5

Dérivation

I. Tangente à une courbe

Définition 1

- Une sécante à une courbe C passant par le point A est une droite passant par A, et coupant la courbe en un autre point M.
- Lorsque le point M se rapproche de A, il arrive que la sécante (AM) se rapproche d'une position limite. Cette droite limite est alors appelée tangente à la courbe C au point A.

II. Nombre dérivé

Définition 2

Soit une fonction f de courbe représentative \mathscr{C} , un point A (d'abscisse a), et un nombre strictement positif h. Le point M de coordonnées $M(a+h\,;\,f(a+h))$ est un point de \mathscr{C} , et (AM) est une sécante à \mathscr{C} .

Alors le nombre réel $\frac{f(a+h)-f(a)}{h}$ est le coefficient directeur de (AM), et le taux de variations de la fonction f entre a et a+h.

Définition 3 -

Si le taux de variations d'une fonction f entre a et a+h tend vers un nombre l lorsque h tend vers 0, alors on dit que f est dérivable en a. Ce nombre est appelé le nombre dérivé de f en a, et se note f'(a). On écrit :

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

III. Équation de la tangente

Définition 4

Soit f une fonction dérivable en un nombre a. On appelle tangente à f au point d'abscisse a la droite T, passant par le point de coordonnée (a; f(a)), et de coefficient directeur f'(a).

Propriété 1 –

Si f est dérivable en a, l'équation réduite de la tangente à la courbe de f en a est :

$$y = f'(a)(x - a) + f(a)$$

Exemple. On considère la fonction f définie par $f(x) = x^2 - 2x + 1$, tracée ci-dessous.

On admet que pour tout $x \in \mathbb{R}$, on a : f'(x) = 2x - 2.

- 1. Calculer f(3) et f'(3).
- 2. Déterminer l'équation de la tangente à la courbe représentative de la fonction f au point d'abscisse 3.

3. Tracer cette tangente.

IV. Fonction dérivée

Définition 5 -

Soit f une fonction définie sur un intervalle I. On dit que f est $d\acute{e}rivable$ sur I si elle est dérivable en tout nombre réel a de I.

On définit alors la fonction dérivée de f, notée f', qui à tout nombre x de I, associe f'(x), le nombre dérivé de f en x.

Propriété 2 (Dérivée des fonctions usuelles) -

Toutes les fonctions décrites ici sont définies et dérivables sur \mathbb{R} .

Fonction	Fonction dérivée			
Fonction constante Fonction identité Fonction carrée Fonction cube	$f(x) = k$ $f(x) = x$ $f(x) = x^{2}$ $f(x) = x^{3}$	$f'(x) = 0$ $f'(x) = 1$ $f'(x) = 2x$ $f'(x) = 3x^{2}$		

Exemple. On définit f et g par : f(x) = x et $g(x) = x^3$. Calculer les nombres suivants :

1.
$$f(2) =$$

2.
$$f'(2) =$$

3.
$$q(4) =$$

4.
$$g'(4) =$$

5.
$$g(-1) =$$

6.
$$g'(-1) =$$

Propriété 3 (Opération sur les fonctions) —

Soient u et v deux fonctions définie sur un intervalle I, et k un nombre réel.

- La fonction définie par $f(x) = k \times u(x)$ est dérivable sur I, et pour tout nombre $x \in I$, on a : $f'(x) = k \times u'(x)$.
- La fonction définie par f(x) = u(x) + v(x) est dérivable sur I, et pour tout nombre $x \in I$, on a : f'(x) = u'(x) + v'(x).

Exemple. Déterminer l'expression des dérivées des fonctions suivantes.

1.
$$f(x) = 5$$

4.
$$k(x) = 5x - 1$$

2.
$$g(x) = 4x$$

5.
$$l(x) = 4x^2 - 2x + 1$$

3.
$$h(x) = -2x^3$$

6.
$$m(x) = 2x^3 + 6x^2 - 4x + 7$$

V. Dérivée et Variations

Propriété 4 -

Soit f une fonction définie et dérivable sur un intervalle I. Alors :

- si la fonction dérivée f' est strictement positive, alors la fonction f est croissante;
- si la fonction dérivée f' est strictement négative, alors la fonction f est décroissante.

Exemple. Soit f une fonction. On connait le tableau de signes de la dérivée, donné dans le tableau suivant. Compléter le tableau de variations de f.

x	$-\infty$		-2		1		5		$+\infty$
Signe de $f'(x)$		+	0	_	0	+	0	_	
$\begin{array}{c} \text{Variation} \\ \text{de } f \end{array}$									

Exemple. On considère la fonction f définie sur \mathbb{R} par : $f(x) = 2x^2 - 6x + 1$.

- 1. Déterminer l'expression de f'.
- 2. Dresser le tableau de signes de f'.

3. En déduire le tableau de variations de f.

4. Quels sont les extremums de f?

Exemple. On définit la fonction g sur \mathbb{R} par $g(x) = x^3 + 3x^2 - 9x + 5$.

1. Calculer g'(x) et vérifier que : g'(x) = 3(x+3)(x-1).

2. Dresser le tableau de signes de g'(x).

3. En déduire le tableau de variations de g.

4. Quels sont les extrema de g?