SparkCognition

Introduction:

In this assignment, I am going to create the script to answer the following questions. Based on the data available in .csv file provided, please try and answer the questions below:

- 1. Explain what you understand from the data provided, provide exploratory insights.
- 2. What is your approach if you have to dynamically change the pricing for In-Flight WiFi? Technical approach will suffice.
- 3.What are the statistical/ predictive methodologies that could be applied with the data you have Please implement one model & explain the output.

Source Code

Table of contents

- 1. Import Library
- 2. Read Data
- 3. Exploratory Data Analysis
 - A. Check Missing Data
 - B. Plot The Statistics of Features
- 4. Modeling

1. Import Libraries

```
In [453]: import pandas as pd
          pd.set option('display.max columns', 500)
          import numpy as np
          import matplotlib.pyplot as plt
          import seaborn as sns
          from datetime import datetime
          import time
          from collections import Counter
          import openpyxl
          from sklearn.impute import SimpleImputer
          from sklearn.preprocessing import StandardScaler, MinMaxScaler
          from sklearn.model_selection import train_test_split
          from sklearn.metrics import confusion_matrix, precision_score, recall_score, f1_s
          from sklearn.model selection import cross val score
          from sklearn.linear model import SGDClassifier
          from sklearn.pipeline import Pipeline
          from sklearn.model selection import GridSearchCV, cross val score
          from sklearn.ensemble import RandomForestClassifier
          from sklearn import metrics
          from sklearn.metrics import classification report
          from imblearn.over_sampling import SMOTE
          import xgboost as xgb
          from hyperopt import hp
          from hyperopt import fmin, tpe, hp, STATUS_OK, Trials
          from scipy.stats import pearsonr
          %matplotlib inline
          import warnings
          warnings.filterwarnings('ignore')
```

2. Read Data

```
In [12]: #import the data
    train_file = 'Data_Challenge.csv'
    df_total = pd.read_csv(train_file)
```

In [36]: #check the data sample
 df_total.head()

Out[36]:

	Route	Flight Count	flight per week 1	flights per week 2	flights per week 3	flights per month 1	flights per month 2	flights per month 3	First Flow	Last Flown	Airline Count	First Airline
0	HND- CTS	5303	107.0	111.0	106.0	466.0	470.0	421.0	7/1/2017 0:20	7/25/2018 23:25	1	ANA
1	CTS- HND	5272	110.0	112.0	109.0	453.0	455.0	402.0	7/1/2017 0:40	7/25/2018 23:39	1	ANA
2	HND- FUK	4520	89.0	104.0	101.0	430.0	452.0	426.0	7/1/2017 2:48	7/25/2018 22:37	1	ANA
3	FUK- HND	4475	87.0	96.0	99.0	424.0	446.0	434.0	7/1/2017 1:28	7/25/2018 23:13	1	ANA
4	HND- ITM	3796	71.0	91.0	80.0	362.0	391.0	362.0	7/1/2017 0:20	7/25/2018 22:23	1	ANA

Out[455]:

	Flight Count	flight per week 1	flights per week 2	flights per week 3	flights per month 1	flights per month 2	flights per month 3
count	5316.000000	1959.000000	1941.000000	1915.000000	2639.000000	2525.000000	2747.000000
mean	107.502822	6.262379	6.358063	6.325849	19.568776	20.123564	17.384783
std	294.557007	8.880984	9.394343	9.210832	35.369946	36.500784	32.964393
min	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000
25%	1.000000	1.000000	1.000000	1.000000	2.000000	2.000000	2.000000
50%	11.000000	4.000000	4.000000	4.000000	7.000000	7.000000	5.000000
75%	78.000000	7.000000	7.000000	7.000000	28.000000	28.000000	25.000000
max	5303.000000	110.000000	112.000000	109.000000	466.000000	470.000000	434.000000

In [456]: #check data size
 df_total.shape

Out[456]: (5316, 33)

·

```
In [457]: #check data type
          df_total.info()
```

<class 'pandas.core.frame.DataFrame'> RangeIndex: 5316 entries, 0 to 5315 Data columns (total 33 columns):

#	Column	Non-Null Count	Dtype
0	Route	5316 non-null	object
1	Flight Count	5316 non-null	int64
2	flight per week 1	1959 non-null	float64
3	flights per week 2	1941 non-null	float64
4	flights per week 3	1915 non-null	float64
5	flights per month 1	2639 non-null	float64
6	flights per month 2	2525 non-null	float64
7	flights per month 3	2747 non-null	float64
8	First Flow	5316 non-null	object
9	Last Flown	5316 non-null	object
10	Airline Count	5316 non-null	int64
11	First Airline	5316 non-null	object
12	Last Airline	5316 non-null	object
13	Aircraft Type Count	5316 non-null	int64
14	First Aircraft Type	5316 non-null	object
15	Average of Avg - Flight Duration (MB)	5316 non-null	float64
16	Min of Min - Flight Duration (Hrs)	5316 non-null	float64
17	Max of Max - Flight Duration (Hrs)	5316 non-null	float64
18	Avg - Seat Count	5316 non-null	float64
19	Min - Seat Count	5316 non-null	int64
20	Max - Seat Count	5316 non-null	int64
21	Price per User	3944 non-null	float64
22	<pre>avg(a.Price)</pre>	3944 non-null	float64
23	min(a.Price)	3944 non-null	float64
24	<pre>max(a.Price)</pre>	3944 non-null	float64
25	Average Usage (MB)	3539 non-null	float64
26	Min - Usage (MB)	3539 non-null	float64
27	Max - Usage (MB)	3539 non-null	float64
28	Total Usage (MB)	3539 non-null	float64
29	Usage per Flight (MB)	3539 non-null	float64
30	Usage (MB)/ Min	3539 non-null	float64
31	Min - Total Users	3543 non-null	float64
32	Max - Total Users	3543 non-null	float64
dtype	es: float64(22), int64(5), object(6)		

