The Composition of Combinatorial Flows

Giti Omidvar and Lutz Straßburger

Inria Saclay Ecole Polytechnique

SYCO 10, Edinburgh, 20 December 2022

Preliminaries: Open Deduction

$$\begin{array}{ccc} \frac{t}{a \vee \overline{a}} \operatorname{ai} \downarrow & \frac{(A \vee B) \wedge C}{A \vee (B \wedge C)} \operatorname{s} & \frac{\overline{a} \wedge a}{f} \operatorname{ai} \uparrow \\ \\ \frac{a \vee a}{a} \operatorname{ac} \downarrow & \frac{(A \wedge C) \vee (B \wedge D)}{(A \vee B) \wedge (C \vee D)} \operatorname{m} & \frac{a}{a \wedge a} \operatorname{ac} \uparrow \\ \\ \frac{f}{a} \operatorname{aw} \downarrow & \frac{f}{t} \operatorname{mix} & \frac{a}{t} \operatorname{aw} \uparrow \end{array}$$

Preliminaries: Open Deduction

Preliminaries: Open Deduction

1. We cannot read back a proof from atomic flows

1. We cannot read back a proof from atomic flows

2. yanking is not possible

Preliminaries: Combinatorial Proofs

ullet Total seperation of linear part and resource management of the proof o size explosion

From Open Deduction to Preflows

From Open Deduction to Preflows

From Open Deduction to Preflows

From Open Deduction to Combinatorial Flows

From Open Deduction to Combinatorial Flows

$$A, B := t | f | a | \overline{a} | A \vee B | A \wedge B$$

$$A, B := t | f | a | \overline{a} | A \vee B | A \wedge B$$

$$A \wedge B \equiv B \wedge A$$
 $(A \wedge B) \wedge C \equiv A \wedge (B \wedge C)$ $A \wedge t \equiv A$ $t \vee t \equiv t$ $A \vee B \equiv B \vee A$ $(A \vee B) \vee C \equiv A \vee (B \vee C)$ $A \vee f \equiv A$ $f \wedge f \equiv f$

$$A, B := t | f | a | \overline{a} | A \vee B | A \wedge B$$

$$A \wedge B \equiv B \wedge A$$
 $(A \wedge B) \wedge C \equiv A \wedge (B \wedge C)$ $A \wedge t \equiv A$ $t \vee t \equiv t$ $A \vee B \equiv B \vee A$ $(A \vee B) \vee C \equiv A \vee (B \vee C)$ $A \vee f \equiv A$ $f \wedge f \equiv f$

Unit-free Formulas:

$$A,B := a | \overline{a} | A \vee B | A \wedge B$$

$$A, B := t | f | a | \overline{a} | A \vee B | A \wedge B$$

$$A \wedge B \equiv B \wedge A$$
 $(A \wedge B) \wedge C \equiv A \wedge (B \wedge C)$ $A \wedge t \equiv A$ $t \vee t \equiv t$ $A \vee B \equiv B \vee A$ $(A \vee B) \vee C \equiv A \vee (B \vee C)$ $A \vee f \equiv A$ $f \wedge f \equiv f$

Unit-free Formulas:

$$A, B := a | \overline{a} | A \vee B | A \wedge B$$

Pure Formulas: $A \equiv t$ or $A \equiv f$ or A is equivalent to a unit-free formula.

• G(t) = G(f):

empty graph

• G(t) = G(f):

empty graph

• *G*(a):

a

• G(t) = G(f):

• *G*(a):

• *G*(ā):

empty graph

•a

∙ā

- $\mathcal{G}(t) = \mathcal{G}(f)$:
- *G*(a):
- G(ā):
- *G*(*A* ∨ *B*):

empty graph

- •a
- •ā

• $\mathcal{G}(t) = \mathcal{G}(f)$:

• *G*(a):

• *G*(ā):

• *G*(*A* ∨ *B*):

empty graph

• a

∙ā

• $G(A \wedge B)$:

$$((d \lor \bar{d}) \land (\bar{c} \land a)) \lor ((c \lor \bar{a}) \lor (a \land \bar{a}))$$
 A **cograph** is a graph without \mathcal{P}_4 :

$$((d \vee \bar{d}) \wedge (\bar{c} \wedge a)) \vee ((c \vee \bar{a}) \vee (a \wedge \bar{a}))$$
 A **cograph** is a graph without \mathcal{P}_4 :

Theorem

A graph G is graph of a formula A if and only if G is a cograph.

