タイタニック号データセット

December, 2020

目次

1	タイタニック号について	2
2	タイタニック号データセット	3
2.1	<u>変数</u>	3
2.2	乗船港	3
2.3	Init	
2.4	Load	4
2.5	データの様子....................................	
2.6	欠損値	7
3	単変量分析	8
3.1		
3.2	<mark>量的変数</mark>	9
4	多变量分析	11
4.1	質的変数	11
4.2	量的変数	13

1 タイタニック号について

[1]: import IPython.display
IPython.display.YouTubeVideo('CHekzSiZjrY', width=960, height=540)

if yellon. display. For the of the control of the c

タイタニック (客船) について

タイタニック号沈没事故について

2 タイタニック号データセット

*データ提供元: kaggle[1] や seaborn[2] など。

2.1 変数

変数名	内容	キー
survival	生存状況	0 = No, 1 = Yes
pclass	チケットクラス	1 = -\$, 2 = -\$, 3 = 3
sex	性別	
Age	年齢	
sibsp	同乗した兄弟や配偶者の数	
parch	同乗した親や子の数	
ticket	チッケット番号	
fare	旅客運賃	
cabin	船室番号	
${\it embarked}$	乗船港	C=Cherbourg (仏), $Q=Queenstown$ (愛) , $S=Southampton$ (英)

2.2 乗船港

```
Cherbourg = [49.63, -1.62]
Queenstown = [51.851, -8.2967]
Southampton = [50.89696, -1.40416]
center = [(x+y+z)/3 for (x, y, z) in zip(Cherbourg, Queenstown, Southampton)]
# center = [45, 5]

m = folium.Map(location=center, tiles='Stamen Terrain', zoom_start=6)
folium.Marker(location=Cherbourg, popup='<b>Cherbourg</b>').add_to(m)
folium.Marker(location=Queenstown, popup='<b>Queenstown () </b>').add_to(m)
folium.Marker(location=Southampton, popup='<b> Southampton</b>').add_to(m)
m
```

[2]: <folium.folium.Map at 0x7fe478da1050>

2.3 Init

```
[3]: import numpy as np
import pandas as pd

# pd.set_option('display.max_rows')
import matplotlib.pyplot as plt
import seaborn as sns
sns.set(style='darkgrid', font_scale = 1.8)
plt.rcParams['figure.dpi'] = 300
%matplotlib inline
```

2.4 Load

```
[4]: df = pd.read_csv("./data/train.csv")
[5]: titanic = sns.load_dataset("titanic")
```

2.5 データの様子

```
[6]: df.head()
```

```
[6]:
        PassengerId Survived Pclass \
                  1
                             0
     1
                  2
                             1
                                     1
     2
                  3
                             1
                                     3
     3
                  4
                             1
                  5
                             0
                                     3
```

Name Sex Age SibSp \

```
Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0
                                                                            1
      2
                                    Heikkinen, Miss. Laina female 26.0
                                                                              0
              Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0
      3
                                                                              1
                                  Allen, Mr. William Henry
      4
                                                              male 35.0
                                                                              0
         Parch
                          Ticket
                                     Fare Cabin Embarked
      0
             0
                       A/5 21171
                                  7.2500
                                            NaN
                        PC 17599 71.2833
                                                       С
      1
             0
                                            C85
                                  7.9250
                                                       S
             0 STON/02. 3101282
                                            NaN
                                                       S
      3
                          113803 53.1000
                                           C123
                          373450
                                   8.0500
                                            NaN
                                                       S
[7]: # 敬称を抽出する関数
      def Title(name):
         ret = 'Other'
          target = name.split(" ")
          for i in range(len(target)):
              if "." in target[i]:
                  ret = target[i]
                  break
          return ret
[8]: df['Title'] = df['Name'].apply(Title)
[9]: df['Title'].unique()
[9]: array(['Mr.', 'Mrs.', 'Miss.', 'Master.', 'Don.', 'Rev.', 'Dr.', 'Mme.',
             'Ms.', 'Major.', 'Lady.', 'Sir.', 'Mlle.', 'Col.', 'Capt.',
             'Countess.', 'Jonkheer.'], dtype=object)
[10]: df.info()
     <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 891 entries, 0 to 890
     Data columns (total 13 columns):
      #
          Column
                       Non-Null Count Dtype
                       _____
          PassengerId 891 non-null
                                       int64
      1
          Survived
                       891 non-null
                                       int64
      2
          Pclass
                       891 non-null
                                       int64
      3
          Name
                       891 non-null
                                       object
      4
          Sex
                       891 non-null
                                       object
      5
                       714 non-null
                                       float64
          Age
      6
          SibSp
                       891 non-null
                                       int64
          Parch
                       891 non-null
                                       int64
      8
          Ticket
                       891 non-null
                                       object
                       891 non-null
      9
          Fare
                                       float64
      10 Cabin
                       204 non-null
                                       object
```

