Enoncés : Stephan de Bièvre

Corrections: Johannes Huebschmann

Limites de suites et de fonctions

Exercice 1

Pour chacune des suites $(u_n)_n$ dans le plan \mathbb{R}^2 ci-dessous, placer quelques-uns des points u_n dans le plan et décrire qualitativement le comportement de la suite lorsque n tend vers l'infini. Étudier ensuite la convergence de chacune des suites et déterminer la limite le cas échéant.

1.
$$u_n = \left(\frac{4n^2}{n^2 + 4n + 3}, \cos \frac{1}{n}\right)$$

2.
$$u_n = (\frac{n^2 \arctan n}{n^2 + 1}, \sin(\frac{\pi}{4} \exp(-\frac{1}{n})))$$

3.
$$u_n = (\sinh n, \frac{\ln n}{n})$$

4. $u_n = (a^n \cos(n\alpha), a^n \sin(n\alpha))$, en fonction de $a \in \mathbb{R}$, a > 0 et $\alpha \in \mathbb{R}$.

Indication ▼ Correction ▼ [002621]

Exercice 2

Étudier l'existence des limites suivantes :

1.
$$\lim_{\substack{(x,y)\to(0,0)\\x+y\neq 0}} \frac{x^2y}{x+y}$$

2.
$$\lim_{\substack{(x,y,z)\to(0,0,0)\\2x^3+yz^2\neq 0}} \frac{xyz+z^3}{2x^3+yz^2}$$

3.
$$\lim_{\substack{(x,y)\to(0,0)\\(x,y)\neq(0,0)}} \frac{|x|+|y|}{x^2+y^2}$$

4.
$$\lim_{\substack{(x,y)\to(0,0)\\x\neq\pm y}} \frac{x^4y}{x^2-y^2}$$

5.
$$\lim_{\substack{(x,y,z)\to(0,0,0)\\(x,y,z)\neq(0,0,0)}} \frac{xy+yz}{x^2+2y^2+3z^2}$$

Indication ▼ Correction ▼ [001784]

Exercice 3

Soit $f: \mathbb{R}^2 \setminus \{(0,0)\} \to \mathbb{R}$ la fonction définie par

$$f(x,y) = \frac{x^2y^2}{x^2y^2 + (x-y)^2}.$$

Montrer que

$$\lim_{x \to 0} \lim_{y \to 0} f(x, y) = \lim_{y \to 0} \lim_{x \to 0} f(x, y) = 0 \tag{1}$$

et que $\lim_{(x,y)\to(0,0)} f(x,y)$ n'existe pas.

Indication ▼ Correction ▼ [001785]

Exercice 4

Déterminer les limites lorsqu'elles existent :

1.
$$\lim_{(x,y)\to(0,0)} \frac{x}{x^2+y^2}$$

2.
$$\lim_{(x,y)\to(0,0)} \frac{(x+2y)^3}{x^2+y^2}$$

3.
$$\lim_{(x,y)\to(1,0)} \frac{\log(x+e^y)}{\sqrt{x^2+y^2}}$$

4.
$$\lim_{(x,y)\to(0,0)} \frac{x^4+y^3-xy}{x^4+y^2}$$

5.
$$\lim_{(x,y)\to(0,0)} \frac{x^3y}{x^4+y^4}$$
;

6.
$$\lim_{(x,y)\to(0,0)} \frac{(x^2+y^2)^2}{x^2-y^2}$$
;

7.
$$\lim_{(x,y)\to(0,0)} \frac{1-\cos xy}{y^2}$$
;

8.
$$\lim_{(x,y)\to(0,0)} \frac{\sin x}{\cos y - \cosh x}$$

Indication ▼ Correction ▼

Exercice 5

Pour chacune des fonctions f suivantes, étudier l'existence d'une limite en (0,0,0) :

1.
$$f(x,y,z) = \frac{xyz}{x+y+z}$$
;

2.
$$f(x,y,z) = \frac{x+y}{x^2-y^2+z^2}$$
.

Indication ▼ Correction ▼ [001788]

[001787]

Indication pour l'exercice 1 ▲

Pour établir ou réfuter l'existences d'une limite particulière dans le plan et pour ensuite déterminer une limite pourvu qu'elle existe, utiliser le fait que pour que $\lim_{n\to\infty}(x_n,y_n)$ existe dans le plan \mathbb{R}^2 il faut et il suffit que chacune des limites $\lim_{n\to\infty}x_n$ et $\lim_{n\to\infty}y_n$ existe en tant que limite finie.

