Resolver el problema del Steiner Tree con Simulated annealing

Camilo Carvajal Reyes Felipe Urrutia Vargas

Abstract

El problema del Steiner Tree consiste encontrar un árbol de peso mínimo que contiene un subconjunto de vértices de interés. Este problema es NP-completo y es resuelto con algoritmos deterministas a través de programación lineal mixta. Sin embargo, hay aproximaciones que utilizan algoritmos estocásticos como Simulated annealing. El objetivo de este trabajo es implementar y mejorar un algoritmo de este tipo y evaluar su desempeño sobre un conjunto de grafos test.

1. Proyecto

1.1. Introducción

Definición (Steiner Tree)

Para un grafo G=(V,E), vértices terminales $S\subset V$ y pesos $w:E\to\mathbb{R}_+$, se desea encontrar un árbol T de peso mínimo que contenga a lo menos los vértices en S, donde el peso del árbol T es la suma de los pesos de cada una de sus aristas.

1.2. Propuesta

Este método, que mejora la implementación desarrollada en (Schiemangk, 1986), define Λ como el conjunto de los arboles sobre G que contienen a los vértices terminales S. Luego, para un $x \in \Lambda$, la idea es construir un estado al azar y a partir de x tal que $y \in \Lambda$. Para lograrlo, se realizan las siguientes etapas:

- 1. y es una copia de x
- 2. Se elige al azar un nodo no terminal v de grado 2 (si es que hay)
- 3. Se remueven de y las aristas $u_1 = \omega_1 v, u_2 = v\omega_2$ incidentes a aquel nodo. Esto provoca que el árbol y sea un bosque con dos arboles (y_1, y_2) y vértices ω_1, ω_2 en un árbol distinto, respectivamente.
- 4. Se elige al azar un camino p de largo mínimo sobre $G \{u_1, u_2\}$, que parte en ω_1 y termina en algún vértice de y_2
- 5. Añadir cada arista del camino p al bosque y

1.3. Evaluación

Para evaluar la técnica propuesta, se considera el data-test en (Duin, 1993) que posee un conjunto de grafos de prueba junto al valor óptimo del Steiner Tree. Los grafos considerados contienen 80 vértices, pero varían en su densidad y cantidad de nodos terminales.

1.4. GridSearch

Se toma una sucesión β_n de la forma

$$\beta_n = an^b$$
, parámetros $a > 0$ y $b \ge 0$

y se evalúan sobre una grilla de valores para a y b.

2. Presentación

La presentación consistirá en:

Introducir el problema. Explicar la implementación. Proponer método de evaluación. Resultados del gridsearch. Comparar resultados obtenidos con algoritmo de PLM.

Referencias

Duin, C. Testset i080. 1993. URL http://steinlib. zib.de/showset.php?1080.

Schiemangk, C. Design, analysis and implementation of thermodynamically motivated simulation for optimization of subgraphs. pp. 851–820, 1986. URL https://doi.org/10.1007/BFb0043908.