Braund, Mr. Owen Harris

male 22.0

0

11 Embarked 889 non-null object
12 Title 891 non-null object
dtypes: float64(2), int64(5), object(6)

memory usage: 90.6+ KB

```
[11]: df.describe(include='all')
```

[II].	ur.uesc	1106(1	incrude-	all	,										
[11]:		Passe	engerId	Su	rvived		Pclass						Name \		
	count	891.	000000	891.	000000 8	91.	000000						891		
	unique		NaN		NaN		NaN						891		
	top		NaN		NaN		NaN	Cham	bers,	Mr.	Norman	Camp	pbell		
	freq		NaN		NaN		NaN						1		
	mean	446.	000000	0.	383838	2.	308642						NaN		
	std	257.	353842	0.	486592	0.	836071						NaN		
	min	1.	000000	0.	000000	1.	000000						NaN		
	25%	223.	500000	0.	000000	2.	000000						NaN		
	50%	446.	000000	0.	000000	3.	000000						NaN		
	75%	668.	500000	1.	000000	3.	000000						NaN		
	max	891.	000000	1.	000000	3.	000000						NaN		
		Sex		Age	Sib	Sp	Pa	rch	Tick	et	F	are	Cabin	\	
	count	891	714.00	00000	891.0000	00	891.000	000	8	91	891.000	000	204		
	unique	2		NaN	N	aN		NaN	6	81		NaN	147		
	top	male		NaN	N	aN		NaN	3470	82		NaN	B96 B98		
	freq	577		NaN	N	aN		NaN		7		NaN	4		
	mean	NaN	29.69	99118	0.5230	80	0.381	594	N	aN	32.204	208	NaN		
	std	NaN	14.52	26497	1.1027	43	0.806	057	N	aN	49.693	429	NaN		
	min	NaN	0.42	20000	0.0000	00	0.000	000	N	aN	0.000	000	NaN		
	25%	NaN	20.12	25000	0.0000	00	0.000	000	N	aN	7.910	400	NaN		
	50%	NaN	28.00	00000	0.0000	00	0.000	000	N	aN	14.454	200	NaN		
	75%	NaN	38.00	00000	1.0000	00	0.000	000	N	aN	31.000	000	NaN		
	max	NaN	80.00	00000	8.0000	00	6.000	000	N	aN	512.329	200	NaN		
		Embark	ed Titl	Le											
	count	8	889 89	91											
	unique		3 1	17											
	top		S Mr	۲.											
	freq	6	544 51	17											
	mean	N	IaN Na	aN											
	std	N	IaN Na	aN											
	min	N	IaN Na	aN											
	25%	N	IaN Na	aN											
	50%	N	IaN Na												
	75%	N	IaN Na	aN											
	max	N	IaN Na	aN											

```
[13]: df[['Survived', 'Pclass']] = df[['Survived', 'Pclass']].astype(str)
```

```
2.6 欠損値
[14]: df.isna().sum()
[14]: Survived
                    0
      Pclass
                    0
      Sex
                    0
      Age
                  177
      SibSp
                    0
      Parch
                    0
      Fare
                    0
      Embarked
                    2
      Title
                    0
      dtype: int64
[15]: df[df.isna().sum(axis=1)>0].head()
[15]:
         Survived Pclass
                                       SibSp Parch
                                                        Fare Embarked Title
                             Sex Age
      5
                0
                       3
                            male NaN
                                           0
                                                  0
                                                      8.4583
                                                                     Q
                                                                         Mr.
                1
                       2
                                                     13.0000
                                                                     S
      17
                            male NaN
                                           0
                                                  0
                                                                         Mr.
                                                      7.2250
                                                                     С
      19
                       3 female
                                  {\tt NaN}
                                                                        Mrs.
      26
                       3
                            male
                                  NaN
                                           0
                                                  0
                                                      7.2250
                                                                     С
                                                                          Mr.
                       3 female NaN
                                                      7.8792
                                                                     Q Miss.
[16]: df.dropna(subset=['Embarked'], inplace=True)
```

