北京大学计算机学院 2024年春季学期 《编译原理》

第三讲 语法分析

Syntax Analysis

主要内容

- 语法分析的作用
- 语法分析的规约
- ◎ 语法分析的手动实现
- ◎ 语法分析的自动生成

◎ 对应章节:第4章

主要内容

● 语法分析的作用

- 语法分析的规约
- 语法分析的手动实现
- 语法分析的自动生成

语法分析的作用

- 处理词法单元(token)序列,构造语法分析树
- 把「单词」组合成「句子」

语法分析示例

<ID, "a"> <EQ> <ID, "a"> <MUL> <NUMBER, 2> <MUL> <ID, "b"> <MUL> <ID, "c"> <MUL> <ID, "d"> <SEMI>

● 从上面的 token 序列构造语法分析树:

2024 年春季学期 《编译原理》 北京大学计算机学院

语法分析的工作

- 识别语法变量,进行语法检查,构造语法分析树
- 输入为词法分析得出的 token 序列
- 如果语法有错,尽可能详细地报告语法错误

为什么需要语法分析?

● 什么样的语言不需要语法分析?

- B****F***(BF)语言
 - ❖ 其程序操作一个指针,该指针指向一个全局数组中的位置

这个BF程序把指针指向位置的值加到下一个位置

字符	语义
>	把指针往右移一个位置
<	把指针往左移一个位置
+	把指针指向位置的值加一
-	把指针指向位置的值减一
[如果指针指向位置的值为零,跳转到匹配的]之后
]	如果指针指向位置的值非零,跳转到匹配的[之后

- ●除了遇到[],按 照源程序字符流 从左到右执行
- ◎ 不需要语法分析
- 其实词法分析也不需要

为什么需要语法分析?

- 常见语言不具有 BF 语言那种从左到右执行的语义模型
- 例:四则运算中,我们需要考虑括号和运算的优先级
- 语法分析: 从线性结构(token 序列) 到非线性结构(分析树)

● 语法中蕴含一些语义信息

主要内容

- 语法分析的作用
- 语法分析的规约
- 语法分析的手动实现
- 语法分析的自动生成

回顾: 词法分析的规约

● 使用一系列的正则表达式,标明它们每个对应的 token 类别

token 类别	正则表达式
IF	if
WHILE	while
ID	[A-Za-z_]([A-Za-z_0-9])*
NUMBER	[+-]?([0-9])+
LPAREN	
NEQ	! =

- 每个正则表达式r表示了符号表 Σ 上的一个语言L(r)
- 语法分析的规约需要描述由 token 组成的语言

文法 (Grammar)

• 终结符号集

- 非终结符号(语法变量)集
 - ❖ $V_N = \{ 句子, 主语, 宾语, 修饰 \}$
- 初始符号

- 产生规则集
 - * P = {句子→主语动词宾语结束符,……}

「可以具有如下形式」 「推导」 、

语法变量

句子→主语 动词 宾语 结束符

主语 → 名词

宾语 → 名词

宾语→修饰名词

修饰→形容词

• • • • • •

基于文法进行推导


```
句子→主语动词宾语结束符
```

主语→名词

宾语 → 名词

宾语→修饰名词

修饰→形容词

• • • • •

- 句子 ⇒ 主语 <动词, "are">宾语 <结束符, ".">
 - → <名词, "Compilers"> <动词, "are"> 宾语 <结束符, ".">
 - → <名词, "Compilers"> <动词, "are"> 修饰 <名词, "objects"> <结束符, ".">
 - ⇒ <名词, "Compilers"> <动词, "are"> <形容词, "engineered"> <名词, "objects"> <结束符, ".">

Compilers are engineered objects.

2024 年春季学期 《编译原理》 北京大学计算机学院

文法的形式化定义

- 一个文法 $G = (V_T, V_N, S, P)$ 是一个四元组
 - V_T 是一个非空有限的终结符号(terminal symbol)集合
 - ❖ 可以理解为该文法的「字母表」
 - V_N 是一个非空有限的非终结符号(nonterminal symbol)集合
 - $V_T \cap V_N = \emptyset$
 - ❖ $S \in V_N$ 为初始符号(start symbol)
- 推导表示从初始符号 S 出发, 反复应用 P 中的产生规则, 直到符号串中只有终结符号
 - ◆ 用 L(G) 表示文法能推导出的符号串集合, 即其表示的语言

文法示例

• 文法 $G = (V_T, V_N, S, P)$, 其中 $V_T = \{a, b, c\}$, $V_N = \{S, B\}$, P 中有 4 条产生规则(如右侧所示)

$$S \Rightarrow aBSc$$
 [1]

$$\Rightarrow$$
 a $B = B S = C$ [1]

$$\Rightarrow$$
 aa BBS cc [3]

$$\Rightarrow$$
 aa BB abccc [2]

$$\Rightarrow$$
 aa B a B bccc [3]

$$\Rightarrow$$
 aaa BB bccc [3]

$$\Rightarrow$$
 aaa B bbccc [4]

$$\Rightarrow$$
 aaabbbccc [4]

[1]
$$S \rightarrow aBSc$$

[2] $S \rightarrow abc$
[3] $Ba \rightarrow aB$

 $B b \rightarrow b b$

[4]

一般约定:

- 第一条规则的左部是初始符号
- 大写字母表示非终结符号
- 小写字母表示终结符号

上下文无关文法

- 文法的表达能力很强
 - ❖ 判断符号串 w 是否属于文法 G 表示的语言是图灵不可判定问题
- 上下文无关文法
 - Context-Free Grammar, CFG
- 所有产生规则的左边有且仅有一个非终结符号
 - 每个产生规则的形式为 $A \rightarrow β$,其中A 是非终结符号
 - ❖ 在推导时不需要知道 A 的前后状况(上下文)
- 能被 CFG 表示的语言被称为上下文无关语言
 - Context-Free Language, CFL

CFG 示例

• 上下文无关文法 $G = (V_T, V_N, S, P)$, 其中 $V_T = \{[,]\}$, $V_N = \{S\}$, P 中有 3 条产生规则(如右侧所示)

● 该文法描述了配平的括号串构成的语言

$$S \Rightarrow SS$$

[3]

$$\Rightarrow S[S]$$

[2]

$$\Rightarrow S[SS]$$

[3]

$$\Rightarrow S[[S]S]$$

[2]

$$\Rightarrow S[[]S]$$

[1]

$$\Rightarrow [S][[]S]$$

[2]

$$\Rightarrow [S][[][S]]$$

[2]

$$\Rightarrow [][[][S]]$$

[1]

$$\Rightarrow$$
 [][[][]]

[1]

[1]
$$S \rightarrow \epsilon$$

[2] $S \rightarrow [S]$
[3] $S \rightarrow SS$

为什么不在语法分析中使用正则表达式作为规约?

为什么不使用正则表达式?

- 能用正则表达式表示配平的括号串构成的语言吗?
- 很遗憾,不能
- 但是在编程语言语法中,类似「配平的括号串」的结构很常见

$$Expr
ightarrow (Expr)$$
 $Expr
ightarrow Expr Op ID$
 $Expr
ightarrow ID$
 $Op
ightarrow +$
 $Op
ightarrow Op
ightarrow +$
 $Op
ightarrow +$
 $Op
ightarrow +$

BNF 范式

Backus-Naur Form, BNF

- 把 $A \rightarrow \beta$ 写作A ::= β
- 如果A 对应多个产生规则,可放在一起写作 $A := \beta_1 \mid \beta_2$

$$Expr
ightarrow (Expr)$$
 $Expr
ightarrow Expr Op ID$
 $Expr
ightarrow ID$
 $Op
ightarrow +$
 $Op
ightarrow Op
ightarrow +$
 $Op
ightarrow +$
 $Op
ightarrow +$

$$Expr ::= (Expr)$$
 $| Expr Op ID$
 $| ID$
 $Op ::= +$
 $| | *$

推导和归约

- 考虑文法 $G = (V_T, V_N, S, P)$, 若 $\alpha \to \beta$ 是 P 中的产生规则,且 γ 、 δ 是由 $V_T \cup V_N$ 构成的符号串,则称 $\gamma \alpha \delta$ 直接推导 $\gamma \beta \delta$,表示为 $\gamma \alpha \delta \Rightarrow \gamma \beta \delta$
- 多个直接推导构成的序列被称为推导
 - * $\alpha_0 \Rightarrow \alpha_1 \Rightarrow ... \Rightarrow \alpha_n (n 为 自然数)$ 可以简记为 $\alpha_0 \Rightarrow^* \alpha_n$
 - * 若要求至少一步直接推导(n > 0),可记为 $\alpha_0 \Rightarrow^+ \alpha_n$
- 文法 G 表示的语言为 $L(G) = \{w \mid S \Rightarrow^* w, w$ 由终结符号构成 $\}$
- 归约(reduction)是推导(derivation)的逆过程
 - * $\gamma\beta\delta$ 可以被直接归约到 $\gamma\alpha\delta$, 可记为 $\gamma\alpha\delta \leftarrow \gamma\beta\delta$

