CLOSING STEINBERG SYMBOLS OF THE MAPPING CLASS GROUP

J. H. MARTEL

ABSTRACT. This article introduces an algebraic problem we call Closing the Steinberg symbol (CS) of the mapping class group $\Gamma:=Mod(S)$ of compact hyperbolic surfaces $S=S_g$ for $g\geq 2$. Solving (CS) requires finding finite subsets I of Γ which satisfy a subset sum condition, namely that the translates $\sum_{\phi\in I}\phi.\mathscr{B}$ of a certain chain sum $\mathscr{B}:=\sum_i\alpha_i$ represent a nontrivial homology cycle (see §3 for details). When formal solutions I to (CS) satisfy additional metric convexity properties relative to a geometric model $X:=\mathscr{T}_g$ of Teichmueller space, then we obtain an interesting supply of candidate equivariant deformation retracts $X \leadsto \mathscr{Z}$ onto subvarieties $\mathscr{Z} \hookrightarrow X$. The construction of these retracts and their properties is based on the author's Reduction-to-Singularity method [Mar] and [JHM22]. Thus we examine the problem of Closing Steinberg symbols as an important tool for constructing small dimensional $E\Gamma$ models and candidate spines.

Contents

1.	Mod(S) and Bieri-Eckmann Duality	1
2.	Canonical Riemannian metrics on \mathscr{T}_q and Flat Filling	9
3.	Closing Steinberg Symbols: Definition and Properties	E
4.	(CS) for Genus Two Mapping Class Group $(g=2)$	8
5.		10
References		10

1. Mod(S) and Bieri-Eckmann Duality

We let $S = S_g$ be a closed hyperbolic surface of genus $g \ge 2$, and let $\Gamma := Mod(S)$ be the mapping class group of S. The topologists define

$$Mod(S) := \pi_0(Diff_+(S))$$

Date: August 27, 2022.

as the group of orientation preserving diffeomorphisms of S modulo isotopy. The algebraists define Mod(S) via Dehn-Nielsen-Baer's theorem

$$Mod(S) = Out(\pi_1(S))$$

where $\pi_1(S) = \pi_1(S, pt)$ is Poincaré's pointed fundamental group, see [FM11].

The group-theoretic (co)homology of Γ is defined via the symmetries of proper discontinuous actions $\Gamma \times X \to X$ on $E\Gamma$ models X. There is extensive literature on this subject, c.f.[Bro82]. The standard $E\Gamma$ model for the mapping class group is Teichmueller's $X = \mathcal{T}_g$, a topological (6g - 6)-cell $\simeq \mathbb{R}^{6g-6}$, e.g. [Hub06]. We assume here the basic facts that Γ acts proper discontinuously on \mathcal{T}_g with finite covolume. Of course \mathcal{T} is a cell by Teichmuller's theorem and therefore topological trivial. However the Γ -equivariant topology of \mathcal{T} is highly nontrivial.

It is a fundamental observation of Harvey [Har81], Harer [Har86], Ivanov [Iva15], that Γ is a Bieri-Eckmann virtual duality group [BE73]. Here a key role is played by the action of Γ on the simplicial curve complex \mathscr{C} and its reduced singular homology and chain groups. Recall the curve complex $\mathscr{C} = \mathscr{C}(S)$ of the surface is the simplicial complex whose 0-skeleton (vertices) \mathscr{C}^0 consists of simple closed curves (modulo isotopy), and where a simplex exists between vertices a, b, c, \ldots if the curves are simultaneously pairwise disjoint on S. For example in genus g = 2, the curve complex $\mathscr{C}(S_2)$ is a two-dimensional infinite simplicial complex. Obviously Γ acts on \mathscr{C} , c.f. [Bro12]. Now we present the formal definition of homological duality.

Definition 1. A finitely generated group Γ is a duality group of dimension $\nu \geq 0$ with respect to a $\mathbb{Z}\Gamma$ -module **D**, if there exists an element $[B] \in H_{\nu}(\Gamma; \mathbf{D})$ with the following property: for every $\mathbb{Z}\Gamma$ -module A, the "cap-product with [e]" defines $\mathbb{Z}\Gamma$ -module isomorphisms $H^d(\Gamma; A) \approx H_{\nu-d}(\Gamma; A \otimes_{\mathbb{Z}\Gamma} \mathbf{D}), f \mapsto f \cap [e]$.

