Elliptic surfaces with four singular fibres

Stephan Herfurtner

Peterstrasse 21, W-5300 Bonn 1, Federal Republic of Germany

Received March 22, 1990; in revised form May 14, 1991

Already at the beginning of the sixties, elliptic surfaces were considered by Kodaira [6]; Kas embedded them in a projective bundle over the base curve B [5]; Hunt and Meyer introduced an estimate for the Euler number which depended on the genus of the base curve and the number of singular fibres [4]; for elliptic surfaces with three singular fibres and section over $\mathbb{P}_1\mathbb{C}$, Schmickler-Hirzebruch proved that there are only 36 combinations of singular fibres, subdivided in 12 cases [13].

When studying elliptic surfaces with four singular fibres, section and nonconstant \mathcal{J} -invariant over $\mathbb{P}_1\mathbb{C}$, as presented here, it is practical to distinguish two sets:

$$T^+ = \{I_n (n \ge 0), II, III, IV\}$$
 and $T^- = \{I_n^* (n \ge 0), IV^*, III^*, III^*\},$

where I_0 is a regular fibre. At least one fibre is then of type I_n , n > 0, or I_n^* , n > 0. By a suitable choice of the homological invariant $\mathscr G$ belonging to the $\mathscr J$ -invariant, all possible fibre combinations can be reduced by "twisting" such that at most one fibre is in T^- , see p. 324 or [9, p. 203].

Theorem 6 summarises the results. Table 3 shows all fibre combinations and Weierstrass models. The proof will be given by example. The notation is taken from Kodaira [6] or Barth et al. [1].

Naruki [11], Miranda, and Persson [9, 10, 12] achieved similar results using different methods.

For an elliptic surface $\pi: E \to B$, where E is a two-dimensional compact complex analytic manifold, B is a compact Riemann surface of genus g and π is a proper holomorphic mapping, $E_b:=\pi^{-1}(b)$ is a nonsingular curve of genus 1 for all $b \in B_0$, $B_0:=B-P$, $P:=\{\varrho_1,\varrho_2,\ldots,\varrho_n\}$, $\varrho_i \in B$, $i=1,\ldots,n$. From now on it will be assumed that E is minimal and admits a section, i.e. E has no exceptional curves of the first kind in the fibres. All singular fibres are simple, because there is a section.

The monodromy representation of $\pi: E \to B$ is a homomorphism

$$\chi: \pi_1(B_0, b) \rightarrow SL(2, \mathbb{Z}), \quad b \in B_0$$

which is unique up to conjugation in $SL(2,\mathbb{Z})$. The image of $\pi_1(B_0,b)$ is called the monodromy group. Elements of this group are the monodromy matrices A_{β_i} corresponding to the closed paths β_i around ϱ_i , i=1,...,n.

For each type of singular fibre F_i over ϱ_i there is one $SL(2, \mathbb{Z})$ -conjugate class of monodromy matrices. In Table 1 they are listed in normal and general form for the singular fibres.

The homological invariant \mathscr{G} , a sheaf over B, is equivalent to the monodromy representation. In a base point ϱ with the monodromy matrix A the stalk \mathscr{G}_{ϱ} is isomorphic to $\{x \in \mathbb{Z}^2 | Ax = x\}$.

Each regular fibre E_{ϱ} of an elliptic surface $\pi: E \to B$ is isomorphic to $\mathbb{C}/\omega(\varrho)\mathbb{Z} \oplus \mathbb{Z}$. $\omega: \widetilde{B}_0 \to \mathbb{H}$ with $\omega(\widetilde{\beta}(\widetilde{b})) = A_{\beta}(\omega(\widetilde{b}))$ is a unique holomorphic function. Here A_{β} is the monodromy in $\mathrm{SL}(2,\mathbb{Z})$ of the closed path β in B_0 , $\sigma: \widetilde{B}_0 \to B_0$ is the universal covering of B_0 , \mathbb{H} the upper halfplane, $\sigma(\widetilde{b}) = b$ and

$$\pi_1(B_0) \rightarrow \operatorname{Aut}(\widetilde{B}_0)$$

$$\beta \mapsto \widetilde{\beta}$$

is the deck transformation.

There is a mapping $\mathcal{J}: B_0 \to SL(2, \mathbb{Z}) \setminus \mathbb{H}$, which allows the diagram to commute:

$$\begin{array}{ccc}
\tilde{B}_0 & \xrightarrow{\omega} \mathbb{H} \\
\downarrow^{\sigma} & \downarrow^{\tilde{J}} \\
\frac{\tilde{B}_0}{\pi_1(B_0, b)} & = B_0 & \xrightarrow{J} \mathrm{SL}(2, \mathbb{Z}) \backslash \mathbb{H} \cong \mathbb{C},
\end{array}$$

where $\tilde{\mathbf{y}}$ is the elliptic modular function.

The functional invariant of E is defined as the holomorphic continuation of \mathscr{J} on B in $SL(2,\mathbb{Z})\backslash \mathbb{H}^* \cong \mathbb{P}_1\mathbb{C}$, $\mathbb{H}^* = \mathbb{H} \cup \mathbb{P}_1\mathbb{Q}$. The values of \mathscr{J} in $\varrho_i \in P$, depending on the type of the singular fibre over ϱ_i , are 0, 1 or ∞ , except for I_0^* .

Let $P := \{ \varrho_i \in B | i = 1, ..., n \}$ $n \ge 2$ be the exceptional set and

$$\chi: \pi_1(\mathbf{B}_0, *) \rightarrow \operatorname{Aut}^+(H_1(E_*, \mathbb{Z})) \cong \operatorname{SL}(2, \mathbb{Z})$$

the monodromy representation of the fundamental group, where

$$\pi_1(B_0, *) \cong \left\langle a_i, b_i, c_j \mid_{j=1, ..., n} \mid \prod_{i=1}^g [a_i, b_i] \prod_{j=1}^n c_j \right\rangle, \text{ with } [a_i, b_i] = a_i b_i a_i^{-1} b_i^{-1}.$$

 \mathcal{J} is the functional invariant of the elliptic surface $E \rightarrow B$.

The extension of the homological invariant \mathcal{G}_0 over B_0 to \mathcal{G} over B is uniquely given by the monodromy representation χ , which is determined by the \mathcal{J} -invariant except for its sign, i.e. there are 2^{2g+n-1} different homological invariants, depending on choice of sign for the matrices $A_i = \chi(a_i)$, $B_i = \chi(b_i)$, and $C_j = \chi(c_j)$, i-1, g: j-1, g: j-1

$$i=1,...,g; j=1,...,n$$
, in the product $\prod_{i=1}^{g} [A_i, B_i] \prod_{j=1}^{n} C_j = 1$.

Definition. Two elliptic surfaces $\pi: E \to B$ and $\pi': E' \to B'$ are isomorphic, if there are biholomorphic mappings f, g, so that the diagram

$$E \xrightarrow{J} E'$$

$$\pi \downarrow \qquad \qquad \downarrow \pi'$$

$$B \xrightarrow{g} B'$$

commutes.

Let $\mathcal{F}(\mathcal{J}, \mathcal{G})$ be the family of isomorphism classes of elliptic surfaces over B with only simple singular fibres with functional invariant \mathcal{J} and homological invariant \mathcal{G} . For each such family $\mathcal{F}(\mathcal{J}, \mathcal{G})$ Kodaira constructed a basic member \mathcal{B} , which is defined by a global holomorphic section $\sigma: B \to E$ [6, Sect. 8], and proved the following [6, Sects. 9, 10]:

Theorem 1. Let $\pi: E \to B$ be an elliptic surface with a global section, belonging to the family $\mathcal{F}(\mathcal{J}, \mathcal{G})$. Then E is isomorphic to the uniquely determined basic member \mathcal{B} of the family $\mathcal{F}(\mathcal{J}, \mathcal{G})$.

Kas described this using the Weierstrass model [5].

Let $\pi: E \to B$ be a minimal elliptic surface. K(E) and K(B) are the function fields of E and of B respectively. π induces a homomorphism $\pi^*: K(B) \to K(E)$, and K(E) is a transcendental extension of K(B) of transcendence degree and genus one. The section $\sigma: B \to E$ determines a rational point. E is birationally equivalent to the subscheme E^* in $\text{Proj}(\mathcal{O} \oplus \mathcal{O}(2L) \oplus \mathcal{O}(3L))$, which is given by the equation

$$V^2W = 4U^3 - g_2UW^2 - g_3W^3$$

where \mathcal{O} is the structure sheaf of B, L is a line bundle and where $g_2 \in H^0(B, \mathcal{O}(4L))$ and $g_3 \in H^0(B, \mathcal{O}(6L))$ are sections with $\Delta = g_2^3 - 27g_3^2 \neq 0$.

Theorem 2 (Kas). E^* is an algebraic surface with rational double points as the only singularities. E is the minimal resolution of E^* . E^* is determined by g_2, g_3 up to \mathbb{C}^* -operation

$$(g_2,g_3) \rightarrow (\lambda^4 g_2,\lambda^6 g_3), \quad \lambda \in \mathbb{C}^* = \mathbb{C} - \{0\}.$$

 g_2, g_3 satisfy

(i) $\Delta = g_2^3 - 27g_3^2 \neq 0$,

(ii) $\min(3v_p(g_2), 2v_p(g_3)) < 12$ for all $p \in B$,

where $v_p(g_2)$, $v_p(g_3)$, and $v_p(\Delta)$ are the order of the zeroes of g_2 , g_3 and Δ in p. The singular fibre in E^* over p consists of the minimal resolution of the rational double point and the rational curve, which is defined by the section σ . The type of rational double point and thereby the type of the singular fibre determines $v_p(g_2)$, $v_p(g_3)$, and $v_p(\Delta)$. E^* is called the Weierstrass model of the elliptic surface.

The \mathscr{J} -invariant of the model is $\mathscr{J} = \frac{g_2^3}{\Lambda}$.

Meyer proved the following [7]: For each locally trivial fibre bundle $E \to X$ it is possible to compute the signature of E as the signature of the E_2 -term of the Leray spectral sequence of the fibration, i.e. for an elliptic fibration $E \to B$:

Let $B_0:=B-\bigcup_{i=1}^n D_i$, with D_i being disjoint small disks around the base points ϱ_i of the singular fibres. $E_0=E_{|B_0}$ is called the "smooth" part and $E_s:=E-E_0$ the "singular" part of E. The signature τ of the fibration is

$$\tau(E) = \tau(E_0) + \tau(E_s).$$

Let F_i be the singular fibre over $Q_i \in B$, then:

$$\tau(E_s) = \sum_{i=1}^n \tau(F_i),$$

With $\tau(F_i) = \tau(E_{|D_i})$.

-	
ᆂ	
五	
æ	

Ī	Euler	Monod	Monodromy matrix	Ō	Orders of zeroes	ũ	Value	Signa	Signature of
	1000	Normal form A	Conjugate form TAT-1	V,(g.)	V.(@3)	(A)	o (6)	the sing	the singular libre
			$T = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in SL(2, \mathbf{Z})$		(SON)	Š	Ŷ.	a(F)	$\phi(F)$
	0	$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$	$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$	0	0	0	≠0,1,∞	0	0
	z z	$\begin{bmatrix} 1 & n \\ 0 & 1 \end{bmatrix} \approx : P^{n}$	$\begin{bmatrix} 1 - acn & a^2n \\ -c^2n & 1 + acn \end{bmatrix}$ a, c relatively prime	0	0	E	Pole of order	1-n	$\frac{1-\pi}{3}$
	2	$\begin{bmatrix} 1 & 1 \\ -1 & 0 \end{bmatrix} = : S$	$\begin{bmatrix} ad - bd - ac & a^2 + b^2 - ab \\ cd - c^2 - d^2 & bd + ac - bc \end{bmatrix}$	ΛII	-	7	0	0	4 ₩
	3	$\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} = :J$	$\begin{bmatrix} -bd - ac & a^2 + b^2 \\ -c^2 - d^2 & ac + bd \end{bmatrix}$	—	i≥2	89	4	1	
	4	$\begin{bmatrix} 0 & 1 \\ -1 & -1 \end{bmatrix} = S^2$	$\begin{bmatrix} bc - bd - ac & a^2 + b^2 - ab \\ cd - c^2 - d^2 & bd + ac - ad \end{bmatrix}$	≥2	2	4	0	-2	c4m
			Γ.	2	۸3	۰			
	9	0 -1	-1 0	>2	3	9	0	4	0
			٦, ٢	2	3	9	$+0,1,\infty$		
,	n+6	$\begin{bmatrix} -1 & -n \\ 0 & -1 \end{bmatrix} = -P^n$	$\begin{bmatrix} -1 + acn & -a^2n \\ c^2n & -1 - acn \end{bmatrix}$ a, c relatively prime	2	3	9+u	Pole of order	-n-4	3 3 1
	10	$\begin{bmatrix} 0 & -1 \\ 1 & 1 \end{bmatrix} = S^{-1} = -S^2$	$\begin{bmatrix} ac+bd-bc & ab-a^2-b^2 \\ c^2+d^2-cd & ad-bd-ac \end{bmatrix}$	4	5	10	0	8 0	 4 6
	6	$\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} = J^{-1} = -J$	$\begin{bmatrix} bd + ac & -a^2 - b^2 \\ c^2 + d^2 & -ac - bd \end{bmatrix}$	3	≥5	6	1	<i>L</i> -	-1
	8	$\begin{bmatrix} -1 & -1 \\ 1 & 0 \end{bmatrix} = -S = S^{-2}$	$\begin{bmatrix} ac + bd - ad & ab - a^2 - b^2 \\ c^2 + d^2 - cd & bc - bd - ac \end{bmatrix}$	N 3	4	80	0	9-	74m
									-

There exists a uniquely determined mapping

$$\phi: SL(2, \mathbb{Z}) \rightarrow \frac{1}{3}\mathbb{Z}$$

so that

$$\tau(E_0) = -\sum_{i=1}^n \phi(\gamma_i);$$

where γ_i is the monodromy of a closed path around q_i . Then:

$$\tau(E) = \sum_{i=1}^{n} (\tau(F_i) - \phi(\gamma_i)).$$

The values of $\tau(F_i)$ and $\phi(\gamma_i)$ are listed in Table 1:

$$\tau(F_i) + e(F_i) = \begin{cases} 1 & \text{if } F_i \text{ has type } I_n, \ n > 0, \\ 2 & \text{else} \end{cases}$$

where $e(F_i)$ is the Euler number of the singular fibre F_i .

Furthermore:

Lemma 3 (Hunt [3]). For the signature of the "smooth" part is

$$|\tau(E_0)| \leq 4g - 4 + 2n,$$

where g is the genus of the base curve.

It is known that for each minimal elliptic surface

$$\tau(E) = -\frac{2}{3}e(E).$$

Noethers formula implies that for compact complex surfaces S

$$\chi(S) = \frac{\tau(S) + e(S)}{4},$$

where $\chi(S)$ is the arithmetic genus of S and for an elliptic surface E

$$\chi(E) = \frac{1}{12}e(E).$$

Calculation of the possible fibre combinations

With the above notation, let $E \to \mathbb{P}_1 \mathbb{C}$ be a minimal elliptic surface with a section σ and nonconstant \mathscr{J} -invariant. The singular fibres F_i are over ϱ_i , $\varrho_i + \varrho_j$ for i + j. Let

$$P := \{\varrho_1, \varrho_2, \varrho_3, \varrho_4\}$$
 and $\chi : \pi_1(\mathbb{P}_1\mathbb{C} - P, *) \rightarrow SL(2, \mathbb{Z})$

be the monodromy representation of the fundamental group

$$\pi_1(\mathbb{P}_1\mathbb{C}-P,*)=\langle a_1,a_2,a_3,a_4|a_1a_2a_3a_4=1\rangle$$
,

where a_i is a closed path around ϱ_i and $A_i := \chi(a_i)$, i = 1, ..., 4, is a monodromy matrix. The homological invariant $\mathscr G$ of the elliptic surface E is determined by A_i with

$$A_1 A_2 A_3 A_4 = 1, (1)$$

where A_i , i=1,...,4, is conjugate to a matrix in $M=M^+\cup M^-$ with

$$M^+:=\{\mathrm{Id},P^n\ (n>0),\ S,J,S^2\}$$

and

$$M^-$$
:={-Id, -Pⁿ (n>0), -S, -J, -S²} (see Table 1).

 \mathcal{G} belongs to the functional invariant \mathcal{J} . For each functional invariant \mathcal{J} and associated homological invariant \mathcal{G} there is exactly one elliptic surface \mathcal{B} over $\mathbb{P}_1\mathbb{C}$ with section. \mathcal{B} is the basic member of $\mathcal{F}(\mathcal{J},\mathcal{G})$.

Its' Weierstrass model E^* will be calculated as follows: Let $G_2 = g_2$, $g_2 \in H^0(\mathbb{P}_1\mathbb{C}, \mathcal{O}(4L))$; $G_3 = 3\sqrt{3}g_3$, $g_3 \in H^0(\mathbb{P}_1\mathbb{C}, \mathcal{O}(6L))$, where g_2 , g_3 are the sections which determine the Weierstrass model. The matrices $\widetilde{A}_i = \varepsilon_i A_i$, i = 1, ..., 4, $\varepsilon_i = \pm 1$, with $\widetilde{A}_1 \widetilde{A}_2 \widetilde{A}_3 \widetilde{A}_4 = 1$ and therefore $\varepsilon_1 \varepsilon_2 \varepsilon_3 \varepsilon_4 = 1$, determine the homological invariant $\widetilde{\mathscr{G}}$. The model \widetilde{E}^* of the basic member $\widetilde{\mathscr{B}} \in \mathscr{F}(\mathscr{J}, \widetilde{\mathscr{G}})$ can easily be calculated from E^* by "transfering of *" and "*" pairs.

"*" a fibre over ϱ_i corresponds to multiplying the monodromy matrix A_i with —Id. I_n , II, III, and IV change to I_n^* , IV^* , III^* , and II^* respectively and vice versa (see Table 1).

The Euler number of the singular fibre increases or decreases by six respectively. In the Weierstrass model the polynomials G_2 , G_3 , and Δ are multiplied with $(X - \varrho_i Y)^{2, 3, \text{ and } 6 \text{ resp.}}$, if $A_i \in M^+$ and $\varepsilon_i = -1$, or divided by the same expression, if $A_i \in M^-$ and $\varepsilon_i = -1$.

In the "transfer of *" of the singular fibre $F_i \in T^-$ over ϱ_i to the singular fibre $F_j \in T^+$ over ϱ_j (in short, from ϱ_i to ϱ_j), the monodromy matrices A_i and A_j will be multiplied with —Id, the polynomials G_2 , G_3 , and Δ with $\frac{(X-\varrho_j Y)^{2,3,\,\text{and 6 resp.}}}{(X-\varrho_i Y)^{2,3,\,\text{and 6 resp.}}}$.

So it suffices to restrict the calculation to the canonical basic member $\mathscr{B} \in \mathscr{F}(\mathscr{J}, \mathscr{G})$. \mathscr{G} is determined by $A_1A_2A_3A_4=1$, where at most one A_i is conjugate to a matrix in M^- . At least one singular fibre has to be of type I_n or I_n^* . For the classification of surfaces, which have one fibre of type I_0 , a regular fibre, see [13].

Lemma 4. The Euler number of an elliptic surface with four singular fibres in T^+ over $\mathbb{P}_1\mathbb{C}$ is twelve.

Proof. The Euler number of an elliptic surface, which depends on the Euler number of the singular fibres only, is:

$$e(E) = 12\chi(E) = 3(e(E_s) + \tau(E_s) + \tau(E_0)) \le 3(2n + 4g - 4 + 2n),$$

where n is the number of singular fibres and g is the genus of the base curve. For g=0, this is

$$0 < e(E) \leq 12(n-1).$$

Let n be even and all singular fibres of E in T^+ . "*" all these fibres gives E^* with

$$e(E^*) = e(E) + 6n \le 12(n-1)$$
.

Therefore

$$e(E) \leq 6(n-2).$$

For n=4 this proofs the lemma.

Let n be odd and at least n-1 singular fibres of E in T^+ . By "*" all these fibres this gives

$$e(E) \leq 6(n-1)$$
.

- **Theorem 5.** Let $E \to \mathbb{P}_1 \mathbb{C}$ be a minimal elliptic surface with section, nonconstant \mathcal{I} -invariant and four singular fibres, of which at most one is in T^- . Up to permutation and "transfering of *" there are only those combinations of singular fibres which are listed in Table 3.
- (i) If one singular fibre is in T^- , three in T^+ , the Weierstrass model depends on a parameter. Given four different base points, in the case $I_1^*I_1I_1$ III there exist four, in the cases $I_1^*I_1I_2II$ and $I_1I_1IIIV^*$ there exist two elliptic surfaces, depending on the I-invariant, and for all other fibre combinations there exists precisely one elliptic surface.
- (ii) If all four singular fibres are in T⁺, then the Weierstrass models are determined uniquely up to isomorphism, except for one combination. In the case I, I6 II III there are two nonisomorphic models.

In Table 3 the Weierstrass models including the *J*-invariant and cross ratio of the base points for $\Delta = G_2^3 - 27G_3^2$ are listed.

Corollary 6. All elliptic surfaces with four singular fibres can be deduced from Table 3 by the following methods:

- (i) "*" the singular fibres in pairs;
 (ii) "transfering of *" of singular fibres.

Proof. 1. If one singular fibre is of type I_0^* , a surface with three singular fibres is obtained by "transfering of *". So these elliptic surfaces are easily calculated [13, p. 120ff., cases 6–127.

(In the following it is assumed that n>0 for all fibres of type I_n or I_n^* .)

