

CSE231 – Digital Logic Design

Lecture - 3

Logic Gates

Lesson Outcomes

After completing this lecture, students will be able to

- describe the operation of the inverter, the AND gate, and the OR gate
- describe the operation of the NAND gate and the NOR gate
- express the operation of NOT, AND, OR, NAND, and NOR gates with Boolean algebra
- describe the operation of the exclusive-OR and exclusive-NOR gates
- use logic gates in simple applications

CSE231 Lecture 3 Page 1/31

Key Terms

AND gate A logic gate that produces a HIGH output only when all of the inputs are
HIGH.
OR gate A logic gate that produces a HIGH output when one or more inputs are HIGH.
NOT gate A logic gate that inverts or complements its input.
NAND gate A logic gate that produces a LOW output only when all the inputs are HIGH.
NOR gate A logic gate in which the output is LOW when one or more of the inputs are
HIGH.
Exclusive-NOR (XNOR) gate A logic gate that produces a LOW only when the two inputs
are at opposite levels.
Exclusive-OR (XOR) gate A logic gate that produces a HIGH output only when its two
inputs are at opposite levels.
Boolean algebra The mathematics of logic circuits.
Truth table A table showing the inputs and corresponding output(s) of a logic circuit.
Inverter A logic circuit that inverts or complements its input.

Key Terms (continue)

- ☐ CMOS Complementary metal-oxide semiconductor; a class of integrated logic circuits that is implemented with a type of field-effect transistor.
- **EEPROM** A type of nonvolatile PLD reprogrammable link based on electrically erasable programmable read-only memory cells and can be turned on or off repeatedly by programming.
- **EPROM** A type of PLD nonvolatile programmable link based on electrically programmable read-only memory cells and can be turned either on or off once with programming.
- SRAM A type of PLD volatile reprogrammable link based on static random-access memory cells and can be turned on or off repeatedly with programming.
- Propagation delay time The time interval between the occurrence of an input transition and the occurrence of the corresponding output transition in a logic circuit.
- VHDL A standard hardware description language that describes a function with an entity/architecture structure.

Common logic term

TABLE 3-1 Common logic terms.

Logic 0	Logic 1
False	True
Off	On
LOW	HIGH
No	Yes
Open switch	Closed switch

CSE231 Lecture 3 Page 4/31

Operation of OR gate

Symbol of TWO input OR gate

Truth Table

Α	В	x = A + B
0	0	0
0	1	1
1	0	1
1	1	1

Operation of OR gate

Boolean expression: x = A + B + C

Symbol of THREE input OR gate

Α	В	С	x = A + B + C
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

CSE231 Lecture 3 Page 6/31

Operation of OR gate (contd..)

TWO input **OR** operation

THREE input OR operation

OR GATE application – alarms system in chemical process

Operation of AND gate

Truth Table

Α	В	$x = A \cdot B$
0	0	0
0	1	0
1	0	0
1	1	1

Symbol of TWO input AND gate

Boolean expression: x = A • B

Operation of AND gate

Symbol of THREE input AND gate

Α	В	С	x = ABC
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

CSE231 Lecture 3 Page 10/31

Operation of AND gate

TWO input AND operation

TWO input AND operation

Operation of NOT gate

CSE231 Lecture 3 Page 12/31

Logic circuits with Boolean expression

Logic circuits with Boolean expression (contd..)

CSE231 Lecture 3 Page 14/31

Logic circuits with Boolean expression (contd..)

А	В	С	<u>u</u> = A	<u>v</u> = AB	w= BC	x= v+w
0	0	0	1	0	0	0
0	0	1	1	0	0	0
0	1	0	1	1	0	1
0	1	1	1	1	1	1
1	0	0	0	0	0	0
1	0	1	0	0	0	0
1	1	0	0	0	0	0
1	1	1	0	0	1	1

CSE231 Lecture 3 Page 15/31

Constructing logic circuit from Boolean expression

PROBLEM Construct a logic circuit from Boolean expression: $y = AC + B\overline{C} + \overline{A}BC$

SOLUTION

Constructing logic circuit from Boolean expression

PROBLEM Construct a logic circuit from Boolean expression: $x = (A + B)(\overline{B} + C)$

SOLUTION

CSE231 Lecture 3 Page 17/31

NOR operation

CSE231 Lecture 3 Page 18/31

NAND operation

CSE231 Lecture 3 Page 19/31

NAND application

PROBLEM. Two tanks store certain liquid chemicals that are required in a manufacturing process. Each tank has a sensor that detects when the chemical level drops to 25% of full. It is required that a green LED on an indicator panel show when both tanks are more than one-quarter full. A red LED light will TURN ON when at least one of the tanks falls to the quarter-full level. Show how these requirements can be implemented.

NAND application

PROBLEM. As part of an aircraft's functional monitoring system, a circuit is required to indicate the status of the landing gears prior to landing. A green LED display turns on if all three gears are properly extended when the "gear down" switch has been activated in preparation for landing. A red LED display turns on if any of the gears fail to extend properly prior to landing. When a landing gear is extended, its sensor produces a LOW voltage. When a landing gear is retracted, its sensor produces a HIGH voltage. Implement a circuit to meet this requirement.

Boolean theorems

FIGURE 3-25 Single-variable theorems.

Boolean theorems – multivariable theorems

Multivariable Theorems

The theorems presented below involve more than one variable:

(9)
$$x + y = y + x$$

(10) $x \cdot y = y \cdot x$
(11) $x + (y + z) = (x + y) + z = x + y + z$
(12) $x(yz) = (xy)z = xyz$
(13a) $x(y + z) = xy + xz$
(13b) $(w + x)(y + z) = wy + xy + wz + xz$
(14) $x + xy = x$
(15a) $x + \overline{x}y = x + y$
(15b) $\overline{x} + xy = \overline{x} + y$

Exclusive OR gate

TABLE 3-11

Truth table for an exclusive-OR gate.

In	puts	Output		
\boldsymbol{A}	В	\boldsymbol{X}		
0	0	0		
0	1	1		
1	0	1		
1	1	0		

Exclusive NOR

TABLE 3-12

Truth table for an exclusive-NOR gate.

	Inputs	Output
\boldsymbol{A}	\boldsymbol{B}	X
0	0	1
0	1	0
1	0	0
1	1	1

NAND as universal gate

NOR as universal gate

Standard alternate symbols

Logic gates summary

References

- 1. Digital Fundamentals by Thomas Floyd, Pearson International Edition, 11th Edition, Chapter 3, Page 125-170.
- 2. Digital Systems: Principles and Applications by Ronald Tocci, Neal Widmer and Greg Moss, Pearson International Edition, 12th Edition, Chapter 3, Page 68-90.

Boolean Algebra And Logic Simplification