

MATHEMATICAL TRIPOS Part III

Wednesday, 2 June, 2010 $\,$ 1:30 pm to 4:30 pm

PAPER 13

COMPLEX MANIFOLDS

Attempt no more than **THREE** questions.

There are **FOUR** questions in total.

The questions carry equal weight.

 $STATIONERY\ REQUIREMENTS$

 $\begin{array}{c} \textbf{SPECIAL} \ \textbf{REQUIREMENTS} \\ None \end{array}$

Cover sheet Treasury Tag Script paper

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

1

Given holomorphic functions f_1, \ldots, f_n on a polydisc $\Delta^n \subset \mathbb{C}^n$ centred at a point $\mathbf{a} = (a_1, \ldots, a_n)$ with $\partial f_i/\partial z_j = \partial f_j/\partial z_i$ for all i, j, show that there exists a holomorphic function f on Δ^n such that $\partial f/\partial z_i = f_i - f_i(\mathbf{a})$ for all i. [Hint: Define $f(z_1, \ldots, z_n)$ as a certain sum of n integrals; standard facts from Analysis may be assumed.]

Let M be a complex manifold of dimension n. If Ω_M^1 denotes the sheaf of holomorphic 1-forms, and $\tilde{\Omega}_M^1$ denotes the subsheaf of *closed* holomorphic 1-forms, deduce that there is a short exact sequence of sheaves

$$0 \to \mathbb{C} \hookrightarrow \mathcal{O}_M \xrightarrow{\partial} \tilde{\Omega}_M^1 \to 0.$$

If M is now assumed to be compact, show that any global complex-valued function f with $\partial \bar{\partial} f = 0$ must be constant. [You may assume that for any non-constant harmonic function g on a domain in \mathbb{C} , there are no local maxima for |g|.]

Still assuming that M is compact, suppose that θ is a non-zero smooth (n,0)-form on M; explain why the integral over M of the (n,n)-form $\theta \wedge \bar{\theta}$ is non-zero. If ψ denotes a holomorphic (n-1)-form on M, deduce that ψ is closed.

Suppose now that n=2, so that M is a compact complex surface. Show that there is an inclusion $H^0(M,\Omega^1_M) \hookrightarrow H^1_{\mathrm{DR}}(M,\mathbb{C})$ into the first de Rham cohomology group. Prove that

$$H^0(M,\Omega_M^1) \cap \overline{H^0(M,\Omega_M^1)} = 0$$

in $H^1_{\mathrm{DR}}(M,\mathbb{C})$, and hence that $2h^{1,0} \leqslant b_1$, where $b_1 = \dim_{\mathbb{C}} H^1_{\mathrm{DR}}(M,\mathbb{C})$. From the above short exact sequence of sheaves, prove furthermore that $b_1 \leqslant h^{1,0} + h^{0,1}$, and hence that $h^{1,0} \leqslant h^{0,1}$. Give an example of a compact complex surface for which this last inequality is strict.

Prove Cartan's equation relating the curvature and connection matrices (with respect to some local frame) of a connection on a smooth complex vector bundle, namely

$$\Theta = d\theta - \theta \wedge \theta \,. \tag{\dagger}$$

If E is a hermitian holomorphic vector bundle of rank r over a complex manifold M, describe the defining properties for the Chern connection on E, and prove that there exists a unique connection with these properties. With the curvature considered as $\Theta \in A^{1,1}(\operatorname{End}(E)) = A^{0,1}(\Omega^1(\operatorname{End}(E)))$, where $\operatorname{End}(E) = \operatorname{Hom}(E,E)$ is the endomorphism bundle, show that $\bar{\partial} \Theta = 0$, and hence that Θ determines a class Ψ in the Dolbeault cohomology group $H^1(M,\Omega^1(\operatorname{End}(E)))$.

Suppose now that we have local holomorphic frames $e_1^{(\alpha)}, \ldots, e_r^{(\alpha)}$ for E over U_{α} , with $\mathcal{U} = \{U_{\alpha}\}$ an open cover of M. Suppose the transition functions of E with respect to \mathcal{U} are represented by the transpose of matrices $g_{\alpha\beta}$; that is the frames transform via the relation

$$e_i^{(\beta)} = \sum_j (g_{\alpha\beta})_{ij} \, e_j^{(\alpha)} \,.$$

Show that Ψ corresponds to a Čech cohomology class $(\sigma_{\alpha\beta}) \in H^1(\mathcal{U}, \Omega^1(\operatorname{End}(E)))$, where $\sigma_{\alpha\beta}$ is the section of $\Omega^1(\operatorname{End}(E))$ over $U_{\alpha} \cap U_{\beta}$ represented with respect to the local holomorphic frame $e_1^{(\beta)}, \ldots, e_r^{(\beta)}$ by the matrix of holomorphic 1-forms $(\partial g_{\alpha\beta}) g_{\alpha\beta}^{-1}$. Hence show that Ψ depends on neither the choice of hermitian metric nor local trivialization for E. Show also that there is a corresponding well-defined class

$$\Psi^{(k)} \in H^k(M, \Omega^k(\operatorname{End}(E))),$$

and hence by contraction a class

$$\operatorname{tr}(\Psi^{(k)}) \in H^k(M, \Omega^k),$$

for all k > 0. When M is compact and Kähler, explain why $(\frac{i}{2\pi})^k \operatorname{tr}(\Psi^{(k)})$ determines a real class in $H^{2k}(M,\mathbb{C})$.

