

Undergraduate Project – CIM Accuracy Analysis and Multi-Exit Architecture

Speaker: 吳育丞 吳冠緯 陳宥辰

Mentor: Kevin Chris

Advisor: Prof. An-Yeu (Andy) Wu

Date:01/26/2022

Outline

- Sensitivity Analysis of CIM Accuracy
 - Related Work: IEDM(2019)
 - Experimental Setting
 - Experimental Results Analysis
- Multi-Exit Architecture
- Summary & Future Work

Noise-Resilience of Different DNN Architectures (1/2)

- Compared to digital accelerators, CIM accelerators are more sensitive to non-idealities of the memory devices and the peripheral circuits.
- Different DNNs have different sensitivities to noise, but there is no clear relationship between the sensitivity and the ideal accuracy.

Noise-Resilience of Different DNN Architectures (2/2)

- The rank of DNNs in terms of accuracy may change from one noise standard deviation to another.
 - e.g. Resnet models have better accuracy than Squeezenet models without noise but Squeezenet models are more robust with bigger noise.

Outline

- Sensitivity Analysis of CIM Accuracy
 - Related Work: IEDM(2019)
 - Experimental Setting
 - Experimental Results Analysis
- Multi-Exit Architecture
- Summary & Future Work

Quantization of WAGE_[2] (Used in DNN+NeuroSim)

- The range of the original weight is [-1,+1]
- Mapping floating point weights to integers
 (Bit length of integers is decided by the synaptic weight precision)
- Due to limited resolution of memory cells, we may need to map single weight to multiple cells.
- In practice, we simulate with 8-bits weight precision and store each weight with two cells(4 bits per cell).

Modified Quantization[3] (The training process is more stable)

Difference: The range of the original weight is not [-1, 1]

Clamp the original weight to [-1, 1]

→ original weight / max of |weight|

Rescaling → Output * max of original |weight|

Simulation of Hardware Non-Ideal Effects (1/2)

ADC quantization:

- Simulate ADC quantization effect by quantizing partial sums of each synaptic array linearly.
- We set ADC resolution = 10 (Control Variable) in inference simulation to avoid its effect overshadowing the effect of conductance variation.

Simulation of Hardware Non-Ideal Effects (2/2)

Conductance variation:

- We simulate conductance variation effect with a normal distribution model centered at the ideal conductance of each cell.
- Inferencing with different standard deviations. ($\sigma = 0 \sim 0.2$) (Independent Variable)

Resnet Architecture Used for Simulation

Independent Variables of Our Simulation

- Depth(Number of layers)
 - Resnet20(num = 3)
 - Resnet32(num = 5)
 - ❖ Resnet44(**num = 7**)
 - Resnet56(num = 9)

Independent Variables of Our Simulation

Kernel Size

- ❖ Kernel = 1; Padding = 0
- Kernel = 3; Padding = 1
- ❖ Kernel = 5; Padding = 2

Independent Variables of Our Simulation

Channel Size

- **♦** 8→16→32
- ♦ 16→32→64
- ♦ 32→64→128

Outline

- Sensitivity Analysis of CIM Accuracy
 - Related Work: IEDM(2019)
 - Experimental Setting
 - Experimental Results Analysis
- Multi-Exit Architecture

Summary & Future Work

Accu. of Deeper Models Decrease Faster

- Recently, the VGG-like DNNs are less frequently used and replaced by DNNs that are deeper and narrower.
- The ideal accuracy increases as the depth increases. However, the accuracy of deeper DNNs decreases faster with increased noise and eventually becomes lower than that of shallower DNNs.

Simulation Results – DNN Depth (1/4)

- Without applying variation at the beginning, all the Resnet models have an accuracy about 90%. With the variation becomes higher, the accuracies decrease faster in the cases of deeper sizes.
- The table below also shows that Resnet-44 and Resnet-56 have lower accuracies than others with $\sigma = 0.2$ though they are the relatively higher two cases without conductance variation.

