(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2002年9月12日 (12.09.2002)

PCT

(10) 国際公開番号 WO 02/071824 A1

(51) 国際特許分類7:

H05K 9/00

(21) 国際出願番号:

PCT/JP02/01655

(22) 国際出願日:

2002年2月25日(25.02.2002)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ:

特願2001-57979

2001年3月2日(02.03.2001)

- (71) 出願人 (米国を除く全ての指定国について): 日立化 成工業株式会社 (HITACHI CHEMICAL CO., LTD.) [JP/JP]; 〒163-0449 東京都 新宿区 西新宿二丁目 1 番 1号 Tokyo (JP).
- (72) 発明者; および
- (75) 発明者/出願人 (米国についてのみ): 高橋 宏明 (TAKAHASHI, Hiroaki) [JP/JP]; 〒321-0132 栃木県

宇都宮市 雀の宮七丁目11番11号 Tochigi (JP). 今泉 純一 (IMAIZUMI,Junichi) [JP/JP]; 〒308-0856 茨城 県 下館市 伊佐山192 ホイゼルきぬ306 Ibaraki (JP). 中村 — (NAKAMURA,Hajime) [JP/JP]; 〒307-0001 茨城県 結城市 結城12472 Ibaraki (JP). 野村 宏 (NO-MURA, Hiroshi) [JP/JP]; 〒329-0215 栃木県 小山市 網 戸227 Tochigi (JP).

- (74) 代理人: 三好 秀和 (MIYOSHI, Hidekazu); 〒105-0001 東京都 港区 虎ノ門1丁目2番3号 虎ノ門第一ビル9階 Tokyo (JP).
- (81) 指定国 (国内): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.

[続葉有]

- (54) Title: ELECTROMAGNETIC SHIELD FILM, ELECTROMAGNETIC SHIELD UNIT AND DISPLAY
- (54) 発明の名称: 電磁波シールドフィルム、電磁波シールドユニット及びディスプレイ

(57) Abstract: An electromagnetic shield film (1) comprising conductors (4) arranged in meshed geometrical pattern on a transparent basic material (2) through adhesive (3), and an earth part (5) arranged around the conductors (4). The earth part (5) comprises a conductor region (501) for absorbing electromagnetic wave, and a conductor nonexisting region (510) for preventing undulation of the conductor region (501).

(57) 要約:

電磁波シールドフィルム(1)は、透明基材(2)上に接着剤(3) を介在させてメッシュ状幾何学的模様の導電体(4)を備え、この導 電体(4)の周囲に接地部(5)を配設している。この接地部(5) は、電磁波を吸収するための導体領域(501)と、導体領域(50 1) のうねりを防止するための導体不存在領域(510) とを備えて いる。

WO 02/071824 A1

(84) 指定国 (広域): ARIPO 特許 (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ特許 (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI 特許 (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:

— 国際調査報告書

2文字コード及び他の略語については、定期発行される各PCTガゼットの巻頭に掲載されている「コードと略語のガイダンスノート」を参照。

明細書

電磁波シールドフィルム、電磁波シールドユニット及びディスプレ イ

5 技術分野

本発明は、電磁波シールドフィルム、電磁波シールドユニット及び ディスプレイに関する。特に、本発明は、プラズマディスプレイパネ ル (PDP)を備えたプラズマディスプレイ、ブラウン管 (CRT) ディスプレイ、液晶 (LC) ディスプレイ、エレクトロルミネッセン ス (EL) ディスプレイ等のディスプレイ前面から発生する電磁波を 遮蔽する電磁波シールドフィルム、この電磁波シールドフィルムを備 えた電磁波シールドユニット及びこの電磁波シールドユニットを装着 したディスプレイに関する。

背景技術

25

- 近年、社会の高度情報化には目覚ましいものがある。これを達成するのに必要不可欠なものの一つにディスプレイが挙げられる。テレビジョン(TV)は勿論のこと、ワードプロセッサ、パーソナルコンピュータ、分析機器、ゲーム機、自動車の車載モニタ等、至る所においてディスプレイは多用されている。また、最近のディスプレイ画面の大型化は目覚ましいものがある。
 - 一方で電気機器、電子機器から放射される電磁波は大きな社会問題になりつつある。周囲の機器にノイズとして電磁波が拾われたり、電磁波が誤動作を生じさせるようなことが報告されている。電気機器や電子機器そのものの増加や、これらの機器の制御にコンピュータが多用されることから、予測不可能な障害が起り易く、重大な事故につながる可能性を否定することはできない。また、人体に対する健康障害の危険性も指摘されている。欧米においては既に法規制がなされており、日本国内においてもメーカ団体の自主規制がある。
 - 一般的な電磁波の遮蔽方法としては、機器筐体そのものを金属体若

しくは高導電体により形成する方法、回路基板と回路基板との間に金属板を挿入する方法、ケーブルに金属箔を巻きつける方法等が知られている。

しかしながら、ディスプレイ表面から放射される電磁波については、 前述のいずれかの遮蔽方法を採用すると、ディスプレイ本来の最も重要な「見る」という機能を損ねてしまう。つまり、ディスプレイの電 磁波遮蔽方法には、電磁波遮蔽性と、視認性を得るための透明性との 双方の性質を兼ね備えている必要がある。

特開平10-41682号公報には、このような双方の性質を兼ね 10 備えた電磁波遮蔽方法に関する発明が開示されている。すなわち、公 報に開示された発明は、透明プラスチックフィルムと銅箔等の導電体 とを場合により接着剤を介在させて積層し、導電体にはケミカルエッ チングプロセスによる幾何学図形を形成した電磁波シールドフィルタ である。この電磁波シールドフィルタは、ディスプレイ本体(デバイ ス)から放射される電磁波を導電体によって反射させ、さらには吸収 することにより、電磁波を遮蔽する能力を有している。

ディスプレイから放射される電磁波の大半は導電体により反射される。反射しきれない電磁波は電磁波シールドフィルタの周辺に形成された接地部(アース)より電気エネルギとして吸収され除去される。接地部は、一般的に、四辺とも約5mm~15mmの範囲内の幅寸法に設定され、連続的な帯状模様により形成されている。この接地部は、電磁波シールドフィルタの導電体とディスプレイ筐体との間を通電させるために配設されている。

電磁波シールドフィルタはガラス板、プラスチック板等に透明基材 25 (例えば、透明プラスチックフィルム)側が接するように積層され、この積層された電磁波シールドフィルタ及びガラス板等により前面板が作製されている。前面板はディスプレイ本体を収納するディスプレイ 全体と一体化されている。また、電磁波シールドフィルタは、そのままディスプレイ 僅体と一体化したり、ディスプレイ本体に積層する

ことも可能である。電磁波シールドフィルタの接地部は、ディスプレイ イ筺体の接地部又はディスプレイの接地部に接合されている。

しかしながら、上記電磁波シールドフィルタにおいては、以下の点 について配慮がなされていなかった。

が述のように、電磁波シールドフィルタは透明基材に導電体及び接地部を積層している。透明基材はプラスチック、ガラス等の材料であり、導電体及び接地部は金属薄膜等の導電材料であることから、双方の間の熱変形度合い若しくは熱膨張率が異なる。このため、透明基材と導電材料との重なる面積が大きい接地部において、「うねり」が生じてしまう。

透明基材に導電体及び接地部を貼り合わせて前面板を作製する場合、このような「うねり」が発生すると、導電体及び接地部を均一な平坦性を確保しつつ貼り合わせることができなくなり、接合界面に気泡が混入したり、部分的に接合せず、接合不良が起こりやすいという問題が生じる。また、接着不良を防ぐには、例えば強力な接着剤を使用する必要等が生じ、生産上の制限を受け、商業的量産性が劣化するという問題が生じる。さらに、電磁波シールドフィルタを、そのままディスプレイ筐体と一体化したり、ディスプレイ本体に積層する場合にも、透明基材に導電体及び接地部を均一な平坦性を確保しつつ一体化又は20 接合することができなくなり、接合界面に気泡が混入したり、部分的に接合せず、接合不良が発生してしまう。このような接合不良を防ぐには、前述のように隙間が生じないような何らかの接合手段を採用することになり、商業的量産性が劣化するという問題が生じる。

さらに、接地部とディスプレイ筐体又はディスプレイとの間の接合 25 不良によりこれらの間の電気的接点に接触不良が発生し、電磁波シー ルド特性が低下するばかりか、ディスプレイ本体に損傷を生じる恐れ があった。

発明の開示

本発明は上記課題を解決するためになされたものである。従って、

本発明の目的は、接地部のうねりを防止することができ、接地部の平 坦性を向上することができる電磁波シールドフィルムを提供すること である。

本発明の他の目的は、商業的量産性に優れた、上記電磁波シールドフィルムを備えた電磁波シールドユニットを提供することである。

本発明の他の目的は、商業的量産性に優れた、上記電磁波シールドユニットを備えたディスプレイを提供することである。

上記課題を解決するために、本発明の第1の特徴は、透明基材と、透明基材上のメッシュ状幾何学的模様を有する導電体と、導電体の周 20 辺領域に配設され、導体領域と導体不存在領域とを有する接地部とを 備えた電磁波シールドフィルムとしたことである。ここで、接地部に おいて「導体領域」とは、ディスプレイ筐体に電気的に接続される領域であり、少なくとも電磁波を電気エネルギとして吸収しこの電磁波を除去する領域という意味で使用される。「導体不存在領域」とは、接 地部内において、透明基材と導体領域との間の熱膨張率差に伴う、導体領域の伸縮をうねりが生じないように調節するための、導体が存在 しない領域という意味で使用される。また、導体不存在領域は、接地部の一部の導体を除去した結果、導体が存在しなくなった部分であってもよく、この場合「部分的導体領域」と表現してもよい。

