

Global United Technology Services Co., Ltd.

Report No.: GTS201909000204F03

FCC REPORT

Applicant: Autel Intelligent Tech. Corp., Ltd.

Address of Applicant: 7th-8th, 10th Floor, Bldg. B1, Zhiyuan, Xueyuan Rd. Xili,

Nanshan, Shenzhen 518055, China

Manufacturer: Autel Intelligent Tech. Corp., Ltd.

Address of 7th-8th, 10th Floor, Bldg. B1, Zhiyuan, Xueyuan Rd. Xili,

Manufacturer: Nanshan, Shenzhen 518055, China Factory 1: Autel Intelligent Technology Corp.,Ltd.

Address of Factory 1: 6th Floor, Building 1, Yanxiang Zhigu, NO.11 Gaoxin West

Rd, Guangming New District, Shenzhen City, Guangdong

Province, China.

Factory 2: AUTEL VIETNAM COMPANY LIMITED

Address of Factory 2: 4th Floor, Factory#6, Land#CN1, An Duong Industrial Zone,

Hong Phong Township, An Duong County, Hai Phong, Viet

Nam

Equipment Under Test (EUT)

Product Name: MaxiFlash VCI

Model No.: MaxiFlash VCI

Trade Mark: Autel

FCC ID: WQ818MXFULTRA

Applicable standards: FCC CFR Title 47 Part 15 Subpart E Section 15.407

Date of sample receipt: September 25, 2019

Date of Test: September 25-29, 2019

Date of report issued: September 29, 2019

Test Result: PASS *

Authorized Signature:

Robinson Lo Laboratory Manager

This results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

Page 1 of 39

^{*} In the configuration tested, the EUT complied with the standards specified above.

2 Version

Version No.	Date	Description
00	September 29, 2019	Original

Prepared By:	Date:	September 29, 2019
	Project Engineer	-
Check By:	Date:	September 29, 2019

3 Contents

			Page
1	COV	ER PAGE	1
2	VER:	SION	2
1 COVER PAGE			
3	CON	II EN 13	
4	TEST	T SUMMARY	4
	4.1	MEASUREMENT UNCERTAINTY	4
5	GEN	ERAL INFORMATION	5
		GENERAL DESCRIPTION OF EUT	5
	_		
	-		
	5.8	ADDITIONAL INSTRUCTIONS	8
6	TEST	T INSTRUMENTS LIST	9
7	TEST	T RESULTS AND MEASUREMENT DATA	11
	7.1	ANTENNA REQUIREMENT	11
			-
	7.8	FREQUENCY STABILITY	36
8	TEST	T SETUP PHOTO	39
9	FUT	CONSTRUCTIONAL DETAILS	39

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.407(a)(3)	Pass
Channel Bandwidth	15.407(e)	Pass
Power Spectral Density	15.407(a)(3)	Pass
Band Edge	15.407(b)(4)	Pass
Spurious Emission	15.205/15.209/15.407(b)(4)	Pass
Frequency Stability	15.407(g)	Pass

Remarks:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. Test according to ANSI C63.10:2013.

4.1 Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes			
Radiated Emission	30MHz-200MHz	3.8039dB	(1)			
Radiated Emission	200MHz-1GHz	3.9679dB	(1)			
Radiated Emission	1GHz-18GHz	4.29dB	(1)			
Radiated Emission	18GHz-40GHz	3.30dB	(1)			
AC Power Line Conducted Emission	0.15MHz ~ 30MHz	3.44dB	(1)			
Note (1): The measurement unce	ertainty is for coverage factor of k	=2 and a level of confidence of	95%.			

5 General Information

5.1 General Description of EUT

MaxiFlash VCI
MaxiFlash VCI
123456789101112
V3
V1.01.05
GTS201909000204-1
Engineer sample
802.11a/802.11n(HT20): 5745MHz ~ 5825MHz
802.11n(HT40)): 5755MHz ~ 5795MHz
802.11a/802.11n(HT20): 5
802.11n(HT40): 2
802.11a/802.11n(HT20): 20MHz
802.11n(HT40): 40MHz
Orthogonal Frequency Division Multiplexing (OFDM)
802.11a/n/ac
Integral Antenna
2.6dBi
Adapter
Model: A361-1203000DI
Input: AC 100-240V, 50/60Hz, 1.5A
Output: DC 12V, 3000mA

Operation Frequency each of channel							
Channel Frequency Channel Frequency Channel Frequency Channel Frequency							Frequency
149	5745MHz	151	5755MHz	153	5765MHz	155	5775MHz
157	5785MHz	159	5795MHz	161	5805MHz	163	5815MHz
165	5825MHz						

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Took observed	Frequency (MHz)			
Test channel	802.11 a/n(HT20)	802.11 n(HT40)		
Lowest channel	5745	5755		
Middle channel	5785			
Highest channel	5825	5795		

5.2 Test mode

Transmitting mode Keep the EUT in continuously transmitting mode

Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Mode	Data rate
802.11a	6Mbps
802.11n(HT20)	6.5Mbps
802.11n(HT40)	13Mbps

5.3 Description of Support Units

None.

