Задача 6 При каких значениях x существует $\log_5 \frac{x-1}{2}$?

Tak как основание логарифма 5 > 0 и $5 \neq 1$, то данный логарифм существует только тогда, когда $\frac{x-1}{2-x} > 0$. Решая это неравенство, находим 1 < x < 2.

Упражнения

266 Найти логарифмы чисел по основанию 3:

3, 9, 27, 81, 1, $\frac{1}{3}$, $\frac{1}{9}$, $\frac{1}{243}$, $\sqrt[3]{3}$, $\frac{1}{2\sqrt{2}}$, $9\sqrt[4]{3}$.

Вычислить (267—276).

267

1) $\log_2 16$; 2) $\log_2 64$; 3) $\log_2 2$; 4) $\log_2 1$.

268

1) $\log_2 \frac{1}{2}$; 2) $\log_2 \frac{1}{8}$; 3) $\log_2 \sqrt{2}$; 4) $\log_2 \frac{1}{4\sqrt{2}}$.

1) $\log_3 27$; 2) $\log_3 81$; 3) $\log_3 3$; 4) $\log_3 1$. 269

270

1) $\log_3 \frac{1}{9}$; 2) $\log_3 \frac{1}{3}$; 3) $\log_3 \sqrt[4]{3}$; 4) $\log_3 \frac{1}{4\sqrt{9}}$.

1) $\log_{\frac{1}{2}} \frac{1}{32}$; 2) $\log_{\frac{1}{2}} 4$; 3) $\log_{0.5} 0.125$; 271

4) $\log_{0,5} \frac{1}{2}$; 5) $\log_{0,5} 1$; 6) $\log_{\frac{1}{2}} \sqrt[3]{2}$.

272

1) $\log_5 625$; 2) $\log_6 216$; 3) $\log_4 \frac{1}{16}$; 4) $\log_5 \frac{1}{125}$.

1) $\log_{\frac{1}{2}} 125$; 2) $\log_{\frac{1}{2}} 27$; 3) $\log_{\frac{1}{2}} \frac{1}{64}$; 4) $\log_{\frac{1}{2}} 36$. **273**

1) $3^{\log_3 18}$; 2) $5^{\log_5 16}$; 3) $10^{\log_{10} 2}$; 4) $\left(\frac{1}{4}\right)^{\log_{\frac{1}{4}} 6}$. 274

1) $3^{5 \log_3 2}$; 2) $\left(\frac{1}{2}\right)^{6 \log_{\frac{1}{2}} 2}$; 3) $0,3^{2 \log_{0,3} 6}$; 4) $7^{\frac{1}{2} \log_7 9}$. 275

1) $8^{\log_2 5}$; 2) $9^{\log_3 12}$; 3) $16^{\log_4 7}$; 4) $0.125^{\log_{0.5} 1}$. 276

277 Решить уравнение:

1) $\log_6 x = 3$;

2) $\log_5 x = 4;$ 3) $\log_2 (5 - x) = 3;$

4) $\log_3(x+2) = 3;$ 5) $\log_1(0.5 + x) = -1.$

278 Выяснить, при каких значениях x существует логарифм:

1)
$$\log_{\underline{1}}(4-x)$$
;

2)
$$\log_{0,2} (7-x)$$
;

1)
$$\log_{\frac{1}{2}}(4-x)$$
; 2) $\log_{0,2}(7-x)$; 3) $\log_{6}\frac{1}{1-2x}$;

4)
$$\log_8 \frac{5}{2x-1}$$
;

5)
$$\log_{\frac{1}{4}}(-x^2)$$
;

4)
$$\log_8 \frac{5}{2x-1}$$
; 5) $\log_{\frac{1}{4}}(-x^2)$; 6) $\log_{0,7}(-2x^3)$.

Вычислить (279—281).

1) $\log_2 \sqrt[4]{2}$; 2) $\log_3 \frac{1}{3\sqrt{3}}$; 3) $\log_{0.5} \frac{1}{\sqrt{32}}$; 4) $\log_7 \frac{\sqrt[3]{7}}{49}$. 279

2)
$$\left(\frac{1}{9}\right)^{\frac{1}{2}\log_3 4}$$
;

2)
$$\left(\frac{1}{9}\right)^{\frac{1}{2}\log_3 4}$$
; 3) $\left(\frac{1}{4}\right)^{-5\log_2 3}$;

4)
$$27^{-4 \log_{\frac{1}{3}} 5}$$

5)
$$10^{3 - \log_{10} 5}$$
;

4)
$$27^{-4 \log_{\frac{1}{3}} 5}$$
; 5) $10^{3 - \log_{10} 5}$; 6) $\left(\frac{1}{7}\right)^{1 + 2 \log_{\frac{1}{7}} 3}$.

281

1) $\log_2 \log_3 81$; 2) $\log_3 \log_2 8$; 3) $2 \log_{27} \log_{10} 1000$;

4)
$$\frac{1}{3} \log_9 \log_2 8$$
;

4)
$$\frac{1}{3} \log_9 \log_2 8;$$
 5) $3 \log_2 \log_4 16 + \log_{\frac{1}{2}} 2.$

282 Решить уравнение:

1)
$$\log_x 27 = 3$$
;

2)
$$\log_x \frac{1}{7} = -1$$
;

1)
$$\log_x 27 = 3;$$
 2) $\log_x \frac{1}{7} = -1;$ 3) $\log_x \sqrt{5} = -4.$

Выяснить, при каких значениях x имеет смысл выражение (283-284).

1) $\log_6(49-x^2)$; 2) $\log_7(x^2+x-6)$; 3) $\log_{\frac{1}{2}}(x^2+2x+7)$. **283**

284 1)
$$\log_2 (1-x^3)$$
;

2)
$$\log_2(x^3+8)$$
;

3)
$$\log_{\frac{1}{4}}(x^3+x^2-6x)$$

1)
$$\log_3 (1-x^3)$$
; 2) $\log_2 (x^3+8)$; 3) $\log_{\frac{1}{4}}(x^3+x^2-6x)$; 4) $\log_{\frac{1}{3}}(x^3+x^2-2x)$.

Решить уравнение (285—287).

1) $2^x = 5$; 2) $1, 2^x = 4$; 3) $4^{2x+3} = 5$; 4) $7^{1-2x} = 2$. 285

286 1)
$$7^{2x} + 7^x - 12 = 0$$
; 2) $9^x - 3^x - 12 = 0$;

2)
$$9^x - 3^x - 12 = 0$$
;

3)
$$8^{x+1} - 8^{2x-1} = 30$$
;

3)
$$8^{x+1} - 8^{2x-1} = 30;$$
 4) $\left(\frac{1}{9}\right)^x - 5\left(\frac{1}{3}\right)^x + 6 = 0.$

1) $(3^x + 2^x)(3^x + 3 \cdot 2^x) = 8 \cdot 6^x$; 287

2)
$$(3 \cdot 5^x + 2.5 \cdot 3^x) (2 \cdot 3^x - 2 \cdot 5^x) = 8 \cdot 15^x$$
.

288 При каких значениях x имеет смысл выражение:

1)
$$\log_{x}(2x-1)$$
;

1)
$$\log_x (2x-1)$$
; 2) $\log_{x-1} (x+1)$?

Решить относительно х уравнение 289

$$9^x + 9a (1-a) \cdot 3^{x-2} - a^3 = 0.$$