Programmation Déclarative

Programmation Par Contraintes

Nicolas Barnier
nicolas.barnier@enac.fr

ENAC

N. Barnier (ENAC) N7PDL – PPC 1 / 35

Objectifs

Objectifs

- Connaître le formalisme des problèmes de satisfaction de contraintes (CSP)
- Savoir établir la cohérence d'arc sur un CSP
- Connaître les algorithmes de résolution Branch & Prune et Branch & Bound
- Savoir modéliser un problème d'optimisation combinatoire avec un programme en contraintes et développer un solveur
- Expérimenter diverses stratégies de recherche de solution

Problème de satisfaction de contraintes

Contexte

- Recherche opérationnelle (RO) : allocation de ressources, scheduling, tournées de véhicules (VRP ⊃ TSP), configuration, rotation de personnel...
- Intelligence artificielle : SAT, puzzle logique, graphes (coloration, clique, couverture), partitionnement...

Problèmes **non-linéaires**, en **nombres entiers** (discrets), disjonction, combinaisons arbitraires...

Optimisation combinatoire

- Contraintes : propriétés que doit vérifier une solution
- Satisfaction : difficulté de construire une solution admissible (NPC)
- **Optimisation** : difficulté de trouver une solution optimale (NPC)
- CSP : formalisme de modélisation

N. Barnier (ENAC) N7PDL – PPC 3 / 35

Introduction

Programmation par contraintes

Résolution exacte des CSP

- Solveur de contraintes : extension de la programmation logique à diverses structures mathématiques CLP(X)
- Paradigme déclaratif : séparation de la spécification du problème et des algorithmes de résolution
- $\hspace{0.1in} \blacksquare \hspace{0.1in} \mathsf{Problème} \hspace{0.1in} \overset{\mathsf{Mod\'elisation}}{\longrightarrow} \hspace{0.1in} \mathsf{CSP} \hspace{0.1in} \overset{\mathsf{PPC}}{\longrightarrow} \hspace{0.1in} \overset{\mathsf{Programme}}{\longrightarrow} \hspace{0.1in} \overset{\mathsf{R\'esolution}}{\longrightarrow} \hspace{0.1in} \mathsf{Solution}(\mathsf{s})$
- Programme : variables, contraintes
- Stratégie de recherche : **but** de résolution
- Algorithmes de résolution **exacts** :
 - preuve d'absence de solution
 - obtention possible de toutes les solutions
 - preuve d'optimalité
- Pas que Prolog : IBM CP Optimizer/C++, Choco/Java, FaCiLe/OCaml

Plan du cours

- 1 CSP
 - Définition
 - Domaines
 - Exemples basiques
- 2 Résolution exacte des CSP
 - Backtracking
 - Filtrage
 - Cohérence d'arc

- Branch & Prune
- Stratégies de recherche
- Optimisation
- 3 GNU Prolog
 - Variables à domaine fini
 - Contraintes
 - Buts de recherche
 - Modélisation : les *n* reines

N. Barnier (ENAC) N7PDL – PPC 5 / 35

CSP Définition

Problème de satisfaction de contraintes

Définition (CSP / Réseau de contraintes)

Un CSP ou réseau de contraintes est défini par un triplet (X, D, C) :

- $X = \{x_1, ..., x_n\}$ est l'ensemble des variables (inconnues).
- Chaque variable $x_i \in X$ est associée à un domaine $d_i \in D$ des valeurs qu'elle peut prendre.
- C est l'ensemble des contraintes. Chaque contrainte $c \in C$ est définie sur un sous-ensemble de variables $X_c \subseteq X$ par une relation $R_c \subset \Pi_{x_i \in X_c} d_i$ spécifiant les combinaisons de valeurs autorisées pour les variables de X_c .

Les contraintes peuvent être :

- définies en extension : tuples autorisées (ou interdits)
- **arithmétique** : +, \times , /, ..., <, \leq , =, \neq
- globales/symboliques : AllDiff, indexation, cardinalité...
- **méta** (logiques) : \vee , \Rightarrow ... ou **réifiées** : variables 0/1

Définition (Affectation partielle)

Une affectation partielle ϕ_V sur un sous-ensemble de variable $V \subseteq X$ est une fonction telle que $\phi_V(x_i) \in d_i$.

