Legrövidebb utak egy forrásból*

Vadász Péter

1 Elméleti összefoglaló [1]

Gyakori feladat, hogy egy gráf egy adott csúcsából más csúcsokba vezető legrövidebb utakat keresünk. Gondolhatunk például navigációs rendszerre, ahol a feladat két város közti legrövidebb út meghatározása. Ebben az esetben a városokat csúcsokkal, a köztük vezető utakat élekkel reprezentálhatjuk. Egy ilyen feladat esetén az úthossz többféleképpen is értelmezhető, az előző példa esetén vehetjük a városok között vezető utak hosszát és ezzel súlyozhatjuk az éleket. Korábban a szélességi bejárásnál az élek száma jelentette az út hosszát, most az élek súlyozását fogjuk figyelembe venni.

A megoldandó feladat általánosan: Adott egy $G:G_w$ tetszőleges élsúlyozott gráf és s start csúcs. Keressük a start csúcsból induló legrövidebb utakat minden olyan G-beli csúcsba, amely elérhető s-ből.

Külön meg kell említenünk a **negatív élsúlyok** esetét is. A következő algoritmusok közül kettő (Bellman-Ford, DAG) negatív élsúlyokkal is tud dolgozni, egy (Dijkstra) nem. Amennyiben a gráf tartalmaz a start csúcsból elérhető **negatív összsúlyú kört**, akkor a legrövidebb utak problémának nincs megoldása. Egy negatív összsúlyú körön újra és újra végighaladva folyamatosan legrövidebb utakat találnánk megállás nélkül. Fontos feladat, hogy amennyiben negatív élsúlyú gráfokkal dolgozunk, fel tudjuk ismerni a negatív összsúlyú kört (Bellman-Ford algoritmus), ellenkező esetben az algoritmusunk végtelen működésbe kezdhet.

Alapvetően **irányított gráfokkal** foglalkozunk, de a feladat analóg módon **irányítatlan gráfok** esetén is megoldható, ebben az esetben azonban nem engedhetünk meg negatív éleket

^{*}Dr Ásványi Tibor jegyzete alapján

sem. Irányítatlan esetben egy G gráfot egy speciális irányított gráffal reprezentálunk, ahol ha $(u,v) \in G.E$, akkor $(v,u) \in G.E$ és G.w(u,v) = G.w(v,u) (ld. előadás).

A következő algoritmusok esetén a **fokozatos közelítés** technikáját alakalmazzuk a legrövidebb utak kiszámításához. Minden $u \in G.V$ csúcs esetén nyilvántartjuk az oda vezető eddig talált legrövidebb út hosszát: ezt d(u) jelöli, valamint ezen az úton az u csúcs közvetlen megelőzőjét, amit $\pi(u)$ jelöl. Az algoritmus működése során amennyiben egy $v \in G.V$ csúcs esetén az eddigieknél rövidebb utat találunk, akkor módosítjuk a csúcshoz tartozó d(v) és $\pi(v)$ értékeket. A start csúcsra d(s) = 0 és $\pi(s) = \emptyset$, ha pedig egy $v \in G.V$ csúcs nem érhető el s-ből, akkor $d(v) = \infty$ és $\pi(v) = \emptyset$.

2 Dijkstra algoritmus

A Dijkstra algoritmus előfeltétele, hogy a gráfban nem lehet negatív súlyú él, azaz egy $G: G_w$ gráfra $\forall (u, v) \in G.E$ élre $G.w(u, v) \geq 0$.

Az algoritmus a 1. ábrán látható.

Ábra 1.: Dijkstra algoritmus [1]

A Dijkstra algoritmus egy mohó algoritmus, minden lépésben azt a csúcsot választja kiterjesztésre (feldolgozásra), melybe a start csúcsból a legrövidebb utat találta (az adott időpontig). Ehhez egy minimum prioritásos sort használ segédadatszerkezetként, a prioritásokat minden v csúcsra d(v) értékek adják. Kezdetben minden csúcs bent van a prioritásos sorban, a start csúcs prioritása 0, a többi csúcsé ∞ . Amikor egy csúcs kikerül

a sorból, akkor oda már a legrövidebb út vezet (bizonyítható), ezért a későbbiekben nem kell többet foglalkozni vele. Az algoritmus második ciklusának feltételében megfigyelhető a $d(u) < \infty$ feltétel is. Ha a sorból egy olyan csúcs kerül ki, melynek prioritása ∞ , az csak akkor lehet, ha nem érhető el a start csúcsból (ellenkező esetben már tudnánk az oda vezető út hosszát). Ez azonban azt jelenti, hogy a sorban már csak olyan csúcsok vagy csúcs maradt, ami tehát nem érhető el a start csúcsból ezért az algoritmus megállhat.

