Service Manua Cassette Deck

dbx/Dolby B-C NR Stereo Cassette Deck

RS-B55 RS-955

Color

(K)...Black Type (S)... Silver Type

• The photographs show RS-955 model.

DOLBY B.C NR

• The function and operating method of RS-955 are the same as for RS-B55.

RS-B55 MECHANISM SERIES (For U.S.A.) RS-B25 MECHANISM SERIES (For other areas.)

SPECIFICATIONS

Deck system	Stereo cassette deck
Track system	4-track, 2-channel
Heads REC/PLAY	AX (Amorphous) head
Erasing	Double-gap ferrite head
Motor	1 motor
Recording system	AC bias
Bias frequency	80 kHz
Erasing system	AC bias
Tape speed	4.8 cm/sec. (17/8 ips)
Frequency response	
Metal	20 Hz∼19,000 Hz
	30 Hz~18,000 Hz (DIN)
	40 Hz~17,000 Hz ±3 dB
CrO ₂	20 Hz∼18,000 Hz
	30 Hz~17,000 Hz (DIN)
	40 Hz~16,000 Hz ±3 dB
Normal	20 Hz∼17,000 Hz
	30 Hz~16,000 Hz (DIN)
	40 Hz~15,000 Hz ±3 dB
Dynamic Range (with dbx in)	110 dB (1 kHz)
S/N (signal level=max. recording	level, CrO2 type tape)
dbx in	92 dB (A weighted)
Dolby C NR in	75 dB (CCIR)
Dolby B NR in	67 dB (CCIR)

Wow and flutter 0.07% (WRMS) ±0.13% (DIN)

10 dB (1 kHz) Max. Input Level Improvement (with dbx in)

Fast Forward and Rewind Time

Approx. 90 seconds with C-60 cassette tape

Input sensitivity and impedance

 $0.25 \, mV/400 \Omega - 10 \, k\Omega$ MIC

LINE $60 \, mV/47 \, k\Omega$

Output voltage and impedance

Power consumption

Weight

 $400 \text{ mV}/1.5 \text{ k}\Omega$ LINE **HEADPHONES** $80 \text{ mV}/8\Omega$

Power supply [M] AC; 120V, 60 Hz

[E][EH][EGA]AC; 220V, 50 Hz/60 Hz

[EK][XA][XL].....AC; 110V/127V/220V/240V,

50 Hz/60 Hz

Preset power voltage 240V Dimensions (W×H×D)

430×99.5×229 mm

18 W

(16-29/32"×3-29/32"×9")

3.5 kg (7 lbs 11 oz)

Design and specifications are subject to change without notice.

57 dB (A weighted)

- * The term dbx is a registered trademark of dbx Inc.
- * * 'Dolby' and double-D symbol are trademarks of Dolby Laboratories Licensing Corporation.

Technics

NR out

Matsushita Engineering and Service Company
50 Meadowland Parkway,
Secaucus. New Jersey 07094

Panasonic Sales Company, Division of Matsushita Electric

of Puerto Rico, Inc. Ave. 65 De Infanteria, KM 9.7 Victoria Industrial Park Carolina, Puerto Rico 00630

Panasonic Hawaii Inc 91-238 Kauhi St. Ewa Beach P.O. Box 774 Honolulu, Hawaii 96808-0774 Matsushita Electric Trading Co., Ltd.

RS-B55/RS-955

■ CONTENTS

	Page		Page
Location of Controls	2	Schematic Diagram	24~28
Safety Precaution	3	Circuit Boards	
Operations	3∼5	and Wiring Connection Diagram	29~32
Disassembly Instructions	6, 7	Terminal Guide of Transistors,	
Measurements and Adjustments	8~12	Diodes, Coils and IC's	33
Microcomputer Terminal Function and		Cabinet Parts Location	33~35
Waveform	13~18	Mechanical Parts Location	36~38
Block Diagram	19~21	Technical Guide	39, 40
Electrical Parts List	22, 23		

Cassette Deck

DEUTSCH

Verwenden Sie bitte diese Broschüre Zusammen mit der Service-Anieitung für das Modell Nr. RS-B55.

■ TECHNISCHE DATEN

System Stereo-Cassettendeck Spuren 4 Spuren, 2 Kanäle Tonkönfe Aufnahme/Wiedergabe AX-Kopf Löschen Ferrit-Kopf mit Doppelspalt Motor 1-Motor Aufnahmesystem Wechselstrom-Vormagnetisierung Vormagnetisier ungsfrequenz 80 kHz Löschsystem Wechselstrom-Vormagnetisierung Bandgesch windigkeit 4.8 cm/s Frequenzgang Reineisenbänder 20 Hz~19.000 Hz 30 Hz~18.000 Hz (DIN) 40 Hz~17.000 Hz±3 dB

 $40 \text{ Hz} \sim 17.000 \text{ Hz} \pm 3 \text{ dB}$ $20 \text{ Hz} \sim 18.000 \text{ Hz}$ $30 \text{ Hz} \sim 17.000 \text{ Hz}$ (DIN) $40 \text{ Hz} \sim 16.000 \text{ Hz} \pm 3 \text{ dB}$

Normalbänder 20 Hz~17.000 Hz 30 Hz~16.000 Hz(DIN)

Dynamisher Bereich

(mit dbx-Rauschunterdrückung)

Geräuschspannungsabstand:

(Signalpegel = max. Aussteuerungspegel, CrO2-Band)
mit dbx-Rauschunterdrückung
mit Dolby C-Rauschunterdrückung
mit Dolby B-Rauschunterdrückung
ohne Rauschunterdrückung
Gleichlauschwankungen

(Signalpegel = max. Aussteuerungspegel, CrO2-Band)
92 dB (nach Abwertet)
67 dB (CCIR)
67 dB (nach A bewertet)
0,07% (WRMS)
±0,13%(DIN)

Max. Eingangspegelverbesserung (mit dbx) 10 dB (1kHz)
Umspulzeit ca. 90 s für C-60-Cassette

Eingangsempfindlichkeit und Impedanz

MIC 0,25 mV/400 Ω ~10 k Ω LINE 60 mV/47 k Ω

Ausgangsspannung und Impedanz

 $\begin{array}{ccc} \textbf{LINE} & 400 \text{ mV}/1,5 \text{ k}\Omega \\ \textbf{HEADPHONES} & 80 \text{ mV}/8 \text{ }\Omega \\ \textbf{Stromaufnahme} & 18 \text{ W} \\ \textbf{Stromversorgung} \end{array}$

Netz 50 Hz/60 Hz, 220 V für Europa ohne England. Abmessungen (B×H×T) 430×99,5×229 mm

Gewicht 3,5 kg

■ MESSUNGEN UND EINSTELL METHODEN

Anm.: Wenn nicht anders vorgeschrieben, Drehschalter und Steuereinrichtungen auf die folgenden Positionen stellen.

40 Hz∼15.000 Hz±3 dB

110 dB (1 kHz)

• Für saubere Köpfe sorgen.

• Für saubere Tonwelle und Andruckrolle sorgen.

• Auf normale Raumtemperatur achten: 20±5°C (68±9°F)

• Dolby-Schalter: AUS

Abgleichkontrolle: Mitte (Zentrum)

Bandsortenschalter: NORMALEingangswahlschalter: LINE

• Eingangsregler: MAX

Senkrechtstellen des

Kopfes

Bedingung:

Wiedergabe

Meßgerät:

• Elektronische Voltmeter

Oszillograph

• Testband (azimuth)...QZZCFM

Ausgangsbalance-Justierung für linken und rechten Kanal

1. Den Meßaufbau zeigt Fig. 2.

 8kHz-Signal des Testbandes (QZZCFM) wiedergeben.
 Schraube (B) in Fig. 3 auf maximalen Ausgangspegel des linken und rechten Kanals abgleichen.

Sind die Ausgangspegel des linken und rechten Kanals nicht gleichzeitig maximal, wie folgt justieren:

3. Durch Drehen der in Fig. 3 gezeigten Schraube (B) die Winkel A und C (Punkte, wo Spitzenausgangspegel für den linken und rechten Kanal erreicht werden) ermitteln. Anschließend den Winkel B zwischen dem Winkel A und C ermitteln, d.h. den Punkt, wo die Ausgangspegel des linken und rechten Kanals ausbalanciert (ausgeglichen) sind. (Siehe Fig. 3 und 4.)

Phasenjustierung für linken und rechten Kanal

- 4. Den Meßaufbau zeigt Fig. 5.
- 5. 8kHz-Signal des Testbandes (QZZCFM) wiedergeben. Schraube (B), wie in Fig. 3 gezeigt, so einstellen, daß Zeiger von zwei Röhrenvoltmeter auf Maximum ausschlagen und am Oszillographen eine Wellenform wie in Fig. 6 erreicht wird.

Fig. 6

Bandgeschwindigkeit

Bedingung:

Wiedergabe

Meßgerät:

- Elektronischer Digitalzähler
- Testband...QZZCWAT

Genauigkeit der Bandgeschwindigkeit

- 1. Den Meßaufbau zeigt Fig. 7.
- 2. Testband (QZZCWAT 3000 Hz) wiedergeben und Ausgangssignal dem Zähler zuführen.
- Frequenz messen.
- 4. Beträgt die auf dem Testband aufgezeichnete Frequenz 3000 Hz, so ergibt sich die Genauigkeit nach folgender Formel:

Genauigkeit der Bandgeschwindigkeit = $\frac{f-3000}{3000} \times 100(\%)$

worin f die gemessene Frequenz ist.

5. Die Messung soll im mittleren Teil des Bandes erfolgen.

NORMALWERT: 0,33% (3000±10 Hz)

6. Falls der Meßwert nicht im vorgeschriebenen Bereich liegt, bitte mit Bandgeschwindigkeitsregler VR wie in Fig. 1 gezeigt einstellen.

Anmerkung: Bitte bei dieser Einheit zum Justieren der Bandgeschwindigkeit keinen Metallschraubenzieher benutzen.

Schwankung der Bandgeschwindigkeit:

Messung, wie oben beschrieben für Anfang, mittleren Teil und Ende des Testbandes wiederholen und Schwankung wie folgt bestimmen:

Schwankung = $\frac{f_1 - f_2}{3000} \times 100(\%)$

 $f_1 = Maximalwert$ $f_2 = Minimalwert$

NORMALWERT: 1%

Frequenzgang bei Wiedergabe

Bedingung:

Wiedergabe

Meßgerät:

- Elektronische Voltmeter
- Oszillograph
- Testband...QZZCFM

- Gerät auf Wiedergabe schalten. Frequenzgang-Testband QZZCFM wiedergeben.
- Ausgangsspannung bei 315Hz, 12,5kHz, 8kHz, 1kHz, 250Hz, 125Hz und 63Hz messen und jede Ausgangsspannung mit der Standardfrequenz 315Hz an der LINE OUT vergleichen.
- 4. Messungen an beiden Kanälen durchführen.
- Prüfen, ob die gemessenen Werte innerhalb des in der Frequenzgang-Übersicht aufgeführten Bereichs liegen. (Siehe Fig. 8.)

Fig. 8

Wiedergabe-Verstärkung

Bedingung:

- Wiedergabe
- Meßgerät:
- Elektronische Voltmeter
- Oszillograph
- Testband...QZZCFM

- 1. Den meßaufbau zeigt Fig. 2.
- 2. Den Standard-Aufnahmepegelteil der Testbandcassette (QZZCFM, 315Hz) wiedergeben und mit dem Elektronische Voltmeter den Ausgangspegel an den LINE OUT-Anschlüssen messen.
- 3. Messung an beiden Kanälen durchführen.

NORMALWERT: $0.4V\pm0.5dB$ (0.02V)

Einstellung:

- 1. Abweichungen können durch Abgleich von VR5 (linker Kanal) und VR6 (rechter Kanal), korrigiert werden.
- 2. Nach erfolgtem Abgleich ist der Frequenzgang bei Wiedergabe erneut zu kontrollieren.

Löschstrom

Bedingung:

Aufnahme

Meßgerät:

- Elektronische Voltmeter
- Oszillograph
- Testband (Leerband)...QZZCRZ für Metall

- 1. Den Meßaufbau zeigt Fig. 9.
- 2. Die Aufnahme-und Pausentaste drücken.
- 3. Das Metallband-Referenzleerband (QZZCRZ) einsetzen.
- 4. Löschstrom nach folgender Formel emitteln:

Löschstrom (A) = Die Spannung über beide Enden von R301 1 (Ohm)

NORMALWERT: 155±15mA (Metal position) (155±15mV)

Fig. 9

 Falls der Meßwert nicht im vorgeschriebenen Bereich liegt, auf folgenden Weise einstellen.

Einstellung:

- 1. Die Punkte (A) und (B) der Hauptschaltplatte kurzschleißen.
- 2. Den Löschstrom messen.
- 3. Beträgt der Löschstrom weniger als 140 mA, den Punkt (B) kurzschließen.
- 4. Beträgt der Löschstrom mehr als 170 mA: Punkt (A) unterbrechen.

Gesamtfrequenzgang

Bedingung:

- Aufnahme und Wiedergabe
- Eingangsregler...MAX

Meßgerät:

- Elektronische Voltmeter
- NF-Generator
- Abschwächer
- Oszillograph
- Testband (Leerband)
 - ...QZZCRA für Normal
 - ...QZZCRX für CrO2
 - ...QZZCRZ für Metall
- Widerstand (600Ω)

Anm.:

Vor Messung und Abgleich des Gesamtfrequenzganges ist sicherzustellen, daß der Frequenzgang bei Wiedergabe korrekt ist (Vgl. entspr. Abschnitt).

Gesamtfrequenzgang-Justierung durch Aufnahme-Vomagnetisierungsstrom

(Der Aufnahme-Entzerrer ist fest eingestellt.)

- 1. Den Meßaufbau zeigt Fig. 11.
- ${\it 2. \ Das \ Normalband-Referenzleerband \ (QZZCRA) \ einsetzen.}$
- An LINE IN ein Signal von 1kHz, -24dB zuführen. Das Gerät auf Aufnahme schalten.
- 4. Den Dämpfungswiderstand feineinstellen, bis die Ausgangsleistung an LINE OUT 0,4V beträgt.
 - Überprüfen, daß der Signalausgangspegel bei einer Ausgangs-Spannung von 0,4V -24±4dB beträgt.
- Mit dem NF-Oszillator Signale von 50Hz, 100Hz, 200Hz, 500Hz, 1kHz, 4kHz, 8kHz, 10kHz und 12,5kHz zuführen, und diese Signale auf das Testband aufzeichnen.

Fig. 10

6. Die in Schritt 5 aufgezeichneten Signale wiedergeben und überprüfen, ob die Frequenzgangkurve innerhalb des Bereichs liegt, der im Frequenzgangdiagramm für normales Band in Fig. 10 gezeigt ist. (Falls die Kurve innerhalb des vorgeschriebenen Bereichs liegt, mit den Schritten 7, 8 und 9 weiterfahren.)

Falls die Kurve außerthalb des vorgeschriebenen Bereichs

liegt, wie folgt justieren.

Justierung (A):

Wenn die Kurve den vorgeschriebenen Gesamtfrequenzgangbereich (Fig. 10) überschreitet, wie in Fig. 12 gezeigt.

Votmagnetisie-1) Den rungsstrom durch Abgleichen von VR301 (linker Kanal) und VR302 (rechter Kanal) erhöhen.

Fig. 12

2) Die Schritte 5 und 6 zur Überprüfung wiederholen. (Wenn die Kurve dabei innerhalb des vorgeschriebenen Bereichs liegt (Fig. 10) mit den Schritten 7, 8, und 9 weiterfahren.)

3) Wenn die Kurve den vorgeschriebenen Bereich (Fig. 10) noch immer überschreitet, den Vormagnetisierungsstrom weiter erhöhen, und die Schritte und wiederholen.

7. Das CrO₂ Band-Referenzleerband (QZZCRX) einsetzen.

8. Testband QZZCRX einlegen, und Signale von 50 Hz, 100 Hz, 200 Hz. 500 Hz, 1kHz, 4kHz, 8kHz, 10kHz und 15kHz aufzeichnen; Anschliessend die Signale wiedergeben und prüfen, ob die Kurve innerhalb des Bereichs liegt, der im Gesammtfrequenzgang-Diagramm für das CrO₂ Band dargestellt ist. (Fig. 14.)

9. Das Metallband-Referenzleerband (QZZCRZ) einsetzen. Testband QZZCRZ einlegen und Signale von 50 Hz, 100 Hz, 200 Hz, 500 Hz, 1 kHz, 4 kHz, 8 kHz, 10 kHz und 15 kHz aufnehmen. Anschließend die Signale wiedergeben und prüfen, ob die Kurve innerhalb des Bereichs im Gesamtfrequenzgangdiågramm für Metallband liegt. (Fig. 14.)

10. Überprüfen, daß die Vorspannung ungefähr den folgenden Werten entsprechen, wenn der Bandsortenschalter in die entsprechende Position gestellt ist.

Justierung (B):

Wenn die Kurve unter den vorgeschriebenen Bereich für den Gesamtfrequenzgang (Fig. 10) absinkt, wie in Fig. 13 gezeigt:

Vormagnetisie-1) Den rungsstrom durch abgleichen von VR301 (linker Kanal) und VR302 (rechter Kanal) reduzieren.

Fig. 13

2) Die Schritte 5 und 6 zur Überprüfung wiederholen. (Falls die Kurve dabei innerhalb des vorgeschriebenen Bereichs in Fig. 10 liegt, mit den Schritten 7, 8, und 9 weiterfahren.)

3) Falls die Kurve noch immer unter den vorgeschriebenen Bereich (Fig. 10) absinkt, den Vormagnetisierungsstrom weiter reduzieren, und Schritte 5 und 6 wiederholen.

