HIT HAN LA

EfficientML.ai Lecture 05 Quantization

Part I

Song Han

Associate Professor, MIT
Distinguished Scientist, NVIDIA

Lecture Plan

Today we will:

- 1. Review the numeric *data types* used in the modern computing systems, including integers and floatingpoint numbers.
- 2. Learn the basic concept of *neural network quantization*
- 3. Learn three types of common neural network quantization:
 - 1. K-Means-based Quantization
 - 2. Linear Quantization
 - 3. Binary and Ternary Quantization

Low Bit-Width Operations are Cheap

Less Bit-Width → **Less Energy**

Operation	Energy [pJ]			
8 bit int ADD	0.03	30 ×	-	
32 bit int ADD	0.1			
16 bit float ADD	0.4			
32 bit float ADD	0.9			
8 bit int MULT	0.2		16 ×	
32 bit int MULT	3.1			
16 bit float MULT	1.1			
32 bit float MULT	3.7			
Rough Energy Cost For Vario		1 10 00 × +	100	1000

Computing's Energy Problem (and What We Can Do About it) [Horowitz, M., IEEE ISSCC 2014]

This image is in the public domain

Low Bit-Width Operations are Cheap

Less Bit-Width → **Less Energy**

Operation	Energy [pJ]
8 bit int ADD	0.03
 32 bit int ADD	0.1
16 bit float ADD	0.4

How should we make deep learning more efficient?

Computing's Energy Problem (and What We Can Do About it) [Horowitz, M., IEEE ISSCC 2014]

Numeric Data Types

How is numeric data represented in modern computing systems?

Integer

- Unsigned Integer
 - *n*-bit Range: $[0, 2^n 1]$
- Signed Integer
 - Sign-Magnitude Representation
 - *n*-bit Range: $[-2^{n-1}-1, 2^{n-1}-1]$
 - Both 000...00 and 100...00 represent 0
 - Two's Complement Representation
 - *n*-bit Range: $[-2^{n-1}, 2^{n-1} 1]$
 - 000...00 represents 0
 - 100...00 represents -2^{n-1}

Sign Bit

Fixed-Point Number

(using 2's complement representation)

Example: 32-bit floating-point number in IEEE 754

$$0.265625 = 1.0625 \times 2^{-2} = (1 + 0.0625) \times 2^{125-127}$$

Example: 32-bit floating-point number in IEEE 754

$$(-1)^{sign} \times (1 + Fraction) \times 2^{Exponent-127}$$
 Exponent Bias = 127 = 28-1-1 (significant / mantissa)

How should we represent 0?

Example: 32-bit floating-point number in IEEE 754

Sign 8 bit Exponent

$$(-1)^{sign} \times (1 + Fraction) \times 2^{Exponent-127}$$

(Normal Numbers, Exponent≠0)

$$0.265625 = 1.0625 \times 2^{-2} = (1 + 0.0625) \times 2^{125-127}$$

23 bit Fraction

Should have been $(-1)^{sign} \times (1 + Fraction) \times 2^{0-127}$

But we force to be $(-1)^{sign} \times Fraction \times 2^{1-127}$

(Subnormal Numbers, Exponent=0)

Example: 32-bit floating-point number in IEEE 754

What is the minimum positive value?

Example: 32-bit floating-point number in IEEE 754

Sign 8 bit Exponent

23 bit Fraction

$$(-1)^{sign} \times (1 + Fraction) \times 2^{Exponent-127}$$

(Normal Numbers, Exponent≠0)

$$(-1)^{sign} \times Fraction \times 2^{1-127}$$

(Subnormal Numbers, Exponent=0)

$$2^{-149} = 2^{-23} \times 2^{-126}$$

Example: 32-bit floating-point number in IEEE 754

What is the maximum positive subnormal value?

Example: 32-bit floating-point number in IEEE 754

Sign 8 bit Exponent

23 bit Fraction

$$(-1)^{sign} \times (1 + Fraction) \times 2^{Exponent-127}$$

(Normal Numbers, Exponent≠0)

$$(-1)^{sign} \times Fraction \times 2^{1-127}$$

(Subnormal Numbers, Exponent=0)

Example: 32-bit floating-point number in IEEE 754

Sign 8 bit Exponent

23 bit Fraction

$$(-1)^{sign} \times (1 + Fraction) \times 2^{Exponent-127}$$

(Normal Numbers, Exponent≠0)

$$(-1)^{sign} \times Fraction \times 2^{1-127}$$

(Subnormal Numbers, Exponent=0)

much waste. Revisit in fp8.

Example: 32-bit floating-point number in IEEE 754

Sign 8 bit Exponent

23 bit Fraction

Exponent	Fraction=0	Fraction≠0	Equation
$00_{H} = 0$	±0	subnormal	(-1)sign × Fraction × 21-127
01 _H FE _H = 1 254 normal		mal	(-1)sign × (1 + Fraction) × 2Exponent-127
FF _H = 255	±INF	NaN	

Exponent Width → Range; Fraction Width → Precision

Numeric Data Types

Question: What is the following IEEE half precision (IEEE FP16) number in decimal?

Exponent Bias = 15₁₀

- Sign: -
- Exponent: $10001_2 15_{10} = 17_{10} 15_{10} = 2_{10}$ Fraction: $1100000000_2 = 0.75_{10}$
- Decimal Answer = $-(1 + 0.75) \times 2^2 = -1.75 \times 2^2 = -7.0_{10}$

Numeric Data Types

• Question: What is the decimal 2.5 in Brain Float (BF16)?

$$2.5_{10} = 1.25_{10} \times 2^{1}$$

Exponent Bias = 127₁₀

- Sign: +
- Exponent Binary: $1_{10} + 127_{10} = 128_{10} = 10000000_2$
- Fraction Binary: $0.25_{10} = 0100000_2$
- Binary Answer

Exponent Width → Range; Fraction Width → Precision

IEEE 754 Single Precision 32-bit Float (IEEE FP32)	Exponent (bits)	Fraction (bits)	Total (bits)
	8	23	32
IEEE 754 Half Precision 16-bit Float (IEEE FP16)			
	5	10	16
Nvidia FP8 (E4M3)			
* FP8 E4M3 does not have INF, and S.1111.111 ₂ is used for NaN. * Largest FP8 E4M3 normal value is S.1111.110 ₂ =448.	4	3	8
Nvidia FP8 (E5M2) for gradient in the backward			
* FP8 E5M2 have INF (S.11111.00 ₂) and NaN (S.11111.XX ₂). * Largest FP8 E5M2 normal value is S.11110.11 ₂ =57344.	5	2	8

INT4 and FP4

Exponent Width → Range; Fraction Width → Precision

INT4

$$-1, -2, -3, -4, -5, -6, -7, -8$$
 $0, 1, 2, 3, 4, 5, 6, 7$

FP4 (E1M2)

-0, -0.5, -1, -1.5, -2, -2.5, -3, -3.50, 0.5, 1, 1.5, 2, 2.5, 3, 3.5

$$-0,-1,-2,-3,-4,-5,-6,-7 \times 0.5$$

0, 1, 2, 3, 4, 5, 6, 7

 $=0.25\times2^{1-0}=0.5$

$$=(1+0.75)\times2^{1-0}=3.5$$

FP4 (E2M1)

-0, -0.5, -1, -1.5, -2, -3, -4, -60, 0.5, 1, 1.5, 2, 3, 4, 6

$$-0,-1,-2,-3,-4,-6,-8,-12$$

0, 1, 2, 3, 4, 6, 8, 12 ×0.5

 $=(1+0.5)\times2^{3-1}=1$

 $=0.5\times2^{1-1}=0.5$

no inf, no NaN

FP4 (E3M0)

1 1 =
$$(1+0)\times 2^{7-3}=16$$

no inf, no NaN

What is Quantization?

Quantization is the process of constraining an input from a continuous or otherwise large set of values to a discrete set.

The difference between an input value and its quantized value is referred to as quantization error.

