Normal Form Grammar

Normal Forms facilitate the analysis of grammars and languages

Normal Forms impose restrictions on the *CFG*

Normal Forms generates the entire *CFG*

Algorithms transform *CFG* into an equivalent grammar in *Normal Form* via *a sequence* of rule additions, deletions, or modifications

Eliminate Recursive Start Symbol From Grammar

Recursive start symbol *S* defined as $S \stackrel{+}{\Rightarrow} uSv$ enables sentential symbols in intermediate results of a derivation

Lemma 4.1.1

For $G = (V, \Sigma, P, S)$ a CFG, a G' that satisfies L(G) = L(G') and the start symbol S' in G' is not recursive

$$G' = (V, \Sigma, P, S')$$
 where $V' = V \cup \{S'\}$ and $P' = P \cup \{S' \rightarrow S\}$

$$S \stackrel{*}{\Rightarrow} u$$
 in G and $S' \stackrel{*}{\Rightarrow} S \Rightarrow u$ in G'

Eliminate Recursive Start Symbol From Grammar

Example 4.1.1

$$G = (V, \Sigma, P, S), V = \{S, A, B, C\}, \Sigma = \{a, b, c\}$$
P: $S \to aS \mid AB \mid AC$

$$A \to aA \mid \lambda$$

$$B \to bB \mid bS$$

$$C \to cC \mid \lambda$$

$$G' = (V', \Sigma, P', S'), V' = \{S', S, A, B, C\}, \Sigma = \{a, b, c\}$$
P': $S' \to S$

$$S \to aS \mid AB \mid AC$$

$$A \to aA \mid \lambda$$

$$B \to bB \mid bS$$

$$C \to cC \mid \lambda$$

Adding Rules to Grammars

```
Lemma 4.1.2
                                                                        augment rules
For CFG G = (V, \Sigma, P, S)
if A \stackrel{\hat{}}{\Rightarrow} w is in G
     then G' = (V, \Sigma, P', S) where P' = P \cup \{A \Rightarrow w\} and L(G) \subseteq L(G')
Lemma 4.1.3
For CFG G = (V, \Sigma, P, S)
if A \stackrel{x}{\Rightarrow} uBv and B \rightarrow w_1 \mid w_2 \mid \dots \mid w_n are rules in P
                                                                                           replace rule
     then G' = (V, \Sigma, P', S) where
             P' = \{P - \{A \stackrel{*}{\Rightarrow} uBv\}\} \cup \{A \rightarrow u w_1 v \mid u w_2 v \mid \dots \mid u w_n v\}
Replace \overrightarrow{A} \Rightarrow uBv with A \rightarrow u w_1 v | u w_2 v | \dots | u w_n v
```

Addition of Rules to Grammars

Lemma 4.1.3 continued

From Lemma 4.12,

A terminal string derivable in G using $A \stackrel{*}{\Rightarrow} uBv$ is also derivable in G' $A \rightarrow uBv \qquad B \rightarrow w_1$ In G the derivation is $S \stackrel{*}{\Rightarrow} pAq \Rightarrow puBvq \stackrel{*}{\Rightarrow} pxBvq \Rightarrow pxw_ivq \stackrel{*}{\Rightarrow} w$

In G' the same string derivation is $S \stackrel{*}{\Rightarrow} pAq \stackrel{*}{\Rightarrow} puw_ivq \stackrel{*}{\Rightarrow} pxw_ivq \stackrel{*}{\Rightarrow} w$

 $u \stackrel{*}{\Rightarrow} x$ where x is a terminal string

Leftmost derivation

$$G_1 = (V, \Sigma, P, S), V = \{S, A, B\}, \Sigma = \{a, b\}$$

 $P: S \rightarrow SaB \mid aB$
 $B \rightarrow bB \mid \lambda$
 $G_1 \text{ (with } \lambda \text{ rules)}$

$$G_2 = (V, \sum P, S), V = \{S, A, B\}, \sum = \{a, b\}$$

P: $S \rightarrow SaB \mid SaB \mid aB \mid aB$
 $B \rightarrow bB \mid bB \mid \lambda$

