h ₁ h ₂ h ₃ S ₁ S ₂ S ₃ S ₆ O
Signature Mater: Signature Mater: Signature Mater: Signature Mater: 1
b) only h3 hash function is a true permutation.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Jacard similarities obtained from the Signature matrice using hash functions are not close to the similarities obtained from the
Characteristic macris
$3.4.1)(1) S = 0.1$ $3.4.1)(1) S = 0.1$ 0.9 $1-(1-5^{3})b$ 0.1
1369 10 19123 10 1985 10 1992 10 10 10 10 10 10 10 10 10 10 10 10 10 1

Scanned by CamScanner

Scanned by CamScanner

$$(Osin(0) - \frac{x \cdot y}{||x|| ||y||} = \frac{28}{374 \times 7.48} = \frac{28}{28} = |$$

$$() \times (s, 0, -4) \times y \cdot y = -s + 0 - 8 = -13$$

$$Y = (-1, -6, 2) \quad ||x|| = 6.4 \quad ||y|| = 6.4$$

$$(Osin(0) = \frac{-13}{41} = -0.317$$

$$d) \times (Osin(0) = \frac{1}{2 \times 1} = \frac{1}{2} = 0.5$$

$$(Osin(0) = \frac{1}{2 \times 1} = \frac{1}{2} = 0.5$$

$$(Osin(0) = \frac{1}{2 \times 1} = \frac{1}{2} = 0.5$$

$$(Osin(A, B) = 8.2 \times 0.3 + 160000 d^2 + 24B^2$$

$$(Osin(A, B) = 8.2 \times 0.3 + 160000 d^2 + 24B^2$$

$$(Osin(A, C) = 8.952 + 320000 d^2 + 36B^2$$

$$(Osin(B, C) = 7.8250 + 204800 d^2 + 24B^2$$

$$(Osin(B, C) = 7.8250 + 204800 d^2 + 24B^2$$

$$(Osin(B, C) = 7.8250 + 204800 d^2 + 24B^2$$

$$(Osin(B, C) = 7.8250 + 204800 d^2 + 24B^2$$

$$(Osin(B, C) = 7.8250 + 204800 d^2 + 24B^2$$

$$(Osin(B, C) = 7.8250 + 204800 d^2 + 24B^2$$

$$(Osin(B, C) = 7.8250 + 204800 d^2 + 24B^2$$

$$\frac{1}{100} \frac{1}{100} \frac{1}{100} = \frac{1}{100} \frac{$$

9.23)
$$\frac{A \mid B \mid C}{3.06 \mid 2.68 \mid 2.92}$$
 $500 \mid 320 \mid 640$
 $6 \mid 4 \mid 6$

USUT 1 \Rightarrow $A \Rightarrow 4$, $B \Rightarrow 2$, $C \Rightarrow 5$
 $avg = 4 + 2 + 5 = \frac{1}{3}$

Procussor speed = $3.06 \times \frac{1}{3} = 2.68 \times \frac{1}{3} + 2.92 \times \frac{1}{3}$
 $= 1.02 - 4.466 + 3.893$
 $= 0.447$

Disk size = $500 \times \frac{1}{3} = 3.20 \times \frac{1}{3} + 160 \times \frac{1}{3}$
 $= 16.66 - 5 \times 3.33 + 855.35$
 $= 481.667$