2. Determination of all possible fibre combinations.

Because of (1), it follows for the monodromy matrices $A_i \in SL(2, \mathbb{Z})$, i = 1, ..., 4 that:

$$\operatorname{trace}(A_1 A_2) = \operatorname{trace}((A_3 A_4)^{-1}) = \operatorname{trace}(A_3 A_4).$$
 (2)

The trace is preserved under conjugation. So let A_2 and A_4 be in normal form, A_1 and A_3 be conjugate to $\pm P^n$, S, J, S^2 (see Table 1). Table 2 lists the trace $(A_i A_{i+1})$ for different fibre combinations.

In the following the calculation will be separate according to the occurrence of a fibre $F_1 \in T^-$ and the number of fibres of type I_n .

- 2.1. One singular fibre in T^- . Assume that this fibre F_1 is of type I_n^* .
- 2.1.1. F_3 of type I_n , n > 0; F_2 , $F_4 \in T^+ \{I_n\}$. See Table 2. There is $\operatorname{trace}(A_1 A_2) \ge 0$ and trace $(A_3A_4) \leq 0$ with "=" exactly for $F_2 = F_4 = II$. It follows that

$$-1+n_1(a_1^2+a_1c_1+c_1^2)=1-n_3(a_3^2+a_3c_3+c_3^2).$$

Because of $a_i^2 + a_i c_i + c_i^2 > 0$, we have $n_1 = n_3 = 1$ and the combination is $I_1^* I_1 II II$.

2.1.2. F_2 , F_3 , $F_4 \in T^+ - \{I_n\}$. Table 2 shows that the Eq. (2) cannot be satisfied.

Table 2

Singular fibre	Trace $(A_i A_{i+1})$	
$I_{n_{i}}I_{n_{i+1}}$ $I_{n_{i}}II$ $I_{n_{i}}III$ $I_{n_{i}}IIV$ $IIII$ $IIIII$ $IIIII$ $IIIII$ $IIIIII$ $IIIIIV$ $IIIIIIIIII$	$\begin{aligned} 2 - c_i^2 n_i n_{i+1} &\leq 2 \\ 1 - n_i (a_i^2 + a_i c_i + c_i^2) &\leq 0 \\ - n_i (a_i^2 + c_i^2) &\leq -1 \\ - \left[1 + n_i (a_i^2 + a_i c_i + c_i^2) \right] &\leq -2 \\ - \left[(b_i - \frac{1}{2} a_i + \frac{1}{2} d_i)^2 + (c_i + \frac{1}{2} a_i - \frac{1}{2} d_i)^2 \right] \\ - (a_i^2 - a_i b_i + b_i^2 + c_i^2 - c_i d_i + d_i^2) &\leq -1 \\ - \left[(a_i - \frac{1}{2} b_i + \frac{1}{2} c_i)^2 + (d_i + \frac{1}{2} b_i - \frac{1}{2} c_i)^2 \right] \\ - (a_i^2 + b_i^2 + c_i^2 + d_i^2) &\leq -2 \\ - (a_i^2 + a_i c_i + c_i^2 + b_i^2 + b_i d_i + d_i^2) &\leq -1 \\ - \left[(b_i - \frac{1}{2} a_i + \frac{1}{2} d_i)^2 + (c_i + \frac{1}{2} a_i - \frac{1}{2} d_i)^2 \right] \\ - 2 + c_i^2 n_i n_{i+1} &\geq -2 \\ -1 + n_i (a_i^2 + a_i c_i + c_i^2) &\geq 0 \\ n_i (a_i^2 + c_i^2) &\geq 1 \end{aligned}$	$-2 + \frac{1}{2}(b_i^2 + c_i^2)] \le -2$ $-2 + \frac{1}{2}(a_i^2 + d_i^2)] \le -1$ $a_i, c_i \text{ relatively prime}$
$I_{n_i}^* III$ $I_{n_i}^* IV$	$1 + n_i(a_i^2 + a_ic_i + c_i^2) \ge 2$	a_i, c_i relatively prime a_i, c_i relatively prime

For F_2 , F_3 , F_4 of type I_n , n>0, or F_2 , F_3 of type I_n , n>0, $F_4 \in T^+ - \{I_n\}$ similar calculations as above show that the only possible fibre combinations are those which are listed in Table 3.

2.2. Four singular fibres in T^+ .

2.2.1. F_1 , F_2 , F_3 , F_4 of type I_n , n>0. Eq. (2) is equivalent to $c_1^2 n_1 n_2 = c_3^2 n_3 n_4$, see Table 2. If $c_1 = c_3 = 0$, one easily deduces a contradiction $A_1 A_2 A_3 A_4 \neq 1$ to Eq. (1). So Eq. (2) is now equivalent to

$$n_1 n_2 n_3 n_4 = \frac{c_3^2}{c_1^2} n_3^2 n_4^2.$$

So $\prod_{i=1}^{4} n_i$ is a square and $\sum_{i=1}^{4} n_i = 12$. Only the fibre combinations, which are listed in Table 3, exist up to permutation.

2.2.2. F_1 , F_3 of type I_n , n>0; F_2 , $F_4 \in T^+ - \{I_n\}$. Lemma 5 shows

$$n_1 + n_3 = 12 - e(F_2) - e(F_4)$$
.

 $I_5II I_3II$ and $I_3II I_3IV$ are excluded, because of

$$0 \equiv 5(a_1^2 + a_1c_1 + c_1^2) \equiv 3(a_3^2 + a_3c_3 + c_3^2) \mod 105$$

and

$$0 \equiv 3(a_1^2 + a_1c_1 + c_1^2) \equiv 3(a_3^2 + a_3c_3 + c_3^2) + 2 \mod 3,$$

see Table 2 and (2). The remaining fibre combinations, up to permutation of the fibres, are those which are listed in Table 3, and the combination I_3I_1IVIV . Explicit calculation of the Weierstrass model shows, that the last combination is impossible.

- 2.2.3. F_1 of type I_n , n>0; F_2 , F_3 , $F_4 \in T^+ \{I_n\}$. Lemma 5 shows that the Euler number is twelve. Only the combinations listed in Table 3 and $I_1IIIIVIV$, $I_2IIIVIV$ can be possible up to permutation. In the last two cases G_2 and G_3 must have the degree ≥ 5 and ≥ 6 or ≥ 5 and 5 respectively (see Table 1). This, however, is impossible.
- 2.2.4. If there are three fibres of type I_n , one gets all combinations of Table 3 and $I_4I_3I_1IV$ as in 2.2.2. This fibre combination can be excluded by explicit calculation.
- 3. Calculation of the polynomials G_2 , G_3 , and Δ in homogeneous coordinates (X, Y) of $\mathbb{P}_1\mathbb{C}$

Equation $\Delta = G_2^3 - G_3^2$ gives a nonlinear system of equations for the coefficients of G_2 , G_3 . Common factors of G_2^3 , G_3^2 , and Δ will be cancelled.

Note. Let
$$\bar{\Delta} = \frac{G_2^3 - G_3^2}{\gcd(G_2^3, G_3^2)} = \frac{\Delta}{\gcd(G_2^3, G_3^2)}$$
 (see Table 1) and let C_i be the coefficient of $X^{k-i}Y^i$ in $\bar{\Delta}$, where k is the sum of the n_j over the numbers of the fibres of types I_{n_j} and $I_{n_j}^*$ of the surface with $0 \le i \le k$. The base points are written as quadruple $(\varrho_1, \varrho_2, \varrho_3, \varrho_4)$.

3.1. One singular fibre in T^- .

$$I_1^*I_1IIII$$
.

It may be assumed that the singular fibres are over $(0, \infty, 1, \varrho_4)$. The orders of zeroes at the base points have to be:

ę	$v_{\varrho}(G_2)$	$v_{\varrho}(G_3)$	$\nu_{\varrho}(\Delta)$
0	2	3	7
∞	0	0	1
1	≥1	1	2
Q ₄	≧1 ≧1	1	2
Sum	≧4	5	12

The equation $\Delta = G_2^3 - G_3^2$ with

$$\begin{split} G_2(X, Y) &= \mu X^2(X - Y)(X - \varrho_4 Y), \\ G_3(X, Y) &= \nu X^3(X - Y)(X - \varrho_4 Y)(X + BY), \\ \Delta(X, Y) &= \sigma \mu^3 X^7 Y (X - Y)^2 (X - \varrho_4 Y)^2, \end{split}$$

where $\mu, \nu, \sigma \in \mathbb{C}^*$ produces the following system of equations with $\mu^3 - \nu^2 = 0$:

$$C_1 = -(\varrho_4 + 1 + 2B) = \sigma$$
,
 $C_2 = \varrho_4 - B^2 = 0$.

It follows that $\varrho_4 = B^2 \pm 0$ and $\sigma = -(B+1)^2$. Consequently one gets

$$G_2(X, Y) = \mu X^2(X - Y)(X - B^2 Y),$$

$$G_3(X, Y) = \nu X^3(X - Y)(X - B^2 Y)(X + BY),$$

$$\Delta(X, Y) = -(B+1)^2 \mu^3 X^7 Y(X - Y)^2 (X - B^2 Y)^2,$$

where $B \neq -1, 1$.

The cross ratio of the base points $CR(I_1^*I_1|IIII)$ is $\frac{1}{B^2}$. If the base points are given, there exist two different Weierstrass models, depending on the choice of the \mathscr{J} -invariant. Let $\widetilde{\Delta} = 27\Delta$ and $\widetilde{G}_2 = 3G_2$. Table 3 lists the surface for $\mu = 1$, $\nu = 1$, $\widetilde{\Delta}$ as Δ and \widetilde{G}_2 as G_2 in abuse of the notation. G_2 and G_3 are uniquely determined up to a transformation $(G_2, G_3) \rightarrow (h^4 G_2, h^6 G_3)$, $h \in \mathbb{C}^*$. Consequently in this calculation, as in the following ones, there are values given for μ and ν , so that one arrives at the polynomials G_2 , G_3 , and Δ as above which are listed in Table 3.

- 3.2. Four singular fibres in T^+ .
- 3.2.1. Calculation by using the common divisor of G_2 , G_3 , and Δ .

$$I_4I_4I_2I_2$$
.

