适用于HI01/HI02/HI04/HI13/HI14/HI50系列

文件: imu_cum_cn 技术支持: support@hipnuc.com

属性: 公开 网站: www.hipnuc.com

© 2016-2024 北京超核电子科技有限公司版权所有,文档包含的信息在没有通知的情况下可能会发生更改。

指令与编程手册

- 1 模块配置简述
 - 1.1 地磁辅助场景(AHRS/9轴模式)
 - 1.2 同步输入与同步输出(时间同步)
 - 1.2.1 同步输入(SIN/PPS)
 - 1.2.1.1 用法1: 数据输出触发
 - 1.2.1.2 用法2: UTC时间同步(定制功能)
 - 1.2.2 同步输出(SOUT)
- 2 模块配置命令
 - 2.1 配置命令总览
 - 2.2 指令详解
 - 2.2.1 **REBOOT**
 - 2.2.2 SAVECONFIG
 - 2.2.3 SERIALCONFIG
 - 2.2.4 CONFIG
 - 2.2.4.1 工作模式模式配置: 6轴 或者9轴(地磁辅助)模式
 - 2.2.4.2 水平校准
 - 2.2.4.3 手动设置航向角
 - 2.2.4.4 坐标系旋转(改变安装方式)
 - 2.2.4.5 多功能IO复用功能配置
 - 2.2.4.6 设置IO报警触发参数(PMUX5: ALARM)
 - 2.2.4.7 设置SOUT_DIV分频系数(PMUX4: SOUT_DIV)
 - 2.2.5 LOG
 - 2.2.5.1 ENABLE/DISABLE: 全局打开/关闭数据输出
 - 2.2.5.2 VERSION: 显示模块版本信息
 - 2.2.5.3 USRCONFIG: 显示用户配置信息
 - 2.2.5.4 COMCONFIG: 显示串口配置信息
 - 2.2.5.5 设置数据帧输出类型及频率
 - 2.2.5.6 配置为同步输出模式
 - 2.2.6 UNLOGALL
 - 2.2.7 FRESET
- 3 数据输出协议(自定义二进制协议)
 - 3.1 数据帧格式
 - 3.2 出厂默认输出
 - 3.3 数据域内容
 - 3.3.1 浮点型IMU数据帧(HI91)
 - 3.3.2 整型IMU数据帧(HI92)
 - 3.4 CRC
 - 3.5 数据帧结构示例(以HI91为例)
 - 3.6 C语言解析代码示例(以HI91为例)
 - 3.7 最大传输速率

- 4 RS-485数据协议与指令(Modbus协议)
 - 4.1 数据帧格式
 - 4.1.1 读寄存器(0x03)
 - 4.1.2 写寄存器(0x06)
 - 4.1.3 CRC校验
 - 4.2 寄存器列表
 - 4.3 常用配置
 - 4.3.1 控制寄存器说明(0x00)
 - 4.3.2 配置波特率(0x04)
 - 4.3.3 配置节点ID
 - 4.3.4 设置安装方式 (0xA6)
 - 4.3.5 设置水平校准(0xA5)
 - 4.3.6 设置6轴或9轴模式
 - 4.4 读取模块版本信息
 - 4.5 读取传感器数据
 - 4.6 Modbus ID自动分配
- 5 CAN数据协议与指令(CANopen协议)
 - 5.1 CANopen 默认设置
 - 5.2 CANopen TPDO
 - 5.3 使用上位机连接CAN设备
 - 5.4 配置指令(SDO协议)
 - 5.4.1 SDO(Service Data Object)协议
 - 5.4.1.1 修改节点ID (0x20A0)
 - 5.4.1.2 保存配置到Flash(0x2000)
 - 5.4.1.3 复位(0x2000)
 - 5.4.1.4 恢复出厂设置(0x2000)
 - 5.4.1.5 修改CAN波特率(0x209A)
 - 5.4.1.6 修改/关闭/开启数据输出速率(0x1800-0x1805)
 - 5.4.1.7 设置倾角仪输出正负号(0x209E)
 - 5.4.1.8 设置倾角仪零点(0x20A5)
 - 5.4.2 同步协议
 - 5.4.2.1 配置TPDO为同步模式
 - 5.4.2.2 发送CANopen同步帧
- 6 CAN数据协议与指令(SAE-J1939协议)
 - 6.1 PGN消息列表
 - 6.1.1 PGN65332(FF34) 加速度
 - 6.1.2 PGN65335(FF37) 角速度
 - 6.1.3 PGN65341(FF3D) 俯仰横滚角
 - 6.1.4 PGN65345(FF41) 航向角
 - 6.1.5 PGN65354(FF4A) 倾角仪输出
 - 6.2 配置指令

- 6.2.1 配置格式
- 6.2.2 配置模块
- 7 CAN数据协议与指令(NMEA2000协议)
- 8 地磁校准
 - 8.1 地磁校准步骤
 - 8.1.1 用户地磁校准
 - 8.1.2 空间磁场干扰
 - 8.1.3 关于模块地磁校准算法
 - 8.2 配置地磁校准(手动地磁校准)
 - 8.3 再次强调
- 9 附录1四元数/欧拉角/旋转矩阵互转
 - 9.1 四元数转欧拉角(东北天-312(Z->X->Y)旋转顺序下的欧拉角)
 - 9.2 四元数转旋转矩阵
- 10 附录2 固件升级
- 11 附录3技术支持

1. 模块配置简述

产品的默认配置已经可以满足大多数用户需求,因此在使用产品前需要仔细阅读此章节,结合自身的使用需求,判断是否需要进行用户配置。

1.1 地磁辅助场景(AHRS/9轴模式)

在绝对大多数情况下,机器人及室内环境,AHRS(9轴)模式很容易受到干扰导致航向角产生误差。在少数空旷且 无磁场干扰的环境下,可以尝试使用地磁辅助模式,比如无人机,在使用前需要先将模块配置为地磁辅助模式并且 进行地磁校准。详见地磁校准章节。

串行接口配置请参考 CONFIG-模式配置

1.2 同步输入与同步输出(时间同步)

1.2.1 同步输入(SIN/PPS)

部分产品有同步输入引脚(SIN/PPS),用于IMU时间同步,该引脚有两种用法,不使用时可悬空。

1.2.1.1 用法1: 数据输出触发

当某个输出帧被配置为同步触发时(ONMARK触发,见LOG指令),每当SIN引脚检测到上升沿,都会输出一帧该数据。该功能主要用于接收主控产生的高精度方波脉冲,以触发高频同步IMU数据。从SIN引脚检测到上升沿到数据帧发出的平均延迟为125us(见下图)。

1.2.1.2 用法2: UTC时间同步(定制功能)

此引脚可接入GPS的PPS秒脉冲信号,配合串口的GPRMC消息为IMU提供UTC时间同步。一旦时间同步成功,所有数据帧中的本地时间戳将立即转换为UTC时间(以毫秒为单位)。此功能要求:

此引脚也可作为GPS PPS秒脉冲信号,和串口的GPRMC消息一起为IMU提供UTC时间。可以通过连接GPS的 PPS 秒脉冲信号,并配合串口提供GPRMC消息一起配合为IMU提供绝对时间信息。一旦时间信息同步成功, 所有数据 帧中的本地时间戳信息会立即变成UTC时间(以ms表示). 此功能要求:

1. SIN/PPS必须接入有效的GNSS PPS秒脉冲,要求:

。 周期: 1秒

。 触发方式: 上升沿

。 脉宽: 5ms

。 对齐: UTC时间整秒

。 电平: 高电平不超过5V

2. 串口需要输入标准GPRMC消息:

。 频率: 1-10Hz

。 波特率:必须与IMU配置相同

1.2.2 同步输出(SOUT)

• 数据同步输出(SYNC_OUT):输出引脚,无数据输出时为低电平(空闲),一帧数据开始发送前会发送一个高脉冲,高脉冲结束(下降沿)后紧接数据输出,见下图。

 在使用同步输入功能时,先要通过串口输入指令UNLOGALL来取消所有异步定时输出,同时使用 LOG <MSG> ONMARK 1 打开同步触发输入功能,详情见请参见LOG命令

2. 模块配置命令

模块配置采用ASCII字符串命令,每条命令必须以回车换行 \r\n 结束(类似AT指令),才能被系统识别。

2.1 配置命令总览

指令	功能	备注
REBOOT	复位模块	和重上电等效
SAVECONFIG	保存所有配置参数	立即生效
SERIALCONFIG	波特率设置	立即生效
CONFIG	设置用户参数及模式	立即生效
LOG	打印模块信息或配置输出数据	立即生效
UNLOGALL	关闭所有定时输出消息	立即生效
FRESET	恢复出厂设置	立即生效

