

CD54HC125, CD74HC125, CD54HCT125

Data sheet acquired from Harris Semiconductor SCHS143C

November 1997 - Revised August 2003

High-Speed CMOS Logic Quad Buffer, Three-State

Features

- · Three-State Outputs
- Separate Output Enable Inputs
- Fanout (Over Temperature Range)
- Wide Operating Temperature Range . . . -55°C to 125°C
- Balanced Propagation Delay and Transition Times
- Significant Power Reduction Compared to LSTTL Logic ICs
- HC Types
 - 2V to 6V Operation
 - High Noise Immunity: N_{IL} = 30%, N_{IH} = 30% of V_{CC} at V_{CC} = 5V
- HCT Types
 - 4.5V to 5.5V Operation
 - Direct LSTTL Input Logic Compatibility,
 V_{IL}= 0.8V (Max), V_{IH} = 2V (Min)
 - CMOS Input Compatibility, $I_I \le 1\mu A$ at V_{OL} , V_{OH}

Description

The 'HC125 and 'HCT125 contain 4 independent three-state buffers, each having its own output enable input, which when "HIGH" puts the output in the high impedance state.

Ordering Information

PART NUMBER	TEMP. RANGE (^O C)	PACKAGE
CD54HC125F3A	-55 to 125	14 Ld CERDIP
CD54HCT125F3A	-55 to 125	14 Ld CERDIP
CD74HC125E	-55 to 125	14 Ld PDIP
CD74HC125M	-55 to 125	14 Ld SOIC
CD74HC125MT	-55 to 125	14 Ld SOIC
CD74HC125M96	-55 to 125	14 Ld SOIC
CD74HCT125E	-55 to 125	14 Ld PDIP
CD74HCT125M	-55 to 125	14 Ld SOIC
CD74HCT125MT	-55 to 125	14 Ld SOIC
CD74HCT125M96	-55 to 125	14 Ld SOIC

NOTE: When ordering, use the entire part number. The suffix 96 denotes tape and reel. The suffix T denotes a small-quantity reel of 250

Pinout

CD54HC125, CD54HCT125 (CERDIP) CD74HC125, CD74HCT125 (PDIP, SOIC) TOP VIEW

Functional Diagram

TRUTH TABLE

INP	итѕ	OUTPUTS
nA	nOE	nY
Н	L	Н
L	L	L
Х	Н	Z

H= High Voltage Level

L= Low Voltage Level

X= Don't Care Z= High Impedance, OFF State

Logic Diagram

CD54HC125, CD74HC125, CD54HCT125, CD74HCT125

Absolute Maximum Ratings

DC Supply Voltage, V $_{CC}$... -0.5V to 7V DC Input Diode Current, I $_{IK}$ For V $_{I}$ < -0.5V or V $_{I}$ > V $_{CC}$ + 0.5V ... ± 20 mA DC Output Diode Current, I $_{OK}$ For V $_{O}$ < -0.5V or V $_{O}$ > V $_{CC}$ + 0.5V ... ± 20 mA DC Drain Current, per Output, I $_{O}$ For -0.5V < V $_{O}$ < V $_{CC}$ + 0.5V ... ± 35 mA DC Output Source or Sink Current per Output Pin, I $_{O}$ For V $_{O}$ > -0.5V or V $_{O}$ < V $_{CC}$ + 0.5V ... ± 25 mA DC V $_{CC}$ or Ground Current, I $_{CC}$... ± 25 mA

Thermal Information

Thermal Resistance (Typical, Note 1)	θ_{JA} (o C/W)
E (PDIP) Package	80
M (SOIC) Package	86
Maximum Junction Temperature	
Maximum Storage Temperature Range	65°C to 150°C
Maximum Lead Temperature (Soldering 10s)	300°C
(SOIC - Lead Tips Only)	

Operating Conditions

Temperature Range (T _A)55°C to 125°C
Supply Voltage Range, V _{CC}
HC Types2V to 6V
HCT Types
DC Input or Output Voltage, V _I , V _O 0V to V _{CC}
Input Rise and Fall Time
2V
4.5V 500ns (Max)
6V

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTE:

