

# RMK ENGINEERING COLLEGE



# (An Autonomous Institution)

R.S.M. Nagar, Kavaraipettai, Gummidipoondi Taluk, Thiruvallur District 601 206.

#### **PROJECT**

# CLASSIFICATION OF ARRHYTHMIA BY DEEP LEARNING WITH 2-D ECG SPECTRAL IMAGE REPRESENTATION

#### **DONE BY**

TEAM ID: PNT2022TMID15718

K.HEMANTH SURESH (111719104072)

K.SRI RAM (111719104068)

M.DHANUSH (111719104092)

K.NITISH(111719104079)

#### **CONTENTS**

#### INTRODUCTION

Project Overview

Purpose

#### LITERATURE SURVEY

Existing problem

References

**Problem Statement Definition** 

#### **IDEATION & PROPOSED SOLUTION**

Empathy Map Canvas

Ideation & Brainstorming

Proposed Solution

Problem Solution fit

#### REQUIREMENT ANALYSIS

Functional requirement

Non-Functional requirements

#### **PROJECT DESIGN**

**Data Flow Diagrams** 

Solution & Technical Architecture

**User Stories** 

#### PROJECT PLANNING & SCHEDULING

Sprint Planning & Estimation

Sprint Delivery Schedule

Reports from JIRA

#### **CODING & SOLUTIONING (Explain the features added in the project along with code)**

Feature 1

Feature 2

Database Schema (if Applicable)

#### **TESTING**

**Test Cases** 

User Acceptance Testing

#### **RESULTS**

**Performance Metrics** 

#### **ADVANTAGES&**

#### **DISADVANTAGES**

#### **CONCLUSION**

#### **FUTURE SCOPE 13. APPENDIX**

Source Code

GitHub & Project Demo Link

# **Hardware Requirements:**

Processor: Intel Core i5HDD: 1TB

RAM: Minimum 2GB;

Recommended 4GB

# **Software Requirements:**

Operating system: Windows 10 Dataset: IAM

Dataset(Words, Lines)Programming Language:

Python

Numpy: Core package providing powerful tools to manipulate data arrays, such as our character images.

OpenCV: OpenCV is a large open-source library for image processing, character recognition, and machine learning. Itcanscan handwritten images.

Autocorrect: It is used to correct the spelling. It supports manylanguages.

Tensorflow: Tensorflow is the core open source library to helpyou develop and train Machine Learning models.

#### **Survey Papers:**

#### Paper 1:

Author Name: Zhao Y, Cheng, J

Title: ECG classification using deep CNN improved bywavelet transform Publication website: https://opus.lib.uts.edu.au/handle/10453/142924

Published Date: 2020-06-30

Objective: Atrial fibrillation is the most common persistentform of arrhythmia. A method based on wavelet transformcombined with deep convolutional neural network is applied for automatic classification of electrocardiograms. Since the ECG signal is easily inferred, the ECG signal is decomposed into 9 kinds of subsignals with different frequency scales by wavelet function, and then wavelet reconstruction is carried out after segmented filtering to eliminate the influence of noise.

Technology used: Tensor flow - Tensor flow is the core open source library to help you develop and train MachineLearning models.

#### Paper 2:

- ECG classification using deep CNN improved bywavelet transform
- Publication Year: 2022-06-30
- Author: . Zhao Y, Cheng, J . It is challenging to visually detect heart disease from the electrocardiographic (ECG) signals. Implementing an automated ECG signal detection system can help diagnosis arrhythmia in order to improve the accuracy of diagnosis. In this paper, we proposed, implemented, and compared an automated system using two different frameworks of the combination of convolutional neural network (CNN) and long-short term memory (LSTM) for classifying normal sinus signals, atrial fibrillation, and other noisy signals. The dataset we used is from the MIT-BIT Arrhythmia Physionet. Our approach demonstrated that the cascade of two deep learning network has higher performance than the concatenation of them, achieving a weighted f1 score of 0.82. The experimental results have successfully validated that the cascade of CNN and LSTM can achieve satisfactory performance on discriminating ECG signals Image. However, even after applying all the said techniques Might not possible to achieve the full accuracy in a Preprocessing system.

