3. Feladat

December 4, 2024

0 Előkészületek

0.1 Szükséges könyvtárak importálása

```
%reset -f
import pandas as pd
import numpy as np
import statsmodels.api as sm
import matplotlib.pyplot as plt
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
from scipy import stats
from statsmodels.tsa.holtwinters import SimpleExpSmoothing
from statsmodels.graphics.tsaplots import plot_acf, plot_pacf
from statsmodels.tsa.stattools import adfuller
from statsmodels.tsa.arima.model import ARIMA
from statsmodels.stats.diagnostic import acorr_ljungbox
from statsmodels.graphics.gofplots import qqplot
```

0.2 Adatok beolvasása

```
# Oszlopok definiálása
cols = ['Idő', 'Érték']

# Adatok beolvasása string-ként
with open('data/bead3.csv', 'r', encoding='latin-1') as file:
    lines = file.readlines()

# Az első sor elhagyása és értékek átalakítása
data = [list(map(float, line.strip().strip('"').split(','))) for line in lines[1:
    →]]

# DataFrame létrehozása
df = pd.DataFrame(data, columns=cols)
```

1 Determinisztikus modell illesztése

1.1 Kód és eredmények

```
# Modellek összehasonlítása
max_degree = 10
selected_degree = 3 # a kiválasztott fokszám
results = []
# Különböző fokszámú modellek összehasonlítása
for degree in range(0, max_degree):
   X = np.vander(df['Idő'], degree + 1)
   model = sm.OLS(df['Érték'], X).fit()
   r2 = r2_score(df['<u>Érték</u>'], model.fittedvalues)
   results.append({
       'Fokszám': degree,
       'R2': r2,
       'AIC': model.aic,
       'BIC': model.bic
   })
# Eredmények kiíratása
results_df = pd.DataFrame(results)
print("\nModellek összehasonlítása:")
print(results_df)
# Kiválasztott fokszámú polinom illesztése
X = np.vander(df['Idő'], selected_degree + 1)
model = sm.OLS(df['Érték'], X).fit()
# Eredmények kiíratása
print(f"\n{selected_degree}. fokú polinom illesztése:")
print(model.summary().tables[0])
print(model.summary().tables[1])
# Reziduálisok vizsqálata
residuals = model.resid
# 1. Várható érték vizsgálata
resid_mean = np.mean(residuals)
resid_std = np.std(residuals, ddof=selected_degree+1)
t_stat = resid_mean / (resid_std/np.sqrt(len(residuals)))
p_value_mean = 2 * stats.t.cdf(-abs(t_stat), len(residuals)-1)
# 2. Normalitás vizsgálata (Shapiro-Wilk teszt)
shapiro_stat, shapiro_p = stats.shapiro(residuals)
```

```
# 3. Függetlenség vizsgálata (Ljung-Box teszt)
lb_stat = sm.stats.diagnostic.acorr_ljungbox(residuals)
# 4. Homoszkedaszticitás vizsgálata (Breusch-Pagan teszt)
bp_test = sm.stats.diagnostic.het_breuschpagan(residuals, model.model.exog)
print("\nHibatagok vizsgálata - eredmények:")
print("-" * 50)
print(f"1. Várható érték vizsgálata:")
print(f"Átlag (várható érték becslése): {resid_mean:.6f}")
print(f"t-statisztika: {t_stat}")
print(f"p-érték: {p_value_mean}")
print(f"\n2. Normalitás vizsgálata (Shapiro-Wilk):")
print(f"Teszt statisztika: {shapiro_stat:.6f}")
print(f"p-érték: {shapiro_p:.6f}")
print(f"\n3. Függetlenség vizsgálata (Ljung-Box):")
print("Lag Teszt statisztika p-érték")
print("-" * 35)
for lag, row in lb_stat.iterrows():
    print(f"{lag:2d} {row['lb_stat']:14.6f} {row['lb_pvalue']:.6e}")
print(f"\n4. Homoszkedaszticitás vizsgálata (Breusch-Pagan):")
print(f"Teszt statisztika: {bp_test[0]:.6f}")
print(f"p-érték: {bp_test[1]:.6f}")
# Előrejelzés a következő 10 időpontra
future_points = np.arange(len(df) + 1, len(df) + 11)
X_future = np.vander(future_points, selected_degree + 1)
predictions = model.predict(X_future)
print("\nElőrejelzések:")
for i, pred in enumerate(predictions):
  print(f"{future_points[i]}. időpont: {pred:.2f}")
# Ábrázolás
plt.figure(figsize=(12, 6))
plt.scatter(df['Idő'], df['Érték'], color='blue', label='Tényleges értékek')
plt.plot(df['Idő'], model.fittedvalues, color='red', label='Illesztett görbe')
plt.plot(future_points, predictions, color='green', linestyle='--',u
→label='Előrejelzés')
plt.xlabel('Idő')
plt.ylabel('Érték')
plt.title(f'{selected_degree}. fokú polinom illesztése és előrejelzés')
plt.legend()
```