20 このように構成される本発明の第1の特徴に係る電磁波シールドフィルムにおいては、接地部に導体不存在領域を備えたので、導体領域の伸縮を自由に行うことができ、接地部のうねりを防止することができる。

本発明の第2の特徴は、本発明の第1の特徴に係る電磁波シールド 25 フィルムの接地部の全体の面積に対して、導体領域の占有率が、30% ~99%の範囲内に設定された電磁波シールドフィルムとしたことで ある。換言すれば、接地部の全体の面積に対して、導体不存在領域は 1%~70%の範囲内に設定されていることになる。

接地部のうち導体領域の割合が30%~99%の範囲内に設定され

25

ることにより、電磁波シールド特性を向上することができ、かつうねりを防止することができる。さらに、ディスプレイ筐体又はディスプレイ本体の接地部との接触面積を多くして電磁波シールド特性をより一層向上させるために接地部のうち導体領域の割合を60%~99%の範囲内に設定することが好まし。さらに、電磁波シールド特性及びうねり防止の向上をはかるためには65%~97%とすることが最も好ましい。

接地部のうねりの周期を70mm以上、うねりの最大の高さを10mm以下に抑えることは、電磁波シールドフィルムとガラス板、プラスチック板等との貼り合せ時(電磁波シールドユニット、具体的には前面板の作製時)に、双方の界面への気泡の混入、接着不良等を抑制することができるという観点から好ましい。また、電磁波シールドフィルム又は前面板とディスプレイ筐体又はディスプレイ本体とを接合する時に、同様に双方の界面への気泡の混入、接着不良等を抑制することができるという観点から好ましい。結果的に、電磁波シールドフィルムの接地部と、前面板、ディスプレイ筐体又はディスプレイ本体の接地部との間の良好な接触が行えるので、設計どおりの電磁波シールド特性を確保することができる。

このように構成される本発明の第2の特徴に係る電磁波シールドフ 20 イルムにおいては、接地部の導体領域の割合を適正に調節したので、 電磁波シールド特性を最大限に向上しつつ、接地部のうねりを最小限 に抑制することができる。

本発明の第3の特徴は、本発明の第1の特徴又は第2の特徴に係る電磁波シールドフィルムの接地部のうち導体領域が、下記(1)乃至(10)のいずれか1つの模様、又は複数の模様の組み合わせにより形成されてた電磁波シールドフィルムとしたことである。

- (1) 所定間隔で規則的に配列された方形状幾何学的模様
- (2) 櫛形模様
- (3) ジグザグ模様

6

- (4) 所定間隔で規則的に配列された平行四辺形模様
- (5) 梯子模様
- (6)メッシュ状幾何学的模様
- (7) 三角形模様
- 5 (8) 五角形以上の多角形模様
 - (9) 円模様又は楕円模様
 - (10)星形模様

なお、ここで、接地部の導体領域をメッシュ状幾何学的模様とする 場合には、導電体のメッシュ状幾何学的模様における線幅に比べて、

10 導体領域の線幅を大きくし、導体領域の面積をより大きく確保し、電磁波シールド特性を向上させるようにすることが好ましい。すなわち、導電体においては、本来の「見る」という機能を最大限に確保しつつ、電磁波シールド特性を向上するために、導電体の開口率を充分に確保する必要がある。例えば、導電体の開口率を50%~98%の範囲内に設定することが実用的である。

このように構成される本発明の第3の特徴に係る電磁波シールドフィルムにおいては、接地部の導体領域の平面模様(平面パターン)、導体不存在領域の平面模様、又は双方の平面模様を変更するだけで、簡易に電磁波シールド特性を向上することができつつ、うねりを抑制することができる。

本発明の第4の特徴は、本発明の第1乃至第3の特徴のいずれかに 係る電磁波シールドフィルムのメッシュ状幾何学的模様の導電体及び 接地部の導電領域が透明基材上に接着剤を介在させて配設されている 電磁波シールドフィルムとしたことである。

25 このように構成される本発明の第4の特徴に係る電磁波シールドフィルムにおいては、その作製に、金属箔等の金属薄膜の接着法を採用することができ、製作が簡便化できる。

本発明の第5の特徴は、本発明の第1乃至第4の特徴のいずれかに 係る電磁波シールドフィルムと、電磁波シールドフィルムの少なくと

15

20

も導電体上の保護フィルムとを備えた電磁波シールドユニットとした ことである。ここで、「電磁波シールドユニット」とは、最低限、本発 明の第1乃至第4の特徴のいずれかに係る電磁波シールドフィルムと 保護フィルムとを備え、ディスプレイ筺体又はディスプレイ本体に簡 易に装着可能な、ディスプレイを構築する1つの構成部品という意味 で使用される。例えば、電磁波シールドユニットは前面板又は前面板 の一部を表現する意味で使用される。

このように構成される本発明の第5の特徴に係る電磁波シールドユニットにおいては、本発明の第1乃至第4の特徴に係る電磁波シールドフィルムにおいて得られる効果と同様の効果を得ることができる。

本発明の第6の特徴は、反射防止フィルムと、反射防止フィルム上の近赤外線吸収フィルムと、近赤外線吸収フィルム上の第1の透明基材と、第1の透明基材上の、本発明の第1乃至第4の特徴に係る電磁波シールドフィルムと、電磁波シールドフィルムの少なくとも導電体上の保護フィルムとを備えた電磁波シールドユニットとしたことである。「電磁波シールドユニット」の定義は、本発明の第5の特徴に係る「電磁波シールドユニット」と同一である。

このように構成される本発明の第6の特徴に係る電磁波シールドユニットにおいては、本発明の第1乃至第4の特徴に係る電磁波シールドフィルムにおいて得られる効果と同様の効果を得ることができる。

本発明の第7の特徴は、ディスプレイモジュールと、ディプレイモジュール上の、少なくとも下記(1)及び(2)を有する電磁波シールドユニットとを備えたディスプレイとしたことである。

- (1) ディスプレイモジュール上の、本発明の第1乃至第4の特徴に 25 係る電磁波シールドフィルム
 - (2)電磁波シールドフィルムの少なくとも導電体上の保護フィルム ここで、「ディスプレイモジュール」とは、ディスプレイ筐体又は ディスプレイ本体という意味で使用されている。例えば、ディスプレ イモジュールには、プラズマディスプレイ、ブラウン管ディスプレイ、

10

液晶ディスプレイ又はエレクトロルミネッセンスディスプレイ等のモジュール、すなわちディスプレイ筐体又はディスプレイ本体を実用的に使用することができる。さらに、「電磁波シールドユニット」には、本発明の第6の特徴に係る電磁波シールドユニットを使用することができる。

このように構成される本発明の第7の特徴に係るディスプレイにおいては、接地部に導体不存在領域を備え、導体領域の伸縮を自由に行うことができ、接地部のうねりを防止することができる電磁波シールドフィルムを備えているので、電磁波シールド特性を向上しつつ、商業的量産性を向上することができる。

図面の簡単な説明

Fig. 1 は本発明の実施の形態に係る電磁波シールドフィルムの斜視図である。

Fig. 2 は Fig. 1 に示す電磁波シールドフィルムの接地部の拡大平 15 面図である。

Fig. 3 A は本発明の実施の形態に係る第1の構造の電磁波シールドユニットの断面図である。

Fig. 3 B は本発明の実施の形態に係る第 2 の構造の電磁波シールドユニットの断面図である。

20 Fig. 4 は本発明の実施の形態に係る前面板の斜視図である。

Fig. 5 は本発明の実施の形態に係る電磁波シールドフィルム及び取り付け治具を示す図である。

Fig. 6 は本発明の実施の形態に係る電磁波シールドユニットの前面 板筐体の斜視図である。

25 Fig. 7 は本発明の実施の形態に係る取り付け治具の斜視図である。

Fig. 8 は本発明の実施の形態に係るディスプレイの斜視図である。

Fig. 9 は本発明の実施の形態に係る電磁波シールドフィルムの第2 の構造の接地部の拡大平面図である。

Fig. 10は本発明の実施の形態に係る電磁波シールドフィルムの第

3の構造の接地部の拡大平面図である。

Fig. 1 1 は本発明の実施の形態に係る電磁波シールドフィルムの第4の構造の接地部の拡大平面図である。

Fig. 12は本発明の実施の形態に係る電磁波シールドフィルムの第 5 の構造の接地部の拡大平面図である。

Fig. 13は本発明の実施の形態に係る電磁波シールドフィルムの第6の構造の接地部の拡大平面図である。

Fig. 14 は本発明の実施の形態に係る電磁波シールドフィルムの第7の構造の接地部の拡大平面図である。

10 Fig. 15 は本発明の実施の形態に係る電磁波シールドフィルムの第 8 の構造の接地部の拡大平面図である。

Fig. 16 は本発明の実施の形態に係る電磁波シールドフィルムの第9の構造の接地部の拡大平面図である。

Fig. 17は本発明の実施の形態に係る第1の実施例の電磁波シール 15 ドフィルムの接地部の拡大平面図である。

Fig. 18 は本発明の実施の形態に係る第2の実施例の電磁波シールドフィルムの接地部の拡大平面図である。

Fig. 19 は本発明の実施の形態に係る第3の実施例の電磁波シールドフィルムの接地部の拡大平面図である。

20 Fig. 2 0 は本発明の実施の形態に係る第 1 の比較例の電磁波シールドフィルムの接地部の拡大平面図である。

Fig. 21 は本発明の実施の形態に係る第2の比較例の電磁波シールドフィルムの接地部の拡大平面図である。

Fig. 2 2 は本発明の実施の形態に係る電磁波シールドフィルムの特 25 性測定結果を示す図である。

発明を実施するための最良の形態

次に、図面を参照して、本発明に係る電磁波シールドフィルム並び に併せてその製造方法を、実施の形態により説明する。以下の図面の

記載において、同一又は類似の部分には同一又は類似の符号を付している。ただし、図面は模式的なものであり、厚みと平面寸法との関係、各層の厚みの比率等は現実のものとは異なることに留意すべきである。従って、具体的な厚みや寸法は以下の説明を参酌して判断すべきものである。また図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。

