수학

1. 성격

수학과는 수학의 개념, 원리, 법칙을 이해하고 기능을 습득하여 주변의 여러 가지 현상을 수학적으로 관찰하고 해석하며 논리적으로 사고하고 합리적으로 문제를 해결하는 능력과 태도를 기르는 교과이다. 수학은 오랜 역사를 통해 인류 문명 발전의 원동력이 되어 왔으며, 세계화·정보화가 가속화되는 미래 사회의 구성원에게 필수적인 역량을 제공한다. 수학 학습을 통해 학생들은 수학의 규칙성과 구조의 아름다움을 음미할 수 있고, 수학의 지식과 기능을 활용하여 수학 문제뿐만 아니라 실생활과 다른 교과의 문제를 창의적으로 해결할 수 있으며, 나아가 세계 공동체의 시민으로서 갖추어야 할 합리적의사 결정 능력과 민주적 소통 능력을 함양할 수 있다.

고등학교 공통 과목인 <수학>은 중학교 3학년까지의 수학을 학습한 후 고등학교의 모든 학생들이 필수적으로 이수하는 과목이다. <수학>의 내용은 초등학교 및 중학교 수학과 연계하여 '문자와 식', '기 하', '수와 연산', '함수', '확률과 통계'의 5개 영역으로 구성된다. '문자와 식' 영역에서는 다항식의 사칙 연산, 나머지정리, 인수분해, 복소수와 이차방정식, 이차방정식과 이차함수, 여러 가지 방정식과 부등식을, '기하' 영역에서는 평면좌표, 직선의 방정식, 원의 방정식, 도형의 이동을, '수와 연산' 영역에서는 집합, 명제를, '함수' 영역에서는 함수의 뜻과 유형, 유리함수와 무리함수를, '확률과 통계' 영역에서는 경우의 수, 순열과 조합을 다룬다.

<수학>에서 학습한 수학의 지식과 기능은 자신의 진로와 적성을 고려하여 선택할 수 있는 수학 일반 선택 과목과 진로 선택 과목, 수학 전문 교과 과목을 학습하기 위한 토대가 되고, 자연과학, 공학, 의학뿐만 아니라 경제·경영학을 포함한 사회과학, 인문학, 예술 및 체육 분야를 학습하는 데 기초가 되며, 나아가 창의적 역량을 갖춘 융합 인재로 성장할 수 있는 기반을 제공한다. 이를 위해 학생들은 <수학>의 지식을 이해하고 기능을 습득하는 것과 더불어 문제 해결, 추론, 창의·융합, 의사소통, 정보처리, 태도 및 실천의 6가지 수학 교과 역량을 길러야 한다.

교과 역량으로서의 문제 해결은 해결 방법을 알고 있지 않은 문제 상황에서 수학의 지식과 기능을

활용하여 해결 전략을 탐색하고 최적의 해결 방안을 선택하여 주어진 문제를 해결하는 능력이고, 추론은 수학적 사실을 추측하고 논리적으로 분석하고 정당화하며 그 과정을 반성하는 능력이다. 창의·융합은 수학의 지식과 기능을 토대로 새롭고 의미 있는 아이디어를 다양하고 풍부하게 산출하고 정교화하며, 여러 수학적 지식, 기능, 경험을 연결하거나 타 교과나 실생활의 지식, 기능, 경험을 수학과 연결·융합하여 새로운 지식, 기능, 경험을 생성하고 문제를 해결하는 능력이다. 의사소통은 수학 지식이나아이디어, 수학적 활동의 결과, 문제 해결과정, 신념과 태도 등을 말이나 글, 그림, 기호로 표현하고 다른 사람의 아이디어를 이해하는 능력이고, 정보 처리는 다양한 자료와 정보를 수집, 정리, 분석, 활용하고 적절한 공학적 도구나 교구를 선택, 이용하여 자료와 정보를 효과적으로 처리하는 능력이다. 끝으로, 태도 및 실천은 수학의 가치를 인식하고 자주적 수학 학습 태도와 민주 시민 의식을 갖추어 실천하는 능력이다.

수학 교과 역량 함양을 통해 학생들은 복잡하고 전문화되어 가는 미래 사회에서 사회 구성원의 역할을 성공적으로 수행할 수 있고, 개인의 잠재력과 재능을 발현할 수 있으며, 수학의 필요성과 유용성을 이해하고, 수학 학습의 즐거움을 느끼며, 수학에 대한 흥미와 자신감을 기를 수 있다.

2. 목표

수학의 개념, 원리, 법칙을 이해하고 기능을 습득하며 수학적으로 추론하고 의사소통하는 능력을 길러, 생활 주변과 사회 및 자연 현상을 수학적으로 이해하고 문제를 합리적이고 창의적으로 해결하며, 수학 학습자로서 바람직한 태도와 실천 능력을 기른다.

- 가. 사회 및 자연 현상을 수학적으로 관찰, 분석, 조직, 표현하는 경험을 통하여 문자와 식, 기하, 수와 연산, 함수, 확률과 통계에 관련된 개념, 원리, 법칙과 이들 사이의 관계를 이해하고 수학의 기능을 습득한다.
- 나. 수학적으로 추론하고 의사소통하며, 창의·융합적 사고와 정보 처리 능력을 바탕으로 사회 및 자연 현상을 수학적으로 이해하고 문제를 합리적이고 창의적으로 해결한다.
- 다. 수학에 대한 흥미와 자신감을 갖고 수학의 역할과 가치를 이해하며 수학 학습자로서 바람직한 태도와 실천 능력을 기른다.

3. 내용 체계 및 성취기준

가. 내용 체계

영역	핵심 개념	일반화된 지식	내용 요소	기능
문자와 식	다항식	식에 대한 사칙연산과 인수분해는 복잡 한 다항식으로 확장되어 적용된다.	다항식의 연산나머지정리인수분해	계산하기 이해하기 문제 해결하기 설명하기
	방정식과 부등식	방정식과 부등식은 양 사이의 관계를 나 타내며, 적절한 절차에 따라 이를 만족 시키는 해를 구할 수 있다.	• 복소수와 이차방정식 • 이차방정식과 이차함수 • 여러 가지 방정식과 부등식	
기하	도형의 방정식	좌표평면에 나타낸 점, 직선, 원과 같은 도형은 대수적으로 표현된다.	평면좌표직선의 방정식원의 방정식도형의 이동	계산하기 이해하기 설명하기 판별하기
수와 연산	집합과 명제	집합은 수학적 대상을 논리적으로 표현 하고 이해하는 도구이며, 명제는 증명을 통해 그 타당성이 입증된다.	• 집합 • 명제	설명하기 표현하기 이해하기 증명하기 구별하기
함수	함수와 그래프	함수는 대수적 조작이 가능하며, 함수의 그래프를 통해 시각적으로 표현된다.	• 함수 • 유리함수와 무리함수	그래프 그리기 이해하기 함수 구하기 계산하기 표현하기
확률과 통계	경우의 수	다양한 상황과 맥락에서 경우의 수를 구하는 체계적인 방법이 존재한다.	• 경우의 수 • 순열과 조합	경우의 수 세기 계산하기 문제 해결하기

나. 성취기준

(1) 문자와 식

문자를 포함한 식의 사칙연산과 인수분해는 복잡한 다항식으로 확장되어 적용되고, 방정식과 부등식은 적절한 절차에 따라 이를 만족시키는 해를 구할 수 있다. 다항식의 연산 및 방정식과 부등식은 수학의 여러 분야 학습의 기초가 되고 문제를 해결하는 중요한 도구가 된다.

□ 다항식의 연산

[10수학01-01] 다항식의 사칙연산을 할 수 있다.

② 나머지정리

[10수학01-02] 항등식의 성질을 이해한다.

[10수학01-03] 나머지정리의 의미를 이해하고, 이를 활용하여 문제를 해결할 수 있다.

③ 인수분해

[10수학01-04] 다항식의 인수분해를 할 수 있다.

④ 복소수와 이차방정식

[10수학01-05] 복소수의 뜻과 성질을 이해하고 사칙연산을 할 수 있다.

[10수학01-06] 이차방정식의 실근과 허근의 뜻을 안다.

[10수학01-07] 이차방정식에서 판별식의 의미를 이해하고 이를 설명할 수 있다.

[10수학01-08] 이차방정식의 근과 계수의 관계를 이해한다.

5 이차방정식과 이차함수

[10수학01-09] 이차방정식과 이차함수의 관계를 이해한다.

[10수학01-10] 이차함수의 그래프와 직선의 위치 관계를 이해한다.

[10수학01-11] 이차함수의 최대, 최소를 이해하고, 이를 활용하여 문제를 해결할 수 있다.

6 여러 가지 방정식과 부등식

[10수학01-12] 간단한 삼차방정식과 사차방정식을 풀 수 있다.

[10수학01-13] 미지수가 2개인 연립이차방정식을 풀 수 있다.

[10수학01-14] 미지수가 1개인 연립일차부등식을 풀 수 있다.

[10수학01-15] 절댓값을 포함한 일차부등식을 풀 수 있다.

[10수학01-16] 이차부등식과 이차함수의 관계를 이해하고, 이차부등식과 연립이차부등식을 풀 수 있다.

(가) 학습 요소

• 미정계수법, 나머지정리, 인수정리, 조립제법, 허수단위, 복소수, 실수부분, 허수부분, 허수, 켤레 복소수, 실근, 허근, 판별식, 최댓값, 최솟값, 연립부등식, *i*, *a+bi*, *a+bi*

- 조립제법은 다항식을 단항식으로 나누는 연산과 연계하여 지도하고, 구체적인 예를 통하여 그 방법을 간단히 다룬다.
- 다항식의 인수분해는 다음의 경우를 다룬다.

$$a^{2} + b^{2} + c^{2} + 2ab + 2bc + 2ca = (a+b+c)^{2}$$

$$a^{3} + 3a^{2}b + 3ab^{2} + b^{3} = (a+b)^{3}$$

$$a^{3} - 3a^{2}b + 3ab^{2} - b^{3} = (a-b)^{3}$$

$$a^{3} + b^{3} = (a+b)(a^{2} - ab + b^{2})$$

$$a^{3} - b^{3} = (a-b)(a^{2} + ab + b^{2})$$

- 다항식의 곱셈과 인수분해는 중학교에서 학습한 내용을 토대로 고등학교에서 추가된 내용을 이 해하게 한다.
- 방정식은 계수가 실수인 경우만 다룬다.
- 이차함수의 최댓값과 최솟값은 실수 전체의 범위뿐만 아니라, 제한된 범위 $(a \le x \le b)$ 에서 도 구하게 한다.
- 미지수가 2개인 연립이차방정식은 일차식과 이차식이 각각 한 개씩 주어진 경우, 두 이차식 중 한 이차식이 간단히 인수분해 되는 경우만 다룬다.
- 방정식과 부등식을 이용하여 실생활 문제를 해결하는 경험을 통해 수학의 필요성과 유용성을 인식하게 한다.
- 연립부등식은 중학교에서 학습한 연립일차방정식 내용을 토대로 이해하게 하고, A < B < C와 같은 형태의 연립일차부등식도 다룰 수 있다.
- '삼차방정식', '사차방정식', '연립이차방정식', '연립일차부등식', '이차부등식', '연립이차부등식' 용어는 교수·학습 상황에서 사용할 수 있다.

(다) 평가 방법 및 유의 사항

- 복잡한 인수분해 문제는 다루지 않는다.
- 항등식의 성질, 나머지정리와 인수정리를 활용하는 복잡한 문제는 다루지 않는다.
- 판별식을 활용하는 복잡한 방정식과 부등식 문제는 다루지 않는다.
- 이차방정식의 근과 계수의 관계를 활용하는 복잡한 문제는 다루지 않는다.

(2) 기하

좌표평면에 나타낸 점, 직선, 원과 같은 도형은 대수적으로 표현된다. 도형의 방정식은 기하적 대상을 방정식으로 나타내어 기하와 대수의 연결성을 경험할 수 있게 하고, 도형을 새로운 관점에서 다루 어봄으로써 직관적인 사고에서 논리적이고 창의적인 사고로 발전시키는 데 도움이 된다.

Ⅱ 평면좌표

[10수학02-01] 두 점 사이의 거리를 구할 수 있다.

[10수학02-02] 선분의 내분과 외분을 이해하고, 내분점과 외분점의 좌표를 구할 수 있다.

2 직선의 방정식

[10수학02-03] 직선의 방정식을 구할 수 있다.

[10수학02-04] 두 직선의 평행 조건과 수직 조건을 이해한다.

[10수학02-05] 점과 직선 사이의 거리를 구할 수 있다.

3 원의 방정식

[10수학02-06] 원의 방정식을 구할 수 있다.

[10수학02-07] 좌표평면에서 원과 직선의 위치 관계를 이해한다.

4 도형의 이동

[10수학02-08] 평행이동의 의미를 이해한다.

[10수학02-09] 원점, x축, y축, 직선 y=x에 대한 대칭이동의 의미를 이해한다.

(가) 학습 요소

• 내분, 외분, 대칭이동, f(x,y) = 0

(나) 교수·학습 방법 및 유의 사항

- 직선의 방정식과 원의 방정식은 중학교에서 학습한 내용과 연계하여 다룬다.
- 도형의 방정식 학습을 통해 기하와 대수의 연결성을 이해할 수 있도록 다양한 교수·학습 경험을 제공한다.
- 직선의 방정식, 원의 방정식, 도형의 이동을 다룰 때 공학적 도구를 이용할 수 있다.
- 도형의 이동을 다양한 상황에 적용해 보는 활동을 통해 그 유용성과 가치를 인식하게 할 수 있다.
- 좌표축의 평행이동은 다루지 않는다.
- '내분점', '외분점', '원의 방정식' 용어는 교수·학습 상황에서 사용할 수 있다.

(다) 평가 방법 및 유의 사항

- 도형의 방정식은 도형을 좌표평면에서 다룰 수 있음을 이해하는 수준에서 다루고, 계산이 복잡한 문제는 다루지 않는다.
- 기하 영역의 주요 개념에 대한 이해를 평가할 때에는 과정 중심 평가를 할 수 있다.

(3) 수와 연산

집합은 수학적 대상을 논리적으로 표현하고 이해하는 도구이며, 명제는 증명을 통해 그 타당성이 입 증된다. 집합과 명제의 학습을 통해 수학적인 식이나 문장을 이해하고 논리적으로 추론하는 능력을 기 를 수 있다.

1 집합

[10수학03-01] 집합의 개념을 이해하고, 집합을 표현할 수 있다.

[10수학03-02] 두 집합 사이의 포함 관계를 이해한다.

[10수학03-03] 집합의 연산을 할 수 있다.

2 명제

[10수학03-04] 명제와 조건의 뜻을 알고, '모든', '어떤'을 포함한 명제를 이해한다.

[10수학03-05] 명제의 역과 대우를 이해한다.

[10수학03-06] 충분조건과 필요조건을 이해하고 구별할 수 있다.

[10수학03-07] 대우를 이용한 증명법과 귀류법을 이해한다.

[10수학03-08] 절대부등식의 의미를 이해하고, 간단한 절대부등식을 증명할 수 있다.

(가) 학습 요소

집합, 원소, 공집합, 부분집합, 진부분집합, 벤 다이어그램, 합집합, 교집합, 전체집합, 여집합, 차집합, (집합의) 서로소, (집합의) 교환법칙, (집합의) 결합법칙, (집합의) 분배법칙, 드 모르간의 법칙, 명제, 가정, 결론, 정의, 정리, 증명, 조건, 진리집합, 부정, 역, 대우, 충분조건, 필요조건, 필요충분조건, 귀류법, 절대부등식, a∈A, b ∈ B, Ø, A ⊂ B, A ⊄ B, A = B, A ≠ B, A ∪ B, A ∩ B, U, A^C, A - B, n(A), ~ p, p→q, p⇒q, p⇔q

- 집합의 연산법칙은 벤 다이어그램으로 확인하는 정도로 간단히 다룬다.
- '모든', '어떤'을 포함하고 있는 명제는 구체적인 상황을 이용하여 도입할 수 있다.
- 명제와 조건의 뜻은 수학적인 문장을 이해하는 수준에서 간단히 다룬다.
- 명제의 증명은 간단한 것만 다룬다.
- 충분조건, 필요조건, 필요충분조건은 구체적인 예를 통해 이해하게 한다.
- 증명을 지도할 때는 직관적인 이해로부터 시작하여 점진적으로 형식화하게 한다.
- 대우를 이용한 증명법과 귀류법은 구체적인 예를 통해 이해하게 한다.
- 수학의 여러 내용 영역과 연계하여 집합과 명제의 필요성과 유용성을 인식하게 한다.

• '원소나열법', '조건제시법', '유한집합', '무한집합', '서로 같다' 용어는 교수·학습 상황에서 사용할 수 있다.

(다) 평가 방법 및 유의 사항

- 집합의 개념이나 집합의 포함관계는 개념을 이해하는 수준에서 간단히 평가한다.
- 증명 능력을 평가할 때에는 과정 중심 평가를 할 수 있다.

(4) 함수

여러 가지 변화 현상을 포함한 다양한 대응 관계를 표현하는 함수는 대수적 조작이 가능하며, 함수의 그래프를 통해 시각적으로 표현된다. 함수는 여러 가지 현상에서 대상 간의 연관성이나 종속성을 해석하고 예측하는 수단이 되고, 다양한 변화 현상에서의 수학적 관계를 이해하고 표현함으로써 여러가지 문제를 해결하는 데 도움이 된다.

1 함수

[10수학04-01] 함수의 개념을 이해하고, 그 그래프를 이해한다.

[10수학04-02] 함수의 합성을 이해하고, 합성함수를 구할 수 있다.

[10수학04-03] 역함수의 의미를 이해하고, 주어진 함수의 역함수를 구할 수 있다.

② 유리함수와 무리함수

[10수학04-04] 유리함수 $y = \frac{ax+b}{cx+d}$ 의 그래프를 그릴 수 있고, 그 그래프의 성질을 이해한다.

[10수학04-05] 무리함수 $y = \sqrt{ax + b} + c$ 의 그래프를 그릴 수 있고, 그 그래프의 성질을 이해한다.

(가) 학습 요소

정의역, 치역, 공역, 대응, 일대일대응, 항등함수, 상수함수, 일대일함수, 합성함수, 역함수, 다항함수, 유리식, 무리식, 유리함수, 점근선, 무리함수, f: X→Y, g∘f, (g∘f)(x), y=g(f(x)), f⁻¹, y=f⁻¹(x)

- 함수의 개념은 중학교에서 학습한 내용을 확장하여 주어진 두 집합 사이의 대응 관계를 통해 이 해하게 한다.
- 함수의 그래프를 다룰 때 공학적 도구를 이용할 수 있다.
- 일대일대응, 항등함수, 상수함수, 일대일함수, 합성함수, 역함수의 의미는 구체적인 예를 통해

이해하게 한다.

- 유리식, 무리식은 유리함수, 무리함수의 의미를 이해할 수 있을 정도로 간단히 다룬다.
- 대응으로 정의된 함수의 예를 찾아보는 활동을 통해 함수의 유용성을 인식하게 한다.

(다) 평가 방법 및 유의 사항

- 함수의 그래프와 그 성질에 대한 이해를 평가할 때 지나치게 복잡한 문제는 다루지 않는다.
- 유리함수와 무리함수는 $y=\frac{ax+b}{cx+d}$ 및 $y=\sqrt{ax+b}+c$ 의 기본적인 형태를 중심으로 간단한 문제만 다룬다.

(5) 확률과 통계

다양한 상황과 맥락에서 경우의 수를 구하는 체계적인 방법이 존재한다. 경우의 수를 세는 방법은 사건이 일어날 수 있는 모든 경우를 분류하고 체계화하는 수학적 사고를 경험하게 하고, 합리적인 의사 결정의 중요한 도구가 된다.

① 경우의 수

[10수학05-01] 합의 법칙과 곱의 법칙을 이해하고, 이를 이용하여 경우의 수를 구할 수 있다.

2 순열과 조합

[10수학05-02] 순열의 의미를 이해하고, 순열의 수를 구할 수 있다.

[10수학05-03] 조합의 의미를 이해하고, 조합의 수를 구할 수 있다.

(가) 학습 요소

• 합의 법칙, 곱의 법칙, 순열, 계승, 조합, "Pr, n!, "Cr

- 합의 법칙과 곱의 법칙은 구체적인 예를 통해 그 의미를 이해하고, 두 가지 법칙이 적용되는 상황의 차이점을 설명하게 할 수 있다.
- 순열의 수와 조합의 수는 간단한 경우를 예로 제시하여 직접 나열하거나 수형도를 이용하는 등다양한 방법으로 구하게 하고, 이를 통해 일반적으로 구하는 방법을 이해하게 한다.
- 실생활 문제를 해결해 봄으로써 다양한 상황에서 순열과 조합의 필요성과 유용성을 인식하게 한다.

