

loT时代LLVM编译器防护的艺术

刘柏江

几维安全创始人兼CTO

ISC 互联网安全大会 中国・北京

Internet Security Conference 2018 Beijing · China

目录

01 万物互联,代码安全先行 02

传统代码保护、LLVM安全编译器 03

混淆、块调度、代码虚拟化

物理安全 防止丢失或者被盗

业务安全防止用户隐私数据泄漏

系统安全

防止底层漏洞被恶意利用

INFORMATION LEAK
TERMINAL AGE
TECHNOLOGY
DENTITY
DENTITY
AUTHENTICATION
ISC 互联网安全大会 中国·北京
Internet Security Conference 2018 Beijing·China

策略安全

WEB INTERNET

TERMINAL AGE

TECHNOLOGY

PERSONAL PRIVACY ID

IDENTITY SECURITY

IDENTITY

AUTHENTICATION

ISC 互联网安全大会中国·北京 Internet Security Conference 2018 Beijing China

万物互联,代码安全先行

防止核心算法被重构

防逆向

打配合

提升策略安全的强度

加大破解难度,延长破解时间,为 运营争取更多的有利窗口期 争取时间

提高门槛

提高破解成本,将逆向菜鸟拒之门外

WEB INTERNE

ATION LEAK

TEG

PERSONAL PRIV

IDENTITY SECURITY

IDENTITY

AUTHENTICATION

ISC 互联网安全大会 中国·北京
Internet Security Conference 2018 Beijing China

ZERO TRUST SECURITY

物联网时代即将开启

Android Things

让您可以为各种消费者, 零售和工业应用程序构 建智能互联设备。

DuerOS

可以广泛支持手机、电 视、音箱、汽车、机器 人等多种硬件设备

AliOS Things

面向IoT领域的轻量级物 联网嵌入式操作系统, 可广泛应用在智能家居、 智慧城市、新出行等领 域。

IoT.MI

小米IoT开发者平台面向 智能家居、智能家电、 健康可穿戴、出行车载 等领域

ISC 互联网安全大会 中国・北京
Internet Security Conference 2018 Beijing China

芯片体系越来越多

运行内存越来越少

互联网 Windows / MacOS / Linux

移动互联网 iOS / Android

物联网 Android / AliOS Things

ISC 互联网安全大会 中国·北京
Internet Security Conference 2018 Beiling China

TECHNOLOGIES TECH

黑盒代码加密

处理的对象是最终的软件执行体,比如Windows的EXE、Android的SO以及DEX

白盒代码加密

```
int binary search(int val[], int num, int value)
       int start = 0;
int end = num - 1;
int mid = (start + end) / 2;
       while (val[mid] != value && start < end) {
   if (val[mid] > value) {
      end = mid - 1;
            else if (val[mid] < value) {
start = mid + 1;
            mid = (start + end)/2;
       if (val[mid] == value) {
    return mid;
       else {
             return -1;
处理的对象是源代码,比如
C/C++/Objective-C / Swift
这类语言的源代码文件
```

NIERWEI

IDENTITY SECURITY

AUTHENTICATION

Internet Security Conference 2018 Beijing China

黑盒代码加密的应用

比如适用于Windows、 Linux、Android的UPX壳

比如Windows非常著名的 VMProtect

比如利用x86指令集的可变 长特性增加误导反汇编程序 的垃圾指令

比如Android的DEX整体加解密、类抽取

ONAL PRIVACY IDENTITY SECURITY

AUTHENTICATION ISC 互联网安全大会中国·北京

nternet Security Conference 2018 Beijing China

黑盒代码加密的局限

很难对多端且同源的代码做一致性的保护

对于像Android这类高碎片化的平台,干预 运行时意味着兼容性极差

芯片架构不兼容、内存需求显著增加, 很难适应新的像loT这样的平台 对于像iOS这类完全封闭的平台,干预运行时意味着方案没法工作

ISC 互联网安全大会 中国·北京
Internet Security Conference 2018 Beiling China

LLVM编译器登场

>>>

LLVM是模块化、可复用的编译器工具链集合,最初是伊利诺伊大学的一个研究项目, 其目标是提供一种现代的,基于SSA的编译策略,能够支持任意编程语言的静态和动态 编译。

Internet Security Conference 2018 Beijing - China

LLVM提供了完整的IR文件操作API,可以对IR文件的模块、函数、基本块、IR指令做任意修改。

INFORMATION LEAK
TERMINAL AGE
PERSONAL PRIVACY IDENTITY SECURITY
IDENTITY
AUTHENTICATION
ISC 互联网安全大会中国・北京
Internet Security Conference 2018 Beijing China

函数粒度 可以适应低内存运行环境

INFORMATION LEAK
TERMINAL AGE
ERSONAL PRIVACY IDENTITY SECURITY
IDENTITY
AUTHENTICATION
ISC 互联网安全大会中国・北京
Internet Security Conference 2018 Beijing China Tio

混淆流程图

WEB INTERNET

TERMINAL AGE

SENTITY CECUDITY

IDENTITY

SC 互联网安全大会中国·北京

Internet Security Conference 2018 Beijing- China

ZERO TRUST SECURITY

高级防护

原始流程图

ZERO TRUST SECURITY

块调度流程图

AUTHENTICATION
ISC 互联网安全大会 中国·北京
Internet Security Conference 2018 Beijing·China

代码虚拟化KIWIVM

虚拟CPU执行

函数保护粒度

全平台全架构

100%兼容性

KiwiVM代码虚拟化编译器基于LLVM编译器中间层实现,通过设计独有保密的虚拟CPU指令,将原始CPU指令进行加密转换为只能由KiwiVM解释执行的虚拟指令,能够完全隐藏函数代码逻辑,让代码无法被逆向工程。

