

ARJUNA NEET BATCH

VECTOR SUBTRACTION AND DOT PRODUCT

LECTURE

NEET

Todays goal

· Dot Broduct (Scolor Product)

· (ross Product)

$$W = F \cdot S$$

$$\mathcal{F} \longrightarrow S$$

$$\mathcal{W} = 0$$

SCALAR PRODUCT

[Dot. Product of Vector]

$$\vec{A} \cdot \vec{B} = (Component of A along B) \times |\vec{B}|$$

= (Component of B along A) × A

 θ = Angle between \vec{A} and \vec{B}

$$\overrightarrow{A} \cdot \overrightarrow{B} = A (B \cos 0)$$

$$\overline{A}' \cdot \overline{B}' =$$

$$\overrightarrow{A} \cdot \overrightarrow{B} = \underline{A}(A(050))$$

$$= \underline{B}(A(050))$$

$$\vec{A} \cdot \vec{B} = \vec{B} \cdot \vec{A} = C \left(scolar \right)$$

$$C = \overrightarrow{A} \cdot \overrightarrow{B}$$

Result of Dot Producto Of two vector is scalar

i, j six are the unit vector of x-axis, yaxis & z-axis

$$\hat{I} \cdot \hat{i} = 1 \times 1 \quad (0.50^{\circ} = 1)$$

$$\hat{J} \cdot \hat{J} = 1$$

$$\hat{X} \cdot \hat{K} = 1$$

$$2m\hat{I}$$

A = Anil + Ayf + Azk

3 = Brithy f + Bz x

An = Component of A Way

$$\overrightarrow{A} \cdot \overrightarrow{B} = (Axi+(Ayj)+Azk) \cdot (Bxi+Byj+Bzk)$$

$$(\overline{A}^{3}.\overline{B}) = A_{x}B_{x} + A_{y}B_{y} + A_{z}B_{z}$$

 (mR^{*})

$$\vec{A} = 3\hat{1} + 4\hat{1} - 2\hat{K}$$

 $\vec{B} = 2\hat{i} - 3\hat{1} + 5\hat{K}$
 $\vec{A} = 2\hat{i} - 3\hat{1} + 5\hat{K}$

$$Scalar = A B = 6 - 12 - 10$$

$$= (-16)$$

APPLICATION OF DOT PRODUCT

(i) Angle between vectors:

If
$$|\vec{A}| = 2$$
 and $|\vec{B}| = 4$, $\theta = 60^{\circ}$ then find $\vec{A} = \vec{B}$.

$$\overrightarrow{A} \cdot \overrightarrow{B} = AB (050)$$

$$= 2 \times 4 \times 6560$$

$$= (4)$$

If $\vec{A} = 2\hat{\imath} + 2\hat{\jmath}$ and $\vec{B} = -2\hat{\imath} + 2\hat{\jmath}$ then find angle between \vec{A} and \vec{B} .

$$(2i+2\hat{j}) \cdot (-2i+2\hat{j}) = \int (2)^2 + (2)^2 \int (-2)^2 \int (-2)^2$$

(a) $\overline{A} = \overline{l} + 2\overline{r} + \overline{R}$ $R_{13} = 2\overline{l} + \overline{f}$ then Pind Angle 6/W \overline{A} \overline{S} Pw

$$2+2 = \sqrt{6} \sqrt{5}$$
 (0)0

$$Coso = \frac{\sqrt{30}}{\sqrt{30}}$$

$$\theta = \left(05^{-1}\left(\frac{4}{\sqrt{30}}\right)\right)$$

(ii) To check unit vector:

$$\overrightarrow{A} \cdot \overrightarrow{A} = 1 \times 1 \times \text{Coso}$$

If $\vec{A} = \sin \theta \hat{i} + \cos \theta \hat{j}$ then prove that \vec{A} is a unit vector.

$$\overrightarrow{A} \cdot \overrightarrow{A} = (sinoi+(sof) \cdot (sinoi+(sof))$$

$$=\frac{\sin^2 0 + \cos^2 0}{1}$$

If $\vec{A} = 0.5\hat{i} + 0.4\hat{j} - \alpha \hat{k}$ then find α if \vec{A} is unit vector.

$$\overrightarrow{A} = 0.5i + 0.4f - 2\hat{x}$$

$$\overrightarrow{A} \cdot \overrightarrow{A} = 1$$

$$0.25 + 0.16 + \sqrt{2} = 1$$

(iv) To check perpendicular \vec{A} and \vec{B} :

of two vector ADB is PerPendial
to each other than AB = 0

If $\vec{A} = 2\hat{\imath} + 3\hat{\jmath} - \alpha \hat{k}$ and $\vec{B} = \hat{\imath} - 2\hat{\jmath} + 4\hat{k}$ find α . If \vec{A} is perpendicular to \vec{B} .

$$\vec{A}$$
. \vec{B} = 0
2-6-42=0

(iii) Projection (Component of A along B):

$$A^{3} \cdot B^{3} = A \cdot B^{3}$$
 $B \cdot B^{3} = A^{3} \cdot B^{3}$
 $Component of B along A$

If $\vec{A} = 2\hat{i} + 6\hat{j} + 3\hat{k}$ and $\vec{B} = 4\hat{i}$. Find angle between \vec{A} and \vec{B} .

