Amendments to the Claims:

This listing of claims will replace all prior versions and listings of claims in this application.

Listing of Claims:

1. (currently amended) A compound represented by formula I-1:

and the pharmaceutically acceptable salts, and esters and solvates thereof wherein:

"a" is an integer selected from 1, 2 and 3; and b and c are each integers independently selected from 0, 1 and 2;

"A" represents a methylene or ethylene group;

each R^{1a} is independently selected from the group consisting of: -H, -F, -Cl, -Br, -C1_6alkyl, -CN, -OH, -OC1_6 alkyl, -fluoroC1_6 alkyl, -fluoroC1_6 alkoxy, -N(R^a)2, -C1_6 alkylN(R^a)2, -NHC(O)C1_4alkyl, -C(O)NHC1_4alkyl and -C(O)N(C1_4alkyl)2;

each R1b is independently selected from the group consisting of: -H, -F,

 $-C_{1-6} \ alkyl, -OH, -OC_{1-6} \ alkyl, -fluoroC_{1-6} alkyl, -fluoroC_{1-6} alkyl, -fluoroC_{1-6} alkyl, -N(R^a)_2 and -C_{1-6} alkylN(R^a), -N(R^a)_2 and -C_{1-6} alkylN(R^a)_2, -N(R^a)_2, -N(R^a)_2, -N(R^a)_2, -N(R^$

or one R1b group can represent oxo and the other is as previously defined;

R1 represents -H or is selected from the group consisting of:

a) halo, -OH, -CO₂R^a, -C(O)NR^aR^b, -C(O) Hetcy¹, -N(R^a)₂, -S(O)₂NR^aR^b, -NO₂, -SO₂NR^bC(O)R^a, -NR^bSO₂R^a, -NR^bC(O)R^a, -C(O)SO₂NR^aR^b, -NR^bC(O)NR^aR^b, -NR^bCO₂R^a, -OC(O)NR^aR^b, -C(O)NR^bNR^aR^b, -CN, -S(O)_bR^a and -OSO₂R^a,

b) -C₁₋₁₀alkyl, -C₂₋₁₀alkenyl, -C₂₋₁₀alkynyl, -OC₁₋₁₀alkyl, -OC₃₋₁₀alkenyl and -OC₃₋₁₀alkynyl, said groups being optionally substituted with: -OH, -CO₂R^a, -C(O)NR^aR^b, -C(O)N(R^a)C₁-6alkenyl, -C(O)N(R^a)C₁-6alkynyl, -C(O)-Hetey¹, -N(R^a)₂, -S(O)₂NR^aR^b, -SO₂NR^bC(O)R^a, -NR^bSO₂R^a, -NR^bC(O)R^a, -C(O)SO₂NR^aR^b, -NR^bC(O)NR^aR^b, -NR^bCO₂R^a,