TECHNOLOGY
TERMINAL AGE
TECHNOLOGY
TERMINAL AGE
TECHNOLOGY
TECHNO

KIWIVM转换过程

KiwiVM的中心思想是利用LLVM-BC编码成自定义虚拟CPU的指令集和元数据,包括指令集数据、重定位数据、函数调用签名数据等。

INFORMATION LEAK
TERMINAL AGE
PERSONAL PRIVACY IDENTITY SECURITY
IDENTITY
AUTHENTICATION
ISC 互联网安全大会中国・北京
Internet Security Conference 2018 Beijing China

KIWIVM转换样例


```
extern int puts(const char *);
int binary_search(int val[] , int num , int value)
    int start = 0;
    int end = num - 1;
    int mid = (start + end) / 2;
    puts("KiwiVM Demo");
    while (val[mid] != value && start < end) {
        if (val[mid] > value) {
            end = mid - 1:
        else if (val[mid] < value) {
            start = mid + 1:
        mid = ( start + end )/2;
    if (val[mid] == value) {
        return mid;
    else {
        return -1;
```

```
//原始函数
i32 KVMEXPORT binary search(void * p1, i32 p2, i32 p3) {
    const void * kvm argv [] = {&p1, &p2, &p3};
    KVMInterpContext kvm = {
        __KVM_RELOCS__, //重定位数据
        __KVM_SIGNS__, //函数签名
        __KVM_MODULE__, //指令编码数据
        __kvm_init_gv__, __kvm_api_bridge__, 209, 3, argv
    //虚拟机入口
    KVMResult __kvm_result__ = *kiwisec_vm_interpreter(&kvm);
    return *(i32 *)&_kvm_result__;
//函数签名
KVMHIDDEN const unsigned char KVM SIGNS [] = {
0x01, 0x02, (unsigned char)sizeof(i32), (unsigned char)sizeof(void *),
}:
//重定位数据
KVMHIDDEN const KVMRelocation KVM_RELOCS_[] = {
{ 9, {.value = 0x7fa73e000406ll} },
{ 2, {.value = 0xc40000000511} },
{ 4, {.ptr = (void *)&KVMputs} },
};
//指令编码数据
KVMHIDDEN unsigned char KVM MODULE [] = {
 0x69, 0x02, 0x00, 0x00, 0x10, 0x03, 0x00, 0x00, 0xE4, 0x60, 0xE4, 0xE3,
 0x49, 0x36, 0x34, 0x00, 0x28, 0x03, 0x00, 0x00, 0xF1, 0xCB, 0x3E, 0x5B,
 . . . . . .
};
```

```
_binary_search proc near
var_68= byte ptr -68h
var_30= byte ptr -30h
var_10= byte ptr -10h
var_8= byte ptr -8
var_4= byte ptr -4
push
        rbp
mov
        rbp, rsp
        rsp, 70h
sub
        rax, [rbp+var_10]
lea
        [rax], rdi
mov
        rcx, [rbp+var_8]
lea
        [rcx], esi
mov
lea
        rsi, [rbp+var_4]
        [rsi], edx
mov
        rdx, [rbp+var_30]
lea
        [rdx], rax
mov
        [rdx+8], rcx
mov
        [rdx+10h], rsi
mov
        rax, ____KVM_RELOCS_
lea
lea
        rdi, [rbp+var_68]
        [rdi], rax
mov
lea
        rax, ___KVM_MODULE_
movq
        xmm0, rax
        rax, ____KVM_SIGNS__
lea
        xmm1, rax
mova
punpcklada xmm1, xmm0
       xmmword ptr [rdi+8], xmm1
movdau
        rax, ___kvm_init_gv__
lea
        [rdi+18h], rax
mov
lea
        rax, ___kvm_api_bridge__
        [rdi+20h], rax
mov
        dword ptr [rdi+28h], 0BDh
mov
        dword ptr [rdi+2Ch], 3
mov
        [rdi+30h], rdx
mov
call
        _kiwisec_vm_interpreter
        eax, [rax]
mov
        rsp, 70h
add
pop
        rbp
retn
_binary_search endp
```

旗舰防护

ZERO TRUST SECURITY

SC 互联网安全大会 中国·北京

Internet Security Conference 2018 Beijing China

混淆

块调度

代码虚拟化 TECHNOLOGY TECH

Internet Security Conference 2018 Beijing- China

结束之前

WEB INTERNET FORMATION LEAK

TERMINAL AGE

TECHNOLOGY

RSONAL PRIVACY IDENTITY SECURITY

DENTITY

ISC 互联网安全大会 中国·北京

Internet Security Conference 2018 Beijing China Tion

ZERO TRUST SECURITY

几维安全编译器产品简介

	级别	功能	平台
混淆编译器	初级	代码膨胀 乱序执行	iOS、Android、IoT
块调度编译器	高级	逻辑断链 函数调用隐藏	iOS、Android、IoT
虚拟化编译器	旗舰级	逻辑隐藏 虚拟CPU执行	iOS、Android、IoT

WEB INTERNET
INFORMATION LEAK
TERMINAL AGE
PERSONAL PRIVACY IDENTITY SECURITY
IDENTITY
AUTHENTICATION
ISC 互联网安全大会中国・北京
Internet Security Conference 2018 Beijing China TION

谢谢!

ISC 互联网安全大会 中国·北京
Internet Security Conference 2018 Beijing · China