TTIC 31230 Fundamentals of Deep Learning Midterm Exam Practice Questions

Problem 1. We consider a "Karpathy" normalization Layer applied to a layer in a convolutional nerual network.

$$L' = \mathtt{Karpathy}(\mathtt{L},\mathtt{A},\mathtt{B})$$

class Karpathy:

Assume that A and B have shape (C) where C is the number of channels. Assume that L has shape (B, H, W, C) where B is the minibatch size, H is the height dimension, W is the width dimension, C is the number of channels.

a. write the forward method in += notation.

$$L'[\ldots] += A[\ldots](L[\ldots] + B[\ldots])$$

(fill in the indices in the above equation).

- **b.** Write the += notation for the backward method (to L, A and B).
- **c.** Write the Python/Numpy code for the backward method using appropriate Numpy vector operations.

Problem 2. This problem is on momentum. Momentum is traditionally defined in terms of "velocity"

$$\hat{v}^{t+1} = \mu v^t + \eta \nabla_{\Theta} \ell^t(\Theta)$$

$$\Theta = v^{t+1}$$

In this class we have defined momentum by a smoothing operation on the gra-

dient vector.

$$\begin{array}{lcl} \hat{g}^{t+1} & = & \mu \hat{g}^t + (1-\mu) \nabla_{\Psi} \; \ell^t(\Psi) \\ \\ \Psi^t & -= & \eta' \hat{g}^{t+1} \end{array}$$

Assume that $\Psi^0 = \Theta^0$ and that $v^0 = \hat{g}^0 = 0$ and define

$$\eta' = \frac{\eta}{1 - \mu}$$

Show by induction on t that we have

$$v^t = \eta' \, \hat{g}^t$$

$$\Psi^t = \Theta^t$$

The semantics of μ and η' seem clearer in the gradient smoothing formulation. In particular, we expect the optimum value of η' to be near the optimal value of η when momentum is not used. We also expect that μ and η' are more nearly conjugate in meta-parameter search (we can optimize μ and η' independently).

Problem 3. Adam uses the equations.

$$\hat{g}_{i}^{t+1} = \beta_{1} \hat{g}_{i}^{t} + (1 - \beta_{1}) \left(\nabla_{\Theta} \ell^{t}(\Theta) \right)_{i}$$

$$s_i^{t+1} = \beta_2 s_i^t + (1 - \beta_2) \left(\nabla_{\Theta} \ell^t(\Theta) \right)_i^2$$

$$\Theta_i^{t+1} \quad = \quad \Theta_i^t - \frac{\eta}{\sqrt{s_i^{t+1}} + \epsilon} \quad \hat{g}_i^{t+1}$$

Suppose that for each scalar parameter Θ_i we have that $(\nabla_{\Theta} \ell^t(\Theta))_i$ is either 1 or 0 and the fraction of time that it is 1 is ϵ . If we want s_i^t to be a reasonable estimate of $\mathbb{E}\left[\left(\nabla_{\Theta} \ell^t(\Theta)\right)_i^2\right]$ what is a reasonable value of β_2 as a function of ϵ ? Explain your answer.

Problem 4. An intuitive prior on numbers is the log-uniform prior where $\log_2 |\Theta_i|$ is taken to be uniformly distributed between, say, -10 and 10. A log-uniform prior corresponds to a density

$$p(\Theta_i) \propto 1/|\Theta_i|$$

This correspinds to the following regularizer.

$$\Theta^* = \underset{\Theta}{\operatorname{argmin}} \, \ell(\Theta) + \lambda \sum_{i} \, \ln |\Theta_i|$$

Assuming that we only consider positive value of Θ_i (to make things simpler) give the conditions on $\partial \ell/\partial \Theta_i$ for a local optimum (or rather a stationary point — a point where the derivative of the objective function is zero).

Problem 5. This problem is on complex-step differentiation. Suppose that Θ is a parameter tensor and that we have computed Θ grad using complex arithmetic at the parameter setting $\Theta + i\epsilon\Delta\Theta$ where $\epsilon = 2^{-50}$. Write the expression for $H\Delta\Theta$ where H is the Hessian in terms of the complex value for Θ grad.

Problem 6. This problem concerns initialization. Consider a unit defined by a simple inner product of a weight vector and previous units followed by a Karpathy normalization and then a nonlinearity.

$$y = \sigma(W \cdot x)$$

or in component notation

$$y = \sum_{i} w_{i} x_{i}$$
$$z = \sigma(a(y+b))$$

a. Assume that the x_i are independent and have mean μ_x and variance σ_x^2 . Assume that the the w_i are initialized independently to have mean μ_w and variance σ_w^2 . If we want a(y+b) to have zero mean and unit variance, how should we initialize a and b?

b. If a and b are initialized so that a(y+b) has zero mean and unit variance, is there any advantage to using Xavier initialization on w? Explain your answer.

Problem 7. Consider a highway path update of the form

$$L_{i+1} = F_i * L_i + (1 - F_i) * D_i(L_i)$$

where F_i is a parameter (is independent of the problem instance) rather than being computed from L_i . In a Resnet-like CNN the diversion $D_i(F_i)$ uses different parameters for each i. Assume that F_i can also be a different parameter for each i. Do you think this is a reasonable CNN architecture? Explain your answer (your explanation is more important than your answer).

Problem 8. Suppose that at training time we construct a mask μ on the parameters so that

$$\begin{cases} \mu_i = \frac{1}{2} & \text{with probability } \alpha \\ \\ \mu_i = 1 & \text{with probability } 1 - \alpha \end{cases}$$

Then at train time we do

$$y_i = \operatorname{Relu}\left(\sum_j W_{i,j} \mu_j x_j\right)$$
 $\Theta = \nabla_{\Theta} \ell(\Theta, \mu)$

Give a corresponding weight scaling rule for computing y_i at test time for this "half drop out" training algorithm.