Algoritmos sobre secuencias y conjuntos de datos Algoritmos de ordenación

Alberto Valderruten

Dept. de Computación, Universidade da Coruña

alberto.valderruten@udc.es

Ordenación por Inserción (1)

```
procedimiento Ordenación por Inserción (var T[1..n])
    para i:=2 hasta n hacer
        x := T[i];
        j:=i-1;
        mientras j>0 y T[j]>x hacer
             T[j+1] := T[j];
             j:=j-1
        fin mientras:
        T[j+1] := x
    fin para
fin procedimiento
   peor caso: max i comparaciones para cada i \Rightarrow \sum_{i=2}^{n} i = \Theta(n^2)
   mejor caso: min 1 comparación para cada i (entrada ordenada) \Rightarrow \Theta(n)
   ¿caso medio?
```

 \Rightarrow Cota inferior (Ω) para los algoritmos de ordenación que

intercambian elementos adyacentes: inserción, selección, burbuja...

Ordenación por Inserción (2)

Observación: ¿Inserción intercambia elementos adyacentes?

→ abstracción

Sea T[1..n] la entrada del algoritmo:

Definición: *inversión*
$$\equiv$$
 cualquier (i,j) : $i < j \land T[i] > T[j]$

$$\rightarrow$$
 inversiones: $(3,1),(3,1),(3,2),...,(5,3)$

Sea *I* el número de inversiones: "medida del desorden"

En el ejemplo, I = 15

Intercambiar 2 elementos adyacentes elimina una inversión

En el ejemplo, $I = 15 \Rightarrow 15$ intercambios para ordenar

hasta $I = 0 \equiv \text{vector ordenado}$

$$\Rightarrow$$
 Inserción = $O(I+n)$

Ordenación por Inserción (3)

• Inserción =
$$\begin{cases} O(n) \text{ si } I = 0 \text{ (mejor caso) } \lor I = O(n) \text{ (*)} \\ O(n^2) \text{ si } I = O(n^2) \text{ (peor caso)} \end{cases}$$
(*) Nuevo resultado

 \Rightarrow ¿ I_{medio} en una permutación?

Teorema:
$$I_{medio} = n(n-1)/4$$

Demostración: sean T[1..n] el vector, $T_i[1..n]$ el vector *inverso*: cualquier (x, y) es inversión en T o en T_i

N° total de
$$(x, y)$$
 con $y > x$
= $(n-1) + (n-2) + ... + 1 = \sum_{i=1}^{n-1} i = n(n-1)/2$

equiprobabilidad \Rightarrow T_{medio} tiene la mitad de esas inversiones

$$\Rightarrow$$
 Caso medio de Inserción: $I = O(n^2) \Rightarrow T(n) = O(n^2)$

Ordenación por Inserción (4)

Teorema: cualquier algoritmo que ordene intercambiando elementos adyacentes requiere un tiempo $\Omega(n^2)$ en el caso medio.

Demostración:

$$I_{medio} = n(n-1)/4 = \Omega(n^2)$$

cada intercambio elimina sólo una inversión
 $\Rightarrow \Omega(n^2)$ intercambios

¿Cómo conseguir un trabajo $o(n^2) \equiv \neg \Omega(n^2) \equiv$ "bajar de n^2 "?

- Intercambiar elementos alejados
 - ⇒ deshacer varias inversiones a la vez:

Ordenación de Shell

Ordenación de Shell (1)

- 1er algoritmo de ordenación que baja de $O(n^2)$ en el peor caso
- Secuencia de *incrementos* ≡ distancias para intercambios: Naturales, ordenados descendentemente: $h_t, ... h_k, h_{k-1}, ... h_1 = 1$
- t iteraciones: en la iteración k utiliza el incremento h_k Postcondición = $\{ \forall i, T[i] \le T[i+h_k] \}$ \equiv los elementos separados por h_k posiciones están ordenados

