Rozmaitości różniczkowalne

elo

_

Contents

1	Wstę	p	3
	1.1	Rozmaitości topologiczne	3
	1.2	Mapy, lokalne współrzędne	7
	1.3	Rozmaitości gładkie Iróżniczkowalne]	4

1. Wstęp

Zanim podany dokładną definicję, możemy rozważyć kilka przykładów rozmaitości różniczkowalnych:

- → powierzchnia, domknięta lub nie,
- \hookrightarrow podzbiory \mathbb{R}^n lub \mathbb{C}^n zapisywalne równaniami algebraicznymi (np. $z_1^2 + z_2^2 + z_3^1 \le \mathbb{C}^3$).

Cały wykład będzie wstępnym słownikiem wokół pojęcia rozmaitości różniczkowalnej.

1.1. Rozmaitości topologiczne

Przestrzeń topologiczna M jest n-wymiarową rozmaitością topologiczną [n-rozmaitością], jeżeli spełnia:

- 1. jest Hausdorffa,
- 2. ma przeliczalną bazę,
- 3. jest lokalnie euklidesowa wymiaru n, czyli każdy punkt z M posiada otwarte otoczenie w M homeomorficzne z otwartym podzbiorem w \mathbb{R}^n .

Konsekwencje Hausdorffowości:

 $\hookrightarrow \mathsf{Mamy} \ \mathsf{wykluczone} \ \mathsf{pewne} \ \mathsf{patologie}, \mathsf{na} \ \mathsf{przykład} \ \mathsf{przestrze\'n}$

nie jest rozmaitością topologiczną.

 \hookrightarrow Pewne własności otoczeń punktów są zachowywane. To znaczy, dla dowolnego zwartego podzbioru otoczenia punktu $x \in U \subseteq \mathbb{R}^n$ $K \subseteq U$ jego odpowiednik $\overline{K} = \phi^{-1}(K) \subseteq \overline{U} \subseteq M$ jest domknięty i zwarty w M. [ćwiczenia]

Konsekwencje przeliczalności bazy:

- → Spełniany jest warunek Lindelöfa: każde pokrycie rozmaitości zbiorami otwartymi zawiera przeliczalne podpokrycie. [ćwiczenia]

$$U_1\subseteq U_2\subseteq ...\subseteq U_n\subseteq ...$$

które są po domknięciu w M zwarte. Czyli możemy ją wyczerpać za pomocą zbiorów, które są małe.

- → Parazwartość, czyli każde zwarte pokrycie M posiada lokalnie skończone rozdrobnienie.
- \hookrightarrow Każdą rozmaitość jesteśmy w stanie zanurzyć w \mathbb{R}^n dla odpowiednio dużego n.

Konsekwencje lokalnej euklidesowości:

- \hookrightarrow Twierdzenie Brouwer'a: dla n \neq m niepusty otwarty podzbiór \mathbb{R}^n nie jest homeomorficzny z jakimkolwiek otwartym podzbiorem w \mathbb{R}^m .

1.2. Mapy, lokalne współrzędne

Mapą na rozmaitości topologicznej M nazywamy parę (U, ϕ), gdzie U to otwarty podzbiór w M, a ϕ to homeomorfizm $\phi: U \to \overline{U} \subseteq \mathbb{R}^n$. Mapa to jest jakiś homeomorfizm między rozmaitością a pewnym podzbiorem \mathbb{R}^n . Zbiór U nazywamy zbiorem mapowym. **Przez lokalną euklidesowość wiemy, że pokrywają one całą rozmaitość.**

Parę (U, ϕ) nazywamy też **lokalnymi współrzędnymi** na M albo *lokalną parametryzacją* M.

Fakt: Hausdorffowska przestrzeń X o przeliczalnej bazie jest n-rozmaitością ←⇒ posiada rodzinę map n-wymiarowych dla której zbiory mapowe pokrywają cały X.

