

Міністерство освіти і науки України

Національний технічний університет України

"Київський політехнічний інститут імені Ігоря Сікорського"

Факультет інформатики та обчислювальної техніки

Кафедра інформатики та програмної інженерії

Лабораторна робота №2

Програмування ітелектуальних інформаційних систем

Виконав	Перевірила:
студент групи IП-11:	Баришич Л. М
Панченко С. В.	

3MICT

1 Мета лабораторної роботи	6
2 Завдання	
3 Виконання	
3.1 Завдання четверте	9
3.2 KMEANS	9
3.3 Affinity Propagation	11
3.4 DBSCAN	12
3.5 Порівняння результатів	13
ДОДАТОК А ТЕКСТИ ПРОГРАМНОГО КОДУ	14

1 МЕТА ЛАБОРАТОРНОЇ РОБОТИ

Класифікація даних.

2 ЗАВДАННЯ

Метрики і спосіб виконання описані тут:

https://www.kaggle.com/code/prashant111/naive-bayes-classifier-in-python

Лабу можна виконати в онлайн-редакторах типу Google Collab.

1. Dataset1: /kaggle/input/adult-dataset/adult.csv'

Bayesian Classification + Support Vector Machine

Зробити предікшн двома вищезгаданими алгоритмами. Порівняти наступні метрики:

Recall, f1-score, Confusion matrix, accuracy score. Порівняти з нульгіпотезою і перевірити на оверфітинг. Пояснити результати.

2. Dataset2: https://www.kaggle.com/code/stieranka/k-nearest-neighbors K nearest neighbours.

Те саме що і в 1 завданні, але порівнюємо між собою метрики. Euclidean, Manhattan, Minkowski. Кластери потрібно візуалізувати. Метрики аналогічно п.1

3. Dataset3: https://www.kaggle.com/code/nuhashafnan/cluster-analysis-kmeans-kmediod-agnes-birch-dbscan

Agnes, Birch, DBSCAN

Інші методи можна ігнорувати. Зняти метрики (Silhouette Coefficient, ARI, NMI. Можна з п.1-2), пояснити.

4. Dataset4: https://www.kaggle.com/code/datark1/customers-clustering-k-means-dbscan-and-ap

Affinity propagation.

Порівняти з k-means. Метрики - Silhouette Coefficient, ARI, NMI

У звіті до кожної задачі:

- 1 Візуалізувати кластери
- 2 Вивести метрики. Для кластерів Silhouette Coefficient, ARI, NMI
- 3 Порівняння з нулем і перевірка на оверфіт.
- 4 Висновок.

SVM і AP можна виконати на будь-якому датасеті.

3 ВИКОНАННЯ

3.13авдання четверте

Для початку імпортуємо модулі. Завантажимо датафрейм та виведемо його вміст.

In [38]:	<pre>import pandas as pd import seaborn as sns import matplotlib.pyplot as plt import numpy as np from scipy import stats mall_data = pd.read_csv('data/Mall_Customers.xls') mall_data.sample(10)</pre>					
Out[38]:		CustomerID	Gender	Age	Annual Income (k\$)	Spending Score (1-100)
	109	110	Male	66	63	48
	124	125	Female	23	70	29
	72	73	Female	60	50	49
	137	138	Male	32	73	73
	85	86	Male	48	54	46
	66	67	Female	43	48	50
	152	153	Female	44	78	20
	119	120	Female	50	67	57
	12	13	Female	58	20	15
	147	148	Female	32	77	74

3.2KMEANS

Натренуємо модель.

```
In [39]: from sklearn.cluster import KMeans
X_numerics = mall_data[['Age', 'Annual Income (k$)', 'Spending Score (1-100)']]
KM_6_clusters = KMeans(n_clusters=6, init='k-means++').fit(X_numerics)
KM6_clustered = X_numerics.copy()
KM6_clustered.loc[:,'Cluster'] = KM_6_clusters.labels_

/home/sideshowbobgot/.local/lib/python3.10/site-packages/sklearn/cluster/_kmeans.py:1416: F
utureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the v
alue of `n_init` explicitly to suppress the warning
super()._check_params_vs_input(X, default_n_init=10)
```

Рисунок 3.2.1 - Тренування моделі

Зобразимо кластери.