 - \rightarrow vector h_k -ordenado

Trabajo de la iteración k: h_k ordenaciones por Inserción

Propiedad:

un vector h_k -ordenado que se h_{k-1} -ordena sigue estando h_k-ordenado

Problema: ¿secuencia óptima de incrementos? incrementos de Shell: $h_t = \lfloor n/2 \rfloor$, $h_k = \lfloor h_{k+1}/2 \rfloor$

Ordenación de Shell con incrementos de Shell

```
procedimiento Ordenación de Shell (var T[1..n])
    incremento := n;
    repetir
        incremento := incremento div 2:
       para i := incremento+1 hasta n hacer
           tmp := T[i];
            j := i;
            seguir := cierto;
            mientras j-incremento > 0 y seguir hacer
                si tmp < T[j-incremento] entonces</pre>
                   T[j] := T[j-incremento];
                    j := j-incremento
                sino sequir := falso ;
           T[i] := tmp
   hasta incremento = 1
fin procedimiento
```

Ordenación de Shell (3)

Otros incrementos también funcionan.

Ejemplo: $n = 13 \rightarrow 5, 3, 1$ en vez de Shell (6,3,1)

81	94	11	96	12	35	17	95	28	58	41	75	15
35	17	11	28	12	41	75	15	96	58	81	94	95
28	12	11	35	15	41	58	17	94	75	81	96	95
11	12	15	17	28	35	41	58	75	81	94	95	96
	81 35 28	81 94 35 17 28 12	81 94 11 35 17 11 28 12 11	81 94 11 96 35 17 11 28 28 12 11 35	81 94 11 96 12 35 17 11 28 12 28 12 11 35 15	81 94 11 96 12 35 35 17 11 28 12 41 28 12 11 35 15 41	81 94 11 96 12 35 17 35 17 11 28 12 41 75 28 12 11 35 15 41 58	81 94 11 96 12 35 17 95 35 17 11 28 12 41 75 15 28 12 11 35 15 41 58 17	35 17 11 28 12 41 75 15 96 28 12 11 35 15 41 58 17 94	81 94 11 96 12 35 17 95 28 58 35 17 11 28 12 41 75 15 96 58 28 12 11 35 15 41 58 17 94 75	81 94 11 96 12 35 17 95 28 58 41 35 17 11 28 12 41 75 15 96 58 81 28 12 11 35 15 41 58 17 94 75 81	81 94 11 96 12 35 17 95 28 58 41 75 35 17 11 28 12 41 75 15 96 58 81 94 28 12 11 35 15 41 58 17 94 75 81 96

• **Teorema**: Shell con incrementos de Shell es $\Theta(n^2)$ (peor caso).

Demostración:

1.
$$\partial \Omega(n^2)$$
?

 $n = 2^k \Rightarrow$ incrementos pares excepto el último (= 1)

Peor situación: los n/2 mayores están en las posiciones pares

Ejemplo (el más favorable dentro de ésta situación):

¿Más favorable? \rightarrow 8, 4 y 2-ordenado; todo el trabajo: 1-ordenar

Ordenación de Shell (4)

Demostración (cont.):

El *i*-ésimo menor está en la posición 2i - 1, $i \le n/2$

(ej: 8 en posición 15)

- \rightarrow hay que moverlo i-1 veces (ej: 8 \rightarrow 7 desplazamientos)
- \Rightarrow colocar menores: $\sum_{i=1}^{n/2} i 1 = \Omega(n^2)$
- 2. $\&O(n^2)$?

Trabajo realizado en iteración k con el incremento h_k :

 h_k ordenaciones por Inserción sobre n/h_k elementos cada una

$$= h_k O((n/h_k)^2) = O(h_k (n/h_k)^2) = O(n^2/h_k)$$

En el conjunto de iteraciones del algoritmo:

$$T(n) = O(\sum_{i=1}^{t} n^2/h_i) = O(n^2 \sum_{i=1}^{t} 1/h_i) = O(n^2)$$

Г

Observación 1: $\neq O(n^3)$ (\leftarrow "3 bucles anidados")

Observación 2: Bajar de $O(n^2)$ en peor caso? \rightarrow otros incrementos

Ordenación de Shell (5)

