

**"BIMODAL" NUCLEAR THERMAL ROCKET (BNTR) PROPULSION
FOR FUTURE HUMAN MARS EXPLORATION MISSIONS**

Stan Borowski
National Aeronautics and Space Administration
Glenn Research Center
Cleveland, Ohio

**"Bimodal" Nuclear Thermal Rocket
(BNTR) Propulsion for Future
Human Mars Exploration Missions**

"Propelling Us to New Worlds"

presented by

Dr. Stanley K. Borowski
Space Transportation Office
NASA Glenn Research Center, Cleveland, OH
phone: (216) 977-7091,
e-mail: Stanley.K.Borowski@grc.nasa.gov

at the

2003 NASA Seal / Secondary Air System Workshop
Ohio Aerospace Institute (OAI)
November 5-6, 2003

Artificial Gravity "Bimodal" NTR Crew Transfer Vehicle (CTV) for Mars DRM 4.0 (1999)

"Propelling Us to New Worlds"

The “Bimodal” NTR (BNTR) Integrated Space Propulsion & Power System -- Smarter Systems Engineering --

- During short, high thrust propulsion phase, each BNTR produces $\sim 340 \text{ MW}_t$ and $\sim 15 \text{ klb}_f$ of thrust
- During long, power generation phase, each BNTR operates in “idle mode” producing just $\sim 150 \text{ kW}_t$
- A Brayton conversion unit on each BNTR produces up to 25 kW_e to enhance stage capabilities

Rover/NERVA* Program Summary (1959-1972)

- 20 Rocket/reactors designed, built and tested at cost of ~ \$1.4 billion
- Engine sizes tested
 - 50-250 klbf
- H₂ exit temperatures achieved
 - 2,350-2,550 K (Graphite fuel)
- I_{sp} capability
 - 825-850 sec (hot bleed cycle)
- Burn duration
 - 62 mins. (NRX-A6 -- single burn)
 - >4 hrs. (NRX-XE -- 28 burns)
(accumulated)
- Engine thrust-to-weight
 - ~3 for 75 klbf NERVA
- "Open Air" testing at Nevada Test Site

NERVA program experimental engine (XE) demonstrated 28 startup/shutdown cycles during tests in 1969.

*NERVA: Nuclear Engine for Rocket Vehicle Applications

Nuclear Thermal Rocket (NTR) Propulsion

What's New?

Then (Rover/NERVA: 1959–72)

- **Engine sizes tested**
– 50–250 klf
- **H₂ exit temps achieved**
– 2,350–2,550K (Graphite)
- **Isp capability**
– 825–850 sec (hot bleed)
- **Engine thrust-to-weight**
– ~3 for 75 klf NERVA

Now

- “Current” focus is on smaller NTR sizes
– 5–15 klf (Code S science–humans)
- Higher temp. fuels being developed
– 2,700K (Composite), 2,900K (Cermet) and ~3,100K (Ternary Carbides)
- Isp capability
– 915–1005 sec (expander cycle)
- Advances in chemical rockets/materials
– ~2–6 for small NTR designs

“Propelling Us to New Worlds”

Nuclear Thermal Rocket (NTR) Propulsion

What's New?

Then (Rover/NERVA: 1959–72)

- **Engine sizes tested**
– 50–250 klf
- **H₂ exit temps achieved**
– 2,350–2,550K (Graphite)
- **Isp capability**
– 825–850 sec (hot bleed)
- **Engine thrust-to-weight**
– ~3 for 75 klf NERVA

Now

- “Current” focus is on smaller NTR sizes
– 5–15 klf (Code S science–humans)
- Higher temp. fuels being developed
– 2,700K (Composite), 2,900K (Cermet) and ~3,100K (Ternary Carbides)
- Isp capability
– 915–1005 sec (expander cycle)
- Advances in chemical rockets/materials
– ~2–6 for small NTR designs

Environmentally “Green”

- Small NTR allows full power testing in
– “Contained Test Facility” at INEL with
“scrubbed” H₂ exhaust
- Testing (Rover/NERVA)
– “Open Air” exhaust at
Nevada test site

Easier to test

- Isp capability
– 915–1005 sec (expander cycle)
- Advances in chemical rockets/materials
– ~2–6 for small NTR designs

Smaller, Higher Performance

- “Current” focus is on smaller NTR sizes
– 5–15 klf (Code S science–humans)
- Higher temp. fuels being developed
– 2,700K (Composite), 2,900K (Cermet) and ~3,100K (Ternary Carbides)
- Isp capability
– 915–1005 sec (expander cycle)
- Advances in chemical rockets/materials
– ~2–6 for small NTR designs

Nuclear Thermal Rocket (NTR) Propulsion -- Key Technology / Mission Features --

"Propelling Us to New Worlds"

- NTR engines have negligible radioactivity at launch / simplifies handling and stage processing activities at KSC
 - < 10 Curies / 3 NTR Mars stage vs ~400,000 Curies in Cassini's 3 RTGs
- High thrust / Isp NTR uses same technologies as chemical rockets
- Short burn durations (~25-50 mins) and rapid LEO departure
- Less propellant mass than all chemical implies fewer ETO launches
- NTR engines can be configured for both propulsive thrust and electric power generation -- "**bimodal**" operation
- Fewest mission elements and much simpler space operations
- Engine size aimed at maximizing mission versatility
 - robotic science, Moon, Mars and NEA missions
- NTR technology is evolvable to reusability and "in-situ" resource utilization (e.g., LANTR -- NTR with LOX "afterburner" nozzle)