3 単変量分析

fig.tight_layout()

plt.show()

fig.subplots_adjust(top=0.92)
labels = axs[1,1].get_xticklabels()

fig.suptitle('質的変数の棒グラフ', fontsize=25)

axs[1,1].set_xticklabels(labels, rotation='vertical', fontsize=10)

```
[17]: print(df.columns.values)
     ['Survived' 'Pclass' 'Sex' 'Age' 'SibSp' 'Parch' 'Fare' 'Embarked' 'Title']
[18]: cat = ['Survived', 'Pclass', 'Sex', 'Embarked', 'Title']
      num = ['Age', 'SibSp', 'Parch', 'Fare']
      print('NOE: cat=', len(cat))
      print('NOE: num=', len(num))
     NOE: cat= 5
     NOE: num= 4
     3.1 質的変数
     3.1.1 水準数・最頻値
[19]: df[cat].describe()
[19]:
            Survived Pclass
                              Sex Embarked Title
      count
                 889
                         889
                               889
                                        889
                                              889
                                2
                   2
                                         3
                                              17
     unique
                          3
      top
                   0
                                         S Mr.
                          3 male
                               577
                                        644 517
      freq
                  549
                         491
     3.1.2 棒グラフ
[20]: nor, noc = 2, 3
      fig, axs = plt.subplots(nor, noc, figsize=(12, 9))
      for i in range(nor):
         for j in range(noc):
              k = noc*i + j
              if k < len(cat):</pre>
                  sns.countplot(x=cat[k], data=df, order=df[cat[k]].value\_counts().index,_u
      →ax=axs[i, j])
```


3.2 量的変数

3.2.1 平均·標準偏差·5数要約

[21]: round(df[num].describe())

```
[21]:
                      {\tt SibSp}
                             Parch
                                      Fare
                Age
             712.0
                      889.0
                             889.0
                                     889.0
      count
               30.0
                        1.0
                                0.0
                                      32.0
      mean
      std
               14.0
                        1.0
                                1.0
                                      50.0
      min
                0.0
                        0.0
                                0.0
                                       0.0
      25%
               20.0
                        0.0
                                0.0
                                       8.0
      50%
               28.0
                        0.0
                                0.0
                                      14.0
      75%
               38.0
                        1.0
                                0.0
                                      31.0
               80.0
                        8.0
                                6.0
                                     512.0
      max
```

3.2.2 ヒストグラム

```
[22]: nor, noc = 2, 2
fig, axs = plt.subplots(nor, noc, figsize=(12, 10))
for i in range(nor):
    for j in range(noc):
        k = noc*i + j
        if k < len(num):</pre>
```

```
sns.histplot(data=df, x=num[k], kde=True, bins=[20,8,6,50][k], ax=axs[i, j])
fig.tight_layout()
fig.suptitle('量的変数のヒストグラム', fontsize=25)
fig.subplots_adjust(top=0.92)
plt.show()
```

