Robust statistical methods: applications in genomics

July 10 2018

Overview

- ► Applications of the outlier concept: IvyGlimpse, DriverNet
- Critique of simplistic outlier labeling; alternatives
 - ▶ robustness vs. efficiency tradeoff
 - inward peeling, outward testing: formal univariate and multivariate outlier identification
- Relating tumor expression profiles, multivariate outlier identification, and mutation patterns in TCGA-GBM

Before we begin

- Much work in robustness addresses distributional form and estimation of location and scale
- "Natural robustness" has been mentioned: modest departures from normality don't have substantial effect on validity of inference with t-like statistics
- Departures from independence could invalidate seemingly careful inferences
 - batch-related variation
 - autocorrelation
 - impact: the actual sample size is smaller than advertised/used in variance estimation
- Diagnostics/remedies for non-independence not ready to hand, requires manual work

Example 1: Image analysis in glioblastoma

Figure 1: Annotated IvyGAP image

A cohort of image annotations, grab from the tail

Figure 2: ivygapSE::ivyGlimpse()

Expression patterns for included/excluded

Figure 3: ivyGlimpse univariate

Upshots

- Annotation of tumor images is an expensive process, and use of annotated features for prediction is highly desirable
- ▶ In the scatterplot of (normalized areas) CT vs CTHBV, we see that CTHBV scores have a skewed distribution
- Individuals contributing images in the tail of this distribution seem to have relatively shorter survival times
- Marginal distributions of expression for genes are summarized using boxplots
- Careful analysis of image features, expression patterns, and their clinical correlates must reflect complexities of design; see the IvyGAP white paper

Example 2: DriverNet (from the lab of Sohrab Shah)

Overrepresented pathways of genes exhibiting outlying expression associated with EGFR high level amplification PI3K signaling: FOXO1,FOXO3,AKT1,AKT3,GNAI3,SOS1,PIK3R5,PIK3R1,GSK3B,JAK1

ErbB signaling pathway: BTC,STAT5B,AKT1,MAP2K7,AKT3,EGFR,BRAF,JUN,SRC,KRAS,SOS1,CAMK2D,PIK3R5,PIK3R1,PLCG1,GSK3B

Figure 4: Aberrant expression of BRAF for patient with EGFR amplification

EGFR mutation associated with extreme expression values in diverse genes

Figure 5: Blue dots: individual has mutation in named gene; red arrow: individual has mutation in EGFR

Overall DriverNet schema

Figure 6: Towards the DriverNet bipartite graph. Minimize the number of mutation-bearing nodes (on left) needed to identify genes with aberrant expression on right.

Patient-outlier code: default threshold is 2 SD from mean

```
> library(DriverNet)
> getPatientOutlierMatrix
function (patExpMatrix, th = 2)
    expSd <- apply(patExpMatrix, 2, sd)
    id <-expSd > 0
    expSd <- expSd[id]
    patExpMatrix <- patExpMatrix[, id]</pre>
    expMean <- apply(patExpMatrix, 2, mean)
    num <- dnorm(x = t(patExpMatrix), mean = expMean, sd = expSd,
        log = T)
    num <- t(num)
    numSd \leftarrow dnorm(x = t(expMean + th * expSd), mean = expMean,
        sd = expSd, log = T)
    y <- rep(numSd, each = dim(patExpMatrix)[1])
    y <- matrix(y, nrow = dim(patExpMatrix)[1], ncol = dim(patExpMatrix)[2])</pre>
    patOutMatrix <- num <= v
    id <- colSums(patOutMatrix) > 0
    patOutMatrix <- patOutMatrix[, id]
    return(patOutMatrix)
}
```

Figure 7: getPatientOutlierMatrix code.

Comments

- ► The two-standard deviation rule does not identify **outliers** specifically
- It reliably identifies observations with values of relatively large magnitude in an approximately Gaussian population
- In other situations the non-robustness of mean and standard deviation vitiates straightforward interpretation of the procedure
- Robust estimation methods depend on technical definitions
 - intuitively, robust estimators retain interpretations of their non-robust counterparts under weaker assumptions about the underlying populations

Location estimator

- Location estimators answer questions like: Around what value m can we expect observations to vary, with approximately equal numbers above and below m?
 - Gaussian population: choose $m = \bar{x}$, the sample mean
 - more generally: choose m = med x, the sample median
 - the median achieves the goal by definition
 - if the Gaussian population assumption is correct, the median is more variable than the mean (constitutes less efficient use of the information)
 - this is a simple illustration of the robustness vs. efficiency tradeoff

Location estimation: median loses information in ideal case, but is less sensitive to "contamination"

Median has breakdown bound 50% but is still affected by contaminants; midpoint of shorth is more robust

Figure 8: From Carey et al. Technometrics 1997

Relation to outlier identification

- ▶ Basic intuition: outliers x have large values of |x c|/s where c locates the center of the **inlier** distribution and s measures the scale of the **inlier** distribution
- Simple rules for determining the center of a distribution are likely to fail if outliers are present
 - simple linear estimator (mean) has zero breakdown bound: a single observation can exert arbitrarily large influence
 - ▶ median has breakdown bound 50%: will only take arbitrary values if 50% or more of the data are arbitrarily moved
 - ▶ intermediate estimators: trimmed means, winsorized means

