# Multi-Agent Reinforcement Learning

Christian Kalla

Knowledge-Based Systems Group RWTH Aachen University

8.6.2009/Seminar- Foundations of Al



## Outline

#### Introduction

#### Foundations of Reinforcement Learning

Markov Decision processes

Policies 4

Value- and State-Value-Function

Basic algorithms

#### Multi-Agent Reinforcement Learning

General Problems

Sharing Knowledge

Game-theoretic Approaches

# The Idea of Reinforcement Learning

- learning by interacting with the environment
- taking actions and receiving rewards
- trying to maximize long-term reward
- mathematical description: Markov Decision Process

### Supervised Learning

- given correct input-output pairs
- ▶ correct classification of data given → "teacher"
- example: digit recognition

#### Unsupervised Learning

- just "raw data" without labeling given
- no "teacher"
- example: clustering methods (k-means,...)

#### ► Reinforcement Learning

- learning by interacting with the environment
- "natural" approach (related to human learning)
- feedback from environment in terms of rewards
- goal: maximize long-term reward



### Supervised Learning

- given correct input-output pairs
- ▶ correct classification of data given → "teacher"
- example: digit recognition

#### Unsupervised Learning

- just "raw data" without labeling given
- no "teacher"
- example: clustering methods (k-means,...)

#### Reinforcement Learning

- learning by interacting with the environment
- "natural" approach (related to human learning)
- feedback from environment in terms of rewards
- goal: maximize long-term reward



### Supervised Learning

- given correct input-output pairs
- ▶ correct classification of data given → "teacher"
- example: digit recognition

#### Unsupervised Learning

- just "raw data" without labeling given
- ▶ no "teacher"
- example: clustering methods (k-means,...)

#### Reinforcement Learning

- learning by interacting with the environment
- "natural" approach (related to human learning)
- feedback from environment in terms of rewards
- goal: maximize long-term reward



#### Supervised Learning

- given correct input-output pairs
- ▶ correct classification of data given → "teacher"
- example: digit recognition

### Unsupervised Learning

- just "raw data" without labeling given
- no "teacher"
- example: clustering methods (k-means,...)

#### ► Reinforcement Learning

- learning by interacting with the environment
- "natural" approach (related to human learning)
- feedback from environment in terms of rewards
- goal: maximize long-term reward



### Outline

#### Introduction

#### Foundations of Reinforcement Learning

Markov Decision processes

Policie

Value- and State-Value-Function

Basic algorithms

#### Multi-Agent Reinforcement Learning

General Problems

Sharing Knowledge

Game-theoretic Approaches

# The Markov Property

### Markov Property

$$Pr\left\{s_{t+1} = s', r_{t+1} = r | s_t, a_t, r_t, s_{t-1}, a_{t-1}, ..., r_1, s_0, a_0\right\}$$
  
=  $Pr\left\{s_{t+1} = s', r_{t+1} = r | s_t, a_t\right\}$ 

The probability distribution of the next state only depends on the previous state and not on all the states visited before

# Markov Decision Process(MDP)

### Components of an MDP

- ightharpoonup a set of states S
- a set of actions A
- ▶ a set of rewards ℜ
- ▶ a transition function  $T: \mathcal{S} \times \mathcal{A} \to PD(\mathcal{S})$  where  $PD(\mathcal{S})$  denotes the set of probability distribution over  $\mathcal{S}$
- ightharpoonup a reward function  $R: \mathcal{S} \times \mathcal{A} \to \mathfrak{R}$

### Goal: Maximize expected sum of discounted future rewards:

$$E\left\{\sum_{j=0}^{\infty} \gamma^j r_{t+j}\right\} \tag{1}$$

# Categorization of Algorithms

# The Q-Learning Algorithm

### Q-Learning Algorithm

```
Initialize Q(s,a) arbitrarily for each episode do Initialize s repeat Choose a from s using policy derived from Q Take action a and observe a,s' Q(s,a) \leftarrow Q(s,a) + \alpha(r+\gamma \max_{a'} Q(s',a') - Q(s,a)) s \leftarrow s' until s is terminal end for
```

### Yet Another Slide

#### 1st column

- ▶ Item1
- ▶ Item2
- ▶ ..

#### 2nd column

### Outline

#### Introduction

#### Foundations of Reinforcement Learning

Markov Decision processes

Policies

Value- and State-Value-Function

Basic algorithms

### Multi-Agent Reinforcement Learning

General Problems

Sharing Knowledge

Game-theoretic Approaches

# Overview of MARL algorithms



### A Robot Soccer Scenario

# The Minimax-Q Learning Algorithm

### Last Slide

▶ Q Learning applet