

Liczby Catalana i tw. Ramsey'a

Tw. Ramsey'a

Niech $r, b \ge 1$. Istnieje liczba R(r, b) zależna tylko od r i b mająca następującą własność: dla każdej kliki G mającej R(r, b) wierzchołków, której krawędź jest pokolorowana na czerwono lub na niebiesko istnieje albo: podklika o r wierzchołkach i krawędziach tylko czerwonych, albo podklika o b wierzchołkach i krawędziach tylko niebieskich.

Dodatkowo R(r, b) to najmniejsza liczba o podanej własności. Ponadto zachodzi:

$$R(r,b) \leqslant R(r-1,b) + R(r,b-1) \text{ dla każdych } r,b \geqslant 1, \text{ oraz } R(r,b) \leqslant \binom{r+b-2}{r-1}$$

Dowód:

Przeprowadzimy dowód indukcyjny po sumie r + b. Oczywiście $\forall_{r,b} R(r,1) = R(1,b) = 1$, ponieważ jednoelementowa podklika istnieje zawsze gdy mamy chociaż jeden wierzchołek. Mamy więc bazę indukcyjną: R(1,1) istnieje oraz spełnia: $R(1,1) \leq 1 = \binom{0}{0}$.

Krok indukcyjny: bierzemy r,b i zakładamy, że istnieją liczby R(n,k) dla n+k < r+b. Weźmy klikę K o R(r-1,b)+R(r,b-1) wierzchołkach i wybierzmy jeden wierzchołek v. Stopień v jest równy R(r-1,b)+R(r,b-1)-1, więc z zasady szufladkowej Dirichleta wśród sąsiadów v istnieje R(r,b-1)-klika połączona z v krawędziamy niebieskimi albo R(r-1,b)-klika połączona z v krawędziamy czerwonymi. BSO załóżmy istnienie podkliki K zwanej dalej G rozmiaru R(r,b-1) połączonej z v tylko niebieskimi krawędziami.

Z założenia indukcyjnego G zawiera albo: podklikę czerwoną rozmiaru r, albo podklikę niebieską rozmiaru b-1, która jest połączona z wierzchołkiem v niebieskimi krawędziami, więc tworzy wraz z nim podklikę K która jest cała niebieska i ma rozmiar b, co chcieliśmy udowodnić.

Tw. Ramsey'a dla zbiorów

Uwagi:

 $R_2(2;s) = R(s,s)$ korzystając z wcześniejszej notacji.

 $R_r(k;s) \ge s \ge k$, ponieważ inaczej zbiór nie ma s elementowych podzbiorów.

Dowód:

Podzielimy dowód na dwie części:

- 1. Redukcja problemu do przypadku $R_2(k;s)$.
- 2. Dowód istnienia liczb $R_r(k;s)$ dla r=2.

(1) Indukcja po r, pokażemy, że $R_{r+1}(k;s) \leq R_r(k;R_2(k;s))$.

Weźmy zbiór X o $R_r(k; R_2(k; s))$ elementach i pokolorujmy jego k-elemenotwe podzbiory r + 1 kolorami ponumerowanymi od 0 do r.

Potraktujmy kolory 0 i 1 jako jeden kolor, wtedy mamy zbiór mocy $R_r(k; R_2(k; s))$ którego k elementowe podzbiory kolorujemy r kolorami. Z założenia indukcyjnego istnieje podzbiór G, nazwijmy go H o $R_2(k; s)$ elementach, którego wszystkie k-elementowe pozdbiory są albo jednego z kolorów $2, 3, \ldots, r$, wtedy po prostu $R_2(k; s) \ge s$, albo jego podzbiory są pokolorowane dokładnie dwoma kolorami: 0, 1, wtedy oczywiście z faktu, że $|H| = R_2(k; s)$ otrzymujemy, że istnieje szukane podzbiór mocy s w H, czyli też w X.

(2) Aby rozwiązać przypadek dla dwóch kolorów zdefiniujemy R(k;r,b) dla $2 \le k \le r, b$ jako najmniejszą liczbę taką, że jeśli zbiór ma co najmniej R(k;r,b) elementów i pokolorujemy jego k-elementowe podzbiory na dwa kolory: czerwony i niebieski, to powstanie: albo r-elementowy zbiór o wszystkich k-elementowych podzbiorach czerwonych, albo b-elementowy zbiór o wszystkich k-elementowych podzbiorach niebieskich. Oczywiście $R(k;s,s) = R_2(k;s)$. Pokażemy, że R(k;r,b) są skończone.

