## Predict survival on the Titanic

In this Lab, we ask you to apply the tools of machine learning to predict which passengers survived the tragedy

### Dataset

The dataset contains 891 observations of 12 variables:

• PassengerId: Unique ID for each passenger

• Survived: Survival (0 = No; 1 = Yes)

• **Pclass**: Passenger Class (1 = 1st; 2 = 2nd; 3 = 3rd)

• Name: Name

• Sex: Sex

• Age: Age

Sibsp: Number of Siblings/Spouses Aboard

• Parch: Number of Parents/Children Aboard

• Ticket: Ticket Number

• Fare: Passenger Fare

• Cabin: Cabin

• Embarked Port of Embarkation (C = Cherbourg; Q = Queenstown; S = Southampton)

```
# import os
# from google.colab import drive
# drive.mount('/content/drive', force_remount=False)

# imports
import warnings
warnings.filterwarnings('ignore')
# your code here
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
```

titanic = pd.read\_csv('titanic.csv',index\_col=0)# your code here
titanic.head()

|             | Survived | Pclass | Name                                                    | Sex    | Age  | SibSp | Parch | Ticket    |   |
|-------------|----------|--------|---------------------------------------------------------|--------|------|-------|-------|-----------|---|
| PassengerId |          |        |                                                         |        |      |       |       |           |   |
| 1           | 0        | 3      | Braund,<br>Mr. Owen<br>Harris                           | male   | 22.0 | 1     | 0     | A/5 21171 |   |
| 2           | 1        | 1      | Cumings,<br>Mrs. John<br>Bradley<br>(Florence<br>Briggs | female | 38.0 | 1     | 0     | PC 17599  | 7 |

```
# print some info about the dataframe
# your code here
titanic.shape
```

(891, 11)

Looks like there are some Nan values, let's see how many for each column

titanic.isnull().sum()

| Survived | 0    |
|----------|------|
| Pclass   | 0    |
| Name     | 0    |
| Sex      | 0    |
| Age      | 177  |
| SibSp    | 0    |
| Parch    | 0    |
| Ticket   | 0    |
| Fare     | 0    |
| Cabin    | 687  |
| Embarked | 2    |
| dtype: i | nt64 |

Cabin contains a lot of Nan values, we'll drop this column

We'll replace the Nan values in **Age** with the age's median, and the ones in **Embarked** with 'S', which is the most frequent one in this column

```
# your code here to drop Cabin
titanic.drop('Cabin',axis=1,inplace=True)
# check the fillna documentation: http://pandas.pydata.org/pandas-docs/stable/ge
titanic["Age"] = titanic["Age"].fillna(value=titanic["Age"].median())
titanic["Embarked"] = titanic["Embarked"].fillna(value="S")
titanic.isnull().sum()
```

| Survived     | 0 |
|--------------|---|
| Pclass       | 0 |
| Name         | 0 |
| Sex          | 0 |
| Age          | 0 |
| SibSp        | 0 |
| Parch        | 0 |
| Ticket       | 0 |
| Fare         | 0 |
| Embarked     | 0 |
| dtype: int64 |   |
|              |   |

## ▼ Visualization

```
%matplotlib inline
import matplotlib.pyplot as plt
print ('survival rate =', titanic.Survived.mean())
(titanic.groupby('Survived').size()/titanic.shape[0]).plot(kind="bar",title="Lab")
```



```
# make a function to plot survival against passenger attribute
def survival_rate(column,t):
    df=pd.DataFrame()
    df['total']=titanic.groupby(column).size()
    df['survived'] = titanic.groupby(column).sum()['Survived']
    df['percentage'] = round(df['survived']/df['total']*100,2)
    print(df)

df['survived'].plot(kind=t)
    df['total'].plot(kind=t,alpha=0.5,title="Survivors per "+str(column))
    plt.show()
```

# Draw survival per Sex
survival\_rate("Sex","barh")





# # Draw survival per Class survival\_rate("Pclass","barh")

|        | total | survived | percentage |  |  |
|--------|-------|----------|------------|--|--|
| Pclass |       |          |            |  |  |
| 1      | 216   | 136      | 62.96      |  |  |
| 2      | 184   | 87       | 47.28      |  |  |
| 3      | 491   | 119      | 24.24      |  |  |

