

Universidad Autónoma de Chiapas Campus 01 Facultad de contaduría y administración.
Docente: Dr. Luis Gutiérrez Alfaro.
Materia: Compiladores.
Nombre del alumno (s): • Alegría de la Cruz Brayan Fermín A210519.
Semestre: 6° Grupo: "M".
Tema: Definir los siguientes conceptos Expresiones regulares y autómatas.
Unidad: 1 Materia de Compiladores.

Tuxtla Gutiérrez, Chiapas; a 25 de enero de 2024.

Número de actividad: Actividad 1 | Define los siguientes conceptos.

Define el concepto de expresión regular.

Una expresión regular, se concibe como una secuencia de caracteres que definen un patrón de búsqueda; los cuales actúan como modelo para la coincidencia y manipulación de series.

Explica los tipos de operadores de expresiones regulares.

Los operadores en las expresiones regulares son meta caracteres especiales que permiten definir patrones más complejos. Algunos ejemplos de ello son:

- . (punto): Coincide con cualquier carácter, excepto un salto de línea.
- ^ (caret): Coincide con el inicio de una cadena.
- \$ (dólar): Coincide con el final de una cadena.
- (asterisco): Coincide con cero o más repeticiones del elemento anterior. Por ejemplo, a* coincidirá con una cadena que tenga cero o más caracteres "a".
- + (signo más): Coincide con una o más repeticiones del elemento anterior.
 Por ejemplo, a+ coincidirá con una cadena que tenga al menos un carácter
 "a".
- ? (interrogación): Hace que el elemento anterior sea opcional, es decir, coincide con cero o una repetición del elemento anterior. Por ejemplo, ab? coincidirá con "a" o "ab".
- \ (barra invertida): Se utiliza como escape para caracteres especiales. Por ejemplo, \\ coincide con el carácter de barra invertida.
- [] (corchetes): Define un conjunto de caracteres. Por ejemplo, [aeiou] coincidirá con cualquier vocal.

- | (barra vertical): Indica una alternancia, es decir, coincide con uno de los elementos separados por la barra vertical. Por ejemplo, cat|dog coincidirá con "cat" o "dog".
- () (paréntesis): Agrupa elementos para aplicar operadores a nivel de subexpresiones. Por ejemplo, (abc)+ coincidirá con una o más repeticiones de "abc".

Explicar el proceso de conversión de DFA a expresiones regulares.

Comúnmente, se utiliza el método de eliminación de estados. El paso a paso utilizando este método es:

Supóngase que se tiene un DFA $\mu = (Q, \Sigma, \delta, q_0, f)$ donde:

- Q Representa los estados
- Σ Representa el alfabeto
- δ Representa la función de transición
- q₀Representa el estado final
- f Representa el estado final

Pasos:

- 1. Eliminación de estados inalcanzables:
 - Elimina cualquier estado que no sea alcanzable desde el estado inicial q_0
 - Elimina cualquier estado que no pueda alcanzar un estado final.
- 2. Eliminación de estados de aceptación no finales:
 - Si hay un estado q no final y hay un estado p final tal que hay una transición de q a p y una p transición de p a q, crea una nueva transición directa de q ap y elimina el estado p.

- 3. Crea una expresión regular para cada estado restante:
- Para cada par de estados p y q, encuentra una expresión regular que represente todas las rutas posibles desde p hasta q sin pasar por otros estados finales.
- Utiliza el método algebraico para formar ecuaciones que describan estas expresiones regulares.
- 4. Resuelve el sistema de ecuaciones:
 - Resuelve el sistema de ecuaciones resultante para obtener expresiones regulares que representen las rutas entre los pares de estados.

Explicar leyes algebraicas de expresiones regulares.

Las leyes algebraicas facilitan la manipulación y simplificación de RegEx. Algunas de las más comunes son:

- Ley conmutativa para la unión: L + M = M + L
- Ley asociativa para la unión: (L + M) + N = L + (M + N)
- Ley asociativa para la concatenación: (LM)N = L(MN)

Leyes distributivas.

Se poseen dos formas de la ley distributiva para concatenación, las cuales son:

- Ley Distributiva Izquierda para la concatenación sobre unión: L(M+N) = LM + LN
- Ley Distributiva Derecha para la concatenación sobre unión: (M + N)L = ML
 + NL

Ley de Idempotencia.

Un operador es idempotente si el resultado de aplicarlo a dos argumentos con el mismo valor es el mismo valor

En general la suma no es idempotente: x + x 6= x (aunque para algunos valores si aplica como 0 + 0 = 0) • En general la multiplicación tampoco es idempotente: 'x × x 6= x • La unión e intersección son ejemplos comunes de operadores idempotentes. Ley idempotente para la unión: 'L + L = L

REFERENCIAS.

Gonzales Brambila, S.B. (1990). *Tutor de expresiones regulares*. (Master's thesis, Universidad Autónoma Metropolitana (México). Unidad Azcapotzalco. Coordinación de Servicios de Información). http://zaloamati.azc.uam.mx/handle/11191/5623

IBM. (enero 24, 2024). *Operadores que se pueden utilizar en expresiones regulares*. https://www.ibm.com/docs/es/tsafm/4.1.1?topic=expressions-operators-that-can-be-used-in

Workiva Support. (noviembre 4, 2023). *Operadores de expresiones regulares*. https://support.workiva.com/hc/es-419/articles/4407304269204-Operadores-de-expresiones-regulares

INAOE. (mayo 06, 2015). *Expresiones Regulares*. https://ccc.inaoep.mx/ingreso/automatas/expresionesRegulares.pdf