deep learning project

April 21, 2025

1 Music Genre Classification with Deep Learning

Project Overview: This project implements a deep learning model to classify music genres using the GTZAN dataset. We'll use Mel-spectrograms as input features and train a convolutional neural network (CNN) for classification.

Dataset: We're using the GTZAN dataset, which contains 1,000 audio tracks (30 seconds each) across 10 genres: Blues, Classical, Country, Disco, Hip-hop, Jazz, Metal, Pop, Reggae, Rock.

```
[1]: # Import required packages
   import os
   import numpy as np
   import pandas as pd
   import matplotlib.pyplot as plt
   import seaborn as sns
   from sklearn.model_selection import train_test_split
   from sklearn.metrics import classification_report, confusion_matrix

import torch
   import torch.nn as nn
   import torch.optim as optim
   from torch.utils.data import Dataset, DataLoader
   import torchaudio
   from torchaudio.transforms import MelSpectrogram, AmplitudeToDB
```

```
[2]: # Set random seeds for reproducibility
torch.manual_seed(42)
np.random.seed(42)

# Check if GPU is available
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")
```

Using device: cpu

1.1 Data Loading and Preprocessing

```
[3]: # Define genre labels
     genres = ['blues', 'classical', 'country', 'disco', 'hiphop', 'jazz', 'metal', _
     →'pop', 'reggae', 'rock']
     genre_to_idx = {genre: i for i, genre in enumerate(genres)}
     # Define audio parameters
     SAMPLE RATE = 22050
     DURATION = 30 # seconds
     SAMPLES_PER_TRACK = SAMPLE_RATE * DURATION
     # Define Mel-spectrogram parameters
     n_fft = 2048
     hop_length = 512
     n_mels = 128
     # Create Mel-spectrogram transform
     mel_spectrogram = MelSpectrogram(
         sample_rate=SAMPLE_RATE,
         n fft=n fft,
         hop_length=hop_length,
         n_mels=n_mels,
        power=2.0
     )
     amplitude_to_db = AmplitudeToDB()
[4]: # Custom Dataset class
     class GTZANDataset(Dataset):
         def __init__(self, file_paths, labels, transform=None):
             self.file_paths = file_paths
             self.labels = labels
             self.transform = transform
         def __len__(self):
             return len(self.file_paths)
         def __getitem__(self, idx):
             audio_path = self.file_paths[idx]
             label = self.labels[idx]
             try:
                 # Load audio file with explicit backend
                 waveform, sr = torchaudio.load(audio_path, backend="soundfile")
```

Ensure sample rate matches

```
if sr != SAMPLE_RATE:
                     resampler = torchaudio.transforms.Resample(sr, SAMPLE_RATE)
                     waveform = resampler(waveform)
                 # Convert to mono if needed
                 if waveform.shape[0] > 1:
                     waveform = torch.mean(waveform, dim=0, keepdim=True)
             except Exception as e:
                 print(f"Error loading {audio_path}: {e}")
                 # Return a dummy tensor (3 seconds of silence)
                 waveform = torch.zeros((1, SAMPLE_RATE * 3))
                 sr = SAMPLE_RATE
             # Apply transforms
             if self.transform:
                 spectrogram = self.transform(waveform)
             else:
                 spectrogram = mel_spectrogram(waveform)
                 spectrogram = amplitude_to_db(spectrogram)
             return spectrogram, label
[5]: def collate_fn(batch): # Define collate_fn for padding spectrograms
         spectrograms, labels = zip(*batch)
         max len = max(s.shape[-1] for s in spectrograms) # Find the max length for
      \hookrightarrow padding
         padded_spectrograms = [
             torch.nn.functional.pad(s, (0, max_len - s.shape[-1])) # Pad_
      ⇔spectrograms
             for s in spectrograms
     ]
         return torch.stack(padded_spectrograms), torch.tensor(labels)
[6]: # Load dataset
     def load_dataset(data_dir):
         file_paths = []
         labels = []
         for genre in genres:
             genre_dir = os.path.join(data_dir, genre)
             for filename in os.listdir(genre_dir):
                 if filename.endswith('.wav'):
                     file_path = os.path.join(genre_dir, filename)
                     try:
                         # Test-load the file to check for corruption
```

```
waveform, sr = torchaudio.load(file_path,_
 ⇔backend="soundfile")
                    file_paths.append(file_path)
                    labels.append(genre_to_idx[genre])
                except:
                    print(f"Skipping corrupt file: {file path}")
   return file_paths, labels
# Update this path to match your actual dataset location
data_dir = "/Users/lea/Desktop/Data/genres_original"
file_paths, labels = load_dataset(data_dir)
# Split dataset into train, validation, and test sets
X_train, X_test, y_train, y_test = train_test_split(
   file_paths, labels, test_size=0.2, random_state=42, stratify=labels
X_train, X_val, y_train, y_val = train_test_split(
   X_train, y_train, test_size=0.1, random_state=42, stratify=y_train
)
```