A triple $\phi = \langle A, B, \mathbb{B}_{\phi} \rangle$ is an **m-flow** if A and B are pure formulas, \mathbb{B}_{ϕ} is a perfect matching on the atom occurences of $\bar{A} \vee B$

A triple $\phi = \langle A, B, \mathbb{B}_{\phi} \rangle$ is an **m-flow** if A and B are pure formulas, \mathbb{B}_{ϕ} is a perfect matching on the atom occurences of $\bar{A} \vee B$ such that the underlying RB-cograph $\mathcal{G}(\phi)$ is æ-acyclic.

A triple $\phi = \langle A, B, \mathbb{B}_{\phi} \rangle$ is an **m-flow** if A and B are pure formulas, \mathbb{B}_{ϕ} is a perfect matching on the atom occurences of $\bar{A} \vee B$ such that the underlying RB-cograph $\mathcal{G}(\phi)$ is æ-acyclic.

A triple $\phi = \langle A, B, \mathbb{B}_{\phi} \rangle$ is an **m-flow** if A and B are pure formulas, \mathbb{B}_{ϕ} is a perfect matching on the atom occurences of $\bar{A} \vee B$ such that the underlying RB-cograph $\mathcal{G}(\phi)$ is æ-acyclic.

A triple $\phi = \langle A, B, \mathbb{B}_{\phi} \rangle$ is an **m-flow** if A and B are pure formulas, \mathbb{B}_{ϕ} is a perfect matching on the atom occurences of $\bar{A} \vee B$ such that the underlying RB-cograph $\mathcal{G}(\phi)$ is æ-acyclic.

A triple $\phi = \langle A, B, \mathbb{B}_{\phi} \rangle$ is an **m-flow** if A and B are pure formulas, \mathbb{B}_{ϕ} is a perfect matching on the atom occurences of $\bar{A} \vee B$ such that the underlying RB-cograph $\mathcal{G}(\phi)$ is æ-acyclic.

A triple $\phi = \langle A, B, \mathbb{B}_{\phi} \rangle$ is an **m-flow** if A and B are pure formulas, \mathbb{B}_{ϕ} is a perfect matching on the atom occurences of $\bar{A} \vee B$ such that the underlying RB-cograph $\mathcal{G}(\phi)$ is æ-acyclic.

A triple $\phi = \langle A, B, \mathbb{B}_{\phi} \rangle$ is an **m-flow** if A and B are pure formulas, \mathbb{B}_{ϕ} is a perfect matching on the atom occurences of $\bar{A} \vee B$ such that the underlying RB-cograph $\mathcal{G}(\phi)$ is æ-acyclic.

$$((\overrightarrow{o} \vee \overrightarrow{o}) \wedge (\overline{c} \wedge a)) \vee ((c \vee \overline{a}) \vee (a \wedge \overline{a}))$$

$$(\bar{d} \wedge d) \vee (c \vee \bar{a})$$

$$(c \vee \bar{a}) \vee (a \wedge \bar{a})$$

Theorem

Α

Let $\mathcal{D} \|_{\{ai\downarrow,ai\uparrow,s,mix\}}$ be a derivation. If A and B are pure, then the translation of \mathcal{D} is an m-flow. B

Theorem

A

Let $\phi = \langle A, B, \mathbb{B}_{\phi} \rangle$ be an m-flow. Then there is a derivation $\mathcal{D} \|_{\{ai\downarrow, ai\uparrow, s, mix\}}$ whose translation is ϕ .

