МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИ «РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ

ПЕДАГОГИЧЕСКИЙ УНИВЕРСИТЕТ им. А. И. ГЕРЦЕНА» Институт компьютерных наук и технологического образования Кафедра компьютерных технологий и электронного обучения

КУРСОВАЯ РАБОТА

РЕШЕНИЕ ЗАДАЧ КОРРЕЛЯЦИОННОГО АНАЛИЗА С ИСПОЛЬЗОВАНИЕМ ЯЗЫКА ПРОГРАММИРОВАНИЯ РҮТНОN

Направление подготовки: «Информатика и вычислительная техника»

	(Эбучающегося 3 курса
	Величко Арс	сения Александровича
		Руководитель:
		к.п.н, доцент
		Гончарова С. В.
"	,,,	2024 г

СОДЕРЖАНИЕ

ВВЕДЕНИЕ
1 ТЕОРЕТИЧЕСКИЕ ОСНОВЫ КОМПЕТЕНЦИЙ В ІТ 6
1.1 Понятие компетенции
1.2 Классификация компетенций в IT
1.3 Роль компетенций в профессиональной деятельности
2 КОРРЕЛЯЦИОННЫЙ АНАЛИЗ КОМПЕТЕНЦИЙ В ІТ9
2.1 Методы оценки компетенций в IT
2.2 Анализ взаимосвязи компетенций и результативности
профессиональной деятельности в ІТ-сфере
2.3 Практические рекомендации по развитию необходимых
компетенций
ЗАКЛЮЧЕНИЕ
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ17
ПРИЛОЖЕНИЕ А19

ВВЕДЕНИЕ

Актуальность исследования. В современном информационном обществе роль информационных технологий (ИТ) становится все более важной и влиятельной в различных сферах деятельности. Расширение применения ИТ охватывает не только традиционные сферы, такие как финансы, производство и образование, но и новые, такие как интернет-бизнес, цифровое здравоохранение смарт-города. Вместе c увеличивается спрос И ЭТИМ на ИТ, высококвалифицированных специалистов области обладающих компетенциями, необходимыми определенными ДЛЯ успешного функционирования в данной области.

Для определения взаимосвязи между компетенциями, необходимыми для работы в области ИТ и успешной профессиональной деятельностью, используется корреляционный анализ. Этот метод позволяет установить степень соответствия между уровнем компетенций у специалистов и их профессиональной успеваемостью, эффективностью и адаптивностью в работе.

Сложность и динамичность современной ИТ среды требует от специалистов не только технических знаний, но и специфических навыков, таких как коммуникационная гибкость, творческое мышление, умение работать в команде и принимать решения в условиях неопределенности. Однако, недостаточно понимания влияния этих компетенций на профессиональную эффективность и успех в ИТ сфере.

Корреляционный анализ позволяет исследовать связь между наличием определенных компетенций у ИТ-специалистов и их профессиональным успехом, что имеет важное значение для разработки эффективных программ обучения и подготовки кадров, а также для улучшения процессов найма и оценки персонала в ИТ сфере.

Таким образом, проведение корреляционного анализа компетенций, необходимых для работы в ИТ, является актуальным направлением

исследований, позволяющим более глубоко понять взаимосвязь между навыками специалистов и их профессиональным успехом в данной области.

Цель исследования: Исследование направлено на выявление компетенций, необходимых для успешной работы в сфере информационных технологий (ИТ), и определение их влияния на профессиональную деятельность с использованием методов корреляционного анализа.

Задачи исследования:

- 1. Определить основные компетенции, требуемые для работы в ИТ с учетом современных технологических требований и особенностей рынка труда.
- 2. Провести анализ взаимосвязей между различными компетенциями в сфере ИТ с использованием методов корреляционного анализа.
- 3. Выявить наиболее значимые компетенции, которые сильнее всего коррелируют с успешной профессиональной деятельностью в ИТ.

