

Zusatzfolien

K-Means

Im Rahmen der Proseminar-Vortragsreihe
"Grundlagen des Data-Minings für strukturierte Daten"
Dr. Nils M. Kriege

Antonie Vietor

5. Februar 2018

Fakultät für Informatik Algorithm Engineering (Ls11) Technische Universität Dortmund

$$s^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2$$

$$s^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}$$
$$= \frac{1}{n} \sum_{i=1}^{n} (x_{i}^{2} - 2x_{i}\bar{x} + \bar{x}^{2})$$

$$s^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}$$

$$= \frac{1}{n} \sum_{i=1}^{n} (x_{i}^{2} - 2x_{i}\bar{x} + \bar{x}^{2})$$

$$= \frac{1}{n} \left(\sum_{i=1}^{n} x_{i}^{2} - \sum_{i=1}^{n} 2x_{i}\bar{x} + \sum_{i=1}^{n} \bar{x}^{2} \right)$$

$$s^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}$$

$$= \frac{1}{n} \sum_{i=1}^{n} (x_{i}^{2} - 2x_{i}\bar{x} + \bar{x}^{2})$$

$$= \frac{1}{n} \left(\sum_{i=1}^{n} x_{i}^{2} - \sum_{i=1}^{n} 2x_{i}\bar{x} + \sum_{i=1}^{n} \bar{x}^{2} \right)$$

$$\sum_{i=1}^{n} 2x_i \bar{x}$$

$$s^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}$$

$$= \frac{1}{n} \sum_{i=1}^{n} (x_{i}^{2} - 2x_{i}\bar{x} + \bar{x}^{2})$$

$$= \frac{1}{n} \left(\sum_{i=1}^{n} x_{i}^{2} - \sum_{i=1}^{n} 2x_{i}\bar{x} + \sum_{i=1}^{n} \bar{x}^{2} \right)$$

$$\sum_{i=1}^{n} 2x_i \bar{x} = 2\bar{x} \sum_{i=1}^{n} x_i$$

$$s^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}$$

$$= \frac{1}{n} \sum_{i=1}^{n} (x_{i}^{2} - 2x_{i}\bar{x} + \bar{x}^{2})$$

$$= \frac{1}{n} \left(\sum_{i=1}^{n} x_{i}^{2} - \sum_{i=1}^{n} 2x_{i}\bar{x} + \sum_{i=1}^{n} \bar{x}^{2} \right)$$

$$\sum_{i=1}^{n} 2x_i \bar{x} = 2\bar{x} \sum_{i=1}^{n} x_i$$
$$= 2\bar{x} \frac{n}{n} \sum_{i=1}^{n} x_i$$

$$s^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}$$

$$= \frac{1}{n} \sum_{i=1}^{n} (x_{i}^{2} - 2x_{i}\bar{x} + \bar{x}^{2})$$

$$= \frac{1}{n} \left(\sum_{i=1}^{n} x_{i}^{2} - \sum_{i=1}^{n} 2x_{i}\bar{x} + \sum_{i=1}^{n} \bar{x}^{2} \right)$$

$$\sum_{i=1}^{n} 2x_i \bar{x} = 2\bar{x} \sum_{i=1}^{n} x_i$$

$$= 2\bar{x} \frac{n}{n} \sum_{i=1}^{n} x_i$$

$$= 2\bar{x} \cdot n \cdot \frac{1}{n} \sum_{i=1}^{n} x_i$$

$$s^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}$$

$$= \frac{1}{n} \sum_{i=1}^{n} (x_{i}^{2} - 2x_{i}\bar{x} + \bar{x}^{2})$$

$$= \frac{1}{n} \left(\sum_{i=1}^{n} x_{i}^{2} - \sum_{i=1}^{n} 2x_{i}\bar{x} + \sum_{i=1}^{n} \bar{x}^{2} \right)$$

$$\sum_{i=1}^{n} 2x_i \bar{x} = 2\bar{x} \sum_{i=1}^{n} x_i$$

$$= 2\bar{x} \frac{n}{n} \sum_{i=1}^{n} x_i$$

$$= 2\bar{x} \cdot n \cdot \frac{1}{n} \sum_{i=1}^{n} x_i$$

$$= 2\bar{x} \cdot n \bar{x}$$

$$s^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}$$

$$= \frac{1}{n} \sum_{i=1}^{n} (x_{i}^{2} - 2x_{i}\bar{x} + \bar{x}^{2})$$

$$= \frac{1}{n} \left(\sum_{i=1}^{n} x_{i}^{2} - \sum_{i=1}^{n} 2x_{i}\bar{x} + \sum_{i=1}^{n} \bar{x}^{2} \right)$$

$$\sum_{i=1}^{n} 2x_{i}\bar{x} = 2\bar{x} \sum_{i=1}^{n} x_{i}$$

$$= 2\bar{x} \frac{n}{n} \sum_{i=1}^{n} x_{i}$$

$$= 2\bar{x} \cdot n \cdot \frac{1}{n} \sum_{i=1}^{n} x_{i}$$

$$= 2\bar{x} n \bar{x}$$

$$= 2n\bar{x}^{2}$$

$$s^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}$$

$$= \frac{1}{n} \sum_{i=1}^{n} (x_{i}^{2} - 2x_{i}\bar{x} + \bar{x}^{2})$$

$$= \frac{1}{n} \left(\sum_{i=1}^{n} x_{i}^{2} - \sum_{i=1}^{n} 2x_{i}\bar{x} + \sum_{i=1}^{n} \bar{x}^{2} \right)$$

$$= \frac{1}{n} \left(\sum_{i=1}^{n} x_{i}^{2} - 2n\bar{x}^{2} + n\bar{x}^{2} \right)$$

$$\sum_{i=1}^{n} 2x_i \bar{x} = 2\bar{x} \sum_{i=1}^{n} x_i$$

$$= 2\bar{x} \frac{n}{n} \sum_{i=1}^{n} x_i$$

$$= 2\bar{x} \cdot n \cdot \frac{1}{n} \sum_{i=1}^{n} x_i$$

$$= 2\bar{x} n \bar{x}$$

$$= 2n\bar{x}^2$$

$$s^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}$$

$$= \frac{1}{n} \sum_{i=1}^{n} (x_{i}^{2} - 2x_{i}\bar{x} + \bar{x}^{2})$$

$$= \frac{1}{n} \left(\sum_{i=1}^{n} x_{i}^{2} - \sum_{i=1}^{n} 2x_{i}\bar{x} + \sum_{i=1}^{n} \bar{x}^{2} \right)$$

$$= \frac{1}{n} \left(\sum_{i=1}^{n} x_{i}^{2} - 2n\bar{x}^{2} + n\bar{x}^{2} \right)$$

$$= \frac{1}{n} \left(\sum_{i=1}^{n} x_{i}^{2} - n\bar{x}^{2} \right)$$

$$\sum_{i=1}^{n} 2x_i \bar{x} = 2\bar{x} \sum_{i=1}^{n} x_i$$

$$= 2\bar{x} \frac{n}{n} \sum_{i=1}^{n} x_i$$

$$= 2\bar{x} \cdot n \cdot \frac{1}{n} \sum_{i=1}^{n} x_i$$

$$= 2\bar{x} n \bar{x}$$

$$= 2n\bar{x}^2$$

$$s^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}$$

$$= \frac{1}{n} \sum_{i=1}^{n} (x_{i}^{2} - 2x_{i}\bar{x} + \bar{x}^{2})$$

$$= \frac{1}{n} \left(\sum_{i=1}^{n} x_{i}^{2} - \sum_{i=1}^{n} 2x_{i}\bar{x} + \sum_{i=1}^{n} \bar{x}^{2} \right)$$

$$= \frac{1}{n} \left(\sum_{i=1}^{n} x_{i}^{2} - 2n\bar{x}^{2} + n\bar{x}^{2} \right)$$

$$= \frac{1}{n} \left(\sum_{i=1}^{n} x_{i}^{2} - n\bar{x}^{2} \right)$$

$$= \frac{1}{n} \sum_{i=1}^{n} x_{i}^{2} - \bar{x}^{2}$$

$$\sum_{i=1}^{n} 2x_i \bar{x} = 2\bar{x} \sum_{i=1}^{n} x_i$$

$$= 2\bar{x} \frac{n}{n} \sum_{i=1}^{n} x_i$$

$$= 2\bar{x} \cdot n \cdot \frac{1}{n} \sum_{i=1}^{n} x_i$$

$$= 2\bar{x} n \bar{x}$$

$$= 2n\bar{x}^2$$

$$s^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}$$

$$= \frac{1}{n} \sum_{i=1}^{n} (x_{i}^{2} - 2x_{i}\bar{x} + \bar{x}^{2})$$

$$= \frac{1}{n} \left(\sum_{i=1}^{n} x_{i}^{2} - \sum_{i=1}^{n} 2x_{i}\bar{x} + \sum_{i=1}^{n} \bar{x}^{2} \right)$$

$$= \frac{1}{n} \left(\sum_{i=1}^{n} x_{i}^{2} - 2n\bar{x}^{2} + n\bar{x}^{2} \right)$$

$$= \frac{1}{n} \left(\sum_{i=1}^{n} x_{i}^{2} - n\bar{x}^{2} \right)$$

$$= \frac{1}{n} \sum_{i=1}^{n} x_{i}^{2} - \bar{x}^{2} = \frac{SUMSQ}{N} - \left(\frac{SUM}{N} \right)^{2}$$

$$\sum_{i=1}^{n} 2x_i \bar{x} = 2\bar{x} \sum_{i=1}^{n} x_i$$

$$= 2\bar{x} \frac{n}{n} \sum_{i=1}^{n} x_i$$

$$= 2\bar{x} \cdot n \cdot \frac{1}{n} \sum_{i=1}^{n} x_i$$

$$= 2\bar{x} n \bar{x}$$

$$= 2n\bar{x}^2$$

$$c = \frac{1}{n} \sum_{i=1}^{n} a_i$$

$$c = \frac{1}{n} \sum_{i=1}^{n} a_i$$
$$= \frac{1}{n} \sum_{i=1}^{n} \begin{pmatrix} a_{i1} \\ a_{i2} \end{pmatrix}$$

$$c = \frac{1}{n} \sum_{i=1}^{n} a_i$$

$$= \frac{1}{n} \sum_{i=1}^{n} \binom{a_{i1}}{a_{i2}}$$

$$= \frac{1}{n} \binom{\sum_{i=1}^{n} a_{i1}}{\sum_{i=1}^{n} a_{i2}}$$

$$c = \frac{1}{n} \sum_{i=1}^{n} a_i$$

$$= \frac{1}{n} \sum_{i=1}^{n} \binom{a_{i1}}{a_{i2}}$$

$$= \frac{1}{n} \binom{\sum_{i=1}^{n} a_{i1}}{\sum_{i=1}^{n} a_{i2}}$$

$$= \binom{\overline{a_1}}{\overline{a_2}}$$

$$c = \frac{1}{n} \sum_{i=1}^{n} a_i$$

$$= \frac{1}{n} \sum_{i=1}^{n} \binom{a_{i1}}{a_{i2}}$$

$$= \frac{1}{n} \binom{\sum_{i=1}^{n} a_{i1}}{\sum_{i=1}^{n} a_{i2}}$$

$$= \binom{\overline{a_1}}{\overline{a_2}}$$

Gegeben sei:

$$a_i = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{pmatrix}$$

$$\rightarrow \bar{a} = 3$$

Gegeben sei:

$$a_i = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{pmatrix}$$

 $\rightarrow \bar{a} = 3$

Es gilt $\sum (a_i - \bar{a}) = 0$:

$$\sum_{i=1}^{n} (a_i - \bar{a}) = -2 + (-1) + 0 + 1 + 2 = 0$$

Gegeben sei:

$$a_i = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{pmatrix}$$

$$\rightarrow \bar{a} = 3$$

Es gilt $\sum (a_i - \bar{a}) = 0$:

$$\sum_{i=1}^{n} (a_i - \bar{a}) = -2 + (-1) + 0 + 1 + 2 = 0$$

Aber $\sum (a_i - \bar{a})^2 \neq 0$:

$$\sum_{i=1}^{n} (a_i - \bar{a})^2 = 4 + 1 + 0 + 1 + 4 = 10$$

Definition (Norm)

Sei V ein Vektorraum über \mathbb{K} . Eine Funktion

$$V \to \mathbb{R}, v \mapsto ||v||$$

Definition (Norm)

Sei V ein Vektorraum über \mathbb{K} . Eine Funktion

$$V \to \mathbb{R}, v \mapsto ||v||$$

heißt Norm auf V, wenn sie die nachfolgenden Eigenschaften erfüllt:

• Nichtnegativität: Für alle $v \in V$ gilt $||v|| \ge 0$.

Definition (Norm)

Sei V ein Vektorraum über \mathbb{K} . Eine Funktion

$$V \to \mathbb{R}, v \mapsto ||v||$$

- Nichtnegativität: Für alle $v \in V$ gilt $||v|| \ge 0$.
- **Definiertheit**: Für alle $v \in V$ gilt $||v|| = 0 \Leftrightarrow v = 0$.

Definition (Norm)

Sei V ein Vektorraum über \mathbb{K} . Eine Funktion

$$V \to \mathbb{R}, v \mapsto ||v||$$

- Nichtnegativität: Für alle $v \in V$ gilt $||v|| \ge 0$.
- **Definiertheit**: Für alle $v \in V$ gilt $||v|| = 0 \Leftrightarrow v = 0$.
- Homogenität: Für alle $v \in V$ und alle $\alpha \in \mathbb{K}$ gilt $\|\alpha v\| = |\alpha| \|v\|$.

Definition (Norm)

Sei V ein Vektorraum über \mathbb{K} . Eine Funktion

$$V \to \mathbb{R}, v \mapsto ||v||$$

- Nichtnegativität: Für alle $v \in V$ gilt $||v|| \ge 0$.
- **Definiertheit**: Für alle $v \in V$ gilt $||v|| = 0 \Leftrightarrow v = 0$.
- Homogenität: Für alle $v \in V$ und alle $\alpha \in \mathbb{K}$ gilt $\|\alpha v\| = |\alpha| \|v\|$.
- **Dreiecksungleichung**: Für alle $v, w \in V$ gilt $||v + w|| \le ||v|| + ||w||$.

Definition (Norm)

Sei V ein Vektorraum über \mathbb{K} . Eine Funktion

$$V \to \mathbb{R}, v \mapsto ||v||$$

heißt Norm auf V, wenn sie die nachfolgenden Eigenschaften erfüllt:

- Nichtnegativität: Für alle $v \in V$ gilt $||v|| \ge 0$.
- **Definiertheit**: Für alle $v \in V$ gilt $||v|| = 0 \Leftrightarrow v = 0$.
- Homogenität: Für alle $v \in V$ und alle $\alpha \in \mathbb{K}$ gilt $||\alpha v|| = |\alpha| ||v||$.
- **Dreiecksungleichung**: Für alle $v, w \in V$ gilt $||v + w|| \le ||v|| + ||w||$.

Die Norm wird vereinfachend durch $\|\cdot\|$ dargestellt:

$$\|\cdot\|:V\to\mathbb{R}$$

Definition (p-Norm)

Für jede natürliche Zahl $n \in \mathbb{N}$ und jede reelle Zahl $p \geq 1$ definiert man auf dem Vektorraum \mathbb{R}^n die sogenannte p-Norm $\|\cdot\|_p : \mathbb{K}^n \to \mathbb{R}$ durch:

$$||x||_p := \left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}} = \sqrt[p]{|x_1|^p + |x_2|^p + \dots + |x_n|^p}$$

für alle $x = (x_1, x_2, \dots, x_n)^T \in \mathbb{K}^n$.

Definition (p-Norm)

Für jede natürliche Zahl $n \in \mathbb{N}$ und jede reelle Zahl $p \geq 1$ definiert man auf dem Vektorraum \mathbb{R}^n die sogenannte p-Norm $\|\cdot\|_p : \mathbb{K}^n \to \mathbb{R}$ durch:

$$||x||_p := \left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}} = \sqrt[p]{|x_1|^p + |x_2|^p + \dots + |x_n|^p}$$

für alle $x = (x_1, x_2, \dots, x_n)^T \in \mathbb{K}^n$.

Für p=2 entspricht die p-Norm genau der **euklidischen Norm** auf \mathbb{R}^n

Euklidische Norm

Definition (Euklidische Norm)

Die euklidische Norm entspricht der Wurzel der Summe der Betragsquadrate der Komponenten des Vektors:

$$||x||_2 := \sqrt{\sum_{i=1}^n |x_i|^2}$$

Euklidische Distanz

in 2 oder 3 Dimensionen beschreibt die euklidische Norm die Länge eines Vektors in der Ebene oder im Raum.

Für p metrische Variablen ist die **Euklidische Distanz** definiert als:

$$\sqrt[p]{\sum_{i=1}^{n}|x_{ik}-x_{ij}|^{p}}$$

Definition K-Means von Folie 5:

$$J(c_j) = \sum_{a_i \in c_j} ||a_i - c_j||^2$$

$$= \sum_{a_i \in c_j} \left(\sqrt{\sum_{i=1}^n |a_i - c_j|^2} \right)^2$$

$$= \sum_{a_i \in c_i} |a_i - c_j|^2 = \sum_{a_i \in c_i} d^2(a_i, c_j)$$