

LABORATÓRIO DE SISTEMAS DINÂMICOS MÓDULO IV

Larissa Driemeier Marcilio Alves

NOSSA AGENDA

#	Datas		Tópico
1	01/03	08/03	Introdução ao modelamento e uso do software
2	15/03	22/03	Introdução à programação em MatLab
3	29/03	05/04	Resolução de Equações Diferenciais - Sistemas Lineares e Não Lineares
4	12/04	26/04	Projeto
5	03/05	10/05	Transformada de Laplace e Funções de Transferência
6	17/05	24/05	Diagrama de Blocos e Simulink (Entrega 1 Trabalho)
7	31/05	07/06	Análise de Sistemas de Primeira Ordem (Entrega 2 Trabalho)
8	14/06	28/06	Análise de Sistemas de Segunda Ordem

1 e 8 de março de 2019

ONU GLOBAL PLAN FOR THE DECADE OF ACTION FOR ROAD SAFETY 2011-2020

Acidentes de trânsito já são a causa número um de morte de jovens em todo o mundo. A Organização Mundial de Saúde (OMS) estima que, a cada ano, cerca de 1,3 milhões de pessoas são mortas, até 50 milhões de pessoas são feridas, e muitos permanecem inválidos nas estradas do mundo. Noventa por cento das mortes em estradas ocorrem em países em desenvolvimento.

E a menos que sejam tomadas novas medidas, a ONU prevê que as mortes em estrada irão aumentar para 1,9 milhões de pessoas por ano até 2020.

CRASHWORTHINESS

A crashworthy design reduces death and injury

risk. Structure and restraints (safety belts and airbags) are the main aspects of a vehicle's design that determine its crashworthiness. Good structure means a strong occupant compartment or safety cage, crumple zones to absorb the force of a serious crash, side structure that can manage the force of a striking vehicle or struck object and a strong roof that won't collapse in a rollover.

Insurance Institute for Highway Safety (IIHS)

http://www.iihs.org/iihs/topics/t/crash-testing-and-crashworthiness/topicoverview

LEI

Estados Unidos os testes adotam velocidade de 48 km/h em colisão frontal com 100% de sobreposição contra uma barreira fixa não-deformável

Europa os testes adotam velocidade de 56 km/h em colisão frontal com 40% de sobreposição contra uma barreira deformável

No Brasil a resolução 221 do Contran estabelece que as fabricantes devem atender às normas da ABNT NBR15300-1, em conjunto com a NBR 15300-2 (critério norte-americano) ou NBR 15300-3 (critério europeu), sendo que cabe ao fabricante a decisão de qual dos critérios será aplicado.

De 10% a 19% de risco de vida

De 20% a 34% de risco de vida

De 35% a 45% de risco de vida

Mais de 45% de risco de vida

https://www.youtube.com/watch?time_continue=16&v=fGLr72G0dOo

HABITÁCULO E OCUPANTES

A segurança de um automóvel está ligada a dois aspectos principais: deformação do habitáculo, medida por intrusão na cabine, e desaceleração sentida pelos ocupantes, medida pela duração e amplitude do pulso do acidente.

Particularmente, a estrutura de um automóvel (conhecida como body in white) é um importante subsistema de absorção de energia de impacto, além de várias outras funções — manter as partes juntas, minimizar ruídos e vibrações (Malen, 2011).

ABSORÇÃO DE ENERGIA

Padrão desejável de absorção de energia: 45%, 25% e 20% da energia total de impacto pode ser alcançada através de deformação plástica da estrutura frontal, carroceria de metal e caixa de torque, respectivamente.

ABSORVEDOR DE ENERGIA DE IMPACTO

- Absorção controlada de energia de impacto
- Mecanismo ideal de absorção de energia de impacto: flambagem progressiva.

Djamaluddin, F.; Abdulla, S.; Ariffin, A.K.; Nopiah, Z.M. Multi objective optimization of foam-filled circular tubes for quasi-static and dynamic responses, Lat. Am. J. Solids Struct., 12(6), 2015.

conventional square tube vs the origami crash box

Ma, J.; You, Z. Energy Absorption of Thin-Walled Square Tubes With a Prefolded Origami Pattern—Part I: Geometry and Numerical Simulation, **Journal of Applied Mechanics**, 81, 2014.

SIMULAÇÕES EM ELEMENTOS FINITOS

Modelo de elementos finitos, Pfiko e Winter (1981).

Primeira simulação numérica de impacto de um veículo completo (Haug et al, 1986).

