Chapter 6 Inner Product Spaces

6.1 Inner Products and Norms

Definition. Inner Product Let V be a vector space over F. An inner product on V is a function that assigns, to every ordered pair of vectors x and y in V, a scalar in F, denoted $\langle x,y\rangle$, such that for all $x,y,z\in VE$ and all $c\in F$,

- 1. $\langle x+z,y\rangle = \langle x,y\rangle + \langle z,y\rangle$
- 2. $\langle cx, y \rangle = c \langle x, y \rangle$
- 3. $\overline{\langle x, y \rangle} = \langle y, x \rangle$
- 4. $\langle x, x \rangle > 0$ if $x \neq 0$

First two condition requires inner product be linear in the first component. Also

$$\langle \sum_{i} a_i v_i, y \rangle = \sum_{i} a_i \langle v_i, y \rangle$$

Definition. Conjugate Transpose or Adjoint of a Matrix Let $A \in M_{m \times n}(F)$, the conjugate transpose or adjoint of A is an $n \times m$ matrix A^* such that $(A^*)_{ij} = \overline{A_{ji}}$ for all i, j. For $F = \mathbb{R}$, $A^* = A^T$

Definition. Inner Product Definition Example

1. Standard Inner Product on F^n For $x = (a_1, a_2, \dots, a_n)$ and $y = (b_1, b_2, \dots, b_n)$ in F^n , the standard inner product on F^n is given by

$$\langle x, y \rangle = \sum_{i=1}^{n} a_i \bar{b}_i$$

2. Inner Product for Real-valued Continuous Functions on [0,1] Let V = C([0,1]), $f,g \in V$, define

$$\langle f, g \rangle = \int_0^1 f(t)g(t)dt$$

3. Frobenius Inner Product for Matrices Let $V = M_{n \times n}(F)$, $A, B \in V$, then

$$\langle A, B \rangle = tr(B^*A) = \sum_{i=1}^{n} (B^*A)_{ii}$$

Definition. Inner Product Space A vector space over F endowed with a specific inner product is called an inner product space. If F = C, V is a complex inner product space; if $F = \mathbb{R}$, then V is a real inner product space

Theorem. 6.1 Properties From Inner Product Conditions Let V be an inner product space. Then for $x, y, z \in V$ and $c \in F$, the following statements are true

1.
$$\langle x, y + z \rangle = \langle x, y \rangle + \langle x, z \rangle$$

2.
$$\langle x, cy \rangle = \overline{c} \langle x, y \rangle$$

3.
$$\langle x, 0 \rangle = \langle 0, x \rangle = 0$$

4.
$$\langle x, x \rangle = 0$$
 if and only if $x = 0$

5. If
$$\langle x, y \rangle = \langle x, z \rangle$$
 for all $x \in V$, then $y = z$

The inner product is conjugate linear in the second argument

Definition. Norm/Length Let V be an inner product space. For $x \in V$, define norm or length of x by

$$||x|| = \sqrt{\langle x, x \rangle}$$

Definition. 6.2 Properties of Norm Let V be an inner product space over F. Then for all $x, y \in V$ and $c \in F$, the following statements are true

1.
$$||cx|| = |c| \cdot ||x||$$

2.
$$||x|| = 0$$
 if and only if $x = 0$. In any case, $||x|| \ge 0$

3. Cauchy-Schwarz Inequality
$$|\langle x,y\rangle| \leq ||x|| \cdot ||y||$$

4. Triangular Inequality
$$||x+y|| \le ||x|| + ||y||$$

Definition. Angle For $F = \mathbb{R}$, $x, y \neq 0$, and θ be angle between x and y

$$\cos \theta = \frac{\langle x, y \rangle}{\|x\| \|y\|} \qquad \theta = \cos^{-1} \left(\frac{\langle x, y \rangle}{\|x\| \|y\|} \right)$$

Note

$$\left| \frac{\langle x, y \rangle}{\|x\| \|y\|} \right| \le 1$$

So valid input to arccos function

Definition. Orthogonal Vectors Let V be an inner product space. Vectors x and y in V are orthogonal (perpendicular) if $\langle x, y \rangle = 0$.

Definition. Orthogonal Sets and Orthonormal Sets A subset S of V is orthogonal if any two distinct vectors in S are orthogonal. A vector x in V is a unit vector if ||x|| = 1. A subset S of V is orthonormal if S is orthogonal and consists entirely of unit vectors.

