3.

Любая перестановка представима в виде циклов: $\Leftrightarrow \forall \sigma \in S_n : \sigma = (i_1 \dots i_m)$ Любой цикл разложим на транспозиции $\Leftrightarrow \forall (i_1 \dots i_m) = (i_1, i_2) \dots (i_{m-1}, i_m)$ Таким образом. любая перестановка представима в виде транспозиций Любая транспозиция представима в виде элементов множества $\{(1,2);(1,3)\dots(1,n)\}:(a,b)=(1,a)(1,b)(1,a)\Longrightarrow$ любая перестановка представима в виде элементов заданного множества

Задачи второй трети семестра

- 1. Т. д $\{k_1a_1 + k_2a_2; k_1a_1 k_2a_2\}$ ЛНЗ
 - Пусть данный набор ЛЗ $\implies \exists p_1, p_2 \neq 0 : p_1(k_1a_1 + k_2a_2) + p_2(k_1a_1 k_2a_2) = 0$

$$p_1(k_1a_1 + k_2a_2) + p_2(k_1a_1 - k_2a_2) = 0$$

$$k_1p_1a_1 + k_2p_1a_2 + k_1p_2a_1 - k_2p_2a_2 = 0$$

$$a_1(k_1p_1 + k_1p_2) + a_2(k_2p_1 - k_2p_2) = 0$$

• Пользуясь тем, что a_1 и a_2 ЛНЗ делаем вывод, что

$$k_1p_1 + k_1p_2 = 0$$
 и $k_2p_1 - k_2p_2 = 0$
 $k_1(p_1 + p_2) = 0$ и $k_2(p_1 - p_2) = 0$

• $k_1,k_2\neq 0$ \Longrightarrow $(p_1+p_2)=0$ и $(p_1-p_2)=0$ \Longrightarrow $2p_1=0$ \Longrightarrow противоречие \Longrightarrow набор ЛНЗ

 $a \in A; b \in B; c \in C$

$$a < b \Leftrightarrow A \subset B$$

$$a = b \Leftrightarrow \nexists M : a \in M \& b \not\in M \quad \& \quad \nexists M' : a \not\in M' \& b \in M'$$

$$a \leq b \Leftrightarrow (a < b \text{ или } a = b)$$
 Рефлексинвность: $a = a \implies a \leq a$ Антисимметричность: Если $a < b \implies A \subset B \implies B \not\subset A \implies a \leq b \& b \leq a \implies a = b$ Транзитивность: $a < b \& b \leq c \implies$

- $a < b \& b = c \implies a < c$
- $a = b \& b = c \implies a = c$
- $a < b \& b < c \implies a < c$
- $\bullet \ \ a = b \ \& \ b < c \implies a < c$

Пусть существует отношение частичного порядка, которое отличается от приведенного выше и образует такие же классы эквивалентности.

 $\forall a,b:aR_1b$ или bR_1a или aR_1b & bR_1a . Если для R_2 (новое) отношение между a и b отлично отношения в R_2 , то классы эквивалентности по R_2 будут другие.

- 3. Пусть такой объект существует: $\forall F: F = aD$
 - ullet Рассмотрим случай $m>n \Longrightarrow$ базисных векторов V^n п штук, тогда хотя бы один из векторов переданных в качестве аргумента D будет линейно зависим от остальных $\implies \forall x_1 \dots x_m : D(x_1 \dots x_m) = 0 \implies$ с помощью D мы можем выразить только нуль-форму \Longrightarrow противоречие.
 - ullet Рассмотрим случай $m < n \implies$ можем найти детерминант матрицы $A_{n \times m}$, который равен детерминанту A^T , но по предыдущем пункту детерминант матрицы $m \times n$ равен нуль-форме \Longrightarrow противоречие.
- $K_y = (0; y)$ где $y = \frac{1}{n}$ $g(K_y) = \sup K_y = y = \frac{1}{n}$ $f(x) = x \implies f(g(K_y)) = y$
 - $K_y = (0; y)$ $g(K_y) = y$ $f(x) = x \implies f(g(K_y)) = y$

5.

$$\det(e_1 \dots e_n) = \sum_{i_1, \dots, i_n=1}^n \varepsilon_{i_1 \dots i_n} e_1^{i_1} \dots e_n^{i_n} j;$$

Пусть: $\det(e_1 \dots e_n) = 0 \implies \forall \sigma (\text{перестановка}) : \exists k : e_k^{\sigma(k)} = 0;$

По определению базисных векторов: $\forall k:\exists ! \quad i(k):e_k^{i(k)}=1$

Рассмотрим: $\sigma(k)=i(k)\implies e_1^{\sigma(1)}\dots e_n^{\sigma(n)}=1\implies$ противоречие $\implies \det(e_1\dots e_n)\neq 0$

6.

