Élève 1*

Exercice (Compacts d'un espace de suites). On considère l'ensemble $E \subset \mathbb{R}^{\mathbb{N}}$ constitué des suites réelles bornées, qui est un \mathbb{R} -espace vectoriel. Pour une suite $u \in E$, on définit $\|u\| = \sum_{n=0}^{+\infty} |u_n| 2^{-n}$. Vérifier que $\|\cdot\|$ définit une norme sur E et montrer que la partie $A = \{u \in E, \ \forall n \in \mathbb{N}, \ u_n \in [0,1]\}$ est compacte.

Exercice (Norme sur les polynômes). On munit $\mathbb{R}[X]$ de la norme $\|\cdot\|_{\infty}$ définie par $\|\sum_{k=0}^{+\infty} a_k X^k\| = \max\{|a_k|, \ k \in \mathbb{N}\}.$

- 1. Montrer que $\mathcal U$ l'ensemble des polynômes unitaires de $\mathbb R[X]$ est fermé.
- 2. Soit $Q \in \mathcal{U}$ non constant, on note $p = \deg Q$. Montrer que

$$Q$$
 est scindé sur $\mathbb{R} \iff \forall z \in \mathbb{C}, \ |Q(z)| \ge |\operatorname{Im}(z)|^p$

3. Montrer que \mathcal{S} , l'ensemble des polynômes unitaires et scindés de $\mathbb{R}[X]$ est un fermé.

Exercice (Valeurs d'adhérence).

1. Soit $(E,\|\cdot\|)$ un espace vectoriel normé et (u_n) une suite à valeurs dans E. On note $\mathrm{Adh}(u)$ l'ensemble des valeurs d'adhérence de la suite (u_n) . Montrer que l'on a l'égalité

$$\mathrm{Adh}(u) = \bigcap_{n \in \mathbb{N}} \overline{\{u_p, \ p \ge n\}}$$

2. Existe-t-il une suite à valeurs dans $\mathbb R$ dont l'ensemble des valeurs d'adhérence est $\mathbb R$ tout entier?

Exercice (Ouvert? Fermé? Compact? Borné?). Soit E l'espace des suites $a \in \mathbb{R}^{\mathbb{N}}$ telles que $\sum a_n$ converge absolument. On munit E de la norme $\|a\|_{\infty} = \sup\{|a_n|,\ n \in \mathbb{N}\}$. On considère F l'ensemble des suites $a \in E$ telles que

$$\sum_{n=0}^{+\infty} |a_n| = 1$$

Cet ensemble est-il ouvert? Fermé? Compact? Borné?

Exercice (Espace de fonctions lipschitziennes). Soit E l'ensemble des fonctions lipschitziennes de [0,1] dans \mathbb{R} .

- 1. Montrer que E est un espace vectoriel sur \mathbb{R} .
- 2. Pour $f \in E$, on note K(f) la plus petite constante de Lipschitz pour f. Cette application définit-elle une norme sur E?
- 3. Montrer que N(f)=K(f)+|f(0)| définit une norme sur E. Est-elle équivalente à la norme $\|\cdot\|_{\infty}$?

Exercice (Encore des normes sur les polynômes). Sur l'espace $E = \mathbb{R}[X]$ des polynômes à coefficients réels, on définit

$$N_1(P) = \sum_{n \geq 0} \left| \frac{P^{(n)}(0)}{n!} \right| \quad N_2(P) = \sup_{n \geq 0} \left| \frac{P^{(n)}(0)}{n!} \right| \quad N_3(P) = \sup_{x \in [0,1]} |P(x)|$$

Vérifier que les N_i sont des normes et qu'elles sont deux à deux non-équivalentes.

Élève 2*

Exercice (Norme et convexité). Une partie X d'un espace vectoriel E est dite convexe si la condition suivante est vérifiée :

(C1) $\forall x, y \in X, \forall t \in [0, 1], tx + (1 - t)y \in X.$

Rappeler la définition d'une norme et montrer que la condition de l'inégalité triangulaire peut être remplacée par :

(N1) L'ensemble $\{x \in E, \|x\| \le 1\}$ est convexe.

Exercice (Jauge!). Soit E un espace vectoriel de dimension finie sur \mathbb{R} .

- 1. Montrer que la boule unité fermée d'une norme est un compact convexe, symétrique par rapport à 0 et un voisinage de 0.
- 2. Inversement, soit K un compact convexe de E, symétrique par rapport à 0 et voisinage de 0. Montrer que K est la boule unité fermée d'une certaine norme sur E.

Exercice (Un exercice sur les compacts). Soit $f:\mathbb{R}\to\mathbb{R}$ continue. Montrer l'équivalence de :

- (i) Pour tout compact K, $f^{-1}(K)$ est compact;
- (ii) $\lim_{x\to\pm\infty} |f(x)| = +\infty$.

