

Correction to "Catalytic Activity of Phosphine—Copper Complexes for Hydroboration of Styrene with Pinacolborane: Experiment and Theory"

Jiyeon Won, Dongwan Noh, Jaesook Yun,* and Jin Yong Lee*

J. Phys. Chem. A 2010, 114 (45), 12112–12115. DOI: 10.1021/jp1081966

Page 12114. Figure 2 and Table 1 should be replaced by

Figure 2. Energy profiles for step I and step II with L1-L5.

Table 1. Calculated Activation Barriers (ΔE^{\ddagger}) and Enthalphy Changes (ΔH) in Steps I and II

	step I			step II		
ligand	ΔE_1^{\ddagger}	ΔE_{-1}^{\ddagger}	ΔH_1	ΔE_2^{\ddagger}	ΔH_2	conversion ^a
L1	15.19	28.12	-12.93	7.77	1.46	
L2	13.69	30.89	-17.20	9.82	0.58	29
L3	11.85	32.33	-20.48	13.79	0.09	18
L4	10.43	330.03	-19.63	11.61	0.75	71
L5	7.73	28.62	-20.89	8.95	-0.96	100

"Reactions were run using 5 mol % CuCl, 6 mol % NaO-t-Bu, and 5 mol % ligand at room temperature. Conversions were measured by GC analysis with an internal standard after 24 h. Energies are in kcal/mol. ΔE_1^{\ddagger} , ΔE_{-1}^{\ddagger} , and ΔE_2^{\ddagger} denote the activation barriers for the forward and backward reactions in step I and the forward reaction in step II, respectively. ΔH_1 and ΔH_2 denote the enthalpy changes in steps I and II, respectively.