blackhat EUROPE 2024

DECEMBER 11-12, 2024
BRIEFINGS

Redefining the Origin of Secrecy in a Post-Quantum World

Speaker: Dr Frey Wilson, CTO @ Cavero Quantum

Malware & Threats Y Security Operations Y Security Architecture Y

NETWORK SECURITY

Russian Telco Hijacked Internet Traffic of Major **Networks – Accident or Malicious Action?**

A huge BGP hijack by Russian state telecommunications provider Rostelecom diverted the traffic from more than 200 ne Google, Amazon, Facebook and Cloudflare – to Russian servers on April 1. It may have been accidental, it may not.

The A Register

Apple network traffic takes mysterious detour through Russia

Land of Putin capable of attacking routes in cyberspace as well as real world

Thomas Claburn

Wed 27 Jul 2022 // 18:56 UTC

Apple's internet traffic took an unwelcome detour through Russian networking equipment for about twelve hours between July 26 and July 27.

In a write-up for MANRS (Mutually Agreed Norms for Routing Security), a public interest group that looks after internet routing, Internet Society senior internet technology manager Aftab Siddiqui said that Russia's Rostelecom started announcing routes for part of Apple's network on Tuesday, a practice referred to as BGP (Border Gateway Protocol) hijacking.

For two hours, a large chunk of European mobile traffic was rerouted through China

It was China Telecom, again. The same ISP accused last year

/tech

Breakingviews ∨ Technology ∨ Investigation

Reuters

Russia reroutes internet traffic in occupied Ukraine to its infrastructure

By Reuters

May 2, 2022 10:23 PM GMT+1 · Updated 3 years ago


```
hashcat (v6.2.1) starting...
CUDA API (CUDA 11.3)
* Device #1: NVIDIA GeForce RTX 2080 Ti, 10137/11264 MB, 68MCU
Hashes: 1 digests; 1 unique digests, 1 unique salts
Bitmaps: 16 bits, 65536 entries, 0x0000ffff mask, 262144 bytes, 5/13 rotates
Optimizers applied:
* Optimized-Kernel
* Zero-Byte
* Precompute-Init
* Early-Skip
* Not-Iterated
* Prepended-Salt
 Single-Hash
* Single-Salt
* Brute-Force
* Raw-Hash
Watchdog: Temperature abort trigger set to 90c
Host memory required for this attack: 1100 MB
e983672a03adcc9767b24584338eb378:00:hashcat
Session....: hashcat
Status..... Cracked
Hash.Name.....: SolarWinds Serv-U
```


How do we encrypt our data better?

How do we share keys better?

\$~: whoami

- > Dr Frey Wilson
- > CTO @ Cavero Quantum
- > Quantum-Safe Symmetric Key Distribution

Ben Varcoe Co-Founder

George Brumpton Researcher

James Trenholme CEO

...Many PhD Students since 2012

Random Number Generation

Asymmetric Keys

PKI

Signing

Authentication

Sharing Symmetric Keys

Ciphers

Roadmap

- Ingredients for Secrecy
- Existing Methods
- Implications of Quantum Computers
- Quantum Resilient Alternatives Method #1
- Quantum Resilient Alternatives Method #2
- A New Method!

$$H(A) + H(B) = H(A,B) + I(A:B)$$

Information Theoretic Approach


```
>>> x=[0,45,678,43,52,67,923,74,32,376]
>>> avg=sum(x)/len(x)
>>> print(x)
[0, 45, 678, 43, 52, 67, 923, 74, 32, 376]
>>> print(avg)
229.0
```

```
>>> if 45 in x: print("found")
... else: print("not found")
...
found
```

Computational Complexity
Approach #BH

Prime factors of 616081?

Computational Complexity Approach

Local copy

How does electricity find the "Path of Least Resistance"? AlphaPhoenix, YouTube

Searching problems:

Grover's Search Shor's

Which problems?

Find the closest point?

Lattice Based
Code Based
Multivariate polynomials
Based

	Alice	Bob
	0	0
	0	00
	0	11
	0	0
	0	0
	1	1 ;
	1	0
	1	_ 1 _ }

Filter For Correllation

- 1) On the basis choice
- 2) "information reconciliation"

E => 00 or 11 O => 01 or 10

	Alice	Bob		
E	0	0	E	
	0	0		
E	0	1	0	
	0	0		
O	0	0	0	
	1	1		
E	1	0		
	1	1	0	

Alice	Bob	Eve	Eve	
0	0	0 E	0x 1? 0?	
0	0	1 ?	1x 1? 0?	
0	1			1.) 3-wayCorrelated datasets
0	0	0	0	2.) Indistinguishability for Eve
0	0	0 0	0x 1? 0?	
1	1	0 ;	0x 0? 1?	Eve's strategy = Knapsack problem!
1	0			
1	1	1	1	

Alice	Bob	Eve	%
0	Y	Y	80%*80%= 64%
0	Y	N	80%*20%= 16%
0	N	Y	20%*80%= 16%
0	N	N	20%*20%= 4%

H(A) + H(B) = H(A,B) + I(A:B)

$$P(R=0) = 0.5$$

$$P(RAB=0) = 0.5$$

$$P(R,RAB) = 0.5$$

 $H \propto P$

$$I(A:B) = 0$$

... This only applies when length of string, $L \rightarrow \infty$

Random numbers are weird!

$$P(H)=0.5$$

$$P(H)=0.58$$

Both of these were generated from the same unbiased coin P(H)=0.5

For small samples, all the different possibilities have a real chance of happening!

Kolmogorov Complexity

A = 0000000000 "10x0"

B = 0110100011 "1x0, 2x1, 1x0, 1x1, 3x0, 2x1"

K(A) < K(B)

What if K(A) + K(B) > K(A,B)?

A B A,B
0 0 0,0
0 1 0,1
1 1 1,1
0 0 0,0
1 0,1
1 0 1,0
1 1 1,1
0 0 0,0
0 0,0
0 0,0

1) R, A \rightarrow RA

- 2) $B \rightarrow RAB$
- 3) Filter & keep correlation
- 4) Privacy amplification

R	Α	RA	RA	В	RAB
0	0	0	0	0	0
1	0	1	1	1	0
1	1	0	0	1	1
0	0	0	0	0	0
0	0	0	0	1	1
1	1	0	0	0	0
0	1	1	1	1	0
1	0	1	1	0	1
0	0	0	0	0	0

- Eve has RA
- Preferential filtering for
 Bob = Eve retains errors
- Correlation filter has ambiguity

Authentication?

Integrity detectable = Verifiable consistent conversation

Key first, authenticate later = Peer-to-peer mutual authentication

✓ PKI integrable

Overhead:

Processing vs Communication (IoT?)

Definable security

Assuming BQP ≠ NP-Complete → Quantum-safe

Roadmap

- Ingredients for Secrecy
- Existing Methods
- Implications of Quantum Computers
- Quantum Resilient Alternatives Method #1
- Quantum Resilient Alternatives Method #2
- A New Method!

SoundBytes:

- 1) Secrecy is a matter of perspective
- 2) Random numbers have weird properties
- 3) RKKE Reciprocal Kolmogorov Key Establishment a lightweight alternative

black hat EUROPE 2024

Thank You

SoundBytes:

- 1) Secrecy is a matter of perspective
- 2) Random numbers have weird properties
- 3) RKKE Reciprocal Kolmogorov Key Establishment a lightweight alternative