DOCUMENTACIÓN GENERAL ENTORNO PARA LA GENERACIÓN DE ARCHIVOS DE MODFLOW

Jorge Antonio Matías López

DESCRIPCIÓN DEL ENTORNO

Las carpetas y archivos necesarios para ejecutar las funciones se encuentran en una carpeta llamada *Entorno*. Los directorios se distribuyen de la siguiente manera:

En la carpeta *Entorno* se localizan las carpetas para la gestión de entrada y salida de los archivos necesarios para ejecutar las diferentes funciones, así como el fichero *funciones.py* que contiene el código fuente con el que el entorno funciona por medio del notebook de Jupyter *Funciones.ipynb*, también contenido en este directorio.

Figura 1: Vista del directorio

Descripción de las carpetas contenidas en Entorno:

- Base de datos: En caso de requerir guardar datos sin el formato de entrada adecuado para ser utilizados, pueden ser almacenados en esta carpeta, así como otro tipo de información de utilidad.
- *docs*: En esta carpeta se encuentra la documentación que se tiene sobre el entorno y parámetros que conforman los archivos de Modflow
- *ob_hob*: Dentro contiene las carpetas para los archivos de entrada y salida que se requieren para la creación del archivo de observación .ob_hob
- *pesos*: Contiene las carpetas para los archivos de entrada y salida que se requieren para la creación del archivo de pesos en formato .txt
- *tob*: Contiene las carpetas para los archivos de entrada y salida que se requieren para la creación del archivo de observación de transporte en formato .tob

FORMATOS DE ENTRADA

A continuación se describen los formatos que deben tener los archivos de entrada para el correcto funcionamiento del código.

Observaciones de carga (HOB)

Para crear el archivo .ob_hob que requiere el modelo de Modflow es necesario colocar el archivo de datos de piezometría en el directorio *Entorno/ob_hob/piezometria/*, deberá contener los datos del 'ID' del pozo, coordenadas en UTM('X', 'Y'), y valores de carga piezométrica a lo largo de los años, en la hoja1. En la figura 2 se presenta un ejemplo.

Figura 2: Ejemplo del archivo de piezometría

Es importante verificar que los ID de cada pozo se encuentre definido con al menos un carácter alfabético, los datos nulos sean identificados y que no existan datos adicionales que no pertenezcan a los pozos.

Pesos

Para crear un fichero .txt con fines de calibración existen dos opciones: La primera es construir el fichero utilizando un archivo de Excel con los datos piezométricos y con los correspondientes pesos calculados para cargas y abatimientos. Este archivo se debe localizar dentro del directorio de datos completos (Entorno/pesos/datos/completo/).

Los datos de piezometría ('ID' del pozo, coordenadas en UTM('X', 'Y'), y valores de carga piezométrica) deben ubicarse en la antepenúltima hoja del documento(Fig 3).

4	A	В	С	D	E	F	G	н	1	J	K	L	M	N	0	Р	Q
1	ID	X	Y	1968	1969	1970	1971	1972	1973	1974	1975	1976	1977	1978	1979	1980	1981
2	CHA 77V	469805	2154260	ND	ND	ND	ND	ND	ND								
3	p2523	471893	2143741	ND	ND	ND	ND	ND	ND								
4	c137 B	472003	2159110	ND	ND	ND	ND	ND	ND								
5	cB 107	472293	2142272	ND	ND	ND	ND	ND	ND								
6	.BG-63	473494	2163998	ND	2285.11	ND	ND	2283.20	2283.71	2282.85	2281.99	2280.39	ND	2278.82	2277.81	ND	2275.77
7	cA 442	474038	2154497	ND	ND	ND	ND	ND	ND								
8	cB 333	474348	2143614	ND	ND	ND	ND	ND	2322.96								
9	CHER 1	474485	2147386	ND	ND	ND	ND	ND	ND								
10	cA 471	474937	2156068	ND	ND	ND	ND	ND	ND								
11	dSAT3	475099	2155865	ND	ND	ND	ND	ND	ND								
12	BG-60	475298	2164304	ND	2236.26	ND	ND	2235.66	2232.46	ND	2227.24	2228.71	ND	2235.39	2235.32	ND	2231.99
13	c136 B	475524	2160683	ND	ND	ND	ND	ND	ND								
14	dSAT8	475940	2155955	ND	ND	ND	ND	ND	ND								
15	s79	476079	2145573	ND	ND	ND	ND	ND	ND								
16	c102 B	476142	2134696	ND	ND	ND	ND	ND	2334.41								
17	s286	476178	2134095	ND	ND	ND	ND	ND	ND								
18	dSAT7	476546	2156501	ND	ND	ND	ND	ND	ND								
19	s80	476811	2147687	ND	ND	ND	ND	ND	ND								
20	d247CP	476834	2160656	ND	ND	ND	ND	ND	ND								
21	dSAT6	476895	2156973	ND	ND	ND	ND	ND	ND								
22	s294	476943	2133837	ND	ND	ND	ND	ND	ND								
23	cDX 96	477230	2152432	ND	ND	2186.00	ND	2185.12	ND	2183.14	2182.94	2182.53	ND	2184.97	2180.39	ND	2180.32
24	cBG 99V	477239	2160540	ND	ND	ND	ND	ND	ND								
25	c2788	477278	2139574	2230.84	ND	2236.84	2237.45	2237.50	2237.48	2239.66	2240.24	2241.13	ND	2240.19	2239.49	ND	2237.88
26	dSAT2	477297	2156705	ND	ND	ND	ND	ND	ND								
27	p2544	477402	2139777	ND	ND	ND	ND	ND	ND								

Figura 3: Piezometría

Los pesos para las cargas hidráulicas, los mantienen un formato similar a la hoja que contiene los datos de piezometría, con la diferencia que en el lugar de las cargas se encuentran los pesos calculados, pero conserva el 'ID' del pozo y las coordenadas en UTM('X', 'Y'). Estos pesos deben localizarse en la penúltima hoja del documento(Fig 4).

