Devoir à la maison n°16

- Le devoir devra être rédigé sur des copies *doubles*.
- Les copies ne devront comporter ni rature, ni renvoi, ni trace d'effaceur.
- Toute copie ne satisfaisant pas à ces exigences devra être intégralement récrite.

Problème 1

1.a Supposons que A et B soient les matrices du même endomorphisme u de E dans des bases orthonormales respectives \mathcal{B} et \mathcal{B}' . En notant P la matrice de passage de \mathcal{B} vers \mathcal{B}' , B = P⁻¹AP. Comme \mathcal{B} et \mathcal{B}' sont des bases orthonormales, P est orthogonale. Ainsi A et B sont orthogonalement semblables.

1.b Comme \mathcal{B} est une base orthonormale de E, la matrice de u^* dans la base \mathcal{B} est A^T . Comme l'application $u \in \mathcal{L}(E) \mapsto \max_{\mathcal{B}}(u) \in \mathcal{M}_n(\mathbb{R})$ est un isomorphisme de \mathbb{R} -algèbres,

$$u \in \mathcal{P}(E) \iff u^* \in \mathbb{R}[u] \iff A^{\mathsf{T}} \in \mathbb{R}[A] \iff A \in \mathcal{P}_n$$

et

$$u \in \mathcal{N}(E) \iff u^* \circ u = u \circ u^* \iff A^T A = AA^T \iff A \in \mathcal{N}_n$$

1.c On sait que $\mathbb{R}[u]$ et $\mathbb{R}[A]$ sont des algèbres commutatives donc $\mathcal{P}(E) \subset \mathcal{N}(E)$ et $\mathcal{P}_n \subset \mathcal{N}_n$.

2 2.a Si $u \in \mathcal{S}(E)$, alors $u^* = u \in \mathbb{R}[u]$ donc $u \in \mathcal{P}(E)$. De même, si $u \in \mathcal{A}(E)$, alors $u^* = -u \in \mathbb{R}[u]$ donc $u \in \mathcal{P}(E)$.

2.b Soit $A \in \mathcal{P}_n$ triangulaire supérieure. Alors il existe $P \in \mathbb{R}[X]$ tel que $A^T = P(A)$. Les matrices triangulaires supérieures forment une sous-algèbre de $\mathcal{M}_n(\mathbb{R})$ donc P(A) est également triangulaire supérieure. Or A^T est triangulaire inférieure. On en déduit que A^T est diagonale et donc A également. Réciproquement, si A est une matrice diagonale, alors A est triangulaire supérieure et $A^T = A \in \mathbb{R}[A]$ i.e. $A \in \mathcal{P}_n$. Les matrices triangulaires supérieures de \mathcal{P}_n sont donc exactement les matrices diagonales.

Si $n \ge 2$, il existe dans $\mathcal{M}_n(\mathbb{R})$ des matrices triangulaires supérieures non diagonales et donc $\mathcal{P}_n \subsetneq \mathcal{M}_n(\mathbb{R})$. On en déduit que $\mathcal{P}(E) \subsetneq \mathcal{L}(E)$.

2.c On applique le procédé de Gram-Schmidt à la base $\mathcal{B} = (e_1, \dots, e_n)$. Il existe donc une base orthonormale $\mathcal{B}' = (f_1, \dots, f_n)$ telle que pour tout $i \in [1, n]$, $f_i \in \text{vect}(e_1, \dots, e_i)$. On en déduit que la matrice de passage P de la base \mathcal{B} vers la base \mathcal{B}' , à savoir la matrice de la famille \mathcal{B}' dans la base \mathcal{B} , est triangulaire supérieure. La matrice de passage de la base \mathcal{B}' vers la base \mathcal{B} , à savoir P^{-1} est également triangulaire supérieure.

Notons $A = \text{mat}_{\mathcal{B}}(u)$. Alors la matrice de u dans la base \mathcal{B}' est $P^{-1}AP$ qui est triangulaire supérieure en tant que produit de telles matrices.