Az algoritmus **futási idejét** befolyásolja a prioritásos sor implementációja is, amit célszerű minimum kupaccal elkészíteni. Ha egy csúcshoz jobb utat találunk, mint az eddig kiszámolt, akkor a prioritásos sort is aktualizálni kell. A gráf minden csúcsát és minden élét legfeljebb egyszer dolgozzuk fel, a futási idő:

 $MT(n,m) \in O((n+m)*\log n), mT(n,m) \in \Theta(n),$ ahol n a gráf csúcsainak, m a gráf éleinek száma.

2.1 Példák

1. példa: Szemléltessük a Dijkstra algoritmus működését az alábbi G gráfon! Minden $v \in G.V$ csúcshoz adjuk meg d(v) és $\pi(v)$ értékeket, az aktuálisan kiterjesztett csúcsot és a prioritásos sor tartalmát! Adjuk meg a legrövidebb utak fáját is!

Start csúcs: a

d értékek Q -ban						kiterjesztett csúcs:d	π címkék változása					sai
a	b	С	d	е	f		a	b	С	d	e	f
0	∞	∞	∞	∞	∞	_	Ø	Ø	Ø	Ø	Ø	Ø
	5	∞	4	2	∞	a:0		a		a	a	
	5	∞	4		3	e : 2						е
	5	6	4			f: 3			f			
	5	6				d:4						
		6				b : 5						
						c : 6						
0	5	6	4	2	3	eredmény	Ø	a	f	a	a	е

A legrövidebb utak fája:

2. példa: Szemléltessük a Dijkstra algoritmus működését az alábbi G gráfon! Minden $v \in G.V$ csúcshoz adjuk meg d(v) és $\pi(v)$ értékeket, az aktuálisan kiterjesztett csúcsot és a prioritásos sor tartalmát! Adjuk meg a legrövidebb utak fáját is!

Start csúcs: a

d értékek Q -ban					1	kiterjesztett csúcs:d	π címkék változásai					
a	b	c	d	е	f		a	b	c	d	е	f
0	∞	∞	∞	∞	∞	_	Ø	Ø	Ø	Ø	Ø	Ø
	3	∞	6	2	∞	a:0		a		a	a	
	3	∞	6		5	e : 2						e
		4	6		5	b:3			b			
			5		5	c: 4				c		
					5	d:5						
0	3	4	5	2	5	eredmény	Ø	a	b	c	a	е

A legrövidebb utak fája:

3. példa: Az alábbi gráf segítségével nézzük meg, mi történik, ha negatív élsúlyokat is használunk!

d értékek Q -ban					kiterjesztett csúcs:d	π címkék változásai				
a	b	c	d	e		a	b	c	d	e
0	∞	∞	∞	∞	_	Ø	Ø	Ø	Ø	Ø
	2	2	1	∞	a:0		a	a	a	
	2	2		2	d:1					d
		2	0	2	b : 2				b	
				2	c : 2					
0	2	2	0	2	eredmény	Ø	a	a	b	d

Láthatjuk, hogy \boldsymbol{b} csúcs kiterjesztésekor optimálisabb utat találunk \boldsymbol{d} csúcsba, hiszen 2+-2=0, ami jobb, mint a korábban talált 1 hosszú út. A problémát az okozza, hogy \boldsymbol{d} csúcs már nincs a prioritásos sorban, és többet nem kerül kiterjesztésre, ami összeségében hibás végeredményhez vezet, mivel így az algoritmus nem "veszi észre", hogy \boldsymbol{e} csúcshoz is vezet optimálisabb út \boldsymbol{b} -n keresztül.

A Dijkstra algoritmus elméleti alapjainál megfogalmaztunk egy állítást, miszerint, ha egy csúcs kikerül a sorból, akkor oda már optimális út vezet. Észrevehető, hogy ez az állítás nem teljesül negatív élsúlyok esetén.

4. példa:

Készítsük el a Dijkstra algoritmust, szomszédossági éllistás gráfábrázolás esetén!

