SIEMENS 2¹⁰⁶

Vannes droites à 2 voies VDN2...

Vannes d'équerre VEN2...

Vannes d'équerre inverse VUN2...

Vannes de radiateur

VDN2... VEN2... VUN2...

Série NF, pour installations de chauffage bitube

- Boîtier en laiton, nickelé
- DN10, DN15 et DN20 (VDN2..., VEN2...)
- Préréglage intégré des valeurs k_v
- Raccords taraudés et filetés Rp/R selon ISO 7/1
- Bouton de réglage manuel / capot de protection fourni
- Peuvent être équipés de têtes thermostatiques RTN..., de servomoteurs électriques SSA... ou SSP..., de servomoteurs thermiques STA..., STS61..., ou de régulateurs électroniques de radiateur REH...

Domaines d'application

Les vannes thermostatiques sont utilisées dans des installations de chauffage à eau chaude, pour la régulation et la limitation manuelles de la température ambiante de certaines pièces ou zones. Elles fonctionnent avec des régulateurs thermostatiques de corps de chauffe ou des servomoteurs électriques. Il est conseillé de les utiliser en principe dans toutes les pièces, en particulier celles qui bénéficient d'apports thermiques ou qui ont un niveau de température variable.

Références	Références	Références	DN	Valeur k _v [m ³ /h)	Valeur k _v [m ³ /h)		
Passage droit	Equerre	Equerre inverse		Plage de réglage	pour bande P = 2 K		
VDN210	VEN210			0,09 0,63	0.40		
		VUN210	10	0,14 0,60	0,43		
VDN215	VEN215			0,10 0,89			
		VUN215	15	0,13 0,77	0,52		
VDN220	VEN220		20	0,31 1,41	0,71		

Commande A la commande, préciser le quantité, la désignation et la référence de chaque pièce.

Exemple: 2 vannes à 2 voies VDN220

Livraison Les vannes et les accessoires sont livrés sous emballage individuel.

Combinaisons d'appareils

Produit	Références	Fiche		
Régulateurs thermostatiques	RTN	N2111		
Régulateurs électroniques	REH90	N2131		
Servomoteurs électriques	SSA31 / SSA61 / SSA81	N4893		
Servomoteurs électriques	SSP	N4864		
Servomoteurs électrothermiques	STA21 / STA71	N4877		
Servomoteurs électrothermiques	STS61 1)	N4880		

^{*)} Comportement de réglage quasi progressif, déconseillé pour un fonctionnement parallèle

Exécution / Technique

Le débit peut être préréglé par un diaphragme, la totalité de la course étant disponible pour chaque réglage. Le préréglage est effectué à l'aide du capot de protection.

- Bouton de réglage manuel / Capot de protection
- 2 Presse-étoupe
- 3 Tête de vanne
- 4 Joint torique
- 5 Ressort de rappel
- 6 Diaphragme de réglage

Caractéristiques et avantages

- Les vannes sont construites conformément à la norme européenne EN215.
- Le presse-étoupe peut être changé même lorsque l'installation de chauffage est en charge. Cette opération ne nécessite aucun appareil de montage.

AVN1

Presse-étoupe

ATN2

Protection antivandalisme

ATN3

Bouton de réglage manuel (RAL9016)

AVN...

Raccords à vis à bague de serrage

Indications pour l'ingénierie

Le chiffre repère du préréglage est indiqué dans la tableau des valeurs k_v (voir page 4) ou dans les diagrammes de perte de charge (voir pages 5 – 7).

1. Détermination du débit volumique \dot{V}_{100}

$$\dot{V}_{100} = \frac{Q_{100}}{1,163 \times \Delta T \times f_1} \text{ [m}^3/\text{h]}$$

 $Q_{100} = Demande de chaleur [kW]$ $\Delta T = Ecart de température [K]$ 1,163 = Constante pour l'eau

= Facteur de correction = 1 pour l'eau

- 2. Détermination de la pression différentielle Δp_{v100} sur la vanne entièrement ouverte Dans la plupart des installations, on sait qu'il suffit d'une pression différentielle Δp_{v100} de 0,05 à 0,2 bar.
- 3. Calcul du débit k_v

$$k_{v} = \frac{\dot{V}_{100}}{\sqrt{\Delta p_{v100}}} \text{ [m}^{3}/\text{h]}$$

 $\Delta p_{v \, 100} = perte \, de \, charge \, sur \, la \, vanne \, [bar]$

Exemple:

Demande de chaleur	Q ₁₀₀	=1,2 kW	
Ecart de température	ΔΤ	= 20 K	
Débit volumique	$\dot{V}_{100} = \frac{1.2}{1.163 \times 20}$	$= 0.052 \text{ m}^3/\text{h}$	
	1,163 × 20	= 52 l/h	
Perte de charge désirée sur la vanne	Δp _{v100}	= 0,1 bar	
Débit	$k_{V} = \frac{0.052}{\sqrt{0.1}}$	= 0,17 m ³ /h	

Solution

D'après le diagramme (voir "Diagrammes de perte de charge" ou tableau des valeurs k_v), une vanne VDN210 3/8" a besoin du préréglage 2.

