(43) Application published 13 Jan 1988

- (21) Application No 8716442
- (22) Date of filing 13 Jul 1987
- (30) Priority data (31) 8616921
- (32) 11 Jul 1986
- (33) GB
- (71) Applicant **Redland Roof Tiles Limited**

(Incorporated in United Kingdom)

Redland House, Reigate, Surrey RH2 0SJ

- (72) Inventors **Alan Maries** Colin Douglas Hills
- (74) Agent and/or Address for Service Boult, Wade & Tennant, 27 Furnival Street, London EC4A 1PQ

- (51) INT CL4 CO4B 40/02 B28B 5/00
- (52) Domestic classification (Edition J): C1H 120 620 711 718 796 812 813 B5A 1R150 1R455 20N10 20N8 20T17 20T19 2B1 2D2 2S1F2X A2 **U1S** 1699 B5A C1H
- (56) Documents cited None
- (58) Field of search C1H B5A Selected US specifications from IPC sub-class C04B

(54) Improvement in concrete articles

(57) A method of manufacturing concrete articles such as roof tiles wherein the void content of the fresh mortar is from 14 to 23% by volume also comprises the use of carbon dioxide or a carbon dioxide containing medium to accelerate the curing of the mortar.

Also provided is an apparatus for carrying out this method (Figs. 2, 3 not shown).

