

HACETTEPE UNIVERSITY DEPARTMENT OF GEOMATICS ENGINEERING

ADJUSTMENT COMPUTATION & PARAMETER ESTIMATION 2021-2022 SPRING TERM ASSIGNMENT 5

ABDULSAMET TOPTAŞ - 21905024

Adjust the network of directions given below using the Indirect measures method.

NN	ycm)	X cm)
E	act com	linates
107	P83,689	7060,033
108	342,246	8404,180
A	proximate	Coordinates
23	638,765	8351, 331

DN	BN	Direction
108	23	0,0000
1	107	43,21580
107-	108	0,0000
	23	32,24480
23	107	0,00000
	108	124, 53835

Number of measures n=6Number of unknowns u=2+3 (1 coordinate pair and 3 bouting unknowns)

Degrees of Freedom f=n-u=6-5>0There is adsirtment

Coordinate unknowns ? dx_2 , dy_{22} Three fouting Unknowns ? dz_{23} , dz_{102} , dz_{108} (direction observation were made at points 23, 104 and 108) $t_{12}^0 = \arctan\left(\frac{y_2^2 - y_1^0}{x_2^2 - x_1^0}\right)$ $s_{12}^0 = \int (y_{22}^0 - y_1^0)^2 + (x_2^0 - x_1^0)^2$

$$a_{12} = \frac{\sin(t_{12}^2)}{s_{12}^2} \cdot \frac{\frac{200}{7}.1000}{100} \quad b_{12} = \frac{-\cos(t_{12}^2)}{s_{12}^2} \cdot \frac{\frac{200}{7}.1000}{100} \quad z_1^2 = \frac{\left[t_{1k}^2 - \Omega\right]}{\Omega}$$

Dh	BN	Direction (; (9)	tik (9)	Siz (m)	Cir-ri	- (1/2 (cc)		bir
108	23	0,00000	111,22866	501,192			20,8088	3,9088
	107	43,21580	154,44796	575,355	111,23216	18	7, 2587	8,3511
				2008 =	111,23041		Victoria.	

(et's write the correction equations for the directions observations at pant 68) $\sqrt{108-23} = -de_{108} + 20,8088 \cdot dx_{108} + 3,7088 \cdot dy_{108} - 20,8088 \cdot dx_{23} - 3,7088 \cdot dy_{23} - 18$ $\sqrt{108-107} = -de_{109} + 7,2587 \cdot dx_{108} + 8,3511 \cdot dy_{108} - 7,2587 \cdot dx_{107} - 8,3511 \cdot dy_{107} + 18$

Points 107 and 108 are the reference points, Let's subtracts the coefficients of these points from the correction equations and rewrite the equations according to the unknowns.

 $V'_{108-23} = -d_{2,08} - 20,8088 \cdot d_{23} - 3,7088 \cdot d_{23} - 18$ $V'_{108-107} = -d_{2,108} + 0 \cdot d_{23} + 0 \cdot d_{32} + 18$

Total -2 -20,8088 -3,7088 0,00 let's divide = 10,4044 1,8544 0,00 n=2-n=-2

Direction unknown equation at point (108.)

1. dr. ox + 10, 4044, dx 23 + 1.8544. dy 23 = 0

Let's write the elimination of the (dz 108) routing unknown from the correction equations bellow.

Vios-107 = + 10, 4044 . dx23 - 1,8544 . dy23 + 18

1-2 108 0,0000 354,44796 5751	5 255 RSU 11 796 15 7,2587 -8,381
	31/3/3
101 108	9, 889 354,4497 -15 -3,1890 -5,78
100 100 100	0 = 354,44647

(et's write the correction equations for the direction observations at point (104) $V_{104-108} = -dt_{104} - 7.2587$ $dt_{104} - 8.3511$ $dt_{104} + 7.2687$ $dt_{104} + 8.3511$ $dt_{105} + 16.3511$ $dt_{105} + 16.351$ $dt_{105} + 16.351$ d

V107-108 = - dz107 + 0. dx23 + 0. dy23 + 15 V104-23 = - dz104 + 3,3820. dx23 + 15,9429. dy23 - 15

Total -2 3,3890 15,9727 0,00 let's distille 1 -1,6045 -7,9860 0,00 n=2 -n=-2 Direction unknown equation at point (104.)

1. $d_{2109} - 1,6945 \cdot d_{23} - 7,9863 \cdot d_{23} = 0$

Let's write the elimination form of the (dziot) routing unknown from the correction equatinons below 5

Y107-108 = - 1.6945. dx23 - 7,9863. dy23 + 15

V107-23 = + 1,6945. dx23 + 7,9863. dy23 - 15

DN	ON	Direction (i (9)	七ik (9)	5;k (M)	tiz-C;	-(ik (ac)	cr/cm air	biz celem
23	107	0,00000	186,68977	389,889	186,68977	-3	3,3890	15,9727
	tok	124,53835	311,22866	301,192	186,69 031	3	-20,8088	-3,7088
				2007=	186,69004			w 63

Let's write the correction equations for the direction observations at part [13] $V_{23-107} = -d_{23} + 3,3890 \cdot d_{23} + 15,9727 \cdot d_{23} - 3,3880 \cdot d_{x_{107}} - 15.9727 \cdot d_{y_{107}} - 3$ $V_{23-108} = -d_{23} - 20,8088 \cdot d_{x_{23}} - 3,7088 \cdot d_{y_{23}} + 20,8088 \cdot d_{x_{108}} + 3,7088 \cdot d_{y_{108}} + 3$

Points 107 and 108 are the reference points. Let's subtract the coefficients of these points from the correction equations and rewrite the equations according to the unknowns.

