Functional Analysis

Alef Sterk a.e.sterk@rug.nl

Lecture 3 Monday 12 February 2024

Topics:

• §2.3: Closed linear subspaces

Closure

Definition: let X be NLS and $V \subset X$ a subset

• distance between $x \in X$ and V:

$$d(x, V) := \inf\{\|x - v\| : v \in V\}$$

• closure of V:

$$\overline{V} := \{x \in X : d(x, V) = 0\}$$

• V is called closed when $\overline{V} = V$

[Exercise: show that $V \subset \overline{V}$ and that $\overline{\overline{V}} = \overline{V}$]

Open sets

Definition: let X be NLS and $O \subset X$ a subset

 $O \subset X$ is called open when

$$\forall x \in O \quad \exists \varepsilon > 0 \quad \text{s.t.} \quad B(x; \varepsilon) := \{ y \in X : ||x - y|| < \varepsilon \} \subset O$$

[Exercise: prove that $V \subset X$ is closed $\Leftrightarrow V^c$ is open]

[Exercise: if $O \subset X$ is a *linear subspace* and open, then O = X]

Characterization of closure

Lemma: if X is a NLS and $V \subset X$ is a subset, then

$$x \in \overline{V} \quad \Leftrightarrow \quad x_n \to x \quad \text{for some sequence } (x_n) \text{ in } V$$

Proof (\Rightarrow) :

$$d(x,V) = 0 \Rightarrow \inf\{\|x - v\| : v \in V\} = 0$$

$$\Rightarrow \forall n \in \mathbb{N} \quad \exists x_n \in V \text{ such that } \|x - x_n\| < \frac{1}{n}$$

$$\Rightarrow x_n \to x$$

Characterization of closure

Lemma: if X is a NLS and $V \subset X$ is a subset, then

$$x \in \overline{V} \quad \Leftrightarrow \quad x_n \to x \quad \text{for some sequence } (x_n) \text{ in } V$$

Proof (
$$\Leftarrow$$
): if $x \notin \overline{V}$ then $d := d(x, V) > 0$

But $||x_n - x|| < d$ for n sufficiently large

Contradiction, hence $x \in \overline{V}$

Closed sets

Example: $V = \{ f \in \mathcal{C}([a, b], \mathbb{K}) : f(a) = 0 \}$ closed in $\mathcal{C}([a, b], \mathbb{K})$

- $V \subset \overline{V}$ is trivial
- If $f \in \overline{V}$, then there exists (f_n) in V with $f_n \to f$, so

$$|f(a)| = |f(a) - f_n(a)| \le ||f - f_n||_{\infty} \to 0$$

Conclusion: f(a) = 0, so $f \in V$

Closed sets

Example:

$$\ell^{\infty} = \left\{ x = (x_1, x_2, x_3, \dots) : x_n \in \mathbb{K}, \quad \sup_{n \in \mathbb{N}} |x_n| < \infty \right\}$$
$$s = \left\{ x = (x_1, x_2, x_3, \dots) : \exists N_x > 0 \text{ s.t. } n \ge N_x \implies x_n = 0 \right\}$$

Claim: s is NOT closed in ℓ^{∞}

Closed sets

Example (ctd):

$$x = \left(1, \frac{1}{2}, \frac{1}{3}, \dots, \frac{1}{n}, \frac{1}{n+1}, \frac{1}{n+2}, \dots\right) \in \ell^{\infty}$$
$$x^{n} = \left(1, \frac{1}{2}, \frac{1}{3}, \dots, \frac{1}{n}, 0, 0, 0, \dots\right) \in s$$
$$\|x^{n} - x\|_{\infty} = \frac{1}{n+1} \to 0$$

So $x \in \overline{s}$ but $x \notin s$

Lemma: if X is a NLS and $V \subset X$ a linear subspace, then $\dim V < \infty \implies V$ closed

Proof: let $V = \text{span}\{e_1, \dots, e_d\}$ and define the norm

$$v = \lambda_1 e_1 + \dots + \lambda_d e_d, \qquad ||v||_+ = \left(\sum_{i=1}^d |\lambda_i|^2\right)^{1/2}$$

Note: $\|\cdot\|$ and $\|\cdot\|_+$ are equivalent on V!

