Single shot calibration with a known object

Purdue University - CS 635 - Final project

Mathieu Gaillard - 05/02/2020

Motivation

- With a single RGB image and a known object in this image
- ▶ We want to find a 7 parameters camera calibration
 - ► Focal length
 - ▶ 3 translations
 - 3 rotations
 - (no distortions)

Problem definition

Based on a single image, and with a know object, how precisely can we calibrate a camera?

Related problem: 6D pose estimation of a known object

Objects

- A standard checkerboard calibration pattern (on a A4 sheet)
- ► A 3D model of a cat and a phone
- More generally: any 3D object
 - Lambertian surface
 - No transparency
 - No symmetries
 - ► Known 3D model
- Constraints: Single OBJ file with a single texture

Our objects

Pipeline

- ► Take a picture of an object whose 3D model is known
- Manual segmentation of the object in the picture (could be automated)
- ► Train a CNN to estimate the 6D pose with synthetic data
- Refinement of the pose using an image similarity measure

Picture

Taken with a Google Pixel 3 Undistorted using OpenCV Segmented with Photoshop

Data generation

Data representation

- Representation has a big influence on the ability of the network to learn
- ► Frame of reference aligned to the camera
- Translations: perspective corrected

$$X = \frac{x}{z}$$
; $Y = \frac{y}{z}$; $z = depth$

- Rotation: Unit quaternions
- Normalization between -1 and 1

Synthetic data example

Translations (according to origin):

- -0.03 m
- 0.11 m
- 0.17 m

Euler angles (ZXY):

- 40.39°
- -18.88°
- -22.79°

Unit Quaternion:

- 0.919
- 0.364
- -0.084
- -0.127

More data examples

Estimation neural network

- ► Training on 403 x 302 images
- ▶ 40000 train + 8000 test
- ▶ Batch size: 64
- 8 convolutional layers
- 2 dense layers
- > 3,859,287 parameters
- ► 40 epochs
- Adam optimizer with MSE loss
- ▶ 1h on Nvidia RTX 2080

Layer (type)	Output Shape	 Param #	
=======================================	===========	=======================================	========
input_1 (InputLayer)	[(None, 302, 403	3, 4)] 0	
conv2d (Conv2D)	(None, 302, 403,	4) 148	
conv2d_1 (Conv2D)	(None, 302, 403	, 4) 148	
max_pooling2d (MaxPo	poling2D) (None, 151	, 201, 4) 0	
conv2d_2 (Conv2D)	(None, 151, 201	, 4) 148	
conv2d_3 (Conv2D)	(None, 151, 201	, 4) 148	
max_pooling2d_1 (Max	Pooling2 (None, 75,	100, 4) 0	
conv2d_4 (Conv2D)	(None, 75, 100,	8) 296	
conv2d_5 (Conv2D)	(None, 75, 100,	8) 584	
max_pooling2d_2 (Max	Pooling2 (None, 37,	50, 8) 0	
conv2d_6 (Conv2D)	(None, 37, 50, 8	3) 584	
conv2d_7 (Conv2D)	(None, 37, 50, 8	3) 584	
flatten (Flatten)	(None, 14800)	0	
dense (Dense)	(None, 256)	3789056	
dropout (Dropout)	(None, 256)	0	
dense_1 (Dense)	(None, 256)	65792	
dropout_1 (Dropout)	(None, 256)	0	
dense_2 (Dense)	(None, 7)	1799	

Total params: 3,859,287 Trainable params: 3,859,287 Non-trainable params: 0

Meaningful metrics while training

- MSE loss is not meaningful
- Other metrics give a better evaluation of the training accuracy
- ► Translation:
 - Average and maximum distance between prediction and ground truth (in meters)
- Rotation:
 - Average and maximum smallest angle between prediction and ground truth (in radians)

Meaningful metrics while training

Average quaternion distance (in radians): 0.19 rad (10°) after training

Average translation distance (in meters): 17 mm after training

Refinement

- Rendering of full resolution (4032 x 3024) images in OpenGL
- Image similarity computation in a compute shader
- Optimize the silhouette overlapping with the Dice coefficient
- Optimize the similarity of color in the overlapping area with MSE
- Weighted sum of the 2 measures (90% silhouette + 10% colors)

Implementation details

- Switch to another representation easier to optimize
 - ► Euler angles (ZXY) in degrees
 - Translation from origin in meters
 - Normalized between -1 and 1
- Unconstrainted optimization:
 - Second order method
 - Approximate derivatives
 - Maximization of the similarity function

Results: Pattern

Number of images: 100

Optimization time: about 20 minutes

	After CNN	After refinement
Average translation	0.033 m	0.006 m
Average angle	0.270 rad (15.47°)	0.048 rad (2.75°)

Real pattern

Real pattern: after CNN

Real pattern: after refinement

Real pattern

Results: Cat

Number of images: 100

Optimization time: about 20 minutes

	After CNN	After refinement
Average translation	0.037 m	0.015 m
Average angle	0.162 rad (9.28°)	0.085 rad (4.87°)

Image 1: reference

Image 1: prediction

Image 2: reference

Image 2: prediction

Results: Phone

Number of images: 100

Optimization time: about 20 minutes

	After CNN	After refinement
Average translation	0.033 m	0.002 m
Average angle	0.214 rad (12.26°)	0.043 rad (2.46°)

Image 1: reference

Image 1: prediction

Image 2: reference

Image 2: prediction

Image 3: reference

Image 3: prediction

Discussion on robustness

- In the case, of a non synthetic dataset, the ground-truth pose would be provided but with imprecision. We try to inject noise while training and see how it affects the end result.
- ▶ 10% random (normal) change in translation: (± 2 cm)
- ▶ 10% random (normal) change in rotation: (± 10°)

	Without noise	With noise	After refinement
Average translation	0.033 m	0.038 m	0.005 m
Average angle	0.270 rad (15.47°)	0.170 rad (9.74°)	0.015 rad (0.86°)

Discussion on transferability

► Try to estimate the pose of the cat with the network trained on phones

Network -> Dataset	Phone -> Phone	Phone -> Cat	Cat -> Cat
Average translation	0.033 m	0.181 m	0.037 m
Average angle	0.214 rad (12.26°)	1.819 rad (104.2°)	0.162 rad (9.28°)

It doesn't work at all!

Future work

- Estimation
 - Improve the network architecture
 - Try a loss based on the reprojection of points on the mesh
 - Try to predict multiple objects at the same time
- Try to improve the image similarity measure
 - ▶ Based on luminance for the pattern and the phone
 - Based on hue for the cat
- Output the camera matrices for calibration
- Adding the focal parameter for camera calibration

Conclusion

- We can estimate the 6D pose of a known object in a picture
- There are some constraints:
 - ► Simple and compact shape
 - Textured surface
 - ▶ Not transparent Lambertian surface
 - No symmetries
- Relatively precise but not real time

References

- Xiang, Y., Schmidt, T., Narayanan, V., & Fox, D. (2017). Posecnn: A convolutional neural network for 6d object pose estimation in cluttered scenes. arXiv preprint arXiv:1711.00199.
- Li, Y., Wang, G., Ji, X., Xiang, Y., & Fox, D. (2018). **Deepim: Deep iterative** matching for 6d pose estimation. In *Proceedings of the European Conference on Computer Vision (ECCV)* (pp. 683-698).