Домашнее задание

По курсу: Математический Анализ

Студент: Ростислав Лохов

АНО ВО Центральный университет 21 декабря 2024 г.

Содержание

1	Второе достаточное условие экстремума	
	1.1 Задача 8	
2	Неравенство Йенсена	
	2.1 Задача 9	
	2.2 Задача 10	
3	Формула Тейлора с остаточным членом в форме Пеано	
	3.1 Задача 12	
4	Формула Тейлора с остаточным членом в форме Лагранжа	
	4.1 Задача 13	
	4.2 Задача 14	
	4.3 Задача 15	
	4.4 Задача 16	
	4.5 Задача 17	
	4.6 Задача 19	
	4.7 Задача 28	
	4.8 Задача 29	
	4.9 Задача 30	
	4.0 Залача 31	

1 Второе достаточное условие экстремума

1.1 Задача 8

$$f(x) = f(-x) \Rightarrow f'(x) = f'(-x) \Rightarrow f''(x) = f''(-x)$$

 $f'(-x) = -f'(x) \Rightarrow f'(0) + f'(0) = 0 \Rightarrow f'(0) = 0$

Тогда пользуясь вторым достаточным условием экстремума:

 $f'(0)=0 \land |f''(x)|>0 \Rightarrow |f''(x)| \neq 0$ точка 0 является точкой экстремума.

2 Неравенство Йенсена

2.1 Задача 9

$$(a_1^2 + \dots + a_n^2)(b_1^2 + \dots + b_n^2) \ge (a_1b_1 + a_nb_n)^2$$

$$w_i = \frac{a_i^2}{\sum_{1}^n a_i^2}$$

сумма всех w равна 1

Пусть

$$x_i = \frac{b_i}{a_i}$$

Тогда по неравенству Йенсена:

$$\left(\sum_{i=1}^{n} \frac{a_i^2}{a_1^2 + a_2^2 + \dots + a_n^2} \cdot \frac{b_i}{a_i}\right)^2 \le \sum_{i=1}^{n} \frac{a_i^2}{a_1^2 + a_2^2 + \dots + a_n^2} \cdot \left(\frac{b_i}{a_i}\right)^2$$
$$\frac{\left(\sum_{i=1}^{n} a_i b_i\right)^2}{\left(\sum_{i=1}^{n} a_i^2\right)^2} \le \frac{\sum_{i=1}^{n} b_i^2}{\sum_{i=1}^{n} a_i^2}$$

домножим обе части на знаменатель:

$$\left(\sum_{i=1}^{n} a_i b_i\right)^2 \le \left(\sum_{i=1}^{n} a_i^2\right) \left(\sum_{i=1}^{n} b_i^2\right)$$

ЧТД

2.2 Задача 10

Неравенство Юнга т.к $\frac{1}{p} + \frac{1}{q} = 1$:

$$ab \le \frac{a^p}{p} + \frac{b^q}{q}$$

тогда введем индексы и проссумируем

$$\sum_{i=1}^{n} a_i b_i \le \sum_{i=1}^{n} \left(\frac{a_i^p}{p} + \frac{b_i^q}{q} \right) = \frac{1}{p} \sum_{i=1}^{n} a_i^p + \frac{1}{q} \sum_{i=1}^{n} b_i^q$$

Тогда по неравенству Йенсена:

$$\frac{1}{p} \sum_{i=1}^{n} a_i^p + \frac{1}{q} \sum_{i=1}^{n} b_i^q \ge \left(\sum_{i=1}^{n} a_i^p \right)^{\frac{1}{p}} \left(\sum_{i=1}^{n} b_i^q \right)^{\frac{1}{q}}$$

Обьединяем, получаем:

$$\sum_{i=1}^{n} a_i b_i \le \frac{1}{p} \sum_{i=1}^{n} a_i^p + \frac{1}{q} \sum_{i=1}^{n} b_i^q \le \left(\sum_{i=1}^{n} a_i^p\right)^{\frac{1}{p}} \left(\sum_{i=1}^{n} b_i^q\right)^{\frac{1}{q}}$$