Indication pour l'exercice 2 A

- 1. Raisonner à l'aide d'une fonction f de la variable x telle que x + y = f(x) et $\lim_{x \to 0} f(x) = 0$.
- 2. Trouver deux courbes dans

$$\mathbb{R}^3 \setminus \{(x, y, z); 2x^3 + yz^2 = 0\}$$

qui tendent vers l'origine telle que les limites, calculées le long de ces courbes, existent mais ont des valeurs distinctes.

- 3. Utiliser le fait que le numérateur et le dénominateur sont toujours positifs et que l'ordre du dénominateur est strictement plus grand que celui du numérateur.
- 4. Raisonner à l'aide d'une fonction h de la variable y telle que $x^2 y^2 = h(y)$ et $\lim_{y\to 0} h(y) = 0$.
- 5. Chercher deux courbes dans le domaine de définition qui tendent vers l'origine telle que les limites, calculées le long de ces courbes, existent mais ont des valeures distinctes.

Indication pour l'exercice 3

Diviser le numérateur et le dénominateur par x^2 resp. y^2 pour déterminer $\lim_{y\to 0} f(x,y)$ resp. $\lim_{x\to 0} f(x,y)$. Montrer que, calculée le long d'une autre courbe convenable, $\lim_{(x,y)\to(0,0)} f(x,y)$ existe et ne vaut pas zéro.

Indication pour l'exercice 4 ▲

- 1. Réfuter l'existence de la limite à l'aide de l'étude des limites le long de deux courbes adaptées.
- 2. Utiliser les coordonnées polaires dans le plan.
- 3. Si $\lim_{(x,y)\to(x_0,y_0)} h(x,y)$ existe et est non nul alors

$$\lim_{(x,y)\to(x_0,y_0)} \frac{f(x,y)}{h(x,y)} = \frac{\lim_{(x,y)\to(x_0,y_0)} f(x,y)}{\lim_{(x,y)\to(x_0,y_0)} h(x,y)}.$$

4. Chercher deux courbes dans le domaine de définition qui tendent vers l'origine telles que les limites, calculées le long de ces courbes, existent mais ont des valeures distinctes.

Indication pour l'exercice 5 ▲

- 1. Raisonner à l'aide d'une fonction h des variables x et y telle que x+y+z=h(x,y) et $\lim_{(x,y)\to(0,0)}h(x,y)=0$.
- 2. Montrer que, déjà sous la contrainte supplémentaire z = 0, la limite ne peut pas exister.

Correction de l'exercice 1

Des calculs élémentaires donnent

1. $u_1 = (\frac{1}{2}, \cos 1), u_2 = (\frac{16}{15}, \cos \frac{1}{2}), \dots, u_{10} = (\frac{400}{143}, \cos \frac{1}{10}), \dots$

2. $u_1 = (\frac{1}{2}\arctan 1, \sin(\frac{\pi}{4e})), u_2 = (\frac{4}{5}\arctan 2, \sin(\frac{\pi}{4e^{1/2}})),$ $u_3 = (\frac{9}{10}\arctan 3, \sin(\frac{\pi}{4e^{1/3}})), \dots, u_{10} = (\frac{100}{101}\arctan(10), \sin(\frac{\pi}{4e^{1/10}})), \dots$

3. $u_1 = (\sinh 1, 0), u_2 = (\sinh 2, \frac{\ln 2}{2}), u_3 = (\sinh 3, \frac{\ln 3}{3}), \dots, u_{10} = (\sinh 10, \frac{\ln 10}{10}), \dots$

4. $u_1 = a^n(\cos(\alpha), \sin(\alpha)), u_2 = a^2(\cos(2\alpha), \sin(2\alpha)),$ $u_3 = a^3(\cos(3\alpha), \sin(3\alpha)), \dots, u_{10} = a^{10}(\cos(10\alpha), \sin(10\alpha)), \dots$

Les limites pouvu qu'elles existent se calculent ainsi :

