目录 1

目录

第	一部	分 定积分 definite integral	2
1	"定和	识分"的定义	2
2	定积	分的性质	3
	2.1	若 b=a, 则 $\int_a^a f(x) = 0$	3
	2.2	$\int_a^b f(x) = -\int_b^a f(x) \leftarrow 交换上下限, 定积分的值要变号$	3
	2.3	$\int_a^b (\alpha \cdot f(x) + \beta \cdot g(x)) dx = \alpha \int_a^b f(x) dx + \beta \int_a^b g(x) dx$ ← 即, 积分可以拆开, 常	
		数可以提到外面去	3
	2.4	若 $a < c < b$, 则 $\int_a^b f(x)dx = \int_a^c f(x)dx + \int_c^b f(x)dx \leftarrow$ 其实就是原先的一步	
		走,分成两步走而已	3
	2.5	若 $a < b < c$, 则: $\int_a^b f(x)dx = \int_a^c f(x)dx - \int_c^b f(x)dx$	3
	2.6	若 f(x) 恒等于1, 即该函数是条"水平直线", 它与x轴之间就形成一个矩形了. 则	
		$\int_a^b 1 dx = \dot{\mathbf{B}} 1 \cdot \dot{\mathbf{g}} (b-a) = b-a \dots \dots$	3
	2.7	$\int_a^b k dx = k \int_a^b 1 dx = k(b-a) \leftarrow k$ 是常数, 可以提到积分外面	3
	2.8	若 $f(x) >= 0$,即"函数曲线"都在x轴上方. 则 $\int_a^b f(x)dx >= 0$	3
	2.9		3
	2.10	若 $f(x) \le g(x)$, 则 $\int_a^b f(x)dx \le \int_a^b g(x)dx$	3
		$\left \int_{a}^{b} f(x)dx \right \le \int_{a}^{b} f(x) dx \dots \dots \dots \dots \dots$	3
	2.12	一个曲线, 在[a,b]区间上, 若 m是它的最小y值高度, M是它的最大y值高度, 则	
		有: $m(b-a) \le \int_a^b f(x)dx \le M(b-a)$	4
	2.13	定积分"中值定理":	
		如果 $f(x)$ 是连续的, $\exists \xi \in [a,b]$, 则必然有 $\int_a^b f(x)dx = f(\xi)(b-a)$	4
华	— 立7	公 · 龙字和公的主法	1
耔	—司》	分 求定积分的方法	4
3	定积	分的"分部积分法": $\int_a^b \hat{\mathbf{n}} \cdot d(\mathbf{n}) = (\hat{\mathbf{n}} \cdot \mathbf{n}) \cdot \int_a^b \mathbf{n} \cdot d(\hat{\mathbf{n}})$	5

积分

第一部分 定积分 definite integral

1 "定积分"的定义

- 1. 曲线函数f(x), 在x轴上有界, 比如端点是[a,b].
- 2. 然后, 我们在[a,b]这段区间上, 任意插入n个分点, 分成n个小区间. 它们不要求等分. 每个小区间的长度就是 $\Delta x_1, \Delta x_2, ..., \Delta x_n$.
- 3. 在每个 Δ 小区间上, 任取一点 ξ_i . 这点的函数值(即y轴上的高度), 就是 $y = f(\xi_i)$.
- 4. 这样, 我们就能得到每一个 Δ 小区间, 所在的"长方形细条的面积"了, 即 = 宽 Δx_i · 高 $f(\xi_i)$
- 5. 把所有这些 Δ 小区间的"长方形细条面积",全加起来,就是该曲线到x轴间的面积的近似值. $=\sum_{i=1}^n \Delta x_i \cdot f(\xi_i)$
- 6. 我们令其中 x轴宽度最大的那个 Δ x小区间 (假设起名为 λ , 即 λ = max { $\Delta x_1, ..., \Delta x_n$ }),我们让这个 λ , 极限趋向于0. 这样,既然最大的 Δ x小区间都趋近于0了,其他比它更小的 Δ x小区间,就都统统被约束,也都趋向于0了. 这样,它们的"长方形细条的面积之和",就能精确的等于"函数曲线到x轴之间的面积"了,而不仅仅是"近似"了.