所有配置指令需要 复位或重新上电后才能生效

2.2 指令详解

2.2.1 **REBOOT**

复位模块, 立即生效, 和重新上电效果相同。

2.2.2 SAVECONFIG

保存所有用户配置到Flash。

2.2.3 SERIALCONFIG

设置串口波特率,可选值: 9600/115200/256000/460800/921600

配置串口波特率为115200

SERIALCONFIG 115200

SAVECONFIG

使用此指令需要特别注意,输入错误波特率后会导致无法和模块通讯。

2.2.4 **CONFIG**

用于配置模块工作参数,绝大多数命令执行后立即生效,且需要 SAVECONFIG 才能掉电保存

2.2.4.1 工作模式模式配置: 6轴 或者9轴(地磁辅助)模式

- CONFIG ATT MODE 0 配置模块为6DOF模式
- CONFIG ATT MODE 1 配置模块为AHRS(9轴)模式

2.2.4.2 水平校准

- CONFIG ATT RST 2 设置相对水平(设置相对零点): 将当前Pitch/Roll角度设置为零。
- CONFIG ATT RST 3 自动校平(适用于机器人IMU产品): 如果当前俯仰角/横滚角接近0°,0°(水平正面放置),则自动校准到0,0。 如果当前俯仰角/横滚角接近0°或 180°(水平倒放),则自动校准到 0°,180°。 其中,"接近"定义为 Pitch Roll均小于5°
- CONFIG ATT RST 5 取消水平校平: 清除当前俯仰横滚角校平设置(恢复默认)
 - 执行 CONFIG ATT RST命令时,模块需要保持静止,如果模块在运动中执行该命令,则有可能造成较大 校平误差
 - ATT RST 2 和 ATT RST 3 的区别:
 - ATT RST 3 在执行校平时会检测当前是否只是轻微倾斜,如果倾斜度很大,则放弃执行,而RST 2 不会做任何执行前检查。
 - 。 ATT RST 3 会在校平时候同时校平加速度计的输出值,使得加速度计输出值X,Y接近于0.

2.2.4.3 手动设置航向角

用户手动设置航向角: CONFIG YAW < MODE > < VAL > , MODE: 0:相对模式 1: 绝对模式, YAW: 设置值,范围(-180 到 180,单位: deg), 此命令立即生效,掉电不保存。

- CONFIG YAW 1 16: 绝对设置模式: 将航向角设置为 16 deq
- CONFIG YAW 0 1.5: 相对设置模式,例: 如当前航向角为30 deg,则设置后航向角变为 30 + 1.5= 31.5 deg

2.2.4.4 坐标系旋转(改变安装方式)

CONFIG IMU URFR C00,C01,C02,C10,C11,C12,C20,C21,C22

其中 C_{nn} 支持浮点数

$$\begin{cases} X \\ Y \\ Z \end{cases}_B = \begin{bmatrix} C00 & C01 & C02 \\ C10 & C11 & C12 \\ C20 & C21 & C22 \end{bmatrix} \cdot \begin{cases} X \\ Y \\ Z \end{cases}_U$$

其中
$$\left\{egin{array}{c} X \\ Y \\ Z \end{array}
ight\}_U$$
 为旋转后的 传感器坐标系下 传感器数据, $\left\{egin{array}{c} X \\ Y \\ Z \end{array}
ight\}_B$ 为旋转前 传感器坐标系下 传感器数据

下面是几种常用旋转举例:

• 新传感器坐标系为 绕原坐标系X轴 旋转 -90°(Y轴正方向朝下的垂直安装),配置命令:

CONFIG IMU URFR 1,0,0,0,0,1,0,-1,0

• 新传感器坐标系为 绕原坐标系X轴 旋转 90°(Y轴正方向朝上的垂直安装), 配置命令:

CONFIG IMU URFR 1,0,0,0,0,-1,0,1,0

• 新传感器坐标系为 绕原坐标系X轴 旋转180°, 配置命令:

CONFIG IMU URFR 1,0,0,0,-1,0,0,0,-1

• 新传感器坐标系为 绕原坐标系Y轴 旋转 90°(X轴正方向朝上的垂直安装),配置命令

CONFIG IMU URFR 0,0,-1,0,1,0,1,0,0

• 新传感器坐标系为 绕原坐标系Y轴 旋转-90°(X轴正方向朝下垂直安装), 配置命令:

CONFIG IMU URFR 0,0,1,0,1,0,-1,0,0

• 新传感器坐标系为 绕原坐标系Y轴 旋转180°, 配置命令:

CONFIG IMU URFR -1,0,0,0,1,0,0,0,-1

• 新传感器坐标系为 绕原坐标系Z轴 旋转90°, 配置命令:

CONFIG IMU URFR 0,-1,0,1,0,0,0,0,1

• 新传感器坐标系为 绕原坐标系Z轴 旋转-90°, 配置命令:

CONFIG IMU URFR 0,1,0,-1,0,0,0,0,1

• 水平, Z轴朝上安装(默认值):

CONFIG IMU URFR 1,0,0,0,1,0,0,0,1

- 。 设置URFR后需要软件复位或重新上电才能生效,不需要每次上电都发送该指令。
- 如何确定URFR参数:(以绕原坐标系X轴 旋转 -90°(Y轴正方向朝下的垂直安装) 为例)。 可写出转换 后坐标与转换前坐标的关系:
 - $X_U = X_B$
 - $Y_U = -Z_B$
 - $Z_{II} = Y_{R}$

从而可以写出转换矩阵 =

- 1 0 0 (转换后的X = 转换前的X)
- 0 0 -1(转换后的Y = 转换前的-Z)
- 0 1 0(转换后的Z = 转换前的Y)

按照上述URFR定义公式, URFR参数需要的实际上是上述矩阵的转置, 即:

- 1 0 0
- 0 0 1
- 0 -1 0

2.2.4.5 多功能IO复用功能配置

模块具有多个多功能引脚: 101-109这些引脚可用作不同的功能,不同功能之间通过配置命令切换。

CONFIG <PMUX> <IO>

• PMUX: 复用功能: PMUX1 - PMUX5

• IO: 引脚号: IO1-IO9

例:

- 将IO2分配为LED(PMUX3)功能: CONFIG PMUX3 IO2
- 将IO9分配为SOUT_DIV(PMUX4): CONFIG PMUX4 IO9

复用功能编号	复用名称	方向	说明	默认 分配 IO
PMUX1	SIN	I	同步脉冲输入(SIN/PPS): 输入引脚,。见同步输入与同步输出章节	101
PMUX2	SOUT	0	同步输出:无数据输出时为低电平 (空闲),一帧数据开始发送时会发送一个高脉冲,脉冲宽度位80us,用于同步数据	102
PMUX3	LED	0	输出, 运行状态指示灯	105
PMUX4	SOUT_DIV	0	同步输出分频: 例:当为8分频(默认)时:数据输出速率为100Hz,则SOUT输出频率为100Hz,则该引脚输出频率为12.5Hz(周期80ms),用于触发相机等操作	106
PMUX5	ALARM	0	此功能用于输出报警信号,可以设置当X或Y角度超过一定范围后触发报警。详见设置报警参数	109

- 并不是所有IO引脚在本产品上都引出,具体参见产品用户手册硬件部分。
- 固件版本需 >= 1.5.5才支持此功能

2.2.4.6 设置IO报警触发参数(PMUX5: ALARM)

此功能用于输出报警信号,可以设置当X或Y角度超过一定范围后触发报警。用于报警触发功能。当报警时,对应 IO引脚输出高电平,否则输出低电平。

- CONFIG PMUX5 AIXS,MIN,MAX,THR,ENABLE 设置角度报警参数
 - 。 AIXS: 轴选择: 'X': X轴, 'Y': Y轴
 - 。 MIN, MAX: 安全区域范围, 如 MAX= -5, MAX=5 则 -5° ~ 5°内不报警, 超出此范围则报警。
 - 。 THR: 保留值, 固定为0
 - 。 ENABLE: 0:关闭,1:使能

例: CONFIG PMUX5 Y,-5,5,0,1: 使能Y轴报警功能, 当角度低于-5°或者高于5°时触发报警。

2.2.4.7 设置SOUT_DIV分频系数(PMUX4: SOUT_DIV)

例: CONFIG PMUX4 DIV4: SOUT_DIV输出同步输出的4分频,分频系数支持 1-64

2.2.5 LOG

2.2.5.1 ENABLE/DISABLE: 全局打开/关闭数据输出

LOG ENABLE 全局使能数据帧输出(默认)

LOG DISABLE 全局禁止数据帧输出

2.2.5.2 VERSION: 显示模块版本信息

LOG VERSION 打印固件版本信息

2.2.5.3 USRCONFIG: 显示用户配置信息

LOG USRCONFIG 打印用户配置信息,用于查看配置是否被写入成功。

```
1 ATT_MODE: 0 /* 工作模式: 0:6轴, 1:9轴 */
```

2 ...

