Axioms of Probability

- 1. $0 \le \Pr(A) \le 1$
- 2. Pr(S) = 1
- 3. If $A_1, A_2, ...$ are mutually exclusive (disjoint), i.e. $A_i \cap A_j = \emptyset$ when $i \neq j$, then $\Pr(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} \Pr(A_i)$ In particular, if events A and B are mutually exclusive, then $Pr(A \cup B) = Pr(A) + Pr(B)$

Properties of Probability

- 1. $Pr(\emptyset) = 0$
- 2. If $A_1, A_2, ..., A_n$ are mutually exclusive events, then $\Pr(\bigcup_{i=1}^n A_i) = \sum_{i=1}^n \Pr(A_i)$
- 3. Pr(A') = 1 Pr(A)
- 4. $Pr(A) = Pr(A \cap B) + Pr(A \cap B')$
- 5. $Pr(A \cup B) = Pr(A) + Pr(B) Pr(A \cap B)$
- 6. $Pr(A \cup B \cup C) = Pr(A) + Pr(B) + Pr(C) Pr(A \cap B) Pr(B \cap C) Pr(A \cap C) + Pr(A \cap B \cap C)$

Conditional Probability, $P(A \mid B)$

- $\Pr(A \mid B) = \frac{\Pr(A \cap B)}{\Pr(B)}$, if $\Pr(A) \neq 0$ For fixed A, $\Pr(B \mid A)$ satisfies the postulates of probability.
- False positive: Pr(+ | condition)

Multiplication rule

- $Pr(A \cap B) = Pr(A) Pr(B \mid A) = Pr(B) Pr(A \mid B)$, providing Pr(A) > 0, Pr(B) > 0
- $Pr(A \cap B \cap C) = Pr(A) Pr(B \mid A) Pr(C \mid A \cap B)$
- $\Pr(A_1 \cap ... \cap A_n) = \Pr(A_1) \Pr(A_2 \mid A_1) \Pr(A_3 \mid A_1 \cap A_2) ... \Pr(A_n \mid A_1 \cap ... \cap A_{n-1})$

The Law of Total Probability

- Let $A_1, A_2, ..., A_n$ be a partition of sample space S (mutually exclusive and exhaustive events s.t. $A_i \cap A_j = \emptyset$ for $i \neq j$ and $\bigcup_{i=1}^n A_i = S$).
- Then $\Pr(B) = \sum_{i=1}^{n} \Pr(B \cap A_i) = \sum_{i=1}^{n} \Pr(A_i) \Pr(B \mid A_i)$

Bayes' Theorem

- Let $A_1, A_2, ..., A_n$ be a partition of S• $\Pr(A_k \mid B) = \frac{\Pr(A_k)\Pr(B|A_k)}{\sum_{i=1}^n \Pr(A_i)\Pr(B|A_i)} = \frac{\Pr(A_k)\Pr(B|A_k)}{\Pr(B)}, \ k \in [1, n]$

Independent Events

• Definition: iff $Pr(A \cap B) = Pr(A) Pr(B)$

Properties

- Suppose Pr(A) > 0, Pr(B) > 0, A and B are independent:
 - $-\operatorname{Pr}(B \mid A) = \operatorname{Pr}(B)$ and $\operatorname{Pr}(A \mid B) = \operatorname{Pr}(A)$
 - A and B cannot be mutually exclusive (and vice versa)
- The sample space S and \emptyset are independent of any event
- If $A \subset B$, then A and B are dependent unless B = S

Theorem

If A, B are indep, then so are A and B', A' and B, A' and B'.

n Independent Events

• Pairwise Independent Events:

Events $A_1, A_2, ..., A_n$ are pairwise indep iff $Pr(A_i \cap A_j) = Pr(A_i) Pr(A_j)$

• Mutually Independent:

Events $A_1, A_2, ..., A_n$ are (mutually) independent iff for any subset $\{A_{i_1}, A_{i_2}, ..., A_{i_k}\}$ of $A_1, A_2, ..., A_n$, $\Pr(A_{i_1} \cap A_{i_2} \cap ... \cap A_{i_k}) = \Pr(A_{i_1}) \Pr(A_{i_2}) ... \Pr(A_{i_k})$

