

Learning Objectives

- 1. What is pattern recognition and machine learning?
- 2. What are curve fitting and regularization?
- 3. What are ML and MAP Bayesian inferences?
- 4. How to deal with the curse of dimensionality?
- 5. What is the relationship between decision theory and machine learning?
- 6. What are generative and discriminative models?
- 7. How to use entropy. KL divergence and mutual information for machine learning?

Outlines

- Pattern Recognition and Machine Learning
- Curve Fitting and Regularization
- Probabilities and Gaussian Distributions
- Bayesian Inferences (ML and MAP)
- Curse of Dimensionality
- Decision Theory
- Entropy and Information

Curse of Dimensionality

Curse of Dimensionality

Polynomial curve fitting, M=3

$$y(\mathbf{x}, \mathbf{w}) = w_0 + \sum_{i=1}^{D} w_i x_i + \sum_{i=1}^{D} \sum_{j=1}^{D} w_{ij} x_i x_j + \sum_{i=1}^{D} \sum_{j=1}^{D} \sum_{k=1}^{D} w_{ijk} x_i x_j x_k$$

Gaussian Densities in higher dimensions of a sphere

Reduction of Dimensionality (PCA)

Feature Extraction (Contrastive Loss)

t=1: two vectors belong to the same category; []₊: non-negative

Machine Learning Pipeline

Outlines

- Pattern Recognition and Machine Learning
- Curve Fitting and Regularization
- Probabilities and Gaussian Distributions
- Bayesian Inferences (ML and MAP)
- Curse of Dimensionality
- Decision Theory
- Entropy and Information

Decision Theory

Inference step

Determine either $p(t|\mathbf{x})$ or $p(\mathbf{x},t)$.

Decision step

For given x, determine optimal t.

Receiver Operating Characteristic Curve

Bimodal Distribution (Data Model)

Decision Threshold (Boundary Model)

True Positive

False Positive

True Negative

Test Result

False Negative

Moving the Threshold: Right

Moving the Threshold: Left

ROC Curve

Minimum Misclassification Rate

$$p(\text{mistake}) = p(\mathbf{x} \in \mathcal{R}_1, \mathcal{C}_2) + p(\mathbf{x} \in \mathcal{R}_2, \mathcal{C}_1)$$
$$= \int_{\mathcal{R}_1} p(\mathbf{x}, \mathcal{C}_2) d\mathbf{x} + \int_{\mathcal{R}_2} p(\mathbf{x}, \mathcal{C}_1) d\mathbf{x}.$$

Minimum Expected Loss

Example: classify medical images as 'cancer' or 'normal'

Minimum Expected Loss

$$\mathbb{E}[L] = \sum_{k} \sum_{j} \int_{\mathcal{R}_{j}} L_{kj} p(\mathbf{x}, \mathcal{C}_{k}) d\mathbf{x}$$

Regions \mathcal{R}_i are chosen to minimize

$$\mathbb{E}[L] = \sum_{k} L_{kj} p(\mathcal{C}_k | \mathbf{x})$$

Reject Option

Posterior Probability

The posterior probability of class 1 is given by:

$$p(C_1 \mid \mathbf{x}) = \frac{p(C_1)p(\mathbf{x} \mid C_1)}{p(C_1)p(\mathbf{x} \mid C_1) + p(C_0)p(\mathbf{x} \mid C_0)} = \frac{1}{1 + e^{-z}} = \sigma(z)$$

where
$$z = \ln \frac{p(C_1)p(\mathbf{x} | C_1)}{p(C_0)p(\mathbf{x} | C_0)} = \ln \frac{p(C_1 | \mathbf{x})}{1 - p(C_1 | \mathbf{x})}$$

z is called the logit and is given by the log odds

Why Separate Inference and Decision?

- Minimizing risk (loss matrix may change over time)
- Reject option
- Unbalanced class priors
- Combining models

Decision Theory for Regression

Inference step

Determine $p(\mathbf{x}, t)$.

Decision step

For given x, make optimal prediction, y(x), for t.

