TD 1 - Introduction aux formulations variationnelles

On considère le problème de convection-diffusion stationnaire unidimensionnel, gouvernant le transport par un fluide d'une faible quantité de polluant, sur une distance L. La vitesse de l'écoulement U est considérée constante et positive, ainsi que le coefficient de diffusion moléculaire du polluant D. La source du polluant est une fonction donnée f(x) (pour $x \in [0, L]$) "assez régulière". La concentration du polluant, notée u, est solution du problème continu (**PC**) :

(PC)
$$\begin{cases} U \frac{du}{dx} - D \frac{d^2u}{dx^2} = f(x) & x \in]0, L[\\ u(0) = u(L) = 0 \end{cases}$$
 (1)

1. On désigne par V, l'espace des champs de concentration "suffisamment réguliers", vérifiant les conditions limites u(0) = u(L) = 0.

Montrer qu'une formulation variationnelle (PV) peut s'écrire :

$$a(u,v) = U \int_0^L \frac{du}{dx} v dx + D \int_0^L \frac{du}{dx} \frac{dv}{dx} dx, L(v) = \int_0^L f v dx.$$
 (3)

- 2. On suppose à présent que la donnée f est une fonction appartenant à $L^2(]0, L[)$. Donner des conditions suffisantes portant sur la solution u de la formulation variationnelle (**PV**) garantissant la convergence des différentes intégrales intervenant dans (??) et (??).
- 3. Montrer que

$$a(u,v) = \frac{U}{2} \int_0^L \left(\frac{du}{dx}v - \frac{dv}{dx}u\right) dx + D \int_0^L \frac{du}{dx} \frac{dv}{dx} dx$$

En déduire que $a(v,v) \geq 0, \forall v \in V$ et a(v,v) = 0 seulement si v = 0.

- 4. Montrer que la solution du problème (**PV**) est unique.

 L'existence de la solution ne peut pas être prouvée pour l'instant, elle sera faite plus tard (la démonstration nécessite l'application du théorème de Lax-Milgram).
- 5. Montrer que la solution u du problème (**PV**) vérifie l'inégalité suivante (dépendence continue des données) :

$$\left(\int_{0}^{L} (u(x))^{2} dx\right)^{1/2} \le \frac{L^{2}}{D} \left(\int_{0}^{L} (f(x))^{2} dx\right)^{1/2}$$

6. Etude du cas particulier : f=1. Calculer directement la solution exacte du problème si f(x)=1. On définit le paramètre $\frac{UL}{D}=P_e$ (nombre de Péclet) qui traduit le rapport entre les

ordres de grandeur des phénomènes de convection et de diffusion dans le transport du polluant. Discuter le comportement limite de la solution quand le nombre de Péclet tend vers $\pm \infty$ dans les cas $U>0$ et $U<0$. Tracer la solution dans ces cas limite et interpréter le résultat.	

TD 2 - Eléments de topologie pour l'analyse fonctionnelle

Exercice 1 - Espaces vectoriels normés complets

Soit $E = \mathcal{C}^1([-1,1])$ l'espace des fonctions f continues à dérivées continues de [-1,1] à valeurs dans \mathbb{R} , muni de la norme définie par

$$||f||_2 = \left(\int_{[-1,1]} |f(x)|^2 dx\right)^{1/2},$$

associée au produit scalaire

$$< f, g>_2 = \left(\int_{[-1,1]} f(x)g(x)dx \right)$$

- 1. Montrer que E est un espace vectoriel normé sur \mathbb{R} , muni d'un produit scalaire.
- 2. On considère la suite de fonctions $(f_n)_{n\in\mathbb{N}^*}$ définies par

$$f_n(x) = \begin{cases} 1+x & \text{si } x \in [-1, -\frac{1}{n}] \\ 1 - \frac{1}{2n} - \frac{nx^2}{2} & \text{si } x \in] - \frac{1}{n}, \frac{1}{n}] \\ 1 - x & \text{si } x \in]\frac{1}{n}, 1] \end{cases}$$

