Коллоквиум по курсу "Математический анализ", I курс, осенний семестр 2022

Группа БПМИ2211

31 октября 2022 г.

1 Рациональные и вещественные числа. Десятичные дроби. Принцип полноты, его выполнение для десятичных дробей.

Рациональные числа

Рациональные числа – это числа вида $\frac{p}{q}$, где p – целое число, q – натуральное число, причём два числа $\frac{p_1}{q_1}$ и $\frac{p_2}{q_2}$ считаются равными, если $p_1q_2=p_2q_1$. Все свойства натуральных, целых, рациональных чисел и операций над ними будем считать известными.

Десятичные дроби и вещественные числа

Каждое рациональное число можно представить в виде конечной или бесконечной периодической десятичной дроби, например: $\frac{1}{10}=0.1, \frac{1}{7}=0.(142857)$. Пусть 0.(9)=x, тогда 10x=9+x, значит, 0,(9)=1, поэтому десятичные записи с периодом 9 рассматривать не будем.

Множество вещественных (действительных) чисел отождествляется с множеством всех десятичных дробей вида $\pm a_0.a_1a_2...$, где $a_0 \in \mathbb{N} \cup \{0\}, a_j \in \{0,...,9\}$, и записи, в которых с какогото момента стоят одни девятки, запрещены. Число $\pm 0.00...$ совпадает с числом 0 и называется нулём. Ненулевое число называется положительным, если в его записи стоит знак + (который обычно опускается). Ненулевое число называется отрицательным, если в его записи стоит знак -. В вещественные числа естественным образом вложены рациональные.

На множестве вещественных чисел также определены операции сложения и умножения, для которых справедливы все их естественные свойства (множество вещественных чисел является полем).

На вещественных числах задано **отношение порядка** следующим образом: на положительных вещественных числах задан лексикографический порядок, т. е. $a_0.a_1a_2... \leq b_0.b_1b_2...$ тогда и только тогда, когда $a_0.a_1a_2... = b_0.b_1b_2...$ или найдётся разряд k, для которого $a_0 = b_0,...,a_{k-1} = b_{k-1}$ и $a_k < b_k$, который естественным образом переносится на отрицательные.

Для вещественных чисел определён модуль числа |a|, равный -a при a < 0 и a при $a \ge 0$. Напомним, что для модуля выполнено **неравенство треугольника** $|a+b| \le |a| + |b|$. Из неравенства треугольника следует, что $||a| - |b|| \le |a-b|$.

Принцип полноты

Будем говорить, что множество чисел A лежит **левее** множества B, если для каждого $a \in A$ и каждого $b \in B$ выполняется неравенство $a \le b$. Например, если $A = \{a \in \mathbb{Q} : a < 4\}, B = \{b \in \mathbb{Q} : a < 4\}$

b > 4, то A левее В.

Если множество A левее множества B, то говорят, что число c разделяет множества A и B, если $a \le c$ для каждого $a \in A$ и $c \le b$ для каждого $b \in B$. Например, число 4 разделяет множества A и B, заданные выше.

Будем говорить, что на множестве чисел выполнен **принцип полноты**, если для произвольных непустых подмножеств A левее B нашего множества найдётся разделяющий их элемент.

Теорема. На множестве вещественных чисел выполняется принцип полноты.

Предположим, что в A есть положительный элемент, тогда B состоит только из положительных чисел (случай, когда в B есть отрицательное число, рассматривается аналогично). Построим число $c = c_0.c_1c_2\ldots$, разделяющее A и B.

Рассмотрим множество всех целых неотрицательных чисел, с которых начинаются элементы множества B (это множество состоит из целых неотрицательных чисел в силу того, что в B есть только положительные числа). Пусть b_0 — наименьшее из таких чисел и положим $c_0 = b_0$. Теперь рассмотрим все числа в множестве B, начинающиеся с c_0 , и найдём у них наименьшую первую цифру после запятой. Пусть эта цифра b_1 , тогда полагаем $c_1 = b_1$. Теперь рассмотрим все числа в множестве B, начинающиеся с $c_0.c_1$, и найдём у них наименьшую вторую цифру после запятой. Пусть эта цифра b_2 , тогда полагаем $c_2 = b_2$. Аналогично ищутся остальные цифры числа c.

Таким образом построена бесконечная десятичная дробь $c_0.c_1c_2...$ Заметим, что если бы у построенной десятичной записи с какого-то момента шли бы только девятки, то и в В было бы число, в записи которого с какого-то момента участвуют только девятки, но такие записи мы запретили.

Покажем, что построенное число разделяет множества А и В.

Во-первых, по построению $c \leq b$ для каждого $b \in B$. Действительно, либо b = c (тогда всё ОК), либо $b \neq c$. Во втором случае пусть $b_0 = c_0, \ldots, b_{k-1} = c_{k-1}$ и $b_k \neq c_k$. Тогда, по построению числа $c, c_k < b_k$ и c < b.

Покажем, что $a \leq c$ для каждого $a \in A$. Предположим, что a > c, т. е. $a \geq c$ и $a \neq c$. Тогда найдётся позиция k, для которой $a_0 = c_0, \ldots, a_{k-1} = c_{k-1}$ и $a_k > c_k$. Но по построению числа c есть такой $b \in B$, что $b_0 = c_0, \ldots b_k = c_k$, а значит a > b, что противоречит условию A левее B.

- 2 Иррациональность числа $\sqrt{2}$ (т.е. положительного решения уравнения $x^2 = 2$), его существование в рамках вещественных чисел, как следствие принципа полноты.
- 2.1 Иррациональность числа $\sqrt{2}$ (т.е. положительного решения уравнения $x^2 = 2$).

Докажем, что рациональных решений уравнения $x^2 = 2$ не существует. (от противного)

Доказательство. Предположим, что $\frac{p}{q}$ — такое решение, где $p \in \mathbb{Z}, q \in \mathbb{N}$ и дробь несократима, т.е. нет общ делителей. Тогда $2 = \frac{p^2}{q^2} \Leftrightarrow 2q^2 = p^2 \Rightarrow p^2 \vdots 2 \Rightarrow p \vdots 2 \Rightarrow p = 2p_1 \Rightarrow 2q^2 = 4p_1^2 \Leftrightarrow \Leftrightarrow q^2 = 2p_1^2 \Rightarrow q \vdots 2 \Rightarrow p$ и q - чётные, а $\frac{p}{q}$ — сократимая дробь \Rightarrow противоречие. Таким образом, доказали, что $\sqrt{2} \notin \mathbb{Q}$.

Существование $\sqrt{2}$ в рамках вещественных чисел. 2.2

Объясним чем с точки зрения структуры множества чисел обусловлено такое "отсутствие" $\sqrt{2}$. Пусть $A = \{a \in \mathbb{R} : a > 0, a^2 \le 2\}$ и $B = \{b \in \mathbb{R} : b > 0, b^2 \ge 2\}$. Заметим, что множество A лежит левее множества B, так как $0 < b^2 - a^2 = (b - a) \cdot (b + a)$ для каждых $a \in A$ и $b \in B$, и a + b > 0. Если бы существовало число c, разделяющее A и B, то обязательно $c^2 = 2$.

Действительно, во-первых, заметим, что $1 \leq c \leq 2$ т.к. $1 \in A, 2 \in B$. Теперь, если $c^2 < 2$, то число $c + \frac{2-c^2}{5} \in A$, т.к. $(c + \frac{2-c^2}{5})^2 = c^2 + 2c \cdot \frac{2-c^2}{5} + (\frac{2-c^2}{5})^2 \leq c^2 + 4 \cdot \frac{2-c^2}{5} + \frac{2-c^2}{5} + \frac{2-c^2}{5} \leq c^2 + 4 \cdot \frac{2-c^2}{5} + \frac{2-c$ 2, но $c + \frac{2-c^2}{5} > c \Rightarrow c$ не разделяет A и B.

Если $c^2 > 2$, то число $c - \frac{c^2 - 2}{4} \in B$, т.к. $(c - \frac{c^2 - 2}{4})^2 \ge c^2 - 2c \cdot \frac{c^2 - 2}{4} \ge c^2 - 4 \cdot \frac{c^2 - 2}{4} = 2$, но $c - \frac{c^2 - 2}{4} < c \Rightarrow c$ не разделяет A и B.

Таким образом, $c^2=2$. (Так как $c^2=2$, где c разделяет A и B, то из принципа полноты для десятичных дробей следует, что число c существует.)

Предел последовательности, его основные свойства (един-3 ственность, арифметические свойства, ограниченность сходящейся последовательности, отделимость).

3.1Предел последовательности

Если каждому числу $n \in \mathbb{N}$ поставлено в соответствие некоторое число a_n , то говорим, что задана **числовая последовательность** $\{a_n\}_{n=1}^{\infty}$.

Говорят, что последовательность $\{a_n\}_{n=1}^{\infty}$ **сходится** к числу a, если для каждого числа $\varepsilon>0$ найдется такое натуральное число (номер) $N(\varepsilon) \in \mathbb{N}$, что $|a_n - a| < \varepsilon$ при каждом $n > N(\varepsilon)$. То же самое утверждение можно переписать в кванторах $\forall -\exists$ следующим образом:

$$\forall \varepsilon > 0 \,\exists N(\varepsilon) \in \mathbb{N} \colon \forall n > N(\varepsilon) \, |a_n - a| < \varepsilon.$$

Используются обозначения: $\lim_{n\to\infty} a_n = a$ или $a_n\to a$ при $n\to\infty$.

Пример 1. 1) Последоввательность $a_n = \frac{1}{n}$ сходится к числу a = 0. Действительно

$$\left|\frac{1}{n} - 0\right| = \frac{1}{n},$$

поэтому при $N(\varepsilon) = \left[\frac{1}{\varepsilon}\right] + 1 > \frac{1}{\varepsilon}$ выполнено $|a_n - a| < \varepsilon$.

