Heuristic Analysis - Air Cargo Planning Problem

1 Introduction

In this project, I implement a planning search agent to solve a deterministic planning problems for an Air Cargo transport system. After defining the air cargo problem and action schema, I first run uninformed non-heuristic searches and provide result metrics on number of node expansions required, number of goal tests, time elapsed, and optimality of solution for various search methods. Secondly, I apply a planning graph to the search problem with automated domain-independent heuristics with A* search. Finally, I compare the results of the domain-independent heuristics against the uninformed non-heuristic searches to evaluate the performance of the search methods.

All problems are stated as following:

```
Air Cargo Action Schema:
```

```
Action(Load(c, p, a), PRECOND: At(c, a) \land At(p, a) \land Cargo(c) \land Plane(p) \land Airport(a) EFFECT: \neg At(c, a) \land In(c, p))

Action(Unload(c, p, a), PRECOND: In(c, p) \land At(p, a) \land Cargo(c) \land Plane(p) \land Airport(a) EFFECT: At(c, a) \land \neg In(c, p))

Action(Fly(p, from, to), PRECOND: At(p, from) \land Plane(p) \land Airport(from) \land Airport(to) EFFECT: \neg At(p, from) \land At(p, to))
```

Problem 1 initial state and goal (air cargo p1):

```
Init(At(C1, SFO) \land At(C2, JFK) \land At(P1, SFO) \land At(P2, JFK) \land Cargo(C1) \land Cargo(C2) \land Plane(P1) \land Plane(P2) \land Airport(JFK) \land Airport(SFO))
```

Goal(At(C1, JFK) ∧ At(C2, SFO))

Problem 2 initial state and goal (air cargo p2):

```
\begin{split} & \text{Init}(\text{At}(\text{C1, SFO}) \land \text{At}(\text{C2, JFK}) \land \text{At}(\text{C3, ATL}) \land \text{At}(\text{P1, SFO}) \land \text{At}(\text{P2, JFK}) \land \text{At}(\text{P3, ATL}) \\ \land & \text{Cargo}(\text{C1}) \land \text{Cargo}(\text{C2}) \land \text{Cargo}(\text{C3}) \land \text{Plane}(\text{P1}) \land \text{Plane}(\text{P2}) \land \text{Plane}(\text{P3}) \\ \land & \text{Airport}(\text{JFK}) \land \text{Airport}(\text{SFO}) \land \text{Airport}(\text{ATL})) \end{split}
```

Goal(At(C1, JFK) \land At(C2, SFO) \land At(C3, SFO))

Problem 3 initial state and goal (air_cargo_p3):

 $Init(At(C1, SFO) \land At(C2, JFK) \land At(C3, ATL) \land At(C4, ORD) \land At(P1, SFO) \land At(P2, JFK)$

- $\land \; Cargo(C1) \; \land \; Cargo(C2) \; \land \; Cargo(C3) \; \land \; Cargo(C4) \; \land \; Plane(P1) \; \land \; Plane(P2)$
- \land Airport(JFK) \land Airport(SFO) \land Airport(ATL) \land Airport(ORD))

Goal(At(C1, JFK) \land At(C3, JFK) \land At(C2, SFO) \land At(C4, SFO))

2 Non-heuristic search methods

In the following, I run uninformed non-heuristic searches for air_cargo_p1, p2, and p3; provide metrics on number of node expansions required, number of goal tests, time elapsed, and optimality of solution for each search algorithm. If depth-first takes longer than 10 minutes, I stop the search and provide this information in the documentation. Test results Ire generated by using the run_search script from the command line:

```
python run_search.py -p 1 -s 1 2 3 4 5 6 7 python run_search.py -p 2 -s 1 3 5 7 python run_search.py -p 3 -s 1 3 5 7
```

In the search script the [-p] defines the problem and [-s] the search method. The search script includes seven non-heuristic search methods to choose following:

- 1. Breadth first search
- 2. Breadth first tree search
- 3. Depth_first_graph_search
- 4. Depth_limited_search
- 5. Uniform cost search
- 6. Recursive best first search
- 7. Greedy_best_first_graph_search

I didn't include 2, 4, and 6 for problem 2 and 3 due to taking longer 10 minutes to run. Thus, the results for air cargo p1, p2, and air cargo p3 are shown below.

2.1 Air cargo p1 results

Search method	Expansions	Goal Tests	Time Elapsed	Path Length	Optimal?
Breadth first search	43	56	0.0343	6	Yes
Breadth first tree search	1458	1459	1.0598	6	Yes
Depth first graph search	12	13	0.0091	12	No
Depth limited search	101	271	0.1099	50	No
Uniform cost search	55	57	0.0422	6	Yes
Recursive best first search	4229	4230	3.1800	6	Yes
Greedy best first graph search	7	9	0.0082	6	Yes

2.2 Air_cargo_p2 results

Search method	Expansions	Goal Tests	Time Elapsed	Path Length	Optimal?
Breadth first search	3343	4609	15.6610	9	Yes
Breadth first tree search	-	-	-	_	_
Depth first graph search	1669	1670	15.2937	1444	No
Depth limited search	-	-	-	_	_
Uniform cost search	4852	4854	13.4508	9	Yes
Recursive best first search	-	-	-	_	_
Greedy best first graph search	990	992	2.8603	15	No

