CS 188: Artificial Intelligence

Lecture 20: Dynamic Bayes Nets, Naïve Bayes

> Pieter Abbeel – UC Berkeley Slides adapted from Dan Klein.

Part III: Machine Learning

- Up until now: how to reason in a model and how to make optimal decisions
- Machine learning: how to acquire a model on the basis of data / experience
 - Learning parameters (e.g. probabilities)
 - Learning structure (e.g. BN graphs)
 - Learning hidden concepts (e.g. clustering)

Machine Learning This Set of Slides

- An ML Example: Parameter Estimation
 - Maximum likelihood
 - Smoothing
- Applications
- Main concepts
- Naïve Bayes

Parameter Estimation

- Estimating the distribution of a random variable
- Elicitation: ask a human (why is this hard?)
- Empirically: use training data (learning!)
 - E.g.: for each outcome x, look at the *empirical rate* of that value:

$$P_{\mathsf{ML}}(x) = \frac{\mathsf{count}(x)}{\mathsf{total \ samples}}$$

 $P_{\rm ML}({\bf r}) = 1/3$

• This is the estimate that maximizes the likelihood of the data

$$L(x,\theta) = \prod_{i} P_{\theta}(x_i)$$

■ Issue: overfitting. E.g., what if only observed 1 jelly bean?

Estimation: Smoothing

Relative frequencies are the maximum likelihood estimates

$$\begin{array}{ll} \theta_{ML} = \underset{\theta}{\arg\max} P(\mathbf{X}|\theta) & \qquad \Longrightarrow & P_{\mathsf{ML}}(x) = \frac{\mathsf{count}(x)}{\mathsf{total \; samples}} \\ = \underset{\theta}{\arg\max} \prod_{i} P_{\theta}(X_{i}) & \qquad \Longrightarrow & P_{\mathsf{ML}}(x) = \frac{\mathsf{count}(x)}{\mathsf{total \; samples}} \end{array}$$

 In Bayesian statistics, we think of the parameters as just another random variable, with its own distribution

$$\begin{aligned} \theta_{MAP} &= \arg\max_{\theta} P(\theta|\mathbf{X}) \\ &= \arg\max_{\theta} P(\mathbf{X}|\theta) P(\theta) / P(\mathbf{X}) \end{aligned} \qquad ???? \\ &= \arg\max_{\theta} P(\mathbf{X}|\theta) P(\theta)$$

Estimation: Laplace Smoothing

- Laplace's estimate:
 - Pretend you saw every outcome once more than you actually did

$$P_{LAP}(x) = \frac{c(x) + 1}{\sum_{x} [c(x) + 1]}$$

$$=\frac{c(x)+1}{N+1}$$

$$P_{LAP}(X) =$$

 $P_{ML}(X) =$

 Can derive this as a MAP estimate with Dirichlet priors (see cs281a)

Estimation: Laplace Smoothing

- Laplace's estimate (extended):
 - Pretend you saw every outcome k extra times

$$P_{LAP,k}(x) = \frac{c(x) + k}{N + k|X|}$$

- What's Laplace with k = 0?
- k is the strength of the prior
- Laplace for conditionals:
 - Smooth each condition independently:

$$P_{LAP,k}(x|y) = \frac{c(x,y) + k}{c(y) + k|X|}$$

- $P_{LAP,0}(X) =$
- $P_{LAP,1}(X) =$

$$P_{LAP,100}(X) =$$

Example: Spam Filter

- Input: email
- Output: spam/ham
- Setup: Get a large collection of example emails, each labeled "spam" or "ham"
 - Note: someone has to hand label all this data!
- Features: The attributes used to make the ham / spam decision
 - Words: FREE!
 - Text Patterns: \$dd, CAPS
 - Non-text: SenderInContacts

First, I must solicit your confidence in this transaction, this is by virture of its nature as being utterly confidencial and top secret

TO BE REMOVED FROM FUTURE MAILINGS, SIMPLY REPLY TO THIS MESSAGE AND PUT "REMOVE" IN THE SUBJECT.

99 MILLION EMAIL ADDRESSES FOR ONLY \$99

Ok, Iknow this is blatantly OT but I'm beginning to go insane. Had an old Dell Dimension XPS sitting in the comer and decided to put it to use, I know it was working pre being stuck in the corner, but when I plugged it in, hit the power nothing happened.

