

ReFeree: Radar-based efficient global descriptor using a Feature and Free space for Place Recognition Byunghee Choi^{1*} Hogyun Kim^{1*} Younggun Cho^{1†}

bhbhchoi@inha.edu^{1*} hg.kim@inha.edu^{1*}

yg.cho@inha.ac.kr1\f

1) Department of Electrical and Computer Engineering, Inha University (*) represents equal contribution, ($^{+}$) represents corresponding author.

Introduction

- Radar is highlighted for robust sensing capabilities in severe weather conditions which camera or LiDAR become stuck.
- We propose lightweight and efficient Radar place recognition descriptor that compress vacancy information.
- Our method is validated the performance in three single session scenarios and three multi session scenarios.

Method

Proposed Pipeline H Referee K Referee K Place Recognition Recognition Recognition

- **Feature extraction** for identifying valid signal from Radar intensity image we selected is algorithm proposed by Cen at el, which process three steps:
 - Decompose signal by high and low-frequency
 - Integrate signals according to Gaussian scaling factor
 - Thresholding integrated signal
- ReFeree K is α -dimensional vector that generated by free-space information from feature-extracted Radar image.

$$\boldsymbol{K} = \{K_1, \cdots, K_{\alpha}\}$$

• K is free-space density in subsection β of Radar image.

$$K_{i} = \frac{\sum_{j=1}^{H_{\beta}} (\sum_{k=1}^{r_{j}} s(b_{jk}))}{H_{\beta} W}$$

- H_{β} , W: height and width of subsection β
- r_i : max range index of angle j in subsection β
- b_{jk} : state of angle j, range k in subsection β (free or feature)
- $s(b_{ik})$: free-space classifier(if b_{ik} is free 1, else 0)
- Figure below simply presents generating K in subsection β .

$$K_i = \frac{\# \ of \ free \ space}{\mathcal{H}_{\mathcal{B}} \times \mathcal{W}}$$

• ReFeree *K* matches loops by distance from KD-Tree and utilizes Euclidean distance threshold.

Experiment Results

Datasets

Mulran

Boreas Oxford RobotCar

d RobotCar OORD

Comparison of Descriptor

- We compare our method with *Radar Scan Context* (RadarSC), *Raplace*, and *Open-RadVLAD* (RadVLAD).
- Figure below represents the information density of each descriptor, indicating how efficiently data is compressed per Byte.
- ReFeree shows the highest information density in tested datasets.

Single session Evaluation

Multi-session Evaluation

Conclusion

- We validate the performance of our method with other methods on various dataset and scenarios.
- However, our method lacks solution about reverse loop and validation by our own dataset.
- In future work, we plan to enhance our descriptor for SLAM pipeline by incorporating rotation invariance.