Learning Probabilistic Models

Dr. Steven Bethard

Computer and Information Sciences University of Alabama at Birmingham

14 Apr 2016

Outline

- Naive Bayes
 - Models
 - Examples
 - Properties
- **2** Expectation Maximization
 - Hidden Variables
 - Algorithm
 - Properties

Outline

- Naive Bayes
 - Models
 - Examples
 - Properties
- **2** Expectation Maximization
 - Hidden Variables
 - Algorithm
 - Properties

Naive Bayes Networks

Bayesian Network

Represents all variable dependence relations

Naive Bayes Network

Assumes features are conditionally independent given the class variable

Naive Bayes Networks

Bayesian Network

Represents all variable dependence relations

Naive Bayes Network

Assumes features are conditionally independent given the class variable

Given class C and $\overline{\text{features } F_1, \ldots, F_n}$

- $\textbf{P}(C|F_1,F_2,\ldots,F_n)$
 - = $\alpha P(F_1, F_2, \dots, F_n | C) P(C)$
 - = $\alpha P(F_1|C)P(F_2|C) \dots P(F_n|C)P(C)$ Naive Bayes

Naive Bayes models

$$\mathbf{P}(C|F_1, F_2, \dots, F_n) = \alpha \mathbf{P}(C) \prod_{i=1}^n \mathbf{P}(F_i|C)$$

- Find the probability of each class
- Find the probability of each feature given the class

Given class C and $\overline{\text{features } F_1, \ldots, F_n}$

$$\mathbf{P}(C|F_1, F_2, \dots, F_n)$$
= $\alpha \mathbf{P}(F_1, F_2, \dots, F_n|C)\mathbf{P}(C)$ Bayes' Rule
= $\alpha \mathbf{P}(F_1, F_2, \dots, F_n|C)\mathbf{P}(C)$

Naive Bayes models

$$\mathbf{P}(C|F_1, F_2, \dots, F_n) = \alpha \mathbf{P}(C) \prod_{i=1}^n \mathbf{P}(F_i|C)$$

- Find the probability of each class
- Find the probability of each feature given the class

Given class C and features F_1, \ldots, F_n

$$\mathbf{P}(C|F_1,F_2,\ldots,F_n)$$

=
$$\alpha \mathbf{P}(F_1, F_2, \dots, F_n | C) \mathbf{P}(C)$$
 Bayes' Rule

=
$$\alpha P(F_1|C)P(F_2|C) \dots P(F_n|C)P(C)$$
 Naive Bayes

Naive Bayes models

$$\mathbf{P}(C|F_1, F_2, \dots, F_n) = \alpha \mathbf{P}(C) \prod_{i=1}^n \mathbf{P}(F_i|C)$$

- Find the probability of each class
- Find the probability of each feature given the class

Given class C and $\overline{\text{features } F_1, \ldots, F_n}$

$$\mathbf{P}(C|F_1, F_2, ..., F_n)$$
= $\alpha \mathbf{P}(F_1, F_2, ..., F_n|C)\mathbf{P}(C)$ Bayes' Rule
= $\alpha \mathbf{P}(F_1|C)\mathbf{P}(F_2|C)...\mathbf{P}(F_n|C)\mathbf{P}(C)$ Naive Bayes

Naive Bayes models

$$\mathbf{P}(C|F_1, F_2, \dots, F_n) = \alpha \mathbf{P}(C) \prod_{i=1}^n \mathbf{P}(F_i|C)$$

- Find the probability of each class
- Find the probability of each feature given the class

Given class C and features F_1, \ldots, F_n

$$\mathbf{P}(C|F_1,F_2,\ldots,F_n)$$

$$= \alpha \mathbf{P}(F_1, F_2, \dots, F_n | C) \mathbf{P}(C)$$
 Bayes' Rule

=
$$\alpha \mathbf{P}(F_1|C)\mathbf{P}(F_2|C) \dots \mathbf{P}(F_n|C)\mathbf{P}(C)$$
 Naive Bayes

Naive Bayes models

$$\mathbf{P}(C|F_1, F_2, \dots, F_n) = \alpha \mathbf{P}(C) \prod_{i=1}^n \mathbf{P}(F_i|C)$$

- Find the probability of each class
- Find the probability of each feature given the class

Origin?	Color?	Type?	Stolen?
import	red	sports	yes
import	red	sports	yes
domestic	white	sports	yes
domestic	red	van	yes
import	red	van	no
domestic	white	sports	no

A domestic red sports car

$$P(y|d,r,s) = \alpha P(y)P(d|y)P(r|y)P(s|y) = \alpha \cdot \frac{2}{3} \cdot \frac{1}{2} \cdot \frac{3}{4} \cdot \frac{3}{4} = \frac{3}{16}\alpha P(n|d,r,s) = \alpha P(n)P(d|n)P(r|n)P(s|n) = \alpha \cdot \frac{1}{3} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{24}\alpha$$

Predict stolen? yes

At what probability?
$$\frac{9}{11} = \frac{\frac{3}{16}}{\frac{3}{16} + \frac{1}{24}}$$

Origin?	Color?	Type?	Stolen?
import	red	sports	yes
import	red	sports	yes
domestic	white	sports	yes
domestic	red	van	yes
import	red	van	no
domestic	white	sports	no

Origin?	Color?	Type?	Stolen?
import	red	sports	yes
import	red	sports	yes
domestic	white	sports	yes
domestic	red	van	yes
import	red	van	no
domestic	white	sports	no

$$P(y|d,r,s) = \alpha P(y)P(d|y)P(r|y)P(s|y) = \alpha + \frac{3}{3} + \frac{1}{2} + \frac{3}{4} + \frac{3}{4}$$

 $P(n|d,r,s) = \alpha P(n)P(d|n)P(r|n)P(s|n) = \alpha + \frac{1}{4} + \frac{1}{4} + \frac{1}{4}$

Origin?	Color?	Type?	Stolen?
import	red	sports	yes
import	red	sports	yes
domestic	white	sports	yes
domestic	red	van	yes
import	red	van	no
domestic	white	sports	no

$$P(y|d,r,s) = \alpha P(y)P(d|y)P(r|y)P(s|y) =$$

Origin?	Color?	Type?	Stolen?
import	red	sports	yes
import	red	sports	yes
domestic	white	sports	yes
domestic	red	van	yes
import	red	van	no
domestic	white	sports	no

$$P(y|d,r,s) = \alpha P(y)P(d|y)P(r|y)P(s|y) = \alpha$$

Origin?	Color?	Type?	Stolen?
import	red	sports	yes
import	red	sports	yes
domestic	white	sports	yes
domestic	red	van	yes
import	red	van	no
domestic	white	sports	no

$$P(y|d,r,s) = \alpha P(y)P(d|y)P(r|y)P(s|y) = \alpha \cdot \frac{2}{3} \cdot \frac{2}{3}$$

Origin?	Color?	Type?	Stolen?
import	red	sports	yes
import	red	sports	yes
domestic	white	sports	yes
domestic	red	van	yes
import	red	van	no
domestic	white	sports	no

$$P(y|d,r,s) = \alpha P(y)P(d|y)P(r|y)P(s|y) = \alpha \cdot \frac{2}{3} \cdot \frac{1}{2} \cdot$$

