TEORÍA DE CIRCUITOS

Luis Badesa Bernardo Ana Fernández Guillamón Oscar Perpiñán Lamigueiro

> Universidad Politécnica de Madrid Curso 2022/23

Febrero de 2023

© 2023 Luis Badesa Bernardo, Ana Fernández Guillamón, Oscar Perpiñán Lamigueiro Este documento está accesible en https://github.com/ETSIDI-IE/tc

Esta obra está bajo una licencia **Reconocimiento-No comercial-Compartir bajo la misma licencia** 4.0 España de Creative Commons. Para ver una copia de esta licencia, visite: https://creativecommons.org/licenses/by-nc-sa/4.0/deed.es_ES

Usted es libre de copiar, distribuir y comunicar públicamente la obra, y hacer obras derivadas bajo las condiciones siguientes:

- **Reconocimiento**. Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace.
- No comercial. No puede utilizar el material para una finalidad comercial.
- Compartir bajo la misma licencia. Si remezcla, transforma o crea a partir del material, deberá difundir sus contribuciones bajo la misma licencia que el original.

Al reutilizar o distribuir la obra, tiene que dejar bien claro los términos de la licencia de esta obra. Alguna de estas condiciones puede no aplicarse si se obtiene el permiso del titular de los derechos de autor. Nada en esta licencia menoscaba o restringe los derechos morales del autor.

Ι

Índice general

1	Acoplamientos Magnéticos y Transformadores					
	1.1.	Acoplamientos magnéticos	1			
	12	Transformadores	6			

Capítulo 1

Acoplamientos Magnéticos y Transformadores

1.1. Acoplamientos magnéticos

1.1.1. Fundamentos Físicos

Según la ley de Ampere, una corriente eléctrica circulando por un conductor crea un campo magnético en torno al conductor (*regla de la mano derecha*).

Por otra parte, la ley de Faraday establece que cuando un *campo magnético variable*, \vec{B} , atraviesa una espira *estática* aparece una *tensión inducida proporcional al flujo* y opuesta a su variación.

$$u(t) = \frac{\mathrm{d}\phi}{\mathrm{d}t}$$

donde ϕ es el flujo magnético o cantidad de líneas de fuerza magnética que atraviesan una superficie:

$$\phi = \vec{B} \cdot \vec{A}$$
 [Wb]

Combinando ambas leyes podemos comprender el funcionamiento de la bobina. Una bobina es un arrollamiento de un conductor (*conjunto de N espiras conectadas en serie*) alrededor de un material ferromagnético:

- Al circular corriente se produce un campo magnético (*ley de Ampere*).
- Este campo magnético atraviesa la propia bobina y produce una tensión (auto)inducida (*ley de Faraday*).

Por tanto, en una bobina de N espiras la tensión autoinducida es:

$$u(t) = N \cdot \frac{\mathrm{d}\phi(t)}{\mathrm{d}t}$$

FIGURA 1.1: Flujo magnético atravesando una superficie.

Teniendo en cuenta que en circuito magnético lineal el flujo magnético es proporcional a la corriente:

$$\phi(t) = A \cdot i(t) \rightarrow \frac{d\phi(t)}{di(t)} = \frac{\phi(t)}{i(t)}$$

podemos obtener la tensión inducida en función de la corriente eléctrica:

$$u(t) = N \cdot \frac{\mathrm{d}\phi(t)}{\mathrm{d}i(t)} \cdot \frac{\mathrm{d}i(t)}{\mathrm{d}t} \to u(t) = N \cdot \frac{\phi(t)}{i(t)} \cdot \frac{\mathrm{d}i(t)}{\mathrm{d}t}$$

y, en consecuencia, determinamos el coeficiente de autoinductancia, L [H]:

$$L = N \cdot \frac{\phi(t)}{i(t)}$$

y la ecuación de la bobina que utilizamos en los circuitos:

$$\begin{array}{c|c}
u(t) = L \cdot \frac{\operatorname{d}i(t)}{\operatorname{d}t} \\
\hline
i(t) & L \\
\hline
u(t) & - \\
u(t) & - \\
\end{array}$$
(1.1)

1.1.2. Acoplamiento magnético

Cuando dos bobinas comparten el núcleo ferromagnético, el flujo magnético producido por cada una de ellas atraviesa a la otra bobina, lo que se conoce como acoplamiento magnético (figura 1.2).