Otros incrementos:

incrementos	peor caso	caso medio
<i>Hibbard</i> : 1,3,7,2 ^k − 1	$\Theta(n^{3/2})$ (teo ^b)	$O(n^{5/4})$ (sim ^c)
Sedgewick ^a : 1,5,19,41,109	$O(n^{4/3})$ (sim ^c)	$O(n^{7/6})$ (sim ^c)

Tabla: Ordenación de Shell con distintos incrementos

Conclusión: código sencillo y resultados muy buenos en la práctica

^a varias secuencias de incrementos

^b demostración formal (teorema)

 $^{^{\}it c}$ comprobación empírica (simulaciones)

Ordenación por Montículos (heapsort)

```
procedimiento Ordenación por Montículos (var T[1..n])
   Crear montículo (T, M);
   para i := 1 hasta n hacer
        T[n-i+1] := Obtener mayor valor (M);
        Eliminar mayor valor (M)
   fin para
fin procedimiento
```

Para crear un montículo a partir de un vector:

```
procedimiento Crear montículo (V[1..n], var M)
{ V[1..n]: entrada: vector con cuyos datos se construirá el montículo
M: entrada/salida: montículo a crear }
   Copiar V[1..n] en M[1..n];
   para i := n div 2 hasta 1 paso -1 hacer
        hundir(M,i)
   fin para
fin procedimiento
```

Ordenación por Montículos (2)

- ¿Cómo mejorar la complejidad espacial (y algo T(n))?
 - → utilizar la misma estructura. Ejemplo:

entrada	4	3	7	9	6	5	8
Crear Mont.	9	6	8	3	4	5	7
Eliminar(9)	8	6	7	3	4	5	9
Eliminar(8)	7	6	5	3	4	8	9
Eliminar(7)	6	4	5	3	7	8	9
Eliminar(6)	5	4	3	6	7	8	9
Eliminar(5)	4	3	5	6	7	8	9
Eliminar(4)	3	4	5	6	7	8	9
Eliminar(3)	3	4	5	6	7	8	9
,							

Teorema: La ordenación por montículos es O(nlogn)
 Demostración:

Crear Montículo es O(n), y n Eliminar es O(nlogn)

 Observación: Incluso en el peor caso es O(nlogn), pero en la práctica es más lento que Shell con incrementos de Sedgewick.

Ordenación por Fusión: procedimiento Fusión

```
procedimiento Fusión ( var T[Izda..Dcha], Centro:Izda..Dcha )
{fusiona los subvectores ordenados T[Izda..Centro] y T[Centro+1..Dcha] en
en T[Izda..Dcha], utilizando un vector auxiliar Aux[Izda..Dcha]}
   i := Izda ; j := Centro+1 ; k := Izda ;
   {i, j y k recorren T[Izda..Centro], T[Centro+1..Dcha]
    y Aux[Izda..Dcha] respectivamente}
   mientras i <= Centro y j <= Dcha hacer
        si T[i] <= T[j] entonces Aux[k] := T[i] ; i := i+1</pre>
        sino Aux[k] := T[j] ; j := j+1 ;
       k := k+1 :
    {copia elementos restantes del subvector sin recorrer}
   mientras i <= Centro hacer
       Aux[k] := T[i] ; i := i+1 ; k := k+1 ;
   mientras j <= Dcha hacer
       Aux[k] := T[j] ; j := j+1 ; k := k+1 ;
   para k := Izda hasta Dcha hacer
       T[k] := Aux[k]
fin procedimiento
```

Ordenación por Fusión (2)

- mergesort
- O bien, ordenación por intercalación.
- Utiliza un algoritmo de Fusión de un vector cuyas mitades están ordenadas para obtener un vector ordenado.
- El procedimiento Fusión es lineal (n comparaciones).
- Ordenación: algoritmo Divide y Vencerás
 - Divide el problema en 2 mitades, que
 - se resuelven recursivamente;
 - Fusiona las mitades ordenadas en un vector ordenado.
- Mejora: Ordenación por Inserción para vectores pequeños:
 - n < umbral, que se determina empíricamente.

