LS Research, LLC

W66 N220 Commerce Court ● Cedarburg, WI 53012 ● USA Phone: 262.375.4400 ● Fax: 262.375.4248 www.lsr.com

ENGINEERING TEST REPORT # 308339 Cradle TX

Compliance Testing of: Russound Cradle Board

Test Date(s):

July 9-20 & December 17, 2008

Prepared For: Allan Dion 5 Forbes Road Newmarket, NH 03857

In accordance with:
Federal Communications Commission (FCC)
Part 15, Subpart C, Section 15.247
Digital Modulation Transmitters (DTS) Operating in the
Frequency Band 2400 MHz – 2483.5 MHz

This Test Report is issued under the Authority of:
Kenneth L. Boston, PE, Sr. EMC Engineer

Signature:

Date: Aug. 1, 2008

Test Report Reviewed by:
Teresa A. White, Quality Manager

Signature:
Date: Aug. 1, 2008

Signature:
Date: Aug. 1, 2008

This Test Report may not be reproduced, except in full, without written approval of LS Research, LLC.

LS Research, LLC	Prepared For: Russound	Template: 15.247 DTS TX (v2 9-06-06)
Report #:307339		Page 1 of 37
TX Cradle		

TABLE OF CONTENTS (page 1 of 2)

EXHIBIT 1.	INTR	RODUCTION	4
	1.1	Scope	4
	1.2	Normative References	4
	1.3 1.4	LS Research, LLC Test Facility	5
			5
	1.5	Test Equipment Utilized	5
EXHIBIT 2.		FORMANCE ASSESSMENT	6
	2.1		6
	2.2	Equipment Under Test (EUT) Information	6
	2.3	Associated Antenna Description	6
	2.4		7
	2.5	Product Description	8
EXHIBIT 3.		OPERATING CONDITIONS & CONFIGURATIONS	
		ING TESTS	9
	3.1		9
	3.2 3.3	Applicability & Summary of EMC Emission Test Results	9
	3.4	Deviations & Exclusions from Test Specifications	9
EXHIBIT 4.	DEC	LARATION OF CONFORMITY	10
EXHIBIT 5.		IATED EMISSIONS TEST	11
	5.1		11
	5.2	Test Procedure	11
	5.3	Test Equipment Utilized	12
	5.4 5.5	Test Equipment List Calculation of Radiated Emission Measurements	12 13
	5.6	Radiated Emissions Test Data Chart	14-15
	5.7		16
	5.8	Screen Captures-Radiated Emissions Testing	17-19
EXHIBIT 6.	CON	IDUCTED EMISSIONS TEST, AC POWER LINE: 15.207	20
EXTIIDIT 0.	6.1	Test Setup	20
	6.2	Test Procedure	20
	6.3	Test Equipment List	20
	6.4	FCC Limits of Conducted Emissions at the AC Mains Ports	21
	6.5	Conducted Emissions Test Data Chart	22
	6.6	Test Setup Photo(s)-Conducted Emissions Test	23
	6.7	Screen Captures-Conducted Emissions Test	24
EXHIBIT 7.	occ	CUPIED BANDWIDTH; 15.247(a)(2)	25
-	7.1	Limits	25
	7.2	Method of Measurements	25
	7.3	Test Equipment List	25
	7.4	Screen Captures – Occupied Bandwidth	26-27

Prepared For: Russound	Model #: RFR-E5	LS Research, LLC
EUT: Cradle Board	Serial #: 07480178	Template: 15.247 DTS TX (V2 9-06-06)
Report #:308339 TX		Page 2 of 37

TABLE OF CONTENTS (Page 2 of 2)

APPENDIX A	TEST EQUIPMENT LIST	36
EXHIBIT 12.	MPE CALCULATIONS	35
EXHIBIT 11.	SPURIOUS CONDUCTED EMISSIONS: 15.247(d) 11.1 Limits 11.2 Test Equipment List 11.3 Test Data 11.4 Screen Captures-Spurious Radiated Emissions	33 33 33 33 34
EXHIBIT 10.	POWER SPECTRAL DENSITY: 15.247(e) 10.1 Limits 10.2 Test Equipment List 10.3 Test Data 10.4 Screen Captures-Power Spectral Density	31 31 31 31 32
EXHIBIT 9.	PEAK OUTPUT POWER (CONDUCTED); 15.247(b) 9.1 Method of Measurements 9.2 Test Data 9.3 Test Equipment List 9.4 Screen Captures – Power Output (Conducted)	29 29 29 29 30
EXHIBIT 8.	8.1 Method of Measurements	28 28

LSC Revision Control

APPENDIX B JUSTIFICATIONS OF AVERAGE DUTY FACTOR CALCULATIONS 37

Date	Revision #	Revised By
9-06-06	2.0	AS/TAW

Prepared For: Russound	Model #: RFR-E5	LS Research, LLC
EUT: Cradle Board	Serial #: 07480178	Template: 15.247 DTS TX (V2 9-06-06)
Report #:308339 TX		Page 3 of 37

EXHIBIT 1. INTRODUCTION

1.1 <u>SCOPE</u>

References:	FCC Part 15, Subpart C, Section 15.247
Title:	Telecommunication – Code of Federal Regulations,
	CFR 47, Part 15
Purpose of Test:	To gain FCC Certification Authorization for Digital
	Modulation Transmitters operating in the Frequency Band
	of 2400 MHz – 2483.5 MHz
Test Procedures:	Both conducted and radiated emissions measurements were performed in accordance with American National Standards Institute ANSI C63.4 – American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment from 9 kHz to 40 GHz.
Environmental Classification:	Commercial, Industrial or Business
	Residential

1.2 NORMATIVE REFERENCES

Publication	Year	Title
47 CFR, Parts 0-15 (FCC)	2005	Code of Federal Regulations - Telecommunications
ANSI C63.4	2003	American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz.
CISPR 16-1-1	2003	Specification for radio disturbance and immunity measuring apparatus and methods. Part 1-1: Measuring Apparatus.
CISPR 16-2-1	2003	Specification for radio disturbance and immunity measuring apparatus and methods. Part 201: Conducted disturbance measurement.
FCC Public Notice DA 00-1407	2000	Part 15 Unlicensed Modular Transmitter Approval
FCC ET Docket No. 99-231	2002	Amendment to FCC Part 15 of the Commission's Rules Regarding Spread Spectrum Devices.
FCC Procedures	2005, 03-23	Measurement of Digital Transmission Systems operating under Section 15.247.