Origin?	Color?	Type?	Stolen?
import	red	sports	yes
import	red	sports	yes
domestic	white	sports	yes
domestic	red	van	yes
import	red	van	no
domestic	white	sports	no

$$P(y|d,r,s) = \alpha P(y)P(d|y)P(r|y)P(s|y) = \alpha \cdot \frac{2}{3} \cdot \frac{1}{2} \cdot \frac{3}{4} \cdot$$

Origin?	Color?	Type?	Stolen?
import	red	sports	yes
import	red	sports	yes
domestic	white	sports	yes
domestic	red	van	yes
import	red	van	no
domestic	white	sports	no

$$P(y|d,r,s) = \alpha P(y)P(d|y)P(r|y)P(s|y) = \alpha \cdot \frac{2}{3} \cdot \frac{1}{2} \cdot \frac{3}{4} \cdot \frac{3}{4} = \frac{3}{4} \cdot \frac{3}{4} \cdot \frac{3}{4} \cdot \frac{3}{4} = \frac{3}{4} \cdot \frac{3}{4} \cdot \frac{3}{4} \cdot \frac{3}{4} = \frac{3}{4} \cdot \frac{3}{4} \cdot \frac{3}{4} = \frac{3}{4} \cdot \frac{3}{4} \cdot \frac{3}{4} \cdot \frac{3}{4} = \frac{3}{4} \cdot \frac{3}{4} \cdot \frac{3}{4} \cdot \frac{3}{4} \cdot \frac{3}{4} = \frac{3}{4} \cdot \frac{3}{4} \cdot \frac{3}{4} \cdot \frac{3}{4} \cdot \frac{3}{4} = \frac{3}{4} \cdot \frac{3}{4} \cdot$$

Origin?	Color?	Type?	Stolen?
import	red	sports	yes
import	red	sports	yes
domestic	white	sports	yes
domestic	red	van	yes
import	red	van	no
domestic	white	sports	no

$$P(y|d,r,s) = \alpha P(y)P(d|y)P(r|y)P(s|y) = \alpha \cdot \frac{2}{3} \cdot \frac{1}{2} \cdot \frac{3}{4} \cdot \frac{3}{4} = \frac{3}{16}\alpha$$

Origin?	Color?	Type?	Stolen?
import	red	sports	yes
import	red	sports	yes
domestic	white	sports	yes
domestic	red	van	yes
import	red	van	no
domestic	white	sports	no

$$P(y|d,r,s) = \alpha P(y)P(d|y)P(r|y)P(s|y) = \alpha \cdot \frac{2}{3} \cdot \frac{1}{2} \cdot \frac{3}{4} \cdot \frac{3}{4} = \frac{3}{16}\alpha$$

 $P(n|d,r,s) = \alpha P(y)P(d|y)P(r|y)P(s|y) = \alpha \cdot \frac{2}{3} \cdot \frac{1}{2} \cdot \frac{3}{4} \cdot \frac{3}{4} = \frac{3}{16}\alpha$

Origin?	Color?	Type?	Stolen?
import	red	sports	yes
import	red	sports	yes
domestic	white	sports	yes
domestic	red	van	yes
import	red	van	no
domestic	white	sports	no

$$P(y|d,r,s) = \alpha P(y)P(d|y)P(r|y)P(s|y) = \alpha \cdot \frac{2}{3} \cdot \frac{1}{2} \cdot \frac{3}{4} \cdot \frac{3}{4} = \frac{3}{16}\alpha$$

$$P(n|d,r,s) = \alpha P(n)P(d|n)P(r|n)P(s|n) = \alpha$$

Origin?	Color?	Type?	Stolen?
import	red	sports	yes
import	red	sports	yes
domestic	white	sports	yes
domestic	red	van	yes
import	red	van	no
domestic	white	sports	no

$$P(y|d,r,s) = \alpha P(y)P(d|y)P(r|y)P(s|y) = \alpha \cdot \frac{2}{3} \cdot \frac{1}{2} \cdot \frac{3}{4} \cdot \frac{3}{4} = \frac{3}{16}\alpha$$

$$P(n|d,r,s) = \alpha P(n)P(d|n)P(r|n)P(s|n) = \alpha \cdot \frac{1}{3} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} = \frac{3}{16}\alpha$$

Origin?	Color?	Type?	Stolen?
import	red	sports	yes
import	red	sports	yes
domestic	white	sports	yes
domestic	red	van	yes
import	red	van	no
domestic	white	sports	no

A domestic red sports car

$$\begin{split} P(y|d,r,s) &= \alpha P(y) P(d|y) P(r|y) P(s|y) = \alpha \cdot \frac{2}{3} \cdot \frac{1}{2} \cdot \frac{3}{4} \cdot \frac{3}{4} = \frac{3}{16} \alpha \\ P(n|d,r,s) &= \alpha P(n) P(d|n) P(r|n) P(s|n) = \alpha \cdot \frac{1}{3} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{24} \alpha \end{split}$$

Predict stolen? yes At what probability? $\frac{9}{11} = \frac{3}{3}$

Origin?	Color?	Type?	Stolen?
import	red	sports	yes
import	red	sports	yes
domestic	white	sports	yes
domestic	red	van	yes
import	red	van	no
domestic	white	sports	no

A domestic red sports car

$$P(y|d,r,s) = \alpha P(y) P(d|y) P(r|y) P(s|y) = \alpha \cdot \frac{2}{3} \cdot \frac{1}{2} \cdot \frac{3}{4} \cdot \frac{3}{4} = \frac{3}{16} \alpha$$

$$P(n|d,r,s) = \alpha P(n) P(d|n) P(r|n) P(s|n) = \alpha \cdot \frac{1}{3} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{24} \alpha$$

Predict stolen?

Origin?	Color?	Type?	Stolen?
import	red	sports	yes
import	red	sports	yes
domestic	white	sports	yes
domestic	red	van	yes
import	red	van	no
domestic	white	sports	no

A domestic red sports car

$$P(y|d,r,s) = \alpha P(y) P(d|y) P(r|y) P(s|y) = \alpha \cdot \frac{2}{3} \cdot \frac{1}{2} \cdot \frac{3}{4} \cdot \frac{3}{4} = \frac{3}{16} \alpha$$

$$P(n|d,r,s) = \alpha P(n) P(d|n) P(r|n) P(s|n) = \alpha \cdot \frac{1}{3} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{24} \alpha$$

Predict stolen? yes

Origin?	Color?	Type?	Stolen?
import	red	sports	yes
import	red	sports	yes
domestic	white	sports	yes
domestic	red	van	yes
import	red	van	no
domestic	white	sports	no

A domestic red sports car

$$P(y|d,r,s) = \alpha P(y) P(d|y) P(r|y) P(s|y) = \alpha \cdot \frac{2}{3} \cdot \frac{1}{2} \cdot \frac{3}{4} \cdot \frac{3}{4} = \frac{3}{16} \alpha$$

$$P(n|d,r,s) = \alpha P(n) P(d|n) P(r|n) P(s|n) = \alpha \cdot \frac{1}{3} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{24} \alpha$$

Predict stolen? yes

At what probability?