$$\sum_{S_n} (-1)^{P(\delta_1 \dots \delta_n)} \sum_{p_1 \dots p_n = 0}^n B_{p_1}^{\delta_1} \dots B_{p_n}^{\delta_n} C_1^{p_1} \dots C_n^{p_n}$$

Докажем, что если $\exists i,j: i \neq j$ и $p_i = p_j = k$, то $\exists \delta,\delta': (-1)^{P(\delta)} \neq (-1)^{P(\delta')}$ такие, что

$$B_{p_1}^{\delta_1} \dots B_{p_n}^{\delta_n} C_1^{p_1} \dots C_n^{p_n} = B_{p_1}^{\delta_1'} \dots B_{p_n}^{\delta_n'} C_1^{p_1} \dots C_n^{p_n}$$

Возьмем произвольную перестановку δ , тогда $\delta' = \delta \cdot \underbrace{(ij)}_{\text{транспозиция}}$

Очевидно, что $\forall \delta: (-1)^{P(\delta)} = 1: \exists \delta'$. Таким образом, все они взаимно сократятся. Из этого следует, что итерация должна происходить только по перестановкам:

$$\sum_{S_n(\delta)} (-1)^{P(\delta_1 \dots \delta_n)} \sum_{p_1 \dots p_n = 0}^n B_{p_1}^{\delta_1} \dots B_{p_n}^{\delta_n} C_1^{p_1} \dots C_n^{p_n} = \sum_{S_n(\delta)} (-1)^{P(\delta_1 \dots \delta_n)} \sum_{S_n(\omega)}^n B_{\omega_1}^{\delta_1} \dots B_{\omega_n}^{\delta_n} C_1^{\omega_1} \dots C_n^{\omega_n}$$

Для произвольной перестановки δ из $B^{\delta_1} \dots B^{\delta_n}$ используя коммутативность операции умножения мы можем получить n! различных перестановок множителей, так что их произведения будут равны для каждой перестановки. Таким образом, если мы возьмем произвольную перестановку множителей (назовем ее ω), меняя местами множители мы можем получить:

$$B_{\omega_1}^{\delta_1} \dots B_{\omega_n}^{\delta_n} = B_1^{\delta_1'} \dots B_n^{\delta_n'}$$
, где
$$\delta' = \delta \cdot \omega^{-1} \implies (-1)^{P(\delta')} = (-1)^{P(\delta)} \cdot (-1)^{P(\omega^{-1})} = (-1)^{P(\delta)} \cdot (-1)^{P(\omega)}$$

Таким образом мы можем вынести общий множитель.

$$\sum_{S_n(\delta)} (-1)^{P(\delta_1 \dots \delta_n)} \sum_{S_n(\omega)}^n B_{\omega_1}^{\delta_1} \dots B_{\omega_n}^{\delta_n} C_1^{\omega_1} \dots C_n^{\omega_n} = \sum_{S_n(\delta)} (-1)^{P(\delta)} B_1^{\delta_1} \dots B_n^{\delta_n} \sum_{S_n(\omega)} (-1)^{P(\omega)} C_1^{\omega_1} \dots C_n^{\omega_n}$$

7.

Пусть: $A^{-1}=B$. По определению обратной матрицы: $A\cdot B=I$ (identity matrix) \Longrightarrow $(A\cdot B)^i_i=\sum_{k=1}^n A^i_k B^k_i=\sum_{k=1}^n \delta^i_k A^i_k B^k_i=1, \quad \delta^i_k=\begin{cases} 1|i=k\\0|i\neq k \end{cases} \Longrightarrow$ $\Rightarrow A^i_i\cdot B^i_i=1 \implies B^i_i=(A^{-1})^i_i=\frac{1}{A^i_i}$

8. • $L = \{f_a | a \in A\}$. Т.д. L - базис F(A)

$$M_f=\{f(a)=y_a\mid a\in A\ \mathrm{i}\ y_a
eq 0\}.$$
 По определению: $|M_f|
eq \infty$ $orall f\in F(A):\ orall a\in A:\ \exists f_a\in L:\ f(a)=y_a=y_a\cdot f_a(a)=\sum_{a'\in A}f_a(a')y_a$ По определению $L:|L|=|A|\implies f(a)=\sum_{a'\in A}f_a(a')y_a=\sum_{a\in L}g(a)\cdot y_a$

• Пусть существует изоморфизм: $\varphi: F(A) \to G \implies \exists \varphi^{-1}: G \to F(A) \quad \varphi^{-1}$ - также является изоморфизмом

Из данного определения базиса следует, что существует не единственное представление нуля.

$$\sum_{x \in A} n_x x = \sum_{x \in A} n'_x x = 0_G$$

$$\varphi^{-1}(\sum_{x \in A} n_x x) = \varphi^{-1}(\sum_{x \in A} n'_x x) = \varphi^{-1}(0_G) = y$$

Нарушена биективность \implies группы не изоморфны.