

# Saliency Aggregation: A Data-driven Approach report

# Paper's Authors

Long Mai, Yuzhen Niu and Feng Liu

# Advisor

Dr. Maryam Abedi

# Student

Mohammad Shahpouri

October 2022

## Contents

| List of Figures  List of Equations |                                      |                         |                                            |   |  |  |  |  |  |  |  |   |                        |  |  |
|------------------------------------|--------------------------------------|-------------------------|--------------------------------------------|---|--|--|--|--|--|--|--|---|------------------------|--|--|
|                                    |                                      |                         |                                            |   |  |  |  |  |  |  |  | 1 | 1 Saliency aggregation |  |  |
|                                    | 1.1                                  | Stand                   | ard saliency aggregation                   | 1 |  |  |  |  |  |  |  |   |                        |  |  |
|                                    | 1.2 Data-driven saliency aggregation |                         |                                            |   |  |  |  |  |  |  |  |   |                        |  |  |
|                                    |                                      | 1.2.1                   | Pixel-wise aggregation                     | 1 |  |  |  |  |  |  |  |   |                        |  |  |
|                                    |                                      | 1.2.2                   | Aggregation using conditional random field | 2 |  |  |  |  |  |  |  |   |                        |  |  |
|                                    |                                      | 1.2.3                   | Image-Dependent saliency aggregation       | 3 |  |  |  |  |  |  |  |   |                        |  |  |
| 2                                  | Experimental results                 |                         |                                            |   |  |  |  |  |  |  |  |   |                        |  |  |
|                                    | 2.1                                  | Quantitative results    |                                            |   |  |  |  |  |  |  |  |   |                        |  |  |
|                                    | 2.2                                  | 2.2 Qualitative results |                                            |   |  |  |  |  |  |  |  |   |                        |  |  |
| $\mathbf{R}$                       | efere                                | nces                    |                                            | 6 |  |  |  |  |  |  |  |   |                        |  |  |

## List of Figures

- $1\qquad \text{Precision-recall curves of the saliency aggregation approaches, including PW, CRF, and CRF-GIST.} \quad 4$
- 2 Saliency aggregation examples. (a) shows the input images, the ground-truth is (b), individual saliency maps (c-j), and the aggregation results using image-dependent CRF aggregation method. 5

# List of Equations

| 1 | Equation 1 |  | <br>• | • | • |  |  | • |  |      | • |  |  |  |  |  |  |  |  | • |  |  |  |      | • |  | 1 |
|---|------------|--|-------|---|---|--|--|---|--|------|---|--|--|--|--|--|--|--|--|---|--|--|--|------|---|--|---|
| 2 | Equation 2 |  |       |   |   |  |  |   |  |      |   |  |  |  |  |  |  |  |  |   |  |  |  |      |   |  | 1 |
| 3 | Equation 3 |  |       |   |   |  |  |   |  | <br> |   |  |  |  |  |  |  |  |  |   |  |  |  |      |   |  | 1 |
| 4 | Equation 4 |  |       |   |   |  |  |   |  | <br> |   |  |  |  |  |  |  |  |  |   |  |  |  |      |   |  | 1 |
| 5 | Equation 5 |  |       |   |   |  |  |   |  | <br> |   |  |  |  |  |  |  |  |  |   |  |  |  | <br> |   |  | 2 |
| 6 | Equation 6 |  |       |   |   |  |  |   |  | <br> |   |  |  |  |  |  |  |  |  |   |  |  |  |      |   |  | 2 |
| 7 | Equation 7 |  |       |   |   |  |  |   |  | <br> |   |  |  |  |  |  |  |  |  |   |  |  |  | <br> |   |  | 2 |
| 8 | Equation 8 |  |       |   |   |  |  |   |  | <br> |   |  |  |  |  |  |  |  |  |   |  |  |  | <br> |   |  | 2 |
| g | Equation 9 |  |       |   |   |  |  |   |  |      |   |  |  |  |  |  |  |  |  |   |  |  |  |      |   |  | 3 |

### 1 Saliency aggregation

Their method runs m saliency estimation algorithms,  $\{M_i | 1 \le i \le m\}$ , on an input image I, and yields m saliency map,  $\{S_i | 1 \le i \le m\}$ .  $S_i(p)$  denotes saliency value at pixel p. The goal is to take these m saliency maps as input and produce a final saliency map S.

