TECHNISCHE UNIVERSITÄT DORTMUND

Anfängerpraktikum Physik Sommersemester 2014

V702 Aktivierung mit Neutronen

27.05.2014

1.Abgabe: 03.06.2014

Christopher Hasenberg Joshua Luckey

christopher.hasenberg@udo.edu joshua.luckey@udo.edu

1 Einleitung

2 Theorie

3 Durchführung

4 Auswertung

Im folgenden Abschnitt sind die während des Versuchs aufgenommenen Messwerte, sowie die daraus berechneten Ergebnisse tabellarisch und graphisch dargestellt. Die erhaltenen Fehler der Ergebnisse wurden mit Hilfe der in Abschnitt 4.2 aufgestellten Fehlergleichungen berechnet.

4.1 Bestimmung der Halbwertszeiten der zwei möglichen Zerfälle von Rhodium

Die bei der Messung des Zerfalls von Rhodium aufgenommenen Messwerte für die Zeit t und die Anzahl der gemessenen Zerfälle N in Tabelle 1 eingetragen. Auch die um den, vor dem Versuch bestimmte Nulleffekt

$$N_0 = \frac{306}{900} \,\mathrm{s}^{-1} \cdot \Delta t \tag{1}$$

$$=0.34\,\mathrm{s}^{-1}\cdot\Delta t\tag{2}$$

verringerte Anzahl an Zerfällen ist zusammen mit dem natürlichen Logarithmus aus diesen Werten in Tabelle 1 zu finden.

In ?? ist die logarithmierten Anzahl der Zerfälle $\ln(N-N_0)$ aus Tabelle 1 gegen die Zeit t aufgetragen.

Der Zeitpunkt ab dem nur noch der Zerfall mit der höheren Halbwertzeit messbar ist wurde für die folgenden Berechnungen $t^*=400\,\mathrm{s}$ gewählt. Die Messwerte für t>t* sind noch einmal in Tabelle 2 gelistet und in Abbildung 2 graphisch dargestellt. Diese Darstellung ist um die Regressiongerade dieser Messwerte ergänzt dir mittels SciPy [1] berechnet wurde. Die lineare Regression für den Ansatz

$$ln(N) = \lambda_l \cdot t + c_l,$$
(3)

ergibt die Parameter

$$\lambda_l = (0.003 \pm 0.002) \,\mathrm{s}^{-1} \quad \text{und}$$
 (3a)

$$c_l = 4.4 \pm 0.9.$$
 (3b)

Zeit	Zerfälle	Zerfälle	ln der Zerfälle	Zeit	Zerfälle	Zerfälle	ln der Zerfälle
t [s]	N	$N-N_0$	$\ln(N-N_0)$	t [s]	N	$N-N_0$	$\ln(N-N_0)$
20	$(1.9 \pm 0.1) \cdot 10^2$	$(1.9 \pm 0.1) \cdot 10^2$	$5,24 \pm 0,07$	380	36 ± 6	29 ± 5	$3,4 \pm 0,2$
40	$(1.6 \pm 0.1) \cdot 10^2$	$(1.5 \pm 0.1) \cdot 10^2$	$5,03 \pm 0,08$	400	48 ± 7	41 ± 6	3.7 ± 0.2
60	$(1.5 \pm 0.1) \cdot 10^2$	$(1.4 \pm 0.1) \cdot 10^2$	$4,97 \pm 0,08$	420	36 ± 6	29 ± 5	3.4 ± 0.2
80	$(9 \pm 1) \cdot 10^1$	86 ± 9	4.5 ± 0.1	440	43 ± 7	36 ± 6	3.6 ± 0.2
100	$(1.1 \pm 0.1) \cdot 10^2$	$(1.1 \pm 0.1) \cdot 10^2$	4.7 ± 0.1	460	30 ± 5	23 ± 5	$3,1 \pm 0,2$
120	84 ± 9	77 ± 9	$4,3 \pm 0,1$	480	38 ± 6	31 ± 6	$3,4 \pm 0,2$
140	$(1.0 \pm 0.1) \cdot 10^2$	89 ± 9	4.5 ± 0.1	500	29 ± 5	22 ± 5	$3,1 \pm 0,2$
160	75 ± 9	68 ± 8	4.2 ± 0.1	520	27 ± 5	20 ± 4	$3,0 \pm 0,2$
180	61 ± 8	54 ± 7	4.0 ± 0.1	540	32 ± 6	25 ± 5	$3,2 \pm 0,2$
200	76 ± 9	69 ± 8	$4,2 \pm 0,1$	560	22 ± 5	15 ± 4	2.7 ± 0.3
220	48 ± 7	41 ± 6	3.7 ± 0.2	580	20 ± 4	13 ± 4	2.6 ± 0.3
240	62 ± 8	55 ± 7	4.0 ± 0.1	600	35 ± 6	28 ± 5	$3,3 \pm 0,2$
260	46 ± 7	39 ± 6	3.7 ± 0.2	620	33 ± 6	26 ± 5	$3,3 \pm 0,2$
280	49 ± 7	42 ± 6	3.7 ± 0.2	640	21 ± 5	14 ± 4	2.7 ± 0.3
300	52 ± 7	45 ± 7	3.8 ± 0.1	660	14 ± 4	7 ± 3	2.0 ± 0.4
320	55 ± 7	48 ± 7	3.9 ± 0.1	680	19 ± 4	12 ± 3	2.5 ± 0.3
340	51 ± 7	44 ± 7	3.8 ± 0.2	700	24 ± 5	17 ± 4	2.8 ± 0.2
360	45 ± 7	38 ± 6	3.6 ± 0.2	720	22 ± 5	15 ± 4	2.7 ± 0.3

