```
In [22]: import pandas as pd
         import numpy as np
         from sklearn.model_selection import train_test_split
         from sklearn.preprocessing import StandardScaler, LabelEncoder
         from sklearn.neighbors import KNeighborsClassifier
         from sklearn.metrics import accuracy_score, classification_report, confusion_matrix, Con
         import matplotlib.pyplot as plt
In [23]: data = pd.read_csv('/content/fetal_health.csv')
In [24]: print("Shape of the dataset:", data.shape)
         Shape of the dataset: (2126, 22)
In [25]: # check number of missing values
         print(data.isnull().sum())
         baseline value
                                                                    0
         accelerations
                                                                    0
         fetal_movement
                                                                    0
         uterine_contractions
                                                                    0
         light_decelerations
                                                                    0
         severe_decelerations
                                                                    0
         prolongued_decelerations
                                                                    0
         abnormal_short_term_variability
                                                                    0
         mean_value_of_short_term_variability
                                                                    0
         percentage_of_time_with_abnormal_long_term_variability
                                                                    0
         mean_value_of_long_term_variability
                                                                    0
         histogram_width
                                                                    0
                                                                    0
         histogram_min
         histogram_max
                                                                    0
                                                                    0
         histogram_number_of_peaks
         histogram_number_of_zeroes
                                                                    0
         histogram_mode
                                                                    0
         histogram_mean
                                                                    0
                                                                    0
         histogram_median
                                                                    0
         histogram_variance
         histogram_tendency
                                                                    0
         fetal_health
                                                                    0
         dtype: int64
In [26]: # Split the dataset into features and target variable
         x = data.drop(columns=['fetal_health'])
         y = data['fetal_health']
In [27]: | x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=42
In [28]: # standardization the features
         scaler = StandardScaler()
         x_train = scaler.fit_transform(x_train)
         x_test = scaler.transform(x_test)
         # Training of the KNN model
In [29]:
         knn = KNeighborsClassifier(n_neighbors=3)
         knn.fit(x_train, y_train)
Out[29]:
                  KNeighborsClassifier
         KNeighborsClassifier(n_neighbors=3)
```

In [30]: # Model predictions with the trained model

```
y_pred = knn.predict(x_test)

In [31]: # Calculate the accuracy of the KNN classifier
    accuracy = accuracy_score(y_test, y_pred)
    print("Accuracy:", accuracy)

# Calculate precision, recall, and F1-score for KNN model classifier
    print("\nKNN Classification Report:")
    print(classification_report(y_test, y_pred, target_names=['Normal', 'Suspect', 'Patholog')
```

Accuracy: 0.92018779342723

KNN Classification Report:

	precision	recall	f1-score	support
Normal Suspect Pathological	0.94 0.81 0.84	0.97 0.69 0.90	0.96 0.75 0.87	333 64 29
accuracy macro avg weighted avg	0.87 0.92	0.85 0.92	0.92 0.86 0.92	426 426 426

```
In [32]: # Confusion Matrix
    cm = confusion_matrix(y_test, y_pred)
    disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=['Normal', 'Suspect',
        disp.plot(cmap=plt.cm.Greens)
    plt.show()
```

