线性代数 第28讲

第七章第3讲 线性映射与向量的坐标表示

上一讲要点回顾

线性映射, 核与像集

线性变换, 特征值, 特征向量, 特征子空间

同构, 向量的坐标, 过渡矩阵

定义 7.2.1 (线性组合、生成、线性无关)

给定数域 F 上的线性空间 V 内的向量组 a_1 , …, a_n 和数 k_1 , …, $k_n \in F$, 称向量 k_1a_1 + … + k_na_n 是向量组 a_1 , …, a_n 的一个线性组合.

若向量 b 和向量组 a_1 , …, a_n 的一个线性组合相等,则称 b 可以被向量组 a_1 , …, a_n 线性表示.

若向量组 b_1 , … , b_m 中的每一个向量都可以被向量组 a_1 , … , a_n 线性表示,则称向量组 b_1 , … , b_m 可以被向量组 a_1 , … , a_n 线性表示.

向量组 a_1 , …, a_n 的线性组合的全体构成 V 的一个子空间,称为该向量组生成的子空间,记作 $\operatorname{span}(a_1, \ldots, a_n)$.

如果存在 F 内的 n 个不全为 0 的数 k_1 , …, k_n , 使得 k_1a_1 + … + k_na_n = 0,则称向量组 a_1 , …, a_n 线性相关.

如果由 $k_1a_1 + \cdots + k_na_n = 0$ 必定推出 $k_1 = \cdots = k_n = 0$, 则称向量组 a1, \cdots , a_n 线性无关.

在坐标向量空间 F_n 中,向量组的线性关系能够通过线性方程组判断. 对一般的线性空间,则只能根据其上的线性运算具体分析.

极大线性无关部分组

定义 7.2.5 (极大线性无关部分组) 给定线性空间 \mathcal{V} 中的向量组 a_1, \cdots, a_s ,如果其部 分组 a_{i_1}, \cdots, a_{i_s} 满足:

- 1. a_{i_1}, \dots, a_{i_r} 线性无关;
- 2. a_1, \dots, a_s 可以被 a_{i_1}, \dots, a_{i_n} 线性表示;

则称 $\mathbf{a}_{i_1},\cdots,\mathbf{a}_{i_r}$ 是 $\mathbf{a}_1,\cdots,\mathbf{a}_s$ 的一个极大线性无关部分组.

极大线性无关部分组仍然可以利用筛选法构造得到,从而证明其存在性. 关键仍然是如下线性表示与线性无关之间的关系.

命题 7.2.6 如果向量组 a_1, \dots, a_s 线性无关,则对任意向量 b,有

- 1. 向量组 a_1, \cdots, a_s, b 线性相关当且仅当 b 可以被向量组 a_1, \cdots, a_s 线性表示;
- 2. \boldsymbol{b} 不能被向量组 $\boldsymbol{a}_1,\cdots,\boldsymbol{a}_s$ 线性表示当且仅当 $\boldsymbol{a}_1,\cdots,\boldsymbol{a}_s,\boldsymbol{b}$ 线性无关.

向量组的秩. 线性空间的基和维数

命题 7.2.8 如果向量组 a_1, \dots, a_s 和 b_1, \dots, b_t 可以互相线性表示,且两个向量组分别 线性无关,则 s=t.

如果两个向量组可以互相线性表示,则称二者**线性等价**.一个向量组的任意两个极大线性无关部分组线性等价.因此,二者中的向量个数相同.

定义 7.2.9 (秩) 一个向量组 S 的任意一个极大线性无关部分组中向量的个数称为这个向量组的**秩**,记为 rank(S). 一个只包含零向量的向量组的秩定义为零.

定义 7.2.10 (基、维数) 给定数域 \mathbb{F} 上的线性空间 \mathcal{V} . 如果 \mathcal{V} 中存在一个线性无关的向量组, \mathcal{V} 中的任意向量都可以被它线性表示,则称该向量组为 \mathcal{V} 的一组基.

如果 \mathcal{V} 中存在 n 个向量组成的一组基,则称 \mathcal{V} 为 n **维线性空间**,又称 \mathcal{V} 的**维数**是 n, 记为 dim $\mathcal{V} = n$.

如果 V 中存在任意多个线性无关的向量,则称其为无限维线性空间;反之,则称为有限维线性空间.单由零向量组成的线性空间{0},其维数定义为0.

线性空间的基和维数公式

命题 7.2.14 对 n 维线性空间 \mathcal{V} , 给定其中含有 n 个向量的向量组 $\mathbf{a}_1, \dots, \mathbf{a}_n$.

- 1. 如果 a_1, \dots, a_n 线性无关,则 a_1, \dots, a_n 是 \mathcal{V} 的一组基;
- 2. 如果 $\mathcal{V} = \text{span}(\boldsymbol{a}_1, \dots, \boldsymbol{a}_n)$,则 $\boldsymbol{a}_1, \dots, \boldsymbol{a}_n$ 是 \mathcal{V} 的一组基.

事实上, $\dim \mathcal{V} = n$; $\mathbf{a}_1, \dots, \mathbf{a}_n$ 线性无关; $\mathbf{a}_1, \dots, \mathbf{a}_n$ 线性生成 \mathcal{V} :这三个条件中的任意两个都可以推出另外一个,因此都可以作为基的判定条件.

推论 7.2.16 给定有限维线性空间 \mathcal{V} 的子空间 \mathcal{M} ,则 \mathcal{M} 的任意一组基都可以扩充成 \mathcal{V} 的一组基. 因此 $\dim \mathcal{M} \leqslant \dim \mathcal{V}$.