Объект исследования: Объектом исследования являются компетенции, необходимые для работы в области информационных технологий.

Предмет исследования: Предметом исследования являются взаимосвязи между компетенциями в сфере ИТ между студентами и специалистами, а также их влияние на развитие профессиональной деятельности в данной области.

Описание используемых источников. Среди ключевых работ следует отметить авторов: Богомолова Е. В., Плотникова Е. И., Чурыбкин Н. Н., Васева Е. С., Бужинская Н. В. И др. Исследования по теме компетенций, необходимых для работы в области информационных технологий, охватывают различные аспекты формирования и оценки таких компетенций. В работах анализируются требования современного рынка труда к специалистам ИТ-сферы, методы оценки и формирования компетенций, а также влияние информационных технологий на развитие профессиональных навыков и soft skills. Исследователи также обращают внимание на важность проектно-конструкторских компетенции. Разработка соответствующих методик обучения и стандартов ИТобразования также занимает значительное место в исследованиях, направленных на подготовку кадров для цифровой экономики.

Методы исследования могут включать:

- 1. Анализ литературы и научных источников по теме компетенций в ИТ.
- 2. Опросы и анкетирование специалистов в сфере ИТ для выявления важных компетенций и их значимости.
- 3. Статистический анализ данных о профессиональной деятельности и компетенциях специалистов.
- 4. Корреляционный анализ для определения взаимосвязей между компетенциями и профессиональным ростом.

Структура исследования определена введением, двумя главами основной части, заключением и списком использованных источников.

1 ТЕОРЕТИЧЕСКИЕ ОСНОВЫ КОМПЕТЕНЦИЙ В ІТ

1.1 Понятие компетенции

Компетенция, в контексте информационных технологий (ИТ), представляет собой неотъемлемый элемент, определяющий способность и квалификацию индивида в выполнении конкретных задач и функций, связанных с ИТ-сферой. Основываясь на обширном спектре знаний, навыков, и опыта, компетенция описывает совокупность качеств, необходимых для эффективной работы в ИТ-среде [4].

Центральным аспектом концепции компетенции в ИТ является не только техническая осведомленность и владение инструментами, но и способность применять их в различных контекстах. Она включает в себя глубокое понимание технологических принципов, а также умение адаптироваться к постоянным изменениям и инновациям в отрасли [2].

Термин «компетенция» часто ассоциируется с собранным набором навыков и знаний, но в контексте ИТ он простирается далее, включая такие аспекты как умение решать проблемы, работать в команде, анализировать информацию, принимать решения и обучаться новым технологиям [1].

Одним из ключевых элементов компетенции в ИТ является способность к креативному мышлению и инновационному подходу к решению проблем. В мире, где технологические изменения происходят с невероятной скоростью, важно не только уметь применять существующие знания, но и создавать новые решения и технологии для удовлетворения потребностей и требований рынка [3].

Таким образом, компетенция в ИТ представляет собой более чем просто совокупность знаний и навыков; это комплексное понятие, включающее в себя технические, когнитивные, коммуникативные и инновационные аспекты, необходимые для успешной работы в динамичной и конкурентной области информационных технологий.

1.2 Классификация компетенций в IT

Классификация компетенций в области информационных технологий представляет собой систематический подход к разделению комплекса знаний, навыков и качеств, необходимых для успешной работы в этой сфере [5]. Понимание различных типов компетенций позволяет более точно анализировать потребности рынка труда, разрабатывать программы обучения и подготовки, а также оптимизировать процессы найма и карьерного развития в ИТ [10].

Одним из наиболее распространенных способов классификации компетенций в ИТ является разделение их на технические и межличностные [7]. Технические компетенции охватывают широкий спектр знаний и навыков, связанных с разработкой, управлением и поддержкой информационных систем и технологий [6]. Это может включать в себя знания о языках программирования, архитектуре компьютерных систем, сетевой инфраструктуре, базах данных и т.д. Межличностные компетенции, с другой стороны, охватывают навыки общения, руководства, работы в команде, управления временем и конфликтами, а также способность к адаптации к изменениям и решению проблем [9].