$$(80 - \frac{\overline{A} \cdot \overline{B}}{AB} - \frac{8+0+0}{5+36+9} \cdot (4) = \frac{8}{28} = \frac{4}{5}$$

0: (05)

If a unit vector is represented by $0.5\hat{i} - 0.8\hat{j} + c\hat{k}$ then the value of c is

(A) $\sqrt{0.01}$

(B) $\sqrt{0.11}$

(C) 1

(D) $\sqrt{0.39}$

$$[0.5i-0.8\hat{j}+c\hat{k}].(0.5i-0.8\hat{j}+c\hat{k})=1$$

If the magnitude of sum of two vectors is equal to the magnitude of difference of the two vectors, the angle between these vectors is

(A) 45°

3) 180°

(C) 0°

(D) 90°

The vectors \overline{A} and \overline{B} are such that $|\overline{A} + \overline{B}| = |\overline{A} - \overline{B}|$. The angle between the two

vectors is

(A) 45°

(C) 60°

(B) 90°

(D) 75°

3

The magnitude of vectors \overline{A} , \overline{B} and \overline{C} are 3, 4 and 5 units respectively. If $\overline{A} + \overline{B} =$ \overline{C} , the angle between \overline{A} and \overline{B} is

$$(A) \pi/2$$

(C)
$$tan^{-1}(7/5)$$

(D)
$$\pi/4$$

$$\vec{c} = \vec{A} + \vec{B}$$

CROSS PRODUCT

[Vector - Product]

$$(Vector) \times (Vector) = Vector$$

$$\overrightarrow{A} \times \overrightarrow{B} = AB \sin \theta \hat{n}$$

= (Component of A perpendicular to B) B

$$9f 0 = 90^{\circ}$$

$$\overrightarrow{C} = |\overrightarrow{A} \times \overrightarrow{B}| = AB$$

$$Max$$

$$9f 0 = 0$$

$$\overrightarrow{A} \times \overrightarrow{B} = 0$$

$$\overrightarrow{A} \times \overrightarrow{B} = 0$$

Direction of $\vec{A} \times \vec{B}$ always perpendicular to the \vec{A} and \vec{B} .

$$(\overrightarrow{A} \times \overrightarrow{B}) \perp \text{to } \overrightarrow{A}$$

$$(\overrightarrow{A} \times \overrightarrow{B}) \bullet \overrightarrow{A} = 0$$

$$\begin{array}{ccc}
(A) \times B & = ? \\
(B) \times B & = 0
\end{array}$$
Which is 1×4

$$A \times B$$

FSMO FCOSD cixis of rotation TXF = & F Sind Cross Product rector Brody

$$(i \times i) = 1 \times 1 \times \sin 0^{\circ} = 0$$

 $(i \times i) = 1 \times 1 \times \sin 0^{\circ} = 0$
 $(i \times i) = 1 \times 1 \times \sin 0^{\circ} = 0$
 $(i \times i) = 1 \times 1 \times \sin 0^{\circ} = 0$
 $(i \times i) = 1 \times 1 \times \sin 0^{\circ} = 0$
 $(i \times i) = 1 \times 1 \times \sin 0^{\circ} = 0$
 $(i \times i) = 1 \times 1 \times \sin 0^{\circ} = 0$

Place Fair finger in the director of 1st vector and then turn it in the direction of \vec{B} (2nd vector) then thumb represent direction of $(\vec{A} \times \vec{B})$

$$\overrightarrow{A} \times \overrightarrow{B} \neq \overrightarrow{B} \times \overrightarrow{A}$$

If
$$\vec{A} \times \vec{B} = \sqrt{3} (\vec{A} \cdot \vec{B})$$
 then find Angle between \vec{A} and \vec{B} .

$$\vec{A} \times \vec{B} = \sqrt{3} (\vec{A} \cdot \vec{B})$$

If
$$\vec{A} = 2\hat{\imath} - 2\hat{\jmath}$$
 and $\vec{B} = 5\hat{k}$ then find $\vec{A} \times \vec{B}$

$$\overrightarrow{A} \times \overrightarrow{B} = (2i - 2j) \times 5k$$

$$= 20(\hat{i} \times \hat{k}) - 10(\hat{j} \times \hat{k})$$

$$=10\left(-\frac{1}{2}\right)-10\left(\frac{5}{2}\right)$$

$$=-10\hat{\jmath}-10\hat{i}$$

$$=[0[-\hat{\jmath}-i]$$

If
$$\vec{A} = A_x \hat{\imath} + A_y \hat{\jmath} + A_z \hat{k}$$
 & $\vec{B} = B_x \hat{\imath} + B_y \hat{\jmath} + B_z \hat{k}$

$$\vec{A} \times \vec{B} = \begin{vmatrix} i & j & k \\ A_x & A_y & A_z \\ B_x & B_y & B_z \end{vmatrix}$$

$$=i\left[A_{y}B_{z}-A_{z}B_{y}\right]-\hat{J}\left[A_{x}B_{z}-A_{z}B_{n}\right]+\hat{K}\left[A_{x}B_{y}-A_{y}B_{n}\right]$$

9f
$$\overrightarrow{A} = 2\hat{i} - 4\hat{j} + \hat{k}$$
 $\overrightarrow{B} = 2\hat{i} + 3\hat{j}$
then find $\overrightarrow{A} \times \overrightarrow{B} = 2\hat{i}$

THANK YOU

