1. SÍKBARAJZOLHATÓSÁG

egy gráf a síkba rajzolható, ha lerajzolható úgy, hogy élei csak a szögpontokban metszik egymást ha egy gráf lerajzolható a síkba, akkor lerajzolható úgy is, hogy minden éle egyenes szakasz

<u>Fáry-Wagner tétel:</u> ha egy G gráf egy síkbarajzolható gráf, akkor létezik olyan síkbarajzolása, hogy minden éle egyenes szakasz

Euler-féle poliéder tétel

ellentmondás.

egy G összefüggő gráf esetében p-e+t=2 ahol p a gráf csúcsai, e az élei t pedig a tartományok jele

biz: az adott síkgráfot újra lerajzoljuk

- 1 csúcsra igaz az állítás: 1 0 + 1 = 2
- 2 csúcsra is igaz: 2-1+1=2
- \bullet tfh az n-dik csúcsra is igaz: p-e+t=2 ekkor az n+1-dik lépés kétféle lehet
 - -vagy már meglévő csúcsokat kötünk össze egy új éllel:
 - p-(e+1)+(t+1)=p-e-1+t+1=p-e+t=2
 - egy új csúcsot rajzolunk be a rá illeszkedő éllel együtt, melynek másik csúcsa egy már meglévő csúcs: (p+1)-e(+1)+t=p+1-e-1+t=p-e+t=2

I. következmény: ha az összefüggő, egyszerű síkgráf pontjainak száma, akkor $e \leq 3*p-6$ biz: mivel egyszerű gráfról van szó, ezért minden területet legaláb három él határol (vagyis elgalább 3 a fokszáma). A területeket határoló éleket összeadva az élek kétszeresét kapjuk, hiszen minden területet határoló él két területhez tartozik, így kétszer számoljuk őket össze. Vagyis $2e \geq 3t$ (mivel akkor lenne a fokszáma három, ha minden terület háromszög lenne).

Így $t \leq \frac{2}{3}t$. p-e+t=2-ből e-t kifejezve: $e=p+t-2 \geq p+\frac{2}{3}e-2$ amiből $e \leq 3p-6$ II. következmény: ha G egyszerű síkbarajzolható gár, akkorminimális fokszáma legfeljebb 5 biz: indirekten tegyük fel, hogy a minimális fokszám legalább 6. A kázfogási tétel miatt a fokszámok össege az élek számának kétszerese, így $6 \leq 2e$. Az előző tétel $(e \leq 3p-6)$ miatt ez

IV. következmény (a III.-at nem kell tudni): ha az összefüggő, egyszerű skígráf pontjainak száma legalább 3 és nincsen 3 hosszú köre, akkor $e \le 2p-4$

biz: a feltételek miatt most minden területet legalább 4 él határol, fokszáma legalább 4, tehát: $2e \geq 4t$ vagyis $e \geq 3t, \frac{1}{2}e \geq t$. A p-e+t=2-ből e-t kifejezve $e=p+t-2 \leq p+\frac{1}{2}e-2$ amiből $e \leq 2p-4$

 $megjegyz\acute{e}s:$ egyik Kuratowski gráf $(K_5,K_{3,3})$ sem síkgráf.

<u>Kuratowski tétel:</u> valamely gráf akkor és csak akkor síkgráf, ha nem tartalamz K_5 -tel(5 pontú teljesgráf) vagy $K_{3,3}$ -mal (6 pontú párosgráf) sem izomorf sem homeomorf részgráfot homeomorf: egy élre szabad pontot beiktatni; ha van a gráfnak olyan részgráfja, amelyben minden pont foka kettő, de mégsem kör, akkor ezeket a pontokat szabad törölni

azért hívjuk Euler-féle poliéder tételnek, mert e a szabályos testekre is igazolható tulajdonság

egy gráf pontosan akkor rajzolható síkba, ha gömbre rajzolható

biz: Sztereografikus projekció. A gömböt a síkra helyezzük, (déli pólus), majd az északi pólusból egyeneseket húzunk a gráf pontjaihoz (éleinek pontjaihoz), ezen egyeneseknek a gömbbel levő másik metszéspontja lesz a vetített képpont.