即:
$$\lim_{x\to 0} \sum_{i=1}^{n} \underbrace{f(\xi_i)}_{\hat{\mathbf{g}}} \cdot \underbrace{\Delta x_i}_{\hat{\mathbf{g}}} = \underbrace{\int_{a}^{b} f(x) dx}_{\hat{\mathbf{g}}}$$

各部分的名字是:
$$\int_{\Gamma Ra}^{\perp Rb} \underbrace{f(x)}_{\text{被积函数}} \underbrace{d(x)}_{\text{积分变量}}$$

Fig. 1

2 定积分的性质

3

2 定积分的性质

- **2.1** 若 b=a, 则 $\int_a^a f(x) = 0$
- 2.2 $\int_a^b f(x) = -\int_b^a f(x)$ \leftarrow 交换上下限, 定积分的值要变号
- 2.3 $\int_a^b (\alpha \cdot f(x) + \beta \cdot g(x)) dx = \alpha \int_a^b f(x) dx + \beta \int_a^b g(x) dx \leftarrow$ 即, 积分可以拆开, 常数可以提到外面去
- **2.4** 若 a < c < b, 则 $\int_a^b f(x) dx = \int_a^c f(x) dx + \int_c^b f(x) dx \leftarrow$ 其实就是原先的一步走, 分成两步走而已.
- **2.5** 若 a < b < c, 则: $\int_a^b f(x) dx = \int_a^c f(x) dx \int_c^b f(x) dx$

2.6 若 f(x) 恒等于1, 即该函数是条"水平直线", 它与x轴之间就形成一个矩形了. 则 $\int_a^b 1 dx = 高1 \cdot \mathbf{\bar{x}}(b-a) = b-a$

- 2.7 $\int_a^b k dx = k \int_a^b 1 dx = k(b-a) \leftarrow k$ 是常数,可以提到积分外面
- 2.8 若 f(x) >= 0,即"函数曲线"都在 \mathbf{x} 轴上方.则 $\int_a^b f(x)dx >= 0$
- 2.9 若f(x) <= 0,即"函数曲线"都在 ${f x}$ 轴下方.则 $\int_a^b f(x) dx <= 0$
- **2.10** 若 f(x) <= g(x), 则 $\int_a^b f(x) dx <= \int_a^b g(x) dx$

2.11 $\left| \int_a^b f(x) dx \right| <= \int_a^b |f(x)| dx$

因为"函数曲线"的定积分(面积),在x轴上方是正面积的,在x轴下方是负面积的,如果一个曲线既有正y值的部分,又有负y值的部分,那它的总面积,肯定会有"正负相互抵消掉"的一部分.

而先把"函数曲线"取绝对值,它的y值就都在x轴上方了,面积就不存在负数的一块,就不会抵消掉总面积.

2.12 一个曲线,在[a,b]区间上,若 m是它的最小y值高度,M是它的最大y值高度,则有: $m(b-a) \leq \int_a^b f(x) dx \leq M(b-a)$

如下图, "高m" 乘以"宽(b-a)", 就是 abm 这个小矩形的面积.

'高M" 乘以'宽(b-a)", 就是 abM 这个大矩形的面积.

曲线mM 的定积分, 这个面积大小, 肯定是夹在上面两个矩形的面积之间的.

使用该方法,就可以让我们来对曲线的定积分值,进行估计.

2.13 定积分"中值定理":

如果
$$f(\mathbf{x})$$
 是连续的, $\exists \xi \in [a,b]$,则必然有 $\int_a^b f(x)dx = f(\xi)(b-a)$

定积分中值定理 Mean value theorems for definite integrals 的意思就是说: 在函数曲线的 [a,b]区间上,一定能找到一个点 ξ ,该 ξ 点的 y值高度(即 $f(\xi)$),乘上 "b-a 这个宽度",所形成的的矩形面积,能恰好等于函数曲线的定积分值. 你找吧,一定能找到这个点 ξ 存在.

第二部分 求定积分的方法

3 定积分的"分部积分法":

$$\int_a^b \mathbf{\hat{n}} \cdot d(\mathbf{\hat{n}}) = (\mathbf{\hat{n}} \cdot \mathbf{\hat{n}}) \mid_a^b - \int_a^b \mathbf{\hat{n}} \ d(\mathbf{\hat{n}})$$

比较一下:

"不定积分"的"分部积分法"公式是: $\int \dot{\mathbf{n}} \cdot d(\mathbf{n}) = \dot{\mathbf{n}} \cdot \mathbf{n} - \int \mathbf{n} \cdot d(\dot{\mathbf{n}})$ '定积分"的"分部积分法"公式是: $\int_{a}^{b} \dot{\mathbf{n}} \cdot d(\mathbf{n}) = (\dot{\mathbf{n}} \cdot \mathbf{n}) \mid_{a}^{b} - \int_{a}^{b} \mathbf{n} \cdot d(\dot{\mathbf{n}})$

$$\int_{0}^{\frac{1}{2}} \underbrace{\arcsin x}_{\hat{\mathfrak{m}}} \ dx \leftarrow \text{根据定积分 "分部积分法"公式}$$

$$\int_{a}^{b} \hat{\mathfrak{m}} \cdot d(\mathbf{f}) = (\hat{\mathfrak{m}} \cdot \mathbf{f}) \Big|_{a}^{b} - \int_{a}^{b} \mathbf{f} \ d(\hat{\mathfrak{m}})$$

$$= (\arcsin x \cdot x) \Big|_{0}^{\frac{1}{2}} - \int_{0}^{\frac{1}{2}} x \ d(\arcsin x)_{\text{parcsin} x \in \mathfrak{m}(\hat{\mathfrak{m}})}$$

 \leftarrow 注意,减号后面的积分部分,这里的 $[0,\frac{1}{2}]$ 是x的积分区间,

而现在d后面是 $\arcsin x$ 了,即求的是 $\arcsin x$ 的微分,

所以,你应该把 $\arcsin x$ 这个"原函数",朝外提出去变成"导函数",让 d 后面是x才行.

微分
$$d(\arcsin x) = \frac{1}{\sqrt{1-x^2}} dx$$

$$= \arcsin \frac{1}{2} \cdot \frac{1}{2} - \int_{0}^{\frac{1}{2}} x \frac{1}{\sqrt{1-x^{2}}} dx \leftarrow \text{右边部分的} \int x \frac{1}{\sqrt{1-x^{2}}} dx, \text{ 把导函数} x 拿到 d 里面,变成原函数
$$= \int \frac{1}{\sqrt{1-x^{2}}} d \left(\frac{1}{2} x^{2} \right) \\ = \frac{1}{2} \int \left(1-x^{2} \right)^{-\frac{1}{2}} d \left(x^{2} \right) \\ = \frac{1}{2} \int \left(1-x^{2} \right)^{-\frac{1}{2}} d \left(x^{2} - 1 \right) \\ \text{原函数. 加牌数后,} \\ \text{具导函数的值是不变的} \\ = -\frac{1}{2} \int \left(1-x^{2} \right)^{-\frac{1}{2}} d \left(1-x^{2} \right) \\ = -\frac{1}{2} \cdot \left[\frac{1}{-\frac{1}{2}+1} \left(1-x^{2} \right)^{-\frac{1}{2}+1} + C \right] \\ = -\frac{1}{2} \cdot 2 \left(1-x^{2} \right)^{\frac{1}{2}} + C \\ = -\left(1-x^{2} \right)^{\frac{1}{2}} + C$$$$

$$= \frac{\pi}{12} - \left[-(1-x^2)^{\frac{1}{2}} + C \right]_0^{2^{-1}}$$

$$= \frac{\pi}{12} - \left[-(1-(2^{-1})^2)^{\frac{1}{2}} - \left(-(1-\theta^2)^{\frac{1}{2}} \right) \right]$$

例

 $\int_0^1 e^{\sqrt{x}} \ dx$

我们用换元法,令 $\sqrt{x} = t$,则 $x = t^2$. 于是, $dx = \underbrace{d(t^2)}_{x \text{微分}} = (t^2)' dt = 2t dt$ \rightarrow 原上限是 x=1,换成t来表示上限,就是 $x = t^2 = 1$,即 t=1,这个就是换元成t后的

- t的新上限.
- → 原下限是x=0, 换成t来表示上限, 就是 $x=t^2=0$, 即 t=0. 这个是t的下限. 所以原式就变换成了

$$= \int_0^1 e^t \ 2t \ dt = 2 \int_0^1 e^t \ t \ dt \leftarrow$$
把导函数 t , 拿到微分 d 后面,变成原函数.
$$= 2 \int_0^1 \underbrace{t}_{\text{fi}} \ d\underbrace{(e^t)}_{\text{fi}} \leftarrow$$
使用定积分的"分部积分法"
$$= 2 \left[t \cdot e^t \mid_0^1 - \int_0^1 e^t \ d(t) \right] = 2 \left[1 \cdot e - e^t \mid_0^1 \right] = 2 \left[e - \left(e^1 - e^0 \right) \right] = 2$$