3NSDOCID: <GB_____2192392A__I_>

-

F/G. 6. CURED MORTAR POROSITY VS W/C RATIO

SPECIFICATION

Improvement in concrete articles

with an improved method of manufacture of extruded concrete roof tiles, whereby their curing time is much reduced by carbonation, and an improved tile making machine for effecting said method. The process and apparatus for the manufacture of concrete roof tiles are both well known. A 10 relatively dry mortar mix of sand, cement and water usually in a ratio of about 3.5;1:0.4 is fed usually via a hopper and a shaping rollar to form a continuous strip of mortar on a succession of pallets. The strip is subsequently cut at the junctions between the pallets to form individual green tiles, the green tiles on the pallets are cured and then the tiles are split from the pallets. It will readily be appreciated that the requirement for pallets, in tile manufacturing methods where tiles are produced at up to 150 tiles per minute, together with the extensive storage space required for curing up to 100,000 tiles per shift, represents a very large investment. In addition, when one considers the maintenance required to keep the pallets and curing chamber in good working order, the initial outlay and ongoing costs for a tile producer are considerable. Thus, there are obvious advantages to be gained by: a) reducing the time that is required before a tiles of these proposals has been capable of adoption in the manufacture of concrete roof tiles. Many proposals have previously been made for speeding up the curing of mortar mixes but so far none of these proposals has been capable of adoption in the manufacture of concrete roof tiles. The use of carbon dioxide in the curing of mortar is well known but no process hither disclosed has been suitable for using in the manufacture of concrete roofing tiles where the quality and durability of the end products is to be ensured. It is known to use carbon dioxide to harden concrete products, pre-cast tiles for example, which are self supporting oldicide to harden concrete products, pre-cast tiles for example, which are self supporting before carbonation of self-supporting concrete produc		•		
10 relatively dry mortar mix of sand, cement and water usually in a ratio of about 3,51:0.4 is fed usually via a hopper and a shaping roller to form a continuous strip of mortar on a succession of pallets. The strip is subsequently out at the junctions between the pallets to form individual green tiles, the green tiles on the pallets are cured and then the tiles are split from the pallets. It will readily be appreciated that the requirement for pallets, in tile manufacturing methods to where tiles are produced at up to 150 tiles per minute, together with the extensive storage space required for curing up to 100,000 tiles per shift, represents a very large investment. In addition, when one considers the maintenance required to keep the pallets and curing chamber in good working order, the initial outlay and ongoing costs for a tile producer are considerable. Thus, there are obvious advantages to be gained by: a) reducing the time that is required before 20 at tile may be removed from its pallet without damaging the "green-state" product, and b) obvieting the need for extensive curing facilities. Many proposals have previously been made for speeding up the curing of mortar mixes but so. Many proposals have previously been made for speeding up the curing of mortar mixes but so. Many proposals have previously been made for speeding up the curing of mortar mixes but so. It is known to use earbon dioxide to harden concrete products, pre-cast tiles for example, which are self supporting before carbonation and which have removed from the mould before 30 curing. Such processes are disclosed in, US 4093680 and US 4117059 and US 4436498. US 3486993 also discloses that the presence of 1–2% by weight of a vinyl scetate – dibutymaleate copolymer is required before the carbonation reaction will procede. US 346899 also discloses the cerbonation of self-supporting concrete products; here the products are carbonated after having been subjected to high pressure stratic compaction of an earth of the development of the pressure sh		5	with an improved method of manufacture of extruded concrete roof tiles, whereby their curing time is much reduced by carbonation, and an improved tile making machine for effecting said	5
It will readily be appreciated that the requirement for pallets, in tile manufacturing methods 15 where tiles are produced at up to 150 tiles per minute, together with the extensive storage space required for curing up to 100,000 tiles per shift, represents a very large investment. In addition, when one considers the maintenance required to keep the pallets and curing chamber in good working order, the initial ourlay and ongoing costs for a tile producer are considerable. Thus, there are obvious advantages to be geined by: a) reducing the time that is required before 20 a tile may be removed from its pallet without damaging the "green-state" product, and b) obviating the need for extensive curing facilities. Many proposals have previously been made for speading up the curing of mortar mixes but so far none of these proposals has been capable of adoption in the manufacture of concrete roof tiles. The use of carbon dioxide in the curing of mortar is well known but no process hitherto disclosed has been suitable for using in the manufacture of concrete roofing tiles where the quality and durability of the end products is to be ensured. It is known to use carbon dioxide to harden concrete products, pre-cast tiles for example, which are self supporting before carbonation and which are removed from the mould before ouring. Such processes are disclosed in, US 4093890, US 4117059 and US 44364898. US 4093690 and US 4117059 also discloses that the presence of 1–2% by weight of a vinyl acetate – dibutymaletate copolymer is required before the carbonation reaction will proceed. US 3468993 also discloses the carbonation of self-supporting concrete products; here the products are carbonated after having been subjected to high pressure static compaction of at 35 least 500psi and removed from their moulds. US 4117060 discloses the simultaneous compac- tion and carbonation of mortar within a mould. US 4069063 discloses the curing of mortar by exposing the concrete shape, following com- paction, to ultra-cold carbon dioxide		10	relatively dry mortar mix of sand, cement and water usually in a ratio of about 3.5:1:0.4 is fed usually via a hopper and a shaping roller to form a continuous strip of mortar on a succession of pallets. The strip is subsequently cut at the junctions between the pallets to form individual	10
20 at lie may be removed from its pallet without damaging the "green-state" product, and b) obviating the need for extensive curing facilities. Many proposals have previously been made for speeding up the curing of mortar mixes but so far none of these proposals has been capable of adoption in the manufacture of concrete roof tiles. 25 The use of carbon dioxide in the curing of mortar is well known but no process hitherto disclosed has been suitable for using in the manufacture of concrete roofing tiles where the quality and durability of the end products is to be ensured. It is known to use carbon dioxide to harden concrete products, pre-cast tiles for example, which are self supporting before carbonation and which are removed from the mould before occuring. Such processes are disclosed in, US 403690, US 4117059 and US 4436498. US 4093690 and US 4117059 also discloses that the presence of 1–2% by weight of a viryl acetate – dibutymaleate copolymer is required before the carbonation reaction will procede. US 346893 also discloses the carbonation of self-supporting concrete products, here the products are carbonated after having been subjected to high pressure static compaction of at least 500psi and removed from their moulds. US 417060 discloses the simultaneous compaction and carbonation of mortar within a mould. US 4427610 discloses the curing of mortar by exposing the concrete shape, following compaction, to ultra-cold carbon dioxide to provide those shapes with early strength. US 4069063 discloses the use of carbon dioxide added homogeneously to the cement slurry 40 during the water-cement mixing stage in order to control setting of the cement and to stabilise the hydrated cement. GB 210686-A discloses a process for producing concrete blocks involving presetting the blocks by injecting excess stem into the production zone and then by carbonating atmaterials 45 by carbonation which involves the drying out of the capillary system of the concrete prior to and during carbonation. The drying process is a		15	It will readily be appreciated that the requirement for pallets, in tile manufacturing methods where tiles are produced at up to 150 tiles per minute, together with the extensive storage space required for curing up to 100,000 tiles per shift, represents a very large investment. In addition, when one considers the maintenance required to keep the pallets and curing chamber in good working order, the initial outlay and ongoing costs for a tile producer are considerable.	15
disclosed has been suitable for using in the manufacture of concrete roofing tiles where the quality and durability of the end products is to be ensured. It is known to use carbon dioxide to harden concrete products, pre-cast tiles for example, which are self supporting before carbonation and which are removed from the mould before curing. Such processes are disclosed in, US 4093690, US 4117059 and US 4436498. US 4093690 and US 4117059 also discloses that the presence of 1–2% by weight of a vinyl acetate – dibutymaleate copolymer is required before the carbonation reaction will procede. US 3468993 also discloses the carbonation of self-supporting concrete products; here the products are carbonated after having been subjected to high pressure static compaction of at 135 least 500psi and removed from their moulds. US 4117060 discloses the simultaneous compaction and carbonation of mortar within a mould. US 4427610 discloses the curing of mortar by exposing the concrete shape, following compaction, to ultra-cold carbon dioxide to provide those shapes with early strength. US 4069063 discloses the use of carbon dioxide added homogeneously to the cement slurry during the water-cement mixing stage in order to control setting of the cement and to stabilise the hydrated cement. GB 1337014 discloses a process for producing concrete blocks involving presetting the blocks by injecting excess steam into the production zone and then by carbonating them. GB 2106886-A discloses a method for the rapid hardening of concrete and similar materials by carbonation which involves the drying out of the capillary system of the concrete prior to and during carbonation. The drying process is a necessary feature of this invention and may be effected by a combination of air flow, heat generation and moisture absorption and, optionally, vacuum treatment. Also disclosed in this specification is a device designed for the carrying out of the prior art moreover would suggest that additives such as the copolymers of US 4093690 and US 41170		20	a tile may be removed from its pallet without damaging the "green-state" product, and b) obviating the need for extensive curing facilities. Many proposals have previously been made for speeding up the curing of mortar mixes but so far none of these proposals has been capable of adoption in the manufacture of concrete roof	20
which are self supporting before carbonation and which are removed from the mould before of curing. Such processes are disclosed in, US 4093690, US 417059 and US 4436498. US 4093690 and US 4117059 also disclose that the presence of 1–2% by weight of a vinyl acetate – dibutymaleate copolymer is required before the carbonation reaction will procede. US 3468993 also discloses the carbonation of self-supporting concrete products; here the products are carbonated after having been subjected to high pressure static compaction of at least 500psi and removed from their moulds. US 4117060 discloses the simultaneous compaction and carbonation of mortar within a mould. US 427610 discloses the curing of mortar by exposing the concrete shape, following compaction, to ultra-coid carbon dioxide to provide those shapes with early strength. US 4069063 discloses the use of carbon dioxide added homogeneously to the cement slurry during the water-cement mixing stage in order to control setting of the cement and to stabilise the hydrated cement. GB 1337014 discloses a process for producing concrete blocks involving presetting the blocks by injecting excess steam into the production zone and then by carbonating them. GB 2106886-A discloses a method for the rapid hardening of concrete and similar materials by carbonation which involves the drying out of the capillary system of the concrete prior to and during carbonation. The drying process is a necessary feature of this invention and may be effected by a combination of air flow, heat generation and moisture absorption and, optionally, vacuum treatment. Also disclosed in this specification is a device designed for the carrying out of the method of the invention. None of the prior art specifications discloses a process suitable for carbonating extruded roof tiles at atmospheric or only slightly supra- atmospheric pressured, nor do they disclose the carbonation of non-preset concrete products without earlier pre-carbonation have surprisingly shown that products such as roof tiles		25	The use of carbon dioxide in the curing of mortar is well known but no process hitherto disclosed has been suitable for using in the manufacture of concrete roofing tiles where the quality and durability of the end products is to be ensured.	25