dtypes: +loat64(22), int64(5), object(6)

memory usage: 1.3+ MB

```
In [458]: # check the data features
          df_total.columns.tolist()
            ATTERATE TYPE COUNTY,
            'First Aircraft Type',
            'Average of Avg - Flight Duration (MB)',
            'Min of Min - Flight Duration (Hrs)',
            'Max of Max - Flight Duration (Hrs)',
            'Avg - Seat Count',
            'Min - Seat Count',
            'Max - Seat Count',
            'Price per User',
            'avg(a.Price)',
            'min(a.Price)',
            'max(a.Price)',
            'Average Usage (MB)',
            'Min - Usage (MB)',
            'Max - Usage (MB)',
            'Total Usage (MB)',
            'Usage per Flight (MB)',
            'Usage (MB)/ Min',
            'Min - Total Users',
            'Max - Total Users']
In [459]: # convert the price feature to numerical
          df_total[['Price per User','avg(a.Price)','min(a.Price)', 'max(a.Price)']] = \
          df_total[['Price per User','avg(a.Price)','min(a.Price)', 'max(a.Price)']].replace
```

3. Exploratory Data Analysis

A. Check missing data

```
In [46]: #check missing value\
         #Define a funciton to visualize the features with missing values, and the percent
         def missing value table(df):
             #total missing value
             mis val = df.isnull().sum()
             #percentage of the missing values
             mis val percent = 100*mis val/len(df)
             #type fo the missing value
             mis val type = df.dtypes
             #combine the results to a table
             mis val table = pd.concat([mis val, mis val percent, mis val type], axis = 1)
             #name the column
             mis_val_table_rename_col = mis_val_table.rename(columns = {0:'Missing Values'
             #sort the table by percentage of missing descending
             mis val table rename col = mis val table rename col[mis val table rename col.
             .sort_values('% of Total Values', ascending = False).round(1)
             #print
             print("Your selected dataframe has " + str(df.shape[1]) + " columns.\n" "Ther
             #return the dataframe with missing information
             return mis val table rename col
```

In [47]: missing_value_table(df_total)

Your selected dataframe has 33 columns. There are 18 columns that have missing values.

Out[47]:

	Missing Values	% of Total Values	Туре
flights per week 3	3401	64.0	float64
flights per week 2	3375	63.5	float64
flight per week 1	3357	63.1	float64
flights per month 2	2791	52.5	float64
flights per month 1	2677	50.4	float64
flights per month 3	2569	48.3	float64
Total Usage (MB)	1777	33.4	float64
Usage (MB)/ Min	1777	33.4	float64
Usage per Flight (MB)	1777	33.4	float64
Average Usage (MB)	1777	33.4	float64
Min - Usage (MB)	1777	33.4	float64
Max - Usage (MB)	1777	33.4	float64
Min - Total Users	1773	33.4	float64
Max - Total Users	1773	33.4	float64
min(a.Price)	1372	25.8	float64
avg(a.Price)	1372	25.8	float64
Price per User	1372	25.8	float64
max(a.Price)	1372	25.8	float64

```
In [48]: df_price_miss = df_total[df_total['avg(a.Price)'].isnull()]
```

In [49]: df_price_miss.shape

Out[49]: (1372, 33)

comment

In total, there are 1372 routes have not price data

In [50]: df_price_miss.head()

Out[50]:

	Route	Flight Count	flight per week 1	flights per week 2	flights per week 3	flights per month 1	flights per month 2	flights per month 3	First Flow	Last Flown	Airline Count	Fi Airl
366	ABJ- BKO	258	7.0	7.0	7.0	30.0	30.0	26.0	10/8/2017 19:00	7/25/2018 18:49	1	Α
378	BKO- ABJ	258	7.0	7.0	7.0	30.0	30.0	26.0	10/8/2017 15:46	7/25/2018 15:21	1	Α
383	CDG- BKO	263	7.0	7.0	7.0	30.0	27.0	25.0	10/8/2017 9:26	7/25/2018 9:05	1	Α
384	CDG- BOG	92	7.0	7.0	7.0	30.0	29.0	8.0	4/22/2018 16:52	7/25/2018 16:32	1	Α
536	BKO- CDG	261	7.0	7.0	6.0	29.0	27.0	26.0	10/8/2017 22:25	7/25/2018 23:05	1	Α

In [460]: #data without missing price
df_no_price_miss = df_total[~df_total['avg(a.Price)'].isnull()]

In [461]: # double check the missing data
missing_value_table(df_no_price_miss)

Your selected dataframe has 33 columns. There are 14 columns that have missing values.

Out[461]:

	Missing Values	% of Total Values	Type
flights per week 3	2106	53.4	float64
flights per week 2	2096	53.1	float64
flight per week 1	2080	52.7	float64
flights per month 2	1623	41.2	float64
flights per month 1	1535	38.9	float64
flights per month 3	1409	35.7	float64
Average Usage (MB)	497	12.6	float64
Min - Usage (MB)	497	12.6	float64
Max - Usage (MB)	497	12.6	float64
Total Usage (MB)	497	12.6	float64
Usage per Flight (MB)	497	12.6	float64
Usage (MB)/ Min	497	12.6	float64
Min - Total Users	497	12.6	float64
Max - Total Users	497	12.6	float64

In [462]: # try to understand the different price feature
sns.scatterplot(data = df_no_price_miss, x = 'Price per User', y = 'avg(a.Price)