[電磁波シールドフィルムの基本的な構造]

Fig. 1に示すように、本発明の実施の形態に係る電磁波シールドフィルム1は、透明基材2と、透明基材2上のメッシュ状幾何学的模様10 を有する導電体4と、導電体4の周辺領域に配設され、導体領域501と導体不存在領域510とを有する接地部5とを備えて構成されている。本発明の実施の形態において、透明基材2と導電体4との間、及び透明基材2と接地部5の導体領域501との間には、接着剤3が介在され、双方が接着されている。なお、接着剤3は必要に応じて使15 用されている。

ここで説明する材質に特に限定されるものではないが、取り扱い性、 価格等を考慮し、又さらには導電体 4 をケミカルエッチングする際の 耐薬品性を考慮して、透明基材 2 にはプラスチックフィルムを使用することが好ましい。プラスチックフィルムとしては、透明なものであれば特に制限はないが、例えばポリエチレン、ポリプロピレン、ポリエステル、ポリ塩化ピニル、ポリスチレン等のフィルムを実用的に使用することができる。また、これらのフィルムには、シリコーン、ポリビニルアルコール、アルキルカーバメート等の離型処理を施すことができる。

25 導電体 4 には、銅(Cu)、アルミニウム(A1)、ニッケル(Ni)、 鉄(Fe)、金(Au)、銀(Ag)、タングステン(W)、クロム(Cr)、チタン(Ti)等の単体の金属、又はこれらの金属を2種以上組 み合わせた合金を使用することが好ましい。例えば、合金にはステン レス(Fe-Ni-Cr)等を実用的に使用することができる。また、

20

25

導電性インキ等の導電性を有する材料を使用することもできる。電気 伝導性、メッシュ状幾何学的模様等の加工容易性、価格の安価性等を 考慮すると、導電体4には銅、アルミニウム又はニッケルのいずれか 又はそれらの合金が最も適している。

5 導電体の厚さは、 $3 \mu m \sim 40 \mu m$ の範囲内の厚さが好ましい。導電体4の厚さが薄すぎると、表面抵抗が大きくなり、充分に電磁波を吸収することができなくなり、電磁波シールド特性の向上効果が低下する傾向がある。一方、導電体4の厚さが厚すぎると、細かいライン幅のメッシュ状幾何学的模様を形成することが難しく、又視野角が狭10 くなる傾向がある。

同様にここでの説明に特に限定されるものではないが、接着剤3には、所定の温度において流動させることができ、この流動させる温度よりも低温度において硬化させることができる接着剤を実用的に使用することができる。すなわち、接着剤3には、透明基材2と導電体4との間に介在させて、加熱及び加圧により流動させ、この後に硬化させ、透明基材2と導電体4との間を容易に接着できるものであることが好ましい。このような接着剤3の軟化温度は取り扱い性を考慮して150℃以下で有ることが好ましい。電磁波シールドフィルタ1の用途から、使用される環境が通常80℃以下であるので、加工性の観点から接着剤3の軟化温度を80℃~120℃の範囲内に設定することが最も好ましい。

接着剤3としては、熱可塑性樹脂、活性エネルギー線で硬化する樹脂、若しくは熱硬化性樹脂又はこれらにうち2以上を含む接着剤を使用することができる。活性エネルギー線で硬化する樹脂を含む接着剤(活性エネルギー線で硬化する接着剤)又は熱硬化性樹脂を含む接着剤(熱硬化型接着剤)は、これらが硬化する前は、熱可塑性樹脂を含む接着剤と同様の特性を有することが好ましい。

接着剤3として代表的な熱可塑性樹脂には、天然ゴム、ポリイソプレン、ポリー1,2-プタジエン、ポリイソブテン、ポリブテン、ポ

リー2ーヘプチルー1,3ープタジエン、ポリー2ーtープチルー1, 3-ブタジエン、ポリー1、3-ブタジエンなどの(ジ)エン類、ポ リオキシエチレン、ポリオキシプロピレン、ポリビニルエチルエーテ ル、ポリビニルヘキシルエーテル、ポリビニルブチルエーテルなどの ポリエーテル類、ポリビニルアセテート、ポリビニルプロピオネート などのポリエステル類、ポリウレタン、エチルセルロース、ポリ塩化 ビニル、ポリアクリロニトリル、ポリメタクリロニトリル、ポリスル ホン、ポリスルフィド、フェノキシ樹脂、ポリエチルアクリレート、 ポリブチルアクリレート、ポリー2-エチルヘキシルアクリレート、 ポリーt-ブチルアクリレート、ポリー3-エトキシプロピルアクリ 10 レート、ポリオキシカルボニルテトラメタクリレート、ポリメチルア クリレート、ポリイソプロピルメタクリレート、ポリドデシルメタク リレート、ポリテトラデシルメタクリレート、ポリーn-プロピルメ タクリレート、ポリー3、3、5-トリメチルシクロヘキシルメタク リレート、ポリエチルメタクリレート、ポリー2-ニトロー2-メチ 15 ルプロピルメタクリレート、ポリー1,1-ジエチルプロピルメタク リレート、ポリメチルメタクリレートなどのポリ(メタ)アクリル酸 エステルが使用可能である。これらのアクリルポリマーは必要に応じ て、2種以上共重合してもよいし、2種類以上をプレンドして使用す ることも可能である。 20

これらの熱可塑性樹脂の重量平均分子量は500以上のものを使用することが好ましい。分子量が500以下では接着剤組成物の凝集力が低すぎるために被着体への密着性が低下する恐れがある。

熱可塑性樹脂の接着剤には、必要に応じて、希釈剤、可塑剤、酸化 25 防止剤、充填剤、着色剤、紫外線吸収剤、粘着付与剤等の添加剤を配 合することができる。

活性エネルギー線としては、紫外線、電子線等を利用することができる。また、活性エネルギー線で硬化する樹脂としては、アクリル樹脂、エポキシ樹脂、ポリエステル樹脂、ウレタン樹脂等をベースポリ

マとし、各々にラジカル重合性あるいはカチオン重合性官能基を付与 させた材料を実用的に使用することができる。ラジカル重合性官能基 として、アクリル基(アクリロイル基)、メタクリル基(メタクリロイ ル基), ピニル基, アリル基などの炭素 - 炭素二重結合があり、反応性 の良好なアクリル基 (アクリロイル基) が好適である。カチオン重合 性官能基としては、エポキシ基(グリシジルエーテル基、グリシジル アミン基)が代表的であり、高反応性の脂環エポキシ基が好適である。 具体的な材料としては、アクリルウレタン、エポキシ(メタ)アクリ レート、エポキシ変性ポリブタジエン、エポキシ変性ポリエステル、 10 ポリブタジエン (メタ) アクリレート、アクリル変性ポリエステル等 が好適である。

5

15

20

25

活性エネルギー線が紫外線の場合、紫外線硬化時に添加される光増 感剤あるいは光開始剤には、ベンゾフェノン系、アントラキノン系、 ベンゾイン系、スルホニウム塩、ジアゾニウム塩、オニウム塩、ハロ ニウム塩等の公知の材料を使用することができる。また、上記材料の 他に汎用の熱可塑性樹脂をブレンドすることができる。

接着剤としては、上記のように熱硬化型接着剤を使用することがで きる。具体的には、天然ゴム、イソプレンゴム、クロロプレンゴム、 ポリイソブチレン、ブチルゴム、ハロゲン化ブチル、アクリロニトリ ル・ブタジエンゴム、スチレン・ブタジエンゴム、ポリイソブテン、 カルボキシゴム、ネオプレン、ポリブタジエン等の樹脂と、架橋剤と しての硫黄、アニリンホルムアルデヒド樹脂、尿素ホルムアルデヒド 樹脂、フェノールホルムアルデヒド樹脂、リグリン樹脂、キシレンホ ルムアルデヒド樹脂、キシレンホルムアルデヒド樹脂、メラミンホル ムアルデヒド樹脂、エポキシ樹脂、尿素樹脂、アニリン樹脂、メラミ ン樹脂、フェノール樹脂、ホルマリン樹脂、金属酸化物、金属塩化物、 オキシム、アルキルフェノール樹脂等との組み合わせで使用すること ができる。なお、熱硬化型接着剤においては、架橋反応速度を増加す る目的で、汎用の加硫促進剤等の添加剤を使用することができる。