US 3468993 also discloses the carbonation of self-supporting concrete products; here the products are carbonated after having been subjected to high pressure static compaction of at least 500psi and removed from their moulds. US 4117060 discloses the simultaneous compaction and carbonation of mortar within a mould. US 4427610 discloses the curing of mortar by exposing the concrete shape, following compaction, to ultra-cold carbon dioxide to provide those shapes with early strength. US 4069063 discloses the use of carbon dioxide added homogeneously to the cement slurry during the water-cement mixing stage in order to control setting of the cement and to stabilise the hydrated cement. GB 1337014 discloses a process for producing concrete blocks involving presetting the blocks by injecting excess steam into the production zone and then by carbonating them. GB 2106886-A discloses a method for the rapid hardening of concrete and similar materials by carbonation which involves the drying out of the capillary system of the concrete prior to and during carbonation. The drying process is a necessary feature of this invention and may be effected by a combination of air flow, heat generation and moisture absorption and, optionally, vacuum treatment. Also disclosed in this specification is a device designed for the carrying out of the method of the invention. None of the prior art specifications discloses a process suitable for carbonating extruded roof tiles at atmospheric or only slightly supra- atmospheric pressured, nor do they disclose the carbonation of non-preset concrete products without earlier pre-carbonation steps. A study of the prior art moreover would suggest that additives such as the copolymers of US 4093690 and US 4117059 are necessary in order to carbonate concrete products successfully. Our studies made in the course of the development of the present invention have surprisingly shown that products such as roof tiles can be readily carbonated by simple adaptations of the processing conditions and ap		30	which are self supporting before carbonation and which are removed from the mould before curing. Such processes are disclosed in, US 4093690, US 4117059 and US 4436498. US 4093690 and US 4117059 also disclose that the presence of 1–2% by weight of a vinyl acetate – dibutymaleate copolymer is required before the carbonation reaction will procede.	30
paction, to ultra-cold carbon dioxide to provide those shapes with early strength. US 4069063 discloses the use of carbon dioxide added homogeneously to the cement slurry during the water-cement mixing stage in order to control setting of the cement and to stabilise the hydrated cement. GB 1337014 discloses a process for producing concrete blocks involving presetting the blocks by injecting excess steam into the production zone and then by carbonating them. GB 2106886-A discloses a method for the rapid hardening of concrete and similar materials by carbonation which involves the drying out of the capillary system of the concrete prior to and during carbonation. The drying process is a necessary feature of this invention and may be effected by a combination of air flow, heat generation and moisture absorption and, optionally, vacuum treatment. Also disclosed in this specification is a device designed for the carrying out of the method of the invention. None of the prior art specifications discloses a process suitable for carbonating extruded roof tiles at atmospheric or only slightly supra- atmospheric pressured, nor do they disclose the carbonation of non-preset concrete products without earlier pre-carbonation steps. A study of the prior art moreover would suggest that additives such as the copolymers of US 4093690 and US 4117059 are necessary in order to carbonate concrete products successfully. Our studies made in the course of the development of the present invention have surprisingly shown that products such as roof tiles can be readily carbonated by simple adaptations of the processing conditions and apparatus used hitherto. We have now developed a method for the extrusion of concrete roof tiles which are not self supporting before carbonation but which, after carbonation, can be readily removed from their the pallets without damage so that the pallets may be quickly reused. In order to remove the roof tiles from the pallets shortly after production it is necessary for the tiles to be self supporti		35	US 3468993 also discloses the carbonation of self-supporting concrete products; here the products are carbonated after having been subjected to high pressure static compaction of at least 500psi and removed from their moulds. US 4117060 discloses the simultaneous compaction and carbonation of mortar within a mould.	35
GB 1337014 discloses a process for producing concrete blocks involving presetting the blocks by injecting excess steam into the production zone and then by carbonating them. GB 2106886-A discloses a method for the rapid hardening of concrete and similar materials by carbonation which involves the drying out of the capillary system of the concrete prior to and during carbonation. The drying process is a necessary feature of this invention and may be effected by a combination of air flow, heat generation and moisture absorption and, optionaly, vacuum treatment. Also disclosed in this specification is a device designed for the carrying out of the method of the invention. 50 None of the prior art specifications discloses a process suitable for carbonating extruded roof tiles at atmospheric or only slightly supra- atmospheric pressured, nor do they disclose the carbonation of non-preset concrete products without earlier pre-carbonation steps. A study of the prior art moreover would suggest that additives such as the copplymers of US 4093690 and US 4117059 are necessary in order to carbonate concrete products successfully. 55 Our studies made in the course of the development of the present invention have surprisingly shown that products such as roof tiles can be readily carbonated by simple adaptations of the processing conditions and apparatus used hitherto. We have now developed a method for the extrusion of concrete roof tiles which are not self supporting before carbonation but which, after carbonation, can be readily removed from their pallets without damage so that the pallets may be quickly reused. In order to remove the roof tiles from the pallets shortly after production it is necessary for the tiles to be self supporting immediately after a fifteen minute curing process. This strength makes it possible to remove the tiles easily and without damage from the pallets and the fifteen minute time scale enables the pallets to be returned to the tile making machine quickly thus		4 0	paction, to ultra-cold carbon dioxide to provide those shapes with early strength. US 4069063 discloses the use of carbon dioxide added homogeneously to the cement slurry during the water-cement mixing stage in order to control setting of the cement and to stabilise	40
during carbonation. The drying process is a necessary feature of this invention and may be effected by a combination of air flow, heat generation and moisture absorption and, optionaly, vacuum treatment. Also disclosed in this specification is a device designed for the carrying out of the method of the invention. None of the prior art specifications discloses a process suitable for carbonating extruded roof tiles at atmospheric or only slightly supra- atmospheric pressured, nor do they disclose the carbonation of non-preset concrete products without earlier pre-carbonation steps. A study of the prior art moreover would suggest that additives such as the copolymers of US 4093690 and US 4117059 are necessary in order to carbonate concrete products successfully. Our studies made in the course of the development of the present invention have surprisingly shown that products such as roof tiles can be readily carbonated by simple adaptations of the processing conditions and apparatus used hitherto. We have now developed a method for the extrusion of concrete roof tiles which are not self supporting before carbonation but which, after carbonation, can be readily removed from their pallets without damage so that the pallets may be quickly reused. In order to remove the roof tiles from the pallets shortly after production it is necessary for the tiles to be self supporting immediately after a fifteen minute curing process. This strength makes it possible to remove the tiles easily and without damage from the pallets and the fifteen minute time scale enables the pallets to be returned to the tile making machine quickly thus		45	GB 1337014 discloses a process for producing concrete blocks involving presetting the blocks by injecting excess steam into the production zone and then by carbonating them. GB 2106886-A discloses a method for the rapid hardening of concrete and similar materials	
None of the prior art specifications discloses a process suitable for carbonating extruded roof tiles at atmospheric or only slightly supra- atmospheric pressured, nor do they disclose the carbonation of non-preset concrete products without earlier pre-carbonation steps. A study of the prior art moreover would suggest that additives such as the copolymers of US 4093690 and US 4117059 are necessary in order to carbonate concrete products successfully. Our studies made in the course of the development of the present invention have surprisingly shown that products such as roof tiles can be readily carbonated by simple adaptations of the processing conditions and apparatus used hitherto. We have now developed a method for the extrusion of concrete roof tiles which are not self supporting before carbonation but which, after carbonation, can be readily removed from their pallets without damage so that the pallets may be quickly reused. In order to remove the roof tiles from the pallets shortly after production it is necessary for the tiles to be self supporting immediately after a fifteen minute curing process. This strength makes it possible to remove the tiles easily and without damage from the pallets and the fifteen minute time scale enables the pallets to be returned to the tile making machine quickly thus		45	during carbonation. The drying process is a necessary feature of this invention and may be effected by a combination of air flow, heat generation and moisture absorption and, optionaly, vacuum treatment. Also disclosed in this specification is a device designed for the carrying out	45
Our studies made in the course of the development of the present invention have surprisingly shown that products such as roof tiles can be readily carbonated by simple adaptations of the processing conditions and apparatus used hitherto. We have now developed a method for the extrusion of concrete roof tiles which are not self supporting before carbonation but which, after carbonation, can be readily removed from their pallets without damage so that the pallets may be quickly reused. In order to remove the roof tiles from the pallets shortly after production it is necessary for the tiles to be self supporting immediately after a fifteen minute curing process. This strength makes it possible to remove the tiles easily and without damage from the pallets and the fifteen minute time scale enables the pallets to be returned to the tile making machine quickly thus		50	None of the prior art specifications discloses a process suitable for carbonating extruded roof tiles at atmospheric or only slightly supra- atmospheric pressured, nor do they disclose the carbonation of non-preset concrete products without earlier pre-carbonation steps. A study of	50
supporting before carbonation but which, after carbonation, can be readily removed from their 60 pallets without damage so that the pallets may be quickly reused. 60 In order to remove the roof tiles from the pallets shortly after production it is necessary for the tiles to be self supporting immediately after a fifteen minute curing process. This strength makes it possible to remove the tiles easily and without damage from the pallets and the fifteen minute time scale enables the pallets to be returned to the tile making machine quickly thus			US 4117059 are necessary in order to carbonate concrete products successfully. Our studies made in the course of the development of the present invention have surprisingly shown that products such as roof tiles can be readily carbonated by simple adaptations of the processing conditions and apparatus used hitherto.	55
makes it possible to remove the tiles easily and without damage from the pallets and the fifteen minute time scale enables the pallets to be returned to the tile making machine quickly thus		60	supporting before carbonation but which, after carbonation, can be readily removed from their pallets without damage so that the pallets may be quickly reused. In order to remove the roof tiles from the pallets shortly after production it is necessary for	60
	•		makes it possible to remove the tiles easily and without damage from the pallets and the fifteen minute time scale enables the pallets to be returned to the tile making machine quickly thus	65