Ordenación por Fusión (3)

```
procedimiento Ordenación por Fusión Recursivo ( var T[Izda..Dcha] )
    si Izda+UMBRAL < Dcha entonces
        Centro := ( Izda+Dcha ) div 2 ;
        Ordenación por Fusión Recursivo ( T[Izda..Centro] ) ;
        Ordenación por Fusión Recursivo ( T[Centro+1..Dcha] ) ;
        Fusión ( T[Izda..Dcha], Centro )
        sino Ordenación por Inserción ( T[Izda..Dcha] )
    fin procedimiento

procedimiento Ordenación por Fusión ( var T[1..n] )
        Ordenación por Fusión Recursivo ( T[1..n] );
fin procedimiento</pre>
```

Ordenación por Fusión (4)

• Análisis de la versión puramente recursiva (UMBRAL = 0): $T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + O(n) \text{ (Fusión)}$ $n = 2^k \Rightarrow \begin{cases} T(1) = O(1) = 1 \\ T(n) = 2T(n/2) + O(n) = 2T(n/2) + n, n > 1 \end{cases}$ Teorema Divide y Vencerás: $I = 2, b = 2, c = 1, k = 1, n_0 = 1$ caso $I = b^k \Rightarrow T(n) = \Theta(n\log n)$

- Podría mejorarse la complejidad espacial (= 2n: vector auxiliar)
 → El algoritmo adecuado es quicksort
- Observación:

Importancia de *balancear* los subcasos en Divide y Vencerás: Si llamadas recursivas con vectores de tamaño n-1 y 1 $\Rightarrow T(n) = T(n-1) + T(1) + n = O(n^2)$

... pero ya no sería Ordenación por Fusión.

Ordenación Rápida (quicksort) [Hoare]

- Paradigma de Divide y Vencerás.
 Con respecto a Fusión:
 - más trabajo para construir las subinstancias (pivote...),
 - pero trabajo nulo para combinar las soluciones.
- Selección del pivote en T[i..j]:
 - Objetivo: obtener una partición lo más balanceada posible
 - ⇒ ¿Mediana? Inviable
 - Usar el primer valor del vector (T[i]):
 - Ok si la entrada es aleatoria.
 - Pero elección muy desafortunada con entradas ordenadas o parcialmente ordenadas (caso bastante frecuente)
 - $\rightarrow O(n^2)$ para no hacer nada...
 - Usar un valor elegido al azar (pivote aleatorio):
 - Más seguro, evita el peor caso detectado antes, pero depende del generador de números aleatorios (eficiencia vs. coste).
 - Usar la mediana de 3 valores: T[i], T[j], T[(i+j)div2]

Ordenación Rápida (2)

• Selección del pivote (cont.): Mediana de T[i], T[j], T[(i+j)div2]

```
procedimiento Mediana 3 ( var T[i..j] )
    centro := ( i+j ) div 2 ;
    si T[i] > T[centro] entonces intercambiar ( T[i], T[centro] ) ;
    si T[i] > T[j] entonces intercambiar ( T[i], T[j] ) ;
    si T[centro] > T[j] entonces intercambiar ( T[centro], T[j] ) ;
    intercambiar ( T[centro], T[j-1] )

fin procedimiento
```

III procedimiento

Estrategia de partición:

 $Ejemplo: \rightarrow Hip \acute{o}tesis: sin \ duplicados$

entrada	8	1	4	9	6	3	5	2	7	0	
Mediana 3	0	1	4	9	7	3	5	2	6	8	

Ordenación Rápida (3)

```
procedimiento Qsort ( var T[i..i] )
    si i+UMBRAL <= j entonces</pre>
       Mediana 3 ( T[i..j] ) ;
       pivote := T[j-1]; k := i ; m := j-1; {sólo con Mediana 3}
       repetir
           repetir k := k+1 hasta T[k] >= pivote ;
           repetir m := m-1 hasta T[m] <= pivote ;</pre>
           intercambiar ( T[k], T[m] )
       hasta m <= k ;
       intercambiar ( T[k], T[m] ); {deshace el último intercambio}
       intercambiar (T[k], T[j-1]); {pivote en posición k}
       Qsort ( T[i..k-1] ) ;
       Qsort (T[k+1..i])
fin procedimiento
procedimiento Quicksort ( var T[1..n] )
   Qsort ( T[1..n] ) ;
   Ordenación por Inserción ( T[1..n] )
fin procedimiento
```

