

Fusion Approaches to Predict Post-stroke Aphasia Severity from Multimodal Neuroimaging Data

Saurav Chennuri, Sha Lai, Anne Billot, Maria Varkanitsa, Emily J. Braun, Swathi Kiran, Archana Venkataraman, Janusz Konrad, Prakash Ishwar and Margrit Betke.

Workshop on Computer Vision for Automated Medical Diagnosis, October 2, 2023

Task Definition

Aphasia:

- disorder characterized Language impairment in language comprehension & speech production
- Affects ~1/3 of stroke survivors

Predicting aphasia evolution is important:

- Clinicians

 for choosing treatment
- Patients

 — to engage in recovery process

Our task:

- Develop regressor that predicts patients' aphasia severity as measured by the Western Aphasia Battery (WAB) test score
- Using multimodal neuroimaging data.

Challenges & Contributions

Challenges:

- Imbalance between large number of features & limited number of subjects
- Danger of model overfitting

Previous work:

- Oracle feature selection guided by <u>all</u> data
- Danger of "data leakage" from training to questionable testing datasets, i.e., generalizability

Contributions:

- Supervised Feature Selection Algorithm
- Two fusion strategies applied to aphasia data
- Determining predictive importance of different multimodal combinations of feature sets

Previous Work

Fusion approaches:

- Early Fusion (feature fusion) and Late Fusion (prediction fusion) [Huang et al., 2020, Holste et al., 2021]
- Binary classifiers, predicting response to treatment (changes in treatment outcome): Forests (RFs), Random Support Machines (SVMs) [papers by our team, 2020, 2021, 2022]
- Regression with oracle feature selection using
 - stacked multimodal predictions [Pustina et al., 2017]
 - stacked multimodal features, [Kristinsson et al., 2021]

Data 55 patients Imaged at: Boston U. Johns Hopkins U. Northwestern U. 9 feature sets **Feature Set Symbol** Age, education, time poststroke 945 dimensions Fractional anisotropy Bidirectional correlations Bet Betweenness **D**eg 85 Degree Efficiency **Trans Transitivity** Percent of spared gray matter Percent of spared white matter

Supervised Feature Selection Algorithm

- Task: Determine how many & which features per feature modality
- Inspired by: nested cross-validation [[train:validate]:test]
- Each split of [train:validate] used for selecting:
 - number of features in each feature set
 - specific features within feature set
 - hyperparameters of SVR or RF predictors
- empirical Feature sorting based on: cross-correlation values between features & WAB scores only on train data

Methodology (key steps)

- For value of *k* under consideration: features occurring among the top k features most often across all training sub-folds are chosen to train SVR or RF to predict WAB scores using the entire [train] fold & tune its hyperparameters using the same sub-folds created previously
- Among the resulting models cross-validated with Root Mean Square Error (RMSE), model $M_{\nu*}$ with smallest RMSE is chosen.
- Note:
 - Optimal features are specific to [train] set
- Different features may be selected on each [test] set & modality

Cross-Validation Experiments & Results

1. Same [train:validate]:test] sets as for feature **selection:** [[45:5]:5] patients, 10 inner folds, 11 outer folds.

2. Feature reduction:

	DM	FA	PSG	PSW	RS	Bet	Deg	Eff	Tran
SVR	2	6	18	12	75	42	13	7	12
RF	2	5	7	31	116	33	37	20	14

4. Overall Performance:

performance

3. Worse

when using:

 all features single features

	Early	Fusion	Late Fusion				
	RF	SVR	RF	SVR			
	Supervised Feature Selection						
Mean RMSE	17.41	16.72	17.45	16.85			
Mean r	0.48	0.64	0.58	0.58			
	Oracle Selection						
Mean RMSE	15.19	14.4	13.78	13.36			
Mean r	0.80	0.77	0.80	0.81			

Feature set cumulative occurrence plots:

- Number of times each feature set appears within top-ranked combinations
- Rank based on mean-fold RMSE metric
- Plots are for rank values 1 through 511

Most import feature sets:

- PSG = Percent spared gray matter
- PSW = Percent spared white matter
- DM = Demographics

Discussion & Conclusions

- Early Fusion (EF) versus Late Fusion (LF):
 - Best mean-fold RMSE for RF & SVR lower for EF than LF with Supervised Feature Selection
 - LF better than EF for Oracle Selection
 - But std. dev. of RMSE is high
 - Test of statistical significance among top-feature set combinations

 No clear winner among EF & LF approaches
- reduction multimodal feature combinations:
 - Useful practical strategy
 - Improves overall interpretability of results
- Effective predictors of aphasia severity: Feature combinations with Percent Spared Gray Matter