Proof Portfolio - Abstract Algebra

Sagnik Nandi

Proof 1 (Problem Set 1 Question 3)

For a,b in some group G. If ab + ba, then aba +e.

Proof: Consider that for some group G, there exist a, b $\in G$, such that aba = e, but $ab \neq ba$. Then, it aba = e, $(aba)b = e \cdot b = b$, and also that if aba = e, then (aba)(ba) = e(ba) = ba. But via recrangent, we have that (ab)(aba) = ab, as if (aba) = e we will have that: $(aba)(ab) = (ab)(aba) = (ab) \cdot e = ab$, but from above we have that ab = ababa = ba but $ab \neq ba$ by construction so we have a contradiction.

Proof 2 (Problem Set 2 Question 2)

Let H= \[\begin{aligned} & \b

Then, bis statement from inspection holds at K-1.

Then for K+1, we get $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}^{K+1} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}^{k} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$

fran ånlubn asumpfin se get $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & K \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ $= \begin{bmatrix} 1 & K+1 \\ 0 & 1 \end{bmatrix}$

So by induction the Zt, [oi] = [oi]

For n=0, we get [0,0], which is the eduty matrix.

Let n>0, then, $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}^n = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}^n = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}^n$

By defourtrue of matrix inverse, $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}$

So for all n EZ [1] = [1]

Then to show that H is cyclic, Let the all the motrices in the family $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}^K \in \left\langle \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}^K \right\rangle$ thus, $\left\langle \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}^K \right\rangle \subseteq H$.

Then for $A \in H$, $A = \begin{bmatrix} 1 & \alpha \\ 0 & 1 \end{bmatrix}$ $\alpha \in \mathbb{Z}$ then by the previous equations we get that $\begin{bmatrix} 1 & 9 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}^{9} \in \left\langle \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \right\rangle$ So, $H = \left\langle \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \right\rangle$

Proof 3 (Problem Set 2 Question 4)

If Kies a subgroup of G, then $\phi(k)$ is a Subgroup of G.

Proof: Via application of the subgroup test we have that for any group A, B is a subgroup if $\forall x,y \in B, xy^{-1} \in B$.

We note that Image (6) is nonempty as $\exists e \in G$, such that $\Phi(e) = e$.

So, consider $a,b \in Domain[\phi] = G$, $ab \phi$ is a bijection. then $\phi(a)$, $\phi(b) \in Image[\phi] = G$. Then for $\phi(a)\phi(b)^{-1}$ we have that $\phi(b)^{-1} = \phi(b^{-1})$, so $\phi(a)\phi(b)^{-1} = \phi(a)\phi(b^{-1})$, so $\phi(a)\phi(b)^{-1} = \phi(ab^{-1})$. As $a,b \in K$, ab^{-1} is also in K. So, $\phi(ab^{-1}) \in \phi(K)$, so $\phi(a)\phi(b)^{-1} \in \phi(K)$, so $\phi(K)$ is a subgroup of \overline{G} .

Proof 4 (Problem Set 3 Question 4)

For an abelian group G with subgroup A, i.e. $A \leq G$, then we can show that G/A is also abelian.

Proof: For
$$x, y \in G$$
, let $X = xA$ and $Y = yA$.
Then by defaultion of coset-ground we can compute to see that: $XY = (xA)(yA)$
 $= (xy)(A)$
 $= (yx)(A)$ as G is abelian
 $= (yA)(xA)$
 $= YX$

So, G/N is also abelian.

Note: As G is abolion, all subgroups A will be normal as theorem states that Subgroup at all abolion groups is normal

Proof 5 (Problem Set 4 Question 1)

Let ϕ be a surjective homomorphismm. We let ϕ map from $G/N \longrightarrow G/M$ by the function $\phi(\alpha N) = \alpha M$.

 ϕ is a homomorphism as ϕ is well defined, surjective, and operation preserving.

of is well defined.

From a N = b N it follows that $ab^{-1}(N) \in N$, and as $N \leq M$, $ab^{-1}M \in M$ so, $ab^{-1}M = M$ so,

a M = 6 M and & is well defined.