Out[462]: <matplotlib.axes._subplots.AxesSubplot at 0x1e4fd667518>


```
In [463]: sns.scatterplot(data = df_no_price_miss[df_no_price_miss['Price per User']<30], >
```

Out[463]: <matplotlib.axes._subplots.AxesSubplot at 0x1e493de4518>


```
In [464]: df_no_price_miss['ratio'] = df_no_price_miss['Price per User']/df_no_price_miss[
```

In [465]: df_no_price_miss['ratio'].hist(bins = 21)

Out[465]: <matplotlib.axes._subplots.AxesSubplot at 0x1e493b1a2e8>


```
In [466]: df_no_price_miss['max(a.Price)'].loc[df_no_price_miss['ratio']==1].value_counts()
Out[466]: 1.00
                         1
           1.95
                         4
           2.00
                        10
           2.90
                        24
           4.90
                        18
           4.99
                        11
           5.00
                        12
           5.95
                         2
           6.00
                        16
           6.49
                        10
           6.95
                         5
                         1
           6.99
           7.00
                        14
           7.90
                         6
           7.95
                         1
           8.00
                       461
                        19
           8.90
           8.99
                        27
           9.00
                         6
           9.95
                         7
           9.99
                         1
           10.00
                        13
                         2
           11.95
                        55
           12.00
           12.95
                         6
           13.00
                         9
                        25
           13.90
           13.99
                        11
           15.00
                         4
                         2
           15.95
           16.95
                         3
           17.00
                        12
                         2
           17.90
                         1
           18.90
           18.99
                        14
           19.00
                       132
           19.95
                        12
           19.99
                         5
                        22
           20.00
           21.95
                        21
           23.00
                         1
                         2
           25.90
           29.99
                         7
           30.00
                        10
           39.00
                         6
           40.00
                         1
           59.00
                         5
           550.00
                        12
           1050.00
           Name: max(a.Price), dtype: int64
```

```
In [467]: sns.scatterplot(data = df_no_price_miss, x = 'avg(a.Price)', y = 'max(a.Price)')
```

Out[467]: <matplotlib.axes._subplots.AxesSubplot at 0x1e493ea74e0>


```
In [468]: sns.scatterplot(data = df_no_price_miss, x = 'Price per User', y = 'max(a.Price)
```

Out[468]: <matplotlib.axes._subplots.AxesSubplot at 0x1e493f24c18>


```
In [469]: df_no_price_miss['avg(a.Price)'].describe()
```

```
Out[469]: count
                    3944.000000
                      11.059019
           mean
           std
                       33.751234
                        0.000000
           min
           25%
                        3.407500
           50%
                        7.220000
           75%
                      12.182500
           max
                     750.000000
```

Name: avg(a.Price), dtype: float64

```
In [470]: df no price miss['avg(a.Price)'].loc[df no price miss['Flight Count']>55].describ
Out[470]: count
                   1499.000000
                     14.850927
          mean
                      34.844035
          std
```

0.000000 min 25% 7.470000 50% 9.990000 75% 15.805000 750.000000 max

Name: avg(a.Price), dtype: float64

```
In [471]: | df no price miss['avg(a.Price)'].hist(bins = 1000)
```

Out[471]: <matplotlib.axes. subplots.AxesSubplot at 0x1e493faa8d0>


```
In [472]: df_no_price_miss['avg(a.Price)'].describe()
```

```
Out[472]: count
                    3944.000000
           mean
                      11.059019
           std
                       33.751234
                        0.000000
           min
           25%
                        3.407500
           50%
                        7.220000
           75%
                      12.182500
                     750.000000
           max
```

Name: avg(a.Price), dtype: float64

```
In [195]: | upper quartile = np.percentile(df no price miss['avg(a.Price)'].tolist(), 99)
          upper_quartile
```

Out[195]: 57.57420000000066

```
In [473]:
          upper quartile = np.percentile(df no price miss['avg(a.Price)'].tolist(), 75)
          lower_quartile = np.percentile(df_no_price_miss['avg(a.Price)'].tolist(), 25)
          IQR = upper_quartile - lower_quartile
          df_no_price_outlier = df_no_price_miss.loc[df_no_price_miss['avg(a.Price)']<=upper
</pre>
          df_price_outlier = df_no_price_miss.loc[df_no_price_miss['avg(a.Price)']>upper_qu
```

```
In [474]: df no price outlier['avg(a.Price)'].describe()
Out[474]: count
                    3801.000000
           mean
                       7.789682
                       5.564332
           std
                       0.000000
           min
           25%
                       3.280000
           50%
                       6.910000
           75%
                      11.730000
           max
                      25.150000
           Name: avg(a.Price), dtype: float64
In [475]: | df_price_outlier['avg(a.Price)'].describe()
Out[475]: count
                    143.000000
                     97.959371
           mean
           std
                    151.366564
           min
                     25.360000
           25%
                     31.965000
           50%
                     38.510000
           75%
                     63.170000
                    750.000000
           max
           Name: avg(a.Price), dtype: float64
In [476]: df no price outlier = df no price miss.loc[df no price miss['avg(a.Price)']<=100</pre>
          df_price_outlier = df_no_price_miss.loc[df_no_price_miss['avg(a.Price)']>100]
In [477]: df_no_price_miss.shape
Out[477]: (3944, 34)
In [478]: df no price outlier.shape
Out[478]: (3919, 34)
In [479]: df no price outlier['max(a.Price)'].hist(bins = 10)
Out[479]: <matplotlib.axes._subplots.AxesSubplot at 0x1e493f4c668>
            3500
            3000
            2500
            2000
            1500
            1000
            500
                         200
                                 400
                                         600
                                                 800
                                                        1000
```

```
In [480]: df_no_price_miss['avg(a.Price)'].loc[df_no_price_miss['max(a.Price)']>800].descri
Out[480]: count
                   195.000000
          mean
                     52.962923
          std
                     96.624223
          min
                      0.980000
          25%
                     18.185000
          50%
                     28.760000
          75%
                     41.080000
                    750.000000
          max
          Name: avg(a.Price), dtype: float64
```

comment

The price per user and avarge price is hightly correlated. I am going to just use avg price as the target value. And there are some average price outliers, they'll be removed from the training dataset.

```
In [481]: df_usage_miss = df_no_price_outlier[df_no_price_outlier['Average Usage (MB)'].isr
In [482]: df_usage_miss.head()
```