Exercice (Normes sur les fonctions continues). On considère $E = \mathcal{C}^0([0,1], \mathbb{R})$ et $\rho \in E$ positive ou nulle. Pour toute application $f \in E$, on pose

$$N_{\rho}(f) = \int_{0}^{1} \rho |f|$$

- 1. Déterminer une CNS sur ρ pour que N_{ρ} soit une norme sur E.
- 2. Déterminer une CNS pour que les normes N_{ρ_1} et $\|\cdot\|_1$ soient équivalentes.

Exercice. Soit $P \in \mathbb{R}[X]$. Construire une norme sur $\mathbb{R}[X]$ telle que (X^n) converge vers P pour cette norme.

Exercice. Montrer que l'ensemble des polynômes de $\mathbb{C}_n[X]$ de degré n admettant n racines simples est un ouvert de $\mathbb{C}_n[X]$.

Exercice. Montrer que l'ensemble des polynômes de $\mathbb{R}_n[X]$ de degré n scindés à racines simples réelles est une partie ouverte de $\mathbb{R}_n[X]$.

Figure - Jauge!

Élève 3*

Exercice (Adhérence d'un graphe). Soit $f: \mathbb{R}_+^* \to \mathbb{R}$ l'application définie par $f(x) = \cos(1/x)$. On pose $A = \{(x, f(x)), \ x > 0\} \subset \mathbb{R}^2$. Déterminer l'adhérence de A.

Exercice (Normes sur les polynômes). On considère $E=\mathbb{R}[X]$ l'espace des polynômes à coefficients réels. À toute suite λ de réels strictement positifs, on associe $N_{\lambda}(P)=\sum_{n\geq 0}\lambda_n|P^{(n)}(0)|/n!$. Soient λ et μ deux suites de réels strictements positifs. Après avoir vérifié

Soient λ et μ deux suites de réels strictements positifs. Après avoir vérifié qu'il s'agit de normes sur E, montrer que N_{λ} et N_{μ} sont équivalentes si et seulement si les suites (λ_n/μ_n) et (μ_n/λ_n) sont bornées.

Exercice (Condition suffisante de dénombrabilité). Soit A une partie de \mathbb{R} .

Un point $x \in \mathbb{R}$ est dit d'accumulation de A si tout voisinage de x dans \mathbb{R} privé de x rencontre A. Montrer que si A est bornée et n'admet qu'un seul point d'accumulation, alors il existe une bijection entre \mathbb{N} et A.

Exercice (Normes p sur les espaces de dimension finie). On considère $E = \mathbb{R}^n$. On définit les normes suivantes sur E

with the survantes sur
$$E$$

$$\|x\|_p = \left(\sum_{k=1}^n |x_k|^p\right)^{1/p} \quad \|x\|_\infty = \max_{1 \le k \le n} |x_k|$$

où p designe un réel plus grand que 1.

Pour $p,q\in[1,\infty]$, on note $C_{p,q}$ la plus petite constante telle que

$$\forall x \in E, \ \|x\|_q \le C_{p,q} \|x\|_p$$

- 1. Justifier l'existence de $C_{p,q}$.
- 2. Déterminer $C_{\infty,p}$ et $C_{p,\infty}$ pour $p \in [1,\infty]$.
- 3. Montrer que $C_{p,q} = 1$ pour $1 \le p \le q < \infty$.
- 4. Montrer que pour $1 \le q \le p < \infty$

$$C_{p,q} = n^{\frac{1}{q} - \frac{1}{p}}$$

Indication : utliser la convexité de l'application $t\mapsto t^{p/q}$ sur \mathbb{R}_+

Exercice (Intersection d'ouverts denses). Soient U et V des ouverts denses d'un espace vectoriel normé $(E,\|\cdot\|)$. Montrer que $U\cap V$ est encore un ouvert dense de E.

Exercice (Intersection d'une suite décroissante de compacts non vides). Soit $(E, \|\cdot\|)$ un espace vectoriel normé, (K_n) une suite décroissante de compacts non vides de E. Montrer que $\bigcap_{n\in\mathbb{N}} K_n$ est non vide.

Élève 1

Exercice CCP.

- 1. Rappeler la définition par les suites de vecteurs d'une partie compacte d'un espace vectoriel normé.
- 2. Démontrer qu'une partie compacte d'un espace vectoriel normé est une partie fermée de cet espace.
- 3. Démontrer qu'une partie compacte d'un espace vectoriel normé est une partie bornée de cet espace.
- 4. On se place dans $E = \mathbb{R}[X]$ muni de la norme $\|\cdot\|_1$ définie pour tout polynôme $P = a_0 + a_1X + \dots + a_nX^n$ de E par $\|P\|_1 = \sum_{i=0}^n |a_i|$.
 - a) Justifier que $S=\{P\in E,\ \|P\|_1=1\}$ est une partie fermée et bornée de E.
 - b) Calculer $||X^m X^n||_1$ pour m et n des entiers distincts. S est-elle une partie compacte de E? Justifier.