Origin?	Color?	Type?	Stolen?
import	red	sports	yes
import	red	sports	yes
domestic	white	sports	yes
domestic	red	van	yes
import	red	van	no
domestic	white	sports	no

A domestic red sports car

$$\begin{split} P(y|d,r,s) &= \alpha P(y) P(d|y) P(r|y) P(s|y) = \alpha \cdot \frac{2}{3} \cdot \frac{1}{2} \cdot \frac{3}{4} \cdot \frac{3}{4} = \frac{3}{16} \alpha \\ P(n|d,r,s) &= \alpha P(n) P(d|n) P(r|n) P(s|n) = \alpha \cdot \frac{1}{3} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{24} \alpha \end{split}$$

At what probability? $\frac{9}{11} = \frac{\frac{3}{16}}{\frac{3}{16} + \frac{1}{24}}$ Predict stolen? yes

$$\frac{9}{11} = \frac{\frac{3}{16}}{\frac{3}{16} + \frac{1}{24}}$$

Naive Bayes Exercise

Ends with -ed	Initial Capital	Part of Speech
no	no	noun
no	yes	noun
no	yes	noun
yes	no	noun
yes	yes	noun
no	no	verb
yes	no	verb
yes	yes	verb

Assign part of speech tags:

John tripped

Naive Bayes Exercise

Ends with -ed	Initial Capital	Part of Speech
no	no	noun
no	yes	noun
no	yes	noun
yes	no	noun
yes	yes	noun
no	no	verb
yes	no	verb
yes	yes	verb

Assign part of speech tags:	John	tripped
	noun	verb
	27	<u>5</u>
	32	8

Naive Bayes Properties

Naive Bayes assumption is hardly ever true

- Probability estimates of Naive Bayes are poor
- Classification decisions are often surprisingly good

Empirical Observations

- Works best when many equally important features
- Somewhat robust to noise (uninformative) features
- Training and classification are typically fast

Naive Bayes Properties

Naive Bayes assumption is hardly ever true

- Probability estimates of Naive Bayes are poor
- Classification decisions are often surprisingly good

Empirical Observations

- Works best when many equally important features
- Somewhat robust to noise (uninformative) features
- Training and classification are typically fast

Outline

- Naive Bayes
 - Models
 - Examples
 - Properties
- **2** Expectation Maximization
 - Hidden Variables
 - Algorithm
 - Properties

A Coin Example

Given two coins:

- A with P(A=H) for heads and P(A=T) for tails
- B with P(B=H) for heads and P(B=T) for tails

Estimate P(A) and P(B) from the coin tosses:

- А ННННТНННН
- B HTHTTTHHTT
- А НТНННННТНН
- A THHHTHHHTH
- В нтттннтнтн

A Coin Example

Given two coins:

- A with P(A=H) for heads and P(A=T) for tails
- B with P(B=H) for heads and P(B=T) for tails

Estimate P(A) and P(B) from the coin tosses:

		A=H	A = T	B=H	B=T
A	ННННТННННН	9	1		
В	НТНТТТННТТ			4	6
A	НТНННННТНН	8	2		
A	ТНННТНННТН	7	3		
В	НТТТННТНТН			5	5

A Coin Example

Given two coins:

- A with P(A=H) for heads and P(A=T) for tails
- B with P(B=H) for heads and P(B=T) for tails

Estimate P(A) and P(B) from the coin tosses:

$$\mathbf{P}(A) = \left\langle \frac{24}{24+6}, \frac{6}{24+6} \right\rangle \quad \mathbf{P}(B) = \left\langle \frac{9}{9+11}, \frac{11}{9+11} \right\rangle$$

But what if we didn't know which coin was being tossed?

■ i.e. P(C=A) and P(C=B) are unknown

Estimate P(A), P(B) from the coin tosses:

$$A=H$$
 $A=T$ $B=H$ $B=T$

- ? НИННТИННИН
- ? HTHTTTHHTT
- ? НТНННННТНН
- ? THHHTHHHTH
- ? HTTTHHTHTH

But what if we didn't know which coin was being tossed?

■ i.e. P(C=A) and P(C=B) are unknown

Estimate P(A), P(B) from the coin tosses:

$$A=H$$
 $A=T$ $B=H$ $B=T$

- ? НИННТИННИН
- ? HTHTTTHHTT
- ? НТНННННТНН
- ? THHHTHHHTH
- ? HTTTHHTHTH

But what if we didn't know which coin was being tossed?

■ i.e. P(C=A) and P(C=B) are unknown

Estimate P(A), P(B) from the coin tosses:

But what if we didn't know which coin was being tossed?

■ i.e. P(C=A) and P(C=B) are unknown

Estimate P(A), P(B) from the coin tosses:

But what if we didn't know which coin was being tossed?

■ i.e. P(C=A) and P(C=B) are unknown

Estimate P(A), P(B) from the coin tosses:

But what if we didn't know which coin was being tossed?

■ i.e. P(C=A) and P(C=B) are unknown

Estimate P(A), P(B) from the coin tosses:

But what if we didn't know which coin was being tossed?

■ i.e. P(C=A) and P(C=B) are unknown

Estimate P(A), P(B) from the coin tosses:

But what if we didn't know which coin was being tossed?

■ i.e. P(C=A) and P(C=B) are unknown

Estimate P(A), P(B) from the coin tosses:

But what if we didn't know which coin was being tossed?

■ i.e. P(C=A) and P(C=B) are unknown

Estimate P(A), P(B) from the coin tosses:

C=A	C=B		A=H	A = T	B=H	B=T
0.80	0.20	ННННТННННН	7.2	0.8	1.8	0.2
0.35	0.65	НТНТТТННТТ	1.4	2.1	2.6	3.9
0.73	0.27	НТНННННТНН	5.8	1.5	2.2	0.5
0.65	0.35	ТНННТНННТН	4.5	1.9	2.5	1.1
0.45	0.55	НТТТННТНТН	2.2	2.2	2.8	2.8

But what if we didn't know which coin was being tossed?

■ i.e. P(C=A) and P(C=B) are unknown

Estimate P(A), P(B) from the coin tosses:

$$\mathbf{P}(A) = \left\langle \frac{21.3}{21.3+8.6}, \frac{8.6}{21.3+8.6} \right\rangle \quad \mathbf{P}(B) = \left\langle \frac{11.7}{11.7+8.4}, \frac{8.4}{11.7+8.4} \right\rangle$$


```
=\alpha P(HHHHHHHHH|C=A)P(C=A)
=\alpha P(H|C=A)P(H|C=A)\dots P(H|C=A)P(C=A)
=\alpha P(H|A)P(H|A)\dots P(H|A)P(C=A)
```

Say we make an initial guess:

- $P(C) = \langle 0.5, 0.5 \rangle$
- $P(A) = \langle 0.6, 0.4 \rangle$
- **■** $P(B) = \langle 0.5, 0.5 \rangle$

$$P(C=A|\text{ННННТНННН}) = \alpha \cdot 0.6^9 \cdot 0.4^1 \cdot 0.5 \approx .00202 \alpha$$

 $P(C=B|\text{ННННТНННН}) = \alpha \cdot 0.5^9 \cdot 0.5^1 \cdot 0.5 \approx .00049 \alpha$
 $P(C|\text{НННТНННН}) \approx \langle .80, .20 \rangle$

