

Ù&@^œ^¦ÊØQ&È		H€»Á/ā¦oÁ, ĐịÁÙ^ã;{ã&ÁÖ^•ãt}
PÔX	Ùœ)åæååÁÚXTæ¢ÁÜæ&∖ā)*ÁÛ^•৫^{	
	Ü^]¦^•^} cænāç^ÁÔæn&` ænā[}•ÁEÁOEÙÔÒÁIEF€	

1. INTRODUCTION

1.1 Project Description

The following sections will cover the determination of forces and structural design calculations for the Schletter, Inc. PVMax ground mount system.

1.2 Construction

Photovoltaic modules are attached to aluminum purlins using clamp fasteners. Purlins are clamped to inclined aluminum girders, which are then connected to aluminum struts. Each support structure is equally spaced.

PV modules are required to meet the following specifications:

	<u>Maximum</u>		<u>Minimum</u>
Height =	1700 mm	Height =	1550 mm
Width =	1050 mm	Width =	970 mm
Dead Load =	3.00 psf	Dead Load =	1.75 psf

Modules Per Row = 2

Module Tilt = 30° Maximum Height Above Grade = 3 ft

1.3 Technical Codes

- ASCE 7-10 Chapter 26-31, Wind Loads
- ASCE 7-10 Chapter 7, Snow Loads
- ASCE 7-10 Chapter 2, Combination of Loads
- International Building Code, IBC, 2012, 2015
- Aluminum Design Manual, Eighth Edition, 2005

Typical loading conditions of the module dead loads, snow loads, and wind loads are shown on the left.

2. LOAD ACTIONS

2.1 Permanent Loads

$g_{MAX} =$	3.00 psf
$g_{MIN} =$	1.75 psf

Self-weight of the PV modules.

2.2 Snow Loads

Ground Snow Load,
$$P_g =$$
 30.00 psf Sloped Roof Snow Load, $P_s =$ 16.49 psf (ASCE 7-10, Eq. 7.4-1)
$$I_s = 1.00$$

$$C_s = 0.73$$

$$C_e = 0.90$$

$$C_t = 1.20$$

2.3 Wind Loads

Design Wind Speed, V =	110 mph	Exposure Category = C
Height <	15 ft	Importance Category = II

Peak Velocity Pressure, $q_z = 19.00 \text{ psf}$ Including the gust factor, G=0.85. (ASCE 7-10, Eq. 27.3-1)

Pressure Coefficients

Cf+ _{TOP}	=	1.150 (Procesure)	
Cf+ BOTTOM	=	1.150 1.850 <i>(Pressure)</i>	Provided pressure coefficients are the result of wind tunnel testing done by Ruscheweyh Consult. Coefficients are
Cf- TOP, OUTER PURLIN	=	-2.600	located in test report # 1127/0611-1e. Negative forces are
Cf- TOP, INNER PURLIN	=	-2.000 (Suction)	applied away from the surface.
Cf- BOTTOM	=	-1.100	applied away hom the duridoo.

2.4 Seismic Loads - N/A

S _S =	0.00	R = 1.25	ASCE 7, Section 12.8.1.3: A maximum S _s of 1.5
$S_{DS} =$	0.00	$C_S = 0$	may be used to calculate the base shear, C_s , of
$S_1 =$	0.00	$\rho = 1.3$	structures under five stories and with a period, T,
$S_{D1} =$	0.00	$\Omega = 1.25$	of 0.5 or less. Therefore, a S_{ds} of 1.0 was used
$T_a =$	0.00	$C_{d} = 1.25$	to calculate C _s .

2.5 Combination of Loads

ASCE 7 requires that all structures be checked by specified combinations of loads. Applicable load combinations are provided below.

(ASCE 7, Eq 2.3.2-1 through 2.3.2-7) & (ASCE 7, Section 12.4.3.2)

Strength Design, LRFD

Component stresses are checked using the following LRFD load combinations:

1.2D + 1.6S + 0.5W 1.2D + 1.0W + 0.5S 0.9D + 1.0W ^M 1.54D + 1.3E + 0.2S ^R 0.56D + 1.3E ^R 1.54D + 1.25E + 0.2S ^O 0.56D + 1.25E ^O

Allowable Stress Design, ASD

Member deflection checks and foundation designs are done according to the following ASD load combinations:

 $\begin{array}{c} 1.0 \text{D} + 1.0 \text{S} \\ 1.0 \text{D} + 0.6 \text{W} \\ 1.0 \text{D} + 0.75 \text{L} + 0.45 \text{W} + 0.75 \text{S} \\ 0.6 \text{D} + 0.6 \text{W} & \text{(ASCE 7, Eq 2.4.1-1 through 2.4.1-8) \& (ASCE 7, Section 12.4.3.2)} \\ 1.238 \text{D} + 0.875 \text{E} & \text{O} \\ 1.1785 \text{D} + 0.65625 \text{E} + 0.75 \text{S} & \text{O} \\ 0.362 \text{D} + 0.875 \text{E} & \text{O} \end{array}$

3. STRUCTURAL ANALYSIS

3.1 RISA Results

Appendix B.1 contains outputs from the structural analysis software package, RISA. These outputs are used to accurately determine resultant member and reaction forces from the loads seen throughout Section 2.

3.2 RISA Components

A member and node list has been provided below to correlate the RISA components with the design calculations in Section 4. Items of significance have been listed.

<u>Purlins</u>	Location	Diagonal Struts	Location	Front Reactions Location
M13	Тор	M3	Outer	N7 Outer
M14	Mid-Top	M7	Inner	N15 Inner
M15	Mid-Bottom	M11	Outer	N23 Outer
M16	Bottom			
<u>Girders</u>	Location	Rear Struts	Location	Rear Reactions Location
M1	Outer	M2	Outer	N8 Outer
M5	Inner	M6	Inner	N16 Inner
M9	Outer	M10	Outer	N24 Outer
Front Struts	Location			
M4	Outer			
M8	Inner			
M12	Outer			

[™] Uses the minimum allowable module dead load.

^R Include redundancy factor of 1.3.

O Includes overstrength factor of 1.25. Used to check seismic drift.

4.1 Purlin Design

Aluminum purlins are used to transfer loads to the support structure. Purlins are designed as continous beams with cantilevers. These are considered beams with internal hinges that can be joined with splices at 25% of the support respective span. See Appendix A.1 for detailed member calculations. Section units are in (mm).

4.2 Girder Design

Loads from purlins are transferred using an inclined girder, which is connected to a set of aluminum struts. Loads on the girder result from the support reactions of the purlins. See Appendix A.2 for detailed member calculations. Section units are in (mm).

4.3 Front Strut Design

The front aluminum strut connects a portion of the girder to the foundation. Vertical girder forces are then transferred down through the strut into the foundation. The strut is attached with single M12 bolts at each end. See Appendix A.3 for detailed member calculations. Section units are in (mm).

4.4 Diagonal Strut Design

A diagonal aluminum strut braces the support structure. It connects at a front portion of the girder and transfers horizontal forces to the rear foundation connection. The strut is attached with single M12 bolts at each end. See Appendix A.4 for detailed member calculations. Section units are in (mm).

4.5 Rear Strut Design

An aluminum strut connects the rear portion of the girder to the rear foundation connection. Both vertical and horizontal forces are transferred from the girder. The strut is attached with single M12 bolts at each end. See Appendix A.5 for detailed member calculations. Section units are in (mm).

5. FOUNDATION DESIGN CALCULATIONS

5.1 Helical Pile Foundations

The following LRFD loads include a safety factor of 1.3, and are to be used in conjunction with a Schletter, Inc. Geotechnical Investigation Report. The forces below should fall within the guidelines provided in the Geotechnical Investigation Report is not present, please proceed to Section 5.2 for a concrete foundation design.

<u>Front</u>	<u>Rear</u>	
<u>115.94</u>	<u>5013.26</u>	k
<u>3499.81</u>	4270.44	k
<u> 18.16</u>	<u>3161.07</u>	k
<u>0.04</u>	0.00	k
	115.94 3499.81 18.16	115.945013.263499.814270.4418.163161.07

5.2 Design of Ballast Foundations

Ballast foundations are used to secure the racking structure in place. The foundations are checked for potential overturning and sliding. Bearing pressures applied by the racking and ballast foundations are checked against the allowable bearing pressures provided by the IBC table 1806.2 (2012, 2015).

Concrete Properties Footing Reinforcement Weight of Concrete = 145 pcf Use fiber reinforcing with (2) #5 rebar. Compressive Strength = 2500 psi Yield Strength = 60000 psi **Overturning Check** $M_O = 122264.4 \text{ in-lbs}$ Resisting Force Required = 1852.49 lbs A minimum 132in long x 25in wide x S.F. = 1.67 18in tall ballast foundation is required Weight Required = 3087.48 lbs to resist overturning. Minimum Width = <u>25 in</u> in Weight Provided = 4984.38 lbs Sliding 728.80 lbs Force = Friction = Use a 132in long x 25in wide x 18in tall 0.4 ballast foundation to resist sliding. Weight Required = 1822.00 lbs Resisting Weight = 4984.38 lbs Friction is OK. Additional Weight Required = 0 lbs Cohesion Sliding Force = 728.80 lbs Cohesion = 130 psf Use a 132in long x 25in wide x 18in tall 22.92 ft² Area = ballast foundation. Cohesion is OK. Resisting = 2492.19 lbs Additional Weight Required = 0 lbs Shear Key Additional Force = 0 lbs Lateral Bearing Pressure = 200 psf/ft

Bearing Pressure

Required Depth =

 $f'_c =$ Length =

0.00 ft

2500 psi

8 in

 $\frac{\text{Ballast Width}}{25 \text{ in}} = \frac{26 \text{ in}}{26 \text{ in}} = \frac{27 \text{ in}}{28 \text{ in}}$ $P_{\text{ftg}} = (145 \text{ pcf})(11 \text{ ft})(1.5 \text{ ft})(2.08 \text{ ft}) = \frac{4984 \text{ lbs}}{200 \text{ lbs}} = \frac{5383 \text{ lbs}}{200 \text{ lbs}} = \frac{5583 \text{ lbs}}{200 \text{ lbs}}$

ASD LC	1.0D + 1.0S				1.0D + 0.6W			1.0D + 0.75L + 0.45W + 0.75S			0.6D + 0.6W					
Width	25 in	26 in	27 in	28 in	25 in	26 in	27 in	28 in	25 in	26 in	27 in	28 in	25 in	26 in	27 in	28 in
FA	1347 lbs	1347 lbs	1347 lbs	1347 lbs	1068 lbs	1068 lbs	1068 lbs	1068 lbs	1669 lbs	1669 lbs	1669 lbs	1669 lbs	-43 lbs	-43 lbs	-43 lbs	-43 lbs
F _B	1286 lbs	1286 lbs	1286 lbs	1286 lbs	1742 lbs	1742 lbs	1742 lbs	1742 lbs	2135 lbs	2135 lbs	2135 lbs	2135 lbs	-2304 lbs	-2304 lbs	-2304 lbs	-2304 lbs
F _V	208 lbs	208 lbs	208 lbs	208 lbs	1340 lbs	1340 lbs	1340 lbs	1340 lbs	1141 lbs	1141 lbs	1141 lbs	1141 lbs	-1458 lbs	-1458 lbs	-1458 lbs	-1458 lbs
P _{total}	7617 lbs	7816 lbs	8016 lbs	8215 lbs	7794 lbs	7993 lbs	8193 lbs	8392 lbs	8788 lbs	8988 lbs	9187 lbs	9387 lbs	644 lbs	764 lbs	883 lbs	1003 lbs
М	3770 lbs-ft	3770 lbs-ft	3770 lbs-ft	3770 lbs-ft	3030 lbs-ft	3030 lbs-ft	3030 lbs-ft	3030 lbs-ft	4703 lbs-ft	4703 lbs-ft	4703 lbs-ft	4703 lbs-ft	3099 lbs-ft	3099 lbs-ft	3099 lbs-ft	3099 lbs-ft
е	0.49 ft	0.48 ft	0.47 ft	0.46 ft	0.39 ft	0.38 ft	0.37 ft	0.36 ft	0.54 ft	0.52 ft	0.51 ft	0.50 ft	4.81 ft	4.06 ft	3.51 ft	3.09 ft
L/6	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft							
f _{min}	242.6 psf	241.7 psf	240.8 psf	239.9 psf	268.0 psf	266.0 psf	264.3 psf	262.6 psf	271.6 psf	269.5 psf	267.6 psf	265.8 psf	0.0 psf	0.0 psf	0.0 psf	0.0 psf
f _{max}	422.1 psf	414.2 psf	407.0 psf	400.2 psf	412.2 psf	404.7 psf	397.8 psf	391.3 psf	495.4 psf	484.7 psf	474.8 psf	465.6 psf	299.2 psf	162.9 psf	131.4 psf	118.9 psf

Shear key is not required.

Maximum Bearing Pressure = 495 psf Allowable Bearing Pressure = 1500 psf Use a 132in long x 25in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Weak Side Design

Overturning Check

 $M_O = 800.9 \text{ ft-lbs}$

Resisting Force Required = 768.88 lbs

S.F. = 1.67

Weight Required = 1281.47 lbs Minimum Width = 25 in in Weight Provided = 4984.38 lbs A minimum 132in long x 25in wide x 18in tall ballast foundation is required to resist

overturning.

Bearing Pressure

ASD LC	1	.238D + 0.875	5E	1.1785	D+0.65625E	+ 0.75S	0.362D + 0.875E			
Width	25 in				25 in		25 in			
Support	Outer	Inner	Outer	Outer	Inner	Outer	Outer	Inner	Outer	
F _Y	269 lbs	687 lbs	269 lbs	792 lbs	2213 lbs	792 lbs	79 lbs	201 lbs	79 lbs	
F _V	2 lbs	os 0 lbs 2 l		2 lbs 7 lbs 0 lbs 7 lbs		7 lbs	1 lbs	0 lbs	1 lbs	
P _{total}	6440 lbs	4984 lbs	6440 lbs	6666 lbs	4984 lbs	6666 lbs	1883 lbs	4984 lbs	1883 lbs	
М	7 lbs-ft	0 lbs-ft	7 lbs-ft	24 lbs-ft	24 lbs-ft		2 lbs-ft 0 lbs-ft		2 lbs-ft	
е	0.00 ft	00 ft		0.00 ft	0.00 ft	0.00 ft	0.00 ft			
L/6	0.35 ft	0.35 ft	0.35 ft	0.35 ft	0.35 ft		0.35 ft	0.35 ft	0.35 ft	
f _{min}	280.1 psf	psf 217.5 psf 280.1 psf		287.9 psf	217.5 psf	287.9 psf	81.9 psf	217.5 psf	81.9 psf	
f _{max}	281.9 psf	217.5 psf	281.9 psf	293.9 psf	217.5 psf	293.9 psf	82.4 psf	217.5 psf	82.4 psf	

Maximum Bearing Pressure = 294 psf Allowable Bearing Pressure = 1500 psf

Use a 132in long x 25in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Foundation Requirements: 132in long x 25in wide x 18in tall ballast foundation and fiber reinforcing with (2) #5 rebar.

5.3 Foundation Anchors

Threaded rods are anchored to the ballast foundations using the Simpson AT-XP epoxy solution. LRFD load results are compared to the allowable strengths of the epoxy solution. Please see the supplementary calculations provided by the Simpson Anchor Designer software.

6.1 Anchorage of Modules to Purlins and Connection of Purlins to Girders

Modules are secured to the purlins with Schletter, Inc. Rapid2+ mounting clamps. Purlins are secured to the girders with the use of 80mm mounting clamps. The reliability of calculations is uncertain due to limited standards, therefore the strength of the clamp fasteners has been evaluated by load testing.

6.2 Strut Connections

The aluminum struts connect the aluminum girder ends to custom brackets with mounting holes. Single M12 bolts are used to attach each end of the strut to the girder and post. ASTM A193/A193M-86 equivalent stainless steel bolts are used.

Front Strut		Rear Strut
Maximum Axial Load =	2.692 k	Maximum Axial Load = 3.337 k
M12 Bolt Capacity =	12.808 k	M12 Bolt Capacity = 12.808 k
Strut Bearing Capacity =	7.421 k	Strut Bearing Capacity = 7.421 k
Utilization =	<u>36%</u>	Utilization = 45%
<u>Diagonal Strut</u>		
Maximum Axial Load =	2.047 k	
M12 Bolt Shear Capacity =	12.808 k	Bolt and bearing capacities are accounting for double shear.
Strut Bearing Capacity =	7.421 k	(ASCE 8-02, Eq. 5.3.4-1)
Utilization =	<u>28%</u>	

Struts under compression are shown to demonstrate the load transfer from the girder. Single M12 bolts are located at each end of the strut and are subjected to double shear.

7. SEISMIC DESIGN

7.1 Seismic Drift - N/A

The racking structure has been analyzed under seismic loading. The allowable story drift of the structure must fall within the limits provided by (ASCE 7, Table 12.12-1).

 $\begin{array}{ccc} \text{Mean Height, h}_{\text{sx}} = & & 48.27 \text{ in} \\ \text{Allowable Story Drift for All} & & 0.020 h_{\text{sx}} \\ \text{Other Structures, } \Delta = \{ & & 0.965 \text{ in} \\ \text{Max Drift, } \Delta_{\text{MAX}} = & 0.081 \text{ in} \\ \end{array}$

N/A

The racking structure's reaction to seismic loads is shown to the right.
The deflections have been magnified to provide a clear portrayal of potential story drift.

