THE UNIVERSITY OF ADELAIDE SCHOOL OF COMPUTER SCIENCE

SOFTWARE ENGINEERING & PROJECT

Testing Report

Lunar Rover Mapping Robot

Version 1.0

Prepared by Postgraduate Group 28

Tony Gold a1707687

Ren Koh a11931141 Amit Patel a1697700

Hangyue Xu a1692118

Guo Yang a1696877

Irving Yim a1617656

Tianming Zhang a1710509

Contents

1	Introduction	3
	1.1 Purpose	3
	1.2 Scope	3
	1.3 References	3
	1.4 Definitions, Acronyms and Abbreviations	3
	1.5 Constraints	3
2		4
	2.1 Testing Method	4
3	·- J ·- · · · · · · · · · · · · · · · ·	5
	3.1 Basic Movement	5
	3.2 Colour Sensor	5
	3.3 Detect Boundary	5
	3.4 Foot-print detection	6
	3.5 Ultrasonic Sensor	6
	3.6 Mapping under the auto mode	7
	3.7 Mapping under the manual mode	7
	3.8 Setting NGZ	8
	3.9 Loading the Map	8
	3.10 Saving a Map	9
	3.11 Finding the crater area	9
4	Black Box Testing	11
5	Manual Testing	12
6	Regression Testing	14
7	Issue Lists	17
•	7.1 Issue List 1	17
	7.2 Solutions	17
8	Conclusion	18

Revision History

Name	Date	Description	Version
Amit Patel	9/10/2016	Designed the template, Add section	0.1
		1,2,3	
Hangyue Xu	15/10/2016	Update the content	0.2
Tianming Zhang	18/10/2016	Update the Test Case	0.3
Hangyue Xu	19/10/2016	Update the Test Case, modify Blackbox	0.4
		Testing	
Amit Patel	20/10/2016	Add sections 5 to 8	0.5
Guo Yang	21/10/2016	Update the Test Case and modify sec-	0.6
		tion 5	
Irving Yim	22/10/2016	Update section 7	0.7
Ren Koh	24/10/2016	modify section 5 and 6	0.8
Tony Gold	25/10/2016	modify section 3 and find errors in the	0.9
		documents	
Amit Patel	30/10/2016	Release to Client	1.0

Table 1: Revision History

1 Introduction

The testing report outlines the testing methods and outcome of the tests for Lunar Mapping Robot System, designed and built by group PG28.

1.1 Purpose

This document details the testing criteria, test cases and results of tests on the system developed by development team. and the specific details of the implementation of the requirements as set out in the Software Requirements Specification (SRS). The primary intended audience for this documents are the developers of the complete system, who will use this document as a reference on what features are working properly and tested. This document will also be important for the team to develop new features based on current system and find out critical features within the system.

1.2 Scope

The purpose of this project is to analyze the results of different tests which have been done for the project, in order to determine whether the project meets its goals in terms of user requirements or not.

1.3 References

- 1. Project Description-2017(Sem2)
- 2. Software Requirement Specification PG28
- 3. Software Project Management Plan PG28
- 4. Software Design Document PG28
- 5. Software Testing Plan PG28

1.4 Definitions, Acronyms and Abbreviations

API	Application Programming Interface
TA	Test Aborded
TP	Test Pass
TI	Test Incomplete
GUI	Graphical User Interface
I/O	Input and Output
JVM	Virtual Machine
NGZ	No-Go Zone
PC	Personal Computer
robot	The assembled Lego robot, EV3 brick
SDD	Software Design Document
SEP	Software Engineering Project
SPMP	Software Project Management Plan
SRS	Software Requirements Specification
XML	eXtensible Mark-up Language

1.5 Constraints

As of GUI can not be tested fully, some functions were need to be tested manually. Some of the testing are unable to be done by the developers due to the limitations of testing requirements.

2 Test Criteria

The decision is defined relying on the following principles until the test execution completed:

- Test sheet is marked depending on "TP" state when all steps are passed(Test Pass or TP). This indicated that requirements are achieved as described.
- Test sheet is marked relying on "TA" state while all steps have failed (Test Aborted) state or when the result of a step differs from the expected result. Result should be recorded why it makes failure and raise the issue to the issue list.
- Test sheet is marked according to "TPP" state when partial functions are passed and some are failure.

