분류 모델의 한계

Towards open set deep networks(CVPR 2016)

분류 심층 신경망의 구조

Softmax,Logit vector

softmax
$$y_{k} = \frac{\exp(a_{k})}{\sum_{i=1}^{n} \exp(a_{i})}$$

각 클래스일 확률을 반환해줌

Logit vector

Sigmoid 함수의 역함수 신경망의 마지막 계층은 로짓 계층으로 예측에 대한 원시 값을 반환

1. 신경망의 연산을 통해 Logit Vector로 축약

출처 : 고대 김상훈씨 세미나 자료

분류 모델의 한계점

New class

만약 전혀 다른 동물이 들어간다면?

이를 극복하기 위해선..?

Closed Set vs OpenSet Recognition

Closed Set Classification

Open Set Recognition 종류

GAN 등의 생성모델을 통해 각 클래스와 비슷한 다른 이미지들을 생성하여 새로운 클래스로 추가 학습 Distance-Based

평균부터 떨어진 거리, 마진 등을 통하여 결정 경계 생성

논문에선 EuCos 거리 사용

OpenMAX

 $V_k = logit$ 값 $W_k = 분류기가 k class로 잘못 분류했을 때 대응하는 가중치$

W_k를 어떻게 정의하냐?

Extreme value theorem(최대최소정리)에 기반하여 평균 Logit Vector로부터의 거리에 대한 극단값(이상치)의 분포를 통 해 w_k를 정의한다

Extreme value theorem(1)

닫힌구간 [a, b]에서 연속인 함수 f는 최댓값 f(c)와 최솟값 f(d)를 반드시 갖는다

- 1. 학습 데이터 중 분류기가 정확하게 선별한 데이터 선별
- 2. 선별된 데이터의 X(input)데이터를 클래스별로 분리
- 3. 각 클래스 별로 선별된 데이터를 이용하여 Logit Vector 계산
- 4. 각 클래스 별 평균 Logit Vector의 평균 계산

4번 과정 수행 후 출력값

5. 각 클래스 별 평균 Logit Vector와의 거리 계산(반복)

Ex.	Obs.	V_1	V_2	V_3
	N ₁₁	9.87	-2.13	-6.23
	N_{12}	18.5	3.18	4.98
	N_{1a}	4.89	-3.91	1.01

$$\overline{V_1} = 5.12$$
 $\overline{V_2} = -1.12$ $\overline{V_3} = 0.12$

<강아지 클래스 Logit Vector Matrix>

간단하게 유클리디안 거리 사용

6. 각 클래스 별로 계산된 거리 Matrix를 거리 기준 내림차순으로 정렬후 평균 Logit Vector와 가장 거리가 큰 n개를 각 클래스 별로 추출

왜 굳이 뽑을까???

Extreme value theorem (2) The Fisher-Tippet Theorem

동일분포에서 독립적으로 추출한 변수의 샘플 중 가장 큰 값을 뽑으면, 가장 큰 값보다 클 확률은 Weibull 분포, Frechet 분포, Gumbel 분포의 형태로 만들 수 있다.

극단값, 이상치의 분포를 추정할 수 있다!!!!

$$F(x;\mu,\sigma,0)=e^{-e^{-(x-\mu)/\sigma}}\quad ext{for }\ x\in\mathbb{R}.$$

Gumbel 분포

$$F(x;\mu,\sigma,\xi) = \left\{egin{array}{ll} e^{-y^{-lpha}} & y>0 \ 0 & y\leq 0. \end{array}
ight.$$

Frechet 분포

$$F(x;\mu,\sigma,\xi) = egin{cases} e^{-(-y)^lpha} & y < 0 \ 1 & y \geq 0 \end{cases}$$

Weibull 분포

7. 각 클래스별로 거리가 가장 큰 n개의 샘플로 최대 가능도 추정을 통해 극단치 분포의 파라미터를 추정한다.

8. 새로운 데이터를 넣고 Logit Vector를 계산하고 기존 클래스의 평균 logit vector와 거리를 계산한다 [1.32]

• 각 클래스 별 생성된 극단분포의 CDF(누적 분포)를 통해 평균 Logit Vector와의 거리 극단 확률 계산

극단값일 확률

8. 극단 분포의 CDF값(극단값일 확률)을 w_k로 두어 Logit Vector 업데이트

UnKnown으로 예측!!!