Memory size = $6 \times \frac{1}{3} = 4 \times \frac{1}{3} = 3.333$

avg (A) =
$$\frac{10}{3}$$
 avg (c)=3
avg (B) = $\frac{7}{3}$

A 2/3 5/3 5/3 5/3 -1/3 -1/3 -1/3 -1/3 -1/3 -1/3 -1/3 -1
$(08/(A,B) = \frac{52}{9} = 6.5863$
3.65 15*2.708
(Osh (A, c) = -0.11547
(asin (B, C) = -0.739574
Problem 1.3:- 5.1.1) Fransition (1/3 1/2 0) Matrix (1/3 1/2 1/2)
$\lambda = \left(\frac{3}{13}\right) \frac{4}{13} \frac{1}{13}$
$\begin{bmatrix} 0.33 \\ 0.33 \\ 0.33 \end{bmatrix}, \begin{bmatrix} 0.277 \\ 0.277 \\ 0.444 \end{bmatrix}, \begin{bmatrix} 0.2314 \\ 0.3148 \\ 0.4537 \end{bmatrix}, \begin{bmatrix} 0.2345 \\ 0.3040 \\ 0.4614 \end{bmatrix},$
$ \begin{pmatrix} 0.2301 \\ 0.3088 \\ 0.4609 \end{pmatrix} - \begin{pmatrix} 0.2307 \\ 0.3076 \\ 0.4615 \end{pmatrix} $
$5.1.2) V' = BMV + (1-B) e/m$ $= \begin{cases} 4/15 & 245 & 0 \\ 4/15 & 0 & 245 \\ 4/15 & 245 & 245 \end{cases} V + \begin{cases} 4/15 \\ 4/15 & 245 \\ 4/15 & 245 \end{cases} V + \begin{cases} 4/15 \\ 4/15 & 245 \\ 4/15 & 245 \end{cases} V + \begin{cases} 4/15 \\ 4/15 & 245 \\ 4/15 & 245 \\ 4/15 & 245 \end{cases} V + \begin{cases} 4/15 \\ 4/15 & 245 \\ 4/15 & $

(iii) Closeness Centeralists

$$C_{c}^{*}(v) = (m-1) \frac{1}{20(v,3)}$$

$$C_{c}^{*}(1) = 4 * \frac{1}{7} = \frac{4}{7} = 0.571$$

$$C_{c}^{*}(2) = 4 * \frac{1}{7} = \frac{4}{7} = 0.667$$

$$C_{c}^{*}(3) = 4 * \frac{1}{4} = \frac{4}{7} = 0.667$$

(iii) Betweeness Controlling

Returnous of 1:

$$2 \to 3 \quad 0/1 \quad \text{Total} = 0$$

$$2 \to 4 \quad 0/1 \quad (8(v) = 0 * 2)$$

$$3 \to 9 \quad 0/1 \quad (8(v) = 0 * 2)$$

$$4 \to 5 \quad 0/1 \quad (8(v) = 0 * 2)$$

$$4 \to 5 \quad 0/1 \quad 3 \to 4 \quad 0/1$$

$$1 \to 4 \quad 0/1 \quad 3 \to 5 \quad 1/2$$

$$1 \to 3 \quad 0/1 \quad 3 \to 5 \quad 1/2$$

$$1 \to 4 \quad 0/1 \quad 3 \to 5 \quad 1/2$$

$$1 \to 5 \quad 0/1 \quad 4 \to 5 \quad 0/1$$

Total =
$$\frac{1}{2}$$

(8(2) = $\frac{1}{2}$ * 2 = 1 (8*(x) = $\frac{1}{12}$ = 6.0833

Betweenus of 8'

1 \to 2 \ 0/1 \ 2 \to 5 \ 0/1 \ (8*(3) = 0)

1 \to 4 \ 0/1 \ 2 \to 5 \ 0/1 \ (8*(3) = 0)

Buttusenus of 9 \ (1 \to 2 \to 5) \ (1 \to 5) \ (2 \to 7) \ (2 \to 3) \ (1 \to 6) \ (2 \to 7) \to 7) \\ (2 \to 7) \to

(ii) decenses anticolity
$$c(^{*}(N) = (m-1) \cdot \frac{1}{2 \cdot d(N,3)}$$

$$c(^{*}(1) = \frac{1}{4} = 0.667 \quad (c^{*}(2) = \frac{4}{5} = 0.8$$

$$c(^{*}(3) = \frac{4}{4} = 0.667 \quad (c^{*}(4) = \frac{4}{6} = 0.667$$

$$(c^{*}(3) = \frac{4}{4} = 0.667 \quad (c^{*}(4) = \frac{4}{6} = 0.667$$

$$(c^{*}(5) = 0.8 \Rightarrow \frac{4}{5}$$

Bituliarius of 1:

$$2 \Rightarrow 3 \quad 0/1 \quad 3 \Rightarrow 4 \quad 0/1$$

$$2 \Rightarrow 4 \quad 0/1 \quad 3 \Rightarrow 5 \quad 0/1$$

$$2 \Rightarrow 5 \quad 0/1 \quad 4 \Rightarrow 5 \quad 2$$

$$c_{8}^{*}(1) = \frac{1}{12} = 0.0833$$

Butularius of 2:

$$1 \Rightarrow 3 \quad 0/1 \quad 3 \Rightarrow 5 \quad 0/1 \quad 5001 = 1.5$$

$$1 \Rightarrow 4 \quad 0/1 \quad 3 \Rightarrow 5 \quad 0/1 \quad (802) = 3$$

$$1 \Rightarrow 5 \quad 0/1 \quad 4 \Rightarrow 5 \quad 2$$

$$(8^{*}(2) = \frac{3}{12} = 0.25$$

Butularius of 3:
$$1 \Rightarrow 2 \quad 0/2 \quad 2 \Rightarrow 4 \quad 0/1 \quad 5001 = 0$$

$$1 \Rightarrow 4 \quad 0/1 \quad 2 \Rightarrow 5 \quad 0/1 \quad 6001 = 0$$

$$1 \Rightarrow 4 \quad 0/1 \quad 2 \Rightarrow 5 \quad 0/1 \quad 6001 = 0$$

$$1 \Rightarrow 6 \quad 0/1 \quad 2 \Rightarrow 5 \quad 0/1 \quad 6001 = 0$$

$$1 \Rightarrow 6 \quad 0/1 \quad 2 \Rightarrow 5 \quad 0/1 \quad 6001 = 0$$

$$1 \Rightarrow 6 \quad 0/1 \quad 2 \Rightarrow 5 \quad 0/1 \quad 6001 = 0$$

$$1 \Rightarrow 6 \quad 0/1 \quad 2 \Rightarrow 5 \quad 0/1 \quad 6001 = 0$$

$$1 \Rightarrow 6 \quad 0/1 \quad 2 \Rightarrow 5 \quad 0/1 \quad 6001 = 0$$

$$1 \Rightarrow 6 \quad 0/1 \quad 2 \Rightarrow 5 \quad 0/1 \quad 6001 = 0$$

$$1 \Rightarrow 6 \quad 0/1 \quad 2 \Rightarrow 5 \quad 0/1 \quad 6001 = 0$$

$$1 \Rightarrow 6 \quad 0/1 \quad 2 \Rightarrow 5 \quad 0/1 \quad 6001 = 0$$

$$1 \Rightarrow 6 \quad 0/1 \quad 2 \Rightarrow 5 \quad 0/1 \quad 6001 = 0$$

$$1 \Rightarrow 6 \quad 0/1 \quad 2 \Rightarrow 5 \quad 0/1 \quad 6001 = 0$$

$$1 \Rightarrow 6 \quad 0/1 \quad 2 \Rightarrow 5 \quad 0/1 \quad 6001 = 0$$

$$1 \Rightarrow 6 \quad 0/1 \quad 2 \Rightarrow 5 \quad 0/1 \quad 6001 = 0$$

$$1 \Rightarrow 6 \quad 0/1 \quad 2 \Rightarrow 5 \quad 0/1 \quad 6001 = 0$$

$$1 \Rightarrow 6 \quad 0/1 \quad 2 \Rightarrow 5 \quad 0/1 \quad 6001 = 0$$

$$1 \Rightarrow 6 \quad 0/1 \quad 2 \Rightarrow 5 \quad 0/1 \quad 6001 = 0$$

$$1 \Rightarrow 6 \quad 0/1 \quad 2 \Rightarrow 5 \quad 0/1 \quad 6001 = 0$$

Scanned by CamScanner

Betweeness of 41.

1
$$\Rightarrow$$
 2 \forall 2 2 \Rightarrow 3 \circ 1 \circ 1 \circ 2 \circ 2 \circ 5 \circ 1 \circ 1 \circ 2 \circ 1 \circ 2 \circ 5 \circ 1 \circ 1 \circ 5 \circ 1 \circ 6 \circ 7 \circ 6 \circ 7 \circ 7 \circ 7 \circ 7 \circ 7 \circ 7 \circ 8 \circ 7 \circ 9 \circ 9