Out[482]:

	Route	Flight Count	flight per week 1	flights per week 2	flights per week 3	flights per month 1	flights per month 2	flights per month 3	First Flow	Last Flown	Airline Count	Α
1223	PHX- SAN	29	NaN	1.0	3.0	9.0	1.0	3.0	9/7/2017 20:42	7/25/2018 15:55	1	
1247	DAL- MDW	42	NaN	2.0	3.0	8.0	3.0	2.0	12/15/2017 12:38	7/24/2018 11:34	1	
1336	PHX- ATL	33	1.0	3.0	1.0	7.0	9.0	5.0	9/20/2017 13:51	7/10/2018 13:17	1	
1356	BOS- BWI	36	1.0	1.0	2.0	6.0	5.0	11.0	11/24/2017 19:05	7/9/2018 0:46	1	
1358	BOS- MDW	25	1.0	NaN	3.0	6.0	5.0	4.0	12/17/2017 18:39	7/9/2018 20:47	1	
4												•

```
In [483]: df_usage_miss.info()
```

<class 'pandas.core.frame.DataFrame'>
Int64Index: 497 entries, 1223 to 5161
Data columns (total 34 columns):

#	Column	Non-Null Count	Dtype
0	Route	497 non-null	object
1	Flight Count	497 non-null	int64
2	flight per week 1	66 non-null	float64
3	flights per week 2	67 non-null	float64
4	flights per week 3	69 non-null	float64
5	flights per month 1	204 non-null	float64
6	flights per month 2	229 non-null	float64
7	flights per month 3	255 non-null	float64
8	First Flow	497 non-null	object
9	Last Flown	497 non-null	object
10	Airline Count	497 non-null	int64
11	First Airline	497 non-null	object
12	Last Airline	497 non-null	object
13	Aircraft Type Count	497 non-null	int64
14	First Aircraft Type	497 non-null	object
15	Average of Avg - Flight Duration (MB)	497 non-null	float64
16	Min of Min - Flight Duration (Hrs)	497 non-null	float64
17	Max of Max - Flight Duration (Hrs)	497 non-null	float64
18	Avg - Seat Count	497 non-null	float64
19	Min - Seat Count	497 non-null	int64
20	Max - Seat Count	497 non-null	int64
21	Price per User	497 non-null	float64
22	avg(a.Price)	497 non-null	float64
23	min(a.Price)	497 non-null	float64
24	<pre>max(a.Price)</pre>	497 non-null	float64
25	Average Usage (MB)	0 non-null	float64
26	Min - Usage (MB)	0 non-null	float64
27	Max - Usage (MB)	0 non-null	float64
28	Total Usage (MB)	0 non-null	float64
29	Usage per Flight (MB)	0 non-null	float64
30	Usage (MB)/ Min	0 non-null	float64
31	Min - Total Users	0 non-null	float64
32	Max - Total Users	0 non-null	float64
33	ratio	466 non-null	float64
dtvn	as: float64(23) int64(5) object(6)		

dtypes: float64(23), int64(5), object(6)

memory usage: 135.9+ KB

```
In [484]: df_usage_miss.describe()
```

Out[484]:

	Flight Count	flight per week 1	flights per week 2	flights per week 3	flights per month 1	flights per month 2	flights per month 3	Airlin Coun
count	497.000000	66.000000	67.000000	69.000000	204.000000	229.000000	255.000000	497.00000
mean	8.074447	1.242424	1.208955	1.333333	2.068627	2.877729	2.364706	1.00402
std	9.622538	0.431834	0.508632	0.634004	1.473977	1.987435	1.673182	0.06337
min	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.00000
25%	2.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.00000
50%	5.000000	1.000000	1.000000	1.000000	2.000000	2.000000	2.000000	1.00000
75%	10.000000	1.000000	1.000000	2.000000	3.000000	4.000000	3.000000	1.00000
max	62.000000	2.000000	3.000000	4.000000	9.000000	9.000000	11.000000	2.00000

comment

There are additional 497 routes which have not wifi usage data. In those routes, the total flight count are relatively small, and the mean flight count is 8. Thus, I plan to remove those data from the training datasets to keep the model simple.

```
In [487]: missing value table(df train)
```

Your selected dataframe has 34 columns. There are 7 columns that have missing values.

Out[487]:

	Missing Values	% of Total Values	Type
flights per week 3	1657	48.4	float64
flights per week 2	1645	48.1	float64
flight per week 1	1630	47.6	float64
flights per month 2	1339	39.1	float64
flights per month 1	1225	35.8	float64
flights per month 3	1147	33.5	float64
ratio	156	4.6	float64

```
In [488]: missing_value_table(df_train).index
           Your selected dataframe has 34 columns.
           There are 7 columns that have missing values.
Out[488]: Index(['flights per week 3', 'flights per week 2', 'flight per week 1', 'flights per month 2', 'flights per month 1', 'flights per month 3',
                   'ratio'],
                  dtype='object')
In [489]: #monthly average flight
           df train['First Flow'] = pd.to datetime(df train['First Flow'])
           df train['Last Flown'] = pd.to datetime(df train['Last Flown'])
In [490]: first_flow
Out[490]: 0
                   2017-07-01 00:20:00
                   2017-07-01 00:40:00
           1
           2
                   2017-07-01 02:48:00
                   2017-07-01 01:28:00
           3
                   2017-07-01 00:20:00
           5305
                   2017-07-02 18:43:00
           5307
                   2017-07-15 08:23:00
           5309
                   2018-04-09 11:31:00
           5311
                   2017-07-01 17:01:00
           5314
                   2017-07-02 15:44:00
           Name: First Flow, Length: 3447, dtype: datetime64[ns]
In [491]: df_train['diff_weeks'] =(df_train['Last Flown']-df_train['First Flow'])/np.timede
```