En la figura 1.2 se indican los siguientes flujos:

FIGURA 1.2: Acoplamiento magnético de dos bobinas. Definición de flujos.

- ϕ_{ii} : flujo producido por la bobina i
- ϕ_{ij} : flujo recibido en bobina i producido por bobina j
- ϕ_i : flujo total que atraviesa la bobina i
- ϕ_{di} : flujo de dispersión de la bobina i, o flujo que escapa del núcleo y no contribuye al acoplamiento.

Estos flujos cumplen las siguientes relaciones:

$$\phi_{11} = \phi_{d1} + \phi_{21}$$

$$\phi_{1} = \phi_{11} + \phi_{12}$$

$$\phi_{22} = \phi_{d2} + \phi_{12}$$

$$\phi_{2} = \phi_{22} + \phi_{21}$$

La ratio entre el flujo que recibe una bobina y el flujo producido por la bobina emisora se cuantifica con los coeficientes de acoplamiento k_i :

$$k_1 = \frac{\phi_{21}}{\phi_{11}} = 1 - \frac{\phi_{d1}}{\phi_{11}} \le 1 \\ k_2 = \frac{\phi_{12}}{\phi_{22}} = 1 - \frac{\phi_{d2}}{\phi_{22}} \le 1$$
 (1.2)

Cuando el acoplamiento entre las dos bobinas es perfecto, los flujos de dispersión son nulos y, por tanto:

$$\phi_{d1} = 0 \to \phi_{11} = \phi_{21}
 \phi_{d2} = 0 \to \phi_{22} = \phi_{12}
 }
 \rightarrow k = 1$$

A partir de los flujos que recorren el núcleo obtenemos las tensiones inducidas en la bobina 1:

$$\begin{split} u_1(t) = & N_1 \frac{\mathrm{d}\phi_1}{\mathrm{d}t} = \\ & N_1 \frac{\mathrm{d}\phi_{11}}{\mathrm{d}t} + N_1 \frac{\mathrm{d}\phi_{12}}{\mathrm{d}t} \end{split}$$

y en la bobina 2:

$$u_2(t) = N_2 \frac{\mathrm{d}\phi_2}{\mathrm{d}t} = N_2 \frac{\mathrm{d}\phi_{22}}{\mathrm{d}t} + N_2 \frac{\mathrm{d}\phi_{21}}{\mathrm{d}t}$$

En estas ecuaciones podemos identificar los términos debidos a la autoinducción, con sus dos coeficientes de autoinducción:

$$L_1 = N_1 \frac{\phi_{11}}{i_1} \tag{1.3}$$

$$L_2 = N_2 \frac{\phi_{22}}{i_2} \tag{1.4}$$

y los términos de inducción mutua, con los que podemos definir los coeficientes de inducción mutua, M_{12} y M_{21} :

$$M_{12} = N_1 \frac{\phi_{12}}{i_2} \tag{1.5}$$

$$M_{21} = N_2 \frac{\phi_{21}}{i_1} \tag{1.6}$$

Los coeficientes de acoplamiento y los coeficientes de inducción mutua son iguales cuando el circuito magnético es lineal:

$$M_{12} = M_{21} = M$$

 $k_1 = k_2 = k$

Esta condición nos permite relacionar los coeficientes de autoinducción con el coeficiente de inducción mutua:

 $M = k\sqrt{L_1 \cdot L_2} \qquad k \le 1 \tag{1.7}$

1.1.3. Representación Circuital

Para representar un acoplamiento magnético en un circuito eléctrico se emplea la convención del punto, señalando con un punto los terminales de las bobinas por los que hay que introducir corrientes que producen flujos del mismo sentido. Una corriente que entra por un terminal con punto induce una tensión positiva en el otro terminal con punto.

En la siguiente figura, las dos bobinas están arrolladas de forma que introduciendo corrientes por los terminales superiores se obtienen flujos que circulan en el mismo sentido:

Las ecuaciones circuitales de este acoplamiento son:

$$u_{1}(t) = L_{1} \frac{di_{1}(t)}{dt} + M \frac{di_{2}(t)}{dt}$$
$$u_{2}(t) = M \frac{di_{1}(t)}{dt} + L_{2} \frac{di_{2}(t)}{dt}$$

Por el contrario, la siguiente figura representa un acoplamiento en el que las bobinas están arrolladas de forma que los flujos tienen sentidos contrapuestos si se introduce corriente por los terminales superiores.

