Sea-Bird Electronics, Inc.

13431 NE 20th Street, Bellevue, WA 98005-2010 USA

Phone: (+1) 425-643-9866 Fax (+1) 425-643-9954 Email: seabird@seabird.com

SENSOR SERIAL NUMBER: 2332 CALIBRATION DATE: 28-Jan-15

SBE 37 CONDUCTIVITY CALIBRATION DATA PSS 1978: C(35,15,0) = 4.2914 Siemens/meter

COEFFICIENTS:

j = 5.906954e-005

BATH TEMP (ITS-90)	BATH SAL (PSU)	BATH COND (Siemens/m)	INST FREQ (Hz)	INST COND (Siemens/m)	RESIDUAL (Siemens/m)
22.0000	0.0000	0.0000	2578.43	0.00000	0.00000
1.0000	34.7272	2.96907	5134.92	2.96911	0.00004
4.4999	34.7075	3.27546	5328.62	3.27542	-0.00004
15.0000	34.6642	4.25492	5904.60	4.25492	-0.00000
18.5000	34.6548	4.59925	6093.80	4.59924	-0.00002
24.0000	34.6445	5.15589	6387.47	5.15594	0.00005
29.0000	34.6388	5.67651	6649.93	5.67649	-0.00002
32.5000	34.6360	6.04810	6830.69	6.04771	-0.00039

f = INST FREQ * sqrt(1.0 + WBOTC * t) / 1000.0

Conductiv ity = (g + h * f^2 + i * f^3 + j * f^4) / (1 + δ * t + ϵ * p) Siemens / meter

 $t = temperatur e[^{\circ}C)$; p = pressure[decibars]; $\delta = CTcor$; $\epsilon = CPcor$;

Residual = instrument conductivity - bath conductivity

