MINOR - I EXAMINATION, SEPTEMBER 2015

Subject Code: MCA-101 Time: 1 ½ Hours		Subject: Fundamentals of IT
		Maximum Marks : 30
Note: Q.	1 is compulsory. Attempt any two ques	tions from the rest.
Q1		
	-	(2.5*4)
(a)	Evaluate:	
	(i) (2BD) ₁₆ = (?) ₁₀	
	(ii) (134) ₈ = (?) ₂	
	(iii) $(10110)_2 = (?)_{10}$	
(b)	Differentiate between system an	d application software.
(c)	Discuss Signed and unsigned re	presentation, fixed point representation and
	floating point representation.	
(d)	Define IT and give its five applicate	cions.
02		
Q2		(5,5)
(a)	Write equivalent codes: (i) BCD	for 85 ₁₀ (ii) Gray code for 14 ₁₀
	(iii) Excess- 3 for 52 ₁₀ (iv) ASCII-8	for 'MCA' (v) EBCDIC hexadecimal for 'MCA'
(b)	Discuss different types of memo	ry (Primary, Secondary, Cache, Virtual,
	Auxiliary).	Α,
Q3		(5,5)
(a)	Discuss 1's complement, 2's con	plement, 9's complement and 10's
	complement with example	
(b)	Subtract using complementary m	ethod: (i) 1111 ₂ - 1100 ₂
		(ii) 234 ₁₀ - 588 ₁₀
	*	
24		(5,5)

Discuss different types of character codes with example. (a)

Evaluate: (i) $(4\hat{C}.2E)_{16} = (?)_{10}$ (b)

(ii) Multiply 101111* 111

101111 101111 101111 10101001

Enrollment No. 47

MINOR - I EXAMINATION, SEPTEMBER 2015

Paper Code: MCA 103	Paper Title: Problem solving using C programming
Time: 1 ½ Hours	Maximum Marks: 30
Note: Q. 1 is compulsory. Attempt any two qu	estions from the rest.
Q1	(5,3,2)
(a) Develop your own program in C to	o perform following operations
Copying one string to another	
Comparing two strings.	
(b) Write a short note on evolution o	of C language.
(c) Differentiate between	
 while and do-while loop. 	
2) Break and continue stateme	nt.
	(= =)
Q2	(5,5)
	statement to print the pattern of asterisks as shown
below :	
1.*.*	
* * *	
* * * *	
(b) Discuss scope, visibility and lifeting	me of variables.
Q3	(4,6)
(a) The main is a user defined fu	nction. How does it differ from other user defined
function?	
(b) Discuss the variable naming conv	ventions in C with examples.
Q4	(5,5)
(a) Write a program in C to sort an a	array of 10 elements.
(b) Why should we use switch case	? Discuss with example.

write your Enrollment Number)

Enrollment No. 47

MINOR - I EX	AMINATION, SEPTEMBER 2015 Paper Title: Computer Organization
Paner Code: MCA 107	Maximum Marks: 30
Time:1% Hours	tempt any two questions from the rest.
Note: Q. 1 is compulsory. At	tempt any two questions
	(2.5x4=10)
Q1 (a) Write the microop	peration for ISZ instruction of basic computer. Ween a sequential circuit and a combinational
(b) Differentiate bety	ween a sequential eneart
circuit.	and a logic microoperation.
(e) Discuss various ar	oplications of a logic microoperation.
(d) What do you mea	an by instruction set company (5,5)
Q2 (a) Explain the work	ing of JK-flip flop. What is race around condition?
How is it overcor	ne? 8 bit binary 11011001. Determine the register B
	e logic to be performed in order to change the value:
(i) 01101101	
(ii) 11111101	(5,5)
, 03	pt cycle with the help of an example.
(a) Discuss interru	pt cycle with the man
(b) Define the follo	owing:
(i) shift operati	on
(ii) computer r	egisters (5,5
Q4	to-32-line decoder with four 3-to-8-line decoder
with enable ar	nd one 2- to 4 into sith two 8-to-1 line
(b) Construct a 16	6-to-1 line multiplexer Warr nd one 2-to-1 line multiplexer. Use block diagrams
for the three	multiplexers.

for the three multiplexers.