Prepared For: Russound	Model #: RFR-E5	LS Research, LLC
EUT: Cradle Board	Serial #: 07480178	Template: 15.247 DTS TX (V2 9-06-06)
Report #:308339 TX		Page 4 of 37

1.3 LS Research, LLC TEST FACILITY

LS Research, LLC is accredited by A2LA (American Association for Laboratory Accreditation) to conform to ISO/IEC 17025, 2005 "General Requirements for the Competence of Calibration and Testing Laboratories".

LS Research, LLC's scope of accreditation includes all test methods listed herein, unless otherwise noted. A copy of the accreditation may be accessed on our web site: www.lsr.com. Accreditation status can be verified at A2LA's web site: www.a2la2.net.

1.4 LOCATION OF TESTING

All testing was performed at LS Research, LLC, W66 N220 Commerce Court, Cedarburg, Wisconsin, 53012 USA, utilizing the facilities listed below, unless otherwise noted.

List of Facilities Located at LS Research, LLC:

- Compact Chamber
- Semi-Anechoic Chamber
- Open Area Test Site (OATS)

1.5 TEST EQUIPMENT UTILIZED

A complete list of equipment utilized in testing is provided in Appendix A of this test report. Calibration dates are indicated in Appendix A. All test equipment is calibrated in accordance with A2LA standards.

Prepared For: Russound	Model #: RFR-E5	LS Research, LLC
EUT: Cradle Board	Serial #: 07480178	Template: 15.247 DTS TX (V2 9-06-06)
Report #:308339 TX		Page 5 of 37

EXHIBIT 2. PERFORMANCE ASSESSMENT

2.1 **CLIENT INFORMATION**

Manufacturer Name:	Russound
Address	5 Forbes Road
Address:	Newmarket, NH 03857
	Allan Dion
Contact Person:	603.292.0588
	alland@russound.com

2.2 EQUIPMENT UNDER TEST (EUT) INFORMATION

The following information has been supplied by the applicant.

Product Name:	Russound Cradle Board
Model Number:	RFR-E5
Serial Number:	07480178

2.3 ASSOCIATED ANTENNA DESCRIPTION

Inverted F circuit board trace antenna with a gain of 6.99 dBi which was calculated from conducted measurements taken at the antenna port and radiated emissions of the fundamental frequencies over a ground plane.

Prepared For: Russound	Model #: RFR-E5	LS Research, LLC
EUT: Cradle Board	Serial #: 07480178	Template: 15.247 DTS TX (V2 9-06-06)
Report #:308339 TX		Page 6 of 37

2.4 <u>EUT'S TECHNICAL SPECIFICATIONS</u>

Additional Information:

Frequency Range (in MHz)	2400-2483.5
RF Power in Watts	0.1 watts
Conducted Output Power (in dBm)	19.68 dBm
Field Strength (and at what distance)	124.2 dBµV/m @ 3 meters (2480 MHz)
Occupied Bandwidth (99% BW)	2.650 MHz
Type of Modulation	O-QPSK
Emission Designator	2M65G1D
EIRP (in mW)	464.52 mW
Transmitter Spurious (worst case)	75.68 dBµV/m at 1 meter (9620 MHz)
Frequency Tolerance %, Hz, ppm	n/a
Microprocessor Model # (if applicable)	ST Micro STR912FAW42X6
Antenna Information	
Detachable/non-detachable	Non-Detachable
Туре	Inverted F
Gain (in dBi)	6.99 dBi * ^{Note 1}
EUT will be operated under FCC Rule	FCC 15.247
Part(s)	
Modular Filing	☐ Yes ☐ No

^{*}Note 1: The antenna gain was calculated using the average radiated fundamental measurement at 2480 MHz (121.9 dBµV/m, which was measured over a ground plane) and conducted measurement, 19.68 dBm.

RF Technical Information:

Type of		SAR Evaluation: Device Used in the Vicinity of the Human Head
Evaluation		SAR Evaluation: Body-worn Device
(check one)	Х	RF Evaluation

If <u>RF Evaluation</u> checked above, test engineer to complete the following:

•	Evaluated against exposure limits: General Public Use	Controlled Use
•	Duty Cycle used in evaluation: 100 %	
•	Standard used for evaluation: OET 65	
•	Measurement Distance: 3 m	
•	RF Value: 10.000092 U/m A/m W/m ²	

Prepared For: Russound	Model #: RFR-E5	LS Research, LLC
EUT: Cradle Board	Serial #: 07480178	Template: 15.247 DTS TX (V2 9-06-06)
Report #:308339 TX		Page 7 of 37

2.5 **PRODUCT DESCRIPTION**

The Russound cradle board radio acts as a bridge between the Russound multizone controller (wired) and an external RF remote (wireless). The radio on board is an 802.15.4/Zigbee radio based upon the Ember EM260 transceiver operating in the 2.4 GHz ISM band. The modulation is standard IEEE 802.15.4 format, O-QPSK with half sine filtering operating at a chip rate of 2 Mcps. The effective bit rate is 250 kbps. The modulation data is generated by the EM260 transceiver itself and spread using 16 orthogonal sequences. 16 channels are used at 5 MHz steps between 2405 and 2480 MHz. The cradle board is powered by an external DC 5.0 VDC wall pack.

PHOTO

Prepared For: Russound	Model #: RFR-E5	LS Research, LLC
EUT: Cradle Board	Serial #: 07480178	Template: 15.247 DTS TX (V2 9-06-06)
Report #:308339 TX		Page 8 of 37

EXHIBIT 3. EUT OPERATING CONDITIONS & CONFIGURATIONS DURING TESTS

3.1 CLIMATE TEST CONDITIONS

Temperature:	20-25°C
Humidity:	30-60%
Pressure:	86-106 kPa

3.2 APPLICABILITY & SUMMARY OF EMC EMISSION TEST RESULTS

FCC Paragraph	FCC Paragraph Test Requirements	
15.207	Power Line Conducted Emissions Measurements	Yes
15.247(a)(2)	6 dB Bandwidth of a Digital Modulation System	Yes
15.247(b) & 1.1310	Maximum Output Power	Yes
15.247(i), 1.1307, 1.1310, 2.1091 & 2.1093	RF Exposure Limit	Yes
15.247(c)	RF Conducted Spurious Emissions at the Transmitter Antenna Terminal	Yes
15.247(d)	Transmitted Power Spectral Density of a Digital Modulation System	Yes
15.247(c), 15.209 & 15.205	Transmitter Radiated Emissions	Yes

The digital circuit portion of the EUT has been tested and verified to comply with FCC Part 15, Subpart B, Class B Digital Devices and the associated Radio Receiver has also been tested and found to comply with Part 15, Subpart B – Radio Receivers. The Receiver Test Report is available upon request.

