אלגברה ב' (104168) — אביב 2020-2021 עוד תרגילים

אלעד צורני

16 ביוני 2021

2 מרחבי העתקות

'תהי מ־S ל־S תהי מרחב הפונקציות מ־ $S:=\{4\}$ תהי תרגיל 1. תהי

$$f \colon S \to \mathbb{R}$$

$$n \mapsto n^2 - 1$$

ותהי

$$m_f \colon \mathbb{R}^S \to \mathbb{R}^S$$

. $g \mapsto fg$

. מצאו בסיס של \mathbb{R}^S ומטריצה מייצגת של ומטריצה ומטריצה \mathbb{R}^S

 $g\in\mathbb{R}^S$ נשים לב כי $B:=(\delta_1,\delta_2,\delta_3,\delta_4)$ בסיס עבור \mathbb{R}^S , כי זאת קבוצה בלתי־תלויה לינארית וכי עבור כל $B:=(\delta_1,\delta_2,\delta_3,\delta_4)$ נשים לב כי $B:=(\delta_1,\delta_2,\delta_3,\delta_4)$ מתקיים $n\in[4]$

$$g(n) = \sum_{i \in [4]} g(i) \, \delta_i(n)$$

מתקיים

$$m_f(\delta_1) = f\delta_1 = f(1) \delta_1$$

ובאותו אופן $i\in\left[4
ight]$ לכל $m_{f}\left(\delta_{i}
ight)=f\left(i
ight)\delta_{i}$ ובאותו אופן

$$[m_f]_B = \begin{pmatrix} f(1) & & & \\ & f(2) & & \\ & & f(3) & \\ & & & f(4) \end{pmatrix}$$

$$. = \begin{pmatrix} 0 & & \\ & 3 & \\ & & 8 \\ & & & 15 \end{pmatrix}$$

תרגיל 2. הראו כי

 $.\dim\operatorname{\mathsf{Hom}}_{\mathbb{F}}\left(V,W\right)=\dim_{\mathbb{F}}\left(V\right)\cdot\dim_{\mathbb{F}}\left(W\right)$

 $i\in [n], j\in [m]$ בסיס של w בסיס של $C=(w_1,\ldots,w_m)$ ויהי ויהי $B=(v_1,\ldots,v_n)$ יהי והי $B=(v_1,\ldots,v_n)$

$$\rho_{i,j} \colon V \to W$$
$$\cdot \sum_{k \in [n]} \alpha_k v_k \to \alpha_i w_j$$

נראה כי

$$B = (\rho_{1,1}, \dots, \rho_{1,2}, \dots, \rho_{1,n}, \rho_{2,1}, \dots, \rho_{2,n}, \dots, \rho_{n,1}, \dots, \rho_{n,n})$$

בסיס של Hom $_{\mathbb{F}}\left(V,W\right)$ מספיק להראות שזאת קבוצה בלתי־תלויה לינארית, ואכן אם

$$\rho_{i,j} = \sum_{(k,\ell) \neq (i,j)} \alpha_{k,\ell} \rho_{k,\ell}$$

נקבל

$$\rho_{i,j}\left(v_{i}\right)=w_{j}$$

אבל

$$\sum_{(k,\ell)\neq(i,j)}\alpha_{k,\ell}\rho_{k,\ell}\left(v_{i}\right)=\sum_{\ell\neq j}\alpha_{i,\ell}w_{\ell}$$

וזה שונה מ־ w_j כי (w_1,\ldots,w_m) בלתי־תלויה.

תרגיל 3. תהי

$$S \colon \mathbb{R}^2 \to \mathbb{R}^2$$

$$. \quad (x,y) \mapsto (-2y,x)$$

נגדיר

$$T \colon \operatorname{End}_{\mathbb{R}}\left(\mathbb{R}^2\right) o \operatorname{End}_{\mathbb{R}}\left(\mathbb{R}^2\right)$$
 . $U \mapsto SU$

יהי

$$B = (\rho_{i,j}) \, i, j \in [2]$$

 \mathbb{R}^2 כאשר מוגדרות כמו בסעיף הקודם לפי הבסיסים הסטנדרטיים על $ho_{i,j}$

 $[S]_E$ מצאו את 1

 $[T]_B$ מצאו את 2

$$Se_1 = -2e_1$$
 וגם $Se_1 = e_2$ לכן פתרון.

