

Corporate Financial Management 2

Event Study

Summer term 2023

<u>Instructor</u>:

Univ.-Prof. Dr. A. Schertler

This course has two parts

2

Event study

Content

- -Empirically evaluate corporate decisions
- -Statistical tests

Helps formulating expectations on how company news affect firm value

MacKinlay, C. 1997, Event studies in economics and finance, *Journal of Economic Literature*, 35, 13-39.

Theoretical Corporate Finance

Content

- -Tax effects
- -Conflicts between debt and equity holders
- -Managerial incentives

Asynchronous learning

- → CF1 Taxes
- → CF2 Agency problems
- → CF3 Management

Assignment 2

trains theoretical thinking

Berk and DeMarzo, Corporate Finance, Global Edition. Especially part V.

DELIVERIES AND GRADING

3

	Assignment 1	Assignment 2
Deliveries via Moodle	a. Dates & pricesb. Excel filec. Report with your research results (1500 words)d. Oral contributions	a. Hand-written solutions to exercisesb. Oral contributions to theory discussions
Hand-in dates	Deliveries a: June 4, 2023 Deliveries b+c: July 1, 2023	See next slide
Grade weight	60%	40%

Important hints:

- Students can work in teams of two students (select a team mate from today's exercises)!
- You are not allowed to use installed program packages. I want to see how you calculate abnormal returns, variances and test statistics.

TIME TABLE AND DELIVERY DATES

Date	Event Study	Theory (upload solution on)
May 8	The big picture	
May 15	How to calculate normal returns Ass1: Select event type Read MacKinlay (1997)	CF1
May 22	How to test Ass1: Collect 50 events Summarize relevant research papers	CF2 Ass2: Ex A (May 20)
June 5	Questions Ass1: Complete dataset (stock & market prices)	Ass2: Ex B (June 3)
June 12	How to structure Ass1: Calculate CAAR	CF3 Ass2: Ex C (June 10)
June 26	Questions	Ass2: Ex D (June 24)
June 28	Questions	Ass2: Ex E (June 26)

1/5

Important hints:

- Every student will be graded according to the same criteria. There will be no special rules or exemptions for incoming (exchange) or local students.
- There will be no chance for extra work at the end of the course to make up for a lack of participation in class.

Content

- 1. The big picture: How to carry out an event study
- 2. Return calculation and data sources
- 3. AR, CAR and models to predict normal returns
- 4. Statistical tests
- 5. How to structure your report
- 6. Extensions

Consider the following company news....

TECH

Amazon announces 20-for-1 stock split, \$10 billion buyback

PUBLISHED WED, MAR 9 2022-4:42 PM EST | UPDATED THU, MAR 10 2022-6:59 AM EST

C.E.O. Fired Over a Relationship ...

nytimes.com

Model X vehicles ,783

Apple announces dividend and stock buyback

By David Goldman @CNNMoneyTech March 19, 2012: 4:23 PM ET

https://www.capital.de/wirtschaft-politik/fusion-von-deutscherbank-und-commerzbank-ist-gescheitert | 7

... and answer the following questions

- How will shareholders value the new information?
- What do you expect to happen to the stock price of the company and to its competitors? Explain your answer!
- Why is it relevant to know how the stock price responds to these company news?

1. The big picture: How to carry out an event study

What is an event study?

- A test that attempts to measure the price response around the announcement day when company news are released
- Price response can be studied for stock prices, bond prices, CDS spreads, trading volume, ...
- Effects of company news on firm value can only be measured if the stock market is informationally efficient.
- An event study has the purpose to determine how a proposed company policy (dividend change, acquisition, ...) is valued by the investors (shareholders, bondholders, ...).

Informationally efficient capital markets (1)

11

- Assume that a company develops a major innovation to one of its products. The company believes that this innovation has positive NPV
- O How does its stock price react to the public announcement?

