Clustering

Yi Ding, University of Chicago & JulyEdu

Clustering

In modern ML, more often than not, the inputs are high dimensional real vectors:

$$\mathbf{x} = (x_1, x_2, \dots, x_d) \in \mathbb{R}^d$$
.

Each x_i is called a **feature** (**covariate** in Stats).

Example: $x_1 = age$, $x_2 = weight$, $x_3 = blood pressure$,...

Example: x_i = intensity of a pixel i in an image

It often makes sense to ask whether a dataset $\{x_1, x_2, \dots, x_n\}$ can be partitioned into a small number of **clusters** of similar datapoints.

ightarrow Clustering is a typical unsupervised learning problem.

Clustering

Cluster representatives indicated.

Cutting the tree at any level gives a flat clustering. Thanks to this freedom, don't have to decide the number of clusters in advance.

Clustering of nodes in a graph

Also known as **graph partitioning** (these are somebody's Facebook friends).

Clustering: the good

Clustering is important because

- It is a natural thing to want to do with large data.
- Can reveal a lot about the structure of data
 - \rightarrow exploratory data analysis.
 - e.g., finding new types of stars, patients with similar disease profiles, ...
- Allows us to compress data by replacing points by their cluster representatives (called vector quantization).
- Key part of finding structure in large graphs & networks.

Clustering: the bad

- ► Unsupervised problem → always harder to formalize.
- ► Ill-defined: different objective functions possible, no clear winner. Even after we've clustered the data it's hard to say whether the clustering is good or bad → subjective.
- ▶ What is the "correct" number of clusters? Also subjective. Often data is very ambiguous in this regard.
- ► End users may attribute too much significance to the clusters with unforeseeable consequences.
- Compared to supervised ML, the theory is in its infancy.

Outline

- ► Flat clustering: *k*-means
- ▶ Hierarchical clustering: agglomerative clustering
- ▶ Model based clustering: mixture of Gaussians

Flat clustering

Flat clustering

Input: the datapoints $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n \in \mathbb{R}^d$;

the desired number of clusters $k \in \mathbb{N}$.

Output: k disjoint sets C_1, C_2, \ldots, C_k whose union is $\{x_1, \ldots, x_n\}$. Clustering is driven by a distance metric, d. In the simplest case it is

just the Euclidean distance

$$d(\mathbf{x}, \mathbf{x}') = |\mathbf{x} - \mathbf{x}'| = \left(\sum_{i=1}^{d} (x_i - x_i')^2\right)^{1/2}.$$

Let's assign each cluster a representative point \mathbf{m}_i . Depending on context, we might or might not require \mathbf{m}_i to be one of the $\mathbf{x}_1, \dots, \mathbf{x}_n$ datapoints.

Cost functions

Start with a **cost function** (in this context also called **distortion**) that our algorithm tries minimize:

Max distance to cluster center:

$$J_{\max} = \max_{i \in \{1,...,k\}} \max_{\mathbf{x} \in C_i} d(\mathbf{x}, \mathbf{m}_i).$$

Average distance to cluster center:

$$J_{\text{avg}} = \sum_{i=1}^{k} \sum_{\mathbf{x} \in C_i} d(\mathbf{x}, \mathbf{m}_i).$$

Average squared distance to cluster center:

$$J_{\text{avg}^2} = \sum_{i=1}^k \sum_{\mathbf{x} \in C_i} d(\mathbf{x}, \boldsymbol{m}_i)^2.$$

Sum of squared intra-cluster distances:

$$J_{\text{IC}} = \sum_{i=1}^k \frac{1}{|C_i|} \sum_{\mathbf{x} \in C_i} \sum_{\mathbf{x}' \in C_i} d(\mathbf{x}, \mathbf{x}')^2.$$

The *k*–means algorithm

Problem: find C_1, C_2, \ldots, C_k and $m_1, m_2, \ldots, m_k \in \mathbb{R}^d$ that minimizes $J_{\text{avg}^2} = \sum_{i=1}^k \sum_{\mathbf{x} \in C_i} d(\mathbf{x}, m_i)^2$.

This is an optimization problem.

- ▶ Is it continuous? No. Is it combinatorial? No. → Mixed.
- ▶ Is it convex? No.
- How do we solve it? Alternating minimization strategy.

The *k*–means algorithm

The *k*-means algorithm

Pick k

Too few; many long distances to centroid.

Pick k

Just right; distances rather short.

Pick k

Too many; little improvement in average

distance.

Input: the datapoints $x_1, x_2, ..., x_n \in \mathbb{R}^d$ **Output:** a clustering tree (**dendrogram**)

Input: the datapoints $x_1, x_2, ..., x_n \in \mathbb{R}^d$ Output: a clustering tree (dendrogram)

Advantages: Don't need to decide number of clusters in advance Hierarchical structure is often very informative

▶ **Agglomerative:** start with *n* clusters containing one datapoint each, and then merge clusters pairwise until only one cluster is left.

- ▶ **Agglomerative:** start with *n* clusters containing one datapoint each, and then merge clusters pairwise until only one cluster is left.
- ▶ Divisive: Start with a single cluster containing all the datapoints and then split it into smaller and smaller clusters. → Recurisvely clustering clusters into smaller clusters.