3.3	MODIFICATIO	ONS INCORPORATED IN THE EUT FOR COMPLIANCE PURPOSES
	■ None	⊠ Yes (explain below)
Chanı	nel 2480 may n	ot be used
Chani	nel 2475 must l	pe run on reduced power: -27 dBm input to the PA
Chani	nel 2470 must l	pe run on reduced power: -15 dBm input to the PA
Chanı	nel 2205 must l	pe run on reduced power: 1 dBm input to the PA
3.4	DEVIATIONS	& EXCLUSIONS FROM TEST SPECIFICATIONS
	⊠ None	Yes (explain below)

Prepared For: Russound	Model #: RFR-E5	LS Research, LLC
EUT: Cradle Board	Serial #: 07480178	Template: 15.247 DTS TX (V2 9-06-06)
Report #:308339 TX		Page 9 of 37

EXHIBIT 4. DECLARATION OF CONFORMITY

The EUT was found to meet the requirements as described within the specification of FCC Title 47, CFR Part 15.247, and Industry Canada RSS-210, Issue 7 (2007), Section Annex 8 (section 8.2) for a Digital Spread Spectrum (DTS) Transmitter.

If some emissions are seen to be within 3 dB of their respective limits:

As these levels are within the tolerances of the test equipment and site employed, there is a possibility that this unit, or a similar unit selected out of production may not meet the required limit specification if tested by another agency.

LS Research, LLC certifies that the data contained herein was taken under conditions that meet or exceed the requirements of the test specifications. The results in this Test Report apply only to the item(s) tested on the above-specified dates. Any modifications made to the EUT subsequent to the indicated test date(s) will invalidate the data herein, and void this certification.

Prepared For: Russound	Model #: RFR-E5	LS Research, LLC
EUT: Cradle Board	Serial #: 07480178	Template: 15.247 DTS TX (V2 9-06-06)
Report #:308339 TX		Page 10 of 37

EXHIBIT 5. RADIATED EMISSIONS TEST

5.1 Test Setup

The test setup was assembled in accordance with Title 47, CFR FCC Part 15 and ANSI C63.4-2003. The EUT was placed on an 80cm high non-conductive pedestal, centered on a flush mounted 2-meter diameter turntable inside a 3 meter Semi-Anechoic, FCC listed Chamber, where the measurement antenna is 3 meters from the EUT radiating element.

The EUT was tested in modulated, continuous transmit mode. Power was supplied to the EUT by a 5 VDC wall pack. The unit has the capability to operate on 16 channels, controllable via computer interface.

The radiated emissions limits for unintentional radiators, denoted in FCC §15.109 apply at a 3 meter distance. Measurements above 4 GHz were performed at a 1.0 meter separation distance. The calculations to determine these limits are detailed in the following pages. Please refer to Appendix A for a complete list of test equipment. The test sample was operated on one of three (3) standard channels: low (2405 MHz), middle (2440 MHz) and high (2480 MHz) to comply with FCC § 15.35.

5.2 <u>Test Procedure</u>

Radiated Emissions measurements from 30 - 4000 MHz were performed a 3 meter Semi-Anechoic, FCC listed Chamber and measurements from 4000-25000 MHz were taken at a 1 meter separation distance in an FCC Listed mini chamber. The radiated RF emission levels were manually noted at discrete turntable azimuths and measurement antenna heights, corresponding to peak emission levels at various frequencies. A Biconical Antenna was used to measure emissions from 30 MHz to 300 MHz, and a Log Periodic Antenna was used to measure emissions from 300 MHz to 1000 MHz. A Double-Ridged Waveguide Horn Antenna was used from 1 GHz to 10 GHz. The maximum radiated RF emissions were found by rotating the EUT 360°, and raising and lowering the antenna between 1 and 4 meters, using both horizontal and vertical antenna polarities.

Prepared For: Russound	Model #: RFR-E5	LS Research, LLC
EUT: Cradle Board	Serial #: 07480178	Template: 15.247 DTS TX (V2 9-06-06)
Report #:308339 TX		Page 11 of 37

5.3 Test Equipment Utilized

A list of the test equipment and antennas utilized for the Radiated Emissions test can be found in Appendix A. This list includes calibration information and equipment descriptions. All equipment is calibrated and used according to the operation manuals supplied by the manufacturers. All calibrations of the antennas used were performed at an N.I.S.T. traceable site. In addition, the Connecting Cables were measured for losses using a calibrated Signal Generator and a HP 8546A EMI Receiver. The resulting correction factors and the cable loss factors from these calibrations were entered into the HP 8546A EMI Receiver database. As a result, the data taken from the HP 8546A EMI Receiver accounts for the antenna correction factor as well as cable loss or other corrections, and can therefore be entered into the database as a corrected meter reading. The HP 8546A EMI Receiver was operated with a resolution bandwidth of 120 kHz for measurements below 1 GHz (video bandwidth of 300 kHz), and a bandwidth of 1 MHz for measurements above 1 GHz (video bandwidth of 1 MHz From 5 GHz to 18 GHz, an HP E4407B Spectrum Analyzer and an EMCO Horn Antenna were used. From 18 GHz to 25 GHz, the HP E4407B Spectrum Analyzer with a standard gain horn, and preamp were used.

Test Results

The EUT was found to meet the Radiated Emissions requirements of Title 47 CFR, FCC Part 15.247 for a DTS transmitter [Canada RSS-210, Issue 7 (2007), Annex 8 (section 8.2). The frequencies with significant RF signal strength were recorded and plotted as shown in the Data Charts and Graphs.

5.4 Test Equipment List

Test Equipment	Manufacturer	Model No.	Serial No.
EMI Receiver	HP	8546A	3617A00320
EMI Receiver Pre-Select.	HP	85460A	3448A00296
Spectrum Analyzer	Agilent	E4446A	US45300564
Log Periodic Antenna	EMCO	93146	9701-4855
Horn Antenna	EMCO	3115	6907
Bicon Antenna	EMCO	93110B	9702-2918
Pre-Amp	Adv. Microwave	WLA612	1145A04094
Horn Antenna – Std. Gain	EMCO	3160-09	9809-1120

Prepared For: Russound	Model #: RFR-E5	LS Research, LLC
EUT: Cradle Board	Serial #: 07480178	Template: 15.247 DTS TX (V2 9-06-06)
Report #:308339 TX		Page 12 of 37

5.5 CALCULATION OF RADIATED EMISSIONS LIMITS

The maximum peak output power of an intentional radiator in the 2400-2483.5 MHz band, as specified in Title 47 CFR 15.247 (b)(3), is 1 Watt. The harmonic and spurious RF emissions, measured in any 100 kHz bandwidth, as specified in 15.247 (d), shall be at least 20 dB below the measured power of the desired signal, and must also meet the requirements described in 15.205(c).

The following table depicts the general radiated emission limits above 30 MHz. These limits are obtained from Title 47 CFR, Part 15.209, for radiated emissions measurements. These limits were applied to any signals found in the 15.205 restricted bands.

Frequency (MHz)	3 m Limit µV/m	3 m Limit (dBµV/m)	1 m Limit (dBµV/m)
30-88	100	40.0	-
88-216	150	43.5	-
216-960	200	46.0	-
960-24,000	500	54.0	63.5

Sample conversion from field strength μ V/m to dB μ V/m: dB μ V/m = 20 log ₁₀ (100) = 40 dB μ V/m (from 30-88 MHz)

For measurements made at 1.0 meter, a 9.5 dB correction has been invoked.

960 MHz to 10,000 MHz $500\mu V/m$ or 54.0 dB/ $\mu V/m$ at 3 meters 54.0 + 9.5 = 63.5 dB/ $\mu V/m$ at 1 meter

For measurements made at 0.3 meter, a 20 dB correction has been invoked.

960 MHz to 10,000 MHz $500\mu\text{V/m or }54.0~\text{dB/}\mu\text{V/m at }3~\text{meters}$ $54.0~+~20~=~74~\text{dB/}\mu\text{V/m at }0.3~\text{meters}$

Prepared For: Russound	Model #: RFR-E5	LS Research, LLC
EUT: Cradle Board	Serial #: 07480178	Template: 15.247 DTS TX (V2 9-06-06)
Report #:308339 TX		Page 13 of 37

3 Meter Measurements of Electromagnetic Radiated Emissions Test Standard: 47CFR, Part 15.205 and 15.247(DTS) Frequency Range Inspected: 30 MHz to 25000 MHz

Manufacturer:	Russound						
Date(s) of Test:	July 1	3 – July 20, 2008					
Test Engineer(s):	Laura	Bott					
Voltage:	110 V	'AC					
Operation Mode:	Norma	al, continuous transmit,	modu	ulated	mode		
Environmental	Temp	erature: 20 – 25° C					
Conditions in the Lab:	Relative Humidity: 30 – 60 %						
EUT Power:	X Single Phase 110VAC			3 PhaseVAC			
EUT FOWEI.		Battery			Other:		
EUT Placement:	X	80cm non-conductive	table		10cm Spacers		
EUT Test Location:	х	3 Meter Semi-Anechoic FCC Listed Chamber			3/10m OATS		
Measurements:				Prelir	ninary	Х	Final
Detectors Used:	Х	Peak x		Quas	si-Peak	Χ	Average

The following table depicts the level of significant spurious radiated RF emissions found:

Frequency (MHz)	Height (m)	Azimuth (degree)	Quasi Peak Reading (dBµV/m)	Quasi Peak Limit (dBµV/m)	Margin (dB)	Antenna Polarity
92.6	1	218	38.8	43.5	4.7	Vertical
106	2.91	274	26.7	43.5	16.8	Horizontal
175	1.76	102	31.1	43.5	12.4	Horizontal
211.6	1	70	30.6	43.5	12.9	Vertical
275	1.25	335	42.6	46	3.4	Horizontal
275	1	141	40.6	46	5.4	Vertical
350.3	1	295	27.6	46	18.4	Horizontal
384.3	1.59	134	26.4	46	19.6	Vertical
425.3	1	0	27.8	46	18.2	Vertical
425.3	1	295	28.2	46	17.8	Horizontal

Fundamental Measurements:

Frequency (MHz)	Height (m)	Azimuth (degree)	Peak Reading (dBμV/m)	Peak Limit (dBμV/m)	Margin (dB)	Antenna Polarity
2405	1.14	214	122.4	125	2.6	Horizontal
2440	1.11	225	123.2	125	1.8	Horizontal
2480	1.08	225	124.2	125	0.8	Horizontal

Prepared For: Russound	Model #: RFR-E5	LS Research, LLC
EUT: Cradle Board	Serial #: 07480178	Template: 15.247 DTS TX (V2 9-06-06)
Report #:308339 TX		Page 14 of 37

RADIATED EMISSIONS DATA CHART (continued)

The following table depicts the level of significant radiated RF fundamental and harmonic emissions seen on Channel 0:

Frequency (MHz)	Height (m)	Azimuth (degree)	Avg Reading (dBμV/m)	Avg Limit (dBμV/m)	Margin (dB)	Antenna Polarity
4810	1.00	315	42.14	63.5	21.36	Horizontal
7215	1.00	0	41.34	112.4	71.06	Horizontal
9620	1.09	148	75.68	112.4	36.72	Vertical
12025	1.00	255	46.14	63.5	17.36	Horizontal
14430	1.00	120	63.63	112.4	48.77	Vertical
16835	1.00	106	45.04	112.4	67.36	Vertical
19240	1.00	344	45.14	74	28.86	Horizontal
21645	1.00	11	47.26	122.4	75.14	Horizontal
24050	1.00	108	46.46	122.4	75.94	Horizontal

The following table depicts the level of significant radiated RF fundamental and harmonic emissions seen on Channel 7:

Frequency (MHz)	Height (m)	Azimuth (degree)	Avg Reading (dBμV/m)	Avg Limit (dBμV/m)	Margin (dB)	Antenna Polarity
4880	1.00	81	40.99	63.5	22.51	Vertical
7320	1.00	270	43.31	63.5	20.19	Vertical
9760	1.07	220	75.1	113.2	38.1	Vertical
12200	1.00	257	49.29	63.5	14.21	Horizontal
14640	1.00	123	60.5	113.2	52.7	Vertical
17080	1.00	25	47.34	113.2	65.86	Horizontal
19520	1.00	326	43.48	74	30.52	Horizontal
21960	1.00	280	45.81	123.2	77.39	Horizontal
24400	1.00	293	40.8	123.2	82.4	Horizontal

