

Lecture Course: Advanced Systems Theory

Chapter 6-Lecture 7: (C,A,B)-pairs and DDP by dynamical feedback

Stephan Trenn, Yahao Chen

Jan C. Willems Center for Systems and Control University of Groningen, Netherlands

September 2020

Recapitulation-4.4 Controllability subspace

Definition (4.11)

Consider $\Sigma : \dot{x} = Ax + Bu$. A subspace $\mathcal{R} \subseteq \text{is called a controllability subspace of } \Sigma \text{ if }$

$$\forall x_0 \in \mathcal{R}, \exists \, T > 0, u \in \boldsymbol{U} : x_u(t, x_0) \in \mathcal{R}, \forall \, 0 \le t \le T \, \text{ and } x_u(T, x_0) = 0.$$

Recapitulation-4.4 Controllability subspace

Definition (4.11)

Consider $\Sigma : \dot{x} = Ax + Bu$. A subspace $\mathcal{R} \subseteq \text{is called a controllability subspace of } \Sigma$ if

$$\forall x_0 \in \mathcal{R}, \exists T > 0, u \in U : x_u(t, x_0) \in \mathcal{R}, \forall 0 \le t \le T \text{ and } x_u(T, x_0) = 0.$$

Theorem (4.12)

A subspace \mathcal{R} is a controllability subspace iff $\exists F : \mathcal{U} \to \mathcal{X}, L : \mathcal{U} \to \mathcal{U}$ s.t.

 $\mathcal{R} = \langle A + BF | \operatorname{im} BL \rangle.$

Recapitulation-4.4 Controllability subspace

Definition (4.11)

Consider $\Sigma : \dot{x} = Ax + Bu$. A subspace $\mathcal{R} \subseteq \mathcal{R}$ is called a controllability subspace of Σ if

$$\forall x_0 \in \mathcal{R}, \exists T > 0, u \in U : x_u(t, x_0) \in \mathcal{R}, \forall \ 0 \le t \le T \text{ and } x_u(T, x_0) = 0.$$

Theorem (4.12)

A subspace \mathcal{R} is a controllability subspace iff $\exists F : \mathcal{U} \to \mathcal{X}$, $L : \mathcal{U} \to \mathcal{U}$ s.t.

$$\mathcal{R} = \langle A + BF | \operatorname{im} BL \rangle.$$

Question 1

Which one of the following is not necessarily a controllability subspace of $\Sigma = (A, B)$? (i) $\langle A|B\rangle$. (ii) $\{0\}$. (iii) \mathcal{X} . (iv) $\langle A|\operatorname{im} B\cap \mathcal{W}\rangle$, where \mathcal{W} is the reachable space of Σ .

Recapitulation-4.4 Controllability subspace

Definition (4.11)

Consider $\Sigma : \dot{x} = Ax + Bu$. A subspace $\mathcal{R} \subseteq \text{is called a controllability subspace}$ of Σ if

$$\forall x_0 \in \mathcal{R}, \exists T > 0, u \in U : x_u(t, x_0) \in \mathcal{R}, \forall \ 0 \le t \le T \text{ and } x_u(T, x_0) = 0.$$

Theorem (4.12)

A subspace \mathcal{R} is a controllability subspace iff $\exists F : \mathcal{U} \to \mathcal{X}$, $L : \mathcal{U} \to \mathcal{U}$ s.t.

$$\mathcal{R} = \langle A + BF | \operatorname{im} BL \rangle.$$

Question 1

Which one of the following is not necessarily a controllability subspace of $\Sigma = (A, B)$? (i) $\langle A|B\rangle$. (ii) $\{0\}$. (iii) \mathcal{X} . (iv) $\langle A|\operatorname{im} B\cap \mathcal{W}\rangle$, where \mathcal{W} is the reachable space of Σ .

Recapitulation-Controllability subspace within a subspace

Theorem (4.15)

 $\mathcal{R}^*(\mathcal{K})$ is the largest controllability subspace contained in \mathcal{K} , i.e., (i) $\mathcal{R}^*(\mathcal{K})$ is a controllability subspace.

(ii) $\mathcal{R}^*(\mathcal{K}) \subseteq \mathcal{K}$.

 $(iii)\mathcal{R}\subseteq\mathcal{K}\Rightarrow\mathcal{R}\subseteq\mathcal{R}^*(\mathcal{K})$

Recapitulation-Controllability subspace within a subspace

Theorem (4.15)

 $\mathcal{R}^*(\mathcal{K})$ is the largest controllability subspace contained in \mathcal{K} , i.e.,

- (i) $\mathcal{R}^*(\mathcal{K})$ is a controllability subspace.
- $(ii)\mathcal{R}^*(\mathcal{K})\subseteq\mathcal{K}.$
- $(iii)\mathcal{R}\subseteq\mathcal{K}\Rightarrow\mathcal{R}\subseteq\mathcal{R}^*(\mathcal{K})$

Theorem (4.17)

Let $\mathcal{K} \subseteq \mathcal{X}$ be a subspace. Then any $F: \mathcal{X} \to \mathcal{U}$ s.t. $(A+BF)\mathcal{V}^*(\mathcal{K}) \subseteq \mathcal{V}^*(\mathcal{K})$ satisfies $(A+BF)\mathcal{R}^*(\mathcal{K}) \subseteq \mathcal{R}^*(\mathcal{K})$ and $\mathcal{R}^*(\mathcal{K}) = \langle A+BF \mid \operatorname{im} B \cap \mathcal{V}^*(\mathcal{K}) \rangle$.

Questions

Consider
$$\Sigma = (A, B, C)$$
, where $A = \begin{bmatrix} 1 & 1 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 1 \end{bmatrix}$, $C = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$, i.e.,
$$\Sigma : \begin{cases} \dot{x}_1 = x_1 + x_2 + u_1 \\ \dot{x}_2 = -x_1 + x_2 \\ \dot{x}_3 = u_2 \end{cases}, \quad y = x_1,$$

Questions

Consider
$$\Sigma = (A,B,C)$$
, where $A = \begin{bmatrix} 1 & 1 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 1 \end{bmatrix}$, $C = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$, i.e.,
$$\Sigma : \begin{cases} \dot{x}_1 = x_1 + x_2 + u_1 \\ \dot{x}_2 = -x_1 + x_2 \\ -x_1 + x_2 \end{cases}, \quad y = x_1,$$

Question 2a

Which is $\mathcal{V}^*(\ker C)$? (i) $\mathcal{X}_1 \times \mathcal{X}_2$, (ii) $\mathcal{X}_2 \times \mathcal{X}_3$, (iii) \mathcal{X}_2 , (iv) \mathcal{X}_3 .

Questions

Consider
$$\Sigma = (A, B, C)$$
, where $A = \begin{bmatrix} 1 & 1 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 1 \end{bmatrix}$, $C = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$, i.e.,
$$\Sigma : \begin{cases} \dot{x}_1 = x_1 + x_2 + u_1 \\ \dot{x}_2 = -x_1 + x_2 \\ x_3 = u_2 \end{cases}, \quad y = x_1,$$

Question 2a

Which is $\mathcal{V}^*(\ker C)$? (i) $\mathcal{X}_1 \times \mathcal{X}_2$, (ii) $\mathcal{X}_2 \times \mathcal{X}_3$, (iii) \mathcal{X}_2 , (iv) \mathcal{X}_3 .

Question 2b

Which is $\mathbb{R}^*(\ker C)$? (i) $\mathcal{X}_1 \times \mathcal{X}_2$, (ii) $\mathcal{X}_2 \times \mathcal{X}_3$, (iii) \mathcal{X}_2 , (iv) \mathcal{X}_3 .

Questions

Consider
$$\Sigma=(A,B,C)$$
, where $A=\begin{bmatrix} 1&1&0\\-1&1&0\\0&0&0 \end{bmatrix}$, $B=\begin{bmatrix} 1&0\\0&0\\0&1 \end{bmatrix}$, $C=\begin{bmatrix}1&0&0\end{bmatrix}$, i.e.,

$$\Sigma : \begin{cases} \dot{x}_1 = x_1 + x_2 + u_1 \\ \dot{x}_2 = -x_1 + x_2 \\ \dot{x}_3 = u_2 \end{cases}, \quad y = x_1,$$

Question 2a

Which is $\mathcal{V}^*(\ker C)$? (i) $\mathcal{X}_1 \times \mathcal{X}_2$, (ii) $\mathcal{X}_2 \times \mathcal{X}_3$, (iii) \mathcal{X}_2 , (iv) \mathcal{X}_3 .

Question 2b

Which is $\mathbb{R}^*(\ker C)$? (i) $\mathcal{X}_1 \times \mathcal{X}_2$, (ii) $\mathcal{X}_2 \times \mathcal{X}_3$, (iii) \mathcal{X}_2 , (iv) \mathcal{X}_3 .

Question 3

For $\Sigma = (A, B)$ and $\mathcal{K} \subseteq K$, then

- (i) $\mathcal{R}^*(\mathcal{K}) \cap B \subseteq \mathcal{V}^*(\mathcal{K}) \cap B \subseteq \mathcal{R}^*(\mathcal{V}^*(\mathcal{K})) \subseteq \mathcal{R}^*(\mathcal{K}) \subseteq \mathcal{V}^*(\mathcal{K})$.
- $\text{(ii) } \mathcal{R}^*(\mathcal{K}) \cap B = \mathcal{V}^*(\mathcal{K}) \cap B \subseteq \mathcal{R}^*(\mathcal{V}^*(\mathcal{K})) = \mathcal{R}^*(\mathcal{K}) \subseteq \mathcal{V}^*(\mathcal{K}).$
- (iii) $\mathcal{R}^*(\mathcal{K}) \cap B \subseteq \mathcal{V}^*(\mathcal{K}) \cap B = \mathcal{R}^*(\mathcal{V}^*(\mathcal{K})) \subseteq \mathcal{R}^*(\mathcal{K}) = \mathcal{V}^*(\mathcal{K}).$

Consider
$$\Sigma=(A,B,C)$$
, where $A=\begin{bmatrix} 1&1&0\\-1&1&0\\0&0&0 \end{bmatrix}$, $B=\begin{bmatrix} 1&0\\0&0\\0&1 \end{bmatrix}$, $C=\begin{bmatrix} 1&0&0 \end{bmatrix}$, i.e.,

$$\Sigma : \begin{cases} \dot{x}_1 = x_1 + x_2 + u_1 \\ \dot{x}_2 = -x_1 + x_2 \\ \dot{x}_3 = u_2 \end{cases}, \quad y = x_1,$$

Question 2a

Which is $\mathcal{V}^*(\ker C)$? (i) $\mathcal{X}_1 \times \mathcal{X}_2$, (ii) $\mathcal{X}_2 \times \mathcal{X}_3$, (iii) \mathcal{X}_2 , (iv) \mathcal{X}_3 .

