中国科学技术大学

2007-2008 学年第二学期考试试卷

考试科目:随机过程		得分:	•
学生所在系:	姓名:	学号:	
(2008	年6月30日,	开卷)	
(20 分)判断是非歷: (1) 设 X 为…平稳独立增量过	程,则必有:		,
a. X 为 · · Poisson 过程;($\langle X \rangle$ b. X	、为一马氏过程;(\nearrow
c. X(I+1)-X(I)为平稳过	. 1/		
(2) 设 S 为一不可约马氏链 (3	Y _n , n≥0}的状态?	空间,则对任二状态	≶ <i>i, j</i> ∈ S 。必省;:
a. i, j 均为正常返状态;(μ_j .	$nf_{ij}^{(n)}: (\swarrow)$
$c. d(i), d(j) \in (0, +\infty)$;		序湖) 依据方等场	₩ ?
$a. R(\tau) = e^{- \tau }(\tau^2 + 2 \tau)$	-i); (X)	$b. R(\tau) = \begin{cases} 1/ \tau , \\ 1, \end{cases}$	$\tau \neq 0$; $\tau = 0$
$c. R(\tau) = \tau \mid e^{-\tau^2/2}; \left(\right)$	d,R(t)=	$\begin{cases} (\cos \tau)/(1-\tau^2), \\ 0, \end{cases}$	r <1 r ≥1; ().
THE THE SECOND SECOND SECOND	भ्य का का का सार्व अंदियां ।	の最大以の仏会 き	(低盐价量)

(15分)考察直线上的简单对称随机游动,即质点从0 出发,每隔单位时间等可能 地向左或向右移动一个单位。现以 X ,表示质点在时刻 n 所处的位置,

- (1) 试求期望 $E(X_n)$ 和协方差 $Cov(X_m, X_n)$, $(m, n \in N)$,
- (2) 试求 X, 的分布律(n=1,2,3,…);
- (3) $\{X_n, n=0,1,2,\cdots\}$ 是否为平稳过程?
- 三、(15分)(1) 某报贩征订报纸,设米订阅的顾客数为强度 6 (人/日)的 Poisson 过

2007-2008 学年第二学期。第1页(共2页)

随机工程

07-08: 第二巴斯圣试试卷

11) a. 销 脉

c X. 平静、独博量正程 期望不定在不

的). a X. 显然.

b. X·从i+似·江丰山、当招限S印度花时。

c. V

- (d). P(xn=i)

为价篇的便金型=点则3种律为 $P(\chi_{n-2}k-n) = C_{n-1}^{k} \cdot (\frac{1}{2})^{n}, \quad k=0,\dots n$

Exn=0 (1)

閣设 man. E(Xm×n | Xm=k) = kE(Xn | xm=k)=· は(EXn-m+k)= k2

$$\sum_{k=1}^{m} (a_{k} - m)^{2} \cdot C_{m}^{k} (\underline{f})^{m} = \left[\sum_{k=1}^{m} (4k^{2} C_{m}^{k} \underline{f})^{m} - 4n \sum_{k=1}^{m} k C_{m}^{k} + m^{2} \sum_{k=1}^{m} C_{m}^{k} \right] \\
= \left[(4n(m+1) 2^{m-2} + 4m 2^{m-1} - 2m^{2} 2^{m} + m^{2} 2^{m}) \underline{f} \underline{f}^{2} \right]^{m} . \quad (n)$$

.. Gov (xm, xn) = - min (m, n)

三川片等作顾客购买招纸物则广泛流 对目(立方方)

