Subiectul B. ELEMENTE DE TERMODINAMICĂ

II.a.	
	$p \cdot V = (m_1 / \mu_{He}) \cdot R \cdot T$
	Rezultat final: $m_1 = 40 \text{ g}$
b.	
	$p' \cdot V = (v_1 + v_2) \cdot R \cdot T$
	$\rho' = \left(\frac{m_1}{\mu_{He}} + \frac{m_2}{\mu_{H_2}}\right) \cdot R \cdot T / V$
	Rezultat final: $p' = 99,72 \cdot 10^4 \text{Pa}$
C.	
	$p' \cdot V = (v_1 + v_2) \cdot R \cdot T \text{i } p_{\text{max}} \cdot V = (v_1 + v_2) \cdot R \cdot T_{\text{max}}$
	$p' \cdot V = (v_1 + v_2) \cdot R \cdot T \text{ şi } p_{\text{max}} \cdot V = (v_1 + v_2) \cdot R \cdot T_{\text{max}}$ $(p'/T) = (p_{\text{max}}/T_{\text{max}})$
	Rezultat final: $T_{\text{max}} = 375 \text{K}$
d.	
	$ \rho_i = (p' \cdot \overline{\mu}) / R \cdot T $ sau $\rho_i = (m_1 + m_2) / V$
	$\rho_f = (p_{\text{max}} \cdot \overline{\mu}) / R \cdot T_{\text{max}} \qquad \text{sau } \rho_f = (m_1 + m_2) / V$
	$(\rho_i / \rho_f) = (p' \cdot T_{\text{max}})/(\rho_{\text{max}} \cdot T)$ sau $(\rho_i / \rho_f) = 1$
	Rezultat final: $(\rho_i/\rho_f) = 1$