$$.\left[S\right]_{E} = \begin{pmatrix} 0 & -2\\ 1 & 0 \end{pmatrix}$$

2. מתקיים

$$\begin{split} T\rho_{1,1}e_1 &= S\rho_{1,1}e_1 = Se_1 = e_2 \\ T\rho_{1,1}e_2 &= S\rho_{1,1}e_2 = S0 = 0 \\ T\rho_{1,2}e_1 &= S\rho_{1,2}e_1 = Se_2 = -2e_1 \\ T\rho_{1,2}e_2 &= S\rho_{1,2}e_2 = S0 = 0 \\ T\rho_{2,1}e_1 &= S\rho_{2,1}e_1 = S0 = 0 \\ T\rho_{2,1}e_2 &= S\rho_{2,1}e_2 = Se_1 = e_2 \\ T\rho_{2,2}e_1 &= S\rho_{2,2}e_1 = S0 = 0 \\ T\rho_{2,2}e_2 &= S\rho_{2,2}e_2 = Se_2 = -2e_1 \end{split}$$

לכן

$$T\rho_{1,1} = \rho_{1,2}$$

$$T\rho_{1,2} = -2\rho_{1,1}$$

$$T\rho_{2,1} = \rho_{2,2}$$

$$T\rho_{2,2} = -2\rho_{2,1}$$

ולכן

$$.[T]_B = \begin{pmatrix} 0 & -2 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -2 \\ 0 & 0 & 1 & 0 \end{pmatrix} = \begin{pmatrix} S & 0 \\ 0 & S \end{pmatrix}$$

סכומים ישרים

הגדרה 2.1 (מכפלה של מרחבים וקטוריים). יהי $\mathcal S$ אוסף סדור (לאו דווקא סופי או בן־מנייה) של מרחבים וקטוריים מעל שדה $\mathbb T$ (עם חזרות). נגדיר את המכפלה

$$\prod_{V \in \mathcal{S}} V$$

להיות המכפלה התורת־קבוצתית עם חיבור וכפל בסקלר רכיב רכיב. אהיות המכפלה $\mathcal{S} = (V_1, \dots, V_n)$ אם $\mathcal{S} = (V_1, \dots, V_n)$

$$V_1 \times \ldots \times V_n := \prod_{V \in \mathcal{S}} V$$

אם כל איברי ${\mathcal S}$ שווים לאותו מרחב V נכתוב לפעמים

$$V^{|\mathcal{S}|} \coloneqq \prod_{V \in \mathcal{S}} V$$

תהי אביות מ־ $S\coloneqq\{4\}$ תהי ל- $S:=\{4\}$ תהי תהי אויהי ל- $S:=\{4\}$

$$f \colon S \to \mathbb{R}$$
$$n \mapsto n^2 - 1$$

ותהי

$$m_f \colon \mathbb{R}^S \to \mathbb{R}^S$$

. $g \mapsto fg$

מצאו בסיס של \mathbb{R}^S ומטריצה מייצגת של m_f לפי אותו בסיס.

 $g\in\mathbb{R}^S$ נשים לב כי $B:=(\delta_1,\delta_2,\delta_3,\delta_4)$ בסיס עבור \mathbb{R}^S , כי זאת קבוצה בלתי־תלויה לינארית וכי עבור כל $B:=(\delta_1,\delta_2,\delta_3,\delta_4)$ מתקיים $n\in[4]$

$$g(n) = \sum_{i \in [4]} g(i) \delta_i(n)$$

מתקיים

$$m_f(\delta_1) = f\delta_1 = f(1) \delta_1$$

ובאותו אופן $i\in\left[4
ight]$ לכל $m_{f}\left(\delta_{i}
ight)=f\left(i
ight)\delta_{i}$ ובאותו אופן

$$[m_f]_B = \begin{pmatrix} f(1) & & & \\ & f(2) & & \\ & & f(3) & \\ & & & f(4) \end{pmatrix}$$

$$. = \begin{pmatrix} 0 & & \\ & 3 & \\ & & 8 \\ & & 15 \end{pmatrix}$$

תרגיל 5. 1. הראו שמתקיים

$$.\dim_{\mathbb{F}}(V\times W)=\dim_{\mathbb{F}}V+\dim_{\mathbb{F}}W$$

- 2. הראו שמתקיים
- $.\dim_{\mathbb{F}} \operatorname{\mathsf{Hom}}_{\mathbb{F}}(V,W) = (\dim_{\mathbb{F}} V) (\dim_{\mathbb{F}} W)$
- 3. הסיקו שמתקיים

$$\mathsf{Hom}_{\mathbb{F}}(V, W_1 \times \ldots \times W_n) \cong \mathsf{Hom}_{\mathbb{F}}(V, W_1) \times \ldots \times \mathsf{Hom}_{\mathbb{F}}(V, W_n)$$