4	A	В	С	D	E	F	G	H	1	J	K	L	M	N
1	ID	Х	Υ	1984	1985	1986	1987	1988	1990	1991	1992	1993	1994	1995
2	cHA_77V	469805	2154260	6.37281897	6.37281977	6.37282068	6.37282169	6.37282281	6.37282536	6.3728268	6.37282834	6.37282999	6.37283175	6.37283361
3	p2523	471893	2143741	11.5764726	11.5609898	11.5458856	11.5306038	11.5153216	11.4848174	11.4695464	11.4542841	11.4390254	11.4235321	11.408522
4	c137_B	472003	2159110	5.71461372	5.71461663	5.7146196	5.71462264	5.71462575	5.71463216	5.71463546	5.71463883	5.71464226	5.71464576	5.71464932
5	cB 107	472293	2142272	4.18970134	4.18962203	4.18954427	4.18946806	4.18939339	4.18924869	4.18917866	4.18911018	4.18904324	4.18897785	4.18891401
6	cA 442	474038	2154497	21.8612222	21.8612229	21.8612236	21.8612243	21.861225	21.8612265	21.8612272	21.8612279	21.8612287	21.8612294	21.8612302
7	cHER_1	474485	2147386	15.9326399	15.932645	15.9326503	15.9326557	15.9326614	15.9326732	15.9326793	15.9326857	15.9326922	15.932699	15.9327059
8	cA_471	474937	2156068	9.92812046	9.92812239	9.92812436	9.92812636	9.92812839	9.92813253	9.92813464	9.92813679	9.92813897	9.92814117	9.92814341
9	dSAT3	475099	2155865	12.1886563	12.2614591	12.3342663	12.4070778	12.4798934	12.6255369	12.6983646	12.7711963	12.8440318	12.916871	12.9897756
10	c136_B	475524	2160683	2.53915253	2.53915667	2.53916083	2.53916501	2.53916922	2.53917772	2.53918201	2.53918633	2.53919067	2.53919503	2.53919942
11	dSAT8	475940	2155955	12.0376575	12.1082064	12.1787581	12.2493125	12.3198695	12.4609913	12.531556	12.6021232	12.6726929	12.7432649	12.8138977
12	s79	476079	2145573	13.148734	13.0770619	13.0053933	12.933728	12.8620662	12.7187534	12.6471024	12.5754552	12.5038118	12.4324247	12.3605366
13	c102 B	476142	2134696	3.39842489	3.39839571	3.39836743	3.39834005	3.39831357	3.39826329	3.3982395	3.39821661	3.39819461	3.39817351	3.39815331
14	s286	476178	2134095	14.7225953	14.7067941	14.6909938	14.6751943	14.6593957	14.6278013	14.6120054	14.5962104	14.5804163	14.5647283	14.5488309
15	dSAT7	476546	2156501	9.77563462	9.84144897	9.90726923	9.97309527	10.038927	10.170607	10.2364551	10.3023085	10.368167	10.4340305	10.4999526
16	s80	476811	2147687	11.6986623	11.6947587	11.6908551	11.6869516	11.6830482	11.6752417	11.6713387	11.6674357	11.6636256	11.6597234	11.6557274
17	d247CP	476834	2160656	9.40004845	9.47342294	9.54681269	9.62021735	9.6936366	9.8405175	9.91397854	9.9874529	10.0609403	10.1344404	10.2080288
18	dSAT6	476895	2156973	8.81061489	8.87293165	8.93525354	8.99758043	9.05991223	9.18459014	9.24693607	9.30928651	9.37164138	9.43400059	9.49643981
19	s294	476943	2133837	14.1511826	14.1146777	14.078175	14.0416747	14.0051767	13.9321877	13.8956968	13.8592082	13.8227221	13.7863347	13.7497571
20	cDX_96	477230	2152432	3.23758107	3.23710142	3.23663239	3.23617396	3.23572614	3.23486236	3.23444641	3.2340411	3.23364641	3.23326236	3.23288896
21	cBG_99V	477239	2160540	1.8988375	1.89883831	1.89883912	1.89883992	1.89884073	1.89884235	1.89884316	1.89884398	1.89884479	1.8988456	1.89884642
22	c2788	477278	2139574	20.3455321	20.3455294	20.3455268	20.3455243	20.3455217	20.3455166	20.3455141	20.3455116	20.3455091	20.3455066	20.3455041
23	dSAT2	477297	2156705	8.4385754	8.49992098	8.56126865	8.62261836	8.68397006	8.80667928	8.86803671	8.92939599	8.99075706	9.05211988	9.11353945

Figura 4: Pesos calculados para cargas

Los pesos calculados para los abatimientos, con el mismo formato que la hoja que contiene los pesos para las cargas debe localizarse en la última hoja del documento(Fig 5).

Figura 5: Pesos calculados para abatimientos

Observaciones de transporte (TOB)

Base de datos

Para crear el archivo de observaciones de transporte se requieren una base de datos conformada por archivos de Excel, ubicada en el directorio *Entorno/tob/base de datos/*. Estos archivos de excel deberán contener los encabezados 'ALCALDIA', 'POZO', 'X', 'Y', 'NO3' en la primera fila, estos serán utilizados para importar los datos necesarios(Fig 7). Es importante que el nombre de cada archivo contenga de forma numérica únicamente el año que le corresponde, ya que a partir de este nombre se extrae el año para posteriores cálculos. (Ej, 'datos2002.xlsx', 'nitratos_1995.xls'). Véase Fig. 6

