1

我们先计算所有状态的 ε -闭包:

- 1. $E(A) = \{A, B\}$, 因为 A 通过 ε 转移可以到达 B.
- 2. $E(B) = \{B\}$
- 3. $E(C) = \{A, B, C\}$, 因为 C 通过 ε 转移可以到达 A, 而 A 又通过 ε 转移可以到达 B.

由此, 我们可以定义新的状态转移函数 δ' :

- 1. 从 $E(A) = \{A, B\}$ 出发, 对于输入符号 a, 只能去到中间状态 C, 因此最后可以到达的目的地为 $E(C) = \{A, B, C\}$; 对于输入符号 b, 哪里都去不了; 对于输入符号 c, 可以去到 A 和 C, 因此最后可以到达的目的地为 $E(A) \cup E(C) = \{A, B, C\}$.
- 2. 从 $E(B) = \{B\}$ 出发, 无论输入什么符号, 都哪里都去不了.
- 3. 从 $E(C) = \{A, B, C\}$ 出发, 对于输入符号 a, 只能去到中间状态 C, 因此最后可以到达的目的地为 $E(C) = \{A, B, C\}$; 对于输入符号 b, 可以去到 A 和 B, 因此最后可以到达的目的地为 $E(A) \cup E(B) = \{A, B\}$; 对于输入符号 c, 可以去到 B 和 C, 因此最后可以到达的目的地为 $E(B) \cup E(C) = \{A, B, C\}$.

所以新的不含 ε 转移的 NFA 如下:

