Recitation 5

Seung-hun Lee

Columbia University

Sampling distribution

• The estimates for the $\hat{\beta}_j$, can be obtained in a similar way in which we have obtained the OLS estimates for the single variable version.

$$\min_{\{\beta_0,\beta_1,\beta_2\}} \sum_{i=1}^n [Y_i - \beta_0 - \beta_1 X_{1i} - \beta_2 X_{2i}]^2$$

 After some more amount of algebra (than the single variable case), the result we get is the following

$$\begin{array}{ll} \hat{\beta}_{0} = & \bar{Y} - \hat{\bar{\beta}}_{1} \bar{X}_{1} - \hat{\beta}_{2} \bar{X}_{2} \\ \hat{\beta}_{1} = & \frac{\sum_{i=1}^{n} (X_{1i} - \bar{X}_{1})(Y_{i} - \bar{Y}) \sum_{i=1}^{n} (X_{2i} - \bar{X}_{2})^{2} - \sum_{i=1}^{n} (X_{2i} - \bar{X}_{2})(Y_{i} - \bar{Y}) \sum_{i=1}^{n} (X_{1i} - \bar{X}_{1})(X_{2i} - \bar{X}_{2})}{\sum_{i=1}^{n} (X_{1i} - \bar{X}_{1})^{2} \sum_{i=1}^{n} (X_{2i} - \bar{X}_{2})^{2} - [\sum_{i=1}^{n} (X_{1i} - \bar{X}_{1})(X_{2i} - \bar{X}_{2})]^{2}} \\ \hat{\beta}_{2} = & \frac{\sum_{i=1}^{n} (X_{2i} - \bar{X}_{2})(Y_{i} - \bar{Y}) \sum_{i=1}^{n} (X_{1i} - \bar{X}_{1})^{2} - \sum_{i=1}^{n} (X_{1i} - \bar{X}_{1})(Y_{i} - \bar{Y}) \sum_{i=1}^{n} (X_{1i} - \bar{X}_{1})(X_{2i} - \bar{X}_{2})}{\sum_{i=1}^{n} (X_{1i} - \bar{X}_{1})^{2} \sum_{i=1}^{n} (X_{2i} - \bar{X}_{2})^{2} - [\sum_{i=1}^{n} (X_{1i} - \bar{X}_{1})(X_{2i} - \bar{X}_{2})]^{2}} \end{array}$$

• What matters at this point is how we should **interpret** these coefficients.

Multicollinearity

- We are quite likely to end up including independent variables that are highly correlated with each other. There are two
- We say two variables X_1 and X_2 are **perfectly multicollinear** if X_1 is in an exact linear relationship of some sort with X_2 .
- Any multicollinearities that are not in exact linear relationship is referred to as imperfect multicollinearity.

Multicollinearity

- Assume that $X_2 = cX_1$ for some constant c: Then we have $(X_{2i} \bar{X}_2) = c(X_{1i} \bar{X}_1)$. Then $\hat{\beta}_1$ changes to $\frac{0}{0}$
- **Dummy variable trap**: Say that you have the dummy variable for females and males. Let each of them be X_{1i} and X_{2i} with $X_{2i} = 1 X_{1i}$. Then the regression can be written as

$$Y_{i} = \beta_{0} + \beta_{1}X_{1i} + \beta_{2}X_{2i} + u_{i} \iff Y_{i} = \beta_{0} + \beta_{1}X_{1i} + \beta_{2}(1 - X_{1i}) + u_{i}$$

$$\iff Y_{i} = \beta_{0} + \beta_{2} + (\beta_{1} - \beta_{2})X_{1i} + u_{i}$$

Therefore, by including both X_{1i} and X_{2i} in the same regression, the X_{2i} vanishes from the equation. This is why when you have dummy variables for all categories in the observation, **one of them must be left out.**

Seung-hun Lee Recitation 5 4 / 15

Joint hypothesis tests (Why it is not straightforward)