语法分析树

- 语法分析树(parse tree)是对 CFG 的推导过程的可视化
 - ❖ 根结点是文法的初始符号
 - ◆ 每个内部结点(非叶子结点)的标号是非终结符号
 - ❖ 每个内部结点表示应用某个产生规则, 其孩子结点对应规则的右侧

S	\Rightarrow	SS	[3]
	\Rightarrow	S[S]	[2]
	\Rightarrow	S[SS]	[3]
	\Rightarrow	S[[S]S]	[2]
	\Rightarrow	S[[]S]	[1]
	\Rightarrow	[S][[]S]	[2]
	\Rightarrow	[S][[][S]]	[2]
	\Rightarrow	[][[][S]]	[1]
			Г17

[1]	$S \to \epsilon$
[2]	$S \rightarrow [S]$
[3]	$S \rightarrow SS$

最左推导和最右推导

- 最左推导:每一步选择最左边的非终结符号进行直接推导
- 最右推导:每一步选择最右边的非终结符号进行直接推导
- 同一棵语法分析树的最左、最右推导序列可能不同


```
S \Rightarrow SS
\Rightarrow [S]S
\Rightarrow []S
\Rightarrow [][S]
\Rightarrow [][S]
\Rightarrow [][[S]S]
\Rightarrow [][[S]S]
\Rightarrow [][[][S]]
\Rightarrow [][[][S]]
```

最左推导

最左推导和最右推导

- 最左推导:每一步选择最左边的非终结符号进行直接推导
- 最右推导:每一步选择最右边的非终结符号进行直接推导
- 同一棵语法分析树的最左、最右推导序列可能不同

 $S \Rightarrow SS$

 $\Rightarrow S[S]$

 $\Rightarrow S[SS]$

 $\Rightarrow S[S[S]]$

 $\Rightarrow S[S[]]$

 $\Rightarrow S[[S][]]$

 $\Rightarrow S[[][]]$

 $\Rightarrow [S][[][]]$

 \Rightarrow [][[][]]

最右推导

语法分析树示例

语法分析树示例

语法分析树示例

Expr Op Expr Op Expr

<ID, "a"> + <ID, "b"> * <ID, "c">

先计算加法 再计算乘法

2024年春季学期 《编译原理》 北京大学计算机学院

二义性 (ambiguity)

- 如果一个串有两棵不同的分析树,那么该串是二义性的
- 如果一个文法产生二义性的串,那么该文法是二义性的
- 一般来说, 语法分析过程需要无二义性文法
- 对于一些语言来说,可以把二义性文法转换为无二义性的

- Expr的文法有二义性的原因是没有在文法中遵循四则运算规则
- 转换文法以体现运算符优先级
 - ❖ 括号的优先级最高
 - ❖ 乘法(*)和除法(/)的优先级次之
 - ❖ 加法(+)和减法(-)的优先级最低
- 给每种优先级引入一个非终结符号
 - ❖ Factor 对应括号
 - ❖ Term 对应乘、除法
 - ❖ Expr 对应加、减法

```
Expr ::= (Expr)
| Expr Op Expr
| ID
Op ::= + | - | * | /
```

```
Expr ::= Expr + Term
| Expr - Term
| Term
Term ::= Term * Factor
| Term / Factor
| Factor
Factor ::= (Expr)
| ID
```



```
Expr ::= Expr + Term
\mid Expr - Term
\mid Term
Term ::= Term * Factor
\mid Term / Factor
\mid Factor
Factor ::= (Expr)
\mid ID
```


● 另一个经典的二义性例子是 if-then-else 语句

if $Expr_1$ then if $Expr_2$ then ... else ...

● 二义性文法:

2024年春季学期 《编译原理》 北京大学计算机学院

 $Statement ::= if Expr \ then \ Statement$ $| if Expr \ then \ With Else \ else \ Statement$ | ... $With Else ::= if Expr \ then \ With Else \ else \ With Else$ | ...

每个 else 与离它最近的一个能对应的 if 进行对应

如果 With Else 继续产生出 if 语句, 它必定会产生对应起来的 else

2024年春季学期《编译原理》 北京大学计算机学院

CFG作为语法分析的规约


```
Expr ::= Expr + Term
\mid Expr - Term
\mid Term
Term ::= Term * Factor
\mid Term / Factor
\mid Factor
Factor ::= (Expr)
\mid ID \mid INT
```

```
BDisj ::= BDisj \mid BConj
\mid BConj
BConj ::= BConj && BCmp
\mid BCmp
BCmp ::= Expr == Expr \mid Expr <= Expr \mid ...
\mid BAtom
BAtom ::= (BDisj) \mid !BAtom
\mid true \mid false
```

```
Stmt ::= \{Block\} \\ | ID = Expr; \\ | if (BDisj) Stmt else Stmt \\ | while (BDisj) Stmt \\ | return Expr; \\ Block ::= \epsilon \\ | Stmt Block
```

```
{
  n = 10; a = 1; b = 1;
  while (!(n == 0)) {
    t = a + b; a = b; b = t;
    n = n - 1;
  }
  return a;
}
```

CFG作为语法分析的规约

文言 / wenyan-lang

```
Stmt ::= IfStmt \mid ...
Stmts ::= \epsilon
\mid Stmt Stmts
IfStmt ::= 若 IfExpr 者 Stmts 若非 Stmts IfEnd
IfEnd ::= 云云 \mid 也
IfExpr ::= UnaryIfExpr Op UnaryIfExpr \mid ...
UnaryIfExpr ::= D \mid NT \mid ...
Op ::= 等於 \mid 不等於 \mid ...
```

```
若「甲」等於一者
.....
若非
.....
也
```

主要内容

- 语法分析的作用
- 语法分析的规约
- 语法分析的手动实现
- 语法分析的自动生成

如何构造语法分析树?

2024年春季学期 《编译原理》 北京大学计算机学院

自顶向下语法分析

[1]
$$S \rightarrow \epsilon$$

[2] $S \rightarrow [S]$
[3] $S \rightarrow SS$

- 用 $w: \beta$ 表示存在推导关系 $\beta \Rightarrow * w$, 其中 w表示 token 流, β 表示分析目标
- 从β最左边的非终结符号 出发,展开产生规则
- 如果β最左边出现了终结符号,则把它与输入的token 匹配

自顶向下分析构造最左推导


```
展开[1]
           匹配]
           展开[2]
           匹配[
]]:S]]
           展开[1]
           匹配
```

[1]
$$S \rightarrow \epsilon$$

[2] $S \rightarrow [S]$
[3] $S \rightarrow SS$

$$S \Rightarrow [S]$$

$$\Rightarrow [SS]$$

$$\Rightarrow [[S]S]$$

$$\Rightarrow [[S]S]$$

$$\Rightarrow [[]S]$$

$$\Rightarrow [[][S]]$$

基于递归下降实现自顶向下分析


```
S'() {
    if (S()) {
        if (token == EOF) {
            return true;
        }
    }
    return false;
}
```

全局变量记录当前的 token

```
S_1() {
return true;
}
```

调用词法分析获取 下一个 token

```
S2() {
   if (token == LSQUARE) {
      token = next_token();
      if (S()) {
      if (token == RSQUARE) {
            token = next_token();
            return true;
        }
    }
   return false;
}
```

```
S<sub>3</sub>() {
   if (S()) {
      if (S()) {
        return true;
      }
   }
   return false;
}
```

```
S' \rightarrow S \text{ EOF}
[1] S \rightarrow \epsilon
[2] S \rightarrow [S]
[3] S \rightarrow SS
```

问题: S 的文法有二义性, 比如 $S \Rightarrow SS \Rightarrow S$


```
S'() {
   if (S()) {
    if (token == EOF) {
      return true;
    }
   }
   return false;
}
```

```
S<sub>1</sub>() {
    return true;
}
```

```
S' \to S \text{ EOF}
[1] S \to \epsilon
[2] S \to [S]S
```

```
S2() {
   if (token == LSQUARE) {
      token = next_token();
      if (S()) {
      if (token == RSQUARE) {
         token = next_token();
         if (S()) return true;
      }
    }
   return false;
}
```

问题: S 有两条规则, 不知道分析时要用哪一条

解决方案:

- ◎ 回溯尝试多种方案
- 进行预测分析

预测分析

● 通过「向前看」(lookahead)符号来选择产生规则

- * 在尝试分析 S 时, 考察当前的 token:
 - ❖ 如果是[,则应该选择[2]
 - ◆ 如果是 EOF 或],则应该选择 [1]
 - ❖ 否则,则出现了语法错误

```
S' \to S \text{ EOF}
[1] S \to \epsilon
[2] S \to [S]S
```

```
S'() {
   if (S()) {
    if (token == EOF) {
      return true;
    }
   }
   return false;
}
```

```
S() {
   if (token == LSQUARE) {
      token = next_token();
      if (S()) {
      if (token == RSQUARE) {
           token = next_token();
           if (S()) return true;
      }
    }
   } else if (token == EOF || token == RSQUARE) return true;
   return false;
}
```



```
Expr ::= Expr + Term
\mid Expr - Term
\mid \dots
```

```
Expr() {
  if (Expr()) {
    .....
  }
}
```

- 直接左递归: 文法中有形如 $A \rightarrow A\alpha$ 的产生规则
- 间接左递归: 文法中能导出形如 $A \Rightarrow A \alpha$ 的推导

$$S::=A$$
a | b $A::=S$ d | ϵ

40

消除直接左递归

● 把 $A := A \alpha \mid \beta$ 转换为

$$A ::= \beta A'$$

$$A ::= \beta A'$$

$$A' ::= \alpha A' \mid \epsilon$$

$$Expr ::= Expr + Term$$
 $\mid Expr - Term$
 $\mid Term$
 $Term ::= Term * Factor$
 $\mid Term / Factor$
 $\mid Factor$
 $Factor ::= (Expr)$
 $\mid ID$

Expr ::= Term Expr'Expr' ::= + Term Expr'- Term Expr' Term ::= Factor Term'*Term'*::= * *Factor Term'* / Factor Term' Factor := (Expr)

消除间接左递归

- ◎ 依次遍历每个非终结符号 Ai
 - 对每个j < i 和形如 $A_i ::= A_j \gamma$ 的规则替换为 $A_i ::= \delta_1 \gamma | \dots | \delta_k \gamma |$
 - 其中 $A_j ::= \delta_1 \mid \ldots \mid \delta_k \in A_j$ 的产生规则
 - * 消除 $A_i ::= \delta_1 \gamma | \dots | \delta_k \gamma$ 中的直接左递归

最终得到的文法依赖于非终结符号的处理顺序,但表示的语言都是等价的

左递归消除示例

$$S := A c \mid c$$

$$A ::= B b \mid b$$

$$B ::= S a \mid a$$

按照 B, A, S 的顺序进行处理

$$S ::= abcS' | bcS' | cS'$$

$$S' ::= abc S' \mid \epsilon$$

$$A ::= S$$
ab | ab | b

$$B ::= S$$
a | a

$$B ::= S \text{ a } | \text{ a}$$

$$A ::= B \text{ b } | \text{ b}$$

$$A ::= S \text{ a b } | \text{ a b } | \text{ b}$$

$$S ::= A \text{ c } | \text{ c}$$

$$S ::= a \text{ b c } S' | \text{ b c } S' | \text{ c } S'$$

$$S' ::= a \text{ b c } S' | \epsilon$$

自顶向下分析的问题: 预测的确定性

- ◎ 若非终结符号 A 有多条产生规则 $A ::= \beta_1 | \beta_2 | ... | \beta_n$,如何确定应该选择哪条规则进行推导?
- 预测分析中可以知道当前的 token 是什么
 - ❖「向前看」(lookahead):也可以多看几个 token
- 如果当前 token 是 a, 而且只有 β_i 能以 a 开头, 那么就可以确定应该选择 $A \rightarrow β$ _i 这条规则进行推导
- 。问题: 计算 FIRST(β) 集合,即 β 推导出的符号串的首个终结符号可能是哪些


```
S := Expr EOF
 Expr ::= Term Expr'
 Expr' := + Term Expr'
          - Term Expr'
 Term ::= Factor Term'
 Term'::= * Factor Term'
         / Factor Term'
Factor := (Expr)
          ID
```

```
FIRST(S) = \{(,ID)\}
FIRST(Expr) = \{(,ID)\}
FIRST(Expr') = \{+,-,\epsilon\}
FIRST(Term) = \{(,ID)\}
FIRST(Term') = \{*,/,\epsilon\}
FIRST(Factor) = \{(,ID)\}
```

● 如果 $\beta \Rightarrow * \epsilon$, 规定有 $\epsilon \in FIRST(\beta)$

- 首先有 FIRST(a) = {a}, 其中 a 为终结符号
- 对于每个非终结符号 A, 执行以下操作:
 - ❖ 如果有产生规则 $A \rightarrow \epsilon$, 则把 ϵ 加入 FIRST(A)
 - ◆ 如果有产生规则 $A \rightarrow X_1 X_2 ... X_k$, 其中每个 X 是一个符号, 那么
 - ◆ 如果 $a \in FIRST(X_i)$ 且对任意 j < i 有 $\epsilon \in FIRST(X_j)$,则把 a 加入 FIRST(A)
 - ◆ 如果对所有j都有 $\epsilon \in FIRST(X_j)$,则把 ϵ 加入FIRST(A)
- 重复上一步直到所有的 FIRST 集合都不变


```
S ::= Expr EOF
 Expr ::= Term Expr'
 Expr' := + Term Expr'
          - Term Expr'
 Term ::= Factor Term'
 Term' := * Factor Term'
          / Factor Term'
Factor := (Expr)
```

```
FIRST(S) = \{(, ID)\}
FIRST(Expr) = \{(, ID)\}
FIRST(Expr') = \{+, -, \epsilon\}
FIRST(Term) = \{(, ID)\}
FIRST(Term') = \{*, /, \epsilon\}
FIRST(Factor) = \{(,ID)\}
```

$$FIRST(Factor) = \{(, ID)\}$$

- 对于 $\beta = X_1 X_2 ... X_k$, 计算 FIRST(β) 的方法如下:
 - ❖ 如果 $a \in FIRST(X_i)$ 且对任意 j < i 有 $\epsilon \in FIRST(X_j)$,则把 a 加入 FIRST(β)
 - ◆ 如果对所有j都有 ϵ ∈ FIRST(X_j), 则把 ϵ 加入 FIRST(β)

```
Expr' ::= + Term Expr'
| - Term Expr'
| \epsilon
Term' ::= * Factor Term'
| / Factor Term'
| \epsilon
Factor ::= (Expr)
| ID
```

```
FIRST(+ Term Expr') = {+}
FIRST(- Term Expr') = {-}
FIRST(\epsilon) = {\epsilon} < 对 \epsilon 如何进行预测分析?
FIRST(* Factor Term') = {*}
FIRST(/ Factor Term') = {/}
FIRST(\epsilon) = {\epsilon}
FIRST((Expr)) = {(}
FIRST(ID) = {ID}
```

预测分析中的 ϵ


```
Expr' ::= + Term Expr'
| - Term Expr'
| \epsilon
```

FIRST(+ Term Expr') =
$$\{+\}$$

FIRST(- Term Expr') = $\{-\}$
FIRST(ϵ) = $\{\epsilon\}$

- 在推导 Expr'时,如果当前 token 为+或-,我们可以根据 FIRST 集合来选择产生规则
- 问题: 什么情况下应该选择 $Expr' \rightarrow \epsilon$?
- 如果当前的 token 可以紧接着 Expr' 推导的串之后!
- 需要计算每个非终结符号的 FOLLOW 集合

计算 FOLLOW 集合


```
S ::= Expr EOF
 Expr ::= Term Expr'
 Expr' := + Term Expr'
          - Term Expr'
 Term ::= Factor Term'
 Term' ::= * Factor Term'
          / Factor Term'
Factor := (Expr)
```

```
FOLLOW(Expr) = \{EOF, \}
FOLLOW(Expr') = \{EOF, \}
FOLLOW(Term) = \{+,-,EOF,\}
FOLLOW(Term') = \{+,-,EOF,\}
FOLLOW(Factor) = \{*,/,+,-,EOF,\}
```

计算 FOLLOW 集合

- 对于每个非终结符号 X, 执行以下操作:
 - ❖ 如果有产生规则 $A \rightarrow \alpha X \beta$, 则把 FIRST(β) 中的非 ϵ 符号加入 FOLLOW(X)
 - ❖ 如果有产生规则 $A \rightarrow \alpha X \beta$ 且 $\epsilon \in FIRST(\beta)$, 则把 FOLLOW(A) 中的符号加入 FOLLOW(X)
- 重复上一步直到所有的 FOLLOW 集合都不变

计算 FOLLOW 集合


```
S ::= Expr EOF
 Expr ::= Term Expr'
 Expr' := + Term Expr'
          - Term Expr'
 Term ::= Factor Term'
 Term' ::= * Factor Term'
          / Factor Term'
Factor := (Expr)
```

```
FOLLOW(Expr) = \{EOF, \}
FOLLOW(Expr') = \{EOF, \}
FOLLOW(Term) = \{+,-,EOF,\}
FOLLOW(Term') = \{+,-,EOF,\}
FOLLOW(Factor) = \{*,/,+,-,EOF,\}
```

