## **FIZIKA**

# EMELT SZINTŰ ÍRÁSBELI VIZSGA

2007. május 14. 8:00

Az írásbeli vizsga időtartama: 240 perc

| Pótlapok sz | záma |
|-------------|------|
| Tisztázati  |      |
| Piszkozati  |      |

## OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM

| Fizika — emelt szint | Azonosító<br>jel: |  |  |  |  |  |  |  |
|----------------------|-------------------|--|--|--|--|--|--|--|

#### Fontos tudnivalók

A feladatlap megoldásához 240 perc áll rendelkezésére.

Olvassa el figyelmesen a feladatok előtti utasításokat, és gondosan ossza be idejét! A feladatokat tetszőleges sorrendben oldhatja meg.

Használható segédeszközök: zsebszámológép, függvénytáblázat.

Ha valamelyik feladat megoldásához nem elég a rendelkezésre álló hely, kérjen pótlapot! A pótlapon tüntesse fel a feladat sorszámát is!

írásbeli vizsga 0711 2 / 16 2007. május 14.

### ELSŐ RÉSZ

Az alábbi kérdésekre adott válaszok közül minden esetben pontosan egy jó. Írja be a helyesnek tartott válasz betűjelét a jobb oldali fehér négyzetbe! Ha szükségesnek tartja, kisebb számításokat, rajzokat készíthet a feladatlapon.

1. Megfigyelhetünk-e holdfogyatkozást félhold idején?



- A) Nem, holdfogyatkozás csakis telihold idején fordulhat elő.
- **B)** Igen, hiszen ez az állapot már maga is holdfogyatkozás, mivel a Föld leárnyékolja a holdat.
- C) Nem, mivel ilyenkor a Föld árnyéka mindig a Hold sötét felére esik.
- **D)** Igen, de csak akkor látható szabad szemmel, ha a Föld árnyéka a Hold megvilágított felére esik.

2 pont

- 2. Egy asztalon ellökött test a súrlódás miatt bizonyos út megtétele után megáll. Hogyan változik meg a megtett út hossza, ha a kezdősebességet is és a súrlódási együtthatót is az eredeti értékük kétszeresére növeljük?
  - A) A megtett út hossza felére csökken.
  - B) A megtett út ugyanakkora marad.
  - C) A megtett út hossza az eredeti kétszeresére nő.

3. Egy függőleges, 3L magasságú, szájával lefelé fordított hengerben m tömegű dugattyú ismeretlen gázt zár el. A dugattyú távolsága a henger zárt tetejétől L, a bezárt gáz nyomása a légköri nyomás fele. A dugattyúra szintén m tömegű súlyt akasztunk, és óvatosan elengedjük. Hol állapodik meg a dugattyú?



- A) A henger tetejétől kevesebb mint 2 L távolságra.
- **B)** A henger tetejétől 2 *L* távolságra.
- C) A henger tetejétől több mint 2 L távolságra.
- **D)** Sehol nem állapodik meg, kiesik a hengerből.



4. Egy síkkondenzátort – a K kapcsoló zárásával – *U* feszültségre töltünk. Valamivel később a kondenzátor lemezeit távolabb húzzuk egymástól, és azt tapasztaljuk, hogy eközben a lemezek közti *E* térerősség állandó maradt. Zárva volt-e ekkor még a kapcsoló?



- A) Nem, a kapcsoló már nyitva volt.
- **B)** Igen, a kapcsoló még zárva volt.
- C) A megadott adatok alapján nem lehet eldönteni.



5. Milyen feladatot lát el a transzformátor?

- A) Mechanikai energiából elektromos áramot állít elő.
- B) A feszültséget változtatja meg.
- C) A távvezetéken érkező nagyfeszültséget árammá alakítja át.