Другой подход к классификации компетенций в ИТ связан с разделением их по уровню сложности и специализации [14]. На этой основе компетенции могут быть разделены на начальные, средние и продвинутые, а также на общие и специализированные [8]. Начальные компетенции обычно предполагают базовые знания и навыки, необходимые для вхождения в область ИТ, такие как основы программирования, понимание аппаратных средств и т.д. Средние компетенции включают в себя более продвинутые технические навыки и способности к решению проблем, тогда как продвинутые компетенции охватывают экспертные знания и опыт в специализированных областях, таких как искусственный интеллект, кибербезопасность, аналитика данных и т.д.

Таким образом, классификация компетенций в ИТ представляет собой важный инструмент для понимания и оценки требований к квалификации в данной области, а также для разработки стратегий обучения и развития

персонала, направленных на удовлетворение потребностей рынка и достижение успеха в карьере в информационных технологиях.

1.3 Роль компетенций в профессиональной деятельности

В условиях постоянного развития и инноваций, где технологический прогресс быстро меняет бизнес-среду и требования рынка, обладание определенными компетенциями становится необходимостью для успешной карьеры в ИТ [12].

Во-первых, компетенции в ИТ обеспечивают специалиста необходимыми знаниями и навыками для выполнения конкретных задач и функций. Без соответствующих компетенций сложно представить себе эффективное решение разработкой обеспечения, связанных c программного задач, администрированием сетей, анализом данных информационной ИЛИ безопасностью.

Кроме того, компетенции в ИТ позволяют специалисту не только выполнять задачи, но и продвигаться в карьере. В современном мире профессиональный успех в ИТ сильно зависит от способности адаптироваться к новым технологиям и методологиям, а также от умения работать в команде и эффективно взаимодействовать с коллегами и клиентами [15].

Таким образом, роль компетенций в профессиональной деятельности в области информационных технологий является многогранной и важной. Они обеспечивают успешную карьеру специалиста, повышают конкурентоспособность организаций и способствуют социальному развитию общества в целом.

2 КОРРЕЛЯЦИОННЫЙ АНАЛИЗ КОМПЕТЕНЦИЙ В ІТ

2.1 Методы оценки компетенций в IT

В сфере информационных технологий (IT) существует несколько методов оценки компетенций, которые позволяют измерить уровень знаний, навыков и способностей специалистов. Эти методы могут быть использованы как для оценки кандидатов при найме, так и для оценки уже работающих сотрудников с целью определения их потенциала развития и обучения.

Ниже приведены основные методы оценки компетенций в IT:

- 1. Тестирование знаний и навыков: Этот метод включает проведение тестовых заданий, которые оценивают уровень знаний по конкретным технологиям, языкам программирования, архитектуре компьютеров, а также навыки работы с базами данных, сетями и другими аспектами IT [14].
- 2. Оценка проектов и портфолио: Этот метод включает анализ выполненных проектов и работ, которые позволяют оценить практические навыки и опыт работы со специфическими технологиями и инструментами. Рассмотрение портфолио также может помочь в оценке способности кандидата к решению реальных задач и применению полученных знаний на практике [12].
- 3. Оценка на основе решения кейсов: Этот метод предполагает предоставление кандидату или сотруднику реальной или симулированной проблемной ситуации (кейса), на основе которой оценивается его способность анализировать проблемы, принимать решения и находить решения. Оценка проводится на основе качества предложенных решений и процесса их принятия [3].
- 4. Оценка по результатам интервью: Интервью с кандидатом или сотрудником может также использоваться для оценки его компетенций [10]. Это может включать как технические интервью, нацеленные на оценку знаний и навыков, так и поведенческие интервью, направленные на оценку личностных качеств, коммуникативных навыков и способности работать в команде.

