UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the May/June 2011 question paper for the guidance of teachers

9702 PHYSICS

9702/43

Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2011	9702	43

Section A

- 1 (a) region (of space) where a particle / body experiences a force B1 [1]
 - (b) similarity: e.g. force $\propto 1 / r^2$ potential $\propto 1 / r$ B1 [1]
 - difference: e.g. gravitation force (always) attractive
 electric force attractive or repulsive

 B1
 [2]
 - (c) either ratio is $Q_1Q_2 / 4\pi\epsilon_0 m_1 m_2 G$ C1 = $(1.6 \times 10^{-19})^2 / 4\pi \times 8.85 \times 10^{-12} \times (1.67 \times 10^{-27})^2 \times 6.67 \times 10^{-11}$ C1 = 1.2×10^{36} A1 [3] or $F_E = 2.30 \times 10^{-28} \times R^{-2}$ (C1) $F_G = 1.86 \times 10^{-64} \times R^{-2}$ (C1) $F_E / F_G = 1.2 \times 10^{36}$ (A1)
- 2 (a) amount of substance M1 containing same number of particles as in 0.012 kg of carbon-12 A1 [2]
 - (b) pV = nRT C1 $amount = (2.3 \times 10^5 \times 3.1 \times 10^{-3}) / (8.31 \times 290)$ $+ (2.3 \times 10^5 \times 4.6 \times 10^{-3}) / (8.31 \times 303)$ C1 = 0.296 + 0.420 C1 $= 0.716 \, \text{mol}$ A1 [4] (give full credit for starting equation pV = NkT and $N = nN_A$)
- 3 (a) charges on plates are equal and opposite M1 so no resultant charge A1 energy stored because there is charge separation B1 [3]
 - (b) (i) capacitance = Q/V C1 = $(18 \times 10^{-3})/10$ = $1800 \ \mu F$ A1 [2]
 - (ii) use of area under graph or energy = $\frac{1}{2}CV^2$ C1 energy = $2.5 \times 15.7 \times 10^{-3}$ or energy = $\frac{1}{2} \times 1800 \times 10^{-6} \times (10^2 7.5^2)$ A1 [2]
 - (c) combined capacitance of Y & Z = $20\,\mu\text{F}$ or total capacitance = $6.67\,\mu\text{F}$ C1 p.d. across capacitor X = 8V or p.d. across combination = 12V C1 charge = $10\times10^{-6}\times8$ or $6.67\times10^{-6}\times12$ = $80\,\mu\text{C}$ A1 [3]

	Pa	Page 3		Mark Scheme: Teachers' version	Syllabus	Paper	
		<u> </u>		GCE AS/A LEVEL – May/June 2011	9702	43	
4	(a)	+q: therr		rease in internal energy nal energy / heat supplied to the system done on the system		B1 B1 B1	[3]
	(b)	(i)	per ι	rmal) energy required to change the state of a substan unit mass out any change of temperature	ce	M1 A1 A1	[3]
		(ii)	grea grea	n evaporating ter change in separation of atoms/molecules ter change in volume tifies each difference correctly with ΔU and w		M1 M1 A1	[3]
5	(a)	(i)		uced) e.m.f. proportional to of change of (magnetic) flux (linkage) / rate of flux cutt	ing	M1 A1	[2]
		(ii)	2. sp	oving magnet causes change of flux linkage beed of magnet varies so varying rate of change of flux agnet changes direction of motion (so current changes		B1 B1 B1	[1] [1] [1]
	(b)			0.75s y = 1.33Hz		C1 A1	[2]
	(c)	grap		mooth correctly shaped curve with peak at f_0 never zero		M1 A1	[2]
	(d)	(i)	reso	nance		B1	[1]
		(ii)	e.g.	quartz crystal for timing / production of ultrasound		A1	[1]
6	(a)	(i)		= 380 uency = 60 Hz		C1 A1	[2]
		(ii)		$\times \sqrt{2} = I_0$ = 9.9 / $\sqrt{2}$ = 7.0 A		C1 A1	[2]
							[-1
	(b)	R =		$1/7.0^{2}$		C1	
		=	8.2	2		A1	[2]