- (a) Représenter l'allure des fonctions f_n et $f'_n = \frac{df_n}{dx}$. Montrer que $f_n \in E$, $\forall n \in \mathbb{N}^*$.
- (b) Montrer que $(f_n)_{n\in\mathbb{N}^*}$ est une suite de Cauchy par rapport à la norme $\|\cdot\|_2$.
- (c) Montrer que $(f_n)_{n\in\mathbb{N}^*}$ converge dans la norme $\|\cdot\|_2$ vers la fonction φ , définie par :

$$\varphi(x) = \begin{cases} 1+x & \text{si } x \in [-1,0] \\ 1-x & \text{si } x \in [0,1] \end{cases}$$

- (d) La fonction φ appartient-elle à l'espace E? $(E, \|\cdot\|_2, <\cdot, \cdot>)$ est-il un espace de Hilbert?
- 3. Bonus On considère maintenant l'application définie par,

$$||f||_{\infty} = \sup_{x \in [-1,1]} |f(x)| + \sup_{x \in [-1,1]} |f'(x)|, \quad \forall f \in E$$

Montrer que $||f||_{\infty}$ définie une norme sur l'espace E. La suite $(f_n)_{n\in\mathbb{N}^*}$ est-elle une suite de Cauchy dans E par rapport à la norme $||\cdot||_{\infty}$? Les deux normes sont-elles équivalentes? L'espace E est-il complet par rapport à la norme $||\cdot||_{\infty}$?

Exercice 2 - Applications linéaires continues

Soit $\mathbf E$ l'espace vectoriel sur $\mathbb R$ des fonctions à valeurs réelles définies sur [0,1], deux fois continûment dérivables sur cet intervalle. Pour tout f de $\mathbf E$ on considère les normes :

$$||f||_{L^1} = \int_0^1 |f(x)| dx$$
 $||f||_{L^\infty} = \sup_{x \in [0,1]} |f(x)|$

- 1. On pose pour tout $f \in \mathbf{E}$, $\mathcal{L}(f) = f(1)$. Montrer que \mathcal{L} est une forme linéaire sur \mathbf{E} , continue au sens de la norme L^{∞} mais non au sens de la norme L^{1} .
- 2. On appelle, pour tout $f \in \mathbf{E}$, T(f) la primitive de f qui s'annule au point x=0. Montrer que T est un opérateur linéaire sur \mathbf{E} , continu au sens des normes L^1 et L^{∞} .

TD 3-4 Formulation variationnelle

Rappels cours - Espaces $H^1(I), I \subset \mathbb{R}$:

Soit I un intervalle ouvert de \mathbb{R} , I =]a, b[. On définit

$$H^1(I) = \left\{ f \in L^2(I); \exists g \in L^2(I) \text{ tel que } \int_I f\varphi' = -\int_I g\varphi, \ \forall \varphi \in C_c^\infty(I) \right\},$$

 C_c^{∞} étant l'ensemble des fonctions indéfiniment dérivables, à support compact dans $I.\ g$ est appelée la dérivée au sens faible de f et on note f'=g.

L'espace $H^1(I)$, muni de la norme $\|f\|_{H^1} = \left(\|f\|_{L^2}^2 + \|f'\|_{L^2}^2\right)^{1/2}$ et du produit scalaire $\langle f,g\rangle_{H^1} = \langle f,g\rangle_{L^2} + \langle f',g'\rangle_{L^2}$ est un espace de Hilbert qui a des propriétés spécifiques liées à la dimension 1 de l'espace \mathbb{R} (voir Annexe).

Exercice 1

Soit I =]-1,1[. Vérifier que la fonction $u(x) = \frac{1}{2}(|x|+x)$ est une fonction de $H^1(I)$. Quelles sont les propriétés de u : est-elle de classe $C^0(I)$ ou $C^1(I)$? Montrez que la dérivée au sens faible de u est une fonction qui n'appartient pas à $H^1(I)$.