Original Image

16-Color Image

<u>Images</u> are in the public domain. "Palettization"

Quantization [Wikipedia]

Neural Network Quantization: Agenda

3	0	2	1	3:	2.00
1	1	0	3	2:	1.50
0	3	1	0	1:	0.00
3	1	2	2	0:	-1.00

1	0	1	1
1	0	0	1
0	1	1	0
1	1	1	1

K-Means-based Quantization

Linear Quantization **Binary/Ternary** Quantization

Storage	Floating-Point Weights
Computation	Floating-Point Arithmetic

Neural Network Quantization: Agenda

1		1	1
1			1
0	1	1	
1	1	1	1

K-Means-based Quantization

Linear Quantization **Binary/Ternary** Quantization

Storage	Floating-Point Weights	Integer Weights; Floating-Point Codebook
Computation	Floating-Point Arithmetic	Floating-Point Arithmetic

Neural Network Quantization

Weight Quantization

weights (32-bit float)

	\		
2.09	-0.98	1.48	0.09
0.05	-0.14	-1.08	2.12
-0.91	1.92	0	-1.03
1.87	0	1.53	1.49

Neural Network Quantization

Weight Quantization

weights (32-bit float)

2.09	-0.98	1.48	0.09
0.05	-0.14	-1.08	2.12
-0.91	1.92	0	-1.03
1.87	0	1.53	1.49

weights (32-bit float)

2.09	-0.98	1.48	0.09
0.05	-0.14	-1.08	2.12
-0.91	1.92	0	-1.03
1.87	0	1.53	1.49

3.2 × smaller

Assume N-bit quantization, and #parameters = $M >> 2^{N}$.

32 bit
$$\times M$$

= 32M bit = NM bit = 2^{N+5} bit 32/N \times smaller

Deep Compression [Han et al., ICLR 2016]

reconstructed weights (32-bit float)

2.00	-1.00	1.50	0.00
0.00	0.00	-1.00	2.00
-1.00	2.00	0.00	-1.00
2.00	0.00	1.50	1.50

quantization error

0.09	0.02	-0.02	0.09
0.05	-0.14	-0.08	0.12
0.09	-0.08	0	-0.03
-0.13	0	0.03	-0.01

storage

Fine-tuning Quantized Weights

gradient

-0.03	-0.01	0.03	0.02
-0.01	0.01	-0.02	0.12
-0.01	0.02	0.04	0.01
-0.07	-0.02	0.01	-0.02

Fine-tuning Quantized Weights

Accuracy vs. compression rate for AlexNet on ImageNet dataset

Model Size Ratio after Compression

Accuracy vs. compression rate for AlexNet on ImageNet dataset

Accuracy vs. compression rate for AlexNet on ImageNet dataset

Before Quantization: Continuous Weight

After Quantization: Discrete Weight

After Quantization: Discrete Weight after Training

How Many Bits do We Need?

Huffman Coding

- In-frequent weights: use more bits to represent
- Frequent weights: use less bits to represent

Summary of Deep Compression

Deep Compression Results

Network	Original Size	Compressed Size	Compression Ratio	Original Accuracy	Compressed Accuracy
LeNet-300	1070KB	27KB	40x	98.36%	98.42%
LeNet-5	1720KB	44KB	39x	99.20%	99.26%
AlexNet	240MB	6.9MB	35x	80.27%	80.30%
VGGNet	550MB	11.3MB	49x	88.68%	89.09%
GoogleNet	28MB	2.8MB	10x	88.90%	88.92%
ResNet-18	44.6MB	4.0MB	11x	89.24%	89.28%

Can we make compact models to begin with?

Deep Compression [Han et al., ICLR 2016]

SqueezeNet

SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size [landola et al., arXiv 2016]

Deep Compression on SqueezeNet

Network	Approach	Size	Ratio	Top-1 Accuracy	Top-5 Accuracy
AlexNet	-	240MB	1x	57.2%	80.3%
AlexNet	SVD	48MB	5x	56.0%	79.4%
AlexNet	Deep Compression	6.9MB	35x	57.2%	80.3%
SqueezeNet	_	4.8MB	50x	57.5%	80.3%
SqueezeNet	Deep Compression	0.47MB	510x	57.5%	80.3%

SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size [landola et al., arXiv 2016]

K-Means-based Weight Quantization

- The weights are decompressed using a lookup table (i.e., codebook) during runtime inference.
- K-Means-based Weight Quantization only saves storage cost of a neural network model.
 - All the computation and memory access are still floating-point.

Neural Network Quantization

1		1	1
1			1
0	1	1	
1	1	1	1

K-Means-based
Quantization

Linear Quantization

Binary/Ternary Quantization

Storage	Floating-Point Weights	Integer Weights; Floating-Point Codebook	Integer Weights
Computation	Floating-Point Arithmetic	Floating-Point Arithmetic	Integer Arithmetic

What is Linear Quantization?

weights (32-bit float)

2.09	-0.98	1.48	0.09
0.05	-0.14	-1.08	2.12
-0.91	1.92	0	-1.03
1.87	0	1.53	1.49

What is Linear Quantization?

An affine mapping of integers to real numbers

weights (32-bit float)

-0.98 1.48 2.09 0.09 **-0.14** -1.08 **2.12** 1.92 -1.03 -0.91 1.87 1.53 1.49

quantized weights (2-bit signed int)

1	-2	0	-1
-1	-	-2	1
-2	1	-1	-2
1	-1	0	0

zero point (2-bit signed int)

<u>scale</u> (32-bit float)

reconstructed weights (32-bit float)

2.14	-1.07	1.07	0
0	0	-1.07	2.14
-1.07	2.14	0	-1.07
2.14	0	1.07	1.07

quantization error

-0.05	0.09	0.41	0.09
0.05	-0.14	-0.01	-0.02
0.16	-0.22	0	0.04
-0.27	0	0.46	0.42

Binary	Decimal
01	1
00	0
11	-1
10	-2

What is Linear Quantization?

An affine mapping of integers to real numbers

weights (32-bit float)

-0.98 1.48 2.09 0.09 **-0.14** -1.08 **2.12** -1.03 -0.91 1.92 1.87 1.53 1.49

quantized weights (2-bit signed int)

1	-2	0	-1
-1	-1	-2	1
-2	1	-1	-2
1	-1	0	0

zero point (2-bit signed int)

<u>scale</u>

(32-bit float)

reconstructed weights (32-bit float)

2.14	-1.07	1.07	0
0	0	-1.07	2.14
-1.07	2.14	0	-1.07
2.14	0	1.07	1.07

quantization error

-0.05	0.09	0.41	0.09
0.05	-0.14	-0.01	-0.02
0.16	-0.22	0	0.04
-0.27	0	0.46	0.42

Binary Decimal 01 00 -2 10

An affine mapping of integers to real numbers r = S(q - Z)

Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference [Jacob et al., CVPR 2018]

An affine mapping of integers to real numbers r = S(q - Z)

Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference [Jacob et al., CVPR 2018]

An affine mapping of integers to real numbers r = S(q - Z)

Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference [Jacob et al., CVPR 2018]

quantized integer Z

An affine mapping of integers to real numbers r = S(q - Z)

Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference [Jacob et al., CVPR 2018]

Scale of Linear Quantization

Linear Quantization is an affine mapping of integers to real numbers r = S(q - Z)

$$r_{\text{max}} = S \left(q_{\text{max}} - Z \right)$$

$$r_{\text{min}} = S \left(q_{\text{min}} - Z \right)$$

$$\downarrow$$

$$r_{\text{max}} - r_{\text{min}} = S \left(q_{\text{max}} - q_{\text{min}} \right)$$

$$S = \frac{r_{\text{max}} - r_{\text{min}}}{q_{\text{max}} - q_{\text{min}}}$$

Scale of Linear Quantization

Linear Quantization is an affine mapping of integers to real numbers r = S(q - Z)

q_{\min} q_{\max}	
$-2 - 1 \ 0 \ 1$	

Binary	Decimal
01	1
00	0
11	-1
10	-2

2.09	-0.98	1.48	0.09
0.05	-0.14	-1.08	2.12
-0.91	1.92	0	-1.03
1.87	0	1.53	1.49

$$S = \frac{r_{\text{max}} - r_{\text{min}}}{q_{\text{max}} - q_{\text{min}}}$$

$$= \frac{2.12 - (-1.08)}{1 - (-2)}$$
$$= 1.07$$

Zero Point of Linear Quantization

Linear Quantization is an affine mapping of integers to real numbers r = S(q - Z)

$$r_{\min} = S \left(q_{\min} - Z \right)$$

$$\downarrow$$

$$Z = q_{\min} - \frac{r_{\min}}{S}$$

$$\downarrow$$

$$= \text{round} \left(q_{\min} - \frac{r_{\min}}{S} \right)$$

Zero Point of Linear Quantization

Linear Quantization is an affine mapping of integers to real numbers r = S(q - Z)

q_{min}	q_{max}	
		—
-2 - 1 () 1	

2.09	-0.98	1.48	0.09
0.05	-0.14	-1.08	2.12
-0.91	1.92	0	-1.03
1.87	0	1.53	1.49

$$Z = q_{\min} - \frac{r_{\min}}{S}$$

Decimal

-2

01

00

11

10

= round(
$$-2 - \frac{-1.08}{1.07}$$
)
= -1

Linear Quantization is an affine mapping of integers to real numbers r = S(q - Z)