Таким образом, выбор конкретного метода оценки компетенций в IT зависит от конкретных целей, доступных ресурсов и особенностей компании или организации, проводящей оценку. Комбинация нескольких методов часто используется для получения более полной картины о компетенциях кандидатов или сотрудников.

2.2 Анализ взаимосвязи компетенций и результативности профессиональной деятельности в IT-сфере

Представим перечень вопросов для проведения опроса студентов IT специальностей и IT специалистов: «Знание языков программирования», «Навыки работы с базами данных», «Умение работать в команде», «Аналитическое мышление», «Умение решать проблемы», «Навыки работы с сетями и серверами», «Владение алгоритмами и структурами данных», «Знание основ архитектуры компьютера», «Умение писать техническую документацию», «Навыки тестирования программного обеспечения», «Умение анализировать данные», «Знание методов оптимизации кода», «Умение принимать решения в условиях неопределенности», «Навыки в области машинного обучения и искусственного интеллекта», «Умение работать с Linux/Unix», «Навыки работы с веб-технологиями», «Владение инструментами контроля версий», «Умение работать с облачными сервисами», «Знание принципов криптографии», «Навыки управления проектами».

Итого количество вопросов в опросном листе составляет 20 шт. Предполагается, что отвечающие будут ставить свою оценку от 1 до 5. Далее представим средние баллы ответов на вопросы среди студентов IT специальностей (таблица 1).

Таблица 1 - Средние оценки студентов по компетенциям

Вопрос	Средний балл
«Знание языков программирования»	2,95
«Навыки работы с базами данных»	3,17
«Умение работать в команде»	2,73

«Аналитическое мышление»	3,11
«Умение решать проблемы»	3,05
«Навыки работы с сетями и серверами»	2,99
«Владение алгоритмами и структурами данных»	2,95
«Знание основ архитектуры компьютера»	2,97
«Умение писать техническую документацию»	2,84
«Навыки тестирования программного обеспечения»	2,74
«Умение анализировать данные»	3,09
«Знание методов оптимизации кода»	2,95
«Умение принимать решения в условиях неопределенности»	3,38
«Навыки в области машинного обучения и искусственного интеллекта»	2,81
«Умение работать с Linux/Unix»	3,09
«Навыки работы с веб-технологиями»	3,14
«Владение инструментами контроля версий»	2,97
«Умение работать с облачными сервисами»	2,78
«Знание принципов криптографии»	3,00
«Навыки управления проектами»	3,30

Далее представим средние баллы ответов на вопросы среди IT специалистов (таблица 2).

Таблица 2 - Средние оценки специалистов по компетенциям

Вопрос	Средний балл
«Знание языков программирования»	2,96
«Навыки работы с базами данных»	2,96
«Умение работать в команде»	2,89
«Аналитическое мышление»	3,42
«Умение решать проблемы»	3,04
«Навыки работы с сетями и серверами»	3,01
«Владение алгоритмами и структурами данных»	2,96
«Знание основ архитектуры компьютера»	2,94
«Умение писать техническую документацию»	3,16
«Навыки тестирования программного обеспечения»	2,98
«Умение анализировать данные»	2,75
«Знание методов оптимизации кода»	3,15
«Умение принимать решения в условиях неопределенности»	2,92
«Навыки в области машинного обучения и искусственного интеллекта»	3,09
«Умение работать с Linux/Unix»	2,90
«Навыки работы с веб-технологиями»	2,82
«Владение инструментами контроля версий»	3,20
«Умение работать с облачными сервисами»	3,27
«Знание принципов криптографии»	2,90
«Навыки управления проектами»	2,75

После получения средних значений ответов среди всех респондентов были вычислены коэффициенты корреляции Пирсона по каждому вопросу среди опросного листа (таблица 3).