5.4 Deviation from Standards

None.

5.5 Abnormalities from Standard Conditions

None.

5.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC —Registration No.: 381383

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Registration 381383.

• IC —Registration No.: 9079A

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 9079A

• NVLAP (LAB CODE:600179-0)

Global United Technology Services Co., Ltd., is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP). LAB CODE:600179-0

5.7 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone,

Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

Tel: 0755-27798480 Fax: 0755-27798960

5.8 Additional Instructions

Test Software	Special test command provided by manufacturer
Power level setup	Default

6 Test Instruments list

Radi	Radiated Emission:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	July. 03 2015	July. 02 2020	
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A	
3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	June. 26 2019	June. 25 2020	
4	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	GTS214	June. 26 2019	June. 25 2020	
5	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA 9120 D	GTS208	June. 26 2019	June. 25 2020	
6	Horn Antenna	ETS-LINDGREN	3160	GTS217	June. 26 2019	June. 25 2020	
7	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	
8	Coaxial Cable	GTS	N/A	GTS213	June. 26 2019	June. 25 2020	
9	Coaxial Cable	GTS	N/A	GTS211	June. 26 2019	June. 25 2020	
10	Coaxial cable	GTS	N/A	GTS210	June. 26 2019	June. 25 2020	
11	Coaxial Cable	GTS	N/A	GTS212	June. 26 2019	June. 25 2020	
12	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	June. 26 2019	June. 25 2020	
13	Amplifier(2GHz-20GHz)	HP	84722A	GTS206	June. 26 2019	June. 25 2020	
14	Amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	June. 26 2019	June. 25 2020	
15	Band filter	Amindeon	82346	GTS219	June. 26 2019	June. 25 2020	
16	Power Meter	Anritsu	ML2495A	GTS540	June. 26 2019	June. 25 2020	
17	Power Sensor	Anritsu	MA2411B	GTS541	June. 26 2019	June. 25 2020	
18	Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	GTS575	June. 26 2019	June. 25 2020	
19	Splitter	Agilent	11636B	GTS237	June. 26 2019	June. 25 2020	
20	Loop Antenna	ZHINAN	ZN30900A	GTS534	June. 26 2019	June. 25 2020	
21	Breitband hornantenne	SCHWARZBECK	BBHA 9170	GTS579	Oct. 20 2018	Oct. 19 2019	
22	Amplifier	TDK	PA-02-02	GTS574	Oct. 20 2018	Oct. 19 2019	
23	Amplifier	TDK	PA-02-03	GTS576	Oct. 20 2018	Oct. 19 2019	
24	PSA Series Spectrum Analyzer	Rohde & Schwarz	FSP	GTS578	June. 26 2019	June. 25 2020	

Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Con	Conducted Emission						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	Shielding Room	ZhongYu Electron	7.3(L)x3.1(W)x2.9(H)	GTS252	May.15 2019	May.14 2022	
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 26 2019	June. 25 2020	
3	Coaxial Switch	ANRITSU CORP	MP59B	GTS225	June. 26 2019	June. 25 2020	
4	Artificial Mains Network	SCHWARZBECK MESS	NSLK8127	GTS226	June. 26 2019	June. 25 2020	
5	Coaxial Cable	GTS	N/A	GTS227	N/A	N/A	
6	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	
7	Thermo meter	KTJ	TA328	GTS233	June. 26 2019	June. 25 2020	
8	Absorbing clamp	Elektronik- Feinmechanik	MDS21	GTS229	June. 26 2019	June. 25 2020	
9	ISN	SCHWARZBECK	NTFM 8158	GTD565	June. 26 2019	June. 25 2020	

RF C	RF Conducted Test:								
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)			
1	MXA Signal Analyzer	Agilent	N9020A	GTS566	June. 26 2019	June. 25 2020			
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 26 2019	June. 25 2020			
3	Spectrum Analyzer	Agilent	E4440A	GTS533	June. 26 2019	June. 25 2020			
4	MXG vector Signal Generator	Agilent	N5182A	GTS567	June. 26 2019	June. 25 2020			
5	ESG Analog Signal Generator	Agilent	E4428C	GTS568	June. 26 2019	June. 25 2020			
6	USB RF Power Sensor	DARE	RPR3006W	GTS569	June. 26 2019	June. 25 2020			
7	RF Switch Box	Shongyi	RFSW3003328	GTS571	June. 26 2019	June. 25 2020			
8	Programmable Constant Temp & Humi Test Chamber	WEWON	WHTH-150L-40-880	GTS572	June. 26 2019	June. 25 2020			

