Modulprüfung Lineare Algebra

25.06.2015

Name:	
Vorname:	
Klasse:	
Punkte:	
Note:	

Hinweise

1. Dauer: 90 Minuten

- 2. Hilfsmittel:
 - Selber verfasste Notizen im Umfang von 5 Blättern im Format A4.
 - Nicht-grafik- und nicht-algebrafähiger Taschenrechner (nur für Grundoperationen und Auswertungen elementarer Funktionen)
- 3. Schreiben Sie auf die Prüfung nur die fertige Antwort **inklusive Lösungsweg** zur entsprechenden Aufgabe. Benutzen Sie für Notizen separate (nicht abzugebende) Blätter.
- 4. Achten Sie darauf, dass Ihre Lösungen gut strukturiert und *leserlich* aufgeschrieben sind.

1 Multiple-Choice

Die Vektoren (1,1) und (π,π) sind frei über \mathbb{R} .

Aufgabe (5 Punkte). Kommentieren Sie folgende Aussagen mit "wahr" oder "falsch". Bewertung: Jede richtig kommentierte Aussage gibt einen Punkt und kommentierte Aussage wird ein Punkt abgezogen. Ist die Summe der errepositiv, so ergibt sich daraus die Punktzahl für die Aufgabe, sonst wird d 0 Punkten bewertet.	eichten F	unkte
Es gibt keine Gruppe mit 7 Elementen.	□wahr	□falsch
Jeder Monoidhomomorphismus zwischen Gruppen ist ein Gruppenhomomorphismus.	□wahr	□falsch
Sind die Punkte $u, v, w \in \mathbb{R}^3$ linear unabhängig, dann gibt es genau eine Ebene, die u, v und w enthält.	□wahr	□falsch
Ist $U \subset \mathbb{R}^2$ ist ein zweidimensionaler \mathbb{R} -Untervektorraum von $(\mathbb{R}^2, +, \cdot)$, dann gilt $U = \mathbb{R}^2$.	□wahr	□falsch

 \square wahr \square falsch

2 Grundstrukturen

Aufgabe (10 Punkte).

(a) (4 Punkte) Lösen Sie die Gleichung

$$\begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 3 & 4 & 2 \end{bmatrix} \circ x = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 1 & 2 \end{bmatrix}$$

in der Gruppe (S_4, \circ) nach x auf.

(b) (2 Punkt) Schreiben Sie

$$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 2 & 3 & 6 & 4 & 5 \end{bmatrix}$$

in der Zyklenschreibweise.

(c) (4 Punkte) Gegeben ist die Menge $M=\{a,b\}$. Definieren Sie die Verknüpfung \star , durch ausfüllen der Verknüpfungstabelle, so dass die Struktur (M,\star) ein Monoid aber keine Gruppe ist.

*	a	b
a		
b		

Dokumentieren Sie Ihre Überlegungen und Rechnungen.

3 Der euklidische Raum

Aufgabe (12 Punkte). Gegeben sind zwei Ebenen E_1 und E_2 im \mathbb{R}^3 durch folgende Koordinatengleichungen.

$$E_1: 2x - y + z = 0$$

 $E_2: x + y - z = 1$

- (a) (10 Punkte) Bestimmen Sie die Parametergleichung der Schnittgerade $g=E_1\cap E_2$ der Ebenen E_1 und E_2 .
- (b) (2 Punkte) Bestimmen Sie den Schnittpunkt der Ebene ${\cal E}_2$ mit der z-Achse.

4 Gauss-Verfahren

Aufgabe (20 Punkte). Gegeben sind die Gleichungssysteme A in \mathbb{R} .

$$5x - y + z = 12$$

$$y - 5z = 28$$

$$-x - y - z = -2$$
(A)

und B in $\mathbb{Z}/11$

$$\bar{2}x + \bar{5}y - z = \bar{5}$$
 (B)
 $x - y - z = \bar{0}$
 $\bar{2}x + \bar{10}y + \bar{4}z = \bar{7}$

- (a) (2 Punkte) Schreiben Sie die erweiterte Koeffizientenmatrix beider Gleichungssysteme auf.
- (b) (18 Punkte) Lösen Sie beide Gleichungssysteme mit dem Gauss-Verfahren.

5 Vektorräume, Basen und Dimension

Aufgabe (18 Punkte). Wir arbeiten im $\mathbb{Z}/11$ -Vektorraum $((\mathbb{Z}/11)^2, +, \cdot)$. Die Gerade g gehe durch die Punkte $(\bar{2}, \bar{1})$ und $(\bar{1}, \bar{7})$.

- (a) (6 Punkte) Bestimmen Sie rechnerisch ein $y \in \mathbb{Z}/11$ so, dass der Punkt $(\bar{7}, y)$ auf g liegt.
- (b) (6 Punkte) Stellen Sie den Vektor $(\bar{9},\bar{1})$ als Linearkombination der Vektoren $(\bar{2},\bar{3})$ und $(\bar{3},\bar{2})$ dar.
- (c) (6 Punkte) Bilden die Vektoren $(\bar{2},\bar{3})$ und $(\bar{3},\bar{2})$ eine Basis von $((\mathbb{Z}/11)^2,+,\cdot)$? Begründen Sie Ihre Antwort.

6 Lineare Abbildungen

Aufgabe (14 Punkte). Gegeben sei eine \mathbb{R} -lineare Abbildung $f:\mathbb{R}^3 \to \mathbb{R}^2$ mit

$$f(1, 2, 0) = (2, 4)$$

 $f(1, 1, 2) = (6, 2)$
 $f(2, 2, 2) = (8, 4)$

Bestimmen Sie rechnerisch Ker(f). Dokumentieren Sie Ihre Rechnungen und Überlegungen.