Ordenación Rápida (4)

Estrategia de partición:

Ejemplo (Cont.):

entrada		8	1	4	9	6	3	5	2	7	0
Mediana 3		0	1	4	9	7	3	 5		6	8
iteración 1	_	0	1	4	2	7	3	5	9	6	8
iteración 2		0	1	4	2	5	3	7	9	6	8
iteración 3		0	1	4	2	5	7	3	9	6	8
corrección		0	1	4	2	5	3	7	9	6	8
final		0	1	4	2	5	3	6	9	7	8

- Observaciones sobre intercambiar:
 - Mejor deshacer un intercambio que incluir un test en el bucle
 - Evitar llamadas a funciones
- La estrategia de partición depende de la selección del pivote [Brassard & Bratley] → Mediana 3 sin sentido si UMBRAL < 3 (de hecho, el algoritmo propuesto falla; ejercicio: corregirlo)
- **Ejercicio**: escribir Quicksort con pivote aleatorio

Ordenación Rápida (5)

Considerar valores repetidos:

- \leftrightarrow ¿Parar o no parar cuando T[k] = pivote o T[m] = pivote?
 - Uno de los índices se detiene y el otro no:
 - ⇒ los valores idénticos al pivote van al mismo lado
 - ≡ desbalanceo

Caso extremo (*): todos los valores son idénticos $\Rightarrow O(n^2)$

⇒ Hacer lo mismo

- Parar los 2 índices: (*) \to muchos intercambios inútiles, pero los índices se cruzan en la mitad
 - \equiv partición balanceada, O(nlogn)
- No parar ninguno: (*) → evitar que sobrepasen [i..j], pero sobretodo no se produce ningún intercambio
 ≡ desbalanceo, O(n²)

Ordenación Rápida (6)

Vectores pequeños:

- Recursividad

 → muchas llamadas (en las hojas) con
 vectores pequeños, que serán mejor tratados por
 Inserción, si nos aseguramos que I es O(n).
- → Utilizar un umbral para determinar los casos base.
 Su valor óptimo se encuentra empíricamente:
 entre n = 12 y n = 15
- Otra mejora: hacer una única llamada a Inserción con todo el vector:
 - El / total es igual a la suma de los / locales.

Ordenación Rápida (7)

Análisis: pivote aleatorio y sin umbral

$$\Rightarrow \begin{cases} T(0) = T(1) = 1 \\ T(n) = T(z) + T(n-z-1) + cn, n > 1 \end{cases}$$

• Peor caso: p siempre es el menor o el mayor elemento

$$\Rightarrow T(n) = T(n-1) + cn, n > 1$$

\Rightarrow \left[T(n) = O(n^2) \right]

• Mejor caso: p siempre coincide con la mediana

$$\Rightarrow T(n) = 2T(n/2) + cn, n > 1$$
$$\Rightarrow T(n) = O(n\log n)$$

Ordenación Rápida (8)

- Análisis (Cont.):
 - Caso medio:

Sea z: tamaño de la parte izquierda; Cada valor posible para z (0,1,2,...,n-1)es equiprobable: p=1/n $\leftrightarrow T(z) = T(n-z-1) = 1/n\sum_{x=0}^{n-1} T(x)$ $\Rightarrow T(n) = 2/n[\sum_{x=0}^{n-1} T(x)] + cn, n > 1$ $\Rightarrow T(n) = O(nlogn)$ (cálculo similar al de la profundidad media de un ABB = O(logn))

- Algoritmos aleatorios: El peor caso ya no es una entrada particular, sino que depende de la secuencia de números aleatorios obtenida durante la ejecución.
 - ¿Mejor caso? ¿Caso medio?
 - ightarrow Otros problemas: calidad de los números aleatorios...

