

Modelling Round-off Error in the Fast Gradient Method for Predictive Control

lan McInerney¹, Eric C. Kerrigan^{1,2}, George A. Constantinides¹

¹Department of Electrical and Electronic Engineering, Imperial College London ²Department of Aeronautics, Imperial College London

Optimal Control Problem

Constrained Linear Quadratic Regulator

$$\min_{u,x} \frac{1}{2} x'_N P x_N + \frac{1}{2} \sum_{k=0}^{N-1} \begin{bmatrix} x_k \\ u_k \end{bmatrix}' \begin{bmatrix} Q & S \\ S' & R \end{bmatrix} \begin{bmatrix} x_k \\ u_k \end{bmatrix}$$
s.t. $x_{k+1} = A x_k + B u_k, \ k = 0, \dots N-1$

$$F u_k \le c_u, \ k = 0, \dots N-1$$
Remove state variables
$$\min_{u} \frac{1}{2} u' H_c u + \hat{x}'_0 J' u$$

- Solve using the Fast Gradient Method
 - For stability and convexity: $\lambda(H_c) \in (0,1)$
- Converting problem to fixed-point representation can cause loss of convexity and stability

Rounding Model

 Model rounding loss as a perturbation matrix, and define the largest allowable perturbation

Definition 1 (Rounding stability margin). Let $\hat{H}=H+E$ with $||E||_2=\beta$ and $\lambda(H)\in(0,1)$. The rounding stability margin η is the smallest value of β that causes the eigenvalues of \hat{H} to leave the interval (0,1).

- Use the pseudospectrum of H_c to compute η
 - For generic matrices, add $\pm \varepsilon$ to all terms as the perturbation, giving

$$\eta(H) = \min\{\|(-H)^{-1}\|_2^{-1}, \|(I-H)^{-1}\|_2^{-1}\}.$$

- For Schur-stable systems, exploit the Toeplitz structure of H_c , and use its matrix symbol, giving $\eta(H) = \min \left\{ \left\| (-\mathcal{P}_H)^{-1} \right\|_{H_{\infty}}^{-1}, \left\| (I_m - \mathcal{P}_H)^{-1} \right\|_{H_{\infty}}^{-1} \right\},\,$

 $\mathcal{P}_{H_{cP}}(z) := (z\mathcal{G}(z)_s)^* Q(z\mathcal{G}(z)_s) + R \quad \forall z \in \{z \in \mathbb{C} : |z| = 1\}.$

- For a system with *m* inputs and a horizon of length N, size the fractional bits as follows:
 - For generic matrices:

$$f = \begin{cases} \left\lceil -\log_2\left(\frac{\eta}{mN}\right) \right\rceil - 1 & \text{if using round to nearest,} \\ \left\lceil -\log_2\left(\frac{\eta}{mN}\right) \right\rceil & \text{otherwise.} \end{cases}$$

 For Schur-stable predicted systems using round to nearest or round to zero, solve:

s.t.
$$|\mathcal{E}_f|m(2k-1)+2\|\mathcal{P}_{\bar{H}}(k,\cdot)\|_{H_\infty}<\eta$$
 where

$$\mathcal{G}_P := \left\{ \begin{array}{l} x^+ = Ax + Bu \\ y = B'Px \end{array} \right., \mathcal{P}_n(z) := \sum_{i=0}^{n-1} A^i z^{-i} \quad \forall z \in \{z \in \mathbb{C} : |z| = 1\} \right\}$$

$$\mathcal{P}_{\bar{H}}(n,z) := z\mathcal{G}_P(z) - B'P\mathcal{P}_n(z)B \quad \forall z \in \{z \in \mathbb{C} : |z| = 1\}.$$

Minimum fractional bits needed for a given horizon length

- Exploiting the Toeplitz structure leads to a reduction of the number of fractional bits by 40% compared to generic matrices.
- The minimum fractional length uses 77% less memory, 33% fewer DSP blocks, and is 25% faster compared with the floating-point version

Fractional Length	Logic Resources				Power	Solve
	LUT	FF	DSP	BRAM	(mW)	Time (µS)
f=12	947	768	4	2	20	532.17
f=16	1,136	912	4	2	25	612.17
f=21	887	1,033	8	8	43	701.77
f=26	993	1,237	12	9	48	701.77
Float (single)	2,161	1,545	5	14	51	982.17

Resource usage for the Fast Gradient Method on a Zynq 7020