Diretrizes do Curso

Profa. Márcia L. Aguena Castro aguena@ufscar.br

O que é?

Por que estudar?

O que atrapalha a disciplina?

Como estudar?

Critérios de Avaliação

Normas

Bibliografia

O que é?

A disciplina de Estruturas Discretas (ou Matemática discreta/finita ou Álgebra abstrata) visa estudar as estruturas matemáticas que são fundamentalmente discretas e não contínuas

Discreto = não existe um

»Contável (discreto) X Contínuo

Discreto = não existe um elemento entre quaisquer dois elementos consecutivos

Por que estudar?

- Uma das disciplinas de base mais importantes da Computação
- Fornece conhecimentos e raciocínio matemático necessários em disciplinas como
- Banco de Dados, Compiladores, Teoria da Computação, Linguagens Formais e Autômatos, Teoria dos Grafos, Análise de Algoritmos, etc.
- Serve para
 - Fomentar raciocínio abstrato (lógico-matemático)
 - Apresentar conceitos/notação matemáticos
 - Apresentar técnicas de resolução de problemas

O que atrapalha a disciplina?

- Crença de que a disciplina é difícil
- · Crença de que a disciplina é uma revisão
- Abrangência, profundidade, abordagem (aspectos teórico-formais e raciocínio) e redefinição de conceitos para o contexto do Curso
- Expectativa do aluno X Realidade do Curso
- Conteúdo X Raciocínio

Como estudar?

Tópicos da disciplina

- 1. Teoremas e Técnicas de demonstração
- 2. Teoria dos conjuntos
- 3. Relações sobre conjuntos
- 4. Funções
- 5. Teoria dos números
- 6. Estruturas algébricas

Como estudar?

	Datas	Tópicos
1	21/08/17	0. Diretrizes da disciplina
		1. Introdução e Técnicas de Demonstração de Teoremas
2	28/08/17	1. Introdução e Técnicas de Demonstração de Teoremas
3	04/09/17	P1 (1h)
		2. Teoria dos conjuntos
4	11/09/17	2. Teoria dos conjuntos
	18/09/17	Alunos dispensados da aula para participar da SeComp
5	25/09/17	2. Teoria dos conjuntos
		P2 (1h)
6	02/10/17	3. Relações sobre conjuntos
		3. Relações de equivalência
7	09/10/17	3. Relações de equivalência

Como estudar?

	Datas	Tópicos
8	16/10/17	3. Relações de ordem
	23/10/17	Não haverá aula - concurso
0	30/10/17	P3 (1h)
9		4. Funções
10	06/11/17	4. Funções
11	13/11/17	4. Funções
12	20/11/17	P4 (1h)
12		5. Teoria dos números
13	27/11/17	5. Teoria dos números
14	04/12/17	6. Estruturas algébricas
15	11/12/17	P5 (1h) REP (1h)

Critérios de Avaliação

- 5 provas de 1h cada
- Média aritmética das provas
- →SUB: cai todo o conteúdo do curso e substitui a menor nota de Pn(n=1..5).

Normas da Disciplina:

- Controle de frequência
- Chamada em todas as aulas
- Conduta
 - Pontualidade, respeito
 - Iniciativa, comprometimento
- Listas de exercícios (Não precisam ser entregues à professora, mas devem ser resolvidas já que ajudam na preparação para a prova)
- Moodle informações detalhadas sobre o curso

Bibliografia

Apostila e Notas de Aula disponíveis no Moodle

SCHEINERMAN, E. R., *Matemática Discreta*: uma introdução. Revisão técnica de Flávio Soares Corrêa da Silva. 2. ed. norteamericana. São Paulo: Cengage Learning, 2011. 573 p.

MENEZES, P. B. *Matemática Discreta para Computação e Informática*. 2. ed. Porto Alegre: Sagra Luzatto, 2005. 258 p. (Série de Livros Didáticos, n. 16).

GERSTING, J. L. *Fundamentos Matemáticos para Ciência da Computação*: Um tratamento moderno de Matemática Discreta. Trad ução Valéria de Magalhães Iorio. 5. ed. Rio de Janeiro: LTC, 2004. 597 p.