

planetmath.org

Math for the people, by the people.

closed subsets of a compact set are compact

 ${\bf Canonical\ name} \quad {\bf Closed Subsets Of A Compact Set Are Compact}$

Date of creation 2013-03-22 13:55:56 Last modified on 2013-03-22 13:55:56 Owner Wkbj79 (1863) Last modified by Wkbj79 (1863)

Numerical id 16

Author Wkbj79 (1863) Entry type Theorem Classification msc 54D30

 $\begin{tabular}{lll} Related topic & AClosedSetInACompactSpaceIsCompact \\ Related topic & ACompactSetInAHausdorffSpaceIsClosed \\ \end{tabular}$

Theorem 1. Suppose X is a topological space. If K is a compact subset of X, C is a closed set in X, and $C \subseteq K$, then C is a compact set in X.

The below proof follows http://planetmath.org/Ege.g. [?]. A proof based on the finite intersection property is given in [?].

Proof. Let I be an indexing set and $F = \{V_{\alpha} \mid \alpha \in I\}$ be an arbitrary open cover for C. Since $X \setminus C$ is open, it follows that F together with $X \setminus C$ is an open cover for K. Thus, K can be covered by a finite number of sets, say, V_1, \ldots, V_N from F together with possibly $X \setminus C$. Since $C \subset K$, V_1, \ldots, V_N cover C, and it follows that C is compact.

The following proof uses the http://planetmath.org/ASpaceIsCompactIfAndOnlyIfTheSpaceIntersection property.

Proof. Let I be an indexing set and $\{A_{\alpha}\}_{\alpha\in I}$ be a collection of X-closed sets contained in C such that, for any finite $J\subseteq I$, $\bigcap_{\alpha\in J}A_{\alpha}$ is not empty. Recall that, for every $\alpha\in I$, $A_{\alpha}\subseteq C\subseteq K$. Thus, for every $\alpha\in I$, $A_{\alpha}=K\cap A_{\alpha}$. Therefore, $\{A_{\alpha}\}_{\alpha\in I}$ are K-closed subsets of K (see http://planetmath.org/ClosedSetInASubspapage) such that, for any finite $J\subseteq I$, $\bigcap_{\alpha\in J}A_{\alpha}$ is not empty. As K is compact, $\bigcap_{\alpha\in J}A_{\alpha}$ is not empty (again, by http://planetmath.org/ASpaceIsCompactIfAndOnlyIfTheSpaceIsCompactIfAnd

result). This proves the claim. \Box

References

- [1] J.L. Kelley, General Topology, D. van Nostrand Company, Inc., 1955.
- [2] S. Lang, Analysis II, Addison-Wesley Publishing Company Inc., 1969.
- [3] G.J. Jameson, Topology and Normed Spaces, Chapman and Hall, 1974.
- [4] I.M. Singer, J.A. Thorpe, Lecture Notes on Elementary Topology and Geometry, Springer-Verlag, 1967.