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper	•
•	GCE AS/A LEVEL – May/June 2011	9702	43	
` '	wavelength of wave associated with a particle that is moving			
	$= 1.36 \times 10^{-16} \text{J}$		M1	
ene mor	rgy = $p^2 / 2m$ or $p = mv$ and $E_K = \frac{1}{2}mv^2$ nentum = $\sqrt{(1.36 \times 10^{-16} \times 2 \times 9.11 \times 10^{-31})}$ = 1.6×10^{-23} Ns		M1 A0	[2]
			C1	
wav	elength = $(6.63 \times 10^{-34}) / (1.6 \times 10^{-23})$ = 4.1×10^{-11} m		A1	[2]
electron incident fluoresce pattern c	beam in a vacuum on <u>thin</u> metal target / carbon <u>film</u> ent screen of concentric rings observed		B1 B1 B1 M1 A1	[5]
, <i>,</i>	· · · · · · · · · · · · · · · · · · ·		M1 A1	[2]
$E = mc^2$ = 1.66 = 1.49 = (1.4	$5 \times 10^{-27} \times (3.0 \times 10^8)^2$ 9×10^{-10} J 9×10^{-10}) / (1.6 × 10 ⁻¹³)		C1 M1 M1 A0	[3]
	$= -1.9 \times 10^{-3}$ u		C1 A1	[2]
(ii) Am	= (57 x 1.0087u) + (40 x 1.0073u)			- -
	= (-)0.69 u			
bind	ling energy per nucleon = (0.69 × 930) / 97 = 6.61 MeV		C1 A1	[3]
	 (a) wavelengthat is more that is m	(a) wavelength of wave associated with a particle that is moving (b) (i) energy of electron = $850 \times 1.6 \times 10^{-19}$ = 1.36×10^{-16} J energy = $p^2 / 2m$ or $p = mv$ and $E_K = \frac{1}{2}mv^2$ momentum = $\sqrt{(1.36 \times 10^{-16} \times 2 \times 9.11 \times 10^{-31})}$ = 1.6×10^{-23} Ns (ii) $\lambda = h / p$ wavelength = $(6.63 \times 10^{-34}) / (1.6 \times 10^{-23})$ = 4.1×10^{-11} m (c) diagram or description showing: electron beam in a vacuum incident on thin metal target / carbon film fluorescent screen pattern of concentric rings observed pattern similar to diffraction pattern observed with visible light (a) energy required to separate nucleons in a nucleus to infinity (b) $1u = 1.66 \times 10^{-27}$ kg $E = mc^2$ = $1.66 \times 10^{-27} \times (3.0 \times 10^8)^2$ = 1.49×10^{-10} J = $(1.49 \times 10^{-10}) / (1.6 \times 10^{-13})$ = 930MeV (c) (i) $\Delta m = 2.0141u - (1.0073 + 1.0087)u$ = $-1.9 \times 10^{-3} u$ binding energy = $1.9 \times 10^{-3} \times 930$ = 1.8MeV (ii) $\Delta m = (57 \times 1.0087u) + (40 \times 1.0073u) - 97.0980u$ = $(-)0.69u$ binding energy per nucleon = $(0.69 \times 930) / 97$	(a) wavelength of wave associated with a particle that is moving (b) (i) energy of electron = $850 \times 1.6 \times 10^{-19}$ = $1.36 \times 10^{-16} \text{J}$ energy = $p^2 / 2m$ or $p = mv$ and $E_K = \frac{1}{2}mv^2$ momentum = $\sqrt{(1.36 \times 10^{-16} \times 2 \times 9.11 \times 10^{-31})}$ = $1.6 \times 10^{-23} \text{Ns}$ (ii) $\lambda = h / p$ wavelength = $(6.63 \times 10^{-34}) / (1.6 \times 10^{-23})$ = $4.1 \times 10^{-11} \text{m}$ (c) diagram or description showing: electron beam in a vacuum incident on thin metal target / carbon film fluorescent screen pattern of concentric rings observed pattern similar to diffraction pattern observed with visible light (a) energy required to separate nucleons in a nucleus to infinity (b) $1u = 1.66 \times 10^{-27} \text{kg}$ $E = mc^2$ = $1.66 \times 10^{-27} \times (3.0 \times 10^8)^2$ = $1.49 \times 10^{-10} \text{J}$ = $(1.49 \times 10^{-10}) / (1.6 \times 10^{-13})$ = 930MeV (c) (i) $\Delta m = 2.0141u - (1.0073 + 1.0087)u$ = $-1.9 \times 10^{-3} \text{u}$ binding energy = $1.9 \times 10^{-3} \times 930$ = 1.8MeV (ii) $\Delta m = (57 \times 1.0087u) + (40 \times 1.0073u) - 97.0980u$ = $(-)0.69u$ binding energy per nucleon = $(0.69 \times 930) / 97$	(a) wavelength of wave associated with a particle that is moving M1 A1 (b) (i) energy of electron = $850 \times 1.6 \times 10^{-19}$ = 1.36×10^{-16} J energy = $p^2 / 2m$ or $p = mv$ and $E_K = \frac{1}{2}mv^2$ momentum = $\sqrt{(1.36 \times 10^{-16} \text{ J})}$ energy = $p^2 / 2m$ or $p = mv$ and $E_K = \frac{1}{2}mv^2$ momentum = $\sqrt{(1.36 \times 10^{-16} \text{ J})}$ A0 M1 = 1.6×10^{-23} Ns M1 = 1.6×10^{-23} Ns A0 (ii) $\lambda = h / p$ wavelength = $(6.63 \times 10^{-34}) / (1.6 \times 10^{-23})$ = 4.1×10^{-11} m A1 A1 (c) diagram or description showing: electron beam in a vacuum incident on thin metal target / carbon film fluorescent screen pattern of concentric rings observed pattern of concentric rings observed must visible light B1 fluorescent screen must must be diffraction pattern observed with visible light M1 must be diffraction pattern observed with visible light M1 must be diffraction pattern observed with visible light M1 must be diffraction pattern observed with visible light M1 must be diffraction pattern observed with visible light M1 must be diffraction m