The following table depicts the level of significant radiated RF fundamental and harmonic emissions seen on Channel F:

Frequency (MHz)	Height (m)	Azimuth (degree)	Avg Reading (dBµV/m)	Avg Limit (dΒμV/m)	Margin (dB)	Antenna Polarity
4960	1.00	315	43.87	63.5	19.63	Horizontal
7440	1.00	308	44.91	63.5	18.59	Vertical
9920	1.00	149	71.77	114.2	42.43	Vertical
12400	1.00	262	52.51	63.5	10.99	Horizontal
14880	1.00	20	58.02	114.2	56.18	Vertical
17360	1.00	93	54.14	114.2	60.06	Horizontal
19840	1.00	286	41.23	74	32.77	Vertical
22320	1.00	328	39.88	74	34.12	Vertical
24800	1.00	0	37.01	124.2	87.19	Vertical

Notes:

- 1) A Quasi-Peak Detector was used in measurements below 1 GHz, and a Peak as well as an Average Detector was used in measurements above 1 GHz. Only the results from the Average detector are published in the table above. The peak detector was used to ensure the peak emissions did not exceed 20 dB above the limits
- 2) Measurements above 4 GHz were made at 1 meters of separation from the EUT, and at 0.3 m separation for frequencies between 18 25 GHz.
- 3) For measurements of the fundamental power, because of spectral bandwidth, the receiver was set to RBW=VBW=3 MHz.

Prepared For: Russound	Model #: RFR-E5	LS Research, LLC
EUT: Cradle Board	Serial #: 07480178	Template: 15.247 DTS TX (V2 9-06-06)
Report #:308339 TX		Page 15 of 37

5.7 <u>Test Setup Photo(s) – Radiated Emissions Test</u>

EUT on Test Pedestal

Prepared For: Russound	Model #: RFR-E5	LS Research, LLC
EUT: Cradle Board	Serial #: 07480178	Template: 15.247 DTS TX (V2 9-06-06)
Report #:308339 TX		Page 16 of 37

5.8 **Screen Captures - Radiated Emissions Testing**

These screen captures represent Peak Emissions. For radiated emission measurements, a Quasi-Peak detector function is utilized when measuring frequencies below 1 GHz, and an Average detector function is utilized when measuring frequencies above 1 GHz.

The signature scans shown here are from worst-case emissions, as measured on channels 0, 7, or 15, with the sense antenna both in vertical and horizontal polarity for worst case presentations.

Channel 7, Antenna Vertically Polarized, 30-300 MHz, at 3m

Channel 7, Antenna Vertically Polarized, 300-1000 MHz, at 3m

	Prepared For: Russound	Model #: RFR-E5	LS Research, LLC
Ī	EUT: Cradle Board	Serial #: 07480178	Template: 15.247 DTS TX (V2 9-06-06)
	Report #:308339 TX		Page 17 of 37

<u>Screen Captures - Radiated Emissions Testing</u> (continued)

Channel 7, Antenna Horizontally Polarized, 1000-2400 MHz, at 3m

Channel 7, Antenna Horizontally Polarized, 2400-2483.5 MHz, at 3m

Channel 7, Antenna Vertically Polarized, 2484.0-4000 MHz, at 3m

Prepared For: Russound	Model #: RFR-E5	LS Research, LLC
EUT: Cradle Board	Serial #: 07480178	Template: 15.247 DTS TX (V2 9-06-06)
Report #:308339 TX		Page 18 of 37

Screen Captures - Radiated Emissions Testing (continued)

Channel f, Antenna Horizontally Polarized, 4000-18000 MHz, at 1m

Channel 0, Antenna Vertically Polarized, 18000-25000 MHz, at 30cm

Prepared For: Russound	Model #: RFR-E5	LS Research, LLC
EUT: Cradle Board	Serial #: 07480178	Template: 15.247 DTS TX (V2 9-06-06)
Report #:308339 TX		Page 19 of 37

6.1 Test Setup

The test area and setup are in accordance with ANSI C63.4-2003 and with Title 47 CFR, FCC Part 15 (Industry Canada RSS-210, Issue 6). The EUT was placed on a non-conductive wooden table, with a height of 80 cm above the reference ground plane. The EUT's power cable was plugged into a 50Ω (ohm), $50/250~\mu\text{H}$ Line Impedance Stabilization Network (LISN). The 120 VAC power supply was fed to the test area via an appropriate broadband EMI Filter, and then to the LISN line input. Final readings were then taken and recorded. After the EUT was setup and connected to the LISN, the RF Sampling Port of the LISN was connected to a 10 dB Attenuator-Limiter, and then to the HP 8546A EMI Receiver. The EMCO LISN used has the ability to terminate the unused port with a 50Ω (ohm) load when switched to either L1 (line) or L2 (neutral).

6.2 Test Procedure

The EUT was investigated in continuous modulated transmit mode for this portion of the testing. Measurements were made from 150 kHz-30MHz. The Intermediate Frequency Bandwidth was set to 9.0 kHz and the Average Bandwidth to 30 kHz, per CISPR 16-1 (2003), Section 1, Table 1. Plots of peak values were captured and are shown below. Quasi-peak and average signal strength values were measured at discrete frequencies; these are denoted in the table in Section 6.5 of this report.

Test Equipment Utilized

A list of the test equipment and accessories utilized for the Conducted Emissions test is provided in Appendix A. This list includes calibration information and equipment descriptions. All equipment is calibrated and used according to the operation manuals supplied by the manufacturers. Calibrations of the LISN and Limiter are traceable to N.I.S.T. All cables are calibrated and checked periodically for conformance. The emissions are measured on the HP 8546A EMI Receiver, which has automatic correction for all factors stored in memory and allows direct readings to be taken.

6.3 Test Equipment List

Test Equipment	Manufacturer	Model No.	Serial No.
EMI Receiver	HP	8546A	3617A00320
Spectrum Analyzer	Agilent	E4446A	US45300564
LISN	EMCO	3816/2NM	9701-1057
Transient Limiter	HP	119474A	3107A01708

Test Results

The EUT was found to meet the Conducted Emission requirements of FCC Part 15.207 Conducted Emissions for an Intentional Radiator. See the Data Charts and Graphs for more details of the test results.

