W1211 Introduction to Statistics Lecture 13

Wei Wang

Oct 17, 2012

Independent rv's

Recall the definition of independence of two random events A and B.

$$P(A \cap B) = P(A) P(B)$$

- We say two random variables X and Y are independent if and only if P(X=x, Y=y) = P(X=x) P(Y=y), for any x and y.
- More specifically, two random variables X and Y are said to be independent if for every pair x and y values,

$$p(x, y) = p_X(x) p_Y(y)$$
, when X and Y are discrete;

or

$$f(x, y) = f_X(x) f_Y(y)$$
, when X and Y are continuous.

Ex. The second case of the previous example.

Multiple Random Variables

• If $X_1, X_2, ..., X_n$ are all discrete random variables, the joint pmf of the variables is the function

$$p(x_1, x_2, ..., x_n) = P(X_1 = x_1, X_2 = x_2, ..., X_n = x_n)$$

If the variables are continuous, the joint pdf of $X_1, X_2, ..., X_n$ is the function $f(x_1, x_2, ..., x_n)$ such that for any n intervals $[a_1, b_1], ..., [a_n, b_n],$

$$P(a_1 \le X_1 \le b_1, \dots, a_n \le X_n \le b_n) = \int_{a_1}^{b_1} \dots \int_{a_n}^{b_n} f(x_1, \dots, x_n) dx_1 \dots dx_n$$

- What should be the regularity conditions for $p(x_1, x_2, ..., x_n)$ and $f(x_1, x_2, ..., x_n)$?
- How do get the marginal distributions of $X_1, X_2, ...$ by using $p(x_1, x_2, ..., x_n)$ and $f(x_1, x_2, ..., x_n)$?

Independence

Proposition:

The random variables $X_1, X_2, ..., X_n$, are said to be independent if for every subset $X_{i_1}, X_{i_2}, ..., X_{i_k}$, of the variables (each pair, each triple, and so on), the joint pmf or pdf of the subset is equal to the product of the marginal pmf's or pdf's.

•
$$p(x_1, x_2, \dots, x_n) = \prod_{i=1}^n p_{X_i}(x_i)$$

•
$$f(x_1, x_2, \dots, x_n) = \prod_{i=1}^n f_{X_i}(x_i)$$

Conditional dist.

- Using the marginal distributions, one can calculate the conditional distribution of one rv given the other.
- Let X and Y be two conditional rv's with joint pdf f(x, y) and marginal X pdf $f_X(x)$. Then for any X value x for which $f_X(x)>0$, the conditional probability density function of Y given that X=x is

$$f_{Y|X}(y|x) = \frac{f(x,y)}{f_X(x)} - \infty < y < \infty.$$

• If X and Y are discrete, replace pdf's by pmf's in this definition gives the conditional probability mass function of Y when X=x.

Expectation of Functions

- Recall how we compute E[h(X)]. A similar result also holds for a function h(X, Y) of two jointly distributed rv's.
- Let X and Y be jointly distributed rv's with pmf p(x, y), if they are discrete; or pdf f (x, y), if they are continuous. The expected value of a function h(X, Y), denoted by E[h(X, Y)] is given by

$$E[h(X,Y)] = \begin{cases} \sum_{x} \sum_{y} h(x,y) \cdot p(x,y) & \text{if X and Y are discrete} \\ \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h(x,y) \cdot f(x,y) dx dy & \text{if X and Y are continuous} \end{cases}$$

This result can also be extended to multiple (>2) rv case.

Expectation of Linear Function of Multiple RV's

Linearity is well preserved in expectation.

$$E(a \cdot X + b \cdot Y + c) = a \cdot E(X) + b \cdot E(Y) + c$$

Expectation of Product of Multiple RV's

 Unlike the linear case, expectation of product in general doesn't equal to the product of expectations

$$E(XY) \neq E(X)E(Y)$$

Expectation of Product of Multiple RV's

 Unlike the linear case, expectation of product in general doesn't equal to the product of expectations

$$E(XY) \neq E(X)E(Y)$$

▶ But if *X* and *Y* are independent, then

$$E(XY) = \int \int xyf(x,y)dxdy = \int \int xyf_X(x)f_Y(y)dxdy$$
$$= \int xf_X(x)dx \int yf_Y(y)dy = E(X)E(Y)$$

Expectation of Product of Multiple RV's

 Unlike the linear case, expectation of product in general doesn't equal to the product of expectations

$$E(XY) \neq E(X)E(Y)$$

▶ But if *X* and *Y* are independent, then

$$E(XY) = \int \int xyf(x,y)dxdy = \int \int xyf_X(x)f_Y(y)dxdy$$
$$= \int xf_X(x)dx \int yf_Y(y)dy = E(X)E(Y)$$

And for independent RV's, in general

$$E[g(X)h(Y)] = E[g(X)]E[h(Y)]$$

Covariance

- When two random variables X and Y are not independent, it is often of interest to assess how strongly they are related to one another.
- A popular measurement to characterize the dependence of two rv's is called correlation. To calculate correlation of two rv's, we'll have calculate the covariance of the two rv's.
- The covariance between two rv's X and Y is

$$Cov(X, Y) = E[(X - \mu_X)(Y - \mu_Y)]$$

$$= \begin{cases} \sum_{x} \sum_{y} (x - \mu_X)(y - \mu_Y) \cdot p(x, y) & X, Y \text{ discrete} \\ \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (x - \mu_X)(y - \mu_Y) \cdot f(x, y) dx dy & X, Y \text{ continuous} \end{cases}$$

Short cut

• Proposition:

$$Cov(X, Y) = E(XY) - E(X)E(Y)$$

What happens if we set Y=X?

Covariance and Variance

As we can see, variance is a special case of covariance, where X = Y.

Covariance and Variance

- As we can see, variance is a special case of covariance, where X = Y.
- Variance of linear function of multiple RV's is given by

$$Var(aX + bY) = a^2 Var(X) + b^2 Var(Y) + 2ab \cdot Cov(X, Y)$$

Example

Ex. Suppose the joint distribution of X and Y are

$$f(x,y) = \begin{cases} 24xy & 0 \le x \le 1, 0 \le y \le 1, x+y \le 1\\ 0 & \text{otherwise} \end{cases}$$

What is the covariance of X and Y?

$$f_X(x) = \int_y f(x,y)dy = \int_0^{1-x} 24xydy = 12x(1-x)^2$$

$$f_Y(y) = 12y(1-y)^2$$

$$E(X) = \int_0^1 x \cdot 12x(1-x)^2 dx = \frac{2}{5} = E(Y)$$

$$E(XY) = \int \int_{x,y} xyf(x,y)dxdy = \int_0^1 \int_0^{1-y} 24x^2y^2 dxdy = \frac{2}{15}$$

$$Cov(X,Y) = E(XY) - E(X)E(Y) = \frac{2}{15} - \left(\frac{2}{5}\right)^2 = -\frac{2}{75}$$

Correlation

• The correlation coefficient of X and Y, denoted by Corr(X, Y) or $\rho_{X,Y}$ is defined by

$$\rho_{X,Y} = \frac{\text{Cov}(X, Y)}{\sigma_X \cdot \sigma_Y}$$

Because of Cauchy-Schwarz inequality, we have

$$Cov^2(X, Y) \le Var(X)Var(Y) \Longrightarrow |\rho_{X,Y}| \le 1$$

• The correlation coefficient $\rho_{X,Y}$ is NOT a completely general measure of the strength of a relationship. $\rho_{X,Y}$ is actually a measure of the degree of *linear* relationship between X and Y.