Logic of Selective Repression: How Elite Purges Affect State Violence in Authoritarian Regimes

Gary Ziwen Zu

Duke University

April 18, 2020

Introduction

Question:

- Why do local officials choose different strategies to address protests?

Argument:

 Political threats from elite purges and mass protests affect the selective repression choices by local officials.

Findings:

- Scale effects: Elite purges incentivize local officials to strengthen repression of protests that entail greater threat while relax that of less threatening ones → selective repression mechanism.
- Perception effects: Patron-connected officials exercise more pronounced selective repression mechanism due to perception of greater threat of purge → clientelism causes political radicalness.

Theory

- Autocrats tend to repress protests that are threatening while tolerating those are less threatening.
 - High-profile protests are dangerous to authoritarian rule
 - Petty protests work as a pressure valve to release grievance
 - They also work as fire alarm for autocrats to monitor local officials
 - It is costly to repress all petty protests.
- Local officials prefer to repress any protests for two reasons:
 - Protests harms local officials' rent-seeking and economic development.
 - Protests damage local officials' career prospects.
- Elite purges force local officials to comply with the autocrat's preferences to signal loyalty.
 - We expect to observe preference shifts of local officials whose jurisdictions suffer purges.
 - The shifts produce the selective repression mechanism.
- Patron-connected officials express more pronounced selective repression to signal loyalty.
 - If they are in the enemy faction, autocrats are more likely to purge them.
 - If they are in the autocrat's faction, autocrats can monitor their behaviors more closely.

Formal Model

Figure: Game Tree of Central-Local Interactions in Autocracy

Theoretical Implications from Formal Model

Contributions of the model:

- Rationalizes the selective repression mechanism theory without loss of generality, which can be adapted to other regime scenarios.
- Using repression as a signal of loyalty, the model offers criteria for autocrats to purge local officials and local officials to repress mass protests in a general context.
- Models the dynamic interactions between elites, which provides chances for further extension.

Empirical Implications

Anti-corruption campaign in China and labor disputes

500 CLB(2011-2018) 200 300 9 2015 2018 2012 2016 2017 month2 CLB(2011-2018) CASM-China events

Figure: Purge and Labor Protests

Figure: Labor Protest are Representative

Data

Table: Descriptive Statistics

Variable	Description	Obs	Mean	Std. Dev.	Min	Max
Response	1=repression, 0=otherwise	10738	0.22	0.41	0	1
Firm type	1=SOE, 0=otherwise	10738	0.10	0.30	0	1
Protest type	1=conventional, 2=disruptive, 3=violent	9375	2.49	0.50	1	3
Participants	1=< 100, 2=100-1000, 3=> 1000	9098	1.28	0.53	1	3
Demand type	0=rights, 1=wage	8100	0.81	0.39	0	1
Total purges	number of total purged officials	6698	41.67	40.65	0	260
Mean rank	mean ranks of purged officials	6698	4.05	4.19	0	9
Annual purges	number of annual purges	6698	18.66	21.67	0	125
Monthly purge	number of monthly purges	6698	1.59	2.75	0	50
Petitions	number of petitions from city forum	6384	36.00	179.94	0	4068
CASM protests	number of protests in cities from CASM	1541	63.87	80.55	1	770
Connection	1=city leaders connected to provincial leaders, 0=otherwise	4959	0.68	0.47	0	1
Social Responsiveness	proportions of social topics in GWRs	3017	0.072	0.0261	0	0.255
Political Responsiveness	proportions of political topics in GWRs	3017	0.061	0.014	0	0.122

- Collective action data (CLB)
- Anti-corruption data
- Political connection data (city leaders connected to provincial leaders)
- Responsiveness data

Hypotheses

Hypothesis 1 (scale effect):

When the city is under a purge environment, local officials reduce repression of small-scale and wage-related labor protests, but increase repression of large-scale and social rights-related ones.

Hypothesis 2 (perception effect):

Patron-connected local officials exercise radical selective repression under the purge environment, which means they repress large-scale and social rights-related labor protests more severely but are more tolerant of small-scale and wage-related ones.

Empirical Strategy

$$\textit{Repression}_{\textit{i},\textit{c},\textit{t}} = \beta_1 \textit{Purge}_{\textit{c},\textit{t}-1} + \beta_2 \textit{Threat}_{\textit{i}} + \beta_3 \textit{Purge}_{\textit{c},\textit{t}-1} \cdot \textit{Threat}_{\textit{i}} + \textbf{Z}_{\textit{i}} \beta_4 + \alpha_{\textit{c}} + \tau_{\textit{t}} + \epsilon_{\textit{i},\textit{c},\textit{t}}$$

- i, c, t index protest event, city and time (month or year) respectively.
- *Purge* is a binary variable indicating whether the city suffers purge.
- *Threat* is a covariate containing **protest scales** and **demand indicators**.
- Z account for event-level controls.
- α and τ are city and time fixed effects, respectively.