2.2.5.4 COMCONFIG: 显示串口配置信息

LOG COMCONFIG 打印串口及输出协议配置信息

2.2.5.5 设置数据帧输出类型及频率

LOG <MSG> <TYPE> <PERIOD>

- MSG: IMU91, HI91(同IMU91), HI92
- TYPE: ONTIME: 定时输出, ONMARK: 外部触发同步输出
- PERIOD: 输出帧周期,单位为s,取值范围: 1(1Hz), 0.5(2Hz), 0.1(10Hz), 0.02(50Hz), 0.01(100Hz), 0.005(200Hz), 0.002(500Hz),以此类推

例(定时100Hz输出):

- LOG IMU91 ONTIME 0.01 将当前串口的 91数据包输出周期设置为0.01s(100Hz)
- LOG HI92 ONTIME 0.05 将当前串口的 92数据包输出周期设置为0.05s(20Hz)

例(关闭输出):

• LOG IMU91 ONTIME 0 关闭91数据包输出

当输出帧率设置为比较高时(比如500Hz),默认的115200波特率不满足输出带宽要求,此时需要将模块波特率设高(比如921600)后,模块才能正确的输出数据。

波特率参数设置好后掉电保存,复位模块生效。上位机或者其他主机的波特率也要做相应修改。

2.2.5.6 配置为同步输出模式

同步触发输出:

- UNLOGALL (可选)先取消所有数据输出。
- LOG IMU91 ONMARK 1 将当前串口的 HI91数据包设置为同步触发模式,设置同步触发模式后,模块收到 SYNC_IN引脚的脉冲信号或收到LOG <MSG> ONMARK ONCE指令后会输出一帧数据。
- LOG IMU91 ONMARK ONCE (可选)手动触发一次数据输出,和SYNC_IN脉冲效果相同

2.2.6 UNLOGALL

将所有定时输出消息输出频率设为0(不输出)

2.2.7 FRESET

恢复出厂设置

3. 数据输出协议(自定义二进制协议)

该协议是超核定义的二进制协议,可以输出全部传感器信息,支持该协议的接口:RS-232/TTL/USB(虚拟串口)。默认串口格式为N-8-N-1(8位数据位,1位停止位,0位校验位)

3.1 数据帧格式

模块上电后,按照默认帧率(100Hz)输出帧数据,帧格式如下:

域名称	值	长度(字节)	说明
帧头	5A A5	2	帧头
************************************	1 510	2	帧中数据域的长度,LSB(低字节在前)
数据域长度	1-312	2	长度表示数据域的长度(不包含帧头,帧类型,长度,CRC)
CRC校验		除CRC 字节外其余所有字段(帧头,帧类型,长度,数据域)的16 位CRC 校验和。	
しれし作文判立	-	Z	LSB(低字节在前)
<i>*t</i> +t□1+		1 510	一帧携带的数据,由若干个子数据包组成,数据包包含数据包标签和数据两部分。
数据域	居域 - 1		标签决定了数据的类型及长度。

3.2 出厂默认输出

出厂默认输出: 浮点型IMU数据帧(HI91)

3.3 数据域内容

3.3.1 浮点型IMU数据帧(HI91)

数据域共76字节。包含模块ID、温度、IMU的原始数据、地磁、气压、融合后的姿态数据等。

开启数据帧示例: LOG HI91 ONTIME 1, 具体详见配置指令章节

字节偏移	名称	数据类型	大小 (Byte)	单位	比例因子	说明
0	tag	uint8_t	1	-	-	数据包标签:0x91
1	pps_sync_stamp	uint16_t	2	ms	1	PPS脉冲同步时间戳,用于精确时间同步,该值定义为:最近一次检测到PPS同步引脚脉冲沿到本帧数据采样时刻所经过的时间,范围 0-8192,当超过最大值时会自动回滚到 0,例:如果用户在PPS引脚上输入的是标准秒脉冲,则该
						值会在0-1000之间。
3	temperature	int8_t	1	°C	1	模块平均温度
4	air_pressure	float	4	Pa	1	气压
8	system_time	uint32_t	4	ms	1	节点本地时间戳信息,从系统开机开始累加,每毫秒增加1
12	acc_b	float	4*3	G	1	经过出厂校准后的加速度,顺序为: XYZ轴. 1G=1x当地重力加速度,可近似为9.8 m/s^2

字节偏移	名称	数据类型	大小 (Byte)	单位	比例因子	说明
24	gyr_b	float	4*3	deg/s(dps)	1	经过出厂校准后的角速度,顺序为: XYZ轴
36	mag_b	float	4*3	uT	1	磁强度,顺序为: XYZ轴
48	roll	float	4	deg	1	横滚角
52	pitch	float	4	deg	1	俯仰角
56	yaw	float	4	deg	1	航向角
60	quat	float	4*4	-	-	节点四元数集合,顺序为WXYZ

3.3.2 整型IMU数据帧(HI92)

共48字节,比浮点型数据帧数据量更小。开启数据帧示例: LOG HI92 ONTIME 1, 具体详见配置指令章节

字节偏移	名称	数据类型	大小 (Byte)	单位	比例因子	说明
0	tag	uint8_t	1	-	-	数据包标签:0x92
1	status	uint16_t	2	-	-	状态字,保留
3	temperature	int8_t	1	°C	1	系统平均温度
4	pps_sync_stamp	uint16_t	2	ms	1	PPS脉冲同步时间戳,用于精确时间同步,该值定义为: 最近一次检测到PPS同步引脚脉冲沿到本帧数据采样时刻所经过的时间, 范围 0-8192,当超过最大值时会自动回滚到0,例: 如果用户在PPS引脚上输入的是标准秒脉冲,则该值会在0-1000之间。
6	air_pressure	int16_t	2	Pa	1	大气压+100000Pa:如2000表示102000Pa
8	reserved	-	2	-	-	保留
10	gyr_b	int16_t*3	6	rad/s	0.001	IMU角速度: X,Y,Z轴(出厂校准后)
16	acc_b	int16_t*3	6	m/s^(2)	0.0048828	IMU加速度: X,Y,Z轴(出厂校准后)
22	mag_b	int16_t*3	6	uT	0.030517	IMU磁强度: X,Y,Z轴(出厂校准后)
28	roll	int32_t	4	deg	0.001	横滚角
32	pitch	int32_t	4	deg	0.001	俯仰角
36	yaw	int32_t	4	deg	0.001	航向角
40	quat	int16_t*4	8	-	0.0001	节点四元数集合,顺序为WXYZ

3.4 CRC

16-bit CRC实现例程:

```
src: source stream data
4 lengthInBytes: length
6 static void crc16_update(uint16_t *currectCrc, const uint8_t *src, uint32_t
  lengthInBytes)
       uint32_t crc = *currectCrc;
      uint32_t j;
     for (j=0; j < lengthInBytes; ++j)</pre>
          uint32_t i;
          uint32_t byte = src[j];
          crc ^= byte << 8;
              uint32_t temp = crc << 1;
              if (crc & 0x8000)
                  temp ^= 0x1021;
             crc = temp;
     *currectCrc = crc;
```

3.5 数据帧结构示例(以HI91为例)

使用串口助手采样一帧数据(HI91数据帧),共82字节,前6字节为帧头,长度和CRC校验值。剩余76字节为数据域。假设数据接收到C语言数组 buf 中。如下所示:

5A A5 4C 00 14 BB 91 08 15 23 09 A2 C4 47 08 15 1C 00 CC E8 61 BE 9A 35 56 3E 65 EA 72 3F 31 D0 7C BD 75 DD C5 BB 6B D7 24 BC 89 88 FC 40 01 00 6A 41 AB 2A 70 C2 96 D4 50 41 ED 03 43 41 41 F4 F4 C2 CC CA F8 BE 73 6A 19 BE F0 00 1C 3D 8D 37 5C 3F

字段名称	类型	原始值	解析值	描述
帧头	/	5A A5	-	帧头
数据域长度	/	4C 00	76	数据域长度=76字节
CRC	/	14 BB	BB14	CRC校验值
tag	/	91	91	0x91数据包(从次字段开始为payload数据域)
pps_sync_stamp	uint16_t	08 15	5384	PPS同步时间戳,此帧距上次同步输入脉冲时间, ms
temperature	int8_t	23	35	温度: °C
air_pressure	float	09 A2 C4 47	100676	气压,Pa
system_time	uint32_t	08 15 1C 00	0x001C1508 = 1840392	系统时间, ms
acc_b_x	float	CC E8 61 BE	-0.220615	加速度X轴,G
acc_b_y	float	9A 35 56 3E	0.209189	加速度Y轴,G
acc_b_z	float	65 EA 72 3F	0.948889	加速度Z轴,G
gyr_b_x	float	31 D0 7C BD	-0.061722	角速度X轴, dps
gyr_b_y	float	75 DD C5 BB	-0.00603836	角速度Y轴, dps
gyr_b_z	float	6B D7 24 BC	-0.0100611	角速度Z轴, dps
mag_b_x	float	89 88 FC 40	7.89167	磁场X轴, uT
mag_b_y	float	01 00 6A 41	14.625	磁场Y轴, uT
mag_b_z	float	AB 2A 70 C2	-60.0417	磁场Z轴, uT
roll	float	96 D4 50 41	13.0519	横滚角, deg
pitch	float	ED 03 43 41	12.1885	俯仰角, deg
yaw	float	41 F4 F4 C2	-122.477	航向角, deg
q_w	float	CC CA F8 BE	-0.485922	四元数W
q_x	float	73 6A 19 BE	-0.14982	四元数X

字段名称	类型	原始值	解析值	描述	
a v	float	F0 00 1C	0.0380868	四元数Y	
q_y II	lloat	3D	0.0300000	EST/Lexx T	
G 7	float	8D 37 5C	0.860223	四元数Z	
4_2	noat	3F	0.800223	ピゴノし女父と	

3.6 C语言解析代码示例(以HI91为例)

1.校验CRC

```
uint16_t payload_len;
uint16_t crc;
crc = 0;
payload_len = buf[2] + (buf[3] << 8);

/* calulate 5A A5 and LEN filed crc */
crc16_update(&crc, buf, 4);

/* calulate payload crc */
crc16_update(&crc, buf + 6, payload_len);</pre>
```

得到CRC值为0x516C,与帧中携带CRC值相同,CRC校验通过。

2.定义数据接受结构

从 0x91 开始为数据包的数据域, 定义数据结构体和常用转换宏:

```
#include "stdio.h"
 2 #include "string.h"
3 /* common type conversion */
4 #define U1(p) (*((uint8_t *)(p)))
5 #define I1(p) (*((int8_t *)(p)))
 6 #define I2(p) (*((int16_t *)(p)))
7 static uint16_t U2(uint8_t *p) {uint16_t u; memcpy(&u,p,2); return u;}
8 static uint32_t U4(uint8_t *p) {uint32_t u; memcpy(&u,p,4); return u;}
9 static int32_t I4(uint8_t *p) {int32_t u; memcpy(&u,p,4); return u;}
10 static float R4(uint8_t *p) {float r; memcpy(&r,p,4); return r;}
11 typedef struct
       uint8_t
                                   /* item tag: 0x91
                   tag;
        float
                   acc[3];
                                    /* acceleration
```

```
float
                    gyr[3];
                                      /* angular velocity
        float
                                      /* magnetic field
                    mag[3];
        float
                    eul[3];
                                      /* attitude: eular angle */
        float
                    quat[4];
                                      /* attitude: quaternion */
        float
                    pressure;
                                      /* air pressure
        uint32_t
                    timestamp;
21 }imu_data_t;
```

3. 接收数据,从buf[6]=0x91开始为payload部分:

```
imu_data_t i0x91 = \{0\};
int offset = 6; /* payload strat at buf[6] */
i0x91.tag =
                        U1(buf+offset+0);
i0x91.pressure =
                        R4(buf+offset+4);
i0x91.timestamp =
                        U4(buf+offset+8);
i0x91.acc[0] =
                        R4(buf+offset+12);
i0x91.acc[1] =
                        R4(buf+offset+16);
i0x91.acc[2] =
                        R4(buf+offset+20);
i0x91.gyr[0] =
                        R4(buf+offset+24);
i0x91.gyr[1] =
                        R4(buf+offset+28);
i0x91.gyr[2] =
                        R4(buf+offset+32);
i0x91.mag[0] =
                        R4(buf+offset+36);
i0x91.mag[1] =
                        R4(buf+offset+40);
i0x91.mag[2] =
                        R4(buf+offset+44);
i0x91.eul[0] =
                        R4(buf+offset+48);
i0x91.eul[1] =
                        R4(buf+offset+52);
i0x91.eul[2] =
                        R4(buf+offset+56);
i0x91.quat[0] =
                        R4(buf+offset+60);
i0x91.quat[1] =
                        R4(buf+offset+64);
i0x91.quat[2] =
                        R4(buf+offset+68);
i0x91.quat[3] =
                        R4(buf+offset+72);
```

4. 打印接收到的数据:

```
printf("%-16s0x%X\r\n",
                                                          i0x91.tag);
   printf("%-16s%8.4f %8.4f %8.4f\r\n",
                                                          i0x91.acc[0],
i0x91.acc[1], i0x91.acc[2]);
   printf("%-16s%8.3f %8.3f %8.3f\r\n",
                                                         i0x91.gyr[<mark>0</mark>],
i0x91.gyr[1], i0x91.gyr[2]);
   printf("%-16s%8.3f %8.3f %8.3f\r\n", "mag(uT):", i0x91.mag[0],
i0x91.mag[1], i0x91.mag[2]);
   printf("%-16s%8.3f %8.3f %8.3f\r\n", "eul(deg):", i0x91.eul[0],
i0x91.eul[1], i0x91.eul[2]);
   printf("%-16s%8.3f %8.3f %8.3f %8.3f\r\n", "quat:",
                                                               i0x91.quat[0],
i0x91.quat[1], i0x91.quat[2], i0x91.quat[3]);
   printf("%-16s%8.3f\r\n",
                                                                i0x91.pressure);
   printf("%-16s%d\r\n",
                                             "timestamp(ms):", i0x91.timestamp);
```

3.7 最大传输速率

协议	字节数	9600bps	115200bps	230400bps	256000bps	460800bps	921600bps
91	76	10Hz	100Hz	250Hz	250Hz	500Hz	1000Hz
92	48	10Hz	200Hz	250Hz	250Hz	500Hz	1000Hz

4. RS-485数据协议与指令(Modbus协议)

- 支持该协议的接口: RS485
- 默认串口配置: 115200 N8N1
- Modbus 指令:
 - 。 RS485通讯协议遵循Modbus RTU协议规范,数据以寄存器为单位进行发送和接收,每个寄存器占用2个字节,采用大端模式(高字节在前)
 - 。 写入: 0x06 (Write Single Register):写单个寄存器(每个Modbus寄存器为2个字节)
 - 。 读取: 0x03 (Read Holding Registers): 读取单个或多个寄存器数据
 - 。 自定义功能码: 0x50, 用于 Modbus ID自动分配,方便量产部署,固件升级等
- Modbus设备地址可修改, 出厂默认: 80 (0x50)

4.1 数据帧格式

4.1.1 读寄存器(0x03)

主机发送:

域名称	值	说明
ID	1-0xFF	Modbus设备地址
FUN_CODE	0x03	命令码
ADDR_H	-	要读取的寄存器地址高8位
ADDR_L	-	要读取的寄存器地址低8位
LEN_H	-	要读取寄存器长度高8位(以寄存器个数为单位)
LEN_L	-	要读取寄存器长度低8位(以寄存器个数为单位)
CRC_L	-	CRC低8位
CRC_H	-	CRC高8位

从机(模块)返回:

域名称	值	说明
ID	1-0xFF	Modbus设备地址
FUN_CODE	0x03	命令码
LEN	_	返回寄存器数据的长度(不算ID, FUN_CODE,LEN,CRC字段)以字节为单位
DATAH	_	返回数据高8位
DATAL	_	返回数据低8位
	-	返回数据高8位
	-	返回数据低8位
CRC_L	-	CRC低8位
CRC_H	-	CRC高8位

4.1.2 写寄存器(0x06)

域名称	值	说明
ID	1-0xFF	Modbus设备地址
FUN_CODE	0x06	命令码
ADDR_H	-	寄存器地址高8位
ADDR_L	-	寄存器地址低8位
DATA_H	-	写入数据高8位
DATA_L	-	写入数据低8位
CRC_L	-	CRC低8位
CRC_H	-	CRC高8位

从机返回:

域名称	值	说明
ID	1-0xFF	Modbus设备地址
FUN_CODE	0x06	命令码
ADDR_H	-	寄存器地址高8位
ADDR_L	-	寄存器地址低8位
DATA_H	-	写入数据高8位
DATA_L	-	写入数据低8位
CRC_L	-	CRC低8位
CRC_H	-	CRC高8位

4.1.3 CRC校验

- 在线计算CRC: https://www.23bei.com/tool/59.html
- C代码:

```
0x2800, 0xe8c1, 0xe981, 0x2940, 0xeb01, 0x2bc0, 0x2a80, 0xea41,
   0xee01, 0x2ec0, 0x2f80, 0xef41, 0x2d00, 0xedc1, 0xec81, 0x2c40,
   0xe401, 0x24c0, 0x2580, 0xe541, 0x2700, 0xe7c1, 0xe681, 0x2640,
   0x2200, 0xe2c1, 0xe381, 0x2340, 0xe101, 0x21c0, 0x2080, 0xe041,
   0xa001, 0x60c0, 0x6180, 0xa141, 0x6300, 0xa3c1, 0xa281, 0x6240,
   0x6600, 0xa6c1, 0xa781, 0x6740, 0xa501, 0x65c0, 0x6480, 0xa441,
   0x6c00, 0xacc1, 0xad81, 0x6d40, 0xaf01, 0x6fc0, 0x6e80, 0xae41,
   0xaa01, 0x6ac0, 0x6b80, 0xab41, 0x6900, 0xa9c1, 0xa881, 0x6840,
   0x7800, 0xb8c1, 0xb981, 0x7940, 0xbb01, 0x7bc0, 0x7a80, 0xba41,
   0xbe01, 0x7ec0, 0x7f80, 0xbf41, 0x7d00, 0xbdc1, 0xbc81, 0x7c40,
   0xb401, 0x74c0, 0x7580, 0xb541, 0x7700, 0xb7c1, 0xb681, 0x7640,
   0x7200, 0xb2c1, 0xb381, 0x7340, 0xb101, 0x71c0, 0x7080, 0xb041,
   0x5000, 0x90c1, 0x9181, 0x5140, 0x9301, 0x53c0, 0x5280, 0x9241,
   0x9601, 0x56c0, 0x5780, 0x9741, 0x5500, 0x95c1, 0x9481, 0x5440,
   0x9c01, 0x5cc0, 0x5d80, 0x9d41, 0x5f00, 0x9fc1, 0x9e81, 0x5e40,
   0x5a00, 0x9ac1, 0x9b81, 0x5b40, 0x9901, 0x59c0, 0x5880, 0x9841,
   0x8801, 0x48c0, 0x4980, 0x8941, 0x4b00, 0x8bc1, 0x8a81, 0x4a40,
   0x4e00, 0x8ec1, 0x8f81, 0x4f40, 0x8d01, 0x4dc0, 0x4c80, 0x8c41,
   0x4400, 0x84c1, 0x8581, 0x4540, 0x8701, 0x47c0, 0x4680, 0x8641,
   0x8201, 0x42c0, 0x4380, 0x8341, 0x4100, 0x81c1, 0x8081, 0x4040
};
 uint16_t modbus_crc_calc(uint8_t *buf, uint16_t len)
    uint16_t crc = 0xFFFFU;
    uint8_t nTemp;
    while (len--)
        nTemp = *buf++ ^ crc;
        crc >>= 8;
        crc ^= modbus_crc_table[(nTemp & 0xFFU)];
    return(crc);
```

4.2 寄存器列表

地址 (Hex)	地址 (Dec)	名称	类型	功能	R/W	说明
0x00	0	CTRL	u16	控制	W	参见Modbus 设置模块章节
0x04	4	UART1_BAUD	u16	波特率	R/W	串口波特率
0x05	5	MD_ID	u16	Modbus ID	R/W	Modbus ID: 有效范围: 1-128
0x06	6	HEADING_MODE	u16	航向角 模式	R/W	0:6轴模式(相对航向,航向角上电为0).1:9轴模式(地磁融合,绝对航向)
0x34	52	ACCX	i16	加速度X	R	单位G(1G=1重力加速度),比例因子:0.00048828
0x35	53	ACCY	i16	加速度Y	R	单位G(1G=1重力加速度),比例因子:0.00048828
0x36	54	ACCZ	i16	加速度Z	R	单位G(1G=1重力加速度),比例因子:0.00048828
0x37	55	GYRX	i16	角速度X	R	单位deg/s, 比例因子:0.061035
0x38	56	GYRY	i16	角速度Y	R	单位deg/s, 比例因子:0.061035
0x39	57	GYRZ	i16	角速度Z	R	单位deg/s,比例因子:0.061035
0x3A	58	MAGX	i16	磁强度X	R	单位uT, 比例因子: 0.030517
0x3B	59	MAGY	i16	磁强度Y	R	单位uT, 比例因子: 0.030517
0x3C	60	MAGZ	i16	磁强度Z	R	单位uT, 比例因子: 0.030517
0x3D	61	R_H	i32	横滚角 高16位	R	单位deg, 比例因子:0.001
0x3E	62	R_L	-	横滚角 低16位	R	单位deg, 比例因子:0.001
0x3F	63	P_H	i32	俯仰角 高16位	R	单位deg, 比例因子:0.001
0x40	64	P_L	-	俯仰角 低16位	R	单位deg, 比例因子:0.001
0x41	65	Y_H	i32	航向角 高16位	R	单位deg, 比例因子:0.001
0x42	66	Y_L	-	航向角 低16位	R	单位deg, 比例因子:0.001
0x43	67	TEMP	i16	温度	R	单位℃, 比例因子:0.01
0x44	68	PRS_H	i32	气压高 16位	R	单位Pa, 比例因子:0.01
0x45	69	PRS_L	-	气压低 16位	R	单位Pa, 比例因子:0.01
0x46	70	Q0	u16	四元数 QW	R	四元数,比例因子: 0.0001
0x47	71	Q1	u16	四元数 QX	R	四元数,比例因子: 0.0001

地址 (Hex)	地址 (Dec)	名称	类型	功能	R/W	说明 ····································
0x48	72	Q2	u16	四元数 QY	R	四元数,比例因子: 0.0001
0x49	73	Q3	u16	四元数 QZ	R	四元数,比例因子: 0.0001
0x4A	74	INCLI_X	i16	倾角仪X 轴角度	R	双轴倾角仪产品:X角度, ±180,单位deg, 比例因子: 0.011 单轴倾角仪产品:X角度, 0-360, 单位deg, 比例因子: 0.011
0x4B	75	INCLI_Y	i16	倾角仪Y 轴角度	R	双轴倾角仪Y角度: ±90, 单位deg,比例因子: 0.011 单轴倾角仪: 此寄存器保留
0x70- 0x77	112- 119	PNAME	u16	设备名	R	设备名字符串, ASCII码,共占8个寄存器
0x78	120	SW_VERSION	u16	软件版 本	R	软件版本
0x79	121	BL_VERSION	u16	BL版本	R	BL版本
0x7F- 0x82	127- 130	SN	u16	产品唯 一序列 号	R	产品唯一序列号, 占4寄存器
0xA5	165	SET_LV	u16	自动校平	W	3: 执行一次自动调平: 如果当前俯仰角/横滚角接近0°,0°(水平正面放置),则自动校准到0,0. 前如果当前俯仰角/横滚角接近0°或180°(水平倒放),则自动校准到0°,180°适用于机器人安装环境。 其中,"接近"定义为 Pitch Roll均小于15°5: 取消自动调平,恢复绝对测量角度其他值: 无效
0xA6	166	URFR	u16	安装设置	W	0: 设置为水平安装(默认模式) 1: 垂直安装:Y轴正方向朝下 2: 垂直安装:Y轴正方向朝上 3: 垂直安装:X轴正方向朝上 4: 垂直安装:X轴正方向朝下

4.3 常用配置

以下所有配置示例默认Modbus地址为0x50(出厂默认), 如果Modbus ID已经被用户修改,则ID字段和CRC字段需要更改。

4.3.1 控制寄存器说明(0x00)

命令	CTL寄存器写入值	命令(Hex) ID=0X50(出厂默认)
保存所有配置参数到Flash	0x0000	50 06 00 00 00 00 84 4B
恢复出厂设置	0x0001	50 06 00 00 00 01 45 8B
	0x00FF	50 06 00 00 00 FF C4 0B

