

教师: 胡俊杰 副教授

邮箱: <u>hujunjie@scu.edu.cn</u>

1.数据集划分

训练集 (Training Set): 训练模型所使用到的数据,通过该部分数据确定模型所包含的各学习参数。

验证集(Validation Set):有时也叫做开发集(Dev Set),用来做模型选择(model selection),评价模型的训练效果

测试集(Test Set):测试已经训练好的模型的性能。

数据集 训练集 验证集 测试集

- 三者划分: 训练集 (80%) 、验证集 (10%) 、测试集 (10%)
- 实际应用中,训练集/验证集/测试集的具体比例可调整
- 如果只划分训练集和验证集,通常训练集(80%),验证集(20%)

不平衡数据的处理

不加处理的话,模型会倾向于预测正

常和REA类别,忽略PED类别

不平衡数据的处理

- 对数量较少的类别采用有放回的方式重复采样。由于该任务是一个多标签任务(一张图像对应多个标签),对SRF、PED类别过采样也将增加REA类别的数量
- 实际应用中,应尽可能保证各类别样本数量相近

不平衡数据的处理

- 过采样方法仅是对数量较少 类别样本的简单复制,如何 增加样本的多样性
- SMOTE: Synthetic Minority Oversampling TEchnique

评价指标

混淆矩阵 (confusion matrix)

		预测		
		Positive	Negative	
+ =-/a/c	Positive	TP	FN	
标签	Negative	FP	TN	

$$F1 = 2 \cdot \frac{precision \cdot recall}{precision + recall}$$

■同时结合了召回率和精准率特点的综合性评价指标

召回率:
$$Recall = \frac{TP}{TP+FN}$$

■ 针对真实的阳性样本,即在全体 阳性样本中,模型预测出的比例

精准率:
$$Precision = \frac{TP}{TP+FP}$$

■ 针对<mark>模型预测为阳性的</mark>样本,即 在全体模型预测为阳性的样本, 真实阳性样本所占的比例

评价指标

Receiver operating characteristic curve,也称为受试者工作特征曲线

$$FPR = rac{FP}{FP + TN}$$
 假阳率:针对所有阴性样本,被错误预测为阳性的比例 越小越好

$$TPR = \frac{TP}{TD + FN}$$
 真阳率:针对所有阳性样本,被正确预测为阳性的比例 越大

- 随着阈值的不同, FPR和TPR都在同步变化, (FPR, TPR)所构成的曲线则称为ROC曲线
- ROC曲线与坐标轴围成的面积,称为AUC(Area Under Curve, 曲线下面积), 面积越大 则模型性能越好

评价指标

PR (Precision-Recall) 曲线

$$Recall = \frac{TP}{TP + FN}$$

$$Precision = \frac{TP}{TP + FP}$$

正则化 (Regularization)

正则化 (Regularization) -代价函数

正则化系数

$$L_1$$
正则化: $J(w) = \frac{1}{2} \sum_{i=1}^{m} (h(x_i) - y_i)^2 + \lambda \sum_{j=1}^{n} |w_j|$, Lasso Regression (Lasso回归)

$$L_2$$
正则化: $J(w) = \frac{1}{2} \sum_{i=1}^{m} (h(x_i) - y_i)^2 + \lambda \sum_{j=1}^{n} w_j^2$, Ridge Regression (岭回归)

Elastic Net:
$$J(w) = \frac{1}{2} \sum_{i=1}^{m} (h(x_i) - y_i)^2 + \lambda \left[\rho \cdot \sum_{j=1}^{n} |w_j| + (1 - \rho) \cdot \sum_{j=1}^{n} w_j^2 \right]$$

(弹性网络)

其中:

比例系数

- λ为正则化系数,调整正则化项与训练误 差的比例, λ>0。
- 1≥ ρ ≥0为比例系数,调整 L_1 正则化与 L_2 正则化的比例。

正则化-模型

Dropout (深度神经网络训练过程中常用的正则化)

■ 训练过程: 以概率p随机地禁止/激活每个神经元(伯努利分布)

■ 测试过程: 保留全体神经元, 但激活值强度乘以*p*

标准的深度神经网络

Dropout

Drop connect

正则化-训练过程

Early stopping代表提早停止训练模型

正则化-数据

- ■数据收集困难
- 标注人力成本高

数据增广:人为增强数据的多样性

■ 颜色空间: 亮度、灰度、对比度等

■ 几何空间:旋转、平移、缩放、弹性形变等

大数据

大模型

大算力

4

4

4.CART算法

01 决策树原理

- 02 ID3算法
- 03 C4.5算法
- 04 CART算法

1.决策树原理

- 决策树:从训练数据中学习得出一个树状 结构的模型
- 决策树属于判别模型
- 决策树的决策过程是从根节点开始,测试 待分类项对应的特征属性,并按照其值选 择输出分支,直到叶节点,将叶节点存放 的类别作为决策结果