 $a_n = (-1)^n$ не имеет предела. Действительно, если a ее предел, то при достаточно больших п $|a-a_n| < 1/2$ и $|a-a_{n+1}| < 1/2$, а значит по неравенству треугольника $2=|a_n-a_{n+1}|<1$, что приводит к противоречию.

3.2 Основные свойства предела последовательности

Последовательность $\{a_n\}_{n=1}^{\infty}$ называется **ограниченной**, если существуют такие числа $C, c \in \mathbb{R}$, что $c \leq a_n \leq C$ для каждого $n \in \mathbb{N}$.

3.2.1 Единственность предела

Пусть $\lim_{n\to\infty} a_n = a$ и $\lim_{n\to\infty} a_n = b$, тогда a = b.

Доказательство. Действительно, если $a \neq b$, то $|a-b| = \varepsilon_0 > 0$. Но по определению найдется номер N_1 , для которго $|a_n-a|<\frac{\varepsilon_0}{2}$ при $n>N_1$ и найдется номер N_2 , для которого $|a_n-b|<\frac{\varepsilon_0}{2}$ при $n > N_2$. Тогда при $n > \max\{N_1, N_2\}$ выполено

$$\varepsilon_0 = |a - b| = |a - a_n + a_n - b| \le |a - a_n| + |a_n - b| < \varepsilon_0.$$

Противоречие.

3.2.2Арифметика предела

Пусть $\lim_{n\to\infty} a_n = a$ и $\lim_{n\to\infty} b_n = b$. Тогда 1) $\lim_{n\to\infty} (\alpha a_n + \beta b_n) = \alpha a + \beta b \ \forall \alpha, \beta \in \mathbb{R};$

- 2) $\lim a_n b_n = ab;$
- 3) если $b \neq 0$, $b_n \neq 0$, то $\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{a}{b}$.

Доказательство. Пусть $\varepsilon > 0$ — произвольное число. Тогда найдется номер N_1 , для которого $|a_n - a| < \varepsilon$, и найдется номер N_2 , для которого $|b_n - b| < \varepsilon$.

1) Получаем, что при $n > N = \max\{N_1, N_2\}$ выполнено

$$|\alpha a_n + \beta b_n - (\alpha a + \beta b)| = |\alpha(a_n - a) + \beta(b_n - b)| \le |\alpha||a_n - a| + |\beta||b_n - b| < (|\alpha| + |\beta|)\varepsilon.$$

- 2) Замечаем, что $|a_nb_n-ab|=|a_nb_n-ab_n+ab_n-ab|\leq |b_n||a_n-a|+|a||b_n-b|$. Т.к. сходящаяся последовательность ограничена, то найдется число M>0, для которого $|b_n|\leq M$, поэтому при $n > N = \max\{N_1, N_2\}$ выполнено $|a_n b_n - ab| \le (M + |a|)\varepsilon$.
- 3) Достаточно проверить, что $\frac{1}{b_n} \to \frac{1}{b}$ при $n \to \infty$. Заметим, что по условию $b \neq 0$, поэтому найдется номер $N_3 \in \mathbb{N}$, для которого, при $n > N_3$, выполнено $|b_n| > \frac{|b|}{2}$. Тогда при $n > \max\{N_2, N_3\}$ выполнено

$$\left|\frac{1}{b_n} - \frac{1}{b}\right| = \frac{|b_n - b|}{|b_n||b|} \le \frac{2}{|b|^2} \cdot \varepsilon.$$

Ограниченность сходящейся последовательности

Сходящаяся последовательность ограничена.

Доказательство. Если $\lim_{n\to\infty}a_n=a$, то для некоторого $N\in\mathbb{N}$ выполнено $|a_n-a|<1$ при n>N. Отсюда $|a_n| = |a_n - a + a| \le |a_n - a| + |a| < 1 + |a|$ при n > N. Значит,

$$|a_n| \le M = \max\{1 + |a|, |a_1|, \dots, |a_N|\},\$$

T.e. $-M = c < a_n < C = M$.

3.2.4 Лемма об отделимости

Если $a_n \to a$ и $a \neq 0$, то найдется номер $N \in \mathbb{N}$, для которого $|a_n| > \frac{|a|}{2} > 0$ при n > N.

Доказательство.
$$\forall \varepsilon > 0: N(\varepsilon) \in \mathbb{N} \ \forall n > N(\varepsilon): |a_n - a| < \varepsilon$$
 Возьмем $\varepsilon = \frac{|a|}{2} > 0: \exists N \ \forall n > N: |a_n - a| < \frac{|a|}{2}$
$$|a_n| = |a_n + a - a| \ge |a| - |a_n - a| > \frac{|a|}{2}$$

4 Переход к пределу в неравенствах. Принцип вложенных отрезков и геометрическая интерпретация вещественных чисел, вещественная прямая.

4.1 Переход к пределу в неравенствах

Пусть $\lim_{n\to\infty} a_n = a$, $\lim_{n\to\infty} b_n = b$, тогда $\exists\, N \; \forall n>N: a_n \leq b_n \Rightarrow a \leq b$.

Доказательство. Предположим
$$a-b=\varepsilon_0>0\Rightarrow$$
 $\Rightarrow \exists N_1,\ N_2: |a_n-a|<\frac{\varepsilon_0}{2}\ \forall\ n>N_1,\ |b_n-b|<\frac{\varepsilon_0}{2}\ \forall\ n>N_2\Rightarrow$ $\Rightarrow \varepsilon_0=a-b=a-a_n+a_n-b+b_n-b_n\leq a-a_n+b_n-b<\varepsilon_0$ противоречие.

4.2 Лемма о зажатой последовательности

Лемма 2. Пусть $\lim_{n\to\infty} a_n = \lim_{n\to\infty} b_n = a$. Тогда $\exists N \ \forall n > N : a_n \le c_n \le b_n \Rightarrow \lim_{n\to\infty} c_n = a$.

Доказательство. По определению $\forall \varepsilon \; \exists \; N_1 \in \mathbb{N}, \; N_2 \in \mathbb{N} : |a - a_n| < \varepsilon \, \forall n > N_1, \; |b - b_m| < \varepsilon \, \forall m > N_2 \Rightarrow \forall k > \max\{N, N_1, N_2\} : a - \varepsilon < a_k \leq c_k \leq b_k < a + \varepsilon \Rightarrow \lim_{n \to \infty} c_n = a$

4.3 Вещественная прямая

Пусть $a,b \in \mathbb{R}$ и a < b. Множества $[a;b] := \{x \in \mathbb{R} : a \le x \le b\}$, $(a;b) := \{x \in \mathbb{R} : a < x < b\}$ называются отрезком и интервалом соответственно. Длина отрезка (интервала) – величина b-a.

4.4 Принцип вложенных отрезков

Теорема 3. Всякая последовательность $\{[a_n; b_n]\}_{n=1}^{\infty}$ вложенных отрезков (то есть таких, что $[a_{n+1}; b_{n+1}] \subset [a_n; b_n]$) имеет общую точку. Кроме того, если длины отрезков стремятся к нулю, то есть $b_n - a_n \to 0$, то такая общая точка только одна.

Доказательство. По условию $[a_{n+1}; b_{n+1}] \subset [a_n; b_n]$, откуда $a_n \leq a_{n+1} \leq b_{n+1} \leq b_n$. Пусть n < m, тогда $a_n \leq a_m \leq b_m \Rightarrow a_n < b_m$. При n > m получим, что $a_n \leq b_n \leq b_m \Rightarrow a_n < b_m$. Таким образом, $a_n < b_m \ \forall \ n, m \in \mathbb{N}$, тогда если $A := \{a_n, n \in \mathbb{N}\}, \ B := \{b_m, m \in \mathbb{N}\}$, то A левее B. Тогда по принципу полноты $\exists \ c \in \mathbb{R}: \ a_n \leq c \leq b_m \ \forall \ n, m \in \mathbb{N}$. В частности, $a_n \leq c \leq b_n \Rightarrow c \in [a_n; b_n]$.

Пусть общих точек две: c и c'. Без ограничения общности, скажем, что c < c'. Тогда, получим, что $a_n \le c \le c' \le b_n$ и $c' - c \le b_n - a_n$.

Ho
$$\lim_{n\to\infty} b_n - a_n = 0 \Rightarrow \forall \varepsilon > 0 \; \exists N(\varepsilon) \in \mathbb{N} : \forall n \geq N(\varepsilon) \, |0 - b_n + a_n| < \varepsilon.$$
 Пусть $\varepsilon = c' - c$, тогда $|a_n - b_n| < c' - c \Rightarrow b_n - a_n < c' - c$ противоречие.

4.5 Геометрическая интерпретация вещественных чисел

Сопоставим десятичной дроби $0.a_1a_2...$ последовательность вложенных отрезков по следующему правилу.

Разделим отрезок [0; 1] на 10 равных частей и выберем из получившихся частей a_1+1 -ый по счету. Проделываем ту же самую процедуру с выбранным отрезком и выбираем a_2+1 -ый по счету. И так далее.

Получаем последовательность вложенных отрезков. Причем длина отрезка, получаемого на n-ом шаге, равна $\frac{1}{10^n}$.

По теореме 1 существует единственная $(\lim_{n\to\infty}\frac{1}{10^n}=0)$ общая точка получившейся последовательности вложенных отрезков, которая совпадает с $0.a_1a_2$.

5 Точные верхние и нижние грани, их существование у ограниченных множеств. Теорема Вейерштрасса о пределе монотонной ограниченной последовательности.