熱硬化型接着剤として、硬化反応を利用するものとしては、カルボ キシル基、水酸基、エポキシ基、アミノ基、不飽和炭化水素基等の官 能基を有する樹脂と、エポキシ基、水酸基、アミノ基、アミド基、カ ルボキシル基、チオール基等の官能基を有する硬化剤あるいは金属塩 化物、イソシアネート、酸無水物、金属酸化物、過酸化物等の硬化剤 との組み合わせで使用される場合もある。なお、熱硬化型接着剤にお いては、硬化反応速度を増加する目的で、汎用の触媒等の添加剤を使 用することもできる。具体的には、硬化性アクリル樹脂組成物、不飽 和ポリエステル樹脂組成物、ジアリルフタレート樹脂、エポキシ樹脂 組成物、ポリウレタン樹脂組成物等が実用的に使用することができる。 10 さらに、アクリル樹脂とアクリル以外との共重合樹脂としては、エ ポキシアクリレート、ウレタンアクリレート、ポリエーテルアクリレ ート、ポリエステルアクリレート等を実用的に使用することができる。 特に接着性の向上の点から、ウレタンアクリレート、エポキシアクリ レート、ポリエーテルアクリレートが優れている。エポキシアクリレ 15 ートとしては、1,6-ヘキサンジオールジグリシジルエーテル、ネ オペンチルグリコールジグリシジルエーテル、アリルアルコールジグ リシジルエーテル、レゾルシノールジグリシジルエーテル、アジピン 酸ジグリシジルエステル、フタル酸ジグリシジルエステル、ポリエチ レングリコールジグリシジルエーテル、トリメチロールプロパントリ 20 グリシジルエーテル、グリセリントリグリシジルエーテル、ペンタエ リスリトールテトラグリシジルエーテル、ソルビトールテトラグリシ ジルエーテル等の(メタ)アクリル酸付加物が実用的である。エポキ シアクリレートなどのように分子内に水酸基を有するポリマーは接着 25 性向上に有効である。これらの共重合樹脂は必要に応じて、2種以上

本発明の実施の形態において、接地部5は導電体4のすべての周囲を取り囲み、接地部5の導体領域501と導電体4とは同一材料により形成され、接地部5と導電体4とは一体に形成されている。なお、

併用することができる。

WO 02/071824 PCT/JP02/01655

15

接地部 5 の導体領域 5 0 1 と導電体 4 とは異種材料により形成してもよい。Fig. 2 (Fig. 1 に符号 F 2 を付けて指し示した領域内の接地部を示す拡大平面図)に示すように、接地部(本実施の形態に係る第1の構造)5 の導体領域 5 0 1 は、導電体 4 の周囲に沿って所定間隔で規則的に配列された方形状幾何学的模様を有する。導体不存在領域5 1 0 は、この導体領域 5 0 1 とは逆模様を有する。Fig. 1 及び Fig. 2 に示すように、ここでは、接地部 5 の導体領域 5 0 1 の面積が導体不存在領域5 1 0 の面積に比べて大きくなるように、導体領域5 0 1 の方形状幾何学的模様と導体不存在領域5 1 0 の方形状幾何学的模様と導体不存在領域5 1 0 の方形状幾何学的模様と

5

10

接地部5全体の面積(導体領域501の面積と導体不存在領域510の面積との合計)に対して、導体領域501の割合がより小さく、導体不存在領域510の割合がより大きい程、うねりを低減することができる。ところが、導体領域501の面積が小さい場合には、接地部5とディスプレイ筐体又はディスプレイ本体(後述)の接地部との接触面積が小さく、電磁波の吸収経路(電磁波を変換した電気エネルギーの吸収経路)の電気抵抗値が増加してしまうので、基本性能である電磁波シールド特性が低下してしまう恐れがある。接地部5はこの双方の条件を満足させる必要がある。

20 例えば、接地部 5 は、幅寸法 t (Fig. 1及び Fig. 2参照。)を 5 mm~15 mmの範囲内に設定する場合、5 mm~100 mmさらに 好ましくは10 mm~50 mmの長さを有する方形状幾何学的模様の 導体領域501の間に、例えば1 mmの幅寸法の溝模様の導体不存在 領域510を配列することにより形成されている。本実施の形態に係 25 る接地部5の導体領域501は、部分的除去領域501により細分化され、等間隔において配列されている。

なお、電磁波シールドフィルム1において、導電体4の開口率は、本来の「見る」という機能を損ねることなく(視認性を向上しつつ)、電磁波シールド特性を向上するために、50%~98%の範囲内、さ

らには70%~98%の範囲内、最も好ましくは80%~98%の範囲内に設定されている。例えば、導電体4において、線幅を 5μ m、線間ピッチを 250μ mのメッシュ状幾何学的模様にすれば、96%の開口率を得ることができる。また、線幅を 17μ m、線間ピッチを 250μ mのメッシュ状幾何学的模様の場合には86.8%の開口率、線幅を 5μ m、線間ピッチを 300μ mのメッシュ状幾何学的模様の場合には96.7%の開口率、線幅を 17μ m、線間ピッチを 300μ mのメッシュ状幾何学的模様の場合には96.7%の開口率、線幅を 17μ m、線間ピッチを 300μ mのメッシュ状幾何学的模様の場合には89%の開口率を各々得ることができる。

10 [電磁波シールドユニットの第1の構造]

本発明の実施の形態に係る電磁波シールドフィルム1は、ディスプレイの前面板又はその一部の構成部品とした、電磁波シールドユニット6として構成することができる。すなわち、Fig. 3 Aに示すように、電磁波シールドユニット6は、前述の電磁波シールドフィルム1と、

- 15 電磁波シールドフィルム1の少なくとも導電体4上の保護フィルム6 1とを備えている。保護フィルム61としては離型性保護フィルムを 実用的に使用することができ、この離型性保護フィルムは使用に当た って適宜剥離される。保護フィルムは、恒久的に積層されていてもよ い。
- 20 なお、導電体 4 と保護フィルム 6 1 との間には接着剤を介在させることができる。接着剤には、前述の接着剤 3 と同様なものを使用することができる。また、保護フィルム 6 1 は、片面だけに限定されるものではなく、両面(導電体 4 上及び透明基材 2 下)に配設するようにしてもよい。
- 25 [電磁波シールドユニットの第2の構造]

電磁波シールドユニット6は、Fig. 3Bに示すように、反射防止フィルム65と、反射防止フィルム65上の近赤外線吸収フィルム66と、近赤外線吸収フィルム上の透明基材(第1の透明基材)67と、透明基材67上の電磁波シールドフィルム1と、電磁波シールドフィ

25

ルム1の少なくとも導電体4上の保護フィルム61とを備えて構成してもよい。すなわち、Fig. 3Bに示す電磁波シールドユニット6は、Fig. 3Aに示す電磁波シールドユニット6に、反射防止フィルム65、近赤外線吸収フィルム66及び透明基材67を備えたものである。電磁波シールドフィルム1は、前述のように、透明基板(ここでは、第2の透明基板。)2と、透明基材2上のメッシュ状幾何学的模様を有する導電体4と、導電体4の周辺領域に配設され、導体領域501と導体不存在領域510とを有する接地部5とを備えている。

図示していないが、反射防止フィルム65と近赤外線吸収フィルム1066との間、及び近赤外線吸収フィルム66と透明基材67との間には、前述の接着剤3と同様な接着剤が介在され、相互に接着されている。また、透明基材67には、透明ガラス板又は透明プラスチック板を実用的に使用することができる。

[前面板の構造]

前述の電磁波シールドユニット6は、Fig. 4に示すように、ディスプレイに電磁波シールドフィルム1を装着するための前面板7を構成するようになっている。前面板7は、前述の電磁波シールドフィルム1を備えた電磁波シールドユニット6と、電磁波シールドユニット6の周縁部分に配設された取り付け治具71と、電磁波シールドユニット6を取り付け治具71を介してはめ込む前面板筐体(ベゼル又はエスカッション)70とを少なくとも備えて構成されている。

取り付け治具71は、Fig. 4、Fig. 5及びFig. 7に示すように、電磁波シールドユニット6の周縁に沿って所定間隔で複数配設された挟持部711と、この複数の挟持部711を相互に連結する連結体712とを備えて構成されている。挟持部711は、電磁波シールドユニット6の前面及び裏面を適度な弾性力により挟み込み、電磁波シールドフィルム1の接地部5に電気的に接触する突出形状を備えている。挟持部711は、基本的に電気伝導性と弾力性とが少なくとも必要であるので、例えば前述の金属材料又は合金材料により形成することが

好ましい。挟持部711と連結体712とは、一体的に形成されていても、別個に形成され結合されていても、いずれであっても構わない。

前面板筐体70は、電磁波シールドユニット6の平面形状と相似形状の平面形状により形成され、周囲には電磁波シールドユニット6を はめ込む縁部701を有し、電磁波シールドフィルム1の導電体4に対応する中央部分には開口部702を有している。前面板筐体70は、その成型のし易さから樹脂、金属又は合金により形成されている。

[ディスプレイの構造]

Fig. 8 に示すように、本発明の実施の形態に係るディスプレイ 8 は、 10 ディスプレイモジュール 8 1 と、ディプレイモジュール 8 1 上、詳細 にはディスプレイモジュール 8 1 の画面上に装着された前面板 7 (又 は電磁波シールドフィルム 1 又は電磁波シールドユニット 6) とを備えて構築されている。