	Enrollment Number)	
'(Please write your	Enrollment reams or	

Enrollment	No	

MID TERM- I EXAMINATION, SEPTEMBER 2015

	105 10F	Paper Title: Discrete Mathematics Maximum Marks: 30
aper Code:	IVICA-103	Maximum iviality . 30
Time: 1 ½ H	ours	o more questions from the remaining.
Note:Attem	ot QI willer is company	
		(2x5=10)
Q1		TO.
(a)	Define a Poset giving an example.	1. 5 and or f(2) = 2 + 1
15. 5.	Let $\Delta = B = C$ be set of Real numbers.	Let $f:A \rightarrow B$, $g:B \rightarrow C$ be defined as $f(a) = a+1$
(b)	and g(b) = b ² + 2. Find: (i) gof(-2) (ii) fog(-2) (iii) fof(x) (iv) gog(y) Let A and B be two finite sets. State	1(-1) + 1/2+2= 1 N
(c)	Let A and B be two finite sets. State	to comparties
(d)	What is the Pascal's Triangle? Give	its properties.
(e)	13 people show up for a basketball	team.
(6)	(i) How many ways are there	re women. How many ways are there to choose 10
	(ii) Of the 13 people, three at players such that atleast or	
	players such that atleast of	ne of them is a wear
		(3,3,4)
Q2	215 A	B,C are sets and $f: A \rightarrow B$ and $g: B \rightarrow C$ are injective
(a)	What are Injective Functions? If A,	ective
	functions, show that gof is also inj Convert the given formula into PD	
(b)		
(c)	State the Pigeonhole Principle and minimum number of students, ea	ch of whom comes from one of the 50 states, who guarantee that there are atleast 100 who are from
/	the same state?	ni.
	the same state.	(3,3,4)
42		, ,
Q3) Show that n ³ – n is divisible by 3	using Mathematical Induction.
(a) Snow that if a ris division,	nat: PVQ,Q → R,P → M, ~M + R ∧ (PVQ)
(b	Using Rules of Inference show th	at: PVQ,Q 7 K, F / M)
	a LC ha relations from set	A to B. Show that:
(0	$I(s)$ If $R \subset S$ then $R^{-1} \subseteq S^{-1}$	311
	(ii) $(R \cap S) = R^{-1} \cap S^{-1}$	10
_ /	()	(3,4,3)
Q4		(i) indept
10/	(a) Show that (P \rightarrow Q) \land (P \rightarrow R) and P	→ (Q ∧R) are logically equivalent.
\ /	(i) There are 79 students in a class and History. The number of students and Maths is 30. Those who There are 8 who take Maths or (i) How many students take (ii) How many take only E	dents who take English is 41; those who take History is take Maths and History is 16; English and History is 6. It was all the History only. Draw the Venn diagram and find: the Maths and English but not History inglish
		A = A + A + A + B = A + A + A + A + A + A + A + A + A + A
	(c) Let R be a relation on A=(a,b,- Find the Reflexive and Symme	tric Closure of R. Also find R ^c and R ⁻¹ .

Enrollment No. D 4704092015

MINOR - I EXAMINATION, SEPTEMBER 2015

Paper Title: Soft Skills Paper Code: MCA 109 Maximum Marks: 30 Time: 1 1/2 Hours Note: All questions are compulsory. (2.5x2=5)

- (a) Write short notes on the following:
 - Importance of knowledge of Proxemics for a Professional
 - (ii). Difference between Formal & Grapevine Communication

(1x5=5)

- (b) Explain the meaning of the following Idioms and also make sentences:
 - (i). Bitter pill to swallow
 - (ii). Crunch time
 - (iii). Jump through hoops
 - (iv). Shape up or ship out
 - (v). Work out the Kinks

Read the situation given below carefully and answer the questions thereafter: Q2 Harish is a 27-yearold who is a food service manager at a casual dining restaurant. He is responsible for supervising and managing all employees at the back end. Employees working at the back endrangeinagefrom18 year's oldto45yearsold. In addition, the employees come from diverse cultural and ethnic backgrounds. For many, Hindi is not their primary language.

> Harish tries his best to keep up with food safety issues in the kitchen but he admits it's not easy. Employees receive "on the job training" about food safety basics (for example, appropriate hygiene and hand washing, time/temperature, and cleaning and sanitizing). But with high turnover of employees, training is often rushed and some new employees are put right into the job without training if it is a busy day. Eventually, most employees get some kind of food safety training. The owners shake restaurant are supportive of Harish in his food safety efforts because they know if a food safety outbreak were ever linked to their restaurant; it would likely put them out of business. Still, the owners note there are additional costs for training and making sure food is handled safely.

> One day Harish comes to work and is rather upset even before he steps into the restaurant. Things haven't been going well at home and he was lucky to rush through some of the dirty laundry and find a relatively clean outfit to wear for work. He admits he needs a haircut and a good hand scrubbing, especially after working on his car last evening. When he walks into the kitchen he notices several trays of uncooked vegetables and non-vegetarian products spread out in the kitchen area. It appears these have been left at room temperature for quite some time. Harish is frustrated and doesn't know what to do. He feels like he is beating his head against a brick wall when it comes to getting employees to practice food safety.

- Comment on the barriers that Harish is facing in the above situation during his communication with his staff members.
- Do you think that Harish can also to be blamed for any miscommunication that is (b) happening in the above situation? Explain how can this situation be resolved?

Q. 3 What is a topic sentence in a paragraph? Keeping in mind the essentials of effective writing technique compose four paragraphs (at-least five lines each) on the following topic:

"Female foeticide in India and its impact on our Society"

Q. 4 Elaborate any five qualities of a good Business Letter? Assuming that you are the Head of

Business Communications department at your college, write a business letter to a leading language lab vendor, asking him to send you a detailed quotation on setting up a digital language lab in the college. Invent the necessary details.