

### Modelo Probabilístico

Tópicos Especiais em Recuperação de Informações

Profa. Solange Pertile

21/09/15

Fontes:

Prof. Viviane Moreira (UFRGS) Prof. Jairo de Souza (UFJF)



### Relembrando Modelo Booleano...

- Consultas usando operadores booleanos
- Documentos casam ou não casam
- Boa para usuários especialistas com um entendimento preciso das suas necessidades e da coleção
- Boa para aplicações: aplicações podem facilmente processar milhares de resultados.
- Ruim para a maioria dos usuários
- Incapazes de escrever consultas Booleanas (ou são, mas acham muito trabalhoso)
- Não querem procurar em milhares de resultados
  - Principalmente quando se trata de busca na Web



### Relembrando Modelo Vetorial...

- √ Vector space model (VSM)
- ✓ Associa peso aos termos de indexação.
- ✓ Atribui escores aos documentos.
- ✓ Possibilita *ranking* dos resultados da consulta.



### Modelo Probabilístico

- ✓ Proposto em 1976 por Robertson e Sparck;
- ✓ Propõe uma solução ao problema de RI com base na teoria das probabilidades.



### Ideia Fundamental

- A partir de uma consulta do usuário, existe um conjunto de documentos que contém exatamente os documentos relevantes (resposta ideal) e nenhum outro;
- Dada uma descrição desse **conjunto resposta ideal**, poderíamos recuperar os documentos relevantes;
- Quais são essas propriedades dessa descrição? Resposta: não sabemos! Tudo que sabemos é que existem termos de indexação para caracterizar tais propriedades.



### Ideia Fundamental

- Problema:
  - Essas propriedades não são conhecidas na hora da consulta!
  - É necessário um esforço para conseguir uma estimativa inicial dessas propriedades.
- Essa estimativa inicial nos permite gerar uma descrição probabilística preliminar do conjunto resposta ideal, que pode ser utilizado para recuperar um primeiro conjunto de documentos.



### Ideia Fundamental

#### Por exemplo:

- O usuário pode ver os documentos recuperados e decidir quais são relevantes e quais não são;
- O sistema pode então utilizar essa informação para refinar a descrição do conjunto resposta ideal;
- Repetindo-se esse processo muitas vezes, espera-se que a descrição do conjunto resposta ideal fique mais precise;
- IMPORTANTE: é necessário estimar, no início, a descrição do conjunto resposta ideal.



## Ranqueamento

- Como calcular a medida de similaridade? Como criar uma função que irá ranquear os resultados?
  - d é um documento da coleção
  - *R* representa que o documento é relevante
  - NR representa que o documento não é relevante
  - Os documentos serão ranqueados de acordo com a estimativa de probabilidade de que eles sejam relevantes à consulta

$$P(R \mid d,q)$$

d é relevante se  $P(R \mid d, q) > P(NR \mid d, q)$ 



## Ranqueamento

• De maneira mais específica, precisamos saber como as <u>estatísticas que</u> <u>podemos calcular</u> influenciam na relevância do documento



tf, df, tamanho do doc,etc.

Como computar estas probabilidades??



## Ranqueamento

 A medida usada para ranquear os documentos é o Retrieval Status Value (RSV)/Valor do Estado da Recuperação.



Para cada termo i, como calcular  $c_i$ ?



## Independência binária

- Este é o modelo tradicionalmente usado com o Principio de ranking probabilistico.
  - Binary quer dizer booleano, i.e. documentos são representados como vetores de termos cujas incidências são representadas por 0 ou 1. É possível que mais de um documento tenha portanto o mesmo vetor
  - Independence significa que os termos ocorrem nos documentos de maneira independente; i.e. o fato de um termo aparecer em um documento não tem nenhum impacto sobre a ocorrência de outros termos no documento.