Définition (Satisfaction de contrainte)

Une affectation partielle ϕ_V satisfait une contrainte $c \in C$ telle que $X_c \subseteq V$ ssi $\phi_V(X_c) \in R_c$ (sinon elle la viole).

Définition (Solution)

Une **solution** d'un CSP est une affectation totale ϕ_X qui satisfait toutes les constraintes de C.

Résoudre un CSP : trouver une/toutes/la meilleure solution ou prouver $\not \exists$

N. Barnier (ENAC) N7PDL – PPC 7 / 35

CSP Domaines

Domaines

Cadre générique Constraint Logic Programming CLP(X)

- Arbres finis (Prolog)
- **Domaines finis** (entiers)
- Rationnels, réels (flottants)
- Ensembles finis : $s \in [\emptyset, \{1, 2, 3\}]$, i.e. $\emptyset \subseteq s \subseteq \{1, 2, 3\}$
- Graphes...

Puzzles logiques

Arithmétique cryptée

Sudoku

				6	3		
9	7		1				6
8				3		1	
					5	7	
4						3	8
5	2						
7		9				2	
			2		4	6	
	8	6					
	8	8 4 5 2 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8	8 4 5 2 7 9 2	9 7 1 8 3 4 4 5 2 7 9 2 2	9 7 1 3 8 3 5 4 5 2 5 7 9 4 4 2 4 4 4	9 7 1

N7PDL - PPC 9 / 35 N. Barnier (ENAC)

Résolution exacte des CSP Backtracking

Générer et tester (au fur et à mesure)

Backtracking (BT)

```
BT(V, \phi) : bool
    if V = \emptyset then return true;
    x \in V;
    for a \in d_X do
        \phi' \leftarrow \phi \cup \{(x, a)\};
        if \phi' ne viole aucune contrainte then
           if BT(V \setminus \{x\}, \phi') then return true;
    return false;
```

On ne vérifie que les contraintes dont toutes les variables sont affectées

Suppression des valeurs incohérentes

- BT peu efficace sur les CSP : on vérifie les contraintes « trop tard »
- Look-ahead : quand une variable est affectée ou que son domaine est restreint, on peut déduire que certaines valeurs ne peuvent pas faire partie d'une solution
- Une valeur qui ne peut pas faire partie d'une solution peut être supprimée : élagage de l'arbre de recherche
- Le domaine de chaque variable est **mémorisé et maintenu** au cours de la recherche, i.e. filtré et rétabli en cas de retour arrière

Définition (Support d'une valeur sur une contrainte)

Un **support** pour une valeur $a \in d_i$ de x_i sur une contrainte binaire c avec $X_c = \{x_i, x_j\}$ est une valeur $b \in d_j$ telle que $(a, b) \in R_c$.

C'est une justification pour conserver la valeur dans le domaine

N. Barnier (ENAC)

N7PDL – PPC

11 / 35

Résolution exacte des CSP Cohérence d'arc

Cohérence d'arc (Arc-Consistency)

Définition (Cohérence d'arc)

Une contrainte binaire c vérifie la cohérence d'arc ssi toutes les valeurs de d_i et de d_i ont un support sur c.

Un CSP vérifie la cohérence d'arc ssi toutes ses contraintes la vérifient.

Filtrage de d_i

```
Revise(x_i,x_i): bool
    modif \leftarrow false:
    for a \in d_i do
         if a n'a pas de support dans d; sur c then
              d_i \leftarrow d_i \setminus \{a\};
              modif \leftarrow true;
    return modif:
```

Établissement de la cohérence d'arc

AC-3 [Mackworth 77] AC3(C) $Q \leftarrow \{(x_i, x_i), (x_i, x_i), \forall c \in C\};$ while $Q \neq \emptyset$ do $(x_i,x_i)\in Q;$

```
Q \leftarrow Q \cup \{(x_k, x_i), \forall c \in C \text{ t.q. } X_c = \{x_i, x_k\}, k \neq j\};
```

Propagation de contraintes

 $Q \leftarrow Q \setminus \{(x_i, x_j)\};$ if $Revise(x_i,x_i)$ then

- Un « arc » peut être « révisé » plusieurs fois
- Complexité : $O(md^3)$
- Améliorations : AC-4 [Mohr 86] en $O(md^2)$, AC-6 [Bessière 93], GAC |Bessière 97|...