Idea of informationally efficient capital markets:

- the price instantaneously adjusts to and fully reflects new information
- there is no tendency for subsequent increases or decreases (due to this specific new information)

Informationally efficient capital markets (2)

- Definition (Market Efficiency):
 A market is efficient if all available information is reflected in stock prices
- General argument
 - If information could be used to predict a future price change, then this information should lead to a price change today
 - In case of favorable information, investors want to buy the stock to profit from future gains, which increases the price today to the fair level

Informationally efficient capital markets (3)

12

Forms of efficiency

- Weak market efficiency: Stock prices reflect all information from past market trading data (prices, trading volume,...)
- Semi-strong market efficiency: Stock prices reflect all publicly available information about a firm (also fundamental data like quality of management, balance sheet composition, earnings forecasts, . . .)
- Strong market efficiency: Stock prices reflect all public and private information relevant to the firm (including information only available to company insiders

Informationally efficient capital markets (4)

Informationally efficient capital markets (5)

- Is the announcement of AC wellness positive or negative information for Apple's shareholders?
- Positive information
 - Apple's investment reduces shortage in health care and therefore increases productivity of Apple's employees (it is a project with positive Net Present Value - NPV).
- Negative information
 - Apple could collect, store and use data in an inappropriate way, which may destroy firm value.
 - It could be a prestige project (NPV<0)

How to measure the effect (1)

16

Abnormal return $AR_{APPLE} = R_{APPLE} - E(R_{APPLE})$ Normal return $E(R_{APPLE}) = \alpha_{APPLE} + \beta_{APPLE} \cdot R^{Markt}$

We discuss models to predict normal returns in Section 3.

How to measure the effect (2)

17

O A simple linear regression model performed on return data from the estimation window gives $\hat{\alpha}_{APPLE} = -0.024$ and $\hat{\beta}_{APPLE} = 1.42$

Event day	Calculation	Result
Apple return Market return		-0.15 % -1.11 %
Normal Apple return Abnormal Apple return	$E(R_{APPLE}) = \hat{\alpha}_{APPLE} + \hat{\beta}_{APPLE} R^{Markt} \\ AR_{APPLE} = R_{APPLE} - E(R_{APPLE})$	-1.60 % 1.45 %

Can you claim this effect comes from announcing AC wellness?

No,

••

•••

How to measure the effect (3)

1 18

 Event studies combine ARs of several companies that experience the same type of event at different points in time

	Abnormal return
Apple	1.45 %
Amazon	2.75 %
JP Morgan Chase	0.67 %
•••	•••
ĀR	1.39 %

Please select 50 events of the same event type for your event study

Can you claim this effect to be different from zero? No,

•••

•••

Hypothesis testing

19

- Is the average abnormal return different from zero?
- H0 Event has a non-postive abnormal return
 Ha Event has a positive abnormal return
- Perform a statistical test

We discuss tests in Section 4.

 \odot In our example, we get θ =1.72

Sources to find events

120

- Google
- Finance yahoo
- Twitter
- Financial Newspapers (e.g. Financial Times, WSJ)
- Commercial databases (e.g. Refinitiv, Bloomberg, ...)
- O REFINITIV

Access: Fakultätsbibliothek RESOWI

https://rzblx10.uni-

regensburg.de/dbinfo/detail.php?bib_id=ubg&colors=&ocolors=&lett=fs&tid=0&titel_id=11397

O ...

Tasks for next week

2.

- Select an event type in which you are interested in:
 - Dividend change OR repurchase announcement, OR product recall, OR disasters OR CEO dismissal OR new sustainable strategy OR M&A OR ...
- Start to collect 50 events
 (date, ISIN or other company identifier)

Produce a sheet containing information on your event firms

Name	ISIN	Date	Market	Υ	X
Deutsche Bank	DE0005140008		DE		
ABN	NL0011540547		NL		

Second exercise in groups

- Consider the following examples and decide on whether an eventstudy set up is a good choice
- 1. Covid-19 workplace closure in Austria
- 2. Anti-money laundering infractions of banks
- 3. Election of Trump
- 4. Announcement that vaccine has passed development stage
- 5. Monetary policy change by central banks
- 6. Fraud detection in manufacturing firms

2. Return calculation and sources

| 23

Consider Allianz

O How to calculate the stock return?

