#### La Demografía del Parentesco

Escuela: Familia, parentesco y hogares en América Latina y el Caribe

#### Diego Alburez Gutiérrez

Kinship Inequalities Research Group Instituto Max Planck de Investigación Demográfica alburezgutierrez@demogr.mpg.de

XI Congreso ALAP, 09 Diciembre 2024, Bogotá, Colombia



MAX PLANCK INSTITUTE MAX-PLANCK-INSTITUT
FOR DEMOGRAPHIC FÜR DEMOGRAFISCHE
RESEARCH FORSCHUNG

#### El equipo



**Amanda Martins MPIDR** 



Liliana P. Calderón-Bernal **MPIDR** 



Iván Williams Universidad de Buenos Aires



Diego Alburez

## Introducciones (5min)

Busque a alguien que no conozca y pregunte:

- 1 Su nombre
- 2 Dónde estudia/trabaja
- 3 Comida favorita
- 4 ¿Qué es la demografía del parentesco?

#### Estructura del día

```
09:00 - 09:20 Introducciones
09:20 - 10:00 La demografía del parentesco (Diego)
10:00 - 10:30 Preparación técnica (Liliana y Amanda)
10:30 - 11:00 Café
11:00 - 11:45 Simulaciones en rsocsim I (Liliana)
11:45 - 12:30 Simulaciones en rsoscim II (Liliana)
12:30 - 14:00 Almuerzo
14:00 - 14:45 Modelos en DemoKin I (Ivan y Amanda)
14:45 - 15:30 Modelos en DemoKin II (Ivan y Amanda)
15:30 - 16:00 Café
16:00 - 17:00 Ejercicio grupal usando DemoKin
17:00 - 17:30 Conclusiones y cierre (Diego)
```

## Definiciones $(1)^1$

#### Parentesco

Conjunto de relaciones sociales que unen a individuos a través vínculos de afinidad biológica, legal o normativa que, en agregado, producen sistemas familiares.

#### Demografía del parentesco

El estudio de las redes familiares, sus estructuras y dinámicas desde una perspectiva demográfica y utilizando métodos demográficos.

¹Alburez-Gutierrez, D., Barban, N., Caswell, H., Kolk, M., Margolis, R., Smith-Greenaway, E., Song, X., Verdery, A., & Zagheni, E. (2022).Kinship, Demography, and Inequality: Review and Key Areas for Future Development. Unpublished manuscript

#### ¿Por qué estudiar parentesco en demografía?

- Rápido crecimiento
- 2 avances teóricos, metodológicos y empíricos
- 3 oportunidad para desarrollar la disciplina demográfica



## ¿Las familias serán cada vez más pequeñas? El alarmante estudio de un guatemalteco



#### El parentesco es un universal demográfico

- 1 Todo humano nace
- 2 Todo humano muere
- 3 Todo humano está subsumido en estructuras de parentesco<sup>2</sup>
- 4 Ninguna estructura familiar es universal o estable

 $<sup>^2</sup>$  Caswell, H. (2019).The formal demography of kinship: A matrix formulation. Demographic Research, 41, 679–712

#### Consideremos un bebé nacido en Brazil en 1950...

- 1 ¿Qué edad tenían, en promedio, sus abuelos cuando nació?
- ¿Cuántos hijos vivos tendría en su 70 cumpleaños?
- 3 ¿Cuántos nietos tendría?

#### Modelos y simulaciones de parentesco

Permiten inferir estructura de parentesco en una población usando únicamente:

- tasas de mortalidad y fecundidad
- estructura poblacional

#### Distinguimos entre:

- 1 Modelos demográficos (DemoKin)
- 2 Microsimulaciones (rsocsim)

#### Paquetería para este taller



rsocsim

The R package 'DemoKin' provides an accessible interface for computing expected kinship structures from demographic rates under a range of scenarios and assumptions using models from formal demography.

FOR MORE INFORMATION, SEE:

Williams, I.: Alburez-Gutierrez, D.: Song, X.: and H. Caswell. (2021) DemoKin: An R package to implement demographic matrix kinship models.

github.com/IvanWilli/DemoKin

The R package rsocsim introduces a platform-independent implementation of the SOCSIM microsimulation software used to produce synthetic populations with plausible kinship structures using demographic rates as input.

