Introduction

Analysis of Algorithms
CSCI 5620

Topics

- Intro
- Functions
- Induction
- Complexity

Prime numbers

- A positive integer p>1, is <u>prime</u> if the only positive integers which divide p are 1 and p.
 - Exs: 2, 3, 5, 7, 11, 13, 17, 19, 23

Example

- Input: A n-bit number, L>2
- Output: Is L prime? Yes/No

- 1 Write a SIMPLE algorithm to solve this problem.
- 2 If L is prime, how many steps does your algorithm take in terms of n?

For a 100 bit number

- http://www.top500.org/news/articles/article_21.php
- 35.86 Tflop/s ("teraflops" trillions of calculations per second) (2005)
- ■8 Petaflops/s (quadrillion) 2011
- ■2013 NuDT Tiahe-2: 33.86 PFLOPS
- Could take as long as 1,142,465,658 years with this algorithm (2005). 51,211,102 years (2011)
- There is a much faster (not exponential) algorithm, which can determine this is in a matter of seconds.
- In cryptography, the "key" usually involves prime numbers in some manner.
 - Ex in RSA the public key is a pair (e,n) where n is the product of two primes.

Algorithms

- An Algorithms is a well-defined computational procedure that takes some values (as input) and produces values as (output)
- Examples: Insertion Sort, Bubble Sort, Heap Sort, Merge Sort, Quick Sort
- Algorithms are described in pseudocode in this course.

Analyzing Algorithms

- Is the algorithm correct and as fast as possible?
 - A algorithm is correct if for every instance, it halts with the correct output.
- Analyzing algorithms : predicting resources that the algorithm requires.
- Running time: number of steps performed
 - Expressed as a function (order of growth)
 - Machine independent
- Worst case, average case, best case
 - Worst case: longest running time for any input of size n.
 - Average case : Expected running time
 - Best Case: Shortest running time for any input of size n.

- \blacksquare (mod-n functions) $f_n(m) = m \pmod{n}$
 - Example $f_3(7)=1$, $f_3(8)=2$, $f_3(111)=0$
- f(n)=n!
 - -f(1)=1, f(2)=2, f(3)=6, f(4)=24, f(5)=20, etc
- (Floor function) f(x)=||x||
 - f(2.1)=2
 - f(2.9)=2
 - f(2.999999)=2
 - f(3)=3
 - f(-2.3) = -3

- Polynomial of degree d,
 - $-P(n)=a_0 + a_1 n + a_2 n^2 + ... + a_d n^d$
 - a_i are all reals

- Exponential example f(x)=2x
 - -f(1)=2
 - -f(2)=4
 - -f(2.2)=4.4957...
 - -F(0)=1
 - -f(-1)=1/2
 - -f(-2)=1/4

- Logarithm $f_n(x) = log_n(x)$
 - $-f_2(4)=2$
 - $-f_2(8)=3$
 - $-f_2(2)=1$
 - $-f_2(1)=0$
 - $-f_2(1/2)=-1$
 - $-f_2(1/16)=-4$
 - $-f_2(0)=$ undefined

Logs

- \blacksquare lg n = log₂ n
- \blacksquare In n = $\log_e n$
- $log n = log_{10} n$
- $\log_b a = \frac{\log_c a}{\log_c b}$
- log_b aⁿ =nlog_b a
- log_b ac=log_b a + log_b c

Logs continue

- \blacksquare lg (32) = ?
- lg (1/8) =?
- lg (15) = log 15/ log ?
- Convert lg n to log, lg n = ?
- lg (15) = lg (5) + lg ?
- \blacksquare Ig (15) = Ig (30/?)
- lg (35)= 5 * ?
- \blacksquare Ig $(2^n) = ?$
- The number of bits to represent a number N is ?