Soit $u \in \mathcal{P}(E)$ trigonalisable. D'après ce qui précède, il existe une base orthonormale de E dans laquelle la matrice A de u est triangulaire supérieure. Comme $u \in \mathcal{P}(E)$, $A \in \mathcal{P}_n$. D'après la question précédente, A est en fait diagonale et a fortiori symétrique. Ainsi u est autoadjoint. Réciproquement, si u est autoadjoint, alors $u \in \mathcal{P}(E)$ d'après la question 2.a. Les éléments trigonalisables de $\mathcal{P}(E)$ sont les endomorphismes autoadjoints.

2.d Soit $u \in GL(E)$. Alors $\chi_u(u) = 0$. De plus, $\chi_u(0) = \det(-u) \neq 0$. Il existe alors $\alpha \in \mathbb{R}^*$ et $Q \in \mathbb{R}[X]$ tel que $\chi_u = \alpha + XQ$. Comme χ_u annule u, $\alpha \operatorname{Id}_E + u \circ Q(u) = 0$ puis $u^{-1} = -\frac{1}{\alpha}Q(u) \in \mathbb{R}[u]$. Si $u \in \mathcal{O}(E)$, alors $u \in GL(E)$ et $u^* = u^{-1} \in \mathbb{R}[u]$ de sorte que $u \in \mathcal{P}(E)$.

3 Soit $A \in \mathcal{P}_n$.

Existence. Par définition, il existe $P \in \mathbb{R}[X]$ tel que $A^T = P(A)$. On écrit la division euclidienne de P par $\pi_A : P = Q\pi_A + R$ avec deg $R < \deg \pi_A$. On a alors $A^T = P(A) = Q(A)\pi_A(A) + R(A) = R(A)$.

Unicité. Soient P_1 et P_2 deux polynômes tels que $A^T = P_1(A) = P_2(A)$, deg $P_1 < \deg \pi_A$ et deg $P_2 < \deg \pi_A$. Alors $P_1 - P_2$ annule $P_1 = P_2$ deux polynômes tels que $P_2 = P_2$ deux polynômes tels que $P_1 = P_2$ deux polynômes tels que $P_2 = P_2$ deux polynômes tels que $P_1 = P_2$ deux polynômes tels que $P_2 = P_2$ deux polynômes tels que $P_1 = P_2$ deux polynômes tels que $P_2 = P_2$ deux polynômes t

1

De la même manière, pour tout $u \in \mathcal{P}(E)$, il existe un unique $P_u \in \mathbb{R}[X]$ tel que deg $P_u < \deg \pi_u$ et $P_u(u) = u^*$.

3.a 3.b Soit $A \in \mathcal{P}_n$ telle que P_A est un polynôme constant. Il existe alors $\alpha \in \mathbb{R}$ tel que $P_A = \alpha$. Ainsi $A^T = P_A(A) = \alpha I_n$. Réciproquement, s'il existe $\alpha \in \mathbb{R}$ tel que $A = \alpha I_n$, alors en posant $P = \alpha$ on a bien $P(A) = \alpha I_n = A^T$ et deg $P \le 0 < 1 \le \deg \pi_A$. Ainsi $P_A = P = \alpha$ est un polynôme constant.

L'ensemble des matrices A de \mathcal{P}_n telles que P_A est un polynôme constant est $\text{vect}(I_n)$.

3.c Soit $A \in \mathcal{P}_n$ telle que deg $P_A = 1$. Posons alors $P_A = \alpha X + \beta$ avec $(\alpha, \beta) \in \mathbb{R}^* \times \mathbb{R}$. On sait qu'il existe A_1 symétrique et A_2 antisymétrique telles que $A = A_1 + A_2$. Alors

$$A_1 - A_2 = A^T = P_A(A) = \alpha A + \beta I_n = \alpha A_1 + \alpha A_2 + \beta I_n$$

En transposant, on obtient

$$A_1 + A_2 = \alpha A_1 - \alpha A_2 + \beta I_n$$

En additionnant et en soustrayant ces deux égalités, on obtient

$$A_1 = \alpha A_1 + \beta I_n \qquad \qquad A_2 = -\alpha A_2$$

On a notamment $A_2=0$ ou $\alpha=-1$. Si $A_2=0$, alors A est symétrique mais non scalaire d'après la question précédente (sinon deg $P_A\leq 0$). Si $\alpha=-1$, alors $A_1=\frac{\beta}{2}I_n+A_2$ avec A_2 non nulle (toujours d'après la question précédente).