Exercice 2 - Formulation variationnelle

Soit la recherche par une méthode variationnelle de la fonction u vérifiant

$$-\frac{d^2u}{dx^2} = f(x), \quad x \in]0,1[, \quad f \text{ donn\'e} \in L^2(]0,1[), \quad \text{avec} \quad u(0) = u(1) = 0.$$
 (4)

- 1. Montrer que $H_0^1(]0,1[)=\{v\in H^1(]0,1[)/v(0)=0,v(1)=0\}$ muni du produit scalaire défini sur $H^1(]0,1[)$ est un espace de Hilbert.
- 2. Inéqualité de Poincaré : Montrer qu'il existe une constante <math>C (dépendant de |I|) telle que :

$$||v||_{H^1} \le C||v'||_{L^2}, \quad \forall v \in H_0^1$$

3. On cherche $u \in H^1_0(]0,1[)$ solution du problème différentiel ci-dessus. Montrer que u est solution du problème variationnel :

$$(\mathbf{PV}) \qquad \left\{ \begin{array}{l} \text{Trouver } u \text{ appartenant à } H_0^1(]0,1[), \text{ tel que} \\ a(u,v) = L(v), \forall v \in V \end{array} \right.$$
 (5)

Expliciter a(u, v) et L(v).

- 4. Montrer que a(u, v) est une forme bilinéaire continue, symétrique, et coercive sur $H_0^1(]0, 1[)$, et que L(v) est une forme linéaire continue sur $H_0^1(]0, 1[)$.
- 5. Montrer que a(u, v) est un produit scalaire sur $H_0^1(]0, 1[)$ et que la norme associée $\sqrt{a(v, v)}$ est équivalente à la norme $\|\cdot\|_{H^1}$ sur $H_0^1(]0, 1[)$. Démontrer l'existence et l'unicité de la solution du problème variationnel **(PV)** en utilisant le théorème de Riesz.

- 6. Montrer l'existence et l'unicité de la solution du problème variationnel (**PV**) en utilisant le théorème de Lax-Milgram.
- 7. Montrer que si u est solution du problème variationnel (**PV**) et $u \in H^2(]0,1[) = \{v \in H^1(]0,1[)/v' \in H^1(]0,1[)\}$ alors u est solution du problème initial (l'équation différentielle (1) est vérifiée presque partout sur]0,1[)).
- 8. Soit V_N un sous-espace vectoriel de $H_0^1(]0,1[)$ de dimension N finie.
 - (a) Montrer que la meilleure approximation de u dans V_N au sens de la norme $\sqrt{a(v,v)} = ||v||_1$ est $u_N \in V_N$ tel que : $a(u_N,v) = L(v), \quad \forall v \in V_N.$
 - (b) Soit $(\varphi_i)_{i \in [1,...,N]}$ une base de V_N . Etablir le système linéaire permettant de déterminer u_N . Montrer que ce système est un système de Cramer.
- 9. * Approximation P_1 .
 - (a) On considère ici K = [0, 1], et les points $A_1(X = 0)$, et $A_2(X = 1)$. Soit P_1^K l'ensemble des polynômes de degré inférieur où égal à 1 sur K. La base canonique de P_1^K est constituée des fonctions $\varphi_i(X)$, $1 \le i \le 2$ de P_1^K vérifiant $\varphi_i(A_j) = \delta_{ij}$. Donner l'expression de ces fonctions et les tracer.
 - (b) Soit N un entier positif, h=1/(N+1), et le maillage $0=x_0 < x_1 < ... < x_N < x_{N+1}=1$, où $x_j=jh$, $0 \le j \le N+1$. Soit $V_h=\{v \in C^0([0,1]), v_{[x_i,x_{i+1}]} \in P_1, v(0)=0, v(1)=0\}$, Quelle est la dimension de V_h ? La base canonique de V_h est constituée des fonctions φ_i qui valent 1 en un nœud choisi et 0 en tous les autres nœuds. Tracer ces fonctions de base.
 - (c) Construire alors le système linéaire permettant de calculer l'approximation u_h de u par la méthode des éléments finis associée à l'espace V_h . Montrer comment on peut constituer la matrice de ce système en calculant ses coefficients en tant que somme d'intégrales sur chaque élément. Donner la matrice 2×2 élémentaire de la contribution d'un élément à la matrice du système global.
 - (d) On prend N=3. Assembler la matrice et calculer le second membre.