Remarks

- $A_1, A_2, ..., A_n$ are mutually independent \Leftrightarrow for any pair of events A_j, A_k where $j \neq k$, the multiplication rule holds, for any 3 distinct events, the multiplication rule holds, and so on $\Pr(A_1 \cap A_2 \cap ... \cap A_n) = \Pr(A_1) \Pr(A_2)... \Pr(A_n)$. In total there are $2^n - n - 1$ different cases.
- Mutually indep ⇒ pairwise indep (not the converse)
- Suppose $A_1, A_2, ..., A_n$ are mutually indep events, let $B_i = A_i$ or A_i' , $i \in [1, n]$. Then $B_1, B_2, ..., B_n$ are also mutually indep

Discrete Probability Distributions

Discrete R.V.

Let X be an R.V. If R_X is finite or countable infinite, X is discrete R.V.

Probability Function (p.f.) or Probability Mass Function (p.m.f.)

- For a discrete R.V., each value X has a certain probability f(x). Such a function f(x) is called the p.f.
- The collection of pairs $(x_i, f(x_i))$ is prob distribution of X
- The probability of $X = x_i$ denoted by $f(x_i)$ must satisfy:

 - 1. $f(x_i) \ge 0 \forall x_i$ 2. $\sum_{i=1}^{\infty} f(x_i) = 1$

Continuous Probability Distributions

Continuous R.V.

Suppose that R_X is an interval or a collection of intervals, then X is a continuous R.V.

Probability Density Function (p.d.f.)

- Let X be a continuous R.V.
- p.d.f. f(x) is a function satisfying:
 - 1. $f(x) \ge 0 \ \forall x \in R_X$
 - 2. $\int_{R_X} f(x) dx = 1$ or $\int_{-\infty}^{\infty} f(x) dx = 1$ as $f(x) = 0 \ \forall x \notin R_X$
 - 3. $\forall c, d : c < d \text{ (i.e. } (c, d) \subset R_X), \Pr(c \leq X \leq d) = \int_c^d f(x) dx$

Remarks

- $\Pr(c \le X \le d) = \int_c^d f(x) dx$ represents area under the graph of the p.d.f. f(x) between x = c and x = d
- Let x_0 be a fixed value, $Pr(X = x_0) = 0$
- \leq and < can be used interchangeably in a prob statement.
- Pr(A) = 0 does not necessarily imply $A = \emptyset$
- $R_X \in [a, b] \Rightarrow f(x) = 0 \ \forall x \notin [a, b]$

Cumulative Distribution Function (c.d.f.)

- Let X be an R.V., discrete or continuous.
- F(x) is a c.d.f. of X where $F(x) = \Pr(X \le x)$

c.d.f. for Discrete R.V.

- $F(x) = \sum_{t \le x} f(t) = \sum_{t \le x} \Pr(X = t)$ c.d.f. of a discrete R.V. is a step function
- $\forall a, b \text{ s.t. } a \leq b, \Pr(a \leq X \leq b) = \Pr(X \leq b) \Pr(X < a) = F(b) F(a^-) \text{ where } a^- \text{ is the largest possible value of } X \text{ that } a \leq b, \Pr(a \leq X \leq b) = \Pr(X \leq b) \Pr(X < a) = F(b) F(a^-) \text{ where } a^- \text{ is the largest possible value of } X \text{ that } a \leq b, \Pr(a \leq X \leq b) = \Pr(X \leq b) \Pr(X \leq a) = F(b) F(a^-) \text{ where } a^- \text{ is the largest possible value of } X \text{ that } a \leq b, \Pr(a \leq X \leq b) = \Pr(X \leq b) \Pr(X \leq a) = F(b) F(a^-) \text{ where } a^- \text{ is the largest possible value of } X \text{ that } a \leq b, \Pr(a \leq X \leq b) = \Pr(X \leq b) \Pr(X \leq a) = F(b) F(a^-) \text{ where } a^- \text{ is the largest possible value of } X \text{ that } a \leq b, \Pr(a \leq X \leq b) = \Pr(X \leq b) \Pr(X \leq a) = F(b) F(a^-) \text{ where } a^- \text{ is the largest possible value of } X \text{ that } a \leq b \leq b$ is strictly less than a
- $R_X \subset \mathbb{Z}, a, b \in \mathbb{Z} \Rightarrow$
 - $-\Pr(a \le X \le b) = \Pr(X = a \text{ or } a + 1 \text{ or ... or } b) = F(b) F(a 1)$
 - Taking a = b, Pr(X = a) = F(a) F(a 1)

c.d.f. for Continuous R.V.