Réciproquement, si A est symétrique non scalaire, alors on constate que $A^T = A = P(A)$ avec P = X. Comme A est non scalaire, $\deg \pi_A > 1 = \deg X$ et donc $P_A = X$ par unicité de P_A et $\deg P_A = 1$. De même, si $A = kI_n + M$ avec M antisymétrique non nulle, alors $A^T = kI_n - M = P(A)$ avec P = -X + 2k. Comme M n'est pas nulle, A n'est pas scalaire de sorte que $\deg \pi_A > 1 = \deg P$. Par unicité de P_A , $P_A = -X + 2k$ et $\deg P_A = 1$.

En conclusion, les matrices A de \mathcal{P}_n telles que deg $P_A = 1$ sont les matrices symétriques non scalaires et les matrices de la forme $kI_n + M$ avec M antisymétrique non nulle.

3.d Si A et B sont orthogonalement semblables, alors il existe $Q \in \mathcal{O}_n$ telle que $B = Q^{-1}AQ = Q^{T}AQ$. Supposons que $A \in \mathcal{P}_n$. Alors

$$P_A(B) = P_A(Q^{-1}AQ) = Q^{-1}P_A(A)Q = Q^TA^TA = B^T$$

Donc $B \in \mathcal{P}_n$. De plus, A et B sont semblables donc $\pi_A = \pi_B$ de sorte que deg $P_A < \deg \pi_A = \deg \pi_B$. Ainsi $P_B = P_A$ par unicité de P_B .

Soit $A \in \mathcal{P}_2$. Comme $\deg \pi_A \le 2$, $\deg P_A \le 1$. D'après les questions précédentes, A est symétrique ou de la forme $aI_2 + M$ avec M antisymétrique i.e. de la forme $\begin{pmatrix} a & b \\ -b & a \end{pmatrix}$.

Réciproquement, si $A \in \mathcal{S}_2$ alors $A \in \mathcal{S}_2$ et si $A = \begin{pmatrix} a & -b \\ b & a \end{pmatrix}$, alors $A^T = P(A)$ avec P = a si b = 0 ou P = -X + 2a si $b \neq 0$ donc $A \in \mathcal{P}_2$.

Ainsi

$$\mathcal{P}_2 = \mathcal{S}_2 \cup \text{vect}(I_2, J_2)$$

avec
$$J_2 = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$
.

 $\boxed{\bf 5}$ 5.a D'après le théorème de Bézout, il existe $(U,V)\in\mathbb{R}[X]^2$ tel que $U\pi_{A_1}+V\pi_{A_2}=1$. On en déduit que

$$(P_{A_1} - P_{A_2})U\pi_{A_1} + (P_{A_1} - P_{A_2})V\pi_{A_2} = (P_{A_1} - P_{A_2})$$

ou encore

$$P_{A_1} - (P_{A_1} - P_{A_2})U\pi_{A_1} = P_{A_2} + (P_{A_1} - P_{A_2})V\pi_{A_2}$$

Une récurrence évidente montre que

$$\forall m \in \mathbb{N}, \ \mathbf{A}^m = \begin{pmatrix} \mathbf{A}_1^m & \mathbf{0} \\ \mathbf{0} & \mathbf{A}_2^m \end{pmatrix}$$

On en déduit que

$$P(A) = \begin{pmatrix} P(A_1) & 0 \\ 0 & P(A_2) \end{pmatrix}$$

Comme π_{A_1} annule A_1 , $P(A_1) = P_{A_1}(A_1) = A_1^T$. Mais on a également $P = P_{A_2} + (P_{A_1} - P_{A_2})V\pi_{A_2}$ et π_{A_2} annule A_2 donc $P(A_2) = A_2^T$. On en déduit que $P(A) = A^T$. Autrement dit, $A \in \mathcal{P}_{n_1 + n_2}$.

