We claim:

1. A compound of formula IIc:

IIc

or a pharmaceutically acceptable derivative or prodrug thereof, wherein;

 R^{x} and R^{y} are taken together with their intervening atoms to form a fused, unsaturated or partially unsaturated, 5-7 membered ring having 0-3 ring heteroatoms selected from oxygen, sulfur, or nitrogen, wherein any substitutable carbon on said fused ring formed by R^{x} and R^{y} is substituted by oxo, $T-R^{3}$, or $L-Z-R^{3}$, and any substitutable nitrogen on said ring formed by R^{x} and R^{y} is substituted by R^{4} ;

R¹ is T-(Ring D);

Ring D is a 5-7 membered monocyclic ring or 8-10 membered bicyclic ring selected from aryl, heteroaryl, heterocyclyl or carbocyclyl, said heteroaryl or heterocyclyl ring having 1-4 ring heteroatoms selected from nitrogen, oxygen or sulfur, wherein Ring D is substituted at any substitutable ring carbon by oxo, $T-R^5$, or $V-Z-R^5$, and at any substitutable ring nitrogen by $-R^4$;

- T is a valence bond or a C_{1-4} alkylidene chain; Z is a C_{1-4} alkylidene chain;
- - $-N(R^6)CON(R^6)$, $-N(R^6)SO_2N(R^6)$, $-N(R^6)N(R^6)$.
 - $-C(0)N(R^{6})$ -, $-OC(0)N(R^{6})$ -, $-C(R^{6})_{2}O$ -, $-C(R^{6})_{2}S$ -,
 - $-C(R^{6})_{2}SO-$, $-C(R^{6})_{2}SO_{2}-$, $-C(R^{6})_{2}SO_{2}N(R^{6})-$, $-C(R^{6})_{2}N(R^{6})-$,
 - $-C(R^{6})_{2}N(R^{6})C(O) , -C(R^{6})_{2}N(R^{6})C(O)O , -C(R^{6}) = NN(R^{6}) ,$
 - $-C(R^{6}) = N O -$, $-C(R^{6})_{2}N(R^{6})N(R^{6}) -$, $-C(R^{6})_{2}N(R^{6})SO_{2}N(R^{6}) -$, or $-C(R^{6})_{2}N(R^{6})CON(R^{6}) -$;
- R^2 and $R^{2'}$ are independently selected from -R, -T-W-R⁶, or R^2 and $R^{2'}$ are taken together with their intervening atoms to form a fused, 5-8 membered, unsaturated or partially unsaturated, ring having 0-3 ring heteroatoms selected from nitrogen, oxygen, or sulfur, wherein each substitutable carbon on said fused ring formed by R^2 and $R^{2'}$ is substituted by halo, oxo, -CN, -NO₂, -R⁷, or -V-R⁶, and any substitutable nitrogen on said ring formed by R^2 and R^2 is substituted by R^2 ;
- each R is independently selected from hydrogen or an optionally substituted group selected from C_{1-6} aliphatic, C_{6-10} aryl, a heteroaryl ring having 5-10 ring atoms, or a heterocyclyl ring having 5-10 ring atoms;
- each R^4 is independently selected from $-R^7$, $-COR^7$, $-CO_2$ (optionally substituted C_{1-6} aliphatic), $-CON(R^7)_2$, or $-SO_2R^7$;

```
each R^5 is independently selected from -R, halo, -OR,
    -C(=O)R, -CO_2R, -COCOR, -NO_2, -CN, -S(O)R, -SO_2R, -SR,
    -N(R^4)_2, -CON(R^4)_2, -SO_2N(R^4)_2, -OC(=0)R, -N(R^4)COR,
    -N(R^4)CO_2 (optionally substituted C_{1-6} aliphatic),
    -N(R^4)N(R^4)_2, -C=NN(R^4)_2, -C=N-OR, -N(R^4)CON(R^4)_2.
    -N(R^4)SO_2N(R^4)_2, -N(R^4)SO_2R, or -OC(=0)N(R^4)_2;
V is -O-, -S-, -SO-, -SO<sub>2</sub>-, -N(\mathbb{R}^6) SO<sub>2</sub>-, -SO<sub>2</sub>N(\mathbb{R}^6)-,
   -N(R^6) -, -CO-, -CO_2-, -N(R^6)CO-, -N(R^6)C(O)O-,
   -N(R^6)CON(R^6) -, -N(R^6)SO_2N(R^6) -, -N(R^6)N(R^6) -,
   -C(0)N(R^{6}) -, -OC(0)N(R^{6}) -, -C(R^{6})_{2}O -, -C(R^{6})_{2}S -,
   -C(R^{6})_{2}SO_{-}, -C(R^{6})_{2}SO_{2}_{-}, -C(R^{6})_{2}SO_{2}N(R^{6})_{-}, -C(R^{6})_{2}N(R^{6})_{-},
   -C(R^{6})_{2}N(R^{6})C(O) - , -C(R^{6})_{2}N(R^{6})C(O)O - , -C(R^{6}) = NN(R^{6}) - ,
   -C(R^{6}) = N - O - , -C(R^{6})_{2}N(R^{6})N(R^{6}) - , -C(R^{6})_{2}N(R^{6}) + O - , or
   -C(R^6)_2N(R^6)CON(R^6)_-;
W is -C(R^6)_2O_-, -C(R^6)_2S_-, -C(R^6)_2S_0, -C(R^6)_2S_0,
   -C(R^6)_2SO_2N(R^6) -, -C(R^6)_2N(R^6) -, -CO_2 -, -CO_2 -,
   -C(R^{6})OC(O) - , -C(R^{6})OC(O)N(R^{6}) - , -C(R^{6})_{2}N(R^{6})CO - ,
   -C(R^{6})_{2}N(R^{6})C(O)O-, -C(R^{6})=NN(R^{6})-, -C(R^{6})=N-O-.
   -C(R^{6})_{2}N(R^{6})N(R^{6}) - , -C(R^{6})_{2}N(R^{6})SO_{2}N(R^{6}) - ,
   -C(R^6)_2N(R^6)CON(R^6) -, or -CON(R^6) -:
each R^6 is independently selected from hydrogen or an
   optionally substituted C_{1-4} aliphatic group, or two R^6
```