plt.grid(True) plt.show()

Modellek összehasonlítása:

	Fokszám	R ²	AIC	BIC
0	0	0.000000	387.062930	388.974953
1	1	0.062344	385.844343	389.668389
2	2	0.902997	274.412442	280.148511
3	3	0.921054	266.113215	273.761307
4	4	0.986175	180.999703	190.559818
5	5	0.987419	178.285939	189.758077
6	6	0.988357	176.408735	189.792896
7	7	0.988364	178.381243	193.677427
8	8	0.994452	143.342890	160.551097
9	9	0.992497	156.440981	171.737165

3. fokú polinom illesztése:

OLS Regression Results

=======================================			
Dep. Variable:	Érték	R-squared:	0.921
Model:	OLS	Adj. R-squared:	0.916
Method:	Least Squares	F-statistic:	178.9
Date:	Wed, 04 Dec 2024	Prob (F-statistic):	2.30e-25
Time:	20:18:41	Log-Likelihood:	-129.06
No. Observations:	50	AIC:	266.1
Df Residuals:	46	BIC:	273.8
Df Model:	3		

Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
x1	0.0006	0.000	3.244	0.002	0.000	0.001
x2 x3	0.0064 -2.0320	0.016 0.342	0.412 -5.935	0.682 0.000	-0.025 -2.721	0.038 -1.343
const	9.5845	2.036	4.707	0.000	5.486	13.683

Hibatagok vizsgálata - eredmények:

1. Várható érték vizsgálata:

Átlag (várható érték becslése): 0.000000 t-statisztika: 3.9543447227832004e-13

p-érték: 0.9999999999686

2. Normalitás vizsgálata (Shapiro-Wilk):

Teszt statisztika: 0.971069

p-érték: 0.255692

3. Függetlenség vizsgálata (Ljung-Box):

Lag Teszt statisztika p-érték -----36.706257 1.373379e-09 2 57.588516 3.124732e-13 3 66.733136 2.135808e-14 4 68.558895 4.572428e-14 5 68.644769 1.961309e-13 2.585887e-13 6 70.969881 7 75.831668 9.719502e-14 8 83.001311 1.214121e-14 9 92.734283 4.596171e-16 102.056297 2.110987e-17 10

4. Homoszkedaszticitás vizsgálata (Breusch-Pagan):

Teszt statisztika: 16.254783

p-érték: 0.001005

Előrejelzések:

51. időpont: 8.67 52. időpont: 12.46 53. időpont: 16.46 54. időpont: 20.69 55. időpont: 25.14 56. időpont: 29.81 57. időpont: 34.72 58. időpont: 39.86 59. időpont: 45.24

60. időpont: 50.86

1.2 Értelmezés $\varepsilon = 0.05$ szignifikanciaszint mellett

1.2.1 Modellválasztás

Az AIC és BIC értékek alapján a 8. fokú polinom adná a legjobb illeszkedést, azonban a 3. fokú polinom mellett döntöttem az overfitting elkerülése végett.