Annexe

Propriété 1 : Soit $f \in H^1(I)$. Il existe alors une fonction $\tilde{f} \in C(\bar{I})$ telle que $f = \tilde{f}$ presque partout sur I et

$$\tilde{f}(x) - \tilde{f}(y) = \int_{y}^{x} f'(t)dt, \quad \forall x, y \in \bar{I}$$

Propriété 2 : Dérivation d'un produit : Soit $f, g \in H^1(I)$. Alors $fg \in H^1(I)$ et

$$(fg)' = f'g + fg'$$

De plus, on a la formule d'intégration par parties :

$$\int_{y}^{x} f'g = f(x)g(x) - f(y)g(y) - \int_{y}^{x} fg', \quad \forall x, y \in \bar{I}$$

Propriété 3 (Densité) :

$$\forall f \in H^1(I), \ \exists (\varphi_n) \in C_c^{\infty}(\mathbb{R}) \ tels \ que \ \varphi_{n|_I} \to f \ dans \ H^1(I)$$

TD 5 - Formulation variationnelle

Conduction stationnaire 3-D

On s'intéresse au problème de conduction de chaleur en régime stationnaire dans un régénérateur (milieux poreux), occupant un domaine cylindrique $\Omega \subset \mathbf{R}^3$. Le régénérateur est placé dans un cylindre isolant, de sorte que la surface latérale Γ_L soit considérée adiabatique. De part et d'autre du régénérateur il y a deux échangeurs de chaleur : un échangeur chaud idéal à température constante et un échangeur froid à eau qui permet d'évacuer la chaleur par convection (la température de l'eau est constante aussi). Sur Γ_1 (la paroi en contact avec l'échangeur idéal) la température est imposée et égale à celle de l'échangeur. Le flux de chaleur à travers Γ_2 (la paroi en contact avec l'échangeur froid) est proportionnel à l'écart de température entre la température de l'enceinte et la température de l'eau, via un coefficient d'échange k, k = constante positive.

Il n'y a pas de source de chaleur interne dans Ω . Pour un tel système, la température d'équilibre adimensionnée u est régie par les équations suivantes :

$$\begin{pmatrix}
-\Delta u & = & 0 \operatorname{dans} \Omega \\
\frac{\partial u}{\partial n} & = & 0 \operatorname{sur} \Gamma_L \\
u & = & 0 \operatorname{sur} \Gamma_1 \\
\frac{\partial u}{\partial n} & = & -k(u - u_0), \operatorname{sur} \Gamma_2
\end{pmatrix} \tag{6}$$

où u_0 est une fonction donnée appartenant à $L^2(\Gamma_2)$.

1. Montrer que si u est solution du problème continu (**PC**) alors u est solution du probléme variationnel (**PV**):

$$(\mathbf{PV}) \qquad \begin{cases} \text{Trouver } u \in V \text{ solution de } : \\ a(u, v) = L(v), \forall v \in V, \end{cases}$$
 (7)

où :
$$-V = H^1_{\Gamma_1}(\Omega) \equiv \left\{ v : \Omega \to \mathbb{R}, v \in H^1(\Omega), v = 0 \text{ sur } \Gamma_1 \right\} \text{ muni de la norme usuelle de l'espace } H^1(\Omega) :$$