- optionally substituted C_{1-4} aliphatic group, or two R^6 groups on the same nitrogen atom are taken together with the nitrogen atom to form a 5-6 membered heterocyclyl or heteroaryl ring; and
- each R^7 is independently selected from hydrogen or an optionally substituted C_{1-6} aliphatic group, or two R^7 on the same nitrogen are taken together with the nitrogen to form a 5-8 membered heterocyclyl or heteroaryl ring.

- 2. The compound according to claim 1, wherein said compound has one or more features selected from the group consisting of:
 - (a) R* and RY are taken together with their intervening atoms to form a fused, unsaturated or partially unsaturated, 5-6 membered ring having 0-2 heteroatoms selected from oxygen, sulfur, or nitrogen, wherein any substitutable carbon on said fused ring formed by R* and RY is substituted by oxo, T-R3, or L-Z-R3, and any substitutable nitrogen on said ring formed by R* and RY is substituted by R4;
 - (b) R¹ is T-(Ring D), wherein T is a valence bond or a methylene unit;
 - (c) Ring D is a 5-7 membered monocyclic ring or an 8-10 membered bicyclic ring selected from an aryl or heteroaryl ring;
 - (d) R^2 is -R or $-T-W-R^6$ and R^2 is hydrogen; or R^2 and R^2 are taken together to form an optionally substituted benzo ring; and
 - (e) R^3 is selected from -R, -halo, -OR, or $-N(R^4)_2$.
 - 3. The compound according to claim 2, wherein:
 - (a) R^x and R^y are taken together with their intervening atoms to form a fused, unsaturated or partially unsaturated, 5-6 membered ring having 0-2 heteroatoms selected from oxygen, sulfur, or nitrogen, wherein any substitutable carbon on said fused ring formed by R^x and R^y is substituted by oxo, T-R³, or L-Z-R³, and any substitutable nitrogen on said ring formed by R^x and R^y is substituted by R⁴;

- (b) R^1 is T-(Ring D), wherein T is a valence bond or a methylene unit;
- (c) Ring D is a 5-7 membered monocyclic ring or an 8-10 membered bicyclic ring selected from an aryl or heteroaryl ring;
- (d) R^2 is -R or $-T-W-R^6$ and R^2 is hydrogen; or R^2 and R^2 are taken together to form an optionally substituted benzo ring; and
- (e) R^3 is selected from -R, -halo, -OR, or $-N(R^4)_2$.
- 4. The compound according to claim 2, wherein said compound has one or more features selected from the group consisting of:
 - (a) R^x and R^y are taken together to form a benzo, pyrido, cyclopento, cyclohexo, cyclohepto, thieno, piperidino, or imidazo ring;
 - (b) R¹ is T-(Ring D), wherein T is a valence bond and Ring D is a 5-6 membered monocyclic ring or an 8-10 membered bicyclic ring selected from an aryl or heteroaryl ring;
 - (c) R^2 is -R and R^2 is hydrogen, wherein R is selected from hydrogen, C_{1-6} aliphatic, phenyl, a 5-6 membered heteroaryl ring, or a 5-6 membered heterocyclic ring; and
 - (d) R^3 is selected from -R, -halo, -OR, or $-N(R^4)_2$, wherein R is selected from hydrogen, C_{1-6} aliphatic, or 5-6 membered heterocyclyl, phenyl, or 5-6 membered heteroaryl, and L is -O-, -S-, or $-N(R^4)$ -.
 - 5. The compound according to claim 4, wherein:

- (a) R^x and R^y are taken together to form a benzo, pyrido, cyclopento, cyclohexo, cyclohepto, thieno, piperidino, or imidazo ring;
- (b) R¹ is T-(Ring D), wherein T is a valence bond and Ring D is a 5-6 membered monocyclic ring or an 8-10 membered bicyclic ring selected from an aryl or heteroaryl ring;
- (c) R^2 is -R and $R^{2'}$ is hydrogen, wherein R is selected from hydrogen, C_{1-6} aliphatic, phenyl, a 5-6 membered heteroaryl ring, or a 5-6 membered heterocyclic ring; and
- (d) R^3 is selected from -R, -halo, -OR, or $-N(R^4)_2$, wherein R is selected from hydrogen, C_{1-6} aliphatic, or 5-6 membered heterocyclyl, phenyl, or 5-6 membered heteroaryl, and L is -O-, -S-, or $-N(R^4)-$.
- 6. The compound according to claim 4, wherein said compound has one or more features selected from the group consisting of:
 - (a) R^x and R^y are taken together to form a benzo, pyrido, piperidino, or cyclohexo ring;
 - (b) R¹ is T-Ring D, wherein T is a valence bond and Ring D is a 5-6 membered aryl or heteroaryl ring;
 - (c) R^2 is hydrogen or C_{1-4} aliphatic and $R^{2'}$ is hydrogen;
 - (d) R^3 is selected from -R, -OR, or $-N(R^4)_2$, wherein R is selected from hydrogen, C_{1-6} aliphatic, 5-6 membered heterocyclyl, phenyl, or 5-6 membered heteroaryl, and L is -O-, -S-, or -NH-; and
 - (e) Ring D is substituted by up to three substituents selected from -halo, -CN, -NO₂,

- -N(R⁴)₂, optionally substituted C_{1-6} aliphatic group, -OR, -C(O)R, -CO₂R, -CONH(R⁴), -N(R⁴)COR, -N(R⁴)CO₂R, -SO₂N(R⁴)₂, -N(R⁴)SO₂R, -N(R⁶)COCH₂N(R⁴)₂, -N(R⁶)COCH₂CH₂N(R⁴)₂, or -N(R⁶)COCH₂CH₂CH₂N(R⁴)₂, wherein R is selected from hydrogen, C_{1-6} aliphatic, phenyl, a 5-6 membered heteroaryl ring, or a 5-6 membered heterocyclic ring.
- 7. The compound according to claim 6, wherein:
- (a) R^x and R^y are taken together to form a benzo, pyrido, piperidino, or cyclohexo ring;
- (b) R¹ is T-Ring D, wherein T is a valence bond and Ring D is a 5-6 membered aryl or heteroaryl ring;
- (c) R^2 is hydrogen or C_{1-4} aliphatic and $R^{2'}$ is hydrogen;
- (d) R^3 is selected from -R, -OR, or $-N(R^4)_2$, wherein R is selected from hydrogen, C_{1-6} aliphatic, 5-6 membered heterocyclyl, phenyl, or 5-6 membered heteroaryl, and L is -O-, -S-, or -NH-; and
- (e) Ring D is substituted by up to three substituents selected from -halo, -CN, -NO₂, -N(R⁴)₂, optionally substituted C₁₋₆ aliphatic group, -OR, -C(O)R, -CO₂R, -CONH(R⁴), -N(R⁴)COR, -N(R⁴)CO₂R, -SO₂N(R⁴)₂, -N(R⁴)SO₂R, -N(R⁶)COCH₂N(R⁴)₂, -N(R⁶)COCH₂CH₂N(R⁴)₂, or -N(R⁶)COCH₂CH₂CH₂N(R⁴)₂, wherein R is selected from hydrogen, C₁₋₆ aliphatic, phenyl, a 5-6 membered heterocyclic ring.