Las ecuaciones circuitales de este acoplamiento son:

$$u_1(t) = L_1 \frac{di_1(t)}{dt} - M \frac{di_2(t)}{dt}$$
$$u_2(t) = -M \frac{di_1(t)}{dt} + L_2 \frac{di_2(t)}{dt}$$

Las ecuaciones anteriores están expresadas en el dominio del tiempo. Cuando las bobinas están alimentadas por corriente alterna sinusoidal, podemos expresar las ecuaciones con fasores, ya sea para flujos en el mismo sentido:

$$\begin{split} \overline{U}_1 &= j\omega L_1 \overline{I}_1 + j\omega M \overline{I}_2 \\ \overline{U}_2 &= j\omega M \overline{I}_1 + j\omega L_2 \overline{I}_2 \end{split}$$

o para flujos contrapuestos:

$$\begin{split} \overline{U}_1 &= j\omega L_1 \overline{I}_1 - j\omega M \overline{I}_2 \\ \overline{U}_2 &= -j\omega M \overline{I}_1 + j\omega L_2 \overline{I}_2 \end{split}$$

Como ejemplo, calculemos la bobina equivalente de dos bobinas conectadas en serie. Cuando las bobinas están acopladas con flujos en el mismo sentido (figura 1.3), las ecuaciones son:

$$\begin{aligned} \overline{U}_1 &= (j\omega L_1 + j\omega M)\overline{I} \\ \overline{U}_2 &= (j\omega L_2 + j\omega M)\overline{I} \\ \overline{U} &= \overline{U}_1 + \overline{U}_2 \end{aligned}$$

FIGURA 1.3: Dos bobinas conectadas en serie con acoplamiento magnético con flujos en el mismo sentido.

que permiten obtener la equivalencia de la ecuación ??:

$$L = L_1 + L_2 + 2M (1.8)$$

Sin embargo, si las bobinas están acopladas con flujos contrapuestos (figura 1.4), las ecuaciones son:

$$\overline{U}_1 = (j\omega L_1 - j\omega M)\overline{I}$$

$$\overline{U}_2 = (j\omega L_2 - j\omega M)\overline{I}$$

$$\overline{U} = \overline{U}_1 + \overline{U}_2$$

de forma que la inductancia equivalente es ahora:

$$L = L_1 + L_2 - 2M (1.9)$$

1.2. Transformadores

Un transformador es una máquina eléctrica compuesta por dos o más devanados arrollados sobre un núcleo ferromagnético sin conexión eléctrica entre los devanados (figura 1.2), de forma que la transmisión de energía se realiza únicamente mediante el acoplamiento magnético.

1.2.1. Transformador Real

La figura 1.5 es la representación circuital simplificada de un transformador real, es decir, un transformador que tiene pérdidas resistivas en las bobinas y cuyo acoplamiento magnético no es perfecto (k < 1).

Las ecuaciones de este transformador son:

$$\overline{U}_1 = (R_1 + j\omega L_1) \cdot \overline{I}_1 + j\omega M \cdot \overline{I}_2 \tag{1.10}$$

$$\overline{U}_2 = j\omega M \cdot \overline{I}_1 + (R_2 + j\omega L_2) \cdot \overline{I}_2 \tag{1.11}$$

En general, los terminales de la izquierda (U_1) se denominan como primario, y los terminales de la derecha (U_2) como secundario.

Supongamos que conectamos una impedancia en el secundario de este transformador. Para calcular la impedancia que se ve desde el primario debemos calcular la relación $\overline{U}_1/\overline{I}_1$ a partir de las ecuaciones 1.10 y de la ecuación de la impedancia:

FIGURA 1.4: Dos bobinas conectadas en serie con acoplamiento magnético con flujos contrapuestos.