וגם

$$.\operatorname{\mathsf{Hom}}_{\mathbb{F}}\left(V_{1}\times\ldots\times V_{n},W\right)\cong\operatorname{\mathsf{Hom}}_{\mathbb{F}}\left(V_{1},W\right)\times\ldots\times\operatorname{\mathsf{Hom}}_{\mathbb{F}}\left(V_{n},W\right)$$

פתרון.

הגדרה 2.2 (מכפלה של העתקות). תהי $\mathcal I$ קבוצה סדורה עם חזרות, יהיו יהיו מרחבים וקטוריים תהי על העתקות לינאריות כך ש־ ויהיו $(V_i)_{i\in\mathcal I}$, העתקות לינאריות כך ש־

$$T_i \colon V_i \to W_i$$

נגדיר את המכפלה

$$\prod_{i \in \mathcal{I}} T_i \colon \prod_{i \in \mathcal{I}} V_i \to \prod_{i \in \mathcal{I}} W_i$$
$$(v_i)_{i \in \mathcal{I}} \mapsto (T_i v_i)_{i \in \mathcal{I}}$$

אם \mathcal{I} סופית, ניקח בדרך כלל $\mathcal{I} = [n]$ אם בדרך לפעמים

$$.T_1 \times T_2 \times \ldots \times T_n := \prod_{i \in [n]} T_i$$

עם הבסיס הסטנדרטי $V_2\coloneqq\mathbb{R}^2$ ו־י $B_1=(e_1,e_2,e_3)$ עם הבסיס הסטנדרטי עם הבסיס $V_1\coloneqq\mathbb{R}^3$ עם הבסיס הסטנדרטי . $B_2=(f_1,f_2)$

יהיינה , $V_1 imes V_2$ בסיס של $B = (e_1, e_2, e_3, f_1, f_2)$ יהי

$$T_1 : \mathbb{R}^3 \to \mathbb{R}^3$$

$$\begin{pmatrix} a \\ b \\ c \end{pmatrix} \mapsto \begin{pmatrix} b \\ c \\ a \end{pmatrix}$$

7

$$T_2 \colon \mathbb{R}^2 \to \mathbb{R}^2$$

$$\cdot \begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} y \\ -x \end{pmatrix}$$

 $(T_1 \times T_2)_B$ חשבו את

בסיסים עם וקטוריים עם בסיסים ($V_i)_{i\in[n]}$ יהיו

$$B_i \coloneqq \left(v_1^{(i)}, \dots, v_{k_i}^{(i)}\right)$$

יהי $T_i \in \mathsf{Hom}_{\mathbb{F}}\left(V_i,V_i\right)$ יהי $i \in [n]$ יהי

$$B = \left(v_1^{(1)}, \dots, v_{k_1}^{(1)}, \dots, v_1^{(n)}, \dots, v_{k_n}^{(n)}\right)$$

הראו כי

$$[T_1 \times \ldots \times T_n]_B$$

מטריצה בלוקים. (k_1,\ldots,k_n) אלכסונית

T שונים של העצמיים הערכים ויהיו $T\in {
m End}_{\Bbb F}(V)$ תהי תהי תהי לכסינה אם ורק אם $T\in {
m End}_{\Bbb F}(V)$ הערכים העצמיים של די נראה בתרגיל לה כי T לכסינה אם ורק אם

$$.V = \bigoplus_{i \in [k]} V_{\lambda}$$

1. נניח כי

$$.V = \bigoplus_{i \in [k]} V_{\lambda}$$

הראו כי יש בסיס של T שמורכב מוקטורים עצמיים של T והסיקו כי לכסינה.

ב. נניח כי T לכסינה. הראו שניתן לכתוב

$$V = \bigoplus_{i \in [k]} V'_{\lambda_i}$$

 $i \in [k]$ עבור $V'_{\lambda_i} \subseteq V_{\lambda_i}$ לכל

הסיקו כי במקרה זה אראו תחת הנחות הסעיף הקודם שמתקיים א $V'_{\lambda_i} = V_{\lambda_i}$ והסיקו כי במקרה זה.

$$.V = \bigoplus_{i \in [k]} V_{\lambda}$$

 $.V_\lambda$ עם מרחב עצמי $\lambda\in\mathbb{F}$ ויהי $T\in\mathsf{End}_\mathbb{F}(V)$ מרחבים וקטוריים n־מימדיים מעל $T\in\mathsf{End}_\mathbb{F}(V)$ עם מרחב עצמי N מרחבים וקטוריים N בקרא ל־N מרחבים הגיאומטרי של N כערך עצמי של N.