Skipping corrupt file: /Users/lea/Desktop/Data/genres_original/jazz/jazz.00054.wav

```
[7]: # Create datasets
    train_dataset = GTZANDataset(X_train, y_train)
    val_dataset = GTZANDataset(X_val, y_val)
    test_dataset = GTZANDataset(X_test, y_test)

# Create data loaders
    batch_size = 32
    train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
    val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False)
    test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
```

[]:

1.2 Data Visualization

```
plt.tight_layout()
  plt.show()

# Plot a few examples
for i in range(3):
    spectrogram, label = train_dataset[i]
    plot_spectrogram(spectrogram, title=f'Genre: {genres[label]}')
```


1.3 Model Architecture

```
[9]: class MusicGenreCNN(nn.Module):
         def __init__(self, num_classes=10):
             super(MusicGenreCNN, self).__init__()
             # Convolutional layers (keep these the same)
             self.conv1 = nn.Sequential(
                 nn.Conv2d(1, 32, kernel_size=3, stride=1, padding=1),
                 nn.BatchNorm2d(32),
                 nn.ReLU(),
                 nn.MaxPool2d(kernel_size=2, stride=2)
             )
             self.conv2 = nn.Sequential(
                 nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1),
                 nn.BatchNorm2d(64),
                 nn.ReLU(),
                 nn.MaxPool2d(kernel_size=2, stride=2)
             )
             self.conv3 = nn.Sequential(
                 nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1),
                 nn.BatchNorm2d(128),
                 nn.ReLU(),
                 nn.MaxPool2d(kernel_size=2, stride=2)
             )
             # Add an adaptive pooling layer to handle varying input sizes
             self.adaptive_pool = nn.AdaptiveAvgPool2d((6, 6))
```

```
# Fully connected layers
              self.fc1 = nn.Sequential(
                  nn.Linear(128 * 6 * 6, 256), # input features
                  nn.BatchNorm1d(256),
                  nn.ReLU(),
                  nn.Dropout(0.5)
              )
              self.fc2 = nn.Sequential(
                  nn.Linear(256, 128),
                  nn.BatchNorm1d(128),
                  nn.ReLU(),
                  nn.Dropout(0.5)
              )
              self.fc3 = nn.Linear(128, num_classes)
          def forward(self, x):
              x = self.conv1(x)
              x = self.conv2(x)
              x = self.conv3(x)
              # Add adaptive pooling
              x = self.adaptive_pool(x)
              # Flatten the output
              x = x.view(x.size(0), -1)
              x = self.fc1(x)
              x = self.fc2(x)
              x = self.fc3(x)
              return x
[10]: # Initialize model
      model = MusicGenreCNN(num_classes=len(genres)).to(device)
      # Print model summary
      print(model)
     MusicGenreCNN(
       (conv1): Sequential(
         (0): Conv2d(1, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
         (1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True,
     track_running_stats=True)
         (2): ReLU()
         (3): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1,
     ceil_mode=False)
```

```
)
       (conv2): Sequential(
         (0): Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
         (1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True,
     track running stats=True)
         (2): ReLU()
         (3): MaxPool2d(kernel size=2, stride=2, padding=0, dilation=1,
     ceil mode=False)
       (conv3): Sequential(
         (0): Conv2d(64, 128, kernel size=(3, 3), stride=(1, 1), padding=(1, 1))
         (1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True,
     track_running_stats=True)
         (2): ReLU()
         (3): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1,
     ceil_mode=False)
       (adaptive_pool): AdaptiveAvgPool2d(output_size=(6, 6))
       (fc1): Sequential(
         (0): Linear(in features=4608, out features=256, bias=True)
         (1): BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True,
     track running stats=True)
         (2): ReLU()
         (3): Dropout(p=0.5, inplace=False)
       )
       (fc2): Sequential(
         (0): Linear(in_features=256, out_features=128, bias=True)
         (1): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True,
     track_running_stats=True)
         (2): ReLU()
         (3): Dropout(p=0.5, inplace=False)
       (fc3): Linear(in_features=128, out_features=10, bias=True)
[11]: # Define loss function and optimizer
      criterion = nn.CrossEntropyLoss()
      optimizer = optim.Adam(model.parameters(), lr=0.001)
      # Learning rate scheduler
      scheduler = optim.lr scheduler.ReduceLROnPlateau(optimizer, 'min', patience=3,,,
       →factor=0.1)
      # Training parameters
      num_epochs = 50
```

