AL/Autovalori/2020-07-09

1. Autovalori

(a) Determinare il valore del parametro b in modo tale che la matrice

$$\begin{pmatrix}
0 & b & 7 & 6 \\
-3 & 4 & 2 & 1 \\
0 & 0 & 3 & 5 \\
0 & 0 & 0 & 3
\end{pmatrix}$$

abbia esattemente 3 autovalori uguali.

Soluzione: $b = \boxed{1 \quad \checkmark}$

(b) Stabilire se con il valore di b trovato sopra la matrice è diagonalizzabile.

Risposta: Sì No ✓

2. Autovalori

(a) Determinare il valore del parametro b in modo tale che la matrice

$$\begin{pmatrix}
0 & -3 & 5 & 8 \\
b & 4 & 1 & -1 \\
0 & 0 & 1 & 5 \\
0 & 0 & 0 & 1
\end{pmatrix}$$

abbia esattemente 3 autovalori uguali.

Soluzione: $b = \boxed{1 \quad \checkmark}$

(b) Stabilire se con il valore di b trovato sopra la matrice è diagonalizzabile.

Risposta: Sì No ✓

AL/Indipendenza/2020-07-09

1. Indipendenza

Stabilire se per i seguenti valori del parametro a le matrici

$$\begin{pmatrix} 3 & 1 \\ 2 & 1 \end{pmatrix}, \quad \begin{pmatrix} 1 & 2 \\ 0 & -1 \end{pmatrix}, \quad \begin{pmatrix} a & -1 \\ -2 & 0 \end{pmatrix}$$

sono linearmente indipendenti nello spazio vettoriale delle matrici 2×2 a coefficienti reali.

(a) Per
$$a = 0$$
? Sì \checkmark No

(b) Per
$$a = -1$$
? Sì \checkmark No

(c) Per nessun valore di
$$a$$
? Sì No \checkmark

(d) Per ogni valore di
$$a$$
? Sì \checkmark No

2. Indipendenza

Stabilire se per i seguenti valori del parametro a le matrici

$$\begin{pmatrix} 1 & 2 \\ 1 & 3 \end{pmatrix}, \quad \begin{pmatrix} -1 & 0 \\ 2 & 1 \end{pmatrix}, \quad \begin{pmatrix} 0 & -2 \\ -1 & a \end{pmatrix}$$

sono linearmente dipendenti nello spazio vettoriale delle matrici 2×2 a coefficienti reali.

(a) Per
$$a = 1$$
? Sì No \checkmark

(b) Per
$$a = -2$$
? Sì No \checkmark

(c) Per nessun valore di
$$a$$
? Sì \checkmark No

(d) Per ogni valore di
$$a$$
? Sì No \checkmark

AL/Ortogonale/2020-07-09

1. Ortogonale

Si consideri la matrice 3×2

$$A = \begin{pmatrix} 1 & 1 \\ 0 & -4 \\ 1 & -1 \end{pmatrix}.$$

Trovare un vettore

$$v = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

in \mathbb{R}^3 con le proprietà:

- (a) $x_1 \le x_2 \le x_3$;
- (b) la norma di v è uguale a 3;
- (c) v è ortogonale allo spazio delle colonne di A.

Soluzione:
$$x_1 = \boxed{-2}$$
, $x_2 = \boxed{-1}$, $x_3 = \boxed{2}$

2. Ortogonale

Si consideri la matrice 3×2

$$A = \begin{pmatrix} 1 & 2 \\ 0 & 4 \\ 1 & 0 \end{pmatrix}.$$

Trovare un vettore

$$v = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

in \mathbb{R}^3 con le proprietà:

- (a) $x_1 \le x_2 \le x_3$;
- (b) la norma di v è uguale a 3;
- (c) v è ortogonale allo spazio delle colonne di A.

