Due Wednesday of Week 5 at the start of class

Complete the following problems and submit them as a pdf to Canvas. 8 points are awarded for thoroughly attempting every problem, and I'll select three problems to grade on correctness for 4 points each. Enough work should be shown that there is no question about the mathematical process used to obtain your answers.

Section 5

In problems 1–6, determine if the linear transformation T is one-to-one, if it is onto, and if it is invertible. If it is invertible, find the inverse transformation.

1.
$$T: \mathbb{R}^2 \to \mathbb{R}^2$$
 defined by $T\left(\begin{bmatrix} x \\ y \end{bmatrix} \right) = \begin{bmatrix} 2x+y \\ x+2y \end{bmatrix}$.

2.
$$T: \mathbb{R}^3 \to \mathbb{R}^2$$
 defined by $T\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\right) = \begin{bmatrix} x \\ y+z \end{bmatrix}$.

3. $T: \mathbb{R}^2 \to \mathbb{R}^2$, where

$$T\left(\left[\begin{array}{c}2\\0\end{array}\right]\right)=\left[\begin{array}{c}2\\4\end{array}\right]\qquad T\left(\left[\begin{array}{c}4\\6\end{array}\right]\right)=\left[\begin{array}{c}4\\-10\end{array}\right].$$

4. $T: \mathbb{R}^3 \to \mathbb{R}^3$, where

$$T\left(\begin{bmatrix}1\\1\\1\end{bmatrix}\right) = \begin{bmatrix}3\\7\\4\end{bmatrix} \qquad T\left(\begin{bmatrix}1\\2\\0\end{bmatrix}\right) = \begin{bmatrix}1\\-1\\3\end{bmatrix} \qquad T\left(\begin{bmatrix}0\\1\\3\end{bmatrix}\right) = \begin{bmatrix}6\\16\\7\end{bmatrix}.$$

5. $T: \mathbb{R}^3 \to \mathbb{R}$, where

$$T\left(\left[\begin{array}{c}1\\-1\\1\end{array}\right]\right)=-3\qquad T\left(\left[\begin{array}{c}1\\0\\1\end{array}\right]\right)=1\qquad T\left(\left[\begin{array}{c}0\\1\\1\end{array}\right]\right)=4.$$

6. $T: \mathbb{R}^5 \to \mathbb{R}^2$, where

$$T\left(\begin{bmatrix}1\\0\\2\\3\\0\end{bmatrix}\right) = \begin{bmatrix}1\\1\end{bmatrix} \qquad T\left(\begin{bmatrix}2\\1\\2\\-1\\3\end{bmatrix}\right) = \begin{bmatrix}2\\0\end{bmatrix}.$$

- 7. Let $T: \mathbb{R}^4 \to \mathbb{R}^3$ be defined by the matrix $\begin{bmatrix} 1 & 7 & 2 & -1 \\ -3 & 6 & 3 & 12 \\ 0 & 3 & 1 & 1 \end{bmatrix}$.
 - a) Is T one-to-one? Is it onto? Is it invertible?
 - b) Find the vectors \vec{v} for which $T(\vec{v}) = \vec{0}$ and express it as a span of one or more vectors, i.e. span $\{\vec{v_1}, ..., \vec{v_n}\}$.
 - c) Find vectors $\vec{w_1}, ..., \vec{v_m} \in \mathbb{R}^4$ that are linearly independent to $\vec{v_1}, ..., \vec{v_n}$ so that all together,

$$span\{\vec{v_1}, ..., \vec{v_n}, \vec{w_1}, ..., \vec{w_m}\} = \mathbb{R}^4.$$

Hint: n+m should equal 4. (Why?)

- a) Show that $T(\vec{w_1}),...,T(\vec{w_m})$ are linearly independent. Briefly explain why this has to be the case.
- 8. Let $R: \mathbb{R}^2 \to \mathbb{R}^2$ be a function (not necessarily a linear transformation) defined by rotating its inputs 90° counterclockwise. For example, $R\left(\begin{bmatrix} 1 \\ 0 \end{bmatrix}\right) = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ and $R\left(\begin{bmatrix} \frac{1}{2} \\ \frac{\sqrt{3}}{2} \end{bmatrix}\right) = \begin{bmatrix} -\frac{\sqrt{3}}{2} \\ \frac{1}{2} \end{bmatrix}$.
 - a) Explain with a picture why R is in fact a linear transformation, i.e. $R(\vec{v_1} + \vec{v_2}) = R(\vec{v_1}) + R(\vec{v_2})$ and $R(c\vec{v_1}) = cR(\vec{v_1})$.
 - b) Find the matrix for R.

c) Let $R_{\theta}: \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation that rotates its inputs an angle θ counterclockwise, where θ is a variable. Find a matrix for R_{θ} .