Ch1. Vector Space

<u>Definition</u> (Vector Space).

A vector space (or linear space) W over a Field F consists of a set on which two operations (called addition and scalar multiplication, respectively) are defined so that for each pair of elements x, y, in W there is a unique element x + y in W, and for each element a in F and each element x in W there is a unique element x in W, such that the following conditions hold.

There are eight rules for calculating the vector space! Please do not forget!

§1-3 Subspace

<u>Definition</u> (Definition of Subspace).

A subset W of a vector space W over a field F is called a subspace of W if W is a vector space over F with the operations of addition and scalar multiplication defined on W.

Theorem (1.3).

Let V be a vector space and W a subset of V. Then W is a subspace of V if and only if the following three conditions hold for the operations defined in V.

- (a) $0 \in W$.
- (b) $x + y \in W$ whenever $x \in W$ and $y \in W$.
- (c) $cx \in W$ whenever $c \in F$ and $x \in W$.

Theorem (1.4).

Any intersection of subspaces of a vector space W is a subspace of V.

Example

Exercise 19:

Let W_1 and W_2 be subspaces of a vector space V. Prove that $W_1 \cup W_2$ is a subspace of W if and only if $W_1 \subseteq W_2$ or $W_2 \subseteq W_1$.

Solution.

- 1. Let W_1 and W_2 be subspace of W, $W_1 \cup W_2$ is a subspace
- 2. Suppose $W_1 \cup W_2$ is a subspace of W while $W_1 \not\subseteq W_2$ and $W_2 \not\subseteq W_1$ $\implies \exists \ x \in W_1 \ , \ x \notin W_2 \ , \ \exists \ y \in W_2 \ , \ y \notin W_1$ If $W_1 \cup W_2$ is a subspace , $x,y \in W_1 \cup W_2 \implies x+y \in W_1 \cup W_2$
- 3. $x + y \in W_1 \cup W_2$ $\therefore x + y \in W_1$ or $x + y \in W_2$ Since W_1 and W_2 are subspaces of $V \therefore x \in W_1$, $y \in W_2$ or $x \in W_2$, $y \in W_1$ $\rightarrow \leftarrow$ wtih our suppose in 1.

Definition.

A vector space V is called direct sum of W_1 and W_2 if W_1 and W_2 are subspace of V such thay $W_1 \cap W_2 = \{0\}$ and $W_1 + W_2 = V$. We denote that V is the direct sum of W_1 and W_2 by Writting $V = W_1 \oplus W_2$.

§1-4 Linear Combination and System of Linear Equations

<u>Definition</u> (Definition of Linear Combination).

Let W be a vector space and S a nonempty subset of V. A vector $v \in V$ is called a linear combination of vectors of S if there exist a finite number of vectors u_1, u_2, \dots, u_n in S and scalars a_1, a_2, \dots, a_n in F such that $v = a_1u_1 + a_2u_2 + \dots + a_nu_n$. In this case we also say that W is a linear combination of u_1, u_2, \dots, u_n and call a_1, a_2, \dots, a_n the coefficients of the linear combination.

<u>Definition</u> (Definition of Span).

Let S be a nonempty subset of a vector space V. The span of S, denoted span(S), is the set consisting of all linear combinations of the vectors in S. For convenience, we define $\text{span}(\phi) = \{0\}$.

Example

Question (Exercise 5 (a) (e)):

In each part, determine whether the given vector is in the span of S.

a.
$$(2,-1,1)$$
, $S = \{(1,0,2),(-1,1,1)\}$

e.
$$-x^3 + 2x^2 + 3x + 3$$
, $S = \{x^3 + x^2 + x + 1, x^2 + x + 1, x + 1\}$

Solution.

(a)

1. Span(S) = {
$$a_1(1,0,2) + a_2(-1,1,1) \mid a_1, a_2 \in F$$
}

2.
$$\begin{cases} a_1 - a_2 = 2 \\ 0a_1 + a_2 = -1 \implies a_1 = 1, a_2 = -1 \\ 2a_1 + a_2 = 1 \end{cases}$$

3. Since there exist scalars a_1 , a_2 such that $(2, -1, 1) = a_1(1, 0, 2) + a_2(-1, 1, 1)$, we conclude that (2, -1, 1) is in the span of S.

(e)

1. Span(S) = {
$$a_1(x^3 + x^2 + x + 1) + a_2(x^2 + x + 1) + a_3(x + 1)$$
}

2.
$$\begin{cases} a_1 + 0a_2 + 0a_3 = -1 \\ a_1 + a_2 + 0a_3 = 2 \\ a_1 + a_2 + a_3 = 3 \end{cases} \implies a_1 = -1, a_2 = 3, a_3 = 1$$
$$a_1 + a_2 + a_3 = 3$$

3. Since there exist scalars a_1, a_2, a_3 such that $-x^3 + 2x^2 + 3x + 3 = a_1(x^3 + x^2 + x + 1) + a_2(x^2 + x + 1) + a_3(x + 1)$, we conclude that (2, -1, 1) is in the span of S.