- $F(x) = \int_{-\infty}^{\infty} f(t)dt$ $f(x) = \frac{dF(x)}{dx}$ if the derivative exists $\Pr(a \le X \le b) = \Pr(a < X \le b) = F(b) F(a)$
- F(x) is a non-decreasing function: $x_1 < x_2 \Rightarrow F(x_1) \leq F(x_2)$
- $0 \le F(x) \le 1$

Mean and Variance of an R.V.

Expected Value / Mean / Mathematical Expectation

- Discrete: $E(X) = \mu_X = \sum_i x_i f(x_i) = \sum_x x f(x)$ Continuous: $E(X) = \mu_X = \int_{-\infty}^{\infty} x f(x) dx$
- Remark: The expected value exists provided the sum/integral exists

Expectation of a function of an R.V.

 $\forall g(X)$ with p.f. $f_X(x)$

- Discrete: $E[g(X)] = \sum_x g(x) f_X(x)$ Continuous: $E[g(X)] = \int_{-\infty}^{\infty} g(x) f_X(x) dx$
- Provided the sum/integral exists.

Variance $(\sigma_X^2 = V(X))$

- $g(x)=(x-\mu_X)^2$, Let X be an R.V. with p.f. f(x)• $\sigma_X^2=V(X)=E[(X-\mu_X)^2]$ $E[(X-\mu_X)^2]=\begin{cases} \sum_x (x-\mu_X)^2 f_X(x) \text{ if X is discrete} \\ \int_{-\infty}^{\infty} (x-\mu_X)^2 f_X(X) dx \text{ if X is continuous} \end{cases}$
- $V(X) \ge 0$, $V(X) = E(X^2) [E(X)]^2$
- Standard deviation = $\sigma_X = \sqrt{V(X)}$

Properties of Expectation

- 1. E(aX + b) = aE(X) + b
- 2. $V(X) = E(X^2) [E(X)]^2$
- 3. $V(aX + b) = a^2V(X)$

Joint Distributions

- 1. X and Y are independent if $f_{x,y}(x,y) = f_x(x)f_y(y)$ for all x and y.
- 2. Marginal distribution: $f_x(x) = \int_{-\infty}^{\infty} f_{x,y}(x,y)dy$
- 3. Conditional distribution: $f_{x|y}(x|y) = f_{x,y}(x,y)/f_y(y)$.
- 4. Covariance: cov(x,y) = E(XY) E(X)E(Y). If X and Y are independent, cov(x,y) = 0. Also, var(aX + bY) = 0 $a^2var(X) + b^2var(Y) + 2ab \cdot cov(X, Y).$

Probability Distributions

Binomial

Number of successes in n trials, trials must be independent and have the same probability.

$$X \sim B(n, p), P(X = x) = \binom{n}{x} p^x (1 - p)^{n-x}$$

 $E(X) = np, V(X) = np(1 - p)$

Negative Binomial

Number of trials before k success. $X \sim NB(k, p)$, X = number of trials till k-th success occurs $PF = fx(X) = P(X = x) = {\binom{x-1}{k-1}} p^k (1-p)^{x-k}$

$$E(X) = \frac{k}{p}, V(X) = \frac{(1-p)k}{p^2}$$

Geometric distribution is special case where k = 1

Poisson

Number of events occurring in a fixed period of time/space.