P:
$$S \rightarrow SaB \mid Sa\lambda \mid aB \mid a\lambda$$

 $B \rightarrow bB \mid b\lambda \mid \lambda$

P:
$$S \rightarrow SaB \mid Sa \mid aB \mid a$$

 $B \rightarrow bB \mid b$

S ⇒ SaB	S ⇒ Sa
<i>⇒ SaBaB</i>	⇒ Saa
<i>⇒ SaBaB</i>	<i>⇒ aaa</i>
<i>⇒ aBaBaB</i>	
⇒ аλаВаВ	1 /
<i>⇒ aaBaB</i>] //
⇒ ааλаВ] //
⇒ аааλ	
<i>⇒ aaa</i>	
G_2 (wi	thout λ rules)

Replicate B expressions and replace B with λ then eliminate all λ expressions

```
for each rule A \to w \in P

{if w can be expressed as w_1A_1w_2A_2,..., w_kA_kw_{k+1}

and A_1, A_2, \ldots, A_k \in Null then

add rule A \to w_1w_2,..., w_kw_{k+1} to P_L

}

delete all \lambda rules

Null is the set of nullable variables in G
```

$$G_1 = (V, \Sigma, P, S), V = \{S, A, B\}, \Sigma = \{a, b\}$$

 $P: S \rightarrow aAb$
 $A \rightarrow aA \mid B$
 $B \rightarrow bB \mid \lambda$
 $L(G_1) = \{a^+b^+\}$
 $G_1(with \lambda rules)$
 $G_1(with \lambda rules)$
 $G_2(with \lambda rules)$

Nullable variable derives the null string *A* and *B* are *nullable* variables

$$G_2 = (V, \Sigma, P', S), V = \{S, A, B\}, \Sigma = \{a, b\}$$

 $P': S \rightarrow aAb \mid aAb$ $S \rightarrow aAb \mid ab$
 $A \rightarrow aA \mid aA \mid B \mid B$ $A \rightarrow aA \mid a \mid B$
 $B \rightarrow bB \mid bB \mid \lambda$ $B \rightarrow bB \mid b$

S ⇒ aAb	S ⇒ aAb
<i>⇒ aaAb</i>	<i>⇒ aaAb</i>
<i>⇒ aaBb</i>	<i>⇒ aaBb</i>
<i>⇒ aabBb</i>	<i>⇒ aabb</i>
<i>⇒ aabλb</i>	\
<i>⇒ aabb</i>	
$G_2(\mathbf{w})$	ithout λ rules)

- i. Determine set of *nullable* variables
- ii. Add rules without (*omitting*) nullable variables
- iii. Delete λ rules

Algorithm 4.2.1:

Construct set of *nullable* variables: *NULL* for a *CFG* $G = (V, \Sigma, P, S)$

```
NULL := \{A \mid A \to \lambda \in P\}
While (NULL! = PREV)
\{PREV := NULL
for each A \in V
\text{if rule } A \to w \land w \in PREV^* \ then \ NULL := NULL \ U\{A\}
}
```

Without *nullable* variables Grammar is **noncontracting** (length of Sentential string does not shrink)

Example 4.2.1

$$G = (V, \Sigma, P, S), V = \{S, A, B, C\}, \Sigma = \{a, b, c\}$$

$$P: S \to ACA$$

$$A \rightarrow aAa \mid B \mid C$$

$$B \rightarrow bB \mid b$$

$$C \rightarrow c C \mid \lambda$$

A and C are nullable, therefore λ is in L(G)

Iter	NULL	PREV	Rule
0	{ <i>C</i> }		
1	{ <i>A, C</i> }	{ <i>C</i> }	$A \rightarrow C$
2	{ <i>S</i> , <i>A</i> , <i>C</i> }	{A, C}	$S \rightarrow ACA$
3	{S, A, C}	{S, A, C}	

Example 4.2.2

$$G = (V, \Sigma, P, S), V = \{S, A, B, C\}, \Sigma = \{a, b, c\}, NULL = \{C, S, A\}$$