N. Barnier (ENAC) N7PDL - PPC 13 / 35

Résolution exacte des CSP Branch & Prune

Branch & Prune (séparation et élagage)

BT + filtrage à chaque affectation

- La cohérence d'arc **ne suffit pas** (en général) pour résoudre un CSP
- Niveau de filtrage : compromis entre le temps passé dans la propagation des contraintes et la puissance d'élagage
 - cohérence d'arc (plus besoin de tester la cohérence locale)
 - cohérence de bornes : contraintes arithmétiques (intervalles)
 - approximations : Forward Checking...
- Dès qu'un domaine est **vidé** par filtrage : **échec** (retour arrière)

Maintaining Arc-Consistency (MAC)

Établissement incrémental de la cohérence d'arc à chaque affectation :

- on ne filtre une contrainte que si l'une de ses variables a été modifiée
- conditions de propagation (affectation, bornes, domaine)
- maintien de structures de données internes

Résolution et graphe des contraintes

Graphe des contraintes :
$$(X, \{X_c, c \in C\})$$

$$x, y \in \{1, 2, 3\} \qquad z \in \{1, 2\} \qquad t \in \{2, 3\}$$

$$x \neq y \qquad y \neq z \qquad z \neq x \qquad t > x \qquad t > y$$

 $\{2,3\}$

N. Barnier (ENAC) N7PDL - PPC 15 / 35

Résolution exacte des CSP Stratégies de recherche

Ordonnancement des variables et des valeurs

Heuristiques

Choix de:

- la variable à affecter : first-fail principle
- la valeur d'affectation : celle qui a le plus de chance de mener à une solution

Exemple:

$$X = \{x, y, z, t\}$$

 $D = \{[1..2], [1..2], [1..2], [1..100]\}$
 $C = \{x \neq y, x \neq z, y \neq z\}$

N. Barnier (ENAC) N7PDL – PPC 16 / 35

Heuristiques d'ordonnancement des variables

- Statique :
 - peu efficace
 - exemple : les items d'un Knapsack triés par efficacité
- **Dynamique** (Dynamic Variable Ordering) :
 - robuste
 - s'adapte à l'état de la rercherche
 - exemple : taille de domaine minimale
- Plusieurs critères :
 - si plusieurs variables ont la même évaluation
 - exemple : (min-size, max-degré), cf. DSATUR
- Spécifique au domaine :
 - exemple : ressource critique et ranking de tâches pour le scheduling
- Apprentissage :
 - prend en compte les échecs précédents
 - exemple : weighted degree [Lecoutre 04]

N7PDL - PPC N. Barnier (ENAC) 17 / 35

Résolution exacte des CSP Optimisation

Optimisation

Caractérisation des solutions

- En général, plusieurs (voire beaucoup de) solutions : choix
- Préférences : consommation de ressources, distance...
- Coût : fonction des variables du CSP

$$cost = f(x_1, ..., x_n)$$
 avec $f = max, \sum, card ...$

Branch & Bound (& Prune)

- Contrainte **dynamique** cost < ub (pour une minimisation) mise à jour après chaque solution de coût ub trouvée
- Preuve d'optimalité : pas de solution pour cost < opt
- Borne inférieure : preuve d'optimalité dès que cost = lb
- Si l'intervalle du coût est grand et qu'il y a de nombreuses solutions intermédiaires : recherche dichotomique

GNU Prolog

Système Prolog Open Source avec solveur de contraintes

- Daniel Diaz @ INRIA, 1999
- Interpréteur (top-level, boucle d'interaction) : gprolog interactif, debugger, lent
- Compilateur en code natif : gplc optimisé pour un processeur cible (rapide), exécutable (autonome)
- Prolog + Contraintes sur les domaines finis
- Autres solveurs Prolog: Prolog IV, ECLⁱPS^e, SICStus...
- Solveurs hybrides : Mozart, Mercury...

N. Barnier (ENAC) N7PDL - PPC 19 / 35

GNU Prolog Variables à domaine fini

Variables à domaine fini (FD)

Nouveau type de variables logiques

- Substitution dans un domaine entier (associé à la variable).
- Le domaine d'une variable ne peut qu'être **réduit** (inclusion).

