

SciFi alignment

studies on alignment configuration and mass shifts

Biljana Mitreska on behalf of the SciFi alignment team

WP4/5 meeting 10.10.2023

Updated pattern recongition in alignment: • Rec: 13565

- Alignment using 500k events from run 269045
- Aligning for HalfModules in Tx Rz + Back layer in stat. 3 fixed in Tx, Rz

- 10 % more tracks seen
- Procedure converges faster: one iteration less needed than before
- No impact on alignment constants (global coordinates shown)

Updated pattern recongition in alignment • Rec!3565

- Alignment using 500k events from run 269045
- Aligning for HalfModules in Tz Rx + Back layer in stat. 3 fixed in Tz, Rx

- 10 % more tracks seen
- Procedure converges faster: one iteration less needed than before
- No impact on alignment constants (global coordinates shown)

Alignment configurations: joint constraints

- SciFi modules are bending at the center (y = 0.0), inwards or outwards along the beam direction
- ► Half modules + joints reproduce the real shape

- ▶ Joints = survey constraint at the joint position
- ► Constraining two alignable elements:

$$\chi^2 = (p_A - p_B)^T V^{-1} (p_A - p_B)$$

No survey available for all degrees of freedom \rightarrow tuning of survey constraint uncertainties needed to control their χ^2

4

Alignment configurations: joint constraints

- ▶ Look at the χ^2 contribution of all translations and rotations of joints
- Alignment scans for a range of uncertainties until $\chi^2/\text{dof} = 1$

Example: Tuning of Rx uncertainty

Parameter	uncertainty			
Tx	10 μ m			
Ту	1.2 μ m			
Tz	1.9 μ m			
Rx	0.4 mrad			
Ry	0.47 μ rad			
Rz	0.17 mrad			

→ Rec !418

Obtained Rx uncertainty = 0.4 mrad Stability checks of the modules shape from hardware \rightarrow 0.35 mrad

Alignment configurations: joint constraints

- ► Improvements seen in residuals and tracking
- ► We will continue using the tuned uncertainties for the next data taking period

Curvature bias: D^{\pm} mass

A particle reconstructed by 2 oppositely charged tracks: $m^2 = m_+^2 + m_-^2 + 2p_+p_-(1 - \cos\theta)$

· If momentum has a small bias:

$$m = m + (p_+\delta p_- + p_-\delta p_+)(1 - \cos\theta)$$

Case 1: There is bias in T_x , δp_+ and δp_- have opposite variation $\delta m = (1-cos\theta)(p_--p_+)\delta p \sim C\delta r(p_--p_+)$ Note: mass shift over (p_--p_+)

Case 2: There is bias in T_z , δp_+ and δp_- have same variation $\delta m = (1 - cos\theta)(p_- + p_+)\delta p \sim C\delta z t_x(p_- + p_+)$ Note: mass shift to PDG value

- Residual misalignment in Tx in one of the stations/layers in the SciFi
- Tz positions used from 2022: residual in z
- Interplay with rotations of joints of modules
- Mass constraint not working

Curvature bias: alignment configurations

- Several configurations checked
- ▶ All of them use the previously tuned joint uncertainties (slide 5)

Configuration	1	П	Ш	IV	V	VI
Modules	TxRz	TxTzRxRz	TxRxRz	TxRxRz	TxRxRz	TxTzRxRz
Average constraint						
All modules	×	×	×	×	×	✓
T2V+T1U	×	×	×	×	1	X
T2V layer av. pos.	×	×	×	1	×	X
Small Rx survey uncert.	×	×	1	1	1	✓
Back layer in stat. 3	TxRz	TxTzRxRz	TxRxRz	TxRxRz	TxRxRz	TxTzRxRz
Modules joints	all dofs					
Survey	not used					

Curvature bias: alignment configurations Tx

- ► All layers in T2 have a shift in x compared with the other stations
- ► Configuration IV and V constrain layers in T1 and T2 that partly solve the discrepancy

Curvature bias: alignment configurations Rx

- In v9 Rx introducing rotation (for the modules bending)
- ▶ In II Tz and Rx are correlated, Rx movement translates to z positions
- ► In IV, V and VI 'removing' Rx with a small uncertainty

Curvature bias: alignment configurations Tz

- Conf. II introduces large shifts: max 4 mm in z, all because Rx compensation
- ➤ To be able to disentangle between the both we put small survey uncertainty in Rx and then align for TxTzRxRz (VI)
- Not planning to include Rx and Tz in further data-taking

Curvature bias: D^{\pm} mass fits

- Shift visible when adding the tuning of joints
- ► This is the same configuration as V9
- ► Already confirmed by analysts

Curvature bias: D^{\pm} mass fits

▶ Adding only Rx does not improve the D^{\pm} shift

Curvature bias: D^{\pm} mass fits

- Mass shift is vanishing when aligning for Rx and Tz together
- ▶ NOTE: Tz was already there from 2022 alignment
- ► This introduces shift in z not corresponding to survey
- ▶ To be checked if conf. VI solves the shift without large z movement

Curvature bias: J/Ψ mass

- SciFi alignment events are collected using:
 RB 3 Tracker alignment
 'Hlt1(D2KPi|DiMuonHighMass|DisplacedDiMuon)Alignment'
- ightharpoonup J/Ψ mass constraint not included (not working)
- ► Working on fixing this

Summary

- Curvature bias present: can come from bad alignment or from magnetic field description
- ▶ Aligning for Rx and Tz retrieve back the D^{\pm} shift
- ightharpoonup J/Ψ mass constraint to be added, currently only D^0 used
- Rotations in z to be checked in case they contribute to unphysical movements
- ▶ Other effects can come to play, suggestions are welcomed
- ▶ Plan to release a new version with all these fixes