• Suppose that you are running a two-sided test with 5 independent variables and significance level $\alpha=5\%$ under the null hypothesis

$$H_0: \beta_1 = ...\beta_5 = 0$$

- You reject the null hypothesis when $|t_i| \ge 1.96$ with probability 0.05.
- Now assume that each test statics are independent. Then the probability of incorrectly rejecting the null hypothesis using this approach is

$$\begin{aligned} \Pr(|t_1| > 1.96 \cup ... \cup |t_5| > 1.96) &= 1 - \Pr(|t_1| \le 1.96 \cap ... \cap |t_1| \le 1.96) \\ \text{(\because Independence of t_i's)} &= 1 - \Pr(|t_1| \le 1.96) \times ... \times \Pr(|t_5| \le 1.96) \\ &= 1 - (0.95)^5 \\ &= 0.2262 \end{aligned}$$

• This means that the rejection rate under the null is not 5% but 22% percent - we end up rejecting the null hypothesis more than we have to.

F-test

- This is a test where all parts of the joint hypothesis can be tested at once. It also has mechanism for correcting the correlation between the t-test statistics.
- It ultimately allows us to correctly set the significance level even for the multiple testing case.
- The usual joint hypothesis test for the regression with k variables (not including the constant term) is

$$H_0: \beta_1 = ... = \beta_k = 0, \ H_1: \neg H_0$$

where H_1 refers to the case where there is a nonzero element in any one of β_1 to β_k .

Note that the default F-test null hypothesis for STATA is as above

Other tests

- Suppose that instead of β_1 and β_2 being zero, we are just interested in whether they are equal.
- The F-test can also be used for testing this hypothesis. The setup of the hypothesis would be

$$H_0: \beta_1 = \beta_2 H_1: \beta_1 \neq \beta_2$$

• With this, you can answer various types of tests (e.g. is $\beta_1 + \beta_2 = 100$?)

Recitation 5 7/15

Interpreting the results

 Below are the results of a sample regression on multiple variables. I regress birthweight on smoker, alcohol, Nprevist (number of prenatal visits to doctor).

. regress birt	thweight smoke	r alcohol	nprevist				
Source	SS	df	MS	Nun	ber of obs	=	3,000
-				- F(3	, 2996)	=	78.47
Model	76610831.2	3	25536943.7	7 Pro	b > F	=	0.0000
Residual	975009173	2,996	325436.974	1 R-s	quared	=	0.0729
				– Adj	R-squared	=	0.0719
Total	1.0516e+09	2,999	350656.887	7 Roc	t MSE	=	570.47
birthweight	Coef.	Std. Err.	t	P> t	[95% Co	nf.	Interval]
smoker	-217.5801	26.6796	-8.16	0.000	-269.892	3	-165.2679
alcohol	-30.49129	76.23405	-0.40	0.689	-179.967	7	118.9851
nprevist	34.06991	2.854994	11.93	0.000	28.4719	7	39.66786
_cons	3051.249	34.01596	89.70	0.000	2984.55	2	3117.946

 You can see that running multivariate regression is similar in terms of the techniques involved.

Interpreting the results

 Additional complication rises from interpreting the goodness of fit. In addition to R², we now get the adjusted R², which is defined as

$$\bar{R}^2 = 1 - \frac{n-1}{n-k-1} \frac{\text{RSS}}{\text{TSS}}$$

- Since we are assuming that $k \ge 1$, adjusted R^2 is smaller than the R^2 .
- As we include more variables, the $\frac{n-1}{n-k-1}$ increases, leading to further decrease in adjusted R^2 .
- \bullet However, if the new variables are very relevent, $\frac{RSS}{TSS}$ decreases.
- This reduces the gap between R^2 and the adjusted R^2 . If the adjusted R^2 do not decrease drastically, it is a sign that we are adding a relevant variable.

