Introduction to Multivariate Regression & Econometrics HED 612

Lecture 4

- 1. Prep
- 2. Introduction to Bivariate Regression

Prep

Download Data and Open R Script

Download Data and Open R Script

- 1. Download the Lecture 4 PDF and R files for this week
 - ▶ Place all files in HED612_S21 »> lectures »> lecture4
- 2. Open the RProject (should be in your main HED612_S21 folder)
- 3. Once the RStudio window opens, open the Lecture 4 R script by clicking on:
 - ▶ file »> open file... »> [navigate to lecture 4 folder] »> lecture4.R

We will be using the GSS and CA School datasets today so no need to re-downlaod

Homework Review

- Common Issues and Concerns
 - Technical Issues with R
 - ▶ Errors/Issues arise whether you are new to R or have been using R for 10+ years
 - Don't be afraid to get errors; don't let errors discourage you; do your best to solve the problem but if you can't figure it out ask for help!
 - You are not the only one getting errors! Nearly half the class emailed me in the last 6 hours.
 - Precisely why I use D2L discussion boards when teaching methods classes; please don't feel embarrassed to post!
 - As a class lets all subscribe to these discussion boards! [Show on D2L]
 - ▶ GSS Data
 - Income example is great conceptually as we try to "understand" regression; variable is created a little worky!
 - I could pick another example; but the wonkyness is part of life as a quantitative research!
 - We need good researchers that understand and can manage data well in positions that prevent these sorts of issues [You!]

HED R Coding Group

THURSDAYS (for Spring 2021) 5PM - 7PM

http://bit.ly/hedrcoding

Building a supportive R coding community.

All levels encouraged to attend!

Special guest appearances by Dr. Karina Salazar.

Today and Next Week

Today

- Intro to Bivariate Regression
 - linear regression model
 - estimating parameters

HW & Reading

- ► HW#4 posted on D2L
- Stock & Watson Ch. 4 [finish if you haven't]

Next Week

- ▶ Bivariate regression
 - Prediction
 - Model fit

Introduction to Bivariate Regression

Purpose of Regression

- Regression analysis is a statistical method that helps us analyze and understand the relationship between 2+ variables
- What is the purpose of regression in descriptive research (sometimes called "observational studies" or "predictive" studies)?
 - To understand relationship(s) between one dependent variable (Y) to one or more indepedent variable (X, Z, etc.)
 - Not concerned with "direction" or "cause": Does X cause Y? Does Y cause X?
 - Interested in "prediction"
 - Example: predict poverty status based on having a cell phone
- What is the purpose of regression in econometrics research (sometimes called "causal studies")?
 - To estimate the causal effect of an independent variable (X) on a dependent variable (Y)
 - ▶ Very concerned with "direction" or "cause": Does X cause Y?
 - Interested in recreating experimental conditions or what would have happened under a randomized control trial
 - Example: What is the effect of class size on student learning?
- ▶ Most of my research is descriptive; but I teach this class in a "causal" way... why?
 - ▶ One type of research is not better than the other; it's just really important to understand the difference. Ex: Lack of a cell phone doesn't cause poverty!
 - Causal research forces you to be very purposeful about your models!
 - Policy makers/decision makers don't just care if there is a relationship between class size and student learning; they want to know if we decrease class size by two students what is the expected change in student test scores

Regression: Models, Variables, Relationships

Linear Regression Model vs Non-Linear Regression Models

- Linear regression model (general linear model)
 - the dependent variable is continuous
 - e.g., GPA, test scores, income
 - the focus of this class!
- Non-linear regression models (logit, ordinal, probit, poisson, negative binomial)
 - the dependent variable is non-continuous (i.e., categorical, binary, counts)
 - e.g., persistence, likert scales, type of major
 - focus of HED 613 (Spring 2022/Maybe Fall 2021)

Bivariate vs Multivariate Regression

- Bivariate regression (sometimes also called univariate, simple regression)
 - lacktriangle One dependent variable (Y) and one independent variable of interest (X_1)
- Multivariate regression (for econometrics/causal inference)
 - One dependent variable (Y) and one independent variable of interest (X₁); and multiple control variables (X₂,X₃,X₄,etc.)