• Para cada termo i consultar a tabela de contingência:

| Docs                    | Relevante | Não relevante          | Total             |
|-------------------------|-----------|------------------------|-------------------|
| Termo presente $x_i$ =1 | S         | df <sub>i</sub> -s     | df <sub>i</sub>   |
| Termo ausente $x_i$ =0  | S-s       | N-df <sub>i</sub> -S+s | N-df <sub>i</sub> |
| Total                   | S         | N-S                    | N                 |

• Assumindo que:  $p_i=s/S$  e  $u_i=(df_i-s)/(N-S)$ 

$$c_i = \log \frac{s/(S-s)}{(df_i - s)/(N - df_i - S + s)}$$



Para cada termo i consultar a tabela de contingência:

| Docs                    | Relevante | Não relevante          | Total             |
|-------------------------|-----------|------------------------|-------------------|
| Termo presente $x_i$ =1 | s         | df <sub>i</sub> -s     | df <sub>i</sub>   |
| Termo ausente $x_i$ =0  | S-s       | N-df <sub>i</sub> -S+s | N-df <sub>i</sub> |
| Total                   | S         | N-S                    | N                 |

• Assumindo que:  $p_i = s/S$  e  $u_i = (df_i - s)/(N-S)$ 

Soma-se 0.5 a cada termo na presença de incerteza

$$c_i = \log \frac{(s+0.5)/(S-s+0.5)}{(df_i-s+0.5)/(N-df_i-S+s+0.5)}$$



#### **Exemplo:**

### relevantes





|                |                |                |          |               | <u> </u>            |        |
|----------------|----------------|----------------|----------|---------------|---------------------|--------|
| Docs<br>Termos | Tom e<br>Jerry | Super<br>Mouse | Garfield | Scooby<br>Doo | PiuPiu e<br>Frajola | Mônica |
| Cachorro       | 1              | 0              | 1        | 1             | 0                   | 1      |
| Casa           | 1              | 0              | 1        | 0             | 1                   | 1      |
| Gato           | 1              | 0              | 1        | 0             | 1                   | 0      |
| Menino         | 0              | 0              | 0        | 1             | 0                   | 1      |
| Passarinho     | 0              | 0              | 0        | 0             | 1                   | 0      |
| Rato           | 1              | 1              | 0        | 0             | 0                   | 0      |

#### **Consulta:** cachorro gato rato

$$c_i = \log \frac{(s+0.5)/(S-s+0.5)}{(df_i - s + 0.5)/(N - df_i - S + s + 0.5)}$$

| Termo    | c <sub>i</sub> |
|----------|----------------|
| Cachorro | - 0.3679       |
| Gato     | 1.066          |
| Rato     | -0.6989        |



#### **Exemplo:**

### relevantes





|                |                |                |          |               | <b>—</b> .          |        |
|----------------|----------------|----------------|----------|---------------|---------------------|--------|
| Docs<br>Termos | Tom e<br>Jerry | Super<br>Mouse | Garfield | Scooby<br>Doo | PiuPiu e<br>Frajola | Mônica |
| Cachorro       | 1              | 0              | 1        | 1             | 0                   | 1      |
| Casa           | 1              | 0              | 1        | 0             | 1                   | 1      |
| Gato           | 1              | 0              | 1        | 0             | 1                   | 0      |
| Menino         | 0              | 0              | 0        | 1             | 0                   | 1      |
| Passarinho     | 0              | 0              | 0        | 0             | 1                   | 0      |
| Rato           | 1              | 1              | 0        | 0             | 0                   | 0      |

## Consulta: cachorro gato rato

$$c_i = \log \frac{(s+0.5)/(S-s+0.5)}{(df_i - s + 0.5)/(N - df_i - S + s + 0.5)}$$

$$c_{cachorro} = \log \frac{(1+0.5)/(2-1+0.5)}{(4-1+0.5)/(6-4-2+1+0.5)} = \log \frac{1}{2,33} = -0.3679$$

$$c_{gato} = \log \frac{(2+0.5)/(2-2+0.5)}{(3-2+0.5)/(6-3-2+2+0.5)} = \log \frac{5}{0,4285} = 1,0669$$

$$c_{rato} = \log \frac{(0+0.5)/(2-0+0.5)}{(2-0+0.5)/(6-2-2+0+0.5)} = \log \frac{0.2}{1} = -\underline{0.6989}$$



#### **Exemplo:**

### relevantes





| Docs<br>Termos | Tom e<br>Jerry | Super<br>Mouse | Garfield | Scooby<br>Doo | PiuPiu e<br>Frajola | Mônica |
|----------------|----------------|----------------|----------|---------------|---------------------|--------|
| Cachorro       | 1              | 0              | 1        | 1             | 0                   | 1      |
| Casa           | 1              | 0              | 1        | 0             | 1                   | 1      |
| Gato           | 1              | 0              | 1        | 0             | 1                   | 0      |
| Menino         | 0              | 0              | 0        | 1             | 0                   | 1      |
| Passarinho     | 0              | 0              | 0        | 0             | 1                   | 0      |
| Rato           | 1              | 1              | 0        | 0             | 0                   | 0      |