Fig. 14

• Die spannung an den Anschlüssen des Widerstandes R15 (linker Kanal) [R16 (rechter Kanal)] ablesen und den Vormagnetisierungsstrom entsprechend folgender Formel berechnen.

Vormagnetisierungsstrom (A) = Spannung am Elektronische Voltmeter (V) $10 (\Omega)$

Ungefähr 170 μ A (Normal position) Bezugswert: Ungefähr 200 µA (CrO2 position) Ungefähr 370 μ A (Metall position)

6 Gesamtverstärkung

Bedingung:

- · Aufnahme und Wiedergabe
- · Eingangsregler: MAX
- · Standard-Eingangspegel:

Mikrofon $-72 + \frac{5}{3} dB$

(0,25 mV) NF-Eingang.... -24±4 dB (63 mV)

Meßgerät:

- Elektronische Voltmeter
- NF-Generator
- Abschwächer
- Oszillograph
- Widerstand (600Ω)
- Testband (Leerband) ...QZZCRA für Normal

1. Den Meßaufbau zeigt Fig. 15.

2. Das Normalband-Referenzleerband (QZZCRA) einsetzen.

3. Gerät auf "Aufnahme" schalten.

4. Über den Abschwächer ein 1kHz-Signal (-24dB) vom NF-Generator dem NF-Eingang zuführen.

 ATT justieren, bis der Monitorpegel an den LINE OUT-Anschlüssen 0,4V beträgt.

6. Eine bespielte Cassette wiedergeben und überprüfen, ob der Ausgangspegel an den LINE OUT-Anschlüssen 0,4V beträgt.

7. Wenn der gemessene Wert nicht 0,4V erreicht, die folgenden VR abgleichen: VR103 (L-K) oder VR104 (R-K).

8. Ab Punkt 2 wiederholen.

Fig. 15

Fluoreszenzmeter

Bedingung:

- Aufnahme
- Eingangsregler...MAX.

Meßgerät:

- Elektronische Voltmeter
- NF-Generator
- Abschwächer
- Oszillograph
- Widerstand (600Ω)
- 1. Der Anschluß des Prüfgerätes wird in Fig. 15 gezeigt.

2. Die Einheit auf Aufnahmestellung schalten.

3. Ein 1kHz Signal (-24dB) vom AF Öszillator durch "ATT" auf "LINE IN" goben.

Justierung auf -40 dB

 Abschwächer so abstimmen, daß der in Stufe 3 abgestimmte Pegel um 40 dB vermindert wird.

5. Zu diesem Zeitpunkt prüfen, ob der –40 dB Anzeiger abgeschwächt leuchtet (mittelhell, zwischen ganz hell und erlöscht: Siehe Fig. 16).

6. Wenn der Anzeiger nicht, wie in Stufe 6 beschrieben, abgeschwächt, leuchtet VR102 abstimmen.

Justierung auf 0 dB

7. Den Zustand von Stufe 3 herstellen. Ausganspegel auf 0,4 V \pm 0,02 V an der LINE OUT festsetzen.

Zu diesem Zeitpunkt pr

üfen, ob der 0 dB Anzeiger abgeschw

ächt aufleuchtet (mittelhell, zwischen ganz hell und erl

öscht siehe Fig. 17).

9. Wenn nicht korrekt, VR201 abstimmen.

10. Einstellungen und Prüfungen der Stufen 3, 4, 5, 6, 7, 8 und 9 zweibis dreimal wiederholen.

Fig. 16

Fig. 17

Dolby-Schaltung

Bedingung:

- Aufnahme
- Dolby-Schalter
 - ...IN/OUT (AN/AUS)
- Dolby-Wahlschalter

...B/C

• Eingangsregler...MAX.

Meßgerät:

- Elektronische Voltmeter
- NF-Generator
- Abschwächer
- Oszillograph
- Widerstand (600Ω)

Aufnahmeseite

- Überprüfung der Dolby-B-Typ Verschlüsselungsmerkmale.
- 1. Den Meßaufbau zeigt Fig. 18.
- 2. Gerät auf "Aufnahme" stellen. (Dolby-Wahlschalter ist OUT (AUS).)

3. Dem NF-Eingang ein 1kHz-Signal zuführen.

4. Abschwächer so abstimmen, daß die Ausgangsspannung an Nadel 7 von IC401 (L-K) und IC402 (R-K) 12,3 mV beträgt.

5. Die Ausgangsspannung an Nadel 21 sollte 0dB betragen (375mV).

6. Den Dolby-Wahlschalter auf B stellen. Sicherstellen, daß das Ausgangssignalpegel an Nadel 21 von IC401 (L-K) und IC402 (R-K) +6 dB±1,5 dB beträgt (753 mV).

7. Dolby-Wahlschalter ausschalten und die Frequenz auf 5kHz abstimmen. Das Ausgangssignal an Nadel 21 sollte 0dB betragen (375mV).

 Dolby-Wahlschafter auf B stellen und sicherstellen, daß das Ausgangssignalpegel an Nadel 21 von IC401 (L-K) und IC402 (R-K) +8 dB±1,5 dB beträgt (948 mV).

- Überprüfung der Dolby-C-Typ Verschlüsselungsmerkmale
 - 1. Objae Stufen 1 bis 5 wiederholen.
- 2. Dolby-Wahlschalter auf C stellen und sichersteilen, daß das Ausgangssignalpegel an Nadel 21 von IC401 (L-K) und IC402 (R-K) +11,5 dB±2 dB beträgt (1,4 V).
- 3. Dolby-Wahlschalter ausschalten und die Frequenz auf 5kHz abstimmen.
 - Die Ausgangsspannung an Nadel 21 sollte 0dB sen (375 mV).
- 4. Dolby-Wahlschalter auf C stellen und sicherstellen, daß das Ausgangssignalpegel an Nadel 21 von IC401 (L-K) und IC402 (R-K) +8,5 dB±2 dB beträgt (1 V).

Fig. 18

Einsatz Ausgleichszeit-Justierung (dbx Schaltung)

Bedingung:

- Betriebsart Aufnahme Eingangspegelregler...MAX
- Abgleichkontrolle ... Mitte (Zentrum)

Meßgeräte:

- Elektronische Voltmeter
- Dämpfungeglied
- AF-Oszillator
- Gleichstromvoltameter
- · Gerauschverminderungs-Schalter...dbx Band
- 1. Führen Sie die in Fig. 19 gezeigten Anschlüsse durch und geben Sie ein 1kHz -27dB Signal vom LINE IN ein und stellen Sie den Lärmreduktionswähler in die Position dbx.
- Versetzen Sie das Gerät in die Betriebsart Aufnahme und stellen Sie das Dämpfungsglied so ein, daß der Signalpegel beim C541 (linker kanal) und beim C542 (rechter kanal) 300 mV ist.
- 3. Voltzahl auf DC Voltmeter ablesen.

Bezugswert: 15±0,5 mV

4. Weicht der Meßwert vom Bezugswert ab, VR101 abgleichen.

Fig. 19

92 dB (A pondéré)

57 dB (A pondéré)

75 dB (CCIR)

67 dB (CCIR)

0,07% (WRMS)

FRANCAIS

Ceci est à utiliser conjointement avec le manuel d'entretien du modèle No. RS-B55.

Système dbx

Système de Dolby C

Système de Dolby B

Pleurage et scintillement

Pas de système de NR

■ CARACTERISTIQUES

Platine

Platine magnéto-cassette stéréo 4 pistes, 2 canaux **Pistes** Têtes **ENREGISTREMENT/LECTURE** Tête en AX Tête en ferrite à double entrefer **Effacement** 1-moteur Moteur Système d'enregistrement Polarisation CA 80 kHz Fréquence de polarisation Polarisation CA Système d'effacement Vittesse de défilement de la bande 4.8 cm/sec. Réponse en fréquence 20 Hz~19.000 Hz Métal

30 Hz~18.000 Hz (DIN) 40 Hz~17.000 Hz±3 dB CrO₂ 30 Hz~17.000 Hz (DIN) 40 Hz~16.000 Hz±3 dB

Normal 30 Hz~16.000 Hz(DIN)

Portée dynámique (ávec système dbx) Rapport signal/bruit: (niveau de signal = niveau d'enregistrement maximum,

bande magnétique de type CrO₂)

LIGNE Tension et impédance de sortie 20 Hz~18.000 Hz LIGNE **HEADPHONES** Consommation 20 Hz \sim 17.000 Hz Alimentation Dimensions (L×H×P) 40 Hz~15.000 Hz±3 dB

±0,13%(DIN) Améoration du niveáu d'entrée maximum (ávec systéme dbx) 10 dB (1kHz) Temps d'avance rapide et de rebobinage Environ 90 secondes pour une cassette C-60 Sensibilité et impédance d'entrée 0.25mV/400Ω~10 kΩ MIC $60 \text{ mV}/47 \text{ k}\Omega$ $400 \text{ mV}/1,5 \text{ k}\Omega$ 80 mV/8 Ω AC 50 Hz/60 Hz 220 V pour l'Europe sauf la Grande Bretagne. 430×99,5×229 mm **Poids** 3,5 kg

110 dB

■ METHODES DES MEASURES ET REGLAGES

REMARQUES: Placer les interrupteurs et les contrôles dans les positions suivantes, sauf indication contraire.

- Vérifier que les têtes soient propres.
- Vérifier que le cabestan et le galet presseur soient propres.
- •Température ambiante admissible: 20±5°C
- Interrupteur de réduction de bruit: OUT
- Sélecteur de bande: Normal
- Sélecteur d'entrée: Line in
 Contrôles de niveau d'entrée: Maximum
- Contrôle de l'equilibre: Centre

Réglage de l'azimut de tête

Condition:

Mode de lecture

Equipement:

- Voltmètre électronique
- Oscilloscope
- Bande étalon (azimut)
 ...QZZCFM

Réglage de l'équilibre de la sortie au canal gauche/canal droit

- 1. Brancher les appareils comme indiqué dans la Fig. 2.
- Reproduire le signal de 8kHz de la bande étalon (QZZCFM).
 Régler la vis (B) dans la Fig. 3 pour obtenir les niveaux de sortie maximum pour les canaux gauche et droit.
 - Lorsque les niveaux de sortie des canaux gauche et droit ne sont pas simultanément à leur maximum, les régler à nouveau de la façon suivante.
- 3. Faire tourner la vis indiquée dans la Fig. 3 pour trouver les angles A et C (point où les niveaux de sortie de créte pour les canaux gauche et droit sont obtenus respectivement). Situer alors l'angle B entre les angles A et C, autrement dit, en un point où les niveaux de sortie des canaux gauche et droit atteignent tous deux leur maximum. (Voir les Fig. 3 et 4).

Fig. 2

Fig. 4

Réglage de phase canal gauche/canal droit

- 4. Brancher les appareils comme indiqué dans la Fig. 5.
- 5. Reproduire le signal de 8kHz de la bande étalon (QZZCFM). Régler la vis (B) indiquée dans la Fig. 3 de sorte que les aiguilles des deux voltmètres électroniques oscillent au maximum, et qu'on obtienne sur l'oscilloscope une forme d'onde semblable à celle indiquée dans la Fig. 6.

Fig. 6

Vitesse de défilement

Condition:

Equipement:

- Mode de lecture
- Fréquencemètre numérique
- Bande étalon...QZZCWAT

Précision de la vitesse de défilement

- 1. Brancher les appareils comme indiqué dans la Fig. 7.
- 2. Lire la bande étalon (QZZCWAT, 3000 Hz) et appliquer le signal de lecture au fréquencemètre numérique.

3. Mesurer sa fréquence.

4. Sur la base de 3000 Hz, déterminer la valeur à l'aide de la formule

Précision de vitesse = $\frac{f-3000}{3000} \times 100(\%)$

avec f = valeur mesurée.

5. Effectuer la mesure sur la partie médiane de la bande.

Valeur standard: 0,33% (3000±10 Hz)

6. Si la valeur mesurée ne correspond pas à la valeur standard, régler au moyen de la vis VR de réglage de la vitesse de défilement indiquée dans la Fig. 1.

Remarque: Utiliser un tournevis qui ne soit pas métallique pour le réglage de la précision de la vitesse de défilement sur cette unité.

Fluctuations de vitesse de défilement

Faire les mesures de la même façon que ci-dessus (au début, au milieu et en fin de bande) et déterminer la différence entre les valeurs maximale et minimale, puis calculer comme suit.

Fluctuations de vitesse = $\frac{f_1 - f_2}{3000} \times 100(\%)$

 f_1 = valeur maximale f_2 = valeur minimale

Valeur standard: 1%

Réponse en fréquence à la lecture

Condition:

Mode de lecture

Equipement:

- Voltmètre électronique
- Oscilloscope
- Bande étalon ...QZZCFM
- Brancher les appareils comme indiqué dans la Fig. 2.
 Lire la portion de réponse en fréquence de la bande étalon
- (QZZCFM).

 3. Mesurer les niveaux de sortie à 315 Hz, 12,5 kHz, 8 kHz, 4 kHz,
- 1kHz, 250Hz, 125Hz, et 63Hz et comparer chaque niveau de sortie avec celui de la fréquence standard de 315Hz sur la borne LINE OUT.
- 4. Effectuer les mesures sur les deux canaux.
- Vérifier que les valeurs mesurées se situent dans la bande spécifiée de la courbe de réponse en fréquence. (Voir Fig. 8).

Ш

0

numérique

Fig. 8

Gain à la lecture

Condition:

Mode de lecture

Equipement:

- Voltmètre électronique
- Oscilloscope
- Bande étalon...QZZCFM
- 1. Brancher les appareils comme indiqué dans la Fig. 2.
- 2. Faire jouer la portion du niveau d'enregistrement normal sur la bande d'essai (QZZCFM, 315Hz) et, en utilisant un voltmètre électronique, mesurer le niveau de sortie aux sorties en ligne.
- 3. Effectuer les mesures sur les deux canaux.

Valeur standard: 0,4V±0,5dB (0,02V)

Réglage

- 1. Si la valeur mesurée ne correspond pas à la valeur standard régler VR5 (canal gauche) ou VR6 (canal droit).
- 2. Après réglage, vérifier à nouveau la "réponse en fréquence à la lecture".

Courant d'effacement

Condition:

Mode d'enregistrement

Equipement:

- Voltmètre électronique
- Oscilloscope
- Bande étalon vierge
 - ...QZZCRZ pour bande métallique

1. Brancher les appareils comme indiqué dans la Fig. 9.

- 2. Insérer la bande d'essai vierge de référence métallisée (QZZCRZ).
- 3. Appuyer sur les boutons d'enregistrement et de pause.
- 4. Lire le voltage sur le voltmètre électronique et calculer le courant d'effacement au moyen de la formule suivante:

Courant d'effacement (A) = $\frac{\text{Voltage à la résistance R301}}{1 (\Omega)}$

Valeur standard: 155±15mA (bande métallique) (155±15mV)

 Si la valeur mesurée ne correspond pas à la valeur standard, régler selon les instructions ci-après.

Réglage:

- 1. Court-circuiter les points (A) et (B) sur le tableau du circuit principal.
- 2. Mesurer le courant d'effacement.
- 3. Si le courant d'effacement est inférieur à 140 mA, court-circuiter le point (B).
- 4. Si le courant d'effacement est supérieur à 170 mA, court-circuiter le point (Á).

Réponse de fréquence globale

Condition:

- Mode enregistrement/lecture
- Contrôles de niveau d'entrée...MAX

Equipement:

- Voltmètre électronique
- Atténuateur
- Oscillateur
- Oscilloscope
- Résistance (600 Ω)
- Bande étalon vierge
 - ...QZZCRA pour bande normale
 - ...QZZCRX pour bande CrO₂
 - ...QZZCRZ pour bande métallique

Remarque:

Avant de mesurer et régler la réponse de fréquence globale vérifier que la réponse en fréquence à la lecture soit correcte (pout la méthode de mesure, se reporter au paragraphe intitulé "Réponse en fréquence à la lecture").

(Le compensateur d'enregistrement est fixe.)

- 1. Brancher les appareils comme indiqué dans la Fig. 11.
- Insérer la bande d'essai vierge de référence normale (QZZCRA).
- 3. Appliquer le signal de 1kHz de l'oscillateur AF à la borne LINE IN. par l'intermédiaire de l'atténuateur.
- 4. Régler l'atténuateur de sorte que le niveau d'entrée soit de 20dB en-dessous du niveau d'enregistrement standard (niveau d'enregistrement standard = 0VU).
- Régler l'oscillateur AF pour produire des signaux de 50 Hz 100 Hz, 200 Hz, 500 Hz, 1 kHz, 4 kHz, 8 kHz et 12,5 kHz et enregistrer ces signaux sur la bande étalon.
- 6. Reproduire les signaux enregistrés dans la phase 6, et vérifier si la courbe de réponse de fréquence se trouve dans les limites indiquées par la courbe de réponse de fréquence globale pour bandes normales (Fig. 10).

 (Si la courbe est comprise dans les spécifications, passer aux phases 7, 8 et 9).
- Si la courbe ne correspond pas aux spécifications du tableau, régler comme suit.

Réglage (A):

Lorsque la courbe dépasse les spécifications du tableau de réponse de fréquence globale (Fig. 10), comme indiqué dans la Fig. 12.

1) Augmenter le courant de

VR302 (canal droit).

polarisation en tournant

VR301 (canal gauche) et

Fig. 12

- 2) Répéter les phases 5 et 6 pour confirmation. (Passer aux phases 7, 8 et 9 si la courbe est maintenant comprise dans les spécifications du tableau de la Fig. 10).
- 3) Si la courbe dépasse encore les spécifications (Fig. 10), augmenter encore le courant de polarisation et répéter les phases 5 et 6.

Réglage (B):

Lorsque la courbe tombe au-dessous des spécifications du tableau de fréquence globale (Fig. 10) comme indiqué dans la Fig. 13.

