A gentle intro to item response theory

Alvin Tan & George Kachergis CogSci pre-workshop tutorial, 2024-07-01

Outline

- Why IRT?
- What is IRT?
- How to use IRT?
- Other IRT variants
- Cool stuff you can do with IRT
- Practical

IRT motivation

How do we measure stuff?

Cosmic microwave background radiation?

Personality?

Affect?

Lack of direct observational access

Memory?

Cognitive ability?

Temperature?

The place for psychometrics

What are the sources of variance?

Is my measurement consistent?

How are latent constructs organised?

How much error is there?

What is psychometrics?

Validity

How do measurements relate to the underlying latent constructs?

Instrumentation

- Scaling
- Reliability
- Bias
- Measurement invariance
- Differential item functioning

Measurement model

- Classical test theory
- Item response theory
- Generalisability theory

Latent structure

- Factor analysis
- Latent variable models
- Network theory
- Structural equation modelling

...how would you determine a test-taker's level?

One obvious answer: just add it up (= sum scores/true scores)!

```
Y: observed score
Y_i = T_i + e_i
                          T<sub>i</sub>: true score
                          e: error
With k items,
(\Sigma Y_i)/k = (\Sigma T_i)/k + (\Sigma e_i)/k
                      Expected value = 0
                      Variance decreases as k increases
```

One obvious answer: just add it up (= sum scores/true scores)!

BUT this assumes that all items behave exactly the same

Consequences of this assumption:

- Only test-level information; no item-level information
- Reliability assumes parallel forms, but no way of testing
- Assumes measure is equally good over all levels of ability
- No generalisability to new tests → incentive to use the same ones

Item response theory

IRT basics

Item response theoretic model (2PL)

Item response theoretic model (2PL)

Putting the L in 2PL

 $= \alpha(\theta - \beta)$

Item response theory

Consequences of this model:

- Item are on a meaningful scale (theta measures difficulty)
- Individuals are on a meaningful scale (latent trait scores)
- These two dimensions lie on the same scale
- Can calculate probability of an individual getting an item correct directly

$$P(X_{ip} = 1 | \theta_p, \beta_i) = \frac{\exp(\alpha_i(\theta_p - \beta_i))}{1 + \exp(\alpha_i(\theta_p - \beta_i))}$$

Ex: Communicative Development Inventories (CDIs)

fairly hard and informative

IRT variants

IRT variants: Number of parameters

- 1PL: location (difficulty)
- 2PL: slope (discrimination)
- 3PL: lower bound (guessing)
- 4PL: upper bound (errors)

Para para parameter

3PL: *lower asymptote*

4PL: *upper asymptote*

Ex: CDI parameter space (4PL)

more informative items

Ex: CDI parameter space (4PL)

Ex: CDI model fits

Model	BIC
1PL	4788209
2PL	4668081

IRT variants: Item type

- Vanilla IRT operates over binary observations
- How do we move from dichotomous to polytomous measures?
- Solution: decompose polytomous items into sets of dichotomous comparisons
- Two main classes: difference models (e.g., GRM) and divide-by-total models (e.g., PCM)

Difference models: Graded response model

Dichotomise based on being above/below a threshold; e.g., with k = 5

•
$$P_4 = Pr(y_{ip} > 3)$$

cumulative response curves

Difference models: Graded response model

Dichotomise based on being above/below a threshold; e.g., with k = 5

$$Pr(y_{ip} = 2) = P_3 - P_2$$

category response curves

IRT techniques

IRT techniques: Equating

How do you handle multiple versions of an instrument?

- Avoid practice effects
- Prevent cheating
- **Updating**

Group 1

Group 2

→ concurrent calibration

Ex: Stitching different CDI forms

WG: 12-18mo

WS: 16-36mo

WG WS

IRT techniques: Differential item functioning

How do we know if items have measurement invariance across groups?

Ex: DIF in CDIs

IRT techniques: Item information

Because items are at different locations, they are differently informative about individuals of different trait levels

IRT techniques: Computerised adaptive testing

Instead of giving a full instrument, choose items that are most informative given your current estimate of the participant's trait

Ex: CDI-CAT

Summary

- IRT helps us better handle inter-item variability
- IRT is effectively logistic regression with item-level parameters
- IRT models can have various numbers of parameters, and can handle different types of categorical variables
- IRT enables us to do lots of statistical techniques that are not possible with CTT (e.g., equating, DIF, CAT)

ty+q?

Slides, links, resources:

https://psychometrics-workshop.github.io/