P:
$$S \rightarrow ACA \mid ACA$$

$$A \rightarrow aAa \mid aAa \mid B \mid C \mid C$$

$$B \rightarrow bB \mid b$$

$$C \rightarrow c C | c C | \lambda$$

$$G_L = (V, \Sigma, P, S), V = \{S, A, B, C\}, \Sigma = \{a, b, c\}$$

$$P_L$$
: $S \rightarrow ACA \mid CA \mid AA \mid AC \mid A \mid C \mid \lambda$

$$A \rightarrow aAa \mid aa \mid B \mid C$$

$$B \rightarrow bB \mid b$$

$$C \rightarrow c C | c$$

 λ is in L(G)

$S \Rightarrow ACA$	$S \Rightarrow A$
<i>⇒ aAaCA</i>	<i>⇒ aAa</i>
<i>⇒ aBaCA</i>	<i>⇒ aBa</i>
<i>⇒ abaCA</i>	⇒aba
<i>⇒ abaλA</i>	
<i>⇒ abaA</i>	
<i>⇒ abaC</i>	
<i>⇒ abaλ</i>	
<i>⇒ aba</i>	

Remove \(\lambda \) From Grammar

Example 4.2.3

G =
$$(V, \Sigma, P, S)$$
, $V = \{S, A, B, C\}$, $\Sigma = \{a, b, c\}$, NULL = $\{A, B, C, S\}$
P: $S \to ABC$
 $A \to aA \mid \lambda$
 $B \to bB \mid \lambda$
 $C \to c \mid C \mid \lambda$

NULL =
$$\{A, B, C, S\}$$
, $G_L = (V, \Sigma, P, S)$, $V = \{S, A, B, C\}$, $\Sigma = \{a, b, c\}$

P_L:
$$S \rightarrow ABC \mid AB \mid AC \mid BC \mid A \mid B \mid C \mid \lambda$$

 $A \rightarrow aA \mid a$
 $B \rightarrow bB \mid b$
 $C \rightarrow c \mid C \mid c$

L(G) = a*b*c*

Chains are the result of *renaming variables*; chained Rules

Chains increase the number of steps to create a terminal string

$$A \rightarrow aA \mid a \mid B$$

$$B \rightarrow bB \mid b \mid C$$
replace variable B
with RHS of B rule

Terminal strings derivable from B are derivable from A

$$A \rightarrow aA \mid a \mid bB \mid b \mid C$$

 $B \rightarrow bB \mid b \mid C$

Algorithm 4.3.1 Identifying Chains

```
input: G = (V, \Sigma, P, S) essentially noncontracting CFG (\lambda 's removed)
CHAIN(A) := \{A\} /* examine each variable */
PREV := \Phi
While (CHAIN(A) != PREV)
 \{NEW:=CHAIN(A)-PREV\}
  PREV := CHAIN (A)
  for each B \in NEW
   {for each B \rightarrow C /* C \notin CHAIN(A) */
      CHAIN(A) := CHAIN(A) \cup \{C\}\}
```

Example 4.3.1

$$G_L = (V, \Sigma, P, S), V = \{S, A, B, C\}, \Sigma = \{a, b, c\}$$

$$P_L$$
: $S \rightarrow ACA \mid CA \mid AA \mid AC \mid A \mid C \mid \lambda$

replace variables

B and C with RHS of

B and C rule

replace variables *A, B* and *C* with RHS of A, *B* and *C* rule

Iter	PREV	NEW	CHAIN (S)	Rule
0	Ф	{ <i>S</i> }	{ <i>S</i> }	$S \to A$ $S \to C$
1	{S, A, C}	{ <i>A, C</i> }	{ <i>S</i> , <i>A</i> , <i>C</i> }	$A \rightarrow B$
2	{S, A, C, B}	{ <i>B</i> }	{ <i>S</i> , <i>A</i> , <i>C</i> , <i>B</i> }	
3	{S, A, C, B}		{ <i>S</i> , <i>A</i> , <i>C</i> , <i>B</i> }	

Iter	PREV	NEW	CHAIN (A)	Rule
0	Ф	{ <i>A</i> }	{ <i>A</i> }	$\begin{array}{c} A \rightarrow B \\ A \rightarrow C \end{array}$
				$A \rightarrow C$
1	{ <i>A, B, C</i> }	{ <i>B, C</i> }	{ <i>A</i> , <i>B</i> , <i>C</i> }	
2	{ <i>A, B, C</i> }		{ <i>A</i> , <i>B</i> , <i>C</i> }	

Example 4.3.1

$$G_C = (V, \Sigma, P, S), V = \{S, A, B, C\}, \Sigma = \{a, b, c\}$$

 P_C : $S \rightarrow ACA \mid CA \mid AA \mid AC \mid aAa \mid aa \mid bB \mid b \mid c \mid C \mid c \mid \lambda$

 $A \rightarrow aAa \mid aa \mid bB \mid b \mid cC \mid c$

 $B \rightarrow bB \mid b$

 $C \rightarrow c C \mid c$

Variable *B not in S* rule but in CHAIN(S)

Iter	PREV	NEW	CHAIN (S)	Rule
0	Ф	{ <i>S</i> }	{ <i>S</i> }	$\begin{array}{c} S \to A \\ S \to C \end{array}$
1	{S, A, C}	{ <i>A, C</i> }	{ <i>S</i> , <i>A</i> , <i>C</i> }	$A \rightarrow B$
2	{S, A, C, B}	{ <i>B</i> }	{ <i>S</i> , <i>A</i> , <i>C</i> , <i>B</i> }	
3	{S, A, C, B}		{ <i>S</i> , <i>A</i> , <i>C</i> , <i>B</i> }	

Iter	PREV	NEW	CHAIN (A)	Rule
0	Ф	{ <i>A</i> }	{ <i>A</i> }	$\begin{array}{c} A \rightarrow B \\ A \rightarrow C \end{array}$
1	{A, B, C}	{ <i>B, C</i> }	{ <i>A</i> , <i>B</i> , <i>C</i> }	
2	{ <i>A, B, C</i> }		{ <i>A</i> , <i>B</i> , <i>C</i> }	

G_C rules constructed from CHAIN (A) and G rules:

if $B \in CHAIN (A) \land B \rightarrow w \in P (\textit{original rules}) \land w \ni V$ then $Rule A \rightarrow w$ is in $P_C (\textit{reduced rules})$

replace B with w in rule A

 $G_{\mathbb{C}}$ rules are in the form $S \to \lambda$, $A \to a$, or $A \to w \in (V \cup \Sigma)^* \mid length(w) \ge 2$

$$G = (V, \Sigma, P, S), V = \{S, A, B, C, D, E, F\}, \Sigma = \{a, b, c\}$$

P: $S \rightarrow AC \mid BS \mid B$

$$A \rightarrow aA \mid aF$$

$$B \rightarrow CF \mid b$$

$$C \rightarrow c C \mid D$$

$$D \rightarrow aD \mid BD \mid C$$

$$E \rightarrow aA \mid BSA$$

$$F \rightarrow bB \mid b$$

Variables not reachable from ${\it S}$ or don't derive a terminal string Elements in ${\it \Sigma}$ not in a terminal string

Problems:

C, D cannot derive a terminal symbol*
E is not reachable from S*

Algorithm 4.4.2: Variables that derive a terminal string

```
input: G = (V, \Sigma, P, S) CFG
PREV := \Phi
TERM := \{A \mid A \rightarrow w, w \in \Sigma^*\}
While (TERM! = PREV)
 \{PREV := TERM\}
  for each A \in V - PREV
    \{if A \rightarrow w \in (TERM \cup \Sigma)^* then \}
                     /* w is some permutation of TERM and \sum */
       TERM := TERM \cup \{A\}\}
    /* Useless Variables = V - TERM */
```

Theorem 4.4.3

For $G = (V, \Sigma, P, S)$ a *CFG*, there is a an algorithm to construct

$$G_T = (V_T \sum_T P_T S)$$

$$L(G_T) = L(G)$$

$$V_T = TERM \subseteq V$$

$$P_T = \{ A \rightarrow w, A \in TERM, w \in (TERM \cup \Sigma)^* \}$$

$$\sum_{T} = \{ a \in \Sigma \mid a \text{ occurs in rules } P_T \}$$

Example 4.4.1

$$G = (V, \Sigma, P, S), V = \{S, A, B, C, D, E, F\}, \Sigma = \{a, b, c\}$$

P:
$$S \to AC \mid BS \mid B$$

 $A \to aA \mid aF$
 $B \to CF \mid b$
 $C \to c \mid C \mid D$
 $D \to aD \mid BD \mid C$
 $E \to aA \mid BSA$
 $F \to bB \mid b$