The basic properties of Bieri-Eckmann's homological duality are summarized in the following theorem from [BE73].

Theorem (Bieri-Eckmann). Let Γ be duality group of dimension ν , with dualizing module \mathbf{D} . Then

- (i) we have $\mathbb{Z}\Gamma$ -isomorphism $\mathbf{D} \approx H^{\nu}(\Gamma; \mathbb{Z}\Gamma) \neq 0$, so \mathbf{D} is a torsion-free additive abelian group;
- (ii) the homology group $H_{\nu}(\Gamma; \mathbf{D})$ is infinite cyclic generated by [e] as additive abelian group;
 - (iii) the group Γ has cohomological dimension $cd(\Gamma)$ equal to ν .

Proof. The statements are direct consequences of Definition 1. (i) We see $H^{\nu}(\Gamma; \mathbb{Z}\Gamma)$ $\approx H_0(\Gamma; \mathbf{D}) \approx \mathbf{D}$. (ii) Duality implies $H^0(\Gamma; \mathbb{Z})$ is isomorphic to $H_{\nu}(\Gamma; \mathbb{Z} \otimes_{\mathbb{Z}\Gamma} \mathbf{D})$, which in turn is canonically isomorphic to $H_{\nu}(\Gamma; \mathbf{D})$ since $\mathbb{Z} \otimes_{\mathbb{Z}\Gamma} \mathbb{Z}\Gamma \approx \mathbf{D}$. But $H^0(\Gamma, \mathbb{Z})$ is canonically isomorphic to \mathbb{Z} . (iii) The duality isomorphism implies for

every $\mathbb{Z}\Gamma$ -module A that $H^*(\Gamma; A)$ is isomorphic to $H_{\nu-*}(\Gamma; A \otimes \mathbf{D})$ which reduces to 0 whenever $\nu - * < 0$.

Most importantly for the mapping class group Γ , the dualizing module \mathbf{D} can be identified with the reduced homology of the simplicial curve complex. That is, we can identify \mathbf{D} up to $\mathbb{Z}\Gamma$ -isomorphism as $\mathbf{D} = \tilde{H}_*(\mathscr{C}; \mathbb{Z})$, where the reduced homology group inherits the natural structure of $\mathbb{Z}\Gamma$ -module from the action of Γ on \mathscr{C} . The curve complex has the homotopy-type of a countable bouquet of (2g-2)-dimensional spheres, c.f. [Iva15], [Har86]. Thus we deduce that

$$vcd(\Gamma) = 6g - 6 - (2g - 2) + 1 = 4g - 5.$$

For example in genus g = 2, this implies that \mathscr{T}_2 is a 6-dimensional $E\Gamma$ model, and the quotient $\Gamma \setminus \mathscr{T}_2$ has the topology of a 3-dimensional complex. Thus arises the problem of constructing spines or souls for Γ and we seek explicit constructions or realizations of this 3-dimensional singular subvariety for genus g = 2. Constructing such subvarieties is the purpose of our (CS) program, as we describe below.

The problem of (CS) is based on homological properties of Γ , and specifically a representation of Bieri-Eckmann's dualizing module **D** with the reduced homology of an excision boundary $\mathbf{D} \approx \tilde{H}_*(\partial \mathcal{T}[t]; \mathbb{Z})$, where $\mathcal{T}[t]$ is a maximal Γ -rational excision of Teichmueller space for a sufficiently small parameter t. We elaborate below.

2. Canonical Riemannian metrics on \mathscr{T}_q and Flat Filling

In this section we describe geometric properties which are required on \mathcal{T} for our constructions to be effective. The difficulty is that there is no canonical Riemannian metric on \mathcal{T} , although there is a canonical symplectic form (c.f. Wolpert, Kerkhoff, et. al). The construction of Γ equivariant metrics d on \mathcal{T} is non-canonical and there are many candidates. Popular metrics are Teichmueller's original metric d_{Teich} [Hub06], Weil-Peterson's metric d_{WP} [Hub06], Thurston's metric [Wol86], or Mc-Mullen's [McM00].

