

دورة: 2019

الجمهورية الجزائرية الديمقراطية الشعبية وزارة التربية الوطنية

الديوان الوطني للامتحانات والمسابقات امتحان بكالوريا التعليم الثانوي

الشعبة: علوم تجريبية

المدة: 03 سا و30 د

اختبار في مادة: الرياضيات

على المترشح أن يختار أحد الموضوعين الآتيين: الموضوع الأول

التمرين الأول: (04 نقاط)

 $u_{n+1} = \frac{1}{5}u_n + \frac{4}{5}$ 'n each acc dependence on $u_0 = 13$: $u_0 =$

. $u_n > 1$ ، n وهن بالتراجع أنه: من أجل كل عدد طبيعي أنه: (1

ب) أدرس اتجاه تغير المتتالية (u_n) واستنتج أنها متقاربة.

. $v_n = \ln(u_n - 1)$: ب \mathbb{N} و على المتتالية العددية المعرفة على المتتالية العددية المعرفة على (v_n

أثبت أنّ المتتالية (v_n) حسابية يطلب تعيين أساسها وحدها الأول.

. $\lim_{n\to +\infty} u_n$ غندئذ من أجل كل عدد طبيعي $u_n=1+\frac{12}{5^n}$ ، اكتب v_n بدلالة u_n غندئذ من أجل كل عدد طبيعي (3

 $(u_0-1)(u_1-1)\times...\times(u_n-1)=\left(\frac{12}{\frac{n}{5^2}}\right)^{n+1}$ ، n عدد طبیعي 4 عدد طبیعي (4

التمرين الثاني: (04 نقاط)

يحتوي كيس على خمس كريات حمراء منها أربع كريات تحمل الرقم 1 وكرية واحدة تحمل الرقم 2 وسبع كريات خضراء منها أربع كريات تحمل الرقم 1 وثلاث كريات تحمل الرقم 2 (كل الكريات متماثلة لا نفرق بينها عند اللمس). نسحب عشوائيا كريتين من الكيس في آن واحد ونعتبر الحادثتين A و B حيث: A: " سحب كريتين من نفس اللون " ، B: " سحب كريتين تحملان نفس الرقم " .

A واحسب احتمال الحادثة A هو $P(A) = \frac{31}{66}$ واحسب احتمال الحادثة A

2) علما أنّ الكريتين المسحوبتين من نفس اللون، ما احتمال أن تحملا نفس الرقم؟

3) ليكن X المتغير العشوائي الذي يرفق بكل عملية سحب عدد الكريات الحمراء المتبقية في الكيس. E(X) عرف قانون الاحتمال للمتغير العشوائي X واحسب أمله الرياضياتي E(X)

التمرين الثالث: (05 نقاط)

. $(z-i)(z^2-4z+5)=0$ المعادلة ذات المجهول z التالية: $(z-i)(z^2-4z+5)=0$

اختبار في مادة : الرياضيات// الشعبة: علوم تجريبية// بكالوريا 2019

B ، A النقط المستوي المركب المنسوب إلى المعلم المتعامد والمتجانس $\left(0;\overrightarrow{u},\overrightarrow{v}\right)$ ، النقط C . II و C و C على الترتيب.

. ABC على الشكل الأسي، ثم استنتج طبيعة المثلث (1 المثلث $\frac{z_{C}-z_{A}}{z_{C}-z_{B}}$

 $f(z) = \frac{i z - 1 - 2i}{2z - 4 - 2i}$ من أجل كل عدد مركب z يختلف عن z + i نضع (2)

 $|f(z)| = \frac{1}{2}$ التي تحقق: Z التي ذات اللاحقة Z التي تحقق: Z النقط Z النقط Z النقط Z من المستوي ذات اللاحقة Z التي تحقق: Z النقط Z ال

. $\frac{\pi}{2}$ نعتبر الدوران r الذي مركزه C و زاويته (3

أ) عين المحقة C صورة B بالدوران C وبيّن أنّ النقط C ه و C في استقامية.

ب) استنتج أنّ D هي صورة النقطة A بتحويل نقطي بسيط يطلب تحديد طبيعته وعناصره .

التمرين الرابع: (07 نقاط)

. $f(x) = \frac{1}{x-2} + \ln x$: با]0;2[\cup]2;+ ∞ [با الدّالة العددية المعرفة على f

 C_f) تمثيلها البياني في المستوي المنسوب إلى المعلم المتعامد والمتجانس (C_f).

اً) احسب f(x) ا $\lim_{x \to \infty} f(x)$ و $\lim_{x \to \infty} f(x)$ نم فسِّر النتائج بیانیا.

 $\lim_{x\to +\infty} f(x) \quad (\psi$

2) ادرس اتجاه تغيّر الدّالة f على $]0;2[\,\cup\,]2;+\infty[$ وشكِّل جدول تغيّراتها.

3) نسمي (٦) المنحنى البياني للدّالة اللّوغاريتمية النّيبيرية "In" في المعلم السابق.

أ) احسب $\lim_{x\to +\infty} (f(x) - \ln x)$ ثم فسِّر النَّتيجة بيانيا.

