

Transferable, Controllable, and Inconspicuous Adversarial Attacks on Person Re-identification With Deep Mis-Ranking

Hongjun Wang^{1*}(Eden) Guangrun Wang^{1*} Ya Li² Dongyu Zhang¹ Liang Lin^{1,3}

¹Sun Yat-sen University ²Guangzhou University ³DarkMatter AI

Motivation

1. Marvelous strategies and architectures

(e.g. AlignedReID, PCB, BOT, FPR...)

2. Extreme scenarios

(e.g. Occluded Person Re-Identification)

3. Videos

(e.g. GLTR, TKP, COSAM...)

4. More realistic and larger datasets

(e.g. Market1501/CUHK03→DukeMTMC→MSMT17)

5. Augmentation

(e.g. CamStyle, LSRO, HHL, SPGAN...)

6. Others (Unsupervised ReID / Evaluation Metric....)

Gallery

More and more

practical

Feed Retrieve Retrieve

Direction of current ReID

Motivation

Does surpassing human-level performance in person ReID really mean *reliability*?

Framework

Our goal is to **generate some malicious noise** *P* to disturb the input image *I*.

The disturbed image \hat{I} is able to **cheat the ReID system** T. M controls the number of adversarial pixels.

Mis-Ranking Loss

Specifically, the distance of each pair of samples from **different categories** (e.g., (\hat{I}_c^k, I) , $\forall I \in \{I_{cd}\}$) is **minimized**, while the distance of each pair of samples from the **same category** (e.g., (\hat{I}_c^k, I) , $\forall I \in \{I_{cs}\}$) is **maximized**.

Multi-stage Discriminator

Multi-stage GAN Loss:

$$\mathcal{L}_{GAN} = \mathbb{E}_{(I_{cd}, I_{cs})}[\log \mathcal{D}_{1,2,3}(I_{cd}, I_{cs})] + \mathbb{E}_{\mathcal{I}}[\log(1 - \mathcal{D}_{1,2,3}(\mathcal{I}, \hat{\mathcal{I}}))]$$

Make attack inconspicuous

(1) Control the number of the adversarial pixels

$$p_{i,j} = \frac{\exp((\log(\lambda_{i,j} + \mathcal{N}_{i,j}))/\tau)}{\sum_{i,j=1}^{H,W} \exp(\log(\lambda_{i,j} + \mathcal{N}_{i,j})/\tau)}$$

$$\mathcal{M}_{ij} = \begin{cases} \mathcal{K}eep\mathcal{T}opk(p_{i,j}), & \text{in forward propagation} \\ p_{i,j}, & \text{in backward propagation} \end{cases}$$

(2) Using Perception Loss

$$\mathcal{L}_{VP}(\mathcal{I}, \hat{\mathcal{I}}) = [l_L(\mathcal{I}, \hat{\mathcal{I}})]^{\alpha_L} \cdot \prod_{j=1}^L [c_j(\mathcal{I}, \hat{\mathcal{I}})]^{\beta_j} [s_j(\mathcal{I}, \hat{\mathcal{I}})]^{\gamma_j}$$

Experiments

Findings

- No effective way so far to defend against adversarial attacks for current ReID models.
- Nonlinear and large receptive field (Mudeep) or reprocessing the query images and hiding the network architecture during evaluation (PCB) may improve the robustness.
- **Attention mechanism** may be harmful to the defensibility (or good to white-box attack).

			•			(a)	Market150	01		•	0						
M	lethods		Ran	k-1			Ranl	k-5			Rank	-10			mA	.P	
IV	ietnods	Before	GAP	PGD	Ours	Before	GAP	PGD	Ours	Before	GAP	PGD	Ours	Before	GAP	PGD	Ours
	IDE (ResNet-50)	83.1	5.0	4.5	3.7	91.7	10.0	8.7	8.3	94.6	13.9	12.1	11.5	63.3	5.0	4.6	4.4
Backbone	DenseNet-121	89.9	2.7	1.2	1.2	96.0	6.7	1.0	1.3	97.3	8.5	1.5	2.1	73.7	3.7	1.3	1.3
	Mudeep (Inception-V3)	73.0	3.5	2.6	1.7	90.1	5.3	5.5	1.7	93.1	7.6	6.9	5.0	49.9	2.8	2.0	1.8
	AlignedReid	91.8	10.1	10.2	1.4	97.0	18.7	15.8	3.7	98.1	23.2	19.1	5.4	79.1	9.7	8.9	2.3
Part-Aligned	PCB	88.6	6.8	6.1	5.0	95.5	14.0	12.7	10.7	97.3	19.2	15.8	14.3	70.7	5.6	4.8	4.3
	HACNN	90.6	2.3	6.1	0.9	95.9	5.2	8.8	1.4	97.4	6.9	10.6	2.3	75.3	3.0	5.3	1.5
	CamStyle+Era (IDE)	86.6	6.9	15.4	3.9	95.0	14.1	23.9	7.5	96.6	18.0	29.1	10.0	70.8	6.3	12.6	4.2
Data Augmentation	LSRO (DenseNet-121)	89.9	5.0	7.2	0.9	96.1	10.2	13.1	2.2	97.4	12.6	15.2	3.1	77.2	5.0	8.1	1.3
Data Augmentation	HHL (IDE)	82.3	5.0	5.7	3.6	92.6	9.8	9.8	7.3	95.4	13.5	12.2	9.7	64.3	5.4	5.5	4.1
	SPGAN (IDE)	84.3	8.8	10.1	1.5	94.1	18.6	16.7	3.1	96.4	24.5	20.9	4.3	66.6	8.0	8.6	1.6
					1 1	() CUHK0:		1 1				1 1				•
Methods		Rank-1		Rank-5		Rank-10		mAP									
IV	ietilous	Before	GAP	PGD	Ours	Before	GAP	PGD	Ours	Before	GAP	PGD	Ours	Before	GAP	PGD	Ours
	IDE (ResNet-50)	24.9	0.9	0.8	0.4	43.3	2.0	1.2	0.7	51.8	2.9	2.1	1.5	24.5	1.3	0.8	0.9
Backbone	DenseNet-121	48.4	2.4	0.1	0.0	50.1	4.4	0.1	0.2	70.1	5.9	0.3	0.6	84.0	1.6	0.2	0.3
	Mudeep (Inception-V3)	32.1	1.1	0.4	0.1	53.3	3.7	1.0	0.5	64.1	5.6	1.5	0.8	30.1	2.0	0.8	0.3
	AlignedReid	61.5	2.1	1.4	1.4	79.4	4.6	2.2	3.7	85.5	6.2	4.1	5.4	59.6	3.4	2.1	2.1
Part-Aligned	PCB	50.6	0.9	0.5	0.2	71.4	4.5	2.1	1.3	78.7	5.8	4.5	1.8	48.6	1.4	1.2	0.8
	HACNN	48.0	0.9	0.4	0.1	69.0	2.4	0.9	0.3	78.1	3.4	1.3	0.4	47.6	1.8	0.8	0.4
	•				П	(c)	DukeMTM	1C	П	•				•			1
Methods Rank-1 Before GAP PGD		1 1		Ranl	k-5	П		Rank	:-10			mA	.P				
		Before	GAP	PGD	Ours	Before	GAP	PGD	Ours	Before	GAP	PGD	Ours	Before	GAP	PGD	Ours
	CamStyle+Era (IDE)	76.5	3.3	22.9	1.2	86.8	7.0	34.1	2.6	90.0	9.6	39.9	3.4	58.1	3.5	16.8	1.5
Data augmentation	LSRO (DenseNet-121)	72.0	1.3	7.2	0.7	85.7	2.9	12.5	1.6	89.5	4.0	18.4	2.2	55.2	1.4	8.1	0.9
Data augmentation	HHL (IDE)	71.4	1.8	9.5	1.0	83.5	3.4	15.6	2.0	87.7	4.2	19.0	2.5	51.8	1.9	7.4	1.3
	SPGAN (IDE)	73.6	5.3	12.4	0.1	85.2	10.3	21.1	0.5	88.9	13.4	26.3	0.6	54.6	4.7	10.2	0.3
	l .	l .			 				 				 				