Consider the following matrix multiplication.

$$Y = WX$$

$$S_{\mathbf{Y}}\left(\mathbf{q}_{\mathbf{Y}}-Z_{\mathbf{Y}}\right)=S_{\mathbf{W}}\left(\mathbf{q}_{\mathbf{W}}-Z_{\mathbf{W}}\right)\cdot S_{\mathbf{X}}\left(\mathbf{q}_{\mathbf{X}}-Z_{\mathbf{X}}\right)$$

$$\mathbf{q_Y} = \frac{S_{\mathbf{W}}S_{\mathbf{X}}}{S_{\mathbf{Y}}} \left(\mathbf{q_W} - Z_{\mathbf{W}} \right) \left(\mathbf{q_X} - Z_{\mathbf{X}} \right) + Z_{\mathbf{Y}}$$

$$\mathbf{q_Y} = \frac{S_{\mathbf{W}}S_{\mathbf{X}}}{S_{\mathbf{V}}} \left(\mathbf{q_W}\mathbf{q_X} - Z_{\mathbf{W}}\mathbf{q_X} - Z_{\mathbf{X}}\mathbf{q_W} + Z_{\mathbf{W}}Z_{\mathbf{X}} \right) + Z_{\mathbf{Y}}$$

Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference [Jacob et al., CVPR 2018]

Linear Quantization is an affine mapping of integers to real numbers r = S(q - Z)

Consider the following matrix multiplication.

$$\mathbf{Y} = \mathbf{WX}$$

$$\mathbf{q_Y} = \frac{S_\mathbf{W} S_\mathbf{X}}{S_\mathbf{Y}} \left(\mathbf{q_W} \mathbf{q_X} - Z_\mathbf{W} \mathbf{q_X} - Z_\mathbf{X} \mathbf{q_W} + Z_\mathbf{W} Z_\mathbf{X} \right) + Z_\mathbf{Y}$$
 N-bit Integer Multiplication *N*-bit Integer 32-bit Integer Addition/Subtraction Addition

Linear Quantization is an affine mapping of integers to real numbers r = S(q - Z)

Consider the following matrix multiplication.

$$\mathbf{Y} = \mathbf{WX}$$

$$\mathbf{q_Y} = \frac{S_{\mathbf{W}}S_{\mathbf{X}}}{S_{\mathbf{Y}}} \left(\mathbf{q_W}\mathbf{q_X} - Z_{\mathbf{W}}\mathbf{q_X} - Z_{\mathbf{X}}\mathbf{q_W} + Z_{\mathbf{W}}Z_{\mathbf{X}} \right) + Z_{\mathbf{Y}}$$

Empirically, the scale $\frac{S_{\mathbf{W}}S_{\mathbf{X}}}{S_{\mathbf{Y}}}$ is always in the interval (0, 1). Fixed-point Multiplication

$$\frac{S_{\mathbf{W}}S_{\mathbf{X}}}{S_{\mathbf{Y}}} = 2^{-n}M_0$$
, where $M_0 \in [0.5,1)$

Bit Shift

Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference [Jacob et al., CVPR 2018]

Linear Quantization is an affine mapping of integers to real numbers r = S(q - Z)

Consider the following matrix multiplication.

Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference [Jacob et al., CVPR 2018]

Symmetric Linear Quantization

Zero point Z=0 and Symmetric floating-point range

Bit Width	Q min	Q _{max}
2	-2	1
3	-4	3
4	-8	7
N	-2N-1	2N-1-1

Symmetric Linear Quantization

Full range mode

$$S = \frac{r_{\text{max}} - r_{\text{min}}}{q_{\text{max}} - q_{\text{min}}}$$

$$S = \frac{r_{\min}}{q_{\min} - Z} = \frac{-|r|_{\max}}{q_{\min}} = \frac{|r|_{\max}}{2^{N-1}}$$

- use full range of quantized integers
- example: PyTorch's native quantization, ONNX

Linear Quantization is an affine mapping of integers to real numbers r = S(q - Z)

• Consider the following matrix multiplication, when Zw=0.

Linear Quantization is an affine mapping of integers to real numbers r = S(q - Z)

So far, we ignore bias. Now we consider the following fully-connected layer with bias.

$$Y = WX + b$$

$$S_{\mathbf{Y}} \left(\mathbf{q}_{\mathbf{Y}} - Z_{\mathbf{Y}} \right) = S_{\mathbf{W}} \left(\mathbf{q}_{\mathbf{W}} - Z_{\mathbf{W}} \right) \cdot S_{\mathbf{X}} \left(\mathbf{q}_{\mathbf{X}} - Z_{\mathbf{X}} \right) + S_{\mathbf{b}} \left(\mathbf{q}_{\mathbf{b}} - Z_{\mathbf{b}} \right)$$

$$\downarrow Z_{\mathbf{W}} = 0$$

$$S_{\mathbf{Y}} \left(\mathbf{q}_{\mathbf{Y}} - Z_{\mathbf{Y}} \right) = S_{\mathbf{W}} S_{\mathbf{X}} \left(\mathbf{q}_{\mathbf{W}} \mathbf{q}_{\mathbf{X}} - Z_{\mathbf{X}} \mathbf{q}_{\mathbf{W}} \right) + S_{\mathbf{b}} \left(\mathbf{q}_{\mathbf{b}} - Z_{\mathbf{b}} \right)$$

Linear Quantization is an affine mapping of integers to real numbers r = S(q - Z)

So far, we ignore bias. Now we consider the following fully-connected layer with bias.

$$Y = WX + b$$

$$S_{\mathbf{Y}} \left(\mathbf{q}_{\mathbf{Y}} - Z_{\mathbf{Y}} \right) = S_{\mathbf{W}} \left(\mathbf{q}_{\mathbf{W}} - Z_{\mathbf{W}} \right) \cdot S_{\mathbf{X}} \left(\mathbf{q}_{\mathbf{X}} - Z_{\mathbf{X}} \right) + S_{\mathbf{b}} \left(\mathbf{q}_{\mathbf{b}} - Z_{\mathbf{b}} \right)$$

$$\downarrow Z_{\mathbf{W}} = 0$$

$$S_{\mathbf{Y}} \left(\mathbf{q}_{\mathbf{Y}} - Z_{\mathbf{Y}} \right) = S_{\mathbf{W}} S_{\mathbf{X}} \left(\mathbf{q}_{\mathbf{W}} \mathbf{q}_{\mathbf{X}} - Z_{\mathbf{X}} \mathbf{q}_{\mathbf{W}} \right) + S_{\mathbf{b}} \left(\mathbf{q}_{\mathbf{b}} - Z_{\mathbf{b}} \right)$$

$$\downarrow Z_{\mathbf{b}} = 0, \quad S_{\mathbf{b}} = S_{\mathbf{W}} S_{\mathbf{X}}$$

$$S_{\mathbf{Y}} \left(\mathbf{q}_{\mathbf{Y}} - Z_{\mathbf{Y}} \right) = S_{\mathbf{W}} S_{\mathbf{X}} \left(\mathbf{q}_{\mathbf{W}} \mathbf{q}_{\mathbf{X}} - Z_{\mathbf{X}} \mathbf{q}_{\mathbf{W}} + \mathbf{q}_{\mathbf{b}} \right)$$

Linear Quantization is an affine mapping of integers to real numbers r = S(q - Z)

So far, we ignore bias. Now we consider the following fully-connected layer with bias.

