TSEA83: Datorkonstruktion Fö2

Mikroprogrammering 1

Datorkonstruktion 2

Fö2: Agenda

- Att bygga en CPU
 - -Mikroprogrammering vs Pipelining
- Mikroprogrammering
 - -Grundläggande byggstenar
- Mikromaskinen
 - -"Olle Roos"-datorn
- Mikrokod
 - -Ett mindre program
 - -Ytterligare exempel för olika instruktioner och adresseringsmoder

Att bygga en CPU

Mikroprogrammering vs Pipelining

Att bygga en CPU

Mikroprogrammerad dator (fö2+3) Björn Lindskog-datorn (lab1)

- Variabel exekveringstid
- Variabelt format
- Inget överlapp
- Central styrenhet, som är mikroprogrammerad
- Flera adresseringsmoder/instruktion
- 1 ackumulator
- Nästan alla instruktioner har operand i minnet:

LDA Adr; A=M(Adr)

ADDA Adr ; A=A+M(Adr)

Pipelinad dator (fö4,lab2)

- Alla instruktioner tar 5 CK
- Alla instruktioner har samma format
- Pipelining/överlapp ger 1 färdig instruktion/CK
- Flera avkodare (inget mprog)
- 1 a-mod/instruktion
- 32 register
- Endast LD/ST har operand i minnet:

LD Rd,(Ra) ;Rd=M(Ra)

ADD Rd,Ra,Rb;Rd=Ra+Rb

Att bygga en CPU

Mikroprogrammerad dator (fö2+3) Björn Lindskog-datorn (lab1)

- Typisk CISC
- Programmering på 2 nivåer asm och mikro
- Enkel controller:
 - garageportsöppnare
 - del av dator
- + Man kan göra avancerade instruktioner: sortera
- Det blir många klockcykler / instr.

Pipelinad dator (fö4,lab2)

- Typisk RISC
- Programmering på 1 nivå: asm
- Enkel CPU
 - enkel mobil
- Finns bara enkla instr.
- Snabb

Mikroprogrammering

Grundläggande byggstenar

Datorkonstruktion Ritning 1

Datorkonstruktion Mikroprogrammering

- Vi ska bygga en liten dator med enkla komponenter
- Styrenheten (SekvensNät) visar sig vara svårast. Hur gör man för att konstruera ett SN med 100+ tillstånd?
- Mikroprogrammering är en vidareutveckling (och faktiskt begränsning) av tekniken att bygga sekvensnät med ROM
- o Idé: byt tillståndsvipporna mot en universalräknare

Tänkbara händelser vid olika steg:

Steg 0-2: Hämta instruktion,

samt beräkna adress

Steg 3-4: Utför en instruktion

Steg 5-6: Utför en annan

instruktion

Datorkonstruktion Mikroprogrammering

Vi skulle kunna bygga sekvensnätet på "vanligt" sätt:

Men det blir väldigt jobbigt för 100+ tillstånd, dessutom omständligt att konfigurera om vid behov.

Datorkonstruktion Ritning 2

Autonom styrenhet med ROM/Register

Datorkonstruktion Variant 2

Autonom styrenhet med ROM/Register

$\textbf{Datorkonstruktion} \ \textbf{Ritning} \ \textbf{3}$

Autonom styrenhet med ROM/Räknare

$\textbf{Datorkonstruktion} \ \textbf{Ritning} \ \textbf{4}$

Datorkonstruktion En variant

Autonom styrenhet utan adressfält

Datorkonstruktion Databussen då?

Datorkonstruktion Ritning 5

Datorkonstruktion Ritning 5

Register

Det som egentligen ser ut så här =>

Förenklar vi genom att rita så här =>

$\textbf{Datorkonstruktion} \ Ritning \ 6 \ och \ 7$

universalräknare

ALU/ackumulator

Datorkonstruktion Ritning 8 - Programmerarmodell

Endast 2 flaggor: Z,N

Datorkonstruktion Ritning 9 - Instruktionsformat

Opkod Märkfält

32 instruktioner 8 adresseringsmoder

Adress/data

${\tt Datorkonstruktion} A dressering smoder$

M	Mod	Exempel	EA
000	Absolut	LDA $addr$	addr
001	Indirekt	LDA $(addr)$	M(addr)
010	Indexerad	LDA $disp$, (XR)	XR + disp
011	Relativ	${ t JMP} \ disp$	PC + 2 + disp
100	Omedelbar	LDA #n	PC + 1
101	Underförstådd	INCA/INC	