The orders of zeroes have to be:

Q	$v_{\varrho}(G_2)$	$v_{\varrho}(G_3)$	$\nu_{\varrho}(\Delta)$
Q ₁	0	0	4
02	0	0	4
03	0	0	2 2
Q1 Q2 Q3 Q4	0	0	2
Sum	0	0	12

Therefore

$$-\overline{\Delta}^2 = \Delta = G_2^3 - G_3^2 \tag{4}$$

with $\overline{\Delta}$, $G_3 \in H^0(\mathbb{P}_1\mathbb{C}, \mathcal{O}(6L))$, $G_2 \in H^0(\mathbb{P}_1\mathbb{C}, \mathcal{O}(4L))$. (4) is equivalent to

$$G_2^3 = G_3^2 - \overline{\Delta}^2 = (G_3 - \overline{\Delta})(G_3 + \overline{\Delta}).$$

It follows from (3) that G_2 , G_3 , and $\bar{\Delta}$ are relatively prime. Therefore are

$$H_1^3 = G_3 - \bar{\Delta}$$

and

$$H_2^3 = G_3 + \bar{\Delta}$$

with $H_1, H_2 \in H^0(\mathbb{P}_1\mathbb{C}, \mathcal{O}(2L))$ relatively prime. It is

$$\bar{\Delta} = \frac{1}{2}(H_2^3 - H_1^3) = \frac{1}{2}(H_2 - H_1)(\eta^2 H_2 - \eta H_1)(\eta H_2 - \eta^2 H_1)$$

with $\eta = e^{\frac{2\pi i}{3}}$. Because of (3) $\bar{\Delta}$ has two double zeroes at ϱ_1 and ϱ_2 and two single at ϱ_3 and ϱ_4 . Let $J_1 := H_2 - H_1$

$$J_{2} := \eta^{2} H_{2} - \eta H_{1},$$

$$J_{3} := \eta H_{2} - \eta^{2} H_{1}$$

with $J_i \in H^0(\mathbb{P}_1\mathbb{C}, \mathcal{O}(2L))$ i=1,2,3. J_1,J_2,J_3 are relatively prime. It can be assumed that the double zeroes of $\overline{\Delta}$ are in J_2 at $\varrho_1=0$ and in J_3 at $\varrho_2=\infty$, therefore $J_2=X^2$ and $J_3=Y^2$. It follows:

$$\begin{split} J_1 &= -(X^2 + Y^2), \\ H_1 &= \frac{1}{1 - \eta} (X^2 - \eta Y^2), \\ H_2 &= \frac{1}{\eta^2 - 1} (X^2 - \eta^2 Y^2), \\ \tilde{\Delta} &= -\frac{1}{2} X^2 Y^2 (X^2 + Y^2) \end{split}$$

and

$$G_2(X, Y) = -\frac{1}{3}(X^4 + X^2Y^2 + Y^4),$$

$$G_3(X, Y) = \frac{1}{6\eta(\eta - 1)}(2X^6 + 3X^4Y^2 - 3X^2Y^4 - 2Y^6),$$

$$\Delta(X, Y) = -\frac{1}{4}X^4Y^4(X^2 + Y^2)^2.$$

The cross ratio is $CR(I_4I_4|I_2I_2) = -1$. Table 3 gives the surface after the transformations $(X, Y) \rightarrow (X, iY)$ and $(G_2, G_3) \rightarrow (-12G_2, 24i)/3G_3$.

Using this method, it is also possible to calculate the Weierstrass models of $I_3I_3I_3I_3$, I_4I_4IIII , $I_3I_3IIIIII$ [2].

3.2.2. All other fibre combinations are calculated using the same method as in 3.1 [2]. $I_7I_1I_1III$, $I_6I_2I_1III$, and I_6III_1III .

An Aut(P, C)-operation transforms the singular fibres over the base points $(\infty, \varrho_2, \varrho_3, 0)$. The fibres over ∞, ϱ_2 are either of type I_7I_1 or of type I_6I_2 and I_6II respectively, therefore the three calculations differ by a common factor of $G_2^3 - G_3^2$ and Δ only.

Let
$$i:=\begin{cases} 0 & \text{at} \quad I_7 I_1 I_1 III \\ 1 & \text{at} \quad I_6 I_2 I_1 III \text{ and } I_6 II I_1 III. \end{cases}$$

The orders of zeroes have to be:

Q	$v_{\varrho}(G_2)$	$v_{\varrho}(G_3)$	$ \begin{array}{c} i = 0 \\ v_{\varrho}(\Delta) \end{array} $	$i = 1$ $v_{\varrho}(\Delta)$
∞ Q ₂ Q ₃ 0	0 0(≥1) 0 1	0 0(1) 0 ≥≥2	7 1 1 3	6 2 1 3
Sum	1(≧2)	≥2(3)	12	12

The orders of zero for the fibre over ϱ_2 in $T^+ - \{I_n\}$ are in brackets.

The equation $\Delta = G_2^3 - G_3^2$ with

$$G_2(X, Y) = \mu X(X^3 + A_1 X^2 Y + A_2 X Y^2 + A_3 Y^3),$$

$$G_3(X, Y) = \nu X^2 (X^4 + B_1 X^3 Y + B_2 X^2 Y^2 + B_3 X Y^3 + B_4 Y^4),$$

$$\Delta(X, Y) = \sigma \mu^3 X^3 Y^{7-i} (X - \varrho_2 Y)^{1+i} (X - \varrho_3 Y),$$

where $\mu, \nu, \sigma \in \mathbb{C}^*$; i=0,1 produces the following system of equations with $\mu^3 - \nu^2 = 0$:

$$\begin{split} &C_1 = 3A_1 - 2B_1 = 0\,, \\ &C_2 = 3A_1^2 + 3A_2 - B_1^2 - 2B_2 = 0\,, \\ &C_3 = A_1^3 + 3A_3 + 6A_1A_2 - 2B_3 - 2B_1B_2 = 0\,, \\ &C_4 = 3A_2^2 + 3A_1^2A_2 + 6A_1A_3 - B_2^2 - 2B_4 - 2B_1B_3 = 0\,, \\ &C_5 = 3A_1A_2^2 + 3A_1^2A_3 + 6A_2A_3 - 2B_1B_4 - 2B_2B_3 = 0\,, \\ &C_6 = A_2^3 + 3A_3^2 + 6A_1A_2A_3 - B_3^2 - 2B_2B_4 = \begin{cases} 0 & i = 0 \\ \sigma & i = 1\,, \end{cases} \\ &C_7 = 3A_1A_3^2 + 3A_2^2A_3 - 2B_3B_4 = \begin{cases} \sigma & i = 0 \\ -(2\varrho_2 + \varrho_3)\sigma & i = 1\,, \end{cases} \\ &C_8 = 3A_2A_3^2 - B_4^2 = \begin{cases} -(\varrho_2 + \varrho_3)\sigma & i = 0 \\ (2\varrho_2\varrho_3 + \varrho_2^2)\sigma & i = 1\,, \end{cases} \\ &C_9 = A_3^3 = \begin{cases} \varrho_2\varrho_3\sigma & i = 0 \\ -\varrho_2^2\varrho_3\sigma & i = 1\,. \end{cases} \end{split}$$

To fulfil $C_1 = C_2 = C_3 = 0$, let

$$A_1 = 2\alpha$$
, $B_1 = 3\alpha$,
 $A_2 = 2\beta - \alpha^2$, $B_2 = 3\beta$,
 $A_3 = 2\gamma$, $B_3 = 3\gamma - 2\alpha^3 + 3\alpha\beta$,

where $\alpha, \beta, \gamma \in \mathbb{C}$.

From $C_4 = 0$ it follows that:

$$B_4 = \frac{3}{2} [(\beta - \alpha^2)^2 + 2\alpha\gamma]$$

and from $C_5=0$:

$$3(\beta-\alpha^2)[2\gamma-\alpha(\beta-\alpha^2)]=0.$$

Assume: 1) $\beta - \alpha^2 = 0$. The result is

$$\begin{split} C_6 &= 3\gamma^2 = \begin{cases} 0 & i = 0 \\ \sigma & i = 1 \end{cases}, \\ C_7 &= 6\alpha\gamma^2 = \begin{cases} \sigma & i = 0 \\ -(2\varrho_2 + \varrho_3)\sigma & i = 1 \end{cases}, \\ C_8 &= 3\alpha^2\gamma^2 = \begin{cases} -(\varrho_2 + \varrho_3)\sigma & i = 0 \\ (2\varrho_2\varrho_3 + \varrho_2^2)\sigma & i = 1 \end{cases}, \\ C_9 &= 8\gamma^3 = \begin{cases} \varrho_2\varrho_3\sigma & i = 0 \\ -\varrho_2^2\varrho_3\sigma & i = 1 \end{cases}. \end{split}$$

 γ may not equal zero, so i=1. Consequently the only solution is

$$\gamma = \frac{1}{18}\alpha^{3},$$

$$\varrho_{2} = -\frac{1}{3}\alpha,$$

$$\varrho_{3} = -\frac{4}{3}\alpha,$$

$$\sigma = \frac{1}{108}\alpha^{3}.$$

If $\alpha = -3$:

$$G_2(X, Y) = \mu X(X^3 - 6X^2Y + 9XY^2 - 3Y^3),$$

$$G_3(X, Y) = \frac{1}{2}\nu X^2(2X^4 - 18X^3Y + 54X^2Y^2 - 63XY^3 + 27Y^4),$$

$$\Delta(X, Y) = \frac{27}{4}\mu^3 X^3 Y^6 (X - Y)^2 (X - 4Y)$$

with $\mu^3 - v^2 = 0$, $\mu, v \in \mathbb{C}^*$.

The cross ratio is $CR(I_6I_2|I_1III) = -\frac{1}{3}$. Table 3 shows the surface for $\mu = 4$, $\nu = 8$.

2)
$$\beta - \alpha^2 \neq 0$$
.
 $C_5 = 0$ leads to
$$\gamma = \frac{1}{2}\alpha(\beta - \alpha^2)$$
.

After the substitution of $\delta = \beta - \alpha^2$, it follows for C_6 , C_7 , C_8 , and C_9 that:

$$i = 0 i = 1$$

$$C_{6} = -\delta^{2}(\delta - \frac{3}{4}\alpha^{2}) = 0 \sigma$$

$$C_{7} = -\frac{3}{2}\alpha\delta^{2}(\delta - \alpha^{2}) = \sigma -(2\varrho_{2} + \varrho_{3})\sigma (5)$$

$$C_{8} = -\frac{3}{4}\delta^{2}(3\delta + \alpha^{2})(\delta - \alpha^{2}) = -(\varrho_{2} + \varrho_{3})\sigma (2\varrho_{2}\varrho_{3} + \varrho_{2}^{2})\sigma$$

$$C_{9} = \alpha^{3}\delta^{3} = \varrho_{2}\varrho_{3}\sigma -\varrho_{2}^{2}\varrho_{3}\sigma.$$

(i) i = 0.

Because $\sigma \neq 0$, this gives:

$$\delta = \frac{3}{4}\alpha^{2},$$

$$C_{7} = \frac{3^{3}}{2^{7}}\alpha^{7} = \sigma,$$

$$C_{8} = \frac{3^{3} \cdot 13}{2^{10}}\alpha^{8} = -(\varrho_{2} + \varrho_{3})\sigma,$$

$$C_{9} = \frac{3^{3}}{2^{6}}\alpha^{9} = \varrho_{2}\varrho_{3}\sigma,$$

$$\varrho_{2} + \varrho_{3} = -\frac{13}{2^{3}}\alpha,$$

$$\varrho_{2} \cdot \varrho_{3} = 2\alpha^{2},$$

and

$$\varrho_2 = \frac{1}{8} \alpha \left(\frac{1 \pm i \sqrt{7}}{2} \right)^7,$$

$$\varrho_3 = \frac{1}{8} \alpha \left(\frac{1 \mp i \sqrt{7}}{2} \right)^7.$$

If $\alpha = 2$, we get:

$$G_2(X, Y) = \mu X(X^3 + 4X^2Y + 10XY^2 + 6Y^3),$$

$$G_3(X, Y) = \frac{1}{2}\nu X^2(2X^4 + 12X^3Y + 42X^2Y^2 + 70XY^3 + 63Y^4),$$

$$\Delta(X, Y) = \frac{27}{4}\mu^3 X^3Y^7(4X^2 + 13XY + 32Y^2)$$

with $\mu^3 - v^2 = 0 \ \mu, \nu \in \mathbb{C}^*$.

