Chapter 3: Static Electric Fields

Lecturer: Nana Liu Summer 2020

3-10 Capacitance and Capacitors

- kQ \rightarrow kp_s \rightarrow kV $V = \frac{1}{4\pi\epsilon_0} \int_{S'} \frac{\rho_s}{R} ds' \qquad (V);$

• The ratio Q/V unchanged

$$Q = CV$$
,

C: capacitance (C/V, or Farad)

Capacitor

FIGURE 3-27
A two-conductor capacitor.

$\mathbf{E} \perp$ conductor surfaces (equipotential surfaces)

$$C = \frac{Q}{V_{12}} \qquad (F).$$

Capacitance

- C depends on
 - the geometry of the conductors
 - the permittivity of the medium between conductors
 - Independent of Q and V
- Measurement of C
 - Method 1: V₁₂ known, determine Q (Chap.4)
 - Method 2: Q known, determine V_{12}

Capacitance

- Method 2: Q known, determine V₁₂
 - 1. Choose a proper coordinate system
 - 2. Assume +Q, -Q on the conductors
 - 3. Find E from Q (Gauss's law, etc.)
 - 4. Find V_{12} by $V_{12} = -\int_{2}^{1} \mathbf{E} \cdot d\ell$
 - 5. $C=Q/V_{12}$

3-10.1 Series and Parallel Connections of Capacitors

FIGURE 3-31
Series connection of capacitors.

FIGURE 3-32
Parallel connection of capacitors.

Series

- - +Q and -Q on two external terminals
 - → +Q and -Q also induced internally

$$V = \frac{Q}{C_{sr}} = \frac{Q}{C_1} + \frac{Q}{C_2} + \cdots + \frac{Q}{C_n},$$

$$\frac{1}{C_{sr}} = \frac{1}{C_1} + \frac{1}{C_2} + \cdots + \frac{1}{C_n}$$

Series connection of capacitors.

Parallel

- V
 - \rightarrow Q₁, Q₂, Q₃, ... on each capacitor

$$Q = Q_1 + Q_2 + \dots + Q_n$$

= $C_1 V + C_2 V + \dots + C_n V = C_{||} V$

$$C_{||}=C_1+C_2+\cdots+C_n.$$

FIGURE 3-32
Parallel connection of capacitors.

3-10.2 Capacitances in Multiconductor Systems

FIGURE 3-34
A multiconductor system.

Presence of a charge on any one of the conductors

→ Affect potential of all the other conductors

$$V_{1} = p_{11}Q_{1} + p_{12}Q_{2} + \cdots + p_{1N}Q_{N},$$

$$V_{2} = p_{21}Q_{1} + p_{22}Q_{2} + \cdots + p_{2N}Q_{N},$$

$$\vdots$$

$$V_{N} = p_{N1}Q_{1} + p_{N2}Q_{2} + \cdots + p_{NN}Q_{N}.$$

p_{ii}: **coefficients of potential**; depends on

- 1. Shape and position of the conductor
- 2. Permittivity of surroundings

$$Q_{1} = c_{11}V_{1} + c_{12}V_{2} + \cdots + c_{1N}V_{N},$$

$$Q_{2} = c_{21}V_{1} + c_{22}V_{2} + \cdots + c_{2N}V_{N},$$

$$\vdots$$

$$Q_{N} = c_{N1}V_{1} + c_{N2}V_{2} + \cdots + c_{NN}V_{N},$$

c_{ii}: coefficients of capacitance

c_{ii}: coefficients of induction (i≠j)

c_{ii}: ground all other conductors, then $c_{ii}=Q_i/V_i$ c_{ji}: Induced charge $Q_{ji}=c_{ji}V_i$ If Q_i on ith conductor, $V_i>0$ induced $Q_{ji}<0$ Thus, $c_{ii}>0$; $c_{ii}<0$

By reciprocity, $p_{ij} = p_{ji}$ and $c_{ij} = c_{ji}$

A Four-conductor System

$$Q_{1} = c_{11}V_{1} + c_{12}V_{2} + \cdots + c_{1N}V_{N},$$

$$Q_{2} = c_{21}V_{1} + c_{22}V_{2} + \cdots + c_{2N}V_{N},$$

$$\vdots$$

$$Q_{N} = c_{N1}V_{1} + c_{N2}V_{2} + \cdots + c_{NN}V_{N},$$

Conductors 0,1,2,3. Let conductor 0 be grounded (i.e., $V_0=0$).

$$\begin{split} Q_1 &= c_{11} V_1 + c_{12} V_2 + c_{13} V_3, \\ Q_2 &= c_{12} V_1 + c_{22} V_2 + c_{23} V_3, \\ Q_3 &= c_{13} V_1 + c_{23} V_2 + c_{33} V_3, \end{split}$$

A Four-conductor System

c: Coefficient of capacitance

C: Capacitance

FIGURE 3-35

Schematic diagram of three conductors and the ground.

