JEE MAINS

EE24BTECH11029- JANAGANI SHRETHAN REDDY

- 1) Which of the following is true for y(x) that satisfies the differential equation $\left(\frac{dy}{dx}\right) = xy - y$ 1 + x - y; y(0) = 0
 - a) y(1) = 1
 - b) $y(1) = e^{\frac{1}{2}} 1$
 - c) $y(1) = e^{\frac{1}{2}} e^{-\frac{1}{2}}$
 - d) $v(1) = e^{-\frac{1}{2}} 1$
- 2) The system of equations kx + y + z = 1, x + ky + z = 1z = k and $x + y + zk = k^2$ has no solution if k is equal to
 - a) -2
 - b) -1
 - c) 1
 - d) 0
- 3) The value of $4 + \frac{1}{5 + \frac{1}{4 + \frac{1}{5 + \frac{1}{4 + \dots \infty}}}}$

 - a) $2 + \left(\frac{4}{\sqrt{5}}\right) \left(\sqrt{30}\right)$ b) $4 + \left(\frac{4}{\sqrt{5}}\right) \left(\sqrt{30}\right)$

 - c) $2 + \left(\frac{2}{5}\right) \left(\sqrt{30}\right)$ d) $5 + \left(\frac{2}{5}\right) \left(\sqrt{30}\right)$
- 4) If the Boolean expression $(p \implies q) \Leftrightarrow$ $(q*(\sim p))$ is a tautology, then the Boolean expression $p * (\sim q)$ is equivalent to:
 - a) $p \implies \sim q$
 - b) $p \implies q$
 - c) $q \implies p$
 - d) $\sim q \implies p$
- 5) Choose the incorrect statement about the two circles whose equations are given below: x^2 + $y^2 - 10x - 10y + 41 = 0$ and $x^2 + y^2 - 16x - 10x - 10x$ 10y + 80 = 0
 - a) Distance between two centres is the average radii of both the circles
 - b) Circles have two intersection points
 - c) Both circles centres lie inside the region of one another

d) Both circles pass through the centre of each other

1

- 6) The sum of possible values of x for $\tan^{-1}(x+1) + \cot^{-1}\left(\frac{1}{(x-1)}\right) = \tan^{-1}\left(\frac{8}{31}\right)$ is:

 - a) $-\frac{33}{4}$ b) $-\frac{32}{4}$ c) $-\frac{31}{4}$ d) $-\frac{30}{4}$
- 7) Let $\mathbf{a} = 2i 3j + 4k, \mathbf{b} = 7i + j 6k$. If $\mathbf{rXa} = \mathbf{rXb}, \mathbf{r}.(i+2j+k) = -3$, then ${\bf r}.(2i-3j+k) = {\bf is} {\bf equal} {\bf to}$
 - a) 10
 - b) 13
 - c) 12
 - d) 8
- 8) The equation of the plane which contains the y - axis and passes through the point (1, 2, 3)is:
 - a) 3x + z = 6
 - b) 3x z = 0
 - c) x + 3z = 10
 - d) x + 3z = 0
- 9) If $A = \begin{pmatrix} 0 & \sin \alpha \\ \sin \alpha & 0 \end{pmatrix}$ and $\det(A^2 (\frac{1}{2})I) =$ 0,then a possible value of a is:

 - a) $\frac{\pi}{6}$ b) $\frac{\pi}{2}$ c) $\frac{\pi}{3}$ d) $\frac{\pi}{4}$
- 10) The line 2x-y+1=0 is a tangent to the circle at the point (2,5) and the centre of the circle lies on x-2y=4. Then, the radius of the circle is:
 - a) $4\sqrt{5}$
 - b) $3\sqrt{5}$
 - c) $5\sqrt{3}$
 - d) $5\sqrt{4}$

- 11) Team **A** consists of 7 boys and *n* girls and Team **B** has 4 boys and 6 girls. If a total of 52 single matches can be arranged between these two teams when a boy plays against a boy and a girl plays against a girl, then *n* is equal to
 - a) 5
 - b) 6
 - c) 2
 - d) 4
- 12) In a triangle PQR, the coordinates of the points P and Q are (-2, 4) and (4, -2) respectively. If the equation of the perpendicular bisector of PR is 2x y + 2 = 0, then the centre of the circumcircle of the $\triangle PQR$ is:
 - a) (-2, -2)
 - b) (0,2)
 - c) (-1,0)
 - d) (1,4)
- 13) If $\cot^{-1}(a) = \cot^{-1}(2) + \cot^{-1}(8) + \cot^{-1}(18) + \cot^{-1}(32)...$ upto 100 terms, then a is:
 - a) 1.03
 - b) 1.00
 - c) 1.01
 - d) 1.01
- 14) Which of the following statements is incorrect for the function g(a) for $a \in \mathbf{R}$ such that $g(a) = \int_{\frac{\pi}{3}}^{\frac{\pi}{6}} \frac{\sin^a x}{(\cos^a x + \sin^a x)} dx$
 - a) g(a) is a strictly decreasing function
 - b) g(a) has an inflexion point a $a = \frac{-1}{2}$
 - c) g(a) is an even function
 - d) g(a) is a strictly increasing function
- 15) If the fourth term in the expansion of $(x + x^{\log_2 x})^7$ is 4480, then the value of x where $x \in N$ is equal to:
 - a) 4
 - b) 3
 - c) 2
 - d) 1