For a choice of invariant Riemannian metric d on \mathcal{T} and invariant function

$$t:\mathscr{C}^0\to\mathbb{R}_{>0}$$

we define an excision $\mathscr{T}[t]$ of \mathscr{T} by excising ("scooping out") horoballs centred at various Γ -rational points at-infinity λ and with radius $t(\lambda)$. We focus on these Γ -rational horoballs of \mathscr{T} because they have Γ -invariant boundary horospheres. Thus Γ acts proper discontinuously on both $\mathscr{T}[t]$ and $\partial \mathscr{T}[t]$, and we obtain the important diagonal action

$$\Gamma \times \mathscr{T}[t] \times \partial \mathscr{T}[t] \to \mathscr{T}[t] \times \partial \mathscr{T}[t].$$

We further emphasize those parameters t which are sufficiently small, in which case the excisions $\mathscr{T}[t]$ have a Γ -equivariant topological boundary $\partial \mathscr{T}[t]$ with the

homotopy-type of \mathscr{C} . This important fact implies a canonical equivariant isomorphism

(1)
$$\mathbf{D} \approx \tilde{H}_*(\partial \mathscr{T}[t]; \mathbb{Z}).$$

For the constructive topologist the Γ -action on \mathscr{T} is more accesible than the abstract algebraic action on \mathbf{D} . The homologically essential spheres of \mathscr{C} can be viewed as spheres at-infinity within the excision $\mathscr{T}[t]$. The Γ -orbit of these spheres and their singular chain sums generates an important topological $\mathbb{Z}\Gamma$ -module called the Steinberg module. Following convention we designate the generator of this module a Steinberg symbol B. For further references to Steinberg ("modular") symbols, we refer the reader to [Man72], [AR79], [AGM], [Ste07], [Sol] and references therein.

The contractibility of $\mathscr{T}[t]$, \mathscr{T} , and the long exact sequence in relative homology implies the natural boundary morphism

$$\delta: C_*(\mathscr{T}[t], \partial \mathscr{T}[t]) \to C_{*-1}(\partial \mathscr{T}[t])$$

is an isomorphism. Here C_* denotes the singular chain groups. However what we require for applications is an inverse operation which is well-defined directly on singular chains, namely

$$FILL := \delta^{-1} : C_{*-1}(\partial \mathscr{T}[t]) \to C_{*}(\mathscr{T}[t], \partial \mathscr{T}[t]).$$

This inverse operation is a *filling* operation and requires a choice of metric d'. For our applications, any metric d' with the following properties is sufficient:

- (M1) the metric d' is metrically complete and proper in the interior of \mathscr{T} ;
- (M2) the metric has nonpositive sectional curvature ($\kappa \leq 0$) in \mathcal{T} ;
- (M3) the (2g-2)-dimensional spheres generating the Steinberg symbol at infinity admit unique d'-flat fillings ($\kappa = 0$) to relative cycles in $\mathscr{T}[t]$ mod $\partial \mathscr{T}[t]$.

If we examine the usual metrics, we find the WP metric has properties (M1), (M2). We observe that (M2) has the important consequence that WP-horoballs are geodesically convex in (\mathcal{T}, d_{WP}) , c.f. [Gro91]. With respect to Teichmuller's original metric, we know (M1) holds, but (M2) fails and Teichmueller's original metric has regions of positive curvature. Moreover recent work of [MR16] shows that convex hull constructions are not possible in Teichmueller's metric. The work of S. Wolpert implies that d_{WP} also satisfies (M3).

Lemma 2 (Wolpert). Let Q be a geodesic pants decomposition of the hyperbolic surface (S, g). Let \mathcal{Q} be the submanifold of \mathcal{T} passing through (S, g), and such that the Nielsen twist tangents t(a) vanish for every geodesic curve $a \in Q$. Then \mathcal{Q} is a totally flat submanifold of \mathcal{T} having vanishing sectional curvatures with respect to the WP metric d_{WP} .

Proof.

Equivalently we find \mathcal{Q} consists of all hyperbolic surfaces such that the dual geodesic pants Q^* intersect Q orthogonally. This is equivalent to saying \mathcal{Q} consists of all surfaces obtained from (S,g) by varying the length parameters ℓ_a $(a \in Q)$ and fixing all twists equal to zero in Fenchel-Nielsen coordinates associated to Q.