55

5

10

15

20

25

30

35

40

45

50

55

60

65

curing facilities for soft tiles.

The present invention relates to a method of manufacturing concrete roof tiles which are self supporting after fifteen minutes curing.

Accordingly, the present invention provides a method of manufacturing concrete roof tiles 5 wherein the void content (as hereinafter defined) of the fresh uncured mortar may conveniently be from 14 to 23% preferably from 18 to 23%, and more preferably from 19 to 21%, and where carbon dioxide or a carbon dioxide containing medium is used to accelerate the curing of the mortar.

The ratios of sand to cement to water that are required to produce mortars of the desired 10 void content will vary with the different types of sand and cement that are suitable for the preparations of the mortars for the method of this invention.

Many different sands and cements as hereafter defined can be used to prepare the mortar. In general however a water/cement ratio of from 0.15 to 0.32, preferably from 0.26 to 0.30, is required to produce fresh mortars having the desired void content.

The sand to cement ratio should generally lie in the range of from 2.5 to 4.5, preferably from 3.0 to 4.0.

While the high void content of the mortar and porosity of the tiles of the present invention is an advantage in that it permits rapid diffusion of carbon dioxide through the mortar in the carbonation stage it may also permit water to pass through the tile while it is in use. Water 20 passes most readily through the larger pores while carbon dioxide will diffuse through much smaller pores; so in a preferred embodiment of the invention there is a restriction on the void size, preferably this will not exceed, in the fresh mortar 0.5mm, more preferably it will not exceed 0.2mm.

In order to ensure that carbon dioxide can permeate the mortar to carbonate it, the gas 25 permeability of the fresh mortar should preferably exceed 1012m/s. If the permeability is less than 2×10^{-13} m/s then the carbon dioxide will not be able to diffuse quickly through the mortar and carbonation will be very slow. On the other hand if the permeability is too great, the cohesion of the tile becomes reduced and the finished product is more open to water penetration.

Preferably the carbon dioxide is introduced to the fresh mortar at atmospheric pressure but it 30 may be introduced at an elevated pressure of up to 5 atmospheres. The percentage of carbon dioxide in the carbonating atmosphere is preferably from 75% to 100%, more preferably 95% to 100%. In one preferred embodiment of the invention gaseous carbon dioxide is introduced to the mortar in an air tight chamber, which has been previously evacuated, so that air is excluded.

As the carbonation reaction procedes more quickly at elevated temperatures, it is preferred to preheat the mortar to a temperature of from 10 to 40°C, more preferably of from 20 to 30°C. Fig. 1 shows the induction period (the difference in time from the introduction of carbon dioxide to the mortar to the commencement of the carbonation reaction) plotted against initial mortar temperature and shows clearly the effect of preheating the mortar. In one preferred arrangement 40 the heat of the carbonation reaction is recycled to preheat the mortar.

In one arrangement the carbon dioxide is introduced to the mortar when the mortar is compacted on the pallets and preferably before the mortar is cut to provide individual tiles on the pallets.

A convenient way of introducing the carbon dioxide to the mortar is via appropriate apertures 45 in the region of the slipper plate.

The pallets may be arranged to be permeable or may be provided with appropriate apertures allowing the passage of fluid emanating from the carbon dioxide containing medium.

An alternative would be for the carbon dioxide to be introduced into the mortar prior to the mortar being extruded. For exampe this could be done in the hopper.

It is to be understood that all the above references to carbon dioxide include the carbon dioxide in liquid, gas or solid form and also include carbon dioxide containing mediums such as carbonated liquids.

The invention also provides apparatus for making concrete roof tiles in which use is made of any of the above method steps.

There now follows descriptions of an embodiment of a suitable plant lay out and of an improved tile making machine according to the invention. These descriptions are to be read with reference to the accompanying Figs. 2 and 3 respectively.

One embodiment of a suitable plant lay out for the apparatus of the present invention is illustrated in Fig. 2. The sand, cement, water and additives such as pigment are mixed in the 60 batch mixer, the mortar is then transferred to the tile machine where the tiles are shaped on the pallets, the tiles are then transferred via the indexer to the carbonation chamber to which carbon dioxide has been introduced via the vaporiser. The heat generated in the carbonated reaction is recycled by the heat exchanger to the batch mixer to preheat the mortar and to the vaporiser. Following carbonation the tiles on their pallets procede via the indexer to the depalleter where

65 they are separated, the pallets returning to the tile machine while the tiles procede via the

collater and packer to the yard to mature.

An alternative embodiment of the invention is shown in Fig. 3; this is an illustration of the tile making machine where the carbon dioxide is introduced to the fresh mortar via an aperture in the slipper plate.

The machine 10, shown in the drawing, comprises a conveyor 11 of a conventional design, having drive dogs 12 by which pallets P are fed seriatim through a tile machine station 14. At the station 14, the machine 10 is provided with a mortar hopper 15 and a mortar

conveyor 16, by which, when the machine is in use, the hopper is charged with concrete mortar

17.

The hopper 15 is provided with tined compaction device 18, a conventional compaction roller 10 19 and a slipper 20, which roller and slipper define, together with pallets P passing beneath the hopper 15 when the machine is in use, a slit-like opening, through which mortar will pass to form a ribbon of mortar 22 on said pallets P.

For supporting the pallets P, as they pass beneath the hopper as aforesaid, the machine 10 is 15 provided with a dead-bed 23 also of conventional design. .

The slipper 20 of the machine 10 is provided with an inlet 24 extending downwardly therethrough, which inlet 24 is connected to a cylinder 25, fixedly mounted on the slipper 20.

When the machine 10 is in use and tiles pallets P are conveyed beneath the hopper 15 as aforesaid, by pressurising the cylinder 25, CO2 in gaseous and/or liquid form is caused to pass 20 thorugh said inlet 24 and into the mortar 17 via a porous plug (not shown) as it passes underneath the slipper. The CO₂ is diffused throughout the mortar ribbon 21 to cause accelerated hydration thereof.

