Distributed Systems, Lab 3 Report

Mislav Jakšić

December 28, 2018

Contents

1	Logical and physical application structure	1
2	Queueing theory model	1
3	Pretty Damn Quick (PDQ) analyzer model	2
1	Results	3

1 Logical and physical application structure

The application (1) is already abstract and represented as a directed graph of queues.

Figure 1: Task 2.2

2 Queueing theory model

Queueing theory, which says that most complex system can be represented as a directed graph of queues, has been applied to the application (1).

A rule of thumb says that in order to calculate the response time T, you should do the following:

- 1. Find λ_N for every node by solving the matrix and expressing the result as system λ .
- 2. Find ρ_N for every node using $\rho_N = S_N * \lambda_N$.
- 3. Find N_N for every node using $N_N = (1 \rho_N)/\rho_N$.
- 4. Finally, find T using $T = (N_1 + ... + N_N)/\lambda$.

The analytical solution to is presented in an Microsoft Excel/LibreOffice Calc called "RASUS_LAB_3_Task2_2.ods".

W	Wait time
\mathbf{S}	Service time
T	Response time / residual time
λ	Incoming request intensity
δ	Outgoing request intensity
ρ	Demand
N	Queue length
v	Number of visits

Table 1: Legend

3 Pretty Damn Quick (PDQ) analyzer model

PDQ is a fast queue solver which takes a model as input, written in a number of languages including Perl, Python, C and Java (deprecated).

You can see the PDQ model in the project "Pretty Damn Quick Analysis", "Problem2_2".

4 Results

Response time dependence of incoming request intensity