5.1 Точные верхние и нижние грани, их существование у ограниченных множеств.

Пусть A — непустое подмножество вещественных чисел.

Число b называется **верхней гранью** множества A, если $a \le b$ для каждого числа $a \in A$. Если есть хотя бы одна верхняя грань, то множество называют **ограниченным сверху**. Наименьшая из верхних граней множества A называется **точной верхней гранью** множества A и обозначается $\sup A$ (супремум).

Число b называется **нижней гранью** множества A, если $b \le a$ для каждого числа $a \in A$. Если есть хотя бы одна нижняя грань, то множество называют **ограниченным снизу**. Наибольшая из нижних граней множества A называется **точной нижней гранью** множества A и обозначается inf A (инфимум).

Ограниченное и сверху и снизу множество называется ограниченным.

Пример 4. Пусть A = (0,1]. Тогда inf A = 0

 $\forall x \in A: x \geq 0 \Rightarrow 0$ — нижняя грань. Если b — нижняя грань, то $\frac{1}{n} \in A, \ \frac{1}{n} \geq b \Rightarrow 0:=\lim_{n \to \infty} \frac{1}{n} > b$ и $\sup A = 1.$ 1 — верхняя грань, т.к. $\forall x \in A: 1 \geq x$ b — верхняя грань, $b \geq 1, 1 \in A$

Установим существование точных верхних (нижних) граней у ограниченных сверху (снизу) множеств.

Теорема 5. Пусть A — непустое ограниченное сверху (снизу) множество. Тогда существует точная верхняя (нижняя) грань $\sup A$ ($\inf A$).

Доказательство. Пусть A — непустое ограниченное сверху множество из условия, а B — непустое (по условию) множество его верхних граней. Тогда A левее B и существует разделяющий A и B

элемент c. Он явлется верхней гранью для A и $c \leq b$ для каждой верхней грани множества A(c- наименьшая из верхних граней). По определению $c = \sup A$.

Наличие inf доказывается аналогично или переходом к множеству -A.

Отсюда получается полезное утверждение о сходимости монотонной ограниченной последовательности.

5.2 Теорема Вейерштрасса о пределе монотонной ограниченной последовательности

Пусть последовательность $\{a_n\}_{n=1}^{\infty}$ не убывает $(a_n \leq a_{n+1})$ и ограничена сверху. Тогда эта последовательность сходится к своему супремуму.

Аналогично, пусть последовательность $\{a_n\}_{n=1}^{\infty}$ не возрастает $(a_{n+1} \leq a_n)$ и ограничена снизу. Тогда эта последовательность сходится к своему инфимуму.

Доказательство. Докажем только первое утверждение. Второе доказывается аналогично или переходом к последовательности $\{-a_n\}_{n=1}^{\infty}$.

Пусть $M = \sup\{a_n \colon n \in \mathbb{N}\} = \sup_{n \in \mathbb{N}} a_n$. Тогда для каждого $\varepsilon > 0$ найдется номер $N \in \mathbb{N}$, для которого $M - \varepsilon < a_N$ (иначе $M - \varepsilon$ — верхняя грань, чего не может быть). В силу того, что последовательность неубывающая, при каждом n > N выполнено

$$M - \varepsilon < a_N \le a_n \le M < M + \varepsilon$$
.

Тем самым, по определению $M = \lim a_n$.

В качестве примера см. п.1 билет 6.

- 6 Вычисление $\sqrt{2}$ с помощью рекурентной формулы $a_{n+1} = \frac{1}{2}(a_n + \frac{2}{a_n}), a_1 = 2$, обоснование сходимости и оценка скорости сходимости. Число e (определение и обоснование корректности).
- 6.1 Вычисление $\sqrt{2}$ с помощью рекурентной формулы $a_{n+1} = \frac{1}{2} \left(a_n + \frac{2}{a_n} \right)$

$$(\sqrt{a} - \sqrt{b})^2 \ge 0, \ a - 2\sqrt{ab} + b \ge 0, \ a + b \ge 2\sqrt{ab}$$
 Заметим, что

$$a_{n+1} = \frac{1}{2} \left(a_n + \frac{2}{a_n} \right) \ge \frac{1}{2} \cdot 2\sqrt{a_n \cdot \frac{2}{a_n}} = \sqrt{2}.$$

Поэтому $a_n \ge \sqrt{2}$. Кроме того $a_{n+1} = \frac{1}{2} \left(a_n + \frac{2}{a_n} \right) \le \frac{1}{2} \left(a_n + \frac{a_n^2}{a_n} \right) = a_n$. $\{a_n\}_{n=1}^\infty$ ограничена снизу и не возрастает, тогда по т. Вейерштрасса у последовательности $\{a_n\}_{n=1}^\infty$ существует предел a. Т.к. $a_n \ge \sqrt{2} > 0$, то и a > 0. Тогда, по арифметике предела получаем $a = \frac{1}{2} \left(a + \frac{2}{a} \right)$, откуда $a = \sqrt{2}$.

Исследуем теперь скорость сходимости:

$$|a_{n+1} - \sqrt{2}| = \frac{|a_n^2 - 2a_n\sqrt{2} + 2|}{2a_n} = \frac{(a_n - \sqrt{2})^2}{2a_n} \le \frac{(a_n - \sqrt{2})^2}{2\sqrt{2}} \le (a_n - \sqrt{2})^2.$$

Индуктивно получаем

$$|a_{n+1} - \sqrt{2}| \le (a_n - \sqrt{2})^2 \le (a_{n-1} - \sqrt{2})^4 \le (a_{n-2} - \sqrt{2})^8 \le (a_1 - \sqrt{2})^{2^n} = (2 - \sqrt{2})^{2^n}.$$

Заметим, что $q:=2-\sqrt{2}<1$, поэтому полученная скорость сходимость q^{2^n} быстрее экспоненциальной q^n (в смысле количества применений рекуррентной формулы для достижения заданной точности).

6.2 Число *е*

У последовательности $a_n = \left(1 + \frac{1}{n}\right)^n$ есть предел, который называют **числом** e. Пусть $a_n = \left(1 + \frac{1}{n}\right)^n$. По биному Ньютона

$$a_n = \sum_{k=0}^n C_n^k \frac{1}{n^k} = 2 + \sum_{k=2}^n \frac{1}{k!} \frac{n \cdot (n-1) \cdot \dots \cdot (n-k+1)}{n^k} = 2 + \sum_{k=2}^n \frac{1}{k!} \left(1 - \frac{1}{n}\right) \cdot \dots \cdot \left(1 - \frac{k-1}{n}\right).$$

Отсюда, во-первых, получаем, что

$$a_n \le 2 + \sum_{k=2}^n \frac{1}{k!} \le 2 + \sum_{k=2}^n \frac{1}{2^{k-1}} < 3,$$

где было использовано неравенство $k! = 1 \cdot 2 \cdot 3 \cdot \ldots \cdot k \ge 2^{k-1}$ при $k \ge 2$. Во-вторых,

$$a_n = 2 + \sum_{k=2}^n \frac{1}{k!} \left(1 - \frac{1}{n} \right) \cdot \dots \cdot \left(1 - \frac{k-1}{n} \right) \le 2 + \sum_{k=2}^n \frac{1}{k!} \left(1 - \frac{1}{n+1} \right) \cdot \dots \cdot \left(1 - \frac{k-1}{n+1} \right)$$

$$\le 2 + \sum_{k=2}^{n+1} \frac{1}{k!} \left(1 - \frac{1}{n+1} \right) \cdot \dots \cdot \left(1 - \frac{k-1}{n+1} \right) = a_{n+1}.$$

Таким образом, последовательность a_n — неубывает и ограничена сверху, а значит имеет предел, который называют **числом** e.

- 7 Подпоследовательность и частичные пределы. Верхний и нижний пределы ограниченной последовательности, их связь с множеством частичных пределов этой последовательности. Критерий сходимости последовательности в терминах частичных пределов.
- 7.1 Определение подпоследовательности. Её предел (частичный предел последовательности).

Пусть дана последовательность $\{a_n\}_{n=1}^{\infty}$. Так же, пусть задана какая-то возрастающая последовательность натуральных чисел $n_1 < n_2 < n_3 < \dots$

Тогда, говорят, что последовательность $b_k = a_{n_k}$ является **подпоследовательностью** последовательности $\{a_n\}_{n=1}^{\infty}$.

Тогда **частичным пределом** последовательности $\{a_n\}_{n=1}^{\infty}$ называют число $a \in \mathbb{R}$ такое, что $a = \lim_{k \to \infty} a_{n_k}$, для некоторой подпоследовательности $\{a_{n_k}\}_{k=1}^{\infty}$.

То есть другими словами число $a \in \mathbb{R}$ называют **частичным пределом**, если a является пределом некоторой бесконечной подпоследовательности последовательности $\{a_n\}_{n=1}^{\infty}$.

7.2 Предложение №1

Любая подпоследовательность сходящейся последовательности сходится к пределу этой последовательности.

<u>Докозательство</u>. Рассмотрим последовательность $\{a_n\}_{n=1}^{\infty}$. Пусть $\lim_{n\to\infty} a_n = A$ и пусть $\{a_{n_k}\}_{k=1}^{\infty}$ - некоторая подпоследовательность.

Тогда по поределению предела $\forall (\varepsilon > 0) \exists N(\varepsilon) : \forall (n > N(\varepsilon)) |a_n - A| < \varepsilon$.

Теперь рассмотрим индексы подпоследовательности. Т.к. $1 \le n_1$ и $n_{k-1} < n_k$ по индукции получим, что $k \le n_k$. Тогда заметим, что для всех k > N, получим, что $|a_{n_k} - A| < \varepsilon$.