Immediately after exiting from the slipper, the ribbon of mortar 21 is cut by a knife, or knives,

not shown, to form discrete green-state tiles on the pallets P 25

"Green-state" tiles formed as aforesaid and made from a mortar comprised of a 3.5:1.0:0.3 sand, OPC, water mixture were found to have a flexural strength of 1.9 MPa after 15 minutes. This early strength enables the separation of the "green-state" tiles from their respective pallets thereby releasing the pallets for subsequent tile making operations.

Traditionally, tile pallets for the production of concrete roof tiles are made of metal and are 30 somewhat impervious by nature. It is envisaged that, in the present invention, pallets made from a porous material will enhance the diffusion of the CO2 gas through the tile mortar.

It is also foreseen that more than one inlet for CO2 may be provided on the slipper along the length thereof and that inlets may also be provided in the check plates usually extending along the sides of the tile mortar adjacent to said slipper.

Obviously, the amount of CO2 utilised will depend upon the mass and nature of mortar being used to form the tiles and it is considered that the gas and/or liquid CO2 may be fed to the various inlets at the same, or differential pressures, as required. Such a facility will be important where the cross section of the tiles being formed is not constant.

If required, the "green-state" tiles may be subjected to further CO2 treatment before, or after, 40 separation from their pallets P by passing them through a treatment chamber downstream of the 40 tile making station 14.

The invention is further illustrated with reference to the following Examples in which the sands and cements utilised have the sieve analyses and characteristics as shown in Tables A and B hereinafter.

The sands are basically quartz sands, i.e. they are high in silica content. 45

5

10

15

20

25

30

35

45

(Cumulative SAND CHARACTERISTICS SIEVE SIZES (Cumulat

DESIGNATION	(mm)	4.75	3.35		2.36 1.18 0.6 0.3 0.15	9.0	0.3	0.15	211
*		100		98.9	91.5	65.7	16.0	1.6	5.5
~		98.9	•	80.3	65.2	52.5	26.5	2.1	7.8
S		99.5	93.7	87.2	75.8	57.9	18.7	2.8	4.7
Ω		99.7	95.9	86.1	70.3	51.3	20.5	4.2	7.2
Į.		100		99.2	93.6	64.8	14.4	93.6 64.8 14.4 2.2 14.7	14.7

TABLE B

-		
シントナシトロン	COTTOTUC	
シンドナシトログトクマロマコン トスケスなっ	COLICIAL CHARACTERATERIOS	
	TAIGUS	•

Designation	6 2.	O	5 2	· •		₩
CHARACTERISTS Specific surface area (m2/kg)	346	378	362	303	466	486
102 102 1203	• •		19.4	• •	• •	• •
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	65.0 0.0 141	24 2000 2000	65.45 0.68 0.68 0.65 0.65	64.0	6.64 6.66 6.66 6.66 6.66 6.66 6.66 6.66	00000 4004
Lime saturation factor	6		No V	66 6	. 6V. R	• •
C3S C3S C2S C3A C4AF 1 al set (mins)		10.1	68.3 8.7 8.7 205 26.3	65.6 8.8 8.7 8.7 215 25.5		66.0 7.9 140 140 25.5

1978 (Methors which were (Portland n Britis 4550: 150-85 the methods outlined in string of the string rapid-hardening Pont of the exception of the he formulae given in n Table B abo 8 (Ordinary a Cement) with according to The data in No. 12:1978 of Testing C calculated a Cement)

10

15

20

25

30

45

50

55

ŗ.

.

7

EXAMPLES 1-29

Tiles were prepared from cements, sands and water in the proportions set out in Table 1 with the optional addition of red oxide pigment (Deanshanger 'L12'), plasticiser (Sika 'Plastiment -BV40') or air-entrainer (Cementation Chemicals "Cemairin").

Sand and cement were mixed dry in an Eirich Pan mixer together with any additives for 1 minute, the sand/cement ratio being a constant 3.5. Water was then added in the water/cement ratios listed in column 2 of Table 1, and the mixture was mixed for a further 3 minutes.

The tile machine was an ordinary commercial tile making machine used under laboratory conditions although it was used in its standard settings, i.e., the ones normally used for tile 10 commercial production. The tile machine hopper was filled with mortar which was compacted under the slipper by running the roller on its own for a few seconds to ensure that the first few tiles of each run (corresponding to one mortar batch) were of reasonable quality. Four tiles were selected from each run and two were subjected to accelerated carbonation, while the other two were bag cured for 24 hours.

The accelerated carbonation procedure involved the placing of the two tiles on their pallets in a plastic bag (55×88cm) which was inflated by injecting CO2 (from a liquid cylinder via a vaporiser at rates up to 30 litre/minute) to maintain a slight positive pressure for fifteen minutes. The mortar temperature was monitored throughout the fifteen minutes by means of a thermocouple probe.

Various properties of the fresh mortar and of the carbonated tiles were investigated. Of the 20 newly carbonated tiles, the strength (columns 7 and 9 of Table 1), the surface appearance (column 10) the Ridsdale weight (column 11), of the fresh mortar the percentage of the voids (column 12), and of the cured mortar porosity (column 13), were measured.

Measurements of these properties were carried out as described below.

Strength Testing

25

The strengths of both carbonated specimens of each example were determined as soon as possible after carbonation by means of 3-poing transverse loading. For breaking loads below 200N, tiles were tested using the Salter Force Gauge mounted on a drill stand, adapted to load 30 transversely on bearer rods 350mm apart with a central load bar resting on the two rolls of the tile.

When breaking loads exceeded 200N, tiles were tested at a span of 280mm on a B.S. tile breaker. Such tile breakers give breaking loads which are about 15% higher than those given by an Instron "1116" Universal Testing Machine.

Transverse breaking loads have been converted into apparent mortar bend strengths by means 35 of the formula

W.S

40 P = 4z40

where P is the strength in MPa W is the breaking load in N

S is the bearer span in mm 45 and z is the section modulus in mm³.

Values of z, computed for a contoured tile with a range of centre roll thicknesses, are plotted in Fig. 9. The 'apparent' strength thus calculated assumes that the load is applied 'ideally' (i.e. distributed to avoid stress concentation), but it has been found in practice that 'real' strengths measured in the tile mortar may be up to 50% higher than 'apparent' strengths obtained from 50 tile-breaker loads.

Apparent strengths were calculated from the mean of two breaking loads. Because of the difficulty in ensuring complete removal of air from the bag prior to carbonation, one tile always appeared to be less well carbonated and therefore weaker than the other, so that quoted mean strength is probably an underestimate of what could be achieved with a better engineered

55 carbonating system.

Surface Appearance

Surface appearance was rated by Comparison with non-carbonated tiles on the following scale:

5-excellent

4-good 60

3-acceptable

2-poor

1-very poor.

Ridsdale Weight

The Ridsdale weight is defined as the weight of a block of mortar of 188cm³ which has been 65

60

rammed to that constant volume. Percentage of Voids in Fresh Mortar The Fresh Mortar Void content is defined as

$5 E(\%) = 100(1-D/D_0)$

5

where D is the mortar density as measured on a cylinder of mortar rammed to constant volume on a Ridsdale sand Rammer and Do is the theoretical void free mortar density defined as

$D0 = A + 1 + W/\{A/P_a + 1/P_c + W\}$

10 for an aggregate: cement: water ratio of A:1:W and for aggregate and cement densities of Pa and P_c respectively.