1.2.2 Várható érték vizsgálata

 H_0 : $E(\varepsilon) = 0$ H_1 : $E(\varepsilon) \neq 0$

t-statisztika értéke: 0.0000

p-érték: 0.9999

Döntés: 0.9999 > 0.05, tehát nem vetjük el H_0 -t

1.2.3 Normalitás vizsgálata (Shapiro-Wilk teszt)

 H_0 : A hibatagok normális eloszlásúak

 H_1 : A hibatagok nem normális eloszlásúak

Teszt statisztika: 0.9711

p-érték: 0.2557

Döntés: 0.2557 > 0.05, tehát nem vetjük el H_0 -t

1.2.4 Függetlenség vizsgálata (Ljung-Box teszt)

 H_0 : A hibatagok függetlenek

 H_1 : A hibatagok autokorreláltak

A teszt minden vizsgált késleltetésre (1-10 lag) erősen szignifikáns autokorrelációt mutat

Döntés: Minden késleltetésre p < 0.05, tehát elvetjük H_0 -t

1.2.5 Homoszkedaszticitás vizsgálata (Breusch-Pagan teszt)

 H_0 : A hibatagok homoszkedasztikusak H_1 : A hibatagok heteroszkedasztikusak

Teszt statisztika: 16.2548

p-érték: 0.0010

Döntés: 0.0010 < 0.05, tehát elvetjük H_0 -t

1.2.6 Összefoglaló értékelés

A hibatagok diagnosztikai vizsgálata alapján:

- A várható érték feltétel teljesül (az átlag gyakorlatilag 0).
- A normalitás feltétele teljesül (a hibatagok normális eloszlásúak).
- A függetlenség feltétele nem teljesül, erős pozitív autokorreláció van jelen.
- A homoszkedaszticitás feltétele nem teljesül, a hibatagok heteroszkedasztikusak.

2 Exponenciális simítás alkalmazása

2.1 Kód és eredmények

```
# Exponenciális simítás (optimális alpha meghatározása)
model = SimpleExpSmoothing(df['Érték']).fit()
alpha = model.model.params['smoothing_level']
# Illesztett értékek és előrejelzések
fitted_values = model.fittedvalues
forecast = model.forecast(5)
# Illeszkedés vizsgálata
mae = mean_absolute_error(df['Érték'], fitted_values)
mse = mean_squared_error(df['Érték'], fitted_values)
rmse = np.sqrt(mse)
# Reziduálisok vizsgálata
residuals = model.resid
# 1. Várható érték vizsgálata
resid_mean = np.mean(residuals)
resid_std = np.std(residuals, ddof=1)
t_stat = resid_mean / (resid_std / np.sqrt(len(residuals)))
p_value_mean = 2 * stats.t.cdf(-abs(t_stat), len(residuals) - 1)
# 2. Normalitás vizsgálata (Shapiro-Wilk teszt)
shapiro_stat, shapiro_p = stats.shapiro(residuals)
# 3. Függetlenség vizsgálata (Ljung-Box teszt)
lb_stat = sm.stats.diagnostic.acorr_ljungbox(residuals)
```

```
# 4. Homoszkedaszticitás vizsgálata (Breusch-Pagan teszt)
exog = sm.add_constant(fitted_values)
bp_test = sm.stats.diagnostic.het_breuschpagan(residuals, exog)
# Eredmények kiírása
print("\nIlleszkedési mutatók:")
print(f"MAE = {mae:.4f}")
print(f"MSE = {mse:.4f}")
print(f"RMSE = {rmse:.4f}")
print(f"Smoothing level (alpha) = {alpha:.4f}")
print("\nHibatagok vizsgálata - eredmények:")
print("-" * 50)
print("1. Várható érték vizsgálata:")
print(f"Átlag: {resid_mean:.6f}")
print(f"t-statisztika: {t_stat:.6f}")
print(f"p-érték: {p_value_mean:.6f}")
print("\n2. Normalitás vizsgálata (Shapiro-Wilk):")
print(f"Teszt statisztika: {shapiro_stat:.6f}")
print(f"p-érték: {shapiro_p:.6f}")
print(f"\n3. Függetlenség vizsgálata (Ljung-Box):")
print("Lag Teszt statisztika p-érték")
print("-" * 35)
for lag, row in lb_stat.iterrows():
    print(f"{lag:2d} {row['lb_stat']:14.6f} {row['lb_pvalue']:.6e}")
print("\n4. Homoszkedaszticitás vizsgálata (Breusch-Pagan teszt):")
print(f"Teszt statisztika: {bp_test[0]:.6f}")
print(f"p-érték: {bp_test[1]:.6f}")
print("\nElőrejelzések:")
for i, pred in enumerate(forecast, 1):
    print(f"{len(df) + i}. időpont: {pred:.2f}")
# Ábrázolás
plt.figure(figsize=(12, 6))
plt.scatter(df['Idő'], df['Érték'], color='blue', label='Eredeti adatok')
plt.plot(df['Idő'], fitted_values, 'r-', label=f'Simított (\alpha={alpha:.4f})')
future_points = np.arange(len(df), len(df) + len(forecast))
plt.plot(future_points, forecast, 'g--', label='Előrejelzés')
plt.title('Exponenciális simítás és előrejelzés')
plt.xlabel('Idő')
plt.ylabel('Érték')
```

```
plt.legend()
plt.grid(True)
plt.show()
Illeszkedési mutatók:
MAE = 1.3446
MSE = 2.7510
RMSE = 1.6586
Smoothing level (alpha) = 1.0000
Hibatagok vizsgálata - eredmények:
_____
1. Várható érték vizsgálata:
Átlag: -0.035400
t-statisztika: -0.149436
p-érték: 0.881823
2. Normalitás vizsgálata (Shapiro-Wilk):
Teszt statisztika: 0.961779
p-érték: 0.105540
3. Függetlenség vizsgálata (Ljung-Box):
Lag Teszt statisztika p-érték
         34.645889 3.954729e-09
 1
 2
       59.005126 1.538862e-13
 3
        82.658607 8.253867e-18
 4
       104.418817 1.126498e-21
 5
       118.862058
                    5.466764e-24
 6
        131.665637 5.730822e-26
 7
        144.778551 5.062839e-28
 8
        151.797860
                    8.266950e-29
 9
        155.033991
                    7.976957e-29
        156.828963
                    1.461608e-28
4. Homoszkedaszticitás vizsgálata (Breusch-Pagan teszt):
Teszt statisztika: 0.487821
p-érték: 0.484901
Előrejelzések:
51. időpont: -1.25
52. időpont: -1.25
53. időpont: -1.25
54. időpont: -1.25
55. időpont: -1.25
```


