Network meta-analysis using survival data

Nathan Green

Department of Statistic Science | University College London

Summary

- Recap part one
 - Basic NMA with binary data
- NMA with survival data
 - IPD time to event
 - Contrast-based data hazard ratios (HR)
- BUGS with R practical

References

- 1. **Saramago P, Chuang LH, Soares MO**. Network meta-analysis of (individual patient) time to event data alongside (aggregate) count data. BMC Med Res Methodol. 2014;14(1).
- 2. **Woods BS, Hawkins N, Scott DA**. Network meta-analysis on the log-hazard scale, combining count and hazard ratio statistics accounting for multi-arm trials: A tutorial. BMC Med Res Methodol. 2010;10.

Recap of part 1

- Unusual for a policy question to be informed by a single study
 - Must use all available and relevant evidence
- New treatment C: been trialled against old treatment B, but not to A
- For health economic evaluation need to compare A/B/C together
- Learn about C/A effect from C/B and B/A trial data
- Also called "mixed treatment comparisons". Since can also "mix" direct and indirect data on same comparison...

Count data equations

Fixed effects

$$egin{aligned} r_{st} \sim Bin(p_{st}, n_{st}) \ logit(p_{st}) = \mu_s + \delta_{st} \ \delta_{st} \sim d_t - d_{t_{s0}} \end{aligned}$$

Random effects

$$egin{aligned} r_{st} \sim Bin(p_{st}, n_{st}) \ logit(p_{st}) &= \mu_s + \delta_{st} \ \delta_{st} \sim N(\mu_{st}^\delta, \sigma_{st}^2) \ \mu_{st}^\delta \sim d_t - d_{t_{s0}} \end{aligned}$$

More realistic situation

• Different types of data we want to synthesise.

Binary data with time to event data (TTE)

- Use example from Saramago (2014)¹
- The case study relates to compression systems aiming to deliver high compression to promote venous leg ulcer healing
- The final NMA contained data from 16 RCTs
 - 2 included RCTs had full IPD data (841 participants) which included time to healing or censoring for each participant, together with other characteristics (treatment centre, ulcer duration, size, patient mobility).
 - Remaining aggregate data only

Data

ID	Study	Treatment	Follow up (weeks)	Number patients	Mean duration (months)	Mean size (cm²)	Number healed	Evidence format available
16	Duby et al. 1993 [18]	4LB	12	25	20.5	11.9	11	AD
		SSB	12	25	26.7	13.1	10	
17	Scriven et al. 1998 [19]	4LB	52	32	13	13.3	17.6	AD
		SSB	52	32	21	8.3	18.24	
18	Partsch et al. 2001 [20]	4LB	16	53	1.25	1.5	33	AD
		SSB	16	59	1	1.9	43	
19	Ukat et al. 2003 [21]	4LB	12	44	-	17.7	13	AD
		SSB	12	45	-	12.2	10	
20	Franks et al. 2004 [22]	4LB	24	74	2	5	59	AD
		SSB	24	82	2	3.5	62	
21	Junger et al. 2004b [23]	SSB	12	60	5.57	5.95	19	AD
		HH	12	61	4.14	5,62	29	
22	Kralj et al. 1996 [24]	4LB	24	20	7.9	18.6	7	AD
		Ad hoc: Ba	24	20	6.9	17.2	8	
23	Polignano et al. 2004b [25]	4LB	24	39	-	10.1	29	AD
		ZINC	24	29	-	9.3	19	
24	Wilkinson et al. 1997 [26]	4LB	12	17	-	11.2	8	AD
		Ad hoc: BHeH	12	18	_	8.6	8	
25	Colgan et al. 1995 [27]	4LB	12	10	9.3	27.5	6	AD
		Ad hoc: BzeaH	12	10	66.5	48.5	7	
26	Blecken et al. 2005 [28]	4LB	12	12	_	50.08	4	AD
		Ad hoc: HV	12	12	_	48.98	4	
27	Moffatt et al. 2008 [29]	4LB	4	42	48.8	5.7	3	AD
		2LB	4	39	46.6	11.8	6	
28	Szewczyk et al. 2010 [30]	4LB	12	15	_	6	9	AD
		2LB	12	16	_	5.3	10	
29	Wong et al. 2012 [31]	4LB	24	107	_	_	72	AD
		SSB	24	107	_	_	77	
30	Iglesias et al. 2004 (32)	4LB	52	195	3	3.81	107	IPD
		SSB	52	192	3	3.82	86	
14	Ashby et al. 2013 [17]	4LB	52	224	12.29	9.30	157	IPD
		HH	52	230	10.82	9.41	163	

AD – aggregate-level data; IPD – individual patient data; 4LB, SSB, HH, Zinc paste, 2LB and the ad hoc systems Ba, BHeH, BzeaH, HV as described in Additional file 1.