$$\|v\|^2_{\mathcal{H}(\Omega)} = \int v^2 + \int \left| \vec{\nabla} v \right|^2.$$

$$||v||_{H^1(\Omega)}^2 = \int_{\Omega} v^2 + \int_{\Omega} \left| \vec{\nabla} v \right|^2.$$

$$-- a(u,v) = \int_{\Omega} \vec{\nabla} u \cdot \vec{\nabla} v + k \int_{\Gamma_2} uv,$$

$$--L(v)=k\int\limits_{\Gamma_2}u_0v.$$

On établira la convergence des intégrales et on justifiera l'introduction de la condition aux limites sur le bord Γ_1 pour les fonctions v de V.

2. Montrer que l'espace $H^1_{\Gamma_1}(\Omega)$ est un espace de Hilbert pour la norme $\|.\|_{H^1(\Omega)}$.

- 3. Montrer que a(.,.) est une forme bilinéaire, symétrique et continue sur $V \times V$.
- 4. Montrer que la forme bilinéaire a(.,.) est coercive.
- 5. Montrer que L(.) est une forme linéaire et continue sur V.
- 6. Etablir l'existence et l'unicité de la solution de la formulation variationnelle (PV).
- 7. Montrer directement (sans utiliser le théorème de Lax-Milgram), que la solution du problème variationnel est unique, puis que cette solution existe (on montrera que $\sqrt{a(v,v)}$ est une norme équivalente à la norme H^1 sur $H^1_{\Gamma_1}(\Omega)$, puis on utilisera le théorème de Riesz).
- 8. Montrer que le problème variationnel est équivalent au problème de minimisation suivant : Trouver $u \in H^1_{\Gamma_1}(\Omega)$ tel que $I(u) \leq I(v), \forall v \in H^1_{\Gamma_1}(\Omega),$ où : $I(v) = \frac{1}{2}a(v,v) L(v).$
- 9. Estimation a priori : Montrer que si u est solution de la formulation (**PV**), il existe une constante C > 0 telle que :

$$||u||_{H^1(\Omega)} \le C ||u_0||_{L^2(\Gamma_2)}.$$

10. Montrer l'équivalence entre le problème continu (PC) et la formulation variationnelle (PV).

TD 6 - Formulation variationnelle

Examen du 20 Mai 2015 : Problème de Stokes

On s'intéresse dans l'ensemble du problème au système de Stokes qui régit l'écoulement d'un fluide visqueux, incompressible, à petite vitesse, en écoulement permanent.

Le fluide occupe un domaine Ω , ouvert borné, régulier de \mathbb{R}^3 , de frontière $\partial\Omega$. On désigne par $\boldsymbol{u}(x)$ le vecteur vitesse de composantes $u_i(x), i \in \{1,2,3\}$ et par p(x) la pression (fonction scalaire) en tout point $x=(x_1,x_2,x_3)\in\Omega$. Le fluide, de densité ρ constante >0, est supposé visqueux, de viscosité μ (constante >0) et incompressible. Le fluide est soumis à des forces extérieures (vectorielles) $\boldsymbol{f}(x)$ de composantes $f_i(x), i \in \{1,2,3\}$. Enfin, la vitesse du fluide est supposée faible, de sorte que le couple vitesse-pression (\boldsymbol{u},p) est solution du système simplifié de Stokes (\mathbf{PC}) :

$$(\mathbf{PC}) \begin{cases} -\mu \, \Delta u_i + \frac{\partial p}{\partial x_i} = f_i, & \text{dans } \Omega, \ i \in \{1, 2, 3\}, \\ \text{div } \mathbf{u} = \sum_{i=1}^3 \frac{\partial u_i}{\partial x_i} = 0, & \text{dans } \Omega, \\ u_i = 0, & \text{sur } \partial \Omega, \ i \in \{1, 2, 3\}. \end{cases}$$
(1)

