Московский авиационный институт

(национальный исследовательский университет)

Институт №8 «Информационные технологии и прикладная математика»

Лабораторная работа №2 по искусственному интеллекту

6 семестр

Студент: Павлова К.А.

Группа: М8О-406Б-18

Руководитель:

Дата:

Оглавление

Условие	3
Логистическая регрессия	4-6
Алгоритм	4
Реализация	5
Обучение и метрики	6
Метод опорных векторов	7-9
Алгоритм	7
Реализация	8
Обучение и метрики	9
Дерево принятия решений	10-14
Алгоритм	10
Реализация	11-13
Обучение и метрики	14

Постановка задачи:

Необходимо реализовать алгоритмы машинного обучения. Применить данные алгоритмы на наборы данных, подготовленных в первой лабораторной работе. Провести анализ полученных моделей, вычислить метрики классификатора. Произвести тюнинг параметров в случае необходимости. Сравнить полученные результаты с моделями реализованными в scikit-learn. Аналогично построить метрики классификации. Показать, что полученные модели не переобучились. Также необходимо сделать выводы о применимости данных моделей к вашей задаче. Задачи со звездочкой бьются по вариантам:

N по списку % 2 + 1.

- 1) Логистическая регрессия
- 2) *SVM ПЕРВЫЙ ВАРИАНТ
- 3) Дерево решений
- 4) *Random Forest ВТОРОЙ ВАРИАНТ

Логистическая регрессия

Алгоритм

регрессии не производится предсказание значения числовой переменной исходя из выборки исходных значений. Вместо этого, значением функции является вероятность того, что данное исходное значение принадлежит к определенному классу. Для простоты, давайте предположим, что у нас есть только два класса и вероятность, которую мы будем определять, P_+ вероятности того, что некоторое значение принадлежит классу "+". И конечно $P_-=1-P_+$. Таким образом, результат логистической регрессии всегда находится в интервале [0,1].

В отличие от обычной регрессии, в методе логистической

Основная идея логистической регрессии заключается в том, что пространство исходных значений может быть разделено линейной границей (т.е. прямой) на две соответствующих классам области. Итак, что же имеется ввиду под линейной границей? В случае двух измерений — это просто прямая линия без изгибов. В случае трех — плоскость, и так далее. Эта граница задается в зависимости от имеющихся исходных данных и обучающего алгоритма. Чтобы все работало, точки исходных данных должны разделяться линейной границей на две вышеупомянутых области. Если точки исходных данных удовлетворяют этому требованию, то их можно назвать линейно разделяемыми.

Реализация

Я реализовал логистическую регрессию в виде класса с 2 публичными методами. fit - для обучения, predict - для предсказания

```
#задаем количество итераций при инициализации класса 100000 def __init__(self,num_iter = 100000): self.num_iter=num_iter
        self.beta=1
#метод обучающий модель

def fit(self,x,y):
    #sadaem матрицу весов в виде единичной матрицы
    self.beta = np.ones(x.shape[1])
    for i in range(self.num_iter):
        h = self._sigmoid(x, self.beta)#считаем сигмойду
        gradient = self._gradient_spusk(x, h, y)#спускаемся по градиенту
        self.beta =self._weight_update(self.beta, 0.1, gradient)#обновляем веса
 #приватный метод, считающий сигмойду
def _sigmoid(self,X, weight):
        z = np.dot(X, weight)
return 1 / (1 + np.exp(-z))
#приватная функция для градиентного шага def _gradient_spusk(self,X, H, Y): return np.dot(X.T, (H - Y)) / Y.shape[0]
 #приватная функция для обноления весов
def _weight_update(self,weight, learning_rate, gradient):
    return weight - learning_rate * gradient
 def predict(self,test):
        final_result=[]
       #приминяем сигмойду к тестовым данным result = self._sigmoid(test, self.beta)
        #выбираем метки для теста for i in result:
               final_result.append(self._onepred(i))
        return final_result
 #приватная функция для одного предсказания
def _onepred(self,x):
    if x < 0.5:</pre>
               return 0
        else:
               return 1
```