M(addr)->AR M(M(addr))->AR M(XR+disp)->AR PC+2+disp->PC n->AR

Exempelvis:

0: LDA 000 1: 3 2: 5 LDA 3

Absolut EA=3 (Effektiv Adress) Operanden = 5

Datorkonstruktion Instruktioner

Instruktion	n Verkan		Status			
		N	Z	C	V	
LDA addr	AR := M(addr)	*	*	72	C	
STA addr	M(addr) := AR	-	+	-	C	
ADD $addr$	AR := AR + M(addr)	*	*	*	*	
SUB addr	AR := AR - M(addr)	*	*	*	*	
INCA	AR := AR + 1	*	*	*	*	
DEC	AR := AR - 1	*	*	*	*	
CMP $addr$	AR - M(addr)	*	*	*	*	
CLRA	AR := 0	0	1	0	C	
ASRA	AR := AR/2	*	*	*	-	
ASLA	$AR := AR \cdot 2$	*	*	*	*	
LSRA	logiskt högerskift av AR	0	*	*	-	
AND $addr$	AR := AR and $M(addr)$	*	*	=	C	
OR $addr$	AR := AR or M(addr)	*	*	-	C	
JMP $addr$	PC := addr	_	-	_	-	
$\mathtt{JMPN}\ addr$	PC := addr om N = 1	-	-	: : :	-	
$JMPZ\ addr$	PC := addr om Z = 1	-	1.50	-	-	
$JMPC\ addr$	PC := addr om C = 1	-	-	-	-	
${ t JMPV} \ addr$	PC := addr om V = 1	\underline{v}_{-}	2		-	
IN	AR := IN	*	*	\ <u>-</u>	C	
OUT	UT := AR	_	-	_	C	

Mikromaskinen

"Olle-roos"-datorn

Datorkonstruktion

Mikromaskinen

"Olle Roos – datorn"

= register

= minne

= kombinatorik

Tabellerna K1, K2 och K3 kan även implementeras som minnen.

RESET (

Datorkonstruktion Normal arbetsgång - översikt

För varje instruktion {

- 1. Hämtfas => Samma för alla instruktioner
 - 1. <u>Hämta</u> instruktionen till IR
 - 2. PC++
 - 3. Hoppa till rätt ...
- 2. Adresseringsmodsfas Beroende på M sker olika saker
 - 1. Vanligen: <u>Hämta</u> byten, PC++
 - 2. EA till ADR
 - 3. Hoppa till rätt ...
- 3. Exekveringsfas => Beroende på OP sker olika saker
 - 1. Vanligen: <u>Hämta</u> operanden
 - 2. Resultatet till AR och uppdatera SR
 - 3. Hoppa till Hämtfas

LINKÖPINGS UNIVERSITET

Datorkonstruktion Organisation av mikroprogram

Mikrokod

- -Ett mindre program
- -Ytterligare exempel för olika instruktioner och adresseringsmoder

Steg 1 : Hämtfas

M(PC) -> IR

0: pc->adr,mpc++ 18,1,11
1: adr->minne,data->dr,mpc++ 2,3,5,11
2: dr->ir,mpc++ 7,8,11
3: PC++,K2->mpc 17,10

Vid reset nollställs PC och MPC

Datorkonstruktion

Steg 1 : Hämtfas M(PC) -> IR

Rad 0 i Mikrominnet adresseras. Effekterna av aktiverade styrsignaler sker vid nästkommande klockflank.