无回溯的预测分析

- 若非终结符号 A 有多条产生规则 $A := \beta_1 | \beta_2 | ... | \beta_n$,如何确定应该选择哪条规则进行推导?
 - ❖ 对任意不同的 i, j, 有 FIRST($β_i$) ∩ FIRST($β_j$) = Ø
 - ❖ 对任意不同的 i, j, 如果 $\epsilon \in FIRST(\beta_i),$ 则 FOLLOW(A) ∩ FIRST(β_i) = Ø

● 预测分析法:

- * 如果当前 token 在集合 $FIRST(\beta_i)$ 中,则使用规则 $A \to \beta_i$
- * 如果当前 token 在集合 FOLLOW(A) 中,且 β_i 能够推导出空串,则使用规则 $A \to \beta_i$
- ❖ 上述要求确保了预测分析的确定性

北京大学计算机学院

无回溯的预测分析


```
S ::= Expr E0F
Expr ::= Term Expr'
Expr' ::= + Term Expr'
| - Term Expr'
| \epsilon
```

```
FOLLOW(Expr') = \{EOF, \}
```

```
Expr() {
   if (Term()) {
     if (Expr'()) {
      return true;
     }
   }
   return false;
}
```

```
S() {
    if (Expr()) {
        if (token == EOF) {
            return true;
        }
    }
    return false;
}
```

```
Expr'() {
  if (token == PLUS) {
    token = next_token();
    if (Term()) { if (Expr'()) return true; }
  } else if (token == MINUS) {
    token = next_token();
    if (Term()) { if (Expr'()) return true; }
  } else if (token == EOF || token == RPAREN) return true;
  return false;
}
```


- 若非终结符号 A 有两条产生规则 $A ::= \beta_1 \mid \beta_2$,无回溯的预测分析要求 $FIRST(\beta_1) \cap FIRST(\beta_2) = \emptyset$
- \bullet 若 β_1 和 β_2 有相同的前缀,则无法满足该要求

Factor ::= (Expr) $\mid IDArgument$ Argument ::= [Expr] $\mid (Expr)$ $\mid \epsilon$

● 提取左公因子:

* 把 $A ::= \alpha \beta_1 \mid \alpha \beta_2$ 转换为 $A ::= \alpha A'$ $A' ::= \beta_1 \mid \beta_2$

LL文法

- 能够通过无回溯的递归下降预测分析进行识别的 CFG 文法
 - ❖ 建立推导关系 $w:\beta$, 即是否有 β ⇒* w, 其中 w 是 token 流
 - ❖ 第一个 L: 从左往右扫描 token
 - 如果 β 最左边出现了终结符号,则把它与输入的 token 匹配
 - ❖ 第二个 L: 构造最左推导的分析树
 - * 从β最左边的非终结符号出发,展开产生规则
- LL(k) 文法: 预测分析中可以访问 k个「向前看」的 token
 - ❖ 最常见的一种是 LL(1)

2024年春季学期《编译原理》 北京大学计算机学院

LL(1) 文法

- 判定 LL(1) 文法:
 - * 对任意产生规则 $A ::= \beta_1 \mid \beta_2 \mid \mid \beta_n$ 和任意不同的 i, j, f FIRST(β_i) \cap FIRST(β_j) $= \emptyset$,且如果 $\epsilon \in$ FIRST(β_i),则 FOLLOW(A) \cap FIRST(β_i) $= \emptyset$

- LL(1) 文法的性质:
 - ❖ 无二义性

严格来说,上述判定会认为S ::= Sa是LL(1)

- ❖ 无左递归
- 的,这个问题不大,因为S对应的语言是空集
- ❖ 无左公因子

小结: 自顶向下语法分析

- · 从语法分析的初始符号出发,展开产生规则进行推导
- 无回溯的递归下降预测分析
 - ❖ 从左往右处理输入 token 流,构造最左推导
 - ❖ 需要消除左递归
 - ❖ 需要提取左公因子
 - ❖ 需要计算 FIRST 和 FOLLOW 集合
- 对应 LL(k) 文法
 - ❖ k表示「向前看」符号数目
 - ❖ 常见的是 LL(1)

不能用LL文法表达的语言

- LL 文法的短板:通过有限个「向前看」符号选择推导规则
- 例:右侧 CFG 表示了语言 $\{a^ib^j | i \geq j\}$
- 该文法不是 LL(1) 的
 - ❖ [1] 和 [2] 两条规则右侧的 FIRST 集合有交集

[1]	S o a S
[2]	$S \to P$
[3]	P oa P b
[4]	$P \rightarrow \epsilon$

- 不存在一个 LL 文法可以表示该语言
 - ❖ 例如允许 k 个 「向前看」, 那么 ak bk 和 ak+1 bk 都是以 k 个 a 开头, 但 是前者应该选择规则 [2] 展开, 而后者应该选择规则 [1] 展开
- 直到看到 token 流中的 b 之后才能决定应该如何选择规则

自底向上语法分析

[1]
$$S \rightarrow \epsilon$$

[2] $S \rightarrow [S]$
[3] $S \rightarrow SS$

- 用 $w: \beta$ 表示存在归约关系
 β \Leftarrow * w, 其中 w 表示 token
 流, β 表示分析目标
- 从左往右读取输入的 token,
 同时加到w和β后面
- 如果β最右边出现了可以被 归约的「模式」,则归约为对 应的非终结符号

自底向上分析构造最右推导


```
归约[1]
读取[
归约[2]
读取]
归约[1]
```

[1]
$$S \rightarrow \epsilon$$

[2] $S \rightarrow [S]$
[3] $S \rightarrow SS$

$$S \Leftarrow [S]$$
 $\Leftarrow [SS]$
 $\Leftarrow [S[S]]$
 $\Leftarrow [S[S]]$
 $\Leftarrow [S[S]]$
 $\Leftarrow [S[S]]$

基于移进-归约实现自底向上分析

类比前面的自顶 向下分析,使用 无二义性文法

- 移进(shift)
 - ❖ 把一个 token 压入分析栈
- 归约(reduce)
 - ❖ 把分析栈顶部的若干符号 归约为非终结符号

预测分析

- 问题:如何确定应该移进还是 归约?
- 一种简单的策略:
 - ◆ 当分析栈顶部有能够归约的「模 式 | 时,则归约
 - * 否则,则移进
 - ❖ 但是,像[1]这种会导致冲突
- 根据以下信息进行预测分析
 - ❖ 分析栈的顶部状态
 - ❖ 待处理的向前看符号

	S' o S EOF
[1]	$S \to \epsilon$
[2]	$S \rightarrow [S]S$

 $\beta \parallel w$

分析栈\向前看	[]	EOF
ϵ	移进	错误	归约[1]
S	错误	错误	接受
β [移进	归约[1]	错误
β[S	错误	移进	错误
β [S]	移进	归约[1]	归约[1]
β [S] S	错误	归约[2]	归约 [2]

预测分析


```
S' \rightarrow S EOF
                   [[][]]EOF
          \epsilon
                                                               [1]
                                                                         S \to \epsilon
                   [][]EOF
                                                                [2]
                                                                          S \rightarrow [S]S
                   ][]]EOF
       [S]
                   ][]]EOF
     [S]
                   []]EOF
    [[S][
                   ] ] EOF
                                                  分析栈 \ 向前看
                                                                                      EOF
  [[S][S]
                   ] ] EOF.
                                                                   移进
                                                                             错误
                                                                                     归约[1]
 [[S][S]
                   ] EOF_
                                                                             错误
                                                                                     接受
[[S][S]S
                   ] EOF -
    [[S]S
                                                                    移进
                   ] EOF_
                                                                           归约[1]
                                                                                      错误
        [S]
                   ] EOF
                                                       B[S]
                                                                           移进
                                                                                      错误
       [S]
                   EOF
                                                      \hat{p}[S]
                                                                            归约[1] 归约[1]
     [S]S
                   EOF.
                                                                           归约[2] 归约[2]
                                                     \beta [S]S
          S
                   EOF
```

实现预测分析


```
top = 0;
token = next_token();
while (true) {
 if (top == 0) {
    switch (token) {
      case LSQUARE:
        top++; stack[top] = LSQUARE;
        token = next_token(); break;
      case RSQUARE:
        return false;
      case EOF:
        top++; stack[top] = S; break;
  } else if (top == 1 && stack[top] == S) {
    switch (token) {
      case LSQUARE: return false;
      case RSQUARE: return false;
      case EOF: return true;
   else if .....
```

$$S' \to S \text{ EOF}$$
[1]
$$S \to \epsilon$$
[2]
$$S \to [S]S$$

分析栈\向前看	[]	EOF
ϵ	移进	错误	归约[1]
S	错误	错误	接受
β[移进	归约[1]	错误
β [S	错误	移进	错误
β [S]	移进	归约[1]	归约[1]
β [S] S	错误	归约[2]	归约 [2]