NtJ: t时到到达的顾客数

XIt): 甘时刻, 南瓜入

则x(t)=· 点 行

Dy Exit) = . ENt). EY; = Ju\$ = 6. X € . X365 = . 3650

Var XIt) = ENt) Var Yi + Var Nt) E'Yi = 1/1402)t = 6x (35 + 4) x365=7300

DA 全角jik.为第K个从了展出的从了层出产品的 其中1表示从1层层计 IAgi JAgzn. ind ~ (Pig 17/2) 0 标私准高升

回
$$O_j = \sum_{k=0}^{N_0} P_{ij}(k) + \dots + \sum_{k=0}^{N_0} P_{ij}(k)$$

i > j 时 $P_{ij}^{(n)}$ 有 t 中的有i - j 生 在 是 t 的多版式 $P_{ij}^{(n)} = C(n)$ $P_{ij}^{(n)} = C(n)$ 其中 C(n) 是 t 的多版式 t当 $j \neq i$ 时 $P_{ij}^{(n)} = C(n) \left(\frac{1}{i}\right)^{n-(i-j)}$ $\Rightarrow \left(\frac{1}{j}\right) < 1. \qquad \lim_{n \to \infty} P_{ij}^{(n)} = 0.$ $\Rightarrow \sqrt{\frac{1}{j}} \Rightarrow \sqrt$

王. Th [[12]=[[(0) p[2]= 3 (0.94.0]. 1.36)

B) E[T3 |X0=2]=E[T3 |X1=1]. P(X1=1 |X0=2)+E[T3 |X1=2] P(X1=2 |X0=2] + E[T3 |X1=3] P(X1=3 |X0=2)

ELTS | x0=1] = 1+0.6 ELTS | x0=1] +0.3 ELTS | x0=2] (**) 哪到得

保合(+)(林) 可得 ECTS |X0=2]= 33. ELTS |X0=1]= 33

13)有限状态、延、石不图约、雕造、双种园基层白、71,34兴的 3相限分布 TV

中国科学技术大学 2006-2007 学年第二学期考试试卷

考试科目:	随机过程	.	得	分	
学生所在系		是否重考 姓 名	学	号。	·
į		(2007年7月8号, 开卷)			

1. $(15 \, f)$ 设移民到某地区定居的户数 N(t) 是一个 Poisson 过程,平均每周有 2 户定居,即强度 $\lambda=2$. 如果每户的人口数为独立同分布的随机变量 $Y_i, i=1,2,3,\ldots$,且分布律为 $\begin{pmatrix} 1 & 2 & 3 & 4 \\ \frac{1}{6} & \frac{1}{3} & \frac{1}{6} & \frac{1}{6} \end{pmatrix}$. 记 $X(t)=\sum_{i=1}^{N(t)}Y_i$.

- (1) 试求 5 周内移民到该地区人口的数学期望及方差;
- (2) 求 X(t) 的矩母函数.
- 2. (20 分) 设马氏链 $\{X_n, n \geq 0\}$ 的状态空间为 $I = \{0, 1, 2, \ldots\}$, 转移概率为

$$P_{00} = \frac{1}{2}, P_{i,i+1} = \frac{1}{2}, P_{i,0} = \frac{1}{2}, i \in I.$$

- (1) 试求 $f_{00}^{(n)}$ $(n \in N)$ 和 f_{00} ;
- (2) 试求从 0 出发后第一次回到 0 的平均步长 μ_0 ;
- (3) 证明此马氏链为不可约遍历的.
- 3. (15 分) 设有甲,乙,丙三个品牌的某种产品在某一地区的市场占有率开始时 (n=0) 各为 $\frac{1}{3}$. 而每过一个月 (单位时间) 顾客消费倾向的改变可以用一个三状态的马氏链 $\{X_n, n \geq 0\}$ 来描述,其一步转移概率矩阵为 (状态 1, 2, 3 分别表示购买甲,乙,丙三种产品):

$$\mathbf{P} = \begin{array}{ccc} 1 & \left(\begin{array}{ccc} 0.6 & 0.4 & 0 \\ 0.35 & 0.3 & 0.35 \\ 0 & 0.2 & 0.8 \end{array} \right).$$

- (1) 问两个月后各品牌的市场占有率将会变为多少?
- (2) 各品牌产品的市场占有率最终会稳定于什么样的比例?
- 4. (15 分) 设 $\{X_n, n \ge 0\}$ 为从 0 出发的简单对称随机游动.
 - (1) 问过程回到 0 的平均时间是多少?

可年7月.

(1)
$$E \times (s) = E(\frac{4s}{2s}) \times 1 = E \times (s) E \times 1 = 2.5 \cdot \frac{5}{2} = 25$$

$$E \times 1 = 1.2 + 2.2 + 3.2 + 4.2 = \frac{2}{5}$$

$$E \times 1 = 1.2 + 2.2 + 3.2 + 4.2 = \frac{2}{5}$$

$$V_{xx} \times (s) = E(N(s)) V_{xx} \times 1 + V_{xx} (N(s)) E^{2} \times 1 = 2.5$$

$$= E(M(s)) E \times 2 = 10 \frac{4s}{5} = \frac{215}{5}$$

(2)
$$\psi_{x}(t) = E[e^{t(x(t))}]$$

$$= E\{E[exp\{t' = Y: | N=n]\}\}$$

$$= E\{E[exp\{t' = Y: | N=n]\}\}$$

$$= E[(\psi_{y}(t))^{n}]$$

$$\psi_{y}(t) = te^{t} + te^{t} + te^{t} + te^{t}$$

$$E[(\psi_{y}(t))^{n}] = \sum_{n=0}^{\infty} (\psi_{y}(t))^{n} e^{-\lambda t} \frac{(\lambda t)^{n}}{n!}$$

$$= e^{-\lambda t} e^{\lambda \psi_{y}(t') t} = e^{\lambda t} (\psi_{y}(t') - 1)$$

$$\int_{X^{-1}(B)} E(Y|X) dp^{\nu} = \int_{X^{-1}(B)} Y dp = \int_{\mathcal{X}} Y(\omega) I_{B}(X(\omega)) P(d\omega)$$

$$= E(Y(\omega) I_{B}(X(\omega)))$$

to DE B, F为X,Y的内交分布, 20.

$$\int_{\{S_n \in B\}} X_j dp = \int_{\{S_n \in B\}} X_j I_{a(A_j + X_j)} \prod_{i=1}^{n} F(dX_i)$$

$$= \int_{\{S_n \in B\}} X_k dp$$

Pr $\in X_i$ $I_{\{S_i \in B\}}$ $\subseteq J_i$ $\exists j \in X_j$ $\exists j \in J_i$ $\exists j \in$

$$E(X|X+Y=2)$$

$$=E\{E(X|X+Y=2|Y)\}$$

$$=E\{E(X|X+Y=2|Y)\}$$

中国科学技术大学

2005—2006 学年第二学规考试试卷

考试科目: 颜	机过程		得分:	· · · · · · · · · · · · · · · · · · ·	-
学生所在《:		姓 名	学	号,	
	(2006年7月	16日,开剂	步,任选5题	作答)	

- 一、(2008) 按(N(t),:≥0)为一强度A的 Poisson 过程, s、t>0, 试求:
- (1) $P\{N(s) = k \mid N(s+e) = n\} = ? \quad (k = 0,1,2,...)$ $E\{N(s)N(s+e)\} = ?$
- (3) E(N(s+t/Nis))的分布律与概定如望。

工。(20分) 2N 千球 (N 个果我、N 个自转) 分散在甲。乙两个袋子里,每套各装 N 个球。每次从二袋中各随机取出一球,相互交换后再放回袋中。若以 X_n 表示第 n 次交换后 甲环年 范冕珍贵。 [0,1,2,…,N])

