Proposizione 27.1: Caratterizzazione della continuità di funzioni uniformemente Lipschitziane

Sia $(X, \|\cdot\|)$ uno spazio di Banach.

Sia $I \subseteq \mathbb{R}$ un intervallo.

Sia $f: I \times X \rightarrow X$ una funzione;

si supponga che esista una funzione $L:I o\mathbb{R}^+_0$ continua, tale che

 $\|f(t,\mathbf{x}) - f(t,\mathbf{y})\| \le L(t) \cdot \|\mathbf{x} - \mathbf{y}\|$, per ogni $t \in I$ e per ogni $\mathbf{x}, \mathbf{y} \in X$.

Sia $(t_0, \mathbf{x}_0) \in I \times X$.

Sono equivalenti le due affermazioni:

- f è continua;
- $f(\cdot, \mathbf{x})$ è continua per ogni $\mathbf{x} \in X$.

Dimostrazione

Che la continuità di f implichi la continuità di $f(\cdot, \mathbf{x})$ per ogni $\mathbf{x} \in X$ è evidente.

Si supponga ora che $f(\cdot, \mathbf{x})$ sia continua per ogni $\mathbf{x} \in X$;

fissato $(t_0, \mathbf{x}_0) \in I \times X$, si mostri la continuità di f in (t_0, \mathbf{x}_0) .

Per ogni $(t,\mathbf{x})\in I imes X$, si ha

$$\|f(t,\mathbf{x})-f(t_0,\mathbf{x}_0)\|=\|f(t,\mathbf{x})-f(t,\mathbf{x}_0)+f(t,\mathbf{x}_0)-f(t_0,\mathbf{x}_0)\|$$

$$0 \leq \|f(t,\mathbf{x}) - f(t,\mathbf{x}_0)\| + \|f(t,\mathbf{x}_0) - f(t_0,\mathbf{x}_0)\|$$

Per sub-additività delle norme

$$\leq L(t)\|\mathbf{x} - \mathbf{x}_0\| + \|f(t, \mathbf{x}_0) - f(t_0, \mathbf{x}_0)\|.$$

Per ipotesi su L

 $\lim_{\substack{(t,\mathbf{x}) o(t_0,\mathbf{x}_0)}} L(t)\|\mathbf{x}-\mathbf{x}_0\| = L(t_0)\cdot 0 = 0$ per continuità della norma e di L; $\lim_{\substack{(t,\mathbf{x}) o(t_0,\mathbf{x}_0)}} \|f(t,\mathbf{x}_0)-f(t_0,\mathbf{x}_0)\| = 0$ per ipotesi di continuità di $f(\cdot,\mathbf{x}_0)$.

Segue per confronto dei limiti che $\lim_{(t,\mathbf{x})\to(t_0,\mathbf{x}_0)}\|f(t,\mathbf{x})-f(t_0,\mathbf{x}_0)\|=0$, ossia f è continua in (t_0,\mathbf{x}_0) .

🖹 Teorema 27.2: Esistenza e unicità della soluzione a un sistema numerabile di equazioni differenziali

Sia $(X, \|\cdot\|)$ uno spazio di Banach.

Sia $[a;b] \subseteq \mathbb{R}$.

Sia $\{k_n\}_{n\in\mathbb{N}}\subseteq\mathbb{N}$ una successione crescente.

Sia $\{g_n: [a;b] \times \mathbb{R} \to \mathbb{R}\}_{n \in \mathbb{N}}$ una successione di funzioni continue, tale che:

- $g_n(t,0)=0$ per ogni $n\in\mathbb{N}$ e per ogni $t\in[a;b];$
- Le g_n siano equi-continue in (t,0), per ogni $t \in [a;b]$;
- Esista L>0 tale che $|g_n(t,x)-g_n(t,y)|\leq L|x-y|$ per ogni $n\in\mathbb{N}$, per ogni $t\in[a;b]$ e per ogni $x,y\in\mathbb{R}$.

Sia $t_0 \in [a;b]$.

Sia $\{\alpha_n\}_{n\in\mathbb{N}}\in\mathcal{C}_0$.

