Studies of Quantum Dots using Machine Learning

Even Marius Nordhagen

University of Oslo evenmn@fys.uio.no

December 18, 2019

Outline

- Motivation
- ▶ Quantum Theory
- ► Machine Learning Theory
- Methods
- Results
- Conclusions

Motivation

Studies of Quantum Dots using Machine Learning

Studies of Quantum Dots using Machine Learning

Quantum Dots

▶ What are quantum dots?

Quantum Dots

- What are quantum dots?
- Why are quantum dots interesting?
 - Quantum dots are expected to be the next big thing in display technology^{1,2}
 - Quantum dots are used in quantum computers
 - Researchers have managed to study two-dimensional quantum dots in the laboratory³
 - An array of interesting physical phenomena can be observed in quantum dots

Studies of Quantum Dots using Machine Learning

Studies of Quantum Dots using Machine Learning

Machine Learning

Machine learning is the science of getting computers to act without being explicitly programmed⁴.

Machine Learning

Machine learning is the science of getting computers to act without being explicitly programmed⁴.

► Image recognition

Machine Learning

- Machine learning is the science of getting computers to act without being explicitly programmed⁴.
- ▶ Image recognition
- Natural language processing

▶ Neural networks are eminent function approximators

▶ Neural networks are eminent function approximators

▶ Neural networks are eminent function approximators

Existing methods are reminiscent of machine learning algorithms

▶ Neural networks are eminent function approximators

- ▶ Existing methods are reminiscent of machine learning algorithms
- ▶ Literature study (Carleo & Troyer⁵, Flugsrud⁶, Pfau *et al.*⁷)

Ethics in Science

► Respect for other's work

Ethics in Science

- ► Respect for other's work
- ► Reproducibility

Quantum Theory

The Schrödinger Equation

 $\hat{\mathcal{H}}\Psi = E\Psi$

The Schrödinger Equation

$$\hat{\mathcal{H}}\Psi = E\Psi$$

$$\Downarrow$$

$$E = \frac{\int dX \Psi^*(X) \hat{\mathcal{H}} \Psi(X)}{\int dX \Psi^*(X) \Psi(X)}$$

The Variational Principle

The variational principle serves as a way of finding the ground state energy. For an arbitrary trial wave function $\Psi_T(X)$, it states that the obtained energy is larger or equal to the ground state,

$$E_0 \leq E = \frac{\int d\mathbf{X} \Psi_T^*(\mathbf{X}) \hat{\mathcal{H}} \Psi_T(\mathbf{X})}{\int d\mathbf{X} \Psi_T^*(\mathbf{X}) \Psi_T(\mathbf{X})}.$$

Thus, by minimizing the obtained energy, *E*, we can estimate the ground state energy.

Quantum Dots

Circular quantum dots \rightarrow electrons confined in a harmonic oscillator potential:

$$\hat{\mathcal{H}} = \sum_{i=1}^{N} \left[-\frac{1}{2} \nabla_i^2 + \frac{1}{2} \omega^2 |r_i|^2 + \sum_{j>i}^{N} \frac{1}{r_{ij}} \right].$$

The number of electrons that give full shells are given by

$$N=2\binom{n+d}{d},$$

which are the magic numbers.

Machine Learning Theory

$$a_0 = x$$

Cost function

➤ The cost function defines the error

Cost function

- ► The cost function defines the error
- ► Mean square error (MSE):

$$C = \frac{1}{2} \sum_{i=1}^{n} (y - \tilde{y})^2.$$

Cost function

- ▶ The cost function defines the error
- ► Mean square error (MSE):

$$C = \frac{1}{2} \sum_{i=1}^{n} (y - \tilde{y})^2.$$

▶ Attempt to minimize the cost function

Minimize the cost function

- Minimize the cost function
- ▶ The gradient descent method:

$$\theta^+ = \theta - \frac{\partial \mathcal{C}}{\partial \theta}.$$

- Minimize the cost function
- ▶ The gradient descent method:

$$\theta^+ = \theta - \frac{\partial \mathcal{C}}{\partial \theta}.$$

- Minimize the cost function
- ▶ The gradient descent method:

$$\theta^+ = \theta - \frac{\partial \mathcal{C}}{\partial \theta}.$$

- Minimize the cost function
- ▶ The gradient descent method:

$$\theta^+ = \theta - \frac{\partial \mathcal{C}}{\partial \theta}.$$

Find Appropriate Complexity

Restricted Boltzmann Machines

Restricted Boltzmann Machines

$$E(x,h) = -\sum_{i=1}^{V} \frac{(x_i - a_i)^2}{2\sigma_i^2} - \sum_{j=1}^{H} h_j b_j - \sum_{i=1}^{V} \sum_{j=1}^{H} \frac{x_i w_{ij} h_j}{\sigma_i^2}$$

UiO: University of Oslo

Probability Distribution

The joint probability distribution is given by the Boltzmann distribution:

$$P(\mathbf{x}, \mathbf{h}) = \frac{1}{Z} \exp(-E(\mathbf{x}, \mathbf{h})/kT).$$

The marginal distribution of the visible units is given by

$$P(x) = \sum_{\{h\}} P(x, h).$$

Methods

Variational Monte Carlo (VMC)

Exploit the variational principle in order to obtain the ground state energy

$$E_0 < E_{\text{VMC}} = \frac{\int d\mathbf{R} \Psi_T(\mathbf{R})^* \hat{\mathcal{H}} \Psi_T(\mathbf{R})}{\int d\mathbf{R} \Psi_T(\mathbf{R})^* \Psi_T(\mathbf{R})},$$
$$= \int d\mathbf{R} E_L(\mathbf{R}) P(\mathbf{R}),$$

with

$$E_L(\mathbf{R}) = \frac{1}{\Psi_T(\mathbf{R})} \hat{\mathcal{H}} \Psi_T(\mathbf{R}) \quad \wedge \quad P(\mathbf{R}) = \frac{\Psi_T(\mathbf{R})^* \Psi_T(\mathbf{R})}{\int d\mathbf{R} \Psi_T(\mathbf{R})^* \Psi_T(\mathbf{R})}$$

Monte Carlo Integration

We attempt to solve the integral by sampling from the probability density function $P(R) \propto \Psi_T(R)^* \Psi_T(R)$:

$$\begin{split} E_{\text{VMC}} &= \int d\mathbf{R} E_L(\mathbf{R}) P(\mathbf{R}), \\ &\approx \frac{1}{M} \sum_{i=1}^M E_L(\mathbf{R}_i). \end{split}$$

Trial Wave Function Ansatz

The Slater-Jastrow function is the *de facto* standard trial wave function for electronic structure systems,

$$\Psi_T(\mathbf{R}) = |\hat{D}(\mathbf{R})|J(\mathbf{R}),$$

where the Slater matrix,

$$\hat{D}(\mathbf{R}) = \begin{pmatrix} \phi_1(\mathbf{r}_1) & \phi_2(\mathbf{r}_1) & \dots & \phi_N(\mathbf{r}_1) \\ \phi_1(\mathbf{r}_2) & \phi_2(\mathbf{r}_2) & \dots & \phi_N(\mathbf{r}_2) \\ \vdots & \vdots & \ddots & \vdots \\ \phi_1(\mathbf{r}_N) & \phi_2(\mathbf{r}_N) & \dots & \phi_N(\mathbf{r}_N) \end{pmatrix},$$

contains all the single-particle functions.

Single-particle Functions

The Hermite functions,

$$\phi_n(\mathbf{r}) \propto H_n(\sqrt{\omega}\mathbf{r}) \exp\left(-\frac{1}{2}\alpha\omega|\mathbf{r}|^2\right),$$

are often used as the single-particle functions for quantum dots. The Gaussian can be factorized out from the Slater determinant,

$$|\hat{D}(\boldsymbol{R};\alpha)| \propto \exp\left(-\frac{1}{2}\alpha\omega|\boldsymbol{R}|^2\right) \begin{vmatrix} H_1(\boldsymbol{r}_1) & H_2(\boldsymbol{r}_1) & \dots & H_N(\boldsymbol{r}_1) \\ H_1(\boldsymbol{r}_2) & H_2(\boldsymbol{r}_2) & \dots & H_N(\boldsymbol{r}_2) \\ \vdots & \vdots & \ddots & \vdots \\ H_1(\boldsymbol{r}_N) & H_2(\boldsymbol{r}_N) & \dots & H_N(\boldsymbol{r}_N) \end{vmatrix}.$$

Restricted Boltzmann Machine

As suggested by Carleo & Troyer⁵, we use the marginal distribution of the visible units as the single-particle functions in the Slater determinant, and see if them can model the correlations

$$\phi_n(\mathbf{r}) \propto H_n(\sqrt{\omega}\mathbf{r})P(\mathbf{r};\boldsymbol{\theta})$$

where $P(\mathbf{r})$ is the marginal distribution of the visible units.

$$|\hat{D}(r;\theta)| \propto P(r;\theta) \begin{vmatrix} H_1(r_1) & H_2(r_1) & \dots & H_N(r_1) \\ H_1(r_2) & H_2(r_2) & \dots & H_N(r_2) \\ \vdots & \vdots & \ddots & \vdots \\ H_1(r_N) & H_2(r_N) & \dots & H_N(r_N) \end{vmatrix}$$

Jastrow Factor

The Jastrow factor is added to account for the correlations Simple Jastrow factor

$$J(\mathbf{r}; \boldsymbol{\beta}) = \exp\left(\sum_{i=1}^{N} \sum_{j>i}^{N} \beta_{ij} r_{ij}\right).$$

Padé-Jastrow factor

$$J(r;\beta) = \exp\left(\sum_{i=1}^{N} \sum_{j>i}^{N} \frac{a_{ij}r_{ij}}{1 + \beta r_{ij}}\right).$$

Our Trial Wave Function Ansätze

$$\blacktriangleright \ \Psi_{\text{RBM}}(\mathbf{R}) = |\hat{D}_{\text{RBM}}(\mathbf{R})|$$

$$\qquad \Psi_{\text{RBM+SJ}}(\mathbf{R}) = |\hat{D}_{\text{RBM}}(\mathbf{R})|J(\mathbf{R};\boldsymbol{\beta})$$

$$\qquad \Psi_{\text{RBM+PJ}}(\mathbf{R}) = |\hat{D}_{\text{RBM}}(\mathbf{R})|J(\mathbf{R};\beta)$$

$$\qquad \qquad \Psi_{\text{VMC}}(\mathbf{R}) = |\hat{D}_{\text{Gauss}}(\mathbf{R})|J(\mathbf{R};\beta)$$

Software

Three principal aims

▶ Efficient

Software

Three principal aims

- ▶ Efficient
- ▶ Flexible

Software

Three principal aims

- ▶ Efficient
- ▶ Flexible
- ▶ Straightforward to use

Results

Ground State Energy

Number of electrons: N = 2. Frequency: ω .

ω	RBM	RBM+SJ	RBM+PJ	VMC	HF *	Exact †
1/6 0.28	0.7036(1) 1.07050(4)	0.67684(7) 1.03470(7)	0.66715(6) 1.021668(7)	0.66710(1) 1.02192(1)	0.768675 1.14171	2/3
1	3.0803(2)	3.02108(5)	2.999587(5)	2.99936(1)	3.16190	3

†Semi-analytical ground state energy calculated by Taut, 1993 [9].

^{*}Computation of the Hartree-Fock limit by Mariadason, 2018 [8].

Ground State Energy

Number of electrons: N = 20. Frequency: ω .

ω	RBM	RBM+SJ	RBM+PJ	VMC	HF [‡]	DMC §
0.1	30.824(2)	30.567(3)	30.1553(9)	30.0403(2)	31.1902	29.9779(1)
1.0	159.428(3)	156.816(4)	156.104(1)	155.8900(4)	158.004	155.8822(1)

[§]Ground state energy estimate using the diffusion Monte Carlo method. By Høgberget, 2013 [10].

[‡]Computation of the Hartree-Fock limit by Mariadason, 2018 [8].

Energy distribution

Number of electrons: N = 20. Frequency: ω .

Ratio between the kinetic energy, $\langle \hat{T} \rangle$, and the total potential energy, $\langle \hat{V} \rangle$.

One-body Density

Number of electrons: N = 20. Frequency: $\omega = 1.0$.

Two-body Density

Number of electrons: N = 20. Frequency: $\omega = 1.0$.

Low-frequency Dots

Number of electrons: *N*. Frequency: $\omega = 0.1$.

Computational Cost

Number of electrons: *N*.

Conclusions

Findings

- ► The RBM ansatz is able to account for most of the correlations
- The RBM+PJ ansatz might give a better ground state estimate of small quantum dots, compared to the traditional VMC ansatz
- ➤ The energy distribution is different for the different ansätze, indicating different electron configurations.
- The ground state energy might not be the best way to evaluate the various ansätze

▶ Investigate restricted Boltzmann machines with other architectures

- ▶ Investigate restricted Boltzmann machines with other architectures
- ► Try other optimization algorithms

- ▶ Investigate restricted Boltzmann machines with other architectures
- ► Try other optimization algorithms
- ▶ Pass more information to the restricted Boltzmann machine

- ▶ Investigate restricted Boltzmann machines with other architectures
- ▶ Try other optimization algorithms
- Pass more information to the restricted Boltzmann machine
- Apply the method on more complex systems

Thank you!

References

- Samsung QLED TV | The Frame | Premium UHD TV. http://www.samsung.com/global/tv/blog/why-are-quantum-dot-displays-so-good/.
- Manders, J. R. et al. 8.3: Distinguished Paper: Next-Generation Display Technology: Quantum-Dot LEDs. SID Symposium Digest of Technical Papers 46, 73 (2015).
- Brunner, K., Abstreiter, G., Böhm, G., Tränkle, G. & Weimann, G. Sharp-Line Photoluminescence and Two-Photon Absorption of Zero-Dimensional Biexcitons in a GaAs/AlGaAs Structure. *Physical Review Letters* 73, 1138 (1994).
- 4. Machine Learning Stanford University. http://mlclass.stanford.edu/.
- Carleo, G. & Troyer, M. Solving the Quantum Many-Body Problem with Artificial Neural Networks. Science 355, 602 (2017).
- 6. Flugsrud, V. M. Solving Quantum Mechanical Problems with Machine Learning. MA thesis (2018).
- Pfau, D., Spencer, J. S., Matthews, A. G. G. & Foulkes, W. M. C. Ab-Initio Solution of the Many-Electron Schrödinger Equation with Deep Neural Networks. arXiv: 1909.02487 (2019).
- 8. Mariadason, A. A. Quantum Many-Body Simulations of Double Dot System. MA thesis (2018).
- Taut, M. Two electrons in an external oscillator potential: Particular analytic solutions of a Coulomb correlation problem. *Physical Review A* 48, 3561 (1993).
- 10. Høgberget, J. Quantum Monte-Carlo Studies of Generalized Many-body Systems. MA thesis (2013).

Machine Learning

Bias-variance Decomposition

Different models

High variance low-bias model

Polynomial Regression

(y) Data set

(z) Data set with fitted polynomials

Ordinary Linear Regression

The output from ordinary linear regression is given by

$$f(x_i) = \sum_{j=0}^{p} X_{ij}(x_i)\theta_j.$$

Using the mean square error as the cost function, we obtain

$$C(\boldsymbol{\theta}) = \sum_{i=1}^{n} \left(y_i - \sum_{j=0}^{p} X_{ij} \theta_j \right)^2,$$

which is equivalent to

$$\boldsymbol{\theta} = (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{y}.$$

Singular Value Decomposition

Decomposing a matrix into three matrices

$$X = U\Sigma V^{T}$$
.

Ridge Regression

$$\mathcal{C}(\theta) = \sum_{i=1}^{n} \left(y_i - \sum_{j=0}^{p} X_{ij} \theta_j \right)^2 + \lambda \sum_{j=1}^{p} |\theta_j|^2,$$

$$\theta = (X^T X + \lambda \mathbb{1})^{-1} X^T y$$

Lasso Regression

$$C(\boldsymbol{\theta}) = \sum_{i=1}^{n} \left(y_i - \sum_{j=0}^{p} X_{ij} \theta_j \right)^2 + \lambda \sum_{j=1}^{p} |\theta_j|.$$

Logistic Regression

inputs weights

Activation Functions

FNN: Forward Phase

The output before activation reads

$$z_j^{(l+1)} = \sum_{i=1}^{N_l+1} a_i^{(l)} w_{ij}^{(l)}$$

while after the activation we have

$$a_j^{(l+1)} = f(z_j^{(l+1)}) = f\left(\sum_{i=1}^{N_l+1} a_i^{(l)} w_{ij}^{(l)}\right)$$

Backpropagation

$$\begin{split} \frac{\partial \mathcal{C}(w)}{\partial w_{jk}^{(l)}} &= \delta_j^{(l+1)} a_k^{(l)} \\ \delta_j^{(l)} &= \sum_k \delta_k^{(l+1)} w_{kj}^{(l)} f'(z_j^{(l)}) \end{split}$$

