APELLIDOS:	NOMBRE:	
DNI:	FIRMA:	

EXAMEN FINAL (18 junio 2013) - Bloque segundo parcial teoría

Este bloque tiene una puntuación máxima de 10 puntos.

Indique, para cada una de las siguientes 50 afirmaciones, si éstas son verdaderas (V) o falsas (F). **Cada respuesta vale: correcta= 0.2, errónea= -0.2, vacía=0.**

1. Un sistema distribuido:

F	Requiere que los relojes de todos sus ordenadores estén sincronizados.
F	Deberá tener siempre una actividad líder, que podrá ser seleccionada empleando algún algoritmo de elección de líder.
F	Requiere que todos sus eventos estén ordenados, empleándose generalmente los relojes lógicos de Lamport para este fin.
V	Será escalable si es capaz de mantener su capacidad de servicio cuando crezca su número de componentes (nodos, procesos, clientes, etc.).

2. Las siguientes son técnicas para aumentar la escalabilidad en sistemas distribuidos:

	O
V	Utilizar replicación.
V	Utilizar algoritmos descentralizados.
V	Delegar parte del procesamiento a los clientes.
V	Repartir tanto las tareas como los datos entre múltiples nodos servidores.

3. El algoritmo de Berkeley:

F	Es un ejemplo de algoritmo descentralizado.
V	Sincroniza los relojes de los nodos de un determinado sistema distribuido, sin importarle la divergencia que pueda haber entre estos relojes y la hora "oficial".
F	Es uno de los algoritmos de exclusión mutua más eficientes.
F	Es el utilizado para actualizar los relojes vectoriales.

4. Los relojes vectoriales:

	200 Total Contractor
F	Son necesarios para implantar la transparencia de concurrencia.
F	Son los resultantes del algoritmo de Cristian.
V	Permiten determinar en todos los casos si dos eventos de una ejecución son concurrentes o no.
V	No siempre pueden ordenarse entre sí.

L .	Cohro	LOC COMMICIOS O	e nombres en un	cictoma	dictribilida
.).	SOME	TOS SELVICIOS O	e nombres en ur	LSISLEIHA	uisu ibuiuo.

V	Se necesitan para obtener las direcciones o identificadores de ciertas entidades, cuando se conozca su nombre.
V	Pueden implantar la resolución de nombres de forma recursiva o de forma iterativa.
V	Suelen proporcionar tres operaciones: inserción (o registro), resolución y borrado.
V	LDAP es un ejemplo de servicio de directorio basado en atributos.

6. Un sistema "peer-to-peer":

0.	on sistema peer to peer.
V	Es un ejemplo de arquitectura de sistema descentralizada.
V	Según el grado de centralización de su arquitectura se distinguen tres variantes: puramente descentralizada, parcialmente centralizada y descentralizada híbrida.
V	La variante descentralizada híbrida centraliza el servicio de localización, pero distribuye otras acciones.
F	Es un tipo particular de sistema Grid.

7. Sobre el mecanismo de llamada a procedimiento remoto (RPC):

F	Proporciona transparencia de persistencia.
F	Utiliza stubs clientes para gestionar la recepción de mensajes de petición y el envío de los mensajes de respuesta.
V	Proporciona transparencia de ubicación.
V	En su variante asincrónica no puede retornar resultados ni argumentos de salida.

8. Sobre el mecanismo de invocación a objeto remoto (ROI):

·	,.	Sobre er mecamismo de mivocación a objeto remoto (NOI).
	V	Es el utilizado en Java RMI.
	V	Oculta el envío y recepción de mensajes entre el nodo cliente y el nodo servidor.
	F	Siempre utiliza paso de parámetros por valor.
	V	Utiliza proxies y esqueletos.

9. Sobre los algoritmos descritos en el tema 9 ("Sincronización en sistemas distribuidos"):

F	El algoritmo de Cristian se utiliza para gestionar relojes lógicos.
F	El algoritmo distribuido de exclusión mutua no necesita realizar ninguna acción en su protocolo de salida.
V	El algoritmo Bully requiere comunicación fiable.
V	El algoritmo de Chandy y Lamport requiere que los canales de comunicación respeten un orden FIFO.

10. Dado el siguiente conjunto de eventos en un sistema distribuido, asumiendo que no hay otros eventos previos:

F	El reloj vectorial de "e" es VT(e)=[5,3,3] y el de "h" es VT(h)=[2,3,1].
F	Los eventos "e" y "f" son concurrentes.
F	El reloj de Lamport de "d" es C(d)=4 y el de "k" es C(k)=7.
F	El reloj de Lamport de "g" es C(g)=4 y el reloj vectorial de ese mismo evento es VT(g)=[2,2,1].
F	Los eventos "b" y "l" son concurrentes.

11. Sobre la gestión de recursos:

F	Cuando una entidad solo tenga una referencia en el sistema (en un servidor de nombres), se convierte en un residuo y debería ser eliminada.
V	El mecanismo de "punteros adelante" puede dejar a un recurso inaccesible cuando falle un ordenador y se "rompa" la cadena de punteros.
V	Los identificadores no podrán reutilizarse nunca.
V	El mecanismo de "punteros adelante" se puede emplear como parte del soporte necesario para reubicar entidades.

12. Los sistemas "cloud":

F	Son un tipo particular de sistemas "peer-to-peer".
V	Permiten implantar aplicaciones distribuidas escalables.
V	Google Drive es un ejemplo de servicio SaaS.
V	Microsof Azure es un ejemplo de servicio PaaS.
V	Amazon EC2 es un ejemplo de servicio IaaS.