[So there exist m, M > 0 such that $m||v|| \le ||v||_+ \le M||v||$ for all $v \in V$]

Proof (ctd): assume

$$v_n = \lambda_{n,1}e_1 + \cdots + \lambda_{n,d}e_d \in V$$
 and $||v_n - x|| \to 0$

[Since (v_n) is in V we have $x \in \overline{V}$. Next, we prove that in fact $x \in V$]

Then for all $i = 1, \ldots, d$:

$$|\lambda_{n,i} - \lambda_{m,i}| \le \|v_n - v_m\|_+$$
 $\le M\|v_n - v_m\|$
 $= M\|v_n - x + x - v_m\|$
 $\le M(\|v_n - x\| + \|x - v_m\|) \to 0 \quad n, m \to \infty$

Proof (ctd): $(\lambda_{n,i})$ is Cauchy in \mathbb{K} for all $i=1,\ldots,d$ so define

$$u = \lambda_1 e_1 + \dots + \lambda_d e_d, \quad \lambda_i = \lim_{n \to \infty} \lambda_{n,i}$$

Then

$$\|v_n - u\| \le \frac{1}{m} \|v_n - u\|_+ = \frac{1}{m} \left(\sum_{i=1}^d |\lambda_{n,i} - \lambda_i|^2 \right)^{1/2} \to 0 \quad n \to \infty$$

Since $||v_n - x|| \to 0$ as well it follows that $x = u \in V$

[Here we use uniqueness of limits]

Lemma: let X be a NLS and $V \subset X$ a linear subspace

Then \overline{V} is closed and a linear subspace

Proof (addition): assume $x, y \in \overline{V}$

There are sequences (x_n) and (y_n) in V such that

$$x_n \to x$$
 and $y_n \to y$

We have $x + y \in \overline{V}$ since $(x_n + y_n)$ is a sequence in V and

$$x_n + y_n \rightarrow x + y$$

[Exercise: show that $x \in \overline{V}$ and $\lambda \in \mathbb{K}$ implies that $\lambda x \in \overline{V}$]

Proposition: if X is a NLS and $V \subset X$ a linear subspace, then

- 1. ||x + V|| := d(x, V) is a semi-norm on X/V
- 2. ||x + V|| is a norm $\Leftrightarrow V$ is closed
- 3. $||x + V|| \le ||x||$ for all $x \in X$

Proof (3):

$$||x + V|| = d(x, V) = \inf\{||x - v|| : v \in V\} \le ||x - 0|| = ||x||$$

Proof (1): if $\lambda \neq 0$ then

$$\|\lambda(x+V)\| = \|\lambda x + V\|$$

$$= d(\lambda x, V)$$

$$= \inf\{\|\lambda x - v\| : v \in V\}$$

$$= |\lambda|\inf\{\|x - v/\lambda\| : v \in V\}$$

$$= |\lambda|\inf\{\|x - v\| : v \in V\}$$

$$= |\lambda|\|x + V\|$$

If
$$\lambda = 0$$
 then $d(\lambda x, V) = d(0, V) = 0$ since $0 \in V$

Proof (1):

$$||(x + V) + (y + V)|| = ||(x + y) + V||$$

$$= d(x + y, V)$$

$$= \inf\{||x + y - z|| : z \in V\}$$

$$= \inf\{||x + y - (u + v)|| : u, v \in V\}$$

$$\leq \inf\{||x - u|| + ||y - v|| : u, v \in V\}$$

$$= d(x, V) + d(y, V)$$

Hence, ||x + V|| is a semi-norm

Proof (2):

If
$$V$$
 is closed: $\|x+V\|=0$ \Rightarrow $d(x,V)=0$ \Rightarrow $x\in \overline{V}=V$ \Rightarrow $x+V=0+V$ \Rightarrow $\|x+V\|$ is a norm

If
$$||x + V||$$
 is a norm: $x \in \overline{V} \Rightarrow d(x, V) = 0$
 $\Rightarrow ||x + V|| = 0$
 $\Rightarrow x + V = 0 + V$
 $\Rightarrow x \in V$

Definition: let X be a metric space

- 1. a subset $E \subset X$ is called dense when $\overline{E} = X$
- 2. X is called separable if it contains a countable dense subset

Examples:

• \mathbb{R} is separable since \mathbb{Q} is dense and countable

• \mathbb{R}^n is separable since \mathbb{Q}^n is dense and countable

• \mathbb{C} is separable since $\mathbb{Q} + i\mathbb{Q}$ is dense and countable

• \mathbb{C}^n is separable since $(\mathbb{Q} + i\mathbb{Q})^n$ is dense and countable

Example: ℓ^p is separable for all $1 \le p < \infty$

$$E = \bigcup_{n=1}^{\infty} \{ (r_1, r_2, r_3, \dots, r_n, 0, 0, 0, \dots) : r_i \in \mathbb{Q} + i\mathbb{Q} \}$$

is a countable set

Exercise: show that E is dense in ℓ^p

Example: ℓ^{∞} is **NOT** separable

Assume that $E = \{e^1, e^2, e^3, \dots\} \subset \ell^{\infty}$ is countable

Define
$$x = (x_1, x_2, x_3, \dots) \in \ell^{\infty}$$
 by

$$x_n = egin{cases} e_n^n + 1 & ext{ if } |e_n^n| \leq 1 \ 0 & ext{ if } |e_n^n| > 1 \end{cases}$$

Then $||x - e^n||_{\infty} \ge 1$ for all $n \in \mathbb{N}$ so E cannot be dense

Riesz's lemma

Lemma (Riesz): assume

- X is NLS
- $V \subset X$ is a closed linear subspace with $V \neq X$

Then for all $0 < \lambda < 1$ there exists $x_{\lambda} \in X$ such that

$$||x_{\lambda}|| = 1$$
 and $||x_{\lambda} - v|| > \lambda$ $\forall v \in V$

Riesz's lemma

Proof: there exists $x \in X \setminus V$ such that

$$0 < d(x, V) = \inf\{\|x - v\| : v \in V\}$$

Since $0 < \lambda < 1$ there is $w \in V$ such that

$$||x-w|| < \frac{d(x,V)}{\lambda} \quad \Rightarrow \quad \frac{1}{||x-w||} > \frac{\lambda}{d(x,V)}$$

Define
$$x_{\lambda} = \dfrac{x-w}{\|x-w\|}$$
 so that $\|x_{\lambda}\| = 1$

Riesz's lemma

Proof (ctd): for all $v \in V$

$$||x_{\lambda} - v|| = \left\| \frac{x - w}{||x - w||} - v \right\|$$

$$= \frac{1}{||x - w||} ||x - (\underbrace{w + ||x - w||v})||$$

$$\geq \frac{1}{||x - w||} d(x, V)$$

$$> \frac{\lambda}{d(x, V)} d(x, V) = \lambda$$

Theorem: let X be NLS, then

$$B = \{x \in X : ||x|| \le 1\}$$
 compact \Rightarrow dim $X < \infty$

Proof: assume dim $X = \infty$

Idea: construct a sequence in B without a convergent subsequence

Proof: choose any $e_1 \in X$ with $||e_1|| = 1$

Apply Riesz with $V_1 = \operatorname{span}\{e_1\}$ and $\lambda = \frac{1}{2}$:

$$\exists e_2 \in X \quad \text{s.t.} \quad \|e_2\| = 1 \quad \text{and} \quad d(e_2, V_1) \geq \frac{1}{2}$$

Apply Riesz with $V_2 = \text{span}\{e_1, e_2\}$ and $\lambda = \frac{1}{2}$:

$$\exists e_3 \in X \quad \text{s.t.} \quad \|e_3\| = 1 \quad \text{and} \quad d(e_3, V_2) \geq \frac{1}{2}$$

Proceed by induction...

Proof (ctd): we now have a sequence (e_i) in X such that

$$\|e_i\|=1, \qquad d(e_i, \mathsf{span}\{e_1, \ldots, e_{i-1}\}) \geq rac{1}{2}$$

This implies

$$||e_i - e_j|| \ge \frac{1}{2}$$
 $\forall i \ne j$

Hence (e_i) has no convergent subsequence, so B is NOT compact

Warning: the following statements are NOT equivalent in ∞ -dimensional linear spaces!

- 1. V compact
- 2. V closed and bounded

Only $(1) \Rightarrow (2)$ remains true