Merging criteria for agglomerative

Agglomerative algorithms always merge the pair of clusters closest to each other according to some distance measure:

- ▶ Single linkage: $d(C_i, C_j) = \min_{\mathbf{x} \in C_i, \mathbf{x}' \in C_j} d(\mathbf{x}, \mathbf{x}')$ \rightarrow tends to generate long "chains"
- ► Complete linkage: $d(C_i, C_j) = \max_{\mathbf{x} \in C_i, \mathbf{x}' \in C_j} d(\mathbf{x}, \mathbf{x}')$ \rightarrow tends to generate compact "round" clusters, k—center cost
- Average linkage:

 - ▶ Ward's method \rightarrow *k*-means cost of resulting clustering

Agglomerative clustering algorithm

```
 \begin{array}{ll} \mathcal{C} \leftarrow \emptyset; \\ \text{for } i = 1 \text{ to } n \\ \mathcal{C} \leftarrow \mathcal{C} \cup \{\{x_i\}\}; \\ \text{while}(|\mathcal{C}| > 1) \{ \\ \text{find the pair of clusters } C_1, C_2 \in \mathcal{C} \text{ for which } d(C_1, C_2) \text{ is smallest }; \\ \mathcal{C} \leftarrow (\mathcal{C} \setminus \{C_1, C_2\}) \cup \{C_1 \cup C_2\}; \\ \end{array} \right. \\ \text{// Merge } C_1 \text{ and } C_2
```

Model based clustering (flat case)

Model based clustering

- Regard each datapoint as consisting of two random quantities (random variables):
 - ▶ $X_i \in \mathbb{R}^d$: the location of the *i*'th datapoint \rightarrow **observed**
 - Z_i ∈ {1,..., k}: the cluster assignment of the i'th datapoint → hidden
- Assume that each (\mathbf{x}_i, z_i) pair is drawn independently from some probability distribution (model) with parameters θ :

$$(\mathbf{x}_i, \mathbf{z}_i) \sim p_{\theta}.$$

Here θ can be any bunch of parameters, depends on the model.

Model based clustering

- Regard each datapoint as consisting of two random quantities (random variables):
 - ▶ $X_i \in \mathbb{R}^d$: the location of the *i*'th datapoint \rightarrow **observed**
 - Z_i ∈ {1,..., k}: the cluster assignment of the i'th datapoint → hidden
- Assume that each (\mathbf{x}_i, z_i) pair is drawn independently from some probability distribution (model) with parameters θ :

$$(\mathbf{x}_i, \mathbf{z}_i) \sim p_{\theta}$$
.

Here θ can be any bunch of parameters, depends on the model.

The probability distribution p_{θ} is said to **generate** the data.

→ generative modeling (typical Bayesian idea)

The multivariate Gaussian (Normal)

$$p(\mathbf{x}) = \frac{1}{\sqrt{(2\pi)^d \, |\mathbf{\Sigma}|}} \, \exp\bigl(-(\mathbf{x} - \boldsymbol{\mu})^\top \mathbf{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})\bigr) := \mathcal{N}(\mathbf{x}; \boldsymbol{\mu}, \mathbf{\Sigma})$$

Mixture of Gaussians model

The most common generative model for clustering is a mixture of *k* Gaussians:

$$p_{\theta}(\mathbf{x}, \mathbf{z}) = \pi_{\mathbf{z}} \, \mathcal{N}(\mathbf{x}; \boldsymbol{\mu}_{\mathbf{z}}, \boldsymbol{\Sigma}_{\mathbf{z}})$$

$$\mathcal{N}(\mathbf{x};\boldsymbol{\mu}_{\scriptscriptstyle \mathcal{Z}},\boldsymbol{\Sigma}_{\scriptscriptstyle \mathcal{Z}}) = (2\pi)^{-d/2} \left|\boldsymbol{\Sigma}_{\scriptscriptstyle \mathcal{Z}}\right|^{-1/2} \exp(-(\mathbf{x}-\boldsymbol{\mu}_{\scriptscriptstyle \mathcal{Z}})^{\top} \boldsymbol{\Sigma}_{\scriptscriptstyle \mathcal{Z}}^{-1} (\mathbf{x}-\boldsymbol{\mu}_{\scriptscriptstyle \mathcal{Z}})/2).$$

The parameters $\theta = ((\pi_1, \mu_1, \Sigma_1), \dots, (\pi_k, \mu_k, \Sigma_k))$ are:

- π_z ∈ [0, 1]: the prior probability of a new point coming from cluster z
- $\mu_z \in \mathbb{R}^d$: the center of the z'th Gaussian
- ▶ $\Sigma_z \in \mathbb{R}^{d \times d}$: the covariance matrix of the *z*'th Gaussian

Mixture of Gaussians

Big advantage: can capture clusters of different sizes and orientations. But how do we find the parameters? \rightarrow statistical estimation.

The EM algorithm for clustering

Starting from random settings, iterate the following two steps:

▶ "E-step": Given the μ_i 's and Σ_i 's update the assignments

$$p_{i,j} = p(\mathbf{x}_i \text{ belongs to cluster } j) \leftarrow \frac{\pi_j \mathcal{N}(\mathbf{x}_i; \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)}{\sum_{j'} \pi_{j'} \mathcal{N}(\mathbf{x}_i; \boldsymbol{\mu}_{j'}, \boldsymbol{\Sigma}_{j'})}$$

• "M-step": Given the assignments, update π and the μ_i 's and Σ_i 's

$$\pi_j \leftarrow \frac{1}{n} \sum_{i=1}^n p_{i,j} \qquad \mu_i \leftarrow \frac{\sum_{i=1}^n p_{i,j} \mathbf{x}_j}{\sum_{i=1}^n p_{i,j}}$$
$$\mathbf{\Sigma}_i \leftarrow \frac{\sum_{i=1}^n p_{i,j} (\mathbf{x}_i - \boldsymbol{\mu}_j) (\mathbf{x}_i - \boldsymbol{\mu}_j)^\top}{\sum_{i=1}^n p_{i,i}}$$

Summary

- ► Flat clustering: *k*-means
- ▶ Hierarchical clustering: agglomerative clustering
- ▶ Model based clustering: mixture of Gaussians

Thank you!