Рисунок 3.2.2 - KMEANS кластери

Зобразимо Silhouette Coefficient.

```
In [41]: from yellowbrick.cluster import SilhouetteVisualizer
                                     model = KMeans(n_clusters=6, random_state=0)
                                     visualizer = SilhouetteVisualizer(model, colors='yellowbrick')
                                     visualizer.fit(X_numerics)
                                     visualizer.show()
                                     plt.show()
                                /home/sides how bobg ot/.local/lib/python 3.10/site-packages/sklearn/cluster/\_kmeans.py: 1416: Figure 1.00 and 1.00 are also better the contraction of the contract
                                utureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the v
                                alue of 'n init' explicitly to suppress the warning
                                        super()._check_params_vs_input(X, default_n_init=10)
                                                                                     Silhouette Plot of KMeans Clustering for 200 Samples in 6 Centers
                                                                                                                                                                                                                                                                                            Average Silhouette Score
                                            5
                                            4
                                cluster label
                                            1
                                           0
                                                                                                                                                                               0.2
                                              -0.2
                                                                             -0.1
                                                                                                               0.0
                                                                                                                                              0.1
                                                                                                                                                                                                                                                                              0.5
                                                                                                                                                                                                                                                                                                               0.6
                                                                                                                                                                                                                                                                                                                                              0.7
                                                                                                                                                                                                                                                                                                                                                                              8.0
                                                                                                                                                                                                              0.3
                                                                                                                                                                                                                                               0.4
                                                                                                                                                                    silhouette coefficient values
```

Рисунок 3.2.3 - Графік Silhouette Coefficient

Покажемо розміри кластерів.

Рисунок 3.2.4 - KMEANS розміри кластерів

3.3Affinity Propagation

Натренуємо модель.

```
In [43]:
    from sklearn.cluster import AffinityPropagation
    AF = AffinityPropagation(preference=-11800).fit(X_numerics)
    AF_clustered = X_numerics.copy()
    AF_clustered.loc[:,'Cluster'] = AF.labels_
```

Рисунок 3.3.1 - Тренування Affinity Propagation

Покажемо розміри кластерів.

Рисунок 3.3.2 - Affinity Propagation розміри кластерів Зобразимо кластери.

Рисунок 3.3.3 - Affinity Propagation кластери

3.4DBSCAN

Натренуємо модель.

```
In [46]:
    from sklearn.cluster import DBSCAN
    DBS_clustering = DBSCAN(eps=12.5, min_samples=4).fit(X_numerics)
    DBSCAN_clustered = X_numerics.copy()
    DBSCAN_clustered.loc[:,'Cluster'] = DBS_clustering.labels_
```

Рисунок 3.4.1 - Тренування DBSCAN

Покажемо розміри кластерів.

```
In [47]: DBSCAN_clust_sizes = DBSCAN_clustered.groupby('Cluster').size().to_frame()
    DBSCAN_clust_sizes.columns = ["DBSCAN_size"]
    DBSCAN_clust_sizes

Out[47]: DBSCAN_size

Cluster
-1     18
     0     112
     1     8
     2     34
     3     24
     4     4
```

Рисунок 3.4.2 - DBSCAN розміри кластерів

Зобразимо кластери.

Рисунок 3.4.3 - DBSCAN кластери

3.5Порівняння результатів

Як бачимо, що K-Means та Affinity Propagation створили шість доволі помірних різних кластерів.

```
In [49]: clusters = pd.concat([KM6_clust_sizes, AF_clust_sizes],axis=1, sort=False)
         from sklearn.metrics.cluster import adjusted_rand_score
         from sklearn.metrics.cluster import normalized_mutual_info_score
         for (name, pred) in [('KMEANS', KM_6_clusters.labels_), ('Affinity Propagation', AF.labels_
              print(f'ARI {name}: {adjusted_rand_score(DBS_clustering.labels_, pred)}')
              print(f'NMI {name}: {normalized_mutual_info_score(DBS_clustering.labels_, pred)}')
         clusters
        ARI KMEANS: 0.3651876127340171
        NMI KMEANS: 0.5792304844451788
        ARI Affinity Propagation: 0.367842274887852
        NMI Affinity Propagation: 0.5863552685455267
Out[49]:
                  KM_size AF_size
         Cluster
                       45
                                22
               1
                       39
                                22
                       35
                                44
                       21
                                39
                                34
                       22
                       38
                                39
```

Рисунок 3.5.1 - Результати

ДОДАТОК А ТЕКСТИ ПРОГРАМНОГО КОДУ

	Тексти програмного коду
((Найменування програми (документа))

 Жорсткий диск
(Вид носія даних)

(Обсяг програми (документа), арк.)