1.
$$S = \{v_1, v_2, \dots\}$$
, then S is orthonormal if and only if $\langle v_i, v_j \rangle = \delta_{ij}$

2. We can **normalize** an orthogonal set S, by multiplying 1/||x|| for each $x \in S$

Definition. Orthonormal Set Property Let V be inner product space and $S = \{s_1, s_2, \dots\} \subseteq V$ be an orthonormal set. Let $v \in span(S)$, then $v = a_1s_1 + \dots + a_ks_k$. Then

$$\langle v, s_i \rangle = a_i$$

by

$$\langle v, s_j \rangle = \langle \sum_i a_i s_i, s_j \rangle = \sum_i a_i \langle s_i, s_j \rangle = \sum_i a_i \delta_{ij} = a_j$$

Gram-Schmidt Orthogonalization Process and Orthogonal Complements

Definition. Orthonormal Basis Let V be an inner product space. A subset of V is an orthonormal basis for V if it is an ordered basis that is orthonormal

Definition. Every Inner Product Space has n Orthogonal Basis Let V be an inner product space and $S = \{v_1, v_2, \dots, v_k\}$ be an orthogonal subset of V consisting of nonzero vectors. If $y \in span(S)$, then

$$y = \sum_{i=1}^{k} \frac{\langle y, v_i \rangle}{\|v_i\|^2} v_i$$

Corollary. Special case for Orthonormal Set If, in addition to hypotheses of previous theorem, S is orthonormal and $y \in S$, then

$$y = \sum_{i=1}^{k} \langle y, v_i \rangle v_i$$

Corollary. Nonzero Orthonormal Set is Linearly Independent Let V be an inner product space, and flet S be an orthogonal subset of V consisting of nonzero vectors. Then S is linearly independent

Theorem. 6.4 Gram-Schmidt Process Let V be an inner product space and $S = \{w_1, w_2, \dots, w_n\}$ be a linearly independent subset of V. Define $S' = \{v_1, v_2, \dots, v_n\}$, where $v_1 = w_1$ and

$$v_k = w_k - \sum_{j=1}^{k-1} \frac{\langle w_k, v_j \rangle}{\|v_j\|^2} v_j \qquad 2 \le k \le n$$

Then S' is an orthogonal set of nonzero vectors such that span(S') = span(S)

Theorem. 6.5 Every Finite Dimensional I.P.S has an Orthonormal Basis Let V be a nonzero finite-dimensional inner product space. Then V has an orthonormal basis β . Furthermore, if $\beta = \{v_1, v_2, \dots, v_n\}$ and $x \in V$, then

$$x = \sum_{x=1}^{n} \langle x, v_i \rangle v_i$$

Corollary. Expression for Matrix Representation of Transformation on Orthonormal Basis Let V be a finite-dimensional inner product space with an orthonormal basis $\beta = \{v_1, v_2, \dots, v_n\}$. Let T be a linear operator on V, and let $A = [T]_{\beta}$. Then for any i and j, $A_{ij} = \langle T(v_j), v_i \rangle$, i.e.

$$T(v_j) = \sum_{i=1}^{n} \langle T(v_j), v_i \rangle v_i$$

Definition. Fourier Coefficients Let β be an orthonormal subset (possibly infinite) of an inner product space V, and let $x \in V$. We define the Fourier coefficients of x relative to β to be the scalars $\langle x, y \rangle$, where $y \in \beta$

Orthogonal Complements

Definition. Orthogonal Complements Let S be a nonempty subset of an inner product space V. We define $S^{\perp} = \{x \in V : \langle x, y \rangle = 0 \text{ for all } y \in S\}$. The set S^{\perp} is called the orthogonal complement of S

1.
$$\{0\}^{\perp} = V \text{ and } V^{\perp} = \{0\}$$

Theorem. 6.6 Finding Projection of a Vector onto a Subspace Let W be a finite-dimensional subspace of an inner product space V, and let $y \in V$. Then there exist unique vectors $u \in W$ and $z \in W^{\perp}$ such that y = u + z. Furthermore, if $\{v_1, v_2, \dots, v_k\}$ is an orthonormal basis for W, then

$$u = \sum_{i=1}^{k} \langle y, v_i \rangle v_i$$

where u is the orthogonal projection of y on W.