5.b Pour tout $Q \in \mathbb{R}[X]$, $Q(A) = 0 \iff (Q(A_1) = 0 \text{ ET } Q(A_2) = 0)$. En termes d'idéaux annulateurs,

$$\pi_{\mathbf{A}}\mathbb{K}[\mathbf{X}] = \pi_{\mathbf{A}_1}\mathbb{K}[\mathbf{X}] \cap \pi_{\mathbf{A}_2}\mathbb{K}[\mathbf{X}] = (\pi_{\mathbf{A}_1} \vee \pi_{\mathbf{A}_2})\mathbb{K}[\mathbf{X}]$$

On en déduit que $\pi_A=\pi_{A_1}\vee\pi_{A_2}=\pi_{A_1}\pi_{A_2}$ car $\pi_{A_1}\wedge\pi_{A_2}=1$. D'après la question **3.a**, P_A est le reste de la division euclidienne de P par $\pi_A=\pi_{A_1}\pi_{A_2}$.

Remarquons que $A = \begin{pmatrix} I_2 & 0 \\ J_2 & 0 \end{pmatrix}$. D'après la question **4**, I_2 et J_2 appartient à S_2 . De plus, $P_{I_2} = 1$ et $P_{J_2} = -X$ de sorte que $P_{I_2} \wedge P_{J_2} = 1$. D'après la question **5.a**, $A \in \mathcal{P}_4$

On détermine sans peine $\pi_{I_2} = X - 1$ et $\pi_{J_2} = X^2 + 1$. Avec les notations précédentes, on peut donc prendre $U = -\frac{1}{2}(X+1)$ et $V = \frac{1}{2}$. On en déduit que

$$P = P_{I_2} - (P_{I_2} - P_{J_2})U\pi_{I_2} = 1 + \frac{1}{2}(X+1)^2(X-1) = \frac{1}{2}(X^3 + X^2 - X + 1)$$

Or $\pi_{A} = \pi_{I_2}\Pi_{J_2} = X^3 - X^2 + X - 1$ donc

$$P = \frac{1}{2}\pi_A + X^2 - X + 1$$

de sorte que $P_A = X^2 - X + 1$.

REMARQUE. On peut vérifier à l'aide d'un calcul par blocs que

$$P_{A}(A) = \begin{pmatrix} P_{A}(I_{2}) & 0 \\ 0 & P_{A}(J_{2}) \end{pmatrix} = \begin{pmatrix} I_{2} & 0 \\ 0 & -J_{2} \end{pmatrix} = A^{T}$$

7 | Soit $u \in \mathcal{N}(E)$. Comme u et u^* commutent, il en est de même de P(u) et $P(u^*)$. On prouve aisément que $P(u^*) = P(u)^*$ $\overline{\text{donc}} \ P(u) \in \mathcal{N}(E).$

8 Par définition de l'adjoint

$$||u(x)||^2 = \langle u(x), u(x) \rangle = \langle x, u^* \circ u(x) \rangle = \langle x, u \circ u^*(x) \rangle = \langle u^*(x), u^*(x) \rangle = ||u^*(x)||^2$$

9 9.a Si A est la matrice de f dans une base orthonormale, A^T est la matrice de f^* dans cette même base. Ainsi

$$\det(f) = \det(A) = \det(A^{\mathsf{T}}) = \det(f^*) = \det(-f) = (-1)^m \det(f)$$

Comme f est inversible, $det(f) \neq 0$ de sorte que $(-1)^m = 1$ i.e. m est pair.

9.b Par propriété de l'adjonction,

$$(f^2)^* = (f^*)^2 = (-f)^2 = f^2$$

Ainsi f^2 est autoadjoint et a fortiori diagonalisable. Comme m > 0, f^2 admet donc au moins une valeur propre et donc un vecteur propre x_0 . Quitte à diviser x_0 par sa norme, on peut supposer x_0 unitaire. Notamment, $f^2(x_0) \in \text{vect}(x_0)$. On en déduit que

$$f(\Pi) = \text{vect}(f(x_0), f^2(x_0)) \subset \text{vect}(f(x_0), x_0) = \Pi$$

donc Π est stable par f.

Remarquons que $f(x_0) \neq 0$ car f est injective et $x_0 \neq 0$. De plus, comme $f^* = -f$,

$$\langle f(x_0), x_0 \rangle = \langle x_0, f^*(x_0) \rangle = -\langle x_0, f(x_0) \rangle$$

donc $\langle f(x_0), x_0 \rangle = 0$. Ainsi $f(x_0) \perp x_0$. A fortiori, $(x_0, f(x_0))$ est libre et Π est bien un plan.

Comme f est anti-autoadjoint, $f_{|\Pi}$ l'est également et la matrice de $f_{|\Pi}$ dans une base orthonormale de Π est antisymétrique.

Cette matrice est donc de la forme $\begin{pmatrix} 0 & -b \\ b & 0 \end{pmatrix}$.

9.c Il suffit de raisonner par récurrence. Dans le cas où m=2, le résultat est clair puisque la matrice de f dans une base orthonormale est antisymétrique. Supposons le résultat acquis lorsque m=2k avec $k\in\mathbb{N}^*$. Supposons que m=2(k+1)

avec $k \in \mathbb{N}^*$. On construit comme précédemment un plan Π . La matrice de $f_{|\Pi}$ est alors de la forme $\begin{pmatrix} 0 & -b \\ b & 0 \end{pmatrix}$. On sait de

plus que Π^{\perp} est stable par $f^* = -f$ et donc par f. Comme dim $\Pi^{\perp} = 2k$, la matrice de $f_{|\Pi^{\perp}|}$ dans une base orthonormale adéquate est de la forme voulue par hypothèse de récurrence. En concaténant les bases de Π et Π^{\perp} , on obtient une base de \mathbb{R}^m dans laquelle la matrice de f est de la forme voulue.

10 10.a Comme E_1 est stable par u, $E_2 = E_1^{\perp}$ est stable par u^* . De même, E_1 est stable par u^* donc $E_2 = E_1^{\perp}$ est stable par $(u^*)^* = u$.

10.b Pour tout $(x, y) \in E^2$,

$$\langle u(x), y \rangle = \langle x, u^*(y) \rangle$$

A fortiori, pour tout $(x, y) \in E_1^2$,

$$\langle u_{|\mathcal{E}_1}(x),y\rangle=\langle u(x),y\rangle=\langle x,u^*(y)\rangle\langle x,(u^*)_{|\mathcal{E}_1}(y)\rangle$$

On en déduit que $(u_{|E_1})^* = u_{|E_1}^*$.

10.c D'après la question précédente, si $u \in \mathcal{N}(E)$, alors

$$(u_{|E_1})^* \circ u_{|E_1} = (u^*)_{|E_1} \circ u_{|E_1} = (u^* \circ u)_{|E_1} = (u \circ u^*)_{|E_1} = u_{|E_1} \circ (u^*)_{|E_1} = u_{|E_1} \circ (u_{|E_1})^*$$

donc $u_{|E_1} \in \mathcal{N}(E_1)$. De la même manière, $u_{|E_2} \in \mathcal{N}(E_2)$.

L11 Comme u et u^* commutent, $u - \lambda \operatorname{Id}_E$ et $(u - \lambda \operatorname{Id}_E)^* = u^* - \lambda \operatorname{Id}_E$ commutent également. On en déduit que $u - \lambda \operatorname{Id}_E \in \mathcal{N}(E)$. D'après la question $\mathbf{8}$,

$$\|u(x) - \lambda x\|^2 = \|(u - \lambda \operatorname{Id}_{E})(x)\|^2 = \|(u - \lambda \operatorname{Id}_{E})^{*}(x)\|^2 = \|(u^{*} - \lambda \operatorname{Id}_{E})(x)\|^2 = \|u^{*}(x) - \lambda x\|^2$$

Ainsi $u(x) - \lambda x = 0 \iff u^*(x) - \lambda x = 0$. Par conséquent, $Ker(u - \lambda Id_E) = Ker(u^* - \lambda Id_E)$. On en déduit que u et u^* ont les mêmes sous-espaces propres.

On sait que les sous-espaces propres de u sont en somme directe. De plus, si λ et μ sont deux valeurs propres distinctes de u, alors, pour $(x, y) \in E_{\lambda}(u) \times E_{\mu}(u)$,

$$\lambda \langle x, y \rangle = \langle u(x), y \rangle = \langle x, u^*(y) \rangle = \mu \langle x, y \rangle$$

car $E_{\mu}(u) = E_{\mu}(u^*)$. Comme $\lambda \neq \mu$, $\langle x, y \rangle = 0$. Par conséquent $E_{\lambda}(u) \perp E_{\mu}(u)$.

Pour tout $\lambda \in \operatorname{Sp}(u) = \operatorname{Sp}(u^*)$, $\operatorname{E}_{\lambda}(u) = \operatorname{E}_{\lambda}(u^*)$ est stable par u et u^* . On en déduit que $\bigoplus_{\lambda \in \operatorname{Sp}(u)} \operatorname{E}_{\lambda}(u)$ est stable par u et

 u^* . Ainsi $F = \left(\bigoplus_{\lambda \in \operatorname{Sp}(u)} \operatorname{E}_{\lambda}(u)\right)^{\perp}$ est stable par les adjoints respectifs de u et u^* , c'est-à-dire u^* et u.

On remarque alors que $u_{|F}$ n'admet pas de valeur propre car $\bigoplus_{\lambda \in Sp(u)} E_{\lambda}(u)$ et F sont en somme directe. Notamment, $\chi_{u_{|F}}$

est de degré pair (un polynôme réel de degré impair admet toujours une racine réelle en vertu du théorème des valeurs intermédiaires; considérer les limites en $+\infty$ et $-\infty$). Donc dim $F = \deg \chi_{u_{|F}}$ est paire.

12 | 12.a s est clairement auto-adjoint donc diagonalisable. A fortiori, χ_s est scindé.

12.b Comme v et v^* commutent, on vérifie sans peine que s et a commutent de même que s et v.

Comme s est diagonalisable, ses sous-espaces propres F est la somme directe orthogonale de ses sous-espaces propres $E_{\lambda_i}(s)$ pour $i \in [1, k]$. De plus, dim $E_{\lambda_i}(s) = n_i$ pour tout $i \in [1, k]$.

Fixons $i \in [1, k]$. $E_{\lambda_i}(s)$ est stable par s et $s_{|E_{\lambda_i}(s)} = \lambda_i \operatorname{Id}_{E_{\lambda_i}(s)}$. Comme a commute avec s, $E_{\lambda_i}(s)$ est stable par a. De plus, a est anti-autoadjoint donc $a_{|E_{\lambda_i}(s)}$ également en vertu de la question **10.a**. La matrice de $a_{|E_{\lambda_i}(s)}$ dans une base orthonormale \mathcal{B}_i de $E_{\lambda_i}(s)$ est donc une matrice antisymétrique A_i . Enfin, s et v commutent donc $E_{\lambda_i}(s)$ est également stable par v et $v_{|E_{\lambda_i}(s)} = s_{|E_{\lambda_i}(s)} + a_{|E_{\lambda_i}(s)}$. On en déduit que la matrice de $v_{|E_{\lambda_i}(s)}$ dans la base \mathcal{B}_i est $M_i = \lambda_i I_{n_i} + A_i$.

La concaténation \mathcal{B}' des bases $\mathcal{B}_1, \dots, \mathcal{B}_k$ forme une base orthonormale de F dans laquelle la matrice de v est de la forme voulue.

12.c Avec les notations de la question précédente, il s'agit donc de montrer que $a_{|\mathcal{E}_{\lambda_i}(s)}$ est inversible. Soit donc $x \in \operatorname{Ker} a_{|\mathcal{E}_{\lambda_i}(s)}$. Alors $x \in \mathcal{E}_{\lambda_i}(s)$ i.e. $s(x) = \lambda_i x$ et a(x) = 0. On en déduit que $v(x) = s(x) + a(x) = \lambda_i x$. Mais comme v n'admet pas de valeur propre réelle, $x = 0_{\mathcal{E}}$. On a donc montré que $\operatorname{Ker} a_{|\mathcal{E}_{\lambda_i}(s)} = \{0\}$ i.e. A_i est inversible.