Iter	PREV	TERM	Rule
0	Ф	$\{B,F\}$	$B \to b$ $F \to b$
1	{ <i>B, F</i> }	{ <i>B</i> , <i>F</i> , <i>S</i> , <i>A</i> }	$S \to B$ $A \to aF$
2	{B, F, S, A}	{ <i>B</i> , <i>F</i> , <i>S</i> , <i>A</i> , <i>E</i> }	$E \rightarrow aA$
3	{B, F, S, A, E}	{ <i>B</i> , <i>F</i> , <i>S</i> , <i>A</i> , <i>E</i> }	

$$TERM = \{B, F, S, A, E\}$$

$$Useless Variables = V - TERM = \{S, A, B, C, D, E, F\} - TERM = \{C, D\}$$

 $UselessVariables = \{C, D\}$

2

3

{*B*, *F*, *S*, *A*}

{*B*, *F*, *S*, *A*, *E*}

{*B, F, S, A, E*}

{*B*, *F*, *S*, *A*, *E*}

 $E \rightarrow aA$

Algorithm 4.4.4: Variables reachable from S input: $G = (V, \Sigma, P, S)$ CFG $REACH := \{S\}$ $PREV := \Phi$ While (REACH! = PREV)Permutation of ${NEW := REACH - PREV}$ unreachable Variables and Σ PREV := REACHfor each $A \in NEW$ $\{\text{for each } A \rightarrow w \in ((V\text{-}REACH) \cup \Sigma)^*\}$ /* add **all** variables in w to REACH */} Non-Reachable Variables = V - REACH

Theorem 4.4.6

For $G = (V, \Sigma, P, S)$ a *CFG*, there is a an algorithm to construct

$$G_U = (V_U, \sum_U P_U, S) \mid$$

 G_U has no useless symbols

$$L(G_U) = L(G)$$

$$V_{IJ} = REACH \subseteq V$$

$$P_U = \{ A \rightarrow w \in P, A \in REACH, w \in (REACH \cup \Sigma)^* \}$$

$$\sum_{U} = \{ a \in \Sigma \mid a \text{ occurs in } RHS \text{ of a rule in } P_{U} \}$$

Example 4.4.2

$$G_{U} = (V_{U}, \sum_{U}, P_{U}, S),$$

$$V_{U} = \{S, B\}, \sum_{U} = \{b\},$$

$$P_{U}: S \to BS \mid B$$

$$B \to b$$

Iter	REACH	PREV	NEW	Rule
0	{ <i>S</i> }	Φ		
1	{ <i>S, B</i> }	{ <i>S</i> }	{ <i>S</i> }	$S \rightarrow B$
2	{S, B}	{ <i>S</i> , <i>B</i> }	{ <i>B</i> }	
3	{S, B}	{ <i>S</i> , <i>B</i> }		

NonReachableVariables =

$$V - REACH = \{S, A, B, E, F\} - \{S, B\} = \{A, F, E\}$$

Example 4.4.3

$$G = (V, \Sigma, P, S), V = \{S, A, B\}, \Sigma = \{a, b\}$$

 $P: S \rightarrow a \mid AB$
 $A \rightarrow b$

Remove variables that do not derive terminal symbols

$$P_T$$
: $S \rightarrow a$
 $A \rightarrow b$

Remove unreachable symbols

$$P_U$$
: $S \rightarrow a$

Remove unreachable symbols

$$P_U: S \to a \mid AB$$

$$A \to b$$

Remove variables that do not derive terminal symbols

$$P_T: S \to a$$

$$A \to b$$

Order matters!!!