. (Γ) ادرس وضعية المنحني (C_f) بالنِّسبة إلى المنحنى (Γ)

 $oldsymbol{(}C_{f}ig)$ ارسم بعناية المنحنى $oldsymbol{(}\Gammaig)$ ارسم بعناية المنحنى

. الدّالة المعرفة على المجال $]0+\infty$ $[3;+\infty]$ بـ: $H(x)=\int\limits_{3}^{x}\ln(t)dt$ بـ: $H(x)=\int\limits_{3}^{x}\ln(t)dt$

أ) باستعمال المكاملة بالتّجزئة، عيِّن عبارة (H(x) بدلالة x

ب) احسب A مساحة الحيِّز المستوي المحدَّد بالمنحنى (C_f) وحامل محور الفواصل والمستقيمين ذوي المعادلتين: x=4 و x=3

g(x) = f(-2x) : ب $[-\infty; -1]$ بالدّالة المعرَّفة على g(6)

دون حساب عبارة (x) حدّد اتجاه تغيّر الدالة g على مجموعة تعريفها.

انتهى الموضوع الأول

اختبار في مادة : الرياضيات// الشعبة: علوم تجريبية// بكالوريا 2019

الموضوع الثاني

التمرين الأوّل: (04 نقاط)

يحتوي صندوق على 10 كريات لا نفرق بينها عند اللّمس منها كريتان تحملان الرقم 0 وثلاث تحمل الرقم 1 والكريات الأخرى تحمل الرقم 2. نسحب عشوائياً وفي آنِ واحدٍ ثلاث كريات من الصندوق.

ليكن X المتغيّر العشوائي الذي يرفق بكل سحب، جداء الأرقام المسجّلة على الكريات المسحوبة.

- E(X) عرّف قانون الاحتمال للمتغير العشوائي Xثم احسب أمله الرياضياتي E(X)
- $\frac{7}{24}$ بيّن أنّ احتمال الحصول على ثلاث كريات كل منها تحمل رقماً زوجياً هو $\frac{7}{24}$.
- (3) نسحب الآن من الصندوق كريتين على التوالي دون إرجاع.
 ما احتمال الحصول على كريتين تحملان رقمين مجموعهما فردي علما أن جداء هما زوجي؟

التمرين الثاني: (04 نقاط)

. $f(x) = \sqrt{x+2} + 4$ بالدّالة المعرّفة على المجال $f(x) = \sqrt{x+2} + 4$ بالدّالة المعرّفة على المجال

- 1) أ) بيّن أنّ الدالة f متزايدة تماما على المجال]7; 4].
- . $f(x) \in [4; 7]$ فإنّ [4; 7] فإنّ عدد حقيقي x من المجال [4; 7] فإنّ باستنتج أنَّه: من أجل كل عدد حقيقي
- $f(x)-x=\frac{-x^2+9x-14}{x-4+\sqrt{x+2}}$ فإنّ [4;7] فإنّ x عدد حقيقي x من المجال عدد حقيقي (2) برهن أنّه: من أجل كل عدد حقيقي

f(x)-x>0 قَانٌ [4; 7] من المجال أم عدد حقيقي x من المجال

- $u_{n+1}=f(u_n)$, $u_{n+1}=f(u_n)$, $u_0=4$: ومن أجل كلّ عدد طبيعي $u_0=4$
 - $.4 \le u_n < 7$ n عدد طبیعی (أ
 - ب) استنتج اتجاه تغيّر المتتالية (u_n) ثمّ بيّن أنّها متقارية.
 - $.7-u_{n+1}<\frac{1}{4}(7-u_n)$ من أجل كلّ عدد طبيعي (أ (4
- (u_n) استنتج أنّه: من أجل كلّ عدد طبيعي $n < 7 u_n < 3 \left(\frac{1}{4}\right)^n$ عدد طبيعي به المتتالية (ب

التمرين الثالث: (05 نقاط)

المستوي المركب منسوب إلى المعلم المتعامد والمتجانس (0, u, v).

نعتبر النّقط A ، B و C التي لاحقاتها A ، B و A على التّرتيب حيث:

$$z_{C} = -2z_{A}$$
 g $z_{B} = \overline{z_{A}}$ $z_{A} = \sqrt{2} + i\sqrt{6}$

. الشكل الأسى العدد المركب z_A على الشكل الأسى

.
$$\left(\frac{z_A}{2\sqrt{2}}\right)^{2019} + \left(\frac{z_B}{2\sqrt{2}}\right)^{2019}$$
 ب احسب العدد

اختبار في مادة : الرياضيات// الشعبة: علوم تجريبية// بكالوريا 2019

- . T الانسحاب الذي يحوِّل A إلى C عيّن C لاحقة النّقطة D صورة D بالانسحاب D استنتج طبيعة الرّباعي D . D
 - (3) اكتب العدد المركب $z_{c}-z_{A}$ على الشكل الأسي.
 - عدد حقيقيا عدد $\left(\frac{-6\sqrt{2}}{z_{C}-z_{A}}\right)^{n}$ عدد الطّبيعي التي يكون من أجلها العدد المركب (4
 - . C نقطة كيفيّة من المستوي لاحقتها z حيث M تختلف عن A وتختلف عن C لتكن D نقطة كيفيّة من المستوي لاحقتها D التي من أجلها يكون D عيّن D عددا حقيقيا موجبا تماما.

