CSCE 633: Machine Learning

Lecture 27: Neural Networks

Texas A&M University

Outline

- Perceptron
- Approximating linear functions
- Activation Function
- Backpropagation
- Optimization
- Neural Network Training and Design

Neural networks: Original motivation

- Inspiration from the brain
 - Brain is a powerful information processing device
 - Composed of a large number of processing units (neurons)
 - Neurons operating in parallel → large connectivity
 - Neural networks as a paradigm for parallel processing

$$f^{\left(1
ight)}\left(\mathbf{x}
ight)=a\left(w_{0}^{\left(1
ight)}+\sum_{n=1}^{N}w_{n}^{\left(1
ight)}x_{n}
ight)$$

Single Layer NN

Recursive rescipe for single layer perceptron units

- 1: **input**: Activation function $a(\cdot)$
- 2: Compute linear combination: $v = w_0^{(1)} + \sum_{n=1}^N w_n^{(1)} \, x_n$
- 3: Pass result through activation: a(v)
- **4:** output: Single layer unit a(v)

Perceptron

- Each input has an associated weight (synaptic weight)
- $y = a(\sum_{j=1}^{D} w_d x_d + w_0)$ where w_0 intercept makes the model more general modeled as the weight coming from an extra bias unit (x_0) which is always +1.
- So, what is the learning procedure here?
- $y = a(\sum_{j=1}^{D} w_d x_d + w_0)$ defines a hyperplane so we can create a linear discriminant function to make decisions on classes.
- Unlike SVM we can also get posterior probability using sigmoid as the output (like logistic regression).

Example 1. Illustrating the capacity of single layer units

Below we plot four instances of a single-layer unit using tanh as nonlinear activation function. These take the form

$$f^{(1)}(x) = \tanh\left(w_0^{(1)} + w_1^{(1)}x\right) \tag{2}$$

In each instance the internal parameters have been set randomly, giving each basis function a distinct shape.

More Activation Functions

We now repeat this experiment swapping out tanh for the ReLU function, forming a single hidden layer unit with ReLU activation of the form

$$f^{(1)}(x) = \max\left(0, w_0^{(1)} + w_1^{(1)}x\right) \tag{3}$$

Once again the internal parameters of this unit allow it to take on a variety of shapes. Below have show four instances of this ReLU single layer unit, where in each instance the unit's internal parameters are set at random.

Perceptron: Multiple Classes

- For K classes, create K perceptrons.
- Choose class C_i if $y_i = \max_k y_k$
- If we need probabilities, $o_i = w_i^T x$ which yields $y_i = \frac{\exp o_i}{\sum_k \exp o_k}$ called the softmax values.

Perceptron: Multiple Classes

- Multiclass: K > 2 outputs
 - $-y_k = a(\sum_{j=1}^{D} w_{kd} x_d + w_{k0}) = a(\mathbf{w}_k^T \mathbf{x})$

where w_{kd} is the weight from input x_i to output y_k

e.g.
$$a(\mathbf{x}, \mathbf{w_1}, ..., \mathbf{w_K}) = \frac{\exp(\mathbf{w_k^T} \mathbf{x})}{\sum_{k=1} \exp(\mathbf{w_k^T} \mathbf{x})}$$

- 0/1 encoding for output vector
 - e.g. in a 4-class problem: if class=3, then y = [0, 0, 1, 0]

Perceptron: Training

Online training

- Cost-efficient (computationally and memory-wise)
- Nature of data can change over time
- Error function expressed in terms of individual samples
- · Weight update performed after each instance is seen

Perceptron: Training

Online training

- Evaluation: cross-entropy function for 1 instance $(\mathbf{x_n}, y_n)$ $\mathcal{E}(\mathbf{w}) = -y_n \log \left[\sigma(\mathbf{w}^T \mathbf{x_n}) \right] (1 y_n) \log \left[1 \sigma(\mathbf{w}^T \mathbf{x_n}) \right]$ $\mathcal{E}(\mathbf{w_1}, \dots, \mathbf{w_K}) = -\sum_{k=1}^K y_{nk} \log p(y_{nk} = 1 | \mathbf{w_1}, \dots \mathbf{w_K})$
- Optimization: gradient descent

$$\frac{\vartheta \dot{\mathcal{E}}(\mathbf{w})}{\vartheta w_d} = \left(\sigma(\mathbf{w}^T \mathbf{x_n}) - y_n\right) x_{nd}$$
$$\frac{\vartheta \mathcal{E}(\mathbf{w})}{\vartheta w_{kd}} = \left(\sigma(\mathbf{w}^T \mathbf{x_n}) - y_{nk}\right) x_{nd}$$

Outline

- Perceptron
- Approximating linear functions
- Activation Function
- Backpropagation
- Optimization
- Neural Network Training and Design

Example: Boolean AND

x_1	x ₂	r
0	0	0
0	1	0
1	0	0
1	1	1

$$y = s(x_1 + x_2 - 1.5)$$

 $\mathbf{w} = [-1.5 \ 1 \ 1]^T$
 $\mathbf{x} = [1 \ x_1 \ x_2]^T$

Example: Boolean OR

x ₁	<i>x</i> ₂	r
0	0	0
0	1	1
1	0	1
1	1	1

$$y = s(x_1 + x_2 - 0.5)$$

$$\mathbf{w} = [-0.5 \ 1 \ 1]^T$$

$$\mathbf{x} = [1 x_1 x_2]^T$$

Example: Boolean NOT

<i>x</i> ₁	r
0	1
1	0

$$y = ?$$

$$\mathbf{w} = ?$$

$$\mathbf{x} = [1 \ x_1]^T$$

Example: Boolean NOT

<i>x</i> ₁	r
0	1
1	0

$$y=s(x_1-2)$$

$$\mathbf{w} = \begin{bmatrix} 1 & -2 \end{bmatrix}^T$$

$$\mathbf{x} = [1 \ x_1]^T$$

Example: Boolean (NOT x_1) AND (NOT x_2)