Esiste un'unica successione $\{u_n: [a;b] \to \mathbb{R}\}_{n \in \mathbb{N}}$ di funzioni di classe C^1 equi-derivabili, tale che:

- Le u_n siano equi-continue ed equi-limitate;
- $\bullet \ \lim_n u_n(t) = \lim_n u_n'(t) = 0;$

$$ext{Valga} egin{cases} u_n'(t) = g_nig(t, u_{k_n}(t)ig) & orall t \in [a;b] \ u_n(t_0) = lpha_n \end{cases} ext{per ogni } n \in \mathbb{N}.$$

Dimostrazione

Si osserva intanto che, per ogni $(t,x) \in [a;b] imes \mathbb{R}$ e per ogni $n \in \mathbb{N}$ vale

$$|g_n(t,x)|=|g_n(t,x)-g_n(t,0)|$$
 Essendo $g_n(t,0)=0$ per ipotesi $\leq L|x|$ Per ipotesi su L

Sia $f:[a;b] imes c_0 o c_0$ la funzione definita ponendo $fig(t,\{x_n\}_{n\in\mathbb{N}}ig)=ig\{g_n(t,x_{k_n})ig\}_{n\in\mathbb{N}}$ per ogni $t\in[a;b]$ e per ogni $\{x_n\}_{n\in\mathbb{N}}\in c_0$.

Questa è ben definita, cioè $\big\{g_n(t,x_{k_n})\big\}_{n\in\mathbb{N}}\in {\mathcal C}_0$ per ogni $t\in [a;b]$ e per ogni $\{x_n\}_{n\in\mathbb{N}}\in {\mathcal C}_0.$

Infatti, per ogni $n \in \mathbb{N}$ si ha $|g_n(t,x_{k_n})| \leq L|x_{k_n}|$ per la disuguaglianza iniziale, e $\lim_n x_{k_n} = 0$ essendo $\{x_n\} \in \mathcal{C}_0$ ed essendo $\{x_{k_n}\}_{n \in \mathbb{N}}$ una sua estratta;

dunque, $\lim_n g_n(t,x_{k_n})=0$, ossia $ig\{g_n(t,x_{k_n})ig\}_{n\in\mathbb{N}}\in\mathcal{C}_0.$

Si provi che f soddisfa le ipotesi del [Teorema 26.5].

Fissati
$$t \in [a;b]$$
 e $\pmb{x} = \{x_n\}_{n \in \mathbb{N}}$, $\pmb{\,y} = \{y_n\}_{n \in \mathbb{N}} \in \pmb{c}_0$, si ha

$$||f(t,x)-f(t,y)||_{c_0}$$

$$=\sup_{n\in\mathbb{N}}|g_n(t,x_{k_n})-g_n(t,y_{k_n})|$$
 Per definizione di f e di $\|\cdot\|_{c_0}$

$$\leq \sup_{n\in\mathbb{N}} L|x_{k_n}-y_{k_n}|$$
 In quanto $|g_n(t,x_{k_n})-g_n(t,y_{k_n})|\leq L|x_{k_n}-y_{k_n}|$ per ogni $n\in\mathbb{N}$, per ipotesi su L

 $\leq \sup_{n\in \mathbb{N}} L|x_n-y_n|$ In quanto $\{x_{k_n}-y_{k_n}\mid n\in \mathbb{N}\}\subseteq \{x_n-y_n\mid n\in \mathbb{N}\}$

 $=L\|x-y\|_{c_0}.$ Per definizione di $\|\cdot\|_{c_0}$

Resta da provare che f è continua;

in virtù della [Proposizione 27.1], basta mostrare che $f(\cdot,x)$ è continua per ogni $x \in c_0$.

Sia dunque $x = \{x_n\}_{n \in \mathbb{N}} \in c_0$;

sia $\tilde{t} \in [a;b]$;

si fissi $\varepsilon > 0$.

Per ipotesi, le g_n sono equi-continue in $(\tilde{t}, 0)$;

supponendo di dotare $\mathbb{R} imes\mathbb{R}$ della norma del massimo, esiste allora ho>0 tale che, per ogni $n\in\mathbb{N}$ e per ogni

 $(t,x) \in [a;b] imes \mathbb{R} ext{ con } \max\{|t- ilde{t}|,|x|\} <
ho$, si abbia

 $|g_n(t,x)-\overline{g_n(ilde{t},0)}|<rac{arepsilon}{3}$, ossia $|g_n(t,x)|<rac{arepsilon}{3}$ essendo $g_n(ilde{t},0)=0$ per ogni $n\in\mathbb{N}$ per ipotesi.

Poiché $x \in c_0$ ed essendo $\{x_{k_n}\}_{n \in \mathbb{N}}$ una sua estratta, esiste $\nu \in \mathbb{N}$ tale che $|x_{k_n}| < \rho$ per ogni $n \ge \nu + 1$.

