Arquitectura de subcapa PCS para Ethernet 100 Gbps

Autores: Abratte, Diego Moral, Ramiro

Objetivos

- Comprender el funcionamiento de la subcapa PCS.
- Informar sobre el avance en el proyecto.
- Exponer los diagramas de arquitectura de los bloques principales

• Ethernet 100 Gbps es utilizado en su mayoría para la comunicación en redes MAN o WAN.

 El estándar está definido para los siguientes medios de transmisión, siendo la implementación de PCS obligatoria para cualquiera de éstos:

Canal	Distancia máxima				
cobre blindado balanceado	7 metros				
fibra óptica multimodo	100 metros				
fibra óptica unimodo	10 kilómetros				
fibra óptica unimodo	40 kilómetros				

Tomando como referencia el Modelo OSI, **PCS** (Physical Coding Sublayer) es una subcapa de la capa física cuyo objetivo principal es el de ofrecer al cliente MAC una interfaz de comunicación independiente del medio por el que serán transmitidos los datos.

MAC: Medium Access Control

CGMII: Medium Independent

Interface

FEC: Forward Error Correction

PMA: Physical Medium Attachment

PMD: Physical Medium Dependent

AN: Auto Negotiation

MDI: Medium Dependent Interface

Funciones Principales:

- Coding/Decoding de 8 octetos de datos desde/hacia MII en bloques de 66 bits.
- Transferencia de datos codificados desde/hacia PMA.
 Proveyendo las funciones necesarias para mapear paquetes desde el formato MII hacia el formato PMA/FEC.
- Compensación de diferencias entre las tasas de clock a través de la inserción o extracción de bloques de control entre las capas CGMII y PMA.

Estructura de la subcapa

- Verificación de secuencia de bloques.
- Verificación de formato de bloques.
- Codificación de 64 a 66 bits

- Scrambling autosíncrono
- Polinomio 1 + x^39+x^58
- Bypass de Sync Header

Distribución tipo Round Robin en 20 lanes.

• Inserción periódica de alineadores en cada lane.

 Determinación de inicio y fin de bloques en el flujo de bits recibidos desde capas inferiores.

- Detección de bloques de alineación.
- Cálculo de paridad.
- Corrección de skew.

 Mapeo de bloques recibidos desde una lane física a su correspondiente lane lógica.

- Verificación de secuencia de bloques.
- Verificación de formato de bloques.
- Codificación de 66 a 64 bits de datos y 8 de control.

Ejemplo de funcionamiento

 Los bloques de control pueden ser bloques Idles o de información sobre el enlace entre 2 clientes MAC/RS

 En condiciones normales, el flujo de bloques es como el siguiente:

Control ··· Start Data ··· Terminate Control

Formato de bloque sin codificar

• Se reciben 8 bits de control y 8 bytes de datos:

Ejemplo para un bloque de inicio de trama:

TXC<7:0> TXD<63:0>										
1 0 0 0 0	0 0	0	0XFB	Data1	Data2	Data3	Data4	Data5	Data6	Data7

Formato de bloque codificado

- El Sync Header valdrá 01 si es bloque de datos o 10 si es bloque de control.
- En el primer octeto se codifica el tipo de bloque (BType)

SH	ВТуре	Data1	Data2	Data3	Data4	Data5	Data6	Data7
----	-------	-------	-------	-------	-------	-------	-------	-------

 Ejemplo de codificación para un bloque de inicio de trama:

10	0x78	Data1	Data2	Data3	Data4	Data5	Data6	Data7
----	------	-------	-------	-------	-------	-------	-------	-------

Flujo de trabajo

- Estudio del estándar 802.3ba Finalizado
- Realización de diagramas de arquitectura Finalizado
- Simulación de la subcapa en Python Finalizado
- Codificación RTL en Verilog En proceso
- Implementación en FPGA En proceso
- Verificación Pendiente

Estructura de la subcapa (TX):

Clock Compensation

Encode

Estructura de la subcapa (RX):

Lane Block Sync

Alignment Lock

Lane Deskew

Programmable Delay

Lane reorder

Gracias

¿Preguntas?