Prepared For: Russound	Model #: RFR-E5	LS Research, LLC
EUT: Cradle Board	Serial #: 07480178	Template: 15.247 DTS TX (V2 9-06-06)
Report #:308339 TX		Page 20 of 37

6.4 FCC Limits of Conducted Emissions at the AC Mains Ports

Frequency Range	Class B I	Limits (dBµV)	Measuring
(MHz)	Quasi-Peak	Average	Bandwidth
0.150 -0.50 *	66-56	56-46	RBW = 9 kHz
0.5 - 5.0	56	46	VBW ≥ 9 kHz for QP
5.0 – 30	60	50	VBW = 1 Hz for Average
* The limit decrea logarithm of the fre			

Prepared For: Russound	Model #: RFR-E5	LS Research, LLC
EUT: Cradle Board	Serial #: 07480178	Template: 15.247 DTS TX (V2 9-06-06)
Report #:308339 TX		Page 21 of 37

TEST DATA CHART CONDUCTED EMISSION
Frequency Range inspected: 150 KHz to 30 MHz
Test Standard: FCC 15.207 Class B

1031 Otalidai a. 1 00 10:207 Glass B							
Manufacturer:	Rus	Russound					
Date(s) of Test:	July	July 14, 2008					
Test Engineer:	Lau	ra Bott					
Model #:	RFF	R-E5					
Serial #:	074	80178					
Voltage:	5.0	5.0 VDC via wall pack					
Operation Mode:	Nor	Normal, continuous transmit, modulated mode					
Environmental	Ten	Temperature: 20 – 25° C					
Conditions in the Lab:	Rela	ative Humidity: 30 -	- 60 %	6			
Test Location:	Х	x Shielded area in lab				Chamber	
EUT Placed On:		40cm from Vertical Ground Plane				10cm Spacers	
LOT Flaced Off.	Х	x 80cm above Ground Plane				Other:	
Measurements:		Pre-Compliance		Preliminary	Х	Final	
Detectors Used:	Х	Peak	Х	Quasi-Peak	Х	Average	

			Quasi-Peak	<u> </u>		<u>Average</u>	
Frequency (MHz)	Line	Q-Peak Reading (dBµV)	Q-Peak Limit (dBµV)	Quasi- Peak Margin (dB)	Average Reading (dBµV)	Average Limit (dBµV)	Average Margin (dB)
0.18	1	44.40	64.42	20.02	32.80	54.42	21.62
0.24	1	41.60	62.06	20.46	33.80	52.06	18.26
4.00	1	36.30	56.00	19.70	35.00	46.00	11.00
0.24	2	40.90	62.07	21.17	34.10	52.07	17.97
0.61	2	31.00	56.00	25.00	29.20	46.00	16.80
1.75	2	30.40	56.00	25.60	27.90	46.00	18.10

Notes:

- 1) All other emissions were better than 20 dB below the limits.
- 2) The EUT exhibited similar emissions in transmit and receive modes, and across the Low, Middle and High channels tested.

Prepared For: Russound	Model #: RFR-E5	LS Research, LLC
EUT: Cradle Board	Serial #: 07480178	Template: 15.247 DTS TX (V2 9-06-06)
Report #:308339 TX		Page 22 of 37

6.6 <u>Test Setup Photo(s) – Conducted Emissions Test</u>

Prepared For: Russound	Model #: RFR-E5	LS Research, LLC
EUT: Cradle Board	Serial #: 07480178	Template: 15.247 DTS TX (V2 9-06-06)
Report #:308339 TX		Page 23 of 37

6.7 <u>Screen Captures – Conducted Emissions Test</u>

These screen captures represent Peak Emissions. For conducted emission measurements, both a Quasi-Peak detector function and an Average detector function are utilized. The emissions must meet both the Quasi-peak limit and the Average limit as described in 47 CFR 15.207.

The signature scans shown here are from channel 7, chosen as a good representative of channels.

Channel 7, 2440 MHz, Line 2

Prepared For: Russound	Model #: RFR-E5	LS Research, LLC
EUT: Cradle Board	Serial #: 07480178	Template: 15.247 DTS TX (V2 9-06-06)
Report #:308339 TX		Page 24 of 37

EXHIBIT 7. OCCUPIED BANDWIDTH: 15.247(a)(2)

7.1 Limits

For a Digital Modulation System, the 6 dB bandwidth shall be at least 500 kHz.

7.2 <u>Method of Measurements</u>

Refer to ANSI C63.4 and FCC Procedures (March 23, 2005) for Digital Transmission Systems operating under 15.247.

The transmitter output was connected to the Spectrum Analyzer. The bandwidth of the fundamental frequency was measured with the Spectrum Analyzer using 100 kHz RBW and VBW=300 kHz.

For this portion of the tests, a direct measurement of the transmitted signal was performed at the antenna port of the EUT, via a cable connection to the HP E4446A spectrum analyzer. An attenuator was placed in series with the cable to protect the spectrum analyzer. Correction factors for the RF cable were loaded onto the spectrum analyzer and the loss from the attenuator was added on the analyzer as gain offset.

The EUT was configured to run in a continuous transmit, modulated mode. The spectrum analyzer was used in peak-hold mode while measurements were made, as presented in the chart below.

Test Data

Channel	Center Frequency (MHz)	Measured -6 dBc Occupied Bandwidth (kHz)	Minimum -6 dBc Limit (kHz)	Measured -20 dBc Occupied Bandwidth (kHz)
0	2405	1600	500	2650
7	2440	1592	500	2650
f	2480	1592	500	2650

7.3 Test Equipment List

Test Equipment	Manufacturer	Model No.	Serial No.
Spectrum Analyzer	Agilent	E4446A	US45300564

Prepared For: Russound	Model #: RFR-E5	LS Research, LLC
EUT: Cradle Board	Serial #: 07480178	Template: 15.247 DTS TX (V2 9-06-06)
Report #:308339 TX		Page 25 of 37

7.4 <u>Screen Captures - OCCUPIED BANDWIDTH</u>

Channel 0: -6 dBc Occupied Bandwidth

Channel 7: -6 dBc Occupied Bandwidth

Channel f: -6 dBc Occupied Bandwidth

Prepared For: Russound	Model #: RFR-E5	LS Research, LLC
EUT: Cradle Board	Serial #: 07480178	Template: 15.247 DTS TX (V2 9-06-06)
Report #:308339 TX		Page 26 of 37

Channel 0: -20 dBc Occupied Bandwidth

Channel 7: -20 dBc Occupied Bandwidth

Channel f: -20 dBc Occupied Bandwidth

Prepared For: Russound	Model #: RFR-E5	LS Research, LLC
EUT: Cradle Board	Serial #: 07480178	Template: 15.247 DTS TX (V2 9-06-06)
Report #:308339 TX		Page 27 of 37

EXHIBIT 8.BAND-EDGE MEASUREMENTS

8.1 Method of Measurements

FCC 15.209(b) and 15.247(d) require a measurement of spurious emission levels to be at least 20 dB lower than the fundamental emission level, in particular at the Band-Edges where the intentional radiator operates. The following screen captures demonstrate compliance of the intentional radiator at the 2400-2483.5 MHz Band-Edges. The EUT was operated in continuous transmit mode with continuous modulation, with internally generated data as the modulating source. The EUT was operated at the lowest channel for the investigation of the lower Band-Edge, and at the highest channel for the investigation of the higher Band-Edge.