本発明の実施の形態に係るディスプレイ8において、ディスプレイ モジュール81にはプラズマディスプレイモジュールが使用されている。その詳細な構造はここでは省略するが、プラズマディスプレイモ ジュールは、プラズマディスプレイパネルとこのプラズマディスプレイ イパネルを内蔵するディスプレイ筐体とを少なくとも備えており、プ ラズマディスプレイパネル、ディスプレイ筐体等に前面板7の取り付 20 け治具71を通して電磁波シールドフィルム1の接地部5が接地され るようになっている。ディスプレイモジュール81の背面からのねじ 止め等により、前面板7はディスプレイモジュール81に装着され固 定される。

なお、本発明の実施の形態において、ディスプレイ 8 のディスプレ 25 イモジュール 8 1 はプラズマディスプレイモジュールに限定されるも のではなく、ブラウン管ディスプレイ、液晶ディスプレイ又はエレク トロルミネッセンスディスプレイ等モジュールであってもよい。

[電磁波シールドフィルムの接地部の第2の構造]

Fig. 9に示すように、電磁波シールドフィルム1において、第2の

15

構造の接地部 5 は、所定間隔で規則的に行列状に配列された方形状幾何学的模様つまりメッシュ状幾何学的模様を有する導体領域 5 0 1 と、この導体領域 5 0 1 とは逆模様を有する導体不存在領域 5 1 0 とを備えている。ここでは、第1の構造と同様に、接地部 5 の導体領域 5 0 1 の面積が導体不存在領域 5 1 0 の面積に比べて大きく設定されている。

さらに、接地部 5 においては、導電領域 5 0 1 が導電体 4 に電気的に接続されるように、導電領域 5 0 1 及び導電体 4 の模様が形成されている。さらに、導体領域 5 0 1 は導体不存在領域 5 1 0 により細分化され、等間隔において配列されており、細分化された導体領域 5 0 1 の右斜め方向の 1 列(又は左斜め方向の 1 列)は、連結導体領域 5 0 2 により相互に電気的に接続されている。

例えば、接地部5の幅寸法 t (Fig. 1及び Fig. 9参照。後述する第3の構造以降においても幅寸法 t は同一寸法。)が5 mm~15 mmの範囲内に設定されている場合、導体領域501の一辺は5 mm~10 mm さらに好ましくは10 mm~50 mmで形成され、導体領域502の幅は2 mmで形成され、そして導体不存在領域510の幅は1 mmで形成される。

本実施の形態に係る接地部5の導体領域501は、導体不存在領域20 501により細分化され、等間隔において配列されてはいるものの、不連続的な模様になるが、導体領域501相互の間において電気的な接続を必要とする場合には、導電体4の周囲に沿って延在する例えば2mmの幅寸法を有する帯状の導体領域(図示しないが、後述する第3乃至第5の構造の接地部5を参照。)を併せ持ち、一部連続的な模様25 を有するようにしてもよい。

[電磁波シールドフィルムの接地部の第3の構造]

Fig. 10に示すように、電磁波シールドフィルム1において、第3の構造の接地部5は、長さ方向に所定間隔で配設されたスリット状模様の導体不存在領域510と、この導体不存在領域510を配設する

20

25

ことにより櫛形模様に形成された導体領域501とを備えて構成されている。導体不存在領域510は導電体4側からその外側に向かって配設されており、この導体不存在領域510のスリット幅は例えば1mmに設定されている。導体領域501の長さ(導体不存在領域510間の長さ)は5mm~100mmさらに好ましくは10mm~50mmに設定されている。導体領域501は、このような櫛形模様とすることにより、連続した形状にすることができる。

[電磁波シールドフィルムの接地部の第4の構造]

Fig. 11に示すように、電磁波シールドフィルム1において、第4 の構造の接地部5は、長さ方向に所定間隔で配設されたスリット状模 様の導体不存在領域510と、この導体不存在領域510を配設する ことにより櫛形模様に形成された導体領域501とを備えて構成され ている。この Fig. 11に示す第4の構造の接地部5の導体領域50 1は、Fig. 10に示す第3の構造の接地部5の導体領域501に対し て、上下反対の模様により形成されており、導体不存在領域510は 外側から導電体4側に向かって配設されている。

[電磁波シールドフィルムの接地部の第5の構造]

Fig. 12に示すように、電磁波シールドフィルム1において、第5の構造の接地部5は、長さ方向に所定間隔で互い違いに配設されたスリット模様の導体不存在領域510と、この導体不存在領域510を配設することによりジグザグ模様に形成された導体領域501とを備えて構成されている。導体不存在領域510は、導電体4側からその外側に向かって配設されたものと、逆に外側から導電体4側に向かって配設されたものとの2種類を備えている。導体不存在領域510のスリット幅、導体領域501の長さのそれぞれは、第3又は第4の構造の接地部5と同様である。導体領域501は、このようなジグザグ模様とすることにより、連続した形状にすることができる。

[電磁波シールドフィルムの接地部の第6の構造]

Fig. 13に示すように、電磁波シールドフィルム1において、第6

の構造の接地部 5 は、長さ方向に所定間隔で規則的に配列された平行四辺形模様の導体領域 5 0 1 と、この導体領域 5 0 1 間に配列された斜線模様の導体不存在領域 5 1 0 とを備えて構成されている。導体不存在領域 5 1 0 は、Fig. 1 3 中、右上がりの斜線模様を有している。導体不存在領域 5 1 0 の斜線幅は、第 3 又は第 4 の構造の接地部 5 の導体不存在領域 5 1 0 のスリット幅と同様である。また、導体領域 5 0 1 の長さは、第 3 又は第 4 の構造の接地部 5 の導体領域 5 0 1 の長さは、第 3 又は第 4 の構造の接地部 5 の導体領域 5 0 1 の長さに履行である。

「電磁波シールドフィルムの接地部の第7の構造]

10 Fig. 14に示すように、電磁波シールドフィルム1において、第7 の構造の接地部5は、Fig. 13に示す第6の構造の接地部5と類似しており、長さ方向に所定間隔で規則的に配列された平行四辺形模様の導体領域501と、この導体領域501間に配列された斜線模様の導体不存在領域510とを備えて構成されている。導体不存在領域510は、Fig. 14中、右下がりの斜線模様を有しており、第6の構造の接地部5の導体不存在領域510に対して左右反対の模様により形成されている。

「電磁波シールドフィルムの接地部の第8の構造]

Fig. 15に示すように、電磁波シールドフィルム1において、第8 の構造の接地部5は、長さ方向に所定間隔で規則的に配設されたスリット模様の導体不存在領域510と、この導体不存在領域510を配設することにより梯子模様に形成された導体領域501とを備えて構成されている。導体不存在領域510は、導電体4の周縁及び接地部5の周縁において導体領域501を配置させるために、接地部5の中25 央部分に配設されている。導体不存在領域510のスリット幅、導体領域501の長さのそれぞれは、第3又は第4の構造の接地部5と同様である。導体領域501は、このような梯子模様とすることにより、一部連続した形状にすることができ、導電体4の周囲の全域において相互に電気的に接続されるようになっている。

[電磁波シールドフィルムの接地部の第9の構造]

Fig. 16に示すように、電磁波シールドフィルム1において、第9の構造の接地部5は、メッシュ状幾何学的模様の導体領域501と、この導体領域501とは逆模様となる方形状幾何学的模様の導体不存在領域510とを備えて構成されている。この Fig. 16に示す第9の構造の接地部5は、Fig. 9に示す第2の構造の接地部5に対して、丁度、逆模様になっている。

[電磁波シールドフィルムの基本的な製造方法]

次に、本発明の実施の形態に係る電磁波シールドフィルム1の基本 10 的な製造方法を簡単に説明する。なお、ここでは、第1の構造の接地 部5を備えた電磁波シールドフィルム1の製造方法について説明する が、第2の構造乃至第9の構造の接地部5を備えた電磁波シールドフィルム1の製造方法も基本的には同一である。

(1)まず最初に、透明基材2を準備し、この透明基材2上に接着剤3を介在させて、金属層を積層する。この金属層の積層には、透明基材2上に接着剤3を介在させて金属箔を貼り合わせる方法を使用することができる。接着剤3は、透明基材2と金属箔とのどちらか一方、又は両方に塗布され、塗布後に乾燥を経て接着される。塗布方法、乾燥方法は、特に限定されるものではなく、公知の方法を使用することができる。接着方法は、これについても特に限定されるものではないが、例えばプレス法、ロールラミネート法、オートクレーブ法を実用的に使用することができる。作業性、経済性等を考慮すると、接着方法にはロールラミネート法を使用することが最も好ましい。

また、金属層の積層には、接着剤層の上に、真空蒸着法、スパッタ リング法、イオンプレート法、化学蒸着法、無電解・電気めっき法な どの膜形成技術のうちの1又は2以上の方法を組み合わせて金属層を 積層する方法を使用することができる。これらの方法によれば、金属 層を容易に薄膜化することができる。また、これらの方法によれば、 接着剤3がなくても、透明基材2上に金属層を形成することができる。

本実施の形態において、導電体4と接地部5とは同一の金属箔により形成されている。

(2) 次に、積層された金属層にメッシュ状幾何学的模様を形成して 導電体4とし、その周辺に接地部5の導体領域501を残し、導体不 存在領域502に相当する部分の金属層を除去する。