| F  | ızıka –        | – emelt szint                                                                                       | jel:                                    |                |      |                |      |       |     |       |      |      |      |      |  |
|----|----------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------|----------------|------|----------------|------|-------|-----|-------|------|------|------|------|--|
| 6. | Leho           | et-e a fény sebessége 20                                                                            | 00 000 km/s?                            |                |      |                |      |       |     |       |      |      |      |      |  |
|    | A)<br>B)<br>C) | Nem lehet, mert a fény<br>Lehet, ha a fény nem l<br>Lehet, ha egy tőlünk 1<br>ki.                   | égüres térben terj                      | ed.            |      |                |      | dó (  | csi | illag | g bo | csá  | itja |      |  |
|    |                |                                                                                                     |                                         |                |      |                |      |       |     |       |      | 2    | pont | t    |  |
| 7. | Igaz<br>leveş  | -e az alábbi állítás: A l<br>gőé?                                                                   | hideg levegő sűri                       | ĭsé            | ge 1 | nind           | ig n | nag   | yo  | obb,  | , mi | nt   | a me | eleg |  |
|    | A) B) C) D)    | Igen, mert lehűlés hatá<br>Nem, mert a levegő sű<br>Nem, mert a hőmérsék<br>Igen, mert a hideg leve | irűsége a nyomás<br>klet kiegyenlítődil | tól i<br>c, íg | s fi | igg.<br>ı sűrí | iség | ; is. |     |       |      |      |      |      |  |
|    |                |                                                                                                     |                                         |                |      |                |      |       |     |       |      | 2    | pont | t    |  |
| 8. | Mely           | yik állítás köthető Heis                                                                            | senberg nevéhez:                        | ?              |      |                |      |       |     |       |      |      |      |      |  |
|    | A)<br>B)       | Minél jobb szakember<br>laboratóriumban.<br>Minden egymástól füg                                    |                                         |                |      |                |      |       |     |       |      | OZ 8 | ì    |      |  |
|    | C)<br>D)       | tartózkodhat.<br>Egy foton energiáját a<br>Egy atomi részecske h<br>tetszés szerinti pontos         | elye és lendülete                       |                |      | _              | ) me | eg e  | eg: | yide  | jűle | eg   |      |      |  |
|    |                |                                                                                                     |                                         |                |      |                |      |       |     |       |      | 2    | pont | t    |  |

| Fiz | zika –                 | – emelt szint                                                                               | Azonosí<br>jel:    | tó     |      |            |      |     |     |     |     |      |       |         |      |    |    |
|-----|------------------------|---------------------------------------------------------------------------------------------|--------------------|--------|------|------------|------|-----|-----|-----|-----|------|-------|---------|------|----|----|
|     | felfe                  | testet függőlegesen i<br>lé, majd pedig két n<br>asság alatt földet? (A                     | násodpercig esett  | lefel  | é. I | <b>Köz</b> | elít | őle |     |     |     |      |       |         |      |    | si |
|     | A)<br>B)<br>C)         | 5 méterrel.<br>15 méterrel.<br>45 méterrel.                                                 |                    |        |      |            |      |     |     |     |     |      |       |         |      |    |    |
|     |                        |                                                                                             |                    |        |      |            |      |     |     |     |     |      | 2     | pont    |      |    |    |
|     |                        | lábbi állítások egy 4<br>l az igazat!                                                       | l,5 V-os zsebtelep | ore vo | ona  | tkoz       | zna  | ak. | Va  | ála | SSZ | a k  | ci az | z állít | táso | ok |    |
|     | A) B) C)               | A zsebtelep elektron<br>telepet.<br>A zsebtelepből mind<br>A zsebtelep kapocsá<br>erejénél. | dig ugyanakkora á  | iram   | nye  | rhet       | tő.  |     | •   |     |     |      |       |         |      |    | ļ  |
|     |                        |                                                                                             |                    |        |      |            |      |     |     |     |     |      | 2     | pont    |      |    |    |
|     |                        | a közepén rögzített                                                                         |                    |        |      |            |      |     |     |     |     |      |       |         |      |    |    |
|     | мек.<br>А)<br>В)<br>С) | kora hullámhosszús<br>0,2 m.<br>0,4 m.<br>0,8 m.                                            | agu Iongitudinal   | is all | onu  | illai      | no   | Kŀ  | (el | etk | ezr | ieti | nek   |         |      |    |    |
|     |                        |                                                                                             |                    |        |      |            |      |     |     |     |     |      | 2     | pont    |      |    |    |

