DOCUMENTS ET CALCULATRICES NON AUTORISÉS

LA PRÉCISION DES RAISONNEMENTS ET LE SOIN APPORTÉ À LA RÉDACTION SERONT PRIS EN COMPTE DANS LA NOTATION

Exercice 1

- 1. Soient E un espace euclidien, F et G deux sous-espaces vectoriels de E. Montrer que $(F \cap G)^{\perp} = F^{\perp} + G^{\perp}$.
- 2. \mathbb{R}^4 est muni du produit scalaire canonique.

On pose $H = \{(x, y, z, t) \in \mathbb{R}^4 | x + z = 0 \text{ et } y - t = 0\}.$

On note s_H la symétrie orthogonale par rapport à H et $p_{H^{\perp}}$ la projection orthogonale sur H^{\perp} .

- (a) Déterminer, en utilisant la question 1, une base de H^{\perp} .
- (b) Exprimer s_H en fonction de $p_{H^{\perp}}$. Illustrer à l'aide d'un schéma.
- (c) Déduire des questions précédentes s(u) où u = (-1, 2, -3, 1).

Exercice 2

 \mathbb{R}^3 muni du produit scalaire canonique, noté (\cdot |·), est l'espace orienté usuel.

On considère la rotation r d'axe orienté par $\mathbf{a} = (2, -3, 6)$ et d'angle de mesure $\theta = \operatorname{Arccos}\left(\frac{3}{5}\right)$.

On note D la droite vectorielle engendrée par \boldsymbol{a} et p la projection orthogonale sur D^{\perp} .

- 1. Soit u un vecteur orthogonal à a. Exprimer r(u) en fonction de u et de a.
- 2. Exprimer, pour tout vecteur $v \in \mathbb{R}^3$, p(v) en fonction de v et de a.
- 3. (a) Soit $v \in \mathbb{R}^3$. Déduire des questions précédentes que r(v) s'écrit :

$$r(\mathbf{v}) = \alpha \mathbf{v} + \beta(\mathbf{v}|\mathbf{a})\mathbf{a} + \gamma \mathbf{a} \wedge \mathbf{v},$$

où α, β et γ sont des réels à déterminer.

(b) **Application** : calculer r(v) pour v = (1, 0, -1).

Exercice 3

Soit E un espace euclidien orienté de dimension $n \ge 1$ et \mathcal{B} une base orthonormée directe de E.

Question préliminaire : montrer que si f est un automorphisme orthogonal tel que $f \circ f = \text{Id}_E$ alors f est une symétrie orthogonale.

Partie A

Dans cette partie n = 2 et $\mathcal{B} = (i, j)$.

On considère la rotation r d'angle de mesure θ et la réflexion s par rapport à Vect(i).

- 1. Ecrire la matrice M de $s \circ r$ dans la base \mathcal{B} .
- 2. Caractériser l'endomorphisme $s \circ r$.
- 3. (a) En déduire que r s'écrit $r = s \circ f$ où f est une réflexion à préciser.
 - (b) Donner une base de chacun des sous-espaces propres de f.

Partie B

Dans cette partie n = 3 et $\mathcal{B} = (i, j, k)$.

On considère la rotation g d'axe orienté par k et d'angle de mesure θ et la réflexion σ par rapport au plan P d'équation u=0.

- 1. Ecrire la matrice de la réflexion σ dans la base \mathcal{B} . Justifier rapidement la réponse.
- 2. Ecrire la matrice de g dans la base \mathcal{B} .
- 3. Déterminer la matrice N de $\sigma \circ g$ dans la base \mathcal{B} .
- 4. Montrer que $\sigma \circ g$ est une symétrie orthogonale.
- 5. Dans cette question $\theta = \frac{\pi}{3}$. Montrer que g s'écrit $g = \sigma \circ h$ où h est une réflexion par rapport à un plan Π dont on donnera une équation cartésienne.
- 6. Retour au cas général -

Montrer que g s'écrit $g = \sigma \circ h$ où h est une réflexion par rapport à un plan dont on donnera une base .