Linear Relationship vs Non-Linear Relationship between X and Y

- Draw linear vs non-linear relationship scatterplots; show in R
- We will focus on modeling linear relationship between X and Y for first half of the course
- Then we will cover non-linear relationships

Rest of Lecture: Same Example as Last Week

- We will be using the same example as last week:
 - What is the effect of hours worked (X) on income (Y)?
- ▶ We'll be using the continuous version of income from PS3
 - realrinc

Slope Measures relationship between X and Y

- Research Question
 - What is the effect of hours worked (X) on annual income (Y)
- What do we want to measure?
 - The relationship between hours worked (X) and income (Y)
 - If we increase the number of hours worked per week by one additional hour, how much do we expect annual income to change?
- \blacktriangleright We want to measure β

$$\beta = \frac{(Y_2 - Y_1)}{(X_2 - X_1)} = \frac{\Delta Y}{\Delta X}$$

- In other words, the slope of the relationship between X and Y
- ▶ Under the assumption of a linear relationship
- Draw line showing linear relationship between X and Y

$$x_1 = 31, x_2 = 32, y_1 = $30,000, Y_2 = $35,000$$

ightharpoonup Calculate slope at different points and for different ΔX

Population Linear Regression Model

Population Linear Regression Model

Population Linear Regression Model

$$Y_i = \beta_0 + \beta_1 X_i + u_i$$

Where:

- $ightharpoonup Y_i = {\sf income for person i}$
- $igwedge X_i = ext{hours worked per week for person i}$
- $ightharpoonup eta_0$ ("population intercept") = average income for someone with X=0
- eta_1 ("population regression coefficient") = average effect of a one-unit increase in X on the value of Y
- u_1 ("error term" or "residual") = all other variables not included in your model that affect the value of Y

Draw Picture

- Scatterplot of the population
- Population regression model line
- Label the following:
 - β_0
 - β_1
 - residual (predicted value of Y_i)

Population Regression Model

Population Linear Regression Model $Y_i = \beta_0 + \beta_1 X_i + u_i$

Contains two population parameters

- \triangleright β_0 ("population intercept") = average income for someone with X=0
- eta_1 ("population regression coefficient") = average effect of a one-unit increase in X on the value of Y
- ▶ How do we know these are population parameters? (hint: notation)
- ▶ Do we usually know the value of β_0 or β_1 ?

Population regression coefficient, β_1

What is the effect of hours worked per week (X) on income (Y)?

- Answer: population regression coefficient, β_1
- Estimating β_1 is the fundamental goal of causal inference/this course

What is the population regression coefficient, β_1 ?

- $ightharpoonup eta_1$ measures the average change in Y for a one-unit increase in X
- ▶ Think of β_1 as measuring the slope of our prediction line!
- $\blacktriangleright \ \beta_1 = \frac{\Delta Y}{\Delta X} = \frac{\Delta Income}{\Delta HoursWorked}$
- \blacktriangleright Example: $\beta_1 = \frac{\$5000\Delta Income}{1hour\Delta HoursWorked} = \$5,000$

Interpretation (we will use this all semester!)

- ▶ General interpretation:
 - \blacktriangleright On average, a one unit-increase in X is associated with a β_1 increase (or decrease) in the value of Y
- Interpretation from example above:
 - On average, a one-hour increase in hours worked per week (X) is associated with a 5,000 (β_1) increase in annual income (Y)
- ▶ Interpret if $\beta_1 = \$2,000$; or $\beta_1 = \$4,000$

Population regression coefficient, β_1

Some important things to remember:

- If β_1 (i.e., the relationship between X and Y) is linear, then the average change in Y for a one-unit increase in X is the same no matter the starting value of X
 - Like plot example from earlier
- β_1 measures the average effect on Y for a one-unit increase in X; this effect on an individual observation may be different than this average effect!
- lacksquare eta_1 is a population parameter. We hardly ever know population parameters. So we estimate eta_1 using sample data!