10

Cured Mortar Porosity

The cured mortar porosity is measured by the normal water saturation method.

Examples 1-6 illustrate the effect of reducing the water/cement ratio while keeping other variables constant for a Sand "D"/cement "F" mixture. Examples 7-10 illustrate the same effect when Cemairin air-entrainer is added to the mixture, examples 11-16 when BV40 plasticiser is added and Examples 17-20 when pigment 5 red oxide pigment is added. Examples 22-25 illustrate the effects of using different sands at a constant sand/cement ratio of 0.30, 20 and examples 26-29 show the effects of using different cements.

15

20

Maximum apparent strength after 15 minutes is achieved at low or intermediate water/cement ratios. The apparent strength is plotted against w/c ratio in Fig. 4.

The carbonation process is tolerant of a wide range of sands, but Sands "D", "A" and "C" give the highest 15 minute strengths; in general the mortars with the highest void content 25 produce the highest 15 minute strengths. Similarly the process is tolerant of a range of cements with cements "G" and "F" giving the highest 15 minutes strengths.

25

The addition of pigment, plasticiser or air-entrainer tends to slightly reduce both mortar void content and fifteen minute strength but not by any significant amount. That the addition of airentrainer should decrease void content may indicate that its plasticising characteristics predomi-30 nate at the comparatively high ramming pressures used.

30

The monitoring of mortar temperature during the carbonation showed that it would be possible to increase the temperature of mortar, pallets and other apparatus to a temperature of at least 20°C at which the carbonation reaction may procede more quickly.

35 *EXAMPLE 30*

40

35

The procedure of the earlier examples was repeated except that the aggregate/cement/water ratio was 4.5/1/0.3. The results are tabulated in Table I, cement "F" and sand "D" were used, no additives were added. The effect on 15 minute strength was not great, nor was the effect on porosity, of changing the aggregate/cement ratio.

40

EXAMPLES 31-51

In these examples the investigations undertaken for the tiles of examples 1-30 were continued and extended under actual works conditions rather than under laboratory conditions. Comparisons between carbonated tiles (examples 31-37), bag hydrated tiles (examples 38-44) and 45 chamber cured tiles (examples 45-51) were carried out.

45

The tiles were prepared from the cements, sands, water and admixture in the proportions set out in Table 2. Sand "E" and cement "K" were used, the pigment was a commercially available iron oxide pigment. The tiles were prepared using an ordinary commercial tile machine in its standard settings.

50

Following manufacture of the tiles, of the tiles from each mix, 4 were carbonated, 2 were bag 50 cured and 8 were chamber cured. When more than one tile was tested to ascertain a particular property an averaged result is quoted.

55

The carbonated tiles were carbonated by the process described in examples 1-30 and are designated C. The bag cured tiles, designated H, were sealed on their pallets in polythene bags 55 and left to hydrate at ambient temperature (between 5 and 15°C) for 48 hours. The chamber cured tiles were subjected to the normal chamber curing cycle, and are designated N.

The strength of the depalletable carbonated tiles was measured after 15 minutes carbonation. The tiles of Examples 31–37 are prepared for mixes 1–7 of Table 2. Their strength was measured using three-point flexure on parallel bearer rods 350 mm apart, with a central bar 60 resting on the two rolls of the tile loaded by means of a Salter Force Gauge mounted on a drill stand.

60

65

Example 31 prepared from the mortar from Mix 1 showed no change after carbonation, and tiles were therefore not depalletable. Example 32, tiles from Mix 2, had developed a slight surface crust, especially on the locks where the mortar is less well compacted, but were still not 65 depalletable. The surface crust was more evident in Example 33 prepared from Mix 3, but only

INSDOCID: <GB_ _2192392A___I_>

45

55

3

with Example 34 (Mix 4) had sufficient strength been developed for tiles to be depalleted: unfortunately they were not quite strong enough to support their own weight and could therefore not be tested for strength. Tiles from the remaining mixes (examples 35-39) were all easily depalletable and yielded strengths which increased with reduction in w/c ratio, and in some 5 cases exceeded the capacity of the Force Gauge (200N). 5 The 15 minute strengths thus measured are listed in the final column of Table 2. None of the bag or chamber cured tiles could be depallated after this short curing time. The fact that the strengths of the carbonated tiles were lower than the strengths measured in examples 1-29 for similar w/c ratios is due to the fact that the carbonation reaction can 10 procede to a lesser extent in the tiles of the present examples which have been more highly 10 compressed by the works-tuned tile manufacturing machine. The properties of the cured and matured tile samples were measured and the results obtained. as described below. 15 Flexural strength 15 After storing dry for 4 weeks, breaking loads were measured on dry tiles in 3-point flexure, using parallel bar breakers mounted at a span of 280mm in a model 1116 Instron running at a cross-head speed of 0.5mm/minute. The measured breaking loads are shown in Table 3: where more than one tile of a type was 20 tested, a standard deviation is given, together with the number of tiles tested in brackets. These 20 results are plotted against w/c ratio in Fig. 5. There is little difference in strength between the three curing regimes at any of the mix w/c ratios, but reducing the w/c ratio from 0.38 to 0.26. causes the flexural strength to fall by more than 30%. 25 Density and porosity of water immersion 25 Densities were measured, in triplicate, on samples about 5cm square cut from the valleys of the tiles. Two methods were used: the normal water immersion method and the more recently developed technique of vacuum saturation, where the specimens are placed in water under vacuum for 24 hours instead of merely being soaked in an open tank for 24 hours. 'Wet' (saturated and surface dry) and oven dry densities, determined densities, determined by 30 water immersion, are tabulated for each mix in Table 4, which shows that there is a little difference between chamber cured (N), bag hydrated (H) and carbonated (C) densities at each w/c ratio. There is little fall in density with reduction in w/c ratio until the last two mixes. Porosities determined by the two techniques are tabulated in Table 5 and plotted as a function 35 of w/c ratio in Fig. 6. The values (numerically equal to the difference between wet and dry 35 densities, expressed as a percentage) represent the void space which is accessible to water, and are less sensitive to the curing regime than to the original water content of the mortar mix. Whereas the 'vaccum saturated porosity' increased steadily with falling w/c ratio, the water immersed porosity reached a minimum at a w/c ratio of about 0.32. Since vacuum saturation 40 enables smaller pores to be filled by water, this suggests that the initial effect of w/c reduction 40 (0.38 to 0.32) is to increase the number of small pores, and that the number of larger pores does not begin to increase until the w/c ratio falls below 0.32. Porosity by mercury intrusion Selected specimens from Mix Nos. 1, 4 and 7; either carbonated or chamber cured (i.e. 45 examples 31, 34, 37, 45, 48 and 51) were examined by mercury intrusion porosimetry (MIP), which measured pore volumes in the size range 0.005 to $7.5\mu m$. The results of determinations in duplicate are presented in Figs. 7 and 8, where the cumulative pore volume (in cm³/g) is plotted against the pore radius. These distributions show that the 50 porosity in this size range, and expecially below $1\mu m$, actually falls with decreasing w/c ratio, in 50 contrast to the results from water immersion testing. This is consistent with the known effect of w/c ratio on the capillary space within hardened cement paste. Carbonated tiles had a slightly lower porosity than chamber cured, presumably because deposition of calcium carbonate during carbonation blocks the finer pores. 55 Mortar microstructure 6 tile samples of the same tiles that were used for measuring mercury intrusion i.e. Examples 31, 34, 37, 45, 48 and 51 have been examined by back-scattered electron imaging (BSEI). This technique produces an image on the electron microscope whose contrast varies with the atomic 60 number density of the phases present, and can thus distinguish easily between pores, cement 60

paste and aggregates in mortar. In addition, it is possible to feed the electron image into a