$$\mathbf{Y} = \mathbf{W}\mathbf{X} + \mathbf{b}$$

$$Z_{\mathbf{W}} = 0 \quad \downarrow \quad Z_{\mathbf{b}} = 0, \quad S_{\mathbf{b}} = S_{\mathbf{W}}S_{\mathbf{X}}$$

$$S_{\mathbf{Y}} \left(\mathbf{q}_{\mathbf{Y}} - Z_{\mathbf{Y}} \right) = S_{\mathbf{W}}S_{\mathbf{X}} \left(\mathbf{q}_{\mathbf{W}}\mathbf{q}_{\mathbf{X}} - Z_{\mathbf{X}}\mathbf{q}_{\mathbf{W}} + \mathbf{q}_{\mathbf{b}} \right)$$

$$\mathbf{q}_{\mathbf{Y}} = \frac{S_{\mathbf{W}}S_{\mathbf{X}}}{S_{\mathbf{Y}}} \left(\mathbf{q}_{\mathbf{W}}\mathbf{q}_{\mathbf{X}} + \frac{\mathbf{p}_{\mathbf{recompute}}}{\mathbf{q}_{\mathbf{b}} - Z_{\mathbf{X}}\mathbf{q}_{\mathbf{W}}} \right) + Z_{\mathbf{Y}}$$

$$\downarrow \quad \mathbf{q}_{bias} = \mathbf{q}_{\mathbf{b}} - Z_{\mathbf{X}}\mathbf{q}_{\mathbf{W}}$$

Linear Quantization is an affine mapping of integers to real numbers r = S(q - Z)

So far, we ignore bias. Now we consider the following fully-connected layer with bias.

Note: both q_b and q_{bias} are 32 bits.

Linear Quantized Convolution Layer

Linear Quantization is an affine mapping of integers to real numbers r = S(q - Z)

Consider the following convolution layer.

Note: both q_b and q_{bias} are 32 bits.

Linear Quantized Convolution Layer

Linear Quantization is an affine mapping of integers to real numbers r = S(q - Z)

Consider the following convolution layer.

Note: both q_b and q_{bias} are 32 bits.

INT8 Linear Quantization

An affine mapping of integers to real numbers r = S(q - Z)

Neural Network	ResNet-50	Inception-V3
Floating-point Accuracy	76.4%	78.4%
8-bit Integer- quantized Acurracy	74.9%	75.4%

Latency-vs-accuracy tradeoff of float vs. integer-only MobileNets on ImageNet using Snapdragon 835 big cores.

Neural Network Quantization

2.09	-0.98	1.48	0.09
0.05	-0.14	-1.08	2.12
-0.91	1.92	0	-1.03
1.87	0	1.53	1.49

3	0	2	1	3:	2.00
1	1	0	3	2:	1.50
0	3	1	0	1:	0.00
3	1	2	2	0:	-1.00

K-Means-based Quantization

Linear Quantization

Storage	Floating-Point Weights	Integer Weights; Floating-Point Codebook	Integer Weights
Computation	Floating-Point Arithmetic	Floating-Point Arithmetic	Integer Arithmetic

Summary of Today's Lecture

Today, we reviewed and learned

- the numeric data types used in the modern computing systems, including integers and floating-point numbers.
- the basic concept of neural network quantization: converting the weights and activations of neural networks into a limited discrete set of numbers.
- two types of common neural network quantization:
 - K-Means-based Quantization
 - Linear Quantization

References

- 1. Model Compression and Hardware Acceleration for Neural Networks: A Comprehensive Survey [Deng et al., IEEE 2020]
- 2. Computing's Energy Problem (and What We Can Do About it) [Horowitz, M., IEEE ISSCC 2014]
- 3. Deep Compression [Han et al., ICLR 2016]
- 4. Neural Network Distiller: https://intellabs.github.io/distiller/algo-quantization.html
- 5. Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference [Jacob et al., CVPR 2018]
- 6. BinaryConnect: Training Deep Neural Networks with Binary Weights during Propagations [Courbariaux et al., NeurlPS 2015]
- 7. Binarized Neural Networks: Training Deep Neural Networks with Weights and Activations Constrained to +1 or -1. [Courbariaux et al., Arxiv 2016]
- 8. XNOR-Net: ImageNet Classification using Binary Convolutional Neural Networks [Rastegari et al., ECCV 2016]
- 9. Ternary Weight Networks [Li et al., Arxiv 2016]
- 10. Trained Ternary Quantization [Zhu et al., ICLR 2017]

HIT HAN LAIS

EfficientML.ai Lecture 06 Quantization

Part II

Song Han

Associate Professor, MIT
Distinguished Scientist, NVIDIA

Lecture Plan

Today we will:

- 1. Review Linear Quantization.
- Introduce Post-Training Quantization (PTQ) that quantizes a floating-point neural network model, including: channel quantization, group quantization, and range clipping.
- 3. Introduce **Quantization-Aware Training (QAT)** that emulates inference-time quantization during the training/fine-tuning and recover the accuracy.
- 4. Introduce binary and ternary quantization.
- 5. Introduce automatic mixed-precision quantization.

Neural Network Quantization

K-Means-based
Quantization

Linear Quantization

		Quantization	Quantization
Storage	Floating-Point Weights	Integer Weights; Floating-Point Codebook	Integer Weights
Computation	Floating-Point Arithmetic	Floating-Point Arithmetic	Integer Arithmetic

K-Means-based Weight Quantization

Deep Compression [Han et al., ICLR 2016]

K-Means-based Weight Quantization

Accuracy vs. compression rate for AlexNet on ImageNet dataset

Deep Compression [Han et al., ICLR 2016]

Linear Quantization

An affine mapping of integers to real numbers r = S(q - Z)

weights (32-bit float)

 2.09
 -0.98
 1.48
 0.09

 0.05
 -0.14
 -1.08
 2.12

 -0.91
 1.92
 0
 -1.03

 1.87
 0
 1.53
 1.49

quantized weights (2-bit signed int)

zero point (2-bit signed int)

scale (32-bit float)

2.14	-1.07	1.07	0
0	0	-1.07	2.14
-1.07	2.14	0	-1.07
2.14	0	1.07	1.07

Binary	Decimal
01	1
00	0
11	-1
10	-2

Linear Quantization

An affine mapping of integers to real numbers r = S(q - Z)

Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference [Jacob et al., CVPR 2018]

Linear Quantized Fully-Connected Layer

Linear Quantization is an affine mapping of integers to real numbers r = S(q - Z)

Consider the following fully-connected layer.

$$\mathbf{Y} = \mathbf{W}\mathbf{X} + \mathbf{b}$$

$$Z_{\mathbf{W}} = 0$$

$$Z_{\mathbf{b}} = 0, \quad S_{\mathbf{b}} = S_{\mathbf{W}}S_{\mathbf{X}}$$

$$\mathbf{q}_{bias} = \mathbf{q}_{\mathbf{b}} - Z_{\mathbf{X}}\mathbf{q}_{\mathbf{W}}$$

$$\mathbf{q}_{\mathbf{Y}} = \underbrace{S_{\mathbf{W}}S_{\mathbf{X}}}_{S_{\mathbf{Y}}} \underbrace{\left(\mathbf{q}_{\mathbf{W}}\mathbf{q}_{\mathbf{X}} + \mathbf{q}_{bias}\right)}_{N\text{-bit Int Mult.}} + \underbrace{Z_{\mathbf{Y}}}_{N\text{-bit Int Mult.}}$$
Rescale to N-bit Int Mult. N-bit Int Mult. Add.

Note: both q_b and q_{bias} are 32 bits.

Linear Quantized Convolution Layer

Linear Quantization is an affine mapping of integers to real numbers r = S(q - Z)

Consider the following convolution layer.

Note: both q_b and q_{bias} are 32 bits.