# PROBLEM STATEMENT

To identify the erythema by the user in the device and to convert images into prediction.

| What does this problem focus on? | The generative models can perform recognition driven segmentation. The method involves a relatively small number of parameter and hence training is relatively easy and fast.                     |
|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| When does this occur?            | This matter occurs classified the irregular heartbeat from the given input data personal individual.                                                                                              |
| Why do we need this?             | To recognize the irregular heartbeat that can be used to classify the images.                                                                                                                     |
| How to do this?                  | Unlike many other recognition schemes, it does not rely on some form of prenormalization of input images, but can handle arbitrary scalings, translations and a limited degree of image rotation. |
| Where it is used?                | It is used in personal tracker and monitor ECG.                                                                                                                                                   |

# Ideation Phase Brainstorm & Idea Prioritization Template

| Date          | 19 September 2022                                                                              |
|---------------|------------------------------------------------------------------------------------------------|
| Team ID       | PNT2022TMID15718                                                                               |
| Project Name  | Classification of arrhythmia by using deep learning with 2-d ecg spectral image representation |
| Maximum Marks | 4 Marks                                                                                        |

#### Step-1: Team Gathering, Collaboration and Select the Problem Statement





#### Brainstorm

Write down any ideas that come to mind that address your problem statement.





#### Karuturi Hemanth Suresh



#### Kalapala Sri Ram

| An irregular<br>or abnormal<br>heartbeat                                                       | Pause in sinus rhythem                                       | Evaluating<br>the ecg<br>tracing                                                                              |
|------------------------------------------------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| Abnormalities of<br>impulse generation<br>or abnormalities of<br>impulse<br>conduction or both | Abnormalities<br>of cardiac<br>electrical<br>activity result | Based on<br>Heart rate                                                                                        |
| noninvasive<br>diagnostic<br>technique                                                         | ECG data to<br>use features<br>based on the<br>engineer,     | the mapping<br>techniques for<br>arrhythmia<br>classification<br>techniques using a<br>deep neural<br>network |

#### M Dhanush

| Incorporating<br>different<br>approaches of<br>machine<br>learning (ML)<br>techniques | Analysis of<br>Digitalized ECG<br>Signals Based on<br>Artificial<br>Intelligence        | Detection of<br>Obstructive Sleep<br>Apnova Using<br>Features<br>Extracted                      |
|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| Detection of<br>Inferior<br>Myocardial<br>Infarction using<br>Shallow CNN             | Multi-Lead ECG<br>Classification via<br>an Information-<br>Based Attention              | compared<br>with AlexNet<br>and VGGNet                                                          |
| Each<br>convolutional<br>layer is<br>followed by a<br>pooling layer                   | The model follows<br>the CNN<br>architecture with<br>four >D<br>convolutional<br>layers | A fully connected<br>layer is used<br>between the last<br>pooling layer and<br>the output layer |

#### Konduru Nitish

| optimization<br>parameters in<br>the proposed 2-<br>D CNN model | Long term<br>monitoring                    | It is quick , safe<br>and painless test  |
|-----------------------------------------------------------------|--------------------------------------------|------------------------------------------|
| Detects<br>irregular<br>heart beats                             | can ECG<br>detect<br>heart<br>blockage     | can be<br>easily<br>added to<br>modified |
| delivering<br>more<br>preventive<br>care                        | poor<br>electrode to<br>patient<br>contact | Remote<br>access and<br>availablity      |

**Step-3: Idea Prioritization** 



## Step-4:



#### **Customer journey map**



#### **EMPATHY MAP**



Classification of Arrhythmia by Using Deep Learning with 2-D ECG Spectral Image Representatio

#### Project Design Phase-I Problem – Solution Fit Template



## Project Design Phase-II Solution Requirements (Functional & Non-functional)

| Date         | 14 October 2022                                                                                |
|--------------|------------------------------------------------------------------------------------------------|
| Team ID      | PNT2022TMID15718                                                                               |
| Project Name | Classification of arrhythmia by using deep learning with 2-d ECG spectral image representation |
|              |                                                                                                |

# **Functional Requirements:**

Following are the functional requirements of the proposed solution.

| FR<br>No. | Functional<br>Requirement (Epic) | Sub Requirement (Story / Sub-Task)                                                                                         |
|-----------|----------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| FR-1      | User Registration                | Registration through Form Registration through Gmail Registration through LinkedIN                                         |
| FR-2      | User Confirmation                | Confirmation via Email Confirmation via OTP                                                                                |
| FR- 3     | User interface                   | Check your profile Choose your file Sign Out your account account and change your password                                 |
| FR- 4     | Data processing                  | Evaluating the model using test data Training DL algorithm for a accuracy result Trained CNN model using Tensorflow,Kearas |
| FR-5      | Predict ECG image                | User ECG images in our web application Collection of datasets Database read ECG images                                     |