- Réduire le courant de polarisation en tournant VR301 (canal gauche) et VR302 (canal droit).
- Fig. 13
- 2) Répéter les phases 5 et 6 pour confirmation. (Passer aux phases 7, 8 et 9 si la courbe est maintenant comprise dans les spécifications du tableau de la Fig. 10).
- 5) Si la courbe tombe encore au-dessous des spécifications du tableau (Fig. 10), réduire encore le courant de polarisation et répéter les phases 5 et 6.

7. Insérer la bande d'essai vierge de référence CrO₂ (QZZCRX).

8. Enlever la bande étalon vierge normale et placer la bande étalon QZZCRX (bande CrO₂). Enregistrer les signaux de 50 Hz, 100 Hz, 200 Hz, 500 Hz, 1 kHz, 4 kHz, 8 kHz, 10 kHz et 15 kHz. Reproduire ensuite ces signaux et vérifier si la courbe est comprise dans les limites indiquées par le tableau de réponse de fréquence globale pour les bandes CrO₂ (Fig. 14).

Fig. 14

• Lire la tension aux bornes de la rèsistance R15 (canal gauche) [R16 (canal droit)], et calculer le courant de polarisation à partir de la formule suivante.

Courant de polarisation (A) =
$$\frac{\text{Tension lue sur voltm. elec. (V)}}{10 (\Omega)}$$

Autour de 170 μ A (Position: Normal) VALEUR STANDARD: Autour de 200 μ A (position: CrO₂) Autour de 370 μ A (position: Metal)

@ Gain global

Condition:

Mode d'enregistrement/lecture

Contrôles de niveau d'entrée
 ...MAX

• Niveau d'entrée standard:

MIC $-72 + \frac{5}{3} dB$ (0,25 mV)

LINE IN -24±4 dB (63 mV) Equipement:

- Voltmètre électronique
- Oscillateur AF
 Atténuateur
- Atténuateur
- Oscilloscope
- Résistance (600Ω)

0

- Bande étalon vierge...QZZCRA pour bande normale
- 1. Brancher'les appareils comme indiqué dans la Fig. 15.
- 2. Introduire la bande étalon vierge (QZZCRA).
- 3. Placer l'UNITE en mode d'enregistrement.
- Appliquer le signal de 1 kHz de l'oscillateur AF à la borne LINE IN, par l'intermédiaire de l'atténuateur (-24dB).
- Régler ATT jusqu'à ce que le niveau du moniteur aux sorties de ligne soit de 0,4V.
- 6. Faire jouer la bande enregistrée et s'assurer que le niveau de sortie aux sorties en ligne soit de 0,4 V.
- 7. Si la valeur mesurée n'est pas de 0,42 V,régler au moyen de VR103 (canal gauche) ou VR104 (canal droit).
- 8. Recommencer à partir de la phase (2).

Fig. 15

Vumètre de niveau

Condition:

- Mode d'enregistrement
- Contrôles de niveau d'entrée ...MAX

Equipement:

- Voltmètre électronique
- Atténuateur
- Oscillateur AF
- Oscilloscope
- Résistance (600Ω)
- 1. La connection de l'équipement d'essai est montré sur la Fig. 15.
- 2. Placer l'appareil sur le mode d'enregistrement.
- 3. Transmettre un signal de 1kHz (-24dB) à partir de l'oscillateur d'audiofréquence par l'atténuateur LINE IN.

Réglage à "-40 dB"

- 4. Régler l'atténuateur de sorte que le niveau réglé à la phase 3 soit réduit
- 5. A ce moment, vérifier que le segment –40 dB s'obscurcisse (luminosité intermédiaire entre pleine luminosité et extinction: voir Fig. 17).
- 6. Si la luminosité du segment n'est pas comme celle mentionée à la phase 6 ci-dessus, régler le VR102.

Fig. 17

---- 10 ----

- 7. Rétablir les conditions de la phase 3 (niveau de sortie sur la borne LINE OUT de valeur 0.43 V±0.02V).
- 8. A ce moment, vérifier que le segment 0 dB s'obscurcisse (luminosité intermédiaire entre pleine luminosité et extenction: voir Fig. 18).
- 9. Si la luminosité du segment n'est pas come indiqué ci-dessus, régler le VR201.
- 10. Répéter les réglages et vérifications des phases 3, 4, 5, 6, 7, 8 et 9 deux ou trois fois.

Circuit de réduction de bruit Dolby

Condition:

- Mode d'enregistrement
- Interrupteur de réduction de bruit Dolby...IN/OUT
- Interrupteur de sélection du système de réduction de bruit Dolby...B/C
- Contrôles de niveau d'entrée...MAX
- Contrôle de l'équilibre ...Centre

Equipement:

- Voltmètre électronique
- Oscillateur AF
- Atténuateur
- Oscilloscope
- Résistance (600Ω)

Côté enregistrement

- Vérification des caractéristiques du codeur de type Dolby-B
- 1. Brancher les appareils comme indiqué dans la Fig. 18.
- 2. Placer l'unité sur le mode d'enregistrement. (L'interrupteur de sélection du système de réduction de bruit est sur la position OUT).
- 3. Appliquer un signal de 1kHz à la borne LINE IN.
- 4. Régler l'atténuateur de sorte que le niveau de sortie à la points 7 des circuits intégrés IC401 (canal gauche) et IC402 (canal droit) soit de 12,3mV (375mV).
- 5. Le niveau de sortie à la pointe 21 devrait être de 0dB.
- 6. Placer l'interrupteur de sélection du système de réduction de bruit sur B et s'assurer que le niveau du signal de sortie à la pointe 21 des circuits intégrés IC401 (canal gauche) et IC402 (canal droit) est de +6 dB±1.5 dB
- 7. Placer l'interrupteur de sélection du système de réduction de bruit sur la position OUT et régler la fréquence sur 5kHz. Le niveau du signal de sortie à la pointe 21 devrait être de 0dB (375mV).
- 8. Placer l'interrupteur de sélection du système de réduction de bruit sur la position B et s'assurer que le niveau du signal de sortie à la pointe 21 des circuits intégrés IC401 (canal gauche) et IC402 (canal droit) soit de +8 dB±1,5 dB (948 mV).
- Vérification des caractéristiques du codeur de type Dolby-C
- 1. Répéter les phases 1 à 5 ci-dessus.
- 2. Placer l'interrupteur de sélection du système de réduction de bruit Dolby sur la position C et s'assurer que le niveau de signal de sortie à la pointe 21 des circuits intégrés IC401 (canal gauche) et IC402 (canal droit) soit de 11.5 dB±2 dB (1,4 V).
- 3. Placer l'interrupteur de sélection du système de réduction de bruit sur la position OUT et régler la fréquence sur 5kHz. Le niveau du signal de sortie à la pointe 21 devrait être de 0dB (375mV).
- 4. Placer l'interrupteur de sélection du système de réduction

Fig. 18

de bruit sur la position C et s'assurer que le niveau du signal de sortie à la pointe 21 des circuits intégrés IC401 (canal gauche) et IC402 (canal droit) soit de +8,5 dB ±2 dB (1 V).

Réglage du temps de recouvrement à l'attaque (circuit dbx)

Condition:

- Mode d'enregistrement
- Contrôles de niveau d'entrée...MAX
- Contrôle de l'équilibre ...Centre

Equipement:

- Voltmètre électronique
- Atténuateur
- Oscillateur AF
- Voltmètre CC
- · Sélecteur de réduction de bruit...position de bande dbx ("dbx tape")
- 1. Faire les branchements comme indiqué dans la Fig. 19 et appliquer un signal de 1 kHz -27 dB à la borne LINE IN. Placer le sélecteur de réduction de bruit sur la position de bande dbx ("dbx tape").
- 2. Placer l'unité sur le mode d'enregistrement. Régler l'atténuateur de sorte que le niveau de signal à C541 (canal gauche) et à C542 (canal droit) soit de 300 mV.
- 3. Lire la tension indiquée sur le voltmètre CC.

Valeur de réference: 15±0,5 mV

4. Si la valeur lue ne correspond pas à la valeur de référence, régler VR101.

— 11 —

Sirvase utilizarse junto con manual de servicio para el model No. RS-B55.

ESPECIFICACIONES TECNICAS

Sistema de platina	Platina de cassette estéreo	con dbx	92 dB (promedio A)
Sistema de pistas	4 pistas, 2 canales	con reducción de ruidos Dolby C	75 dB (CCIR)
Cabezas de GRAB/REPRO	D Cabeza de AX	con reducción de ruidos Dolby B	67 dB (CCIR)
Cabezas de borrado	Cabeza de ferrita de 2 entrehierros	sin reducción de ruidos	57 dB (promedio A)
Motores	1 Motor	Variación de velocidad 0,0	7% (WRMS) ±0,13% (DIN)
Frecuencia de polarización	80 kHz	Máximá mejorá de nível de entrádá	(con dbx) 10 dB (1 kHz)
Sistema de borrado	Polarización de CA	Tiempo de avance rápido y rebobin	ado
Velocidad de cinta	4,8 cm/seg.	Approx. 90 s	segundos con cintas C-60
Respuesta de frequencia		Sensibilidad de entrada e impedan	ncia
Metal	20 Hz~19.000 Hz	MIC	0,25 mV/400 Ω~10 kΩ
	30 Hz~18.000 Hz (DIN)	LINE	60 mV/47 kΩ
	40 Hz~17.000 Hz±3 dB	Voltaje de salida e impedancia	
CrO ₂	20 Hz∼18.000 Hz	LINE	400 mV/1,5 kΩ
-	30 Hz~17.000 Hz (DIN)	HEADPHONES	80 mV/8 Ω
	40 Hz~16.000 Hz±3 dB	Consumo de corriente	18 W
Normal	20 Hz∼17.000 Hz	Alimentación de energía	
	30 Hz~16.000 Hz(DIN)	220 V para Euro	ope realizar Royaume-Uni.
	40 Hz~15.000 Hz±3 dB	Dimensions (An.×Al×Prof.)	430×99,5×229 mm
Gámá dinámicá (con dbx)	110 dB (1 kHz)	Peso	3,5 kg
Señal a ruido:			

METODOS DE AJUSTE Y MEDIDA

(niveau de señal = niveal de grabación máx. tipo

NOTAS: Colocar los interruptores y controles en las posiciones siguientes a no ser que se especifique lo contrario:

- · Asegurarse de que las cabezas estén limpias.
- Asegurarse de que los cabrestantes y los rodillos presores estén limpios.
- Temperatura ambiente aconsejable: 20±5°C (68±9°F)
- Interruptor NR: OUT
- Selector de cinta: Normal
- · Selector de entrada: Line in
- · Controles del nivel de entrada: Máximo
- · Control del balance: Centro

A Ajuste de azimut de las cabezas

de cinta CrO₂)

Condición:

• Modo de reproducción

Equipo:

- EVM (Voltímetro electrónico)
- Osciloscopio
- Cinta de prueba (azimut)
 - ...OZZCFM

Ajuste del equilibrio de salida L-CH/R-CH (canal izquierdo/canal derecho)

- 1. Efectuar las conexiones como muestra la Fig. 2.
- 2. Reproducir la señal de 8kHz desde la cinta de prueba (QZZCFM). Ajustar el tornillo (B) en Fig. 3 para obtener niveles L-CH y R-CH de salida máxima. Cuando los niveles de salida de L-CH y R-CH no están al máximo, al mismo tiempo, reajustar de la siguiente forma:
- 3. Girar el tornillo mostrado en Fig. 3 para buscar los ángulos A y C (puntos donde los niveles de salida de cresta se obtienen para los canales derecho y izquierdo). Luego, localizar el ángulo B entre los ángulos A y C, por ej., el punto donde los niveles de salida de R-CH y L-CH estén equilibrados. (Consultar Fig. 3 y 4.)

---- 12 ----

Ajuste de fase de L-CH/R-CH

4. Efectuar las conexiones como muestra la Fig. 5.

5. Reproducir la señal de 8kHz desde la cinta de prueba (QZZCFM). Ajustar el tornillo. (B) de la Fig. 3 de forma que las agujas indicadoras de los dos EVM giren hacia el máximo y se obtenga una forma de onda como la indicada en la Fig. 6 sobre el osciloscopio.

Fig. 7

Ш

0

Contador digital

Velocidad de la cinta

Condición:

Modo de reproducción

Equipo:

Contador digital electrónico

Cinta de prueba...QZZCWAT

Exactitud de la velocidad de cinta

1. La conexión del equipo de prueba se muestra en Fig. 7.

2. Reproducir la cinta de prueba (QZZCWAT 3.000 Hz), y suministrar una señal de reproducción al contador digital electrónico.

Medir esta frecuencia.

Sobre la base de 3.000 Hz, determinar el valor de la exactitud mediante la siguiente fórmula:

Exactitud de la velocidad de cinta = $\frac{f-3.000}{3.000} \times 100(\%)$

donde f = valor medido

5. Tomar medida en la sección media de la cinta.

Valor normal: 0,33% (3000±10 Hz)

6. Si el valor medido no está dentro del valor estándar, ajustarlo usando el ajuste de velocidad de cinta VR

Nota: No utilizar destornilladores metálicos cuando ajuste la precisión de la velocidad de la cinta en este aparato.

Fluctuación de la velocidad de cinta

Efectuar las mediciones de la misma manera que antes (al comienzo, mitad y final de la cinta) y determinar la diferencia entre los valores máximo y minimo. Calcular de la forma siguiente:

Fluctuación de la velocidad de cinta = $\frac{f_1 - f_2}{3.000} \times 100(\%)$

f₁ = valor máximo,

f₂ = valor mínimo

Valor normal: menos de 1%

Respuesta de frecuencia de reproducción

Condición:

• Modo de reproducción

Equipo:

- EVM (Voltímetro electrónico)
- Osciloscopio
- Cinta de prueba...QZZCFM
- 1. La conexión del equipo de prueba se muestra en la Fig. 2. 2. Reproducir la cinta de prueba de respuesta de frecuencia
- (QZZCFM). 3. Medir el nivel de salida en 315Hz, 12,5kHz, 8kHz, 4kHz, 1kHz, 250Hz, 125Hz y 63Hz y comparar cada nivel de salida con 315Hz de frecuencia normal, en LINE OUT.
- 4. Efectuar las medidas para ambos canales.
- 5. Asegurarse de que el valor medido está comprendido dentro de la gama especificada en el gráfico de la respuesta de frecuencia (mostrado en la Fig. 8).

Fig. 8

 Ganancia de reproducción Condición:

Modo de reproducción

Equipo:

- EVM (Voltímetro electrónico)
- Osciloscopio
- Cinta de prueba...QZZCFM

1. La conexión del equipo de prueba se muestra en la Fig. 2.

- 2. Reproduzca la porción de nivel de grabación estándard en la cinta de prueba (QZZCFM 315Hz) y, usando EVM (voltímetro electrónico), mida el nivel de salida en "LINE OUTs" (salidas de línea).
- 3. Efectuar las medidas para ambos canales.

Valor normal: 0,4V±0,5dB (0,02V)

Aiuste

- 1. Si el valor medido no está comprendido dentro del valor normal, ajustar VR5 (L-CH), VR6 (R-CH).
- 2. Despues del ajuste, comprobar de nuevo la "respuesta de frecuencia de reproducción".

Corriente de borrado

Condición:

Modo de grabación

Equipo:

EVM (Voltímetro electrónico)

Osciloscopio

• Cinta de prueba...QZZCRZ para Metal

1. La conexión del equipo de prueba se muestra en la Fig. 9.

2. Insertar la cinta de prueba virgen de referencia metálica (QZZCRZ).

3. Apretar los botones de pausa y grabación.

4. Tomar la lectura del voltaje en EVM y calcular la corriente de borrado mediante la fórmula siguiente:

Voltaje entre terminales de R301 Corriente de borrado (A) = $1(\Omega)$

Valor normal: 155±15mA (Modo de cinta... Metal) (155±15mV)

Fig. 9

5. Si el valor medido no está comprendido dentro del valor normal, ajustar de la forma siguiente:

Ajuste:

- Cortocircuitar los puntos (A) y (B) en el tablero principal del circuito.
- 2. Efectuar la medida de la corriente de borrado.
- 3. Si la corriente de borrado es emnor que 140 mA, cortocircuitar el punto (B).
- 4. Si la corriente de borrado es superior a 170 mA,dejar en circuito abierto los puntos (A).

Respuesta de frecuencia total Condición:

 Modo de reproducción/ grabación

• Control de nivel de entrada ...MAX

Equipo:

EVM (Voltímetro electrónico)

ATT

Oscilador de AF

Osciloscopio

Resistor (600Ω)

· Cinta de prueba (cinta en blanco de referencia) ...QZZCRA para Normal

...QZZCRX para CrO2

...QZZCRZ para Metal

Nota:

Antes de medir y ajustar la respuesta de frecuencia total, asegurarse de la respuesta de frecuencia de reproducción. (Para el método de medida, sírvase consultar la respuesta de frecuencia de reproducción).

(Se fija el compensador de grabación.)

- 1. Efectuar las conexiones tal como se muestra en la Fig. 11.
- 2. Insertar la cinta de prueba virgen de referencia normal (QZZCRA).
- 3. Aplicar una señal de 1kHz desde el oscilador de AF a través de ATT a LINE IN.
- 4. Ajustar el ATT de forma que el nivel de entrada sea de -20dB por debajo del nivel estándar de grabación (nivel estándar de grabación = 0 VU).
- 5. Ajustar el oscilador de AF para generar señales de 50Hz, 100 Hz, 200 Hz, 500 Hz, 1 kHz, 4 kHz, 8 kHz y 12,5 kHz y grabar. estas señales en la cinta de prueba.
- 6. Reproducir las señales grabadas en el paso 6, y comprobar si la curva de respuesta de frecuencia está dentro de los límites mostrados en el gráfico de respuesta de frecuencia total para las cintas normales (Fig. 10).

(Si la curva está dentro de las especificaciones del gráfico, sequir con los pasos 7, 8 y 9).