Seung-hun Lee Recitation 5 9 / 15

Deriving The *F*-statistic

One uses t-statistics from individual hypotheses. This is calculated as

$$\frac{1}{2} \left(\frac{t_1^2 + t_2^2 - 2\hat{\rho}_{t_1, t_2} t_1 t_2}{1 - \hat{\rho}_{t_1, t_2}^2} \right)$$

- Another, which is useful for calculating $H_0: \beta_1 = ... = \beta_q = 0$ hypothesis, uses R^2 from the 'unrestricted' and 'restricted' regressions.
 - Assume the following setup

Restricted:
$$Y_i = \beta_0 + 0X_{1,i} + ... + 0X_{q,i} + \beta_{q+1}X_{q+1,i} + ... + \beta_k X_{k,i} + u_i$$

Unrestricted: $Y_i = \beta_0 + \beta_1 X_{1,i} + ... + \beta_q X_{q,i} + \beta_{q+1} X_{q+1,i} + ... + \beta_k X_{k,i} + u_i$

- Restricted regression assumes that H_0 is true and then only optimizes with respect to $\beta_{a+1}, ..., \beta_k$.
- Unrestricted regression does not assume that H₀ is true and optimizes with respect to all slope coefficients.

Seung-hun Lee Recitation 5

Deriving The F-statistic

• We use R^2 from these two regressions.

$$\frac{(R_{\rm Unrestricted}^2 - R_{\rm Restricted}^2)/q}{(1 - R_{\rm Unrestricted}^2)/(n - k - 1)}$$

- k: number of independent variables (not counting intercept)
- q is the number of restrictions.
- Since unrestricted models allows roles for X₁, ..., X_q variables, they have higher R² (Restricted: They should have no role)
- \bullet Another: Using $\textit{R}^{2}_{\text{Restricted}} = 1 \frac{\textit{RSS}_{\text{Restricted}}}{\textit{TSS}},$ we can write

$$\frac{(RSS_{\text{Restricted}} - RSS_{\text{Unrestricted}})/q}{(RSS_{\text{Unrestricted}})/(n-k-1)}$$

Seung-hun Lee Recitation 5 11 / 15

Control variables and conditional mean independence

Assume that

True:
$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 Z_i + u_i$$

Mistake: $Y_i = \beta_0 + \beta_1 X_i + u_i^*$
Sample: $Y_i = \hat{\beta}_0 + \hat{\beta}_1 X_i + \hat{u}_i$

• If we end up with an omitted variable bias by not including Z_i , Then, we have a problem.

$$E[u_i^*|X_i] = E[\beta_2 Z_i + u_i|X_i]$$

= $\beta_2 Z_i + E[u_i|X_i] \neq 0$

• Assumption 2 from the classical linear regression model (refer to Recitation 3), fails and $\hat{\beta}_1$ without inclusion of Z_i is biased

Seung-hun Lee Recitation 5 12 / 15

Control variables and conditional mean independence

- We can find W_i variable correlated with Z_i and put it in the regression
- By doing so, we achieve three things
 - The u_i term is no longer correlated with X_i ($cov(X_i, u_i) = 0$)
 - For given value of W_i, then the variable of interest X_i is no longer correlated with the omitted determinant of Y_i
 - For given W_i , X_i acts as if they are randomly assigned
- Variable W_i that achieves this is called an effective control variable.
- In this case, we say that the conditional mean independence hold,

$$E[u_i|X_i,W_i]=E[u_i|W_i]$$

• Note that W_i itself does not need to have causal relationship with Y_i

Seung-hun Lee Recitation 5

Nonlinear regressions

- Not everything in world is linearly related
- For correlations like this, nonlinear regressors are necessary
- When incorporating such regressors, the interpretation of each coefficient becomes trickier.
- Quadratic relations: Think about wage and age wages increase with age, but (usually) at a decreasing pace

$$W = \beta_0 + \beta_1 X + \beta_2 X^2 + u$$

The marginal effect of X on W can be written as

$$\frac{\partial W}{\partial X} = \beta_1 + 2\beta_2 X$$

Seung-hun Lee Recitation 5 14 / 15

Nonlinear regressions

In a linear regressor only format, the marginal effect is

$$W = \beta_0 + \beta_1 X + u$$
$$\frac{\partial W}{\partial X} = \beta_1$$

- The difference is that with quadratic terms, we can express cases where marginal changes to W with respect to X is not a constant, but depends on some value of X
 - In the above case, if $\beta_2 > 0$, marginal increase in W increases with X (and vice versa)

Seung-hun Lee Recitation 5