- 8. The compound according to claim 1, wherein R^x and R^y are taken together with their intervening atoms to form a fused benzo ring, wherein any substitutable carbon on said fused ring formed by R^x and R^y is substituted by T- R^3 , or L-Z- R^3 .
 - 9. The compound according to claim 8, wherein:
 - (a) R^1 is T-(Ring D), wherein T is a valence bond or a methylene unit;
 - (b) Ring D is a 5-7 membered monocyclic or an 8-10 membered bicyclic aryl or heteroaryl ring;
 - (c) R^2 is -R or $-T-W-R^6$ and R^2 is hydrogen; or R^2 and R^2 are taken together to form an optionally substituted benzo ring; and
 - (d) R^3 is selected from -R, -halo, -OR, or -N(R^4)₂.
 - 10. The compound according to claim 9, wherein:
 - (a) R¹ is T-(Ring D), wherein T is a valence bond and Ring D is a 5-6 membered monocyclic ring or an 8-10 membered bicyclic ring selected from an aryl or heteroaryl ring;
 - (b) R^2 is -R and R^2 is hydrogen, wherein R is selected from hydrogen, C_{1-6} aliphatic, phenyl, a 5-6 membered heteroaryl ring, or a 5-6 membered heterocyclic ring; and
 - (c) R^3 is selected from -R, -halo, -OR, or $-N(R^4)_2$, wherein R is selected from hydrogen, C_{1-6} aliphatic, or 5-6 membered heterocyclyl, phenyl, or 5-6 membered heteroaryl, and L is -O-, -S-, or $-N(R^4)-$.
 - 11. The compound according to claim 10, wherein:

- (a) R¹ is T-Ring D, wherein T is a valence bond and Ring D is a 5-6 membered aryl or heteroaryl ring;
- (b) R^2 is hydrogen or C_{1-4} aliphatic and $R^{2'}$ is hydrogen;
- (c) R^3 is selected from -R, -OR, or -N(R^4)₂, wherein R is selected from hydrogen, C_{1-6} aliphatic, 5-6 membered heterocyclyl, phenyl, or 5-6 membered heteroaryl, and L is -O-, -S-, or -NH-; and
- (d) Ring D is substituted by up to three substituents selected from -halo, -CN, -NO₂, -N(R⁴)₂, optionally substituted C₁₋₆ aliphatic group, -OR, -C(O)R, -CO₂R, -CONH(R⁴), -N(R⁴)COR, -N(R⁴)CO₂R, -SO₂N(R⁴)₂, -N(R⁴)SO₂R, -N(R⁶)COCH₂N(R⁴)₂, or -N(R⁶)COCH₂CH₂N(R⁴)₂, wherein R is selected from hydrogen, C₁₋₆ aliphatic, phenyl, a 5-6 membered heteroaryl ring, or a 5-6 membered heterocyclic ring.
- 12. The compound according to claim 1, wherein R^{x} and R^{y} are taken together with their intervening atoms to form a fused, unsaturated or partially unsaturated, 5-7 membered ring having 0-3 ring heteroatoms selected from oxygen, sulfur, or nitrogen, wherein any substitutable carbon on said fused ring formed by R^{x} and R^{y} is substituted by oxo, $T-R^{3}$, or $L-Z-R^{3}$, and any substitutable nitrogen on said ring formed by R^{x} and R^{y} is substituted by R^{4} ; provided that said fused ring formed by R^{x} and R^{y} is other than benzo.
 - 13. The compound according to claim 12, wherein:

- (a) R* and RY are taken together with their intervening atoms to form a fused, unsaturated or partially unsaturated, 5-6 membered ring having 1-2 heteroatoms selected from oxygen, sulfur, or nitrogen, or a partially unsaturated 6-membered carbocyclo ring, wherein any substitutable carbon on said fused ring formed by R* and RY is substituted by oxo, T-R3, or L-Z-R3, and any substitutable nitrogen on said ring formed by R* and RY is substituted by R4;
- (b) R¹ is T-(Ring D), wherein T is a valence bond or a methylene unit, and Ring D is a 5-7 membered monocyclic or an 8-10 membered bicyclic aryl or heteroaryl ring;
- (c) R^2 is -R or $-T-W-R^6$ and $R^{2'}$ is hydrogen; or R^2 and $R^{2'}$ are taken together to form an optionally substituted benzo ring; and
- (d) R^3 is selected from -R, -halo, -OR, or $-N(R^4)_2$.
- 14. The compound according to claim 13, wherein:
- (a) R^x and R^y are taken together to form a benzo, pyrido, cyclopento, cyclohexo, cyclohepto, thieno, piperidino, or imidazo ring, wherein any substitutable carbon on said fused ring formed by R^x and R^y is substituted by oxo, T-R³, or L-Z-R³, and any substitutable nitrogen on said ring formed by R^x and R^y is substituted by R⁴;
- (b) R¹ is T-(Ring D), wherein T is a valence bond and Ring D is a 5-6 membered monocyclic ring or an 8-10 membered bicyclic ring selected from an aryl or heteroaryl ring;
- (c) R^2 is -R and $R^{2'}$ is hydrogen, wherein R is selected from hydrogen, C_{1-6} aliphatic, phenyl, a

