previous weeks: multi-body kinematics

- enough to describe the motion, but not the cause of motion
- motions may not be feasible in reality (especially when underactuated)

now: multi-body dynamics

- describe the cause of motion $\ \vec{F}, \vec{ au} \ \leftrightarrow \ \ddot{\vec{q}}$
- motions are physically consistent

1) Dynamics Equations of Motion

- Newton-Euler Equations
- Projected Newton-Euler Equations

conservation of linear and angular momentum

- Euler-Lagrange Equations (Lagrange II)
- Hamilton's Equations

energy-based approaches

Kinetic Potential Energy $\mathcal{L} = \mathcal{T} - \mathcal{U}$ (Lagrangian) $\mathcal{H} = \mathcal{T} + \mathcal{U}$ (Hamiltonian) "total energy"

$M(\vec{q}) \, \ddot{\vec{q}} + \vec{b}(\vec{q}, \, \dot{\vec{q}}) + \vec{g}(\vec{q}) = S^{\top} \vec{\tau} + J^{\top} \vec{F}$ 2) Generalized EoM coriolis and selection stacked stacked forces gravity joint mass centrifugal term jacobians acting on the robot matrix matrix torques term $\mathbb{R}^{F \times q}$ \mathbb{R}^F $\mathbb{R}^{q \times q}$ $\mathbb{R}^{ au imes q}$ \mathbb{R}^q \mathbb{R}^q $\mathbb{R}^{ au}$

- special cases:
- fully actuated: $S = \mathbb{I}_{q \times q}$
- freely moving: $J^{\top}\vec{F} = \vec{0}$

$$\text{Mass Matrix:} \quad M(\vec{q}\,) = \sum_{i=1}^{N_{\text{bodies}}} {}_{\mathcal{A}}J_{S_i}^{\top} m_{i}\,{}_{\mathcal{A}}J_{S_i} + \underbrace{{}_{\mathcal{B}}J_{\mathcal{R}_i}^{\top}\,{}_{\mathcal{B}}\Theta_{S_i}\,{}_{\mathcal{B}}J_{\mathcal{R}_i}}_{CJ_{\mathcal{R}_i}} \underbrace{{}_{\mathcal{C}\mathcal{B}\,\mathcal{B}}\Theta_{S_i}\,{}_{\mathcal{B}}\mathcal{B}}_{CJ_{\mathcal{R}_i}} \underbrace{{}_{\mathcal{C}\mathcal{B}\,\mathcal{B}}\Theta_{S_i}\,{}_{\mathcal{B}}\mathcal{B}}_{CJ_{\mathcal{R}_i}} \underbrace{{}_{\mathcal{C}\mathcal{B}\,\mathcal{B}}\Theta_{S_i}\,{}_{\mathcal{B}}\mathcal{B}}_{CJ_{\mathcal{R}_i}} \underbrace{{}_{\mathcal{C}\mathcal{B}\,\mathcal{B}}\Theta_{S_i}\,{}_{\mathcal{B}}\mathcal{B}}_{CJ_{\mathcal{R}_i}} \underbrace{{}_{\mathcal{C}\mathcal{B}\,\mathcal{B}}\Theta_{S_i}\,{}_{\mathcal{B}}\mathcal{B}}_{CJ_{\mathcal{R}_i}} \underbrace{{}_{\mathcal{C}\mathcal{B}\,\mathcal{B}}\Theta_{S_i}\,{}_{\mathcal{B}}\mathcal{B}}_{CJ_{\mathcal{B}_i}} \underbrace{{}_{\mathcal{C}\mathcal{B}\,\mathcal{B}}\Theta_{S_i}\,{}_{\mathcal{B}}\mathcal{B}}_{CJ_{\mathcal{B}_i}} \underbrace{{}_{\mathcal{C}\mathcal{B}\,\mathcal{B}}\Theta_{S_i}\,{}_{\mathcal{B}}\mathcal{B}}_{CJ_{\mathcal{B}_i}} \underbrace{{}_{\mathcal{C}\mathcal{B}\,\mathcal{B}}\mathcal{B}}_{CJ_{\mathcal{B}_i}} \underbrace{{}_{\mathcal{C}\mathcal{B}\,\mathcal{B}}\mathcal{B}}_{CJ_{\mathcal{B}}} \underbrace{{}_$$

- symmetric positive definite (since kinetic Energy $\mathcal{T} = \frac{1}{2} \dot{\vec{q}}^{\top} M \dot{\vec{q}} > 0 \quad \forall \dot{\vec{q}}$) matrix ($\mathbb{R}^{q \times q}$) => invertible

Coriolis + Centrifugal Terms:

$$\vec{b}(\vec{q}, \dot{\vec{q}}) = \sum_{i=1}^{N_{\text{bodies}}} {}_{\mathcal{A}} J_{S_i}^{\top} m_i \, {}_{\mathcal{A}} \dot{J}_{S_i} \dot{\vec{q}} + {}_{\mathcal{B}} J_{\mathcal{R}_i}^{\top} \, {}_{\mathcal{B}} \Theta_{S_i} \, {}_{\mathcal{B}} \dot{J}_{\mathcal{R}_i} \dot{\vec{q}} + {}_{\mathcal{C}} J_{\mathcal{R}_i}^{\top} \underbrace{\left({}_{\mathcal{C}} J_{\mathcal{R}_i} \dot{\vec{q}}\right)}_{c\vec{\omega}_i} \times {}_{\mathcal{C}} \Theta_{S_i} \underbrace{\left({}_{\mathcal{C}} J_{\mathcal{R}_i} \dot{\vec{q}}\right)}_{c\vec{\omega}_i}$$

- vector (\mathbb{R}^q) depends quadratically on velocities, i.e., \dot{q}_i^2 (centrifugal) and $\dot{q}_i \cdot \dot{q}_j$ (Coriolis)
- can be written as $\,C(\vec{q},\,\dot{\vec{q}})\cdot\dot{\vec{q}}\,$ (non-unique choice of C)

Gravitational Term:

3) Practical Applications

physical simulation

- solve forward dynamics problem: $\ddot{\vec{q}}=\mathrm{FD}(\vec{\tau},\vec{q},\dot{\vec{q}})\stackrel{\mathrm{e.g.}}{=}M^{\text{-}1}(\vec{\tau}-\vec{b}-\vec{g})$
- given: $\vec{q}(0), \, \dot{\vec{q}}(0), \, \vec{\tau}(t)$ $\forall t$ $0 \le t \le T$ solve for $\ddot{\vec{q}}$ and integrate to get $\dot{\vec{q}}(t)$ and $\vec{q}(t)$

model-based control

- solve inverse dynamics problem: $\vec{\tau} = \mathrm{ID}(\vec{q},\dot{\vec{q}},\ddot{\vec{q}}^*)$
- given: $\vec{q}^*(t) \to$ reference motion $\vec{q}(t), \ \dot{\vec{q}}(t) \to$ measurements at t solve for $\vec{\tau}(t)$ and apply it to the system

software implementation

- use pre-existing software tools (RBDL, RobCoGen, Pinocchio)
- some well-known algorithms:
 - Recursive Newton-Euler Algorithm (RNEA) => solve $\mathrm{ID}(\vec{q},\,\dot{\vec{q}},\,\ddot{\vec{q}})$
 - Articulated-Body Algorithm (ABA) => solve $\mathrm{FD}(\vec{\tau},\,\vec{q},\,\dot{\vec{q}})$
 - Composite Rigid-Body Algorithm (CRBA) => compute $M(\vec{q})$

