Diskrete Strukturen Pflichtserie 8

Nikita Emanuel John Fehér, 3793479

16. Dezember 2024 09:15-10:45 Dietzschold, Johannes

8.1

Geben Sie für die folgenden Abbildungen f_1, f_2, f_3 alle Fixpunkte an.

(a)
$$f_1: \mathbb{Z} \to \mathbb{Z}, z \mapsto z^2 + z - 1$$

$$f_1(z) = z$$

$$z^2 + z - 1 = z$$

$$z^2 - 1 = 0$$

$$z^2 = 1$$

$$z = \pm 1$$

$$z_1 = 1$$

$$z_2 = -1$$

(b)
$$f_2: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}, (x, y) \mapsto (2x - y, y + x \cdot y)$$

$$f_2((x,y) = (x,y)$$

$$(2x - y, y + xy) = (x,y)$$

$$x = 2x - y, y = y + xy$$

$$x = 2x - y \qquad |+y| - x$$

$$y = x$$

$$y = y + xy$$

$$y = y + (y)y \qquad |-y|$$

$$0 = yy$$

$$0 = y = x$$

$$(x,y) = (0,0)$$

(c)
$$f_3: \mathcal{P}(\mathbb{N}) \to \mathcal{P}(\mathbb{N}), X \mapsto \{n \in \mathbb{N} | \exists x \in X (n \geq x)\}$$

$$f_3(X) = X$$
$$\{n \in \mathbb{N} | \exists x \in X (n \ge x)\} = X$$

Fall 1:
$$X = \emptyset$$
: $\Longrightarrow \not\exists x \in X (n \ge x)$
 $X = \emptyset$ ist ein Fixpunkt

Fall 2: $X \neq \emptyset$ Dann existiert ein $x \in X$. Für jedes $n \geq x \implies n \in f_3(X)$

$$f_3(X) = \{n \in \mathbb{N} \mid \exists x \in X (n \ge x)\} = [\min(X), \infty) \cap \mathbb{N}.$$

Annahme: $X = f_3(X)$ ist ein Fixpunkt. Daraus folgt:

$$X = [\min(X), \infty) \cap \mathbb{N}.$$

Da X keine obere Schranke hat, müsste $X = [\min(X), \infty)$. Dies ist jedoch nur möglich, wenn X genau die Form $X = \{n \in \mathbb{N} \mid n \geq k\}$ für ein $k \in \mathbb{N}$ hat. Andererseits enthält $f_3(X)$ stets alle natürlichen Zahlen $n \geq \min(X)$, unabhängig von der ursprünglichen Struktur von X. Also:

$$f_3(X) \neq X$$
.

Schlussfolgerung: Für $X \neq \emptyset$ ist X kein Fixpunkt von f_3 .

Sei Meine Menge. Für zwei Teilmengen $X,Y\subseteq M$ definieren wir die symmetrische Differenz von X und Y durch

$$X \triangle Y = (X \cup Y) \setminus (X \cap Y)$$

Weiter definieren wir für jede Teilmenge $Y \subseteq M$ eine Funktion f_Y durch

$$f_y: \mathcal{P}(M) \to \mathcal{P}(M),$$

 $X \mapsto X \triangle Y.$

Sei $Y \neq \emptyset$. Zeigen Sie, dass f_Y hat keine Fixpunkte.

$$\begin{split} f_y(X) &= X \\ X \triangle Y &= X \\ z &\in X \triangle Y \iff z \in X \\ z &\in \big((X \cup Y) \setminus (X \cap Y) \big) \iff z \in X \\ z &\in (X \cup Y) \land z \not\in (X \cap Y) \iff z \in X \\ z &\in X \lor z \in Y \land (z \not\in X \lor z \not\in Y) \iff z \in X \end{split}$$

Da $Y \neq \emptyset \implies$ Es existiert $y \in Y$

Fall 1 $y \in X$:

$$y \in X \iff y \in X \lor y \in Y \land (y \not\in X \lor y \not\in Y)$$

Wahr \iff Wahr \lor Wahr \land (Falsch \lor Falsch Wahr \iff Falsch \iff Talsch \iff " \iff " ist Falsch

Fall 2 $y \notin X$:

$$\begin{split} y \in X \lor y \in Y \land (y \not\in X \lor y \not\in Y) &\iff y \in X \\ \text{Falsch} \lor \text{Wahr} \land (\text{Wahr} \lor \text{Falsch}) &\iff \text{Falsch} \\ \text{Wahr} \land \text{Wahr} &\iff \text{Falsch} \\ \text{Wahr} &\iff \text{Falsch} \\ &\implies \text{``} \iff \text{``} \text{ ist Falsch} \end{split}$$

8.3

Sei X die Menge von allen funktionen $f:\mathbb{N}\to\mathbb{N}$. Mit anderen Worten: X ist die Menge aller Sequenzen $a_0,a_1,...$, so dass $a_i\in\mathbb{N}$ für alle $i\in\mathbb{N}$. Zeigen Sie dass $|X|=\mathfrak{c}$. (Hinweis: es kann hilfreich sein, die Zerlegung $\mathbb{N}=\bigcup_{i=0}^\infty S_i$ zu verwenden, wobei S_i unendliche disjunkte Mengen sind).