

Universidad de Granada Escuela Internacional de Posgrado Máster en Estadística Aplicada

Materia: Análisis de datos. Técnicas aplicadas a datos de proximidad.

Alumno: Francisco Javier Márquez Rosales

Tema 4: Diferencias individuales en MDS.

Ejercicios:

Ejercicio 5.1: Realiza el análisis anterior y comenta los resultados obtenidos.

```
Solución simple de SMACOF para los datos de kinship data(kinshipdelta)
res = smacofSym(kinshipdelta)
res
summary(res)

Solución no métrica 3D de SMACOF para los datos de trading data(trading)
res = smacofSym(trading, ndim = 3, type="ordinal", ties = "secondary")
res
```

R: Al ejecutar la sintaxis anterior en R obtenemos el siguiente resultado

```
Call:
smacofSym(delta = kinshipdelta)

Model: Symmetric SMACOF

Number of objects: 15

Stress-1 value: 0.264

Number of iterations: 91
```

Configurations:

	D1	D2
Aunt	0.3081	0.6436
Brother	-0.4239	-0.5302
Cousin	-0.2182	0.8434
Daughter	0.3914	-0.3705
Father	-0.1565	-0.6829
Granddaughter	0.5192	0.1394
Grandfather	-0.7060	-0.1227
Grandmother	0.6987	0.1592
Grandson	-0.5207	-0.0935
Mother	0.4364	-0.5686

Universidad de Granada - Máster en Estadística Aplicada Análisis de datos. Técnicas aplicadas a datos de proximidad. Alumno: Francisco Javier Márquez Rosales

Nephew	-0.3822	0.4104
Niece	0.2024	0.5361
Sister	0.6011	-0.3124
Son	-0.2027	-0.4987
Uncle	-0.5473	0.4474

Stress per point (in %):

Grandf	Aunt ather	Brother	Cousin	Daughter	Father	Granddaughter
11.17	6.24	7.49	6.20	4.04	4.88	8.50
Gran Son	dmother	Grandson	Mother	Nephew	Niece	Sister
4.26	11.25	8.55	4.86	4.48	4.26	7.44
	Uncle					
	6.40					

Call:

smacofSym(delta = trading, ndim = 3, type = "ordinal",
ties = "secondary")

Model: Symmetric SMACOF
Number of objects: 20
Stress-1 value: 0.106
Number of iterations: 34

Ejercicio 5.2: Realiza el análisis anterior y comenta los resultados obtenidos.

```
data(perception)
res <- smacofIndDiff(perception)
res
summary(res)
res.id <- smacofIndDiff(perception, constraint = "identity")
res.diag <- smacofIndDiff(perception, constraint = "diagonal")
res.idio <- smacofIndDiff(perception, constraint = "idioscal")</pre>
```

R: Al ejecutar la sintaxis anterior en R obtenemos el siguiente resultado

```
Call: smacofIndDiff(delta = perception)
Model: Three-way SMACOF
Number of objects: 16
Stress-1 value: 0.166
Number of iterations: 114
Group Stimulus Space (Joint Configurations):
       D1
1 -0.6189 -0.5678
2 -0.7075 -0.1874
3 -0.7614 0.1960
4 -0.7826 0.4892
5 -0.0644 -0.6431
 -0.1447 -0.2234
7 -0.2503 0.2425
8 -0.2344 0.6107
  0.3490 -0.6058
10 0.3435 -0.1570
11 0.2470 0.2459
12 0.1209 0.6141
13 0.7678 -0.5868
```

```
14  0.6645 -0.1738

15  0.6002  0.2125

16  0.4716  0.5343

Stress per point:

1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16

7.03  5.03  5.55  8.24  6.89  6.43  7.32  7.40  5.49  4.87  4.84  6.15  9.31  5.08  5.52  4.86
```

En este caso se ajustó el código de la siguiente forma:

La sentencia:

res.diag <- smacofIndDiff(perception, constraint = "diagonal")

Se cambio por:

res.diag <- smacofIndDiff(perception, constraint = "indscal")

Ejercicio 5.3. Usando los datos de la Tabla 4.1 de colors de Helm, (1959):

- Leer los datos con SPSS.
- Realizar el análisis de los datos usando ALSCAL SPSS para el modelo identidad.
- Realizar el análisis de los datos con ALSCAL de SPSS para el modelo de diferencias individuales.
- Compara los resultados con los obtenidos mediante PROXSCAL.