		OOL AGIA LEVEL May/built 2011	3102	70	
Se	ction B				
9	lay-c	/ fine metal wire out shown as a grid ased in plastic		B1 B1 B1	[3]
	(b) (i)	gain (of amplifier)		B1	[1]
	(ii)	for $V_{OUT} = 0$, then $V^+ = V^-$ or $V_1 = V_2$ $V_1 = (1000/1125) \times 4.5$ $V_1 = 4.0 \text{ V}$		C1 C1 A1	[3]
	(iii)	$V_2 = (1000 / 1128) \times 4.5$ = 3.99 V		C1	
		$V_{\text{OUT}} = 12 \times (3.99 - 4.00)$ = (-) 0.12 V		A1	[2]
10	nuclei pr	arge (uniform) magnetic field ecess / rotate about field direction	(1)	B1	
	at Larmo	quency pulse or frequency	(1)	B1	
	on relax	esonance / nuclei absorb energy ation / de-excitation, nuclei emit r.f. pulse	(4)	B1 B1	
	pulse detected and processed (1) non-uniform field superposed on uniform field allows position of resonating nuclei to be determined				
		or location of detection to be changed ts, 1 each plus any two extra – max 8)	(1)		[8]
11	e.g.	unreliable communication because ion layers vary in height / density cannot carry all information required bandwidth too narrow coverage limited reception poor in hilly areas	(M1) (A1) (M1) (A1) (M1) (A1)		[A]
	(any	two sensible suggestions, M1 & A1 for each, max 4)			[4]

Mark Scheme: Teachers' version

GCE AS/A LEVEL - May/June 2011

Syllabus

9702

Paper

43

В1

В1

[2]

Page 5

(b) signal must be amplified (greatly) before transmission back to Earth

uplink signal would be swamped by downlink signal

	_		GCE AS/A LEVEL – May/June 2011	9702	43	
12 (a	a) (i)	24 =	$1/dB = 10 \lg(P_1/P_2)$ $10 \lg(P_1/\{5.6 \times 10^{-19}\})$ $1.4 \times 10^{-16} W$		C1 C1 A1	[3]
	(ii)	atter 1.9 = L = '	nuation per unit length = $1 / L \times 10 \lg(P_1 / P_2)$ = $1 / L \times 10 \lg({3.5 \times 10^{-3}}/{1.4 \times 10^{-16}})$ 1 km		C1 C1 A1	[3]
			nuation = 10 lg({3.5 × 10 ⁻³ }/{5.6 × 10 ⁻¹⁹ }) = 158 dB	(C1)		
			nuation along fibre = (158 – 24) (158 – 24) / 1.9 = 71 km	(C1) (A1)		
(i	b) les	s atte	nuation (per unit length) / longer uninterrupted le	ength of fibre	B1	[1]

Mark Scheme: Teachers' version

Syllabus

Paper

Page 6