On définit les espaces fonctionnels :

$$\begin{split} & \left(L^{2}(\Omega)\right)^{3} = \left\{ \left. \boldsymbol{v} = (v_{1}, v_{2}, v_{3}) \, \middle| \, v_{i} \in L^{2}(\Omega), \, i \in \{1, 2, 3\} \right\}, \\ & \left(H^{1}(\Omega)\right)^{3} = \left\{ \left. \boldsymbol{v} = (v_{1}, v_{2}, v_{3}) \, \middle| \, v_{i} \in H^{1}(\Omega), \, i \in \{1, 2, 3\} \right\}, \\ & \left(H^{1}_{0}(\Omega)\right)^{3} = \left\{ \left. \boldsymbol{v} \in (H^{1}(\Omega))^{3} \, \middle| \, v_{i}(x) = 0, \, \, x \in \partial \, \Omega, \, \, i \in \{1, 2, 3\} \right\}, \\ & \left(H^{2}(\Omega)\right)^{3} = \left\{ \left. \boldsymbol{v} = (v_{1}, v_{2}, v_{3}) \, \middle| \, v_{i} \in H^{2}(\Omega), \, i \in \{1, 2, 3\} \right\}, \\ & \left(H^{2}(\Omega)\right)^{3} = \left\{ \left. \boldsymbol{v} = (v_{1}, v_{2}, v_{3}) \, \middle| \, v_{i} \in H^{2}(\Omega), \, i \in \{1, 2, 3\} \right\}, \\ & \left(H^{2}(\Omega)\right)^{3} = \left\{ \left. \boldsymbol{v} \in (H^{1}(\Omega))^{3} \, \middle| \, v_{i} = 0, \, \, \text{sur} \, \partial \, \Omega, \, \, i \in \{1, 2, 3\}, \, \, \, \text{div} \, \boldsymbol{v} = 0, \, \, \text{dans} \, \Omega \right\}, \end{split}$$

et les normes suivantes :

$$||\boldsymbol{v}|| = \left[\sum_{i=1}^{3} ||v_i||_{H^1(\Omega)}^2\right]^{1/2}, \qquad |\boldsymbol{v}| = \left[\sum_{i=1}^{3} ||\nabla u_i||_{L_2(\Omega)}^2\right]^{1/2},$$

1) (3.5p) Montrer que l'espace V est un sous-espace vectoriel de l'espace $(H^1(\Omega))^3$.

Montrer que $(V, \|.\|, \ll. \gg)$ est un espace de Hilbert en s'appuyant sur le résultat admis :

$$((H^1(\Omega))^3, \|.\|, \ll.\gg)$$
 est un espace de Hilbert, où $\ll \boldsymbol{u}, \boldsymbol{v} \gg = \sum_{i=1}^3 \ll u_i, v_i \gg_{H^1(\Omega)}$ est le

produit scalaire dont la norme ||.|| est issue.

Etablir l'équivalence des normes |.| et ||.|| sur l'espace V.

2) (1.5p) Montrer que pour
$$\mathbf{v} \in V$$
 et $p \in H^1(\Omega)$, on a $\int_{\Omega} \mathbf{v} \cdot \nabla p \, d\mathbf{x} = 0$.

<u>Indication</u>: On montrera d'abord que si div $\mathbf{v} = 0$ alors div $(\mathbf{v}p) = \mathbf{v} \cdot \nabla p$.

