

Chapter 4 Combinational Logic

FIGURE 4.1Block diagram of combinational circuit

Combinational Logic

aka. Combinational Circuit

Combination of logic gates on the present inputs \rightarrow the outputs *at any time*!

A combinational circuit performs an operation that can be specified logically by a set of Boolean functions.

Decoder, Encoder

Multiplexer (MUX, MPX), De-Multiplexer (Demux)

Binary Decoder

Binary Code Decoder Display Decoder

Decoder Decode Binary to 1-hot

1-hot: a vector of bits with a single 1 and all the others 0 [0010000000] [0000000000]

[0010010000]

 $\begin{array}{c} D_0 = 0 \\ D_1 = 1 \end{array}$

X	D_0	D_1
0	1	0
1	0	1

X	$D_0 = m_0$	$D_1=m_1$
0	1	0
1	0	1

Y	X	$D_0 = m_0$	$D_1=m_1$	$D_2=m_2$	$D_3 = m_3$
0	0	1	0	0	0
0	1	0	1	0	0
1	0	0	0	1	0
1	1	0	0	0	1

Chapter 4 Combinational Logic

Table 4.6 *Truth Table of a Three-to-Eight-Line Decoder*

	Inputs		Outputs							
X	y	Z	D ₀	<i>D</i> ₁	D ₂	D_3	D_4	D ₅	D ₆	D ₇
0	0	0	1	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0	0	0	0
0	1	0	0	0	1	0	0	0	0	0
0	1	1	0	0	0	1	0	0	0	0
1	0	0	0	0	0	0	1	0	0	0
1	0	1	0	0	0	0	0	1	0	0
1	1	0	0	0	0	0	0	0	1	0
1	1	1	0	0	0	0	0	0	0	1

FIGURE 4.18 Three-to-eight-line decoder

Decoder Decode 4-Bit Binary to 2⁴ One-hot

Decoder Decode n-Bit Binary to 2ⁿ One-hot

Decoder Decode 2-Bit Binary to 2² One-hot

Re-Use 1×2¹ Decoder

Decoder Enable input

Ε	X	$D_0 = m_2$	$D_1 = m_3$
0	0	0	0
0	1	0	0
1	0	1	0
1	1	0	1

E	X	$D_0 = m_0$	$D_1=m_1$
1	0	1	0
1	1	0	1

Decoder Decode 3-Bit Binary to 2³ One-hot

Re-Use 2×2² Decoder

Decoder Decode 4-Bit Binary to 2⁴ One-hot

Re-Use 1×2¹ Decoder Re-Use 2×2² Decoder Re-Use 3×2³ Decoder

Datasheet 4

Products Manufacturers Resources Tools

Product Index > Integrated Circuits (ICs) > Logic - Signal Switches, Multiplexers, Decoders > Texas Instruments SN74LS138N

Share <<

LINK

Logic Solutions

Analog Solutions

Material Set 30/Mar/2017 SN74LS138N by SnapEDA

SN74LS138N by Ultra Librarian

SN54LS138, SN54S138, SN74LS138, SN74S138A

Media & Downloads

RESOURCE TYPE

Featured Product

PCN Design/Specification

EDA / CAD Models ②

Datasheets

SN74LS138N

Digi-Key Part Number 296-1639-5-ND

Manufacturer Texas Instruments

Manufacturer Product Number SN74LS138N

Supplier Texas Instruments

Description IC 3-8 LINE

DECODER/DEMUX 16-DIP

Manufacturer Standard Lead Time 6 Weeks

Decoder/Demultiplexer 1 x 3:8 16-PDIP

Customer Reference

Price and Procurement

4,043 In Stock

Can ship immediately

QUANTITY

Quantity

Add to Cart

Add to BOM

Add to Favorites

Tube

QTY	UNIT PRICE	EXT PRICE
1	\$1.27000	\$1.27
10	\$1.12000	\$11.20
25	\$1.05280	\$26.32
100	\$0.85920	\$85.92

Decoder Boolean Function

$$F_{SoP} = \sum m(...)$$

$$F_{PoS} = \prod M(...)$$

$$F_{SOP} = \sum m(2,4,7)$$

$$F_{PoS} = \prod M(0,1,3,5,6)$$

Decoder Full Adder

$$S = \sum m(1,2,4,7)$$

$$C = \sum m(3,5,6,7)$$

C_{p}	Y	X	$C = \sum m(3,5,6,7)$	$S = \sum m(1,2,4,7)$
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