Per ogni $i \in \{1, \dots, \nu\}$, si considerino le funzioni $g_i(\cdot, x_{k_i})$;

esse sono continue essendo le g_i continue per ipotesi.

Per ogni $i \in \{1, \dots, \nu\}$, sia allora $\delta_i > 0$ tale che, per ogni $t \in [a;b]$ con $|t - \tilde{t}| < \delta_i$, si abbia

$$|g_i(t,x_{k_i})-g_i(t_0,x_{k_i})|<rac{2}{3}arepsilon.$$

Sia $\delta = \min\{\rho, \delta_1, \dots, \delta_{\nu}\}.$

Si provi che, fissato $t \in [a;b]$ con $|t-\tilde{t}| < \delta$, vale

$$\|f(t,x)-f(ilde{t},x)\|_{c_0}$$

Sia dunque $n \in \mathbb{N}$.

Se $n \ge \nu + 1$, si ha

 $|g_n(t,x_{k_n})-g_n(ilde{t},x_{k_n})| \leq |g(t,x_{k_n})| + |g(ilde{t},x_{k_n})|$ Dalla disuguaglianza triangolare

 $<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\frac{2}{3}\varepsilon.$ Per costruzione di ν e di ρ , essendo $n \ge \nu + 1$ ed essendo $|t- ilde{t}|<\delta<
ho$

Se $n \in \{1, \ldots, \nu\}$, si ha invece $|g_i(t, x_{k_i}) - g_i(\tilde{t}, x_{k_i})| < \frac{\varepsilon}{2}$ per costruzione di δ_n , in quanto $|t - t_0| < \delta \le \delta_n$.

Allora, ne viene che $\sup_{n\in\mathbb{N}}|g_n(t,x_{k_n})-g_n(\tilde{t},x_{k_n})|\leq \frac{2}{3}\varepsilon<\varepsilon$, come si voleva.

Allora, f soddisfa le ipotesi del [Teorema 26.5]; esiste dunque un'unica $u\in C^1ig([a;b],c_0ig):t\mapsto \{u_n(t)\}_{n\in\mathbb{N}}$ tale che

$$egin{cases} u'(t) = fig(t, u(t)ig) & orall t \in [a;b] \ u(t_0) = \{lpha_n\}_{n \in \mathbb{N}} \end{cases}.$$

In virtù delle [Proposizioni 26.3.1, 26.3.2] e per definizione di f, la successione $\{u_n: [a;b] \to \mathbb{R}\}_{n \in \mathbb{N}}$ risulta allora l'unica successione di funzioni di classe C^1 equi-derivabili, tale che:

- Le u_n siano equi-continue ed equi-limitate;
- $\bullet \ \lim_n u_n(t) = \lim_n u_n'(t) = 0;$
- $\left\{egin{aligned} u_n'(t) &= g_nig(t,u_{k_n}(t)ig) \ orall t \in [a;b] \ u_n(t_0) &= lpha_n \end{aligned}
 ight.$ per ogni $n \in \mathbb{N}$.

Sia $I \subseteq \mathbb{R}$ un intervallo.

Sia $[c;d]\subseteq\mathbb{R}$.

Sia $g:I imes\mathbb{R} o\mathbb{R}$ una funzione continua.

Si supponga che esista una funzione $L: I \to [0; +\infty[$ continua, tale che $|g(t,x) - g(t,y)| \le L(t)|x-y|$ per ogni $t \in I$ e per ogni $x,y \in \mathbb{R}$.

Sia $t_0 \in I$.

Sia $x_0 \in [c;d]$.

Siano $\alpha, \beta: I \to \mathbb{R}$ due funzioni continue.

Sia $arphi\in C^1ig([c;d],\mathbb{R}ig)$.

Esiste allora un'unica funzione $u \in C^1(I \times [c;d], \mathbb{R})$, dotata di derivata parziale seconda mista continua, tale che, per ogni $(t,x) \in I \times [c;d]$, si abbia

$$egin{cases} u_{tx}(t,x) = lpha(t)\,u_x(t,x) + gig(t,u(t,x)ig) \ u_t(t,x_0) = eta(t) \ u(t_0,x) = arphi(x) \end{cases}$$

Dimostrazione

Sia $f:I imes C^1ig([c;d],\mathbb{R}ig) o C^1ig([c;d],\mathbb{R}ig)$ la funzione definita ponendo

 $f(t,v)(x)=lpha(t)ig(v(x)-v(x_0)ig)+\int_{x_0}^xgig(t,v(s)ig)\,ds+eta(t),$ per ogni $t\in I$, per ogni $t\in I$,

questa è ben definita, in quanto f(t,v) è di classe C^1 per ogni $t\in I$ e per ogni $v\in C^1ig([c;d],\mathbb{R}ig)$.

