

Features

- Precision Monitoring of +2.5V, +3V, +3.3V, and +5V Power-Supply Voltages
- Fully Specified Over Temperature
- Available in three Output Configurations
- Push-Pull RESET Active Low (APX809)
- Push-Pull RESET Active High (APX810)
- 200ms Typ Power-On Reset Pulse Width
- 30µA Supply Current (Typ.)
- Guaranteed Reset Valid to V_{CC} = +1V
- No External Components
- SOT23 and SOT23R: Available in "Green" Molding Compound (No Br, Sb)
- Lead Free Finish/RoHS Compliant (Note 1)

General Description

The APX809/810 are used for microprocessor (μP) supervisory circuits to monitor the power supplies in μP and digital systems. They provide excellent circuit reliability and low cost by eliminating external components and adjustments when used with +5V, +3.3V, +3.0V powered circuits.

These circuits perform a single function: they assert a reset signal whenever the $V_{\rm CC}$ supply voltage declines below a preset threshold, keeping it asserted for at least 240ms after $V_{\rm CC}$ has risen above the reset threshold. Reset thresholds suitable for operation with a variety of supply voltages are available. The APX809/810 have push pull outputs. The APX809 have an active

low RESET output, while the APX810 has an active high RESET output. The reset comparator is designed to ignore fast transients on $V_{\text{CC}},$ and the outputs are guaranteed to be in the correct logic state for V_{CC} down to 1V. Low supply current makes the APX809/810 ideal for use in portable equipment. The APX809/810 is available in a 3-pin SOT23 and SOT23R packages.

Applications

- Computers
- Controllers
- Intelligent Instruments
- Critical μP and μC Power Monitoring
- Portable/Battery Powered Equipment
- Automotive

Ordering Information

	Device	Package	Packaging	7" Tape and Reel	
		Code	(Note 2)	Quantity	Part Number Suffix
P	APX809-XXSAG-7	SA	SOT23	3000/Tape & Reel	-7
(Pg)	APX810-XXSAG-7	SA	SOT23	3000/Tape & Reel	-7
Pb ,	APX809-XXSRG-7	SR	SOT23R	3000/Tape & Reel	-7
@ ,	APX810-XXSRG-7	SR	SOT23R	3000/Tape & Reel	-7

Notes: 1. EU Directive 2002/95/EC (RoHS). All applicable RoHS exemptions applied. Please visit our website at

http://www.diodes.com/products/lead_free.html.

^{2.} Pad layout as shown on Diodes Inc. suggested pad layout document AP02001, which can be found on our website at http://www.diodes.com/datasheets/ap02001.pdf

Pin Assignments

Pin Descriptions

Pin Name	Description	
GND	Ground	
RESET (RESET)	Reset Output Pin L: for APX809 H: for APX810	
V _{CC}	Operating Voltage Input	

Absolute Maximum Ratings

Symbol	Parameter	Rating	Unit
ESD HBM	Human Body Model ESD Protection	5	KV
ESD MM	Machine Model ESD Protection	500	V
V _{CC}	Supply Voltage	-0.3 to +6.0	V
V_{RESET}	RESET, RESET (push-pull)	-0.3 to (V _{CC} + 0.3)	V
I _{cc}	Input Current, V _{CC}	20	mA
Io	Output Current, RESET, RESET	20	mA
P _D	Continuous Power Dissipation ($T_A = +70$ °C), de-rate 4mW/°C above +70°C	400	mW
T _{OP}	Operating Junction Temperature Range	-40 to +105	°C
T _{ST}	Storage Temperature Range	-65 to +150	°C

Recommended Operating Conditions

Symbol	Parameter	Min	Max	Unit
V _{CC}	Supply Voltage	1.1	5.5	V
V_{IN}	Input Voltage	0	$(V_{CC}+0.3)$	V
T _A	Operating Ambient Temperature Range	-40	85	ပ္
T_R	Vcc Rising Time (Vcc = 0~VT)		100	V/ uS

Electrical Characteristics (T_A = 25°C)

 T_A = -40 to 85 °C unless otherwise note. Typical values are at T_A =+25 °C.

