Analiza studije razumijevanja riječi

Grupa **sudo**3 May 2017

Opis eksperimenta

Nad velikim brojem ispitanika proveden je eksperiment razumijevanja engleskog jezika. Ispitanicima su dana dva zadatka te su oba ponavljana više puta. Prvi zadatak (dalje: **A**) bavi se prepoznavanjem ispravne riječi, prilikom čega je ispitanik za zadani niz znakova morao odrediti radi li se o ispravnoj riječi engleskog jezika, a drugi zadatak (dalje: **B**) se bavi pravilnim izgovaranjem zadane riječi. Za svaku riječ i svakog ispitanika mjereno je vrijeme rješavanja svakog zadatka, te niz podataka o ispitaniku.

Ishodi eksperimenta

Cilj eksperimenta je naučiti kako mjerene veličine ispitanika utječu na vrijeme potrebno za rješavanje pojedinih zadataka. Na temelju tih podataka može se odgovoriti na neka zanimljiva pitanja poput: utječe li dob na brzinu rješavanja zadataka, kako na brzinu rješavanja utječe duljina zadane riječi, je li riječ kraća ukoliko se češće pojavljuje, itd.

Skup podataka

Za određivanje ishoda eksperimenta potreban nam je skup podataka eksperimenta. Programski jezik R sadrži skup podataka već provedenog eksperimenta te nam dopušta uključivanje tog skupa te analizu podataka. Podaci se nalaze u paketu languageR. Nakon instaliranja paketa, podaci se mogu učitati naredbom require(languageR) te dohvatiti s naredbom data(english). Kompletno dohvaćanje i uključivanje podataka prikazano je kodom ispod.

```
require(languageR, quietly = TRUE)
data(english)
```

Podaci se sada mogu koristiti naredbom english, npr. deskriptivna statistika može se dobiti naredbom summary(english), a pregled prvih par redova podataka može se pregledati naredbom head(english).

Ishodi eksperimenta

Utjecaj dobi na brzinu rješavanja

Pitamo se utječe li dobna razlika između starijih i mlađih ispitanika na brzinu rješavanja zadataka? Uspoređujući srednje vrijednosti logaritama vremena za rješavanje A i B zadataka mlađih i starijih ispitanika te gledajući dijagrame, možemo zaključiti da su mlađi u prosjeku brže rješavali oba zadatka. *t-testom* potvrđujemo naš zaključak.

```
young = english[english$AgeSubject == "young", ] # mladi
old = english[english$AgeSubject == "old", ] # stari

# vrijeme potrebno mlađima za rješavanje prvog zadatka
RTlexdec_young = young[, "RTlexdec"]
```

```
# vrijeme potrebno starijima za rješavanje prvog zadatka
RTlexdec_old = old[, "RTlexdec"]

# vrijeme potrebno mlađima za rješavanje drugog zadatka
RTnaming_young = young[, "RTnaming"]

# vrijeme potrebno starijima za rješavanje drugog zadatka
RTnaming_old = old[, "RTnaming"]

plot(RTlexdec_young, col = 'blue',
    ylim = c(min(english$RTlexdec), max(english$RTlexdec)),
    ylab = "Vrijeme za prvi zadatak")

points(RTlexdec_old, col='red')
```



```
plot(RTnaming_young, col = 'blue',
    ylim = c(min(english$RTnaming), max(english$RTnaming)),
    ylab = "Vrijeme za drugi zadatak")

points(RTnaming_old, col='red')
```



```
# testiranje jednakosti varijance prije t-testa
var.test(RTlexdec_young, RTlexdec_old)
```

```
##
## F test to compare two variances
##
## data: RTlexdec_young and RTlexdec_old
## F = 0.84625, num df = 2283, denom df = 2283, p-value = 6.737e-05
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.7795831 0.9186270
## sample estimates:
## ratio of variances
## 0.8462542

t.test(RTlexdec_young, RTlexdec_old, alt = "less", var.equal = TRUE)
##
```

```
##
## Two Sample t-test
##
## data: RTlexdec_young and RTlexdec_old
## t = -67.468, df = 4566, p-value < 2.2e-16
## alternative hypothesis: true difference in means is less than 0
## 95 percent confidence interval:
## -Inf -0.2163149
## sample estimates:
## mean of x mean of y</pre>
```

Prepoznatljivost riječi s obzirom na frekvenciju pojavljivanja

Zanima nas jesu li riječi koje se više pojavljuje prepoznatljivije? Računamo korelaciju između prepoznatljivosti riječi i njenog pojavljivanja u tekstovima. Dobivamo korelaciju ~0.8, što nam potvrđuje da su te dvije stavke povezane, tj. riječi koje se više pojavljuju su prepoznatljivije. To također vidimo i iz dijagrama rasipanja.

cor(english\$Familiarity, english\$WrittenFrequency)

