

Capteur de déformation à base de graphite

Caractéristiques générales :

- Low-Tech et peu couteux
- Simple d'utilisation
- Temps de réponse court
- Amplificateur trans-impédance inclus
- Ecran OLED et module Bluetooth inclus

Description:

Capteur à jauge de contrainte à base de crayon graphite développé afin de mesurer la résistance en fonction de la courbure appliquée. Le crayon papier permet le dépôt d'ultrafines particules de graphite sur le bout de papier qui servira de capteur (figure 1). La couche de graphite à réseau percolé est un système granuleux d'où la relation entre la conductivité électrique et l'espace entre les particules. Ceci explique donc la variation de la résistance induite par la traction ou la compression du réseau.

Figure 1 : Capteur à base de graphite

Ce capteur a été conçu à partir d'une carte Arduino, un circuit PCB imprimé composé d'un amplificateur trans-impédance, un module Bluetooth qui permet d'envoyer les différentes valeurs mesurées vers une application smartphone, et aussi, un écran OLED piloté par un encodeur rotatoire qui affiche un menu permettant de choisir entre l'affichage de la résistance ou de la tension et qui permet de calibrer notre capteur.

Description de Pin:

Pin	Usage	
2	Switch (Encodeur rotatoire KY-040)	
3	Clock (Encodeur rotatoire KY-040)	
4	DATA (Encodeur rotatoire KY-040)	
10	RX (Module Bluetooth HC-05) envoi de Data	
11	TX (Module Bluetooth HC-05) reception de Data	
A0	Lecture de la tension au borne du capteur	
A4	SDA (Data écran OLED)	
A5	SCK (Clock écran OLED)	

Spécifications:

Туре	-	Capteur de déformation à base de nanoparticules Passif	
Principe du capteur		Variation de résistance en fonction de la déformation du capteur	
Matériaux	Particul	Particules de graphite	
Alimentation		5V	
Temps de réponse	<	<100ms	
Nature du signal de sortie	A	Analogue	
Range de la tension de sortie	(0V-5V	
Range de la résistance de sortie	HB/2	50Mohms-300Mohms	
	В	B 50Mohms-200Mohms	
	6B	20Mohms-110Mohms	
Montage	Capteur attaché au PCE	Capteur attaché au PCB avec deux pinces sans dents	
Dimensions du capteur	35mm 1 1		

NB : Les valeurs de sortie de résistance dépendent fortement de la quantité de graphite déposée sur le capteur.

Courbes de sensibilité du capteur :

Caractéristiques du capteur en compression

Figure 2 : Courbe de sensibilité du capteur en compression

Caractéristiques du capteur en tension

Figure 3 : Courbe de sensibilité du capteur en tension

Application courante:

Dans ce cas-là, le capteur est utilisé dans un circuit analogique amplificateur de trans-impédance. Il est connecté en série avec deux résistances d'un pont diviseur. Notre signal est amplifié grâce à un amplificateur opérationnel LTC1050 puis passe par un filtre passe-bas. (*Figure 4*)

Figure 4 : Schéma du circuit trans-impédance

Le capteur est connecté au Shield avec deux pinces sans dents, représentés par les branches C_p et C_n dans la figure ci-dessus. La tension finale au borne du capteur est lue en ADC. Pour relever la valeur de cette dernière, on utilise une carte Arduino (Analog pin A0). Une fois la valeur de tension récupérée, on peut facilement remonter à la valeur de la tension au borne du capteur en utilisant la formule suivante :

$$R_{\text{capteur}} = (1 + \frac{R3}{R2}) \frac{R1.Vcc}{\frac{5}{1024}.V} - R_1 - R_5$$

En plus du circuit amplificateur, notre Shield contient aussi un écran OLED (*Figure 5*), un module Bluetooth HC-05 (*Figure 6*) et un encodeur rotatoire KY-040 (*Figure 7*).

Figure 5: Ecran OLED

Figure 6: Module Bluetooth HC-05

Figure 7: Encodeur rotatoire KY-040

Figure 2 : Circuit global, caractéristiques et routage du Shield