APPENDIX A

A.1 Design of Aluminum Purlins - Aluminum Design Manual, 2005 Edition

Purlin = **S1.5**

Strong Axis:

3.4.14

$$L_b = 132 \text{ in}$$

$$J = 0.432$$

$$365.174$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)}}]$$

Weak Axis:

3.4.14

$$L_{b} = 132$$

$$J = 0.432$$

$$232.229$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}}Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$S2 = 1701.56$$

$$\omega E_{b} = \omega b[Bc-1.6Dc^{*}]$$

 $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$

 $\phi F_{L} = 28.4$

3.4.16

b/t = 32.195

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 25.1 \text{ ksi}$$

 $\phi F_L = 27.1 \text{ ksi}$

3.4.16

b/t = 37.0588

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 23.1 \text{ ksi}$$

3.4.16.1

Rb/t =

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_L = 1.17 \phi y Fcy$$

$$\phi F_L = 38.9 \text{ ksi}$$

Not Used

3.4.16.1

N/A for Weak Direction

3.4.18

h/t = 37.0588

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40.985$$

$$Cc = 41.015$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.2$$

$$\phi F_L = \phi b [Bbr-mDbr*h/t]$$

$$\phi F_L = 43.2 \text{ ksi}$$

h/t = 32.195

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 45.5$$

$$Cc = 45.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{rll} \phi F_L St = & 25.1 \text{ ksi} \\ \text{lx} = & 897074 \text{ mm}^4 \\ & 2.155 \text{ in}^4 \\ \text{y} = & 41.015 \text{ mm} \\ \text{Sx} = & 1.335 \text{ in}^3 \\ \text{M}_{\text{max}} St = & 2.788 \text{ k-ft} \end{array}$$

$$\phi F_L W k = 23.1 \text{ ksi}$$

$$ly = 446476 \text{ mm}^4$$

$$1.073 \text{ in}^4$$

$$x = 45.5 \text{ mm}$$

$$Sy = 0.599 \text{ in}^3$$

$$M_{max} W k = 1.152 \text{ k-ft}$$

Compression

3.4.9

$$b/t = 32.195$$

$$\phi F_L = \phi c [Bp-1.6Dp*b/t]$$

$$\phi F_L = 25.1 \text{ ksi}$$

$$b/t = 37.0588$$

$$S2 = 32.70$$

$$\varphi F_L = (\varphi ck2^* \sqrt{(BpE)})/(1.6b/t)$$

$$\phi F_L = 21.9 \text{ ksi}$$

3.4.10

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^T$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 21.94 \text{ ksi}$$

$$A = 1215.13 \text{ mm}^2$$

$$P_{max} = 41.32 \text{ kips}$$

A.2 Design of Aluminum Girders - Aluminum Design Manual, 2005 Edition

Girder = BF0

 $L_b =$

Strong Axis:

3.4.14

88.9 in

$$J = 1.08$$

$$\theta_{y}$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$S2 = 1701.56$$

$$\varphi F_L = \varphi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}$$

$$\phi F_L = 29.4 \text{ ksi}$$

Weak Axis:

3.4.14

$$L_b = 88.9$$

 $J = 1.08$

$$S1 = \left(\frac{Bc - \frac{\delta y}{\theta_b}Fcy}{1.6Dc}\right)$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\varphi F_L = \varphi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_{L} = 29.2$$

3.4.16

$$b/t = 16.2$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 31.6 \text{ ksi}$$

$$b/t = 7.4$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$
$$S1 = 12.2$$

$$S2 = \frac{k_1 B p}{1.6 D p}$$

$$S2 = 46.7$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.16.1 Used Rb/t = 18.1
$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

 $\varphi F_L = \varphi b[Bt-Dt^*\sqrt{(Rb/t)}]$

31.1 ksi

 $\phi F_L =$

3.4.16.1 N/A for Weak Direction

40 mm

1.409 in³

3.904 k-ft

x =

Sy =

 $M_{max}Wk =$

3.4.18

$$h/t = 7.4$$
 $h/t = 16.2$
 $S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$
 $S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$
 $S1 = 35.2$
 $S1 = 36.9$
 $m = 0.68$
 $m = 0.65$
 $C_0 = 41.067$
 $C_0 = 40$
 $C_0 = 40$
 $C_0 = 40$
 $S2 = \frac{k_1Bbr}{mDbr}$
 $S2 = \frac{k_1Bbr}{mDbr}$
 $S2 = 73.8$
 $S2 = 77.3$
 $\phi F_L = 1.3\phi y F cy$
 $\phi F_L = 1.3\phi y F cy$
 $\phi F_L = 43.2 \text{ ksi}$
 $\phi F_L = 43.2 \text{ ksi}$
 $\phi F_L = 29.4 \text{ ksi}$
 $\phi F_L = 33.3 \text{ ksi}$
 $\phi F_L = 29.4 \text{ ksi}$
 $\phi F_L = 33.3 \text{ ksi}$
 $\phi F_L = 29.4 \text{ ksi}$
 $\phi F_L = 33.3 \text{ ksi}$
 $\phi F_L = 29.4 \text{ ksi}$
 $\phi F_L = 33.3 \text{ ksi}$
 $\phi F_L = 29.4 \text{ ksi}$
 $\phi F_L = 33.3 \text{ ksi}$
 $\phi F_L = 29.4 \text{ ksi}$
 $\phi F_L = 33.3 \text{ ksi}$
 $\phi F_L = 29.4 \text{ ksi}$
 $\phi F_L = 33.3 \text{ ksi}$

Compression

 $M_{max}St =$

Sx =

3.4.9

b/t = 16.2

S1 = 12.21 (See 3.4.16 above for formula)

S2 = 32.70 (See 3.4.16 above for formula)

 $\phi F_L = \phi c[Bp-1.6Dp*b/t]$

43.717 mm

1.375 in³

3.363 k-ft

 $\phi F_L = 31.6 \text{ ksi}$

b/t = 7.4

S1 = 12.21

S2 = 32.70

 $\phi F_L = \phi y F c y$

 $\phi F_L = 33.3 \text{ ksi}$

3.4.10

Rb/t = 18.1

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$
S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi c[Bt-Dt^*\sqrt{(Rb/t)}]$
 $\phi F_L = 31.09 \text{ ksi}$
 $\phi F_L = 31.09 \text{ ksi}$

58.55 kips

 $P_{max} =$

A.3 Design of Aluminum Struts (Front) - Aluminum Design Manual, 2005 Edition

Strut = <u>55x55</u>

Strong Axis:

3.4.14

$$\begin{array}{ll} \mathsf{L_b} = & 24.8 \text{ in} \\ \mathsf{J} = & 0.942 \\ 38.7028 \\ \\ \mathit{S1} = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ \mathsf{S1} = & 0.51461 \\ \\ \mathit{S2} = & \left(\frac{C_c}{1.6}\right)^2 \\ \mathsf{S2} = & 1701.56 \\ \mathsf{\phiF_L} = & \mathsf{\phib}[\mathsf{Bc-1.6Dc^*}\sqrt{(\mathsf{LbSc})/(\mathsf{Cb^*}\sqrt{(\mathsf{lyJ})/2}))}] \end{array}$$

Weak Axis:

3.4.14

$$\begin{split} \mathsf{L}_{b} &= 24.8 \\ \mathsf{J} &= 0.942 \\ 38.7028 \\ S1 &= \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}} Fcy}{1.6Dc}\right)^{2} \\ S1 &= 0.51461 \\ S2 &= \left(\frac{C_{c}}{1.6}\right)^{2} \\ S2 &= 1701.56 \\ \phi \mathsf{F}_{\mathsf{L}} &= \phi b [\mathsf{Bc-1.6Dc*} \sqrt{((\mathsf{LbSc})/(\mathsf{Cb*} \sqrt{(\mathsf{lyJ})/2}))}] \\ \phi \mathsf{F}_{\mathsf{L}} &= 31.4 \end{split}$$

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

 $\phi F_L = 31.4 \text{ ksi}$

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.16.1

Rb/t = 0.0
$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_L = 1.17 \phi y Fcy$$

$$\phi F_L = 38.9 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

h/t = 24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 28.2 \text{ ksi}$$

$$k = 279836 \text{ mm}^4$$

0.672 in⁴

 $0.621 in^{3}$

1.460 k-ft

27.5 mm

3.4.18

h/t = 24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 27.5$$

$$CC = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$V = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$V = 27.5 \text{ mm}$$

$$V = 0.621 \text{ in}^3$$

$$V = 1.460 \text{ k-ft}$$

y =

Sx =

 $M_{max}St =$

Compression

$$\lambda = 0.57371$$

$$r = 0.81 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\phi cc = 0.87952$$

$$\phi F_L = \phi cc(Bc-Dc^*\lambda)$$

$$\phi F_{L} = 28.0279 \text{ ksi}$$

3.4.9

$$b/t = 24.5$$

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

$$b/t = 24.5$$

$$S1 = 12.21$$

$$S2 = 32.70$$

$$\phi F_L = \phi c [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.10

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L {=} \; \phi y F c y$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 28.03 \text{ ksi}$$
 $A = 663.99 \text{ mm}^2$

$$P_{max} = 28.85 \text{ kips}$$

A.4 Design of Aluminum Struts (Diagonal) - Aluminum Design Manual, 2005 Edition

Strut = 55x55

Strong Axis:

3.4.14
$$L_b = 86.60 \text{ in}$$

$$J = 0.942$$
 135.148

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

S1 = 0.51461
$$c_{2} - \left(\frac{C_{c}}{c} \right)^{2}$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

S2 = 1701.56

$$\varphi F_L = \varphi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_L = 29.6 \text{ ksi}$$

Weak Axis:

$$L_b = 86.6$$
 $J = 0.942$
 135.148

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$
$$S2 = 1701.56$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_{L} = 29.6$$

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.16.1 <u>Not Used</u>

Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

S1 = 1.1
 $S2 = C_t$
S2 = 141.0
 $\phi F_L = 1.17 \phi y Fcy$
 $\phi F_L = 38.9 \text{ ksi}$

3.4.18

h/t = 24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$lx = 279836 \text{ mm}^4$$

 0.672 in^4
 $y = 27.5 \text{ mm}$

28.2 ksi

$$y = 27.5 \text{ mm}$$

 $Sx = 0.621 \text{ in}^3$

$M_{max}St = 1.460 \text{ k-ft}$

Compression

 $\varphi F_L St =$

3.4.7

$$\lambda = 2.00335$$

 $r = 0.81$ in
 $S1^* = \frac{Bc - Fcy}{1.6Dc^*}$
 $S1^* = 0.33515$
 $S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$
 $S2^* = 1.23671$
 $\phi = 0.86047$
 $\phi = 0.86047$
 $\phi = 0.86047$
 $\phi = 0.86047$

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

h/t = 24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{cccc} \phi F_L W k = & 28.2 \text{ ksi} \\ y = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ x = & 27.5 \text{ mm} \\ \text{Sy} = & 0.621 \text{ in}^3 \\ M_{\text{max}} W k = & 1.460 \text{ k-ft} \end{array}$$

3.4.9

$$b/t = 24.5$$

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

$$b/t = 24.5$$

$$\phi F_L = \phi c [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.10

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 7.50 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$P_{max} = 7.72 \text{ kips}$$

A.5 Design of Aluminum Struts (Rear) - Aluminum Design Manual, 2005 Edition

Strut = 55x55

Strong Axis:

3.4.14

$$L_b = 70.83 \text{ in}$$
 $J = 0.942$
 110.537

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$
$$S2 = 1701.56$$

$$S2 = 1701.56$$

$$φF_L = φb[Bc-1.6Dc*√((LbSc)/(Cb*√(IyJ)/2))]$$

 $φF_L = 30.0 \text{ ksi}$

$$\phi F_L =$$

$$Bp - \frac{\theta_y}{\theta_b} Fcy$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

 $\phi F_L = \phi b[Bp-1.6Dp*b/t]$

$$\phi F_L = 28.2 \text{ ksi}$$

Weak Axis:

3.4.14

$$L_b = 70.83$$

 $J = 0.942$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$62 = 1701.56$$

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

$$\phi F_{L} = 30.0$$

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$
$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$\varphi F_L = \varphi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1 Not Used Rb/t = 0.0
$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_L = 1.17 \phi y Fcy$$

$$\phi F_L = 38.9 \text{ ksi}$$

3.4.16.1N/A for Weak Direction

3.4.18 h/t =24.5 S1 = mDbrS1 = 36.9 0.65 m = $C_0 =$ 27.5 Cc = 27.5 k_1Bbr mDbrS2 = 77.3 $\phi F_L = 1.3 \phi y F c y$ 43.2 ksi $\phi F_L =$

28.2 ksi

 0.672 in^4

0.621 in³

1.460 k-ft

27.5 mm

 $lx = 279836 \text{ mm}^4$

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L W k = 28.2 \text{ ksi}$$

$$\phi F_L W k = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$x = 27.5 \text{ mm}$$

$$Sy = 0.621 \text{ in}^3$$

$$M_{max}W k = 1.460 \text{ k-ft}$$

Compression

 $M_{max}St =$

y =

Sx =

 $\phi F_L St =$

3.4.7 $\lambda = 1.63853$ r = 0.81 in $S1^* = \frac{Bc - Fcy}{1.6Dc^*}$ $S1^* = 0.33515$ $S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$ $S2^* = 1.23671$ $\varphi cc = 0.80939$ $\varphi F_L = (\varphi cc Fcy)/(\lambda^2)$ $\varphi F_L = 10.5516 \text{ ksi}$

$$\phi F_L = 10.5516 \text{ ksi}$$

$$3.4.9$$

$$b/t = 24.5$$

$$S1 = 12.21 \text{ (See 3.4.16 above for formula)}$$

$$S2 = 32.70 \text{ (See 3.4.16 above for formula)}$$

$$\phi F_L = \phi c [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

$$b/t = 24.5$$

$$S1 = 12.21$$

$$S2 = 32.70$$

$$\phi F_L = \phi c [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.10

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 10.55 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$1.03 \text{ in}^2$$

$$P_{max} = 10.86 \text{ kips}$$

APPENDIX B

B.1

The following pages will contain the results from RISA. Please refer back to Section 2 for load information and Section 4-5 for member and foundation design.

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distribut	.Area(Me.	.Surface(
1	Dead Load, Max	DĽ	•	-1				4	,	,
2	Dead Load, Min	DL		-1				4		
3	Snow Load	SL						4		
4	Wind Load - Pressure	WL						4		
5	Wind Load - Suction	WL						4		
6	Seismic - Lateral	EL								

Member Distributed Loads (BLC 1 : Dead Load, Max)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-8.366	-8.366	0	0
2	M14	Υ	-8.366	-8.366	0	0
3	M15	Υ	-8.366	-8.366	0	0
4	M16	Υ	-8.366	-8.366	0	0

Member Distributed Loads (BLC 2 : Dead Load, Min)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-4.45	-4.45	0	0
2	M14	Υ	-4.45	-4.45	0	0
3	M15	Υ	-4.45	-4.45	0	0
4	M16	Υ	-4.45	-4.45	0	0

Member Distributed Loads (BLC 3 : Snow Load)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-39.836	-39.836	0	0
2	M14	Υ	-39.836	-39.836	0	0
3	M15	Υ	-39.836	-39.836	0	0
4	M16	Υ	-39 836	-39 836	0	0

Member Distributed Loads (BLC 4: Wind Load - Pressure)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	-60.928	-60.928	0	0
2	M14	V	-60.928	-60.928	0	0
3	M15	V	-98.014	-98.014	0	0
4	M16	V	-98.014	-98.014	0	0

Member Distributed Loads (BLC 5: Wind Load - Suction)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	137.749	137.749	0	0
2	M14	٧	105.961	105.961	0	0
3	M15	V	58.278	58.278	0	0
4	M16	V	58 278	58 278	0	0

Load Combinations

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	. B	Fa	В	.Fa
1	LRFD 1.2D + 1.6S + 0.5W	Yes	Υ		1	1.2	3	1.6	4	.5														
2	LRFD 1.2D + 1.0W + 0.5S	Yes	Υ		1	1.2	3	.5	4	1														
3	LRFD 0.9D + 1.0W	Yes	Υ		2	.9					5	1												
4	LATERAL - LRFD 1.54D + 1.3E	.Yes	Υ		1	1.54	3	.2			6	1.3												
5	LATERAL - LRFD 0.56D + 1.3E	Yes	Υ		1	.56					6	1.3												
6	LATERAL - LRFD 1.54D + 1.25	Yes	Υ		1	1.54	3	.2			6	1.25												
7	LATERAL - LRFD 0.56D + 1.25E	Yes	Υ		1	.56					6	1.25												

Model Name

: Schletter, Inc. : HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

Load Combinations (Continued)

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa
8																								
9	ASD 1.0D + 1.0S	Yes	Υ		1	1	3	1																
10	ASD 1.0D + 0.6W	Yes	Υ		1	1			4	.6														
11	ASD 1.0D + 0.75L + 0.45W + 0	Yes	Υ		1	1	3	.75	4	.45														
12	ASD 0.6D + 0.6W	Yes			2	.6					5	.6												
13	LATERAL - ASD 1.238D + 0.875E	Yes	Υ		1	1.2					6	.875												
14	LATERAL - ASD 1.1785D + 0.65	.Yes	Υ		1	1.1	3	.75			6	.656												
15	LATERAL - ASD 0.362D + 0.875E	Yes	Υ		1	.362					6	.875												

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N8	max	599.861	2	995.079	2	.788	1	.003	1	0	1	Ó	1
2		min	-765.634	3	-1172.543	3	.043	15	0	15	0	1	0	1
3	N7	max	.044	9	1059.711	1	682	15	001	15	0	1	0	1
4		min	124	2	3.833	3	-13.971	1	028	1	0	1	0	1
5	N15	max	.035	9	2692.165	1	0	10	0	10	0	1	0	1
6		min	-1.448	2	-89.185	3	0	2	0	2	0	1	0	1
7	N16	max	2298.697	2	3284.953	2	0	14	0	14	0	1	0	1
8		min	-2431.593	3	-3856.355	3	0	9	0	1	0	1	0	1
9	N23	max	.044	9	1059.711	1	13.971	1	.028	1	0	1	0	1
10		min	124	2	3.833	3	.682	15	.001	15	0	1	0	1
11	N24	max	599.861	2	995.079	2	043	15	0	15	0	1	0	1
12		min	-765.634	3	-1172.543	3	788	1	003	1	0	1	0	1
13	Totals:	max	3496.724	2	9825.325	1	0	10					·	
14		min	-3962.926	3	-6282.961	3	0	1						

Envelope Member Section Forces

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
1	M13	1	max	136.622	1	392.302	1	-9.487	15	0	3	.327	1	0	1
2			min	6.488	15	-549.171	3	-200.382	1	011	2	.016	15	0	3
3		2	max	136.622	1	275.068	1	-7.303	15	0	3	.11	1	.572	3
4			min	6.488	15	-386.483	3	-154.193	1	011	2	.005	15	408	1
5		3	max	136.622	1	157.833	1	-5.12	15	0	3	001	12	.945	3
6			min	6.488	15	-223.795	3	-108.005	1	011	2	05	1	672	1
7		4	max	136.622	1	40.599	1	-2.936	15	0	3	007	12	1.119	3
8			min	6.488	15	-61.107	3	-61.817	1	011	2	154	1	794	1
9		5	max	136.622	1	101.581	3	753	15	0	3	009	12	1.094	3
10			min	6.488	15	-76.635	1	-15.628	1	011	2	201	1	772	1
11		6	max	136.622	1	264.268	3	30.56	1	0	3	009	15	.871	3
12			min	6.488	15	-193.87	1	.977	12	011	2	192	1	606	1
13		7	max	136.622	1	426.956	3	76.749	1	0	3	006	15	.448	3
14			min	6.488	15	-311.104	1	3.16	12	011	2	126	1	298	1
15		8	max	136.622	1	589.644	3	122.937	1	0	3	0	10	.154	1
16			min	6.488	15	-428.338	1	5.343	12	011	2	004	1	173	3
17		9	max	136.622	1	752.332	3	169.125	1	0	3	.174	1	.749	1
18			min	6.488	15	-545.573	1	7.526	12	011	2	.006	12	993	3
19		10	max	136.622	1	915.02	3	215.314	1	.011	2	.409	1	1.488	1
20			min	6.488	15	-662.807	1	9.71	12	0	3	.017	12	-2.012	3
21		11	max	136.622	1	545.573	1	-7.526	12	.011	2	.174	1	.749	1
22			min	6.488	15	-752.332	3	-169.125	1	0	3	.006	12	993	3
23		12	max	136.622	1	428.338	1	-5.343	12	.011	2	0	10	.154	1
24			min	6.488	15	-589.644	3	-122.937	1	0	3	004	1	173	3
25		13	max	136.622	1	311.104	1	-3.16	12	.011	2	006	15	.448	3
26			min	6.488	15	-426.956	3	-76.749	1	0	3	126	1	298	1