Serial No. 10/565,604 Case No. MC079YP Page No. 3

-OC(O)NR^aR^b, -C(O)NR^bNR^aR^b, -S(O)_pR^a, Aryl, HAR, -Hetcy¹, and up to 5 fluoro groups, wherein Hetcy¹ is selected from azetidinyl, pyrrolidinyl, piperidinyl, piperazinyl, morpholinyl and y-lactam; c) Aryl or HAR optionally substituted with 1-2 members selected from the group consisting of: -F, -Cl, -Br, -C₁₋₆ alkyl, -C₃₋₆cycloalkyl, -CN, -OH, -OC₁₋₆ alkyl, -fluoroC₁₋₆ alkyl, $fluoroC_{1-6}alkoxy, -NH_2, -NHC_{1-4}alkyl, -N(C_{1-4}alkyl)_2, -C_{1-6}alkylNH_2, -C_{1-6}alkyl-NHC_{1-4}alkyl, -C_{1-6}alkylNH_2, -C_{1-6}alkyl-NHC_{1-6}alkyl, -C_{1-6}alkylNH_2, -C_{1-6}alkyl-NHC_{1-6}alkyl, -C_{1-6}alkyl-NHC$ $_{6}$ alkylN(C₁₋₄alkyl)₂, -C₁₋₆alkyl-CN, -NHC(O)C₁₋₄alkyl, -C(O)NHC₁₋₄alkyl and -C(O)N(C₁₋₄alkyl)₂; "d" and "e" are each integers independently selected from 0, 1, 2 and 3, such that the sum of d plus e is 1-6; each p independently represents an integer selected from 0, 1 and 2; X represents a bond, or is selected from the group consisting of O-, -S(O)_p- and -NRa-: R^2 , R^3 , R^4 and R^5 are each independently selected from the group consisting of -H, -C₁₋₆ alkyl, -OC₁₋₆alkyl, -OH, -fluoro, -fluoroC₁₋₆alkyl, -fluoroC₁₋₆alkoxy, -N(R^a)₂, and 0-1 of CR²R³ and 0-1 of CR⁴R⁵ can represent a group selected from carbonyl, thiocarbonyl, C=NR^a and a 3-7 membered cycloalkyl ring, provided that when X represents $S(O)_{p}$, and p is 1 or 2, the CR^2R^3 and CR^4R^5 groups adjacent to X represent moieties other than carbonyl, thiocarbonyl and C=NR^a and further provided that when X is O- or NRa, at least one of CR²R³ and CR⁴R⁵ adjacent to X represents a moiety other than carbonyl, thiocarbonyl and C=NR^a; Y is selected from the group consisting of Aryl, HAR and Hetcy, wherein each is optionally mono-substituted or di-substituted with R^{1a} quinolinyl; each Ra is independently selected from the group consisting of -H and: -C1-10alkyl, -C3-6cycloalkyl, -C3-10alkenyl, or -C3-10alkynyl, optionally (a) substituted with 1-3 fluoro groups or 1-2 members selected from the group consisting of: -OH, -OC₁₋ 6alkyl, -CN, -NH₂, -NHC₁₋₄alkyl, and -N(C₁₋₄alkyl)₂; Aryl or Ar-C₁₋₆alkyl-, the aryl portions being optionally substituted with 1-2 of $-C_{1-6}$ alkyl, -CN, -OH, $-OC_{1-6}$ alkyl, $-fluoroC_{1-6}$ alkyl, $-fluoroC_{1-6}$ alkoxy, $-C_{1-6}$ alkylNH₂, $-C_{1-6}$ alkylNHC₁₋₄alkyl, $-C_{1-6}$ alkylN(C₁₋₄alkyl)₂, $-NH_2$, $-NHC_{1-4}$ alkyl, $-N(C_{1-4}$ alkyl)₂, $-NHC(O)C_{1-4}$ alkyl, $-C(O)NHC_{1-4}alkyl$, $-C(O)N(C_{1-4}alkyl)_2$, $-CO_2H$ and $-CO_2C_{1-6}alkyl$ groups, and 1-3 -F, -Cl or -Br

and the alkyl portion of Ar-C $_{1-6}$ alkyl- being optionally substituted with –OH, -OC $_{1-6}$ alkyl, -NH $_2$, -NHC $_{1-4}$ alkyl, -N(C $_{1-4}$ alkyl) $_2$, and 1-3 fluoro groups;

groups;

(c) Hetcy or Hetcy- C_{1-6} alkyl-, each being optionally substituted on carbon with 1-2 members selected from the group consisting of: -F, -OH, -CO₂H, -C₁₋₆alkyl, -CO₂C₁₋₆alkyl, -OC₁-

6alkyl, -NH₂, -NHC₁₋₄alkyl, -N(C₁₋₄alkyl)₂, -NHC(O)C₁₋₄alkyl, oxo, -C(O)NHC₁₋₄alkyl and -C(O)N(C₁₋₄alkyl)₂; and optionally substituted on nitrogen when present with -C₁₋₆alkyl or -C₁₋₆acyl; and the alkyl portion of Hetcy-C₁₋₆alkyl-being optionally substituted with 1-2 of: -F, -OH,

-OC₁₋₆alkyl, -NH₂, -NHC₁₋₄alkyl and -N(C₁₋₄alkyl)₂;