このメッシュ状幾何学的模様はマイクロリソグラフ法を用いて作製されることが、加工精度の向上及び加工効率の向上の点から好ましい。なお、ここで、メッシュ状幾何学的模様とは、正三角形、二等辺三角形、直角三角形などの三角形、正方形、長方形、ひし形、平行四辺形、台形などの四角形、六角形(正六角形を含む。)、八角形(正八角形を含む。)、十二角形(正十二角形を含む。)、二十角形(正二十角形を含む。)などのn角形(正n角形を含む。)、円、だ円、星形などの単独の模様又は複数組み合わせた模様を基本単位として、繰り返し配置して描かれる模様という意味で使用されている。

マイクロリソグラフ法には、フォトリソグラフ法、 X線リソグラフ法、電子線リソグラフ法、イオンピームリソグラフ法等があり、これらの他にスクリーン印刷法等が含まれる。これらの中でも、フォトリソグラフ法が最も簡便性に優れ、かつ量産性に優れている。さらに、ケミカルエッチング法を使用したフォトリソグラフ法は、簡便性に優れ、経済性に優れ、かつ高い加工精度を得られる点から最も適している。

なお、フォトリソグラフ法において、ケミカルエッチング法の他に も、無電解めっき法若しくは電気めっき法のいずれかの方法、又は無 電解めっき法、電気めっき法及びケミカルエッチング法を組み合わせ た方法を用いて、導電体4にメッシュ状幾何学的模様を形成すること も可能である。

接着剤3として熱可塑性樹脂を用いた場合には、金属箔をマイクロリソグラフ法により加工し、メッシュ状幾何学模様の導電体4及び接地部の導体領域501を形成した後においても接着性を残すことがで

きる。

10

15

20

25

接着剤3として熱硬化型接着剤を使用した場合には、前記(1)において、金属箔を貼り合わせた後、又は貼り合わせつつ加熱することにより硬化させることができる。しかし、硬化させることなく、又硬化度を低く抑える(好ましくは硬化度を60%未満にする)ことにより、金属箔をマイクロリソグラフ法により加工し、メッシュ状幾何学模様の導電体4及び接地部5の導体領域501を形成した後においても、接着性を残すことができる。硬化度は、DSC(示差操作熱量計)を用い、同じ材料の硬化前の加熱吸収ピークの高さに対する、一部硬化後の加熱吸収ピークの高さの割合として求めることができる。

また、接着剤3として活性エネルギー線により硬化する接着剤を使用した場合には、金属箔を貼り合わせた後、透明基材2側から活性エネルギー線を照射することにより、硬化させることができる。しかし、硬化させることなく、又硬化度を低く抑えることにより、金属箔をマイクロリソグラフ法により加工し、メッシュ状幾何学模様の導電体4及び接地部の導体領域501を形成した後においても、接着性を残すことができる。

(3) メッシュ状幾何学的模様の導電体4が形成されると同時に、接地部5に導体領域501及び導体不存在領域510が形成される。なお、メッシュ状幾何学的模様の導電体4の形成工程と接地部5の導体領域501及び導体不存在領域510の形成工程とは別工程で行うこともできる。また、メッシュ状幾何学的模様の導電体4と接地部5の導体領域501及び導体不存在領域510とは別々の基材上に形成し、これらを結合することにより、本発明の実施の形態に係る電磁波シールドフィルム1を形成することができる。導電体4には、黒化処理を施すことが好ましい。黒化処理は、メッシュ状幾何学模様の形成前後で行えば良いが、通常は形成後に行うことが好ましい。

透明基材2に導電体4及び接地部5の導体領域501を形成する方法には、透明基材2上に導電体4及び導体領域501とは逆模様のマ

10

スクを形成し、このマスクを用い、真空蒸着法、スパッタリング法、 イオンプレート法、化学蒸着法、無電解・電気めっき法などの膜形成 技術のうちの1又は2以上の方法を組み合わせて透明基材2上に金属 層を成膜する方法を使用することができる。この場合、接着剤3を形 成しておかなくても、透明基材2上に金属層を接着させることができ る。

また、導電性金属粉末、導電性カーボン粉末等を分散させた樹脂、 導電性を有する樹脂若しくはその組成物等からなる導電性インキ、又 は導電性有機材料をスクリーン印刷法その他の方法で透明基材 2 に印 刷することにより、メッシュ状幾何学模様の導電体 4 及び接地部 5 の 導体領域 5 0 1 を形成してもよい。

【実施例】

次に、本発明の具体的な実施例(第1の実施例乃至第3の実施例) 15 と比較例(第1の比較例及び第2の比較例)とを説明し、併せて双方 の特性の比較検討結果を説明する。

第1の実施例:

透明基材 $2 \, \text{として厚さ } 1 \, 0 \, 0 \, \mu \, \text{m}$ のポリエチレンテレフタレート (PET) フィルム (ユニチカ株式会社製、商品名「エンブレットS」) 20 に、接着剤 $3 \, \text{として商品名「バイロンUR-1400」}$ (東洋紡績株式会社製、ポリエステル樹脂)を、室温において塗工機を用いて乾燥塗布厚 $3 \, 0 \, \mu \, \text{m}$ になるように塗布し、乾燥させた。上記透明基材 $2 \, \text{上に、}$ この接着剤 $3 \, \text{を介して導電体 } 4 \, \text{及び接地部 } 5 \, \text{の導体領域 } 5 \, 0 \, 1 \, \text{となる 厚さ } 1 \, 8 \, \mu \, \text{m} \, \text{の銅箔(株式会社ジャパンエナジー社製、商品名「BH Y-22B-T」)を、その粗化面が接着剤 <math>3 \, \text{側になるようにして、} 1 \, 5 \, 0 \, \text{℃、} 2 \, 0 \, \text{Kg } \, \text{f /cm}^2 \, \text{の条件においてロールラミネートし、導電体 } 4 \, \text{及び接地部 } 5 \, \text{がラミネートされたフィルムを製作した。}$

このフィルムをフォトリソグラフ工程により、導電体4においてライン幅25μm、ライン間隔250μmのメッシュ状幾何学的模様を

15

20

25

形成し、さらに周辺に存在する接地部5において、Fig. 17に示すメッシュ状幾何学的模様の導体領域501と、この導体領域501とは逆模様となる方形状幾何学的模様の導体不存在領域510とを形成した。このFig. 17に示す接地部5は上記Fig. 16に示す第9の構造の接地部5と同一である。導電体4のライン幅に相当する接地部5の導体領域501の長さL1は2mm、導電体4のライン間隔に相当する幅W1は10mmに設定した。接地部5の幅寸法tは12mmに設定されている。フォトリソグラフ工程においては、レジスト(DFR)貼り付け工程、露光工程、現像工程、ケミカルエッチング工程、レジスト剥離工程が少なくとも含まれる。

ケミカルエッチング後の接着剤3の表面は、銅箔の粗化面が転写されているので、不透明である。透明性を付与するために、接地部5の 導体領域501の銅箔表面と、接着剤付きPETフィルムの接着剤3 の表面とを合わせる構造にして、120 $\mathbb C$ 、5 Kgf/cm²の条件 において加熱プレスすることにより、第1の構造を有する電磁波シー ルドフィルム1を製作した。

第2の実施例:

上記第1の実施例に係る第1の構造を有する電磁波シールドフィルム1と同様の条件において、メッシュ状幾何学的模様を有する導電体4と、Fig. 18に示すように方形状幾何学的模様の導体領域501及びスリット状模様の導体不存在領域510を有する接地部5とを形成した。このFig. 18に示す接地部5は上記Fig. 2に示す第1の構造の接地部5と同一である。導電体4のライン幅に相当する接地部5の導体領域501の長さL2は100mm、導電体4のライン間隔に相当するスリット幅W2は5mmに設定した。

同様に、ケミカルエッチング後の接着剤3の表面は、銅箔の粗化面が転写されているので、不透明である。透明性を付与するために、接地部5の導体領域501の銅箔表面と、接着剤付きPETフィルムの接着剤3の表面とを合わせる構造にして、120 \mathbb{C} 、5 \mathbb{K} \mathbb{g} \mathbf{f} $\mathbf{/}$ \mathbf{c} \mathbf{m}^2

の条件において加熱プレスすることにより、第2の構造を有する電磁 波シールドフィルム1を製作した。

第3の実施例:

上記第1の実施例に係る第1の構造を有する電磁波シールドフィル 5 ム1と同様の条件において、メッシュ状幾何学的模様を有する導電体 4 と、Fig. 19に示すように櫛形模様の導体領域501及びスリット 状模様の導体不存在領域510を有する接地部5とを形成した。この Fig. 19に示す接地部5は上記 Fig. 10に示す第3の構造の接地部5と同一である。導電体4のライン幅に相当する接地部5の導体領域10 501の長さL3は100mm、導電体4のライン間隔に相当するスリット幅W3は5mm、導体不存在領域510の長さt1は2mmに設定した。

同様に、ケミカルエッチング後の接着剤3の表面は、銅箔の粗化面が転写されているので、不透明である。透明性を付与するために、接地部5の導体領域501の銅箔表面と、接着剤付きPETフィルムの接着剤3の表面とを合わせる構造にして、120 $\mathbb C$ 、5 $\mathbb K$ $\mathbb g$ $\mathbb f$ $\mathbb f$ $\mathbb c$ $\mathbb m^2$ の条件において加熱プレスすることにより、第3の構造を有する電磁波シールドフィルム1を製作した。