(다) 평가 방법 및 유의 사항

• 경우의 수. 순열과 조합과 관련하여 지나치게 복잡한 문제는 다루지 않는다.

4. 교수·학습 및 평가의 방향

가. 교수·학습 방향

- (1) 교수·학습 원칙
- (가) 수학과의 교수·학습은 학생이 수학과 교육과정에 제시된 목표를 달성하고 전인적으로 성장하도 록 돕는 것을 목적으로 한다.
- (나) 수학과의 교수·학습은 교육과정에 제시된 내용의 수준과 범위를 준수하고, 교육과정에 제시된 목표, 내용, 평가와 일관성을 가져야 한다.
- (다) 문제 해결, 추론, 창의·융합, 의사소통, 정보 처리, 태도 및 실천과 같은 수학 교과 역량을 함양하기 위한 교육 환경을 조성하고, 이에 적합한 교수·학습을 운영한다.
- (라) 과목별 내용의 배열 순서가 반드시 교수·학습의 순서를 의미하는 것은 아니므로, 교수·학습 계획을 수립하거나 학습 자료를 개발할 때에는 내용의 특성과 난이도, 학교 여건, 학생의 수준 등을 고려하여 내용, 순서 등을 재구성할 수 있다.
- (마) 교육과정에 제시된 내용을 지도한 후 학습 결손이 있는 학생에게는 보충 학습, 우수 학생에게 는 심화 학습의 기회를 추가로 제공할 수 있다.

(2) 교수·학습 방법

- (가) 수학과의 수업은 학생의 능력과 수준 등을 고려하여 설명식 교수, 탐구 학습, 프로젝트 학습, 토의·토론 학습, 협력 학습, 매체 및 도구 활용 학습 등을 적절히 선택하여 적용한다.
 - ① 설명식 교수는 교사가 설명과 시연을 통해 수업을 주도하는 교수·학습 방법으로, 수업 내용을 구조화하여 체계적으로 지도하는 데 효과적이다. 이때, 교사는 학생의 적극적인 수업 참여를 유도하고, 사고를 촉진하는 발문을 적절히 활용한다.
 - ② 탐구 학습은 학생이 중심이 되어 수학 개념, 원리, 법칙을 발견하고 구성하는 교수·학습 방

법으로, 학생 스스로 자료와 정보로부터 지식을 도출하거나 지식의 타당성을 확인하는 능력을 기를 수 있게 한다.

- ③ 프로젝트 학습은 특정 주제나 과제를 탐구하기 위해 계획을 수립하고 수행하여 결과물을 산출하거나 발표하는 교수·학습 방법으로, 개인별 또는 집단별로 실시할 수 있다.
- ④ 토의·토론 학습은 특정 주제에 대해 협의하거나 논의하는 교수·학습 방법으로, 의사소통이 지니는 상호 협력적인 면을 강조한다. 이를 통해 학생들이 교과 내용을 폭넓게 이해하고 논 리적이고 비판적으로 추론하며 다른 사람의 의견을 비판적으로 수용하고 자신의 주장을 효과적으로 표현하는 능력을 기를 수 있게 한다.
- ⑤ 협력 학습은 모둠 내의 상호작용, 의사소통, 참여를 통해 공동의 학습 목표에 도달하도록 하는 교수·학습 방법으로, 다른 사람을 존중하고 배려하며 모둠 내의 역할을 이해하고 책임 감을 기를 수 있게 한다.
- ⑥ 매체 및 도구 활용 학습은 학생의 수준과 학습 내용에 적합한 매체와 도구를 활용하여 흥미를 유발하고 학습의 효율성과 다양성을 도모하는 교수·학습 방법으로, 시청각 자료, 멀티미디어나 인터넷 등의 컴퓨터 활용 매체와 교구, 계산기, 교육용 소프트웨어 등의 도구를 이용한다.
- (나) 문제 해결 능력을 함양하기 위한 교수·학습에서는 다음 사항을 강조한다.
 - ① 문제를 해결할 때에는 문제를 이해하고 해결 전략을 탐색하며 해결 과정을 실행하고 검증 및 반성하는 단계를 거치도록 한다.
 - ② 협력적 문제 해결 과제에서는 균형 있는 책임 분담과 상호작용을 통해 동료들과 협력하여 문제를 해결하게 한다.
 - ③ 수학적 모델링 능력을 신장하기 위해 생활 주변이나 사회 및 자연 현상 등 다양한 맥락에서 파악된 문제를 해결하면서 수학적 개념, 원리, 법칙을 탐구하고 이를 일반화하게 한다.
 - ④ 문제 해결력을 높이기 위해 주어진 문제를 변형하거나 새로운 문제를 만들어 해결하고 그 과정을 검증하는 문제 만들기 활동을 장려한다.
- (다) 추론 능력을 함양하기 위한 교수·학습에서는 다음 사항을 강조한다.
 - ① 관찰과 탐구 상황에서 귀납, 유추 등의 개연적 추론을 사용하여 학생 스스로 수학적 사실을 추측하고 적절한 근거에 기초하여 이를 정당화할 수 있게 한다.
 - ② 수학의 개념, 원리, 법칙을 도출하는 과정과 수학적 절차를 논리적으로 수행하게 한다.
 - ③ 추론 과정이 옳은지 비판적으로 평가하고 반성하도록 한다.
- (라) 창의·융합 능력을 함양하기 위한 교수·학습에서는 다음 사항을 강조한다.

- ① 새롭고 의미 있는 아이디어를 다양하고 풍부하게 산출할 수 있는 수학적 과제를 제공하여 학생의 창의적 사고를 촉진시킨다.
- ② 하나의 문제를 여러 가지 방법으로 해결하게 하고, 해결 방법을 비교하여 더 효율적인 방법을 찾거나 정교화하게 한다.
- ③ 여러 수학적 지식, 기능, 경험을 연결하거나 수학과 타 교과나 실생활의 지식, 기능, 경험을 연결·융합하여 새로운 지식, 기능, 경험을 생성하고 문제를 해결하게 한다.
- (마) 의사소통 능력을 함양하기 위한 교수·학습에서는 다음 사항을 강조한다.
 - ① 수학 용어, 기호, 표, 그래프 등의 수학적 표현을 이해하고 정확하게 사용하며, 수학적 표현을 만들거나 변환하는 활동을 하게 한다.
 - ② 수학적 아이디어 또는 수학 학습 과정과 결과를 말, 글, 그림, 기호, 표, 그래프 등을 사용하여 다른 사람과 효율적으로 의사소통할 수 있게 한다.
 - ③ 다양한 관점을 존중하면서 다른 사람의 생각을 이해하고 수학적 아이디어를 표현하며 토론하게 한다.
- (바) 정보 처리 능력을 함양하기 위한 교수·학습에서는 다음 사항을 강조한다.
 - ① 실생활 및 수학적 문제 상황에서 적절한 자료를 탐색하여 수집하고, 목적에 맞게 정리, 분석, 평가하며, 분석한 정보를 문제 상황에 적합하게 활용할 수 있게 한다.
 - ② 교수·학습 과정에서 적절한 교구를 활용한 조작 및 탐구 활동을 통해 수학의 개념과 원리를 이해하도록 한다.
 - ③ 계산 능력 배양을 목표로 하지 않는 교수·학습 상황에서의 복잡한 계산 수행, 수학의 개념, 원리, 법칙의 이해, 문제 해결력 향상 등을 위하여 계산기, 컴퓨터, 교육용 소프트웨어 등의 공학적 도구를 이용할 수 있게 한다.
- (사) 태도 및 실천 능력을 함양하기 위한 교수·학습에서는 다음 사항을 강조한다.
 - ① 수학을 생활 주변과 사회 및 자연 현상과 관련지어 지도하여 수학의 필요성과 유용성을 알게 하고, 수학의 역할과 가치를 인식할 수 있게 한다.
 - ② 수학에 대한 관심과 흥미, 호기심과 자신감을 갖고 수학 학습에 적극적으로 참여하게 하며, 끈기 있게 도전하도록 격려하고 학습 동기와 의욕을 유발한다.
 - ③ 학생 스스로 목표를 설정하고 학습을 수행하며 학습 결과를 평가하는 자주적 학습 습관과 태도를 갖게 한다.
 - ④ 수학적 활동을 통하여 정직하고 공정하며 책임감 있게 행동하고 어려움을 극복하기 위해 도 전하는 용기 있는 태도, 타인을 배려하고 존중하며 협력하는 태도, 논리적 근거를 토대로

의견을 제시하고 합리적으로 의사 결정하는 태도를 갖고 이를 실천하게 한다.

- (아) 의미 있는 발문을 하기 위하여 교수·학습에서 다음 사항에 유의한다.
 - ① 학생의 사고를 촉진하는 다양한 발문을 통해 상호작용이 활발한 교실 환경을 구축하고 학생의 능동적 수업 참여를 독려한다.
 - ② 학생의 인지 발달과 경험을 고려하여 발문을 하고, 발문에 대한 학생의 반응을 의미 있게 처리한다.
- (자) 개인차를 고려하여 수준별 수업을 운영할 때에는 다음 사항에 유의한다.
 - ① 학습 목표를 효과적으로 달성하기 위해 교실 내에서 개인차를 고려한 소집단을 구성하거나 수준별 학급을 구성하여 교수·학습을 전개한다.
 - ② 수준별 수업을 위해 집단을 편성할 때에는 학생 개인의 능력과 수준, 적성과 희망, 교사 수 급과 유휴 교실 등의 학교 상황을 고려한다.
 - ③ 수준별 수업은 내용 요소를 차별화하기보다는 내용의 깊이나 접근 방법에 차이를 두어 진행한다.

나. 평가 방향

- (1) 평가 원칙
- (가) 수학과의 평가는 학생의 인지적 영역과 정의적 영역에 대한 유용한 정보를 수집·활용하여 학생의 수학 학습과 전인적 성장을 돕고 교사의 수업 방법을 개선하는 것을 목적으로 한다.
- (나) 수학과의 평가는 교육과정에 제시된 내용의 수준과 범위를 준수하고, 교육과정에 제시된 목표, 내용, 교수·학습과 일관성을 가져야 한다.
- (다) 수학과의 평가에서는 수학의 개념, 원리, 법칙, 기능뿐만 아니라 문제 해결, 추론, 창의·융합, 의사소통, 정보 처리, 태도 및 실천과 같은 수학 교과 역량을 균형 있게 평가한다.
- (라) 수학과의 평가는 학습자의 수준을 고려하고 평가 목적과 내용에 따라 다양한 평가 방법을 활용 한다.
- (마) 평가 결과는 학생, 학부모, 교사 등에게 환류하여 학생의 수학 학습 개선을 도울 수 있게 한다.

(2) 평가 방법

- (가) 수학과의 평가는 학습 결과 평가뿐만 아니라 과정 중심 평가도 실시하여 종합적인 수학 학습 평가가 될 수 있게 한다.
- (나) 수업의 전개 국면에 따라 진단평가, 형성평가, 총괄평가를 적절히 실시하되, 지속적인 평가를 통해 다양한 정보를 수집하고 수업에 활용한다.
- (다) 학생의 수학 학습 과정과 결과는 지필 평가, 프로젝트 평가, 포트폴리오 평가, 관찰 평가, 면담 평가, 구술 평가, 자기 평가, 동료 평가 등의 다양한 평가 방법을 사용하여 양적 또는 질적으로 평가한다.
 - ① 지필 평가는 수학의 개념, 원리, 법칙을 이해하고 적용하는 능력과 문제 해결, 추론, 창의· 융합, 의사소통 능력 등을 평가하는 데 활용할 수 있고, 선택형, 단답형, 서·논술형 등의 다 양한 문항 형태를 활용한다.
 - ② 프로젝트 평가는 수학 학습을 토대로 특정한 주제나 과제에 대해서 자료를 수집하고 분석, 종합, 해결하는 과정과 결과를 평가하는 방법으로, 문제 해결, 창의·융합, 정보 처리 능력 등을 평가할 때 활용할 수 있다.
 - ③ 포트폴리오 평가는 일정 기간 동안 수학 학습 수행과 그 결과물을 평가하는 방법으로, 학생의 학습 내용 이해와 수학 교과 역량을 종합적으로 판단하고 학생의 성장에 대한 정보를 얻는 데 활용할 수 있다.
 - ④ 관찰 평가, 면담 평가, 구술 평가는 학생 개인 및 소집단을 관찰, 학생과의 대화, 학생의 발표를 통해 학생의 이해 정도와 사고 방법, 수행 과정 등을 평가하는 방법으로, 의사소통, 태도 및 실천 능력 등을 평가할 때 활용할 수 있다.
 - ⑤ 자기 평가는 학생 스스로 자신의 이해와 수행을 평가하는 방법으로, 문제 해결과 추론 과정의 반성, 자신의 생각 표현, 태도 및 실천 능력 등을 평가할 때 활용할 수 있다.
 - ⑥ 동료 평가는 동료 학생들이 상대방을 서로 평가하는 방법으로, 협력 학습 상황에서 학생 개 개인의 역할 수행 정도나 집단 활동에 기여한 정도를 평가할 때 활용할 수 있다.
- (라) 평가 내용이나 방법에 따라 학생에게 계산기, 컴퓨터, 교육용 소프트웨어 등의 공학적 도구와 다양한 교구를 이용할 수 있게 한다.

선택 중심 교육과정 - 일반 선택 -

수학 I

1. 성격

수학과는 수학의 개념, 원리, 법칙을 이해하고 기능을 습득하여 주변의 여러 가지 현상을 수학적으로 관찰하고 해석하며 논리적으로 사고하고 합리적으로 문제를 해결하는 능력과 태도를 기르는 교과이다. 수학은 오랜 역사를 통해 인류 문명 발전의 원동력이 되어 왔으며, 세계화·정보화가 가속화되는미래 사회의 구성원에게 필수적인 역량을 제공한다. 수학 학습을 통해 학생들은 수학의 규칙성과 구조의 아름다움을 음미할 수 있고, 수학의 지식과 기능을 활용하여 수학 문제뿐만 아니라 실생활과 다른교과의 문제를 창의적으로 해결할 수 있으며, 나아가 세계 공동체의 시민으로서 갖추어야 할 합리적의사 결정 능력과 민주적 소통 능력을 함양할 수 있다.

일반 선택 과목인 <수학 I >은 공통 과목인 <수학>을 학습한 후, 더 높은 수준의 수학을 학습하기를 원하는 학생들이 선택할 수 있는 과목이다. <수학 I >의 내용은 '지수함수와 로그함수', '삼각함수', '수열'의 3개 핵심 개념 영역으로 구성된다. '지수함수와 로그함수' 영역에서는 지수와 로그, 지수함수와 로그함수를, '삼각함수' 영역에서는 일반각과 호도법, 삼각함수의 뜻과 그래프, 사인법칙과 코사인법칙을, '수열' 영역에서는 등차수열과 등비수열, 수열의 합, 수학적 귀납법을 다룬다.

<수학 I >에서 학습한 수학의 지식과 기능은 자신의 진로와 적성을 고려하여 선택할 수 있는 수학일반 선택 과목과 진로 선택 과목, 수학 전문 교과 과목을 학습하기 위한 토대가 되고, 자연과학, 공학, 의학뿐만 아니라 경제·경영학을 포함한 사회과학, 인문학, 예술 및 체육 분야를 학습하는 데 기초가되며, 나아가 창의적 역량을 갖춘 융합 인재로 성장할 수 있는 기반을 제공한다. 이를 위해 학생들은 <수학 I >의 지식을 이해하고 기능을 습득하는 것과 더불어 문제 해결, 추론, 창의·융합, 의사소통, 정보 처리, 태도 및 실천의 6가지 수학 교과 역량을 길러야 한다.

교과 역량으로서의 문제 해결은 해결 방법을 알고 있지 않은 문제 상황에서 수학의 지식과 기능을 활용하여 해결 전략을 탐색하고 최적의 해결 방안을 선택하여 주어진 문제를 해결하는 능력이고, 추론 은 수학적 사실을 추측하고 논리적으로 분석하고 정당화하며 그 과정을 반성하는 능력이다. 창의·융합 은 수학의 지식과 기능을 토대로 새롭고 의미 있는 아이디어를 다양하고 풍부하게 산출하고 정교화하 며, 여러 수학적 지식, 기능, 경험을 연결하거나 타 교과나 실생활의 지식, 기능, 경험을 수학과 연결· 융합하여 새로운 지식, 기능, 경험을 생성하고 문제를 해결하는 능력이다. 의사소통은 수학 지식이나 아이디어, 수학적 활동의 결과, 문제 해결 과정, 신념과 태도 등을 말이나 글, 그림, 기호로 표현하고 다른 사람의 아이디어를 이해하는 능력이고, 정보 처리는 다양한 자료와 정보를 수집, 정리, 분석, 활 용하고 적절한 공학적 도구나 교구를 선택, 이용하여 자료와 정보를 효과적으로 처리하는 능력이다. 끝으로, 태도 및 실천은 수학의 가치를 인식하고 자주적 수학 학습 태도와 민주 시민 의식을 갖추어 실천하는 능력이다.

수학 교과 역량 함양을 통해 학생들은 복잡하고 전문화되어 가는 미래 사회에서 사회 구성원의 역할을 성공적으로 수행할 수 있고, 개인의 잠재력과 재능을 발현할 수 있으며, 수학의 필요성과 유용성을 이해하고, 수학 학습의 즐거움을 느끼며, 수학에 대한 흥미와 자신감을 기를 수 있다.

2. 목표

수학의 개념, 원리, 법칙을 이해하고 기능을 습득하며 수학적으로 추론하고 의사소통하는 능력을 길러, 생활 주변과 사회 및 자연 현상을 수학적으로 이해하고 문제를 합리적이고 창의적으로 해결하며, 수학 학습자로서 바람직한 태도와 실천 능력을 기른다.

- 가. 사회 및 자연 현상을 수학적으로 관찰, 분석, 조직, 표현하는 경험을 통하여 지수함수와 로그함수, 삼각함수, 수열에 관련된 개념, 원리, 법칙과 이들 사이의 관계를 이해하고 수학의 기능을 습득한다.
- 나. 수학적으로 추론하고 의사소통하며, 창의·융합적 사고와 정보 처리 능력을 바탕으로 사회 및 자연 현상을 수학적으로 이해하고 문제를 합리적이고 창의적으로 해결한다.
- 다. 수학에 대한 흥미와 자신감을 갖고 수학의 역할과 가치를 이해하며 수학 학습자로서 바람직한 태도와 실천 능력을 기른다.

3. 내용 체계 및 성취기준

가. 내용 체계

영역	핵심 개념	일반화된 지식	내용 요소	기능	
해석	지수함수와 로그함수	지수함수와 로그함수는 급격히 증감하는 수량이 나 현상을 다루는 유용한 도구로서 자연 현상이 나 사회 현상을 표현하고 설명하는 데 활용된다.	• 지수와 로그 • 지수함수와 로그함수	표현하기 그래프 그리기	
	삼각함수	삼각함수는 삼각비를 일반화시킨 개념으로서 주 기적인 성질을 가지는 자연 현상이나 사회 현상 을 표현하고 설명하는 데 활용된다.	• 삼각함수	이해하기 계산하기 설명하기 활용하기	
대수	수열	수열은 규칙적으로 나열된 수로 나타낼 수 있는 현상을 탐구하는 데 활용되며 수열의 극한과 급 수의 기초 개념이다.	등차수열과 등비수열수열의 합수학적 귀납법	문제 해결하기 증명하기	

나. 성취기준

(1) 지수함수와 로그함수

지수함수는 빠르게 증가하거나 감소하는 수량이나 현상을 다루는 데 유용한 함수이고, 로그함수는 지수함수의 역함수이다. 지수함수와 로그함수는 자연 현상이나 사회 현상을 설명하고 분석하기 위한 수학적 모델이다.

□ 지수와 로그

[12수학 I 01-01] 거듭제곱과 거듭제곱근의 뜻을 알고, 그 성질을 이해한다.

[12수학 I 01-02] 지수가 유리수, 실수까지 확장될 수 있음을 이해한다.

[12수학 I 01-03] 지수법칙을 이해하고, 이를 이용하여 식을 간단히 나타낼 수 있다.

[12수학 I 01-04] 로그의 뜻을 알고, 그 성질을 이해한다.

[12수학 I 01-05] 상용로그를 이해하고, 이를 활용할 수 있다.