Gene	ral used equipment:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	Humidity/ Temperature Indicator	KTJ	TA328	GTS243	June. 26 2019	June. 25 2020		
2	Barometer	ChangChun	DYM3	GTS255	June. 26 2019	June. 25 2020		

7 Test results and Measurement Data

7.1 Antenna requirement

Standard requirement: FCC Part15 C Section 15.203

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

E.U.T Antenna:

The antennas are integral antenna, the best case gain of the antennas are 2.6dBi, reference to the appendix II for details

7.2 Conducted Emissions

Test Frequency Range: 1	ANSI C63.10:2013 I50KHz to 30MHz								
. , ,	150KHz to 30MHz			ANSI C63.10:2013					
Class / Severity:									
	Class B								
Receiver setup:	RBW=9KHz, VBW=30KHz, S	weep time=auto							
Limit:	Fraguency range (MUT)	Limit	(dBuV)						
	Frequency range (MHz)	Quasi-peak	Aver						
	0.15-0.5	66 to 56*	56 to						
	0.5-5	56	4						
	5-30	60	50	0					
Test setup:	Decreases with the logarithr	•							
Test procedure:	Reference Plane LISN 40cm 80cm Filter AC power Equipment Remark E.U.T. Equipment Under Test LISN Line impedence Stabilization Network Test table height-0.8m 1. The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through a								
3	 LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10:2013 on conducted measurement. 								
Test Instruments:	Refer to section 6.0 for details								
Test mode:	Refer to section 5.2 for details								
Test environment:	Γemp.: 25 °C Hun	nid.: 52%	Press.:	1012mbar					
Test voltage:	AC 120V, 60Hz								
	Pass								

Remark: Both high and low voltages have been tested to show only the worst low voltage test data.

Measurement data Line:

Freq MHz	Reading level dBuV	LISN/ISN factor dB/m	Cable loss dB	Level dBuV	Limit level dBuV	Over limit dB	Remark
0. 15 0. 15 0. 34 0. 34 0. 63 0. 63 1. 25 1. 25 2. 38	34. 62 24. 26 34. 84 27. 33 26. 82 20. 04 27. 23 19. 91 25. 12	0.40 0.40 0.38 0.38 0.28 0.28 0.20 0.20	0.07 0.07 0.10 0.10 0.12 0.12 0.16 0.16 0.18	35. 09 24. 73 35. 32 27. 81 27. 22 20. 44 27. 59 20. 27 25. 50	65. 82 55. 82 59. 31 49. 31 56. 00 46. 00 46. 00	-30.73 -31.09 -23.99 -21.50 -28.78 -25.56 -28.41 -25.73 -30.50	QP Average QP Average QP Average QP Average QP Average
2.38 4.41 4.41	17.42 23.19 15.92	0.20 0.20 0.20	0.18 0.17 0.17	17.80 23.56 16.29	46.00 56.00 46.00	-28.20 -32.44 -29.71	Average QP Average

Neutral:

Freq MHz	Reading level dBuV	LISN/ISN factor dB/m	Cable loss dB	Level dBuV	Limit level dBuV	Over limit dB	Remark
0.16	34.59	0.40	0.08	35.07	65.60	-30.53	QP
0.16	23.00	0.40	0.08	23.48	55.60	-32.12	Average
0.33	34.02	0.38	0.10	34.50	59.40	-24.90	QP
0.33	26.33	0.38	0.10	26.81	49.40	-22.59	Average
0.64	30.30	0.27	0.12	30.69	56.00	-25.31	QP
0.64	21.94	0.27	0.12	22.33	46.00	-23.67	Average
0.91	26.93	0.22	0.14	27.29	56.00	-28.71	QP
0.91	20.35	0.22	0.14	20.71	46.00	-25.29	Äverage
1.61	27.05	0.20	0.17	27.42	56.00	-28.58	QP
1.61	19.67	0.20	0.17	20.04	46.00	-25.96	Äverage
3.40	24.37	0.20	0.18	24.75	56.00	-31.25	QP
3.40	16.79	0.20	0.18	17.17	46.00	-28.83	Äverage

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss
- 4. If the average limit is met when using a quasi-peak detector receiver, the EUT shall be deemed to meet both *limits and measurement with the average detector receiver is unnecessary.*