65 polymer to enhance the contrast of the pores. It was estimated that the magnification used

tions of phases present and perform statistical operations on them.

versatile multi-colour image analyser which enhances the contrast and can quantify the propor-

Before polishing to a flat surface with $1\mu m$ diamond paste, specimens were impregnated with

1

15

20

(\times 100), the image analysing system was capable of resolution down to about 50 μ m.

The relative volumes of phases present in mortars, obtained from averaging 4 or more fields for each specimen, are shown in Table 6.

As expected, porosity increased with reduction in w/c ratio from mixes 1 to 4 to 7, and there was little difference between carbonated and chamber cured specimens or between roll and valley sections. The porosity of examples 31 and 45 was considerably less than that measured by water immersion, probably because the more viscous resin was less able to penetrate the smaller pores.

10 Pore size distribution

Electron microscopy of tile sections (see above) has suggested that lowering the w/c ratio of tile mortar may affect both the spatial and size distribution of porosity. Volume porosities determined by different techniques are compared in Table 7. The pore size range covered by mercury instrusion (MIP) is related to the pressure used and the contact angle of mercury: the

ranges for water immersion and vacuum saturation have been estimated assuming that water will penetrate all the capillary (but not gel) pores in the cement paste under vacuum, but will not reach the smaller capillary pores if no vacuum is applied.

The data in Table 7 shows that with decreasing w/c ratio

(i) porosity below $1\mu m$ (MIP) falls

20 (ii) porosity between 1 and 7.5μm (MIP) rises

(iii) the 'total' porosity (water under vacuum) rises

(iv) the smaller water-accessible porosity (difference between vacuum saturation and immersion) rises.

This last observation conflicts with the first, suggesting that the type or shape of pores penetrated by mercury and water may be different. Nevertheless, comparison of the mercury and water pore volumes indicates that the large porosity (greater than a few μ m) increases considerably with decreasing w/c ratio.

			ZI	TABLE 1	S.	Summary of	Run	Parameters				
Kramples	8 w/c Ratio	Cement Sand if not Cement Sand "F" "p"	Additive (Dosege w/w c	ve / cement}	Tile Vt. (8)	Kean Load	Thick- 1	Apparent 15 minuto (MPa)	Surface Appearance (1-5)	Ridsdele weight (g)	Estimated voids(%) in Presh morter	Cured porosity (%)
-	0 کار									1		
• •						1	•		m	374	18.1	17.1
v 6			•		4959	101	3.3	_	ന	382	16.8	16.8
ე ∢					4960	108	4.0	0.22	e e	380	17.8	_
er u	0.30				4904	460	•		c	370	20.4	16.7
^ 、	•				4650	\$ 28	3.6	0.92	m	365	22.0	16.9
o ;	•				4667	557	3.6	•	2	365		12.7
~ (•		Cemairin	-	4717	145	3.5	0.30	m	388	16.2	
*	•		Cemairin	-	4625	124	0	•	· C1	.	•] 1
.	•		Cemeirin	.		166	4.1	0.32	िस्प	385	17.2	l i
0 ;	•		Cemeirin	7	4628	320	Ε.	0.53) I	•	l
11	•		8V40	•	~	752	_	0.16	· •3	38.1	17.0	· •
21	•		8V40	•		87	3.9	0.18	· •^	379	. «	
FT -	•		8740		4958	201	•	0.33	က	. ~		0.01
+ •	•		BV40	٠.	4634	340	3.9	0.55	m	375	6	
C7	07.0		8V40	۲.	4475	260		0.43	2	369		• [
7 6	0.24		8740	S	4610	380	13.50	0.64	4	366	2	. ■
) a	•		Pigment		~	215	•	0.36	9	1	•	20.1
0 6	•		Pigmont	ر. دم	4797	210	ы	0.35		381	17.6	20.7
20	•		Pigmont		4840	380	13.40	0.64	4	369		• 1
2 5	0.68		Pigment		4701	310	•		2	365	22.0	
"	07.0	***	Pigmont		4451	280	2.	0.48	2	•		21.6
, r	•				4 7 0 9	325	•	•	4	390	16.1	
ر ع د	•	i a) (82	105	12.88	•	S	398	14.4	۱ (
T V	•				4851	179	12.86	0.39	4	387		i i
C &	 				4790	64	13.41	0.13	2	187	16.8	l
o ;	٠. ٥٠.			7	78	395	13.44	•	· m	373	9) i
, ,	٠ ٠ ٠			7	4677	208	12.97		2	. [• (1
0 6		I.		•	4582	210	•	4	· C3	ı	3 (1
()	סיי			4	4664	210	13.00	m	2	ł	ı I	1 1
2	. 30			◀	059	305	Э.	•	2	362	77.1	, oc
	D D				•					•	•	7.57

••

i

ABLE 2 CONTOURED TILE MAKING MACHINE

space	lon	RX.		31	32	33	34	35		
Breaking loads	carbonation				1	ı	(20)	54.79	159 200	200 200
Bre	5	.Density	factor.	443	424	418	421	414		395
parameters		Tile	weight (g)	4736	4545	4509	4520	4454	4418	4280
Machine par		Mean title	thickness (mm)	(10.70)	10.71	10.78	10.75	10.76	10.85	10.83
	Calculated mix parameters	Moisture	content (%)	8.0	7.7	7.3	7.0	9.9	6.3	5.7
	d wim b	3/A	ratio	0.376	0.359	0.341	0.323	0.305	0.287	0.260
	alculate	Dry a/c	ratio	3.26	3.26	3.26	3.25	3.25	3.25	3.25
	C Estimated	Vater	in sand (1)	24	25	26	27	27	27	27
		Total	Wator (1)	84	80	76	72	89	64	58
		Water	added (1)	48	43	38	33	29	25	19
veights		lent	Water (1)	11.9	11.9	11.9	11.9	11.9	11.9	11.9
Measured Datch weights		Pigment	Solid (kg)	10.2	10.2	10.2	10.2	10.2	10.2	10.2
lea sured			Cement (kg)	223	223	223	223	223	223	223
i.			(kg)	752	752	752	752	752	752	752
		×	0		2	က	<	so.	•	_

