MINISTRY OF EDUCATION, BOTSWANA in collaboration with UNIVERSITY OF CAMBRIDGE LOCAL EXAMINATIONS SYNDICATE Botswana General Certificate of Secondary Education

SCIENCE: DOUBLE AWARD

0569/4

PAPER 4 Alternative to Practical

Friday

24 NOVEMBER 2000

Morning

1 hour 30 minutes

Candidates answer on the question paper. No additional materials are required.

TIME 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

Write your name, Centre number and candidate number in the spaces at the top of this page. Answer **all** questions.

Write your answers in the spaces provided on the question paper.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets [] at the end of each question or part question. A copy of the Periodic Table is printed on page 16.

FOR EXAMINER'S USE					
1					
2					
3					
4					
5					
6					
TOTAL					

1 Fig. 1.1 shows some pieces of heat-resistant glassware used in a laboratory.

Fig. 1.1

- (a) Write the letter which shows
 - (i) a beaker,
 - (ii) the piece of apparatus you would use to measure 200 cm³ of water most accurately,

e the

(D)	temperature of some water while it is being heated.	to accurately	measure tre
			[0]

2 A student investigated the effect of wind speed on the transpiration rate of a leafy shoot. She could not measure transpiration directly so she decided to measure the rate of uptake of water by the shoot.

Fig. 2.1 shows the apparatus she used.

Fig. 2.1

0569/4 Nov00 [Turn over

First, the student placed the apparatus in a corner of the laboratory where the air was still. Fig. 2.2 shows the level of the water in the glass tube at the beginning of her experiment and at the end.

Fig. 2.2

(a)	(1)	beginning and at the end of the experiment.							
		level at the beginning							
		level at the end[2]							
	(ii)	Calculate the volume of water that was taken up by the plant during the experiment.							
		[1]							
(b)		at other measurement would the student need to take in order to be able to calculate rate at which the water was taken up by the shoot?							
		[1]							
(c)	The student then placed the apparatus near an open window, where the air was moving, so that she could find out if the moving air increased the plant's rate of transpiration. She made sure that all other variables were constant.								
	(i)	State two variables that the student should keep constant in order to find out if the moving air affected the rate of transpiration of the plant.							
		1							
		2							

	(11)	when it was in the corner of the laboratory.
		What conclusion can the student draw from her results?
		[1]
(d)	•	lain one way in which the student could change or improve her experiment to make results more reliable.
		[2]

3 A student decided to investigate whether there was any relationship between the size of a crater formed when a sphere hit the ground and the height from which it fell.

He dropped a steel ball from different heights into a bed of sand and measured the depth of crater formed.

Fig. 3.1

(a) Fig. 3.2 shows six craters.

Measure the depth of each one and record the measurement in the space provided. The first and last are done for you.

Fig. 3.2

(b) The height from which the steel ball was dropped, *h*, was measured each time. Four of the measurements are given opposite.

Take the readings of the height, *h*, for the other two from Fig. 3.3 and record them in the spaces opposite.

Fig. 3.3

Measurements of height, h:

- (i) 200 mm (ii) (iii) 420 mm
- (c) (i) Plot a graph of depth of crater against height, h. [4]

- (ii) Draw the best line through the points. [1]
- (iii) Read off the value of the depth of crater when h = 0 and record it.

(d) Why is there a value for the depth when h = 0?

.....

.....[1]

- (e) Two students each made a statement about the graph.
 - 1. There is a linear relationship between the depth of the crater and the height from which the ball fell.
 - 2. The depth of the crater is directly proportional to the height from which the ball fell.

Which of these two statements is correct?

Explain your answer.

.....[1]

(f) The teacher suggested that the density of the sphere might make a difference to the results. The students were asked to carry out an experiment to decide whether this was so.

First, they carried out an experiment to determine the density of the steel ball already used. This is what they did.

(i) 50 cm³ of water was placed in a measuring cylinder.