- אותם של־ T,S^- אותם של־ T,S^- וויהי ויהי של־ $T=P^{-1}SP$ איזומורפיזם עבורו איזומורפיזם וויהי ויהי ויהי מאותם $S\in \mathsf{End}_{\mathbb{F}}(W)$ אותם עבמיים מאותם ריבויים גיאומטריים.
 - בסינה. T לכסינה אם ורק אם T לכסינה.
- נים כיו גיאומטריים כמו של T עם אותם ערכים עצמיים וריבויים גיאומטריים של $S'\in \mathrm{End}_{\mathbb{F}}(W)$. הראו כי .3 . $T\sim S'$

 $n \cdot T^n = 0$ עבורו $n \in \mathbb{N}_+$ נילפוטנטית אם קיים $T \colon V \to V$ עבורו לינארית העתקה לינארית $T \colon V \to V$ נקראת נילפוטנטיות). העתקה של $T \colon V \to V$ המינימלי המקיים זאת נקרא האינדקס של

- 1. הראו שצירוף לינארי של העתקות נילפוטנטיות הוא נילפוטנטי.
- .det $(T)=\operatorname{tr}(T)=0$ בילפוטנטית מתקיים $T\colon V o V$ בראו שעבור.
- נילפוטנטית ולכסינה היחיד הוא $T\colon V o V$ נילפוטנטית ולכסינה ביר העצמי היחיד הוא $T\colon V o V$ נילפוטנטית ולכסינה מתקיים מתקיים
 - . תהי T נילפוטנטית. הראו שההעתקות $\mathrm{Id}_V\pm T$ הפיכות. 4 תהי x מספר. בסו לחשוב על ההופכי של x מספר.
- $n_i\coloneqq \dim\ker T^i$ נסמן $i\in [k]$ לכל .k לכל מאינדקס $i\in \mathbb{N}_+$ ותהי ותהי תהי תהי תהים מרחב וקטורי ממימד ותהי תהי $i\in \mathbb{N}_+$ ותהי תהיים

$$0 < n_1 < n_2 < \ldots < n_{k-1} < n_k = n$$

ותהי V ותהי $B=(v_1,\ldots,v_n)$ יהי $T\colon V o V$ ותהי ותהי $n\in\mathbb{N}_+$ בסיס של 6.

$$T \colon V \to V$$
$$v_1 \mapsto 0$$
$$. \forall i > 1 \colon v_i \mapsto v_{i-1}$$

 $[T]_B$ הראו כי T נילפוטנטית מאינדקס מאינדקס T

- נילפוטנטית אם L_A נילפוטנטית אם $A\in M_n\left(\mathbb{F}\right)$ נילפוטנטית. $A\in M_n\left(\mathbb{F}\right)$ נילפוטנטי מאינדקס $A\in M_n\left(\mathbb{F}\right)$ נאמר כל בלוק $A\in M_n\left(\mathbb{F}\right)$ כאשר כל בלוק $A\in M_n\left(\mathbb{F}\right)$
- A ווו או ש $A\in M_n$ ניל פוטנטי מאינז לןס n_i . הו או ש n_i נילפוטנטית מאינדקס m_i ווו או ש m_i נילפוטנטית מאינדקס $\max_{i\in [k]}(n_i)$ ווו או ש
 - ותהי $n \in \mathbb{N}_+$ ותהי ממימד מרחב וקטורי מרחב V

$$0 < n_1 < n_2 < \ldots < n_{k-1} < n_k = n$$

סדרת מספרים.