Say we make an initial guess:

- $P(C) = \langle 0.5, 0.5 \rangle$
- P(A) = (0.6, 0.4)
- $P(B) = \langle 0.5, 0.5 \rangle$

$$P(C=A|\text{HHHHHHHHH}) = \alpha \cdot 0.6^9 \cdot 0.4^1 \cdot 0.5 \approx .00202\alpha$$

 $P(C=B|\text{HHHHHHHHHH}) = \alpha \cdot 0.5^9 \cdot 0.5^1 \cdot 0.5 \approx .00049\alpha$
 $P(C|\text{HHHHTHHHHH}) \approx \langle .80, .20 \rangle$

Say we make an initial guess:

- $P(C) = \langle 0.5, 0.5 \rangle$
- P(A) = (0.6, 0.4)
- $P(B) = \langle 0.5, 0.5 \rangle$

$$P(C=A|\text{HHHHHHHHHH}) = \alpha \cdot 0.6^9 \cdot 0.4^1 \cdot 0.5 \approx .00202\alpha$$

 $P(C=B|\text{HHHHHHHHHH}) = \alpha \cdot 0.5^9 \cdot 0.5^1 \cdot 0.5 \approx .00049\alpha$
 $P(C|\text{HHHHHHHHHH}) \approx \langle .80, .20 \rangle$

Say we make an initial guess:

- **■** $P(C) = \langle 0.5, 0.5 \rangle$
- P(A) = (0.6, 0.4)
- **■** $P(B) = \langle 0.5, 0.5 \rangle$

$$P(C=A|\text{HHHHHHHHH}) = \alpha \cdot 0.6^9 \cdot 0.4^1 \cdot 0.5 \approx .00202\alpha$$

 $P(C=B|\text{HHHHHHHHHH}) = \alpha \cdot 0.5^9 \cdot 0.5^1 \cdot 0.5 \approx .00049\alpha$
 $P(C|\text{HHHHHHHHHH}) \approx \langle .80, .20 \rangle$

Say we make an initial guess:

- **P**(C)=(0.5, 0.5)
- **P**(A)= $\langle 0.6, 0.4 \rangle$
- **■ P**(*B*)= $\langle 0.5, 0.5 \rangle$

$$P(C=A|\text{НИННТНИНН}) = \alpha \cdot 0.6^9 \cdot 0.4^1 \cdot 0.5 \approx .00202\alpha$$

 $P(C=B|\text{НИННТНИНН}) = \alpha \cdot 0.5^9 \cdot 0.5^1 \cdot 0.5 \approx .00049\alpha$
 $P(C|\text{НИННТНИНН}) \approx \langle .80, .20 \rangle$

Say we make an initial guess:

- **P**(C)= $\langle 0.5, 0.5 \rangle$
- **P**(A)= $\langle 0.6, 0.4 \rangle$
- **■ P**(*B*) = $\langle 0.5, 0.5 \rangle$

$$P(C=A|\text{НИННТНИНН}) = \alpha \cdot 0.6^9 \cdot 0.4^1 \cdot 0.5 \approx .00202\alpha$$

 $P(C=B|\text{НИННТНИНН}) = \alpha \cdot 0.5^9 \cdot 0.5^1 \cdot 0.5 \approx .00049\alpha$
 $P(C|\text{НИННТНИНН}) \approx \langle .80, .20 \rangle$

Say we make an initial guess:

- **P**(C)=(0.5, 0.5)
- **■** $P(A) = \langle 0.6, 0.4 \rangle$
- **■ P**(*B*) = $\langle 0.5, 0.5 \rangle$

Then:

$$P(C=A|\text{ННННТНННН}) = \alpha \cdot 0.6^9 \cdot 0.4^1 \cdot 0.5 \approx .00202\alpha$$

 $P(C=B|\text{ННННТНННН}) = \alpha \cdot 0.5^9 \cdot 0.5^1 \cdot 0.5 \approx .00049\alpha$

 $P(C|HHHHHHHHHHH) \approx \langle .80, .20 \rangle$

Say we make an initial guess:

- **■ P**(C)= $\langle 0.5, 0.5 \rangle$
- **■** $P(A) = \langle 0.6, 0.4 \rangle$
- **■ P**(*B*)= $\langle 0.5, 0.5 \rangle$

$$P(C=A|\text{ННННТНННН}) = \alpha \cdot 0.6^9 \cdot 0.4^1 \cdot 0.5 \approx .00202 \alpha$$

 $P(C=B|\text{ННННТНННН}) = \alpha \cdot 0.5^9 \cdot 0.5^1 \cdot 0.5 \approx .00049 \alpha$
 $P(C|\text{ННННТНННН}) \approx \langle .80, .20 \rangle$

Expectation Maximization Algorithm

- Make initial guess of all probabilities $P(X_0)$, $P(X_1)$, . . .
- **2** Calculate $P(X_h|\text{data})$ for all hidden variables X_h
- Tabulate partial counts for X_0, X_1, \ldots from data
- A Normalize partial counts to get $P(X_0)$, $P(X_1)$, . . .
- 5 Goto 2

Given parallel sentences

- $bc \Leftrightarrow xy$
- lacksquare $b \Leftrightarrow y$

Given parallel sentences

- \blacksquare bc \Leftrightarrow xy
- \blacksquare $b \Leftrightarrow y$

Make initial guess of all probabilities

$$P(b=x)=\frac{1}{2}, P(b=y)=\frac{1}{2}, P(c=x)=\frac{1}{2}, P(c=y)=\frac{1}{2}$$

Given parallel sentences

- \blacksquare bc \Leftrightarrow xy
- \blacksquare $b \Leftrightarrow y$

Make initial guess of all probabilities

$$P(b=x)=\frac{1}{2}, P(b=y)=\frac{1}{2}, P(c=x)=\frac{1}{2}, P(c=y)=\frac{1}{2}$$

$$P \begin{pmatrix} b & c \\ \frac{1}{X} & \frac{1}{Y} & bc \Leftrightarrow xy \end{pmatrix} = \alpha \cdot$$

$$P\left(\begin{array}{c} b \\ x \end{array}\right) \neq \left(\begin{array}{c} b \\ x \end{array}\right) = \alpha \cdot$$

Given parallel sentences

- \blacksquare bc \Leftrightarrow xy
- \blacksquare $b \Leftrightarrow y$

Make initial guess of all probabilities

$$P(b=x)=\frac{1}{2}, P(b=y)=\frac{1}{2}, P(c=x)=\frac{1}{2}, P(c=y)=\frac{1}{2}$$

$$P\begin{pmatrix} b & c \\ \frac{1}{X} & \frac{1}{Y} & bc \Leftrightarrow xy \end{pmatrix} = \alpha \cdot \frac{1}{2} \cdot \frac{1}{2}$$

$$P\left(\begin{array}{c} b \\ x \end{array}\right) \neq \left(\begin{array}{c} b \\ x \end{array}\right) = \alpha \cdot$$

