Package 'scCNAutils'

November 24, 2018

Title Functions to analyze copy number aberrations in single-cell data
Version 0.0.0.9000
Description Functions to analyze copy number aberrations in single-cell data. A bunch of scripts and workflows to read and analyze scRNA-seq data and look at CNA-oriented signal.
Depends R ($i = 3.4.4$)
License MIT + file LICENSE
Encoding UTF-8
LazyData true
Imports Matrix, dplyr, magrittr, tidyr, rlang, parallel, ggplot2, data.table, Rtsne, FNN, igraph, RcppHMM, GenomicRanges, IRanges, shiny, rbokeh, scales, ggrepel
Suggests testthat
RoxygenNote 6.1.0
R topics documented:

2 auto_cna_call

Index		25
	zscore	<i>2</i> 4
	winsor	23
	umap_browser	22
	tsne_browser	$\frac{1}{22}$
	•	21
	run_umap	20
	run_tsne	20
	run_pca	19
	rm_cv_outliers	18
	read_mtx	17
	qc_filter	17
	qc_cells	16
	plot_umap	15
	plot_tsne	14
	plot_qc_cells	13
	plot_communities	12
	- · · · · · · · · · · · · · · · · · · ·	12
	plot_aneuploidy	11
	norm_ge	10
	merge_samples	10
	make_metacells	9
	find_communities	8
	define_cycling_cells	8
	convert_to_coord	7
	call_cna_multisamps	6
	call_cna	5
	bin_genes	5

auto_cna_call

Automated pipeline to call CNA

Description

Automated pipeline to call CNA using metacells.

Usage

```
auto_cna_call(ge_df, comm_df, nb_metacells = 10, metacell_size = 3,
   multisamps = TRUE, trans_prob = 0.1, baseline_cells = NULL,
   baseline_communities = NULL, prefix = "scCNAutils_out",
   nb_cores = 1, chrs = c(1:22, "X", "Y"), bin_mean_exp = 3,
   z_wins_th = 3, smooth_wsize = 3)
```

auto_cna_call 3

Arguments

ge_df normalized gene expression of all cells (e.g. output from norm_ge.

comm_df a data.frame with community information, output from find_communities.

nb_metacells the number of metacells per comunity.

metacell_size the number of cells in a metacell.

multisamps use the multi-sample version of the HMM segmentation? Default is

TRUE. See details.

trans_prob the transition probability for the HMM.

baseline_cells cells to use as baseline.

baseline_communities

communities to use as baseline. Used if baseline.cells is NULL.

prefix the prefix to use for the files created by this function (e.g. graphs).

nb_cores the number of processors to use.

chrs the chromosome names to keep. NULL to include all the chromosomes.

the desired minimum mean expression in the bin.

z_wins_th the threshold to winsorize Z-score. Default is 3

smooth_wsize the window size for smoothing. Default is 3.

Details

Once the metacells are created there are two ways to call CNA. First, if multisamps=FALSE, to call CNA on each metacell and merge the result per community, keeping the information about how many metacell support the CNA. Second, if multisamps=TRUE (default), to run the HMM on all the metacells for a community. The multi-sample approach should be more robust.

The transition probability (trans_prob) is going to affect the HMM segmentation. Smaller values will create longer segments. One approach, often advocated by HMM aficionados, is to try different values and use the ones that gives the best results, for example based on the QC graphs (TODO). Another approach is to use a loose transition probability and then filter short segments ('length' column or 'pass.filter' column).

Value

a data.frame with CNAs

Author(s)

4 auto_cna_signal

auto_cna_signal	Automated pipeline to compute CNA signal from scRNA expression
	sion

Description

Goes from reading raw gene counts to CNA-level signal, tSNE and community detection.

