AVL Tree

AVL Tree: Definition

- An **AVL tree** is a binary search tree that is *height balanced*: for each node x, the heights of the left and right subtrees of x differ by at most 1.
 - A subtree of an AVL tree is itself an AVL tree.
- Height-Balance Property: For every internal node v of T, the heights of the children of v can differ by at most 1.
 - Any Binary Search Tree (BST) that satisfies the height-balance property is said to be an *AVL tree*.
- Named after its two Soviet inventors
 - G.M. Adelson-Velskii and E.M. Landis.

Binary Search Tree

Dr. Md. Abul Kashem Mia, Professor, CSE Dept, BUET

Binary Search Tree

AVL Tree

• Proposition: The height of an AVL tree T storing n elements is $O(\log n)$.

Justification:

Let, the minimum number of internal nodes be n(h), where h is the height of the tree.

so,
$$n(1) = 1$$
; $n(2) = 2$; and $n(h) = 1 + n(h-1) + n(h-2)$ for $h \ge 3$.

Since n(h) is a strictly increasing function, we have n(h-1) > n(h-2).

Then
$$n(h) > 2.n(h-2)$$

> $4.n(h-4)$
...
> $2^{i}.n(h-2i)$.

AVL Tree

We pick i so that h -2i is equal to 1 or 2. That is, we pick

$$i = \left\lceil \frac{h}{2} \right\rceil - 1$$
so, $n(h)$

$$> \left\lceil \frac{h}{2} \right\rceil - 1 \\ \ge \frac{h}{2} \right\rceil - 1 \cdot n(h - \left\lceil \frac{h}{2} \right\rceil + 2)$$

$$\ge \frac{h}{2} \cdot n(1)$$

$$\ge \log n(h) \ge \frac{h}{2} - 1$$

$$\Rightarrow h \le 2 \log n(h) + 2 \Rightarrow h \le O(\log n)$$

Dr. Md. Abul Kashem Mia, Professor, CSE Dept, BUET

Dr. Md. Abul Kashem Mia, Professor, CSE Dept, BUET

AVL Tree (Deletion)

AVL Tree (Deletion)

After a single rotation

AVL Tree (Deletion)

