$$V(A) = \frac{1}{2} \left(\frac{1}{3} \cdot \frac{1}{3$$

$$G_1 = 3 + 2 - 4 + 4 - 3 = 2$$
 $G_2 = 3 - 3 = 0$

$$v(B) = \frac{1}{2} [G_1 + G_2].$$

$$G_1 = -4+4-3=-3$$
 $G_2 = -2+3-3=-2$

每次治河的蒙特卡洛顿测:

$$\gamma(A) = \frac{1}{4}(G_1 + G_2 + G_3 + G_4)$$

$$G_1 = 3+2-4+4-3=2$$
 $G_2 = 2-4+4-3=4$ $G_3 = 4-3=1$ $G_4 = 3-3=0$

$$G_1 = -4+4+3=3$$
 $G_2 = -3$ $G_3 = -2+3-3=-2$. $G_4 = -3$.

(2).
$$R_A = \frac{1}{4}(3+2+4+3) = 3$$
 $R_B = \frac{1}{4}(-4-3-2-3) = -3$

$$R_{B} = \frac{1}{4}(-4-3-2-3) = -3$$

坟马尔可夫回报走程图应为:

$$\begin{bmatrix}
V_{A} \\
V_{B} \\
V_{t}
\end{bmatrix} = \begin{bmatrix}
R_{A} \\
R_{B} \\
R_{t}
\end{bmatrix} + r \cdot P \cdot \begin{bmatrix}
V_{A} \\
V_{B} \\
V_{t}
\end{bmatrix}$$

から後かけ)=0

4.
(1)、 5, 2 4 3:
$$4 \rightarrow 5$$
: $v(4) = v(4) + \alpha (R_t + rV(5) - V(4))$
 $= 0.5(-1) = -0.5$

$$= 0.5(-1-0.5) = -0.75$$

$$4 \rightarrow 3$$
: $V(4) = V(4) + \alpha(R_t + rV(3) - V(4))$

$$= 0.5(-1) = -0.5$$

0	6	0
-0.5	-0.75	-0.75
0	0	0

(2)·SARSA等该与Q-learning等该在发写方式下结果相同。

$$Q(4,3) = Q(4,3) + \alpha(R_2 + rQ(7,4) - Q(4,3))$$

$$= -2 - 1 - 2 + 2 = -3$$
.

$$Q(7,4) = Q(7,4) + \alpha(R_3 + PQ(6,1) - Q(7,4))$$

$$= -2 - 1 - 2 + 2 = -3$$

$$Q(6,1) = Q(6,1) + A(R_4 + rQ(3,1) - Q(6,1))$$

$$= -2 - 1 - 1 + 2$$

$$= -2$$

$$S_5 = \text{term}$$
.

$$Q(3,1) = Q(3,1) + d(R_5 + rQ(term,a) - Q(3,1))$$

= -1 -1 +1

强之更新后的及表:

-4	-}	~1	-3	-4	-2	-4
-3	-3	-2	-4	-2	-3	-3
-4	-3	-4	-3	-2	-3	-4
-3	-2	-3	-3	-4	-3	-3