Введение

Уменьшение размерности пространства обучаемых параметров в задаче адаптации к домену

Анна Ремизова научный руководитель: к.ф.-м.н. А.В. Грабовой

МФТИ

18/05/2024

Содержание

- 1 Введение
- 2 Предложенный метод
- 3 Вычислительный эксперимент

Мотивация

Уменьшение размерности пространства обучаемых параметров в задаче адаптации к домену упрощает процесс обучения и улучшает вычислительную эффективность. Путем сокращения количества параметров, которые необходимо обновить во время обучения, модель может потенциально быстрее сходиться и затрачивать меньше вычислительных ресурсов. Уменьшение размерности может быть особенно важным в сценариях адаптации к домену, где происходит обучение с большим числом параметров.

Постановка задачи

Для задачи классификации текстов:

$$f_{\theta}: \hat{V} \to [N_c],$$
 (1)

где f_{θ} —модель семейства трансформеров, $\hat{V} \subset V^*$; V — словарь токенов и V^* — его замыкание или множество всех последовательностей над V, $[N_c]$ — множество классов. Таким образом, модель отображает текст из \hat{V} в класс из $[N_c]$.

Постановка задачи

Введение

При дообучении модель инициализируется предварительно обученными весами Φ_0 и обновляется до $\Phi_0 + \Delta \Phi$, где $\Delta \Phi$ набор дообучаемых параметров такой, что $|\Delta\Phi| = |\Phi_0|$. Тогда задача минимизации функции потерь имеет вид:

$$\min_{\Phi} \left(-\sum_{X_{i} \in \hat{V} \subset V^{*}} \sum_{c_{i} \in [N_{c}]} \log \left(P_{\Phi} \left(c_{i} \mid X_{i} \right) \right) \right) =
= \max_{\Phi} \sum_{X_{i} \in \hat{V} \subset V^{*}} \sum_{c_{i} \in [N_{c}]} \log \left(P_{\Phi} \left(c_{i} \mid X_{i} \right) \right),$$
(2)

Постановка задачи

В то время как при использовании LoRA $\Delta\Phi$ задается набором параметров Θ намного меньшего размера: $\Delta\Phi=\Delta\Phi(\Theta)$, где $\mid\Theta\mid\ll\mid\Phi_0\mid$ и задача минимизации функции потерь имеет вид:

$$\min_{\Theta} \left(-\sum_{X_{i} \in \hat{V} \subset V^{*}} \sum_{c_{i} \in [N_{c}]} \log \left(P_{\Phi_{0} + \Delta \Phi(\Theta)} \left(c_{i} \mid X_{i} \right) \right) \right) =
= \max_{\Theta} \sum_{X_{i} \in \hat{V} \subset V^{*}} \sum_{c_{i} \in [N_{c}]} \log \left(P_{\Phi_{0} + \Delta \Phi(\Theta)} \left(c_{i} \mid X_{i} \right) \right).$$
(3)

LoRA адаптер

В данной работе LoRA применяется к задаче классификации. Структура обновления весов при использовании LoRA адаптера описана в таблице 1,

Fine tuning	LoRA fine tuning
$W_{upd} = W + \Delta W$	$W_{upd} = W + AB$
$\hat{y} = xW_{upd} = x(W + \Delta W)$	$\hat{y} = xW_{upd} = x(W + AB)$
$\hat{y} = xW + x\Delta W$	$\hat{y} = xW + xAB$

Таблица 1: Структура обновления весов при использовании LoRA адаптера

где $W \in \mathbb{R}^{d \times k}$ — предобученные веса, $\Delta W \in \mathbb{R}^{d \times k}$ — матрица обновленных весов. ΔW із приближается с помощью метода LoRA произведением $A \cdot B$, где $A \in \mathbb{R}^{d \times r}$, $B \in \mathbb{R}^{r \times k}$ и r — гиперпараметр ранга. Здесь $A \sim \mathcal{N}(0, \sigma^2)$ и $B = [0]_{r \times k}$.

