STA 2404 Non-parametric methods

Contact hours: 45 Hours

1. Purpose

To equip students with non-parametric statistical data analysis skills

2. Objectives

At the end of this course, the student should be able to: -

- 1. Describe the concepts of nonparametric estimation
- 2. Perform goodness of fit tests
- 3. Perform tests for randomness.
- 4. Describe one sample tests.
- 5. Describe rank-based tests on two sample tests.
- 6. Describe measures of association.

3. Course Description

Concepts of non-parametric estimation. Tests for randomness and symmetry in one sample. Goodness of fit problems: chi-square and Kolmogorov-Smirnov tests. Independence in bivariate sample: Kendall's and Spearman's rank correlation coefficients. Comparison of two populations. U-statistics and their limiting distributions. Sign, run, median and Wilcoxon tests. Use of computer packages.

4. Course outline

Week	Content	Method
1	Introduction	Theory and practical
	Concepts of non-parametric estimation	
2	Sign-test for mean and median	Theory and practical
3	Sign-rank test (Wilcoxon-sign rank test) for mean	Theory and practical
	Sign rank test for paired data – difference in	
	mean	
4	Rank sum test (U-test) – Wilcoxon test/Mann-	Theory and practical
	Whitney test for difference in mean	
5	Cat 1	
6	Rank sum test (H-test) - Kruskal-Walli's test	Theory and practical
7	Runs test	Theory and practical
8	Rank correlation coefficient	Theory and practical
9	Testing for goodness-of-fit	Theory and practical
10	Contingency tables test	Theory and practical
11	Kolmogorov-Smirnov test	Theory and practical
	Confidence intervals for quantiles	
12	Cat 2	

5. Learning and Teaching Methodologies

Teaching is by lecture method consisting of two lecture hours and one hour of tutorials/two laboratory hours = 1 lecture hour weekly for fourteen weeks.

Assessment

Continuous Assessment 30%

Examination 70%

Total 100%

6. Course textbooks

- RV Hogg, JW McKean & AT Craig Introduction to Mathematical Statistics, 6th ed., Prentice Hall, 2003 ISBN 0-13-177698-3
- 2. Lehmann, E. L. *Nonparametric Methods: Statistical Methods Based on Ranks*. Prentice-Hall, Inc. 1998

7. Course Journals

- 1. Journal of Nonparametric Statistics (J. Nonparametric Stat.) [1048-5252; 1029-0311]
- 2. Journal of the Royal Statistical Society: Series A (Statistics in Society)
- 3. Statistical Modelling (Stat. Model.) [1471-082X]
- 4. Biometrical (Biometrical) [0006-3444; 1464-3510]

8. Reference Textbooks

- 1. Dennis Wackerly, William Mendenhall, and Richard L. Scheaffer. *Mathematical Statistics* with Applications. P W S Publishers 2007 ISBN: 9780495110811 ISBN-10: 0495110817.
- 2. Huber, P.J. Robust Statistics. NY: John Wiley, 1981
- 3. Silverman, B.W. Density Estimation. London: Chapman and Hall, 1986
- 4. Wand, M.P. and Jones, M.C. Kernel Smoothing. London: Chapman and Hall, 1995

9. Reference Journals

- 1. Journal of Statistics Education
- 2. Austrian Journal of Statistics
- 3. Journal of the Royal Statistical Society, Series B: Statistical Methodology