② 지수함수와 로그함수

[12수학 I 01-06] 지수함수와 로그함수의 뜻을 안다.

[12수학 I 01-07] 지수함수와 로그함수의 그래프를 그릴 수 있고, 그 성질을 이해한다.

[12수학 I 01-08] 지수함수와 로그함수를 활용하여 문제를 해결할 수 있다.

63

(가) 학습 요소

• 거듭제곱근, 로그, (로그의) 밑, 진수, 상용로그, 지수함수, 로그함수, $\sqrt[n]{a}$, $\log_a N$, $\log N$

(나) 교수·학습 방법 및 유의 사항

- 지수가 유리수 및 실수인 경우는 밑이 양수인 조건이 필요함을 이해하게 한다.
- 지수가 실수인 경우는 직관적으로 다룬다.
- 로그의 성질은 지수의 성질과 관련지어 이해하게 한다.
- 지수함수와 로그함수는 역함수 관계임을 그래프를 통해 확인하게 한다.
- 지수와 로그 및 지수함수와 로그함수를 다룰 때 공학적 도구를 이용할 수 있다.
- 구체적인 자연 현상이나 사회 현상을 지수함수와 로그함수로 표현하고 이 과정에서 나타나는 간 단한 방정식과 부등식을 풀어 문제를 해결해봄으로써 지수함수와 로그함수의 유용성과 가치를 인식하게 한다.

(다) 평가 방법 및 유의 사항

• 지수와 로그의 성질에 대한 평가에서는 지수와 로그의 기본 성질을 이해하고 활용할 수 있는 능력을 평가하는 데 중점을 두고, 지나치게 복잡한 계산을 포함하는 문제는 다루지 않는다.

(2) 삼각함수

삼각함수는 삼각비를 일반화시킨 개념으로, 자연 현상이나 사회 현상 가운데 나타나는 주기적인 현상을 수학적으로 표현하여 설명하고 분석할 수 있는 유용한 주기함수이다. 사인법칙과 코사인법칙을 포함한 삼각함수의 성질은 삼각형으로 나타낼 수 있는 대상의 길이, 넓이, 각도 등의 측정과 관련된 다양한 문제의 해결에 활용된다.

1 삼각함수

[12수학 I 02-01] 일반각과 호도법의 뜻을 안다.

[12수학 I 02-02] 삼각함수의 뜻을 알고, 사인함수, 코사인함수, 탄젠트함수의 그래프를 그릴 수 있다.

[12수학 I 02-03] 사인법칙과 코사인법칙을 이해하고, 이를 활용할 수 있다.

(가) 학습 요소

• 시초선, 동경, 일반각, 호도법, 라디안, 사인함수, 코사인함수, 탄젠트함수, 사인법칙, 코사인법칙, 삼각함수, 주기, 주기함수, $\sin x$, $\cos x$, $\tan x$

(나) 교수·학습 방법 및 유의 사항

- 삼각함수의 개념은 중학교에서 학습한 삼각비와 연계하여 이해하게 한다.
- 삼각함수의 성질은 삼각함수의 그래프의 성질을 이해하는 데 필요한 정도로 간단히 다룬다.
- 삼각함수의 그래프를 그리거나 삼각함수와 관련된 문제를 해결할 때 공학적 도구를 이용할 수 있다.
- 사인법칙과 코사인법칙을 이용하여 삼각형의 각의 크기와 변의 길이 사이의 관계를 이해하고 삼 각형의 넓이를 다양한 방법으로 구할 수 있게 한다.
- 사인법칙과 코사인법칙을 활용하여 여러 가지 문제를 해결해봄으로써 삼각함수의 유용성과 가 치를 인식하게 한다.
- 삼각함수가 포함된 방정식과 부등식은 삼각함수의 그래프를 해석하거나 사인법칙과 코사인법칙을 활용하여 문제를 해결하는 과정에서 나타나는 간단한 경우만 다루되, 주어진 구간 안에서 해를 구하는 것만 다룬다.

(다) 평가 방법 및 유의 사항

• 삼각함수와 그 그래프의 성질에 대한 평가에서는 기본적인 삼각함수의 그래프와 그 성질에 대한 이해 능력을 평가하는 데 중점을 두고, 복잡한 합성함수나 절댓값이 여러 개 포함된 함수와 같이 지나치게 복잡한 삼각함수를 포함하는 문제는 다루지 않는다.

(3) 수열

수열은 규칙적으로 나열된 수로 나타낼 수 있는 현상을 탐구하는 데 유용한 함수이다. 수열을 통해 자연 현상이나 사회 현상에 내재되어 있는 다양한 규칙성을 찾아 일반화된 식으로 표현하고 수학적으로 정당화함으로써 수학의 유용성과 가치를 경험하고 귀납적 추론 능력과 연역적 추론 능력을 기를 수 있다.

① 등차수열과 등비수열

[12수학 I 03-01] 수열의 뜻을 안다.

[12수학 I 03-02] 등차수열의 뜻을 알고, 일반항, 첫째항부터 제n항까지의 합을 구할 수 있다.

[12수학 I 03-03] 등비수열의 뜻을 알고, 일반항, 첫째항부터 제n항까지의 합을 구할 수 있다.

2 수열의 합

[12수학 I 03-04] Σ 의 뜻을 알고, 그 성질을 이해하고, 이를 활용할 수 있다.

[12수학 I 03-05] 여러 가지 수열의 첫째항부터 제n항까지의 합을 구할 수 있다.

③ 수학적 귀납법

[12수학 I 03-06] 수열의 귀납적 정의를 이해한다.

[12수학 I 03-07] 수학적 귀납법의 원리를 이해한다.

[12수학 I 03-08] 수학적 귀납법을 이용하여 명제를 증명할 수 있다.

(가) 학습 요소

• 수열, 항, 일반항, 공차, 등차수열, 등차중항, 공비, 등비수열, 등비중항, 귀납적 정의, 수학적 귀납법, a_n , $\{a_n\}$, $\sum_{k=1}^n a_k$

(나) 교수·학습 방법 및 유의 사항

- 여러 가지 수열의 합에서는 자연수의 거듭제곱의 합 $\sum_{k=1}^{n} k$, $\sum_{k=1}^{n} k^2$, $\sum_{k=1}^{n} k^3$ 과 수열의 합이 간단한 것만 다룬다.
- 수열과 관련된 여러 가지 문제를 귀납적으로 표현할 수 있게 하고, 귀납적으로 정의된 수열의 일반항을 구하는 문제는 다루지 않는다.
- 수학적 귀납법에 의한 증명은 원리를 이해할 수 있는 정도로 간단하게 다룬다.
- 수학적 귀납법은 자연수 n에 대한 명제의 증명 방법으로서 그 유용성과 가치를 인식하게 한다.
- 기호 S 은 교수·학습 상황에서 사용할 수 있다.

(다) 평가 방법 및 유의 사항

• 등비수열과 그 합을 이용하여 문제를 해결할 수 있는 능력을 평가할 때 연금의 일시 지급이나 대출금 상환 등과 같이 지나치게 복잡한 상황을 포함하는 문제는 다루지 않는다.

4. 교수·학습 및 평가의 방향

가. 교수·학습 방향

- (1) 교수·학습 원칙
- (가) 수학과의 교수·학습은 학생이 수학과 교육과정에 제시된 목표를 달성하고 전인적으로 성장하도

록 돕는 것을 목적으로 한다.

- (나) 수학과의 교수·학습은 교육과정에 제시된 내용의 수준과 범위를 준수하고, 교육과정에 제시된 목표, 내용, 평가와 일관성을 가져야 한다.
- (다) 문제 해결, 추론, 창의·융합, 의사소통, 정보 처리, 태도 및 실천과 같은 수학 교과 역량을 함양 하기 위한 교육 환경을 조성하고, 이에 적합한 교수·학습을 운영한다.
- (라) 과목별 내용의 배열 순서가 반드시 교수·학습의 순서를 의미하는 것은 아니므로, 교수·학습 계 획을 수립하거나 학습 자료를 개발할 때에는 내용의 특성과 난이도, 학교 여건, 학생의 수준 등 을 고려하여 내용, 순서 등을 재구성할 수 있다.
- (마) 교육과정에 제시된 내용을 지도한 후 학습 결손이 있는 학생에게는 보충 학습, 우수 학생에게 는 심화 학습의 기회를 추가로 제공할 수 있다.

(2) 교수·학습 방법

- (가) 수학과의 수업은 학생의 능력과 수준 등을 고려하여 설명식 교수, 탐구 학습, 프로젝트 학습, 토의・토론 학습, 협력 학습, 매체 및 도구 활용 학습 등을 적절히 선택하여 적용한다.
 - ① 설명식 교수는 교사가 설명과 시연을 통해 수업을 주도하는 교수·학습 방법으로, 수업 내용 을 구조화하여 체계적으로 지도하는 데 효과적이다. 이때, 교사는 학생의 적극적인 수업 참 여를 유도하고, 사고를 촉진하는 발문을 적절히 활용한다.
 - ② 탐구 학습은 학생이 중심이 되어 수학 개념, 원리, 법칙을 발견하고 구성하는 교수·학습 방 법으로, 학생 스스로 자료와 정보로부터 지식을 도출하거나 지식의 타당성을 확인하는 능력 을 기를 수 있게 한다.
 - ③ 프로젝트 학습은 특정 주제나 과제를 탐구하기 위해 계획을 수립하고 수행하여 결과물을 산 출하거나 발표하는 교수·학습 방법으로, 개인별 또는 집단별로 실시할 수 있다.
 - ④ 토의·토론 학습은 특정 주제에 대해 협의하거나 논의하는 교수·학습 방법으로, 의사소통이 지니는 상호 협력적인 면을 강조한다. 이를 통해 학생들이 교과 내용을 폭넓게 이해하고 논 리적이고 비판적으로 추론하며 다른 사람의 의견을 비판적으로 수용하고 자신의 주장을 효 과적으로 표현하는 능력을 기를 수 있게 한다.
 - ⑤ 협력 학습은 모둠 내의 상호작용, 의사소통, 참여를 통해 공동의 학습 목표에 도달하도록 하는 교수·학습 방법으로, 다른 사람을 존중하고 배려하며 모둠 내의 역할을 이해하고 책임 감을 기를 수 있게 한다.

- ⑥ 매체 및 도구 활용 학습은 학생의 수준과 학습 내용에 적합한 매체와 도구를 활용하여 흥미를 유발하고 학습의 효율성과 다양성을 도모하는 교수·학습 방법으로, 시청각 자료, 멀티미디어나 인터넷 등의 컴퓨터 활용 매체와 교구, 계산기, 교육용 소프트웨어 등의 도구를 이용한다.
- (나) 문제 해결 능력을 함양하기 위한 교수·학습에서는 다음 사항을 강조한다.
 - ① 문제를 해결할 때에는 문제를 이해하고 해결 전략을 탐색하며 해결 과정을 실행하고 검증 및 반성하는 단계를 거치도록 한다.
 - ② 협력적 문제 해결 과제에서는 균형 있는 책임 분담과 상호작용을 통해 동료들과 협력하여 문제를 해결하게 한다.
 - ③ 수학적 모델링 능력을 신장하기 위해 생활 주변이나 사회 및 자연 현상 등 다양한 맥락에서 파악된 문제를 해결하면서 수학적 개념, 원리, 법칙을 탐구하고 이를 일반화하게 한다.
 - ④ 문제 해결력을 높이기 위해 주어진 문제를 변형하거나 새로운 문제를 만들어 해결하고 그 과정을 검증하는 문제 만들기 활동을 장려한다.
- (다) 추론 능력을 함양하기 위한 교수·학습에서는 다음 사항을 강조한다.
 - ① 관찰과 탐구 상황에서 귀납, 유추 등의 개연적 추론을 사용하여 학생 스스로 수학적 사실을 추측하고 적절한 근거에 기초하여 이를 정당화할 수 있게 한다.
 - ② 수학의 개념, 원리, 법칙을 도출하는 과정과 수학적 절차를 논리적으로 수행하게 한다.
 - ③ 추론 과정이 옳은지 비판적으로 평가하고 반성하도록 한다.
- (라) 창의·융합 능력을 함양하기 위한 교수·학습에서는 다음 사항을 강조한다.
 - ① 새롭고 의미 있는 아이디어를 다양하고 풍부하게 산출할 수 있는 수학적 과제를 제공하여 학생의 창의적 사고를 촉진시킨다.
 - ② 하나의 문제를 여러 가지 방법으로 해결하게 하고, 해결 방법을 비교하여 더 효율적인 방법을 찾거나 정교화하게 한다.
 - ③ 여러 수학적 지식, 기능, 경험을 연결하거나 수학과 타 교과나 실생활의 지식, 기능, 경험을 연결·융합하여 새로운 지식, 기능, 경험을 생성하고 문제를 해결하게 한다.
- (마) 의사소통 능력을 함양하기 위한 교수·학습에서는 다음 사항을 강조한다.
 - ① 수학 용어, 기호, 표, 그래프 등의 수학적 표현을 이해하고 정확하게 사용하며, 수학적 표현을 만들거나 변환하는 활동을 하게 한다.
 - ② 수학적 아이디어 또는 수학 학습 과정과 결과를 말, 글, 그림, 기호, 표, 그래프 등을 사용하

- 여 다른 사람과 효율적으로 의사소통할 수 있게 한다.
- ③ 다양한 관점을 존중하면서 다른 사람의 생각을 이해하고 수학적 아이디어를 표현하며 토론 하게 하다.
- (바) 정보 처리 능력을 함양하기 위한 교수·학습에서는 다음 사항을 강조한다.
 - ① 실생활 및 수학적 문제 상황에서 적절한 자료를 탐색하여 수집하고, 목적에 맞게 정리, 분 석, 평가하며, 분석한 정보를 문제 상황에 적합하게 활용할 수 있게 한다.
 - ② 교수·학습 과정에서 적절한 교구를 활용한 조작 및 탐구 활동을 통해 수학의 개념과 원리를 이해하도록 하다.
 - ③ 계산 능력 배양을 목표로 하지 않는 교수·학습 상황에서의 복잡한 계산 수행, 수학의 개념, 원리, 법칙의 이해, 문제 해결력 향상 등을 위하여 계산기, 컴퓨터, 교육용 소프트웨어 등의 공학적 도구를 이용할 수 있게 한다.
- (사) 태도 및 실천 능력을 함양하기 위한 교수·학습에서는 다음 사항을 강조한다.
 - ① 수학을 생활 주변과 사회 및 자연 현상과 관련지어 지도하여 수학의 필요성과 유용성을 알 게 하고, 수학의 역할과 가치를 인식할 수 있게 한다.
 - ② 수학에 대한 관심과 흥미, 호기심과 자신감을 갖고 수학 학습에 적극적으로 참여하게 하며, 끈기 있게 도전하도록 격려하고 학습 동기와 의욕을 유발한다.
 - ③ 학생 스스로 목표를 설정하고 학습을 수행하며 학습 결과를 평가하는 자주적 학습 습관과 태도를 갖게 한다.
 - ④ 수학적 활동을 통하여 정직하고 공정하며 책임감 있게 행동하고 어려움을 극복하기 위해 도 전하는 용기 있는 태도, 타인을 배려하고 존중하며 협력하는 태도, 논리적 근거를 토대로 의견을 제시하고 합리적으로 의사 결정하는 태도를 갖고 이를 실천하게 한다.
- (아) 의미 있는 발문을 하기 위하여 교수·학습에서 다음 사항에 유의하다.
 - ① 학생의 사고를 촉진하는 다양한 발문을 통해 상호작용이 활발한 교실 환경을 구축하고 학생 의 능동적 수업 참여를 독려한다.
 - ② 학생의 인지 발달과 경험을 고려하여 발문을 하고, 발문에 대한 학생의 반응을 의미 있게 처리한다.
- (자) 개인차를 고려하여 수준별 수업을 운영할 때에는 다음 사항에 유의한다.
 - ① 학습 목표를 효과적으로 달성하기 위해 교실 내에서 개인차를 고려한 소집단을 구성하거나 수준별 학급을 구성하여 교수·학습을 전개한다.

- ② 수준별 수업을 위해 집단을 편성할 때에는 학생 개인의 능력과 수준, 적성과 희망, 교사 수 급과 유휴 교실 등의 학교 상황을 고려한다.
- ③ 수준별 수업은 내용 요소를 차별화하기보다는 내용의 깊이나 접근 방법에 차이를 두어 진행하다.

나. 평가 방향

(1) 평가 원칙

- (가) 수학과의 평가는 학생의 인지적 영역과 정의적 영역에 대한 유용한 정보를 수집·활용하여 학생의 수학 학습과 전인적 성장을 돕고 교사의 수업 방법을 개선하는 것을 목적으로 한다.
- (나) 수학과의 평가는 교육과정에 제시된 내용의 수준과 범위를 준수하고, 교육과정에 제시된 목표, 내용, 교수·학습과 일관성을 가져야 한다.
- (다) 수학과의 평가에서는 수학의 개념, 원리, 법칙, 기능뿐만 아니라 문제 해결, 추론, 창의·융합, 의사소통, 정보 처리, 태도 및 실천과 같은 수학 교과 역량을 균형 있게 평가한다.
- (라) 수학과의 평가는 학습자의 수준을 고려하고 평가 목적과 내용에 따라 다양한 평가 방법을 활용 한다.
- (마) 평가 결과는 학생, 학부모, 교사 등에게 환류하여 학생의 수학 학습 개선을 도울 수 있게 한다.

(2) 평가 방법

- (가) 수학과의 평가는 학습 결과 평가뿐만 아니라 과정 중심 평가도 실시하여 종합적인 수학 학습 평가가 될 수 있게 한다.
- (나) 수업의 전개 국면에 따라 진단평가, 형성평가, 총괄평가를 적절히 실시하되, 지속적인 평가를 통해 다양한 정보를 수집하고 수업에 활용한다.
- (다) 학생의 수학 학습 과정과 결과는 지필 평가, 프로젝트 평가, 포트폴리오 평가, 관찰 평가, 면담 평가, 구술 평가, 자기 평가, 동료 평가 등의 다양한 평가 방법을 사용하여 양적 또는 질적으로 평가한다.
 - ① 지필 평가는 수학의 개념, 원리, 법칙을 이해하고 적용하는 능력과 문제 해결, 추론, 창의・

융합, 의사소통 능력 등을 평가하는 데 활용할 수 있고, 선택형, 단답형, 서·논술형 등의 다양한 문항 형태를 활용한다.

- ② 프로젝트 평가는 수학 학습을 토대로 특정한 주제나 과제에 대해서 자료를 수집하고 분석, 종합, 해결하는 과정과 결과를 평가하는 방법으로, 문제 해결, 창의·융합, 정보 처리 능력 등을 평가할 때 활용할 수 있다.
- ③ 포트폴리오 평가는 일정 기간 동안 수학 학습 수행과 그 결과물을 평가하는 방법으로, 학생의 학습 내용 이해와 수학 교과 역량을 종합적으로 판단하고 학생의 성장에 대한 정보를 얻는 데 활용할 수 있다.
- ④ 관찰 평가, 면담 평가, 구술 평가는 학생 개인 및 소집단을 관찰, 학생과의 대화, 학생의 발표를 통해 학생의 이해 정도와 사고 방법, 수행 과정 등을 평가하는 방법으로, 의사소통, 태도 및 실천 능력 등을 평가할 때 활용할 수 있다.
- ⑤ 자기 평가는 학생 스스로 자신의 이해와 수행을 평가하는 방법으로, 문제 해결과 추론 과정의 반성, 자신의 생각 표현, 태도 및 실천 능력 등을 평가할 때 활용할 수 있다.
- ⑥ 동료 평가는 동료 학생들이 상대방을 서로 평가하는 방법으로, 협력 학습 상황에서 학생 개 개인의 역할 수행 정도나 집단 활동에 기여한 정도를 평가할 때 활용할 수 있다.
- (라) 평가 내용이나 방법에 따라 학생에게 계산기, 컴퓨터, 교육용 소프트웨어 등의 공학적 도구와 다양한 교구를 이용할 수 있게 한다.

수학Ⅱ

1. 성격

수학과는 수학의 개념, 원리, 법칙을 이해하고 기능을 습득하여 주변의 여러 가지 현상을 수학적으로 관찰하고 해석하며 논리적으로 사고하고 합리적으로 문제를 해결하는 능력과 태도를 기르는 교과이다. 수학은 오랜 역사를 통해 인류 문명 발전의 원동력이 되어 왔으며, 세계화·정보화가 가속화되는미래 사회의 구성원에게 필수적인 역량을 제공한다. 수학 학습을 통해 학생들은 수학의 규칙성과 구조의 아름다움을 음미할 수 있고, 수학의 지식과 기능을 활용하여 수학 문제뿐만 아니라 실생활과 다른교과의 문제를 창의적으로 해결할 수 있으며, 나아가 세계 공동체의 시민으로서 갖추어야 할 합리적의사 결정 능력과 민주적 소통 능력을 함양할 수 있다.