# **Non-functional Requirements:**

Following are the non-functional requirements of the proposed solution.

| FR<br>No. | Non-<br>Functiona l<br>Requirement | Description                                                                                                                                                                                                |
|-----------|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NFR-1     | Usability                          | Wireless ECG body sensor Savvy is a feasible solution for reliable and accurate long-term heart rhythm monitoring.  However, there were no studies dealing with usability of this sensor in field testing. |
| NFR-2     | Security                           | The work presented in this paper is applicable for encrypting and decrypting personalized Electrocardiograph ECG signals for secure transmission.                                                          |
| NFR-3     | Reliability                        | The extent to the consistently performs the specified functions without failure                                                                                                                            |
| NFR-4     | Performance                        | It essentially specifies how the system should behave and that it constrains the ECG wavelength of accurate disease information gathering.                                                                 |
| NFR-5     | Availability                       | Availability describes how likely the system is accessible to a user at a given point in time and the periodically for a solutions.                                                                        |
| NFR-6     | Scalability                        | The ability of the user problem in arrhythmia disease to handle an increase in workload without performance degradation, or its ability to quickly enlarge.                                                |

# Project Design Phase-II Data Flow Diagram & User Stories

| Date          | 17 October 2022                                                                                 |
|---------------|-------------------------------------------------------------------------------------------------|
| Team ID       | PNT2022TMID15718                                                                                |
| Project Name  |                                                                                                 |
|               | Classification of arrhythmia by using deep learning with 2-d ecg spectral image representation. |
| Maximum Marks | 4 Marks                                                                                         |

#### **Data Flow Diagrams:**

A Data Flow Diagram (DFD) is a traditional visual representation of the information flows within a system. A neat and clear DFD can depict the right amount of the system requirement graphically. It shows how data enters and leaves the system, what changes the information, and where data is stored.



#### **User Stories**

Use the below template to list all the user stories for the product.

| User Type | Functional<br>Requirement<br>(Epic) | User Story<br>Number | User Story / Task                                  | Acceptance criteria            | Priority | Release  |
|-----------|-------------------------------------|----------------------|----------------------------------------------------|--------------------------------|----------|----------|
| Customer  | Application                         | USN-1                | As a user, I can application by opening it easily. | I can download the application | High     | Sprint-1 |
|           |                                     | USN-2                | As a user, I can upload images                     | I can access the canvas        | High     | Sprint-1 |
|           |                                     | USN-3                | As a user, I can change the colour of the pen ink. | I can use the canvas pen       | Medium   | Sprint-2 |

| User Type | Functional<br>Requireme<br>nt (Epic) | User<br>Story<br>Number | User Story / Task                                  | Acceptance criteria            | Priority | Release  |
|-----------|--------------------------------------|-------------------------|----------------------------------------------------|--------------------------------|----------|----------|
| Customer  | Application                          | USN-1                   | As a user, I can application by opening it easily. | I can download the application | High     | Sprint-1 |
|           |                                      | USN-2                   | As a user, I can upload images                     | I can access the canvas        | High     | Sprint-1 |
|           |                                      | USN-3                   | As a user, I can change the colour of the pen ink. | I can use the canvas pen       | Medium   | Sprint-2 |

# Project Design Phase-II Technology Stack (Architecture & Stack)

| Date         | 14 October 2022                                                                                      |
|--------------|------------------------------------------------------------------------------------------------------|
| Team ID      | PNT2022TMID15718                                                                                     |
| Project Name | Classification of Arrhythmia by Using Deep<br>Learning with 2-D ECG Spectral Image<br>Representation |
|              |                                                                                                      |

#### **Technical Architecture:**

The Deliverable shall include the architectural diagram as below and the information as per the table 1 & table 2



