1. Задача безусловной оптимизации

1.1. Функция многих переменных

Рассмотрим задачу поиска экстремума функции
$$f(X)$$
, $X = \begin{bmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{bmatrix}$ при

отсутствии ограничений на вектор независимых переменных X (задача безусловной оптимизации). Один из способов безусловной оптимизации, обоснованный в рамках курса математического анализа, — это использование необходимых и достаточных условий экстремума функции.

Напомним некоторые определения. Частная производная функции f(X) по переменной x_i обозначается $\frac{\partial f}{\partial x_i}$. Главная (линейная) часть приращения функции называется $\partial u \phi \phi$ еренциалом функции и обозначается df(X). По определению, $df(x_1,\ldots,x_n) = \sum_{i=1}^n \frac{\partial f(x_1,\ldots,x_n)}{\partial x_i} dx_i$, где dx_i - дифференциалы (приращения) независимых переменных.

Вектор в пространстве E^n , координатами которого являются частные производные функции f(X) в некоторой точке X_0 , называется *градиентом* функции в данной точке и обозначается grad $f(X_0)$ или $\nabla f(X_0)$. Таким образом:

$$\nabla f(X_0) = \begin{bmatrix} \frac{\partial f}{\partial x_1} \Big|_{X_0} \\ \dots \\ \frac{\partial f}{\partial x_n} \Big|_{X_0} \end{bmatrix}$$

Вектор градиента функции в точке определяет величину и направление скорости наибольшего роста функции в данной точке, т.е. представляет собой наибольшую из всех *производных по направлению*:

$$\frac{\partial f}{\partial l} = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i} \cos \alpha_i.$$

Здесь $\cos \alpha_i$, $i=\overline{1,n}$ - направляющие косинусы заданного направления l.

Напомним, что уравнение f(X) = const определяет *поверхность уровня* (поверхность постоянного значения целевой функции). Можно показать, что вектор градиента в каждой точке ортогонален соответствующей поверхности уровня.

Особое значение при исследовании функции на экстремум имеет матрица, составленная из вторых частных производных функции f(X) (матрица Гессе):

$$H = \left[\frac{\partial^2 f}{\partial x_i \partial x_j}, i = \overline{1, n}; j = \overline{1, n} \right].$$

С учетом введенных обозначений сформулируем необходимые и достаточные условия существования экстремума функции в точке.

Необходимые условия:

$$df(X_0)=0$$
, или $\left.\frac{\partial f}{\partial x_i}\right|_{X_0}=0$, $i=\overline{1,n}$, или $\nabla f(X_0)=0$

Достаточные условия:

Пусть функция f(X) дважды непрерывно дифференцируема в окрестности $G(X_0) \subset E^n$. В точке X_0 выполнены необходимые условия. Если, кроме того, положительно (отрицательно) определена квадратичная форма (второй дифференциал)

$$A(dx_1,\ldots,dx_n) = d^2 f(X_0) = \sum_{i=1}^n \sum_{j=1}^n \frac{\partial^2 f}{\partial x_i \partial x_j} \bigg|_{X_0} dx_i dx_j \quad (2)$$

то функция f(X) в точке X_0 имеет минимум (максимум).

Если квадратичная форма является *знакопеременной*, то экстремума нет. Если квадратичная форма равна *нулю*, то требуются дополнительные исследования. Знаковая определенность квадратичной формы обычно исследуется по критерию Сильвестра. Для этого рассматриваются главные миноры матрицы Гессе. Если $|a_{11}|>0$, $\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}>0$,...,

$$\begin{vmatrix} a_{11} & \dots & a_{1n} \\ \dots & \dots & \dots \\ a_{n1} & \dots & a_{nn} \end{vmatrix} > 0$$
, то квадратичная форма (2) положительно определена.

Если
$$|a_{11}| < 0$$
, $\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} > 0$,..., $(-1)^n \begin{vmatrix} a_{11} & \dots & a_{1n} \\ \dots & \dots & \dots \\ a_{n1} & \dots & a_{nn} \end{vmatrix} > 0$, то (2) –

отрицательно определена. В остальных случаях знаковая определенность отсутствует.

Отдельно следует описать ситуацию, когда хотя бы один из главных миноров равен нулю. В этом случае критерий Сильвестра не работает. Необходимо проводить исследование на экстремум, рассматривая непосредственно второй дифференциал или приращение функции.

1.2. Функция двух переменных

Рассмотрим следующую задачу:

$$f(x,y) \rightarrow extr$$

Запишем необходимое условие – равенство нулю всех частных производных:

$$\begin{cases} f_x'(x,y) = 0 \\ f_y'(x,y) = 0 \end{cases}$$

Решение (решения) данной системы $X_0 = (x_0, y_0)$ — это **стационарная** точка (подозрительная на экстремум) исходной задачи.

Проверим, является ли точка $X_0 = (x_0, y_0)$ экстремумом, используя достаточное условие экстремума функции двух переменных.

Вычислим частные производные второго порядка функции f(x,y) в точке (x_0,y_0) :

$$f_{x^2}^{"}(X_0) = A; f_{y^2}^{"}(X_0) = D; f_{xy}^{"}(X_0) = B; f_{yx}^{"}(X_0) = C.$$

Составим матрицу Гессе: $H = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$.

Исследуем знаковую определенность матрицы H и характер экстремума с помощью критерия Сильвестра:

- 1. если A>0 и AD-BC>0, то матрица **положительно определена**, поэтому в точке X_0 **минимум**;
- 2. если A < 0 и AD BC > 0, то матрица **отрицательно определена**, поэтому в точке X_0 **максимум**;
- 3. если A = 0 или AD BC = 0; то **критерий Сильвестра не работает** и нужны дополнительные исследования;
- 4. в других случаях экстремума нет.

Задания для самостоятельной работы.

Найти экстремум функций:

a)
$$z = x^2 - axy + by^2 - cx + dy - e$$
;

6)
$$u = ax^2 + by^2 + cz^2 - d$$
.

Значения параметров выбрать из представленной таблицы вариантов.

Номер варианта	а	b	С	d	e
1	1	4	2	3	12
2	2	4	3	2	12
3	1	5	4	4	14
4	2	5	5	1	14
5	2	6	6	5	11
6	4	6	7	6	11
7	2	7	8	7	10
8	4	7	9	8	10
9	4	8	2	9	12
10	6	8	3	1	12
11	4	2	4	2	14
12	6	2	5	3	14
13	3	3	6	4	11
14	5	3	7	5	11

15	3	4	8	6	10
16	5	4	9	7	10
17	2	9	2	8	12
18	7	9	3	9	12
19	2	8	4	1	14
20	7	8	5	2	14
21	5	9	6	3	10
22	3	9	6	2	15
23	4	8	5	1	14
24	2	5	7	3	11
25	3	5	5	7	12
26	2	7	6	6	13