Nr. 606

Messung der Suszeptibilität paramagnetischer Substanzen

Sara Krieg sara.krieg@udo.edu Marek Karzel marek.karzel@udo.edu

Durchführung: 09.04.2019 Abgabe: 16.04.2019

TU Dortmund – Fakultät Physik

Inhaltsverzeichnis

1	Theorie	3
	1.1 Die magnetische Suszeptibilität	3
	1.2 Die Berechnung paramagnetischer Suszeptibilitäten	3
2	Durchführung	5
3	Auswertung	5
	3.1 Untersuchung der Filterkurve	5
	3.2 Experimentelle Bestimmung der Suszeptibilität	5
4	Diskussion	8

1 Theorie

In diesem Versuch werden die Suszeptibilitäten paramagnetischer Substanzen mit Hilfe einer Brückenschaltung bestimmt. Außerdem wird die Filterkurve des dabei verwendeten Selektivverstärkers untersucht.

1.1 Die magnetische Suszeptibilität

Die magnetische Suszeptibilität χ ist eine dimensionslose Größe, die angibt, wie gut ein Material in einem externen Magnetfeld magnetisierbar ist, d.h. wie sich die Magnetisierung \vec{M} des Materials durch ein externes Magnetfeld ändert. Diese Größe ist im Allgemeinem von vielen Variablen abhängig (z.B. von der magnetischen Feldstärke \vec{H} und der Temperatur T) und tensoriell.

Allerdings nehmen die Suszeptibilitäten verschiedener Materiale unter Raumtemperatur und bei kleinen Magnetfeldern mit Feldstärken \vec{B} kleiner einem Tesla näherungsweise konstante Werte an, welches den linearen Ausdruck

$$\vec{M} = \mu_0 \chi \vec{H} \tag{1}$$

liefert. Mit dessen Hilfe lassen sich Materialien durch ihre magnetische Suszeptibilität unterscheiden.

Stoffe mit einer Suszeptibilität $\chi < 0$ sind diamagnetisch, d.h. das Material magnetisiert in einem äußeren Magnetfeld entgegengesetzt zur Feldrichtung des Feldes, sodass das innere Magnetfeld des Stoffvolumens schwächer ist. Materialien mit einer Suszeptibilität $\chi > 0$ verhalten sich paramagnetisch, sodass das Magnetfeld im Inneren des Stoffvolumens durch die Magnetisierung stärker ist, als das äußere anregende Magnetfeld.

Bei höheren Temperaturen verschwindet die Ordnung der Magnetisierung \dot{M} nahezu einheitlicher Richtung mit

$$\chi \propto \frac{1}{T} \tag{2}$$

antiproportional zur Umgebungstemperatur.

1.2 Die Berechnung paramagnetischer Suszeptibilitäten

Zur Berechnung der Suszeptibilität muss der Zusammenhang zwischen atomarem Drehimpuls und magnetischem Momenten bekannt sein. Der Drehimpuls \vec{J} eines Atoms setzt sich aus dessen Bahnimpuls der Elektronenhülle \vec{L} , dem Gesamtspin \vec{S} und dem für den Paramagnetismus vernachlässigbaren Kerndrehimpuls zusammen. Dabei sind \vec{L} und \vec{S} Vektorsummen der einzelnen Elektronendrehimpulse und -spins und ihnen können durch Erkenntnisse aus der Quantenmechanik folgende magnetische Momente zugeordnet werden:

$$\vec{\mu}_L = -\frac{\mu_{\rm B}}{\hbar} \vec{L} \tag{3}$$

$$\vec{\mu}_S = -g_S \frac{\mu_B}{\hbar} \vec{S} \tag{4}$$

 $\mu_{\rm B}$ beschreibt dabei das Bohrsche Magneton und g_S das gyromagnetische Verhältnis. Mit den Quantenzahlen der Drehimpulse \vec{J} und des Spins \vec{S} ergeben sich die Beträge

$$|\vec{\mu}_L| = -\mu_{\rm B} \sqrt{L \left(L + 1\right)} \tag{5}$$

$$|\vec{\mu}_S| = -g_S \cdot \mu_B \sqrt{S(S+1)} \tag{6}$$

Zudem lässt sich aus Abbildung ... die Beziehung

$$|\vec{\mu}_J| = |\vec{\mu}_S| \cdot \cos(\alpha) + |\vec{\mu}_L| \cdot \cos(\beta) \tag{7}$$

ableiten und mit dem Kosinussatz zu

$$|\vec{\mu}_J| \approx \mu_{\rm B} \cdot g_J \sqrt{J(J+1)}$$
 (8)

mit dem Lande-Faktor

$$g_J = \frac{3J(J+1) + [S(S+1) - L(L+1)]}{2J(J+1)} \tag{9}$$

vereinfachen.

Aus der Quantenmechanik geht des weiteren die Richtungsquantelung hervor, d.h. der Winkel zwischen äußerem Magnetfeld und $\vec{\mu}_J$ ist nicht beliebig, sondern es gilt die Beziehung

$$\mu_{J_{Z}} = -\mu_{B} \cdot g_{J} \cdot m \tag{10}$$

für die Z-Komponente des magnetischen Moments μ_{J_Z} mit der ganzzahligen Orientierungsquantenzahl m, durch die es 2J+1 Einstellungsmöglichkeiten von $\vec{\mu}_J$ bezüglich des äußeren Magnetfeldes gibt.