1. $\lim_{n\to\infty} \frac{4n^2}{n^2+4n+3} = \lim_{n\to\infty} \frac{4}{1+\frac{4}{n}+\frac{3}{-2}} = 4$, $\lim_{n\to\infty} \cos(1/n) = \cos(0) = 1$ d'où

$$\lim_{n \to \infty} u_n = \lim_{n \to \infty} \left(\frac{4n^2}{n^2 + 4n + 3}, \cos \frac{1}{n} \right) = (4, 0).$$

2. $\lim_{n\to\infty} \frac{n^2}{n^2+1} = \lim_{n\to\infty} \frac{1}{1+1/n^2} = 1$, $\lim_{n\to\infty} \arctan n = \pi/2$, $\lim_{n\to\infty} \frac{n^2 \arctan n}{n^2+1} = \pi/2$ mais $\lim_{n\to\infty} \sin(\frac{\pi}{4} \exp(-\frac{1}{n}))$ n'existe pas d'où

$$\lim_{n\to\infty}u_n$$

n'existe pas.

3. $\lim_{n\to\infty}\frac{\ln n}{n}=0$ tandis que $\lim_{n\to\infty}\sinh n$ n'existe pas en tant que limite finie car

$$\lim_{x \to +\infty} \sinh x = +\infty$$

d'où

$$\lim u_n = \lim \left(\sinh n, \frac{\ln n}{n} \right)$$

n'existe pas.

4. $\lim_{n\to\infty}(\cos(n\alpha),\sin(n\alpha))$ n'existe pas tandis que pour que $\lim_{n\to\infty}a^n$ existe il faut et il suffit que $a\le 1$ et, s'il en est ainsi, $\lim_{n\to\infty}a^n=0$ si a<1 et $\lim_{n\to\infty}a^n=1$ si a=1. Par conséquent : Pour que

$$\lim_{n\to\infty} u_n = \lim_{n\to\infty} a^n(\cos(n\alpha), \sin(n\alpha))$$

existe il faut et il suffit que a < 1, et la limite vaut alors zéro.

Correction de l'exercice 2

1. Avec $f(x) = x^4$, d'où $y = x^4 - x$, on obtient $\frac{x^2y}{x+y} = x^2 - \frac{1}{x}$ d'où

$$\lim_{\substack{(x,y)\to(0,0)\\x+y\neq 0}} \frac{x^2y}{x+y}$$

n'existe pas.

2. $\lim_{\substack{(x,y,z)\to(0,0,0)\\x=y=z\neq 0}}\frac{xyz+z^3}{2x^3+yz^2}=\frac{2}{3}$ et $\lim_{\substack{(x,y,z)\to(0,0,0)\\x\neq 0,y=z=0}}\frac{xyz+z^3}{2x^3+yz^2}=0$. Il s'ensuit que

$$\lim_{\substack{(x,y,z)\to(0,0,0)\\2x^3+yz^2\neq 0}} \frac{xyz+z^3}{2x^3+yz^2}$$

n'existe pas.

3. Sur $\mathbb{R}\setminus\{0\}$, la fonction f définie par $f(x)=\frac{|x|}{x^2}=\frac{1}{|x|}$ tend vers $+\infty$ quand x tend vers zéro d'où

$$\lim_{\substack{(x,y)\to(0,0)\\(x,y)\neq(0,0)}} \frac{|x|+|y|}{x^2+y^2}$$

n'existe pas en tant que limite finie.

4. D'une part, $\lim_{\substack{(x,y)\to(0,0)\\x\neq 0,y=0}}\frac{x^4y}{x^2-y^2}=0$. D'autre part, vue l'indication, avec $x^2-y^2=h(y)$, un calcul immédiat donne

$$\frac{x^4y}{x^2 - y^2} = \frac{y^5 + 2y^3h(y) + (h(y))^2y}{h(y)} = \frac{y^5}{h(y)} + 2y^3 + h(y)y.$$

Avec $h(y) = y^6$, l'expression $\frac{x^4y}{x^2-y^2}$ tend donc vers $+\infty$ quand y tend vers zero d'où

$$\lim_{\substack{(x,y)\to(0,0)\\x\neq \pm y}} \frac{x^4y}{x^2 - y^2}$$

n'existe pas.