Return calculation

Discrete return of a dividend paying stock:

$$r = \frac{Div_1 + P_1}{P_0} - 1 = \underbrace{\frac{Div_1}{P_0}}_{dividend} + \underbrace{\frac{P_1 - P_0}{P_0}}_{yield},$$

where P_0 is the stock price today, P_1 is the stock price in one year from now, Div_1 is the dividend paid within the next year.

The price series of a single stock (and index) have to be adjusted for dividends and stock splits!

Databases for stock prices (1)

- Finance yahoo
- Adjusted close is reported in "Historical data"
- Keep a eye on the currency and avoid mismatches in this respect!

Databases for stock prices (2)

26

Finance professionals use commercial databases, such as
 REFINITIV

- Two possibilities to get stock prices
 - EIKON
 time series with split-adjusted stock prices PLUS
 another series with the dividend
 - DATASTREAM
 possibility to download split- and dividend-adjusted stock
 prices (select the type RI)
- Access: Fakultätsbibliothek RESOWI

https://rzblx10.uni-regensburg.de/dbinfo/detail.php?bib_id=ubg&colors=&ocolors=&lett=fs&tid=0&titel_id=11397

3. AR, CAR and models to predict normal returns

| 27

Figure 1. Time line for an event study.

- \circ τ =0 is the announcement date in event time.
- The interval T0 to T1 is the estimation window. It contains L1 return observations.
- The interval T1 to T2 is the **event window**. It may start 10 days before and may end 10 days after the announcement.

Abnormal returns

| 28

- Abnormal returns are the difference between a company's actual return and the predicted return on the announcement day (or on another day in the event window)
- O How to predict normal returns?
 - Factor models
 - Constant mean return model
 - Capital Asset Pricing Model

1-factor model (1)

- A 1-factor model considers only one factor to explain a company's returns: $R_{it} = \alpha_i + \beta_i R_{Mt} + \epsilon_{it}$
- \circ α_i and β_i are determined on return data from the estimation window
- A simple ordinary least square (OLS) regression delivers explicit solutions:

$$\hat{\beta}_{i} = \frac{\sum_{\tau = T_{0} + 1}^{T_{1}} (R_{i\tau} - \hat{\mu}_{i})(R_{m\tau} - \hat{\mu}_{m})}{\sum_{\tau = T_{n} + 1}^{T_{1}} (R_{m\tau} - \hat{\mu}_{m})^{2}} \qquad \hat{\alpha}_{i} = \hat{\mu}_{i} - \hat{\beta}_{i}\hat{\mu}_{m}$$

1-factor model (2)

30

Using OLS we get:

$$\hat{\beta}_{i} = \frac{\sum_{\tau = T_{0} + 1}^{T_{1}} (R_{i\tau} - \hat{\mu}_{i})(R_{m\tau} - \hat{\mu}_{m})}{\sum_{\tau = T_{0} + 1}^{T_{1}} (R_{m\tau} - \hat{\mu}_{m})^{2}}$$

$$\hat{\alpha}_i = \hat{\mu}_i - \hat{\beta}_i \hat{\mu}_m$$

1-factor model (3)

31

 \bigcirc The abnormal return on the event day τ is then:

$$AR_{i\tau} = R_{i\tau} - (\hat{\alpha}_i + \hat{\beta}_i R_{M\tau})$$

- O Hints:
 - * the actual return of the company ($R_{i\tau}$) and the return of the market ($R_{M\tau}$) are measured on the same day in the **event window**
 - The parameters $\widehat{\alpha}_i$ and $\widehat{\beta}_i$ are determined with return data from the estimation window

Cumulative abnormal returns (CARs)

- Does the stock price react only on the announcement day?
- Cumulative
 abnormal
 return (CAR)
 cumulates AR
 over several days:

$$CAR_{i}(\tau_{1,}\tau_{2}) = \sum_{\tau = \tau_{1}}^{\tau_{2}} AR_{i\tau}.$$

Cumulative abnormal returns (CARs) (2)

33

 A CAR plot allows us to see anticipation, slow response and reversion in the abnormal returns

Students' example (1)

1.3

Let's study ABN's money laundering event

Use StudentData and

- 1) determine α and β
- 2) calculate the AR
- 3) calcuate CAR from -10 to +10
- 4) interpret your CAR graph

26-Sep-19

Students' example (2)

35

Align ABN returns with market returns in calendar time!

