Optimization

Prob:2.2

N Chakradhar¹ Havish²

¹EE16BTECH11022

²EE16BTECH11023

February 28, 2019

Problem 2.2

Solve

$$\max_{x} f(x) = 6x_1 + 5x_2 \tag{1}$$

with constraints

$$x_1 + x_2 \le 5 \tag{2}$$

$$3x_1 + 2x_2 \le 12 \tag{3}$$

$$x_1, x_2 \ge 0 \tag{4}$$

using tabular method

Convert the given problem into standard form by using slack variables. After this, our problem looks like:

$$\max_{x} f(x) = 6x_1 + 5x_2 \tag{5}$$

with constraints

$$x_1 + x_2 + x_3 = 5 (6)$$

$$3x_1 + 2x_2 + x_4 = 12 \tag{7}$$

$$x_1, x_2, x_3, x_4 \ge 0 \tag{8}$$

This problem is same as solving the following set of equations

$$-6x_1 - 5x_2 + p = 0 (9)$$

$$x_1 + x_2 + x_3 = 5 (10)$$

$$3x_1 + 2x_2 + x_4 = 12 (11)$$

$$x_1, x_2, x_3, x_4 \ge 0 \tag{12}$$

The approach used here is similar to Gauss-Jordan method of solving equations. Basically, we would like to express the given objective function only in terms of slack variables.

The initial table will look like the following:

					p	RHS
X3	1	1 2	1	0	0	5
<i>x</i> ₄					0	12
р	-6	-5	0	0	1	0

After the first set of transformations(choosing the pivot element and doing row operations), the table is as follows:

	x_1	<i>x</i> ₂	<i>X</i> 3	<i>X</i> ₄	p	RHS
<i>X</i> ₃	0	1/3	1	-1/3 1/3	0	
x_1	1	2/3	0	1/3	0	4
р	0	-1	0	2	1	24

We end the problem once we get all non-negative numbers in the bottom row. So, after the final transformation, the table looks like:

	<i>x</i> ₁	<i>x</i> ₂	<i>X</i> ₃	<i>x</i> ₄	p	RHS
X3	0	1	3	-1 1	0	3
x_1	1	0	-2	1	0	2
р	0	0	3	1	1	27

The solution will be $x_1 = 2$, $x_2 = 3$ and the maximum is p = 27.