 $i \in [k]$ לכל $n_i = \dim \ker T^i$ כך שמתקיים $T \colon V o V$ לכל

 $n\in\mathbb{N}$ ממעלה ממעלה כזה פולינום עבור פולינום $p\in\mathbb{F}[x]$ נקרא מתוקן אם המקדם המוביל שלו שווה 1. עבור פולינום כזה ממעלה נכתוב

$$p\left(x\right) = \sum_{i=0}^{n} c_i x^i$$

כאשר $c_n=1$ ונגדיר את המטריצה המלווה של $c_n=1$

$$.C(p) := \begin{pmatrix} 0 & 0 & \cdots & 0 & -c_0 \\ 1 & 0 & \cdots & 0 & -c_1 \\ 0 & 1 & \cdots & 0 & -c_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 1 & -c_{n-1} \end{pmatrix} \in M_n(\mathbb{F})$$

- .. יהי $p\in\mathbb{F}[x]$ ממעלה $n\in\mathbb{N}$. מצאו את הפולינום המינימלי של $p\in\mathbb{F}[x]$. 1. רמז: השתמשו בעובדה שהפולינום המינימלי של מטריצה A שווה ל־(xI-A) וחשבו את הדטרמיננטה לפי השורה הראשונה.
 - $A \in M_n\left(\mathbb{F}\right)$ ב. הראו שהתנאים הבאים שקולים עבור
 - $C(p_A)$ דומה ל־A (i)
 - $p\left(A
 ight)
 eq 0$ מתקיים $p \in \mathbb{F}_{n-1}\left[x
 ight]$ (ii)
 - V היא בסיס של $\{v,Av,\ldots,A^{n-1}v\}$ ויש וקטור $\{v\in\mathbb{F}^n$ ביס של עבור $\{v\in\mathbb{F}^n\}$ ביס של (iii)

ותהי $n \in \mathbb{N}_+$ ומימד ממימד מרחב ער יהי V יהי

$$0 < n_1 < n_2 < \ldots < n_{k-1} < n_k = n$$

סדרת מספרים.

- $n_i=n_i$ עבורה עתקה (לאו דווקא ממש). הראו שיש העתקה $T\in \mathsf{End}_{\mathbb{F}}(V)$ מונוטונית יורדת (לאו דווקא ממש). הראו שיש העתקה $i\in [k]$ לכל dim $\mathsf{ker}\left(T^i\right)$
- $n_i=n_i=n_i$ עבורה $T\in \mathsf{End}_{\mathbb{F}}(V)$ עבורה שאין העתקה $n_{i+1}-n_i>n_i-n_{i-1}$ עבורה ניח כי יש $i\in [k]$ לכל dim ker (T^i)
 - עם $T \in \mathsf{End}_{\mathbb{F}}(V)$ עם של V, וראינו כי k=1 במקרה k=1

$$[T]_{B} = J_{n}(0) := \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \ddots & \vdots \\ \vdots & \ddots & 0 & \ddots & 0 \\ 0 & 0 & \ddots & 0 & 1 \\ 0 & 0 & \dots & 0 & 0 \end{pmatrix}$$

n נילפוטנטית מאינדקס

ונתונות $V=\bigoplus_{j\in [\ell]}V_j$ אם הכללי. אם המקרה הנ"ל כדי לבנות את הנ"ל כדי לבנות את המקרה להשתמש בדוגמא הנ"ל כדי לבנות את המקרה הכללי. אם $V=\bigoplus_{j\in [\ell]}V_j$ מתקיים $T_j\in \operatorname{End}_{\mathbb{F}}(V_j)$

$$\ker\left(\bigoplus_{j\in[\ell]}T_j\right)=\bigoplus_{j\in[\ell]}\ker\left(T_j\right)$$

לכן

$$\begin{split} \dim \ker \left(\left(\bigoplus_{j \in [\ell]} T_j \right)^i \right) &= \dim \ker \left(\bigoplus_{j \in [\ell]} T_j^i \right) \\ &= \dim \bigoplus_{j \in [\ell]} \ker \left(T_j^i \right) \\ &= \sum_{j \in [\ell]} \dim \ker \left(T_j^i \right) \end{split}$$

נסמן $n_0=n_i-n_{i-1}$ וגם $n_0=0$ אז

$$\sum_{i \in [k]} m_i = n_k - 0 = n_k = n$$

עם $T \in \mathsf{End}_{\mathbb{F}}\left(V
ight)$ יהי B בסיס ל

$$[T]_B = \begin{pmatrix} A_1 & & 0 \\ & \ddots & \\ 0 & & A_\ell \end{pmatrix}$$

