

## planetmath.org

Math for the people, by the people.

## mountain pass theorem

Canonical name MountainPassTheorem
Date of creation 2013-03-22 15:19:19
Last modified on 2013-03-22 15:19:19

Owner ncrom (8997) Last modified by ncrom (8997)

Numerical id 8

Author ncrom (8997) Entry type Theorem Classification msc 49J40 Let X a real Banach space and  $F \in C^1(X,\mathbb{R})$ . Consider K a compact metric space, and  $K^* \subset K$  a closed nonempty subset of K. If  $p^* : K^* \to X$  is a continuous mapping, set

$$\mathcal{P} = \{ p \in C(K, X); \ p = p^* \text{ on } K^* \}.$$

Define

$$c = \inf_{p \in \mathcal{P}} \max_{t \in K} F(p(t)).$$

Assume that

$$c > \max_{t \in K^*} F(p^*(t)). \tag{1}$$

Then there exists a sequence  $(x_n)$  in X such that

(i) 
$$\lim_{n \to \infty} F(x_n) = c$$
;

(ii) 
$$\lim_{n \to \infty} ||F'(x_n)|| = 0.$$

The name of this theorem is a consequence of a simplified visualization for the objects from theorem. If we consider the set  $K^* = \{A, B\}$ , where A and B are two villages,  $\mathcal{P}$  is the set of all the routes from A to B, and F(x) represents the altitude of point x; then the assumption (??) is equivalent to say that the villages A and B are separated with a mountains chain. So, the conclusion of the theorem tell us that exists a route between the villages with a minimal altitude. With other words exists a "mountain pass".