Scale and Zero Point of Linear Quantization

Linear Quantization is an affine mapping of integers to real numbers r = S(q - Z)

Asymmetric Linear Quantization

2.09	-0.98	1.48	0.09
0.05	-0.14	-1.08	2.12
-0.91	1.92	0	-1.03
1.87	0	1.53	1.49

$$S = \frac{r_{\text{max}} - r_{\text{min}}}{q_{\text{max}} - q_{\text{min}}} \qquad Z = q_{\text{min}} - \frac{r_{\text{min}}}{S}$$

$$= \frac{2.12 - (-1.08)}{1 - (-2)} \qquad = \text{round}(-2 - \frac{-1.08}{1.07})$$

$$= 1.07 \qquad = -1$$

Scale and Zero Point of Linear Quantization

Linear Quantization is an affine mapping of integers to real numbers r = S(q - Z)

2.09	-0.98	1.48	0.09
0.05	-0.14	-1.08	2.12
-0.91	1.92	0	-1.03
1.87	0	1.53	1.49

$$S = \frac{|r|_{\text{max}}}{q_{\text{max}}}$$

$$= \frac{2.12}{1}$$

$$= 2.12$$

Post-Training Quantization

How should we get the optimal linear quantization parameters (S, Z)?

Topic I: Quantization Granularity

Topic II: Dynamic Range Clipping

Topic III: Rounding

Post-Training Quantization

How should we get the optimal linear quantization parameters (S, Z)?

Topic I: Quantization Granularity

Topic II: Dynamic Range Clipping

Topic III: Rounding

Quantization Granularity

Per-Tensor Quantization

Per-Channel Quantization

Group Quantization

- Per-Vector Quantization
- Shared Micro-exponent (MX) data type

Quantization Granularity

Per-Tensor Quantization

Per-Channel Quantization

Group Quantization

- Per-Vector Quantization
- Shared Micro-exponent (MX) data type

Symmetric Linear Quantization on Weights

•
$$|r|_{\text{max}} = |\mathbf{W}|_{\text{max}}$$

- Using single scale S for whole weight tensor (Per-Tensor Quantization)
 - works well for large models
 - accuracy drops for small models
- Common failure results from
 - large differences (more than 100×) in ranges of weights for different output channels — outlier weight
- Solution: **Per-Channel Quantization**

Data-Free Quantization Through Weight Equalization and Bias Correction [Markus et al., ICCV 2019] Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference [Jacob et al., CVPR 2018]

Quantization Granularity

Per-Tensor Quantization

Per-Channel Quantization

Group Quantization

- Per-Vector Quantization
- Shared Micro-exponent (MX) data type

Example: 2-bit linear quantization

ic

Per-Channel Quantization

Per-Tensor Quantization

Example: 2-bit linear quantization

ic

Per-Channel Quantization

	2.09	-0.98	1.48	0.09
OC	0.05	-0.14	-1.08	2.12
OC	-0.91	1.92	0	-1.03
	1.87	0	1.53	1.49

Per-Tensor Quantization

$$|r|_{\text{max}} = 2.12$$

$$S = \frac{|r|_{\text{max}}}{q_{\text{max}}} = \frac{2.12}{2^{2-1} - 1} = 2.12$$

1	0	1	0
0	0	-1	1
0	1	0	0
1	0	1	1

2.12	0	2.12	0
0	0	-2.12	2.12
0	2.12	0	0
2.12	0	2.12	2.12

Quantized

$$\|\mathbf{W} - S\mathbf{q}_{\mathbf{W}}\|_F = 2.28$$

Example: 2-bit linear quantization

ic

Per-Channel Quantization

$$|r|_{\text{max}} = 2.09$$

$$S_0 = 2.09$$

$$|r|_{\text{max}} = 2.12$$

$$S_1 = 2.12$$

$$|r|_{\text{max}} = 1.92$$

$$S_2 = 1.92$$

$$|r|_{\text{max}} = 1.87$$

$$S_3 = 1.87$$

Per-Tensor Quantization

$$|r|_{\text{max}} = 2.12$$

$$S = \frac{|r|_{\text{max}}}{q_{\text{max}}} = \frac{2.12}{2^{2-1} - 1} = 2.12$$

1	0	1	0
0	0	-1	1
0	1	0	0
1	0	1	1

2.12	0	2.12	0
0	0	-2.12	2.12
0	2.12	0	0
2.12	0	2.12	2.12

Quantized

$$\|\mathbf{W} - S\mathbf{q_W}\|_F = 2.28$$

Example: 2-bit linear quantization

ic

Per-Channel Quantization

$$|r|_{\text{max}} = 2.09$$

$$S_0 = 2.09$$

$$|r|_{\text{max}} = 2.12$$

$$S_1 = 2.12$$

$$|r|_{\text{max}} = 1.92$$

$$S_2 = 1.92$$

$$r|_{\text{max}} = 1.87$$

$$S_3 = 1.87$$

1	0	1	0
0	0	-1	1
0	1	0	-1
1	0	1	1

2.09	0	2.09	0
0	0	-2.12	2.12
0	1.92	0	-1.92
1.87	0	1.87	1.87

Quantized

Reconstructed

$$\|\mathbf{W} - \mathbf{S} \odot \mathbf{q}_{\mathbf{W}}\|_F = 2.08$$

Per-Tensor Quantization

$$|r|_{\text{max}} = 2.12$$

$$S = \frac{|r|_{\text{max}}}{q_{\text{max}}} = \frac{2.12}{2^{2-1} - 1} = 2.12$$

1	0	1	0
0	0	-1	1
0	1	0	0
1	0	1	1

2.12	0	2.12	0
0	0	-2.12	2.12
0	2.12	0	0
2.12	0	2.12	2.12

Quantized

$$\|\mathbf{W} - S\mathbf{q_W}\|_F = 2.28$$

Example: 2-bit linear quantization

ic

Per-Channel Quantization

$$|r|_{\text{max}} = 2.09$$

$$S_0 = 2.09$$

$$|r|_{\text{max}} = 2.12$$

$$S_1 = 2.12$$

$$|r|_{\text{max}} = 1.92$$

$$S_2 = 1.92$$

$$r|_{\text{max}} = 1.87$$

$$S_3 = 1.87$$

1	0	1	0
0	0	-1	1
0	1	0	-1
1	0	1	1

2.09	0	2.09	0
0	0	-2.12	2.12
0	1.92	0	-1.92
1.87	0	1.87	1.87

Quantized

Reconstructed

$$\|\mathbf{W} - \mathbf{S} \odot \mathbf{q}_{\mathbf{W}}\|_F = 2.08$$

Per-Tensor Quantization

$$|r|_{\text{max}} = 2.12$$

$$S = \frac{|r|_{\text{max}}}{q_{\text{max}}} = \frac{2.12}{2^{2-1} - 1} = 2.12$$

1	0	1	0
0	0	-1	1
0	1	0	0
1	0	1	1

2.12	0	2.12	0
0	0	-2.12	2.12
0	2.12	0	0
2.12	0	2.12	2.12

Quantized

$$\|\mathbf{W} - S\mathbf{q_W}\|_F = 2.28$$

Quantization Granularity

Per-Tensor Quantization

Per-Channel Quantization

Group Quantization

- **Per-Vector Quantization**
- Shared Micro-exponent (MX) data type

VS-Quant: Per-vector Scaled Quantization

Hierarchical scaling factor

- $r = S(q Z) \rightarrow r = \gamma \cdot S_q(q Z)$
 - γ is a floating-point coarse grained scale factor
 - S_a is an integer per-vector scale factor
 - achieves a balance between accuracy and hardware efficiency by
 - less expensive integer scale factors at finer granularity
 - more expensive floating-point scale factors at coarser granularity
- Memory Overhead of two-level scaling:
 - Given 4-bit quantization with 4-bit per-vector scale for every 16 elements, the effective bit width is 4 + 4 / 16 = 4.25 bits.

scale factor S_q for each vector

another scale factor γ for each tensor

VS-Quant: Per-Vector Scaled Quantization for Accurate Low-Precision Neural Network Inference [Steve Dai, et al.]