Si la curva no está dentro de las especificaciones del gráfico, ajustar de la forma siguiente:

Ajuste A:

Cuando la curva excede las especificaciones del gráfico de respuesta de frecuencia total (Fig. 10) tal como se muestra en la Fig. 12.

1) Aumentar la corriente de polarización girando VR301 (L-CH) y, VR302 (R-CH).

2) Repetir los pasos 5 y 6 para confirmación. (Sequir con los pasos 7, 8 y

9 si la curva está ahora dentro de las especificaciones del gráfico de la Fig. 10).

Fig. 12

3) Si la curva todavía excede las especificaciones (Fig. 10), aumentar aún más la corriente de polarización y repetir los pasos 5 y 6.

Gráfico de respuesta de frecuencia de total (Normal)

voltaje de polarización Fig. 11

Para medición de

Para medición de respuesta

Fig. 13

de frecuencia tota

Ajuste B:

Cuando la curva está por debajo de las especificaciones del gráfico de respuesta de frecuencia total (Fig. 10) tal como se muestra en la Fig. 13.

2) Repetir los pasos 5 y 6 para confirmación. (Sequir con los pasos 7, 8 y 9 si la curva está ahora

dentro de las especificaciones del gráfico de la Fig. 10.)

3) Si la curva todavía cae por debajo de las especificaciones del gráfico (Fig. 10), reducir aún más la corriente de polarización y repetir los pasos 5 y

Fig. 14

9. Asegurarse de que las tensión de polarización sean aproximadamente las que se indican a continuación cuando el aparato esté colocado en un modo de cinta distinto.

respuesta de frecuencia total para las cintas de Metal (Fig.

• Medir la tensión en la cabeza utilizando el EVM. • Lea el voltaje en los terminales del registor R15 (L-CH) [R16 (R-CH)] y calcule la corriente de polarización de la fòrmula siguiente.

Corriente de polarización (A)= Valor leído en el EVM (V)

Unos 170 µA (posición: Normal) VALOR NORMAL: Unos 200 μA (posición:CrO₂) Unos 370 µA (posición: Metal)

@ Ganancia total

Condición:

- Modo de reproducción/ grabación
- Controles del nivel de entrada ...MAX.

• Nivel de entrada normal:

MIC -72^{+5}_{-3} dB (0,25 mV) LINE IN -24±4 dB

Equipo:

EVM (Voltímetro electrónico)

Oscilador de AF

Osciloscopio

Resistor (600Ω)

• Cinta de prueba (cinta en blanco de referencia)

...QZZCRA para Normal

1. La conexión del equipo de prueba se muestra en la Fig. 15. 2. Cargar la cinta normal en blanco de referencia (QZZCRA).

3. Poner el aparato en el modo grabación.

4. Suministrar una señal 1kHz (-24dB) desde el oscilador de AF a través de ATT a LINE IN (ENTRADA DE LINEA).

5. Ajuster ATT hasta que el nivel del monitor en "LINE OUTs" sea 0,4 V.

6. Reproduzca la cinta grabada y asegúrese de que el nivel de salida en "LINE OUTs" sea 0.4V.

7. Si el valor medido no es de 0,42V, ajustarlo con VR103 (L-CH), VR104 (R-CH).

8. Repetir desde el punto (2).

Fig. 15

Medidor de nivel

Condición:

Modo de grabación

• Controles del nivel de entrada ...MAX

electrónico)

 EVM (Voltímetro • Oscilador de AF

• ATT

-40 dB

Equipo:

Osciloscopio

dB

• Resistor (600Ω)

12 8 4 000 4 8

1. Comprobar la conexión del equipo que se muestra en la Fig. 15.

2. Colocar la unidad en el modo de grabación.

3. Suministrar una señal de 1kHz (-24dB) desde el oscilador de AF a través del ATT a la ENTRADA DE LINEA (LINE IN).

Ajuste a "-40 dB"

4. Ajustar ATT de forma que el nivel ajustado en el paso 3 se reduzca en 40

5. En este momento, comprobar si el indicador de -40 dB está iluminado a medias (intensidad luminosa intermedia entre intensidad máxima y apagado: ver la Fig. 16).

6. Si el indicador no esta iluminado a medias tal como se ha descrito en el paso 6, ajustar VR102.

Ajuste a "0 dB"

- 7. Volver a las condiciones del paso 3 (hacer que el nivel de salida en LINE OUT sea de 0,43 V±0,02 V).
- 8. En este momento, comprobar si el indicador de 0 dB está iluminado a medias (intensidad luminosa intermedia entre intensidad máxima y apagado: ver la Fig. 17).
- 9. Si no es así, ajustar VR201
- 10. Repetir los ajustes y comprobaciones de los pasos 3, 4, 5, 6, 7, 8 y 9 dos o tres veces.

Fig. 17

O Circuito Dolby de de ruido (NR)

Condición:

 Modo de grabación Interruptor Dolby NR

...IN/OUT • Interruptor selector del

Dolby NR...B/C • Controles del nivel de entrada...MAX

Equipo:

 EVM (Voltímetro electrónico) ATT

Resistor (600Ω)

Oscilador de AF

Osciloscopio

Lado de grabación

• Comprobación de las caracteristicas del condificador tipo Dolby B.

1. Efectuar las conexiones segun se muestra en la Fig. 18.

2. Colocar la unidad en el modo de grabación (el interruptor selector NR está en OUT).

3. Aplicar una señal de 1kHz a LINE IN.

4. Ajustar el ATT de forma que el nivel de salida en el terminal 7 del IC401 (L-CH) e IC402 (R-CH) sea de 12,3 mV.

5. El nivel de salida en el terminal 21 deberá ser de 0dB (375mV).

6. Colocar el interruptor selector NR en B, y asegurarse de que el nivel de la señal de salida en el terminal 21 del IC401 (L-CH) e IC402 (R-CH) sea de +6 dB±1,5 dB (753 mV).

- 7. Colocar el interruptor NR en OUT y ajustar la frecuencia a 5kHz. El nivel de la señal de salida en el terminal 21 deberá ser de 0dB (375mV).
- 8. Colocar el interruptor selector NR en B y asegurarse de que el nivel de la señal de salida en el terminal 21 del IC401 (L-CH) e IC402 (R-CH) sea de +8 dB±1,5 dB (948 mV).
- Comprobación de las características del codificador tipo Dolby C.
- 9. Repetir los pasos 1 a 5 anteriores.
- Colocar el interruptor selector NR en C y asegurarse de que el nivel de la señal de salida en el terminal 21 del IC401
- (L-CH) e IC402 (R-CH) sea de +11,5 dB±2 dB (1,4 V).

 11. Colocar el interruptor selector NR en la posición OUT y ajustar la frecuencia a 5kHz. La señal de salida en el
- terminal 21 deberá ser de 0dB (375mV).

 12. Colocar el interruptor selector NR en C, y asegurarse de que el nivel de la señal de salida del terminal 21 del IC401 (L-CH) e IC402 (R-CH) sea de +8,5 dB±2 dB (1 V).

Fig. 18

Ajuste del tiempo de recuperación de ataque (circuit dbx)

Condición:

Modo de grabación

- Controles del nivel de entrada...MAX
- Control del balance

...Centro

Equipo:

- EVM
- ATT • Oscilador de AF
- Voltimetro de CC
- Selector de reducción de ruido...cinta dbx
- 1. Hacer las conexiones que se muestran en la Fig. 19, y suministrar una señal de 1kHz -27dB desde LINE IN. Colocar tembién el selector de reducción de ruido en la posición de cinta dbx.
- 2. Colocar la unidad en el modo de grabación, y ajustar ATT de forma que el nivel de la señal en C541 (L-CH) y C542 (R-CH) sea de 300 mV.
- 3. Lee el voltaje en el voltimetro de CC.

Valor de referencia: 15±0,5 mV

4. Si el valor medido no está dentro del valor de referencia, ajustar VR101.

Fig. 19

Printed in Japan 850504530 (H) M.S/A.H

■ SAFETY PRECAUTION (This "safety precaution" is applied only in U.S.A.)

- 1. Before servicing, unplug the power cord to prevent an electric shock.
- 2. When replacing parts, use only manufacturer's recommended components for safety.
- 3. Check the condition of the power cord. Replace if wear or damage is evident.
- 4. After servicing, be sure to restore the lead dress, insulation barriers, insulation papers, shields, etc.
- 5. Before returning the serviced equipment to the customer, be sure to make the following insulation resistance test to prevent the customer from being exposed to a shock hazard.

INSULATION RESISTANCE TEST

- 1. Unplug the power cord and short the two prongs of the plug with a jumper wire.
- 2. Turn on the power switch.
- 3. Measure the resistance value with ohmmeter between the jumpered AC plug and each exposed metal cabinet part, such as screwheads antenna, control shafts, handle brackets, etc. Equipment with antenna terminals should read between $3M\Omega$ and $5.2M\Omega$ to all exposed parts. (Fig. A) Equipment without antenna terminals should read approximately infinity to all exposed parts. (Fig. B)

Note: Some exposed parts may be isolated from the chassis by design. These will read infinity.

Resistance = $3M\Omega - 5.2M\Omega$

Resistance = Approx ∞

4. If the measurement is outside the specified limits, there is a possibility of a shock hazard. The equipment should be repaired and rechecked before it is returned to the customer.

OPERATIONS

STANDARD OPERATING PROCEDURES

Note

To remove the cassette while the unit is recording or playing back (including the tune-select mode), be sure to first press the stop button and then press the eject button.

If only the eject button is pressed, without first pressing the stop button, this may cause the tape to become loosely wound or otherwise tangle the tape

PLAYBACK

Tune selection

This feature is used to find the beginning of a tune, either before or after the present position of the tape.

To find a tune which is a few tunes ahead (or before) on the tape. repeat step 2.

The tune-select system will not function correctly under the following conditions:

- •If there is 4 seconds or less between tunes (unrecorded space)
- •If there is excessive noise between tunes
- •If there is a very low-sound level place, or an unrecorded space, during a tune
- •If the tape has been recorded by using fade-in and/or fade-out* techniques

*Fade-in and Fade-out

Fade-in is a recording technique to gradually increase the sound (from 0 to the ordinary level) at the beginning of a recording, and fade-out is to gradually decrease the sound (from the ordinary level to 0) at the end of a recording.

 Music select system manufactured under license of Starr. S.A., Bruxelles, Belguim.

RECORDING

Have you finished reading "STANDARD OPERATING PROCEDURES" on page 3?

2 Begin the sound source to be crophone has been connected. recorded. (Mono type, 1/4 inch phone plug, option) (right) (left) Press. (Record stand-by.) C B da 000 ATS \bigcirc Usually set to the Press. center ("click") (Recording starts.) Adjust the recording level.

When only one microphone is connected at the left or right, the line input at the connected side is cut off. When recording with one microphone, the line inputs at both sides are cut off once the balance control is slid to the side (left or right) at which the mi-

position.

Adjustment of the recording level

The number that you can use as a guide will vary depending upon the type of tape used and the type of noise-reduction system employed for the recording.

Noise Reduction (NR)	Normal Tape CrO₂ Tape	Metal Tape +8 dB	
Dolby NR B • C NR out	+6 dB		
dbx	+8 dB	+12 dB	

•The recording level can also be adjusted by the level bar illumination of the fluorescent level meter.

Record muting

This is a feature which makes it possible to make a non-recorded portion on the tape while a recording is in progress. This feature should be used at the following times:

•To avoid recording unwanted commercial announcements and to avoid recording the noise produced when the phono needle descends to a disc.

During recording...

To make the non-recorded portion of about 4 seconds between tunes:

●Press once. •

(After about 4 seconds, the unit will automatically change to the recording stand-by mode.)

To make a non-recorded portion of more than 4 seconds: Press for more than 4 seconds.

(The unit will automatically change to the recording stand-by mode when the button is released.)

Erasing recorded sounds

When a recording is made, any sounds previously recorded on that portion of the tape are erased, and only the new recording remains. To erase recorded sounds without making a new recording, proceed as follows.

- Set to the minimum (0) position. (Input Level Control)
- 2 Press the "out" Button. (Noise Reduction Switch)
- 3 Begin recording in the usual way.

DISAS	SSEMBLY INSTRUCTIONS		
Ref. No.	How to remove the case cover-	Ref. No.	How to remove the meter P.C.B.
Procedure 1	• Remove the 4 screws (●~●).	Procedure 1 3	 Remove the 5 screws (♠~♠), and then remove the meter angle. Push the 4 tabs aside.
Eject Button Cassett assemb	Case Cover Pull Pull Fig. 1	2	Meter Angle FL mater P.C.B. Tabs Mechanism Unit Front panel assembly Serial number plate
Ref. No.	How to remove the main P.C.B.		Fig. 3
Procedure	•Remove the screw (1), and then remove		
	 Push the 4 tabs aside, and then pull down the back chassis. 	Ref. No.	How to remove the mechanism unit
•	 Remove the 2 screws (②, ③). Remove the 2 screws (④, ⑤), and then remove the earth plate. Pull the main P.C.B. in the direction of arrow ⑥. 	Procedure	 Push the eject button (see fig. 1). Remove the 2 screws (⑤, ⑦) (see fig. 3). Remove the 3 screws (⑥~⑤).
AC power transforme P.C.B.	AC Inlet Tabs Angle Pull Down Main P.C.B.	Tab	Tab Front Panel assembly
	Fig. 2		

Ref. No

Procedu

1 --- 5

* Serial N • The ser

5

previously recorded on only the new recording without making a new

. (Input Level Control)

Reduction Switch)

Ref. No.	How to remove the case cover	Ref. No.	How to remove the meter P.C.B.
Procedure 1	●Remove the 4 screws (●~4).	Procedure	 Remove the 5 screws (↑~⑤), and the remove the meter angle. Push the 4 tabs aside.
Eject Button Cassett assemb	Case Cover Pull Pull Fig. 1	3	Meter Angle FL mater P.C.B. Tabs Mechanism Unit Front pane assembly Serial number plate
Ref. No.	How to remove the main P.C.B.		Fig. 3
Procedure 1—2	 Remove the screw (1), and then remove the AC inlet angle. Push the 4 tabs aside, and then pull down the back chassis. Remove the 2 screws (2), (3). Remove the 2 screws (4), (5), and then remove the earth plate. Pull the main P.C.B. in the direction of arrow (4). 	Ref. No. 4 Procedure 1 4	• Push the eject button (see fig. 1). • Remove the 2 screws (♠, ♠) (see fig. 3). • Remove the 3 screws (♠~♠).
AC power transformer P.C.B.	AC Inlet Tabs Angle Pull Down Main P.C.B.	Tab	Tab Front Panel assembly
	Fig. 2		

* Serial No. Indication

• The serial number plate of this product is attached to back chassis. (shown in fig. 3).

MEASUREMENTS AND ADJUSTMENTS

Fig. 1

NOTES: Set switches and controls in the following positions, unless otherwise specified.

• Make sure heads are clean

- Input level controls: Maximum
- Make sure capstan and pressure roller are
- . Dolby NR switch: OUT
- Judgeable room temperature 20±5°C (68±9°F)

Balance Control: Center

- Condition: Playback mode
- Equipment: • EVM (Electronic Voltmeter)
- Oscilloscope
- Test tape (azimuth)...QZZCFM

L-CH/R-CH output balance adjustment

A Head azimuth

adjustment

1. Make connections as shown in fig. 2.

2. Playback the 8kHz signal from the test tape (QZZCFM). Adjust screw (B) in fig. 3 for maximum output L-CH and R-CH levels. When the output levels of L-CH and R-CH are not at maximum at the same point adjust as follows.

3. Turn screw (B) shown in fig. 3 to find angles A and C (points where peak output levels for left and right channels are obtained). Then. locate angle B between angles A and C, i.e., point where L-CH and R-CH outputs are balanced. (Refer to figs. 3 and 4.)

L-CH/R-CH phase adjustment

4. Make connections as shown in fig. 5.

5. Playback the 8kHz signal from the test tape (QZZCFM). Adjust screw (B) shown in fig. 3 so that pointers of the two EVMs swing to maximum and a lissajous waveform as illustrated in fig. 6 is

ANGLE Fig. 4

Erase current

Equipment:

• EVM (Electronic Voltmeter)

Oscilloscope

...QZZCRZ for Metal

Tape speed

Tape speed accuracy

Condition:

Playback mode

Equipment:

· Digital frequency counter

Test tape...QZZĆWAT

LINE,OUT 0 2. Playback test tape (QZZCWAT 3,000 Hz), and supply playback signal Digital frequency counter

Fig. 7

1. Test equipme

2. Insert the met

3. Press the reco

4. Read voltage

5. If the measur

Adjustment

following the

1. Short points (

2. Measure the e

3. If the erase cu

4. If the erase cu

Overall frequence

response

Before measuri

response make

the method of m

quency response

(Recording equa

1. Make conne

2. Insert the no

3. Supply a 1kl

LINE IN.

4. Adjust ATT

5. Adjust the A

6. Playback the

recording le

200 Hz, 500 l

and record t

frequency re

overall frequ (If the curve

to steps 7, 8

If the curve i

as follows:

Adjustment (

When the curv

overall specif

response cha

shown in fig.

1) Increase b

2) Repeat ste

turning VR VR302 (R-C

(See fig. 1.

confirmation steps 7, 8 curve is no

charted sp

steps 5 and

3) If the curve 10), increa

Note:

Erase cui

Standa

formula:

3. Measure this frequency

4. On the basis of 3,000 Hz, determine value by following formula: f = 3,000

Tape speed accuracy = $\frac{1.0000}{3,000}$ ×100(%) where, f = measured value

5. Take measurement at middle section of tape.

1. Test equipment connection is shown in fig. 7.

to the digital frequency counter.