כאשר m_1-m_2 הבלוקים שאחריהם הם כאשר m_1-m_2 כאשר m_1-m_2 הבלוקים שאחריהם הם m_1-m_2 וגם m_i-m_i וגם m_i-m_i שהם בלוקים שהם $J_2\left(0\right)$ וגם m_i-m_i בלוקים שהם $J_2\left(0\right)$ נקבל שסכום הבלוקים הוא

$$\sum_{i \in [k-1]} i (m_i - m_{i+1}) + k m_k = \sum_{i \in [k]} m_i = n$$

לכן באמת אפשר לקחת $\left[T
ight]_B$ כזאת. והרל

$$V = \bigoplus_{j \in [\ell]} V_j$$

וגם $\dim\ker\left(T_{i}^{i}
ight)=\min\left\{i,\dim V_{j}
ight\}$ עבורן $T_{j}\in\operatorname{End}_{\mathbb{F}}\left(V_{j}
ight)$ והעתקות

$$T = \bigoplus_{j \in [\ell]} T_j$$

עבור i < k נקבל

$$\begin{split} \dim \ker \left(T^i \right) &= \sum_{j \in [\ell]} \dim \ker \left(T^i_j \right) \\ &= \sum_{s \in [i]} s \left(m_s - m_{s+1} \right) + i \left(\sum_{s=i+1}^{k-1} \left(m_s - m_{s+1} \right) + m_k \right) \\ &= \sum_{s \in [i]} m_s - i m_{i+1} + i m_{i+1} \\ &= \sum_{s \in [i]} n_s - n_{s-1} \\ &= \sum_{s \in [i]} n_s - \sum_{s=0}^{i-1} n_s \\ &= n_i - n_0 \\ &= n_i \end{split}$$

כנדרש.

ביים שיש T כזאת. מתקיים 2

$$n_{i+1} - n_i = \dim \ker \left(T^{i+1}\right) - \dim \ker \left(T^i\right)$$

נראה $\ker\left(T^{i+1}\right)\setminus\ker\left(T^{i}\right)$ ב־ $v_1,\ldots,v_{m_{i+1}}$ לכן יש $m_{i+1}:=n_{i+1}-n_i$ וקטורים בלתי־תלויים לינארית. יהי כי $T\left(v_1\right),\ldots,T\left(v_{m_{i+1}}\right)$ כי בי

$$\sum_{j \in [m_{i+1}]} \alpha_j T(v_j) = 0$$

צירוף לינארי שלהם ששווה 0. אז

$$0 = \sum_{j \in [m_{i+1}]} \alpha_j T(v_j)$$
$$= T\left(\sum_{j \in [m_{i+1}]} \alpha_j v_j\right)$$

כלומר

$$\sum_{j\in\left[m_{i+1}\right]}\alpha_{j}v_{j}\in\ker\left(T\right)\subseteq\ker\left(T^{i}\right)$$

בסתירה להנחה על ה־ $T\left(v_{1}\right),\ldots,T\left(v_{m_{i+1}}\right)
otin \mathsf{ker}\left(T^{i-1}\right)$ כי אחרת בסתירה להנחה על ה

$$T^{i}(v_{i}) = T^{i-1}(T(v_{i})) = 0$$

 $\ker\left(T^i
ight)$ – בסתירה להנחה. לכן m_{i+1} הם $T\left(v_1
ight),\dots,T\left(v_{m_{i+1}}
ight)$ לכן m_{i+1} ב $m_{i+1}=n_{i+1}-n_i$ בסתירה לנתון. $\ker\left(T^{i-1}
ight)$

תרגיל 12. עבור פולינום מתוקן $p \in \mathbb{F}\left[x\right]$ נכתוב

$$p(x) = \sum_{i=0}^{n} c_i x^i$$

כאשר p ונגדיר את המטריצה המלווה של על ידי , $c_n=1$

$$.C(p) \coloneqq \begin{pmatrix} 0 & 0 & \cdots & 0 & -c_0 \\ 1 & 0 & \cdots & 0 & -c_1 \\ 0 & 1 & \cdots & 0 & -c_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 1 & -c_{n-1} \end{pmatrix} \in M_n(\mathbb{F})$$

- $C\left(p
 ight)$ את הפולינום האופייני ואת הפולינום המינימלי של n ממעלה n ממעלה n ממעלה 1. יהי
 - $A\in M_{n}\left(\mathbb{F}
 ight)$ ב. הראו שהתנאים הבאים שקולים עבור
 - $C(p_A)$ דומה ל־A (i)
 - הפולינום האופייני של A שווה לפולינום המינימלי שלה. (ii)
- V בסיס של $(v,Av,\dots,A^{n-2}v,A^{n-1}v)$ שבור A, במובן עבור $v\in\mathbb{F}^n$ יש וקטור (iii)

