Adaptive Discretization in Model-Based RL

Robert Ferrando 11/23/2021

Nonparametric RL

- In class, we discussed several examples of **parametric RL** making assumptions about the structure of the value functions
 - e.g. linear Bellman completeness
- Nonparametric RL make few such parametric assumptions; i.e., the learned function can take any form
 - Common assumption: Q-function is Lipschitz continuous

Nonparametric vs. Parametric Regression

Modified from https://www.section.io/engineering-education/parametric-vs-nonparametric/fit.png.

Why Nonparametric RL?

- \cdot Don't know what Q should "look like"
- Large and/or continuous state-action spaces
- E.g., My research optimal trading in energy markets

Model-Based vs. Model Free

- Model-based: store values of reward function and transition dynamics
- · Model-free: only store values of ${\cal Q}$ function do not need to "learn" the system
- Previous work on adaptive discretization for model-free RL has been published

Comparison of Methods

Algorithm	Regret	Time Complexity	Space Complexity
Adamb (Alg. 1) $(d_{\mathcal{S}} > 2)$	$H^{1+\frac{1}{d+1}}K^{1-\frac{1}{d+d_S}}$	$HK^{1+\frac{d_{\mathcal{S}}}{d+d_{\mathcal{S}}}}$	HK
$(d_{\mathcal{S}} \leq 2)$	$H^{1+\frac{1}{d+1}}K^{1-\frac{1}{d+d_{\mathcal{S}}+2}}$	$HK^{1+\frac{d_{\mathcal{S}}}{d+d_{\mathcal{S}}+2}}$	$HK^{1-\frac{2}{d+d_S+2}}$
Adaptive Q-Learning [37]	$H^{5/2}K^{1-\frac{1}{d+2}}$	$HK \log_d(K)$	$HK^{1-\frac{2}{d+2}}$
KERNEL UCBVI [11]	$H^3 K^{1-\frac{1}{2d+1}}$	HAK^2	HK
Net-Based Q-Learning [41]	$H^{5/2}K^{1-\frac{1}{d+2}}$	HK^2	HK
Lower-Bounds [39]	$H K^{1-\frac{1}{d+2}}$	N/A	N/A

Ada-MB: model-based – discussed in paper

Kernel-UCBVI: model-based

Adaptive Q-learning: model-free

Problem Setting

- \mathcal{S} : state space
 - bounded metric space with metric \mathcal{D}_S
- \mathcal{A} : action space
 - bounded metric space with metric \mathcal{D}_A
- $\mathcal{S} \times \mathcal{A}$: state-action space
 - has product metric ${\mathcal D}$

Notation

- · $d_{\mathcal{S}}$: dimension of ${\mathcal{S}}$
- · $d_{\mathcal{A}}$: dimension of \mathcal{A}
- $d:=d_{\mathcal{S}}+d_{\mathcal{A}}$
- \cdot $r_h(x,a)$: reward at time step h for $(x,a) \in \mathcal{S} imes \mathcal{A}$
- · $T_h(x' \,|\, x,a)$: prob. of transitioning from state x o x' via action a

Assumptions

- · Reward estimate: Lipschitz with constant L_R
- · Transition estimate: Lipschitz with constant L_T
- $\cdot \; Q_h^*, V_h^*$: Lipschitz with constant L_V
- · Through sampling, we have access to metrics \mathcal{D}_S , \mathcal{D}_A , \mathcal{D}

The Algorithm

Why Adaptive Discretization?

- Consider a continuous state-action space discretize to yield empirical results
- Fixed discretization may be unnecessarily refined, especially in areas of the state-action space which are not profitable
- Adaptive discretization helps save memory and time, leading to a more efficient RL algorithm

Partitioning in practice

Ada-MB Algorithm

Ada-MB: Adaptive discretization for model-based RL

What we know:

- \mathcal{S} : state space
- \mathcal{A} : action space
- \cdot \mathcal{D} : metric on state-action space
- H: time horizon
- K: # of episodes
- δ : probability of "bad events"

Ada-MB Algorithm

The following process occurs for each episode:

- · Start with partitioning $\mathcal{S} imes \mathcal{A}$ into a collection of "balls"
- · Receive starting state X_1^k
- · For each time step:
 - Figure out which balls X_h^k belongs to
 - Which of those balls is most profitable? Call it B_h^k
 - Play action associated with greedy ball (center, or sample uniformly)
 - Update count, transition, reward associated with B_h^k
 - Partition if warranted

Ada-MB Algorithm

Partitioning the State-Action Space

- Define a splitting rule (more on next slide): if a ball is played enough times, split it
 - want to give the learner lots of options to play in profitable regions of $\mathcal{S} imes \mathcal{A}$
- Splitting is done "dyadically": consider the following tree

' If a ball at level $\ell(B)$ is chosen to be split, partition into 2^d smaller balls of diameter $2^{-(\ell(B)+1)}$

Splitting Rule

Partition B when
$$n_h^k(B)+1>n_+(B)$$

- · Splitting threshold $n_+(B) = \phi 2^{\gamma \ell(B)}$:
 - $d_{\mathcal{S}}>2$: $n_+(B)=\phi 2^{d_{\mathcal{S}}\ell(B)}$
 - $d_{\mathcal{S}} \leq 2$: $n_+(B) = \phi 2^{(d_{\mathcal{S}}+2)\ell(B)}$
 - $\phi = H^{(d+d_{\mathcal{S}})/(d+1)}$ reduce H-dependence of regret bound

Updating Counts

· $n_h^k(B)$: number of times ball B has been played by time step h of episode k

Reward

- · $\hat{\mathbf{r}}_h^k(B)$: empirical reward from playing B
- $\mathbf{\bar{r}}_h^k(B)$: empirical reward from playing B and its ancestors

Transition

- $\hat{f T}_h^k(\cdot\,|\,B)$: empirical probability of transitioning from B
- \cdot $\overline{f T}_h^k(\cdot\,|\,B)$: empirical probability of transitioning from B and its ancestors

Bonus Terms

We want to maintain an *optimistic* estimate of the value functions – introduction of bonus terms allows us to do so (much like in multi-armed bandits.)

$$\begin{aligned} & \text{Rucb}_{h}^{k}(B) = \sqrt{\frac{8 \log(2HK^{2}/\delta)}{\sum_{B' \supseteq B} n_{h}^{k}(B')}} + 4L_{r}\mathcal{D}(B) \\ & \text{Tucb}_{h}^{k}(B) = \begin{cases} L_{V}\left((5L_{T} + 4)\mathcal{D}(B) + 4\sqrt{\frac{\log(HK^{2}/\delta)}{\sum_{B' \subseteq B} n_{h}^{k}(B')}} + c\left(\sum_{B' \subseteq B} n_{h}^{k}(B')\right)^{-1/d_{\mathcal{S}}}\right) & \text{if } d_{\mathcal{S}} > 2 \\ L_{V}\left((5L_{T} + 6)\mathcal{D}(B) + 4\sqrt{\frac{\log(HK^{2}/\delta)}{\sum_{B' \supseteq B} n_{h}^{k}(B')}} + c\sqrt{\frac{2^{d_{\mathcal{S}}\ell(B)}}{\sum_{B' \supseteq B} n_{h}^{k}(B')}}\right) & \text{if } d_{\mathcal{S}} \leq 2 \end{cases}$$

Value Function Estimates

Q Estimate

$$\overline{\mathbf{Q}}_h^k(B) = egin{cases} \overline{\mathbf{r}}_H^k(B) + \mathrm{RUCB}_H^k(B) & h = H \ \overline{\mathbf{r}}_h^k(B) + \mathrm{RUCB}_h^k(B) + \ \mathbb{E}_{A \sim \overline{\mathbf{T}}_h^k(\cdot \mid B)} \left[\overline{V}_{h+1}^{k-1}(A)
ight] + \mathrm{TUCB}_h^k(B) & h < H. \end{cases}$$

