Chemical Reaction Engineering

Practical Session 5

13 December 2019

Non-ideal reactors

1. Non-ideal tubular reactor (1 parameter)

The following second-order reaction $A \to Products$ is carried out in a tubular reactor. The kinetic constant is $k=0.1 \, \frac{m^3}{kmol \, s}$ and the reaction occurs in liquid phase. The reactor is $L=30 \, m$ long and has a diameter of $D=4 \, cm$. The inlet mixture is pure A at concentration $C_A^{in}=10 \, \frac{kmol}{m^3}$ and its velocity is $v=8.1 \, m/s$. The Residence Time Distribution function was experimentally measured and reported in the table below (closed/closed boundary conditions can be assumed).

- 1. Estimate the Peclet number and the effective dispersion coefficient according to the Dispersion Model.
- 2. Estimate the number of equivalent CSTR according to the Tanks in Series model and the corresponding outlet concentration and conversion of A. Make a comparison with the ideal plug flow reactor.

time (s)	E (1/s)				
0	0				
0.1	0 0 0 0				
0.2					
0.3					
0.4					
0.5	0				
1	0				
2					
2.2	0.010641 0.042563 0.085126 0.12769				
2.4					
2.6					
2.8					
3	0.255379				

time (s)	E (1/s)				
3.2	0.681011				
3.4	0.851264				
3.6	0.851264				
3.8	0.766137				
4	0.427055				
4.2	0.284704				
4.4	0.170253				
4.6	0.12769				
4.8	0.085126				
5	0.042563				
6	0.021282				
7	0				
8	0				

2. Compartment model (2 parameters)

The following irreversible reaction occurs in liquid phase in a non-ideal mixed reactor: $A \to Products$. The reaction is second order, i.e. $r = kC_A^2$, with a kinetic constant equal to $k = 2 \frac{m^3}{kmol \ min}$. The total reactor volume is $V = 0.7 \ l$ and the total volumetric flow rate is $Q = 0.7 \ l/min$. The inlet mixture is pure A at concentration $C_A^{in} = 10 \ \frac{kmol}{m^3}$.

In order to evaluate deviations from ideality, a step experiment was performed ($C_0 = 1 \frac{kmol}{m^3}$), and the tracer concentration at the outlet was measured, according to what reported in the table below.

- 1. Estimate the fraction of dead volume and the fraction of by passing volumetric flow rate on the basis of experimental data, by adopting a two-parameter compartment model.
- 2. Estimate the outlet concentration and conversion according to the compartment model.
- 3. Compare the performances of the real reactor with the performances of the corresponding ideal CSTR.

t (min)	0	0.5	1	1.5	2	2.5	3	3.5	4	5
$C_{out}\left(\frac{kmol}{m^3}\right)$	0.04214	0.43449	0.66865	0.81223	0.881173	0.93673	0.962299	0.978663	0.982717	0.995

3. Segregated model (0 parameters)

Repeat the previous exercise describing the non-ideal behavior through the perfectly segregated model.

4. Maximum Mixedness Model (0 parameters)

Repeat the previous exercise describing the non-ideal behavior through the Maximum Mixedness Model.