| Fiz | zika –         | – emelt szint                                                                              | Azonosító<br>jel:    |      |        |      |       |                  |      |      |      |        |     |   |    |   |
|-----|----------------|--------------------------------------------------------------------------------------------|----------------------|------|--------|------|-------|------------------|------|------|------|--------|-----|---|----|---|
| 12. | térbe          | en mozgást végezhet<br>en van, ahol az elektr<br>orára?                                    | 00                   |      |        | •    |       |                  | _    |      |      |        |     | _ |    |   |
|     | <b>A</b> )     | A töltött részecske vé<br>mozgást.                                                         | egezhet egyenes vo   | nal  | ú egye | enle | etes  | sen              | ı gy | ors  | ulć  | )      |     |   |    |   |
|     | B)             | A töltött részecske vé                                                                     | gezhet egyenletes    | kör  | mozg   | ást. |       |                  |      |      |      |        |     |   |    |   |
|     | <b>C</b> )     | A töltött részecske vé                                                                     | 0.                   |      |        | enle | etes  | s n              | nozg | gás  | t.   |        |     |   |    |   |
|     | D)             | Az előbbi mozgások                                                                         | egyike sem képzell   | net  | ő el.  |      |       |                  |      |      |      |        |     |   |    |   |
|     |                |                                                                                            |                      |      |        |      |       |                  |      |      |      | 2 pc   | nt  |   |    |   |
| 13. | Mely           | rik optikai eszköz kép                                                                     | oes nagyított képe   | t al | kotni  | ?    |       |                  |      |      |      |        |     |   |    |   |
|     | A)             | A homorú tükör a geo                                                                       | ometriai középpont   | tól  | távola | abb  | i tá  | ırg              | yról | l.   |      |        |     |   |    |   |
|     | B)             | A domború tükör a ge                                                                       |                      |      | s a fó | kus  | zpo   | ont              | t kö | zöt  | ti t | árgyr  | ól. |   |    |   |
|     | <b>C</b> )     | A szórólencse a fókus                                                                      |                      |      |        | -1-  | ź _ 1 | l_ <del></del> . | 11   | : 42 |      | / 1    |     |   |    |   |
|     | D)             | A gyűjtőlencse a fóku                                                                      | isz és a ketszeres i | OKU  | isztav | OIS  | ag i  | KOZ              | zou  | 1 ta | rgy  | /101.  |     |   |    |   |
|     |                |                                                                                            |                      |      |        |      |       |                  |      |      |      | 2 pc   | nt  |   |    |   |
| 14. | távol          | radioaktív izotóp fele<br>Iságra a sugárzó anya<br>nyi idő múlva jelez a<br>200 nap múlva. | gtól, mely 9600 b    | eüt  | ést sz | ám   | lál   | t p              | erc  | en   | kér  | ıt. Kö |     |   | ül |   |
|     | <b>B</b> )     | 300 nap múlva.                                                                             |                      |      |        |      |       |                  |      |      |      |        | i   |   |    |   |
|     | C)<br>D)       | 400 nap múlva.<br>800 nap múlva.                                                           |                      |      |        |      |       |                  |      |      |      |        |     |   |    |   |
|     |                |                                                                                            |                      |      |        |      |       |                  |      |      |      | 2 pc   | ont |   |    |   |
| 15. |                | műhold körpályán ke<br>zatlan sugarú körpál                                                | _                    |      |        |      |       | •                |      |      |      |        | _   |   | •  | t |
|     | A)<br>B)<br>C) | A műhold keringési i<br>A műhold keringési i<br>A műhold keringési i                       | deje nem változna.   |      |        |      |       |                  |      |      |      |        |     |   |    |   |
|     |                |                                                                                            |                      |      |        |      |       |                  |      |      |      | 2 pc   | ont |   |    |   |

| Azonosító |  |  |  |  |  |  |  |  |
|-----------|--|--|--|--|--|--|--|--|
| jel:      |  |  |  |  |  |  |  |  |

### MÁSODIK RÉSZ

Az alábbi három téma közül válasszon ki egyet, és fejtse ki másfél-két oldal terjedelemben, összefüggő ismertetés formájában! Ügyeljen a szabatos, világos fogalmazásra, a logikus gondolatmenetre, a helyesírásra, mivel az értékelésbe ez is beleszámít! Mondanivalóját nem kell feltétlenül a megadott szempontok sorrendjében kifejtenie. A megoldást a következő oldalra írhatja.

#### 1. A matematikai inga

A tudós Huygens Christiannak köszönhető, hogy ma a **lógó** órákhoz van alkalmaztatva... Midőn a lógó óra későbben jár, lógóját rövidítsd meg, a dróton lévő súlyocskát feljebb tolván, s ellenkezőt cselekedj, ha siet.