Any metric d satisfying the properties (M123) on \mathcal{T} readily leads to the construction of equivariant homotopy reductions of \mathcal{T} onto candidate spines \mathcal{Z} according to [Mar]. Specifically when (M3) holds, the Steinberg symbol B canonically fills to a flat relative cycle $(P, \partial P)$ in $(\mathcal{T}[t], \partial \mathcal{T}[t])$, and these flat relative cycles P = FILL[B] and their Γ -translates are called "panels". The motivation for the terminology is given in §3 below. The panels are homologically nontrivial relative cycles in $\mathcal{T}[t]$ modulo the boundary $\partial \mathcal{T}[t]$. In practice the condition (M3) could be slightly weakened since the application of our reduction to singularity method [Mar] does not strictly need the Steinberg symbols to admit flat-fillings – what's essential is the geometric uniqueness of the fillings.

The following is important lemma for our method.

Lemma 3. Let d be a metric on \mathscr{T} satisfying properties (M123). Let $\mathscr{T}[t]$ be a Γ -rational excision with sufficiently small parameter t such that the canonical isomorphism (1) holds. Let B be a Steinberg symbol with flat-filling P = FILL[B]. Then P has zero geometric self-intersection in the quotient $\Gamma \backslash \mathscr{T}[t]$, and the quotient projection $\mathscr{T}[t] \to \Gamma \backslash \mathscr{T}[t]$ maps P isometrically onto its image.

To motivate Lemma 3, recall that if S is a closed hyperbolic surface and α is a closed geodesic on S, then the lifts $\tilde{\alpha}$ of α to the universal covering \tilde{S} form a $\pi_1(S)$ orbit in \tilde{S} where all the translates are disjoint. Likewise Lemma 3 asserts that the Γ -translates of P are disjoint in the interior of $\mathcal{T}[t]$.

By contrast the existence of parabolic elements γ in Γ shows that the relative cycle P and its parabolic translates $\gamma.P$ intersect asymptotically "at infinity" when $t \to 0^+$. However there remains no self-intersection in the *interior* of $\mathcal{T}[t]$.

3. Closing Steinberg Symbols: Definition and Properties

The problem of Closing Steinberg is informally related to stitching a closed football F from a sequence of panels $\{P_i\}_{i\in I}$. The panels P_i are required to have the property that $F = conv\{P_i \mid i \in I\}$ and such that $\sum_{i\in I} \partial P_i = 0$ over $\mathbb{Z}/2\mathbb{Z}$ -coefficients. In otherwords the problem requires finding a sequence of panels P_i $(i \in I)$ which assemble to a closed compact convex subset F as defined above. The panels $P = P_i$ of the above footballs are analogous to the flat-filled Steinberg symbols P = FILL[B] and their translates $\gamma.B$ $(\gamma \in \Gamma)$. Compare Figure 1.

J. H. MARTEL

FIGURE 1. Isometric translates of hexagonal and pentagonal panels P_i , P_i , P_k , etc., assemble to closed balls.

Now we present the formal definition of (CS) as derived from Bieri-Eckmann's homological duality [BE73], [BS73]. The key algebraic construction is the definition of homology with coefficients in a chain complex, [Bro82], where the problem of (CS) amounts to constructing a nontrivial 0-cycle

$$\xi \in H_0(\Gamma; \underline{\mathbb{Z}}_2\Gamma \otimes \mathbf{D}).$$

Here the tensor product \otimes is in the category of $\mathbb{Z}\Gamma$ modules. If Γ is a Bieri-Eckmann duality group, then we find isomorphisms

$$H_0(\Gamma; \underline{\mathbb{Z}}_2\Gamma \otimes \mathbf{D}) \approx H^{\nu}(\Gamma; \underline{\mathbb{Z}}_2\Gamma) \approx \underline{\mathbb{Z}}_2 \otimes_{\mathbb{Z}} \mathbf{D} \neq 0.$$

This fact implies the formal existence of nontrivial 0-cycles.