1.决策树原理

- 决策树算法是一种归纳分类算法 ,它通过对训练集的学习,挖掘 出有用的规则
- 决策树归纳的基本算法是贪心算法, 自顶向下来构建树
- 贪心算法:在每一步选择中都采取在当前状态下最优的选择
- 在决策树的生成过程中,属性选择 的度量是关键

1.决策树原理

决策树的三种基本类型

建立决策树的关键,即在当前状态下选择哪个属性作为分类依据。建立决策树主要有以下三种算法: ID3(Iterative Dichotomiser)、C4.5、CART(Classification And Regression Tree)

算法	支持任务	树结构	特征选择
ID3	分类	多叉树	信息增益
C4.5	分类	多叉树	信息增益率
CART	分类 回归	二叉树	基尼指数 均方误差

4.CART算法

- 01 决策树原理
- 02 ID3算法
- 03 C4.5算法
- 04 CART算法

2. ID3算法

ID3 算法

- ID3算法最早是由罗斯.昆兰 (J. Ross Quinlan) 提出的一种决策树构建算法, 算法的核心是信息熵
- ID3算法是以信息增益为衡量标准,实现对数据的归纳分类
- ID3算法计算每个属性的信息增益,并选取具有最高增益的属性作为给 定的分类属性

2.ID3算法

ID3 算法核心思路

- 从根节点开始, 计算所有属性的信息增益, 选择信息增益最大的属性作为分类节点 (如性别)
- 根据不同取值 (如男/女) 建立子节点
- 对子节点递归调用以上方法,直至属性为空

熵 (Entropy)

■ 熵(Entropy):代表随机变量不确定性的度量。熵越大,随机变量的不确定性越大

设X是有限个取值的离散随机变量,其概率分布是 $P(X = x_i) = p_i, i = 1, 2, ..., n$

随机变量
$$X$$
的熵定义为 $H(X) = -\sum_{i=1}^{n} p_i \log p_i$

熵依赖于X的分布,也可记成 $H(p) = -\sum_{i=1}^{\infty} p_i \log p_i$

熵 (Entropy)

■ 设随机变量X只有1和0两种取值,即

$$P(X = 1) = p, P(X = 0) = 1 - p, 0 \le p \le 1$$

$$H(p) = -p \log_2 p - (1-p) \log_2 (1-p)$$

- 当p = 0或p = 1时,熵为0,随机变量没有不确定性

条件熵(Conditional entropy)

■ 对于随机变量(X,Y), 其联合概率分布为

$$P(X = x_i, Y = y_i) = p_{ij}, i = 1, 2, ..., n, j = 1, 2, ..., m$$

- 条件H(Y|X)代表已知随机变量X的条件下随机变量Y的不确定性
- 条件熵的定义: X给定的条件下Y的条件概率分布的熵对X的数学期望

$$H(Y|X) = \sum_{i=1}^{n} p_i H(Y|X = x_i)$$

- 当熵和条件熵中的概率由数据估计得到时,所对应的熵与条件熵 称为经验熵和经验条件熵
- 经验条件熵越小,代表已知X后Y的不确定性越小

信息增益 (Information gain)

- 信息增益: 得知特征X的信息使得类Y的信息不确定性减少的程度
- 特征A对训练数据集D的信息增益记为g(D,A),其定义为经验熵H(D)与给定特征A条件下D的经验条件熵H(D|A)之差:

$$g(D,A) = H(D) - H(D|A)$$

■ 对于分类任务而言,不同特征具有不同的信息增益。特征的信息增益越大,代表该特征具有更强的分类能力。

经验熵

输入: 年龄、工作、房子、信用

输出: 是否同意贷款

$H(D) = -\sum_{k=1}^{N} \frac{|C_k|}{|D|} \log_2 \frac{|C_k|}{|D|}$ 经验熵

D: 训练数据集, |D|: 训练样本数量

K: 类别数量, $|C_k|$: 类别 C_k 的样本数量 $\sum_{k=1}^{\infty} |C_k| = |D|$

$$\sum_{k=1}^{K} |C_k| = |D|$$

右边数据中:

样本 数量	同意	不同意	经验熵
15	9	6	0.971

$$H(D) = -\sum_{k=1}^{K} \frac{|C_k|}{|D|} \log_2 \frac{|C_k|}{|D|} = -\frac{9}{15} \log_2 \frac{9}{15} - \frac{6}{15} \log_2 \frac{6}{15} = 0.971$$

	年龄	有工作	有房子	信用	类别
1	青年	否	否	一般	不同意
2	青年	否	否	好	不同意
3	青年	是	否	好	同意
4	青年	是	是	一般	同意
5	青年	否	否	一般	不同意
6	中年	否	否	一般	不同意
7	中年	否	否	好	不同意
8	中年	是	是	好	同意
9	中年	否	是	非常好	同意
10	中年	否	是	非常好	同意
11	老年	否	是	非常好	同意
12	老年	否	是	好	同意
13	老年	是	否	好	同意
14	老年	是	否	非常好	同意
15	老年	否	否	一般	不同意

