FERNANDO GABARDO

TELCO CUSTOMER CHURN

ABRIL

2023

01. DESCRIÇÃO DO CASO

Os integrantes do grupo, tinham em comum o desafio de gerar inteligência e insights sobre o *churn* dos clientes nas respectivas empresas em que trabalhavam. Inclusive, a primeira opção seria desenvolver um estudo com os dados reais de uma das empresas.

Entretanto, devido a questões de sigilo de dados empresariais, o professor Rafael deu a sugestão de trabalhar com um modelo de *churn* acadêmico disponível no Kaggle. Dessa maneira, seria possível ganhar experiência no trabalho com dados de *churn* e consequentemente levar esse conhecimento para suas respectivas empresas. O *dataset* escolhido foi fornecido pela IBM para fins acadêmicos

02. OBJETIVOS DO MODELO

Apesar da fonte de dados ser fictícia, é possível correlacionar com os objetivos de uma companhia de verdade. O objetivo "macro" do desenvolvimento do modelo é a redução do *churn* da empresa. A redução do *churn* pode acontecer através dos seguintes planos de ação:

• Identificar os fatores que contribuem com o churn

Ao listar quais são os principais fatores que contribuem com o *churn*, a companhia pode direcionar e priorizar seus recursos para resolver as causas raízes desses fatores. Dessa forma, é possível melhorar o resultado financeiro da empresa.

• Disponibilizar um "Score" para as áreas de negócio

Ao possuir a inteligência de quais clientes são os mais propensos ao *churn*, a área de negócio pode tomar ações preventivas nesse cliente e evitar que ele interrompa a parceria com a empresa.

03. DESCRIÇÃO DOS DADOS

O *Dataset* contém dados fictícios da empresa "Telco" que providencia serviços de telefone e internet para 7043 clientes e contém as seguintes informações:

- ✓ Quais saíram e ficaram na empresa (churn);
- ✓ Quais serviços os clientes adquiriram;
- ✓ Informações da conta;
- ✓ Informações demográficas.

Campos do Dataset

- 01. Customer ID Campo com identificação única de cada cliente;
- 02. gender Sexo do cliente;
- 03. SeniorCitizen Se o cliente é idoso ou não;
- 04. Partner Estado Civil;
- 05. Dependents Se possui dependentes;
- 06. Tenure Tempo como cliente (meses);
- 07. PhoneService Se contratou Telefone;
- 08. MutipleLines Se contratou +1 linha;
- 09. InternerService Tipo de serviço de internet;
- 10. OnlineSecurity Se contratou segurança online;
- 11. OnlineBackup Se contratou backup online;
- 12. DeviceProtection Se contratou proteção do dispositivo;
- 13. TechSupport Se contratou suporte técnico;
- 14. StreamingTV Se contratou "Streaming TV";
- 15. StreamingMovies Se contratou *streaming* de filmes;
- 16. Contract Tipo do contrato;

- 17. PaperlessBilling Se possui cobrança sem papel;
- 18. PaymentMethod Método de pagamento;
- 19. Monthly Charges O quanto o cliente é cobrado mensalmente;
- 20. TotalCharges O total cobrado ao cliente;
- 21. Churn Se o cliente deixou a empresa.

04. RESULTADOS ENCONTRADOS PELA EDA

04.1 Distribuição as variáveis numéricas

Analisando as variáveis numéricas, é possível observar distribuições bastante uniformes bem diferentes da distribuição normal.

Ao observar a faixa de cobrança é possível notar que há uma maior frequência nas faixas iniciais, em seguida há uma queda e segue uma distribuição mais semelhante à normal.

No histograma de *tenure* (meses como cliente) verifica-se que há muitos clientes com pouco, ou muito tempo de casa.

A distribuição do total de cobranças é mais frequente nos clientes com uma faixa menor de cobrança

04.2 Distribuição as variáveis categóricas

Percebe-se que algumas variáveis não são uniformes na base. O *churn*, por exemplo está distribuído como: 73,5% (cliente ativo) 26,5% (cliente *churn*).

Verifica-se também que grande parte dos clientes (90,3%) não contrata o serviço de telefone.

