



# **EXAMENUL DE BACALAUREAT – 2007** Proba scrisă la MATEMATICĂ

#### PROBA D

Varianta ....015

Profilul: Filiera Teoretică: sp.: matematică-informatică, Filiera Vocațională, profil Militar, Specializarea: specializarea matematică-informatică Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu. Timpul efectiv de lucru este de 3 ore.

# La toate subiectele se cer rezolvări cu soluții complete

- SUBIECTUL I (20p)
- (4p)a) Să se calculeze produsul scalar al vectorilor  $\vec{v} = 2\vec{i} + 3\vec{j}$  şi  $\vec{w} = 3\vec{i} + 2\vec{j}$
- (4p)**b)** Să se calculeze cosinusul unghiului format de vectorii  $\vec{v} = 2\vec{i} + 3\vec{j}$  și  $\vec{w} = 3\vec{i} + 2\vec{j}$ .
- c) Să se determine ecuația tangentei la cercul  $x^2 + y^2 = 41$  dusă prin punctul P(4,5)(4p)
- d) Să se arate că punctele L(-1, 2), M(-2, 3) și N(-3, 4) sunt coliniare. (4p)
- e) Să se calculeze volumul tetraedrului cu vârfurile în punctele A(1, 1, 2), B(1, 2, 1), (2p)C(2,1,1) și D(-1,-2,-3).
- f) Să se determine  $a, b \in \mathbf{R}$  astfel încât să avem egalitatea de numere complexe (2p) $(\cos \pi + i \sin \pi)^{16} = a + bi.$

### SUBIECTUL II (30p)

1.

- a) Să se rezolve în R inecuatia  $x^2 + 3x 4 < 0$ . (3p)
- (3p)**b**) Să se calculeze probabilitatea ca un element  $\hat{x} \in \mathbf{Z}_6$  să verifice relația  $\hat{x}^2 = \hat{2}\hat{x}$ .
- (3p)c) Să se calculeze partea întreagă a numărului  $a = \sqrt{2} + \sqrt{3}$ .
- (3p)**d)** Să se rezolve în mulțimea numerelor strict pozitive ecuația  $\log_2 x = 3$ .
- e) Să se calculeze suma rădăcinilor polinomului  $f = X^3 + X^2 + 2$ . (3p)
  - 2. Se consideră funcția  $f: \mathbf{R} \to \mathbf{R}$ ,  $f(x) = 4^x 2^x$ .
- a) Să se calculeze f'(x),  $x \in \mathbf{R}$ . (3p)
- (3p)**b**) Să se determine ecuația asimptotei spre  $-\infty$  la graficul funcției f.
- c) Să se arate că  $f(x) \ge -\frac{1}{4}$ ,  $\forall x \in \mathbf{R}$ . (3p)
- **d)** Să se calculeze  $\lim_{x \to 1} \frac{f(x) f(1)}{x 1}$ . (3p)
- (3p) e) Să se calculeze  $\int_0^1 \frac{x^3}{x^4 + 13} dx.$



#### SUBIECTUL III (20p)

Se consideră matricele 
$$A = \begin{pmatrix} 3 & 2 & 1 \\ 6 & 4 & 2 \\ 9 & 6 & 3 \end{pmatrix}, \quad I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 și  $B = I_3 + A$ .

(4p)  $| a \rangle$  Să se calculeze determinantul și rangul matricei A.

(4p) b) Dacă 
$$X = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$
 și  $Y = \begin{pmatrix} 3 & 2 & 1 \end{pmatrix}$ , să se calculeze matricea  $S = A - X \cdot Y$ .

- (4p) c) Să se verifice că  $A^2 = 10A$
- (2p) d) Să se arate că matricea B este inversabilă și inversa sa este matricea  $B^{-1} = I_3 \frac{1}{11}A$ .
- (2p) e) Să se arate că  $A^n = 10^{n-1} A$ ,  $\forall n \in \mathbb{N}$ ,  $n \ge 2$ .
- (2p) f) Să se găsească trei matrice  $U, V, W \in M_3(\mathbb{C})$  de rang 1, astfel încât B = U + V + W.
- (2p) g) Să se arate că oricare ar fi două matrice,  $C, D \in M_3(\mathbb{C})$  de rang 1, avem  $C + D \neq B$ .

## SUBIECTUL IV (20p)

Se consideră funcțiile  $f_n: \mathbf{R} \to \mathbf{R}$ , definite prin  $f_0(x) = 1 - \cos x$  și

$$f_{n+1}(x) = \int_{0}^{x} f_{n}(t)dt$$
,  $\forall n \in \mathbf{N}$ ,  $\forall x \in \mathbf{R}$ .

- (4p) a) Să se verifice că  $f_1(x) = x \sin x$ ,  $\forall x \in \mathbf{R}$ .
- (4**p**) **b**) Să se calculeze  $f_2(x)$ ,  $x \in \mathbf{R}$ .
- (2p) C) Utilizând metoda inducției matematice, să se arate că  $f_{2n+1}(x) = \frac{x^{2n+1}}{(2n+1)!} \frac{x^{2n-1}}{(2n-1)!} + ... + (-1)^n \frac{x}{1!} + (-1)^{n+1} \sin x \,, \quad \forall n \in \mathbf{N} \,, \quad \forall x \in \mathbf{R} \,.$
- (4p) d) Să se arate că graficul funcției  $f_1$  nu are asimptotă spre  $+\infty$ .
- (2p) e) Să se arate că  $0 \le f_n(x) \le 2 \cdot \frac{x^n}{n!}$ ,  $\forall n \in \mathbb{N}$ ,  $\forall x > 0$ . (Reamintim că 0!=1)
- (2p) Să se arate că  $\lim_{n\to\infty} \frac{x^n}{n!} = 0$ ,  $\forall x > 0$ .
- (2p) g) Să se arate că  $\lim_{n \to \infty} \left( \frac{x}{1!} \frac{x^3}{3!} + \frac{x^5}{5!} \dots + (-1)^n \frac{x^{2n+1}}{(2n+1)!} \right) = \sin x, \ \forall x \in \mathbf{R}.$