Code		NL0011540547(RI)~U\$
	1/1/2018	199.67
	1/2/2018	199.84
	1/3/2018	199.26
	1/4/2018	201.99

Code	TOTMKNL(RI)~U\$
1/7/2020	11558.4
1/6/2020	11535.34
1/3/2020	11572.37
1/2/2020	11682.89

Excel's index function may help:

INDEX(array, MATCH(lookup_value,lookup_array, type))

array: the values that you want to match, i.e. market returns,

lookup_value: the information used for matching, i.e. the date

lookup_array: the information used for matching, i.e., dates

type: approximate or exact matching

Press F4 to fix a cell (the \$ sign will be inserted)

Students' example (3)

36

Use the estimation window to calculate parameters

CALCULATE PARAMETERS		Excel function
alpha	-0.0003	=INTERCEPT
beta	1.0312	=SLOPE
r2	0.3513	=Rsq
Standard dev	0.0054	=STEYX

Please check:

- (average) alpha has to be close to zero,
- beta will be between -0 and 2.

Students' example (4)

| 37

CAR

Constant Mean Return Model

38

Very simple model with

 $R_{it} = \mu_i + \varphi_{it}$ where μ_i is the mean return of security i, with

$$E(\varphi_{it}) = 0$$
 and $var(\varphi_{it}) = \sigma_{\varphi_i}^2$

It often produces similar results than more complex models

Capital asset pricing model

1 39

- Starting point is the Capital Asset Pricing Model.
- What is this model about?

 The SML (security market line) can be applied to predict normal returns

$$R_{it} = R_f + \beta_i (R_{Mt} - R_f)$$

 However, recent literature has shown that restrictions imposed by the CAPM are questionable.

Cumulative average abnormal returns (CAARs)

1 40

- One single company is not enough ...
- Why?
- Average abnormal returns of several events of the same event type:

$$AAR_{\tau} = \frac{1}{N} \sum_{i=1}^{N} AR_{i\tau}$$

• These average abnormal returns can be again cumulated $\text{CAAR}[\tau_1, \tau_2] = \frac{1}{N} \sum_{i=1}^{N} CAR_i \left[\tau_1, \tau_2 \right]$

How to organize your excel file with many events

41

Bring data in event time:
 0 is the announcement day
 +1/-1 on the day after/before
 the announcement day

1	A	В	С	D	E
1	Company ID	1	2		
2	Market	NETH	GER		
3	INTERCEPT				
4	SLOPE				
5	SD				
6	Event time				
7	10	0.00037	0.01347		
16	1	0.00867	-0.00154		
17	0	-0.00412	0.00563		
18	-1	-0.00251	-0.00230		
19	-2	0.00253	-0.00595		
20	-3	-0.00769	0.00145		
21	-4	0.00188	-0.00468		
22	-5	-0.00342	0.00268		
268	-251	-0.00313	-0.00429		
269	-252	0.00501	0.00335		
270			1 / / / / /	1	
271	Market				
272	10	0.00122	0.01204		
281	1	0.00470	-0.00006		
282	0	-0.00143	0.00721		
283	-1	0.00151	0.00042		
284	-2	0.00271	-0.00215		
285	-3	0.00216	0.00256		
286	-4	0.00196	0.00202		
287	-5	0.00154	0.00651		
533	-251	-0.00517	-0.00139		
534	-252	-0.00449	0.00087		

Tasks for next week

42

 Find relevant research articles (discuss them in class!) and explain the link between the corporate news and firm value

- Collect all relevant data (event information, stock returns, market returns):
 - Use stock prices adjusted for dividends and stock splits
 - Use performance (and not price) indices of markets

Where to find research articles?

