```
!pip install turicreate

from google.colab import drive
drive.mount('/content/gdrive')
```

Mounted at /content/gdrive

Using deep features to train an image classifier

import turicreate

Load some data

```
image_train = turicreate.SFrame('/content/gdrive/My Drive/Turicreate/Week 6/image_train_data/')
image_test = turicreate.SFrame('/content/gdrive/My Drive/Turicreate/Week 6/image_test_data/')
```

▼ Explore this image data

```
image_train['image'].explore()
```

SArray				
0	W.			
1				
2				
3				
4	No			
5				
6	E.			
7				
8				
9				
10	Car			
11	1			
12				
13	2			
14	50			
15				
16	•			
17				
18				
19				

20	
21	
22	*
23	53
24	-
25	1
26	
27	1
28	
29	
30	
31	1
32	
33	2
34	0
35	
36	
37	
38	
39	
40	d
41	1

42	A second
43	AN AN
44	
45	
46	40
47	
48	
49	
50	
51	-
52	(
53	
54	1
55	4
56	7
57	
58	
59	
60	
61	
62	7
63	

64	4
65	
66	
67	0
68	-
69	
70	
71	*
72	\$4
73	2
74	*
75	Ø.
76	$\overline{\gamma}$
77	4
78	
79	
80	
81	
82	
83	
84	30
85	- ba
86	9

▼ Train an image classifier on raw image pixels

PROGRESS: Creating a validation set from 5 percent of training data. This may take a while. You can set ``validation_set=None`` to disable validation tracking.

Logistic regression:

Number of examples : 1904 Number of classes : 4 Number of feature columns : 1 Number of unpacked features : 3072 Number of coefficients : 9219

Starting L-BFGS

	Passes	 Step size	Elapsed Time	Training Accuracy	Validation Accuracy
0	5 10 13 14 20 30	0.018397 1.563776 0.781888 0.977360 2.509078 1.095213	2.061635 2.486026	0.272059 0.363971 0.402836 0.377626 0.462185 0.529937	0.257426 0.356436 0.415842 0.257426 0.425743

Make predictions using simple raw pixel model

image_test[0:3]['image'].explore()

 \Box

```
SArray

image_test[0:3]['label']

dtype: str
Rows: 3
['cat', 'automobile', 'cat']

raw_pixel_model.predict(image_test[0:3])

dtype: str
Rows: 3
['bird', 'cat', 'bird']
```

Evaluate the raw pixel model on the test data

```
raw_pixel_model.evaluate(image_test)
     {'accuracy': 0.4795, 'auc': 0.7275715000000003, 'confusion_matrix': Columns:
              target_label
                              str
             predicted_label str
             count int
      Rows: 16
      Data:
        target_label | predicted_label | count |
            bird
                              dog
                                            155
             dog
                                            278
                              cat
                                            395
             cat
                              cat
            bird
                           automobile
                                            151
                                            637
         automobile
                           automobile
             dog
                           automobile
                                            113
             dog
                              dog
                                            398
                                            279
             cat
                              dog
            bird
                              cat
                                            206
                                             89
         automobile
                              bird
      [16 rows x 3 columns]
      Note: Only the head of the SFrame is printed.
      You can use print_rows(num_rows=m, num_columns=n) to print more rows and columns., 'f1_score
              threshold
                              float
              fpr
                      float
              tpr
                      float
                      int
```

Rows: 4004

n class int