Lecture Module - Introduction

ME3050 - Dynamics Modeling and Controls

Mechanical Engineering
Tennessee Technological University

Module 1 - Introduction

Module 1 - Introduction

- Topic 1 ODE Review
- Topic 2 Separation of Variables
- Topic 3 -

Topic 1 - ODE Review

- Definitions and Classification
- Engineering Applications
- Example

What is a Differential Equation?

with respect to the	
and one or more of its	of the
A differential equation is an e	quation which describes a function
Definition:	

Standard Form of an ODE

Ordinary Differential Equations are written in the following form.

$$a_n \frac{dy^{(n)}}{d^{(n)}x} + a_{n-1} \frac{dy^{(n-1)}}{d^{(n-1)}x} + ... + a_2 \frac{dy^2}{d^2x} + a_1 \frac{dy}{dx} + a_0 y = f(x)$$

The apostrophe is commonly used for the derivative.

$$a_n y^{(n)} + a_{n-1} y^{(n-1)} + ... + a_2 y'' + a_1 y' + a_0 y = f(x)$$

If time is the independent variable the equation changes slightly.

Is the differential equation ordinary or partial?

An ordinary differential equation	has independent	
variable and depende	ent variable.	
A partial differential equation has		
independent variable	dependent variable.	

What is the order of the equation?

The order of a differential equation is the

present in the equation.

What is the degree of the equation?

The **degree** of a differential equation is the ______
of its highest derivative, after the equation has been made rational and integral in all of its derivatives.

Is the differential equation linear or non-linear?

An ordinary differential equation is _____ if the following statements are true.

- The dependent variable and its derivatives are of the first degree.
- The coefficients are constants or dependent on the independent variable.

Engineering Applications

Differential equations are used to describe physical systems in many areas of engineering. An equation that represents a physical (or theoretical) system is known as a _____

- Solid Mechanics
- Kinematics and Dynamics
- Heat Transfer and Thermodynamics
- Fluid Mechanics

Definitions and Classification Engineering Applications Example

Engineering Applications

Example

Newton's Second Law

$$\Sigma F = ma$$

leads to an equation of motion.

$$\dot{y} + \frac{c}{m}y = f(t)$$

Topic 2 - Separation of Variables

- Review
- Separation of Variables
- Example

What is a Differential Equation? Solution?

A differential equation is an equation which descri	ribes a function
and one or more of its	of the
with respect to the	·
The solution to a differential equation describes th	e
	as a function
of the	

Separation of Variables

Separation of Variables: analytical for solving differential equations

• Step 1 - Separate

Step 2 - Integrate

• Step 2 - Solve for Unknowns

Separation of Variables

Alternative methods to find solution:

•

•

•

Problem Statement

Remember our example from the previous lecture?

$$\dot{v} + \frac{c}{m}v = f(t)$$

We are going to find an analytical solution to this problem.

Separation of Variables

Assume the external force f(t) is zero. Use separation of variables to find the solution v(t).

$$\dot{v} + \frac{c}{m}v = 0$$

Solution

The solution v(t) has been found. What does it mean? What do we do next?

$$v(t) =$$

Solution

The solution v(t) has been found. What does it mean? What do we do next?

$$v(t) =$$

Graph of Solution

What does the solution look like?

$$v(t) = v_0 e^{-\frac{c}{m}t}$$

Topic 3 -

- -