languages. Some text editors such as Emacs allow GDB to be invoked through them, to provide a visual environment. It is very difficult to determine what are the most popular modern programming languages. For example, when a bug in a compiler can make it crash when parsing some large source file, a simplification of the test case that results in only few lines from the original source file can be sufficient to reproduce the same crash. Computer programming or coding is the composition of sequences of instructions, called programs, that computers can follow to perform tasks. Readability is important because programmers spend the majority of their time reading, trying to understand, reusing and modifying existing source code, rather than writing new source code. Implementation techniques include imperative languages (object-oriented or procedural), functional languages, and logic languages. Programmers typically use high-level programming languages that are more easily intelligible to humans than machine code, which is directly executed by the central processing unit. Unreadable code often leads to bugs, inefficiencies, and duplicated code. Debugging is often done with IDEs. Standalone debuggers like GDB are also used, and these often provide less of a visual environment, usually using a command line. Implementation techniques include imperative languages (object-oriented or procedural), functional languages, and logic languages. Computer programming or coding is the composition of sequences of instructions, called programs, that computers can follow to perform tasks. The academic field and the engineering practice of computer programming are both largely concerned with discovering and implementing the most efficient algorithms for a given class of problems. This can be a non-trivial task, for example as with parallel processes or some unusual software bugs. New languages are generally designed around the syntax of a prior language with new functionality added, (for example C++ adds object-orientation to C, and Java adds memory management and bytecode to C++, but as a result, loses efficiency and the ability for low-level manipulation). Scripting and breakpointing is also part of this process. Some of these factors include: The presentation aspects of this (such as indents, line breaks, color highlighting, and so on) are often handled by the source code editor, but the content aspects reflect the programmer's talent and skills. By the late 1960s, data storage devices and computer terminals became inexpensive enough that programs could be created by typing directly into the computers. The choice of language used is subject to many considerations, such as company policy, suitability to task, availability of third-party packages, or individual preference.