The cross ratio is $CR(I_7I_1|I_1III) = \frac{(1+i\sqrt{7})^7}{(1+i\sqrt{7})^7 - (1-i\sqrt{7})^7}$.

Table 3 shows the surface for $\mu = 4$, $\nu = 8$.

(ii) i = 1.

There is a double zero of Δ at ϱ_2 . The discriminant of

$$-\frac{1}{4}\delta^{2} \left[(4\delta - 3\alpha^{2})X^{3} + 6\alpha(\delta - \alpha^{2})X^{2}Y + 3(3\delta^{2} - 2\alpha^{2}\delta - \alpha^{4})XY^{2} - 4\alpha^{3}\delta Y^{3} \right]$$

vanishes [see (5)], i.e.

$$-\frac{27}{16}\delta(\delta^2-\alpha^2\delta+\frac{1}{3}\alpha^4)^3=0$$
.

Because $\delta = \frac{1}{2}\alpha^2(1 \pm \frac{1}{3}\omega)$ with $\omega = i\sqrt{3}$, it follows from (5) that:

$$C_6 = \frac{1}{72} \alpha^6 (1 \pm \omega) (3 \mp 2\omega) = \sigma,$$

$$C_7 = \frac{1}{24} \alpha^7 (1 \pm \omega) (3 \mp \omega) = -(2\varrho_2 + \varrho_3) \sigma,$$

$$C_8 = \frac{1}{48} \alpha^8 (1 \pm \omega) (9 \mp \omega) = (2\varrho_2 \varrho_3 + \varrho_2^2) \sigma,$$

$$C_9 = \frac{1}{36} \alpha^9 (1 \pm \omega) (3 \pm \omega) = -\varrho_2^2 \varrho_3 \sigma.$$

The result of the system of equations is:

$$\varrho_2 = \frac{\alpha(9+\omega)}{2(2\omega-3)},$$

$$\varrho_3 = -\frac{4\alpha\omega}{2\omega - 3}.$$

Let $\alpha = -1 + \omega$. After the transformation $(X, Y) \rightarrow (X, \frac{1}{2}Y)$:

$$G_{2}(X, Y) = \frac{1}{6}\mu X(X - Y) [6X^{2} + 6\omega XY - (3 + \omega)Y^{2}],$$

$$G_{3}(X, Y) = \frac{1}{4}\nu X^{2}(X - Y) [4X^{3} - 2(1 - 3\omega)X^{2}Y - 4(2 + \omega)XY^{2} + (5 - \omega)Y^{3}],$$

$$\Delta(X, Y) = -\frac{1}{2^{3} \cdot 3^{2}}\mu^{3}X^{3}Y^{6}(X - Y)^{2}[(9 + \omega)X + 8\omega Y]$$

with $\mu^3 - v^2 = 0$.

The cross ratio is $CR(I_6II|I_1III) = \frac{3-2\omega}{9}$. After the transformation

$$(G_2, G_3) \rightarrow (\frac{1}{9}G_2, \frac{1}{27}G_3)$$

Table 3 shows the surface for $\mu = 36$, $\nu = 216$.

Notes to Table 3. Table 3 lists the Weierstrass models of the fibre combinations with the base points $(\varrho_1, \varrho_2, \varrho_3, \varrho_4)$ of the fibres. G_2 and G_3 appear as follows: The discriminant is $\Delta = G_2^3 - 27G_3^2$. All polynomials without parameters can be chosen to have integer coefficients except for the combination I_6I_1IIIII . (G_2, G_3) are determined up to $(\lambda^4G_2, \lambda^6G_3)$ $\lambda \in \mathbb{C}^*$ only.

If there is a singular fibre in T^- , then Table 3 lists in addition those values of the cross ratio

$$CR(\varrho_1\varrho_2|\varrho_3\varrho_4) = \frac{\varrho_1 - \varrho_3}{\varrho_2 - \varrho_3} : \frac{\varrho_1 - \varrho_4}{\varrho_2 - \varrho_4},$$

which are excluded.

All surfaces with four singular fibres, section and nonconstant \mathscr{J} -invariant $\mathscr{J} = \frac{G_2^3}{\Delta}$ can easily be calculated from the models by "transfering of *" and "*" the fibres (see p. 324). They are uniquely determined up the operation of Aut($\mathbb{P}_1\mathbb{C}$).

Table 3

Fibre combination	Weierstrass model, <i>J</i> -invariant and cross ratio of the base points
$I_4 I_1 I_1 I_0^*$ $(1, \infty, 0, \varrho_4)$	$G_2 = 3(X - \varrho_4 Y)^2 (X^2 + 14XY + Y^2)$ $G_3 = (X - \varrho_4 Y)^3 (X^3 - 33X^2 Y - 33XY^2 + Y^3)$ $\Delta = 2^2 \cdot 3^6 X Y (X - \varrho_4 Y)^6 (X - Y)^4$ $\mathcal{J} = \frac{1}{108} \frac{(X^2 + 14XY + Y^2)^3}{XY(X - Y)^4}$ $CR = \frac{1}{1 - \varrho_4} \neq 0, 1, \infty$

$$\begin{array}{ll} I_{2}I_{2}I_{3}^{*} & G_{2}=12(X-\varrho_{a}Y)^{2}(X^{2}-XY+Y^{2}) \\ (1,\infty,0,\varrho_{a}) & G_{3}=4(X-\varrho_{a}Y)^{3}(2X^{3}-3X^{2}Y-3XY^{2}+2Y^{3}) \\ & \Delta=2^{3}\cdot 3^{6}X^{4}Y^{2}(X-\varrho_{a}Y)^{6}(X-Y)^{2} \\ & \mathcal{J} & \frac{4}{27}\frac{4(X^{2}-XY+Y^{2})^{3}}{X^{2}Y^{2}(X-Y)} \\ & CR=\frac{1}{1-\varrho_{a}}+0,1,\infty \\ & G_{2}=12X^{2}(X^{2}+2\alpha XY+Y^{2}), \quad \alpha\pm-2,-\frac{5}{3}\cdot 1 \\ & G_{2}=12X^{2}(X^{2}+2\alpha XY+Y^{2}), \quad \alpha\pm-2,-\frac{5}{3}\cdot 1 \\ & G_{2}=4X^{3}(2X^{3}+3(\alpha^{2}+1)X^{2}Y+6\alpha XY^{2}+2Y^{3}) \\ & \Delta=-2^{2}\cdot 3^{3}(\alpha-1)^{2}X^{2}Y^{2}[12X^{2}+3(3\alpha^{2}+6\alpha-1)XY+4(\alpha+2)Y^{2}] \\ & \mathcal{J} & = -\frac{4}{(\alpha-1)^{2}}\frac{(X^{2}+2\alpha XY+Y^{2})^{3}}{X^{3}Y[12X^{2}+3(3\alpha^{2}+6\alpha-1)XY+4(\alpha+2)Y^{2}]} \\ & CR & = \frac{\omega_{2}}{\omega_{1}}+0,1,\infty, \quad \omega_{1,2}=-\frac{1}{8}[3\alpha^{2}+6\alpha-1\pm]\sqrt{\frac{1}{3}}(\alpha-1)(3\alpha+5)^{3}] \\ & I_{1}I_{1}I_{2}I_{2}^{4} & G_{2}& =12X^{2}(X^{2}+\alpha XY+Y^{2}) \\ & G_{2}& =12X^{2}(2X^{2}+\alpha XY+Y^{2}) \\ & G_{2}& =4X^{3}(2X^{3}+3\alpha X^{2}Y+3\alpha XY^{2}+2Y^{2}) \\ & \Delta=2^{2}\cdot 3^{3}(2-\alpha)^{2}X^{2}Y^{2}[3X^{2}+2(2\alpha-1)XY+3Y^{2}] \\ & \mathcal{J} & = \frac{4}{(2-\alpha)^{2}}\frac{(X^{2}+\alpha XY+Y^{2})^{3}}{X^{2}Y^{2}[3X^{2}+2(2\alpha-1)XY+3Y^{2}]}, \quad \alpha\pm-1,2 \\ & CR & = \frac{\omega_{2}}{\omega_{1}}+0,1,\infty, \quad \omega_{1,2}& = -\frac{1}{3}(2\alpha-1\pm2)\sqrt{\alpha^{2}-\alpha-2}) \\ & I_{3}I_{1}III_{0}^{8} & G_{2}& =3(X-\varrho_{4}Y)^{2}(X-Y)(X-9Y) \\ & \mathcal{J} & = -\frac{1}{6}\frac{(X-Y)(X-9Y)^{3}}{X^{3}Y} \\ & CR & = \frac{1}{e}+0,1,\infty \\ & I_{2}I_{1}IIII_{0}^{8} & G_{2}& =3(X-\varrho_{4}Y)^{2}(X-Y)(X-4Y) \\ & \Delta& = -3^{6}X^{2}Y(X-Y)^{3}(X-\varrho_{4}Y)^{6} \\ & \mathcal{J} & = -\frac{1}{2}\frac{(X-4Y)^{3}}{X^{2}Y} \\ & CR & = \frac{1}{e_{4}}+0,1,\infty \\ & I_{1}I_{1}IVI_{0}^{8} & G_{2}& =3(X-\varrho_{4}Y)^{2}(X-Y)^{2}(X+Y) \\ & \Delta& = -108XY(X-Y)^{4}(X-\varrho_{4}Y)^{6} \\ & \mathcal{J} & = \frac{1}{4}\frac{(X-Y)^{4}(X-\varrho_{4}Y)^{6}}{XY} \\ & CR & = \frac{1}{e_{4}}+0,1,\infty \\ & \mathcal{J} & = \frac{1}{e_{4}}+0,1,\infty \\ & GR & = \frac{1}{e_{4}}+0,1,\infty \\ & \mathcal{J} & = \frac{1}{e_{4}}+0,1,\infty \\ & I_{1}I_{1}IVI_{0}^{8} & G_{2}& =3(X-\varrho_{4}Y)^{2}(X-Y)^{2}(X+Y) \\ & \Delta& = -108XY(X-Y)^{4}(X-\varrho_{4}Y)^{6} \\ & \mathcal{J} & = \frac{1}{4}\frac{(X-Y)^{4}(X-\varrho_{4}Y)^{6}}{XY} \\ & CR & = \frac{1}{e_{4}}+0,1,\infty \\ & \mathcal{J} & = \frac{1}{e_{4}}\frac{(X-Y)^{2}(X-Y)^{2}(X-Y)^{2}(X-Y)^{2}}{XY} \\ & CR & = \frac{1}{e_{4}}+0,1,\infty \\ & \mathcal{J} & = \frac{1}{e_{4}}\frac{(X-Y)^{2}(X-Y)^{2}(X-$$

