### The moment generating function method\_(Thm 6.1)

Recall that the moment generating function (mgf) of a random variable X is
$$m_X(t) = Ee^{Xt}.$$

$$= \begin{cases} Z e^{xt} f(x) & \text{if } X \text{ discrete} \\ Y & \text{if } X \end{cases}$$

Mgf's can be used to identify distributions as follows:

If the mgf of a rv X is the same as that of another rv U, we may conclude that X has the same distribution as U.

(Ie, if 
$$m_X(t) = m_U(t)$$
, then  $F_X(k) = F_U(k)$  and  $f_X(k) = f_U(k)$  for all  $k$ .)

Let us now tackle the problem in Example 8.  $(Z \sim N(0.1))$ . Find the dsn of  $X = Z^2$ .)

$$m_{X}(t) = Ee^{Xt} = Ee^{Z^{2}t} = \int_{-\infty}^{\infty} e^{z^{2}t} \sqrt{\frac{1}{2\pi}} e^{-\frac{1}{2}z^{2}} dz$$

$$= \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}z^{2}(1-2t)} dz$$

$$= \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}z^{2}} dz, \quad \text{where } c^{2} = \frac{1}{1-2t}$$

$$= c. \quad \text{(The integral must equal 1.)}$$

Thus 
$$m_X(t) = (1-2t)^{-1/2}$$
.

But 
$$(1-2t)^{-1/2}$$
 is the mgf of  $U \sim \text{Gam}(1/2,2)$ .

(Recall that if  $W \sim Gam(a,b)$  then  $m(t) = (1-bt)^{-a}$ .)

It follows that  $X \sim \text{Gam}(1/2,2)$ .

Equivalently,  $X \sim \chi^2(1)$ . (Recall that if  $R \sim \text{Gam}(k/2,2)$  then  $R \sim \chi^2(k)$ .)

Therefore the pdf of *X* is  $f(x) = \frac{x^{\frac{1}{2}-1}e^{-x/2}}{2^{1/2}\Gamma(1/2)} = \frac{1}{\sqrt{2\pi x}e^x}, x > 0$ .



Another solution:

ile

Let 
$$Y = |Z|$$
. Then  $f(y) = \frac{(2)}{\sqrt{2\pi}} e^{-\frac{1}{2}y^2}$ ,  $y > 0$ 

(This follows by symmetry about z = 0. It can also be proved using the cdf method.) Now  $x = y^2$  is a strictly increasing function, since y can't be negative.

So by the transformation method  $X = Y^2$  has pdf

$$f(x) = f(y) \left| \frac{dy}{dx} \right| = \frac{2}{\sqrt{2\pi}} e^{-\frac{1}{2}x} \left| \frac{1}{2} x^{-\frac{1}{2}} \right| = \frac{1}{\sqrt{2\pi x} e^x}, x > 0$$
., as before.



# Two useful results when applying the mgf technique

- 1. If X = a + bY, then  $m_X(t) = e^{at} m_Y(bt)$ . (Prove this as an exercise.)
- 2. If  $Y_1, ..., Y_n$  are independent random variables and  $X = Y_1 + ... + Y_n$ , then  $m_X(t) = m_{Y_1}(t) ... m_{Y_n}(t)$ . (This is Thm 6.2.)

**Example 9**  $Y \sim N(0,1)$ . Find the dsn of X = a + bY. (This is an earlier exercise.)

 $m_Y(t) = e^{\frac{1}{2}t^2}.$  (This is proved in Tutorial 7.)<br/>
Therefore  $m_X(t) = e^{at}m_Y(bt) = e^{at}e^{\frac{1}{2}(bt)^2} = e^{at + \frac{1}{2}b^2t^2},$  which is the mgf of  $U \sim N(a, b^2)$ .<br/>
It follows that  $X \sim N(a, b^2)$ .

Example 10 Suppose that  $Y_1, ..., Y_n$  are independent gamma rv's, such that the *i*th one has parameters  $a_i$  and b.