The group Γ of symmetries flips, rotates, and translates the base cycle [P] throughout the space, and every finite subset I of Γ produces a finite chain sum

$$\sum_{\gamma \in I} \gamma.[P],$$

with total chain boundary

$$\partial(\sum_{\gamma\in I}\gamma.[P])=\sum_{\gamma\in I}\gamma.\partial[P].$$

The basic problem of Closing Steinberg is to produce a finite subset $I \subset \Gamma$ for which the boundary of the *nontrivial* chain sum $\sum_{\gamma \in I} \gamma.[P]$ vanishes in the mod 2 homology group. The complete definition of Closing Steinberg includes further geometric conditions on the Γ -translates $\Gamma.F$ of the the closed convex hull F = conv[P.I] of the translates B.I. Let $\mathcal{T}[t], \partial \mathcal{T}[t]$ be a Γ -invariant excision of \mathcal{T} . Let [P] be a flat-filled relative cycle representing a nonzero generator of $H_{q+1}(\mathcal{T}[t], \partial \mathcal{T}[t]; \mathbb{Z})$.

Definition 4 (Closing Steinberg). A finite subset I of Γ successfully Closes Steinberg if:

- (i. nontrivial mod 2) the chain $\xi = \sum_{\gamma \in I} \gamma.P$ is nonvanishing over $\mathbb{Z}/2$ coefficients in the chain group $C_{q+1}(\mathscr{T}[t], \partial \mathscr{T}[t]; \mathbb{Z}/2)$;
- (ii. vanishing boundary mod 2) the boundary $\partial \xi = \sum_{\gamma \in I} \gamma . \partial[P]$ vanishes over $\mathbb{Z}/2$ -coefficients in the homology group $[\partial \xi] = 0$ in $H_q(\partial \mathcal{T}[t]; \mathbb{Z})$;
- (iii. well-defined geometric convex hull) the boundary-chain representing $\partial \xi$ is simultaneously visible from at least one interior point x in $\mathcal{T}[t]$;
- (iv. well-separated gates) there exists a finite-index subgroup $\Gamma' < \Gamma$ such that the chain sum $\underline{F} = \sum_{\gamma \in \Gamma'} \gamma . F$ has nonempty well-separated gates precisely equal to the principal orbit $\{\gamma . P \mid \gamma \in \Gamma'\}$.

Our definition of Closing Steinberg was inspired by the author's study of [Cre84]. In Cremona's terminology, the problem is to determine a "relation ideal \mathcal{R} " and construct a "basic polyhedron P whose transforms fill the space", c.f. [Cre84, pp.290].

The hypotheses (i)–(ii) basically require the chain sum ξ to be nonzero mod 2. The hypotheses (iii)–(iv) are convexity assumptions which need be verified for any nonzero chain. The hypothesis of well-separated gates is related to the following fact: the translates $P, \gamma.P$, for $\gamma \in \Gamma$, are either identical or geometrically disjoint in $\mathcal{T}[t]$ according to Lemma 3. However the translates $P, \gamma.P$ may have nontrivial intersection at infinity in the initial Teichmueller space \mathcal{T} . In fact the problem of (CS) is precisely to find such nontrivial intersections at infinity, although again the intersections are disjoint in the interior of $\mathcal{T}[t]$.

Obviously the group structure of Γ allows us to restrict ourselves to subsets I containing the identity mapping class $Id \in \Gamma$. In practice, formal solutions to (CS) can often be found among the torsion elements and finite subgroups of Γ , c.f. [Cre84].

Proposition 5. Let Γ be a Bieri-Eckmann duality group with dualizing module \mathbf{D} . Then there exists finite subsets I in Γ for which $\xi = \sum_{\gamma \in I} \gamma P$ lies in the kernel of ∂_0 over $\mathbb{Z}/2$.

Proof. The argument is homological. We interpret ξ as a chain sum representing a 0-cycle in $H_0(\Gamma; \mathbb{Z}/2\Gamma \otimes_{\mathbb{Z}\Gamma} \mathbf{D})$. The hypotheses of Closing Steinberg imply ξ is homologically nontrivial cycle. Bieri-Eckmann duality (Proposition 1) implies the kernel ker ∂_0 is naturally isomorphic to the induced $\mathbb{Z}\Gamma$ -module $\mathbb{Z}/2 \otimes_{\mathbb{Z}} \mathbf{D}$ which is nonzero.