$$\frac{\mathsf{t}}{\mathsf{a}\vee\overline{\mathsf{a}}}\,\mathsf{ai}\!\!\downarrow\qquad \frac{(\mathsf{A}\vee\mathsf{B})\wedge\mathsf{C}}{\mathsf{A}\vee(\mathsf{B}\wedge\mathsf{C})}\,\mathsf{s}\qquad \frac{\overline{\mathsf{a}}\wedge\mathsf{a}}{\mathsf{f}}\,\mathsf{ai}\!\!\uparrow\qquad \frac{\mathsf{f}}{\mathsf{t}}\,\mathsf{mix}$$

• A triple $\phi = \langle A, B, f_{\phi}^{\downarrow} \rangle$ is an \mathbf{a}^{\downarrow} -flow if A and B are pure, and $A \neq t$, and f_{ϕ}^{\downarrow} is a skew fibration $f_{\phi}^{\downarrow} : \mathcal{G}(A) \to \mathcal{G}(B)$.

• A triple $\phi = \langle A, B, f_{\phi}^{\downarrow} \rangle$ is an \mathbf{a}^{\downarrow} -flow if A and B are pure, and $A \neq t$, and f_{ϕ}^{\downarrow} is a skew fibration $f_{\phi}^{\downarrow} : \mathcal{G}(A) \to \mathcal{G}(B)$.

A **skew fibration** is a graph homomorphism $f \colon \mathcal{G} \to \mathcal{H}$ such that

• A triple $\phi = \langle A, B, f_{\phi}^{\downarrow} \rangle$ is an \mathbf{a}^{\downarrow} -flow if A and B are pure, and $A \neq t$, and f_{ϕ}^{\downarrow} is a skew fibration $f_{\phi}^{\downarrow} : \mathcal{G}(A) \to \mathcal{G}(B)$.

A **skew fibration** is a graph homomorphism $f: \mathcal{G} \to \mathcal{H}$ such that for every $v \in V_G$ and $w \in V_H$, with $f(v)w \in \mathcal{E}_H$,

• A triple $\phi = \langle A, B, f_{\phi}^{\downarrow} \rangle$ is an \mathbf{a}^{\downarrow} -flow if A and B are pure, and $A \neq t$, and f_{ϕ}^{\downarrow} is a skew fibration $f_{\phi}^{\downarrow} : \mathcal{G}(A) \to \mathcal{G}(B)$.

A **skew fibration** is a graph homomorphism $f: \mathcal{G} \to \mathcal{H}$ such that for every $v \in V_G$ and $w \in V_H$, with $f(v)w \in \mathcal{E}_H$, there exists $z \in \mathcal{G}$ with the edge $vz \in \mathcal{E}_G$

• A triple $\phi = \langle A, B, f_{\phi}^{\downarrow} \rangle$ is an \mathbf{a}^{\downarrow} -flow if A and B are pure, and $A \neq t$, and f_{ϕ}^{\downarrow} is a skew fibration $f_{\phi}^{\downarrow} \colon \mathcal{G}(A) \to \mathcal{G}(B)$.

A **skew fibration** is a graph homomorphism $f: \mathcal{G} \to \mathcal{H}$ such that for every $v \in V_G$ and $w \in V_H$, with $f(v)w \in \mathcal{E}_H$, there exists $z \in \mathcal{G}$ with the edge $vz \in \mathcal{E}_G$ such that the edge f(z)w does not exist in \mathcal{H} .

• A triple $\phi = \langle A, B, f_{\phi}^{\downarrow} \rangle$ is an \mathbf{a}^{\downarrow} -flow if A and B are pure, and $A \neq t$, and f_{ϕ}^{\downarrow} is a skew fibration $f_{\phi}^{\downarrow} : \mathcal{G}(A) \to \mathcal{G}(B)$.

A **skew fibration** is a graph homomorphism $f: \mathcal{G} \to \mathcal{H}$ such that for every $v \in V_G$ and $w \in V_H$, with $f(v)w \in \mathcal{E}_H$, there exists $z \in \mathcal{G}$ with the edge $vz \in \mathcal{E}_G$ such that the edge f(z)w does not exist in \mathcal{H} .

