Versuch 2: Brückenschaltung

Team 2-13: Jascha Fricker, Benedict Brouwer

25. August 2022

Inhaltsverzeichnis

1	Einleitung	2
2	Experimenteller Aufbau	2
3	Theorie	2
4	Ergebnisse	2
5	Diskussion	4
6	Anhang 6.1 Messwerte Aufgabe 9 und 10	4 4

1 Einleitung

Durch die Brückenschaltung können Widerstände und Impedanzen sehr genau bestimmt werden. In diesem Versuch werden mit dieser Methode verschiedene, Widerstände, Spulen und Kondensatoren untersucht.

2 Experimenteller Aufbau

3 Theorie

In diesem Versuch werden mithilfe der in 2 gezeigten Brückenschaltung verschiedene Widerstände, Spulen und Kondensatoren untersucht. Wenn kein Strom durch das Ampèremeter fließt, bzw der Graph auf dem Oszilloskop horizontal ist, gilt die Schaltung als abgeglichen und es gilt das Verhähltnis

$$\frac{Z_1}{Z_2} = \frac{R_3}{R_4} = \frac{R_p}{1k\Omega - R_p} \tag{1}$$

$$\Rightarrow Z_1 = \frac{R_p}{1k\Omega - R_p} \cdot Z_2 \,, \tag{2}$$

wobei R_p der Ablesewert des Potentiometers ist, und Z_2 der bekannte (komplexe) Vergleichwiderstand.

Wenn eine Spule gemessen wird, gilt speziell

$$R_1 = \frac{A}{1k\Omega - A} \cdot (R_S + R_V) \tag{3}$$

$$L_1 = \frac{A}{1k\Omega - A} \cdot (L_S) \tag{4}$$

mit
$$Z_2 = R_2 + j\omega L_2 = R_V + R_S + j\omega L_S$$
 (5)

4 Ergebnisse

Aufgabe 7 Durch das Potentiometer kann für jeden Widerstand

Vergleichswiderstand	Potieinstellung	errechneter Widerstand
10.00(10)	998.00(21)	4990(510)
30.00(30)	771.00(21)	101.0(11)
100.0(10)	506.00(21)	102.4(11)

Tabelle 1: Wiederstand Poti in Ω

\mathbf{Name}	Potieinstellung	errechneter Widerstand
Spule 1	382.00(21)	6.181(63)
Spule 2	555.00(21)	12.47(13)
Spule EM	35.00(21)	0.3627(43)
Spule AM	31.00(21)	0.3199(39)
Spule AE	58.00(21)	0.6157(66)

Tabelle 2: Wiederstand Spule in Ω und Vergleichswiderstand 10,00(10) Ω

Aufgabe 8

5 Diskussion

6 Anhang

6.1 Messwerte Aufgabe 9 und 10

U in V	R_2 in Ω	Poti in Ω	R_G in Ω	I in A	P in W
1.000(14)	10.00(10)	10.00(21)	0.1010(24)	0.0990(17)	0.0990(28)
1.000(14)	30.00(30)	30.00(21)	0.928(12)	0.03233(54)	0.03233(91)
1.000(14)	200.0(20)	200.00(21)	50.00(51)	0.004000(66)	0.00400(12)
2.000(90)	10.00(10)	264.00(21)	3.587(37)	0.1472(68)	0.294(27)
2.000(90)	30.00(30)	41.00(21)	1.283(15)	0.0639(30)	0.128(12)
2.000(90)	200.0(20)	8.00(21)	1.613(45)	0.00992(46)	0.0198(18)
3.000(95)	10.00(10)	424.00(21)	7.361(74)	0.1728(58)	0.518(34)
3.000(95)	30.00(30)	88.00(21)	2.895(30)	0.0912(31)	0.274(18)
3.000(95)	200.0(20)	8.00(21)	1.613(45)	0.01488(50)	0.0446(29)
4.00(10)	10.00(10)	490.00(21)	9.608(97)	0.2040(55)	0.816(42)
4.00(10)	30.00(30)	163.00(21)	5.842(60)	0.1116(31)	0.446(23)
4.00(10)	200.0(20)	9.00(21)	1.816(46)	0.01982(54)	0.0793(41)
5.00(11)	10.00(10)	533.00(21)	11.41(12)	0.2335(55)	1.167(51)
5.00(11)	30.00(30)	201.00(21)	7.547(77)	0.1332(31)	0.666(29)
5.00(11)	200.0(20)	9.00(21)	1.816(46)	0.02478(58)	0.1239(54)
6.00(11)	10.00(10)	566.00(21)	13.04(14)	0.2604(55)	1.562(60)
6.00(11)	30.00(30)	234.00(21)	9.164(93)	0.1532(32)	0.919(35)
6.00(11)	200.0(20)	10.00(21)	2.020(47)	0.02970(63)	0.1782(68)

Tabelle 3: Eigenschaften Glühlampe