43

- Library https://unikat.uni-graz.at/primo-explore/search?vid=UGR
- Google scholar is an alternative

Check the quality of the journal in which the article is published: https://vhbonline.org/fileadmin/user_upload/JQ3_BAFI.pdf
Eg. von Eije and Megginson. Dividends and share repurchases in the European Union, Journal of Financial Economics, Volume 89, Issue 2, 2008.

4. Statistical tests

44

Hypothesis testing (1)

 Hypothesis testing can be used to determine whether a statement about the value of a population parameter should or should not be rejected

Sample: a subset of the population

With **proper sampling methods**, the sample results can provide "**good**" estimates of the population characteristics

Hypothesis testing (2)

45

- H₀ (null hypothesis) is a tentative assumption
- H₁ (alternative hypothesis) is what the test is attempting to establish

H0: AAR≥0 H1: AAR<0

Lower-tail test

H0: AAR≤0 H1: AAR>0

Upper-tail test

H0: AAR=0 H1: AAR≠0

Two-tailed test

- The null and alternative hypotheses are competing statements (only one is true)
- → The test needs the level of significance a (usually 1% or 5%).

Hypothesis testing (3)

46

Compute the test statistic from sample data:

$$t = \frac{AAR}{var(AAR)^{0.5}}$$

A specific t distribution depends
 on a parameter known as
 the degrees of freedom (df)
 that refers to the number of
 independent pieces of information
 that go into the computation of s

Hypothesis testing (4)

47

Determine the critical value and the rejection rule

Critical t values (with large df)					
а	Left/right	Two tails			
5%	-/+1.67	-2.04,2.04			
1%	-/+2.46	-2.75,2.75			

	Lower tail	Upper tail	Two tails
Hypothesis	H ₀ : AAR≥0	H ₀ : AAR≤0	H_0 : AAR=0
	H ₁ : AAR<0	H ₁ : AAR>0	H ₁ : AAR≠0
Reject H_0 if	$t \le -t_a$	$t \ge t_a$	$t \le -t_{a/2}$ or if $t \ge t_{a/2}$

Type I and II errors (1)

48

 Because hypothesis tests are based on sample data, we must allow for the possibility of errors

	Population Condition			
Conclusion	H ₀ True	H ₀ False		
Accept H ₀	Correct decision	Type II error		
Reject H ₀	Type I error	Correct decision		

 The probability of making a Type I error when the null hypothesis is true as an equality is called the level of significance

Type I and II errors (2)

1 49

- What do we do with the Type II error?
- Type II error:

Failing to reject the null hypothesis (AAR = 0) when the alternative ($AAR \neq 0$) is true

 Tests differ with respect to their ability to detect non-zero average abnormal returns (power of the test)

Type I and II errors (3)

| 50

Power of the event study test statistics to reject the null (AAR=0), when the square root of the average variance of AR across firms is 2 percent

Type I and II errors (4)

51

Power of the event study test statistics θ1 to reject the null (AR=0), when the square root of the average variance of AR across firms is 4 percent

What does this mean for your work?

Inputs for the test statistics (1)

| 52

Test whether average abnormal returns differ from zero:

$$t = \frac{AAR}{var(AAR)^{0.5}}$$

- O AAR is given by $AAR_{\tau} = \frac{1}{N} \sum_{i=1}^{N} AR_{i\tau}$
- O What about the denominator $var(AAR)^{0.5}$?

•
$$var(AAR) = \frac{1}{N^2} \sum_{i=1}^{N} \sigma_i^2$$

•
$$\hat{\sigma}_i^2 = \frac{1}{L_1 - 2} \sum_{\tau = T_0 + 1}^{T_1} (R_{i\tau} - \hat{\alpha}_i - \hat{\beta}_i R_{m\tau})^2$$

CALCULATE PAR	Excel function	
alpha	-0.0003	=INTERCEPT
beta	1.0312	=SLOPE
r2	0.3513	=Rsq
Standard dev	0.0054	=STEYX

Inputs for the test statistics (2)

