import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt

In [9]:

data = pd.read_csv("women_entreprenuer.csv")

In [10]:

data

Out[10]:

	No	Country	Level of development	European Union Membership	Currency	Women Entrepreneurship Index	Entrepreneurship Index	Inflation rate	Labo Partic
0	4	Austria	Developed	Member	Euro	54.9	64.9	0.90	
1	6	Belgium	Developed	Member	Euro	63.6	65.5	0.60	
2	17	Estonia	Developed	Member	Euro	55.4	60.2	-0.88	
3	18	Finland	Developed	Member	Euro	66.4	65.7	-0.20	
4	19	France	Developed	Member	Euro	68.8	67.3	0.00	
5	20	Germany	Developed	Member	Euro	63.6	67.4	0.50	
6	22	Greece	Developed	Member	Euro	43.0	42.0	-1.70	•
4									•

In [11]:

data.head()

Out[11]:

	No	Country	Level of development	European Union Membership	Currency	Women Entrepreneurship Index	Entrepreneurship Index	Inflatio rat
0	4	Austria	Developed	Member	Euro	54.9	64.9	0.9
1	6	Belgium	Developed	Member	Euro	63.6	65.5	0.6
2	17	Estonia	Developed	Member	Euro	55.4	60.2	-0.8
3	18	Finland	Developed	Member	Euro	66.4	65.7	-0.2
4	19	France	Developed	Member	Euro	68.8	67.3	0.0
4								•

In [12]:

data.tail()

Out[12]:

	No	Country	Level of development	European Union Membership	Currency	Women Entrepreneurship Index	Entrepreneurship Index	Inflat ra
46	48	Saudi Arabia	Developing	Not Member	National Currency	37.0	49.6	1
47	57	Thailand	Developing	Not Member	National Currency	36.6	32.1	-0
48	58	Tunisia	Developing	Not Member	National Currency	30.7	35.5	4
49	59	Turkey	Developing	Not Member	National Currency	39.3	54.6	7
50	60	Uruguay	Developing	Not Member	National Currency	44.5	41.4	8
4								•

In [13]: ▶

data.shape

Out[13]:

(51, 9)

In [14]: ▶

data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 51 entries, 0 to 50
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	No	51 non-null	int64
1	Country	51 non-null	object
2	Level of development	51 non-null	object
3	European Union Membership	51 non-null	object
4	Currency	51 non-null	object
5	Women Entrepreneurship Index	51 non-null	float64
6	Entrepreneurship Index	51 non-null	float64
7	Inflation rate	51 non-null	float64
8	Female Labor Force Participation Rate	51 non-null	float64

dtypes: float64(4), int64(1), object(4)

memory usage: 3.7+ KB

In [15]: ▶

```
data.describe()
```

Out[15]:

	No	Women Entrepreneurship Index	Entrepreneurship Index	Inflation rate	Female Labor Force Participation Rate
count	51.000000	51.000000	51.000000	51.000000	51.000000
mean	29.980392	47.835294	47.241176	2.587647	58.481765
std	18.017203	14.268480	16.193149	5.380639	13.864567
min	1.000000	25.300000	24.800000	-2.250000	13.000000
25%	14.500000	36.350000	31.900000	-0.500000	55.800000
50%	30.000000	44.500000	42.700000	0.600000	61.000000
75%	45.500000	59.150000	65.400000	3.600000	67.400000
max	60.000000	74.800000	77.600000	26.500000	82.300000

```
In [16]:
```

data.describe().columns

Out[16]:

In [17]: ▶

data.isnull().sum()

Out[17]:

No	0
Country	0
Level of development	0
European Union Membership	0
Currency	0
Women Entrepreneurship Index	0
Entrepreneurship Index	0
Inflation rate	0
Female Labor Force Participation Rate	0
dtype: int64	

In [18]:

```
import warnings
warnings.filterwarnings("ignore")
```

In [19]:

```
In [20]:
```

data_cat['Level of development'].value_counts().sort_index(ascending=False).plot(kind='t

Out[20]:

<matplotlib.axes._subplots.AxesSubplot at 0xe49d27e670>

In [21]:

a_cat['European Union Membership'].value_counts().sort_index(ascending=False).plot(kind=

↓

Out[21]:

<matplotlib.axes._subplots.AxesSubplot at 0xe49d386130>

In [23]:

data_cat['Currency'].value_counts().sort_index(ascending=False).plot(kind='bar')

Out[23]:

<matplotlib.axes._subplots.AxesSubplot at 0xe4b1e9b910>

In [29]:

table = data_cat.groupby(['Currency', 'Level of development']).count()
table

Out[29]:

Country European Union Membership

Currency L	evel of d	evelopment
------------	-----------	------------

Euro	Developed	15	15
National Currency	Developed	12	12
	Developing	24	24

In [30]: ▶

```
plt.hist(data_num['Women Entrepreneurship Index'], bins=10)
plt.title("Women Entrepreneurship Index")
plt.show()
```


In [35]: ▶

```
plt.figure(figsize = (12,7))
sns.barplot(x = data_cat.Country, y = data_num['Women Entrepreneurship Index'])
plt.xticks(rotation=90)
plt.show()
```


In [47]:

```
top_WEI = data.groupby('Country').sum()
top_WEI.drop('No', axis = 1, inplace = True)
top_WEI.sort_values(by = 'Women Entrepreneurship Index', ascending = False).head()
```

Out[47]:

	Women Entrepreneurship Index	Entrepreneurship Index	Inflation rate	Female Labor Force Participation Rate
Country				
Australia	74.8	77.6	1.5	66.8
Denmark	69.7	71.4	0.5	70.3
Netherlands	69.3	66.5	0.6	69.2
France	68.8	67.3	0.0	60.6
Iceland	68.0	70.4	1.6	82.3

```
In [45]:
```

```
top_LOD = data.groupby('Level of development').sum()
top_LOD.drop('No', axis = 1, inplace = True)
top_LOD.sort_values(by = 'Women Entrepreneurship Index', ascending = False)
```

Out[45]:

	Women Entrepreneurship Index	Entrepreneurship Index	Inflation rate	Female Labor Force Participation Rate
Level of development				
Developed	1602.7	1606.1	0.38	1703.58
Developing	836.9	803.2	131.59	1278.99

In [48]: ▶

```
top_WEI = data.groupby('Country').sum()
top_WEI.drop('No', axis = 1, inplace = True)
top_WEI.sort_values(by = 'Women Entrepreneurship Index', ascending = False).tail()
```

Out[48]:

	Women Entrepreneurship Index	Entrepreneurship Index	Inflation rate	Female Labor Force Participation Rate
Country				
Bolivia	29.7	28.0	4.1	69.4
Egypt	27.7	28.1	11.0	64.6
Algeria	27.4	30.2	4.8	18.0
Ghana	25.8	24.8	17.2	60.8
India	25.3	25.3	5.9	61.1

In [49]: ▶

sns.boxplot(x='Women Entrepreneurship Index', y='Level of development', data=data);

In [58]: M

```
top_IR = data.groupby('Country').sum()
top_IR.drop(['No', 'Women Entrepreneurship Index', 'Entrepreneurship Index',
             'Female Labor Force Participation Rate'], axis = 1, inplace = True)
top_IR.sort_values(by = 'Inflation rate', ascending = False).head()
```

Out[58]:

Inflation rate

Country	
Argentina	26.50
Ghana	17.20
Russia	15.50
Egypt	11.00
Brazil	10.67

In [59]: M

```
top_IR = data.groupby('Country').sum()
top_IR.drop(['No', 'Women Entrepreneurship Index', 'Entrepreneurship Index',
             'Female Labor Force Participation Rate'], axis = 1, inplace = True)
top_IR.sort_values(by = 'Inflation rate', ascending = False).tail()
```

Out[59]:

Inflation rate

Country	
Lithuania	-0.90
Bosnia and Herzegovina	-1.00
Switzerland	-1.10
Greece	-1.70
El Salvador	-2.25

In [61]: ▶

Out[61]:

Female Labor Force Participation Rate

Country	
Iceland	82.3
Switzerland	74.7
Sweden	74.0
Macedonia	73.0
Denmark	70.3

```
In [62]: ▶
```

Out[62]:

Saudi Arabia

Female Labor Force Participation Rate

Country Jamaica 37.70 Turkey 30.40 Tunisia 25.19 Algeria 18.00

```
In [63]:
```

13.00

```
x = data[['Inflation rate']].values
y = data['Women Entrepreneurship Index'].values
```

```
In [64]:
```

```
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(x, y, test_size = 0.2)
```

```
In [72]:
```

```
model= LinearRegression()
reg = model.fit(X_train, y_train)
```

In [79]: ▶

```
!pip install statsmodels

WARNING: You are using pip version 22.0.3; however, version 22.0.4 is available.
```

```
--upgrade pip' command.
Collecting statsmodels
 Downloading statsmodels-0.13.2-cp38-cp38-win amd64.whl (9.1 MB)
    ----- 9.1/9.1 MB 514.7 kB/s eta 0:
00:00
Collecting patsy>=0.5.2
  Downloading patsy-0.5.2-py2.py3-none-any.whl (233 kB)
    ----- 233.7/233.7 KB 386.6 kB/s eta 0:
00:00
Requirement already satisfied: numpy>=1.17 in c:\python\lib\site-packages
(from statsmodels) (1.19.4)
Collecting packaging>=21.3
  Downloading packaging-21.3-py3-none-any.whl (40 kB)
    ----- 40.8/40.8 KB 391.2 kB/s eta 0:
Requirement already satisfied: pandas>=0.25 in c:\python\lib\site-packages
(from statsmodels) (1.1.3)
Requirement already satisfied: scipy>=1.3 in c:\python\lib\site-packages
(from statsmodels) (1.4.1)
Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in c:\python\lib\s
ite-packages (from packaging>=21.3->statsmodels) (2.4.7)
Requirement already satisfied: python-dateutil>=2.7.3 in c:\python\lib\sit
e-packages (from pandas>=0.25->statsmodels) (2.8.1)
Requirement already satisfied: pytz>=2017.2 in c:\python\lib\site-packages
(from pandas>=0.25->statsmodels) (2020.1)
Requirement already satisfied: six in c:\python\lib\site-packages (from pa
tsy>=0.5.2->statsmodels) (1.12.0)
Installing collected packages: patsy, packaging, statsmodels
 Attempting uninstall: packaging
   Found existing installation: packaging 20.4
   Uninstalling packaging-20.4:
     Successfully uninstalled packaging-20.4
Successfully installed packaging-21.3 patsy-0.5.2 statsmodels-0.13.2
```

You should consider upgrading via the 'c:\python\python.exe -m pip install

```
In [80]: ▶
```

```
import statsmodels.api as sm
sm.OLS(y, sm.add_constant(x)).fit()
```

In [81]: ▶

```
print(model.summary())
```

```
OLS Regression Results
______
====
Dep. Variable:
                         У
                           R-squared:
0.208
                           Adj. R-squared:
Model:
                        0LS
0.191
                Least Squares
Method:
                           F-statistic:
                                                   1
2.83
                           Prob (F-statistic):
              Sat, 12 Mar 2022
                                                 0.00
Date:
0782
                    12:19:40
                           Log-Likelihood:
Time:
                                                  -20
1.49
No. Observations:
                           AIC:
                        51
                                                   4
07.0
                           BIC:
Df Residuals:
                        49
                                                   4
10.8
Df Model:
                         1
Covariance Type:
                   nonrobust
______
====
            coef std err
                            t P>|t|
                                          [0.025
975]
         50.9611 1.997 25.513 0.000
const
                                          46.947
                                                   5
4.975
         -1.2080 0.337 -3.582 0.001
                                          -1.886
x1
0.530
_____
                           Durbin-Watson:
                      5.788
Omnibus:
1.168
                      0.055
Prob(Omnibus):
                           Jarque-Bera (JB):
2.206
                           Prob(JB):
Skew:
                      0.054
0.332
                            Cond. No.
Kurtosis:
                      1.987
6.62
______
Notes:
[1] Standard Errors assume that the covariance matrix of the errors is cor
rectly specified.
```

```
In [82]: ▶
```

```
x1 = data[['Female Labor Force Participation Rate']].values
y1 = data['Women Entrepreneurship Index'].values
```

```
In [84]:

from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(x1, y1, test_size = 0.2)

In [85]:

model1= LinearRegression()
model1.fit(X_train, y_train)

In [88]:

model1 = sm.OLS(y1, sm.add_constant(x1)).fit()
```

In [89]: ▶

```
print(model1.summary())
```

```
OLS Regression Results
______
====
Dep. Variable:
                         У
                          R-squared:
0.195
                           Adj. R-squared:
Model:
                       OLS
0.178
                           F-statistic:
                Least Squares
Method:
                                                   1
1.86
                           Prob (F-statistic):
              Sat, 12 Mar 2022
Date:
                                                 0.0
0119
                    12:23:47
                           Log-Likelihood:
Time:
                                                  -20
1.90
No. Observations:
                           AIC:
                        51
                                                   4
07.8
                           BIC:
Df Residuals:
                        49
                                                   4
11.7
Df Model:
                         1
Covariance Type:
                   nonrobust
______
====
           coef std err
                            t P>|t|
                                          [0.025
975]
               7.925 2.684 0.010
const
         21.2711
                                         5.346
                                                  3
7.197
          0.4542 0.132 3.443 0.001
                                         0.189
x1
0.719
______
                           Durbin-Watson:
                      7.393
Omnibus:
0.751
Prob(Omnibus):
                      0.025
                           Jarque-Bera (JB):
3.015
                           Prob(JB):
Skew:
                     -0.286
0.221
                            Cond. No.
Kurtosis:
                      1.955
263.
______
Notes:
[1] Standard Errors assume that the covariance matrix of the errors is cor
rectly specified.
```

```
In [90]:
```

```
x2 = data[['Entrepreneurship Index']].values
y2 = data['Women Entrepreneurship Index'].values
```