7.3 Conducted Peak Output Power

Test Requirement:	FCC Part15 E Section 15.407(a)(3)				
Test Method:	ANSI C63.10:2013 and KDB 789033 D02 General U-NII Test Procedures New Rules v02r01				
Limit:	30dBm				
Test setup:	Power Meter E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 6.0 for details				
Test mode:	Refer to section 5.2 for details				
Test results:	Pass				

Measurement Data

Test CH	P	eak Output Power	Limit(dBm)	Result		
1631 011	802.11a	802.11n(HT20)	802.11n(HT40)	Lillit(abili)	Nesuit	
Lowest	13.63	11.98	13.33			
Middle	12.46	12.58		30.00	Pass	
Highest	13.40	13.30	12.86			

Remark: "---"is not applicable

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 15 of 39

7.4 Channel Bandwidth

Test Requirement:	FCC Part15 E Section 15.407(e)			
Test Method:	ANSI C63.10:2013 and KDB 789033 D02 General U-NII Test Procedures New Rules v02r01			
Limit:	>500KHz			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Test Instruments:	Refer to section 6.0 for details			
Test mode:	Refer to section 5.2 for details			
Test results:	Pass			

Measurement Data

Test CH	Ch	Limit (KHz)	Result			
rest on	802.11a	802.11n(HT20)	802.11n(HT40)	Lillin (KHZ)	iveani	
Lowest	16.577	17.742	36.318			
Middle	16.466	17.705		>500	Pass	
Highest	16.509	16.533	36.589			

Remark: "---"is not applicable

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 16 of 39

Test plot as follows:

7.5 Power Spectral Density

Test Requirement:	FCC Part15 E Section 15.407(a)(3)
Test Method:	ANSI C63.10:2013 and KDB 789033 D02 General U-NII Test Procedures New Rules v02r01
Limit:	30dBm/500kHz
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass

Measurement Data

Test CH	Power Spo	ectral Density (dBm	Limit	Result		
Test CH	802.11a	802.11n(HT20)	802.11n(HT40)	(dBm/500kHz)	Nesuit	
Lowest	3.01	2.81	-0.01			
Middle	2.36	1.15		30.00	Pass	
Highest	4.30	3.82	1.00			

Remark: "---"is not applicable

7.6 Band edge

7.6.1 Radiated Emission Method

Test Requirement:	FCC Part15 C Section 15.209 and 15.205						
Test Method:	ANSI C63.10: 2013						
Test Frequency Range:	9kHz to 40GHz,	9kHz to 40GHz, only worse case is reported					
Test site:	Measurement Distance: 3m						
Receiver setup:	Frequency	Detector	RBW	VBW	Value		
	Above 1CHz	Peak	1MHz	3MHz	Peak		
	Above 1GHz	RMS	1MHz	3MHz	RMS		
Limit:	at 25 MHz abov below the band	pelow the band e or below the be edge increasing elow the band e	edge increation and edge, g linearly to edge, and freedge, and freedge.	asing linearl and from 29 a level of 1 om 5 MHz	y to 10 dBm/MHz 5 MHz above or 5.6 dBm/MHz at 5 above or below the		
Test setup:	Tum Table	< 3m	Test Antenna	?			
Test Procedure:	the ground at determine the 2. The EUT was antenna, white tower. 3. The antenna ground to det horizontal an measurement 4. For each sus and then the and the rotal the maximum 5. The test-rece Specified Ball 6. If the emission the limit specified by the EUT with the maximum the limit specified by the EUT with the EUT	a 3 meter came position of the set 3 meters as the set 3 meters as the set of	ber. The tall highest race way from the don the top from one notimum value zations of the firm of the from 0 decent as set to Pear aximum Holl UT in peaking could be done of the from the firm of the from the from the firm peaking could be done of the from the from the firm peaking could be done of the from the firm from the firm peaking could be done of the from the firm peaking could be done of the from the firm peaking could be done of the from the firm peaking could be done of the from the firm peaking the firm peaking could be done of the firm peaking the f	ble was rotadiation. The interference of a variable of the field the antenna was arrang that from 1 ragrees to 36 at Detect Fund Mode, mode was stopped and the emissione by one under the field was stopped and the emissione by one under the stopped and the emissione by one under the stopped and the the stopped and the the stopped and	r meters above the distrength. Both are set to make the ed to its worst case meter to 4 meters 0 degrees to find find unction and 10dB lower than and the peak values sions that did not using peak, quasi-		

	And found the X axis positioning which it is worse case, only the test worst case mode is recorded in the report.
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass

Remarks:

- 1. Only the worst case Main Antenna test data..
- 2. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 4. The pre-test were performed on lowest, middle and highest frequencies, only the worst case's (lowest and highest frequencies) data was showed.
- 5. According to KDB 789033 D02v02r01 section G) 1) d),for measurements above 1000 MHz @3m distance, the limit of field strength is computed as follows:

E[dBuV/m] = EIRP[dBm] + 95.2;

E[dBuV/m] = -27 + 95.2 = 68.2dBuV/m.