1.4 Training Loop

```
[12]: def train_model(model, train_loader, val_loader, criterion, optimizer,
       ⇔scheduler, num_epochs):
          train_loss_history = []
          train_acc_history = []
          val_loss_history = []
          val_acc_history = []
          best_val_acc = 0.0
          for epoch in range(num_epochs):
              model.train()
              running_loss = 0.0
              correct = 0
              total = 0
              for inputs, labels in train_loader:
                  inputs = inputs.to(device)
                  labels = labels.to(device)
                  # Zero the parameter gradients
                  optimizer.zero_grad()
                  # Forward pass
                  outputs = model(inputs)
                  loss = criterion(outputs, labels)
                  # Backward pass and optimize
                  loss.backward()
                  optimizer.step()
                  # Statistics
                  running_loss += loss.item()
                  _, predicted = torch.max(outputs.data, 1)
                  total += labels.size(0)
                  correct += (predicted == labels).sum().item()
              # Calculate training accuracy and loss
              train_loss = running_loss / len(train_loader)
              train_acc = correct / total
              train_loss_history.append(train_loss)
              train_acc_history.append(train_acc)
              # Validation phase
              model.eval()
              val_loss = 0.0
```

```
val_correct = 0
              val_total = 0
              with torch.no_grad():
                  for inputs, labels in val_loader:
                      inputs = inputs.to(device)
                      labels = labels.to(device)
                      outputs = model(inputs)
                      loss = criterion(outputs, labels)
                      val_loss += loss.item()
                      _, predicted = torch.max(outputs.data, 1)
                      val_total += labels.size(0)
                      val_correct += (predicted == labels).sum().item()
              val_loss = val_loss / len(val_loader)
              val_acc = val_correct / val_total
              val_loss_history.append(val_loss)
              val_acc_history.append(val_acc)
              # Update learning rate
              scheduler.step(val_loss)
              # Save best model
              if val acc > best val acc:
                  best_val_acc = val_acc
                  torch.save(model.state_dict(), 'best_model.pth')
              print(f'Epoch {epoch+1}/{num_epochs}:')
              print(f'Train Loss: {train_loss:.4f} | Train Acc: {train_acc:.4f}')
              print(f'Val Loss: {val_loss:.4f} | Val Acc: {val_acc:.4f}')
              print('-' * 50)
          return train_loss_history, train_acc_history, val_loss_history, u
       →val_acc_history
[14]: train_loader = DataLoader(
          train dataset,
          batch_size=32,
          shuffle=True,
```

```
train_dataset,
  batch_size=32,
  shuffle=True,
  collate_fn=collate_fn
)

val_loader = DataLoader(
  val_dataset,
  batch_size=32,
```

```
shuffle=False,
    collate_fn=collate_fn
)
test_loader = DataLoader(
    test_dataset,
    batch_size=32,
    shuffle=False,
    collate_fn=collate_fn
)
train_loss_hist, train_acc_hist, val_loss_hist, val_acc_hist = train_model(
    model, train_loader, val_loader, criterion, optimizer, scheduler, num_epochs
Epoch 1/50:
Train Loss: 1.8141 | Train Acc: 0.3936
Val Loss: 1.9315 | Val Acc: 0.3625
_____
Epoch 2/50:
Train Loss: 1.5259 | Train Acc: 0.4896
Val Loss: 1.4177 | Val Acc: 0.6000
_____
Epoch 3/50:
Train Loss: 1.3416 | Train Acc: 0.5619
Val Loss: 1.3963 | Val Acc: 0.5375
Epoch 4/50:
Train Loss: 1.1512 | Train Acc: 0.6718
Val Loss: 1.1442 | Val Acc: 0.6875
_____
Epoch 5/50:
Train Loss: 1.1016 | Train Acc: 0.6648
Val Loss: 1.4392 | Val Acc: 0.5250
Epoch 6/50:
Train Loss: 0.9446 | Train Acc: 0.7135
Val Loss: 0.8956 | Val Acc: 0.7375
Epoch 7/50:
Train Loss: 0.9560 | Train Acc: 0.6954
Val Loss: 1.0464 | Val Acc: 0.6000
Epoch 8/50:
Train Loss: 0.8631 | Train Acc: 0.7399
Val Loss: 2.2537 | Val Acc: 0.3125
Epoch 9/50:
```