#### 1.1 Standard saliency aggregation

the aggregated saliency value S(p) at pixel p of image I is modeled as the probability:

$$S(p) = P(y_p = 1 | S_1(p), S_2(p), \dots, S_m(p) \propto \frac{1}{Z} \sum_{i=1}^m \zeta(S_i(p))$$
 (1)

where  $S_i(p)$  represents the saliency value of pixel p in the saliency map  $S_i$ ,  $y_p$  is a binary random variable can be 1 if p is a salient pixel and 0 otherwise, and Z is a constant. According to [1] three different function for  $\zeta$  in Equation 1 are implemented:

$$\zeta_1(x) = x, \ \zeta_2(x) = \exp(x), \ \text{and} \ \zeta_3(x) = \frac{-1}{\log(x)}$$
 (2)

Standard saliency aggregation method are tested on two public saliency benchmarks, FT [2] and SS [3].

#### 1.2 Data-driven saliency aggregation

#### 1.2.1 Pixel-wise aggregation

final saliency value S(p) is computed using the logistic model [4]:

$$P(y_p = 1|x(p); \lambda) = \sigma(\sum_{i=1}^{m} \lambda_i S_i(p) + \lambda_{m+1})$$
(3)

where  $\lambda$  is the set of model parameters which weigh the contribution of each individual saliency map. Here  $\sigma(\cdot)$  denotes the sigmoid function:

$$\sigma(z) = \frac{1}{1 + \exp(-z)} \tag{4}$$

#### 1.2.2 Aggregation using conditional random field

Conditional Random Field (CRF) is applied to aggregate saliency analysis results from multiple methods. Each pixel is modeled as a node. Each node is associated with a saliency feature vector  $\mathbf{x}(p) = (S_1(p), S_2(p), \dots, S_m(p))$  and a binary random label  $y_p$ . The conditional distribution of labels  $Y = \{y_p | p \in I\}$  on the features  $X = \{x_p | p \in I\}$  as follows:

$$P(Y|X;\theta) = \frac{1}{Z} \exp\left(\sum_{p \in I} f_d(\mathbf{x}_p, y_p) + \sum_{p \in I} \sum_{q \in N_p} f_s(\mathbf{x}_p, \mathbf{x}_q, y_p, y_q)\right)$$
(5)

where p is a pixel in image I,  $x_p$  is its feature, and  $y_p$  is its saliency label.  $\theta$  is the CRF model parameters.  $f_d(\mathbf{x}_p, y_p)$  is the feature function that defines the relationship between the feature and label.  $f_s(\mathbf{x}_p, \mathbf{x}_q, y_p, y_q)$  is another feature function that defines the feature-dependent relationship between the labels of neighboring pixels p and q.  $N_p$  is the set of pixels that are directly connected to p. It is considered as 8-connection neighborhood here. Z is a constant.

Feature function  $f_d(\mathbf{x}_p, y_p)$ , based on only the input saliency maps  $S_i$ , is defined as follows:

$$f_d(\mathbf{x}_p, y_p) = \sum_{i=1}^m \lambda_i S_i(p) y_p + \lambda_{m+1} y_p$$
(6)

where  $\lambda_i$  is a subset of the CRF model parameters and  $S_i(p)$  is the saliency value at pixel p in the saliency map  $S_i$ .