Multi-level scaling scheme

$$r = (q - z) \cdot s \rightarrow$$

$$r = (q - z) \cdot s_{l_0} \cdot s_{l_1} \cdot \cdots$$

r: real number value

q: quantized value

z: zero point (z = 0 is symmetric quantization)

s: scale factors of different levels

Multi-level scaling scheme

$$r = (q - z) \cdot s_{l_0} \cdot s_{l_1} \cdot \cdots$$

r: real number value

q: quantized value

z: zero point (z = 0 is symmetric quantization)

s: scale factors of different levels

Quantization	Data Type	L0	L0 Scale	L1	L1 Scale	Effective
Approach		Group Size	Data Type	Group Size	Data Type	Bit Width
Per-Channel Quant	INT4	Per Channel	FP16	_	_	4

Multi-level scaling scheme

$$r = (q - z) \cdot s_{l_0} \cdot s_{l_1} \cdot \cdots$$

r: real number value

q: quantized value

z: zero point (z = 0 is symmetric quantization)

s: scale factors of different levels

Quantization Approach	Data Type	L0 Group Size	L0 Scale Data Type	L1 Group Size	L1 Scale Data Type	Effective Bit Width
Per-Channel Quant	INT4	Per Channel	FP16	_	_	4
VSQ	INT4	16	UINT4	Per Channel	FP16	4+4/16=4.25

Multi-level scaling scheme

$$r = (q - z) \cdot s_{l_0} \cdot s_{l_1} \cdot \cdots$$

r: real number value

q: quantized value

z: zero point (z = 0 is symmetric quantization)

s: scale factors of different levels

Quantization Approach	Data Type	L0 Group Size	L0 Scale Data Type	L1 Group Size	L1 Scale Data Type	Effective Bit Width
Per-Channel Quant	INT4	Per Channel	FP16	-	_	4
VSQ	INT4	16	UINT4	Per Channel	FP16	4+4/16=4.25
MX4	S1M2	2	E1M0	16	E8M0	3+1/2+8/16=4
MX6	S1M4	2	E1M0	16	E8M0	5+1/2+8/16=6
MX9	S1M7	2	E1M0	16	E8M0	8+1/2+8/16=9

With Shared Microexponents, A Little Shifting Goes a Long Way [Bita Rouhani et al.]

Post-Training Quantization

How should we get the optimal linear quantization parameters (S, Z)?

Topic I: Quantization Granularity

Topic II: Dynamic Range Clipping

Topic III: Rounding

Linear Quantization on Activations

- Unlike weights, the activation range varies across inputs.
- To determine the floating-point range, the activations statistics are gathered before deploying the model.

Collect activations statistics before deploying the model

$$\hat{r}_{\max,\min}^{(t)} = \alpha \cdot r_{\max,\min}^{(t)} + (1 - \alpha) \cdot \hat{r}_{\max,\min}^{(t-1)}$$

- Type 1: During training
 - Exponential moving averages (EMA)
 - observed ranges are smoothed across thousands of training steps

Collect activations statistics before deploying the model

- Type 2: By running a few "calibration" batches of samples on the trained FP32 model
- outliers spending dynamic range on the outliers hurts the representation ability.
 - use mean of the min/max of each sample in the batches
 - analytical calculation (see next slide)

Neural Network Distiller

Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference [Jacob et al., CVPR 2018]

Collect activations statistics before deploying the model

- Type 2: By running a few "calibration" batches of samples on the trained FP32 model
 - minimize loss of information, since integer model encodes the same information as the original floating-point model.
 - loss of information is measured by Kullback-Leibler divergence (relative entropy or information divergence):
 - for two discrete probability distributions *P*, *Q*

$$D_{KL}(P||Q) = \sum_{i}^{N} P(x_i) \log \frac{P(x_i)}{Q(x_i)}$$

intuition: KL divergence measures the amount of information lost when approximating a given encoding.

Minimize loss of information by minimizing the KL divergence

Minimize loss of information by minimizing the KL divergence

GoogleNet: incpetion_5a/5x5

GoogleNet: incpetion_3a/pool

8-bit Inference with TensorRT [Szymon Migacz, 2017]

Activation value

Dynamic Range for Quantization

Minimize mean-square-error (MSE) using Newton-Raphson method

large quantization noise

low density data

clipped quantization

Optimal Clipping and Magnitude-aware Differentiation for Improved Quantization-aware Training [Sakr et al., ICML 2022]

Dynamic Range for Quantization

Minimize mean-square-error (MSE) using Newton-Raphson method

Network	FP32 Accuracy	OCTAV int4
ResNet-50	76.07	75.84
MobileNet-V2	71.71	70.88
Bert-Large	91.00	87.09

Optimal Clipping and Magnitude-aware Differentiation for Improved Quantization-aware Training [Sakr et al., ICML 2022]

Post-Training Quantization

How should we get the optimal linear quantization parameters (S, Z)?

Topic I: Quantization Granularity

Topic II: Dynamic Range Clipping

Topic III: Rounding

Adaptive Rounding for Weight Quantization

Rounding-to-nearest is not optimal

- **Philosophy**
 - Rounding-to-nearest is not optimal
 - Weights are correlated with each other. The best rounding for each weight (to nearest) is not the best rounding for the whole tensor

- What is optimal? Rounding that reconstructs the original activation the best, which may be very different
 - For weight quantization only
 - With short-term tuning, (almost) post-training quantization

Adaptive Rounding for Weight Quantization

Rounding-to-nearest is not optimal

- Method:
 - Instead of $\lfloor w \rfloor$, we want to choose from $\{\lfloor w \rfloor, \lceil w \rceil\}$ to get the best reconstruction
 - We took a learning-based method to find quantized value $\tilde{w} = \lfloor \lfloor w \rfloor + \delta \rceil, \delta \in [0,1]$

Adaptive Rounding for Weight Quantization

Rounding-to-nearest is not optimal

Method:

- Instead of [w], we want to choose from $\{[w], [w]\}$ to get the best reconstruction
- We took a learning-based method to find quantized value $\tilde{w} = ||w| + \delta$, $\delta \in [0,1]$
- We optimize the following equation (omit the derivation):

$$\underset{\mathbf{V}}{\operatorname{argmin}}_{\mathbf{V}} \| \mathbf{W} \mathbf{x} - \widetilde{\mathbf{W}} \mathbf{x} \|_{F}^{2} + \lambda f_{reg}(\mathbf{V})$$

$$\rightarrow \underset{\mathbf{V}}{\operatorname{argmin}}_{\mathbf{V}} \| \mathbf{W} \mathbf{x} - [[\mathbf{W}] + \mathbf{h}(\mathbf{V})] \mathbf{x} \|_{F}^{2} + \lambda f_{reg}(\mathbf{V})$$

- \mathbf{x} is the input to the layer, \mathbf{V} is a random variable of the same shape
- $\mathbf{h}()$ is a function to map the range to (0,1), such as rectified sigmoid
- $f_{reg}(\mathbf{V})$ is a regularization that encourages $\mathbf{h}(\mathbf{V})$ to be binary

$$f_{reg}(\mathbf{V}) = \sum_{i,j} 1 - |2h(\mathbf{V}_{i,j}) - 1|^{\beta}$$

Up or Down? Adaptive Rounding for Post-Training Quantization [Nagel et al., PMLR 2020]

Neural Network Quantization

2.09	-0.98	1.48	0.09
0.05	-0.14	-1.08	2.12
-0.91	1.92	0	-1.03
1.87	0	1.53	1.49

3	0	2	1	3:	2.00
1	1	0	3	2:	1.50
0	3	1	0	1:	0.00
3	1	2	2	0:	-1.00

K-Means-based

Linear

		Quantization	Quantization
Storage	Floating-Point Weights	Integer Weights; Floating-Point Codebook	Integer Weights
Computation	Floating-Point Arithmetic	Floating-Point Arithmetic	Integer Arithmetic

Zero Point

- Asymmetric
- Symmetric

Scaling Granularity

- Per-Tensor
- Per-Channel
- Group Quantization

Range Clipping

- **Exponential Moving** Average
- Minimizing KL Divergence
- Minimizing Mean-Square-Error

Rounding

- Round-to-Nearest
- AdaRound

Post-Training INT8 Linear Quantization

Activation		Symmetric	Asymmertric
		Per-Tensor	Per-Tensor
		Minimize KL-Divergence	Exponential Moving Average (EMA)
		Symmetric	Symmetric
vve	ight	Per-Tensor	Per-Channel
	GoogleNet	-0.45%	0%
	ResNet-50	-0.13%	-0.6%
Neural Network	ResNet-152	-0.08%	-1.8%
	MobileNetV1	_	-11.8%
	MobileNetV2	_	-2.1%

Data-Free Quantization Through Weight Equalization and Bias Correction [Markus et al., ICCV 2019] Quantizing Deep Convolutional Networks for Efficient Inference: A Whitepaper [Raghuraman Krishnamoorthi, arXiv 2018] 8-bit Inference with TensorRT [Szymon Migacz, 2017]

Post-Training INT8 Linear Quantization

Activation		Symmetric	Asymmertric
		Per-Tensor	Per-Tensor
		Minimize KL-Divergence	Exponential Moving Average (EMA)
		Symmetric	Symmetric
V	Weight		Per-Channel
Smaller models seen as well to post-traini presumabley due to not representation and the notation of the notat		ing quantization, to their smaller	improve performance
	MobileNetV1	_	-11.8%
	MobileNetV2	_	-2.1%

Data-Free Quantization Through Weight Equalization and Bias Correction [Markus et al., ICCV 2019] Quantizing Deep Convolutional Networks for Efficient Inference: A Whitepaper [Raghuraman Krishnamoorthi, arXiv 2018] 8-bit Inference with TensorRT [Szymon Migacz, 2017]

How should we improve performance of quantized models?

