TD 5 : Applications linéaires et matrices

Exercice 1. Soit (e_1, e_2, e_3) une base de \mathbb{R}^3 . On pose

$$f_1 = e_1 + e_2 + 2e_3$$
, $f_2 = 2e_1 - e_2 + e_3$ et $f_3 = -2e_1 + 2e_2 + 2e_3$.

- 1. Montrer que (f_1, f_2, f_3) est une base de \mathbb{R}^3 .
- 2. Écrire la matrice de passage de (e_1, e_2, e_3) à (f_1, f_2, f_3) . Calculer l'inverse de cette matrice.
- 3. Calculer les coordonnées de $e_1 + e_2 + e_3$ dans la base (f_1, f_2, f_3) .

Exercice 2. On note (e_1, e_2, e_3, e_4) la base canonique de \mathbb{R}^4 et (f_1, f_2, f_3) la base canonique de \mathbb{R}^3 . On définit une application linéaire u de \mathbb{R}^4 vers \mathbb{R}^3 en posant :

$$u(e_1) = 3f_1 - f_2 + 3f_3$$
, $u(e_2) = -2f_1 - 2f_2$, $u(e_3) = -2f_2 + f_3$, $u(e_4) = f_1 + 2f_3$.

Ecrire la matrice de u dans les bases canoniques.

Exercice 3. On considère l'application linéaire $f: \mathbb{R}^4 \longrightarrow \mathbb{R}^4$ définie par:

$$f(x, y, z, t) = (t, x, y, z).$$

- 1. Donner la matrice de f dans la base canonique de \mathbb{R}^4 (au départ et à l'arrivée).
- 2. Déterminer son noyau, son image et son rang.

Exercice 4. On considère l'application linéaire $f: \mathbb{R}^4 \longrightarrow \mathbb{R}^4$ définie par:

$$f(x, y, z, t) = (ax + by + t, bx + ay + z, y + az + bt, x + bz + at).$$

- 1. Donner la matrice de f dans la base canonique de \mathbb{R}^4 (au départ et à l'arrivée).
- 2. On considère les 4 vecteurs $v_1 = (1, 1, 1, 1)$, $v_2 = (-1, 1, -1, 1)$, $v_3 = (-1, -1, 1, 1)$ et $v_4 = (1, -1, -1, 1)$. Montrer qu'ils forment une base de \mathbb{R}^4 .
- 3. Écrire les images de v_1 , v_2 , v_3 et v_4 par f, dans la base canonique, puis dans la base (v_1, v_2, v_3, v_4) .
- 4. Écrire la matrice de f dans la base (v_1, v_2, v_3, v_4) (au départ et à l'arrivée).
- 5. Écrire la matrice de passage P de la base canonique dans la base (v_1, v_2, v_3, v_4) .
- 6. Vérifier vos calculs à l'aide d'une formule du cours, après avoir inversé P.

Exercice 5. Soit f l'application linéaire de \mathbb{R}^3 dans lui-même de matrice $M = \begin{pmatrix} 1 & 0 & 1 \\ 4 & 3 & 3 \\ 1 & 3 & 2 \end{pmatrix}$ dans la base canonique.

- 1. Déterminer Ker(f 6Id).
- 2. Monter que $Im(f 6Id) = Ker(f^2 + Id)$.
- 3. Choisir un vecteur non nul x dans Ker(f 6Id) et un vecteur non nul y dans $Ker(f^2 + Id)$. Montrer que (x, y, f(y)) est une base de \mathbb{R}^3 et écrire la matrice de f dans cette base.

Exercice 6. Soit E un \mathbb{R} -espace vectoriel de dimension finie. Soit f une application linéaire de E dans lui-même telle que $f \circ f = -\mathrm{Id}_E$.

- 1. Soit x un vecteur non nul de E. On note F_x le sous-espace de E engendré par x et f(x).
 - (a) Pour tout élément y de F_x , montrer que f(y) est aussi dans F_x .
 - (b) Montrer que x et f(x) sont linéairement indépendants.
 - (c) Quelle est la dimension de F_x ?
- 2. Soit z un vecteur non nul de E qui n'est pas dans F_x .
 - (a) Montrer que les 3 vecteurs x, f(x) et z sont linéairement indépendants.
 - (b) On suppose désormais que E est de dimension 4. Montrer que les 4 vacteurs x, f(x), z et f(z) forment une base de E.
 - (c) Écrire la matrice A de f dans cette base (au départ et à l'arrivée).
 - (d) Calculer A^2 puis A^n pour tout entier n.

http://hfahs.free.fr/