Déclaration

```
fd_domain(VarList_or_Var, LB, UB)
fd_domain(VarList_or_Var, IntList)
fd_domain_bool(VarList_or_Var)
```

Variables à domaine fini (FD)

Utilisation

Si un prédicat attend une variable FD comme argument, on peut utiliser :

- une variable classique (sans domaine) : le domaine $[0, +\infty]$ lui est associé
- un entier : équivalent à une variable FD avec un domaine singleton

Accès

```
fd_min(Var, LB)
                      fd_max(Var, UB)
fd_size(Var, Size)
                      fd_dom(Var, IntList)
```

N7PDL - PPC N. Barnier (ENAC) 21 / 35

GNU Prolog Contraintes

Contraintes

Relation entre des variables

- Logiquement équivalente à un prédicat
- La différence est opérationnelle :
 - les buts sont résolus immédiatement
 - les contraintes sont satisfaites (approximation par arc-consistance ou autre, e.g. B-consistance) en **coroutines**, i.e. quand le domaine d'une variable est réduit, les contraintes concernées sont réveillées
 - en réduisant les domaines, on dit qu'une contrainte effectue une propagation

Arithmétiques

Expressions

Combinaison d'entiers, variables FD et opérateurs :

Contraintes

Entre deux expressions arithmétiques :

```
|?- fd_domain(X,0,10), X**2-5*X+4 #= 0, fd_labeling(X).

X = 1 ?;

X = 4
|?- fd_domain([X,Y],0,10), X #< Y.

X = _#3(0..9)

Y = _#25(1..10)

N. Barnier(ENAC)

N7PDL-PPC

23 / 35
```

GNU Prolog Contraintes

Contraintes booléennes

Contraintes sur des variables booléennes

Avec des variables de domaine [0..1] :

N. Barnier (ENAC) N7PDL – PPC 24 / 35

Contrainte considérée comme une variable

Si une contrainte arithmétique est utilisée à la place d'une expression booléenne, elle est réifiée : elle n'est pas imposée (i.e. satisfaite) mais associée à une (nouvelle) variable booléenne :

- instanciée à 1 ssi elle est vérifiée
- instanciée à 0 ssi elle est violée
- de domaine [0..1] sinon

```
| ?- fd_domain([X,Y], 0, 10), X #=< Y #<=> B.
B = \#44(0..1) X = \#3(0..10) Y = \#25(0..10)
| ?- fd_domain([X,Y], 0, 10), X #=< Y #<=> B, B #= 0.
B = 0 \quad X = \#3(1..10) \quad Y = \#25(0..9)
| ?- fd_domain([X,Y], 0, 10), X #=< Y #<=> B, X #< 4, Y #> 6.
B = 1 \quad X = \#3(0..3) \quad Y = \#25(7..10)
```

N. Barnier (ENAC)

N7PDL - PPC

25 / 35

GNU Prolog Contraintes

Réification

Disjonction de contraintes (cf. ordonnancement)

```
taches_exclusives(T1, D1, T2, D2):-
    T1+D1 #=< T2 ## T2+D2 #=< T1.
| ?- fd_domain([X,Y], 1, 10),
     taches_exclusives(X,5,Y,5), X \# < 5.
X = _{\#3}(1..4) \quad Y = _{\#25}(6..10)
```

Contrainte de cardinalité

- fd_cardinality(CstrList, Card): Card est égale au nombre de contraintes vérifiées dans CstrList
- fd_at_least_one(CstrList)
- fd_at_most_one(CstrList)
- fd_only_one(CstrList)

Contraintes globales

- fd_element_var(I, VarList, Var) : indexation, i.e. Var est le I^{ème} élément de VarList
- fd_all_different(VarList): toutes différentes.
- fd_atmost|fd_atleast|fd_exactly(N, VarList, Val): au plus, au moins, exactement N variables de VarList sont égales à l'entier Val.