일반 선택 과목인 <수학Ⅱ>는 공통 과목인 <수학>을 학습한 후, 더 높은 수준의 수학을 학습하기를 원하는 학생들이 선택할 수 있는 과목이다. <수학Ⅱ>의 내용은 '함수의 극한과 연속', '미분', '적분'의 3개 핵심 개념 영역으로 구성된다. '함수의 극한과 연속' 영역에서는 함수의 극한, 함수의 연속을, '미분' 영역에서는 미분계수, 도함수, 도함수의 활용을, '적분' 영역에서는 부정적분, 정적분, 정적분의 활용을 다룬다.

<수학Ⅱ>에서 학습한 수학의 지식과 기능은 자신의 진로와 적성을 고려하여 선택할 수 있는 과목과 진로 선택 과목, 수학 전문 교과 과목을 학습하기 위한 토대가 되고, 자연과학, 공학, 의학뿐만 아니라 경제·경영학을 포함한 사회과학, 인문학, 예술 및 체육 분야를 학습하는 데 기초가 되며, 나아가 창의적 역량을 갖춘 융합 인재로 성장할 수 있는 기반을 제공한다. 이를 위해 학생들은 <수학Ⅱ>의 지식을 이해하고 기능을 습득하는 것과 더불어 문제 해결, 추론, 창의·융합, 의사소통, 정보 처리, 태도 및 실천의 6가지 수학 교과 역량을 길러야 한다.

교과 역량으로서의 문제 해결은 해결 방법을 알고 있지 않은 문제 상황에서 수학의 지식과 기능을 활용하여 해결 전략을 탐색하고 최적의 해결 방안을 선택하여 주어진 문제를 해결하는 능력이고, 추론 은 수학적 사실을 추측하고 논리적으로 분석하고 정당화하며 그 과정을 반성하는 능력이다. 창의·융합은 수학의 지식과 기능을 토대로 새롭고 의미 있는 아이디어를 다양하고 풍부하게 산출하고 정교화하며, 여러 수학적 지식, 기능, 경험을 연결하거나 타 교과나 실생활의 지식, 기능, 경험을 수학과 연결·융합하여 새로운 지식, 기능, 경험을 생성하고 문제를 해결하는 능력이다. 의사소통은 수학 지식이나아이디어, 수학적 활동의 결과, 문제 해결 과정, 신념과 태도 등을 말이나 글, 그림, 기호로 표현하고 다른 사람의 아이디어를 이해하는 능력이고, 정보 처리는 다양한 자료와 정보를 수집, 정리, 분석, 활용하고 적절한 공학적 도구나 교구를 선택, 이용하여 자료와 정보를 효과적으로 처리하는 능력이다. 끝으로, 태도 및 실천은 수학의 가치를 인식하고 자주적 수학 학습 태도와 민주 시민 의식을 갖추어실천하는 능력이다.

수학 교과 역량 함양을 통해 학생들은 복잡하고 전문화되어 가는 미래 사회에서 사회 구성원의 역할을 성공적으로 수행할 수 있고, 개인의 잠재력과 재능을 발현할 수 있으며, 수학의 필요성과 유용성을 이해하고, 수학 학습의 즐거움을 느끼며, 수학에 대한 흥미와 자신감을 기를 수 있다.

2. 목표

수학의 개념, 원리, 법칙을 이해하고 기능을 습득하며 수학적으로 추론하고 의사소통하는 능력을 길러, 생활 주변과 사회 및 자연 현상을 수학적으로 이해하고 문제를 합리적이고 창의적으로 해결하며, 수학 학습자로서 바람직한 태도와 실천 능력을 기른다.

- 가. 사회 및 자연 현상을 수학적으로 관찰, 분석, 조직, 표현하는 경험을 통하여 함수의 극한과 연속, 미분, 적분에 관련된 개념, 원리, 법칙과 이들 사이의 관계를 이해하고 수학의 기능을 습득한다.
- 나. 수학적으로 추론하고 의사소통하며, 창의·융합적 사고와 정보 처리 능력을 바탕으로 사회 및 자연 현상을 수학적으로 이해하고 문제를 합리적이고 창의적으로 해결한다.
- 다. 수학에 대한 흥미와 자신감을 갖고 수학의 역할과 가치를 이해하며 수학 학습자로서 바람직한 태도와 실천 능력을 기른다.

3. 내용 체계 및 성취기준

가. 내용 체계

영역	핵심 개념	일반화된 지식	내용 요소	기능	
해석	함수의 극한과 연속	함수의 극한과 연속은 함수의 성질을 이해하는 데 활용되고, 미적분 개념의 기초가 된다.	함수의 극한함수의 연속	표현하기	
	미분	미분은 함수의 순간적인 변화를 설명하는 도구로 서 여러 가지 미분법과 함수의 적분에 대한 기초 가 되고 최대, 최소 문제를 포함하여 변화 현상을 다루는 데 활용된다.	미분계수도함수도함수의 활용	그래프 그리기 이해하기 계산하기 설명하기 판별하기	
	적분	미분과 역관계에 있는 적분은 도형의 넓이와 부 피를 구하는 데 필요한 개념으로, 미분과 함께 변 화 현상을 다루는 데 활용된다.	부정적분정적분정적분의 활용	활용하기 문제 해결하기	

나. 성취기준

(1) 함수의 극한과 연속

함수의 극한은 현대 수학의 핵심적인 개념으로 한없이 가까워지는 현상을 수학적으로 표현하는 도구이다. 함수의 극한과 연속을 통해 함수와 그 그래프의 성질을 심도 있게 분석할 수 있고, 이는 미분과 적분의 원리를 이해하는 기초가 된다.

① 함수의 극한

[12수학 II 01-01] 함수의 극한의 뜻을 안다.

[12수학 I 01-02] 함수의 극한에 대한 성질을 이해하고, 함수의 극한값을 구할 수 있다.

② 함수의 연속

[12수학Ⅱ01-03] 함수의 연속의 뜻을 안다.

[12수학Ⅱ01-04] 연속함수의 성질을 이해하고, 이를 활용할 수 있다.

(가) 학습 요소

• 구간, 닫힌구간, 열린구간, 반닫힌(반열린) 구간, 수렴, 극한(값), 좌극한, 우극한, 발산, 무한대, 연속, 불연속, 연속함수, 최대·최소 정리, 사잇값 정리, [a,b], (a,b), [a,b), (a,b), $\lim_{h \to \infty} f(x)$, $\lim_{x \to a^{-}} f(x)$, $\lim_{x \to a^{+}} f(x)$, ∞

(나) 교수·학습 방법 및 유의 사항

- 함수의 극한에 대한 뜻과 성질은 그래프를 통해 직관적으로 이해하게 하고, 이때 공학적 도구를 이용할 수 있다.
- 함수의 극한은 함수의 연속과 미분을 이해하는 데 필요한 정도로 간단히 다룬다.

(다) 평가 방법 및 유의 사항

• 함수의 극한과 연속에 대한 평가에서는 함수의 극한과 연속의 뜻과 성질에 대한 이해 여부를 평가하는 데 중점을 두고, 복잡한 합성함수나 절댓값이 여러 개 포함된 함수와 같이 지나치게 복잡한 함수를 포함하는 문제는 다루지 않는다.

(2) 미분

미분은 함수의 순간적인 변화를 설명하는 도구로, 자연과학이나 공학뿐 아니라 경제학, 사회학 등다양한 분야에서 활용된다. 순간변화율이나 접선의 기울기를 나타내는 미분계수와 도함수는 최댓값, 최솟값을 구하거나 증가, 감소 등의 변화 현상을 해석하고 설명하는 데 이용된다. 미분의 학습을 통해수학의 유용성과 가치를 경험할 수 있고 창의·융합적 사고를 기를 수 있다.

① 미분계수

[12수학 II 02-01] 미분계수의 뜻을 알고, 그 값을 구할 수 있다.

[12수학 🛮 02-02] 미분계수의 기하적 의미를 이해한다.

[12수학 Ⅱ 02-03] 미분가능성과 연속성의 관계를 이해한다.

2 도함수

[12수학 \mathbb{I} 02-04] 함수 $y = x^n (n)$ 은 양의 정수)의 도함수를 구할 수 있다.

[12수학 I 02-05] 함수의 실수배, 합, 차, 곱의 미분법을 알고, 다항함수의 도함수를 구할 수 있다.

③ 도함수의 활용

[12수학 II 02-06] 접선의 방정식을 구할 수 있다.

[12수학Ⅱ02-07] 함수에 대한 평균값 정리를 이해한다.

[12수학 I 02-08] 함수의 증가와 감소, 극대와 극소를 판정하고 설명할 수 있다.

[12수학Ⅱ02-09] 함수의 그래프의 개형을 그릴 수 있다.

[12수학 II 02-10] 방정식과 부등식에 대한 문제를 해결할 수 있다.

[12수학Ⅱ02-11] 속도와 가속도에 대한 문제를 해결할 수 있다.

(가) 학습 요소

• 증분, 평균변화율, 순간변화율, 미분계수, 미분가능, 도함수, 롤의 정리, 평균값 정리, 증가, 감소, 극대, 극소, 극값, 극댓값, 극솟값, Δx , Δy , f'(x), y', $\frac{dy}{dx}$, $\frac{d}{dx}f(x)$

(나) 교수·학습 방법 및 유의 사항

- 미분계수의 기하적 의미는 직관적으로 이해하게 하고, 이때 공학적 도구를 이용할 수 있다.
- 롤의 정리, 평균값 정리는 함수의 그래프를 이용하여 그 의미를 이해하게 할 수 있다.
- 속도와 가속도에 대한 문제는 직선 운동에 한하여 다룬다.
- 미분법을 단순히 적용하기보다는 미분의 의미를 이해하고, 이를 활용하여 여러 가지 문제를 해결함으로써 미분의 유용성과 가치를 인식하게 한다.

(다) 평가 방법 및 유의 사항

- 미분가능성과 연속성의 관계에 대한 지나치게 복잡한 문제는 다루지 않는다.
- 도함수를 활용하여 함수의 그래프의 개형을 그리거나 최댓값과 최솟값을 구하는 능력을 평가할 때, 지나치게 복잡한 함수를 포함하는 문제는 다루지 않는다.
- 속도와 가속도에 대한 지나치게 복잡한 문제는 다루지 않는다.

(3) 적분

적분은 미분과 역관계에 있으며 도형의 넓이와 부피를 구하는 데 필요한 개념이다. 적분은 여러 가지 도형의 넓이와 부피를 구하는 것 뿐 아니라 움직이는 물체의 속도와 이동 거리 계산을 포함한 변화현상과 관련된 다양한 문제 해결에 활용된다. 적분의 학습을 통해 수학적 문제 해결 능력과 창의·융합적 사고를 기를 수 있다.

1 부정적분

[12수학 Ⅱ 03-01] 부정적분의 뜻을 안다.

[12수학 II 03-02] 함수의 실수배, 합, 차의 부정적분을 알고, 다항함수의 부정적분을 구할 수 있다.

② 정적분

[12수학 II 03-03] 정적분의 뜻을 안다.

[12수학 103-04] 다항함수의 정적분을 구할 수 있다.

③ 정적분의 활용

[12수학 II 03-05] 곡선으로 둘러싸인 도형의 넓이를 구할 수 있다.

[12수학Ⅱ03-06] 속도와 거리에 대한 문제를 해결할 수 있다.

(가) 학습 요소

• 부정적분, 적분상수, 정적분, $\int f(x) dx$, $\int_a^b f(x) dx$, $[F(x)]_a^b$

(나) 교수·학습 방법 및 유의 사항

- 적분에 필요한 공식은 미분법의 공식에서 유도할 수 있게 한다.
- 급수의 합을 이용한 정적분 정의는 다루지 않는다. f(x)의 부정적분 F(x)에 대하여 F(b)-F(a)를 f(x)의 a에서 b까지의 정적분이라 정의하되, 그 도입 및 설명 방법을 다양하게 할 수 있다.
- 속도와 거리에 대한 문제는 직선 운동에 한하여 다룬다.
- 적분법을 단순히 적용하기보다는 적분의 의미를 이해하고, 이를 활용하여 여러 가지 문제를 해 결함으로써 적분의 유용성과 가치를 인식하게 한다.
- '피적분함수', '원시함수', '위끝', '아래끝', '미적분의 기본정리' 용어는 교수·학습 상황에서 사용할 수 있다.

(다) 평가 방법 및 유의 사항

• 정적분의 활용에서 지나치게 복잡한 문제는 다루지 않는다.

4. 교수·학습 및 평가의 방향

가. 교수·학습 방향

- (1) 교수·학습 원칙
- (가) 수학과의 교수·학습은 학생이 수학과 교육과정에 제시된 목표를 달성하고 전인적으로 성장하도 록 돕는 것을 목적으로 한다.
- (나) 수학과의 교수·학습은 교육과정에 제시된 내용의 수준과 범위를 준수하고, 교육과정에 제시된 목표, 내용, 평가와 일관성을 가져야 한다.
- (다) 문제 해결, 추론, 창의·융합, 의사소통, 정보 처리, 태도 및 실천과 같은 수학 교과 역량을 함양하기 위한 교육 환경을 조성하고, 이에 적합한 교수·학습을 운영한다.

- (라) 과목별 내용의 배열 순서가 반드시 교수·학습의 순서를 의미하는 것은 아니므로, 교수·학습 계획을 수립하거나 학습 자료를 개발할 때에는 내용의 특성과 난이도, 학교 여건, 학생의 수준 등을 고려하여 내용, 순서 등을 재구성할 수 있다.
- (마) 교육과정에 제시된 내용을 지도한 후 학습 결손이 있는 학생에게는 보충 학습, 우수 학생에게 는 심화 학습의 기회를 추가로 제공할 수 있다.

(2) 교수·학습 방법

- (가) 수학과의 수업은 학생의 능력과 수준 등을 고려하여 설명식 교수, 탐구 학습, 프로젝트 학습, 토의·토론 학습, 협력 학습, 매체 및 도구 활용 학습 등을 적절히 선택하여 적용한다.
 - ① 설명식 교수는 교사가 설명과 시연을 통해 수업을 주도하는 교수·학습 방법으로, 수업 내용을 구조화하여 체계적으로 지도하는 데 효과적이다. 이때, 교사는 학생의 적극적인 수업 참여를 유도하고, 사고를 촉진하는 발문을 적절히 활용한다.
 - ② 탐구 학습은 학생이 중심이 되어 수학 개념, 원리, 법칙을 발견하고 구성하는 교수·학습 방법으로, 학생 스스로 자료와 정보로부터 지식을 도출하거나 지식의 타당성을 확인하는 능력을 기를 수 있게 한다.
 - ③ 프로젝트 학습은 특정 주제나 과제를 탐구하기 위해 계획을 수립하고 수행하여 결과물을 산출하거나 발표하는 교수·학습 방법으로, 개인별 또는 집단별로 실시할 수 있다.
 - ④ 토의·토론 학습은 특정 주제에 대해 협의하거나 논의하는 교수·학습 방법으로, 의사소통이 지니는 상호 협력적인 면을 강조한다. 이를 통해 학생들이 교과 내용을 폭넓게 이해하고 논 리적이고 비판적으로 추론하며 다른 사람의 의견을 비판적으로 수용하고 자신의 주장을 효과적으로 표현하는 능력을 기를 수 있게 한다.
 - ⑤ 협력 학습은 모둠 내의 상호작용, 의사소통, 참여를 통해 공동의 학습 목표에 도달하도록 하는 교수·학습 방법으로, 다른 사람을 존중하고 배려하며 모둠 내의 역할을 이해하고 책임감을 기를 수 있게 한다.
 - ⑥ 매체 및 도구 활용 학습은 학생의 수준과 학습 내용에 적합한 매체와 도구를 활용하여 흥미를 유발하고 학습의 효율성과 다양성을 도모하는 교수·학습 방법으로, 시청각 자료, 멀티미디어나 인터넷 등의 컴퓨터 활용 매체와 교구, 계산기, 교육용 소프트웨어 등의 도구를 이용한다.
- (나) 문제 해결 능력을 함양하기 위한 교수·학습에서는 다음 사항을 강조한다.
 - ① 문제를 해결할 때에는 문제를 이해하고 해결 전략을 탐색하며 해결 과정을 실행하고 검증 및 반성하는 단계를 거치도록 한다.

- ② 협력적 문제 해결 과제에서는 균형 있는 책임 분담과 상호작용을 통해 동료들과 협력하여 문제를 해결하게 한다.
- ③ 수학적 모델링 능력을 신장하기 위해 생활 주변이나 사회 및 자연 현상 등 다양한 맥락에서 파악된 문제를 해결하면서 수학적 개념, 원리, 법칙을 탐구하고 이를 일반화하게 한다.
- ④ 문제 해결력을 높이기 위해 주어진 문제를 변형하거나 새로운 문제를 만들어 해결하고 그 과정을 검증하는 문제 만들기 활동을 장려한다.
- (다) 추론 능력을 함양하기 위한 교수·학습에서는 다음 사항을 강조한다.
 - ① 관찰과 탐구 상황에서 귀납, 유추 등의 개연적 추론을 사용하여 학생 스스로 수학적 사실을 추측하고 적절한 근거에 기초하여 이를 정당화할 수 있게 한다.
 - ② 수학의 개념, 원리, 법칙을 도출하는 과정과 수학적 절차를 논리적으로 수행하게 한다.
 - ③ 추론 과정이 옳은지 비판적으로 평가하고 반성하도록 한다.
- (라) 창의·융합 능력을 함양하기 위한 교수·학습에서는 다음 사항을 강조한다.
 - ① 새롭고 의미 있는 아이디어를 다양하고 풍부하게 산출할 수 있는 수학적 과제를 제공하여 학생의 창의적 사고를 촉진시킨다.
 - ② 하나의 문제를 여러 가지 방법으로 해결하게 하고, 해결 방법을 비교하여 더 효율적인 방법을 찾거나 정교화하게 한다.
 - ③ 여러 수학적 지식, 기능, 경험을 연결하거나 수학과 타 교과나 실생활의 지식, 기능, 경험을 연결·융합하여 새로운 지식, 기능, 경험을 생성하고 문제를 해결하게 한다.
- (마) 의사소통 능력을 함양하기 위한 교수·학습에서는 다음 사항을 강조한다.
 - ① 수학 용어, 기호, 표, 그래프 등의 수학적 표현을 이해하고 정확하게 사용하며, 수학적 표현을 만들거나 변환하는 활동을 하게 한다.
 - ② 수학적 아이디어 또는 수학 학습 과정과 결과를 말, 글, 그림, 기호, 표, 그래프 등을 사용하여 다른 사람과 효율적으로 의사소통할 수 있게 한다.
 - ③ 다양한 관점을 존중하면서 다른 사람의 생각을 이해하고 수학적 아이디어를 표현하며 토론하게 한다.
- (바) 정보 처리 능력을 함양하기 위한 교수·학습에서는 다음 사항을 강조한다.
 - ① 실생활 및 수학적 문제 상황에서 적절한 자료를 탐색하여 수집하고, 목적에 맞게 정리, 분석, 평가하며, 분석한 정보를 문제 상황에 적합하게 활용할 수 있게 한다.
 - ② 교수·학습 과정에서 적절한 교구를 활용한 조작 및 탐구 활동을 통해 수학의 개념과 원리를

- 이해하도록 한다.
- ③ 계산 능력 배양을 목표로 하지 않는 교수·학습 상황에서의 복잡한 계산 수행, 수학의 개념, 원리, 법칙의 이해, 문제 해결력 향상 등을 위하여 계산기, 컴퓨터, 교육용 소프트웨어 등의 공학적 도구를 이용할 수 있게 한다.
- (사) 태도 및 실천 능력을 함양하기 위한 교수·학습에서는 다음 사항을 강조한다.
 - ① 수학을 생활 주변과 사회 및 자연 현상과 관련지어 지도하여 수학의 필요성과 유용성을 알게 하고, 수학의 역할과 가치를 인식할 수 있게 한다.
 - ② 수학에 대한 관심과 흥미, 호기심과 자신감을 갖고 수학 학습에 적극적으로 참여하게 하며, 끈기 있게 도전하도록 격려하고 학습 동기와 의욕을 유발한다.
 - ③ 학생 스스로 목표를 설정하고 학습을 수행하며 학습 결과를 평가하는 자주적 학습 습관과 태도를 갖게 한다.
 - ④ 수학적 활동을 통하여 정직하고 공정하며 책임감 있게 행동하고 어려움을 극복하기 위해 도 전하는 용기 있는 태도, 타인을 배려하고 존중하며 협력하는 태도, 논리적 근거를 토대로 의 견을 제시하고 합리적으로 의사 결정하는 태도를 갖고 이를 실천하게 한다.
- (아) 의미 있는 발문을 하기 위하여 교수·학습에서 다음 사항에 유의한다.
 - ① 학생의 사고를 촉진하는 다양한 발문을 통해 상호작용이 활발한 교실 환경을 구축하고 학생 의 능동적 수업 참여를 독려한다.
 - ② 학생의 인지 발달과 경험을 고려하여 발문을 하고, 발문에 대한 학생의 반응을 의미 있게 처리한다.
- (자) 개인차를 고려하여 수준별 수업을 운영할 때에는 다음 사항에 유의한다.
 - ① 학습 목표를 효과적으로 달성하기 위해 교실 내에서 개인차를 고려한 소집단을 구성하거나 수준별 학급을 구성하여 교수·학습을 전개한다.
 - ② 수준별 수업을 위해 집단을 편성할 때에는 학생 개인의 능력과 수준, 적성과 희망, 교사 수 급과 유휴 교실 등의 학교 상황을 고려한다.
 - ③ 수준별 수업은 내용 요소를 차별화하기보다는 내용의 깊이나 접근 방법에 차이를 두어 진행한다.

