

REST AVAILABLE COPY

(19) <u>RU</u> (11) <u>7599</u> (13) <u>U1</u>

(51) <u>6 A 61 F 2/06</u>

POCCHINCKOE AFEHTCTBO по патентам и товарным знакам

(12) OMINICAHINE MODESHON MODENIN

к свидетельству Российской Федерации (TURE ELECTRICAL)

(21) 97121339/20

(22) 18.12.97

(46) 16.09.93 Brok No 9

(76) Партоки Вистор Томович. Ковнеристый Юлий Константинович. Вытупев Олег Алексавич. Гончаранко Борис Андрасыич. Пропубовский Владимир Ильич, Строганов Владикир Евгеньзамч, Черкасов Валерий РИВЭСОВИА

(54) ВНУТРИСОСУДИСТЫЙ ЭНДОПРО-

TES

(57) 1. Внутрисосудистый эндопротез, представляющий собой полое объемное тело, стения которого выполнены в выне сетим,

ячейня которой образованы переплетелиями, DESMEMBERHANDA MACCOOSTA MARKHANDA DO винторой спирали, отличесощийся тем, что переплетения сетия стенои полото объемного тела выполнены одной витью, причем но торцам - петлеобразны, и выполнены из материала, обладающего свойством упруго-

2. Эндопротез по п.1. отличающийся тем, что в качестве материала, сбладающего свойством упругости, использовае интивол, состоящий из 55 - 56,2% вижеля и соответственно 45 - 43,8% титана.

U

Ø 9

BHO 3KCNEPTO8

2 5 HOA 1999

ON I

9

(21). 97121339/20

(54) (57)

п.І. Внутрисосудистый эндопротез, представляющий собой полое объёмное тело, стенки которого выполнены в виде сетки, ячейки которой образованы переплетениями, размещёнными многозаходными витками по винтовой спирали, отличающийся тем, что переплетения сетки стенок полого объёмного тела выполнены одной нитью,
причём по торцам — петисобразны, и выполнены из материала, обладающего свойством упругости.

п.2. Внутрисосудистый эндопротез по п.1, отличающийся тем, что в качестве материала, обладающего свойством упругости, использован нитинол, состоящий из 55% + 56%% никеля и соответственно 45% + 43%% титана.

Зам. зав. этделом формальной (предварительной) экспертизы

Г.П.Данчук

Кондратьева 240 34 77

66

Внутрисосудистый эндопротез

Полезная модель относится к области медицины и может быть использована в качестве эндопротеза при внутрисосудистой хирургии, а также может быть применена в желяных протоках и мочеточниках.

Известен внутрисосудистый эндопротез, выполненный в виде объемного тела, поверхность которого образована по меньшей мере двумя группами взаимопереплетенных нитей, размещенных многозаходными витками под углом друг к другу по винтовой спирали, причем нити выполнены из материала, обладающего памятью формы и по торцам тела концы соответствующих нитей, например, сварены между собой (см., например, Авт. свид. СССР № 1812980, кл. А61F2/06, 1990 г.).

Недостатком данного аналога является недостаточно надежное закрепление эндопротеза внутри протезируемого сосуда.

Наиболее близким к заявленной полезной модели является внутрисосудистый эндопротез, представляющий собой полое объемное тело, стенки которого выполнены в виде сетки, ячейки которой образованы переплетениями, размещенными многозаходными витками по винтовой спирали, и выполнены из материала, обладающего памятью формы (см., например, патент RU № 2053734 кл. А61F2/06, 1992 г.).

Недостатком прототипа является недостаточная надежность конструкции эндопротеза, т.к. наличие свободных концов проволок сетки по торцам эндопротеза требует применения сварки или пайки, что приводит к хрупкости используемого материала и к изменению его физико-механических свойств.

Техническим результатом заявленной полезной модели является создание внутрисосудистого эндопротеза, обеспечивающего более высокую надежность конструкции, поскольку он не имеет свободных концов проволок сетки и спедовательно не требует сварки или пайки, что обеспечивается с помощью использования только одной нити при создании как самой сетки, так и витых петель по торцам эндопротеза.

Кроме того, благодаря особой термической обработке используемого сплава материала — нитинола с прямым мартенситным превращением обеспечивается состояние «сверхупругости», что увеличивает прочностные и упругие свойства эндопротеза в целом.

Технический результат достигается тем, что во внутрисосудистом эндопротезе, представляющем собой полое объемное тело, стенки которого выполнены в виде сетки, ячейки которой образованы переплетениями, размещенными многозаходными витками по винтовой спирали,

, переплетения сетки стенок полого объемного тела выполнены одной нитью, причем по торцам — петлеобразны, в качестве которого и выполнены из материала, обладающего свойством упругости, уйспользован нитинол, состоящий из 55% + 56,2% никеля и соответственно 45% ÷ 43,8% титана (вес %).