经验熵

按年龄划分

年龄	数 量	同意	不同意	经验熵
青年	5	2	3	0.971
中年	5	3	2	0.971
老年	5	4	1	0.722

A_1	年龄
A_2	有工作
A_3	有房子
A_4	信用

- D: 训练数据集, |D|: 训练样本数量
- A: 某一特征 (如年龄、有工作、有房子、信用)
- 假设A有n个不同的取值 $\{a_1, a_2, ..., a_n\}$,将D划分为n个子集 $D_1, D_2, ..., D_n$
- $|D_i|$: D_i 子集样本数目, $\sum_{i=1}^n |D_i| = |D|$
- D_{ik} : D_i 子集中属于类 C_k 样本的集合, $|D_{ik}|$: D_{ik} 包含的样本数目

	年龄	有工作	有房子	信用	类别
1	青年	否	否	一般	不同意
2	青年	否	否	好	不同意
3	青年	是	否	好	同意
4	青年	是	是	一般	同意
5	青年	否	否	一般	不同意
6	中年	否	否	一般	不同意
7	中年	否	否	好	不同意
8	中年	是	是	好	同意
9	中年	否	是	非常好	同意
10	中年	否	是	非常好	同意
11	老年	否	是	非常好	同意
12	老年	否	是	好	同意
13	老年	是	否	好	同意
14	老年	是	否	非常好	同意
15	老年	否	否	一般	不同意

经验熵

按年龄划分

年龄	数量	同意	不同意	经验熵
青年	5	2	3	0.971
中年	5	3	2	0.971
老年	5	4	1	0.722

A_1	年龄
A_2	有工作
A_3	有房子
A_4	信用

青年:
$$H(D_1) = -\frac{2}{5}\log_2\frac{2}{5} - \frac{3}{5}\log_2\frac{3}{5} = 0.971$$

中年:
$$H(D_2) = -\frac{3}{5}\log_2\frac{3}{5} - \frac{2}{5}\log_2\frac{2}{5} = 0.971$$

老年:
$$H(D_3) = -\frac{4}{5}\log_2\frac{4}{5} - \frac{1}{5}\log_2\frac{1}{5} = 0.722$$

	年龄	有工作	有房子	信用	类别
1	青年	否	否	一般	不同意
2	青年	否	否	好	不同意
3	青年	是	否	好	同意
4	青年	是	是	一般	同意
5	青年	否	否	一般	不同意
6	中年	否	否	一般	不同意
7	中年	否	否	好	不同意
8	中年	是	是	好	同意
9	中年	否	是	非常好	同意
10	中年	否	是	非常好	同意
11	老年	否	是	非常好	同意
12	老年	否	是	好	同意
13	老年	是	否	好	同意
14	老年	是	否	非常好	同意
15	老年	否	否	一般	不同意

经验条件熵

经验条件熵
$$H(D|A) = \sum_{i=1}^{n} \frac{|D_i|}{|D|} H(D_i)$$

- A: 某一特征 (如年龄、有工作、有房子、信用)
- 假设A有n个不同的取值 $\{a_1, a_2, ..., a_n\}$,将D划分为n个子集 $D_1, D_2, ..., D_n$

$$H(D|年龄) = \sum_{i=1}^{n} \frac{|D_i|}{|D|} H(D_i)$$

$$= \frac{5}{15} \times 0.971 + \frac{5}{15} \times 0.971 + \frac{5}{15} \times 0.722$$

$$= 0.888$$

		年龄	有工作	有房子	信用	类别
	1	青年	否	否	一般	不同意
	2	青年	否	否	好	不同意
	3	青年	是	否	好	同意
	4	青年	是	是	一般	同意
	5	青年	否	否	一般	不同意
l	6	中年	否	否	一般	不同意
	7	中年	否	否	好	不同意
	8	中年	是	是	好	同意
	9	中年	否	是	非常好	同意
	10	中年	否	是	非常好	同意
	11	老年	否	是	非常好	同意
	12	老年	否	是	好	同意
	13	老年	是	否	好	同意
	14	老年	是	否	非常好	同意
	15	老年	否	否	一般	不同意

信息增益 g(D,A) = H(D) - H(D|A)