实现预测分析


```
} else if (top >= 1 && stack[top] == LSQUARE) {
  switch (token) {
    case LSQUARE:
      top++; stack[top] = LSQUARE;
      token = next_token(); break;
    case RSQUARE:
      top++; stack[top] = S; break;
    case EOF:
      return false;
} else if (top >= 2 && stack[top] == S &&
           stack[top - 1] == LSQUARE) {
  switch (token) {
    case LSQUARE: return false;
    case RSQUARE:
     top++; stack[top] = RSQUARE;
     token = next_token(); break;
    case EOF: return false;
} else if .....
```

```
S' \rightarrow S \text{ EOF}
[1] S \rightarrow \epsilon
[2] S \rightarrow [S]S
```

分析栈\向前看	[]	EOF
ϵ	移进	错误	归约[1]
S	错误	错误	接受
β [移进	归约[1]	错误
β[S	错误	移进	错误
β [S]	移进	归约[1]	归约[1]
$\beta[S]S$	错误	归约[2]	归约[2]

实现预测分析


```
} else if (top >= 4 && stack[top] == S &&
           stack[top - 1] == RSQUARE &&
           stack[top - 2] == S \&\&
           stack[top - 3] == LSQUARE) {
 switch (token) {
    case LSQUARE:
     return false;
    case RSQUARE:
      top = top - 3; stack[top] = S;
     break;
    case FOF:
     top = top - 3; stack[top] = S;
} else .....
```

```
S' \to S \text{ EOF}
[1] S \to \epsilon
[2] S \to [S]S
```

分析栈\ 向前看	[]	EOF
ϵ	移进	错误	归约[1]
\boldsymbol{S}	错误	错误	接受
β[移进	归约[1]	错误
β [S	错误	移进	错误
β [S]	移进	归约[1]	归约[1]
β [S] S	错误	归约[2]	归约[2]

构造移进一归约分析表

● 首先,找出可能的分析栈「模式」

- ❖ 空栈 €和只包含初始符号的栈 S
- * 对每个产生规则 $A \rightarrow \alpha \gamma$ 和非空的 α , 把 $\beta \alpha$ 作为一种「模式」,即将来可能在栈顶发 现产生规则的右端 $\alpha \gamma$ 并归约到 A

	S' o S EOF
[1]	$S \to [S]$
[2]	S o a

● 然后,确定每一种情况的动作

- \bullet ϵ : FIRST(S) 中的符号可以移进
- ❖ S: EOF 符号可以接受
- * $\beta \alpha$ (对应规则 $A \rightarrow \alpha \gamma$):
 - * FIRST(γ) 中的符号可以移进
 - * 若 $\gamma = \epsilon$,则可以归约

分析栈\向前看	[]	а	EOF
ϵ	移进		移进	
S				接受
β [移进		移进	
β[S		移进		
β [S]	归约 [1]	归约[1]	归约[1]	归约[1]
$oldsymbol{eta}$ a	归约 [2]	归约 [2]	归约 [2]	归约 [2]

问题: 移进-归约冲突

- $S \rightarrow \epsilon$ 这种规则可以在任意 位置归约
- 简单解法:用FOLLOW 集合 判断是否归约
 - * 分析栈「模式」为 $\beta\alpha$ (对应规则 $A \rightarrow \alpha$)时,如果向前看符号在 FOLLOW(A)中,且归约后得 到的分析栈具有某种已知的「模式」,则可以归约

$$S' \rightarrow S \text{ EOF}$$
[1]
$$S \rightarrow \epsilon$$
[2]
$$S \rightarrow [S]S$$

 $FOLLOW(S) = \{EOF, \}$

分析栈\向前看	[]		EOF
ϵ	移逃/迪约	归约[1]	归约[1]
S			接受
β [移进	归约[1]	归约[1]
β[S		移进	
β [S]	移进	归约[1]	归约[1]
β [S] S		归约[2]	归约 [2]

问题: 移进-归约冲突

● 用 FOLLOW 集合比较粗糙, 可能无法排除冲突

	S' o S EOF
[1]	S oabd
[2]	S o aA c
[3]	$S o \mathrm{b} A \mathrm{d}$
[4]	A o b

$$FOLLOW(A) = \{c,d\}$$

分析栈\向前看	а	b	С	d	EOF
ϵ	移进	移进			
S					接受
eta a b			归约 [4]	移进/归约	

- 如果还是只使用一个向前看符号,是否还有信息可挖掘?
 - * 如果在分析栈为βab且向前看为d时,归约[4],分析栈变成βaA,此时只有[2]符合且只允许向前看为c
 - ❖ 需要对分析栈的「模式」进行更细致的分类

分析栈模式的分类

圆点的左边表示

分析栈顶内容

● 前面我们是这么得出可能的分析栈的「模式」的:

❖ 空栈 €和只包含初始符号的栈 S

 \Rightarrow 对每个产生规则 $A \rightarrow \alpha \gamma$ 和非空的 α , 把 $\beta \alpha$ 作为一种模式, 即将来可能在栈顶发现产生规则的右端 $\alpha \gamma$ 并归约到 A

● 每种「模式」对应了一个「部分分析状态」:

 $S' \rightarrow S \text{ EOF}$ $[1] \qquad S \rightarrow [S]$ $[2] \qquad S \rightarrow a$

S eta[eta[S eta[S] eta[S]

 ϵ

 $S' o extbf{S} ext{EOF}$ $S' o S extbf{EOF}$ $S o [S extbf{S}]$ $S o [S extbf{S}]$ $S o [S] extbf{S}$

部分分析状态

● 移进/归约可以表示为这些「部分分析状态」间的转移

$$S' \rightarrow S \text{ EOF}$$
[1] $S \rightarrow [S]$
[2] $S \rightarrow a$

分析栈\向前看	[]	а	EOF
ϵ	移进		移进	
S				接受
β[移进		移进	
β [S		移进		
β [S]	归约 [1]	归约 [1]	归约 [1]	归约[1]
eta a	归约 [2]	归约 [2]	归约 [2]	归约[2]

部分分析状态间的转移

 $S' \rightarrow S EOF$

- 对于状态 $A \rightarrow \alpha \cdot \gamma$:
 - * 如果 $\gamma = c \gamma'$, 其中c 是终结符号, 则可以通过c 转移到 $A \to \alpha c \bullet \gamma'$
 - * 表示栈 $\beta \alpha$ 移进 c 变为栈 $\beta \alpha c$
 - * 如果 $\gamma = X\gamma'$, 其中 X 是非终结符号, 则有两种转移:
 - \bullet 通过X转移到 $A \to \alpha X \bullet \gamma'$
 - *表示栈 $\beta \alpha w$ 归约成为栈 $\beta \alpha X$
 - \star 对任意规则 $X \to \delta$, 可以 ϵ 转移到 $X \to \bullet \delta$

非确定性有限 [1] $S \rightarrow [S]$ 自动机(NFA) [2] $S \rightarrow a$

部分分析状态的自动机

根据自动机构造移进一归约分析表

- 如果状态是可归约状态(存在模式 $A \rightarrow \alpha$ ●),则可以进行**归约**

分析栈\向前看	[]	а	EOF
ϵ	移进		移进	
S				接受
β[移进		移进	
β[S		移进		
β [S]	归约 [1]	归约[1]	归约[1]	归约[1]
eta a	归约 [2]	归约[2]	归约 [2]	归约[2]

根据自动机构造移进一归约分析表

- 如果状态是可归约状态(存在模式 $A \rightarrow \alpha$),且向前看符号在 FOLLOW(A)中,则可以进行归约

分析栈\向前看	[]	EOF
ϵ	移进	归约[1]	归约[1]
S			接受
β [移进	归约[1]	归约[1]
β[S		移进	
β [S]	移进	归约[1]	归约[1]
$\beta[S]S$		归约[2]	归约[2]

 $FOLLOW(S) = \{EOF, \}$

构造分析表示例

$$S' \to S EOF$$

$$S \to \epsilon$$

$$S \to S[S]$$

 $FOLLOW(S) = \{EOF, [,]\}$

分析栈\向前看	[]	EOF
ϵ			
S			
βS			
βS [
βS[S			
$\beta S[S]$			

北京大学计算机学院 2024 年春季学期 《编译原理》

构造分析表示例

$$S' \to S \text{ EOF}$$
[1]
$$S \to \epsilon$$
[2]
$$S \to S [S]$$

 $FOLLOW(S) = \{EOF, [,]\}$

分析栈\向前看	[]	EOF
ϵ	归约 [1]	归约[1]	归约[1]
S	移进		接受
β S [归约[1]	归约[1]	归约[1]
βS[S	移进	移进	
$\beta S[S]$	归约 [2]	归约[2]	归约[2]

