Part II Automatic classification of galaxies morphology

Júlio Caineta

Goal

 Automatic classification of galaxies morphology based on images labeled by humans

Motivation

- 2x10¹¹ to 2x10¹² galaxies
- GZv1: 900k, 50M, 2 years 4.5x10-6%

How to perform this task

- Classification / Regression
- Images are not exactly data points
- Computer Vision

Convolutional Neural Networks

What are ConvNets

Karpathy, 2015 (http://karpathy.github.io)

What are ConvNets

Clément Farabet, 2011

Where do we come from and where are we going

- Yearly conferences / competitions on CV
- Kaggle competition with more than 300 submissions
 - > 200 000 brightest Sloan galaxies
 - 60 millions classifications over 14 months

Workflow

Pre-processing and augmentation

- Training
- Validation
- Test

Data preparation

x16 = 985 248

Classifications

Classifications

```
Out[199]: (61578, 38)
  In [3]:
            sol.head()
  Out[3]:
                         Class1.1 Class1.2
                                            Class1.3 Class2.1
                                                               Class2.2 Class3.1 Class3.2 Class4.1
                                                                                                                  Class9.3 Class10.1
                                                                                                                                       Class10.2 Class10.3
               GalaxyID
                                                                                                      Class4.2
               100008
                         0.383147
                                  0.616853
                                            0.000000 | 0.000000
                                                               0.616853
                                                                         0.038452
                                                                                  0.578401
                                                                                            0.418398
                                                                                                      0.198455
                                                                                                                  0.000000 | 0.279952
                                                                                                                                       0.138445
                                                                                                                                                 0.000000
                         0.327001 0.663777
                                            0.009222 | 0.031178 | 0.632599 |
                                                                         0.467370 | 0.165229 | 0.591328 | 0.041271
                                                                                                                  0.018764 0.000000
                                                                                                                                       0.131378
               100023
                                                                                                                                                 0.459950
               100053
                         0.765717 0.177352
                                            0.056931 | 0.000000
                                                               0.177352
                                                                         0.000000
                                                                                  0.177352
                                                                                            0.000000
                                                                                                      0.177352
                                                                                                                  0.000000 | 0.000000
                                                                                                                                       0.000000
                                                                                                                                                 0.000000
               100078
                         0.693377
                                  0.238564
                                            0.068059 | 0.000000
                                                               0.238564
                                                                         0.109493 | 0.129071
                                                                                            0.189098
                                                                                                      0.049466
                                                                                                                  0.000000 | 0.094549
                                                                                                                                       0.000000
                                                                                                                                                 0.094549
               100090
                         0.933839
                                  0.000000 | 0.066161 | 0.000000
                                                               0.000000
                                                                         0.000000
                                                                                  0.000000
                                                                                            0.000000
                                                                                                      0.000000
                                                                                                                  0.000000 | 0.000000
                                                                                                                                       0.000000
                                                                                                                                                 0.000000
```

5 rows x 38 columns

In [199]: sol.shape

Classifications

Q1. Is the object a smooth galaxy, a galaxy with features/disk or a star?

Smoothed/Rounded Features/Disk Artifact/Star

100% 100% 93%

ConvNet

Architecture: GoogLeNet (2014)

- Train our own network (on the pre-trained network)
- 30 epochs
- Run again with the test set
- Feature extractor

Extracted features

Google's Deepdream (https://github.com/google/deepdream)
Bat-country (https://github.com/jrosebr1/bat-country)

Workflow

Pre-processing and augmentation

- Training
- Validation
- Test

New classification

- Run again on the CNN
 - Not training (weights)
- Support Vector Machines

- Last layer of the CNN (classifier) as trained
- vs. validation or test set
- labels

Results

Results

- Accuracy on test set: 67%
- Confusion matrix

Class	1	2	3	
1	62.8%	37.2%	0%	
2	26.0%	74.0%	0%	
3	58.2%	41.8%	0%	

Class	1	2	3	n%	N%
1	826	490	0	42.8%	43.3%
2	433	1233	0	54.2%	54.2%
3	53	38	0	2.96%	2.52%

Test set on Epoch 12

n: 3073

Results

- Timing
 - ~10.5 hours (only training the network)
 - ~1 hour (learning and extracting features)
 - 3073 images —> ~12 seconds per image

Conclusions

- CNN vs SVM
- Promising approach
- Contribution to galaxy classification and to learning by example
 - https://github.com/iled/galazyxoo

Future work

- Compare with other approaches
- Improve timing
- Regression
- Different methods of classification on top of CNN

Color perturbation

Color perturbation

Color perturbation

