Skew bracoids, Semi-braces and the Yang-Baxter Equation

Isabel Martin-Lyons

joint work with Ilaria Colazzo, Alan Koch and Paul Truman

ARTIN at Leeds, Biracks and Biquandles 17th of December 2024

- 1 The skew brace
- 2 The semi-brace
- The skew bracoid
- The connection
- 5 Solutions from skew bracoids

- 1 The skew brace
- 2 The semi-brace
- The skew bracoid
- The connection
- 5 Solutions from skew bracoids

The skew brace

Definition (Guarnieri and Vendramin, 2017)

A *skew brace* is a triple $(G,+,\cdot)$, where (G,+) and (G,\cdot) are groups and for all $g,h,f\in G$

$$g \cdot (h+f) = (g \cdot h) - g + (g \cdot f). \tag{1}$$

- We refer to
 - (1) as the skew brace relation;
 - (G, \cdot) as the *multiplicative* group;
 - (G, +) as the *additive* group, though we do not assume + is abelian (and do not always write it additively).
- The additive and multiplicative identities coincide.
- If (G, \cdot) is a group then (G, \cdot, \cdot) and (G, \cdot^{opp}, \cdot) are skew braces.

The skew brace

Definition (Guarnieri and Vendramin, 2017)

A skew brace is a triple $(G,+,\cdot)$, where (G,+) and (G,\cdot) are groups and for all $g,h,f\in G$

$$g \cdot (h+f) = (g \cdot h) - g + (g \cdot f). \tag{1}$$

Definition/Proposition

The map $\gamma:(G,\cdot)\to \mathsf{Perm}(G,+)$, sending g to γ_g , given by

$$\gamma_{\mathbf{g}}(f) = -\mathbf{g} + (\mathbf{g} \cdot \mathbf{f}),$$

for $g, f \in G$, is in fact a homomorphism, with image in Aut(G, +). We call this map the γ -function of the skew brace.

Applications

Yang-Baxter Equation

Skew braces are associated with solutions to the set-theoretic Yang-Baxter equation. A solution is a set G together with a map

$$\mathbf{r}(x,y) = (\lambda_x(y), \rho_y(x))$$
 from $G \times G$ to $G \times G$ satisfying

$$(\mathbf{r}\times 1)(1\times \mathbf{r})(\mathbf{r}\times 1)=(1\times \mathbf{r})(\mathbf{r}\times 1)(1\times \mathbf{r}).$$

The ${\bf r}$'s coming from skew braces are bijective and so are each λ_g, ρ_h so the solutions are non-degenerate.

Hopf-Galois Theory

Skew braces are connected to Hopf-Galois structures on finite Galois extensions of fields. The multiplicative group (G, \cdot) is the Galois group and (G, +) occurs as the *type* of the structure.

- The skew brace
- 2 The semi-brace
- The skew bracoid
- 4 The connection
- Solutions from skew bracoids

The semi-brace

Definition (Catino, Colazzo, and Stefanelli, 2017)

A semi-brace is a triple $(G,+,\cdot)$ with (G,\cdot) a group and (G,+) a left-cancellative semi-group satisfying

$$g \cdot (h + h') = g \cdot h + g \cdot (g^{-1} + h')$$

for all $g, h, h' \in G$.

Semi-braces give rise to solutions, these are left non-degenerate but unlike those from skew braces not necessarily right non-degenerate.

Examples

Examples

- Skew braces are semi-braces.
- If (G, \cdot) is a group then $(G, +, \cdot)$ is a semi-brace with g + h = h for all $g, h \in G$, this is called the *trivial semi-brace on G*.
- For $n \in \mathbb{N}$, take $(G, \cdot) = \langle r, s \mid r^n = s^2 = e, srs^{-1} = r^{-1} \rangle \cong D_{2n}$ and define $r^i s^j + r^k s^\ell := r^{i+k} s^\ell$ then $(G, +, \cdot)$ is a semi-brace.

Some Facts

Proposition

Let $(G, +, \cdot)$ be a semi-brace, write E for the set of additive idempotents.

Then

- the multiplicative identity $e \in E$;
- E is a subgroup of G under \cdot and $(E, +, \cdot)$ is also a semi-brace;
- G + e is a group under both + and \cdot , and $(G + e, +, \cdot)$ is a skew brace;
- (G, \cdot) admits an exact factorisation by G + e and E.