**Table-1: Components & Technologies:** 

| S.No | Component              | Description                                                                                                                                                      | Technology                    |
|------|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| 1.   | User Interface         | Web UI, Mobile UI.                                                                                                                                               | HTML, CSS, JavaScript / React |
|      |                        |                                                                                                                                                                  | Js.                           |
| 2.   | Application Logic-1    | Python is used for backend                                                                                                                                       | Python                        |
| 3.   | Application Logic-2    | It's a symbolic math toolkit that performs a variety of tasks including deep neural network training and inference using dataflow and differentiable programming | Tensorflow                    |
| 4.   | Cloud Database         | A global technology company that provides hardware, software, cloud-based services and cognitive computing.                                                      | IBM Cloud                     |
| 5.   | File Storage           | Breaks up data into blocks and then stores those blocks as separate pieces, each with a unique identifier.                                                       | IBM Block                     |
| 6.   | External API-1         | Purpose of External API used in the application                                                                                                                  | IBM Weather API, etc.         |
| 7.   | External API-2         | Purpose of External API used in the application                                                                                                                  | Aadhar API, etc.              |
| 8.   | Machine Learning Model | Object recognition is a subfield of computer vision, artificial intelligence, and machine learning                                                               | Object Recognition Model      |
| 9.   | Deep learning Model    | The images from the created dataset are fed into a neural network algorithm.                                                                                     | Image Recognition Model       |

Table-2: Application Characteristics:

| S.No | Characteristics          | Description                                                                     | Technology          |
|------|--------------------------|---------------------------------------------------------------------------------|---------------------|
| 1.   | Open-Source Frameworks   | Building user interfaces based on UI components.                                | React Js            |
| 2.   | Security Implementations | OWASP is a nonprofit foundation that works to improve the security of software. | OWASP               |
| 3.   | Scalable Architecture    | a modular client-server architecture that                                       | 3-tier architecture |
|      |                          | consists of a presentation tier, an                                             |                     |
|      |                          | application tier and a data tier                                                |                     |
| 4.   | Availability             | The data on each server can be                                                  | Distributed Server  |
|      |                          | simultaneously accessed and modified via a                                      |                     |
|      |                          | network.                                                                        |                     |
| 5.   | Performance              | Increasing data retrieval performance by                                        | Cache               |
|      |                          | reducing the need to access the underlying                                      |                     |
|      |                          | slower storage layer.                                                           |                     |

#### **Performance Metrics**

| Date         | 20 october 2022                                                                                |
|--------------|------------------------------------------------------------------------------------------------|
| Team ID      | PNT2022TMID15718                                                                               |
| Project name | CLASSIFICATION OF ARRHYTHMIA BY<br>DEEP LEARNING WITH 2-D ECG<br>SPECTRAL IMAGE REPRESENTATION |

The following evaluation metrics were used: global accuracy, IoU, Dice coefficient and BF score. In the description of these evaluation metrics, we will use the following definitions: False Positives: pixels that belong to the background that were misclassified as belonging to lesions; False Negatives (FN): pixels that belong to lesions that were misclassified as belonging to the background; True Positive: pixels that belong to lesions that were correctly classified as belonging to lesions; True Negative (TN): pixels that belong to the background that were correctly classified as belonging to the background.

The global accuracy is the ratio between the pixels correctly classified, regardless of class, and the total number of pixels and is given

global accuracy=TP+TNTP+TN+FP+FN

The accuracy gives the proportion of corrected classified pixels in each class and is given in

accuracy=(TP/TP+FN)+(TN/TN+FP)2

The IoU is a metric that penalizes the incorrect classification of pixels as lesions (FP) or as background (FN), and is given

*IoU=Lesion+Background*2IoU=Lesion+Background2 Where:

Lesion=TPTP+FN+FPLesion=TPTP+FN+FP

Background=TNTN+FN+FPBackground=TNTN+FN+FP

# Acceptance Testing UAT Execution & Report Submission

| Date         | 03 November 2022                                                |
|--------------|-----------------------------------------------------------------|
| Team ID      | PNT2022TMID15718                                                |
| Project Name | Classification of Arrhythmia by using Deep<br>Learning with 2-D |
|              |                                                                 |

## 1. Purpose of Document

The purpose of this document is to briefly explain the test coverage and open issues of **A** Classification of Arrhythmia by using Deep Learning with 2-D at the time of the release to User Acceptance Testing (UAT).

