Partie 01: Mots, Langages

<u>1.</u> Mots:

<u>I.</u> <u>Définitions préliminaires</u>:

1. Alphabet:

On appelle alphabet un ensemble fini quelconque. Les éléments d'un alphabet sont appelés lettres, caractères ou symboles.

```
Exemple 01:

X = \{a, b,...,z\}

X = \{0,1,...,9\}
```

2. Mot:

On appelle mot sur un alphabet X toute suite finie a₁,a₂,...,a_n d'éléments de X. On note usuellement un mot en écrivant en séquence, sans séparateur, les lettres qui la composent.

```
Exemple 02: X=\{a, b,...,z\}

W_1=ab; w_2=thp sont deux mots définis sur X.
```

Notations:

- Le mot vide est noté ε . ($|\varepsilon| = 0$)
- Les mots formés à partir d'un alphabet X est noté X^* . ($|X| = \infty$).
- X+ est l'ensemble des mots non vides formés à partir d'un alphabet X :

$$X^* = X^+ \cup \{ \epsilon \}$$

```
Exemple 03: X=\{a, b\}

X^*=\{\epsilon, a, b, ab, ababa, aaa,...\}
```

3. Concaténation :

On peut définir la concaténation comme la juxtaposition de deux mots w_1 et w_2 et on note $w_1.w_2$

On vérifie facilement que la concaténation est une opération associative admettant le mot vide comme élément neutre. Soit :

- $\forall x, y, z \in X^* \quad x.(y.z) = (x.y).z$
- $\forall x \in X^* \quad x.\epsilon = \epsilon.x$

4. Longueur:

On appelle longueur d'une chaîne le nombre d'éléments de la suite la définissant. La longueur d'un mot w sera notée |w|.

Formellement on a:

- **■** | ε | **=**0
- |a|=1; avec $a \in X$
- |a.w|=1+|w|; $\forall a \in X \text{ et } \forall w \in X^*$

Exercice 01: Montrer que $\forall w_1, w_2 \in X^*$, on a $|w_1, w_2| = |w_1| + |w_2|$ Indications: La démonstration se fait par récurrence sur le nombre de lettres de w_1 (ou bien w_2).

<u>5. Miroir</u>:

Le miroir d'un mot w noté w^R est le mot w 'lue à l'envers'. Par exemple : w=thp, w^R =pht. La définition récursive du miroir d'un mot :

$$\mathbf{w}^{\mathbf{R}} = \begin{cases} \mathbf{w} & \text{Si } \mathbf{w} = \varepsilon \\ \mathbf{v}^{\mathbf{R}} \mathbf{a} & \text{Si } \mathbf{w} = a\mathbf{v} ; a \in X, \mathbf{v} \in X^* \end{cases}$$

Exercice 02: Montrer que $\forall u, v \in X^*$, $(uv)^R = v^R u^R$

Solution:

Soit $u,v \in X^*$. On démontre $(uv)^R = v^R u^R$ par récurrence sur |u|:

Si |u| = 0 alors $u = \varepsilon = u^R$ et $(uv)^R = (\varepsilon v)^R = v^R \varepsilon = v^R u^R$

On suppose maintenant que la formule est vraie $\forall u,v \in X^*$ tel que : $\mid u \mid \leq n$

Et vérifions qu'elle restera vraie pour l'ordre n+1.

Soit u=a.w tel que |u|=n+1 avec : $w \in X^*$ (|w|=n) et $a \in X$

On a : $(uv)^R = (a.wv)^R = (wv)^R a = v^R w^R a = v^R u^R$. (u=a.w et donc $u^R = w^R a$)

Conclusion:

 $\forall u,v \in X^*$, $(uv)^R = v^R u^R$

Par hypothèse de récurrence tous les mots w de taille <=n vérifiant la propriété, c'est-à-dire :

$$(wv)^R = v^R w^R$$

6. Puissance d'un mot:

La puissance d'un mot w est défini par récurrence comme suit :

$$\mathbf{w}^0 = \mathbf{\varepsilon}$$

 $\mathbf{w}^{n+1} = \mathbf{w}^n \cdot \mathbf{w}$

7. Factorisation:

Etant donné un mot w sur un alphabet X, un mot u est un sous-mot de w s'il existe $x,y \in X^*$ tels que w = xuy. Le sous mot u est un facteur gauche (préfixe) de w si x = ϵ ; un facteur droit (suffixe) de w si y = ϵ .

Exemple 04:

Le mot abba admet les sous mots ε , a, b, ab, bb, ba, abba.

- Les facteurs gauches de abba sont ε, a, ab, abb et abba;
- Ses facteurs droits sont ε , a, ba, bba et abba.