 $X \sim Poisson(\lambda), \lambda > 0$ is the expected number of occurrences in the given time.

$$fx(k) = P(X = k) = \frac{e^{-\lambda} \lambda^k}{k!}$$

$$E(X) = V(X) = \lambda$$

Uniform

 $x \sim U(a, b)$

Discrete

Expectation: $\frac{1}{k} \sum_{i=1}^{k} x_i$ Variance: $\frac{1}{k} \sum_{i=1}^{k} x_i^2 - \mu_x^2$

Continuous

Expectation: $\frac{a+b}{2}$ Variance: $\frac{(b-a)^2}{12}$

Exponential

 $x \sim exp(\lambda)$

PDF:
$$f_x(x) = \begin{cases} \lambda e^{-\lambda x} & if x \ge 0, \\ 0 & if x < 0 \end{cases}$$
 CDF: $f_x(x) = \begin{cases} 1 - e^{-\lambda x} & if x \ge 0, \\ 0 & if x < 0 \end{cases}$

No memory property, a to b = 0 to b - a

 $P(X > x) = e^{-\lambda x}$

Normal Distribution

$$X \sim N(\mu, \sigma^2)$$

PDF:
$$fx(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-(x-\mu)^2/(2\sigma^2)}$$

$$E(X) = \mu \ V(X) = \sigma^2$$

Normalisation

$$Z = \frac{X-\mu}{\sigma}, Z \sim N(0,1), PDF = \phi(\cdot) CDF = \Phi(\cdot)$$

Sampling and Sampling Distributions

For random samples of size n taken from population with mean μ_x and variance σ_x^2 Sampling distribution of sample mean \overline{X} has mean μ_x and variance $\frac{\sigma_x^2}{n}$

Sample Variance

$$S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2$$

Central Limit Theorem

CLT states that samples of large n, sums and means of random samples follow normal distribution. $\frac{\overline{X}-\mu}{\sigma/\sqrt{n}} \sim N(0,1), \ \overline{X} \sim N(\mu, \frac{\sigma^2}{n})$

χ^2 Distribution

Let Z be standard normal variable. Z^2 follows a χ^2 distribution with one degree of freedom.

 $Z_1^2+Z_2^2+\ldots+Z_n^2$ follows a χ^2 distribution with n degrees of freedom. Let $Y\sim\chi^2(n), E(Y)=n, var(Y)=2n$

Let
$$Y \sim \chi^2(n)$$
, $E(Y) = n$, $var(Y) = 2n$

For large n, $\chi^2(n)$ follows N(n, 2n).

t-Distribution

 $Z \sim N(0,1)$ and $U \sim \chi^2(n)$ then $T = \frac{Z}{\sqrt{U/n}}$ follows t-distribution with n degrees of freedom.

$$E(T) = 0, var(T) = n/(n-2)$$

 $\frac{X-\mu}{S/\sqrt{n}}$ follows t distribution

F-Distribution

$$X \sim F(m,n), F = \frac{U/m}{V/n}$$
 where $U \sim \chi^2(m)$ and $V \sim \chi^2(n)$ $E(X) = \frac{n}{n-2}$

Estimation

CI For Mean

Case	Population	σ	n	Confidence Interval
I	Normal	known	any	$\overline{x} \pm z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}$
II	any	known	large	$\overline{x} \pm z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}$
III	Normal	unknown	small	$\overline{x} \pm t_{n-1;\alpha/2} \cdot \frac{s}{\sqrt{n}}$
IV	any	unknown	large	$\overline{x} \pm z_{\alpha/2} \cdot \frac{s}{\sqrt{n}}$

Paired Data

if n is small and population is normally distributed $\overline{d} \pm t_{n-1;\alpha/2} \cdot \frac{s_D}{\sqrt{n}}$ if n is large, $\overline{d} \pm z_{\alpha/2} \cdot \frac{s_D}{\sqrt{n}}$

Hypothesis Tests

- 1. Set up null vs alternative hypotheses.
- 2. Determine the level of significance.
- 3. Identify statistic, distribution, small/large sample & rejection criteria.
- 4. Compute based on data and compare by one/double-side.
- 5. Make conclusion on whether to reject null hypothesis

With variance known and population normal, use $Z = \frac{\overline{X} - \mu}{\sigma/\sqrt{n}}$

Comparing means: Paired Data

$$\begin{aligned} D_i &= X_i - Y_i \\ \text{Test Statistic} &= T = \frac{\overline{D} - \mu_D}{S_D / \sqrt{n}} \end{aligned}$$