Az alábbi algoritmusban feltesszük, hogy a gráf csúcsait 1-től n-ig sorszámozzuk, ahol \boldsymbol{n} értéke adott.

3 Legrövidebb utak egy forrásból DAG esetén

Adott $G: G_w$ irányított gráf, melyben nincs a start csúcsból elérhető kör (így természetesen negatív összsúlyú kör sem lehet), a gráf tartalmazhat negatív éleket is. Ebben az esetben létezik aszimptotikusan optimális algoritmus az adott csúcsból induló legrövidebb utak meghatározásához. Készítsük el a gráf részleges topologikus rendezését (teljes topologikus rendezés is készíthető) mélységi keresés (DFS) segítségével. Ha a gráf mégis tartalmazna kört, a DFS futása közben ez kiderül és ekkor leállíthatjuk az algoritmust. Ezután terjesszük ki a csúcsokat a topologikus rendezésnek megfelelő sorrendben.

Ábra 2.: Legrövidebb utak DAG esetén - fő eljárás [1]

Ábra 3.: Legrövidebb utak DAG esetén - topologikus rendezés [1]

Ábra 4.: Legrövidebb utak DAG esetén - kiterjesztés [1]

A futási idő a topologikus rendezés és a csúcsok kiterjesztése (minden csúcsot és élt legfeljebb egyszer terjesztünk ki) alapján: $MT(n,m) \in \Theta(n+m), mT(n,m) \in \Theta(n)$, ahol n a gráf csúcsainak, m a gráf éleinek száma.

3.1 Példák

5. példa: Szemléltessük a DAG legrövidebb utak egy forrásból algoritmus működését az alábbi G gráfon! Először készítsük el a részleges topologikus rendezést, jelöljük az egyes

csúcsok elérési és befejezési számait is! Minden $v \in G.V$ csúcshoz adjuk meg d(v) és $\pi(v)$ értékeket és az aktuálisan kiterjesztett csúcsot! Adjuk meg a legrövidebb utak fáját is!

Start csúcs: a

Mélységi keresés segítségével készítsük el a részleges topologikus rendezést, az a csúcsból indulva:

A csúcsok topologikus sorrendjét megkaphatjuk, a befejezési számok szerint csökkenő sorrendben haladva: **a, f, d, c, e, b** (A csúcsot, feldolgozásának befejezésekor, verembe tesszük. A start csúcs kerül a verem tetejére.)

d értékek							kiterjesztett csúcs:d	π címkék változásai					i	
a	b	c	d	e	f	g		a	b	c	d	e	f	g
0	∞	8	∞	∞	∞	8	_	Ø	Ø	Ø	Ø	Ø	Ø	Ø
	4		1		2		a:0		a		a		a	
				3			f : 2					f		
	2	2					d:1		d	d				
							c:2							
							e:3							
0	2	2	1	3	2	∞	eredmény	Ø	d	d	a	f	a	Ø

Az eredeti gráf (balra) és a legrövidebb utak fája (jobbra):

4 Sor alapú Bellman-Ford algoritmus

A sor alapú Bellman-Ford algoritmus a szélességi bejárás egy speciális módosulata. Irányítatlan gráf esetén az algoritmus akkor ad megoldást, ha a gráf nem tartalmaz a start csúcsból elérhető negatív súlyú élt, irányított esetben azonban megendett a negatív súlyú él, de a start csúcsból elérhető negatív összsúlyú kör nem. A sor alapú Bellman-Ford algoritmus egyik előnye, hogy képes felismerni, ha van a gráfban a start csúcsból elérhető negatív összsúlyú kör és ekkor az algoritmus leállítható, továbbá a kör is detektálható.

A sor alapú Bellman-Ford algoritmus a szélességi bejáráshoz hasonlóan egy sort használ segédadatszerkezetként. Kezdetben csak a start csúcs van a sorban, de egy csúcs többször

is visszakerülhet a sorba. A szélességi bejáráshoz hasonlóan azt is tároljuk, hogy az egyes csúcsokhoz hány élből álló út vezet (jelölés e(u)). Egy n csúcsú gráf esetén két különböző csúcs között legfeljebb n-1 élből álló optimális út vezethet, ezért ha az algoritmus működése során valamely $u \in G.V$ csúcs kiterjesztésekor e(u) = n, akkor negatív összsúlyú kört találtunk.