- The skew brace
- 2 The semi-brace
- The skew bracoid
- The connection
- Solutions from skew bracoids

The skew bracoid

Definition (M-L and Truman, 2024)

A *skew bracoid* is a quintuple $(G, \cdot, N, +, \odot)$ (or a double (G, N)) with (G, \cdot) and (N, +) groups and \odot a transitive action of G on N satisfying

$$g\odot(\eta+\mu)=(g\odot\eta)-(g\odot e_N)+(g\odot\mu) \tag{2}$$

for all $g \in G$ and all $\eta, \mu \in N$.

Skew bracoids are associated with Hopf-Galois structures on separable extensions of fields.

Examples

Examples

- A skew brace $(G, +, \cdot)$ can be thought of as a skew bracoid $(G, \cdot, G, +, \cdot)$. If a skew bracoid (G, N) has $\operatorname{Stab}_G(e_N) = \{e_G\}$ then the evaluation map defines a bijection between G and N that we can use to transfer the operation from one group to the other and produce a bone fide skew brace. We say that such a skew bracoid is essentially a skew brace.
- For any group G, $(G, \{e\})$ is a skew bracoid.
- Let $d, n \in \mathbb{N}$ such that d|n. Take $G = \langle r, s \rangle \cong D_{2n}$ and $N = \langle \eta \rangle \cong C_d$. Then we get a skew bracoid (G, N) using the action \odot given by

$$r^i s^j \odot \eta^k = \eta^{i+(-1)^j k}$$
.

The γ -function

Definition/Proposition

Given a skew bracoid $(G,\cdot,N,+,\odot)$, we define the map $\gamma:g\mapsto\gamma_g$, by

$$\gamma_{\mathsf{g}}(\eta) = -(\mathsf{g}\odot \mathsf{e}_{\mathsf{N}}) + (\mathsf{g}\odot \eta),$$

for $g \in G$, $\eta \in N$. Then γ is a homomorphism with image in Aut(N, +).

Examples

- In $(G, \{e\})$, $\gamma_g = id$ for all $g \in G$.
- In (D_{2n}, C_d) , recall $r^i s^j \odot \eta^k = \eta^{i+(-1)^j k}$, we have

$$\gamma_{r^i s^j}(\eta^k) = (r^i s^j \odot e_N)^{-1} (r^i s^j \odot \eta^k) = \eta^{-i} \eta^{i+(-1)^j k} = \eta^{(-1)^j k}.$$

A family of skew bracoids

Definition

A skew bracoid (G, N) is said to *contain a brace* if $S = \operatorname{Stab}_G(e_N)$ has a complement H in G, so that G has the exact factorisation HS.

Such an H acts regularly on N as $N=G\odot e_N=HS\odot e_N=H\odot e_N$ and $\operatorname{Stab}_H(e_N)=\{e_G\}$. Then we have

- (H, N) essentially a skew brace,
- $(S, \{e\})$ a skew bracoid, and
- \bullet G = HS.

A sense of strength

Example

For $(G, N) \cong (D_{2n}, C_n)$ where $r^i s^j \odot \eta^k = \eta^{i+(-1)^j k}$, $S = \operatorname{Stab}_G(e_N) = \langle s \rangle$ which has $R = \langle r \rangle$ as a complement and if n is even $H = \langle r^2, rs \rangle$ as an additional complement.

Non-example

In the family of $(G, N) \cong (D_{2n}, C_d)$ if n is odd and $(d, \frac{n}{d}) > 1$ then $S = \langle r^d, s \rangle$ does not have a complement in G and the skew bracoid does not contain a brace.

- The skew brace
- 2 The semi-brace
- The skew bracoid
- 4 The connection
- 5 Solutions from skew bracoids

The connection

Theorem (Colazzo, Koch, M-L, and Truman, 2024)

Let (G, \cdot) be a group with exact factorisation HS and identity e. There is a bijection between

- binary operations + and transitive actions \odot of G on H such that $(G, \cdot, H, +, \odot)$ is a skew bracoid with $S = \operatorname{Stab}_G(e)$,
- ② and binary operations $\hat{+}$ for which $(G, \hat{+}, \cdot)$ is a semi-brace with S the set of additive idempotents and $G\hat{+}e = H$.