التمرين الرابع: (07 نقاط)

المستوي منسوب إلى المعلم المتعامد والمتجانس $(O; \vec{i}, \vec{j})$. تُؤخذ وحدة الطول 2cm

و (\mathcal{C}_g) و المعرّفتين على \mathbb{R} كما يلي: التمثيلان البيانيان للدالتين f و g المعرّفتين على g

$$f(x) = e^x - \frac{1}{2}ex^2$$
 $g(x) = e^x - ex$

- 1) أ) ادرس اتجاه تغير الدالة g.
- ب) استنتج اشارة g(x) حسب قيم x الحقيقية.
 - 2) ادرس اتجاه تغيّر الدالة f
- f(x) احسب كلاً من f(x) و $\lim_{x \to +\infty} f(x)$ ؛ ثمّ شكّل جدول تغيّرات الدالة f(x)
 - \mathbb{R} ادرس الوضع النسبي للمنحنيين (\mathcal{C}_f) و (\mathcal{C}_g) على (4)
- $(e^2-2e\approx 2$ ريُعطى $(O;\vec{i},\vec{j})$ ارسم على المجال $(O;\vec{i},\vec{j})$ المنحنيين (\mathcal{C}_g) و (\mathcal{C}_g) و (\mathcal{C}_g) المنحنيين $(O;\vec{i},\vec{j})$
 - (\mathcal{C}_g) و (\mathcal{C}_f) و المحدّد بالمنحنيين (مستوي المحدّد بالمنحنيين (معربّع، مساحة الحيّز المستوي المحدّد بالمنحنيين (معربّع، مساحة الحيّز
- رم الدالة المعرّفة على المجال [-2; 2] كما يلي: $h(x) = \frac{1}{2}ex^2 e^{|x|}$ عما يلي: $h(x) = \frac{1}{2}ex^2 e^{|x|}$ عما يلي: $h(x) = \frac{1}{2}ex^2 e^{|x|}$ عما يلين ألم المعلم السابق.
 - أ) بيّن أنّ h دالة زوجية.
- ب) من أجل (\mathcal{C}_f) انطلاقا من h(x)+f(x) ثم استنتج كيفية رسم $x \in [0;2]$ ثم ارسمه.

الحل المفصل لبكالوريا 2019 شعبة علوم بجريبية

حلّ التّمرين الأول: (04 نقاط)

. $P(n): u_n > 1$: نضع (أ1

F

F

. من أجل n=0 ، لدينا 13=13 و $u_0=13$ صحيحة $u_0=13$

• نفرض أنّ P(n) صحيحة و نثبت أنّ P(n+1) صحيحة ، حيث n عدد طبيعي.

P(n+1) صحیحة معناه : $u_{n+1} > 1$ و منه $u_{n+1} > 1$ صحیحة معناه : $u_{n+1} > 1$ و منه $u_{n+1} > 1$ و منه $u_{n+1} > 1$

. n من أجل كلّ عدد طبيعي $u_n > 1$

 $u_n > 1$ و منه $u_{n+1} - u_n = \frac{4}{5}(1 - u_n)$ أي $u_{n+1} - u_n = \frac{4}{5} - \frac{4}{5}u_n$ و منه $u_{n+1} - u_n = \frac{1}{5}u_n + \frac{4}{5} - u_n$ أي

. $\mathbb N$ من أجل كلّ عدد طبيعي n ، إذن u_n متناقصة تماما على $u_{n+1}-u_n<0$

. محدودة من الأدنى بـ 1 و متناقصة تماما فهي متقاربة (u_n)

و منه $v_{n+1} = \ln\left(\frac{1}{5}(u_n-1)\right)$ و منه $u_{n+1} - 1 = \frac{1}{5}(u_n-1)$ ، لاينا ، $v_{n+1} = \ln(u_{n+1}-1)$ ، $v_n = \ln(u_n-1)$ /2

من أجل كلّ عدد طبيعي n ، و منه $v_{n+1} = \ln\left(\frac{1}{5}\right) + v_n$ إذن $v_{n+1} = \ln\left(\frac{1}{5}\right) + \ln(u_n - 1)$

. $v_0=\ln 12$ و حدها الأول $r=\ln \left(rac{1}{5}
ight)$ أساسيها

. $v_n = \ln\left(\frac{12}{5^n}\right)$ و منه $v_n = \ln 12 + n \times \ln\left(\frac{1}{5}\right)$ و منه $v_n = v_0 + n \times r$ /3

. (موجب تماما x

. $\left(\lim_{n\to+\infty}\frac{12}{5^n}=0\right)$ لأن $\lim_{n\to+\infty}u_n=1$

و منه $(u_0-1)\times(u_1-1)\times\cdots\times(u_n-1)=e^{v_0}\times e^{v_1}\times\cdots\times e^{v_n}$ /4

