

Research

Web PKI: Closing the Gap between Guidelines and Practices

Antoine Delignat-Lavaud, Inria Paris

Joint work with Martín Abadi, Andrew Birrell, Ilya Mironov, Ted Wobber and Yinglian Xie, Microsoft Research

Background: HTTPS

Background: TLS protocol

Browser Server

Background: TLS protocol

Authentication > Integrity > Confidentiality

Background: PKI

Background: PKI

Background: PKI

- 1. W generates (pK, sK)
- 2. W creates a CSR: {subject identity, applicable domains/IP addresses, pK} signed with sK
- 3. W sends CSR to CA with proof of identity and control over the listed domains
- 4. CA checks proofs and signs a certificate C with the private key of its CA certificate based on CSR data

Issues: Unreliable CAs

- Issuance errors
 - Jan. 2013: 2 CA-enabled certificates on Türktrust root
 - 2010-2011: 1580 CA-enabled certificates issued to Korean institutions. Several had a 512-bit key
- Deliberate attacks
 - Jul. 2011: hacker gains access to DigiNotar's HSM and creates multiple certificates used in MITM attacks

Issues: Unreliable CAs

- Reckless practices
 - Dec. 2013: MITM CA issued on ANSSI root (controlled by the French government)
 - Jan. 2012: MITM CA issued on Trustwave root
 - Mar. 2011: 9 rogue certificates issued on Comodo root because of dangerous delegation practices

Issues: Cryptographic Attacks

- Weak keys
 - 512 bit RSA
 - 512 bit DH primes
 - Weak RNG (OpenSSL entropy bug on Debian)
- Weak hashing algorithms
 - May. 2012: FLAME malware
 - Dec. 2008: rogue CA certificate created with MD5 collision

Proposed Solutions

- 1. Ditch certification authorities (e.g. DANE)
 - Interesting design question, new protocol design
 - Not practical yet
- 2. Detect malicious certificates in the browser
 - Some success already (MITM attacks detected by certificate pinning, minimum crypto requirements)
 - Many proposals, no standard
 - Not effective against all types of compromise

Primitive	Security Properties Offered				Evaluation of Impact on HTTPS												
			A	В		С	Sec	urity	& Pri	vacy	D	eploy	ability	v	U.	sabili	ty
Key Pinning (Client History)	0	0	0				•	•		•	•	•	•	•			
Key Pinning (Server)	0	0	0				•	•				•	•	•	•		•
Key Pinning (Preloaded)	•	•	• •				0	•		•	0	•	•		•	0	•
Key Pinning (DNS)	•	•	• •				0	•	•		0		•	•	•	0	•
Multipath Probing		•	•							•	•	•		•		•	
Channel-bound Credentials			0				•	•		•		•	•	•	•	0	•
Credential-bound Channels			0				•	•		•		•	•	•	•	0	•
Key Agility/Manifest			•				•	•				•	•	•	•	•	•
HTTPS-only Pinning (Server)				0	0		•	•				•	•	•	•		•
HTTPS-only Pinning (Preloaded)			•	•	•		0	•		•	0	•	•		•	0	•
HTTPS-only Pinning (DNS)			•	•	•		0	•			0		•	•	•	0	•
Visual Cues for Secure POST					•		•	•		•	•	•		•		•	
Browser-stored CRL						•	0	•		•	•	•	•	•	•	•	•
Certificate Status Stapling						•	•	•	•			•	•	•	•	0	•
Short-lived Certificates						•	•	•	•	•		•	•	•	•	•	•
List of Active Certificates						• •			•	•	•	•		•	•	•	•

J. Clark et al. - SSL and HTTPS: Revisiting past challenges and evaluating certificate trust model enhancements

Proposed Solutions

- 3. Force CAs to adopt best practices
 - New regulations in response to attacks
 - More involvement of root program managers
- 4. Monitor the PKI for weaknesses
 - Several past ad hoc measurements: Durumeric et al. (IMC13), Levillain et al. (ACSAC12), Holz et al. (IMC11) EFF Observatory (2010) ...
 - This paper: PKI monitoring framework

CA/B Forum Baseline Requirements

- Uniform set of requirements for all CAs
- Only went into effect in July 2012
- Covers different aspects of operations:
 - Security of CA network and private keys
 - Identity verification process
 - ...
 - Certificate content requirements