7.3 Верхний и нижний пределы ограниченной последовательности.

Рассмотрим последовательность $M_n := \sup_{k>n} a_k$ и $m_n := \inf_{k>n} a_k$. Ясно, что посделовательность M_n - невозрастает, а последовательность m_n - неубывает. Поэтому для <u>ограниченной</u> последовательности существует:

$$\varliminf_{n o \infty} a_n := \lim_{n o \infty} m_n$$
 — нижний частичный предел $\varlimsup_{n o \infty} a_n := \lim_{n o \infty} M_n$ — верхний частичный предел.

7.4 Теорема №1

 $\Pi y cm b \ \{a_n\}_{n=1}^{\infty}$ — ограниченная последовательность. Тогда $\varlimsup_{n\to\infty} a_n, \varliminf_{n\to\infty} a_n$ — частичные пределы последовательности $\{a_n\}_{n=1}^{\infty}$ и любой другой предел принадлежит отрезку

$$\left[\underline{\lim}_{n\to\infty} a_n, \overline{\lim}_{n\to\infty} a_n\right]$$

Доказательство. Покажем, что $M:=\overline{\lim_{n\to\infty}}a_n$ – частичный предел. Для этого индуктивно построим последовательность, которая сходится к $\overline{\lim_{n\to\infty}}a_n$. Пусть $n_1=1$. Пусть индексы $n_1< n_2< \ldots < n_k$ уже построены. Тогда подберём такой номер $n_{k+1}>n_k$, что

$$M_{n_k} - \frac{1}{k+1} < a_{n_{k+1}} \le M_{n_k}.$$

Как подпоследовательность сходящейся последовательности $M_{n_k} \to M$, поэтому по теореме о сходимости зажатой последовательности (по теореме о двух полицейских и преступнике) получаем, что $\lim_{k\to\infty} a_{n_k} = M$.

Аналогично проверяется и то, что $\varliminf_{n\to\infty} a_n$ – частичный предел.

Пусть теперь a — частичный предел. Это означает, что $a=\lim_{k\to\infty}a_{n_k}$ для некоторой подпоследовательности $\{a_{n_k}\}_{n=1}^\infty$. Тогда $\underline{m_{n_{k-1}}}\le a_{n_k}\le M_{n_{k-1}}$. По теореме о переходе к пределу в неравенствах получаем, что $\underline{\lim}_{n\to\infty}a_n\le a\le \overline{\lim}_{n\to\infty}a_n$..

7.5 Следствие из Теоремы 1

Теорема Больцано - во всякой ограниченной последовательности можно найти сходящуюся подпоследовательность.

7.6 Теорема №2

Ограниченная последовательность сходится тогда, и только тогда, когда множество её частичных пределов состоит из одного элемента.

Докозательство. То, что у сходящейся последовательности только один предел, уже доказано ранее.

Теперь предположим, что у <u>ограниченной</u> последовательности $\{a_n\}_{n=1}^{\infty}$ только один частичный предел. По доказаному в Теорема №1 в частности это означает, что

$$\underline{\lim}_{n \to \infty} a_n = \overline{\lim}_{n \to \infty} a_n = A$$

Тогда, $m_{n-1}\leqslant a_n\leqslant M_{n-1}$, и по теореме о сходимости зажатой последовательности, получаем что $\lim_{n\to\infty}a_n=A$

8 Теорема Больцано. Фундаментальная последовательность и критерий Коши. Расходимость последовательности $a_n = \sum_{k=1}^{n} \frac{1}{k}$. Вычисление $\sqrt{2}$ с помощью рекуррентной формулы $a_{n+1} = 1 + \frac{1}{1+a_n}, a_1 = 1$, обоснование сходимости.

8.1 Теорема Больцано

(Следствие теоремы о связи верхнего и нижнего частичного предела с множеством частичных пределов. *Теорема 23*)

Во всекой ограниченной последовательности можно найти сходящуюся подпоследовательность. $(\{a_n\}_{n=1}^{\infty} - \text{ограниченная} \Rightarrow \exists \text{сходящаяся подпоследовательность.})$

8.2 Фундаментальная последовательность и критерий Коши

Говорят, что последовательность $\{a_n\}_{n=1}^{\infty}$ фундаментальна (или является последовательностью Коши), если для каждого числа $\varepsilon > 0$ найдется такое натуральное число (номер) $N(\varepsilon) \in \mathbb{N}$, что $|a_n - a_m| < \varepsilon$ при каждых $n, m > N(\varepsilon)$. То же самое утверждение можно переписать в кванторах $\forall -\exists$ следующим образом:

$$\forall \varepsilon > 0 \exists N(\varepsilon) \in \mathbb{N} : \forall n, m > N(\varepsilon) |a_n - a_m| < \varepsilon$$

Пример.

1) Последоввательность $a_n = \frac{1}{n}$ фундаментальная. Действительно

$$\left| \frac{1}{n} - \frac{1}{m} \right| \leqslant \max \left\{ \frac{1}{n}, \frac{1}{m} \right\},\,$$

поэтому при $N(\varepsilon)=\left[\frac{1}{\varepsilon}\right]+1>\frac{1}{\varepsilon}$ выполнено $|a_n-a_m|<\varepsilon$

2) Последовательность $a_n = (-1)^n$ не фундаментальная. Действительно, если мы возьмем $\varepsilon = 1$, то, какой бы ни был номер $N(\varepsilon)$, для произвольного $n > N(\varepsilon)$ выполнено $|a_n - a_{n+1}| = 2 > 1$.

Критерий Коши.
$$\{a_n\}_{n=1}^\infty$$
 - сх-ся $\iff \{a_n\}_{n=1}^\infty$ - посл. Коши

Доказательство. \Longrightarrow Пусть $\varepsilon > 0$ По определению сходящейся последовательности найдется такой номер $N \in \mathbb{N}$, что $|a_n - a| < \frac{\varepsilon}{2}$ при n > N, где $\lim_{n \to \infty} a_n = a$. Тогда при n, m > N выполнено

$$|a_n - a_m| = |a_n - a_m + a - a| \leqslant |a_n - a| + |a_m - a| < \varepsilon$$

 \longleftarrow (План: 1. Ограничена 2. предел по т. Больцано 3. $a=\lim_{n\to\infty}a_n$)

1. Заметим, что последовательность $\{a_n\}_{n=1}^{\infty}$ ограничена. $\varepsilon=1$ $\exists N: \forall n,m>N: |a_n-a_m|<1$ (из условия). Отсюда $|a_n|=|a_n+a_{N+1}-a_{N+1}|\leqslant |a_n-a_{N+1}|+|a_{N+1}|<1+|a_{N+1}|$, при n>N. Значит,

$$|a_n| < M = max\{1 + |a_{N+1}|, |a_1|, ..., |a_N|\}.$$

- 2. У ограниченной последовательности $\{a_n\}_{n=1}^{\infty}$ по теореме Больцано есть хотя бы один частичный предел $a. \Rightarrow \exists \{a_{n_k}\}_{k=1}^{\infty} : a_{n_k} \to a$
- 3. $\forall \varepsilon > 0 \; \exists k_0 : k > k_0 \; |a_{n_k} a| < \varepsilon$. Кроме того, в силу фундаментальности найдется номер N, для которого $|a_n a_m| < \varepsilon$ при n, m > N. Пусть k выбрано так, что $k > k_0$ и $n_k > N$, тогда при каждом n > N выполнено, что

$$|a_n - a| = |a_n + a_{n_k} - a_{n_k} - a| < |a_n - a_{n_k}| + |a - a_{n_k}| < 2\varepsilon$$

8.3 Расходимость последовательности $a_n = \sum_{k=1}^n \frac{1}{k}$

Проверим отридцание фундаментальности

$$\exists \varepsilon > 0 \ \forall N : \exists n, m > N : |a_n - a_m| \geqslant \varepsilon$$

 $|a_n-a_m|=rac{1}{m+1}+rac{1}{m+2}+\ldots+rac{1}{n}\geqslantrac{n-m}{n}=1-rac{m}{n}$ Для $arepsilon=rac{1}{2},n=2m,m>N\Longrightarrow |a_n-a_m|\geqslantrac{1}{2}\Longrightarrow$ не выполнено условие Коши \Longrightarrow последовательность расходится

8.4 Вычисление $\sqrt{2}$ с помощью рекуррентной формулы $a_{n+1} = 1 + \frac{1}{1+a_n}, a_1 = 1$, обоснование сходимости

Заметим, что $a_n \geqslant 1$ и

$$|a_{n+1} - a_n| = \left| \frac{1}{1 + a_n} - \frac{1}{1 + a_{n-1}} \right| = \frac{|a_{n-1} - a_n|}{(1 + a_n)(1 + a_{n+1})} \leqslant \frac{1}{4} |a_{n-1} - a_n| \leqslant \left(\frac{1}{4}\right)^{n-1} (a_2 - a_1) = \left(\frac{1}{4}\right)^{n-1} \frac{1}{2}$$

