

Comparison of Voice-to-Text Neural Networks

DATS 6203: Final Project

Anamay Agnihotri • Tanaya Kavathekar • Alex Cohen

Outline

- Introduction
- Defining the Problem
- Data Sources and Collection
- Understanding the Networks
- Experiment Methodology
- Preliminary Results
- Final Results and Contributions
- Conclusion and Next Steps

Translating audio to text is a complex problem

- Audio data is extremely complex, relying on the translation from physical speech to electrical signals to encoded ones and zeros computers can interpret
- Variability in speech and acoustics, attributable to different languages, pronunciations and accents, along with lack of extensively labelled training data, make generalizable systems difficult.
- Speech recognition systems have become commonplace, with implementations like Siri, Alexa, Amazon's Echo, and Google Home becoming a part of people's everyday lives.
- Each implementation presumably has its own proprietary model architectures, which have been worked on for years and trained over 1000s of hours of data.

Problem Statement

Can open source Voice-to-Text neural architectures, either through pretrained models or transfer learning, compete with the proprietary, broadly developed translation models of tech giants like Google?

Data Sources

DeepSpeech 2

- An end-to-end, automatic speech recognition pipeline developed by researchers at **Baidu**, an Al organization.
- The DeepSpeech2 used here follows the pytorch implementation of github user
 SeanNaren, an ML research engineer from the UK.
- The repository has three pretrained models based on the following data sources:
 - An4: an alphanumeric database of census responses compiled by Carnegie Mellon University
 - **LibriSpeech**: A large-scale corpus of 1000 hours of English audio-book recordings
 - TED-LIUM: a collection of 1495 recorded and transcribed TED talks
- **Voxforge** data, a cleaned and accented English audiobook dataset from LibriVox, was used for the model evaluation and all transfer learning purposes.

Data Manipulation

- All of the data came in the form of wav files (similar to an MP3 file), yet need to be converted to an input format the networks can understand
- Data transformations involved conversion using a Fourier Transformation and decomposition into magnitude and phase elements (done using the popular audio package LibRosa) to create a Spectrogram, which would be used as input to the DeepSpeech model

Text: 'YOU MEAN FOR THIS STATE GENERAL ALBERTA'

Understanding the DeepSpeech Network

- Inputs: Spectrograms of power normalized audio clips
- Outputs: graphemes (units of language). {a,b..z, apostrophes, spaces, blank}
- Hidden activation: clipped ReLU/hardtanh $\longrightarrow \sigma(x) = \min(\max(x,0),20)$
- Subsampling by striding in the convolutional layers not good for english models.
- Output layer uses softmax activation, computing the probability distribution for each grapheme per time step. $p(\ell_t = k|x) = \frac{\exp(w_k^L \cdot h_t^{L-1})}{\sum_i \exp(w_i^L \cdot h_t^{L-1})}$
- 2D convolutions are used to convolve along (normalize) both the frequency and time axes
- Batch normalization improves speed of convergence without loss in generalization performance.

Batch

Understanding the DeepSpeech Network (Continued)

- Loss function: Connectionist Temporal Classification (CTC) loss $\mathcal{L}(x,y;\theta) = -\log \sum_{\ell \in A \text{ lim}(x,y)} \prod_{t} p_{\text{ctc}}(\ell_t|x;\theta).$
- CTC loss is used in problems where having aligned data is an issue.
- Probability of each possible text alignment (path) is the product of the predicted probability of each character in that path.
- This alignment probability is summed up for all possible alignments of the label text. The negative logarithm of this summation is defined as the performance index, which is back-propagated.
- Optimizer: Synchronous SGD (reproducible, deterministic)

Google's Speech-to-Text API

- Google Speech-to-Text enables developers to convert audio to text by applying powerful neural network model.
- Recognizes more than 120 languages and can process real-time streaming or prerecorded audio.
- Ideal for quick prototyping for complex speech tasks like separating multiple speakers, detecting speaker language and transcribing over multiple channels (audio sources).
- Each API request returns multiple transcriptions, sorted by their confidence.
- Enable the API and obtain a private key (credentials) for a given service/billing account.
- Easy to use and reliable REST API.

Experiment

- Use the pre-trained models (an4, LibriSpeech, and TED-LIUM) to transcribe 500 test audio files from the Voxforge dataset.
- Use different parameter tunings (transfer learning) to train the pre-trained models on other Voxforge files and transcribe the same 500 test audio files.
- Use the Google Cloud Speech-to-Text API to transcribe the same 500 test audio files.
- Calculate the Character Error Rate (CER) and Word Error Rate (WER) for all models to compare and contrast performance.

Preliminary Results

Model	WER	CER	Eval time
An4 - Pretrained	10.05%	30.80%	~4 mins
LibriSpeech - Pretrained	2.27%	4.28%	~4 mins
TED-LIUM - Pretrained	4.86%	9.23%	~4 mins
Google Speech-to-Text	1.61%	3.73%	~8 mins

Transfer learning approaches

Trained a librispeech pre-trained model on Voxforge dataset with different parameter settings:

- Default settings: batch size = 20, lr = 3e-4, learning-anneal = 1.1, momentum = 0.9
- Using 500 random sampled files with more than 1 sec and less than 15 secs audio file
 - hidden layers = 5, hidden size of RNNs = 500, RNN type = GRU
 - hidden layers = 5, hidden size of RNNs = 500, RNN type = LSTM
 - hidden layers = 5, hidden size of RNNs = 1000, RNN type = LSTM
- Using 7636 sampled with more than 1 sec and less than 15 secs audio file
 - hidden layers = 5, hidden size of RNNs = 1000, RNN type = LSTM

Final Results

Model	WER	CER	Eval time
LibriSpeech - Pretrained	2.27%	4.28%	~4 mins
LibriSpeech - Pretrained -Transfer Learning (GRU)	3.09%	6.09%	~4 mins
LibriSpeech - Pretrained -Transfer Learning (LSTM)	3.15%	6.35%	~4 mins
LibriSpeech - Pretrained -Transfer Learning (LSTM+1000)	3.14%	6.31%	~4 mins
LibriSpeech - Pretrained -Transfer Learning (LSTM+1000)	1.66%	3.00%	~4 mins
Google Speech-to-Text	1.61%	3.73%	~8 mins

Key contributions

- Strip and reformat the original source code (rewriting arguments, re-defining classes, etc.)
- Simplified code base to meet project requirements and increase ease of use/understanding
 - Updated with significant commenting to explain most existing lines of code
- Developed model evaluation comparison scripts, rewriting target metric code
- Conducted informed parameter tuning and transfer learning to fit the context of the Voxforge dataset, generating four new transfer-learning models
- Developed Google API transcription code

Conclusion and Next Steps

- The generalized Google Speech-to-text model outperforms the pre-trained DeepSpeech2 models.
- Our customized transfer learning approaches with the bi-directional LSTMs performed marginally better the Google API service on our test set, however may not be as generalizable.
- Next Step: Creating a model trained on all three datasets simultaneously to increase variety of audio data
- Next Step: Using data augmentation techniques in transfer learning models to increase robustness and generalizability.
- Next Step: Parallelization of GPU computing using CUDA could scale the transfer learning to larger datasets.
- Next Step: Incorporate training visualization that could better guide the transfer learning tunings.

Thank you!

Appendix