منه $(u_0-1) \times (u_1-1) \times \cdots \times (u_n-1) = e^{\frac{(n+1)}{2}(v_0+v_n)}$ منه $(u_0-1) \times (u_1-1) \times \cdots \times (u_n-1) = e^{v_0+v_1+\cdots+v_n}$

إذن $(u_0-1) \times (u_1-1) \times \cdots \times (u_n-1) = e^{\frac{(n+1)}{2} \left(\ln(12) + \ln\left(\frac{12}{5^n}\right)\right)}$:

يذن $(u_0-1) \times (u_1-1) \times \cdots \times (u_n-1) = e^{\ln\left(\frac{12^2}{5^n}\right)^{\frac{n+1}{2}}}$ و منه $(u_0-1) \times (u_1-1) \times \cdots \times (u_n-1) = e^{\frac{n+1}{2} \times \ln\left(\frac{12^2}{5^n}\right)}$

. $(u_0-1)\times(u_1-1)\times\cdots\times(u_n-1)=e^{\ln\left(\frac{12}{n\over 2}\right)^{n+1}}$ و منه $(u_0-1)\times(u_1-1)\times\cdots\times(u_n-1)=e^{\ln\left(\frac{(12^2)^{\frac{1}{2}}}{(5^n)^{\frac{1}{2}}}\right)^{n+1}}$

. $(u_0-1)\times(u_1-1)\times\cdots\times(u_n-1)=\left(\frac{12}{5^{\frac{n}{2}}}\right)^{n+1}$ إذن

 $\stackrel{lack}{=}$ حل التمرين الثاني : $\stackrel{lack}{=}$ حل

 $C_{12}^2 = 66$: هي الممكنة للسحب $C_{12}^2 = 66$

. $P(B) = \frac{34}{66}$ $P(B) = \frac{C_8^2 + C_4^2}{66}$ $P(A) = \frac{33}{66}$ $P(A) = \frac{C_5^2 + C_7^2}{66}$

. $P_A(B) = \frac{15}{33}$ و منه $P(A \cap B) = \frac{15}{66}$ و منه $P(A \cap B) = \frac{2C_4^2 + C_3^2}{66}$ لينا $P_A(B) = \frac{P(A \cap B)}{P(A)}$ /2

www.mathonec.com

الملف موجود في: مجموعة الأستاذ ناعم محمد بلدية الأزهرية

$$X = \{5, 4, 3\} / 3$$

قانون إكتمال X

$$P(X=3) = \frac{C_5^2}{66} = \frac{10}{66} , P(X=4) = \frac{C_5^1 \times C_7^1}{66} = \frac{35}{66} , P(X=5) = \frac{C_7^2}{66} = \frac{21}{66}$$

X	5	4	3
P(X=x)	$\frac{21}{66}$	$\frac{35}{66}$	$\frac{10}{66}$

$$E(X) = \frac{275}{66}$$

$$E(X) = 5 \times \frac{21}{66} + 4 \times \frac{35}{66} + 3 \times \frac{10}{66}$$

حل التمرين الثالث: (05 نقاط)

ياً المعادلة $\Delta=2i$ و منه $\Delta=-4$ ، $z^2-4z+5=0$ أو z=i أو z=i و منه z=i و منه المعادلة z=i أو المعادلة المعادل

.
$$S = \{i, 2+i, 2-i\}$$
 هي $(z-i)(z^2-4z+5) = 0$

$$\frac{z_C - z_A}{z_C - z_B} = e^{-i\frac{\pi}{2}}$$
و منه $\frac{z_C - z_A}{z_C - z_B} = -i$ و منه $\frac{z_C - z_A}{z_C - z_B} = \frac{2}{2i} = \frac{1}{i}$ و منه $\frac{z_C - z_A}{z_C - z_B} = \frac{2 + i - i}{2 + i - 2 + i}$ /1 .II

الدينا :
$$\frac{\overrightarrow{CB},\overrightarrow{CA}}{z_C-z_B} = -\frac{\pi}{2}$$
 و منه المثلث $\frac{ABC}{z_C-z_B}$ و منه المثلث $\frac{ABC}{z_C-z_B} = -\frac{\pi}{2}$ و منه المثلث $\frac{z_C-z_A}{z_C-z_B} = 1$

في C و متساوي الساقين

و منه
$$\frac{1}{2} \left| \frac{z - (2 - i)}{z - (2 + i)} \right| = \frac{1}{2}$$
 و منه $\left| \frac{i(z - \frac{1}{i} - 2)}{2(z - 2 - i)} \right| = \frac{1}{2}$ و منه $\left| \frac{iz - 1 - 2i}{2z - 4 - 2i} \right| = \frac{1}{2}$ و منه $\left| \frac{1}{2} \left(\frac{z}{z} \right) \right| = \frac{1}{2}$ و منه $\left| \frac{1}{2} \left(\frac{z}{z} \right) \right| = \frac{1}{2}$