Состоятельность предложенной модели

Сходимость традиционной модели трансформер была доказана в работе [1]. Доказательство приведено для задачи классификации:

Theorem

Будем считать, что:

1) Существует модель с набором параметров Θ^* , генерирующая эмпирическое распределение данных $P_{model}(\cdot, \Theta^*)$, которое аппроксимирует истинное распределение данных P_{true} с минимальным расхождением по KL-дивергенции:

$$\exists \Theta^* : \Theta^* =_{\Theta} D_{KL}(P_{true} \mid\mid P_{model}(\cdot, \Theta)), \tag{4}$$

Состоятельность предложенной модели

$\mathsf{Theorem}$

- 2) При увеличении размера выборки \hat{V} эмпирическое распределение данных $P_{model}(\cdot,\Theta)$ приближается к истинному распределению, генерирующему данные.
- 3) Функция ошибки $\mathcal{L}(\theta)$ непрерывная, дифференцируемая. Где

$$\mathcal{L}(\Theta) = -\sum_{X_i \in \hat{V} \subset V^*} \sum_{c_i \in [N_c]} \log \left(P_{\Phi_0 + \Delta \Phi(\Theta)} \left(c_i \mid X_i \right) \right). \tag{5}$$

Тогда минимизация функции потерь $\mathscr{L}(\Theta)$ приводит к состоятельной оценке истинного распределения, порождающего данные.

О применимости LoRA к задаче классификации

Note

Докажем, что LoRA применима к задаче классификации. Для решения задачи классификации с помощью BERT требуется не более чем дополнительный $\operatorname{softmax}$ слой после BERT:

$$p(c \mid \mathbf{x}) = \operatorname{softmax}(W^T \mathbf{x})$$

$$\hat{\mathbf{y}} = \operatorname{softmax}(W^T \mathbf{x}) = \frac{\exp(W^T \mathbf{x})}{\sum_{i=1}^k \exp(W^T \mathbf{x})_i},$$
(6)

где ${\bf x}$ — это выходной результат последнего слоя BERT, а W — матрица весов.

О применимости LoRA к задаче классификации

Theorem

В рамках задачи классификации, при заданных условиях:

1) Модель семейства BERT с указанной выше математической структурой и дополнительным слоем

$$\hat{\mathbf{y}} = \operatorname{softmax} \left(W_{upd}^T \mathbf{x} \right) = \frac{\exp \left(W_{upd}^T \mathbf{x} \right)}{\sum_{i=1}^k \exp \left(W_{upd}^T \mathbf{x} \right)_i}, \tag{7}$$

где

$$W_{upd} = W_{(d \times k)} + \Delta W_{(d \times k)}, \tag{8}$$

и x —это выходной результат BERT, W — матрица весов, ΔW — матрица обновленных весов.

О применимости LoRA к задаче классификации

Theorem

2) Данная модель BERT без дополнительного слоя также корректно работает с аппроксимацией

$$\Delta W = A \times B, \\
(d \times k) = (d \times r) \times (r \times k),$$
(9)

3) Выполняется теорема о состоятельности предложенной модели.

Тогда можно утверждать, что при (9) заданная модель BERT с дополнительным слоем гарантирует корректную выходную матрицу.

Данные

Открытый исходный датасет для мультиклассовой классификации текстов, написанных человеком и различными языковыми моделями. Представлено 4 класса: ChatGPT, Davinci, Cohere, Humans. Всего в датасете 47327 текстов с разметкой по классам. Средняя длина текста по всему датасету — 400 слов, средняя длина текстов в зависимости от класса представлена в таблице 3. Средняя длина слова — 5 символов. Вес каждого класса — ,безразмерная величина, показывающая насколько несбалансированна выборка и к каким классам применять большие веса. Статистика по весам классов приведена в таблице 2.

Данные

имя класса	вес, б/р
chatGPT	0.986
cohere	1.043
davinci	0.986
human	0.986

Таблица 2: Вес каждого класса

имя класса	длина текста,
	слова
chatGPT	362
cohere	279
davinci	343
human	607

Таблица 3: Средняя длина текста

Предобученная модель DRoBERTa-base, мультиклассовая классификация.

Введение

После обучения для оценки использовались матрица ошибок и метрики точности, полноты и F1-меры, результаты представлены в таблице 4. Для визуализации ошибки использовалась матрица несоответствий (англ. Confusion matrix), для данного эксперимента результаты приведены в таблице 5.

время обучения: 4041.3188 секунд

имя класса	precision	recall	f1-score
chatGPT	1.000	0.993	0.997
cohere	0.963	0.999	0.981
davinci	0.986	0.996	0.991
human	0.991	0.952	0.971

Таблица 4: Метрики качетва DRoBERTa-base

Предобученная модель DRoBERTa-base, мультиклассовая классификация.