Question 2b

Which is $\mathbb{R}^*(\ker C)$? (i) $\mathcal{X}_1 \times \mathcal{X}_2$, (ii) $\mathcal{X}_2 \times \mathcal{X}_3$, (iii) \mathcal{X}_2 , (iv) \mathcal{X}_3 .

Question 3

For $\Sigma = (A, B)$ and $\mathcal{K} \subseteq K$, then

(i)
$$\mathcal{R}^*(\mathcal{K}) \cap B \subseteq \mathcal{V}^*(\mathcal{K}) \cap B \subseteq \mathcal{R}^*(\mathcal{V}^*(\mathcal{K})) \subseteq \mathcal{R}^*(\mathcal{K}) \subseteq \mathcal{V}^*(\mathcal{K})$$
.

(ii)
$$\mathcal{R}^*(\mathcal{K}) \cap B = \mathcal{V}^*(\mathcal{K}) \cap B \subseteq \mathcal{R}^*(\mathcal{V}^*(\mathcal{K})) = \mathcal{R}^*(\mathcal{K}) \subseteq \mathcal{V}^*(\mathcal{K}).$$

(iii)
$$\mathcal{R}^*(\mathcal{K}) \cap B \subseteq \mathcal{V}^*(\mathcal{K}) \cap B = \mathcal{R}^*(\mathcal{V}^*(\mathcal{K})) \subseteq \mathcal{R}^*(\mathcal{K}) = \mathcal{V}^*(\mathcal{K}).$$

Consider $\Sigma=(A,B,C)$, where $A=\begin{bmatrix} 1&1&0\\-1&1&0\\0&0&0 \end{bmatrix}$, $B=\begin{bmatrix} 1&0\\0&0\\0&1 \end{bmatrix}$, $C=\begin{bmatrix} 1&0&0 \end{bmatrix}$, i.e.,

$$\Sigma: \begin{cases} \dot{x}_1 = x_1 + x_2 + u_1 \\ \dot{x}_2 = -x_1 + x_2 \\ \dot{x}_3 = u_2 \end{cases}, \quad y = x_1,$$

Question 2a

Which is $\mathcal{V}^*(\ker C)$? (i) $\mathcal{X}_1 \times \mathcal{X}_2$, (ii) $\mathcal{X}_2 \times \mathcal{X}_3$, (iii) \mathcal{X}_2 , (iv) \mathcal{X}_3 .

Question 2b

Which is $\mathbb{R}^*(\ker C)$? (i) $\mathcal{X}_1 \times \mathcal{X}_2$, (ii) $\mathcal{X}_2 \times \mathcal{X}_3$, (iii) \mathcal{X}_2 , (iv) \mathcal{X}_3 .

Question 3

For $\Sigma = (A, B)$ and $\mathcal{K} \subseteq K$, then

- (i) $\mathcal{R}^*(\mathcal{K}) \cap B \subset \mathcal{V}^*(\mathcal{K}) \cap B \subset \mathcal{R}^*(\mathcal{V}^*(\mathcal{K})) \subset \mathcal{R}^*(\mathcal{K}) \subset \mathcal{V}^*(\mathcal{K})$.
- (ii) $\mathcal{R}^*(\mathcal{K}) \cap B = \mathcal{V}^*(\mathcal{K}) \cap B \subseteq \mathcal{R}^*(\mathcal{V}^*(\mathcal{K})) = \mathcal{R}^*(\mathcal{K}) \subseteq \mathcal{V}^*(\mathcal{K}).$
- (iii) $\mathcal{R}^*(\mathcal{K}) \cap B \subseteq \mathcal{V}^*(\mathcal{K}) \cap B = \mathcal{R}^*(\mathcal{V}^*(\mathcal{K})) \subseteq \mathcal{R}^*(\mathcal{K}) = \mathcal{V}^*(\mathcal{K}).$

Conditioned invariant subspaces

Definition (Conditioned invariant subspaces)

Consider the system
$$\Sigma = (C, A)$$

$$\dot{x}(t) = Ax(t)$$

$$y(t) = Cx(t)$$

A subspace $S \subseteq \mathbb{R}^n$ is called conditioned invariant if there exists $G \in \mathbb{R}^{n \times p}$ such that $(A + GC)S \subseteq S$

Conditioned invariant subspaces

Definition (Conditioned invariant subspaces)

Consider the system
$$\Sigma = (C, A)$$

$$\dot{x}(t) = Ax(t)$$

$$y(t) = Cx(t)$$

A subspace $S \subseteq \mathbb{R}^n$ is called conditioned invariant if there exists $G \in \mathbb{R}^{n \times p}$ such that $(A + GC)S \subseteq S$

Theorem (5.5 Conditioned invariant subspaces)

A subspace $S \subseteq \mathbb{R}^n$ is conditioned invariant iff $A(S \cap \ker C) \subseteq S$.

Conditioned invariant subspaces

Definition (Conditioned invariant subspaces)

Consider the system
$$\Sigma = (C, A)$$

Recapitulation

$$\dot{x}(t) = Ax(t)$$

$$y(t) = Cx(t)$$

A subspace $S \subseteq \mathbb{R}^n$ is called conditioned invariant if there exists $G \in \mathbb{R}^{n \times p}$ such that $(A + GC)S \subseteq S$

Theorem (5.5 Conditioned invariant subspaces)

A subspace $S \subseteq \mathbb{R}^n$ is conditioned invariant iff $A(S \cap \ker C) \subseteq S$.

Theorem (5.6 Duality between controlled and conditioned invariant)

A subspace S is (C, A)-invariant iff S^{\perp} is (A^T, C^T) -invariant.

Theorem (5.6 Duality between controlled and conditioned invariant)

A subspace S is (C, A)-invariant iff S^{\perp} is (A^T, C^T) -invariant.

Recapitulation-Conditioned invariant subspaces

Theorem (5.6 Duality between controlled and conditioned invariant)

A subspace S is (C, A)-invariant iff S^{\perp} is (A^T, C^T) -invariant.

Question 4

Let
$$A=\begin{bmatrix}1&-1&1\\0&0&2\\1&1&2\end{bmatrix}^T$$
, $C=\begin{bmatrix}1\\0\\0\end{bmatrix}^T$ and $\mathcal{S}=\mathrm{im}\begin{bmatrix}0\\0\\1\end{bmatrix}$, is

S a conditioned invariance of (C, A)?

Recapitulation-Conditioned invariant subspaces

Theorem (5.6 Duality between controlled and conditioned invariant)

A subspace S is (C, A)-invariant iff S^{\perp} is (A^T, C^T) -invariant.

Question 4

university of groningen

Let
$$A=\begin{bmatrix} 1 & -1 & 1 \\ 0 & 0 & 2 \\ 1 & 1 & 2 \end{bmatrix}^T$$
, $C=\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}^T$ and $\mathcal{S}=\operatorname{im}\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$, is

S a conditioned invariance of (C, A)?

Invariant subspace algorithm for $S^*(\mathcal{E}, C, A)$

Theorem (5.6 Duality between controlled and conditioned invariant)

A subspace S is (C, A)-invariant iff S^{\perp} is (A^T, C^T) -invariant.

Question 4

Let
$$A = \begin{bmatrix} 1 & -1 & 1 \\ 0 & 0 & 2 \\ 1 & 1 & 2 \end{bmatrix}^T$$
, $C = \begin{bmatrix} 1 \\ 0 \end{bmatrix}^T$ and $S = \operatorname{im} \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, is

S a conditioned invariance of (C, A)?

(ii) No (i) Yes

Question 5

Which G satisfies that $(A + GC)S \subseteq S$?

(i)
$$G = [0\ 1\ 0]^T$$

(ii)
$$G = [1 - 1 1]^T$$
.

(iii)
$$G = [1 \ 0 \ -1]^T$$
.

Theorem (5.6 Duality between controlled and conditioned invariant)

A subspace S is (C, A)-invariant iff S^{\perp} is (A^T, C^T) -invariant.

Question 4

Let
$$A = \begin{bmatrix} 1 & -1 & 1 \\ 0 & 0 & 2 \\ 1 & 1 & 2 \end{bmatrix}^T$$
, $C = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}^T$ and $S = \operatorname{im} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$, is

 ${\mathcal S}$ a conditioned invariance of (C,A) ?

(i) Yes (ii) No

Question 5

Which G satisfies that $(A + GC)S \subseteq S$?

(i)
$$G = [0 \ 1 \ 0]^T$$

(ii)
$$G = [1 - 1 1]^T$$
.

(iii)
$$G = [1 \ 0 \ -1]^T$$
.

Theorem (5.6 Duality between controlled and conditioned invariant)

A subspace S is (C, A)-invariant iff S^{\perp} is (A^T, C^T) -invariant.

Question 4

Let
$$A = \begin{bmatrix} 1 & -1 & 1 \\ 0 & 0 & 2 \\ 1 & 1 & 2 \end{bmatrix}^T$$
, $C = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}^T$ and $S = \operatorname{im} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$, is

S a conditioned invariance of (C, A)?

(ii) No (i) Yes

Question 5

Which G satisfies that $(A + GC)S \subseteq S$?

(i)
$$G = [0 \ 1 \ 0]^T$$

(ii)
$$G = [1 - 1 1]^T$$
.

(iii)
$$G = [1 \ 0 \ -1]^T$$
.

Theorem (5.7 The smallest conditioned invariant subspace containing a given subspace)

Consider the system $\Sigma = (C, A)$. Let $\mathcal{E} \subseteq \mathbb{R}^n$ be a subspace. Then

$$\mathcal{S}^*(\mathcal{E}, C, A) = (\mathcal{V}^*(A^T, C^T, \mathcal{E}^\perp))^\perp$$

Invariant subspace algorithm for $\mathcal{S}^*(\mathcal{E},C,A)$

ISA Algorithm (Invariant subspace algorithm for controlled invariance)

Given
$$A \in \mathbb{R}^{n \times n}$$
, $B \in \mathbb{R}^{n \times m}$ and $\mathcal{K} \subseteq \mathbb{R}^n$, define

$$\begin{cases} \mathcal{V}_0 := \mathcal{K}, \\ \mathcal{V}_{k+1} := \mathcal{K} \cap A^{-1}(\mathcal{V}_k + \operatorname{im} B), \quad k = 0, 1, 2, \dots \end{cases}$$

Invariant subspace algorithm for $\mathcal{S}^*(\mathcal{E},C,A)$

ISA Algorithm (Invariant subspace algorithm for controlled invariance)

Given
$$A \in \mathbb{R}^{n \times n}$$
, $B \in \mathbb{R}^{n \times m}$ and $\mathcal{K} \subseteq \mathbb{R}^n$, define

$$\begin{cases}
\mathcal{V}_0 := \mathcal{K}, \\
\mathcal{V}_{k+1} := \mathcal{K} \cap A^{-1}(\mathcal{V}_k + \operatorname{im} B), \quad k = 0, 1, 2, \dots
\end{cases}$$

CISA Algorithm (Invariant subspace algorithm for conditioned invariance)

Given $A \in \mathbb{R}^{n \times n}$, $C \in \mathbb{R}^{p \times n}$, and $\mathcal{E} \subseteq \mathbb{R}^n$, define

$$\begin{cases} S_0 = \mathcal{E}, \\ S_{\ell+1} = \mathcal{E} + A(S_{\ell} \cap \ker C), & \ell = 0, 1, 2, \dots \end{cases}$$

Recapitulation

Invariant subspace algorithm for $\mathcal{S}^*(\mathcal{E},C,A)$

ISA Algorithm (Invariant subspace algorithm for controlled invariance)

Given $A \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{n \times m}$ and $\mathcal{K} \subseteq \mathbb{R}^n$, define

$$\begin{cases} \mathcal{V}_0 := \mathcal{K}, \\ \mathcal{V}_{k+1} := \mathcal{K} \cap A^{-1}(\mathcal{V}_k + \operatorname{im} B), \quad k = 0, 1, 2, \dots \end{cases}$$

CISA Algorithm (Invariant subspace algorithm for conditioned invariance)

Given $A \in \mathbb{R}^{n \times n}$, $C \in \mathbb{R}^{p \times n}$, and $\mathcal{E} \subseteq \mathbb{R}^n$, define

$$\begin{cases} S_0 = \mathcal{E}, \\ S_{\ell+1} = \mathcal{E} + A(S_{\ell} \cap \ker C), & \ell = 0, 1, 2, \dots \end{cases}$$

Remark: $\mathcal{S}_{k+1}^{\perp} = \mathcal{E}^{\perp} \cap (A(\mathcal{S}_k \cap \ker C))^{\perp} = \mathcal{E}^{\perp} \cap A^{-T}(\mathcal{S}_k + \operatorname{im} C^T)$

Invariant subspace algorithm for $\mathcal{S}^*(\mathcal{E},C,A)$

ISA Algorithm (Invariant subspace algorithm for controlled invariance)

Given $A \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{n \times m}$ and $\mathcal{K} \subseteq \mathbb{R}^n$, define

$$\begin{cases}
\mathcal{V}_0 := \mathcal{K}, \\
\mathcal{V}_{k+1} := \mathcal{K} \cap A^{-1}(\mathcal{V}_k + \operatorname{im} B), \quad k = 0, 1, 2, \dots
\end{cases}$$

CISA Algorithm (Invariant subspace algorithm for conditioned invariance)

Given $A \in \mathbb{R}^{n \times n}$, $C \in \mathbb{R}^{p \times n}$, and $\mathcal{E} \subseteq \mathbb{R}^n$, define

$$\begin{cases} S_0 = \mathcal{E}, \\ S_{\ell+1} = \mathcal{E} + A(S_{\ell} \cap \ker C), & \ell = 0, 1, 2, \dots \end{cases}$$

Remark: $\mathcal{S}_{k+1}^{\perp} = \mathcal{E}^{\perp} \cap (A(\mathcal{S}_k \cap \ker C))^{\perp} = \mathcal{E}^{\perp} \cap A^{-T}(\mathcal{S}_k + \operatorname{im} C^T)$ (ISA for \mathcal{E}^{\perp} and (A^T, C^T)).

Invariant subspace algorithm for $\mathcal{S}^*(\mathcal{E},C,A)$

Theorem (4.10 Invariant subspace algorithm for controlled invariance)

Let $K \subseteq X$ and V_0, V_1, V_2, \ldots as defined in the Algorithm (ISA). Then

(i)
$$\mathcal{V}_0 \supseteq \mathcal{V}_1 \supseteq \mathcal{V}_2 \supseteq \cdots$$
, (non-increasing)

$$(ii)\mathcal{V}_k = \mathcal{V}_{k+1} \Rightarrow \mathcal{V}_k = \mathcal{V}_l, \ \forall l \geq k, \ \textit{(stable)}$$

(iii)
$$\exists\, k \leq \dim \mathcal{K}: \mathcal{V}_k = \mathcal{V}_{k+1}$$
, (stable index)

$$(iv)\mathcal{V}_k = \mathcal{V}_{k+1} \Rightarrow \mathcal{V}^*(\mathcal{K}) = \mathcal{V}_k$$
. (limit)

Invariant subspace algorithm for $\mathcal{S}^*(\mathcal{E},C,A)$

Theorem (4.10 Invariant subspace algorithm for controlled invariance)

Let $K \subseteq X$ and V_0, V_1, V_2, \ldots as defined in the Algorithm (ISA). Then

(i)
$$\mathcal{V}_0 \supseteq \mathcal{V}_1 \supseteq \mathcal{V}_2 \supseteq \cdots$$
, (non-increasing)

$$(ii)\mathcal{V}_k = \mathcal{V}_{k+1} \Rightarrow \mathcal{V}_k = \mathcal{V}_l, \ \forall l \geq k, \ \textit{(stable)}$$

(iii)
$$\exists k \leq \dim \mathcal{K} : \mathcal{V}_k = \mathcal{V}_{k+1}$$
, (stable index)

$$(iv)\mathcal{V}_k = \mathcal{V}_{k+1} \Rightarrow \mathcal{V}^*(\mathcal{K}) = \mathcal{V}_k$$
. (limit)

Theorem (5.8 Invariant subspace algorithm for controlled invariance)

Invariant subspace algorithm for $\mathcal{S}^*(\mathcal{E},C,A)$

Theorem (4.10 Invariant subspace algorithm for controlled invariance)

Let $K \subseteq X$ and V_0, V_1, V_2, \ldots as defined in the Algorithm (ISA). Then

(i)
$$\mathcal{V}_0 \supseteq \mathcal{V}_1 \supseteq \mathcal{V}_2 \supseteq \cdots$$
, (non-increasing)

$$(ii)\mathcal{V}_k = \mathcal{V}_{k+1} \Rightarrow \mathcal{V}_k = \mathcal{V}_l, \ \forall l \geq k, \ \textit{(stable)}$$

(iii)
$$\exists\, k \leq \dim \mathcal{K}: \mathcal{V}_k = \mathcal{V}_{k+1}$$
, (stable index)

$$(iv)\mathcal{V}_k = \mathcal{V}_{k+1} \Rightarrow \mathcal{V}^*(\mathcal{K}) = \mathcal{V}_k$$
. (limit)

Theorem (5.8 Invariant subspace algorithm for controlled invariance)

(i)
$$S_{\ell+1} \subseteq S$$
 for all ℓ .

Invariant subspace algorithm for $\mathcal{S}^*(\mathcal{E},C,A)$

Theorem (4.10 Invariant subspace algorithm for controlled invariance)

Let $K \subseteq X$ and V_0, V_1, V_2, \ldots as defined in the Algorithm (ISA). Then

(i)
$$\mathcal{V}_0 \supseteq \mathcal{V}_1 \supseteq \mathcal{V}_2 \supseteq \cdots$$
, (non-increasing)

$$(ii)\mathcal{V}_k = \mathcal{V}_{k+1} \Rightarrow \mathcal{V}_k = \mathcal{V}_l, \ \forall l \geq k, \ \textit{(stable)}$$

(iii)
$$\exists\, k \leq \dim \mathcal{K}: \mathcal{V}_k = \mathcal{V}_{k+1}$$
, (stable index)

$$(iv)\mathcal{V}_k = \mathcal{V}_{k+1} \Rightarrow \mathcal{V}^*(\mathcal{K}) = \mathcal{V}_k$$
. (limit)

Theorem (5.8 Invariant subspace algorithm for controlled invariance)

(i)
$$S_{\ell+1} \subseteq S$$
 for all ℓ . (non-decreasing)

Invariant subspace algorithm for $\mathcal{S}^*(\mathcal{E},C,A)$

Theorem (4.10 Invariant subspace algorithm for controlled invariance)

Let $K \subseteq X$ and V_0, V_1, V_2, \ldots as defined in the Algorithm (ISA). Then

(i)
$$\mathcal{V}_0 \supseteq \mathcal{V}_1 \supseteq \mathcal{V}_2 \supseteq \cdots$$
, (non-increasing)

$$(ii)\mathcal{V}_k = \mathcal{V}_{k+1} \Rightarrow \mathcal{V}_k = \mathcal{V}_l, \ \forall l \geq k, \ \textit{(stable)}$$

(iii)
$$\exists k \leq \dim \mathcal{K} : \mathcal{V}_k = \mathcal{V}_{k+1}$$
, (stable index)

$$(iv)\mathcal{V}_k = \mathcal{V}_{k+1} \Rightarrow \mathcal{V}^*(\mathcal{K}) = \mathcal{V}_k$$
. (limit)

Theorem (5.8 Invariant subspace algorithm for controlled invariance)

(i)
$$S_{\ell+1} \subseteq S$$
 for all ℓ . (non-decreasing)

(ii)
$$S_k = S_{k+1} \Rightarrow S_\ell = S_k$$
 for all $\ell \geq 0$.