Model Name

Schletter, Inc. HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	. LC
27		14	max	136.622	1	193.87	1	977	12	.011	2	009	15	.871	3
28			min	6.488	15	-264.268	3	-30.56	1	0	3	192	1	606	1
29		15	max	136.622	1_	76.635	1	15.628	1	.011	2	009	12	1.094	3
30			min	6.488	15	-101.581	3	.753	15	0	3	201	1	772	1
31		16	max	136.622	1	61.107	3	61.817	1	.011	2	007	12	1.119	3
32			min	6.488	15	-40.599	1	2.936	15	0	3	154	1	794	1
33		17	max	136.622	1	223.795	3	108.005	1	.011	2	001	12	.945	3
34			min	6.488	15	-157.833	1	5.12	15	0	3	05	1	672	1
35		18	max	136.622	1	386.483	3	154.193	1	.011	2	.11	1	.572	3
36			min	6.488	15	-275.068	1	7.303	15	0	3	.005	15	408	1
37		19	max		1	549.171	3	200.382	1	.011	2	.327	1	0	1
38			min	6.488	15	-392.302	1	9.487	15	0	3	.016	15	0	3
39	M14	1_	max	59.818	1	410.46	1	-9.758	15	.006	3	.369	1	0	1
40			min	2.847	15	-427.719	3	-206.123	1	008	2	.018	15	0	3
41		2	max	59.818	1	293.225	1	-7.574	15	.006	3	.145	1	.447	3
42			min	2.847	15	-303.883	3	-159.934	1	008	2	.007	15	43	1
43		3_	max	59.818	1	175.991	1_	-5.391	15	.006	3	0	3_	.743	3
44			min	2.847	15	-180.047	3	-113.746	1	008	2	022	1	717	1
45		4	max	59.818	1_	58.756	1_	-3.207	15	.006	3	005	12	.887	3
46			min	2.847	15	-56.211	3	-67.557	1	008	2	133	1_	86	1
47		5	max	59.818	1	67.625	3	-1.024	15	.006	3	009	12	.88	3
48			min	2.847	15	-58.478	1	-21.369	1	008	2	187	1	86	1
49		6	max	59.818	1	191.46	3	24.819	1	.006	3	009	15	.722	3
50			min	2.847	15	-175.712	1	.715	12	008	2	185	1	717	1
51		7	max	59.818	1	315.296	3	71.008	1	.006	3	006	15	.412	3
52			min	2.847	15	-292.947	1	2.899	12	008	2	126	1	431	1
53		8	max		1	439.132	3	117.196	1	.006	3	0	10	.004	9
54			min	2.847	15	-410.181	1	5.082	12	008	2	011	1	049	3
55		9	max	59.818	1_	562.968	3	163.384	1	.006	3	.16	1_	.572	1
56			min	2.847	15	-527.415	1	7.265	12	008	2	.006	12	661	3
57		10	max	59.818	1	686.804	3	209.573	1_	.008	2	.388	1	1.288	1
58			min	2.847	15	-644.65	1	9.448	12	006	3	.016	12	-1.425	3
59		11	max	59.818	1	527.415	1	-7.265	12	.008	2	.16	1	.572	1
60			min	2.847	15	-562.968	3	-163.384	1	006	3	.006	12	661	3
61		12	max	59.818	1	410.181	1	-5.082	12	.008	2	0	10	.004	9
62			min	2.847	15	-439.132	3	-117.196	1	006	3	011	1_	049	3
63		13	max		1	292.947	1	-2.899	12	.008	2	006	15	.412	3
64			min	2.847	15	-315.296	3	-71.008	1_	006	3	126	1_	431	1
65		14	max	59.818	1	175.712	1	715	12	.008	2	009	15	.722	3
66			min	2.847	15	-191.46	3	-24.819	1	006	3	185	1	717	1
67		15	max		1	58.478	1	21.369	1	.008	2	009	12	.88	3
68		40	min	2.847	15	-67.625	3	1.024	15	006	3	187	1	86	1
69		16	max		1	56.211	3	67.557	1	.008	2	005	12	.887	3
70		4.7	min	2.847	15	-58.756	1	3.207	15	006	3	133	1	86	1
71		17	max		1	180.047	3	113.746	1_	.008	2	0	3	.743	3
72		40	min	2.847	15	-175.991	1	5.391	15	006	3	022	1	717	1
73		18	max		1	303.883	3	159.934	1	.008	2	.145	1	.447	3
74		40	min	2.847	15	-293.225	1	7.574	15	006	3	.007	15	43	1
75		19	max		1	427.719	3	206.123	1	.008	2	.369	1	0	1
76	N44.5	4	min	2.847	15	-410.46	1	9.758	15	006	3	.018	15	0	3
77	M15	1	max		15	532.64	2	-9.755	15	.009	2	.369	1	0	2
78			min		1_	-231.135	3	-206.087	1_	005	3	.017	15	0	12
79		2	max		15	379.226	2	-7.572	15	.009	2	.145	1	.242	3
80		-	min	-63.143	1_	-165.578	3	-159.898	1	005	3	.007	15	557	2
81		3	max	-3.005	15	225.812	2	-5.388	15	.009	2	0	3	.405	3
82		A	min	-63.143	1	-100.021	3	-113.71	1_	005	3	022	1	927	2
83		4	max	-3.005	15	72.398	2	-3.205	15	.009	2	006	12	.487	3

Schletter, Inc. HCV

Job Number :
Model Name : Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	. LC	z-z Mome	. LC
84			min	-63.143	1	-34.465	3	-67.522	1	005	3	133	1	-1.109	2
85		5	max	-3.005	15	31.092	3	-1.021	15	.009	2	009	12	.489	3
86			min	-63.143	1	-81.016	2	-21.333	1	005	3	187	1	-1.104	2
87		6	max	-3.005	15	96.648	3	24.855	1	.009	2	009	15	.411	3
88			min	-63.143	1	-234.43	2	.752	12	005	3	185	1	911	2
89		7	max	-3.005	15	162.205	3	71.044	1	.009	2	006	15	.253	3
90			min	-63.143	1	-387.844	2	2.935	12	005	3	127	1	531	2
91		8	max	-3.005	15	227.761	3	117.232	1	.009	2	0	15	.037	2
92			min	-63.143	1	-541.259	2	5.119	12	005	3	011	1	0	15
93		9	max	-3.005	15	293.318	3	163.42	1	.009	2	.16	1	.792	2
94			min	-63.143	1	-694.673	2	7.302	12	005	3	.006	12	304	3
95		10	max	-3.005	15	358.875	3	209.609	1	.005	3	.388	1	1.735	2
96			min	-63.143	1	-848.087	2	9.485	12	009	2	.016	12	703	3
97		11	max	-3.005	15	694.673	2	-7.302	12	.005	3	.16	1	.792	2
98			min	-63.143	1	-293.318	3	-163.42	1	009	2	.006	12	304	3
99		12	max	-3.005	15	541.259	2	-5.119	12	.005	3	0	15	.037	2
100			min	-63.143	1	-227.761	3	-117.232	1	009	2	011	1	0	15
101		13	max	-3.005	15	387.844	2	-2.935	12	.005	3	006	15	.253	3
102			min	-63.143	1	-162.205	3	-71.044	1	009	2	127	1	531	2
103		14	max	-3.005	15	234.43	2	752	12	.005	3	009	15	.411	3
104			min	-63.143	1	-96.648	3	-24.855	1	009	2	185	1	911	2
105		15	max	-3.005	15	81.016	2	21.333	1	.005	3	009	12	.489	3
106			min	-63.143	1	-31.092	3	1.021	15	009	2	187	1	-1.104	2
107		16	max	-3.005	15	34.465	3	67.522	1	.005	3	006	12	.487	3
108			min	-63.143	1	-72.398	2	3.205	15	009	2	133	1	-1.109	2
109		17	max	-3.005	15	100.021	3	113.71	1	.005	3	0	3	.405	3
110			min	-63.143	1	-225.812	2	5.388	15	009	2	022	1	927	2
111		18	max	-3.005	15	165.578	3	159.898	1	.005	3	.145	1	.242	3
112			min	-63.143	1	-379.226	2	7.572	15	009	2	.007	15	557	2
113		19	max	-3.005	15	231.135	3	206.087	1	.005	3	.369	1	0	2
114			min	-63.143	1	-532.64	2	9.755	15	009	2	.017	15	0	12
115	M16	11	max	-6.969	15	514.84	2	-9.495	15	.009	_1_	.328	1_	0	2
116			min	-146.479	1	-218.531	3	-200.612	1	008	3	.016	15	0	3
117		2	max	-6.969	15	361.426	2	-7.311	15	.009	1	.111	1	.227	3
118			min	-146.479	1	-152.974	3	-154.423	1	008	3	.005	15	535	2
119		3	max	-6.969	15	208.012	2	-5.128	15	.009	1	001	12	.374	3
120			min	-146.479	1	-87.417	3	-108.235	1	008	3	049	1	883	2
121		4	max	-6.969	15	54.597	2	-2.944	15	.009	1	007	12	.441	3
122			min	-146.479	1	-21.861	3	-62.047	1	008	3	153	1	-1.044	2
123		5	max	-6.969	15	43.696	3	761	15	.009	1	009	12	.427	3
124			min		1	-98.817	2	-15.858	1	008	3	201	1	-1.017	2
125		6	max		15		3	30.33	1	.009	1	009	15	.334	3
126			min			-252.231	2	1.094	12	008	3	192	1	802	2
127		7	max		15	174.809	3	76.518	1	.009	1	006	15	.16	3
128			min		1	-405.645	2	3.277	12	008	3	127	1	4	2
129		8	max		15	240.365	3	122.707	1	.009	1	0	10	.189	2
130			min			-559.059		5.46	12	008	3	005	1	093	3
131		9	max		15	305.922	3	168.895	1	.009	1	.173	1	.966	2
132			min	-146.479	1	-712.473	2	7.643	12	008	3	.007	12	427	3
133		10	max		15	371.479	3	215.084	1	.008	3	.408	1	1.931	2
134			min			-865.887	2	9.826	12	009	1	.017	12	841	3
135		11	max		15		2	-7.643	12	.008	3	.173	1	.966	2
136				-146.479		-305.922	3	-168.895		009	1_	.007	12	427	3
137		12	max		15	559.059	2	-5.46	12	.008	3	0	10	.189	2
138			min		1_	-240.365	3	-122.707	1	009	1	005	1_	093	3
139		13	max		15	405.645	2	-3.277	12	.008	3	006	15	.16	3
140			min	-146.479	1	-174.809	3	-76.518	1	009	1	127	1	4	2

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec	I	Axial[lb]		y Shear[lb]				Torque[k-ft]				z-z Mome	LC
141		14	max	-6.969	15	252.231	2	-1.094	12	.008	3	009	15	.334	3
142			min	-146.479	1	-109.252	3	-30.33	1	009	1	192	1	802	2
143		15	max	-6.969	15	98.817	2	15.858	1	.008	3	009	12	.427	3
144			min	-146.479	1	-43.696	3	.761	15	009	1	201	1	-1.017	2
145		16	max	-6.969	15	21.861	3	62.047	1	.008	3	007	12	.441	3
146			min	-146.479	1	-54.597	2	2.944	15	009	1	153	1	-1.044	2
147		17	max	-6.969	15	87.417	3	108.235	1	.008	3	001	12	.374	3
148			min	-146.479	1	-208.012	2	5.128	15	009	1	049	1	883	2
149		18	max	-6.969	15	152.974	3	154.423	1	.008	3	.111	1	.227	3
150			min	-146.479	1	-361.426	2	7.311	15	009	1	.005	15	535	2
151		19	max	-6.969	15	218.531	3	200.612	1	.008	3	.328	1	0	2
152			min	-146.479	1	-514.84	2	9.495	15	009	1	.016	15	0	3
153	M2	1	max	898.513	1	1.928	4	.629	1	0	5	0	3	0	1
154			min	-1014.41	3	.454	15	.03	15	0	1	0	1	0	1
155		2	max	898.989	1	1.842	4	.629	1	0	5	0	1	0	15
156			min	-1014.054	3	.434	15	.03	15	0	1	0	15	0	4
157		3	max	899.465	1	1.757	4	.629	1	0	5	0	1	0	15
158			min	-1013.697	3	.414	15	.03	15	0	1	0	15	001	4
159		4	max	899.941	1	1.671	4	.629	1	0	5	0	1	0	15
160			min	-1013.34	3	.393	15	.03	15	0	1	0	15	002	4
161		5	max	900.416	1	1.586	4	.629	1	0	5	0	1	0	15
162			min	-1012.983	3	.373	15	.03	15	0	1	0	15	002	4
163		6	max	900.892	1	1.5	4	.629	1	0	5	.001	1	0	15
164			min	-1012.626	3	.353	15	.03	15	0	1	0	15	003	4
165		7	max	901.368	1	1.414	4	.629	1	0	5	.001	1	0	15
166			min	-1012.27	3	.333	15	.03	15	0	1	0	15	003	4
167		8	max	901.844	1	1.329	4	.629	1	0	5	.001	1	0	15
168			min	-1011.913	3	.313	15	.03	15	0	1	0	15	004	4
169		9	max		1	1.243	4	.629	1	0	5	.002	1	0	15
170		3	min	-1011.556	3	.293	15	.03	15	0	1	0	15	004	4
171		10	max	902.795	1	1.158	4	.629	1	0	5	.002	1	004	15
172		10	min	-1011.199	3	.273	15	.03	15	0	1	0	15	004	4
173		11	max	903.271	1	1.072	4	.629	1	0	5	.002	1	004	15
174			min	-1010.842	3	.253	15	.03	15	0	1	0	15	005	4
175		12		903.747	1	.986	4	.629	1		5	.002	1	003	15
176		12	max min	-1010.486	3	.232	15	.03	15	0	1	.002	15	001	4
		12		904.222					1					005	-
177 178		13	max	-1010.129	1	.901 .212	<u>4</u> 15	.629 .03	15	0	5	.002	1 15		15
		4.4	min		3					0		0		005	_
179		14	max	904.698	1	.815	4	.629	1	0	5	.003	1	001	15
180		4.5	min		3	.179	12	.03	15	0	1	0	15	006	4
181		15		905.174	1	.737	2	.629	1	0	5	.003	1_	001	15
182		40	min	-1009.415	3	.146	12	.03	15	0	1	0	15	006	4
183		16			1	.671	2	.629	1	0	5	.003	1_	001	15
184		4-	min	-1009.058	3	.113	12	.03	15	0	1	0	15	006	4
185		17	max		1	.604	2	.629	1_	0	5	.003	1	002	15
186		4.0	min	-1008.701	3	.079	12	.03	15	0	1_	0	15	006	4
187		18	max		1	.537	2	.629	1	0	5	.003	1	002	15
188			min	-1008.345	3	.046	3	.03	15	0	1	0	15	007	4
189		19		907.077	1	.47	2	.629	1	0	5	.004	1	002	15
190			min	-1007.988	3	004	3	.03	15	0	1	0	15	007	4
191	M3	1		501.131	2	7.778	4	.289	1	0	12		1	.007	4
192			min	-649.373	3	1.829	15	.014	15	0	1	0	15	.002	15
193		2	max		2	7.013	4	.289	1	0	12		1	.004	2
194			min		3	1.649	15	.014	15	0	1	0	15	0	12
195		3	max		2	6.249	4	.289	1	0	12	0	1	.002	2
196			min	-649.628	3	1.469	15	.014	15	0	1	0	15	0	3
197		4	max	500.62	2	5.484	4	.289	1	0	12	0	1	0	15

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	<u>LC</u>
198			min	-649.756	3	1.29	15	.014	15	0	1	0	15	002	3
199		5	max	500.45	2	4.72	4	.289	1	0	12	.001	1	0	15
200			min	-649.884	3	1.11	15	.014	15	0	1	0	15	004	4
201		6	max	500.279	2	3.955	4	.289	1	0	12	.001	1	001	15
202			min	-650.012	3	.93	15	.014	15	0	1	0	15	006	4
203		7	max	500.109	2	3.191	4	.289	1	0	12	.001	1	002	15
204			min	-650.139	3	.751	15	.014	15	0	1	0	15	007	4
205		8	max	499.939	2	2.427	4	.289	1	0	12	.001	1	002	15
206			min	-650.267	3	.571	15	.014	15	0	1	0	15	008	4
207		9	max	499.768	2	1.662	4	.289	1	0	12	.001	1	002	15
208		1	min	-650.395	3	.391	15	.014	15	0	1	0	15	009	4
209		10	max		2	.898	4	.289	1	0	12	.002	1	002	15
210		10	min	-650.523	3	.211	15	.014	15	0	1	0	15	01	4
211		11	max	499.428	2	.235	2	.289	1	0	12	.002	1	002	15
212		111	min	-650.65	3	101	3	.014	15	0	1	0	15	002	4
213		12	max		2	148	15	.289	1	0	12	.002	1	002	15
214		12		-650.778			4	.014	15	0	1	0	15	002	4
		12	min		3	631					•				15
215		13	max	499.087	2	328	15	.289	1	0	12	.002	1_	002	
216		4.4	min	-650.906	3	-1.396	4	.014	15	0	1	0	15	009	4
217		14	max	498.917	2	507	15	.289	1	0	12	.002	1	002	15
218		4.5	min	-651.034	3	-2.16	4	.014	15	0	1	0	15	009	4
219		15	max		2	687	15	.289	1	0	12	.002	1	002	15
220			min	-651.161	3	-2.925	4	.014	15	0	1_	0	15	007	4
221		16	max		2	867	15	.289	1	0	12	.002	1	001	15
222			min	-651.289	3	-3.689	4	.014	15	0	1_	0	15	006	4
223		17	max		2	-1.046	15	.289	1	0	12	.002	1_	001	15
224			min	-651.417	3	-4.453	4	.014	15	0	1	0	15	004	4
225		18	max	498.235	2	-1.226	15	.289	1	0	12	.003	1_	0	15
226			min	-651.545	3	-5.218	4	.014	15	0	1	0	15	002	4
227		19	max	498.065	2	-1.406	15	.289	1	0	12	.003	1_	0	1
228			min	-651.673	3	-5.982	4	.014	15	0	1	0	15	0	1
229	<u>M4</u>	1		1056.644	1_	0	1	682	15	0	1	.002	1_	0	1
230			min	1.533	3	0	1	-14.398	1	0	1	0	15	0	1
231		2		1056.815	1	0	1	682	15	0	1	0	1	0	1
232			min	1.661	3	0	1	-14.398	1	0	1	0	15	0	1
233		3	max	1056.985	1	0	1	682	15	0	1	0	12	0	1
234			min	1.788	3	0	1	-14.398	1	0	1	001	1	0	1
235		4	max	1057.155	1	0	1	682	15	0	1	0	15	0	1
236			min	1.916	3	0	1	-14.398	1	0	1	003	1	0	1
237		5	max	1057.326	1	0	1	682	15	0	1	0	15	0	1
238			min		3	0	1	-14.398	1	0	1	004	1	0	1
239		6	max	1057.496	1	0	1	682	15	0	1	0	15	0	1
240			min	2.172	3	0	1	-14.398	1	0	1	006	1	0	1
241		7	max	1057.666	1	0	1	682	15	0	1	0	15	0	1
242			min	2.3	3	0	1	-14.398	1	0	1	008	1	0	1
243		8	max	1057.837	1	0	1	682	15	0	1	0	15	0	1
244			min	2.427	3	0	1	-14.398	1	0	1	009	1	0	1
245		9		1058.007	1	0	1	682	15	0	1	0	15	0	1
246			min		3	0	1	-14.398	1	0	1	011	1	0	1
247		10		1058.177	1	0	1	682	15	0	1	0	15	0	1
248			min		3	0	1	-14.398	1	0	1	013	1	0	1
249		11		1058.348		0	1	682	15	0	1	0	15	0	1
250			min	2.811	3	0	1	-14.398	1	0	1	014	1	0	1
251		12		1058.518	_	0	1	682	15	0	1	0	15	0	1
252		14	min	2.938	3	0	1	-14.398	1	0	1	016	1	0	1
253		13		1058.689		0	1	682	15	0	1	0	15	0	1
254		1.0	min	3.066	3	0	1	-14.398	1	0	1	018	1	0	1
207				0.000				1.000		<u> </u>					