[1] 0.7912556

plot(english\$Familiarity, english\$WrittenFrequency)

Utjecaj glasa prvog slova na prepoznatljivost riječi

Je li riječ koja počinje na samoglasnik u odnosu na suglasnik ljudima prepoznatljivija? Uzimamo skup riječi koje počinju sa samoglasnikom, te skup riječi koje počinju sa suglasnikom te računamo srednju vrijednost. Kod samoglasnika dobivamo srednju vrijednost 4.0, a kod suglasnika 3.79, što bi nas moglo dovesti do zaključka da riječi koje počinju sa samoglasnikom su prepoznatljivije. No testiranjem putem *t-testa* zaključujemo da ne postoji razlika između prepoznatljivosti riječi koje počinju samoglasnikom u odnosu na one koje počinju suglasnikom.

firstVowel = english[english\$CV == "V",] #riječi koje počinju sa samoglasnikom firstConsonant = english[english\$CV == "C",] # riječi koje počinju sa suglasnikom mean(firstConsonant\$Familiarity)

[1] 3.789892

mean(firstVowel\$Familiarity)

[1] 4.002951

hist(firstConsonant\$Familiarity)

Histogram of firstConsonant\$Familiarity

hist(firstVowel\$Familiarity)

Histogram of firstVowel\$Familiarity

prije testiranja t-testom trebamo zaključiti jesu li varijance jednake u oba slučaja var.test(firstConsonant\$Familiarity, firstVowel\$Familiarity)

```
##
##
   F test to compare two variances
##
## data: firstConsonant$Familiarity and firstVowel$Familiarity
## F = 0.78386, num df = 4445, denom df = 121, p-value = 0.04732
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.5971133 0.9971773
## sample estimates:
## ratio of variances
t.test(firstVowel$Familiarity, firstConsonant$Familiarity, alt = "greater", var.equal = TRUE)
##
##
   Two Sample t-test
## data: firstVowel$Familiarity and firstConsonant$Familiarity
## t = 2.0207, df = 4566, p-value = 0.02168
## alternative hypothesis: true difference in means is greater than 0
## 95 percent confidence interval:
## 0.03959434
## sample estimates:
## mean of x mean of y
```

```
## 4.002951 3.789892
```

Utjecaj broja samoglasnika na brzinu rješavanja zadataka

int procjena za broj slova

Veza između frekvencije pojavljivanja i duljine riječi

jel rijeci koje se pisu slicno imaju isti broj slova

ako se rijec pise slicno ko neka druga, jesu li obe najcesce u sluzbi glagola/imenice

ovisnost vremena i broja slova

95 percent confidence interval:

NA

0.24113

sample estimates:
mean of x mean of y

ovisnost vremena i broja pojavljivanja rijeci

pojavljuju li se vise kratke ili duge rijeci

Prepoznatljivost glagola u odnosu na imenice

Ukoliko nađemo prepoznatljivosti glagola te prepoznatljivosti imenica, s obzirom da imamo veliku količinu podataka, možemo provesti z-test nad prepoznatljivostima te uz alternativnu hipotezu da je prepoznatljivost glagola veća od prepoznatljivosti imenica ne zaključujemo da su glagoli prepoznatljiviji, pa provodimo drugi z-test da su imenice prepoznatljivije od glagola. Na temelju drugog testa zaključujemo da su imenice prepoznatljivije od glagola.

```
require(BSDA, quietly = TRUE)
##
## Attaching package: 'BSDA'
## The following object is masked from 'package:datasets':
##
##
       Orange
verb_familiarity = english[english$WordCategory == "V", ]$Familiarity
noun_familiarity = english[english$WordCategory == "N", ]$Familiarity
verb_sd = sd(english[english$WordCategory == "V", ]$Familiarity)
noun_sd = sd(english[english$WordCategory == "N", ]$Familiarity)
z.test(verb_familiarity, y = noun_familiarity, alternative = "greater", sigma.x = verb_sd, sigma.y = no
##
##
   Two-sample z-Test
## data: verb_familiarity and noun_familiarity
## z = 8.5172, p-value < 2.2e-16
```

alternative hypothesis: true difference in means is greater than 0

```
## 3.985565 3.686722
z.test(noun_familiarity, y = verb_familiarity, alternative = "greater", sigma.x = noun_sd, sigma.y = ve
##
## Two-sample z-Test
##
## data: noun_familiarity and verb_familiarity
## z = -8.5172, p-value = 1
## alternative hypothesis: true difference in means is greater than 0
## 95 percent confidence interval:
## -0.3565562
## sample estimates:
## mean of x mean of y
## 3.686722 3.985565
cor(english$WrittenFrequency, english$LengthInLetters)
## [1] -0.06663196
#cor(english$WrittenSpokenFrequencyRatio, english$RTlexdec)
moreSpoken = english[english$WrittenSpokenFrequencyRatio > 0, ]
#je li riječi koje se više govore, dakle writespokefrequncyratio < 0 imaju i veći rezultat na RTnamingu
#numericYoung = young[sapply(english, is.numeric)]
#numericOld = old[sapply(english, is.numeric)]
#cor(numericOld)
#cor(numericYoung)
#diff = cor(numericOld) - cor(numericYoung)
#diff
```