Обучение и метрики

```
2 my_lg=LogReg()
3 my_lg.fit(X_train,y_train)
                4 #делаем предсказания на трейне и на тесте и смотрим метрики
5 print('Метрики на обучающей выборки ')
                6 metrics(my_lg.predict(X_train),y_train)
7 print('Метрики на тестовой выборки ')
                  8 metrics(my_lg.predict(X_test),y_test)
               <ipython-input-5-f7a648a8a967>:20: RuntimeWarning: overflow encountered in exp return 1 / (1 + np.exp(-z))
               Метрики на обучающей выборки
               Meтрики на обучающей выборки
Accuracy: 0.851652056641942
Pprecision: 0.851652056641942
Recall: 0.851652056641942
F1: 0.851652056641942
               Метрики на тестовой выборки
Accuracy: 0.839622641509434
               Pprecision: 0.839622641509434
Recall: 0.839622641509434
F1: 0.839622641509434
In [7]: 1 #обучаю модель из sklearn 2 sk_lg-LogisticRegression( max_iter=1000000)
                  3 sk_lg.fit(X_train,y_train)
4 #делаем предсказания на трейне и на тесте и смотрим метрики
                 print('Метрики на обучающей выборки ')
6 metrics(sk_lg.predict(X_train),y_train)
                 8 metrics(sk_lg.predict(X_test),y_test)
               Метрики на обучающей выборки
               Per pikk Ha 0094akujun abiolopku
Accuracy: 0.8577208361429535
Pprecision: 0.8577208361429535
Recall: 0.8577208361429535
F1: 0.8577208361429536
               Метрики на тестовой выборки
Accuracy: 0.8443396226415094
               Pprecision: 0.8443396226415094
Recall: 0.8443396226415094
               F1: 0.8443396226415094
```

Выводы о моделях по метрикам

- Моя модель и модель из sklearn не переобучились, т к разница на метриках между трейном и тестом минимальна.
- Разница метрик на трейне и тесте между моей моделью и моделью из sklearn минимальна
- Обе модели показали достаточно неплохой результат примерно 0.85 по метрикам

Метод опорных векторов

Алгоритм

Алгоритм Главная цель SVM как классификатора — найти уравнение разделяющей гиперплоскости в пространстве, которая бы разделила два класса неким оптимальным образом. После настройки весов алгоритма (обучения), все объекты, попадающие по одну сторону от построенной гиперплоскости, будут предсказываться как первый класс, а объекты, попадающие по другую сторону — второй класс.

Реализация

Я реализовал SVM в виде класса MYSVM с двумя публичными методами fit- для обучения, predict - для предсказания

```
class MYSVM(object):
    # при инициализации класса задается сразу _etha -war градиентного спуска,_alpha - коэффициент быстроты #пропорционального уменьшения весов, _epochs - количество эпох обучения def __init__(self, etha=0.1, alpha=0.2, epochs=990): self._epochs = epochs
         self._etha = etha
         self._alpha = alpha
         self._w = None
    #метод для обучения модели
    def fit(self, X_train, Y_train):
         for i in range(len(Y train)):
             if Y_train.iloc[i] == 0:
                  Y_train.iloc[i] = -1
         #добавляем в конец каждого вектора число 1
         X_train = self._add_bias_feature(X_train)
         self._w = np.random.normal(loc=0, scale=0.05, size=X_train.shape[1])#задаем первые веса
         for epoch in range(self._epochs):
              for i,x in enumerate(X train):
                  margin = Y_train.iloc[i]*np.dot(self._w,X_train[i])
                  if margin >= 1: # классифицируем верно
                       self._w = self._w - self._etha*self._alpha*self._w/self._epochs
                  else: # классифицируем неверно или попадаем на полосу разделения при 0<m<1
                       self._w = self._w +\
                       self._etha*(Y_train.iloc[i]*X_train[i] - self._alpha*self._w/self._epochs)
         for i in range(len(Y_train)):
             if Y_train.iloc[i]==-1:
    Y_train.iloc[i]=0
    #Приватный метод , добовляющей в конец каждого вектора чисор 1
    def _add_bias_feature(self,a):
         a_extended = np.zeros((a.shape[0],a.shape[1]+1))
         a_extended[:,:-1] = a
a_extended[:,-1] = int(1)
         return a_extended
     #метод для предсказания
    def predict(self, X):
         y_pred = []
         #X_extended = self._add_bias_feature(X)
         for i in range(len(X)):
         y_pred.append(np.sign(1+np.dot(self._w[1:],X.iloc[i])))
for i in range(len(y_pred)):
             if y_pred[i]==-1:
                  y_pred[i]=0
         return y_pred
```

Обучение и метрики

```
In [9]: 1 my_svm=MYSVM()
2 my_svm.fit(X_train,y_train)
                   print('метрики на обучении')

metrics(my_svm.predict(X_train),y_train)
                 5 print('метрики на тесте')
6 metrics(my_svm.predict(X_test),y_test)
                метрики на обучении
               метрики на обучении
Ассигасу: 0.8479433580579906
Pprecision: 0.8479433580579906
Recall: 0.8479433580579906
F1: 0.8479433580579906
               метрики на тесте
Accuracy: 0.839622641509434
               Pprecision: 0.839622641509434
Recall: 0.839622641509434
                F1: 0.839622641509434
In [10]: 1 sk_svm = svm.SVC() sk_svm.fit(X_train, y_train)
                  3 print('метрики на обучении'
                   4 metrics(sk_svm.predict(X_train),y_train)
                 5 print('метрики на тесте')
6 metrics(sk_svm.predict(X_test),y_test)
               метрики на обучении
Accuracy: 0.851652056641942
Pprecision: 0.851652056641942
Recall: 0.851652056641942
                F1: 0.851652056641942
               метрики на тесте
Accuracy: 0.839622641509434
Pprecision: 0.839622641509434
               Recall: 0.839622641509434
F1: 0.839622641509434
```

Выводы

- Моя модель не переобучилась, т к разница на метриках между трейном и тестом минимальна.
- Моделт из sklearn не переобучилась, т к разница на метриках между трейном и тестом минимальна.
- Моя модель показывает себя хуже по метрикам на трейне чем модель из sklearn на трейне, но при этом моя модель показывает такие же метрики как и sklearn на тесте.

Дерево принятия решений

Алгоритм

Дерево решений представляет собой иерархическую древовидную структуру, состоящую из правила вида «Если ..., то ...». За счет обучающего множества правила генерируются автоматически в процессе обучения. Правила генерируются за счет обобщения множества отдельных наблюдений (обучающих примеров), описывающих предметную область. Поэтому их называют индуктивными 10 правилами, а сам процесс обучения — индукцией деревьев решений. В обучающем множестве для примеров должно быть задано целевое значение, так как деревья решений — модели, создаваемые на основе обучения с учителем

Реализация

Я реализовать дерево решений в виде класса MyDT с двуми публичными методами, fit - для обучения, predict - для предсказания остальные методы приватные и используются в публичных

```
class MyDT():
    # οδωяβляем χαρακπερυσπικυ κπασσα
    def __init__(self, max_depth=3, min_size=10):
        self.max_depth = max_depth
        self.min_size = min_size
        self.value = 0
        self.feature_idx = -1
        self.feature_threshold = 0
        self.left = None
        self.right = None
```