其中,
$$H(D|A) = \sum_{i=1}^{n} \frac{|D_i|}{|D|} H(D_i) = -\sum_{i=1}^{n} \frac{|D_i|}{|D|} \sum_{k=1}^{K} \frac{|D_{ik}|}{|D_i|} \log_2 \frac{|D_{ik}|}{|D_i|}$$

n是特征A的取值个数, K为类别数目

1. 年龄 A_1 对D的信息增益

$$g(D, A_1) = H(D) - H(D|A_1)$$

= 0.971 - 0.888 = 0.083

	年龄	有工作	有房子	信用	类别
1	青年	否	否	一般	不同意
2	青年	否	否	好	不同意
3	青年	是	否	好	同意
4	青年	是	是	一般	同意
5	青年	否	否	一般	不同意
6	中年	否	否	一般	不同意
7	中年	否	否	好	不同意
8	中年	是	是	好	同意
9	中年	否	是	非常好	同意
10	中年	否	是	非常好	同意
11	老年	否	是	非常好	同意
12	老年	否	是	好	同意
13	老年	是	否	好	同意
14	老年	是	否	非常好	同意
15	老年	否	否	一般	不同意

信息增益
$$g(D,A) = H(D) - H(D|A)$$

2. 有工作 A_2 对D的信息增益

$$g(D, A_2) = H(D) - H(D|A_2)$$

有工作	数量	同意	不同意
是(D ₁)	5	5	0
否(D ₂)	10	4	6

= 0.971 -	$\left[\frac{5}{15}H(D_1) + \right.$	$\frac{10}{15}H(D_2)$
-----------	--------------------------------------	-----------------------

$$= 0.971 - \left[\frac{5}{15} \times \left[-\frac{5}{5} \log_2 \frac{5}{5} - \frac{0}{5} \log_2 \frac{0}{5} \right] + \frac{10}{15} \left[-\frac{4}{10} \log_2 \frac{4}{10} - \frac{6}{10} \log_2 \frac{6}{10} \right] \right]$$

= 0.324

	年龄	有工作	有房子	信用	类别
1	青年	否	否	一般	不同意
2	青年	否	否	好	不同意
3	青年	是	否	好	同意
4	青年	是	是	一般	同意
5	青年	否	否	一般	不同意
6	中年	否	否	一般	不同意
7	中年	否	否	好	不同意
8	中年	是	是	好	同意
9	中年	否	是	非常好	同意
10	中年	否	是	非常好	同意
11	老年	否	是	非常好	同意
12	老年	否	是	好	同意
13	老年	是	否	好	同意
14	老年	是	否	非常好	同意
15	老年	否	否	一般	不同意

信息增益 g(D,A) = H(D) - H(D|A)

3. 有房子A3对D的信息增益

有房子 数量 同意 不同意 是
$$(D_1)$$
 6 6 0 (D_2) 9 3 6

$$g(D, A_3) = H(D) - H(D|A_3)$$

$$H(D) = -\sum_{k=1}^{K} \frac{|C_k|}{|D|} \log_2 \frac{|C_k|}{|D|} = 0.971$$

$$H(D|A) = \sum_{i=1}^{n} \frac{|D_i|}{|D|} H(D_i) = -\sum_{i=1}^{n} \frac{|D_i|}{|D|} \sum_{k=1}^{K} \frac{|D_{ik}|}{|D_i|} \log_2 \frac{|D_{ik}|}{|D_i|}$$

	年龄	有工作	有房子	信用	类别
1	青年	否	否	一般	不同意
2	青年	否	否	好	不同意
3	青年	是	否	好	同意
4	青年	是	是	一般	同意
5	青年	否	否	一般	不同意
6	中年	否	否	一般	不同意
7	中年	否	否	好	不同意
8	中年	是	是	好	同意
9	中年	否	是	非常好	同意
10	中年	否	是	非常好	同意
11	老年	否	是	非常好	同意
12	老年	否	是	好	同意
13	老年	是	否	好	同意
14	老年	是	否	非常好	同意
15	老年	否	否	一般	不同意

信息增益
$$g(D,A) = H(D) - H(D|A)$$

3. 有房子 A_3 对D的信息增益

$$g(D, A_3) = H(D) - H(D|A_3)$$

有房子	数量	同意	不同意
是(D ₁)	6	6	0
否(D ₂)	9	3	6

$$= 0.971 - \left[\frac{6}{15} H(D_1) + \frac{9}{15} H(D_2) \right]$$

$$= 0.971 - \left[\frac{6}{15} \times \left[-\frac{6}{6} \log_2 \frac{6}{6} - \frac{0}{6} \log_2 \frac{0}{6} \right] + \frac{9}{15} \left[-\frac{3}{9} \log_2 \frac{3}{9} - \frac{6}{9} \log_2 \frac{6}{9} \right] \right]$$

= 0.420

	年龄	有工作	有房子	信用	类别
1	青年	否	否	一般	不同意
2	青年	否	否	好	不同意
3	青年	是	否	好	同意
4	青年	是	是	一般	同意
5	青年	否	否	一般	不同意
6	中年	否	否	一般	不同意
7	中年	否	否	好	不同意
8	中年	是	是	好	同意
9	中年	否	是	非常好	同意
10	中年	否	是	非常好	同意
11	老年	否	是	非常好	同意
12	老年	否	是	好	同意
13	老年	是	否	好	同意
14	老年	是	否	非常好	同意
15	老年	否	否	一般	不同意

