Architecture and Design

- Configuration Management
 - The only constant is change
 - Operating systems, patches, application updates, network mods, new app instances
- Identify and document hardware and software setting
 - Manage the security when changes occur
- Rebuild those systems if a disaster occurs
 - Documentation and processes will be critical
- Diagrams
 - Network diagrams
 - Document the physical wire and device
 - Physical data center layout
 - Can include physical rack locations
 - Device Diagrams
 - Individual cabling
- Baseline configuration
 - The security of an application environment should be well defined
 - All application instances must follow this baseline
 - Firewall settings, patch levels, OS file versions
 - May require constant updates
 - o Integrity measurements check for the secure baseline
 - These should be performed often
 - Check against well documented baselines
 - Failure requires an immediate correction
- Standard naming conventions
 - Create a standard
 - Needs to be easily understood by everyone
 - Services
 - Asset tag names and numbers
 - Computer names location or region
 - Serial numbers
 - Networks
 - Port labeling
 - Domain configurations
 - User account names
 - Standard email addresses.
- IP Schema
 - An IP address plan or model
 - Consistent addressing for network devices
 - Help avoid duplicate IP addressing
 - Locations
 - Number of subnets, hosts per subnet
 - o IP ranges

- Different sites have a different subnet
- Reserved addresses
 - Users, printers, routers/default gateways

- Protecting data
 - A primary job task
 - An organization is out of business without data
 - Data is everywhere
 - On a storage drive, on the network, in a CPU
 - Protecting the data
 - Encryption, security policies
 - Data permissions
 - Not everyone has the same access
- Data sovereignty
 - Data that resides in a country is a subject to the laws of that country
 - Legal monitoring, court orders etc
 - Laws may prohibit where data is stored
 - o GDPR
 - Data collected on EU citizens must be stored in the EU
 - A complex mesh of tech and legalities
 - Where is your data storeD?
 - Your compliance laws may prohibit moving data out of the country
- Data masking
 - Data obfuscation
 - Hide some of the original data
 - Protects PII
 - And other sensitive data
 - May only be hidden from view
 - The data may still be intact in storage
 - Control the view based on permissions
 - Many different techniques
 - Substituting, shuffling, encrypting, masking out, etc.
- Data encryption
 - o Encode information into unreadable data
 - Original information is plaintext, encrypted form is ciphertext
 - This is a two way street
 - Convert between one and the other
 - If you have the proper key
 - Confusion
 - The encrypted data is drastically different than the plaintext
- Diffusion
 - Change one character of the input, and many characters change of the output
- Data at-rest
 - The data is on a storage device

- Hard drive, SSD, flash drive, etc.
- Encrypt the data
 - Whole disk encryption
 - Database encryption
 - File- or folder-level encryption
- Apply permissions
 - Access control lists
 - Only authorized users can access the data
- Data in transit
 - Data transmitted over the network
 - Also called data in motion
 - Not much protection as it travels
 - Many different switches, routers, devices
 - Network based protection
 - Firewall, IPS
 - o Provide transport encryption
 - TLS (Transport Layer Security)
 - IPsec (internet protocol security)
- Data in use
 - Data is actively processing in memory
 - System RAM, Cpu registers and cache
 - The data is almost always decrypted
 - Otherwise, you couldn't do anything with it
 - The attackers van pick the decrypted information out of RAM
 - A very attractive option
 - Target Corp Breach of credit cards
 - Attackers picked the credit card numbers out of the point of sale RAM
- Tokenization
 - Replace sensitive data with a non sensitive placeholder
 - Common with credit card pro cessing
 - Use a temporary token during payment
 - An attacker capturing the card numbers can't use the matter
 - This isn't encryption or hashing
 - The original data and token are not mathematically related
 - No encryption overhead
- Information Rights Management (IRM)
 - Control how data is used
 - Microsoft Office
 - Email messages
 - PDF's
 - Restrict data access to unauthorized persons
 - Prevent copy and paste
 - Control screenshots
 - Manage printing

- Each user has their own set of rights
 - Attackers have limited options

- Data Loss Prevention (DLP)
 - Ownerous of the ownerous of
 - Social security numbers, credit card numbers, medical records
 - Stop the data before the attackers get it
 - Data "leakage"
 - So many sources, so many destinations
 - Often requires multiple solutions in different places
 - On your computer
 - Data in use
 - Endpoint DLP
 - On your network
 - Data in motion
 - On your server
 - Data at rest
- USB blocking
 - o DLP on a workstation
 - Allow or deny certain tasks
 - Nov 2008 US DoD
 - Worm virus agent.btz replicates using USB storage
 - Bans removable flash media and storage devices
 - All devices had to be updated
 - Local DLP agent handled USB blocking
 - o Ban was lifted in 2010 Feb
 - Replaced with strict guidelines
 - Cloud Based DLP
 - Located between users and the internet
 - Watch every byte of network traffic
 - No hardware, no software
 - Block custom defined data strings
 - Unique data for your organization
 - Manage access to URL's
 - Prevent file transfers to cloud storage
 - Block malware and viruses
 - DLP and email
 - Email continues to be the most critical risk vector
 - Inbound threats, outbound data loss
 - Check every email inbound and outbond
 - Internal system or cloud based
 - Inbound
 - Block keywords, identify imposters, quarantine email messages
 - Outbound