Standard value: $\pm 0.33\%$ (3000 ± 10 Hz)

6. If measured value is not within the standard value, adjust it by using the tape speed adjustment VR shown in

Note: Please use non metal type screwdriver when you adjust tape speed accuracy on this unit.

Tape speed fluctuation

Make measurements in same manner as above (beginning, middle and end of tape), and determine the difference between maximum and minimum values and calculate as follows:

Tape speed fluctuation = $\frac{f_1 - f_2}{3,000} \times 100(\%)$ $f_1 = \text{maximum value}, f_2 = \text{minimum value}$

Standard value: Less than 1%

Playback frequency response

Condition:

Playback mode

Equipment:

EVM (Electronic Voltmeter)

Oscilloscope

• Test tape...QZZCFM

1. Test equipment connection is shown in fig. 2.

2. Playback the frequency response portion of test tape (QZZCFM).

3. Measure output level at 315Hz, 12.5kHz, 8kHz, 4kHz, 1kHz, 250 Hz, 125 Hz and 63 Hz, and compare each output level with the standard frequency 315Hz, at LINE OUT.

4. Make measurements for both channels.

5. Make sure that the measured values are within the range specified in the frequency response chart (Shown in fig. 8).

Fig. 8

Playback gain

Condition:

Playback mode

• EVM (Electronic Voltmeter)

Oscilloscope

Equipment:

• Test tape...QZZCFM

1. Test equipment connection is shown in fig. 2.

2. Playback standard recording level portion on test tape (QZZCFM 315 Hz) and, using EVM, measure the output level at LINE OUTs.

3. Make measurements for both channels.

Standard value: 0.4V±0.5 dB (0.02V)

1. If the measured value is not within the standard, adjust VR5 (L-CH) or VR6 (R-CH). (See fig. 1.)

2. After adjustment, check "Playback frequency response" again.

Condition:

Record mode

• Test tape (reference blank tape)

Tape speed adjustment VR Tape speed

Condition:

Playback mode

Equipment:

- Digital frequency counter
- Test tape...QZZCWAT

Tape speed accuracy

- 1. Test equipment connection is shown in fig. 7.
- 2. Playback test tape (QZZCWAT 3,000 Hz), and supply playback signal to the digital frequency counter.
- 3. Measure this frequency.
- 4. On the basis of 3,000 Hz, determine value by following formula:

Fig. 7

LINE, OUT

0

Tape speed accuracy =
$$\frac{f-3,000}{3,000} \times 100(\%)$$
 where, f = measured value

5. Take measurement at middle section of tape.

Standard value: $\pm 0.33\%$ (3000 ± 10 Hz)

6. If measured value is not within the standard value, adjust it by using the tape speed adjustment VR shown in

Note: Please use non metal type screwdriver when you adjust tape speed accuracy on this unit.

Tape speed fluctuation

Make measurements in same manner as above (beginning, middle and end of tape), and determine the difference between maximum and minimum values and calculate as follows:

Tape speed fluctuation =
$$\frac{f_1 - f_2}{3,000} \times 100(\%)$$
 $f_1 = \text{maximum value}, f_2 = \text{minimum value}$

Standard value: Less than 1%

Playback frequency response

Condition: · Playback mode Equipment:

- EVM (Electronic Voltmeter)
- Oscilloscope
- Test tape...QZZCFM

1. Test equipment connection is shown in fig. 2.

- 2. Playback the frequency response portion of test tape (QZZCFM).
- 3. Measure output level at 315Hz, 12.5kHz, 8kHz, 4kHz, 1kHz, 250 Hz, 125 Hz and 63 Hz, and compare each output level with the standard frequency 315Hz, at LINE OUT.
- 4. Make measurements for both channels.
- 5. Make sure that the measured values are within the range specified in the frequency response chart (Shown in fig. 8).

Fig. 8

Playback gain

Condition: Playback mode

Equipment:

- EVM (Electronic Voltmeter)
- Oscilloscope
- Test tape...QZZCFM

1. Test equipment connection is shown in fig. 2.

- 2. Playback standard recording level portion on test tape (QZZCFM 315 Hz) and, using EVM, measure the output level at LINE OUTs.
- 3. Make measurements for both channels.

Standard value: 0.4V±0.5 dB (0.02V)

Adjustment

- 1. If the measured value is not within the standard, adjust VR5 (L-CH) or VR6 (R-CH), (See fig. 1.)
- 2. After adjustment, check "Playback frequency response" again.

Erase current

Condition: Record mode

Equipment:

- EVM (Electronic Voltmeter)
- Oscilloscope
- Test tape (reference blank tape)
 - ...QZZCRZ for Metal

— 9 —

- 1. Test equipment connection is shown in fig. 9.
- 2. Insert the metal tape.
- 3. Press the record and pause buttons.

following the adjustment instructions.

4. Read voltage on EVM and calculate erase current by following

Erase current (A) = $\frac{\text{Voltage across resistor R301}}{\text{Voltage across resistor R301}}$

Standard value: 155±15 mA (Metal) (155±15 mV)

5. If the measured value is not within the standard value adjust it by

Fig. 9

Adjustment

- 1. Short points (A) and (B) on the main circuit board. (See fig. 1)
- 2. Measure the erase current.
- 3. If the erase current is less than 140 mA, open the DOWN point (B)
- 4. If the erase current is more than 170 mA, open the UP point (A).

Overall frequency response

Condition:

- Record/playback mode
- Input level controls...MAX

 Resistor (600Ω) Equipment:

- Test tape EVM
- (Electronic Voltmeter) (reference blank tape)
- ATT
 - ...QZZCRA for Normal
- AF oscillator
- ...QZZCRX for CrO2
- ...QZZCRZ for Metal Oscilloscope

Note:

Before measuring and adjusting, the overall frequency response make sure of the playback frequency response (For the method of measurement, please refer to the playback fre- +6dB quency response).

(Recording equalizer is fixed)

- 1. Make connections as shown in fig. 11.
- 2. Insert the normal reference blank test tape (QZZCRA).
- 3. Supply a 1kHz signal from the AF oscillator through ATT to LINE IN.
- 4. Adjust ATT so that input level is -20dB below standard recording level (standard recording level = 0 VU).
- 5. Adjust the AF oscillator frequency to 1kHz, 50Hz, 100Hz, 200Hz, 500Hz, 4kHz, 8kHz, 10kHz and 12.5kHz signals, and record these signals on the test tape.
- 6. Playback the signals recorded in step 6, and check if the frequency response curve is within the limits shown in the, overall frequency response chart for normal tapes (fig. 10). (If the curve is within the charted specifications, proceed to steps 7, 8 and 9.)

If the curve is not within the charted specifications, adjust as follows:

Fig. 10

Fig. 11

Adjustment (A):

When the curve exceeds the Fr overall specified frequency response chart (fig. 10) as shown in fig. 12. 1) Increase bias current by

- turning VR301 (L-CH) and VR302 (R-CH). (See fig. 1.)
- 2) Repeat steps 5 and 6 for confirmation (Proceed to steps 7, 8 and 9 if the curve is now within the charted specifications as shown fig. 10.)

3) If the curve still exceeds the specifications (fig. 10), increase bias current further and repeat steps 5 and 6.

Fig. 12

1) Reduce bias current by turning VR301 (L-CH) and VR302 (R-CH). 2) Repeat steps 5 and 6 for

confirmation (Proceed to steps 7, 8 and 9 if the curve is now within the charted specifications as shown fig. 10.)

3) If the curve still falls below the charted specifications (fig. 10), reduce bias current further and repeat steps 5 and 6.

- 7. Insert the CrO2 tape.
- Change test tape to CrO₂ reference blank test tape (QZZCRX), and record 1kHz, 50Hz, 100Hz, 200Hz, 500Hz, 4kHz, 8kHz, 10kHz and 15kHz signals. Then, playback the signals and check if the curve is within the limits shown in the overall frequency response chart for CrO_{2+6dB} tapes (fig. 14).
- 9. Change test tape to metal reference blank test tape +2dB (QZZCRZ), and record 1 kHz, 50 Hz, 100 Hz, 200 Hz, 500 Hz, 4 odB kHz, 8kHz, 10 kHz, 12.5 kHz and 15 kHz signals. Then, -2dB playback the signals and check if the curve is within the limits -4dB shown in the overall frequency response chart for metal -6dB tapes (fig. 14).
- 10. Confirm that bias currents are approximately as follows when the UNIT is set at different tape mode.
 - Read voltage at the terminals of resistor R15 (L-CH) {R16 (R-CH)}, and calculate bias current by following formula:

Bias current (A) =
$$\frac{\text{Value read on EVM (V)}}{10 (\Omega)}$$

Reference value: arou

around 170 μ A (Normal position) around 200 μ A (CrO₂ position) around 370 μ A (Metal position)

Fig. 14

@ Overall gain

Condition:

- Record/playback mode
- Input level controls...MAX
- Standard input level;

MIC -72 + 5 dB dB (0.25 mV)

LINE IN -24±4 dB (63 mV) Equipment:

- EVM (Electronic Voltmeter)
- ATT
- Resistor (600Ω)
- Test tape (reference blank tape) ...QZZCRA for Normal
- Test equipment connection is shown in fig. 15.
 Insert the normal reference blank tape (QZZCRA).
- 3. Place UNIT into record mode.
- Supply a 1kHz signal through ATT (-24dB) from AF oscillator, to LINE IN.
- 5. Adjust ATT until monitor level at LINE OUT becomes 0.4 V \pm 0.5 dB (0.02 V)
- 6. Playback recorded tape, and make sure that the output level at LINE OUT becomes 0.4 V \pm 0.5 dB (0.02 V)
- 7. If measured value is not 0.4 V±0.5 dB (0.02 V), adjust it by using VR103 (L-CH) or VR104 (R-CH).
- 8. Repeat from step (2).

Fluorescent meter

Condition:

- Record mode
- Input level controls...MAX
- Equipment:
- EVM (Electronic Voltmeter)ATT
- AF oscillatorOscilloscope

AF oscillator

Oscilloscope

- Resistor (600Ω)
- 1. Make connections as shown in fig. 16.
- In the recording pause mode, apply 1kHz (-24dB) to LINE IN.
- 3. Adjust ATT so that output level at LINE OUT is $0.4 \text{ V} \pm 0.5 \text{ dB}$ (0.02 V).

- 4. Adjust ATT so that the level adjusted at step 3 is reuced by 40 dB.
- 5. At this time, check that -40 dB indicator is dimmed (intermediate brightness between full brightness and light-out: See fig. 17).
- 6. If the indicator is not lighted halfway as described in step 6, adjust VR102.

Fig. 16

0 dB adjustment

- 7. Restore the condition of step 3 (set output level to 0.4V±0.5dB (0.02V) at LINE OUT.
- 8. At this time, check that 0 dB indicator is dimmed (intermediate brightness between full brightness and light-out (See fig. 18.)
- 9. If improper, adjust VR201.
- 10. Repeat adjustments at steps 3, 4, 5, 6, 7, 8 and 9 two or three times.

Fig. 18

Dolby NR circuit

Condition:

- Record mode
- Dolby NR switch...IN/OUT
- · Dolby NR select switch ...B/C
- Input level controls...MAX

Equipment:

- EVM (Electronic Voltmeter)
- AF oscillator
- Oscilloscope
- ATT Resistor (600Ω)

Record side

Check of the Dolby-B type encoder characteristics

- 1. Make connections as shown in fig. 19.
- 2. Set the unit to the record mode. (NR select switch is OUT.)
- 3. Apply a 1kHz signal to LINE IN.
- Adjust the ATT so that the output level at Pin 7 of IC 401 (L-CH) and IC 402 (R-CH) is 12.3 mV.
- 5. The output level at pin 21 should be 0dB. (375mV).
- 6. Set the NR select switch to B, and make sure that the output signal level at pin 21 of IC 401 (L-CH) and IC 402 (R-CH) is +6±1.5 dB. (753 mV)
- 7. Set the NR select switch to OUT, and adjust the frequency to 5kHz. The output signal level at pin 21 should be 0dB. (375mV).
- 8. Set the NR select switch to B and make sure that the output signal level at pin 21 of IC 401 (L-CH) and IC 402 (R-CH) is $+8\pm1.5$ dB. (948mV)

· Check to Dolby-C type encoder characteristics

- 1. Repeat steps 1-5 above.
- 2. Set the NR select switch to C and make sure that the output signal level at pin 21 of IC 401 (L-CH) and IC 402 (R-CH) is $+11.5\pm2dB$. (1.4V)
- 3. Set the NR select switch to OUT and adjust the frequency to 5kHz. The output signal at pin 21 should be 0dB.
- 4. Set the NR select switch to C and make sure that the output signal level at pin 21 of IC 401 (L-CH) and IC 402 (R-CH) is $+8.5\pm2dB$. (1V)

Fig. 19

Attack recovery time adjustment (dbx circuit)

Condition:

- Record mode
- Input level control...MAX
- · Noise reduction selector

...dbx

Equipment:

- EVM (Electronic Voltmeter)
- ATT
- AF oscillator
- DC voltmeter
- 1. Make the connections as shown in fig. 20 and apply 1kHz -27dB signal from LINE IN, and set the noise reduction selector to dbx position.
- 2. Set the unit to record mode, adjust ATT so that the signal level at C541 (L-CH) and C542 (R-CH) is 300 mV.
- 3. Read voltage on DC volt meter.

Reference value: 15±0.5mV

4. If measured value is not within reference, adjust VR101 (shown in fig. 1).

Fig. 20

■ MICROCOMPUTER TERMINAL FUNCTION AND WAVE FORM

(IC901: LM6417E1825) * This micro-computer is used for mechanical operation.

Terminal No.	Symbol	Name	Function/operation
1.	PD¢	Rec Indication Output	"L" level on receiving REC command. "H" level Apporx. 0.2sec. after STOP command. "L" level immediately after power ON in Timer REC. Rec Command Stop Command H Approx. 0.2sec. 0V L
2.	PD1	Rec Mute	In REC PAUSE mode, "H" with AUTO REC MUTE button pressed; "L" with the button released. In REC play mode, (1) "H" with AUTO REC MUTE button pressed; the mode changes to REC PAUSE, Approx. 4.5 sec. later, and then the level is "L". Auto Rec Mute Command +5V Approx. 4.5 sec. Rec Play Mode Rec Pause Mode
			 (2) When AUTO REC MUTE button is pressed for Approx. 4.5 sec. or over, the mode changes to REC PAUSE with AUTO REC MUTE button released, and then the level is "L". (3) When PLAY button is pressed within Approx. 4.5 sec. after pressing AUTO REC MUTE button, the mode changes to REC PLAY, and then the level is "L".
3.	PD2		Non Connection.
4.	PD3	Play Indication Output	"L" on receiving play command. "H" Approx. 0.2sec. after STOP command. "L" immediately after POWER ON in Timer Play. Play Command Stop Command Approx. 0.2sec. U
		Pause Indication Output	"L" and "H" are repeated at Approx. 1sec. cycle on receiving PAUSE command. "H" on receiving STOP command. Pause Command Stop Command H Approx. Approx. Approx. O.5sec. 0.5sec. 0.5sec. Stop Command H Approx. Approx. Approx. O.5sec. O.5sec. O.5sec.
		MS Indication Output	• "L" and "H" are repeated at Approx. 0.16sec. cycle on receiving MS command. MS Command +5V Approx. 0.16sec — 13 ——

RS-B55/RS-955

Terminal No.	Symbol	Name	Function/operation
5.	osc	Clock Oscillation	Clock oscillation of about 120kHz. Note: Do not connect anything to this terminal during other measurement because it will be otherwise affected by the probe. 3V 0V
6.	РЕф	Audio Muting	Shifted from STOP to PLAY, "L" Approx. 0.7 sec. after PLAY command. Shifted from PAUSE to PLAY, "L" Approx. 0.5 sec. after PLAY command. Shifted from STOP to REC PAUSE, "L" Approx. 0.5 sec. after REC command. Shifted from MS to PLAY, "L" Approx. 0.8 sec. after PLAY command.
			Play Command Stop/ff/Rew/Play Pause Command H OV L Approx. 0.7 sec.
7.	PE1	Motor Output	• "H" in STOP mode, "L" in other modes.
8.	PE2	FF/REW Plunger Output	• "L" for a short time during FF/REW/MS changeover. (1) STOP → FF → STOP FF Command Approx. 0.3 sec. 0.18 sec. Stop Mode FF Mode (2) STOP → REW → STOP
			Rew Command +5V H Approx. 0.18sec. Stop Mode L Rew Mode L
			FF Command Play/Stop Command H Approx. 0.3 sec. Play Mode L MS Mode L (4) PLAY → MS (REW) → PLAY/STOP
			Rew Command Play/Stop Command H Approx. 0.05 sec. Play Mode L MS Mode L

---- 14 ----

Terminal No.	Symbol	Name	Function/operation
9.	PE3	PLAY Plunger Output	 "L" for a short time during PLAY/REC PLAY/MS changeover. (1) STOP → PLAY → STOP/PAUSE
			Play Command Stop/Pause Command
			+5V H H H Approx. Approx. Approx.
			Approx. 0.18 sec. 0.22 sec. 0.05 sec.
			Stop Mode L Play Mode L Stop Mode
			(2) PAUSE/REC PAUSE → PLAY/REC PLAY
			Play Command
			+5V H
			Approx. 0.22 sec.
			Pause Mode L Play/Rec Play Mode
			(3) MS (FF/REW) → PLAY
			Play Command
			+5V H H H H Approx. Approx.
			0.05sec. 0.18sec. 0.22sec.
			MS Mode L L Play Mode
			(4) MS (FF/REW) → STOP
			Stop Command
			+5V H H
			Approx. 0.05 sec.
			MS Mode L Stop Mode
10.	TEST	TEST	Connection to GND.
11.	Vss		Connection to GND.
12.	INT	Reel Table Pulse Input	 Rotation of reel table (with ring, magnet) is detected by Hall IC (DN6838-S) to judge the tape end. Rectangular wave input in PLAY, FF, REW, MS.
13.	RST	Reset Terminal	 Used to reset the microcomputer when power is thrown in. Reset at "L" level (0.3 volt or less).
14.	VDD	Power Supply	Operative on 5.2 volts.
		Terminal	
15.	РАφ	Key Input [REW (S706)] [TIMER (S1)]	• Input of REW, Timer REC, MS, FF/REW switch. • The above-mentioned inputs are read in accordance with PC¢, PC1, PC2, PC3 scanning.
16.	PA1	Key Input FF (S707) TIMER (S1) PLAY (S901)	 Input of FF, Timer PLAY, switch. The above-mentioned inputs are read in accordance with PC¢ PC1, PC2 scanning.