定理 7.2.17 结合如上记号,向量组 $S \cup T: a_1, \cdots, a_r, b_1, \cdots, b_s, c_1, \cdots, c_t$ 是 $\mathcal{M}_1 + \mathcal{M}_2$ 的一组基. 特别地,如下维数公式成立:

$$\dim(\mathcal{M}_1+\mathcal{M}_2)=\dim\mathcal{M}_1+\dim\mathcal{M}_2-\dim\mathcal{M}_1\cap\mathcal{M}_2.$$

设
$$A = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 1 & 3 \\ 1 & -1 & 3 \end{bmatrix}, B = \begin{bmatrix} 2 & 1 & -1 \\ 3 & 2 & -1 \\ -1 & 2 & 3 \end{bmatrix},$$

 $W_1 = R(A), W_2 = R(B), 求 W_1 + W_2 和 W_1 \cap W_2$ 的维数与基.

解 记
$$\begin{bmatrix} 1 & 1 & 1 \\ 2 & 1 & 3 \\ 1 & -1 & 3 \end{bmatrix} = (\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3), \begin{bmatrix} 2 & 1 & -1 \\ 3 & 2 & -1 \\ -1 & 2 & 3 \end{bmatrix} = (\boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \boldsymbol{\beta}_3),$$

$$\begin{bmatrix} 1 & 1 & 1 \\ 2 & 1 & 3 \\ 1 & -1 & 3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 1 \\ 0 & -1 & 1 \\ 0 & -2 & 2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix}$$
 dim $W_1 = 2$. α_1, α_2 为 W_1 的一组基.

$$\begin{bmatrix} 2 & 1 & -1 \\ 3 & 2 & -1 \\ -1 & 2 & 3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -2 & -3 \\ 0 & 5 & 5 \\ 0 & 8 & 8 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -2 & -3 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$
 dim $W_2 = 2$. $\beta_1, \beta_2 为 W_2$ 的一组基.

故
$$W_1 + W_2 = L(\alpha_1, \alpha_2, \beta_1, \beta_2) = L(\alpha_1, \alpha_2, -\beta_1, -\beta_2),$$
 设 $\delta \in W_1 \cap W_2$,

则 $\delta = \mathbf{k}_1 \boldsymbol{\alpha}_1 + \mathbf{k}_2 \boldsymbol{\alpha}_2 = \mathbf{l}_1 \boldsymbol{\beta}_1 + \mathbf{l}_2 \boldsymbol{\beta}_2$, $\mathbf{k}_1 \boldsymbol{\alpha}_1 + \mathbf{k}_2 \boldsymbol{\alpha}_2 - \mathbf{l}_1 \boldsymbol{\beta}_1 - \mathbf{l}_2 \boldsymbol{\beta}_2 = 0$,

$$\begin{bmatrix} 1 & 1 & -2 & -1 \\ 2 & 1 & -3 & -2 \\ 1 & -1 & 1 & -2 \end{bmatrix} \rightarrow \cdots \rightarrow \begin{bmatrix} 1 & 0 & 0 & -2 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & -1 \end{bmatrix}$$

解得
$$k_1 = 2k$$
, $k_2 = k$, $l_1 = k$, $l_2 = k$, 故 $\delta = k \begin{bmatrix} 3 \\ 5 \\ 1 \end{bmatrix}$, $k \in F$.

 $(3, 5, 1)^{\mathsf{T}}$ 为 $W_1 \cap W_2$ 的一组基,

所以 $\dim(W_1 \cap W_2) = 1$, $\dim(W_1 + W_2) = 3$,

 $\alpha_1, \alpha_2, \beta_1$ 为 $W_1 + W_2$ 的一组基.

7

线性映射

定义 7.3.1 (线性映射) 给定数域 \mathbb{F} 上的线性空间 \mathcal{U}, \mathcal{V} , 如果从 \mathcal{U} 到 \mathcal{V} 的映射 f 满足

- 1. 对任意 $a, b \in \mathcal{U}$, 有 f(a+b) = f(a) + f(b);
- 2. 对任意 $\mathbf{a} \in \mathcal{U}, k \in \mathbb{F}, \ \mathbf{f} \ f(k\mathbf{a}) = kf(\mathbf{a}),$

则称其为 \mathcal{U} 到 \mathcal{V} 的**线性映射**, \mathcal{U} 到 \mathcal{V} 的线性映射的全体记作 $\mathrm{Hom}(\mathcal{U},\mathcal{V})$.

特别地,对任意线性映射 f,都有 $f(\mathbf{0}_{U}) = \mathbf{0}_{V}$. 易见定义7.3.1 中的两个条件和如下条件等价: 对任意a, b \in U, k, l \in F, 有 f(ka + lb) = kf(a) + lf(b).

Hom: homomorphism, 同态

例 7.3.2 下面列出几个常见的线性映射.

1. 设 $A \in \mathbb{F}^{m \times n}$, 左乘矩阵 A 定义了一个线性映射:

$$\label{eq:Lambda} \begin{split} \boldsymbol{L}_A \colon & \mathbb{F}^{n \times p} \to \mathbb{F}^{m \times p}, \\ & X \mapsto AX. \end{split}$$

类似地, 右乘矩阵 A 也定义了一个线性映射:

$$\begin{split} \boldsymbol{R}_{\!A} \colon & \; \mathbb{F}^{l \times m} \to \mathbb{F}^{l \times n}, \\ & \; X \mapsto XA. \end{split}$$

2. 转置:

$$\begin{array}{ccc} \cdot^{\mathrm{T}} \colon & \mathbb{F}^{m \times n} \to \mathbb{F}^{n \times m}, \\ & A \mapsto A^{\mathrm{T}}. \end{array}$$

3. 取迹:

trace:
$$\mathbb{F}^{n \times n} \to \mathbb{F}$$
,
 $A \mapsto \operatorname{trace}(A)$.