In [492]: df_train['diff_weeks'].loc[df_train['diff_weeks']<1] = 1</pre>

```
In [493]: |df_train['diff_weeks'].describe()
Out[493]: count
                    3422.000000
          mean
                      33.303116
          std
                      20.313666
                       1.000000
          min
          25%
                      15.746280
          50%
                      35.435665
          75%
                      55.268874
                      55.712302
          max
          Name: diff_weeks, dtype: float64
In [494]: | df train['flight per week'] = df train['Flight Count']/df train['diff weeks']
```

comment

create a flight per week feature to replace the average flight count

B. Plot the statistics of Features

Route Features:

'Route', 'Flight Count', 'flight per week 1', 'flights per week 2', 'flights per week 3', 'flights per month 1', 'flights per month 2', 'flights per month 3',

Flight Related Features:

'First Flow', 'Last Flown', 'Airline Count', 'First Airline', 'Last Airline', 'Aircraft Type Count', 'First Aircraft Type', 'Average of Avg - Flight Duration (MB)', 'Min of Min - Flight Duration (Hrs)', 'Max of Max - Flight Duration (Hrs)', 'Avg - Seat Count', 'Min - Seat Count', 'Max - Seat Count',

In-flight WiFi Price:

'Price per User', 'avg(a.Price)', 'min(a.Price)', 'max(a.Price)',

In-flight WiFi Usage:

'Average Usage (MB)', 'Min - Usage (MB)', 'Max - Usage (MB)', 'Total Usage (MB)', 'Usage per Flight (MB)', 'Usage (MB)/ Min', 'Min - Total Users', 'Max - Total Users']

2.2.1 Flight per week

```
In [218]: sns.scatterplot(data = df_train[~df_train['flight per week 1'].isnull()], x = 'f.
```

Out[218]: <matplotlib.axes. subplots.AxesSubplot at 0x1e48792f1d0>

Pearsons correlation: 0.955

```
In [351]: sns.regplot(data = df_train[df_train['avg(a.Price)']<100], x = 'flight_per_week'</pre>
```

Out[351]: <matplotlib.axes._subplots.AxesSubplot at 0x1e4fd4f3550>

comment

The calculated flight per week is highly correlated flight_per_week1, which has a log missing value. I am going to use the calculated flight per week as the new feature to represent flight count.

2.2.2 Route

```
In [228]: |df_train['route2'].head()
Out[228]: 0
                CTS
                HND
           1
           2
                FUK
           3
                HND
           4
                ITM
           Name: route2, dtype: object
In [229]: df_train['route1'].value_counts()
Out[229]: MAD
                  77
           YYZ
                  66
           DOH
                  64
           YYC
                  62
           MIA
                  60
           FKS
                   1
           BOD
                   1
           LT0
                   1
           KIN
                   1
           BSL
           Name: route1, Length: 454, dtype: int64
In [230]: df_train['route2'].value_counts()
Out[230]: MAD
                  78
           ???
                  77
           YYZ
                  69
           DOH
                  62
           HND
                  60
           KZN
                   1
           AXT
           SAP
                   1
           LT0
                   1
           TA0
           Name: route2, Length: 440, dtype: int64
```

In [231]: df_train[df_train['route2']=='???'].head()

Out[231]:

	Route	Flight Count	flight per week 1	flights per week 2	flights per week 3	flights per month 1	flights per month 2	flights per month 3	First Flow	Last Flown	Airline Count	Ai
836	HND-???	148	10.0	5.0	3.0	22.0	6.0	2.0	2017- 07-14 01:53:00	2018- 07-24 06:47:00	1	
1781	MAD-???	18	NaN	NaN	1.0	3.0	2.0	1.0	2017- 08-30 11:07:00	2018- 07-25 10:15:00	2	
1967	HEL-???	10	NaN	NaN	NaN	2.0	1.0	1.0	2017- 10-19 14:48:00	2018- 06-07 21:11:00	1	
2106	YYZ-???	5	NaN	1.0	NaN	2.0	NaN	NaN	2018- 01-10 15:10:00	2018- 06-28 01:43:00	1	
2171	BKK-???	2	NaN	NaN	NaN	1.0	NaN	NaN	2018- 03-14 01:17:00	2018- 06-01 07:08:00	2	

In [329]: df_no_price_miss.groupby('route1').agg({'avg(a.Price)':'mean'}).sort_values('avg(a.Price)':'mean')

Out[329]:

avg(a.Price)

route1	
TNA	550.000000
XFW	393.750000
AKJ	289.720000
TOY	145.882500
MMY	131.084000
FKS	121.895000
HKD	108.161667
NTQ	99.250000
ISG	96.771429
MMV	96.330000

In [236]: df_train[df_train['route1']=='OIT'].head()

Out[236]:

	Route	Flight Count	per	per week	per week	flights per month 1	per month	per month	First Flow		Airline Count	Firs Airline
255	OIT- HND	1031	22.0	8.0	7.0	47.0	63.0	59.0	2017- 07-01 22:50:00	2018- 07-25 22:45:00	1	AN/

