Master d'Informatique spécialité DAC

BDLE (Bases de Données Large Echelle)
-Seconde Partie-

Cours 3 : Requêtes relationnelles en M/R (2/2)

Mohamed-Amine Baazizi – email: prénom.nom@lip6.fr http://dac.lip6.fr/master/ues-2014-2015/bdle-2014-2015/

Objectifs

Cours

Traduction des requêtes relationnelles SQL

TME

- 1. Jointures parallèles sur le cluster
- 2. Traduction des requêtes SQL

Bilan cours précédent

Traduction d'opérateurs algébriques

- Algorithmes facilement généralisables
- Jointures n-aires réalisables en <u>une seule passe</u>, coût polynomial.

Exemple:

$$Q = R(A,B) \bowtie S(B,C) \bowtie T(C,D)$$
$$coût(Q) = |S| + |D_C| \times |R| + |D_B| \times |T|$$

où $\boldsymbol{D}_{\!B}$ et $\boldsymbol{D}_{\!C}$ domaines fonctions hachage sur \boldsymbol{B} et \boldsymbol{C}

3

SQL (version simplifiée)

Opérateurs algébriques + fonctions d'agrégats

- Sélection, projection, jointure
- COUNT, SUM, AVG, MIN, MAX

Exemple d'un arbre algébrique

ļ

Traduction des requêtes SQL

Naïve (one-to-one)

- Chaque nœud = une tâche MR
- Une requête = enchaînement de tâches MR

matérialisation + chargement résultats intermédiaires

→ Coût élevé

.

Traduction des requêtes SQL

Optimisée

- Chaque groupe de nœuds = une tâche MR
- Une requête = enchaînement de tâches MR

Pas de matérialisation/chargement inutile

→ Coût réduit

Traduction optimisée

Principe: combiner les opérateurs bottom-up

- Jointures seules : cours précédent
- Jointures avec opérateurs : en général toujours possible excepté agrégation ou tri

Traduction optimisée: illustration

Workflow MR Adapté de [Lee]

Traduction optimisée : intuition

Résultat d'une tâche = entrée de la suivante Même(s) attribut(s) de partitionnement → transit correlation (TC)

Traduction optimisée: intuition

Auto-jointures

Mêmes données initiales → *Input correlation (IC)*

13

Traduction optimisée: intuition

Résultat d'une tâche = entrée de la suivante Mêmes données initiales + même(s) attribut(s) de partitionnement → Jobflow correlation (JFC)

Traduction optimisée : gain

Input correlation	Partager les <u>Map</u>	Gain local (accès disque) communication <u>si map distant</u>
Transit correlation	Partager Map, mutualiser reduces	Gain local (accès disque) communication
Jobflow correlation	Mutualiser reduce	Gain local (accès disque) communication

15

Traduction optimisée: gain

Join

Map:

lineitem \rightarrow (p_partkey , (l_quantity l_extendedprice))

part → (I_partkey, null)

Reduce:

agg1 sur I_quantity

join1 sur l_partkey = p_partkey
join2 sur l_partkey = l_partkey

Programme MR

Comparer coût communication des approches naive et optim

Workflow MR Adapté de [Lee]

Traduction optimisée: étapes

- A. Aplatir l'arbre MR^{std} : parcours post-order

 → séquence de tâches (PS-A-J-S)
- B. Réduire la séquence de tâches
 - 1. Fusionner des opérateurs
 - a. (SP, Agg, Sort, Join) x (SP, Agg, Sort)
 - b. Jointures successives
 - 2. Agrégation au vol

Règles de transformation

21

Règles de transformation

Règles de transformation

JFC(T3,T1) JFC(T3,T2) TC(T1,T2) T1<T2<T3
T123(s)=T1(s)oT2(s)oT3(s) s in {Map, Reduce}

Règle 3 T123

23

Déclenchement des règles

Phase 1 : appliquer règle 1 (fusion) jusqu'à plus de tâches IC et TC

Phase 2: appliquer les règles 2 à 3 (pour JFC)

Règle 2 : Agrégation

Règle 3 : JFC avec les deux précédentes tâches

Exemples

R(A,B) S(B,C) et T(C,D) trois schémas de relations

 $Q = R \bowtie S \bowtie agg(T) \bowtie agg(S)$

Les corrélations : TC(T1,T4), JFC(T3,T1), JFC(T5,T3), JFC(T5,T4)

Résultat: T14, T2, T35 (3 tâches)

Résultat: T2, T1435 (2 tâches)

25

Règles de transformation

JFC(T3,T1) T1<T2<T3
T13(Reduce)=T1(reduce)oT3(reduce)

Règle 4

T2, T13

Attention : aucune corrélation entre T3 et T2!

- 1. T2 s'éxecute
- 2. T3 exécutée dans le reduce de T1

Déclenchement des règles

Phase 1 : appliquer règle 1 (fusion) jusqu'à plus de tâches IC et TC

Phase 2: appliquer les règles 2 à 3 (pour JFC)

Règle 2 : Agrégation

Règle 3 : JFC avec les deux précédentes tâches

Règle 4 : JFC avec une seule tâche précédente

27

Exemples

R(A,B) S(B,C) et T(C,D) trois schémas de relations

 $Q = R \bowtie S \bowtie agg(T) \bowtie agg(S)$

Les corrélations : TC(T1,T4), JFC(T3,T1), JFC(T5,T3), JFC(T5,T4)

Même résultat : T2, T1435 (2 tâches)

Références

[Lee et al.] YSmart: Yet Another SQL-to-MapReduce Translator, in ICDCS'2011

[YSmart] https://github.com/YSmart/YSmart