

Instructor: Jiyeon Lee

School of Computer Science and Engineering
Kyungpook National University (KNU)

Last time

- Breadth-First search (BFS)
- Plus, applications!
 - Dijkstra's Algorithm for solving the single-source shortest path problem in weighted graphs.

Several useful properties

Please read CLRS 24.5

Corollary 1. If there is no path from s to v, then we have:

$$d[v] = d(s, v) = \infty$$

• Lemma 1. We always have $d[v] \ge d(s, v)$ for all v.

 $d[v] \leftarrow min(d[v], d[u] + edgeWeight(u,v))$

Whatever path we The shortest path to u, and had in mind before then the edge from u to v.

 $d[v] = length of the path we have in mind <math>\geq length of shortest path = d(s,v)$

Lemma 2. If s -> u -> v is a shortest path in G for some u, v in V, and if d[u] = d(s, u) at any time prior to update w(u, v),

Then, d[v] = d(s, u) + w(u, v) = d(s, v)at all time afterward.

Why does this work?

• Theorem:

- Suppose we run Dijkstra on G = (V,E), starting from s.
- At the end of the algorithm, the estimate d[v] is equal to the shortestpath weight d(s, v) for all v.
- Proof. We use the following loop invariant:

At the start of each iteration of the **while** loop, d[v] = d(s, v) for all v in the sure list.

 Initialization: Initially, there is no v in the sure list, so the invariant is trivially true.

- 1) Suppose that we are about to add u to the sure list.
 - That is, we picked u in the first line here:

Recall:

- Pick the not-sure node u with the smallest estimate d[u]
- Update all u's neighbors v:
 - d[v] ← min(d[v] , d[u] + edgeWeight(u,v))
- Mark u as sure
- Repeat
- Thus, d[u] is the smallest in the not-sure list.
- 2) Also suppose u is the first vertex that marked sure with d[u] != d(s, u).
 - (This is the way of contradiction.)

- I) d[u] is the smallest in the not-sure list
- 2) d[u] != d(s, u)

- s is the first vertex that is marked as sure,
 - At this time, d[s] = d(s, s) = 0. Thus, $s \neq u$.
- If there is no path,
 - then, $d[u] = d(s, u) = \infty$, (by corollary 1) <-- violate the assumption!

Sure list d[s] = d(s, s) $d(s, u) = \infty$

- I) d[u] is the smallest in the not-sure list
- 2) d[u] != d(s, u)

- s is the first vertex that is marked as sure,
 - At this time, d[s] = d(s, s) = 0. Thus, $s \neq u$.
- If there is no path,

- then, $d[u] = d(s, u) = \infty$, (by corollary 1) <-- violate the assumption!
- Therefore, there must exist one path and the shortest path too.

Consider this the shortest path p.

- d[u] is the smallest in the not-sure list
- 2) d[u] != d(s, u)

- let x, and y:
 - y be the first vertex along p such that y is in the not-sure list.
 - x be y's predecessor along p.
- Then,
 - d[x] = d(s, x). (By the hypothesis)
 - Also, d[y] = d(s, y). (By the Lemma 2)

u is the first vertex that marked sure with $d[u] \neq d(s, u)$

Consider this the shortest path p.

- d[u] is the smallest in the not-sure list
- 2) d[u] != d(s, u)

- Then, $d[y] = d(s, y) \le d(s, u) \le d[u]$ (by Lemma 1)
 - But because both y, and u were in the not-sure list, when u was chosen, we have $d[u] \le d[y]$.
 - Consequently, everything is equal. Thus d[u] = d(s, u). CONTRADICTION!!
- We conclude that d[u] = d(s, u) when u is added to the sure list.

Consider this the shortest path *p*.

Proof cont'd – Termination

• Termination:

- At termination, the not-sure list = Ø which, along with our earlier invariant implies that the sure list is equal to V.
- Thus, d[u] = d(s, u) for all u in V.

Recap: shortest paths

- BFS:
 - (+) O(n+m)
 - (–) only unweighted graphs
- Dijkstra's algorithm:
 - (+) weighted graphs
 - (+) O(nlog(n) + m) if you implement it right.
 - (–) no negative edge weights

Outline

- 1. Bellman-Ford Algorithm
- 2. Dynamic programming
 - Warm-up example: Fibonacci numbers

• Reading: CLRS 24.1, 15.3

Recall

A weighted directed graph:

- Weights on edges represent costs.
- The cost of a path is the sum of the weights along that path.
- A shortest path from s to t is a directed path from s to t with the smallest cost.
- The single-source shortest path problem is to find the shortest path from s to v for all v in the graph.

Bellman-Ford Algorithm

- (–) Slower than Dijkstra's algorithm
- (+) Can handle negative edge weights.
 - Can be useful if you want to say that some edges are actively good to take, rather than costly.
 - Can be useful as a building block in other algorithms.
- (+) Allows for some flexibility if the weights change.
 - We'll see what this means later.

