

抗灾抢险中的设备投放策略

我国是世界上自然灾害最严重的国家之一。党的十八大以来,习近平总书记高度重视防灾减灾救灾工作,深刻指出"人类对自然规律的认知没有止境,防灾减灾、抗灾救灾是人类生存发展的永恒课题",要始终坚持"以人为本、生命至上"的原则和理念,处理好防灾减灾救灾和经济社会发展的关系,提高自然灾害防治能力,推动人类社会不断进步。

灾害应急救灾设备投放工作是抗灾救灾工作的重要一环,救灾设备投放结果 直接影响到灾区灾民的人心安定和社会稳定。由于抗灾抢险的需要,政府部门计 划向某山区投放一批设备。设备的件数和重量在表1中给出。

设备需要空运到指定位置,分组装箱空投。空投物质需要订购降落伞和制作空运箱体,降落伞有3种不同规格,详情见表2。在投放过程中,不同类型降落伞的载重对飞机消耗费用(含燃油费等)的影响可忽略不计。另外,降落伞可以回收,三种降落伞的回收价分别是500元、300元和200元。

箱体的大小和形状可以根据空投物质的重量定制,重量越大箱体的成本越高。 根据测算,按照不同重量,空投物质对应的箱体价格和重量见表3。由于设备较重,箱体的尺寸与降落伞的面积相比可忽略不计。

为了降落伞的规格的选择需要,我们进行了对 500m 高空利用中型降落伞投放 300kg 物体的试验,飞机在以 120m/s 的速度水平飞行时将挂有设备的降落伞 抛出机舱,得到的数据见表 4(抛投时的飞机水平速度为 120m/s)。

设备	件数	重量(kg/件)
设备A	10	220
设备B	15	100
设备C	64	69
设备 D	51	45

表 1: 计划投放设备信息 件数

表 2: 降落伞的规格和单价

规格	伞面面积(m²)	价格(元)
大	40	2500
中	25	1680
小	18	1100

扬州大学第二届研究生数学建模竞赛

表 3: 箱体价格、装载重量和自重的关系表

李	责载重量(kg)	40	80	100	120	150	180	200
和	首体价格(元)	36	60	68	74	80	86	90
和	首体自重(kg)	2	3.6	4.2	4.6	4.9	5.1	5.2

表 4: 不同时刻物体在空中位置

t(s)	0	3	6	9	12	15	18
x(m)	0	256	380.1	440.2	470	482	490
y(m)	500	476	437	398	359	318	279
t(s)	21	24	27	30	33	36	
x(m)	493	495	495.8	496.2	496.4	496.5	
y(m)	236	197	157	117	76	37	

注: x: t 时刻距抛投处的水平距离; y: t 时刻的物体高度。

假设空投设备均在距离地面 500m 的高空投放,为了保证设备的安全,空投设备的落地瞬间速度不能超过 12m/s。

下面请你的团队解决如下问题:

问题 1: 在确保设备能安全落地的前提下, 求出三种伞的最大装载重量。

问题 2: 如果要将设备投放到指定地点,飞机的投放位置如何选择?

问题 3: 如何进行设备的搭配装箱和选择合适的降落伞, 使得投放的费用最低?

问题 4: 如果降落伞的价格发生变化(比如某种伞的价格有 10%~20%的浮动),对 投放费用有何影响?

(注意:针对问题 1 和 2,建议建立相应的微分方程模型,不推荐直接采用数据拟合方法进行求解。)