Таблица 3 – Коэффициенты корреляции ответов респондентов

Вопрос	Корреляция
	Пирсона
«Знание языков программирования»	-0,09
«Навыки работы с базами данных»	-0,10
«Умение работать в команде»	-0,01
«Аналитическое мышление»	0,05
«Умение решать проблемы»	-0,04
«Навыки работы с сетями и серверами»	-0,17
«Владение алгоритмами и структурами данных»	-0,05
«Знание основ архитектуры компьютера»	-0,07
«Умение писать техническую документацию»	0,08
«Навыки тестирования программного обеспечения»	0,03
«Умение анализировать данные»	-0,01
«Знание методов оптимизации кода»	0,16
«Умение принимать решения в условиях неопределенности»	-0,13
«Навыки в области машинного обучения и искусственного интеллекта»	0,01
«Умение работать с Linux/Unix»	-0,12
«Навыки работы с веб-технологиями»	-0,02
«Владение инструментами контроля версий»	-0,22
«Умение работать с облачными сервисами»	0,07
«Знание принципов криптографии»	-0,04
«Навыки управления проектами»	0,04

Код программы на языке Python представлен в приложении А. Данная программа осуществляет анализ сравнительной оценки компетенций между студентами и профессиональными специалистами в области информационных технологий (ИТ). Для этого используются методы анализа данных, включая вычисление средних значений оценок по различным компетенциям и проведение корреляционного анализа.

Данная программа написана на языке Python и использует несколько библиотек для выполнения различных задач:

1. pandas: Это библиотека Python для обработки и анализа данных. Она предоставляет структуры данных и функции для эффективной работы с большими наборами данных. В данной программе библиотека pandas

используется для создания и работы с DataFrame, структурой данных, представляющей табличные данные.

2. scipy.stats: Это модуль библиотеки SciPy, который предоставляет статистические функции и инструменты для анализа данных. В данной программе используется функция pearsonr() из этого модуля для вычисления коэффициента корреляции Пирсона между оценками студентов и ИТ-специалистов по каждой из компетенций.

Программа состоит из следующих элементов:

- 1. Формирование данных: Создание списка вопросов questions, которые представляют собой компетенции в области информационных технологий. Далее загружаются оценки, представляющие ответы студентов и ИТ-специалистов на эти вопросы, и сохраняются в виде DataFrame с помощью библиотеки pandas.
- 2. Анализ результатов опроса: Вычисление средних оценок, полученных от студентов и ИТ-специалистов, по каждой из компетенций с использованием метода .mean() DataFrame.
- 3. Корреляционный анализ: Проведение корреляционного анализа для определения степени согласованности оценок между студентами и ИТ-специалистами по каждой из компетенций. Для этого вычисляется коэффициент корреляции Пирсона с помощью функции pearsonr() из библиотеки scipy.stats.
- 4. Вывод результатов: Вывод средних оценок по компетенциям для студентов и ИТ-специалистов, а также результатов корреляционного анализа в виде таблицы, содержащей вопросы о компетенциях и значения коэффициента корреляции.

Из результатов корреляционного анализа мнений студентов и ИТ специалистов можно сделать следующие выводы:

1. Корреляция между оценками по компетенции «Знание языков программирования» и мнением студентов и ИТ специалистов близка к нулю (-0.09), что может указывать на отсутствие значимой связи между оценками этих двух групп по данной компетенции.

- 2. Мнения студентов и ИТ специалистов оцениваются с небольшой положительной корреляцией в отношении компетенции «Знание методов оптимизации кода» (0.16), что может свидетельствовать о некотором сходстве в их взглядах на этот аспект работы в ИТ сфере.
- 3. Оценки по компетенции «Владение инструментами контроля версий» показывают сильную отрицательную корреляцию (-0.22), что может указывать на значительные различия во взглядах студентов и ИТ специалистов на этот аспект работы.

Таким образом, результаты анализа показывают, что существуют различия в мнениях студентов и ИТ специалистов относительно некоторых компетенций, что может быть важным для формирования образовательных программ и оценки потребностей рынка труда в ИТ сфере.

