Problem

Use the construction in the proof of Theorem 1.49 to give the state diagrams of NFAs recognizing the star of the languages described in

- a. Exercise 1.6b.
- b. Exercise 1.6j.
- c. Exercise 1.6m.

THEOREM 1.49

The class of regular languages is closed under the star operation.

Step-by-step solution

Step 1 of 3

(a) Language $L_1 = \{w \mid w \text{ contains at least three 1s}\}$

Let M_1 be the NFA that recognizes L_1 .

Let $L = L_1^*$

Let M be the NFA that recognizes L.

 $L_1 = \{ w \mid w \text{ contains at least three 1s} \}$

$$L_1 = (0,1)^* 1(0,1)^* 1(0,1)^* 1(0,1)^*$$

The state diagram of M_1 that recognizes L_1 is as follows:

L is the language that recognizes star of L_1

The state diagram of M that recognizes L is as follows:

Comments (7)

Step 2 of 3

(b) Languages $L_1 = \{w \mid w \text{ contains at least two 0s and at most one 1}\}$

Let $M_{\rm I}$ be the NFA that recognizes $L_{\rm I}$.

Let $L = L_1^*$

Let M be the NFA that recognizes L.

 $L_1 = \{ w \mid w \text{ contains at least two 0s and at most one 1} \}$

The state diagram of \emph{M} that recognizes \emph{L} is as follows:

Comment

Step 3 of 3

(c) Languages L_{\parallel} =The empty set.

Let M_1 be the NFA that recognizes L_1 .

Let $L = L_1^*$

Let M be the NFA that recognizes L.

 L_1 = The empty set

$$L_1 = \phi = \{ \}$$

The state diagram of $M_{\rm I}$ that recognizes $L_{\rm I}$ is as follows:

L is the star of L_1 .

The state diagram of M that recognizes L is as follows:

Comment