

Для исключения полного перебора считаем, что:

- 1. вершины не совпадают (соответственно, индексы вершин также не совпадают)
- 2. индекс вершины i₁ больше, чем i₂, i₃, i₄,
- 3. индекс вершины i_2 больше, чем i_3 , i_4 ,
- 4. индекс вершины із больше, чем і4.

Общее количество точек равно n, область значений индексов:

$$i_1 \in [3, ..., n-1]$$

$$i_2 \in [2, ..., n-2]$$

$$i_3 \in [1, ..., n-3]$$

$$i_4 \in [0, \ldots, n-4]$$

Считаем, что нулевой индекс метрики IM соответствует стартовому состоянию $\{i_1,i_2,i_3,i_4\} = \{3,2,1,0\}$:

Пусть при увеличении i_1 *IM* будет расти линейно изменению i_1 относительно его стартового состояния:

Следовательно, $IM = f(i_2, i_3, i_4) + i_1 - 3$

Каждый раз при достижении максимума значения i_1 мы будем увеличивать значение i_2 , следовательно при каждом увеличении i_2 относительно его стартового состояния $I\!M$ будет расти кратно длине пройденного цикла i_1 :

Следовательно,
$$IM = f(i_3, i_4) + \sum_{j=2}^{i_2-1} (n-3-(j-2)) + i_1 - 3$$

Каждый раз при достижении максимума значения i_2 мы будем увеличивать значение i_3 , следовательно при каждом увеличении i_3 относительно его стартового состояния IM будет расти кратно длине пройденного цикла i_2 :

Спеловательно

$$IM = f(i_4) + \sum_{k=1}^{i_3-1} \left(\sum_{j=2}^{n-2} (n-3-(j-1)) - (k-1) \right) + \sum_{j=2}^{i_2-1} (n-3-(j-2)) + i_1 - 3$$

Каждый раз при достижении максимума значения i_3 мы будем увеличивать значение i_4 , следовательно при каждом увеличении i_4 относительно его стартового состояния IM будет расти кратно длине пройденного цикла i_3 :

$$IM = \sum_{p=0}^{i_4-1} \left(\sum_{k=1}^{i_3-1} \left(\sum_{j=2}^{n-2} (n-3-(j-1)) - (k-1) \right) - p \right) + \sum_{k=1}^{i_3-1} \left(\sum_{j=2}^{n-2} (n-3-(j-1)) - (k-1) \right) + \sum_{j=2}^{i_2-1} (n-3-(j-2)) + i_1 - 3$$