Theory and Practice of Data Cleaning

Overview & Introduction

Data Wrangling vs Analytics

Data wrangling

- data processing that allows meaningful analysis to begin
- extract, transform, load (ETL), integrate, clean, query, repair, ...
- Database people not always good at public relations
 - ... do most of the work
 - ... but most of the attention goes to analytics

What skills should data scientists have?

- Extracted from 3500 relevant job openings on LinkedIn
- Note: SQL (directly and indirectly) is in very high demand!
- Our Focus:
 - Think like a DB person!

Costs resulting from low-quality data

A substantial body of literature has investigated data quality problems in enterprises. Reports indicate a number of data quality issues in enterprises. It is reported that at least 60% of enterprises suffer from data quality problems [5], it is also estimated that typically 10–30% of data in organizational databases are inaccurate [6, 7], an industrial data error rate of 75% can be found [7], 70% of manufacturing orders are assessed as of poor data quality [8], 40% of data in a credit-risk management database was found to be incomplete [9], and between 50% and 80% of criminal records are estimated to be inaccurate, incomplete, and ambiguous [10]. Although over the last years some improvements have been made, data quality problems are still pervasive in most enterprises.

- Reports indicate cost due to low-quality data to be in the billions of \$\$\$
- ... but also in long-tail of (data) science, data journalism, ..., health, life.

Readings: [GH13] Ge & Helfert. Cost and Value Management for Data Quality.

A Taxonomy of Cost of Types

Readings: [GH13] Ge & Helfert. Cost and Value Management for Data Quality.

Costs resulting from low-quality data

4		• •	
	コンコナコ	maintenance	COCTC
	וומום	пианиснанис	1.1.31.3

- 2. Personnel costs
- 3. Data search costs
- 4. Data quality assessment costs
- 5. Semantic confusion costs
- 6. Data re-input costs
- 7. Wrong data interpretation costs
- 8. Time costs of viewing irrelevant information
- 9. Loss of revenue
- 10. Cost of losing current customer
- 11. Cost of losing potential new customer
- 12. Cost of realigning business rules
- 13. Cost of complicated data integrity
- 14. "Loss of orders" cost

- 15. Higher retrieval costs
- 16. Higher data administration costs
- 17. General waste of money
- 18. Cost of system migration and reengineering
- 19. Costs in terms of lost opportunity
- 20. Costs due to tarnished image
- 21. Costs related to invasion of privacy and civil liberties
- 22. Costs in terms of personal injury and death of people
- 23. Costs because of lawsuits
- 24. Process failure costs
- 25. Information scrap and rework costs
- 26. Lost and missed opportunity costs
- 27. Costs due to increased time of delivery
- 28. Costs of acceptance testing

Readings: [GH13] Ge & Helfert. Cost and Value Management for Data Quality.

Data Cleaning - the Big Idea

- Understanding, assessing, and improving data quality
- Quality dimensions data should be ...
 - ... accurate, timely, relevant, complete, understood, trusted, ...
- Questions we want to ask of data:
 - Fitness for Use: Is the quality sufficient to answer my questions?
- Queries we want to execute
 - Data profiling
 - Checking Integrity Constraints (ICs)
 - Answering those questions ...
 - ... using Datalog and SQL queries!

Data Cleaning in Context

• Data from various sources is gathered, selected

Data Profiling

- Identify, detect, quantify data quality problems
- Data Cleaning (Wrangling)
 - Standardize, normalize data
 - Controlled, reference vocabularies

Data Integration & Data Warehousing

- Extract, transform, load (ETL tools) → warehouse
- On demand integration (database mediators)

A Simple Taxonomy of Error Types

- Quantitative Errors
 - Outliers
 - Deviate significantly from the distribution of values
 - Methods from statistics, data mining, machine learning
- Qualitative Errors
 - Syntactic Violations
 - Pattern violations: variant data formats, spellings, ...
 - Schema / Integrity Constraint (IC) Violations
 - IC rule violations: Functional or inclusion dependencies
 - Duplicates and other errors
 - Distinct records refer to same real-world entity

Readings: [ACD+16] Abedjan et al. Detecting Data Errors: Where Are We and What Needs to Be Done?

Course Themes, Topics, Tools

- Syntax
 - Regular expressions define patterns that can be used to match, extract, and transform data, i.e., deal with syntactic variations
 - OpenRefine: open source tool for data wrangling
- Schema & Semantics
 - Using database technologies for data profiling (queries); integrity constraints (ICs); and repair
 - Datalog and SQL
- Synthesis
 - Workflow automation (ETL, scripts)
 - Provenance (data lineage and processing history)
 - YesWorkflow: modeling scripts as workflows, provenance

How do you clean data? (be an OpenRefine hero!)

... even after OpenRefine, Kurator, Python data cleaning workflows, "dirty data" can make it into our database tables ...

PERSON

Id	Name	DOB	Age	Sex	Phone	Zip	Email
43	Doe, Joe	1970-02-27	56	M	(999)-999-999	94102	
43	Jane Dunbar	1.1.1990	26	W	NULL	61820	jdunbar@foobar.com
27	Joe Doe	2/30/70	46	F	+1-530-777-1234	D-6951	joe.doe@gargle.edu

ADDRESS

ZIP	City	State
94102	San Franzisco	CA
61821	Champagne	IL
D-6951	Obrigheim	Deutschland

• Errors and IC Violations:

- Uniqueness (primary key) violation
- Different representations & formats
- Contradictions
- Incorrect values (typos, domain, ...)
- Duplicates
- Referential Integrity (FK → PK)
 - PERSON.ZIP → ADDRESS.ZIP
- Incompleteness
- ..

Workflows and Provenance

Kyle B., (computational) archaeologist:

"It took me about 20 minutes to comment. Less than an hour to learn and YW-annotate, all-told."

master_data_directory

prism_directory

Synthesis

- Workflow automation (ETL, scripts)
- Provenance (data lineage and processing history)
- YesWorkflow: modeling scripts as workflows, provenance