3) (3p) Soit $\boldsymbol{u} \in (H^2(\Omega))^3$. On suppose aussi que la donnée $\boldsymbol{f} \in (L^2(\Omega))^3$. Montrer que si \boldsymbol{u} est solution du probl^Eme continu (**PC**) alors \boldsymbol{u} est solution du probl^Eme variationnel (**PV**) :

$$(\mathbf{PV}) \qquad \left\{ \begin{array}{l} \text{Trouver } \boldsymbol{u} = (u_1, u_2, u_3) \in V, \text{ solution de } : \\ a(\boldsymbol{u}, \boldsymbol{v}) = L(\boldsymbol{v}), \qquad \forall \ \boldsymbol{v} = (v_1, v_2, v_3) \in V, \end{array} \right.$$

où a(.,.) et L(.) sont donnés par :

$$a(\boldsymbol{u}, \boldsymbol{v}) = \mu \int_{\Omega} \nabla \boldsymbol{u} \cdot \nabla \boldsymbol{v} \, d\boldsymbol{x}$$
 $L(\boldsymbol{v}) = \int_{\Omega} \boldsymbol{f} \cdot \boldsymbol{v} \, d\boldsymbol{x} = \sum_{i=1}^{3} \int_{\Omega} f_{i} \, v_{i} \, d\boldsymbol{x}$

et où l'on a noté :

$$abla oldsymbol{u} \cdot
abla oldsymbol{v} = \sum_{i=1}^{3}
abla u_i \cdot
abla v_i = \sum_{i=1}^{3} \sum_{j=1}^{3} rac{\partial u_i}{\partial x_j} \cdot rac{\partial v_i}{\partial x_j}.$$

 $\underline{Indication}$: On multipliera chaque équation (1), écrite pour la composante u_i , par la composante v_i de la fonction test, et on sommera ensuite selon i.

- 4) (3p) Montrer que a(.,.) est une forme bilinéaire, continue et coercive sur $V \times V$.
- **5)** (1.5p) Montrer que L(.) est une forme linéaire et continue sur V.
- **6)** (1p) Etablir l'existence et l'unicité de la solution du problème variationnel (**PV**), en précisant bien les hypothèses du résultat de cours utilisé.
- 7) (2.5 p) Montrer que l'unique solution \boldsymbol{u} du problème variationnel (PV) est aussi l'unique minimum d'une fonctionnelle $I(\boldsymbol{v})$ sur l'espace V, que l'on précisera. Donner une interprétation physique de $I(\boldsymbol{v})$.
- 8) (4p) On cherche maintenant à interpréter la formulation variationnelle (**PV**). On admet pour cela le résultat suivant :

<u>Lemme de Rham</u>: Soit Ω un domaine borné de \mathbb{R}^3 régulier, soit $l(\boldsymbol{v})$ une forme linéaire continue sur $(H_0^1(\Omega))^3$. La forme $l(\boldsymbol{v})$ s'annule sur V si et seulement si il existe une fonction scalaire $q \in L^2(\Omega)$ telle que :

$$l(\boldsymbol{v}) = \int_{\Omega} q \operatorname{div} \boldsymbol{v} d\boldsymbol{x}, \qquad \forall \boldsymbol{v} \in (H_0^1(\Omega))^3.$$

— Montrer que, sous les hypothèses du Lemme de Rham, la fonction q est unique à une constante additive près.

En faisant un choix particulier pour $l(\boldsymbol{v})$, en déduire qu'il existe une pression $p \in L^2(\Omega)$, unique à une constante additive près, telle que :

$$\mu \int_{\Omega} \nabla \boldsymbol{u} \cdot \nabla \boldsymbol{v} \, d\boldsymbol{x} \, - \, \int_{\Omega} \boldsymbol{f} \cdot \boldsymbol{v} \, d\boldsymbol{x} \, = \, \int_{\Omega} p \, \operatorname{div} \, \boldsymbol{v} \, d\boldsymbol{x}, \ \, \forall \, \boldsymbol{v} \in (H^1_0(\Omega))^3.$$

où \boldsymbol{u} est l'unique solution du problème variationnel $(\mathbf{PV}).$

— En supposant la solution \boldsymbol{u} du problème variationnel suffisamment régulière, soit $\boldsymbol{u} \in (H^2(\Omega))^3$, montrer que le couple (\boldsymbol{u},p) est solution du problème aux limites (**PC**).