Egy csúcsban találkozik	p	t	e	Név
3 db háromszög	4	4	6	Szabályos tetraéder
4 db háromszög	6	8	12	Oktaéder
5 db háromszög	12	20	30	Ikozaéder
3 db négyszög	8	6	12	Hexaéder (kocka)
3 db ötszög	20	12	30	Dodekaéder

2. Gráfok színezése

 $\chi(G)$: a kromatikus szám - az a szám, ahány szín kell a G gráf csúcsainak olyan kiszínezéséhez, hogy a szomszédok más színűek legyenek

- páros körökre, páros gárfokra: $\chi = 2$
- páratlan gárfokra: $\chi = 3$
- n csúcsú teljes gárfokra: $\chi = n$
- \bullet fa gráf: $\chi=2$ minden színtje különböző, váltakozva
- \bullet $K_{m,n}$ gráf: $\chi=2$ mivel egy osztályon belül nincsenek élen, a két osztálynak elég különböző színünek lennie

négyszín tétel: minden térkép kiszínezhető 4 színnel úgy, hogy a szomszédos területek más színűek lesznek

ötszín tétel: ha G síkba rajzolható gráf, akkor $\chi(G) \leq 5$

biz: teljes indukcióval a gráf pontszámára

- \bullet tegyük fel, hogy n=kcsúcsú gráf kiszínezhető öt színnel
- n = k + 1-re:
 - ha az élek száma $\leq 3n-6$, akkor van olcsan csúcsa melynek foskzáma maximum 5
 - hs x foka=4, akkor x-et elhagyva a csúcsok száma eggyel csökken, tehát az indukciós feltevés miatt ez kiszínezhető 5 színnel, visszavéve ezt a csúcsot, a szomszédait ki lehet színezni 4-gyel, +x, 5 szín
 - ha x foka=5, akkor minden szomszédja nem lehet összekötve egymással, mert akkor K5 részgráf lenne, ami nem síkgráf
 - legyen z, y az x olyan szomszédjai, melyek nincsenek összekötve, ezeket vonjuk össze egy ponttá, hagyjuk el x-et. Az indukciós feltevés miatt a maradék kiszínezhető 5 színnel. Visszavéve és szétszedve x-y-z csúcsokat, ezek kiszínezhetők max 3 színnel, hiszen x-nek összesen 5 szomszédja van, az y és z-kívüli csúcsok 3 színt lefoglalnak, de y és z egyszínű (nem szomszédok), marad egy szín x-nek

egyszerűb biz: tekintsük a max ötödfokú csúcsot (P). Ezt elvéve a gráf az indukciós feltevés szerint kiszínezhető 5 színnel. Visszavéve, ha a szomszédjai csak 4 színnel vannak kiszínezve, az ötödik szín elegendő.

→ minden sík gráf kiszínezhető négy színnel

duális gráf: minden területhez egy pontot rendelünk, ezek lesznek a gráf csúcsai, és azokat a potokat kötjük össze, amelyek a térképen is szomszédosak voltak

egy egyszerű gráf n-színezhető, ha minden csúcsához hozzárendelhető úgy egy szín hogy két szomszédos csúcshoz rendelt szín különböző

3. Hamilton kör, út

<u>hamilton út:</u> minden csúcson pontosan egyszer áthaladó út <u>hamilton kör:</u> minden csúcson pontosan egyszer áthaladó kör

ha egy egyszerű gráf minden pontjának foka minimum k
, akkor van a gráfban $k+1 (k \geq 2)$ hosszúságú kör

biz: leghosszabb út módszere (???)