. [BC] و منه $|z-z_B|=|z-z_C|$ و منه $|z-z_B|=|z-z_C|$ و منه $|z-z_B|=|z-z_C|=1$

$$[f(i)]^{1440} = \left(\frac{\sqrt{2}}{2}\right)^{1440} \left(\cos\frac{1440\pi}{4} + i\sin\frac{1440\pi}{4}\right) \text{ or } f(i) = \frac{1+i}{2} = \frac{\sqrt{2}}{2}e^{i\frac{\pi}{4}} \text{ or } f(i) = \frac{-2-2i}{-4} \text{ (p. 1440)}$$

و منه
$$[f(i)]^{1440} = \left(\frac{\sqrt{2}}{2}\right)^{1440} (\cos 0 + i \sin 0)$$
 و منه $[f(i)]^{1440} = \left(\frac{\sqrt{2}}{2}\right)^{1440} (\cos (360\pi) + i \sin (360\pi))$ و منه

. با المام يقيقي
$$[f(i)]^{1440}$$
 با المام يقيقي موجب $[f(i)]^{1440} = \left(\frac{\sqrt{2}}{2}\right)^{1440}$

.
$$z'-z_C=e^{irac{\pi}{2}}(z-z_C)$$
 هي $rac{\pi}{2}$ هي ركزه r الذي مركزه r الكتابة المركبة للدوران r

. $z_D=4+i$ بالدوران $z_D-z_C=i(z_B-z_C)$ بالتعویض نجد D (أ

لدينا $z_C - z_A = 2$ و منه النقط $z_C - z_A = 2$ و منه النقط $z_C - z_A = 2$ الدينا $z_C - z_A = 2$

إستقامية .

ب) بما أنّ D صورة B بالدوران r فإنّ : CD = CB لكن CB = CA و منه CD = CA و النقط CD في إستقامية إذن D صورة D بالتناظر المركزي الذي مركزه D و نسبته D (أو D صورة D بالتناظر المركزي الذي مركزه

حل التمرين الرابع: (07 نقاط)

يقبل مستقيمين مقاربين أفقيين (
$$C_f$$
) ، $\lim_{x \to 2} f(x) = -\infty$ ، $\lim_{x \to 2} f(x) = +\infty$ ، $\lim_{x \to 0} f(x) = -\infty$ (1 /1)

x=2 و x=0

$$\lim_{x \to +\infty} f(x) = +\infty \quad (\neg$$

. $f'(x) = \frac{x^2 - 5x + 4}{(x - 2)^2 x}$ و $]2, +\infty[$ و]0, 2[و]0, 2[و]0, 2[قابلة للإشتقاق على المجالين [0, 2]

 $f^{k}(x)$ إشارة

х	0		1		2	,		4		+∞	
f'(x)		+	0	-			-	0	+	100	Pacli

.]2,4[و منه f متزايدة تماما على المجالين]0,1[و] ∞ +, ∞ [و متناقصة تماما على المجالين]1,2[و] جدول التغيرات :

x	0	1	2	4	+∞
f'(x)	+	0 -		- 0	+
f(x)		-1	+∞	$\frac{1}{2} + 2 \ln$	+∞ 2

و منه $f(x) - \ln x = \frac{1}{x-2}$ ، نفسر النتيجة بأنّ $f(x) - \ln x = \frac{1}{x-2}$ الدينا (1/3) و (1/3) و منه و المتابقة بأنّ (1/4) و منه المتابقة بأنّ (1/4) و ∞ + (أو (C_f) يقترب من Γ) بجوار $+\infty$

ب) ندرس إشارة $\dfrac{1}{x-2}$ على المجالين]0;2[و $]0;+\infty[$. و منه الوضع النسبي بين (C_f) و (C_f) كما يلي :

x	0		2	+∞
$f(x) - \ln x$			+	
الوضعية	(1	تحت (C_f)	(Γ) فوق $(C_f$)

: (Γ) و (C_f) رسم (Γ)

الموضوع الأول $H(x) = \int_{3}^{x} \ln(t) dt$ († 15)

نضع: $u(t) = \int_{3}^{x} u'(t) \times v(t) dt$ و منه $v(t) = \frac{1}{t}$ و منه $v(t) = \ln t$ و منه $v(t) = \ln t$ أي و منه $H(x) = [t \ln t]_3^x - \int_3^x dt$ و منه $H(x) = [u(t)v(t)]_3^x - \int_3^x u(t) \times v'(t) dt$ $H(x) = x \ln x - x - 3 \ln 3 + 3$

ن با
$$\mathcal{A} = \int_{3}^{4} \frac{1}{x-2} dx + H(4)$$
 و منه $\mathcal{A} = \int_{3}^{4} \frac{1}{x-2} + \ln x dx$ و منه $\mathcal{A} = \int_{3}^{4} \frac{1}{x-2} + \ln x dx$ و منه $\mathcal{A} = \int_{3}^{4} f(x) dx$ (باز) $\mathcal{A} = 9\ln 2 - 3\ln 3 - 1$ الماء الماء