Example: Digit Recognition

- Input: images / pixel grids
- Output: a digit 0-9
- Setup:
 - Get a large collection of example images, each labeled with a digit

 - Note: someone has to hand label all this data!
- Want to learn to predict labels of new, future digit images
- Features: The attributes used to make the
- digit decision
 Pixels: (6,8)=ON
- Shape Patterns: NumComponents, AspectRatio, NumLoops

0

Other Classification Tasks

- In classification, we predict labels y (classes) for inputs x
- Examples:
 - Spam detection (input: document, classes: spam / ham)
 - OCR (input: images, classes: characters)
 - Medical diagnosis (input: symptoms, classes: diseases)
 - Automatic essay grader (input: document, classes: grades)
 - Fraud detection (input: account activity, classes: fraud / no fraud)
 - Customer service email routing
 - ... many more
- Classification is an important commercial technology!

Important Concepts

- Data: labeled instances, e.g. emails marked spam/ham
 - Training set Held out set Test set
- Features: attribute-value pairs which characterize each x
- Experimentation cycle
 - Learn parameters (e.g. model probabilities) on training set (Tune hyperparameters on held-out set) Compute accuracy of test set Very important: never "peek" at the test set!
- - Accuracy: fraction of instances predicted correctly
- Overfitting and generalization

 Want a classifier which does well on test data
 - Overfitting: fitting the training data very closely, but not generalizing well

 - We'll investigate overfitting and generalization formally in a few lectures

Data

Held-Out Data

Test

Bayes Nets for Classification

- One method of classification:
 - Use a probabilistic model!
 - Features are observed random variables F_i
 - Y is the query variable
 - Use probabilistic inference to compute most likely Y

$$y = \operatorname{argmax}_y P(y|f_1 \dots f_n)$$

You already know how to do this inference

Simple Classification

(M)P(M)

Simple example: two binary features

General Naïve Bayes

A general naive Bayes model:

|Y| x |F|ⁿ parameters

$$P(Y, F_1 ... F_n) =$$

$$P(Y) \prod_i P(F_i | Y)$$

|Y| parameters

- We only specify how each feature depends on the class
- Total number of parameters is *linear* in n

Inference for Naïve Bayes

- Goal: compute posterior over causes
 - Step 1: get joint probability of causes and evidence

- Step 2: get probability of evidence
- Step 3: renormalize
- \prod $P(Y|f_1\ldots f_n)$

General Naïve Bayes

- What do we need in order to use naïve Bayes?
 - Inference (you know this part)
 - Start with a bunch of conditionals, P(Y) and the P(F_i|Y) tables
 - Use standard inference to compute P(Y|F₁...F_n)
 - Nothing new here
 - Estimates of local conditional probability tables
 - P(Y), the prior over labels
 - P(F_i|Y) for each feature (evidence variable)
 - These probabilities are collectively called the *parameters* of the model and denoted by θ
 - Up until now, we assumed these appeared by magic, but...
 - ...they typically come from training data: we'll look at this now

A Digit Recognizer

Input: pixel grids

Output: a digit 0-9

Naïve Bayes for Digits

- Simple version:
 - One feature F_{ii} for each grid position <i,j>
 - Possible feature values are on / off, based on whether intensity is more or less than 0.5 in underlying image
 - · Each input maps to a feature vector, e.g.

$$A \rightarrow \langle F_{0,0} = 0 \ F_{0,1} = 0 \ F_{0,2} = 1 \ F_{0,3} = 1 \ F_{0,4} = 0 \ \dots F_{15,15} = 0 \rangle$$

- Here: lots of features, each is binary valued
- Naïve Bayes model:

$$P(Y|F_{0,0}...F_{15,15}) \propto P(Y) \prod_{i,j} P(F_{i,j}|Y)$$

What do we need to learn?

Parameter Estimation

- Estimating distribution of random variables like X or X | Y
- Empirically: use training data
- For each outcome x, look at the *empirical rate* of that value:

$$P_{\mathsf{ML}}(x) = \frac{\mathsf{count}(x)}{\mathsf{total \ samples}}$$

$$P_{\mathsf{ML}}(\mathsf{r}) = 1/3$$

• This is the estimate that maximizes the likelihood of the data

$$L(x,\theta) = \prod P_{\theta}(x_i)$$

- Elicitation: ask a human!
 - Usually need domain experts, and sophisticated ways of eliciting probabilities (e.g. betting games)
 Trouble calibrating

A Spam Filter

- Naïve Bayes spam filter
- Data:
 - Collection of emails, labeled spam or ham
 - Note: someone has to hand label all this data!
 - Split into training, held-out, test sets
- Classifiers
 - · Learn on the training set
 - (Tune it on a held-out set) Test it on new emails

., rimust solicit your confidence in this transaction, this is by virture of its nature as being utterly confidencial and top secret. ... First, I must solicit your confidence in this

TO BE REMOVED FROM FUTURE MAILINGS, SIMPLY REPLY TO THIS MESSAGE AND PUT "REMOVE" IN THE SUBJECT.