Given parallel sentences

- \blacksquare bc \Leftrightarrow xy
- \blacksquare $b \Leftrightarrow y$

Make initial guess of all probabilities

$$P(b=x)=\frac{1}{2}, P(b=y)=\frac{1}{2}, P(c=x)=\frac{1}{2}, P(c=y)=\frac{1}{2}$$

$$P\begin{pmatrix} b & c \\ \frac{1}{X} & \frac{1}{Y} & bc \Leftrightarrow xy \end{pmatrix} = \alpha \cdot \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}\alpha$$

$$P\left(\begin{array}{c} b \\ x \end{array}\right) \neq \left(\begin{array}{c} b \\ x \end{array}\right) = \alpha \cdot$$

Given parallel sentences

- \blacksquare bc \Leftrightarrow xy
- \blacksquare $b \Leftrightarrow y$

Make initial guess of all probabilities

$$P(b=x)=\frac{1}{2}, P(b=y)=\frac{1}{2}, P(c=x)=\frac{1}{2}, P(c=y)=\frac{1}{2}$$

$$P\begin{pmatrix} b & c \\ \frac{1}{X} & \frac{1}{Y} & bc \Leftrightarrow xy \end{pmatrix} = \alpha \cdot \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}\alpha$$

$$P\left(\begin{array}{c} b \\ x \end{array}\right) = P\left(\begin{array}{c} b \\ x \end{array}\right) = \alpha \cdot \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}\alpha$$

Given parallel sentences

- \blacksquare bc \Leftrightarrow xy
- \blacksquare $b \Leftrightarrow y$

Make initial guess of all probabilities

■
$$P(b=x)=\frac{1}{2}$$
, $P(b=y)=\frac{1}{2}$, $P(c=x)=\frac{1}{2}$, $P(c=y)=\frac{1}{2}$

$$P\begin{pmatrix} b & c \\ \frac{1}{X} & \frac{1}{Y} & bc \Leftrightarrow xy \end{pmatrix} = \alpha \cdot \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}\alpha \Rightarrow \frac{1}{2}$$

$$P\left(\begin{array}{c} b \\ x \end{array}\right) = P\left(\begin{array}{c} b \\ x \end{array}\right) = \alpha \cdot \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}\alpha \Rightarrow \frac{1}{2}$$

Given parallel sentences

- \blacksquare bc \Leftrightarrow xy
- \blacksquare $b \Leftrightarrow y$

Make initial guess of all probabilities

$$P(b=x)=\frac{1}{2}, P(b=y)=\frac{1}{2}, P(c=x)=\frac{1}{2}, P(c=y)=\frac{1}{2}$$

Calculate P(A|data) for alignments A in $bc \Leftrightarrow xy$:

$$P\left(\begin{array}{cc} b & c \\ \frac{1}{X} & \frac{1}{Y} \end{array} \middle| bc \Leftrightarrow xy\right) = \alpha \cdot \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}\alpha \Rightarrow \frac{1}{2}$$

$$P\left(\begin{array}{c} b \\ x \end{array}\right) P\left(\begin{array}{c} b \\ x \end{array}\right) = \alpha \cdot \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}\alpha \Rightarrow \frac{1}{2}$$

$$P\left(\begin{array}{c} b \\ \dot{y} \end{array} \middle| b \Leftrightarrow y\right) = \alpha \cdot$$

Given parallel sentences

- \blacksquare bc \Leftrightarrow xy
- \blacksquare $b \Leftrightarrow y$

Make initial guess of all probabilities

$$P(b=x)=\frac{1}{2}, P(b=y)=\frac{1}{2}, P(c=x)=\frac{1}{2}, P(c=y)=\frac{1}{2}$$

Calculate P(A|data) for alignments A in $bc \Leftrightarrow xy$:

$$P\left(\begin{array}{cc} b & c \\ \frac{1}{X} & \frac{1}{Y} \end{array} \middle| bc \Leftrightarrow xy\right) = \alpha \cdot \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}\alpha \Rightarrow \frac{1}{2}$$

$$P\left(\begin{array}{c} b \\ x \end{array}\right) P\left(\begin{array}{c} b \\ x \end{array}\right) = \alpha \cdot \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}\alpha \Rightarrow \frac{1}{2}$$

$$P \begin{pmatrix} b \\ \dot{y} \end{pmatrix} b \Leftrightarrow y = \alpha \cdot \frac{1}{2}$$

Given parallel sentences

- \blacksquare bc \Leftrightarrow xy
- \blacksquare $b \Leftrightarrow y$

Make initial guess of all probabilities

$$P(b=x)=\frac{1}{2}, P(b=y)=\frac{1}{2}, P(c=x)=\frac{1}{2}, P(c=y)=\frac{1}{2}$$

Calculate P(A|data) for alignments A in $bc \Leftrightarrow xy$:

$$P\left(\begin{array}{cc} b & c \\ \frac{1}{X} & \frac{1}{Y} \end{array} \middle| bc \Leftrightarrow xy\right) = \alpha \cdot \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}\alpha \Rightarrow \frac{1}{2}$$

$$P\left(\begin{array}{c} b \\ x \end{array}\right) P\left(\begin{array}{c} b \\ x \end{array}\right) = \alpha \cdot \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}\alpha \Rightarrow \frac{1}{2}$$

$$P\left(\begin{array}{c} b \\ \dot{y} \end{array} \middle| b \Leftrightarrow y\right) = \alpha \cdot \frac{1}{2} \Rightarrow 1$$

$$P \begin{pmatrix} b & c \\ \frac{1}{X} & \frac{1}{Y} & bc \Leftrightarrow xy \end{pmatrix} \Rightarrow$$

$$P \begin{pmatrix} b & c \\ 1 & 1 \\ X & y \end{pmatrix} \mid bc \Leftrightarrow xy) \Rightarrow \begin{cases} \#(b=x) & += \frac{1}{2} \\ \#(c=y) & += \frac{1}{2} \end{cases}$$

$$P \begin{pmatrix} b & c \\ \frac{1}{x} & y \end{pmatrix} \mid bc \Leftrightarrow xy) \Rightarrow \begin{cases} \#(b=x) & += \frac{1}{2} \\ \#(c=y) & += \frac{1}{2} \end{cases}$$

$$P\left(\begin{array}{c} b \\ x \end{array}\right) \Rightarrow P\left(\begin{array}{c} b \\ x \end{array}\right) \Rightarrow P\left($$

$$P \begin{pmatrix} b & c \\ x & y \end{pmatrix} \mid bc \Leftrightarrow xy) \Rightarrow \begin{cases} \#(b = x) & + = \frac{1}{2} \\ \#(c = y) & + = \frac{1}{2} \end{cases}$$

$$P \begin{pmatrix} b \times c \\ x \times y \end{pmatrix} \mid bc \Leftrightarrow xy) \Rightarrow \begin{cases} \#(b = y) & + = \frac{1}{2} \\ \#(c = x) & + = \frac{1}{2} \end{cases}$$