CA/B Certificate Requirements Goals

- Proper identification of subject, issuer and issuance policy of the certificate
- Clear definition of the scope of the certificate (which entities it applies to, for which purposes)
- Efficient revocation status checking
- Chain reconstruction support

Contents of a Certificate

Certificate Fields

Serial Number, Signature Algorithm

Issuer, Subject

Validity Period

Public Key

Extensions

Usage Restrictions

Revocation Information

List of applicable names

Issuance policy

Additional issuer information

Levels of Assurance

Domain Validated	Organization Validated	Extended Validation
Free or <\$60 /year	\$100-\$300 /year	\$350+ /year
Email sent to WHOIS email address, DNS record, hosted file	Manual verification by CA	Proof of incorporation
Asserts control over listed domains	Asserts subject identity	Stricter key and validity period restrictions
Online issuance	Offline issuance	Offline issuance
Padlock	Padlock	Organization + green bar

Endpoint Extension Requirements

Extension Type	Requirements
Certificate Policies	Must reflect issuance policy and point to CPS
CRL Distribution Points	Must appear and include HTTP URL of CRL file
Authority Information Access	Must include HTTP URL of OCSP responder and issuer certificate file
Basic Constraints	CA bit must never be set
Key Usage	Digital Signature and Key Encipherment
Extended Key Usage	(Client)/Server Authentication, (Email Protection)
Subject Alternative Names	Must list all applicable domains and IP

Main Observations

- Compared to certificates issued before BR adoption violation rates are down 2.6pp on average
- For instance, the lack of an OCSP service is down about 20pp between the two periods
- Serious and relatively common key usage issues
- Intranet names are still widely used in certificates
- Certificates valid for expired domains are a problem

Missing Extended Key Usage

Abusive Extended Key Usage


```
Windows Hardware Driver Verification
(1.3.6.1.4.1.311.10.3.5)
Time Stamping (1.3.6.1.5.5.7.3.8)
Windows System Component Verification
(1.3.6.1.4.1.311.10.3.6)
Secure Email (1.3.6.1.5.5.7.3.4)
OEM Windows System Component Verification
(1.3.6.1.4.1.311.10.3.7)
Microsoft Trust List Signing (1.3.6.1.4.1.311.10.3.1)
Microsoft Time Stamping (1.3.6.1.4.1.311.10.3.2)
Lifetime Signing (1.3.6.1.4.1.311.10.3.13)
License Server Verification (1.3.6.1.4.1.311.10.6.2)
Key Pack Licenses (1.3.6.1.4.1.311.10.6.1)
IP security user (1.3.6.1.5.5.7.3.7)
IP security tunnel termination (1.3.6.1.5.5.7.3.6)
IP security IKE intermediate (1.3.6.1.5.5.8.2.2)
IP security end system (1.3.6.1.5.5.7.3.5)
File Recovery (1.3.6.1.4.1.311.10.3.4.1)
Encrypting File System (1.3.6.1.4.1.311.10.3.4)
Embedded Windows System Component Verification
(1.3.6.1.4.1.311.10.3.8)
Document Signing (1.3.6.1.4.1.311.10.3.12)
Directory Service Email Replication
(1.3.6.1.4.1.311.21.19)
Code Signing (1.3.6.1.5.5.7.3.3)
Client Authentication (1.3.6.1.5.5.7.3.2)
Server Authentication (1.3.6.1.5.5.7.3.1)
```


Expired / Renewed Domains

Invalid Basic Constraints

- Factorable 512-bits keys (\$240 on Amazon EC2)*
- No revocation
- Saved by Path Length Constraint
 - Is it properly enforced?

*Nadia Heninger, Factoring as a Service CRYPTO'13 rump session

Digression: Certificate Validations

- Certificate validation is a difficult challenge, often delegated to the application (Georgiev et al. and Fahl et al. at CCS12)
- We found several problems related to enforcement of key usage, path length and other constraints in GnuTLS, OpenSSL and Windows
- API problem: certificate accept callback

CA/B Requirements Adherence

- Individual certificate inspection
 - Key strong enough / not compromised?
 - Certificate valid for intranet names?
 - Validity period within limits?
 - May require network queries (DNS, WHOIS, GeoIP...)
- Many constraints apply to the CA's issuance profile

