

OSLO Kwaliteit van Wegen en Wegmarkeringen: Thematische werkgroep 3

Welkom!

Woensdag 28 juni 2023 Virtuele werkgroep – Microsoft Teams

We starten om 09:05

Praktische afspraken

Geluid van het publiek is standaard **gedempt**.

Gebruik het **handje** als je iets wilt zeggen.
Interactie wordt aangemoedigd!

Vragen, opmerkingen en voorstellen kunnen via de chatfunctie meegedeeld worden. Interactie wordt aangemoedigd!

ja/nee vragen kunnen beantwoord worden via de chat:

> Akkoord = +1 Niet akkoord = - 1 Onverschillig = 0

Doel van vandaag

Voorstelling van een datavoorbeeld in JSON-LD om het model af te toetsen.

Agenda

09u05 - 09u10	Welkom en agenda
09u10 - 09u15	Aanleiding en context
09u15 - 09u25	Basis Implementatiemodel
09u25 - 10u25	Datavoorbeeld
10u25 - 10u45	Rapport Mobiele Sensor Units
10u45 - 11u00	Q&A en volgende stappen

Basis Implementatiemodel

Scope MLaaS

Scope MLaaS

Classificatie + Vaststelling			Doel	Kwaliteit / Hu	uidige staat ir
Wegen	Wegmarkering	Materialisatie	——	kaart brengen van de Wegen (mbt materialisatie) + Wegmarkering	
Rijbaan	Pijlen, stoplijn, haaientanden	Asfalt, beton,			
Trottoir	Witte lijnen, stippellijnen,	Klinkers, beton,			Gevolg
Fietspad	Fietssuggestiestroken , Fietser-markering	Asfalt, beton,		,	, and the second
Voetweg	Zebrapaden	Klinkers, beton,		Herstelling en/of herschilderen	
Parkeerfaciliteiten	Parkeervakken (mindervaliden), Elektrisch laden,				

Bestaande standaarden

Concepten	Bestaande standaard		
	Optie 1:	Optie 2:	
Wegen, materialisatie, Markeringen	OSLO: Openbaar Domein	AWV OTL: Verharding en Wegfundering	
Markeningen		AWV OTL: Signalisatie	
Observaties van objecten	OSLO: Observaties en Metingen		
Sensoren (camera's)	OSLO: Sensoren en bemonstering		
Kwaliteitsresultaten, kwaliteitskenmerken, procedures	OSLO: Datakwaliteit		

OTL: ObjectTypenBibliotheek van alle assets/infrastructuurobjecten

Indeling model

Datavoorbeeld

Datavoorbeeld - Flow

Context

```
"@context": [
    "https://data.vlaanderen.be/doc/applicatieprofiel/observaties-en-metingen
/kandidaatstandaard/2022-04-28/context/ap-observaties-en-metingen.jsonld",
    "https://data.vlaanderen.be/doc/applicatieprofiel/sensoren-en-bemonsterin
q/kandidaatstandaard/2022-04-28/context/ap-sensoren-en-bemonstering.jsonld",
            "time": "http://www.w3.org/2006/time#",
            "xml-schema": "http://www.w3.org/2001/XMLSchema#",
            "skos": "http://www.w3.org/2004/02/skos/core#",
            "qudt-schema": https://qudt.org/schema/qudt/",
            "cl-kkt": "https://example.com/concept/kwaliteitskenmerktype#",
            "cl-rbt":
"https://example.com/concept/ruimtelijkbemonsteringsobjecttype#",
            "cl-kst": "https://example.com/concept/kwaliteitssensortype#".
            "cl-kpt":
"https://example.com/concept/kwaliteitsobservatieproceduretype#",
            "cl-kok": "https://example.com/concept/KODkleurcode#",
            "awv-schema":
"https://wegenenverkeer.data.vlaanderen.be/ns/onderdeel#",
            "awv-concept-kdc":
"https://wegenenverkeer.data.vlaanderen.be/doc/conceptscheme/KlDwarseMarkerin
gCode",
            "awy-twin":
"https://wegenenverkeer.data.vlaanderen.be/id/onderdeel#",
            "gudt-unit": https://gudt.org/vocab/unit/"
```

Voor wat staat 'Context'?

Context geeft een overzicht en oorsprong van de elementen die verder gebruikt worden in het voorbeeld.

→ Hier wordt de link gelegd met andere standaarden zoals 'Observaties&Metingen';

'<u>Sensoren&Bemonstering</u>' zodat extra zaken die niet in ons model voorkomen, kunnen gelinkt worden.

Voor wat staat AWV-twin?