Tabulate partial counts from $bc \Leftrightarrow xy$ alignments:

$$P \begin{pmatrix} b & c \\ 1 & 1 \\ X & y \end{pmatrix} \mid bc \Leftrightarrow xy) \Rightarrow \begin{cases} \#(b=x) & += \frac{1}{2} \\ \#(c=y) & += \frac{1}{2} \end{cases}$$

$$P\left(\begin{array}{c} b \\ x \end{array}\right) x \left(\begin{array}{c} b \\ y \end{array}\right) \left(\begin{array}{c} b \\ b \end{array}\right) \Rightarrow \begin{array}{c} \#(b = y) \\ \#(c = x) \end{array} + = \begin{array}{c} \frac{1}{2} \\ \frac{1}{2} \end{array}$$

$$\blacksquare P\left(\begin{array}{c} b \\ \dot{y} \end{array} \middle| b \Leftrightarrow y\right) \qquad \Rightarrow \qquad$$

Tabulate partial counts from $bc \Leftrightarrow xy$ alignments:

$$P \begin{pmatrix} b & c \\ 1 & 1 \\ X & y \end{pmatrix} \mid bc \Leftrightarrow xy) \Rightarrow \begin{cases} \#(b=x) & += \frac{1}{2} \\ \#(c=y) & += \frac{1}{2} \end{cases}$$

$$P\left(\begin{array}{c} b \\ x \end{array}\right) x + \left(\begin{array}{c} b \\ y \end{array}\right) \Rightarrow \begin{array}{c} \#(b = y) & + = & \frac{1}{2} \\ \#(c = x) & + = & \frac{1}{2} \end{array}$$

$$P\left(\begin{array}{c|c} b \\ \dot{y} \end{array} \middle| b \Leftrightarrow y\right) \qquad \Rightarrow \#(b=y) \ += \ 1$$

Tabulate partial counts from $bc \Leftrightarrow xy$ alignments:

$$P \begin{pmatrix} b & c \\ 1 & 1 \\ X & y \end{pmatrix} \mid bc \Leftrightarrow xy) \Rightarrow \begin{cases} \#(b=x) & += \frac{1}{2} \\ \#(c=y) & += \frac{1}{2} \end{cases}$$

$$P\left(\begin{array}{c} b \\ x \end{array}\right) \begin{pmatrix} b \\ y \end{pmatrix} = \begin{pmatrix} b \\ c \end{pmatrix} \begin{pmatrix} b \\ c \end{pmatrix} \Rightarrow \begin{pmatrix} b \\ d \end{pmatrix} \begin{pmatrix} b \\ d \end{pmatrix} \Rightarrow \begin{pmatrix} b \\ d \end{pmatrix} \begin{pmatrix} b \\ d \end{pmatrix} \Rightarrow \begin{pmatrix} b \\ d \end{pmatrix} \begin{pmatrix} b \\ d \end{pmatrix} \Rightarrow \begin{pmatrix} b \\ d \end{pmatrix} \begin{pmatrix} b \\ d \end{pmatrix} \Rightarrow \begin{pmatrix} b \\ d$$

Tabulate partial counts from $b \Leftrightarrow y$ alignments:

$$P \begin{pmatrix} b \\ \dot{y} \end{pmatrix} b \Leftrightarrow y \qquad \Rightarrow \#(b = y) += 1$$

Normalize partial counts to get new probabilities:

■ **P**(*b*):
$$P(b=x)=$$

Tabulate partial counts from $bc \Leftrightarrow xy$ alignments:

$$P \begin{pmatrix} b & c \\ 1 & 1 \\ X & Y \end{pmatrix} \mid bc \Leftrightarrow xy) \Rightarrow \begin{cases} \#(b=x) & += \frac{1}{2} \\ \#(c=y) & += \frac{1}{2} \end{cases}$$

$$P\left(\begin{array}{c} b \\ x \end{array}\right) \begin{pmatrix} b \\ y \end{pmatrix} = \begin{pmatrix} b \\ c \end{pmatrix} \begin{pmatrix} b \\ c \end{pmatrix} \Rightarrow \begin{pmatrix} b \\ d \end{pmatrix} \begin{pmatrix} b \\ d \end{pmatrix} \Rightarrow \begin{pmatrix} b \\ d \end{pmatrix} \begin{pmatrix} b \\ d \end{pmatrix} \begin{pmatrix} b \\ d \end{pmatrix} \Rightarrow \begin{pmatrix} b \\ d \end{pmatrix} \begin{pmatrix} b \\ d \end{pmatrix} \begin{pmatrix} b \\ d \end{pmatrix} \Rightarrow \begin{pmatrix} b \\ d \end{pmatrix} \begin{pmatrix} b \\ d \end{pmatrix} \Rightarrow \begin{pmatrix} b \\ d \end{pmatrix} \begin{pmatrix} b \\ d \end{pmatrix} \Rightarrow \begin{pmatrix} b \\ d \end{pmatrix} \begin{pmatrix} b \\ d \end{pmatrix} \Rightarrow \begin{pmatrix} b \\ d \end{pmatrix} \begin{pmatrix} b \\ d \end{pmatrix} \Rightarrow \begin{pmatrix} b \\ d \end{pmatrix} \begin{pmatrix} b \\ d \end{pmatrix} \Rightarrow \begin{pmatrix} b \\ d$$

Tabulate partial counts from $b \Leftrightarrow y$ alignments:

$$P \begin{pmatrix} b \\ \dot{y} \end{pmatrix} b \Leftrightarrow y \qquad \Rightarrow \#(b=y) += 1$$

■ **P**(*b*):
$$P(b=x) = \frac{\frac{1}{2}}{\frac{1}{2} + \frac{3}{2}} = \frac{1}{4}$$

Tabulate partial counts from $bc \Leftrightarrow xy$ alignments:

$$P \begin{pmatrix} b & c \\ 1 & y \end{pmatrix} \mid bc \Leftrightarrow xy) \Rightarrow \begin{cases} \#(b=x) & += \frac{1}{2} \\ \#(c=y) & += \frac{1}{2} \end{cases}$$

$$P\left(\begin{array}{c} b \\ x \end{array}\right) \begin{pmatrix} b \\ y \end{pmatrix} = \begin{pmatrix} b \\ c \end{pmatrix} \begin{pmatrix} b \\ c \end{pmatrix} \Rightarrow \begin{pmatrix} b \\ d \end{pmatrix} \begin{pmatrix} b \\ d \end{pmatrix} \Rightarrow \begin{pmatrix} b \\ d \end{pmatrix} \begin{pmatrix} b \\ d \end{pmatrix} \begin{pmatrix} b \\ d \end{pmatrix} \Rightarrow \begin{pmatrix} b \\ d \end{pmatrix} \begin{pmatrix} b \\ d \end{pmatrix} \begin{pmatrix} b \\ d \end{pmatrix} \Rightarrow \begin{pmatrix} b \\ d \end{pmatrix} \begin{pmatrix} b \\ d \end{pmatrix} \Rightarrow \begin{pmatrix} b \\ d \end{pmatrix} \begin{pmatrix} b \\ d \end{pmatrix} \Rightarrow \begin{pmatrix} b \\ d \end{pmatrix} \begin{pmatrix} b \\ d \end{pmatrix} \Rightarrow \begin{pmatrix} b \\ d \end{pmatrix} \begin{pmatrix} b \\ d \end{pmatrix} \Rightarrow \begin{pmatrix} b \\ d \end{pmatrix} \Rightarrow \begin{pmatrix} b \\ d \end{pmatrix} \begin{pmatrix} b \\ d \end{pmatrix} \Rightarrow \begin{pmatrix} b \\ d$$