Dowód przeprowadzimy poprzez dwie indukcje: pierwsza po k, a druga po r+b, przypadkiem bazowym jest oczywiście R(k;k,b)=b, R(k;r,k)=r, dla k=2 kolorujemy krawędzi, więc dostajemy po prostu tw. Ramseya, które już udowodniliśmy.

Krok indukcyjny udowodnimy dowodząc nierówności:

$$R(k; r, b) \le R(k - 1; R(k, r - 1, b), R(k; r, b - 1)) + 1,$$
 $r, b \ge k + 1, k \ge 2$

Rozważmy zbiór X: |X| = R(k-1; R(k,r-1,b), R(k;r,b-1)) + 1, pokolorujmy jego k-elementowe podzbiory na czerwono i niebiesko, a następnie wybierzmy jeden element x. Kolorowanie k-elementowych podzbiorów indukuje kolorowanie (k-1)-elementowych podzbiorów zbioru $X \setminus \{x\}$, poprzez przypisanie zbiorowi A o mocy k-1 koloru zbioru $A \cup \{x\}$.

Mamy więc podzbior X o mocy R(k-1;R(k,r-1,b),R(k;r,b-1)) na którym zadane jest kolorowanie (k-1)-elementowych podzbiorów, więc istnieje R(k,r-1,b)-elementowy podzbiór X w którym wszystkie podzbiory (k-1)-elementowe są czerwone, albo R(k;r,b-1)-elementowy podzbiór X w którym wszystkie (k-1)-elementowe podzbiory są niebieskie, BSO możemy założyć pierwszą opcję.

Istnieje R(k, r-1, b)-elementowy podzbiór X w którym wszystkie (k-1)-elementowe podzbiory są czerwone, więc mamy dwie opcje: istnieje szukany b-elementowy zbiór o niebieskich k-podzbiorach, albo istnieje r-1-elementowy zbiór który wraz z x tworzy szukany r-elementowy podzbiór X o czerwonych k-elementowych podzbiorach, co chcieliśmy wykazać.

Wersja nieskończona tw. Ramsey'a

W każdej nieskończonej klice której krawędzi są pokolorowane r kolorami istnieje nieskończona monochromatyczna podklika.

Dowód:

Redukcja z r kolorów do 2 jest identyczna jak dla przypadku skończonego, więc BSO r=2. Wybierzmy jeden wierzchołek v_1 i rozważmy zbiór wierzchołków połączonych z nim krawędzią niebieską, jeśli jest on skońcozny wyrzućmy te wierzchołki, w przeciwnym razie wyrzućmy wszystkie wierzchołki poza v_1 i tymi połączonymi niebieską krawędzią z v_1 .

Otrzymaliśmy nieskończony graf, a procedurę możemy powtarzać, za każdym razem nadając dodatkowo etykietę wierzchołkowi - b jeśli zostawiliśmy jego niebieskich sąsiadów oraz poprzednie v_i , a r jeśli zostawiliśmy jego czerwonych sąsiadów oraz poprzednie v_i .

Dostajemy nieskończony ciąg w którym wierzchołki v_i mają etykiety b i r,co najmniej jeden z zbiorów: wierzchołki etykietowane przez b, wierzchołki etykietowane przez r jest nieskończony, a wszystkie jego krawędzi mają ten sam kolor, co dowodzi tezy.

Ciekawostki:

Liczby R(r, b) zwane są liczbami Ramseya, istnieje wiele otwartych problemów związanych z oszacowaniami lub wyznaczaniem dokładnych wartości tych liczb.

Liczby R(k, k) są znane tylko dla $k \leq 4$, pytanie o R(k, k) możemy zadać w taki sposób: jaka jest najmniejsza liczba wierzchołków kliki aby po pokolorowaniu dwoma kolorami wszystkich jej krawędzi musiała powstać podklika monochromatyczna rozmiaru k?

Zadanka:

- 1. Znajdź R(3,3) i R(4,3).
- 2. Niech $1 \le r \in \mathbb{N}$. Pokaż, że istnieje $n_0 = n_0(r)$ spełniające następującą własność: dla każdego $n \ge n_0$ jeśli pokolorujemy wszystkie niepuste podzbiory zbioru $\{1, \ldots, n\}$ za pomocą r kolorów, to powstaną niepuste rozłączne podzbiory A i B, takie, że A, B i $A \cup B$ będą tego samego koloru.