Definition 4.5.1

 $G = (V, \Sigma, P, S)$ a *CFG* is in Chomsky normal form when rules are in the form:

$$A \to BC$$
, $A \to a \in \Sigma$, or $A \to \lambda$, where $B, C \in V - \{S\}$

$$P \subseteq \{S\} \times \{\lambda\} \cup V \times \sum \cup V \times (V - \{S\})^2$$

Example

 $A \rightarrow$ concatenated variables

 $A \to \sum$

 $S \rightarrow \lambda$

 $A \rightarrow bDcF$ is replaced with:

$$A \rightarrow B'DC'F$$

$$B' \rightarrow b$$

$$C' \rightarrow c$$

and $A \rightarrow B'DC'F$ is replaced with:

$$A \rightarrow B'T_1$$

$$T_1 \rightarrow DT_2$$

$$T_2 \rightarrow C'F$$

 B_1 , B_2 , . . . , B_{n-2} are new variables (non-terminal symbols)

Example 4.5.1

For
$$G = (V, \Sigma, P, S), V = \{A, B, C\}, \Sigma = \{a, b, c\}$$

a CFG that satisfies:

- start symbol conditions
- λ rules
- chain rules
- eliminated useless symbols

$$V = \{S, A, B, C\}, \sum = \{a, b, c\}$$

 $P: S \rightarrow aABC \mid a$
 $A \rightarrow aA \mid a$
 $B \rightarrow bcB \mid bc$
 $C \rightarrow c C \mid c$

$$P: S \to A'T_{1} \mid a$$

$$A' \to a$$

$$T_{1} \to AT_{2}$$

$$T_{2} \to BC$$

$$A \to A'A \mid a$$

$$B' \to b$$

$$C' \to c$$

$$B \to B'T_{3} \mid B'C'$$

$$T_{3} \to C'B$$

$$C \to C'C \mid c$$

Example 4.5.2

Rule: $X \rightarrow aXb \mid ab$

Generates strings $\{a^ib^i, i \geq 1\}$

Validate string aaabbb

For Chomsky Normal Form Grammar

for valid string, Smust be in set X_{16}

{B}

$$G = (V, \Sigma, P, S), V = \{A, B, T, X, S\}, \Sigma = \{a, b\}$$

 $S \rightarrow AT \mid AB$

 $X \rightarrow AT \mid AB$

 $A \rightarrow a$

 $B \rightarrow b$

 $T \rightarrow XB$

Validate string aaabbb

 X_{11} X_{15} X_{12} X_{13} X₁₆ X_{14} {A} $\{S, X\}$ Ф X_{25} X_{26} X_{22} X_{23} X_{24} $\{T\}$ {A} Φ {S, X} X_{36} X_{33} X₃₄ X_{25} {A} $\{T\}$ {S, X} X_{44} X_{46} X_{45} {B} Ф X_{55} X_{56} {B} Ф X_{66}

Remove Left Recursion

Remove Direct Left Recursion

Divide Recursive rule into:

Left Recursive terms

replace
$$A \rightarrow Au_1 \mid Au_2 \mid \dots \mid Au_j$$

with
$$Z \rightarrow u_1 Z \mid u_2 Z \mid \dots \mid u_j Z \mid u_1 \mid u_2 \mid \dots \mid u_j$$

Terms with first RHS symbol not A

replace
$$A \rightarrow v_1 | v_2 | \dots | v_j$$

with
$$A \rightarrow v_1 Z \mid v_2 Z \mid \dots \mid v_k Z \mid v_1 \mid v_2 \mid \dots \mid v_k$$

$$A \rightarrow Aa \mid Aab \mid bb \mid b$$
 is replaced by

build (terminal prefix) string on left first

$$A \rightarrow bbZ | bZ | bb | b$$

$$Z \rightarrow aZ |abZ|a|ab$$

Remove Indirect Left Recursion

Does not solve indirect left recursion Problem

$$A \rightarrow Bu$$
 $B \rightarrow Av$

A ⇒ Bu	
⇒ Avu	
<i>⇒ Buvu</i>	
<i>⇒ Avuvu</i>	

Greibach Normal Form solves Left Recursion - Direct and Indirect

 $G = \{V, \Sigma, P, S\}$ is Greibach Normal Form when:

$$A \rightarrow aA_1A_2 \dots A_n$$

$$A \rightarrow a$$

or

$$A \rightarrow \lambda$$

$$a \in \Sigma \land A_i \in V - \{S\}$$