Министерство науки и высшего образования Российской Федерации

Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский университет ИТМО»

Факультет информационных технологий и программирования

Лабораторная работа N = 2

Выполнили студенты: Иванов А.С. M32001 Круглов Г.Н. M32001 Писарева Ю.И. M32051

Проверил: Москаленко М.А.

Постановка задачи

Дана квадратная матрица. Используя метод вращений Якоби, найти её собственные значени и собственные векторы с заданной точностью.

Описание метода

Метод вращений Якоби является методом решения полной проблемы собственных значений вещественной симметричной матрицы. Он основан на построении последовательности матриц, которые ортогонально подобны исходной матриц и имеют монотонно убывающие до нуля суммы всех внедиагональных элементов

Итерационный процес осуществляется следующим образом:

- ullet В матрице A_k определяется максимальный по абсолютной величина элемент $a_i^{(k)} j$
- ullet Строится матрица вращения $T_{ij}=$

$$j$$
 k
$$\begin{bmatrix} 1 & & & & & & \\ & 1 & & & & & \\ & & \ddots & & & \\ & & & \cos(\theta) & & -\sin(\theta) & & \\ & & & \ddots & & \\ & & & \sin(\theta) & & \cos(\theta) & & \\ & & & & \ddots & \\ & & & & & 1 \end{bmatrix}$$

Угол heta выбирается так, чтобы в матрице A_{k+1} обратился в нуль элемент $a_{ij}^{(k)}$. Из этого условия можно получить

$$ext{tg}\,2 heta=rac{2a_{ij}^{(k)}}{a_{ij}^{(k)}-a_{ij}^{(k)}}; | heta|\leqrac{\pi}{2}$$

- ullet Получаем новую матрицу $A_{k+1} = T_{ij}^T A_k T_{ij}$
- Вычисление заканчивается при обращении в 0 всех недиагональных элементов матрицы

В итоге матрица A_k сходится к диагональной матрице Λ при $k \to \infty$. Тогда приближенными значениями собственных чисел матрицы A будут диагональные элементы матрицы A_k , а приближенными значениями собственых векторов - столбцы матрицы $T_k = \prod_{v=1}^k T_{v-1} T_{ij_v}$

Результаты решения задач

Симметричные матрицы с диагональным преобладанием

Размер: 10

k	Количество итераций	Точность
0	118	8,1E-6
1	117	6,6E-6
3	120	7,5E-6
5	120	6,7E-6
15	100000	0,375

Размер: 25

k	Количество итераций	Точность
0	893	8E-6
1	869	7,2E-6
3	862	6,18E-6
5	884	6,58E-6
15	100000	0,625

Размер: 50

k	Количество итераций	Точность
0	3642	9,95E-6
1	3643	9,25E-6
3	3624	8,81E-6
5	3655	7,94E-6
15	100000	2,875

Матрицы гилберта

Размер	Количество итераций	Точность
5	24	5,79E-7
10	76	7,55E-6
25	270	1,09E-5
50	618	1,23E-5
75	1013	1,11E-5

Размер	Количество итераций	Точность
100	1553	1,12E-5
150	2440	1,26E-5
250	4184	1,42E-5
500	9249	2,5E-5

Проанализировав выполненную работу, можно сделать следующий вывод о рассмотренном методе

- Метод Якоби находит собственные значения и векторы с хорошей точностью
- При росте числа обусловленности матрицы, количество итераций необходимых для достижения заданной точности тоже увеличивается
- При увеличении размера матрицы, точность полученных данных при одинаковых условиях выхода уменьшается