

VR Direct: How NVIDIA Technology Is Improving the VR Experience

Nathan Reed — Developer Technology Engineer, NVIDIA

Dario Sancho — Lead Programmer, Crytek

Who We Are

- Nathan Reed
 - NVIDIA DevTech 2 yrs
 - Previously: game graphics programmer at Sucker Punch
- Dario Sancho
 - Crytek − 2 ½ yrs
 - Previously: academy, system and platform programming

Hard Problems of VR

Headset design

Input

Rendering performance

Experience design

Latency

Motion to photons in ≤ 20 ms

Stereo Rendering

Two eyes, same scene

What Is VR Direct?

- Various NV hardware & software technologies
- Targeted at VR rendering performance
 - Reduce latency
 - Accelerate stereo rendering

VR Direct Components

In This Talk

Asynchronous Timewarp

VR SLI

Latency

Frame Queuing

Timewarp

Late-Latching Constants

Asynchronous Timewarp

Frame Queuing

Frame Queuing

CPU Frame N Frame N+1 ...

GPU Frame N-1 Frame N Frame N+1

Scanout ... Frame N-1 Frame N

Time

Timewarp

Timewarp Pros & Cons

- Very effective at reducing latency...of rotation!
 - Fortunately, that's the most important
- Doesn't help translation!
- Doesn't help other input latency
- Doesn't help if vsync is missed

Asynchronous Timewarp

Space Vs Time

GPU Resources **GPU** (Space) Time

Space-Multiplexing

Time-Multiplexing

High-Priority Context

- NV driver supports high-priority graphics context
 - Time-multiplexed takes over entire GPU
- Main rendering → normal context
- Timewarp rendering → high-pri context

Async Timewarp With High-Pri Context

Preemption

- Fermi, Kepler, Maxwell: draw-level preemption
- Can only switch at draw call boundaries!
 - Long draw will delay context switch
- Future GPU: finer-grained preemption

Direct3D High-Priority Context

- NvAPI_D3D1x_HintCreateLowLatencyDevice()
- Applies to next D3D device created
- Fermi, Kepler, Maxwell / Windows Vista+
- NDA developer driver available now

OpenGL High-Priority Context

- EGL_IMG_context_priority
- Adds priority attribute to eglCreateContext
- Available on Tegra K1, X1
 - Including SHIELD console
- Only for EGL (Android) at present
 - WGL (Windows), GLX (Linux) to come

Developer Guidance

- Still try to render at headset native framerate!
- Async timewarp is a safety net
 - Hide occasional hitches / perf drops
 - Not for upsampling framerate

Developer Guidance

- Avoid long draw calls
 - Current GPUs only preempt at draw call boundaries
 - Async timewarp can get stuck behind long draws
- Split up draws that take >1 ms or so
 - E.g. heavy postprocessing
 - Split into screen-space tiles

Latency TL;DR

- Reduce queued frames to 1
- Timewarp: adjusts rendered image for late head rotation
- Async timewarp: safety net for missed vsync
- NVIDIA enables async timewarp via high-pri context

Stereo Rendering

Multiview Rendering

VR SLI

Frame Pipeline

Which stages must be done twice for stereo?

CPU Find visible objects Submit render commands

Driver internal work

Flexibility vs Optimizability

More flexible — all stages separate

Flexibility vs Optimizability

More optimizable — some stages shared

Stereo Views

- Almost the same visible objects
- Almost the same render commands
- Almost the same driver internal work
- Almost the same geometry rendered

Other Multi-View Scenarios

- Cubemaps: 6 faces
- Shadow maps
 - Several lights in one scene
 - Slices of a cascaded shadow map
- Light probes for GI
 - Many probe positions in one scene

Multiview Rendering

- Submit scene render commands once
- All draws, states, etc. broadcast to all views
- API support for limited per-view state
- Saves CPU rendering cost
- Maybe GPU too depending on impl!

Shader Multiview

Hardware Multiview

VR SLI

Shared command stream

Left

Right

Interlude: AFR SLI

VR SLI

VR SLI

Per-GPU state:

- Constant buffers
- Viewports

VR SLI

Blit GPU1→GPU0 over PCIe bus

VR SLI Scaling

- View-independent work (e.g. shadow maps) is duplicated
- Scaling depends on proportion of view-dependent work

API Availability

- Currently D3D11 only
- Fermi, Kepler, Maxwell / Windows 7+
- Developer driver available now
- OpenGL and other APIs: to come

Developer Guidance

- Teach your engine the concept of a "multiview set"
 - Related views that will be rendered together

```
• Currently:
```

```
for (each view)
  find_objects();
  for (each object)
    update_constants();
  render();
```


Developer Guidance

• Multiview:

```
find_objects();
for (each object)
  for (each view)
    update_constants();
  render();
```


Developer Guidance

- Keep track of which render targets store stereo data
 - May need to be marked or set up specially
 - Or allocated as a texture array, etc.
- Keep track of sync points
 - Where you need all views finished before continuing
 - May need to blit between GPUs

Stereo Rendering TL;DR

- Multiview: submit scene once, save CPU overhead
 - Requires some engine integration
- Range of possible implementations
 - Trade off flexibility vs optimizability
- VR SLI: a GPU per eye

VR Direct Recap

- Variety of VR-related APIs coming in near future
- Reduce latency
 - Reduced frame queuing
 - Enable async timewarp & other improvements
- Accelerate stereo rendering
 - Multiview APIs
 - VR SLI

VR Direct API Availability

- Fermi, Kepler, Maxwell
- D3D11: context priorities and VR SLI
 - NDA developer driver available now
- Android: EGL_IMG_context_priority
- Other APIs/platforms: to come

What Next?

- All this stuff is hot out of the oven!
- Will need more iterations before it settles
 - See what works, revise APIs as needed
 - Consolidate & standardize across industry

How VR Is Shaping CryEngine

Our VR Challenges

As Developer

- Focus on results: Best possible VR demo for GDC 2015 (presence, interaction, performance...)
- Focus on the platform to be shown
- Short development time

As Technology Provider

- Solid implementation
 CRYENGINE
- Multiplatform and support for multiple head set vendors
- Focus on performance and seamless integration for users

Exploring the key aspects of VR

- Presence
 - Convincing rich environments, 3D audio, etc.
- Interactivity
 - Allow the player to manipulate the world instead of just watching
- Input devices
 - Experimenting withtraditional and next-gen input devices
- Movement
 - Believable, stable, non-sickening

Our Rendering Challenges

- High & stable frame rate
 - Oculus requires 90+ FPS (drops → physical discomfort)
- Resolution: Full HD and beyond
- Quality: Bringing our signature visuals to VR
- Dual rendering vs Reprojection
- Minimum latency

VR Demo Rendering Tale

REPROJECTION

Single GPU solution – 90+ FPS at full HD

Excellent performance, just a post-process Worked well on 3D TVs

Introduces artefacts
Reduced depth perception (to minimize artefacts)
→ "Presence" is not fully achieved

VR Demo Rendering Tale

VR Demo Rendering Tale

CryEngine VR Integration

CryEngine VR Integration

Questions & Comments?

Email us:

nreed@nvidia.com dariop@crytek.com

Slides will be posted: http://gputechconf.com