4. 函数在若干给定点的取值:

$$C(\mathbb{R}) \to \mathbb{R}^n,$$

$$f \mapsto \begin{bmatrix} f(x_1) \\ \vdots \\ f(x_n) \end{bmatrix}.$$
 \odot

定义 7.3.3 (线性运算) 给定数域 \mathbb{F} 上的线性空间 \mathcal{U},\mathcal{V} , \mathcal{U} 到 \mathcal{V} 的线性映射全体是 $\operatorname{Hom}(\mathcal{U},\mathcal{V})$. 规定

1. $\operatorname{Hom}(\mathcal{U}, \mathcal{V})$ 上的加法: 给定 $f, g \in \operatorname{Hom}(\mathcal{U}, \mathcal{V})$, 定义

$$\begin{split} f+g\colon & \ \mathcal{U}\to\mathcal{V},\\ & \ \boldsymbol{x}\mapsto f(\boldsymbol{x})+g(\boldsymbol{x}), \end{split}$$

2. $\operatorname{Hom}(\mathcal{U},\mathcal{V})$ 上的**数乘**: 给定 $f \in \operatorname{Hom}(\mathcal{U},\mathcal{V})$, 定义

$$\begin{aligned} kf\colon & \ \mathcal{U} \to \mathcal{V}, \\ & \ \boldsymbol{x} \mapsto kf(\boldsymbol{x}). \end{aligned}$$

命题 7.3.4 集合 $Hom(\mathcal{U},\mathcal{V})$ 关于加法和数乘两种运算构成线性空间.

定义 7.3.5 (乘法 (复合)) 给定数域 \mathbb{F} 上的线性空间 $\mathcal{U}, \mathcal{V}, \mathcal{W}$,若 $f \in \text{Hom}(\mathcal{U}, \mathcal{V}), g \in \text{Hom}(\mathcal{V}, \mathcal{W})$,则定义 $f \vdash g$ 的复合为

$$g \circ f \colon \ \mathcal{U} \to \mathcal{W},$$

 $\mathbf{x} \mapsto g(f(\mathbf{x})),$

f 与 g 的复合运算又称为 g 与 f 的**乘法**,记为 gf.

定义 7.3.6 (核、像集) 给定数域 \mathbb{F} 上的线性空间 \mathcal{U}, \mathcal{V} , 以及 \mathcal{U} 到 \mathcal{V} 的线性映射 f. 则集合 $\mathcal{N}(f) := \{ \boldsymbol{a} \in \mathcal{U} \mid f(\boldsymbol{a}) = \boldsymbol{0} \}$, 称为线性映射 f 的核; 集合 $\mathcal{R}(f) := \{ f(\boldsymbol{a}) \mid \boldsymbol{a} \in \mathcal{U} \}$, 称为线性映射 f 的**像**集.

1. 设 $A \in \mathbb{F}^{m \times n}$, 左乘矩阵 A 定义了一个线性映射:

$$\begin{split} \boldsymbol{L}_A \colon & \ \mathbb{F}^{n \times p} \to \mathbb{F}^{m \times p}, \\ & X \mapsto AX. \end{split}$$

命题 7.3.7 对 \mathcal{U} 到 \mathcal{V} 的线性映射 f,

- 1. $\mathcal{N}(f)$ 是 \mathcal{U} 的子空间,而且 f 是单射当且仅当 $\mathcal{N}(f) = \{\mathbf{0}\};$
- 2. $\mathcal{R}(f)$ 是 \mathcal{V} 的子空间, 而且 f 是满射当且仅当 $\mathcal{R}(f) = \mathcal{V}$.
- (1) 证明: $u_1, u_2 \in N(f)$,则 $f(ku_1 + lu_2) = k \cdot f(u_1) + l \cdot f(u_2) = 0 \Rightarrow ku_1 + lu_2 \in N(f)$

f 为单射,则 $f(x)=0 \Rightarrow x=0$, 否则,若 $x_1 \neq 0, f(x_1)=0, f(u+x_1)=f(u)$ 与单射矛盾

 $N(f) = \{0\}$,则f为单射,否则,若存在 $x_1 \neq x_2$, $f(x_1) = f(x_2)$,则 $f(x_1 - x_2) = 0$, $x_1 - x_2 \neq 0$,与 $N(f) = \{0\}$ 矛盾

线性变换, 特征值、特征向量

定义 7.3.8 (线性变换) 线性空间 \mathcal{U} 到自身的线性映射称为 \mathcal{U} 上的线性变换.

注意, \mathcal{U} 上任意两个线性变换都可以复合,得到的还是 \mathcal{U} 上的线性变换.

类似于 \mathbb{F}^n 上的线性变换有特征值和特征向量,这两个概念也可以推广到一般线性 空间的线性变换上.

定义 7.3.9 (特征值) 给定 \mathbb{F} 上的线性空间 \mathcal{U} , 以及其上的线性变换 f. 如果对 $\lambda \in \mathbb{F}$, 存在非零向量 $x \in \mathcal{U}$, 使得 $f(x) = \lambda x$, 则称 λ 为线性变换 f 的一个**特征值**, 而称非零 向量 x 为 f 的一个属于特征值 λ 的**特征向量**.

二元组 (λ, x) 常称为线性变换 f 的一个**特征对**.

非零向量 x 为 f 的属于特征值 λ 的特征向量,当且仅当 $x \in \mathbb{N}(\lambda I - f)$. 子空间 $\mathbb{N}(\lambda I - f)$ 称为 f 的属于特征值 λ 的特征子空间.

命题7.3.10 对 U 上的线性变换 f,属于不同特征值的特征向量线性无关.