나. 평가 방향

(1) 평가 워칙

- (가) 수학과의 평가는 학생의 인지적 영역과 정의적 영역에 대한 유용한 정보를 수집 활용하여 학생 의 수학 학습과 전인적 성장을 돕고 교사의 수업 방법을 개선하는 것을 목적으로 한다.
- (나) 수학과의 평가는 교육과정에 제시된 내용의 수준과 범위를 준수하고, 교육과정에 제시된 목표, 내용, 교수·학습과 일관성을 가져야 한다.
- (다) 수학과의 평가에서는 수학의 개념, 원리, 법칙, 기능뿐만 아니라 문제 해결, 추론, 창의·융합, 의사소통, 정보 처리, 태도 및 실천과 같은 수학 교과 역량을 균형 있게 평가한다.
- (라) 수학과의 평가는 학습자의 수준을 고려하고 평가 목적과 내용에 따라 다양한 평가 방법을 활용 하다.
- (마) 평가 결과는 학생, 학부모, 교사 등에게 환류하여 학생의 수학 학습 개선을 도울 수 있게 한다.

(2) 평가 방법

- (가) 수학과의 평가는 학습 결과 평가뿐만 아니라 과정 중심 평가도 실시하여 종합적인 수학 학습 평가가 될 수 있게 한다.
- (나) 수업의 전개 국면에 따라 진단평가, 형성평가, 총괄평가를 적절히 실시하되, 지속적인 평가를 통해 다양한 정보를 수집하고 수업에 활용한다.
- (다) 학생의 수학 학습 과정과 결과는 지필 평가, 프로젝트 평가, 포트폴리오 평가, 관찰 평가, 면담 평가, 구술 평가, 자기 평가, 동료 평가 등의 다양한 평가 방법을 사용하여 양적 또는 질적으로 평가한다.
 - ① 지필 평가는 수학의 개념, 원리, 법칙을 이해하고 적용하는 능력과 문제 해결, 추론, 창의・ 융합, 의사소통 능력 등을 평가하는 데 활용할 수 있고, 선택형, 단답형, 서·논술형 등의 다 양한 문항 형태를 활용한다.
 - ② 프로젝트 평가는 수학 학습을 토대로 특정한 주제나 과제에 대해서 자료를 수집하고 분석, 종합, 해결하는 과정과 결과를 평가하는 방법으로, 문제 해결, 창의・융합, 정보 처리 능력 등을 평가할 때 활용할 수 있다.

- ③ 포트폴리오 평가는 일정 기간 동안 수학 학습 수행과 그 결과물을 평가하는 방법으로, 학생의 학습 내용 이해와 수학 교과 역량을 종합적으로 판단하고 학생의 성장에 대한 정보를 얻는 데 활용할 수 있다.
- ④ 관찰 평가, 면담 평가, 구술 평가는 학생 개인 및 소집단을 관찰, 학생과의 대화, 학생의 발표를 통해 학생의 이해 정도와 사고 방법, 수행 과정 등을 평가하는 방법으로, 의사소통, 태도 및 실천 능력 등을 평가할 때 활용할 수 있다.
- ⑤ 자기 평가는 학생 스스로 자신의 이해와 수행을 평가하는 방법으로, 문제 해결과 추론 과정의 반성, 자신의 생각 표현, 태도 및 실천 능력 등을 평가할 때 활용할 수 있다.
- ⑥ 동료 평가는 동료 학생들이 상대방을 서로 평가하는 방법으로, 협력 학습 상황에서 학생 개 개인의 역할 수행 정도나 집단 활동에 기여한 정도를 평가할 때 활용할 수 있다.
- (라) 평가 내용이나 방법에 따라 학생에게 계산기, 컴퓨터, 교육용 소프트웨어 등의 공학적 도구와 다양한 교구를 이용할 수 있게 한다.

미적분

1. 성격

수학과는 수학의 개념, 원리, 법칙을 이해하고 기능을 습득하여 주변의 여러 가지 현상을 수학적으로 관찰하고 해석하며 논리적으로 사고하고 합리적으로 문제를 해결하는 능력과 태도를 기르는 교과이다. 수학은 오랜 역사를 통해 인류 문명 발전의 원동력이 되어 왔으며, 세계화·정보화가 가속화되는미래 사회의 구성원에게 필수적인 역량을 제공한다. 수학 학습을 통해 학생들은 수학의 규칙성과 구조의 아름다움을 음미할 수 있고, 수학의 지식과 기능을 활용하여 수학 문제뿐만 아니라 실생활과 다른교과의 문제를 창의적으로 해결할 수 있으며, 나아가 세계 공동체의 시민으로서 갖추어야 할 합리적의사 결정 능력과 민주적 소통 능력을 함양할 수 있다.

일반 선택 과목인 <미적분>은 <수학 I >과 <수학 II >를 학습한 후, 더 높은 수준의 수학을 학습하기를 원하는 학생들이 선택할 수 있는 과목이다. <미적분>의 내용은 '수열의 극한', '미분법', '적분법'의 3개 핵심 개념 영역으로 구성된다. '수열의 극한' 영역에서는 수열의 극한, 급수를, '미분법' 영역에서는 여러 가지 함수의 미분, 여러 가지 미분법, 도함수의 활용을, '적분법' 영역에서는 여러 가지 적분법, 정적분의 활용을 다룬다.

<미적분>에서 학습한 수학의 지식과 기능은 자신의 진로와 적성을 고려하여 선택할 수 있는 수학일반 선택 과목과 진로 선택 과목, 수학 전문 교과 과목 및 대학 수학 학습의 토대가 되고, 자연과학, 공학, 의학뿐만 아니라 경제·경영학을 포함한 사회과학 분야를 학습하는 데 기초가 되며, 나아가 창의적 역량을 갖춘 융합 인재로 성장할 수 있는 기반을 제공한다. 이를 위해 학생들은 <미적분>의 지식을이해하고 기능을 습득하는 것과 더불어 문제 해결, 추론, 창의·융합, 의사소통, 정보 처리, 태도 및 실천의 6가지 수학 교과 역량을 길러야 한다.

교과 역량으로서의 문제 해결은 해결 방법을 알고 있지 않은 문제 상황에서 수학의 지식과 기능을 활용하여 해결 전략을 탐색하고 최적의 해결 방안을 선택하여 주어진 문제를 해결하는 능력이고, 추론은 수학적 사실을 추측하고 논리적으로 분석하고 정당화하며 그 과정을 반성하는 능력이다. 창의·융합

은 수학의 지식과 기능을 토대로 새롭고 의미 있는 아이디어를 다양하고 풍부하게 산출하고 정교화하며, 여러 수학적 지식, 기능, 경험을 연결하거나 타 교과나 실생활의 지식, 기능, 경험을 수학과 연결·융합하여 새로운 지식, 기능, 경험을 생성하고 문제를 해결하는 능력이다. 의사소통은 수학 지식이나 아이디어, 수학적 활동의 결과, 문제 해결 과정, 신념과 태도 등을 말이나 글, 그림, 기호로 표현하고 다른 사람의 아이디어를 이해하는 능력이고, 정보 처리는 다양한 자료와 정보를 수집, 정리, 분석, 활용하고 적절한 공학적 도구나 교구를 선택, 이용하여 자료와 정보를 효과적으로 처리하는 능력이다. 끝으로, 태도 및 실천은 수학의 가치를 인식하고 자주적 수학 학습 태도와 민주 시민 의식을 갖추어 실천하는 능력이다.

수학 교과 역량 함양을 통해 학생들은 복잡하고 전문화되어 가는 미래 사회에서 사회 구성원의 역할을 성공적으로 수행할 수 있고, 개인의 잠재력과 재능을 발현할 수 있으며, 수학의 필요성과 유용성을 이해하고, 수학 학습의 즐거움을 느끼며, 수학에 대한 흥미와 자신감을 기를 수 있다.

2. 목표

수학의 개념, 원리, 법칙을 이해하고 기능을 습득하며 수학적으로 추론하고 의사소통하는 능력을 길러, 생활 주변과 사회 및 자연 현상을 수학적으로 이해하고 문제를 합리적이고 창의적으로 해결하며, 수학 학습자로서 바람직한 태도와 실천 능력을 기른다.

- 가. 사회 및 자연 현상을 수학적으로 관찰, 분석, 조직, 표현하는 경험을 통하여 수열의 극한, 미분 법, 적분법에 관련된 개념, 원리, 법칙과 이들 사이의 관계를 이해하고 수학의 기능을 습득한다.
- 나. 수학적으로 추론하고 의사소통하며, 창의·융합적 사고와 정보 처리 능력을 바탕으로 사회 및 자연 현상을 수학적으로 이해하고 문제를 합리적이고 창의적으로 해결한다.
- 다. 수학에 대한 흥미와 자신감을 갖고 수학의 역할과 가치를 이해하며 수학 학습자로서 바람직한 태도와 실천 능력을 기른다.

3. 내용 체계 및 성취기준

가. 내용 체계

영역	핵심 개념	일반화된 지식	내용 요소	기능
해석	수열의 극한	수열의 극한은 한없이 가까워지거나 한없이 작아지고 커지는 현상과 같이 무한을 수학적으로 다루는 도구로서 미분과 적분의 기초 개념이다.	수열의 극한급수	표현하기 이해하기 계산하기 설명하기 판별하기 활용하기 문제 해결하기
	미분법	미분법은 여러 가지 함수의 도함수를 효 율적으로 구하는 방법이며 변화 현상을 해석하고 설명하는 데 활용된다.	여러 가지 함수의 미분여러 가지 미분법도함수의 활용	
	적분법	적분법은 여러 가지 함수의 부정적분과 정적분을 효율적으로 구하는 방법이며 길 이, 넓이, 부피 등으로 표현되는 여러 가 지 상황을 해석하는 데 활용된다.	여러 가지 적분법정적분의 활용	

나. 성취기준

(1) 수열의 극한

수열의 극한은 현대 수학의 핵심적인 개념으로 한없이 가까워지거나 작아지거나 커지는 현상을 수학적으로 다루는 도구이다. 이처럼 무한을 수학적으로 다루는 수열의 극한은 이후 학습할 정적분 개념과 관련된다.

① 수열의 극한

[12미적01-01] 수열의 수렴, 발산의 뜻을 알고, 이를 판별할 수 있다.

[12미적01-02] 수열의 극한에 대한 기본 성질을 이해하고, 이를 이용하여 극한값을 구할 수 있다.

[12미적01-03] 등비수열의 극한값을 구할 수 있다.

2 급수

[12미적01-04] 급수의 수렴, 발산의 뜻을 알고, 이를 판별할 수 있다.

[12미적01-05] 등비급수의 뜻을 알고, 그 합을 구할 수 있다.

[12미적01-06] 등비급수를 활용하여 여러 가지 문제를 해결할 수 있다.

(가) 학습 요소

• 급수, 부분합, 급수의 합, 등비급수, $\lim_{n\to\infty} a_n$, $\sum_{n=1}^{\infty} a_n$

(나) 교수·학습 방법 및 유의 사항

- 수열의 극한에 대한 정의와 성질은 직관적으로 이해하는 수준에서 다룬다.
- 수열의 수렴, 발산은 수렴의 정의와 성질을 바탕으로 예측하고 설명해 보게 한다.
- 수열이나 급수의 수렴, 발산은 공학적 도구를 이용하여 이해하게 할 수 있다.
- 수열의 극한에 대한 기본 성질은 구체적인 예를 통해 직관적으로 이해하게 한다.
- 급수를 활용하여 여러 가지 문제를 해결함으로써 극한의 유용성과 가치를 인식하게 한다.
- 기호 $\lim S_n$ 은 교수·학습 상황에서 사용할 수 있다.

(다) 평가 방법 및 유의 사항

• 급수의 합의 계산에서는 일반항이 등차수열과 등비수열의 곱으로 표현되는 경우와 같이 지나치 게 복잡한 문제는 다루지 않는다.

(2) 미분법

미분은 함수의 순간적인 변화를 설명하는 도구이다. 미분법은 지수함수와 로그함수 및 삼각함수의 도함수를 포함한 다양한 함수의 도함수를 효율적으로 구하는 방법으로, 자연과학이나 공학뿐 아니라 경제학, 사회학 등 변화 현상을 다루는 다양한 분야에서 활용된다. 미분법의 학습을 통해 수학의 유용성과 가치를 효과적으로 경험할 수 있고 수학적 문제 해결 능력과 창의·융합적 사고를 기를 수 있다.

① 여러 가지 함수의 미분

[12미적02-01] 지수함수와 로그함수의 극한을 구할 수 있다.

[12미적02-02] 지수함수와 로그함수를 미분할 수 있다.

[12미적02-03] 삼각함수의 덧셈정리를 이해한다.

[12미적02-04] 삼각함수의 극한을 구할 수 있다.

[12미적02-05] 사인함수와 코사인함수를 미분할 수 있다.

② 여러 가지 미분법

[12미적02-06] 함수의 몫을 미분할 수 있다.

[12미적02-07] 합성함수를 미분할 수 있다.

[12미적02-08] 매개변수로 나타낸 함수를 미분할 수 있다.

[12미적02-09] 음함수와 역함수를 미분할 수 있다.

[12미적02-10] 이계도함수를 구할 수 있다.

③ 도함수의 활용

[12미적02-11] 접선의 방정식을 구할 수 있다.

[12미적02-12] 함수의 그래프의 개형을 그릴 수 있다.

[12미적02-13] 방정식과 부등식에 대한 문제를 해결할 수 있다.

[12미적02-14] 속도와 가속도에 대한 문제를 해결할 수 있다.

(가) 학습 요소

• 자연로그, 덧셈정리, 매개변수, 음함수, 이계도함수, 변곡점, e , e^x , $\ln x$, $\sec x$, $\csc x$, $\cot x$, f''(x), y'', $\frac{d^2y}{dx^2}$, $\frac{d^2}{dx^2}f(x)$

(나) 교수·학습 방법 및 유의 사항

- 지수함수와 로그함수의 극한은 지수함수 e^x 와 로그함수 $\ln x$ 의 도함수를 구하는 데 필요한 정도로 가단히 다른다.
- 삼각함수의 덧셈정리와 관련하여 복잡한 문제는 다루지 않는다.
- 삼각함수의 극한은 삼각함수 $\sin x$, $\cos x$ 의 도함수를 구하는 데 필요한 정도로 간단히 다룬다.
- 유리함수와 탄젠트함수의 미분은 함수의 몫의 미분에서 다룬다.
- 간단한 곡선을 매개변수나 음함수를 이용하여 나타내 봄으로써 매개변수로 나타낸 함수와 음함수는 곡선을 표현하는 방법의 하나임을 이해하게 한다.
- 매개변수로 나타낸 함수와 음함수는 간단한 것만 다룬다.
- 함수 $y=x^n(n$ 은 실수)의 도함수를 구할 수 있게 한다.
- 삼계도함수 이상은 다루지 않는다.
- 도함수의 다양한 활용을 통해 미분의 유용성과 가치를 인식하게 한다.

(다) 평가 방법 및 유의 사항

• 여러 가지 미분법과 도함수의 활용에서 지나치게 복잡한 문제는 다루지 않는다.

(3) 적분법

적분은 미분과 역관계에 있으며 도형의 넓이와 부피를 구하는 데 필요한 개념이다. 적분법은 지수함

수와 로그함수 및 삼각함수를 포함한 다양한 함수의 부정적분과 정적분을 효율적으로 구하는 방법으로 서 이들 함수로 표현되는 여러 가지 현상을 수학적으로 분석함으로써 곡선의 길이, 넓이, 부피 등으로 나타낼 수 있는 다양한 상황의 문제를 해결하는 데 활용된다. 적분법의 학습을 통해 수학적 문제 해결 능력과 창의·융합적 사고를 기를 수 있다.

① 여러 가지 적분법

[12미적03-01] 치환적분법을 이해하고, 이를 활용할 수 있다.

[12미적03-02] 부분적분법을 이해하고, 이를 활용할 수 있다.

[12미적03-03] 여러 가지 함수의 부정적분과 정적분을 구할 수 있다.

② 정적분의 활용

[12미적03-04] 정적분과 급수의 합 사이의 관계를 이해한다.

[12미적03-05] 곡선으로 둘러싸인 도형의 넓이를 구할 수 있다.

[12미적03-06] 입체도형의 부피를 구할 수 있다.

[12미적03-07] 속도와 거리에 대한 문제를 해결할 수 있다.

(가) 학습 요소

• 치환적분법, 부분적분법

(나) 교수·학습 방법 및 유의 사항

- 적분에 필요한 공식은 미분법의 공식에서 유도하도록 한다.
- 주어진 영역의 넓이를 직사각형 넓이의 합의 극한으로 나타내 봄으로써 정적분과 급수의 합사이의 관계를 이해할 수 있게 한다.
- 정적분과 급수의 합 사이의 관계를 지도할 때 공학적 도구를 이용할 수 있다.
- 정적분의 다양한 활용을 통해 적분의 유용성과 가치를 인식하게 한다.
- '구분구적법'용어는 교수·학습 상황에서 사용할 수 있다.

(다) 평가 방법 및 유의 사항

• 여러 가지 적분법과 정적분의 활용에서 지나치게 복잡한 문제는 다루지 않는다.

4. 교수·학습 및 평가의 방향

가. 교수·학습 방향

(1) 교수·학습 원칙

- (가) 수학과의 교수·학습은 학생이 수학과 교육과정에 제시된 목표를 달성하고 전인적으로 성장하도 록 돕는 것을 목적으로 한다.
- (나) 수학과의 교수·학습은 교육과정에 제시된 내용의 수준과 범위를 준수하고, 교육과정에 제시된 목표, 내용, 평가와 일관성을 가져야 한다.
- (다) 문제 해결, 추론, 창의·융합, 의사소통, 정보 처리, 태도 및 실천과 같은 수학 교과 역량을 함양하기 위한 교육 환경을 조성하고, 이에 적합한 교수·학습을 운영한다.
- (라) 과목별 내용의 배열 순서가 반드시 교수·학습의 순서를 의미하는 것은 아니므로, 교수·학습 계획을 수립하거나 학습 자료를 개발할 때에는 내용의 특성과 난이도, 학교 여건, 학생의 수준 등을 고려하여 내용, 순서 등을 재구성할 수 있다.
- (마) 교육과정에 제시된 내용을 지도한 후 학습 결손이 있는 학생에게는 보충 학습, 우수 학생에게 는 심화 학습의 기회를 추가로 제공할 수 있다.

