Price Prediction of Ames Homes

Alex Walsh

Problem Statement

- Many factors influence the price of a home, making it a difficult quantity to assess
 - Realtors can struggle to create an appropriate listing price
 - Buyers have no way to know if a home priced fairly

• Linear regression techniques can be used to estimate price of homes

The Data

• The dataset is properties sold in Ames, Iowa

• The data is from 2006 to 2010

Data contains both numerical and categorical features

Alternative Target: Price per Area

Sale price may not be the ideal target for regression

 Property size can make other features harder to learn

 In addition, I tested models which tried to predict price per unit area

Data Splitting

 Certain features can be used to define two "types" of data points

 Each type of data point can be fitted with its own linear model

The Approach: Grid Search

 Model performance was used to determine what choices to make with the data

- 51,840 different preliminary models were tested
- Power transformations were applied to every feature

$$y_i^{(\lambda)} = egin{cases} ((y_i+1)^\lambda-1)/\lambda & ext{if } \lambda
eq 0, y \geq 0 \ \log(y_i+1) & ext{if } \lambda = 0, y \geq 0 \ -((-y_i+1)^{(2-\lambda)}-1)/(2-\lambda) & ext{if } \lambda
eq 2, y < 0 \ -\log(-y_i+1) & ext{if } \lambda = 2, y < 0 \end{cases}$$

Results

Lasso(λ =0.00497)

 $R^2 = 0.937$

RMSE = \$14, 401

Baseline RMSE = \$57,178

Summary

 Many different hyperparameters were tested and the Lasso model was chosen as the best

• Data splitting led to better training fits, but did not generalize well

Price per area was a better target on average, but the best models used price