北京师范大学 2021-2022 学年第二学期高等代数II期末考试试题(A卷)

课程名称:	高等代数II		任课老师姓名:		
卷面总分:	分	考试时长:_	分報	沖 考试类别	:闭卷
院(系):_		专业:_		年 组	及:
姓名:		_ 学号:			

-、(18分) 用正交替换 X = PY 将下列二次型化为标准形.

$$Q(x) = x_1 x_2 + x_1 x_3 + x_2 x_3.$$

要求写出正交矩阵 P 的计算过程和标准形.

二、 (18分) 给定 n 元实二次型 $Q(X) = X^T A X$, 令

$$W = \left\{ \alpha \in \mathbb{R}^n \mid \alpha^T A \alpha = 0 \right\}.$$

证明 $W \in \mathbb{R}^n$ 的一个子空间的充分必要条件是 A 是半正定矩阵或半负定矩阵.

- 三、 (18分) 设 3 维欧式空间 V 在基 α_1 , α_2 , α_3 下的度量矩阵为 $G = \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{pmatrix}$, $\lambda_i > 0$, i = 1, 2, 3. 对于 V 上的线性变换 $\sigma \in \mathcal{L}(V)$, 设 σ 在基 α_1 , α_2 , α_3 下的矩阵为 $A = (a_{ij})_{3\times 3}$. 求出满足 σ 是对称变换的全部矩阵 A.
- 四、 (18分) 设 V 是 n 维欧式空间, 对于 V 上的一个线性变换 $\sigma \in \mathcal{L}(V)$, 设 σ 在基 $\alpha_1, \ldots, \alpha_n$ 下的 矩阵为 A, 判断下列结论是否正确, 并说明理由:
 - (1) 设 $\alpha_1, \ldots, \alpha_n$ 和 $\sigma(\alpha_1), \ldots, \sigma(\alpha_n)$ 是 V 的两组标准正交基, 则 σ 是正交变换;
 - (2) 若 A 是正交矩阵, 则 σ 是正交变换的充要条件是 $\sigma(\alpha_1), \ldots, \sigma(\alpha_n)$ 是 V 的一组标准正交基;
 - (3) 若有 $(\sigma(\alpha_i), \sigma(\alpha_i)) = (\alpha_i, \alpha_i), i = 1, ..., n, 则 \sigma 是正交变换.$
- 五、 (14分) 设 W 是 n 维欧式空间 V 的一个 m 维子空间, 证明存在 V 的一个正交变换 σ 使得 $\sigma(W)=W^\perp$ 的充要条件是 n=2m.
- 六、 (14分) 设 $V \in \mathbb{R}$ 维欧式空间, $\sigma \in \mathcal{L}(V)$ 是 V 上的一个正交变换. 令 $W = \{f(\sigma) \mid f(x) \in \mathbb{R}[x]\}$.
- (1) 证明 $W \in \mathcal{L}(V)$ 的一个子空间;
- (2) 若 σ 的特征多项式为 $\varphi_{\sigma}(x) = g(x)^2$, 其中 g(x) 在 \mathbb{C} 内无重根, 求 W 的维数 $\dim(W)$ 与一组基.