信息增益 g(D,A) = H(D) - H(D|A)

4. 信用 A_4 对D的信息增益

$$g(D, A_4) = H(D) - H(D|A_4)$$

信用	数量	同意	不同意
一 般(D ₁)	5	1	4
好(D ₂)	6	4	2
非常好(D3)	4	4	0

$$H(D) = -\sum_{k=1}^{K} \frac{|C_k|}{|D|} \log_2 \frac{|C_k|}{|D|} = 0.971$$

$$H(D|A) = \sum_{i=1}^{n} \frac{|D_i|}{|D|} H(D_i) = -\sum_{i=1}^{n} \frac{|D_i|}{|D|} \sum_{k=1}^{K} \frac{|D_{ik}|}{|D_i|} \log_2 \frac{|D_{ik}|}{|D_i|}$$

	年龄	有工作	有房子	信用	类别
1	青年	否	否	一般	不同意
2	青年	否	否	好	不同意
3	青年	是	否	好	同意
4	青年	是	是	一般	同意
5	青年	否	否	一般	不同意
6	中年	否	否	一般	不同意
7	中年	否	否	好	不同意
8	中年	是	是	好	同意
9	中年	否	是	非常好	同意
10	中年	否	是	非常好	同意
11	老年	否	是	非常好	同意
12	老年	否	是	好	同意
13	老年	是	否	好	同意
14	老年	是	否	非常好	同意
15	老年	否	否	一般	不同意

信息增益
$$g(D,A) = H(D) - H(D|A)$$

4. 信用A₄对D的信息增益

$$g(D, A_4) = H(D) - H(D|A_4)$$

信用	数量	同意	不同意
一般(D ₁)	5	1	4
好(D ₂)	6	4	2
非常好(D3)	4	4	0

$$= 0.971 - \left[\frac{5}{15} H(D_1) + \frac{6}{15} H(D_2) + \frac{4}{15} H(D_3) \right]$$

$$= 0.971 - \left[\frac{5}{15} \times \left[-\frac{1}{5} \log_2 \frac{1}{5} - \frac{4}{5} \log_2 \frac{4}{5} \right] + \frac{6}{15} \left[-\frac{4}{6} \log_2 \frac{4}{6} - \frac{2}{6} \log_2 \frac{2}{6} \right] + 0 \right]$$

$$= 0.363$$

	年龄	有工作	有房子	信用	类别
1	青年	否	否	一般	不同意
2	青年	否	否	好	不同意
3	青年	是	否	好	同意
4	青年	是	是	一般	同意
5	青年	否	否	一般	不同意
6	中年	否	否	一般	不同意
7	中年	否	否	好	不同意
8	中年	是	是	好	同意
9	中年	否	是	非常好	同意
10	中年	否	是	非常好	同意
11	老年	否	是	非常好	同意
12	老年	否	是	好	同意
13	老年	是	否	好	同意
14	老年	是	否	非常好	同意
15	老年	否	否	一般	不同意

	特征	信息增益	
	年龄	0.083	
	有工作	0.324	
í	有房子	0.420	I J
•	信用	0.363	

■ 特征有房子信息增益最大,选择该特征作为分类节点

- 有房子的样本均同意,因此为叶结点
- 针对D₂, 计算年龄、有工作、信用的信息增益

	年龄	有工作	有房子	信用	类别
1	青年	否	否	一般	不同意
2	青年	否	否	好	不同意
3	青年	是	否	好	同意
4	青年	是	是	一般	同意
5	青年	否	否	一般	不同意
6	中年	否	否	一般	不同意
7	中年	否	否	好	不同意
8	中年	是	是	好	同意
9	中年	否	是	非常好	同意
10	中年	否	是	非常好	同意
11	老年	否	是	非常好	同意
12	老年	否	是	好	同意
13	老年	是	否	好	同意
14	老年	是	否	非常好	同意
15	老年	否	否	一般	不同意

$$g(D_2, A_1) = H(D_2) - H(D_2|A_1) = 0.918 - 0.667 = 0.251$$

$$g(D_2, A_2) = H(D_2) - H(D_2|A_2) = 0.918 - 0 = 0.918$$

$$g(D_2, A_4) = H(D_2) - H(D_2|A_4) = 0.918 - 0.444 = 0.474$$

有工作的样本均同 意,因此为叶结点 没有工作的样本均不同意,因此为叶结点

	年龄 (A ₁)	有工作 (A ₂)	有房子 (A ₃)	信用 (A ₄)	类别
1	青年	否	否	一般	不同意
2	青年	否	否	好	不同意
3	青年	是	否	好	同意
4	青年	否	否	一般	不同意
5	中年	否	否	一般	不同意
6	中年	否	否	好	不同意
7	老年	是	否	好	同意
8	老年	是	否	非常好	同意
9	老年	否	否	一般	不同意