“Bimodal” NTR Cargo & Crew Transfer Vehicles for 1999 Mars Design Reference Mission (DRM) 4.0

6 - “80 t” SDHLVs plus Shuttle for Crew & TransHab Delivery

“Propelling Us to New Worlds”

2011 Cargo Mission 1

Habitat Lander

IMLEO= 131.0 t

2011 Cargo Mission 2

Cargo Lander

IMLEO= 133.7 t

2014 Piloted Mission

Artificial Gravity

Crew Transfer Vehicle

IMLEO= 166.4 t

Modular “Bimodal” NTR Transfer Vehicle Design for Mars Cargo and Piloted Missions

“Propelling Us to New Worlds”

Bimodal NTR: High thrust, high I_{sp} propulsion system utilizing fissioning U²³⁵ produces thermal energy for propellant heating and electric power generation enhancing vehicle capability

Engine Characteristics

- Three 15 klb_f engines, T/W_{eng} ~3.1
- Each bimodal NTR produces 25 kW_e
- Utilizes proven Brayton technology
- Variable thrust & I_{sp} optional with “LOX-afterburner” nozzle (LANTR)

Vehicle Characteristics

- Versatile design
- “Bimodal” stage produces 50 kW_e
- Power supports active refrigeration of LH₂
- Innovative “saddle” truss design allows easy jettisoning of “in-line” LH₂ tank & contingency consumables
- Vehicle rotation (ω 4-6 rpm) can provide Mars gravity to crew outbound and near Earth gravity inbound (available option)
- Propulsive Mars capture and departure on piloted mission
- Fewest mission elements, simple space ops & reduced crew risk
- Bimodal NTR vehicles easily adapted to Moon & NEA missions

Mars DRM 4.0: “Bimodal” NTR Crew Transfer Vehicle (CTV) with Inflatable “TransHab” Module & Artificial Gravity Capability

“Bimodal” NTR Core Stage w/Refrigeration
(Sized for Delivery by “Shuttle-Derived” HLV)

“Bimodal” Crew Transfer Vehicle Earth Orbit Assembly Sequence

Space Transportation Project Office
Glenn Research Center

“Artificial Gravity” BNTR Mars Crew Transfer Vehicle (CTV) Mission Scenario

“Bimodal” NTR Crew Transfer Vehicle (CTV) in Artificial Gravity Mode

“Propelling Us to New Worlds”

2014 “Bimodal” NTR Piloted Flight Profile (210 Day Transit Out, 190 Day Return)

Human Mars Mission Architecture Mass Comparison

(Shown at 80 t steps)

"LOX-Augmented" NTR (LANTR) Concept

--Operational Features and Characteristics--

"Propelling Us to New Worlds"

	I _{sp} (sec)	Tankage Fraction (%)	T/W _{eng} Ratio
Life (hrs) T _{ex} (°K)	2,900 5 10 35 2,600	891 14.0	3.0*
O/H MR = 0.0	941	741 7.4	4.8
1.0	772	642 4.1	8.2
3.0	647	573 3.0	11.0
5.0	576	512 2.5	13.1
7.0	514		

*For 15 klf NTR with chamber pressure = 2,000 psia and ε = 500 to 1

“LOX-Augmented” Nuclear Thermal Rocket (LANTR) “Afterburner” Nozzle Concept Demonstration

3 GO₂ Supersonic Cascade Injectors
Supersonic Combustion & Thrust Augmentation
Goal: >30% or more

Baseline H/O Thrust: 2100 lbf at 1000 psia and MR = 1.5. With GO₂ injection into nozzle, measured thrust due to supersonic combustion is 3200 lbf (~52% thrust augmentation achieved at 50:1 and MR_L~3.0)

LANTR Concept and Benefits:

- “Afterburner” nozzle increases thrust by injecting & combusting GO₂ downstream of the NTR throat
- Enables NTR with variable thrust and Isp capability by varying the nozzle O/H mixture ratio (MR)
- Operation at modest MRs (<1.0) helps increase bulk propellant density for packaging in smaller volume launch vehicles
- LANTR’s bipropellant operation enables smaller, faster Moon / Mars vehicles when using extraterrestrial sources of H₂ and O₂

LANTR Test Program Objectives: (Aerojet & GRC)

- Measure thrust augmentation from oxygen injection and supersonic combustion using small, fuel-rich H/O engine with two different area ratio nozzles (@ 25:1 and 50:1) as “non-nuclear” NTR simulator.
- Use results to calibrate reactive CFD assessment of bimodal LANTR engine

Status: LANTR afterburner nozzle demonstrated

- Oxygen injection into hot supersonic flow
- Supersonic combustion in the nozzle
- Elevated nozzle pressures measured
- Benign nozzle wall environment observed
- Increase O₂ consumption rate with nozzle length
- Thrust augmentation >50% measured

Fully Reusable NTR-Powered Transfer Vehicle “The Key to Affordable Lunar Transportation”

“Propelling Us to New Worlds”

Ref: Borowski, NASA/TM 106739

Robotic Science “Hybrid” BNTEP Vehicle

“Propelling Us to New Worlds”

Significant Technology Development is Underway To Support Design Definition for Future “Bimodal” NTR Human Exploration Missions

“Propelling Us to New Worlds”