Usage

```
auto_cna_signal(data, genes_coord, prefix = "scCNAutils_out",
   nb_cores = 1, pause_after_qc = FALSE, use_cache = TRUE,
   sample_names = NULL, info_df = NULL, max_mito_prop = 0.2,
   min_total_exp = 0, cells_sel = NULL, chrs = c(1:22, "X", "Y"),
   cell_cycle = NULL, bin_mean_exp = 3, rm_cv_quant = NULL,
   z_wins_th = 3, smooth_wsize = 3, cc_sd_th = 3, nb_pcs = 10,
   comm_k = 100, viz = c("tsne", "umap", "both"))
```

Arguments

data	a data.frame with gene expression or the path to the folder with the 'matrix.mtx', 'genes.tsv' and 'barcodes.tsv' files. A list if multiple samples.
genes_coord	either a file name or a data.frame with coordinates and gene names.
prefix	the prefix to use for the files created by this function (e.g. graphs).
nb_cores	the number of processors to use.
pause_after_qc	pause after the QC to pick custom QC thresholds.
use_cache	should intermediate files used and avoid redoing steps?
sample_names	the names of each sample. If NULL, tries to use data's names.
info_df	a data frame with information about cells.
max_mito_prop	the maximum proportion of mitochondrial RNA.
min_total_exp	the minimum total cell expression
cells_sel	consider only these cells. Other cells filtered no matter what.
chrs	the chromosome names to keep. NULL to include all the chromosomes.
cell_cycle	if non-null, either a file or data.frame to compute cell cycle scores. See details.
bin_mean_exp	the desired minimum mean expression in the bin.
rm_cv_quant	the quantile threshold to remove CV outlier. Default NULL (i.e. not used).
$z_{wins_{th}}$	the threshold to winsorize Z-score. Default is 3
smooth_wsize	the window size for smoothing. Default is 3.
cc_sd_th	the number of SD used for the thresholds when defining cycling cells.
nb_pcs	the number of PCs used in the community detection or tSNE.
comm_k	the number of nearest neighbor for the KNN graph. Default 100.
viz	which method to use for visualization ('tsne', 'umap' or 'both'). Default is 'tsne'.

bin_genes 5

Value

a data.frame with QC, community and tSNE for each cell.

Author(s)

Jean Monlong

bin_genes

Merge consecutive genes into expressed bins

Description

Merge consecutive genes into expressed bins

Usage

```
bin_genes(ge_df, mean_exp = 3, nb_cores = 1)
```

Arguments

ge_df the input gene expression with coordinate columns (chr, start, end) and

then one column per cell.

mean_exp the desired minimum mean expression in the bin.

nb_cores the number of processors to use.

Value

a data.frame with bin expression.

Author(s)

Jean Monlong

call_cna

Call CNA

Description

Calls CNA using a HMM approach.

Usage

```
call_cna(z_df, trans_prob = 1e-04, nb_cores = 1, mc_info = NULL)
```

6 call_cna_multisamps

Arguments

z_df the Z-scores, from zscore.

trans_prob the transition probability for the HMM.

nb_cores the number of processor to use.

mc_info the information about the metacells, if relevant. Default is NULL.

Value

a data.frame with the CNA calls.

Author(s)

Jean Monlong

 $call_cna_multisamps$ $Call\ CNA$

Description

Calls CNA using a HMM approach considering multiple samples at the same time.

Usage

```
call_cna_multisamps(z_df, mc_info, trans_prob = 1e-04, nb_cores = 1)
```

Arguments

z_df the Z-scores, from zscore.

mc_info the information about the metacells, if relevant. Default is NULL.

trans_prob the transition probability for the HMM.

nb_cores the number of processor to use.

Value

a data.frame with the CNA calls.

Author(s)

convert_to_coord 7

Description

Convert the 'symbol' column (gene names) into three columns with gene coordinates 'chr', 'start' and 'end'.

Usage

```
convert_to_coord(ge_df, genes_coord, chrs = c(1:22, "X", "Y"),
    rm_dup = TRUE)
```

Arguments

ge_df	the data.frame	with g	gene	expression	and	one col	lumn	'symbol'	with gene

names.

genes_coord either a file name or a data.frame with coordinates and gene names.

chrs the chromosome names to keep. NULL to include all the chromosomes.

rm_dup remove duplicated coordinates? Default is TRUE.

Details

If *genes_coord* is a filename, the file is expected to be a tab-delimited file with four columns: 'chr', 'start', 'end', 'symbol'. The order of the columns is not important.

The gene names in column 'symbol' should match the gene names in the input ge_df.

Value

a data.frame with columns 'chr', 'start', 'end' columns with genes coordinates (and still one column per barcode).

Author(s)

8 find_communities

 $define_cycling_cells$ $Define\ cycling\ cells$

Description

Using cell cycle scores, identify cells that are cycling.