In [332]: df_no_price_miss.groupby('route2').agg({'avg(a.Price)':'mean'}).sort_values('avg(a.Price)':'mean')

Out[332]:

avg(a.Price)

route2	
OVB	393.750000
AKJ	382.855000
OIT	299.370000
TAK	203.240000
TOY	191.416667
NTQ	161.240000
KIJ	139.950000
MMY	122.694000
ISG	112.830000
MYJ	93.313333

In [325]: sns.scatterplot(data = df_train, x = 'flight_per_week', y = 'avg(a.Price)')

Out[325]: <matplotlib.axes._subplots.AxesSubplot at 0x1e48c18a668>


```
In [326]: sns.scatterplot(data = df_train, x = 'flight_per_week', y = 'Usage per Flight (ME
```

Out[326]: <matplotlib.axes._subplots.AxesSubplot at 0x1e48c182fd0>

comments

There are about 454 and 440 departure and arrival airports. The price may also related to the airport city, thus I created these two features as predictor.

2.2.3 Average of Avg - Flight Duration (MB)

```
In [243]: df_train['Average of Avg - Flight Duration (MB)'].describe()
Out[243]: count
                    3422.000000
                       4.407600
          mean
          std
                       3.497652
                       0.170000
          min
          25%
                       1.643081
          50%
                       3.173869
          75%
                       6.719651
          max
                      17.820000
          Name: Average of Avg - Flight Duration (MB), dtype: float64
```

In [333]: sns.scatterplot(data = df_train[df_train['avg(a.Price)']<25], x = 'Average of Avg

Out[333]: <matplotlib.axes._subplots.AxesSubplot at 0x1e48c325668>

Out[349]: <matplotlib.axes._subplots.AxesSubplot at 0x1e4feec6128>

2.2.4 'Avg - Seat Count'

```
In [248]: df_train['Avg - Seat Count'].describe()
Out[248]: count
                    3422.000000
           mean
                     218.160579
                      65.679458
           std
           min
                      52.000000
           25%
                     168.327700
           50%
                     185.739600
           75%
                     270.623450
                     417.000000
           max
           Name: Avg - Seat Count, dtype: float64
In [249]: | sns.scatterplot(data = df_train[df_train['avg(a.Price)']<100], x = 'Avg - Seat Cot</pre>
```

Out[249]: <matplotlib.axes._subplots.AxesSubplot at 0x1e488d83cf8>

Out[352]: <matplotlib.axes._subplots.AxesSubplot at 0x1e48493e438>

2.2.5 Data Usage

'Average Usage (MB)', 'Min - Usage (MB)', 'Max - Usage (MB)', 'Total Usage (MB)', 'Usage per Flight (MB)', 'Usage (MB)/ Min', 'Min - Total Users', 'Max - Total Users'


```
In [252]: df_train['Average Usage (MB)'].describe()
```

Out[252]: count 3422.000000 mean 786.213022 std 1189.176117 min 0.020000 25% 97.039999 50% 318.381678 75% 917.992848 max 14419.870120

Name: Average Usage (MB), dtype: float64

```
In [289]: sns.scatterplot(data = df_no_price_miss, x = 'Average Usage (MB)', y = 'avg(a.Pri
```

Out[289]: <matplotlib.axes._subplots.AxesSubplot at 0x1e488cab0b8>


```
In [254]: df_train['Total Usage (MB)'].describe()
Out[254]: count
                    3.422000e+03
          mean
                    1.094774e+05
          std
                    3.799420e+05
          min
                    2.000000e-02
          25%
                    5.143600e+02
          50%
                    4.207555e+03
          75%
                    4.041058e+04
                    6.240478e+06
          max
          Name: Total Usage (MB), dtype: float64
```

```
In [358]: sns.regplot(data = df_train[(df_train['avg(a.Price)']<30)&(df_train['avg(a.Price)']<30)&(df_train['avg(a.Price)']<30)&(df_train['avg(a.Price)']<30)&(df_train['avg(a.Price)']<30)&(df_train['avg(a.Price)']<30)&(df_train['avg(a.Price)']<30)&(df_train['avg(a.Price)']<30)&(df_train['avg(a.Price)']<30)&(df_train['avg(a.Price)']<30)&(df_train['avg(a.Price)']<30)&(df_train['avg(a.Price)']<30)&(df_train['avg(a.Price)']<30)&(df_train['avg(a.Price)']<30)&(df_train['avg(a.Price)']<30)&(df_train['avg(a.Price)']<30)&(df_train['avg(a.Price)']<30)&(df_train['avg(a.Price)']<30)&(df_train['avg(a.Price)']<30)&(df_train['avg(a.Price)']<30)&(df_train['avg(a.Price)']<30)&(df_train['avg(a.Price)']<30)&(df_train['avg(a.Price)']<30)&(df_train['avg(a.Price)']<30)&(df_train['avg(a.Price)']<30)&(df_train['avg(a.Price)']<30)&(df_train['avg(a.Price)']<30)&(df_train['avg(a.Price)']<30)&(df_train['avg(a.Price)']<30)&(df_train['avg(a.Price)']<30)&(df_train['avg(a.Price)']<30)&(df_train['avg(a.Price)']<30)&(df_train['avg(a.Price)']<30)&(df_train['avg(a.Price)']<30)&(df_train['avg(a.Price)']<30)&(df_train['avg(a.Price)']<30)&(df_train['avg(a.Price)']<30)&(df_train['avg(a.Price)']<30)&(df_train['avg(a.Price)']<30)&(df_train['avg(a.Price)']<30)&(df_train['avg(a.Price)']<30)&(df_train['avg(a.Price)']<30)&(df_train['avg(a.Price)']<30)&(df_train['avg(a.Price)']<30)&(df_train['avg(a.Price)']<30)&(df_train['avg(a.Price)']<30)&(df_train['avg(a.Price)']<30)&(df_train['avg(a.Price)']<30)&(df_train['avg(a.Price)']<30)&(df_train['avg(a.Price)']<30)&(df_train['avg(a.Price)']<30)&(df_train['avg(a.Price)']<30)&(df_train['avg(a.Price)']<30)&(df_train['avg(a.Price)']<30)&(df_train['avg(a.Price)']<30)&(df_train['avg(a.Price)']<30)&(df_train['avg(a.Price)']<30)&(df_train['avg(a.Price)']<30)&(df_train['avg(a.Price)']<30)&(df_train['avg(a.Price)']<30)&(df_train['avg(a.Price)']<30)&(df_train['avg(a.Price)']<30)&(df_train['avg(a.Price)']<30)&(df_train['avg(a.Price)']<30)&(df_train['avg(a.Price)']<30)&(df_train['avg(a.Price)']<30)&(df_train['avg(a.Price)
```