#### Consulta: cachorro gato rato

$$c_i = \log \frac{s/(S-s)}{(df_i - s)/(N - df_i - S + s)}$$

$$c_{cachorro} = \log \frac{(1+0.5)/(2-1+0.5)}{(4-1+0.5)/(6-4-2+1+0.5)} = \log \frac{1}{2,33} = -0.3679$$

$$c_{gato} = \log \frac{(2+0.5)/(2-2+0.5)}{(3-2+0.5)/(6-3-2+2+0.5)} = \log \frac{5}{0,4285} = 1,0669$$

$$c_{rato} = \log \frac{(0+0.5)/(2-0+0.5)}{(2-0+0.5)/(6-2-2+0+0.5)} = \log \frac{0.2}{1} = -\underline{0.6989}$$

#### **Termo** $\mathbf{C}_{i}$ **Cachorro** - 0.3679 Gato 1.066 Rato -0.6989

Rangue dos documentos???



# Ranqueamento – Peso dos documentos

| Termo    | C <sub>i</sub> |
|----------|----------------|
| Cachorro | - 0.3679       |
| Gato     | 1.0669         |
| Rato     | -0.6989        |

$$RSV = \sum_{x_i = q_i = 1} c_i$$

| Doc              | RSV                                                       | Rank |
|------------------|-----------------------------------------------------------|------|
| Tom e Jerry      | - 0.3679(cachorro) + 1.0669(gato) - 0.6989(rato) = 0.0001 |      |
| Super Mouse      | - 0.6989(rato) = <u>-0.6989</u>                           |      |
| Garfield         | - 0.3679(cachorro) + 1.0669(gato) = <u>0.6990</u>         |      |
| Scooby Doo       | - 0.3679(cachorro) = <u>- 0.3679</u>                      |      |
| PiuPiu e Frajola | 1.0669(gato) = <u>1.0669</u>                              |      |
| Mônica           | - 0.3679(cachorro) = <u>- 0.3679</u>                      |      |



# Ranqueamento – Peso dos documentos

| Termo    | C <sub>i</sub>  |
|----------|-----------------|
| Cachorro | <i>- 0.3679</i> |
| Gato     | 1.0669          |
| Rato     | -0.6989         |

$$RSV = \sum_{x_i = q_i = 1} c_i$$

| Doc              | RSV                                                       | Rank |
|------------------|-----------------------------------------------------------|------|
| Tom e Jerry      | - 0.3679(cachorro) + 1.0669(gato) - 0.6989(rato) = 0.0001 | 3°   |
| Super Mouse      | - 0.6989(rato) = <u>-0.6989</u>                           | 6°   |
| Garfield         | - 0.3679(cachorro) + 1.0669(gato) = 0.6990                | 2°   |
| Scooby Doo       | - 0.3679(cachorro) = <u>- 0.3679</u>                      | 5°   |
| PiuPiu e Frajola | 1.0669(gato) = <u>1.0669</u>                              | 1°   |
| Mônica           | - 0.3679(cachorro) = <u>- 0.3679</u>                      | 4°   |

## Questões importantes

- Como saber quantos documentos relevantes existem e quais são eles?
  - Pode-se fazer uma estimativa inicial
  - Exemplo:  $p_i = 0.5 e u_i = df_t / N$
  - Ou podemos fazer uma recuperação inicial de acordo com o modelo vetorial e supor que os top k documentos são relevantes
  - O processo pode ser iterativo (com ou sem a interferência do usuário).
  - Neste caso, a cada iteração as estimativas ficam mais precisas.



## Vantagens x Desvantagens

### Vantagens

• Os documentos são ranqueados de acordo com sua probabilidade de serem relevantes, com base na informação disponível ao sistema.

### Desvantagens

- Relevância de um documento é afetada por diversos fatores externos, não somente na informação disponível ao sistema;
- Necessidade de estimar a separação inicial dos documentos em conjuntos relevantes e não relevantes;
- Não leva em consideração a frequência na qual um termo de indexação ocorre em um documento;
- Falta de normalização pelo tamanho dos documentos.



## Comparação entre os modelo

- O modelo booleano é considerado como o mais fraco
- Há controvérsias quanto ao melhor modelo
- Croft realizou experimentos e concluiu que o modelo probabilístico é melhor
- Logo após, Salton & Buckley realizaram experimentos e concluíram que o modelo vetorial deve ser melhor para coleções gerais.