E[dBuV/m] = 10 + 95.2 = 105.2dBuV/m.

E[dBuV/m] = 15.6 + 95.2 = 110.8dBuV/m.

E[dBuV/m] = 27 + 95.2 = 122.2dBuV/m

Measurement data:

				IEEE 802.1	1a			
Peak value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5650.00	28.09	32.36	9.72	23.83	46.34	68.20	-21.86	Horizontal
5700.00	29.72	32.50	9.79	23.84	48.17	105.20	-57.03	Horizontal
5720.00	29.48	32.53	9.81	23.85	47.97	110.80	-62.83	Horizontal
5725.00	29.21	32.53	9.83	23.86	47.71	122.20	-74.49	Horizontal
5850.00	28.72	32.70	9.99	23.87	47.54	122.20	-74.66	Horizontal
5855.00	29.27	32.72	9.99	23.88	48.10	110.80	-62.70	Horizontal
5875.00	31.75	32.74	10.04	23.89	50.64	105.20	-54.56	Horizontal
5925.00	28.01	32.80	10.11	23.90	47.02	68.20	-21.18	Horizontal
5650.00	29.50	32.36	9.72	23.83	47.75	68.20	-20.45	Vertical
5700.00	29.94	32.50	9.79	23.84	48.39	105.20	-56.81	Vertical
5720.00	33.69	32.53	9.81	23.85	52.18	110.80	-58.62	Vertical
5725.00	32.48	32.53	9.83	23.86	50.98	122.20	-71.22	Vertical
5850.00	32.43	32.70	9.99	23.87	51.25	122.20	-70.95	Vertical
5855.00	31.56	32.72	9.99	23.88	50.39	110.80	-60.41	Vertical
5875.00	31.44	32.74	10.04	23.89	50.33	105.20	-54.87	Vertical
5925.00	28.48	32.80	10.11	23.90	47.49	68.20	-20.71	Vertical

			IEE	E 802.11n (HT20)			
Peak value:	l I			-	-			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5650.00	29.16	32.36	9.72	23.83	47.41	68.20	-20.79	Horizontal
5700.00	28.86	32.50	9.79	23.84	47.31	105.20	-57.89	Horizontal
5720.00	30.37	32.53	9.81	23.85	48.86	110.80	-61.94	Horizontal
5725.00	31.56	32.53	9.83	23.86	50.06	122.20	-72.14	Horizontal
5850.00	31.14	32.70	9.99	23.87	49.96	122.20	-72.24	Horizontal
5855.00	29.83	32.72	9.99	23.88	48.66	110.80	-62.14	Horizontal
5875.00	32.03	32.74	10.04	23.89	50.92	105.20	-54.28	Horizontal
5925.00	30.50	32.80	10.11	23.90	49.51	68.20	-18.69	Horizontal
5650.00	28.95	32.36	9.72	23.83	47.20	68.20	-21.00	Vertical
5700.00	33.58	32.50	9.79	23.84	52.03	105.20	-53.17	Vertical
5720.00	28.83	32.53	9.81	23.85	47.32	110.80	-63.48	Vertical
5725.00	28.72	32.53	9.83	23.86	47.22	122.20	-74.98	Vertical
5850.00	32.39	32.70	9.99	23.87	51.21	122.20	-70.99	Vertical
5855.00	30.87	32.72	9.99	23.88	49.70	110.80	-61.10	Vertical
5875.00	32.97	32.74	10.04	23.89	51.86	105.20	-53.34	Vertical
5925.00	29.40	32.80	10.11	23.90	48.41	68.20	-19.79	Vertical