Out[358]: <matplotlib.axes._subplots.AxesSubplot at 0x1e4860e2c50>


```
In [374]: sns.regplot(data = df_train[(df_train['avg(a.Price)']<60)&(df_train['avg(a.Price)']<60)&(df_train['avg(a.Price)']<60)&(df_train['avg(a.Price)']<60)&(df_train['avg(a.Price)']<60)&(df_train['avg(a.Price)']<60)&(df_train['avg(a.Price)']<60)&(df_train['avg(a.Price)']<60)&(df_train['avg(a.Price)']<60)&(df_train['avg(a.Price)']<60)&(df_train['avg(a.Price)']<60)&(df_train['avg(a.Price)']<60)&(df_train['avg(a.Price)']<60)&(df_train['avg(a.Price)']<60)&(df_train['avg(a.Price)']<60)&(df_train['avg(a.Price)']<60)&(df_train['avg(a.Price)']<60)&(df_train['avg(a.Price)']<60)&(df_train['avg(a.Price)']<60)&(df_train['avg(a.Price)']<60)&(df_train['avg(a.Price)']<60)&(df_train['avg(a.Price)']<60)&(df_train['avg(a.Price)']<60)&(df_train['avg(a.Price)']<60)&(df_train['avg(a.Price)']<60)&(df_train['avg(a.Price)']<60)&(df_train['avg(a.Price)']<60)&(df_train['avg(a.Price)']<60)&(df_train['avg(a.Price)']<60)&(df_train['avg(a.Price)']<60)&(df_train['avg(a.Price)']<60)&(df_train['avg(a.Price)']<60)&(df_train['avg(a.Price)']<60)&(df_train['avg(a.Price)']<60)&(df_train['avg(a.Price)']<60)&(df_train['avg(a.Price)']<60)&(df_train['avg(a.Price)']<60)&(df_train['avg(a.Price)']<60)&(df_train['avg(a.Price)']<60)&(df_train['avg(a.Price)']<60)&(df_train['avg(a.Price)']<60)&(df_train['avg(a.Price)']<60)&(df_train['avg(a.Price)']<60)&(df_train['avg(a.Price)']<60)&(df_train['avg(a.Price)']<60)&(df_train['avg(a.Price)']<60)&(df_train['avg(a.Price)']<60)&(df_train['avg(a.Price)']<60)&(df_train['avg(a.Price)']<60)&(df_train['avg(a.Price)']<60)&(df_train['avg(a.Price)']<60)&(df_train['avg(a.Price)']<60)&(df_train['avg(a.Price)']<60)&(df_train['avg(a.Price)']<60)&(df_train['avg(a.Price)']<60)&(df_train['avg(a.Price)']<60)&(df_train['avg(a.Price)']<60)&(df_train['avg(a.Price)']<60)&(df_train['avg(a.Price)']<60)&(df_train['avg(a.Price)']<60)&(df_train['avg(a.Price)']<60)&(df_train['avg(a.Price)']<60)&(df_train['avg(a.Price)']<60)&(df_train['avg(a.Price)']<60)&(df_train['avg(a.Price)']<60)&(df_train['avg(a.Price)']<60)&(df_train['avg(a.Price)
```

Out[374]: (0.0, 10000.0)


```
In [257]: df_train['Usage per Flight (MB)'].describe()
Out[257]: count
                     3422.000000
          mean
                      515.336536
                     1007.743546
          std
          min
                        0.002778
          25%
                       39.994282
          50%
                      166.260204
          75%
                      444.704813
          max
                    14419.870120
          Name: Usage per Flight (MB), dtype: float64
```

```
In [285]: sns.scatterplot(data = df_train[df_train['avg(a.Price)']<100], x = 'Usage per Fli</pre>
```

Out[285]: <matplotlib.axes._subplots.AxesSubplot at 0x1e48111fe80>

In [286]: sns.scatterplot(data = df_train[df_train['max(a.Price)']<200], x = 'Usage per Fli</pre>

Out[286]: <matplotlib.axes._subplots.AxesSubplot at 0x1e481174f60>


```
In [259]: df_train['Usage (MB)/ Min'].describe()
Out[259]: count
                    3422.000000
           mean
                       2.284971
                       7.634427
           std
          min
                       0.000067
           25%
                       0.242239
           50%
                       0.866365
           75%
                       2.311940
          max
                     284.316992
           Name: Usage (MB)/ Min, dtype: float64
```

In [284]: | sns.scatterplot(data = df_train[df_train['avg(a.Price)']<100], x = 'Usage (MB)/</pre>

Out[284]: <matplotlib.axes._subplots.AxesSubplot at 0x1e489082748>

In [282]: sns.scatterplot(data = df_train[df_train['max(a.Price)']<200], x = 'Usage (MB)/ N</pre>

Out[282]: <matplotlib.axes._subplots.AxesSubplot at 0x1e485f9c860>

comments

3)Generally, the average wifi price increases with the average usage volume of wifi. However, in certain routes, customers paid higher bills for very small data usage, while some customer paid cheap price for excessive wifi use. In the long term, this mismatch between usage and price may cause customer dissatisfaction and reduced revenue for the service provider.