Aside: Negative Cycles

- A negative cycle is a cycle whose edge weights sum to a negative number.
- Shortest paths aren't defined when there are negative cycles!

Bellman-Ford vs. Dijkstra

Dijkstra:

- Find the u with the smallest d[u]
- Update u's neighbors: d[v] = min(d[v], d[u] + w(u,v))

Bellman-Ford:

- Don't bother finding the u with the smallest d[u]
- Everyone updates!

Bellman-Ford Algorithm

Bellman-Ford(G,s):

G = (V,E) is a graph with n vertices and m edges s is a start vertex

- Initialize arrays d⁽⁰⁾,...,d⁽ⁿ⁻¹⁾ of length n
- $d^{(0)}[v] = \infty$ for all v in V
- $d^{(0)}[s] = 0$
- **For** i=0,...,n-2:
 - For v in V: 4

Here, Dijkstra picked a special vertex u and updated u's neighbors – Bellman-Ford will update all the vertices.

- $d^{(i+1)}[v] \leftarrow \min(d^{(i)}[v], \min_{u \text{ in } v. \text{inNbrs}} \{d^{(i)}[u] + w(u,v)\})$
- Nøw, dist(s,v) = $d^{(n-1)}[v]$ for all v in V.
 - (Assuming no negative cycles)

Running time: O(nm)

	Gates	Stadium	CSE	Office	Dish
d ⁽⁰⁾	0	∞	∞	∞	∞
d ⁽¹⁾					
d ⁽²⁾					
d ⁽³⁾					
d ⁽⁴⁾					

For i=0,...,n-2:

For v in V:

 $d^{(i+1)}[v] \leftarrow min(d^{(i)}[v], d^{(i)}[u] + w(u,v))$ where we are also taking the min over all u in v.inNeighbors

How far is a node from Gates?

	Gates	Stadium	CSE	Office	Dish
d ⁽⁰⁾	0	∞	∞	∞	∞
d ⁽¹⁾	0	1	∞	∞	25
d ⁽²⁾					
d ⁽³⁾					
d ⁽⁴⁾					

For i=0,...,n-2: For v in V: $d^{(i+1)}[v] \leftarrow \min(\ d^{(i)}[v]\ ,\ d^{(i)}[u] + w(u,v)\)$ where we are also taking the min over all u in v.inNeighbors

How far is a node from Gates?

	Gates	Stadium	CSE	Office	Dish
d ⁽⁰⁾	0	∞	∞	∞	∞
d ⁽¹⁾	0	1	∞	∞	25
d ⁽²⁾	0	1	2	45	23
d ⁽³⁾					
d ⁽⁴⁾					

For i=0,...,n-2: For v in V: $d^{(i+1)}[v] \leftarrow \min(\ d^{(i)}[v]\ ,\ d^{(i)}[u] + w(u,v)\)$ where we are also taking the min over all u in v.inNeighbors

How far is a node from Gates?

	Gates	Stadium	CSE	Office	Dish
d ⁽⁰⁾	0	∞	∞	∞	∞
d ⁽¹⁾	0	1	∞	∞	25
d ⁽²⁾	0	1	2	45	23
d ⁽³⁾	0	1	2	6	23
d ⁽⁴⁾					

For i=0,...,n-2: For v in V: $d^{(i+1)}[v] \leftarrow \min(d^{(i)}[v], d^{(i)}[u] + w(u,v))$ where we are also taking the min over all u in v.inNeighbors

Interpretation of d(i)

 d⁽ⁱ⁾[v] is equal to the cost of the shortest path between s and v with at most i edges.

	Gates	Stadium	CSE	Office	Dish
d ⁽⁰⁾	0	∞	∞	∞	∞
d ⁽¹⁾	0	1	∞	∞	25
d ⁽²⁾	0	1	2	45	23
d ⁽³⁾	0	1	2	6	23
d ⁽⁴⁾	0	1	2	6	23

Why does Bellman-Ford work?

Idea: proof by induction.

Inductive Hypothesis:

 d⁽ⁱ⁾[v] is equal to the cost of the shortest path between s and v with at most i edges.

Conclusion:

- d⁽ⁿ⁻¹⁾[v] is equal to the cost of the shortest path between s and v with at most n-1 edges.
- Aka, the shortest path with at most n-1 edges is the shortest simple path and equals to the shortest path.

COMP319

24

Aside: the shortest simple path

- The shortest path with at most n-1 edges is the shortest path in this graph.
 - Let's say there is a path that uses more than n-1 edges. Since the total number of vertices in the graph is n, there must be at least one cycle in this path.
 - In the definition of the shortest path problem, a negative cycle cannot exist, so this cycle is not negative.
 - Excluding all cycles from that path, the path is shorter (positive cycle) or the same (zero-length cycle). Therefore, among the shortest paths using n-1 or fewer edges, there must exist the actual shortest path.