2.1 Testing Method

Manual Testing

Manual testing is a type of testing where robot is been tested on particular scenarios while developing the features.

Black Box Testing

Black box testing is a type of software testing methods that evaluates the unit, integration, system and acceptance of a software.

System Testing

System testing is a testing method that could test software and hardware. This approach can be conducted on evaluation of a system's compliance and its expectations.

Regression Testing

Regression testing is a way to test software that specifies the previous developed software and evaluate its correct performance. The purpose of this method is to ensure there is no new fault occur.

3 System Testing

Testing outcomes are according to defined standard in section 2 (Testing Criteria)

3.1 Basic Movement

Test Case ID: TI01

Test Purpose: Testing the basic movements of the robot

Preconditions: The remote control system is connected with the robot

Expected result: Robot will move according to different buttons pressed respect to their

directions and trying automated commands to move robot

Testing Outcomes:

No:	Testing Actions	Expected Test results	Actual Outcomes
1	Placing and Starting robot on	The robot should able to move in	TP
	trial map with automated com-	different directions	
	mands for moving around		
2	Manually control the robot re-	The robot should move in differ-	TP
	spectively to do: Forward, Back-	ent directions according to but-	
	ward, Left, Right	ton pressed	

3.2 Colour Sensor

Test Case ID: TI02

Test Purpose: Testing the color sensor's functionality

Preconditions: manual control system is activated before testing

Expected result: the colours detected by sensor should be presented correctly on the GUI

Testing Outcomes:

No:	Testing Actions	Expected Test results	Actual Outcomes
1	Placing and Starting robot on	The robot should able to move in	TP
	trial map by manual control as	different directions	
	well with automated commands		
	to move around for searching		
	various colors		
2	Testing the sensor with different	Dected colour should be reflected	TP
	colors while robot is moving	on the GUI	

3.3 Detect Boundary

Test Case ID: TI03

Test Purpose: Testing the robot for boundary detection based on basic movements and

colours identified

Preconditions: manual control system is activated before testing

Expected result: Identifying the specific colored boundary and take 90 degrees turn for

identifying whole boundary

Testing Outcomes:

No:	Testing Actions	Expected Test results	Actual Outcomes
1	Placing and Starting robot on	The robot should able to move in	TP
	trial map by manual control as	different directions and identify	
	well with automated commands	the colors	
	to move around for searching for		
	boundary		
2	Identifying the boundary with-	Robot sould take turn 90 de-	TP
	out crossing it	gree and identify boundary again	
		based on color	

3.4 Foot-print detection

Test Case ID: TI04

Test Purpose: Finding the foot print sequence based on color Preconditions: manual control system is activated before testing

Expected result: Plotting the foot print on the GUI

Testing Outcomes:

No:	Testing Actions	Expected Test results	Actual Outcomes
1	Placing and Starting robot on	The robot should able to move in	TP
	trial map by manual control as	different directions and identify	
	well with automated commands	the colors sequences	
	to move around for searching for		
	boundary		
2	Identifying foot-print sequence	showing the path on the GUI	TPP
	with the algorithm after finding		
	any separate color part than it		
	starts searching other sequence		
	by rotating it 20 degree ahead		
	left-right vice-verse		

3.5 Ultrasonic Sensor

Test Case ID: TI05

Test Purpose: Testing whether the ultrasonic sensor can successfully detect obstacles and

different colors on the map

Preconditions: Ultrasonic sensor can work well

Expected result: Detect the obstacle and different colors on the map

Testing Outcomes: The ultrasonic sensor can work well under both auto and manual mode

No:	Testing Actions	Expected Test results	Actual Outcomes
1	Placing an obstacle on the map	The robot can stop before touch-	TP
	and starting the robot on both	ing the obstacle under both man-	
	manual control mode, control the	ual and automatic mode	
	robot drive to the obstacle, find		
	out whether the robot would		
	stop before touching the obsta-		
	cle. In automatic mode, start the		
	robot and find out whether the		
	robot would stop before touching		
	the obstacle		
2	Put different colors on the map	In both manual and automatic	TP
	and then start the robot to find	mode, the robot can distinguish	
	out whether the ultrasonic sensor	the different colors on the map	
	can distinguish between different		
	colors		

3.6 Mapping under the auto mode

Test Case ID: TI06

Test Purpose: Testing whether the robot can drive successfully under the automatic mode

on the map

Preconditions: All components of the robot can work well

Expected result: The robot can successfully drive on the map and describe the map auto-

matically

Testing Outcomes: The robot and other components can work successfully under auto mode