$$I_{1}I_{1}I_{1}III^{*} \qquad G_{2} = 3X^{3}(X + \alpha Y) \\ (\omega_{1}, \omega_{2}, \infty, 0) \qquad G_{3} = X^{5}(X + Y) \\ \qquad \Delta = 27X^{3}Y[(3\alpha - 2)X^{2} + (3\alpha^{2} - 1)XY + \alpha^{3}Y^{2}] \\ \qquad \mathcal{J} = \frac{(X + \alpha Y)^{3}}{Y[(3\alpha - 2)X^{2} - (3\alpha^{2} - 1)XY + \alpha^{3}Y]}, \quad \alpha + -\frac{1}{3}, 0, \frac{2}{3}, 1$$

$$CR = \frac{\omega_{2}}{\omega_{1}} + 0, 1, \infty, \quad \omega_{1,2} = -\frac{1}{6\alpha - 4}[3\alpha^{2} - 1 \pm \sqrt{(3\alpha + 1)(1 - \alpha)^{3}}]$$

$$I_{1}I_{1}I_{2}IV^{*} \qquad G_{2} = 3X^{3}(X + 2\alpha Y) \\ \qquad (\omega_{1}, \omega_{2}, \infty, 0) \qquad G_{3} = X^{4}(X^{2} + 3\alpha XY + Y^{2}) \\ \qquad \Delta = 27X^{8}Y^{2}[(3\alpha^{2} - 2)X^{2} + 2\alpha(4\alpha^{2} - 3)XY - Y^{2}] \qquad X(X + 2\alpha Y)^{3}$$

$$f = \frac{X(X + 2\alpha Y)^{3}}{Y^{2}[(3\alpha^{2} - 2)X^{2} + 2\alpha(4\alpha^{2} - 3)XY - Y^{2}]}, \quad \alpha \neq 0, \pm \sqrt{\frac{1}{2}}, \pm \sqrt{\frac{3}{3}}$$

$$CR = \frac{\omega_{2}}{\omega_{1}} + -1, 0, \frac{1}{2}, 1, 2, \infty, \quad \omega_{1,2} = -\frac{1}{3\alpha^{2} - 2}[\alpha(4\alpha^{2} - 3) \pm \sqrt{2(2\alpha^{2} - 1)^{3}}]$$

$$I_{1}II III II_{0}^{*} \qquad G_{2} = 3X(X - \varrho_{4}Y)^{3}(X - Y)$$

$$(\infty, 0, 1, \varrho_{4}) \qquad G_{3} = X(X - \varrho_{4}Y)^{3}(X - Y)^{2}$$

$$\Delta = 27X^{2}Y(X - Y)^{3}(X - \varrho_{4}Y)^{6}$$

$$\mathcal{J} = \frac{X}{Y}$$

$$CR = \varrho_{4} + 0, 1, \infty$$

$$I_{1}II IIV^{*} \qquad G_{2} = 3(X - Y)(X - \alpha^{2}Y)^{3}$$

$$\Delta = -2^{2}(3^{3}X^{2}Y^{2}(X - Y)^{2}(X - \varrho_{4}Y)^{6}$$

$$\mathcal{J} = -4\frac{X(X - Y)}{Y^{2}}$$

$$CR = \varrho_{4} + 0, 1, \infty$$

$$I_{1}I_{1}II IV^{*} \qquad G_{2} = 3(X - Y)(X - \alpha^{2}Y)^{3}$$

$$\beta = -\frac{1}{(\alpha + 1)^{2}}\frac{(X - Y)(X - \alpha^{2}Y)^{3}}{XY}$$

$$CR = \frac{1}{\alpha^{2}} + 0, 1, \infty, \quad \alpha \neq -1, 0, 1, \infty$$

$$I_{1}I_{1}I_{1}I_{9} \qquad G_{2} = 3X(9X^{3} - 8Y^{3})$$

$$\begin{array}{ll} I_{1}I_{1}I_{9} & G_{2} = 3X(9X^{3} - 8Y^{3}) \\ (1, \eta, \eta^{2}, \infty) & G_{3} = 27X^{6} - 36X^{3}Y^{3} + 8Y^{6} \\ & \Delta = 2^{6} \cdot 3^{3}Y^{9}(X^{3} - Y^{3}) \\ & \mathcal{J} = \frac{1}{64} \frac{X^{3}(9X^{3} - 8Y^{3})^{3}}{Y^{9}(X^{3} - Y^{3})} \\ & CR = -\eta, \quad \eta = e^{\frac{2\pi i}{3}} \end{array}$$

$$I_{1}I_{1}I_{2}I_{8} \qquad G_{2} = 3(16X^{4} - 16X^{2}Y^{2} + Y^{4})$$

$$(-1,1,0,\infty) \qquad G_{3} = 64X^{6} - 96X^{4}Y^{2} + 30X^{2}Y^{4} + Y^{6}$$

$$\Delta = 2^{2} \cdot 3^{6}X^{2}Y^{8}(X+Y)(X-Y)$$

$$\mathscr{J} = \frac{1}{108} \frac{(16X^{4} - 16X^{2}Y^{2} + Y^{4})^{3}}{X^{2}Y^{8}(X+Y)(X-Y)}$$

$$CR = -1$$

$$I_{1}I_{2}I_{3}I_{6} \qquad G_{2} = 12(X^{4} - 4X^{3}Y + 2XY^{3} + Y^{4})$$

$$(4, -\frac{1}{2}, 0, \infty) \qquad G_{3} = 4(2X^{6} - 12X^{5}Y + 12X^{4}Y^{2} + 14X^{3}Y^{3} + 3X^{2}Y^{4} + 6XY^{5} + 2Y^{6})$$

$$\Delta = 2^{4} \cdot 3^{6}X^{3}Y^{6}(2X + Y)^{2}(X - 4Y)$$

$$\mathscr{J} = \frac{4}{27} \frac{(X^{4} - 4X^{3}Y + 2XY^{3} + Y^{4})^{3}}{X^{3}Y^{6}(2X + Y)^{2}(X - 4Y)}$$

$$CR = -8$$

$$\begin{split} I_{1}I_{1}I_{5}I_{5} & G_{2} = 3(X^{4} - 12X^{3}Y + 14X^{2}Y^{2} + 12XY^{3} + Y^{4}) \\ & (\omega_{1}, \omega_{2}, 0, \infty) & G_{3} = X^{6} - 18X^{5}Y + 75X^{4}Y^{2} + 75X^{2}Y^{4} + 18XY^{5} + Y^{6} \\ & \Delta = 2^{6} \cdot 3^{6}X^{5}Y^{5}(X^{2} - 11XY - Y^{2}) \\ & \mathscr{J} = \frac{1}{2^{6} \cdot 3^{3}} \frac{(X^{4} - 12X^{3}Y + 14X^{2}Y^{2} + 12XY^{3} + Y^{4})^{3}}{X^{5}Y^{5}(X^{2} - 11XY - Y^{2})} \\ & CR = \left(\frac{1 + \sqrt{5}}{1 - \sqrt{5}}\right)^{5}, \quad \omega_{1, 2} = \left(\frac{1 \pm \sqrt{5}}{2}\right)^{5} \end{split}$$

$$I_{2}I_{2}I_{4}I_{4} \qquad G_{2} = 12(X^{4} - X^{2}Y^{2} + Y^{4})$$

$$(-1,1,0,\infty) \qquad G_{3} = 4(2X^{6} - 3X^{4}Y^{2} - 3X^{2}Y^{4} + 2Y^{6})$$

$$\Delta = 2^{4} \cdot 3^{6}X^{4}Y^{4}(X + Y)^{2}(X - Y)^{2}$$

$$\mathscr{J} = \frac{4}{27} \frac{(X^{4} - X^{2}Y^{2} + Y^{4})^{3}}{X^{4}Y^{4}(X + Y)^{2}(X - Y)^{2}}$$

$$CR = -1$$

$$I_{3}I_{3}I_{3}I_{3} \qquad G_{2} = 3Y(8X^{3} + Y^{3})$$

$$(1, \eta, \eta^{2}, \infty) \qquad G_{3} = 8X^{6} + 20X^{3}Y^{3} - Y^{6}$$

$$\Delta = -2^{6} \cdot 3^{3}X^{3}(X^{3} - Y^{3})^{3}$$

$$\mathscr{J} = -\frac{1}{64} \frac{Y^{3}(8X^{3} + Y^{3})^{3}}{X^{3}(X^{3} - Y^{3})^{3}}$$

$$CR = -\eta, \quad \eta = e^{\frac{2\pi i}{3}}$$

$$\begin{split} I_{1}I_{1}I_{8}II & G_{2} = 12X(X^{3} - 6X^{2}Y + 15XY^{2} - 12Y^{3}) \\ (\omega_{1}, \omega_{2}, \infty, 0) & G_{3} = 4X(2X^{5} - 18X^{4}Y + 72X^{3}Y^{2} - 144X^{2}Y^{3} + 135XY^{4} - 27Y^{5}) \\ \Delta &= -2^{4} \cdot 3^{6}X^{2}Y^{8}(3X^{2} - 14XY + 27Y^{2}) \\ \mathscr{J} &= -\frac{4}{27} \frac{X(X^{3} - 6X^{2}Y + 15XY^{2} - 12Y^{3})^{3}}{Y^{8}(3X^{2} - 14XY + 27Y^{2})} \\ CR &= \left(\frac{1 - i\sqrt{2}}{1 + i\sqrt{2}}\right)^{4}, \quad \omega_{1,2} = -\frac{1}{3}(1 \pm i\sqrt{2})^{4} \end{split}$$

$$I_{1}I_{2}I_{7}II \qquad G_{2}=12X(9X^{3}+36X^{2}Y+42XY^{2}+14Y^{3}) \\ G_{3}=12X(18X^{3}+108X^{4}Y+234X^{3}Y^{2}+222X^{2}Y^{3}+87XY^{4}+8Y^{3}) \\ \Delta=-2^{4}\cdot 3^{3}X^{2}Y^{2}(9X+8Y)^{2}(4X+9Y) \\ \int_{-2}^{8} -4\frac{X(9X^{3}+36X^{2}Y+42XY^{2}+14Y^{3})^{3}}{Y^{7}(9X+8Y)^{2}(4X+9Y)} \\ CR=\frac{3}{8}^{1}$$

$$I_{1}I_{4}I_{5}II \qquad G_{2}=3(8X-Y)(8X^{3}+87X^{2}Y+96XY^{2}-64Y^{3}) \\ (-10,0,\infty,\frac{1}{8}) \qquad G_{3}=(8X-Y)(64X^{3}+2^{4}\cdot 5\cdot 13X^{4}Y+5^{2}\cdot 157X^{3}Y^{2}+100X^{2}Y^{3}+2^{7}\cdot 5^{2}XY^{4}-2^{9}Y^{5}) \\ \Delta=-2^{3}\cdot 3^{13}Y^{4}Y^{3}(8X-Y)^{2}(X+10Y) \\ \mathcal{F}=-\frac{1}{2^{3}\cdot 3^{12}}\frac{(8X-Y)(81X^{3}-9X^{2}Y-53XY^{2}-27Y^{3})}{X^{4}Y^{5}(X+10Y)} \\ CR=\frac{1}{8}^{1}$$

