가톨릭대학교 바이오 데이터 엔지니어 양성사업

Principles of targeted sequencing analysis (Mutation and Copy number alternations)

Terms

Mutation

permanent inheritable change in DNA base sequence

Variants/Mutation/Polymorphism

Variant: broadest term

Polymorphism: common (>1%) variants in populations

Mutation: rare (<1%) variants in populations

Driver mutation

Genetic change that give selective advantage to clones during cancer development

Passenger mutations

Genetic change that do not confer any selective advantage in cancer development

Germline mutations

Mutations in germ cells that are inheritied

Somatic mutations

Mutations in non-germ cells that are acquired as oppsed to inheritied

Terms

Base substitutions / insertion and deletions / structrual variations

Base substitutions: A type of mutation in which one base is replaced by another **Insertions and deletions (Indels):** A type of mutation that arises from the insertion or deletion of one or more nucleotides

Structural variations: Large-scale genomic changes (typically >1kb) such as deletions, tandem duplications, amplifications, inversions and translocations.

Copy number variation/alternations

- : Phenomenon in which sections of the genome (>1kb) are repeated and the number of repeats in the genome varies between individuals
- : Difference between variants/alternations similar to polymorphism/mutations
- → further classified as amplification (> 3 copies), gain, neutral (2), loss, deletion (0)

Loss of heterozygosity (LOH)

Loss of heterozygosity is defined as the loss of one parent's contribution to the cell and can be caused by deletion, or others (not equal to loss)

Allelic imbalance (Al)

Phenomenon where the two alleles of a given gene are differentially expressed

Classification of mutations

Principle of mutation

Rare event == Likely to be more pathogenic Polymorphism: different between populations (ExAC, gnomAD east asian)

(Procto)oncogene: with hotspot (ex BRAF V600E residue)
Tumor suppressor gene: without hotspot (ex TP53)
Two-hit hypothesis (The Knudson hypothesis): two hits required for cancer in TSG

Possible normal cell contamination in tumor (more likely)
Possible tumor cell contamination in normal (less likely)
Normal sample is in needed for genotype, which could be revealed in low depth

VAFs(Variants allele fraction): read counts supporting variants / total read counts VAFs can be affected by tumor purity, clonal evolution, CNV status CCF(cancer cell fraction) inferred by VAFs after adjusting purity and CNV Clonal (all/most of tumor cells have mutation), Subclonal (Not all)

FFPE (False C>T at low VAFs), cfDNA (Very low VAFs)

Principle of mutation

Recurrent gene mutations in study or in DB== Likely driver mutation But by not only simpe mutation counts (gene length, methylation, ...)

MutSig builds a model of the background mutation processes (BMR) that were at work during formation of the tumors, and it analyzes the mutations of each gene to identify genes that were mutated more often than expected by chance, given the background model.

MutSigCV (CV for 'covariate') improves the BMR estimation by pooling data from 'neighbor' genes with similar genomic properties such as DNA replication time, chromatin state (open/closed), and general level of transcription activity.

Principle of mutation

Tumor purity: fraction of cancer cells within sample

Read depth: read count at specific locus

VAFs: read counts supporting variants / total read counts

If tumor purity 100% and no CNAs, VAF will be 50%

Clinical implications

Omic feature	Time of aberration discovery	Clinical setting	Analyte	Analysis	Treatment implication	Time of implementation of first targeted therapy
BCR-ABL translocation	197341	Chronic myeloid leukaemia, acute lymphoblastic leukaemia	DNA, RNA	PCR (translocation)	Imatinib, dasatinib, nilotinib	200142
BCR-ABL imatinib resistance mutation	2002119	Chronic myeloid leukaemia	DNA	Sequencing (point mutation)	Dasatinib, nilotinib	2006 ¹²⁰
PML-RAR translocation	1990121	Acute promyelocytic leukaemia	DNA	PCR (translocation)	All trans retinoic acid	1987122
KIT mutation	2001123	Gastrointestinal stromal tumour	DNA	Sequencing	Imatinib	2001123
HER2 amplification	1985124	Breast cancer, gastric cancer	Tissue	Fluorescence in situ hybridization, immunohistochemistry	Trastuzumab, lapatinib, pertuzumab	2001 ¹²⁵
Oestrogen or progesterone receptors	1896126	Breast cancer	Tissue	Immunohistochemistry	Multiple hormonal-based therapies (for example, aromatase inhibitors)	1896 (oophorectomy) ¹²⁶
EGFR mutation	2004 ⁷⁶	Non-small-cell lung cancer	DNA	Sequencing or PCR (point mutations)	Erlotinib, gefitinib	2003127
ALK fusion gene	2007 ⁴⁴	Non-small-cell lung cancer	DNA	Fluorescence in situ hybridization (break apart)	Crizotinib	2010 ⁴³
BRAF mutation	2001128	Melanoma	DNA	Sequencing or PCR (point mutations)	Vemurafenib	2011129
KRAS mutation	1987130	Colorectal cancer	DNA	Sequencing or PCR (point mutations)	Withhold cetuximab or panitumumab	2006131

Mutations / CNAs / Fusions : all events might be clinically applicable

Cancer genetics (PCAWG paper)

Del-T

Ins-C

■CC>TT ■TT ■TG

CC>other Other

■ T>G ■ C>T

Cancer genetics (PCAWG paper)

Driver mutational profiles differ between disease types Most events occurred in coding region (not in TERT)

