Lecture hours 22 - 23

10

This tutorial is also a review for the second midterm.

Problem 41. Let T be the linear transformation induced by the matrix

$$\begin{bmatrix} 1 & 0 & 2 \\ 0 & -1 & 2 \end{bmatrix},$$

and S be the linear transformation induced by the matrix

$$\begin{bmatrix} -2 & 0 \\ 0 & 1 \\ 1 & 3 \end{bmatrix}.$$

- a) Find the matrix that induces the linear transformation $S \circ T$.
- b) Find the rank and nullity of $S \circ T$.
- c) Find a basis for the image of $S \circ T$ and a basis for the kernel of $S \circ T$.
- d) Is the linear transformation $S\circ T$ invertible? If so, find the inverse. If not, explain why.
- e) If \mathcal{B} is the standard basis of \mathbb{R}^3 find the matrix for $S \circ T$ in the \mathcal{B} coordinates.
- f) Let \mathcal{D} the basis of \mathbb{R}^3 given by

$$\mathfrak{D} = \left\{ \begin{bmatrix} 1\\2\\1 \end{bmatrix}, \begin{bmatrix} -1\\2\\-1 \end{bmatrix}, \begin{bmatrix} 1\\1\\3 \end{bmatrix} \right\}.$$

Find the matrix for $S \circ T$ in the \mathcal{D} coordinates.

Problem 42 (Distances). Let P be the plane spanned by the vectors

$$\vec{y} = egin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \quad \vec{z} = egin{bmatrix} 1 \\ 2 \\ -3 \end{bmatrix}.$$

- 1. Assume S is the projection onto P
 - a) Find the distance from the vector $\vec{y} \times \vec{z}$ to the vector $S(\vec{y} \times \vec{z})$.
 - b) Find the distance from the vector \vec{z} to the vector $S(\vec{z})$.
- 2. Assume T is the reflection across P.
 - c) Find the distance from the vector $\vec{y} \times \vec{z}$ to the vector $T(\vec{y} \times \vec{z})$.
 - d) Find the distance from the vector \vec{y} to the vector $T(\vec{y})$.