Conseils

- Un fonctionnement silencieux est assuré si la pompe ne fournit pas plus de pression qu'il n'en faut pour faire circuler le débit d'eau nécessaire.
- Pour empêcher l'encrassement de la vanne, il est conseillé de monter un filtre dans l'installation.

Valeurs k_v

Les valeurs k_v indiquent le débit d'eau \dot{V}_{100} en m^3/h pour une perte de charge Δp_{v100} de 1 bar sur la vanne.

Valeurs k_v [m³/h] pour les différentes positions de préréglage

Plage de réglage par servo- moteurs SSA, STA et STS61	✓	✓	✓	✓	✓	✓	
Plage de réglage avec régulateurs thermostatiques RTN	✓	✓	✓	✓	✓		✓
Repères de préréglage	1	2	3	4	5	N	N ¹⁾
VDN210 / VEN210	0,09	0,18	0,26	0,33	0,48	0,63	0,43
VDN215 / VEN215	0,10	0,20	0,31	0,45	0,69	0,89	0,52
VDN220 / VEN220	0,31	0,41	0,54	0,83	0,91	1,41	0,71
VUN210	0,14	0,28	0,38	0,49	0,53	0,60	0,43
VUN215	0,13	0,23	0,34	0,52	0,66	0,77	0,50

¹⁾ Valeur k_V pour une bande P de 2 K

Réglage des valeurs k_{ν}

Les valeurs k_v des vannes de radiateur peuvent être réglées sur la tête de vanne en tournant de 180° le capot de protection dans 5 positions + N (ouverture complète).

VDN210 VEN210

VDN215 VEN215

VDN220 VEN220

VUN210

VUN215

Remarques

Montage

- Les instructions de montage sont imprimées sur l'emballage de l'appareil.
- Au départ de l'usine, la vanne est préréglée sur N (entièrement ouverte).
- Pour un bon fonctionnement des régulateurs thermostatiques et des servomoteurs électroniques, respecter les possibilité et conditions de montage.

Position de montage

Maintenance

Les vannes de radiateur ne nécessitent pas d'entretien.

Réparation

En cas de défaut d'étanchéité d'une vanne de radiateur, on peut remplacer le presseétoupe. Sinon, ces vannes ne peuvent pas être réparées, elles doivent être remplacées entièrement.

Recyclage

La vanne ne doit pas être éliminée comme un détritus ménager.

Des traitements spéciaux peuvent être exigés par la législation en vigueur ou être nécessaires pour protéger l'environnement.

La réglementation locale en vigueur doit être impérativement respectée.

Garantie

Les caractéristiques techniques spécifiques à l'application ne sont garanties qu'avec les régulateurs et servomoteurs Siemens cités au chapitre "Combinaisons d'appareils".

L'utilisation de servomoteurs d'autres constructeurs avec les vannes de radiateur annule la garantie accordée par Siemens Building Technologies / HVAC Products.

7/8

Caractéristiques techniques

Caractéristiques de fonc- tionnement	Classe de pression	PN 10						
	Fluides admissibles	eau chaude, eau glacée, eau glycolée						
		recommandation : eau traitée selon VDI 2035						
	Température du fluide	1120 °C						
	Pression de fonctionnement	1000 kPa (10 bars)						
	max. admissible							
	Pression de fermeture	60 kPa (0,6 bar)						
	Pression différentielle Δp _{v100}	520 kPa (0,050,2 bar) : plage conseillée						
	Course nominale	1,2 mm min.						
Matériaux	Corps de vanne	laiton, nickelé						
	Manchon de raccordement	laiton, nickelé						
	Capot de protection	polypropylène						
	Joint torique	EPDM						
Dimensions / Poids	cf. "Encombrements"							
	Longueur de pose	EN 215						
	Filetage	filetage femelle Rp selon ISO 7/1						
		filetage mâle R selon ISO 7/1						
		filetage G selon ISO 228/1						

Encombrements (dimensions en mm)

		Dimensions [mm]								Filetage [pouces]			Poids	
Références	DN	I ₁	l ₂	l ₃	I ₄	Α	В	С	D	Е	Rp	R	G	[kg]
VDN210	10	50	75					46,5	24,5	35	3/8	3/8B	5/8	0,220
VDN215	15	55	82					46,5	24,5	35	1/2	1/2B	3/4	0,265
VDN220	20	65	98					46,5	24,5	35	3/4	3/4B	1	0,385
	1			I	I			1	l			1		1
VEN210	10			24	49		20	40	18	35	3/8	3/8B	5/8	0,215
VEN215	15			26	53		23	40	18	35	1/2	1/2B	3/4	0,260
VEN220	20			30	63		26	40	18	35	3/4	3/4B	1	0,360
VUN210	10					51	22	60	25	35	3/8	3/8B	5/8	0,285
VUN215	15					57	27	61	26	35	1/2	1/2B	3/4	0,330

© 2005 Siemens Schweiz AG

Sous réserve de modifications

HVAC Products