import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score

df=pd.read_csv('/content/winequality-red.csv')
df.head()

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide		density	рН	sulphates	alcohol	quality
0	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4	5
1	7.8	0.88	0.00	2.6	0.098	25.0	67.0	0.9968	3.20	0.68	9.8	5
2	7.8	0.76	0.04	2.3	0.092	15.0	54.0	0.9970	3.26	0.65	9.8	5
3	11.2	0.28	0.56	1.9	0.075	17.0	60.0	0.9980	3.16	0.58	9.8	6
4	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4	5

VISUALIZATION

Univariate analysis

sns.catplot(x='quality',data=df,kind='count')

Bivariate analysis

sns.scatterplot(x=df.pH,y=df.chlorides)

Check for missing values

df.isnull().any()

fixed acidity False volatile acidity False citric acid False residual sugar False chlorides False

9/21/23, 10:57 PM

free sulfur dioxide False total sulfur dioxide False density False False . sulphates False alcohol False quality dtype: bool False

df.describe()

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	
count	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599
mean	8.319637	0.527821	0.270976	2.538806	0.087467	15.874922	46.467792	0.996747	
std	1.741096	0.179060	0.194801	1.409928	0.047065	10.460157	32.895324	0.001887	(
min	4.600000	0.120000	0.000000	0.900000	0.012000	1.000000	6.000000	0.990070	1
25%	7.100000	0.390000	0.090000	1.900000	0.070000	7.000000	22.000000	0.995600	;
50%	7.900000	0.520000	0.260000	2.200000	0.079000	14.000000	38.000000	0.996750	;
75%	9.200000	0.640000	0.420000	2.600000	0.090000	21.000000	62.000000	0.997835	;
max	15.900000	1.580000	1.000000	15.500000	0.611000	72.000000	289.000000	1.003690	4

correlation=df.corr() correlation

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphate:
fixed acidity	1.000000	-0.256131	0.671703	0.114777	0.093705	-0.153794	-0.113181	0.668047	-0.682978	0.183006
volatile acidity	-0.256131	1.000000	-0.552496	0.001918	0.061298	-0.010504	0.076470	0.022026	0.234937	-0.260987
citric acid	0.671703	-0.552496	1.000000	0.143577	0.203823	-0.060978	0.035533	0.364947	-0.541904	0.312770
residual sugar	0.114777	0.001918	0.143577	1.000000	0.055610	0.187049	0.203028	0.355283	-0.085652	0.005527
chlorides	0.093705	0.061298	0.203823	0.055610	1.000000	0.005562	0.047400	0.200632	-0.265026	0.371260
free sulfur dioxide	-0.153794	-0.010504	-0.060978	0.187049	0.005562	1.000000	0.667666	-0.021946	0.070377	0.051658
total sulfur dioxide	-0.113181	0.076470	0.035533	0.203028	0.047400	0.667666	1.000000	0.071269	-0.066495	0.042947
density	0.668047	0.022026	0.364947	0.355283	0.200632	-0.021946	0.071269	1.000000	-0.341699	0.148506
рН	-0.682978	0.234937	-0.541904	-0.085652	-0.265026	0.070377	-0.066495	-0.341699	1.000000	-0.196648
sulphates	0.183006	-0.260987	0.312770	0.005527	0.371260	0.051658	0.042947	0.148506	-0.196648	1.000000
alcohol	-0.061668	-0.202288	0.109903	0.042075	-0.221141	-0.069408	-0.205654	-0.496180	0.205633	0.09359
quality	0.124052	-0.390558	0.226373	0.013732	-0.128907	-0.050656	-0.185100	-0.174919	-0.057731	0.251397

Constructing heatmap

plt.figure(figsize=(10,10)) sns.heatmap(correlation)

df.columns = df.columns.str.replace(' ', '_')
df.head()

	fixed_acidity	volatile_acidity	citric_acid	residual_sugar	chlorides	<pre>free_sulfur_dioxide</pre>	total_sulfur_d
0	7.4	0.70	0.00	1.9	0.076	11.0	
1	7.8	0.88	0.00	2.6	0.098	25.0	
2	7.8	0.76	0.04	2.3	0.092	15.0	
3	11.2	0.28	0.56	1.9	0.075	17.0	
4	7.4	0.70	0.00	1.9	0.076	11.0	

sns.boxplot(df.alcohol)

1

sns.boxplot(df.fixed_acidity)


```
f1 = df.fixed_acidity.quantile(0.25) #Q1
f3 = df.fixed_acidity.quantile(0.75) #Q3
IQR_f = f3 - f1
upper_limit_f = f3+(1.5)*(IQR_f)
lower_limit_f = f1-(1.5)*(IQR_f)
print(f1)
print(f3)
print(IQR_f)
print(upper_limit_f)
print(lower_limit_f)

7.1
9.2
2.099999999999999
3.95
```

```
df=df[(df.fixed_acidity<upper_limit_f) & (df.fixed_acidity>lower_limit_f)]
sns.boxplot(df.fixed acidity)
```


fa_01=df.fixed_acidity.quantile(0.01)
fa_98=df.fixed_acidity.quantile(0.98)
print(fa_01)
print(fa_98)
5.4

 $\begin{tabular}{ll} $df=df[(df.fixed_acidity>=fa_01) & (df.fixed_acidity<=fa_98)] \\ sns.boxplot(df.fixed_acidity) \\ \end{tabular}$

sns.boxplot(df.volatile_acidity)

```
<Axes: >
      1.6
                                           .
v1 = df.volatile_acidity.quantile(0.25) #Q1
v3 = df.volatile_acidity.quantile(0.75) #Q3
IQR_v = v3 - v1
upper_limit_v = v3+(1.5)*(IQR_v)
lower_limit_v = v1-(1.5)*(IQR_v)
print(v1)
print(v3)
print(IQR_v)
print(upper_limit_v)
print(lower_limit_v)
     0.4
     0.64
     0.24
     1.0
     0.040000000000000036
```

 $\label{limit_v} $$ df=df[(df.volatile_acidity<upper_limit_v) & (df.volatile_acidity>lower_limit_v)] $$ sns.boxplot(df.volatile_acidity) $$ (df.volatile_acidity) $$ (df.volatile_acidity) $$ (df.volatile_acidity) $$ (df.volatile_acidity) $$ (df.volatile_acidity>lower_limit_v) $$ (df.volatil$

 $\verb|sns.boxplot(df.citric_acid)| \\$


```
c1 = df.citric_acid.quantile(0.25) #Q1
c3 = df.citric_acid.quantile(0.75) #Q3
IQR_c = c3 - c1
upper_limit_c = c3+(1.5)*(IQR_c)
lower_limit_c = c1-(1.5)*(IQR_c)
print(c1)
```

df=df[(df.citric_acid<upper_limit_c) & (df.citric_acid>lower_limit_c)]
sns.boxplot(df.citric_acid)

sns.boxplot(df.residual_sugar)

ut=ut[(ut.residual_sugar<upper_iimit_r) α (ut.residual_sugar>iower_iimit_r)] sns.boxplot(df.residual_sugar)


```
rs_02=df.residual_sugar.quantile(0.02)
rs_96=df.residual_sugar.quantile(0.96)
print(rs_02)
print(rs_96)
1.4
```

3.0

df=df[(df.residual_sugar>=rs_02) & (df.residual_sugar<=rs_96)]
sns.boxplot(df.residual_sugar)</pre>

sns.boxplot(df.chlorides)

```
<Axes: >
      0.6
ch1 = df.chlorides.quantile(0.25) #Q1
ch3 = df.chlorides.quantile(0.75) #Q3
IQR_ch = ch3 - ch1
upper_limit_ch = ch3+(1.5)*(IQR_ch)
lower_limit_ch = ch1-(1.5)*(IQR_ch)
print(ch1)
print(ch3)
print(IQR_ch)
print(upper_limit_ch)
print(lower_limit_ch)
     0.07
     0.089
     0.0189999999999999
     0.11749999999999998
     0.0415000000000000002
df=df[(df.chlorides<upper_limit_ch) & (df.chlorides>lower_limit_ch)]
sns.boxplot(df.chlorides)
     <Axes: >
      0.12
```


sns.boxplot(df.free_sulfur_dioxide)


```
fs1 = df.free_sulfur_dioxide.quantile(0.25) #Q1
fs3 = df.free_sulfur_dioxide.quantile(0.75) #Q3
IQR_fs = fs3 - fs1
upper_limit_fs = fs3+(1.5)*(IQR_fs)
lower_limit_fs = fs1-(1.5)*(IQR_fs)
print(fs1)
print(fs3)
print(IQR_fs)
print(upper_limit_fs)
print(lower_limit_fs)

8.0
21.0
13.0
40.5
-11.5
```

df=df[(df.free_sulfur_dioxide<upper_limit_fs) & (df.free_sulfur_dioxide>lower_limit_fs)]
sns.boxplot(df.free_sulfur_dioxide)

sns.boxplot(df.total_sulfur_dioxide)

```
<Axes: >
160 -
140 -
120 -
100 -
80 -
60 -
40 -
```

```
ts1 = df.total_sulfur_dioxide.quantile(0.25) #Q1
ts3 = df.total_sulfur_dioxide.quantile(0.75) #Q3
IQR_ts = ts3 - ts1
upper_limit_ts = ts3+(1.5)*(IQR_ts)
lower_limit_ts = ts1-(1.5)*(IQR_ts)
print(ts1)
print(ts3)
print(IQR_ts)
print(upper_limit_ts)

23.0
57.0
34.0
108.0
-28.0
```