R:

En primer lugar, hacemos la lectura de los datos con la siguiente instrucción:

```
FILE='C:\Users\franm\OneDrive\Documents\Personales\Javier\Academicos\UGR - Estadistica
'+
    'Aplicada\Materias\22-23\C1 Análisis de datos. Técnicas aplicadas a datos de
proximidad\Tema '+
    '4\data_helm_color2.sav'.
DATASET NAME DataSet2 WINDOW=FRONT.
```

Análisis para el modelo identidad:

Se ejecuta la siguiente sintaxis:

```
ALSCAL

VARIABLES=A C E G I K M O Q S

/SHAPE=SYMMETRIC

/LEVEL=INTERVAL

/CONDITION=MATRIX

/MODEL=EUCLID

/CRITERIA=CONVERGE(0.001) STRESSMIN(0.005) ITER(30) CUTOFF(0) DIMENS(2,2)

/PLOT=DEFAULT ALL

/PRINT=DATA HEADER.
```

Se obtienen los siguientes resultados:

Alscal

Alscal Procedure Options Data Options- Number of Rows (Observations/Matrix). 10 Number of Columns (Variables) . 10 Number of Matrices . 11 Measurement Level . Interval Data Matrix Shape . Symmetric Type Dissimilarity Approach to Ties . Leave Tied Conditionality . Matrix Data Cutoff at	
Number of Rows (Observations/Matrix). 10 Number of Columns (Variables) . 10 Number of Matrices . 11 Measurement Level . Interval Data Matrix Shape . Symmetric Type . Dissimilarity Approach to Ties . Leave Tied Conditionality . Matrix Data Cutoff at	Alscal Procedure Options
Number of Columns (Variables) 10 Number of Matrices 11 Measurement Level Interval Data Matrix Shape Symmetric Type Dissimilarity Approach to Ties Leave Tied Conditionality Matrix Data Cutoff at .000000 Model Options- Euclid Maximum Dimensionality 2 Minimum Dimensionality 2 Not Permitted Output Options- Job Option Header Printed Output Dataset Not Created Configurations and Transformations Plotted Output Dataset Not Created Initial Stimulus Coordinates Computed Algorithmic Options- Maximum Iterations 30 Convergence Criterion .00100 Minimum S-stress .00500 Minimum S-stress .00500 Minimum S-stress .00500 9.700 6.300 3.400 .000 .000	Data Options-
Model Euclid Maximum Dimensionality	Number of Columns (Variables) 10 Number of Matrices
Maximum Dimensionality	Model Options-
Job Option Header Printed Data Matrices	Maximum Dimensionality 2 Minimum Dimensionality 2
Data Matrices	Output Options-
Maximum Iterations	Data Matrices Printed Configurations and Transformations . Plotted Output Dataset Not Created
Convergence Criterion	Algorithmic Options-
Iteration history for the 2 dimensional solution (in squared distances	Convergence Criterion
	9.700 6.300 3.400 .000
Young's S-stress formula 1 is used.	Iteration history for the 2 dimensional solution (in squared distances
	Young's S-stress formula 1 is used.
Iteration S-stress Improvement	Iteration S-stress Improvement
1 .17979 2 .17921 .00058	

El resultado de la prueba de la bondad del ajuste indica que el estrés es cercano a cero, dado que un criterio común de aceptación es cuando es menor a 0.1. el resultado indica una buena calidad del modelo.

Iterations stopped because S-stress improvement is less than .001000

		Dimension		
Stimulus Number	Stimulus Name	1	2	
1 2 3 4 5 6 7 8 9	A C E G I K M O Q S	.8898 1.3152 1.3478 1.0147 .2911	-1.6123 -1.4093 3155 .2959 .8101 1.2486 1.1624 .4653	
2.324	1.375	.56	5 .0	00

Análisis para el modelo de diferencias individuales:

Se ejecuta la siguiente sintaxis:

ALSCAL

```
VARIABLES=A C E G I K M O Q S

/SHAPE=SYMMETRIC

/LEVEL=INTERVAL

/CONDITION=MATRIX

/MODEL=INDSCAL

/CRITERIA=CONVERGE(0.001) STRESSMIN(0.005) ITER(30) CUTOFF(0) DIMENS(2,2)

/PLOT=DEFAULT ALL

/PRINT=DATA HEADER.
```

Se obtienen los siguientes resultados

Alscal

Alscal Procedure Options

Data Options-Number of Rows (Observations/Matrix). 10 Number of Columns (Variables) . . . 10Interval Symmetric Dissimilarity Leave Tied .000000 Model Options-Indscal Not Permitted Output Options-Job Option Header Printed Data Matrices Printed Configurations and Transformations . Plotted Output Dataset Not Created Initial Stimulus Coordinates . . . Computed Initial Subject Weights Computed Algorithmic Options-30 Maximum Iterations .00100 Ulbounds

Iteration history for the 2 dimensional solution (in squared distances)

Young's S-stress formula 1 is used.

Iteration	S-stress	Improvement
0	.16902	
1	.16918	
2	.16608	.00310
3	.16606	.00002

Iterations stopped because S-stress improvement is less than .001000

El resultado de la prueba de la bondad del ajuste indica que el estrés bruto normalizado es cercano a cero, dado que un criterio común de aceptación es cuando es menor a 0.1. el resultado indica una buena calidad del modelo.

		Dimens	sion
Stimulus Number	Stimulus Name	1	2
1 2 3 4 5 6 7 8 9	A C E G I K M O Q S	-1.3632 -1.3572 3632 .7421 1.1747 1.2823 1.0716 .3726 5688 9910	1.1303 .7287 .1395 6950 -1.2594 -1.2169
		Subject	Weights
Subject Number	Weird- ness	1	Dimension 2
1 2 3 4 5 6 7 8 9 10 11 Overall imp	.1335 .1747 .0154 .0173 .1513 .1595 .2074 .0567 .0161 .0200 .2097	.6136 .7632 .6940 .6817 .5959 .7556 .7974 .6435 .6486 .6798	.7550 .5758 .6748 .6977 .7545 .5843 .5701 .7009 .6626 .6562
محمد المحمد المحمد		4507	4 5 5 2

Flattened Subject Weights

Variable

each dimension: .4597 .4553

		V
Subject	Plot	1
Number	Symbol	=
1	1	-1.0129
2	2	1.3400
3	3	.1222
4	4	1263
5	5	-1.1501
6	6	1.2227
7	7	1.5939
8	8	4264
9	9	1173
10	A	.1570
11	В	-1.6028

Recordemos el resultado obtenido con PROXCAL

Las pruebas de bondad del ajuste indicaron que los modelos, la identidad y el de diferencias individuales, eran adecuados para describir el comportamiento de las categorías. La distribución de los puntos en el plano en ambos análisis fue similar y la diferencia era la escala que sugiere que para el modelo de diferencias individuales son menores distancias.

Comparación de los modelos identidad y de difencias individuales obtenidos con ALSCAL vs PRXCAL.

Modelos identidad: ambos modelos se presentan validos para representar las categorías de las variables, la forma de la distribución de las categorías en el grafico es similar, en ambos casos circular, pero las posiciones de las categorías difiere.

Modelos diferencias individuales: ambos modelos se presentan válidos para representar las categorías de las variables, la forma de la distribución de las categorías en el grafico es similar, en ambos casos circular, pero la posiciones de las categorías difiere.