2.3 Практические рекомендации по развитию необходимых компетенций

В сфере информационных технологий (IT) постоянное обучение и развитие навыков играют ключевую роль в карьерном росте и успешной работе. Ниже приведены практические рекомендации по развитию необходимых компетенций в IT:

- 1. Участие в онлайн-курсах и тренингах: Онлайн-платформы, такие как Coursera, Udemy, edX и другие, предлагают широкий выбор курсов по различным аспектам информационных технологий. Участие в таких курсах позволяет получить новые знания и навыки, а также углубить свои знания в определенной области.
- 2. Самостоятельное изучение материалов: Помимо формальных курсов, существует множество книг, онлайн-ресурсов, видеоуроков и документации, доступных для самостоятельного изучения. Регулярное чтение и изучение таких материалов поможет расширить кругозор и углубить понимание различных аспектов IT.

- 3. Практические проекты и задачи: Участие в реальных проектах и выполнение практических задач позволяет применить полученные знания на практике и развить практические навыки. Это могут быть как учебные проекты, так и коммерческие проекты или волонтерская работа.
- 4. Участие в хакатонах и соревнованиях: Хакатоны и соревнования по программированию, анализу данных и другим ІТ-направлениям предоставляют возможность проверить свои навыки в реальной конкурентной среде, а также научиться работать в команде и решать проблемы в ограниченное время.

Таким образом, совокупность этих рекомендаций поможет специалистам в ІТ эффективно развивать свои компетенции, добиваться успеха в своей карьере и оставаться востребованными на рынке труда.

ЗАКЛЮЧЕНИЕ

В ходе исследования были проанализированы мнения студентов и ИТ специалистов относительно необходимых компетенций для работы в сфере информационных технологий. Результаты корреляционного анализа показали, что существуют различия во взглядах этих двух групп на многие аспекты работы в ІТ.

Большинство компетенций имели незначительную или отсутствующую корреляцию между мнениями студентов и ИТ специалистов. Однако были выявлены некоторые аспекты, в которых мнения двух групп имели заметные различия. Например, Владение инструментами контроля версий и навыки работы с облачными сервисами оказались сильно различными в оценках.

Для студентов и начинающих специалистов важно учитывать эти различия во взглядах и ожиданиях работодателей при подготовке к карьере в IT. Постоянное обучение, развитие и адаптация к изменяющимся требованиям рынка труда становятся ключевыми факторами успеха в данной сфере.

В целом, исследование подчеркивает важность развития широкого спектра компетенций для успешной карьеры в IT, а также необходимость постоянного обучения и саморазвития для того, чтобы оставаться конкурентоспособным на рынке труда.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Богомолова Е. В., Плотникова Е. И., Чурыбкин Н. Н. Обоснование компетенций по применению информационных технологий в процессе принятия решений, необходимых современному офицеру //Бизнес. Образование. Право. − 2020. №. 2. С. 324-329.
- Васева Е. С., Бужинская Н. В. Система оценивания компетенции командной работы будущих специалистов ИТ-сферы //Информатика и образование. 2020. №. 9. С. 20-27.
- 3. Гребнева Д. М., Васева Е. С., Бужинская Н. В. Формирование компетенции самоорганизации в процессе подготовки будущего специалиста ИТ-сферы //Ярославский педагогический вестник. 2020. №. 5 (116). С. 75-81.
- 4. Днепровская Н. В. Метод исследования компетенций субъектов цифровой экономики //Открытое образование. 2020. Т. 24. №. 1. С. 4-12.
- 5. Загуменнов Ю. Л. Использование информационных технологий в развитии иноязычной научной коммуникативной компетенции студентов неязыкового вуза //Открытое образование. 2022. Т. 26. № 1. С. 13-23.
- 6. Замрий О. Н. Информационные технологии и профессиональные компетенции юриста в XXI веке //Вестник Тверского государственного университета. Серия: Право. 2021. №. 1. С. 159-161.
- 7. Зубренкова О. А. и др. Информационные технологии как необходимый элемент организации учебного процесса образовательных учреждений //Азимут научных исследований: экономика и управление. 2020. Т. $9. \mathbb{N}_{2}$. 2(31). С. 172-175.
- 8. Климова Ю. О. Анализ соответствия уровня компетенций выпускников ИТ-специальностей требованиям работодателей //Вопросы территориального развития. 2021. T. 9. N2. 1. C. 5.