Example

Question (Exercise 6):

Show that the vectors (1, 1, 0), (1, 0, 1), and (0, 1, 1) generate F^3 .

Solution. Let $S = \{(1,0,1), (1,0,1), (0,1,1)\}.$

Claim: $S = \{(1,0,1), (1,0,1), (0,1,1)\}$ is linearly independent.

1.
$$a_1(1,0,1) + a_2(1,0,1) + a_3(0,1,1) = 0 \implies a_1 = a_2 = a_3 = 0$$

2.
$$b_1(1,0,1) + b_2(1,0,1) + b_3(0,1,1) = (x,y,z)$$

 $\implies b_1 = \frac{x+y-z}{2}, b_2 = \frac{x-y+z}{2}, b_3 = \frac{-x+y+z}{2}$

Since $S = \{(1,0,1), (1,0,1), (0,1,1)\}$ is linearly independent, Span(S) can generate F^3 .

Example

$$S = \{(0, 0, 1), (1, 0, 0)\}$$

$$Span(S) = \{a_1(0, 0, 1) + a_2(1, 0, 0) \mid a_1, a_2 \in F\}$$

Theorem (1.5).

The span of any subset S of a vector space W is a subspace of V. Moreover, any subspace of W that contains S must also contain the span of S.

§1-5 Linear dependence and linear independence

<u>Definition</u> (Linearly Dependent).

A subset S of a vector space W is called linearly dependent if there exist a finite number of distinct vectors $u_1, u_2, ..., u_n$ in S and scalars $a_1, a_2, ..., a_n$, not all zero, such that

$$a_1u_1 + a_2u_2 + \dots + a_nu_n = 0.$$

In this case we also say that the vectors of S are linearly dependent.

<u>Definition</u> (Definition of Linearly Independent).

A subset S of a vector space that is not linearly dependent is called linearly independent. As before, we also say that the vectors of S are linearly independent.

Theorem (1.6).

Let W be a vector space,and let $S_1\subseteq S_2\subseteq V.$ If S_1 is linearly dependent, then S_2 is linearly dependent.

Corollary. Let W be a vector space, and let $S_1 \subseteq S_2 \subseteq V$. If S_2 is linearly independent, then S_1 is linearly independent.

Question (Exercise 2 (a) (c) (e)):

Determine whether the following sets are linearly dependent or linearly indepen-

a.
$$\left\{ \begin{bmatrix} 1 & -3 \\ -2 & 4 \end{bmatrix}, \begin{bmatrix} -2 & 6 \\ 4 & -8 \end{bmatrix} \right\}$$

c.
$$\left\{x^3+2x^2, -x^2+3x+1, x^3-x^2+2x+1\right\}$$

e. $\left\{(1,-1,2), (1,-2,1), (1,1,4)\right\}$ in \mathbb{R}^3

e.
$$\{(1,-1,2),(1,-2,1),(1,1,4)\}$$
 in \mathbb{R}^3

Solution.

a. Since
$$2\begin{bmatrix} 1 & -3 \\ 2 & 4 \end{bmatrix} + \begin{bmatrix} -2 & 6 \\ 4 & 8 \end{bmatrix} = 0 \implies$$
 linearly dependent by Thm 1.5.

Theorem (1.7).

Let S be a linearly independent subset of a vector space V, and let v be a vector in V that is not in S. Then $S \cup \{v\}$ is linearly dependent if and only if $v \in \text{span}(S)$.

§1-6 Bases and Dimension

Definition (Definition of Bases).

A basis β for a vector space V is a linearly independent subset of V that generates V. If β is a basis for V, we also say that the vectors of β form a basis for V.

Theorem (1.8).

Let V be a vector space and $\beta = \{u_1, u_2, ..., u_n\}$ be a subset of V. Then β is a basis for V if and only if each $v \in V$ can be uniquely expressed as a linear combination of vectors of β , that is, can be expressed in the form

$$\mathbf{v} = a_1 u_1 + a_2 u_2 + \dots + a_n u_n$$

for unique scalars a_1, a_2, \cdots, a_n .

Theorem (1.9).

If a vector space V is generated by a finite set S, then some subset of S is a basis for V. Hence V has a finite basis.

Theorem (1.10 Replacement Theorem).

Let V be a vector space that is generated by a set G containing exactly n vectors, and let L be a linearly independent subset of V containing exactly m vectors. Then $m \le n$ and there exists a subset H of G containing exactly n-m vectors such that $L \cup H$ generates V.

Theorem (Corollary 1.).

Let V be a vector space having a finite basis. Then every basis for V contains the same number of vectors.

<u>Definition</u> (Definition of Dimension).

A vector space is called finite-dimensional if it has a basis consisting of a finite number of vectors. The unique number of vectors in each basis for V is called the dimension of V and is denoted by dim(V). A vector space that is not finite-dimensional is called infinite-dimensional.