Факультет Программной Инженерии и Компьютерной техники

Моделирование

Лабораторная работа №1 «Обработка результатов измерений: статистический анализ числовой последовательности» Вариант 46

Выполнили: Тюрин И.Н. Сосновцев Г.А. Группа Р34102

Порядок выполнения работы	2
Ход работы	4
Этап 1: расчёт значений числовых моментов исходной числовой последовательности	4
Этап 2: построение графика значений для заданной числовой последовательности и определение ее характера	4
Этап 3: автокорреляционный анализ	5
Этап 4: построение гистограммы распределения частот для заданной числовой последовательности	6
Этап 5: выполнение аппроксимации закона распределения заданной случайной последовательности по двум начальным моментам, используя распределение Эрланга k-го порядка	7
Этап 6: реализация генератора случайных величин в соответствии с полученным аппроксимирующим законом распределения	
Этап 7: генерация последовательности случайных величин в соответствии с полученным законом распределения и расчёт значения числовых моментов по аналогии с заданной числовой	
последовательностью	. 8
Этап 8: автокорреляционный анализ сгенерированной последовательности случайных величин	
Этап 9: сравнительный анализ сгенерированной последовательности случайных величин с заданной последовательностью, построив соответствующие зависимости на графике значений и гистограмме	10
распределения частот.	10
Этап 10: оценка корреляционной зависимости сгенерированной и заданной последовательностей случайных величин	
Вывод	12

Цель работы

Изучение методов обработки и статистического анализа результатов измерений на примере заданной числовой последовательности путем оценки числовых моментов и выявления свойств последовательности на

основе корреляционного анализа, а также аппроксимация закона распределения заданной последовательности по двум числовым моментам случайной величины.

Порядок выполнения работы

В процессе исследований необходимо выполнить обработку *заданной* числовой последовательности (ЧП) для случаев, когда путем измерений получено 10, 20, 50, 100, 200 и 300 значений случайной величины, а именно:

- рассчитать значения следующих числовых моментов заданной числовой последовательности:
 - математическое ожидание;
 - **>** дисперсию;
 - > среднеквадратическое отклонение;
 - > коэффициент вариации;
 - → доверительные интервалы для оценки математического ожидания с доверительными вероятностями 0,9; 0,95 и 0,99;
 - относительные отклонения (в процентах) полученных значений от наилучших значений, полагая, что наилучшими (эталонными) являются значения, рассчитанные для наиболее представительной выборки из трехсот случайных величин;
- построить **график** значений для заданной числовой последовательности и определить ее характер, а именно: является эта последовательность/возрастающей/убывающей, периодичной (при наличии периодичности оценить по графику длину периода);
- выполнить **автокорреляционный анализ** и определить, можно ли *заданную* числовую последовательность считать *случайной*;
- построить **гистограмму распределения частот** для *заданной* числовой последовательности;
- выполнить аппроксимацию закона распределения *заданной* случайной последовательности *по двум начальным моментам*, используя, в зависимости от значения коэффициента вариации, одно из следующих распределений:
 - ✓ равномерный;
 - ✓ экспоненциальный;
 - ✓ нормированный Эрланга k-го порядка или гипоэкспоненциальный с заданным коэффициентом вариации;
 - ✓ гиперэкспоненциальный с заданным коэффициентом вариации;
- реализовать **генератор** случайных величин в соответствии с *полученным* аппроксимирующим законом распределения (в EXEL или программно) и **проиллюстрировать на защите** его работу;
- сгенерировать последовательность случайных величин с использованием реализованного **генератора** и рассчитать значения числовых моментов по аналогии с *заданной* числовой последовательностью;

- выполнить **автокорреляционный анализ** *сгенерированной* последовательности случайных величин;
- выполнить сравнительный анализ сгенерированной последовательности случайных величин заданной последовательностью, построив соответствующие зависимости на графике значений гистограмме И распределения частот;
- оценить корреляционную зависимость *сгенерированной* и *заданной* последовательностей случайных величин.

Результаты проводимых исследований представить в виде таблиц и графиков.

На основе полученных промежуточных и конечных результатов следует сделать обоснованные выводы об исследуемой числовой последовательности, предложить закон распределения для ее описания и оценить качество аппроксимации этим законом.

Ход работы

Исследование статистических характеристик заданной числовой последовательности

Изобразим заданную ЧП на графике. По графику (см. рисунок №1) можно сделать вывод, что последовательность не возрастающая/убывающая и не периодичная. На графике можно видеть пики, что говорит о наличии выбрасов в последовательности.

Рисунок №1. График значений исходной числовой последовательности

Провели анализ числовых моментов, результаты которых занесли в таблицу №1, и выявили факты требующие детального рассмотрения:

- 1. относительная погрешность матожидани для 200 измерений после 100 измерений увеличивается по абсолютному значению;
- 2. дисперсия (и СКО) увеличивается для 100 измерений после 50 измерений.

