MATLAB objects using nested functions

- MATLAB objects using nested functions
- The structure of xcom

The structure of xcom

The structure of Analysis

 The structure of Cfg X.cfg Cfg $V_N V_I \Pi$ heads rule names, lengths reserved words, ops reserved words, ops cfg.mat

Notation supporting grammars

- Notation supporting grammars
 - Definitions

- Notation supporting grammars
 - Definitions
 - Greek alphabet

- Notation supporting grammars
 - Definitions
 - Greek alphabet
 - Propositional and Predicate Logic

- Notation supporting grammars
 - Definitions
 - Greek alphabet
 - Propositional and Predicate Logic
 - Sets

- Notation supporting grammars
 - Definitions
 - Greek alphabet
 - Propositional and Predicate Logic
 - Sets
 - Ordered pairs and tuples

- Notation supporting grammars
 - Definitions
 - Greek alphabet
 - Propositional and Predicate Logic
 - Sets
 - Ordered pairs and tuples
 - Sequences

- Notation supporting grammars
 - Definitions
 - Greek alphabet
 - Propositional and Predicate Logic
 - Sets
 - Ordered pairs and tuples
 - Sequences
 - Relations

- Notation supporting grammars
- Context-free Grammars

- Notation supporting grammars
- Context-free Grammars
 - Phrase structure

- Notation supporting grammars
- Context-free Grammars
 - Phrase structure
 - Reduction rules

- Notation supporting grammars
- Context-free Grammars
 - Phrase structure
 - Reduction rules
 - Doing reductions

- Notation supporting grammars
- Context-free Grammars
 - Phrase structure
 - Reduction rules
 - Doing reductions
 - Syntax tree

- Notation supporting grammars
- Context-free Grammars
 - Phrase structure
 - Reduction rules
 - Doing reductions
 - Syntax tree
 - Everyday notation for CFGs

- Notation supporting grammars
- Context-free Grammars
 - Reduction rules
 - Doing reductions
 - Syntax tree
 - Everyday notation for CFGs
 - Rule names, numbers

- Notation supporting grammars
- Context-free Grammars
 - Doing reductions
 - Syntax tree
 - Everyday notation for CFGs
 - Rule names, numbers
 - Formal definition of CFG

- Notation supporting grammars
- Context-free Grammars
 - Doing reductions
 - Syntax tree
 - Everyday notation for CFGs
 - Rule names, numbers
 - Formal definition of CFG
 - Derive CFG from Π alone

- Notation supporting grammars
- Context-free Grammars
 - Syntax tree
 - Everyday notation for CFGs
 - Rule names, numbers
 - Formal definition of CFG
 - Derive CFG from Π alone
 - Formal definition of language

- Notation supporting grammars
- Context-free Grammars
 - Everyday notation for CFGs
 - Rule names, numbers
 - Formal definition of CFG
 - Derive CFG from Π alone
 - Formal definition of language
 - Left to right parsing

- Notation supporting grammars
- Context-free Grammars
 - Rule names, numbers
 - Formal definition of CFG
 - Derive CFG from Π alone
 - Formal definition of language
 - Left to right parsing
 - Restrictions on CFGs

- Notation supporting grammars
- Context-free Grammars
 - Formal definition of CFG
 - Derive CFG from Π alone
 - Formal definition of language
 - Left to right parsing
 - Restrictions on CFGs
 - Transforming CFGs

- Notation supporting grammars
- Context-free Grammars
 - Derive CFG from Π alone
 - Formal definition of language
 - Left to right parsing
 - Restrictions on CFGs
 - Transforming CFGs
 - Free-form CFGs

- Notation supporting grammars
- Context-free Grammars
 - Formal definition of language
 - Left to right parsing
 - Restrictions on CFGs
 - Transforming CFGs
 - Free-form CFGs
 - A grammar-grammar

- Notation supporting grammars
- Context-free Grammars
- Regular Expressions

- Notation supporting grammars
- Context-free Grammars
- Regular Expressions
- Finite Automata

- Notation supporting grammars
- Context-free Grammars
- Regular Expressions
- Finite Automata
 - State-transition diagrams

- Notation supporting grammars
- Context-free Grammars
- Regular Expressions
- Finite Automata (FA)
 - State-transition diagrams
 - CFG for FA

- Notation supporting grammars
- Context-free Grammars
- Regular Expressions
- Finite Automata (FA)
 - State-transition diagrams
 - CFG for FA
 - Deterministic (DFA)

- Notation supporting grammars
- Context-free Grammars
- Regular Expressions
- Finite Automata (FA)
 - State-transition diagrams
 - CFG for FA
 - Deterministic (DFA)
 - Nondeterministic (NFA)

- Context-free Grammars
- Regular Expressions
- Finite Automata (FA)
 - State-transition diagrams
 - CFG for FA
 - Deterministic (DFA)
 - Nondeterministic (NFA)
 - NFA to DFA

- Regular Expressions
- Finite Automata (FA)
 - State-transition diagrams
 - CFG for FA
 - Deterministic (DFA)
 - Nondeterministic (NFA)
 - NFA to DFA
- Regular Expression Grammars (REG)

- Finite Automata (FA)
 - State-transition diagrams
 - CFG for FA
 - Deterministic (DFA)
 - Nondeterministic (NFA)
 - NFA to DFA
- Regular Expression Grammars (REG)
 - REG grammar-grammar

- Finite Automata (FA)
- Regular Expression Grammars (REG)
 - REG grammar-grammar
 - Rewriting REGs

- Finite Automata (FA)
- Regular Expression Grammars (REG)
 - REG grammar-grammar
 - Rewriting REGs
- I/O Grammars (IOG)

- Finite Automata (FA)
- Regular Expression Grammars (REG)
 - REG grammar-grammar
 - Rewriting REGs
- I/O Grammars (IOG)
 - Formal Definition of IOG

- Regular Expression Grammars (REG)
 - REG grammar-grammar
 - Rewriting REGs
- I/O Grammars (IOG)
 - Formal Definition of IOG
 - IOG grammar-grammar

- Regular Expression Grammars (REG)
 - REG grammar-grammar
 - Rewriting REGs
- I/O Grammars (IOG)
 - Formal Definition of IOG
 - IOG grammar-grammar
 - Rewriting IOGs

- Regular Expression Grammars (REG)
 - REG grammar-grammar
 - Rewriting REGs
- I/O Grammars (IOG)
 - Formal Definition of IOG
 - IOG grammar-grammar
 - Rewriting IOGs
- Grammars for X, C and Java