GS543 Tutorial 5 Fortran Arrays Exercises

Single dimension Array

- Write down a Fortran program to choose maximum, minimum and mean values from one dimensional array?
- Write down a Fortran program to sorting one dimensional array? Hint: sorting refers to arranging data in ascending or descending order
- 3) Write a Fortran program to find the mean and standard deviation of n Number?

$$\sum_{i=1}^{n} a_i$$

Hint: mean= n where a be the n numbers

$$\sqrt{\frac{\sum_{i=1}^{n} a_{i}^{2}}{n} - (mean)^{2}}$$

Standard deviation=

4) Numerical differentiation: Consider the following function F(x) defined at the

followir	ng point	2	3	4	5	ک
X	0.1	0.2	0.3	0.4	0.5	0.6
F(x)	1.7	1.92	1.94	1.97	2.214	2.32

Multi-dimension Array

5) Write a Forman Programs-

- $f_i^0 = \frac{f_{i+1} f_i}{a_{i+1} a_i}$
- O To display the transpose of the given matrix? o To find row sums of M X N matrix?
- To find the sum of the diagonal entries of square matrix?
- O To subtract matrix A from another matrix B of the same order?
- To find the sum of the diagonal entries of square matrix?
- To find the number of positive number of M X N matrix?

$$Q = \begin{bmatrix} 10.2 \\ 20.1 \\ 0.0 \\ -10.1 \\ 30.6 \\ 4.5 \\ 3 & 6 \end{bmatrix}$$