Cancer genetics (PCAWG paper)

Two-hit hypothesis (The Knudson hypothesis): two hits required for cancer in TSG genes altered as billallelic in most cases

Article

Pan-cancer analysis of whole genomes

https://doi.org/10.1038/s41586-020-1969-6 The ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium

Further reading (Nature, 2020) 수천cases, pan-cancer, WGS, ICGC/PCAWG

Sequencing of DNA

Targeted/WES/WGS

	Targeted	WES	WGS
Application	Mutation, CNAs (MSI, TMB)	Mutation, CNAs, Signature, MSI, TMB Purity, Telomere	WES applications + SVs (chromothripsis, translocation, fusion)
Mutation count	수~수십	수십~수천	수천~수십만
Target region	Various Less than 3Mb	3-6Mb	1Gb~3Gb
Sequencing	Various Less than 3Gb	About 10Gb	About 30Gb
Indication	cfDNA, small FFPE, Validation	Research standard Frozen/FFPE	Future standard Frozen Difficult to analysis and interpret
Kit	Ion AmpliSeq Celemics Kit SureSelectXT Target	Sureselect Exon V6	TruSeq DNA Nano
Cost	30만전후	80만전후	250만전후

Panel sequencing

Panel?

Which gene, mutation/CNAs, Hotspots/coding sequence

Pros

- 1. Focused on Clinically applicable information
- 2. Accuracy due to high read depth
- 3. High sensitivity detecting low VAF mutations
- 4. Small amount DNA available (10ng)
- 5. FFPE/Liquid biopsy available
- 6. Low cost
- 7. Faster Sequencing and Anlaysis

Panel sequencing only available (small sample, small FFPE, cfDNA,...)

Cons

mutation/CNAs only, outside panel unknown

Panel sequencing

J Mol Diagn. 2017 May;19(3):341-365

Panel sequencing

PCR based = Hybrid capture based (Tissue, FFPE, liquid biopsy)
PCR based > Hybrid capture based
PCR based < Hybrid capture based
PCR based > Hybrid capture based
PCR based < Hybrid capture based
PCR based < Hybrid capture based (Mutation, CNA) (Mutation, CNA, MSI test)
More prone to High off-target amplification error (?) (Large CNAs) (but more cose)

Low sample input amount = More amplification, high duplication rate = low read depth

Mutation

Mutation + CNA

CNA

NRAS, DDR2, IDH1, ROS1,
SMO, GNAQ, RET, HRAS,
MAP2K1, IDH2, GNA11,
MAP2K2, JAK3, MPL,
DNMT3A, XPO1, NFE2L2,
SF3B1, VHL, MYD88, RHOA,
CSF1R, NPM1, EZH2, ABL1,
NOTCH1, PLEKHS1, WDR74,
SDHD, PTPN11, POLE, FLT3,
TSHR, B2M, SPOP, SRC,
GNAS, U2AF1, MAPK1, ARAF,
MED12,

MTOR, JAK1, ALK, ERBB4,
RAF1, CTNNB1, PIK3CA,
FGFR3, PDGFRA, KIT, FGFR4,
ESR1, EGFR, MET, BRAF,
FGFR1, JAK2, FGFR2, KRAS,
ERBB3, CDK4, AKT1, ERBB2,
AR, MDM4, MLH1, KDR, TERT,
RAC1, AURKA

CDS + CNA

ARID1A, FBXW7, APC, CCND1, MYC, CDKN2A, PTEN, BRCA2, RB1, CDH1, TP53, BRCA1, SMAD4, STK11 MYCN, CDK6, MCL1, MDM2, NKX2-1, CCNE1, CDC274, PDCD1LG2, RPPH1, HS6ST3

* 비유전성 고형암 필수 유전자

Mutation annotation and prioritazation

Step1: Classify mutations into germline and somatic mutations

Step2: Annotate **somatic mutations** (add information) using webannovar http://wannovar.wglab.org/

Step3: Filter less likely somatic mutations (Filter subject to research objective) Population minor allele frequency > 0.1% (ExAC, gnomAD) Read counts < 20 (Normal or tumor) VAFs < 2-5%

Step4: Prioritize somatic mutations (to find putative driver mutations) COSMIC, cbioportal, oncokb, Polyphen-2, ClinVar,...

cfDNA/ctDNA

cfDNA
=cell-free DNA
: Degraded DNA
fragments released to
the blood plasma
: Including ctDNA

ctDNA =circulating tumor DNA :Tumor-derived fragmented DNA in the bloodstream

Ampliseq (1): Library preperation

Ampliseq (2): Templating and sequencing

Ion 520™ Chip 3-6 M reads Mean 150-200bp

Total: ~1Gb Loading with Ion Chef™

Key point for successful DNA sequencing study

DNA amount, Quality (DIN), Purity, Sample condition (FFPE, Thawing)

Table 1. The DIN and the sequencing quality criteria obtained for the six samples shown in Figure 3.

Sample	DIN	On-target rate % > 70 %	10x Coverage rate % > 90 %	Deduplication rate %	
1	4.1	79.7	98.6	66.0	
2	5.2	78.0	99.0	74.2	
3	5.0	80.7	98.1	87.1	
4	2.2	23.8	94.0	65.0	
5	2.9	51.5	97.7	95.7	
6	1.9	47.4	96.6	97.1	

Same amount, different depth False negative (esp. in low VAF) (DIN,conta) or false positive (Amp error)