$\begin{array}{c} {\rm Homework}\ 1\ {\rm for} \\ {\rm Methodology,}\ {\rm Ethics}\ {\rm and}\ {\rm Practice}\ {\rm of}\ {\rm Data}\ {\rm privacy} \\ 2024\ {\rm Autumn} \end{array}$

Exercise 1 K-Anonymity (20')

	Zip Code	Salary	Nationality	Condition
1	130 * *	15k - 25k	Chinese	Heart Disease
2	130 * *	15k - 25k	Chinese	Heart Disease
3	130 * *	25k - 30k	American	Viral Infection
4	130 * *	25k - 30k	American	Viral Infection
5	148 * *	15k - 25k	American	Cancer
6	148 * *	15k - 25k	American	Heart Disease
7	148 * *	15k - 25k	American	Viral Infection
8	148 * *	15k - 25k	American	Viral Infection
9	130 * *	15k - 25k	Chinese	Cancer
10	130 * *	15k - 25k	Chinese	Cancer
11	130 * *	25k - 30k	American	Cancer
12	130 * *	25k - 30k	American	Cancer

- (a) (5') Given the health condition as the sensitive attribute, please name the quasi-identifier attribute(s).
- (b) (5') How many QI-clusters are in the table above?
- (c) (5') The table above satisfies p-sensitive k-anonymity, where p=?,k=?
- (d) (5') List 5 attacks against k-anonymity.

Exercise 2 \ell-Diversity (20')

The introduction of ℓ -diversity ensures the diversity of sensitive attributes to prevent attacks such as homogeneity attack.

- (a) (5') Whether the attributes in Exercise 1 meet recursive (1, 2)-diversity, and provide reasons.
- (b) (15') Prove the monotonicity of entropy ℓ -diversity. That is, if a table T satisfies entropy ℓ -diversity, then any generalization T^* of T also satisfies entropy ℓ -diversity.

Exercise 3 t-Closeness (25')

(The t-closeness Principle) An equivalence class is said to have t closeness if the distance between the distribution of a sensitive attribute in this class and distribution of the attribute in the whole table is no more than a threshold t. A table is said to have t-closeness if all equivalence classes have t-closeness. The most important point of t-closeness is the distance measure of the probability distribution. Explore the properties of the following two commonly used probability distribution distance measures.

(a) (10') (Earth Mover's Distance) Let $\{v_1, v_2, \cdots, v_m\}$ be an ordered list of the values of the target attribute. Ordered Distance between two values in $\{v_1, v_2, \cdots, v_m\}$ is based on the number of values between them in the total order, i.e., ordered_list $(v_i, v_j) = \frac{|i-j|}{m-1}$. Consider $\mathbf{P} = \{p_1, p_2, \cdots, p_m\}$ and $Q = \{q_1, q_2, \cdots, q_m\}$ as two distributions over $\{v_1, v_2, \cdots, v_m\}$, where p_i and q_i represent the

probabilities of v_i under distributions \boldsymbol{P} and \boldsymbol{Q} respectively. Define $r_i = p_i - q_i (i = 1, 2, \dots, m)$, prove that the EMD between \boldsymbol{P} and \boldsymbol{Q} induced by the Ordered Distance can be calculate as:

$$D[\mathbf{P}, \mathbf{Q}] = \frac{1}{m-1} (|r_1| + |r_1 + r_2| + \dots + |r_1 + r_2 + \dots + r_{m-1}|)$$
$$= \frac{1}{m-1} \sum_{i=1}^{m} \left| \sum_{j=1}^{i} r_j \right|.$$

(b) (5') (Kullback-Leibler divergence) The KL divergence of two probability distributions $\mathbf{P} = (p_1, p_2, \dots, p_m)$ and $\mathbf{Q} = (q_1, q_2, \dots, q_m)$ is defined as follows:

$$D_{KL}(\boldsymbol{P}||\boldsymbol{Q}) = \sum_{i=1}^{m} p_i \log \frac{p_i}{q_i}$$

Prove that the KL divergence satisfies positivity but is not a true distance. (Hint: KL divergence does not satisfy symmetry.)

(c) (10') (Jensen-Shannon divergence) The JS divergence is defined based on KL divergence and addresses the asymmetry limitation of KL divergence.

$$D_{JS}(P||Q) = \frac{1}{2}D_{KL}\left(P\left|\left|\frac{P+Q}{2}\right.\right| + \frac{1}{2}D_{KL}\left(Q\left|\left|\frac{P+Q}{2}\right.\right|\right)\right)$$

Try to prove that the JS divergence satisfies the triangle inequality

$$D_{JS}(P_1 \parallel P_2) + D_{JS}(P_2 \parallel P_3) \ge D_{JS}(P_1 \parallel P_3)$$

if and only if

$$H\left(\frac{P_1+P_2}{2}\right)+H\left(\frac{P_2+P_3}{2}\right)\geq H\left(\frac{P_1+P_3}{2}\right)+H(P_2)$$

for any probability distributions P_1, P_2, P_3 . Here, $H(P) = -\sum_x P(x) \log P(x) dx$ represents the entropy.