N. Barnier (ENAC)

N7PDL - PPC

27 / 35

GNU Prolog Contraintes

Contraintes en extension

```
fd_relation(IntListList, VarList):
IntListList sont les tuples autorisées pour les variables de VarList
```

```
and(X,Y,Z):-
    fd_relation([[0,0,0],[0,1,0],[1,0,0],[1,1,1]],
                                           [X,Y,Z]).
```

Instanciation des variables de décision du CSP

- fd_labeling(VarList_or_Var) : variable inconnue la plus à gauche, plus petite valeur
- fd_labeling(VarList_or_Var, Options) : Options est une liste de termes qui modifie la stratégie de recherche
 - sur l'ordre des variables variable_method(V), avec V :
 - first_fail : plus petit domaine
 - most_constrained : first_fail + le plus de contraintes
 - smallest : plus petite valeur + le plus de contraintes
 - random
 - sur l'ordre des valeurs value_method(V), avec V parmi :
 - min, max, middle, bounds, random

N. Barnier (ENAC) N7PDL – PPC 29 / 35

GNU Prolog Buts de recherche

Optimisation

Obtenir la meilleure solution

- Définition d'un coût qui dépend des variables de décision
- Branch & Bound (BT avec contrainte dynamique sur le coût)

fd_minimize(Goal, Cost) / fd_maximize(Goal, Cost)

- Goal est un but (ordre supérieur) qui doit instancier le coût Cost.
- Typiquement: fd_minimize(fd_labeling(Vars), Cost)

Modélisation : les *n* reines

Problème

Placer n reines sur un échiquier (de $n \times n$ cases) sans qu'aucune n'en menace une autre, i.e. sans que deux reines soient sur une même horizontale, verticale ou diagonale.

N-Queens ∉ NPC, mais souvent utilisé dans les benchmarks

Différentes modélisations

Différents:

- domaines
- nombres de variables
- tailles d'espace
- contraintes
- stratégies

dont dépendent les :

- performances
- tailles de problème traitable

N. Barnier (ENAC)

N7PDL - PPC

31 / 35

GNU Prolog Modélisation : les *n* reines

Des booléens

Variables : $n \times n$ variables booléennes $Q_{i,j} \in [0..1], 0 \le i, j < n$ Contraintes:

- seulement n reines : $\sum_{i,j} Q_{i,j} = n$
- pas de prise sur les lignes, colonnes et diagonales :

$$\forall i \forall j$$
 $0 < k < n-i$ $Q_{i,j} + Q_{i+k,j} < 2$
 $\forall i \forall j$ $0 < k < n-j$ $Q_{i,j} + Q_{i,j+k} < 2$
 $\forall i \forall j$ $0 < k < min(n-i, n-j)$ $Q_{i,j} + Q_{i+k,j+k} < 2$
 $\forall i \forall j$ $0 < k < min(n-i, j+1)$ $Q_{i,j} + Q_{i+k,j-k} < 2$

Des couples

Dans le modèle précédent, peu de variables prennent la valeur vrai; il y a beaucoup plus de cases vides que de cases occupées.

On ne représente que les positions des reines :

- 2 × n variables : $(X_i, Y_i) \in [0..n-1]^2$, $0 \le i < n$
- pas de prise sur les lignes, les colonnes et diagonales :

$$\forall i \forall j \quad i < j \quad X_i \neq X_j$$

 $\forall i \forall j \quad i < j \quad Y_i \neq Y_j$
 $\forall i \forall j \quad i < j \quad X_j - X_i \neq Y_j - Y_i$
 $\forall i \forall j \quad i < j \quad X_i - X_j \neq Y_j - Y_i$

N. Barnier (ENAC)

N7PDL - PPC

33 / 35

GNU Prolog Modélisation : les *n* reines

Des entiers

Les résultats du modèles précédents

suggèrent de ne positionner qu'une reine par ligne :

- *n* variables : $C_i \in [0..n-1]$, $0 \le i < n$
- pas de prise sur les colonnes et diagonales :

$$\forall i \forall j \quad i < j \quad C_i \neq C_j$$

 $\forall i \forall j \quad i < j \quad C_j - C_i \neq j - i$
 $\forall i \forall j \quad i < j \quad C_j - C_i \neq i - j$

```
queens(N, L):-
    length(L, N),
    fd_domain(L, 1, N),
    fd_all_different(L), % colonnes
    constrain_queens(L), % diagonales
    fd_labeling(L).
constrain_queens([]).
constrain_queens([Q|Qs]):-
   safe(Q, Qs, 1),
   constrain_queens(Qs).
safe(_, [], _).
safe(Q1, [Q2|Qs], I):-
   Q1 - Q2 \# = I
   Q2 - Q1 \# = I
   I1 is I+1,
   safe(Q1, Qs, I1).
```

N. Barnier (ENAC)

N7PDL – PPC

35 / 35