Contemporary Computer Architecture TDSN13

LECTURE 10 - HIGH PERFORMANCE BUSSES
ANDREAS AXELSSON (ANDREAS.AXELSSON@JU.SE)

Data Busses

Data busses in a PC

Current:

PCI Express - (Parallel/Serial)

PCI Express (PCIe) is the current bus interface, superseding PCI. All new desktop PCs and Macs have PCIe slots.

USB - (Serial)

Permanently or temporarily attach almost anything (flash drives, hard drives, printers, phones, cameras, etc.).

Previous:

PCI - (Parallel)

PCI was popular in all hardware platforms but was superseded by PCI Express (PCIe). Transition motherboards may have one PCI slot.

FireWire - (Serial)

Mostly used for digital camera connections. Popularized by Apple, adapters were required to use FireWire on new Macs.

AGP - (Parallel)

The graphics interface between PCI and PCI Express. AGP was faster than PCI and freed up a PCI slot.

ISA - (Parallel)

Pronounced "eye-suh" and debuting on the IBM PC AT, ISA was the evolution of the first PC bus in 1981.

Legacy busses (ISA / PCI / AGP)

Bus Type	Bus Width	Bus Speed	MB/sec		
ISA	16 bits	8 MHz	16 MBps		
EISA	32 bits	8 MHz	32 MBps		
VL-bus	32 bits	25 MHz	100 MBps		
VL-bus	32 bits	33 MHz	132 MBps		
PCI	32 bits	33 MHz	132 MBps		
PCI	64 bits	33 MHz	264 MBps		
PCI 64 bits		66 MHz	512 MBps		
PCI	64 bits	133 MHz	1 GBps		