Note: Here, adding two probability distributions and dividing by 2 refers to adding their probability density functions and dividing by 2, which corresponds to the density function of a new probability distribution.

Aside: We can show that Jensen-Shannon is not a metric by constructing three simple distributions P_1 , P_2 , and P_3 for which the above inequality does not hold. (Distributions over a discrete space of size two suffice.) While the Jensen-Shannon divergence is not a metric, it can be shown that the square root of the Jensen-Shannon divergence is a metric. https://ieeexplore.ieee.org/document/1207388

Exercise 4 Loss Metric (10')

Let the valid range of age be $\{0, \cdots, 100\}$. Given the health condition as the sensitive attribute, design a cell-level generalization solution to achieve 4-Anonymity. Please give the generalization hierarchies, released table and calculate the loss metric (LM) of your solution.

Name	Age	Gender	Nationality	Condition
Alan	38	M	Chinese	Heart Disease
Bruce	18	\mathbf{M}	Chinese	Heart Disease
Cindy	20	\mathbf{F}	Japanese	Viral Infection
David	32	\mathbf{M}	Korean	Viral Infection
Eric	40	\mathbf{M}	American	Cancer
Frank	36	\mathbf{M}	India	Heart Disease
Grace	18	\mathbf{F}	American	Viral Infection
Helen	27	\mathbf{F}	American	Viral Infection
Irene	48	\mathbf{M}	Chinese	Cancer
Jack	20	\mathbf{M}	American	Cancer
Ken	25	\mathbf{F}	American	Cancer
Lewis	52	\mathbf{F}	American	Cancer

Exercise 5 Reconstruct single column aggregates (25')

Try to prove THEOREM 1 on page 209 of the PPT. Below are some definitions that might be useful.

Definition 1 (Retention Replacement Perturbation) Retention replacement perturbation is a perturbation algorithm, where each element in column j is retained with probability p_j , and with probability $(1-p_j)$ replaced with an element selected from the replacing p.d.f. on D_j . That is,

$$t_{ij}^{'} = \begin{cases} t_{ij} \text{ with probability } p_j \\ \text{element from replacing p.d.f. on } D_j \text{ with probability } (l-p_j). \end{cases}$$

Definition 2 (Reconstructible Function) Given a perturbation α converting table T to T', a numeric function f on T is said to be (n, ϵ, δ) reconstructible by a function f', if f' can be evaluated on the perturbed table T' so that $|f - f'| < \max(\epsilon, \epsilon f)$ with probability greater than $(1 - \delta)$ whenever the table T has more than n rows.

Consider the uniform retention replacement perturbation with retention probability p applied on a database with n rows and a single column, C, with domain [min, max]. Consider the predicate P = C[low, high]. Given the perturbed table T', we explore how to estimate an answer to the query count(P) on T.

(a) Let tables T, T' each have n rows. Let $n_r = count(P)$ evaluated on table T', while $n_o = count(P)$ estimated for table T. Given n_r we estimate n_o as

$$n_o = \frac{1}{p}(n_r - n(1-p)b)$$
, where $b = \frac{high - low}{max - min}$.

(b) The fraction f of rows originally in [low, high] is therefore estimated as

$$f^{'} = \frac{n_o}{n} = \frac{n_r}{pn} - \frac{(1-p)(high-low)}{p(max-min)}.$$

Now we can prove THEOREM 1:

Theorem 1 Let the fraction of rows in [low, high] in the original table f be estimated by f', then f' is a (n, ϵ, δ) estimator for f if $n \ge 4\log(\frac{2}{\delta})(p\epsilon)^{-2}$.

Hint 1: Consider the indicator variable for the event that the i^{th} row $(1 \le i \le n)$ is perturbed and the perturbed value falls within [low, high]; and the indicator variable for the event that the i^{th} row is not perturbed and it falls within [low, high]. Then consider the indicator variable for the event that the i^{th} randomized row falls in [low, high].

Hint 2: Multiplicative Chernoff bound. Suppose X_1, \ldots, X_n are independent random variables taking values in $\{0,1\}$. Let X denote their sum and let $\mu = E[X]$ denote the sum's expected value. Then for any $0 < \delta < 1$, $\Pr(|X - \mu| \ge \delta \mu) < 2e^{-\delta^2 \mu/4}$.