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

055	Member	Sec		Axial[lb]								y-y Mome			
255 256		14	max	1058.859 3.194	<u>1</u> 3	0	1	682 -14.398	<u>15</u> 1	0	<u>1</u> 1	019	<u>15</u>	0	1
257		15		1059.029	<u> </u>	0	1	682	15	0	1	0	15	0	1
258		13	min	3.322	3	0	1	-14.398	1	0	1	021	1	0	1
259		16	max	1059.2	1	0	1	682	15	0	1	001	15	0	1
260		10	min	3.449	3	0	1	-14.398	1	0	1	023	1	0	1
261		17	max	1059.37	1	0	1	682	15	0	1	001	15	0	1
262			min	3.577	3	0	1	-14.398	1	0	1	024	1	0	1
263		18	max	1059.54	1	0	1	682	15	0	1	001	15	0	1
264			min	3.705	3	0	1	-14.398	1	0	1	026	1	0	1
265		19	max	1059.711	1	0	1	682	15	0	1	001	15	0	1
266			min	3.833	3	0	1	-14.398	1	0	1	028	1	0	1
267	M6	1	max	2905.381	1	2.124	2	0	1	0	1	0	1	0	1
268			min	-3336.998	3	.304	12	0	1	0	1	0	1	0	1
269		2	max	2905.857	_1_	2.058	2	0	1	0	1	0	1	0	12
270			min	-3336.641	3	.271	12	0	1	0	1	0	1	0	2
271		3	max	2906.332	_1_	1.991	2	0	1	0	_1_	0	1	0	12
272			min	-3336.284	3	.237	12	0	1	0	1	0	1	001	2
273		4		2906.808	1_	1.924	2	0	1	0	1	0	1	0	12
274		_	min	-3335.928	3	.204	12	0	1_	0	1_	0	1	002	2
275		5		2907.284	1_	1.858	2	0	1	0	1	0	1	0	12
276			min	-3335.571	3	.171	12	0	1	0	_1_	0	1	003	2
277		6		2907.76	1_	1.791	2	0	1	0	1	0	1	0	12
278		-	min	-3335.214	3	.13	3	0	1	0	1_	0	1	003	2
279		7		2908.235 -3334.857	1	1.724	2	0	1	0	1	0	1	0	12
280		0	min		3	.08	3	0	1	0		0	1	004	2
281 282		8		2908.711 -3334.5	<u>1</u> 3	1.658 .03	3	0	1	0	<u>1</u> 1	0	1	004	12
283		9	min	2909.187	<u>ာ</u> 1	1.591	2	0	1	0	1	0	1	004 0	12
284		9	min	-3334.144	3	02	3	0	1	0	1	0	1	005	2
285		10		2909.663	<u> </u>	1.524	2	0	1	0	1	0	1	0	12
286		10	min	-3333.787	3	07	3	0	1	0	1	0	1	005	2
287		11		2910.138	1	1.458	2	0	1	0	1	0	1	0	3
288				-3333.43	3	12	3	0	1	0	1	0	1	006	2
289		12	max		1	1.391	2	0	1	0	1	0	1	0	3
290			min		3	17	3	0	1	Ö	1	0	1	006	2
291		13	max		1	1.324	2	0	1	0	1	0	1	0	3
292			min	-3332.716	3	22	3	0	1	0	1	0	1	007	2
293		14	max	2911.566	1	1.258	2	0	1	0	1	0	1	0	3
294			min	-3332.359	3	27	3	0	1	0	1	0	1	007	2
295		15	max	2912.041	1	1.191	2	0	1	0	1	0	1	0	3
296			min	-3332.003	3	32	3	0	1	0	1	0	1	008	2
297		16		2912.517	_1_	1.124	2	0	1_	0	1	0	1	0	3
298				-3331.646	3	37	3	0	1	0	1	0	1	008	2
299		17		2912.993	_1_	1.057	2	0	1_	0	1	0	1	0	3
300				-3331.289	3	42	3	0	1_	0	1	0	1	008	2
301		18		2913.469	_1_	.991	2	0	1	0	_1_	0	1	0	3
302		1.0		-3330.932	3	47	3	0	1_	0	1	0	1	009	2
303		19		2913.944	1	.924	2	0	1	0	1	0	1	0	3
304	N 477	4		-3330.575	3	52	3	0	1_	0	1_	0	1	009	2
305	<u>M7</u>	1		1994.642	2	7.814	4	0	1	0	1	0	1	.009	2
306		0		<u>-2044.86</u>	3	1.834	<u>15</u>	0	1	0	1	0	1	0	3
307		2		1994.472 -2044.988	2	7.049	4	0	1	0	1	0	1	.006	2
308		3			3	1.655	15		<u>1</u> 1	0	<u>1</u> 1	0	1	002	3
309		3	min	1994.301 -2045.116	3	6.285 1.475	<u>4</u> 15	0	1	0	1	0	1	.004 003	3
311		4		1994.131	2	5.521	4	0	1	0	1	0	1	.002	2
UII		_ +	шах	1007.101		U.UZ I		U		U				.002	

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	. LC
312			min	-2045.243	3	1.295	15	0	1	0	1	0	1	005	3
313		5	max	1993.961	2	4.756	4	0	1	0	1	0	1	0	2
314			min	-2045.371	3	1.116	15	0	1	0	1	0	1	006	3
315		6	max	1993.79	2	3.992	4	0	1	0	1	0	1	001	15
316			min	-2045.499	3	.936	15	0	1	0	1	0	1	006	3
317		7	max	1993.62	2	3.227	4	0	1	0	1	0	1	002	15
318			min	-2045.627	3	.756	15	0	1	0	1	0	1	007	3
319		8	max	1993.45	2	2.463	4	0	1	0	_1	0	1	002	15
320			min	-2045.754	3	.576	15	0	1	0	1	0	1	008	4
321		9	max	1993.279	2	1.778	2	0	1	0	_1	0	1	002	15
322			min	-2045.882	3	.301	12	0	1	0	1	0	1	009	4
323		10	max	1993.109	2	1.182	2	0	1	0	_1_	0	1	002	15
324			min	-2046.01	3	054	3	0	1	0	1	0	1	009	4
325		11	max	1992.939	2	.586	2	0	1	0	_1	0	1	002	15
326			min	-2046.138	3	501	3	0	1	0	1	0	1	01	4
327		12	max	1992.768	2	009	2	0	1	0	_1_	0	1	002	15
328			min	-2046.265	3	948	3	0	1	0	1	0	1	01	4
329		13	max		2	322	15	0	1	0	_1_	0	1	002	15
330			min	-2046.393	3	-1.395	3	0	1	0	1	0	1	009	4
331		14		1992.428	2	502	15	0	1	0	1	0	1	002	15
332			min	-2046.521	3	-2.124	4	0	1	0	1	0	1	008	4
333		15	max	1992.257	2	681	15	0	1	0	_1_	0	1	002	15
334			min	-2046.649	3	-2.888	4	0	1	0	1	0	1	007	4
335		16	max	1992.087	2	861	15	0	1	0	_1	0	1	001	15
336			min	-2046.776	3	-3.653	4	0	1	0	1	0	1	006	4
337		17	max	1991.917	2	-1.041	15	0	1	0	_1_	0	1	001	15
338			min	-2046.904	3	-4.417	4	0	1	0	1	0	1	004	4
339		18	max		2	-1.22	15	0	1	0	_1_	0	1	0	15
340			min	-2047.032	3	-5.182	4	0	1	0	1	0	1	002	4
341		19	max	1991.576	2	-1.4	15	0	1	0	1	0	1	0	1_
342			min	-2047.16	3	-5.946	4	0	1	0	1	0	1	0	1
343	<u>M8</u>	1		2689.099	1	0	1	0	1	0	1	0	1	0	1
344			min	-91.484	3	0	1	0	1	0	1	0	1	0	1
345		2	max	2689.269	1	0	1	0	1_	0	_1_	0	1	0	1
346			min	-91.357	3	0	1	0	1	0	1	0	1	0	1
347		3	max		1	0	1	0	1	0	_1_	0	1	0	1
348			min	-91.229	3	0	1	0	1	0	1	0	1	0	1
349		4	max	2689.61	1_	0	1_	0	1	0	1	0	1	0	1
350			min	-91.101	3	0	1	0	1	0	1	0	1	0	1
351		5	max		1	0	1	0	1	0	1	0	1	0	1
352			min		3	0	1_	0	1	0	1	0	1	0	1
353		6		2689.951	1	0	1	0	1	0	1	0	1	0	1
354			min		3	0	1_	0	1	0	1	0	1	0	1
355		7		2690.121	1	0	1	0	1	0	1	0	1	0	1
356			min	-90.718	3	0	1	0	1	0	1	0	1	0	1
357		8		2690.292	1	0	1	0	1	0	1	0	1	0	1
358		_	min		3	0	1	0	1	0	1	0	1	0	1
359		9		2690.462	1	0	1	0	1	0	1	0	1	0	1
360			min	-90.462	3	0	1	0	1	0	1	0	1	0	1
361		10		2690.632	1	0	1	0	1	0	1	0	1	0	1
362			min		3	0	1	0	1	0	1	0	1	0	1
363		11		2690.803	1	0	1	0	1	0	1	0	1	0	1
364			min		3	0	1_	0	1	0	1	0	1	0	1
365		12		2690.973	1	0	1	0	1	0	1	0	1	0	1
366			min		3	0	1	0	1	0	1	0	1	0	1
367		13		2691.143	1	0	1	0	1	0	1	0	1	0	1
368			min	-89.951	3	0	1	0	1	0	1	0	1	0	1

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

000	Member	Sec		Axial[lb]						Torque[k-ft]	LC		LC		LC
369		14		2691.314	1_	0	1	0	1	0	1	0	1	0	1
370		4.5	min	-89.824	3	0	1_	0	1	0	1_	0	1	0	1
371		15		2691.484	1	0	1	0	1	0	1	0	1	0	1
372		4.0	min	-89.696	3	0		0	•	0		0		0	
373		16		2691.654 -89.568	1	0	1	0	1	0	1	0	1	0	1
374		17	min		3	0		0	_	0		0		0	
375		17		2691.825	1_	0	1	0	1_	0	1	0	1	0	1
376		4.0	min	-89.44	3_	0	1_	0	1_	0	1_	0	1	0	1
377		18		2691.995	1	0	1	0	1	0	1_	0	1	0	1
378		40	min	-89.313	3	0	1_	0	1	0	1_	0	1_	0	1
379		19		2692.165	1_	0	1	0	1	0	1	0	1	0	1
380	1440		min	-89.185	3	0	1	0	1_	0	1	0	1	0	1
381	M10	1	max	898.513	_1_	1.928	4	03	15	0	_1_	0	1	0	1
382				-1014.41	3	.454	15	629	1	0	5	0	3	0	1
383		2	max	898.989	1_	1.842	4	03	15	0	_1_	0	15	0	15
384		_	min	-1014.054	3	.434	15	629	1	0	5	0	1	0	4
385		3	max	899.465	1_	1.757	4	03	15	0	1_	0	15	0	15
386			min	-1013.697	3	.414	15	629	1	0	5	0	1	001	4
387		4		899.941	_1_	1.671	4	03	15	0	1_	0	15	0	15
388			min	-1013.34	3	.393	15	629	1	0	5	0	1	002	4
389		5	max	900.416	_1_	1.586	4	03	15	0	_1_	0	15	0	15
390			min	-1012.983	3	.373	15	629	1	0	5	0	1	002	4
391		6	max		_1_	1.5	4	03	15	0	1_	0	15	0	15
392			min	-1012.626	3	.353	15	629	1	0	5	001	1	003	4
393		7	max	901.368	1	1.414	4	03	15	0	1	0	15	0	15
394			min	-1012.27	3	.333	15	629	1	0	5	001	1	003	4
395		8	max	901.844	1	1.329	4	03	15	0	1	0	15	0	15
396			min	-1011.913	3	.313	15	629	1	0	5	001	1	004	4
397		9	max	902.319	1	1.243	4	03	15	0	1	0	15	0	15
398			min	-1011.556	3	.293	15	629	1	0	5	002	1	004	4
399		10	max	902.795	1	1.158	4	03	15	0	1	0	15	001	15
400			min	-1011.199	3	.273	15	629	1	0	5	002	1	004	4
401		11	max	903.271	1	1.072	4	03	15	0	1	0	15	001	15
402			min	-1010.842	3	.253	15	629	1	0	5	002	1	005	4
403		12	max	903.747	1	.986	4	03	15	0	1	0	15	001	15
404			min	-1010.486	3	.232	15	629	1	0	5	002	1	005	4
405		13	max	904.222	1	.901	4	03	15	0	1	0	15	001	15
406			min	-1010.129	3	.212	15	629	1	0	5	002	1	005	4
407		14	max	904.698	1	.815	4	03	15	0	1	0	15	001	15
408			min	-1009.772	3	.179	12	629	1	0	5	003	1	006	4
409		15		905.174	1	.737	2	03	15	0	1	0	15	001	15
410			min	-1009.415	3	.146	12	629	1	0	5	003	1	006	4
411		16	max	905.65	1	.671	2	03	15	0	1	0	15	001	15
412				-1009.058	3	.113	12	629	1	0	5	003	1	006	4
413		17	max		1	.604	2	023	15	0	1	0	15	002	15
414		- ' '	min	-1008.701	3	.079	12	629	1	0	5	003	1	002	4
415		18		906.601	1	.537	2	023	15	0	1	0	15	002	15
416		'0		-1008.345	3	.046	3	629	1	0	5	003	1	002	4
417		19		907.077	<u> </u>	.47	2	029	15	0	1	003 0	15	007	15
418		13	min	-1007.988	3	004	3	629	1	0	5	004	1	002	4
419	M11	1		501.131	2	7.778	4	029	15	0	<u> </u>	0	15	.007	4
420	IVIII		min	-649.373	3	1.829	15	289	1	0	12	0	1	.007	15
421		2			2	7.013	4	014	15	0	1	0	15	.002	2
421			max	-649.501	3	1.649	15	014	1	0	12	0	1	.004	12
		2							•	_			_	_	
423		3	max	500.79	2	6.249	4	014	<u>15</u> 1	0	1	0	<u>15</u>	.002	3
424		A	min		3	1.469	15	289		0	12	0	_	0	_
425		4	max	500.62	2	5.484	4	014	15	0	_1_	0	15	0	15

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	. LC	z-z Mome	. LC
426			min	-649.756	3	1.29	15	289	1	0	12	0	1	002	3
427		5	max		2	4.72	4	014	15	0	1	0	15	0	15
428			min	-649.884	3	1.11	15	289	1	0	12	001	1	004	4
429		6	max	500.279	2	3.955	4	014	15	0	1	0	15	001	15
430			min	-650.012	3	.93	15	289	1	0	12	001	1	006	4
431		7	max	500.109	2	3.191	4	014	15	0	1	0	15	002	15
432			min	-650.139	3	.751	15	289	1	0	12	001	1	007	4
433		8	max	499.939	2	2.427	4	014	15	0	1	0	15	002	15
434			min	-650.267	3	.571	15	289	1	0	12	001	1	008	4
435		9	max	499.768	2	1.662	4	014	15	0	1	0	15	002	15
436			min	-650.395	3	.391	15	289	1	0	12	001	1	009	4
437		10	max		2	.898	4	014	15	0	1	0	15	002	15
438			min	-650.523	3_	.211	15	289	1	0	12	002	1	01	4
439		11	max	499.428	2	.235	2	014	15	0	1	0	15	002	15
440			min	-650.65	3	101	3	289	1	0	12	002	1	01	4
441		12	max	499.257	2	148	15	014	15	0	1	0	15	002	15
442			min	-650.778	3	631	4	289	1	0	12	002	1	01	4
443		13	max	499.087	2	328	15	014	15	0	1	0	15	002	15
444			min	-650.906	3	-1.396	4	289	1	0	12	002	1	009	4
445		14	max	498.917	2	507	15	014	15	0	1	0	15	002	15
446			min	-651.034	3	-2.16	4	289	1_	0	12	002	1	009	4
447		15	max		2	687	15	014	15	0	1	0	15	002	15
448			min	-651.161	3_	-2.925	4	289	1_	0	12	002	1	007	4
449		16	max	498.576	2	867	15	014	15	0	1	0	15	001	15
450			min	-651.289	3_	-3.689	4_	289	1_	0	12	002	1	006	4
451		17	max	498.406	2	-1.046	15	014	15	0	1	0	15	001	15
452			min	-651.417	3_	-4.453	4	289	1_	0	12	002	1	004	4
453		18	max	498.235	2	-1.226	15	014	15	0	1	0	15	0	15
454			min	-651.545	3_	-5.218	4	289	1_	0	12	003	1	002	4
455		19	max	498.065	2	-1.406	15	014	15	0	1	0	15	0	1
456	1440	-	min	-651.673	3	-5.982	4	289	1	0	12	003	1	0	1
457	M12	1_		1056.644	1_	0	1	14.398	1	0	1	0	15	0	1
458			min	1.533	3	0	1_	.682	15	0	1	002	1	0	1
459		2		1056.815	1_	0	1	14.398	1	0	1	0	15	0	1
460			min	1.661	3	0	1	.682	15	0	1	0	1	0	1
461		3		1056.985	1	0	1	14.398	1	0	1	.001	1	0	1
462		_	min	1.788	3	0	1_	.682	15	0	1	0	12	0	1
463		4		1057.155	1_	0	1	14.398	1	0	1	.003	1	0	1
464		-	min	1.916	3	0	1_	.682	15	0	1	0	15	0	1
465		5		1057.326	1	0	1	14.398	1	0	1	004	1	0	1
466			min	2.044	3	0	1_1	.682	15	0	1	0	15	0	1
467		6		1057.496	1	0	1	14.398	1	0	1	.006	15	0	1
468		7	min		3	0	1	.682	15	0	1	0	15	0	1
469				1057.666 2.3	<u>1</u> 3	0	1	14.398 .682	15	0	1	.008	15	0	1
470 471		8	min	2.3 1057.837	<u>3</u> 1	0	1	. <u>682</u> 14.398	15	0	1	<u> </u>	15	0	1
471		0			3				15		1		15		
473		9	min		<u> </u>	0	1	.682	1	0	1	<u> </u>	1	0	1
474		19	min	1058.007 2.555	3	0	1	14.398 .682	15	0	1	011 0	15	0	1
474		10		2.555 1058.177	<u> </u>	0	1	14.398	1	0	1	.013	1	0	1
475		10		2.683	3	0	1	.682	15	0	1	<u>.013</u>	15	0	1
477		11	min	1058.348	<u> </u>		1	14.398			1	.014	1		1
477		11			3	0	1	.682	15	0	1	<u>.014</u>	15	0	1
478		12	min	1058.518	<u> </u>	0	1	14.398	1	0	1	.016	1	0	1
480		12			3	0	1	.682	15	0	1		15	0	1
480		13	min	2.938 1058.689	<u> </u>	0	1	14.398	1	0	1	<u> </u>	1	0	1
481		13					1		15		1		15		1
402			min	3.066	3	0		.682	10	0		0	10	0	