FIGURE 4.21 Implementation of a full adder with a decoder

Binary Adder, Binary Subtractor, Binary Multiplier

Binary Comparator (Magnitude Comparator)

Data Transmission Decoder, Encoder

Multiplexer (MUX, MPX), De-Multiplexer (Demux)

Coders

Binary Codes (BCD, Excess-3, Gray)

Multiplexer Shortened to MUX or MPX

Multiplexer $2^1 \times 1$

S	I ₁	I ₀	
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

S	I ₁	I ₀	
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

$$F=S'I_0+SI_1$$

FIGURE 4.24 Two-to-one-line multiplexer

(b) Block diagram

S	$F=S'I_0+SI_1$
0	
1	I_1

Multiplexer $2^2 \times 1$

S ₁	S ₀	I ₃	l ₂	I ₁	I ₀	
0	0	X	X	X	0	0
0	0	X	X	X	1	1
0	1	X	X	0	X	0
0	1	X	X	1	X	1
1	0	X	0	X	X	0
1	0	X	1	X	X	1
1	1	0	X	X	X	0
1	1	1	X	X	X	1

S ₁	S ₀	$F=S'_1S'_0I_0+S'_1S_0I_1+S_1S'_0I_2+S_1S_0I_3$
0	0	
0	1	
1	0	I_2
1	1	I ₃

	$S_1 = S_0$	Y
((1 1) 1	$I_0 \\ I_1 \\ I_2 \\ I_3$

(b) Function table

FIGURE 4.25 Four-to-one-line multiplexer

Multiplexer $2^n \times 1$

≈ Decoder + OR

159

S_1	S_0	Y
0 0 1 1	0 1 0 1	$I_0 \\ I_1 \\ I_2 \\ I_3$

(b) Function table

FIGURE 4.25 Four-to-one-line multiplexer

FIGURE 4.25 Four-to-one-line multiplexer

Sum of Products 2 Levels **ANDs-OR**

159

S_1	S_0	Y
0 0 1 1	0 1 0 1	$I_0 \\ I_1 \\ I_2 \\ I_3$

(b) Function table

FIGURE 4.25 Four-to-one-line multiplexer

Multiplexer Boolean Function

$$F_{SoP} = \sum m(...)$$

$$F_{PoS} = \prod M(...)$$

MUX Full Adder

$$S = \sum m(1,2,4,7)$$

$$C = \sum m(3,5,6,7)$$

C_{p}	Y	X	$C = \sum m(3,5,6,7)$	$S = \sum m(1,2,4,7)$
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

$$S = \sum m(1,2,4,7)$$

$$C = \sum m(3,5,6,7)$$

Multiplexer Boolean Function II

Book: Page 161

 $S = \sum m(1,2,4,7)$

$$S = \sum m(1,2,4,7)$$

 $S = \sum m(1,2,4,7)$

$$S = \sum m(1,2,4,7)$$

 $S = \sum m(1,2,4,7)$

 $C = \sum m(3,5,6,7)$

$$C = \sum m(3,5,6,7)$$

 $C = \sum m(3,5,6,7)$

$$C = \sum m(3,5,6,7)$$

$$C = \sum m(3,5,6,7)$$

$$C = \sum m(3,5,6,7)$$

$$C = \sum m(3,5,6,7)$$

Multiplexer Three-State Gates + Decoders

Book: Page 162-164

Decoder, Encoder

Multiplexer (MUX, MPX), De-Multiplexer (Demux)

