Lacture 5 Page Page Student Notebook

*	Exponential Imput
=	Let us choose as elementiery impet $u(t) = e^{st}$, where SEC is a Complex number.
	If s is neal, then u is a simple exponential
= /	If S=jw is imaginary, than the elementary input most be accompanied by the "conjugate
	u(t) + u(t) = ejwt + e-jwt = 2(0)(wt)
	Lots sis imaginary, then &((t) = est must
N/A	De understood es a "houlf" of a sinusuidal signal.
**************************************	If S= @+JW than 3
9	U(t) + U*(t) = 2et (o) (wt)
	() () () () () () () () () ()

L> Ampet u is a half of a simusoid with exponentially-changing amplitudes

=> For unit stop input U(t)= St, SA S=0.

So U(t) = 1 + t>0

1	
4	Output orespons a to elementary imputs
3.4	y(t)= ceAt ×(0)+c [A(t-r) Bu(r)dr + Du(t)
7	G(E)- CC SC/C C BULLIAN DORY
	0 1 1111 55
=>	Plug in u(t) = est
	$y(t) = 11 + C \left[e^{A(t-T)} \right] e^{sA} d\tau + Dest$
->	G(E) = 11 + C P OF A DE
- 1	19-12-1 = 12-1 - 0 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
(4)	39(2)3 E
-	C et en se dr
1	CULLY CONSTRUCTION CONTRACTOR OF THE
	$\frac{\nu}{\sqrt{(t-c)^{\gamma}}}$
	CeAt (SI-A)7 dr B
ندا	with the seas to white the in
	(wit-2) ionale labitation ori
\Rightarrow	If (SIA) is inventible (i.e., Sis not an eigenvolve
()	dA), hom
	A A A A A A A A A A A A A A A A A A A
	y(t) = CeAt X(v) + CeAt (SI-A)-1 exI-A)t - IB
	The pest will
	TIME CONTRACTOR ANTOSET
	(y(t) = (CeAt[x(0)-(SI-A)'B]+(C(SI-A)'B+D]est)
- E	

Steady-State Despumpe

The system is asymptotically stables
the transient response will converge to

=> The steady state susponse to an imput $U(t) = e^{st}$ can be written as:

ys, = G(s) est, G(s) = C(sI-A) B+D

1 (GCS) € C

> The function a: S > as) is knows as the transfer function,

* Engyency napons.

is a Sinusoidal signal (s=+jw)

U(t) = elut + e-jut = 2(0) (ut)

=> The output is in the

y(t) = a(Ja) elut + (a(-ju) e-jut

= Wed Gront West Gront

= 2M (0) (wt+0).

can fled the Soldier of to more complex i-put.

* From State-space to Transfer Function (SISU)

=> IP A is diagnod, with cigarvolos >, 2n-2n
His simply becomes:

ordived furthor of the form

* Form Toasferfrition to State Space (SISO)

State-space models (A,B,C,D) such that

S(S) = C(SI-A)^B + D:

=> Of the transfer function is written as a partid fraction expansion of the form

 $g(s) = \frac{P_1}{S-Z_1} + \frac{P_2}{S-Z_2} + \cdots + \frac{P_m}{S-Z_m} + d$

than a oradization is,

 $A = \begin{bmatrix} \lambda_1 \\ \lambda_2 \end{bmatrix}$ $A = \begin{bmatrix} \lambda_1 \\ \lambda_2 \end{bmatrix}$

C=[JP. JR - JPn] D=d

=> On the general case,

g(s) = bnn 5 + bnn 5 + - + bo +0

sh + ann 5 + - + 40

You can verify that the following is a minimal orchircheon of 9(5)

C= [bob, --- bnn] Dc [d]

* The Laplace Transfur

Sum of Complex exponeticl8?

→ Yes! The fool for this is the Laplace trasformand the inverse Laplace transform.

 $f[u] = U(s) = \int_{0}^{\infty} u(t) e^{-st} dt$

=> The inverse explace transform is donoted

1-'[U] = 4

 $\frac{U(t) = \frac{1}{2\pi j} \lim_{\omega \to \infty} U(s) e^{st} ds}{6-j\omega}$

=> So custing the church corporation we can
comet any entitions imput u(t) as an
(infinite) sum of complex exponentials.

=> le une con mite output es:

4(t) = 1 1/m (g(s) U(s) est ds

6-70

Page y(t) = 1-1[g(s)V(s)](t) 2 [8(4)= g(s)V(s) Y(s) = 9(s) US)

Date