

3-STATE HEX BUFFERS

These devices are high speed hex buffers with 3-state outputs. They are organized as single 6-bit or 2-bit/4-bit, with inverting or non-inverting data (D) paths. The outputs are designed to drive 15 TTL Unit Loads or 60 Low Power Schottky loads when the Enable (E) is LOW.

When the Output Enable (E) is HIGH, the outputs are forced to a high impedance "off" state. If the outputs of the 3-state devices are tied together, all but one device must be in the high impedance state to avoid high currents that would exceed the maximum ratings. Designers should ensure that Output Enable signals to 3-state devices whose outputs are tied together are designed so there is no overlap.

SN54/74LS365A SN54/74LS366A SN54/74LS367A SN54/74LS368A

3-STATE HEX BUFFERS LOW POWER SCHOTTKY

J SUFFIX CERAMIC CASE 620-09

N SUFFIX PLASTIC CASE 648-08

D SUFFIX SOIC CASE 751B-03

ORDERING INFORMATION

SN54LSXXXJ SN74LSXXXN SN74LSXXXD

Ceramic Plastic SOIC

GUARANTEED OPERATING RANGES

Symbol	Parameter		Min	Тур	Max	Unit
VCC	Supply Voltage	54 74	4.5 4.75	5.0 5.0	5.5 5.25	V
TA	Operating Ambient Temperature Range	54 74	-55 0	25 25	125 70	°C
ЮН	Output Current — High	54 74			-1.0 -2.6	mA
lOL	Output Current — Low	54 74			12 24	mA

SN54/74LS365A • SN54/74LS366A SN54/74LS367A • SN54/74LS368A

SN54/74LS365A HEX 3-STATE BUFFER WITH COMMON 2-INPUT NOR ENABLE

TRUTH TABLE

II	IPUT	OUTPUT			
E ₁	E ₂	D	OUTFUT		
L	Г	L	L		
L	L	Н	Н		
Н	Χ	Χ	(Z)		
Х	Н	Х	(Z)		

SN54/74LS366A HEX 3-STATE INVERTER BUFFER WITH COMMON 2-INPUT NOR ENABLE

TRUTH TABLE

IN	IPUT	OUTPUT		
E ₁	E ₂	0011-01		
L	L	L	Н	
L	L	Н	L	
Н	Χ	Χ	(Z)	
Х	Н	Х	(Z)	

SN54/74LS367A HEX 3-STATE BUFFER SEPARATE 2-BIT AND 4-BIT SECTIONS

TRUTH TABLE

INP	JTS	OUTPUT			
Е	D	OUIPUI			
L	L	L			
L	Н	Н			
Н	Χ	(Z)			

SN54/74LS368A HEX 3-STATE INVERTER BUFFER SEPARATE 2-BIT AND 4-BIT SECTIONS

TRUTH TABLE

INP	JTS	OUTPUT			
Е	D	OUTFUT			
L	L	Н			
L	Н	L			
Н	Χ	(Z)			

SN54/74LS365A • SN54/74LS366A SN54/74LS367A • SN54/74LS368A

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

				Limits					
Symbol	Parameter		Min	Тур	Max	Unit	Test Conditions		
VIH	Input HIGH Voltage		2.0			V	Guaranteed Input HIGH Voltage for All Inputs		
VIL	Input LOW Voltage	54			0.7	V	Guaranteed Input LOW Voltage for		
VIL.	Input LOVV Voltage	74			0.8		All Inputs		
VIK	Input Clamp Diode Voltage)		-0.65	-1.5	V	V _{CC} = MIN, I _{IN} = -18 mA		
Vou	Output HIGH Voltage	54	2.4	3.4		V		$=$ MAX, $V_{IN} = V_{IH}$	
VOH	Output HIGH Voltage	74	2.4	3.1		V	or V _{IL} per Truth	Table	
Vo	Output LOW Voltage	54, 74		0.25	0.4	V	I _{OL} = 12 mA	$V_{CC} = V_{CC} MIN,$ $V_{IN} = V_{IL} \text{ or } V_{IH}$	
VOL	Output LOVV Voltage	74		0.35	0.5	V	I _{OL} = 24 mA	per Truth Table	
lozh	Output Off Current HIGH				20	μΑ	V _{CC} = MAX, V _{OUT} = 2.7 V		
lozL	Output Off Current LOW				-20	μΑ	V _{CC} = MAX, V _{OUT} = 0.4 V		
l	Input HIGH Current				20	μΑ	$V_{CC} = MAX, V_{IN} = 2.7 V$		
ΙН	input High Current				0.1	mA	V _{CC} = MAX, V _{IN} = 7.0 V		
	In <u>p</u> ut LOW Current E Inputs				-0.4	mA	V _{CC} = MAX, V _{IN} = 0.4 V		
I _{IL}	D Inputs				-20	μА	V _{CC} = MAX, V _{IN} = 0.5 V Either E Input at 2.0 V		
					-0.4	mA	$V_{CC} \equiv MAX$, $V_{IN} = 0.4 \text{ V}$ Both E Inputs at 0.4 V		
los	Short Circuit Current (Note	e 1)	-40		-225	mA	V _{CC} = MAX		
l _{CC}	Power Supply Current LS365A, 367A				24	mA	V _{CC} = MAX		
- •	LS366A, 368A				21	1			

Note 1: Not more than one output should be shorted at a time, nor for more than 1 second.

AC CHARACTERISTICS ($T_A = 25$ °C, $V_{CC} = 5.0 \text{ V}$)

		Limits								
		LS365A/LS367A		LS366A/LS368A						
Symbol	Parameter	Min	Тур	Max	Min	Тур	Max	Unit	Test Conditions	
^t PLH ^t PHL	Propagation Delay		10 9.0	16 22		7.0 12	15 18	ns	C _L = 45 pF,	
[†] PZH [†] PZL	Output Enable Time		19 24	35 40		18 28	35 45	ns	$R_L^- = 667 \Omega$	
[†] PHZ [†] PLZ	Output Disable Time			30 35			32 35	ns	C _L = 5.0 pF	