Survivors per Pclass



# Graph survived per port of embarkation
survival\_rate("Embarked","bar")

|          | total | survived | percentage |
|----------|-------|----------|------------|
| Embarked |       |          |            |
| С        | 168   | 93       | 55.36      |
| Q        | 77    | 30       | 38.96      |
| S        | 646   | 219      | 33.90      |





# Draw survived per Number of Parents/Children Aboard (Parch)
# your code here
survival\_rate("Parch","bar")

|       | total | survived | percentage |  |  |
|-------|-------|----------|------------|--|--|
| Parch |       |          |            |  |  |
| 0     | 678   | 233      | 34.37      |  |  |
| 1     | 118   | 65       | 55.08      |  |  |
| 2     | 80    | 40       | 50.00      |  |  |
| 3     | 5     | 3        | 60.00      |  |  |
| 4     | 4     | 0        | 0.00       |  |  |
| 5     | 5     | 1        | 20.00      |  |  |
| 6     | 1     | 0        | 0.00       |  |  |



```
# Draw survived per Number of Siblings/Spouses Aboard (SibSp)
# your code here
survival_rate("SibSp","bar")
```

|       | total | survived | percentage |  |  |
|-------|-------|----------|------------|--|--|
| SibSp |       |          |            |  |  |
| 0     | 608   | 210      | 34.54      |  |  |
| 1     | 209   | 112      | 53.59      |  |  |
| 2     | 28    | 13       | 46.43      |  |  |
| 3     | 16    | 4        | 25.00      |  |  |
| 4     | 18    | 3        | 16.67      |  |  |
| 5     | 5     | 0        | 0.00       |  |  |
| 8     | 7     | 0        | 0.00       |  |  |
|       |       |          |            |  |  |



m SibSp

## Model training

Some of the columns don't have predictive power, so let's specify which ones are included for prediction

```
predictors = ["Pclass", "Sex", "Age", 'SibSp' ,'Parch', "Fare", "Embarked"]
```

We need now to convert text columns in **predictors** to numerical ones

titanic.head()

|             | Survived | Pclass | Name                                                    | Sex | Age  | SibSp | Parch | Ticket    | 1    |
|-------------|----------|--------|---------------------------------------------------------|-----|------|-------|-------|-----------|------|
| PassengerId |          |        |                                                         |     |      |       |       |           |      |
| 1           | 0        | 3      | Braund,<br>Mr. Owen<br>Harris                           | 1   | 22.0 | 1     | 0     | A/5 21171 | 7.   |
| 2           | 1        | 1      | Cumings,<br>Mrs. John<br>Bradley<br>(Florence<br>Briggs | 0   | 38.0 | 1     | 0     | PC 17599  | 71.: |

```
# Split the data into a training set and a testing set. Set: test_size=0.3, rand
# your code here
from sklearn.model_selection import train_test_split
y = titanic["Survived"]
x = titanic[predictors]
X_train, X_test, y_train, y_test = train_test_split(x,y,test_size=0.3, random_st
print ("train shape", X_train.shape, y_train.shape)
print ("test shape", X_test.shape, y_test.shape)
    train shape (623, 7) (623,)
    test shape (268, 7) (268,)
# import LogisticRegression from: http://scikit-learn.org/stable/modules/generat
# your code here
from sklearn.linear_model import LogisticRegression
clf = LogisticRegression(random state=1)
clf.fit(X_train,y_train)
# your code here
train_score = clf.score(X_train,y_train)
test_score = clf.score(X_test,y_test)
print ('train accuracy =', train_score)
print ('test accuracy =', test_score)
```

train accuracy = 0.8073836276083467 test accuracy = 0.7723880597014925 7

Intercept

## Let's print the model's parameters

```
coeff = pd.DataFrame()
coeff['Feature'] = X train.columns
coeff['Coefficient Estimate'] = pd.Series(clf.coef_[0])
coeff.loc[len(coeff)]=['Intercept',clf.intercept_[0]]
print (coeff)
          Feature
                  Coefficient Estimate
    0
           Pclass
                               -1.158692
    1
              Sex
                               -2.708761
    2
              Age
                               -0.040634
    3
            SibSp
                               -0.334012
    4
            Parch
                                0.071940
    5
             Fare
                               -0.000570
    6
        Embarked
                               -0.223307
```

