

MOTIVATION. IMPROVE CAR DIAGNOSTICS.

- Provide highly accurate and fast help to customers.
- Potential root causes, that make this hard:
 - Cars are getting more and more complex (hybridization, connectivity).
 - Less experienced workshop staff in evolving markets.
 - Static workshop diagnostics based on manually formalized expert knowledge can't cope with the vast number of possibilities.
- Idea: Shift from a manual to a data driven approach.

APPROACH. THE DATASET.

- Input:
 - Diagnostic trouble codes (DTCs).
 - Measurement values.
 - Many more.
 - But: Pipeline is data-agnostic.
- Potential outputs:
 - Parts to switch.
 - Actions to take.
 - Workshop protocols to execute. (Includes parts, actions and checks).
- Data is generated every time a car is "read out" in the workshop.
- Data needs to be transformed.

ID	KEY	VALUE			
1	MV_1	0.15			

APPROACH. SIMPLIFIED OVERVIEW.

APPROACH. ETL.

- Extraction using extendedSQL:
 - --- \$ESQL_text("AND MY_COL ") \$ESQL_spreadNumArea(1:100:10) will generate 10 subqueries.

ID

- Offload computational complexity from the database to our server.
- 2. Transformation:
 - Feature engineering using UDFs and pipeline stages, e.g.
 - the location of purchase into latitudinal and longitudinal.
 - string indexing of vehicle properties like position of steering wheel.
 - Transformation from readout-key-value into ML suited format:

ID	KEY	VALUE
1	MV_1	0.15
2	MV_1	0.13
2	DTC_2	False
2	SP_1	0

This step requires massive amounts of computing power. Other frameworks fail or are much slower.

APPROACH. THE DATASET.

ID	MV_1	MV_2	MV_3	MV_4	SC_IP	SC_1	SC_2	DTC_PU	DTC_1	DTC_2	CP	SP_1
1	0.15	3	20	-0.06	2	77	27	true		true	v.10	0
2	0.13	36	73	-0.01						false	v.10	0
3	0.13	4	16	-0.02		45	1		false	false	v.10	0
4	0.16	14	54	-0.02						false	v.10	0
5	0.15	34	73	-0.07		80	22		false	false	v.10	0
6	0.16	50	33	-0.02		61	93	false	false	false	v.11	0
7		4	27	-0.09		59	91			false	v.10	0
8		48	20	-0.07		32	31			false	v.10	1
9	0.16	60	72	-0.01	1.9	96	53	true	false	true	v.10	0
10	0.11	14	88			73	14			false	v.10	0

- High dimensional featurespace (5000 features +).
- Heterogeneos features.
- High sparsity.
- High class imbalance.
- No "negative" readouts.

APPROACH. MODELLING.

- Modelling itself is pretty straightforward to do with Spark.
- Serializing and loading is the crux of the matter:
 - Model data.
 - Serialization split into two stages:
 - 1st stage: StringIndexer, LabelIndexer, VectorAssembler, ColumnDropper, and scaling.
 - 2nd stage: VectorIndexer, random forest, and logistic regression.
 - Reasons: Code generations fails (exceeding the 1600k class limit, see <u>PR16648</u>), reusability.
 - Metadata: Additional information to assess model quality (like true/false positive rate, AUC, etc.).
- Feature reduction: Information gain (self), correlation (mllib.stat.Statistics), chi² (Spark).

APPROACH. USER INTERFACE.

- Backend:
 - Scala.
 - Play Framework.
- Frontend:
 - AngularJS.
 - Bootstrap.
- Used by workshop staff and BMW engineers.

APPROACH. USER INTERFACE DETAIL.

PITFALLS.

- Vast number of columns are hard to take even for Spark. Feature subset selection / transformation (e.g. PCA), strongly recommended.
- Exact same code runs in shell and using spark-submit but not when being launched from Debugger of IDE (e.g. UDF).
- Watch your logs: Especially high dimensional input data can grow your log file to insane sizes when a stack trace is printed out (2mb data caused over 100GB of log during couple of hours) → Wasting drive space, harming overall performance.
- Getting number of partitions right:
 - Partitioning (using .repartition()) is absolutely necessary that Spark parallelizes well and is not done automatically.
 - But: Reducing the number of partitions can also increase your performance.
 - If a task takes less than 100ms, use less partitions.

#Partitions: 2

Computation time: ~10%

Total Time: 82ms

#Partitions: 1120

Computation time: ~1%

Total Time: 4000ms

Toolchain: Ubuntu (less hacky), IntelliJ IDEA (great integration and VCS), Scala (functional paradigm, harmonizes well).

CONCLUSION & OUTLOOK.

- Conclusion:
 - Spark is great for crunching large datasets...
 - ... once you know the pitfalls.
- Next steps:
 - Roll out code to larger cluster.
 - Implement more filter methods to reduce the featurespace.
 - Implement techniques to cope with imbalanced dataset (SMOTE, ADAYSN, etc.).
 - Develop strategies to deal with missing values.
 - Evaluate Spark Streaming.

THANKS FOR YOUR ATTENTION AND TIME.

Bernhard Schlegel bernhard.bb.schegel@bmw.de