Invariant subspace algorithm for $\mathcal{S}^*(\mathcal{E},C,A)$

Theorem (4.10 Invariant subspace algorithm for controlled invariance)

Let $K \subseteq X$ and V_0, V_1, V_2, \ldots as defined in the Algorithm (ISA). Then

(i)
$$\mathcal{V}_0 \supseteq \mathcal{V}_1 \supseteq \mathcal{V}_2 \supseteq \cdots$$
, (non-increasing)

$$(ii)\mathcal{V}_k = \mathcal{V}_{k+1} \Rightarrow \mathcal{V}_k = \mathcal{V}_l, \ \forall l \geq k, \ \textit{(stable)}$$

(iii)
$$\exists k \leq \dim \mathcal{K} : \mathcal{V}_k = \mathcal{V}_{k+1}$$
, (stable index)

$$(iv)\mathcal{V}_k = \mathcal{V}_{k+1} \Rightarrow \mathcal{V}^*(\mathcal{K}) = \mathcal{V}_k$$
. (limit)

Theorem (5.8 Invariant subspace algorithm for controlled invariance)

(i)
$$S_{\ell+1} \subseteq S$$
 for all ℓ . (non-decreasing)

(ii)
$$S_k = S_{k+1} \Rightarrow S_\ell = S_k$$
 for all $\ell \ge 0$. (stable)

Recapitulation

Invariant subspace algorithm for $\mathcal{S}^*(\mathcal{E},C,A)$

Theorem (4.10 Invariant subspace algorithm for controlled invariance)

Let $K \subseteq X$ and V_0, V_1, V_2, \ldots as defined in the Algorithm (ISA). Then

(i)
$$\mathcal{V}_0 \supseteq \mathcal{V}_1 \supseteq \mathcal{V}_2 \supseteq \cdots$$
, (non-increasing)

$$(ii)\mathcal{V}_k = \mathcal{V}_{k+1} \Rightarrow \mathcal{V}_k = \mathcal{V}_l, \ \forall l \geq k, \ \textit{(stable)}$$

(iii)
$$\exists k \leq \dim \mathcal{K} : \mathcal{V}_k = \mathcal{V}_{k+1}$$
, (stable index)

$$(iv)\mathcal{V}_k = \mathcal{V}_{k+1} \Rightarrow \mathcal{V}^*(\mathcal{K}) = \mathcal{V}_k$$
. (limit)

Theorem (5.8 Invariant subspace algorithm for controlled invariance)

Let S_{ℓ} be defined by the Algorithm (CISA). Then, we have:

(i)
$$\mathcal{S}_{\ell+1} \subseteq \mathcal{S}$$
 for all ℓ . (non-decreasing)

(ii)
$$S_k = S_{k+1} \Rightarrow S_\ell = S_k$$
 for all $\ell \ge 0$. (stable)

(iii) There exists k with $k \leq n - \dim(\mathcal{E})$ such that $\mathcal{S}_k = \mathcal{S}_{k+1}$.

Invariant subspace algorithm for $\mathcal{S}^*(\mathcal{E},C,A)$

Theorem (4.10 Invariant subspace algorithm for controlled invariance)

Let $K \subseteq X$ and V_0, V_1, V_2, \ldots as defined in the Algorithm (ISA). Then

(i)
$$\mathcal{V}_0 \supseteq \mathcal{V}_1 \supseteq \mathcal{V}_2 \supseteq \cdots$$
, (non-increasing)

$$(ii)\mathcal{V}_k = \mathcal{V}_{k+1} \Rightarrow \mathcal{V}_k = \mathcal{V}_l, \ \forall l \geq k, \ \textit{(stable)}$$

(iii)
$$\exists\, k \leq \dim \mathcal{K}: \mathcal{V}_k = \mathcal{V}_{k+1}$$
, (stable index)

$$(iv)\mathcal{V}_k = \mathcal{V}_{k+1} \Rightarrow \mathcal{V}^*(\mathcal{K}) = \mathcal{V}_k$$
. (limit)

Theorem (5.8 Invariant subspace algorithm for controlled invariance)

Let S_{ℓ} be defined by the Algorithm (CISA). Then, we have:

(i)
$$S_{\ell+1} \subseteq S$$
 for all ℓ . (non-decreasing)

(ii)
$$S_k = S_{k+1} \Rightarrow S_\ell = S_k$$
 for all $\ell \ge 0$. (stable)

(iii) There exists k with $k \le n - \dim(\mathcal{E})$ such that $\mathcal{S}_k = \mathcal{S}_{k+1}$. (stable index)

Invariant subspace algorithm for $\mathcal{S}^*(\mathcal{E},C,A)$

Theorem (4.10 Invariant subspace algorithm for controlled invariance)

Let $K \subseteq X$ and V_0, V_1, V_2, \ldots as defined in the Algorithm (ISA). Then

(i)
$$\mathcal{V}_0 \supseteq \mathcal{V}_1 \supseteq \mathcal{V}_2 \supseteq \cdots$$
, (non-increasing)

$$(ii)\mathcal{V}_k = \mathcal{V}_{k+1} \Rightarrow \mathcal{V}_k = \mathcal{V}_l, \ \forall l \geq k, \ \textit{(stable)}$$

(iii)
$$\exists \, k \leq \dim \mathcal{K} : \mathcal{V}_k = \mathcal{V}_{k+1}$$
, (stable index)

$$(iv)\mathcal{V}_k = \mathcal{V}_{k+1} \Rightarrow \mathcal{V}^*(\mathcal{K}) = \mathcal{V}_k$$
. (limit)

Theorem (5.8 Invariant subspace algorithm for controlled invariance)

Let S_{ℓ} be defined by the Algorithm (CISA). Then, we have:

(i)
$$S_{\ell+1} \subseteq S$$
 for all ℓ . (non-decreasing)

(ii)
$$S_k = S_{k+1} \Rightarrow S_\ell = S_k$$
 for all $\ell \ge 0$. (stable)

(iii) There exists k with $k \leq n - \dim(\mathcal{E})$ such that $\mathcal{S}_k = \mathcal{S}_{k+1}$. (stable index)

$$(iv)S_k = S_{k+1} \Rightarrow S^*(\mathcal{E}) = S_k.$$

Invariant subspace algorithm for $\mathcal{S}^*(\mathcal{E},C,A)$

Theorem (4.10 Invariant subspace algorithm for controlled invariance)

Let $K \subseteq X$ and V_0, V_1, V_2, \ldots as defined in the Algorithm (ISA). Then

(i)
$$\mathcal{V}_0 \supseteq \mathcal{V}_1 \supseteq \mathcal{V}_2 \supseteq \cdots$$
, (non-increasing)

$$(ii)\mathcal{V}_k = \mathcal{V}_{k+1} \Rightarrow \mathcal{V}_k = \mathcal{V}_l, \ \forall l \geq k, \ \textit{(stable)}$$

(iii)
$$\exists\, k \leq \dim \mathcal{K}: \mathcal{V}_k = \mathcal{V}_{k+1}$$
, (stable index)

$$(iv)\mathcal{V}_k = \mathcal{V}_{k+1} \Rightarrow \mathcal{V}^*(\mathcal{K}) = \mathcal{V}_k$$
. (limit)

Theorem (5.8 Invariant subspace algorithm for controlled invariance)

Let S_{ℓ} be defined by the Algorithm (CISA). Then, we have:

(i)
$$\mathcal{S}_{\ell+1} \subseteq \mathcal{S}$$
 for all ℓ . (non-decreasing)

(ii)
$$S_k = S_{k+1} \Rightarrow S_\ell = S_k$$
 for all $\ell \ge 0$. (stable)

(iii) There exists k with $k \leq n - \dim(\mathcal{E})$ such that $\mathcal{S}_k = \mathcal{S}_{k+1}$. (stable index)

$$(iv)S_k = S_{k+1} \Rightarrow S^*(\mathcal{E}) = S_k$$
. (limit)

controlled and conditioned invariant subspaces

controlled and conditioned invariant subspaces

$$\Sigma = (A, B) : \dot{x}(t) = Ax(t) + Bu(t)$$

$${\mathcal V}$$
 is controlled invariant for $\Sigma=(A,B)$

controlled and conditioned invariant subspaces

$$\Sigma = (A, B) : \dot{x}(t) = Ax(t) + Bu(t)$$

$${\mathcal V}$$
 is controlled invariant for $\Sigma=(A,B)$

 ${\mathcal V}$ is (A,B) -invariant

controlled and conditioned invariant subspaces

$$\Sigma = (A, B) : \dot{x}(t) = Ax(t) + Bu(t)$$

$${\mathcal V}$$
 is controlled invariant for $\Sigma=(A,B)$

 \mathcal{V} is (A,B) -invariant

$$\downarrow$$

$$\exists F \text{ such that } (A+BF)\mathcal{V} \subseteq \mathcal{V}$$

controlled and conditioned invariant subspaces

$$\Sigma = (A, B) : \dot{x}(t) = Ax(t) + Bu(t)$$

$$\mathcal V$$
 is controlled invariant for $\Sigma=(A,B)$

$$\mathcal V$$
 is (A,B) -invariant

Recapitulation

$$\updownarrow$$

$$\exists F \text{ such that } (A+BF)\mathcal{V} \subseteq \mathcal{V}$$

$$AV \subseteq V + \operatorname{im} B$$

Recapitulation

controlled and conditioned invariant subspaces

$$\Sigma = (A, B) : \dot{x}(t) = Ax(t) + Bu(t)$$

$${\mathcal V}$$
 is controlled invariant for $\Sigma=(A,B)$

$$\downarrow$$

$$\mathcal V$$
 is (A,B) -invariant

$$\exists F \text{ such that } (A+BF)\mathcal{V} \subseteq \mathcal{V}$$

$$AV \subseteq V + \operatorname{im} B$$

 $\mathcal{V}^*(\mathcal{K})$ is the largest controlled invariant subspace contained in ${\cal K}$

$$\Sigma = (A, B) : \dot{x}(t) = Ax(t) + Bu(t)$$

$$\Sigma = (C, A) : \dot{x}(t) = Ax(t) \quad y(t) = Cx(t)$$

$${\mathcal V}$$
 is controlled invariant for $\Sigma=(A,B)$

 ${\mathcal S}$ is conditioned invariant for $\Sigma=(C,A)$

$$\mathcal{V}$$
 is (A,B) -invariant

Recapitulation

$$\exists F \text{ such that } (A+BF)\mathcal{V} \subseteq \mathcal{V}$$

$$A\mathcal{V}\subseteq\mathcal{V}+\operatorname{im}B$$

 $\mathcal{V}^*(\mathcal{K})$ is the largest controlled invariant subspace contained in \mathcal{K}

$$\Sigma = (A, B) : \dot{x}(t) = Ax(t) + Bu(t)$$

$$\mathcal{V}$$
 is controlled invariant for $\Sigma = (A, B)$

$$\downarrow \! \downarrow$$

 ${\mathcal V}$ is (A,B) -invariant

 $\exists F \text{ such that } (A+BF)\mathcal{V} \subseteq \mathcal{V}$

$$A\mathcal{V}\subseteq\mathcal{V}+\mathrm{im}\,B$$

 $\mathcal{V}^*(\mathcal{K})$ is the largest controlled invariant subspace contained in \mathcal{K}

$$\Sigma = (C, A) : \dot{x}(t) = Ax(t) \quad y(t) = Cx(t)$$

$$S$$
 is conditioned invariant for $\Sigma = (C, A)$

 ${\mathcal S}$ is (C,A) -invariant

$$\Sigma = (A, B) : \dot{x}(t) = Ax(t) + Bu(t)$$

$${\mathcal V}$$
 is controlled invariant for $\Sigma=(A,B)$

 \mathcal{V} is (A,B) -invariant

$$\psi$$

$$\exists F \text{ such that } (A+BF)\mathcal{V} \subseteq \mathcal{V}$$

$$AV \subseteq V + \operatorname{im} B$$

 $\mathcal{V}^*(\mathcal{K})$ is the largest controlled invariant subspace contained in ${\cal K}$

$$\Sigma = (C, A) : \dot{x}(t) = Ax(t) \quad y(t) = Cx(t)$$

$$\mathcal{S} \text{ is conditioned invariant for } \Sigma = (C,A)$$

$${\mathcal S}$$
 is (C,A) -invariant

$$\exists G \text{ such that } (A+GC)\mathcal{S} \subseteq \mathcal{S}$$

$$\Sigma = (A, B) : \dot{x}(t) = Ax(t) + Bu(t)$$

$${\mathcal V}$$
 is controlled invariant for $\Sigma=(A,B)$

$${\mathcal V}$$
 is (A,B) -invariant

Recapitulation

$$\exists F \text{ such that } (A+BF)\mathcal{V} \subseteq \mathcal{V}$$

$$A\mathcal{V}\subseteq\mathcal{V}+\mathrm{im}\,B$$

$$\mathcal{V}^*(\mathcal{K})$$
 is the largest controlled invariant subspace contained in \mathcal{K}

$$\Sigma = (C, A) : \dot{x}(t) = Ax(t) \quad y(t) = Cx(t)$$

$${\mathcal S}$$
 is conditioned invariant for $\Sigma=(C,A)$

$${\mathcal S}$$
 is (C,A) -invariant

$$\exists G \text{ such that } (A+GC)\mathcal{S} \subseteq \mathcal{S}$$

$$A(\mathcal{S} \cap \ker C) \subseteq \mathcal{S}$$

$$\Sigma = (A, B) : \dot{x}(t) = Ax(t) + Bu(t)$$

$${\mathcal V}$$
 is controlled invariant for $\Sigma=(A,B)$

$$\ensuremath{\mathcal{V}}$$
 is (A,B) -invariant

$$\exists F \text{ such that } (A+BF)\mathcal{V} \subseteq \mathcal{V}$$

$$\updownarrow$$

$$A\mathcal{V}\subseteq\mathcal{V}+\operatorname{im}B$$

$$\mathcal{V}^*(\mathcal{K})$$
 is the largest controlled invariant subspace contained in \mathcal{K}

$$\Sigma = (C, A) : \dot{x}(t) = Ax(t) \quad y(t) = Cx(t)$$

$${\mathcal S}$$
 is conditioned invariant for $\Sigma=(C,A)$

$${\mathcal S}$$
 is (C,A) -invariant

$$\exists G \text{ such that } (A+GC)\mathcal{S} \subseteq \mathcal{S}$$

$$A(\mathcal{S} \cap \ker C) \subseteq \mathcal{S}$$

$$\mathcal{S}^*(\mathcal{E})$$
 is the largest conditioned invariant subspace containing \mathcal{E}

university of groningen

Consider a system $\Sigma = (C, A, B)$ with $x(t) \in \mathcal{X}$:

$$\Sigma : \left\{ \begin{array}{l} \dot{x} = Ax + Bu \\ y = Cx, \end{array} \right.$$

Consider a system $\Sigma = (C, A, B)$ with $x(t) \in \mathcal{X}$:

$$\Sigma : \left\{ \begin{array}{l} \dot{x} = Ax + Bu \\ y = Cx, \end{array} \right.$$

and a dynamic controller $\Gamma = (M, K, L, N)$ with $w(t) \in \mathcal{W}$:

Invariant subspace algorithm for $S^*(\mathcal{E}, C, A)$

$$\Gamma: \left\{ \begin{array}{l} \dot{w} = Kw + Ly \\ u = Mw + Ny. \end{array} \right.$$

/ university of groningen

6.1 (C, A, B)-pairs

Consider a system $\Sigma = (C, A, B)$ with $x(t) \in \mathcal{X}$:

$$\Sigma : \left\{ \begin{array}{l} \dot{x} = Ax + Bu \\ y = Cx, \end{array} \right.$$

and a dynamic controller $\Gamma = (M, K, L, N)$ with $w(t) \in \mathcal{W}$:

Invariant subspace algorithm for $S^*(\mathcal{E}, C, A)$

$$\Gamma: \left\{ \begin{array}{l} \dot{w} = Kw + Ly \\ u = Mw + Ny. \end{array} \right.$$

The closed loop system is $\Sigma_e = (C_e, A_e)$ with $\begin{bmatrix} x \\ w \end{bmatrix} \in \mathcal{X} \times \mathcal{W}$:

$$\Sigma_e : \left\{ \begin{array}{c} \begin{bmatrix} \dot{x} \\ \dot{w} \end{bmatrix} = \begin{bmatrix} A + BNC & BM \\ LC & K \end{bmatrix} \begin{bmatrix} x \\ w \end{bmatrix} \\ y_e = \begin{bmatrix} C & 0 \end{bmatrix} \begin{bmatrix} x \\ w \end{bmatrix} \right.$$

6.1 (C, A, B)-pairs

Definition (6.1)

A pair of subspace $(\mathcal{S},\mathcal{V})$ of \mathcal{X} is called (C,A,B)-pair if

6.1 (C, A, B)-pairs

Definition (6.1)

university of groningen

A pair of subspace $(\mathcal{S}, \mathcal{V})$ of \mathcal{X} is called (C, A, B)-pair if $\mathcal{S}\subseteq\mathcal{V}$;

6.1 (C, A, B)-pairs

Definition (6.1)

A pair of subspace $(\mathcal{S}, \mathcal{V})$ of \mathcal{X} is called (C, A, B)-pair if

 $\mathcal{S} \subseteq \mathcal{V}$;

/ university of groningen

 \mathcal{S} is a (C,A)-invariant subspace;

Definition (6.1)

A pair of subspace $(\mathcal{S},\mathcal{V})$ of \mathcal{X} is called (C,A,B)-pair if

- $\mathcal{S}\subseteq\mathcal{V};$
- $ightarrow \mathcal{S}$ is a (C,A)-invariant subspace;
- $\mathcal V$ is an (A.B)-invariant subspace.

Recapitulation

Definition (6.1)

A pair of subspace $(\mathcal{S}, \mathcal{V})$ of \mathcal{X} is called (C, A, B)-pair if

- $\rightarrow \mathcal{S} \subseteq \mathcal{V}$;
- \mathcal{S} is a (C, A)-invariant subspace;
- $\mathcal V$ is an (A.B)-invariant subspace.

Theorem (6.2)

Consider a subspace $V_e \subseteq \mathcal{X} \times \mathcal{W}$ and let

$$p(\mathcal{V}_e) := \{ x \in \mathcal{X} \mid \exists w \in \mathcal{W} : \begin{bmatrix} x \\ w \end{bmatrix} \in \mathcal{V}_e \} \text{ (projection)}$$
$$i(\mathcal{V}_e) := \{ x \in \mathcal{X} \mid \begin{bmatrix} x \\ 0 \end{bmatrix} \in \mathcal{V}_e \} \text{. (intersection)}$$

If
$$V_e$$
 is $A_e = \begin{bmatrix} A + BNC & BM \\ LC & K \end{bmatrix}$ -inv. then $(i(V_e), p(V_e))$ is a (C, A, B) -pair.

Theorem (6.2)

Consider a subspace $V_e \subseteq \mathcal{X} \times \mathcal{W}$ and let

$$\underline{p(\mathcal{V}_e)} := \left\{ x \in \mathcal{X} \mid \exists w \in \mathcal{W} : \left[\begin{smallmatrix} x \\ w \end{smallmatrix} \right] \in \mathcal{V}_e \right\}, \qquad i(\mathcal{V}_e) := \left\{ x \in \mathcal{X} \mid \left[\begin{smallmatrix} x \\ 0 \end{smallmatrix} \right] \in \mathcal{V}_e \right\}.$$

If V_e is A_e -inv. then $(i(V_e), p(V_e))$ is a (C, A, B)-pair.

Proof.

Theorem (6.2)

Consider a subspace $V_e \subseteq \mathcal{X} \times \mathcal{W}$ and let

$$\underline{p(\mathcal{V}_e)} := \left\{ x \in \mathcal{X} \mid \exists w \in \mathcal{W} : \left[\begin{smallmatrix} x \\ w \end{smallmatrix} \right] \in \mathcal{V}_e \right\}, \qquad i(\mathcal{V}_e) := \left\{ x \in \mathcal{X} \mid \left[\begin{smallmatrix} x \\ 0 \end{smallmatrix} \right] \in \mathcal{V}_e \right\}.$$

If V_e is A_e -inv. then $(i(V_e), p(V_e))$ is a (C, A, B)-pair.

Invariant subspace algorithm for $S^*(\mathcal{E}, C, A)$

Proof.

Clearly, $i(\mathcal{V}_e) \subseteq p(\mathcal{V}_e)$. Let $x \in i(\mathcal{V}_e) \cap \ker C$.

Theorem (6.2)

Consider a subspace $V_e \subseteq \mathcal{X} \times \mathcal{W}$ and let

$$\underline{p(\mathcal{V}_e)} := \left\{ x \in \mathcal{X} \mid \exists w \in \mathcal{W} : \left[\begin{smallmatrix} x \\ w \end{smallmatrix} \right] \in \mathcal{V}_e \right\}, \qquad \underline{i(\mathcal{V}_e)} := \left\{ x \in \mathcal{X} \mid \left[\begin{smallmatrix} x \\ 0 \end{smallmatrix} \right] \in \mathcal{V}_e \right\}.$$

If V_e is A_e -inv. then $(i(V_e), p(V_e))$ is a (C, A, B)-pair.