Screen Capture Demonstrating Compliance at the Higher Band-Edge

Prepared For: Russound	Model #: RFR-E5	LS Research, LLC
EUT: Cradle Board	Serial #: 07480178	Template: 15.247 DTS TX (V2 9-06-06)
Report #:308339 TX		Page 28 of 37

EXHIBIT 9. POWER OUTPUT (CONDUCTED): 15.247(b)

9.1 <u>Method of Measurements</u>

The conducted RF output power of the EUT was measured at the antenna port using a short RF cable along with an attenuator as protection for the spectrum analyzer. Correction factors for the RF cable were loaded onto the spectrum analyzer and the loss from the attenuator was added on the analyzer as gain offset. The unit was configured to run in a continuous transmit mode. The spectrum analyzer was used with resolution and video bandwidths set to 3 MHz, and a span of 5 MHz, with measurements from a peak detector presented in the chart below.

9.2 Test Data

Channel	Center Frequency (MHz)	Measured Power (dBm)	Limit (dBm)	Margin (dB)	Calculated EIRP (dBm)	EIRP Limit (dBm)	Calculated EIRP (mw)
0	2405	19.32	29.01	9.69	26.31	36.0	427.56
7	2440	19.65	29.01	9.36	26.64	36.0	461.32
f	2480	19.68	29.01	9.33	26.67	36.0	464.52

(1) EIRP Calculation:

EIRP = (Peak power at antenna terminal in dBm) + (EUT Antenna gain in dBi)

Rated RF power output (in watts): 0.1 watts

Measured RF Power Output (in Watts): 0.093 watts Declared RF Power Output (in Watts): 0.1 watts

9.3 Test Equipment List

Test Equipment	Manufacturer	Model No.	Serial No.
Spectrum Analyzer	Agilent	E4446A	US45300564

Prepared For: Russound	Model #: RFR-E5	LS Research, LLC
EUT: Cradle Board	Serial #: 07480178	Template: 15.247 DTS TX (V2 9-06-06)
Report #:308339 TX		Page 29 of 37

9.4 <u>Screen Captures – Power Output (Conducted)</u>

Channel 0: 2405 MHz

Channel 7: 2440 MHz

Channel 15: 2480 MHz

Prepared For: Russound	Model #: RFR-E5	LS Research, LLC
EUT: Cradle Board	Serial #: 07480178	Template: 15.247 DTS TX (V2 9-06-06)
Report #:308339 TX		Page 30 of 37

EXHIBIT 10. POWER SPECTRAL DENSITY: 15.247(e)

10.1 Limits

For digitally modulate systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

In accordance with FCC Part 15.247(e), the peak power spectral density should not exceed +8 dBm in any 3 kHz band. This measurement was performed along with the conducted power output readings performed as described in previous sections. The peak output frequency for each representative frequency was scanned, with a narrow bandwidth, and reduced sweep, and a power density measurement was performed using the utility built into the HP Analyzer. The resultant density was then corrected to a 3 kHz bandwidth.

10.2 <u>Test Equipment List</u>

Test Equipment	Manufacturer	Model No.	Serial No.
Spectrum Analyzer	Agilent	E4446A	US45300564

10.3 Test Data

Channel	Center Frequency (MHz)	Measured Channel Power (dBm/1Hz)	3 kHz Correction (dB)	Corrected Power Measurement (dBm/3kHz)	Limit (dBm)	Margin
0	2405	-40.21	34.77	-5.44	8.0	13.4
7	2440	-40.24	34.77	-5.47	8.0	13.5
f	2480	-39.96	34.77	-5.19	8.0	13.2

Prepared For: Russound	Model #: RFR-E5	LS Research, LLC
EUT: Cradle Board	Serial #: 07480178	Template: 15.247 DTS TX (V2 9-06-06)
Report #:308339 TX		Page 31 of 37

10.4 <u>Screen Captures – Power Spectral Density</u>

Channel 0

Channel 7

Channel f

Prepared For: Russound	Model #: RFR-E5	LS Research, LLC
EUT: Cradle Board	Serial #: 07480178	Template: 15.247 DTS TX (V2 9-06-06)
Report #:308339 TX		Page 32 of 37

EXHIBIT 11. SPURIOUS CONDUCTED EMISSIONS: 15.247(d)

11.1 <u>Limits</u>

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at lease 20 db below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

For data from the radiated measurements, please refer to section 5.6 of this report.

FCC Part 15.247(d) requires a measurement of conducted harmonic and spurious RF emission levels, as reference to the carrier level when measured in a 100 kHz bandwidth. For this test, the spurious and harmonic RF emissions from the EUT were measured at the EUT antenna port using a short RF cable. The cable calibration file was loaded into the spectrum analyzer to compensate for the loss of the cable between the antenna port of the EUT to the spectrum analyzer. A Hewlett Packard model E4446A spectrum analyzer was used with the resolution bandwidth set to 100 kHz for this portion of the tests. The unit was configured to run in a continuous transmit mode. The spectrum analyzer was used with measurements from a peak detector presented in the chart below. Screen captures were acquired and any noticeable spurious and harmonic signals were identified and measured.

No significant emissions could be noted within -50 dBc of the fundamental level for this product.