- 5-6 membered heteroaryl ring, or a 5-6 membered heterocyclic ring; and
- (d) R^3 is selected from -R, -halo, -OR, or $-N(R^4)_2$, wherein R is selected from hydrogen, C_{1-6} aliphatic, or 5-6 membered heterocyclyl, phenyl, or 5-6 membered heteroaryl, and L is -O-, -S-, or $-N(R^4)-$.
- 15. The compound according to claim 14, wherein:
- (a) R^x and R^y are taken together to form a pyrido, piperidino, or cyclohexo ring, wherein any substitutable carbon on said fused ring formed by R^x and R^y is substituted by oxo, T-R³, or L-Z-R³, and any substitutable nitrogen on said ring formed by R^x and R^y is substituted by R⁴;
- (b) R¹ is T-Ring D, wherein T is a valence bond and Ring D is a 5-6 membered aryl or heteroaryl ring;
- (c) R^2 is hydrogen or C_{1-4} aliphatic and $R^{2'}$ is hydrogen;
- (d) R^3 is selected from -R, -OR, or $-N(R^4)_2$, wherein R is selected from hydrogen, C_{1-6} aliphatic, 5-6 membered heterocyclyl, phenyl, or 5-6 membered heteroaryl, and L is -O-, -S-, or -NH-; and
- (e) Ring D is substituted by up to three substituents selected from -halo, -CN, -NO₂, -N(R⁴)₂, optionally substituted C₁₋₆ aliphatic group, -OR, -C(O)R, -CO₂R, -CONH(R⁴), -N(R⁴)COR, -N(R⁴)CO₂R, -SO₂N(R⁴)₂, -N(R⁴)SO₂R, -N(R⁶)COCH₂N(R⁴)₂, -N(R⁶)COCH₂CH₂N(R⁴)₂, or -N(R⁶)COCH₂CH₂CH₂N(R⁴)₂, wherein R is selected from hydrogen, C₁₋₆ aliphatic, phenyl, a 5-6

membered heteroaryl ring, or a 5-6 membered heterocyclic ring.