Figura 6: Base de datos para el archivo .tob

A1 + :	× ✓ fx ALCALDIA												
/ A	В	С	D	E	F	G	н	1	J	К	L	М	N
1 ALCALDIA	POZO	X	1									NO3	
2 Xochimilco	Nápoles	487743.00	2132726.00	10	373	7.7	458	125.5	9.61	141	0.2	0.1	0.1
3 Álvaro Obregón	Tetelpan	475535.00	2138416.00	10.0	180	7.3	156	90	3	73	0.1	0.1	0.1
4 Tlálpan	Coapa ISSSTE 1	487067.00	2133530.00	10	262	7.6	208	89.2	18.7	79	0.2	0.1	
5 Tlálpan	Coapa ISSSTE 2	488738.00	2133603.00	10	545	7.6	426	157.5	43.5	193	0.2	0.1	0.1
6 Azcapotzalco	Hogar y Seguridad	482157.00	2152446.00	10	585	7.9	400	259.3	37.1	203	0.1	0.1	0.1
7 Álvaro Obregón	Jardin de San Jacinto	479963.00	2138791.00	10.0	363	7.9	280	166	7	120	0.1	0.10	0.10
8 Xochimilco	Nativitas 3	490458.00	2126770.00	10	182	7.7	164	89.9	8.62	76	0.2	0.1	0.1
9 Xochimilco	Noria 2	487133.00	2129237.00	10	424	7.9	300	156.8	27.3	134	0.1	0.1	0.1
10 Azcapotzalco	Prados del Rosario	478144.00	2155925.00	10	631	7.3	548	296.7	16.8	234	0.1	0.1	0.1
11 Tlálpan	Preparatoria 5	485883.00	2134414.00	12.5	286	7.5	224	87.6	17.1	92	0.2	0.1	
12 Tlálpan	R Acoxpa 32 (PS 32)	485898.31	2133619.60	10	212	7.5	212	86.6	11.3	76	0.3	0.1	0.1
13 Milpa Alta	R-19	498387.00	2122183.00	12.5	131	8	104	72.3	3.58	54	0.2	0.1	0.1
14 Milpa Alta	R-21	498543.00	2122563.00	10	172	7.9	144	77	5.58	62	0.3	0.1	0.1
15 Milpa Alta	R-24	499460.00	2123283.00	10	172	7.9	140	77.7	5.25	59	0.3	0.1	0.1
16 Milpa Alta	R-25	498704.00	2122951.00	10	141	7.9	136	73.9	4.51	53	0.2	0.1	0.1
17 Milpa Alta	R-26	500353.00	2122335.00	10	151	7.9	122	75.9	4.14	61	0.3	0.1	0.1
18 Azcapotzalco	Rosario 2	478488.28	2157099.86	10	585	7.8	412	227.4	31.1	186	0.1	0.1	0.1
19 Xochimilco	San Lorenzo Atemoaya 1	489528.00	2127154.00	10	141	8.1	142	53.4	3.82	44	0.2	0.1	0.1
20 Xochimilco	San Luis 20	490706.00	2127793.00	12.5	484	7.7	256	131.9	16.7	123	0.3	0.1	0.1
21 Xochimilco	San Luis 7	496647.00	2129289.00	12.5	404	7.7	268	148.6	17.4	125	0.2	0.17	0.1
22 Xochimilco	San Luis 8	496435.00	2128999.00	10	232	7.5	232	88.8	8.68	84	0.1	0.1	0.1
23 Xochimilco	San Luis 9	496048.00	2129025.00	10	172	7.8	160	71.2	6.5	59	0.2	0.1	0.1
24 Xochimilco	Santa Cruz Xochitepec	486440.00	2128685.00	10	414	7.7	272	145.8	26.8	129	0.2	0.1	0.1
25 Milpa Alta	Tecomitl 12	502121.00	2124423.00	10	141	8.1	116	57	2.44	44	0.2	0.1	
26 Xochimilco	Tepepan 3 (El Mirador)	485444.00	2131291.00	7.5	313	7.7	224	132.6	18.1	110	0.3	0.1	0.1
Grup	. Fam. mg-L (1999) Grup. Fam. meq-L	(1999)	+					1					

Figura 7: Ejemplo del formato del archivo de excel

Archivo geom

Este archivo se exporta a partir del modelo en Model Muse, a continuación se describen los pasos para obtener el archivo en formato Excel.

Exportar shape del modelo:

En la barra de menús ingresar a File>Export>Shapefile>Grid Data to Shapefile

Al aparecer la ventana emergente, en el cuadro *items to export* marcar la casilla: **Data Sets>Required>Layer Definition**

En el directorio donde se haya exportado el shape se habrán generado 3 archivos (con extensiones .shp, .dbf y .shx).