43/73

• A triple $\phi = \langle A, B, f_{\phi}^{\downarrow} \rangle$ is an \mathbf{a}^{\downarrow} -flow if A and B are pure, and $A \neq t$, and f_{ϕ}^{\downarrow} is a skew fibration $f_{\phi}^{\downarrow} : \mathcal{G}(A) \to \mathcal{G}(B)$.

A **skew fibration** is a graph homomorphism $f: \mathcal{G} \to \mathcal{H}$ such that for every $v \in V_G$ and $w \in V_H$, with $f(v)w \in \mathcal{E}_H$, there exists $z \in \mathcal{G}$ with the edge $vz \in \mathcal{E}_G$ such that the edge f(z)w does not exist in \mathcal{H} .

44/73

- A triple $\phi = \langle A, B, f_{\phi}^{\downarrow} \rangle$ is an \mathbf{a}^{\downarrow} -flow if A and B are pure, and $A \neq t$, and f_{ϕ}^{\downarrow} is a skew fibration $f_{\phi}^{\downarrow} : \mathcal{G}(A) \to \mathcal{G}(B)$.
- A triple $\phi = \langle C, D, f_{\phi}^{\uparrow} \rangle$ is an \mathbf{a}^{\uparrow} -flow if C and D are pure, and $D \neq f$, and f_{ϕ}^{\uparrow} is a skew fibration $f_{\phi}^{\uparrow} : \mathcal{G}(\overline{D}) \to \mathcal{G}(\overline{C})$.

A **skew fibration** is a graph homomorphism $f: \mathcal{G} \to \mathcal{H}$ such that for every $v \in V_G$ and $w \in V_H$, with $f(v)w \in \mathcal{E}_H$, there exists $z \in \mathcal{G}$ with the edge $vz \in \mathcal{E}_G$ such that the edge f(z)w does not exist in \mathcal{H} .

Theorem

Α

Let $\mathcal{D} \|_{\{aw\downarrow,ac\downarrow,m\}}$ be a derivation. If A and B are pure, then translation of \mathcal{D} is an a^{\downarrow} -flow. Dually, if B

A and B are pure in $\mathcal{D} \|_{\{aw\uparrow,ac\uparrow,m\}}$ then translation of \mathcal{D} is an a^\uparrow -flow.

E

Theorem

Α

Let $\phi = \langle A, B, f_{\phi}^{\downarrow} \rangle$ be an a^{\downarrow} -flow. Then there is a derivation $\mathcal{D} \|_{\{aw\downarrow,ac\downarrow,m\}}$ whose translation is ϕ . For B

every a $^\uparrow$ -flow ψ we have $\mathcal{D}\|_{\mathrm{\{aw\uparrow,ac\uparrow,m\}}}$ whose translation is $\psi.$

В

$$\frac{a \vee a}{a} \operatorname{ac} \downarrow \qquad \frac{f}{a} \operatorname{aw} \downarrow \qquad \frac{(A \wedge C) \vee (B \wedge D)}{(A \vee B) \wedge (C \vee D)} \operatorname{m} \qquad \frac{a}{t} \operatorname{aw} \uparrow \qquad \frac{a}{a \wedge a} \operatorname{ac} \uparrow$$

Pure Formulas: $A \equiv t$ or $A \equiv f$ or A = f or A =

Slice of a Combinatorial flow:

Pure Formulas: $A \equiv t$ or $A \equiv f$ or A is equivalent to a unit-free formula.

Slice of a Combinatorial flow:

 $(a \lor a) \land (a \land \bar{a})$ pure

Pure Formulas: $A \equiv t$ or $A \equiv f$ or A is equivalent to a unit-free formula.

Slice of a Combinatorial flow:

 $(a \lor a) \land f$ not pure

Pure Formulas: $A \equiv t$ or $A \equiv f$ or A is equivalent to a unit-free formula.