Population Intercept, β_0

What is the effect of hours worked per week (X) on annual income (Y)?

$$Y_i = \beta_0 + \beta_1 X_i + u_i$$

 β_0 is the "population intercept"

- $\triangleright \beta_0$ = the average value of Y when X=0
- ▶ Here, β_0 , is the average annual income for someone that works zero hours per week (X=0)
- Usually, we are not substantively interested in β_0
- \blacktriangleright Sometimes eta_0 is non-sensical or there's too few observations at X=0 to calculate a precise estimate (e.g., effect of age on income)

Population Linear Regression Line

Population Linear Regression LINE

Population Linear Regression Model $Y_i = \beta_0 + \beta_1 X_i + u_i$

We sometimes deconstruct the Population Linear Regression Model into two parts:

- (1) **Population** Linear Regression LINE/ Regression Function: $Y_i = \beta_0 + \beta_1 X_i$
- (2) **Population** "Error" or "Residual" Term: u_i
- Population regression line: just a linear prediction line, like the one in the scatterplot if the scatterplot contained all observation in the population
- ightharpoonup Population regression line measures the "average" or "expected" relationship between X and Y, ignoring variables that we excluded from the model (i.e., u_i)

Population Linear Regression LINE

Population regression line and Expected Value, E(Y)

- Expected value of Y (for a sample mean/ one variable)
 - $E(Y) = \mu_Y$
- Expected value of Y, given the value of X (relationship between two variables)
 - $E(Y|X) = \beta_0 + \beta_1 X_i$
 - be the population regression line is expected value of Y for a given value of X
- Population regression line and prediction
 - If we know value of parameters, β_0 and β_1 , we can predict value of Y
 - Example: $\beta_0 = \$5,000$ and $\beta_1 = \$2,000$
 - (1) Predict the value of Y (annual income) for someone that works 20 hours per week
 - (2) Predict the value of Y (annual income) for someone that works 45 hours per week

u_i as "Error Term"

- Population linear regression model
 - $Y_i = \beta_0 + \beta_1 X_i + u_i$
 - ightharpoonup Y= income; X_i = hours worked
- In causal inference research:
 - Error term u_i represents (consists of) all other variables besides X that are not included in your model that affect the dependent variable
 - In other words, the error term consists of all other factors (i.e., variables) responsible for the difference between the ith district's average test score and the value predicted by the regression line
 - This interpretation will become super important down the road!
- ▶ Example of Y= income; X_i= hours worked; the error term u_i would consist of other factors besides hours worked that have an effect on yearly income!
 - Occupation: a hedge fund manager can 20 hours a week and make millions (maybe not last week tho!); an essential worker can 80+ hours and still only \$40k
 - Race: BIPOC face discrimination in labor wages
 - ► Gender pay gap!
- In other social science based statistics classes
 - Interpret the u_i as the overall error in the prediction of Y due to random variation

u_i as "Residual"

- ▶ Population linear regression model
 - $Y_i = \beta_0 + \beta_1 X_i + u_i$
 - ightharpoonup Y= income; X_i = hours worked
- $\triangleright u_i$ as the residual
 - Population regression line represents the predicted value of Y (income) for each value of X (hours worked)
 - Residual = the predicted value of Y observed value of Y for any given value of X
- lacktriangle Easier to conceptually think about u_i in terms of each observation, i
 - $Y_i = \text{actual value of income for person i}$
 - $Y_i = \beta_0 + \beta_1 X_i = \text{Population Regression line}$
 - The predicted value of income for person i with hours worked $= X_i$
 - Residual, u_i
 - The difference between actual value, Yi, and predicted value from the population regression line for observation i
 - $u_i = Y_i (\beta_0 + \beta_1 X_i)$

BREAK [5-10 min]