Dirac-tétel: egyszerű gráfban ha minden csúcs foka minimum $\frac{n}{2}$, akkkor a gráf összefüggő \hookrightarrow egy gráf összefüggő, ha bármely két pontja között van út \hookrightarrow az ilyen gráfban mindig van hamilton kör

biz: legyen u és v különböző csúcsai G-nek. Ekkor u-val és v-vel is van legalább $\frac{n}{2}$ pont van összekötve az u-ból és v-ből induló élek által. Az előbb említett u-val, illetve v-vel közvetlenül összekötött pontok között van olyan, mely u-val is v-vel is össze van kötve, azaz u és v között vezet út

Ore-tétel: ha egy $n \ge 3$ rendű (több mint 3 csúcsú) gráfnak bármely két nem szomszédos csúcs fokszámösszege nagyobb, mint a pontok száma, akkor van a gráfnak hamilton köre (Elégséges, de nem szkséges feltétel)

biz: a gráfba új éleket rajzolunk mindaddig, amíg egy hamilton kör létre nem jön. Ekkor kivesszük az utoljára berajzolt élt, amitől Hamilton út keletkezik, ahol a törölt él pontjai a kezdő- és végpont

következmény: Ha az n=2k csúcspontú egyszerű G gráf bármely pontjának a foka legalább k, akkor van G-nek Hamilton-köre.

ha x egy részhalmaza a csúcshalmanak és G-x komponenseinek száma nagyobb mint |x|+2 (|x| az elhagyott pontok száma) akkor nincs benne Hamilton-út \rightarrow szükséges feltétel, azt lehet vele bizonyítani, hogy mikor nincs Hamilton-kör

 \hookrightarrow ha |x|+1-nél nagyobb, akkor Hamilton-út még lehet benne, de Hamilto kör már nem

4. Iránított gráfok

erős összefüggés: bármely két pont között van irányított út gyenge összefüggés: a mögötte lévő irányíttlan gráf összefüggő

- a Dijkstra módszer itt is működik
- kézfogási tétel: Σ befok + Σ kifok = 2* élek száma ahol befok a bemenő, kifok pedig a kimenő élek számát jelenti
- ha minden pontra befok = kifok akkor van benne Euler kör
- \bullet van benne Euler kör, ha a kezdőcsúcsnál befok+1=kifokés a végcsúcsnál befok-1=kifok

egy gráf **aciklikus**, ha nincs benne irányított kör \rightarrow ekkor sorosozható

5. ASZIMPTOTIKUS FELSŐKORLÁT

algoritmusok esetén nem megzámoljuk, hány lépés az algoritmus, hanem megbecsüljük, hogy a bementi aatok növekedésével milyen mértékben nő az algoritmus lépésszáma

 $f,g:\mathbb{N}\to\mathbb{R}^+$ képző függvények. f(n)=O(g(n)) akkor és csakis akkor, ha létezik c,n_0 poziítv konstans, amelyre $f(n)\leq c*g(n)$ minden $n\geq n_0$ erestén

 \hookrightarrow ekkor g(n) asszimptotikus felsőkorlátja f(n)-nek

f és g nagyságrendje egyenlő, ha f(n) = O(g(n)) és g(n) = O(f(n))

6. HÁLÓZAT, HÁLÓZATI FOLYAM

a hálózat egy irányított gráf, ahol minden élnek van egy nem negatív kapacitása és két speciális csúccsal rendelkezik:

- Forrás(Source): kiindulási csúcs, csak kimenő élei vannak
- Nyelő (Sink, Target): végpont, csak bemenő élei vannak

folyam: a kapacitásokat minél jobban kihasználva megjelöljük, mely élen, mennyi anyagot szállítunk – ez az éleken értelmezett nemnegatív számokba képező függvény a folyam