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	v Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
483			max	1058.859	1	0	1	14.398	1	0	1	.019	1	0	1
484			min	3.194	3	0	1	.682	15	0	1	0	15	0	1
485		15	max	1059.029	1	0	1	14.398	1	0	1	.021	1	0	1
486			min	3.322	3	0	1	.682	15	0	1	0	15	0	1
487		16	max	1059.2	1	0	1	14.398	1	0	1	.023	1	0	1
488			min	3.449	3	0	1	.682	15	0	1	.001	15	0	1
489		17	max		1	0	1	14.398	1	0	1	.024	1	0	1
490			min	3.577	3	0	1	.682	15	0	1	.001	15	0	1
491		18	max		1	0	1	14.398	1	0	1	.026	1	0	1
492			min	3.705	3	0	1	.682	15	0	1	.001	15	0	1
493		19		1059.711	1	0	1	14.398	1	0	1	.028	1	0	1
494		10	min	3.833	3	0	1	.682	15	0	1	.001	15	0	1
495	M1	1	max		1	549.146	3	-6.488	15	0	1	.327	1	0	3
496	1711		min	9.487	15	-390.964	1	-136.43	1	0	3	.016	15	011	2
497		2	max	201.104	1	548.215	3	-6.488	15	0	1	.255	1	.196	1
498			min	9.703	15	-392.205	1	-136.43	1	0	3	.012	15	289	3
499		3	max		3	437.582	1	-6.459	15	0	3	.183	1	.393	1
500		-	min	-232.453	2	-394.656	3	-136.086	1	0	1	.009	15	566	3
501		4	max	397.622	3	436.342	1	-6.459	15	0	3	.111	1	.163	1
502		-	min	-231.737	2	-395.587	3	-136.086	1	0	1	.005	15	358	3
503		5	max	398.16	3	435.101	1	-6.459	15	0	3	.039	1	003	15
504		J	min	-231.021	2	-396.517	3	-136.086	1	0	1	.002	15	149	3
505		6			3	433.861	1	-6.459	15	0	3	002	15	.061	3
		0	max		2	-397.448	3		1		1	032	1		2
506		7	min	-230.305				-136.086		0			_	307	
507		7	max	399.234	3_	432.62	1	-6.459	15	0	3	005	15	.27	3
508			min	-229.589	2	-398.378	3	-136.086	1_	0		104	1_	528	2
509		8	max		3_	431.38	1	-6.459	15	0	3	008	15	.481	3
510			min	-228.872	2	-399.308	3	-136.086	1_	0	1	176	1	753	1
511		9	max		3_	38.862	2	-9.306	15	0	9	.102	1	.562	3
512		40	min	-141.993	2	.379	15		1_	0	3	.005	15	859	1
513		10	max		3_	37.622	2	-9.306	15	0	9	0	15	.547	3
514		4.4	min	-141.277	2	.005	15		1_	0	3	001	1_	878	2
515		11	max		3_	36.381	2	-9.306	15	0	9	005	15	.532	3
516			min	-140.561	2	-1.501	4	-195.942	1_	0	3	105	1	897	2
517		12	max		3_	259.792	3	-6.301	15	0	2	.174	1_	.463	3
518			min	-78.626	10	-497.179	2	-132.892	1_	0	3	.008	15	795	2
519		13	max		3_	258.861	3	-6.301	15	0	2	.104	1_	.326	3
520			min	-78.029	<u>10</u>	-498.419	2	-132.892	1_	0	3	.005	15	533	2
521		14	max		3	257.931	3	-6.301	15	0	2	.034	1	.19	3
522			min	-77.432	10	-499.66	2	-132.892	1_	0	3	.002	15	278	1
523		15		434.219	3	257	3		15	0	2	002	15	.054	3
524		4	min		10	-500.9	2	-132.892		0	3	037	1_	027	1
525		16		434.756	3	256.07	3	-6.301	15	0	2	005	15	.259	2
526			min		10	-502.141	2	-132.892		0	3	107	1_	081	3
527		17		435.293	3_	255.14	3	-6.301	15	0	2	008	15	.524	2
528			min	-75.641	10	-503.381	2	-132.892	1_	0	3	177	1_	216	3
529		18	max		<u>15</u>	516.585	2	-6.969	15	0	3	012	15	.264	2
530				-201.323	1_	-217.662	3	-146.665		0	2	251	1	107	3
531		19	max		15	515.344	2	-6.969	15	0	3	016	15	.008	3
532			min		1_	-218.593		-146.665	1	0	2	328	1	009	1
533	<u>M5</u>	1	max		_1_	1829.933	3	0	1	0	1	0	1	.022	2
534			min		12	-1317.419	1	0	1	0	1	0	1	002	3
535		2	max	431.331	_1_	1829.003		0	1	0	1	0	1	.716	1
536			min	19.778	12	-1318.66	1	0	1	0	1	0	1	967	3
537		3	max	1280.113	3	1351.303	1	0	1	0	1	0	1	1.38	1
538			min	-846.048	2	-1283.589	3	0	1	0	1	0	1	-1.894	3
539		4	max	1280.65	3	1350.063	1	0	1	0	1	0	1	.668	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]				_		Torque[k-ft]	LC	y-y Mome			LC
540		_		-845.332	2	-1284.52	3	0	1	0	_1_	0	1	-1.217	3
541		5		1281.187	3_	1348.822	1	0	1	0		0	1	.002	9
542			min	-844.616	2	-1285.45	3	0	1	0	1	0	1	539	3
543		6		1281.724	3	1347.582	1	0	1	0	1	0	1	.14	3
544		_	min	-843.9	2	-1286.38	3	0	1	0	1	0	1	781	2
545		7		1282.261	3_	1346.341	1	0	1	0	1	0	1	.819	3
546			min	-843.183	2	-1287.311	3	0	1	0	1_	0	1	-1.467	2
547		8		1282.798	3_	1345.101	1	0	1	0	1	0	1	1.498	3
548				-842.467	2	-1288.241	3	0	1	0	1	0	1	-2.177	1
549		9		1311.534	3_	129.121	2	0	1	0	1	0	1	1.725	3
550			min	-664.696	2	.377	15	0	1	0	<u>1</u>	0	1	-2.465	1
551		10		1312.071	3	127.88	2	0	1	0	_1_	0	1	1.671	3
552			min	-663.98	2	.002	15	0	1	0	1_	0	1	-2.517	2
553		11		1312.608	3	126.64	2	0	1	0	1_	0	1	1.618	3
554			min	-663.264	2	-1.321	4	0	1	0	1_	0	1	-2.584	2
555		12		1341.464	3	837.023	3	0	1	0	1	0	1	1.422	3
556			min	-485.505	2	-1559.465	2	0	1	0	<u>1</u>	0	1	-2.313	2
557		13		1342.001	3_	836.093	3	0	1	0	_1_	0	1_	.98	3
558				-484.789	2	-1560.705	2	0	1	0	1_	0	1	-1.49	2
559		14	max	1342.538	3_	835.162	3	0	1	0	_1_	0	1_	.539	3
560			min	-484.073	2	-1561.946	2	0	1	0	1_	0	1	696	1
561		15	max	1343.075	3	834.232	3	0	1	0	_1_	0	1	.158	2
562			min	-483.357	2	-1563.186	2	0	1	0	1	0	1	004	13
563		16	max	1343.613	3	833.301	3	0	1	0	1	0	1	.983	2
564			min	-482.64	2	-1564.427	2	0	1	0	1	0	1	341	3
565		17	max	1344.15	3	832.371	3	0	1	0	1	0	1	1.809	2
566			min	-481.924	2	-1565.667	2	0	1	0	1	0	1	781	3
567		18	max	-20.01	12	1736.014	2	0	1	0	1	0	1	.933	2
568			min	-430.894	1	-742.432	3	0	1	0	1	0	1	408	3
569		19	max	-19.652	12	1734.774	2	0	1	0	1	0	1	.018	1
570			min	-430.177	1	-743.362	3	0	1	0	1	0	1	016	3
571	M9	1	max	200.388	1	549.146	3	136.43	1	0	3	016	15	0	3
572			min	9.487	15	-390.964	1	6.488	15	0	1	327	1	011	2
573		2	max	201.104	1	548.215	3	136.43	1	0	3	012	15	.196	1
574			min	9.703	15	-392.205	1	6.488	15	0	1	255	1	289	3
575		3	max	397.085	3	437.582	1	136.086	1	0	1	009	15	.393	1
576			min	-232.453	2	-394.656	3	6.459	15	0	3	183	1	566	3
577		4	max	397.622	3	436.342	1	136.086	1	0	1	005	15	.163	1
578			min	-231.737	2	-395.587	3	6.459	15	0	3	111	1	358	3
579		5	max	398.16	3	435.101	1	136.086	1	0	1	002	15	003	15
580				-231.021	2	-396.517	3	6.459	15	0	3	039	1	149	3
581		6	max		3	433.861	1	136.086	1	0	1	.032	1	.061	3
582				-230.305	2	-397.448	3	6.459	15	0	3	.002	15	307	2
583		7		399.234	3	432.62	1	136.086	1	0	1	.104	1	.27	3
584				-229.589	2	-398.378	3	6.459	15	0	3	.005	15	528	2
585		8		399.771	3	431.38	1	136.086	1	0	1	.176	1	.481	3
586				-228.872	2	-399.308	3	6.459	15	0	3	.008	15	753	1
587		9		415.682	3	38.862	2	195.942	1	0	3	005	15	.562	3
588				-141.993	2	.379	15	9.306	15	0	9	102	1	859	1
589		10		416.219	3	37.622	2	195.942	1	0	3	.001	1	.547	3
590		10		-141.277	2	.005	15	9.306	15	0	9	0	15	878	2
591		11	_	416.756	3	36.381	2	195.942	1	0	3	.105	1	.532	3
592		11		-140.561	2	-1.501	4	9.306	15	0	9	.005	15	897	2
593		12		432.607	3	259.792	3	132.892	1	0	3	008	15	.463	3
594		12		-78.626	10	-497.179	2	6.301	15	0	2	174	1	795	2
595		12	min			258.861	3		1	0	3		_		3
		13	max		10			132.892			2	005	15	.326	
596			min	-78.029	10	-498.419	2	6.301	15	0		104	1_	533	2

Model Name

: Schletter, Inc. : HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

Envelope Member Section Forces (Continued)

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
597		14	max	433.682	3	257.931	3	132.892	1	0	3	002	15	.19	3
598			min	-77.432	10	-499.66	2	6.301	15	0	2	034	1	278	1
599		15	max	434.219	3	257	3	132.892	1	0	3	.037	1	.054	3
600			min	-76.835	10	-500.9	2	6.301	15	0	2	.002	15	027	1
601		16	max	434.756	3	256.07	3	132.892	1	0	3	.107	1	.259	2
602			min	-76.238	10	-502.141	2	6.301	15	0	2	.005	15	081	3
603		17	max	435.293	3	255.14	3	132.892	1	0	3	.177	1	.524	2
604			min	-75.641	10	-503.381	2	6.301	15	0	2	.008	15	216	3
605		18	max	-9.711	15	516.585	2	146.665	1	0	2	.251	1	.264	2
606			min	-201.323	1	-217.662	3	6.969	15	0	3	.012	15	107	3
607		19	max	-9.495	15	515.344	2	146.665	1	0	2	.328	1	.008	3
608			min	-200.607	1	-218.593	3	6.969	15	0	3	.016	15	009	1

Envelope Member Section Deflections

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
1	M13	1	max	.001	1	.087	2	.007	3 7.28e-3	2	NC	1_	NC	1
2			min	0	15	01	3	003	2 -1.114e-3	3	NC	1	NC	1
3		2	max	.001	1	.335	3	.06	1 8.471e-3	2	NC	5	NC	2
4			min	0	15	144	1	.003	15 -1.197e-3	3	763.649	3	4568.487	1
5		3	max	.001	1	.615	3	.145	1 9.661e-3	2	NC	5	NC	3
6			min	0	15	326	1	.007	15 -1.28e-3	3	421.993	3	1846.802	1
7		4	max	0	1	.785	3	.219	1 1.085e-2	2	NC	5	NC	3
8			min	0	15	43	1	.011	15 -1.363e-3	3	331.879	3	1214.787	1
9		5	max	0	1	.824	3	.258	1 1.204e-2	2	NC	15	NC	3
10			min	0	15	441	1	.012	15 -1.446e-3	3	316.291	3	1030.506	1
11		6	max	0	1	.736	3	.25	1 1.323e-2	2	NC	5	NC	5
12			min	0	15	362	1	.012	15 -1.528e-3	3	353.818	3	1063.379	1
13		7	max	0	1	.546	3	.198	1 1.442e-2	2	NC	5	NC	3
14			min	0	15	212	1	.01	15 -1.611e-3	3	474.489	3	1348.751	1
15		8	max	0	1	.305	3	.116	1 1.562e-2	2	NC	5	NC	3
16			min	0	15	029	1	.006	15 -1.694e-3	3	836.834	3	2311.35	1
17		9	max	0	1	.147	2	.035	1 1.681e-2	2	NC	4	NC	2
18			min	0	15	.004	15	004	10 -1.777e-3	3	2720.2	3	8054.048	1
19		10	max	0	1	.215	2	.022	3 1.8e-2	2	NC	3	NC	1
20			min	0	1	012	3	015	2 -1.86e-3	3	2076.352	2	NC	1
21		11	max	0	15	.147	2	.035	1 1.681e-2	2	NC	4	NC	2
22			min	0	1	.004	15	004	10 -1.777e-3	3	2720.2	3	8054.048	1
23		12	max	0	15	.305	3	.116	1 1.562e-2	2	NC	5	NC	3
24			min	0	1	029	1	.006	15 -1.694e-3	3	836.834	3	2311.35	1
25		13	max	0	15	.546	3	.198	1 1.442e-2	2	NC	5	NC	3
26			min	0	1	212	1	.01	15 -1.611e-3	3	474.489	3	1348.751	1
27		14	max	0	15	.736	3	.25	1 1.323e-2	2	NC	5	NC	5
28			min	0	1	362	1	.012	15 -1.528e-3	3	353.818	3	1063.379	1
29		15	max	0	15	.824	3	.258	1 1.204e-2	2	NC	15	NC	3
30			min	0	1	441	1	.012	15 -1.446e-3	3	316.291	3	1030.506	1
31		16	max	0	15	.785	3	.219	1 1.085e-2	2	NC	5	NC	3
32			min	0	1	43	1	.011	15 -1.363e-3	3	331.879	3	1214.787	1
33		17	max	0	15	.615	3	.145	1 9.661e-3	2	NC	5	NC	3
34			min	001	1	326	1	.007	15 -1.28e-3	3	421.993	3	1846.802	1
35		18	max	0	15	.335	3	.06	1 8.471e-3	2	NC	5	NC	2
36			min	001	1	144	1	.003	15 -1.197e-3	3	763.649	3	4568.487	1
37		19	max	0	15	.087	2	.007	3 7.28e-3	2	NC	1	NC	1
38			min	001	1	01	3	003	2 -1.114e-3	3	NC	1	NC	1
39	M14	1	max	0	1	.168	3	.006	3 4.337e-3	2	NC	1	NC	1
40			min	0	15	287	2	003	2 -2.967e-3	3	NC	1	NC	1

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC			(n) L/y Ratio			
41		2	max	0	1	.488	3	.042	1	5.236e-3	2	NC	5_	NC	2
42			min	0	15	618	1	.002	15	-3.642e-3	3	787.58	1_	6581.831	1
43		3	max	0	1	.756	3	.118	1	6.134e-3	2	NC	15	NC	3
44			min	0	15	904	1	.006	15	-4.317e-3	3	425.225	1	2277.097	1
45		4	max	0	1	.938	3	.19	1	7.032e-3	2	NC	15	NC	3
46			min	0	15	-1.106	1	.009	15	-4.992e-3	3	320.802	1	1406.926	1
47		5	max	0	1	1.016	3	.231	1	7.93e-3	2	9108.323	15	NC	3
48			min	0	15	-1.207	1	.011	15	-5.666e-3	3	285.569	1	1153.656	1
49		6	max	0	1	.992	3	.229	1	8.828e-3	2	9151.665	15	NC	3
50			min	0	15	-1.208	1	.011	15	-6.341e-3	3	285.274	1	1165.167	1
51		7	max	0	1	.883	3	.183	1	9.727e-3	2	NC	15	NC	3
52			min	0	15	-1.126	1	.009	15	-7.016e-3	3	313.253	1	1455.644	1
53		8	max	0	1	.727	3	.109	1	1.062e-2	2	NC	15	NC	3
54		T .	min	0	15	993	1	.006	15		3	371.595	1	2463.966	
55		9	max	0	1	.578	3	.033	1	1.152e-2	2	NC	15	NC	2
56		1 3	min	0	15	863	2	003	10	-8.365e-3	3	455.639	1	8430.192	1
57		10	max	0	1	.509	3	.02	3	1.242e-2	2	NC	5	NC	1
58		10		0	1	807	2	013	2	-9.04e-3	3	507.611	2	NC NC	1
		4.4	min												•
59		11	max	0	15	.578	3	.033	1	1.152e-2	2	NC 455,600	<u>15</u>	NC 0400 400	2
60		40	min	0	1	863	2	003	10		3	455.639	1_	8430.192	1
61		12	max	0	15	.727	3	.109	1	1.062e-2	2	NC 074 F0F	<u>15</u>	NC 0.400,000	3
62		10	min	0	1	<u>993</u>	1	.006	15	-7.691e-3	3	371.595	1_	2463.966	1
63		13	max	0	15	.883	3	.183	1	9.727e-3	2	NC	<u>15</u>	NC	3
64			min	0	1	-1.126	1	.009	15		3	313.253	1_	1455.644	1
65		14	max	0	15	.992	3	.229	1	8.828e-3	2	9151.665	15	NC	3
66			min	0	1	-1.208	1	.011	15		3	285.274	1_	1165.167	1
67		15	max	0	15	1.016	3	.231	1	7.93e-3	2	9108.323	15	NC	3
68			min	0	1	-1.207	1	.011	15	-5.666e-3	3	285.569	1_	1153.656	
69		16	max	0	15	.938	3	.19	1	7.032e-3	2	NC	15	NC	3
70			min	0	1	-1.106	1	.009	15	-4.992e-3	3	320.802	1_	1406.926	1
71		17	max	0	15	.756	3	.118	1	6.134e-3	2	NC	15	NC	3
72			min	0	1	904	1	.006	15	-4.317e-3	3	425.225	1	2277.097	1
73		18	max	0	15	.488	3	.042	1	5.236e-3	2	NC	5	NC	2
74			min	0	1	618	1	.002	15	-3.642e-3	3	787.58	1	6581.831	1
75		19	max	0	15	.168	3	.006	3	4.337e-3	2	NC	1	NC	1
76			min	0	1	287	2	003	2	-2.967e-3	3	NC	1	NC	1
77	M15	1	max	0	15	.172	3	.006	3	2.557e-3	3	NC	1	NC	1
78			min	0	1	286	2	003	2	-4.527e-3	2	NC	1	NC	1
79		2	max	0	15	.368	3	.042	1	3.145e-3	3	NC	5	NC	2
80			min	0	1	698	2	.002	15		2	640.175	2	6552.317	1
81		3	max	0	15	.537	3	.118	1	3.732e-3	3	NC	15	NC	3
82			min	0	1	-1.047	2	.006	15		2	347.108		2271.201	1
83		4	max	0	15	.659	3	.19	1	4.319e-3	3	NC	15	NC	3
84			min	0	1	-1.287	2	.009		-7.351e-3	2	263.811		1404.147	
85		5	max	0	15	.724	3	.231	1	4.907e-3	3	9122.243	15	NC	3
86			min	0	1	-1.397	2	.011		-8.292e-3	2	237.575		1151.631	1
87		6	max	0	15	.731	3	.229	1	5.494e-3	3	9168.541	15	NC	3
88			min	0	1	-1.379	2	.011	15		2	241.599	2	1163.092	
89		7	max	0	15	<u>-1.379 </u>	3	.184	1	6.081e-3	3	NC	15	NC	3
90				0	1	-1.254	2	.009		-1.017e-2	2	272.712	2	1452.542	1
		0	min		_		3								
91		8	max	0	15	.622		.11	1 1 5	6.669e-3	3	NC	<u>15</u>	NC 2455.66	3
92			min	0	1	<u>-1.068</u>	2	.006	15		2	337.465	2	2455.66	
93		9	max	0	15	.551	3	.034	1	7.256e-3	3	NC 407.070	<u>15</u>	NC	2
94		40	min	0	1	889	2	003		-1.206e-2	2	437.972	2	8339.712	
95		10	max	0	1	.518	3	.018	3	7.843e-3	3	NC 500,004	5_	NC NC	1
96			min	0	1	<u>805</u>	2	013	2	-1.3e-2	2	508.661	2	NC NC	1
97		11	max	0	1	<u>.551</u>	3	.034	1_	7.256e-3	3	NC	15	NC	2