定义 7.3.1 (线性映射) 给定数域 \mathbb{F} 上的线性空间 \mathcal{U}, \mathcal{V} , 如果从 \mathcal{U} 到 \mathcal{V} 的映射 f 满足

- 1. 对任意 $a, b \in \mathcal{U}$, 有 f(a+b) = f(a) + f(b);
- 2. 对任意 $\mathbf{a} \in \mathcal{U}, k \in \mathbb{F}$, 有 $f(k\mathbf{a}) = kf(\mathbf{a})$,

对任意 $a, b \in U, k, l \in F$,

则称其为 \mathcal{U} 到 \mathcal{V} 的**线性映射**, \mathcal{U} 到 \mathcal{V} 的线性映射的全体记作 $\operatorname{Hom}(\mathcal{U},\mathcal{V})$.

有 $f(k\mathbf{a} + l\mathbf{b}) = kf(\mathbf{a}) + lf(\mathbf{b})$.

命题7.3.10 对U上的线性变换f,属于不同特征值的特征向量线性无关。

证. 设线性变换 f 有特征向量 x_1 , …, x_r , 分别属于特征值 λ_1 , …, λ_r , 且 λ_1 , …, λ_r 两两不同.

采用数学归纳法。当 r=1 时,因为特征向量不为零,因此线性无关。

现假设任意 r-1 个不同特征值的特征向量都线性无关,

观察方程 $k_1x_1 + k_2x_2 + \cdots + k_nx_n = 0$. 等式两边左乘 A, 则有

 $0 = f(k_1x_1 + k_2x_2 + \dots + k_rx_r) = k_1\lambda_1x_1 + k_2\lambda_2x_2 + \dots + k_r\lambda_rx_r.$

再减去原方程的 λ_1 倍, $k_1\lambda_1x_1 + k_2\lambda_2x_2 + \cdots + k_r\lambda_rx_r - \lambda_1(k_1x_1 + k_2x_2 + \cdots + k_rx_r)$

就有 $k_2(\lambda_2 - \lambda_1)x_2 + \cdots + k_r(\lambda_r - \lambda_1)x_r = \mathbf{0}$.

根据归纳假设, x_2 , …, x_r 线性无关, 于是 $k_i(\lambda_i - \lambda_1) = 0$, i = 2, …, r.

由于 λ_1 和 λ_2 , …, λ_r 不同, 因此 $k_i = 0$, i = 2, …, r.

又得 $k_1x_1 = 0$, 由特征向量不为零得 $k_1 = 0$. 故 x_1, \dots, x_r 线性无关.

例 7.3.11 1. 设 $A \in \mathbb{F}^{n \times n}$,取左乘矩阵和右乘矩阵映射的差:

$$\begin{split} \boldsymbol{L}_A - \boldsymbol{R}_A \colon & \; \mathbb{F}^{n \times n} \to \mathbb{F}^{n \times n}, \\ & X \mapsto AX - XA, \end{split}$$

定义了 $\mathbb{F}^{n\times n}$ 上的线性变换. 其核 $\mathcal{N}(\boldsymbol{L}_A-\boldsymbol{R}_A)=\{X\in\mathbb{F}^{n\times n}\,|\,AX=XA\}$ 是 $\mathbb{F}^{n\times n}$ 的子空间,包含了所有与 A 交换的 n 阶方阵.

2. 恒同变换和转置的线性组合定义了 $\mathbb{F}^{n\times n}$ 上的线性变换:

$$\begin{split} \boldsymbol{S} \colon & \; \mathbb{F}^{n \times n} \to \mathbb{F}^{n \times n}, \\ & \; A \mapsto \frac{1}{2}(A + A^{\mathrm{T}}). \end{split}$$

核 $\mathcal{N}(\mathbf{S})$ 是全体 n 阶反对称矩阵构成的子空间;像集 $\mathcal{R}(\mathbf{S})$ 是全体 n 阶对称矩阵构成的子空间.

注意, $S^2 = S$, 因此其特征值只能是1, 0(为什么?).

两个特征子空间

$$N(1 \cdot I - S) = \{A \in F^{n \times n} \mid S(A) = A\} = R(S),$$

$$N(0 \cdot I - S) = \{A \in F^{n \times n} \mid S(A) = O\} = N(S).$$

3. 在 \mathbb{R} 上的光滑函数空间 $C^{\infty}(\mathbb{R})$ 上,求导运算定义了线性变换:

$$D = \frac{\mathrm{d}}{\mathrm{d}x} : C^{\infty}(\mathbb{R}) \to C^{\infty}(\mathbb{R}),$$

 $f(x) \mapsto f'(x),$

称为求导算子. 核 $\mathcal{N}(\mathbf{D})$ 是常数函数的全体构成的线性空间.

再看 D 的特征值和特征向量. 对任意常数 $\lambda \in \mathbb{R}$, 考虑线性变换:

$$\begin{split} \lambda \boldsymbol{I} - \boldsymbol{D} \colon & C^{\infty}(\mathbb{R}) \to C^{\infty}(\mathbb{R}), \\ & f(x) \mapsto \lambda f(x) - f'(x), \end{split}$$

 $\lambda e^{\lambda x} - (e^{\lambda x})' = 0$,指数函数 $e^{\lambda x} \in N(\lambda I - D)$. 事实上, 利用常微分方程知识,

 $(\lambda I - D)f = \lambda f - f' = 0$ 的解只能是 $f(x) = k \cdot e^{\lambda x}$.

因此 $N(\lambda I - D)$ 是一维线性空间, 而 $e^{\lambda x}$ 是一组基.

4. 求导算子和自身的乘积 $\mathbf{D}^2\colon f(x)\mapsto f''(x)$ 是 $C^\infty(\mathbb{R})$ 上的线性变换. 设 $\lambda\in\mathbb{R}$,考虑线性变换 $\lambda \mathbf{I}-\mathbf{D}^2\colon C^\infty(\mathbb{R})\to C^\infty(\mathbb{R})$.