V23-107 = -d223 + 3,3890 - dx23 + 15,9727, dy23 - 3

V13-108 = -d223 - 20,8088. dx23 - 3,7088.dy23+3

Total -2 -17,4189 12,2639 0,00 leet's divide 1 8,7039 6,1319 0,00 n=2 -n=-2

Orientation unknown equation at point (3)

1. dz 23 + 8,7099. dx 23 + 6, 1319. dy 23 =0

cet's write the elimination of the d223 routing unknown from the correction equations below 5

V23-107 = +12,0989. dx 23 + 9,8407.dy 27 -3

V23-108 =- 12,0989 - dx23 - 9,8407. dy23 +3

Correction Edjuntions

Vior-23 = -10, 4044.
$$dx_{22} - 1, 8544. dy_{22} - 18$$

Vior-23 = +10, 4045. $dx_{23} + 1, 9544. dy_{22} + 18$

Vior-23 = +1,6045. $dx_{23} + 7, 9863. dy_{23} + 15$

Vior-23 = +1,6045. $dx_{23} + 7, 9863. dy_{23} - 15$

Vior-23 = +1,6045. $dx_{23} + 7, 9863. dy_{23} - 15$

Vior-23 = +1,6045. $dx_{23} + 7, 9863. dy_{23} - 15$

Vior-23 = -12,0989. $dx_{23} + 3, 8404. dy_{23} + 3$

I will write the correction equations in the formet $V = A - x - 1$

Vior-23 | -10,4044. 1,8544. | -1,6945. 7,9863. | -15,404. | -1,6945. 7,9863. | -15,404. | -1,6945. 7,9863. | -15,404. | -1,6945. 7,9863. | -15,404. | -1,6945. 7,9863. | -15,404. | -1,6945. 7,9863. | -15,404. | -1,6945. 7,9863. | -15,404. | -1,6945. 7,9863. | -15,404. | -1,6945. 7,9863. | -15,404. | -1,6945. 7,9863. | -15,404. | -1,6945. 7,9863. | -15,404. | -1,6945. 7,9863. | -15,404. | -1,6945. 7,9863. | -15,404. | -1,6945. 7,9863. | -15,404. | -1,6945. 7,9863. | -1

Control of adjusted direction dimensions

Orientation unknown equations

with water votation

$$\begin{bmatrix} d_{2,108} \\ d_{2,108} \\ d_{2,104} \end{bmatrix} = \begin{bmatrix} 10,4044 & 1,8544 \\ -1,6345 & -7,9863 \\ 8,7033 & 6,1319 \end{bmatrix} \cdot \begin{bmatrix} dx_{12} \\ dy_{23} \end{bmatrix} = \begin{bmatrix} 15,79 \\ 16,71 \\ 32,52 \end{bmatrix} c = \begin{bmatrix} 15,79 \\ 16,71 \\ 32,52 \end{bmatrix} c = \begin{bmatrix} 15,79 \\ 16,71 \\ 32,52 \end{bmatrix}$$

$$\begin{bmatrix} 2_{102} \\ 2_{107} \\ 2_{23} \end{bmatrix} = \begin{bmatrix} 2_{101}^{*} \\ 2_{107}^{*} \\ 2_{23} \end{bmatrix} + \begin{bmatrix} d_{2_{108}} \\ d_{2_{107}} \\ d_{2_{27}} \end{bmatrix} = \begin{bmatrix} 2_{101} \\ 2_{107} \\ 2_{23} \end{bmatrix} = \begin{bmatrix} 111,23133 \\ 354,44814 \\ 232 \end{bmatrix} = \begin{bmatrix} 15,79 \\ 16,73 \\ 32.52 \end{bmatrix} = \begin{bmatrix} 111,23133 \\ 16,73 \\ 32.52 \end{bmatrix} = \begin{bmatrix} 111,23133 \\ 16,73 \\ 32.52 \end{bmatrix}$$

DN	CN.		From Hed Adjusted	Difference				
		r; (g)	V; (cc)	(= [+ 1	7	tik=f: +2102	coordinates District tile	1
. 0.7	1 1		125	-0,00018	111,23199	111, 23181	14,23181	0,00
108	23	0,0000	-1,75		111,23199	154,44796	154,44796	0,00
51 5 12 =	107	43,21580	1,75	-0,00018	354,4814	354,44796	354,44796	0,00
107	108	0,00000	-1,75	32,24438	354,44814	386, 69312	186,69312	0,00
	107	32,24,80	1,75	-0,00018	186, 69 329		186,69312	0,00
23	108	124,53835		124,53853	186, 69329	-	311, 23181	0,00

*Calculated by Matlah