Slice of a Combinatorial flow:

 $(a \lor \bar{a}) \land (a \land \bar{a})$ pure

Pure Formulas: $A \equiv t$ or $A \equiv f$ or A is equivalent to a unit-free formula.

Slice of a Combinatorial flow:

 $(a \lor \bar{a}) \land f$ not pure

Pure Formulas: $A \equiv t$ or $A \equiv f$ or A is equivalent to a unit-free formula.

Slice of a Combinatorial flow:

 $(a \lor \bar{a}) \land a$ pure

Pure Formulas: $A \equiv t$ or $A \equiv f$ or A is equivalent to a unit-free formula.

Slice of a Combinatorial flow:

pure

Purification of a formula:

$$A \wedge t \rightsquigarrow A$$
 $t \wedge A \rightsquigarrow A$ $A \vee t \rightsquigarrow t$ $t \vee A \rightsquigarrow t$
 $A \vee f \rightsquigarrow A$ $f \vee A \rightsquigarrow A$ $A \wedge f \rightsquigarrow f$ $f \wedge A \rightsquigarrow f$

Purification of combinatorial flows:

Purification of a formula:

$$A \wedge t \rightsquigarrow A$$
 $t \wedge A \rightsquigarrow A$ $A \vee t \rightsquigarrow t$ $t \vee A \rightsquigarrow t$
 $A \vee f \rightsquigarrow A$ $f \vee A \rightsquigarrow A$ $A \wedge f \rightsquigarrow f$ $f \wedge A \rightsquigarrow f$

Purification of combinatorial flows:

Purification of a formula:

$$A \wedge t \rightsquigarrow A$$
 $t \wedge A \rightsquigarrow A$ $A \vee t \rightsquigarrow t$ $t \vee A \rightsquigarrow t$ $A \vee f \rightsquigarrow A$ $A \wedge f \rightsquigarrow f$ $f \wedge A \rightsquigarrow f$

Purification of combinatorial flows:

NOT confluent

NOT confluent and NOT terminating

What to remember from this talk?

Future Work

- Normalization Termination
- Proof identity
- Other Logics (Forexample: Modal Logic and Intuitionistic Logic)

What to remember from this talk?

Normalization is not Confluent and not Terminating

Normalization is not Confluent and not Terminating

Normalization is not Confluent and not Terminating

A combinatorial proof with cuts for the sequent Γ is a combinatorial proof for the sequent Γ , $C_1 \wedge \bar{C}_1, \ldots, C_n \wedge \bar{C}_n$ where $C_1, \ldots C_n$ are cut formulas. (Everything is unit-free)

A combinatorial proof with cuts for the sequent Γ is a combinatorial proof for the sequent Γ , $C_1 \wedge \bar{C}_1, \dots, C_n \wedge \bar{C}_n$ where $C_1, \dots C_n$ are cut formulas. (Everything is unit-free)

Translating a combinatorial proof with cuts of \bar{A} , B to a combinatorial flow from A to B:

A combinatorial proof with cuts for the sequent Γ is a combinatorial proof for the sequent Γ , $C_1 \wedge \bar{C}_1, \ldots, C_n \wedge \bar{C}_n$ where $C_1, \ldots C_n$ are cut formulas. (Everything is unit-free)

A combinatorial proof with cuts for the sequent Γ is a combinatorial proof for the sequent Γ , $C_1 \wedge \bar{C}_1, \ldots, C_n \wedge \bar{C}_n$ where $C_1, \ldots C_n$ are cut formulas. (Everything is unit-free)

A combinatorial proof with cuts for the sequent Γ is a combinatorial proof for the sequent Γ , $C_1 \wedge \bar{C}_1, \ldots, C_n \wedge \bar{C}_n$ where $C_1, \ldots C_n$ are cut formulas. (Everything is unit-free)

A combinatorial proof with cuts for the sequent Γ is a combinatorial proof for the sequent Γ , $C_1 \wedge \bar{C}_1, \ldots, C_n \wedge \bar{C}_n$ where $C_1, \ldots C_n$ are cut formulas. (Everything is unit-free)

