Exercícios Revisão 01 - Computação Gráfica

Gustavo Lopes Rodrigues

6 de setembro de 2021

Transformações Geométricas

- 1) Coordenadas homogêneas permite o tratamento algébrico de pontos no infinito.
- 2)
- 3)
- 4)
- 5) a. $A(-1,-3) \rightarrow A'(-2,2);$ $B(-2,8) \rightarrow B'(-3,13);$ $C(9,2) \rightarrow C'(8,7);$
 - b. $A(-1,-3) \rightarrow A'(-2.36,-2.09);$ $B(-2,8) \rightarrow B'(2.26,7.92);$ $C(9,2) \rightarrow C'(8.79,-2.76);$
 - $$\begin{split} c. \ \ &A(\text{-}1,\text{-}3) \to A'(\text{-}2.09,\text{-}2.36); \\ &B(\text{-}2,8) \to B'(\text{-}2,8); \\ &C(9,2) \to C' \ (2.76,8.79); \end{split}$$
 - $\begin{aligned} \text{d.} \ \ & \text{A(-1,-3)} \rightarrow \text{A'(-0.5,-6)}; \\ & \text{B(-2,8)} \rightarrow \text{B'(-1,24)}; \\ & \text{C(9,2)} \rightarrow \text{C'} \ (4.5,21); \end{aligned}$
 - e. $A(-1,-3) \to A'(1,-3);$ $B(-2,8) \to B'(2,8);$ $C(9,2) \to C'(-9,2);$

Rasterização de Retas

- 6.
- 7.

DDA

8.

9.

- 10. a. $AB A(-1,4) \in B(5, 7)$
 - -1, 4
 - 0, 5
 - 1, 5
 - 2, 6
 - 3, 6
 - 4, 7
 - 5, 7
 - b. BA B(5, 7) e A(-1, 4)
 - 5, 7
 - 4, 7
 - 3, 6
 - 2, 6
 - 1, 5
 - 0, 5
 - -1, 4
 - c. $CD C(-1, 4) \in D(3, 8)$
 - -1, 4
 - 0, 5
 - 1, 6
 - 2, 7
 - 3, 8
 - d. EF E(2, 0) e F(6, 0)
 - 2, 0
 - 3, 0
 - 4, 0
 - 5, 0
 - 6, 0
 - e. GH G(1, 3) e (1, 6)
 - 1, 3
 - 1, 4
 - 1, 5
 - 1, 6

Bresenham

Questão 1.

- 11. O algoritmo de bresenham trabalha com inteiros em vez de pontos flutuantes(floats), isso permite com que as linhas sejam mais precisas, quando comparadas ao algoritmo DDA
- 12.
- 13.
- 14.
- 15. a. $AB A(-1,4) \in B(5,7)$
 - -1, 4
 - 0, 5
 - 1, 5
 - 2, 6
 - 3, 6
 - 4, 7
 - 5, 7
 - b. BA B(5, 7) e A(-1, 4)
 - 5, 7
 - 4, 6
 - 3, 6
 - 2, 5
 - 1, 5
 - 0, 4
 - -1, 4
 - c. $CD C(-1, 4) \in D(3, 8)$
 - -1, 4
 - 0, 5
 - 1, 6
 - 2, 7
 - 3, 8
 - d. EF E(2, 0) e F(6, 0)
 - 2, 0
 - 3, 0
 - 4, 0
 - 5, 0
 - 6, 0
 - e. GH G(1, 3) e(1, 6)
 - 1, 3
 - 1, 4
 - 1, 5
 - 1, 6

Rasterização de Circunferências
16.
17.
18.
19.
Recorte
21.
Cohen-Sutherland
22.
23.
24.
25.
26.
27.
Liang-Barsky
28.
29.
30.
31.
Sutherland-Hodgeman
32)
33)
34)
Preenchimento de Áreas
a. Boundary fill é o algoritmo usado com frequência em computação gráfica para preenche uma cor desejada dentro de um polígono fechado com a mesma cor de limite para todo os seus lados.
Vantagens : Lógica simples e simples de implementar
Desvantagens : A cor da borda deve ser a mesma para todas as arestas do polígono.

b. Flood Fill é o algoritmo que determina e altera a área conectada a um determinado nó em uma matriz multidimensional com algum atributo correspondente.

Vantagens : o preenchimento colore uma área inteira em uma figura fechada por meio de pixels interconectados usando uma única cor.

 $\acute{\rm E}$ uma maneira fácil de preencher as cores nos gráficos. Um apenas toma a forma e começa o flood fill.

O algoritmo funciona de forma a dar a todos os pixels dentro do limite a mesma cor

Desvantagens : não é adequado para desenhar polígonos preenchidos, pois perderá alguns pixels em cantos mais agudos.

c. ScanLine é o algoritmo que processa uma linha por vez, em vez de processar um pixel (um ponto na exibição raster) de cada vez.

Vantagens:

Classificar vértices ao longo da normal do plano de varredura reduz o número de comparações entre as bordas

Não é necessário traduzir as coordenadas de todos os vértices da memória principal para a memória de trabalho - apenas os vértices que definem as arestas que cruzam a linha de varredura atual precisam estar na memória ativa, e cada vértice é lido apenas uma vez.

Desvantagens:

É um algoritmo mais complexo.

Requer todos os polígonos enviados ao renderizador antes de desenhar.

36)

- 37) a. Boundary fill
 - b. Flood Fill
 - c. ScanLine

Questão 2.

38)

a. Superamostragem é o algoritmo onde a intensidade do pixel é calculada em uma resolução mais alta, para ser visualizada em uma resolução mais baixa

Vantagens : fácil de implementar

 $\textbf{Desvantagens}: \ Força\ bruta,\ mais\ espaço\ de\ armazenamento,\ mais\ tempo\ de\ processamento$

- b. Amostragem por áreas é o algoritmo de intensidade do pixel é calculado pelo tamanho da área do pixel que é interceptada/sobreposta pelo objeto
- c. Uso de máscaras
- d. Pixel Phasing é um algoritmo onde as extremidades são suavizadas, sensibilizando no monitor áreas mais próximas dos valores contínuos.