Ablations

• Six major ablation experiments

- Comparisons of **Different Losses**
- Different ϵ
- Effectiveness of Multi-stage Discriminator
- Cross-model / Cross dataset / Cross-dataset-cross-model attack. (a) Average image (b) Position statistics

Table 2. **Ablations.** We present six major ablation experiments in this table. **R-1,R-5,& R-10:** Rank-1, Rank-5, & Rank-10.

D 1

	R-1	R-5	R-10	mAP	
(A) cent	28.5	43.9	51.4	23.8	_
(B) xent	13.7	22.5	28.7	12.5	
(C) etri	4.5	9.1	12.5	5.1	_
(D) xent+etri	1.4	3.7	5.4	2.3	

(a) **Different Objectives**: The modified xent loss outperforms the cent loss, but both of them are unstable. Our loss brings more stable and higher fooling rate than misclassification.

	K-1	K-3	K-10	MAP
ϵ =40	0.0	0.2	0.6	0.2
ϵ =20	0.1	0.4	0.8	0.4
ϵ =16	1.4	3.7	5.4	2.3
ϵ =10	24.4	38.5	46.6	21.0

(b) Comparisons of different ϵ : Results on the variants of our model using different ϵ . Our proposed method achieves good results even when $\epsilon=10$.

	R-1	R-5	R-10	mAP
PatchGAN (ϵ =40)	48.3	65.8	73.1	37.7
Ours (ϵ =40)	0.0	0.2	0.6	0.2
PatchGAN (ϵ =10)	53.3	69.2	75.6	43.2
Ours (ϵ =10)	24.4	38.5	46.6	21.0

(c) **Multi-stage vs. Common discriminator**: Multi-stage technique improves results under both large and small ϵ for utilizing the information from previous layers.

	R-1	R-5	R-10	mAP
Market→CUHK	4.9	9.2	12.1	6.0
	34.3	51.6	58.6	28.2
Market→Duke	17.7	26.7	32.6	14.2
$Market \rightarrow MSMT$	35.1	49.4	55.8	27.0

(d) Crossing Dataset. Market → CUHK : noises
learned from Market1501 mislead inferring on
CUHK03. All experiments are based on Aligned-
ReID model.

			R-10	
\rightarrow PCB	31.7	46.1	53.2	22.9
→PCB →HACNN	14.8	24.4	29.8	13.4
\rightarrow LSRO	17.0	28.9	35.1	14.8
	•			

⁽e) Crossing Model. → PCB: noises learned from AlignedReID attack pretrained PCB model. All experiments are performed on Market1501.

	R-1	R-5	R-10	mAP
\rightarrow PCB(C)	6.9	12.9	18.9	8.2
\rightarrow HACNN(C)	3.6	7.1	9.2	4.6
\rightarrow LSRO(D)	19.4	30.2	34.7	15.2
\rightarrow Mudeep(C)*	19.4	27.7	34.9	16.2

⁽f) Crossing Dataset & Model. → PCB(C): noises learned from AlignedReID pretrained on Market-1501 are borrowed to attack PCB model inferred on CUHK03. * denotes 4k-pixel attack.

Conclusion

Conclusion

- The current ReID models are also vulnerable to adversarial attack although they achieve fabulous performance.
- Great transferability of adversarial examples makes it possible for the hackers to attack an unknown ReID model, which brings more challenge for building a secure and reliable ReID system.

Future work

- Encourage the noise to look like a natural patch or a type of fabric on the clothes for real scenario attack.
- Focus on how to achieve a trade-off between accuracy and robustness of ReID models

Looking for a **PhD supervisor in 2021**

My interests: Deep Learning, Security of ML

Mail: wanghq8@mail2.sysu.edu.cn