Field	Value			
Version	V3 (2)			
Serial Number	Unique number			
Issuer Signature Algorithm	sha-1WithRSAEncryption {1 2 840 113549 1 1 5}			
Issuer Distinguished Name	Unique X.500 CA DN.			
issuer bisanguisned Hame	CN = DigiCert Global CA			
	OU = www.digicert.com			
	O = DigiCert Inc			
	C = US			
Validity Period	1, 2 or 3 years expressed in UTC format			
Subject Distinguished Name	cn = <name domain="" of="" or="" website=""></name>			
	ou = <organizational of="" subscriber="" unit=""></organizational>			
	o = <full legal="" name="" of="" subscriber=""></full>			
	I = <locality of="" subscriber=""> s = <state of="" subscriber=""></state></locality>			
	c = <country of="" subscriber=""></country>			
Subject Public Key Info	1024 or 2048-bit RSA key modulus, rsaEncryption {1 2 840 113549			
	1 1 1}			
Issuer's Signature	sha-1WithRSAEncryption {1 2 840 113549 1 1 5}			
Extension	Value			
Authority Key Identifier	c=no; a7 c7 13 a0 7a 01 3c 9d ef 82 48 82 48 d5 73 51 b8 12 56 2a			
Subject Key Identifier	c=no; Octet String - Same as calculated by CA from PKCS#10			
Key Usage	c=yes; Digital Signature, Key Encipherment (a0)			
Extended Key Usage	c=no;			
	Server Authentication (1.3.6.1.5.5.7.3.1)			
	Client Authentication (1.3.6.1.5.5.7.3.2)			
Certificate Policies	c=no; Certificate Policies; {2.16.840.1.114412.1.3.0.1} [1,1] Policy Qualifier Info:			
	Policy Qualifier Into.			
	Qualifier: http://www.digicert.com/ssl-cps-repository.htm			
	[1,2] Policy Qualifier Info:			
	Policy Qualifier Id=User Notice			
	Qualifier:			
	Notice Text= Any use of this Certificate constitutes acceptance of the DigiCert CP/CPS and the Relying Party			
	Agreement which limit liability and are incorporated herein by			
	reference.			
Subject Alternative Name	c=no; Name of Device1 (e.g., domain.com)			
	Name of Device2, etc.			
Authority Information Access	c=no; Access Method= - Id-ad-ocsp (On-line Certificate Status Protocol - 1.3.6.1.5.5.7.48.1); URL =http://ocsp.digioert.com			
CRL Distribution Points	c = no;			
	CRL HTTP URL = http://crl3.digicert.com/DigiCertGlobalCA.crl			
	CRL HTTP URL = http://crl4.digicert.com/DigiCertGlobalCA.crl			
	- OR, if the certificate has a dedicated CRL file - CRL HTTP URL = http://crl3.digicert.com/[SERIAL].crl			
	CRL HTTP URL = http://crl4.digicert.com/[SERIAL].crl			
	ONE TITE ONE - http://orin.uigioer.com/igoentinej.ori			

Profile Reconstruction

- Run clustering algorithm based on profile features
- Yields global picture of CA issuance practices
- Easy to find nearest cluster for manual inspection
- Easy investigation of outliers

Template Clustering Features

High Weight	Medium Weight	Low Weight			
Issuer	Subject fields	Key size			
X509 extensions	CRL distribution points	Validity period			
Policy identifiers	Signature algorithm	Issuance date			
(Extended) key usage	Public key algorithm	Serial number format			
Basic constraints					
Authority Info Access					

Clustering Results

- < 1500 clusters out of 1M certs issued since 2012 (only 30% contain more than 5 certificates)
- We run in-depth individual evaluation on random samples from each cluster
- Comparison of template and individual violations

Limitations of CA/B requirements

- Business-minded security advances
- Violations mostly have no consequence on CAs
- Don't cover all issues of identity and domain control validation (CDN, expiration...)
- Missing some simple and effective requirements (e.g. path length=0 in all issuing intermediates)

Feedback from CAs

- Contacted by 3 different CAs, including 2 of the most compliant ones
- Notified two CAs of serious template errors.
 Affected certificates have been revoked.
- One CA complained that we applied requirements on the full chain instead of the leaf only

Conclusions

- Most worrying compliance problems are now at the periphery of CA graph
- Difficult to influence CA behavior except through root program managers
- Important next step: enforce strong certificate policies in all browsers, including baseline requirements

Questions

http://research.microsoft.com/en-us/projects/totient/

End-User Policy Enforcement