Binnen dit voorbeeld wordt gebruik gemaakt van een AWV-twin. We gaan er dus vanuit dat er een database bestaat van AWV waarbij specifieke elementen kunnen geïdentificeerd worden. (vb zebrapad met id XXX op locatie Y binnen stad Roeselare)

Context

```
"@context": [
   "https://data.vlaanderen.be/doc/applicatieprofiel/observaties-en-metingen
/kandidaatstandaard/2022-04-28/context/ap-observaties-en-metingen.jsonld",
    "https://data.vlaanderen.be/doc/applicatieprofiel/sensoren-en-bemonsterin
g/kandidaatstandaard/2022-04-28/context/ap-sensoren-en-bemonstering.jsonld",
            "time": "http://www.w3.org/2006/time#",
            "xml-schema": "http://www.w3.org/2001/XMLSchema#",
            "skos": "http://www.w3.org/2004/02/skos/core#",
            "gudt-schema": https://gudt.org/schema/gudt/",
            "cl-kkt": "https://example.com/concept/kwaliteitskenmerktype#",
            "cl-rbt":
"https://example.com/concept/ruimtelijkbemonsteringsobjecttype#",
            "cl-kst": "https://example.com/concept/kwaliteitssensortype#",
            "cl-kpt":
"https://example.com/concept/kwaliteitsobservatieproceduretype#",
            "cl-kok": "https://example.com/concept/KODkleurcode#",
            "awv-schema":
"https://wegenenverkeer.data.vlaanderen.be/ns/onderdeel#",
            "awy-concept-kdc":
"https://wegenenverkeer.data.vlaanderen.be/doc/conceptscheme/KlDwarseMarkerin
gCode",
            "awv-twin":
"awv-twin":
"https://wegenenverkeer.data.vlaanderen.be/id/onderdeel#",
            "gudt-unit": https://gudt.org/vocab/unit/"
```

Voor wat staat 'Context'?

Context geeft een overzicht en oorsprong van de elementen die verder gebruikt worden in het voorbeeld.

→ Hier wordt de link gelegd met andere standaarden zoals 'Observaties&Metingen';

'<u>Sensoren&Bemonstering</u>' zodat extra zaken die niet in ons model voorkomen, kunnen gelinkt worden.

Voor wat staat AWV-twin?

Binnen dit voorbeeld wordt gebruik gemaakt van een AWV-twin. We gaan er dus vanuit dat er een database bestaat van AWV waarbij specifieke elementen kunnen geïdentificeerd worden. (vb zebrapad met id XXX op locatie Y binnen stad Roeselare)

Kenmerk + Object

```
"@graph": [
        "@id": " :obs001",
        "@tvpe": [
            "KwaliteitsObservatie",
            "Meting"
        "Observatie.geobserveerdKenmerk": {
            "@type": "KwaliteitsKenmerk",
            "@id": "cl-kkt:slijtage"
        "Observatie.geobserveerdObject": {
            "@type": "Scene",
            "Scene.geometrie": "",
            "BemonsteringsObject.identificator": "",
            "Bemonsteringsobject.type": {
                "@type": "Bemonsteringsobjecttype",
                "@id": "cl-rbt:luchtfoto"
            },
```

KwaliteitsKenmerk

Het kwaliteitskenmerk dat we hier wel meten is slijtage van de wegmarkeringen en/of wegdek.

Object

De observatie wordt uitgevoerd aan de hand van foto's (type = Scene), meer specifiek spreken we hier over <u>luchtfoto's</u>.

De benoemde <u>geometrie</u> in dit deel gaat in op het formaat van de foto's.

BemonsterdObject

```
"Bemonsteringsobject.bemonsterdObject": {
    "@id": "awv-twin:guid001",
    "@type": ["awv-schema:DwarseMarkering",
    "MarkeringKOD", "FysiekObject"]
    "otl:DwarseMarkering.code": {
        "@type": "skos:Concept",
        "@id": "awv-concept-kdc:VOP-(3)"
    "MarkeringKOD.kleur": "cl-kok:rood",
    "FysiekObject.Geometrie": ""
```

BemonsterdObject

- → <u>AWV-twin</u>: Het algoritme stelt vast aan de hand van de luchtfoto, geometrie en de AWV-databank dat het element gelinkt is aan een <u>DwarseMarkering met ID = guid001</u>
- → <u>MarkeringKOD.kleur</u>: Het algoritme herkend het kleur 'rood' van de wegmarkering binnen de codelijst 'cl-kok'.
- → <u>FysiekObject</u>: Indien het systeem niet 'slim' genoeg is om een ID te koppelen, dan kan puur gewerkt worden met geometrie in wkt formaat. Vandaar hebben we hier de link gelegd met FysiekObject.geometrie.