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

	Member	Sec		x [in]	LC	y [in]	LC	z [in]				(n) L/y Ratio			
98		40	min	0	15	889	2	003		06e-2	2	437.972	2	8339.712	1
99		12	max	0	1	.622	3	.11		69e-3	3_	NC	<u>15</u>	NC 0.455.00	3
100		40	min	0	15	<u>-1.068</u>	2	.006		12e-2	2	337.465	2	2455.66	1
101		13	max	0	1	.691	3	.184		31e-3	3_	NC 070.740	15	NC	3
102		4.4	min	0	15	<u>-1.254</u>	2	.009		17e-2	2	272.712	2	1452.542	1_
103		14	max	0	1	.731	3	.229		94e-3	3	9168.541	<u>15</u>	NC	3
104		4.5	min	0	15	<u>-1.379</u>	2	.011		33e-3	2	241.599	2	1163.092	1
105		15	max	0	15	.724	3	.231		07e-3 92e-3	3	9122.243	<u>15</u>	NC	3
106 107		16	min	0	1	<u>-1.397</u>	2	<u>.011</u> .19		92e-3 19e-3	3	NC	<u>2</u> 15	1151.631 NC	3
107		10	max min	<u> </u>	15	.659 -1.287	2	.009	15 -7.3	51e-3	2	263.811	2	1404.147	1
109		17	max	0	1	.537	3	.009 .118		32e-3	3	NC	15	NC	3
110		17	min	0	15	-1.047	2	.006		09e-3	2	347.108	2	2271.201	1
111		18	max	0	1	.368	3	.042		45e-3	3	NC	5	NC	2
112		10	min	0	15	698	2	.002		68e-3	2	640.175	2	6552.317	1
113		19	max	0	1	.172	3	.002		57e-3	3	NC	1	NC	1
114		13	min	0	15	286	2	003		27e-3	2	NC	1	NC	1
115	M16	1	max	0	15	.083	1	.005		34e-3	3	NC	1	NC	1
116	IVITO		min	002	1	055	3	002		79e-3	1	NC	1	NC	1
117		2	max	0	15	.068	3	.059		98e-3	3	NC	5	NC	2
118			min	001	1	23	2	.003		68e-3	1	856.288	2	4601.266	1
119		3	max	0	15	.165	3	.144		62e-3	3	NC	5	NC	3
120			min	001	1	477	2	.007		57e-3	1	475.684	2	1853.596	1
121		4	max	0	15	.219	3	.219		25e-3	3	NC	5	NC	3
122			min	001	1	62	2	.011		46e-3	1	377.793	2	1217.048	1
123		5	max	0	15	.221	3	.258		39e-3	3	NC	5	NC	3
124			min	0	1	642	2	.012		33e-2	1	366.31	2	1030.982	1
125		6	max	0	15	.173	3	.25		53e-3	3	NC	5	NC	3
126			min	0	1	546	2	.012		32e-2	1	423.139	2	1062.242	1
127		7	max	0	15	.086	3	.198		17e-3	3	NC	5	NC	3
128			min	0	1	355	2	.01		31e-2	1	608.505	2	1344.074	1
129		8	max	0	15	0	15	.117	1 1.04	48e-2	3	NC	4	NC	3
130			min	0	1	12	2	.006	15 -1.3	33e-2	1	1332.102	2	2290.078	1
131		9	max	0	15	.114	1	.036	1 1.13	34e-2	3	NC	2	NC	2
132			min	0	1	111	3	002		29e-2	1	4672.95	3	7738.128	1
133		10	max	0	1	.201	1	.016		21e-2	3	NC	4	NC	1
134			min	0	1	1 <u>53</u>	3	012		28e-2	1_	2228.435	1_	NC	1
135		11	max	0	1	.114	1	.036		34e-2	3	NC	2	NC	2
136			min	0	15	111	3	002		29e-2	1_	4672.95	3	7738.128	1
137		12	max	0	1	0	15	.117	1 1.04	48e-2	3	NC	4_	NC	3
138			min	0	15	12	2	.006				1332.102			
139		13	max	0	1	.086	3	.198	1 9.6	17e-3	3_	NC 000 505	5	NC 1011071	3
140		4.4	min	0	15	<u>355</u>	2	.01		31e-2	1_	608.505	2	1344.074	1
141		14	max	0	1	.173	3	.25		53e-3	3_	NC 400,400	_5_	NC 4000 040	3
142		4.5	min	0	15	<u>546</u>	2	.012		32e-2	1_	423.139	2	1062.242	1
143		15	max	0	1	.221	3	.258		39e-3	3	NC 200.04	5	NC 4000,000	3
144		4.0	min	0	15	642	2	.012		33e-2	1_	366.31	2	1030.982	1
145		16	max	.001	1	.219	3	.219		25e-3	3	NC	5	NC	3
146		47	min	0	15	62	2	.011		46e-3	1	377.793	2	1217.048	1
147		17	max	.001	15	.165	3	.144		52e-3	3	NC 475.684	5	NC 1853.596	3
148		10	min	0		477		.007		57e-3	1	475.684 NC	5	NC	2
149 150		18	max	.001 0	1 15	.068 23	3	.059 .003	1 5.29	98e-3 68e-3	3	856.288	2	4601.266	1
151		10		.002	1		1	.003 .005		34e-3	<u>1</u> 3	NC	1	NC	1
152		19	max min	.002	15	.083 055	3	002		79e-3	<u> </u>	NC NC	1	NC NC	1
153	M2	1	max	.006	1	055 .006	2	002 .011		42e-5		NC NC	1	NC NC	2
154	IVIZ		min	007	3	01	3	0	15 -3.0		1	NC NC	1	6635.32	1
134			1111111	007	J	01	J	U	10 50.0	T 1 C-4		INC		0000.02	

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]						(n) L/z Ratio	
155		2	max	.006	1	.005	2	01	1	-1.359e-5	15	NC	1	NC	2
156			min	006	3	<u>01</u>	3	0	15		1_	NC	1	7236.423	1
157		3	max	.005	1	.004	2	.009	1	-1.276e-5	15	NC	1	NC	2
158		4	min	006	3	01	3	0	15		1_	NC NC	1_	7952.748	1
159		4	max	.005	1	.003	2	800	1	-1.193e-5	<u>15</u>	NC NC	1	NC 0044 000	1
160		5	min	006	3	<u>01</u>	3	0	15		1_	NC NC		8814.822 NC	2
161 162		5	max	.005	3	.002 009	3	.007 0	15	-1.109e-5 -2.339e-4		NC NC	<u>1</u> 1	9864.306	-
163		6	min	005 .004	1	<u>009</u> .001	2	.006	1	-2.339e-4 -1.026e-5	<u>1</u> 15	NC NC	1	NC	1
164		0	max	00 4	3	009	3	<u>.006</u>	15		1	NC NC	1	NC NC	1
165		7		005 .004	1	<u>009</u> 0	2	.005	1	-2.163e-4 -9.429e-6	•	NC NC	1	NC NC	1
166			max min	005	3	009	3	0	15		1	NC	1	NC	1
167		8	max	.004	1	<u>009</u> 0	2	.005	1	-8.597e-6		NC	1	NC	1
168		0	min	004	3	008	3	0	15		1	NC	1	NC	1
169		9	max	.003	1	008	2	.004	1	-7.765e-6	15	NC	1	NC	1
170		3	min	004	3	008	3	0	15		1	NC	1	NC	1
171		10	max	.003	1	001	15	.003	1	-6.933e-6	•	NC	1	NC	1
172		10	min	003	3	007	3	0	15		1	NC	1	NC	1
173		11	max	.003	1	001	15	.003	1	-6.101e-6		NC	1	NC	1
174			min	003	3	007	3	0	15		1	NC	1	NC	1
175		12	max	.002	1	001	15	.002	1	-5.269e-6	_	NC	1	NC	1
176		12	min	003	3	006	3	0	15		1	NC	1	NC	1
177		13	max	.002	1	001	15	.002	1	-4.437e-6		NC	1	NC	1
178		10	min	002	3	005	3	0	15			NC	1	NC	1
179		14	max	.002	1	001	15	.001	1	-3.605e-6	15	NC	1	NC	1
180		17	min	002	3	005	3	0	15		1	NC	1	NC	1
181		15	max	.001	1	0	15	0	1	-2.773e-6		NC	1	NC	1
182			min	002	3	004	4	0	15			NC	1	NC	1
183		16	max	.001	1	<u></u> 0	15	0	1	-1.941e-6		NC	1	NC	1
184		10	min	001	3	003	4	0	15		1	NC	1	NC	1
185		17	max	0	1	0	15	0	1	-1.109e-6	15	NC	1	NC	1
186			min	0	3	002	4	0	15		1	NC	1	NC	1
187		18	max	0	1	0	15	0	1	-2.766e-7	15	NC	1	NC	1
188			min	0	3	001	4	0	15		1	NC	1	NC	1
189		19	max	0	1	0	1	0	1	1.184e-5	1	NC	1	NC	1
190			min	0	1	0	1	0	1	5.249e-7	12	NC	1	NC	1
191	M3	1	max	0	1	0	1	0	1	-2.221e-7	12	NC	1	NC	1
192			min	0	1	0	1	0	1	-4.723e-6		NC	1	NC	1
193		2	max	0	3	0	15	0	1	2.414e-5	1	NC	1	NC	1
194			min	0	2	002	4	0	12	1.145e-6	15	NC	1	NC	1
195		3	max	0	3	0	15	0	1	5.301e-5		NC	1	NC	1
196			min	0	2	004	4	0	12			NC	1	NC	1
197		4	max	0	3	001	15	0	1	8.188e-5	1	NC	1	NC	1
198			min	0	2	006	4	0	15		15	NC	1	NC	1
199		5	max	.001	3	002	15	0	1	1.107e-4	1	NC	1	NC	1
200			min	0	2	008	4	0	15		15	NC	1	NC	1
201		6	max	.002	3	002	15	0	1	1.396e-4	1	NC	1	NC	1
202			min	001	2	01	4	0	15		15	9624.063	4	NC	1
203		7	max	.002	3	003	15	0	1	1.685e-4	1	NC	1	NC	1
204			min	001	2	011	4	0	15	7.979e-6	15	8289.99	4	NC	1
205		8	max	.002	3	003	15	.001	1	1.973e-4	1	NC	2	NC	1
206			min	002	2	012	4	0	15	9.346e-6	15	7467.797	4	NC	1
207		9	max	.003	3	003	15	.002	1	2.262e-4	1	NC	3	NC	1
208			min	002	2	013	4	0	15		15	6984.719	4	NC	1
209		10	max	.003	3	003	15	.002	1	2.551e-4	1	NC	3	NC	1
210			min	002	2	014	4	0	15	1.208e-5	15	6757.21	4	NC	1
211		11	max	.003	3	003	15	.003	1	2.84e-4	1	NC	3	NC	1

Model Name

Schletter, Inc.HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r				(n) L/z Ratio	
212			min	002	2	014	4	0	15	1.345e-5	15	6751.943	4	NC	1_
213		12	max	.003	3	003	15	.003	1	3.128e-4	1	NC	3	NC	_1_
214			min	003	2	013	4	0	15	1.481e-5	15	6973.025	4	NC	1
215		13	max	.004	3	003	15	.004	1	3.417e-4	1	NC	2	NC	1
216			min	003	2	013	4	0	15	1.618e-5	15	7465.24	4	NC	1
217		14	max	.004	3	003	15	.005	1	3.706e-4	1	NC	1	NC	1
218			min	003	2	011	4	0	15	1.755e-5	15	8336.968	4	NC	1
219		15	max	.004	3	002	15	.006	1	3.994e-4	1	NC	1	NC	1
220			min	003	2	01	4	0	15	1.891e-5	15	9827.343	4	NC	1
221		16	max	.005	3	002	15	.006	1	4.283e-4	1	NC	1	NC	1
222			min	004	2	008	4	0	15	2.028e-5	15	NC	1	NC	1
223		17	max	.005	3	001	15	.008	1	4.572e-4	1	NC	1	NC	1
224			min	004	2	006	1	0	15	2.165e-5	15	NC	1	NC	1
225		18	max	.005	3	0	15	.009	1	4.86e-4	1	NC	1	NC	1
226			min	004	2	004	1	0	15	2.301e-5	15	NC	1	NC	1
227		19	max	.006	3	0	10	.01	1	5.149e-4	1	NC	1	NC	2
228		'	min	004	2	003	1	0	15	2.438e-5	15	NC	1	9014.597	1
229	M4	1	max	.003	1	.004	2	0	15	1.172e-4	1	NC	1	NC	3
230	IVIT		min	0	3	006	3	01	1	5.562e-6	15	NC NC	1	2478.579	1
231		2	max	.002	1	.004	2	0	15	1.172e-4	1	NC	1	NC	3
232			min	0	3	004 006	3	009	1	5.562e-6	15	NC NC	1	2691.609	1
233		3		.002	1	.004	2	<u>009</u> 0	15	1.172e-4	-	NC	1	NC	3
		3	max	0	3	005	3	008	1	5.562e-6	1 15	NC	1	2945.373	1
234		1	min		1						-				
235		4	max	.002		.003	2	0	15	1.172e-4	1	NC NC	1	NC	3
236		-	min	0	3	005	3	008	1_1	5.562e-6	15	NC NC	_	3250.41	1
237		5	max	.002	1	.003	2	0	15	1.172e-4	1	NC	1	NC	3
238			min	0	3	005	3	007	1_	5.562e-6	15	NC	1_	3621.051	1
239		6	max	.002	1	.003	2	0	15	1.172e-4	1	NC	1	NC	3
240		_	min	0	3	004	3	006	1	5.562e-6	15	NC	1_	4077.165	1_
241		7	max	.002	1	.003	2	0	15	1.172e-4	1	NC	1_	NC	2
242			min	0	3	004	3	005	1	5.562e-6	15	NC	1	4646.96	1
243		8	max	.002	1	.002	2	0	15	1.172e-4	1_	NC	_1_	NC	2
244			min	0	3	004	3	005	1	5.562e-6	15	NC	1_	5371.567	1
245		9	max	.001	1	.002	2	00	15	1.172e-4	1	NC	_1_	NC	2
246			min	0	3	003	3	004	1	5.562e-6	15	NC	1_	6312.904	1_
247		10	max	.001	1	.002	2	00	15	1.172e-4	1	NC	_1_	NC	2
248			min	0	3	003	3	003	1	5.562e-6	15	NC	1_	7567.741	1
249		11	max	.001	1	.002	2	0	15	1.172e-4	1	NC	_1_	NC	2
250			min	0	3	003	3	003	1	5.562e-6	15	NC	1	9294.356	1
251		12	max	0	1	.002	2	0	15	1.172e-4	1	NC	1	NC	1
252			min	0	3	002	3	002	1	5.562e-6	15	NC	1	NC	1
253		13	max	0	1	.001	2	0	15	1.172e-4	1	NC	1	NC	1
254			min	0	3	002	3	002	1	5.562e-6	15	NC	1	NC	1
255		14	max	0	1	.001	2	0	15	1.172e-4	1	NC	1	NC	1
256			min	0	3	002	3	001	1	5.562e-6	15	NC	1	NC	1
257		15	max	0	1	0	2	0	15	1.172e-4	1	NC	1	NC	1
258			min	0	3	001	3	0	1	5.562e-6	15	NC	1	NC	1
259		16	max	0	1	0	2	0	15	1.172e-4	1	NC	1	NC	1
260			min	0	3	0	3	0	1	5.562e-6	15	NC	1	NC	1
261		17	max	0	1	0	2	0	15	1.172e-4	1	NC	1	NC	1
262		17	min	0	3	0	3	0	1	5.562e-6	15	NC	1	NC	1
263		18		0	1	0	2	0	15	1.172e-4	1	NC	1	NC	1
		10	max		3		3		15		_	NC NC	1	NC NC	1
264		10	min	0		0		0		5.562e-6					
265		19	max	0	1	0	1	0	1	1.172e-4	1	NC NC	1_4	NC NC	1
266	NAC	4	min	0	1	0	1	0	1	5.562e-6	<u>15</u>	NC NC	1	NC NC	1
267	<u>M6</u>	1_	max	.02	1	.023	2	0	1	0	1	NC	3	NC	1
268			min	022	3	033	3	0	1	0	1	2981.261	2	NC	1_