利用常微分方程知识,可得 $\mathcal{N}(\lambda \mathbf{I} - \mathbf{D}^2)$ 是二维线性空间,而一组基是

$$\begin{cases} e^{\sqrt{\lambda}x}, & e^{-\sqrt{\lambda}x}, & \lambda > 0; \\ \cos(\sqrt{-\lambda}x), & \sin(\sqrt{-\lambda}x), & \lambda < 0; \\ 1, x, & \lambda = 0. \end{cases}$$

同构映射

定义 7.3.12 (线性空间的同构) 给定数域 \mathbb{F} 上的线性空间 \mathcal{U}, \mathcal{V} , 如果存在 \mathcal{U} 到 \mathcal{V} 的 线性映射 f 是双射,则称 \mathcal{U} 和 \mathcal{V} 同构,称 f 为 \mathcal{U} 到 \mathcal{V} 的同构映射.

特别地, \mathcal{U} 到 \mathcal{U} 的同构映射称为 \mathcal{U} 上的**自同构**.

例 7.3.13 定义 $\mathcal{V}:=\left\{egin{bmatrix}a&b\\-b&a\end{bmatrix}:a,b\in\mathbb{R}\right\}$. 易见 \mathcal{V} 是 $\mathbb{R}^{2\times2}$ 的子空间. 可以验证,映射

$$\begin{split} f \colon & \mathbb{C} \to \mathcal{V}, \\ & a + b \mathbf{i} \mapsto \begin{bmatrix} a & b \\ -b & a \end{bmatrix}, \end{split}$$

是一个同构映射.

例 7.3.14 给定可逆矩阵 $T \in \mathbb{F}^{n \times n}$, 那么映射

$$f\colon \quad \mathbb{F}^n \to \mathbb{F}^n,$$
$$\mathbf{x} \mapsto T\mathbf{x},$$

是一个 \mathbb{F}^n 上的自同构.

 \odot

定义 7.3.12 (线性空间的同构) 给定数域 \mathbb{F} 上的线性空间 \mathcal{U}, \mathcal{V} , 如果存在 \mathcal{U} 到 \mathcal{V} 的 线性映射 f 是双射,则称 \mathcal{U} 和 \mathcal{V} 同构,称 f 为 \mathcal{U} 到 \mathcal{V} 的同构映射.

特别地, \mathcal{U} 到 \mathcal{U} 的同构映射称为 \mathcal{U} 上的**自同构**.

同构映射是双射, 因此它有逆映射.

命题 7.3.15 给定数域 \mathbb{F} 上的线性空间 $\mathcal{U}, \mathcal{V}, \mathcal{W}$,以及 \mathcal{U} 到 \mathcal{V} 的同构映射 f, \mathcal{V} 到 \mathcal{W} 的同构映射 g,则

- 1. $g \circ f$ 是 \mathcal{U} 到 \mathcal{W} 的同构映射;
- $2. f^{-1}$ 是 \mathcal{V} 到 \mathcal{U} 的同构映射.

证. 第 1 条: 显然.

第 2 条: 显然 f^{-1} 是双射, 只需验证它是线性映射.

由于 f 是线性映射, 因此对任意 $x_1, x_2 \in \mathcal{V}$,

 $f(k_1f^{-1}(x_1) + k_2f^{-1}(x_2)) = k_1f(f^{-1}(x_1)) + k_2f(f^{-1}(x_2)) = k_1x_1 + k_2x_2.$

由于f 是双射, 有 $k_1f^{-1}(x_1) + k_2f^{-1}(x_2) = f^{-1}(k_1x_1 + k_2x_2)$.

因此 f^{-1} 是线性映射.

命题7.3.16 线性空间的同构关系是等价关系.

练习 7.3.14 考虑例 7.3.11 中的线性变换 $\mathbb{F}^{n\times n}$ 上的线性变换 S, 试问它是否是投影变换.

练习 7.3.15 考虑练习 7.1.1 中的实线性空间 \mathbb{R}^+ , 给定 a > 0, 判断映射

$$\begin{array}{cccc} \log_a \colon & \mathbb{R}^+ & \to & \mathbb{R}, \\ & x & \mapsto & \log_a x, \end{array}$$

是否是线性映射. 如果是, 进一步分析当 a 取何值时, 该映射是同构.

例 7.3.11

2. 恒同变换和转置的线性组合定义了 $\mathbb{F}^{n\times n}$ 上的线性变换:

$$\begin{split} \boldsymbol{S} \colon & \; \mathbb{F}^{n \times n} \to \mathbb{F}^{n \times n}, \\ & \; A \mapsto \frac{1}{2}(A + A^{\mathrm{T}}). \end{split}$$

核 $\mathcal{N}(\mathbf{S})$ 是全体 n 阶反对称矩阵构成的子空间;像集 $\mathcal{R}(\mathbf{S})$ 是全体 n 阶对称矩阵构成的子空间.

练习 7.1.1 在所有正实数构成的集合 \mathbb{R}^+ 上,定义加法和数乘运算:

$$a\oplus b:=ab,\quad k\odot a:=a^k,\quad \forall a,b\in\mathbb{R}^+,k\in\mathbb{R}.$$

判断 \mathbb{R}^+ 对这两个运算是否构成 \mathbb{R} 上的线性空间.

练习 7.3.19 证明练习 7.1.2 中的线性空间 $\mathbb{Q}[\omega]$ 与练习 7.1.4 中的线性空间 $\mathbb{Q}[\mathrm{i}]$ 同构.

练习 7.1.2 $\diamondsuit \omega = \frac{-1+\sqrt{3}i}{2}$, $\mathbb{Q}[\omega] = \{a+b\omega \mid a,b \in \mathbb{Q}\}$.