			IEEL	E 802.11n (HT40)				
Peak value:									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5650.00	30.77	32.36	9.72	23.83	49.02	68.20	-19.18	Horizontal	
5700.00	28.24	32.50	9.79	23.84	46.69	105.20	-58.51	Horizontal	
5720.00	31.41	32.53	9.81	23.85	49.90	110.80	-60.90	Horizontal	
5725.00	32.42	32.53	9.83	23.86	50.92	122.20	-71.28	Horizontal	
5850.00	32.45	32.70	9.99	23.87	51.27	122.20	-70.93	Horizontal	
5855.00	33.19	32.72	9.99	23.88	52.02	110.80	-58.78	Horizontal	
5875.00	31.55	32.74	10.04	23.89	50.44	105.20	-54.76	Horizontal	
5925.00	32.38	32.80	10.11	23.90	51.39	68.20	-16.81	Horizontal	
5650.00	28.70	32.36	9.72	23.83	46.95	68.20	-21.25	Vertical	
5700.00	31.82	32.50	9.79	23.84	50.27	105.20	-54.93	Vertical	
5720.00	30.91	32.53	9.81	23.85	49.40	110.80	-61.40	Vertical	
5725.00	29.26	32.53	9.83	23.86	47.76	122.20	-74.44	Vertical	
5850.00	30.24	32.70	9.99	23.87	49.06	122.20	-73.14	Vertical	
5855.00	27.98	32.72	9.99	23.88	46.81	110.80	-63.99	Vertical	
5875.00	28.54	32.74	10.04	23.89	47.43	105.20	-57.77	Vertical	
5925.00	29.12	32.80	10.11	23.90	48.13	68.20	-20.07	Vertical	

Remark:

^{1.} Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

7.7 Spurious Emission

7.7.1 Radiated Emission Method

Test Requirement:	FCC Part15 C Section 15.209, Part 15E Section 15.407(b)(4))7(b)(4)	
Test Method:	ANSI C63.10:2013		00, .	u		(2)(1)	
Test Frequency Range:	9kHz to 40GHz						
Test site:	Measurement Dist	tanca: 3	2m				
		1	ector	RBW	VBW	Value	
Receiver setup:	Frequency 9kHz-150KHz		i-peak	200Hz	1kHz	Quasi-peak Value	
	150kHz-30MHz		i-peak	9kHz	30kHz	Quasi-peak Value	
	30MHz-1GHz		i-peak	100KHz	300KHz	Quasi-peak Value	
			eak	1MHz	3MHz	Peak Value	
	Above 1GHz	Α	V	1MHz	3MHz	Average Value	
Limit:	Frequency		Limit	(uV/m)	Value	Measurement Distance	
	0.009MHz-0.490)MHz	2400	/F(KHz)	QP	300m	
	0.490MHz-1.705	5MHz	24000)/F(KHz)	QP	300m	
	1.705MHz-30N	ЛHz	,	30	QP	30m	
	30MHz-88MH	Ηz	1	100	QP		
	88MHz-216M	Hz	150		QP]	
	216MHz-960M	1Hz	200		QP	3m	
	960MHz-1GH	Ηz	5	500	QP		
						·	
	Frequency		Limit (dBm/MHz)		Hz)	Remark	
	Above 1GH	Z		-27.0		Peak Value	
Test setup:	For radiated emi	ssions	from 9	kHz to 30	MHz		
		*******	111111111	**********	*******	₩	
	Turn Table EUT Im						
	For radiated emi	ssions	from 3	0MHz to1	 GHz		

For radiated emissions above 1GHz

Test Procedure:

- 1. The EUT was placed on the top of a rotating table (0.8m for below 1GHz and 1.5 meters for above 1GHz) above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data sheet.
- 7. The radiation measurements are performed in X, Y, Z axis positioning.

	And found the X axis positioning which it is worse case, only the test worst case mode is recorded in the report.					
Test Instruments:	Refer to section 6.0 for details					
Test mode:	Refer to sec	Refer to section 5.2 for details				
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar
Test voltage:	AC 120V, 60Hz					
Test results:	Pass	Pass				

Remarks:

- 1. Only the worst case Main Antenna test data.
- 2. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

Measurement Data:

9 kHz ~ 30 MHz

The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.

Below 1GHz Horizontal:

Remarks: level = Reading level + Antenna factor + Cable loss - Preamp Factor

Vertical:

Remarks: level = Reading level + Antenna factor + Cable loss - Preamp Factor

Above 1GHz:

802.11a,11n(HT20), 11n(HT40) all have been tested,

Only the data of worst case at each channel plan reported.