(d) HAR or HAR- C_{1-6} alkyl-, said HAR and HAR portion of HAR- C_{1-6} alkyl- being substituted with 1-2 members selected from the group consisting of: -F, Cl, -Br, -C₁₋₆ alkyl, -CN, -OH, -OC₁₋₆ alkyl, -fluoroC₁₋₆ alkyl, -fluoroC₁₋₆ alkoxy NH₂, -NHC₁₋₄alkyl, -N(C₁₋₄alkyl)₂, -NHC(O)C₁₋₄alkyl, -CO₂NHC₁₋₄alkyl; and

the alkyl portion of HAR- C_{1-6} alkyl- being optionally substituted with 1-2 of: -F, -OH, -OC₁₋₆alkyl, -NH₂, -NHC₁₋₄alkyl and -N(C₁₋₄alkyl)₂;

each R^b is independently selected from the group consisting of: -H, -NH₂, and - C_{1-10} alkyl optionally substituted with members selected from the group consisting of 1-3 fluoro groups and 1-2 of -OH, -OC₁₋₆alkyl, -NH₂, -NHC₁₋₄alkyl and -N(C₁₋₄alkyl)₂;

and when present in the same moiety, (a) R^a and R^b, (b) two R^a groups or (c) two R^b groups can be taken in combination with the atom or atoms to which they are attached and any intervening atoms and represent a 4-7 membered ring containing 0-3 heteroatoms selected from O, S(O)_p and N, and the 4-7 membered ring may be optionally substituted with a member selected from the group consisting of -C₁₋₆alkyl, -C₂₋₆acyl and oxo.

2. (currently amended) The compound of claim 1 of structural formula Ia-1:

$$R^{1b}$$
 $(CR^2R^3)_d$ - X - $(CR^4R^5)_e$ - Y R^{1b} $(CR^4R^5)_e$ - Y R^{1b} R^{1a} R

and the pharmaceutically acceptable salts, and esters and solvates thereof, wherein "a" is an integer selected from 1, 2 and 3; and b and c are each integers independently selected from 0, 1 and 2; provided that the sum of "a" + b + c is from 1 to 5.

3. (canceled)

4. (currently amended) The compound of claim 1 of structural formula Ib-1:

and the pharmaceutically acceptable salts, and esters and solvates thereof wherein: "a" is an integer selected from 2 and 3; and b and c are integers independently selected from 0 and 1; provided that the sum of "a" + b + c is from 2 to 4.

5. **(original)** The compound of claim 4 wherein "a" is 2, and b and c are integers selected from 0 and 1.

6. (canceled)

7. (currently amended) The compound of claim 1 wherein of the three R^{1a} groups shown in the generic structural drawing of formula I-1, two R^{1a} groups represent -H and one R^{1a} group is selected from the group consisting of: -F, -Cl, -C₁₋₆ alkyl, -CN, -OC₁₋₆ alkyl, -fluoroC₁₋₆ alkyl, -fluoroC₁₋₆ alkyl, -C(O)NHC₁₋₄alkyl and -C(O)N(C₁₋₄alkyl)₂.

8. (canceled)

- 9. **(previously presented)** The compound of claim 1 wherein both R^{1b} groups represent -H.
- 10. (currently amended) The compound of claim 1 wherein R¹ represents a member selected from the group consisting of:

 $a) - C(O)NR^aR^b, - C(O) - Hetcy \frac{1}{2}, -N(R^a)_2, -S(O)_2NR^aR^b, -SO_2NR^bC(O)R^a, -NR^bSO_2R^a, -NR^bC(O)R^a, -CN, -S(O)_pR^a \ and -OSO_2R^a; \\ \underline{and}$

b) $-C_{1-10}$ alkyl, $-C_{3-6}$ alkenyl, $-C_{3-6}$ alkynyl, $-OC_{1-10}$ alkyl, $-OC_{3-6}$ alkenyl and $-OC_{3-10}$ alkynyl, said groups being optionally substituted with a member selected form the group consisting of: $-CO_2R^a$, $-C(O)NR^aR^b$, $-C(O)N(R^a)C_{1-6}$ alkenyl, $-C(O)N(R^a)C_{1-6}$ alkynyl, $-C(O)Hetcy^{-1}$, $-N(R^a)_2$, $-S(O)_2NR^aR^b$, $-SO_2NR^bC(O)R^a$, $-NR^bSO_2R^a$, $NR^bC(O)R^a$, $-S(O)_pR^a$, Aryl, $\frac{HAR}{ARR^b}$, $\frac{HAR}{ARR^b}$, and up to 5 fluoro groups; $\frac{1}{2}$ and