- (1) 试来该与认辩的转移概率矩阵 P;
- (2) 延明该马中鲜为不可约遍历的。
- (1) In Fig. $\pi_{j} = \lim_{n \to \infty} p_{i,j}^{(n)}$, $(i, j = 0,1,2,\dots,N)$.
- 三、(20分)设马氏链转移概率矩阵为:

$$P = \begin{cases} 1 & 0, & 0, & 1, & 0 \\ 2 & 1, & 0, & 0, & 0 \\ 3 & \frac{1}{2}, & \frac{1}{2}, & 0, & 0 \\ 4 & \frac{1}{3}, & \frac{1}{3}, & \frac{1}{3}, & 0 \end{cases}$$

(1) 试将状态空间 S = {1,2,3,4} 按互达关系划分为不同的等价类,并讨论各类是常返(正常返或零常返)还是瞬过的,周期性如何。在正常返情况下,求出平均常返时 μ_i ;

2005-2006 学年, 第二学期, 第1页(共2页)

中国科学技术大学 2004—2005 学年第二学期考试试卷

常试科目:. 随机过	程	得分:	
学生所在系:	姓名:	学号:	-
	(2005年6月21日, 3	干卷)	•
一、(20 分) 16型	双口族 卢 杂色	ul - inverse a company	
型。的Poisson 过程	四中岛、四、奥巴汽牛)	的到达数分别为强度和人	
• • •	-		1.
(2) 當一杯珠士	60 平均不均分。 60 平均不均分。	均到达时间是多少? λ _ι +	<u>λ</u> z †
- sp	的平均到达时间是多少	$\stackrel{>}{\sim}$? $\frac{1}{\lambda_1}$	
(3) 白玄先子黄	车到达. 但却落后于蓝	(本的概率是多少? /\land	· (det)
三、(10分)一部	P仪器受到的冲击数No	为强度和的Poisson过	Odio
程、设第上收冲击造成	吃的损伤为D., {D., i	=1、2、3…] 独立同分	
布,并与水的独立。老	损伤随时间而 (指数型	(i) 衰减,即 <u>经过</u> +时间	
后,有变为为em Ca>	0),则时刻 t 仪器所引	是的总损伤为:	
	$\sum_{i=1}^{k(t)} D_i e^{-\alpha(t-W_i)}$	•	_ ~-
	• '	$\frac{\lambda D}{\otimes}$ (1-e	
其中 机为第 i 次冲击来	到的时刻,试求 $B(D(t))$)。(假定 <i>ED,≃D</i>)	
三、(20 分) 一质	点在圆周上作随机游动	(马氏链),圆周上共	
有 N 格, 质点以概率 p //	顶时针方向游动一格,L	以概率 1-p 逆时针方向	
游动一格 (见图示):		N	
	り转移概率矩阵 P; № /	1 2 p	:
2004200	15 学年第二学期 第1页	(共2页) 0 Р 0 …	0

由相互称生物汽车到达数为强度和抗约的产品处理 载等一辆汽车的平均到达时间是 /(A)thetas)

(2). t,

13)
$$P(t_{6} < t_{5}, t_{6} > t_{5}) = P(t_{6} < t_{5}) P(t_{6} > t_{5}).$$

$$P(t_{6} < t_{5}) = \int_{0}^{\infty} \int_{\lambda_{1} \lambda_{1}}^{t_{5}} e^{-\lambda_{1} t_{4} - \lambda_{1} t_{5}} dt_{4} dt_{5}.$$

$$= \int_{0}^{\infty} \lambda_{1} e^{-\lambda_{1} t_{5}} \left(-e^{-\lambda_{1} t_{5}}\right) \int_{0}^{t_{5}} dt_{5}.$$

$$= \int_{0}^{\infty} \lambda_{1} e^{-\lambda_{1} t_{5}} \left(1 - e^{-\lambda_{1} t_{5}}\right) dt_{5}.$$

$$= \int_{0}^{\infty} \lambda_{1} e^{-\lambda_{1} t_{5}} \left(1 - e^{-\lambda_{1} t_{5}}\right) dt_{5}.$$

$$= \int_{0}^{\infty} \lambda_{1} e^{-\lambda_{1} t_{5}} dt_{5} - \int_{0}^{\infty} \lambda_{1} e^{-(\lambda_{1} t_{5}) t_{5}} dt_{5}.$$