Steg 1 : Hämtfas

M(PC) -> IR

PC: 0: LDA 0 1: 12

Steg 1 : Hämtfas

M(PC) -> IR

PC: 0: LDA 0 1: 12

Datorkonstruktion

Steg 2 : A-modfas (Abs) $M(PC) \rightarrow ADR$

18,1,11 4: pc->adr,mpc++ 5: adr->minne,data->dr,mpc++ 2,3,5,11 7,1,9,17 6: dr->adr,K1->mpc,PC++

HR

27

Omed. Under. 5 LDA

K1

MPC 9

Mikrominne

_hämt

-abs

ome

_LDA

STA

ADDA

18,1,11

7,8,11 17,10

18,1,11

2,3,5,11

7,1,9,17

2,3,5,11

Datorkonstruktion

Steg 2 : A-modfas (Abs) M(PC) -> ADR

0: LDA 0 PC: 1: 12

4: pc->adr,mpc++ 18,1,11 5: adr->minne,data->dr,mpc++ 2,3,5,11 6: dr->adr,K1->mpc,PC++ 7,1,9,17

Steg 3 : Exe-fas (LDA) AR = M(ADR)

AR: 12: 1 ADR: 12 13: 0

30: adr->minne,data->dr,mpc++ 2,3,5,11

31: dr->tr,mpc++ 7,25,11

32: tr->ar,mpc++ 27,32,33,11

33: status, 0->mpc 34,12

K2	M	
Instr.	OP	Adress
Abs.	0	4
Ind.	1	
Index	2	
Rel.	3	
Omed.	4	27
Under.	5	

30: adr->minne,data->dr,mpc++ 2,3,5,11
31: dr->tr,mpc++ 7,25,11
32: tr->ar,mpc++ 27,32,33,11
33: status, 0->mpc 34,12

Steg 3 : Exe-fas (LDA) AR = M(ADR)

AR: 12: 1 ADR: 12 13: 0

30: adr->minne,data->dr,mpc++ 2,3,5,11

31: dr->tr,mpc++ 7,25,11

32: tr->ar,mpc++ 27,33

33: status, 0->mpc

27,32,33,11 34,12

Signal 12 aktiverar nollställning av MPC, för nästa hämtfas

Steg 3: Exe-fas (LDA)

AR = M(ADR)

AR: 12: 1 ADR: 12 13: 0

30: adr->minne,data->dr,mpc++ 2,3,5,11 31: dr->tr,mpc++ 7,25,11

32: tr->ar,mpc++ 27,32,33,11

33: status, 0->mpc 34,12

Signal 12 aktiverar nollställning av MPC, för nästa hämtfas, så där!

Steg 1: H-fas, som förut

3: PC++,K2->mpc

17,10

Steg 2: A-fas, Omedelbar

27: PC->adr,mpc++ 18,1,11 28: PC++,K1->mpc 17,9

Steg 3 : Exe, AR = AR + M(ADR)

36: data->dr,mpc++ 2,3,5,11 37: dr->tr,mpc++ 7,25,11 38: ar+tr->ar, mpc++ 27,33,30,11 39: status, 0->mpc 34,12

Adressbuss 0 LDA 000 12 100 ADD 7 STA 000 13 12 13 0 Databuss K1 OP Adress Instr. 30 0 LDA 34 STA 36 ADD

K2	M	
Instr.	OP	Adress
Abs.	0	4
Ind.	1	
Index	2	
Rel.	3	
Omed.	4	(27)
Under.	5	

Steg 1: H-fas, som förut

3: PC++, K2->mpc

17,10

Steg 2 : A-fas, Omedelbar

27: PC->adr,mpc++ 28: PC++,K1->mpc

18,1,11 17,9

Steg 3: Exe, AR = AR + M(ADR)

36: data->dr,mpc++ 2,3,5,11 37: dr->tr,mpc++ 7,25,11 38: ar+tr->ar, mpc++ 27,33,30,11

39: status, 0->mpc

34,12

36 ADD M K2 OP Adress Instr. Abs. Ind. Index Rel. 27 Omed. Under. 5

Adressbuss

000

100

000

Databuss

OP Adress

0

30

34

12

7

13

0 LDA

ADD

STA

0

K1

Instr.