Invariant subspace algorithm for $S^*(\mathcal{E}, C, A)$

Proof.

Clearly, $i(\mathcal{V}_e) \subseteq p(\mathcal{V}_e)$. Let $x \in i(\mathcal{V}_e) \cap \ker C$. Then

$$A_e \begin{bmatrix} x \\ 0 \end{bmatrix} = \begin{bmatrix} Ax + BNCx \\ LCx \end{bmatrix} = \begin{bmatrix} Ax \\ 0 \end{bmatrix} \in \mathcal{V}_e$$

Theorem (6.2)

Consider a subspace $V_e \subseteq \mathcal{X} \times \mathcal{W}$ and let

$$\underline{p(\mathcal{V}_e)} := \left\{ x \in \mathcal{X} \mid \exists w \in \mathcal{W} : \left[\begin{smallmatrix} x \\ w \end{smallmatrix} \right] \in \mathcal{V}_e \right\}, \qquad \underline{i(\mathcal{V}_e)} := \left\{ x \in \mathcal{X} \mid \left[\begin{smallmatrix} x \\ 0 \end{smallmatrix} \right] \in \mathcal{V}_e \right\}.$$

If V_e is A_e -inv. then $(i(V_e), p(V_e))$ is a (C, A, B)-pair.

Proof.

university of groningen

Clearly, $i(\mathcal{V}_e) \subseteq p(\mathcal{V}_e)$. Let $x \in i(\mathcal{V}_e) \cap \ker C$. Then

$$A_e \begin{bmatrix} x \\ 0 \end{bmatrix} = \begin{bmatrix} Ax + BNCx \\ LCx \end{bmatrix} = \begin{bmatrix} Ax \\ 0 \end{bmatrix} \in \mathcal{V}_e \Rightarrow Ax \in i(\mathcal{V}_e)$$

Invariant subspace algorithm for $S^*(\mathcal{E}, C, A)$

Theorem (6.2)

Consider a subspace $V_e \subseteq \mathcal{X} \times \mathcal{W}$ and let

$$\underline{p(\mathcal{V}_e)} := \left\{ x \in \mathcal{X} \mid \exists w \in \mathcal{W} : \left[\begin{smallmatrix} x \\ w \end{smallmatrix} \right] \in \mathcal{V}_e \right\}, \qquad \underline{i(\mathcal{V}_e)} := \left\{ x \in \mathcal{X} \mid \left[\begin{smallmatrix} x \\ 0 \end{smallmatrix} \right] \in \mathcal{V}_e \right\}.$$

If V_e is A_e -inv. then $(i(V_e), p(V_e))$ is a (C, A, B)-pair.

Invariant subspace algorithm for $S^*(\mathcal{E}, C, A)$

Proof.

university of groningen

Clearly, $i(\mathcal{V}_e) \subseteq p(\mathcal{V}_e)$. Let $x \in i(\mathcal{V}_e) \cap \ker C$. Then

$$A_e \begin{bmatrix} x \\ 0 \end{bmatrix} = \begin{bmatrix} Ax + BNCx \\ LCx \end{bmatrix} = \begin{bmatrix} Ax \\ 0 \end{bmatrix} \in \mathcal{V}_e \Rightarrow Ax \in i(\mathcal{V}_e) \Rightarrow i(\mathcal{V}_e) \text{ is } (C, A)\text{-inv}$$

Theorem (6.2)

Consider a subspace $V_e \subseteq \mathcal{X} \times \mathcal{W}$ and let

$$\underline{p(\mathcal{V}_e)} := \left\{ x \in \mathcal{X} \mid \exists w \in \mathcal{W} : \begin{bmatrix} x \\ w \end{bmatrix} \in \mathcal{V}_e \right\}, \qquad i(\mathcal{V}_e) := \left\{ x \in \mathcal{X} \mid \begin{bmatrix} x \\ 0 \end{bmatrix} \in \mathcal{V}_e \right\}.$$

If V_e is A_e -inv. then $(i(V_e), p(V_e))$ is a (C, A, B)-pair.

Proof.

Clearly, $i(\mathcal{V}_e) \subseteq p(\mathcal{V}_e)$. Let $x \in i(\mathcal{V}_e) \cap \ker C$. Then

$$A_e \begin{bmatrix} x \\ 0 \end{bmatrix} = \begin{bmatrix} Ax + BNCx \\ LCx \end{bmatrix} = \begin{bmatrix} Ax \\ 0 \end{bmatrix} \in \mathcal{V}_e \Rightarrow Ax \in i(\mathcal{V}_e) \Rightarrow i(\mathcal{V}_e) \text{ is } (C, A)\text{-inv}$$

For $x \in p(\mathcal{V}_e)$, choose $w \in \mathcal{W}$ s.t. $\begin{bmatrix} x \\ w \end{bmatrix} \in \mathcal{V}_e$.

Theorem (6.2)

Consider a subspace $V_e \subseteq \mathcal{X} \times \mathcal{W}$ and let

$$p(\mathcal{V}_e) := \{ x \in \mathcal{X} \mid \exists w \in \mathcal{W} : \begin{bmatrix} x \\ w \end{bmatrix} \in \mathcal{V}_e \}, \qquad i(\mathcal{V}_e) := \{ x \in \mathcal{X} \mid \begin{bmatrix} x \\ 0 \end{bmatrix} \in \mathcal{V}_e \}.$$

If V_e is A_e -inv. then $(i(V_e), p(V_e))$ is a (C, A, B)-pair.

Proof.

Clearly, $i(\mathcal{V}_e) \subseteq p(\mathcal{V}_e)$. Let $x \in i(\mathcal{V}_e) \cap \ker C$. Then

$$A_e \begin{bmatrix} x \\ 0 \end{bmatrix} = \begin{bmatrix} Ax + BNCx \\ LCx \end{bmatrix} = \begin{bmatrix} Ax \\ 0 \end{bmatrix} \in \mathcal{V}_e \Rightarrow Ax \in i(\mathcal{V}_e) \Rightarrow i(\mathcal{V}_e) \text{ is } (C, A)\text{-inv}$$

For $x \in p(\mathcal{V}_e)$, choose $w \in \mathcal{W}$ s.t. $\begin{bmatrix} x \\ w \end{bmatrix} \in \mathcal{V}_e$. Then $A_e \begin{bmatrix} x \\ w \end{bmatrix} = \begin{bmatrix} Ax + B(NCx + Mw) \\ LCx + Kw \end{bmatrix} \in \mathcal{V}_e$

Theorem (6.2)

Consider a subspace $V_e \subseteq \mathcal{X} \times \mathcal{W}$ and let

$$p(\mathcal{V}_e) := \left\{ x \in \mathcal{X} \mid \exists w \in \mathcal{W} : \begin{bmatrix} x \\ w \end{bmatrix} \in \mathcal{V}_e \right\}, \qquad i(\mathcal{V}_e) := \left\{ x \in \mathcal{X} \mid \begin{bmatrix} x \\ 0 \end{bmatrix} \in \mathcal{V}_e \right\}.$$

If V_e is A_e -inv. then $(i(V_e), p(V_e))$ is a (C, A, B)-pair.

Proof.

Clearly, $i(\mathcal{V}_e) \subseteq p(\mathcal{V}_e)$. Let $x \in i(\mathcal{V}_e) \cap \ker C$. Then

$$A_e \begin{bmatrix} x \\ 0 \end{bmatrix} = \begin{bmatrix} Ax + BNCx \\ LCx \end{bmatrix} = \begin{bmatrix} Ax \\ 0 \end{bmatrix} \in \mathcal{V}_e \Rightarrow Ax \in i(\mathcal{V}_e) \Rightarrow i(\mathcal{V}_e) \text{ is } (C,A)\text{-inv}$$

For
$$x \in p(\mathcal{V}_e)$$
, choose $w \in \mathcal{W}$ s.t. $\begin{bmatrix} x \\ w \end{bmatrix} \in \mathcal{V}_e$. Then $A_e \begin{bmatrix} x \\ w \end{bmatrix} = \begin{bmatrix} Ax + B(NCx + Mw) \\ LCx + Kw \end{bmatrix} \in \mathcal{V}_e$

Theorem (6.2)

Consider a subspace $V_e \subseteq \mathcal{X} \times \mathcal{W}$ and let

$$p(\mathcal{V}_e) := \{ x \in \mathcal{X} \mid \exists w \in \mathcal{W} : \begin{bmatrix} x \\ w \end{bmatrix} \in \mathcal{V}_e \}, \qquad i(\mathcal{V}_e) := \{ x \in \mathcal{X} \mid \begin{bmatrix} x \\ 0 \end{bmatrix} \in \mathcal{V}_e \}.$$

If V_e is A_e -inv. then $(i(V_e), p(V_e))$ is a (C, A, B)-pair.

Proof.

Clearly, $i(\mathcal{V}_e) \subseteq p(\mathcal{V}_e)$. Let $x \in i(\mathcal{V}_e) \cap \ker C$. Then

Clearly,
$$\iota(v_e) \subseteq p(v_e)$$
. Let $\iota(v_e) \cap \text{Ref } O$. Then

 $A_e \begin{bmatrix} x \\ 0 \end{bmatrix} = \begin{bmatrix} Ax + BNCx \\ LCx \end{bmatrix} = \begin{bmatrix} Ax \\ 0 \end{bmatrix} \in \mathcal{V}_e \Rightarrow Ax \in i(\mathcal{V}_e) \Rightarrow i(\mathcal{V}_e) \text{ is } (C,A)\text{-inv}$

For
$$x \in p(\mathcal{V}_e)$$
, choose $w \in \mathcal{W}$ s.t. $\begin{bmatrix} x \\ w \end{bmatrix} \in \mathcal{V}_e$. Then $A_e \begin{bmatrix} x \\ w \end{bmatrix} = \begin{bmatrix} Ax + B(NCx + Mw) \\ LCx + Kw \end{bmatrix} \in \mathcal{V}_e$

 $\Rightarrow Ax + B(NCx + Mw) \in p(\mathcal{V}_e) \Rightarrow Ax \in p(\mathcal{V}_e) + \text{im } B \Rightarrow p(\mathcal{V}_e) \text{ is } (A, B) \text{-inv.}$

Stephan Trenn, Yahao Chen (Jan C. Willems Center, U Groningen)

Lemma (6.3)

If (S, V) is a (C, A, B)-pair, then \exists linear $\mathbb{N} : \mathcal{Y} \to \mathcal{U}$ s.t. $(A + B\mathbb{N}C)S \subseteq \mathcal{V}$.