Can't add another edge without making a cycle!

Proof by induction

• Inductive Hypothesis:

• After iteration i, for each v, $d^{(i)}[v]$ is equal to the cost of the shortest path between s and v with at most i edges.

Base case:

- After iteration 0...
- Inductive step:

Inductive step

- **Inductive Hypothesis:** After iteration i, for each v, d⁽ⁱ⁾ [v] is equal to the cost of the shortest path between s and v with at most i edges.
 - Suppose the inductive hypothesis holds for i.
 - We want to establish it for i+1.

 Let u be the vertex right before v in this path.

 U

 v(u, v)

 at most i edges (by IH)
 - Then, d[v] is decided by min{d[v], d[u] + w(u, v)}, where d[u] is the shortest path with at most i edges.
 - Therefore, d[v] becomes the shortest path with at most i+1 edges in iteration i+1.

Conclusion

• Inductive Hypothesis: After iteration i, for each v, d⁽ⁱ⁾ [v] is equal to the cost of the shortest path between s and v with at most i edges.

• Base case: After iteration 0...

• Inductive step:

Conclusion:

- After iteration n-1, for each v, d[v] is equal to the cost of the shortest path between s and v of length at most n-1 edges.
- And If there are no negative cycles, d⁽ⁿ⁻¹⁾[v] is equal to the cost of the shortest path.

Notice that negative edge weights are fine. Just not negative cycles.

Wait a second...

• What is the shortest path from Gates to the Office?

Negative cycles in B-F Gates What is the shortest path from Gates to the Office? Stadium

Cost: 2

Office

10

Dish

CSE

-2

Negative cycles in B-F

 What is the shortest path from Gates to the Office?

Negative cycles in Bellman-Ford

- B-F works with negative edge weights... as long as there are no negative cycles.
- However, B-F can detect negative cycles.

Back to the correctness

Idea: proof by induction.

Inductive Hypothesis:

 d⁽ⁱ⁾[v] is equal to the cost of the shortest path between s and v with at most i edges.

Conclusion:

- d⁽ⁿ⁻¹⁾[v] is equal to the cost of the shortest path between s and v with at most n-1 edges.
- Aka, the shortest path with at most n-1 edges is the shortest simple path and equals to the shortest path.

If there are negative

If there are negative cycles, then non-simple paths matter!

This is not looking good!

For i=0,...,n-2: For v in V: $d^{(i+1)}[v] \leftarrow \min(d^{(i)}[v], \min_{u \text{ in v.nbrs}} \{d^{(i)}[u] + w(u,v)\})$

We can tell that it's not looking good:

For i=0,...,n-2:

For v in V:

 $d^{(i+1)}[v] \leftarrow \min(\ d^{(i)}[v] \ , \ \min_{u \ in \ v.nbrs} \{d^{(i)}[u] + w(u,v)\} \)$

How B-F deals with negative cycles

- If there are no negative cycles:
 - Everything works as it should.
 - The algorithm stabilizes after n-1 rounds.
- If there are negative cycles:
 - Not everything works as it should...
 - It couldn't possibly work, since shortest paths aren't well-defined if there are negative cycles.
 - The d[v] values will keep changing.
- Solution:
 - Go one round more and see if things change.
 - If so, return NEGATIVE CYCLE (3)

Bellman-Ford Algorithm

Bellman-Ford(G,s): G = (V,E) is a graph with n vertices and m edges, s is a start vertex

- Initialize arrays d⁽⁰⁾,..., d⁽ⁿ⁻¹⁾ of length n
- d⁽⁰⁾[v] = ∞ for all v in V
- $d^{(0)}[s] = 0$
- For i=0,...,n-1:
 - **For** v in V:
 - $d^{(i+1)}[v] \leftarrow \min(d^{(i)}[v], \min_{u \text{ in } v, \text{inNbrs}} \{d^{(i)}[u] + w(u,v)\})$
- If $d^{(n-1)}!=d^{(n)}$:
 - Return NEGATIVE CYCLE 🕾
- Otherwise, dist(s,v) = d⁽ⁿ⁻¹⁾[v]

Bellman-Ford take-aways

- Running time is O(mn).
 - For each of n rounds, update m edges.
- Works fine with negative edges.
- Does not work with negative cycles.
 - No algorithm can shortest paths aren't defined if there are negative cycles.
- B-F can detect negative cycles.
- Bellman-Ford is also used in practice.
 - e.g., Routing Information Protocol (RIP) uses something like Bellman-Ford. (Older protocol, not used as much anymore.)

And B-F is also an example of...