99 MILLION EMAIL ADDRESSES FOR ONLY \$99

Ok, Iknow this is blatantly OT but I'm beginning to go insane. Had an old Dell Dimension XPS sittling in the corner and decided to put it to use, I know it was working pre being stuck in the corner, but when I plugged it in, hit the power nothing happened.

Naïve Bayes for Text

- Bag-of-Words Naïve Baves:
 - Predict unknown class label (spam vs. ham)
 - Assume evidence features (e.g. the words) are independent
 - · Warning: subtly different assumptions than before!
- Generative model

Word at position i, not ith word in the dictionary!

- Tied distributions and bag-of-words Usually, each variable gets its own conditional probability distribution P(F|Y)
- In a bag-of-words model
 - · Each position is identically distributed
 - All positions share the same conditional probs P(W|C)
 - · Why make this assumption?

Example: Spam Filtering

- Model: $P(Y, W_1 \dots W_n) = P(Y) \prod P(W_i|Y)$
- What are the parameters?

P(Y)					
ham :	0.66				
spam:	0.33				

P(W|spam)

the : 0.0156 0.0153 and : of : 0.0115 0.0095 you: 0.0093 : 0.0086 with: 0.0080 from: 0.0075

$P(W|\mathsf{ham})$

0.0210 0.0133 0.0119 with: 0.0108 from: 0.0107 and: 0.0105 a : 0.0100

Where do these tables come from?

Spam Example

Word P(w|spam) P(w|ham) Tot Spam Tot Ham (prior) 0.33333 0.66666

P(spam | w) = 98.9

Example: Overfitting P(features, Y = 2) P(Y = 2) = 0.1 P(on|Y = 2) = 0.8 P(on|Y = 2) = 0.1 P(off|Y = 2) = 0.1 P(off|Y = 2) = 0.1 P(on|Y = 3) = 0.8 P(on|Y = 3) = 0.9 P(off|Y = 3) = 0.7 P(on|Y = 3) = 0.0

Example: Overfitting

 Posteriors determined by relative probabilities (odds ratios):

 $\frac{P(W|\text{ham})}{P(W|\text{spam})}$

 $rac{P(W|\mathsf{spam})}{P(W|\mathsf{ham})}$

south-west : inf nation : inf morally : inf nicely : inf extent : inf seriously : inf screens : inf minute : inf guaranteed : inf \$205.00 : inf delivery : inf signature : inf

What went wrong here?

Generalization and Overfitting

- Relative frequency parameters will overfit the training data!
 - Just because we never saw a 3 with pixel (15,15) on during training doesn't mean we won't see it at test time
 - Unlikely that every occurrence of "minute" is 100% spam
 - Unlikely that every occurrence of "seriously" is 100% ham
 - What about all the words that don't occur in the training set at all?
 - In general, we can't go around giving unseen events zero probability
- As an extreme case, imagine using the entire email as the only
 - Would get the training data perfect (if deterministic labeling)
 - Wouldn't generalize at all
 - Just making the bag-of-words assumption gives us some generalization, but isn't enough
- To generalize better: we need to smooth or regularize the estimates

Estimation: Smoothing

- Problems with maximum likelihood estimates:
 - If I flip a coin once, and it's heads, what's the estimate for P (heads)?
 - What if I flip 10 times with 8 heads?
 - What if I flip 10M times with 8M heads?
- Basic idea:
 - We have some prior expectation about parameters (here, the probability of heads)
 - Given little evidence, we should skew towards our prior
 - Given a lot of evidence, we should listen to the data

Estimation: Smoothing

• Relative frequencies are the maximum likelihood estimates

$$\begin{array}{ll} \theta_{ML} = \underset{\theta}{\arg\max} P(\mathbf{X}|\theta) & \Longrightarrow & P_{\mathsf{ML}}(x) = \frac{\mathsf{count}(x)}{\mathsf{total \; samples}} \\ = \underset{\theta}{\arg\max} \prod_{i} P_{\theta}(X_{i}) & \end{array}$$

 In Bayesian statistics, we think of the parameters as just another random variable, with its own distribution

$$\begin{aligned} \theta_{MAP} &= \underset{\theta}{\arg \max} P(\theta|\mathbf{X}) \\ &= \underset{\theta}{\arg \max} P(\mathbf{X}|\theta)P(\theta)/P(\mathbf{X}) \end{aligned} \qquad ???? \\ &= \underset{\theta}{\arg \max} P(\mathbf{X}|\theta)P(\theta) \end{aligned}$$

