Computational Vision

Binary Images

Horn (Robot Vision)

Ch.3: pages 46-53, and section 3.4.

Ch.4: pages 65-71

Binary Images

Binary Image b(x,y): Obtained from gray-level g(x,y) by thresholding.

Characteristic Function:

$$b(x,y) = \begin{cases} 1 & g(x,y) < T, \text{ or } \\ 0 & g(x,y) >= T \end{cases}$$

- 1) Geometrical Properties
- 2) Discrete Binary Images
- 3) Multiple objects
- 4) Sequential and Iterative Processing.

From gray-scale to binary

Gray-scale

Given T

For all pixels (x,y): If g(x,y) < T

b(x,y)=0

else

b(x,y)=1

endif

Binary

Selecting the Threshold (T)

HISTOGRAM

h(i) =
Number
of pixels with
value i,
i=0, ..., 255
(8-bit image).

b(x,y)

Computer Vision – Ioannis Stamos

Histogram Thresholding:example

g(x,y)

Gray-scale image

Histogram and threshold

Histogram Thresholding:example

g(x,y)

Gray-scale image

Differences?

b(x,y)

Binary image

Binary Images

What can we do with a binary image?

b(x,y)

Binary Images

What can we do with a binary image?

Note that: We see only silhouettes.

- -- We can count number of objects
- -- We can measure
 - -- size of objects
 - -- orientation of objects

-- ...

b(x,y)

Need some theory...

Geometric Properties

Assume:

- 1) b(x,y) is continuous
- 2) Only one object

Geometric Properties

Assume:

- 1) b(x,y) is continuous
- 2) Only one object

Area:

$$A = \iint_{I} b(x, y) dx dy$$

(Zeroth Moment)

Geometric Properties

Assume:

- 1) b(x,y) is continuous
- 2) Only one object

Area:

$$A = \iint_{I} b(x, y) dx dy$$

(Zeroth Moment)

Position: "Center" (x,y) of Area

$$\bar{x} = (1/A) \iint_{I} x * b(x, y) dx dy$$

$$\bar{y} = (1/A) \iint_{I} y * b(x, y) dx dy$$

(First Moment)

Computer Vision – Ioannis X Stamos

Orientation?

It is a line.

It is easy to imagine for elongated objects.

We will provide an intuitive formulation.

Line in 2D

Line in 2D

Equation of axis: y=mx+b? $0 \le m \le infinity$

axis

We representing the axis with angle θ and distance from origin So an axis is defined by the pair (ρ, θ) .

Equation of line: $x \sin \theta - y \cos \theta + \rho = 0$

Orientation

We use axis of least second moment

Find line that produces the minimum sum of squared distances from all points on the object.

Orientation Difficult to define!

We use axis of least second moment

For mass distribution: Axis of minimum Inertia.

Minimize:

We use:
$$x\sin(\theta) - y\cos(\theta) + \rho = 0$$
 (ρ, θ) finite.

Find (ρ, θ) that minimize E for a given b(x,y)

$$r^2 = (x\sin(\theta) - y\cos(\theta) + \rho)^2$$

$$E = \iint_{I} (x \sin(\theta) - y \cos(\theta) + \rho)^{2} b(x, y) dx dy$$

$$r^2 = (x\sin(\theta) - y\cos(\theta) + \rho)^2$$

So:

$$E = \iint_{I} (x \sin(\theta) - y \cos(\theta) + \rho)^{2} b(x, y) dx dy$$

Using $dE/d\rho=0$ we get:

$$A(\bar{x}\sin(\theta) - \bar{y}\cos(\theta) + \rho) = 0$$

$$r^2 = (x\sin(\theta) - y\cos(\theta) + \rho)^2$$

So:

$$E = \iint_{I} (x\sin(\theta) - y\cos(\theta) + \rho)^{2}b(x, y)dxdy$$

Using $dE/d\rho=0$ we get:

$$\bar{A}(\bar{x}\sin(\theta) - \bar{y}\cos(\theta) + \rho) = 0$$

Note: Axis passes through center $(\bar{x}, \bar{y})!!$

So, change coordinates: $x' = x - \overline{x}$, $y' = y - \overline{y}$

We can show that:

$$r^2 = (x\sin(\theta) - y\cos(\theta) + \rho)^2$$

$$E = \iint_{I} (x \sin(\theta) - y \cos(\theta) + \rho)^{2} b(x, y) dx dy$$

Using $dE/d\rho=0$ we get:

$$A(\bar{x}\sin(\theta) - \bar{y}\cos(\theta) + \rho) = 0$$

Note: Axis passes through center $(\bar{x},\bar{y})!!$

So, change coordinates: $x' = x - \overline{x}$, $y' = y - \overline{y}$

We get:

$$E = a \sin^{2}(\theta) - b \sin(\theta) \cos(\theta) + c \cos^{2}(\theta)$$

$$a = \iint_{I} (x')^{2} b(x, y) dx' dy'$$
Second Moments
$$b = 2 \iint_{I} (x'y') b(x, y) dx' dy'$$

$$c = \iint_{I} (y')^{2} b(x, y) dx' dy'$$

$$c = \iint_{I} (y')^{2} b(x, y) dx' dy'$$

$$E = a\sin^2(\theta) - b\sin(\theta)\cos(\theta) + c\cos^2(\theta)$$

Using dE/d
$$\theta$$
=0, we get: tan(2 θ)=b/(a-c)

$$E = a\sin^2(\theta) - b\sin(\theta)\cos(\theta) + c\cos^2(\theta)$$

Using $dE/d\theta=0$, we get: $tan(2\theta)=b/(a-c)$

So:

$$\sin(2\theta) = \pm b / \sqrt{b^2 + (a - c)^2}$$
$$\cos(2\theta) = \pm (a - c) / \sqrt{b^2 + (a - c)^2}$$

$$E = a\sin^{2}(\theta) - b\sin(\theta)\cos(\theta) + c\cos^{2}(\theta)$$

Using dE/d θ =0, we get: tan(2 θ)=b/(a-c)

So:

$$\sin(2\theta) = \pm b / \sqrt{b^2 + (a - c)^2}$$
$$\cos(2\theta) = \pm (a - c) / \sqrt{b^2 + (a - c)^2}$$

Solutions with positive sign may be used to find θ that minimizes E (why??).