c) HAR optionally substituted with 1-2 members selected from the group consisting of: -F, Cl, -Br, -C₁₋₆ alkyl, -CN, -OH, -OC₁₋₆ alkyl, -fluoroC₁₋₆ alkyl, -fluoroC₁₋₆ alkyl, -fluoroC₁₋₆ alkyl, -N(C₁₋₄ alkyl)₂, -C₁₋₆ alkylNH₂, -C₁₋₆ alkyl NHC₁₋₄ alkyl, -C₁₋₆ alkylN(C₁₋₄ alkyl)₂, -C₁₋₆ alkyl CN, -NHC(O)C₁₋₄ alkyl, -C(O)NHC₁₋₄ alkyl and -C(O)N(C₁₋₄ alkyl)₂.

11 - 13. (canceled)

14. (currently amended) The compound of claim 1 wherein -(CR²R³)_d-X-C(R⁴R⁵)_e--(CR⁴R⁵)- represents a member selected from the group consisting of -CH₂-O-CH₂- and -CH₂CH₂-.

15 - 20. (canceled)

21. (currently amended) The compound of claim 1 of structural formula Ic-1:

$$(Cr^{2}R^{3})_{d}$$
-X- $(CR^{4}R^{5})_{e}$ -Y
 $(Cr^{2}R^{3})_{d}$ -X- $(CR^{4}R^{5})_{e}$ -Y
 $(Cr^{2}R^{3})_{d}$ -X- $(CR^{4}R^{5})_{e}$ -Y
 $(CR^{4}R^{5})_{e}$ -Y

wherein d is 0 (zero); e is 1; X is O-; R⁴ and R⁵ are both -H; Y is selected from the group consisting of

wherein Z is selected from the group consisting of O, S and NH; and Z¹ is selected from the group consisting of O and S;

R¹ is selected from the group consisting of:

- a) -OC(O)NR a R b , and -C(O)NR a R b ; and
- b) C₁₋₃alkyl substituted with a member selected from: -C(O)-NR^aR^band

-C(O)-Hetcy¹;

and c) HAR optionally substituted with 1-2 members selected from the group consisting of: -F, -Cl, -C₁₋₆ alkyl, -CN, -OH, -OC₁₋₆ alkyl, -fluoroC₁₋₆ alkyl, -fluoroC₁₋₆ alkyl, -fluoroC₁₋₆ alkyl, -N(C₁₋₄ alkyl)₂, -C₁₋₆ alkylNH₂, -C₁₋₆ alkyl-NHC₁₋₄ alkyl, -C₁₋₆ alkylN(C₁₋₄ alkyl)₂, -C₁₋₆ alkyl-CN, -NHC(O)C₁₋₄ alkyl, -C(O)NHC₁₋₄ alkyl and -C(O)N(C₁₋₄ alkyl)₂.

Serial No. 10/565,604 Case No. MC079YP Page No. 8

22 - 23. (canceled)

24. **(original)** A pharmaceutical composition comprised of a therapeutically effective amount of a compound of claim 1 and a pharmaceutically acceptable carrier.

25. (canceled)

26. **(original)** A method for treating a leukotriene-mediated medical condition comprising administering a therapeutically effective amount of a compound of claim 1 to a patient in need of such treatment.

27. (canceled)

28. (previously presented) The method of Claim 26 wherein said leukotrienemediated medical condition is atherosclerosis.

29 - 31. (canceled)

32. **(original)** A method of preventing or reducing the risk for a leukotriene-mediated medical condition comprising administering a prophylactically effective amount of a compound of claim 1 to a patient in need of such treatment.

33. (canceled)

- 34. (**previously presented**) The method of Claim 32 wherein said leukotriene-mediated medical condition is an atherosclerotic disease event.
- 35. (original) The method of treating atherosclerosis of claim 28 further comprising administering to the patient a compound selected from the group consisting of an HMG-CoA reductase inhibitor, cholesterol absorption inhibitor, CETP inhibitor, PPAR α agonist, PPAR α agonist, PPAR dual α/γ agonist, and combinations thereof.
- 36. **(previously presented)** The method of Claim 26 wherein said leukotriene-mediated medical condition is selected from asthma, allergies, allergic conditions and COPD.