Terminal No.	Symbol	Name	Function/operation
17.	PA2	Key Input PAUSE (S708) REC (S710) AUTO REC MUTE (S705) REC INH. (S904)	 Input of PAUSE, REC, AUTO REC MUTE, REC INH. switch. The above-mentioned inputs are read in accordance with PCφ, PC1, PC2, PC3 scanning.
18.	PA3	Key Input PLAY (S709) STOP (S711)	Input of PLAY, STOP switch. The above-mentioned inputs are read in accordance with PC1, PC2 scanning.
19.	РСф	Input Switch Scanning	Approx. 23msec. ————————————————————————————————————
20.	PC1		0.5 msec MS Scanning
21.	PC2		6msec.
22.	PC3		Note: (1) During scan signal measurement, dull up between pins (9) ~ (22) and V _{DD} with about 10kΩ resistance. (2) There are 2 types of scans of PC3. (For MS detection)

(IC701: LM6417E589)

* This micro-computer is used for tape counter operation.

Terminal No.	Symbol	Name	Function/operation
1.	$PD\phi$	FL Counter Segment a	Number indication Segment a Segment b
2.	PD 1	FL Counter Segment b	Segment e Segment c Segment g Segment d 5V ON
3.	PD 2	FL Counter Segment c	Running indication Segment g OFF
4.	PD 3	FL Counter Segment d	Segment c Segment d
5.	osc	Oscillation Terminal	OV Approx. 6µsec. OClock oscillation of about 120 kHz. Note) Do not connect anything to this terminal during other measurement because it will be otherwise affected by the probe.
6.	РΕφ	FL Counter Segment e	• Refer to PD φ∼PD 3.
7.	PE 1	FL Counter Segment f	
8.	PE 2	FL Counter Segment g	
9.	PE 3		Non connection.
10.	TEST	TEST	Connection to GND.
11.	Vss		Connection to GND.
12.	INT		• Non connection.
13.	RST	Reset Terminal	Used to reset the microcomputer when power is thrown in. Reset at "L" level (0.3 Vod or less).

Terminal No.	Symbol	Name	Function/operation
14.	Vod	Power Supply Terminal	Operative on approx. 5.2 volts.
15.	ΡΑφ		Non connection
16.	PA 1	Counter Reset Input	• In "L" level, counter indication is reset to 888
17.	PA 2	Counter Up/Down Input	 Up counting with "H" level. Down counting with "L" level.
18.	PA 3	Reel Table Pulse	 The rotation of reel table (with ring magnet) is detected by Hall IC (DN 6838-S), and the pulses are used to carry up or down for the counter. With the takeup reel table rotated twice, the count number changes, and with it rotated 1/2, the running indication changes by one.
19.	РСφ	FL Grid 1 & Input Scan	[H] [L]
20.	PC 1	FL Grid 2 & Input Scan	
21.	PC 2	FL Grid 3 & Input Scan	
22.	PC 3	FL Grid 4 & Input Scan	Approx. 7msec.
			Grid 4 Grid 3 Grid 2

BLOCK DIAGRAM

■ ELECTRICAL PARTS LIST

NOTES:	
RESISTORS	CAPACITORS
ERDCarbon	ECBACeramic
ERGMetal-oxide	ECG□Ceramic
ERSMetal-oxide	ECK□Ceramic

ECQEPolyester film ECQF Polypropylene ECEDElectrolytic EROMetal-film ECC□.....Ceramic ECE□N ...Non polar electrolytic ERX.....Metal-film ECF□Ceramic ECQSPolystyrene ...Solid QCSTantalum ...Cement

Areas

- [M] For U.S.A.
- * [E] For European areas except United Kingdom.
- * [EK] For United Kingdom.
- * [XA] For Asia, Latin America, Middle East and Africa.
- * [XL] For Australia.
- * [EGA] For F.R. Germany.
- * [EH] For Holland.

REPLACEMENT PARTS LIST

Important safety notice Components identified by Δ mark have special characteristics important for safety. When replacing any of these components, use only manufacturer's specified parts.

• RESISTORS

ERF...

						T	1				$\overline{}$
Ref. No.	Part No.	Value	Ref. No.	Part No.	Value	Ref. No.	Part No.	Value	Ref. No.	Part No.	Value
R 1, 2	ERD25TJ223	22 k	R 136 [EK][XL]	ERG1ANJP560	56	R 247	ERD25FJ103	10k	R 525, 526	ERD25FJ102	1k
R 3, 4	ERD25TJ473	47 k				R 248	ERD25TJ223	22 k	R 527, 528	ERD25FJ103	10k
R 5, 6	ERD25TJ273	27 k	R 137, 138	ERD25FJ332	3.3 k				R 529, 530	ERD25TJ333	33 k
R 7, 8, 9, 10	ERD25FJ102	1 k	R 139, 140	ERD25FJ562	5.6 k	R 249	ERD25FJ391	390	R 531, 532	ERD25FJ151	150
R 11, 12	ERD25TJ154	150 k	R 141, 142	ERD25FJ121	120	R 250	ERD25FJ103	10 k	R 533, 534	ERD25FJ472	4.7k
-R 13	ERD25TJ124	120 k	R 143, 144	ERD25FJ470	47	R 251, 252	ERD25TJ223	22 k	R 535, 536	ERD25TJ153	15k
R 14	ERD25TJ224	220 k	R 201	ERD25FJ272	2.7 k	R 254	ERD25FJ103	10 k	11 555, 550	LIID2310133	151
R 15, 16	ERD25FJ100	10	R 202	ERD25FJ101	100	R 255	ERD25TJ684	680 k	R 537, 538	ERD25TJ154	150k
R 17, 18	ERD25FJ472	4.7 k	R 203	ERD25TJ683	68 k	R 256	ERD25FJ471	470	R 539, 540	ERD25TJ244	240k
R 19	ERD25FJ561	560	R 204	ERD25TJ393	39 k	R 257	ERD25FJ472	4.7k	R 541, 542	ERD25FJ472	4.7k
1			R 205	ERD25FJ103	10 k	R 258	ERD25FJ182	1.8k	R 543, 544,	END23FJ472	4.7 K
R 20	ERD25FJ472	4.7 k	R 206	ERD25TJ393	39 k	R 259, 260	ERD25TJ104	100 k		EDD25T 1452	451
R 21, 22	ERD25TJ473	47k	111 200	LIID2310333	331	R 261, 262	ERD25FJ102	160 K	545, 546	ERD25TJ153	15k
R 23	ERD25TJ223	22 k	R 207	ERD25TJ333	33 k	n 201, 202	END23FJ 102	FK	R 547	ERD25FJ102	1k
R 24	ERD25FJ121	120	R 208	ERD25FJ103	10k	D 262	EDDOCE 1404	400	R 549, 550	ERD25FJ332	3.3k
R 25, 26	ERD25TJ123	12k	R 209, 210, 211			R 263	ERD25FJ101	100	R 551, 552	ERD25TJ104	100 k
R 27, 28	ERD257J123	100			22 k	R 301	ERD25FJ1R0	1.0	R 553, 554	ERD25FJ102	1k
R 29, 30	ERD25FJ101		R 212	ERD25TJ153	15 k	R 302, 303	ERD25TJ223	22 k	R 555, 556	ERD25FJ101	100
R 31, 32		1 k	D 040 /5/5/11			R 304, 305	ERD25FJ8R2	8.2	R 557, 558	ERD25FJ822	8.2 k
	ERD25FJ271	270	R 213 [E][EH]			R 306	ERD25FJ222	2.2 k			
R 33, 34	ERD25TJ183	18 k	[EGA][XA]	ERD25FJ102	1 k	R 307	ERD25FJ392	3.9 k	R 559	ERD25FJ222	2.2k
R 35, 36	ERD25TJ824	820 k	R 213, 214			R 308	ERD25FJ272	2.7 k	R 560	ERD25TJ333	33 k
E 07 00			[EK][XL]	ERD25FJ151	150	R 309	ERD25FJ182	1.8 k	R 561	ERD25TJ473	47k
R 37, 38	ERD25TJ123	12 k				R 310	ERD25FJ152	1.5 k	R 562	ERD25FJ822	8.2 k
R 39, 40	ERD25TJ225	2.2 M	R 215, 216	ERD25TJ223	22 k	R 401, 402	ERD25FJ242	2.4 k	R 563, 564	ERD25TJ153	15k
R 41, 42	ERD25TJ224	220 k	R 217	ERD25FJ103	10 k				R 601, 602	ERD25FJ391	390
R 43, 44	ERD25TJ183	18 k	R 218	ERD25TJ333	33 k	R 403, 404	ERD25FJ562	5.6 k	R 604, 605	ERQ14LKR20P	0.2
R 45	ERD25FJ103	10 k	R 219	ERD25FJ103	10 k	R 405, 406	ERD25FJ332	3.3 k	R 701, 702	ERD25TJ333	33 k
R 47, 48	ERD25FJ472	4.7 k	R 220	ERD25FJ101	100	R 407, 408	ERD25FJ102	1k	R 703	ERD25FJ681	680
R 101, 102	ERD25TJ183	18 k	R 221, 222	ERD25TJ183	18k	R 409, 410	ERD25TJ333	33 k	R 704	ERD25FJ331	330
R 103, 104	ERD25FJ272	2.7 k	R 223	ERD25FJ103	10 k	R 411, 412	ERD25TJ823	82 k	1		000
R 105, 106	ERD25TJ103	10 k	R 224	ERD25TJ333	33 k	R 413, 414	ERD25FJ471	470	R 705, 706	ERD25FJ181	180
R 107, 108	ERD25FJ222	2.2 k	R 225	ERD25TJ183	18k	R 415, 416	ERD25FJ512	5.1 k	R 707	ERD25TJ563	56 k
			R 226	ERD25FJ103	10 k	R 417, 418	ERD25FJ682	6.8 k	R 709	ERD25FJ392	3.9 k
R 109, 110	ERD25FJ822	8.2 k				R 419, 420	ERD25FJ222	2.2 k	R 710	ERD25FJ472	4.7k
R 111	ERD25FJ222	2.2 k	R 227	ERD25FJ332	3.3 k	R 421, 422	ERD25TJ823	82 k	R 712	ERD25FJ332	3.3k
R 112, 113	ERD25TJ333	33 k	R 228	ERD25FJ562	5.6 k	(2.), 122	21102010020	OLK	R 713	ERD25TJ273	27k
R 114	ERD25TJ563	56 k		ERD25FJ122	1.2k	R 423, 424	ERD25FJ331	330	R 714, 715,	LND2313273	2/ 1
R 119, 120	ERD25FJ472	4.7 k	R 230	ERD25FJ562	5.6 k	R 425, 426	ERD25FJ101	100	716, 717	ERD25TJ333	221
R 121, 122	ERD25FJ152	1.5 k	R 231	ERD25FJ681	680	R 427, 428.	LIND231 3 10 1	100	R 718		33k
R 123, 124	ERD25FJ390	39	R 232	ERD25FJ102	1 k	429, 430	ERD25TJ684	680 k		ERD25FJ103	10 k
R 125, 126	ERD25FJ103	10k	R 233	ERD25TJ104	100 k	R 502	ERD25TJ123		R 719	ERD25FJ181	180
R 127, 128	ERD25FJ272	2.7k	R 234	ERD25TJ154	150 k	R 503, 504		12k	R 720, 721,		
R 129, 130	ERD25FJ392	3.9k	R 235	ERD25FJ332	3.3 k		ERD25FJ102	1 k	722, 723	ERD25TJ333	33 k
111 123, 130	LI10231 0332	J.5K	R 236	ERD25FJ103	3.3 K	R 505, 506,	EDDOST 1404				1
R 131, 132	ERD25FJ332	3.3 k	H 230	END25FJ 103	IUK	507, 508	ERD25TJ104	100 k	R 724	ERD25FJ331	330
R 134	ERD25FJ332	3.3 K	D 227	EDDOET 1999	221	R 510	ERD25FJ103	10k	R 725	ERD25TJ473	47 k
11134	EUD52L1 10 1	100	R 237	ERD25TJ333	33 k	R 511, 512	ERD25TJ563	56 k	R 901	ERDS2TJ102	1k
D 125 (E)(E)			R 238, 239	ERD25FJ103	10 k	R 513, 514	ERD25TJ223	22 k	R 902	ERDS2TJ683	68 k
R 135 [E][EH]	EDDC4EV 1470	47	R 240	ERD25TJ563	56 k	R 515, 516	ERD25FJ332	3.3 k	R 903	ERDS2TJ393	39 k
[EGA][XA]	ERDS1FVJ470	47	R 241, 242	ERD25FJ471	470				R 904	ERDS2TJ220	22
R 135 [EK][XL]	ERG1ANJP470	47	R 243	ERD25FJ103	10 k	R 517, 518	ERD25TJ563	56 k	R 905, 906	ERDS2TJ102	1k
D 400 / FW			R 244	ERD25TJ223	22 k	R 519, 520	ERD25TJ153	15k	R 907	ERDS2TJ222	2.2k
R 136 [E][EH]			R 245	ERD25FJ103	10 k	R 521, 522	ERD25FJ472	4.7 k	R 908, 909	ERDS2TJ472	4.7 k
[EGA][XA]	ERDS1FVJ560	56	R 246	ERD25TJ223	22 k	R 523, 524	ERD25FJ822	8.2 k			- 1

CAPACITORS

Ref. No.	Part No.	Value	Ref. No.	Part No.	Value	Ref. No.	Part No.	Value	Ref. No.	Part No.	Value
C 1, 2	ECEA1EU4R7	4.7	C 25	ECEA0JU102	1000	C 117, 118	ECQB1H822JZ	0.0082	C 207	ECEA1CU100	10
C 3, 4	ECCD1H220K	22 p	C 26	ECEA1CU101	100	C 119, 120	ECQB1H472JZ	0.0047	C 208	ECEA1EU3R3	3.3
C 5, 6	ECEA1HU010	1	C 27, 28, 29,			C 121, 122	ECEA1HUR33	0.33	C 209	ECEA1CU100	10
C 7, 8	ECCD1H101K	100 p	30, 31	ECKD1H103ZF	0.01	C 123, 124	ECEA1AU471	470	C 211, 212	ECEA1HU4R7	4.7
C 9, 10	ECKD2H121KB	120 p	C 101, 102,			C 125, 126	ECEA1CU100	10	C 213	ECEA1CU220	22
C 11, 12	ECKD1H561KB	560 p	103, 104	ECEA1CU100	10	C 127, 128	ECKD1H103ZF	0.01	C 301, 302	ECCD1H101K	100 p
C 13, 14	ECKD1H471KB	470 p	C 105	ECEA0JU331	330	C 201	ECFDD822KVY	0.0082	C 303	ECQP1153JZ	0.015
C 15, 16	ECEA0JU470	47	C 107, 108	ECQB1H183JZ	0.018	C 202	ECEA1CU100	10			0.010
C 17, 18	ECCD1H121K	120 p	C 109, 110	ECKD1H102KB	0.001	C 203	ECCD1H470K	47 p	C 304	ECEA1HU4R7	4.7
C 19, 20	ECQB1H392JZ	0.0039	C 111, 112,						C 305	ECFDD392KVY	0.0039
			113, 114	ECEA1HU010	1	C 204	ECEA1HU010	1	C 306	ECFDD472KVY	0.0047
C 21, 22	ECEA1HU010	1				C 205	ECQB1H103JZ	0.01	C 307	ECFDD223KVY	0.022
C 23, 24	ECQM1H224JZ	0.22	C 115, 116	ECQB1H472JZ	0.0047	C 206	ECEA1HUR47	0.47	C 308	ECFDD472KVY	0.0047

Ref. №.	Part No.	Value	Ref. No.	Part No.	Value	Ref. No.	Part No.	Value	Ref. No.	Part No.	Value
C 309	ECKD1H102KB	0.001	C 425, 426	ECKD1H152KB	0.0015	C 527, 528	ECQB1H223JZ	0.022	C 607	ECKD2H682PE	0.0068
C 310 [EK][XL]	ECEA1HUR33	0.33	C 427, 428	ECKD1H122KB	0.0012	C 529, 530	ECQB1H332JZ	0.0033			
C 311	ECKD1H102KB	0.001	C 502	ECEA1CU100	10	C 531	ECEA1CU100	10	C 608	ECEA1CU220	22
C 401, 402	ECCD1H820K	82p	C 503, 504	ECEA1HUR22	0.22	C 532	ECEA1HU010	1	C 609	ECKDKC103PFZ	0.01
C 403, 404	ECQB1H472JZ	0.0047	C 505, 506	ECEA50MR68R	0.68	C 533, 534	ECQB1H332JZ	0.0033	C 702	ECCD1H221K	220 p
			C 507, 508	ECCD1H471K	470 p	C 535, 536	ECEA1CU100	10	C 703	ECEA1HU010	1
C 405, 406	ECEA1CU100	10	C 509, 510	ECQB1H223JZ	0.022				C 704	ECQM1H473JZ	0.047
C 407, 408	ECQM1H473JZ	0.047	C 511, 512	ECEA1CU100	10	C 537, 538	ECCD1H331K	330 p	C 705	ECQM1H104JZ	0.1
C 409, 410	ECQM1H224JZ	0.22	C 513, 514	ECQM1H333JZ	0.033	C 539, 540	ECEA1HUR33	0.33	C 707	ECEA1CU100	10
C 411, 412	ECEA50MR68R	0.68	C 515, 516	ECEA0JU470	47	C 541, 542	ECEA1CU100	10	C 708	ECKD1H333ZF	0.033
C 413, 414	ECCB1H103JZ	0.01				C 543, 544	ECCD1H181K	180 p	C 709, 710	ECQM1H104JZ	0.1
C 415, 416	ECQB1H472JZ	0.0047	C 517, 518,			C 601	ECEA1CU331	330	C 901	ECEA0JU101	100
C 417, 418	ECEA1CU100	10	519, 520	ECQM1H104JZ	0.1	C 602	ECEA1CU102	1000			
C 419, 420	ECQM1H473JZ	0.047	C 521, 522	ECEA50MR33R	0.33	C 603, 604	ECKD1H103ZF	0.01	C 902	ECEA1HU010	1
C 421, 422	ECQM1H224JZ	0.22	C 523, 524	ECCD1H391K	390 p	C 605	ECEA1CS332	3300	C 903	RCBS1H221KBY	220 p
C 423, 424	ECEA50MR68R	0.68	C 525, 526	ECQB1H472JZ	0.0047	C 606	ECEA1CS222	2200			

