Practical 7

Plotting the characteristic for first order PDE

1.
$$yu_x - xu_y = 0$$

The characteristic system is given by $\frac{dx}{y} = \frac{dy}{x} = \frac{du}{0}$ and the characteristic equations are given by $x^2 + y^2 = c1$ and u = c2. Taking c1 = 1 and 3 and c2 = 3 and 8.

Plot[
$$\{Sqrt[x^2 - 1], Sqrt[x^2 - 3]\}$$
,
{x, -5, 5}, PlotStyle \rightarrow Thick, Frame \rightarrow True]

Plot[$\{3, 8\}$, $\{x, -5, 5\}$, PlotStyle \rightarrow Thick, Frame \rightarrow True]

2. $xu_x + yu_y = u$

The characteristic system is given by $\frac{dx}{x} = \frac{dy}{y} = \frac{du}{u}$ and the characteristic equations are given by $\frac{y}{x} = c1$ and $\frac{u}{x} = c2$. Taking c1 = 1 and 3 and c2 = 3 and 8.

Plot[$\{x, 3x\}, \{x, -5, 5\}, PlotStyle \rightarrow Thick, Frame \rightarrow True$]

 $Plot[{3 x, 8 x}, {x, -5, 5},$ PlotStyle → Thick, Frame → True]

3.
$$(y + xu)u_x - (x + uy)u_y = x^2 - y^2$$

The characteristic system is given by $\frac{dx}{y+ux} = \frac{dy}{-(x+uy)} = \frac{du}{x^2-y^2}$ and the characteristic equations are given by xy + u = c1 and $x^2 + y^2 - u^2 =$ c2. Taking c1 = 0and 9 and c2 = 0 and 10.

Plot3D[
$$\{-x*y, -x*y+9\}$$
, $\{x, -5, 5\}$, $\{y, -5, 5\}$, PlotStyle \rightarrow Thick]

Plot3D[
$$\{Sqrt[x^2 + y^2], Sqrt[x^2 + y^2 - 10]\}, \{x, -5, 5\}, \{y, -10, 10\}, PlotStyle \rightarrow Thick]$$

Questions

1.
$$xu_x - yu_y = u$$

2.
$$y^2 u_x - xyu_y = x(u - 2y)$$

3.
$$u(x+y) u_x - u(x-y)u_y = x^2 + y^2$$

4.
$$u_x$$
 - u_y = 1

1.

Plot[
$$\{2x, 5x\}, \{x, -6, 6\}, PlotStyle \rightarrow Thick,$$

Frame $\rightarrow True, AxesLabel \rightarrow \{"x", "y"\}$]

Plot[$\{4x, 6x\}, \{x, -6, 6\}, PlotStyle \rightarrow Thick,$ Frame \rightarrow True, AxesLabel \rightarrow {"x", "y"}]

2.

Plot[$\{x^2 - 4, x^2 - 8\}$, $\{x, -6, 6\}$, PlotStyle \rightarrow Thick, Frame \rightarrow True, AxesLabel \rightarrow {"x", "y"}]

Plot[$\{y (8-2*Log[2]), y (6-2*Log[2])\}, \{y, -3, 3\},$ PlotStyle \rightarrow Thick, Frame \rightarrow True, AxesLabel \rightarrow {"x", "y"}]

3.

Plot3D[$\{(x^2 - y^2 - 1)/2, (x^2 - y^2 - 2)/2\}$, $\{x, -6, 6\}, \{y, -6, 6\}, PlotStyle \rightarrow Thick$

Plot3D[${Sqrt[x^2 - y^2], Sqrt[x^2 - y^2 + 2]}$, $\{x, -5, 5\}, \{y, -10, 10\}, PlotStyle \rightarrow Thick]$

4.

Plot[$\{y-0, y-3\}, \{y, -5, 5\},$ PlotStyle \rightarrow Thick, AxesLabel \rightarrow {"x", "y"}]