04.3 Correlação das variáveis categóricas com o *churn*

Ao analisar todas as variáveis categóricas e verificar a sua correlação com o *churn*:

	Principal		
Fator	Atributo	Correlação ¹	Fator_Atributo
PhoneService	Yes	24.12	PhoneService - Yes
	Month-to-		
Contract	month	23.49	Contract - Month-to-month
Dependents	No	21.90	Dependents - No
OnlineSecurity	No	20.74	OnlineSecurity - No
TechSupport	No	20.53	TechSupport - No
PaperlessBilling	Yes	19.87	PaperlessBilling - Yes
InternetService	Fiber optic	18.41	InternetService - Fiber optic
OnlineBackup	No	17.50	OnlineBackup - No
DeviceProtection	No	17.19	DeviceProtection - No
Partner	No	17.03	Partner - No
			PaymentMethod - Electronic
PaymentMethod	Electronic check	15.20	check
StreamingTV	No	13.37	StreamingTV - No
gender	Female	13.33	gender - Female
StreamingMovies	No	13.31	StreamingMovies - No
MultipleLines	Yes	12.06	MultipleLines - Yes

¹ Correlação feita através da função pd.crosstab

Correlações usando o método do qui-quadrado²:

fator	stat	GL_value	p_value	result
Contract	1179,55	2	7,3262E-257	Dependent (reject H0)
OnlineSecurity	846,68	2	1,4007E-184	Dependent (reject H0)
TechSupport	824,93	2	7,4078E-180	Dependent (reject H0)
InternetService	728,70	2	5,8312E-159	Dependent (reject H0)
PaymentMethod	645,43	3	1,4263E-139	Dependent (reject H0)
OnlineBackup	599,18	2	7,7761E-131	Dependent (reject H0)
DeviceProtection	555,88	2	1,9594E-121	Dependent (reject H0)
StreamingMovies	374,27	2	5,35356E-82	Dependent (reject H0)
StreamingTV	372,46	2	1,32464E-81	Dependent (reject H0)
PaperlessBilling	256,87	1	8,2362E-58	Dependent (reject H0)
Dependents	186,32	1	2,01966E-42	Dependent (reject H0)
Partner	157,50	1	3,9738E-36	Dependent (reject H0)
				Independent (H0 holds
MultipleLines	11,27	2	0,003567927	true)
				Independent (H0 holds
PhoneService	0,87	1	0,349923989	true)
				Independent (H0 holds
gender	0,48	1	0,490488471	true)

Através do qui-quadrado, a maioria das variáveis possui certa relação com o churn, exceto: 'MultipleLines', 'PhoneService', 'gender'.

Além disso os 5 fatores com maior correlação são: 'Contract', 'OnlineSecurity', 'TechSupport', 'InternetService' e 'PaymentMethod.

04.4 Correlação das variáveis numéricas com o churn

Quanto maior o período de parceria do cliente com a empresa, menor a sua correlação com o *churn*. Para as cobranças mensais, não há muita diferenciação. Nas cobranças totais, assim como no tempo de casa, quanto

_

² Alpha – 0,001

maior o valor investido ao longo da "vida" como cliente, menor a correlação com o *churn*.

04.4 Correlação multivariada com o churn

Ao correlacionar as variáveis numéricas com o *churn*, verifica-se alguns pontos interessantes. Observa-se de maneira mais clara a correlação entre o tempo em que o cliente é cliente com o *churn*, ou seja, quanto mais tempo, menor chance de o cliente encerrar a parceria.

Outro ponto interessante está na correlação entre "tenure" e "MonthlyCharges" (tabela abaixo), observa-se que o *churn* está mais concentrado nos clientes com alta cobrança mensal e pouco tempo como cliente. Comportamento semelhante está na correlação entre "MonthlyCharges" e "TotalCharges" na qual verifica-se que o *churn* está mais concentrado nas altas cobranças mensais.

05. DATA WRANGLING

Foram identificados 11 linhas com valores nulos as quais foram removidas da análise. Além disso, o campo 'TotalCharges' veio originalmente como *string* e teve seu *dtype* modificado para *float*.

Não se identificou necessidade de gerar novas features e foram mantidos os campos originais.

06. SELEÇÃO DO MODELO

Considerando os principais objetivos do projeto sendo:

- Identificar os fatores que contribuem com o *churn*
- Disponibilizar um "Score" para as áreas de negócio

O primeiro, de certa forma já foi atingido através da Análise Exploratória. Para criar o "*Score*" deve-se criar um modelo de classificação com o objetivo das áreas de negócio tomarem ações proativas para evitar que o cliente dê *Churn*.