Rozwiązania zadanek:

1. R(3,3) = 6, ponieważ jeśli weźmiemy pięciokąt foremny i pokolorujemy przekątne na niebiesko, a boki na czerwono, to otrzymujemy kontrprzykład dla 5 wierzchołków. Dla sześciu wybieramy jeden ustalony wierzchołek x, patrzymy na jego krawędzi, co najmniej trzy z pośród nich są tego samego koloru, a wierzchołki należące do tych krawędzi różne od x muszą albo utworzyć monochromatyczny trójkąt albo domknąć monochromatyczny trójkąt z x krawędziami pomiedzy sobą.

R(3,4) = 9, ponieważ $R(3,4) \le R(2,4) + R(3,3) - 1 = 9$ (mocniejsze oszacowanie korzysta z faktu, że obie liczby R(2,4) i R(3,3) są parzyste). Kontrprzykład dla 8 wierzchołków:

2. Z tw. Ramsey'a wiemy, że istnieje $n_0(r) = R_r(2;3)$ takie, że jeśli pokolorujemy krawędzi n-kliki o $n \ge n_0(r)$ używając r kolorów, to powstanie monochromatyczny trójkąt.

Niech $n \ge n_0(r)$ oraz $C_k = \{1, \ldots, k\}$, przy czym $C_0 = \emptyset$, dla $k = 0, 1, \ldots, n$.

Pokolorujmy pary $\{i, j\}$ dla i < j kolorem $C_j \setminus C_i$. Z definicji $R_r(2; 3)$ istnieją i < j < k dla których $\{i, j\}, \{j, k\}$ i $\{i, k\}$ mają ten sam kolor.

Mamy więc rozłączne $A = \{i + 1, ..., j\}$ i $B = \{j + 1, ..., k\}$,

oraz $A \cup B = \{i+1, ..., k\}$ ma ten sam kolor.

Liczby Catalana

Liczby Catalana (C_n) to szczególny ciąg liczbowy majacy liczne zastosowania w kombinatoryce. Na nasze potrzeby zdefiniujemy C_n jako liczbę ścierzek z lewego dolnego rogu kwadratu o wymiarach $n \times n$ do jego prawego górnego rogu, takich, że nie przechodzą one ponad przekątną łączącą te wierzchołki oraz wykorzystują tylko ruchy o 1 w prawo i o 1 w górę. Np. $C_4 = 14$:

Dowód wzoru jawnego:

Wszystkich ścieżek z lewego dolnego do prawego górnego rogu (licząc te przecinające przekątną) jest $\binom{2n}{n}$, ponieważ na tyle sposobów możemy wybrać, w drodze długości 2n w których n krokach chcemy iść w prawo. Wystarczy więc policzyć te przechodzące ponad krawędź.

W tym celu weźmy dowolną ścieżkę przechodzącą ponad rozważaną przekątną i po pierwszym przekroczeniu odbijmy ją symetycznie względem prostej y+x=-1,

zakładając, że lewy dolny róg to (x, y) = (0, 0), a osi są 0X "w prawo" a 0Y "w górę".

Trafimy oczywiście końcem ścieżki w punkt (n-1, n+1), a każda "zła" ścieżka od (0,0) do (n,n) da nam dokładnie jedną ścieżkę od (0,0) do (n-1, n+1).

Pozostało zauważyć, że jest to odwzorowanie bijektywne, każda ścieżka od (0,0) do (n-1,n+1) po odbiciu fragmentu po pierwszym przejściu jest ścieżką łączącą nasze wierzchołki kwadratu, więc "złych" ścieżek jest $\binom{(n+1)+(n-1)}{n+1} = \binom{2n}{n+1}$. Dobrych ścieżek jest więc:

$$\binom{2n}{n} - \binom{2n}{n+1} = \frac{(2n)!}{((n-1)!)^2 n^2} - \frac{(2n)!}{((n-1)!)^2 n(n+1)} = \frac{1}{n+1} \cdot \frac{(2n)!}{((n-1)!)^2 n^2} = \frac{\binom{2n}{n}}{n+1}$$