So:
$$\phi(aN) = aM = bM = \phi(bN)$$

of is surjective

 Φ from construction is surjective as you can map any cosent $\alpha M \in G/M$ s.t. $\Phi(\alpha N) = \alpha M$.

$$\phi(aNbN) = \phi(abN) = (ab)M = aMbM = \phi(aN)\phi(bN)$$

Letting $\phi(aN) = M$ for some a. By definition this means $a \in M$. So $\ker(\phi) = \{aN \in G/N, a \in M\} = \{aN \in M/N, a \in M\}$ So, $\ker(\phi) = \frac{M}{N}$

If the Kernel of our homomorphism is M/N is will follow that:

(by first: somorphism turn)

$$G/M = \varphi(G/N) \cong (G/N) \ker(\phi) = (G/N)(G/M)$$

Proof 6 (Problem Set 4 Question 4)

If G is a non-abelian group of order 6, then G = 5.

Proof: Consider an element of of order 3 in G and element to of order 2 in G. As 3 and 2 are prime that divide 6, via application of Couchy's Theorem we have that a and be must exist in G. So we can construct an orbitany construction of G = Le, a, a*, ba, bat.

Note: We know that at G is non-abelian that $ab \neq ba$, so there for $ab = ba^2$, so we can comparte $(ab)b = (ba^2)b = a$ and also that if $a = ba^2b$, then $a^2 = bab$. We can now use this to helpfully deforming our map.

We can also see that $a \cdot H = \{a \cdot h \mid h \in H\} = \{a \cdot c, b \cdot b\} = \{b \cdot c, a \cdot b\} = \{a \cdot c,$

Finally we can construct a group action with $X = \{H, aH, a^2H\}$. Then $G \times X \longrightarrow X$ is a group action as $e: H_n = eH_n = H_n$ for all $H_n \in X$. Also, for $\forall g_1, g_2 \in G$, $g_1g_2 H_n = g_1(g_2H_n)$.

We turn define an isomorphism ϕ , such that $\phi: G \rightarrow S_3$, where for all $g \in G_3$, $\phi(g)$ is the permutation $\sigma_g \in S_3$, such that if for some $i \in D$ -main (σ_g) , $\sigma_g(i) = j$ it and only it the left coset of the action $g \mapsto_{n_1} i \cdot s$ absorbed by $\mapsto_{n_2} i \cdot t$. Where $n_1 \neq n_2$. So if $\sigma_g(i) = j$ then, $i \mapsto_{n_1} i \cdot t \cdot t$.

Here we can explicitly define the map ϕ at $\phi(e) = (1)$, $\phi(a) = (123)$ $\phi(a^2) = (132)$, $\phi(b) = (23)$, $\phi(ba) = (13)$ $\phi(ba^2) = (12)$.

Proof 7 (Problem Set 5 Question 4)

The annulator, Ann(A) = {Va EAGR, reR | ra = 0} is an ideal. For subring A of R.

Proof: Consider that it Ann(A) is an ideal, teen for $\forall \alpha \in Ann(A)$, $\forall r \in R$, ra, $\alpha r \in Ann(A)$. So we can we terideal test to show that Ann(A) is an ideal of R. The ideal test states that if $\forall a,b \in Ann(A)$, $r \in R$ $\alpha - b \in Ann(A)$ and $ra \in Ann(A)$ then Ann(A) is an ideal.

Consider Va E A , a.O = O E Ann(A) , So Ann(A) is non-empty.

Then for arbitory $x,y \in Ann(A)$, $r \in R$, and $a \in A$, ax=ay=0 as $a \in A$, so $ax,ay \in Ann(A)$ thus, ax=ay=0. There for ax-ay=0, so ax-ay=a(x-y), but as $a \in A$, a(x-y)=0. $ax-ay=a(x-y)=0 \in Ann(A)$

Similarly, for $r \in \mathbb{R}$, we have that $(r\infty)(a) = (r)(\infty a) = r \cdot (0) = 0 \in Ann(A)$

So then for x,y 6 Ann (A), a & A, r & R, x-y and rx & Ann (A)

So, by usny the ideal test Ann (A) is an ideal.

