2020 IC Design Contest

Cell-Based IC Design Category for Graduate Level

Seam Carving Engine

1.問題描述

請完成接縫裁剪引擎 - Seam Carving Engine (後文以 SCE 表示)的電路設計。Seam Carving 是一個可以針對影像內容做正確縮放的演算法,seam 所代表含意為影像中最不重要的一連串 Pixels。以圖一(a)為例,一張需要縮小的影像,假若直接將影像水平方向縮小,如圖一(b),影像中的人、城堡將會因為影像縮小而造成物體的比例被拉的非常狹長。若使用 Seam Carving 技術找出如圖一(c) 數條紅色的 seams,當影像需要縮小時,只需移除這些紅色的 seams 即可達到縮小之效果,縮小後結果如圖一(d),注意影像中的人、城堡其比例與原圖完全相同,影像卻已水平縮小了,此乃 seam carving 技術的奧秘。但由於時間的關係,本題只需要將電路功能做到找出數條紅色的 seams,並將這些 seams 的座標依序輸出即可,不需要製作影像縮放功能。有關 SCE 電路詳細運算方法將描述於 2.3 節。

圖一、 SCE 電路功能範例

本次 IC 設計競賽比賽時間為上午 08:30 到下午 20:30。當 IC 設計競賽結束後,本題會根據第三節中的評分標準進行評分。本題目之測試樣本置於 /usr/cad/icc2020/bgc/icc2020cb.tar ,請執行以下指令取得測試樣本:

tar xvf /usr/cad/icc2020/bgc/icc2020cb.tar

2.設計規格

2.1 系統方塊圖

圖二、系統方塊圖

2.2 輸入/輸出介面

表 1-輸入/輸出訊號

Signal Name	I/O	Width	Simple Description			
clk	I	1	Clock Signal (positive edge trigger)			
rst	I	1	Reset Signal (active high) °		Reset Signal (active high) °	
addr	О	15	Read Image ROM Address。Host 端的 ROM 已存放一張 188x128 影像大小的完整 Pixel 值,請自行使用 addr, 讀取欲擷取的 Pixel 值,本題沒有讀取的次數限制。 註:本題影像尺寸固定為 188x128,Piexl 值為 8bits。 註:影像的 Pixels 值儲存到 ROM 的對應位址,請參考 圖三及 2.3.1 說明。			
din	I	8	Read Image ROM Data。當指定完欲擷取 Pixel 的位址, 經一個 Cycle 後,ROM 輸出的 Pixel 值,會透過 ROM 的 Q Pin 輸出至 SCE 電路的 din,即可獲得影像中一個 Pixel 值。 註:一個 Clock Cycle 僅能讀取影像中的一個 Pixel 值。			
threshold	I	6	Threshold of Sum of Energy。每張影像的 threshold 值不同,本題已將各影像的 threshold 值寫在 Testbench (TB),TB 會透過 SCE 的 threshold 腳位直接輸入該值,該值整個模擬過程其數值固定不變。測試樣本 1 的 threshold 為 35,測試樣本 2 的 threshold 為 15。			

			註:有關 sum of energy、threshold 的含意,可参考 2.3.2.2
			與 2.3.2.3。
			Seam Coordinate Output。將數條 seams 的座標透過 SCE
			電路 dout 腳位依序輸出。由於每條 seam 的座標有 128
1 ,		8	個,且固定從影像的 Last Row 依序輸出至 First Row,
dout	O		因此輸出的座標,僅需輸出 X 軸的座標,y 軸不必輸出。
			註:影像 First Row、Last Row、x 軸、y 軸的定義,請
			參考圖三。
			Output Valid Signal。當為 high,表示目前輸出的 dout 座
valid	О	1	標值為有效的輸出,反之則輸出為 low。

2.3 系統描述

2.3.1 SCE 電路的輸入

本電路的測試影像皆為 188x128 固定尺寸,該影像在 SCE 電路開始運作前已存放於 ROM(rom_32768x8),如圖三所示,座標(y,x)=(0,0)的 Pixel 值,已存於 ROM 的第 0 個位址,座標 (y,x)=(0,1)的 Pixel 值,已存於 ROM 的第 1 個位址,...,座標(y,x)=(127,187)的 Pixel 值,已存於 ROM 的第 24063 個位址,而 ROM 剩餘未用到的空間(即 ROM 位址 24064~32767)在此已設定為 0。參賽者請依照自己演算法的需求,使用 SCE 電路的 addr 腳位去讀取欲擷取的 Pixel 值,經 1 個 Cycle 後,該 Pixel 值會從 SCE 電路的 din 腳位輸入進來,即可獲得影像中 1 個 Pixel 值。

註:本題「沒有」規定讀取 ROM 資料的次數限制,要反覆讀、跳著讀,都是可以的。

圖三、 一張 188x128 原始影像存放於 ROM 的儲存方法

2.3.2 SCE 電路的運算方法與輸出

SCE 電路整個運算過程可細分成三個步驟,如下。

圖四、 計算 Energy 並 Normalize 到 0~255 之範例

2.3.2.1 步驟 1 -計算 Energy 並 Normalize 到 0~255

圖四(a)為一張影像的最左上角之範例,若要計算一個 Pixel 的 energy,請使用該 Pixel 相鄰的八個 Pixel 依不同的權重值來作計算,八個權重值如圖四(b)所示。在此以座標(1,1)為例,使用圖四(b) x-dedrivative 來計算,計算後結果請取絕對值,最後得到的 35 即為座標(1,1)的 energy 值,如圖四(c),影像中的其餘 Pixels 也依照此方法來作計算,最後整張影像 energy 計算完畢後,請找出該影像 energy 的最大值作正規化(normalize),讓影像的 energy 能夠調整至 $0\sim255$,假設本範例 energy 的最大值為 897,原先 energy 為 35 經 normalize 計算後得到 9.949,本題的小數位數採無條件捨去法,只取整數,因此 normalize 後最終結果為 9,如圖四(d)。

註 1:超出影像範圍的邊界處,以 0 來作計算,因此圖四範例座標(0,0)的 Pixel,其 energy 為 241。

註2:energy計算後結果若為負值,請取絕對值。

註 3:每張影像的最大 energy 值是不同的,上述數字 897 只是圖四範例的假設值。

註 4: normalize 後結果,只取整數,小數位數直接捨去。

圖五、 計算 sum of energy 之範例

2.3.2.2 步驟 2-計算 Sum of Energy 並記錄 min normalized energy 的 path

由於篇幅有限,在此僅舉一張 5x3 尺寸的影像作步驟 2 之運算說明,如圖五所示,該影像每個 Pixel 橘色圈起來的方位處其紅色字體,即為 normalized energy 值,每個 Pixel 藍色圈起來的方位處其黑色字體,即為 sum of energy 值。sum of energy 的運算方法是由原本 normalized energy 值加上前一列 sum of energy 的最小值。以圖五座標(1,1)為例,原始 normalized energy 值為 2 ,往上看前一列有正上方 4 、右上方 3 、左上方 1 三種選擇,由於左上方的 1 是最小值,因此座標(1,1)的 sum of energy 1 原本的 1 是最小值,因此座標1 的 1 的

- 註1:比較前一列 sum of energy 會有正上方、右上方、左上方三種選擇,當值相同時,以正上方 為第一優先,其次為右上方,再其次為左上方,請以此優先順序來存綠色箭頭的紀錄,否則 步驟三 back trace 結果會與標準解答不同。
- 註 2:一張影像 First Row 的 sum of energy 必等於 normalized energy 值,因為 First Row 的前一列已超出影像範圍,請將其視為 0,所以 First Row 的 sum of energy 直接等於 normalized energy 值。

圖六、 backtrace & 座標輸出之範例

2.3.2.3 步驟 3 - backtrace seam & 座標輸出

圖六為前一範例之運算結果進行 backtrace seam,在本範例假設 threshold = 5,觀察此影像的 Last Row,共有兩個橘色圈起來的 Pixel 滿足此條件,此兩點即為兩條 seams 的起點,第 1 條起點 座標(y,x)=(2,1) 沿著之前紀錄的綠色箭頭往上看,看到了(1,1)、(0,0),由於(0,0)就是 First Row,此為該條 seam 的終點,backtrace 結束。若將此條 seam 作 SCE 電路的輸出,由於 y 軸的輸出順序以此範例必為 2 -> 1 -> 0,因此 y 軸的座標值不必輸出,只需輸出 x 軸的座標值,圖六範例的正確輸出值為 1 -> 1 -> 0 ,同理,第 2 條 seam 的輸出值為 4 -> 3 -> 4。上述的值在輸出期間,需將 SCE 電路的 valid 訊號拉為 High。當滿足條件的 seams 全數輸出完畢,SCE 電路模擬結束。

註 1:每張影像 Last Row 有 188 個 sum of energy 值,當這 188 點有滿足(即小於或等於)指定的 threshold 時,這些點就是數條 seam 的起點座標,而<mark>數條 seams 之間的輸出優先順序為由左</mark> 至右,請注意。

註 2:由於影像尺寸固定為 188x128, 每一條 seam 的輸出數量固定為 128 個座標值。

註 3:本題每張影像的 threshold 值不同,測試樣本 1 的 threshold 為 35,測試樣本 2 的 threshold 為 15,這些數值不必記,已設定於 TestBench(即 testfixture.v 檔案)中。

註 4: 當這些 seams 都找出來後,其軌跡就有如圖一(c)之紅色線。

2.4 時序規格

2.4.1 SCE 電路輸入與輸出之時序圖

圖七、(a) SCE 電路輸入之時序圖、(b) SCE 電路輸出之時序圖

- 1. T0~T1 時間點, SCE 電路初始化。
- 2. T1~T2 時間點,為參賽者想到 ROM 去讀取一筆 Pixel 值的範例,T1 時間點,Host 端收到 addr 位址值,經過 ROM 的 ta 存取時間後,即可從 SCE 電路的 din 腳位獲得一筆 Pixel 值, 因此從發送位址出去到收到資料,需花一個 Cycle 時間。剩餘的 Pixel 也依此類推作讀取,在 此不再贅述。
- 3. T3 時間點,當參賽者已將 SCE 電路三個步驟的運算完成後,將數條 seams 的 x 軸的座標依序輸出,T3 是輸出一個 x 軸座標的範例, valid 拉為 high 表示該座標值為有效的輸出,當數條 seams 的座標都依序輸出後,模擬隨即終止。

2.4.2 SARM、ROM 記憶體規時序規格

製作 SCE 電路時,參賽者可能會用到記憶體當 Buffer,本題總共提供兩種記憶體,包括 sram_1024x12、sram_8192x12 兩種記憶體,請自行決定需使用那一種記憶體最適合自己的設計,目標作到最小面積之使用量。若 SCE 電路裡有使用到 SRAM,請記得將一顆或多顆 SRAM 記憶體帶入,以實現合成與 APR 等步驟之用。至於 ROM 已擺在 TestBench,提供影像資料讀取用,晶片實作時 ROM 不必帶入。

有關上述三種記憶體細節規格與記憶體時序圖,詳如記憶體目錄的 PDF 檔中。

3.評分標準

評分方式會依設計完成程度,分成 A、B、C、D 四種等級,排名順序為 A>B>C>D,評分項目僅面積單一項目,主辦單位會依此面積大小作為同等級之評分高低。另外,請參賽者提供一組正確的週期時間(CYCLE TIME)給評分人員純驗證本電路正確性之用。

◆ 評分項目:依"面積"(Area)大小評分

各參賽隊伍將 APR 完成後,面積分析方法如下範例,請任選其一 APR 軟體做分析。

1. IC Compiler Report Area 範例:

```
icc_shell> get_attribute [get_die_area] bbox {0.000 0.000} {1829.000 591.330} => Area =1829.000 x 591.330 = 1,081,542.57 um<sup>2</sup>
```

2. Innovus Report Area 範例:

```
innovus > analyzeFloorplan
```

```
innovus 1> analyzeFloorplan
Start to collect the design information.
Build netlist information for Cell SCE.
Finished collecting the design information.
Average module density = 1.000.
Density for the design = 1.000.
     = stdcell area 31600 sites (53638 um^2) / alloc area 31600 sites (53638 um^2).
Pin Density = 0.01016.
          = total # of pins 6299 / total area 620150.
******************* Analyze Floorplan **************
   Die Area(um^2)
                         : 1083567.35
   Core Area(um^2)
                         : 1054132.55
   Chip Density (Counting Std Cells and MACROs and IOs): 92.401%
   Core Density (Counting Std Cells and MACROs): 94.981%
   Average utilization
                       : 100.000%
   Number of instance(s)
                         : 4272
   Number of Macro(s)
   Number of IO Pin(s)
   Number of Power Domain(s): 0
**************
```

 \Rightarrow Area = 1083567.35 um²

註: 指令 analyzeFloorplan 會破壞已完成 routing 的結果,執行該指令後絕對不可再存檔。

設計完成程度四種等級, 說明如下:

◆ 等級 A: 達成"完成設計"之三項要求

- a、 功能正確, RTL 模擬與標準解答比對完全正確。
- b、 完成 Synthesis, 且 Gate-Level Pre-layout Simulation 結果正確。
- c、 完成 APR, 並達成 APR 必要項目, Gate-Level Post-layout Simulation 結果正確。

註:完成 APR 必要項目

- i. 只需做 Marco layout (即不用包含 IO Pad、Bonding Pad)。
- ii. VDD 與 VSS Power Ring 寬度請各設定為 2um,只須做一組。
- iii. 不需加 Dummy Metal。
- iv. 內建的所有記憶體 SRAM,其 VDD、VSS Pin 務必要連接至 Core Power Ring,寬度請各設定為 2um。
- v. Power Stripe 務必至少加一組,其 VDD、VSS 寬度各設定為 2um。 (Power Stripe 垂直方向至少一組,水平方向可不加)
- vi. 務必要加 Power Rail (follow pin)。
- vii. Core Filler 務必要加。
- viii. APR 後之 GDSII 檔案務必產生。
- ix. 完成 APR, DRC/LVS 完全無誤(見附錄 C 說明)。

註: Power Stripe 指的是直接穿過 core area 的 power line, 見下圖

等級 A 評分方法:

Score = Area

註: Score 越小者,同級名次越好!

註: 此 Area 為 APR 後之結果。

◆ 等級 B:已做到 APR,但等級 A 之"APR 必要項目"有部分不符合,DRC/LVS 錯誤總數量容許5個(含)以下

此等級之成績計算方式如下:

Score = Area x (DRC+LVS 的總錯誤量)

註: Score 越小者,同級名次越好!

註:此 Area 為 APR 後之結果。

◆ 等級 C:僅完成合成,或做到 APR 但 DRC/LVS 錯誤總數量超過 5 個以上 此等級之成績計算方式如下:

Score = Area

註:

- 1. Score 越小者,同級名次越好!
- 2. 等級 C,視 APR 為 Fail,因此此 Area 為合成後之結果
- ◆ 等級 D: 未達成前三等級者,成績計算方式為 All RTL Simulation,比對結果之 error 總數量 越少者,分數越高。

Score = Total errors of All RTL Simulations

註:

- 1. 等級 D, Score 評分方式為所有模擬的 error 總數作相加。
- 2. 等級 D, 視合成與 APR 皆為 Fail, Area 將不予考慮。
- 3. 等級 D, 只以 RTL Simulation 正確率為主, Score 越小者(即 error 越少), 同級名次越好。

附錄 A 設計檔

1. 下表為主辦單位所提供各參賽者的設計檔

表 2、設計檔案說明

檔名 / 目錄	說明
SCE.v	本題之設計檔,已包含系統 Input/Output Port 之宣
	告,請以此檔案作為 SCE 電路之設計。
testfixture.v	本題僅有一個 TestBench,卻有 2 張影像要模擬,因
	此請在模擬期間,自行使用+define+image1、
	+define+image2 參數,作為 2 張影像模擬時的切換。
image1.rom (image1.hex)	本題 2 張影像已放置於 image1.rom、image2.rom,
image2.rom (image2.hex)	此兩檔案為 ROM 要求的特定格式,若參賽者想要
	知道影像詳細內容可以參考 image1.hex、
	image2.hex 。
	在模擬期間,可用+define+image1、+define+image2
	參數即可讓 rom_32768x8.v 檔,分別自動讀取
	image1.rom、image2.rom 的影像資料。
sum_of_energy1.dat	本題 2 張影像最後算出的 sum_of_energy 值,提供
sum_of_energy2.dat	給參賽者純 Debug 用。
	註:本題會有第三張隱藏的影像作測試。
gold1.dat SCE 電路輸出的標準解答, image1 的標準解	
gold2.dat	gold1.dat, image2 的標準解答為 gold2.dat 。
	註:這些檔案已加入至 TestBench, 無需額外設
	定。
22769:27	擺放原始影像資料的 ROM。內含 PDF 檔(ROM 時
rom_32768x8/	序圖)、Verilog 模擬檔案。
sram_1024x12/	SCE 電路可能會使用的 SRAM,作為 Buffer 之用。
sram_8192x12/	內含 PDF 檔(SRAM R/W 時序圖)、Verilog 模擬
	檔、 LIB、DB、LEF、GDSII、FRAM 等檔案。
	LID、DD、LET、GDSH、FRAM 寻倫系。
207 P.C. 1	Design Compiler 作合成之 Constraint 檔案,請自行
SCE_DC.sdc	設定 period 的期望值,但環境相關參數請勿更改。
CCF APP 1	Innovus、IC Compiler 作 APR 之 Constraint 檔案,請
SCE_APR.sdc	自行設定 period 的期望值,但環境相關參數請勿更
	改。
_	使用 Design Compiler 作合成或 IC Compiler Layout
.synopsys_dc.setup	

之初始化設定檔。參賽者請依 Library 實際擺放位置, 自行修改 Search Path 的設定。

註:無論合成或 APR, 只需使用 worst case library。

本
 題會有
 隱藏的
 第三張
 影像作

測試,該影像為前兩張影像的某一張作微調(即亂數地修改幾個 Pixels 值)而製的。

3. 使用 Innovus 作 APR 請注意,模擬時請務必自行加上+ncmaxdelays 參數。例如:

> ncverilog +ncmaxdelays testfixture.v SCE_pr.v tsmc13_neg.v rom_32768x8.v +define+SDF+image1 +access+r

註:本題有2張影像需作模擬,請自行使用+define+image1、+define+image2參數作切換。

附錄 B 測試樣本

本題有 2 張影像的測試樣本,其個別的 threshold 值已設定於 testfixture.v 檔案之 $34\sim38$ 行,而儲存影像的 ROM $44\sim49$ 行,如圖八。

```
30 //SCE CHIP
                                                 ),
             SCE u SCE( .clk
31
                                       (clk
32
                          .rst
                                       (rst
                                                  ),
                                       (din
33
                          .din
                                                  ),
34 `ifdef image2
                          .threshold (6'd15
35
                                                  ),
36 `else
                                       (6'd35
37
                          .threshold
                                                  ),
38 `endif
39
                          .addr
                                       (addr
                                                 ),
40
                          .valid
                                       (valid
41
                          .dout
                                       (dout
                                                  )
                       );
42
43
   //image stored @ rom
44
    rom_32768x8 u_rom( .CLK
                                                 ),
45
                                       (clk
                                       (1'b0
46
                          .CEN
                                                  ),
                                       (addr
                                                 ),
47
                          . A
48
                          .Q
                                       (din
                                                  )
49
                       );
```

圖八、 檔案 testfixture.v 之局部內容

一個 $rom_32768x8.v$ 檔案最多只能存一張影像的資料,本題有 2 張影像要如何都使用此 ROM 模組,觀察圖九 $130\sim135$ 行可知,當模擬時有加上+define+image1 參數,此時 ROM 模組 內容即為影像 1 的資料,同理+define+image2 即為影像 2 的資料,因此當模擬時,請務必準備 image1.rom 及 image2.rom 檔案。

圖九、 檔案 rom 32768x8.v 之局部內容

圖十為測試樣本1之原始影像 Pixels 值。測試樣本2與1的表示方式相同,在此不再贅述。

```
//(000, 000) = 76
01001100
                      4C
                      4n
                              //(000, 001) = 77
01001101
                              //(000, 002) = 80
01010000
                      50
                      4D
                              //(000, 003) = 77
01001101
                              //(000, 004) = 76
                      4C
01001100
                              //(000, 005) = 79
                      4F
01001111
                              //(000, 006) = 78
01001110
                      4E
                      4F
                              //(000, 007) = 79
01001111
                              //(000, 008) = 79
                      4F
01001111
                      4C
                              //(000, 009) = 76
01001100
                      4Α
                              //(000, 010) = 74
01001010
                      49
                              //(000, 011) = 73
01001001
                      49
                              //(000, 012) = 73
01001001
                      48
                              //(000, 013) = 72
01001000
                              //(000, 014) = 72
                      48
01001000
                              //(000, 015) = 73
                      49
01001001
                      4B
                              //(000, 016) = 75
01001011
                              //(000, 017) = 74
                      4A
01001010
```

image1.rom

image1.hex

圖十、 測試樣本 1 之影像 Pixels 值

註:image1.rom 是存放於 ROM 的二進制格式檔案,其影像 Pixel 值與 image1.hex 完全相同。

註:image1.hex 模擬時用不到,此檔案僅提供參賽者查詢整張影像各座標的 Pixel 值。

註:image1.hex 的左半邊為十六進制,右半邊註解區為十進制,以方便參賽者 Debug 使用。

該測試樣本其 seam0 的 x 軸座標輸出範例之標準解答,如圖十一。

```
//seam_00 - 000 coordinate : 073
49
        //seam 00 - 001 coordinate : 074
4Δ
        //seam 00 - 002 coordinate : 075
4R
        //seam 00 - 003 coordinate : 076
4C
4D
        //seam_00 - 004 coordinate : 077
4E
        //seam 00 - 005 coordinate :
4F
        //seam 00 - 006 coordinate :
                                     079
4F
        //seam 00 - 007 coordinate : 079
4F
        //seam 00 - 008 coordinate : 079
39
        //seam_00 - 123 coordinate : 057
        //seam 00 - 124 coordinate : 057
39
        //seam 00 - 125 coordinate : 057
39
39
        //seam 00 - 126 coordinate : 057
        //seam 00 - 127 coordinate : 057
```

gold1.dat

圖十一、 測試樣本 1 - seam0 之 x 軸座標輸出範例

註:gold1.dat 的左半邊為十六進制,右半邊註解區為十進制,同時標示該輸出為哪一個 seam 的 第幾個座標,方便參賽者 Debug 使用。

註:每一組 seam 的輸出,固定為 128 個 x 軸座標值。

附錄 C 設計驗證說明

參賽者繳交資料前應完成 RTL, Gate-Level 與 Physical 三種階段驗證,以確保設計正確性。注意:每組限定只能使用 1 license, 勿使用 Multi-CPU。

- ▶ RTL與Gate-Level 階段:進行RTL simulation、Gate-Level simulation,功能要完全正確。
- ▶ Physical 階段,包含三項驗證重點:
- 1. 依本題各項要求,實現完整且正確的 layout (詳細之各項要求,請見評分標準)。
- 2. 完成 post-layout simulation: 參賽者必須使用 P&R 軟體寫出之 Netlist 檔、SDF 檔完成 post-layout gate-level simulation,以下分為 IC Compiler、Innovus 兩種軟體說明 netlist、 sdf 寫出方式。
 - i. 使用 Synopsys IC Compiler 者,執行步驟如下:

在 IC Compiler 主視窗底下點選

" File > Export > Write SDF..."

Specify Version	Version 2.1	
Instance	空白即可	
File name	SCE_pr.sdf	
Significant digits	2	

按OK。

對應指令: write sdf -version 2.1 SCE pr.sdf

" File > Export > Write Verilog..."

先按 Default

Output verilog file name	SCE pr.v
Output physical only cells	disable
Wire declaration	enable
Backslash before Hierarchy Separator	Enable
All other options	Default value

按OK。

ii. 使用 Cadence Innovus 者,執行步驟如下:

在 Innovus 視窗下點選:

" File \rightarrow Save \rightarrow Netlist..."

Netlist File	SCE pr.v
INCHIST I'IIC	DCD Pr.v

All other options Default value

按 OK。

" Timing → Write SDF... "

Ideal Clock	Disable
SDF Output File:	SCE_pr.sdf

按 OK。

- 3. 完成 DRC 與 LVS 驗證:(驗證方法與以往不同,請注意)
 - A. DRC: 務必使用 Metor Calibre DRC 作驗證
 - a. 準備 P&R 後的 GDSII 檔案,檔名請命名為 SCE pr.gds
 - b. 準備 DRC 驗證檔案, 檔名為 Calibre-drc-cur
 - c. 使用 Metor Calibre DRC 指令作驗證:

calibre -drc Calibre-drc-cur

d. DRC 驗證結果,目標作到如下圖,TOTAL RESULT GENERATED=0

```
--- CALIBRE::DRC-F EXECUTIVE MODULE COMPLETED. CPU TIME = 1 REAL TIME = 2
--- TOTAL RULECHECKS EXECUTED = 701
--- TOTAL RESULTS GENERATED = 0
--- DRC RESULTS DATABASE FILE = DRC_RES.db (ASCII)
--- CALIBRE::DRC-F COMPLETED - Wed Apr 8 10:51:05 2020
--- TOTAL CPU TIME = 1 REAL TIME = 2
--- SUMMARY REPORT FILE = DRC.rep
```

B. LVS: 務必使用 P&R 軟體內建之 LVS 作驗證

以下分為 IC Compiler、Innovus 兩種軟體說明執行步驟。

- i. 使用 Synopsys IC Compiler 者,驗證 LVS 步驟如下:
 - 在 IC Compiler Layout 視窗底下點選
 - "Verification > LVS ..."

Pins not connected to a wire segment(Floating port)	disable
All other options	Default value

按 OK。

將跳出 Error Browser 視窗, 檢查看看是否有錯,若有請自行修正到 0 個 Violation 為止。

ii. 使用 Cadence Innovus 者,驗證 LVS 步驟如下:

在 Innovus 視窗下點選

請選"Verify → Verify Connectivity..." Default 值,按 OK。

註: 若 LVS 有發生錯誤,請選"Tools → Violation Browser..."查明原因。

4. Macro Layout 產生 IO Pins 的作法 (限 Innovus 參賽者)

在 Innovus 視窗下點選

請選"File → Save → I/O File..."

Generate template IO File	enable
To File	SCE.io
Save IO	sequence

按OK。

請選"File → Load → I/O File..."

請點選 SCE.io,按 open。

即可!

附錄 D 評分用檔案

評分所須檔案可以下幾個部份:(1)RTL design,即各參賽隊伍對該次競賽設計的RTL code,若設計採模組化而有多個設計檔,請務必將合成所要用到的各 module 檔放進來,以免評審進行評分時,無法進行模擬;(2)Gate-Level design,即由合成軟體所產生的 gate-level netlist,以及對應的 SDF 檔;(3)Physical design,使用 Synopsys IC Compiler 者,請記得將整個 Milkyway Library 等相關的 design database,壓縮成一個檔案。使用 Cadence Innovus 者,請將 Innovus 相關的 design database,壓縮成一個檔案。壓縮方式為

> tar cvf apr.tar your apr database

表 3

RTL category					
Design Stage	File	Description			
N/A	N/A	Design Report Form			
RTL Simulation	*.v or *.sv Verilog或System Verilog或				
	Gate-Level category				
Design Stage	File	Description			
Pre-layout	CCE CVD W	Verilog gate-level netlist generated by Synopsys			
Gate-level	SCE_syn.v	Design Compiler			
Simulation	SCE_syn.sdf	Pre-layout gate-level sdf			
	Physical category				
Design Stage	File	Description			
P&R	*.tar	archive of the design database directory			
PAR	*.gds	GDSII layout			
Post-layout	CCE non re	Verilog gate-level netlist generated by Cadence			
Gate-level	SCE_pr.v	Innovus or Synopsys IC Compiler			
Simulation	SCE_pr.sdf	Post-layout gate-level sdf			

附錄 E 檔案整理步驟

當所有的文件準備齊全如表 3 所列,請按照以下的步驟指令,提交相關設計檔案,將所有檔案複製至同一個資料夾下,步驟如下:

- 1. 在自己的 home directory 建立一個新目錄,名稱叫做"result"例如:
 - > mkdir ~/result
- 2. 將附錄 D 要求的檔案複製到 result 這個目錄。例如:
 - > cp SCE.v ~/result/
 - > cp SCE_pr.v ~/result/
 -
- 3. 在 Design Report Form 中,填入所需的相關資訊。

附錄F軟體環境

1. 使用者登入後自動會設定好以下軟體環境:

Vendor	Tool	Executable
	Virtuoso *1	icfb
Cadence	Composer	icfb
Cadence	NC-Verilog	neverilog
	Innovus	innovus
	Design Compiler	dv, dc_shell
	VCS-MX	vcs
	IC Compiler	icc_shell -gui
	Hspice	hspice
Synopsys	Cosmos Scope *1	cscope
	Custom Explorer *1	WV
	Laker *1	laker
	Laker ADP*1	adp
	Verdi *1	verdi, nWave
Mentor	Calibre *3	calibre
Memor	QuestaSim	vsim
	vi	vi, vim
	gedit	gedit
	nedit	nedit
Utility	pdf reader	acroread
	calculate	gnome-calculator, bc -l
	gcc	gcc
	Matlab	matlab

EDA 軟體所須使用的 license 皆已設定完成,不須額外設定

^{*1} 該軟體限定使用 1 套 license

^{*3} 該軟體限定使用 3 套 license

附錄 G 設計資料庫

設計資料庫位置: /usr/cad/icc2020/CBDK_IC_Contest_v2.1

目錄架構

ICC/

tsmc13gfsg_fram/ ICC core library tsmc13_CIC.tf ICC technology macro.map layer mapping file

tluplus/

t013s8mg fsg typical.tluplus t13 tluplus file

t013s8mg_fsg.map t13 tluplus mapping file

SOCE/

lef/

tsmc13fsg_8lm_cic.lef LEF for core cell

lib/

slow.lib worst case for core cell

streamOut.map Layout map for GDSII out

SynopsysDC/

db/

slow.db Synthesis model (slow)

lib/

slow.lib timing and power model

Verilog/

tsmc13 neg.v Verilog simulation model

Calibre /

Calibre-drc-cur Verify DRC file

Phantom/

tsmc13gfsg fram.gds Standard Cell GDSII file

Design Report Form

	Design Report Form	
登入帳號(login	n-id)	
	RTL category	
Design Stage	Description	File Name
RTL	使用之 HDL 名稱	
Simulation	(例如:Verilog、System	
	Verilog)	
RTL	RTL 檔案名稱	
Simulation	(RTL file name)	
D: C4	Gate-Level category	E:1 - N
Design Stage	Description	File Name
	Gate-Level 檔案名稱 (Gate-Level Netlist file	
Dra lavout	name)	
Pre-layout Gate-level	Pre-layout sdf 檔案名稱	
Simulation	Fie-idyout Sui 偏条石件	
	Gate-Level simulation, 所使用的	,
	CYCLE Time (請確定模擬功能正確)	() ns
	Physical category	
Design Stage	Descritpion	File Name or Value
	使用之 P&R Tool	
	(請填入 IC compiler 或 Innovus)	
	設計資料庫檔案名稱(Library name)	
	(ICC: Milkyway Library Name,	
	Innovus: xxx.enc.dat)	
	Calibre DRC 錯誤總數量 (ex: 0	
D 0-D	個)	
P&R		
	APR Tool LVS 錯誤總數量 (ex: 0	
	個)	
	1EI /	
	Post-layout Simulation 所使用的	
	CYCLE Time (ex: 10ns)	
	(請確定模擬功能正確)	
	Area	
Score	$(ex: area = 108240 um^2)$	
(Pre-layout or	area = ?	
Post-layout	填寫之面積為哪一階段的結果?	
Result)	(請填 合成後 or APR 後)	
Over All		
	具体中代文学组 2 /	
	最後完成之等級?(ex: 等級 A)	

其他說明事項(Any other information you want to specify:(如設計特點 ...)如寫不下可寫於背面