Train the model taking quantization into consideration

- To minimize the loss of accuracy, especially aggressive quantization with 4 bits and lower bit width, neural network will be trained/fine-tuned with quantized weights and activations.
- Usually, fine-tuning a pre-trained floating point model provides better accuracy than training from scratch.

Deep Compression [Han et al., ICLR 2016]

Train the model taking quantization into consideration

- A full precision copy of the weights W is maintained throughout the training.
- The small gradients are accumulated without loss of precision.
- Once the model is trained, only the quantized weights are used for inference.

ForwardBackward

Train the model taking quantization into consideration

- A full precision copy of the weights W is maintained throughout the training.
- The small gradients are accumulated without loss of precision.
- Once the model is trained, only the quantized weights are used for inference.

Linear Quantization

An affine mapping of integers to real numbers r = S(q - Z)

Train the model taking quantization into consideration

- A full precision copy of the weights W is maintained throughout the training.
- The small gradients are accumulated without loss of precision.
- Once the model is trained, only the quantized weights are used for inference.

these operations still run in full precision

Straight-Through Estimator (STE)

Quantization is discrete-valued, and thus the derivative is 0 almost everywhere.

$$\frac{\partial Q(W)}{\partial W} = 0$$

The neural network will learn nothing since gradients become 0 and the weights won't get updated.

$$g_{\mathbf{W}} = \frac{\partial L}{\partial \mathbf{W}} = \frac{\partial L}{\partial Q(\mathbf{W})} \cdot \frac{\partial Q(\mathbf{W})}{\partial \mathbf{W}} = 0$$

Straight-Through Estimator (STE) simply passes the gradients through the quantization as if it had been the identity function.

$$g_{\mathbf{W}} = \frac{\partial L}{\partial \mathbf{W}} = \frac{\partial L}{\partial Q(\mathbf{W})}$$

Neural Networks for Machine Learning [Hinton et al., Coursera Video Lecture, 2012] Estimating or Propagating Gradients Through Stochastic Neurons for Conditional Computation [Bengio, arXiv 2013]

Train the model taking quantization into consideration

- A full precision copy of the weights is maintained throughout the training.
- The small gradients are accumulated without loss of precision.
- Once the model is trained, only the quantized weights are used for inference.

these operations still run in full precision

INT8 Linear Quantization-Aware Training

		Post-Training Quantization		Quantization-Aware Training	
Neural Network	Floating-Point	Asymmetric	Symmetric	Asymmetric	Symmetric
		Per-Tensor	Per-Channel	Per-Tensor	Per-Channel
MobileNetV1	70.9%	0.1%	59.1%	70.0%	70.7%
MobileNetV2	71.9%	0.1%	69.8%	70.9%	71.1%
NASNet-Mobile	74.9%	72.2%	72.1%	73.0%	73.0%

Quantizing Deep Convolutional Networks for Efficient Inference: A Whitepaper [Raghuraman Krishnamoorthi, arXiv 2018]

Neural Network Quantization

2.09	-0.98	1.48	0.09
0.05	-0.14	-1.08	2.12
-0.91	1.92	0	-1.03
1.87	0	1.53	1.49

3	0	2	1	3:	2.00
1	1	0	3	2:	1.50
0	3	1	0	1:	0.00
3	1	2	2	0:	-1.00

K-Means-based Quantization

Linear Quantization

Storage	Floating-Point Weights	Integer Weights; Floating-Point Codebook	Integer Weights
Computation	Floating-Point Arithmetic	Floating-Point Arithmetic	Integer Arithmetic

Neural Network Quantization

1	0	1	1
1	0	0	1
О	1	1	0
1	1	1	1

		K-Means-based Quantization	Linear Quantization	Binary/Ternary Quantization
Storage	Floating-Point Weights	Integer Weights; Floating-Point Codebook	Integer Weights	Binary/Ternary Weights
Computation	Floating-Point Arithmetic	Floating-Point Arithmetic	Integer Arithmetic	Bit Operations

Binary/Ternary Quantization

Can we push the quantization precision to 1 bit?

Can quantization bit width go even lower?

$$y_i = \sum_{j} W_{ij} \cdot x_j$$

= 8×5 + (-3)×2 + 5×0 + (-1)×1

input	weight	operations	memory	computation
R	\mathbb{R}	+ ×	1×	1×

If weights are quantized to +1 and -1

$$y_i = \sum_{j} W_{ij} \cdot x_j$$

= 5 - 2 + 0 - 1

					×	5
	8	-3	5	-1		2
						0
						1

input	weight	operations	memory	computation
R	\mathbb{R}	+ ×	1×	1×
R	B	+ -	~32× less	~2× less

BinaryConnect: Training Deep Neural Networks with Binary Weights during Propagations [Courbariaux et al., NeurIPS 2015] XNOR-Net: ImageNet Classification using Binary Convolutional Neural Networks [Rastegari et al., ECCV 2016]

Binarization

Deterministic Binarization

directly computes the bit value based on a threshold, usually 0, resulting in a sign function.

$$q = sign(r) = \begin{cases} +1, & r \ge 0 \\ -1, & r < 0 \end{cases}$$

Stochastic Binarization

- use global statistics or the value of input data to determine the probability of being -1 or +1
 - e.g., in Binary Connect (BC), probability is determined by hard sigmoid function $\sigma(r)$

$$q = \begin{cases} +1, & \text{with probability } p = \sigma(r) \\ -1, & \text{with probability } 1-p \end{cases}, \quad \text{where } \sigma(r) = \min(\max(\frac{r+1}{2}, 0), 1)$$

harder to implement as it requires the hardware to generate random bits when quantizing.

Minimizing Quantization Error in Binarization

binary weights

(1-bit)

weights (32-bit float)

2.09	-0.98	1.48	0.09
0.05	-0.14	-1.08	2.12
-0.91	1.92	0	-1.03
1.87	0	1.53	1.49

$$\alpha = \frac{1}{n} \|\mathbf{W}\|_1$$

1	-1	1	1
1	۲-	-	1
-1	1	1	-1
1	1	1	1

AlexNet-based Network	ImageNet Top-1 Accuracy Delta
BinaryConnect	-21.2%
Binary Weight Network (BWN)	0.2%

$$\|\mathbf{W} - \mathbf{W}^{\mathbb{B}}\|_{F}^{2} = 9.28$$

scale (32-bit float)

$$\mathbf{X} \quad \mathbf{1.05} = \frac{1}{16} \|\mathbf{W}\|_{1}$$

$$\|\mathbf{W} - \alpha \mathbf{W}^{\mathbb{B}}\|_F^2 = 9.24$$

$$y_i = \sum_j W_{ij} \cdot x_j$$

$$= 1 \times 1 + (-1) \times 1 + 1 \times (-1) + (-1) \times 1$$

$$= 1 + (-1) + (-1) + (-1) = -2$$

$$y_i = \sum_{j} W_{ij} \cdot x_j$$

$$= 1 \times 1 + (-1) \times 1 + 1 \times (-1) + (-1) \times 1$$

$$= 1 + (-1) + (-1) + (-1) = -2$$

W	X	Y=WX
1	1	1
1	-1	-1
-1	-1	1
-1	1	-1

bw	bx	XNOR(bw, bx)
1	1	1
1	0	0
0	0	1
0	1	0

$$y_{i} = \sum_{j} W_{ij} \cdot x_{j}$$

$$= 1 \times 1 + (-1) \times 1 + 1 \times (-1) + (-1) \times 1$$

$$= 1 + (-1) + (-1) + (-1) = -2$$

$$= 1 + 0 + 0 + 0 = 1$$
?