Emin/Emax -> (ROUDNESS of the OBJECT).

Discrete Binary Images

bij: value at pixel in row i & column j.

Computer Vision – Ioannis Stamos

Discrete Binary Images

bij: value at pixel in row i & column j.

Assume pixel area is 1.

Area:

Position (Center of Area): n

$$\bar{x} = (1/A) \sum_{i=1}^{n} \sum_{j=1}^{m} ib_{ij}$$

$$\bar{y} = (1/A) \sum_{i=1}^{n} \sum_{j=1}^{m} jb_{ij}$$

nputer Vision – Ioannis Stamos

Discrete Binary Images

bij: value at pixel in row i & column j.

Assume pixel area is 1.

Area:

$$A = \sum_{i=1}^{n} \sum_{j=1}^{m} b_{ij}$$

Position (Center of Area): n

$$\bar{x} = (1/A) \sum_{i=1}^{n} \sum_{j=1}^{m} ib_{ij}$$

$$\bar{y} = (1/A) \sum_{i=1}^{n} \sum_{j=1}^{m} jb_{ij}$$

Second Moments.

$$a' = \sum_{i=1}^{n} \sum_{j=1}^{m} i^2 b_{ij}, b' = 2 \sum_{j=1}^{n} \sum_{j=1}^{m} ij \ b_{ij}, c' = \sum_{j=1}^{n} \sum_{j=1}^{m} j^2 b_{ij}$$

Discrete Binary Images (cont)

Note: a',b',c' are second moments w.r.t ORIGIN a,b,c (w.r.t "center") can be found from (a',b',c',x,y,A).

Note: UPDATE (a',b',c',x,y,A) during RASTER SCAN

omputer Vision – Ioannis

Multiple Objects

Need to SEGMENT image into separate COMPONENTS (regions).

Connected Component:

Maximal Set of Connected Points:

Points A and B are connected: Path exists between A and B along which b(x,y) is constant.

Connected Components

Label all pixels that are connected

Region Growing Algorithm (Connected Component Labeling)

- Start with "seed" point where bij=1.
- Assign LABEL to seed point.
- Assign SAME LABEL to its NEIGHBORS (b=1).
- Assign SAME LABEL to NEIGHBORS of NEIGHBORS.

Terminates when a component is completely labeled. Then pick another UNLABELED seed point.

Computer Vision – Ioannis Stamos

What do we mean by NEIGHBORS?

8-Connectedness (8-c)

4-Connectedness (4-c)

Neither is perfect!

What do we mean by NEIGHBORS?

Jordan's Curve Theorem: Closed curve -> 2 connected regions

0	1	0		B 1	01	B 1
1	0	1		02	B2	O 3
0	1	0	(4-c)	B 1	O 4	B 1

Hole without closed curve!

What do we mean by NEIGHBORS?

Jordan's Curve Theorem: Closed curve -> 2 connected regions

Hole without closed curve! background with closed ring!

Computer Vision – Ioannis Stamos

Solution: Introduce Assymetry

Use:

Using 0 1 0 (a) 1 0 1 0 1 0 1

В	01	В
O2	В	01
В	O2	В

Two separate line segments.

Hexagonal Tesselation

Above assymetry makes SQUARE grid like HEXAGONAL grid.

D B

Raster Scan

CA

Note: B,C,D are already labeled

D B

Raster Scan

CA

Note: B,C,D are already labeled

a.

 $\mathbf{X} \mid \mathbf{X}$

Label(A) = background

X

0

b. D X

X 1

Label(A) = label(D)

D B Raster Scan

Note: B,C,D are already labeled

- c. $0 \quad 0$ Label(A) = label(C)
- d. $\begin{bmatrix} 0 & B \\ 0 & 1 \end{bmatrix}$ Label(A) = label(B)
- d. 0 B If Label(B) = label(C), then Label(A)=Label(B)=

 Label(C)

D B Raster Scan

C A Note: P.C.D. are already lel

Note: B,C,D are already labeled

b.

X

C 1

d. $\begin{bmatrix} 0 & B \\ 0 & 1 \end{bmatrix}$ Label(A) = label(B)

d. 0 B If Label(B) = label(C), then Label(A)=Label(B)=

Label(C)

Computer Vision – Ioannis Stamos

Sequential Labeling (Cont.)

What if B & C are labeled but label(B) \neq label(C)?

Computer Vision – Ioannis

Sequential Labeling (Cont.)

What if B & C are labeled but label(B) \neq label(C)?

```
2 2 2 2 2 2 2 2 2 2
```

Sequential Labeling (Cont.)

Solution: Let: Label(A)=Label(B) = 2

& create an EQUIVALENCE TABLE.

Resolve Equivalences in SECOND PASS.

2 ≡ 1			
7 ≡ 3,6,4			
• • •			

Next Class

• Edge Detection...