Varga Márton: A gyönyörű természet tudománnya - Nagyvárad, 1808



Ismertesse a matematikai inga fogalmát, jellemezze mozgását! Nevezze meg a matematikai ingát leíró, illetve mozgását jellemző legfontosabb fizikai mennyiségeket, adja meg azok mértékegységeit s a köztük fennálló összefüggéseket! Értelmezze, hogyan használható a matematikai inga időmérésre a lengés csillapodása ellenére! Hogyan alkalmazható a matematikai inga a gravitációs gyorsulás mérésére? Adja meg a Földön és a Holdon azonos lengésidejű matematikai ingák hosszának arányát!

#### 2. Maghasadás, magfúzió

Szilárd Leó 1934-ben szabadalmaztatta a neutron által kiváltott nukleáris láncreakció ötletét. Az azóta eltelt több mint hetven évben mind a fegyverkezés, mind a békés energiatermelés területén teret nyert a magenergia felhasználása. Hasznáról és veszélyeiről a viták állandósultak.



Ismertesse a maghasadás és magfúzió bekövetkeztének energetikai feltételét! Ismertesse és értelmezze azon atommagok körét, melyek hasadásra, illetve fúzióra képesek! Írja fel a hidrogén 2-es és 3-as tömegszámú izotópjának 4-es tömegszámú héliummá való egyesülését leíró folyamatot! Ismertesse egy-egy példán, hol fordul elő természetes magfúzió az Univerzumban, illetve melyek a mesterségesen előidézett hasadás békés és háborús felhasználásának lehetőségei! Elemezze röviden a hasadással és fúzióval megvalósított békés energiatermelés jelenlegi helyzetét, a jövő lehetőségeit, a magenergia felhasználásának előnyeit, nehézségeit és hátrányait!

| Azonosító |  |  |  |  |  |  |  |  |
|-----------|--|--|--|--|--|--|--|--|
| jel:      |  |  |  |  |  |  |  |  |

#### 3. A Merkúr világa

A Merkúrra ellátogatni nem éppen kívánatos, mert ott hétszerte oly világos és meleg van, mint a mi Földünkön. Ha rajta napvilágánál sétálnánk, 200 foknyi meleget kellene elviselnünk, melynél ruháinkról leolvadnának az ólomgombok, ami nem volna kellemes.



(Berstein: Természet könyv, Budapest 1875)

| Nap körüli keringésének periódusa   | 87,9 földi nap                       |
|-------------------------------------|--------------------------------------|
| Tengely körüli forgásának periódusa | 58,6 földi nap                       |
| Átlagos nappali hőmérséklet         | 350 °C                               |
| Éjszakai hőmérséklet                | -170 °C                              |
| Átmérő                              | ~4880 km (~0,38-ad része a Földének) |
| Átlagos gravitációs gyorsulás       | $3.7 \text{ m/s}^2$                  |
| Sűrűség                             | A Földével közel azonos              |
| Légnyomás                           | A légnyomás elhanyagolható           |

A táblázat adatainak felhasználásával értelmezze és magyarázza a Merkúr fizikai viszonyainak alábbi sajátosságait, s ahol lehet, hasonlítsa össze azokat a Földre jellemző állapotokkal:

- A Merkúron a nappalok és az éjszakák sokkal hosszabb ideig tartanak, mint a Földön.
- A Merkúron hatalmas a nappali és az éjszakai hőmérséklet között a különbség.
- A Merkúron a gravitációs gyorsulás a földi 37 %-a.
- A Merkúr elvesztette légkörét.
- A Merkúr felszínét meteorkráterek sűrűn szabdalják.

| a) | b) | c) | d) | e) | f) | Kifejtés | Tartalom | Összesen |
|----|----|----|----|----|----|----------|----------|----------|
|    |    |    |    |    |    | 5 pont   | 18 pont  | 23 pont  |
|    |    |    |    |    |    |          |          |          |

| Fizika — emelt szint | Azonosító |  |  |  |  |  |  |   |  |
|----------------------|-----------|--|--|--|--|--|--|---|--|
| T IZINA              | jel:      |  |  |  |  |  |  | l |  |

## HARMADIK RÉSZ

Oldja meg a következő feladatokat! Megállapításait – a feladattól függően – szövegesen, rajzzal vagy számítással indokolja is! Ügyeljen arra is, hogy a használt jelölések egyértelműek legyenek!