Proof.

Lemma (6.3)

If $(\mathcal{S}, \mathcal{V})$ is a (C, A, B)-pair, then \exists linear $\mathbb{N}: \mathcal{Y} \to \mathcal{U}$ s.t. $(A + B \mathbb{N} C) \mathcal{S} \subseteq \mathcal{V}$.

Proof.

Let q_1, q_2, \ldots, q_k a basis of S s.t. q_1, \ldots, q_l is a basis of $S \cap \ker C$ $(l \leq k)$. Then

Lemma (6.3)

If (S, V) is a (C, A, B)-pair, then \exists linear $\mathbb{N} : \mathcal{Y} \to \mathcal{U}$ s.t. $(A + BNC)S \subseteq \mathcal{V}$.

Proof.

Let q_1, q_2, \ldots, q_k a basis of S s.t. q_1, \ldots, q_l is a basis of $S \cap \ker C$ $(l \leq k)$. Then $S \subseteq V$ and V is (A, B)-inv. $\Rightarrow Aq_i = v_i + Bu_i$, for $v_i \in V$ and $u_i \in U$, for i = 1, ..., k.

Lemma (6.3)

If $(\mathcal{S}, \mathcal{V})$ is a (C, A, B)-pair, then \exists linear $\mathbb{N}: \mathcal{Y} \to \mathcal{U}$ s.t. $(A + B \mathbb{N} C) \mathcal{S} \subseteq \mathcal{V}$.

Proof.

Let q_1,q_2,\ldots,q_k a basis of \mathcal{S} s.t. q_1,\ldots,q_l is a basis of $\mathcal{S}\cap\ker C$ $(l\leq k)$. Then $\mathcal{S}\subseteq\mathcal{V}$ and \mathcal{V} is (A,B)-inv. $\Rightarrow Aq_i=v_i+Bu_i$, for $v_i\in\mathcal{V}$ and $u_i\in\mathcal{U}$, for $i=1,\ldots,k$. We claim that $Cq_{l+1},Cq_{l+2},\ldots,Cq_k$ are linear independent.

(12 / 18

Lemma (6.3)

If (S, \mathcal{V}) is a (C, A, B)-pair, then \exists linear $\mathbb{N}: \mathcal{Y} \to \mathcal{U}$ s.t. $(A + B\mathbb{N}C)S \subseteq \mathcal{V}$.

Proof.

Let q_1, q_2, \ldots, q_k a basis of S s.t. q_1, \ldots, q_l is a basis of $S \cap \ker C$ $(l \leq k)$. Then $\mathcal{S} \subseteq \mathcal{V}$ and \mathcal{V} is (A, B)-inv. $\Rightarrow Aq_i = v_i + Bu_i$, for $v_i \in \mathcal{V}$ and $u_i \in \mathcal{U}$, for $i = 1, \dots, k$.

We claim that $Cq_{l+1}, Cq_{l+2}, \ldots, Cq_k$ are linear independent. Suppose \exists non-zero $\alpha_{l+1},\ldots,\alpha_k$ s.t.

$$\alpha_{l+1}Cq_{l+1} + \alpha_{l+2}Cq_{l+2} + \dots + \alpha_kCq_k = 0.$$

Lemma (6.3)

If (S, \mathcal{V}) is a (C, A, B)-pair, then \exists linear $\mathbb{N}: \mathcal{Y} \to \mathcal{U}$ s.t. $(A + B\mathbb{N}C)S \subseteq \mathcal{V}$.

Proof.

Let q_1, q_2, \ldots, q_k a basis of S s.t. q_1, \ldots, q_l is a basis of $S \cap \ker C$ $(l \leq k)$. Then $\mathcal{S} \subseteq \mathcal{V}$ and \mathcal{V} is (A, B)-inv. $\Rightarrow Aq_i = v_i + Bu_i$, for $v_i \in \mathcal{V}$ and $u_i \in \mathcal{U}$, for $i = 1, \dots, k$.

We claim that $Cq_{l+1}, Cq_{l+2}, \ldots, Cq_k$ are linear independent. Suppose \exists non-zero $\alpha_{l+1},\ldots,\alpha_k$ s.t.

$$\alpha_{l+1}Cq_{l+1} + \alpha_{l+2}Cq_{l+2} + \dots + \alpha_kCq_k = 0.$$

Thus $\tilde{q} := \alpha_{l+1}q_{l+1} + \alpha_{l+2}q_{l+2} + \cdots + \alpha_kq_k \in \mathcal{S} \cap \ker C$.

Lemma (6.3)

If $(\mathcal{S}, \mathcal{V})$ is a (C, A, B)-pair, then \exists linear $\mathbb{N}: \mathcal{Y} \to \mathcal{U}$ s.t. $(A + B \mathbb{N} C) \mathcal{S} \subseteq \mathcal{V}$.

Proof.

Let q_1, q_2, \ldots, q_k a basis of \mathcal{S} s.t. q_1, \ldots, q_l is a basis of $\mathcal{S} \cap \ker C$ $(l \leq k)$. Then $\mathcal{S} \subseteq \mathcal{V}$ and \mathcal{V} is (A, B)-inv. $\Rightarrow Aq_i = v_i + Bu_i$, for $v_i \in \mathcal{V}$ and $u_i \in \mathcal{U}$, for $i = 1, \ldots, k$.

We claim that $Cq_{l+1}, Cq_{l+2}, \ldots, Cq_k$ are linear independent. Suppose \exists non-zero $\alpha_{l+1}, \ldots, \alpha_k$ s.t.

$$\alpha_{l+1}Cq_{l+1} + \alpha_{l+2}Cq_{l+2} + \dots + \alpha_kCq_k = 0.$$

Thus $\tilde{q}:=\alpha_{l+1}q_{l+1}+\alpha_{l+2}q_{l+2}+\cdots+\alpha_kq_k\in\mathcal{S}\cap\ker C.$ However,

$$S \cap \ker C \cap \operatorname{span} \{q_{l+1}, \dots, q_k\} = \{0\} \Rightarrow \tilde{q} = 0 \xrightarrow{q_{l+1}, \dots, q_k \text{ independent}} \alpha_{l+1}, \dots, \alpha_k = 0,$$

which proves that the claim is true.

Lemma (6.3)

If $(\mathcal{S}, \mathcal{V})$ is a (C, A, B)-pair, then \exists linear $\mathbb{N} : \mathcal{Y} \to \mathcal{U}$ s.t. $(A + B\mathbb{N}C)\mathcal{S} \subseteq \mathcal{V}$.

Proof.

university of groningen

Let q_1,q_2,\ldots,q_k a basis of \mathcal{S} s.t. q_1,\ldots,q_l is a basis of $\mathcal{S}\cap\ker C$ $(l\leq k)$. Then $\mathcal{S}\subseteq\mathcal{V}$ and \mathcal{V} is (A,B)-inv. $\Rightarrow Aq_i=v_i+Bu_i$, for $v_i\in\mathcal{V}$ and $u_i\in\mathcal{U}$, for $i=1,\ldots,k$. We claim that $Cq_{l+1},Cq_{l+2},\ldots,Cq_k$ are linear independent. Suppose \exists non-zero

 $lpha_{l+1},\ldots,lpha_k$ s.t.

$$\alpha_{l+1}Cq_{l+1} + \alpha_{l+2}Cq_{l+2} + \dots + \alpha_kCq_k = 0.$$

Thus $\tilde{q} := \alpha_{l+1}q_{l+1} + \alpha_{l+2}q_{l+2} + \cdots + \alpha_kq_k \in \mathcal{S} \cap \ker C$. However,

$$S \cap \ker C \cap \operatorname{span} \{q_{l+1}, \dots, q_k\} = \{0\} \Rightarrow \tilde{q} = 0 \xrightarrow{q_{l+1}, \dots, q_k \text{ independent}} \alpha_{l+1}, \dots, \alpha_k = 0,$$

which proves that the claim is true.

which proves that the claim is true. Therefore, $\exists N: \mathcal{Y} \to \mathcal{U}$ with $NCq_i = -u_i, i = l+1, \dots, k \Rightarrow (A+BNC)q_i = v_i \in \mathcal{V}$,

6.1 (C, A, B)-pairs

Theorem 6.4 (using (C, A, B) pairs to construct Γ)

Let (S, V) be a (C, A, B)-pair. Then there exists controller Γ and an A_e -invariant subspace $\mathcal{V}_e \subseteq \mathcal{X} \times \mathcal{W}$ s.t. $S = i(\mathcal{V}_e)$ and $\mathcal{V} = p(\mathcal{V}_e)$. In fact, choose

6.1 (C, A, B)-pairs

Theorem 6.4 (using (C, A, B) pairs to construct Γ)

Let $(\mathcal{S}, \mathcal{V})$ be a (C, A, B)-pair. Then there exists controller Γ and an A_e -invariant subspace $\mathcal{V}_e \subseteq \mathcal{X} \times \mathcal{W}$ s.t. $\mathcal{S} = i(\mathcal{V}_e)$ and $\mathcal{V} = p(\mathcal{V}_e)$.

In fact, choose

$$N: \mathcal{Y} \to \mathcal{U} \text{ s.t. } (A + BNC)\mathcal{S} \subseteq \mathcal{V},$$

6.1 (C, A, B)-pairs

Theorem 6.4 (using (C, A, B) pairs to construct Γ)

Let (S, V) be a (C, A, B)-pair. Then there exists controller Γ and an A_e -invariant subspace $\mathcal{V}_e \subseteq \mathcal{X} \times \mathcal{W}$ s.t. $\mathcal{S} = i(\mathcal{V}_e)$ and $\mathcal{V} = p(\mathcal{V}_e)$.

In fact, choose

- $N: \mathcal{V} \to \mathcal{U}$ s.t. $(A + BNC)\mathcal{S} \subseteq \mathcal{V}$.
- $F: \mathcal{X} \to \mathcal{U} \text{ s.t. } (A+BF)\mathcal{V} \subseteq \mathcal{V}$

6.1 (C, A, B)-pairs

Theorem 6.4 (using (C, A, B) pairs to construct Γ)

Let (S, V) be a (C, A, B)-pair. Then there exists controller Γ and an A_e -invariant subspace $\mathcal{V}_e \subseteq \mathcal{X} \times \mathcal{W}$ s.t. $\mathcal{S} = i(\mathcal{V}_e)$ and $\mathcal{V} = p(\mathcal{V}_e)$.