Wniosek (wzór rekurencyjny pierwszego stopnia):

$$C_{n+1} = \frac{\binom{2n+2}{n+1}}{n+2} = \frac{(2n+2)(2n+1)(2n)!}{((n+1)!)^2(n+2)} = \frac{2(n+1)(2n+1)}{(n+2)(n+1)^2} \binom{2n}{n} = \frac{2(2n+1)}{n+2} C_n$$

Inne interpretacje kombinatoryczne:

Obracając kwadraty $n \times n$ o 135 stopni antyzegarowo natychmiast otrzymujemy, że C_n jest też liczbą dróg z (0,0) do (2n,0) znajdujących się w całości w I ćwiartce kartezjańskiego układu współrzędnych, używających tylko przejść postaci $(x,y) \to (x+1,y-1)$ oraz $(x,y) \to (x+1,y+1)$.

Natomiast patrząc na ułożenie ruchów "w górę (D)" i "w dół (D^*) " widzimy, że jest to tez ilość poprawnych nawiasowań długości 2n składających się z "(" oraz ")"

n=0:	*	1 way
n = 1:	()	1 way
n=2:	()(), (())	2 ways
n = 3:	()()(), ()(()), (()()), ((()())	5 ways
n=4:	()()()(), ()(()()), ()(()()), ()((())),	14 ways
	(())(()), (())(()), (()())(), ((()))(), (()()()),	
	(()(())), ((())()), ((()())), (((())))	
n = 5:	()()()()(), ()()(()), ()(()()), ()((())), ((())),	42 ways
	()(())(()), ()(())(()), ()(()())(), ()((()))(), ()((())()),	
	()(()(())), ()((())()), ()((()())), ()(((()))), (())(())	
	((())(()), (())(())(), (())(()()), (())((())), (()()()),	
	(()())(()), ((()))((), ((()))(()), (()(())(), (((()))(), (((()))()))	
	(((())())(), (((()()))(), ((((())))(), (((((())))(), (((((())))(), ((((())))(), (((((())))(), (((((())))(), (((((())))(), ((((((())))(), ((((((((
	(()(())()), (()(()())), (()((()))), ((())(())	
	((()())()), (((()))()), ((()(()))), ((()(()))), (((())())), (((())())), (((())())), (((())())))	
	(((()()))), ((((()))))	

Oczywiście poprawne nawiasowania dają nam drzewo wywołania operatora binarnego, co przekłada się na wniosek, że regularnych ukorzenionych drzew binarnych o n+1 liściach (równoważnie n wierzchołkach niebędących liściami) też jest C_n :

Z których łatwo przejdziemy do triangulacji (podział na trójkąty) (n+2)-kąta: (ciemny brązowy - korzeń, zielony - liść, jasny brąz - reszta)

Wzór rekurencyjny:

Mając triangulacje możemy szybko dostać wzór rekurencyjny:

$$C_0 = 1, \quad C_{n+1} = \sum_{i=0}^{n} C_i C_{n-i}, \quad \forall n \geqslant 0$$

Wynika on z faktu, że możemy ustalić jedną wybraną krawędź i wybrać na n sposobów wierzchołek z którym ta krawędź utworzy trójkąt, a pozostałe trójkąty wybierzemy spośród dwóch wielokątów które zostaną nam do podzielenia na dokłądnie C_iC_{n-i} sposobów, gdzie wielokąty które otrzymaliśmy mają i+2 oraz n-i+2 wierzchołki.

Oczywiście dla różnych wyborów wierzchołka dostajemy różne triangulacje, poniewaz różnią się własnie tym, że wyróżniona krawędź jest w innym trójkacie.

Zadanka:

- 1. Udowodnij, że liczba sposobów, na jakie możemy podzielić wierzchołki n-kąta foremnego na niepuste zbiory (nie numerujemy zbiorów) tak, aby każdy wierzchołek należał do dokładnie jednego zbioru oraz otoczki wypukłe tych zbiorów były rozłączne jest równa C_n .
- 2. Udowodnij, że liczba ciągów $1 \leqslant a_1 \leqslant \ldots \leqslant a_n$ spełniających $a_i \leqslant i$ jest równa C_n
- 3. Znajdź liczbę ciągów $1 = a_1, a_2, \dots, a_n$ (długości n) takich, że $1 \le a_{i+1} \le a_i + 1$.
- 4. Znajdź liczbę częściowych uporządkowań n nieetykietowanych obiektów.