ECSE-211 Design Principles and Methods

Lecture 3: How Does It All Start? Inputs and the Requirements Document

Date: 16 January 2023

1

Review - Last lecture

- The needs of the EDP concept of Design Space and mapping between input and output parameters
- The definition of a "Model"
- The System Model
- As design detail increases, there is a need for component models
- Questions?
- The need to understand the problem the requirements

The V-Cycle — Starting with Customer Requirements

Outcomer Needs

Outcomer Ne

л

Contents

- Why is Design Difficult?
- The Model of the Engineering Design Process
- Inputs to the Model
- Outputs of the First Step

5

Why is Design Difficult?

- Consider the following:
 - Typical engineering problem:

Three classes of problem can be derived from this diagram:

- Given x and F(x) determine y Analysis for the set of inputs what will the system do?
 - Conventional "Easy"

Why is Design Difficult?

• Typical engineering problem:

Computer Simulation The DIGITAL TWIN?

Three classes of problem can be derived from this diagram:

• Given x and F(x) determine y – Analysis – for the set of inputs what will the system do?

• Conventional – "Easy"

• If we have an analytical model, this is "simple" to solve

The V-Cycle — Starting with Customer

Requirements

Verification

Requirements

Analysis

Design/Synthesis

Image courtesy of Morgan Jenkins, Siemens DISW

The V-Cycle — Starting with Customer

Requirements

Product

Pr

The Model of the Engineering Design Process · At any stage, a Validate and Verify physical prototype User Production could be implemented Requirements System but... · The costs are high System Physical • If the prototype fails, it Model System is difficult to modify Validate Test In DPM, the physical Physical Component implementation is at Components the component design level **Digital Twin**

System

Physical

Digital Twin

Test

The Model of the Engineering Design Process • Note that each block of the cycle is an atomic design iteration Validate and Verify Production System Requirements System Requirements System Requirements

Model

Component

Models

Validate

15

The Model of the Engineering Design Process Note that each block Validate and Verify of the cycle is an User Production Requirements atomic design iteration Verifying the System requirements is a Model "test" Validate Exit the stage only Component Iterate for compatibility when the Models "Requirements Gap" is effectively zero

The Model of the Engineering Design Process

- Each step has
 - · a defined set of inputs
 - · A defined set of outputs
 - The output of one step is the input to the next
 - · At each step a validation is needed
- This is a control problem
 - The "plant" in this case is the Design Team
 - The job of the Design Team is to generate the output of the step

17

Inputs to the First Step

• The User or System Requirements
• This describes the problem
• this could be a description of the needs in written form
• This could be a verbal description from a discussion

User
Requirements

A Typical DPM Needs Document

- The final DPM design project is typically described in the form of a "game" with a set of rules
- The rules define what the design solution must achieve
- The rules also define constraints both on the solution and in the space where the game is played...

21

A Typical Project Description

The game is played in a constrained space:

A Typical Project Description

- The text of the project description contains information on the rules and constraints of the game..
 - (see edited document)
- The text needs to be read carefully and the main issues identified
 - These will form the basis of the Requirements
 - The issues can be translated into a list of Requirements
 - Constraints can also be identified and added to the Requirements
 - Are there questions?
 - These need to be clarified with the client possibly leading to a revision of the description
 - (see highlighted document)

23

Generate the Requirements Document

- From the description and the answers to questions, a Requirements Document can be created
- This Document is the starting point for the discussions on the potential solutions
- This should
 - Address the main goals to be achieved by the solution
 - Describe any constraints on the solution imposed by the Description
 - These could be performance e.g. time limits on the game
 - They could be physical structures e.g. limited number of Lego components and capabilities of those components
 - They could be Software constraints e.g. limitations on architecture imposed by processor capabilities.

Generate the Requirements Document

- Once an initial Requirements Document is completed it should be
 - Validated against the Client Description by an in depth review with the Client
- Note this document will be under constant revision as decisions are validated and the client is consulted.. It is not complete until the design is complete

25

Outputs of the first step

- The main output is the Requirements Document
- The need for documents and their structure will be discussed in the next lecture
- This is followed by the development of a System Model.

Summary

- We have:
 - Considered why Design is a difficult problem
 - There is no unique solution
 - Revisited the Engineering Design Process and considered the iterations needed at each step to validate the step
 - Discussed the Inputs to the First Step (often referred to as "Identification") in terms of a client description of a problem
 - Examined the extraction of Requirements from the Description
 - The result is a Requirements Document which is continually revised through the design process
 - The Requirements are Validated against the Description
 - Recognized that the Requirements form the input to the generation of a System Model – which can then be validated against the client Description