2.3 Air_cargo_p3 results

Search method	Expansions	Goal Tests	Time Elapsed	Path Length	Optimal?
Breadth first search	14663	18098	115.8941	12	Yes
Breadth first tree search	_	-	_	_	_
Depth first graph search	592	593	3.5030	571	No
Depth limited search	_	-	_	_	_
Uniform cost search	18235	18237	59.0242	12	Yes
Recursive best first search	-	-	_	_	_
Greedy best first graph search	5614	5616	18.5928	22	No

3 Domain-independent heuristic search methods

In the following, I run A* planning searches using the heuristics I implemented on air_cargo_p1, air_cargo_p2 and air_cargo_p3; provide metrics on number of node expansions required, number of goal tests, time elapsed, and optimality of solution for each search algorithm. If depth-first takes longer than 10 minutes, I stop the search. Test results Ire generated by using the run_search script from the command line:

```
python run_search.py -p 1 -s 8 9 10 python run_search.py -p 2 -s 8 9 10 python run_search.py -p 3 -s 8 9 10
```

The search script includes three domain-independent heuristic search methods to choose from:

- 8. A* search with h 1
- 9. A* search with h ignore preconditions
- 10. A* search with h_levelsum

I didn't include A* with h_levelsum for problem 3 due to taking longer 10 minutes to run. Thus, the results for air cargo p1, air cargo p2, and air cargo p3 are shown below.

3.1 Air_cargo_p1 results

Search method	Expansions	Goal Tests	Time Elapsed	Path Length	Optimal?
A* with h_1	55	57	0.0431	6	Yes
A* h_ignore_preconditions	41	43	0.0473	6	Yes
A* h_pg_levelsum	23	25	0.8351	6	Yes

3.2 Air_cargo_p2 results

Search method	Expansions	Goal Tests	Time Elapsed	Path Length	Optimal?
A* with h_1	4852	4854	13.4188	9	Yes
A* h_ignore_preconditions	1450	1452	4.8572	9	Yes
A* h_pg_levelsum	3337	3339	1764.5640	9	Yes

3.3 Air_cargo_p3 results

Search method	Expansions	Goal Tests	Time Elapsed	Path Length	Optimal?
A* with h_1	18235	18237	60.6404	12	Yes
A* h_ignore_preconditions	5040	5042	18.9016	12	Yes
A* h_pg_levelsum	10135	10137	>10min	12	_

For domain-independent heuristic A* search, all search method are optimal for path length. Furthermore, A* with h_levelsum minimizes node expansion but it is the slowest search time. For problem 1, A* with h1 and A* with h_ignore_preconditions are faster than A* with h_levelsum where A* with h1 is slightly faster. For problem 2 and 3, A* with h_ignore_preconditions is optimal and also minimizes node expansion, goal tests and time elapsed.

4 Optimal Plan

4.1 Air Cargo Problem 1

Load(C1, P1, SF0) Load(C2, P2, JFK) Fly(P1, SF0, JFK) Unload(C1, P1, JFK) Fly(P2, JFK, SF0) Unload(C2, P2, SF0)

4.2 Air Cargo Problem 2

Load(C3, P3, ATL)
Fly(P3, ATL, SF0)
Unload(C3, P3, SF0)
Load(C2, P2, JFK)
Fly(P2, JFK, SF0)
Unload(C2, P2, SF0)
Load(C1, P1, SF0)
Fly(P1, SF0, JFK)
Unload(C1, P1, JFK)

4.3 Air Cargo Problem 3

Load(C2, P2, JFK)
Fly(P2, JFK, ORD)
Load(C4, P2, ORD)
Fly(P2, ORD, SF0)
Unload(C4, P2, SF0)
Load(C1, P1, SF0)
Fly(P1, SF0, ATL)
Load(C3, P1, ATL)
Fly(P1, ATL, JFK)
Unload(C3, P1, JFK)
Unload(C2, P2, SF0)
Unload(C1, P1, JFK)

5 Conclusion

Both non-heuristic and domain-independent heuristic search methods could provide optimal action plans for air cargo planning problem project. For the non-heuristic search methods, both breadth first search and uniform cost search are optimal. For the domain-independent heuristic search methods, all A* search methods are optimal.

When we consider the execution time, node expansions and goal tests, the depth first graph search was fastest in non-heuristic search methods but not optimal. A* search with ignore preconditions heuristic was fastest and optimal with regards to plan length in domain-independent heuristic search methods. Furthermore, AIMA text which argues that a search strategy which is more informed will likely reach the goal state faster as well as expand on the more useful states. Thus, A* search with ignore preconditions heuristics is the best strategy for our problem among all search methods.

Our conclusion and results have shown the advantage of domain-independent heuristic search methods when optimality is a primary concern.

Reference

[1] Russel, Stuart and Norvig, Peter. Artificial Intelligence: A Modern Approach 3rd Edition