باسمه تعالى

مدت امتحان: ۱۵۰ دقیقه	ساعت شروع: ۸ صبح	رشتهی: ریاضی فیزیک	سؤالات امتحان نهایی درس: حسابان
عان: ۱۳۹۱/۳/۲۰	تاريخ امتح	زش متوسطه	سال سوم أموز
عش آموزش و پرورش http://aee.med		د اد ماه سال ۱۳۹۱	دانش آموزان و داوطلبان آزاد سراسر کشور در خود

نمره	سؤالات	ردیف
۰/۲۵	۱۴۴ لیتر آب میوه ، ۴۵ لیتر شیر و ۶۳ لیتر دوغ در شیشه هایی با حجم یکسان بسته بندی شده اند . حد اقل	١
	تعداد شیشه ها را بیابید؟ (گنجایش شیشه ها را بر حسب لیتر ، عدد طبیعی فرض کنید.)	
+/٧۵	در دنباله ی هندسی نا متناهی زیر ، مجموع تمام جملات را بیابید.	۲
	$\left[\frac{1}{r},\frac{1}{q},\frac{1}{r\gamma},\dots\right]$	
١	معادله ی $\sqrt{1-x}-1=x^{Y}-7x$ را با روش هندسی حل کنید.	٣
7/70	جاهای خالی را با عبارات ریاضی مناسب پر کنید:	۴
	الف) مجموعه ی جواب معادله ی $\frac{x}{x-y} + \frac{y}{x-y} = 0$ برابر است با	
	ب) اگر ۱ $\leq x$ باشد ، ضابطه ی تابع $ x-1 + x-1 + x-1 $ بدون استفاده از قدر مطلق برابر است با	
ı	ج) تابع زیر در بازه ی صعودی اکید و در بازه ی نزولی اکید و در بازه ی ثابت	
	است.	
1.4	د) اگر $lpha$ و eta ریشه های معادله ی درجه ی دوم $lpha = ax^{Y} + bx + c = 0$ باشند ریشه های معادله ی درجه ی	
	$(c eq \circ)$ و و $cx^{Y} + bx + a = \circ$ دوم $cx^{Y} + bx + a = \circ$ دوم	
1/10	در زیر، نمودار تابع $y = f(x-r)$ رسم شده است . با استفاده از انتقال ، ابتدا نمودار تابع $y = f(x-r)$ را	۵
	رسم کرده و سپس نمودار تابع $y = - T f(x-T)$ را رسم کنید.	
	-r - r	
1	$g=\left\{(\circ,\mathfrak{F}),(\mathfrak{T},\mathfrak{T}),(\mathfrak{d},\mathfrak{F}) ight\}$ و $f(x)=\sqrt{x-\mathfrak{T}}$ اگر	۶
	الف) تابع $\frac{f}{g}$ را بنویسید. بنویسید. بنویسید. بنویسید.	
	ادامه ی سؤالات در صفحه ی دوم	

باسمه تعالى

مدت امتحان: ۱۵۰ دقیقه	ساعت شروع: ٨ صبح	رشتهی: ریاضی فیزیک	سؤالات امتحان نهایی درس: حسابان
ن: ۱۳۹۱/۳/۲۰	تاريخ امتحا	زش متوسطه	سال سوم أموز
A		داد ماه سال ۱۳۹۱	دانش آموزان و داوطلبان آزاد سراسر کشور در خود
ښ آموزش و پرورش http://aee.me	· · · · · · · · · · · · · · · · · · ·		