In fact, choose

- $N: \mathcal{Y} \to \mathcal{U}$ s.t. $(A + BNC)S \subseteq \mathcal{V}$,
- $F: \mathcal{X} \to \mathcal{U} \text{ s.t. } (A+BF)\mathcal{V} \subseteq \mathcal{V},$
- $G: \mathcal{Y} \to \mathcal{U} \text{ s.t. } (A+GC)\mathcal{S} \subseteq \mathcal{S}.$

Theorem 6.4 (using (C, A, B) pairs to construct Γ)

Let (S, V) be a (C, A, B)-pair. Then there exists controller Γ and an A_e -invariant subspace $V_e \subseteq \mathcal{X} \times \mathcal{W}$ s.t. $S = i(V_e)$ and $V = p(V_e)$.

In fact, choose

$$N: \mathcal{Y} \to \mathcal{U} \text{ s.t. } (A+BNC)\mathcal{S} \subseteq \mathcal{V},$$

$$F: \mathcal{X} \to \mathcal{U} \text{ s.t. } (A+BF)\mathcal{V} \subseteq \mathcal{V},$$

$$G: \mathcal{Y} \to \mathcal{U} \text{ s.t. } (A+GC)\mathcal{S} \subseteq \mathcal{S}.$$

Then Γ is given by

$$\left\{ \begin{array}{l} \dot{w} = (A+BF+GC-BNC)w + (BN-G)y \\ u = (F-NC)w + Ny, \end{array} \right.$$

6.1 (C, A, B)-pairs

Theorem 6.4 (using (C, A, B) pairs to construct Γ)

Let (S, V) be a (C, A, B)-pair. Then there exists controller Γ and an A_e -invariant subspace $\mathcal{V}_e \subseteq \mathcal{X} \times \mathcal{W}$ s.t. $\mathcal{S} = i(\mathcal{V}_e)$ and $\mathcal{V} = p(\mathcal{V}_e)$.

In fact, choose

$$N: \mathcal{Y} \to \mathcal{U} \text{ s.t. } (A + BNC)\mathcal{S} \subseteq \mathcal{V},$$

$$F: \mathcal{X} \to \mathcal{U} \text{ s.t. } (A+BF)\mathcal{V} \subseteq \mathcal{V},$$

$$G: \mathcal{Y} \to \mathcal{U} \text{ s.t. } (A+GC)\mathcal{S} \subseteq \mathcal{S}.$$

Then Γ is given by

$$\left\{ \begin{array}{l} \dot{w} = (A+BF+GC-BNC)w + (BN-G)y \\ u = (F-NC)w + Ny, \end{array} \right.$$

where
$$\mathcal{W} = \mathcal{X}$$
 and $\mathcal{V}_e = \{ \begin{bmatrix} x_1 \\ 0 \end{bmatrix} + \begin{bmatrix} x_2 \\ x_2 \end{bmatrix} \mid x_1 \in \mathcal{S}, x_2 \in \mathcal{V} \}$

Summary

/ university of groningen

Invariant subspace algorithm for $\mathcal{S}^*(\mathcal{E},C,A)$, characterization (Thm 5.8). Notice its duality with $\mathcal{V}^*(\mathcal{K}, A, B)$.

Summary

Recapitulation

- Invariant subspace algorithm for $\mathcal{S}^*(\mathcal{E},C,A)$, characterization (Thm 5.8). Notice its duality with $\mathcal{V}^*(\mathcal{K},A,B)$.
- ightarrow Dynamic feedback controller Γ
- (C,A,B)-pairs: definition (Def 6.1), constructing (C,A,B)-pairs from A_e -inv.: \mathcal{V}_e (Thm 6.2)

Summary

- Invariant subspace algorithm for $\mathcal{S}^*(\mathcal{E},C,A)$, characterization (Thm 5.8). Notice its duality with $\mathcal{V}^*(\mathcal{K},A,B)$.
 - Dynamic feedback controller Γ
- (C,A,B)-pairs: definition (Def 6.1), constructing (C,A,B)-pairs from A_e -inv.: \mathcal{V}_e (Thm 6.2)
- Using (C, A, B)-pairs to construct dynamic feedback controller Γ . (Thm 6.4)

disturbance decoupling with dynamic feedback

Problem (DDP with dynamic measurement feedback (DDPM))

Given the system $\Sigma = (H, C, A, B, E)$

$$\dot{x} = Ax + Bu + Ed$$

$$y = Cx$$

$$z = Hx$$

find K, L, M, N such that the dynamic controller $\Gamma(M, K, L, N)$

$$\dot{w} = Kw + Ly$$
$$u = Mw + Ny$$

renders the closed loop system disturbance decoupled:

$$\left[\begin{array}{c} \dot{x} \\ \dot{w} \end{array}\right] = \underbrace{\left[\begin{array}{c} A + BNC & BM \\ LC & K \end{array}\right]}_{LC} \left[\begin{array}{c} x \\ w \end{array}\right] + \underbrace{\left[\begin{array}{c} E \\ 0 \end{array}\right]}_{H_e} d \qquad z = \underbrace{\left[\begin{array}{c} H & 0 \end{array}\right]}_{H_e} \left[\begin{array}{c} x \\ w \end{array}\right]$$

Recapitulation

disturbance decoupling with dynamic feedback

Closed loop system:

$$\left[\begin{array}{c} \dot{x} \\ \dot{w} \end{array}\right] = \underbrace{\left[\begin{array}{c} A + BNC & BM \\ LC & K \end{array}\right]}_{A_e} \left[\begin{array}{c} x \\ w \end{array}\right] + \underbrace{\left[\begin{array}{c} E \\ 0 \end{array}\right]}_{E_e} d \qquad z = \underbrace{\left[\begin{array}{c} H & 0 \end{array}\right]}_{H_e} \left[\begin{array}{c} x \\ w \end{array}\right]$$

Definition 6.5 DDPM

Find $\Gamma = (K, L, M, N)$ s.t.

$$T_{\Gamma(t)} := H_e e^{A_e t} E_e = 0, \ \forall t \ge 0$$

or, equivalently, $G_{\Gamma}(s) = H_e(sI - A_e)^{-1}E_e = 0$.

Corollary of the result of (DDP): Thm.4.8

DDPM is solvable for $\Sigma = (H, C, A, B, E)$ iff there exists an A_e invariant subspace \mathcal{V}_e such that im $E_e \subseteq \mathcal{V}_e \subseteq \ker H_e$

disturbance decoupling with dynamic feedback

Theorem 6.6+Corollary6.7

Recapitulation

DDPM is solvable for $\Sigma = (H,C,A,B,E)$ iff \exists a (C,A,B)-pair s.t.

$$\operatorname{im} E \subseteq \mathcal{S} \subseteq \mathcal{V} \subseteq \ker H$$
,

or, equivalently, $S^*(\operatorname{im} E) \subseteq V^*(\ker H)$.

Proof.

"If": Assume the closed loop system

$$\Sigma_e: \begin{bmatrix} \dot{x} \\ \dot{w} \end{bmatrix} = A_e \begin{bmatrix} x \\ w \end{bmatrix} + E_e d, \quad y_e = H_e \begin{bmatrix} x \\ w \end{bmatrix}.$$

is disturbance decoupled $\Rightarrow \exists A_e$ -inv. V_e s.t. $\operatorname{im} E_e \subseteq V_e \subseteq \ker H_e$,

Let $S := i(\mathcal{V}_e)$, $\mathcal{V} := p(\mathcal{V}_e) \overset{Thm.6.2}{\Rightarrow} (\mathcal{S}, \mathcal{V})$ is a (C, A, B)-pair. Let $x \in \text{im } E \Rightarrow \begin{bmatrix} n \\ 0 \end{bmatrix} \in \text{im } E_e \subseteq \mathcal{V}_e \Rightarrow x \in i(\mathcal{V}_e) = \mathcal{S} \Rightarrow \text{im } E \subseteq \mathcal{S}$.

Let $x \in \operatorname{Im} E \Rightarrow [0] \in \operatorname{Im} E_e \subseteq \mathcal{V}_e \Rightarrow x \in \mathcal{U}(\mathcal{V}_e) = \mathcal{S} \Rightarrow \operatorname{Im} E \subseteq \mathcal{S}$. Let $x \in \mathcal{V} = p(\mathcal{V}_e) \Rightarrow \exists w \in \mathcal{W} : \begin{bmatrix} x \\ w \end{bmatrix} \in \mathcal{V}_e \subseteq \ker H_e \Rightarrow Hx = H_e \begin{bmatrix} x \\ w \end{bmatrix} = 0 \Rightarrow x \in \ker H$.

disturbance decoupling with dynamic feedback

Theorem 6.6+Corollary6.7

Recapitulation

DDPM is solvable for $\Sigma = (H,C,A,B,E)$ iff \exists a (C,A,B)-pair s.t.

$$\operatorname{im} E \subseteq \mathcal{S} \subseteq \mathcal{V} \subseteq \ker H$$
,

or, equivalently, $\mathcal{S}^*(\operatorname{im} E) \subseteq \mathcal{V}^*(\ker H)$.

Proof.

"Only if": exists a (C,A,B)-pair s.t. im $E\subseteq\mathcal{S}\subseteq\mathcal{V}\subseteq\ker H,\stackrel{Thm6.4}{\Rightarrow}\exists\Gamma=(K,L,M,N)$ and A_e -inv. \mathcal{V}_e with $\mathcal{S}=i(\mathcal{V}_e)$ and $\mathcal{V}=p(\mathcal{V}_e)$. We claim that im $E_e\subseteq\mathcal{V}_e\subseteq\ker H_e$.

Let $\begin{bmatrix} x \\ w \end{bmatrix} \in \operatorname{im} E_e \Rightarrow w = 0$ and $x \in \operatorname{im} E \subseteq \mathcal{S} = i(\mathcal{V}_e) \Rightarrow \begin{bmatrix} x \\ w \end{bmatrix} = \begin{bmatrix} x \\ 0 \end{bmatrix} \in \mathcal{V}_e$.

Let $\begin{bmatrix} x \\ w \end{bmatrix} \in \mathcal{V}_e \Rightarrow x \in \mathcal{V} \in \ker H \Rightarrow H_e \begin{bmatrix} x \\ w \end{bmatrix} = Hx = 0 \Rightarrow \begin{bmatrix} x \\ w \end{bmatrix} \in \ker H_e$.

Thus the claim is true and by Thm 4.6, Σ_e is disturbance decoupled.