Таблица №1. Числовые моменты исходной последовательности

1	аолица №1	. числовые	MUMCHIB	исходной і	юследоват	СЛЬНОСТИ	
Vanagranuariug			Кол	ичество случ	найных велич	нин	
Характеристика		10	20	50	100	200	300
	Знач.	259,680	205,271	154,357	168,370	162,965	168,502
Мат. ож.	%	54,111	21,821	-8,395	-0,079	-3,286	
	Знач.	±71,883	±47,712	±28,066	±21,132	±13,878	±11,061
Дов. инт. (0,9)	%	42,660	28,315	16,656	12,541	8,236	
	Знач.	±85,752	±56,918	±33,481	±25,209	±16,556	±13,195
Дов. инт. (0,95)	%	50,891	33,779	19,870	14,960	9,825	
	Знач.	±112,702	±74,806	±44,003	±33,131	±21,760	±17,342
Дов. инт. (0,99)	%	66,885	44,395	26,114	19,662	12,913	
	Знач.	19141,472	16866,061	14589,874	16541,952	14270,406	13596,141
Дисперсия	%	40,786	24,050	7,309	21,667	4,959	
	Знач.	138,353	129,869	120,789	128,616	119,459	116,602
СКО	%	18,653	11,378	3,590	10,303	2,450	
	Знач.	0,533	0,633	0,783	0,764	0,733	0,692
К-т вариации	%	-23,008	-8,572	13,083	10,389	5,931	

% — относительная погрешность (относительно всей выборки), рассчитывается как $\frac{\delta x}{x_{300}} \times 100\%$.

Пункт 1 и 2 можно объяснить тем, что мы имеем дело со случайной величиной и в следующих после 50 и 100 первых чисел есть несколько значительных выбрасов, что можно видеть на рис. 1., они сильно оттягивают мат. ожидание и влияют на дисперсию с СКО.

В целом значения характеристик стремятся к характерисикам для полной выборки, относительная погрешность снижается с увеличением числа элементов, что подтверждает закон больших чисел.

По гистограмме (см. рисунок \mathbb{N}^2) видно, что 68% значений находятся в промежутке от 0 до 200. Дальше частота убывает. Для подтверждения наблюдения можно посчитать квартили.

Минимальное значение $4\Pi - 7,93$; максимальное -650,38; Q1 - 83,39; Q2 - 142,00; Q3 - 220,91 подтверждают наблюдение.

Рисунок №2. Гистограмма распределения частот для исходной последовательности

 Таблица №2. Коэффициенты автокорреляции данной ЧП

 Сдвиг ЧП
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10

 К-т АК для задан. ЧП
 0,075
 -0,014
 0,054
 -0,026
 -0,082
 -0,030
 -0,044
 -0,014
 0,109
 0,001

Рисунок №3. График коэффициентов автокорреляции

К-т АК для задан. ЧП относительно параметра "Сдвиг ЧП"

Выполнив автокорреляционный анализ с разными значениями смещения (от 1 до 10), можно сказать, что внутри последовательности между значениями измерений нет зависимости, тенденции или периодичности. Заметим, что есть несколько значения больше нуля (см. рис. №3), остальные меньше, но все они близки к нулю, что позволяет нам считать эту числовую последовательность случайной.

Выполнение аппроксимации закона распределения заданной случайной последовательности по двум начальным моментам

Получено математическое ожидание t и коэффициентом вариации v:

v	0,692
t	168,502

Коэффициент вариации лежит в интервале (0; 1), поэтому рассмотрим распределение Эрланга k-го порядка для аппроксимации нашего распределения. Значения соответствующих параметров найдем по формулам:

$$k = \frac{1}{v^2} [; M[\tau] = \frac{t}{k}; M_{E_k} = kM[\tau]; v_{E_k} = \frac{1}{\sqrt{k}}; \alpha_i = \alpha = \frac{1}{M[\tau]}.$$

Коэффициен $k \approx 2$ очень близко, поэтому при округлении было использовано округление вниз, хотя и предписывается округлить вверх до ближайшего целого.

k	2
Μ[τ]	84,25120333
M_E_k	252,75361
v_E_k	0,7071067812
α	0,01186926667

Генератор случайных чисел для распределения Эрланга 2-го порядка строится на основе двух генераторов экспоненциального распределения с вычесленным коэффициентом $\lambda = \alpha$, а результирующее распределение получается как их сумма.

```
import numpy as np
alpha = 0.01186926667 # @param {"type":"number"}

gen1 = np.random.exponential(scale=1/alpha,size=300)
gen2 = np.random.exponential(scale=1/alpha,size=300)

for i,j in zip(gen1,gen2):
    print(str(i+j).replace('.',','))

227,2076236851275
74 67503453859764
```

Рисунок №4. Фрагмент кода на ЯП Python для генерации экспоненциальных распределений в составе распределения Эрланга 2-го порядка.

Для реализации генератора согласно аппроксимации с помощью распределения Эрланга k-го порядка использовали сумму двух полученных экспоненциальных распределения, сгенерированных с помощью библиотеки numpy для Python (см. рис. №4).

