

Analyse 1 Cours 3

18/09/2024

2024-09-18

Lucas Duchet-Annez

EPFL 2024/2025 Génie Mécanique

1 Rappel

Si A est minoré son infimum est le réel s

- 1. $s \leq x, \forall x \in A$
- 2. $\forall \varepsilon > 0, \exists x \in A, s \leq x \leq s + \varepsilon$

2 Solutions de $x^2 = 2$

2.1 Théorème

$$\exists x > 0, x^2 = 2$$

2.2 Preuve

Soit
$$A = \{x \in \mathbb{R}_+^* : x^2 < 2\}$$
 Ex: $1 \in A, 2 \notin A$

Lemme A n'a pas de $\max(A)$

Preuve

Soit
$$x\in A,$$
 $x':=x+\frac{1}{n},$ $n\in\mathbb{N}^*$ On a ${x'}^2=\left(x+\frac{1}{n}\right)^2=x^2+2\frac{x}{n}+\frac{1}{n^2}$
$${x'}^2\leq x^2+\frac{2x+1}{n}$$

Prenons n tq $n>\frac{2x+1}{2-x^2}$ sachant que $2-x^2>0$

$${x'}^2 \leq x^2 + \frac{2x+1}{n} < x^2 + 2 - x^2 = 2$$
 Ainsi $x' \in A$ A n'a pas de $\max(A)$

Remarque A est majoré, par M=2. En effet $\forall x>3, x^2>9>2, x\notin A$

Considérons $s \coloneqq \sup(A)$

Lemme 2 $s^2 = 2$

Preuve 2 On va montrer que

 $s^2 \geq 2$ Comme An'a pas de max. $s^2 \leq 2$ Soit $M := \frac{2+s^2}{2s}$

$$x^{2} = (s + (x - s))^{2} = s^{2} + 2s(x - s) + (x - s)^{2}$$

$$\geq s^{2} + 2s(x - s)$$

$$> s^{2} + 2s(M - s)$$

$$= s^{2} + 2s\left(\frac{2 + s^{2}}{2s} - s\right)$$

$$= 2$$

 $x \notin A$ alors $x \leq M$ donc M majore A. Or s est le $\sup(A)$ donc $s \leq M$

$$s \le \frac{2+s^2}{2}s$$

$$2s^2 < 2 + s^2$$

$$s^2 \leq 2$$

Ainsi $s^2=2$ On appelle $s=\sqrt{2}$

2.3 Théorème

$$\forall y > 0 \ \exists x > 0, x^2 = y$$

Donc $f: \mathbb{R}^+ \to \mathbb{R}^+, x \to f(x) = x^2$ est une bijection. Sa réciproque s'appelle la fonction racine carrée. $f^{-1}: \mathbb{R}^+ \to \mathbb{R}^+, y \to f^{-1}(y) = \sqrt{y}$

2.4 Théorème

$$\forall y > 0 \ \exists x > 0, x^n = y$$

Donc $f: \mathbb{R}^+ \to \mathbb{R}^+, x \to f(x) = x^n$ est une bijection. Sa réciproque s'appelle la fonction racine carrée. $f^{-1}: \mathbb{R}^+ \to \mathbb{R}^+, y \to f^{-1}(y) = \sqrt[n]{y}$

3 Densité

3.1 Définition

Un sous-ensemble $E \subset \mathbb{R}$ est dense (dans \mathbb{R}) si $\forall x,y \in \mathbb{R}, x < y, \exists z \in E \ \mathrm{tq} \ x < z < y$

3.2 Théorème

 $\mathbb Q$ est dense dans $\mathbb R$

3.3 Définition

 $\forall x \in \mathbb{R}, |x| := \text{plus grand entier } n \in \mathbb{Z} \text{ tq } n \leq x$

$$\lfloor x \rfloor \leq x \leq \lfloor x \rfloor + 1$$

$$x-1<\lfloor x\rfloor \leq x$$

3.3.1 Preuve

Soit
$$x,y\in\mathbb{R},x< y$$
 Posons $r:=\frac{\lfloor nx\rfloor+1}{n}$ $n\in\mathbb{N}$ tq $n>\frac{1}{y-x}$ $r\in\mathbb{Q}$
$$\frac{nx}{n}< r\le \frac{nx+1}{n}$$

$$x< r\le x+\frac{1}{n}$$

$$x< r\le x+y-x$$

$$x< r< y$$

Ainsi $\mathbb Q$ est dense dans $\mathbb R$

3.4 Corollaire

$$\forall x \in \mathbb{R}, \forall \varepsilon > 0, \exists r = \frac{p}{q} \in \mathbb{R} \text{ tq } \left| x - \frac{p}{q} \right| \leq \varepsilon$$

Analyse 1 Cours 3 Lucas Duchet-Annez

3.5 Théorème 2

 $\mathbb{R}\setminus\mathbb{Q}$ est dense dans \mathbb{R}

4 Ensembles ouverts et fermés

4.1 Définition

 $G\subset\mathbb{R}$ est ouvert si $\forall x\in G,\exists \varepsilon>0$ tq,]
 $x-\varepsilon,x+\varepsilon[\subset G$

 $F \subset \mathbb{R}$ est fermé si son complémentaire $F^c \coloneqq \mathbb{R} \setminus F$ est ouvert

4.1.1 Ex

- 1. G =]0,1[est ouvert
- 2. $A = \{x \in \mathbb{R} \mid x^2 < 2\}$

4.2 Propriété

Soit $G, F \subset \mathbb{R}$ ouvert alors $G \cup F$ est ouvert

4.2.1 Ex

- 1. \mathbb{Z} est fermé car $\mathbb{Z}^c = \cup_{n \in \mathbb{Z}}]n, n+1[$ ouvert
- 2. [a,b[n'est pas ouvert car $\forall \varepsilon>0,]a-\varepsilon, a+\varepsilon[\not\subset [a,b[$

 $([a,b[)^c=]-\infty, a[\cup\,[b,+\infty[$ n'est pas ouvert donc [a,b[n'est pas fermé

1. $\mathbb Q$ n'est pas ouvert, ni fermé pareil pour $\mathbb R\setminus\mathbb Q$

5 Suites réelles

5.1 Définition

Une suite est une famille infinie de réels indexée par des entiers $\iff f: F \subseteq \mathbb{N} \to \mathbb{R}$