第1の比較例:

15

- 20 上記第1の実施例に係る第1の構造を有する電磁波シールドフィルム1と同様の条件において、メッシュ状幾何学的模様を有する導電体4と、Fig. 20に示すようにすべての領域が導体領域となる(導体不存在領域を持たない)接地部50とを形成した。接地部50の幅寸法t は同様に12mmに設定されている。
- 25 ケミカルエッチング後の接着剤3の表面は、銅箔の粗化面が転写されているので、不透明である。透明性を付与するために、接地部50の銅箔表面と、接着剤付きPETフィルムの接着剤3の表面とを合わせる構造にして、120 \mathbb{C} 、5 K g f $\mathrm{/c}$ m^2 の条件において加熱プレスすることにより、第4の構造を有する電磁波シールドフィルムを

製作した。

第2の比較例:

上記第1の実施例に係る第1の構造の電磁波シールドフィルム1と同様の条件において、メッシュ状幾何学的模様を有する導電体4と、Fig. 21に示すように導電体4と同一のメッシュ状幾何学的模様、すなわちライン幅25 μ m、ライン間隔250 μ mのメッシュ状幾何学的模様を有する接地部51とを形成した。接地部51の幅寸法tは同

15 [実施例及び比較例の特性評価]

20

25

様に12mmに設定されている。

上記第1の実施例乃至第3の実施例により得られた第1の構造乃至第3の構造の電磁波シールドフィルム1と、第1の比較例及び第2の比較例により得られた第4の構造及び第5の構造の電磁波シールドフィルムとにおいて、電磁波(EMI)シールド性、可視光透過率及びうねり特性を測定し、その結果をFig. 22に示す。Fig. 22には、併せて接地部5の導体領域501の面積割合、接地部50の面積割合をそれぞれ示す。

電磁波シールド性の測定値は、同軸導波管変換器(日本高周波株式会社製、商品名「TWC-S-024」)のフランジ間にサンプルを強力に挟み、スペクトロアナライザー(YHP製、商品名「8510Bベクトルネットワークアナライザー」)を用い、周波数1GHzにおいて測定した値である。

可視光透過率の測定値は、ダブルビーム分光光度計(株式会社日立製作所製、商品名「200-10型」)を用いて、380nm~780n

mの透過率を測定し、この測定値の平均値である。

10

15

うねりの測定値は、うねっている波形の頂点の間隔(ピッチ)並びに 波形の高さを任意に9点測定し、この測定値の平均値である。

Fig. 22に示すように、第1の構造乃至第3の構造(第1の実施例乃至第3の実施例)の電磁波シールドフィルム1においては、51d B~56dBの範囲内の比較的高い電磁波シールド特性が得られるとともに、71%~72%の範囲内の充分な可視光透過率が得られる。さらに、この電磁波シールドフィルム1においては、7cm以上のうねりの周期を有し、かつうねりの高さを10mm以下に抑制することができる。つまり、接地部5におけるうねりを実用上問題ないレベルまで減少することができる。

これに対して、第1の比較例に係る第4の構造の電磁波シールドフィルムにおいては、第1の構造乃至第3の構造の電磁波シールドフィルム1と同様に、高い電磁波シールド特性並びに高い可視光透過率が得られるものの、4.7 c mの短いうねりの周期を有し、かつうねりの高さが18 mmと高くなっている。すなわち、接地部50にはかなりのうねりが発生している事実が、測定結果に基づき確認することができる。

第1の比較例における電磁波シールドフィルムも本試験方法におけるように接地部を試験装置のフランジ間に強力に挟むと所期の電磁波シールド性効果を得ることができる。しかしながら、このような接地部の非常に強力な接合は、実用的かつ商業的に量産可能な接合方法とは言えない。第1の比較例におけるようなうねりのあるものは、例えば、電磁波シールドフィルムをガラス板に接着剤で普通に貼り合わせて得られる前面板とプラズマディスプレイモジュールを内蔵するディスプレイ筐体とをそれぞれの接地部で、通常の方法で接合した場合、うねりのない電磁波シールドフィルム(例えば、実施例1で作製したもの)を同様に使用した場合に比較して、電磁波シールド性は10%程度劣る。

さらに、第2の比較例に係る第5の構造の電磁波シールドフィルムにおいては、第1の構造乃至第3の構造の電磁波シールドフィルム1と同様に、高い可視光透過率が得られ、7cm以上のうねりの周期を有し、かつうねりの高さを10mm以下に抑制することができるものの、充分な電磁波シールド特性を得ることができない。

以上説明したように、本発明の実施の形態に係る電磁波シールドフィルム1においては、接地部5に導体不存在領域510を備えたので、 導体領域501の伸縮を自由に行うことができ、接地部5のうねりを 防止することができる。

10 さらに、本発明の実施の形態に係る電磁波シールドフィルム1においては、接地部5の全体の占有面積に対する導体領域501の割合を適正に調節したので、電磁波シールド特性を最大限に向上しつつ、接地部5のうねりを最小限に止めることができる。

そしてさらに、本発明の実施の形態に係る電磁波シールドフィルム 15 1においては、接地部5の導体領域501の平面模様、導体不存在領域510の平面模様、又は双方の平面模様を変更するだけで、簡易に電磁波シールド特性を向上することができつつ、うねりを防止することができる。

(その他の実施の形態)

20 本発明は上記複数の実施の形態によって記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかとなろう。

例えば、上記実施の形態に係る電磁波シールドフィルム1は、接地 25 部5の導体領域501、導体不存在領域510のそれぞれを同一配列 形式で交互に配設することについて説明したが、本発明は、これに限 定されるものではない。例えば、本発明は、同一長さの方形状幾何学 的模様を有する複数の導体領域501毎にそれとは長さが異なる別の 導体領域を配設することができる。また、本発明は、同一スリット幅 のスリット状模様を有する複数の導体不存在領域 5 1 0 毎にそれとは スリット幅が異なる別の導体不存在領域を配設することができる。

さらに、本発明は、電磁波シールドフィルム1の接地部5の導体領域501、導体不存在領域510のそれぞれを、三角形状模様、四角形以上の多角形模様、楕円形模様、円形模様、星形模様等の模様により形成することができる。

このように、本発明はここでは記載していない様々な実施の形態等を含むことは勿論である。したがって、本発明の技術的範囲は上記の説明から妥当な特許請求の範囲に係る発明特定事項によってのみ定められるものである。

発明の効果

10

15

本発明によれば、接地部のうねりを防止することができ、接地部の 平坦性を向上することができる電磁波シールドフィルムを提供するこ とができる。

さらに、本発明によれば、電磁波シールド特性を向上することができるとともに、ディスプレイ本体に損傷を与えることを防止することができる電磁波シールドフィルムを提供することができる。

さらに、本発明によれば、上記効果を得ることができる電磁波シー 20 ルドユニットを提供することができる。

さらに、本発明によれば、上記効果を得ることができるディスプレイを提供することができる。

20

32

請求の範囲

1. 透明基材と、

前記透明基材上のメッシュ状幾何学的模様を有する導電体と、

5 前記導電体の周辺領域に配設され、導体領域と導体不存在領域とを 有する接地部と

を備えたことを特徴とする電磁波シールドフィルム。

- 2. 前記接地部の全体の面積に対して、前記導体領域の占有率が、3 0%~99%の範囲内に設定されていることを特徴とする請求項1に 記載の電磁波シールドフィルム。
- 3. 前記接地部の全体の面積に対して、前記導体領域の占有率が、60%~99%の範囲内に設定されていることを特徴とする請求項1に記載の電磁波シールドフィルム。
- 4. 前記接地部の全体の面積に対して、前記導体領域の占有率が、6 15 5%~97%の範囲内に設定されていることを特徴とする請求項1に 記載の電磁波シールドフィルム。
 - 5. 前記接地部のうち導体領域が、下記(1)乃至(10)のいずれか1つの模様、又は複数の模様の組み合わせにより形成されていることを特徴とする請求項1乃至請求項4のいずれかに記載の電磁波シールドフィルム。
 - (1) 櫛形模様
 - (2) 所定間隔で規則的に配列された方形状幾何学的模様
 - (3)ジグザグ模様
 - (4) 所定間隔で規則的に配列された平行四辺形模様
- 25 (5) 梯子模様
 - (6)メッシュ状幾何学的模様
 - (7)三角形模様
 - (8) 五角形以上の多角形模様
 - (9)円模様又は楕円模様

(10) 星形模様

- 6. 前記導電体及び前記接地部の導電領域が前記透明基材上に接着剤を介在させて配設されていることを特徴とする請求項1乃至請求項4 のいずれかに記載の電磁波シールドフィルム。
- 5 7. 前記導電体の開口率が、50%~98%の範囲内に設定されていることを特徴とする請求項1に記載の電磁波シールドフィルム。
 - 8. 前記透明基材は透明プラスチックであり、

前記導電体及び前記接地部の導電領域は金属又は合金であり、

前記接着剤はポリマー系接着剤であることを特徴とする請求項6に 10 記載の電磁波シールドフィルム。

- 9. 前記接地部の導電領域の膜厚は 3 μ m以上であることを特徴とする請求項 8 に記載の電磁波シールドフィルム。
- 10. 前記接地部の導電領域の膜厚は 40 μm以下であることを特徴とする請求項 8 又は請求項 9 に記載の電磁波シールドフィルム。
- 15 11.透明基材と、前記透明基材上のメッシュ状幾何学的模様を有する導電体と、前記導電体の周辺領域に配設され、導体領域と導体不存在領域とを有する接地部とを備えた電磁波シールドフィルムと、

