Quiz #5 : Vector operations Sum, difference, multiplication, dot product

Question 1

Which of the following options is true for a vector?

- a):- A vector has a magnitude and direction.
- b):- A vector has only direction.
- c):- A vector has only a magnitude
- d):- A vector has a shape and weight

Answer:- a

Question 2

Compute the sum of the vectors \vec{u} and \vec{v} .

Hint:- The sum vector is the diagonal in a parallelogram formed by the two vectors, $\vec{u}=(1,3)$ and \vec{v} =(6,2).

a):-
$$\vec{u}$$
 + \vec{v}

b):-
$$\vec{u}$$
 + \vec{v} = (7,5)

c):-
$$\vec{u}$$
 + \vec{v} = (6,3)

d):-
$$\vec{u}$$
 + \vec{v} = 3

Answer:- b

Question 3

Compute the difference of the vectors $\, \vec{u} \,$ and $\, \vec{v} \,$

a):-
$$\vec{u}$$
 - \vec{v} = (-1,5)

b):-
$$\vec{u}$$
 - \vec{v} = (5,1)

c):-
$$\vec{u}$$
 - \vec{v} = 3

d):-
$$\vec{u}$$
 - \vec{v} = (-5,1)

Answer:- d

Question 4

Calculate the dot product of the given vectors \vec{a} . \vec{b} , and select the correct answer.

$$\vec{a} = \begin{bmatrix} -1 & -3 \\ 5 & , \vec{b} = 6 \\ 2 & -4 \end{bmatrix}$$

Answer:- c

Question 5

Which of the following is true, if \vec{a} . $\vec{a} = 0$ and \vec{a} . $\vec{b} = 0$?

a):-
$$\vec{a}$$
 =0 , $\vec{b}=0$

b):-
$$\vec{a}$$
. $\vec{a} = 1$

c):-
$$\vec{a}
eq 0$$
 , $\vec{b} = 0$

d):-
$$\vec{a}$$
 =0, \vec{b} = any vector

Answer:- d

Although c option is also true but d is more generic, because as vector , \vec{a} = 0, it will make vector product with \vec{b} to be 0, no matter whichever actual value of , \vec{b} was.

Question 6

Which of the following is the correct representative system of equation for the given dot product:

The image above represents the following:

$$\left[\begin{array}{cccc} 3 & 5 & 1 \end{array}
ight] \cdot \left[\begin{array}{c} x \ y \ z \end{array}
ight] = 10$$
 $\left[\begin{array}{cccc} 7 & -2 & 4 \end{array}
ight] \cdot \left[\begin{array}{c} x \ y \ z \end{array}
ight] = 2$ $\left[\begin{array}{cccc} -6 & 3 & 2 \end{array}
ight] \cdot \left[\begin{array}{c} x \ y \ z \end{array}
ight] = 15$

a):-

$$egin{cases} 3x+5y+z=2 \ 7x-2y+4z=1 \ -6x+3y+2z=20 \end{cases}$$

b):-

$$egin{cases} 3x+5y+z=10 \ 7x-2y+4z=2 \ -6x+3y+2z=15 \end{cases}$$

c):-

$$egin{cases} 3x-2y+4z=10 \ 7x-2y+4z=2 \ -6x+3y+2z=15 \end{cases}$$

Answer:- c