Network diagram

IPD model

• ith participant in jth study in kth treatment arm

$$t_{ijk} \sim Weibull(s,\lambda_{ijk})I(t_{ijk}^c) \ \log(\lambda_{ijk}) = egin{cases} \mu_j^{IPD} + \gamma_j^c + eta_{0j}x_{ijk}, & ext{if } k = b \ \mu_j^{IPD} + d_{bk} + \gamma_j^c + eta_{0j}x_{ijk}, & ext{if } k > b \end{cases} \ x_{ijk} \sim N(m,p) \ \ \gamma_j^c \sim N(0,\pi) \ \end{cases}$$

AD model

• The linear predictor, $\log(\lambda_{jk}^{AD})$ was a function of the baseline log-hazard of an event for treatment b in study j, μ_{jb}^{AD} , and by the log-hazard ratio for treatment k and baseline treatment b, d_{bk} (= $d_{1k}-d_{1b}$). Note that there are parameters common to both model parts, namely the log-hazard ratios and the shape parameter of the time to healing distribution.

$$egin{aligned} r_{jk} &\sim Bin(p_{jk}, n_{nk}) \ p_{jk} &= 1 - \exp(-\lambda_{jk}^{AD}(t_{jk}^{AD})^s) \ \log(\lambda_{jk}^{AD}) &= egin{cases} \mu_j^{AD}, & ext{if } k = b \ \mu_j^{AD} + d_{bk}, & ext{if } k > b \end{cases} \end{aligned}$$

Data format

- treat: treatment arm (coded 1,2)
- baseline: reference treatment code,
- t.obs: time to event in months (under censoring)
- t.cens: time of censoring in months,
- n.subjects: Number of participants in IPD
- n.treat: Number of treatments
- a.id:study number
- a.treat: treatment arm code (coded from 1 to number of treatments),
- r: number of events in trial arm
- n: number of patients in trial arm
- a.base:reference treatment code
- a.time: follow-up time of trial
- n.agg.trials: Number of AD studies
- n.agg.arms: Number of AD study arms

Data format

```
1 load(here::here("part 2/practical/tte counts input data.RData"))
  3 input_dat
$n.subjects
[1] 3
$n.treat
[1] 2
$n.agg.trials
[1] 2
$n.agg.arms
[1] 2
$treat
[1] 1 1 2
$baseline
[1] 1 1 1
$t.obs
[1] 3.50 2.33 NA
$t.cens
[1] 0.0 0.0 11.9
```

• Part 1: Model for IPD

```
1 model {
      ### Part 1: Model for IPD
 3
 4
     for(i in 1:n.subjects) {
 5
      # Weibull likelihood for IPD
 6
       t.obs[i] ~ dexp(zu[i])I(t.cens[i], )
 7
 8
        # Model for IPD
       log(zu[i]) <- mu + d[treat[i]] - d[baseline[i]]</pre>
 9
11
12
     # Vague prior for IPD
     mu \sim dnorm(0, 1.0E-6)
13
```

• Part 2: Model for aggregate data

```
### Part 2: Model for aggregate data
 2
     for (i in 1:n.agg.arms) {
 3
 4
      # Binomial likelihood for AD
 5
        r[i] ~ dbin(pa[i], n[i])
 7
        # Model for AD
 8
        pa[i] \leftarrow 1 - exp(-zu.a[i] * a.time[i])
       log(zu.a[i]) <- mu.a[a.id[i]] + d[a.treat[i]] - d[a.base[i]]</pre>
 9
10
11
12
      # Vague priors for AD
     for(j in 1:n.agg.trials) {
13
14
        mu.a[j] \sim dnorm(0, 1.0E-6)
15
```

• Part 3: Model for combining all estimates of treatment effect

Binary data with contrast-based survival data

- Use example from Woods (2010)¹
- Data on survival endpoints are usually summarised using either hazard ratio, cumulative number of events, or median survival statistics
- NMA of survival endpoints can combine count and hazard ratio statistics in a single analysis on the hazard ratio scale
- A worked example of an analysis of mortality data in chronic obstructive pulmonary disease (COPD)

