Алгебра. І Семестр

Лектор: Вавилов Николай Александрович Автор конспекта: Буглеев Антон

2022

1 Некоторые бинарные операции

Операции над векторами

Сложение и умножение векторов:

$$(x_1, ..., x_n) + (y_1, ..., y_n) = (x_1 + y_1, ..., x_n + y_n)$$

 $(x_1, ..., x_n)(y_1, ..., y_n) = (x_1y_1, ..., x_ny_n)$

Комплексное умножение:

$$(a,b)(c,d) = (ac - bd, ad + bc)$$

Векторное умножение в \mathbb{R}^3 :

$$(x_1, x_2, x_3) \times (y_1, y_2, y_3) = (x_2y_3 - x_3y_2, -x_1y_3 + x_3y_1, x_1y_2 - x_2y_2)$$

Операции над матрицами

Сложение матриц:

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} + \begin{pmatrix} e & b \\ g & h \end{pmatrix} = \begin{pmatrix} a+c & b+f \\ c+g & d+h \end{pmatrix}$$

Умножение матриц:

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot \begin{pmatrix} e & f \\ g & h \end{pmatrix} = \begin{pmatrix} ae + bg & af + bh \\ ce + dg & cf + ch \end{pmatrix}$$

2 Структуры

Основные структуры

$$X \neq \emptyset$$

$$*: X \times X \to X$$

$$(x, y) \mapsto x * y$$

Аксиомы:

- 1. $\forall x, y, z \in X : x * (y * z) = (x * y) * z$ (Ассоциативность)
- 2. $\exists e \in X : e * x = x = x * e \text{ (нейтральный элемент)}$
- 3. $\forall x \in X, \exists x' : x * x' = x' * x = e \text{ (обратный элемент)}$
- 4. $\forall x, y \in X : a * b = b * a$ (коммутативность)

Def. Полугруппа (Semigroup) - множество X с операцией, удовлетворяющее аксиоме 1

Примеры: $(\mathbb{N}, +)$

Def. Моноид (Monoid) - множество X с операцией *, удовлетворяющее аксиомам 1-2

Примеры: $(\mathbb{N}_0, +), (\mathbb{N}, *), (X, \cup)$

Def. Группа (Group) - множество X с операцией *, удовлетворяющее аксиомам 1-3

Def. Абелева (коммутативная) группа (Abelian group) - множество X с операцией *, удовлетворяющее аксиомам 1-4

Некоторые полезные леммы и определения

Def. Элемент $z \in X$ называется **регулярным**, если $\forall x, y \in X$:

$$\begin{cases} x*z=y*z\Rightarrow x=y \text{ (Регулярный справа)}\\ z*x=z*y\Rightarrow x=y \text{ (Регулярный слева)} \end{cases}$$

Def. Элемент $z \in X$ называется **обратимым**, если $\exists z' \in X$:

$$\begin{cases} z*z'=e \text{ (Обратимый слева)} \\ z'*z=e \text{ (Обратимый справа)} \end{cases}$$

Lemma. Элемент $z \in X$ обратим слева/справа $\Rightarrow z$ регулярен слева/справа

Proof...

Lemma. В группе G есть левое и правое деление:

$$\forall h, g \in G \; \exists ! \; x, y \in G, (hx = g) \land (yh = g) \Rightarrow (x = h^{-1}g) \land (y = gh^{-1})$$

Proof. Докажем, что $hx = g \Rightarrow x = h^{-1}g$

$$hx=g\mid$$
 домножим на h^{-1} $h^{-1}(hx)=h^{-1}g$ $(h^{-1}h)x=h^{-1}g$ $ex=h^{-1}g$ $x=h^{-1}g$

Аналогичное доказательство утверждения $yh = g \Rightarrow y = gh^{-1}$ \square

Def. $H \subset G$ называется **Подгруппой в** G, если

$$\forall x, y \in H, \ xy^{-1} \in H \Leftrightarrow \begin{cases} xy \in H \\ y^{-1} \in H \end{cases}$$

Примеры:

- 1. $\mathbb{R}_{>0} < \mathbb{R}^*$ значит, что $\mathbb{R}_{>0}$ подгруппа \mathbb{R}^*
- $2.~\mathbb{Q}_{>0}<\mathbb{Q}^*$ значит, что $\mathbb{R}_{>0}$ подгруппа \mathbb{R}^*

Def. Операция возведения в степень в моноиде. Пусть X - моноид с нейтральным $e, x \in X, n \in \mathbb{N}_0$. Тогда:

$$x^{0} = e, \ x^{n} = \begin{cases} \left(x^{\frac{n}{2}}\right)^{2}, \ 2 \mid n \ (2 - \text{делитель } n) \\ x^{n-1} \cdot x, \ 2 \nmid n \ (2 - \text{не делитель } n) \end{cases}$$

Def. Операция возведения в степень в группе определяется аналогично, только показатель $n \in \mathbb{Z}$

 ${f Def.}$ Группа G называется **конечной**, если её порядок |G| конечен

Def. Симметрическая группа множества X:

$$S_X =$$
 биекция $X \to X$

3 Кольца и поля

Def. *Кольцом* называется множество K с операцией сложения и умножения, обладающая следующими свойствами:

- 1. Относительно сложения существует абелева группа.
- 2. Выполняется дистрибутивность: $\forall a, b, c \in K : a(b+c) = ab + ac$.

Следствия аксиом кольца:

- 1. $\forall a \in K : a0 = 0a = 0$
- 2. $\forall a, b \in K : a(-b) = (-a)b = -ab$
- 3. $\forall a, b, c \in K : a(b-c) = ab ac$

Def. Кольцо K называется *коммутативным*, если выполнено $\forall\,a,b\in K:ab=ba$

Def. Кольцо K называется accouuamueным, если выполнено $\forall\,a,b,c\in K:(ab)c=a(bc)$

Два важных замечания:

1. Если 1 = 0, то

$$\forall a \in K : a = a1 = a0 = 0$$

То есть кольцо K состоит только из нуля. Если кольцо содержит более одного элемента, то $1 \neq 0$

2. При наличии коммутативности умножения из двух тождеств дистрибутивности можно оставить только одно.

Примеры колец:

- 1. $\mathbb{Z}, \mathbb{Q}, \mathbb{R}$ являются коммутативными ассоциативными кольцами с единицей относительно операций сложения и умножения.
- $2.~2\mathbb{Z}$ является коммутативным ассоциативным кольцом без единицы.

- 3. Множество векторов пространства с операциями сложения и векторного умножения является некоммутативным неассоциативным кольцом. Однако выполнены другие тождества:
 - (a) $a \times b + b \times a = 0$ (антикоммутативность)

(b)
$$(a \times b) \times c + (b \times c) \times a + (c \times a) \times b = 0$$
 (тождество Якоби)

Def. Элемент a' кольца с единицей называется *обратным* к элементу a, если выполнено a'a = aa' = 1.

Элемент, имеющий обратный, называется обратимым

Def. *Полем* называется коммутативное ассоциативное кольцо с единицей, в котором каждый ненулевой элемент обратимым.

Примером полей являются \mathbb{R} и \mathbb{Q} , но \mathbb{Z} не является полем (т.к. обратимы только ± 1)

Важное свойство поля:

$$ab = 0 \Rightarrow a = 0 \lor b = 0$$

Кольцо \mathbb{Z} также обладает этим свойством. Такие кольца называют кольцами без делителей нуля.

В кольце без делителей нуля имеет место:

$$ac = bc \land c \neq 0 \Rightarrow a = b$$