Rewrite the Q ~ V relation

$$Q_1 = C_{10}V_1 + C_{12}(V_1 - V_2) + C_{13}(V_1 - V_3),$$

$$Q_2 = C_{20}V_2 + C_{12}(V_2 - V_1) + C_{23}(V_2 - V_3),$$

$$Q_3 = C_{30}V_3 + C_{13}(V_3 - V_1) + C_{23}(V_3 - V_2),$$

 C_{10} , C_{20} , C_{30} : self-partial capacitance C_{ij} ($i \neq j$): mutual partial capacitance

$$Q_1 = (C_{10} + C_{12} + C_{13})V_1 - C_{12}V_2 - C_{13}V_3,$$

$$Q_2 = -C_{12}V_1 + (C_{20} + C_{12} + C_{23})V_2 - C_{23}V_3,$$

$$Q_3 = -C_{13}V_1 - C_{23}V_2 + (C_{30} + C_{13} + C_{23})V_3.$$

$$Q_1 = c_{11}V_1 + c_{12}V_2 + c_{13}V_3,$$

$$Q_2 = c_{12}V_1 + c_{22}V_2 + c_{23}V_3,$$

$$Q_3 = c_{13}V_1 + c_{23}V_2 + c_{33}V_3,$$

Coefficient of capacitance:

c₁₁ is the total capacitance between conductor 1 and all the other conductors connected

$$c_{11} = C_{10} + C_{12} + C_{13},$$

$$c_{22} = C_{20} + C_{12} + C_{23},$$

$$c_{33} = C_{30} + C_{13} + C_{23},$$

Coefficient of inductance:

 c_{12} is negative of the C_{12} (mutual partial capacitance)

$$c_{12} = -C_{12},$$

$$c_{23} = -C_{23},$$

$$c_{13} = -C_{13}.$$

$$C_{10} = c_{11} + c_{12} + c_{13},$$

$$C_{20} = c_{22} + c_{12} + c_{23},$$

$$C_{30} = c_{33} + c_{13} + c_{23}.$$

3-10.3 Electrostatic Shielding

A three-conductor system Setting $V_2=0$

$$\rightarrow Q_1 = C_{10}V_1 + C_{12}V_1 + C_{13}(V_1 - V_3).$$

FIGURE 3-37
Illustrating electrostatic shielding.

$$\begin{split} &Q_1 = C_{10}V_1 + C_{12}(V_1 - V_2) + C_{13}(V_1 - V_3), \\ &Q_2 = C_{20}V_2 + C_{12}(V_2 - V_1) + C_{23}(V_2 - V_3), \\ &Q_3 = C_{30}V_3 + C_{13}(V_3 - V_1) + C_{23}(V_3 - V_2), \end{split}$$

When
$$Q_1=0 \Rightarrow E$$
 inside $2=0 \Rightarrow V_1=V_2=0 \Rightarrow 0=-C_{13}V_3 \Rightarrow C_{13}=0$

Gauss's law

$$V = -\int \mathbf{E} \cdot dl$$

3-11 Electrostatic Energy and Forces

- From Eq. 3-44 $\frac{W}{q} = -\int_{P_1}^{P_2} \mathbf{E} \cdot d\ell = V_{21}$
 - Work required to bring a charge q from P_1 to P_2 W= qV_{21}

• A charge Q_1 in free space. Work required to bring a **second** charge Q_2 from infinity to a distance R_{12} (position 2): $W=Q_2V_{2\infty}=Q_2V_2$

$$W_2 = Q_2 V_2 = Q_2 \frac{Q_1}{4\pi\epsilon_0 R_{12}}$$

Against E field of charge Q_1 (V_2 is due to charge Q_1)

Rewrite
$$W_2 = Q_2 V_2 = Q_2 \frac{Q_1}{4\pi\epsilon_0 R_{12}}$$

$$W_2 = Q_1 \frac{Q_2}{4\pi\epsilon_0 R_{12}} = Q_1 V_1$$

$$Q_1V_1=Q_2V_2$$

$$Q_1V_1=Q_2V_2$$

 $\Rightarrow Q_1V_1+Q_2V_2=2Q_1V_1=2W_2$

$$W_2 = \frac{1}{2}(Q_1V_1 + Q_2V_2).$$

• Another charge Q_3 . Work required to bring a third charge Q_3 from infinity to a distance R_{13} from Q_1 and R_{23} from Q_2 : $\Delta W = Q_3 V_{3\infty}$

Against E field of charge Q_1 and E field of charge Q_2 V_3 is due to charges Q_1 and Q_2

$$\Delta W = Q_3 V_3 = Q_3 \left(\frac{Q_1}{4\pi\epsilon_0 R_{13}} + \frac{Q_2}{4\pi\epsilon_0 R_{23}} \right).$$

3

2

 Total work to assemble the 3 charges Q₁, Q₂, and Q_3 : $W_3 = W_2 + \Delta W$

$$W_3 = W_2 + \Delta W = \frac{1}{4\pi\epsilon_0} \left(\frac{Q_1 Q_2}{R_{12}} + \frac{Q_1 Q_3}{R_{13}} + \frac{Q_2 Q_3}{R_{23}} \right).$$

Rewrite: 3 terms divided into 6 terms

$$\begin{split} W_3 &= \frac{1}{2} \left[Q_1 \left(\frac{Q_2}{4\pi\epsilon_0 R_{12}} + \frac{Q_3}{4\pi\epsilon_0 R_{13}} \right) + Q_2 \left(\frac{Q_1}{4\pi\epsilon_0 R_{12}} + \frac{Q_3}{4\pi\epsilon_0 R_{23}} \right) \right. \\ &\quad + Q_3 \left(\frac{Q_1}{4\pi\epsilon_0 R_{13}} + \frac{Q_2}{4\pi\epsilon_0 R_{23}} \right) \right] \\ &= \frac{1}{2} (Q_1 \underbrace{V_1}_{\uparrow} + Q_2 V_2 + Q_3 V_3). \end{split}$$

Potential V_1 is caused by charges Q_2 and Q_3

Different from the previous V_1 due to Q_2 only $W_2 = Q_1 \frac{Q_2}{4\pi\epsilon_0 R_{12}} = Q_1 V_1$.

General expression

Self energy: Work required to assemble the individual point charges

Mutual energy: the interacting energy

Initially, Q₁ in space

Introduce
$$Q_2$$
 $\Delta W = Q_2 V_{2\infty}$

Introduce
$$Q_3$$
 $\Delta W = Q_3 V_{3\infty}$

$$W_2 = \frac{1}{2}(Q_1V_1 + Q_2V_2).$$

$$W_3 = \frac{1}{2}(Q_1V_1 + Q_2V_2 + Q_3V_3).$$

•

$$W_e = \frac{1}{2} \sum_{k=1}^{N} Q_k \underline{V_k} \qquad (J),$$

Potential V_k is caused by all the other charges

$$V_{k} = \frac{1}{4\pi\epsilon_{0}} \sum_{\substack{j=1\\(j\neq k)}}^{N} \frac{Q_{j}}{R_{jk}}.$$

3-11.1 Electrostatic Energy in terms of Field Quantities

For a continuous charge distribution of density

$$\nabla \cdot (V\mathbf{D}) = V\nabla \cdot \mathbf{D} + \mathbf{D} \cdot \nabla V,$$

$$W_e = \frac{1}{2} \int_{V'} \nabla \cdot (V\mathbf{D}) \, dv - \frac{1}{2} \int_{V'} \mathbf{D} \cdot \nabla V \, dv$$
$$= \frac{1}{2} \oint_{S'} V\mathbf{D} \cdot \mathbf{a}_n \, ds + \frac{1}{2} \int_{V'} \mathbf{D} \cdot \mathbf{E} \, dv,$$

- V' can be any volume
 Choose its radius R→∞ → 1st term disappears

$$W_e = \frac{1}{2} \int_{V'} \mathbf{D} \cdot \mathbf{E} \, dv \qquad (J).$$

$$\mathbf{D} = \epsilon \mathbf{E}$$

 $\mathbf{D} = \epsilon \mathbf{E}$ For a linear medium

$$W_e = \frac{1}{2} \int_{V'} \epsilon E^2 \, dv \qquad (J)$$

$$W_e = \frac{1}{2} \int_{V'} \epsilon E^2 dv \qquad (J) \qquad W_e = \frac{1}{2} \int_{V'} \frac{D^2}{\epsilon} dv \qquad (J).$$

Electrostatic Energy Density we

$$W_e = \frac{1}{2} \int_{V'} \mathbf{D} \cdot \mathbf{E} \, dv \qquad (\mathbf{J}).$$

(J).
$$W_e = \frac{1}{2} \int_{V'} \epsilon E^2 dv \qquad (J) \qquad W_e = \frac{1}{2} \int_{V'} \frac{D^2}{\epsilon} dv$$

$$W_e = \frac{1}{2} \int_{V'} \frac{D^2}{\epsilon} dv \qquad (J).$$

$$W_e = \int_{V'} w_e \, dv.$$

$$w_e = \frac{1}{2} \mathbf{D} \cdot \mathbf{E} \qquad (J/m^3)$$

$$v_e = \frac{1}{2} \epsilon E^2$$
 (J/m

(J/m³)
$$w_e = \frac{1}{2} \epsilon E^2$$
 (J/m³) $w_e = \frac{D^2}{2\epsilon}$ (J/m³).

Definition of density form is artificial; Volume integral form can be verified.

3-11.2 Electrostatic Forces

- Using Coulomb's law to determine the force on one body that is caused by the charges on other bodies would be very tedious.
- Thus, a simple method of principle of virtual displacement is introduced.
 - System of bodies with fixed charges
 - System of conducting bodies with fixed potentials

System of Bodies with Fixed Charges

- An isolated system consisting of charged conductor and dielectric bodies.
- Condition: Charges are constant.
- Electric force displaces one of the bodies by dl (a virtual displacement)
 - Mechanical work done by the system:

$$dW = \mathbf{F}_{o} \cdot d\ell,$$

 $\mathbf{F}_{\mathbf{Q}}$: total electric force acting on the body

 In other words, reduced stored electrostatic energy produces the mechanical work

$$dW = -dW_e = \mathbf{F}_Q \cdot d\ell$$
.

Reduced stored electrostatic energy $dW_e = (\nabla W_e) \cdot d\ell$
 $\mathbf{F}_Q = -\nabla W_e$ (N).

A very simple formula for the calculation of $\mathbf{F}_{\mathbf{Q}}$ from the electrostatic energy of the system

- Electric torque rotates one of the bodies by dφ (a virtual rotation) about an axis (e.g., z axis)
 - Work done by the system:

$$dW = (T_Q)_z d\phi$$

$$\vdots$$

$$\vdots$$

$$(T_Q)_z = -\frac{\partial W_e}{\partial \phi} \qquad (N \cdot m).$$

System of Conducting Bodies with Fixed Potentials

- Condition: potentials are fixed.
- System connected to external sources to maintain fixed potentials
- A displacement dl \rightarrow dW_e, dQ_k to maintain fixed potentials V_k
 - 1. Work done by the external sources:

$$dW_s = \sum_{k} V_k dQ_k$$

– 2. Produced mechanical work:

$$dW = \mathbf{F}_{V} \cdot d\ell$$

- 3. Change of electrostatic energy due to dQ_k :

$$dW_e = \frac{1}{2} \sum_{k} V_k dQ_k = \frac{1}{2} dW_s$$

• Thus, $dW + dW_e = dW_s$.

$$dW_e = \frac{1}{2} \sum_{\mathbf{k}} V_{\mathbf{k}} dQ_{\mathbf{k}} = \frac{1}{2} dW_{\mathbf{s}}$$

$$\mathbf{F}_{V} \cdot d\ell = dW_{e}$$

$$= (\nabla W_{e}) \cdot d\ell$$

$$\mathbf{F}_{V} = \nabla W_{e} \qquad (N).$$

• Similarly, a displacement $d\phi \rightarrow dW_e$, dQ_k

The difference in formulas for fixed potentials and for fixed charges is only a sign change.