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
269		2	max	.018	1	.021	2	0	1	0	1	NC	3	NC	1
270			min	021	3	031	3	0	1	0	1	3282.744	2	NC	1
271		3	max	.017	1	.019	2	0	1	0	1	NC	3	NC	1
272			min	02	3	029	3	0	1	0	1	3648.618	2	NC	1
273		4	max	.016	1	.017	2	0	1	0	1	NC	3	NC	1
274		_	min	019	3	028	3	0	1	0	1	4097.703	2	NC	1
275		5	max	<u>.015</u>	1	.015	2	0	1	0	1	NC	1	NC	1
276			min	017	3	026	3	0	1	0	1	4656.485	2	NC	1
277		6	max	.014	1	.013	2	0	1	0	1	NC FOCO 404	1_	NC NC	1
278 279		7	min	016 .013	3	024 .011	2	0	1	0	<u>1</u> 1	5363.194 NC	1	NC NC	1
280			max	015	3	022	3	0	1	0	1	6274.677	2	NC NC	1
281		8	max	.012	1	.009	2	0	1	0	+	NC	1	NC	1
282		0	min	014	3	02	3	0	1	0	1	7478.52	2	NC	1
283		9	max	.011	1	.008	2	0	1	0	1	NC	1	NC	1
284			min	012	3	019	3	0	1	Ö	1	9115.577	2	NC	1
285		10	max	.01	1	.006	2	0	1	0	1	NC	1	NC	1
286			min	011	3	017	3	0	1	0	1	NC	1	NC	1
287		11	max	.009	1	.005	2	0	1	0	1	NC	1	NC	1
288			min	01	3	015	3	0	1	0	1	NC	1	NC	1
289		12	max	.008	1	.003	2	0	1	0	_1_	NC	1	NC	1
290			min	009	3	013	3	0	1	0	1	NC	1	NC	1
291		13	max	.007	1	.002	2	0	1	0	_1_	NC	1_	NC	1
292			min	007	3	011	3	0	1	0	1	NC	1_	NC	1
293		14	max	.005	1	.001	2	0	1	0	1	NC	1	NC	1
294		4.5	min	006	3	009	3	0	1	0	1	NC NC	1_	NC NC	1
295		15	max	.004	1	0	2	0	1	0	1	NC NC	1_	NC NC	1
296		16	min	005	3	007 0	2	<u> </u>	1	0	<u>1</u> 1	NC NC	<u>1</u> 1	NC NC	1
297 298		16	max	.003 004	3	006	3	0	1	0	1	NC NC	1	NC NC	1
299		17	min max	.002	1	<u>006</u> 0	2	0	1	0	+	NC NC	1	NC NC	1
300		- 17	min	002	3	004	3	0	1	0	1	NC NC	1	NC	1
301		18	max	.002	1	0	2	0	1	0	1	NC	;	NC	1
302		10	min	001	3	002	3	0	1	0	1	NC	1	NC	1
303		19	max	0	1	0	1	0	1	0	1	NC	1	NC	1
304			min	0	1	0	1	0	1	0	1	NC	1	NC	1
305	M7	1	max	0	1	0	1	0	1	0	1	NC	1	NC	1
306			min	0	1	0	1	0	1	0	1	NC	1	NC	1
307		2	max	0	3	0	15	0	1	0	1_	NC	1_	NC	1
308			min	0	2	002	3	0	1	0	1	NC	1	NC	1
309		3	max	.002	3	0	15	0	1	0	1	NC	1_	NC	1
310			min	002	2	005	3	0	1	0	1	NC NC	1_	NC NC	1
311		4	max	.003	3	001	15	0	1	0	1	NC NC	1_	NC NC	1
312		_	min	003	2	007	3	0	1	0	1	NC NC	1	NC NC	1
313		5	max	.004 004	3	002 009	15	<u> </u>	1	0	<u>1</u> 1	NC NC	1	NC NC	1
315		6	min	004 .005	3	009 002	15		1	0	1	NC NC	1	NC NC	1
316		6	max min	005	2	002 01	3	<u> </u>	1	0	1	9862.229	4	NC NC	1
317		7	max	.006	3	003	15	0	1	0	1	NC	1	NC	1
318			min	006	2	012	3	0	1	0	1	8479.061	4	NC	1
319		8	max	.007	3	003	15	0	1	0	1	NC	1	NC	1
320			min	007	2	013	3	0	1	0	1	7626.162	4	NC	1
321		9	max	.008	3	003	15	0	1	0	1	NC	1	NC	1
322			min	008	2	014	3	0	1	0	1	7123.51	4	NC	1
323		10	max	.009	3	003	15	0	1	0	1	NC	1	NC	1
324			min	009	2	014	3	0	1	0	1	6883.894	4	NC	1
325		11	max	.01	3	003	15	0	1	0	1	NC	1	NC	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
326			min	01	2	014	3	0	1	0	1	6872.129	4	NC	1
327		12	max	.011	3	003	15	0	1	0	1	NC	1	NC	1
328			min	011	2	014	3	0	1	0	1	7091.565	4	NC	1
329		13	max	.012	3	003	15	0	1	0	1	NC	1	NC	1
330			min	012	2	013	3	0	1	0	1	7587.121	4	NC	1
331		14	max	.013	3	003	15	0	1	0	1	NC	1	NC	1
332			min	012	2	013	3	0	1	0	1	8468.407	4	NC	1
333		15	max	.014	3	002	15	0	1	0	1	NC	1	NC	1
334			min	013	2	011	3	0	1	0	1	9977.779	4	NC	1
335		16	max	.015	3	002	15	0	1	0	1	NC	1	NC	1
336			min	014	2	01	3	0	1	0	1	NC	1	NC	1
337		17	max	.016	3	001	15	0	1	0	1	NC	1	NC	1
338		1 ''	min	015	2	008	3	0	1	0	1	NC	1	NC	1
339		18	max	.017	3	<u>.000</u>	15	0	1	0	1	NC	1	NC	1
340		10	min	016	2	007	3	0	1	0	1	NC	1	NC	1
341		19		.018	3	<u>007</u> 0	10	0	1	0	1	NC	1	NC	1
342		19	max	017	2	005	3	0	1	0	1	NC	1	NC	1
	M8	1	min		1	005 .017	2		1		1	NC	1	NC	1
343	IVIO		max	.006	3			0	_	0					
344			min	0		018	3	0	1	0	1_	NC NC	1_	NC NC	1
345		2	max	.006	1	.016	2	0	1	0	1	NC NC	1	NC NC	1
346			min	0	3	017	3	0	1	0	1	NC	1_	NC NC	1
347		3	max	.006	1	.015	2	0	1	0	1	NC	1	NC	1
348			min	0	3	016	3	0	1	0	1_	NC	1	NC	1
349		4	max	.005	1	.014	2	0	1	0	1	NC	_1_	NC	1
350			min	0	3	015	3	0	1	0	1	NC	_1_	NC	1
351		5	max	.005	1	.013	2	0	1	0	1_	NC	_1_	NC	1
352			min	0	3	014	3	0	1	0	1	NC	1_	NC	1
353		6	max	.005	1	.012	2	00	1	0	1	NC	_1_	NC	1
354			min	0	3	013	3	0	1	0	1	NC	1	NC	1
355		7	max	.004	1	.011	2	0	1	0	1	NC	1_	NC	1
356			min	0	3	012	3	0	1	0	1	NC	1	NC	1
357		8	max	.004	1	.01	2	0	1	0	1	NC	1	NC	1
358			min	0	3	011	3	0	1	0	1	NC	1	NC	1
359		9	max	.004	1	.009	2	0	1	0	1	NC	1	NC	1
360			min	0	3	01	3	0	1	0	1	NC	1	NC	1
361		10	max	.003	1	.008	2	0	1	0	1	NC	1	NC	1
362			min	0	3	009	3	0	1	0	1	NC	1	NC	1
363		11	max	.003	1	.007	2	0	1	0	1	NC	1	NC	1
364			min	0	3	008	3	0	1	0	1	NC	1	NC	1
365		12	max	.002	1	.006	2	0	1	0	1	NC	1	NC	1
366			min	0	3	007	3	0	1	0	1	NC	1	NC	1
367		13		.002	1	.006	2	0	1	0	1	NC	1	NC	1
368		· ·	min	0	3	006	3	0	1	0	1	NC	1	NC	1
369		14	max	.002	1	.005	2	0	1	0	1	NC	1	NC	1
370		'-	min	0	3	005	3	0	1	0	1	NC	1	NC	1
371		15	max	.001	1	.004	2	0	1	0	1	NC	1	NC	1
372		13	min	0	3	004	3	0	1	0	1	NC	1	NC	1
373		16	max	.001	1	.003	2	0	1	0	1	NC	1	NC	1
		10			3	003	3	0	1	0	1	NC	1	NC	1
374		17	min	0					1						
375		17	max	0	3	.002	2	0	1	0	1	NC NC	<u>1</u> 1	NC NC	1
376		40	min	0		002	3	0	•	0	1	NC NC	_	NC NC	•
377		18	max	0	1	0	2	0	1	0	1	NC NC	1	NC NC	1
378		4.0	min	0	3	001	3	0	1	0	1	NC	1	NC	1
379		19	max	0	1	0	1	0	1	0	1	NC	1	NC	1
380	1440		min	0	1	0	1	0	1_	0	1	NC	1_	NC	1
381	<u>M10</u>	1	max	.006	1	.006	2	0	15	3.041e-4	1	NC	<u>1</u>	NC	2
382			min	007	3	01	3	011	1	1.442e-5	15	NC	1_	6635.32	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r					
383		2	max	.006	1	.005	2	0	15	2.865e-4	1_	NC	1_	NC	2
384			min	006	3	01	3	01	1	1.359e-5	15	NC	1_	7236.423	1
385		3	max	.005	1	.004	2	0	15	2.69e-4	_1_	NC	_1_	NC	2
386			min	006	3	01	3	009	1	1.276e-5	<u>15</u>	NC	1_	7952.748	1
387		4	max	.005	1	.003	2	0	15	2.514e-4	1_	NC	1_	NC	2
388		-	min	006	3	01	3	008	1_	1.193e-5	<u>15</u>	NC NC	1_	8814.822	1
389		5	max	.005	1	.002	2	0	15	2.339e-4	1_	NC NC	1_	NC OCCA OCC	2
390			min	005	3	009	3	007	1	1.109e-5	<u>15</u>	NC NC	1_	9864.306	
391		6	max	.004	1	.001	2	0	15	2.163e-4	1_	NC NC	<u>1</u> 1	NC NC	1
392 393		7	min	005 .004	3	009 0	2	<u>006</u> 0	15	1.026e-5 1.988e-4	<u>15</u> 1	NC NC	1	NC NC	1
394			max min	005	3	009	3	005	1	9.429e-6	15	NC NC	1	NC NC	1
395		8	max	.003	1	<u>009</u> 0	2	<u>005</u> 0	15	1.812e-4	1	NC	1	NC	1
396		0	min	004	3	008	3	005	1	8.597e-6	15	NC	1	NC	1
397		9	max	.003	1	008	2	003 _	15	1.637e-4	1	NC	1	NC	1
398			min	004	3	008	3	004	1	7.765e-6	15	NC	1	NC	1
399		10	max	.003	1	001	15	0	15	1.461e-4	1	NC	1	NC	1
400			min	003	3	007	3	003	1	6.933e-6	15	NC	1	NC	1
401		11	max	.003	1	001	15	0	15	1.286e-4	1	NC	1	NC	1
402			min	003	3	007	3	003	1	6.101e-6	15	NC	1	NC	1
403		12	max	.002	1	001	15	0	15	1.11e-4	1	NC	1	NC	1
404			min	003	3	006	3	002	1	5.269e-6	15	NC	1	NC	1
405		13	max	.002	1	001	15	0	15	9.347e-5	1	NC	1	NC	1
406			min	002	3	005	3	002	1	4.437e-6	15	NC	1	NC	1
407		14	max	.002	1	001	15	0	15	7.591e-5	1	NC	1	NC	1
408			min	002	3	005	3	001	1	3.605e-6	15	NC	1	NC	1
409		15	max	.001	1	0	15	0	15	5.836e-5	<u>1</u>	NC	<u>1</u>	NC	1
410			min	002	3	004	4	0	1	2.773e-6	15	NC	1_	NC	1
411		16	max	.001	1	00	15	0	15	4.081e-5	_1_	NC	_1_	NC	1
412			min	001	3	003	4	0	1	1.941e-6	<u>15</u>	NC	1_	NC	1
413		17	max	0	1	0	15	0	15	2.326e-5	1_	NC	1	NC NC	1
414		40	min	0	3	002	4	0	1_	1.109e-6	15	NC NC	1_	NC NC	1
415		18	max	0	1	0	15	0	15	5.708e-6	1_	NC NC	1	NC NC	1
416		40	min	0	3	001	4	0	1	2.766e-7	15	NC NC		NC NC	1
417		19	max	<u> </u>	1	0	1	<u>0</u> 	1	-5.249e-7 -1.184e-5	<u>12</u> 1	NC NC	1	NC NC	1
419	M11	1	max	0	1	0	1	0	1	4.723e-6	1	NC NC	1	NC NC	1
420	IVIII		min	0	1	0	1	0	1	2.221e-7	12	NC NC	1	NC	1
421		2	max	0	3	0	15	0	12	-1.145e-6	15	NC	1	NC	1
422		_	min	0	2	002	4	0	1	-2.414e-5	1	NC	1	NC	1
423		3	max	0	3	0	15	0		-2.511e-6			1	NC	1
424			min	0	2	004	4	0	1	-5.301e-5	1	NC	1	NC	1
425		4	max	0	3	001	15	0	15	-3.878e-6	15	NC	1	NC	1
426			min	0	2	006	4	0	1	-8.188e-5	1	NC	1	NC	1
427		5	max	.001	3	002	15	0	15	-5.245e-6	15	NC	1	NC	1
428			min	0	2	008	4	0	1	-1.107e-4	1	NC	1	NC	1
429		6	max	.002	3	002	15	0	15	-6.612e-6	15	NC	1_	NC	1
430			min	001	2	01	4	0	1	-1.396e-4	1	9624.063	4	NC	1
431		7	max	.002	3	003	15	0	15	-7.979e-6	15	NC	_1_	NC	1
432			min	001	2	011	4	0	1	-1.685e-4	1	8289.99	4	NC	1
433		8	max	.002	3	003	15	0		-9.346e-6		NC	2	NC	1
434			min	002	2	012	4	001	1	-1.973e-4	1_	7467.797	4_	NC NC	1
435		9	max	.003	3	003	15	0	15			NC	3_	NC NC	1
436		40	min	002	2	<u>013</u>	4	002	1_1_	-2.262e-4		6984.719	4	NC NC	1
437		10	max	.003	3	003	15	0	15	-1.208e-5	<u>15</u>	NC 6757 24	3	NC NC	1
438		11	min	002	2	014	15	002	1 1 5	-2.551e-4	1_	6757.21	4	NC NC	1
439		11	max	.003	3	003	15	0	15	-1.345e-5	15	NC	3	NC	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

440	Member	Sec	min	x [in] 002	LC 2	y [in] 014	LC 4	z [in] 003		Rotate [r 2.84e-4	LC 1	(n) L/y Ratio 6751.943	LC 4	(n) L/z Ratio	LC 1
441		12	max	.002	3	014 003	15	003 0		.481e-5	15	NC	3	NC NC	1
442		12	min	003	2	013	4	003		3.128e-4	1	6973.025	4	NC	1
443		13	max	.004	3	003	15	0		.618e-5	15	NC	2	NC	1
444			min	003	2	013	4	004		3.417e-4	1	7465.24	4	NC	1
445		14	max	.004	3	003	15	0		.755e-5	15	NC	1	NC	1
446			min	003	2	011	4	005	1 -3	3.706e-4	1	8336.968	4	NC	1
447		15	max	.004	3	002	15	0	15 -1	.891e-5	15	NC	1	NC	1
448			min	003	2	01	4	006		.994e-4	1_	9827.343	4	NC	1
449		16	max	.005	3	002	15	00		2.028e-5	<u>15</u>	NC	_1_	NC	1
450			min	004	2	008	4	006		.283e-4	1_	NC	1_	NC	1
451		17	max	.005	3	<u>001</u>	15	0		.165e-5	<u>15</u>	NC	1	NC	1
452		40	min	004	2	006	1	008		.572e-4	1_	NC NC	1_	NC NC	1
453		18	max	.005	3	0	15	0		2.301e-5	<u>15</u>	NC NC	1	NC NC	1
454 455		19	min	004 .006	3	004 0	10	<u>009</u> 0		4.86e-4 4.438e-5	<u>1</u> 15	NC NC	1	NC NC	2
456		19	max min	004	2	003	1	01		438e-3	1	NC	1	9014.597	1
457	M12	1	max	.003	1	.004	2	.01		5.562e-6	15	NC	1	NC	3
458	IVIIZ		min	0	3	006	3	0		.172e-4	1	NC	1	2478.579	1
459		2	max	.002	1	.004	2	.009		5.562e-6	15	NC	<u> </u>	NC	3
460			min	0	3	006	3	0		.172e-4	1	NC	1	2691.609	1
461		3	max	.002	1	.004	2	.008		.562e-6	15	NC	1	NC	3
462			min	0	3	005	3	0	15 -1	.172e-4	1	NC	1	2945.373	1
463		4	max	.002	1	.003	2	.008	1 -5	.562e-6	15	NC	1	NC	3
464			min	0	3	005	3	0		.172e-4	1_	NC	1_	3250.41	1
465		5	max	.002	1	.003	2	.007		.562e-6	15	NC	1_	NC	3
466			min	0	3	005	3	0		.172e-4	1_	NC	1_	3621.051	1
467		6	max	.002	1	.003	2	.006		.562e-6	<u>15</u>	NC	_1_	NC	3
468		-	min	0	3	004	3	0		.172e-4	1_	NC	1_	4077.165	1
469		7	max	.002	1	.003	2	.005		5.562e-6	<u>15</u>	NC NC	1_	NC 4C4C OC	2
470 471		8	min	.002	3	004 .002	2	<u> </u>		.172e-4 5.562e-6	<u>1</u> 15	NC NC	<u>1</u> 1	4646.96 NC	2
472		0	max min	<u>.002</u> 0	3	004	3	<u>.005</u>		.172e-4	1	NC NC	1	5371.567	1
473		9	max	.001	1	.002	2	.004		5.562e-6	15	NC	1	NC	2
474			min	0	3	003	3	0		.172e-4	1	NC	1	6312.904	1
475		10	max	.001	1	.002	2	.003		5.562e-6	15	NC	1	NC	2
476			min	0	3	003	3	0		.172e-4	1	NC	1	7567.741	1
477		11	max	.001	1	.002	2	.003		.562e-6	15	NC	1	NC	2
478			min	0	3	003	3	0	15 -1	.172e-4	1	NC	1	9294.356	1
479		12	max	0	1	.002	2	.002		.562e-6		NC	1_	NC	1
480			min	0	3	002	3	0		.172e-4	1_	NC	1_	NC	1
481		13	max	0	1	.001	2	.002		.562e-6		NC	1_	NC	1
482			min	0	3	002	3	0		.172e-4	1_	NC	1_	NC	1
483		14	max	0	1	.001	2	.001		5.562e-6	15	NC	1_	NC	1
484		15	min	0	3	002	3	0		.172e-4	1_	NC NC	1_1	NC NC	1
485 486		15	max min	0	3	0 001	3	0		.562e-6 .172e-4	15	NC NC	<u>1</u> 1	NC NC	1
487		16	max	0	1	<u>001</u> 0	2	0		5.562e-6	15	NC NC	1	NC	1
488		10	min	0	3	0	3	0		.172e-4	1	NC	1	NC	1
489		17	max	0	1	0	2	0		5.562e-6	•	NC	1	NC	1
490			min	0	3	0	3	0		.172e-4	1	NC	1	NC	1
491		18	max	0	1	0	2	0		5.562e-6	•	NC	1	NC	1
492			min	0	3	0	3	0		.172e-4	1	NC	1	NC	1
493		19	max	0	1	0	1	0		.562e-6	15	NC	1	NC	1
494			min	0	1	0	1	0	1 -1	.172e-4	1	NC	1	NC	1
495	M1	1	max	.007	3	.087	2	.001		.624e-2	1_	NC	1_	NC	1
496			min	003	2	01	3	0	15 -2	445e-2	3	NC	1	NC	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
497		2	max	.007	3	.041	2	Ö	15	7.864e-3	1	NC	3	NC	1
498			min	003	2	003	3	007	1	-1.21e-2	3	2488.914	2	NC	1
499		3	max	.007	3	.011	3	0	15	7.989e-6	10	NC	5	NC	2
500			min	003	2	009	2	011	1	-2.227e-4	1	1197.309	2	9772.676	1
501		4	max	.007	3	.035	3	0	15	4.173e-3	1	NC	5	NC	1
502			min	003	2	065	2	01	1	-4.265e-3	3	753.828	2	NC	1
503		5	max	.007	3	.066	3	0	15	8.568e-3	1	NC	15	NC	1
504			min	003	2	125	2	007	1	-8.408e-3	3	542.848	2	NC	1
505		6	max	.007	3	.1	3	0	15	1.296e-2	1	NC	15	NC	1
506			min	003	2	182	2	003	1	-1.255e-2	3	426.826	2	NC	1
507		7	max	.007	3	.132	3	0	1	1.736e-2	1		15	NC	1
508			min	003	2	234	2	0	12	-1.669e-2	3	358.442	2	NC	1
509		8	max	.006	3	.16	3	.001	1	2.175e-2	1	9051.708	15	NC	1
510			min	003	2	274	2	0	15	-2.084e-2	3	318.039	2	NC	1
511		9	max	.006	3	.178	3	0	15	2.414e-2	1		15	NC	1
512			min	003	2	3	2	0	1	-2.086e-2	3	297.026	2	NC	1
513		10	max	.006	3	.184	3	0	1	2.556e-2	2		<u>15</u>	NC	1
514			min	003	2	309	2	0	12	-1.814e-2	3	290.856	2	NC	1
515		11	max	.006	3	.179	3	0	1	2.769e-2	2	8455.121	15	NC	1
516			min	003	2	3	2	0	15	-1.542e-2	3	298.001	2	NC	1
517		12	max	.006	3	.164	3	0	15	2.685e-2	2	9051.116	<u>15</u>	NC	1
518			min	003	2	273	2	001	1	-1.277e-2	3	321.034	2	NC	1
519		13	max	.006	3	.14	3	0	15	2.155e-2	2		<u>15</u>	NC	1
520			min	003	2	23	2	0	1	-1.022e-2	3	365.782	2	NC	1
521		14	max	.006	3	.109	3	.003	1	1.625e-2	2		<u>15</u>	NC	1_
522			min	003	2	177	2	0	15	-7.668e-3	3	441.448	1	NC	1
523		15	max	.005	3	.074	3	.006	1	1.095e-2	2		<u>15</u>	NC	1
524			min	003	2	118	2	0	15	-5.117e-3	3	570.425	1_	NC	1
525		16	max	.005	3	.038	3	.009	1	5.65e-3	2	NC	5	NC	1
526			min	003	2	059	2	0	15	-2.566e-3	3	808.933	1	NC	1
527		17	max	.005	3	.004	3	.01	1	6.622e-4	_1_	NC	5	NC	1
528			min	003	2	005	2	0	15	-1.45e-5	3	1317.988	1	NC	1
529		18	max	.005	3	.042	1	.007	1	1.091e-2	2	NC	4	NC	1
530			min	003	2	027	3	0	15	-4.3e-3	3	2790.946	1	NC	1
531		19	max	.005	3	.083	1	00	15	2.184e-2	2	NC	1_	NC	1_
532			min	002	2	055	3	002	1	-8.746e-3	3	NC	1_	NC	1
533	<u> </u>	1	max	.022	3	.215	2	0	1	0	_1_	NC	1_	NC	1
534			min	015	2	012	3	0	1	0	1_	NC	1_	NC	1
535		2	max	.022	3	.099	2	0	1	0	_1_	NC	5	NC	1
536			min	015	2	.001	3	0	1	0	1_	1002.627	2	NC	1
537		3	max	.022	3	.034	3	0	1	0	1		<u>15</u>	NC	1
538			min	015	2	029	2	0	1	0	1_	473.487	2	NC	1
539		4	max	.022	3	.102	3	0	1	0	1_		<u>15</u>	NC	1
540			min	015	2	181	2	0	1	0	1_	291.24	2	NC	1
541		5	max	.021	3	.195	3	0	1	0	_1_		<u>15</u>	NC	1
542			min	014	2	345	2	0	1	0	1_	205.8	2	NC	1
543		6	max	.021	3	.298	3	0	1	0			<u>15</u>	NC NC	1
544			min	014	2	<u>508</u>	2	0	1	0	1_	159.541	2	NC	1
545		7	max	.02	3	.399	3	0	1	0	1_		15	NC	1
546			min	014	2	<u>654</u>	2	0	1	0	1_	132.626	2	NC	1
547		8	max	.02	3	.483	3	0	1	0	1		<u>15</u>	NC	1
548			min	013	2	771	2	0	1	0	1_	116.891	2	NC	1
549		9	max	.019	3	.537	3	0	1	0	1_		<u>15</u>	NC	1
550			min	013	2	<u>846</u>	2	0	1	0	1_	108.79	2	NC	1
551		10	max	.019	3	<u>.556</u>	3	0	1	0	1		<u>15</u>	NC	1
552			min	013	2	87	2	0	1	0	1_	106.416	2	NC	1
553		11	max	.019	3	.542	3	0	1_	0	_1_	3432.751	<u> 15</u>	NC	1_