Usage

```
define_cycling_cells(qc_df, sd_th = 3)
```

Arguments

qc_df the output data.frame from qc_cells (ran with a non-null cell_cycle pa-

rameter)

sd_th the number of SD used for the thresholds.

Value

a list with

cells.noc a vector with the names of non-cycling cells

graphs a list of ggplot2 graphs

Author(s)

Jean Monlong

 $find_communities$ Community detection

Description

Build a KNN graph and run Louvain algorithm for community detection.

Usage

```
find_communities(pca_o, nb_pcs = 10, k = 100)
```

Arguments

pca_o the output of run_pca

nb_pcs the number of PCs to use. Default 10.

k the number of nearest neighbor for the KNN graph. Default 100.

make_metacells 9

Value

a data.frame with two columns: 'cell' and 'community'.

Author(s)

Jean Monlong

 $make_metacells$ $Make\ metacells$

Description

Randomly select cells in each community and merge them to create metacells with higher resolution.

Usage

```
make_metacells(ge_df, comm_df, nb_metacells = 10, metacell_size = 3,
  baseline_cells = NULL, nb_cores = 1)
```

Arguments

ge_df normalized gene expression of all cells (e.g. output from norm_ge.

comm_df a data.frame with community information, output from find_communities.

nb_metacells the number of metacells per comunity.

metacell_size the number of cells in a metacell.

baseline_cells the cells to use for baseline communities.

nb_cores the number of processor to use.

Value

a list with

ge a data frame with coordinates and gene expression for each metacell.

info information about which metacell correspond to which community.

mc_cells information about which cells were used for each metacell.

Author(s)

10 norm_ge

merge_samples	$Merge\ expression\ of\ multiple\ samples$	
---------------	--	--

Description

The expression of multiple samples are merged. New cell names are produced as SAM-PLE_CELL.

Usage

```
merge_samples(ge_list, sample_names = NULL)
```

Arguments

ge_list a list of ge_df (e.g. read from read_mtx).

sample_names the names of each sample. If NULL, tries to use ge_list's names.

Value

a list with

ge the merged gene expression data.frame

info a data frame with new and original cell names, and corresponding sample

name

Author(s)

Jean Monlong

norm_ge	Normalize gene expression	

Description

The expression of each cell is normalized to account for depth differences.

Usage

```
norm_ge(ge_df, method = c("tmm", "total"), nb_cores = 1)
```

Arguments

ge_df the input gene expression method the normalization method

nb_cores the number of processors to use.

plot_aneuploidy 11

Value

a data.frame with the normalized expression.

Author(s)

Jean Monlong

 ${\tt plot_aneuploidy}$

 $An euploidy\ graph$

Description

Graphs showing the median expression in each chromosome for each community.

Usage

```
plot_aneuploidy(ge_df, comm_df = NULL, baseline_cells = NULL,
  baseline_communities = NULL, max_cells = 100, chrs_order = c(1:22,
  "X", "Y"))
```

Arguments

ge_df a data.frame with gene expression (better if binned and normalized).

comm_df a data.frame with community information for each cell.

baseline_cells cells to use as baseline.

baseline_communities

the communities to use as baseline.

max_cells the maximum number of cells to consider in the boxplot of each commu-

nity. Default: 100.

chrs_order order of the chromosomes in the graph.

Value

a list of ggplot2 object, one for each chromosome.

Author(s)

12 plot_communities

plot_cna

Heatmap of CNA

Description

Heatmap of CNA

Usage

```
plot_cna(cna, chrs_order = c(1:22, "X", "Y"))
```

Arguments

cna CNAs from call_cna.

chrs_order order of the chromosomes in the graph.

Value

a ggplot2 graph

Author(s)

Jean Monlong

plot_communities

 $Community\ graphs$

Description

Graphs about the communities found by find_communities. For example the size of the communities or the distribution of QC metrics in each community.

Usage

```
plot_communities(comm_df, qc_df = NULL, info_df = NULL)
```

Arguments

		1 . 0		
comm_df	the output	data frame	from find	_communities

qc_df a data.frame with QC metrics (output from qc_cells). Default is NULL

(i.e. not used)

info_df a data.frame with sample merge info (output from merge_samples). De-

fault is NULL (i.e. not used)

plot_qc_cells 13

Details

If the QC data frame is provided, the distribution of QC metrics is shown to investigate if some communities are batch effects.