FIGURA 1.5: Representación circuital de un transformador real

FIGURA 1.6: Impedancia conectada en el secundario de un transformador real.

$$\overline{U}_2 = -\overline{I}_2 \cdot \overline{Z}_L$$

Combinando la ecuación del secundario con la ecuación de la carga obtenemos la corriente en el secundario:

$$\overline{I}_2 = -\frac{j\omega M}{(R_2 + j\omega L_2) + \overline{Z}_L} \cdot \overline{I}_1$$

que podemos insertar en la ecuación del primario para obtener la impedancia de entrada:

$$\overline{Z}_{in} = \frac{\overline{U}_1}{\overline{I}_1} = (R_1 + j\omega L_1) + \frac{\omega^2 M^2}{(R_2 + j\omega L_2) + \overline{Z}_L} = \overline{Z}_1 + \frac{\omega^2 M^2}{\overline{Z}_2 + \overline{Z}_L}$$
(1.12)

Podemos interpretar este resultado como la conexión serie de la impedancia de primario con una impedancia transformada, obtenida a partir de la conexión serie de la impedancia de secundario y la impedancia de carga.

Calculemos ahora el equivalente de Thévenin desde secundario de una fuente real conectada en el primario (figura 1.7).

La ecuación del generador es:

$$\overline{U}_1 = \overline{\epsilon}_g - \overline{I}_1 \cdot \overline{Z}_g$$

mientras que las ecuaciones del transformador se simplifican al tener en cuenta que $\overline{I}_2 = 0$:

$$\overline{U}_1 = (R_1 + j\omega L_1) \cdot \overline{I}_1$$

$$\overline{U}_2 = j\omega M \cdot \overline{I}_1$$

Despejamos la corriente de primario I_1 :

$$\overline{I}_1 = \frac{\overline{\epsilon_g}}{\overline{Z}_1 + \overline{Z}_g}$$

y la utilizamos en la ecuación del secundario para obtener la tensión de Thévenin:

FIGURA 1.7: Fuente real conectada en el primario de un transformador real.

$$\overline{U}_2 = \boxed{\overline{\epsilon}_{th} = \frac{j\omega M}{\overline{Z}_1 + \overline{Z}_g} \cdot \overline{\epsilon}_g}$$
(1.13)

Este resultado recuerda a la expresión de un divisor de tensión, aunque el numerador está transformado respecto a la expresión original.

Para calcular la impedancia de Thévenin apagamos la fuente ϵ_g y conectamos una fuente de prueba en secundario (figura 1.8). Con esta conexión, las ecuaciones del transformador son:

$$\overline{U}_1 = (R_1 + j\omega L_1) \cdot \overline{I}_1 + j\omega M \cdot \overline{I}_0$$

$$\overline{\epsilon}_0 = j\omega M \cdot \overline{I}_1 + (R_2 + j\omega L_2) \cdot \overline{I}_0$$

y la ecuación de la impedancia:

$$\overline{U}_1 = -\overline{Z}_g \cdot \overline{I}_1$$

Combinando estas ecuaciones obtenemos la impedancia de Thévenin:

$$\overline{\overline{Z}_{th}} = \frac{\overline{\epsilon}_0}{\overline{I}_0} = \overline{Z}_2 + \frac{\omega^2 M^2}{\overline{Z}_1 + \overline{Z}_g}$$
 (1.14)

Esta expresión, al igual que la ecuación 1.12, se asemeja a la conexión serie de la impedancia de secundario con una impedancia transformada obtenida a partir de la impedancia de primario y del generador.

1.2.2. Transformador Perfecto

Un transformador perfecto (figura 1.9) es aquel en el que las pérdidas resistivas son despreciables.

$$R_1 = R_2 = 0$$

y el acoplamiento es perfecto.

$$k = 1 \rightarrow \left\{ \begin{array}{ll} \phi_{12} &= \phi_{22} \\ \phi_{21} &= \phi_{11} \end{array} \right.$$

Las ecuaciones de este transformador son:

$$\overline{U}_1 = j\omega L_1 \cdot \overline{I}_1 + j\omega M \cdot \overline{I}_2$$

$$\overline{U}_2 = j\omega M \cdot \overline{I}_1 + j\omega L_2 \cdot \overline{I}_2$$

Teniendo en cuenta que k=1, a partir de las ecuaciones de $M_{12}=M_{21}=M$:

$$N_1 \frac{\phi_{12}}{i_2} = N_2 \frac{\phi_{21}}{i_1}$$

podemos escribir:

$$N_1 \frac{\phi_{22}}{i_2} = N_2 \frac{\phi_{11}}{i_1}$$

FIGURA 1.8: Cálculo de la impedancia de Thévenin de una fuente conectada en primario.