Отсюда при m > n:

$$|a_m - a_n| \leqslant |a_m - a_{m-1}| + \ldots + |a_{n+1} - a_n| \leqslant \frac{1}{2} \left(\left(\frac{1}{4} \right)^{m-2} + \ldots + \left(\frac{1}{4} \right)^{n-1} \right) = \frac{1}{2} \left(\frac{1}{4} \right)^{n-1} \left(\frac{1 - \left(\frac{1}{4} \right)^{m-n}}{1 - \frac{1}{4}} \right) \leqslant \frac{1}{2} \left(\frac{1}{4} \right)^{n-1} \left(\frac{1 - \left(\frac{1}{4} \right)^{m-n}}{1 - \frac{1}{4}} \right) \leqslant \frac{1}{2} \left(\frac{1}{4} \right)^{n-1} \left(\frac{1 - \left(\frac{1}{4} \right)^{m-n}}{1 - \frac{1}{4}} \right) \leqslant \frac{1}{2} \left(\frac{1}{4} \right)^{n-1} \left(\frac{1 - \left(\frac{1}{4} \right)^{m-n}}{1 - \frac{1}{4}} \right) \leqslant \frac{1}{2} \left(\frac{1}{4} \right)^{n-1} \left(\frac{1 - \left(\frac{1}{4} \right)^{m-n}}{1 - \frac{1}{4}} \right) \leqslant \frac{1}{2} \left(\frac{1}{4} \right)^{n-1} \left(\frac{1 - \left(\frac{1}{4} \right)^{m-n}}{1 - \frac{1}{4}} \right) \leqslant \frac{1}{2} \left(\frac{1}{4} \right)^{n-1} \left(\frac{1 - \left(\frac{1}{4} \right)^{m-n}}{1 - \frac{1}{4}} \right) \leqslant \frac{1}{2} \left(\frac{1}{4} \right)^{n-1} \left(\frac{1 - \left(\frac{1}{4} \right)^{m-n}}{1 - \frac{1}{4}} \right) \leqslant \frac{1}{2} \left(\frac{1}{4} \right)^{n-1} \left(\frac{1 - \left(\frac{1}{4} \right)^{m-n}}{1 - \frac{1}{4}} \right) \leqslant \frac{1}{2} \left(\frac{1}{4} \right)^{n-1} \left(\frac{1 - \left(\frac{1}{4} \right)^{m-n}}{1 - \frac{1}{4}} \right) \leqslant \frac{1}{2} \left(\frac{1}{4} \right)^{n-1} \left(\frac{1 - \left(\frac{1}{4} \right)^{m-n}}{1 - \frac{1}{4}} \right) \leqslant \frac{1}{2} \left(\frac{1}{4} \right)^{n-1} \left(\frac{1 - \left(\frac{1}{4} \right)^{m-n}}{1 - \frac{1}{4}} \right) \leqslant \frac{1}{2} \left(\frac{1}{4} \right)^{n-1} \left(\frac{1 - \left(\frac{1}{4} \right)^{m-n}}{1 - \frac{1}{4}} \right) \leqslant \frac{1}{2} \left(\frac{1}{4} \right)^{n-1} \left(\frac{1 - \left(\frac{1}{4} \right)^{m-n}}{1 - \frac{1}{4}} \right) \leqslant \frac{1}{2} \left(\frac{1}{4} \right)^{n-1} \left(\frac{1 - \left(\frac{1}{4} \right)^{m-n}}{1 - \frac{1}{4}} \right) \leqslant \frac{1}{2} \left(\frac{1}{4} \right)^{n-1} \left(\frac{1 - \left(\frac{1}{4} \right)^{m-n}}{1 - \frac{1}{4}} \right) \leqslant \frac{1}{2} \left(\frac{1}{4} \right)^{n-1} \left(\frac{1 - \left(\frac{1}{4} \right)^{m-n}}{1 - \frac{1}{4}} \right) \leqslant \frac{1}{2} \left(\frac{1}{4} \right)^{n-1} \left(\frac{1 - \left(\frac{1}{4} \right)^{m-n}}{1 - \frac{1}{4}} \right) \leqslant \frac{1}{2} \left(\frac{1}{4} \right)^{n-1} \left(\frac{1 - \left(\frac{1}{4} \right)^{n-1}}{1 - \frac{1}{4}} \right) \leqslant \frac{1}{2} \left(\frac{1}{4} \right)^{n-1} \left(\frac{1 - \left(\frac{1}{4} \right)^{n-1}}{1 - \frac{1}{4}} \right) \leqslant \frac{1}{2} \left(\frac{1}{4} \right)^{n-1} \left(\frac{1 - \left(\frac{1}{4} \right)^{n-1}}{1 - \frac{1}{4}} \right) \leqslant \frac{1}{2} \left(\frac{1}{4} \right)^{n-1} \left(\frac{1 - \left(\frac{1}{4} \right)^{n-1}}{1 - \frac{1}{4}} \right) \leqslant \frac{1}{2} \left(\frac{1}{4} \right)^{n-1} \left(\frac{1 - \left(\frac{1}{4} \right)^{n-1}}{1 - \frac{1}{4}} \right) \leqslant \frac{1}{2} \left(\frac{1}{4} \right)^{n-1} \left(\frac{1}{4} \right$$

$$\leq \frac{1}{2} \left(\frac{1}{4}\right)^{n-1} \frac{1}{\frac{3}{4}} = \frac{2}{3} \left(\frac{1}{4}\right)^{n-1} = \frac{8}{3} \left(\frac{1}{4}\right)^n$$

Т.к. $\left(\frac{1}{4}\right)^n \to 0: \forall \varepsilon > 0 \; \exists N: n > N \; \left(\frac{1}{4}\right)^n < \varepsilon$. Тем самым, для последовательности $\{a_n\}_{n=1}^\infty$ выполнен критерий Коши, а значит существует $A = \lim_{n \to \infty} a_n \Longrightarrow \lim_{n \to \infty} a_n = A = \lim_{n \to \infty} a_{n+1} = 1 + \frac{1}{1+A}$ $A(A+1) = A+1+1 \iff A^2 = 2 \iff A = \sqrt{2}$ т.к. $a_n \geqslant 0$

9 Числовые ряды

9.1 Числовой ряд

Пусть дана последовательность $\{a_n\}_{n=1}^{\infty}$, тогда числовым рядом с членами a_n называется выражение:

$$a_1 + a_2 + a_3 + \dots = \sum_{k=1}^{\infty} a_k$$

9.2 Переформулировка критерия Коши для числовых рядов

Ряд сходится тогда и только тогда, когда:

$$\forall \varepsilon > 0 \; \exists N \in \mathbb{N} : \forall n > m > N \to \left| \sum_{k=m+1}^{n} a_k \right| = |S_n - S_m| < \varepsilon$$

9.3 Необходимое условие сходимости числового ряда

Если числовой ряд сходится, то $a_k \to 0$ при $k \to \infty$

Доказательство. Из критерия коши следует, что:

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N} : \forall n > N+1 \to |a_n| = |S_n - S_{n-1}| < \varepsilon$$

9.4 Абсолютная и условная сходимость рядов

Говорят, что ряд $\sum_{k=1}^{\infty} a_k$ сходится абсолютно, если сходится ряд $\sum_{k=1}^{\infty} |a_k|$ Говорят, что ряд $\sum_{k=1}^{\infty} a_k$ сходится условно, если он сходится, а ряд $\sum_{k=1}^{\infty} |a_k|$ расходится

9.5 Сходимость абсолютно сходящегося ряда

Если ряд
$$\sum_{k=1}^{\infty} |a_k|$$
 сходится, то и $\sum_{k=1}^{\infty} a_k$ тоже сходится

Доказательство. Из сходимости ряда $\sum_{k=1}^{\infty} |a_k|$ следует выполнение критерия Коши для этого ряда, то есть что:

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N} : \forall n > m > N \to \sum_{k=m+1}^{n} |a_k| < \varepsilon$$

но так как $\sum_{k=m+1}^n |a_k| \ge \left| \sum_{k=m+1}^n a_k \right|$, то критерий Коши выполнен и для ряда без модулей. \square

9.6 Признак сравнения

Пусть $0 \le a_n \le b_n$ тогда если ряд $\sum_{k=1}^{\infty} b_k$ сходится, то и $\sum_{k=1}^{\infty} a_k$ сходится.

Если же $\sum_{k=1}^{\infty} a_k$ расходится, то и $\sum_{k=1}^{\infty} b_k$ расходится.

9.7 Признак Коши

Пусть $\{a_n\}_{n=1}^\infty$ - невозрастающая последовательность, $a_n\geq 0$. Ряд $\sum_{k=1}^\infty a_k$ сходится тогда и только тогда, когда сходится ряд $\sum_{k=1}^\infty 2^k a_{2^k}$

Доказательство. Заметим, что $a_2+2a_4+\ldots+2^{n-1}a_{2^n}\leq a_2+a_3+\ldots+a_{2^n}\leq 2a_2+4a_4+\ldots+2^na_{2^n},$ тогда из ограниченности частичных сумм ряда $\sum_{k=1}^{\infty}2^ka_{2^k}$ следует ограниченность частичных сумм

$$\sum_{k=1}^{\infty} a_k$$
 и наоборот.

9.8 Сходимость ряда $\sum_{k=1}^{\infty} rac{1}{k^p}$

Ряд $\sum_{k=1}^{\infty} \frac{1}{k^p}$ сходится при p>1 и расходится при $p\leq 1$

 \mathcal{A} оказательство. При p<0 слагаемое $\frac{1}{k^p}$ не стремится к нулю следовательно ряд расходится. При p>0: по признаку Коши ряд сходится тогда и только тогда, когда сходится и ряд $\sum_{k=1}^{\infty} \frac{2^k}{2^{kp}} =$

$$\sum_{k=1}^{\infty} (2^{1-p})^k,$$
а это сумма геометрической прогрессии, которая сходится при $2^{1-p}<1,$ то есть при $p>1$ и расходится при $p\leq 1$

- 10 Открытые и замкнутые множества на прямой, их свойства, связанные с теоретико-множественными операциями. Внутренние, предельные и граничные точки множеств. Четыре эквивалентных описания замкнутого множества.
- 10.1 Открытые и замкнутые множества на прямой, их свойства, связанные с теоретико-множественными операциями.

Определение 1.

