Lab 2 Practice:

Prerequisities

Concept	Video Lectures	in this lab		
Data flow modeling	CT Verilog series 04	Wire, reg, signed, etc		
Behavioral modeling	CT Verilog series 05 ~ 06	Always block		
Sequential blocks	CT Verilog series 07	Synchronous output with		
		clock		

It is strongly recommended to complete the practice exercises to be well-prepared for the basic lab.

1. ALU Design

Design a synchronous ALU (Arithmetic Logic Unit).

- 1. To prevent timing issue, you have to add a **flip-flop (FF)** before the output port (the output should be delayed for 1 cycle).
- 2. Change value at the positive edge of each clock cycle and be reset synchronously.
- 3. Output = 0 when the reset is triggered.
- 4. A Verilog template is given.

IO List and Specification:

Signals	I/O	Bit Width	Desciption
clk	input	1	Clock (positive-edge triggered)
rst	input	1	Synchronous active-high reset
Α	input	8	Signed ALU input
В	input	8	Signed ALU input
ctrl	input	1	ALU control signal
out	output	16	Signed ALU output

Name	ctrl	Function
Function 1	0	out = A * B
Function 2	1	If (A < B) out = 1 with sign extension
		else out = -1 with sign extension

Example:

- 1. (Cycle 1) ctrl = 0, A = 8'd5, B = 8'd4 (Cycle 2) out = 16'd32
- 2. (Cycle 1) ctrl = 1, A = 8'd3, B = 8'd10

(Cycle 2) out = 16'd1

Note:

Be aware of the signed numbers.

2. Counter

Implement a specific counter with the following rules.

- 1. Change value at the **positive edge** of each clock cycle and be reset synchronously.
- 2. Output = 0 when the reset is triggered.
- 3. A Verilog template is given.

IO List and Specification:

Signals	1/0	Bit Width	Desciption		
clk	input	1	Clock (positive-edge triggered)		
rst	input	1	Synchronous active-high reset		
out	output	16	The current value of the counter		

The counter will count upward from 1 until being reset.

Let i denote the i-th step. The counter will follow the rules:

$$\begin{cases} if \ a_i \ is \ odd : a_{i+1} = a_i * 2 \\ if \ a_i \ is \ even : a_{i+1} = a_i + i \end{cases}$$

Your output should look like the following sequences:

i	1	2	3	4	5	6	7	8	9
$\overline{a_i}$	1	2	4	7	14	19	38	45	90

Appendix: How to add pattern.dat to the simulation sources.

< Back

Next >

Cancel

Scan and add RTL include files into project

Copy sources into project
✓ Add sources from subdirectories
✓ Include all design sources for simulation

?