W	X	Y=WX
1	1	1
1	-1	-1
-1	-1	1
-1	1	-1

bw	bx	XNOR(bw, bx)
1	1	1
1	0	0
0	0	1
0	1	0

$$y_{i} = \sum_{j} W_{ij} \cdot x_{j}$$

$$= 1 \times 1 + (-1) \times 1 + 1 \times (-1) + (-1) \times 1$$

$$= 1 + (-1) + (-1) + (-1) = -2$$

$$= 1 + 0 + 0 + 0 = 1 \times 2$$

$$+ 2$$

$$+ 2$$

$$+ 3$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

$$+ 4$$

W	X	Y=WX
1	1	1
1	-1	-1
-1	-1	1
-1	1	-1

bw	b _X	XNOR(bw, bx)
1	1	1
1	0	0
0	0	1
0	1	0

$$y_i = -n + 2 \cdot \sum_j W_{ij} \operatorname{xnor} x_j \rightarrow y_i = -n + \operatorname{popcount} (W_i \operatorname{xnor} x) \ll 1$$

= -4 + 2 × (1 xnor 1 + 0 xnor 1 + 1 xnor 0 + 0 xnor 1)
= -4 + 2 × (1 + 0 + 0 + 0) = -2

→ popcount: return the number of 1

W	X	Y=WX
1	1	1
1	-1	-1
-1	-1	1
-1	1	-1

bw	bx	XNOR(bw, bx)
1	1	1
1	0	0
0	0	1
0	1	0

$$y_i = -n + \text{popcount}(W_i \times xnor x) \ll 1$$

$$= -4 + popcount(1010 xnor 1101) \ll 1$$

$$= -4 + popcount(1000) \ll 1 = -4 + 2 = -2$$

					×	5
	8	-3	5	-1		2
						0
						1

input	weight	operations	memory	computation
R	\mathbb{R}	+ ×	1×	1×
R	B	+ -	~32× less	~2× less
B	\mathbb{B}	xnor, popcount	~32× less	~58× less

Accuracy Degradation of Binarization

Neural Network	Quantization	Bit-V	ImageNet	
		W	A	Top-1 Accuracy Delta
	BWN	1	32	0.2%
AlexNet	BNN	1	1	-28.7%
	XNOR-Net	1	1	-12.4%
	BWN	1	32	-5.80%
GoogleNet	BNN	1	1	-24.20%
ResNet-18	BWN	1	32	-8.5%
	XNOR-Net	1	1	-18.1%

^{*} BWN: Binary Weight Network with scale for weight binarization

Binarized Neural Networks: Training Deep Neural Networks with Weights and Activations Constrained to +1 or -1. [Courbariaux et al., Arxiv 2016] XNOR-Net: ImageNet Classification using Binary Convolutional Neural Networks [Rastegari et al., ECCV 2016]

BNN: Binarized Neural Network without scale factors

^{*} XNOR-Net: scale factors for both activation and weight binarization

Ternary Weight Networks (TWN)

Weights are quantized to +1, -1 and 0

$$q = \begin{cases} r_t, & r > \Delta \\ 0, & |r| \le \Delta, \text{ where } \Delta = 0.7 \times \mathbb{E}\left(|r|\right), r_t = \mathbb{E}_{|r| > \Delta}\left(|r|\right) \\ -r_t, & r < -\Delta \end{cases}$$

weights **W** (32-bit float)

	<u> </u>	1110011	<u>/</u>
2.09	-0.98	1.48	0.09
0.05	-0.14	-1.08	2.12
-0.91	1.92	0	-1.03
1.87	0	1.53	1.49

ternary weights $\mathbf{W}^{\mathbb{T}}$ (2-bit)

_		<u> </u>	0.11	-
	1	-1	1	0
	0	0	-1	1
	-1	1	0	-1
	1	0	1	1

$\Delta = 0.7 \times \cdot$	$\frac{1}{16} \ \mathbf{W}\ _1 =$	0.73
-----------------------------	-----------------------------------	------

1.5 =
$$\frac{1}{11} \| \mathbf{W}_{\mathbf{W}^{\mathsf{T}} \neq 0} \|_{1}$$

ImageNet Top-1 Accuracy	- Filli Precision		2 bit (TWN)
ResNet-18	69.6	60.8	65.3

Ternary Weight Networks [Li et al., Arxiv 2016]

Trained Ternary Quantization (TTQ)

• Instead of using fixed scale r_t , TTQ introduces two *trainable* parameters w_p and w_n to represent the positive and negative scales in the quantization.

$$q = \begin{cases} w_p, & r > \Delta \\ 0, & |r| \le \Delta \\ -w_n, & r < -\Delta \end{cases}$$

ImageNet Top-1 Accuracy	Full Precision	1 bit (BWN)	2 bit (TWN)	TTQ
ResNet-18	69.6	60.8	65.3	66.6

Trained Ternary Quantization [Zhu et al., ICLR 2017]

Neural Network Quantization

K-Means-based

Linear

1	0	1	1
1	0	0	1
0	1	1	0
1	1	1	1

Binary/Ternary

		Quantization	Quantization	Quantization
Storage	Floating-Point Weights	Integer Weights; Floating-Point Codebook	Integer Weights	Binary/Ternary Weights
Computation	Floating-Point Arithmetic	Floating-Point Arithmetic	Integer Arithmetic	Bit Operations

Mixed-Precision Quantization

Uniform Quantization

Mixed-Precision Quantization

Challenge: Huge Design Space

Choices: $8 \times 8 = 64$

Choices: $8 \times 8 = 64$

Choices: $8 \times 8 = 64$

Design Space: 64ⁿ

Solution: Design Automation

Solution: Design Automation

HAQ Outperforms Uniform Quantization

Mixed-Precision Quantized MobileNetV1

HAQ Supports Multiple Objectives

Quantization Policy for Edge and Cloud

Mixed-Precision Quantized MobileNetV2

Summary of Today's Lecture

In this lecture, we

- 1. Reviewed Linear Quantization.
- Introduced Post-Training Quantization (PTQ) that quantizes an already-trained floating-point neural network model.
 - Per-tensor vs. per-channel vs. group quantization
 - How to determine dynamic range for quantization
- 3. Introduced **Quantization-Aware Training (QAT)** that emulates inference-time quantization during the training/fine-tuning.
 - Straight-Through Estimator (STE)
- 4. Introduced binary and ternary quantization.
- 5. Introduced automatic mixed-precision quantization.

References

- Deep Compression [Han et al., ICLR 2016]
- 2. Neural Network Distiller: https://intellabs.github.io/distiller/algo_quantization.html
- Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference [Jacob et al., CVPR] 2018]
- 4. Data-Free Quantization Through Weight Equalization and Bias Correction [Markus et al., ICCV 2019]
- Post-Training 4-Bit Quantization of Convolution Networks for Rapid-Deployment [Banner et al., NeurIPS 2019]
- 8-bit Inference with TensorRT [Szymon Migacz, 2017]
- 7. Quantizing Deep Convolutional Networks for Efficient Inference: A Whitepaper [Raghuraman Krishnamoorthi, arXiv 2018]
- Neural Networks for Machine Learning [Hinton et al., Coursera Video Lecture, 2012]
- Estimating or Propagating Gradients Through Stochastic Neurons for Conditional Computation [Bengio, arXiv 2013]
- 10. Binarized Neural Networks: Training Deep Neural Networks with Weights and Activations Constrained to +1 or -1. [Courbariaux et al., Arxiv 2016]
- 11.DoReFa-Net: Training Low Bitwidth Convolutional Neural Networks with Low Bitwidth Gradients [Zhou et al., arXiv 2016]
- 12. PACT: Parameterized Clipping Activation for Quantized Neural Networks [Choi et al., arXiv 2018]
- 13.WRPN: Wide Reduced-Precision Networks [Mishra et al., ICLR 2018]
- 14. Towards Accurate Binary Convolutional Neural Network [Lin et al., NeurlPS 2017]
- 15. Incremental Network Quantization: Towards Lossless CNNs with Low-precision Weights [Zhou et al., ICLR 2017]
- 16. HAQ: Hardware-Aware Automated Quantization with Mixed Precision [Wang et al., CVPR 2019]