Notons S = $\bigoplus_{\lambda \in \operatorname{Sp}(u)} \operatorname{E}_{\lambda}(u)$. S est stable par u et les sous-espaces propres de u sont orthogonaux deux à deux donc

il existe une base orthonormale de S adpatée à cette décomposition en somme directe. La matrice de $u_{|S|}$ dans cette base orthonormale est une matrice diagonale D.

De plus, $u_{|F} \in \mathcal{N}(F)$ donc la question précédente montre qu'il existe une base orthonormale de F dans laquelle la matrice de $u_{|F}$ est diagonale par blocs de la forme $M_j = \lambda_j I_{n_j} + A_j$ où A_k est antisymétrique. De plus, $F \cap S = \{0\}$ donc $u_{|F}$ n'admet aucune valeur propre réelle et les matrices A_i sont donc inversibles. D'après la question 9, chaque matrice A_j

est orthogonalement semblable à une matrice diagonale par blocs de la forme $\begin{pmatrix} 0 & -b_i \\ b_i & 0 \end{pmatrix}$ où $n_i \neq 0$. En en déduit que

chaque matrice $M_j = \lambda_j I_{n_j} + A_j$ est orthogonalement semblable à une matrice diagonale par blocs de la forme $\begin{pmatrix} \lambda_j & -b_i \\ b_i & \lambda_j \end{pmatrix}$.

Autrement dit, il existe une base orthonormale de F dans laquelle la matrice de $u_{|F}$ est diagonale par blocs de la forme $\begin{pmatrix} a_i & -b_i \\ b_i & a_i \end{pmatrix}$ avec $b_i \neq 0$. Comme E est la somme directe orthogonale de S et F, il existe une base orthonormale de E dans laquelle la matrice de u est de la forme voulue.

Les matrices de \mathcal{N}_n sont des matrices orthogonalement semblables à une matrice de la forme de la question précédente. La réciproque ne pose pas de problème (elles commutent clairement avec leurs transposées).

IS Si $u \in \mathcal{O}(E)$, un calcul par blocs montre que D et les τ_i sont des matrices orthogonales. On en déduit que les coefficients diagonaux de D valent ± 1 et que les blocs τ_i sont de la forme $\begin{pmatrix} \cos \theta_i & -\sin \theta_i \\ \sin \theta_i & \cos \theta_i \end{pmatrix}$.

16.a Il est clair que P(M) est la matrice diagonale diagonale par blocs ayant pour blocs $P(M_1), \dots, P(M_k)$ et que Δ^T est la matrice diagonale diagonale par blocs ayant pour blocs M_1^T, \dots, M_k^T . On en déduit la condition demandée.

16.b On a déjà vu que $P_A = -X + 2a$. On trouve $\chi_A = (X - a)^2 + b^2$. Comme $b \neq 0$, A n'est pas scalaire de sorte que deg $\pi_A > 1$. Comme π_A divise χ_A , $\pi_A = \chi_A$.

Soit $P \in \mathbb{R}[X]$. On a alors les équivalences suivantes :

$$\begin{split} P(A) &= A^{\mathsf{T}} \\ \iff P(A) &= P_A(A) \\ \iff (P - P_A)(A) &= 0 \\ \iff \pi_A &= (X - (a + ib))(X - (a - ib)) \mid P - P_A \\ \iff (P - P_A)(a + ib) &= 0 \text{ et } (P - P_A)(a - ib) = 0 \qquad \text{car } a - ib \neq a + ib \\ \iff P(a + ib) &= P_A(a + ib) = a - ib \text{ et } P(a - ib) = P_A(a - ib) = a + ib \qquad \text{car } P_A = -X + 2a \end{aligned}$$

16.c Tout d'abord,

$$\mathrm{P}(\mathrm{A}) = \mathrm{A}^{\top} \iff \mathrm{P}(\mathrm{B}) = \mathrm{B}^{\top} \iff \mathrm{P}(\mathrm{D}) = \mathrm{D}^{\top} \; \mathrm{et} \; \forall k \in \llbracket 1, p \rrbracket, \mathrm{P}(\tau_k) = \tau_k^{\top}$$