 ε -окрестность точки $a \in \mathbb{R}$ называется множество $B_{\varepsilon}(a) := \{x \in \mathbb{R} : |x - a| < \varepsilon\} = (a - \varepsilon, a + \varepsilon).$

Определение 2.

Проколотая ε -окрестность точки $a \in \mathbb{R}$ называется множество $B'_{\varepsilon}(a) := B_{\varepsilon} \setminus \{a\}$.

Определение 3.

Множество $U\subset\mathbb{R}$ называется **открытым**, если для любой $a\in U$ найдётся такое $\varepsilon>0$, что $B_{\varepsilon}\subset U.$

Определение 4.

Множество $V \subset \mathbb{R}$ называется **замкнутым**, если его дополнение открыто, т.е. $\mathbb{R}\backslash V-$ открытое множество.

Пример.

- 1. Всякий интервал (α, β) открытое множество, т.к. для каждой точки $a \in (\alpha, \beta)$ множество $B_{\min\{\frac{a-\alpha}{2}, \frac{\beta-a}{2}\}} \subset (\alpha, \beta)$. А также вся числовая прямая, лучи $(-\infty, \alpha), (\beta, +\infty)$, пустое множество будут являться открытыми.
- 2. Отрезок $[\alpha, \beta]$, вся числовая прямая, лучи $(-\infty, \alpha], [\beta, +\infty)$, пустое множество будут замкнутыми. (Если попросят доказать что-то отсюда скажите, что дополнение будет открытым множеством).

Свойства.

Oбъединение(1.1) любого набора и пересечение(1.2) конечного набора открытых множеств будет открытым множеством.

Пересечение (2.1) любого набора и объединение (2.2) конечного набора замкнутых множеств будет замкнутым множеством.

- Доказательство. 1.1 Пусть $U=\bigcup_{\alpha\in A}U_{\alpha}$, причём все $U_{\alpha}-$ открытые множества. Если $a\in U$, тогда найдётся такой индекс α , что $a\in U_{\alpha}$. По определению найдётся такое $\varepsilon>0$, что $B_{\varepsilon}(a)\subset U_{\alpha}$. Значит, по определению операции объединения, $B_{\varepsilon}(a)\subset U$. Т.е. U- открытое множество.
 - 1.2 Пусть $U = \bigcap_{j=1}^{N} U_{j}$, причём все U_{j} открытые множества. Если $a \in U$, то для каждого $j \in \{1,...,N\}$ найдётся такое число $\varepsilon_{j} > 0$, что $B_{\varepsilon_{j}}(a) \subset U_{j}$. Пусть $\varepsilon := \min\{\varepsilon_{1},...,\varepsilon_{N}\} > 0$. Тогда $B_{\varepsilon}(a) \subset B_{\varepsilon_{j}}(a) \subset U_{j}$ при каждом $j \in \{1,...,N\}$. Значит, $B_{\varepsilon}(a) \subset U$ и U— открытое множество.
 - 2.1 Пусть $V=\bigcap_{\alpha\in A}V_\alpha$, причём все V_α замкнутые множества. По формулам де Моргана $\mathbb{R}\backslash V=\mathbb{R}\backslash\bigcap_{\alpha\in A}V_\alpha=\bigcup_{\alpha\in A}(\mathbb{R}\backslash V_\alpha)$. По определению замкнутого множества, множества $U_\alpha=$

 $\mathbb{R}\backslash V_{\alpha}$ — открыты. По доказанному в 1.1 свойству открытых множеств, множество $\mathbb{R}\backslash V$ также открыто, а значит множество V— замкнуто.

2.2 Пусть $V = \bigcup_{j=1}^N V_j$, причём все V_j — замкнутые множества. По формулам де Моргана $\mathbb{R}\backslash V = \mathbb{R}\backslash \bigcup_{j=1}^N V_j = \bigcap_{j=1}^N (\mathbb{R}\backslash V_j)$. По определению замкнутого множества, множества $U_j := \mathbb{R}\backslash V_j$ — открыты. По уже доказанному свойству(1.2) открытых множеств, множество $\mathbb{R}\backslash V$ также открыто, а значит множество V— замкнуто.

10.2 Внутренние, предельные и граничные точки множеств.

Определение 5.

Точка $a \in \mathbb{R}$ называется **внутренней** точкой множества M, если она входит в это множество M с некоторой своей окрестностью <u>полностью</u> (т.е. $\exists \varepsilon > 0 : B_{\varepsilon}(a) \subset M$).

Определение 6.

Точка $a \in \mathbb{R}$ называется **предельной** точкой множества M, если каждая её проколотая окрестность имеет непустое пересечение с множеством M (т.е. $\forall \varepsilon > 0 : B'_{\varepsilon}(a) \cap M \neq \emptyset$).

Определение 7.

Точка $a \in \mathbb{R}$ называется **граничной** точкой множества M, если каждая её окрестность имеет непустое пересечение как с множеством M, так и с его дополнением (т.е. $\forall \varepsilon > 0 : B_{\varepsilon}(a) \cap M \neq \emptyset$ и $B_{\varepsilon}(a) \cap (\mathbb{R} \backslash M) \neq \emptyset$).

Пример.

Для множества $M=(0,1]\cup\{3\}$ точки $0,\frac{1}{2},1$ будут предельными, а точки -1,3 не будут. Точки 0,1,3 будут граничными, а -1 и $\frac{1}{2}$ не будут. Точка $\frac{1}{2}$ будет внутренней, а точки -1,0,1,3 не будут. Замечание.

Точка a предельная для M тогда и только тогда, когда найдётся сходящаяся к a последовательность $a_n \in M \setminus \{a\}$.

Доказательство. Действительно, если a предельная, то для каждого n найдётся точка $a_n \in B'_{1/n}(a) \cap M$. Тогда $a_n \in M \setminus \{a\}$ и $a_n \to a$.

Наоборот (если есть сходящаяся к a последовательность, то a- предельная точка для M), если $a_n \in M \setminus \{a\}$, то каждого $\varepsilon > 0$ найдётся такой номер N, что $|a_n - a| < \varepsilon$ при n > N. Таким образом, $a_{N+1} \in B'_{\varepsilon}(a) \cap M$.

10.3 Четыре эквивалентных описания замкнутого множества.

Теорема

Следующие утверждения равносильны.

- $1) \ V$ замкнутое множество;
- $2) \ V \ coдержит все свои граничные точки;$
- 3) V содержит все свои предельные точки
- 4) $ecnu \ a_n \in V \ u \ a_n \to a, \ mo \ a \in V.$

Доказательствь) \Rightarrow 2) (Если V - замкнутое множество, то оно содержит все свои граничные точки):

Пусть a граничная точка для V, для которой выполнено, что $a \notin V$, то $a \in \mathbb{R} \setminus V$ - открытое множество. Это значит, что найдётся такое $\varepsilon > 0$, что $B_{\varepsilon}(a) \subset \mathbb{R} \setminus V$ (т.к. $\mathbb{R} \setminus V$ - открытое множество). Т.е. нашлась окрестность $B_{\varepsilon}(a)$, которая не пересекается с множеством V, а значит a не граничная точка.

- 2) \Rightarrow 3) (Если V содержит все свои граничные точки, то оно содежит и все свои предельные): Пусть а предельная для V точка и предположим, что $a \notin V$. Значит a и не граничная точка (т.к. V содержит все свои граничные точки). Поэтому найдётся такое $\varepsilon > 0$, что $B_{\varepsilon}(a) \cap V = \emptyset$. Таким образом, $B'_{\varepsilon}(a) \cap V = \emptyset$ и a не предельная для V.
- 3) \Rightarrow 4) (Если V содержит все свои предельные точки, то если $a_n \in V$ и $a_n \to a$, то $a \in V$): Пусть $a_n \in V$, $a_n \to a$. Если $a \notin V$, то $a \ne a_n$ при каждом n. По замечанию выше a— предельная точка для множества V, что противоречит тому, что V содержит все свои предельные точки.
- $(Ecnu\ a_n \in V\ u\ a_n \to a,\ mo\ a \in V.\ A\ omcoda\ V-\ замкнутое\ множеество):$ Пусть V не замкнуто. $\Leftrightarrow \mathbb{R}\backslash V$ не открыто \Rightarrow существует такое $a \in \mathbb{R}\backslash V: B_{\varepsilon}(a) \cap V \neq \emptyset$ и при этом $B_{\varepsilon}(a) \not\subset V$. Тогда пусть $\varepsilon_n = \frac{1}{n} \Rightarrow \exists a_n \in B_{\frac{1}{n}}(a) \cap V \Rightarrow a_n \in V$ и $a_n \to a \Rightarrow a \in V$ (по условию). Получили противоречие, а значит V замкнуто.

11 Компакты на \mathbb{R} : определение, 3 базовых свойства. Теорема Бореля-Гейне-Лебега о компактности отрезка. Два эквивалентных описания компактных множеств на \mathbb{R} .

11.1 Определение.

Определение 6. Говорят, что набор множеств $\{U_{\alpha}\}_{{\alpha}\in A}$ образует покрытие множества $M\subset \mathbb{R}$, если $M\subset \bigcup_{{\alpha}\in A}U_{\alpha}$ (также гооврят, что система $\{U_{\alpha}\}_{{\alpha}\in A}$ является покрытием множества M).

Определение 7. Множество $K \subset \mathbb{R}$ называется компактом (или компактным множеством), если для каждого покрытия $\{U_{\alpha}\}_{{\alpha}\in A}$ множества K открытыми множествами U_{α} существует конечный поднабор $\{U_{\alpha_1},\ldots,U_{\alpha_N}\}$ этих множеств все еще покрывающий K (т.е. $K\subset\bigcup_{j=1}^N U_{\alpha_j}$).