Альтернативно можно было бы использовать табличный процессор, сгенерировав массив случайных чисел (вероятностей в интервале (0;1)) с помощью =RANDARRAY(301,1) и использовав их для получения экспонциального распределения с помощью формулы обратной функции распределения:

$$x(p_{rand}) = F^{-1}(p_{rand}; \lambda) = -\ln(1 - p_{rand})/\lambda.$$

Анализ статистических характеристик сгенерированной числовой последовательности и сравнение с исходной

Рисунок №4. График сравнения значений сгенерированной числовой последовательности

График значений сгенерированной ЧП

Рисунок №5. Гистограмма распределения частот для исходной и сгенерированной последовательностей

Сравнение гистограмм распределения частот

Таблица №3. Характеристики сгенерированной случайной ЧП

Характерис					чайных велич		
тика		10	20	50	100	200	300
	Знач.	131,429	145,626	160,302	164,506	168,330	171,633
Мат. ож.	%	-49,388	-29,056	3,851	-2,295	3,292	1,858
Дов. инт.	Знач.	±29,863	±43,339	±25,655	±18,183	±12,940	±10,987
(0,9)	%	-58,455	-9,166	-8,590	-13,955	-6,765	-0,670
Дов. инт.	Знач.	±35,625	±51,701	±31,548	±21,656	±15,416	±13,174
(0,95)	%	-58,455	-9,166	-5,774	-14,094	-6,887	-0,158
Дов. инт.	Знач.	±41,733	±68,349	±41,427	±28,379	±20,270	±17,375
(0,99)	%	-62,971	-8,632	-5,855	-14,345	-6,843	0,190
	Знач.	3303,714	13915,834	12191,031	12247,116	12404,948	13414,465
Дисперсия	%	-82,741	-17,492	-16,442	-25,963	-13,072	-1,336
	Знач.	57,478	117,965	110,413	110,667	111,378	115,821
С.к.о.	%	-58,455	-9,166	-8,590	-13,955	-6,765	-0,670
К-т	Знач.	0,437	0,810	0,689	0,673	0,662	0,675
вариации	%	-17,916	28,037	-11,980	-11,934	-9,736	-2,482

% — относительная погрешность (относительно заданной ЧП), рассчитывается как $\frac{\delta x}{x_{300}} \times 100\%$.

В таблице №3 представлены характеристики сгенерированного распределения в сравнении с исходным. Мат. ожидание сгенерированной последовательности отличается от мат. ожидания исходной последовательности на величину, не превосходящую доверительные интервалы. Так же присутствуют "аномалии" связанные с выбросами, которые в принципе даже похожи на онные в исходной ЧП.

Автокорелляционный анализ сгенерированной последовательности показал (см. таблицу №4), что она очень схожа с данной ЧП. Коэффициенты приближены к нулю и довольно далеки от единицы (см. рис. №6). То есть, автокорреляционный анализ не показывает между числами лаговой/сдвиговой зависимости, тенденции или периодичности.

Таблица №4. Коэффициенты автокорреляции

Сдвиг ЧП	1	2	3	4	5	6	7	8	9	10
К-т АК для	0,075	-0,014	0,054	-0,026	-0,082	-0,030	-0,044	-0,014	0,109	0,001

задан. ЧП										
К-т АК для сгенир. ЧП	-0,055	-0,035	-0,181	0,059	-0,006	0,063	-0,094	0,004	0,114	0,007
%	-235,963	-59,721	-129,705	-144,540	1239,135	-147,509	-52,914	-431,223	-4,454	-81,110
К-т корреляции	0,069									

% — отношение полученных значений: $\frac{\delta x}{x} \times 100\%$

Рисунок №6. График коэффициентов автокорреляции

Коэффициент корреляции исходной и сгенерированной последовательностей равен 0,069. Между последовательностями корреляция очень низкая, они не имеют зависимости при схожих моментах, что говорит о хорошем качестве построенной модели распределения.

Сгенерированная последовательность очень близка к исходной, судя по графику сгенерированных значений (см. рисунок №4) и гистограмме частот (см. рисунок №5). Синяя линия и синие столбики — сгенерированная последовательность, красные — исходная последовательность.

Рисунок №7. График плотности сгенерированного распределения

Видим, что плотность сгенерированной ЧП (см. рисунок №7) похожа на гистограмму распределенных частот для заданной ЧП (см. график на рисунке №5), значит распределение Эрланга было посчитано верно. Из сравнения двух гистограмм видим совпадения в поведении ЧП.

Вывод

В ходе выполнения работы мы изучили методы статистического анализа результатов измерений на примере заданной исходной числовой последовательности через оценку числовых моментов и выявление свойств этой последовательности.

Провери анализ заданной числовой последовательности. По первым двум числовым моментам определили, что заданная последовательност, соответствует распределению Эрланга 2-го порядка. Учитывая это, мы синтезировали модель и сгенерировали числовую последовательность.

Провели анализ сгенерированной ЧП и на основе первых двух моментов и автокорреляции определили, что она хорошо моделирует распределению исходной числовой последовательности. Выраженной корреляции между

исходной и сгенерированной последовательностями не было обнаружено, что опять же говорит о высоком качестве построенной модели.