$$Q = \begin{bmatrix} 10.2 \\ 20.1 \\ 30.6 \\ 4.5 \\ 3 & 6 \end{bmatrix}$$

$$Q = \begin{bmatrix} 10.2 \\ 3.85 \\ 3 & 6 \end{bmatrix}$$

$$Q = \begin{bmatrix} 10.2 \\ 3.85 \\ 3 & 6 \end{bmatrix}$$

$$Q = \begin{bmatrix} 10.2 \\ 3.85 \\ 3 & 6 \end{bmatrix}$$

$$Q = \begin{bmatrix} 10.2 \\ 3.85 \\ 3 & 6 \end{bmatrix}$$

$$Q = \begin{bmatrix} 10.2 \\ 3.85 \\ 3 & 6 \end{bmatrix}$$

$$Q = \begin{bmatrix} 10.2 \\ 3.85 \\ 3 & 6 \end{bmatrix}$$

$$Q = \begin{bmatrix} 10.2 \\ 3.85 \\ 3 & 6 \end{bmatrix}$$

$$Q = \begin{bmatrix} 10.2 \\ 3.85 \\ 3 & 6 \end{bmatrix}$$

$$Q = \begin{bmatrix} 10.2 \\ 3.85 \\ 3 & 6 \end{bmatrix}$$

$$Q = \begin{bmatrix} 10.2 \\ 3.85 \\ 3 & 6 \end{bmatrix}$$

$$Q = \begin{bmatrix} 10.2 \\ 3.85 \\ 3 & 6 \end{bmatrix}$$

$$Q = \begin{bmatrix} 10.2 \\ 3.85 \\ 3 & 6 \end{bmatrix}$$

$$Q = \begin{bmatrix} 10.2 \\ 3.85 \\ 3 & 6 \end{bmatrix}$$

$$Q = \begin{bmatrix} 10.2 \\ 3.85 \\ 3 & 6 \end{bmatrix}$$

$$Q = \begin{bmatrix} 10.2 \\ 3.85 \\ 3 & 6 \end{bmatrix}$$

$$Q = \begin{bmatrix} 10.2 \\ 3.85 \\ 3 & 6 \end{bmatrix}$$

$$Q = \begin{bmatrix} 10.2 \\ 3.85 \\ 3 & 6 \end{bmatrix}$$

$$Q = \begin{bmatrix} 10.2 \\ 3.85 \\ 3 & 6 \end{bmatrix}$$

$$Q = \begin{bmatrix} 10.2 \\ 3.85 \\ 3 & 6 \end{bmatrix}$$

$$Q = \begin{bmatrix} 10.2 \\ 3.85 \\ 3 & 6 \end{bmatrix}$$

$$Q = \begin{bmatrix} 10.2 \\ 3.85 \\ 3 & 6 \end{bmatrix}$$

$$Q = \begin{bmatrix} 10.2 \\ 3.85 \\ 3 & 6 \end{bmatrix}$$

$$Q = \begin{bmatrix} 10.2 \\ 3.85 \\ 3 & 6 \end{bmatrix}$$

$$Q = \begin{bmatrix} 10.2 \\ 3.85 \\ 3 & 6 \end{bmatrix}$$

$$Q = \begin{bmatrix} 10.2 \\ 3.85 \\ 3 & 6 \end{bmatrix}$$

$$Q = \begin{bmatrix} 10.2 \\ 3.85 \\ 3 & 6 \end{bmatrix}$$

$$Q = \begin{bmatrix} 10.2 \\ 3.85 \\ 3 & 6 \end{bmatrix}$$

$$Q = \begin{bmatrix} 10.2 \\ 3.85 \\ 3 & 6 \end{bmatrix}$$

$$Q = \begin{bmatrix} 10.2 \\ 3.85 \\ 3 & 6 \end{bmatrix}$$

$$Q = \begin{bmatrix} 10.2 \\ 3.85 \\ 3 & 6 \end{bmatrix}$$

$$Q = \begin{bmatrix} 10.2 \\ 3.85 \\ 3 & 6 \end{bmatrix}$$

$$Q = \begin{bmatrix} 10.2 \\ 3.85 \\ 3 & 6 \end{bmatrix}$$

$$Q = \begin{bmatrix} 10.2 \\ 3.85 \\ 3 & 6 \end{bmatrix}$$

$$Q = \begin{bmatrix} 10.2 \\ 3.85 \\ 3 & 6 \end{bmatrix}$$

$$Q = \begin{bmatrix} 10.2 \\ 3.85 \\ 3 & 6 \end{bmatrix}$$

$$Q = \begin{bmatrix} 10.2 \\ 3.85 \\ 3 & 6 \end{bmatrix}$$

$$Q = \begin{bmatrix} 10.2 \\ 3.85 \\ 3 & 6 \end{bmatrix}$$

$$Q = \begin{bmatrix} 10.2 \\ 3.85 \\ 3 & 6 \end{bmatrix}$$

$$Q = \begin{bmatrix} 10.2 \\ 3.85 \\ 3 & 6 \end{bmatrix}$$

$$Q = \begin{bmatrix} 10.2 \\ 3.85 \\ 3 & 6 \end{bmatrix}$$

$$Q = \begin{bmatrix} 10.2 \\ 3.85 \\ 3 & 6 \end{bmatrix}$$

$$Q = \begin{bmatrix} 10.2 \\ 3.85 \\ 3 & 6 \end{bmatrix}$$

$$Q = \begin{bmatrix} 10.2 \\ 3.85 \\ 3 & 6 \end{bmatrix}$$

$$Q = \begin{bmatrix} 10.2 \\ 3.85 \\ 3 & 6 \end{bmatrix}$$

$$Q = \begin{bmatrix} 10.2 \\ 3.85 \\ 3 & 6 \end{bmatrix}$$

$$Q = \begin{bmatrix} 10.2 \\ 3.85 \\ 3 & 6 \end{bmatrix}$$

$$Q = \begin{bmatrix} 10.2 \\ 3.85 \\ 3 & 6 \end{bmatrix}$$

$$Q = \begin{bmatrix} 10.2 \\ 3.85 \\ 3 & 6 \end{bmatrix}$$

$$Q = \begin{bmatrix} 10.2 \\ 3.85 \\ 3 & 6 \end{bmatrix}$$

$$Q = \begin{bmatrix} 10.2 \\ 3.85 \\ 3 & 6 \end{bmatrix}$$

$$Q = \begin{bmatrix} 10.2 \\ 3.85 \\ 3 & 6 \end{bmatrix}$$

$$Q = \begin{bmatrix} 10.2 \\ 3.85 \\ 3 & 6 \end{bmatrix}$$

$$Q = \begin{bmatrix} 10.2 \\ 3.85 \\ 3 & 6 \end{bmatrix}$$

$$Q = \begin{bmatrix} 10.2 \\ 3.85 \\ 3 & 6 \end{bmatrix}$$

$$Q = \begin{bmatrix} 10.2 \\ 3.85 \\ 3 & 6 \end{bmatrix}$$

$$Q = \begin{bmatrix} 10.2 \\ 3.85 \\ 3 & 6 \end{bmatrix}$$

$$Q = \begin{bmatrix} 10.2 \\ 3.85 \\ 3 & 6 \end{bmatrix}$$

$$Q = \begin{bmatrix} 10.2 \\ 3.85 \\ 3 & 6 \end{bmatrix}$$

$$Q = \begin{bmatrix} 10.2 \\ 3.85 \\ 3 & 6 \end{bmatrix}$$

$$Q = \begin{bmatrix} 10.2 \\ 3.85 \\ 3 & 6 \end{bmatrix}$$

$$Q = \begin{bmatrix} 10.2 \\ 3.85 \\ 3 & 6 \end{bmatrix}$$

$$Q = \begin{bmatrix} 10.2 \\ 3.85 \\ 3 & 6 \end{bmatrix}$$

$$Q = \begin{bmatrix} 10.2 \\ 3.85 \\ 3 & 6 \end{bmatrix}$$

$$Q = \begin{bmatrix} 10.2 \\ 3.85 \\ 3 & 6 \end{bmatrix}$$

$$Q = \begin{bmatrix} 10.2 \\ 3.85 \\ 3 &$$