פתרון.

$$.p_{C(p)} = \det\left(I - xC\left(p\right)\right) = \det\begin{pmatrix} x & 0 & \cdots & 0 & c_0 \\ -1 & x & \cdots & 0 & c_1 \\ 0 & -1 & \cdots & 0 & -c_2 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \dots & -1 & x + c_{n-1} \end{pmatrix}$$

ניעזר בכך שהטרמיננטה אינווריאנטית תחת הוספת כפולה של שורה לשורה אחרת. נוסיף את השורה האחרונה כפול x לזאת שלפניה. לאחר מכן נוסיף את השורה ה־n-1 כפול x לזאת שלפניה ונמשיך כך עד שנקבל מטריצה

$$\begin{pmatrix} 0 & 0 & \cdots & 0 & y \\ -1 & 0 & \cdots & 0 & * \\ 0 & -1 & \cdots & 0 & * \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \dots & -1 & * \end{pmatrix}$$

כאשר

$$y = a_0 + x (a_1 + x (a_2 + x (... (a_{n-2} + x (a_{n-1} + x))...))) = \sum_{i=0}^{n} c_i x^i = f$$

$$p_{C(p)}=(-1)^{n-1}\detegin{pmatrix} -1 & x & \cdots & 0 \ 0 & -1 & \cdots & 0 \ dots & dots & \ddots & dots \ 0 & 0 & \cdots & -1 \end{pmatrix}=(-1)^{n-1}\left(-1
ight)^{n-1}f=f$$
 בונכתוב $g\in\mathbb{F}_{n-1}\left[x
ight]$ יהי $g\in\mathbb{F}_{n-1}\left[x
ight]$. $g(x)=\sum_{i=0}^{n-1}b_ix^i$

$$g(x) = \sum_{i=0}^{n-1} b_i x^i$$

אז

$$g(C(p))(e_1) = \sum_{i=0}^{n-1} b_i C(p)^i e_1$$
$$= \sum_{i=0}^{n-1} b_i e_{1+i}$$

וביטוי זה שונה מאפס כאשר $g \neq 0$ כי אז יש $b_i \neq 0$ עבור i כלשהו. $m_{C(p)} = p_{C(p)}$ ולכן $\deg \left(m_{C(p)}\right) \geq n$ לכן

ונקבל $p_{C(p_A)}=m_{C(p_A)}$ כ. ראינו כי $P_{C(p_A)}$ דומה ל־ $P_{C(p_A)}$ ונקבל .2

$$p_A = p_{C(p_A)} = m_{C(p_A)} = m_A$$

כנדרש.

 $v\in V\setminus\{0\}$ בורר 3: כיוון שהפולינום המינימלי של A שווה לפולינום האופייני שלה, הוא מדרגה n. לכן לכל $(v,Av,\dots,A^{n-1}v)$ בלתי־תלויה לינארית. כיוון שהיא מגודל n היא גם בסיס.

3 גורר 1: יהי

$$B \coloneqq (v, Av, \dots, A^{n-1}v)$$

הבסיס הנתון. נרצה להראות כי

$$.\left[L_{A}\right]_{B}=C\left(p_{A}\right)$$

ניתן לראות כי n-1 העמודות הראשונות בשתי המטריצות שוות, מהגדרת B. כעת נכתוב

$$p_A(x) = \sum_{i=0}^{n} c_i x^i$$

ואז מקיילי־המילטון

$$A^{n} = -\sum_{i=0}^{n-1} c_{i} A^{i}$$

לכן

$$L_A\left(A^{n-1}v
ight)=A^nv=-\sum_{i=0}^{n-1}c_iA^iv$$
 . עבדרש, $\begin{pmatrix}-c_0\ dots\cr -c_{n-1}\end{pmatrix}$ היא $[L_A]_B$ היא

הגדרה 2.3 (פולינום מינימלי של וקטור). תהי $T\in \mathrm{End}_{\mathbb{F}}(V)$ ויהי $v\in V$ ויהי הפולינום המינימלי של של $m_{T,v}$ מהמעלה הנמוכה ביותר עבורו היא הפולינום המתוקן

$$.m_{T,v}\left(T\right)\left(v\right)=0$$

תרגיל 13. מטריצה מהצורה

$$\begin{pmatrix} 0 & 0 & \cdots & 0 & -c_0 \\ 1 & 0 & \cdots & 0 & -c_1 \\ 0 & 1 & \cdots & 0 & -c_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 1 & -c_{n-1} \end{pmatrix} \in M_n(\mathbb{F})$$

נקראת בלוק רציונלי. מטריצת בלוקים שכל בלוקיה הם בלוקים רציונליים נקראת מטריצה רציונלית קנונית. נקראת דיונלית קנונית. $T\in \mathsf{End}_{\mathbb{F}}\left(V
ight)$ מטריצה רציונלית מונית.