- Fake wire transfers, W-2 transmissions, employee information
- Emailing a spreadsheet template
 - Boeing employee emails spouse a spreadsheet to use as a template
- Contained the personal info of 36,00 boeing employees
 - Hidden columns
 - · SSN, Date of Birth
- Boeing sells its own DLP software
 - But only uses it for classified work

- Geographical considerations
 - Legal implications
 - Business regulations vary between states
 - For a recovery site outside of the country, personnel must have a passport and be able to clear immigration
 - Refer to your legal team
 - Offsite backup
 - Organization owned site or 3rd party secure facility
 - Offsite recovery
 - Hosted in a different location, outside the scope of the disaster
 - Travel considerations for support staff and employees
- Response and recovery controls
 - Incident response and recovery has become commonplace
 - Attacks are frequent and complex
 - Incident response plan should be established
 - Documentation is critical
 - Identify the attack
 - Contain the attack
 - Limit the impact of an attacker
 - Limit data exfiltration
 - Limit access to sensitive data
- SSL/TLS inspection
 - Commonly used to examine outgoing SSL/TLS
 - Secure Sockets Layer/ Transport Layer Security
 - For example, from your computer to your bank
 - Wait a second. Examine encrypted traffic?
 - Is that possible?
 - SSL/TLS relies on trust
 - Without trust, none of this works
 - o Im SSL
 - Your browser contains a list of trusted CA's
 - My browser contains about 170 CA's certifications
 - Your browser doesn't trust a website unless a CA has signed the web server encryption certificate

- The web site pays some money to the CA for this
- The Ca has ostensibly performed some checks
 - Validated against the DNS record, phone call, etc
- Your browser checks the web server's certificate
 - If its signed by a trusted CA cert, the encryption works seamlessly
- Hashing
 - Represent data as a short string of text
 - A message digest
 - One way trip
 - Impossible to recover the original message from the digest
 - Used to store passwords / confidential information
 - Verify a downloaded document is the same as the original document
 - Integrity
 - Can be a digital signature
 - Authentication, non repudiation, and integrity
 - Will not have a collision (hopefully)
 - Different messages will not have the same hash
 - A Hash example
 - SHA256 hash
 - 256 bits / 64 hexadecimal characters
- API Considerations
 - API (Application Programming Interface)
 - Control software or hardware programmatically
 - Secure and harden the login page
 - Don't forget about the API
 - On Path Attack
 - Intercept and modify the API messages, replay API commands
 - Api Injection
 - Inject data into an API message
 - DDoS (Distributed Denial of Service)
 - One bad API call can bring down a system
 - API Security
 - Authentication
 - Limit API access to legitimate users
 - Over secure protocols
 - Authorization
 - API should not allow extended access
 - Each user has a limited role
 - A read only user should not be able to make changes
 - WAF (Web Application Firewall)
 - Apply rules to API communication
- Site resiliency
 - Recovery site is prepped

- Data is synchronized
- A disaster is called
 - Business processes failover to the alternate processing site
- Problem is addressed
 - This can take hours, weeks, or longer
- Revert back to the primary location
 - The process must be documented for both directions
- Hot Site
 - An exact replica
 - Duplicate Everything
 - Stocked with hardware
 - Constantly updated
 - You buy two of everything
 - Applications and software are constantly updated
 - Automated replication
 - Flip a switch and everything moves
 - This may be quite a few switches
- Cold site
 - No hardware
 - Empty building
 - No data
 - Bring it with you
 - No people
 - Bus in your team
- Warm site
 - Somewhere between cold and hot
 - Just enough to get going
 - Big room with rack space
 - You bring the hardware
 - Hardware is ready and waiting
 - You bring the software and data

Honeypots

- Attract the bad guys
 - And trap them there
- The "attacker" is probably a machine
 - Makes for interesting recon
- Honeypots
 - Create a virtual world to explore
- Many different options
 - Kippo, Google Hack Honeypot, Wordpot
- Constant battle to discern the real from the fake
- Honey Files and honeynets
 - Honeynets

- More than one honeypot on a network
- More than one source of information
- Honeyfiles
 - Bait for the honeynet (passwords.txt)
 - An alert is sent if the file is accessed
 - A virtual bear trap
- Fake telemetry
 - Machine Learning
 - Interpret big data to identify the invisible
 - o Train the machine with actual data
 - Learn how malware looks and acts
 - Stop malware based on actions instead of signatures
 - Send the machine learning model fake telemetry
 - Make malicious malware look benign
- DNS sinkhole
 - A DNS that hands out incorrect IP addresses
 - Blackhole DNS
 - This can be bad
 - An attacker can redirect users to a malicious site
 - This can be good
 - Redirect known malicious domains to a benign IP addresses
 - Watch for any users hitting that IP address
 - Those devices are infected
 - Can be integrated with a firewall
 - Identify infected devices not directly connected