Mapping Data Warehouse to Multiple Processor

Relational Database Technology for Data Warehouse

- Search for better performance and scalability becomes necessity for a data warehouse.
- The search pursuing two goals:
 - Speed-up- ability to execute the same request on the same amount of data in less time
 - Scale-up ability to obtain the same performance even if database size increases.
- The goals of linear performance and scalability can be satisfied by Parallel hardware architectures, Parallel operating systems and parallel databases.
- Parallel hardware architecture are based on Multiprocessor systems designed as a shared memory model (SMPs), shared-disk model, or a distributed-memory model (MPPs) and clusters of uniprocessors

Types of Parallelism

 Parallel hardware architectures are implemented using multi server and multi threaded systems designed to handle large number of client requests.

Interquery parallelism :

- Different threads (or process) handle multiple requests at the same time.
- Implemented on the SMP systems.
- Each query are processed serially such as scan, join and sort

Intraquery parallelism -

- Decomposes the serial SQL query into lower-level operations such as scan, join, sort, and aggregation operations
- They are executed concurrently in parallel.
- Intraquery parallelism can be done in either of two ways:

Types of Parallelism

Horizontal parallelism: Database is partitioned across
multiple disks, and parallel processing occurs within a specific
task (table scan) that is performed concurrently on different
processors on different sets of data.

- **Vertical parallelism** All complex query operations are executed in parallel in a pipeline fashion.
 - An output from on tasks (e.g., scan) becomes are input into another task (e.g., join) as soon as records become available

Types of DBMS parallelism

Data Partitioning

- It is a key requirement for effective parallel execution of database operations.
- Spreads data from database tables across multiple disks so that I/O operations such as read and write can be performed in parallel.
- Two types random and intelligent partitioning.
- **Random partitioning:** It includes random data striping across multiple disks on a single server.
- Another option for random partitioning is **round-robin partitioning** in which each new record is placed on the next disk assigned to the database.
- The effectiveness of round-robin partitioning is reduced depending upon the data distribution and query selectivity

Data Partitioning

DBMS knows where a specific record is located and does not waste time searching for it across all disks.

- **Hash partitioning:** A hash algorithm is used to calculate the partition number (hash value) based on the value of the partioning key for each row.
- **Key range partitioning:** Rows are placed and located in the partitions according to the value of the partitioning key (all rows with the key value from A to K are in partition 1, L to T are in partition 2 etc.).

Data Partitioning

• **Schema partitioning:** An entire table is placed on one disk, another table is placed on a different disk, etc.

• **User-defined partitioning:** This is a partitioning method that allows a table to be partitioned on the basis of a user-defined expression.

Database Architectures for Parallel Processing

- 1. Shared-memory architecture- SMP (Symmetric Multiprocessors)
- 2. Shared-disk architecture
- 3. Shared-nothing architecture
- 4. Combined architecture

Shared-memory architecture - SMP (Symmetric Multiprocessors)

- Shared memory or Shared everything style is the traditional approach to implementing an RDBMS or SMP hardware.
- A single RDBMS server can potentially utilize all processors, access all memory and access the entire database thus providing the user with a consistent single system image.
- Multiple database components executing SQL statements communicate with each other by exchanging messages and data via the shared memory.
- Scalability can be achieved through process-based multitasking or thread based multitasking.

Shared-memory architecture - SMP (Symmetric Multiprocessors)

- Advantage: Threads provide better resource utilization and faster context switching.
- **Disadvantage:** Threads tightly coupled with OS and may limit RDBMS portability

Shared-memory architecture - SMP (Symmetric Multiprocessors)

Shared-disk architecture

- Implements the concept of shared ownership of the entire database between RDBMS servers, each of which is running on a node of the distributed memory system.
- Each RDBMS server can read, write, update, and delete records from the same shared database.
- Implemented by using distributed lock manager (DLM).
- Disadvantages: "**Pinging problem**": All nodes are reading and updating the same data, the RDBMS and its DLM will have to spend a lot of resources synchronizing multiple buffer pools.
- It may have to handle significant message traffic in a highly utilized RDBMS environment.

Shared-disk architecture

Advantages:

- It reduces performance bottlenecks resulting from data skew and can significantly increase system availability.
- It eliminates the memory access bottleneck typical of large SMP systems
- Help to reduce DBMS dependency on data partitioning.

Shared-disk architecture

Shared-nothing architecture

- Data is partitioned across all disks and the DBMS is partitioned across multiple co-servers which resides in individual nodes of the parallel system.
- Each processor has its own memory and disk, and communicates with other processors by exchanging messages and data over the interconnection network.
- Offer near-linear scalability.
- Disadvantages:
- It is most difficult to implement.
- It requires a new programming paradigm, new OS, new compilers and new programming languages

Shared-nothing architecture

Combined architecture

Combined hardware architecture could be a cluster of SMP nodes.

Combined parallel DBMS architecture should support **intersever parallelism** of distributed memory MPPs and **intraserver parallelism** of SMP nodes.

Parallel DBMS Vendors

- Oracle
- Informix
- IBM
- Sybase
- Microsoft

Oracle

Oracle supports parallel database processing with its add-on oracle parallel server option(OPS) and parallel query option(PQO).

Architecture

- Virtual shared-disc capability
- Process-based approach
- Facilitate the inter query parallelism
- PQO supports parallel operations such as index build, database load, backup, and recovery

Data partitioning

- It supports random striping of data across multiple disks.
- Oracle supports dynamic data repartitioning

Parallel operations

• Generates a parallel plan

Informix

Architecture

- Support shared-memory, shared-disk, and shared-nothing models.
- It is thread based architecture.

Data partitioning

- Round-robin, schema, charts, key range, and user-defined partitioning methods.
- Both data and index can be partitioned

Parallel Operations

• Executes queries in parallel.

DB2-PE

Client/Server database product-DB2 parallel Edition

Architecture

- DB2 PE is a shared-nothing architecture in which all data is partitioned across processor nodes.
- Each node is aware of the other nodes and how the data is partitioned

Data partitioning

- Allow a table to span multiple nodes.
- The master system catalog for each database is stored on one node and cached on every other node.

Parallel operations

All database operations are fully parallelized

Sysbase

Sybase has implemented its parallel DBMS functionality in a parallel product called DYBASE MPP.

Architecture

- It is a shared-nothing systems that partitions data across multiple SQL servers
- Open server application that operates on top of existing SQL servers.
- All the knowledge about the environment, data partitions, and parallel query execution is maintained by SYBASE MPP software.

SYBASE MPP consists of specialized servers.

- Data server, the smaller executable unit of parallelism that consists of SQL server, split server (performs joins across nodes), and control server (coordination of execution and communication)
- DBA server handles optimization, DDL statements, security and global systems catalog.
- Administrative server, a graphical user interface for managing SYBASE MPP

Sysbase

Administrative server, a graphical user interface for managing SYBASE MPP.

Data partitioning.

Supports hash, key range, and schema partitioning, indexes partitioning.

Parallel operations

All SQL statements and utilities in parallel across SQL servers