5. Le long de la demi-droite x > 0, y = 0, z = 0, la limite existe et vaut zéro et le long de la demi-droite x = y = z > 0 la limite existe et vaut 1/3 d'où

$$\lim_{\substack{(x,y,z)\to(0,0,0)\\(x,y,z)\neq(0,0,0)}} \frac{xy+yz}{x^2+2y^2+3z^2}$$

n'existe pas.

Correction de l'exercice 3

$$\lim_{y \to 0} f(x, y) = \lim_{y \to 0} \frac{y^2}{y^2 + (1 - y/x)^2} = \frac{\lim_{y \to 0} y^2}{\lim_{y \to 0} y^2 + (1 - y/x)^2} = \frac{0}{1} = 0$$

De même $\lim_{x\to 0} f(x,y) = 0$ d'où (1). D'autre part, $f(x,x) = \frac{x^4}{x^4} = 1$ d'où $\lim_{x\to 0} f(x,x) = 1$ et $\lim_{(x,y)\to(0,0)} f(x,y)$ ne peut pas exister.

Correction de l'exercice 4

1. $\lim_{(x,y)\to(0,0),y=0} \frac{x}{x^2+y^2}$ n'existe pas d'où $\lim_{(x,y)\to(0,0)} \frac{x}{x^2+y^2}$ n'existe pas.

2.
$$\frac{(x+2y)^3}{x^2+y^2} = r(\cos\varphi + 2\sin\varphi)^3 \text{ d'où } \left| \frac{(x+2y)^3}{x^2+y^2} \right| \le 27r \text{ et}$$

$$\lim_{(x,y)\to(0,0)} \frac{(x+2y)^3}{x^2+y^2} = 0$$

 $car \lim_{(x,y)\to(0,0)} r = 0.$

3. $\lim_{(x,y)\to(1,0)} \sqrt{x^2+y^2} = 1 \neq 0$ et $\lim_{(x,y)\to(1,0)} \log(x+e^y) = \log 2$ d'où

$$\lim_{(x,y)\to(1,0)} \frac{\log(x+e^y)}{\sqrt{x^2+y^2}} = \log 2.$$

4. $\lim_{\substack{(x,y)\to(0,0)\\y=2}} \frac{x^4+y^3-xy}{x^4+y^2} = 1$ tandis que $\lim_{\substack{(x,y)\to(0,0)\\x=0}} \frac{x^4+y^3-xy}{x^4+y^2} = 0$ d'où

$$\lim_{(x,y)\to(0,0)} \frac{x^4 + y^3 - xy}{x^4 + y^2}$$

n'existe pas.

Correction de l'exercice 5 ▲

1. Supposons $x + y + z \neq 0$. Alors

$$\frac{xyz}{x+y+z} = \frac{xy(h(x,y) - x - y)}{h(x,y)} = xy - \frac{xy(x+y)}{h(x,y)}$$

d'où, avec

$$h(x,y) = (x+y)^4,$$

nous obtenons

$$\frac{xyz}{x+y+z} = xy - \frac{xy}{(x+y)^3}.$$

Il s'ensuit que

$$\lim_{\substack{(x,y,z)\to(0,0,0)\\x+y+z=(x+y)^4\\x\neq 0,y\neq 0,z\neq 0}} \frac{xyz}{x+y+z}$$

n'existe pas, au moins non pas en tant que limite finie. D'autre part,

$$\lim_{\substack{(x,y,z)\to(0,0,0)\\x+z\neq 0,y=0}}\frac{xyz}{x+y+z}=0.$$

Par conséquent,

$$\lim_{\substack{(x,y,z)\to(0,0,0)\\x+y+z\neq 0}} \frac{xyz}{x+y+z}$$

ne peut pas exister.

2. La limite

$$\lim_{\substack{(x,y,z)\to(0,0,0)\\x\neq\pm y,z=0}} f(x,y,z) = \lim_{\substack{(x,y)\to(0,0)\\x\neq y}} \frac{1}{x-y}$$

n'existe pas car $\lim_{(x,y)\to(0,0)} \frac{1}{x-y}$ n'existe pas. Par conséquent, $y=x-x^2$

$$\lim_{\substack{(x,y,z)\to(0,0,0)\\x^2-y^2+z^2\neq 0}} f(x,y,z) = \lim_{\substack{(x,y,z)\to(0,0,0)\\x^2-y^2+z^2\neq 0}} \frac{x+y}{x^2-y^2+z^2}$$

ne peut pas exister.