To illustrate, let the reader observe that a typical element $\phi \in Mod$ will totally displace the curves in \mathcal{B} such that $\mathcal{B} \cap \phi.\mathcal{B} = \emptyset$ for almost every $\phi \in Mod$. On the other hand, if ϕ' permutes the curves such that $\phi.\mathcal{B} = \mathcal{B}$, then $I = \{Id, \phi'\}$ would be a solution of (2). However we consider this solution to be trivial in the following sense: the formal sum $[\mathcal{B}] + \phi'.[\mathcal{B}] = 2[\mathcal{B}] = 0$ is itself vanishing mod 2. Such trivial solutions are avoided in the case of higher genus closed surfaces as the work of [BBM13] demonstrates, i.e. the identity element is the only mapping class which

permutes \mathscr{B} . Obviously parabolic type elements ϕ , i.e. curve stabilizers $\phi \in Mod_{\gamma}$ satisfy $\mathscr{B} \cap \phi \cdot \mathscr{B} \supset \{\gamma\}$. So naturally one is tempted to find formal solutions to (CS) by choosing a suitable sequence of parabolics.

Our hypotheses regarding Closing Steinberg have useful consequences, which we summarize in the following theorem.

Theorem 6. Suppose $I \subset \Gamma$ successfully Closes Steinberg (Definition 4). Define F := conv[I.P]. Then

(i) the Γ -translates $\gamma.F$ ($\gamma \in \Gamma$) form a chain sum

$$\underline{F} := \cdots \gamma.[F] + \gamma'.[F] + \gamma''.[F] + \cdots,$$

and there exists finite-index subgroup $\Gamma' < \Gamma$ which acts as additive shift-operator on the summands of \underline{F} ; and

(ii) the support of the chain sum \underline{F} is a simply-connected subset of X, and \underline{F} is a cubical $E\Gamma'$ model.

Proof. We can replace Γ with a finite-index torsion-free subgroup Γ' to ensure Γ' acts freely on X, and therefore the diagonal action is free on $X[t] \times \partial X[t]$. Moreover we can ensure Γ' translates the flat-filled relative cycle $\gamma.[P]$, for $\gamma \in \Gamma'$ freely. Then $\gamma.[P] \neq [P]$ when $\gamma \neq Id$. The definition of Closing Steinberg implies distinct translates F, F' are disjoint unless they intersect in a gate $G' = \gamma'.P$ for some $\gamma' \in \Gamma'$. So $\gamma.F$ equals F only if $\gamma = Id$ is trivial. This proves the summands $\{\gamma.F \mid \gamma \in \Gamma'\}$ of F form a principal Γ' -set, and establishes (i). The existence of an interior point $x \in F$ which is simultaneously visible to the translates P.I in X[t] proves F = conv[P.I] is a compact convex set, and homeomorphic to some cube. Thus F is a chain sum of cubes, hence a cubical chain sum and therefore (ii).

4. (CS) FOR GENUS TWO MAPPING CLASS GROUP (g=2)

To illustrate our ideas, we now study the case of genus two closed Riemann surface. The duality theory of mapping class groups $\Gamma = Mod(S_g)$ for genus g = 2 has been described by [Bro12]. For reference we include the following figure taken from [Bro12, Fig.10], see (4).

The formal problem of (CS) for genus two surfaces has the following symbolic setup. Let $V := \mathbb{Z}/2(\mathscr{C}^0)$ be the abelian topological group consisting of finitely-supported $\mathbb{Z}/2$ -valued functions $f : \mathscr{C}^0 \to \mathbb{Z}/2$ on the set \mathscr{C}^0 of free homotopy classes of simple closed curves on a surface S. We abbreviate such a function f with its support $\alpha + \beta + \ldots$ On the genus two closed surface, consider Broaddus' set of nine curves $\alpha_i, \beta_j, \gamma_k$ for $i, j, k \in \{1, 2, 3\}$, and the formal sum

(2)
$$\mathscr{B} := \sum_{i,j,k=1}^{3} \alpha_i + \beta_j + \gamma_k.$$

FIGURE 2. Homologically nontrivial 2-sphere in the curve complex \mathscr{C} of genus 2 closed surface. Figure adapted from [Bro12, Fig.10]

Now finally we make the problem of (CS) totally explicit:

Definition 7. A finite subset $I \subset \Gamma$ formally Closes Steinberg for the mapping class group Γ of genus two closed surfaces if

(3)
$$\sum_{\phi \in I} \sum_{\alpha \in \mathscr{B}} \phi.\alpha = 0, \ mod \ 2$$

where the zero element 0 on the right hand side is the zero element in V, i.e. the constant zero-valued distribution on \mathcal{C}^0 .