V Estimate

$$oxed{\mathbf{\overline{V}}_h^k(x)} = \min_{A' \in \mathcal{S}(\mathcal{P}_h^k)} \left(\mathbf{ ilde{V}}_h^k(A') + L_V \mathcal{D}_{\mathcal{S}}(x, ilde{x}(A'))
ight)$$

$$egin{aligned} ilde{\mathbf{V}}_h^k(A) &= \min \left\{ ilde{\mathbf{V}}_h^{k-1}(A), \max_{B \in P_h^k ext{ s.t. } A \subseteq \mathcal{S}(B)} \overline{\mathbf{Q}}_h^k(B)
ight\} \end{aligned}$$

Main Result

Worst-Case Regret

The main result is the following:

Theorem. With probability at least $1-\delta$, the regret of Ada-MB for any sequence of starting states $\{X_1^k\}_{k=1}^K$, is upper bounded as follows:

$$R(K) \lesssim egin{cases} LH^{1+rac{1}{d+1}}K^{rac{d+d_{\mathcal{S}}-1}{d+d_{\mathcal{S}}}}, & d_{\mathcal{S}} > 2 \ LH^{1+rac{1}{d+1}}K^{rac{d+d_{\mathcal{S}}+1}{d+d_{\mathcal{S}}+2}}, & d_{\mathcal{S}} \leq 2. \end{cases}$$

Proof Sketch

We consider three pieces:

- 1. Concentration and clean events
 - Error bound of reward estimate
 - Error bound of transition estimate
 - \cdot Optimism of Q and V estimates
- 2. Regret decomposition bounding pieces
- 3. Bounds on partition size, bonus terms

The ultimate regret bound follows by algebraic manipulation using the pieces/lemmas above.

Concentration and Clean Events

Reward Estimate

Lemma. With probability at least $1-\delta$, for all h,k, $B\in\mathcal{P}_h^k$:

$$|\overline{\mathbf{r}}_h^k(B) - r_h(x,a)| \leq \mathrm{RUCB}_h^k(B).$$

Proof Sketch:

- 1. Rewrite using definition of $\overline{\mathbf{r}}$.
- 2. Subtract and add $r_h(X_h^{k'},A_h^{k'})$.
- 3. Triangle inequality.
- 4. First term: Azuma-Hoeffding.
- 5. Second term: Lipschitz continuity of r.

Transition Estimate

Lemma. With probability at least $1-2\delta$, for all h,k, $B\in\mathcal{P}_h^k$ with $(x,a)\in B$:

$$d_W\left(\overline{f T}_h^k(\cdot\,|\,B),T_h^k(\cdot\,|\,x,a)
ight) \leq rac{1}{L_V}\mathrm{TUCB}_h^k(B).$$

 d_W : Wasserstein metric

Optimism

Lemma. With probability at least $1-3\delta$, for all k,h, \mathcal{P}_h^k :

$$egin{cases} orall B \in \mathcal{P}_h^k, (x,a) \in B \colon & \overline{\mathbf{Q}}_h^k(B) \geq Q_h^*(x,a) \ orall A \in \mathcal{S}(\mathcal{P}_h^k), x \in A \colon & \mathbf{ ilde{V}}_h^k(A) \geq V_h^*(x) \ orall x \in \mathcal{S} \colon & \overline{\mathbf{V}}_h^k(x) \geq V_h^*(x). \end{cases}$$

Proof:

- 1. Forward induction on k, backward induction on H.
- 2. Use previous Lemmas on reward and transition estimate in the induction step.

Note: When a ball B splits, it retains any optimistic properties of its ancestors.

Regret Decomposition

Regret Decomposition

Lemma. The *expected* (\star) regret for Ada-MB can be decomposed as:

$$egin{aligned} \mathbb{E}[R(K)] &\lesssim \sum_{k=1}^K \sum_{h=1}^H \mathbb{E}\left[ilde{\mathbf{V}}_h^{k-1}(\mathcal{S}(\mathcal{P}_h^{k-1}, X_h^k) - ilde{\mathbf{V}}_h^k(\mathcal{S}(\mathcal{P}_h^k, X_h^k))
ight] \ &+ \sum_{h=1}^H \sum_{k=1}^K \mathbb{E}\left[2RUCB_h^k(B_h^k)
ight] \ &+ \sum_{h=1}^H \sum_{k=1}^K \mathbb{E}\left[2TUCB_h^k(B_h^k)
ight] \ &+ \sum_{k=1}^K \sum_{h=1}^H L_V \mathbb{E}\left[\mathcal{D}(B_h^k)
ight]. \end{aligned}$$

Regret Decomposition

Note: (★) It suffices to bound the *expected* regret to achieve a bound on the regret – consider the "worst-case scenario" for each term under expectation.