Results: scale effects

Table: Selective Repression of Protests with Different Threats

	Linear Probability Model				Logit Model		
Dependent Variable (repression)	(1)	(2)	(3)	(4)	(5)	(6)	(7)
purge	0.0107	0.00852	0.105***	0.111***	-0.103***	-0.102***	0.0652
	[0.0153]	[0.0203]	[0.0258]	[0.0283]	[0.0142]	[0.0181]	[0.114]
100 - 1000 participants	0.454***	0.468***	0.452***	0.465***	0.197***	0.200***	2.538***
	[0.0163]	[0.0176]	[0.0164]	[0.0177]	[0.0284]	[0.0335]	[0.102]
> 1000 participants	0.699***	0.700***	0.699***	0.701***	0.405***	0.379***	4.023***
	[0.0240]	[0.0249]	[0.0236]	[0.0250]	[0.0439]	[0.0531]	[0.221]
wage demand	-0.0379**	-0.0428***	0.0374	0.0425*	-0.0296**	-0.0341**	-0.279**
	[0.0152]	[0.0164]	[0.0231]	[0.0250]	[0.0150]	[0.0160]	[0.113]
purge × wage demand			-0.117***	-0.127***			
			[0.0263]	[0.0289]			
purge $\times 100 - 1000$ participants					0.404***	0.405***	
					[0.0329]	[0.0368]	
purge $\times > 1000$ participants					0.491***	0.502***	
					[0.0472]	[0.0542]	
Constant	0.0103	-0.0291	-0.0504	-0.0879	0.0942	0.0769	-5.683***
	(0.0640)	(0.0619)	(0.0702)	(0.0710)	(0.0831)	(0.0832)	(0.877)
Observations	7,806	7,362	8,036	7,587	9,033	8,580	7,563
Adjusted R-squared	0.256	0.250	0.086	0.074	0.297	0.288	
City FE	✓		✓		✓		✓
Month FE	✓	✓	✓	✓	✓	✓	✓
City-Year FE		✓		✓		✓	
Event controls	✓	✓	✓	✓	✓	✓	✓
Number of Cities	323	315	324	316	327	318	292

Note: standard errors clustered in cities are in brackets *** p < 0.01, ** p < 0.05, *p < 0.1.

Results: perception effects

Table: Perception Effects on Repression: connected vs. unconnected

Dependent Variable (repression)	(1)	(2)
purge	0.130***	-0.113***
	[0.0478]	[0.0245]
100 — 1000 participants		0.143***
		[0.0320]
> 1000 participants		0.314***
		[0.0623]
purge \times 100 $-$ 1000 participants		0.463***
		[0.0419]
purge \times > 1000 participants		0.591***
		[0.0694]
wage demand	0.0114	
	[0.0406]	
purge $ imes$ wage demand	-0.161***	
	[0.0492]	
Constant	0.0318	0.0108
	[0.184]	[0.128]
Event Controls	✓	✓
City FE	✓	✓
Year FE	✓	✓
Number of Cities	288	294
Adjusted R-squared	0.049	0.297
Observations	2,427	2,801

Note: standard errors clustered in cities are included in brackets *** p < 0.01, ** p < 0.05, *p < 0.1.

Robustness Checks

- Effects of purge on repression with different temporal periods. Table A1 & A2
- Examine the endogeneity: whether protests increase in response to purges. Table A3
- Balance between connected and unconnected officials' jurisdictions. Table A4
- State capacity and repression. Table A5
- Results are robust to multiple measures of patron-connections/purge intensity.

Mechanism: perception effect

- Table A6 offers one possible explanation for perception effect.
- Connected officials are inexperienced, younger, promoted faster \rightarrow maturity lowers radicalness.

Table: A6: Mechanism of political threats perception

Variable	Unconnected	Connected	Difference-in-means
msec age	52.541	51.221	-1.044***
-	(3.824)	(3.920)	(0.214)
mayor age	50.494	49.256	-1.182***
	(4.224)	(3.960)	(0.225)
msec edu	0.522	0.544	0.099***
	(0.500)	(0.498)	(0.032)
mayor tenure	2.657	1.360	-1.579***
	(1.702)	(1.458)	(0.102)
msec tenure	2.732	1.572	-1.303***
	(1.725)	(1.568)	(0.121)
mayor localtime	6.468	5.125	-1.380***
	(8.820)	(8.672)	(0.430)
Observations	1,468	4,188	6,384
City FE	✓	✓	✓

Note: standard errors clustered in cities are included in bracket *** p < 0.01, ** p < 0.05, *p < 0.1.

Mechanism: scale effect

- Table A7 shows that purges do not change local officials' responsiveness and nonresponse rate to labor protests
- Repressive behavior rather than responsiveness is a more noticeable signal of loyalty.

Table: A7: Local officials' reactions to protests

	(1)	(2)	(3)	(4)
Dependent Variable(reaction)	responsiveness	no response	responsiveness	no response
purge \times 100 $-$ 1000 participants	0.0172	-0.0334		
	[0.0180]	[0.0235]		
purge $\times > 1000$ participants	0.0410	0.0470		
	[0.0294]	[0.0643]		
purge $ imes$ wage demand			-0.00265	0.0309
			[0.0150]	[0.0280]
Constant	0.269**	0.696***	0.547***	0.360***
	[0.126]	[0.151]	[0.111]	[0.115]
Event Controls	✓	✓	✓	✓
City FE	✓	✓	✓	✓
Year FE	✓	✓	✓	✓
Number of Cities	327	327	324	324
Adjusted R-squared	0.174	0.114	0.152	0.083
Observations	9,033	9,033	8,036	8,036

Note: standard errors clustered in cities are included in bracket *** p < 0.01, ** p < 0.05, *p < 0.1.

Consequences: responsiveness ↓, loyalty ↑

The average connection period is 2 years.

Contributions

- This paper advances the logic of local state repression in authoritarian regimes.
- The paper proposes a selective repression model. This model is expected to apply to other multilevel governments.
- Empirically, this paper uses China's ongoing anti-corruption campaign to examine hypotheses derived from formal model.
- This paper reveals the mechanisms behind local officials' behavioral changes in repression as well as purge's consequences on ordinary people.
- In generally, this research provides theoretical insights into authoritarian local officials' survival strategies.