Symbolically the "vanishing mod 2" of the translates $\sum_{\phi \in I} \phi \mathscr{B}$ says there is an even number of coincidences between the translated curves $\phi . \alpha$ where $\phi \in I$, $\alpha \in \mathscr{B}$. This can be implemented on python by iterated symmetric differences. For example if \mathscr{B} denotes the *set* of curves defined in (2), then a finite subset $I = \{\phi_1, \ldots, \phi_n\}$ is formal solution to (CS) if and only if

$$\phi_1 \mathscr{B} \Delta \cdots \Delta \phi_n \mathscr{B} = \emptyset.$$

We can omit the parentheses since the symmetric difference Δ is an associative operator.

Now we introduce some standard notation following [NN18]. Let

$$\eta = aecf$$

be the order ten element in $Mod(S_2)$ and define

$$\mu := \eta^4$$
.

Then μ is an order five element in Mod. If a, b, c is a geodesic pant decomposition, then we define the chain sum

$$B := [a] + [b] + [c] + \mu \cdot [a] + \mu \cdot [b] + \mu \cdot [c].$$

Lemma 8. Let $I_0 := \{Id, \mu, \mu^2, \mu^3, \mu^4\}$. Then $\sum_{\phi \in I_0} \phi . B = 0 \pmod{2}$ and I_0 is a formal solution to (CS).

Proof. The vanishing of the chain sum $\sum_{\phi \in I_0} \phi.B$ is clear. Moreover all the summands $\phi.B$ are distinct for $\phi \in I_0$ and this proves the formal solution is nontrivial. \square

By computation using Mark C. Bell's curver [ref] we have found that the I_0 -translates of B is supported on ten curves. Given the formal solution I_0 , we proceed in several steps. First we construct the convex hull

$$F := conv(I_0.B)$$

over these ten curves constituting the I_0 translates of B. Then we need estbalish that the chain sum

$$\underline{F} := \sum_{\phi \in \Gamma} \gamma.F$$

has a well-separated gates structure equal to $\Gamma.B$. The idea of well-separated gates is introduced in [Mar, pp.13, §5.1], and means $\underline{F} = \sum_{i \in I} F_i$ is a countable chain sum of sets F_i where the intersections $G := F_{ij} := F_i \cap F_j$ form a principal Γ -set.

5.

If \underline{F} is a chain sum with well-separated gates $\{G\}$, then the singularity locus \mathscr{Z} naturally decomposes as a chain sum $\mathscr{Z} = \sum_i \mathscr{Z} \cap F_i$, and where $\mathscr{Z} \cap F_i$ is the singularity locus of a restricted semicoupling program, with respect to the restricted cost $c|F_i$. Best results are obtained with costs satisfying Properties (D0)–(D4) and we conjecture that the visibility costs satisfy (D0)–(D4) using the notation of [Mar]. Finally using the Reduction to Singularity method of [Mar, Theorems 1.4.1-2], we naturally construct continuous deformation retracts and which even assemble to global continuous retracts $\mathscr{T} \leadsto \mathscr{Z}$.

N.B. Constructing the retraction is contingent on the user having an effective computable model of \mathscr{T} available. Solutions to (CS) allow us to localize all computations onto the local chain summands. Generally \mathscr{Z} has large codimension in \mathscr{T} depending on so-called Uniform Halfspace Conditions. Symmetries in the excision boundary (and target measure) on $\partial \mathscr{T}[t]$ increases the maximal codimension of \mathscr{Z} with the possibility of attaining the extreme codimension, even the equivariant spine of \mathscr{T} .

REFERENCES

[AGM] A. Ash, P.E. Gunnells, and M. McConnell. "Resolutions of the Steinberg Module for GL(n)". In: (). URL: https://www2.bc.edu/avner-ash/Papers/Steinberg-AGM-V-6-23-11-final.pdf (visited on 05/20/2017).