前記電磁波シールドフィルムの少なくとも導電体上の保護フィルムと

- 20 を備えたことを特徴とする電磁波シールドユニット。
 - 12. 反射防止フィルムと、

前記反射防止フィルム上の近赤外線吸収フィルムと、

前記近赤外線吸収フィルム上の第1の透明基材と、

前記第1の透明基材上の第2の透明基材と、前記第2の透明基材上 25 のメッシュ状幾何学的模様を有する導電体と、前記導電体の周辺領域 に配設され、導体領域と導体不存在領域とを有する接地部とを備えた 電磁波シールドフィルムと、

前記電磁波シールドフィルムの少なくとも導電体上の保護フィルムと

を備えたことを特徴とする電磁波シールドユニット。

- 13. 前記電磁波シールドフィルムの接地部の全体の面積に対して、前記導体領域の占有率が、30%~99%の範囲内に設定されていることを特徴とする請求項11又は請求項12に記載の電磁波シールドユニット。
- 14. 前記電磁波シールドフィルムの接地部のうち導体領域が、下記 (1)乃至(10)のいずれか1つの模様、又は複数の模様の組み合 わせにより形成されていることを特徴とする請求項11又は請求項1 2のいずれかに記載の電磁波シールドユニット。
- 10 (1) 櫛形模様
 - (2) 所定間隔で規則的に配列された方形状幾何学的模様
 - (3)ジグザグ模様
 - (4) 所定間隔で規則的に配列された平行四辺形模様
 - (5) 梯子模様
- 15 (6)メッシュ状幾何学的模様
 - (7)三角形模様
 - (8) 五角形以上の多角形模様
 - (9) 円模様又は楕円模様
 - (10)星形模様
- 20 15. ディスプレイモジュールと、

前記ディプレイモジュール上の、少なくとも下記(1)及び(2) を有する電磁波シールドユニットと

を備えたことを特徴とするディスプレイ。

- (1)前記ディスプレイモジュール上の透明基材と、前記透明基材上 25 のメッシュ状幾何学的模様を有する導電体と、前記導電体の周辺領域 に配設され、導体領域と導体不存在領域とを有する接地部とを備えた 電磁波シールドフィルム
 - (2) 前記電磁波シールドフィルムの少なくとも導電体上の保護フィルム

16. ディスプレイモジュールと、

前記ディプレイモジュール上の、少なくとも下記(1)乃至(5) を有する電磁波シールドユニットと

を備えたことを特徴とするディスプレイ。

- 5 (1)前記ディプレイモジュール上の反射防止フィルム
 - (2) 前記反射防止フィルム上の近赤外線吸収フィルム
 - (3) 前記近赤外線吸収フィルム上の第1の透明基材
 - (4) 前記第1の透明基材上の第2の透明基材と、前記第2の透明基材上のメッシュ状幾何学的模様を有する導電体と、前記導電体の周辺
- 10 領域に配設され、導体領域と導体不存在領域とを有する接地部とを備えた電磁波シールドフィルム
 - (5) 前記電磁波シールドフィルムの少なくとも導電体上の保護フィルム
- 17. 前記電磁波シールドユニットは、取り付け治具を介してディス 15 プレイモジュールに装着されていることを特徴とする請求項15又は 請求項16に記載のディスプレイ。
 - 18. 前記ディスプレイモジュールは、プラズマディスプレイ、ブラウン管ディスプレイ、液晶ディスプレイ又はエレクトロルミネッセンスディスプレイのモジュールであることを特徴とする請求項15又は
- 20 請求項16に記載のディスプレイ。

WO 02/071824

1/11

Fig. 1

2/11

Fig. 3A

Fig. 3B

PCT/JP02/01655

3/11

WO 02/071824 , PCT/JP02/01655

4/11

Fig. 7

WO 02/071824 PCT/JP02/01655

PCT/JP02/01655

7/11

PCT/JP02/01655

8/11

WO 02/071824

9/11

Fig. 18

WO 02/071824 PCT/JP02/01655

10/11

Fig. 20

Fig. 21

Fig. 22

9	電磁波シールド性	可視光透過率	うねり	Q	導電領域の
サンフル	[dB]	[%]	頂点の間隔	高れ	面積割合[%]
第1の実施例	51	72	10.2cm	2 mm	69.4
第2の実施例	54	72	9.4cm	3 mm	95.2
第3の実施例	99	1.2	8.8cm	7 mm	96.0
第1の比較例	99	1.2	4.7cm	18 mm	100
第2の比較例	48	72	11.6cm	2 mm	19.0

11/11

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP02/01655

A. CLASSIFICATION OF SUBJECT MATTER					
}	Cl ⁷ H05K9/00				
According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED					
	ocumentation searched (classification system followed)	by classification symbols)			
Int.Cl ⁷ H05K9/00					
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched					
Jitsu Kokaj	o 1994–2002 o 1996–2002				
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)					
C. DOCUMENTS CONSIDERED TO BE RELEVANT					
Category*	Citation of document, with indication, where ap	propriate, of the relevant passages	Relevant to claim No.		
Y	JP, 2000-183585, A (NEC Corp	.),	1-18		
	30 June, 2000 (30.06.00), Par. Nos. [0017] to [0020]				
} }	(Family: none)				
Y	JP, 2000-36687, A (Bridgestone Corp.),		1-18		
	02 February, 2000 (02.02.00), Par. Nos. [0099], [0133] to [0				
	Fig. 3				
	(Family: none)				
Y	JP, 3-145008, A (Sekisui Che 20 June, 1991 (20.06.91),	mical Co., Ltd.),	1-18		
	Page 3, upper left column, li	ne 16 to upper right			
	column, line 11 (Family: none)				
	, , , , , , , , , , , , , , , , , , , ,				
Further documents are listed in the continuation of Box C. See patent family annex.					
"A" docume	categories of cited documents: ent defining the general state of the art which is not	"T" later document published after the inte priority date and not in conflict with t	he application but cited to		
=		"X" understand the principle or theory und document of particular relevance; the considered novel or cannot be consider	claimed invention cannot be		
	ent which may throw doubts on priority claim(s) or which is	step when the document is taken alone			
cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other		"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such			
means "P" document published prior to the international filing date but later		combination being obvious to a person document member of the same patent	n skilled in the art		
than the priority date claimed					
Date of the 2	actual completion of the international search arch, 2002 (06.03.02)	19 March, 2002 (19.			
Name and mailing address of the ISA/		Authorized officer			
Japanese Patent Office					
Facsimile No.		Telephone No.			

Form PCT/ISA/210 (second sheet) (July 1998)

A. 発明の属する分野の分類(国際特許分類(IPC))					
Int. Cl	1' H05K9/00		,		
B. 調査を行っ 調査を行った最小	った分野 小限資料(国際特許分類(IPC))				
Int. (C1' H05K9/00				
最小限資料以外の資料で調査を行った分野に含まれるもの 日本国実用新案公報 1926-1996 日本国公開実用新案公報 1971-2002 日本国登録実用新案公報 1994-2002 日本国実用新案登録公報 1996-2002					
国際調査で使用した電子データベース(データベースの名称、調査に使用した用語)					
	· .				
C. 関連する	と認められる文献				
引用文献の	•		関連する		
カテゴリー*	引用文献名 及び一部の箇所が関連すると	きは、その関連する箇所の表示	請求の範囲の番号		
Y	JP 2000-183585 A(日本電気株式会7] -【0020】(ファミリーなし)	社), 2000.06.30, 段落【001	1–18		
	JP 2000-36687 A(株式会社ブリヂン 099】【0133】-【0138】,【0145】- なし)		1-18		
Y	JP 3-145008 A(積水化学工業株式会 左上欄第16-右上欄11行(ファミリーな		1–18		
□ C欄の続き	にも文献が列挙されている。	□ パテントファミリーに関する別	紙を参照。		
* 引用文献のカテゴリー 「A」特に関連のある文献ではなく、一般的技術水準を示すもの 「E」国際出願日前の出願または特許であるが、国際出願日 以後に公表された文献であって、出願と矛盾するものではなく、発明の原理又は理論の選修に公表されたもの 「L」優先権主張に疑義を提起する文献又は他の文献の発行日若しくは他の特別な理由を確立するために引用する文献(理由を付す) 「O」口頭による開示、使用、展示等に言及する文献「P」国際出願日前で、かつ優先権の主張の基礎となる出願「を目の代表された文献を知るされた文献であって、出願と矛盾するものではなく、発明の原理又は理論の理解のために引用するもの「X」特に関連のある文献であって、当該文献と他の1以上の文献との、当業者にとって自明である組合せによって進歩性がないと考えられるもの「P」国際出願日前で、かつ優先権の主張の基礎となる出願「を」同一パテントファミリー文献					
国際調査を完了	した日 06.03.02	国際調査報告の発送日 19.	03.02		
	特許庁(ISA/JP)	特許庁審査官(権限のある職員) 内田博之	3S 8917		
	便番号100-8915 千代田区霞が関三丁目4番3号	電話番号 03-3581-1101	· 内線 3389		