Symbol	P	arameter	Test Conditions	Min	Тур.	Max	Unit
V _{CC}	V _{CC} Range		$T_A = 0$ °C to +70°C	1.0		5.5	V
I _{CC}	Supply Curr	rent	V _{TH} + 0.2V		30	40	μΑ
		APX809/810-23		2.21	2.25	2.30	
		APX809/810-26		2.59	2.63	2.69	
		APX809/810-29		2.88	2.93	3.00	
		APX809/810-31	$T_A = 0^{\circ}C-85^{\circ}C$	3.02	3.08	3.15	V
		APX809/810-40		3.93	4.00	4.08	
		APX809/810-44		4.31	4.38	4.47	
	Reset	APX809/810-46		4.56	4.63	4.72	
V_{TH}	Threshold	APX809/810-23		2.20	2.25	2.30	
718		APX809/810-26		2.57	2.63	2.69	
		APX809/810-29	T _A = -40°C-85°C	2.86	2.93	3.00	V
		APX809/810-31		3.00	3.08	3.15	
		APX809/810-40		3.92	4.00	4.08	
		APX809/810-44		4.29	4.38	4.47	
		APX809/810-46		4.54	4.63	4.72	
		shold Tempco			30		ppm/ °C
T _S	Set-up Time		$V_{CC} = V_{TH}$ to $(V_{TH} - 100 \text{mV})$		20		μs
T _{DELAY}	Reset Activ	e Timeout Period	$T_A = 0$ °C to +85°C	140	200	280	ms
	DECET OU	tput Voltage Low	$V_{CC} = V_{TH} - 0.2$, $I_{SINK} = 1.2$ mA			0.3	
V_{OL}	(APX809)	ipui voitage Low	$V_{CC} = V_{TH} - 0.2$, $I_{SINK} = 3.2 \text{mA}$			0.4	V
	(APX809)		$V_{CC} > 1.0V$, $I_{SINK} = 50uA$			0.3	
			$V_{CC} > V_{TH} + 0.2,$	0.8V _{CC}			
V _{OH}		utput Voltage-High	I _{SOURCE} = 500uA	0.0.00			V
V On	(APX809)		$V_{CC} > V_{TH} + 0.2,$	V _{CC} -1.5			,
			I _{SOURCE} = 800uA				
V _{OL}	RESET Output Voltage-Low		$V_{CC} = V_{TH} + 0.2$, $I_{SINK} = 1.2mA$			0.3	V
- 01	(APX810)		$V_{CC} = V_{TH} + 0.2$, $I_{SINK} = 3.2$ mA			0.4	-
V_{OH}	(APX810)	tput Voltage-High	$1.8V < V_{CC} < V_{TH} -0.2,$ $I_{SOURCE} = 150uA$	0.8 V _{CC}			V
θ_{JA}	Thermal Re Junction-to-		SOT23/SOT23R (Note 3)		201		°C/W
θ_{JC}	Thermal Results Junction-to-		SOT23/SOT23R (Note 3)		56		°C/W

Notes: 3. Test condition for SOT23/ SOT23R: Devices mounted on FR-4 substrate PC board, 2oz copper, with minimum recommended pad layout.

Typical Application Circuit

Functional Description

A microprocessor's (μ P's) reset input starts the μ P in a known state. The APX809/810 assert reset to prevent code-execution errors during power-up, power-down, or brownout conditions. They assert a reset signal whenever the V_{CC} supply voltage declines below a preset threshold, keeping it asserted for at least 240ms after V_{CC} has risen above the reset threshold. The APX809/810 have a push-pull output stage.

Ensuring a Valid Reset Output Down to $V_{\text{CC}} = 0$

When V_{CC} falls below 1V, the APX809 RESET output no longer sinks current—it becomes an open circuit. Therefore,

high-impedance CMOS logic inputs connected to RESET can drift to undetermined voltages.

This presents no problem in most applications since most μP and other circuitry is inoperative with V_{CC} below 1V. However, in applications where \overline{RESET} must be valid down to 0V, adding a pull down resistor to \overline{RESET} causes any stray leakage currents to flow to ground, holding \overline{RESET} low. R1's value is not critical; 100k are large enough not to load \overline{RESET} and small enough to pull \overline{RESET} to ground. For the APX810 if RESET is required to remain valid for $V_{CC} < 1V$.

Benefits of Highly Accurate Reset Threshold

Most μP supervisor ICs has reset threshold voltages between 5% and 10% below the value of nominal supply voltages. This ensures a reset will not occur within 5% of the nominal supply, but will occur when the supply is 10% below nominal. When using ICs rated at only the nominal supply $\pm 5\%$, this leaves a zone of uncertainty where the supply is between 5% and 10% low, and where the reset may or may not be asserted.

Block Diagram

Performance Characteristics

Figure 1

Figure 2

Figure 3 Figure 4

Timing Diagram

Marking Information

(1) SOT23/SOT23R

(Top View)

3

XX YWX

2

1

XX: Identification code

Y: Year 0~9

 $\frac{W}{\text{week: A~Z: 1~26 week;}}$ a~z: 27~52 week; z represents 52 and 53 week

X : A~Z : Green

Device	Package	Identification Code
APX809-46SA	SOT23	X2
APX809-44SA	SOT23	X3
APX809-40SA	SOT23	X4
APX809-31SA	SOT23	X5
APX809-29SA	SOT23	X6
APX809-26SA	SOT23	X7
APX809-23SA	SOT23	X8
APX810-46SA	SOT23	XA
APX810-44SA	SOT23	XB
APX810-40SA	SOT23	XC
APX810-31SA	SOT23	XD
APX810-29SA	SOT23	XE
APX810-26SA	SOT23	XF
APX810-23SA	SOT23	XG
APX809-46SR	SOT23R	Y2
APX809-44SR	SOT23R	Y3
APX809-40SR	SOT23R	Y4
APX809-31SR	SOT23R	Y5
APX809-29SR	SOT23R	Y6
APX809-26SR	SOT23R	Y7
APX809-23SR	SOT23R	Y8
APX810-46SR	SOT23R	YA
APX810-44SR	SOT23R	YB
APX810-40SR	SOT23R	YC
APX810-31SR	SOT23R	YD
APX810-29SR	SOT23R	YE
APX810-26SR	SOT23R	YF
APX810-23SR	SOT23R	YG

Package Information (All Dimensions in mm)

(1) Package Type: SOT23/SOT23R

Notes: 4. Package outline dimensions as shown on Diodes Inc. package outline dimensions document AP02002, which can be found on our website at http://www.diodes.com/datasheets/ap02002.pdf

IMPORTANT NOTICE

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to any product herein. Diodes Incorporated does not assume any liability arising out of the application or use of any product described herein; neither does it convey any license under its patent rights, nor the rights of others. The user of products in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on our website, harmless against all damages.

LIFE SUPPORT

Diodes Incorporated products are not authorized for use as critical components in life support devices or systems without the expressed written approval of the President of Diodes Incorporated.