Corollary. Orthogonal Projection is Unique and Closest to Projected Vector In the notation of previous theorem, the vector u the unique vector in W that is closest to y; that is, for any $x \in W$, $||y - x|| \ge ||y - u||$, and this inequality is an equality if and only if x = u

Theorem. 6.7 Orthonormal Basis and Subspaces Suppose that $S = \{v_1, v_2, \dots, v_k\}$ is an orthonormal set in an n-dimensional inner product space V. Then

- 1. S can be extended to an orthonormal basis $\{v_1, v_2, \dots, v_k, v_{k+1}, \dots, v_n\}$ for V.
- 2. If W = span(S), then $S_1 = \{v_{k+1}, \dots, v_n\}$ is an orthonormal basis for W^{\perp}
- 3. If W is any subspace of V, then $dim(V) = dim(W) + dim(W^{\perp})$

6.3 The Adjoint of a Linear Operator

Definition. Dual Space is a space of all linear transformations from a vector space V to its field F.

Theorem. 6.8 Every Linear Transformation from V to F Can Be Written as a Inner Product Let V be a finite-dimensional inner product space over F, and let $g: V \to F$ be a linear transformation. Then there exists a unique vector $y \in V$ such that $g(x) = \langle x, y \rangle$ for all $x \in V$, where

$$y = \sum_{i} \overline{g(v_i)}v_i$$
 $\beta = \{v_1, \dots, v_n\}$ is orthonormal basis

Definition. Adjoint Linear Operator Given inner product space V, let T be a linear operator on V. The adjoint of operator T, T^* , is the unique operator on V satisfying

$$\langle T(x), y \rangle = \langle x, T^*(y) \rangle$$
 for all $x, y \in V$

Theorem. 6.9 Adjoint of an Linear Operator Exist for f.d. Inner Product Space Let V be a finite-dimensional inner product space, and let T be a linear operator on V. Then there exists a unique function, called the adjoint of T, $T^*: V \to V$ such that

$$\langle T(x), y \rangle = \langle x, T^*(y) \rangle$$

for all $x, y \in V$. Furthermore, T^* is linear.

Theorem. 6.10 Adjoint of a Linear Operator in Matrix Form is the Adjoint of Matrix Form of that Linear Operator Let v be a finite-dimensional inner product space. Let β be an orthonormal basis for V. If T is a linear operator on V, there

$$[T^*]_{\beta} = [T]_{\beta}^*$$

Corollary. For Left-Matrix Transformation Let A be $n \times n$ matrix, then $L_{A^*} = (L_A)^*$. (theorem 2.16)

Theorem. 6.11 Properties of Adjoint of Linear Operators

Let V bewr an inner product space, and let T, U be linear operators on V, then

- 1. $(T+U)^* = T^* + U^*$
- 2. $(cT)^* = \overline{c}T^*$ for any $c \in F$
- 3. $(TU)^* = U^*T^*$
- 4. $T^{**} = T$
- 5. $I^* = I$

assuming adjoints always exists.

Corollary. For Matrix

Let A and B be $n \times n$ matrix, then

1.
$$(A+B)^* = A^* + B^*$$

2.
$$(cA)^* = \overline{c}A^*$$
 for all $c \in F$

3.
$$(AB)^* = B^*A^*$$

4.
$$A^{**} = A$$

5.
$$I^* = I$$

Least Squares Approximation

Definition. Some notation Fort $x, y \in F^n$

- 1. $\langle x,y\rangle_n$ is the standard inner product of x and y in F^n
- 2. If x and y are column vectors, then $\langle x, y \rangle_n = y^*x$

Lemma. Let $A \in M_{m \times n}(F)$, $x \in F^n$ and $y \in F^m$, then

$$\langle Ax, y \rangle_m = \langle x, A^*y \rangle_n$$

Lemma. Let $A \in M_{m \times n}(F)$. Then $rank(A^*A) = rank(A)$

Corollary. If A is $m \times n$ matrix such that rank(A) = n, then A^*A is invertible

Theorem. 6.12 Close Form Solution for Least Squared Problem Let $A \in M_{m \times n}(F)$ and $y \in F^m$. Then there exists $x_0 \in F^n$ such that $(A^*A)x_0 = A^*y$ and $||Ax_0 - y|| \le ||Ax - y||$ for all $x \in F^n$. Furthermore, if rank(A) = n, then $x_0 = (A^*A)^{-1}A^*y$