Train Loss: 0.7528 | Train Acc: 0.7955 Val Loss: 0.8652 | Val Acc: 0.7250

Epoch 10/50:

Train Loss: 0.7139 | Train Acc: 0.7622 Val Loss: 0.7906 | Val Acc: 0.7625

Epoch 11/50:

Train Loss: 0.6156 | Train Acc: 0.8067 Val Loss: 0.8739 | Val Acc: 0.6875

Epoch 12/50:

Train Loss: 0.6270 | Train Acc: 0.8164 Val Loss: 0.7787 | Val Acc: 0.7250

Epoch 13/50:

Train Loss: 0.5323 | Train Acc: 0.8637 Val Loss: 0.6673 | Val Acc: 0.7625

Epoch 14/50:

Train Loss: 0.5631 | Train Acc: 0.8345 Val Loss: 1.1573 | Val Acc: 0.6250

Epoch 15/50:

Train Loss: 0.5015 | Train Acc: 0.8554 Val Loss: 0.7045 | Val Acc: 0.8250

Epoch 16/50:

Train Loss: 0.4840 | Train Acc: 0.8470 Val Loss: 0.7596 | Val Acc: 0.7625

Epoch 17/50:

Train Loss: 0.4367 | Train Acc: 0.8637 Val Loss: 1.1646 | Val Acc: 0.6250

Epoch 18/50:

Train Loss: 0.3843 | Train Acc: 0.8748 Val Loss: 0.6495 | Val Acc: 0.8000

Epoch 19/50:

Train Loss: 0.3669 | Train Acc: 0.8943 Val Loss: 0.6082 | Val Acc: 0.8000

Epoch 20/50:

Train Loss: 0.3349 | Train Acc: 0.9110 Val Loss: 0.5753 | Val Acc: 0.8125

Epoch 21/50:

Train Loss: 0.3613 | Train Acc: 0.8957 Val Loss: 0.5874 | Val Acc: 0.7875

Epoch 22/50:

Train Loss: 0.3285 | Train Acc: 0.9193 Val Loss: 0.5473 | Val Acc: 0.8125

Epoch 23/50:

Train Loss: 0.2928 | Train Acc: 0.9332 Val Loss: 0.5693 | Val Acc: 0.8250

Epoch 24/50:

Train Loss: 0.2660 | Train Acc: 0.9305 Val Loss: 0.5711 | Val Acc: 0.7875

Epoch 25/50:

Train Loss: 0.2445 | Train Acc: 0.9471 Val Loss: 0.5711 | Val Acc: 0.8250

Epoch 26/50:

Train Loss: 0.2536 | Train Acc: 0.9388 Val Loss: 0.5493 | Val Acc: 0.8000

Epoch 27/50:

Train Loss: 0.2837 | Train Acc: 0.9332 Val Loss: 0.5406 | Val Acc: 0.7875

Epoch 28/50:

Train Loss: 0.2718 | Train Acc: 0.9277 Val Loss: 0.5305 | Val Acc: 0.7875

Epoch 29/50:

Train Loss: 0.2547 | Train Acc: 0.9360 Val Loss: 0.5348 | Val Acc: 0.7875

Epoch 30/50:

Train Loss: 0.2381 | Train Acc: 0.9499 Val Loss: 0.5343 | Val Acc: 0.8125

Epoch 31/50:

Train Loss: 0.2384 | Train Acc: 0.9527 Val Loss: 0.5453 | Val Acc: 0.7875

Epoch 32/50:

Train Loss: 0.2551 | Train Acc: 0.9305 Val Loss: 0.5296 | Val Acc: 0.8250

Epoch 33/50:

Train Loss: 0.2537 | Train Acc: 0.9444 Val Loss: 0.5244 | Val Acc: 0.7875

Epoch 34/50:

Train Loss: 0.2619 | Train Acc: 0.9388 Val Loss: 0.5271 | Val Acc: 0.8000

Epoch 35/50:

Train Loss: 0.2548 | Train Acc: 0.9318 Val Loss: 0.5217 | Val Acc: 0.8125

Epoch 36/50:

Train Loss: 0.2747 | Train Acc: 0.9277 Val Loss: 0.5235 | Val Acc: 0.8250

Epoch 37/50:

Train Loss: 0.2788 | Train Acc: 0.9235 Val Loss: 0.5224 | Val Acc: 0.7875

Epoch 38/50:

Train Loss: 0.2536 | Train Acc: 0.9402 Val Loss: 0.5174 | Val Acc: 0.8125

Epoch 39/50:

Train Loss: 0.2381 | Train Acc: 0.9471 Val Loss: 0.5183 | Val Acc: 0.8000

Epoch 40/50:

Train Loss: 0.2538 | Train Acc: 0.9471 Val Loss: 0.5213 | Val Acc: 0.8000

Epoch 41/50:

Train Loss: 0.2663 | Train Acc: 0.9318 Val Loss: 0.5075 | Val Acc: 0.8125

Epoch 42/50:

Train Loss: 0.2405 | Train Acc: 0.9513 Val Loss: 0.5377 | Val Acc: 0.7875

Epoch 43/50:

Train Loss: 0.2586 | Train Acc: 0.9291 Val Loss: 0.5228 | Val Acc: 0.7875

Epoch 44/50:

Train Loss: 0.2414 | Train Acc: 0.9374 Val Loss: 0.5201 | Val Acc: 0.8000

Epoch 45/50:

```
Train Loss: 0.2391 | Train Acc: 0.9485
Val Loss: 0.5191 | Val Acc: 0.7875
Epoch 46/50:
Train Loss: 0.2483 | Train Acc: 0.9499
Val Loss: 0.5246 | Val Acc: 0.8000
Epoch 47/50:
Train Loss: 0.2555 | Train Acc: 0.9402
Val Loss: 0.5067 | Val Acc: 0.8125
Epoch 48/50:
Train Loss: 0.2400 | Train Acc: 0.9444
Val Loss: 0.5161 | Val Acc: 0.7875
_____
Epoch 49/50:
Train Loss: 0.2285 | Train Acc: 0.9430
Val Loss: 0.5075 | Val Acc: 0.8000
Epoch 50/50:
Train Loss: 0.2413 | Train Acc: 0.9485
Val Loss: 0.5236 | Val Acc: 0.8125
_____
```

1.5 Training Visualization

```
[]: # Plot training and validation metrics
     def plot_metrics(train_loss, train_acc, val_loss, val_acc):
        plt.figure(figsize=(12, 5))
         # Plot loss
         plt.subplot(1, 2, 1)
         plt.plot(train_loss, label='Train Loss')
         plt.plot(val_loss, label='Val Loss')
         plt.xlabel('Epoch')
         plt.ylabel('Loss')
         plt.title('Training and Validation Loss')
         plt.legend()
         # Plot accuracy
         plt.subplot(1, 2, 2)
         plt.plot(train_acc, label='Train Accuracy')
         plt.plot(val_acc, label='Val Accuracy')
         plt.xlabel('Epoch')
         plt.ylabel('Accuracy')
         plt.title('Training and Validation Accuracy')
         plt.legend()
```

```
plt.tight_layout()
  plt.show()

plot_metrics(train_loss_hist, train_acc_hist, val_loss_hist, val_acc_hist)
```