Si provi che f soddisfa le ipotesi del [Teorema 26.5].

Si doti $C^1([c;d],\mathbb{R})$ della norma del massimo puntualmente rispetto a x_0 .

Si fissi $t \in I$, e siano $v, w \in C^1 ig([c;d], \mathbb{R} ig);$ si ha

$$\|f(t,v)-f(t,w)\|_{C^1([c;d],\mathbb{R})}$$

$$= \max \big\{ \big\| \alpha(t) \big(v'(x) - w'(x) \big) + g \big(t, v(x) \big) - g \big(t, w(x) \big) \big\|, |\beta(t) - \beta(t)| \big\} \quad \text{Per definizione di } \| \cdot \|_{C^1([c;d],\mathbb{R})}, \text{ derivando} \big) + g \big(t, v(x) \big) + g \big(t, v(x$$

Per definizione di $\|\cdot\|_{C^1([c;d],\mathbb{R})}$, derivando f(t,v)-f(t,w), e avendosi $f(t,v)(x_0)=f(t,w)(x_0)=eta(t)$

$$=\left\|lpha(t)ig(v'(x)-w'(x)ig)+gig(t,v(x)ig)-gig(t,w(x)ig)
ight\|$$

$$0 \leq |lpha(t)| \cdot \|v'(x) - w'(x)\| + \left\|gig(t,v(x)ig) - gig(t,w(x)ig)
ight\|$$

Per sub-additività della norma

$$| \leq |lpha(t)| \cdot ||v'(x) - w'(x)|| + L(t) \cdot ||v(x) - w(x)||$$

$$0 \leq \maxig\{|lpha(t)|,L(t)ig\}\cdotig(\|v'(x)-w'(x)\|+\|v(x)-w(x)\|ig)$$

$$0 \leq \maxig\{|lpha(t)|,L(t)ig\}\cdot \|v-w\|_{C^1([c;d],\mathbb{R})}^*$$

Denotando con $\|\cdot\|_{C^1([c;d],\mathbb{R})}^*$ la norma della somma in $C^1([c;d],\mathbb{R})$, la disuguaglianza segue dalla sua definizione

$$0 \leq k \cdot \max\left\{|lpha(t)|, L(t)
ight\} \cdot \|v-w\|_{C^1([c;d],\mathbb{R})},$$
 per qualche $k>0$

Per equivalenza tra le norme $\|\cdot\|_{C^1([c;d],\mathbb{R})}$ e $\|\cdot\|_{C^1([c;d],\mathbb{R})}^*$ ([Proposizione 26.1])

Resta da provare che f è continua;

in virtù della [Proposizione 27.1], basta mostrare che, fissato $v \in C^1([c;d],\mathbb{R})$, la funzione $f(\cdot,v)$ è continua per ogni $v \in C^1([c;d],\mathbb{R})$.

Si fissi dunque $\tilde{t} \in I$, e sia $\{t_n\}_{n \in \mathbb{N}} \subseteq I$ una successione convergente a \tilde{t} ; si mostri che $\lim_n \|f(t_n,v) - f(\tilde{t},v)\|_{C^1([c;d],\mathbb{R})} = 0$.

Si nota intanto che

 $\lim_n |f(t_n,v)(x_0) - f(ilde{t},v)(x_0)| = \lim_n |eta(t_n) - eta(t_0)| = 0,$

per legge di f ed essendo β continua per ipotesi.

Si osservi ora che $\{t_n\}_{n\in\mathbb{N}}$ è una successione limitata in I in quanto convergente, e v è limitata in \mathbb{R} in quanto continua (avendola supposta di classe C^1) su [c;d] compatto.

Ne segue che esistono due intervalli compatti $J_1 \subseteq I$ e $J_2 \subseteq \mathbb{R}$, tali che $(t_n, v(x)) \in J_1 \times J_2$ per ogni $n \in \mathbb{N}$ e per ogni $x \in [c; d]$.