Ref. No.	Part No.	Part Name & Descriptio			Part Name &	Description	Ref. No.	Part No.	Part Name & Description
INTEGRA	ATED CIRCU	ITS	Q 511, 5	12 2SA1115E	Transistor		FL MET	ER	
IC 2 IC 101, 102		IC IC	Q 513 Q 601 Q 602 Q 701	2SC2603EFG 2SD1265-0 2SB941-Q 2SC2603EFG	Transistor Transistor Transistor Transistor Transistor		FL 1	SADBG308ZK	FL Meter
	AN6203 M5218L	IC IC	Q 701	2SA1115E	Transistor	i	IC PRO	TECTOR	
IC 201 IC 401, 40	M5218L 2	IC	Q 901 Q 902	2SD592A 2SB621A-R	Transistor Transistor		ICP 201	SRUN5	IC Protector
	TEA0665 AN6291	IC IC	Q 903. 90	04			ICP 601,	602	10 1 10100101
IC 502	M5218P	IC		2SB1030Q	Transistor	1	[EK][XL] ICP 901	SRUN25	IC Protector
IC 702, 703		IC	Q 905	2SC3311Q	Transistor			RAHICPF20	IC Protector
	AN6280 AN6870N	IC IC	DIODES	& RECTIFIER	RS	-	COILS		
	LM6417E1825	IC	D 1	1SS254	Diode		COILS		
IC 902	DN6838-S	IC	D 2 D 3	MA4051M 1SS254	Zener Diode		L 1, 2 L 101, 102	2	Bias Trap Coil
TRANSIS	TORS		D 101 D 102	1SS254 MA4051M	Diode Zener		L 301	QLQX2722D QLQX1011Y	Trap Coil Trap Coil
		-		05, 106, 107, 108			L 401, 402	2 QLM9Z10K	MPX Coil
Q 1, 2, 3 Q 4	2SD1512R 2SA921-T	Transistor Transistor	D 201, 20	1SS254 02, 203, 204, 205,	Diode 206		L 403, 404	4	1911 X 0011
Q 5, 6	2SD1468R	Transistor		1SS254	Diode		1 001	ELM7Q306A	Skewing Network
	2SK381D 2SC2603EFG	Transistor	D 208	MA4068M 10, 211, 212, 213,	Zener		L 901 T 301	RLQZB2R2KT-D SLO9C19K	Bias Oscillation Coil
Q 101, 102		Transistor Transistor	D 501	1SS254 SVDMC911	Diode Diode	-			
Q 103, 104							TRANSF	ORMERS	
	2SJ40D 2SC2603EFG	Transistor Transistor	D 601, 60	02 MA4100M	Zener	-	T 1		
Q 107, 108			D 603, 60	04, 605, 606, 607			(E)[EH]		
Q 109, 110	2SD1468R , 111, 112 2SA1115E	Transistor Transistor		SM112 02, 703, 704, 705, 1SS254	Rectifier 706, 707, 708 Diode		T 1 [EK]	SLT5L225S	AC Power Transformer
Q 113, 114		Tansistor	D 710 D 711, 71	LN31GCPHLMU 2, 713, 714, 715,	LED		[XA][XL]	SLT5L235S	AC Power Transformer
	2SC2603EFG 2SC2603EFG	Transistor	D 718	1SS254 1SS254	Diode Diode	-			
	2SA1115E	Transistor Transistor	D 901	MA4068M 03, 904, 905, 906,	Zener	_	SWITCH		
Q 203 [E][EH] [EGA]				1SS133	Diode		S 201 S 601 A S 602 [EK][XA]	QSS1306H ESB8215V	Slide Switch (Timer) Power ON/OFF Switch
[XA][XL] : Q 203	2SA1115E	Transistor	VARIA	LE RESISTOR	S		[XL] △	SSR227	AC Voltage Selector
	2SB1030Q	Transistor	VR 1, 2		Input Level Co	ntrol	S 701, 702	2, 703, 704, 705 SSG13	Push Switch
205, 206	2SA1115E 2SC2603EFG	Transistor	VR 3 VR 5, 6 VR 101	EWAMF5X05G29 QVNB3A00B473 QVNB3A00B222		di.	S 706 S 707, 708		(Play/Pause/FF/REW/Sto Push Switch (Rec)
	2SC2603EFG 2SA1115E	Transistor Transistor	VR 102	QVNB3A00B222	FL Meter Adj. (,	SSG13	Push Switch (Auto Rec
208 2	2SC2603EFG	Transistor	VR 103,		Overell Calla		S 709, 710). 711	Mute/Reset)
209, 210	, 211, 212 2SA1115E	Transistor	VR 201		Overall Gain Ad FL Meter Adj. (0dB)		SSH492	Push Switch (B/C/dbx)
	SC2603EFG	Transistor	VR 301, 3	302	Bias Current A		S 901, 902	RSH1B12ZA-U	
	SC2603EFG	Transistor					S 904, 905		(FF/REW/PLAY)
	2SD1468R 2SB1030Q	Transistor Transistor	COMBI	NATION PART	s		,	RSH1A46ZA-U	
Q 401, 402,	403, 404			TATION FANT					(Rec Inh./CrO₂/Metal)
	2SA1115E 503, 504, 505,	Transistor	Z 701 Z 901	EXBP86333J EXBF5E472J	Combination P	art	JACKS		
	503, 504, 505, 2SC2603EFG	Transistor	Z 902	RVDDAN401	Combination P	art	UAUNS		
509, 510	2SD1424R	Transistor							Microphones Jack Headphones Jack

SJS5421 SJS5519

SJS5903 QJS1989S

SJT30342PH SJT30542PH

QJT1090 RJS1H1ZA

CN 1 CN 2 CN 3 CN 4 CN 5 CN 6 CN 7

4 Pin Jumper Connector 5 Pin Jumper Connector

9 Pin Jumper Connector 10 Pin Jumper Connector

3 Pin Plug 5 Pin Plug

Check Pin Plunger Socket

Ref. No.	Change of	Description		
1101. 140.	RS-B55[E] -	➤ RS-955[M]	Description	
C607	ECKD2H682PE		Capacitor	
TI <u></u>	SLT5L225S	SLT5L226S	AC Power Trasformer	

NOTES: • \$201 : Timer s • \$601 : Power (• \$602 : AC pow [For [Ek

• \$701 : Play sw • \$702 : Pause s • \$703 : Fast for • \$704 : Rewind • \$705 : Stop sw

• \$706 : Rec swi • \$707 : Auto red • \$708 : Reset sv •S709~S711: NR

S71 S70 • \$901 : Play mo • \$902 : FF/REW

• \$904 : Rec inh • \$905 : Auto tag • \$906 : Auto tap • Resistance are in

specified otherw $1K = 1,000(\Omega), 1$ Capacity are in r otherwise. All voltage value:

signal condition control at minim () ... Volta CrO₂ Volta Metal Volta Stop Volta For measuremen

EQUIVALE IC 704: AN

d Kingdom.

East and Africa.

Part No.	Value
RD25FJ102	1k
RD25FJ103	10k
RD25FJ333	33k
RD25FJ151	150
RD25FJ472	4.7k
RD25TJ153	15k
RD25TJ154	150 k
RD25TJ244	240 k
RD25FJ472	4.7 k
RD25TJ153	15k
RD25FJ102	1k
RD25FJ332	3.3k
RD25TJ104	100k
RD25FJ102	1k
RD25FJ101	100
RD25FJ822	8.2k
RD25FJ222	2.2k
RD25TJ333	33k
RD25TJ473	47k
RD25FJ4822	8.2k
RD25FJ153	15k
RD25FJ391	390
RD14LKR20P	0.2
RD25TJ333	33k
RD25FJ681	680
RD25FJ331	330
RD25FJ181	180
RD25FJ363	56 k
RD25FJ392	3.9 k
RD25FJ472	4.7 k
RD25FJ332	3.3 k
RD25TJ273	27 k
RD25TJ333	33k
RD25FJ103	10k
RD25FJ181	180
RD25TJ333	33 k
RD25FJ331	330
RD25TJ473	47k
RDS2TJ102	1k
RDS2TJ683	68k
RDS2TJ393	39k
RDS2TJ220	22
RDS2TJ102	1k
RDS2TJ102	2.2k

Part No.	Value	
CEA1CU100	10	
CEA1EU3R3	3.3	
CEA1CU100	10	
CEA1HU4R7	4.7	
CEA1CU220	22	
CD1H101K	100p	
QP1153JZ	0.015	
EA1HU4R7	4.7	
FDD392KVY	0.0039	
FDD472KVY	0.0047	
FDD223KVY	0.022	

FDD472KVY

4.7 k

RDS2TJ472

Ref. No.	Part No.	Value	Ref. No.	Part No.	Value	Ref. No.	Part No.	Value	Ref. No.	Part No.	Value
C 309	ECKD1H102KB	0.001	C 425, 426	ECKD1H152KB	0.0015	C 527, 528	ECQB1H223JZ	0.022	C 607	ECKD2H682PE	0.0068
C 310 [EK][XL]	ECEA1HUR33	0.33	C 427, 428	ECKD1H122KB	0.0012	C 529, 530	ECQB1H332JZ	0.0033			
C 311	ECKD1H102KB	0.001	C 502	ECEA1CU100	10	C 531	ECEA1CU100	10	C 608	ECEA1CU220	22
C 401, 402	ECCD1H820K	82p	C 503, 504	ECEA1HUR22	0.22	C 532	ECEA1HU010	1	C 609 ▲	ECKDKC103PFZ	0.01
C 403, 404	ECQB1H472JZ	0.0047	C 505, 506	ECEA50MR68R	0.68	C 533, 534	ECQB1H332JZ	0.0033	C 702	ECCD1H221K	220 p
			C 507, 508	ECCD1H471K	470 p	C 535, 536	ECEA1CU100	10	C 703	ECEA1HU010	1
C 405, 406	ECEA1CU100	10	C 509, 510	ECQB1H223JZ	0.022				C 704	ECQM1H473JZ	0.047
C 407, 408	ECQM1H473JZ	0.047	C 511, 512	ECEA1CU100	10	C 537, 538	ECCD1H331K	330 p	C 705	ECQM1H104JZ	0.1
C 409, 410	ECQM1H224JZ	0.22	C 513, 514	ECQM1H333JZ	0.033	C 539, 540	ECEA1HUR33	0.33	C 707	ECEA1CU100	10
C 411, 412	ECEA50MR68R	0.68	C 515, 516	ECEA0JU470	47	C 541, 542	ECEA1CU100	10	C 708	ECKD1H333ZF	0.033
C 413, 414	ECCB1H103JZ	0.01				C 543, 544	ECCD1H181K	180 p	C 709, 710	ECQM1H104JZ	0.1
C 415, 416	ECQB1H472JZ	0.0047	C 517, 518,			C 601	ECEA1CU331	330	C 901	ECEA0JU101	100
C 417, 418	ECEA1CU100	10	519, 520	ECQM1H104JZ	0.1	C 602	ECEA1CU102	1000			
C 419, 420	ECQM1H473JZ	0.047	C 521, 522	ECEA50MR33R	0.33	C 603, 604	ECKD1H103ZF	0.01	C 902	ECEA1HU010	1
C 421, 422	ECQM1H224JZ	0.22	C 523, 524	ECCD1H391K	390 p	C 605	ECEA1CS332	3300	C 903	RCBS1H221KBY	220 p
C 423, 424	ECEA50MR68R	0.68	C 525, 526	ECQB1H472JZ	0.0047	C 606	ECEA1CS222	2200			

Ref. No. Part No.	Part Name & Description	Ref. No.	Part No.	Part Name & Description	Ref. No.	Part No.	Part Name & Description
NTEGRATED CIRCUIT	rs	Q 511, 51		Torreign	FL MET	ER	
C 1 M5218L C 2 M5219L C 101, 102	IC IC	Q 513 Q 601 Q 602	2SA1115E 2SC2603EFG 2SD1265-0 2SB941-Q	Transistor Transistor Transistor Transistor	FL 1	SADBG308ZK	FL Meter
AN6203 C 103 M5218L	IC IC	Q 701 Q 702	2SC2603EFG 2SA1115E	Transistor Transistor	IC PRO	TECTOR	
C 201 M5218L C 401, 402 TEA0665	ic ic	Q 901 Q 902	2SD592A 2SB621A-R	Transistor Transistor	ICP 201 [EK][XL]	SRUN5	IC Protector
C 501 AN6291	IC	Q 903, 90		Torrestator	ICP 601, (602 SRUN25	IC Protector
C 502 M5218P C 701 LM6417E589 C 702, 703	IC IC	Q 905	2SB1030Q 2SC3311Q	Transistor Transistor	ICP 901	RAHICPF20	IC Protector
AN6280	IC	DIODES	& RECTIFIER	c			
704 AN6870N	IC	DIODES	& RECTIFIEN	3	COILS		
901 LM6417E1825 902 DN6838-S	IC IC	D 1 D 2 D 3	1SS254 MA4051M 1SS254	Diode Zener Diode	L 1, 2 L 101, 102	2	Bias Trap Coil
RANSISTORS		D 101 D 102 D 103, 10	1SS254 MA4051M 5, 106, 107, 108	Diode Zener	L 301 L 401, 402	QLQX2722D QLQX1011Y 2	Trap Coil Trap Coil
1, 2, 3 2SD1512R	Transistor		1SS254	Diode	L 403, 404	QLM9Z10K	MPX Coil
4 2SA921-T 5, 6 2SD1468R	Transistor Transistor	201, 201	2, 203, 204, 205, 1SS254	206 Diode		ELM7Q306A	Skewing Network
	Transistor	D 208	MA4068M	Zener	L 901	RLQZB2R2KT-I	O Coil
9, 10 2SC2603EFG 101, 102	Transistor	D 209, 210	0, 211, 212, 213, 1SS254 SVDMC911	214, 215, 216 Diode Diode	T 301	SLO9C19K	Bias Oscillation Coil
103, 104	Transistor			Diode	TRANSF	ORMERS	
	Transistor Transistor	D 601, 60	2 MA4100M	Zener	T 1		
107, 108	Transistor	D 603, 604	4, 605, 606, 607 SM112	Rectifier	[E][EH]	SLT5L225S	AC Power Transformer
109, 110, 111, 112 2SA1115E	Transistor	D 701, 702	2, 703, 704, 705, 1SS254 LN31GCPHLMU	Diode	T 1 [EK] [XA][XL]	SLT5L235S	AC Power Transformer
113, 114, 115, 116	Teachinter		2, 713, 714, 715, 1SS254	716	23	3L13L2333	AC Power Transformer
	Transistor Transistor	D 718	1SS254 1SS254	Diode Diode			
	Transistor	D 901	MA4068M	Zener	SWITCH	ES	
203 [E][EH]		D 902, 900	3, 904, 905, 906, 1SS133	907, 908, 909, 910 Diode	S 201 S 601 △ S 602	QSS1306H ESB8215V	Slide Switch (Timer) Power ON/OFF Switch
[EGA] XA][XL] 2SA1115E	Transistor			_	[EK][XA]	CCD207	AC Vallage Calculation
203 EK][XL] 2SB1030Q	Transistor		LE RESISTOR		S 701, 702	SSR227 2, 703, 704, 705 SSG13	AC Voltage Selector Push Switch
204 2SA1115E 205, 206	Transistor	VR 1, 2 VR 3 VR 5, 6	EWAMF5X05G25	Input Level Control Balance Control P.B.EQ. Gain Adj.	S 706	SSG20-3	(Play/Pause/FF/REW/Stop Push Switch (Rec)
2SC2603EFG	Transistor	VR 101	QVNB3A00B222		S 707, 708	SSG13	Push Switch (Auto Rec
	Transistor	VR 102 VR 103, 1		FL Meter Adj. (-40dB)		55415	Mute/Reset)
209, 210, 211, 212	Transistor	VR 103, 11	QVNB3A00B103	Overall Gain Adj. FL Meter Adj. (0dB)	S 709, 710), 711 SSH492	Push Switch (B/C/dbx)
	Transistor Transistor	VR 301, 3	02	otor riaj. (oub)	S 901, 902	!	
301, 302	Transistor			Bias Current Adj.		RSH1B12ZA-U	Leaf Switch (FF/REW/PLAY)
303 2SD1468R	Transistor				S 904, 905	, 906 RSH1A46ZA-U	Loof Switch
304 2SB1030Q 401, 402, 403, 404	Transistor	-	IATION PARTS		-	HOTTIM40ZM-U	(Rec Inh./CrO₂/Metal)
	Transistor	Z 701 Z 901	EXBP86333J EXBF5E472J	Combination Part Combination Part	110000		
	06, 507, 508 Transistor	Z 902	RVDDAN401	Combination Part	JACKS		
501, 502, 503, 504, 505, 5 2SC2603EFG					J 1	SJJ127HH	Microphones Jack

--- 23 ---

SJS5421

SJS5519

SJS5903

QJS1989S

QJT1090 RJS1H1ZA

CN 6

CN 7 CN 8

SJT30342PH SJT30542PH

4 Pin Jumper Connector

5 Pin Jumper Connector

9 Pin Jumper Connector

10 Pin Jumper Connecto

5 Pin Plug Check Pin

Plunger Socket

Ref. No.	Change of	Description		
1101. 140.	RS-B55[E] =	➤ RS-955[M]	Description	
C607	ECKD2H682PE		Capacitor	
TI ⚠	SLT5L225S	SLT5L226S	AC Power Trasformer	

NOTES:

• \$201 : Timer switch in "OFF" position.