使用FOLLOW集合的局限性

使用FOLLOW集合的局限性

80

 $FOLLOW(A) = \{c,d\}$

部分分析状态+「向前看」

- 使用 FOLLOW 集合来判断是否归约的方式比较粗糙
- 扩充每个部分分析状态 $A \to \alpha \bullet \gamma 为 \langle A \to \alpha \bullet \gamma; c \rangle$
 - ❖ 从该部分分析状态完成γ的分析后,向前看为 c 时可以进行归约

北京大学计算机学院

部分分析状态 + 向前看

- o 构造时, 主要考虑 e 转移对向前看的影响
 - \bullet 回顾: 对于状态 $A \to \alpha \bullet X \gamma'$ 和规则 $X \to \delta$, ϵ 转移到 $X \to \bullet \delta$
 - * 对于状态 $\langle A \to \alpha \bullet X \gamma'; c \rangle$ 和规则 $X \to \delta$, ϵ 转移到 $\langle X \to \bullet \delta; d \rangle$,

部分分析状态 + 向前看

向前看\分析栈	ϵ	S	а	a A	a A ${\sf c}$	a b	a b d	b	b $oldsymbol{A}$	b A d	b b
а	移进										
b	移进		移进					移进			
С				移进		归约 [4]					
d						移进			移进		归约 [4]
EOF		接受			归约 [2]		归约[1]			归约[3]	

构造分析表示例

构造分析表示例

分析栈\向前看	а	b	С	d	е	EOF
ϵ	移进	移进				
S						接受
ас				归约 [5]	归约 [6]	
b c				归约[6]	归约 [5]	

LR 文法

- 能够通过无冲突的移进-归约预测分析进行识别的 CFG 文法
 - ❖ L: 从左往右扫描 token
 - ❖ 把 token 依次移进分析栈
 - ❖ R: 构造最右推导的分析树
 - ❖ 从分析栈的栈顶识别模式,按照产生规则进行归约
- LR(k) 文法: 预测分析中可以访问 k 个向前看的 token
 - ❖ 最常见的一种是 LR(1)
- LR(k) 比 LL(k) 能表达的文法更多
 - ❖ LL 文法要求在向前看 k 个符号时「猜出」用哪个产生规则进行推导
 - ❖ LR 文法是在完整的看到一个可归约的子串后,还能再向前看 k 个符号来决定用哪个产生规则进行归约

LR文法允许左递归


```
S' \rightarrow S EOF
                [[][]]EOF
       \epsilon
                                                            [1]
                                                                     S \to \epsilon
                [ ] [ ] EOF
                                                                     S \to S[S]
     S[
                   ]]EOF
    S[S]
                   []]EOF
  S[S[
                ][]]EOF
 S[S[S]]
                ][]]EOF
S[S[S]]
                []]EOF
                                             分析栈\向前看
                                                                                EOF
    S[S]
                []]EOF
                                                            归约[1]
                                                                              归约[1]
                                                                     归约[1]
  S[S[
                ] ] EOF
                                                            移进
                                                                               接受
 S[S[S]]
                ] ] EOF-
                                                 \beta S[
                                                            妇约[1] 归约[1]
                                                                              归约[1]
S[S[S]]
                ] EOF —
                                                BSS
                                                                    移进
                                                            移进
    S[S]
                ] EOF -
                                                \beta S[S]
                                                                     归约[2] 归约[2]
  S[S]
                EOF-
       S
                EOF.
```

LR文法允许左公因子


```
€ || [[[]]]EOF

[ || []]]EOF

[ || []]]EOF

[ || ]]EOF

[ || ]]EOF

[ || ]]EOF

[ || ]]EOF
```

S

EOF

 $S' \rightarrow S \text{ EOF}$ $[1] \qquad S \rightarrow [S]$ $[2] \qquad S \rightarrow []$

分析栈\向前看	[]	EOF
ϵ	移进		
5			→接受
β [▶移进	▶移进	
$\beta [S]$		→移进	
$\beta[S]$	归约[1]	归约[1]	- 归约 [1]
eta []	归约[2]	归约 [2]	归约[2]

LR(1) 文法

- 允许一个向前看符号
- - ◆ A → α γ 表示 [部分分析状态]
 - ❖ c表示向前看符号

● 构造移进-归约分析表的方法:

- ❖ 构造识别栈模式的 NFA, 中间可能有非确定转移和 ϵ 转移
- ❖ 把 NFA 转换为 DFA
- *根据 DFA 确定可能的栈模式, 再根据状态转移确定移进/归约动作
- LR(1) 的工作原理是什么?

LR(1)的工作原理是什么?

• 自底向上语法分析通过归约得出最右推导


```
S \Leftarrow [S]S
\Leftarrow [S]S
\Leftrightarrow [S]S
\Leftrightarrow [S]S]
\Leftrightarrow [[S][S]S]
\Leftrightarrow [[S][S][S]]
\Leftrightarrow [[S][S][S]]
\Leftrightarrow [[S][S][S]]
```

- · 分析过程是不断找出**句柄**并归约
 - ❖ 句柄(handle):分析树上最左侧的、构成直接推导的连续叶子结点

LR(1) 的工作原理是什么?

LR(1)的工作原理是什么?

- LR(1) 能进行无冲突移进-归约分析的原因:
 - * 对任意 $S \Rightarrow * \alpha c \beta \pi S \Rightarrow * \alpha c \gamma$, 其中 c 是终结符号, β 、 γ 中只有终结符号, 如果 $\alpha c \beta$ 的句柄是 α 的一个后缀, 那么 $\alpha c \gamma$ 的句柄是 α 的同一个后缀, 并且这两个句柄对应的归约规则相同
 - ❖ α表示分析栈, c表示「向前看」
- 构造识别句柄的正则文法:
 - \Rightarrow 部分分析状态: $\langle A; c \rangle$, A 为非终结符号, c 为向前看符号
 - 归约状态: $\langle [p] \rangle$, [p] 为规则编号
 - * $\langle S; EOF \rangle \Rightarrow * \alpha c \langle [p] \rangle$ 当且仅当存在 β 满足 $S \Rightarrow * \alpha c \beta$ 且句柄是 α 的后缀且使用规则[p]归约

[1]	$S \to \epsilon$
[2]	$S \to [S]S$

$\langle S; \text{EOF} \rangle \rightarrow \text{EOF}$	⟨[1]⟩
$\langle S; \text{EOF} \rangle \rightarrow [$	$\langle S;] \rangle$
$\langle S; EOF \rangle \to [S]$	$\langle S; {\sf EOF} \rangle$
$\langle S; \text{EOF} \rangle \rightarrow [S]S \text{EOF}$	⟨[2]⟩
$\langle S;] \rangle \rightarrow]$	⟨[1]⟩
$\langle S;] \rangle \rightarrow [$	$\langle S;] \rangle$
$\langle S;] \rangle \rightarrow [S]$	$\langle S,] \rangle$
$\langle S;] \rangle \rightarrow [S]S]$	([2])

LR(1) 的工作原理是什么?


```
][]]EOF 句柄: \langle S; EOF \rangle \Rightarrow *[[]\langle [1] \rangle
        \lceil \lceil S \rceil \rceil
                                                        句柄: \langle S; EOF \rangle \Rightarrow * [[S][]\langle [1] \rangle
                                    ] ] EOF
                                                        句柄: \langle S; EOF \rangle \Rightarrow * [[S][S][]\langle [1] \rangle
   [[S][S]
                                    ] EOF
[[S][S]S
                                    ] EOF
                                                        句柄: \langle S; EOF \rangle \Rightarrow * [[S][S]S] \langle [2] \rangle
                                                        句柄: \langle S; EOF \rangle \Rightarrow * [[S]S] \langle [2] \rangle
        [S]S
                                    ] EOF
                                                        句柄: \langle S; EOF \rangle ⇒* [S] EOF \langle [1] \rangle
              \lceil S \rceil
                                     EOF
                                                        句柄: \langle S; EOF \rangle \Rightarrow * [S]SEOF \langle [2] \rangle
           \lceil S \rceil S
                                     EOF
```

$$[1] S \to \epsilon$$

$$[2] S \to [S]S$$

- LR(1) 能进行无冲突移进-归约 分析的原因:
 - * 如果 $\langle S; EOF \rangle \Rightarrow * \alpha \langle [p] \rangle$ 且 $\langle S; EOF \rangle \Rightarrow * \alpha \beta \langle [q] \rangle$,则一定 有 $\beta = \epsilon$ 且 p = q

