Project #5: Poroelasticity

1) Biot coefficient determination

The file "BiotCoeffExperiment.xlsx" has data from a laboratory experiment on a reservoir sandstone that shows axial and radial deformations caused by alternating variations of confining stress and pore pressure.

- a. Plot pressure and stresses as a function of time.
- b. What is dP_c/dt and dP_p/dt ? If permeability is k = 100 mD and the fluid is water, would it be close to be undrained loading?
- c. Fit a straight line to the data to obtain a unique relationship between ϵ_{vol} and σ_{mean} (effective), and calculate the bulk Biot coefficient α .
- d. Plot together the volumetric strain with Terzaghi's and Biot's effective stresses.
- e. EXTRA: Use the theory of transverse isotropic poro-elasticity to figure out the stress paths needed to calculate α_h and α_v .

2) Depletion stress path

For this problem you have to use the geomechanical module of reservoir simulator CMG (https://www.cmgl.ca/). The software is available in PGE computer lab, 3rd floor in CPE. Non-PGE students may need authorization, please email John Cassibry (jcassibry@austin.utexas.edu). For additional help email Jeffery Luo (jefferyluo@utexas.edu).

- a. Review the files "CMG_Geomechanics_Tutorial.pdf" and "CMG_Running_InputFile.pdf"
- b. Change the vertical stress and well schedule as shown in the figure below (example files: Injection1.dat and Production1.dat)

- c. What is initial boundary condition in each direction? (i.e. constant stress or zero displacement)
- d. <u>Plot 1</u> Plot minimum principal total stress (Total stress I), vertical total stress (Total stress K), and pore pressure (Pressure) vs time. (**Note: Please remove initial data (time = 0) when you plot)
- e. Plot 2 Plot minimum principal stress (y-axis) vs pore pressure (x-axis), and verify the slope of the curve is similar with $\alpha \frac{(1-2\nu)}{(1-\nu)}$ (α is the Biot coefficient and ν is Poisson's ratio **Note: Please remove initial data (time = 0) when you plot pressure and stresses)
- f. Run the simulation again using Biot coefficient from the previous laboratory problem, repeat the question "d" using the new simulation result and plot on the same figure
- g. Plot the stress path with Mohr circles for the initial (0.1 days) and final time (100 days)
- h. Plot the stress path in the p'-q space for the same period of time.
- i. Plot the stress path of total stress as a function of pore pressure
- j. What would the minimum pressure to create a hydraulic fracture be at bottom-hole pressure BHP = 240 psi? Compare with the analytical solution.