Project Development Phase

Model Performance Testing Report for "Book A Doc"

Field	Details
Date	10 April 2025
Team ID	SWTID1743701170
Project Name	Book A Doc

Model Performance Testing Overview

	•
Aspect	Details
Purpose	To evaluate the performance of an optional AI/ML model integrated into the "Book A Doc" system, such as predicting appointment availability.
Scope	Testing the accuracy, training time, and scalability of the AI model within the MERN framework.
Team Members	- Param Yadav (22BCY10165) - Testing Lead - Vibhushit Bhat (22BSA10132) - Performance Analyst - Tushar Chahar (22BCY10231) - ML Model Tester - Saurabh Yadav (22BCY10165) - Reviewer

Model Performance Testing Template

Test Scenarios & Results

Test ID	Scenario	Description	Metric	Expected Value	Actual Value	Status
MLT- 001	Appointment Availability Prediction	Predict available slots for the next 24 hours using historical data.	Accuracy	> 85%	82%	Fail
MLT- 002	Model Training Time	Train the model with 1000 appointment records.	Training Time	< 10min	12min	Fail
MLT- 003	Model Prediction Latency	Generate predictions for 100 queries.	Latency	< 1s per query	1.2s per query	Fail
MLT- 004	Scalability with Data Volume	Test with 5000 records.	Accuracy Drop	< 5%	6%	Fail

Note: Results are hypothetical, assuming a basic TensorFlow model. Update with actual data if an AI model is implemented. If no AI is used, note: "No AI model currently integrated; reserved for future enhancements."

Test Environment

Component Details

Hardware 8GB RAM, 4-core CPU, 256GB SSD

Software Node.js v18, MongoDB v6, TensorFlow v2.15, Python v3.11

Dataset 1000 synthetic appointment records (expandable to 5000)

Observations & Recommendations

Observation Details

82% accuracy falls short of 85%; may need more diverse training Accuracy Below Target

data.

Training Time 12min exceeds 10min target; optimize model complexity or

Exceeded hardware.

Latency Issue 1.2s per query exceeds 1s target; refine prediction algorithm.

Scalability Concern 6% accuracy drop with 5000 records indicates scaling limitations.

Recommendation Details

Data Enhancement Increase training dataset size and variety (e.g., add weekend/holiday

data).

Optimization Use GPU acceleration or simplify model architecture (e.g., reduce

layers).

Latency Reduction Implement caching for frequent predictions or optimize TensorFlow

settings.

Scalability Plan

Test with distributed computing (e.g., AWS SageMaker) for larger

datasets.

Conclusion

Aspect Details

The hypothetical AI model for appointment availability prediction requires

Summary improvements in accuracy, training time, latency, and scalability. All tests failed to

meet targets.

Next Address failures (MLT-001 to MLT-004) by implementing recommendations before

Steps submission on April 12-14, 2025. If no AI is used, document as a future feature.