5.4 LI-rezoluce a Horn-SAT

Lineární důkaz: neformálně

Rezoluční důkaz můžeme kromě rezolučního stromu zorganizovat i jinak, jako tzv. lineární důkaz:

- v každém kroku máme jednu centrální klauzuli
- tu rezolvujeme s boční ('side') klauzulí
- boční klauzule je buď axiom z S, nebo některá z předchozích centrálních (jako bychom odvozené klauzule přidávali k axiomům)
- výsledná rezolventa je novou centrální klauzulí

(Tento pohled lépe odpovídá procedurálnímu výpočtu, jde jen o to, jak vybírat vhodné boční klauzle.)

Lineární důkaz: formálně

Lineární důkaz klauzule C z formule S je konečná posloupnost

$$\begin{bmatrix} C_0 \\ B_0 \end{bmatrix}, \begin{bmatrix} C_1 \\ B_1 \end{bmatrix}, \dots, \begin{bmatrix} C_n \\ B_n \end{bmatrix}, C_{n+1}$$

kde C_i říkáme centrální klauzule, C_0 je počáteční, $C_{n+1} = C$ je koncová, B_i jsou boční klauzule, a platí:

- $C_0 \in S$, pro $i \leq n$ je C_{i+1} rezolventou C_i a B_i ,
- $B_0 \in S$, pro $i \le n$ je $B_i \in S$ nebo $B_i = C_j$ pro nějaké j < i.

Lineární zamítnutí S je lineární důkaz \square z S.

Příklad a ekvivalence s rezolučním důkazem

Lineární zamítnutí $S = \{\{p,q\},\{p,\neg q\},\{\neg p,q\},\{\neg p,\neg q\}\}$:

Poslední boční klauzule $\{p\}$ není z S, ale je rovna předchozí centrální klauzuli.

Poznámka: C má lineární důkaz z S, právě když $S \vdash_R C$.

- \Rightarrow Z lineárního důkazu snadno vyrobíme rezoluční strom. Indukcí dle délky důkazu: máme-li boční klauzuli $B_i \notin S$, potom $B_i = C_j$ pro nějaké j < i: místo B_i připojíme rezoluční strom pro C_j z S.
- Plyne z úplnosti lineární rezoluce, důkaz najdete v učebnici.