LDA

STA

12

Steg 1: H-fas, som förut

3: PC++,K2->mpc

17,10

Steg 2: A-fas, Omedelbar

27: PC->adr,mpc++
28: PC++,K1->mpc

18,1,11 17,9

Steg 3 : Exe, AR = AR + M(ADR)

36: data->dr,mpc++ 2,3,5,11 37: dr->tr,mpc++ 7,25,11 38: ar+tr->ar, mpc++ 27,33,30,11

39: status, 0->mpc 34,12

K1		Databuss
Instr.	OP	Adress
LDA	0	30
STA	1	34
ADD	2	36
	, ,	

Adressbuss

000

100

000

12

7

13

0 LDA

ADD

STA

0

12

M	
OP	Adress
0	4
1	
2	
3	
4	27
5	

Steg 1: H-fas, som förut

3: PC++,K2->mpc

17,10

Steg 2 : A-fas, Omedelbar

27: PC->adr,mpc++ 18,1,11 17,9 28: PC++,K1->mpc

Steg 3 : Exe, $AR = AR + \underline{M(ADR)}$

36: data->dr,mpc++

2,3,5,11 7,25,11 37: dr->tr,mpc++ 27,33,30,11

38: ar+tr->ar, mpc++ 39: status, 0->mpc

34,12

T7 4		
K1		
Instr.	OP	Adress
LDA	0	30
STA	1	34
ADD	2	36

Adressbuss

000

100

000

12

7

13

0 LDA

ADD

STA

0

12

M	
OP	Adress
0	4
1	
2	
3	
4	27
5	

Mikrokod för ADD #7

Steg 1: H-fas, som förut

3: PC++,K2->mpc

17,10

Steg 2 : A-fas, Omedelbar

27: PC->adr,mpc++ 18,1,11 28: PC++,K1->mpc 17,9

Steg 3 : Exe, AR = AR + M(ADR)

36: data->dr,mpc++ 2,3,5,11 37: dr->tr,mpc++ 7,25,11 38: ar+tr->ar, mpc++ 27,33,30,11 39: status, 0->mpc 34,12

K2	M	
Instr.	OP	Adress
Abs.	0	4
Ind.	1	
Index	2	
Rel.	3	
Omed.	4	27
Under.	5	

Mikrokod för ADD #7

Steg 1: H-fas, som förut

3: PC++,K2->mpc

17,10

Steg 2: A-fas, Omedelbar

27: PC->adr,mpc++ 18,1,11 28: PC++,K1->mpc 17,9

Steg 3: Exe, AR = AR + M(ADR)

36: data->dr,mpc++ 2,3,5,11 37: dr->tr,mpc++ 7,25,11 38: ar+tr->ar, mpc++ 27,33,30,11 39: status, 0->mpc 34,12

0 LDA

ADD

Abs.

Ind.

Rel.

Index

Omed. 4 Under. 5 27

Adressbuss

000

100

Mikrokod för ADD #7

Steg 1: H-fas, som förut

3: PC++,K2->mpc

17,10

Steg 2 : A-fas, Omedelbar

27: PC->adr,mpc++ 18,1,11 28: PC++,K1->mpc 17,9

Steg 3: Exe, AR = AR + M(ADR)

36: data->dr,mpc++ 2,3,5,11 37: dr->tr,mpc++ 7,25,11 38: ar+tr->ar, mpc++ 27,33,30,11 39: status, 0->mpc 34,12

Abs.

Ind.

Rel.

Index

Omed. 4 Under. 5 27

Adressbuss

Mikrokod för ADD #7

Steg 1: H-fas, som förut

3: PC++,K2->mpc

17,10

Steg 2 : A-fas, Omedelbar

27: PC->adr,mpc++ 18,1,11 28: PC++,K1->mpc 17,9

Steg 3 : Exe, AR = AR + M(ADR)

36: data->dr,mpc++ 2,3,5,11 37: dr->tr,mpc++ 7,25,11 38: ar+tr->ar, mpc++ 27,33,30,11 39: status, 0->mpc 34,12

Adressbuss 0 LDA 000 12 100 ADD 7 STA 000 13 12 13 0 Databuss K1 OP Adress Instr. 30 0 LDA 34 STA 36 ADD

K2	M	
Instr.	OP	Adress
Abs.	0	4
Ind.	1	
Index	2	
Rel.	3	
Omed.	4	27
Under.	5	

Mikrokod för STA (13)