Scale estimation

- ▶ define the residuals $r_i = x_i \hat{L}$, where \hat{L} is a location estimator
 - ► SD: $\hat{L} = \bar{x}$, $s = \sqrt{\sum_{i} r_{i}^{2}/(n-1)}$
 - ▶ MAD: $\hat{L} = \text{med } x$, $s = 1.4826 \cdot \text{med } |r_i|$
 - ▶ length of the shorth (no location estimation): u − I where u is the largest value and I the smallest value of the shortest half-sample
 - ► IQR (no location estimation): quantile(x, .75)-quantile(x, .25)
- scale estimation is important for 'normalization'
 - ightharpoonup scale invariance: x and x/c obey the same laws
 - informally: can transform all samples to possess a common scale without compromising interpretation regarding differential expression, pathway role, etc.
 - why make such a transformation?
 - "rough comparability", "effect size interpretation"

More systematic approaches

- Formalize the outlier concept:
 - a base population distribution exists and is identified
 - outliers are observations unlikely to be members of the base population
- Control the probability of "Type I error": declaring an observation to be an outlier when it is actually an observation from the base population
- Deal explicitly with the fact that multiple outliers can have effects that are more complex than those induced by single outliers
- Consider the concept of multivariate outlyingness

The Extreme Studentized Deviate and a "peeling" sequence

Given n observations, define the ESD as follows:

- $ightharpoonup x_1, \dots x_n$ have sample mean \bar{x} and sample standard deviation s.
- ▶ the sample value x maximizing the quantity $|x \bar{x}|/s$ is denoted the ESD

A sequence of k subsamples and deviates is generated by repeating this process on the $n-1,\ n-2,\ldots,n-k$ sized subsets created by excluding the associated ESD

At each stage a new sample mean and standard deviation are computed and used

Inward peeling illustrated

Large negative outlier masks multiple positive ones for the mean \pm 2SD approach. Red dots are points corresponding to stagewise ESD

Outward testing: parody::calout.detect(meth="GESD")

- Once we have found the sequence of ESDs/truncated samples, we test, from the inside out, each ESD for compatibility with the "inlier" distribution using the inlier mean and standard deviation
- ▶ The critical values for this sequential procedure are available
 - for finite samples, by simulation
 - ► for large samples, using formalism in Rosner, Technometrics 1983
- ► The thresholds provided bound to any desired level the probability of falsely labeling as an outlier a member of the base population, allowing tests for up to half the sample size
- When one ESD is deemed an outlier, it is joined in this characterization by all the more extreme deviates identified earlier in the peeling process

Upshots

- Don't use naive approaches to outlier labeling
- Robust location and scale estimation methods have a long history and interesting variations
- Of greater interest: multivariate analog of GESD

APPLICATION OF WILKS'S OUTLIER TEST

357

2. Wilks's Outlier Test Statistic

Given n independent p-dimensional vectors $\mathbf{x}_1, \ldots, \mathbf{x}_n$, Wilks's statistic may be derived as the likelihood ratio statistic testing the null hypothesis

$$H_0: \mathbf{x}_i \sim N_{\rho}(\boldsymbol{\mu}, \boldsymbol{\Sigma}), \qquad i=1,\ldots,n,$$

against the alternative hypothesis

$$H_1$$
: $\mathbf{x}_i \sim N_p(\mu, \Sigma)$, $i \neq j$, and $\mathbf{x}_i \sim N_p(\mu + \mathbf{a}, \Sigma)$.

The parameters μ and Σ are unknown, as is the slippage parameter α and the index j of the outlier.

Consideration of the likelihood ratio leads to the test statistic $W_j = |\mathbf{A}^{(j)}|/|\mathbf{A}|$, where **A** is the matrix of sums of squares and cross-products

$$\mathbf{A} = \sum_{i=1}^{n} (\mathbf{x}_{i} - \overline{\mathbf{x}})(\mathbf{x}_{i} - \overline{\mathbf{x}})'$$

and $A^{(I)}$ is the corresponding matrix with x_I eliminated from the sample. The potential outlier is that point, index I say, whose removal leads to the greatest reduction in |A|, i.e. the point for which this ratio is minimized. Wilks's statistic is then defined as

$$D_1 = \min_{i}(W_i) = |\mathbf{A}^{(l)}|/|\mathbf{A}|.$$

For ease of computation it is preferable to express D_1 as

$$D_1 = 1 - \frac{n}{n-1} (\mathbf{x}_i - \overline{\mathbf{x}})' \mathbf{A}^{-1} (\mathbf{x}_i - \overline{\mathbf{x}}),$$

The peeling process for contaminated BVN

Recap

- Sequential peeling: find the most extreme data point using efficient estimation of location and scale, peel it away, and repeat, until only half the data remains
- Outward testing: Establish criteria that bound the probability of erroneously declaring an outlier to be present through the sequence of tests
- Works in univariate and multivariate settings
- Alternatives to Gaussian base model?

Multivariate expression outliers in glioblastoma

Figure 10: Parallel coordinate plot for a 26 gene set.

Discordance of labeling procedures for RAB25

Figure 11: 2SD rule, GESD, and Caroni-Prescott.

PCA for 26 genes, coloring multivariate outliers

Figure 12:

Mutation burdens for expression outliers/inliers

Figure 13:

Conclusions

- Robust statistical methods are extremely useful in modern genomics
- Systematic identification of unusual data configurations is a continual concern
 - quality issues
 - search for mechanisms underlying variability
- We've focused on robust estimation (high breakdown bound)
 - univariate location (median), scale (MAD, length of shorth)
 - multivariate scale (covariance of peeled dataset)
 - there are many other options
- Application: are aberrant expression patterns readily linked to distinctive patterns of somatic mutation?
 - not low-hanging fruit: outlier cohort likely an amalgam of diverse mutational events
 - these pieces can be combined with other omics and clinical data fairly easily to test more compelling hypotheses