Mathematical Induction

- P(n):=1+2+3+...+n=n(n+1)/2
- Show P(n) is true for all n>=1
 - Show P(1) is true (Basis Step)
 - Show P(k)⇒P(k+1)
 - There true for all n
- Proof On Board
- Quiz
- More induction proofs

More Induction Problems

- Fibonacci numbers: 0, 1, 1, 2, 3, 5, 8, 13, 21, ...
- \blacksquare f₀=0, f₁=1, f_i=f_{i-1}+f_{i-2} for i≥2
- Prove $f_n = f_0 + f_1 + ... + f_{n-2} + 1$

More Induction Examples

The maximum number of regions the plane is divided into by n lines is

$$\frac{1}{2}$$
 (n²+n+2)

Big Oh: Start

f(n) is bounded above by c g(n)

10 Sept 2010 CSCI 2230 Lecture 5 - 17

Big-Oh notation

- f∈O(g), if there exist c and k so that |f(n)| ≤c|g(n)| for all n≥k.
 - f grows no faster than g does

Big – Oh Notation

- Notation $f \in O(g)$
 - Verbalize as "f is in Big-Oh of g"
- We say that $f \in O(g)$ if
 - There exists two constants c and n₀ such that

$$f(n) < c * g(n)$$
 for all $n > n_0$

- Important implications
 - g serves as an upper bound on f
 - Ignores behavior of f for small values

Big – Oh (cont)

For continuous functions

$$-f \in O(g)$$
 if

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = c \quad \text{for some} \quad c \in \mathfrak{R}^*$$

- You must learn and be able to apply both
 - Learn definition ≡ memorize

L'Hospital's Rule

Frequently the second definition will yield one of the indeterminate forms

$$\frac{0}{0}$$
 or $\frac{\infty}{\infty}$

Which can be resolved by the use of L'Hospital's rule

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} \frac{f(x)}{g(x)}$$

– provided the derivatives f'(x) and g'(x) exist

Big-Oh notation

- Show $2n+1\in O(n^2)$.
 - C=3, k=2
- What is in O(n³)?
 - $f(n)=10n^3$
 - $f(n)=n^2$
 - $f(n)=n^3+100n^2-n$
 - f(n)=2
 - $f(n) = \lg n$
 - $f(n) = (\lg n)n$

"Standard" Functions

Function	Name
1	Constant
lg n, log n, ln n	Logarithmic
n	Linear
n lg n	n lg n
n^2	Quadratic
n^3	Cubic
2 ⁿ	Exponential
3 ⁿ	Exponential
n!	Factorial

In order of increasing run time

Proof Quiz

Big-theta notation

- f∈ Θ(g), if f and g have same order, i.e. f∈O(g) and g∈O(f)
- What is in Θ(n³)
 - $-n^3 + 100n^2 n$ is
 - -2 is not
 - n² is not
 - lg n is not
 - (lg n)n is not

Big-omega notation

- f∈Ω(g), if there exist c and k so that cg(n) ≤f(n) for all n≥k.
 - f grows at least as fast as g
- Example $n^2 \in \Omega$ (n).
- What is in Ω (n³)?
 - $f(n)=10n^3$
 - f(n)=n²
 - $f(n) = n^3 + 100 n^2 n$
 - f(n)=2
 - $f(n) = \lg n$
 - $f(n) = (\lg n)n$
 - $f(n)=n^4+100n^2-n$

Limits:

$$\lim_{n\to\infty} \frac{f(n)}{g(n)} = 0$$

$$\lim_{n\to\infty} \frac{f(n)}{g(n)} = c, \text{ where } c \in \mathbf{R}$$

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=c, \text{ where } c\in R, c\neq 0$$

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty \text{ or }$$

Running time

- The Θ-class of a function that describes the number of steps performed by an algorithm is called the <u>running time</u> of the algorithm.
- This allows us to compare algorithms for a specify task.
- For example bubble sort is Θ(n²) and quicksort is in Θ(n(lg n)), but what is the fastest running time sorting algorithm?

Efficiency

- Insertion Sort Θ(n²)
- Merge Sort Θ (n lg n)
- For n=1,000,000
 - $-n^{2}=1,000,000,000,000$
 - $n \lg n \approx 19,931,569$

Operation Counts

Input Size	Constant (1)	lg N	N	N lg N	N^2	2 ^N	N!
10	1	4	10	40	102	1024	~4X 10 ⁶
100	1	7	100	700	104	~10 ³⁰	~9 X 10 ¹⁵⁷
1000	1	10	1000	10,000	106	-	-
10^6	1	20	10 ⁶	2 X 10 ⁷	1012	<u>-</u>	-

Homework

I will post homework tomorrow in Elearn...