11.2 <u>Test Equipment List</u>

Test Equipment	Manufacturer	Model No.	Serial No.	Frequency Range
Spectrum Analyzer	Agilent	E4446A	US45300564	To 44 GHz

11.3 Test Data

	Channel 0	Channel 7	Channel F
		Power in dBm	
Fundamental	15.24	15.98	14.79
2 nd Harmonic	-43.19	-43.4	-45.75
3 rd Harmonic	-52.83	-49.14	-47.53
4 th Harmonic	-45.99	-47.43	-48.49
5 th Harmonic	-72.81	-66.3	-80.29
6 th Harmonic	-69.18	-64.79	-62.29
7 th Harmonic	-66.71	-62.31	-57.54
8 th Harmonic	-82.47	-70.73	-74.95
9 th Harmonic	-65.20	-67.14	-70.33
10 th Harmonic	-81.83	-76.5	Note 1

Notes:

⁽¹⁾ Measurement at system noise floor.

Prepared For: Russound	Model #: RFR-E5	LS Research, LLC
EUT: Cradle Board	Serial #: 07480178	Template: 15.247 DTS TX (V2 9-06-06)
Report #:308339 TX		Page 33 of 37

11.4 <u>Screen Captures – Spurious Radiated Emissions</u> Channel 0, shown from 30 MHz up to 1000 MHz

Channel 0, shown from 1000 MHz up to 10000 MHz

Channel 0, shown from 10000 MHz up to 25000 MHz

Prepared For: Russound	Model #: RFR-E5	LS Research, LLC
EUT: Cradle Board	Serial #: 07480178	Template: 15.247 DTS TX (V2 9-06-06)
Report #:308339 TX		Page 34 of 37

EXHIBIT 12. MPE CALCULATIONS

The following MPE calculations are based on a 1.8 centimeter inverted-F printed circuit board trace antenna, with a measured ERP of 121.9 dB μ V/m, at 3 meters, and conducted RF power of +19.8 dBm as presented to the antenna. The calculated gain of this antenna, based on the fundamental measurements taken over a ground plane and the conducted fundamental power, is 6.99 dBi.

Prediction of MPE limit at a given distance

Equation from page 18 of OET Bulletin 65, Edition 97-01

$$S = \frac{PG}{4\pi R^2}$$

where: S = power density

P = power input to the antenna

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

R = distance to the center of radiation of the antenna

Maximum peak output power at antenna input terminal: 19.68 (dBm)

Maximum peak output power at antenna input terminal: 92.897 (mW)

Antenna gain(typical): 6.99 (dBi)

Maximum antenna gain: 5.000 (numeric)

Prediction distance: 20 (cm)

Prediction frequency: 2400 (MHz)

MPE limit for uncontrolled exposure at prediction frequency: ______1 (mW/cm^2)

Power density at prediction frequency: 0.092412 (mW/cm^2)

Maximum allowable antenna gain: 17.3 (dBi)

Margin of Compliance at 20 cm = 10.3 dB

Prepared For: Russound	Model #: RFR-E5	LS Research, LLC
EUT: Cradle Board	Serial #: 07480178	Template: 15.247 DTS TX (V2 9-06-06)
Report #:308339 TX		Page 35 of 37

APPENDIX A

Test Equipment List

Asset #	Manufacturer	Model #	Serial #	Description	Date	Due
AA960008	EMCO	3816/2NM	9701-1057	Line Impedance Stabilization Network	9/27/05	9/27/06
AA960031	HP	119474A	3107A01708	Transient Limiter	Note 1	Note 1
AA960077	EMCO	93110B	9702-2918	Biconical Antenna	7/26/06	7/26/07
AA960078	EMCO	93146	9701-4855	Log-Periodic Antenna	7/20/06	7/20/07
AA960081	EMCO	3115	6907	Double Ridge Horn Antenna	12/07/05	12/07/06
CC00221C	Agilent	E4407B	US39160256	Spectrum Analyzer	12/29/05	12/29/06
EE960004	EMCO	2090	9607-1164	Device Controller	N/A	N/A
EE960013	HP	8546A	3617A00320	Receiver RF Section	9/29/05	9/29/06
EE960014	HP	85460A	3448A00296	Receiver Pre-Selector	9/29/05	9/29/06
EE960073	Agilent	E4446A	US45300564	Spectrum Analyzer	2/01/06	2/01/07
N/A	LSC	Cable	0011	3 Meter ½" Armored Cable	Note 1	Note 1
N/A	LSC	Cable	0050	10 Meter RG 214 Cable	Note 1	Note 1
N/A	Pasternack	Attenuator	N/A	10 dB Attenuator	Note 1	Note 1

Note 1 - Equipment calibrated within a traceable system.

Uncertainty Statement

This uncertainty represents an expanded uncertainty expressed at approximately the 95 % confidence level, using a coverage factor of k=2.

Table of Expanded Uncertainty Values, (K=2) for Specified Measurements

Measurement Type	Particular Configuration	Uncertainty Values
Radiated Emissions	3 – Meter chamber, Biconical Antenna	4.24 dB
Radiated Emissions	3-Meter Chamber, Log Periodic Antenna	4.8 dB
Radiated Emissions	10-Meter OATS, Biconical Antenna	4.18 dB
Radiated Emissions	10-Meter OATS, Log Periodic Antenna	3.92 dB
Conducted Emissions	Shielded Room/EMCO LISN	1.60 dB
Radiated Immunity	3 Volts/Meter in 3-Meter Chamber	1.128 Volts/Meter
Conducted Immunity	3 Volts level	1.0 V

Prepared For: Russound	Model #: RFR-E5	LS Research, LLC
EUT: Cradle Board	Serial #: 07480178	Template: 15.247 DTS TX (V2 9-06-06)
Report #:308339 TX		Page 36 of 37

APPENDIX B

RF Exposure Collocation Evaluation for Mobile

$$[\ Pd(1)\ /\ LPd(1)\] + [\ Pd(2)\ /\ LPd(2)\] + \ldots ... + [\ Pd(n)\ /\ LPd(n)\] \ < 1$$

[Pd(module)/LPd(module)] + [Pd(cradle)/LPd(cradle)] < 1

$$[(0.05966 \text{ mW/cm}^2)/(1 \text{ mW/cm}^2) + (0.092412 \text{ mW/cm}^2)/(1 \text{ mW/cm}^2)] = 0.152$$

Because the sum of the power densities of the individual transmitters is less than 1, the device would be compliant to the FCC's RF radiation exposure limit, per the RF Exposure Collocation Evaluation for Mobile document.

Prepared For: Russound	Model #: RFR-E5	LS Research, LLC
EUT: Cradle Board	Serial #: 07480178	Template: 15.247 DTS TX (V2 9-06-06)
Report #:308339 TX		Page 37 of 37