КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА И СВОЙСТВА ТВЁРДЫХ РАСТВОРОВ Sr_{1-х}Sm_xFe_{1-y}Co_yO_{3-δ}

Власенко Д.А., Волкова Н.Е. Уральский федеральный университет 620002, г. Екатеринбург, ул. Мира, д. 19

Сложные оксиды на основе РЗЭ и 3d-переходных металлов со структурой перовскита широко используются в качестве компонентов различных электрохимических устройств, например кислородных мембран и электродных материалов для твердооксидных топливных элементов. Для практического применения данных материалов необходимо знать условия их получения, кристаллическую структуру и физико-химические свойства. Объектами настоящего исследования были выбраны оксиды с перовскттоподобной структурой общего состава $Sr_{1-x}Sm_xFe_{1-y}Co_yO_{3-\delta}$. Целью настоящей работы стало определение области гомогенности изучение кристаллической структуры и физико-химических свойств $Sr_{1-x}Sm_xFe_{1-y}Co_yO_{3-\delta}$ при x=0.1; 0.3; y=0.1-0.9, $\Delta y=0.2$.

Синтез образцов осуществлялся по глицерин-нитратной технологии на воздухе, с промежуточными перетираниями в среде этилового спирта в течение 120 часов. Заключительный отжиг сопровождался медленным охлаждением до комнатной температуры со скоростью 100 °C в час. Фазовый состав полученных оксидов установлен с помощью рентгенофазового анализа. Параметры элементарной ячейки уточнены методом Ле-Бейла, структурные параметры – методом Ритвельда с использованием пакета «FullProf».

По результатам РФА установлено, что все полученные оксиды являются однофазными. Оксиды $Sr_{1-x}Sm_xFe_{0.1}Co_{0.9}O_{3-\delta}$ (x=0.9;0.7) кристаллизуются в тетрагональной ячейке (пр. гр. I4/mmm), остальные в – кубической (пр. гр. Pm3m). Для всех однофазных образцов определены параметры элементарной ячейки и координаты атомов. Установлено, что увеличение содержания железа приводит к увеличению параметров элементарной ячейки, что связано с размерным фактором.

Методом полного восстановления образцов в токе водорода определено абсолютное значение кислородной нестехиометрии δ во всех однофазных оксидах. Установлено, что содержание кислорода (3- δ) увеличивается с ростом содержания железа в образцах, что можно объяснить большей электроотрицательностью кобальта по сравнению с железом. По температурным зависимостям содержания кислорода в $Sr_{1-x}Sm_xFe_{1-y}Co_yO_{3-\delta}$, установлено, что выход кислорода в газовую фазу начинается при температуре выше 400 °C.

Четырёх-контактным методом на постоянном токе изучена электропроводность керамических образцов $Sr_{0.9}Sm_{0.1}Fe_{1-y}Co_yO_{3-\delta}$ (у = 0.5; 0.7). Полученная зависимость имеет экстремальный характер и достигает своего максимального значения около 400 °C. По положительному значению коэффициента термо-ЭДС установлено, что изучаемые оксиды обладают преимущественно дырочным характером проводимости.