No:	Testing Actions	Expected Test results	Actual Outcomes
1	Starting the robot and switch it	The robot can mapping success-	TP
	on auto mode, find out whether	fully under the auto mode	
	the robot can drive within the		
	boundary, change direction, de-		
	tect the obstacle, stop before		
	touching the obstacle, distin-		
	guish different colors on the map		
	and provide the map details au-		
	tomatically		
2	While driving, find out whether	The robot can stop after roving	TP
	it can stop after roving around	around the map, keep all compo-	
	the map, keep all components	nents work and drive inside the	
	work and drive inside the bound-	boundary under auto mode	
	ary		

3.7 Mapping under the manual mode

Test Case ID: TI07

Test Purpose: Testing whether the robot can drive successfully under the manual mode on

the map

Preconditions: all components of the robot can work well

Expected result: the robot can successfully drive on the map and detect obstacles and colors

manually

Testing Outcomes: The robot and other components can work successfully under manual mode

No:	Testing Actions	Expected Test results	Actual Outcomes
1	Starting the robot and switch	The robot can mapping success-	TP
	it on manual mode, find out	fully under manual mode	
	whether the robot can be con-		
	trolled to drive within the		
	boundary, change direction, de-		
	tect the obstacle, stop before		
	touching the obstacle and distin-		
	guish different colors on the map		
	manually		
2	While driving, find out whether	The robot can be controlled to	TP
	it can be controlled to stop after	stop after roving around the	
	roving around the map, keep all	map, keep all components work	
	components work and drive in-	and drive inside the boundary	
	side the boundary	under manual mode	

3.8 Setting NGZ

Test Case ID: TI08

Test Purpose: Testing whether the robot can successfully detect the black line of the NGZ

on the map

Preconditions: The robot is connected with the remote control system

Expected result: The robot will stop when it detected the NGZ and then change the current

direction

Testing Outcomes:

No:	Testing Actions	Expected Test results	Actual Outcomes
1	Placing the robot on trial map	The robot should able to stop in	TP
	by auto control and then let it	the front of the black line	
	automatically move around		
2	Placing the robot before the	The robot will recognize the	TP
	NGZ	NGZ when it found the black line	
3	Placing the robot before the	The robot will change the direc-	TP
	NGZ	tion when it found the NGZ	

3.9 Loading the Map

Test Case ID: TI09

Test Purpose: Testing whether the map can be loaded both on the GUI and robot and then robot can automatically go anywhere

Preconditions: The test map is known and the robot can analyze the information of the map

Expected result: The robot can use the map to analyze a way and then go to the target location automatically

Testing Outcomes:

No:	Testing Actions	Expected Test results	Actual Outcomes
1	Input the test map on the GUI	The robot should able to load the	TP
	and robot	information of the map success-	
		fully	
2	Placing the robot on the test	After the robot load the informa-	TP
	map	tion of the map, it can calculate	
		the way to go the target location	
		automatically without detect the	
		real map	

3.10 Saving a Map

Test Case ID: TI10

Test Purpose: Testing whether the robot can successfully saving the map

Preconditions: All components of the robot can work well

Expected result: Robot can successfully understand the obstacles from a new map and make

the map on GUI

Testing Outcomes: All components of robot are operated successfully, and it can understand

the map and save it on GUI

No:	Testing Actions	Expected Test results	Actual Outcomes
1	Starting the robot and switch	Robot can find out the obstacles	TP
	it on manual mode, give robot	and other barriers from the new	
	a new map with the obstacles,	map	
	handle the robot drive on the		
	map, then to find out whether		
	the robot can detect the obsta-		
	cles		
2	After robot find out the barriers	Robot can successfully save the	TP
	from the map, it will save both	information of the tracks and ob-	
	the information and its tracks	stacles and map it on GUI	
	through the GUI		

3.11 Finding the crater area

Test Case ID: TI11

Test Purpose: Testing whether the robot can successfully detect the crater area on the map

Preconditions: The robot is connected with the remote control system

Expected result: The robot will stop when it detected the crater border and then goes backward, takes 45 degree right turn goes again back takes another 45 degree right turn, goes three time straight than it came back and takes 90 degree left turn again checks crater border and repeats whole step till it comes to starting point where it detected the crater Testing Outcomes:

No:	Testing Actions	Expected Test results	Actual Outcomes
1	Placing the robot on trial map	The robot should able to stop in	TP
	by auto control and then let it	the front of the green border	
	automatically move around		
2	Placing the robot before the	The robot will recognize the	TP
	crater	craters starting position when it	
		found the green color	
3	Placing the robot at random po-	The robot will stop when it de-	TA
	sition and on automatic mode	tected the crater border and then	
	letting robot detect the crater	goes backward, takes 45 degree	
	area	right turn goes again back takes	
		another 45 degree right turn,	
		goes three time straight than it	
		came back and takes 90 degree	
		left turn again checks crater bor-	
		der and repeats whole step till it	
		comes to starting point where it	
		detected the crater	

4 Black Box Testing

TEST ID	ACTIONS	EXPECTED RESULTS	RESULT
BT01	Stering I mer Menning Robot Systom	The main class should be executed	${ m TP}$
BT02	Stating Luna Mapping Model System	GUI should appear	${ m TP}$
BT03	Duces the connect button	Able to connect the robot	$_{ m TP}$
BT04	LIESS THE CONTINCT DUCTOR	Able to disconnect the robot	$_{ m TP}$
BT05		The robot can go forward	$_{ m TP}$
BT06	Drogg the direction button on CIII	The robot can go back	m TP
BT07	T Less the direction Dutton on GOI	The robot can turn left	m TP
BT08		The robot can turn right	${ m TP}$
BT09	Press the switch button to auto mode	The robot can search the map automatically	${ m TP}$
BT010	1 1930 the Switch Dateon to ago mode	Able to change to the manual mode	${ m TP}$
BT11	Press the emitch button to mennel mode	The robot will stop and waiting for commands	${ m TP}$
BT12		Able to change to the auto mode	${ m TP}$
BT13	Press the stop button on GUI	The robot can stop immediately	${ m TP}$
BT14	Placing the robot on map with different colours	The robot can distinguish different colors	${ m TP}$
BT15		The robot will not go forward before the NGZ	$_{ m TP}$
BT16	Placing the robot in front of the NGZ	The robot will draw the NGZ on the map	${ m TP}$
BT17		The robot will go back a bit and then turn around	${ m TP}$
BT18		The robot will not go forward before the obstacle	${ m TP}$
BT19	Placing the robot in front of the obstacle	The robot will draw the obstacle on the map	${ m TP}$
BT20		The robot will go back a bit and then turn around	${ m TP}$
BT21		Able to show the robot's current location	${ m TP}$
BT22		Able to draw the NGZ	${ m TP}$
BT23	Drawing the landform on the map part of GUI	Able to draw the obstacle	${ m TP}$
BT24		Able to view the boundary	${ m TP}$
BT25		Able to show the target object	${ m TP}$
BT26	Dross the load button	The robot can load the map information from the local directory	${ m TP}$
BT27		The robot can move automatically	${ m TP}$
BT28	Bobot status	Able to show the status that color detected	${ m TP}$
BT29	TOO Search	Able to show the status of current location	TP

Table 2

5 Manual Testing

Manual testing is done through developing the some scenarios related to final presentation of the Lunar Robot System. As below map was used for testing our developed Lunar Robot system where different small scenario's were taken to test the robots outcome

Figure 1: Testing Scenario

No:	Scenario with small activities	Expected Test results	Actual Outcomes
SC1	Robot is placed on the random	The robot should able to man-	TP
	position on the map	ually control by operator's com-	
		mands	
SC2	It is drawn till X point and added	the robot should start to map	TP
	as starting point in gui	itself by X,Y coordinates and	
		starts based on XML map	
SC3	It rotates 360 degree to find out	It should add the positions of the	TP
	the obstacles on the map	obstacles in the form of X and Y	
		coordinates on map	
SC3	It starts moving straight and	If it finds the red line, it should	TP
	checks the distances between ob-	follow that red line and draw it	
	stacles and different colors de-	on the map	
	tected by robot		