3

State the defining property of the Hodge *-operator, $*:\mathcal{A}_M^{p,\,q}\to\mathcal{A}_M^{n-p,\,n-q}$, on the sheaf of (p,q)-forms on an n-dimensional complex manifold M equipped with a hermitian metric. For M compact, explain briefly how this determines a hermitian inner-product on the global (p,q)-forms $A^{p,\,q}(M)$. State carefully the Hodge theorem concerning the decomposition of $A^{p,\,q}(M)$ by means of the $\bar{\partial}$ -Laplacian $\Delta_{\bar{\partial}}$, and deduce the standard orthogonal decomposition

$$A^{p,\,q}(M)\,=\,\mathcal{H}^{\,p,\,q}_{\bar\partial}\oplus\bar\partial A^{p,\,q-1}\oplus\bar\partial^*A^{p,\,q+1}\,,$$

with the $\bar{\partial}$ -closed forms being the sum of the first two factors. [Standard properties of $\bar{\partial}^* = -*\bar{\partial}^*$ may be assumed.]

Suppose now that M is also Kähler; show that $\partial\bar{\partial}^* + \bar{\partial}^*\partial = 0$. [You may assume the result expressing $\bar{\partial}^*$ as a certain commutator of operators, provided you state it precisely.] Define the Laplacians Δ_d and Δ_∂ , and prove that $\Delta_d = \Delta_\partial + \Delta_{\bar{\partial}}$ and $\Delta_\partial = \Delta_{\bar{\partial}}$.

Let η be a $\bar{\partial}$ -exact (p,q)-form $(p \geqslant 1, q \geqslant 1)$ on a compact Kähler manifold M; show that $\eta = \bar{\partial}\bar{\partial}^*\alpha$ for some form $\alpha \in A^{p,q}(M)$. If η is also ∂ -closed, prove that $\partial\bar{\partial}^*\alpha$ is harmonic; by considering the orthogonal decomposition corresponding to Δ_{∂} , deduce that $\bar{\partial}^*\alpha$ is ∂ -closed. Conclude that such an η can be expressed as $\eta = \partial\bar{\partial}\phi$ for some $\phi \in A^{p-1,q-1}(M)$.

Given two Kähler forms ω_1 and ω_2 on M which define the same de Rham cohomology class, show that there is a smooth real-valued function f with $\omega_2 = \omega_1 + i\partial\bar{\partial}f$.

4

What is meant by the canonical line bundle K_M of a complex manifold M? Let $V \subset M$ be an n-dimensional complex submanifold of an m-dimensional complex manifold M; define what is meant by the normal bundle $N_{V/M}$. State the adjunction formula relating K_V and K_M . In the case when V is of codimension one, define the line bundle [V] on M. State (without proof) the relation between [V] and $N_{V/M}$.

Suppose now E is a holomorphic hermitian vector bundle of rank r on a complex manifold V, and $F \subset E$ is a holomorphic subbundle of rank s, equipped with the induced hermitian structure. Let $\pi: E \to F$ be the orthogonal projection map (a smooth map of the holomorphic bundles) and D_E denote the Chern connection on E. Show that the Chern connection D_F of F is given by the relation $D_F = \pi \circ D_E$. Choose a local unitary frame e_1, \ldots, e_s for F and extend to a local unitary frame e_1, \ldots, e_r for E. With respect to this unitary frame, show that D_E has connection matrix

$$\begin{pmatrix} \theta_1 & \bar{A}^t \\ -A & \theta_2 \end{pmatrix}$$

where θ_1 is the connection matrix for D_F with respect to e_1, \ldots, e_s , and θ_2 and A are matrices of 1-forms. Assuming Cartan's equation (†) from Question 2 above, find an expression for the curvature matrix Θ_F for F in terms of the curvature matrix Θ_E and A.

Let $V \subset M$ now be a codimension one submanifold of a complex torus M and L is a positive line bundle on M. Show that $(L \otimes [V]^{\otimes a})|_V$ is positive for all $a \geq 0$. Assuming the Kodaira Vanishing Theorem, show that $H^i(M, L \otimes [V]^{\otimes a}) = 0$ for all i > 0 and $a \geq 0$.

END OF PAPER