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
554			min	013	2	845	2	0	1	0	1	109.158	2	NC	1
555		12	max	.018	3	.495	3	0	1	0	1	3693.919	15	NC	1
556			min	013	2	768	2	0	1	0	1	118.089	2	NC	1
557		13	max	.018	3	.42	3	0	1	0	1	4202.98	15	NC	1
558			min	012	2	644	2	0	1	0	1	135.255	1	NC	1
559		14	max	.017	3	.325	3	0	1	0	1	5078.058	15	NC	1
560			min	012	2	49	2	0	1	0	1	164.988	1	NC	1
561		15	max	.012	3	.22	3	0	1	0	1		15	NC	1
562		13	min	012	2	323	2	0	1	0	1	217.074	1	NC	1
563		16		.016	3	.112	3		1		1	9413.578	15	NC	1
		10	max		2			0 0	1	0	1			NC	1
564		47	min	012		16	2		•		•	315.679	1		
565		17	max	.016	3	.012	3	0	1	0	1	NC FOA 070	5	NC NC	1
566		10	min	012	2	016	2	0	1	0	1_	531.373	1_	NC NC	1
567		18	max	.016	3	.103	1	0	1	0	1_	NC	5	NC	1
568			min	012	2	075	3	0	1	0	1_	1155.302	1	NC	1
569		19	max	.016	3	.201	1	0	1	0	1_	NC	1_	NC	1
570			min	012	2	153	3	0	1	0	1	NC	1	NC	1
571	M9	1	max	.007	3	.087	2	0	15	2.445e-2	3	NC	1_	NC	1
572			min	003	2	01	3	001	1	-1.624e-2	1	NC	1	NC	1
573		2	max	.007	3	.041	2	.007	1	1.21e-2	3	NC	3	NC	1
574			min	003	2	003	3	0	15	-7.864e-3	1	2488.914	2	NC	1
575		3	max	.007	3	.011	3	.011	1	2.227e-4	1	NC	5	NC	2
576			min	003	2	009	2	0	15	-7.989e-6	10	1197.309	2	9772.676	1
577		4	max	.007	3	.035	3	.01	1	4.265e-3	3	NC	5	NC	1
578			min	003	2	065	2	0	15	-4.173e-3	1	753.828	2	NC	1
579		5	max	.007	3	.066	3	.007	1	8.408e-3	3	NC	15	NC	1
580			min	003	2	125	2	0	15	-8.568e-3	1	542.848	2	NC	1
581		6	max	.007	3	.1	3	.003	1	1.255e-2	3	NC	15	NC	1
582			min	003	2	182	2	0	15	-1.296e-2	1	426.826	2	NC	1
583		7	max	.007	3	.132	3	0	12	1.669e-2	3	NC	15	NC	1
584			min	003	2	234	2	0	1	-1.736e-2	1	358.442	2	NC	1
585		8	max	.006	3	.16	3	0	15	2.084e-2	3		15	NC	1
586		0		003	2	274	2	001	1	-2.175e-2	1	318.039	2	NC	1
		9	min	.006	3				1		3			NC NC	1
587		9	max			.178	3	0	_	2.086e-2		8455.406	<u>15</u>		
588		40	min	003	2	3	2	0	15	-2.414e-2	1_	297.026	2	NC NC	1
589		10	max	.006	3	.184	3	0	12	1.814e-2	3	8273.92	<u>15</u>	NC NC	1
590			min	003	2	309	2	0	1	-2.556e-2	2	290.856	2	NC	1
591		11	max	.006	3	.179	3	0	15	1.542e-2	3	8455.121	15	NC	1
592			min	003	2	3	2	0	1	-2.769e-2	2	298.001	2	NC	1
593		12	max	.006	3	.164	3	.001	1_	1.277e-2	3		15	NC	1_
594			min	003	2	273	2	0	15	-2.685e-2	2	321.034	2	NC	1
595		13	max	.006	3	.14	3	0	1	1.022e-2	3	NC	15	NC	1
596			min	003	2	23	2	0	15	-2.155e-2	2	365.782	2	NC	1
597		14	max	.006	3	.109	3	0	15	7.668e-3	3	NC	15	NC	1
598			min	003	2	177	2	003	1	-1.625e-2	2	441.448	1	NC	1
599		15	max	.005	3	.074	3	0	15	5.117e-3	3	NC	15	NC	1
600			min	003	2	118	2	006	1	-1.095e-2	2	570.425	1	NC	1
601		16	max	.005	3	.038	3	0	15		3	NC	5	NC	1
602			min	003	2	059	2	009	1	-5.65e-3	2	808.933	1	NC	1
603		17	max	.005	3	.004	3	0	15	1.45e-5	3	NC	5	NC	1
604			min	003	2	005	2	01	1	-6.622e-4	1	1317.988	1	NC	1
605		18	max	.005	3	.042	1	0	15	4.3e-3	3	NC	4	NC	1
606		10	min	003	2	027	3	007	1	-1.091e-2	2	2790.946	1	NC	1
607		19		.005	3	.083	1	.002	1	8.746e-3	3	NC	1	NC NC	1
		18	max										1		1
608			min	002	2	055	3	0	15	-2.184e-2	2	NC		NC	

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 14-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment: Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: Anchor ductility: Yes
hmin (inch): 8.50
cac (inch): 9.67
Cmin (inch): 1.75
Smin (inch): 3.00

Load and Geometry

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}{:}~1.0$

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 14	-42 Inch	Width
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 14-	42 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	1723.0	23.0	593.0	593.4	
Sum	1723 0	23.0	593.0	593 4	

Maximum concrete compression strain (%): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 1723

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'Ny (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'vx (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'vy (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

Kc	λ	f'_c (psi)	h _{ef} (in)	N_b (lb)			
17.0	1.00	2500	5.247	10215			
$\phi N_{cb} = \phi (A_N$	$_{lc}$ / A_{Nco}) $\Psi_{ed,N}$ $\Psi_{c,N}$	$_{N}\Psi_{cp,N}N_{b}$ (Sec.	D.4.1 & Eq. D-4)			
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ed,N}$	$arPsi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cb} (lb)
220.36	247 75	0.967	1.00	1 000	10215	0.65	5710

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

$ au_{k,cr}$ (psi)	f _{short-term}	K_{sat}	$ au_{k,cr}$ (psi)			
1035	1.00	1.00	1035			
$N_{a0} = \tau_{k,cr} \pi d_a$	h _{ef} (Eq. D-16f)					
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N_{a0} (lb)			
1035	0.50	6.000	9755			
$\phi N_a = \phi (A_{Na})$	/ A _{Na0}) Ψ _{ed,Na} Ψ _{p,i}	NaNa0 (Sec. D.4	1.1 & Eq. D-16a)			
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{ extsf{p}, extsf{Na}}$	N _{a0} (lb)	ϕ	ϕN_a (lb)
109.66	109.66	1.000	1.000	9755	0.55	5365

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	4/5
Project:	Standard PVMax - Worst Case, 14-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in y-direction:

$V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq.	. D-24)
--	---------

le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V _{by} (lb)		
4.00	0.50	1.00	2500	7.00	6947		
$\phi V_{cby} = \phi (A_1)$	$_{ m Vc}$ / $A_{ m Vco}$) $\Psi_{ m ed,V}$ $\Psi_{ m c}$	$_{V}\Psi_{h,V}V_{by}$ (Sec.	D.4.1 & Eq. D-2	1)			
Avc (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cby} (lb)
192.89	220.50	0.925	1.000	1.000	6947	0.70	3934

Shear perpendicular to edge in x-direction:

V _{bv} = '	7(1,/	$d_{a})^{0.2}$	Vd-22	f'cCa1 1.5	(Fa	D-24)
v bx -	/ Vie/	uai	VUaz V	I cLai	ıLu.	D-241

l _e (in)	d _a (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	7.87	8282		
$\phi V_{cbx} = \phi (A_1)$	vc / A vco) Ψed, v Ψc,	$_{V}\Psi_{h,V}V_{bx}$ (Sec.	D.4.1 & Eq. D-2	1)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
165.27	278.72	0.878	1.000	1.000	8282	0.70	3018

Shear parallel to edge in x-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

I _e (in)	d _a (in)	λ	f'c (psi)	<i>c</i> _{a1} (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	7.00	6947		
$\phi V_{cbx} = \phi (2)$	(Avc/Avco) $\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\varPsi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
192.89	220.50	1.000	1.000	1.000	6947	0.70	8508

Shear parallel to edge in y-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}^{1.5}}$ (Eq. D-24)

	u)	(-4)						
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V _{bx} (lb)			
4.00	0.50	1.00	2500	7.87	8282			
$\phi V_{cby} = \phi (2)($	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{bx}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)				
Avc (in ²)	Avco (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cby} (lb)	
165.27	278.72	1.000	1.000	1.000	8282	0.70	6875	

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{cp} = \phi \min |k_{cp} N_a; k_{cp} N_{cb}| = \phi \min |k_{cp} (A_{Na}/A_{Na0}) \mathcal{Y}_{ed,Na} \mathcal{Y}_{p,Na} N_{a0}; k_{cp} (A_{Nc}/A_{Nco}) \mathcal{Y}_{ed,N} \mathcal{Y}_{c,N} \mathcal{Y}_{c,N} \mathcal{Y}_{cp,NNb}| \text{ (Eq. D-30a)}$

Kcp	A _{Na} (In²)	A _{Na0} (In²)	$arPsi_{\sf ed,Na}$	$arPsi_{ m extsf{p},Na}$	Na0 (ID)	Na (ID)			
2.0	109.66	109.66	1.000	1.000	9755	9755			
4 (:-2)	A (:2)	177	177	177	A / /II- \	A / /II- \	,		
A_{Nc} (in ²)	A_{Nco} (in ²)	$arPsi_{ed,N}$	$arPsi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	N_{cb} (lb)	ϕ	ϕV_{cp} (lb)	
220.36	247.75	0.967	1.000	1.000	10215	8785	0.70	12298	

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	5/5
Project:	Standard PVMax - Worst Case, 14-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	1723	6071	0.28	Pass
Concrete breakout	1723	5710	0.30	Pass
Adhesive	1723	5365	0.32	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	593	3156	0.19	Pass (Governs)
T Concrete breakout y+	593	3934	0.15	Pass
T Concrete breakout x+	23	3018	0.01	Pass
Concrete breakout y+	23	8508	0.00	Pass
Concrete breakout x+	593	6875	0.09	Pass
Concrete breakout, combined	-	-	0.15	Pass
Pryout	593	12298	0.05	Pass
Interaction check Nu	a/φNn Vua/φVn	Combined Rat	o Permissible	Status
Sec. D.7.1 0.3	32 0.00	32.1 %	1.0	Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 21-	-30 Inch	Width
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes hmin (inch): 8.50 cac (inch): 9.67 C_{min} (inch): 1.75 Smin (inch): 3.00

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}$: 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Load and Geometry

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Apply entire shear load at front row: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 7.00 x 0.28

Company:	Schletter, Inc.	Date:	11/17/2015				
Engineer:	HCV	Page:	2/5				
Project:	Standard PVMax - Worst Case, 21	Standard PVMax - Worst Case, 21-30 Inch Width					
Address:							
Phone:							
E-mail:							

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 21	-30 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x , V_{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)
1	2344.5	1654.5	0.0	1654.5
2	2344.5	1654.5	0.0	1654.5
Sum	4689.0	3309.0	0.0	3309.0

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 4689 Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{Vy} (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N_{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}}^{1.5}$ (Eq. D-7)

Kc	λ	f'c (psi)	h _{ef} (in)	N_b (lb)				
17.0	1.00	2500	6.000	12492				
$\phi N_{cbg} = \phi (A_N$	ıc / ΑΝco) Ψec,N Ψea	$_{I,N}\varPsi_{c,N}\varPsi_{cp,N}N_{b}$ (3	Sec. D.4.1 & Eq	. D-5)				
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$arPsi_{ extsf{c}, extsf{N}}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cbg} (lb)
378.00	324 00	1 000	0.972	1.00	1 000	12492	0.65	9208

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

,								
τ _{k,cr} (psi)	f _{short-term}	K_{sat}	$ au_{k,cr}$ (psi)					
1035	1.00	1.00	1035					
$N_{a0} = \tau_{k,cr} \pi d_a$	hef (Eq. D-16f)							
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)					
1035	0.50	6.000	9755					
$\phi N_{ag} = \phi (A_{Na})$	$_{a}$ / A_{Na0}) $\Psi_{ed,Na}$ Ψ_{g}	$_{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extsty$	l _{a0} (Sec. D.4.1 &	Eq. D-16b)				
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{ec,Na}$	$\mathscr{\Psi}_{ extsf{ extsf{p}}, extsf{Na}}$	$N_{a0}(lb)$	ϕ	ϕN_{ag} (lb)
158.66	109.66	1.000	1.043	1.000	1.000	9755	0.55	8093

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	4/5
Project:	Standard PVMax - Worst Case, 21	-30 Inch	Width
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in x-direction:

378 00	648.00	1 000	0 836	1 000	1 000	15503		φν cbgx (ID)
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ec.V}$	$arPsi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	φ	ϕV_{cbqx} (lb)
$\phi V_{cbgx} = \phi (A$	$(V_{c}/A_{V_{co}})\Psi_{ec,V}\Psi_{ec}$	$_{ed,V} arPsi_{c,V} arPsi_{h,V} V_{bx}$	(Sec. D.4.1 & Ed	ą. D-22)				
4.00	0.50	1.00	2500	12.00	15593			
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V _{bx} (lb)			
$V_{bx} = 7(I_e/d_e)$	$(a)^{0.2} \sqrt{d_a} \lambda \sqrt{f'_c} c_{a1}^{1.5}$	⁵ (Eq. D-24)						

Shear parallel to edge in x-direction:

$V_{by} = 7(I_e/d$	$_{a})^{0.2}\sqrt{d_{a}}\lambda\sqrt{f'_{c}c_{a1}}^{1.9}$	⁵ (Eq. D-24)					
I _e (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	8.16	8744		
$\phi V_{cbx} = \phi (2)($	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\mathcal{V}_{c,V} \mathcal{\Psi}_{h,V} V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
299.64	299.64	1.000	1.000	1.000	8744	0.70	12241

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

$\phi V_{cpg} = \phi \text{mi}$	n <i>kcpNag</i> ; <i>kcpN</i>	$ c_{bg} = \phi \min k_{cp} $	(ANa/ANa0)Ψe	$_{d,Na} arPsi_{g,Na} arPsi_{ec,Na} arP$	Ψ _{p,Na} Na0 ; Kcp(A	Nc / ANco) $\Psi_{\text{ec},N} \Psi$	$\mathscr{C}_{ed,N}\mathscr{V}_{cp,N}\mathscr{N}_{b}$	(Eq. D-30b)
Kcp	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{\sf ec,Na}$	$arPsi_{p,Na}$	N_{a0} (lb)	Na (lb)
2.0	158.66	109.66	1.000	1.043	1.000	1.000	9755	14715
A _{Nc} (in ²)	Anco (in²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N _b (lb)	Ncb (lb)	ϕ
378.00	324.00	1.000	0.972	1.000	1.000	12492	14166	0.70

φV_{cpg} (lb) 19833

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	2345	6071	0.39	Pass
Concrete breakout	4689	9208	0.51	Pass
Adhesive	4689	8093	0.58	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	1655	3156	0.52	Pass
T Concrete breakout x+	3309	5323	0.62	Pass (Governs)
Concrete breakout y-	1655	12241	0.14	Pass (Governs)
Pryout	3309	19833	0.17	Pass
Interaction check Nua/	φNn Vua/φVn	Combined Rat	o Permissible	Status

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	5/5
Project:	Standard PVMax - Worst Case, 21-30 Inch Width		
Address:			
Phone:			
E-mail:			

Sec. D.7.3 0.58 0.62 120.1 % 1.2 Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.