Resultaat

```
"Observatie.resultaat": {
    "@type": [
        "KwantitatiefResultaat",
        "Maat"
    "Maat.maat": {
        "@type": "KwantitatieveWaarde",
        "KwantitatieveWaarde.standaardEenheid": {
            "@type": "qudt-schema:Unit",
            "@id": "qudt-unit:PERCENT"
        "KwantitatieveWaarde.waarde": 80
```

KwantitatiefResultaat vs Maat?

Maat

Binnen Observaties&Metingen worden volgende klassen uitgedrukt:

- → Meting = 'Observatie waarbij het resultaat kwantitatief is'
- → Maat = 'Een (af)gemeten hoeveelheid van een bepaalde grootheid, uitgedrukt in een bepaalde eenheid'.

Binnen dit voorbeeld wordt via de context de link gelegd met Observaties&Metingen om zo het resultaat uit te drukken in Maat met kwantitatieve waarde \rightarrow 80%.

Sensor

```
"Observatie.uitgevoerdMetSensor": {
    "@type": "KwaliteitsSensor",
    "Systeem.type": {
        "@type": "Kwaliteitssensortype",
        "@id": "kst:machine-learning-aas"
    },
    "Systeem.versie": "",
    "Sensor.implementeert": {
        "@type": "KwaliteitsObservatieprocedure",
        "Observatieprocedure.type":"cl-kpt:patroonherkenning"
    }
}
```

KwaliteitsSensor

Hier wordt verduidelijkt dat we spreken over een Machine Learning sensortype → algoritme die uitgeoefend wordt om het resultaat te bekomen.

Versionering

- = Aanduiding van de versie van het systeem.
- → Aangezien we binnen ons MLaaS model enkel KwaliteitsSensor hebben en Systeem een superklasse is, zal het attribuut 'versie' overgeërfd worden.

Observatieprocedure

= Een workflow, protocol, plan, algoritme of berekeningswijze waarin wordt gespecifieerd hoe een Observatie moet worden uitgevoerd.

Mobiele Sensor Units

Rapport MSU

Rapport MSU

#	Use Case	Relevante bestaande standaarden/modellen
1	Door middel van mobiele sensor units een overzicht van alle verkeersborden in de stad genereren.	AWV OTL OSLO Observaties en Metingen OSLO Sensoren en Bemonstering
2	Met een mobiele LIDAR unit de wegmarkeringen en staat van het wegdek in kaart brengen.	OSLO Implementatiemodel MLaaS
3	Detectie van objecten op het openbaar domein.	OSLO Observaties en Metingen OSLO Openbaar Domein OSLO Sensoren en Bemonstering
4	Verkeerstellingen per type weggebruiker op een bepaalde plaats in de stad op een bepaald moment.	OSLO Verkeersmetingen OSLO Sensoren en Bemonstering

Rapport MSU

#	Use Case	Relevante bestaande standaarden/modellen
5	In kaart brengen van luchtkwaliteit met behulp van een sensor op Bpost-wagens.	ODALA Air & Water OSLO Sensoren en Bemonstering
6	Kwaliteit en zichtbaarheid van verkeersborden in kaart brengen.	OSLO Implementatiemodel MLaaS AWV OTL
7	Indicatie van de kwaliteit van het wegdek aan de hand van trillingen.	OSLO Implementatiemodel MLaaS
8	Meldingen van verkeersborden die verdwenen zijn of bijgekomen zijn.	AWV OTL OSLO Sensoren en Bemonstering

Q&A en Next Steps

Volgende stappen OSLO

Verwerken van alle input uit de thematische werkgroep.

Rondsturen van een verslag van deze werkgroep + eerste versie rapport MSU.

Publicatie op test.data.vlaanderen.be

Planning

Publieke reviewperiode zal eind juli kunnen opstarten.

Feedback & Samenwerking

Feedback kan per e-mail worden gegeven aan de volgende personen:

- digitaal.vlaanderen@vlaanderen.be
- laurens.vercauteren@vlaanderen.be
- arne.scheldeman@vlaanderen.be
- lorenzo.vylders@vlaanderen.be

Feedback/input kan gegeven worden via GitHub:

https://github.com/Informatievlaanderen/ OSLOthema-wegenEnWegmarkeringen Via het aanmaken van issues

Waarom doen we...?

Moeten we niet ... toevoegen?

Kunnen we niet beter ...?

Hoe zit het met ...?

Bedankt