4

5

45

13

TABLE 5 Porosities determined by water immersion and by vacuum saturation 5 5 Water immersion porosity Vacuum saturation (%) porosity (%) Example No. (45-51) (38-44) (31-37) (45-51) (38-44) (31-37).10 Mix No. 10 N · H C N H C 13.7 13.5 14.6 14.5 15 2 13.2 13.4 15.4 15.0 15 3 13.0 12.8 12.8 15.4 15.0 15.1 12.8 12.8 12.4 17.4 16.4 16.6 20 5 13.5 12.3 13.5 17.5 17.3 18.3 20 13.6 . 13.4 13.7 6 18.5 18.5 19.1 7 16.3 15.4 15.7 20.4 21.3 20.4 25 25 TABLE 6 Relative volumes of phases in tile mortars, 30 30 determined by back-scattered electron imaging. 35 Example No. 31 31 34 35 34 37 45 48 51 Valley Roll Roll Valley Volume \$ 40 Pores 6 6 15 13 15 8 13 16 40 Sand 70 72 63 66 66 75 66 63 Hydrates 21 18 17 17 15 14 16 16 Clinker ·

5

4

45

Porosities (volume %) determined by mercury TABLE 7 intrusion, water immersion and vacuum saturation

Techn	ique	mercury	porosimetry	Water immersion	Vacuum saturation
Size	Max.	1 µm	7.5µm	mm	mm
range	Min.	5 nm	1 µm	hm	nn
Evensi	- W-				
Exampl	e No. 5	12.2	0 6	3 7 0	
	8	9.2	0.6	13.9	16.0
5			0.6	13.0	17.3
3	•	5.1	2.6	16.7	21.0
3		10.9	0.3	13.0	16.9
3		6.7 4.1	0.9 1.6	15.2 15.0	18.6 21.3
1. A nefined) o	t the tresh	mortar is from	concrete articles who m 14 to 23% by vol	ume and wherein ca	rbon dioxide or a
1. A nefined) of arbon did 2. A not 23% book at 1. A not	the tresh exide contained as one thod as one thouse the contained as one the contained as one thouse the contained as one	mortar is from ining medium claimed in Claimed in claimed in any ortar is in the	m 14 to 23% by voling used to accelerate im 1 wherein the voice im 2 wherein the voice of the preceding range of from 0.15 to 15 to	ume and wherein ca the curing of the red d content of the fred d content of the fres g claims wherein the	rbon dioxide or a nortar. sh mortar is from 18 sh mortar is from 19 e water to cement
etined) of arbon did 2. And 23% by 3. And 5.	the tresh exide containe the co	mortar is from ining medium claimed in Claimed in claimed in any claimed in Claimed in Claimed in any claimed i	m 14 to 23% by volis used to accelerate im 1 wherein the voice of the preceding range of from 0.15 to 4.5.	ume and wherein can be the curing of the red content of the fresh do content of the fresh golaims wherein the to 0.32. The to coment ratio is golaims wherein the golaims wherein the golaims wherein the content ratio is golaims.	rbon dioxide or a nortar. sh mortar is from 18 sh mortar is from 19 water to cement is in the range of from 19 sand to cement range.
1. An efined) of arbon did 2. An of 23% by 4. An of the fresh of the f	the tresh exide contained as of volume. The thod as of the the thod as of the	mortar is from ining medium claimed in Claimed in any claimed in C	is used to accelerate im 1 wherein the voice of the preceding range of from 0.15 to 4.5. im 6 wherein the same one of the preceding one	ume and wherein can be the curing of the red content of the free document of the free golding wherein the to 0.32. Iter to cement ratio is golding wherein the golding wherein the gest pore size in the lang claims wherein the golding wherein the g	rbon dioxide or a nortar. sh mortar is from 18 sh mortar is from 19 water to cement is in the range of from 19 in the range of from 19 largest pore size in fresh mortar is no gas permeability of the same permeability of t
1. An efined) of arbon did 2. An arbon did 3.	the tresh exide contained as of the thod as of the the thod as of the thod as of the thod as of the thod as of the the thod as of the	mortar is from ining medium claimed in Claim	is used to accelerate im 1 wherein the voice of the preceding range of from 0.15 to 4.5. Im 6 wherein the same of the preceding one of	ume and wherein can be the curing of the red content of the free document of the free goldins wherein the sto 0.32. The to cement ratio is goldins wherein the set pore size in t	rbon dioxide or a nortar. sh mortar is from 18 sh mortar is from 19 water to cement is in the range of from 19 sand to cement rate in the range of from 19 largest pore size in fresh mortar is the gas permeability of the fresh mortar is an accordance of the carbon dioxide or the carbon
1. An efined) of arbon did	the tresh exide containe thod as one thou the thod as one thod as	mortar is from ining medium claimed in claimed in any star is in the claimed in any sin the range claimed in any claimed in Claimed	is used to accelerate im 1 wherein the voice of the preceding range of from 0.15 to 4.5. Im 6 wherein the same one of the preceding one	ume and wherein can the curing of the red content of the free d content of the free d content of the free g claims wherein the to 0.32. The to cement ratio is g claims wherein the gest pore size in the find to cement ratio is g claims wherein the gest pore size in the curing at a pressure is 1 atmosphing claims wherein the curing at a pressure is 1 atmosphing claims wherein the first to 100%. The presentage of carbon percentage percentage of carbon percentage	rbon dioxide or a nortar. sh mortar is from 15 sh mortar is from 15 sh mortar is from 15 sin the range of from 15 sin the range of from 16 sand to cement rate in the range of from 17 she gas permeability the fresh mortar is an ecarbon dioxide or e in the range of from 18 she percentage of 18 dioxide in the dioxide in th

20

17. A method as claimed in Claim 16 wherein the mortar is preheated to a temperature of from 20 to 30°C before carbonation. 18. A method as claimed in Claims 16 or 17 wherein the heat of the carbonation reaction is used to preheat the mortar. 19. A method as claimed in any one of the preceding claims wherein the carbon dioxide or 5 carbon dioxide containing medium is introduced to the mortar on the pallets, preferably before it is cut to provided individual tiles. 20. A method as claimed in Claim 19 in which carbon dioxide is introduced to the mortar via appropriate apertures in the slipper plate. 21. A method as claimed in any one of Claims 1 to 19 wherein the pallets are permeable or 10 are provided with appropriate apertures for the flow of fluid emanating from the carbon dioxide containing medium. 22. A method as claimed in any one of claims 1 to 18 wherein the carbon dioxide is introduced into the mortar prior to the mortar being compated (e.g. on the hopper). 23. A method of manufacturing concrete roof tiles as claimed in any one of the preceding 15 claims and substantially as hereinbefore described with reference to the examples.

24. Apparatus for carrying out the method as claimed in any one of claims 1 to 23 or

25. A concrete roof tile produced by a method as claimed in any of claims 1 to 23.

Printed for Her Majesty's Stationery Office by Burgess & Son (Abingdon) Ltd, Dd 8991685, 1988.
Published at The Patent Office, 25 Southampton Buildings, London, WC2A 1AY, from which copies may be obtained.

substantially as hereinbefore described with reference to the drawings.

26. A roof comprising a plurality of tiles as claimed in claim 25.

ris Page Blank (uspto)

Best Available Copy