- 1. 证明 $\mathbb{Q}[\omega]$ 关于数的加法和数乘构成 \mathbb{Q} 上的一个线性空间.
- 2. 证明子集 \mathbb{Q} 和 $\mathcal{M} = \{b\omega \mid b \in \mathbb{Q}\}$ 都是 $\mathbb{Q}[\omega]$ 的子空间. 并求二者的交与和.
- 3. 判断 $\mathbb{Q}[\omega]$ 是否是数域.

练习 7.1.4 设 $\mathbb{Q}[i] = \{a + bi \mid a, b \in \mathbb{Q}\}.$

- 1. 证明 ℚ[i] 关于数的加法和数乘构成 ℚ 上的一个线性空间.
- 2. 证明 Q[i] 是数域.
- 3. 把复数域 $\mathbb C$ 看作有理数域 $\mathbb Q[i]$ 上的线性空间,子集 $\mathbb R$ 是否是子空间?

向量的坐标

命题 7.4.1 向量组 a_1, \dots, a_s 线性无关,如果 b 可以被其线性表示,则表示法唯一.

定义7.4.2 (坐标) 对数域 F 上的 n 维线性空间 V, 设 e_1 , …, e_n 是它的一组基. 那么对任意向量 $x \in \mathcal{V}$, 都有 x 可以被这组基线性表示且表示法唯一, 不妨写为 $x = x_1e_1 + \dots + x_ne_n$.

有序数组 x_1 , …, x_n 称为向量 x 在基 e_1 , …, e_n 下的坐标.

为书写简便,我们把它写作 $\boldsymbol{x}=(\boldsymbol{e}_1,\cdots,\boldsymbol{e}_n)\begin{bmatrix}x_1\\ \vdots\\ x_n\end{bmatrix}$.

注意: 这并不是真正的矩阵乘法,而只是借用了记号来表示线性组合. 由表示法的唯一性,可以定义映射:

$$m{x}=(m{e}_1,\cdots,m{e}_n)$$
 $egin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$ 由表示法的唯一性,可以定义映射: $\sigma=\sigma_{m{e}_1,\cdots,m{e}_n}$: $\mathcal{V}\to\mathbb{F}^n$,
$$\mbox{ $x\mapsto\widehat{x}=\begin{bmatrix}x_1 \\ \vdots \\ x_n\end{bmatrix}$}.$$
 映射 $\sigma_{m{e}_1,\cdots,m{e}_n}$ 就是把 \mathcal{V} 中向量映射成它在一组基 $m{e}_1,\cdots,m{e}_n$ 下的坐标组成的 n 维向量.

注意,坐标表示写成 $\begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$ 后,基 e_1,\cdots,e_n 中的向量就不再能随便改换顺序,因为把

基向量改换顺序将引入不同的映射 σ ,而坐标表示也不同. 换言之,改换顺序的基被认为是不同的基.

定理 7.4.3 映射 $\sigma_{e_1,\dots,e_n}: \mathcal{V} \to \mathbb{F}^n$ 是同构映射.

证. 如果 $\mathbf{x} = x_1 \mathbf{e}_1 + \dots + x_n \mathbf{e}_n$, $\mathbf{y} = y_1 \mathbf{e}_1 + \dots + y_n \mathbf{e}_n$, 则 $\mathbf{x} + \mathbf{y} = (x_1 + y_1) \mathbf{e}_1 + \dots + (x_n + y_n) \mathbf{e}_n$, $k\mathbf{x} = (kx_1) \mathbf{e}_1 + \dots + (kx_n) \mathbf{e}_n$. 因此, $\sigma(\mathbf{x} + \mathbf{y}) = \sigma(\mathbf{x}) + \sigma(\mathbf{y})$, $\sigma(k\mathbf{x}) = k\sigma(\mathbf{x})$. 于是 σ 是线性映射. 根据基的定义, σ 是双射.

同构映射 σ 的逆映射

$$\begin{split} \sigma_{\boldsymbol{e}_1,\cdots,\boldsymbol{e}_n}^{-1} \colon & \mathbb{F}^n \to \mathcal{V}, \\ & \widehat{\boldsymbol{x}} = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} \mapsto \boldsymbol{x} = (\boldsymbol{e}_1,\cdots,\boldsymbol{e}_n) \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}, \end{split}$$

就是在形式上推广的矩阵乘法. 它在形式上满足分配律:

$$(\boldsymbol{e}_1,\cdots,\boldsymbol{e}_n)(\widehat{\boldsymbol{x}}+\widehat{\boldsymbol{y}})=(\boldsymbol{e}_1,\cdots,\boldsymbol{e}_n)\widehat{\boldsymbol{x}}+(\boldsymbol{e}_1,\cdots,\boldsymbol{e}_n)\widehat{\boldsymbol{y}}, \qquad (\boldsymbol{e}_1,\cdots,\boldsymbol{e}_n)(k\widehat{\boldsymbol{x}})=k(\boldsymbol{e}_1,\cdots,\boldsymbol{e}_n)\widehat{\boldsymbol{x}}.$$

例 7.3.13 定义 $\mathcal{V}:=\left\{egin{bmatrix}a&b\\-b&a\end{bmatrix}:a,b\in\mathbb{R}\right\}$. 易见 \mathcal{V} 是 $\mathbb{R}^{2\times2}$ 的子空间. 可以验证,映射

$$\begin{split} f\colon & \mathbb{C} \to \mathcal{V}, \\ a + b\mathbf{i} \mapsto \begin{bmatrix} a & b \\ -b & a \end{bmatrix}, \end{split}$$

是一个同构映射.

由定理 7.4.3 可知,F 上的任意 n 维线性空间都同构: 因为它们都和 F^n 同构,而同构又是等价关系.

