CSC 384 Test 4 on Uncertainty

Friday, November 25, 2022

Last Name:	
First Name:	
Student Number:	

Q1 (6 marks) D-Separation

Consider the Bayesian network above. Circle the correct answer.

- (a) **(1 mark)** C and E are conditionally independent given K.

 True or False
- (b) (1 mark) C and E are conditionally independent given H, K.

 True or False
- (c) **(1 mark)** H and K are unconditionally independent.

 True or False

Q1 (6 marks) D-Separation (Continued)

(This diagram is the same as the one on the previous page.)

- (d) (1 mark) C and K are conditionally independent given H and J.

 True or False
- (e) **(1 mark)** F and H are conditionally independent given A and G.

 True or False
- (f) (1 mark) B and H are conditionally independent given C and G.

 True or False

Q2 (5 marks) Variable Elimination Algorithm

Consider the Bayesian network above. The conditional probability tables are given below. Recall that the small case letters denote observed values. For example, a and $\neg a$ denote A is true and A is false respectively.

Α	P(a) = 0.4	
В	P(b) = 0.7	
С	$P(c \neg a \land \neg b) = 0.8$ $P(c \neg a \land b) = 0.5$	$P(c a \land \neg b) = 0.6$ $P(c a \land b) = 0.1$

Suppose that we want to calculate the probability below using the variable elimination algorithm.

$$P(B|\neg c)$$

We have written down the steps of VEA on the following pages. Complete "Step 4 Eliminate the Hidden Variables."

1. Categorize the variables.

• Query variables: B

Evidence variables: CHidden variables: A

2. Define factors.

Define factor f1(A):

а	0.4
$\neg a$	0.6

Define factor f2(B):

b	0.7
$\neg b$	0.3

Define factor f3(A,B,C):

а	b	С	0.1
а	b	$\neg c$	0.9
а	$\neg b$	С	0.6
а	$\neg b$	$\neg c$	0.4
$\neg a$	b	С	0.5
$\neg a$	b	$\neg c$	0.5
$\neg a$	$\neg b$	С	0.8
$\neg a$	$\neg b$	$\neg c$	0.2

3. Restrict factors.

Restrict factor f3(A,B,C) to produce factor f4(A,B).

а	b	0.9
а	$\neg b$	0.4
$\neg a$	b	0.5
$\neg a$	$\neg b$	0.2

4. (5 marks) Eliminate the hidden variables.

(1 mark) Multiply factors		_ to produce factor f5(
factor f5 (2	marks):		
(1 mark)			
` ,	from facto	or	_ to produce factor f6(
factor f6 (1	mark):		

- 5. Multiply the remaining factors. ...
- 6. Normalize the remaining factor. ...

Q3 (6 marks) Filtering

Consider the Hidden Markov Model discussed in class.

- S_t denotes the hidden state at time t. $S_t = true$ means it rained on day t ($S_t = false$ otherwise).
- E_t denotes the observation at time t. $E_t = true$ means the director brought an umbrella on day t and $E_t = false$ otherwise.
- α is the normalization constant.
- Assume that the first two observations are $\neg e_0$ and $\neg e_1$. That is, the director did not bring an umbrella on days 0 or 1.

On the following pages, calculate the **filtering** probabilities for **Day 1** by completing **parts (a) and (b)**. **For full marks, show ALL your work** and present your solutions to **3 decimal places.**

Q3 (a) (2 marks) Calculate $P(s_1 | \neg e_0)$ and $P(\neg s_1 | \neg e_0)$.

Assume that $P(s_0 | \neg e_0) = 0.1$ and $P(\neg s_0 | \neg e_0) = 0.9$.

Show all of your work.

Your Answers:

$$P(s_1|\neg e_0) = P(\neg s_1|\neg e_0) =$$

Your calculations:

The Filtering Formulas:

- Base case: $P(S_0|E_0) = \alpha * P(S_0) * P(E_0|S_0)$
- Recursive case:

$$P(S_k | E_0 \land ... \land E_{k-1}) = \sum_{S_{k-1}} P(S_{k-1} | E_0 \land ... \land E_{k-1}) * P(S_k | S_{k-1})$$

$$\circ P(S_k|E_0 \wedge ... \wedge E_k) = \alpha * P(E_k|S_k) * P(S_k|E_0 \wedge ... \wedge E_{k-1})$$

Q3 (b) (4 marks) Calculate $P(s_1 | \neg e_0 \land \neg e_1)$ and $P(\neg s_1 | \neg e_0 \land \neg e_1)$.

Assume that $P(s_1 | \neg e_0) = 0.4$ and $P(\neg s_1 | \neg e_0) = 0.6$.

Show all of your work.

Your Answers:

$$P(s_1|\neg e_0 \land \neg e_1) = P(\neg s_1|\neg e_0 \land \neg e_1) =$$

Your calculations:

The Filtering Formulas:

- Base case: $P(S_0|E_0) = \alpha * P(S_0) * P(E_0|S_0)$
- Recursive case:

$$P(S_k | E_0 \land ... \land E_{k-1}) = \sum_{S_{k-1}} P(S_{k-1} | E_0 \land ... \land E_{k-1}) * P(S_k | S_{k-1})$$

$$P(S_k | E_0 \land ... \land E_k) = \alpha * P(E_k | S_k) * P(S_k | E_0 \land ... \land E_{k-1})$$

This page intentionally left blank