Estimation: Laplace Smoothing

- Laplace's estimate:
 - Pretend you saw every outcome once more than you actually did

$$P_{LAP}(x) = \frac{c(x) + 1}{\sum_{x} [c(x) + 1]}$$

$$P_{ML}(X) =$$

$$=\frac{c(x)+1}{N+|X|}$$

$$P_{LAP}(X) =$$

 Can derive this as a MAP estimate with Dirichlet priors (see cs281a)

Estimation: Laplace Smoothing

- Laplace's estimate (extended):
 - Pretend you saw every outcome k evtra times c(x) ⊥ k

 $P_{LAP,0}(X) =$

 $P_{LAP,1}(X) =$

 $P_{LAP,100}(X) =$

k evtra times
$$P_{LAP,k}(x) = \frac{c(x) + k}{N + k|X|}$$

$$\frac{(x)+k}{+k|X|}$$

- What's Laplace with k = 0?
- k is the strength of the prior
- Laplace for conditionals:
- Smooth each condition
 - $P_{LAP,k}(x|y) = \frac{c(x,y) + k}{c(y) + k|X|}$

Estimation: Linear Interpolation

- In practice, Laplace often performs poorly for P(X|Y):
 - When |X| is very large
 - When |Y| is very large
- Another option: linear interpolation

 - Also get P(X) from the data
 Make sure the estimate of P(X|Y) isn't too different from P(X)

$$P_{LIN}(x|y) = \alpha \hat{P}(x|y) + (1.0 - \alpha)\hat{P}(x)$$

- What if α is 0? 1?
- For even better ways to estimate parameters, as well as details of the math see cs281a, cs288

Real NB: Smoothing

- For real classification problems, smoothing is critical
- New odds ratios:

 $P(W|\mathsf{ham})$ $\overline{P(W|\text{spam})}$

helvetica : 11.4 10.8 group : 10.2 areas : 8.3

P(W|spam)P(W|ham)

verdana : : 28.4 Credit ORDER : 26.9 : 26.5 money

Do these make more sense?

Tuning on Held-Out Data

- Now we' ve got two kinds of unknowns
 - Parameters: the probabilities P(Y|X), P(Y)
 Hyperparameters, like the amount of smoothing to do: k, α
- Where to learn?
 - Learn parameters from training data
 Must tune hyperparameters on different
 - Why? For each value of the hyperparameters, train and test on the held-out data
 - Choose the best value and do a final test on the test data

Baselines

- First step: get a baseline
 - Baselines are very simple "straw man" procedures
 - Help determine how hard the task is
 - Help know what a "good" accuracy is
- Weak baseline: most frequent label classifier
 - Gives all test instances whatever label was most common in the
 - E.g. for spam filtering, might label everything as ham
 - Accuracy might be very high if the problem is skewed
 - E.g. calling everything "ham" gets 66%, so a classifier that gets 70% isn't very good...
- For real research, usually use previous work as a (strong) baseline

Confidences from a Classifier

- The confidence of a probabilistic classifier:

 Posterior over the top label

$$confidence(x) = \max_{y} P(y|x)$$

- · Represents how sure the classifier is of the classification
- Any probabilistic model will have confidences
- No guarantee confidence is correct
- Calibration
 - Weak calibration: higher confidences mean higher accuracy
 Strong calibration: confidence predicts

 - · What's the value of calibration?

Errors, and What to Do

Examples of errors

Dear GlobalSCAPE Customer,

leaf wisoanskarr customer, disconsoft to offer you the latest version of OmmiPage Pro, for just \$99.99 - the regular list price is \$499! The most common question we've received about this offer is - Is this genuine? We would like to assure you that this offer is authorized by ScanSoft, is genuine and valid. You can get the . . .

. . . To receive your \$30 Amazon.com promotional certificate, click through to

http://www.amazon.com/apparel

and see the prominent link for the \$30 offer. All details are there. We hope you enjoyed receiving this message. However, if you'd rather not receive future e-mails announcing new store launches, please click . . .

What to Do About Errors?

- Need more features— words aren't enough!
 - Have you emailed the sender before?
 - Have 1K other people just gotten the same email?
 Is the sending information consistent?
 Is the email in ALL CAPS?

 - Do inline URLs point where they say they point?
 - Does the email address you by (your) name?
- Can add these information sources as new variables in the NB model
- Next class we'll talk about classifiers which let you easily add arbitrary features more easily

Summary Naïve Bayes Classifier

- Bayes rule lets us do diagnostic queries with causal probabilities
- The naïve Bayes assumption takes all features to be independent given the class label
- We can build classifiers out of a naïve Bayes model using training data
- Smoothing estimates is important in real systems
- Classifier confidences are useful, when you can get them

- 1			
- 1			
- 1			
- 1			