The feature function  $f_s(\mathbf{x}_p, \mathbf{x}_q, y_p, y_q)$  has two components,  $f_e$  and  $f_c$ , to model the data-dependent relationship between the labels of neighboring pixels.

$$f_s(\mathbf{x}_p, \mathbf{x}_q, y_p, y_q) = f_e(\mathbf{x}_p, \mathbf{x}_q, y_p, y_q) + f_c(\mathbf{x}_p, \mathbf{x}_q, y_p, y_q)$$

$$\tag{7}$$

Left hand side of Equation 7,  $f_e(\mathbf{x}_p, \mathbf{x}_q, y_p, y_q)$ , determines if two pixels have different saliency values according to an individual saliency method, they take different saliency labels in the aggregation result. Particularly, if a pixel takes a high saliency value than its neighbor in an individual saliency map, it is also likely to take a more salient label after aggregation.

$$f_e(\mathbf{x}_p, \mathbf{x}_q, y_p, y_q) = \sum_{i=1}^m \alpha_i (1(y_p = 1, y_q = 0) - 1(y_p = 0, y_q = 1))(S_i(p) - S_i(q))$$
(8)

where  $\alpha_i$  are CRF model parameters and  $1(\cdot)$  is an indicator function.

 $f_c(\mathbf{x}_p, \mathbf{x}_q, y_p, y_q)$  inpired by [5] idea to give same label to neighboring pixels with similar colors

$$f_c(\mathbf{x}_p, \mathbf{x}_q, y_p, y_q) = -1(y_p \neq y_q) \exp(-\eta ||I(p) - I(q)||)$$
 (9)

where ||I(p) - I(q)|| is the color difference between pixel p and q in the RGB color space.  $\eta$  is set as  $(2 < ||I(p) - I(q)||^2 >)^{-1}$ , where  $< \cdot >$  denotes the expectation operator.

The CRF aggregation model parameters  $\Theta = \{\lambda, \alpha\}$  are optimized to maximize the likelihood on the training data.

#### 1.2.3 Image-Dependent saliency aggregation

To improve the global saliency aggregation method they upgrade the aggregation model from  $P(Y|X;\theta)$  into  $P(Y|X;\theta(I))$  for each image I. Here,  $\theta(I)$  indicates that the model parameters are customized to image I. Given an input image, the method first finds its k nearest neighbors in the training set and then trains a saliency aggregation model using these k images. The GIST descriptor is used to find similar images.  $L_2$  distance is employed to compute the distance between GIST descriptors, as suggested in [6].

## 2 Experimental results

The method is experimented on two datasets FT [2] and SS [3].

### 2.1 Quantitative results



Figure 1. Precision-recall curves of the saliency aggregation approaches, including PW, CRF, and CRF-GIST.

### 2.2 Qualitative results



**Figure 2.** Saliency aggregation examples. (a) shows the input images, the ground-truth is (b), individual saliency maps (c-j), and the aggregation results using image-dependent CRF aggregation method.

### References

- A. Borji, D. N. Sihite, and L. Itti, "Salient object detection: A benchmark," in Computer Vision ECCV 2012 (A. Fitzgibbon, S. Lazebnik, P. Perona, Y. Sato, and C. Schmid, eds.), (Berlin, Heidelberg), pp. 414–429, Springer Berlin Heidelberg, 2012.
- [2] R. Achanta, S. Hemami, F. Estrada, and S. Susstrunk, "Frequency-tuned salient region detection," in 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1597–1604, 2009. 1, 4
- [3] Y. Niu, Y. Geng, X. Li, and F. Liu, "Leveraging stereopsis for saliency analysis," in 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 454–461, 2012. 1, 4
- [4] C. M. Bishop, Pattern Recognition and Machine Learning. Springer-VerlagBerlin, Heidelberg, 2006. 1
- [5] T. Liu, J. Sun, N.-N. Zheng, X. Tang, and H.-Y. Shum, "Learning to detect a salient object," in 2007 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8, 2007. 3
- [6] A. Oliva and A. Torralba, "Modeling the shape of the scene: A holistic representation of the spatial envelope," International Journal of Computer Vision, vol. 42, pp. 145–175, May 2001. 3