Tiết số: Ngày dạy:

Tuần số: Lớp dạy:

§3. ỨNG DỤNG HẰNG ĐẮNG THỨC BIẾN ĐỔI ĐẠI SỐ

Bài 1: Cho ab = 1. CMR: a) $(a+b)^3 = a^3 + b^3 + 3(a+b)$

b) $a^5 + b^5 = (a^3 + b^3)(a^2 + b^2) - (a + b)$.

Bài 2: Cho a >b > 0 thỏa mãn: $3a^2 + 3b^2 = 10ab$.

a) CMR: $3(a-b)^2 = 4ab$

b) Tính giá trị của biểu thức: $P = \frac{a-b}{a-b}$

Bài 3: Cho x > y > 0 và $2x^2 + 2y^2 = 5xy$. Tính giá trị của biểu thức: $E = \frac{x + y}{y + y}$

Bài 4: Cho $\frac{1}{a} + \frac{1}{b} + \frac{1}{c} = 0$. Tính giá trị của biểu thức: $P = a^2 + b^2 + c^2 - (a + b + c)^2$

Bài 5: Đơn giản biểu thức: $A = (2+1)(2^2+1)(2^4+1)(2^8+1)(2^{16}+1)(2^{32}+1)...(2^{1024}+1)$

Bài 6: Cho $x \ne 0$ và $x + \frac{1}{x} = 4$. Tính giá trị biểu thức:

 $A = x^2 + \frac{1}{x^2}$

 $B = x^3 + \frac{1}{x^3}$ $C = x^5 + \frac{1}{x^5}$ $D = x^6 + \frac{1}{x^6}$

Bài 7: Cho a + b + c = 1 và $\frac{1}{a}$ + $\frac{1}{b}$ + $\frac{1}{a}$ = 0. Chứng minh rằng: $a^2 + b^2 + c^2 = 1$

Bài 8: Cho 3 số x, y, z thỏa mãn x + y + z = 0 và $x^2 + y^2 + z^2 = 9$. Tính $x^4 + y^4 + z^4$.

Bài 9: Cho a + b + c = 0. Chứng minh rằng: $2(a^4 + b^4 + c^4) = (a^2 + b^2 + c^2)^2$

Bài 10: Cho $\begin{cases} x+y=a+b \\ x^2+v^2=a^2+b^2 \end{cases}$.CMR: với mọi số nguyên dương n ta có: $x^n+y^n=a^n+b^n$

Bài 11: Cho ba số x, y, z thỏa mãn đồng thời: $\begin{cases} y^2 + 2z + 1 = 0 \text{ . Tính GTBT: } A = x^{2020} + y^{2020} + z^{2020} \\ z^2 + 2z + 1 = 0 \end{cases}$

Bài 12: Cho a, b, c đôi một khác nhau thỏa mãn: ab + bc + ca = 1. Tính giá trị của biểu thức:

 $A = \frac{(a+b)^{2}(b+c)^{2}(c+a)^{2}}{(1+a^{2})(1+b^{2})(1+c^{2})}$

 $B = \frac{(a^2 + 2bc - 1)(b^2 + 2ca - 1)(c^2 + 2ab - 1)}{(a - b)^2(b - c)^2(c - a)^2}$

Bài 13: Cho hai số x, y thỏa mãn: xy + x + y = -1; $x^2y + xy^2 = -12$. Tính GTBT: $P = x^3 + y^3$

Bài 14: a) Cho $\frac{1}{a} + \frac{1}{b} + \frac{1}{c} = \frac{1}{a+b+c}$ CMR: $\frac{(a+b)(b+c)(c+a)}{abc(a+b+c)} = 0$

b) CMR: nếu a, b, c là 3 số thỏa mãn a + b + c = 2020 và $\frac{1}{a} + \frac{1}{b} + \frac{1}{c} = \frac{1}{2020}$ thì một trong ba số a, b, c phải có một số bằng 2000.

Bài 15: Cho ba số a, b, c là các số hữu tỷ đôi một khác nhau. Chứng minh rằng:

 $N = \frac{1}{(a-b)^2} + \frac{1}{(b-c)^2} + \frac{1}{(c-a)^2}$ là bình phương của một số hữu tỷ.