Essendo g continua su $I \times \mathbb{R}$ per ipotesi ed essendo $J_1 \times J_2$ compatto, si ha che g è uniformemente continua su $J_1 \times J_2$.

In particolare, fissato arepsilon>0, esiste allora $\delta>0$ tale che, per ogni $s,t\in J_1$ con $|s-t|<\delta$ e per ogni $y\in J_2$, si abbia

$$|g(s,y)-g(t,y)|$$

Convergendo $\{t_n\}_{n\in\mathbb{N}}$ a \tilde{t} , esiste $\nu\in\mathbb{N}$ tale che $|t_n-\tilde{t}|<\delta$ per ogni $n\in\mathbb{N}$;

dalla costruzione di J_1, J_2 e δ segue allora che, per ogni $n \geq \nu$, vale $\left|g\big(t_n,v(x)\big) - g\big(\tilde{t},v(x)\big)\right| < \varepsilon$ per ogni $x \in [c;d]$.

Ne viene dunque che $\lim_n \sup_{x \in [c;d]} \left| gig(t_n,v(x)ig) - gig(ilde{t},v(x)ig)
ight| = 0.$

Essendo v' limitata in \mathbb{R} in quanto continua (avendo supposto v di classe C^1) su [c;d] compatto, sia N>0 tale che $|v'(x)| \leq N$ per ogni $x \in [c;d]$.

Per ogni $n \in \mathbb{N}$ si ha allora

$$\begin{split} & \left\| \left(f(t_n,v) \right)' - \left(f(\tilde{t},v) \right)' \right\|_{C^0([c;d],\mathbb{R})} \\ & \sup_{x \in [c;d]} \left| \left(\alpha(t_n) - \alpha(\tilde{t}) \right) v'(x) + g \big(t_n, v(x) \big) - g \big(\tilde{t}, v(x) \big) \right| \quad \text{Per definizione di } \| \cdot \|_{C^0([c;d],\mathbb{R})} \text{ e di } f \end{split}$$

 $\leq \sup_{x \in [c;d]} M |\alpha(t_n) - \alpha(\tilde{t})| + |g(t_n,v(x)) - g(\tilde{t},v(x))|;$ Per sub-additività del valore assoluto, per costruzione di M e per le proprietà dell'estremo superiore

poiché $\lim_n \sup_{x \in [c;d]} M |\alpha(t_n) - \alpha(\tilde{t})| + |g(t_n,v(x)) - g(\tilde{t},v(x))| = 0$ per continuità di α e per quanto osservato prima, ne viene per confronto che

$$\lim_n ig\|ig(f(t_n,v)ig)'-ig(f(ilde{t},v)ig)'ig\|_{C^0([c;d],\mathbb{R})}=0.$$

Infine, si ha allora

$$\begin{split} &\lim_n \|f(t_n,v) - f(\tilde{t},v)\|_{C^1([c;d],\mathbb{R})} \\ &= \lim_n \max \left\{ \left\| \left(f(t_n,v) \right)' - \left(f(\tilde{t},v) \right)' \right\|_{C^0([c;d],\mathbb{R})}, |f(t_n,v)(x_0) - f(\tilde{t},v)(x_0)| \right\} \quad \text{Per definizione di } \|\cdot\|_{C^1([c;d],\mathbb{R})} \\ &= 0 \end{split}$$

come si voleva.

Allora, f soddisfa le ipotesi del [Teorema 26.5]; segue quindi l'esistenza e unicità di una funzione $h \in C^1(I,C^1([c;d],\mathbb{R}))$ tale che

$$egin{cases} h'(t) = fig(t,h(t)ig) & orall t \in I \ h(t_0) = arphi \end{cases}.$$

Sia ora $u:I imes [c;d] o \mathbb{R}$ la funzione definita ponendo u(t,x)=h(t)(x) per ogni $(t,x)\in I imes [c;d]$.

Per la [Proposizione 26.4], u è di classe C^1 , possiede derivata seconda mista u_{tx} continua in $I \times [c;d]$, e $h'(t)(x) = u_t(t,x)$ per ogni $(t,x) \in I \times [c;d]$.