Find the distribution of  $X = Y_1 + ... + Y_n$ .

$$m_X(t) = m_{Y_1}(t) ... (m_{Y_n}(t))$$
  
=  $(1-bt)^{-a_1} ... (1-bt)^{-a_n}$   
=  $(1-bt)^{-\dot{a}}$ , where  $\dot{a} = a_1 + ... + a_n$ .

Hence  $X \sim \text{Gam}(\dot{a}, b)$ .

Corollary: If  $Y_1, ..., Y_n \sim \text{iid } \chi^2(1)$ , then  $Y_1 + ... + Y_n \sim \chi^2(n)$ . (NB:  $\chi^2(r) = Gam(r/2,2)$ .)

Exercise Suppose that  $Y_1, ..., Y_n$  are independent normally distributed rv's such that the *i*th one has mear  $(a_i)$  and variance  $(b_i)^2$ 

Let 
$$X = \sum_{i=1}^{n} k_{i}Y_{i}$$
. Show that  $X \sim N\left(\sum_{i=1}^{n} k_{i}a_{i}, \sum_{i=1}^{n} k_{i}^{2}b_{i}^{2}\right)$ .
$$m_{X}(t) = Ee^{\left(\sum_{i=1}^{n} k_{i}Y_{i}\right)t} = E\prod_{i=1}^{n} e^{k_{i}Y_{i}t} = \prod_{i=1}^{n} Ee^{Y_{i}(k_{i}t)} = \prod_{i=1}^{n} m_{Y_{i}}(k_{i}t)$$

$$= \prod_{i=1}^{n} e^{a_{i}(k_{i}t) + \frac{1}{2}b_{i}^{2}(k_{i}t)^{2}} = e^{\left(\sum_{i=1}^{n} k_{i}a_{i}\right)t + \frac{1}{2}\left(\sum_{i=1}^{n} k_{i}^{2}b_{i}^{2}\right)t^{2}} \quad \text{(see Thm 6.3)}.$$

$$\times = 2Y + 1$$
,  $\times = Y$ ,  $\times = \frac{\sin Y}{1 - Y}$  etc.

STAT2001 CH06B Page 3 of 4

#### **Order statistics**

Suppose that  $Y_1, ..., Y_n$  are iid rv's.

Let:  $(U_1)$  be the smallest of these  $U_2$  be the second smallest

(ie,  $U_1 = \min(Y_1, ..., Y_n)$ )

 $U_n$  be the largest

(Recall Problem 1 in Tutorial 6.)

**Example 11** Suppose that  $Y_1, Y_2 \sim \text{iid } Expo(b)$ 

Find the pdf of the second order statistic,  $U_2 = \max(Y_1, Y_2)$ .

 $F_{U_2}(u) = P(U_2 \le u) = P\{\max(Y_1, Y_2) \le u\} = P(Y_1 \le u, Y_2 \le u)$ 

 $= P(Y_1 < u)P(Y_2 < u)$  (by independence) =  $P(Y_1 < u)^2$ =  $(1 - e^{-u/b})^2$ , u > 0.

So  $f_{U_2}(u) = F'_{U_2}(u) = (2(1 - e^{-u/b})^{1}(-e^{-u/b})(-1/b)$   $= 2(1 - e^{-u/b}) \frac{1}{b} e^{-u/b}, \quad u > 0.$ 

Exercise: Show that  $EU_2 = 3b/2$  (NB:  $EU_2 > EY_i = b$ , as one would expect.)

 $(EU_2) = 2 \int_{a}^{\infty} u \frac{1}{b} e^{-u/b} du - \int_{a}^{\infty} u \frac{1}{b/2} e^{-u/(b/2)} du = 2b - b/2 = 3b/2.$ 

If  $Y_1, ..., Y_n$  are continuous and iid, then the pdf of the kth order statistics  $U_k$   $f_{U_k}(u) = \underbrace{n!}_{(k-1)!(n-k)!} F(u)^{k-1} [1 - F(u)]^{n-k} f(u),$ 

where f(y) and F(y) are the pdf and cdf of  $Y_1$ , respectively. (See Thm 6.5.)

Note that this formula is in agreement with  $f_{U_2}(u)$  in Example 11, where n = k = 2.