$\langle S; \text{EOF} \rangle \rightarrow \text{EOF}$	⟨[1]⟩
$\langle S; \text{EOF} \rangle \rightarrow [$	$\langle S;] \rangle$
$\langle S; \text{EOF} \rangle \rightarrow [S]$	$\langle S; {\sf EOF} \rangle$
$\langle S; \text{EOF} \rangle \rightarrow [S]S \text{EOF}$	⟨[2]⟩
$\langle S;] \rangle \rightarrow]$	$\langle [1] \rangle$
$\langle S;] \rangle \rightarrow [$	$\langle S;] \rangle$
$\langle S;] \rangle \rightarrow [S]$	$\langle S,] \rangle$
$\langle S;] \rangle \rightarrow [S]S]$	<[2]>

LR(1) 文法的变种

LR(0)

- ❖ 不使用向前看符号
- ❖ 识别栈模式的自动机中状态形式为 $\langle A \rightarrow \alpha \cdot \gamma \rangle$
- ❖ 前面已介绍过

SLR(1), Simple LR

- ◆ 自动机与 LR(0) 相同
- ❖ 使用一个向前看符号,通过FOLLOW 集合判断是否归约
- * 前面已介绍过

LALR(1), Look-Ahead LR

- ◆ 自动机与 LR(0) 同构, 但状态形式为 $\langle A \rightarrow \alpha \circ \gamma; c \rangle$
- ❖ 可以认为是 LR(1) 的自动机把只有向前看符号不同的状态进行合并

LALR(1) 示例

LALR(1) 示例

当分析栈「模式」为ab、向前看符号为d时, 存在移进-归约冲突, 所以不是 LR(0) 文法

 $S' \rightarrow S EOF$ [1] $S \rightarrow \mathsf{abd}$ [2] $S \rightarrow aAc$ [3] $S \to bAd$ [4] $A \rightarrow B$ [5] $B \rightarrow b$

 $S' \rightarrow \bullet S$

 $S \rightarrow \bullet$ abd

LALR(1) 示例

 $S' \rightarrow S EOF$ [1] $S \rightarrow \mathsf{abd}$ [2] $S \rightarrow aAc$ [3] $S \to bAd$ [4] $A \rightarrow B$ [5] $B \rightarrow b$

EOF

 $S' \rightarrow \bullet S$

LALR 可能引入归约-归约冲突


```
S' \rightarrow S \text{ EOF}
[1] S \rightarrow aA d
[2] S \rightarrow bB d
[3] S \rightarrow aB e
[4] S \rightarrow bA e
[5] A \rightarrow c
[6] B \rightarrow c
```


分析栈\向前看	а	b	С	d	е	EOF
ϵ	移进	移进				
S						接受
ac 或 bc				归约[5]	/[6]???	

小结: 自底向上语法分析

从语法分析的终结符号序列出发,基于产生规则进行归约

● 无冲突的移进-归约预测分析

- ❖ 从左往右处理输入 token 流,构造最右推导
- ❖ 构造识别分析栈模式(即识别句柄)的自动机
- ❖ 根据自动机构造移进-归约分析表

● 对应 LR(k) 文法

- ❖ k表示向前看符号的数目
- 常见的是LR(1)和LR(0)、SLR(1)、LALR(1)等变种

99

主要内容

- 语法分析的作用
- 语法分析的规约
- 语法分析的手动实现
- 语法分析的自动生成

北京大学计算机学院

100

从规约到实现的转换

- 语法分析的规约:编程语言的文法
 - ❖ 通常为 CFG 文法, 比如 LL 或 LR 文法
- 语法分析的实现:
 - ❖ 自顶向下: 递归下降分析, 适用于 LL 文法
 - ❖ 自底向上:移进-归约分析,适用于 LR 文法
- 语法分析的自动生成:自动化 LL/LR 文法到实现的转换

表驱动的语法分析

102

LL(1) 文法: 递归下降分析

103

```
[[][]]EOF: S'
  [[]]
[[][]] EOF : [S]S EOF
 [][]]EOF:S]SEOF
                       展开[2]
[][]]EOF:[S]S]SEOF
                        匹配「
 ][]]EOF:S]SEOF
 ][]]EOF:]S]SEOF
   []]EOF:S]SEOF
                        展开[2]
 []]EOF:[S]S]SEOF
  ]] EOF: S]S]SEOF
                        展开[1]
  ]]EOF:]S]SEOF
                        匹配
    ] EOF : S ] S EOF =
                        展开[1]
    ] EOF : ] S EOF =
                        匹配]
     EOF: SEOF
                        展开[1]
      EOF: EOF
```

[0]
$$S' \rightarrow S \text{ EOF}$$

[1] $S \rightarrow \epsilon$
[2] $S \rightarrow [S]S$

使用一个栈来记录待匹配的 终结符号和非终结符号

分析栈\向前看	[]	EOF	
$\beta S'$	展开 [0]	错误	展开[0]	
βS	展开[2]	展开[1]	展开[1]	
β [匹配	错误	错误	
β]	错误	匹配	错误	
EOF	错误	错误	接受	
ϵ	错误	错误	错误	

LL(1) 文法: 递归下降分析


```
S'
                  [ [ ] [ ] ] EOF
                                                    [0]
                                                             S' \rightarrow S EOF
      EOF S
                    [ ] [ ] ] EOF
                                                    [1]
                                                             S \to \epsilon
  EOFS]S[
                  [ [ ] [ ] EOF
                                                    [2]
                                                             S \rightarrow [S]S
    EOFS]S
                  [][]]EOF
EOFS]S]S[
                  [][]EOF
                                              使用一个栈来记录待匹配的
 EOFS]S]S
                  ][]]EOF
                                                 终结符号和非终结符号
  EOFS]S]
                  ][]]EOF
    EOFS]S
                                            分析栈 \ 向前看
                  []]EOF-
                                                                             EOF
EOFS]S]S[
                  []]EOF-
                                                            展开[0]
                                                                     错误
                                                 \beta S'
                                                                            展开[0]
 EOFS]S]S
                  ] ] EOF-
                                                            展开[2] 展开[1] 展开[1]
  EOFS]S]
                  ] ] EOF -
                                                 \beta [
                                                                     错误
                                                                             错误
                                                             严配
    EOFS]S
                  ] EOF
                                                                             错误
                                                 \beta]
                                                             错误
                                                                     匹配
     EOFS
                  ] EOF-
                                                                     错误
                                                             错误
                                                                             接受
                                                 EOF
      EOF S
                  EOF
                                                             错误
                                                                     错误
                                                                             错误
                                                  \epsilon
        EOF
                  FOF
```



```
token = next_token();
top = 1; stack[top] = S';
while (true) {
 if (top == 1 &&
      stack[top] == EOF &&
      token == EOF) {
    return true;
 } else if (top > 0 && stack[top] == token) {
    top--; token = next_token();
  } else if (top > 0 &&
      table[stack[top]][token] ==
     A \rightarrow B_1 B_2 \dots B_k {
    top--;
    for (int i = k; i >= 1; i--) {
      if (B_i := \epsilon) {
        top++; stack[top] = B_i;
  } else {
    return false;
```

[0]
$$S' \rightarrow S \text{ EOF}$$

[1] $S \rightarrow \epsilon$
[2] $S \rightarrow [S]S$

使用一个栈来记录待匹配的 终结符号和非终结符号

分析栈\向前看	[]	EOF	
$\beta S'$	展开 [0]	错误	展开 [0]	
βS	展开[2]	展开[1]	展开[1]	
eta [匹配	错误	错误	
β]	错误	匹配	错误	
EOF	错误错误		接受	
ϵ	错误 错误		错误	

LL(1) 文法的分析表

- 分析栈和向前看符号都是 EOF 时,动作为接受
- 分析栈顶是终结符号时,当向前看符号匹配时,动作为匹配
- 分析栈是非终结符号 A 时:
 - * 考虑规则 $A \rightarrow \alpha$, 对任意 FIRST(α) 中的终结符号 c, 向前 看符号为 c 时, 动作为展开 $A \rightarrow \alpha$ 这条规则
 - ◆ 如果 $\epsilon \in FIRST(\alpha)$, 对任意 FOLLOW(A) 中的终结符号 c, 向前看符号为 c 时, 动作为展开 $A \rightarrow \alpha$ 这条规则

[0]
$$S' \rightarrow S \text{ EOF}$$

[1] $S \rightarrow \epsilon$
[2] $S \rightarrow [S]S$

$$FIRST(S') = \{[, EOF\} \}$$

$$FIRST(S) = \{[, \epsilon\} \}$$

$$FOLLOW(S) = \{EOF,]\}$$

分析栈\向前看	[]	EOF	
$\beta S'$	展开 [0]		展开[0]	
βS	展开 [2]	展开[1]	展开[1]	
β [匹配			
β]		匹配		
EOF			接受	
ϵ				