Estimating Regression Parameters

General things we do in regression analysis

- 1. Estimation [Today]
- ▶ How do we choose estimates of β_0 and β_1 using sample data?
- 2. Prediction [Next Week]
- ▶ What is the predicted value of Y for someone with a particular value of X?
- 3. Hypothesis testing [focus of the rest of the semester]
- \blacktriangleright Hypothesis testing and confidence intervals about β_1

Step 1 of regression: Estimate Parameters

Population linear regression model

$$Y_i = \beta_0 + \beta_1 X_i + u_i$$

Goal of estimation is to:

- ▶ Use sample data to estimate the population intercept, β_0 , and the population regression coefficient, β_1
- $ightharpoonup \hat{eta_0}$ is an estimate of eta_0
- \triangleright $\hat{\beta_1}$ is an estimate of β_1
 - How dow we know these estimates are based on sample data and not population parameters? (hint: notation!)

Estimation problem:

Need to develop a method for choosing values of $\hat{\beta_0}$ and $\hat{\beta_1}$

Estimation (population mean)

We faced a similar estimation problem in intro to stats!

- lacktriangledown Use sample to calculate the "best" estimate of the population mean, μ_{Y}
- \blacktriangleright We decided sample mean, \bar{Y} , was the "best" estimate!

Criteria we used to determine \bar{Y} was "best" estimate of μ_Y

- $\blacktriangleright m$ is all potential estimates for μ_Y
- ▶ Goal: choose the value, m , that minimizes the "sum of squares"
 - Sum of squares $=\sum_{i=1}^{n} (Y_i m)^2$
 - $ar{Y}$ is the value of m that minimizes sum of squares
 - So \bar{Y} is the "least squares" estimator

Draw scatterplot:

- (1) Horizontal line representing sample mean
 - Show formula for sum of square errors

Estimation (regression)

Problem in regression:

- \blacktriangleright Need to develop method for selecting the "best" estimate of $\hat{\beta_0}$ and $\hat{\beta_1}$
- Solution: similar to what we do for population mean!

First some terminology:

- $\triangleright Y_i$ is the actual observed value of Y for individual i
- \hat{Y}_i is the predicted value of Y_i , based on sample data!
 - $\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i$
- lacktriangle Estimated residual, \hat{u}_i is the difference between actual Y_i and predicted \hat{Y}_i
 - $Y_i \hat{Y}_i = \hat{u}_i$
 - $Y_i (\hat{\beta_0} + \hat{\beta_1} X_i) = \hat{u_i}$
 - Residuals are sometimes called "errors"

Estimation (regression)

Criteria for choosing "best" estimate of $\hat{\beta_0}$ and $\hat{\beta_1}$

Select values that minimize "sum of squared residuals"

Sum of squared residuals (or sometimes called "sum of squared errors"):

- $\blacktriangleright \ \sum_{i=1}^n \ (Y_i \hat{Y_i})^2$
- $\blacktriangleright \ \sum_{i=1}^n \ (Y_i (\hat{\beta_0} + \hat{\beta_1} X_i))^2$
- $\blacktriangleright \sum_{i=1}^n (u_i)^2$

 $\begin{tabular}{ll} \textbf{Ordinary Least Squares} is a linear method for estimating parameters in a linear regression model \\ \end{tabular}$

- Method draws a line through the sample data points that minimizes the sum of squared residuals, or in other words, the differences between the observed values and the corresponding fitted values
- Minimization is achieved via calculus (derivatives). R will calculate this for you (phew!)
- \blacktriangleright Best estimates of $\hat{\beta}_0$ and $\hat{\beta}_1$ are those that any other alternatives would result in a higher sum of squared residuals

OLS Prediction Line

Population Linear Regression Model

$$Y_i = \beta_0 + \beta_1 X_i + u_i$$

OLS Prediction Line or "OLS Regression Line" (based on sample data)

- $\blacktriangleright \hat{Y}_i = \hat{\beta_0} + \hat{\beta_1} X_i$
- ▶ Our OLS prediction line chose the best estimates of $\hat{\beta_0}$ and $\hat{\beta_1}$ as those that any other alternatives would result in a higher sum of squared residuals
- ▶ Draw this out...