2.2 Exponenciális simítás eredményei

2.2.1 Modell specifikációk

A modellben a Simple Exp
Smoothing függvény által meghatározott $\alpha=1.0000$ simítási paramétert használtuk.

2.2.2 Illeszkedési mutatók

MAE (Mean Absolute Error): 1.3446

Az átlagos abszolút hiba azt mutatja, hogy az előrejelzéseink átlagosan 1.3446 egységgel térnek el a tényleges értékektől.

MSE (Mean Squared Error): 2.7510

Az átlagos négyzetes hiba az előrejelzési hibák négyzetének átlaga, jelen esetben 2.7510. Ez a mutató érzékeny a nagyobb eltérésekre, mivel a hibákat négyzetre emeli.

RMSE (Root Mean Squared Error): 1.6586

A négyzetes átlaggyök hiba az MSE négyzetgyöke, ami az előrejelzési hibák átlagos nagyságát adja meg az eredeti mértékegységben.

Simítási paraméter (alpha): 1.0000

Az alpha értéke 1.0, ami azt jelenti, hogy a modell teljes mértékben az utolsó megfigyelésre támaszkodik az előrejelzés során. Ebben az esetben a modell nem simítja az adatokat, hanem minden előrejelzés az utolsó ismert érték lesz.

2.3 Hibatagok tulajdonságainak vizsgálata $\varepsilon = 0.05$ szignifikanciaszint mellett

2.3.1 Várható érték vizsgálata

 H_0 : $E(\varepsilon) = 0$ H_1 : $E(\varepsilon) \neq 0$

t-statisztika értéke: -0.1494

p-érték: 0.8818

Döntés: 0.8818 > 0.05, tehát nem vetjük el H_0 -t

2.3.2 Normalitás vizsgálata (Shapiro-Wilk teszt)

 H_0 : A hibatagok normális eloszlásúak

 H_1 : A hibatagok nem normális eloszlásúak

Teszt statisztika: 0.9618

p-érték: 0.1055

Döntés: 0.1055 > 0.05, tehát nem vetjük el H_0 -t

2.3.3 Függetlenség vizsgálata (Ljung-Box teszt)

 H_0 : A hibatagok függetlenek

 H_1 : A hibatagok autokorreláltak

A teszt minden vizsgált késleltetésre (1-10 lag) erősen szignifikáns autokorrelációt mutat