The sphere was carefully placed in the water, as shown in Fig. 3.4, and the new volume read.

Fig. 3.4

Read and record this value below.

 $new\ volume = \dots cm^3$ [1]

(ii)	The mass of the sphere was 200 g.
	Calculate the density using the following formula. State the units.
	density = mass / volume

			density =	[2]
	(iii)	Would this method be suitable for finding the density of	a sphere made from co	rk?
		Explain your answer.		
				[1]
(g)		scribe how you would carry out an experiment to test th	e suggestion made by	the
		· · · · · · · · · · · · · · · · · · ·		
				เรา

4 A student was asked to investigate how the rate of the reaction between hydrochloric acid and calcium carbonate changed when the concentration of the acid was changed.

She decided to measure the rate of the reaction by passing the gas given off through a glass tube into water. She counted the number of bubbles given off every minute for five minutes.

(a) Draw a diagram of suitable apparatus that she could use.

[3]

(b) The same volume of acid was used each time, measured in a cylinder. Read off the volume used from Fig. 4.1 and record it in the space below.

Fig. 4.1

volume used =cm³

[1]

(c) The same mass of calcium carbonate was used each time, weighed on a balance. Fig. 4.2 shows the reading of the balance. Record this mass in the space.

Fig. 4.2

mass =g

[1]

(d) Fig. 4.3 shows a graph of the results obtained for two different concentrations of acid.

Fig. 4.3

Which of the two concentrations, **X** and **Y**, is the most concentrated?

Give a reason for your answer.

- 5 Lactose is a sugar found in milk. It is a reducing sugar, so when it is heated with Benedict's solution an orange-red precipitate is formed. The more lactose present, the greater the mass of precipitate formed.
 - (a) A student has two samples of milk, sample A and sample B.

Describe contains	the gr	eater	conce	ntrati	on o	f lacto	ose.						·		
	•••••	•••••	•••••		•••••				• • • • • •	•••••	•••••		••••••	• • • • • •	•••••
			•••••						• • • • • •						
	•••••	•••••		• • • • • • • • • • • • • • • • • • • •			•••••				•••••				•••••
	•••••		•••••					•••••	• • • • •		•••••	•••••		•••••	
	•••••														[5]

(b) The student carried out two other tests on sample A. Her results are shown in Fig. 5.1.

test	results	conclusion
biuret solution added	solution became violet/purple	
		no starch present

Fig. 5.1

Complete the table by writing:

- the conclusion the student could make from the biuret test,
- the test she carried out, and the results she obtained, that enabled her to conclude that no starch was present.

Using your knowledge of the appearance of milk, and also of the ethanol test for fats, explain why the student's decision is correct.	(c)	The student also wanted to test the milk samples for fats. However, she decided that she could not use the ethanol test, because she would be unable to interpret the results.	Use
To 1			
TO.			
		[O]	

When aqueous ammonia is added to aqueous copper(II) sulphate a precipitate of copper(II) hydroxide is formed, which then dissolves as more aqueous ammonia is added.

A student was asked to use this reaction to discover the ratio in which these two substances react.

She placed 20 cm³ of the aqueous copper(II) sulphate in each of 8 test-tubes. Different volumes of the aqueous ammonia were added to each tube, together with a volume of water to make a total volume of 60 cm³ in each tube. Each tube was shaken and left to stand for an hour. The height of the precipitate was then measured in each tube. The results are shown in Fig. 6.1.

volume of aqueous ammonia added/cm ³	5	10	15	20	25	30	35	40
volume of water added/cm ³	35	30	25	20	15	10	5	0
height of precipitate/mm	7	13	22	28	21	15	8	0

Fig. 6.1

(a) (i) Draw a graph of height of precipitate against volume of aqueous ammonia added.

