Math 164 Homework 1

Nick Monozon

2.2 Prove that the system Ax = b, $A \in \mathbb{R}^{m \times n}$, has a unique solution if and only if $\operatorname{rank} A = \operatorname{rank} [A, b] = n$.

Proof. ⇒: Assume that Ax = b where $A \in \mathbb{R}^{m \times n}$ has a unique solution. By Theorem 2.1, we know that $\operatorname{rank} A = \operatorname{rank} [A, b]$. We must now show that $\operatorname{rank} A = n$. By contradiction, assume that in fact $\operatorname{rank} A < n$. We know that $\operatorname{rank} A \neq n$ because A has n columns. This means that there exists some nonzero vector $w \in \mathbb{R}^n$ such that Aw = 0. Let x be the unique solution to Ax = b. It follows that x + w is also a solution, which contradicts the uniqueness of x. Therefore, $\operatorname{rank} A = \operatorname{rank} [A, b]$.

 \Leftarrow : Now suppose that rank $A = \operatorname{rank}[A, b] = n$. By Theorem 2.1, a solution to the system exists. We must show that this solution is unique, so let x and w be solutions. This implies that Ax = b and Aw = b, so A(x - w) = 0. Since $\operatorname{rank} A = n$ and $A \in \mathbb{R}^{m \times n}$, it follows that x - w = 0, so x = w. Therefore, the system has a unique solution.

2.9 Show that for any two vectors $x, y \in \mathbb{R}^n$, $|||x|| - ||y||| \le ||x - y||$. *Hint:* Write x = (x - y) + y, and use the triangle inequality. Do the same for y.

Proof. By the Triangle Inequality, we have that $\|x\| \le \|x - y\| + \|y\|$. Hence $\|x\| - \|y\| \le \|x - y\|$. Similarly, we have that $\|y\| \le \|y - x\| + \|x\|$, so $\|y\| - \|x\| \le \|y - x\| = \|x - y\|$. Combining these two inequalities, since $\|w\| \ge 0$ for any vector w, we find that $\|y\| - \|y\| \le \|x - y\|$.

3.8 Find the nullspace of

$$A = \begin{bmatrix} 4 & -2 & 0 \\ 2 & 1 & -1 \\ 2 & -3 & 1 \end{bmatrix}.$$

Solution. The nullspace of *A* is the set $\mathcal{N}(A) = \{x \in \mathbb{R}^3 : Ax = 0\}$. We perform elementary row operations on [A, 0] to yield a system of equations:

$$[A,\mathbf{0}] = \begin{bmatrix} 4 & -2 & 0 & 0 \\ 2 & 1 & -1 & 0 \\ 2 & -3 & 1 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 4 & -2 & 0 & 0 \\ 0 & 2 & -1 & 0 \\ 0 & -2 & 1 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 4 & -2 & 0 & 0 \\ 0 & 2 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
$$\implies 4x_1 - 2x_2 = 0, 2x_2 - x_3 = 0$$

We have that x_3 is arbitrary. Furthermore, we have that $x_2 = \frac{1}{2}x_3$, so $x_1 = \frac{1}{2}x_2 = \frac{1}{4}x_3$. It follows that

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} \frac{1}{4} \\ \frac{1}{2} \\ 1 \end{bmatrix} x_3.$$

Hence, this means that

$$\mathcal{N}(A) = \left\{ \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix} a : a \in \mathbb{R} \right\}.$$

3.21 Consider the function $\langle \cdot, \cdot \rangle_Q : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ defined by $\langle x, y \rangle_Q = x^\top Q y$, where $x, y \in \mathbb{R}^n$ and $Q \in \mathbb{R}^{n \times n}$ is a symmetric positive definite matrix. Show that $\langle \cdot, \cdot \rangle_Q$ satisfies conditions 1 to 4 for inner products.

1

Proof. We will show that $\langle \cdot, \cdot \rangle_Q$ is an inner product by showing that it satisfies conditions 1 to 4.

