Map 08 1.5

Completeners axiom for R depends on The ordering relation on R, but Sucha relation does not exist on R" The goal of 1.5 is to extend The notion of completenen to \mathbb{R}^n .

4 S = Ø, bdd Sabod of R Then S has Tub / glb.

E-Characterization of Tub(S) = S VESO BXES 8-ECXES VESO B(6,8) 05 + \$

(translate Completer) 1.16 Moinotone Sequence Theorem to Convergence /

any bounded monotone Seq $\{x_k\} \subset \mathbb{R}$ converges (to its lub of one)

Pb: $S = \{x_k\}$ is both g(b(s)) = d(exist)8 decreasing Completeness of \mathbb{R} $\forall \in \{x_k\}$ is $\{x_k\} \in \{x_k\}$ in $\{x_k\} \in \{x_k\}$

 $= X_{K}$ $= X_{K}$ $X_{k} \rightarrow d \rightarrow \emptyset$ $\forall \epsilon > 0 \rightarrow K \forall k > K$ $d < \chi_{k} < \chi_{K} < d + \epsilon$ $|\chi_{k} - d| < \epsilon$ $|\chi_{k} - d| < \epsilon$

- 1x - d1< E.

1. 17 Nested Interval Theorem

(translating existence of limit to)

 $\bigcap I_n \neq \emptyset$

any nested Seg of intervals In=[a, b,] with le $b_n-a_n=0$, Then $\bigcap_{n=0}^{\infty} I_n \neq \emptyset = \{x\}$ and has only one pt

Pb: {an} is monotone inc - lean=a exist & asb
{bn} is monotone dec - le bn = b

as b_-a_ == 0 & b-a < b_-a_ Re b-a = 0

If this some IENIn -> le In for each n no asteb.

1.18 BW1 Every bounded Sequence in R has a convergence Sub-sequence. PB: let {xk} C[a, bi]. bisect [a, bi] and bick [az bz] to be The half that contains of many bdd of The xus. Continue till We IntoIn Construct In=[an bn] $\bigcap_{n=1}^{\infty} I_{n} = \{x\} \qquad \text{apply NIT}$ pick $x_{k_{\hat{i}}} \in I_{\hat{j}}$ and on $j \rightarrow \infty$ / $|X_{k_i} - X| \rightarrow 0$. 10,-00 so (Key to Completenen of 12") 1.19 BW2 (extend 1.18 to R") Cauchy Sequences in R' Converge (new Completenin, for R') A Sequence {*xn} CR" converges you it is Cauchy.

PB (XK) to Cauch -> {XK} bdd -> a Subsequence {XK;} exist.

Then {XK} -> X

Then {XK} -> X