(3.3.3) Total variation diminishing properties of scalar conservation laws consider $\int u_{++} f(u)_{x} = 0$ (1) and its quasi-lenear form ut+ g'(u) ux=0 recall characteristic curves x(E): $\frac{dx(t)}{dt} = g'(u(x,t))$ Such that du(x(t),t) = 0: u(x,t) is constant on characteristis no new local minima en maxima afferer over time for solutions of (1) ? this intuitive realization is contrared using the mathematical property of "Cotal variation" (TV), which is non-increasing over time for solutions of (1) def: Total Variation (TV) of u(x) over interval I2: $TV(u(x); \mathcal{D}) = \int \frac{du(x)}{dx} dx$

def: Total Variation (TV) of u(x) over interval Ω : for function u(x) $TV(u(x);\Omega) = \int_{\Omega} \left| \frac{du(x)}{dx} \right| dx$ $\int_{\Omega} u^{(k+1)} dx$ for function $u(x) \in C^*$ (note: this def. also holds, in the since you can integrate over jump disorbuils distributional sense, for freneticis u (20)

with jung discontinuities)

escample:

 $TV(u(x); [x_1,x_2]) = |ue-u_{\alpha}| + |u_{c}-u_{\delta}|$ + | Ud-Ucl + | Ne- Ud)

note: I new local extrema arise, TV goes up

Total Variation Diminishing (TVD) property.

consider smooth flow between Oberecteristic x, (E) and x_2 (E), then it is easy to see that $TV(u(x,t_2)) = TV(u(x,t_1))$ Lon Ω , Lon Ω 2