Proof 8 (Problem Set 6 Question 5)

If R is a ring and I and J are 2 proper edeals of R, such that they partition R as R = I + J, then: $R/(I \cap J) \cong R/I \oplus R/J$.

Proof: Cousider $f: R \longrightarrow R/I \oplus R/J$. Let f be be defined as 2 partial maps q and p such that $f = (f_i, f_i): R \longrightarrow R/I \oplus R/J$. Consider f_i as the map from $R \longrightarrow R/I$ and f_i as the map from $R \longrightarrow R/J$. It sends $r \in R$ to its exprivative class $r \in I$ and similar to f_i , f_j sends elumb to r + J. We assert that f is a surjection and text the Kernel of f, ker(f) = I + J.

Suppose that there exist $r, r_2 \in \mathbb{R}$, $i, i_2 \in \mathbb{I}$, $j, j_2 \in \mathbb{J}$ such that r = i + j and $r_2 = i_2 + j_2$. Thun, we consider that $f_i(i + j) = f_i(r) = f_i(j)$ due to the fact that $i \in \mathbb{I}$ and the map $f_i(i) = i + \mathbb{I} = \mathbb{I}$. So, $f_i(r) = f_i(i + j) = f_i(j) + \mathbb{I}$

Similarly considery the map f_j , we have that $f_j(i_2i_3)=f_j(r_2)=f_j(i_2)$ this is due to the similar fact that $f_j(j_0)=j_2+J=J$ as $j_2\in J$. So, $f_j(i_2+j_2)=f_j(r_2)=f_j(i_2)+J$

We use this to show that f is surjective as for r=j and $r_2=\dot{e}_2$, we achieve any desired point of the firm (x+I,y+J) for $x,y \in R$ via f.

The Kornel of f, ker (f) is exactly all elements in the domain of f, such that $f\{\ker f\}=(0+I,0+J)$, as 0+I is the identity of R/I and 0+J is the associative identity of R/J. So, thus each of the partial maps f_i,f_j is respectively equal to its identity. So, $f_i(r)=0+I$ and $f_j(r)=0+J$. Which is exactly when rGI and rGJ, so $rGI\cap J$.

Finally to show that f is a ring nonnomorphomome proverties. Consider $3_{1}, 3_{2}$ in R, such that for $a_{11}a_{2}$ in R. Then there are $a_{11}a_{2}$ in T. $a_{11}=a_{11}+a_{11}$ and $a_{21}=a_{21}+a_{21}$.

Then $a_{11}=a_{11}+a_{11}$ and $a_{22}=a_{21}+a_{21}$.

Then $a_{11}=a_{11}+a_{11}$ and $a_{22}=a_{21}+a_{21}$. $a_{11}=a_{11}+a_{11}$ and $a_{21}=a_{21}+a_{21}$. $a_{11}=a_{11}+a_{21}$ $a_{11}=a_{11}+a_{21}$ $a_{11}=a_{11}+a_{21}$ $a_{11}=a_{11}+a_{21}$

And also $f(a_1) f(a_2) = [f_i(b_1) + f_j(a_1)] \cdot [f_i(b_2) + f_j(a_2)]$ $= f_i(b_1) f_i(b_2) + f_i(b_1) f_j(a_2) + f_j(a_1) f_i(b_2) + f_j(a_1) f_j(a_2)$ $= f_i(b_1) b_2 + f_j(a_1) f_j(a_2) + f_j(a_1) f_j(a_2) + f_j(a_1) f_j(a_2)$

Then we consider $f(3,3) = f(b,b_2 + b,a_2 + a,b_2 + a,a_2)$ $= f(b,b_2) + f(b,a_2) + f(a,b_2) + f(a,a_2)$ as $b_1 b_2 \in J$, $f(b_1 b_2) = f_1(b_1 b_2)$ as $b_1 \in J$ and $a_1 \in I$, $f(b_1 a_1) = f_1(b_1) f_1(a_2)$ as $b_2 \in J$ and $a_1 \in I$, $f(b_2 a_1) = f_1(b_2) f_1(a_1)$ as $a_1 \text{ and } a_2 \in I$, $f(a_1 a_2) = f_1(a_1 a_2)$

So, $f(a_1a_2) = f_i(b_1b_2) + f_i(b_1)f_j(b_2) + f_i(b_2)f_j(a_1) + f_j(a_1a_2) = f(a_1)f(a_2)$

So, f is a ring mor upu.

