Antennas & Receivers in Radio Astronomy

Mark McKinnon

Sixteenth Synthesis Imaging Workshop 16-23 May 2018

Purpose & Outline

- Purpose: describe how antenna elements can affect the quality of images produced by an aperture synthesis array
- Scope/Context
- Antennas
 - Fundamentals (antenna types and terminology)
 - Reflector antenna mounts and optics
 - Aperture efficiency
 - Pointing
 - Polarization
- Receivers and Noise Temperature

Interferometer Block Diagram

Effects of Antenna Properties on Data

- Antenna amplitude pattern causes amplitude to vary across the source.
- Antenna phase pattern causes phase to vary across the source.
- Polarization properties of the antenna can modify the apparent polarization of the source.
- Antenna pointing errors can cause time varying amplitude and phase errors.
- Variation in noise pickup from the ground can cause time variable amplitude errors.
- Deformations of the antenna surface can cause amplitude and phase errors, especially at short wavelengths.

Antenna Types

- Purpose of an antenna: capture radiation from an object and couple it to a receiver for detection, digitization, and analysis
- Wire antennas $(\lambda > 1m)$
 - Dipole, Yagi, Helix, or small arrays of each type
- Reflector antennas $(\lambda < 1m)$
- Hybrid antennas $(\lambda \approx 1 \text{m})$
 - Wire reflectors
 - Reflectors with dipole feeds

Terminology & Definitions - I

Effective collecting area, $A(v,\theta,\phi)$ m²

 $P(\theta, \phi, v) = A(\theta, \phi, v)I(\theta, \phi, v)\Delta v\Delta\Omega$

On-axis response, $A_0 = \eta A$

 η = aperture efficiency

Normalized pattern (primary beam)

$$\mathbf{A}(v,\theta,\phi) = \mathbf{A}(v,\theta,\phi)/\mathbf{A}_0$$

GEOMETRIC AREA "A"

$$\Omega_{A} = \iint \mathbf{A}(\nu, \theta, \phi) d\Omega$$

 $I(\nu, \theta, \phi)$

Terminology & Definitions - II

- $A_0 \Omega_A = \lambda^2$ Effective area (gain) & solid angle (field of view)
 - Can have large effective area or large solid angle, but not both at the same time
- Antenna sidelobes and backlobes
 - Increase system temperature due to ground pick up
 - Make antenna susceptible to RFI
 - Sidelobes can limit image dynamic range by detecting strong background sources
- What determines the beam shape? ...

Illumination-Beam Shape Comparisons

Antenna's far-field radiation pattern (beam) is related to the Fourier transform of its aperture distribution (illumination pattern)

Antenna Mounts: Altitude over Azimuth

ELEVATION AXIS

- Advantages
 - Cost

AZIMUTH AXIS

- Gravity performance
- Disadvantages
 - Zone of avoidance
 - Beam rotates on sky

Alt-Az: Beam Rotation on the Sky

Antenna Mounts: Equatorial

- Advantages
 - Tracking accuracy
 - Beam doesn't rotate
- Disadvantages
 - Cost
 - Gravity performance
 - Sources on horizon at pole

Antenna Optical Configurations Prime Focus Cassegrain

NRAO

JVLA Feed Horns

Credit: Ruff & Hayward

16th Synth

Optical Configurations, Pros & Cons - I

Prime Focus

- Can be used over entire frequency range of the reflector
- Over-illumination (spillover) can increase system temperature due to ground pick-up
- Number of receivers and access to them is limited
- Multiple reflector systems
 - More space, easier access to receivers, reduced ground pick-up
 - Any spillover is on cold sky; better for low system noise
 - Can limit low frequency capability. Feed horn too large
 - Over-illumination by feed horn can exceed the gain of the primary reflector's sidelobes
 - Strong sources a few degrees from the antennas' main bean may limit image dynamic range

Optical Configurations, Pros & Cons - II

- Offset optics
 - Unblocked aperture:
 - higher aperture efficiency, lower sidelobes
 - Support structure of offset geometry is complex and expensive
 - Expensive panel tooling due to multiple panel sizes

Aperture Efficiency

On axis response: A₀ = η A, Efficiency: η = η_{sf} . η_{bl} . η_{s} . η_{t} . η_{misc}

 η_{sf} = Reflector surface efficiency

Due to random imperfections in reflector surface $\eta_{sf} = \exp(-(4\pi\sigma/\lambda)^2)$ e.g., $\sigma = \lambda/16$, $\eta_{sf} = 0.5$ (Ruze)