#### 2. Defect Analysis

This report shows the number of resolved or closed bugs at each severity level, and how they were resolved

| Resolution     | Severity 1 | Severity 2 | Severity 3 | Severity 4 | Subtotal |
|----------------|------------|------------|------------|------------|----------|
| By Design      | 10         | 5          | 2          | 3          | 20       |
| Duplicate      | 1          | 0          | 3          | 0          | 4        |
| External       | 2          | 5          | 0          | 1          | 8        |
| Fixed          | 10         | 3          | 2          | 18         | 33       |
| Not Reproduced | 0          | 0          | 1          | 0          | 1        |
| Skipped        | 0          | 0          | 1          | 1          | 2        |
| Won't Fix      | 0          | 5          | 2          | 1          | 8        |
| Totals         | 23         | 18         | 11         | 24         | 76       |

# 3.Test Case Analysis

This report shows the number of test cases that have passed, failed, and untested

| Section             | Total Cases | Not Tested | Fail | Pass |
|---------------------|-------------|------------|------|------|
| Print Engine        | 6           | 0          | 0    | 6    |
| Client Application  | 62          | 0          | 0    | 58   |
| Security            | 4           | 0          | 0    | 3    |
| Outsource Shipping  | 2           | 0          | 0    | 2    |
| Exception Reporting | 7           | 0          | 0    | 7    |
| Final Report Output | 3           | 0          | 0    | 3    |
| Version Control     | 6           | 0          | 0    | 5    |

#### Project Development Phase Model Performance Test

| Date         | 10 November 2022                                                |
|--------------|-----------------------------------------------------------------|
| Team ID      | PNT2022TMID15718                                                |
| Project Name | Classification of Arrhythmia by using Deep<br>Learning with 2-D |
|              |                                                                 |

#### **Model Performance Testing:**

Project team shall fill the following information in model performance testing template.

| S.No. | Parameter     | Values                                              | Screenshot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-------|---------------|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.    | Model Summary | Fitting the Model-  • loss: 0.22  • val_loss: 0.19  | The continues of the co |
| 2.    | Accuracy      | Training Accuracy – 0.93  Validation Accuracy -0.94 | The state of the s |

#### Webpages

#### Info.html



#### Predict.html



#### Run the application



#### MODEL BUILDING





#### **ECG Classification**

```
Jupyter ECG_Classification (unsaved changes)
                                                                                                                                                                                                                               Logout
                            File Edit View Insert Cell Kernel Widgets Help
                                                                                                                                                                                                                Not Trusted Python 3 O
                           E + % 2 E ↑ N Run ■ C > Code + S
                                                    from tensorflow.keras.layers import Dense
from tensorflow.keras.layers import Convolution2D
from tensorflow.keras.layers import MaxPooling2D
from tensorflow.keras.layers import Flatten,BatchNormalization,Dropout
                                       In [6]: from tensorflow.keras.preprocessing.image import ImageDataGenerator
                                      In [7]: train_datagen = ImageDataGenerator(rescale = 1./255,shear_range = 0.2,zoom_range = 0.2,horizontal_flip = True) test_datagen = ImageDataGenerator(rescale = 1./255)
                                                    import os, types
import pandas as pd
from botocore.client import Config
import ibm_boto3
                                                    def __iter__(self): return 0
                                                    # @hidden_cell
# The following code accesses a file in your IBM Cloud Object Storage. It includes your credentials.
# You might want to remove those credentials before you share the notebook.
cos_client = lbm_boto3.client(service_name='s3-
ibm_api_key_id='IgnIGX_aPuKu4DHFTUABCggxOUHZGGJOBBOlueiypNXO',
ibm_auth_endpoint="https://sam.cloud.ibm.com/oidc/token",
config=Config(signature_version='oauth'),
endpoint_url='https://s3.private.us.cloud-object-storage.appdomain.cloud')
                                                    bucket = 'ecgclassification-donotdelete-pr-fhxyyoyjwxtmly'
object_key = 'Dataset.zip'
                                                    streaming_body_3 = cos_client.get_object(Bucket=bucket, Key=object_key)['Body']
                                                   # Your data file was loaded into a botocore.response.StreamingBody object.
# Please read the documentation of ibm_boto3 and pandas to learn more about the possibilities to load the data.
# ibm_boto3 documentation: https://jbm.github.io/ibm=cos-sdk-python/
# pandas documentation: http://padas.pydata.org/
if not hasattr(streaming_body_3, "__iter__"): streaming_body_3.__iter__ = types.MethodType( __iter__, streaming_body_3.__iter__)
```

#### HTML CODING

```
| December | Content | Con
```

#### APP.PY

## CSS

```
### Special Contents X

| Inter-special Contents | Special Content | Special Content
```

#### JAVA SCRIPT

```
### Open of the content of the conte
```