Przykład: Rozważmy $S^n = \{(x_1,...,x_n) \in \mathbb{R}^{n+1} : \sum x_i^2 = 1\} \subseteq \mathbb{R}^{n+1}$ z dziedziczoną topologią. Z racji, że \mathbb{R}^{n+1} jest Hausdorffa i ma przeliczalną bazę, to S^n tęż spełnia te dwa warunki. Wystarczy teraz wskazać odpowiednią rodzinę map, która pokryje całe S^n . Dla i = 1,..., n + 1 określmy otwarte podzbiory w S^n

$$U_i^+ = \{x \in S^n : x_i > 0\}$$

$$U_i^- = \{x \in S^n : x_i < 0\}$$

RYSUNEK DLA S³

Określmy odwzorowania $\phi_{\mathbf{i}}^{\pm} \,:\, \mathsf{U}_{\mathbf{i}}^{\pm}
ightarrow \mathbb{R}^{\mathsf{n}}$

$$\phi_i^{\pm}(x) = (x_1, ..., x_{i-1}, \hat{x_i}, x_{i+1}, ..., x_n).$$

Obraz tego odwzorowania to

$$\overline{U}_i^{\pm} = \phi_i^{\pm}(U_i^{\pm}) = \{(x_1,...,x_n) \in \mathbb{R}^n \ : \ \sum x_i^2 < 1\}.$$

Odwzorowanie $\phi_i^\pm: \mathsf{U}_i^\pm \to \overline{\mathsf{U}}_i^\pm$ jest wzajemnie jednoznaczne [bijekcja], bo

$$(\phi_i^\pm)^{-1}(x_1,...,x_n)=(x_1,...,x_{i-1},\pm\sqrt{1-\sum x_i^2},x_{i+1},...,x_n).$$

Mamy w obie strony odwzorowanie ciągłe, więc jest to homeomorfizmy z odpowiednimi zbiorami \mathbb{R}^n .

1.3. Rozmaitości gładkie [różniczkowalne]

Na tym wykładzie nie będziemy poświęcać dużej uwagi rozmaitościom różniczkowalnym nie nieskończenie razy, więc pomimo lekkich niuansów między tymi dwoma słowami, dla nas zwykle one znaczą to samo.

Dla funkcji $f: M \to \mathbb{R}$ chcemy określić, co znaczy, że f *jest różniczkowalna*? Będziemy to robić za pomocą wcześniej zdefiniowanych map:

- \hookrightarrow Funkcja f wyrażona w mapie (U, ϕ) to nic innego jak złożenie f $\circ \phi^{-1} : \overline{U} \to \mathbb{R}$. Teraz f $\circ \phi^{-1}$ jest funkcją zależącą od n zmiennych rzeczywistych.
- \hookrightarrow Chciałoby się powiedzieć, że funkcja f : M $\to \mathbb{R}$ jest gładka, jeśli dla każdej mapy (U, ϕ) na M, ten fragment wyrażony w tej mapie f $\circ \phi^{-1}$ jest gładki. Niestety, tych map może być nieco za dużo.
 - → odwzorowanie przejścia między dwoma mapami

Mapy (U, ϕ_1) oraz (U, ϕ_2) są **zgodne** (gładko-zgodne), gdy odwzorowanie przejścia $\phi_1\phi_2^{-1}$ jest gładkie. Dla map (U, ϕ) i (V, ψ) mówimy, że są one zgodne, jeśli

- \hookrightarrow U \cap V = \emptyset , albo
- $\hookrightarrow \phi \psi^{-1} : \psi(U \cap V) \to \phi(U \cap V) \text{ i } \psi \phi^{-1}(U \cap V) \to \psi(U \cap V) \text{ sa gładkie.}$

Warto zauważyć, że jeśli (U, ϕ) i (V, ψ) są zgodne, to $f \circ \phi^{-1} \upharpoonright (\phi(U \cap V))$ jest gładkie \iff

Odwzorowania przejściowe map są automatycznie dyfeomorfizmami.

Gładkim atlasem $\mathscr A$ na topologicznej rozmaitości M nazywamy dowolny taki zbiór map $\{(U_\alpha,\phi_\alpha)\}$ taki, że:

- 1. zbiory mapowe U_{α} pokrywają całe M
- 2. każde dwie mapy z tego zbioru są zgodne.

Rozmaitość gładka to para (M, \mathscr{A}) złożona z rozmaitości M i gładkiego atlasu \mathscr{A} .