نمره	سؤالات		l
	······································	ردیف ا	l
		<u> </u>	4

١	ثابت کنید تابع $x \geq 1$, $f(x) = (x-1)^{-1}$ وارون پذیر است سپس ضابطه ی وارون آن را بنویسید.	Y
,	سینوس زاویه ی °۲۲/۵ را حساب کنید.	٨
1/40	کلیه ی جواب های معادله ی $\cos^{7}x - \cos^{7}x - \cos^{7}x$ را تعیین کنید.	٩
-/٧۵	مقدار $\frac{\pi}{\epsilon}$ cos $(\tan^{-1}\frac{\pi}{\epsilon})$ مقدار مقدار احساب کنید.	10
7/70	حد توابع زیر را در صورت وجود، محاسبه کنید: $\lim_{x \to \mathfrak{k}} \frac{\sqrt{x} - \mathfrak{k}}{x^{Y} - 19} \qquad (\mathbf{y} - [x]) \qquad \lim_{x \to \mathfrak{k}} \frac{\cos x}{\cos x - \sin x}$ (الف	11
١	مقدار a را طوری بیابید که تابع زیر در $x=1$ پیوسته شود.	۱۲
	$f(x) = \begin{cases} a - x - 1 & x \ge 1 \\ \frac{x^{r} - 1}{x - 1} & x < 1 \end{cases}$	
+/٧۵	نمودار تابعی را رسم کنید که در یک همسایگی راست $\frac{Y}{}$ تعریف شده باشد ولی در هیچ همسایگی چپ $\frac{Y}{}$ تعریف نشده باشد و در این نقطه حد داشته باشد.	۱۳
1/50	معادله ی خط قائم بر نمودار تابع $f(x) = x^{\pi} - x$ را در نقطه ای به طول $\underline{1}$ واقع بر منحنی به دست آورید.	14
7/٧۵	مشتق بگیرید: (ساده کردن الزامی نیست) $y = (x^{r} + \frac{1}{x}) \qquad \qquad y = \pi(r x - \Delta)^{r} + \sqrt[r]{x} \qquad \qquad y = \frac{\sin\sqrt{x}}{1 + x^{r}}$ (الف	10
1	(دلیل خود را توضیح دهید) در صفر مشتق پذیر است ؟ (دلیل خود را توضیح دهید) $f(x) = \begin{cases} x \sin \frac{1}{x} & x \neq 0 \\ 0 & x = 0 \end{cases}$	18
<u> </u>	«موفق باشید»	

رشتهی : ریاضی فیزیک	راهنمای تصحیح سؤالات امتحان نهایی درس: حسابان
تاریخ امتحان : ۲۰ ۳ / ۱۳۹۱	سال سوم أموزش متوسطه
مرکز سنجش اَموزش و پرورش http://aee.medu.ir	دانش آموزان و داوطلبان آزاد سراسر کشور در خرداد ماه سال ۱۳۹۱

نمره	راهنمای تصحیح	رديف
-/٧۵	$ \left\{ \begin{array}{l} $	١
•/٧۵	مجموع تمام جملات = $\frac{a}{1-q} = \frac{\frac{1}{r}}{1-\frac{1}{r}}$ (٠/٥)	۲
١	$f(x) = \sqrt{1-x} \qquad , \qquad g(x) = x^{\Upsilon} - \Upsilon x + 1 = (x-1)^{\Upsilon}$ $A(\circ, 1) (\cdot/\Upsilon \Delta) \qquad , \qquad B(1, \circ) (\cdot/\Upsilon \Delta)$ (\cdot/Δ)	٣
Y/Y ۵	الف) (\cdot/Δ) $= \left\{ f, \frac{\pi}{\gamma} \right\}$ (\cdot/Δ) (الف) $y = f - fx$ (\cdot/Δ) (\cdot/Δ) (\cdot/Δ) $y = f - fx$ (\cdot/Δ)	۴
1/٢۵	$y = f(x - \mathbf{Y})$ (\cdot/Δ) $y = -\mathbf{Y}f(x - \mathbf{Y})$ $(\cdot/\mathbf{Y}\Delta)$	۵
	ادامه در صفحه ی دوم	

