Basics

Word Embeddings

Learning goals

- Understand what word embeddigns are
- Learn the main methods for creating them

MOTIVATION (1)

- How to represent words/tokens in a neural network?
- Possible solution: one-hot encoded indicator vectors of length |V|.

$$\vec{w}^{(\text{the})} = \begin{bmatrix} 1\\0\\0\\\vdots \end{bmatrix} \quad \vec{w}^{(\text{cat})} = \begin{bmatrix} 0\\1\\0\\\vdots \end{bmatrix} \quad \vec{w}^{(\text{dog})} = \begin{bmatrix} 0\\0\\1\\\vdots \end{bmatrix}$$

- Question: Why is this a bad idea?
 - Parameter explosion (|V| might be > 1M)
 - All word vectors are orthogonal to each other
 - ightarrow no notion of word similarity

MOTIVATION (2)

- ullet Learn one word vector $ec{w}^{(i)} \in \mathbb{R}^D$ ("word embedding") per word i
- Typical dimensionality: $50 \le D \le 1000 \ll |V|$
- Embedding matrix: $\mathbf{W} \in \mathbb{R}^{|V| \times D}$
- Question: Advantages of using word vectors?

MOTIVATION (2)

- Learn one word vector $\vec{w}^{(i)} \in \mathbb{R}^D$ ("word embedding") per word i
- Typical dimensionality: $50 \le D \le 1000 \ll |V|$
- Embedding matrix: $\mathbf{W} \in \mathbb{R}^{|V| \times D}$
- Question: Advantages of using word vectors?
 - We can express similarities between words, e.g., with cosine similarity:

$$\cos(\vec{w}^{(i)}, \vec{w}^{(j)}) = \frac{\vec{w}^{(i)T} \vec{w}^{(j)}}{\|\vec{w}^{(i)}\|_2 \cdot \|\vec{w}^{(j)}\|_2}$$

• Since the embedding operation is a *lookup operation*, we only need to update the vectors that occur in a given training batch

MOTIVATION (3)

Supervised training?

- Training embeddings from scratch:
 - → Initialize randomly and learn it during training phase
 - → Words that play similar roles w.r.t. task get similar embeddings
- Example: Sentiment Classification
 - \rightarrow We might expect $\vec{w}^{(great)} \approx \vec{w}^{(awesome)}$
- Question: What could be a problem at test time?
 - If training set is small, many words are unseen during training and therefore have random vectors
- We typically have more unlabeled than labeled data.
 - → Can we learn embeddings from the unlabeled data?

©

MOTIVATION (4)

- Distributional hypothesis:
 "A word is characterized by the company it keeps" (J.R. Firth, 1957)
- Idea:
 Learn similar vectors for words that occur in similar contexts
- Three different (milestone) methods:
 - Word2Vec ► (Mikolov et al., 2013)

 - FastText ► (Bojanowski et al., 2016)

WORD2VEC AS A BIGRAM LANGUAGE MODEL

Model architecture:

- Words in our vocabulary are represented as two sets of vectors:
 - $\vec{w}^{(i)} \in \mathbb{R}^D$ if they are to be predicted
 - $\vec{v}^{(i)} \in \mathbb{R}^D$ if they are conditioned on as context
- Predict word *i* given previous word *j*:

$$P(i|j) = f(\vec{w}^{(i)}, \vec{v}^{(j)})$$

• Question: What is a possible function $f(\cdot)$?

WORD2VEC AS A BIGRAM LANGUAGE MODEL

Softmax!

$$P(i|j) = \frac{exp(\vec{w}^{(i)T}\vec{v}^{(j)})}{\sum_{k=1}^{|V|} exp(\vec{w}^{(k)T}\vec{v}^{(j)})}$$

• Question: Problem with training softmax?

WORD2VEC AS A BIGRAM LANGUAGE MODEL

Softmax!

$$P(i|j) = \frac{exp(\vec{w}^{(i)T}\vec{v}^{(j)})}{\sum_{k=1}^{|V|} exp(\vec{w}^{(k)T}\vec{v}^{(j)})}$$

• Question: Problem with training softmax?