Test mod	est mode: 802.11a		Test channel:		lowest		
Antenna Pol.	Frequency (MHz)	Reading Level (dBuV/m)	Factor (dBuV/m)	Measure Level (dBuV/m)	Limit (dBuV/m)	Over limit(dB)	Detector
V	11490.00	21.11	21.64	42.75	54(Note3)	-11.25	PK
V	17235.00	20.63	21.80	42.43	54(Note3)	-11.57	PK
Н	11490.00	21.85	21.83	43.68	54(Note3)	-10.32	PK
Н	17235.00	19.66	21.67	41.33	54(Note3)	-12.67	PK

Test mod	est mode: 802.11a		Test channel:		Middle		
Antenna Pol.	Frequency (MHz)	Reading Level (dBuV/m)	Factor (dBuV/m)	Measure Level (dBuV/m)	Limit (dBuV/m)	Over limit(dB)	Detector
V	11570.00	22.17	21.64	43.81	54(Note3)	-10.19	PK
V	17355.00	23.06	21.80	44.86	54(Note3)	-9.14	PK
Н	11570.00	24.19	21.83	46.02	54(Note3)	-7.98	PK
Н	17355.00	25.06	21.67	46.73	54(Note3)	-7.27	PK

Test mod	est mode: 802.11a		Test channel:		Highest		
Antenna Pol.	Frequency (MHz)	Reading Level (dBuV/m)	Factor (dBuV/m)	Measure Level (dBuV/m)	Limit (dBuV/m)	Over limit(dB)	Detector
V	11650.00	21.24	21.64	42.88	54(Note3)	-11.12	PK
V	17475.00	21.55	21.80	43.35	54(Note3)	-10.65	PK
Н	11650.00	20.33	21.83	42.16	54(Note3)	-11.84	PK
Н	17475.00	19.21	21.67	40.88	54(Note3)	-13.12	PK

Test mode	est mode: 802.11n(HT40)		Test channel:		Lowest		
Antenna Pol.	Frequency (MHz)	Reading Level (dBuV/m)	Factor (dBuV/m)	Measure Level (dBuV/m)	Limit (dBuV/m)	Over limit(dB)	Detector
V	11510.00	21.85	21.67	43.52	54(Note3)	-10.48	PK
V	17265.00	22.34	21.83	44.17	54(Note3)	-9.83	PK
Н	11510.00	20.33	21.67	42.00	54(Note3)	-12.00	PK
Н	17265.00	22.31	21.83	44.14	54(Note3)	-9.86	PK

Tes	Test mode: 802.11n(HT40)		Test ch	nannel:	Highest		
Antenna Pol.	Frequency (MHz)	Reading Level (dBuV/m)	Factor (dBuV/m)	Measure Level (dBuV/m)	Limit (dBuV/m)	Over limit(dB)	Detector
V	11590.00	21.62	21.67	43.29	54(Note3)	-10.71	PK
V	17385.00	25.01	21.83	46.84	54(Note3)	-7.16	PK
Н	11590.00	24.04	21.67	45.71	54(Note3)	-8.29	PK
Н	17385.00	23.17	21.83	45.00	54(Note3)	-9.00	PK

Notes:

- 1. Measure Level = Reading Level + Factor.
- 2. The test trace is same as the ambient noise (the test frequency range: 18GHz~40GHz), therefore no data appear in the report.
- 3. This limit applies for using average detector, if the test result on peak is lower than average limit, then average measurement needn't be performed.

7.8 Frequency stability

Test Requirement:	FCC Part15 C Section 15.407(g)						
Test Method:	ANSI C63.10:2013, FCC Part 2.105	55					
Limit:	Manufactures of U-NII devices are a stability such that an emission is maunder all conditions of normal operations.	aintained within the band of operation					
Test Procedure:		The EUT was setup to ANSI C63.4, 2003; tested to 2.1055 for compliance to FCC Part 15.407(g) requirements.					
Test setup:	Spectrum analyzer Att. Note: Measurement setup for testing on A	Temperature Chamber EUT Variable Power Supply Antenna connector					
Test Instruments:	Refer to section 5.10 for details						
Test mode:	Refer to section 5.2 for details						
Test results:	Pass						

Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Measurement data:

HT 20MHz							
Frequency stability versus Temp.							
	Power Supply: AC 120V						
Tomp	Operating	0 minute	2 minute	5 minute	10 minute		
Temp.	Frequency	Measured	Measured	Measured	Measured		
(°C)	(MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)		
	5745	5746.9319	5744.8934	5744.6503	5746.8115		
-30	5785	5785.3831	5784.5004	5784.1803	5786.8424		
	5825	5825.1771	5824.7746	5824.5918	5826.9234		
	5745	5745.6563	5744.3588	5744.4397	5745.7875		
-20	5785	5785.6090	5784.3621	5784.7093	5785.2091		
	5825	5825.5410	5824.8058	5824.7962	5825.1985		
	5745	5745.6129	5744.5748	5744.2228	5745.4888		
-10	5785	5785.1283	5784.6193	5784.9766	5785.6372		
	5825	5825.2857	5824.6162	5824.4332	5825.8240		
	5745	5745.9166	5744.8298	5744.7874	5745.0223		
0	5785	5785.7273	5784.9513	5784.2275	5785.0079		
	5825	5825.0437	5824.8189	5824.1647	5825.7458		
	5745	5745.0273	5744.8679	5744.1147	5745.6204		
10	5785	5785.7951	5784.3398	5784.5143	5785.6476		
	5825	5825.8137	5824.5365	5824.8824	5825.5588		
	5745	5745.8477	5744.8091	5744.1546	5745.0542		
20	5785	5785.3207	5784.1192	5784.7672	5785.1018		
	5825	5825.3991	5824.6867	5824.9309	5825.0201		
	5745	5745.9702	5744.2335	5744.2019	5745.3570		
30	5785	5785.6030	5784.6476	5784.2440	5785.2718		
	5825	5825.2190	5824.0476	5824.9864	5825.3656		
	5745	5745.7743	5744.5149	5744.5111	5745.6370		
40	5785	5785.3316	5784.0933	5784.4767	5785.7876		
	5825	5825.5927	5824.9503	5824.6626	5825.9487		
	5745	5745.6293	5744.0928	5744.2091	5745.0877		
50	5785	5785.3281	5784.9310	5784.1658	5785.0058		
	5825	5825.0701	5824.2270	5824.1031	5825.9409		

Frequency stability versus Voltage						
Temperature: 25°C						
Power	Operating	0 minute	2 minute	5 minute	10 minute	
Supply	Frequency	Measured	Measured	Measured	Measured	
(VAC)	(MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)	
	5745	5746.9872	5745.0349	5743.0931	5743.5385	
108	5785	5786.6790	5785.5262	5784.6866	5784.0652	
	5825	5825.3926	5825.6273	5824.8763	5824.5732	
120	5745	5745.7678	5745.4639	5744.8492	5744.8118	
	5785	5785.5718	5785.3340	5784.2326	5784.1250	
	5825	5825.0409	5825.1341	5824.3805	5824.4735	
132	5745	5745.7542	5745.8072	5744.0854	5744.2516	
	5785	5785.4456	5785.0530	5784.5545	5784.8062	
	5825	5825.3251	5825.4432	5824.1713	5824.5434	

Page 37 of 39

HT40 MHz					
Frequency stability versus Temp.					
Power Supply: AC 120V					
Tomp	Operating	0 minute	2 minute	5 minute	10 minute
Temp. (°C)	Frequency	Measured	Measured	Measured	Measured
(0)	(MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)
-30	5755	5756.0336	5754.6886	5754.7416	5756.2799
-30	5795	5795.5428	5794.7813	5794.0287	5795.7464
-20	5755	5755.8430	5754.8399	5754.7434	5755.1815
-20	5795	5795.9508	5794.4914	5794.0514	5795.4954
10	5755	5755.0831	5754.4051	5754.1467	5755.8222
-10	5795	5795.1463	5794.7167	5794.6020	5795.5371
0	5755	5755.6064	5754.3346	5754.9433	5755.9238
U	5795	5795.4250	5794.4474	5794.2509	5795.0630
10	5755	5755.0786	5754.9237	5754.5700	5755.7940
10	5795	5795.6488	5794.6501	5794.5698	5795.1121
20	5755	5755.3521	5754.2525	5754.2937	5755.9177
20	5795	5795.2632	5794.7502	5794.6526	5795.9472
20	5755	5755.0159	5754.7830	5754.6773	5755.7752
30	5795	5795.5753	5794.3872	5794.4968	5795.2043
40	5755	5755.9407	5754.2952	5754.2879	5755.3234
40	5795	5795.1428	5794.9877	5794.6593	5795.9075
50	5755	5755.3021	5754.1434	5754.6656	5755.0938
	5795	5795.3191	5794.2476	5794.8107	5795.5491

Frequency stability versus Voltage						
Temperature: 25°C						
Power	Operating	0 minute	2 minute	5 minute	10 minute	
Supply	Frequency	Measured	Measured	Measured	Measured	
(VAC)	(MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)	
108	5755	5755.8092	5754.3481	5755.2072	5753.7035	
108	5795	5795.8912	5794.0288	5795.1167	5794.3629	
120	5755	5755.3191	5754.5411	5755.2434	5754.4136	
	5795	5795.7043	5794.6251	5795.3945	5794.0793	
132	5755	5755.4915	5754.5640	5755.8807	5754.0135	
	5795	5795.7260	5794.8866	5795.1189	5794.6333	

8 Test Setup Photo

Reference to the appendix I for details.

9 EUT Constructional Details

Reference to the appendix II for details.

-----END-----