Or les valeurs propres réelles de A sont exactement les coefficients diagonaux de D donc

$$P(D) = D^{\mathsf{T}} \iff \forall \lambda \in Sp_{\mathbb{R}}(A), \ P(\lambda) = \lambda$$

Les valeurs propres complexes de A sont les valeurs propres complexes des matrices τ_k , c'est-à-dire les $a_k \pm ib_k$. La question précédente montre alors que

$$\forall k \in \llbracket 1, p \rrbracket, \mathsf{P}(\tau_k) = \tau_k^\mathsf{T} \iff \forall z \in \mathsf{Sp}_{\mathbb{C}}(\mathsf{A}) \setminus \mathsf{Sp}_{\mathbb{R}}(\mathsf{A}), \ \mathsf{P}(z) = \overline{z}$$

16.d Il suffit de prendre le polynôme interpolateur de Lagrange P vérifiant les conditions de la question précédente. C'est l'unique polynôme de degré n vérifiant ces n conditions. Remarqons alors que le polynôme \overline{P} vérifie les mêmes conditions et que deg $\overline{P} = \deg P$. Ainsi $\overline{P} = P$ et $P \in \mathbb{R}[X]$. On en déduit que $\mathcal{N}_n \subset \mathcal{P}_n$. On a déjà vu que $\mathcal{P}_n \subset \mathcal{N}_n$ donc $\mathcal{N}_n = \mathcal{P}_n$.

16.e Comme P est un polynôme de degé minimal vérifiant $P(A) = A^{\mathsf{T}}$, $P = P_A$.

En reprenant la matrice A de la question $\bf 6$, on a Sp(A) = $\{1,i,-i\}$. On en déduit que P_A est le polynôme interpolateur de Lagrange, vérifiant $P_A(1) = 1$, $P_A(i) = -i$ et $P_A(-i) = i$. On a donc

$$P_{A} = 1 \cdot \frac{(X-i)(X+i)}{(1-i)(1+i)} - i \cdot \frac{(X-1)(X+i)}{(i-1)(i+i)} + i \cdot \frac{(X-1)(X-i)}{(-i-1)(-i-i)} = X^{2} - X + 1$$

17. 17.a On a $J \in \mathcal{O}_n \subset \mathcal{N}_n = \mathcal{P}_n$ ou encore $J^{n-1} = J^T$ donc $J \in \mathcal{P}_n = \mathcal{N}_n$. En posant $P = \sum_{i=0}^{n-1} \alpha_i X^i$, $C(\alpha_0, \dots, \alpha_{n-1}) = P(J) \in \mathcal{N}_n = \mathcal{P}_n$ d'après la question 7.

17.b On a classiquement $\pi_{\rm I} = {\rm X}^{n-1}$. D'une part,

$$P_A \circ P(J) = P_A(A) = A^T$$

D'autre part,

$$Q(J) = \alpha_0 I_n + \sum_{i=1}^{n-1} \alpha_i J^{n-i} = \alpha_0 I_n + \sum_{i=1}^{n-1} \alpha_i (J^i)^{\top} = P(J)^{\top} = A^{\top}$$

Ainsi $(P_A \circ P - Q)(J) = 0$ et π_J divise $P_A \circ P - Q$. Comme deg $Q \le n - 1 < n = \deg \pi_J$, Q est le reste de la division euclidienne de $P_A \circ P$ par π_J .

On cherche $P_A = \sum_{k=0}^{n-1} a_k X^k$. On calcule $P_A \circ P$ que l'on réduit modulo $X^n - 1$: il suffit pour cela de réduire les puissances de X modulo n. On identifie alors les coefficients du polynôme obtenu avec ceux de Q ce qui fournit un système de n équations à n inconnues permettant de calculer les a_k .

Si A = C(1, 1, 0), on a donc P = 1 + X, Q = 1 + X^2 et $\pi_J = X^3 - 1$. On pose $P_A = aX^2 + bX + c$. On a alors

$$P_A \circ P = aX^2 + (2a + b)X + a + b + c$$

Ce polynôme est déjà réduit modulo X^3-1 . L'égalité $P_A \circ P=Q$ donne a=1, b=-2 et c=2. Ainsi $P_A=X^2-2X+2$.

18