 $[-\infty; -1]$ من أجل كل x من المجموعة g'(x) = -2f(-2x) /6

! (x) اشارة

. x=-2 و الح $x=-\frac{1}{2}$ معناه g'(x)=0 ائي f(-2x)=1 و الحg'(x)=0

g معناه g'(x) > 0 و منه g'(x) > 0 و منه g'(x) > 0 و منه g'(x) > 0 $-\frac{1}{2},0$ و متناقصة تماما على المجالين -2,-1 و متناقصة تماما على المجالين -2,-1 و -2,-1 الموضوع الثاني

_____ حل التمرين الأول : (04 نقاط)

. $\{0,1,2,4,8\}$ هي X القيم الممكنة لـ X هي المكنة لـ X هي المكنة لـ X هي المكنة لـ X

$$P(X=2) = \frac{C_3^2 \times C_5^1}{120} = \frac{15}{120}, \ P(X=1) = \frac{C_3^3}{120} = \frac{1}{120}, \ P(X=0) = \frac{C_2^1 \times C_8^2 + C_2^2 \times C_8^1}{120} = \frac{64}{120}$$
$$P(X=8) = \frac{C_5^3}{120} = \frac{10}{120}, \ P(X=4) = \frac{C_5^2 \times C_3^1}{120} = \frac{30}{120}$$

X	0	1	2	4	8
D(V-v)	64	1	15	30	10
P(X=x)	$\overline{120}$	120	120	120	120

$$E(X) = \frac{231}{120} \quad \text{if } E(X) = 0 \times \frac{64}{120} + 1 \times \frac{1}{120} + 2 \times \frac{15}{120} + 4 \times \frac{30}{120} + 8 \times \frac{10}{120}$$

 $P(A) = \frac{C_5^3 + C_2^2 \times C_5^1 + C_5^2 \times \overline{C_2^1}}{120} = \frac{35}{120}$ ، الحصول على ثلاث كريات تحمل كل منها رقما زوجيا :A: الحصول على ثلاث كريات تحمل كل منها رقما أوجيا .

D عدد الحالات الممكنة للسحب هي $A_{10}^2=90$ ، نضع : S الحادثة : الحصول على رقمين مجموعهما فردي و

الحادثة: الحصول على رقمين جداءهما زوجي.

$$P(S) = \frac{2 \times A_2^1 \times A_3^1 + 2 \times A_3^1 \times A_5^1}{90} = \frac{42}{90}$$
 المجموع فردي معناه الرقمين من شفعيتين مختلفتين و منه

الجداء زوجي معناه الرقمان زوجيان أو أحدهما فردي و الآخر زوجي و منه $P(S) = \frac{21}{45}$

$$P(D) = \frac{84}{90} \quad \text{و منه إحتمال} \quad P(D) = \frac{84}{90} \quad \text{أي} \quad P(D) = \frac{2 \times A_5^1 \times A_2^1 + A_2^2 + A_5^2 + 2 \times A_3^1 \times A_3^1 + 2 \times A_3^1 \times A_5^1}{90}$$

 $P_D(S) = rac{1}{2}$ الحصول على رقمين مجموعهما فردي علما أنّ جداءهما زوجي هو $P_D(S) = \frac{P(D \cap S)}{P(D)}$ أي $P_D(S) = \frac{1}{2}$ مهمة :يمكن إعتبار السحب في آن واحد و حساب الإحتمال نجده نفسه السابق)

 $\widehat{\hspace{1em}}$ حل التمرين الثاني : $\widehat{\hspace{1em}}$ حقاط)

[4,7] و المجال f'(x) > 0 من أجل كلّ x من المجال [4,7] و $f'(x) = \frac{1}{2\sqrt{x+2}}$ و المجال $f'(x) = \frac{1}{2\sqrt{x+2}}$ و عليه f متزايدة تماما على المجال السابق .

ب) بما أن f متزايدة تماما على المجال [4,7] و حسب تعريف التزايد ، إذا كان f فإن

$$.4 \le f(x) < 7$$
 يا اَن $14 \le f(x) < 7$ يا اَن $14 \le f(x) < 7$ يا اَن $14 \le f(x) < f(x) < f(x)$ يا الكن $14 \le f(x) < f(x)$

بالضرب و القسمة على مرافق هذه العبارة نجد
$$f(x)-x=\sqrt{x+2}+4-x=\sqrt{x+2}-(x-4)$$
 بالضرب و القسمة على مرافق هذه العبارة نجد
$$f(x)-x=\frac{(x+2)-(x-4)^2}{\sqrt{x+2}+(x-4)}$$
 أي $f(x)-x=\frac{(\sqrt{x+2}-(x-4))(\sqrt{x+2}+(x-4))}{\sqrt{x+2}+(x-4)}$

