Total No. of Questions :6]	SEAT No.:
P5600	[Total No. of Pages •2

TE/INSEM./OCT.-145 T.E. (Information Technology) OPERATING SYSTEM

(2015 Pattern) (Semester - I)

Time: 1 Hour]	0, 10,	[Max. Marks :30
---------------	--------	-----------------

Instructions to the candidates:

- 1) Answer Q.1 or Q.2, Q.3 or Q.4, Q.5 or Q.6.
- 2) Neat diagrams must be drawn wherever necessary.
- 3) Figures to the right indicate full marks.
- 4) Assume suitable data, if necessary.
- Q1) a) What is operating system? State and explain the basic functions of Operating System.[6]
 - b) Explain the following shell commands with example: [4]
 - i) echo ii) grep
- iii) touch
- iv) ls

OR

- Q2) a) Differentiate between monolithic and microkernel architectures. [4]
 - b) Write a shell script to check if given string is a palindrome or not. [6]
- Q3) a) For the table given below, calculate average waiting time and average turnaround time and draw a Gantt Chart illustrating the process execution using following scheduling algorithms.[8]
 - i) Round Robin (time slice 2 units) ii) Priority (non-preemptive)

Process	Arrival Time	Burst Time	Priority
P1	0	3	5
P2	2	6	2
P3	4	4	4
P4	6	5	3
P5	8	2	1

Note: For priority scheduling, minimum value indicates higher priority.

- b) Suppose that a process spawns another process using fork system call.[2] What if the parent process completes the execution before child process? What if the child process completes the execution before parent process?
- Q4) a) For the table given below, calculate average waiting time and average turnaround time and draw a Gantt Chart illustrating the process execution using following scheduling algorithms.[8]

			.)	\ V
• `	CIE	(h		
1) > F ($n\alpha n_{-}$	nreen	nniive
	/ DOIL (11011	procii	iptive)

ii) Priority (Preemptive)

Process	Arrival Time	Burst Time	Priority
P1	0	9	3
P2	1	1	2
P3	2	7	1
P4	3	1	5
P5	4	6	4

Note: For priority scheduling, minimum value indicates higher priority.

b) Differentiate between user level and kernel level threads. [2]

Q5) a) Explain the following terms:

[6]

- i) Mutual Exclusion
- ii) Synchronization
- iii) Race condition
- b) Differentiate between named pipe and unnamed pipe.

4

OR

- Q6) a) Write a deadlock-free solution for dining philosophers problem using semaphore.[6]
 - b) Explain the necessary and sufficient conditions for the occurrence of a deadlock. [4]