Soluzione:
$$x_1 = \boxed{-2}$$
, $x_2 = \boxed{1}$, $x_3 = \boxed{2}$

MD/Counting/2020-07-09

1. Counting

Una targa automobilistica è composta da due lettere dell'alfabeto inglese (26 lettere), sequite da tre cifre da 0 a 9, e poi ancora da due lettere. Sia n il numero delle targhe che non hanno lettere o numeri adiacenti uguali.

- (a) Calcolare il massimo esponente a tale che 5^a divide n.
- (b) Calcolare il massimo esponente b tale che 3^b divide n.

Soluzione: $a = \begin{bmatrix} 5 & \checkmark \end{bmatrix}, b = \begin{bmatrix} 4 & \checkmark \end{bmatrix}$

2. Counting

Una targa automobilistica è composta da due lettere dell'alfabeto inglese (26 lettere), sequite da tre cifre da 0 a 9, e poi ancora da due lettere. Sia n il numero delle targhe che non hanno lettere o numeri adiacenti uguali.

- (a) Calcolare il massimo esponente a tale che 2^a divide n.
- (b) Calcolare il massimo esponente b tale che 3^b divide n.

Soluzione: $a = \boxed{3} \quad \checkmark$, $b = \boxed{4} \quad \checkmark$

MD/Congruenza/2020-07-09

1. Congruenza

Risolvere il sistema di congruenze

$$\begin{cases} 3^x \equiv 8^{72} \pmod{11} \\ 5x \equiv 6 \pmod{12} \end{cases}$$

Scrivere la risposta nella forma $x \equiv a \pmod{m}$ con $0 \le a < m$.

Soluzione: $x \equiv \boxed{42 \checkmark \pmod{60 \checkmark}}$

2. Congruenza

Risolvere il sistema di congruenze

$$\begin{cases} 5^x \equiv 6^{52} \pmod{11} \\ 7x \equiv 1 \pmod{12} \end{cases}$$

Scrivere la risposta nella forma $x \equiv a \pmod{m}$ con $0 \le a < m$.

Soluzione:
$$x \equiv \boxed{7 \checkmark \pmod{40 \checkmark}}$$

3. Congruenza

Risolvere il sistema di congruenze

$$\begin{cases} 3^x \equiv 5^{71} \pmod{17} \\ 5x \equiv 2 \pmod{9} \end{cases}$$

Scrivere la risposta nella forma $x \equiv a \pmod{m}$ con $0 \le a < m$.

Soluzione:
$$x \equiv \boxed{67 \checkmark \pmod{144 \checkmark}}$$

MD/Ricorrenza/2020-07-09

1. Ricorrenza

Consideriamo una successione di interi $(a_n)_{n\in\mathbb{N}}$ che verifica la ricorrenza lineare $a_{n+2}=3a_{n+1}-2a_n$. Si scelgano i valori iniziali a_0 ed a_1 in modo tale che $a_3=24$ e $a_4=48$.

Soluzione:
$$a_0 = \boxed{3} \quad \checkmark$$
, $a_1 = \boxed{6} \quad \checkmark$

2. Ricorrenza

Consideriamo una successione di interi $(a_n)_{n\in\mathbb{N}}$ che verifica la ricorrenza lineare $a_{n+2}=4a_{n+1}-3a_n$. Si scelgano i valori iniziali a_0 ed a_1 in modo tale che $a_2=11$ e $a_3=29$.

Soluzione:
$$a_0 = \boxed{3} \quad \checkmark$$
, $a_1 = \boxed{5} \quad \checkmark$

MD/Polinomi/2020-07-09

1. Polinomi

Trovare un parametro intero a tale che il polinomio $x^6 + ax^3 - 4$ sia divisibile per $x^3 + 4$.

Soluzione: $a = \boxed{3}$

2. Polinomi

Trovare un parametro intero a tale che il polinomio $x^6 + ax^3 - 8$ sia divisibile per $x^3 + 4$.

Soluzione: $a = \boxed{2} \checkmark$

3. Polinomi

Trovare un parametro intero a tale che il polinomio $x^6 + x^3 + a$ sia divisibile per $x^3 + 4$.

Soluzione: $a = \boxed{-12} \quad \checkmark$