II. Lemme de Levi:

Soient $w=u_1.v_1=u_2.v_2$ on a alors 03 cas possibles : (w_1u_1,v_1,u_2) et $v_2 \in X^*$

1. Si $|u_1| = |u_2|$ Alors $u_1 = u_2$ et $v_1 = v_2$

2. Si $|u_1| < |u_2|$ Alors $u_2 = u_1$.h et $v_1 = h.v_2$

3. Si $|u_1| > |u_2|$ Alors $u_1 = u_2$.h et $v_2 = h.v_1$

III. Exercice corrigé sur les mots:

Enoncé:

- 1. Montrer que Si xy = yz, avec $x \neq \varepsilon$ alors $\exists u, v \in X^*$ et un entier $k \ge 0$ tels que : x = uv, $y = (uv)^k u = u(vu)^k$, z = vu.
- 2. Montrer que Si xy = yx, avec $x \neq \varepsilon$, $y \neq \varepsilon$ alors $\exists u \in X^*$ et deux indices i et j tels que : $x = u^i$ et $y = u^j$.

<u>1. Preuve</u>:

- Si $|x| \ge |y|$, alors le résultat précédent nous permet d'écrire directement x = yt, ce qui, en identifiant u et y, et v à t, nous permet de dériver directement les égalités voulues pour k = 0.
- Le cas où |y| > |x| se traite par induction sur la longueur de y. Le cas où |y| vaut 1 étant immédiat,
- Supposons la relation vraie pour tout y de longueur au moins n, et considérons y avec |y| = n+1. Il existe alors t tel que y = xt, d'où l'on dérive xtz = xxt, soit encore tz = xt, avec $|t| \le n$. L'hypothèse de récurrence garantit l'existence de u et v tels que x = uv et $t = (uv)^k u$, d'où $y = uv(uv)^k u = (uv)^{k+1} u$.

2. <u>Démonstration</u>:

• Ce résultat s'obtient de nouveau par induction sur la longueur de xy. Pour une longueur égale à 2 le résultat vaut trivialement. Supposons le valable jusqu'à la longueur n, et considérons xy de longueur n + 1. En utilisant le résultant précédent, il existe u et v tels que x = uv, $y = (uv)^k u$, d'où on déduit : $uv(uv)^k u = (uv)^k uuv$, soit encore uv = vu. En utilisant l'hypothèse de récurrence il vient alors : $u = t^i$, $v = t^i$, puis encore $x = t^{i+j}$ et $y = t^{i+k(i+j)}$, qui est le résultat recherché.

2. Langages:

Définitions:

Soit X un alphabet, on appelle langage formel défini sur X, tout sous ensemble de X^* .

Exemple 05:

 L_1 =L'ensemble des mots {a, b}* qui commence par a et se termine par b. Donc : L_1 ={ab, aaab, aaaab, abbbab,...}.

 L_2 =L'ensemble des mots {a, b}* de taille inférieure strictement à 3. L_2 ={ ϵ , a, aa, b, bb, ab, ba}.

- Un langage fini est un langage qui contient un nombre fini de mots. Un langage fini peut être décrit par l'énumération des mots qui le composent.
 - Un langage **vide** est un langage qui ne contient aucun mot et il est noté \emptyset .
 - Un langage est dit propre s'il ne contient pas le mot vide.
 - Le langage \emptyset est **différent** du langage $\{\varepsilon\}$.

Opérations sur les langages :

L'union:	$L_1 \cup L_2 = \{w / w \in L_1 \text{ ou } w \in L_2\}.$
L'intersection :	$L_1 \cap L_2 = \{w / w \in L_1 \text{ et } w \in L_2\}.$
L'inclusion:	$L_1 \subseteq L_2$ Si et seulement si $\forall w$ (Si $w \in L_1 \Rightarrow w \in L_2$)
La différence :	$L_1 - L_2 = \{ w / w \in L_1 \text{ et } w \notin L_2 \}.$
La concaténation :	$L_1 . L_2 = \{w_1.w_2 / w_1 \in L_1 \text{ et } w_2 \in L_2\}.$
Langage miroir	$L^R=\{w/w^R\in L\}.$
Complément :	$L' = \{ w / w \in X^* \text{ et } w \notin L \}.$
Puissance concaténative :	$L^0 = \{\varepsilon\}$ et $L^{n+1} = L^n . L$
Fermeture itérative ou étoile :	$L^*=L^0\cup L^1\cup\ldots\ldots\cup L^k\cup\ldots\ldots=\cup_{i\geq 0}\ L^i$
	$L^{+}=\cup_{i\geq 1}L^{i}$
	\varnothing .L ₁ =L ₁ . \varnothing = \varnothing
	$\{\varepsilon\}.L_1=L_1.\{\varepsilon\}=L$
	$L^+=L$. $L^*=L^*$. L
	$L^* = (L^*)^*$
	L*.L*=L*

Propriétés sur la concaténation des langages :

- La concaténation des langages n'est pas idempotente, c'est-à-dire : $L.L \neq L$.
- La concaténation est associative.
- La concaténation des langages est distributive par rapport à l'union des langages.
- La concaténation des langages n'est pas distributive par rapport à l'intersection des langages : $L_1.(L_2 \cap L_3) \neq L_1.L_2 \cap L_2.L_3$
- Soient L et M deux langages :

$$(L^* . M^*)^* = (L \cup M)^*$$

 $(L.M)^*L = L.(M.L)^*$
 $(L.M \cup L)^* .L = L.(M.L \cup L)^*$