Tabelle 1: Gemessene Anzahl der Zerfäll, Anzahl der Zerfälle nach Subtraktion des Nulleffekts und Werte des natürlichen Logarithmusses von diesen

Abbildung 1: Graphische Darstellung der logarithmierten Zerfälle ohne den Nulleffekt

Dabei gilt $c_l = \ln \left(N_a (1 - \mathrm{e}^{-\lambda_l \Delta t}) \right)$ und somit erhält man hieraus die gesuchte Konstante

$$e^{c_l} = N_a (1 - e^{-\lambda_l \Delta t}) = 70 \pm 70.$$
 (4)

Zeit	Zerfälle	ln der Zerfälle
t [s]	N_l	$\ln(N_l)$
500	22 ± 5	$3,1 \pm 0,2$
520	20 ± 4	$3,0 \pm 0,2$
540	25 ± 5	$3,2 \pm 0,2$
560	15 ± 4	2.7 ± 0.3
580	13 ± 4	2.6 ± 0.3
600	28 ± 5	$3,3 \pm 0,2$
620	26 ± 5	$3,3 \pm 0,2$
640	14 ± 4	2.7 ± 0.3
660	7 ± 3	2.0 ± 0.4
680	12 ± 3	2.5 ± 0.3
700	17 ± 4	2.8 ± 0.2
720	15 ± 4	$2,7 \pm 0,3$

Tabelle 2: Messwerte zur Bestimmung der Halbwertszeit des langlebigen Zerfalls für $t > t^*$

Abbildung 2: Graphische Darstellung der logarithmierten Zerfälle für $t>t^*$

Aus der erhaltenen Steigung λ_l der Regressionsgerade, welche der Zerfallskonstante des langlebigeren Zerfalls entspricht, lässt sich mit Hilfe von ?? dessen Halbwertzeit zu

$$t_{1/2,l} = (277 \pm 168) \,\mathrm{s}$$
 (5)

bestimmen.

Durch die zuvor bestimmten Parameter ist es nun möglich, das Zerfallsgesetz für die langlebigeren Kerne aufzustellen und somit die Zerfallskurve vor dem Zeitpunkt t* zu bestimmen. Durch Subtraktion dieser Zerfälle von den Messwerten für t << t* erhält man die Zerfälle der kurzlebigen Kerne. Die Ergebnisse dieses Vorgehens sind in Tabelle 3 zu finden und in Abbildung 3 graphisch dargestellt.

Zeit	Zerfälle	Zerfälle	Zerfälle	ln der Zerfälle
t [s]	N	N_l	$N-N_l$	$\ln(N-N_l)$
20	$(1.9 \pm 0.1) \cdot 10^2$	74 ± 9	$(1.1 \pm 0.2) \cdot 10^2$	4.7 ± 0.1
40	$(1.5 \pm 0.1) \cdot 10^2$	70 ± 8	$(8 \pm 1) \cdot 10^{1}$	$4,4 \pm 0,2$
60	$(1.4 \pm 0.1) \cdot 10^2$	67 ± 8	$(8 \pm 1) \cdot 10^1$	$4,3 \pm 0,2$
80	86 ± 9	64 ± 8	$(2 \pm 1) \cdot 10^1$	$3,1 \pm 0,5$
100	$(1,1\pm0,1)\cdot10^2$	60 ± 8	$(5 \pm 1) \cdot 10^1$	3.8 ± 0.3
120	77 ± 9	57 ± 8	$(2 \pm 1) \cdot 10^1$	$3,0 \pm 0,6$
140	89 ± 9	55 ± 7	$(3 \pm 1) \cdot 10^1$	$3,5 \pm 0,3$
160	68 ± 8	52 ± 7	$(2 \pm 1) \cdot 10^1$	2.8 ± 0.7
180	54 ± 7	49 ± 7	$(0 \pm 1) \cdot 10^1$	2 ± 2
200	69 ± 8	47 ± 7	$(2 \pm 1) \cdot 10^1$	$3,1 \pm 0,5$

Tabelle 3: Messwerte zur Bestimmung der Halbwertszeit des langlebigen Zerfalls für $t << t^*$

Abbildung 3: Graphische Darstellung der logarithmierten Zerfällefür $t << t^*$

Aus der, mit SciPy durchgeführten, linearen Regression mit dem Ansatz

$$ln(N) = \lambda_k \cdot t + c_k,$$
(6)

ergeben sich die Parameter zu

$$\lambda_k = (0.013 \pm 0.003) \,\mathrm{s}^{-1} \quad \text{und}$$
 (6a)

$$c_k = 4.9 \pm 0.4.$$
 (6b)

Die daraus erhaltene Gerade ist ebenfalls in Abbildung 3 eingezeichnet.

Analog zu dem Zerfall der langlebigeren Kerne, erhält man aus den bestimmten Regressionsparametern die gesuchte Konstante e^{c_k} und die Halbwertzeit $t_{1/2,k}$ dieses Zerfalls zu

$$e^{c_k} = N_a (1 - e^{-\lambda_k \Delta t}) = 128 \pm 50 \text{ und}$$
 (7)

$$t_{1/2,k} = (54 \pm 13) \,\mathrm{s}.$$
 (8)

Die auf diese Weise bestimmten Zerfallsgesetze sind in ?? zusammen mit der Summe beider Zerfäll und den ursprünglichen Messwerten ohne den Nulleffekt aufgetragen.

Abbildung 4: Graphische Darstellung der in der Auswertung bestimmten Zerfallsgesetze und deren summierter Zerfall im Vergleich zu den Messwerten

4.2 Fehlerrechnung

5 Diskussion

Literatur

[1] SciPy. URL: http://docs.scipy.org/doc/ (besucht am 21.04.2014).