53

Test whether cumulative average abnormal returns differ from zero:

$$t = \frac{CAAR[\tau_1, \tau_2]}{var(CAAR[\tau_1, \tau_2])^{0.5}}$$

- O Cumulative average abnormal returns are $CAAR[\tau_1, \tau_2] = \frac{1}{N} \sum_{i=1}^{N} CAR_i [\tau_1, \tau_2]$
- What about $var(CAAR[\tau_1, \tau_2])^{0.5}$?
 - $var(CAAR[\tau_1, \tau_2]) = \frac{1}{N^2} \sum_{i=1}^{N} \sigma_i^2 [\tau_1, \tau_2]$
 - $\hat{\sigma}_i^2[\tau] = \frac{1}{L_1 2} \sum_{\tau = T_0 + 1}^{T_1} (R_{i\tau} \hat{\alpha}_i \hat{\beta}_i R_{m\tau})^2$ measured for 1 day!
 - $\sigma_i^2[\tau_1, \tau_2] = (\tau_2 \tau_1 + 1)\hat{\sigma}_i^2[\tau]$ adjusted to the length of your CAAR

Excel function

443 = COUNT

0.00007 = CHISQ.DIST.RT

-0.511 =SKEW

0.851 =KURT

19.278

- Parametric tests, such as a t-test are
 - more powerful to detect AAR than non-parametric tests
 - based on normal distribution, which the data may not meet.
- Test whether returns in the estimation window are normally distributed

JB test

Skewness

Ex kurtosis

→ Jarque–Bera test

$$JB = \frac{n}{6} \left(S^2 + \frac{K^2}{4} \right) \sim \chi_{\nu=2}^2()$$

where S denotes the sample skewness, JB test p-value of Chi2 K is the sample excess kurtosis, and n is the number of non-missing return observations.

If normality is in doubt, additionally use non-parametric tests

55

Excel functions to get

a probability	z/t-value
NORM.DIST	NORM.INV
T.DIST.2T(t,df)	T.INV.2T(prob;df)
T.DIST.RT(t,df)	T.INV(prob;df)
T.DIST(t, df, cum)	

• Add significance level in Excel:

```
=IF(ABS(t-value)>1.96, "**", "")
```


Non-parametric event-study test

| 56

- Cowan generalized sign test: # of positive ARs in the event window equals the percentage of positive ARs in an estimation window
- Test statistic (when Ha >0)

$$Z_G = \frac{w - n\hat{p}}{[n\hat{p}(1-\hat{p})]^{\frac{1}{2}}}$$

w is the # of stocks in the event window for which the CAR is positive; n is the # stocks

$$\hat{p} = \frac{1}{n} \sum_{j=1}^{n} \frac{1}{100} \sum_{t=E_1}^{E_{100}} S_{jt}, \text{ and } S_{jt} = \begin{cases} 1 & \text{if } AR_{jt} > 0 \\ 0 & \text{otherwise} \end{cases}$$

E1 through E10 is the start and end date of the parameter estimation period (here 100!)

Tasks for next week

1 57

- Present your data
 - sample statistics of events,
 - returns,
 - time period,
 - industry
 - ... whatever is relevant for your analysis)

5. How to structure your report

| 58

Relevant Literature

Theoretical foundation (motivation, hypotheses)

Statistical foundation (calculate AR, tests)

Phase I		Phase II		Phase III		Phase IV	Phase V
Research question		Collect data	ct data Abnormal returns		Apply tests		"write it up"
• Which event?	•	Number events	•	$AR_{it} = R_{it} -$	•	parametric	
• What do you want	•	Time period		$E(R_{it})$	•	non parametric	
to analyze? Results from other	•	Market, Index,	•	How to determine $E(R_{it})$		\downarrow	
studies				- (······)	•	Test result delivers answer	
Theoretical idea						to the research question	
					•	Result in line/not in line	
						with literature	

Literature (1)

1.59

- Find research articles related to your project
- Read them!Knowing the title and abstract is not enough
- Recent literature on your topic defines what is "state of the art".
- Compare literature to your
 - hypothesis formulation
 - test procedure (sample, event window, estimation window, tests, ...)

Literature (2)

| 60

- The literature determines your contribution
- Is finding positive AR when literature documents negative AR a contribution to the literature? No
- Is focusing on fewer events or types of events than the literature a contribution to the literature? No
- What is a contribution? Something new that you add to the literature ...
 - an event never studied before, ... country or region, time period, ...
 new methodology, ... alternative model,

Statistical analysis (1)

61

BASICS – must have

Data description and summary statistics complete?

