

ABCD: Arbitrary Bitwise Coefficient for De-quantization

Woo Kyoung Han Byeonghun Lee Sang Hyun Park Kyong Hwan Jin Daegu Gyeongbuk Institute of Science and Technology (DGIST), Korea

Introduction

Bit Depth Expansion (BDE)

The quantization distorts images with false-contour and blurry artifacts regardless of a bit capability in display devices.

Arbitrary Bitwise Dequantization

	_					
Method	BitNet (18')	BE-CALF (19')	D4/D16 (21')	ABCD (Ours)		
False-contour removal	O	Δ	Δ	0		
High-frequency detail	×	Δ	0	O		
Unseen inference	×	×	×	0		

Local Implicit Neural Representation

Results

Input IPAD BitNet ABCD(Ours) GT

Quantitative Comparison

Quantitative companison													
Benchmark	TESTIMAGES 1200				KODAK		ESPL v2						
Method	$4 \rightarrow 8$	4 → 12	4 → 16	6 → 12	6 → 16	8 → 16	$3 \rightarrow 8$	4 → 8	$3 \rightarrow 8$	4 → 8			
Input (bit zero-padding)	29.21 0.8764	28.85 0.8741	28.83 0.8739	40.95 0.9856	40.86 0.9855	52.92 0.9990	22.77 0.7671	29.06 0.8998		29.28 0.8261			
IPAD	36.29 0.9450	36.20 0.9444	36.18 0.9443	47.20 0.9901	47.15 0.9899	57.84 0.9988	29.20 0.8515	34.90 0.9345	29.86 0.8379	35.75 0.9207			
BitNet (0.94M)	38.75 0.9571	38.81 0.9589	38.80 0.9589	49.52 0.9944	49.48 0.9944	53.60 0.9970	32.68 0.9172	38.48 0.9659		38.23 0.9479			
BE-CALF (5.18M)	38.45 0.9725	38.50 0.9648	38.50 0.9649	49.85 0.9945	49.84 0.9945	58.11 0.9992	- -	38.92 0.9681	- -	38.43 0.9479			
D16 (<15.46M)	40.39 0.9725	40.42 0.9735	40.41 0.9735	52.12 0.9967	52.12 0.9967	61.68 0.9996	33.67 0.9337	39.52 0.9723	33.47 0.9001	39.53 0.9528			
EDSR-ABCD (Ours) (12.22M)	41.12 0.9755	41.65 0.9770	41.65 0.9771	52.76 0.9972	52.78 0.9972	61.78 0.9996	34.50 0.9426	40.23 0.9753		40.24 0.9580			
SwinIR-ABCD (Ours) (12.10M)		41.76 0.9779	41.77 0.9779	52.82 0.9974	52.83 0.9974	61.78 0.9997		40.31 0.9762					

Conclusion

Bitwise coefficient through implicit neural network + Phasor estimator

→ Arbitrary bit depth expansion with high-frequency details