16

 η_s = Feed spillover efficiency. Fraction of power radiated by feed intercepted by subreflector

 η_t = Illumination taper efficiency. Outer parts of reflector illuminated at lower level than inner part

 $\underline{\eta_{\text{misc}}}$ = Reflector diffraction, feed position phase errors, feed match and loss

Surface Errors

- Correlated surface errors can produce an error scatter pattern
 - Pattern width determined by sizescale of correlations (e.g. panel size)
 - Level could exceed that of sidelobes

Before adjustment (43mm) After adjustment (11mm)

ALMA surface panel adjustment: phase map

Antenna Gain - I

 Antenna gain (on-axis response) varies with elevation, primarily due to the redistribution of gravitational forces within the antenna backup structure

IRAM 30m (predicted, 1999)

→ 1.3mm → 2mm

Antenna Gain - II

- Gravitational distortions and elevation-dependent gain can be compensated with an active surface
- GBT active surface: 2004 surface panels, 2209 surface actuators

Antenna Pointing: Practical Considerations

Antenna Pointing

- "Blind" pointing: ALMA 2"; VLA 15"
- Pointing performance can be improved by measuring pointing errors via frequent observations of a nearby calibration source
 - Offset or reference pointing: ALMA − 0.6"; VLA − 3"

• Desired accuracy: $\Delta\theta < \theta_{3dB} / 20$

• Large intensity variations at beam edge with $\Delta\theta < \theta_{\rm 3dB}$ /10

credit: Hunter

Antenna Polarization Properties

- Instrumental polarization can:
 - cause an unpolarized source to appear polarized
 - alter the apparent polarization of a polarized source
- Two components of instrumental polarization
 - constant or variable across the beam
- Sources of instrumental polarization
 - Antenna structure:
 - Symmetry of the optics
 - Reflections in the optics
 - Curvature of the reflectors
 - Circularity of feed radiation patterns
 - Quality of FE polarization separation (constant across the beam)

Polarization Beam Patterns

Co-polarization pattern

Cross-polarization pattern

Front End Polarization Separation - I

- Dual-polarization receivers needed for best sensitivity and polarization observations
- Two types of devices in use: OMT and wire grid
- Waveguide-type Orthomode Transducer (OMT)

After the feed horn; longer wavelength

ALMA Band 3 OMT

ALMA Band 6 OMT

VLA S-band OMT

Front End Polarization Separation - II

- Quasi-optical:Wire Grid
 - Before the feed horn; shorter wavelength
 - Grid reflects one polarization, passes the other

Credit: Hunter

JVLA Receivers – RF Sections

Credit: Harden & Hayward

ALMA Receivers

Lens, OMT OMT

Wire grid

OMT

Wire grid

Band 3

84-116

Band 4

125-163

Band 6

211-275

Band 7 275-373

385-500

Band 8

Band 9

600-720 GHz

Receivers are dual linear polarization

credit: Hunter

ALMA Front End Cryostat

Receivers: Noise Temperature

- Reference the received power to the equivalent temperature of a matched load at the input to the receiver
- Rayleigh-Jeans approximation to Planck radiation law for a blackbody

$$P_{in} = k_B T \Delta v (W)$$

$$k_B = Boltzman's constant (1.38*10^{-23} J/°K)$$

- When observing a radio source, $T_{total} = T_A + T_{sys}$
 - Tsys = system noise when not looking at a discrete radio source

Receivers: SEFD

$$T_A = \eta AS/(2k_B) = KS$$

$$S = source flux (Jy)$$

SEFD = system equivalent flux density

SEFD = Tsys/K (Jy)

EVLA Sensitivities

	Band (GHz)	η	T _{sys}	SEFD
	1-2	.50	21	236
	2-4	.62	27	245
	4-8	.60	28	262
	8-12	.56	31	311
/	12-18	.54	37	385
	18-26	.51	55	606
	26-40	.39	58	836
	40-50	.34	78	1290

JVLA Receiver Performance

Credit: Hayward

Additional Information

- General: Synthesis Imaging in Radio Astronomy II: ed. Taylor,
 Carilli, & Perley
- ALMA antennas and receivers: ALMA Technical Handbook at http://almascience.org
- EVLA receivers: http://www.aoc.nrao.edu/~pharden/fe/fe.htm