رشتهی : ریاضی فیزیک	راهنمای تصحیح سؤالات امتحان نهایی درس: حسابان
تاریخ امتحان : ۲۰ ۳ / ۱۳۹۱	سال سوم أموزش متوسطه
مرکز سنجش آموزش و پرورش http://acc.medu.ir	دانش آموزان و داوطلبان آزاد سراسر کشور در خرداد هاه سال ۱۳۹۱

$ \begin{array}{c} J fog = \left\{ (\circ, 1), (\Delta, \sqrt{Y}) \right\} (\cdot/\Delta) \\ J fog = \left\{ (\circ, 1), (\Delta, \sqrt{Y}) \right\} (\cdot/\Delta) \\ J fog = \left\{ (\circ, 1), (\Delta, \sqrt{Y}) \right\} (\cdot/\Delta) \\ J fog = \left\{ (\circ, 1), (\Delta, \sqrt{Y}) \right\} (\cdot/\Delta) \\ J fog = \left\{ (\circ, 1), (\Delta, \sqrt{Y}) \right\} (\cdot/\Delta) \\ J fog = \left\{ (\circ, 1), (\Delta, \sqrt{Y}) \right\} (\cdot/\Delta) \\ J fog = \left\{ (\circ, 1), (\Delta, \sqrt{Y}) \right\} (\cdot/\Delta) \\ J fog = \left\{ (\circ, 1), (\Delta, \sqrt{Y}) \right\} (\cdot/\Delta) \\ J fog = \left\{ (\circ, 1), (\Delta, \sqrt{Y}) \right\} (\cdot/\Delta) \\ J fog = \left\{ (\circ, 1), (\Delta, \sqrt{Y}) \right\} (\cdot/\Delta) \\ J fog = \left\{ (\circ, 1), (\Delta, \sqrt{Y}) \right\} (\cdot/\Delta) \\ J fog = \left\{ (\circ, 1), (\Delta, \sqrt{Y}) \right\} (\cdot/\Delta) \\ J fog = \left\{ (\circ, 1), (\Delta, \sqrt{Y}) \right\} (\cdot/\Delta) \\ J fog = \left\{ (\cdot/Y\Delta) \right\} (\cdot/Y\Delta) \\ J J fog = \left\{ (\cdot/Y\Delta) \right\} (\cdot/Y\Delta) \\ J J fog = \left\{ (\cdot/Y\Delta) \right\} (\cdot/Y\Delta) \\ J J J J J J J J J J$	راهنمای تصحیح نمره	رديف
$y = (x - Y)^{2} \Rightarrow \sqrt{y} = (x - Y) \Rightarrow \sqrt{y} + Y = x (\cdot/Y\Delta)$ $x = \sqrt{y} + Y \Rightarrow f^{-1}(x) = \sqrt{x} + Y (\cdot/Y\Delta)$ $\cos Y\alpha = 1 - Y \sin^{Y} \alpha \Rightarrow \cos F\Delta^{\circ} = 1 - Y \sin^{Y} YY/\Delta^{\circ} (\cdot/Y\Delta) \Rightarrow \frac{\sqrt{Y}}{Y} = 1 - Y \sin^{Y} YY/\Delta^{\circ} (\cdot/Y\Delta) \Rightarrow$ $Y \sin^{Y} YY/\Delta^{\circ} = 1 - \frac{\sqrt{Y}}{Y} \Rightarrow \sin^{Y} YY/\Delta^{\circ} = \frac{Y - \sqrt{Y}}{F} (\cdot/Y\Delta) \Rightarrow \sin YY/\Delta^{\circ} = \frac{\sqrt{Y - \sqrt{Y}}}{Y} (\cdot/Y\Delta)$ $\cos x = (\cdot/Y\Delta) \Rightarrow x = k\pi + \frac{\pi}{Y} \cdot (\cdot/Y\Delta)$ $\cos x = (\cdot/Y\Delta) \Rightarrow \cos x = \frac{1}{Y} \Rightarrow \begin{cases} x = Yk\pi + \frac{\pi}{Y} \\ x = Yk\pi - \frac{\pi}{Y} \end{cases}$ $(\cdot/Y\Delta)$ $\tan^{-1}(\frac{Y}{F}) = \alpha \Rightarrow \tan \alpha = \frac{Y}{F} (\cdot/Y\Delta) \cos(\tan^{-1}\frac{Y}{F}) = \cos \alpha = \frac{1}{\sqrt{1 + \tan^{Y} \alpha}} = \frac{1}{\sqrt{1 + \frac{1}{1F}}} = \frac{1}{\sqrt{\frac{Y\Delta}{1F}}} = \frac{1}{\frac{\Delta}{F}} (\cdot/\Delta)$ $2il \lim_{X \to F} \frac{\sqrt{x} - Y}{(x - F)(x + F)} \Rightarrow \frac{\sqrt{x} + Y}{\sqrt{x} + Y} = \lim_{X \to F} \frac{(x - F)(\cdot/Y\Delta)}{(x - F)(x + F)(\sqrt{x} + Y)} = \frac{1}{\Lambda \times F} = \frac{1}{YY} \cdot (\cdot/Y\Delta)$ $(\cdot/Y\Delta) \Rightarrow \lim_{X \to Y} (x - [x]) = Y - Y = \circ (\cdot/\Delta)$		۶
	$y = (x - Y)^{Y} \Rightarrow \sqrt{y} = (x - Y) \Rightarrow \sqrt{y} + Y = x (\cdot/Y\Delta)$	Y
$\cos x(\Upsilon\cos x - 1) = \circ(\cdot/\Upsilon\Delta) \rightarrow \begin{cases} \cos x - 1 = \circ(\cdot/\Upsilon\Delta) \rightarrow \cos x = \frac{1}{\Upsilon} \rightarrow \begin{cases} x = \Upsilon k\pi + \frac{\pi}{\Upsilon} \\ x = \Upsilon k\pi - \frac{\pi}{\Upsilon} \end{cases} \end{cases} $ $(\cdot/\Upsilon\Delta)$ $\tan^{-1}\left(\frac{\Upsilon}{\Upsilon}\right) = \alpha \rightarrow \tan \alpha = \frac{\Upsilon}{\Upsilon} (\cdot/\Upsilon\Delta) \cos\left(\tan^{-1}\frac{\Upsilon}{\Upsilon}\right) = \cos \alpha = \frac{1}{\sqrt{1 + \tan^{\Upsilon}\alpha}} = \frac{1}{\sqrt{1 + \frac{9}{19}}} = \frac{1}{\sqrt{\frac{1}{19}}} = \frac{1}{\frac{1}{2}} = \frac{1}$	1 I	٨
$\lim_{x \to \mathfrak{k}} \frac{\sqrt{x} - \mathfrak{r}}{(x - \mathfrak{k})(x + \mathfrak{k})} \times \frac{\sqrt{x} + \mathfrak{r}}{\sqrt{x} + \mathfrak{r}} = \lim_{x \to \mathfrak{k}} \frac{(x - \mathfrak{k})(\cdot/\Upsilon\Delta)}{(x - \mathfrak{k})(x + \mathfrak{k})(\sqrt{x} + \mathfrak{r})} = \frac{1}{\Lambda \times \mathfrak{k}} = \frac{1}{\Upsilon\Upsilon} (\cdot/\Upsilon\Delta)$ $\lim_{x \to \Upsilon^+} (x - [x]) = \Upsilon - \Upsilon = \circ (\cdot/\Delta)$		٩
$\lim_{x \to \mathbf{r}^+} (x - [x]) = \mathbf{r} - \mathbf{r} = 0 (\cdot/\Delta)$	$\tan^{-1}\left(\frac{\mathbf{r}}{\mathbf{r}}\right) = \alpha \to \tan\alpha = \frac{\mathbf{r}}{\mathbf{r}} (\cdot/\mathbf{r}\Delta) \cos\left(\tan^{-1}\frac{\mathbf{r}}{\mathbf{r}}\right) = \cos\alpha = \frac{1}{\sqrt{1+\tan^{7}\alpha}} = \frac{1}{\sqrt{1+\frac{9}{19}}} = \frac{1}{\sqrt{\frac{7\Delta}{19}}} = \frac{1}{\frac{\Delta}{\mathbf{r}}} = \frac{1}{$	1+
	$\lim_{x \to \tau^{+}} (x - \lfloor x \rfloor) = \tau - \tau = 0 (\cdot/\Delta)$	11