$$I_{1}I_{3}I_{5}II \qquad G_{2}=3(X-3Y)(81X^{3}-9X^{2}Y-53XY^{2}-27Y^{3}) \\ G_{3}=(X-3Y)(3^{6}X^{3}-9X^{2}Y-53XY^{2}-27Y^{3})^{3} \\ \Delta=-2^{14}\cdot 3^{4}X^{3}Y^{3}(X-3Y)^{2}(9X+5Y)^{2} \\ \mathcal{F}=-\frac{1}{2^{14}\cdot 3}\frac{(X-3Y)(81X^{3}-9X^{2}Y-53XY^{2}-27Y^{3})^{3}}{X^{3}Y^{5}(9X+5Y)^{2}} \\ \mathcal{F}=-\frac{1}{2^{14}\cdot 3}\frac{(X-3Y)(81X^{3}-9X^{2}Y-53XY^{2}-27Y^{3})^{3}}{X^{3}Y^{5}(9X+5Y)^{2}} \\ CR=\frac{27}{32}$$

$$I_{1}I_{1}I_{7}III \qquad G_{2}=12X(X^{3}+4X^{2}Y+10XY^{2}+6Y^{3}) \\ A=2^{4}\cdot 3^{6}X^{3}Y^{2}(4X^{2}+13XY+32Y^{2}) \\ \mathcal{F}=\frac{4}{27}\frac{(X^{3}+4X^{2}Y+10XY^{2}+6Y^{3})^{3}}{Y^{2}(4X^{2}+13XY+32Y^{2})} \\ CR=\frac{\left(1-i\sqrt{7}\right)^{7}}{(1+i\sqrt{7})}, \quad \omega_{1,2}=\frac{1}{4}\left(\frac{1+i\sqrt{7}}{2}\right)^{7} \\ CR=\frac{1}{4}\frac{(X^{3}-6X^{2}Y+9XY^{2}-3Y^{3})}{Y^{6}(X-Y)^{2}(X-4Y)} \\ G_{2}=4X^{2}(X^{3}-6X^{2}Y+9XY^{2}-3Y^{3}) \\ G_{3}=4X^{2}(2X^{4}-18X^{3}Y+54X^{2}Y^{2}-63XY^{3}+27Y^{4}) \\ \Delta=2^{4}\cdot 3^{6}X^{3}Y^{6}(X-Y)^{2}(X-4Y) \\ G_{4}=\frac{1}{4}\frac{(X^{3}-6X^{2}Y+9XY^{2}-3Y^{3})^{3}}{Y^{6}(X-Y)^{2}(X-4Y)} \\ CR=\frac{1}{4}$$

$$I_{1}I_{3}I_{5}III \qquad G_{2}=75(5X-Y)(5X^{3}+45X^{2}Y+39XY^{2}-25Y^{3}) \\ G_{3}=25(5X-Y)^{2}(25X^{4}+340X^{2}Y+2\cdot 3\cdot 181X^{2}Y^{2}+100X^{3}Y+5^{4}Y^{4}) \\ \Delta=2^{14}\cdot 3^{6}\cdot 5^{3}Y^{3}(5X-Y+39XY^{2}-25Y^{3}) \\ G_{3}=25(5X-Y)^{2}(25X^{4}+340X^{2}Y+39XY^{2}-25Y^{3}) \\ \mathcal{F}=\frac{25}{2^{13}\cdot 3^{3}}\frac{(5X^{3}+45X^{2}Y+39XY^{2}-25Y^{3})}{X^{3}Y^{3}(3X+25Y)}$$

 $CR = \frac{3}{128}$

$$\begin{split} I_{2}I_{3}I_{4}III & G_{2}=3(X-Y)(16X^{3}-3XY^{2}-Y^{3}) \\ (-\frac{1}{3},0,\infty,1) & G_{3}=(X-Y)^{2}(64X^{4}+32X^{3}Y+6X^{2}Y^{2}+5XY^{3}+Y^{4}) \\ & \Delta=2^{2}\cdot 3^{5}X^{3}Y^{4}(X-Y)(3X+Y)^{2} \\ & \mathcal{J} = \frac{1}{108}\frac{(16X^{3}-3XY^{2}-Y^{3})^{3}}{X^{3}Y^{4}(3X+Y)^{2}} \\ & \mathcal{J} = \frac{1}{108}\frac{(16X^{3}-3XY^{2}-Y^{3})^{3}}{X^{3}Y^{4}(3X+Y)^{2}} \\ & \mathcal{J} = \frac{1}{108}\frac{(16X^{3}-3XY^{2}-Y^{3})^{3}}{X^{3}Y^{4}(3X+Y)^{2}} \\ & \mathcal{J} = \frac{1}{108}\frac{(16X^{3}-3XY^{2}-Y^{3})^{3}}{X^{3}Y^{4}(3X+Y)^{3}} \\ & \mathcal{J} = \frac{1}{108}\frac{X^{2}(9X^{2}-8Y^{2})}{X^{2}Y^{2}(2X+Y)(X+Y)} \\ & \mathcal{J} = \frac{1}{108}\frac{X^{2}(9X^{2}-8Y^{2})^{3}}{X^{2}Y^{2}(X+Y)(X+Y)} \\ & \mathcal{J} = \frac{1}{108}\frac{X^{2}(9X^{2}-8Y^{2})^{3}}{X^{2}Y^{2}(X+Y)(X+Y)} \\ & \mathcal{J} = \frac{1}{108}\frac{X^{2}(9X^{2}-8Y^{2})^{3}}{X^{2}Y^{2}(X+Y)^{2}(X+2YY)} \\ & \mathcal{J} = -\frac{1}{24}\frac{X^{2}(2X^{2}+8XY+10Y^{2})}{X^{2}Y^{2}(2X+Y)^{2}(4X+2YY)} \\ & \mathcal{J} = -\frac{1}{27}\frac{X^{2}(X^{2}+8XY+10Y^{2})^{3}}{X^{2}(X+Y)^{2}(X+2YY)} \\ & \mathcal{J} = -\frac{1}{27}\frac{X^{2}(X^{2}+8XY+10Y^{2})^{3}}{X^{2}(X+Y)^{2}(X+Y)^{2}} \\ & \mathcal{J} = -\frac{1}{21}\frac{(X^{2}-3)^{2}(X+Y)^{2}(X+Y+Y)^{2}}{X^{2}(X+Y)^{2}(X+Y)^{2}} \\ & \mathcal{J} = -\frac{1}{21}\frac{(X^{2}-3)^{2}(X+Y)^{2}(X+Y+Y)^{2}}{X^{2}(X+Y)^{2}(X+Y)^{2}} \\ & \mathcal{J} = -\frac{1}{26}\frac{3}{63}\frac{X^{2}-13XY+49Y^{2}(X^{2}-5XY+Y^{2})}{X^{2}Y^{2}} \\ & \mathcal{J} = -\frac{1}{26}\frac{3}{63}\frac{X^{2}-13XY+49Y^{2}(X^{2}-13XY+49Y^{2})^{2}}{X^{2}Y^{2}} \\ & \mathcal{J} = -\frac{1}{26}\frac{3}{63}\frac{X^{2}-13XY+49Y^{2}(X^{2}-13XY+49Y^{2})^{2}}{X^{2}Y^{2}} \\ & \mathcal{J} = -\frac{1}{64}\frac{(X-Y)(X+Y)(9X^{2}-Y^{2})}{X^{2}Y^{2}} \\ & \mathcal{J} = -\frac{1}{64}\frac{(X-Y)(X+Y)(9X^{2}-Y^{2})}{X^{2}Y^{2}} \\ & \mathcal{J} = -\frac{1}{64}\frac{(X-Y)(X+Y)(9X^{2}-Y^{2})}{X^{2}Y^{2}} \\ & \mathcal{J} = -\frac{1}{64}\frac{(X-Y)(X+Y)(2X^{2}+3XY+2XY-2Y^{2})^{4}}{X^{2}Y^{2}} \\ & \mathcal{J} = -16\frac{(X-Y)(X+Y)(X+Y)(X^{2}+4X^{2}+3XY+2XY-2Y^{2})^{4}}{X^{2}Y^{2}} \\ & \mathcal{J} = -16\frac{(X-Y)(X+Y)(X+Y)(X^{2}+4X^{2}+3XY+2XY-2Y^{2})^{4}}{X^{2}Y^{2}} \\ & \mathcal{J} = -16\frac{(X-Y)(X+Y)(X+Y)(X^{2}+4X^{2}+3XY+2XY-2Y^{2})^{4}}{X^{2}Y^{2}} \\ & \mathcal{J} = -16\frac{(X-Y)(X+Y)(X+Y)(X^{2}+4X^{2}+3X^{2}+2XY-2Y^{2})^{4}}{X^{2}Y^{2}} \\ & \mathcal{J} = -16\frac{(X-Y)(X+Y)(X+Y)(X^{2}+4X^{2}+3X^{2}+3X^{2}+3X^{2}+3X^{2$$