Loss function:
$$\mathbb{E}[L] = \iint L(t, y(\mathbf{x})) p(\mathbf{x}, t) d\mathbf{x} dt$$

The Expected Squared Loss Function

$$\mathbb{E}[L] = \iint \{y(\mathbf{x}) - t\}^2 p(\mathbf{x}, t) \, d\mathbf{x} \, dt$$

$$\{y(\mathbf{x}) - t\}^2 = \{y(\mathbf{x}) - \mathbb{E}[t|\mathbf{x}] + \mathbb{E}[t|\mathbf{x}] - t\}^2$$

$$= \{y(\mathbf{x}) - \mathbb{E}[t|\mathbf{x}]\}^2 + 2\{y(\mathbf{x}) - \mathbb{E}[t|\mathbf{x}]\}\{\mathbb{E}[t|\mathbf{x}] - t\} + \{\mathbb{E}[t|\mathbf{x}] - t\}^2$$

$$\mathbb{E}[L] = \int \{y(\mathbf{x}) - \mathbb{E}[t|\mathbf{x}]\}^2 p(\mathbf{x}) d\mathbf{x} + \int \text{var}[t|\mathbf{x}] p(\mathbf{x}) d\mathbf{x}$$

$$\Rightarrow y(\mathbf{x}) = \mathbb{E}[t|\mathbf{x}] \quad \text{predictor} \quad \text{noise}$$

y(x): an estimator of the mean of t for given \mathbf{x}

https://stats.stackexchange.com/questions/228561/loss-functions-for-regression-proof

Generative vs Discriminative

Generative approach:

$$\mathsf{Model}\ p(t,\mathbf{x}) = p(\mathbf{x}|t)p(t)$$

Use Bayes' theorem
$$p(t|\mathbf{x}) = \frac{p(\mathbf{x}|t)p(t)}{p(\mathbf{x})}$$

Discriminative approach:

Model $p(t|\mathbf{x})$ directly

t: category

Outlines

- Pattern Recognition and Machine Learning
- Curve Fitting and Regularization
- Probabilities and Gaussian Distributions
- Bayesian Inferences (ML and MAP)
- Curse of Dimensionality
- Decision Theories
- Entropy and Information

$$H[x] = -\sum_{x} p(x) \log_2 p(x)$$

Important quantity in

- coding theory
- statistical physics
- machine learning

Coding theory: x discrete with 8 possible states; how many bits to transmit the state of x?

All states equally likely

$$H[x] = -8 \times \frac{1}{8} \log_2 \frac{1}{8} = 3 \text{ bits.}$$

$$H[x] = -\frac{1}{2}\log_2\frac{1}{2} - \frac{1}{4}\log_2\frac{1}{4} - \frac{1}{8}\log_2\frac{1}{8} - \frac{1}{16}\log_2\frac{1}{16} - \frac{4}{64}\log_2\frac{1}{64}$$
$$= 2 \text{ bits}$$

average code length =
$$\frac{1}{2} \times 1 + \frac{1}{4} \times 2 + \frac{1}{8} \times 3 + \frac{1}{16} \times 4 + 4 \times \frac{1}{64} \times 6$$

= 2 bits

In how many ways can N identical objects be allocated M bins?

$$W = \frac{N!}{\prod_i n_i!}$$

$$H = \frac{1}{N} \ln W \simeq -\lim_{N \to \infty} \sum_{i} \left(\frac{n_i}{N}\right) \ln \left(\frac{n_i}{N}\right) = -\sum_{i} p_i \ln p_i$$

Entropy maximized when $\forall i: p_i = \frac{1}{M}$

Differential Entropy

Put bins of width Δ along the real line

$$\lim_{\Delta \to 0} \left\{ -\sum_{i} p(x_i) \Delta \ln p(x_i) \right\} = -\int p(x) \ln p(x) dx$$