1. Positivity: By the properties of symmetric positive definite matrices, $Q = Q^{\top} > 0$. Furthermore, $Q = Q^{1/2}Q^{1/2}$ and $Q^{1/2} = (Q^{1/2})^{\top} > 0$. Therefore, we have that for any vector $x \in \mathbb{R}^n$,

$$\langle x, x \rangle_Q = (Q^{1/2}x)^\top (Q^{1/2}x) = (Q^{1/2}x)(Q^{1/2}x) = \|Q^{1/2}x\|^2 \geq 0.$$

We now want to show that $\langle x, x \rangle = 0$ if and only if x = 0. Therefore, since $Q^{1/2}$ is invertible,

$$\langle x, x \rangle \iff \|Q^{1/2}x\|^2 = 0$$

 $\iff Q^{1/2}x = 0$
 $\iff x = 0.$

2. Symmetry: Let $x, y \in \mathbb{R}^n$ be arbitrary vectors. We have that

$$\langle x, y \rangle_Q = x^\top Q y = y^\top Q^\top x = y^\top Q x = \langle y, x \rangle_Q.$$

3. Additivity: Let x, y, and z be arbitrary vectors in \mathbb{R}^n . We have that

$$\langle x + y, z \rangle_{Q} = (x + y)^{\top} Q z$$

$$= x^{\top} Q z + y^{\top} Q z$$

$$= \langle x, z \rangle_{Q} + \langle y, z \rangle_{Q}.$$

4. Homogeneity: Let $x, y \in \mathbb{R}^n$ be arbitrary vectors and $c \in \mathbb{R}$ be an arbitrary scalar. We have that

$$\langle cx, y \rangle_Q = (cx)^\top Qy$$

= $cx^\top Qy$
= $c\langle x, y \rangle_Q$.

Since $\langle \cdot, \cdot \rangle_O$ satisfies conditions 1 to 4, it is an inner product.

3.23 Consider the vector norm $\|\cdot\|_1$ on \mathbb{R}^n given by $\|x\|_1 = \sum_{i=1}^n |x_i|$, where $x = [x_1, \dots, x_n]^\top$. Define the norm $\|\cdot\|_1$ on \mathbb{R}^m similarly. Show that the matrix norm induced by these vector norms is given by

$$||A||_1 = \max_k \sum_{i=1}^m |a_{ik}|$$

where a_{ij} is the (i, j)th element of $A \in \mathbb{R}^{m \times n}$.

Proof. This induced matrix norm is defined by

$$||A||_1 = \max_{||x||_1=1} \{||Ax||_1\}.$$

For every x where $||x||_1 = 1$, we have by definition that

$$||Ax||_{1} = \sum_{i=1}^{m} \left| \sum_{k=1}^{n} a_{ik} x_{k} \right|$$

$$\leq \sum_{i=1}^{m} \sum_{k=1}^{n} |a_{ik}| |x_{k}|$$

$$\leq \sum_{k=1}^{m} |x_{k}| \sum_{i=1}^{m} |a_{ik}|$$

$$\leq \left(\max_{k} \sum_{i=1}^{m} |a_{ik}| \right) \sum_{k=1}^{m} |x_{k}|$$

$$= \max_{k} \sum_{i=1}^{m} |a_{ik}|$$

because $\sum_{k=1}^{m} |x_k| = ||x||_1 = 1$. So we have that

$$||A||_1 \le \max_k \sum_{i=1}^m |a_{ik}|.$$

We must now show that there exists some $y \in \mathbb{R}^m$ where $\|y\|_1 = 1$ such that $\|Ay\|_1 = \max_k \sum_{i=1}^m |a_{ik}|$. We choose j such that

$$\sum_{i=1}^{m} |a_{ij}| = \max_{k} \sum_{i=1}^{m} |a_{ik}|$$

where we define y to be $y_k = 1$ if k = j and $y_k = 0$ otherwise. Hence, it follows that

$$||Ay||_1 = \sum_{i=1}^m \left| \sum_{k=1}^n a_{ik} y_k \right| = \sum_{i=1}^m |a_{ij}| = \max_k \sum_{i=1}^m |a_{ik}|.$$

Hence, we have shown that $\|A\| = \max_k \sum_{i=1}^m a_{ik}$.