Real Analysis I: Assignment 1

Chris Hayduk

August 30, 2019

Problem 1.

Suppose $f: X \to Y$ is onto.

Let $B \subset Y$ be nonempty. Thus, $\exists b \in B$.

Suppose $f^{-1}(B) = \emptyset$. This implies that there is no $x \in X$ such that f(x) = b.

However, by the definition of onto, $\forall y \in Y, \exists x \in X \text{ such that } f(x) = y.$ Since $b \in B \subset Y$ and f is assumed to be onto, this definition applies.

Thus, we have a contradiction and $f^{-1}(B) \neq \emptyset$.

Problem 2.

Let \mathscr{A} be a collection of sets and assume properties (ii) and (iii) from the question.

Let $A, B \in \mathcal{A}$. By property (ii), $\tilde{A}, \tilde{B} \in \mathcal{A}$ as well.

Thus, by property (iii),

$$\tilde{A} \cap \tilde{B} \in \mathscr{A}$$

Then, by (ii) and DeMorgan's Laws, we have,

$$\widetilde{\tilde{A} \cap \tilde{B}} \in \mathcal{A}$$

$$\Longrightarrow \widetilde{\tilde{A}} \cup \widetilde{\tilde{B}} \in \mathcal{A}$$

$$\Longrightarrow A \cup B \in \mathcal{A}$$

Thus, by properties (ii) and (iii), whenever $A, B \in \mathcal{A}$, $A \cup B \in \mathcal{A}$ as well.

Problem 3.