Döntés: Minden késleltetésre p < 0.05, tehát elvetjük H_0 -t

2.3.4 Homoszkedaszticitás vizsgálata (Breusch-Pagan teszt)

 H_0 : A hibatagok homoszkedasztikusak

 H_1 : A hibatagok heteroszkedasztikusak

Teszt statisztika: 0.4878

p-érték: 0.4849

Döntés: 0.4849 > 0.05, tehát nem vetjük el H_0 -t

2.4 Összefoglaló értékelés

A hibatagok diagnosztikai vizsgálata alapján:

- A várható érték feltétel teljesül (az átlag gyakorlatilag 0)
- A normalitás feltétele teljesül (a hibatagok normális eloszlásúak)
- A függetlenség feltétele nem teljesül, erős pozitív autokorreláció van jelen
- A homoszkedaszticitás feltétele teljesül (a szórás állandó)

3 Box-Jenkins modell

3.1 Kód és eredmények

```
# Idősor stacionaritásának vizsgálata (ADF teszt)
adf_result = adfuller(df['Érték'])
print('\nADF Teszt eredménye:')
print(f'ADF Statisztika: {adf_result[0]:.4f}')
print(f'p-érték: {adf_result[1]:.4f}')
```

```
# ACF és PACF ábrák a paraméterek meghatározásához
fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(12, 8))
plot_acf(df['Érték'], ax=ax1)
plot_pacf(df['Érték'], ax=ax2)
plt.tight_layout()
plt.show()
# ARIMA modell illesztése
p, d, q = 1, 1, 1
model = ARIMA(df['Érték'], order=(p, d, q))
results = model.fit()
# Illesztett értékek és előrejelzések
fitted_values = results.fittedvalues
forecast = results.forecast(steps=5)
# Reziduálisok vizsqálata
residuals = results.resid
# 1. Várható érték vizsgálata
resid_mean = np.mean(residuals)
resid_std = np.std(residuals, ddof=1)
t_stat = resid_mean / (resid_std/np.sqrt(len(residuals)))
p_value_mean = 2 * stats.t.cdf(-abs(t_stat), len(residuals)-1)
# 2. Normalitás vizsgálata
shapiro_stat, shapiro_p = stats.shapiro(residuals)
# 3. Függetlenség vizsgálata (Ljung-Box teszt)
lb_stat = sm.stats.diagnostic.acorr_ljungbox(residuals)
# 4. Homoszkedaszticitás vizsgálata
exog = sm.add_constant(fitted_values)
bp_test = sm.stats.diagnostic.het_breuschpagan(residuals, exog)
print('\nModell eredmények:')
print(results.summary().tables[0])
print(results.summary().tables[1])
print('\nHibatagok vizsgálata:')
print(f'Várható érték teszt p-érték: {p_value_mean:.4f}')
print(f'Shapiro-Wilk teszt p-érték: {shapiro_p:.4f}')
print(f"Ljung-Box teszt:")
print("Lag Teszt statisztika p-érték")
print("-" * 35)
for lag, row in lb_stat.iterrows():
```

```
print(f"{lag:2d} {row['lb_stat']:14.6f} {row['lb_pvalue']:.6e}")
print(f'\nBreusch-Pagan teszt p-érték: {bp_test[1]:.4f}')
print('\nElőrejelzések:')
for i, pred in enumerate(forecast, 1):
    print(f'{len(df) + i}. időpont: {pred:.2f}')
# Ábrázolás
plt.figure(figsize=(12, 6))
plt.plot(df['Idő'], df['Érték'], 'b.', label='Eredeti adatok')
plt.plot(df['Idő'], fitted_values, 'r-', label=f'ARIMA({p},{d},{q})')
future_points = np.arange(len(df), len(df) + 5)
plt.plot(future_points, forecast, 'g--', label='Előrejelzés')
plt.title('ARIMA modell és előrejelzés')
plt.xlabel('Idő')
plt.ylabel('Érték')
plt.legend()
plt.grid(True)
plt.show()
```