 $= |-\frac{\lambda_1}{\lambda_1 t \lambda_1} = \frac{\lambda_1}{\lambda_1 t \lambda_2}$ $= |-\frac{\lambda_1}{\lambda_1 t \lambda_2} = \frac{\lambda_1}{\lambda_1 t \lambda_2}$ to Plto(ty), tert主)= hir E DIt)= E(ME) Die->(t-Mi) = E(E(ME) Die-d(t-Mi)/Mt)=n) }

 $E(\stackrel{MU}{\stackrel{}{\stackrel{}{\stackrel{}}{\stackrel{}}{\stackrel{}}}{\stackrel{}}} D, e^{-\partial(t-w_i)}/Mt+n) = E(\stackrel{P}{\stackrel{}{\stackrel{}}{\stackrel{}}{\stackrel{}}} D, e^{-\partial(t-w_i)}/Mt+n)$ = = = E(D. e-2(1-m.)/M4)=n) = = E(D/MHEA) E(e->(+-M)/MHEA) = ED = D = E(e-d(t-m)/My=n) = De-ot E(= e = "/Mt/=n).

在全儿儿,一, 后是正是约10.17上的均匀 xv. 则由 Th. $E(\stackrel{\sim}{\leq} e^{\partial k_i} / M t_{ren}) = E(\stackrel{\sim}{\leq} e^{\partial k_i}) = E(\stackrel{\sim}{\leq} e^{\partial k_i})$ = + Steen dx = n (eot-1)

+2 ED(+)= +e++ (e++-1) E(M+) $=\frac{\lambda p}{2}(1-e^{-\partial t})$

08-09. 第一号期考试试卷

1110让 省. 馬叶时携带角雕

$$|R_{X|T.5}| = Cov(X|t).X(s)) = Cov(X|t).X(s)-X(t)+X(t)) = Cov(X|t).X(s)-X(t)) + Cov(X|t).X(t)$$

$$|R_{X|T.5}| = Cov(X|t).X(s)) = |V(t)| = V(min(s,t))$$
+ 整章 Cov(X(t),X(t)) = V(t) = V(min(s,t))

J的设A: 第1555年在 t时刻不跨段[a.b]这个事件。Xit)时刻七位于路路(a.b)的汽车数。 S. 汽车的发车时间、S~Uiat)

EXEF EME) - ELA; - It Pa.b.

P) P(x=k|Nit)=n)= (x Pa, b) (1-Pa, b) ink.

$$P(X = k) = \sum_{h=k}^{\infty} \binom{k}{h} \binom{k}{h} \binom{h}{h} \binom{h}{h} \binom{h}{h} \binom{h}{h} \binom{h}{h} \binom{h}{h}$$

$$= e^{-\lambda t} \frac{h \cdot h}{k!} \frac{a t p_{a,b}}{k!}$$

: XIt) ~ Poi (At Pa. b)

3. 川有限状态 在 初约. 排風到正常返. 习遍后.

(2).
$$\forall 1$$
) $\exists . \forall i$ $\forall r = \pi$ $\Rightarrow \pi = \begin{bmatrix} \frac{3}{37} & \frac{94}{273} & \frac{31}{273} \\ 2\pi & = 1 \end{bmatrix}$

B1
$$\mu_4 = \frac{1}{14} = \frac{273}{31}$$

4. (1)
$$P = 0 \begin{pmatrix} \frac{1}{3} & \frac{2}{3} & 0 \\ \frac{1}{6} & \frac{1}{6} & \frac{1}{3} \end{pmatrix}$$

口)有限状态 郑周期 正常这