

Niedner - Sanexen Visualization Tool Manual

Milad Ramezankhani, Tina Olfatbakhsh, Bryn Crawford, Armin Rashidi, Reza Sourki, Amir Nazemi, Dr. Abbas Milani

Mohammad Hadi, Dr. Fatemeh Fard

June 2022

You can

use this

slider to

documenta tion page

FE Models' Output Specification and ML Models Results

Samples' deformation After stress relaxation test

Outer layer

Schematic of Inputs

Modulus of elasticity Warp (E1)

Coefficient of friction

Snaking - Data summary

Parameter Name	Units	Input Variables Min-Max (Levels)
Inner Modulus	GPa	0.10-0.18 (5)
Outer Modulus	GPa	0.07-0.15 (5)
Axial Load	kN	6-14(5)
Friction Coefficient	-	0.01 – 45 (10)

Model selection

Model	Interpretability	R ² Coefficient of Determination (Highest)	MSE	Training Speed		
Number of Snaking						
Linear Regression	High	0.321	4.268	High		
SVR	Low	0.545	2.856	Low		
Decision Tree(*)	High	0.600	2.508	High		
XGBoost(**)	Low	0.602	2.500	Low		
Global Length of Snaking						
Linear Regression	High	0.764	41.78	High		
SVR	Low	0.873	23.32	Low		
Decision Tree (*)	High	0.880	21.24	High		
XGBoost (**)	Low	0.881	21.22	Low		
Snaking Amplitude						
Linear Regression(*)	High	0.708	0.495	High		
SVR	Low	0.712	0.483	Low		
Decision Tree	High	0.711	0.490	High		
XGBoost(**)	Low	0.723	0.460	Low		

Composites Research Network

Pareto Charts for Best Models

Bunching - Inputs

Variable	Unit	Levels*
Modulus of elasticity – inner – warp	GPa	0.1, 0.14 , 0.18
Modulus of elasticity – inner – weft	GPa	0.18, 0.26 , 0.34
Modulus of elasticity – outer – warp	GPa	0.07, 0.09 , 0.15
Modulus of elasticity – outer – weft	GPa	0.07, 0.103 , 0.25
Shear modulus - inner	МРа	3.128, 3.87
Shear modulus - outer	МРа	0.48, 1.79
Friction coefficient (between inner and outer layers)	-	0.14 , 0.2
Axial load (water pressure drop)	$\frac{N}{mm^2}$	3e-5, 6.6e-5
Pre-strain	%	Inside jacket 1.6%, Inside jacket 0.44%, Outside jacket 0.5%

Bunching - Outputs

Bunching – ML model performance

Model	R-squared
Linear regression	0.66
Ridge regression	0.67
Random forest	0.91
Gradient boosting	0.83
SVM - RBF kernel	0.84
SVM - Linear	0.6

Assembly - Inputs

Variable	Unit	Levels*
Modulus of elasticity – inner – warp	GPa	0.1, 0.14 , 0.18
Modulus of elasticity – inner – weft	GPa	0.18, 0.26 , 0.34
Modulus of elasticity – outer – warp	GPa	0.07, 0.09 , 0.15 , 0.18
Modulus of elasticity – outer – weft	GPa	0.07, 0.103 , 0.25 , 0.3
Shear modulus - inner	МРа	2.8, 3.87 , 4.8
Shear modulus - outer	MPa	1.3, 1.79 , 6.62 , 8
Friction coefficient (between inner and outer layers)	-	0.1, 0.2
* The level at the center for each variable was derived from characterization experiments.		Outer layer with TPU Outer layer without TPU

16

Assembly - Outputs

Excessive length (Deformation in the assembly direction)

Assembly – ML model performance

Model	R-squared
Linear regression	0.63
Ridge regression	0.63
Random forest	0.83
Gradient boosting	0.85
SVM - RBF kernel	0.85
SVM - Linear	0.1

ML Interpretability Analysis

SHAP

- Shapley additive explanations (SHAP) is an additive feature attribution approach based on game theory.
- SHAP identifies the contribution of each feature to the model's prediction in an attempt to understand the underlying decision rules learned by the model.
- It interprets the model by assigning importance (SHAP) value to each feature in the prediction of any particular instance.

Model explainability analysis - Bunching

Model explainability analysis - Assembly

Modulus of elasticity - Inner - Warp (MPa)

Modulus of elasticity - Inner - Weft (MPa)

Modulus of elasticity - Outer - Warp (MPa)

Friction coefficient - Ivl1

Friction coefficient - IvI2

Shear modulus - Inner (MPa)

Modulus of elasticity - Outer - Weft (MPa)

Shear modulus - Outer (MPa)