height of precipitate/

	(11)	Exp	olain the shape of your graph.	
			ro	. 1
		••••	[2	<u>:</u>]
ı	(iii)	aqu	ne concentration of the aqueous copper(II) sulphate is 1.0 mol/dm ³ and of the eous ammonia is 2 mol/dm ³ , which of the following statements about the nation of copper(II) hydroxide, A , B or C , is correct?	e e
		A	1 mole of copper(II) sulphate requires 1 mole of ammonia to form 1 mole of copper(II) hydroxide.	ıf
		В	1 mole of copper(II) sulphate requires 2 moles of ammonia to form 2 moles of copper(II) hydroxide.	ıf
		С	2 moles of copper(II) sulphate require 1 mole of ammonia to form 2 moles of copper(II) hydroxide.	ıf
		ans	wer[1]
		Exp	lain your answer.	
		Ť		
				•
				•
			[1]
(b)			e all the changes you would see when 40cm^3 of ammonia is gradually added of copper(II) sulphate.	t
			[2	<u>:</u>]
(c)	The	roac	ction between ammonia and copper(II) sulphate is exothermic.	
(0)				
	Des	cribe	another method of finding the ratio in which these two substances react.	
				. •
	•••••	••••••		•
			[2]

DATA SHEET
The Periodic Table of the Elements

	0	4 He Helium	20 Neon 10	40 Ar Argon	84 K rypton	X Xenon 54	Radon 86	
			19 Fluorine	35.5 C1 Chlorine	80 Br Bromine	127 I lodine 53		
	5		16 Oxygen 8	32 Sulphur	79 Se Selenium	128 Te Tellurium	Po Polonium 84	
	>		14 Nitrogen 7	31 Phosphorus 5	75 AS Arsenic	122 Sb Antimony		
	2		12 Carbon	28 Si Stitcon	73 Ge Germanium	SD 119	207 Pb	
	=		11 Boron 5	_	70 Ga Sallium	115 In Indium	204 T t Thaffium	
					65 Zn Znc	Cd Cadmium 48	201 Hg Mercury	
					Copper	108 Ag Silver	197 Au Gold	
Group				:	S9 Nickel		195 Pt Platinum 78	
້ອ			7		. So Cobalt		192 Ir Iridium	
		1 X Hydrogen 1		:	. Fe	Ruthenium	190 Os Osmium 76	
TO THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TW					Manganese	TC Technetium 43	186 Re Rhenium	
					52 Cr Chromium	96 Mo lybdenum		
					51 V Vanadium	93 Nobium 141	181 Ta Tantalum	1
					48 Ti Titanium	27 27 Zirconium 40	1	
					Scandium	89 ×	139 La Lanthanum 57 *	227 Ac Actinium 89 †
	=		Be Beryllium	Mg Magnessum 12	40 Calcium	Strontium	137 Ba Barrum	226 Ra Radium
	_		7 Li thium	23 Na Sodium	39 K Potassium	85 Rb Rubidium 37	133 Cs Caesium 55	Francium 87
					0569/4	Nov00		

175 Lu Lutetium 71	Lr Lawrencium 103
173 Yb Ytterbium 70	Nobelium 102
169 Tm Thulium 69	Md Mendelevium 101
167 Er Erbium 68	Fm Fermium 100
165 Ho Holmium 67	Einsteinium 99
162 Dy Dysprosium 66	Cf Californium 98
159 Tb Terbium 65	BK Berkelium 97
157 Gd Gadolinium 64	Cm Curium 96
152 Eu Europium 63	Am Americium 95
150 Sm Samarium 62	Pu Plutonium 94
Pm Promethium 61	Neptunium 93
Neodymium 60	238 U Uranium 92
141 Pr Praseodymium 59	Pa Protactinium 91
140 Ce Cerium 58	232 Th Thorium 90

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

b = proton (atomic) number

a = relative atomic massX = atomic symbol

а **Х**

Key

*58-71 Lanthanoid series †90-103 Actinoid series