предсказаные метки

	•	• •			
X Z		chatGPT	Cohere	Davinci	Human
мет	chatGPT	0.993	0.002	0.0	0.005
<u>e</u>	Cohere	0.0	0.999	0.0	0.001
Ŧ	Davinci	0.0	0.001	0.996	0.003
СТИННЫ	Human	0.0	0.035	0.013	0.952
Z					

Таблица 5: Confusion matrix, DRoBERTa-base

Предобученная модель DRoBERTa-base & LoRA, мультиклассовая классификация.

Только 0.828% параметров обучаются при использовании LoRA. Предположим, что обучится такая модель гораздо быстрее. Гипотеза подтвердилась экспериментально, что отображено в таблице 6. Матрица несоответсвий для данноого эксперимента представлена в таблице 7.

время обучения: 3210.977 секунд trainable params: 685828, all: 82807304 || trainable%: 0.8282

model	precision	recall	f1-score
chatGPT	0.997	0.786	0.879
cohere	0.667	0.940	0.780
davinci	0.703	0.971	0.816
human	0.717	0.317	0.440

Таблица 6: Метрики качетва DRoBERTa-base & LoRA

Предобученная модель DRoBERTa-base & LoRA, мультиклассовая классификация.

предсказаные метки

истинные метки chatGPT Cohere Davinci Human chatGPT 0.79 0.01 0.08 0.12 Cohere 0.94 0.06 0.0 0.003 Davinci 0.001 0.03 0.98 0.0 0.002 0.43 0.25 0.32 Human

Таблица 7: Confusion matrix, DRoBERTa-base & LoRA

ChatGPT vs Human

Введение

Эксперимент, представленный здесь, аналогичен предыдущему, но модель решает задачу бинарной классификации. Результаты представлены в таблице 8.

время обучения: 1633.8114 секунд

model	precision	recall	f1-score
chatGPT	1.000	0.891	0.942
human	0.902	1.000	0.950

Таблица 8: Метрики качетва DRoBERTa-base & LoRA, chatGPT vs Human

Три независимые модели DRoBERTa-base & LoRA, бинарная классификация.

Cohere vs Human

Результат эксперимента представлен в таблице 9.

время обучения: 1583.556 секунд

model	precision	recall	f1-score
cohere	0.999	0.837	0.911
human	0.853	0.999	0.920

Таблица 9: Метрики качетва DRoBERTa-base & LoRA, Cohere vs Human

Три независимые модели DRoBERTa-base & LoRA, бинарная классификация.

Davinci vs Human

Результат эксперимента представлен в таблице 10.

время обучения: 1632.395 секунд

model	precision	recall	f1-score
davinci	0.996	0.851	0.918
human	0.870	0.997	0.929

Таблица 10: Метрики качетва DRoBERTa-base & LoRA, Davinci vs Human

Выводы

Если "усреднить" показатели трех моделей эксперимента, то можно заметить улучшение качества по сравнению с метриками качетва DRoBERTa-base & LoRA для мультиклассовой классификации, таблица 11, также показатели сравнимы с показателями метрик до применения LoRA, таблица 12.

model	precision	recall	f1-score
chatGPT	1.000	0.891	0.942
cohere	0.999	0.837	0.911
davinci	0.996	0.851	0.918
human	0.875	0.999	0.933

Таблица 11: Метрики качетва DRoBERTa-base & LoRA, бинарные классификаторы

Выводы

model	precision	recall	f1-score
chatGPT	1.000	0.993	0.997
cohere	0.963	0.999	0.981
davinci	0.986	0.996	0.991
human	0.991	0.952	0.971

Таблица 12: Метрики качетва DRoBERTa-base, мультиклассовая классификация

Показатели precision выросли у всех классов, кроме human, в то время как у этого класса выросла метрика recall. Суммарно, качество классификации выросло, не потеряв во времени обучения, по сравнению с предобученной моделью DRoBERTa-base. И сильно выиграло в качестве у модели DRoBERTa-base & LoRA, но проиграв ей во времени обучения.

Библиография

Введение

Minhyeok Lee.

A mathematical investigation of hallucination and creativity in gpt models.

Mathematics, 11(10):2320, 2023.