ADC(10b)		variation (σ)				
depth	0	0.05	0.1	0.15	0.2	
res-20	88.3	85.5	70.2	41.1	20	
res-32	89.4	85.6	65.1	44.6	21.6	
res-44	89.7	86	64.7	28.9	14.7	
res-56	91.1	88.6	73.4	34.1	17	

ideal case

Simulation Results – DNN Depth (1/4)

- Without applying variation at the beginning, all the Resnet models have an accuracy about 90%. With the variation becomes higher, the accuracies decrease faster in the cases of deeper sizes.
- * The table below also shows that Resnet-44 and Resnet-56 have lower accuracies than others with $\sigma = 0.2$ though they are the relatively higher two cases without conductance variation.

ADC(10b)	variation (σ)				
depth	0	0.05	0.1	0.15	0.2
res-20	88.3	85.5	70.2 ₁₂	41.1	20
res-32	89.4	85.6	65.1	44.6	21.6
res-44	89.7	86	64.7	28.9	14.7
res-56	91.1	88.6	73.4 <mark>13</mark>	9.3 34.1	17

Simulation Results – DNN Depth (2/4)

- Without applying variation at the beginning, all the Resnet models have an accuracy about 90%. With the variation becomes higher, the accuracies decrease faster in the cases of deeper sizes.
- The table below also shows that Resnet-44 and Resnet-56 have lower accuracies than others with $\sigma = 0.2$ though they are the relatively higher two cases without conductance variation.

ADC(10b)		variation (σ)				
depth	0	0.05	0.1	0.15	0.2	
res-20	88.3	85.5	70.2	41.1	20	
res-32	89.4	85.6	65.1	44.6	21,6	
res-44	89.7	86	64.7	28.9	14.7	
res-56	91.1	88.6	73.4	34.1	17	

Simulation Results – DNN Depth (3/4)

With variation = 0 and 0.05, Resnet-44 and Resnet-56 have higher accuracies, while Resnet-20 and Resnet-32 have higher accuracies with variation = 0.15 and 0.2.

Simulation Results – DNN Depth (4/4)

We can notice that deeper models' accuracies decrease faster.

Accu. of Models with Smaller Kernel Size Decrease Faster

- The accuracies of models with smaller filters decreases faster with noise.
- The recent trend of making a DNN deeper with smaller layers may not be the most suitable for CIM.

Simulation Results – DNN Kernel Size (1/2)

* Compared to Resnet-20 (default kernel = 3), larger kernel size (5) leads to slightly greater accuracy with $\sigma = 0.2$.

ADC(10b)	variation (σ)							
kernel	0	0.05 0.1 0.15 0.2						
1	53.8	49.5	33.4	17.6	12.8			
3	88.3	85.5	70.2	41.1	20			
5	88.7	85.5	70	38.8	20.2			

Simulation Results – DNN Kernel Size (2/2)

- The case of kernel = 1 has lower accuracy than models with kernel size = 3 and 5.
- ❖ The case of kernel = 1 decreases slightly faster than that of kernel = 3 and kernel = 5.

Simulation Results – DNN Channel Size (1/3)

- Narrower models decrease faster with increasing conductance variation.
- ❖ Without variation, all three cases have accuracy higher than 80%, however, accuracy of model with channel = 8 decreases to 12.3% while model with channel = 32 retains an accuracy of 75.4%.

ADC(10b)	variation (σ)					
channel	0	0.05 0.1 0.15 0.2				
8	82.8	74.7 ↓2	9.5 45.2	21.2	12.3	
16	88.3	85.5	5.3 70.2	41.1	20	
32	90.9	Y	. 7 88.6	84.5	75.4	

Simulation Results – DNN Channel Size (2/3)

- Narrower models decrease faster with increasing conductance variation.
- ❖ Without variation, all three cases have accuracy higher than 80%, however, accuracy of model with channel = 8 decreases to 12.3% while model with channel = 32 retains an accuracy of 75.4%.