(2) 교수·학습 방법

- (가) 수학과의 수업은 학생의 능력과 수준 등을 고려하여 설명식 교수, 탐구 학습, 프로젝트 학습, 토의·토론 학습, 협력 학습, 매체 및 도구 활용 학습 등을 적절히 선택하여 적용한다.
 - ① 설명식 교수는 교사가 설명과 시연을 통해 수업을 주도하는 교수·학습 방법으로, 수업 내용을 구조화하여 체계적으로 지도하는 데 효과적이다. 이때, 교사는 학생의 적극적인 수업 참여를 유도하고, 사고를 촉진하는 발문을 적절히 활용한다.
 - ② 탐구 학습은 학생이 중심이 되어 수학 개념, 원리, 법칙을 발견하고 구성하는 교수·학습 방법으로, 학생 스스로 자료와 정보로부터 지식을 도출하거나 지식의 타당성을 확인하는 능력을 기를 수 있게 한다.
 - ③ 프로젝트 학습은 특정 주제나 과제를 탐구하기 위해 계획을 수립하고 수행하여 결과물을 산출하거나 발표하는 교수·학습 방법으로, 개인별 또는 집단별로 실시할 수 있다.

89

- ④ 토의·토론 학습은 특정 주제에 대해 협의하거나 논의하는 교수·학습 방법으로, 의사소통이 지니는 상호 협력적인 면을 강조한다. 이를 통해 학생들이 교과 내용을 폭넓게 이해하고 논 리적이고 비판적으로 추론하며 다른 사람의 의견을 비판적으로 수용하고 자신의 주장을 효과적으로 표현하는 능력을 기를 수 있게 한다.
- ⑤ 협력 학습은 모둠 내의 상호작용, 의사소통, 참여를 통해 공동의 학습 목표에 도달하도록 하는 교수·학습 방법으로, 다른 사람을 존중하고 배려하며 모둠 내의 역할을 이해하고 책임 감을 기를 수 있게 한다.
- ⑥ 매체 및 도구 활용 학습은 학생의 수준과 학습 내용에 적합한 매체와 도구를 활용하여 흥미를 유발하고 학습의 효율성과 다양성을 도모하는 교수·학습 방법으로, 시청각 자료, 멀티미디어나 인터넷 등의 컴퓨터 활용 매체와 교구, 계산기, 교육용 소프트웨어 등의 도구를 이용한다.
- (나) 문제 해결 능력을 함양하기 위한 교수·학습에서는 다음 사항을 강조한다.
 - ① 문제를 해결할 때에는 문제를 이해하고 해결 전략을 탐색하며 해결 과정을 실행하고 검증 및 반성하는 단계를 거치도록 한다.
 - ② 협력적 문제 해결 과제에서는 균형 있는 책임 분담과 상호작용을 통해 동료들과 협력하여 문제를 해결하게 한다.
 - ③ 수학적 모델링 능력을 신장하기 위해 생활 주변이나 사회 및 자연 현상 등 다양한 맥락에서 파악된 문제를 해결하면서 수학적 개념, 원리, 법칙을 탐구하고 이를 일반화하게 한다.
 - ④ 문제 해결력을 높이기 위해 주어진 문제를 변형하거나 새로운 문제를 만들어 해결하고 그 과정을 검증하는 문제 만들기 활동을 장려한다.
- (다) 추론 능력을 함양하기 위한 교수·학습에서는 다음 사항을 강조한다.
 - ① 관찰과 탐구 상황에서 귀납, 유추 등의 개연적 추론을 사용하여 학생 스스로 수학적 사실을 추측하고 적절한 근거에 기초하여 이를 정당화할 수 있게 한다.
 - ② 수학의 개념, 원리, 법칙을 도출하는 과정과 수학적 절차를 논리적으로 수행하게 한다.
 - ③ 추론 과정이 옳은지 비판적으로 평가하고 반성하도록 한다.
- (라) 창의·융합 능력을 함양하기 위한 교수·학습에서는 다음 사항을 강조한다.
 - ① 새롭고 의미 있는 아이디어를 다양하고 풍부하게 산출할 수 있는 수학적 과제를 제공하여 학생의 창의적 사고를 촉진시킨다.
 - ② 하나의 문제를 여러 가지 방법으로 해결하게 하고, 해결 방법을 비교하여 더 효율적인 방법을 찾거나 정교화하게 한다.

- ③ 여러 수학적 지식, 기능, 경험을 연결하거나 수학과 타 교과나 실생활의 지식, 기능, 경험을 연결·융합하여 새로운 지식, 기능, 경험을 생성하고 문제를 해결하게 한다.
- (마) 의사소통 능력을 함양하기 위한 교수·학습에서는 다음 사항을 강조한다.
 - ① 수학 용어, 기호, 표, 그래프 등의 수학적 표현을 이해하고 정확하게 사용하며, 수학적 표현 을 만들거나 변환하는 활동을 하게 한다.
 - ② 수학적 아이디어 또는 수학 학습 과정과 결과를 말, 글, 그림, 기호, 표, 그래프 등을 사용하 여 다른 사람과 효율적으로 의사소통할 수 있게 한다.
 - ③ 다양한 관점을 존중하면서 다른 사람의 생각을 이해하고 수학적 아이디어를 표현하며 토론 하게 한다.
- (바) 정보 처리 능력을 함양하기 위한 교수·학습에서는 다음 사항을 강조한다.
 - ① 실생활 및 수학적 문제 상황에서 적절한 자료를 탐색하여 수집하고, 목적에 맞게 정리, 분 석, 평가하며, 분석한 정보를 문제 상황에 적합하게 활용할 수 있게 한다.
 - ② 교수·학습 과정에서 적절한 교구를 활용한 조작 및 탐구 활동을 통해 수학의 개념과 원리를 이해하도록 한다.
 - ③ 계산 능력 배양을 목표로 하지 않는 교수·학습 상황에서의 복잡한 계산 수행. 수학의 개념. 원리, 법칙의 이해, 문제 해결력 향상 등을 위하여 계산기, 컴퓨터, 교육용 소프트웨어 등의 공학적 도구를 이용할 수 있게 한다.
- (사) 태도 및 실천 능력을 함양하기 위한 교수·학습에서는 다음 사항을 강조한다.
 - ① 수학을 생활 주변과 사회 및 자연 현상과 관련지어 지도하여 수학의 필요성과 유용성을 알 게 하고, 수학의 역할과 가치를 인식할 수 있게 한다.
 - ② 수학에 대한 관심과 흥미, 호기심과 자신감을 갖고 수학 학습에 적극적으로 참여하게 하며, 끈기 있게 도전하도록 격려하고 학습 동기와 의욕을 유발한다.
 - ③ 학생 스스로 목표를 설정하고 학습을 수행하며 학습 결과를 평가하는 자주적 학습 습관과 태도를 갖게 한다.
 - ④ 수학적 활동을 통하여 정직하고 공정하며 책임감 있게 행동하고 어려움을 극복하기 위해 도 전하는 용기 있는 태도, 타인을 배려하고 존중하며 협력하는 태도, 논리적 근거를 토대로 의견을 제시하고 합리적으로 의사 결정하는 태도를 갖고 이를 실천하게 한다.
- (아) 의미 있는 발문을 하기 위하여 교수·학습에서 다음 사항에 유의한다.
 - ① 학생의 사고를 촉진하는 다양한 발문을 통해 상호작용이 활발한 교실 환경을 구축하고 학생

- 의 능동적 수업 참여를 독려한다.
- ② 학생의 인지 발달과 경험을 고려하여 발문을 하고, 발문에 대한 학생의 반응을 의미 있게 처리하다.
- (자) 개인차를 고려하여 수준별 수업을 운영할 때에는 다음 사항에 유의한다.
 - ① 학습 목표를 효과적으로 달성하기 위해 교실 내에서 개인차를 고려한 소집단을 구성하거나 수준별 학급을 구성하여 교수·학습을 전개한다.
 - ② 수준별 수업을 위해 집단을 편성할 때에는 학생 개인의 능력과 수준, 적성과 희망, 교사 수 급과 유휴 교실 등의 학교 상황을 고려한다.
 - ③ 수준별 수업은 내용 요소를 차별화하기보다는 내용의 깊이나 접근 방법에 차이를 두어 진행한다.

나. 평가 방향

- (1) 평가 원칙
- (가) 수학과의 평가는 학생의 인지적 영역과 정의적 영역에 대한 유용한 정보를 수집·활용하여 학생의 수학 학습과 전인적 성장을 돕고 교사의 수업 방법을 개선하는 것을 목적으로 한다.
- (나) 수학과의 평가는 교육과정에 제시된 내용의 수준과 범위를 준수하고, 교육과정에 제시된 목표, 내용, 교수·학습과 일관성을 가져야 한다.
- (다) 수학과의 평가에서는 수학의 개념, 원리, 법칙, 기능뿐만 아니라 문제 해결, 추론, 창의·융합, 의사소통, 정보 처리, 태도 및 실천과 같은 수학 교과 역량을 균형 있게 평가한다.
- (라) 수학과의 평가는 학습자의 수준을 고려하고 평가 목적과 내용에 따라 다양한 평가 방법을 활용 한다.
- (마) 평가 결과는 학생, 학부모, 교사 등에게 환류하여 학생의 수학 학습 개선을 도울 수 있게 한다.
 - (2) 평가 방법
- (가) 수학과의 평가는 학습 결과 평가뿐만 아니라 과정 중심 평가도 실시하여 종합적인 수학 학습 평가가 될 수 있게 한다.

- (나) 수업의 전개 국면에 따라 진단평가, 형성평가, 총괄평가를 적절히 실시하되, 지속적인 평가를 통해 다양한 정보를 수집하고 수업에 활용한다.
- (다) 학생의 수학 학습 과정과 결과는 지필 평가, 프로젝트 평가, 포트폴리오 평가, 관찰 평가, 면담 평가, 구술 평가, 자기 평가, 동료 평가 등의 다양한 평가 방법을 사용하여 양적 또는 질적으로 평가한다.
 - ① 지필 평가는 수학의 개념, 원리, 법칙을 이해하고 적용하는 능력과 문제 해결, 추론, 창의・ 융합, 의사소통 능력 등을 평가하는 데 활용할 수 있고, 선택형, 단답형, 서·논술형 등의 다 양한 문항 형태를 활용한다.
 - ② 프로젝트 평가는 수학 학습을 토대로 특정한 주제나 과제에 대해서 자료를 수집하고 분석, 종합. 해결하는 과정과 결과를 평가하는 방법으로, 문제 해결, 창의·융합, 정보 처리 능력 등을 평가할 때 활용할 수 있다.
 - ③ 포트폴리오 평가는 일정 기간 동안 수학 학습 수행과 그 결과물을 평가하는 방법으로, 학생 의 학습 내용 이해와 수학 교과 역량을 종합적으로 판단하고 학생의 성장에 대한 정보를 얻 는 데 활용할 수 있다.
 - ④ 관찰 평가, 면담 평가, 구술 평가는 학생 개인 및 소집단을 관찰, 학생과의 대화, 학생의 발 표를 통해 학생의 이해 정도와 사고 방법, 수행 과정 등을 평가하는 방법으로, 의사소통, 태 도 및 실천 능력 등을 평가할 때 활용할 수 있다.
 - ⑤ 자기 평가는 학생 스스로 자신의 이해와 수행을 평가하는 방법으로, 문제 해결과 추론 과정 의 반성, 자신의 생각 표현, 태도 및 실천 능력 등을 평가할 때 활용할 수 있다.
 - ⑥ 동료 평가는 동료 학생들이 상대방을 서로 평가하는 방법으로, 협력 학습 상황에서 학생 개 개인의 역할 수행 정도나 집단 활동에 기여한 정도를 평가할 때 활용할 수 있다.
- (라) 평가 내용이나 방법에 따라 학생에게 계산기, 컴퓨터, 교육용 소프트웨어 등의 공학적 도구와 다양한 교구를 이용할 수 있게 한다.

확률과 통계

1. 성격

수학과는 수학의 개념, 원리, 법칙을 이해하고 기능을 습득하여 주변의 여러 가지 현상을 수학적으로 관찰하고 해석하며 논리적으로 사고하고 합리적으로 문제를 해결하는 능력과 태도를 기르는 교과이다. 수학은 오랜 역사를 통해 인류 문명 발전의 원동력이 되어 왔으며, 세계화·정보화가 가속화되는 미래 사회의 구성원에게 필수적인 역량을 제공한다. 수학 학습을 통해 학생들은 수학의 규칙성과 구조의 아름다움을 음미할 수 있고, 수학의 지식과 기능을 활용하여 수학 문제뿐만 아니라 실생활과 다른 교과의 문제를 창의적으로 해결할 수 있으며, 나아가 세계 공동체의 시민으로서 갖추어야 할 합리적의사 결정 능력과 민주적 소통 능력을 함양할 수 있다.

일반 선택 과목인 <확률과 통계>는 공통 과목인 <수학>을 학습한 후, 더 높은 수준의 수학을 학습 하기를 원하는 학생들이 선택할 수 있는 과목이다. <확률과 통계>의 내용은 '경우의 수', '확률', '통계'의 3개의 핵심 개념 영역으로 구성된다. '경우의 수' 영역에서는 원순열, 중복순열, 중복조합, 이항정리를, '확률' 영역에서는 통계적 확률과 수학적 확률, 확률의 성질과 활용, 조건부확률을, '통계' 영역에서는 확률변수와 확률분포, 이항분포, 정규분포, 통계적 추정을 다룬다.

<확률과 통계>에서 학습한 수학의 지식과 기능은 자신의 진로와 적성을 고려하여 선택할 수 있는 수학 일반 선택 과목과 진로 선택 과목, 수학 전문 교과 과목을 학습하기 위한 토대가 되고, 자연과학, 공학, 의학뿐만 아니라 경제·경영학을 포함한 사회과학, 인문학, 예술 및 체육 분야를 학습하는 데 기 초가 되며, 나아가 창의적 역량을 갖춘 융합 인재로 성장할 수 있는 기반을 제공한다. 이를 위해 학생 들은 <확률과 통계>의 지식을 이해하고 기능을 습득하는 것과 더불어 문제 해결, 추론, 창의·융합, 의 사소통, 정보 처리, 태도 및 실천의 6가지 수학 교과 역량을 길러야 한다.

교과 역량으로서의 문제 해결은 해결 방법을 알고 있지 않은 문제 상황에서 수학의 지식과 기능을 활용하여 해결 전략을 탐색하고 최적의 해결 방안을 선택하여 주어진 문제를 해결하는 능력이고, 추론은 수학적 사실을 추측하고 논리적으로 분석하고 정당화하며 그 과정을 반성하는 능력이다. 창의·융합

은 수학의 지식과 기능을 토대로 새롭고 의미 있는 아이디어를 다양하고 풍부하게 산출하고 정교화하며, 여러 수학적 지식, 기능, 경험을 연결하거나 타 교과나 실생활의 지식, 기능, 경험을 수학과 연결·융합하여 새로운 지식, 기능, 경험을 생성하고 문제를 해결하는 능력이다. 의사소통은 수학 지식이나 아이디어, 수학적 활동의 결과, 문제 해결 과정, 신념과 태도 등을 말이나 글, 그림, 기호로 표현하고 다른 사람의 아이디어를 이해하는 능력이고, 정보 처리는 다양한 자료와 정보를 수집, 정리, 분석, 활용하고 적절한 공학적 도구나 교구를 선택, 이용하여 자료와 정보를 효과적으로 처리하는 능력이다. 끝으로, 태도 및 실천은 수학의 가치를 인식하고 자주적 수학 학습 태도와 민주 시민 의식을 갖추어 실천하는 능력이다.

수학 교과 역량 함양을 통해 학생들은 복잡하고 전문화되어 가는 미래 사회에서 사회 구성원의 역할을 성공적으로 수행할 수 있고, 개인의 잠재력과 재능을 발현할 수 있으며, 수학의 필요성과 유용성을 이해하고, 수학 학습의 즐거움을 느끼며, 수학에 대한 흥미와 자신감을 기를 수 있다.

2. 목표

수학의 개념, 원리, 법칙을 이해하고 기능을 습득하며 수학적으로 추론하고 의사소통하는 능력을 길러, 생활 주변과 사회 및 자연 현상을 수학적으로 이해하고 문제를 합리적이고 창의적으로 해결하며, 수학 학습자로서 바람직한 태도와 실천 능력을 기른다.

- 가. 사회 및 자연 현상을 수학적으로 관찰, 분석, 조직, 표현하는 경험을 통하여 경우의 수, 확률, 통계에 관련된 개념, 원리, 법칙과 이들 사이의 관계를 이해하고 수학의 기능을 습득한다.
- 나. 수학적으로 추론하고 의사소통하며, 창의·융합적 사고와 정보 처리 능력을 바탕으로 사회 및 자연 현상을 수학적으로 이해하고 문제를 합리적이고 창의적으로 해결한다.
- 다. 수학에 대한 흥미와 자신감을 갖고 수학의 역할과 가치를 이해하며 수학 학습자로서 바람직한 태도와 실천 능력을 기른다.

3. 내용 체계 및 성취기준

가. 내용 체계

영역	핵심 개념	일반화된 지식	내용 요소	기능
확률과 통계	경우의 수	다양한 상황과 맥락에서 경우의 수를 구하는 체계적인 방법이 존 재한다.	순열과 조합이항정리	세기 분류하기 수량화하기 형식화하기 비교하기 계산하기 이해하기 설명하기 공학적 도구 활용하기 수집하기 조사하기 정리하기 분석하기 해석하기 추론하기 판단하기
	학률	사건이 일어날 가능성을 수치화한 확률은 의사 결정을 위한 중요한 도 구이다.	확률의 뜻과 활용조건부확률	
	통계	자료를 수집하고 정리하여 결과를 분석하고 추정하는 통계는 현대 정 보화 사회의 불확실성을 이해하고 미래를 예측하는 중요한 도구이다.	• 확률분포 • 통계적 추정	

나. 성취기준

(1) 경우의 수

다양한 상황과 맥락에서 경우의 수를 구하는 체계적인 방법이 존재한다. 경우의 수에서는 사건이 일어날 수 있는 모든 경우를 분류하고 조직하는 수학적 사고를 경험함으로써 일상생활에서 어떤 일을 계획하고 의사 결정을 할 때 일어나는 사건을 예측할 수 있는 능력을 기를 수 있다.

① 순열과 조합

[12확통01-01] 원순열, 중복순열, 같은 것이 있는 순열을 이해하고, 그 순열의 수를 구할 수 있다. [12확통01-02] 중복조합을 이해하고, 중복조합의 수를 구할 수 있다.

② 이항정리

[12확통01-03] 이항정리를 이해하고 이를 이용하여 문제를 해결할 수 있다.

(가) 학습 요소

• 원순열, 중복순열, 중복조합, 이항정리, 이항계수, 파스칼의 삼각형, "II., "H.

(나) 교수·학습 방법 및 유의 사항

- '염주순열'과 '같은 것이 있는 원순열'은 다루지 않는다.
- 중복순열, 중복조합을 실생활 문제 해결에 활용해 봄으로써 그 유용성을 인식하게 한다.

(다) 평가 방법 및 유의 사항

- 허수단위 i가 포함된 이항정리에 관한 문제는 다루지 않는다.
- 항이 세 개 이상인 다항정리에 관한 문제는 다루지 않는다.

(2) 확률

사건이 일어날 가능성을 수치화한 확률은 의사 결정을 위한 중요한 도구이다. 여러 가지 현상에서 어떤 일이 일어날 가능성을 수치화하는 경험을 통해 문제를 해결하고 미래를 예측하며 합리적인 판단 을 하는 능력을 기를 수 있다.

① 확률의 뜻과 활용

[12확통02-01] 통계적 확률과 수학적 확률의 의미를 이해한다.

[12확통02-02] 확률의 기본 성질을 이해한다.

[12확통02-03] 확률의 덧셈정리를 이해하고, 이를 활용할 수 있다.

[12확통02-04] 여사건의 확률의 뜻을 알고, 이를 활용할 수 있다.

2 조건부확률

[12확통02-05] 조건부확률의 의미를 이해하고, 이를 구할 수 있다.

[12확통02-06] 사건의 독립과 종속의 의미를 이해하고, 이를 설명할 수 있다.

[12확통02-07] 확률의 곱셈정리를 이해하고, 이를 활용할 수 있다.

(가) 학습 요소

시행, 통계적 확률, 수학적 확률, 여사건, 배반사건, 조건부확률, 종속, 독립, 독립시행, P(A), P(B|A)

(나) 교수·학습 방법 및 유의 사항

• 생활 주변의 다양한 소재를 활용하여 확률을 도입한다.

- 통계적 확률과 수학적 확률의 관계를 이해하고 통계적 확률을 다룰 때 충분히 많은 횟수의 시행을 구현하기 위하여 공학적 도구를 이용할 수 있다.
- 수학적 확률을 다룰 때. 근원사건의 발생 가능성이 동등하다는 것을 가정한다는 점에 유의한다.
- 확률의 계산이 복잡한 경우는 다루지 않는다.
- 독립시행의 확률은 통계 영역의 이항분포와 함께 도입하여 다룰 수도 있다.