■ 只用了两个特征完成了决策树的建立

2.ID3算法

ID3 算法

输入:训练数据集D,属性集合A,信息增益阈值 ε

输出: 决策树T

- (1) 若D中所有实例属于同一类 C_k ,则T为单节点树,并将 C_k 作为该节点的类标记,返回T
- (2) 若A为空集,则T为单节点树,并将D中实例最多的类 C_k 作为该节点的类标记,返回T
- (3) 若A不为空集,则计算A中各属性对D的信息增益,选择信息增益最大的属性 A_g
- (4) 如果 A_g 的信息增益小于阈值 ε ,则T为单节点树,将D中实例最多的类 C_k 作为该节点类标记,返回T
- (5) 否则对 A_g 的每一可能值 a_i ,依 $A_g = a_i$ 将D划分为若干非空子集 D_i ,将 D_i 中实例数最大的类作为标记,构建子节点,由节点及其子节点构成树T,并返回T
- (6) 对第i个子节点,以 D_i 为训练集,以 $A \{A_g\}$ 为属性集合,递归地调用(1)-(5)步,得到子树 T_i ,返回 T_i

4.CART算法

- 01 决策树原理
- 02 ID3算法
- 03 C4.5算法
- 04 CART算法

信息增益

特征	信息增益
年龄	0.083
有工作	0.324
有房子	0.420
信用	0.363
编 号	0.971

$$g(D,$$
编号 $) = H(D) - H(D|$ 编号 $)$

$$= 0.971 - \left[\frac{1}{15} H(D_1) + \frac{1}{15} H(D_2) + \dots + \frac{1}{15} H(D_{15}) \right]$$

= 0.971

				i	
编号	年龄	有工作	有房子	信用	类别
1	青年	否	否	一般	不同意
2	青年	否	否	好	不同意
3	青年	是	否	好	同意
4	青年	是	是	一般	同意
5	青年	否	否	一般	不同意
6	中年	否	否	一般	不同意
7	中年	否	否	好	不同意
8	中年	是	是	好	同意
9	中年	否	是	非常好	同意
10	中年	否	是	非常好	同意
11	老年	否	是	非常好	同意
12	老年	否	是	好	同意
13	老年	是	否	好	同意
14	老年	是	否	非常好	同意
15	老年	否	否	一般	不同意

3.C4.5算法

C4.5 算法

C4.5 算法对 ID3 算法的改进

- 用信息增益比来选择属性。ID3选择属性用的是子树的信息增益, 而C4.5用的是信息增益比
- 在决策树构造过程中进行剪枝

信息增益比

信息增益比
$$g_R(D,A) = \frac{g(D,A)}{(\bar{H}_A(D))}$$
 训练数据集 D 关于特征 A 的熵

其中,
$$H_A(D) = -\sum_{i=1}^n \frac{|D_i|}{|D|} log_2 \frac{|D_i|}{|D|}$$
, n是特征A的取值个数

$$g(D, A =$$
年龄 $) = H(D) - H(D|A =$ 年龄 $) = 0.971 - 0.888 = 0.083$

$$\begin{split} g_R(D,A &= 年龄) = \frac{g\left(D,A = 年龄\right)}{H_A(D)} = \frac{0.083}{-\sum_{i=1}^n \frac{|D_i|}{|D|} \log_2 \frac{|D_i|}{|D|}} \\ &= \frac{0.083}{-\frac{5}{15} \log_2 \frac{5}{15} - \frac{5}{15} \log_2 \frac{5}{15} - \frac{5}{15} \log_2 \frac{5}{15}} = 0.052 \end{split}$$

	年龄	有工作	有房子	信用	类别
1	青年	否	否	一般	不同意
2	青年	否	否	好	不同意
3	青年	是	否	好	同意
4	青年	是	是	一般	同意
5	青年	否	否	一般	不同意
6	中年	否	否	一般	不同意
7	中年	否	否	好	不同意
8	中年	是	是	好	同意
9	中年	否	是	非常好	同意
10	中年	否	是	非常好	同意
11	老年	否	是	非常好	同意
12	老年	否	是	好	同意
13	老年	是	否	好	同意
14	老年	是	否	非常好	同意
15	老年	否	否	一般	不同意

决策树的过拟合

- 为了尽可能正确分类训练样本,节点的划分过程会不断重复直到不能再分,这样就可能对训练样本学习的"太好"了,把训练样本的一些特点当做所有数据都具有的一般性质,从而导致过拟合
- 剪枝使用类别代替原本基于属性的判断过程, 让树更简单
- 通过剪枝处理去掉一些分支来降低过拟合的风险
- 剪枝的基本策略有"预剪枝" (prepruning) 和"后剪枝" (postpruning)