Кратко иногда это свойство формулируют так: Множество K — компакт, если из каждого покрытия этого множества открытыми множествами можно выбрать конечное подпокрытие.

11.2 Теорема Бореля-Гейне-Лебега о компактности отрезка.

Теорема 8 (Борель-Гейне-Лебег). Каждый отрезок является компактным множеством.

Доказательство. Предположим, что есть такой отрезок [a,b] и такое его покрытие $\{U_{\alpha}\}_{\alpha\in A}$ окрытыми множествами, что никакой конечный поднабор этих множеств не покрывает [a,b]. Рассмотрим подотрезки $[a,\frac{a+b}{2}]$ и $[\frac{a+b}{2},b]$. Для какой-то из этих половинок никакой конечный поднабор множеств $\{U_{\alpha}\}_{\alpha\in A}$ не покрывает эту половинку (если бы для каждой из половинок был бы покрывающий ее конечный поднабор, то и весь отрезок бы покрывался объединением этих конечных поднаборов). Обозначим эту половинку $[a_1,b_1]$. Снова поделим отрезок пополам и рассмотрим подотрезки $[a_1,\frac{a_1+b_1}{2}]$ и $[\frac{a_1+b_1}{2},b_1]$. Для какой-то из этих половинок никакой конечный поднабор множеств $\{U_{\alpha}\}_{\alpha\in A}$ не покрывает эту половинку. Обозначим эту половинку $[a_2,b_2]$. Продолжая описанную процедуру индуктивно, строим последовательность вложенных отрезков $[a_{n+1},b_{n+1}] \subset [a_n,b_n]$ с тем свойством, что никакой конечный поднабор множеств $\{U_{\alpha}\}_{\alpha\in A}$ не покрывает отрезок $[a_n,b_n]$. Т.к. $c\in [a,b]$, то для некоторого индекса α точка $c\in U_{\alpha}$. Т.к. U_{α} —

Пусть $c \in \bigcap_{n=1}^{\infty} [a_n, b_n]$. Т.к. $c \in [a, b]$, то для некоторого индекса α точка $c \in U_{\alpha}$. Т.к. U_{α} — открытое множество, то найдется такое число $\varepsilon > 0$, что $(c - \varepsilon, c + \varepsilon) \subset U_{\alpha}$. Т.к. $b_n - a_n = \frac{b-a}{2^n} \to 0$, то $a_n \to c$ и $b_n \to c$ ($|c - a_n| \le |b_n - a_n|$; $|c - b_n| \le |b_n - a_n|$). Тогда для некоторого номера n_0 выполнено $a_{n_0} \in (c - \varepsilon, c]$ и $b_{n_0} \in [c, c + \varepsilon)$. Т.е. $[a_{n_0}, b_{n_0}] \subset (c - \varepsilon, c + \varepsilon) \subset U_{\alpha}$, что противоречит построению отрезков $[a_n, b_n]$.

Пример. (0,1) – не компакт. $((0,1-\frac{1}{n}))=U_n$ $(0,1)\subset\bigcup_{k=1}^{\infty}U_k$ $U_{k_1}\cup U_{k_2}\cup\ldots\cup U_{k_n}=\left(0,1-\frac{1}{\max(k_1,k_2,\ldots,k_n)}\right)$ (предъявили покрытие, для которого не существует конечный набор множеств, все еще покрывающий (0,1))

11.3 3 базовых свойства компактных множеств.

Лемма 9. Пусть $K-\kappa$ омпакт. Тогда

- 1) K ограниченное множество;
- (2) K замкнутое множество;
- 3) замкнутое подмножество K также компактно.

Доказательство. 1) Заметим, что $K \subset \bigcup_{n=1}^{\infty} (-n,n)$. Т.к. K — компакт, то у данного покрытия найдется конечное подпокрытие, т.е. $K \subset \bigcup_{j=1}^m (-n_j,n_j)$. Пусть $C := \max\{n_1,\ldots,n_m\}$. Тогда $K \subset (-C,C)$.

- 2) Пусть $a \in \mathbb{R} \setminus K$. Тогда $K \subset \bigcup_{n=1}^{\infty} U_n$, где $U_n := (-\infty, a \frac{1}{n}) \cup (a + \frac{1}{n}, +\infty)$. Выбрав конечное подпокрытие, получаем, что $K \subset \bigcup_{j=1}^m U_{n_j}$. Пусть $C := \max\{n_1, \ldots, n_m\}$. Тогда $K \subset (-\infty, a \frac{1}{C}) \cup (a + \frac{1}{C}, +\infty)$ и $B_{1/C}(a) \subset \mathbb{R} \setminus K$.
- 3) Пусть $V \subset K$, V замкнутое множество. Пусть $\{U_{\alpha}\}_{\alpha \in A}$ покрытие множества V. Тогда набор, состоящий из множеств $\{U_{\alpha}\}_{\alpha \in A}$ и $\mathbb{R} \setminus V$ будет покрытием множества K открытыми множествами. В нем можно найти конечный поднабор $U_{\alpha_1}, \ldots, U_{\alpha_m}$ и, возможно, $\mathbb{R} \setminus V$, покрывающий множество K. Тогда множество V заведомо покрывается набором $U_{\alpha_1}, \ldots, U_{\alpha_m}$.

11.4 Два эквивалентных описания компактных множеств на \mathbb{R} .

Следствие 10. Множество $K \subset \mathbb{R}$ компактно тогда и только тогда, когда оно ограничено и замкнуто.

Доказательство. Компактные множества обязаны быть замкнутыми и ограниченными. Наоборот, если K ограниченное множество, то $K \subset [-C,C]$ для некоторого числа C>0. Т.к. отрезок — компактное множество, а K — замкнутое множество, то K также будет компактным множеством по предыдущей лемме.

Следствие 11. Множество $K \subset \mathbb{R}$ компактно тогда и только тогда, когда из кажедой последовательности элементов этого множества можно выбрать подпоследовательность, сходящуюся к элементу этого множества.

Доказательство. Если множество K — компактно, то оно замкнуто и ограничено. Пусть $\{a_n\}_{n=1}^{\infty} \subset K$. По теореме Больцано в данной последовательности найдется сходящаяся подпоследовательность $a_{n_k} \to a$. В силу замкнутости множества K получаем, что $a \in K$ (см. теорему 10.3).

Наоборот, пусть из каждой последовательности элементов множества K можно выбрать подпоследовательность, сходящуюся к элементу этого множества. Если бы множество K не являлось ограниченным, то для каждого $n \in \mathbb{N}$ была бы точка $a_n \in K$, $|a_n| > n$. Из такой последовательности невозможно выбрать сходящуюся подпоследовательность. Пусть теперь $a_n \in K$, $a_n \to a$. По условию, из этой последовательности можно выбрать подпоследовательность a_{n_k} , сходящуюся к точке множества K, т.е. $a_{n_k} \to b \in K$. В силу единственности предела и совпадения предела подпоследовательности с пределом всей последовательности получаем, что $a = b \in K$.

12 Определения предела функции (по множеству) по Коши и по Гейне, их эквивалентность. Свойства предела функции (единственность, линейность, предел произведения и отношения, предел и неравенства, ограниченность, отделимость, предел композиции). Замечательные пределы.

12.1 Предел функции по Коши

Пусть функция f определена на некотором множестве $D\subset R$ и a - предельная для D точка, тогда

$$\lim_{x \to a} f(x) = A \iff$$

$$\forall \varepsilon > 0 \; \exists \delta > 0 : \forall x \in D \cap \beta'_{\delta}(a) \to |f(x) - A| < \varepsilon$$

12.2 Предел функции по Гейне

Пусть функция f определена на некотором множестве $D\subset R$ и a - предельная для D точка, тогда

$$\lim_{x \to a} f(x) = A \iff$$

$$\forall \{x_n\} \in D \setminus \{a\} : \lim_{n \to \infty} x_n = a \to \lim_{n \to \infty} f(x_n) = A$$

12.3 Эквивалентность двух определений

От Коши к Гейне:

Пусть $\lim_{x\to a} f(x) = A$ в смысле Коши, тогда рассмотрим последовательность точек $x_n \in D \setminus \{a\}$: $x_n \to a$, по определению предела по Коши

$$\forall \varepsilon > 0 \ \exists \delta > 0 : \forall x \in D \cap \beta'_{\delta}(a) \to |f(x) - A| < \varepsilon$$

последовательность $x_n \to a$, то есть

$$\exists N : \forall n > N \to x_n \in \beta_{\delta}(a)$$

при n>N $x_n\in D\backslash\{a\}\cap\beta_\delta(a)$, то есть при n>N выполняется $|f(x_n)-A|<\varepsilon$, что и означает, что A - предел функции по Гейне

От Гейне к Коши:

Пусть число A не является пределом функции f в точке a в смысле Коши, тогда это означает, что

$$\exists \varepsilon > 0 : \forall \delta > 0 \ \exists x_{\delta} \in D \cap \beta_{\delta}'(a) : |f(x_{\delta}) - A| \ge \varepsilon$$

по определению по Гейне: для последовательности точек $x_{1/n} \in D \setminus \{a\}$ (то есть берем $\delta = 1/n$) выполняется, что $\{x_{1/n}\} \to a$ но заметим, что $|f(x_{1/n}) - A| \ge \varepsilon$, тогда A не является пределом f в смысле Гейне

12.4 Свойства

Пусть функции f,g,h определены на некотором множестве $D\subset R$ и пусть a - предельная для D точка, тогда выполнены следующие свойства:

• Единственность:

$$\lim_{x\to a} f(x) = A, \lim_{x\to a} f(x) = B \Rightarrow A = B$$

• Линейность:

$$\lim_{x \to a} f(x) = A, \lim_{x \to a} g(x) = B \Rightarrow \lim_{x \to a} (\alpha f(x) + \beta g(x)) = \alpha A + \beta B$$
$$\forall \alpha, \beta \in R$$