- 3 Формула Тейлора с остаточным членом в форме Пеано
- 3.1 Задача 12

$$ch(1) + sh(1)(x-1) + o((x-1)^2)$$

- 4 Формула Тейлора с остаточным членом в форме Лагранжа
- 4.1 Задача 13

$$x + \frac{x^3}{3!} + R_3$$

Т.к в разложении нечетной функции учавствуют только нечетные степени, то

$$|R_3| \le \left| \frac{f^{(5)}(\xi)}{5!} x^5 = \left| \frac{x^5}{5!} \right|$$

$$|R_3| \le 8.333 \cdot 10^{-8}$$

$$|sin(0.01) - 0.1 - \frac{0.001}{6}| \le 10^{-7}$$

ЧТД

4.2 Задача 14

Разложим около точки $x=4+hh=1x_0=4f=\sqrt{4+h}\Rightarrow f(x)=2\cdot (1+0.25h)^{0.5}$ Воспользуемся биномиальным разложением: $(1+z)^k=1+kz+\frac{k(k-1)}{2!}z^2+\frac{k(k-1)(k-2)}{2!}z^3\dots$ k=0.5 z=0.25 $T_0=1,T_1=0.125,T_2=-\frac{1}{128},T_3=\frac{1}{1024},T_4=\frac{-15}{98304},T_5=\frac{7}{262144}$ $S=\sum_{0}^{5}T_i=\frac{586174}{131072}$ $T_6=\frac{945}{188743680}\approx -0.000005$

$$|2.2361 - 2.2360679775| \approx 0.000032 \le 10^{-4}$$

4.3 Задача 15

По теореме Лагранжа:

Поскольку fдифференцируема на [0;1]и f(0)=f(1)=0, по теореме Лагранжа существует точка $c\in(0;1)$, такая что:

$$f'(c) = \frac{f(1) - f(0)}{1 - 0} = 0.$$

То есть, существует точка c, в которой первая производная равна нулю.

Для любой точки $x \in [0; 1]$ применим неравенство Липшица для производной:

$$|f'(x) - f'(c)| \le \sup_{t \in [0;1]} |f''(t)| \cdot |x - c| \le A|x - c|.$$

Поскольку f'(c) = 0, получаем:

$$|f'(x)| \le A|x - c|.$$

Максимальное значение |x-c|на отрезке [0;1]достигается, когда xнаходится на границах отрезка относительно c. Наиболее «жесткая» оценка достигается, когда $c=\frac{1}{2}$, тогда:

$$|x - c| \le \frac{1}{2}.$$

Следовательно:

$$|f'(x)| \le A \cdot \frac{1}{2} = \frac{A}{2}.$$

ЧТД

4.4 Задача 16

По формуле косинусов суммы:

$$f(x) = \frac{\sqrt{2}}{2}\cos(2x) - \frac{\sqrt{2}}{2}\sin(2x)$$

Раскладываем маклоореном

$$f(x) = \frac{\sqrt{2}}{2} \sum_{k=0}^{\infty} \frac{(-1)^k (2x)^{2k}}{(2k)!} - \frac{\sqrt{2}}{2} \sum_{k=0}^{\infty} \frac{(-1)^k (2x)^{2k+1}}{(2k+1)!}$$

4.5 Задача 17

a)
$$f(x) = \sum_{k=0}^{n} \frac{8(-\ln 2)^k}{k!} x^k + o(x^n)$$
 b) $f(x) = \frac{1}{2} \sum_{k=0}^{n} \frac{(2k-1)!!}{2^k \cdot k!} \left(\frac{x}{4}\right)^k + o(x^n)$ c) $f(x) = 2 - \sum_{k=1}^{n} \frac{1}{k} \left(\frac{x}{e}\right)^k + o(x^n)$

4.6 Задача 19

$$f(x) = e^x + x^2|x| = \left(1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \cdots\right) + (x^3 \cdot \text{sign}(x)) \text{ n=1: } f(x) = 1 + x + o(x)$$

n=2: $f(x) = 1 + x + \frac{x^2}{2} + o(x^2)$

n=3+: разложение не соответствует условию т.к остаточный член не стремится к нулю при делении на x^n

4.7 Задача 28

$$f(x) = 1 + x + \frac{x^2}{2} - \frac{x^3}{3} + O(x^3)$$
$$f'''(x)|_{0} = -2$$

4.8 Задача 29

$$f(x) = 1 + 2x - \frac{4x^3}{3} + o(x^3)$$
$$f'''(0) = -8$$

4.9 Задача 30

$$f(x) = x - \frac{x^3}{3} + \frac{2x^5}{15} + O(x^6)$$

4.10 Задача 31

$$\arcsin(x^3) = x^3 + \frac{x^9}{6} + o(x^9)$$
$$ln(1+x^2) = x^2 - \frac{x^4}{2} + \frac{x^6}{3} + o(x^6)$$
$$f(x) = x + \frac{x^3}{2} - \frac{x^5}{12} + o(x^5)$$