No:	Testing Actions	Expected Test results	Actual Outcomes
SC4	It starts moving straight and	If it finds the red line in broken	TP
	checks the distances between ob-	pieces, it should follow that red	
	stacles and different colors de-	line and draw the footprint path	
	tected by robot	on the GUI map	
SC5	It starts moving straight and	If it finds the green color, robot	TPP
	checks the distances between ob-	should identify the green color as	
	stacles and different colors de-	crater border and stop their. Af-	
	tected by robot	ter that, it should go backward,	
		takes 45 degree right turn goes	
		again back takes another 45 de-	
		gree right turn, goes three time	
		straight than it came back and	
		takes 90 degree left turn again	
		checks crater border and repeats	
		whole step till it comes to start-	
		ing point where it detected the	
		crater.	
SC6	It starts moving straight and	If it noted the crater or paths	TP
	checks the distances between ob-	position in the map or it finds	
	stacles and different colors de-	the border which is blue line it	
	tected by robot	should take 60 degree left turn	
005	T	each time and go straight.	TIDD.
SC7	It starts moving straight and	If robot finds the black color bor-	TPP
	checks the distances between ob-	der then it should stop and iden-	
	stacles and different colors de-	tify it as starting point of the	
	tected by robot	NGZ on Map. After that it	
		should go backward, takes 45 de-	
		gree right turn goes again back	
		takes another 45 degree right	
		turn, goes three time straight than it came back and takes	
		90 degree left turn again checks	
		crater border and repeats whole	
		step till it comes to starting point	
		where it detected the NGZ or If	
		it is straight line than it will sim-	
		ply takes opposite turn	
SC8	It follows the straight path after	If robot finds obstacle then it	TP
	the last detection depending on	should identify as obstacle and	11
	the actions defined	should avoid to go near near ob-	
	one devicing defined	stacle	
SC9	Placing the robot randomly on	It should notify X and Y coordi-	TA
	the map after finding all the	nates on the map and find cur-	111
	obstacles, paths, NGZ and crater	rent position on the map after	
	area	taking 360 turn	
		0	

6 Regression Testing

No:	Testing Actions	Expected Test results	Actual Outcomes
1	Placing and Starting robot on trial map by manual control as well with automated commands to move around	The robot starts to move around	TP
2	the colours detected by sensor should be presented correctly on the GUI	The robot detects the color and shows the same colour on GUI	TP
3	Placing and Starting robot on trial map by manual control as well with automated commands to move around	The robot starts to move around	TP
4	Identifying the boundary without crossing it	The robot detects the boundary and turns 90 degrees and goes forward for 5cm and randomly turns left	TP
5	Placing and Starting robot on trial map by manual control as well with automated commands to move around	The robot starts to move around	TP
6	Robot will move according to dif- ferent buttons pressed respect to their directions and trying auto- mated commands to move robot	The robot should move in different directions according to button pressed	TP
7	sketch a No-Go-Zone in the current map	The No-Go-Zone can be sketched on the GUI	TP
8	sketch a different paths in the current map	The paths and shapes(circle/triangle) can be sketched on the GUI	TP
9	In sketch mode try to put different shapes as No-Go-Zone	The map will identify as the NGZ	TP
10	Using the motors and color sensors by manually, try to identify the NGZ and robot takes turn	The robot can identify the NGZ and bypass it	TA
11	sketch a No-Go-Zone in the current map	The No-Go-Zone can be sketched on the GUI	TP
12	In sketch mode try to put different shapes as No-Go-Zone	The map will identify as the NGZ	TP
13	Using the motors and color sensors by manually, try to identify the NGZ and robot takes turn	The robot can identify the NGZ and more than 2/3 robot bypass it	TA

