Spooky Author Identification

Capstone Project By Karthik Pendyala

Mentor – Rohan Rao

Springboard AI/ML Career Track

Problem Statement

The problem this capstone project aims at identifying horror authors from their writings. By analyzing
the author style and the way of writing, the project aims at providing a model that could accurately
detect the name of the author given an input text.

Data

 The dataset contains text from works of fiction written by spooky authors of the public domain: Edgar Allan Poe, HP Lovecraft and Mary Shelley. The data was prepared by chunking larger texts into sentences using CoreNLP's MaxEnt sentence tokenizer.

id	text	author	
0	id26305	This process, however, afforded me no means of	EAP
1	id17569	It never once occurred to me that the fumbling	HPL
2	id11008	In his left hand was a gold snuff box, from wh	EAP
3	id27763	How lovely is spring As we looked from Windsor	MWS
4	id12958	Finding nothing else, not even gold, the Super	HPL

Preprocessing

- Text data typically requires some cleanup before it can be processed further and fed to a model. The
 dataset was cleaned as follows:
 - Removal of Punctuation Marks
 - Lemmatisation
 - Removal of Stopwords
 - Label encoding the output label Convert Author Names into numeric format for training purpose

For Edgar Allan Poe

WordClouds

For HP Lovecraft

WordClouds

For Mary Shelley

WordCloud

Modeling

Logistic Regression

Label	Precision	Recall	F1-score	Support
0	0.77	0.86	0.82	1562
1	0.86	0.76	0.80	1149
2	0.83	0.80	0.81	1205

Modeling

Multinomial Naïve Bayes

Label	Precision	Recall	F1-score	Support
0	0.85	0.82	0.84	1562
1	0.87	0.83	0.85	1149
2	0.81	0.87	0.84	1205

Modeling

- To try out some deep learning models I made use of Hugging Face which has several pre-trained models to train
 on.
- I trained the dataset on different transformers such as:
 - Bert Base Cased
 - Bert Base Uncased
 - Bert Large Cased
 - Bert Large Uncased
 - Distilbert Base Cased
 - Distilbert Base Uncased
 - Roberta Base
 - Roberta Large
 - XLM Roberta Base
 - XLM Roberta Large
- After trying different hyperparameters and considering the accuracy of the models, Bert Large Cased has been used as the final model.
- It was able to achieve an accuracy of 88% on the validation set and better than all the machine learning and deep learning models.

Conclusion & Future Work

- The model evaluation results indicate that deep learning models perform better than Naïve Bayes models and are efficient in predicting the result of the problem statement.
- Future work will be mainly focused on exploring other deep learning architectures and trying out different model tuning methods.

References

- TPU Sherlocked: One-stop for Hugging Face with TF
- Deploy the final Model
- Multinomial NB
- Logistic Regression
- Hugging Face Transformers