Tabulate partial counts from $b \Leftrightarrow y$ alignments:

$$P \begin{pmatrix} b \\ \frac{1}{V} \mid b \Leftrightarrow y \end{pmatrix} \qquad \Rightarrow \ \#(b = y) \ += \ 1$$

■ **P**(*b*):
$$P(b=x) = \frac{\frac{1}{2}}{\frac{1}{2} + \frac{3}{2}} = \frac{1}{4}$$
, $P(b=y) = \frac{1}{2}$

Tabulate partial counts from $bc \Leftrightarrow xy$ alignments:

$$P \begin{pmatrix} b & c \\ 1 & y \end{pmatrix} \mid bc \Leftrightarrow xy) \Rightarrow \begin{cases} \#(b=x) & += \frac{1}{2} \\ \#(c=y) & += \frac{1}{2} \end{cases}$$

$$P\left(\begin{array}{c} b \\ x \end{array}\right) \begin{pmatrix} b \\ y \end{pmatrix} = \begin{pmatrix} b \\ c \end{pmatrix} \begin{pmatrix} b \\ c \end{pmatrix} \Rightarrow \begin{pmatrix} b \\ d \end{pmatrix} \begin{pmatrix} b \\ d \end{pmatrix} \Rightarrow \begin{pmatrix} b \\ d \end{pmatrix} \begin{pmatrix} b \\ d \end{pmatrix} \Rightarrow \begin{pmatrix} b \\ d \end{pmatrix} \begin{pmatrix} b \\ d \end{pmatrix} \Rightarrow \begin{pmatrix} b \\ d \end{pmatrix} \begin{pmatrix} b \\ d \end{pmatrix} \Rightarrow \begin{pmatrix} b \\ d \end{pmatrix} \begin{pmatrix} b \\ d \end{pmatrix} \Rightarrow \begin{pmatrix} b \\ d \end{pmatrix}$$

Tabulate partial counts from $b \Leftrightarrow y$ alignments:

$$P \begin{pmatrix} b \\ \dot{y} \end{pmatrix} b \Leftrightarrow y \qquad \Rightarrow \#(b=y) += 1$$

■ **P**(b):
$$P(b=x) = \frac{\frac{1}{2}}{\frac{1}{2} + \frac{3}{2}} = \frac{1}{4}$$
, $P(b=y) = \frac{\frac{3}{2}}{\frac{1}{2} + \frac{3}{2}} = \frac{3}{4}$

Tabulate partial counts from $bc \Leftrightarrow xy$ alignments:

$$P \begin{pmatrix} b & c \\ 1 & 1 \\ X & Y \end{pmatrix} \mid bc \Leftrightarrow xy) \Rightarrow \begin{cases} \#(b=x) & += \frac{1}{2} \\ \#(c=y) & += \frac{1}{2} \end{cases}$$

$$P\left(\begin{array}{c} b \\ x \end{array}\right) \begin{pmatrix} b \\ y \end{pmatrix} = \begin{pmatrix} b \\ c \end{pmatrix} \begin{pmatrix} b \\ c \end{pmatrix} \Rightarrow \begin{pmatrix} b \\ d \end{pmatrix} \begin{pmatrix} b \\ d \end{pmatrix} \Rightarrow \begin{pmatrix} b \\ d \end{pmatrix} \begin{pmatrix} b \\ d \end{pmatrix} \begin{pmatrix} b \\ d \end{pmatrix} \Rightarrow \begin{pmatrix} b \\ d \end{pmatrix} \begin{pmatrix} b \\ d \end{pmatrix} \begin{pmatrix} b \\ d \end{pmatrix} \Rightarrow \begin{pmatrix} b \\ d \end{pmatrix} \begin{pmatrix} b \\ d \end{pmatrix} \Rightarrow \begin{pmatrix} b \\ d \end{pmatrix} \begin{pmatrix} b \\ d \end{pmatrix} \Rightarrow \begin{pmatrix} b \\ d \end{pmatrix} \begin{pmatrix} b \\ d \end{pmatrix} \Rightarrow \begin{pmatrix} b \\ d \end{pmatrix} \begin{pmatrix} b \\ d \end{pmatrix} \Rightarrow \begin{pmatrix} b \\ d \end{pmatrix} \begin{pmatrix} b \\ d \end{pmatrix} \Rightarrow \begin{pmatrix} b \\ d$$

Tabulate partial counts from $b \Leftrightarrow y$ alignments:

$$P \begin{pmatrix} b \\ \dot{y} \end{pmatrix} b \Leftrightarrow y \qquad \Rightarrow \#(b = y) += 1$$

■ **P**(b):
$$P(b=x) = \frac{\frac{1}{2}}{\frac{1}{2} + \frac{3}{2}} = \frac{1}{4}$$
, $P(b=y) = \frac{\frac{3}{2}}{\frac{1}{2} + \frac{3}{2}} = \frac{3}{4}$

■
$$P(c)$$
: $P(c=x)$ =

Tabulate partial counts from $bc \Leftrightarrow xy$ alignments:

$$P \begin{pmatrix} b & c \\ 1 & y \end{pmatrix} \mid bc \Leftrightarrow xy) \Rightarrow \begin{cases} \#(b=x) & += \frac{1}{2} \\ \#(c=y) & += \frac{1}{2} \end{cases}$$

$$P\left(\begin{array}{c} b \\ x \end{array}\right) \begin{pmatrix} b \\ y \end{pmatrix} = \begin{pmatrix} b \\ c \end{pmatrix} \begin{pmatrix} b \\ c \end{pmatrix} \Rightarrow \begin{pmatrix} b \\ d \end{pmatrix} \begin{pmatrix} b \\ d \end{pmatrix} \Rightarrow \begin{pmatrix} b \\ d \end{pmatrix} \begin{pmatrix} b \\ d \end{pmatrix} \Rightarrow \begin{pmatrix} b \\ d \end{pmatrix} \begin{pmatrix} b \\ d \end{pmatrix} \Rightarrow \begin{pmatrix} b \\ d \end{pmatrix} \begin{pmatrix} b \\ d \end{pmatrix} \Rightarrow \begin{pmatrix} b \\ d$$

Tabulate partial counts from $b \Leftrightarrow y$ alignments:

$$P \begin{pmatrix} b \\ \dot{V} \end{pmatrix} b \Leftrightarrow y \qquad \Rightarrow \#(b=y) += 1$$

■ **P**(b):
$$P(b=x) = \frac{\frac{1}{2}}{\frac{1}{2} + \frac{3}{2}} = \frac{1}{4}$$
, $P(b=y) = \frac{\frac{3}{2}}{\frac{1}{2} + \frac{3}{2}} = \frac{3}{4}$

■ **P**(c):
$$P(c=x) = \frac{\frac{1}{2}}{\frac{1}{2} + \frac{1}{2}} = \frac{1}{2}$$

