Car Plate Recognition and Reconstruction with DeepLearning

Computer Vision
Prof.ssa Irene Amerini
A.A. 2024/2025

Luca Conti, 1702084 Kevin Giannandrea, 2202212 Mattia Tarantino, 1933469

Tutti i diritti relativi al presente materiale didattico ed al suo contenuto sono riservati a Sapienza e ai suoi autori (o docenti che lo hanno prodotto). È consentito l'uso personale dello stesso da parte dello studente a fini di studio. Ne è vietata nel modo più assoluto la diffusione, duplicazione, cessione, trasmissione, distribuzione a terzi o al pubblico pena le sanzioni applicabili per legge

Introduction

Goal:

- Design and implement a two-stage pipeline for license plate (LP) detection and recognition, following the methodology outlined by <u>Tao et al.</u> (2024)
 - 1. First stage: YOLOv5 for LP detection
 - 2. Second stage: **PDLPR** for LP **recognition**

A Real-Time License Plate Detection and Recognition Model in Unconstrained Scenarios

Lingbing Tao ¹, Shunhe Hong ¹, Yongxing Lin ^{1,2}, Yangbing Chen ¹, Pingan He ³ and Zhixin Tie ^{1,2},*

- School of Computer Science and Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China; lb_tao@zstu.edu.cn (L.T.); 202020502017@mails.zstu.edu.cn (S.H.); eluian@zstu.edu.cn (Y.L.); cyb@zstu.edu.cn (Y.C.)
- Keyi College, Zhejiang Sci-Tech University, Shaoxing 312369, China
- School of Science, Zhejiang Sci-Tech University, Hangzhou 310018, China; pinganhe@zstu.edu.cn
- * Correspondence: tiezx@zstu.edu.cn

Introduction

Goal:

- Implement a simple baseline, train and evaluate it with the metrics used by <u>Tao et al.</u> (2024)
- Compare the performance of the proposed model with the baseline

Article

A Real-Time License Plate Detection and Recognition Model in Unconstrained Scenarios

Lingbing Tao ¹, Shunhe Hong ¹, Yongxing Lin ^{1,2}, Yangbing Chen ¹, Pingan He ³ and Zhixin Tie ^{1,2},*

- School of Computer Science and Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China; lb_tao@zstu.edu.cn (L.T.); 202020502017@mails.zstu.edu.cn (S.H.); eluian@zstu.edu.cn (Y.L.); cyb@zstu.edu.cn (Y.C.)
- Keyi College, Zhejiang Sci-Tech University, Shaoxing 312369, China
- School of Science, Zhejiang Sci-Tech University, Hangzhou 310018, China; pinganhe@zstu.edu.cn
- * Correspondence: tiezx@zstu.edu.cn

Dataset

<u>CCPD</u> (Chinese City Parking Dataset) is a large opensource dataset of **Chinese license plates**.

Sub-Dataset	Description
CCPD-Base	The only common feature of these photos is the inclusion of a LP.
CCPD-DB	Dark, uneven, or extremely bright illumination in the LP area.
CCPD-FN	Captured from varying distances
CCPD-Rotate	Large horizontal tilt and vertical tilt.
CCPD-Tilt	Extreme horizontal and vertical tilt.
CCPD-Blur	Blurry images, mostly due to hand jitter during capture.
CCPD-Weather	Images taken in adverse weather: rain, snow, or fog.
CCPD-Challenge	The most difficult and complex images for license plate detection and recognition (LPDR).

Dataset

The distribution of **Chinese characters** in the CCPD dataset is highly **imbalanced**, with the character 皖 (Anhui) appearing in approximately 95% of the samples.

Data Augmentation

To improve generalization and to prevent overfitting, we employed **data augmentation**:

- Affine transformations:
 - (rotation, shear, translations, scale)
- Blur
- Color dithering
- Change in:
 - (contrast, saturation, brighteness)
- Image quality degradation
- Other visual pertubations

Data Augmentation

Detection (YOLOv5)

Recognition

YOLOV5

For the detection module, we used **YOLOv5s** (7.2M parameters):

- Input: image
- Output: a list of bounding boxes coordinates $(c_x, c_y, width, height)$ normalized (from 0 to 1) with a confidence score and the class label

An example of YOLOv5 output

ld	c_x	c_y	width	height	confidence
0	0.47326	0.36937	0.38143	0.06616	0.83943
0	0.47204	0.36831	0.37532	0.06425	0.87525
0	0.47276	0.36876	0.37554	0.06505	0.87570

YOLOV5

PDLPR: overall structure

1. Improved Global Feature Extractor (IGFE)

Extracts features and converts them into a feature vector

2. Encoder Module

Encode the vector using MHA to produce a feature vector.