# Range restricted distributions

**Example 12** Suppose that the number of accidents which occur each year at a certain intersection follows a Poisson distribution with mean  $\lambda$ .

Find the pdf of the number of accidents at this intersection last year if it is known that at least one accident occurred there during that year.

Let Y be the number of accidents at the intersection last year.

Then 
$$X = (Y|Y>0)$$
 has pdf
$$\begin{aligned}
P(X) &= P(X=x) \\
&= P(Y=x|Y>0) \\
&= \frac{P(Y=x,Y>0)}{P(Y>0)} \\
&= \frac{P(Y=x)}{1-P(Y=0)} \quad \text{for } x>0 \\
&= \frac{e^{-\lambda}\lambda^x/x!}{1-e^{-\lambda}\lambda^2} \quad x = 1,2,3,...
\end{aligned}$$

For example, if  $\lambda = 3.2$  then  $p_X(4) = \frac{e^{-3.2} \cdot 3.2^4 / 4!}{1 - e^{-3.2}} = 0.186$ , which we note is slightly higher than  $p_Y(4) = e^{-3.2} \cdot 3.2^4 / 4! = 0.178$ .

What is the expected number of accidents last year?

$$E(Y|Y>0) = EX = \sum_{x=1}^{\infty} x \frac{e^{-\lambda} \lambda^x / x!}{1 - e^{-\lambda}}$$

$$= \frac{1}{1 - e^{-\lambda}} \sum_{x=0}^{\infty} x \frac{e^{-\lambda} \lambda^x}{x!}$$
 (where the first term in the sum is zero)
$$= \frac{1}{1 - e^{-\lambda}},$$

which we note is higher that  $EY = \lambda$ .

For example, if  $\lambda = 3.2$  then EX = 3.336 > 3.2 = EY.

Exis Find the poly of 
$$(x+y)$$
  $x = (y+y)$   

$$f(x) = (x+y)$$

$$f(y) = (y+y)$$

$$= \frac{e^{-\lambda} \times / x!}{|y-e^{-\lambda} - \lambda e^{-\lambda}|}, x = 2,3,...$$

$$= \frac{e^{-\lambda} \times / x!}{|y-e^{-\lambda} - \lambda e^{-\lambda}|}, x = 2,3,...$$

$$= \frac{e^{-\lambda} \times / x!}{|y-e^{-\lambda} - \lambda e^{-\lambda}|}, x = 2,3,...$$

$$= \frac{e^{-\lambda} \times / x!}{|y-e^{-\lambda} - \lambda e^{-\lambda}|}, x = 2,3,...$$

$$= \frac{e^{-\lambda} \times / x!}{|x-e^{-\lambda} - \lambda e^{-\lambda}|}, x = 2,3,...$$

$$= \frac{e^{-\lambda} \times / x!}{|x-e^{-\lambda} - \lambda e^{-\lambda}|}, x = 2,3,...$$

$$= \frac{e^{-\lambda} \times / x!}{|x-e^{-\lambda} - \lambda e^{-\lambda}|}, x = 2,3,...$$

$$= \frac{e^{-\lambda} \times / x!}{|x-e^{-\lambda} - \lambda e^{-\lambda}|}, x = 2,3,...$$

$$= \frac{e^{-\lambda} \times / x!}{|x-e^{-\lambda} - \lambda e^{-\lambda}|}, x = 2,3,...$$

$$= \frac{e^{-\lambda} \times / x!}{|x-e^{-\lambda} - \lambda e^{-\lambda}|}, x = 2,3,...$$

$$= \frac{e^{-\lambda} \times / x!}{|x-e^{-\lambda} - \lambda e^{-\lambda}|}, x = 2,3,...$$

$$= \frac{e^{-\lambda} \times / x!}{|x-e^{-\lambda} - \lambda e^{-\lambda}|}, x = 2,3,...$$

$$= \frac{e^{-\lambda} \times / x!}{|x-e^{-\lambda} - \lambda e^{-\lambda}|}, x = 2,3,...$$

$$= \frac{e^{-\lambda} \times / x!}{|x-e^{-\lambda} - \lambda e^{-\lambda}|}, x = 2,3,...$$

