小 ω 的图 (graph)

【问题描述】

小 ω 有一张连通无向图。她现在在点 1, 她想去点 n。 她经过多次试验,发现一条路径的权值为其中边权的"与"。 她现在要找一条权值最大的路径,你能帮帮她吗? 注意,图中可能存在重边自环。

【输入格式】

第 1 行两个正整数 n,m,表示图中点的数量和边的数量。

下面 m 行,每行三个整数 x_i, y_i, v_i 表示 x_i 和 y_i 之间有一条权值为 v_i 的无向边。

【输出格式】

一行一个整数表示答案。

【样例1输入】

4 5

123

234

3 4 5

1 3 5

246

【样例1输出】

5

【样例1解释】

选择路径 1->3->4, 权值为 5

【样例 2】

见选手目录下的 graph/graph2.in 与 graph/graph2.ans。

【子任务】

测试点	n<=	m<=	vi<	特殊性质
1	10	45	2^63	无
2				
3	- 50	200		
4		2000		
5	1000	3000	64	
6				
7			2^63	
8				
9				
10	100000	500000		只有5种不同的边权
11				vi=2^k-1
12				数据随机
13				n=m
14				原图每条点最多在一个环上
15			64	无
16				
17			2^63	
18				
19				
20				

对于 100%的测试点,保证 1 <= x_i , y_i <= n