Needs to compute dot products with the whole vocabulary in the denominator for every single prediction

$$\rightarrow$$
 SLOW

SPEEDING UP TRAINING: NEGATIVE SAMPLING

- One option: **Hierarchical Softmax** (not covered) reduces complexity from $\mathcal{O}(|V|)$ to $\mathcal{O}(log_2|V|)$
- Another trick: Negative Sampling
 (a variant of noise contrastive estimation)
 - \rightarrow Changes the objective function; the resulting model is not a language model anymore!
- Idea: Instead of predicting the probability distribution over whole vocabulary, make binary decisions for a small number of words.
 - "Positive" samples: Bigrams seen in the corpus.
 - "Negative" samples: Random bigrams (not seen in corpus)

NEGATIVE SAMPLING: LIKELIHOOD

- Given:
 - Positive training set: $pos(\mathcal{O})$
 - Negative training set: $neg(\mathcal{O})$

$$L = \prod_{(i,j) \in \operatorname{pos}(\mathcal{O})} P(\operatorname{pos}|\vec{w}^{(i)}, \vec{v}^{(j)}) \prod_{(i',j') \in \operatorname{neg}(\mathcal{O})} P(\operatorname{neg}|\vec{w}^{(i')}, \vec{v}^{(j')})$$

- $P(pos|\vec{w}, \vec{v}) = \sigma(\vec{w}^T \vec{v})$
- $P(\text{neg}|\vec{w}, \vec{v}) = 1 P(\text{pos}|\vec{w}, \vec{v})$
- Question: Why not just maximize $\prod_{(i,j)\in pos(\mathcal{O})} P(pos|\vec{w}^{(i)},\vec{v}^{(j)})?$
 - Trivial solution: make all \vec{w} , \vec{v} identical

WORD2VEC WITH NEGATIVE SAMPLING

Maximize likelihood of training data:

$$\mathcal{L}(\theta) = \prod_{i} P(y^{(i)}|x^{(i)};\theta)$$

⇔ minimize negative log likelihood:

$$NLL(\theta) = -\log \mathcal{L}(\theta) = -\sum_{i} \log P(y^{(i)}|x^{(i)};\theta))$$

WORD2VEC WITH NEGATIVE SAMPLING

- Question: What do these components stand for in Word2Vec with negative sampling?
 - $x^{(i)}$ Word pair, from corpus OR randomly created
 - $v^{(i)}$ Label:
 - 1 = word pair is from positive training set,
 - 0 = word pair is from negative training set
 - θ Parameters \vec{v} , \vec{w}
 - P(...) Logistic sigmoid: $P(1|\cdot) = \sigma(\vec{w}^T \vec{v})$, resp. $P(0|\cdot) = 1 \sigma(\vec{w}^T \vec{v})$.

SPEEDING UP TRAINING: NEGATIVE SAMPLING

- Constructing a good negative training set can be difficult
- Often it is some random perturbation of the training data (e.g. replacing the second word of each bigram by a random word).
- The number of negative samples is often a multiple (1x to 20x) of the number of positive samples
- Negative sets are often constructed per batch

QUESTIONS

 Question: How many dot products do we need to calculate for a given word pair? How does this compare to the naive and hierarchical softmax?

•
$$M + 1 \approx \log_2 |V| \ll |V|$$

(for $M = 20, |V| = 1,000,000$)

SKIP-GRAM (WORD2VEC)

Create a fake task:

- Training objective: Given a word, predict the neighbouring words
- Generation of samples: Sliding fixed-size window over the text

Example: Window size = 2

The	quick	brown	fox	jumps	over	the	lazy	dog
⇒ (the, quick); (the, brown)								
The	quick	brown	fox	jumps	over	the	lazy	dog
⇒ (quick, the); (quick, brown); (quick, fox)								
The	quick	brown	fox	jumps	over	the	lazy	dog
⇒ (brown, the); (brown, quick), (brown, fox), (brown, jumps)								

©

SKIP-GRAM (WORD2VEC)

- Idea: Learn many bigram language models at the same time.
- Given word w_[t], predict words inside a window around w_[t]:
 - One position before the target word: $p(w_{[t-1]}|w_{[t]})$
 - One position after the target word: $p(w_{[t+1]}|w_{[t]})$
 - Two positions before the target word: $p(w_{[t-2]}|w_{[t]})$
 - ... up to a specified window size c.
- Models share all \vec{w} , \vec{v} parameters!