1.6 Model Evaluation

```
[16]: # Load best model
      model.load_state_dict(torch.load('best_model.pth'))
      model.eval()
      # Evaluate on test set
      test loss = 0.0
      test_correct = 0
      test_total = 0
      all_preds = []
      all_labels = []
      with torch.no_grad():
          for inputs, labels in test_loader:
              inputs = inputs.to(device)
              labels = labels.to(device)
              outputs = model(inputs)
              loss = criterion(outputs, labels)
              test_loss += loss.item()
              _, predicted = torch.max(outputs.data, 1)
              test_total += labels.size(0)
              test_correct += (predicted == labels).sum().item()
```

```
all_preds.extend(predicted.cpu().numpy())
        all_labels.extend(labels.cpu().numpy())
test_loss = test_loss / len(test_loader)
test_acc = test_correct / test_total
print(f'Test Loss: {test_loss:.4f} | Test Accuracy: {test_acc:.4f}')
# Classification report
print('\nClassification Report:')
print(classification_report(all_labels, all_preds, target_names=genres))
# Confusion matrix
plt.figure(figsize=(10, 8))
cm = confusion_matrix(all_labels, all_preds)
sns.heatmap(cm, annot=True, fmt='d', cmap='Blues', xticklabels=genres, u
 ⇔yticklabels=genres)
plt.title('Confusion Matrix')
plt.xlabel('Predicted')
plt.ylabel('True')
plt.show()
```

Test Loss: 0.8320 | Test Accuracy: 0.7750

Classification Report:

	precision	recall	f1-score	support
blues	1.00	0.50	0.67	20
classical	0.90	0.90	0.90	20
country	0.64	0.70	0.67	20
disco	0.72	0.90	0.80	20
hiphop	0.89	0.85	0.87	20
jazz	0.68	0.95	0.79	20
metal	0.83	0.95	0.88	20
pop	0.75	0.60	0.67	20
reggae	0.94	0.80	0.86	20
rock	0.60	0.60	0.60	20
accuracy			0.78	200
macro avg	0.79	0.77	0.77	200
weighted avg	0.79	0.78	0.77	200

1.7 Prediction Example

```
[18]: # Function to predict genre for a single audio file
def predict_genre(audio_path, model, device):
    # Load and preprocess the audio
    waveform, sr = torchaudio.load(audio_path)

# Resample if needed
if sr != SAMPLE_RATE:
    resampler = torchaudio.transforms.Resample(sr, SAMPLE_RATE)
    waveform = resampler(waveform)

# Convert to mono if needed
if waveform.shape[0] > 1:
    waveform = torch.mean(waveform, dim=0, keepdim=True)
```

```
# Create spectrogram
spectrogram = mel_spectrogram(waveform)
spectrogram = amplitude_to_db(spectrogram)

# Add batch dimension and move to device
spectrogram = spectrogram.unsqueeze(0).to(device)

# Predict
model.eval()
with torch.no_grad():
    outputs = model(spectrogram)
    _, predicted = torch.max(outputs, 1)
    predicted_genre = genres[predicted.item()]

# Plot the spectrogram and prediction
plot_spectrogram(spectrogram.cpu().squeeze(0), title=f'Predicted Genre:u
--{predicted_genre}')
return predicted_genre
```


Predicted genre: blues

Conclusion: This project successfully implemented a CNN-based music genre classification system using Mel-spectrograms as input features. The model achieved competitive performance on the GTZAN dataset, demonstrating the effectiveness of deep learning for audio classification tasks.

Future improvements could include: - Data augmentation techniques for audio - More sophistical	ted
architectures (e.g., ResNet, Transformer-based models) - Ensemble methods combining multi	ple
models - Larger and more diverse datasets	

[]:	
[]:	