Semana 2: *Protoboard* e Componentes Eletrônicos

Prof. Irineu Lopes Palhares Junior

IFSP, irineu.palhares@ifsp.edu.br

Sumário

- Protoboard
 - Estrutura de uma protoboard
 - Montagens de circuito em uma protoboard
- Componentes Eletrônicos
 - Resistores
 - Diodo Emissor de Luz LED
 - Push Button

Estrutura de uma protoboard

Energização horizontal

Exemplo de uso da protoboard

Note o processo de energização na horizontal (primeiras duas linhas com o sinal + e -) e na vertical (colunas 29 e 30)

```
Texto

int pinLED=11;

void setup()

funMode (pinLED, OUTPUT);

fund loop()

digitalWrite (pinLED, HIGH);

delay(100);
digitalWrite (pinLED, LOW);
delay(100);
delay(100);
delay(100);
delay(100);
```

Tipos de protoboard

Tipos de placa protoboard

(a) Mini placa protoboard

(b) Placa protoboard média

Tipos de protoboard

Protoboard tamanho grande de até 6000 furo.

Figura 1: Protoboard - tamanho grande

Montagens de circuitos em uma protoboard

Figura 2: Uso da protoboard para criar circuitos

Propriedades elétricas

- Tensão (voltagem) ou diferença de potencial (ddp): representada pela letra U (ou V) e sua unidade de medida é o Volts (V)
- Corrente elétrica: representada pela letra i e sua unidade é o Àmpere (A)
- Resistência: representada pela letra R e sua unidade é o Ohm (Ω)

Tensão elétrica

A tensão elétrica U (medida em Volt - V) é a quantidade de energia que um gerador fornece pra movimentar uma carga elétrica durante um condutor.

Tensão elétrica

Corrente elétrica

Corrente elétrica (medida em Àmpere - A) é o fluxo ordenado de partículas portadoras de carga elétrica ou o deslocamento de cargas dentro de um condutor, quando existe uma diferença de potencial elétrico entre as extremidades.

Resistência elétrica

Resistência elétrica R (medida em Ohm - Ω) é a capacidade de um corpo qualquer se opor à passagem de corrente elétrica mesmo quando existe uma diferença de potencial aplicada.

Lei de Ohm

A Lei de Ohm, assim designada em homenagem ao seu formulador — o físico alemão Georg Simon Ohm (1789-1854) — afirma que, para um condutor mantido à temperatura constante, a razão entre a tensão entre dois pontos e a corrente elétrica é constante. Essa constante é denominada de resistência elétrica.

$$U = I \times R \tag{1}$$

Lei das malhas de Kirchhoff

A Lei das Tensões ou Lei das Malhas foi criada e desenvolvida pelo físico alemão Gustav Robert Kirchhoff (1824 – 1887). É muito empregada em cálculos de circuitos elétricos complexos, chamados de rede elétrica, aqueles que podem conter geradores, receptores e resistências ligados de modo que possam favorecer o aparecimento de mais de um percurso para corrente elétrica. Segundo Kirchhoff, se uma malha for percorrida em um mesmo sentido, a soma algébrica da tensões encontradas em cada dispositivo do circuito será nula.

Theorem

A soma algébrica das tensões em um percurso fechado (malha) é nula.

Sinais nos geradores e receptores

- Os Geradores sempre são percorridos por uma corrente elétrica que entra pelo terminal negativo, de menor potencial, e sai pelo terminal positivo, de maior potencial. Em outras palavras, ao passar pelo gerador, a corrente elétrica sofre um aumento de potencial ou ganha energia.
- Os receptores s\u00e3o atravessados por uma corrente el\u00e9trica que entra pelo terminal positivo e sai pelo terminal negativo, de modo que a corrente el\u00e9trica "perde" energia ao percorr\u00e9-los.

Exemplo - lei das malhas

Circuito da LED

Calculo da resistência

Calcule o resistor adequado para o circuito abaixo. Dados:

$$V=12V$$
 ; $i_L=20$ mA; $V_L=2V$

Resistores

Cálculo de resistores

Atividade

Calcule o valor da resistência, em Ohms (Ω) , dos resistores na Figura abaixo:

Diodo Emissor de Luz

O diodo emissor de luz (sigla LED, em inglês: light-emitting diode), é usado para a emissão de luz em locais e instrumentos onde se torna mais conveniente a sua utilização no lugar de uma lâmpada. Especialmente utilizado em produtos de microeletrônica como sinalizador de avisos, também pode ser encontrado em tamanho maior, como em alguns modelos de semáforos

Estrutura de uma LED

Tabela de tensão e corrente das LED's

Cor do led	Faixa de tensão	Corrente máxima
Vermelho	1,8 V - 2,0 V	20 mA
Amarelo	1,8 V - 2,0 V	20 mA
Laranja	1,8 V - 2,0 V	20 mA
Verde	2,0 V - 2,5 V	20 mA
Azul	2,5 V - 3,0 V	20 mA
Branco	2,5 V - 3,0 V	20 mA

Operadores condicionais

- for
- if else
- while
- switch

• Melhorar a organização do código do semáforo

• Fazer o semáforo funcionar apenas 5 vezes

• Fazer o semáforo funcionar apenas 5 vezes

Escolher a cor a ser ascesa

Tarefa: Construção de um semáforo duplo

Pull UP e Pull Down