Logistička regresija

Naučite model logističke regresije da predviđa varijablu WordCategory na temelju prediktorskih varijabli RTlexdec i RTnaming.

```
model1 = glm(WordCategory ~ RTlexdec + RTnaming, data = english, family = binomial())
summary(model1)
##
## Call:
## glm(formula = WordCategory ~ RTlexdec + RTnaming, family = binomial(),
      data = english)
##
## Deviance Residuals:
      Min
                1Q Median
##
                                 3Q
                                         Max
## -1.0552 -0.9643 -0.9219 1.3964
                                      1.6145
##
## Coefficients:
              Estimate Std. Error z value Pr(>|z|)
## (Intercept) 2.5912 1.3046 1.986 0.04701 *
## RTlexdec
                         0.3046 -2.953 0.00314 **
             -0.8996
```

```
## RTnaming    0.4339    0.2661    1.630    0.10301
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 5991.7 on 4567 degrees of freedom
## Residual deviance: 5982.0 on 4565 degrees of freedom
## AIC: 5988
##
## Number of Fisher Scoring iterations: 4
```

Pomoću anove ćemo testirati postoji li razlika između prije naučenih modela na razini značajnosti 95% tako što ćemo testirati nultu hipotezu da nema razlike. U prvom slučaju nam p-vrijednost ispadne veća od 0.05, pa ne možemo odbaciti nultu hipotezu. U drugom slučaju nam p-vrijednost ispadne manja od 0.05, pa nultu hipotezu odbacujemo.

```
model2 = glm(WordCategory ~ RTlexdec, data = english, family = binomial())
summary(model2)
##
## Call:
## glm(formula = WordCategory ~ RTlexdec, family = binomial(), data = english)
##
## Deviance Residuals:
##
      Min
                1Q
                      Median
                                   3Q
                                           Max
## -1.0218 -0.9596 -0.9260
                                        1.5591
                               1.3977
##
## Coefficients:
              Estimate Std. Error z value Pr(>|z|)
##
## (Intercept)
                2.8646
                            1.2912
                                     2.219 0.02651 *
## RTlexdec
                -0.5225
                            0.1972 -2.650 0.00805 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
  (Dispersion parameter for binomial family taken to be 1)
##
       Null deviance: 5991.7 on 4567
                                       degrees of freedom
## Residual deviance: 5984.7 on 4566
                                      degrees of freedom
## AIC: 5988.7
##
## Number of Fisher Scoring iterations: 4
anova(model1, model2, test= "LRT")
## Analysis of Deviance Table
## Model 1: WordCategory ~ RTlexdec + RTnaming
## Model 2: WordCategory ~ RTlexdec
    Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1
          4565
                   5982.0
## 2
          4566
                   5984.7 -1 -2.6643
                                        0.1026
model3 = glm(WordCategory ~ RTnaming, data = english, family = binomial())
```

summary(model3)

```
## Call:
## glm(formula = WordCategory ~ RTnaming, family = binomial(), data = english)
## Deviance Residuals:
      Min
                1Q Median
                                  3Q
## -0.9709 -0.9604 -0.9405 1.4094
                                        1.4473
## Coefficients:
##
              Estimate Std. Error z value Pr(>|z|)
                           1.0899
## (Intercept) 0.4868
                                   0.447
                                              0.655
## RTnaming
               -0.1651
                            0.1724 -0.958
                                              0.338
## (Dispersion parameter for binomial family taken to be 1)
##
##
       Null deviance: 5991.7 on 4567 degrees of freedom
## Residual deviance: 5990.8 on 4566 degrees of freedom
## AIC: 5994.8
##
## Number of Fisher Scoring iterations: 4
anova(model1, model3, test = "LRT")
## Analysis of Deviance Table
##
## Model 1: WordCategory ~ RTlexdec + RTnaming
## Model 2: WordCategory ~ RTnaming
## Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1
         4565
                  5982.0
## 2
          4566
                 5990.8 -1 -8.8029 0.003007 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
Predviđanja i šanse (malo radi fore):
test1 = english[5,]
p1 = predict(model1, test1, type = "response")
p2 = predict(model2, test1, type = "response")
p3 = predict(model3, test1, type = "response")
test2 = english[18,]
p4 = predict(model1, test2, type = "response")
p5 = predict(model2, test2, type = "response")
p6 = predict(model3, test2, type = "response")
odds1 = p1/(1-p1)
odds2 = p4/(1-p4)
```