No:	Testing Actions	Expected Test results	Actual Outcomes
14	sketch a No-Go-Zone in the cur-	The No-Go-Zone can be sketched	TP
	rent map	on the GUI	
15	Switch the sketch mode by draw-	The NGZ can switched be-	TP
	ing the NGZ lines to make a	tween Irregular polygon and cir-	
	shape	cle shape	
16	Using the motors and color sen-	The robot can identify the NGZ	TPP
	sors by manually, try to identify	and more than $2/3$ robot bypass	
	the NGZ and robot takes turn	it	
17	sketch a No-Go-Zone in the cur-	The No-Go-Zone can be sketched	TP
	rent map	on the GUI	
18	Switch the sketch mode by draw-	The NGZ can switched be-	TP
	ing the NGZ lines to make a	tween Irregular polygon and cir-	
	shape	cle shape	
19	Using the motors and color sen-	The robot can identify the NGZ	TPP
	sors by manually, try to identify	and more than $2/3$ robot bypass	
	the NGZ and robot takes turn	it	
20	sketch a No-Go-Zone in the cur-	The No-Go-Zone can be sketched	TP
	rent map	on the GUI	
21	Switch the sketch mode by draw-	The NGZ can switched be-	TP
	ing the NGZ lines to make a	tween Irregular polygon and cir-	
	shape	cle shape	
22	Using the motors and color sen-	The robot can identify the NGZ	TPP
	sors by manually, try to identify	and more than $1/3$ robot bypass	
	the NGZ and robot takes turn	it	
23	sketch a No-Go-Zone in the cur-	The No-Go-Zone can be sketched	TP
	rent map	on the GUI	
24	Switch the sketch mode by draw-	The NGZ can switched be-	TP
	ing the NGZ lines to make a	tween Irregular polygon and cir-	
	shape	cle shape	
25	Using the motors and color sen-	The robot can identify the NGZ	TPP
	sors by manually, try to identify	and more than $1/3$ robot bypass	
	the NGZ and robot takes turn	it	
26	Open (Click the open file button)	The map is loaded into the pro-	TP
	and upload the map in the auto	gram	
	system by uploading map		

No:	Testing Actions	Expected Test results	Actual Outcomes
27	Set the robot to automatic mode	The robot is set to automatic	TP
	by ticking the "Auto" check-box	mode and start running	
28	Robot starts to find out the posi-	Robot can find the obstacles	TP
	tion on map and scan for obsta-	and search the path without any	
	cles by rotating 360 degree and	manual control commands	
	find the paths by color sensors		
29	Putting robot on the random	Robot starts mapping the whole	TA
	place on the map	map	
30	Open (Click the open file button)	The map is loaded into the pro-	TP
	and upload the map in the auto	gram	
	system by uploading map		
31	Set the robot to automatic mode	The robot is set to automatic	TP
	by ticking the "Auto" check-box	mode and start running	
32	Robot starts to find out the posi-	Robot can find the obstacles	TP
	tion on map and scan for obsta-	and search the path without any	
	cles by rotating 360 degree and	manual control commands	
	find the paths by color sensors		
33	Putting robot on the random	Robot starts mapping the whole	TA
	place on the map	map	

7 Issue Lists

The issue list significantly identifies all issues that occurred during the whole test process. The whole test process includes the functional, regression and manual tests. The issue list will specifically include all tests those aborted (TA) and partially passed (TPP).

7.1 Issue List 1

Issue List			
Issue ID	Tests with unexpected outcome	Severity	Test ID
FT01	Lunar robot should find the NGZ and try not to cross it and should take turn but if NGZ is like U shape and robot is between two black line and one straight line then It can not escape the NGZ and bypass it in last.	Moderate	egression Test No: 10
FT02	it finds the green color, robot should identify the green color as a crater border and stop their. After that, it should go backward, takes 45 degree right turn and again it goes back, takes another 45 degree right turn, goes three time straight than it came back and takes 90 degree left turn again checks crater border and repeats whole step till it comes to starting point where it detected the crater. Here, robot is able to find half of the crater and notifying it as whole crater and need to start robot manually from half crater.	High	SC5 and 3.11/3
FT03	Placing the Lunar robot on the random place on loaded map and it should able to find out its position, where robot was trying to find the noted position with some mark.	Low	SC9 and regression test no: 33

7.2 Solutions

Identified solutions			
Issue ID	Planned solutions to solve failed test Cases:	Issue ID	
PA01	It tries not to go in such situations where NGZ border is three sides around the robot. Moreover, it assumes there will be no trap of NGZ on the map.	FT01	
PA02	Before the end date it will come up with better way to find out whole crater area with accurate algorithm.	FT02	
PA03	It was out of scope to find out its position on the loaded map when it is placed randomly. Robot will start from starting point.	FT03	

8 Conclusion

Overall, there were different testing methods were used to find out the issues before delivering final Lunar robot system. It is notified after this many testing trial with different test methods, some issues were identified. Those Issues were solved with the defined actions/solutions. At the fist regression testing, there are 9 individual test cases executed, while 3 issues located through the whole regression testing. Through the next regression testing, issues are reduced to 0. All the tested functions are running smoothly, which gives the group confidence to deliver the system with smooth functioning. There were 2 issues where system did compromise with it as described in the action list. So, it can be concluded that testing is very crucial before delivering final system.