FOR MORE INFORMATION, SEE:

Theile, T.: Alburez-Gutierrez, D.: Snyder, M.: Calderón-Bernal L. P.; and E. Zagheni. (2022). rsocsim: An R package to run demographic microsimulations using SOCSIM, kinship models.

github.com/MPIDR/rsocsim



#### I. Microsimulaciones

#### Lógica general de las microsimulaciones demográficas

- Modelar el comportamiento demográfico a nivel individual utilizando un conjunto de reglas.
- 2 Generar datos a nivel individual.
- Insumos simples.
- 4 Diferentes alternativas:
  - SOCSIM
  - CAMSIM
  - R/python
  - Modelado basado en agentes

#### Microsimulaciones demográficas con SOCSIM

- Una plataforma de microsimulación estocástica, desarrollada en los años 70 en la UC Berkeley.
- 2 Comienza con una población inicial.
- 3 Cada individuo simulado experimenta tasas específicas cada mes (por ejemplo, mortalidad, fecundidad, matrimonio).
- 4 Rastrea los vínculos de parentesco para crear una genealogía completa.
- **6** Manual de usuario de SOCSIM de UC Berkeley<sup>3</sup>

 $<sup>^3</sup>$ Mason, C. (2016). SOCSIM Oversimplified. UC Berkeley. https://lab.demog.berkeley.edu/socsim/CurrentDocs/socsimOversimplified.pdf:  $\square + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ? + A ?$ 

#### Representación esquemática de una simulación



## Ejemplo: La 'generación sánguche'4

#### Pregunta de investigación

Es la 'generación sánguche' más prevalente en las poblaciones envejecidas del norte global?

- 1 Métodos: microsimulación demográfica en SOCSIM
- 2 Datos: 2019 UNWPP (estimaciones y proyecciones)
- Resultados: distribución desigual de ensanguchamiento demográfico

<sup>&</sup>lt;sup>4</sup>Alburez-Gutierrez, D., Mason, C., & Zagheni, E. (2021). The "Sandwich Generation" Revisited: Global Demographic Drivers of Care Time Demands. *Population and Development Review*, 47(4), 997–1023.

## Ensanguchamiento demográfico<sup>5</sup>

Una persona está ensanguchada si tiene al mismo tiempo:

- 1 + hijx menor de 15 años, y
- 2 1+ p/madre/o suegrx que morirá en los próximos 5 años



<sup>&</sup>lt;sup>5</sup>Alburez-Gutierrez, D., Mason, C., & Zagheni, E. (2021). The "Sandwich Generation" Revisited: Global Demographic Drivers of Care Time Demands. *Population and Development Review*, 47(4), 997–1023.

## Generación sánguche alrededor del mundo<sup>6</sup>



<sup>&</sup>lt;sup>6</sup>Alburez-Gutierrez, D., Mason, C., & Zagheni, E. (2021). The "Sandwich Generation" Revisited: Global Demographic Drivers of Care Time Demands. *Population and Development Review*, 47(4), 997–1023. https://doi.org/10.1111/padr.12436

II. Modelos matemáticos de parentesco

#### Modelos matemáticos de parentesco

- Los familiares del Focal constituyen una población.
- Pueden modelarse utilizando métodos tradicionales de proyección.
- 3 Las operaciones matriciales proporcionan una implementación eficiente.



#### Modelos matemáticos permiten estimar...

- Número promedio de parientes
- Distribución de edades de parientes
- Desde el punto de vista de un miembro promedio ('Focal')

## Focal: un miembro promedio de la población



## Árboles de parentesco



# Ejemplo: Estimaciones de duelo derivado del CAC en Colombia<sup>7</sup>

#### Pregunta de investigación

¿Cuántas personas en Colombia experimentaron una o múltiples pérdidas debido al CAC en algún momento de su vida?

- 1 Método: modelos demográficos de parentesco
- 2 Datos: DANE, UNWPP y Comisión de la Verdad
- 3 Resultados: En el 2018, cerca del 42% de la población colombiana había perdido algún familiar en el CAC

#### Homicidios y desapariciones durante el CAC



Figura 1. Número anual de muertes en conflicto y desapariciones forzadas (línea negra) y número anual de pérdidas de familiares según el tipo de parentesco (áreas coloreadas).

#### Personas en duelo por el CAC, Colombia 2018



Figura 2. Número de personas en duelo en 2018, según la categoría del familiar perdido y el tipo de violación (homicidio o desaparición forzada).

## Preguntas?

#### Estructura del día

```
09:00 - 09:20 Introducciones
09:20 - 10:00 La demografía del parentesco (Diego)
10:00 - 10:30 Preparación técnica (Liliana y Amanda)
10:30 - 11:00 Café
11:00 - 11:45 Simulaciones en rsocsim I (Liliana)
11:45 - 12:30 Simulaciones en rsoscim II (Liliana)
12:30 - 14:00 Almuerzo
14:00 - 14:45 Modelos en DemoKin I (Ivan y Amanda)
14:45 - 15:30 Modelos en DemoKin II (Ivan y Amanda)
15:30 - 16:00 Café
16:00 - 17:00 Ejercicio grupal usando DemoKin
17:00 - 17:30 Conclusiones y cierre (Diego)
```