If multiple samples were merged (merge_samples), the proportion of cells from each sample of origin can be shown if the info_df data.frame is provided.

If qc_df and/or info_df are null but their columns present in comm_df, their corresponding graphs will be generated. Hence a merged version of comm_df, qc_df and info_df works (e.g. output of auto_cna_signal.

Value

```
a list of ggplot2 graphs.
```

Author(s)

Jean Monlong

Examples

```
## Not run:
ggp.l = plot_communities(comm_df, qc_df)

## Print first graph
ggpl.l[[1]]

## Customize ggplot
ggpl.l[[1]] + ggtitle('First graph about communities')

## End(Not run)
```

plot_qc_cells

 $QC \ graphs$

Description

```
QC graphs
```

Usage

```
plot_qc_cells(qc_df, info_df = NULL)
```

Arguments

qc_df the output data.frame from qc_cells

info_df a data.frame with sample merge info (output from merge_samples). De-

fault is NULL (i.e. not used)

14 plot_tsne

Value

```
a list of ggplots
```

Author(s)

Jean Monlong

Examples

```
## Not run:
ggp.l = plot_qc_cells(qc_df)

## Print first graph
ggpl.l[[1]]

## Customize ggplot
ggpl.l[[1]] + ggtitle('First QC graph')

## End(Not run)
```

plot_tsne

 $tSNE\ graphs$

Description

tSNE graphs colored according to QC metrics or sample labels.

Usage

```
plot_tsne(tsne_df, qc_df = NULL, comm_df = NULL, info_df = NULL)
```

Arguments

tsne_df	the output data.frame from run_tsne (columns: cell, tsne1, tsne2)
qc_df	a data.frame with QC metrics (output from qc_cells). Default is NULL
	(i.e. not used)
comm_df	a data.frame with communities (output from $find_communities$). Default
	is NULL (i.e. not used)
info_df	a data.frame with sample merge info (output from merge_samples).

Details

If the QC data frame is provided, the distribution of QC metrics is shown to investigate if some communities are batch effects.

If multiple samples were merged (merge_samples), the points can be colored by sample of origin by providing the info_df data.frame.

If any qc_df/comm_df/info_df are null but their columns present in tsne_df, their corresponding graphs will be generated. Hence a merged version of tsne_df, comm_df, qc_df and info_df works (e.g. output of auto_cna_signal.

plot_umap 15

Value

```
a list of ggplot objects
```

Author(s)

Jean Monlong

Examples

```
## Not run:
ggp.l = plot_tsne(tsne_df, qc_df, comm_df)
## Print first graph
ggpl.l[[1]]
## Customize ggplot
ggpl.l[[1]] + ggtitle('First tSNE graph')
## End(Not run)
```

plot_umap

UMAP graphs

Description

UMAP graphs colored according to QC metrics or sample labels.

Usage

```
plot_umap(umap_df, qc_df = NULL, comm_df = NULL, info_df = NULL)
```

Arguments

umap_df	the output data.frame from run_umap (columns: cell, umap1, umap2)
qc_df	a data.frame with QC metrics (output from qc_cells). Default is NULL
	(i.e. not used)
comm_df	a data.frame with communities (output from find_communities). Default
	is NULL (i.e. not used)
info_df	a data.frame with sample merge info (output from merge_samples).

Details

If the QC data frame is provided, the distribution of QC metrics is shown to investigate if some communities are batch effects.

If multiple samples were merged (merge_samples), the points can be colored by sample of origin by providing the info_df data.frame.

If any qc_df/comm_df/info_df are null but their columns present in umap_df, their corresponding graphs will be generated. Hence a merged version of umap_df, comm_df, qc_df and info_df works (e.g. output of auto_cna_signal.

 qc_{cells}

Value

```
a list of ggplot objects
```

Author(s)

Jean Monlong

Examples

```
## Not run:
ggp.l = plot_umap(umap_df, qc_df, comm_df)
## Print first graph
ggpl.l[[1]]
## Customize ggplot
ggpl.l[[1]] + ggtitle('First umap graph')
## End(Not run)
```

qc_cells

Compute quality control metrics for each cell

Description

From raw gene expression, a few QC metrics are computed.