- 16. A compound selected from the group consisting of:
- {2-[(2-Hydroxyethyl)phenylamino]-quinazolin-4-yl}-(5-methyl-2H-pyrazol-3-yl)-amine;
- [2-(Methylphenylamino)-quinazolin-4-yl]-(5-methyl-2H-pyrazol-3-yl)-amine;
- (5-methyl-2*H*-pyrazol-3-yl)-{2-[N-methyl-N-(pyridin-3-ylmethyl)amino]-quinazolin-4-yl}-amine;
- (5-Methyl-2*H*-pyrazol-3-yl)-(2-phenylamino-quinazolin-4-yl)-amine;
- (2-Benzylamino-quinazolin-4-yl)-(5-methyl-2*H*-pyrazol-3-yl)-amine;
- (2-Cyclohexylamino-quinazolin-4-yl)-(5-methyl-2H-pyrazol-3-yl)-amine;
- [2-(2,3-Dihydrobenzo[1,4]dioxin-6-ylamino)-quinazolin-4-yl]-(5-methyl-2H-pyrazol-3-yl)-amine;
- (2-Cyclohexylmethylamino-quinazolin-4-yl)-(5-methyl-2H-pyrazol-3-yl)-amine;
- [2-(1H-Indazol-6-ylamino)-quinazolin-4-yl]-(5-methyl-2H-pyrazol-3-yl)-amine;
- (5-Methyl-2H-pyrazol-3-yl)-[2-(pyridin-3-ylmethylamino)-quinazolin-4-yl]-amine;
- [2-(3-Chlorophenylamino)-quinazolin-4-yl]-(5-methyl-2H-pyrazol-3-yl)-amine;
- [2-(4-Chlorophenylamino)-quinazolin-4-yl]-(5-methyl-2*H*-pyrazol-3-yl)-amine;
- [2-(4-Fluorobenzylamino)-quinazolin-4-yl]-(5-methyl-2H-pyrazol-3-yl)-amine;

```
{2-[2-(2-Hydroxyethyl)phenylamino]-quinazolin-4-yl}-(5-
methyl-2H-pyrazol-3-yl)-amine;
   [2-(4-Cyanomethylphenylamino)-quinazolin-4-yl]-(5-
methyl-2H-pyrazol-3-yl)-amine;
   [2-(3-Hydroxymethylphenylamino)-quinazolin-4-yl]-(5-
methyl-2H-pyrazol-3-yl)-amine;
   [2-(3-Hydroxyphenylamino)-quinazolin-4-yl]-(5-methyl-
2H-pyrazol-3-yl)-amine;
   (5-Cyclopropyl-2H-pyrazol-3-yl)-(2-phenylamino-
quinazolin-4-yl)-amine;
   (5-Cyclopropyl-2H-pyrazol-3-yl)-[2-(3-yl)]
methylphenylamino) -quinazolin-4-yl] -amine;
   (5-Cyclopropyl-2H-pyrazol-3-yl)-[2-(6-methoxypyridin-3-
ylamino) -quinazolin-4-yl] -amine;
   (5-Cyclopropyl-2H-pyrazol-3-yl)-[2-(indan-5-ylamino)-
quinazolin-4-yl]-amine;
   (5-Cyclopropyl-2H-pyrazol-3-yl)-[2-(1H-indol-6-
ylamino) -quinazolin-4-yl] -amine;
   [2-(4-Acetamido-3-methylphenylamino)-quinazolin-4-yl]-
(5-cyclopropyl-2H-pyrazol-3-yl)-amine;
   [2-(4-Chloro-3-methylphenylamino)-quinazolin-4-yl]-(5-
cyclopropyl-2H-pyrazol-3-yl)-amine;
   (5-Cyclopropyl-2H-pyrazol-3-yl)-[2-(4-
ethylphenylamino) -quinazolin-4-yl] -amine;
   (5-Cyclopropyl-2H-pyrazol-3-yl)-[2-(4-
propylphenylamino) -quinazolin-4-yl] -amine;
   (5-Cyclopropyl-2H-pyrazol-3-yl)-\{2-[4-(2-1)]
hydroxyethyl)phenylamino]-quinazolin-4-yl}-amine;
   (5-Cyclopropyl-2H-pyrazol-3-yl)-(2-phenetylamino-
quinazolin-4-yl)-amine;
   [2-(2-Cyclohexylethylamino)-quinazolin-4-yl]-(5-
cyclopropyl-2H-pyrazol-3-yl)-amine;
```

```
[2-(4-Carboxymethoxyphenylamino)-quinazolin-4-yl]-(5-
cyclopropyl-2H-pyrazol-3-yl)-amine;
   [2-(4-Cyanomethylphenylamino)-quinazolin-4-yl]-(5-
cyclopropyl-2H-pyrazol-3-yl)-amine;
   [2-(Benzothiazol-6-ylamino)-quinazolin-4-yl]-(5-
cyclopropyl-2H-pyrazol-3-yl)-amine;
   (5-Cyclopropyl-2H-pyrazol-3-yl)-[2-(3,4-
dimethylphenylamino) -quinazolin-4-yl] -amine;
   (5-Cyclopropyl-2H-pyrazol-3-yl)-[2-(2-
phenoxyethylamino) -quinazolin-4-yl] -amine;
   (5-Cyclopropyl-2H-pyrazol-3-yl)-[2-(thiophen-2-
methylamino) - quinazolin-4-yl] - amine;
   [2-(4-Carboxymethylphenylamino)-quinazolin-4-yl]-(5-
cyclopropyl-2H-pyrazol-3-yl)-amine;
   (5-Cyclopropyl-2H-pyrazol-3-yl)-[2-(1H-indazol-5-
ylamino) -quinazolin-4-yl] -amine;
   (5-Cyclopropyl-2H-pyrazol-3-yl)-[2-(pyridin-3-
ylmethylamino) -quinazolin-4-yl] -amine;
   (5-Cyclopropyl-2H-pyrazol-3-yl)-[2-(3-yl)]
methoxycarbonylphenylamino) -quinazolin-4-yl] -amine;
   [2-(3-Carboxyphenylamino)-quinazolin-4-yl]-(5-
cyclopropyl-2H-pyrazol-3-yl)-amine;
   (5-Cyclopropyl-2H-pyrazol-3-yl)-[2-(3-yl)]
ethylphenylamino) -quinazolin-4-yl] -amine;
   (5-Cyclopropyl-2H-pyrazol-3-yl)-[2-(2,3-yl)]
dimethylphenylamino) -quinazolin-4-yl] -amine;
   (5-Cyclopropyl-2H-pyrazol-3-yl)-[2-(3,4-
dimethoxyphenylamino) -quinazolin-4-yl] -amine;
   (5-Cyclopropyl-2H-pyrazol-3-yl)-[2-(3-yl)]
methoxyphenylamino) -quinazolin-4-yl] -amine;
   (5-Methyl-2H-pyrazol-3-yl)-(2-phenylamino-5,6,7,8-
tetrahydroquinazolinin-4-yl)-amine;
```

