

Caminho mais Curto

Caminho mais curto

O caminho mais curto entre os vértices v e w de um grafo G ponderado é aquele que acumula o menor valor possível dentre todos os caminhos existentes entre v e w.

Caminho mais curto

- 1. De um nó fonte para todos os demais vértices
- 2. De todos os nós para um destino único
- 3. De par único
- 4. Dentre todos os pares de vértices

Arestas de Peso Negativo

Se o grafo G não contém ciclo de peso negativo, a partir da origem s, então para todo vértice $v \in V$, o comprimento do caminho mais curto $\delta(s,v)$ permanece bem definido, mesmo contendo arestas de peso negativo.

Contudo, se existe um ciclo de peso negativo a partir de s, os pesos de caminhos mais curtos não são bem definidos, pois sempre é possível encontrar um caminho ainda mais curto percorrendo o ciclo de peso negativo.

Subestrutura ótima do caminho mais curto

Considere $p = \langle v_1, v_2, ..., v_k \rangle$, um caminho mais curto entre os vértices v_1 e v_k .

Então, para quaisquer i, j, tais que $1 \le i \le j \le k$, o caminho $p_{ij} = \langle v_i, v_{i+1}, ..., v_j \rangle$, subcaminho de p, é um caminho mais curto entre os vértices i e j.

Desigualdade Triangular

Para qualquer aresta $(u,v) \in E$, e **s** algum outro vértice, temos:

$$\delta(s,v) \le \delta(s,u) + w(u,v)$$

onde

 $\delta(u,v)$ – caminho mais curto de u para v

w(u,v) – peso da aresta (u,v)

- 1. De um nó fonte para todos os demais vértices
- 2. De todos os nós para um destino único
- 3. De par único

```
Dijkstra(Digrafo D, pesos w, vértice s)
 Para todo vértice v \in V(D) faça
     \mathbf{v}.visitado = 0;
     v.predecessor = NULL;
     v.distância = INF;
 s.distância= 0;
 Enquanto houver vértice u com u.visitado==0 e u.predecessor != INF faça
  Seja x um vértice não visitado com menor x.distância
  x.visitado = 1;
  Para todo vértice y \in N^+(u) faça
     Se y.visitado==0 então
        Se x.distância + w (xy) < y.distância então
           y.distância = x.distância + w(xy)
           y.predecessor = x;
```

```
Dijkstra(Digrafo D, pesos w,vértice S)

Para todo vértice v ∈ V(D) faça
v.visitado = 0;
v.predecessor = NULL;
v.distância = INF;
s.distância = 0;

Enquanto existir u com u.visitado==0 e u.predecessor!= INF faça
Seja x um vértice não visitado com menor x.distância
x.visitado = 1;
Para todo vértice y ∈ N⁺(u) faça
Se y.visitado==0 então
Se x.distância + w(xy) < y.distância então
y.distância = x.distância + w(xy)
y.predecessor = x;
```


s=1

Vértices	1	2	3	4	5	6	7
Visitado							
Predecessor							
Distância							

```
Dijkstra(Digrafo D, pesos w,vértice S)

Para todo vértice v ∈ V(D) faça
v.visitado = 0;
v.predecessor = NULL;
v.distância = INF;
s.distância = 0;

Enquanto existir u com u.visitado == 0 e u. predecessor != INF faça

Seja x um vértice não visitado com menor x.distância
x.visitado = 1;

Para todo vértice y ∈ N⁺(u) faça

Se y.visitado == 0 então
Se x.distância + w(xy) < y.distância então
y.distância = x.distância + w(xy)
y.predecessor = x;
```

Vértices	Α	В	С	D	E	F	G	Н	I	J
Visitado										
Predecessor										
Distância										

s=A

Vértices	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
Visitado																			
Predecessor																			
Distância																			

Arestas com custo negativo

Como o algoritmo emprega um critério guloso para fechar a cada iteração o vértice aberto e de menor caminho acumulado, torna-se incapaz de calcular o caminho mais curto em grafos com **arestas de custo negativo**.

Complexidade?

```
Dijkstra(Digrafo D, pesos w, vértice s)
 Para todo vértice v \in V(D) faça
     \mathbf{v}.visitado = 0;
     v.predecessor = NULL;
     v.distância = INF;
 s.distância= 0;
 Enquanto houver vértice u com u.visitado==0 e u.predecessor != INF faça
  Seja x um vértice não visitado com menor x.distância
  x.visitado = 1;
  Para todo vértice y \in N^+(u) faça
     Se y.visitado==0 então
        Se x.distância + w (xy) < y.distância então
           y.distância = x.distância + w(xy)
           y.predecessor = x;
```

Caminho mais curto entre todos os pares de vértices

O algoritmo pode ser utilizado para encontrar o caminho mais curto entre todos os pares de vértices do grafo desde que seja executado uma vez para cada vértice como origem.

Nessa situação a complexidade do método seria multiplicada por n, tornando-se $O(n^3)$ na implementação sem estruturas de dados especiais.

Algoritmo Dijkstra - Implementações

Ano	Autores	Complexidade
1987	Fredman e Tarjan	$O(m + n \log n)$
1990	Ahuja <i>et al</i> .	$O\left(m + n\sqrt{\log c}\right)$
1996	Raman	$O\left(m + n\sqrt{\log n}\right)$
1997	Raman	$O(m + n(\log c \log \log c)^{1/3})$
1999	Thorup	O(m) - grafo não direcionado
2000	Hagerup	$O(m \log \log c)$
2000	Thorup	$O(m \log \log n)$

Obs. A constante *c* é um limite superior para o peso das arestas