CS4102 Algorithms

Spring 2021 – Floryan and Horton

Module 4, Day 1: Horton's Live Session

Network Flow, Ford-Fulkerson

Announcements, Mon., April 19

- Quiz 3 (1st attempt) and Quiz 2 (2nd attempt) will be end of this week
 - Same as before: GradeScope, Friday noon Sat. 6pm
- Module 3 soft deadline grading is underway, should be done before quiz (that's our goal)
- Recommended schedule for HWs
 - Working on one Module 3 Advanced HW this week.
 - Start Module 4 HWs next week
 - Module 4 starts today. Hooray! (?)
 - End of semester makes it a bit condensed. We'll do our best to make it easier on you.
- Today: flow networks, Ford-Fulkerson. Do you understand? Example!

In your textbook

- CLRS 26.1 and 26.2
- Includes simple solutions to the following "complications"
 - What if (u,v) and (v,u) are in the flow graph?
 - What if we need >1 source? >1 sink?
- Note:
 - Recorded lecture emphasized adjacency matrix for storing residual network G_f for a given flow-graph G
 - Matrix stores both capacities and back-flow values for (u,v)
 - Today we'll just draw graphs
 - We won't draw edges in G_f with value 0 (either capacity or back-flow)

Flow Network

Graph G = (V, E)Source node $s \in V$ Sink node $t \in V$

Edge Capacities $c(e) \in Positive Real numbers$

Max flow intuition: If s is a faucet, t is a drain, and s connects to t through a network of pipes with given capacities, what is the maximum amount of water which can flow from the faucet to the drain?

Flow

- Assignment of values to edges
 - -f(e)=n
 - Amount of water going through that pipe
- Capacity constraint
 - $-f(e) \le c(e)$
 - Flow cannot exceed capacity
- Flow constraint
 - $\forall v \in V \{s, t\}, inflow(v) = outflow(v)$
 - $-inflow(v) = \sum_{x \in V} f(v, x)$
 - $outflow(v) = \sum_{x \in V} f(x, v)$
 - Water going in must match water coming out
- Flow of G: |f| = outflow(s) inflow(s)
 - Net outflow of s

3 in example above

Max Flow

 Of all valid flows through the graph, find the one which maximizes:

$$-|f| = outflow(s) - inflow(s)$$

Saturate Highest Capacity Path First

Saturate Highest Capacity Path First

Saturate Highest Capacity Path First

Overall Flow: |f| = 20

Better Solution

Overall Flow: |f| = 30

Residual Graph G_f

- Keep track of net available flow along each edge
- "Forward edges": weight is equal to available flow along that edge in the flow graph

 Flow I could add

$$-w(e) = c(e) - f(e)$$

• "Back edges": weight is equal to flow along that edge in the

flow graph

$$-w(e) = f(e)$$

Flow I could remove

Residual Graphs Example **Flow Graph Residual Graph** 20 20/20 10/10 10/30 20/20 12

Ford-Fulkerson Algorithm

Define an augmenting path to be a path from $s \to t$ in the residual graph G_f (using edges of non-zero weight)

Overview: Repeatedly add the flow of any augmenting path

Ford-Fulkerson max-flow algorithm:

- Initialize f(e) = 0 for all $e \in E$
- Construct the residual network G_f
- While there is an augmenting path p in G_f :
 - Let $c = \min_{u,v \in p} c_f(u,v)$
 - Add c units of flow to G based on the augmenting path p
 - Update the residual network G_f for the updated flow

Ford-Fulkerson Algorithm

Define an augmenting path to be a path from $s \to t$ in the residual graph G_f (using edges of non-zero weight)

Overview: Repeatedly add the flow of any augmenting path

Ford-Fulkerson max-flow algorithm:

- Initialize f(e) = 0 for all $e \in E$
- Construct the residual network G_f
- While there is an augmenting path p in G_f :
 - Let $c = \min_{u,v \in p} c_f(u,v)$
 - Add c units of flow to G based on the augmenting path p
 - Update the residual network G_f for the updated flow

Ford-Fulkerson approach: take any augmenting path (will revisit this later)

Ford-Fulkerson Algorithm

Define an augmenting path to be a path from $s \to t$ in the residual graph G_f (using edges of non-zero weight)

Overview: Repeatedly add the flow of any augmenting path

Ford-Fulkerson max-flow algorithm:

- Initialize f(e) = 0 for all $e \in E$
- Construct the residual network G_f
- While there is an augmenting path p in G_f :
 - Let $c = \min_{u,v \in p} c_f(u,v)$

- $(c_f(u,v))$ is the weight of edge (u,v) in the residual network G_f)
- Add c units of flow to G based on the augmenting path p
- Update the residual network G_f for the updated flow

Ford-Fulkerson approach: take any augmenting path (will revisit this later)

Initially: f(e) = 0 for all $e \in E$

16

Increase flow by 1 unit

Increase flow by 1 unit

Increase flow by 1 unit

Increase flow by 1 unit

Increase flow by 1 unit

Increase flow by 1 unit

Ford-Fulkerson Algorithm - Runtime

Define an augmenting path to be a path from $s \to t$ in the residual graph G_f (using edges of non-zero weight)

Overview: Repeatedly add the flow of any augmenting path

Ford-Fulkerson max-flow algorithm:

- Initialize f(e) = 0 for all $e \in E$
- Construct the residual network G_f
- While there is an augmenting path p in G_f :
 - Let $c = \min_{u,v \in p} c_f(u,v)$

Time to find an augmenting path:

Number of iterations of While loop:

- Add c units of flow to G based on the augmenting path p
- Update the residual network G_f for the updated flow

Ford-Fulkerson Algorithm - Runtime

Define an augmenting path to be a path from $s \to t$ in the residual graph G_f (using edges of non-zero weight)

Overview: Repeatedly add the flow of any augmenting path

Ford-Fulkerson max-flow algorithm:

- Initialize f(e) = 0 for all $e \in E$
- Construct the residual network G_f
- While there is an augmenting path p in G_f :
 - Let $c = \min_{u,v \in p} c_f(u,v)$
 - Add c units of flow to G based on the augmenting path p
 - Update the residual network G_f for the updated flow

Time to find an augmenting path: BFS: $\Theta(V + E)$

Number of iterations of While loop: |f|

$$\Theta(E \cdot |f|)$$

- Initialize f(e) = 0 for all $e \in E$
- Construct the residual network G_f
- While there is an augmenting path p in G_f :
 - Let $c = \min_{u,v \in p} c_f(u,v)$
 - Add c units of flow to G based on the augmenting path p
 - Update the residual network G_f for the updated flow

- Initialize f(e) = 0 for all $e \in E$
- Construct the residual network G_f
- While there is an augmenting path p in G_f :
 - Let $c = \min_{u,v \in p} c_f(u,v)$
 - Add c units of flow to G based on the augmenting path p
 - Update the residual network G_f for the updated flow

- Initialize f(e) = 0 for all $e \in E$
- Construct the residual network G_f
- While there is an augmenting path p in G_f :
 - Let $c = \min_{u,v \in p} c_f(u,v)$
 - Add c units of flow to G based on the augmenting path p
 - Update the residual network G_f for the updated flow

- Initialize f(e) = 0 for all $e \in E$
- Construct the residual network G_f
- While there is an augmenting path p in G_f :

Each time we increase flow by 1 Loop runs 200 times

- Let $c = \min_{u,v \in p} c_f(u,v)$
- Add c units of flow to G based on the augmenting path p
- Update the residual network G_f for the updated flow

Can We Avoid this?

- Edmonds-Karp Algorithm: choose augmenting path with fewest hops
- Running time: $\Theta(\min(|E||f^*|,|V||E|^2)) = O(|V||E|^2)$ Edmonds-Karp max-flow algorithm:
 - Initialize f(e) = 0 for all $e \in E$
 - Construct the residual network G_f
 - While there is an augmenting path in G_f , let p be the path with fewest hops:
 - Let $c = \min_{u,v \in p} c_f(u,v)$
 - Add c units of flow to G based on the augmenting path p
 - Update the residual network G_f for the updated flow

Can We Avoid this?

- Edmonds-Karp Algorithm: choose augmenting path with fewest hops
- Running time: $\Theta(\min(|E||f^*|, |V||E|^2))$ Edmonds-Karp max-flow algorithm:
 - Initialize f(e) = 0 for all $e \in E$
 - Construct the residual network G_f
 - While there is an augmenting path in G_f , let p be the path with fewest hops:
 - Let $c = \min_{u,v \in p} c_f(u,v)$
 - Add c units of flow to G based on the augmenting path p
 - Update the residual network G_f for the updated flow

How to find this?
Use breadth-first search (BFS)!

Edmonds-Karp = Ford-Fulkerson using BFS to find augmenting path