SIMULAÇÕES EM ELEMENTOS FINITOS

A. Matsumoto, Estudo do desempenho de reforços poliméricos em estruturas veiculares submetidas alimpacto, Dissertação de Mestrado, Escola Politécnica, 2010.

Ford Taurus finite element model from National Crash Analysis Center (NCAC)

Fonte: Lei Shi, Shih-PoLin A new RBDO method using adaptive response surface and first-order score function for crashworthiness design, Reliability Engineering & System Safety, 156, 125-133, 2016.

TRABALHO DO SEMESTRE

GRUPOS DE 4 ALUNOS

Definir um sistema *massa-mola-amortecedor* que mimetize o comportamento de um dummy ao impacto frontal.

ENTREGA PARTE 1

Definir o modelo do Sistema baseando-se em um dummy commercial (masculino ou feminino, percentile 50).

Baseie-se em observação da estrutura, literatura, fotos, inspeção, etc... na definição do modelo e valor das massas, molas e amortecedores. Inclua airbag e cinto de segurança em seu dummy.

Defina a entrada do Sistema. A saída deve ser, pelo menos, o HIC do dummy.

Consulte a apostila para os detalhes da entrega!

Detalhe sua pesquisa, suas definições e suas escolhas. Tão importante quanto definir o que será considerado é alertar quanto aos aspectos DESCONSIDERADOS em seu modelo.

MODELAGEM DO CORPO HUMANO

A. A. Nikooyanz and A. A. Zadpoor. Mass—spring—damper modelling of the human body to study running and hopping – an overview, *Proc. IMechE*, 225 (12), Part H: J. Engineering in Medicine, p. 1121-1135 (2011)

PMR 3302 — LABORATÓRIO DE SISTEMAS DINÂMICOS I

KUBOA ET AL. (2001)

a) A masses-springs-dampers system

M. Kuboa, F. Terauchia, H. Aokia, Y. Matsuoka, An investigation into a synthetic vibration model for humans: An investigation into a mechanical vibration human model constructed according to the relations between the physical, psychological and physiological reactions of humans exposed to vibration, *International Journal of Industrial Ergonomics*, 27, p. 219–232, (2001).

AMBROSIO (2001)

Crashworthiness: Energy Management and Occupant Protection, editado por Jorge A.C. Ambrosio, Springer-Verlag Wien GmbH.

M. ELKADY ET AL. (2017)

M. Elkady et al. Collision mitigation and vehicle transportation safety using integrated vehicle dynamics control systems Journal of Traffic and Transportation Engineering, 4(1), p. 41-60 (2017)

HIC (HEAD INJURY CRITERIA)

HIC é o critério mais comum para avaliação do nível de ferimentos na cabeça. Corresponde ao máximo valor da integral da aceleração resultante na cabeça para um determinado intervalo de tempo:

$$HIC = \max_{\max T_0 \le t_1 \le t_2 \le T_E} \left[\left(\frac{1}{t_2 - t_1} \int_{t_1}^{t_2} a(t) dt \right)^{2,5} (t_2 - t_1) \right]$$

Onde T_0 é o tempo inicial do teste/simulação, T_E o tempo final do teste/simulação, a(t) aceleração resultante na cabeça em g (medido no centro de gravidade) dentro do intervalo $T_0 \le t \le T_E$ e t_1 e t_2 os tempos inicial e final para os quais o HIC assume um valor máximo. Intervalo de tempo que é definido em três alternativas: HIC – sem limite; HIC36 – máximo para um intervalo de 36 ms; HIC15 – máximo para um intervalo de 15 ms.

TRABALHO EM GRUPO

O trabalho é em grupo de 4 porque acreditamos que há trabalho para uma equipe de 4 alunos. Escolham bem seus parceiros.

Distância de parada do motorista

O carro para em 0.30m (o cinto prolonga em 0.15m a parada do motorista), a partir de uma velocidade de 48 km/h (13.33 m/s).

$$F = \frac{70 \times 13,33^2}{2 \times 0,45} = 14 \, KN$$

A força será equivalente a uma massa de 1.4 toneladas (isso irá para cima de você em uma colisão se seu colega do banco de trás não tiver com cinto!!!).

Por outro lado, o tempo de parada é de 33,8 ms, para o carro passar de 13,33 m/s para 0. Isso equivale a uma desaceleração de, aproximadamente, 40g.

motorista de

70Kg

MODELO

 $F_1=0$, se o deslocamento x_1 da massa 1 não for maior que \mathcal{C}_1

IMPLEMENTAÇÃO

Animation.m

Arquivo Example_LasSisDln.zip Senha: LabSisDin

Example_LasSisDln.m

Function dydt

Function ForceDef

RESPOSTA

ANIMAÇÃO