FIGURA 1.9: Representación circuital de un transformador perfecto.

Además, con las definiciones de L_1 y L_2 :

$$N_1 \frac{L_2}{N_2} = N_2 \frac{L_1}{N_1}$$

obtenemos la relación de transformación de un transformador perfecto:

$$\boxed{\frac{L_1}{L_2} = \left(\frac{N_1}{N_2}\right)^2 = a^2} \tag{1.15}$$

Con esta relación de transformación podemos simplificar las ecuaciones del transformador. En primer lugar dividimos las ecuaciones:

$$\frac{\overline{U}_1}{\overline{U}_2} = \frac{j\omega L_1 \cdot \overline{I}_1 + j\omega M \cdot \overline{I}_2}{j\omega M \cdot \overline{I}_1 + j\omega L_2 \cdot \overline{I}_2}$$

y empleamos la relación de transformación:

$$\frac{L_1}{L_2} = a^2 \to \begin{cases} L_1 &= a^2 \cdot L_2 \\ M &= a \cdot L_2 \end{cases}$$

para escribir:

$$\frac{\overline{U}_1}{\overline{U}_2} = \frac{a^2 L_2 \cdot \overline{I}_1 + a L_2 \cdot \overline{I}_2}{a L_2 \cdot \overline{I}_1 + L_2 \cdot \overline{I}_2}$$

que, después de simplificar, conduce a la relación entre tensiones de un transformador perfecto:

$$\boxed{\frac{\overline{U}_1}{\overline{U}_2} = a = \frac{N_1}{N_2}} \tag{1.16}$$

Estas relaciones nos permiten simplificar los resultados obtenidos con el transformador real. En primer lugar, la impedancia de entrada en un transformador real con $R_1 = R_2 = 0$ es:

$$\overline{Z}_{in} = j\omega L_1 + \frac{\omega^2 M^2}{j\omega L_2 + \overline{Z}_L}$$

A continuación, teniendo en cuenta la relación entre L_1 , L_2 y M:

$$\overline{Z}_{in} = j\omega L_1 + \frac{\omega^2 M^2}{j\omega L_2 + \overline{Z}_L} = \frac{j\omega L_1 \overline{Z}_L}{j\omega L_2 + \overline{Z}_L}$$

y, finalmente, incorporando la relación de transformación:

$$\overline{Z}_{in} = a^2 \cdot \frac{j\omega L_2 \cdot \overline{Z}_L}{j\omega L_2 + \overline{Z}_L} = \frac{j\omega L_1 \cdot a^2 \cdot \overline{Z}_L}{j\omega L_1 + a^2 \cdot \overline{Z}_L}$$
(1.17)

Esta expresión se puede interpretar como un factor de escala aplicado a una conexión en paralelo entre la inductancia de secundario y la impedancia de carga, o como una conexión en paralelo entre la inductancia de primario y la impedancia de carga con un factor de escala.

De forma equivalente, el equivalente de Thévenin de una fuente real conectada en primario es:

$$\overline{\epsilon}_{th} = \overline{U}_2 = \frac{j\omega M}{j\omega L_1 + \overline{Z}_g} \cdot \overline{\epsilon}_g$$

Teniendo en cuenta que $M = L_1/a$:

$$\overline{\epsilon}_{th} = \frac{1}{a} \cdot \left(\frac{j\omega L_1}{j\omega L_1 + \overline{Z}_g} \right) \cdot \overline{\epsilon}_g$$

Esta expresión corresponde a un divisor de tensión entre la impedancia del generador y la inductancia del primario, aplicando previamente un factor de escala.

Por otra parte, la impedancia de Thévenin es:

$$\overline{Z}_{th} = j\omega L_2 + \frac{\omega^2 M^2}{j\omega L_1 + \overline{Z}_g}$$

Aplicando las relaciones $L_2 = L_1/a^2$ y $M = L_1/a$ obtenemos:

$$\overline{Z}_{th} = \frac{1}{a^2} \cdot \frac{j\omega L_1 \cdot \overline{Z}_g}{j\omega L_1 + \overline{Z}_g}$$
 (1.18)

Este resultado se puede interpretar como una impedancia equivalente de una conexión en paralelo entre la inductancia de primario y la impedancia del generador, aplicando previamente un factor de escala.