量的変数のヒストグラム

4 多変量分析

4.1 質的変数

4.1.1 積み上げ棒グラフ

```
[23]: nor, noc = 2, 2
fig, axs = plt.subplots(nor, noc, figsize=(12, 10))
for i in range(nor):
    for j in range(noc):
        k = noc*i + j
        sns.histplot(data=df, x=cat[k+1], hue='Survived', multiple='stack', shrink=.8,u
        --ax=axs[i, j])
fig.tight_layout()
fig.suptitle('質的変数の積み上げ棒グラフ', fontsize=25)
fig.subplots_adjust(top=0.92)
labels = axs[1,1].get_xticklabels()
plt.setp(labels, rotation=90, fontsize=12)
plt.show()
```

質的変数の積み上げ棒グラフ

4.1.2 100 %積み上げ棒グラフ

4.2 量的変数

4.2.1 ヒストグラム

```
fig, axs = plt.subplots(nor, noc, figsize=(12, 10))

for i in range(nor):
    for j in range(noc):
        k = noc*i + j
        sns.histplot(data=df, x=num[k], hue='Survived', multiple='stack', kde=True,u

        →bins=[20,8,6,50][k], ax=axs[i, j])

fig.tight_layout()

fig.suptitle('量的変数のヒストグラム', fontsize=25)

fig.subplots_adjust(top=0.92)

plt.show()
```

量的変数のヒストグラム

4.2.2 100 %積み上げヒストグラム

```
[26]: nor, noc = 2, 2
fig, axs = plt.subplots(nor, noc, figsize=(12, 10))
for i in range(nor):
    for j in range(noc):
```

```
k = noc*i + j
sns.histplot(data=df, x=num[k], hue='Survived', multiple='fill', u
bins=[20,8,6,20][k], kde=True,ax=axs[i, j])
fig.tight_layout()
fig.suptitle('量的変数の100%積み上げヒストグラム', fontsize=25)
fig.subplots_adjust(top=0.92)
plt.show()
```

量的変数の100%積み上げヒストグラム

4.2.3 箱ヒゲ図

```
fig, ax = plt.subplots(figsize=(8, 5))
sns.boxplot(x='Embarked', y='Fare', data=df, ax=ax)
labels = ax.get_xticklabels()
ax.set_xticklabels(labels, rotation='vertical', fontsize=12)
ax.set_yscale("log")
plt.suptitle('乗船港に対する旅客運賃の箱ヒゲ図', fontsize=20)
plt.show()
```

乗船港に対する旅客運賃の箱ヒゲ図


```
[28]: fig, ax = plt.subplots(figsize=(8, 5))
sns.boxplot(x='Title', y='Fare', data=df, ax=ax)
labels = ax.get_xticklabels()
ax.set_xticklabels(labels, rotation='vertical', fontsize=12)
ax.set_yscale("log")
plt.suptitle('敬称に対する旅客運賃の箱ヒゲ図', fontsize=20)
plt.show()
```

敬称に対する旅客運賃の箱ヒゲ図

4.2.4 散布図

```
[29]: sns.pairplot(df, hue="Survived", height=2.5)
plt.suptitle('量的変数の散布図', fontsize=20, y=1.02)
plt.show()
```


4.2.5 相関係数のヒートマップ

```
[30]: corr = df.corr()
plt.subplots(figsize=(8, 6))
sns.heatmap(corr, linewidth=.5, annot=True, annot_kws={"size": 18}, cmap='YlGnBu', fmt='.

→1f')
plt.title('相関係数のヒートマップ')
plt.show()
```


4.2.6 並行座標プロット

参考文献

- [1] kaggle: Titanic Machine Learning from Disaster https://www.kaggle.com/c/titanic
- [2] seaborn https://seaborn.pydata.org/index.html