Exercice. Soient a_1, \dots, a_n des réels et $N : \mathbb{R}^n \to \mathbb{R}$ définie par

$$N(x_1,\dots,x_n)=a_1|x_1|+\dots+a_n|x_n|$$

Donner une CNS portant sur les a_k pour que N soit une norme sur \mathbb{R}^n .

Exercice. Montrer que si deux boules fermées d'un espace vectoriel normé non nul sont égales, alors elles ont même centre et même rayon.

Exercice. Démontrer que l'adhérence et l'intérieur d'un convexe d'un espace vectoriel normé sont encore convexes.

Élève 2

Exercice CCP. On note $E = \mathcal{C}^0([0,1],\mathbb{R})$. On pose pour toute fonction $f \in E$

$$N_{\infty}(f) = \sup_{x \in [0,1]} |f(x)| \quad N_1(f) = \int_0^1 |f(t)| \, \mathrm{d}t$$

- 1. a) Démontrer que N_{∞} et N_1 sont deux normes sur E.
 - b) Démontrer qu'il existe k > 0 tel que $N_1 \le k N_{\infty}$.
 - c) Démontrer que tout ouvert pour la norme N_1 est un ouvert pour la norme $N_{\infty}.$
- 2. Démontrer que les normes N_1 et N_∞ ne sont pas équivalentes.

Exercice. Soit $(E_i,\|\cdot\|_{E_i})_{1\leq i\leq n}$ une famille d'espaces vectoriels normés. On pose $N(x_1,\dots,x_n)=\max_{1\leq i\leq n}\|x_i\|_{E_i}$ définie sur $E=E_1\times\dots\times E_n$. Montrer que N est une norme sur E.

Exercice. Soient a, b > 0. On pose pour tout $(x, y) \in \mathbb{R}^2$, $N(x, y) = \sqrt{a^2x^2 + b^2y^2}$.

- 1. Prouver que N est une norme sur \mathbb{R}^2 .
- 2. Dessiner la boule de centre 0 et de rayon 1 pour N.
- 3. Déterminer le plus petit réel p>0 tel que $N\leq p\|\cdot\|_2$ et le plus grand réel q>0 tel que $q\|\cdot\|_2\leq N$.

Exercice. Soit (u_n) une suite de réels.

- 1. Montrer que si (u_{2n}) et (u_{2n+1}) convergent vers la même limite, alors (u_n) converge.
- 2. Trouver une suite (u_n) telle que (u_{2n}) et (u_{2n+1}) convergent, mais pas (u_n) .
- 3. Montrer que si (u_{2n}) , (u_{2n+1}) et (u_{3n}) convergent, alors (u_n) converge.

Élève 3

Exercice CCP. Soit $(E,\|\cdot\|)$ un espace vectoriel normé. Soient A et B deux parties non vides de E.

- 1. a) Rappeler la caractérisation de l'adhérence d'un ensemble à l'aide des suites.
 - b) Montrer que $A \subseteq B \implies \overline{A} \subseteq \overline{B}$.
- 2. Montrer que $\overline{A \cup B} = \overline{A} \cup \overline{B}$.
- 3. a) Montrer que $\overline{A \cap B} \subseteq \overline{A} \cap \overline{B}$.
 - b) Montrer, à l'aide d'un exemple, que l'autre inclusion n'est pas forcément vérifiée (on prendra $E = \mathbb{R}$).

Exercice. Soit $(E, \|\cdot\|)$ un espace vectoriel normé et $f: E \to E$ un endomorphisme. Pour $x \in E$, on pose $N(x) = \|f(x)\|$. Donner une CNS sur f pour que N soit une norme sur E.

Exercice. On considère $E = \mathcal{C}^0([0,1],\mathbb{R})$. On définit sur E

$$\|f\|_{\infty} = \sup_{x \in [0,1]} |f(x)| \quad \|f\|_1 = \int_0^1 |f(t)| \, \mathrm{d}t$$

On note F l'ensemble des fonctions de E nulles en 0. Déterminer l'adhérence de F dans E pour les deux normes précédentes.

Exercice. Soit $(E, \|\cdot\|)$ un espace vectoriel normé.

- 1. Soient A et B deux parties disjointes de E et on suppose A ouverte. Montrer que $A\cap \overline{B}=\emptyset.$
- 2. Soit U un ouvert non vide. Montrer que $\operatorname{Vect} U = E$.
- 3. Quelles sont les parties A de E vérifiant $Fr(A) = \emptyset$?