02001 HowStuffWorks

Parallel synchronous busses

PCI vs PCIe

PCI Express

_			PCI Express connector pinout (x1, x4	, x8 an	d x16 varian	ts)					
Pin	Side B	Side A	Description	Pin	Side B	Side A	Description				
1	+12 V	PRSNT1#	Must connect to farthest PRSNT2# pin	50	HSOp(8)	Reserved					
2	+12 V	+12 V		51	HSOn(8)	Ground	Lane 8 transmit data, + and -				
3	+12 V	+12 V	Main power pins	52	Ground	HSIp(8)					
4	Ground	Ground		53	Ground	HSIn(8)	Lane 8 receive data, + and -				
5	SMCLK	TCK		54	HSOp(9)	Ground					
6	SMDAT	TDI		55	HSOn(9)	Ground	Lane 9 transmit data, + and -				
_			01/0								
7	Ground	TDO	SMBus and JTAG port pins	56	Ground	HSIp(9)	Lane 9 receive data, + and -				
8	+3.3 V	TMS		57	Ground	HSIn(9)					
9	TRST#	+3.3 V		58	HSOp(10)	Ground	Lane 10 transmit data, + and -				
10	+3.3 V aux	+3.3 V	Aux power & Standby power	59	HSOn(10)	Ground					
11	WAKE#	PERST#	Link reactivation; fundamental reset [23]	60	Ground	HSIp(10)	Lane 10 receive data, + and -				
			Key notch	61	Ground	HSIn(10)					
12	CLKREQ#[24]	Ground	Clock Request Signal	62	HSOp(11)	Ground	Lane 11 transmit data, + and -				
13	Ground	REFCLK+	Reference clock differential pair	63	HSOn(11)	Ground	Laire 11 transmit data, + and				
14	HSOp(0)	REFCLK-	Lanc Otranspiratory and	64	Ground	HSlp(11)	Land 44 annion data is and				
15	HSOn(0)	Ground	Lane 0 transmit data, + and -	65	Ground	HSIn(11)	Lane 11 receive data, + and -				
16	Ground	HSIp(0)		66	HSOp(12)	Ground					
17	PRSNT2#	HSIn(0)	Lane 0 receive data, + and -	67	HSOn(12)	Ground	Lane 12 transmit data, + and -				
18	Ground	Ground		68	Ground	HSIp(12)					
	Express x1 card		18	69	Ground	HSIn(12)	Lane 12 receive data, + and -				
19	HSOp(1)	Reserved		70	HSOp(13)	Ground					
20	HSOn(1)	Ground	Lane 1 transmit data, + and -	71	HSOn(13)	Ground	Lane 13 transmit data, + and -				
21	Ground	HSIp(1)	Lane 1 receive data, + and -	72	Ground	HSIp(13)	Lane 13 receive data, + and -				
22	Ground	HSIn(1)		73	Ground	HSIn(13)					
23	HSOp(2)	Ground	Lane 2 transmit data, + and -	74	HSOp(14)	Ground	Lane 14 transmit data, + and -				
24	HSOn(2)	Ground		75	HSOn(14)	Ground					
25	Ground	HSIp(2)	Lane 2 receive data, + and -	76	Ground	HSIp(14)	Lane 14 receive data, + and -				
26	Ground	HSIn(2)	Edit 2 redard data, r dita	77	Ground	HSIn(14)	Edite TTTEGETYE data, T dita				
27	HSOp(3)	Ground	Lane 3 transmit data, + and -	78	HSOp(15)	Ground	Lane 15 transmit data, + and -				
28	HSOn(3)	Ground	Edite o dalishik data, i and	79	HSOn(15)	Ground	Edite To transmit data, 1 and				
29	Ground	HSIp(3)	Lane 3 receive data, + and -	80	Ground	HSIp(15)					
30	PWRBRK# ^[25]	HSIn(3)	"Power brake", active-low to reduce device	81	PRSNT2#	HSIn(15)	Lane 15 receive data, + and -				
			power								
31	PRSNT2#	Ground		82	Reserved	Ground					
32	Ground	Reserved									
	Express x4 card		32								
33	HSOp(4)	Reserved	Lane 4 transmit data, + and -								
34	HSOn(4)	Ground									
35	Ground	HSIp(4)	Lane 4 receive data, + and -								
36	Ground	HSIn(4)									
37	HSOp(5)	Ground	Lane 5 transmit data. + and -								
38	HSOn(5)	Ground	and a second second second								
39	Ground	HSIp(5)	Lane 5 receive data, + and -								
40	Ground	HSIn(5)	Lane o receive data, + and =								
41	HSOp(6)	Ground									
42	HSOn(6)	Ground	Lane 6 transmit data, + and -								
43	Ground	HSIp(6)				Le	egend				
44		HSIn(6)	Lane 6 receive data, + and -	G	round pin	Zero volt re	_				
45	HSOp(7)	Ground		_	ower pin		ower to the PCIe card				
			Lane 7 transmit data, + and -		rd-to-host						
46	HSOn(7)	Ground	and and	Ca	pin	Signal from the card to the motherboard					
47	Ground	HSIp(7)		Hos	t-to-card pin	Signal from	the motherboard to the card				
			Lane 7 receive data, + and -								
48	PRSNT2#	HSIn(7)		0	pen drain	May be pulled low or sensed by multiple cards					
49	Ground	Ground		9	ense pin	Tied togeth	er on card				
	Express x8 card		49		Reserved		tly used, do not connect				
	p. 225 No 6216						,				

PCI Express

Structure of modern computer

- Uses differential signaling (LVDS)
 - VP/VN-pair with +-400mV differential voltage
- Simliar tech used for USB, DisplayPort, HDMI
- Embed clock signal into bitstream (uses 8B/10B encoding etc)
 - Also equalizes 1's and 0's (in average same number of 0 and 1 transmitted)

- Uses differential signaling (LVDS)
 - VP/VN-pair with +-400mV differential voltage
- Simliar tech used for USB, DisplayPort, HDMI
- Embed clock signal into bitstream (uses 8B/10B encoding etc)
 - Also equalizes 1's and 0's (in average same number of 0 and 1 transmitted)

PCI Express: Unidirectional Bandwidth in x1 and x16 Configurations										
Generation	Year of Release	Data Transfer Rate	Bandwidth x1	Bandwidth x16						
PCIe 1.0	2003	2.5 GT/s	250 MB/s	4.0 GB/s						
PCIe 2.0	2007	5.0 GT/s	500 MB/s	8.0 GB/s						
PCIe 3.0	2010	8.0 GT/s	1 GB/s	16 GB/s						
PCIe 4.0	2017	16 GT/s	2 GB/s	32 GB/s						
PCIe 5.0	2019	32 GT/s	4 GB/s	64 GB/s						
PCIe 6.0	2021	64 GT/s	8 GB/s	128 GB/s						

