APPUNTI DI SISTEMI DINAMICI

Manuel Deodato

Indice

1	Equazioni differenziali ordinarie		3
	1.1	Introduzione	9
	1.2	Soluzioni massimali	ļ

1 | Equazioni differenziali ordinarie

§1.1 Introduzione

Definizione 1.1 (Equazione differenziale). Un'equazione differenziale ordinaria di ordine k è un'equazione della forma

$$F(x,y(x),\ldots,y^{(k)}(x))=0$$

con $F: I \times (\mathbb{R}^n)^k \to \mathbb{R}$ continua e $I \subseteq \mathbb{R}$. La funzione $y: I \to \mathbb{R}^n$ è detta funzione incognita.

In alcuni casi, è possibile riscrivere l'equazione differenziale esplicitando in un membro il termine il cui ordine di derivazione è massimo, ossia si può scrivere

$$y^{(k)}(x) = \widetilde{F}(x, y(x), \dots, y^{(k-1)}(x))$$

In questo caso, si dice che l'equazione è in forma esplicita.

Osservazione 1.1. Tramite il cambio di variabili

$$Y(x) = \begin{pmatrix} y(x) \\ \vdots \\ y^{(k-1)}(x) \end{pmatrix} \in \mathbb{R}^{nk}$$

è possibile riscrivere un'equazione differenziale di ordine k nella forma Y'=f(x,Y), con

$$f(x,Y) = \begin{pmatrix} y'(x) \\ y''(x) \\ \vdots \\ F(x,y,\dots,y^{(k-1)}) \end{pmatrix} \in \mathbb{R}^{nk}$$

Questo significa che, indipendentemente dall'ordine dell'equazione di partenza, fin tanto che questa è esprimibile in forma esplicita, è sempre possibile ricondursi a un sistema di equazioni del primo ordine. Nel caso in cui l'equazione non fosse esprimibile in forma esplicita, è necessario ricorrere al teorema della funzione implicita; se questo non fosse applicabile, allora il ragionamento non sarebbe valido.

Quest'ultima osservazione permette di sviluppare la teoria delle equazioni differenziali per equazioni del primo ordine.

Definizione 1.2 (Problema di Cauchy). Sia data un'equazione differenziale y' = f(x, y), con $f : I \times A \to \mathbb{R}^n$ e $A \subseteq \mathbb{R}^n$ aperto; un sistema del tipo

$$\begin{cases} y' = f(x, y) \\ y(x_0) = y_0 \end{cases}$$

con $(x_0, y_0) \in I \times A$ è detto *problema di Cauchy*, mentre il valore y_0 è detto *dato iniziale*

La soluzione di un problema di Cauchy della forma

$$\begin{cases} y' = f(x, y) \\ y(x_0) = y_0 \end{cases}$$

è esprimibile in forma integrale come

$$y(x) = y_0 + \int_{x_0}^{x} f(t, y(t)) dt$$
 (1.1.1)

Infatti, una funzione y(x) risolve il problema di Cauchy se e solo se risolve l'equazione integrale. Ne segue, inoltre, che ogni funzione y che soddisfa il problema di Cauchy, vista la forma integrale appena trovata, deve essere di classe C^1 .

Per il resto della trattazione, si assumerà che l'equazione differenziale in esame sia della forma

$$y' = f(x, y)$$

e che i problemi di Cauchy trattati siano della forma

$$\begin{cases} y' = f(x, y) \\ y(x_0) = y_0 \end{cases}$$

Inoltre, si assumerà sempre che $A=B_{\rm r}(y_0)$ e si userà la notazione

$$I_a = (x_0 - a, x_0 + a)$$

Definizione 1.3 (Funzione lipschitziana). Una funzione $f(x,y): I_a \times B_r(y_0) \rightarrow$ \mathbb{R}^n è detta L-lipschitziana in y se $\exists L>0$ tale che $\forall (x,y_1),(x,y_2)\in I_\alpha\times B_r(y_0)$ è soddisfatta la relazione

$$|f(x, y_1) - f(x, y_2)| \le L|y_1 - y_2|$$

Teorema 1.1 (Teorema di Cauchy-Lipschitz). Sia $f: I_{\mathfrak{a}} \times B_{\mathfrak{r}}(y_0) \to \mathbb{R}^n$ una funzione limitata, continua e L-lipschitziana nelle y; allora $\exists \delta \in (0, \mathfrak{a}] \ e \ \exists ! y \in C^1(I_{\delta}, \mathbb{R}^n)$ soluzione del problema di Cauchy con dato iniziale (x_0, y_0) .

La richiesta per f di essere lipschitziana è necessaria altrimenti non si avrebbe l'unicità della soluzione; questo fenomeno è noto col nome di baffo di Peano. Al contrario, l'esistenza è ancora valida e si concretizza nel teorema di Peano.

Esempio 1.1 (Baffo di Peano). Si considera il problema

$$\begin{cases} y' = \sqrt{|y|} \\ y(0) = 0 \end{cases}$$

Le soluzioni di questo problema non sono uniche; infatti sono:

$$y(x) = 0$$
 $y(x) = \begin{cases} 0, & x \le x_0 \\ \frac{(x - x_0)^2}{4}, & x \ge x_0 \end{cases}$

§1.2 Soluzioni massimali

Definizione 1.4 (Soluzione massimale). Sia dato un problema di Cauchy; una sua soluzione

$$y:(x_0-\delta_1,x_0+\delta_2)\to B_r(x_0)$$

- $\begin{array}{l} \bullet \ \, \delta_2 < \alpha \implies \lim_{x \to x_0 + \delta_2} y(x) \in \partial B_r(y_0); \\ \\ \bullet \ \, \delta_1 < \alpha \implies \lim_{x \to x_0 \delta_1} y(x) \in \partial B_r(y_0). \end{array}$

Questa definizione è motivata dal seguente ragionamento. Una soluzione $y:I_\delta \to$ $B_r(y_0)$ è lipschitziana perché, per $M = ||f||_{\infty}$, si ha

$$|y'(x)| = |f(x,y(x))| \leqslant \|f\|_{\infty} = M$$

Essendo lipschitziana, è uniformemente continua e, ed essendo definita su un aperto, può essere univocamente estesa a valori sulla chiusura del dominio. In questo senso, ammetterà necessariamente i limiti

$$\lim_{x\to x_0\pm\delta}y(x)=y^\pm$$

Questo vuol dire che se $y^+ \in B_r(y_0)$, applicando il teorema di Cauchy-Lipschitz, si può estendere la soluzione all'intervallo $(x_0 - \delta, x_0 + \delta + \delta')$, dove $\delta' > 0$, e lo stesso discorso si può ripetere per y^- .

Osservazione 1.2. Se $\alpha = r = +\infty$ e y è una soluzione massimale del problema di Cauchy su $(x_0 - \delta_1, x_0 + \delta_2)$, allora Dom $f = \mathbb{R} \times \mathbb{R}^n$ implica che se δ_1 è finito, allora

$$\lim_{x\to x_0-\delta_1} \lvert y(x)\rvert = +\infty$$

e, analogamente, si ha un asintoto anche per δ_2 finito.