- élmegkötés: a folyamérték nem lehet nagyobb az adott él kapacitásánál
- anyagmegmaradás elve (Kirchhoff): ami egy adott pontba befolyik, az ki is folyik (kivéve a Forrást és a Nyelőt)
- I. minden él kap egy pozitív címkét (kapacitás)
- II. javító utakat keresek (javítóút: h minden előre mutató él $(S \to T)$ út éleinek iránya megegyezik az eredeti irányított gráf éleinek irányával, akkor az út minden élén megnézzük a maradék kapacitásokat és vesszük ezek minimumát
 - (a) kiválasztok egy random utat
 - (b) kiválasztom a minimális értéket ezen az úton és ezzel csökkentem az élek kapacitását, miközben növelem a folyamértéket ugyanezzel a számmal
 - (c) berajzol szaggatott vonallal a "visszaéleket" ezt addig folytatom, amíg van olyan út, amin még eljuthatok S-ből T-be
 - (d) ha már nincs több, találni kell egy vágást, amit ha törlünk, akkor nem jutunk el S-ből T-be és a kapaciáta az eredeti gráfon nem nagyobb, min a maximális folyamérték
 - (e) az eredeti gráfon bekarikázom azokat a csúcsokat, amelyek elérhetőek előre úton Sből az utolsó segédgráfon

 olyan éleket törölhetek csak le, amik karikázott csúcsból mutatnak nem karikázottba

7. TARSKI FIXPONT TÉTELE

háló: részben rendezett (nem minden elem hasonlítható össze) halmaz, amelyben bármely véges részhalaznak van infimuma és szupremuma

 \hookrightarrow a háló akkor teljes ha minden részhalmazának (véges és végtelennek is) van infimuma és supremuma

rendezési reláció:

- (1) reflexív: $\forall h \in H$ -ra $h \leq h$
- (2) antiszimmetrikus: ha $a \le b$ és $b \le a$ akkor a = b
- (3) tranzitív ha a < b és b < c akkor a < c

egy függvény akkor és csak akkor monoton, ha rendezéstartó is $(hah_1 \le x_2 akkor f(x_1) \le f(x_2))$ egy függvény fixpontja egy $x \in D_f$ ha f(x) = x

legyen H egy teljes háló és $f:H\to H$ egy monoto függvény, ekkor f-nek van legkisebb/legnagyobb fixpontja

biz (legkisebb fixpont létezése): legyen $G = \{x | x \in Hf(x) \leq x\} \subseteq H$; mivel H teljes háló, van egy olyan g pont, ami infimuma G-nek

- tudjuk, hogy $g \le x$, mivel f monoton, ezért $f(g) \le f(x)$ vagyis f(g) alsó korlátja G-nek ezért $f(g) \le g = inf(G)$ vagy is $g \in G$
- láttuk, hogy $f(g) \leq g$ és f monotonítása miatt $f(f(g)) \leq f(g)$ ezért G definíciója miatt $f(g) \in G$, De G alsó korlátja g, vagyis $f(g) \geq g$ de mivel az első lépésben beláttuk, hogy $f(g) \leq g$ a rendezési reláció asszimetrikus tulajdonsága miatt f(g) = g

• legyen $G' = \{ x - x \in H \ f(x) = x \}$ a fixpontok halmaza, $g \in G'$ és $g' = \inf(G')$. Ha G' részhalmaza G-nek akkor $\inf(G') \ge \inf(G)$ vagyis $g' = \inf(G') \ge g$. Másrészt $g' = \inf(G') \le g$. A rendezési reláció asszimetriája miatt g' = g vagyis ez tényleg a legkisebb fixpont. következmény: a fixpontok halmaza is háló ugyanarra a rendezésre

8. VÉGTELEN HALMAZOK SZÁMOSSÁGA

A és B halmazok ekvivalensek (egyenlő számosságúak) ha van egy olyan f
 kölcsönös leképezés, mely A-t B-be képzi \to A B

→ ez ekvivalencia reláció

• reflexív: A A

• szimmetrikus: ha A B akkor B A

• tranzitív: ha A B és B C akkor A C

A természetes számok számmossága megszámlálhatóan végtelen, ez az \aleph_0 (alef-null)

Einstein ekvivalencia: ha $|A| \leq |B|$ és $|B| \leq |A|$ akkor |A| = |B|

 $\mathbb R$ nem megszámlálható, azaz $\mathbb R > \aleph_0$