#### 1. Cost History Plot: Batch Gradient Descent vs. Stochastic Gradient Descent

#### Observation:

- In the provided cost vs. iteration plots, stochastic gradient descent (SGD) shows a highly fluctuating cost curve compared to batch gradient descent (BGD), which follows a smoother descent.
- Despite the fluctuations, SGD achieves a lower final cost value after 50,000 iterations than BGD for the given dataset.

### **Theoretical Requirements:**

- BGD: Requires computation of the gradient for the entire dataset in each iteration, which
  ensures a smooth and stable reduction in cost but can be computationally expensive for large
  datasets.
- **SGD**: Computes the gradient for a single data point per iteration, making it computationally faster per iteration but introducing fluctuations due to noise from sampling.

# **Practical Implications:**

- **BGD**: Preferred for smaller datasets or when computational resources allow, as it is less affected by random noise.
- **SGD**: Suitable for large datasets due to faster updates, but the high variance can cause instability unless carefully tuned with learning rate decay or momentum.

# 2. Cost History Plot for Different Values of Learning Rate ( $\alpha$ )

#### Observation:

- For increasing  $\alpha$ , the cost decreases more rapidly at the start of optimization. However, overly large  $\alpha$  values cause the cost to oscillate or even diverge.
- A balanced  $\alpha$  ensures convergence at a reasonable rate.

### **Theoretical Requirements:**

- A smaller  $\alpha$  guarantees convergence but requires more iterations, increasing computational costs.
- A larger  $\alpha$  risks overshooting the optimal solution or diverging entirely.

### **Practical Implications:**

 Start with a moderate α and adjust using techniques like learning rate schedules (e.g., exponential decay) to optimize the convergence speed without sacrificing stability.

#### 3. Line Search vs. Batch Gradient Descent

#### Observation:

- Line search adapts the learning rate dynamically, reducing the need for manual tuning of α.
- The cost decreases faster than BGD during early iterations due to better step size selection. However, the computational cost per iteration is higher due to the additional line search procedure.

# **Theoretical Requirements:**

- Line search ensures that each step is optimal based on the current gradient, reducing the risk of overshooting or slow convergence.
- BGD requires a preselected  $\alpha$ , which may not be ideal for all stages of optimization.

# **Practical Implications:**

- **Line Search**: Useful when computational resources allow and the cost of determining an optimal step size is justified.
- **BGD**: Preferred when simplicity and lower computational overhead are critical.

# **Inference Summary**

- SGD vs. BGD: While SGD converges to a lower cost due to its ability to escape shallow local minima, its noisiness makes BGD more appealing for deterministic, stable convergence in smaller datasets.
- 2. **Impact of \alpha**: A well-tuned  $\alpha$  can significantly enhance convergence speed and stability. Adaptive techniques like line search mitigate the need for manual tuning, making them robust for practical applications.
- 3. **Line Search Advantage**: Line search achieves faster convergence by dynamically adapting the step size, but its computational cost makes it unsuitable for very large datasets.