06.1 Seleção do Algoritmo

Levando em consideração que a parcela dos clientes que deram *churn* é minoria nesse conjunto de dados, os indicadores mais importantes para o sucesso no negócio desse modelo seriam: *Precision* e *Recall*.

Além disso, a precisão alta é importante para evitar o retrabalho da área de negócio e o *Recall* para evitar ao máximo os falsos negativos. Assim o indicador ideal seria o F1 (média geométrica entre *Precision* e *Recall*).

Para uma análise inicial do algoritmo mais indicado para esse problema de negócio, foram desenvolvidos diversos modelos com alterações mínimas aos Hyperparâmetros:

Modelo	Acurácia	Precisão	Recall	F1 Score
Gradient	0,80	0,65	0,53	0,58
Regressão Logística	0,80	0,64	0,53	0,58
LigthGBM	0,79	0,62	0,52	0,57
Adaboost	0,79	0,63	0,51	0,56
Xgboost	0,78	0,60	0,51	0,55
Randon Forrest	0,78	0,61	0,48	0,54
KNN	0,77	0,59	0,45	0,51
Decision Tree	0,73	0,49	0,51	0,50
SVM	0,78	0,65	0,35	0,46

Em uma primeira análise, o modelo de Gradient Boosting foi o que apresentou o melhor desempenho.

06.1.1 Grid Search

Para selecionar o melhor algoritmo, foi feito o *Grid Search* com algumas combinações de *hyperparâmetros*:

Modelo	Hyperparâmetros	F1
Regressão Logística	{'C': 10, 'dual': False, 'penalty': 'l2', 'random_state': 25}	0,603
Adaboost	{'learning_rate': 0.1, 'n_estimators': 200, 'random_state': 25}	0,599
Xgboost	{'booster': 'gblinear', 'eta': 1}	0,599
Gradient	{'learning_rate': 0.1, 'loss': 'exponential', 'n_estimators': 100}	0,597
LigthGBM	{'bagging_seed': 1, 'extra_trees': False, 'min_data_in_leaf': 100}	0,586
Randon Forrest	{'criterion': 'gini', 'min_samples_leaf': 3, 'n_estimators': 50, 'random_state': 25}	0,583
SVM	{'C': 1, 'degree': 3, 'kernel': 'linear'}	0,535
Decision Tree	{'criterion': 'log_loss', 'min_samples_leaf': 3, 'min_samples_split': 2, 'random_state': 100}	0,528
KNN	{'algorithm': 'auto', 'leaf_size': 1, 'n_neighbors': 5, 'weights': 'uniform'}	0,518

Observa-se que a seleção de *hyperparâmetros*, no geral, melhorou o desempenho de todos os modelos. Após o ajuste, o algoritmo com o melhor valor de F1 foi a Regressão Logística.

07. CONCLUSÕES

Através da Análise Exploratória de dados, observa-se alguns pontoschave da jornada do cliente os quais contribuem significativamente com o *churn*. É possível aplicar diversos incentivos e ações com base nesses pontos para reduzir o *churn* da empresa de maneira geral.

O melhor resultado de F1 obtido com os dados disponíveis e os algoritmos testados foi de 60,3%. Dessa forma, já seria um ponto de partida para a atuação do time de negócio de forma preventiva, sem muito retrabalho.

Apesar disso, para uma melhor visão da aplicabilidade do Score dentro do negócio, seria necessário levantar quantos clientes efetivamente deixam de dar *churn* quando a empresa entra em contato proativo, em comparação com algum grupo de controle.

Com os testes, pode-se verificar o impacto no negócio e justificar uma nova etapa no projeto, visando melhorar ainda mais os resultados desse modelo.

Possíveis próximos passos:

- Testes no impacto do churn;
- Enriquecimento de dados;
- Maior profundidade na seleção dos Hyperparâmetros.

08.LINKS IMPORTANTES

- ✓ Kaggle https://www.kaggle.com/datasets/blastchar/telco-customer-churn
- ✓ Repositório Git -

https://github.com/fggabardo/Data_Science/tree/main/00%20-%20Desafio%20Final