Tabulate partial counts from $bc \Leftrightarrow xy$ alignments:

$$P \begin{pmatrix} b & c \\ 1 & y \end{pmatrix} \mid bc \Leftrightarrow xy) \Rightarrow \begin{cases} \#(b=x) & += \frac{1}{2} \\ \#(c=y) & += \frac{1}{2} \end{cases}$$

$$P\left(\begin{array}{c} b \\ x \end{array}\right) \begin{pmatrix} b \\ y \end{pmatrix} = \begin{pmatrix} b \\ c \end{pmatrix} \begin{pmatrix} b \\ c \end{pmatrix} \Rightarrow \begin{pmatrix} b \\ d \end{pmatrix} \begin{pmatrix} b \\ d \end{pmatrix} \Rightarrow \begin{pmatrix} b \\ d \end{pmatrix} \begin{pmatrix} b \\ d \end{pmatrix} \begin{pmatrix} b \\ d \end{pmatrix} \Rightarrow \begin{pmatrix} b \\ d \end{pmatrix} \begin{pmatrix} b \\ d \end{pmatrix} \begin{pmatrix} b \\ d \end{pmatrix} \Rightarrow \begin{pmatrix} b \\ d \end{pmatrix} \begin{pmatrix} b \\ d \end{pmatrix} \Rightarrow \begin{pmatrix} b \\ d \end{pmatrix} \begin{pmatrix} b \\ d \end{pmatrix} \Rightarrow \begin{pmatrix} b \\ d \end{pmatrix} \begin{pmatrix} b \\ d \end{pmatrix} \Rightarrow \begin{pmatrix} b \\ d \end{pmatrix} \begin{pmatrix} b \\ d \end{pmatrix} \Rightarrow \begin{pmatrix} b \\ d \end{pmatrix} \begin{pmatrix} b \\ d \end{pmatrix} \Rightarrow \begin{pmatrix} b \\ d$$

Tabulate partial counts from $b \Leftrightarrow y$ alignments:

$$P \begin{pmatrix} b \\ \frac{1}{V} \mid b \Leftrightarrow y \end{pmatrix} \qquad \Rightarrow \ \#(b = y) \ += \ 1$$

■ **P**(b):
$$P(b=x) = \frac{\frac{1}{2}}{\frac{1}{2} + \frac{3}{2}} = \frac{1}{4}$$
, $P(b=y) = \frac{\frac{3}{2}}{\frac{1}{2} + \frac{3}{2}} = \frac{3}{4}$

■ **P**(c):
$$P(c=x) = \frac{\frac{1}{2}}{\frac{1}{2} + \frac{1}{2}} = \frac{1}{2}$$
, $P(c=y) = \frac{1}{2}$

Tabulate partial counts from $bc \Leftrightarrow xy$ alignments:

$$P \begin{pmatrix} b & c \\ 1 & 1 \\ X & Y \end{pmatrix} \mid bc \Leftrightarrow xy) \Rightarrow \begin{cases} \#(b=x) & += \frac{1}{2} \\ \#(c=y) & += \frac{1}{2} \end{cases}$$

$$P\left(\begin{array}{c} b \\ x \end{array}\right) \begin{pmatrix} b \\ y \end{pmatrix} = \begin{pmatrix} b \\ c \end{pmatrix} \begin{pmatrix} b \\ c \end{pmatrix} \Rightarrow \begin{pmatrix} b \\ d \end{pmatrix} \begin{pmatrix} b \\ d \end{pmatrix} \Rightarrow \begin{pmatrix} b \\ d \end{pmatrix} \begin{pmatrix} b \\ d \end{pmatrix} \begin{pmatrix} b \\ d \end{pmatrix} \Rightarrow \begin{pmatrix} b \\ d \end{pmatrix} \begin{pmatrix} b \\ d \end{pmatrix} \begin{pmatrix} b \\ d \end{pmatrix} \Rightarrow \begin{pmatrix} b \\ d \end{pmatrix} \begin{pmatrix} b \\ d \end{pmatrix} \Rightarrow \begin{pmatrix} b \\ d \end{pmatrix} \begin{pmatrix} b \\ d \end{pmatrix} \Rightarrow \begin{pmatrix} b \\ d \end{pmatrix} \begin{pmatrix} b \\ d \end{pmatrix} \Rightarrow \begin{pmatrix} b \\ d \end{pmatrix} \begin{pmatrix} b \\ d \end{pmatrix} \Rightarrow \begin{pmatrix} b \\ d \end{pmatrix} \Rightarrow \begin{pmatrix} b \\ d \end{pmatrix} \begin{pmatrix} b \\ d \end{pmatrix} \Rightarrow \begin{pmatrix} b \\ d$$

Tabulate partial counts from $b \Leftrightarrow y$ alignments:

$$P \begin{pmatrix} b \\ \frac{1}{V} & b \Leftrightarrow y \end{pmatrix} \qquad \Rightarrow \#(b = y) \ += \ 1$$

■ **P**(b):
$$P(b=x) = \frac{\frac{1}{2}}{\frac{1}{2} + \frac{3}{2}} = \frac{1}{4}$$
, $P(b=y) = \frac{\frac{3}{2}}{\frac{1}{2} + \frac{3}{2}} = \frac{3}{4}$

■ **P**(c):
$$P(c=x) = \frac{\frac{1}{2}}{\frac{1}{2} + \frac{1}{2}} = \frac{1}{2}$$
, $P(c=y) = \frac{\frac{1}{2}}{\frac{1}{2} + \frac{1}{2}} = \frac{1}{2}$

EM in Machine Translation Exercise

Given sentences:

- \blacksquare bc \Leftrightarrow xy
- \blacksquare $b \Leftrightarrow y$

With possible alignments:

And current probabilities:

■
$$P(b=x)=\frac{1}{4}$$
, $P(b=y)=\frac{3}{4}$, $P(c=x)=\frac{1}{2}$, $P(c=y)=\frac{1}{2}$

Calculate the probabilities after the next iteration of EM

EM in Machine Translation Exercise

Given sentences:

- \blacksquare bc \Leftrightarrow xy
- \blacksquare $b \Leftrightarrow y$

With possible alignments:

And current probabilities:

■
$$P(b=x)=\frac{1}{4}$$
, $P(b=y)=\frac{3}{4}$, $P(c=x)=\frac{1}{2}$, $P(c=y)=\frac{1}{2}$

Calculate the probabilities after the next iteration of EM

$$P(b=x)=\frac{1}{8}, P(b=y)=\frac{7}{8}, P(c=x)=\frac{3}{4}, P(c=y)=\frac{1}{4}$$

Expectation Maximization Properties

Theoretical:

- Each iteration increases the log likelihood of the data
- Often guaranteed to converge to a local maximum
- Hill climbing, but no step size needed

Practical

- Initialization can be critical
- May overfit to noise in the data

Expectation Maximization Properties

Theoretical:

- Each iteration increases the log likelihood of the data
- Often guaranteed to converge to a local maximum
- Hill climbing, but no step size needed

Practical:

- Initialization can be critical
- May overfit to noise in the data

Key Ideas

Naive Bayes

- Assume features conditionally independent given class
- Maximum likelihood estimates (i.e. count and divide)

Expectation Maximization

- Guess probabilities for all variables in model
- Calculate probabilities of hidden variables given data
- Tabulate partial counts \Rightarrow new variable probabilities
- Iterate until local maximum is reached