Let's start with a simple example

- How to compute Fibonacci Numbers
- Definition:
 - F(n) = F(n-1) + F(n-2), with F(1) = F(2) = 1.
 - The first several are:
 - 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144,...

- Question:
 - Given n, what is F(n)?

Candidate algorithm

```
•def Fibonacci(n):
    •if n == 0, return 0
    •if n == 1, return 1
    •return Fibonacci(n-1) + Fibonacci(n-2)
```

- Running time?
- $T(n) \ge T(n-1) + T(n-2)$ for $n \ge 2$
- This is EXPONENTIALLY QUICKLY!
 - ∘ $T(n) \ge 2T(n-2)$ implies $T(n) \ge \Omega(2^{n/2})$.

What's going on?

Maybe this would be better:

def fasterFibonacci(n):

- F = [0, 1, None, None, ..., None]// F has length n + 1
- for i = 2, ..., n:
 - F[i] = F[i-1] + F[i-2]
- return F[n]

COMP319

43

What is dynamic programming?

- It is an algorithm design paradigm
 - like divide-and-conquer is an algorithm design paradigm.
- Usually, it is for solving optimization problems
 - If the answer to a large problem includes the answer to a smaller problem, it is said to have an optimal structure.
 - E.g., shortest path

COMP319

44

Elements of dynamic programming

1. Optimal sub-structure:

- Big problems break up into sub-problems.
 - Fibonacci: F(i) for $i \le n$
 - Bellman-Ford: Shortest paths with at most i edges for $i \le n$
- The solution to a problem can be expressed in terms of solutions to smaller sub-problems.
 - Fibonacci: F(i+1) = F(i) + F(i-1)
 - Bellman-Ford: $d^{(i+1)}[v] \leftarrow \min\{d^{(i)}[v], d^{(i)}[u] + weight(u,v)\}$

Elements of dynamic programming

2. Overlapping sub-problems:

- The sub-problems overlap.
 - Fibonacci:
 - Both F[i+1] and F[i+2] directly use F[i].
 - And lots of different F[i+x] indirectly use F[i].
 - Bellman-Ford:
 - Many different entries of $d^{(i+1)}$ will directly use $d^{(i)}[v]$.
 - And lots of different entries of d^(i+x) will indirectly use d⁽ⁱ⁾[v].
- → This means that we can save time by solving a sub-problem just once and storing the answer.

Elements of dynamic programming

1. Optimal substructure.

 Optimal solutions to sub-problems can be used to find the optimal solution of the original problem.

2. Overlapping subproblems.

- The subproblems show up again and again.
- Using these properties, we can design a dynamic programming algorithm:
 - Keep a table of solutions to the smaller problems.
 - Use the solutions in the table to solve bigger problems.
 - At the end we can use information we collected along the way to find the solution to the whole thing.

COMP319

47

DP algorithms

- Two ways to think about and/or implement
 - Top down
 - Bottom up

Bottom up approach

What we just saw.

For Fibonacci:

- Solve the small problems first
 - fill in F[0], F[1]
- Then bigger problems
 - fill in F[2]

• • •

- Then bigger problems
 - fill in F[n-1]
- Then finally solve the real problem.
 - fill in F[n]

Bottom up approach

For Bellman-Ford:

- Solve the small problems first
 - fill in d⁽⁰⁾
- Then bigger problems
 - fill in d⁽¹⁾

• • •

- Then bigger problems
 - fill in d⁽ⁿ⁻²⁾
- Then finally solve the real problem.
 - fill in d⁽ⁿ⁻¹⁾

Top down approach

- Think of it like a recursive algorithm.
- To solve the big problem:
 - Recurse to solve smaller problems
 - Those recurse to solve smaller problems
 - etc...
- The difference from divide and conquer:
 - Keep track of what small problems you've already solved to prevent re-solving the same problem twice.
 - Aka, "memo-ization"

MEMO

Example of top-down Fibonacci

- define a global list F = [0,1,None, None, ..., None]
- **def** Fibonacci(n):
 - **if** F[n] != None:
 - return F[n]
 - else:
 - F[n] = Fibonacci(n-1) + Fibonacci(n-2)
 - return F[n]

Memo-ization: Keeps track (in F) of the stuff you've already done.

Memo-ization Visualization

Memo-ization Visualization

Collapse repeated nodes and don't do the same work twice!

But otherwise treat it like the same old recursive algorithm.

- define a global list F = [0, 1, None, None, ..., None]
- **def** Fibonacci(n):
 - **if** F[n] != None:
 - return F[n]
 - else:
 - F[n] = Fibonacci(n-1) + Fibonacci(n-2)
 - return F[n]

What have we learned?

• Dynamic programming:

- Paradigm in algorithm design.
- Uses optimal substructure
- Uses overlapping subproblems
- Can be implemented bottom-up or top-down.