• Предел произведения:

$$\lim_{x \to a} f(x) = A, \lim_{x \to a} g(x) = B \Rightarrow \lim_{x \to a} (f(x) \cdot g(x)) = A \cdot B$$

• Предел частного:

$$\lim_{x \to a} f(x) = A, \lim_{x \to a} g(x) = B \neq 0, \forall x \in D \to g(x) \neq 0 \Rightarrow \lim_{x \to a} \frac{f(x)}{g(x)} = \frac{A}{B}$$

• Предел и неравенства: (входит ли сюда лемма о милиционерах или нет? Жду ответ Музы)

$$\exists \delta > 0: \ \forall x \in D \cap \beta'_{\delta}(a) \to f(x) \le g(x),$$
$$\lim_{x \to a} f(x) = A, \lim_{x \to a} g(x) = B \Rightarrow$$
$$A < B$$

• Ограниченность:

$$\lim_{x\to a} f(x) = A \Rightarrow \exists \delta > 0, C > 0 : \forall x \in D \cap \beta'_{\delta}(a) \to |f(x)| \le C$$

• Отделимость:

$$\lim_{x \to a} f(x) = A \Rightarrow \exists \delta > 0 : \forall x \in D \cap \beta'_{\delta}(a) \to |f(x)| > \frac{|A|}{2}$$

Все свойства кроме отделимости и ограниченности следуют из аналогичных свойств для предела последовательности и определения через Гейне (так написано в учебнике).

- Доказательство ограниченности: найдется такое $\delta > 0$: |f(x) A| < 1 при $x \in D \cap \beta'_{\delta}(a)$, таким образом при $x \in D \cap \beta'_{\delta}(a)$ выполнено |f(x)| < 1 + |A|
- Доказательство отделимости: найдется такое $\delta > 0$: $|f(x) A| < \frac{|A|}{2}$ при $x \in D \cap \beta'_{\delta}(a)$, таким образом при $x \in D \cap \beta'_{\delta}(a)$ будет выполнено

$$|A| - |f(x)| \le |f(x) - A| < \frac{|A|}{2} \Rightarrow |f(x)| > \frac{|A|}{2}$$

• Предел композиции:

Пусть $f:D\to E, g:E\to R, a$ — предельная точка множества D, b - предельная точка множества $E, \lim_{x\to a} f(x)=b, \lim_{y\to b} g(y)=c$ и есть такая проколотая окрестность $\beta'_{\delta}(a)$ точки a, что $f(x)\neq b$ для каждой точки $x\in D\cap \beta'_{\delta}(a)$. Тогда $\lim_{x\to a} g(f(x))=c$ Доказательство:

Пусть $x_n \to a, x_n \in D$. $x_n \neq a$. Т.к. $f(x) \neq b$ для каждой точки $x \in D \cap \beta'_{\delta}(a)$, то найдется такой номер N, что $f(x_n) \neq b$ при $n > N_0$. Поэтому последовательность $f(x_{N+1}), f(x_{N+2}), \ldots$ состоит из элементов множества E, ни один из этих элементов не совпадает с b и эта последовательность сходится к b. Поэтому последовательность $g(f(x_{N+1})), g(f(x_{N+2})), \ldots$ сходится к c. Значит и вся последовательность $\{g(f(x_n))\}$ сходится к c

12.5 Замечательные пределы

• Первый замечательный предел: $\lim_{x\to 0} \frac{\sin x}{x} = 1$ Доказательство: для $x \in (0, \pi/2)$ рассмотрим два треугольника и площадь сектора, сравним их и получим (сначала треугольник внутри круга, потом сектор, потом треугольники со стороной по касательной к кругу)

$$\frac{1}{2} \cdot 1 \cdot \sin x \le \frac{x}{2} \le \frac{1}{2} \cdot 1 \cdot \operatorname{tg} x$$

откуда, в силу четности при $x \in (-\pi/2, \pi/2), x \neq 0$ выполнено

$$\cos x \le \frac{\sin x}{x} \le 1$$

Утверждение теперь следует из теоремы о зажатой функции, т.к. $\lim_{x\to y}\cos x=\cos y$ Действительно, $|\cos x-\cos y|=2|\sin\left(\frac{x+y}{2}\right)\sin\left(\frac{x-y}{2}\right)|\leq 2|\sin\left(\frac{x-y}{2}\right)|\leq |x-y|$ ($|\sin x|< x$ очевидно при |x|>=1, иначе посмотрим на скорость возрастания функций $\sin'(x)=\cos x<1, x'=1$, в нуле $\sin x=0$, тогда при всех x, $|\sin x|<|x|$) Итог: получим $\frac{\sin x}{x}\to 1$

• Второй замечательный предел: $\lim_{x\to +\infty} \left(1+\frac{1}{x}\right)^x = e$ Доказательство: рассмотрим функции $f(x):=(1+\frac{1}{[x]+1})^{[x]}, g(x):=(1+\frac{1}{[x]})^{[x]+1}$, тогда $f(x)\leq \left(1+\frac{1}{x}\right)^x\leq g(x)$, кроме того, т.к.

$$\lim_{n \to \infty} \left(1 + \frac{1}{n+1} \right)^n = \frac{\lim_{n \to \infty} \left(1 + \frac{1}{n+1} \right)^{n+1}}{\lim_{n \to \infty} \left(1 + \frac{1}{n+1} \right)} = \frac{e}{1} = e;$$

$$\lim_{n\to\infty}\left(1+\frac{1}{n}\right)^{n+1}=\lim_{n\to\infty}\left(1+\frac{1}{n}\right)^n\cdot\lim_{n\to\infty}\left(1+\frac{1}{n}\right)=e\cdot 1=e$$

то и $\lim_{x\to +\infty} f(x) = \lim_{x\to +\infty} g(x) = e$. Утверждение теперь следует из теореме о пределе зажатой функции.

13 Критерий Коши существования предела функции. Односторонние пределы и теорема Вейерштрасса о существовани односторонних пределов монотонной ограниченной функции.

13.1 Критерий Коши существования предела функции.

Теорема 65 (Критерий Коши). Пусть f: $D \to R$ и а предельная точка D. Предел $\lim_{x\to a} f(x)$ существует тогда и только тогда, когда для каждого $\varepsilon > 0$ найдется такое $\delta > 0$, что для каждых $x,y \in B'_{\delta}(a) \cap D$ выполнено $|f(x) - f(y)| < \varepsilon$.

Доказательство. Если $\lim_{x\to a}f(x)=A$, то для каждого $\varepsilon>0$ найдется такое $\delta>0$, что для произвольной точки $x\in B'_\delta(a)\cap D$ выполнено $|f(x)-A|<\varepsilon/2$. Тогда для произвольных точек $x,y\in B'_\delta(a)\cap D$ выполнено $|f(x)-f(y)|\leq |f(x)-A|+|A-f(y)|<\varepsilon$.

Предположим, что выполнено условие Коши. Тогда для произвольной последовательности точек $x_n \in D \setminus \{a\}, x_n \to a$, последовательность $\{f(x_n)\}$ является фундаментальной, а значит сходится. Пусть $\lim_{x\to\infty} f(x_n) = A$. Если есть другая последовательность точек $y_n \in D \setminus \{a\}, y_n \to a$, то рассмотрим новую последовательность $z_{2k-1} = x_k, z_{2k} = y_k$, т.е. эта последовательность вида $x_1, y_1, x_2, y_2, \dots \subset D \setminus \{a\}$. Эта последовательность также сходится к а, поэтому последовательность образов $f(x_1), f(y_1), f(x_2), f(y_2), \dots$ снова оказывается фундаментальной, а потому сходится. В силу того, что предел подпоследовательности сходящейся последовательности совпадает с пределом всей последовательности, получаем, что $\lim_{n\to\infty} f(y_n) = A$. Таким образом, доказано существование предела по Гейне.

13.2 Односторонние пределы и теорема Вейерштрасса о существовани односторонних пределов монотонной ограниченной функции.

Пусть
$$D_a^+:=D\cap(a,+\infty)$$
 и $D_a^-:=D\cap(-\infty,a)$

Определение 66. Пусть точка а предельная для множества D_a^+ и существует предел функции f по множеству D_a^+ в точке а. Этот предел называют пределом справа функции f в точке а и обозначают $\lim_{x\to a+0} f(x)$. Аналогично определяется предел слева, который обозначают $\lim_{x\to a-0} f(x)$.

Теорема 67 (Вейерштрасс). Пусть f не убывает и ограничена на множестве D, а - предельная точка множества D_a^- . Тогда существует предел слева

$$\lim_{x\to a-0}f(x)=\sup\{f(x):x\in D_a^-\}$$

Пусть f не убывает и ограничена на множестве D, а предельная точка множества D_a^+ .

$$\lim_{x \to a+0} f(x) = \inf\{f(x) : x \in D_a^+\}$$

Аналогичные утверждения с заменой inf на sup справедливы и для невозрастающей функции. Доказательство. Пусть $\mathbf{M}=\sup\{f(x):x\in D_a^-.$ Тогда для каждого $\varepsilon>0$ найдется такая точка $x_0\in D_a^-,$ что $M-\varepsilon< f(x_0).$ Т.к. f не убывает на $D_a^-,$ то для каждого $x\in (x_0,a)\cap D_a'$ выполнено $M-\varepsilon< f(x_0)\le f(x)\le M< M+\varepsilon.$ Тогда, взяв $\delta:=a-x_0$ получаем, что для каждого $x\in B_\delta'(a)\cap D_a^-$ выполнено $|f(x)-M|<\varepsilon.$