Usage

```
qc_cells(ge_df, cell_cycle = NULL)
```

Arguments

ge_df the input gene expression with a 'symbol' column and then one column

per cell.

cell_cycle if non-null, either a file or data.frame to compute cell cycle scores. See

details.

Details

If cell_cycle is provided it should be a data.frame (or a tsv file) with two columns: 'symbol' with gene names, and 'phase' with the cell cycle phase (e.g. either 'G1.S' or 'G2.M').

Value

a data.frame with qc metrics per cell.

Author(s)

qc_filter 17

a	C.	f	i	1	+	۵	r
ч	U -	_ !	_	_	L	C	

Filter cells based on QC results

Description

Filter cells based on QC results

Usage

```
qc_filter(ge_df, qc_df, max_mito_prop = 0.2, min_total_exp = 0,
    cells_sel = NULL)
```

Arguments

ge_df the input gene expression with a 'symbol' column and then one column

per cell.

qc_df the output data.frame from qc_cells

max_mito_prop the maximum proportion of mitochondrial RNA.

min_total_exp the minimum total cell expression

cells_sel consider only these cells. Other cells filtered no matter what.

Value

 ge_df with only the cells that passed the filters

Author(s)

Jean Monlong

 $read_mtx$

Read a trio of genes, barcodes and mtx files.

Description

Read a trio of genes, barcodes and mtx files.

Usage

```
read_mtx(mtx_file = "matrix.mtx", genes_file = "genes.tsv",
  barcodes_file = "barcodes.tsv", path = ".", rm_dup = TRUE,
  genes_col = 2)
```

18 rm_cv_outliers

Arguments

mtx_file the path to the mtx file genes_file the path to the genes file. barcodes_file the path to the barcodes file

path the path to the folder containing the files

rm_dup remove duplicated gene names? Default is TRUE.

genes_col the column to use in genes_file. Default is 2.

Value

a data.frame with a 'symbol' column with gene names and one column per barcode.

Author(s)

Jean Monlong

rm_cv_outliers

Remove outliers based on the coefficient of variation

Description

Compute the coefficient of variation for each gene/bin and remove the ones with the highest values, either based on a quantile or SD-based threshold. The genes/bins that satisfy both quantile and SD-based thresholds are removed.

Usage

```
rm_cv_outliers(ge_df, ol_quant_th = 0.99, ol_sd_th = 5)
```

Arguments

ge_df the expression data.frame.

values).

ol_sd_th the SD-based treshold. Default is 5.

Value

a subset of the ge_df data.frame

Author(s)

run_pca

run_pca	$Run\ PCA$
. up uu	100000 1 011

Description

PCA analysis, eventually using a subset of core cells for the PC construction.

Usage

```
run_pca(z_df, core_cells = NULL, out_pcs = 100)
```

Arguments

z_df a data.frame with z-scores for each cell

core_cells if non-NULL, a vector with the names of the cells to use as core cells. See

details. Default is NULL.

out_pcs the number of top PCs to report. Default is 100.

Details

Cells in core_cells are used to build the principal components to which all cells are then projected to. Usually used to reduce the effect of cell cycle in the PCA, by using only cells that don't cycle (see qc_cells) as core_cells.

The graph (*sdev.graph*) shows the standard deviation for the top 50 PCs. To show more/less PCs, add xlim(1,N) to the *sdev.graph*. See examples.

Value

a list with

x the PC matrix

sdev the standard deviations of the PCs

sdev.graph a ggplot graph of the sdev

Author(s)

Jean Monlong

Examples

```
## Not run:
pca.o = run_pca(z)

## Zoom in to the top 20 PCs
pca.o$sdev.graph + xlim(1,20)

## End(Not run)
```

20 run_umap

run_tsne $Run\ tSNE$

Description

tSNE from PCA results.

Usage

```
run_tsne(pca_o, nb_pcs = 10, nb_it = 1000)
```

Arguments

pca_o the output of run_pca

nb_pcs the number of PCs to use. Default 10.
nb_it the number of iterations. Default 1000.

Value

```
a data.frame with columns: cell, tsne1, tsne2
```

Author(s)

Jean Monlong

run_umap

Run UMAP

Description

UMAP on the PCA results.

Usage

```
run_umap(pca_o, nb_pcs = 10, nb_neighbors = 5)
```

Arguments

pca_o the output of run_pca

nb_pcs the number of PCs to use. Default 10. nb_neighbors the number of neighbors. Default 5.