As we have shown $f(f_i, f_j): R \rightarrow R/I \oplus R/J$ is a surjective homomorphism, with kernel: $\ker f = I \cap J$. Then via the first theorem of wormspheno we have that $R/I \cap J = R/I \oplus R/J$.

Proof 9 (Problem Set 1 Question 3)

An integral domain R satisfys the ascending chain condition if and only it every ideal of R is firstly governtal.

Proof: To prove Ris statement we must prove that the Statement is frue bi-directionally. So, we consider that it R satisfies the ascending chain condition, then every ideal of R is finitely generated.

Lemma: Assume R Satisfies ACC, then for some ideal I of R, I must be finitely generated. To show the use construt a recursive formula to generate finite ideals. We select some element a within our ideal I. If a_i is the element that generates the ideal I, then $I = \langle a_i \rangle$. If $I \neq \langle a_i \rangle$ then there must exist some other a_i in the ideal. So we consider $a_i \in I / \langle a_i \rangle$. Then $\langle a_i, a_i \rangle$ may be an ideal of A. If $I = \langle a_i, a_i \rangle$ then a_i and a_i generat the ideal, if $I \neq \langle a_i, a_i \rangle$ then there must exist $a_i \in I / \langle a_i, a_i \rangle$.

If we continue this recursive process we will see that $\langle a_1 \rangle \not\subseteq \langle a_1 a_2 \rangle$, but $\langle a_1 a_2 \rangle \not\subseteq \langle a_1 a_2 a_3 \rangle$, and $\langle a_1 a_2 a_3 \rangle \not\subseteq \langle a_1 a_2 a_3 \rangle$ and so on...

So, <9,> & <9,92> & <9,,96,03> &

But it R sodisfice the according chain condition, then we cannot have an infulty ascending chain, so it must terminate at some a_n . Therefore the ideal $I = \langle a_1, a_2, a_3, ... a_n \rangle$, for $n \in \mathbb{N}$, is finitely guarated as $n < \infty$.

We can also consider that it ever ideal is fintely generated than R satisfies the ascending chain condition.

Lemma: Assume that all ideals I_n of R are finitely generated. Then it $I_n \subsetneq I_2 \varsubsetneq I_3 \dots \text{ is an infinite containment sequence of ideals of } R$ Then $\bigcup_{n=1}^\infty I_n = I_n \cup I_2 \cup I_3 \dots = I$, as the union of 2 ideal is on ideal we have that I is an ideal, as theorem states that

if I_{nen} is a nested ordered family of ideals of some ring R, tun $U_n I_n$ is an ideal.

So it follows that as $I_1 \not\subseteq I_2 \not\subseteq I_3...$ follows the ascending which rule, then $U_1 I_1 = I$ is also an ideal.

As I is an ideal of R, by assumption I must be terminating. So for some $n \in \mathbb{N}$, $I = \langle a_1, a_2, a_3, ..., a_n \rangle$. Then that must mean that for all $a_n \in \mathbb{N}$, there must also exist by such that $a_n \in \langle b_n \rangle$, which we will call I_{b_n} . Then if a_k is the last generator of I and thus contained in a n-th ideal I_{b_n} . Consider this ideal I_k which contains the terminating governotor of I. Then it must follow that it contains all generators of the form a_{b_k} where $0 \le z \le k$. So, as I_k contains all generators of the form a_{b_k} where $0 \le z \le k$. So, as I_k contains all I_k . In the equal I_k , $I_k = I_k$.

As we have proved both directions of the finite ideal proof we have successfully shown the ascending chain condition.