Mikrokod för STA 13

Steg 1: H-fas, som förut

3: PC++,K2->mpc

17,10

Steg 2: A-fas, Absolut

• •

6: dr->adr,K1->mpc,PC++

7,1,9,17

Steg 3: Exe, AR->M(ADR)

34: ar->dr,mpc++

37,6,11

35: dr->M,0->mpc

2,4,5,12

K2	M	
Instr.	OP	Adress
Abs.	0	4
Ind.	1	
Index	2	
Rel.	3	
Omed.	4	27
Under.	5	

Mikrokod för STA 13

Steg 1: H-fas, som förut

3: PC++,K2->mpc

17,10

Steg 2: A-fas, Absolut

6: dr->adr,K1->mpc,PC++

7,1,9,17

Steg 3: Exe, AR->M(ADR)

34: ar->dr,mpc++

37,6,11

35: dr->M,0->mpc

2,4,5,12

Mikrokod för STA 13

Steg 1: H-fas, som förut

3: PC++, K2->mpc

17,10

Steg 2: A-fas, Absolut

6: dr->adr,K1->mpc,PC++

7,1,9,17

Steg 3 : Exe, AR->M(ADR)

34: ar->dr,mpc++

35: dr->M,0->mpc

37,6,11 2,4,5,12

Mikrokod för STA 13

Steg 1: H-fas, som förut

3: PC++,K2->mpc

17,10

Steg 2: A-fas, Absolut

6: dr->adr,K1->mpc,PC++

7,1,9,17

Steg 3: Exe, AR->M(ADR)

34: ar->dr,mpc++

35: dr->M,0->mpc

Mikrokod för STA 13

Steg 1: H-fas, som förut

3: PC++,K2->mpc

17,10

Steg 2: A-fas, Absolut

• •

6: dr->adr,K1->mpc,PC++

7,1,9,17

Steg 3: Exe, AR->M(ADR)

34: ar->dr,mpc++ 35: dr->M,0->mpc 37,6,11 2,4,5,12

Datorkonstruktion Sammanfattning

Mikrokod för LDA 3(X)

Indexerad adressering

Mikrokod för LDA 3(X)

 $M(XR+3) \rightarrow AR$

Steg 1: H-fas

Finns redan

Steg 2: A-fas, Indexerad

12: PC->ADR, PC++, MPC++

13: M->DR, XR->TR, MPC++

14: DR->TR, TR->AR, AR->HR, MPC++

15: AR+TR->AR, MPC++

16: HR->AR, AR->ADR, K1->MPC

Steg 3 : Exe, LDA

Mikrokod för LDA 3(X)

 $M(XR+3) \rightarrow AR$

Steg 1: H-fas

Finns redan

Steg 2: A-fas, Indexerad

12: PC->ADR, PC++, MPC++

13: M->DR, XR->TR, MPC++

14: DR->TR, TR->AR, AR->HR, MPC++

15: AR+TR->AR, MPC++

16: HR->AR, AR->ADR, K1->MPC

Steg 3 : Exe, LDA

Mikrokod för LDA 3(X)

 $M(XR+3) \rightarrow AR$

Steg 1: H-fas

Finns redan

Steg 2 : A-fas, Indexerad

12: PC->ADR, PC++, MPC++
13: M->DR, XR->TR, MPC++

14: DR->TR, TR->AR, AR->HR, MPC++

15: AR+TR->AR, MPC++

16: HR->AR, AR->ADR, K1->MPC

Steg 3 : Exe, LDA

Mikrokod för LDA 3(X)

 $M(XR+3) \rightarrow AR$

Steg 1: H-fas

Finns redan

Steg 2 : A-fas, Indexerad

12: PC->ADR, PC++, MPC++

13: M->DR, XR->TR, MPC++

14: DR->TR, TR->AR, AR->HR, MPC++

15: AR+TR->AR, MPC++

16: HR->AR, AR->ADR, K1->MPC

Steg 3 : Exe, LDA

Mikrokod för LDA 3(X)