0

线性空间的同构这个等价关系的唯一不变量就是维数, 而标准形是 Fn.

例如。例 7.3.13 中的两个线性空间都和 R² 同构。因此也互相同构。

同构映射能够保持线性运算,从而保持一切只与线性运算有关的性质.

因为, 常常可以把一般向量空间中的问题转化到 Fn 上, 例如如下结论.

命题 7.4.4 在数域 \mathbb{F} 上 n 维线性空间 \mathcal{V} 中取定一组基 $\mathbf{e}_1, \cdots, \mathbf{e}_n$,设 \mathcal{V} 内向量组 $\mathbf{a}_1, \cdots, \mathbf{a}_m$ 在这组基下的坐标表示为 $\mathbf{a}_i = (\mathbf{e}_1, \cdots, \mathbf{e}_n) \hat{\mathbf{a}}_i, i = 1, \cdots, m$,则 $\mathbf{a}_1, \cdots, \mathbf{a}_m$ 在 \mathcal{V} 内线性无关,当且仅当 $\hat{\mathbf{a}}_1, \cdots, \hat{\mathbf{a}}_m$ 在 \mathbb{F}^n 内线性无关.

证. $\mathbf{a}_1, \cdots, \mathbf{a}_m$ 在 $\mathcal V$ 内线性相关 \Leftrightarrow 存在 $\mathbb F$ 内不全为 0 的数 k_1, \cdots, k_m ,使得 $k_1\mathbf{a}_1 + \cdots + k_m\mathbf{a}_m = \mathbf{0}$ \Leftrightarrow 存在 $\mathbb F$ 内不全为 0 的数 k_1, \cdots, k_m ,使得 $(\mathbf{e}_1, \cdots, \mathbf{e}_n)(k_1\hat{\mathbf{a}}_1 + \cdots + k_m\hat{\mathbf{a}}_m) = \mathbf{0}$ $\stackrel{\sigma \not \in \mathbb{N}}{\longleftrightarrow}$ 存在 $\mathbb F$ 内不全为 0 的数 k_1, \cdots, k_m ,使得 $k_1\hat{\mathbf{a}}_1 + \cdots + k_m\hat{\mathbf{a}}_m = \mathbf{0} \Leftrightarrow \hat{\mathbf{a}}_1, \cdots, \hat{\mathbf{a}}_m$ 在 $\mathbb F$ 内线性相关.

1. 考虑例 7.2.12 中矩阵空间 $\mathbb{F}^{2\times 2}$ 的一组基 例 7.4.5

$$E_{11} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, E_{12} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, E_{21} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, E_{22} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix},$$

矩阵
$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} = a_{11}E_{11} + a_{12}E_{12} + a_{21}E_{21} + a_{22}E_{22}$$
,即 A 在这组基下的坐标表示为 $A = (E_{11}, E_{12}, E_{21}, E_{22}) \begin{bmatrix} a_{11} \\ a_{12} \\ a_{21} \\ a_{22} \end{bmatrix}$,故 A 在这组基下的坐标是 $\boldsymbol{a} = \begin{bmatrix} a_{11} \\ a_{12} \\ a_{21} \\ a_{22} \end{bmatrix}$.

$$A = \tfrac12(A+A^{\rm T}) + \tfrac12(A-A^{\rm T})$$

再考虑例 7.2.19 中线性空间 $\mathbb{F}^{2\times 2}$ 的一组基

$$E_{11}, E_{22}, E_{12} + E_{21} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, E_{12} - E_{21} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix},$$

矩阵 A 在这组基下的坐标表示为 $A=(E_{11},E_{22},E_{12}+E_{21},E_{12}-E_{21})\tilde{a}$, 其中

$$\tilde{a} = \begin{bmatrix} a_{11} \\ a_{22} \\ \frac{a_{12} + a_{21}}{2} \\ a_{12} - a_{21} \end{bmatrix}$$
 是 A 在这组基下的坐标.

不同基下的坐标

多项式空间 $R[x]_n$ 在不同基下的坐标

多项式 $f=a_0+a_1x+\cdots+a_{n-1}x^{n-1}$,它在基 $1,x,\cdots,x^{n-1}$ 下的坐标表示为

$$f=(1,x,\cdots,x^{n-1}){m f},$$
 其中 ${m f}=egin{bmatrix} a_0\ a_1\ dots\ a_{n-1} \end{bmatrix}$ 是 f 在这组基下的坐标.

它在基 $1,x-x_0,\cdots,(x-x_0)^{n-1}$ 下的坐标表示为 $f=(1,x-x_0,\cdots,(x-x_0)^{n-1})\widetilde{\boldsymbol{f}},$

其中
$$\widetilde{f}=\begin{bmatrix} f(x_0) \\ f'(x_0) \\ \vdots \\ \frac{1}{(n-1)!}f^{(n-1)}(x_0) \end{bmatrix}$$
 是 f 在这组基下的坐标.

过渡矩阵

 $\boldsymbol{t}_1 = t_{11}\boldsymbol{e}_1 + \dots + t_{n1}\boldsymbol{e}_n,$

÷

给定 n 维线性空间的两组基 e_1 , …, e_n 和 t_1 , …, t_n , 设

$$\boldsymbol{t}_n = t_{1n}\boldsymbol{e}_1 + \dots + t_{nn}\boldsymbol{e}_n,$$

可以形式地写成
$$(\boldsymbol{t}_1,\cdots,\boldsymbol{t}_n) = (\boldsymbol{e}_1,\cdots,\boldsymbol{e}_n) \begin{bmatrix} t_{11} & \cdots & t_{1n} \\ \vdots & & \vdots \\ t_{n1} & \cdots & t_{nn} \end{bmatrix} =: (\boldsymbol{e}_1,\cdots,\boldsymbol{e}_n)T,$$

其中 T 称为从基 e_1, \dots, e_n 到基 t_1, \dots, t_n 的**过渡矩阵**.