1. The package thermal impedance is calculated in accordance with JESD 51-7.

DC Electrical Specifications

		TEST CONDITIONS		25°C		-40°C TO 85°C		-55°C TO 125°C						
PARAMETER	SYMBOL	V _I (V)	I _O (mA)	V _{CC} (V)	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNITS		
HC TYPES														
High Level Input	V _{IH}	-	-	2	1.5	-	-	1.5	1	1.5	-	V		
Voltage				4.5	3.15	ı	-	3.15	ı	3.15	i	V		
				6	4.2	-	-	4.2	-	4.2	-	٧		
Low Level Input	V _{IL}	-	-	2	-	-	0.5	-	0.5	-	0.5	V		
Voltage				4.5	-	-	1.35	-	1.35	-	1.35	V		
				6	-	-	1.8	-	1.8	=	1.8	V		
High Level Output	V _{OH}	V _{IH} or	-0.02	2	1.9	-	-	1.9	-	1.9	=	V		
Voltage CMOS Loads		V _{IL}	VIL	VIL	-0.02	4.5	4.4	-	-	4.4	-	4.4	=	V
					-0.02	6	5.9	-	-	5.9	-	5.9	-	V
High Level Output			-6	4.5	3.98	-	-	3.84	-	3.7	-	V		
Voltage TTL Loads			-7.8	6	5.48	-	-	5.34	-	5.2	-	V		
Low Level Output	V _{OL}	V _{IH} or	0.02	2	-	-	0.1	-	0.1	-	0.1	V		
Voltage CMOS Loads		V_{IL}	0.02	4.5	-	-	0.1	-	0.1	-	0.1	V		
			0.02	6	1	-	0.1	-	0.1	-	0.1	V		
Low Level Output	1		6	4.5	-	-	0.26	-	0.33	-	0.4	V		
Voltage TTL Loads			7.8	6	-	-	0.26	-	0.33	-	0.4	V		
Input Leakage Current	lı	V _{CC} or GND	-	6	-	-	±0.1	-	±1	-	±1	μА		

CD54HC125, CD74HC125, CD54HCT125, CD74HCT125

DC Electrical Specifications (Continued)

		TEST CONDITIONS			25°C		-40°C TO 85°C		-55°C TO 125°C			
PARAMETER	SYMBOL	V _I (V)	I _O (mA)	V _{CC} (V)	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNITS
Quiescent Device Current	I _{CC}	V _{CC} or GND	0	6	-	-	8	-	80	-	160	μА
Three-State Leakage Current	l _{OZ}	V _{IL} or V _{IH}	-	6	-	-	±0.5	-	±5	-	±10	μА
HCT TYPES	•									•	•	
High Level Input Voltage	V _{IH}	-	-	4.5 to 5.5	2	-	-	2	-	2	-	٧
Low Level Input Voltage	V _{IL}	-	-	4.5 to 5.5	1	-	0.8	-	0.8	-	0.8	V
High Level Output Voltage CMOS Loads	V _{OH}	V _{IH} or V _{IL}	-0.02	4.5	4.4	-	-	4.4	-	4.4	-	٧
High Level Output Voltage TTL Loads			-6	4.5	3.98	-	-	3.84	-	3.7	-	٧
Low Level Output Voltage CMOS Loads	V _{OL}	V _{IH} or V _{IL}	0.02	4.5	-	-	0.1	-	0.1	-	0.1	٧
Low Level Output Voltage TTL Loads			6	4.5	-	-	0.26	-	0.33	-	0.4	٧
Input Leakage Current	II	V _{CC} to GND	0	5.5	ı	-	±0.1	ī	±1	-	±1	μА
Quiescent Device Current	Icc	V _{CC} or GND	0	5.5	1	-	8	-	80	-	160	μА
Additional Quiescent Device Current Per Input Pin: 1 Unit Load	ΔI _{CC} (Note 2)	V _{CC} -2.1	-	4.5 to 5.5	ı	100	360	1	450	-	490	μΑ
Three-State Leakage Current	l _{OZ}	V _{IL} or V _{IH}	-	5.5	-	-	±0.5	-	±5	-	±10	μА

NOTE:

2. For dual-supply systems theoretical worst case (V_I = 2.4V, V_{CC} = 5.5V) specification is 1.8mA.

HCT Input Loading Table

INPUT	UNIT LOADS
nA, n OE	1

NOTE: Unit Load is ΔI_{CC} limit specified in DC Electrical Specifications table, e.g., 360 μ A max at 25 o C.