ADC(10b)	variation (σ)				
channel	0	0.05	0.1	0.15	0.2
8	82.8	74.7	45.2	21.2	12.3
16	88.3	85.5	70.2	41.1	20☆
32	90.9	90.3	88.6	84.5	75.4

Simulation Results – DNN Channel Size (3/3)

The graph below shows that accuracies of narrower models decrease faster with increasing conductance variation.

Outline

- Sensitivity Analysis of CIM Accuracy
 - Related Work: IEDM(2019)
 - Experimental Setting
 - Experimental Results Analysis
- Multi-Exit Architecture
- Summary & Future Work

Multi-Exit Architecture

- BranchyNet [4]:
 - Produce multiple sub-models by adding multiple exits.
 - The most suitable exit might be different on each CIM-based accelerator due to varying σ of conductance variation \rightarrow The model is more flexible.

Train Resnet with Multi-Exits

Assign **shallower exit's loss with bigger weight** to increase the accuracy of shallower exits.

→ Higher probability of outputs exiting from shallower exits.

Inference Results (ResNet56)

Deeper exit's accuracy drops faster but is still higher.

Inference Results (ResNet110)

Deeper exit's accuracy drops faster but is still higher.

Shallower Exit Performs Better in Some Cases

- Bird
 - Without variation:

Exit1: 84.8%, **Exit2: 87.9%**, Exit3: 84.8%

• With $\sigma = 0.1$:

Exit1: 51.5%, Exit2: 48.5%, Exit3: 48.5%

- Plane
 - Without variation:

Exit1: 58.6%, Exit2: 69.0%, Exit3: 75.9%

• With $\sigma = 0.1$:

Exit1: 37.9%, Exit2: 55.2%, Exit3: 51.7%

Outline

- Sensitivity Analysis of CIM Accuracy
 - Related Work: IEDM(2019)
 - Experimental Setting
 - Experimental Results Analysis
- Multi-Exit Architecture
- Summary & Future Work

Summary

- Shallower Resnet models (less layers) are more robust with conductance variation.
- Wider Resnet models (more channels) are more robust with conductance variation.
- Resnet models with bigger kernel size aren't visibly more robust with conductance variation.
- Multi-exits model enables users to choose the most suitable exit on different devices.

Future Work

- Try models other than Resnet with different kernel sizes on another dataset(e.g. ImageNet) with conductance variation.
- BlockDrop: Dynamic Inference Paths in Residual Networks [5]

 Learn a policy to select the most suitable configuration of blocks to correctly classify a given input image on CIM-based accelerators.

Reference & Resource

- [1] Design Considerations for Efficient Deep Neural Networks on Processing-in-Memory Accelerators
 Tien-Ju Yang, Vivienne Sze (Massachusetts Institute of Technology)
- [2] DNN+NeuroSim: An End-to-End Benchmarking Framework for Compute-in-Memory Accelerators with Versatile Device Technologies, IEEE International Electron Devices Meeting (IEDM), 2019.

 X. Peng, S. Huang, Y. Luo, X. Sun and S. Yu (Georgia Institute of Technology)
- [3] Algorithm-Accelerator Co-Design for Deep Learning Specialization Zhiru Zhang, School of ECE (Cornell University)
- [4] BranchyNet: Fast Inference via Early Exiting from Deep Neural Networks
 Surat Teerapittayanon, Bradley McDanel, H.T. Kung (Harvard University)
- [5] BlockDrop: Dynamic Inference Paths in Residual Networks

 Zuxuan Wu, Tushar Nagarajan, Abhishek Kumar, Steven Rennie Larry S. Davis1,

 Kristen Grauman, Rogerio Feris

 (UMD, UT Austin, IBM Research, Fusemachines Inc.)

Thanks for listening!