- [2-(Biphenyl-3-ylamino)-quinazolin-4-yl]-(5-cyclopropyl-2*H*-pyrazol-3-yl)-amine;
- (5-Cyclopropyl-2H-pyrazol-3-yl)-[2-(3-phenylprop-1-ylamino)-quinazolin-4-yl]-amine;
- [2-(4-acetamido-3-methylphenylamino)-quinazolin-4-yl]-(5-methyl-2H-pyrazol-3-yl)-amine;
- (5-Cyclopropyl-2*H*-pyrazol-3-yl)-[2-(indan-2-ylamino)-quinazolin-4-yl]-amine;
- [2-(3-Methylphenylamino)-quinazolin-4-yl]-(5-methyl-2*H*-pyrazol-3-yl)-amine;
- [2-(2-Chloro-5-methylphenylamino)-quinazolin-4-yl]-(5-methyl-2H-pyrazol-3-yl)-amine;
- (5-Cyclopropyl-2H-pyrazol-3-yl)-{2-[4-(morpholin-1-yl)phenylamino]-quinazolin-4-yl}-amine;
- [2-(Benzothiazol-6-ylamino)-quinazolin-4-yl]-(5-methyl-2H-pyrazol-3-yl)-amine;
- [2-(3,4-Dimethylphenylamino)-quinazolin-4-yl]-(5-methyl-2H-pyrazol-3-yl)-amine;
- [2-(3-Ethylphenylamino)-quinazolin-4-yl]-(5-methyl-2*H*-pyrazol-3-yl)-amine;
- [2-(3-Methoxyphenylamino)-quinazolin-4-yl]-(5-methyl-2H-pyrazol-3-yl)-amine;
- [2-(4-Acetamido-3-cyanophenylamino)-quinazolin-4-yl]-(5-methyl-2H-pyrazol-3-yl)-amine;
- [2-(2-Methoxybiphenyl-5-ylamino)-quinazolin-4-yl]-(5-methyl-2H-pyrazol-3-yl)-amine;
- [2-(4-Acetamidophenylamino)-quinazolin-4-yl]-(5-methyl-2H-pyrazol-3-yl)-amine;
- [2-(4-tert-Butoxycarbonylamino-phenylamino)-quinazolin-4-yl]-(5-methyl-2H-pyrazol-3-yl)-amine;
- [2-(4-Cyanophenylamino)-quinazolin-4-yl]-(5-methyl-2*H*-pyrazol-3-yl)-amine;

- (5-Methyl-2H-pyrazol-3-yl)-[2-(6-oxo-6,10b-dihydro-4aH-benzo[c]chromen-2-ylamino)-quinazolin-4-yl]-amine;
- [2-(Biphenyl-3-ylamino)-quinazolin-4-yl]-(5-methyl-2H-pyrazol-3-yl)-amine;
- [2-(4-Methoxycarbonylmethyl-3-methylphenylamino)-quinazolin-4-yl]-(5-methyl-2H-pyrazol-3-yl)-amine;
- [2-(4-Carboxymethyl-3-methylphenylamino)-quinazolin-4-yl]-(5-methyl-2H-pyrazol-3-yl)-amine;
- [2-(4-Aminophenylamino)-quinazolin-4-yl]-(5-methyl-2*H*-pyrazol-3-yl)-amine;
- [2-(4-Bromophenylamino)-quinazolin-4-yl]-(5-methyl-2H-pyrazol-3-yl)-amine;
- [2-(4-Isobutyrylamino-phenylamino)-quinazolin-4-yl]-(5-methyl-2H-pyrazol-3-yl)-amine;
- (5-Ethyl-2H-pyrazol-3-yl)-[2-(5-ethyl-2H-pyrazol-3-ylamino)-quinazolin-4-yl]-amine;
- (1H-Indazol-3-yl) (2-phenylamino-quinazolin-4-yl) amine;
- (1H-Indazol-3-yl)-[2-(3-trifluoromethylphenylamino)-quinazolin-4-yl]-amine;
- (1H-Indazol-3-yl)-[2-(4-trifluoromethylphenylamino)-quinazolin-4-yl]-amine;
- [2-(Adamantan-2-ylamino)-quinazolin-4-yl]-(1H-indazol-3-yl)-amine;
- (1H-Indazol-3-yl) (2-methyl-phenyl-amino-quinazolin-4yl) -amine;
- [2-(2-Chloro-phenyl)-amino-quinazolin-4-yl]-(1H-indazol-3-yl)-amine;
- (1H-Indazol-3-yl)-[2-(2-trifluoromethylphenylamino)-quinazolin-4-yl]-amine;
- [2-(4-Cyanomethylphenylamino)-quinazolin-4-yl]-(1H-indazol-3-yl)-amine;

