$$(n!)^{\frac{1}{n}} \to \infty$$

A számtani-négyzetes közép és egyszerű átalakítás mutatja:

$$\left(\frac{\sum \frac{1}{k}}{n}\right)^2 \le \frac{\sum \frac{1}{k^2}}{n} \le \frac{\sum \frac{2}{k(k+1)}}{n} = 2\frac{1 - \frac{1}{n+1}}{n} \le \frac{2}{n}$$

A mértani-harmonikus középből:

$$(n!)^{\frac{1}{n}} \ge \frac{n}{\sum \frac{1}{k}} \ge \sqrt{\frac{n}{2}}$$