На фиг. 1 представлен внутрисосудистый эндопротез, общий вид.

Внутрисосудистый эндопротез содержит полое объемное тело -1, выполненное в виде сетки, сплетенной нитью -2.

Устройство работает следующим образом:

Артерию или другой кровеносный сосуд, в котором предполагается установка внутрисосудистого эндопротеза предварительно катетеризируют.

При этом следует отметить, что внутрисосудистый эндопротез выполняют из нитинола, состоящего из $55\% \div 56.2\%$ никеля и соответственно $45\% \div 43.8\%$ титана, причем этот сплав (с прямым мартенситным превращением при низкотемпературному температурах) подвергнут длительному пониженных обжигу, в результате чего нитинол находится в состоянии «сверхупругости», что позволяет при его деформации и введении эндопротеза в телескопическое устройство катетера не пользоваться дополнительным охлаждением хлорэтилом. Кроме того, использование такого материала увеличивает прочностные и упругие свойства эндопротеза в целом при отсутствии эффекта остаточной деформации, а также позволяет выбирать более тонкую нить для плетения. В качестве материала, обладающего свойством упругости, может также использоваться нержавеющая сталь, например, типа 12Х18Н10Т или 1Х18Н9Т. Плетение же сетки стенок эндопротеза одной нитью, переплетенной особым образом, с петлеобразными окончаниями по торцам, где начало и конец нити могут быть выведены как с оджей стороны, так и с разных сторон, позволяет избежать сварных соединений (или пайки), что повышает надежность и сокранность нити на торцах, т.к. пайка и сварка охрупчивает сплав и меняет его физикомеханические свойства. Кроме того, благодаря петельному плетению по торцам появилась возможность легко передвигать эндопротез внутри сосуда с помощью несложного инструмента или удалять из сосуда без нарушения внутренних стенок сосуда. Начало и конец нити, выведенные с одного торца, могут быть при необходимости соединены. Полое объемное тело эндопротеза, стенки которого выполнены в виде сетки, благодаря вышеуказанным свойствам может принимать различную форму: цилиндрическую, сферическую и др. Площадь стенок сетки поверхности объемного тела эндопротеза может составлять до 5% площади стенок поверхности сосуда, что улучшает кровоток и ионный обмен.

В ангиографический катетер внутрисосудистый эндопротез вводится в вытянутом состоянии с закрепленным на его дистальном (заднем) конце доставляющим устройством. Проксимальный (передний) конец эндопротеза доводится до конца ангиографического катетера, расположенного в точке фиксации переднего конца эндопротеза. Затем доставляющее устройство фиксируется на месте, а ангиографический катетер постепенно выводится наружу до момента полного освобождения эндопротеза. Последний восстанавливает свою форму и самофиксируется к внутренней оболочке сосуда в зоне протезирования. По диагностическую катетеру введением пробных доз контрастного вещества осуществляется контроль адежватности установки эндопротеза, после чего доставляющее устройство отсоединяется от эндопротеза и удаляется. Если во время контроля (до отсоединения доставляющего устройства) отмечается неправильное положение эндопротеза, то ангиографический катетер натягивается эндопротез движением вперед. При этом доставляющее устройство фиксируется на месте. Имплантация эндопротеза повторяется с контрольных данных, либо неподходящий эндопротез с доставляющим устройством удаляется и вводится другой более подходящий эндопротез.

Первые серии клинических испытаний внутрисосудистого эндопротеза подтверждают его вышеупомянутые полезные свойства.

4/12/177

Формула полезной модели

п. 1 Внутрисосудистый эндопротез, представляющий собой полое объемное тело, стенки которого выполнены в виде сетки, ячейки которой образованы переплетениями, размещенными многозаходными витками по винтовой спирали,

отличающийся тем, что переплетения сетки стенок полого объемного тела выполнены одной нитью, причем по торцам — петлеобразны, и выполнены из материала, обладающего свойством упругости.

п. 2 Внутрисосудистый эндопротез по п. 1, отличающийся тем, что в качестве материала, обладающего свойством упругости, использован нитинол, состоящий из 55% + 56,2% никеля и соответственно 45% + 43,8% титана.

внутрисосудистый эндопротез

Фиг. 1

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:	-
☐ BLACK BORDERS	
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES	
FADED TEXT OR DRAWING	
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING	
☐ SKEWED/SLANTED IMAGES	

☐ LINES OR MARKS ON ORIGINAL DOCUMENT

☐ GRAY SCALE DOCUMENTS

☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS

☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.