命题 7.4.6 给定数域 $\mathbb F$ 上 n 维线性空间 $\mathcal V$ 的一组基 e_1,\cdots,e_n ,和 $\mathbb F$ 上 n 阶方阵 T. 令 $(t_1,\cdots,t_n)=(e_1,\cdots,e_n)T$,则有:

- 1. 如果 t_1, \dots, t_n 是一组基,则 T 可逆;
- 2. 如果 T 可逆,则 t_1, \dots, t_n 是一组基.
- 1. 基变换公式: $(t_1, \dots, t_n) = (e_1, \dots, e_n)T$, 其中 T 可逆;
- 2. 坐标变换公式: 若 $\boldsymbol{a}=(\boldsymbol{t}_1,\cdots,\boldsymbol{t}_n)\boldsymbol{y}=(\boldsymbol{e}_1,\cdots,\boldsymbol{e}_n)\boldsymbol{x},$ 则 $\boldsymbol{x}=T\boldsymbol{y}.$

矩阵空间 $\mathbb{F}^{2\times 2}$ 的两组基 $E_{11}, E_{12}, E_{21}, E_{22}$ 与 $E_{11}, E_{22}, E_{12} + E_{21}, E_{12} - E_{21}$

易得
$$(E_{11}, E_{22}, E_{12} + E_{21}, E_{12} - E_{21}) = (E_{11}, E_{12}, E_{21}, E_{22})$$

$$\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 1 & -1 \\
0 & 1 & 0 & 0
\end{bmatrix}, 因$$

此从 $E_{11}, E_{12}, E_{21}, E_{22}$ 到 $E_{11}, E_{22}, E_{12} + E_{21}, E_{12} - E_{21}$ 的过渡矩阵就是该四阶矩阵.

多项式空间 $\mathbb{R}[x]_n$ 的两组基 $1,x,\cdots,x^{n-1}$ 与 $1,x-x_0,\cdots,(x-x_0)^{n-1}$

易得 $(1,x-x_0,\cdots,(x-x_0)^{n-1})=(1,x,\cdots,x^{n-1})T$,其中

$$T = \begin{bmatrix} 1 & -x_0 & x_0^2 & \cdots & (-x_0)^{n-1} \\ & 1 & -2x_0 & \cdots & (n-1)(-x_0)^{n-2} \\ & \ddots & \ddots & \vdots \\ & & 1 & -(n-1)x_0 \\ & & & 1 \end{bmatrix},$$

因此从 $1,x,\cdots,x^{n-1}$ 到 $1,x-x_0,\cdots,(x-x_0)^{n-1}$ 的过渡矩阵为上三角矩阵 T.

其次来看同一个向量在两组基下坐标表示的变化规律. 设 $a\in\mathcal{V}$ 在一组基 e_1,\cdots,e_n 下的坐标为 x_1,\cdots,x_n ,在另一组基 t_1,\cdots,t_n 下的坐标表示为 y_1,\cdots,y_n ,那么坐标表示就是

$$\boldsymbol{a} = (\boldsymbol{e}_1, \cdots, \boldsymbol{e}_n) \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} =: (\boldsymbol{e}_1, \cdots, \boldsymbol{e}_n) \boldsymbol{x}, \qquad \boldsymbol{a} = (\boldsymbol{t}_1, \cdots, \boldsymbol{t}_n) \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} =: (\boldsymbol{t}_1, \cdots, \boldsymbol{t}_n) \boldsymbol{y}.$$

设两组基之间的过渡矩阵为 $T, \ \mathbbm{D} \ (\textbf{\emph{t}}_1,\cdots,\textbf{\emph{t}}_n) = (\textbf{\emph{e}}_1,\cdots,\textbf{\emph{e}}_n)T, \ \mathbbm{D}$

$$\boldsymbol{a} = (\boldsymbol{t}_1, \cdots, \boldsymbol{t}_n) \boldsymbol{y} = \Big((\boldsymbol{e}_1, \cdots, \boldsymbol{e}_n) T \Big) \boldsymbol{y} = (\boldsymbol{e}_1, \cdots, \boldsymbol{e}_n) (T \boldsymbol{y}). \tag{7.4.1}$$

而 a 在基 e_1, \cdots, e_n 下的表示法唯一,因此 x = Ty. 可见,只要知道了向量在一组基下的坐标和这组基到另一组基的过渡矩阵,就能得到该向量在另一组基下的坐标.

1. 容易验证

$$\begin{bmatrix} a_{11} \\ a_{12} \\ a_{21} \\ a_{22} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & -1 \\ 0 & 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} a_{11} \\ a_{22} \\ \frac{a_{12} + a_{21}}{2} \\ \frac{a_{12} - a_{21}}{2} \end{bmatrix}.$$

2. 可以验证

$$\begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_{n-2} \\ a_{n-1} \end{bmatrix} = \begin{bmatrix} 1 & -x_0 & x_0^2 & \cdots & (-x_0)^{n-1} \\ & 1 & -2x_0 & \cdots & (n-1)(-x_0)^{n-2} \\ & & \ddots & \ddots & \vdots \\ & & 1 & -(n-1)x_0 \\ & & & 1 \end{bmatrix} \begin{bmatrix} f(x_0) \\ f'(x_0) \\ \vdots \\ \frac{1}{(n-2)!}f^{(n-2)}(x_0) \\ \frac{1}{(n-1)!}f^{(n-1)}(x_0) \end{bmatrix}.$$

作业 (12月15日)

练习7.3

4, 5, 6, 12, 16, 17, 18

练习7.4

2, 4, 7

12月20日提交