Реализация метода fit

```
# процедура обучения - сюда передается обучающая выборка
def fit(self, X, y):
        for i in range(len(y)):
                if y.iloc[i] == 0:
y.iloc[i] = -1
      # начальное значение - среднее значение у self.value = у.mean() # начальная ошибка - тье между значением в листе (пока нет # разбиения, это среднее по всем объектам) и объектами base_error = ((y - self.value) ** 2).sum() error = base_error flag = 0
                     или в максимальную глубину
        if self.max_depth <= 1:</pre>
        dim shape = X.shape[1]
        left_value, right_value = 0, 0
        for feat in range(dim_shape):
                prev_error1, prev_error2 = base_error, 0
                if feat==0:
   idxs = np.argsort(X[:, feat])
               # переменные для быстрого переброса суммы mean1, mean2 = y.mean(), 0 sm1, sm2 = y.sum(), 0
                N = X.shape[0]
N1, N2 = N, 0
thres = 1
              while thres < N - 1:
                      idx = idxs[thres]
x = X[int(idx), feat]
                      # вычисляем дельты - по ним в основном будет делаться переброс delta1 = (sm1 - y.iloc[idx]) * 1.0 / N1 - mean1 delta2 = (sm2 + y.iloc[idx]) * 1.0 / N2 - mean2
                      # увеличиваем суммы
sm1 -= y.iloc[idx]
sm2 += y.iloc[idx]
                      # nepecyumsBaeM owu6ku за O(1)
prev_error1 += (delta1**2) * N1
prev_error1 -= (y.iloc[idx] - mean1)**2
prev_error1 -= 2 * delta1 * (sm1 - mean1 * N1)
                      mean1 = sm1/N1
                      prev_error2 += (delta2**2) * N2
prev_error2 += (y.iloc[idx] - mean2)**2
prev_error2 -= 2 * delta2 * (sm2 - mean2 * N2)
mean2 = sm2/N2
                      # пропускаем близкие друг к другу значения if thres < N - 1 and np.abs(x - X[idxs[thres + 1], feat]) < 1e-5: thres += 1
                               continue
                      # 2 условия, чтобы осуществить сплит - уменьшение ошибки
# и минимальное кол-о эл-в в каждом листе
if (prev_error1 + prev_error2 < error):
if (min(N1,N2) > self.min_size):
                                      # переопределяем самый лучший признак и границу по нему self.feature_idx, self.feature_threshold = feat, \mathbf x
                                      left_value, right_value = mean1, mean2
                                      # флаг - значит сделали хороший сплит
flag = 1
error = prev_error1 + prev_error2
                      thres += 1
    # ничего не разделили, выходим if self feature_idx == -1:
    self.left = MyDT(self.max_depth - 1)
# print ("Левое поддерево с глубиной %d"%(self.max_depth - 1))
    self.left = MyDV[self.max_depth - 1)
# print ("Πεθοe noddepeβο c εσγβόμοῦ %d"%(self.max_depth - 1))
self.left.value = left_value
self.right = MyDY(self.max_depth - 1)
# print ("Πραβοε noddepeβο c εσγβόμοῦ %d"%(self.max_depth - 1))
self.right.value = right_value
     \begin{array}{ll} idxs\_1 \ = \ (X[:, \ self.feature\_idx] \ > \ self.feature\_threshold) \\ idxs\_r \ = \ (X[:, \ self.feature\_idx] \ <= \ self.feature\_threshold) \\ \end{array} 
    self.left.fit(X[idxs_1, :], y[idxs_1])
self.right.fit(X[idxs_r, :], y[idxs_r])
    for i in range(len(y)):
    if y.iloc[i]==-1:
        y.iloc[i]=0
```

Реализация метода predict и приватный методов _predict , _prediction , используемых в predict

```
def __predict(self, x):
   if self.feature_idx == -1:
       return self.value
   if x[self.feature_idx] > self.feature_threshold:
        return self.left._predict(x)
    else:
        return self.right.__predict(x)
#метод для финального расставления меток
def _prediction(self,x):
   if x < 0:
        return 0
   else:
        return 1
#Метод для предсказания
def predict(self, X):
   y = np.zeros(X.shape[0])
   for i in range(X.shape[0]):
       y[i] = self.__predict(X[i])
   for i in range(len(y)):
       y[i]=self._prediction(y[i])
   return y
```

Обучение и метрики

```
In [12]: 1 my_dt=hyDT()
2 my_dt.fit(X_train.values,y_train)
3 print('Merpuku на обучении')
4 metrics(my_dt.predict(X_train.values),y_train)
5 print('Merpuku на тесте')
6 metrics(my_dt.predict(X_test.values),y_test)

метрики на обучении
Асситасу: 0.831652856641942
Регесізіоп: 0.831652856641942
Регесізіоп: 0.831652856641942
Регесізіоп: 0.839622641589434
Регесізіоп: 0.839622641589434
Регесізіоп: 0.839622641589434
Регесізіоп: 0.839622641589434
Регесізіоп: 0.839622641589434
Гі: 0.839622641589434
Гі: 0.839622641589434
Гі: 0.839622641589434
Регесізіоп: 0.839622641589434
Гі: 0.839622641589434
Гі: 0.839622641589434
Регесізіоп: 0.839622641589434
Регесізіоп: 0.839622641589434
Регесізіоп: 0.838962641589434
Регесізіоп: 0.83896288891786
Регесізіоп: 0.858923688891786
Регесізіоп: 0.858923688891786
Регесізіоп: 0.8388364779874213
```

Выводы

- Моя модель практичиски не переобучилась, т к разница на метриках между трейном и тестом минимальна.
- Моделт из sklearn практичиски не переобучилась, т к разница на метриках между трейном и тестом минимальна.
- Моя модель показывает себя хуже по метрикам на трейне чем модель из sklearn на трейне(0.004) и на тесте (0.001)