Identifying Minimal Changes in the Zone Abstract Domain

Kenny Ballou Elena Sherman

Boise State University Boise, Idaho United States of America

July 2023

Outline

Background and Motivation

Zones Domain Exploiting DFA Features

2 Algorithms and Approach

Spurious Connections Connected Components Node Neighbors Minimal Neighbors

- S Experimental Results Application
- 4 Conclusions

Unit difference, two-variables per inequality

$$x-Z_0=0$$

$$w - x \le 2$$

```
int example(int w, int y) {
  int x = 0;
  if (w <= x + 2) {
    if (y <= x) {
      assert y <= 0;
    }
  }
  return x;
}</pre>
```

```
1 int example(int w, int y) {
2    int x = 0;
3    if (w <= x + 2) {
4        if (y <= x) {
5             assert y <= 0;
6        }
7    }
8    return x;
9 }</pre>
```



```
1 int example(int w, int y) {
2    int x = 0;
3    if (w <= x + 2) {
4        if (y <= x) {
5             assert y <= 0;
6        }
7    }
8    return x;
9 }</pre>
```



```
1 int example(int w, int y) {
2    int x = 0;
3    if (w <= x + 2) {
4        if (y <= x) {
5             assert y <= 0;
6        }
7    }
8    return x;
9 }</pre>
```


Zone Domain

$$x - Z_0 \le 0$$

$$Z_0 - x \le 0$$

$$w - x \le 2$$

$$y - x \le 0$$

$$y \le 0$$

$$w \le 2$$

Zonal state representation of data-flow analysis invariant

Data-flow analysis incrementally updates variables

Data-flow analysis incrementally updates variables

Finding Affected Inequalities

Problem Definition

What are the changed set of inequalities?

Finding Affected Inequalities

What are the changed set of inequalities?

Finding Affected Inequalities

What are the changed set of inequalities?

Spurious Connected Variables¹

¹Larsen et al., "Efficient Verification of Real-Time Systems: Compact Data Structure and State-Space Reduction".

Variable Relation Projection

Variable Relation Projection

Variable Relation Projection with impassable Z_0

Variable Relation Projection with impassable Z_0

Node Neighbors

Reconsider the out-going state without closed edges

Node Neighbors

Reconsider the out-going state without closed edges

Minimal Neighbors

Again, reconsider the out-going state without closed edges.

Minimal Neighbors

Again, reconsider the out-going state without closed edges.

Logically comparing different abstract domains

Research Questions

- RQ1 Do the minimization algorithms reduce the size of a Zone state and improve runtime of domain comparisons?
- RQ2 Do the minimization algorithms affect categorization of domain comparison results?

Experiment Setup

- Benchmarks: 127 Java methods
 - Ranging from 4 to 412 Jimple instructions
- Compared Zones to Intervals and Zones to Predicates
- Compared Total Runtime of Z3 to perform logical entailment of every combination, averaging over 5 executions

Experimental results show significant reduction in required number of inequalities for comparison

Average percentage changes in V and E between each technique

State Type	vs.	↓ △ % V	\downarrow Δ % E			
DFA Subject Programs						
CC	FS	70.37	29.47			
NN	CC	0.02	0.01			
MN	NN	0.10	0.05			
EQBench Subject Programs						
CC	FS	43.0	2.1			
NN	СС	0.0	0.0			
MN	NN	0.13	0.13			

Experimental results show significantly reduced time to solver queries

State Type	\sim Inter, sec.	\sim Pred, sec.				
DFA Subject Programs						
FS	4.03	265.91				
CC	1.41	4.09				
NN	1.41	4.04				
MN	1.35	4.05				
EQBench Subject Programs						
FS	0.79	5.56				
CC	0.63	0.87				
NN	0.58	0.9				
MN	0.58	0.9				

Experimental results show significant improvement in comparison granularity

State	≻ Intervals	= Intervals			
DFA Subject Programs					
FS	2898	1002			
CC	1194	2706			
NN	1191	2709			
MN	1164	2736			
EQBench Subject Programs					
FS	374	255			
СС	131	498			
NN	131	498			
MN	131	498			

Experimental results show significant improvement in comparison granularity

State	≻ Predicates	= Predicates	\prec Predicates	$\prec \succ$ Predicates			
DFA Subject Programs							
FS	1464	237	167	2032			
СС	1324	1930	473	173			
NN	1322	1933	473	172			
MN	1305	1960	473	162			
EQBench Subject Programs							
FS	307	135	46	141			
СС	217	322	72	18			
NNy	217	322	72	18			
MN	217	322	72	18			

Conclusion

Experimental Results

- Minimization leads to reduced overall execution time when determining domain categorization.
- Minimization leads to improved granularity when evaluating domain precision.

Conclusion

Experimental Results

- Minimization leads to reduced overall execution time when determining domain categorization.
- Minimization leads to improved granularity when evaluating domain precision.

Algorithms and Approaches

- ullet Spurious Connections o Reduce variable clustering
- $\bullet \ \ \, \text{Connected Components} \rightarrow \text{Extract subsets using relational projection} \\$
- $\bullet \ \ \mathsf{Node} \ \mathsf{Neighbors} \to \mathsf{Extract} \ \mathsf{subsets} \ \mathsf{based} \ \mathsf{on} \ \mathsf{reachable} \ \mathsf{neighborhoods}$
- ullet Minimal Neighbors o Extract subsets leveraging semantic information

Future Work

- Extend to other Weakly-Relational Domains, e.g., Octagons
- Extend for comparison between relational domains

Thank you

Questions?

The work reported here was supported by the U.S. National Science Foundation under award CCF-19-42044.

References I

[1] K.G. Larsen et al. "Efficient Verification of Real-Time Systems: Compact Data Structure and State-Space Reduction". In: Proceedings Real-Time Systems Symposium. IEEE Comput. Soc, 1997, pp. 14–24. ISBN: 081868268X. DOI: 10.1109/real.1997.641265.

Extended Examples of the Minimal Neighbors Algorithm

Extended Examples of the Minimal Neighbors Algorithm