ADF Teszt eredménye: ADF Statisztika: -2.5644 p-érték: 0.1006

0.0

2.5

5.0

10.0

12.5

15.0

17.5

7.5

Modell eredmények:

SARIMAX Results

Dep. Variable:	Érték	No. Observations:	50
Model:	ARIMA(1, 1, 1)	Log Likelihood	-68.798
Date:	Wed, 04 Dec 2024	AIC	143.597
Time:	20:18:42	BIC	149.272
Sample:	0	HQIC	145.750

- 50

Covariance Type: opg

========			========	=======	========	=======
========		========	========	=======	========	=======
	coef	std err	z	P> z	[0.025	0.975]
ar.L1	0.8688	0.090	9.658	0.000	0.692	1.045
ma.L1	-0.2181	0.159	-1.372	0.170	-0.530	0.094
sigma2	0.9504	0.193	4.913	0.000	0.571	1.329

Hibatagok vizsgálata:

Várható érték teszt p-érték: 0.8523 Shapiro-Wilk teszt p-érték: 0.0627

Ljung-Box teszt:

Lag Teszt statisztika p-érték

1	0.212220	6.450331e-01
2	3.389275	1.836658e-01
3	3.694513	2.963968e-01
4	7.022499	1.347040e-01
5	7.781213	1.687128e-01
6	7.867512	2.479714e-01
7	13.683233	5.711086e-02
8	13.708309	8.969225e-02
9	15.190585	8.583220e-02
10	16.478098	8.673992e-02

Breusch-Pagan teszt p-érték: 0.5577

Előrejelzések:

51. időpont: -0.41 52. időpont: 0.31 53. időpont: 0.94 54. időpont: 1.49 55. időpont: 1.97

3.2 Értelmezés $\varepsilon = 0.05$ szignifikanciaszint mellett

3.2.1 ADF teszt eredménye

 H_0 : Az idősor nem stacionárius H_1 : Az idősor stacionárius

ADF Statisztika: -2.5644

p-érték: 0.1006

Döntés: 0.1006 > 0.05, tehát nem vetjük el H_0 -t, az idősor nem stacionárius, ezért szükséges

differenciálnunk

3.2.2 Modell paraméterek

ARIMA(1,1,1) modellt illesztettünk, ahol:

- p = 1 (autoregresszív tag), mert a PACF ábrán az első késleltetés volt szignifikáns
- d = 1 (differenciálás rendje), mert az idősor nem stacionárius
- q = 1 (mozgóátlag tag), mert az ACF ábra az első késleltetésnél mutat szignifikáns értéket

3.2.3 Paraméterek szignifikanciája

- AR(1) tag: p-érték = 0.000 < 0.05, szignifikáns
- \bullet MA(1) tag: p-érték = 0.170 > 0.05, nem szignifikáns

3.2.4 Modell illeszkedési mutatók

AIC: 143.597 BIC: 149.272

Log Likelihood: -68.798

3.3 Hibatagok tulajdonságainak vizsgálata

3.3.1 Várható érték vizsgálata

p-érték: 0.8523 > 0.05, tehát nem vetjük el H_0 -t

3.3.2 Normalitás vizsgálata (Shapiro-Wilk teszt)

p-érték: 0.0627 > 0.05, tehát nem vetjük el H_0 -t

3.3.3 Függetlenség vizsgálata (Ljung-Box teszt)

Minden késleltetésre p > 0.05, tehát nem vetjük el H_0 -t

3.3.4 Homoszkedaszticitás vizsgálata (Breusch-Pagan teszt)

p-érték: 0.5577 > 0.05, tehát nem vetjük el H_0 -t

3.4 Összefoglaló értékelés

- A modell diagnosztikája megfelelő:
 - A várható érték feltétel teljesül
 - A hibatagok normális eloszlásúak
 - A függetlenség feltétele teljesül
 - A homoszkedaszticitás feltétele teljesül
- Az AR(1) tag szignifikáns, míg az MA(1) tag nem
- Az előrejelzések növekvő trendet mutatnak