Data

• Input RCT data binary counts table

Author/Trial (Date)	Treatment	r (deaths)	N (patients)
Boyd (1997) [12]	Salmeterol	1	229
	Placebo	1	227
Calverly/TRISTAN (2003) [13]	Fluticasone	4	374
	Salmeterol	3	372
	SFC	2	358
	Placebo	7	361
Celli (2003) [14]	Salmeterol	1	554
	Placebo	2	270

• Input RCT hazard summary table

Author/Trial (Date)	Treatment	Base	HR	HR _{LCI}	HR _{UCI}	ln (HR)	se(ln(HR))
Burge/ISOLDE (2000) [15]	Fluticasone	Placebo	0.76	0.51	1.13	-0.276	0.203
Calverly/TORCH (2007) [16]	SFC	Placebo	0.811	0.670	0.982	-0.209	0.098
	Salmeterol	Placebo	0.857	0.710	1.035	-0.154	0.096
	Fluticasone	Placebo	1.056	0.883	1.264	0.055	0.092
	SFC	Salmeterol	0.946	0.777	1.151	-0.056	0.100
	SFC	Fluticasone	0.768	0.636	0.927	-0.264	0.096

Count statistics on log-hazard ratio scale

• For r_{sk} is the cumulative count of subject who have experienced an event in arm k of study s; n_{sk} is total number of subjects in arm k of study s and r_{sk} is the cumulative probability of subject having an event.

$$r_{sk} \sim Bin(F_{sk}, n_{sk})$$

• The log cumulative hazard for each trial arm is then

$$\ln(H_{sk}) = \ln(-\ln(1 - F_{sk}))$$

• The log cumulative hazard is estimated as the sum of a study specific 'baseline' term α_s and a treatment effect coefficient β_k :

$$\ln(H_{s,k}) = lpha_s + eta_k - eta_b$$

where $\beta_1=0$ for the reference treatment and β_b represents the treatment effect for the baseline treatment in study s.

What is β_k ?

• Under the assumption of proportional hazards, β_k is both log cumulative hazard ratio and log hazard ratio:

$$\ln\!\left(rac{\exp(eta_k)h_{sb}}{h_{sb}}
ight) = \ln\!\left(rac{\int_0^t \exp(eta_k)h_{sb}}{\int_0^t h_{sb}}
ight) = eta_k$$

Combining count and hazard ratio statistics in an NMA

ullet x_{skb} is log hazard ratio estimate for study s comparing treatments k and b

$$x_{skb} \sim N\left(\ln\!\left(rac{h_{sk}}{h_{sb}}
ight), se_{skb}^2
ight)$$

then

$$\ln\!\left(\frac{h_{sk}}{h_{sb}}\right) = \beta_k - \beta_b$$

• For hazard ratio reporting studies

```
for (ii in 1:LnObs) {
   Lmu[ii] <- alpha[Lstudy[ii]]*multi[ii] + beta[Ltx[ii]] - beta[Lbase[ii]]
   Lprec[ii] <- 1 / pow(Lse[ii], 2)
   Lmean[ii] ~ dnorm(Lmu[ii], Lprec[ii])
   }
}</pre>
```

For binary data reporting studies

```
for (ss in 1:BnObs) {
  logCumHaz[ss] <- alpha[Bstudy[ss]] + beta[Btx[ss]] - beta[Bbase[ss]]
  cumFail[ss] <- 1 - exp(-1 * exp(logCumHaz[ss]))
  Br[ss] ~ dbin(cumFail[ss], Bn[ss])
}</pre>
```

Going further

References

- 1. **Saramago P, Chuang LH, Soares MO**. Network meta-analysis of (individual patient) time to event data alongside (aggregate) count data. BMC Med Res Methodol. 2014;14(1).
- 2. **Woods BS**, **Hawkins N**, **Scott DA**. Network meta-analysis on the log-hazard scale, combining count and hazard ratio statistics accounting for multi-arm trials: A tutorial. BMC Med Res Methodol. 2010;10.
- 3. **Donegan S, Williamson P, D'Alessandro U, Garner P, Smith C**: Combining individual patient data and aggregate data in mixed treatment comparison meta-analysis: individual patient data may be beneficial if only for a subset of trials. Stat Med 2013, 32(6):914–930.
- 4. **Berlin J, Santanna J, Schmid C, Szczech L, Feldman H**: Individual patient- versus group-level data meta-regressions for the investigation of treatment effect modifiers: ecological bias rears its ugly head. Stat Med 2002, 21(3):371–387.
- 5. Riley R, Lambert P, Staessen J, Wang J, Gueyffier F, Thijs L, Boutitie F: Meta-analysis of continuous outcomes combining individual patient data and aggregate data. Stat Med 2008, 27(11):1870–1893