Assignment 1: Training a Linear Regression Model

Task: In this assignment, you are going to train a linear regression model on the given data set. **(100 points)**

About Dataset:

You are given two CSV files

- I. Train.csv
- II. Test.csv

Both files contain two columns (x as the input variable, and y as the output variable). You are required to train your model using the **train.csv** file and then test your model on the **test.csv** file.

You can access the dataset from the given link: https://drive.google.com/drive/folders/1PH_C-RnXba9HvX66QfScPU2VQJTapFop?usp=sharing

Instructions:

- Create a Google Collab Notebook and name it as A1-Roll_Number (A1- BITF20M002)
 [1]
- 2. Connect your collab Notebook file with Google Drive.[1]
- 3. Import necessary libraries such as numpy, pandas, etc. [2]
- 4. Load the datasets and display 10 records from both files using the head() function. (Use the pandas' library for this) [6]
- 5. Convert pandas' data-frames (obtained in step 4) to numpy arrays and display their shapes. [10]
- 6. Training: [45]

Your goal is to minimize the cost by finding the optimal values of theta0 and theta1 within a given range (-0.5 to 1.5) using a nested loop. The values for theta0 and theta1 should be incremented by 0.2 at each iteration, starting from -0.5. The hypothesis function $(y' = h\theta(x) = \theta_0 + \theta_1)$ should be implemented.

Compute the cost using:

$$J(\vartheta_{0,}\vartheta_{1}) = \frac{1}{2m} \sum_{i=1}^{m} (y'^{(i)} - y^{(i)})^{2}$$

And achieve the objective function by:

$$\min_{\vartheta_0,\vartheta_1} J(\vartheta_{0,}\vartheta_1)$$

- 7. **Testing:** Predict the output for the test dataset using the parameters calculated in step 6. [25]
- 8. Draw Graphs of the predicted output and actual output.[10]

Bonus Task: [50]

Randomly initialize values for theta0 and theta1, and apply the gradient descent algorithm to iteratively update the values and find the optimal values where the cost function is minimized.

Sample Collab Notebook:

https://colab.research.google.com/drive/1pagcPnxOy2HU2ACFAlSl8h84liBkXfy2?usp=sharing

Download and then submit your A1-Roll_Number.ipynb file