(다) 평가 방법 및 유의 사항

- 세 사건 이상에서 서로 배반이거나 서로 독립임을 가정한 복잡한 문제는 다루지 않는다.
- 조건부 확률에 대한 이해를 평가할 때에는 과정 중심 평가를 할 수 있다.

(3) 통계

불확실한 현상에 대해 주어진 자료를 바탕으로 추론하여 결론을 이끌어 내는 통계는 현대 정보화 사회를 이해하는 중요한 도구이다. 모평균의 추정을 통해 미래를 예측하고 합리적으로 의사 결정하는 통계적 소양을 기를 수 있다.

① 확률분포

[12확통03-01] 확률변수와 확률분포의 뜻을 안다.

[12확통03-02] 이산확률변수의 기댓값(평균)과 표준편차를 구할 수 있다.

[12확통03-03] 이항분포의 뜻을 알고, 평균과 표준편차를 구할 수 있다.

[12확통03-04] 정규분포의 뜻을 알고, 그 성질을 이해한다.

② 통계적 추정

[12확통03-05] 모집단과 표본의 뜻을 알고 표본추출의 원리를 이해한다.

[12확통03-06] 표본평균과 모평균의 관계를 이해하고 설명할 수 있다.

[12확통03-07] 모평균을 추정하고, 그 결과를 해석할 수 있다.

(가) 학습 요소

• 확률변수, 이산확률변수, 확률분포, 연속확률변수, 기댓값, 이항분포, 큰수의 법칙, 정규분포, 표준정규분포, 모집단, 표본, 전수조사, 표본조사, 임의추출, 모평균, 모분산, 모표준편차, 표본평균, 표본분산, 표본표준편차, 추정, 신뢰도, 신뢰구간, P(X=x), E(X), V(X), $\sigma(X)$, B(n,p), $N(m,\sigma^2)$ N(0,1), \overline{X} , S^2 , S

_ اا

(나) 교수·학습 방법 및 유의 사항

- 이산확률변수과 연속확률변수를 다룰 때 구체적인 예를 통해 이해하게 한다.
- 실생활 자료로 확률분포와 통계적 추정을 다룰 때 공학적 도구를 이용할 수 있다.
- 실제적인 예를 통하여 표본조사의 필요성을 알게 하고, 올바른 표본추출이 모집단의 성질을 예측하는 기본조건임을 이해하게 한다.
- 표본평균은 추출한 표본에 따라 다른 값을 가질 수 있는 확률변수임을 알게 한다.
- 표본평균의 분포를 도입할 때 공학적 도구를 이용할 수 있다.
- 모평균의 추정은 모집단의 분포가 정규분포인 경우만 다룬다.
- 자료를 수집하고 정리하여 결과를 분석하는 활동을 통해 통계와 관련된 실생활 문제를 해결함으로써 통계의 유용성과 가치를 인식하게 한다.
- <수학Ⅱ>를 이수한 학생들에게는 연속확률변수와 관련된 내용을 적분을 이용하여 설명할 수 있다.
- '확률질량함수', '확률밀도함수' 용어는 교수·학습 상황에서 사용할 수 있다.

(다) 평가 방법 및 유의 사항

- 이항분포의 평균과 분산을 구하는 식을 증명하는 문제는 다루지 않는다.
- 모평균의 신뢰구간을 다룰 때 지나치게 복잡한 계산을 포함하는 문제는 다루지 않는다.
- 모평균의 추정과 그 결과의 해석을 평가할 때에는 과정 중심 평가를 할 수 있다.

4. 교수·학습 및 평가의 방향

가. 교수·학습 방향

- (1) 교수·학습 원칙
- (가) 수학과의 교수·학습은 학생이 수학과 교육과정에 제시된 목표를 달성하고 전인적으로 성장하도 록 돕는 것을 목적으로 한다.
- (나) 수학과의 교수·학습은 교육과정에 제시된 내용의 수준과 범위를 준수하고, 교육과정에 제시된 목표, 내용, 평가와 일관성을 가져야 한다.
- (다) 문제 해결, 추론, 창의·융합, 의사소통, 정보 처리, 태도 및 실천과 같은 수학 교과 역량을 함양하기 위한 교육 환경을 조성하고, 이에 적합한 교수·학습을 운영한다.

- (라) 과목별 내용의 배열 순서가 반드시 교수·학습의 순서를 의미하는 것은 아니므로, 교수·학습 계획을 수립하거나 학습 자료를 개발할 때에는 내용의 특성과 난이도, 학교 여건, 학생의 수준 등을 고려하여 내용, 순서 등을 재구성할 수 있다.
- (마) 교육과정에 제시된 내용을 지도한 후 학습 결손이 있는 학생에게는 보충 학습, 우수 학생에게 는 심화 학습의 기회를 추가로 제공할 수 있다.

(2) 교수·학습 방법

- (가) 수학과의 수업은 학생의 능력과 수준 등을 고려하여 설명식 교수, 탐구 학습, 프로젝트 학습, 토의·토론 학습, 협력 학습, 매체 및 도구 활용 학습 등을 적절히 선택하여 적용한다.
 - ① 설명식 교수는 교사가 설명과 시연을 통해 수업을 주도하는 교수·학습 방법으로, 수업 내용을 구조화하여 체계적으로 지도하는 데 효과적이다. 이때, 교사는 학생의 적극적인 수업 참여를 유도하고, 사고를 촉진하는 발문을 적절히 활용한다.
 - ② 탐구 학습은 학생이 중심이 되어 수학 개념, 원리, 법칙을 발견하고 구성하는 교수·학습 방법으로, 학생 스스로 자료와 정보로부터 지식을 도출하거나 지식의 타당성을 확인하는 능력을 기를 수 있게 한다.
 - ③ 프로젝트 학습은 특정 주제나 과제를 탐구하기 위해 계획을 수립하고 수행하여 결과물을 산출하거나 발표하는 교수·학습 방법으로, 개인별 또는 집단별로 실시할 수 있다.
 - ④ 토의·토론 학습은 특정 주제에 대해 협의하거나 논의하는 교수·학습 방법으로, 의사소통이 지니는 상호 협력적인 면을 강조한다. 이를 통해 학생들이 교과 내용을 폭넓게 이해하고 논 리적이고 비판적으로 추론하며 다른 사람의 의견을 비판적으로 수용하고 자신의 주장을 효과적으로 표현하는 능력을 기를 수 있게 한다.
 - ⑤ 협력 학습은 모둠 내의 상호작용, 의사소통, 참여를 통해 공동의 학습 목표에 도달하도록 하는 교수·학습 방법으로, 다른 사람을 존중하고 배려하며 모둠 내의 역할을 이해하고 책임감을 기를 수 있게 한다.
 - ⑥ 매체 및 도구 활용 학습은 학생의 수준과 학습 내용에 적합한 매체와 도구를 활용하여 흥미를 유발하고 학습의 효율성과 다양성을 도모하는 교수·학습 방법으로, 시청각 자료, 멀티미디어나 인터넷 등의 컴퓨터 활용 매체와 교구, 계산기, 교육용 소프트웨어 등의 도구를 이용한다.
- (나) 문제 해결 능력을 함양하기 위한 교수·학습에서는 다음 사항을 강조한다.
 - ① 문제를 해결할 때에는 문제를 이해하고 해결 전략을 탐색하며 해결 과정을 실행하고 검증 및 반성하는 단계를 거치도록 한다.

- ② 협력적 문제 해결 과제에서는 균형 있는 책임 분담과 상호작용을 통해 동료들과 협력하여
- ③ 수학적 모델링 능력을 신장하기 위해 생활 주변이나 사회 및 자연 현상 등 다양한 맥락에서 파악된 문제를 해결하면서 수학적 개념, 원리, 법칙을 탐구하고 이를 일반화하게 한다.
- ④ 문제 해결력을 높이기 위해 주어진 문제를 변형하거나 새로운 문제를 만들어 해결하고 그 과정을 검증하는 문제 만들기 활동을 장려한다.
- (다) 추론 능력을 함양하기 위한 교수·학습에서는 다음 사항을 강조한다.

문제를 해결하게 한다.

- ① 관찰과 탐구 상황에서 귀납, 유추 등의 개연적 추론을 사용하여 학생 스스로 수학적 사실을 추측하고 적절한 근거에 기초하여 이를 정당화할 수 있게 한다.
- ② 수학의 개념, 원리, 법칙을 도출하는 과정과 수학적 절차를 논리적으로 수행하게 한다.
- ③ 추론 과정이 옳은지 비판적으로 평가하고 반성하도록 한다.
- (라) 창의·융합 능력을 함양하기 위한 교수·학습에서는 다음 사항을 강조한다.
 - ① 새롭고 의미 있는 아이디어를 다양하고 풍부하게 산출할 수 있는 수학적 과제를 제공하여 학생의 창의적 사고를 촉진시킨다.
 - ② 하나의 문제를 여러 가지 방법으로 해결하게 하고, 해결 방법을 비교하여 더 효율적인 방법을 찾거나 정교화하게 한다.
 - ③ 여러 수학적 지식, 기능, 경험을 연결하거나 수학과 타 교과나 실생활의 지식, 기능, 경험을 연결·융합하여 새로운 지식, 기능, 경험을 생성하고 문제를 해결하게 한다.
- (마) 의사소통 능력을 함양하기 위한 교수·학습에서는 다음 사항을 강조한다.
 - ① 수학 용어, 기호, 표, 그래프 등의 수학적 표현을 이해하고 정확하게 사용하며, 수학적 표현을 만들거나 변환하는 활동을 하게 한다.
 - ② 수학적 아이디어 또는 수학 학습 과정과 결과를 말, 글, 그림, 기호, 표, 그래프 등을 사용하여 다른 사람과 효율적으로 의사소통할 수 있게 한다.
 - ③ 다양한 관점을 존중하면서 다른 사람의 생각을 이해하고 수학적 아이디어를 표현하며 토론하게 한다.
- (바) 정보 처리 능력을 함양하기 위한 교수·학습에서는 다음 사항을 강조한다.
 - ① 실생활 및 수학적 문제 상황에서 적절한 자료를 탐색하여 수집하고, 목적에 맞게 정리, 분석, 평가하며, 분석한 정보를 문제 상황에 적합하게 활용할 수 있게 한다.
 - ② 교수·학습 과정에서 적절한 교구를 활용한 조작 및 탐구 활동을 통해 수학의 개념과 원리를

- 이해하도록 한다.
- ③ 계산 능력 배양을 목표로 하지 않는 교수·학습 상황에서의 복잡한 계산 수행, 수학의 개념, 원리, 법칙의 이해, 문제 해결력 향상 등을 위하여 계산기, 컴퓨터, 교육용 소프트웨어 등의 공학적 도구를 이용할 수 있게 한다.
- (사) 태도 및 실천 능력을 함양하기 위한 교수·학습에서는 다음 사항을 강조한다.
 - ① 수학을 생활 주변과 사회 및 자연 현상과 관련지어 지도하여 수학의 필요성과 유용성을 알게 하고, 수학의 역할과 가치를 인식할 수 있게 한다.
 - ② 수학에 대한 관심과 흥미, 호기심과 자신감을 갖고 수학 학습에 적극적으로 참여하게 하며, 끈기 있게 도전하도록 격려하고 학습 동기와 의욕을 유발한다.
 - ③ 학생 스스로 목표를 설정하고 학습을 수행하며 학습 결과를 평가하는 자주적 학습 습관과 태도를 갖게 한다.
 - ④ 수학적 활동을 통하여 정직하고 공정하며 책임감 있게 행동하고 어려움을 극복하기 위해 도 전하는 용기 있는 태도, 타인을 배려하고 존중하며 협력하는 태도, 논리적 근거를 토대로 의 견을 제시하고 합리적으로 의사 결정하는 태도를 갖고 이를 실천하게 한다.
- (아) 의미 있는 발문을 하기 위하여 교수·학습에서 다음 사항에 유의한다.
 - ① 학생의 사고를 촉진하는 다양한 발문을 통해 상호작용이 활발한 교실 환경을 구축하고 학생의 능동적 수업 참여를 독려한다.
 - ② 학생의 인지 발달과 경험을 고려하여 발문을 하고, 발문에 대한 학생의 반응을 의미 있게 처리한다.
- (자) 개인차를 고려하여 수준별 수업을 운영할 때에는 다음 사항에 유의한다.
 - ① 학습 목표를 효과적으로 달성하기 위해 교실 내에서 개인차를 고려한 소집단을 구성하거나 수준별 학급을 구성하여 교수·학습을 전개한다.
 - ② 수준별 수업을 위해 집단을 편성할 때에는 학생 개인의 능력과 수준, 적성과 희망, 교사 수 급과 유휴 교실 등의 학교 상황을 고려한다.
 - ③ 수준별 수업은 내용 요소를 차별화하기보다는 내용의 깊이나 접근 방법에 차이를 두어 진행한다.

나. 평가 방향

(1) 평가 원칙

- (가) 수학과의 평가는 학생의 인지적 영역과 정의적 영역에 대한 유용한 정보를 수집·활용하여 학생의 수학 학습과 전인적 성장을 돕고 교사의 수업 방법을 개선하는 것을 목적으로 한다.
- (나) 수학과의 평가는 교육과정에 제시된 내용의 수준과 범위를 준수하고, 교육과정에 제시된 목표, 내용, 교수·학습과 일관성을 가져야 한다.
- (다) 수학과의 평가에서는 수학의 개념, 원리, 법칙, 기능뿐만 아니라 문제 해결, 추론, 창의·융합, 의사소통, 정보 처리, 태도 및 실천과 같은 수학 교과 역량을 균형 있게 평가한다.
- (라) 수학과의 평가는 학습자의 수준을 고려하고 평가 목적과 내용에 따라 다양한 평가 방법을 활용 한다.
- (마) 평가 결과는 학생, 학부모, 교사 등에게 환류하여 학생의 수학 학습 개선을 도울 수 있게 한다.

(2) 평가 방법

- (가) 수학과의 평가는 학습 결과 평가뿐만 아니라 과정 중심 평가도 실시하여 종합적인 수학 학습 평가가 될 수 있게 한다.
- (나) 수업의 전개 국면에 따라 진단평가, 형성평가, 총괄평가를 적절히 실시하되, 지속적인 평가를 통해 다양한 정보를 수집하고 수업에 활용한다.
- (다) 학생의 수학 학습 과정과 결과는 지필 평가, 프로젝트 평가, 포트폴리오 평가, 관찰 평가, 면담 평가, 구술 평가, 자기 평가, 동료 평가 등의 다양한 평가 방법을 사용하여 양적 또는 질적으로 평가한다.
 - ① 지필 평가는 수학의 개념, 원리, 법칙을 이해하고 적용하는 능력과 문제 해결, 추론, 창의· 융합, 의사소통 능력 등을 평가하는 데 활용할 수 있고, 선택형, 단답형, 서·논술형 등의 다 양한 문항 형태를 활용한다.
 - ② 프로젝트 평가는 수학 학습을 토대로 특정한 주제나 과제에 대해서 자료를 수집하고 분석, 종합, 해결하는 과정과 결과를 평가하는 방법으로, 문제 해결, 창의·융합, 정보 처리 능력 등을 평가할 때 활용할 수 있다.

103

- ③ 포트폴리오 평가는 일정 기간 동안 수학 학습 수행과 그 결과물을 평가하는 방법으로, 학생의 학습 내용 이해와 수학 교과 역량을 종합적으로 판단하고 학생의 성장에 대한 정보를 얻는 데 활용할 수 있다.
- ④ 관찰 평가, 면담 평가, 구술 평가는 학생 개인 및 소집단을 관찰, 학생과의 대화, 학생의 발표를 통해 학생의 이해 정도와 사고 방법, 수행 과정 등을 평가하는 방법으로, 의사소통, 태도 및 실천 능력 등을 평가할 때 활용할 수 있다.
- ⑤ 자기 평가는 학생 스스로 자신의 이해와 수행을 평가하는 방법으로, 문제 해결과 추론 과정의 반성, 자신의 생각 표현, 태도 및 실천 능력 등을 평가할 때 활용할 수 있다.
- ⑥ 동료 평가는 동료 학생들이 상대방을 서로 평가하는 방법으로, 협력 학습 상황에서 학생 개 개인의 역할 수행 정도나 집단 활동에 기여한 정도를 평가할 때 활용할 수 있다.
- (라) 평가 내용이나 방법에 따라 학생에게 계산기, 컴퓨터, 교육용 소프트웨어 등의 공학적 도구와 다양한 교구를 이용할 수 있게 한다.

선택 중심 교육과정 - 진로 선택 -

기하

1. 성격

수학과는 수학의 개념, 원리, 법칙을 이해하고 기능을 습득하여 주변의 여러 가지 현상을 수학적으로 관찰하고 해석하며 논리적으로 사고하고 합리적으로 문제를 해결하는 능력과 태도를 기르는 교과이다. 수학은 오랜 역사를 통해 인류 문명 발전의 원동력이 되어 왔으며, 세계화·정보화가 가속화되는 미래 사회의 구성원에게 필수적인 역량을 제공한다. 수학 학습을 통해 학생들은 수학의 규칙성과 구조의 아름다움을 음미할 수 있고, 수학의 지식과 기능을 활용하여 수학 문제뿐만 아니라 실생활과 다른 교과의 문제를 창의적으로 해결할 수 있으며, 나아가 세계 공동체의 시민으로서 갖추어야 할 합리적의사 결정 능력과 민주적 소통 능력을 함양할 수 있다.

진로 선택 과목인 <기하>는 공통 과목인 <수학>을 학습한 후, 기하적 관점에서 심화된 수학 지식을 이해하고 기능을 습득하기를 원하는 학생들이 선택할 수 있는 과목이다. <기하>의 내용은 '이차곡선', '평면벡터', '공간도형과 공간좌표'의 3개 핵심 개념 영역으로 구성된다. '이차곡선' 영역에서는 이차곡선 의 뜻과 방정식, 이차곡선과 직선의 위치 관계, 접선의 방정식을, '평면벡터' 영역에서는 벡터의 뜻과 연산, 평면벡터의 성분과 내적을, '공간도형과 공간좌표' 영역에서는 직선과 평면, 정사영, 공간좌표를 다룬다.

<기하>에서 학습한 수학의 지식과 기능은 자신의 진로와 적성을 고려하여 선택할 수 있는 수학 일반 선택 과목과 진로 선택 과목, 수학 전문 교과 과목 학습의 토대가 되고, 자연과학, 공학, 의학뿐만 아니라 경제·경영학을 포함한 사회과학 분야를 학습하는 데 기초가 되며, 나아가 창의적 역량을 갖춘 융합 인재로 성장할 수 있는 기반을 제공한다. 이를 위해 학생들은 <기하>의 지식을 이해하고 기능을 습득하는 것과 더불어 문제 해결, 추론, 창의·융합, 의사소통, 정보 처리, 태도 및 실천의 6가지 수학 교과 역량을 길러야 한다.

교과 역량으로서의 문제 해결은 해결 방법을 알고 있지 않은 문제 상황에서 수학의 지식과 기능을 활용하여 해결 전략을 탐색하고 최적의 해결 방안을 선택하여 주어진 문제를 해결하는 능력이고, 추론 은 수학적 사실을 추측하고 논리적으로 분석하고 정당화하며 그 과정을 반성하는 능력이다. 창의·융합 은 수학의 지식과 기능을 토대로 새롭고 의미 있는 아이디어를 다양하고 풍부하게 산출하고 정교화하 며, 여러 수학적 지식, 기능, 경험을 연결하거나 타 교과나 실생활의 지식, 기능, 경험을 수학과 연결· 융합하여 새로운 지식, 기능, 경험을 생성하고 문제를 해결하는 능력이다. 의사소통은 수학 지식이나 아이디어, 수학적 활동의 결과, 문제 해결 과정, 신념과 태도 등을 말이나 글, 그림, 기호로 표현하고 다른 사람의 아이디어를 이해하는 능력이고, 정보 처리는 다양한 자료와 정보를 수집, 정리, 분석, 활 용하고 적절한 공학적 도구나 교구를 선택, 이용하여 자료와 정보를 효과적으로 처리하는 능력이다. 끝으로, 태도 및 실천은 수학의 가치를 인식하고 자주적 수학 학습 태도와 민주 시민 의식을 갖추어 실천하는 능력이다.

수학 교과 역량 함양을 통해 학생들은 복잡하고 전문화되어 가는 미래 사회에서 사회 구성원의 역할을 성공적으로 수행할 수 있고, 개인의 잠재력과 재능을 발현할 수 있으며, 수학의 필요성과 유용성을 이해하고, 수학 학습의 즐거움을 느끼며, 수학에 대한 흥미와 자신감을 기를 수 있다.