M

```
In [92]:

from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(x2, y2, test_size = 0.2)

In [93]:

model2= LinearRegression()
model2.fit(X_train, y_train)

Out[93]:
LinearRegression()

In [94]:

model2 = sm.OLS(y2, sm.add_constant(x2)).fit()
```

4

In [95]: ▶

print(model2.summary())

```
OLS Regression Results
______
====
                         y R-squared:
Dep. Variable:
0.836
                        OLS
                           Adj. R-squared:
Model:
0.833
                Least Squares
                           F-statistic:
                                                   2
Method:
50.6
              Sat, 12 Mar 2022
                           Prob (F-statistic):
                                                 6.70
Date:
e-21
                    12:27:02
                           Log-Likelihood:
Time:
                                                  -16
1.25
No. Observations:
                           AIC:
                        51
                                                   3
26.5
Df Residuals:
                           BIC:
                        49
                                                   3
30.4
Df Model:
                         1
Covariance Type:
                   nonrobust
______
====
           coef std err
                            t P>|t|
                                          [0.025
975]
          9.7648
               2.540 3.845 0.000
const
                                         4.661
                                                  1
4.868
x1
          0.8059 0.051 15.831 0.000
                                          0.704
0.908
______
                      1.701 Durbin-Watson:
Omnibus:
1.389
                      0.427
                           Jarque-Bera (JB):
Prob(Omnibus):
1,422
                           Prob(JB):
Skew:
                      -0.406
0.491
                            Cond. No.
Kurtosis:
                      2.896
155.
______
Notes:
[1] Standard Errors assume that the covariance matrix of the errors is cor
rectly specified.
```

```
In [96]:
                                                                     M
x3 = data[['Inflation rate', 'Female Labor Force Participation Rate']].values
y3 = data['Women Entrepreneurship Index'].values
model3 = sm.OLS(y3, sm.add_constant(x3)).fit()
print(model.summary())
                      OLS Regression Results
______
====
Dep. Variable:
                               R-squared:
0.208
Model:
                           OLS
                               Adj. R-squared:
0.191
                  Least Squares
                               F-statistic:
                                                           1
Method:
2.83
                Sat, 12 Mar 2022
                              Prob (F-statistic):
Date:
                                                        0.00
0782
Time:
                       12:29:39
                               Log-Likelihood:
                                                         -20
1.49
No. Observations:
                            51
                                AIC:
                                                           4
07.0
Df Residuals:
                            49
                                BIC:
                                                           4
10.8
Df Model:
Covariance Type:
                     nonrobust
_____
             coef std err
                                 t P>|t|
                                               [0.025
                                                          0.
975]
const
          50.9611
                    1.997 25.513 0.000
                                                46.947
                                                          5
4.975
                    0.337
x1
           -1.2080
                             -3.582
                                       0.001
                                                -1.886
0.530
______
                         5.788
Omnibus:
                               Durbin-Watson:
1.168
Prob(Omnibus):
                         0.055
                               Jarque-Bera (JB):
2.206
Skew:
                         0.054
                                Prob(JB):
0.332
                               Cond. No.
Kurtosis:
                         1.987
====
Notes:
[1] Standard Errors assume that the covariance matrix of the errors is cor
rectly specified.
In [97]:
                                                                     H
```

```
localhost:8888/notebooks/Women Entrepreneurs Analysis using Machine Learning.ipynb
```

X_train, X_test, y_train, y_test = train_test_split(x3, y3, test_size = 0.2)

```
In [99]:

model3 = LinearRegression()
model3.fit(X_train, y_train)

Out[99]:
LinearRegression()

In [100]:

print("Training Accuracy :", model3.score(X_train, y_train))
print("Testing Accuracy :", model3.score(X_test, y_test))
```

Training Accuracy : 0.36944938457602594 Testing Accuracy : 0.07361627890272748