<i>x</i> ₁	<i>x</i> ₂	r
0	0	1
0	1	0
1	0	0
1	1	0

$$y = ?$$

$$\mathbf{w} = ?$$

$$\mathbf{x} = [1 x_1 x_2]^T$$

Example: Boolean (NOT x_1) AND (NOT x_2)

<i>x</i> ₁	<i>x</i> ₂	r
0	0	1
0	1	0
1	0	0
1	1	0

$$y = s(-20x_1 - 20x_2 + 10)$$

$$\mathbf{w} = [10 - 20 - 20]^T$$

$$\mathbf{x} = [1 x_1 x_2]^T$$

Example: Boolean XOR

\boldsymbol{x}_1	<i>x</i> ₂	r
0	0	0
0	1	1
1	0	1
1	1	0

$$y = ?$$

$$\mathbf{w} = ?$$

$$\mathbf{x} = [1 \ x_1 \ x_2]^T$$

Example: Boolean XOR

x_1	x_2	r
0	0	0
0	1	1
1	0	1
1	1	0

Not linearly separable

Need combination of more than one perceptrons → multilayer perceptrons

Outline

- Perceptron
- Approximating linear functions
- Activation Function
- Backpropagation
- Optimization
- Neural Network Training and Design

Can create complex functions with Deep Neural Networks

Multilayer Perceptron

- Type of feedforward neural network
- Can model non-linear associations
- "Multi-level combination" of many perceptrons

Multilayer Perceptron: Representation

Terminology

 $W_{ij}^{(I)}$: connection between unit j in layer I to unit i in layer I+1

 $\alpha_i^{(I)}$: activation of unit *i* in layer *I*

 $b_i^{(l)}$: bias connected with unit i in layer l+1

Forward propagation: The process of propagating the input to the output through the activation of inputs and hidden units to each node

Multilayer Perceptron: Representation

Matrix notation

$$\mathbf{W}^{(1)} = \begin{bmatrix} W_{11}^{(1)} & W_{12}^{(1)} & W_{13}^{(1)} \\ W_{21}^{(1)} & W_{22}^{(1)} & W_{23}^{(1)} \\ W_{31}^{(1)} & W_{32}^{(1)} & W_{33}^{(1)} \end{bmatrix}, \ \mathbf{b}^{(1)} = [b_1^{(1)} \ b_2^{(1)} \ b_3^{(1)}], \ \text{etc.}$$

Multilayer Perceptron: Representation

Alternative architectures

2 hidden layers, multiple output units e.g. medical diagnosis: different outputs might indicate presence or absence of different diseases

Multilayer Perceptron

Non-linear feature learning

Multilayer Perceptron: Approximating non-linear functions

Example: Boolean XNOR

multilayer perceptrons

<i>x</i> ₁	<i>x</i> ₂	z_1	<i>z</i> ₂	r
0	0	0	1	1
0	1	0	0	0
1	0	0	0	0
1	1	1	0	1

Outline

- Perceptron
- Approximating linear functions
- Activation Function
- Backpropagation
- Optimization
- Neural Network Training and Design

Activation function decides, whether a neuron should be activated or not by calculating weighted sum and further adding bias with it.

Purpose: introduce non-linearity into the output of a neuron.

- Sigmoid: $\sigma(x) = \frac{1}{1+e^{-x}}$
- Hyperbolic tangent: $s(x) = \tanh(x) = 2\sigma(2x) 1$
- Rectified Linear Unit (ReLU): $f(x) = \max(0, x)$
- Leaky ReLU: $f(x) = (ax) \cdot \mathbb{I}(x < 0) + (x) \cdot \mathbb{I}(x \ge 0)$ (e.g. a = 0.01)

Sigmoid:
$$s(x) = \frac{1}{1+e^{-x}}$$

- Transforms a real-valued number between 0 and 1
- Large negative numbers become 0 (not firing at all)
- Large positive numbers become 1 (fully-saturated firing)
- Used historically because of its nice interpretation
- Saturates gradients: The gradient at either extremes (0 or 1) is almost zero, "killing" the signal will flow
- Non-zero centered output: Can be problematic during training, since it can bias outputs toward being always positive or always negative, causing unnecessary oscillations during the optimization

Hyperbolic tangent: $s(x) = \tanh(x) = 2\sigma(2x) - 1$

- Scaled version of sigmoid
- Transforms a real-valued number between -1 and 1
- Saturates gradients: Similar to sigmoid
- Output is zero-centered, avoiding some oscillation issues

Rectified Linear Unit (ReLU): f(x) = max(0, x)

- Activation simply thresholded at zero
- Very popular during the last years
- Accelerates convergence (e.g. a factor of 6, see bellow) compared to the sigmoid/tanh (due to its linear, non-saturating form)
- Cheap implementation by simply thresholding at zero
- Activation can "die": a large gradient flowing through a ReLU neuron could cause the weights to update in such a way that the neuron will never activate on any datapoint again, proper adjustment of learning rate can mitigate that

Leaky ReLU:
$$f(x) = (ax) \cdot \mathbb{I}(x < 0) + (x) \cdot \mathbb{I}(x \ge 0)$$

- Instead of the function being zero when x < 0, leaky ReLU will have a small negative slope (e.g. a = 0.01)
- Some successful results, but not always consistent