1. A Naprendszerben egy, a Földhöz közeli helyen a mágneses indukció értéke  $B=10^{-5}~{\rm T}$ . A napszéllel érkező elektronok  $\left(e^{-}\right)$  és  $\alpha$ -részecskék  $\left({}_{2}^{4}He^{++}\right)$  ennek hatására spirális pályán kezdenek mozogni. Mennyi a körmozgásukhoz rendelhető periódusidejük aránya?  $m_{\alpha}=6,6\cdot10^{-27}~{\rm kg}$  ,  $m_{e}=0,91\cdot10^{-30}~{\rm kg}$  ,  $e=1,6\cdot10^{-19}~{\rm C}$ 

Összesen

2. Egy hőszigetelt edényben 1 kg szilárd anyagot kezdünk melegíteni. Tudjuk, hogy a melegítéshez használt elektromos fűtőszál teljesítménye állandó, valamint hogy az anyag fajhője szilárd fázisban  $2400\frac{J}{kg\,K}$ . Az alábbi táblázatban található hőmérsékletadatokat olvastuk le a melegítés bizonyos időszakaiban.

| t (perc)      | 0    | 1    | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9     | 10    | 11    |
|---------------|------|------|------|------|------|------|------|------|------|-------|-------|-------|
| <i>T</i> (°C) | 64,0 | 74,4 | 84,0 | 84,3 | 83,6 | 84,1 | 88,9 | 94,0 | 99,2 | 104,0 | 104,2 | 104,1 |

Ábrázolja a hőmérsékletet az idő függvényében! Mennyi az ismeretlen anyag olvadáspontja, forráspontja, olvadáshője és fajhője folyadék fázisban?

Összesen

|                      | <u> </u>          |  |  |  |  |  |  |  |
|----------------------|-------------------|--|--|--|--|--|--|--|
| Fizika — emelt szint | Azonosító<br>jel: |  |  |  |  |  |  |  |

3. Egy testet 5 N állandó erővel tudunk egyenletesen felfelé húzni egy  $\alpha=30^\circ$  hajlásszögű lejtőn. Ugyanezen a lejtőn lefelé szabadon csúszva a test 5 m/s sebességről 5 m hosszú úton áll meg. Mekkora a test tömege és mekkora a súrlódási együttható?

írásbeli vizsga 0711 13 / 16 2007. május 14.

| Fizika — emelt szint | Azonosító<br>jel: |  |  |  |  |  |  |  |
|----------------------|-------------------|--|--|--|--|--|--|--|

Összesen

4. A Bohr-féle atommodell szerint az atommag körül az elektronok csak meghatározott sugarú körpályákon keringhetnek. A hidrogénatomban található elektron első (legbelső) pályájának sugara  $r=5,3\cdot10^{-11}\,\mathrm{m}$ . Mekkora az ezen pályán keringő elektron sebessége, mozgási energiája, de Broglie-hullámhosza? Hogyan viszonyul ez a hullámhossz a pálya kerületéhez?

 $m_e = 0.91 \cdot 10^{-30} \text{ kg}, \quad e = 1.6 \cdot 10^{-19} \text{ C}, \quad h = 6.6 \cdot 10^{-34} \text{ Js}$ 

Összesen

| Fizika — emelt szint Azonosító jel: |  |  |
|-------------------------------------|--|--|

## Figyelem! Az értékelő tanár tölti ki!

|                               | maximális<br>pontszám | elért<br>pontszám |
|-------------------------------|-----------------------|-------------------|
| I. Feleletválasztós kérdéssor | 30                    |                   |
| II. Esszé: tartalom           | 18                    |                   |
| II. Esszé: kifejtés módja     | 5                     |                   |
| III. Összetett feladatok      | 47                    |                   |
| ÖSSZESEN                      | 100                   |                   |

|        | javító tanár |  |
|--------|--------------|--|
| Dátum: |              |  |
|        |              |  |

|                               | elért<br>pontszám | programba<br>beírt<br>pontszám |
|-------------------------------|-------------------|--------------------------------|
| I. Feleletválasztós kérdéssor |                   |                                |
| II. Esszé: tartalom           |                   |                                |
| II. Esszé: kifejtés módja     |                   |                                |
| III. Összetett feladatok      |                   |                                |

| javító tanár | jegyző |  |  |  |  |
|--------------|--------|--|--|--|--|
| Dátum:       | Dátum: |  |  |  |  |