预剪枝 (prepruning)

预剪枝不仅可以降低过拟合的风险而且还可以减少训练时间,但另一方面它是基于"贪心" 策略,仅考虑当前最优,会带来欠拟合风险

- 划分验证集来评估决策树的分类准确率
- 比较节点展开前后验证集的准确率,根据准确率的高低决定是否展开该节点

训练集

编号	色泽	根蒂	敲声	纹理	脐部	触感	好瓜
1	青绿	蜷缩	浊响	清晰	凹陷	硬滑	是
2	乌黑	蜷缩	沉闷	清晰	凹陷	硬滑	是
3	乌黑	蜷缩	浊响	清晰	凹陷	硬滑	是
6	青绿	稍蜷	浊响	清晰	稍凹	软粘	是
7	乌黑	稍蜷	浊响	稍糊	稍凹	软粘	是
10	青绿	硬挺	清脆	清晰	平坦	软粘	否
14	浅白	稍蜷	沉闷	稍糊	凹陷	硬滑	否
15	乌黑	稍蜷	浊响	清晰	稍凹	软粘	否
16	浅白	蜷缩	浊响	模糊	平坦	硬滑	否
17	青绿	蜷缩	沉闷	稍糊	稍凹	硬滑	否

验证集

编号	色泽	根蒂	敲声	纹理	脐部	触感	好瓜
4	青绿	蜷缩	沉闷	清晰	凹陷	硬滑	是
5	浅白	蜷缩	浊响	清晰	凹陷	硬滑	是
8	乌黑	稍蜷	浊响	清晰	稍凹	硬滑	是
9	乌黑	稍蜷	沉闷	稍糊	稍凹	硬滑	否
11	浅白	硬挺	清脆	模糊	平坦	硬滑	否
12	浅白	蜷缩	浊响	模糊	平坦	软粘	否
13	青绿	稍蜷	浊响	稍糊	凹陷	硬滑	否

剪枝策略

在节点划分前来确定是否继续增长,及早 停止增长

基于训练集生成未剪枝的决策树

训练集

编号	色泽	根蒂	敲声	纹理	脐部	触感	好瓜
1	青绿	蜷缩	浊响	清晰	凹陷	硬滑	是
2	乌黑	蜷缩	沉闷	清晰	凹陷	硬滑	是
3	乌黑	蜷缩	浊响	清晰	凹陷	硬滑	是
6	青绿	稍蜷	浊响	清晰	稍凹	软粘	是
7	乌黑	稍蜷	浊响	稍糊	稍凹	软粘	是
10	青绿	硬挺	清脆	清晰	平坦	软粘	否
14	浅白	稍蜷	沉闷	稍糊	凹陷	硬滑	否
15	乌黑	稍蜷	浊响	清晰	稍凹	软粘	否
16	浅白	蜷缩	浊响	模糊	平坦	硬滑	否
17	青绿	蜷缩	沉闷	稍糊	稍凹	硬滑	否

划分前:

好瓜

- 划分前:脐部为根节点,选择训练样本数目最多的类别(当数目相等时,可任选一类,此处优先考虑好瓜),将叶 结点标记为"好瓜",验证集准确率: 3/7 = 42.9%
- **■** 划分后: $\frac{5}{7}$ = 71.4%

验证集

编号	色泽	根蒂	敲声	纹理	脐部	触感	好瓜
4	青绿	蜷缩	沉闷	清晰	凹陷	硬滑	是
5	浅白	蜷缩	浊响	清晰	凹陷	硬滑	是
8	乌黑	稍蜷	浊响	清晰	稍凹	硬滑	是
9	乌黑	稍蜷	沉闷	稍糊	稍凹	硬滑	否
11	浅白	硬挺	清脆	模糊	平坦	硬滑	否
12	浅白	蜷缩	浊响	模糊	平坦	软粘	否
13	青绿	稍蜷	浊响	稍糊	凹陷	硬滑	否

划分后:

可能带来欠拟合风险

后剪枝

- 在已经生成的决策树上进行剪枝,从而得到 简化版的剪枝决策树
- 后剪枝决策树通常比预剪枝决策树保留了更多的分支。一般情况下,后剪枝的欠拟合风险更小,泛化性能往往优于预剪枝决策树

训练集

编号	色泽	根蒂	敲声	纹理	脐部	触感	好瓜
1	青绿	蜷缩	浊响	清晰	凹陷	硬滑	是
2	乌黑	蜷缩	沉闷	清晰	凹陷	硬滑	是
3	乌黑	蜷缩	浊响	清晰	凹陷	硬滑	是
6	青绿	稍蜷	浊响	清晰	稍凹	软粘	是
7	乌黑	稍蜷	浊响	稍糊	稍凹	软粘	是
10	青绿	硬挺	清脆	清晰	平坦	软粘	否
14	浅白	稍蜷	沉闷	稍糊	凹陷	硬滑	否
15	乌黑	稍蜷	浊响	清晰	稍凹	软粘	否
16	浅白	蜷缩	浊响	模糊	平坦	硬滑	否
17	青绿	蜷缩	沉闷	稍糊	稍凹	硬滑	否