Differential entropy maximized (for fixed σ^2) when

$$p(x) = \mathcal{N}(x|\mu, \sigma^2)$$

in which case

$$H[x] = \frac{1}{2} \{ 1 + \ln(2\pi\sigma^2) \}.$$

Conditional Entropy

$$H[\mathbf{y}|\mathbf{x}] = -\iint p(\mathbf{y}, \mathbf{x}) \ln p(\mathbf{y}|\mathbf{x}) \, d\mathbf{y} \, d\mathbf{x}$$

$$H[\mathbf{x}, \mathbf{y}] = H[\mathbf{y}|\mathbf{x}] + H[\mathbf{x}]$$

The Kullback-Leibler Divergence

$$\begin{aligned} & \text{Cross Entropy C}(p||q) & \text{Entropy H}(p) \\ & \text{KL}(p||q) & = & -\int p(\mathbf{x}) \ln q(\mathbf{x}) \, \mathrm{d}\mathbf{x} - \left(-\int p(\mathbf{x}) \ln p(\mathbf{x}) \, \mathrm{d}\mathbf{x}\right) \\ & = & -\int p(\mathbf{x}) \ln \left\{\frac{q(\mathbf{x})}{p(\mathbf{x})}\right\} \, \mathrm{d}\mathbf{x} \\ & \text{Cross Entropy} & \text{Negative Entropy} \\ & \text{KL}(p||q) & \simeq \frac{1}{N} \sum_{n=1}^{N} \left\{-\ln q(\mathbf{x}_n|\boldsymbol{\theta}) + \ln p(\mathbf{x}_n)\right\} \\ & \text{KL}(p||q) \geqslant 0 & \text{KL}(p||q) \not\equiv \text{KL}(q||p) \end{aligned}$$

KL divergence describes a distance between model p and model q

Cross Entropy for Machine Learning

```
Goal of Machine Learning: p(real data) \approx p(model / \theta)
```

we assume: $p(training data) \approx p(training data)$

Operation of Machine Learning: $p(training \ data) \approx p(model \ | \ \theta)$

```
\min_{\theta} \mathsf{KL}(p(\mathit{training data}) \mid\mid p(\mathit{model} \mid \theta))
```



```
\min_{\theta} C(p(training data) || p(model | \theta))
```

as H(p(training data)) is fixed

Cross Entropy for Machine Learning

 $C(p(training data) || p(model | \theta))$

Bernoulli model: $p(model \mid \theta) = \rho^t (1 - \rho)^{1-t}$

 t_n : training data

Cross entropy: $C = -\frac{1}{N}\sum_{n} t_n \ln \rho + (1 - t_n) \ln(1 - \rho)$

ρ: model parameter

Gaussian model: $p(model / \theta) \propto e^{-0.5(t-\mu)^2}$

 t_n : training data

Cross entropy: $C \propto \frac{1}{N} \sum_{n} (t_n - \mu)^2$

 $\mu\hbox{:}\ \textit{model parameter}$

Mutual Information

$$I[\mathbf{x}, \mathbf{y}] \equiv KL(p(\mathbf{x}, \mathbf{y}) || p(\mathbf{x}) p(\mathbf{y}))$$

$$= -\iint p(\mathbf{x}, \mathbf{y}) \ln \left(\frac{p(\mathbf{x}) p(\mathbf{y})}{p(\mathbf{x}, \mathbf{y})} \right) d\mathbf{x} d\mathbf{y}$$

$$I[\mathbf{x}, \mathbf{y}] = H[\mathbf{x}] - H[\mathbf{x}|\mathbf{y}] = H[\mathbf{y}] - H[\mathbf{y}|\mathbf{x}]$$

Mutual information describes the degree of dependence between ${\bf x}$ and ${\bf y}$

Information Gain

 $I[\mathbf{x}, \mathbf{y}] = H[\mathbf{x}] - H[\mathbf{x}|\mathbf{y}] = \log_2 3$

H[x]: uncertain of balls

 $H[\mathbf{x}|\mathbf{y}]$:

uncertain of balls after weighing once

X: one ball lighter

y: weighing once

x|**y**: one ball lighter after weighing once

 $H[\mathbf{x}] = \log_2 N$

After weighing $\frac{N}{3}$ times, all the uncertainties can be removed

Independent Signal Separation

Independent Component Analysis

$$\min_{A} I([X_1, X_2, ..., X_M]|A, Y)$$

After optimization, the components of X become as much independent as possible

Illustration of ICA Operation

Summary

- Pattern Recognition
- Model Training and Regularization
- Probabilities and Gaussian Distributions
- Bayesian Inferences (ML and MAP)
- Curse of Dimensionality
- Decision Theory
- Entropy and Information