Über alle möglichen Einstellungen mit ihren jeweiligen Wahrscheinlichkeiten summiert, ergibt sich für die Suszeptibilität der Zusammenhang

$$\chi = \frac{\mu_0 \cdot \mu_{\rm B}^2 \cdot g_J^2 \cdot NJ(J+1)}{3kT} \tag{11}$$

mit der Momentenanzahl pro Volumeneinheit N, der Boltzmannkonstante k und der Temperatur T.

In den Atomhüllen Seltener-Erd-Verbindungen sind sogenannte 4f-Elektronen dafür verantwortlich, dass deren Paramagnetismus besonders gut beobachtbar ist. Für diese Elektronen und den Gesamtdrehimpuls \vec{J} gelten die Hundschen Regeln:

- Die einzelnen Spins $\vec{s_i}$ summieren sich nach dem Pauli-Prinzip zum Gesamtspin $\vec{S} = \sum \vec{s_i}$ auf.
- Die einzelnen Bahndrehimpulse \vec{l}_i summieren sich nach dem Pauli-Prinzip zum Maximaldrehimpuls $\vec{L} = \sum \vec{l}_i$ auf.
- Der Gesamtdrehimpuls beträgt $\vec{J} = \vec{L} \vec{S}$, wenn die Elektronenschale weniger und $\vec{J} = \vec{L} \vec{S}$, wenn die Schale mehr als halbvoll besetzt ist.

2 Durchführung

3 Auswertung

3.1 Untersuchung der Filterkurve

Zunächst wird Durchlassfrequenz ν des Selektivverstärkers bestimmt. Die gemessenen Wertepaare von Frequenz ν und Spannung $U_{\rm A}$ sind in Tabelle 1 aufgeführt.

Tabelle 1: Messwerte der Filterkurve des Selektivverstärkers.

$$\frac{\nu \, / \, \text{kHz}}{0.00} \quad \frac{U_{\text{A}} \, / \, \text{V}}{100}$$

Die gemessene Frequenz ν wird gegen die Spannung $U_{\rm A}$ aufgetragen. Das Ergebnis ist in Abbildung 1 zu finden.

Die Durchlassfrequenz ergibt sich demnach zu

$$\nu_{A} = kHz. \tag{12}$$

3.2 Experimentelle Bestimmung der Suszeptibilität

Die Messdaten zur Bestimmung der Suszeptibilität χ sind in Tabelle 3, 4 und 5 zu finden. Der Koeffizient Q muss dabei durch den Querschnitt

$$Q_{\text{real}} = \frac{m}{\rho \cdot l} \tag{13}$$

ersetzt werden. Dieser ergibt sich durch die Länge l, die Masse m und die Dichte ρ der Probe. Diesen Querschnitt müsste die Probe haben, wenn sie aus einem Einkristall bestünde

Es wurde mit der Eingangsspannung $U_{\rm E}=1\,{\rm V}$ gemessen. Der Spulenquerschnitt ist mit $F={\rm m}^2$ gegeben. Aus den Messwerten können nun die Suszeptibilitäten χ berechnet werden, nach Bereinigung um die Verstärkung V. Diese finden sich in Tabelle 3, 4 und 5. Dabei bezeichnen $U_{\rm m}$ und $R_{\rm m}$ die Spannung und Widerstände, während die Probe sich in der Spule befindet. U_0 und R_0 sind entsprechend die Werte ohne Probe in der Spule.

Abbildung 1: Filterkurve des Selektivverstärkers.

Tabelle 2: Q_{real} der verwendeten Stoffe.

Stoff	$Q_{\rm real}/{\rm cm}^2$
Gd_2O_3	100
Dy_2O_3	
Nd_2O_3	

Tabelle 3: Messwerten und Suszeptibilitäten für Gd_2O_3

$U_{ m m}/{ m mV}$	$R_{ m m} / \Omega$	U_0 / mV	R_0 / Ω	$\chi_{ m U}$	$\chi_{ m R}$
0,00	100	4	5	6	7

Tabelle 4: Messwerten und Suszeptibilitäten für Dy_2O_3

$U_{ m m}/{ m mV}$	R_{m}/Ω	U_0 / mV	R_0 / Ω	$\chi_{ m U}$	$\chi_{ m R}$
0,00	100	4	5	6	7

Tabelle 5: Messwerten und Suszeptibilitäten für Nd_2O_3

$U_{ m m}/{ m mV}$	$R_{ m m} / \Omega$	U_0 / mV	R_0 / Ω	$\chi_{ m U}$	$\chi_{ m R}$
0,00	100	4	5	6	7

Aus den Suszeptibilitäten können nun die Mittelwerte berechnet werden, sodass sich Tabelle 6 ergibt.

Tabelle 6: Berechnete Suszeptibilitäten.

	Gd_2O_3	Dy_2O_3	Nd_2O_3
$\chi_{ m theo}$	0,0138	0,0254	0,0030
$\chi_{ m U}$	100	4	5
$\chi_{ m R}$	100	4	5

Damit ergeben sich die Abweichungen in Tabelle 7 vom theoretischem Wert.

 ${\bf Tabelle~7:~} {\bf Abweichungen~zum~theoretischem~Wert}.$

	$\frac{\chi_{\rm theo} - \chi_{\rm U}}{\chi_{\rm theo}}$	$\frac{\chi_{\rm theo} - \chi_{\rm R}}{\chi_{\rm theo}}$
Dy_2O_3		
Nd_2O_3		
Gd_2O_3		

4 Diskussion