Skip-gram

SKIP-GRAM: OBJECTIVE

Optimize the joint likelihood of the 2c language models:

$$p(w_{[t-c]} \dots w_{[t-1]} w_{[t+1]} \dots w_{[t+c]} | w_{[t]}) = \prod_{\substack{l \in \{-c \dots c\}\\l \neq 0}} p(w_{[t+l]} | w_{[t]})$$

• Negative Log-likelihood for whole corpus (of size *N*):

$$NLL = -\sum_{t=1}^{N} \sum_{\substack{i \in \{-c...c\}\\i \neq 0}} \log p(w_{[t+i]}|w_{[t]})$$

Using negative sampling as approximation:

$$\approx -\sum_{t=1}^{N} \sum_{\substack{i \in \{-c...c\}\\i \neq 0}} \left[\log \sigma(\vec{w}_{[t+i]}^{T} \vec{v}_{[t]}) + \sum_{m=1}^{M} \log[1 - \sigma(\vec{w}^{(*)^{T}} \vec{v}_{[t]})] \right]$$

• $\vec{w}^{(*)}$ is the word vector of a random word, M is the number of negatives per positive sample

CONTINUOUS BAG OF WORDS (CBOW)

Create a fake task:

- Training objective: Given a context, predict the center word
- Generation of samples: Sliding fixed-size window over the text

Example: Window size = 2

The	quick	brown	fox	jumps	over	the	lazy	dog
⇒ ([the, quick, fox, jumps], brown)								
The	quick	brown	fox	jumps	over	the	lazy	dog
⇒ ([quick, brown, jumps, over], fox)								
The	quick	brown	fox	jumps	over	the	lazy	dog
\Rightarrow ([brown, fox, over, the], jumps)								

©

CONTINUOUS BAG OF WORDS (CBOW)

- Like Skipgram, but...
- Predict word w_[t], given the words inside the window around w_[t]:

$$\rho(w_{[t]}|w_{[t-c]}\dots w_{[t-1]}w_{[t+1]}\dots w_{[t+c]})$$

$$\propto \vec{w}_{[t]}^T \sum_{i \in -c\dots c} \vec{v}_{[t+i]}$$

CBOW

FASTTEXT (1)

Accomplishments:

- Words can be repesented as dense, low-dimensional vectors
- Easy to capture similarity between words
- Additive Compositionality of word vectors

Open issues:

- Even if we train Word2Vec on a very large corpus, we will still encounter unknown words at test time
- What about rare words?
- Orthography can often help us:
- $\vec{w}^{\text{(remuneration)}}$ should be similar to
 - $\vec{w}^{\text{(remunerate)}}$ (same stem)
 - $\vec{w}^{(\text{iteration})}, \vec{w}^{(\text{consideration})} \dots$ (same suffix \approx same POS)

FASTTEXT (2)

known word:
$$\vec{w}^{(i)} = \frac{1}{|\operatorname{ngrams}(i)| + 1} \left[\vec{u}^{(i)} + \sum_{n \in \operatorname{ngrams}(i)} \vec{u}^{(n)} \right]$$
unknown word: $\vec{w}^{(i)} = \frac{1}{|\operatorname{ngrams}(i)|} \sum_{n \in \operatorname{ngrams}(i)} \vec{u}^{(n)}$

FASTTEXT (3)

Assume, we want to represent the word example:

• Character n-grams (n = 3):

```
<ex, exa, xam, amp, mpl, ple, le>, <example>
```

- In practice, we don't set n = a but rather $a \le n \le b$
- Character n-grams $(2 \le n \le 4)$:

```
<e, ex, xa, am, mp, pl, le, e>,
<ex, exa, xam, amp, mpl, ple, le>,
<exa, exam, xamp, ampl, mple, ple>,
<example>
```

• Note, that the 4-gram *exam* is different from the word <exam>.