Table: PCI-SIG introduced the first generation of PCI Express in 2003. With each new generation comes a doubling of data transfer rate and total bandwidth per lane configuration, the latter of which is expressed in both unidirectional and bidirectional measurements, depending on the source. To find the total unidirectional bandwidth for each lane configuration, simply multiply the x1 bandwidths listed in the table above by two, four, eight or 16. Multiply the number resulting from that calculation by two to calculate total bidirectional bandwidth. *Source: PCI-SIG*

PCle Protocol – Transaction Layer

Write Packet TLP

	31 30 29	28 27 26 25 24	23	22 21 20	19 18 17 16	15	14	13 12	11 10	9 8	7 6 5 4	3 2	1 0			
DW 0	R Fmt	Type	R	TC	R	TDEP Attr R Length										
DVV	0 0x2	0x00	0	0	0	0	0	0	0		0x001					
DW 1		Reque	ste	r ID			Ta	ag (u	Last BE	1st BE						
0x0000						0x00 0x0							f			
DW 2	Address [31:2]									R						
DVVZ	0x3f6bfc10										0					
DW 3	Data DW 0															
טייט	0x12345678															

PCle Protocol – Transaction Layer

Read Request TLP

	31 30 29 2	28 27 26 25 24	23	22 21 20	19 18 17 16	15	14	13 12	11 10	9 8	7	6 5	4	3	2	1 0
DW 0	R Fmt	Type	R	TC	R	TD	ΕP	Attr	R			Le	ngt	h		
ט ייעם	0 0x0	0x00	0	0	0	0	0	0x001								
DW 1	Requester ID							Та	ag		Last BE			1	1st BE	
	0x0000							0x0c 0x0							0xf	
DW 2	Address [31:2]										R					
DVV Z	0x3f6bfc10												0			

PCle Protocol – Transaction Layer

Completion TLP

	31 30 29 2	28 27 26 25 24	23	22 21 20	19 18 17	16	<u>15 1</u>	4_	13 12	11 10	9 8	7	6 5	4	3 2	1 ()	
DW 0	R Fmt	Type	R	TC	R		TDE	Р	Attr	R			Ler	ngth				
DVV	0 0x2	0x0a	0	0	0		0 0)	0	0			0x001					
DW 1	Completer ID						Sta	Status B					yte Count					
ו עעם		0×0	10	0			0x	0x00 0						0x004				
DW 2	Requester ID						Tag R						Lower Address			1		
0x0000						0x0c 0						0x40						
DW 3	Data DW 0																	
DVV 3			0x12345678															

Hard disk interfaces

Hard disk interfaces — SATA

SATA (Serial AT Attachment) 600 MB/s

Very common in computers still

Hard disk interfaces – NVMe

Uses PCIe bus to transfer data

In many modern laptops soldered to motherboard.

Sometimes as M.2. SSD using PCle 3.0 or above, using 4 lanes

Hard disk interfaces

Form factors – M.2 (size)

2280

2260

ATP)

ATP

TO SECUTIVE

TO SECU

Form factors – M.2 (keying)

Key ID	Pin Location	Interface
А	8-15	2x PCle x1 / USB 2.0 / I2C / DP x4
В	12-19	PCIe x2 / SATA /USB 2.0 / USB 3.0 / HSIC / SSIC / Audio / UIM / I2C
С	16-23	Reserved for Future Use
D	20-27	Reserved for Future Use
E	24-31	2x PCIe x1 / USB 2.0 / I2C / SDIO / UART / PCM
F	28-35	Future Memory Interface (FMI)
G	39-46	Not Used for M.2; for Custom/Non-Standard Apps
Н	43-50	Reserved for Future Use
J	47-54	Reserved for Future Use
К	51-58	Reserved for Future Use
L	55-62	Reserved for Future Use
М	59-66	PCIe x4 / SATA

NVLink

NVLink

- □ NVLink 1.0, 2.0, 3.0 and 4.0
- Consists of links made up of differential signals (lanes)
 - ☐ 4 or 8 lanes for a link per direction. 50 GB/s per link bidirectional rate
- □ NVLink 2.0, 3.0 and 4.0 has 6, 12 and 18 links correspondingly
- ☐ Ampere A100 has 12 links, and a rate of 600 GB/s
- ☐ Hopper has 18 links, and a rate of 900 Gb/s
- ☐ The NVLink can form a mesh network

NVLink

Introduction

Questions?

Contact information

Andreas Axelsson

Email: andreas.axelsson@ju.se

Mobile: 0709-467760