FLASH Spectral Line Data Validation Report

Last modified: 11-Nov-2020 by Hyein Yoon Original script for WALLABY: 24-Mar-2020 by Bi-Qing For (ICRAR/UWA)

Notes for FLASH:

- This tool uses ASKAPsoft producs. FITS-datacubes are needed for getting major and minor beam sizes only (from the header).
- Not all data are availble, so some dummy files were used to run the script successfully.
- 1) Combining all info from spectra + continuum - 2) Any other additional items to be required?

Observation

SBID	No. of Antennas	Obs Start Date/Time	Obs End Date/Time	Duration (hr)	Field	R.A.	Decl.	Total Bandwidth (MHz)
13293	36	19-Apr-2020/08:29:22.1	19-Apr-2020/14:29:30.7	6.0	FLASH G9A long	08:47:35.5	+00.30.00.0	288.0

- col 1: from input by user
- col 2-8: from /metadata/mslist-*.txt
- col 9: from /metadata/mslist-Science*.txt

Processed Image Cube

ASKAPsoft version*	Cal SBID	Frequency Range (MHz)	Central Frequency (MHz)	Channel Width (kHz)	Synthesised Beam (arcsec x arcsec)	Beam Logs	Flagged Visibilities	Flagged Antennas	Expected RMS
2020-10-09T04:21:48	1329	711.5999.481	855.4907	18.519	30x30	000000000000000000000000000000000000000	000000 000000 000000 000000	Click here	

- col 2: from /diagnostics/cubestats-/cubeStats*linmos.contsub.txt (mosaic contsub)

- col 1: from /slurmOutput/*.sh - if more than one version of ASKAPsoft is used for the whole reduction, the latest one is reported.

- col 3-4: from /metadata/mslist-Science*.txt
- col 5: from FITS-datacube (CURRENT VERSION: continuum subtracted beam00 cube Nov 22 ver.; too large beam size? depending on robust parameter?)
- col 6: from ./SpectralCube_BeamLogs/beamlogs*.txt - col 6: Bi-qing's notes: Evaluating each channel of each beam if ASKAPSoft fails to synthesize the beam, bmaj and bmin to 30 arcsec. bmaj and bmin for the first few channels are always zero. - col 7: from /flagSummary/*.flagSummary
- col 8: from ./flagSummary/*.flagSummary (flagged fraction) + theoretical rms estimation (based on input values)
- - **Beams Statistics**

Beam Image Cube	Continuum Subtracted Beam Cube	Residual Beam Cube	
Min, Max, 1 percentile	Min, Max, 1 percentile	Min, Max, 1 percentile	
Stdev, MADFM	Stdev, MADFM	Stdev, MADFM	

- why one percentile?

- col 1-3: from beamMinMax Plots

MAD Max Flux Density 1-percentile noise rank - col 1: from beamMinMax Plots

Continuum Subtracted Beam Cube

- col 2: from CubeStat*contsub.txt

Residual Cube

Missing Data

Component 03b

High frequency (last 5,000 channels)

Mosaic Statistics

Image Cube	Continuum Subtracted Cube	Residual Cube	Number of Bad Channel	Missing Data (Channel)
			4340 Click here	Yes < 100, n= 7
- col 1-3: from cubePlots				

- col 4: from CubeStat*contsub.txt

Component 01a

Component 01b Component 02a Component 03a

Source and Noise Spectra from five bright components

10/33 chunks > 5-sigma					
10/33 chunks > 5-sigma					
	10/33 chunks > 5-sigma	13/33 chunks > 5-sigma	13/33 chunks > 5-sigma	9/33 chunks > 5-sigma	11/33 chunks > 5-sigma

- Deviation from noise spectra (9 MHz chunks)
 - Low frequency (first 5,000 channels)

Median noise flux density - noise Spectra

199 component (outside 3.2 deg)	139 component (outside 3.2 deg)
State of the state	HIGH New Add Afficiant top T
RA offset (red points: outside 3.2 deg)	RA offset (red points: outside 3.2 deg)
DEC offset (red points: outside 3.2 deg)	DEC offset (red points: outside 3.2 deg)

- stable out to 3.2 degree

Continuum - comparison with NVSS

Continuum image	Statistics	RA/DEC offset	Flux comparison	Flux vs distance from image centre			
An oppose	Size Size S	23 50 50 50 50 50 50 50 50 50 50 50 50 50	FLASH integrated flux (mg) MV	Ondance from image center (drig)			
col 1: continuum image + selavy bright componenets							

- col 2: size & flux histogram - col 3: RA/DEC offset (comparison with NVSS) - col 4: flux difference (comparison with NVSS)

- data from Vizier FIRST (2014Dec17; Helfand+ 2015)

- col 5: primary beam correction check (comparison with NVSS)

Click here

Selavy or FIRST sources within 6 x 6 sq degree

- NVSS sources within 6 x 6 sq degree

Click here

- a resolution of 45 arcsec

- data from Vizier NVSS (Condon+ 1998)

- a resolution of 5 arcsec

* If more than one version of ASKAPsoft is used for the whole reduction, the latest one is reported. ** Does not take into account field rotation. Generated at 2020-11-11 16:53:13.005636 Report bugs to Hyein Yoon