验证集

编 号	色泽	根蒂	敲声	纹理	脐部	触感	好瓜
4	青绿	蜷缩	沉闷	清晰	凹陷	硬滑	是
5	浅白	蜷缩	浊响	清晰	凹陷	硬滑	是
8	乌黑	稍蜷	浊响	清晰	稍凹	硬滑	是
9	乌黑	稍蜷	沉闷	稍糊	稍凹	硬滑	否
11	浅白	硬挺	清脆	模糊	平坦	硬滑	否
12	浅白	蜷缩	浊响	模糊	平坦	软粘	否
13	青绿	稍蜷	浊响	稍糊	凹陷	硬滑	否

剪枝方法

- 从底往上针对每个非叶节点,评估用叶节点代替该 节点前后,验证集准确率是否有提升
- 如有提升,则剪枝。否则,不剪枝

4.CART算法

- 01 决策树原理
- 02 ID3算法
- 03 C4.5算法
- 04 CART算法

4.CART算法

CART

- Classification And Regression Tree (CART) 是二叉树,属于决策树的一种
- 用基尼指数来选择属性(分类),或用均方误差来选择属性(回归)
- 顾名思义,CART算法既可以用于创建分类树,也可以用于创建回归树, 两者在构建的过程中稍有差异
- 如果目标变量是离散的,称为分类树
- 如果目标变量是连续的, 称为回归树

CART算法-分类

基尼指数

■ 分类问题中假设有K个类别,样本属于第k的概率为 p_k ,则概率分布的基尼指数定义如下

$$Gini(p) = \sum_{k=1}^{K} p_k (1 - p_k) = 1 - \sum_{k=1}^{K} p_k^2$$
 对于二分类: $Gini(p) = 2p(1 - p)$

■ 给定样本集合D, 其基尼指数定义为

$$Gini(D) = 1 - \sum_{k=1}^{K} \left(\frac{|C_k|}{|D|}\right)^2$$

其中 C_k 指D中第k类样本子集, $|C_k|$ 指子集大小

■ 基尼指数反映了从数据集中随机抽取两个样本,其类别不一致的概率。基尼指数越小,数据集的不确定性越小,与熵类似

CART算法-分类

基尼指数

■ 数据集D根据属性A是否取可能值 α 被划分为 D_1 和 D_2 两部分,则在特征A的条件下,集合D

的基尼指数定义为

$$Gini(D, A) = \frac{|D_1|}{|D|}Gini(D_1) + \frac{|D_2|}{|D|}Gini(D_2)$$

$$Gini(D, A_1 =$$
青年 $) = \frac{5}{15} \times \left(2 \times \frac{2}{5} \times \left(1 - \frac{2}{5}\right)\right) + \frac{10}{15} \times \left(2 \times \frac{7}{10} \times \left(1 - \frac{7}{10}\right)\right) = 0.44$

<u></u>		K		The second second
Gini(p) =	$p_k(1-p_k) = 1 -$	$\left. \right\rangle p_k^2$	对于二分类:	Gini(p) = 2p(1-p)
k=		k=1		

	左	陸	有工作	有房子	信用	类别
1	青	年	否	否	一般	不同意
2	. †	年	否	否	好	不同意
3	₽	年	是	否	好	同意
4	· 📑	年	是	是	一般	同意
5	₽	年	否	否	一般	不同意
6	H	年	否	否	一般	不同意
7	Ħ	年	否	否	好	不同意
8	F	年	是	是	好	同意
9	F	年	否	是	非常好	同意
10)	年	否	是	非常好	同意
11	1 津	绎	否	是	非常好	同意
12	2 幸	绎	否	是	好	同意
13	3	绪	是	否	好	同意
14	4 2	绪	是	否	非常好	同意
15	5 1	缓	否	否	一般	不同意

作业

	年龄	有工作	有房子	信用	类别
1	青年	否	否	一般	不同意
2	青年	否	否	好	不同意
3	青年	是	否	好	同意
4	青年	是	是	一般	同意
5	青年	否	否	一般	不同意
6	中年	否	否	一般	不同意
7	中年	否	否	好	不同意
8	中年	是	是	好	同意
9	中年	否	是	非常好	同意
10	中年	否	是	非常好	同意
11	老年	否	是	非常好	同意
12	老年	否	是	好	同意
13	老年	是	否	好	同意
14	老年	是	否	非常好	同意
15	老年	否	否	一般	不同意

针对左侧数据,利用信息增益比生成决策树

谢谢!