 $v \in V$ נסמן עבור וקטור $v \in V$

$$\begin{split} d &\coloneqq \mathsf{deg}_{\mathbb{F}} \, m_{T,v} \, (x) \\ B_v &\coloneqq \left(v, Tv, T^2 v, \dots, T^{d-1} v \right) \\ . \, \langle v \rangle &\coloneqq \mathsf{Span} \, B_v \end{split}$$

 $v\in V$ בלתי־תלויה לינארית. נקבל מהתרגיל הקודם כי $\left[T|_{\langle v
angle}
ight]_{B_v}$ בלתי־תלויה לינארית. נקבל מהתרגיל הקודם כי $v_1,\dots,v_k\in V$ בבורם לכן די למצוא וקטורים

$$.V = \bigoplus_{i \in [k]} \langle v_i \rangle$$

עבור שרשרת ז'ורדן מקסימלית

$$\left(\left(T - \lambda \operatorname{Id}_{V}\right)^{k-1} v, \dots, \left(T - \lambda \operatorname{Id}_{V}\right) v, v\right)$$

מתקיים

$$.m_{T,v}(x) = (x - \lambda)^k$$

אז

$$B_v = (v, Tv, T^2v, \dots, T^{k-1}v)$$

בלתי־תלויה לינארית. ניקח

$$B = B_{v_1} * \ldots * B_{v_k}$$

עבור (v_1,\ldots,v_k) אוסף הוקטורים בראש שרשראות ז'ורדן המקסימליות של (v_1,\ldots,v_k) אז

$$V = \bigoplus_{i \in [k]} \langle v_i \rangle$$

. כמסקנה ממשפט ז'ורדן ונקבל כי $\left[T\right]_{B}$ מטריצה רציונלית קנונית

 $u,v\in V$ מתקיים $u,v\in V$ מחלכל זהות הפולריזציה). יהי

$$.\langle u, v \rangle = \frac{\|u + v\|^2 - \|u - v\|^2}{4}$$

 $oldsymbol{u},v$ מתקיים עבור u,v

$$\frac{\|u+v\|^2 - \|u-v\|^2}{4} = \frac{\langle u+v, u+v \rangle - \langle u-v, u-v \rangle}{4}$$

$$= \frac{\langle u, u \rangle + \langle u, v \rangle + \langle v, u \rangle + \langle v, v \rangle - (\langle u, u \rangle - \langle u, v \rangle - \langle v, u \rangle + \langle v, v \rangle)}{4}$$

$$= \frac{2\langle u, v \rangle + 2\langle v, u \rangle}{4}$$

$$= \frac{4\langle u, v \rangle}{4}$$

$$= \langle u, v \rangle$$

 $n_0>0$ עבורת אם ורק אם ורק אם ורק אם ורק עבורו $w\in V$ עבורו. הראו כי יש $w\in V$ מילבסטר של g תבנית בילינארית. הראו כי יש $w\in V$ עבורו פילבסטר של g.

 $g\left(u_n,u_n
ight)=0$ אח ליהי ($n_0>0$ יהי ונניח כי $g\left[g\right]_C$ בסיס של V עבורו V עבורו בסיס ונניח כי $C=(u_1,\dots,u_n)$ יהי $v_0>0$ בסיס של $v_1=w$ נסמן $v_1=w$ ונשלים לבסיס אורתונורמלי ($v_1=w$ עבורו $v_1=w$ בסיס אורתונורמלי ($v_1=w$ ונשלים לבסיס אורתונורמלי ($v_1=w$ בסיס או

$$\tilde{u}_{i} \coloneqq \begin{cases} \frac{w_{i}}{\sqrt{g(w_{i}, w_{i})}} & g(w_{i}, w_{i}) \neq 0 \\ w_{i} & g(w_{i}, w_{i}) = 0 \end{cases}$$

. המטריצה $[g]_C$ המטריצה $C=(u_1,\ldots,u_n)$ ועבורו בבסיס ועבורת עבורו $u_n=\tilde{u}_1$ היא בצורת סילבסטר