2. 목표

수학의 개념, 원리, 법칙을 이해하고 기능을 습득하며 수학적으로 추론하고 의사소통하는 능력을 길러, 생활 주변과 사회 및 자연 현상을 수학적으로 이해하고 문제를 합리적이고 창의적으로 해결하며, 수학 학습자로서 바람직한 태도와 실천 능력을 기른다.

- 가. 사회 및 자연 현상을 수학적으로 관찰, 분석, 조직, 표현하는 경험을 통하여 이차곡선, 평면벡터, 공간도형과 공간좌표에 관련된 개념, 원리, 법칙과 이들 사이의 관계를 이해하고 수학의 기능을 습득한다.
- 나. 수학적으로 추론하고 의사소통하며, 창의·융합적 사고와 정보 처리 능력을 바탕으로 사회 및 자연 현상을 수학적으로 이해하고 문제를 합리적이고 창의적으로 해결한다.
- 다. 수학에 대한 흥미와 자신감을 갖고 수학의 역할과 가치를 이해하며 수학 학습자로서 바람직한 태도와 실천 능력을 기른다.

3. 내용 체계 및 성취기준

가. 내용 체계

영역	핵심 개념	일반화된 지식	내용 요소
기하	이차곡선	포물선, 타원, 쌍곡선은 원뿔의 절단을 통해 얻을 수 있는 곡 선으로 좌표평면에서 방정식으로 표현된다.	• 이차곡선
	평면벡터	벡터는 크기와 방향을 갖는 양을 표현하고 탐구하는 도구 이다.	• 벡터의 연산 • 평면벡터의 성분과 내적
	공간도형과 공간좌표	공간도형의 기본 구성 요소는 점, 직선, 평면이고, 공간좌표는 공간도형을 대수적으로 다루는 도구이며, 도형의 성질을 탐구 하는 데 유용하게 사용된다.	직선과 평면정사영공간좌표

나. 성취기준

(1) 이차곡선

포물선, 타원, 쌍곡선은 원뿔의 절단을 통해 얻을 수 있는 곡선으로, 좌표평면에서 방정식으로 표현된다. 포물선, 타원, 쌍곡선의 방정식은 기하와 대수의 연결성을 경험할 수 있게 하고, 이차곡선의 실생활 활용은 수학의 유용성과 가치를 인식하게 한다.

① 이차곡선

[12기하01-01] 포물선의 뜻을 알고, 포물선의 방정식을 구할 수 있다.

[12기하01-02] 타원의 뜻을 알고, 타원의 방정식을 구할 수 있다.

[12기하01-03] 쌍곡선의 뜻을 알고, 쌍곡선의 방정식을 구할 수 있다.

[12기하01-04] 이차곡선과 직선의 위치 관계를 이해하고, 접선의 방정식을 구할 수 있다.

(가) 학습 요소

• 이차곡선, 포물선(축, 꼭짓점, 초점, 준선), 타원(초점, 꼭짓점, 중심, 장축, 단축), 쌍곡선(초점, 꼭짓점, 중심, 주축, 점근선)

(나) 교수·학습 방법 및 유의 사항

- 이차곡선은 원뿔을 절단해서 얻을 수 있는 곡선임을 이해하고, 이를 통해 기하적 대상을 대수적 으로 다룰 수 있음을 인식하게 한다.
- 이차곡선과 그 접선이 실생활에 활용되는 다양한 예를 제시함으로써 그 유용성과 가치를 인식하 게 한다.
- 이차곡선의 접선을 구할 때는 판별식을 이용하고, <미적분>을 이수한 학생들에게는 음함수의 미분법을 이용하여 설명할 수 있다.
- 이심률을 이용한 정의는 다루지 않는다.
- 이차곡선은 축이 x축, y축에 평행한 것만 다룬다.

(2) 평면벡터

벡터는 크기와 방향을 갖는 양을 표현하고 탐구하는 도구이다. 벡터는 자연과학과 공학 등 다양한 분야에 필요한 기본 소양을 기르는데 도움이 되며, 벡터를 다양한 방법으로 다룸으로써 기하와 대수의 연결성을 경험하게 할 수 있다.

① 벡터의 연산

[12기하02-01] 벡터의 뜻을 안다.

[12기하02-02] 벡터의 덧셈, 뺄셈, 실수배를 할 수 있다.

② 평면벡터의 성분과 내적

[12기하02-03] 위치벡터의 뜻을 알고, 평면벡터와 좌표의 대응을 이해한다.

[12기하02-04] 두 평면벡터의 내적의 뜻을 알고, 이를 구할 수 있다.

[12기하02-05] 좌표평면에서 벡터를 이용하여 직선과 원의 방정식을 구할 수 있다.

(가) 학습 요소

• 벡터, 시점, 종점, 벡터의 크기, 단위벡터, 영벡터, 실수배, 평면벡터, 위치벡터, 벡터의 성분, 내적, 방향벡터, 법선벡터, \overrightarrow{AB} , \overrightarrow{a} , $|\overrightarrow{a}|$, $\overrightarrow{a} \cdot \overrightarrow{b}$

(나) 교수·학습 방법 및 유의 사항

- 벡터를 표현하고 탐구하는 방법에는 화살표를 이용한 기하적 방법과 좌표를 이용한 대수적 방법 이 있음을 인식하게 한다.
- 벡터를 사용하여 좌표평면에서 직선과 원의 방정식을 간단히 나타낼 수 있음을 알게 한다.
- 벡터를 활용하여 다양한 문제를 해결함으로써 그 유용성과 가치를 인식하게 한다.
- '벡터방정식'용어는 교수·학습 상황에서 사용할 수 있다.

(3) 공간도형과 공간좌표

공간도형의 기본 구성 요소는 점, 직선, 평면이고, 공간좌표는 공간도형을 대수적으로 다루는 도구이다. 공간도형의 성질에 대한 탐구는 공간 감각을 기르는 데 도움이 되고, 좌표공간을 통해 도형을 대수적으로 표현하고 다룸으로써 기하와 대수의 연결성을 경험하게 할 수 있다.

1 공간도형

[12기하03-01] 직선과 직선, 직선과 평면, 평면과 평면의 위치 관계에 대한 간단한 증명을 할 수 있다.

[12기하03-02] 삼수선의 정리를 이해하고, 이를 활용할 수 있다.

[12기하03-03] 정사영의 뜻을 알고, 이를 구할 수 있다.

2 공간좌표

[12기하03-04] 좌표공간에서 점의 좌표를 구할 수 있다.

[12기하03-05] 좌표공간에서 두 점 사이의 거리를 구할 수 있다.

[12기하03-06] 좌표공간에서 선분의 내분점과 외분점의 좌표를 구할 수 있다.

[12기하03-07] 구의 방정식을 구할 수 있다.

(가) 학습 요소

• 교선, 삼수선의 정리, 이면각(변, 면, 크기), 정사영, 좌표공간, 공간좌표, P(x, y, z)

(나) 교수·학습 방법 및 유의 사항

- 공간도형의 성질은 관찰을 통해 직관적으로 이해한 후 증명하게 한다.
- 공간좌표는 평면좌표를 확장하는 수준에서 간단히 다룬다.
- 공간좌표의 개념과 성질을 이용하여, 공간도형에 대한 문제를 해결할 수 있게 한다.
- xy평면, yz평면, zx평면이 각각 z=0, x=0, y=0으로 표현될 수 있음을 직관적으로 이해하게 한다.
- 우리 주변의 자연이나 건축물, 예술작품 등에 나타난 공간도형의 성질을 이해하고, 수학의 심미적 가치를 인식하게 한다.

4. 교수·학습 및 평가의 방향

가. 교수·학습 방향

- (1) 교수·학습 원칙
- (가) 수학과의 교수·학습은 학생이 수학과 교육과정에 제시된 목표를 달성하고 전인적으로 성장하도 록 돕는 것을 목적으로 한다.
- (나) 수학과의 교수·학습은 교육과정에 제시된 내용의 수준과 범위를 준수하고, 교육과정에 제시된 목표, 내용, 평가와 일관성을 가져야 한다.
- (다) 문제 해결, 추론, 창의·융합, 의사소통, 정보 처리, 태도 및 실천과 같은 수학 교과 역량을 함양하기 위한 교육 환경을 조성하고, 이에 적합한 교수·학습을 운영한다.
- (라) 과목별 내용의 배열 순서가 반드시 교수·학습의 순서를 의미하는 것은 아니므로, 교수·학습 계획을 수립하거나 학습 자료를 개발할 때에는 내용의 특성과 난이도, 학교 여건, 학생의 수준 등을 고려하여 내용, 순서 등을 재구성할 수 있다.
- (마) 교육과정에 제시된 내용을 지도한 후 학습 결손이 있는 학생에게는 보충 학습, 우수 학생에게 는 심화 학습의 기회를 추가로 제공할 수 있다.

(2) 교수·학습 방법

- (가) 수학과의 수업은 학생의 능력과 수준 등을 고려하여 설명식 교수, 탐구 학습, 프로젝트 학습, 토의·토론 학습, 협력 학습, 매체 및 도구 활용 학습 등을 적절히 선택하여 적용한다.
 - ① 설명식 교수는 교사가 설명과 시연을 통해 수업을 주도하는 교수·학습 방법으로, 수업 내용을 구조화하여 체계적으로 지도하는 데 효과적이다. 이때, 교사는 학생의 적극적인 수업 참여를 유도하고, 사고를 촉진하는 발문을 적절히 활용한다.
 - ② 탐구 학습은 학생이 중심이 되어 수학 개념, 원리, 법칙을 발견하고 구성하는 교수·학습 방법으로, 학생 스스로 자료와 정보로부터 지식을 도출하거나 지식의 타당성을 확인하는 능력을 기를 수 있게 한다.
 - ③ 프로젝트 학습은 특정 주제나 과제를 탐구하기 위해 계획을 수립하고 수행하여 결과물을 산출하거나 발표하는 교수·학습 방법으로, 개인별 또는 집단별로 실시할 수 있다.

- ④ 토의·토론 학습은 특정 주제에 대해 협의하거나 논의하는 교수·학습 방법으로, 의사소통이 지니는 상호 협력적인 면을 강조한다. 이를 통해 학생들이 교과 내용을 폭넓게 이해하고 논 리적이고 비판적으로 추론하며 다른 사람의 의견을 비판적으로 수용하고 자신의 주장을 효과적으로 표현하는 능력을 기를 수 있게 한다.
- ⑤ 협력 학습은 모둠 내의 상호작용, 의사소통, 참여를 통해 공동의 학습 목표에 도달하도록 하는 교수·학습 방법으로, 다른 사람을 존중하고 배려하며 모둠 내의 역할을 이해하고 책임 감을 기를 수 있게 한다.
- ⑥ 매체 및 도구 활용 학습은 학생의 수준과 학습 내용에 적합한 매체와 도구를 활용하여 흥미를 유발하고 학습의 효율성과 다양성을 도모하는 교수·학습 방법으로, 시청각 자료, 멀티미디어나 인터넷 등의 컴퓨터 활용 매체와 교구, 계산기, 교육용 소프트웨어 등의 도구를 이용한다.
- (나) 문제 해결 능력을 함양하기 위한 교수·학습에서는 다음 사항을 강조한다.
 - ① 문제를 해결할 때에는 문제를 이해하고 해결 전략을 탐색하며 해결 과정을 실행하고 검증 및 반성하는 단계를 거치도록 한다.
 - ② 협력적 문제 해결 과제에서는 균형 있는 책임 분담과 상호작용을 통해 동료들과 협력하여 문제를 해결하게 한다.
 - ③ 수학적 모델링 능력을 신장하기 위해 생활 주변이나 사회 및 자연 현상 등 다양한 맥락에서 파악된 문제를 해결하면서 수학적 개념, 원리, 법칙을 탐구하고 이를 일반화하게 한다.
 - ④ 문제 해결력을 높이기 위해 주어진 문제를 변형하거나 새로운 문제를 만들어 해결하고 그 과정을 검증하는 문제 만들기 활동을 장려한다.
- (다) 추론 능력을 함양하기 위한 교수·학습에서는 다음 사항을 강조한다.
 - ① 관찰과 탐구 상황에서 귀납, 유추 등의 개연적 추론을 사용하여 학생 스스로 수학적 사실을 추측하고 적절한 근거에 기초하여 이를 정당화할 수 있게 한다.
 - ② 수학의 개념, 원리, 법칙을 도출하는 과정과 수학적 절차를 논리적으로 수행하게 한다.
 - ③ 추론 과정이 옳은지 비판적으로 평가하고 반성하도록 한다.
- (라) 창의·융합 능력을 함양하기 위한 교수·학습에서는 다음 사항을 강조한다.
 - ① 새롭고 의미 있는 아이디어를 다양하고 풍부하게 산출할 수 있는 수학적 과제를 제공하여 학생의 창의적 사고를 촉진시킨다.
 - ② 하나의 문제를 여러 가지 방법으로 해결하게 하고, 해결 방법을 비교하여 더 효율적인 방법을 찾거나 정교화하게 한다.

- ③ 여러 수학적 지식, 기능, 경험을 연결하거나 수학과 타 교과나 실생활의 지식, 기능, 경험을 연결·융합하여 새로운 지식, 기능, 경험을 생성하고 문제를 해결하게 한다.
- (마) 의사소통 능력을 함양하기 위한 교수·학습에서는 다음 사항을 강조한다.
 - ① 수학 용어, 기호, 표, 그래프 등의 수학적 표현을 이해하고 정확하게 사용하며, 수학적 표현을 만들거나 변환하는 활동을 하게 한다.
 - ② 수학적 아이디어 또는 수학 학습 과정과 결과를 말, 글, 그림, 기호, 표, 그래프 등을 사용하여 다른 사람과 효율적으로 의사소통할 수 있게 한다.
 - ③ 다양한 관점을 존중하면서 다른 사람의 생각을 이해하고 수학적 아이디어를 표현하며 토론하게 한다.
- (바) 정보 처리 능력을 함양하기 위한 교수·학습에서는 다음 사항을 강조한다.
 - ① 실생활 및 수학적 문제 상황에서 적절한 자료를 탐색하여 수집하고, 목적에 맞게 정리, 분석, 평가하며, 분석한 정보를 문제 상황에 적합하게 활용할 수 있게 한다.
 - ② 교수·학습 과정에서 적절한 교구를 활용한 조작 및 탐구 활동을 통해 수학의 개념과 원리를 이해하도록 한다.
 - ③ 계산 능력 배양을 목표로 하지 않는 교수·학습 상황에서의 복잡한 계산 수행, 수학의 개념, 원리, 법칙의 이해, 문제 해결력 향상 등을 위하여 계산기, 컴퓨터, 교육용 소프트웨어 등의 공학적 도구를 이용할 수 있게 한다.
- (사) 태도 및 실천 능력을 함양하기 위한 교수·학습에서는 다음 사항을 강조한다.
 - ① 수학을 생활 주변과 사회 및 자연 현상과 관련지어 지도하여 수학의 필요성과 유용성을 알게 하고, 수학의 역할과 가치를 인식할 수 있게 한다.
 - ② 수학에 대한 관심과 흥미, 호기심과 자신감을 갖고 수학 학습에 적극적으로 참여하게 하며, 끈기 있게 도전하도록 격려하고 학습 동기와 의욕을 유발한다.
 - ③ 학생 스스로 목표를 설정하고 학습을 수행하며 학습 결과를 평가하는 자주적 학습 습관과 태도를 갖게 한다.
 - ④ 수학적 활동을 통하여 정직하고 공정하며 책임감 있게 행동하고 어려움을 극복하기 위해 도 전하는 용기 있는 태도, 타인을 배려하고 존중하며 협력하는 태도, 논리적 근거를 토대로 의견을 제시하고 합리적으로 의사 결정하는 태도를 갖고 이를 실천하게 한다.
- (아) 의미 있는 발문을 하기 위하여 교수·학습에서 다음 사항에 유의한다.
 - ① 학생의 사고를 촉진하는 다양한 발문을 통해 상호작용이 활발한 교실 환경을 구축하고 학생

- 의 능동적 수업 참여를 독려한다.
- ② 학생의 인지 발달과 경험을 고려하여 발문을 하고, 발문에 대한 학생의 반응을 의미 있게 처리하다.
- (자) 개인차를 고려하여 수준별 수업을 운영할 때에는 다음 사항에 유의한다.
 - ① 학습 목표를 효과적으로 달성하기 위해 교실 내에서 개인차를 고려한 소집단을 구성하거나 수준별 학급을 구성하여 교수·학습을 전개한다.
 - ② 수준별 수업을 위해 집단을 편성할 때에는 학생 개인의 능력과 수준, 적성과 희망, 교사 수 급과 유휴 교실 등의 학교 상황을 고려한다.
 - ③ 수준별 수업은 내용 요소를 차별화하기보다는 내용의 깊이나 접근 방법에 차이를 두어 진행한다.

나. 평가 방향

- (1) 평가 원칙
- (가) 수학과의 평가는 학생의 인지적 영역과 정의적 영역에 대한 유용한 정보를 수집·활용하여 학생의 수학 학습과 전인적 성장을 돕고 교사의 수업 방법을 개선하는 것을 목적으로 한다.
- (나) 수학과의 평가는 교육과정에 제시된 내용의 수준과 범위를 준수하고, 교육과정에 제시된 목표, 내용, 교수·학습과 일관성을 가져야 한다.
- (다) 수학과의 평가에서는 수학의 개념, 원리, 법칙, 기능뿐만 아니라 문제 해결, 추론, 창의·융합, 의사소통, 정보 처리, 태도 및 실천과 같은 수학 교과 역량을 균형 있게 평가한다.
- (라) 수학과의 평가는 학습자의 수준을 고려하고 평가 목적과 내용에 따라 다양한 평가 방법을 활용 한다.
- (마) 평가 결과는 학생, 학부모, 교사 등에게 환류하여 학생의 수학 학습 개선을 도울 수 있게 한다.

(2) 평가 방법

(가) 수학과의 평가는 학습 결과 평가뿐만 아니라 과정 중심 평가도 실시하여 종합적인 수학 학습 평가가 될 수 있게 한다.

- (나) 수업의 전개 국면에 따라 진단평가, 형성평가, 총괄평가를 적절히 실시하되, 지속적인 평가를 통해 다양한 정보를 수집하고 수업에 활용한다.
- (다) 학생의 수학 학습 과정과 결과는 지필 평가, 프로젝트 평가, 포트폴리오 평가, 관찰 평가, 면담 평가, 구술 평가, 자기 평가, 동료 평가 등의 다양한 평가 방법을 사용하여 양적 또는 질적으로 평가한다.
 - ① 지필 평가는 수학의 개념, 원리, 법칙을 이해하고 적용하는 능력과 문제 해결, 추론, 창의· 융합, 의사소통 능력 등을 평가하는 데 활용할 수 있고, 선택형, 단답형, 서·논술형 등의 다 양한 문항 형태를 활용한다.
 - ② 프로젝트 평가는 수학 학습을 토대로 특정한 주제나 과제에 대해서 자료를 수집하고 분석, 종합, 해결하는 과정과 결과를 평가하는 방법으로, 문제 해결, 창의·융합, 정보 처리 능력 등을 평가할 때 활용할 수 있다.
 - ③ 포트폴리오 평가는 일정 기간 동안 수학 학습 수행과 그 결과물을 평가하는 방법으로, 학생의 학습 내용 이해와 수학 교과 역량을 종합적으로 판단하고 학생의 성장에 대한 정보를 얻는 데 활용할 수 있다.
 - ④ 관찰 평가, 면담 평가, 구술 평가는 학생 개인 및 소집단을 관찰, 학생과의 대화, 학생의 발표를 통해 학생의 이해 정도와 사고 방법, 수행 과정 등을 평가하는 방법으로, 의사소통, 태도 및 실천 능력 등을 평가할 때 활용할 수 있다.
 - ⑤ 자기 평가는 학생 스스로 자신의 이해와 수행을 평가하는 방법으로, 문제 해결과 추론 과정의 반성, 자신의 생각 표현, 태도 및 실천 능력 등을 평가할 때 활용할 수 있다.
 - ⑥ 동료 평가는 동료 학생들이 상대방을 서로 평가하는 방법으로, 협력 학습 상황에서 학생 개 개인의 역할 수행 정도나 집단 활동에 기여한 정도를 평가할 때 활용할 수 있다.
- (라) 평가 내용이나 방법에 따라 학생에게 계산기, 컴퓨터, 교육용 소프트웨어 등의 공학적 도구와 다양한 교구를 이용할 수 있게 한다.