LR(1) 文法: 移进-归约分析

107

```
] ] EOF
           \epsilon
                                       移进「
                           ] EOF
                                       移进「
                     ][]]EOF
                                      归约[1]
                      1 [ ] ] EOF
        \lceil \lceil S \rceil
                                       移进]
      \lceil \lceil S \rceil
                      []]EOF
                                       移进「
                     ] | EOF <
     [[S][
                                      归约[1]
                     ]]EOF <
   [[S][S]
                                       移进]
                     ] EOF <
 [[S][S]
                                      归约[1]
[[S][S]S
                     ] EOF ≤
                                      归约[2]
    [[S]S
                     ] EOF <
                                      归约[2]
          S
                     ] EOF <
                                      移进]
        [S]
                     EOF ≤
                                      归约[1]
      [S]S
                     EOF ₹
                                      归约[2]
                     EOF ◆
```

$$S' \to S \text{ EOF}$$
[1]
$$S \to \epsilon$$
[2]
$$S \to [S]S$$

分析栈\向前看	[]	EOF
ϵ	移进	错误	归约[1]
S	错误	错误	接受
β [移进	归约[1]	错误
β[S	错误	移进	错误
β [S]	移进	归约[1]	归约[1]
$\beta[S]S$	错误	归约[2]	归约[2]

LR(1) 文法: 移进-归约分析

《编译原理》

	S' o S EOF
[1]	$S \to \epsilon$
[2]	$S \rightarrow [S]S$

ACTION

GOTO

108

状态\向前看	[]	EOF	S
0	移进2		归约[1]	1
1			接受	
2	移进6	归约[1]		3
3		移进4		
4	移进2		归约[1]	5
5			归约[2]	
6	移进6	归约[1]		7
7		移进8		
8	移进6	归约[1]		9
9		归约[2]		

北京大学计算机学院

LR(1) 文法: 移进-归约分析

LR(1) 文法的驱动程序


```
token = next_token();
top = 1; stack[top] = I_0;
while (true) {
  state = stack[top];
  if (ACTION[state][token] == "归约A \rightarrow \alpha") {
    top = top - |\alpha|;
    state = stack[top];
    top++; stack[top] = GOTO[state][A];
 } else if (ACTION[state][token] == "移进<math>I_i") {
    top++; stack[top] = I_i;
    token = next_token();
  } else if (ACTION[state][token] == "接受") {
    return true;
  } else {
    return false;
```

S' o S EOF
$S \to \epsilon$
$S \to [S]S$

ACTION

GOTO

状态\向前看	[]	EOF	S
0	移进2		归约[1]	1
1			接受	
2	移进6	归约[1]		3
3		移进4		
4	移进2		归约[1]	5
5			归约 [2]	
6	移进6	归约[1]		7
7		移进8		
8	移进6	归约[1]		9
9		归约[2]		

北京大学计算机学院

LR(1) 文法的分析表

- 根据识别栈模式的自动机来构造 ACTION 和 GOTO 表
- 对于自动机状态 I_i ,考察其转移的情况
 - 如果对于终结符号 c 有转移到 I_j ,那么 $ACTION[I_i, c]$ 为"移进 I_j "
 - * 如果 I_i 中有可归约模式 $\langle A \rightarrow \alpha \bullet ; c \rangle$, 那么 $ACTION[I_i, c]$ 为"归约 $A \rightarrow \alpha$ "
 - * 如果 I_i 中有可归约模式 $\langle S' \rightarrow S \bullet ; EOF \rangle$, 那么 $ACTION[I_i, EOF]$ 为"接受"
 - * 如果对于非终结符号 X 有转移到 I_j ,那么 $GOTO[I_i, X]$ 为 I_j
- 如果文法是 LR(1) 的,上述构造过程不会引入冲突

主要内容

- 语法分析的作用
- 语法分析的规约
- 语法分析的手动实现
- 语法分析的自动生成

One More Thing

- 产生式文法(Generative Grammar)
 - ❖ 文法定义的语言通过产生式推导而来
 - ❖ 例子: 正则表达式, 上下文无关文法
 - ❖ 缺点:原本是为自然语言设计,二义性难以避免
- 基于识别的文法(Recognition-Based Grammar)
 - ❖ 编译注重识别符号串并构造语法分析树
 - ❖ 文法定义的语言通过识别规则来规定
- 例子:
 - ❖ $\{s \in \theta^* \mid s = (\theta\theta)^n\}$ 是产生式的
 - * $\{s \in 0^* \mid (|s| \mod 2 = 0)\}$ 是基于识别的

解析表达文法

- Parsing Expression Grammar, 简称 PEG[For04]
- CFG与PEG的关键语义区别:
 - ❖ CFG: 产生式 $A \rightarrow \alpha_1 \mid \alpha_2$ 对 α_1 、 α_2 没有规定优先级
 - ❖ PEG: 识别规则 $A \leftarrow \alpha_1 / \alpha_2$ 优先识别 α_1 , 失败后再考虑 α_2
- 例子:
 - ❖ CFG 中A → 01 0 和A → 0 01 是等价的
 - ◆ PEG 中 A ← 01 / 0 和 A ← 0 / 01 是不等价的
 - ❖ 后者的 01 永远不会被考虑

[For04] Bryan Ford. Parsing Expression Grammars: A Recognition-Based Syntactic Foundation. Princ. Of Prog. Lang. (POPL'04), 2004.

解析表达文法

- 终结符号 a:识别符号 a
- \bullet e_1 e_2 :识别 e_1 ,若成功则继续识别 e_2 ,有一个失败则识别失败
- e_1/e_2 : 先识别 e_1 , 若失败则尝试从相同位置识别 e_2
 - ◆ 例子: S ← iSeS / iS / a 能正确识别悬空 else
- $e?, e^*, e^+$: 类似正则表达式, 但贪心地识别尽可能多的 e
 - ❖ 例子: 0* 0 无法识别任何符号串
- PEG 支持语法谓词,在「向前看」符号串满足条件时识别空串
 - ❖ &e:若「向前看」能识别 e,则成功
 - ❖!e:若「向前看」不能识别 e,则成功
 - ❖ 例子: $C \leftarrow o(C/(!ca))*c能正确识别嵌套注释$

PEG描述了自顶向下的语法分析

● PEG的识别过程实质是在进行带回溯的递归下降分析

● 两个问题:

- ❖ 需要考虑如何支持左递归
- ❖ 回溯需要来回扫描,效率低
- 通过左递归消除得到没有左递归的文法
- Packrat 分析算法: 通过记忆化提高效率[For02]
 - ❖ 递归下降分析的结果只依赖于当前的非终结符号和待处理的输入
 - ❖ 通过动态规划用空间换时间,达到线性时间复杂度
 - ❖ CPython 把基于 LL(1) 文法的分析替换为了 Packrat 分析

[For02] Bryan Ford. Packrat Parsing: Simple, Powerful, Lazy, Linear Time. Int. Conf. on Functional Programming (ICFP'02), 2002.

Packrat 分析算法

$$E \leftarrow T + E / T$$

$$T \leftarrow F * T / F$$

$$F \leftarrow (E) / D$$

$$D \leftarrow 0 / \dots / 9$$

C1	C2	С3	C4	C5	C6	C7	C8
2	*	(3	+	4)	EOF

	C1	C2	С3	C4	C5	C6	C7	C8
E	C8	×	C8	C7	×	C7	×	×
T	C8	×	C8	C5	×	C7	×	×
\overline{F}	C2	×	C8	C5	×	C7	X	X
D	C2	×	×	C5	×	C7	×	×

本讲小结

- 语法分析的规约给出编程语言的文法
 - ❖ 通常使用 CFG 来描述, 比如 LL 或 LR 文法
- ◎ 语法分析可以通过递归下降法或移进-归约法进行实现
 - ❖ 递归下降: 自顶向下, 最左推导, 消除左递归, 提取左公因子, 计算 FIRST、FOLLOW 集合, LL(1)
 - ◆ 移进-归约: 自底向上, 最右推导, 构造识别栈模式(本质是识别句柄)的自动机, LR(1)、LR(0)、SLR(1)、LALR(1)
- ◎ 语法分析的自动生成
 - ❖ 表驱动的语法分析
 - ❖ 递归下降: 构造 LL(1) 文法的分析表
 - ❖ 移进-归约:构造 LR(1) 文法的分析表

思考问题

- 为什么编译过程需要语法分析?
- 语法分析需要知道编程语言的哪些信息?
- 语法分析前先进行词法分析有什么好处?
- 语法分析可以和词法分析合二为一吗?
- 可以用移进-归约法分析二义性文法吗?有什么好处?
- ⊙ 构造文法:
 - ◆ LR(0) 但不是 LL(0), SLR(1) 但不是 LR(0), LALR(1) 但不是 SLR(1), LR(1) 但不是 LALR(1), LR(1) 但不是 LL(1), ······
 - ❖ LL(1) 但不是 LR(0), LR(0) 但不是 LL(1), ·······