: Power ON/OFF switch in "OFF" position. • S601

: AC power voltage selector. • S602

[For [EK] [XA] [XL] mark areas.] • S701 : Play switch in "OFF" position.

• S702 : Pause switch in "OFF" position.

• S703 : Fast forward switch in "OFF" position.

• S704 Rewind switch in "OFF" position.

: Stop switch in "OFF" position. • S705 • S706 : Rec switch in "OFF" position.

: Auto rec mute switch in "OFF" position. • S707

: Reset switch in "OFF" position. • S708

• \$709~\$711: NR select switch (\$709 -: B, S710 -: C, S711 -: dbx, S709~S711 -: OUT)

• \$901 : Play mode switch in "OFF" position.

: FF/REW mode switch in "OFF" position.

: Rec inhibit switch in "OFF" position. • S904

• \$905 : Auto tape selector (for CrO₂ tape).

• \$906 : Auto tape selector (for Metal tape).

• Resistance are in ohms (Ω), 1/4 watt unless specified otherwise.

 $1K = 1,000(\Omega), 1M = 1,000k(\Omega)$

• Capacity are in micro-farads (μF) unless specified otherwise.

• All voltage values shown in circuitry are under no signal condition and playback mode with volume control at minimum position otherwise specified.

) ... Voltage values at record mode. CrO₂ Voltage values at CrO₂ tape mode.

Metal Voltage values at Metal tape mode. Stop Voltage values at Stop mode.

For measurement use EVM.

EQUIVALENT CIRCUIT IC 704: AN6870N

—) indicates B (bias).

) indicates the flow of the playback signal.

• (b) indicates the flow of the recording signal.

Important safety notice

Components indentified by Δ mark have special characteristics important for safety. When replacing any of these components, use only manufacturer's specified parts.

The part No. of transistors, IC and diodes mentioned in the schematic diagram stand for production part No. Regarding the part No. with 3 mark, the production part No. are different from the replacement part No. Therefore, when placing an order for replacement part, please use the part No. in the replacement part list.

* Caution!

IC and LSI are sensitive to static electricity. Secondary trouble can be prevented by taking care during repair.

* Cover the parts boxes made of plastics with aluminum foil.

* Ground the soldering iron.

* Put a conductive mat on the work table.

* Do not touch the legs of IC or LSI with the fingers directly.

> * Input level control ... MAX SPECIFICATIONS + Balanco control

SPECIFICATIONS * Balan	ce controlCenter
Playback S/N ratio * Test tapeQZZCFM	Greater than 45dB
Overall distortion * Test tapeQZZCRA for NormalQZZCRX for CrO ₂ QZZCRZ for Metal	Normal Less than 3.5%
Overall S/N ratio * Test tapeQZZCRA	Greater than 43dB (without NAB filter)

19

■ CIRCUIT BOARDS AND WIRING CONNECTION DIAGRAM

TERMINAL GUIDE OF TRANSISTORS, DIODES, COILS, AND IC'S

REPLACEM

Important safet Components id characteristics When replacing only manufactu

	Ref. No.
	CABINI
	1 2
i	3 [E][EH [EGA
	3 [EK [XA][XL
	3-1 5 6 7 8
	9
	9
	10 11 12 13
	15 16 17 18 <i>₫</i>
	19 [E [EK][EH] [EGA] [XA] & 19 [XL] &
	20
	20
	21
	21
	00/5/5/

• Chan

Ref. No.

CABIN
9
18
20
22
ACCE
A1
A2

PACK

P1

2 38 42 39 40

35 37 23 36 34 36-1

44 28 26 25 27 29 24

41

159

30

33 32 43

10

31

14 18 19 7

- 34 --

3

3-1

3-1 22

RS-B55/RS-955

REPLACEMENT PARTS LIST

Important safety notice Components identified by Δ mark have special characteristics important for safety.
When replacing any of these components, use only manufacturer's specified parts.

Areas

- * [M] For U.S.A.
- *[E] For all European areas except United Kingdom.
- * [EH] For Holland.
- * [EK] For United Kingdom.
- * [EGA] For F.R. Germany.
- * [XL] For Australia.

[XA][XL] SPG5351 'Silver Type' P 1 [EK] SPG5354 "Black Type" P 1 [EK] SPG5353 "Silver Type"

SPSM4

SPS4648-1

[E][EH] [EGA]

* [XA] For Asia, Latin America, Middle East and Africa areas.

 XTN3+10B
 Tapping Screw ⊕3×10

 XTS3+10B
 Tapping Screw ⊕3×10

 XTN3+12B
 Tapping Screw ⊕3×12

 XTB3+10BFZ
 Tapping Screw ⊕3×10

XTB3 + 10BFN Tapping Screw $\oplus 3 \times 10$ XWG3 Washer 3ϕ

 $\begin{array}{lll} {\sf XTB3+12BFN} & {\sf Tapping Screw} \oplus 3 \times 12 \\ {\sf XSN26+8BN} & {\sf Screw} \oplus 2.6 \times 8 \end{array}$

Carton Box

Cushion (R)

SPSM5 Cushion (L) XZB50X65A02 Poly Bag

Tapping Screw ⊕3×6

Part Name & Description

Ref. No.	Part No.	Part Name & Description	Ref. No.	Part No.	Part Name & Description	Ref. No.	Part No.	Part Name & De			
CABINE	T PARTS		23	SGYSB55-KE "Black Type"	Front Panel Assembly	SCREWS, NUTS & WASHERS					
1 2	SBC666 SUB237	Power Button Power Rod	23	SGYSB55-SE "Silver Type"	Front Panel Assembly	N 1 N 2	XTN3 + 10B XTS3 + 10B	Tapping Screw ⊕			
	SKMSB25-SE	Main Case	24	SGXSB55-KE "Black Type"	Operation Chassis (B) Assembly	N 3 N 4 N 5	XTN3 + 12B XTB3 + 10BFZ XTB3 + 10BFN	Tapping Screw ① Tapping Screw ① Tapping Screw ①			
3 [EK] [XA][XL]	SKMSB25-SEK	Main Case	24	SGXSB55-SE "Silver Type"	Operation Chassis (B) Assembly	N 6 N 7 N 8	XWG3 XSN3+6S XWA3B	Washer 3φ Screw ⊕3×6 Washer 3φ			
3-1 5	SKL294 SUS795	Case Foot Earth Plate	25	SBCSB25-SE	Record Button Assembly	N 9	XTV3+6JFZ	Tapping Screw ⊕			
6 7	SMC6377 SMN1965-1	Shield Plate Holder Angle	26	SBC732-3 "Black Type"	Fast Forward Button	N 10	QHQ1324K "Black Type"	Ornament Screw			
8	QTD1315	Cord Clamper	26	SBC732 "Silver Type"	Fast Forward Button	N 10	QHQ1324 "Silver Type"	Ornament Screw			
9	SBC735-1 "Black Type"	Push Button	27	SBC732-1	Rec Mute Button	Ņ 11	XTB3 + 12BFN	Tapping Screw ①			
9	SBC735 "Silver Type"	Push Button	28	SBC732-4	Rewind Button	N 12	XSN26 + 8BN	Screw ⊕2.6×8			
10 11	SMN1968 QEJ5039C	Strengthen Angle (B) Jack Board	28	"Black Type" SBC732-2 "Silver Type"	Rewind Button	ACCESS	SORIES				
12 13	SMN1978 SME103-4	dbx P.C.B. Holder Dolby P.C.B. Holder	29	SBC734-1 "Black Type"	Reset Button	A 1 [E][EH]					
14 15	SMN1974 SHG6372	Switch Angle Meter Holder Cushion	29	SBC734 "Silver Type"	Reset Button	A 1 [EK]	SQF12532 SQF12533	Instruction Book Instruction Book			
16 17 18 ▲	SMN1970-1 SNE55-1 SMX888	Microphone Angle Earth Terminal Spark Killer Cover	30	SGX7756-1	Slide Guide	A 1 [EGA]	SQF12534	Instruction Book			
19 [E]		Spark Killer Gover	30	"Black Type" SGX7756 "Silver Type"	Slide Guide	A 2 [E][EH]		10.5			
[EK][EH]	0.100000		31	SGX7757	Slider (A)	A 2	SFDAC05E02 SFDAC05G02	AC Power Cord AC Power Cord			
[XA] △ 19 [XL] △	SJS9230 SJS9235	AC Inlet	32 33	SGX7758 SBD121	Slider (B) Timer Knob	A 2	SJA168	AC Power Cord			
20	SGE1761-1 "Black Type"	Cassette Lid Assembly	34 35 36	SBD122 SBD123 SGXSB25-SE1	Volume Knob (A) Volume Knob (B) Cassette Holder	A 2	SJA173	AC Power Cord			
20	SGE1761-3 "Silver Type"	Cassette Lid Assembly	36-1	QBP2006A	Assembly Tape Pressure Spring	A 3	QEB0125	Connection Cord			
21	SKC1782K99-1	Case Cover	37 38	SUS796 SBC736	Holder Spring Eject Button	A 4 [XA] Δ	SJP9215	AC Plug Adaptor			
21	"Black Type" SKC1782S98-1 "Silver Type"	Case Cover	39	SUB236	Eject Lever	DA OKIN	20				
	Silver Type		40	SMN1971 QYF0627A	Eject Spring Damper Gear Assembly	PACKIN	GS				
22[E][EH]	SGT26211	Main Name Plate	42	SMN1966	Holder Angle	P 1					
22 [EK] 22 [XA]	SGT36211 SGT36241 SGT36221	Main Name Plate Main Name Plate	43	SMN1969 SMC6386	Connection Angle Shield Sheet	[E][EH] [EGA] [XA][XL]	SPG5352	Carton Box			
22 [XL]	SGT36231	Main Name Plate				P 1	"Black Type"				

Change of Part List (RS-955 from RS-B55)

Ref. No.	Change of I	Description						
nei. No.	RS-B55[E] "Black Type"	RS-B55[E] "Black Type" → RS-955[M]						
CABINE	TPARTS							
9	SBC735-1	SBC735	Push Button					
18 ⚠	SMX88	SMX88						
20	SGE1761-1	SGE1761-2	Cassette Lid Assembly					
22	SGT36211	SGT35951	Main Name Plate					
ACCESS	ORIES							
A1	SQF12532	SQF12447	Instruction Book					
A2 ∧	SFDAC05E02	SJA170	AC Power Cord					
PACKING	G							
P1	SPG5352	SPG5341	Carton Box					

■ MECHANICAL PARTS LOCATION

"xx" shown in the drawing "Mechanical

REPLACEMENT PARTS LIST

Ref. No.	Part No.	Part Name & Description	Ref. No.	Part No.	Part Name & Description	Ref. No.	Part No.	Part Name & Description	Ref. No.	Part No.	Part Name & Description	Ref. No.	Part No.	Part Name & Description	Ref. No.	Part No.	Part Name & Description
MECHA	NISM PARTS		110	RDG5772Z	Take Up Relay Gear	119	RUD9Z	Head Base Plate Return	128	RUB346Z	FF Arm	140	RUS609Z	Tape Pressure Spring	152	RNL1Z	Damper Arm
101	QWY4165G	Record/Playback Head	111 112	RUB353Z RUBG0001Z	Brake Rod Main Lever Ass'v	120	RJQG0001Z	Spring DC Motor Ass'y	129 130	RUB348Z RUW9Z	FF Spring Lever FF Arm Spring	141 142	RDG5775Z RUBG0004Z	Sub, Gear FF Rod Ass'y	153	RUW45Z	Takeup Arm Spring
102 103	RUA9029Y QWY2138G	Head Base Plate Erase Head	112-1	RUW14Z	Main Lever Spring	121 122	RUL734Z RMD5004Z	Flywheel, Bracket Spacer	131 133	SBC1278A RDGG0003Z	Spring Reel Table Gear Ass'y	142-1 145	RUB345Z RUW8Z	FR Selecte Rod FF Rod Spring			
104 105	RUB347Z RDMG0011Z	Take Up Change Arm Supply Reel Table (F)	113	RJSG0005Z RUBG0006Z	R/P Head Lead Wire Pinch Roller (F) Ass'y	123 123-1	RUB350Z RUW10Z	Main Control Lever Main Control Lever Spring	134 135	RDG5773Z RDG5769Z	FF Relay Gear Reel Table Gear		,,,,,,,	T Tiod Opining	SCREW	S, NUTS & W	ASHERS
106	RDMG0001Z	Ass'y Take Up Reel Table (R)	114-1 115	RUW12Z RUB343Z	Pinch Roller Spring Cue Lever	124 125	RNG1Z RDWG0003Z	Main, Gear Flywheel (F) Ass'v	136	RUQ10Z	Backtension Spring	147 148	RNL3ZA RNR1Z	Eject Arm Eject Rod	N 51 N 53	QHQ1361A XTN26 + 6B	Screw ⊕2×8 Screw ⊕2.6×6
107	RUB358Z	Ass'y Shaft	116 116-1	RNR2Z RUW48Z	Eject Rod Eject Rod Spring	125-1	QBW2123	Washer (φ2.5)	137 138	RDRG0001Z RDV27Z	Main Pulley Ass'y FF, Belt (Square)	148-1	RUD22Z RUQ30ZA	Eject Hod Eject Rod Spring Backtension Spring	N 54 N 55	XYC2 + FF15 XTN2 + 5B	Screw ⊕2×15 Screw ⊕2×5
108 109	RUEG0001Z RUB344Z	Plunger Ass'y Switch Lever	117 118	RJSG0006Z RUAG0001Z	E Head Lead Wire Mecha Chassis	126 127	RMD5006Z RDV37Z	Head Speser Main, Belt (Flat)	139 139-1	RUB349Z RUD8Z	Sub Control Lever Sub Control Lever Spring	150	SMN1972 SMN1973	Mecha Angle (R)	N 56 N 57	XWG2 XSN26 + 3	Washer 2¢ Screw ⊕2.6×3
		GWITCH ECVE	L					main, bolt (riat)	100 1	110002	oub control Level opining	131	3141141973	Mecha Angle (L)	N 58	XTN4 + 6B	Screw ⊕4×6

Supply Reel Table (F (105)

Dampe (15

Mecha An

Erase

Main Cont

Reel Table G

Flywhee

Part Name & Description	Ref. No.	Part No.	Part Name & Description	Ref. No.	Part No.	Part Name & Description	Ref. No.	Part No.	Part Name & Description
lead Base Plate Return	128	RUB346Z	FF Arm	140	RUS609Z	Tape Pressure Spring	152	RNL1Z	Damper Arm
pring	129	RUB348Z	FF Spring Lever	141	RDG5775Z	Sub, Gear	153	RUW45Z	Takeup Arm Spring
C Motor Ass'y	130	RUW9Z	FF Arm Spring	142	RUBG0004Z	FF Rod Ass'y			
lywheel, Bracket	131	SBC1278A	Spring	142-1	RUB345Z	FR Selecte Rod			
pacer	133	RDGG0003Z	Reel Table Gear Ass'y	145	RUW8Z	FF Rod Spring	SCREWS, NUTS & WASHERS		
lain Control Lever	134	RDG5773Z	FF Relay Gear				SCHEW	3, NO13 & W	ASTIENS
lain Control Lever Spring	135	RDG5769Z	Reel Table Gear	1			N 51	QHQ1361A	Screw ⊕2×8
lain, Gear	136	RUQ10Z	Backtension Spring	147	RNL3ZA	Eject Arm	N 53	XTN26 + 6B	Screw ⊕2.6×6
lywheel (F) Ass'y				148	RNR1Z	Eject Rod	N 54	XYC2+FF15	Screw ⊕2.6 x 6
/asher (φ2.5)	137	RDRG0001Z	Main Pulley Ass'y	148-1	RUD22Z	Eject Rod Spring	N 55	XTN2 + 5B	Screw ⊕2×15
, , ,	138	RDV27Z	FF, Belt (Square)	149	RUQ30ZA	Backtension Spring	N 56	XWG2	
lead Speser	139	RUB349Z	Sub Control Lever	150	SMN1972	Mecha Angle (R)			
	139-1	RUD8Z	Sub Control Lever Spring	151	SMN1973	Mecha Angle (L)			
lead Speser Main, Belt (Flat)	139	RUB349Z	Sub Control Lever		SMN1972	Mecha Angle (R)	N 56 N 57 N 58	XWG2 XSN26 + 3 XTN4 + 6B	Washer 2φ Screw ⊕2.6×3 Screw ⊕4×6

■ MECHANICAL OPERATION (Description of mechanism operation) STOP → PLAY OPERATION

• Employed for this unit is the newly developed mechanism. The conventional mechanism (RS-8R series) used two motors (for capstan drive and head up/down operation), while this newly developed mechanism usess only one motor for capstan and head up/down operation. The basic operations (STOP → PLAY) of this mechanism are explained in the following. (For the mechanism operation, refer to next page.)

[Front view of mechanism in STOP mode.]