- [2-(4-Chlorophenylamino)-5,6,7,8-tetrahydroquinazolinin-4-yl]-(5-methyl-2H-pyrazol-3-yl)-amine;
- (5-Methyl-2*H*-pyrazol-3-yl)-(2-phenylamino-6,7,8,9-tetrahydro-5*H*-cycloheptapyrimidin-4-yl)-amine;
- [2-(Benzimidazol-2-ylamino)-7-benzyl-5,6,7,8-tetrahydro-pyrido[3,4-d]pyrimidin-4-yl]-(5-methyl-2H-pyrazol-3-yl)-amine;
- (7-Benzyl-2-phenylamino-5,6,7,8-tetrahydro-pyrido[3,4-d]pyrimidin-4-yl)-(5-methyl-2*H*-pyrazol-3-yl)-amine;
- [6-Benzyl-2-(4-chlorophenylamino)-5,6,7,8-tetrahydro-pyrido[4,3-d]pyrimidin-4-yl]-(5-methyl-2H-pyrazol-3-yl)-amine;
- [2-(Benzimidazol-2-ylamino)-6-benzyl-5,6,7,8-tetrahydro-pyrido[4,3-d]pyrimidin-4-yl]-(5-methyl-2H-pyrazol-3-yl)-amine;
- (6-Benzyl-2-phenylamino-5,6,7,8-tetrahydro-pyrido[4,3-d]pyrimidin-4-yl)-(5-methyl-2*H*-pyrazol-3-yl)-amine;
- (5-Methyl-2*H*-pyrazol-3-yl)-(2-phenylamino-5,6,7,8-tetrahydro-pyrido[3,4-d]pyrimidin-4-yl)-amine;
- [2-(4-Cyanomethylphenylamino)-quinazolin-4-yl]-(1H-pyrazolo[3,4-b]pyridin-3-yl)-amine;
- [2-(4-Cyanobenzylamino)-quinazolin-4-yl]-(1H-pyrazolo[3,4-b]pyridin-3-yl)-amine;
- [2-(4-Cyanomethylphenylamino)-quinazolin-4-yl]-(4-fluoro-1*H*-indazol-3-yl)-amine;
- [2-(4-Cyanophenylamino)-quinazolin-4-yl]-(1H-indazol-3-yl)-amine; and
- [2-(4-Cyanobenzylamino)-quinazolin-4-yl]-(1H-indazol-3-yl)-amine.

- 17. A composition comprising a compound according to any one of claims 1-16, and a pharmaceutically acceptable carrier.
- 18. The composition according to claim 17, further comprising an additional therapeutic agent.
- 19. A method of inhibiting Aurora-2, GSK-3, Src, ERK-2, or AKT activity in a biological sample comprising the step of contacting said biological sample with a compound according to any one of claims 1-16.
- 20. A method of inhibiting Aurora-2 activity in a patient comprising the step of administering to said patient a composition according to claim 17.
- 21. A method of inhibiting Aurora-2 activity in a patient comprising the step of administering to said patient a composition according to claim 18.
- 22. A method of treating an Aurora-2-mediated disease, which method comprises administering to a patient in need of such a treatment a therapeutically effective amount of a composition according to claim 17.
- 23. The method according to claim 22, wherein said disease is selected from colon, breast, stomach, or ovarian cancer.
- 24. The method according to claim 23, wherein said method further comprises administering an additional therapeutic agent.

- 25. The method according to claim 24, wherein said additional therapeutic agent is a chemotherapeutic agent.
- 26. A method of inhibiting GSK-3 activity in a patient comprising the step of administering to said patient a composition according to claim 17.
- 27. A method of inhibiting GSK-3 activity in a patient comprising the step of administering to said patient a composition according to claim 18.
- 28. A method of method of treating a GSK-3-mediated disease, which method comprises administering to a patient in need of such a treatment a therapeutically effective amount of a composition according to claim 18.
- 29. The method according to claim 28, wherein said GSK-3-mediated disease is selected from diabetes, Alzheimer's disease, Huntington's Disease, Parkinson's Disease, AIDS-associated dementia, amyotrophic lateral sclerosis (AML), multiple sclerosis (MS), schizophrenia, cardiomycete hypertrophy, reperfusion/ischemia, or baldness.
- 30. The method according to claim 29, wherein said GSK-3-mediated disease is diabetes.
- 31. A method of enhancing glycogen synthesis or lowering blood levels of glucose in a patient in need thereof, which method comprises administering to said patient a therapeutically effective amount of a composition according to claim 17.

- 32. A method of inhibiting the production of hyperphosphorylated Tau protein in a patient, which method comprises administering to a patient in need thereof a therapeutically effective amount of a composition according to claim 17.
- 33. A method of inhibiting the phosphorylation of β -catenin, which method comprises administering to a patient in need thereof a therapeutically effective amount of a composition according to claim 17.
- 34. A method of inhibiting Src activity in a patient comprising the step of administering to said patient a composition according to claim 17.
- 35. A method of treating a Src-mediated disease, which method comprises administering to a patient in need of such a treatment a therapeutically effective amount of a composition according to claim 17.
- 36. A method of inhibiting ERK-2 activity in a patient comprising the step of administering to said patient a composition according to claim 17.
- 37. A method of treating an ERK-2-mediated disease, which method comprises administering to a patient in need of such a treatment a therapeutically effective amount of a composition according to claim 17.
- 38. A method of inhibiting AKT activity in a patient comprising the step of administering to said patient a composition according to claim 17.

39. A method of treating an AKT-mediated disease, which method comprises administering to a patient in need of such a treatment a therapeutically effective amount of a composition according to claim 17.