Table 1
Descriptive statistics of M&A announcements included in the event study

				Deal V	/alue
	Number of announcements	% of total	Mean	Median	Minimum
Total	43	100%			
\$ bn			23,934.05	16,098.30	4,628.80
2010	4	9%			
\$ bn			12,665.50	12,832.15	8,943.90
2011	6	14%			
\$ bn			24,020.63	23,361.85	8,875.90
2012	5	12%			
\$ bn			6,052.16	4,900.00	4,628.80

Good example, because time structure and deal value relevant to understand ...

- bias
- limitations
- contributions

Bad example, because ...

- variables shown not explained
- information not relevant

Statistical analysis (2)

62

- BASICS must have
 - Limitations and bias discussed?

6 Limitations and statistical bias
Event date uncertainty ...
Event selection ...
Company selection ...
Nonsynchronous trading ...
Clustering ...
Normality constraint ...
OLS estimator ...

Bad example, because...

- Link between limitations and sample unclear
- Not all biases are relevant for the sample at hand
- No discussion of whether bias is positive or negative

Statistical analysis (3)

63

- When and how do we use sensitivity tests?
- Sensitivity analysis (has to be motivated)
 - Different estimation window?
 - Subsamples?
 - Different tests?

6. Extensions

market companies

1 64

Alternative models to predict normal returns:

3-factor Fama-French model (often used for US companies):

$$R_{it}-R_f=\alpha_i+\beta_i(R_{Mt}-R_f)+\gamma_iSMB_t+\delta_iHML_t+\varepsilon_{it}$$

SMB = the outperformance of small versus big companies,
HML = the outperformance of high book-to-market versus small book-to-

O Visit Kenneth French's web page to see which data are available

Implementing n-factor models in Excel

65

- LINEST(y_values, x_values, const, stat)
 where const=TRUE if the model has a constant, else FALSE,
 stat=TRUE if additional statistics should be reported, else FALSE.
- LINEST must be entered as an array formula
- Hold down [Crtl] and [Shift] and press [Enter]

	F1	F2	Intercept	
Coefficient	0.041	0.923	0.000	
Standard errors	0.038	0.069	0.000	
R2	0.259	0.006	#N/A	Standard error of
F statistic	91.3	522.0	#N/A	
Ssxy	0.006	0.017	#N/A	

Matching approach

66

 Select for each company a similar company in terms of specified characteristics that had no event:

$$AR = R_{it} - R_{Mat}$$

 R_{Mat} returns of the matched company (or portfolio of companies)

Useful approach when investigating bonds

Expected versus unexpected components

67

- Some events are expected from the capital market
- In a few cases, there is no need to think about (e.g. earthquakes)
- O Need to distinguish:
 - Calculate expected component (e.g. earnings news, MacKinlay)

	Earnings increase	Earnings decrease
Good news	Increase stronger than expected	Decrease less pronounced than expected
Bad news	Increase not as strong as expected	Decrease stronger than expected

Subsample formation based on additional information:
 CEO retirement is more likely an expected event than CEO dismissal.
 AR retire < AR dismissal?
 What effect has the successor?

How does a good data structure for an event study look like?

68

- O How often do you observe the particular event type?
- At how many points in time do you observe the event type?

 Other structures require more data manipulation and modified test statistics.

Clustering

- When aggregating ARs, we assumed that the event windows of the securities do not overlap
 - > covariances across securities are zero.
- Suppose you consider several companies which are affected by the same event (such as earthquakes, monetary policy changes, regulation changes). → Covariances ≠0!
- Solution: Aggregate ARs to a portfolio and apply tests on these portfolios.

Further tests

- O Boehmer test: standardized AR corrected for event-induced changes in volatility (Boehmer et al., 1991).
- O Kolari and Pynnönen: standardized AR corrected for event-induced changes in volatility and cross-correlation (Kolari and Pynnönen, 2010).
- O ..