We now need to predict class labels for the test set. We will also generate the class probabilities

5.391544

```
# predict class labels for the test set
y_pred = clf.predict(X_test)
print (y_pred)
```

# generate class probabilities : http://scikit-learn.org/stable/modules/generate
y\_probs = clf.predict\_proba(X\_test)
print (y\_probs)

```
[0.96819807 0.03180193]
[0.05269658 0.94730342]
[0.931658 0.068342 ]
[0.87604357 0.12395643]
[0.77746925 0.22253075]
[0.84945584 0.15054416]
[0.93503218 0.06496782]
[0.89643851 0.10356149]
[0.04125003 0.95874997]
```

- 10.19533985 0.804000151
- [0.77085873 0.22914127]
- [0.51933522 0.48066478]
- [0.87382014 0.12617986]
- [0.74132793 0.25867207]
- [0.72964262 0.27035738]
- [0.92394548 0.07605452]
- [0.70094191 0.29905809]
- [0.04415584 0.95584416]
- [0.51470922 0.48529078] [0.23425444 0.76574556]
- [0.70097333 0.29902667]
- [0.60811076 0.39188924]
- [0.83497752 0.16502248]
- [0.67771166 0.32228834]
- [0.81308544 0.18691456]
- [0.94205138 0.05794862]
- [0.39282351 0.60717649]
- [0.46814345 0.53185655]
- [0.33317311 0.66682689]
- [0.28618636 0.71381364]
- [0.9221556 0.0778444 ]
- [0.94286813 0.05713187]
- [0.83457972 0.16542028]
- [0.88251181 0.11748819]
- [0.92906434 0.07093566]
- [0.95096974 0.04903026]
- [0.92442744 0.07557256]
- [0.19105465 0.80894535]
- [0.22468389 0.77531611]
- [0.65007535 0.34992465]
- [0.09251543 0.90748457]
- [0.94833689 0.05166311]
- [0.9001962 0.0998038 1
- [0.68228929 0.31771071]
- [0.40806752 0.59193248]
- [0.19561719 0.80438281]
- [0.27749947 0.72250053]
- [0.76966959 0.23033041]
- [0.27027965 0.72972035]
- [0.83450642 0.16549358]
- [0.44297783 0.55702217]
- [0.10338877 0.89661123]
- [0.92394548 0.07605452]
- [0.36586709 0.63413291]
- [0.14332527 0.85667473] [0.76730525 0.23269475]
- [0.80676685 0.19323315]
- [0.46946197 0.53053803]
- [0.76143753 0.23856247]]

As you can see, the classifier outputs two probabilities for each row. It's predicting a 1 (Survived) any time the probability in the second column is greater than 0.5. Let's visualize it all together.

#### Survived original Survived predicted Survived proba Comparis PassengerId Т 863 1 1 0.860689 224 0 0.084543 Т 0 85 0.873336 Т 1 1 Fa 681 0 0.634082

1

## Confusion matrix

536

```
from sklearn import metrics
print (metrics.confusion_matrix(y_test, y_pred))
print (metrics.classification_report(y_test, y_pred))
     [[129]
            24]
      [ 37
            78]]
                    precision
                                  recall
                                          f1-score
                                                      support
                0
                         0.78
                                    0.84
                                              0.81
                                                          153
                1
                         0.76
                                                          115
                                    0.68
                                              0.72
                                              0.77
                                                          268
         accuracy
                         0.77
                                    0.76
                                              0.76
                                                          268
        macro avg
    weighted avg
                         0.77
                                    0.77
                                              0.77
                                                          268
```

Т

0.922157

As you can see, we can have the classification report for each class

## ▼ K-Fold Cross Validation

```
# import cross_validation from: http://scikit-learn.org/stable/modules/generated
# your code here
from sklearn.model_selection import cross_val_score
clf = LogisticRegression(random_state=1)
scores = cross_val_score(clf, titanic[predictors], titanic["Survived"], scoring=
## see model
print(scores)
# Take the mean of the scores (because we have one for each fold)
print(scores.mean())

[0.7877095   0.78651685   0.78089888   0.76966292   0.82022472]
   0.7890025735986442
```

When you are improving a model, you want to make sur that you are really doing it and not just being lucky. This is why it's good to work with cross validation instead of one train/test split.

×