Para crear el documento en formato .xls o xlsx, hay que abrir el archivo con extensión .dbf con Excel, es recomendable abrir Excel y arrastrar el archivo hacia el programa.

4	А	В	C		D	E	F	G	Н	1	J
	OLUMN	ROW	ID		MODEL_TOP	LAYER_1_BO	LAYER_2_BO	LAYER_3_BO	LAYER_4_BO	LAYER_5_BO	
2	1		1	1	2768.5000000000	1247.8000000000	1246.8000000000	1245.8000000000	1244.8000000000	1243.8000000000	
3	2		1	2	2768.5000000000	1247.8000000000	1246.8000000000	1245.80000000000	1244.8000000000	1243.8000000000	
4	3		1	3	2716.4000000000	1274.6000000000	1273.6000000000	1272.6000000000	1271.6000000000	1270.6000000000	
5	4		1	4	2716.4000000000	1274.6000000000	1273.6000000000	1272.6000000000	1271.6000000000	1270.6000000000	
6	5		1	5	2674.6000000000	1331.0000000000	1330.0000000000	1329.0000000000	1328.0000000000	1327.00000000000	
7	6		1	6	2674.6000000000	1331.0000000000	1330.0000000000	1329.0000000000	1328.0000000000	1327.00000000000	
8	7		1	7	2619.3000000000	1406.2000000000	1405.2000000000	1404.2000000000	1403.2000000000	1402.2000000000	
9	8		1	8	2619.3000000000	1406.2000000000	1405.2000000000	1404.2000000000	1403.2000000000	1402.2000000000	
10	9		1	9	2571.5000000000	1487.9000000000	1486.9000000000	1485.9000000000	1484.9000000000	1483.9000000000	
11	10		1	10	2571.5000000000	1487.9000000000	1486.9000000000	1485.9000000000	1484.9000000000	1483.9000000000	
12	11		1	11	2517.8000000000	1555.5000000000	1554.5000000000	1553.5000000000	1552.5000000000	1551.50000000000	
13	12		1	12	2517.8000000000	1555.5000000000	1554.5000000000	1553.5000000000	1552.5000000000	1551.5000000000	
14	13		1	13	2451.6000000000	1605.8000000000	1604.8000000000	1603.8000000000	1602.8000000000	1601.8000000000	
15	14		1	14	2451.6000000000	1605.8000000000	1604.8000000000	1603.8000000000	1602.8000000000	1601.8000000000	
16	15		1	15	2400.0000000000	1652.4000000000	1651.4000000000	1650.4000000000	1649.4000000000	1648.40000000000	
17	16		1	16	2400.00000000000	1652.4000000000	1651.4000000000	1650.4000000000	1649.4000000000	1648.4000000000	
18	17		1	17	2373.3000000000	1693.6000000000	1692.6000000000	1691.6000000000	1690.6000000000	1689.6000000000	
19	18		1	18	2373.3000000000	1693.6000000000	1692.6000000000	1691.6000000000	1690.6000000000	1689.60000000000	
20	19		1	19	2372.6000000000	1726.0000000000	1725.0000000000	1724.0000000000	1723.0000000000	1722.0000000000	
21	20		1	20	2372.6000000000	1726.0000000000	1725.0000000000	1724.0000000000	1723.0000000000	1722.0000000000	
22	21		1	21	2390.8000000000	1751.2000000000	1750.2000000000	1749.2000000000	1748.2000000000	1747.2000000000	
23	22		1	22	2390.8000000000	1751.2000000000	1750.2000000000	1749.2000000000	1748.2000000000	1747.20000000000	

Por último seleccionar **Guardar como** y seleccionar el tipo .xlsx, de esta manera se habrá generado el archivo que contiene la información de la geometría que tienen las capas para cada nodo. Esta información es utilizada para estimar el contenido de Nitrato en unidades de masa. El archivo generado deberá ser un único archivo de excel, ubicado dentro del directorio **Entorno/tob/geom/**