4.3.2 配置波特率(0x04)

配置目标波特率	指令(Hex) ID=0X50(出厂默认)
4800	50 06 00 04 00 00 C5 8A
9600	50 06 00 04 00 01 04 4A
19200	50 06 00 04 00 02 44 4B
38400	50 06 00 04 00 03 85 8B
57600	50 06 00 04 00 04 C4 49
115200	50 06 00 04 00 05 05 89
230400	50 06 00 04 00 06 45 88
460800	50 06 00 04 00 07 84 48
921600	50 06 00 04 00 08 C4 4C

4.3.3 配置节点ID

[CUR_ID] 06 00 05 00 [NEW_ID] CRC(2字节)

- CUR_ID: 当前设备Modbus ID.
- NEW_ID:新(要设置的)ID号

示例(CUR_ID=0x50):

- 设置NEW_ID为0x50: 50 06 00 05 00 50 94 76
- 设置NEW_ID为0x51: 50 06 00 05 00 51 55 B6
- 设置NEW_ID为0x52: 50 06 00 05 00 52 15 B7
- 设置NEW_ID为0x53: 50 06 00 05 00 53 D4 77

注意:修改成功后Modbus地址会立即生效,需要修改Modbus的发送CUR_ID字段,如果没有Modbus协议基础,建议使用上位机操作。

4.3.4 设置安装方式 (0xA6)

配置目标安装方式	指令(Hex) ID=0X50(出厂默认)
0: 设置为水平安装(默认模式)	50 06 00 A6 00 00 64 68
1: 垂直安装:Y轴正方向朝下	50 06 00 A6 00 01 A5 A8
2: 垂直安装:Y轴正方向朝上	50 06 00 A6 00 02 E5 A9
3: 垂直安装:X轴正方向朝上	50 06 00 A6 00 03 24 69
4: 垂直安装:X轴正方向朝下	50 06 00 A6 00 04 65 AB

4.3.5 设置水平校准(0xA5)

• 启动自动水平校平: 50 06 00 A5 00 02 15 A9

• 取消自动水平校平: 50 06 00 A5 00 05 54 6B

4.3.6 设置6轴或9轴模式

• 设置为6轴模式: 50 06 00 06 00 00 64 4A

• 设置为9轴模式: 50 06 00 06 00 01 A5 8A

4.4 读取模块版本信息

1.读取模块产品名, 软件版本及SN号

TX(主机发送): 50 03 00 70 00 14 49 9F

ID=0x50, CMD=0x03, 读取起始地址0x70, 读取长度:0x14, CRC: 0x499F

50 03 28: 从机地址0x50,命令码:0x03,数据部分共0x28= 40字节, 48 49 31 34 52 32 4E 2D 34 38 35 2D 30 30 30 00 00 98 00 6B 00 00 00 00 00 00 00 00 00 00 04 7D 95 5F 8D 2A 17 08 00 00 ,数据段: 产品名: CH10x(M), 软件版本:0x98(152), BL版本:0x6B(107), SN:047D955F8D2A1708,4D 0C: CRC校验

4.5 读取传感器数据

TX(主机发送): 50 03 00 34 00 18 09 8F

ID=0x50, CMD=0x03, 读取起始地址0x34, 读取长度:0x18, CRC: 0x098F

RX(从机响应): 50 03 30 FF 01 03 B0 06 50 FC C9 FF 7C 00 91 01 D5 FD DB FD 27 00 00 21 FF 00 00 7F F6 FF FD 73 E7 00 00 00 00 00 10 A6 0D 59 DD 4E 86 A8 06 30 17 82 1E CE

0x30 = 从机返回48字节,第一个寄存器值为0xFF01=-255,第二寄存器值为0x03B0=944 ...以此类推

• 加速度: X=-255, Y=944, Z=1616 ->乘比例因子后结果: X= -0.1245, Y=0.4609, Z=0.7891G (1G=1重力加速度,可取9.8m/s^(2))

- 角速度: X=-823, Y=-132, Z=145 -> 乘比例因子后结果: X=-50.2318, Y=-8.0566, Z=8.8501deg/s
- 磁场: X=469, Y=-549, Z=-729 -> 乘比例因子后结果: X=14.3125, Y=-16.7538, Z=-22.2469uT
- 欧拉角: 横滚(Roll) =8703, 俯仰角(Pitch)=32758, 航向角(Yaw) =-166937 -> 乘比例因子后结果: Roll=8.703deg, Pitch=32.758deg, Yaw=-166.937deg

4.6 Modbus ID自动分配

ID地址自动分配机制用于量产部署时多个模块挂接在同一个485总线的情况,模块可配合上位机完成ID自动地址分配,该功能只开放给量产客户,具体资料请与我们联系。

0x50 自定义指令格式为: [ADDR] 0x50 [SUB_CMD] [DATA_LEN] [DATA]

目前支持的自定义指令列表:

1. 通过SN号设定ID地址(0x0031): 格式: 00 50 00 31 00 0A [SN] [NEW_ADDR] CRC

SN: 设备唯一序列号,8字节

新的ID地址: 1-255, 2字节

2. ID地址随机化生成(0x0030): 该指令会强制总线上的所有模块抛弃原来ID且生成新的介于MIN_ADDR和 MAX_ADDR之间的新ID 格式: 00 50 00 30 00 06 [MIN] [MAX] FF FF CRC

MIN: 生成随机ID的最小值, 2字节。

MAX: 生成随机ID的最大值 2字节。

5. CAN数据协议与指令(CANopen协议)

CAN接口符合CANopen协议,所有通讯均使用标准数据帧,使用TPD01-7 传输数据。不接收/发送远程帧和拓展数据帧,所有TPD0采用异步定时触发模式。

5.1 CANopen 默认设置

默认配置	值
CAN 波特率	500 kbit/s
DI点带	8
初始化状态	Operational
TPDO输出速率	1Hz - 200Hz(每个TPDO)

5.2 CANopen TPDO

通道	帧ID	数据长度 (DLC)	传输方 式	输出频率 (Hz)	数据	说明 ····································
TPD01	0x180+ID	6	异步定 时 (0xFE)	100	加速度	类型:int16 低字节在前,每个轴2字节,共6字节分别为X,Y,Z轴加速度,单位为mG(0.001G)
TPD02	0x280+ID	6	异步定 时 (0xFE)	100	角速度	类型:int16 低字节在前,每个轴2字节,共6字节分别为X,Y,Z轴角速度,单位为0.1dps(°/s)
TPD03	0x380+ID	6	异步定 时 (0xFE)	100	欧拉角	类型:int16 低字节在前,每个轴2字节,共6字节顺序分别为横滚角:Roll, 俯仰角:Pitch, 航向角:Yaw。单位为0.01°
TPD04	0x480+ID	8	异步定 时 (0xFE)	100	四元数	类型: $int16$ 低字节在前,每个元素2字节,共8字节分别为 q_w q_x q_y q_z 。单位四元数扩大10000倍后结果。如四元数为1,0,0,0 时,输出10000,0,0,0.
TPD06	0x680+ID	4	异步定 时 (0xFE)	20	气压	类型:int32 共4字节。单位Pa
TPD07	0x780+ID	8	异步定 时 (0xFE)	100	倾角 仪角 度	类型:int32 低字节在前,每个轴4字节,共8字节顺序分别为 X轴,Y轴。单位为0.01°

以加速度和角速度为例解析数据

加速度CAN帧: ID=0x188, DATA = 4A 00 1F 00 C8 03

• ID=0x188: ID为8的设备发送的加速度数据帧

• 加速度X轴 = 0x004A = 74 = 74mG

- 加速度Y轴 = 0x001F = 731 = 31mG
- 加速度Z轴 = 0x03C8 = 968 = 968mG

角速度CAN帧: ID=0x288, DATA = 15 00 14 01 34 00

- ID=0x288: ID为8的设备发送的角速度数据帧
- 角速度X轴 = 0x0015 = 21 = 2.1dps
- 角速度Y轴 = 0x0114 = 276 = 27.6dps
- 角速度Z轴 = 0x0034 = 52= 5.2dps

5.3 使用上位机连接CAN设备

使用PCAN-View工具,配合PCAN,可以在接收框(Rx Message)中显示收到的CAN消息及帧率,如下图所示:

5.4 配置指令(SDO协议)

所有配置指令均采用快速SDO配置。所有配置更改后需要发送保存配置指令才能保存到Flash

5.4.1 SDO(Service Data Object)协议

快速SDO格式:

主机发送SDO命令到从机:

CAN_ID	CS命令符(1B)	数据字典索引(2B)	子索引(1B)	数据(4B)
0x600+ID	0x23(写4B)	低位在前	子索引	数据,低位在前

从机回复SDO命令到主机:

CAN_ID	SDO命令(1B)	数据字典索引(2B)	子索引(1B)	数据(4B)
0x580+ID	0x60(写成功应答)	低位在前	子索引	保留

5.4.1.1 修改节点ID (0x20A0)

ID=0x608, DATA=23,A0,20,00,[ID],00,00,00 , ID修改范围: 1-127, 修改后需要保存配置到Flash且复位(或重新上电生效。

5.4.1.2 保存配置到Flash(0x2000)

ID=0x608, DATA=23,00,20,00,00,00,00,00

5.4.1.3 复位(0x2000)

ID=0x608, DATA=23,00,20,00,FF,00,00,00

5.4.1.4 恢复出厂设置(0x2000)

ID=0x608, DATA=23 00 20 00 01 00 00 00 恢复出厂设置,将所有参数包括波特率,节点ID等恢复至出厂值, 重新上电生效, 谨慎使用。

5.4.1.5 修改CAN波特率(0x209A)

ID=0x608, DATA=23,9A,20,00,[ID], 修改后需要保存配置到Flash且复位(或重新上电)生效。

- CAN波特率修改为1000 kbit/s: ID=0x608, DATA=23,9A,20,00,00,00,00,00
- CAN波特率修改为500kbit/s: ID=0x608, DATA=23,9A,20,00,02,00,00,00
- CAN波特率修改为250kbit/s: ID=0x608, DATA=23,9A,20,00,03,00,00,00
- CAN波特率修改为125kbit/s: ID=0x608, DATA=23,9A,20,00,04,00,00,00

以下配置操作均使用快速SDO来写数据字典,其中TPDO通道与其对应的参数索引为:

通道	帧ID	参数索引地址	说明
TPD01	0x180+ID	0x1800	加速度
TPD02	0x280+ID	0x1801	角速度
TPD03	0x380+ID	0x1802	欧拉角
TPD04	0x480+ID	0x1803	四元数
TPD06	0x680+ID	0x1804	气压
TPD07	0x780+ID	0x1805	 倾角仪输出

5.4.1.6 修改/关闭/开启数据输出速率(0x1800-0x1805)

此项配置立即生效

- ID=0x608, DATA=2B,00,18,05,00,00,00,00 关闭加速度输出(1800.5=0)
- ID=0x608, DATA=2B,00,18,05,05,00,00,00 加速度200Hz输出(1800.5=5)
- ID=0x608, DATA=2B,00,18,05,0A,00,00,00 加速度100Hz输出(1800.5=10)
- ID=0x608, DATA=2B,00,18,05,14,00,00,00 加速度50Hz输出(1800.5=20)
- ID=0x608, DATA=2B,00,18,05,32,00,00,00 加速度20Hz输出(1800.5=50)
- ID=0x608, DATA=2B,00,18,05,64,00,00,00 加速度10Hz输出(1800.5=100)
- ID=0x608, DATA=2B,01,18,05,00,00,00,00 关闭角速度输出(1801.5=0)
- ID=0x608, DATA=2B,01,18,05,05,00,00,00 角速度200Hz输出(1801.5=5)
- ID=0x608, DATA=2B,01,18,05,0A,00,00,00 角速度100Hz输出(1801.5=10)

- ID=0x608, DATA=2B,01,18,05,14,00,00,00 角速度50Hz输出(1801.5=20)
- ID=0x608, DATA=2B,01,18,05,32,00,00,00 角速度20Hz输出(1801.5=50)
- ID=0x608, DATA=2B,01,18,05,64,00,00,00 角速度10Hz输出(1801.5=100)
- ID=0x608, DATA=2B,02,18,05,00,00,00,00 关闭欧拉角输出(1802.5=0)
- ID=0x608, DATA=2B,02,18,05,05,00,00,00 欧拉角200Hz输出(1802.5=5)
- ID=0x608, DATA=2B,02,18,05,0A,00,00,00 欧拉角100Hz输出(1802.5=10)
- ID=0x608, DATA=2B,02,18,05,14,00,00,00 欧拉角50Hz输出(1802.5=20)
- ID=0x608, DATA=2B,02,18,05,32,00,00,00 欧拉角20Hz输出(1802.5=50)
- ID=0x608, DATA=2B,02,18,05,64,00,00,00 欧拉角10Hz输出(1802.5=100)
- ID=0x608, DATA=2B,03,18,05,00,00,00,00 关闭四元数输出(1803.5=0)
- ID=0x608, DATA=2B,03,18,05,05,00,00,00 四元数200Hz输出(1803.5=5)
- ID=0x608, DATA=2B,03,18,05,0A,00,00,00 四元数100Hz输出(1803.5=10)
- ID=0x608, DATA=2B,03,18,05,14,00,00,00 四元数50Hz输出(1803.5=20)
- ID=0x608, DATA=2B,03,18,05,32,00,00,00 四元数20Hz输出(1803.5=50)
- ID=0x608, DATA=2B,03,18,05,64,00,00,00 四元数10Hz输出(1803.5=100)
- ID=0x608, DATA=2B,04,18,05,00,00,00,00 关闭气压输出(1804.5=0)
- ID=0x608, DATA=2B,04,18,05,05,00,00,00 气压200Hz输出(1804.5=5)
- ID=0x608, DATA=2B,04,18,05,0A,00,00,00 气压100Hz输出(1804.5=10)
- ID=0x608, DATA=2B,04,18,05,14,00,00,00 气压50Hz输出(1804.5=20)
- ID=0x608, DATA=2B,04,18,05,32,00,00,00 气压20Hz输出(1804.5=50)
- ID=0x608, DATA=2B,04,18,05,64,00,00,00 气压10Hz输出(1804.5=100)

以 TPDO1(加速度)输出速率为100Hz(每10ms输出一次)为例: 0x23为SDO写四个字节指令。 0x00, 0x18为写 0x1800索引。0x05为子索引。0x00, 0x0A= (0x00<<8) + 0x0A = 10(单位为ms),后面不足补0.

5.4.1.7 设置倾角仪输出正负号(0x209E)

- ID=0x608, DATA=23,9E,20,00,00,00,00,00 X轴正负号为出厂默认方向
- ID=0x608, DATA=23,9E,20,00,01,00,00,00 X轴正负号反向
- ID=0x608, DATA=23,9F,20,00,00,00,00 Y轴正负号为出厂默认方向
- ID=0x608, DATA=23,9F,20,00,01,00,00,00 Y轴正负号反向

5.4.1.8 设置倾角仪零点(0x20A5)

- ID=0x608, DATA=23,A5,20,00,02,00,000,00 写入后即设置当前位置为输出零点(X=0,Y=0)
- ID=0x608, DATA=23,A5,20,00,05,00,00,00 写入后取消零点配置,输出真实的X, Y角度(相当于X,Y offset=0)

5.4.2 同步协议

遵循CANopen协议,模块可以将各个TPDO设置为同步模式,即停止异步定时发送,而等待CANopen同步帧,当同步帧到来时,发送一帧TPDO数据。

5.4.2.1 配置TPDO为同步模式

将想设置为同步模式的TPDO配置为同步模式,通过TPDO通讯参数字典[0x180x.2] (Transmission type)设置为 0x01同步模式即可。具体意义请查看CANopen协议。 以TPDO1(加速度信息)为例:

ID=0x608, DATA=2F,00,18,02,01,00,00,00 写入[0x1800.2(US8类型)]=1,设置TPD01通讯模式为同步模式

ID=0x608, DATA=2F,00,18,02,FF,00,00,00 写入[0x1800.2(US8类型)]=0xFF, 设置TPDO1 通讯模式为异步通讯模式 (出厂默认)

5.4.2.2 发送CANopen同步帧

发送CANopen同步帧,CANopen 同步帧: ID:80,DATA:空 ,模块接收到同步帧后,所有配置为同步模式的TPDO会发送一帧数据,实现同步

6. CAN数据协议与指令(SAE-J1939协议)

模块默认输出协议为CANOpen, 如需SAE J1939协议,请联系我司。

PGN	描述
通讯模式	广播通信
默认传输时间间隔	100ms
数据长度	每个PGN8 字节
PF(PDU format)	0xFF
PS(PDU specific)	PF > 0xF0时为拓展PGN地址(GE), 否则为目的地址(DA)
优先级	3
默认J1939地址	0x08
数据格式	所有帧中数据格式采用LSB(低位在前),无特殊说明均为有符号整型