A sor alapú Bellman-Ford algoritmus először a start csúcsból elérhető 1 élből álló legrövidebb utakat határozza meg, majd a start csúcsból elérhető 2 élből álló optimális utakat, egészen n-1-ig. Használjuk a **menet** fogalmát is, amely legkönnyebben rekurzív módon definiálható:

- 0. menet: start csúcs feldolgozása
- \bullet (i+1). menet: az i-edik menet végén a sorban lévő csúcsok feldolgozása

Ábra 5.: A sor alapú Bellman-Ford algoritmus [1]

4.1 Példák

6. példa: Szemléltessük a Bellman-Ford algoritmus működését az alábbi G gráfon! Minden $v \in G.V$ csúcshoz adjuk meg d(v) és $\pi(v)$ értékeket, az aktuálisan kiterjesztett csúcsot és a sor tartalmát! Adjuk meg a legrövidebb utak fáját is!

Start csúcs: a

	d;	e vál	tozás	ai		kiterjesztés:d;e	Q	π változásai				menet		
a	b	С	d	е	f			a	b	c	d	е	f	
0;0	∞	∞	∞	∞	∞	_	(a)	Ø	Ø	Ø	Ø	Ø	Ø	_
	3;1		6;1	2;1		a: 0;0	⟨ b, d, e ⟩		a		a	a		0
		4;2				b: 3;1	⟨ d, e, c ⟩			b				1
						d: 6;1	⟨ e, c ⟩							1
					5;2	e: 2;1	⟨ c, f ⟩						е	1
			5;3			c: 4;2	⟨ f, d ⟩				c			2
						f: 5;2	⟨ d ⟩							2
						d: 5;3	()							3
0	3	4	5	2	5	eredmény	_	Ø	a	b	с	a	е	_

A legrövidebb utak fája:

A példa során négy menetet hajtott végre az algoritmus ([0..3]). Láthatjuk, hogy a nulladik menetben a start csúcsot dolgozzuk fel, majd az első menetben azokat a $v \in G.V$

csúcsokat, melyeket a start csúcsból legalább egy élen keresztül érünk el, azaz $e(v) \ge 1$, és így tovább.

7. példa: Szemléltessük a Bellman-Ford algoritmus működését az alábbi negatív összsúlyú kört tartalmazó G gráfon! Minden $v \in G.V$ csúcshoz adjuk meg d(v) és $\pi(v)$ értékeket, az aktuálisan kiterjesztett csúcsot és a sor tartalmát!

Start csúcs: a

d;	e vált	ozásai		kiterjesztés:d;e	Q	π változásai				menet
a	b	С	d			a	b	c	d	
0;0	∞	∞	∞	-	(a)	Ø	Ø	Ø	Ø	_
	2;1		3;1	a: 0;0	⟨ b, d ⟩		a		a	0
			-3;2	b : 2;1	⟨ d ⟩				b	1
		-2;3		d:-3;2	(c)			d		1
-1; 4				c:-2;3	(a)	С				2

A táblázat utolsó sorában azt láthatjuk, hogy \boldsymbol{a} csúcshoz 4 élből álló utat találtunk, ami ellentmond annak, hogy a 4 csúcsú gráfban tetszőleges körmentes út legfeljebb 3 élből állhat. Ezért kört tartalmazó utat találtunk. Ha viszont a talált kör nem lenne negatív, a talált út nem lehetne javító út a korábban talált körmentes úthoz képest. Következőleg negatív kört találtunk. Az is ezt mutatja, hogy most a start csúcsnak a \boldsymbol{c} csúcs a szülője.

8. példa:

Készítsük el a sor-alapú Bellman-Ford algoritmust, csúcsmátrixos gráfreprezentáció esetén!

Az alábbi algoritmusban feltesszük, hogy a gráf csúcsait 1-től n-ig sorszámozzuk, ahol \boldsymbol{n} értéke adott.

4.2 Gyakorlati alkalmazás[2]

A sor-alapú Bellman-Ford algoritmus egy elosztott (távolságvektoros) változatát számítógépes hálózatoknál routing protokollok is használják az optimális útvonalválasztáshoz. Korábban az ARPANET útválasztó algoritmusa volt.

Irodalomjegyzék

- [1] Dr Ásványi Tibor Algoritmusok és adatszerkezetek II. előadásjegyzet Élsúlyozott gráfok és algoritmusaik
- $[2]\,$ Andrew S. Tanenbaum, David J.Wetherall $Sz\'{a}m\'{i}t\'{o}g\'{e}ph\'{a}l\'{o}zatok$