REFERENCES 11

- [AR79] A. Ash and L. Rudolph. "The Modular Symbol and Continued Fractions in Higher Dimensions". In: *Inventiones math.* 55 (1979), pp. 241–250. URL: https://eudml.org/doc/186135.
- [BE73] R. Bieri and B. Eckmann. "Groups with homological duality generalizing poincare duality". In: *Inventiones. Math.* 20 (1973), pp. 103–124. URL: https://eudml.org/doc/142208 (visited on 04/05/2017).
- [BBM13] Joan Birman, Nathan Broaddus, and William Menasco. "Finite rigid sets and homologically non-trivial spheres in the curve complex of a surface". In: (2013). arXiv: 1311.7646 [math.GT].
- [BS73] A. Borel and J.-P. Serre. "Corners and arithmetic groups". In: Comm. Math. Helv 48 (1973), pp. 436–491. URL: https://eudml.org/doc/139559 (visited on 04/05/2017).
- [Bro12] N. Broaddus. "Homology of the curve complex and the Steinberg module of the mapping class group". In: Duke Math. J. 161.10 (July 2012), pp. 1943–1969. URL: https://doi.org/10.1215/00127094-1645634.
- [Bro82] K.S. Brown. Cohomology of groups. Graduate Texts in Mathematics 87. Springer-Verlag, 1982.
- [Cre84] J.E. Cremona. "Hyperbolic tessellations, modular symbols, and elliptic curves over complex quadratic fields". In: Compositio Mathematica 51.3 (1984), pp. 275–324. URL: http://eudml.org/doc/89646.
- [FM11] B. Farb and D. Margalit. A Primer on Mapping Class Groups (PMS-49). Princeton University Press, 2011.
- [Gro91] M. Gromov. "Sign and geometric meaning of curvature". In: *Rendiconti del Seminario Matematico e Fisico di Milano* 61.1 (1991), pp. 9–123. URL: https://doi.org/10.1007/BF02925201.
- [Har86] J.L. Harer. "The virtual cohomological dimension of the mapping class group of an orientable surface." In: *Inventiones mathematicae* 84 (1986), pp. 157–176. URL: http://eudml.org/doc/143338.
- [Har81] W. J. Harvey. "Boundary Structure of The Modular Group". In: (1981), pp. 245–252. DOI: https://doi.org/10.1515/9781400881550-019. URL: https://princetonup.degruyter.com/view/book/9781400881550/10.1515/9781400881550-019.xml.
- [Hub06] J.H. Hubbard. "Teichmueller Theory and Applications to Geometry, Topology and Dynamics, Volume I: Teichmueller Theory". In: (2006).
- [Iva15] Nikolai V. Ivanov. "The virtual cohomology dimension of Teichmueller modular groups: the first results and a road not taken". In: (2015). arXiv: 1510.00956 [math.GT].
- [JHM22] J.H.Martel. "Topology of Singularities of Optimal Semicouplings". In: $arXiv\ preprint\ arXiv:2201.12817\ (2022).$

12 REFERENCES

- [MR16] M.Fortier-Bourque and K. Rafi. "Non-convex balls in the Teichmuller metric". In: (2016). eprint: math/0701398. URL: https://arxiv.org/abs/1606.05170.
- [Man72] Y.I. Manin. "Parabolic points and zeta-functions of modular curves". In: *Mathematics of the USSR-Izvestiya* 6.1 (1972), p. 19.
- [Mar] J.H. Martel. "Applications of Optimal Transport to Algebraic Topology: How to Build Spines from Singularity". PhD thesis. University of Toronto. URL: https://github.com/jhmartel/Thesis2019.
- [McM00] Curtis T. McMullen. "The moduli space of Riemann surfaces is Kahler hyperbolic". In: (2000). arXiv: math/0010022 [math.CV].
- [NN18] G. Nakamura and T. Nakanishi. "Generation of finite subgroups of the mapping class group of genus 2 surface by Dehn twists". In: *Journal of Pure and Applied Algebra* 222.11 (2018), pp. 3585–3594.
- [Sol] L. Solomon. "The Steinberg Character of a Finite Group with BN-pair". In: (), pp. 213–221.
- [Ste07] W. Stein. Modular Forms, a Computational Approach (with an Appendix by P.E. Gunnells). Graduate Studies in Mathematics no. 79. Springer-Verlag, 2007.
- [Wol86] Scott A. Wolpert. "Thurston's Riemannian metric for Teichmueller space". In: J. Differential Geom. 23.2 (1986), pp. 143–174. DOI: 10.4310/jdg/1214440024. URL: https://doi.org/10.4310/jdg/1214440024.

Email address: jhmartel@proton.me