矩阵论 Winter 2017

Lecture 5: Hermite 矩阵与正定矩阵

Lecturer: Jun Wu Scribes: Yusu Pan

引言

标量 (1×1) | 矩阵 $(n \times n)$ $a \pm b$ | $A \pm B$ | AB -元多项式 | λ 阵 实数比大小 | Hermite 矩阵比大小

Table 5.1: 标量与矩阵的对比

5.1 Hermite 矩阵与 Hermite 二次型

Hermite 矩阵 矩阵对角线上为实数,以对角线为轴两边复共轭.

$$\mathbf{A}^H = \mathbf{A}$$

Hermite 矩阵的性质 (P2)

定理 5.1.1. 设 $\mathbf{A} = (a_{jk}) \in \mathbb{C}^{n \times n}$, 则 \mathbf{A} 是 Hermite 矩阵的充分必要条件是对任意 $x \in \mathbb{C}^N, x^H \mathbf{A} x$ 是实数.(将 Hermote 矩阵与实数联系起来)

定理 5.1.2. 设 A 为 n 阶 Hermite 矩阵,则

- A 的所有特征值全是实数
- A 的不同特征值所对应的特征向量是互相正交的

定理 5.1.3. 设 $\mathbf{A} \in \mathbb{C}^{n \times n}$, 则 \mathbf{A} 是 Hermite 矩阵的充分必要条件是存在酉矩阵 \mathbf{U} 使得

$$\mathbf{U}^{H}\mathbf{A}\mathbf{U} = \Lambda = diag(\lambda_{1}, \lambda_{2}, \dots, \lambda_{n})$$
(5.1)

其中 $\lambda_1, \lambda_2, \ldots, \lambda_n$ 均为实数

定理 5.1.4. 设 $\mathbf{A} \in \mathbb{R}^{n \times n}$, 则 \mathbf{A} 是 Hermite 矩阵的充分必要条件是存在酉矩阵 \mathbf{U} 使得

$$\mathbf{U}^{H}\mathbf{A}\mathbf{U} = \Lambda = diag(\lambda_{1}, \lambda_{2}, \dots, \lambda_{n})$$
(5.2)

其中 $\lambda_1, \lambda_2, \ldots, \lambda_n$ 均为实数