Per ogni $(t,x) \in I imes [c;d]$, si ha allora

$$u_t(t,x) = h'(t)(x)$$

Per quanto appena osservato

$$= f(t,h(t))(x)$$

Per costruzione di h

$$=lpha(t)ig(h(t)(x)-h(t)(x_0)ig)+\int_{x_0}^xgig(t,h(t)(s)ig)\,ds+eta(t)$$
 Per definizione di f

$$=lpha(t)ig(u(t,x)-u(t,x_0)ig)+\int_{x_0}^xgig(t,u(t,s)ig)\,ds+eta(t)$$

Per definizione di u

e inoltre si ha $u(t_0, x) = h(t_0)(x) = \varphi(x)$ per ogni $x \in [c; d]$, per definizione di u e per costruzione di h.

Poiché u ammette in $I \times [c;d]$ derivata mista per quanto osservato prima, u_t è parzialmente derivabile rispetto alla seconda variabile;

dalla legge ottenuta per u_t , segue quindi che

$$u_{tx}(t,x) = lpha(t) \ u_x(t,x) + gig(x,u(t,x)ig)$$
 per ogni $(t,x) \in I imes [c;d]$.

Inoltre, sempre dalla legge di u_t si ricava che $u_t(t, x_0) = \beta(t)$ per ogni $t \in I$.

Allora, u soddisfa le condizioni espresse nella tesi; resta da mostrare che tale funzione è unica.

Sia dunque $\tilde{u} \in C^1(I \times [c;d],\mathbb{R})$, dotata di derivata parziale seconda mista continua, tale che, per ogni $(t,x) \in I \times [c;d]$, si abbia

$$egin{cases} ilde{u}_{tx}(t,x) = lpha(t)\, ilde{u}_x(t,x) + gig(t, ilde{u}(t,x)ig) \ ilde{u}_t(t,x_0) = eta(t) \ ilde{u}(t_0,x) = arphi(x) \end{cases}.$$

Sia $ilde{h}:I o\mathbb{R}^{[c;d]}$ la funzione definita ponendo $ilde{h}(t)= ilde{u}(t,\cdot)$ per ogni $t\in I$.

Per la [Proposizione 26.4], si ha $\tilde{h}(t) \in C^1([c;d],\mathbb{R})$ per ogni $t \in I$, e $\tilde{h} \in C^1(I,C^1([c;d],\mathbb{R}))$;

inoltre, sempre per tale proposizione si ha $\tilde{u}_t(t,x) = \tilde{h}'(t)(x)$ per ogni $(t,x) \in I \times [c;d]$.

Si fissi ora $t \in I$.

Poiché vale $\tilde{u}_{tx}(t,s) = \alpha(t) \tilde{u}_x(t,s) + g(t,\tilde{u}(t,s))$ per ogni $x \in [c;d]$ per ipotesi su \tilde{u} , integrando entrambi i membri da x_0 a x si ha

$$\int_{x_0}^x ilde u_{tx}(t,s)\,ds = \int_{x_0}^x lpha(t)\, ilde u_x(t,s) + gig(t, ilde u(t,s)ig)\,ds \ \Longrightarrow \ \int_{x_0}^x ilde u_{tx}(t,s)\,ds = lpha(t)\int_{x_0}^x ilde u_x(t,s) + \int_{x_0}^x gig(t, ilde u(t,s)ig)\,ds$$

$$\implies ilde{u}_t(t,x) - ilde{u}_t(t,x_0) = lpha(t) \left(ilde{u}(t,x) - ilde{u}(t,x_0)
ight) + \int_{x_0}^x gig(t, ilde{u}(t,s)ig) \, ds$$

$$\implies ilde{h}'(t)(x) = lpha(t) \left(ilde{h}(t)(x) - ilde{h}(t)(x_0)
ight) + \int_{x_0}^x gig(t, ilde{h}(t)(s)ig) \, ds + eta(t)$$

$$=fig(t, ilde{h}(t)ig)$$

Inoltre, si ha $\tilde{h}(t_0)= ilde{u}(t_0,\cdot)=arphi$, per definizione di \tilde{h} e per ipotesi su \tilde{u} .

Ne viene allora che $\tilde{h}=h$ per unicità di h; conseguentemente, si ha anche $\tilde{u}=u$, acquisendo così l'unicità di u.

Per linearità dell'integrale

Per il teorema di Torricelli-Barrow ([Corollario 21.11])

$$ilde{u}_t(t,x) = ilde{h}'(t)(x)$$
 per quanto osservato prima;

$$ilde u_t(t,x_0)=eta(t)$$
 per ipotesi su $ilde u;$ $ilde u(t,s)= ilde h(t)(s)$ per ogni $s\in [c;d]$ per definizione di $ilde h$

Per definizione di f

■.