Let's write run our first regression and write out our models!

RQ: What is the effect of hours worked per week on annual income?

mod1 <- lm(realrinc ~ hrs1, data=gss)</pre>

Run regression in R

```
summary(mod1)
Call:
lm(formula = realrinc ~ hrs1, data = gss)
Residuals:
   Min
           10 Median
                         30
                               Max
-42321 -14391 -6999
                       5486 143635
Coefficients:
            Estimate Std.
                          error t value
                                                   Pr(>|t|)
(Intercept) 6960.84
                        2536.32 2.744
                                                    0.00615 **
              454.69
                          57.21
                                  7.947 0.00000000000000445 ***
hrs1
Signif. codes:
                             (**, 0.01 (*, 0.05 (', 0.1 (', 1
Residual standard error: 28140 on 1174 degrees of freedom
  (1172 observations deleted due to missingness)
Multiple R-squared: 0.05105, Adjusted R-squared: 0.05024
F-statistic: 63.16 on 1 and 1174 DF, p-value: 0.0000000000000004447
```

Let's write run our first regression and write out our models!

RQ: What is the effect of hours worked per week on annual income?

Write out and label everything within the following: [we will be doing this all semester!]

- 1. Population regression model
 - Label Y; Label X
- 2. OLS Prediction Line (without estimates)
 - ▶ Define $\hat{\beta_0}$?
 - \triangleright Define $\hat{\beta_1}$?
- 3. OLS Prediction Line (with estimates)
 - Interpret $\hat{\beta_0}$ given the estimate
 - Interpret $\hat{\beta_1}$ given the estimate
- 4. Predict the expected value of \hat{Y}_i for someone that works 60 hours a week.

In-Class Group Exercise

RQ: What is the effect of age on annual income??

hint! X = age and Y = realrinc

Write out and label everything within the following

- Recommendation: Practice how to write out equations in Word; touch-screen devices share your screen via whiteboard
- 1. Population regression model
 - Label Y; Label X
- 2. OLS Prediction Line (without estimates)
 - ▶ Define $\hat{\beta_0}$?
 - ▶ Define $\hat{\beta_1}$?
- 3. OLS Prediction Line (with estimates)
 - Run regression in R and print to get estimates:
 - mod2 <- lm(realrinc ~ age, data=gss)</pre>
 - summary (mod2)
 - Interpret \hat{eta}_0 given the estimate
 - Interpret $\hat{\beta_1}$ given the estimate
- 4. Predict the expected value of \hat{Y}_i for someone that is 18 years old.

In-Class Group Exercise [Solutions]

RQ: What is the effect of age on annual income??

- 1. Population regression model
 - $Y_i = \beta_0 + \beta_1 X_i + u_i$
 - Y = annual income; X = age
- 2. OLS Prediction Line (without estimates)
 - $\hat{Y}_i = \hat{\beta_0} + \hat{\beta_1} X_i$
 - $\hat{\beta_0}$? = Sample population intercept
 - i.e., the average value of Y when X=0
 - $\hat{\beta}_1 = \text{Sample regression coefficient}$
 - i.e., the average change in Y for one-unit increase in X
- 3. OLS Prediction Line (with estimates)
 - $\hat{Y}_i = \$8,620 + \$368X_i$
 - $\hat{\beta}_0 = \$8,620$
 - On average, someone who is age zero has an annual income of \$8,620
 - ightharpoonup Example of non-sensical $\hat{eta_0}$
 - $\hat{\beta}_1$? = \$368
 - On average, a one-year increase in age is associated with a \$368 increase in annual income
- 4. Predict the expected value of \hat{Y}_i for someone that is 18 years old.
 - $E(\hat{Y}_i|X=35) = \hat{Y}_i = \$8,620 + \$368 * 18$
 - $E(\hat{Y}_i|X=35) = \hat{Y}_i = \$8,620 + \$6,624$
 - $E(\hat{Y}_i|X=35) = $15,244$