Details

This functions depends on Python and UMAP being installed. Make sure umap-mearn, sklearn, numpy, scipy and pandas are installed. For example with something like: 'pip install sklearn numpy scipy pandas umap-learn'.

smooth_movingw 21

Value

```
a data.frame with columns: cell, umap1, umap2
```

Author(s)

Jean Monlong

smooth_movingw

Moving-window smoothing

Description

The expression/score of a gene/bin is replaced by a summary of bins around. For example the median across 3 bins.

Usage

```
smooth_movingw(df, wsize = 3, nb_cores = 1, FUN = stats::median)
```

Arguments

df the input data.frame with coordinate columns (chr, start, end) and then

one column per cell

 $\mbox{ wsize } \mbox{ the window size. Default is 3.}$

 nb_cores the number of processors to use.

FUN the function to apply to each window. Default is median.

Value

a data.frame with smoothed signal.

Author(s)

22 umap_browser

|--|

Description

Interactive application to visualize the tSNE results: zoom, hover information, different colors.

Usage

```
tsne_browser(cells_df, nb_points = 5000, plot_dim = 800)
```

Arguments

cells_df the data.frame with tSNE and other information for each cell

nb_points the default number of points to show. See details.

plot_dim the dimension of the plot in pixels.

Details

Drawing thousands of points in a web-browser can be demanding. To reduce the number of points (cells) to draw, close-by cells are merged into bigger points. The merging is done separately for different samples/communities to be able to color them if necessary. The user can decide how many points to draw with the 'nb_points' parameter or directly within the application. In practice, increase the number of points until the app gets too slow.

Value

opens a Shiny app in a web-browser.

Author(s)

Jean Monlong

|--|

Description

Interactive application to visualize the UMAP results: zoom, hover information, different colors.

Usage

```
umap_browser(cells_df, nb_points = 5000, plot_dim = 800)
```

winsor 23

Arguments

cells_df the data.frame with UMAP and other information for each cell

nb_points the default number of points to show. See details.

plot_dim the dimension of the plot in pixels.

Details

Drawing thousands of points in a web-browser can be demanding. To reduce the number of points (cells) to draw, close-by cells are merged into bigger points. The merging is done separately for different samples/communities to be able to color them if necessary. The user can decide how many points to draw with the 'nb_points' parameter or directly within the application. In practice, increase the number of points until the app gets too slow.

Value

opens a Shiny app in a web-browser.

Author(s)

Jean Monlong

Description

Convenience function to winsorize a vector.

Usage

```
winsor(x, u = NULL, l = NULL)
```

Arguments

X	input vector
u	upper limit
1	lower limit

Value

winsorized vector

Author(s)

zscore

zscore	$Compute\ Z\mbox{-}score$	
--------	---------------------------	--

Description

Transform gene expression into a scaled score, either using all cells or a subset of cells as baseline.

Usage

```
zscore(ge_df, wins_th = 3, method = c("z", "norm"), normals = NULL)
```

Arguments

ge_df the input expression data.frame

wins_th the threshold to winsorize Z-score. Default is 3 method the normalization method. Either 'z' or norm'.

normals the cells to use as normals. If NULL (default) all cells are used as normals

Value

a data.frame with Z-scores.

Author(s)

Index

```
auto_cna_call, 2
auto_cna_signal, 4, 13-15
bin_genes, 5
call_cna, 5, 12
call_cna_multisamps, 6
\verb|convert_to_coord|, \ 7
define_cycling_cells, 8
find_communities, 3, 8, 9, 12, 14, 15
make\_metacells, 9
merge_samples, 10, 12-15
norm_ge, 3, 9, 10
plot_aneuploidy, 11
plot_cna, 12
plot\_communities, 12
plot\_qc\_cells,\, {\color{red}13}
plot\_tsne,\, 14
plot_umap, 15
qc_cells, 8, 12-15, 16, 19
qc_filter, 17
read_mtx, 10, 17
rm_cv_outliers, 18
run\_pca, \ \textit{8}, \ 19, \ \textit{20}
\texttt{run\_tsne},~ \textcolor{red}{\textit{14}},~ \textcolor{red}{20}
run\_umap, 15, 20
smooth_movingw, 21
tsne_browser, 22
umap\_browser, 22
winsor, 23
zscore, 6, 24
```