 $M(XR+3) \rightarrow AR$

Steg 1: H-fas

Finns redan

Steg 2 : A-fas, Indexerad

12: PC->ADR, PC++, MPC++
13: M->DR, XR->TR, MPC++

14: DR->TR, TR->AR, AR->HR, MPC++

15: AR+TR->AR, MPC++

16: HR->AR, AR->ADR, K1->MPC

Steg 3 : Exe, LDA

Mikrokod för LDA 3(X)

 $M(XR+3) \rightarrow AR$

Steg 1: H-fas

Finns redan

Steg 2 : A-fas, Indexerad

12: PC->ADR, PC++, MPC++

13: M->DR, XR->TR, MPC++

14: DR->TR, TR->AR, AR->HR, MPC++

15: AR+TR->AR, MPC++

16: HR->AR, AR->ADR, K1->MPC

Steg 3 : Exe, LDA

Mikrokod för INCA

Underförstådd adressering

Mikrokod för INCA

 $AR+1 \rightarrow AR$

Steg 1: H-fas
Finns redan

Steg 2 : A-fas, Underförstådd

29: K1->MPC

Steg 3: Exe, INCA

44: AR+1->AR, MPC++ 45: status, 0->MPC

Mikrokod för INCA

 $AR+1 \rightarrow AR$

Steg 1: H-fas
Finns redan

Steg 2 : A-fas, Underförstådd

29: K1->MPC

Steg 3: Exe, INCA

44: AR+1->AR, MPC++ 45: status, 0->MPC

Mikrokod för INCA

 $AR+1 \rightarrow AR$

Steg 1: H-fas
Finns redan

Steg 2 : A-fas, Underförstådd

29: K1->MPC

Steg 3: Exe, INCA

44: AR+1->AR, MPC++ 45: status, 0->MPC

Mikrokod för LDA (3)

Indirekt adressering

Mikrokod för LDA (3)

 $M(M(3)) \rightarrow AR$

Steg 1: H-fas

Finns redan

Steg 2 : A-fas, Indirekt

7: PC->ADR, PC++, MPC++

8: M->DR, MPC++

9: DR->ADR, MPC++

10: M->DR, MPC++

11: DR->ADR, K1->MPC

Steg 3: Exe, LDA

Mikrokod för LDA (3)

 $M(M(3)) \rightarrow AR$

Steg 1: H-fas

Finns redan

Steg 2 : A-fas, Indirekt

7: PC->ADR, PC++, MPC++

8: M->DR, MPC++

9: DR->ADR, MPC++

10: M->DR, MPC++

11: DR->ADR, K1->MPC

Steg 3 : Exe, LDA

Mikrokod för LDA (3)

 $M(M(3)) \rightarrow AR$

Steg 1: H-fas

Finns redan

Steg 2 : A-fas, Indirekt

7: PC->ADR, PC++, MPC++

8: M->DR, MPC++

9: DR->ADR, MPC++

10: M->DR, MPC++

11: DR->ADR, K1->MPC

Steg 3 : Exe, LDA

Mikrokod för LDA (3)

 $M(M(3)) \rightarrow AR$

Steg 1: H-fas

Finns redan

Steg 2 : A-fas, Indirekt

7: PC->ADR, PC++, MPC++

8: M->DR, MPC++

9: DR->ADR, MPC++

10: M->DR, MPC++

11: DR->ADR, K1->MPC

Steg 3: Exe, LDA

Mikrokod för LDA (3)

 $M(M(3)) \rightarrow AR$

Steg 1: H-fas

Finns redan

Steg 2 : A-fas, Indirekt

7: PC->ADR, PC++, MPC++

8: M->DR, MPC++

9: DR->ADR, MPC++

10: M->DR, MPC++

11: DR->ADR, K1->MPC

Steg 3 : Exe, LDA

Mikrokod för LDA (3)

 $M(M(3)) \rightarrow AR$

Steg 1: H-fas

Finns redan

Steg 2 : A-fas, Indirekt

7: PC->ADR, PC++, MPC++

8: M->DR, MPC++

9: DR->ADR, MPC++

10: M->DR, MPC++

11: DR->ADR, K1->MPC

Steg 3 : Exe, LDA

Anders Nilsson

www.liu.se

