EP02 - Método de Euler Explícito

Alexsander Benatti da Silva (14555221) Ana Paula Tavares da Fonseca (8557207)

22 de setembro de 2024

1 Introdução e Conceitos

O método de Euler é uma técnica de aproximação utilizada para resolver problemas de valor inicial. Embora simples e de precisão limitada, ele consegue oferecer uma base para a introdução de métodos mais avançados, sem envolver a complexidade algébrica que normalmente acompanha essas técnicas. Portanto, é uma ferramenta didática que permite compreender princípios básicos de métodos numéricos [1].

O objetivo do método de Euler é gerar aproximações para o problema de valor inicial expresso pela equação diferencial ordinária (EDO):

$$\frac{dy}{dt} = f(t,y), a \le t \le b, y(a) = \alpha \tag{1}$$

Em vez de fornecer uma solução contínua para y(t), o método de Euler gera aproximações discretas de y em vários pontos, chamados de **pontos da malha**, dentro do intervalo [a, b]. Uma vez obtidas as soluções aproximadas nesses pontos, a solução em outros pontos do intervalo pode ser estimada por **interpolação** [1].

1.1 Definição de Pontos de Malha

Assumimos que os pontos da malha estão uniformemente distribuídos ao longo do intervalo [a, b]. Escolhemos um número inteiro positivo N e definimos os pontos da malha como:

$$t_i = a + ih, \quad i = 0, 1, 2, \dots, N,$$

onde h é o **tamanho do passo**, calculado por

$$h = \frac{b-a}{N},\tag{2}$$

que também é a distância comum entre os pontos consecutivos da malha, ou seja,

$$h = t_{i+1} - t_i$$
.

1.2 Derivação do Método de Euler

O método de Euler pode ser derivado usando o **Teorema de Taylor**. Suponha que y(t), a solução única da equação diferencial 1, possua derivadas contínuas até a segunda ordem no intervalo [a,b]. Usando a expansão de Taylor, podemos expressar $y(t_{i+1})$ em termos de $y(t_i)$ e suas derivadas como [1]:

$$y(t_{i+1}) = y(t_i) + hy'(t_i) + \frac{h^2}{2}y''(\xi_i),$$

onde ξ_i é um ponto entre t_i e t_{i+1} , e $h = t_{i+1} - t_i$. Como y(t) satisfaz a equação diferencial original, temos que y'(t) = f(t, y(t)), de modo que podemos substituir essa relação na equação acima:

$$y(t_{i+1}) = y(t_i) + hf(t_i, y(t_i)) + \frac{h^2}{2}y''(\xi_i).$$

No método de Euler, ignoramos o termo de erro de ordem h^2 e mantemos apenas os termos de primeira ordem, resultando na seguinte fórmula para calcular as aproximações $w_i \approx y(t_i)$ em cada ponto i = 1, 2, ..., N. Definimos $w_0 = \alpha$ e

$$w_0 = \alpha$$

$$w_{i+1} = w_i + h f(t_i, w_i), \quad i = 0, 1, 2, \dots, N - 1.$$
(3)

2 Implementação

Este código implementa o **método de Euler explícito** para resolver numericamente uma equação diferencial ordinária (EDO) do tipo 1. A função step(t0,tf,n) calcula o tamanho do passo h, que é a distância entre os pontos de malha, com base no intervalo [a,b] e no número de divisões n, como definido em 2. A função aprox(a, b, n, y0, fuser) implementa o método de Euler explícito para resolver a equação diferencial dada pelo usuário no intervalo [a,b] com n passos e condição inicial $y(a) = y_0$. Primeiramente, é criado um array t_vals contendo os valores de t igualmente espaçados. O array y_values armazena os valores aproximados de y(t), sob a condição inicial y_values $[0] = y_0$, em que y0 é definido pelo usuário. Em seguida, itera-se para cada ponto t_i , calculando o valor aproximado de $y(t_{i+1})$ a partir de $y(t_i)$ conforme a fórmula em 3. Neste caso, $f(t_i, y_i)$ é calculado por meio de diff_y(t_val, y_val, fuser), que calcula o valor da derivada da função f(t,y) no ponto (t,y).

3 Testes

Os passos são feitos para os seguintes valores de n divisões: 16, 64, 256 e 1024, conforme solicitado no EP.

3.1
$$y'(t) = t$$
 com $y(0) = 1$:

Figura 1: y'(t) = t com y(0) = 1

3.2 y'(t) = sin(t) **com** y(0) = 1:

Figura 2: y'(t) = sin(t) com y(0) = 1

3.3 y'(t) = y com y(0) = 1:

Figura 3: y'(t) = y com y(0) = 1

3.4 Problema $\dot{x} = x(\alpha - \beta x)$

Vamos resolver o problema descrito no EP, $\dot{x}=x(\alpha-\beta x)$, sob condições de $t_0=0,t_n=140,x_0=10$ e n=2500.

3.4.1 ab = 21:

Figura 4: $\beta = 0.0221$

3.4.2 ab = 07:

Figura 5: $\beta = 0.0207$

Referências

[1] R. L. Burden and J. D. Faires. Numerical Analysis. Brooks/Cole Cengage Learning, 2011.