Homework #2

Due March 3rd, 11:59pm

Each homework submission must include:

- An archive (.zip or .gz) file of the source code containing:
 - o The makefile used to compile the code on Monsoon (5pts)
 - All .cpp and .h files (5pts)
- A full write-up (.pdf of .doc) file containing answers to homework's questions (5pts), including
 the exact command line needed to execute every subproblem of the homework

The source code must follow the following guidelines:

- No external libraries that implement data structures discussed in class are allowed, unless specifically stated as part of the problem definition. Standard input/output and utilities libraries (e.g. math.h) are ok.
- All external data sources (e.g. input data) must be passed in as a command line argument (no hardcoded paths within the source code (5pts).
- Solutions to sub-problems must be executable separately from each other. For example, via a special flag passed as command line argument (5pts)

For this homework, you will continue to use the High Throughput Sequence reads dataset located on Monsoon: /common/contrib/classroom/inf503/hw_dataset.fa. Refer to Homework #1 assignment for description of the dataset.

You will also need to use the genome sequence for Bacillus anthracis bacterium located at: /common/contrib/classroom/inf503/test_genome.fasta

- This genome file contains a header (denoted by '>') followed by ~5.2 million characters of its genomic code (alphabet A, C, G, T)
- Please be aware that the genome is spread across multiple lines of the file (see insert)

f. 🖫 🙆 🕦 🖔 🙉 🗙 🎕 🗠 🗢 🗸 🍇 🕾 🕸 >NC 003997.3 Bacillus anthracis str. Ames chromosome, complete genome ${ t ATA} { t TTTTTCTTGTTTTTTATATCCACAAACTCTTTTCGTACTTTTACACAGTATATCGTGTTGTGGAC$ ATATTATAGTTGTGTTTTCACTTTGAATAAGTTTTCCACATCTTTATCCTATCCACAATTTGTGTATAAC ATGTGGACAGTTTTAATCACATGTGGGTAAATGATTATCCACATTTGCTTTTTTTGTCGAAAACCCTATC TGTACATTTGTTGCACAACCTTATTCTTTTACCATCTTAGTAAAGGAGGGACACCTTTGGAAAACATCTC TGATTTATGGAACAGCGCCTTAAAAGAACTCGAAAAAAAGGTCAGTAAACCAAGTTATGAAACATGGTTA AAATCAACAACCGCACATAATTTAAAGAAAGATGTATTAACAATTACGGCTCCAAATGAATTCGCCCGTG ATTGGTTAGAATCTCATTATTCAGAGCTAATTTCGGAAACACTTTATGATTTAACGGGGGCAAAATTAG TATTCGCTTTATTATTCCCCAAAGTCAAGCTGAAGAGGAGATTGATCTTCCTCCTGCTAAACCAAATGCA GCACAAGATGATTCTAATCATTTACCACAGAGTATGCTAAACCCAAAATATACGTTTGATACATTTGTTA TTGGCTCTGGTAACCGTTTTGCTCACGCTGCTTCATTGGCCGTAGCCGAAGCGCCAGCTAAAGCATATAA ATTGAACATAACCCAAATGCCAAAGTTGTATATTTATCATCAGAAAAATTTACAAATGAATTCATTAATT TATTCAATTTTTAGCGGGAAAAGAACAAACTCAAGAAGAGTTTTTCCATACATTCAATGCATTACACGAA

Problem #1: Fun with linked lists

Create a class called **FASTAreadset_LL**. The purpose of the class will be to contain a FASTA read set (similar to homework #1) and all of the functions needed to operate on this set. Use the <u>linked list</u> data-structure to store the genomic sequences of the read dataset. Use character arrays (char[]) to store the actual sequence fragment within each node of the linked list – there is no need to have a linked list of a linked list that stores one character at a time. For this assignment, you can completely disregard the headers of the sequence fragments (i.e. RO_0_1...) – the entire contents of the file go into the linked list. At minimum, the class must contain **(15pts):**

- A default constructor
- At least one custom constructor (e.g. one taking a file path or ifstream as input)
- A function to read the genome file
- A destructor
- A copy constructor
- A. (30 pts) Read in the entire ~36 million read set (query read set) and store it in the FASTAreadset_LL class. Implement a search function which would take a sequence fragment (OK to assume that it will be exactly 50 characters long) and search for this fragment within the FASTAreadset_LL object. The search function should return the pointer to the node containing the match OR the NULL pointer value if a 'hit' was not found.
 - Which of the following sequences were found in the read set?

 - ii. GCGCGATCAGCTTCGCGCGCACCGCGAGCGCCGATTGCACGAAATGGCGC
 - iii. CGATGATCAGGGGCGTTGCGTAATAGAAACTGCGAAGCCGCTCTATCGCC
 - iv. CGTTGGGAGTGCTTGGTTTAGCGCAAATGAGTTTTCGAGGCTATCAAAAA
 - v. ACTGTAGAAGAAAAAGTGAGGCTGCTCTTTTACAAGAAAAAGTNNNNNN
 - Would sorting the linked list help speed up the search (on average and in the worst case)? Explain why or why not?
- B. **(30 pts)** Read in the *Bacillus anthracis* genome into a character array (you will need to determine the exact size of the sequence). Iterate through all possible 50-character long fragments within the genome by shifting fragment start location by one character each time. Use these fragments to search within the FASTAreadset_LL object.
 - How many 50 character fragments can you make from the *B. anthracis* genome?
 - What is the overlap between the genome's 50-mers and the ~36 million fragments you've stored in the FASTAreadset_LL object? Please note that depending on the efficiency of your algorithm, this step may take a long time. First estimate the total time using 1,000, 10,000, and 100,000 queries if total time estimate is greater than 24 CPU hours, provide estimate rather than exact number.
 - You've iterated through all 50-mers found in the genome and used them to search within the query read set. Would it have been faster to flip the problem i.e. store the genome's fragments in a data structure and iterate through the query read set? Explain why or why not.