4. Implement Model

```
#create a feature price per mb to identify the problematic prices
In [495]:
          df_no_price_miss['price_per_mb'] = df_no_price_miss['avg(a.Price)']/ df_no_price_
In [496]: | df_no_price_miss['price_per_mb'].describe()
Out[496]: count
                    3447.000000
                       0.321570
          mean
                       7.985295
          std
          min
                       0.000000
          25%
                       0.005231
          50%
                       0.022237
          75%
                       0.078829
                     449.500000
          max
          Name: price_per_mb, dtype: float64
In [497]: | df_no_price_miss['price_per_mb'].plot.hist(ylim=(0,100))
Out[497]: <matplotlib.axes._subplots.AxesSubplot at 0x1e495b27a90>
             100
```


In [498]: df_no_price_miss['price_per_mb'].loc[df_no_price_miss['price_per_mb']<100].plot.k</pre>

Out[498]: <matplotlib.axes._subplots.AxesSubplot at 0x1e495b4ad30>

Out[499]: (0.0, 10000.0)


```
In [500]: | df train = df no price miss[~df no price miss['Average Usage (MB)'].isnull()]
In [501]: | df train['First Flow'] = pd.to datetime(df train['First Flow'])
          df train['Last Flown'] = pd.to datetime(df train['Last Flown'])
In [502]: | df_train1 = df_train[(df_no_price_miss['price_per_mb']<0.03)&((df_no_price_miss[</pre>
          df test1 = df train[(df no price miss['price per mb']>=0.03)|((df no price miss[
In [504]: # select the key features for model building
          df train2 = df train1[[
            'Flight Count',
           'Average of Avg - Flight Duration (MB)',
           'Avg - Seat Count',
           'Average Usage (MB)',
           'Total Usage (MB)',
           'Usage per Flight (MB)',
           'avg(a.Price)']]
In [505]: df test2 = df test1[[
           'Flight Count',
           'Average of Avg - Flight Duration (MB)',
           'Avg - Seat Count',
           'Average Usage (MB)',
           'Total Usage (MB)',
           'Usage per Flight (MB)',
           'avg(a.Price)']]
In [506]: X = df_train2[[
           'Flight Count',
           'Average of Avg - Flight Duration (MB)',
           'Avg - Seat Count',
           'Average Usage (MB)',
           'Total Usage (MB)',
           'Usage per Flight (MB)']].values
          y = df train2['avg(a.Price)'].values.reshape(-1,1)
In [508]: # use the random forest algorithm
          from sklearn.ensemble import RandomForestRegressor
In [509]: RF = RandomForestRegressor(n estimators=100, random state=100)
In [510]: RF.fit(X,y)
Out[510]: RandomForestRegressor(random state=100)
In [511]: |y_pred = RF.predict(X)
```

```
In [426]: plt.scatter(df_train2['Average Usage (MB)'], y)
    plt.scatter(df_train2['Average Usage (MB)'], y_pred, color='red', marker = '+')
    plt.show()
    plt.xlabel('Average Usage (MB)')
```


Out[426]: Text(0.5, 0, 'Average Usage (MB)')


```
In [512]: X_test = df_test2[[
             'Flight Count',
            'Average of Avg - Flight Duration (MB)',
            'Avg - Seat Count',
             'Average Usage (MB)',
            'Total Usage (MB)',
             'Usage per Flight (MB)']].values
In [513]: y pred test = RF.predict(X test)
In [514]: y_pred_test
Out[514]: array([11.9316, 12.2075, 14.1616, ..., 0.3702,
                                                                  0.3899, 0.6443])
In [515]: df_train3 = df_train
In [516]: | df_train3['avg(a.Price)'].loc[(df_no_price_miss['price_per_mb']>=0.03)|((df_no_price_miss['price_per_mb']>=0.03)|
In [518]: | sns.scatterplot(data = df_train[(df_train['avg(a.Price)']<100)&(df_train['avg(a.F</pre>
                         x = 'Average Usage (MB)', y = 'avg(a.Price)')
           plt.ylim(0, 100)
           plt.xlim(0, 10000)
Out[518]: (0.0, 10000.0)
              100
               80
            avg(a.Price)
               60
               40
               20
                          2000
                                              6000
                                                       8000
                                                                10000
                                   Average Usage (MB)
```

```
In [519]: sns.scatterplot(data = df_train3[(df_train['avg(a.Price)']<100)&(df_train['avg(a.Price)']<100)&(df_train['avg(a.Price)']</pre>
x = 'Average Usage (MB)', y = 'avg(a.Price)')
plt.ylim(0, 100)
plt.xlim(0, 10000)
```

Out[519]: (0.0, 10000.0)


```
In [445]: sns.scatterplot(data = df_train1[(df_train1['avg(a.Price)']<60)&(df_train1['avg(a.Price)']</pre>
x = 'Average Usage (MB)', y = 'avg(a.Price)')
plt.ylim(0, 60)
plt.xlim(0, 10000)
```

Out[445]: (0.0, 10000.0)

Comments

The average price predictive model was able to provide a reasonable In-Flight WiFi price reference for routes the price is either too high or too low. The result is pretty preliminary, not much models and parameters were tested. In the future, we can include more data if available or improve the result by using testing different models and fine-tuning the parameters.