CD54HC125, CD74HC125, CD54HCT125, CD74HCT125

Switching Specifications Input t_r , t_f = 6ns

		TEST		25°C		-40°C TO 85°C	-55°C TO 125°C	
PARAMETER	SYMBOL	CONDITIONS	V _{CC} (V)	TYP	MAX	MAX	MAX	UNITS
HC TYPES	•	•			•			
Propagation Delay Time nA to nY	t _{PLH} , t _{PHL}	C _L = 50pF	2	-	100	125	150	ns
TIA to ITT			4.5	-	20	25	30	ns
		C _L = 15pF	5	8	-	-	-	ns
		CL = 50pF	6	-	17	21	26	ns
Enable Delay Time	t _{PZL} , t _{PZH}	C _L = 50pF	2	-	125	155	190	ns
			4.5	-	25	31	38	ns
		C _L = 15pF	5	10	-	-	-	ns
		CL = 50pF	6	-	21	26	32	ns
Disable Delay Time	t _{PLZ} , t _{PHZ}	CL = 50pF	2	-	125	155	190	ns
		C _L = 50pF	4.5	=	25	31	38	ns
		C _L = 15pF	5	10	-	-	-	ns
		CL = 50pF	6	=	21	26	32	ns
Output Transition Time	t _{TLH} , t _{THL}	C _L = 50pF	2	-	60	75	90	ns
			4.5	-	12	15	18	ns
			6	-	10	13	15	ns
Input Capacitance	Cl	-	-	-	10	10	10	pF
Three-State Output Capacitance	CO	-	-	-	20	20	20	pF
Power Dissipation Capacitance (Notes 3, 4)	C _{PD}	-	5	29	-	-	-	pF
HCT TYPES								
Propagation Delay Time	t _{PLH} , t _{PHL}	C _L = 50pF	4.5	-	25	31	38	ns
nA to nY		C _L = 15pF	5	10	-	-	-	ns
Output Enable Time	t _{PZL,} t _{PZH}	C _L = 50pF	4.5	-	25	31	38	ns
		C _L = 15pF	5	10	-	-	-	ns
Output Disabling Time	t _{PLZ} , t _{PHZ}	C _L = 50pF	4.5	=	28	35	42	ns
		C _L = 15pF	5	11	-	-	-	ns
Output Transition Times	t _{TLH} , t _{THL}	C _L = 50pF	4.5	-	12	15	18	ns
Input Capacitance	Cl	-	-	-	10	10	10	pF
Three-State Output Capacitance	Co	-	-	-	20	20	20	pF
Power Dissipation Capacitance (Notes 3, 4)	C _{PD}	-	5	34	-	-	-	pF

NOTES:

- 3. C_{PD} is used to determine the dynamic power consumption, per channel.
 4. P_D = V_{CC}² f_i (C_{PD} + C_L) where f_i = Input Frequency, f_O = Output Frequency, C_L = Output Load Capacitance, V_{CC} = Supply Voltage.

Test Circuits and Waveforms

FIGURE 1. HC TRANSITION TIMES AND PROPAGATION DELAY TIMES, COMBINATION LOGIC

FIGURE 2. HCT TRANSITION TIMES AND PROPAGATION DELAY TIMES, COMBINATION LOGIC

FIGURE 3. HC THREE-STATE PROPAGATION DELAY WAVEFORM

FIGURE 4. HCT THREE-STATE PROPAGATION DELAY WAVEFORM

NOTE: Open drain waveforms t_{PLZ} and t_{PZL} are the same as those for three-state shown on the left. The test circuit is Output R_L = 1k Ω to V_{CC} , C_L = 50pF.

FIGURE 5. HC AND HCT THREE-STATE PROPAGATION DELAY TEST CIRCUIT