Key Ideas.

From (1) to (2) define $g_1 + g_2 = g_2 \gamma_{g_2^{-1}}(g_1 \odot e)$ for $g_1, g_2 \in G$.

From (2) to (1) define $h_1 + h_2 = h_2 + h_1$ for $h_1, h_2 \in H$ and $g \odot h = g \cdot h + e$ for $g \in G$ and $h \in H$.

Examples

Examples

ullet Starting with the skew bracoid $(G,\{e\})$ we define

$$g_1 + g_2 := g_2 \gamma_{g_2^{-1}} (g_1 \odot e) = g_2,$$

to recover the trivial semi-brace on G.

• Consider the semi-brace $(G, +, \cdot)$ where $(G, \cdot) = \langle r, s \rangle \cong D_{2n}$ and $r^i s^j + r^k s^\ell := r^{i+k} s^\ell$, here $G + e = \langle r \rangle$. If we define

$$r^{i}s^{j} \odot r^{k} := r^{i}s^{j} \cdot r^{k} + e = r^{i+(-1)^{j}k}s^{j} + e = r^{i+(-1)^{j}k}$$

we get our skew bracoid (D_{2n}, C_n) with η relabelled as r.

- The skew brace
- 2 The semi-brace
- The skew bracoid
- 4 The connection
- Solutions from skew bracoids

Solutions from skew bracoids

Let (G, H) be a skew bracoid that contains a brace (H, H). With this we can define

$$\lambda_{g_1}(g_2) = \gamma_{g_1}(g_2 \odot e)$$

and then

$$\rho_{g_2}(g_1) = \lambda_{g_1}(g_2)^{-1}g_1g_2,$$

for all $g_1, g_2 \in G$.

Then G with $\mathbf{r}(x,y) = (\lambda_x(y), \rho_y(x))$ forms a (right non-degenerate but possibly left degenerate) solution.

Example

Example

In our (D_{2n}, C_n) example, recall we may present this as (G, R) with $R = \langle r \rangle$ so we get

$$\lambda_{r^{i}s^{j}}(r^{k}s^{\ell}) = \gamma_{r^{i}s^{j}}(r^{k}s^{\ell} \odot e)$$

$$= \gamma_{r^{i}s^{j}}(r^{k})$$

$$= r^{(-1)^{j}k},$$

$$\rho_{r^{k}s^{\ell}}(r^{i}s^{j}) = r^{-(-1)^{j}k}r^{i}s^{j}r^{k}s^{\ell}$$

$$= r^{-(-1)^{j}k+i+(-1)^{j}k}s^{j+\ell}$$

$$= r^{i}s^{j+\ell}.$$

Hence G with $\mathbf{r}(r^i s^j, r^k s^\ell) = (r^{(-1)^j k}, r^i s^{j+\ell})$ is a solution.

Or alternatively

Example

If we take n to be even and use the complement $H=\langle r^2,rs\rangle$ to S in $G\cong D_{2n}$.

We find that G with $\mathbf{r}(r^i s^j, r^k s^\ell) = (r^{(-1)^j k} s^k, r^{(-1)^k i} s^{j+k+\ell})$ is a also solution.

Thank you for your attention!

References I

- L. Guarnieri and L. Vendramin. Skew braces and the Yang-Baxter equation. Mathematics of Computation, 86(307):2519-2534, 2017. ISSN 1088-6842. doi: 10.1090/mcom/3161. URL http://dx.doi.org/10.1090/mcom/3161.
- Francesco Catino, Ilaria Colazzo, and Paola Stefanelli. Semi-braces and the Yang-Baxter equation. *Journal of Algebra*, 483:163-187, 2017. ISSN 0021-8693. doi: https://doi.org/10.1016/j.jalgebra.2017.03.035. URL https://www.sciencedirect.com/science/article/pii/S0021869317302284.
- I M-L and Paul J. Truman. Skew bracoids. $\it Journal of Algebra$, 638:751–787, 2024. ISSN 0021-8693. doi: $\rm https://doi.org/10.1016/j.jalgebra.2023.10.005.$ URL https:
 - //www.sciencedirect.com/science/article/pii/S0021869323005136.
- Ilaria Colazzo, Alan Koch, I M-L, and Paul J. Truman. Skew bracoids and the Yang-Baxter equation, 2024.