The ultimate regret bound will follow from the expected regret bound via Azuma-Hoeffding.

Partition Size, Bonus Terms

Bounds on Partition Size

Lemma.

- · Partition: \mathcal{P}_h^k for any k,h, with splitting threshold $n_+(\ell)$.
- · Penalty vector: $\{a_\ell\}_{\ell\in\mathbb{N}_0}$

-
$$a_{\ell+1} \ge a_{\ell} \ge 0$$

-
$$orall \ell \in \mathbb{N}_0\colon 2a_{\ell+1}/a_\ell \le n_+(\ell)/n_+(\ell-1)$$

$$\ell^* := \inf\{\ell \,|\, 2^{d(\ell-1)}n_+(\ell-1) \geq k\}$$

Then

$$\sum_{\ell=0}^{\infty}\sum_{B\in\mathcal{P}_h^k;\ell(B)=\ell}a_\ell\leq 2^{d\ell^*}lpha_{\ell^*}$$

Proof of Lemma

1. Let x_ℓ be the number of active balls at level ℓ . Solve the LP:

$$egin{aligned} \max & \sum_{\ell=0}^\infty a_\ell x_\ell \ ext{s.t.} & \sum_{\ell=0}^\infty 2^{-\ell d} x_\ell \leq 1 \ & \sum_\ell n_+ (\ell-1) 2^{-d} x_\ell \leq k \ & orall \ell \colon x_\ell \geq 0. \end{aligned}$$

Proof cont.

1. Use the weak duality theorem: optimal value is $\leq \alpha + \beta$ when:

$$2^{-\ell d}lpha + n_+(\ell-1)2^{-d}eta \geq lpha_\ell.$$

2. Set:
$$\hat{lpha}=rac{2^{d\ell^*}a_{\ell^*}}{2}$$
 , $\hat{eta}=rac{2^da_{\ell^*}}{2n_+(\ell^*-1)}$.

- Satisfy constraints check.
- $\hat{\alpha} + \hat{\beta}$ gives desired value of objective check.

Worst-Case Partition Size

Corollary. For any h, k:

$$\cdot$$
 $\ell^* \leq rac{1}{d+\gamma} \mathrm{log}_2(k/\phi) + 2$

$$\mid \mathcal{P}_h^k \mid \leq 4^d (k/\phi)^{d/(d+\gamma)}.$$

Proof Sketch.

1. Take $lpha_\ell=1$ for all ℓ as an upper bound.

2.
$$\ell^*$$
 definition $\Rightarrow 2^{d(\ell^*-2)}n_+(\ell^*+2) \leq k$

3. Use definition of splitting rule \Rightarrow two results in corollary.

This corollary is used to achieve bounds in regret expansion.

Experiments

Oil Discovery

- Setup: similar to "Grid World"
 - agent surveys 1D map survey function gives prob. of striking oil
 - cost depends on distance traveled

Results

- Model-free QL has longer run-time than model-based
- · Adaptive algorithms have smaller partition size
 - reduces unnecessary exploration
 - learner achieves optimal policy faster

Ambulance Routing

- $\cdot k$ ambulances over H hours
- · want to minimize cost of transportation, response time to emergencies
- 911 call drawn from prob. distribution
- · action dispatch one ambulance, reposition others

Results

- adaptive algorithms give smaller partition
- · model free a bit more efficient, but has finer partition

Further Work

- Model based vs. model free in continuous settings
 - How to eliminate dependence of MB on dimension of $\mathcal{S} imes \mathcal{A}$?
- Gap-dependent analysis -> can model-based outperform model-free?

Thank you!