Layer 1: Physical Layer

Overview

- Defines physical transmission of data (raw bits over media).
- Involves cables, wireless signals, and device interfaces.
- Standardized primarily by the IEEE 802 group.

Media

- Copper (twisted-pair, coaxial)
- Fiber-optic (short-to-long distances, high capacity)
- Wireless/Radio (varies by IEEE standard and strength)

Transmission Types

- Raw binary transmission: Serial stream of 1s and 0s
- Analog transmission: Used for long-distance communication

Digital Line Encoding

- Unipolar: Positive voltage = "1"
- Polar: Uses positive and negative voltages to represent bits
 - o NRZ (Non-Return to Zero): Positive = 1, Negative = 0
 - \circ NRZ-I (Inverted NRZ): Voltage change = 1, No change = 0
- Manchester Encoding (IEEE 802.3):
 - Variation of NRZ
 - o Plays a major role in network throughput

Physical Layer Devices

- Repeaters:
 - Amplify and clean digital signals
 - Extend transmission distance
 - o Copper: up to 100m; Fiber: 2–60+ km; Wireless: varies
- Hubs:
 - Multi-port repeaters
 - o No processing—just repeats signals
 - Rarely used today

Physical Standards (IEEE 802)

- 802.3 (Ethernet): Copper & Fiber transmission standards
 - Example: 1000BaseT = Gigabit Ethernet over copper twisted pair
- 802.11 (Wi-Fi): Wireless LAN standards

Copper Media

- Types:
 - o Coaxial: RG-59, RG-6 (long distance)
 - o Twisted-Pair: CAT-3, CAT-5, CAT-6, CAT-7, etc. (LAN)
- Issues:
 - o EMI (Electromagnetic Interference): Unwanted signals affecting transmission
 - o Cross-talk: Interference between parallel cable signals

Mitigation Techniques

- Shielding: Blocks outside interference
- Twisting: Reduces cross-talk between pairs
- Common-Mode Rejection (CMR): Logical filtering to eliminate noise

Twisted-Pair Variants

- UTP (Unshielded Twisted Pair):
 - No or partial shielding
 - o Cheap, easy to install, but vulnerable to EMI
- STP (Shielded Twisted Pair):
 - Shielded conductors
 - o Expensive, less flexible, harder to install, but EMI-resistant

Power over Ethernet (PoE)

- 802.3af (PoE):
 - o 12.95 W, uses 2 pairs (Blue & Brown)
- 802.3at (PoE+):
 - o 25.5 W, uses 2 or 4 pairs depending on device
- Common Uses:
 - VoIP phones
 - Security cameras
 - Wireless access points
 - o Physical access controls
 - o Fire/safety devices
 - IoT devices

Key Takeaways

- Media types: Copper, Fiber, Wireless
- Transmission: Binary, Analog, Line Encoding
- Devices: Repeaters, Hubs
- Standards: IEEE 802.3 (Ethernet), IEEE 802.11 (Wireless)
- Copper Media: UTP vs STP, EMI prevention, PoE support
- Distances:

Copper: 100m
Fiber: 2–60+ km