$$= \frac{e^{-\lambda} \times / x!}{|x-e^{-\lambda} - \lambda e^{-\lambda}|}, x = 2,3,...$$

$$= \frac{e^{-\lambda} \times / x!}{|x-e^{-\lambda} - \lambda e^{-\lambda}|}, x = 2,3,...$$

$$= \frac{e^{-\lambda} \times / x!}{|x-e^{-\lambda} - \lambda e^{-\lambda}|}, x = 2,3,...$$

$$= \frac{e^{-\lambda} \times / x!}{|x-e^{-\lambda} - \lambda e^{-\lambda}|}, x = 2,3,...$$

$$= \frac{e^{-\lambda} \times / x!}{|x-e^{-\lambda} - \lambda e^{-\lambda}|}, x = 2,3,...$$

$$= \frac{e^{-\lambda} \times / x!}{|x-e^{-\lambda} - \lambda e^{-\lambda}|}, x = 2,3,...$$

$$= \frac{e^{-\lambda} \times / x!}{|x-e^{-\lambda} - \lambda e^{-\lambda}|}, x = 2,3,...$$

$$= \frac{e^{-\lambda} \times / x!}{|x-e^{-\lambda} - \lambda e^{-\lambda}|}, x = 2,3,...$$

$$= \frac{e^{-\lambda} \times / x!}{|x-e^{-\lambda} - \lambda e^{-\lambda}|}, x = 2,3,...$$

$$= \frac{e^{-\lambda} \times / x!}{|x-e^{-\lambda} - \lambda e^{-\lambda}|}, x = 2,3,...$$

$$= \frac{e^{-\lambda} \times / x!}{|x-e^{-\lambda} - \lambda e^{-\lambda}|}, x = 2,3,...$$

$$= \frac{e^{-\lambda} \times / x!}{|x-e^{-\lambda} - \lambda e^{-\lambda}|}, x = 2,3,...$$

$$= \frac{e^{-\lambda} \times / x!}{|x-e^{-\lambda} - \lambda e^{-\lambda}|}, x = 2,3,...$$

$$= \frac{e^{-\lambda} \times / x!}{|x-e^{-\lambda} - \lambda e^{-\lambda}|}, x = 2,3,...$$

$$= \frac{e^{-\lambda} \times / x!}{|x-e^{-\lambda} - \lambda e^{-\lambda}|}, x = 2,3,...$$

$$= \frac{e^{-\lambda} \times / x!}{|x-e^{-\lambda} - \lambda e^{-\lambda}|}, x = 2,3,...$$

$$= \frac{e^{-\lambda} \times / x!}{|x-e^{-\lambda} - \lambda e^{-\lambda}|}, x = 2,3,...$$

$$= \frac{e^{-\lambda} \times / x!}{|x-e^{-\lambda} - \lambda e^{-\lambda}|}, x = 2,3,...$$

$$= \frac{e^{-\lambda} \times / x!}{|x-e^{-\lambda} - \lambda e^{-\lambda}|}, x = 2,3,...$$

$$= \frac{e^{-\lambda} \times / x!}{|x-e^{\lambda} - \lambda e^{-\lambda}|}, x = 2,3,...$$

$$= \frac{e^{-\lambda} \times / x!}{|x-e^{-\lambda} - \lambda e$$

$$F(x) = \begin{cases} 0, x < 0 \\ \overline{\Phi}(x), x \ge 0 \end{cases} - \underbrace{1}_{|L|} F(x)$$

$$\times \text{ has a } \text{ dsn}$$

$$f(x) = \begin{cases} 1/2, & x = 0 \text{ (discrete)} \\ \phi(x), & x > 0 \text{ (ets)} \end{cases}$$

$$0, & x < 0 \end{cases}$$

$$x < 0$$

Note: 
$$\mathcal{L}(x) + \int f(x) dx$$
  
 $x \text{ discrete} \qquad x \text{ is cls}$   
 $= \frac{1}{2} + \int \mathcal{B}(x) dx$   
 $= \frac{1}{2} + \frac{1}{2} - 1$