

IBM Data Science Capstone Project

- In many cases when a person must move to another city or even country, she knows nothing about the new location, and it becomes extremely difficult to choose optimal place to search for a new home/flat.
- At the same time, this person has some
 preferences about what she does and doesn't
 want to have near her future home, alongside
 with some restrictions and limitations, for
 example budget limitations.
- The system that was developed during this capstone projects is designed to help solve the stated problem based on such parameters.

DATA ACUISITION CLEANING TRANSFORMATION

DATA SOURCES

- BetaNYC portal (<u>data.beta.nyc</u>):
 Information about New York Census Tracts;
 Geoshapes of each Tract;
- Foursquare API:
 Information about venues in each Census Tract
- Venue preferences of a made-up family that must relocate from Torrington to New York

DATA CLEANING

- Removed location records that had zero costs;
- Removed records that didn't satisfy budget limitations;

DATA CLEANING and TRANSFORMATION

- Removed location records that had zero costs;
- Removed records that didn't satisfy budget limitations;
- Combined data from different sources into a single dataframe.

Distribution of Living Costs (that meets the budget restrictions) in Kings County, New York

LOCATIONS DISTRIBUTION

By medium Annual Total Cost of Living and by Costs structure

- Most of the Tracts that meet budget limitations
 have annual cost of living from \$15,00 to \$25,000
- In majority of Tracts more than 50% of total expenses fall on Rent payments

KINGS COUNTY MAP

COLOR: MEDIUM ANNUAL TOTAL COST OF LIVING

RECOMMENDATION SYSTEM

=1 tot $S=\nabla \times S$) The action - Japane

1 Total & Ud5 = # VUdV arctgx~x & Sindcsco

 $=N \int cosxdx = sinx$

SYSTEM MECHANICS

VECTOR MULTIPLICATION BETWEEN USER PREFERENCES AND LOCATION CHARACTERISTICS

	Score
Café & Restaurant	6
Infrastructure	8
Parks, landscape and POV	6
Pet Care	5
Health, Sport and Beauty	8
Bars and Clubs	-8
Tourism	-7

Category	Café & Restaurant	Infrastructure	Parks, landscape and POV	Pet Care	Health, Sport and Beauty	Bars and Clubs	Tourism
ID							
36047000200	14	0	0	1	1	3	1
36047002000	4	2	0	0	2	3	0
36047002200	3	1	1	0	0	1	0
36047002300	12	1	8	0	9	6	1
36047002901	4	2	4	0	8	2	0

ID	Score	Café & Restaurant	Infrastructure	Parks, landscape and POV	Pet Care	Health, Sport and Beauty	Bars and Clubs	Tourism	Total Costs	Latitude	Longitude
36047010600	214	33	0	0	0	3	1	0	18123.882368	40.638875	-74.006040
36047079801	199	26	1	1	1	7	4	0	18803.643250	40.660011	-73.958719
36047029000	180	26	1	0	0	2	0	0	20452.762195	40.603174	-73.994348
36047032700	171	23	1	2	1	5	4	0	17782.949692	40.662647	-73.958796

SCORING OPTIONS

ABSOLUTE SCORE

If we want to suggest them locations with the highest Score, the only thing that we need to do is to take top N rows of the result dataframe Choose locations that provide best score for a given sum of money

OPTIMAL LOCATIONS

SUBTITLE HERE

- Points located bellow the line are possibly less attractive
- Why? Because for each of these options exists another one that provides higher score or/and lower annual cost.
- Why 'possibly'? Because this is only score representation of computed 'attractiveness' of each recommended location, in the real life it could be the situation that a location with a lower score would be much more interesting to the final Customer.

KINGS COUNTY MAP

COLOR: TRACT SCORE, YELLOW DOTS: OPTIMAL LOCATIONS, BLUE DOTS: TOP 20 BY SCORE

TITLE GOES HERE I

SUBTITLE HERE

- Although the implemented model is very simple, it already helped us to narrow down list of possible locations for a new home from almost 500 to 20 or even 8 options;
- Recommendation system could be further improved, for example, by extracting the category scores from the list of neighborhoods/tracts with their ratings provided by the customer/user;
- We made an assumption that the number of desirable/unwanted venues equally important as their scores. The system could be improved by introducing some kind of weight coefficients for each additional venue of the same type;

□ sergei..merson@gmail.com

THANKYOU

