BIPOLAR JUNCTION TRANSISTOR

INTRODUCTION

Gyro A. Madrona

........

Electronics Engineer

TOPIC OUTLINE

Transistor Construction

Transistor Configurations

Regions of Operation

TRANSISTOR CONSTRUCTION

THE FIRST TRANSISTOR

December 23,1947

The invention of the transistor, which revolutionized modern electronics was the result of collaborative work by three brilliant scientists:

- Dr. John Bardeen
- Dr. Walter Brattain
- Dr. William Shockley

TRANSISTOR CONSTRUCTION

Schematic Symbol

BIPOLAR JUNCTION TRANSISTOR

A <u>Bipolar Junction Transistor</u> (BJT) is a threeterminal semiconductor device that uses both free <u>electrons</u> and <u>holes</u> as charge carriers for its operation.

The term "bipolar" means two polarities.

EMITTER-BASE DIODE

The <u>emitter-based</u> diode in a BJT is <u>forward-biased</u> during normal operation.

The <u>emitter</u> is <u>heavily</u> doped while <u>base</u> is <u>lightly</u> doped to ensure most carriers reach the collector.

COLLECTOR-BASE DIODE

The <u>collector-based</u> diode in a BJT is typically <u>reverse-biased</u>.

The <u>collector</u> is doped at <u>intermediate</u> level – between the lightly doped base and heavily doped emitter.

CURRENT FLOW NOTATION

Conventional Flow Notation

Used in mathematical calculations

Electron Flow Notation

Actual movement of electrons

TRANSISTOR CONFIGURATIONS

COMMON-BASE

Common-Base Configuration

Base is common to both input and output loop.

Circuit Equivalent

COMMON-COLLECTOR

Common-Collector Configuration

Collector is common to both input and output loop.

Circuit Equivalent

COMMON-EMITTER

Common-Emitter Configuration

Emitter is common to both input and output loop.

Circuit Equivalent

REGIONS OF OPERATION

THE BASE CURVE

The Base Curve

THE COLLECTOR CURVE

The Collector Curve

BREADOWN REGION

Collector Curve

The <u>breakdown region</u> is the operating state where the voltage across the transistor's junctions exceeds safe limits, causing a large, uncontrolled current that can <u>destroy</u> the device.

A transistor should **never operate** in this region.

SATURATION REGION

Collector Curve

The <u>saturation region</u> is the operating state <u>maximum curren</u>t flows from collector to emitter, and very low collector-emitter voltage ($v_{CE} \approx 0$).

In this region, the transistor acts like a **closed switch**.

CUTOFF REGION

Collector Curve

The <u>cutoff region</u> is the operating state of a transistor where the base current is nearly zero ($i_B \approx 0$), resulting in <u>no collector current</u> flow ($i_C \approx 0$).

In this region, the transistor acts like an **open switch**.

ACTIVE REGION

Collector Curve

The <u>active region</u> is the operating state of a transistor where the collector current is <u>constant</u>.

In this region the transistor functions as an **amplifier**.

LABORATORY