FASTTEXT TRAINING

- ngrams typically contains character 3- to 6-grams
- Replace \vec{w} in Skipgram objective with its new definition
- During backpropagation, loss gradient vector $\frac{\partial L}{\partial \vec{w}^{(i)}}$ is distributed to word vector $\vec{u}^{(i)}$ and associated n-gram vectors $\vec{u}^{(n)}$

SUMMARY

- Word2Vec as a bigram Language Model
- Negative Sampling
- Skipgram: Predict words in window given word in the middle
- CBOW: Predict word in the middle given words in window
- fastText: N-gram embeddings generalize to unseen words
- Any questions?

USING PRETRAINED EMBEDDINGS

- Knowledge transfer from unlabelled corpus
- Design choice: Fine-tune embeddings on task or freeze them?
 - Pro: Can learn/strengthen features that are important for task
 - Contra: Training vocabulary is small subset of entire vocabulary → we might overfit and mess up topology w.r.t. unseen words

INITIALIZING NN WITH PRETRAINED EMBEDDINGS

Model		MR	SST-1	SST-2	Subj	TREC	CR	MPQA
CNN-rand	(randomly initialized)	76.1	45.0	82.7	89.6	91.2	79.8	83.4
CNN-static	(pretrained+frozen)	81.0	45.5	86.8	93.0	92.8	84.7	89.6
CNN-non-static	(pretrained+fine-tuned)	81.5	48.0	87.2	93.4	93.6	84.3	89.5
CNN-multichanne	el (combination)	81.1	47.4	88.1	93.2	92.2	85.0	89.4

Table from Kim 2014: Convolutional Neural Networks for Sentence Classification.

RESOURCES

- https://fasttext.cc/docs/en/crawl-vectors.html
 - Embeddings for 157 languages, trained on big web crawls, up to 2M words per language
- https://nlp.stanford.edu/projects/glove/
 - GloVe word vectors: Co-occurrence-count objective, not n-gram based

ANALOGY MINING (1)

country-capital

$$\vec{w}^{(\text{Tokio})} - \vec{w}^{(\text{Japan})} + \vec{w}^{(\text{Poland})} \approx \vec{w}^{(\text{Warsaw})}$$

opposite

$$ec{w}^{(ext{unacceptable})} - ec{w}^{(ext{acceptable})} + ec{w}^{(ext{logical})} pprox ec{w}^{(ext{illogical})}$$

Nationality-adjective

$$\vec{W}$$
(Australian) $-\vec{W}$ (Australia) $+\vec{W}$ (Switzerland) $\approx \vec{W}$ (Swiss)

ANALOGY MINING (2)

ANALOGY MINING (3)

$$\vec{w}^{(a)} - \vec{w}^{(b)} + \vec{w}^{(c)} = \vec{w}^{(?)}$$

$$\vec{w}^{(d)} = \underset{\vec{w}^{(d')} \in \mathbf{W}}{\operatorname{argmax}} \cos(\vec{w}^{(?)}, \vec{w}^{(d')})$$

Table 8: Examples of the word pair relationships, using the best word vectors from Table (4) (Skipgram model trained on 783M words with 300 dimensionality).

Relationship	Example 1	Example 2	Example 3	
France - Paris	Italy: Rome	Japan: Tokyo	Florida: Tallahassee	
big - bigger	small: larger	cold: colder	quick: quicker	
Miami - Florida	Baltimore: Maryland	Dallas: Texas	Kona: Hawaii	
Einstein - scientist	Messi: midfielder	Mozart: violinist	Picasso: painter	
Sarkozy - France	Berlusconi: Italy	Merkel: Germany	Koizumi: Japan	
copper - Cu	zinc: Zn	gold: Au	uranium: plutonium	
Berlusconi - Silvio	Sarkozy: Nicolas	Putin: Medvedev	Obama: Barack	
Microsoft - Windows	Google: Android	IBM: Linux	Apple: iPhone	
Microsoft - Ballmer	Microsoft - Ballmer Google: Yahoo		Apple: Jobs	
Japan - sushi	Germany: bratwurst	France: tapas	USA: pizza	

SUMMARY

- Applications of Word Embeddings
 - Word vector initialization in neural networks for NLP tasks
 - E.g., sentiment classification of reviews, topical classification of news
 - Analogy mining
 - Information retrieval: semantic search, query expansion
 - Simple and fast aggregations of sentence representations
 - . . .
- Any questions...?

(C)