3. Decoder Module

- o Utilizes **Multi-Head Attention** to decode the encoder's output feature vector.
- o Predicts the final license plate sequence

PDLPR: IGFE

PDLPR: Encoder

Input: [512, 3, 18]

- Positional encoding 2D
- 3x Encoder Unit:
 - o CNN BLOCK1
 - o MHA
 - o CNN BLOCK2
 - Add&Norm

Output: [512, 3, 18]

PDLPR: Parallel decoder

Input: [512, 3, 18]

- Positional Encoding 2D
- 3x Decoding unit:
 - No masked MHA (not autoregressive)
 - Add&Norm
 - MH Cross-Attention
 - Add&Norm
 - o FFN
 - Add&Norm
- CNN BLOCK5
- CNN BLOCK6

Output: [512, 18, 68]

Baseline: Detection

Architecture Overview

- Backbone:
 - ResNet-18 (pre-trained on ImageNet)
- Feature Fusion:
 - Feature Pyramid Network (FPN)
 - Combines features from layer3 and layer4
 - Uses 1×1 conv + upsampling + element-wise addition
- Head:
 - Global Average Pooling (GAP)
 - MLP with one hidden layer (dropout+ReLU)
 - Sigmoid

Output: $(cx,cy,w,h) \in [0,1]$

Baseline: Recognition

Input: image [3, 48, 144]

1. Feature extractor:

- Convolutional backbone to extract spatial features:
 - o with **increasing channel** dimensions

2. Sequence Modeling:

- 2-layer Bidirectional LSTM
 - o Input sequence length: 36 (from image width)
 - \circ Feature vector per step: 256 × 12 = 3072
- Output: 7×1024 (per image)

3. Head:

Linear projection of 1024 → 68 class logits

Output: [7, 68]

Training Phase

YOLOv5 + PDLPR

YOLOv5

- Training samples: 40k
- **Epoch:** 10+40
- Learning rate: variable
- Criterion: BB Loss + OBJ Loss
- Optimizer: AdamW

PDLPR

- Training samples: 49k
- **Epoch:** 105
- Learning rate: 10^{-4}
- Criterion: CTC Loss
- Optimizer: Adam

Baseline

ResNET

- Training samples: 49k
- **Epoch:** 20
- Learning rate: 10^{-4} (with scheduler)
- Criterion: CloU Loss
- Optimizer: AdamW

CNN+LSTM

- Training samples: 49k
- **Epoch:** 50
- Learning rate: 10^{-3}
- Criterion: CE Loss
- Optimizer: Adam

Evaluation metrics

• Intersection over Union (IoU): the amount of overlapping area between two bounding boxes over the total area covered by both boxes

$$IoU = \frac{Area\ of\ Overlap}{Area\ of\ Union}$$

• **Sequence Accuracy**: measures the percentage of license plates where the entire predicted sequence exactly matches the ground truth

$$Sequence\ Accuracy = \frac{number\ of\ correctly\ predicted\ license\ plate}{total\ number\ of\ license\ plate}$$

Results: Detection

*Each subset has 1k samples

	$IoU \geq 0.7$									
Method	Overall	Base	Blur	Challenge	DB	FN	Rotate	Tilt	Weather	FPS
ResNet-box	86.24	98.2	83.1	86.30	74.70	74.00	93.40	81.70	98.50	94.7
YOLOv5	<u>96.2</u>	<u>99.6</u>	94.9	<u>95.6</u>	92.6	93.0	<u>98.6</u>	<u>95.6</u>	<u>99.7</u>	94.3

YOLOv5:

- Achieves significantly higher overall accuracy
- Shows strong generalization across all subsets

ResNet-box:

- Slightly faster
- Struggles more in challenging scenarios

Results: Recognition

*Each subset has 1k samples

	Sequence Accuracy									
Method	Overall	Base	Blur	Challenge	DB	FN	Rotate	Tilt	Weather	FPS
CNN+LSTM	89.9	99.6	84.3	85.6	83.4	86.4	93.9	<u>87.0</u>	99.0	<u>552.65</u>
PDLPR	91.85	99.8	90.6	<u>89.6</u>	84.7	90.5	93.9	86.9	98.8	311.49

PDLPR:

- Achieves higher overall sequence accuracy
- Stronger performance on challenging subsets

CNN+LSTM:

- Much higher speed
- Sightly less accurate

Results: Detection + Recognition

*Each subset has 1k samples

	Sequence accuracy (IoU>0.6)									
Method	Overall	Base	Blur	Challenge	DB	FN	Rotate	Tilt	Weather	FPS
Baseline	86.86	<u>99.7</u>	77.7	82.6	<u>76.4</u>	80.0	93.3	86.5	<u>98.7</u>	<u>85.96</u>
YOLOv5-PDLPR	89.49	99.7	<u>81.9</u>	<u>88.9</u>	74.6	<u>88.7</u>	<u>94.0</u>	<u>89.4</u>	<u>98.7</u>	66.17

YOLOv5-PDLPR:

- Achieves higher overall accuracy
- Outperforms the baseline on challenging subsets

Baseline (ResNet18 + BiLSTM)

- Remains competitive, especially on CCPD-Base and CCPD-DB
- Higher inference speed

Results

True: 皖AY6E56 | Pred: 皖AY6E56

True: 皖AY1Y71 | Pred: 皖AY1Y71

True: 沪LR9882 | Pred: 沪LR9882

True Bounding Box

Predicted Bounding Box

Conclusions

- YOLOv5 + PDLPR achieves higher accuracy than baseline (89.5% vs 86.9%)
 - Biggest gains in difficult conditions
- Baseline is faster (86 vs 66 FPS).
- Trade-off between accuracy (YOLOv5+PDLPR) and speed (baseline).

Future improvements:

- Training with more data (including synthetic samples)
- Increasing training epochs
- Using balanced data
- Latest version of YOLO

