Problem Sheet 5.2: Fixed Points and Recursion

Exercise 1:

- a) Reduce the fixed-point combinator Y for three β -steps. You can abbreviate $\lambda x.f(xx)$ by W .
- b) How is it possible that a term YF has a normal form?
- c) Try to predict what the fixed point of the function $\lambda x. \lambda y. y$ is.
- d) Compute the normal form of $Y(\lambda x. \lambda y. y)$, if there is one.

Exercise 2: Recall from the lecture on induction that, as in Peano arithmetic, we can define addition recursively if we can add one, subtract one and test for zero:

$$\operatorname{\mathsf{add}} m \ 0 \ = \ m$$

$$\operatorname{\mathsf{add}} m \ (n+1) \ = \ \operatorname{\mathsf{succ}} \left(\operatorname{\mathsf{add}} m \ n\right)$$

- a) Express this definition as an equation that we would like add to satisfy in the λ -calculus. You may assume the existence of the term pred which subtracts one from a Church numeral.
- b) Define add as a fixed point of a function.