Encoder

Encoder 1-hot to Binary

D_1	D_0	F ₁
0	0	X
0	1	0
1	0	1
1	1	X

X: Don't Care Conditions

D_1	D_0	F ₁
0	0	X
0	1	0
1	0	1
1	1	X

D_1	D_0	F ₁
0	0	X
0	1	0
1	0	1
1	1	X

$$F_1 = D'_0$$

D_1	D_0	F ₁
0	0	X
0	1	0
1	0	1
1	1	X

$$F_1 = D_1$$

D_1	D_0	F ₁	V
0	0	X	0
0	1	0	1
1	0	1	1
1	1	X	0

		D_0			
		0 1			
	0	\bigcap_{m_0}	1 m ₁		
D_1	1	1 m ₂	O_{m_3}		

$$V = D_0 D'_1 + D'_0 D_1$$
$$= D_0 \bigoplus D_1$$

D_3	D ₂	D ₁	D_0	F ₂ =Y	F ₁ =X	F ₃ =V
0	0	0	0	X	X	0
0	0	0	1	0	0	1
0	0	1	0	0	1	1
0	0	1	1	×	X	0
0	1	0	0	1	0	1
0	1	0	1	×	X	0
0	1	1	0	×	X	0
0	1	1	1	×	X	0
1	0	0	0	1	1	1
1	0	0	1	×	X	0
1	0	1	0	×	X	0
1	0	1	1	×	X	0
1	1	0	0	×	X	0
1	1	0	1	×	X	0
1	1	1	0	X	X	0
1	1	1	1	X	X	0

$$F_1 = X = D_1 + D_3$$

$$F_2 = Y = D_2 + D_3$$

		D_1D_0			
		00	01	11	10
D_3D_2	00	O m _o	1 m ₁	0 m ₃	1 m ₂
	01	1 m ₄	O m ₅	0 m ₇	O m ₆
	11	O m ₁₂	O m ₁₃	O m ₁₅	O m ₁₄
	10	1 m ₈	O m ₉	O m ₁₁	O m ₁₀

$$\begin{aligned} F_3 &= V = D'_3 D'_2 D'_1 D_0 + D'_3 D_2 D'_1 D'_0 + D'_3 D'_2 D_1 D'_0 + D_3 D'_2 D'_1 D'_0 \\ &= D'_3 D'_1 (D'_2 D_0 + D_2 D'_0) + D'_2 D'_0 (D'_3 D_1 + D_3 D'_1) \\ &= D'_3 D'_1 (D_2 \bigoplus D_0) + D'_2 D'_0 (D_3 \bigoplus D_1) \end{aligned}$$

Priority Encoder

at home!

Positional Encoders

Priority Encoder Navigation

Compass Direction	Binary Output			
Compass Direction	Q ₀	Q ₁	Q ₂	
North	0	0	0	
North-East	0	0	1	
East	0	1	0	
South-East	0	1	1	
South	1	0	0	
South-West	1	0	1	
West	1	1	0	
North-West	1	1	1	

Keyboard Encoders

Decoder, Encoder

Multiplexer (MUX, MPX), **De-Multiplexer (Demux)**

De-multiplexer

S ₁	S_0	F	O_0	O ₁	O ₂	O ₃
0	0	0	0	0	0	0
0	0	1	1	0	0	0
0	1	0	0	0	0	0
0	1	1	0	1	0	0
1	0	0	0	0	0	0
1	0	1	0	0	1	0
1	1	0	0	0	0	1
1	1	1	0	0	0	0

S ₁	S ₀	F	O_0	O ₁	O ₂	O ₃
0	0	0	0	0	0	0
0	0	1	1	0	0	0
0	1	0	0	0	0	0
0	1	1	0	1	0	0
1	0	0	0	0	0	0
1	0	1	0	0	1	0
1	1	0	0	0	0	1
1	1	1	0	0	0	0

S ₁	S ₀	F	O_0	O ₁	O ₂	O ₃
0	0	0	0	0	0	0
0	0	1	1	0	0	0
0	1	0	0	0	0	0
0	1	1	0	1	0	0
1	0	0	0	0	0	0
1	0	1	0	0	1	0
1	1	0	0	0	0	1
1	1	1	0	0	0	0

S ₁	S ₀	F	O_0	O ₁	O ₂	O ₃
0	0	0	0	0	0	0
0	0	1	1	0	0	0
0	1	0	0	0	0	0
0	1	1	0	1	0	0
1	0	0	0	0	0	0
1	0	1	0	0	1	0
1	1	0	0	0	0	0
1	1	1	0	0	0	1

S ₁	S_0	O_0	O ₁	O ₂	O ₃
0	0	F	0	0	0
0	1	0	F	0	0
1	0	0	0	F	0
1	1	0	0	0	F

S ₁	S ₀	$O_0 = S'_1 S'_0 F$	$O_1 = S'_1 S_0 F$	$O_2 = S_1 S_0' F$	$O_3 = S_1 S_0 F$
0	0	F	0	0	0
0	1	0	F	0	0
1	0	0	0	F	0
1	1	0	0	0	F

FIGURE 4.25 Four-to-one-line multiplexer

1-to-4 De-mux

De-multiplexer = Decoder w/ Enable input How come?!