. [4,7] من أجل كلّ x من المجال $f(x) - x = \frac{-x^2 + 9x - 14}{x}$

لدينا x>4 و منه $\sqrt{x+2}>0$ و منه $\sqrt{x+2}>0$ و عليه إشارة x>4 من إشارة $\sqrt{x+2}>0$ و الذي إشارته كما يلى:

x	$-\infty$	2	7	+∞
$-x^2 + 9x - 14$	_	0 +	0	-

الملف موجود في: مجموعة الأستاذ ناعم محمد بلدية الأزهرية

الموضوع الثاني

f(x) - x > 0 : فإنّ المجال [4,7] فإنّ x من المجال عند من أجل كلّ x

. 4 ≤ *u_n* < 7 المنظميع / 13

. و a<7 إذن n=0 لدينا n=0 لدينا n=0 و a<7

. نفرض أنّ P(n) صحيحة و نثبت صحة P(n+1) حيث n عدد طبيعي -

محيحة معناه $4 \leq (u_n) < 7$ ، لدينا $u_{n+1} = f(u_n)$ و منه حسب نتيجة السؤل $u_n < 7$ فإنّ $u_n < 7$ و $u_n < 7$

. n منه $4 \leq u_{n+1} < 7$ من أجل كلّ عدد طبيعي ، نختم بالقول أن

. $\mathbb N$ على u_n و منه (u_n) متزايدة تماما على $f(u_n) - u_n > 0$ ، $u_{n+1} - u_n = f(u_n) - u_n$ ب

. بما أنّ (u_n) متزايدة تماما و محدودة من الأعلى بـ 7 فهي متقاربة -

 $3+\sqrt{6} \ge 4$ کن $4 \le 7-u_{n+1} = 3-\sqrt{u_n+2} = \frac{7-u_n}{3+\sqrt{u_n+2}}$ (1 /4 کن $4 \le 7-u_{n+1} = 3-\sqrt{u_n+2} = \frac{7-u_n}{3+\sqrt{u_n+2}}$

منه $4 \ge \frac{1}{4}$ اذن $\frac{1}{3+\sqrt{u_n+2}} \le \frac{1}{4}$ من أجل كلّ $3+\sqrt{u_n+2} \le 4$ من أجل كلّ $3+\sqrt{u_n+2} \le 4$ من أجل كلّ عدد طبيعي n عدد طبيعي n

. n وجدنا سابقا $1 - u_{n+1} \le \frac{1}{4} (7 - u_n)$ عدد طبيعي $1 - u_{n+1} \le \frac{1}{4} (7 - u_n)$

 $5 - u_n \le \frac{1}{4} (7 - u_{n-1})$ $7 - u_{n-1} \le \frac{1}{4} (7 - u_{n-2})$ $7 - u_{n-2} \le \frac{1}{4} (7 - u_{n-3})$

 $7 - u_1 \le \frac{1}{4}(7 - u_0)$

بالضرب طرفا لطرف بين المتباينات السابقة طرفا لطرف نجد

من أجل كلّ عدد $0 < 7 - u_n < (3) \left(\frac{1}{4}\right)^n$ و منه $7 - u_n < (3) \left(\frac{1}{4}\right)^n$ من أجل كلّ عدد $0 < 7 - u_n < (3) \left(\frac{1}{4}\right)^n$ من أجل كلّ عدد $0 < 7 - u_n < (3) \left(\frac{1}{4}\right)^n$

 $\lim_{n \to +\infty} u_n = u_n = 7 \quad \lim_{n \to +\infty} u_n = 7 - u_n = 0 -$

حل التمرين الثالث: (05 نقاط)

 $z_A = 2\sqrt{2}e^{i\frac{\pi}{3}}$ († /1

و منه $\left(\frac{z_A}{2\sqrt{2}}\right)^{2019} + \left(\frac{z_B}{2\sqrt{2}}\right)^{2019} = (e^{i\frac{\pi}{3}})^{2019} + (e^{-i\frac{\pi}{3}})^{2019} = e^{i\frac{\pi}{3}} = e^{-i\frac{\pi}{3}}$ و منه $\frac{z_B}{2\sqrt{2}} = e^{-i\frac{\pi}{3}} = e^{-i\frac{\pi}{3}}$ و منه $\left(\frac{z_A}{2\sqrt{2}}\right)^{2019} + \left(\frac{z_B}{2\sqrt{2}}\right)^{2019} + \left(\frac{z_B}{2\sqrt{2}}\right)^{2019} = e^{i\pi} + e^{-i\pi}$ و منه $\left(\frac{z_A}{2\sqrt{2}}\right)^{2019} + \left(\frac{z_B}{2\sqrt{2}}\right)^{2019} = e^{i\times 673\pi} + e^{-i\times 673\pi}$

 $\left(\frac{z_A}{2\sqrt{2}}\right)^{2019} + \left(\frac{z_B}{2\sqrt{2}}\right)^{2019} = -2$

و $z_D=z_B-3z_A$ و $z'=z-3z_A$ و $z'=z+z_C-z_A$ و $z_D=z_B-3z_A$ و $z_D=z_B-3z_A$ و أي $z_D=z_B-3z_A$ و

. $z_D = -2\sqrt{2} - 4i\sqrt{6}$ منه

. ب) لدينا D صورة B بالإنسحاب الذي شعاعه \overrightarrow{AC} إذن $\overrightarrow{AC}=\overrightarrow{DB}$ و منه الرباعي ABDC متوازي أضلاع

