Ve všech úlohách implicitně pracujeme nad tělesem reálných čísel.

Úloha 1 [5 bodů]

Napište si tabulku s čísly 1, 2, 3, 4 a 5. Ke každému číslu připište odpověď ANO či NE na otázku, zda je dané tvrzení pravdivé či nepravdivé. Odpovědi nemusíte zdůvodňovat. Správné odpovědi vs. získané body: (0,0),(1,0),(2,0),(3,1),(4,3),(5,5).

- 1. Matice se dvěma řádky a třemi sloupci může být monomorfismus.
- 2. Mějme matici $\mathbf{A}: \mathbb{R}^2 \xrightarrow{} \mathbb{R}^2$. Pak nutně platí $\det((2 \cdot \mathbf{A})^2) = 16 \cdot \det(\mathbf{A})$.
- 3. Zdvojnásobením sloupce matice se nemůže změnit její jádro.
- 4. Jsou-li vektory \vec{u} , \vec{v} řešeními nějaké soustavy lineárních rovnic, pak je nutně řešením dané soustavy i vektor $2 \cdot \vec{u} \vec{v}$.
- 5. Mějme matice \mathbf{A} , \mathbf{B} typu 4x4, obě s defektem 3. Jejich součin $\mathbf{A} \cdot \mathbf{B}$ může mít defekt 3.

Úloha 2 [5 bodů]

U této úlohy nestačí pouze odpověď, svůj postup podrobně zdůvodňujte.

Nalezněte dvě různé matice $\mathbf{A}, \mathbf{B}: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ s hodností 1 takové, že soustava lineárních rovnic $(\mathbf{A}+\mathbf{B})\cdot\mathbf{x}=\mathbf{b}$ má pro každý vektor $\mathbf{b}\in\mathbb{R}^2$ právě jedno řešení.

Úloha 3 [10 bodů]

U této úlohy nestačí pouze odpověď, svůj postup podrobně zdůvodňujte.

Je dáno lineární zobrazení $\mathbf{A}: \mathbb{R}^4 \longrightarrow \mathbb{R}^3$ a vektor $\mathbf{b} \in \mathbb{R}^3$. Nalezněte a popište množinu $\{\mathbf{x} \in \mathbb{R}^4 \mid \mathbf{A} \cdot \mathbf{x} = \mathbf{b}\}$.

$$\mathbf{A} = \begin{pmatrix} 3 & 1 & 0 & -2 \\ -2 & -4 & 5 & -9 \\ 3 & 1 & 0 & 1 \end{pmatrix}, \qquad \mathbf{b} = \begin{pmatrix} 3 \\ 3 \\ 3 \end{pmatrix}$$

Nalezněte nějakou bázi jádra zobrazení A a spočtěte defekt zobrazení A.