2. Consider the equation
$$R_n = R_p = \frac{n_p - n_i^2}{\tau_{pol}(n_t n^t) + \tau_{mol}(p + p^t)} \equiv R$$
, where $\tau_{pol} = \frac{1}{N_t C_p}$ and $\tau_{no} = \frac{1}{N_t C_p}$. Let $\tau_{pol} = 10^{-7} s$ and $\tau_{no} = 5 \times 10^{-7} s$. Also let $n' = p' = n_i = 10^{15} cm^{-3}$. Assume very low injection that $\delta n \ll n_t$. Calculate $R/\delta n$ for a semiconductor which is (a) $n_t + y = n_t = 10^{15} cm^{-3}$. Assume very low injection that $\delta n \ll n_t$. Calculate $R/\delta n$ for a semiconductor which is (a) $n_t + y = n_t = 10^{15} cm^{-3}$. Assume very $(p_0 \gg n_0)$. (b) intrinsic $(n_0 = p_0 = n_1)$, and (c) p-type $(p_0 \gg n_0)$.

$$k = n_0 + \delta n$$
. $p = p_0 + \delta n$.

$$k = n_0 + \delta n$$
. $p = p_0 + \delta n$.

$$k = n_0 + \delta n$$
. $p = p_0 + \delta n$.

$$k = n_0 + \delta n$$
. $p = n_0 + \delta n$. (a) $k = p_0 + \delta n$. (b) $k = p_0 + \delta n$. (c) $k = p_0 + \delta n$. (c) $k = p_0 + \delta n$. (c) $k = p_0 + \delta n$. (d) $k = p_0 + \delta n$. (e) $k = p_0 + \delta n$. (e) $k = p_0 + \delta n$. (f) $k = p_0 + \delta n$. (e) $k = p_0 + \delta n$. (f) $k = p_0 + \delta n$. (g) $k = p_0 + \delta n$. (h) $k = p_0 +$

$$\Rightarrow D_{P} \frac{d^{3}P}{dx^{3}} = \frac{\mathcal{F}_{P}}{\mathcal{F}_{P}} - g' \Rightarrow \mathcal{F}_{P}(x) = Ae^{-\lambda x} + ge^{-\lambda x} + g' \mathcal{F}_{P}, \text{ where } \lambda = \frac{1}{\sqrt{D_{P}} \tau_{P}}.$$

$$\lambda = 0 - P_{P} \frac{A}{\sqrt{D_{P}}} = C_{P}(A + g'\tau) \Rightarrow A = \frac{g'\tau s}{\sqrt{D_{P}}} = C_{P}(a) + \frac{1}{\sqrt{D_{P}}} = \frac{1}{\sqrt{D_{P}}}$$

(i)
$$x = 0$$
, $-\frac{D}{P} \frac{A}{\sqrt{D_{P}^{+}}} = C$. $(A + g't) \Rightarrow A = -\frac{g'tS}{C + \frac{D_{P}}{L_{P}}} = 0 \Rightarrow S_{P}(x) = 10^{4} \text{ cm}^{-3}$
(ii) $A = -\frac{g'tS}{C + \frac{D_{P}}{L_{P}}} = -\frac{10^{3} \cdot (v^{-1} \cdot 2000)}{20000 + \frac{(v^{-3})}{(v^{-3})}} = -1.6) \times 10^{15}$
 $\Rightarrow S_{P}(x) = 10^{14} - 1.60 \times 10^{13} e^{\frac{-x}{10^{-3}}}$
(iii) $A = -\frac{g't}{1 + \frac{D_{P}}{L_{P}}} = -\frac{g't}{1 + \frac{D_{P}}{L_{P}}} = -\frac{10^{14}}{1 + \frac{D_{P}}{L_{P}}} = -\frac{10^{14}}{$

 $\binom{7}{1}$ A = $-\frac{9^{7}5}{5^{4}}$ = $-\frac{10^{3} \cdot (0^{7} \cdot 2000)}{2000 + \frac{10^{3}}{(0^{-3})}}$ = -1.67×10^{13} (iii) A = - 1/1 / 1/1/25 2 - 9 = -1021 10 = -10 (b) From (a), we can calculate the result easily: (i) Sp(0) < (010 (ii) Sp(0) = 8.33 x (013 (iii) 8p(0) = 0