Table 3 (continued)

$$\begin{array}{c} I_{1}I_{6}IIIII & G_{2}=2X(X-Y)[6X^{2}+6\zeta XY-(3+\zeta)Y^{2}]\\ (\omega, \infty, 1, 0) & G_{3}=2X^{2}(X-Y)[4X^{3}-2(1-3\zeta)X^{2}Y-4(2+\zeta)XY^{2}+(5-\zeta)Y^{3}]\\ & \Delta=24X^{3}Y^{6}(X-Y)^{2}[(9+\zeta)X+8(Y)]\\ & f \frac{1}{3}(X-Y)[6X^{2}+6(\zeta Y-(3+\zeta)Y^{2})^{3}\\ & f \frac{1}{3}(X-Y)(X^{2}-35XY+140Y^{2})\\ & f \frac{1}{3}(X-Y)^{2}(X^{2}-35XY+140Y^{2})\\ & f \frac{1}{3}(X-Y)^{2}(X-2Y)^{2}(X^{2}-35XY+140Y^{2})\\ & f \frac{1}{3}(X-Y)^{2}(X-2Y)^{2}(X^{2}-35XY+140Y^{2})\\ & f \frac{1}{3}(X-Y)^{2}(X-2Y)^{2}(X^{2}-35XY+140Y^{2})\\ & f \frac{1}{3}(X-Y)^{2}(X+2Y)^{2}(16X^{2}+80XY-243Y^{2})\\ & f \frac{1}{3}(X-Y)^{2}(X+2Y)^{2}(16X^{2}+80XY-243Y^{2})\\ & f \frac{1}{3}(X-Y)^{2}(X+2Y)^{2}(16X^{2}+80XY-243Y^{2})\\ & f \frac{1}{3}(X-Y)^{2}(X+2Y)^{2}(16X^{2}+80XY-243Y^{2})\\ & f \frac{1}{2}(X-Y)^{2}(X+2Y)^{2}(16X^{2}+80XY-243Y^{2})\\ & f \frac{1}{2}(X-Y)^{2}(X-Y)^{2}(X+2Y)^{2}(X+2Y)^{2}\\ & f \frac{1}{2}(X-X)^{2}(X-Y)^{2}(X+2Y)^{2}(X+2Y)^{2}\\ & f \frac{1}{2}(X-X)^{2}(X-X)^{2}(X+16Y)\\ & f \frac{1}{2}(X-X)^{2}(X-X)^{2}(X+16Y)\\ & f \frac{1}{2}(X-X)^{2}(X-Y)^{2}(X+16Y)\\ & f \frac{1}{2}(X-X)^{2}(X-Y)^{2}(X+16Y)\\ & f \frac{1}{2}(X-X)^{2}(X-Y)^{2}(X+Y)^{2}(X+Y)^{2}\\ & f \frac{1}{2}(X-Y)^{2}(X-Y)^{2}(X+Y)^{2}\\ & f \frac{1}{2}(X-Y)^{2}(X-Y)^{2}(X+Y)^{2}\\ & f \frac{1}{2}(X-Y)^{2}(X+Y)^{2}(X+Y)^{2}\\ & f \frac{1}{2}(X-Y)^{2}(X-Y)^{2}(X+Y)^{2}\\ & f \frac{1}{2}(X-Y)^{2}(X-Y)^{2}(X+Y)^{2}\\ & f \frac{1}{2}(X-Y)^{2}(X-Y)^{2}(X+Y)^{2}\\ & f \frac{1}{2}(X-Y)^{2}(X-Y)^{2}(X+Y)^{2}\\ & f \frac{1}{2}(X-Y)^{2}(X-Y)^{2}(X-Y)^{2}\\ & f \frac{1}{2}(X-Y)^{2}(X-Y)^{2}\\ & f \frac{1}{2}(X-Y)^{2}(X-Y)^{2}(X-Y)^{2}\\ & f \frac{1}{2}(X-Y)^{2}(X-Y)^{2}\\ & f \frac{1}{2}(X-Y)^{2}(X-Y)$$

Table 3 (continued)

$$I_{3}I_{3}IIIIII \\ (\omega_{1},\omega_{2},0,\infty) & G_{3} = 6X^{2}Y(X^{2} + 3Y^{2}) \\ G_{2} = 6X^{2}Y^{2}(X^{2} + 3Y^{2}) \\ A = 27X^{3}Y^{3}(X^{2} - 6XY - 3Y^{2})^{3} \\ J = \frac{(X^{2} + 6XY - 3Y^{2})^{3}}{(X^{2} - 6XY - 3Y^{2})^{3}} \\ CR = -(2+|\sqrt{3})^{2}, \quad \omega_{1,2} = 3 \pm 2|\sqrt{3} \\ I_{1}I_{4}IIIIV & G_{2} = 12X^{2}(X - Y)(X + 5Y) \\ G_{2} = 4X^{2}(X - Y)^{2}(2X^{2} + 16XY + 27Y^{2}) \\ A = 2^{4} \cdot \frac{3^{2}X^{2}(X - Y)^{2}(2X^{2} + 16XY + 27Y^{2})}{27Y^{4}(5X + 27Y)(X - Y)^{3}} \\ J = \frac{4}{4} \cdot \frac{X^{2}(X + 5Y)^{3}}{27Y^{4}(5X + 27Y)} \\ CR = \frac{3^{2}}{2^{7}} \\ I_{2}I_{3}IIIIV & G_{2} = 3X^{2}(X - Y)^{2}(X + Y)^{2} \\ G_{3} = X^{2}(X - Y)^{2}(X + Y)^{2} \\ J = \frac{1}{4} \frac{X^{2}(9X - 5Y)^{3}}{4Y^{3}(5X - Y)^{2}} \\ J = \frac{1}{4} \frac{X^{2}(9X - 5Y)^{3}}{4Y^{3}(5X - Y)^{2}} \\ CR = -4 \\ I_{2}I_{2}IVIV & G_{2} = 3(X - Y)^{2}(X + Y)^{2} \\ J = -\frac{1}{4} \frac{(X - Y)^{2}(X + Y)^{2}}{2(X - Y)^{4}(X + Y)^{4}} \\ J = -\frac{1}{4} \frac{(X - Y)^{2}(X + Y)^{2}}{2(X - Y)^{4}(X + Y)^{4}} \\ J = -\frac{1}{4} \frac{(X - Y)^{2}(X + Y)^{2}}{2(X - Y)^{4}(X + Y)^{3}} \\ J = \frac{X^{2}}{Y^{2}} \\ CR = -1 \\ I_{2}IVIIIIIII & G_{2} = 3X^{2}(X - Y)(X + Y) \\ G_{3} = X^{2}(X - Y)^{2}(X + Y)^{3} \\ J = \frac{X^{2}}{Y^{2}} \\ CR = -1 \\ I_{3}IIIIIIIIIII & G_{2} = 3X(X^{3} - Y^{3})^{2} \\ A = 27Y^{2}(X^{3} - Y^{3})^{2} \\ A = 27Y^{2}(X^{3} - Y^{3})^{2} \\ A = 27Y^{2}(X^{3} - Y^{3})^{2} \\ J = \frac{X^{3}}{Y^{3}} \\ CR = -\eta^{2}, \quad \eta = e^{\frac{3}{3}} \\ I_{3}IIIIIV & G_{2} = 3X^{2}(X - Y)(X + 3Y) \\ A = 108X^{4}Y^{3}(X + 3Y)^{2}(X - Y)^{3} \\ J = \frac{1}{4} \frac{X^{2}(X + 3Y)}{Y^{3}} \\ J = \frac{1}{4} \frac{X^{2}(X + 3Y)}{Y^{3}} \\ J = \frac{1}{4} \frac{X^{2}(X + 3Y)}{Y^{3}} \\ CR = \frac{1}{4} \frac{X^{2}(X + 3Y)}{Y^{3}} \\ CR = \frac{1}{4} \frac{X^{2}(X + 3Y)^{2}}{Y^{3}} \\ CR = \frac{1$$

$$I_4IVII II \qquad G_2 = 12X^2(X - Y)(X + Y)$$

$$(\infty, 0, 1, -1) \qquad G_3 = 4X^2(X - Y)(X + Y)(2X^2 - Y^2)$$

$$\Delta = -2^4 \cdot 3^3 X^4 Y^4 (X - Y)^2 (X + Y)^2$$

$$\mathcal{J} = -4 \frac{X^2(X - Y)(X + Y)}{Y^4}$$

$$CR = -1$$

$$I_{4}II III III \qquad G_{2} = 3(X^{2} + 2Y^{2})(X + 5Y)(X + Y)$$

$$(\infty, -5, \omega_{1}, \omega_{2}) \qquad G_{3} = (X^{2} + 2Y^{2})^{2}(X + 5Y)(X + 4Y)$$

$$\Delta = -3^{6}Y^{4}(X + 5Y)^{2}(X^{2} + 2Y^{2})^{3}$$

$$\mathscr{J} = -\frac{1}{27} \frac{(X + 5Y)(X + Y)^{3}}{Y^{4}}$$

$$CR = \left(\frac{1 + i\sqrt{2}}{1 - i\sqrt{2}}\right)^{3}, \qquad \omega_{1, 2} = \pm i\sqrt{2}$$

$$I_{5}III II II \qquad G_{2} = 3X(X^{2} + 11XY + 64Y^{2})(X + 3Y)$$

$$(\infty, 0, \omega_{1}, \omega_{2}) \qquad G_{3} = X^{2}(X^{2} + 11XY + 64Y^{2})(X^{2} + 10XY + 45Y^{2})$$

$$\Delta = 2^{6} \cdot 3^{6}X^{3}Y^{5}(X^{2} + 11XY + 64Y^{2})^{2}$$

$$\mathscr{J} = \frac{1}{2^{6} \cdot 3^{3}} \frac{(X^{2} + 11XY + 64Y^{2})(X + 3Y)^{3}}{Y^{5}}$$

$$CR = \left(\frac{1 - i\sqrt{15}}{1 + i\sqrt{15}}\right)^{3}, \qquad \omega_{1,2} = \frac{1}{8}(1 \pm i\sqrt{15})^{3}$$

$$I_{6}II II II \qquad G_{2} = 12X(X^{3} - Y^{3})$$

$$(\infty, \eta, \eta^{2}, 1) \qquad G_{3} = 4(X^{3} - Y^{3})(2X^{3} - Y^{3})$$

$$\Delta = -2^{4} \cdot 3^{3}Y^{6}(X^{3} - Y^{3})^{2}$$

$$\mathscr{J} = -4\frac{X^{3}(X^{3} - Y^{3})}{Y^{6}}$$

$$CR = -\eta^{2}, \quad \eta = e^{\frac{2\pi i}{3}}$$

References

- Barth, W., Peters, C., van de Ven, A.: Compact complex surfaces. Berlin Heidelberg New York: Springer 1984
- Herfurtner, S.: Elliptische Flächen über P₁C mit vier Ausnahmefasern. Diplomarbeit, Bonn 1988
- 3. Hunt, B.: Gemischte automorphe Formen und elliptische Flächen. Diplomarbeit, Bonn 1982
- Hunt, B., Meyer, W.: Mixed automorphic forms and invariants of elliptic surfaces. Math. Ann. 271, 53-80 (1985)
- Kas, A.: Weierstrass normal forms and invariants of elliptic surfaces. Trans. Am. Math. Soc. 225, 259-266 (1977)
- Kodaira, K.: On compact analytic surfaces. I, II, III. Ann. Math. 71, 111-152 (1960); 77, 563-626 (1963); 78, 1-40 (1963)

 Meyer, W.: Die Signatur von lokalen Koeffizientensystemen und Faserbündeln. Bonn. Math. Schr. 53 (1972)

- 8. Meyer, W.: Die Signatur von Flächenbündeln. Math. Ann. 201, 239-264 (1973)
- Miranda, R.: Persson's list of singular fibers for a rational elliptic surface. Math. Z. 205, 191-211 (1990)
- 10. Miranda, R., Persson, U.: On extremal rational elliptic surfaces. Math. Z. 193, 537-558 (1986)
- Naruki, I.: On confluences of singular fibres in elliptic fibrations. Publ. Res. Inst. Math. Sci. 23, 409–431 (1987)
- 12. Persson, U.: Configuration of Kodaira fibers on rational elliptic surfaces. Math. Z. 205, 1-47 (1990)
- Schmickler-Hirzebruch, U.: Elliptische Flächen über ₱₁€ mit drei Ausnahmefasern und die hypergeometrische Differentialgleichung. Diplomarbeit, Bonn 1978; Schriftenr. Math. Inst. Univ. Münster, 2. Ser. 33 (1985)