باسمه تعالى

رشتهی : ریاضی فیزیک	راهنمای تصحیح سؤالات امتحان نهایی درس: حسابان
تاریخ امتحان : ۲۰ / ۳ / ۱۳۹۱	سال سوم أموزش متوسطه
مرکز سنجش آموزش و پرورش http://aee.medu.ir	دانش آموزان و داوطلبان آزاد سراسر کشور در خرداد ماه سال ۱۳۹۱

نمره	راهنمای تصحیح	ردیف
1	ا شرط پيوستگي : $\lim_{x \to x_{\circ}^{+}} f(x) = \lim_{x \to x_{\circ}^{-}} f(x) = f(x_{\circ})$: شرط پيوستگي	١٢
	احد راست: $\lim_{x \to 1^{r}} (a - x - 1) = a (\cdot/ 1^{r})$ $\Rightarrow a = 1^{r} (\cdot/ 1^{r})$	
	$\lim_{x \to 1^{-}} \frac{x^{\tau} - 1}{x - 1} = \lim_{x \to 1^{-}} \frac{(x - 1)(x^{\tau} + x + 1)}{(x - 1)} = \mathbb{T} \left(\frac{(1 + x)^{\tau}}{x - 1} \right)$ $\Rightarrow a = \mathbb{T} \left(\frac{(1 + x)^{\tau}}{x - 1} \right)$	
-/٧۵	سم نمودار با شرط های خواسته شده (۰/۷۵)	, 18
1/۲۵	$f(1) = Y(1)^{\Upsilon} - 1 = 1 (\cdot/Y\Delta) \qquad y' = Px^{\Upsilon} - 1 (\cdot/Y\Delta)$ $m = -\frac{1}{f'(1)} = -\frac{1}{\Delta} (\cdot/Y\Delta) \qquad y - y_o = m(x - x_o) \rightarrow y - 1 = -\frac{1}{\Delta}(x - 1) (\cdot/\Delta)$	14
	الف $y' = x^{r} - \frac{r}{x^{r}}$	10
Y/Y8	$y' = r \times r \times (rx - \delta)^r + \frac{1}{r\sqrt[r]{x}}$ (\cdot/δ)	
	$z) y' = \frac{\left(\frac{1}{1+x^{4}}\cos\sqrt{x}\right)\left(1+x^{4}\right) - \left(\frac{1}{1+x^{4}}\right) - \left(\frac{1}{1+x^{4}}\right)\left(\frac{1}{1+x^{4}}\right)}{\left(\frac{1}{1+x^{4}}\right)^{4}}$	
	$\varepsilon) y' = \frac{(1+x^{2})^{2}}{(1+x^{2})^{2}} \qquad (1+x^{2})^{2}$	
,	$f'(\circ) = \lim_{x \to \circ} \frac{f(x) - f(\circ)}{x - \circ} = \lim_{x \to \circ} \frac{x \sin \frac{1}{x} - \circ}{x}$ فير $(\cdot/70)$ وجود ندارد $(\cdot/70)$ المرابع فير $(\cdot/70)$ وجود ندارد $(\cdot/70)$	18

همکاران محترم ضمن عرض خسته نباشید لطفا به راه حل های صحیح غیر از راهنمای تصحیح به تناسب بارم را تقسیم کنید .

با تشكر طراحان