df=df[(df.total_sulfur_dioxide<upper_limit_ts) & (df.total_sulfur_dioxide>lower_limit_ts)]
sns.boxplot(df.total_sulfur_dioxide)


```
ts_01=df.total_sulfur_dioxide.quantile(0.01)
ts_97=df.total_sulfur_dioxide.quantile(0.97)
print(ts_01)
print(ts_97)
    8.0
    94.439999999994

df=df[(df.total_sulfur_dioxide>=ts_01) & (df.total_sulfur_dioxide<=ts_97)]
sns.boxplot(df.total_sulfur_dioxide)</pre>
```


sns.boxplot(df.density)


```
d1 = df.density.quantile(0.25) #Q1
d3 = df.density.quantile(0.75) #Q3
IQR_d = d3 - d1
upper_limit_d = d3+(1.5)*(IQR_d)
lower_limit_d = d1-(1.5)*(IQR_d)
print(d1)
print(d3)
print(IQR_d)
print(upper_limit_d)
print(lower_limit_d)
     0.9955
     0.99745
     0.0019499999999998963
1.000374999999998
     0.99257500000000002
df=df[(df.density<upper_limit_d) & (df.density>lower_limit_d)]
sns.boxplot(df.density)
```

```
<Axes: >
      1.000
d_01=df.density.quantile(0.01)
d_99=df.density.quantile(0.99)
print(d_01)
print(d_99)
     0.9932314999999999
     1.0
      0.996 -
df=df[(df.density>=d_01) & (df.density<=d_99)]</pre>
sns.boxplot(df.density)
     <Axes: >
      1.000
      0.999
      0.998
      0.997
      0.996
      0.995
      0.994
```

sns.boxplot(df.pH)

0.993


```
pH1 = df.pH.quantile(0.25) #Q1
pH3 = df.pH.quantile(0.75) #Q3
IQR_pH = pH3 - pH1
upper_limit_pH = pH3+(1.5)*(IQR_pH)
lower_limit_pH = pH1-(1.5)*(IQR_pH)
print(pH1)
print(pH3)
print(IQR_pH)
print(upper_limit_pH)
print(lower_limit_pH)

3.24
3.41
0.1699999999999999
```

3.665 2.98500000000000003

pH_01=df.pH.quantile(0.01)
pH_99=df.pH.quantile(0.99)
print(pH_01)
print(pH_99)

3.06
3.6034

df=df[(df.pH>=pH_01) & (df.pH<=pH_99)]
sns.boxplot(df.pH)</pre>

ALL THE OUTLIERS ARE REMOVED

DATA PREPROCESSING

X=df.iloc[:,:-1]
X.head()

```
fixed_acidity volatile_acidity citric_acid residual_sugar chlorides free_sulfur_dioxide total_sulfur_d
                     7.4
                                       0.70
                                                     0.00
                                                                       1.9
                                                                                 0.076
                     7.8
                                       0.88
                                                                       2.6
                                                                                 0.098
                                                                                                         25.0
      1
                                                     0.00
Y=df.quality
Y.head()
     0
           5
     1
           5
     2
           5
     3
     Name: quality, dtype: int64
Y = df['quality'].apply(lambda y value: 1 if y value>=7 else 0)
print(Y)
     0
     1
     2
              0
     3
              0
              0
     1593
              a
     1594
              0
     1595
              0
     1596
     1597
     Name: quality, Length: 948, dtype: int64
Train and Test split
from sklearn.model_selection import train_test_split
X_train,X_test,Y_train,Y_test=train_test_split(X,Y,test_size=0.2,random_state=3)
X_train.shape
     (758, 11)
X_test.shape
     (190, 11)
Y_train.shape
     (758,)
Y_test.shape
     (190,)
Model building
model=RandomForestClassifier(n_estimators=200,criterion='entropy')
model.fit(X_train,Y_train)
                            RandomForestClassifier
      RandomForestClassifier(criterion='entropy', n_estimators=200)
Model Evaluation
X test prediction = model.predict(X test)
X_train_prediction=model.predict(X_train)
print('Testing Accuracy = ', accuracy_score(Y_test,X_test_prediction))
print('Training Accuracy = ', accuracy_score(Y_train,X_train_prediction))
     Testing Accuracy = 0.9263157894736842
     Training Accuracy = 1.0
```

```
input_data = [7.6, 1.0, 0, 3.0, 0.07, 30, 100, 0.9542, 3.1, 0.66, 9.6]
prediction = model.predict([input_data])
prediction
```

//sr/local/lib/python3.10/dist-packages/sklearn/base.py:439: UserWarning: X does not have valid feature names, but RandomForestClas warnings.warn(array([0])

✓ 0s completed at 10:56 PM

◆

• X