. $z_C - z_A = 6\sqrt{2}e^{i\frac{4\pi}{3}}$ و منه $z_C - z_A = -3z_A = -6\sqrt{2}e^{i\frac{\pi}{3}}$ /3

$$1 \text{ naam-corbac-} 3 \text{ lmy-2019P7}$$
 المن موجود في: مجموعة الأستاذ ناعم محمد بلدية الأزهرية $(n\pi)$ $(n\pi)$ $(-6\sqrt{2})^n$ $(-6\sqrt{2})^n$

حقیقی
$$\left(\frac{-6\sqrt{2}}{z_C - z_A}\right)^n$$
و منه
$$\left(\frac{-6\sqrt{2}}{z_C - z_A}\right)^n = (e^{-i\frac{\pi}{3}})^n = \cos\left(\frac{n\pi}{3}\right) - i\sin\left(\frac{n\pi}{3}\right)$$
و منه
$$\left(\frac{-6\sqrt{2}}{z_C - z_A}\right)^n = \left(\frac{1}{e^{i\frac{\pi}{3}}}\right)^n + \frac{1}{4}e^{-i\frac{\pi}{3}}e^$$

و $z \neq z_C$ ، $z \neq z_A$ و منه $z \neq z_C$ ، $z \neq z_A$ و منه $z \neq z_C$ ، $z \neq z_A$ و منه $z \neq z_C$ و منه $z \neq z_C$ و منه $z \neq z_C$ و منه $z \neq z_C$

ماعدا (AC) مرتبطين خطيا و في نفس الإتجاه و يشتركان في النقطة M إذن (E) هي المستقيم $M\dot{C}$

القطعة المستقيمة [AC] .

حل التمرين الرابع: (07 نقاط)

. $g'(x) = e^x - e$ و قابلة للإشتقاق على $\mathbb R$ و أالدالة g قابلة للإشتقاق على أالدالة g

معناه y'(x) = 0 معناه y'(x) = 0

 $[0,+\infty]$ و متناقصة تماما على المجال $[0,+\infty]$

ب) بما أنّ g متزايدة تماما على المجال $]0,+\infty[$ و متناقصة تماما على المجال $]-\infty;1[$ فإنّ $[0,+\infty[$ قيمة حدية x صغری إذن $g(x) \geq g(1)$ لکن g(x) = 0 و منه $g(x) \geq 0$ من أجل کلّ عدد حقيقي

 $f'(x) \ge 0$ من أجل كلّ عدد حقيقي x ، و منه f'(x) = g(x) أي f'(x) = g(x) من أجل كلّ عدد حقيقي $f'(x) = e^x - ex$

من أجل كلّ عدد حقيقى x فهى متزايدة تماما على $\mathbb R$.

 $\lim_{x \to \infty} f(x) = -\infty \quad \lim_{x \to \infty} f(x) = +\infty \quad /3$

جدول التغيرات:

x	$-\infty$ $+\infty$
f'(x)	+
f(x)	+∞

. $f(x) - g(x) = e(-\frac{1}{2}x^2 + x)$ لدينا /4

f(x) - g(x) يلى:

x	$-\infty$	0		2	+∞
f(x) - g(x)	-	O	+	0 -	

و منه (C_f) فوق (C_g) في المجال [0,2] و تحته في المجالين $[0,\infty]$ و $[0,\infty]$ و يتقاطعان في النقطتين . $B(2, e^2 - 2e)$ A(0, 1)

5/ الرسم :

الموضوع الثاني | naam-corbac- 3/my-2019P8 | الموضوع الثاني |

و منه $\mathcal{A} = \int_0^2 -\frac{1}{2}e.x^2 + e.x$ أي $\mathcal{A} = \int_0^2 [f(x) - g(x)] dx$ و $\mathcal{A} = \int_0^2 -\frac{1}{2}e.x^2 + e.x$ و منه

.
$$\mathcal{A} = \frac{8e}{3}$$
 cm² و منه $\mathcal{A} = 8e - \frac{16}{3}e$ و منه $\mathcal{A} = 2e - \frac{4}{3}e$ و منه $\mathcal{A} = \left[-\frac{1}{6}e^{-\frac{1}{3}} + \frac{1}{2}e^{-\frac{1}{3}} \right]^2$

لكن ، $h(-x) = \frac{1}{2}e.x^2 - e^{|-x|}$ و [-2,2] و [-2,2] لدينا [-2,2] لدينا [-2,2] لدينا [-2,2] لدينا عن أجّل كلّ [-2,2] لدينا عن أجّل كلّ [-2,2]

. مما يدل أنّ الدالة h(-x) = h(x) أي h(-x) = h(x) مما يدل أنّ الدالة h زوجية $h(-x) = \frac{1}{2}e.x^2 - e^{|x|}$

 (C_f) على المجال [0,2] ، إذن h(x) = -f(x) أي h(x) = -f(x) على المجال h(x) = -f(x) هو نظير h(x) + f(x) = 0

بالنسبة إلى حامل محور الفواصل عندما يكون $x \in [0,2]$ ، ثمّ نناظر هذا الجزء بالنسبة إلى حامل محور التراتيب

[-2,0] نتحصل على الجزء الباقي من (Γ) على المجال

- الرسم :

حل مقترح من طرف الأستاذ ناعم محمد