- Климова Ю. О. Компетенции ИТ-специалистов в условиях перехода к цифровой экономике //Вестник Челябинского государственного университета.
 2020. №. 10 (444). С. 10-20.
- 10. Николаева В. И., Новоселова Т. А., Печинская Л. И. Потенциал использования современных информационных технологий при формировании soft skills //Политехническая весна. Гуманитарные науки. 2020. С. 174-180.
- 11. Рукавишников В. А. Графические информационные технологии при формировании проектно-конструкторской компетенции студентов //КОГРАФ-2020. 2020. С. 103-107.
- 12. Симарова И. С., Алексеевичева Ю. В., Жигин Д. В. Цифровые компетенции: понятие, виды, оценка и развитие //Вопросы инновационной экономики. -2022. Т. 12. №. 2. С. 935-948.
- 13. Соколова Е. И. Современное осмысление понятий» компетенция» и» навык»(обзор по материалам российских и зарубежных исследований) //Непрерывное образование: XXI век. 2021. №. 3 (35). С. 132-146.
- 14. Сухомлин В. А., Зубарева Е. В. Новый этап международной стандартизации ИТ-образования //Современные информационные технологии и ИТ-образование. -2021. Т. 17. №. 3. С. 697-723.
- 15. Шевцова И. В. Методика обучения работе с цифровыми данными //Открытое образование. -2020. Т. 24. №. 4. С. 32-40.

ПРИЛОЖЕНИЕ А

Код программы

```
import pandas as pd
from scipy.stats import pearsonr
```

]

```
# Подготовка данных для опроса
# Создаем DataFrame с вопросами и возможными ответами
questions = [
  "Знание языков программирования",
  "Навыки работы с базами данных",
  "Умение работать в команде",
  "Аналитическое мышление",
  "Умение решать проблемы",
  "Навыки работы с сетями и серверами",
  "Владение алгоритмами и структурами данных",
  "Знание основ архитектуры компьютера",
  "Умение писать техническую документацию",
  "Навыки тестирования программного обеспечения",
  "Умение анализировать данные",
  "Знание методов оптимизации кода",
  "Умение принимать решения в условиях неопределенности",
  "Навыки в области машинного обучения и искусственного интеллекта",
  "Умение работать с Linux/Unix",
  "Навыки работы с веб-технологиями",
  "Владение инструментами версионного контроля",
  "Умение работать с облачными сервисами",
  "Знание принципов криптографии",
  "Навыки управления проектами"
```

```
# Загрузка ответов для студентов и ИТ специалистов из CSV файлов
     students responses = pd.read csv("students responses.csv", header=None)
     students responses.columns = questions
     it professionals responses = pd.read csv("it professionals responses.csv",
header=None)
     it professionals responses.columns = questions
     # Анализ результатов опроса
     print("\nСредние оценки студентов по компетенциям:")
     print(students responses.mean())
     print("\nСредние оценки ИТ специалистов по компетенциям:")
     print(it professionals responses.mean())
     # Проведение корреляционного анализа
     correlation coefficients = []
     for question in questions:
        correlation coefficient,
                                           pearsonr(students responses[question],
                                 =
it professionals responses[question])
        correlation coefficients.append(correlation coefficient)
     correlation df = pd.DataFrame({
        'Вопрос': questions,
        'Корреляция': correlation coefficients
      })
     print("\nКорреляционный анализ мнений студентов и ИТ специалистов:")
     print(correlation df)
```