MATH3411 INFORMATION, CODES & CIPHERS

Test 2, Session 2 2013, SOLUTIONS

Version A

Multiple choice: **a**, **e**, **a**, **d**, **e** True/False: **T**, **T**, **F**, **T**, **F**.

- 1. **(a)**
- 2. (e): $M_H = \frac{2}{3}H(0.8) + \frac{1}{3}H(0.4) \approx 0.805$.
- 3. (a): I(A, B) = H(B) H(B|A) = H(0.3 + 0.5p) (0.4p + 0.6). Differentiating I(A, B) with respect to p and setting I'(A, B) = 0 gives

Assignment
$$\Pr_{so(0.3 + 0.5p)^{-1} = 2^{0.5} + 1 \approx 2.34}^{0.5 \log_2((0.3 + 0.5p)^{-1} - 1) = 0.4}$$
, $\Pr_{so(0.3 + 0.5p)^{-1} = 2^{0.5} + 1 \approx 2.34}^{0.5 \log_2((0.3 + 0.5p)^{-1} - 1) = 0.4}$, $\Pr_{so(0.3 + 0.5p)^{-1} = 2^{0.5} + 1 \approx 2.34}^{0.5 \log_2((0.3 + 0.5p)^{-1} - 1) = 0.4}$,

- 4. (d): $\phi(2013) = \phi(3 \times 11 \times 61) = \phi(3)\phi(11)\phi(61) = 2 \times 10 \times 60 = 1200$, so 2^{1203} 12798 \Rightarrow 700 WCOGET.COM
- 5. **(e)**
- 6. (i) Trande will be compating on the coder

code number rescaled	in interval	decoded symbol
0.55	[0.3, 0.7)	b
(0.55 - 0.3)/.4 = 0.625	[0.3, 0.7)	b
(0.625 - 0.3)/.4 = 0.8125	[0.7, 1)	•

The decoded message is then $bb \bullet$.

- (ii) **True**: The binary entropy is 0.722 and by Shannon's Theorem, we can get arbitrarily close to this.
- (iii) **False**: $t = \lceil \sqrt{1333} \rceil = 37$ gives $s^2 = t^2 n = 36 = 6^2$ which is square, so a + b = (s + t) + (t s) = 2t = 74.
- (iv) **True**: The second smallest symbol probability in S^3 is $\frac{4}{125}$, and $\frac{125}{4} = 31.25 < 32 = 2^5$, so the second longest codeword length is $\ell = 5$.
- (v) False: The numbers x_i are 1, 6, 4, 7, 8.

7. (i) Here, we have that $\alpha^2 = -1 = 2$.

(ii) The element γ is primitive, so all of the primitive elements of \mathbb{F} are given by γ^i where $\gcd(i,8)=1$; that is all of the 4 elements

$$\gamma^1 = \alpha + 1, \ \gamma^3 = 2\alpha + 1, \ \gamma^5 = 2\alpha + 2, \ \gamma^7 = \alpha + 2$$

(iii)
$$\alpha^{-1} = (\gamma^6)^{-1} = \gamma^2 = 2\alpha$$
.

(iv)
$$\frac{\gamma^7 + \alpha}{\gamma^4 + \gamma} = \frac{2\alpha + 2}{\alpha} = 2 + \frac{2}{\alpha} = 2 + 2(2\alpha) = 2 + \alpha$$

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

Version B

Multiple choice: **c**, **d**, **a**, **d**, **c** True/False: **F**, **F**, **T**, **T**, **T**.

- 1. **(c)**
- 2. (d): $M_H = \frac{1}{3}H(0.8) + \frac{2}{3}H(0.4) \approx 0.888$.
- 3. (a): I(A, B) = H(B) H(B|A) = H(0.2 + 0.7p) (0.4p + 0.7). Differentiating I(A, B) with respect to p and setting I'(A, B) = 0 gives

$$0.7\log_2((0.2+0.7p)^{-1}-1)=0.4,$$

so $(0.2 + 0.7p)^{-1} = 2^{\frac{4}{7}} + 1 \approx 2.49$. Solving this gives $p \approx 0.29$.

4. (d): $\phi(2013) = \phi(3 \times 11 \times 61) = \phi(3)\phi(11)\phi(61) = 2 \times 10 \times 60 = 1200$, Assignifient iProject Exam Help

- 5. **(c)** $4^{14} \equiv 1 \pmod{15}$
- 6. (i) Fattys: //powcoder.com

The decoded message is then $bb \bullet$.

- (ii) **False**: The binary entropy is 0.81 which is the lower bound on average codeword lengths.
- (iii) **True**: $t = \lceil \sqrt{1333} \rceil = 37$ gives $s^2 = t^2 n = 36 = 6^2$ which is square, so a + b = (s + t) + (t s) = 2t = 74.
- (iv) **True**: The second largest symbol probability in S^3 is $\frac{16}{125}$, and $\frac{125}{16} = 7.8125 < 8 = 2^3$, so the second shortest codeword length is $\ell = 3$.
- (v) **True**: The numbers x_i are 1, 6, 4, 7, 8.
- 7. (i) Here, we have that $\alpha^2 = 2\alpha + 1$.

				2		l				
Ì	α^i	1	α	$2\alpha + 1$	$2\alpha + 2$	2	2α	$\alpha + 2$	$\alpha + 1$	1

(ii) The element α is primitive, so all of the primitive elements of \mathbb{F} are given by α^i where $\gcd(i,8)=1$; that is all of the 4 elements

$$\alpha^{1} = \alpha$$
, $\alpha^{3} = 2\alpha + 2$, $\alpha^{5} = 2\alpha$, $\alpha^{7} = \alpha + 1$

(iii)
$$(2\alpha + 1)^{-1} = (\alpha^2)^{-1} = \alpha^6 = \alpha + 2.$$

(iv)
$$\frac{\alpha^2 + 1}{\alpha^3 + \alpha^4} = \frac{2\alpha + 2}{2\alpha + 1} = \frac{\alpha^3}{\alpha^2} = \alpha$$

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder