Let G=(V,E) be an undirected, unweighted graph. $N(u)=\{w\in V:(u,w)\in E\}.$

Definition 1 (Local clustering coefficient of an edge). *Let* $(u, v) \in E$. *Then*

$$c(u,v) = \frac{|N(u) \cap N(v)|}{|N(u) \cup N(v) \backslash \{u,v\}|}.$$

This definition is similar to the one in [], which replaces the denominator above with $\min\{|N(u)|-1,|N(v)|-1\}$.

A. Longer cycles

II. EDGE-CLUSTERING IN MULTIPLEX NETWORKS

Let $\mathscr{G}=(G_{\alpha}=(V_{\alpha},E_{\alpha}))_{\alpha\in\Lambda}$ be a multiplex. A vertex in the multiplex can be specified by a node-layer pair (u,α) , where $u\in V_{\alpha}$ and $\alpha\in\Lambda$. Consider an edge in layer γ , specified by $((u,v),\gamma)$, where $u,v\in V_{\gamma}$. We consider triangles that include $((u,v),\gamma)$ and that have one edge in layer α and one in layer β , for any $\alpha,\beta\in\Lambda$. These triangles lead to a local clustering coefficient for $((u,v),\gamma)$ with respect to the pair of layers (α,β) .

For a node $v \in V_{\lambda}$, let $N_{\lambda}(v)$ be the set of neighbors of (v, λ) in layer λ , for any $\lambda \in \Lambda$. That is,

$$N_{\lambda}(v) = \{w : (v, w) \in E_{\lambda}\}.$$

Definition 2 $((\alpha, \beta)$ -local edge clustering coefficient). *Let* $\gamma \in \Lambda$, and let $e = (u, v) \in E_{\gamma}$. Then,

$$c_{\alpha,\beta}(e,\gamma) = c_{\alpha,\beta}((u,v),\gamma) = \frac{|N_{\alpha}(u) \cap N_{\beta}(v)|}{|N_{\alpha}(u) \cup N_{\beta}(v) \setminus \{u,v\}|}.$$

Definition 2 is illustrated in Fig. 1. Notice that, in general, $c_{\alpha,\beta}(e) \neq c_{\beta,\alpha}(e)$. If $e = ((u,v),\gamma)$, and $\alpha = \beta = \gamma$, then $c_{\gamma,\gamma}(e)$ reduces to the monoplex edge-clustering coefficient of e in layer γ . To obtain an aggregate measure over all layers for local clustering of edge e, we propose the following method. Let weight $W = (w_{\alpha\beta\gamma} \in [0,1])_{\alpha,\beta,\gamma\in\Lambda}$. W quantifies the impact of layers α,β on layer γ . Then, we define

$$c(e,\gamma) = \sum_{(\alpha,\beta)\in\Lambda^2} w_{\alpha\beta\gamma} c_{\alpha,\beta}(e),$$

and finally the local edge clustering coefficient of e:

$$c(e) = \frac{1}{|\{\gamma: e \in E_\gamma\}|} \sum_{\gamma: e \in E_\gamma} c(e,\gamma).$$

III. EDGE-CLUSTERING IN MULTILAYER NETWORKS

Thursday, December 29, 2016 1:17 PM