Студента групи IП-113 курсу Панченка С. В

```
import pandas as pd
      import seaborn as sns
      import matplotlib.pyplot as plt
      import numpy as np
      from scipy import stats
      mall_data = pd.read_csv('data/Mall_Customers.xls')
      mall_data.sample(10)
      from sklearn.cluster import KMeans
     X_numerics = mall_data[['Age', 'Annual Income (k$)', 'Spending Score (1-
100)']]
      KM_6_clusters = KMeans(n_clusters=6, init='k-means++').fit(X_numerics)
      KM6_clustered = X_numerics.copy()
     KM6_clustered.loc[:,'Cluster'] = KM_6_clusters.labels_
      fig11, (axes) = plt.subplots(1,2,figsize=(12,5))
      sns.scatterplot(KM6_clustered, x='Annual Income (k$)', y='Spending Score
(1-100)',
      hue='Cluster', ax=axes[0], palette='Set1', legend='full')
      sns.scatterplot(KM6_clustered, x='Age', y='Spending Score (1-100)',
      hue='Cluster', palette='Set1', ax=axes[1], legend='full')
      axes[0].scatter(KM_6_clusters.cluster_centers_[:,1],
KM_6_clusters.cluster_centers_[:,2], marker='s', s=40, c="blue")
      axes[1].scatter(KM_6_clusters.cluster_centers_[:,0],
KM_6_clusters.cluster_centers_[:,2], marker='s', s=40, c="blue")
      plt.show()
      from yellowbrick.cluster import SilhouetteVisualizer
     model = KMeans(n_clusters=6, random_state=0)
     visualizer = SilhouetteVisualizer(model, colors='yellowbrick')
     visualizer.fit(X_numerics)
     visualizer.show()
     plt.show()
      KM6_clust_sizes = KM6_clustered.groupby('Cluster').size().to_frame()
      KM6_clust_sizes.columns = ["KM_size"]
      KM6_clust_sizes
      from sklearn.cluster import AffinityPropagation
     AF = AffinityPropagation(preference=-11800).fit(X_numerics)
     AF_clustered = X_numerics.copy()
      AF_clustered.loc[:,'Cluster'] = AF.labels_
      AF_clust_sizes = AF_clustered.groupby('Cluster').size().to_frame()
      AF_clust_sizes.columns = ["AF_size"]
      AF_clust_sizes
      fig3, (ax_af) = plt.subplots(1, 2, figsize=(12, 5))
      scat_1 = sns.scatterplot(AF_clustered, x='Annual Income (k$)', y='Spending
Score (1-100)',
```

```
hue='Cluster', ax=ax_af[0], palette='Set1', legend='full')
      sns.scatterplot(AF_clustered, x='Age', y='Spending Score (1-100)',
      hue='Cluster', palette='Set1', ax=ax_af[1], legend='full')
      plt.setp(ax_af[0].get_legend().get_texts(), fontsize='10')
      plt.setp(ax_af[1].get_legend().get_texts(), fontsize='10')
      plt.show()
      from sklearn.cluster import DBSCAN
      DBS_clustering = DBSCAN(eps=12.5, min_samples=4).fit(X_numerics)
      DBSCAN_clustered = X_numerics.copy()
      DBSCAN_clustered.loc[:,'Cluster'] = DBS_clustering.labels_
      DBSCAN_clust_sizes = DBSCAN_clustered.groupby('Cluster').size().to_frame()
      DBSCAN_clust_sizes.columns = ["DBSCAN_size"]
      DBSCAN_clust_sizes
      outliers = DBSCAN_clustered[DBSCAN_clustered['Cluster']==-1]
      fig2, (axes) = plt.subplots(1,2,figsize=(12,5))
      sns.scatterplot(data=DBSCAN_clustered[DBSCAN_clustered['Cluster']!=-1],
      x='Annual Income (k$)', y='Spending Score (1-100)',
      hue='Cluster', ax=axes[0], palette='Set1', legend='full', s=45)
      sns.scatterplot(data=DBSCAN_clustered[DBSCAN_clustered['Cluster']!=-1],
      x='Age', y='Spending Score (1-100)',
      hue='Cluster', palette='Set1', ax=axes[1], legend='full', s=45)
      axes[0].scatter(outliers['Annual Income (k$)'], outliers['Spending Score
(1-100)'], s=5, label='outliers', c="k")
      axes[1].scatter(outliers['Age'], outliers['Spending Score (1-100)'], s=5,
label='outliers', c="k")
      axes[0].legend()
      axes[1].legend()
      plt.setp(axes[0].get_legend().get_texts(), fontsize='10')
      plt.setp(axes[1].get_legend().get_texts(), fontsize='10')
      plt.show()
      clusters = pd.concat([KM6_clust_sizes, AF_clust_sizes], axis=1, sort=False)
      from sklearn.metrics.cluster import adjusted_rand_score
      from sklearn.metrics.cluster import normalized_mutual_info_score
      for (name, pred) in [('KMEANS', KM_6_clusters.labels_), ('Affinity
Propagation', AF.labels_)]:
      print(f'ARI {name}: {adjusted_rand_score(DBS_clustering.labels_, pred)}')
      print(f'NMI {name}: {normalized_mutual_info_score(DBS_clustering.labels_,
pred)}')
      clusters
```