6.1 PGN消息列表

6.1.1 PGN65332(FF34) 加速度

CANID=0x0CFF3408

名称	位置(byte)	说明
加速度X	0-1	单位G(1G=1重力加速度),比例因子:0.00048828
加速度Y	2-3	单位G(1G=1重力加速度),比例因子:0.00048828
加速度Z	4-5	单位G(1G=1重力加速度),比例因子:0.00048828
保留	6-7	-

6.1.2 PGN65335(FF37) 角速度

CANID=0x0CFF3708

名称	位置(byte)	说明
角速度X	0-1	单位deg/s, 比例因子:0.061035
角速度Y	2-3	单位deg/s, 比例因子:0.061035
角速度Z	4-5	单位deg/s, 比例因子:0.061035
保留	6-7	

6.1.3 PGN65341(FF3D) 俯仰横滚角

CANID=0x0CFF3D08

SPN 名称	SPN 位置(byte)	说明
横滚角(Roll)	0-3	单位°,比例因子:0.001
俯仰角(Pitch)	4-7	单位°,比例因子:0.001

6.1.4 PGN65345(FF41) 航向角

CANID=0x0CFF4108

SPN 名称	SPN 位置(byte)	说明
航向角(Yaw)	0-3	0-360, 单位°, 比例因子:0.001,顺时针为正
保留	4-7	

6.1.5 PGN65354(FF4A) 倾角仪输出

CANID=0x0CFF4A08 (只适用于输出J1939协议的倾角仪产品)

名称	位置(byte)	说明
X倾角角度	0-3	范围0-360或 ±180,单位:deg, 比例因子:0.001
Y倾角角度	4-7	范围0-360或 ±180,单位:deg, 比例因子:0.001

6.2 配置指令

6.2.1 配置格式

主机发送: ADDR+ CMD + STATUS + VAL ,从机响应: ADDR+ CMD + STATUS + VAL

字段	大小(Byte)	说明
ADDR	2	寄存器地址
CMD	1	0x06:写入, 0x03:读取
STATUS	1	保留
VAL	4	写入: 写入的值,读取: 保留

6.2.2 配置模块

29'b 拓展帧 地址	数据	描述	说明 ····································
0x0CEF08xx	34 01 06 00 [VAL]	VAL: 4字 节	PGN:FF34(加速度) 发送间隔,单位ms, 范围:5 -1000
0x0CEF08xx	37 01 06 00 [VAL]	VAL: 4字 节	PGN:FF37(角速度) 发送间隔,单位ms, 范围:5 -1000
0x0CEF08xx	3D 01 06 00 [VAL]	VAL: 4字 节	PGN:FF3D(俯仰横滚) 发送间隔,单位ms, 范围:5-1000
0x0CEF08xx	41 01 06 00 [VAL]	VAL: 4字 节	PGN:FF41(航向角) 发送间隔,单位ms, 范围:5 -1000
0x0CEF08xx	4A 01 60 00 [VAL]	VAL: 4字 节	PGN:FF4A(倾角仪输出) 发送间隔,单位ms, 范围:5 -1000
0x0CEF08xx	00 00 06 00 00 00	_	保存所有配置参数到Flash

29'b 拓展帧 地址	数据	描述	说明
0x0CEF08xx	00 00 06 00 01 00 00 00	-	恢复出厂设置
0x0CEF08xx	00 00 06 00 FF 00 00 00	-	复位
0x0CEF08xx	9A 00 06 00 [VAL]	VAL: 4字 节	配置波特率(保存设置,复位生效): 0:1000K, 1:800K, 2:500K, 3:250K, 4:125K
0x0CEF08xx	9C 00 06 00 [VAL]	VAL: 4字 节	设置J1939 节点ID: 1-128
0x0CEF08xx	A5 00 06 00 [VAL]	VAL: 4字 节	设置零位,0x02:设置当前位置为零位,0x05:取消零位设置,输出绝对物理角度
0x0CEF08xx	9E 00 06 00 [VAL]	VAL: 4字 节	设置X轴正负方向, 0:默认 1:反向
0x0CEF08xx	9F 00 06 00 [VAL]	VAL: 4字 节	设置Y轴正负方向, 0:默认 1:反向

地址域中xx: J1939协议中的源地址,可为任意字节。

数据域中xx: 任意字节

例: ID=0x0CEF0855, DATA = 37 01 06 00 64 00 00 00 : 将PGN:FF37设置为100ms周期(10Hz)

7. CAN数据协议与指令(NMEA2000协议)

定制协议,如需NMEA2000协议,请联系我司。

8. 地磁校准

8.1 地磁校准步骤

9轴模式(磁辅助绝对航向角模式)使用的前提是:

- 1. 首次使用9轴模式必须至少进行一次用户地磁校准
- 2. 使用过程中没有空间磁场干扰(室内等复杂磁环境下很难做到)

只有同时达到这两个要求, 9轴模式下航向角才能达到手册标称精度。

8.1.1 用户地磁校准

当首次使用模块并且需要使用AHRS (9轴)模式时,应进行如下校准操作:

- 1. 首先需要将模块切换到9轴模式。
- 2. 检查周围是否存在磁场干扰:实验室铁质或者含有铁质的桌子、电脑、电机、手机等旁边都属于常见的干扰 区域。建议将模块拿到室外空旷处,即使没有条件拿到室外,尽量将模块远离干扰源(30CM以上)。
- 3. 在尽量小范围内(位置尽量不动,只是旋转),缓慢的让模块旋转,让模块经历尽量多的姿态位置(每个轴至少都旋转360°,持续约1分钟),即可完成校准,如果始终没能成功校准模块,说明周围地磁场干扰比较大。
- 4. 如果模块安装位置改变(比如第一次校准是拿着模块单独去校准的,但最后需要安装在您的PCB或者外壳中使用)。则需要带着PCB或者外壳一起重新校准,如果模块是放到机器人/无人机上,则需要带着机器人/无人机一起校准。总之,必须将模块和被安装体(PCB/外壳/机器人/无人机等)视作一个刚性整体去校准。
- 5. 查看地磁校准结果: 输入 LOG MAGCONFIG, 返回结果如下:

```
1 ...
2 MB=14.14,-2.08,-8.75
3 OK
```

如果MAG_BIAS显示三个值不是0,0,0。代表校准成功。

8.1.2 空间磁场干扰

磁干扰可分为空间磁场干扰与传感器坐标系下的磁场干扰,如下图所示

磁干扰类型	随传感器坐标系的磁 场干扰,也称硬磁干 扰/软磁干扰 (Distortion that move with the sensor)	空间磁场干扰(Distortion that do not move with the sensor)
特点	干扰源随传感器运动 而运动	干扰源不随传感器运动而运动
典型干扰源		家具,家用电器,线缆,房屋内的钢筋结构等,不能随着传感器移动而移动。 还有人形机器人:本身作为一次磁性刚体磁场分布不停变化(走动)
是否可能被校准	可以	不可能
抗干扰措施	可以通过用户磁校准过程消除	无论如何校准,这些空间磁场的干扰(或者说环境磁场不均匀)都会使得空间地磁场发生畸变,理论上就无法获得正确的航向角。空间磁场干扰是造成室内地磁融合难以使用的主要原因。这种干扰不能被校准,会严重影响航向角误差。空间磁场干扰在室内尤其是靠近桌椅家电等地方尤其严重。见下图为一个典型的室内空间磁场干扰:蓝色为弱干扰区,红色为强干扰区

8.1.3 关于模块地磁校准算法

模块内部自带主动地磁校准系统,不需要用户发送任何指令,该系统在后台自动采集一段时间内地磁场数据,并做分析比较,剔除异常数据,一旦数据足够,就会尝试地磁校准,校准成功后,会自动将校准参数保存到Flash。所以,当使用地磁辅助(9轴)模式时,不需要用户任何干预即可完成地磁校准。但是模块仍然提供接口来让用户检查当前校准状态。自动校准的前提是首次需要模块有充分的姿态变化(缓慢的让模块经历尽量多的姿态变化),内部校准系统才能搜集不同姿态下的地磁场信息,从而完成校准,静止状态下是无法进行地磁校准的。

8.2 配置地磁校准(手动地磁校准)

默认情况下,只要配置为9轴模式,模块就会在后台不停的尝试估计地磁校准参数。尽管如此,本产品依然提供了 关闭地磁校准的API:

- CONFIG IMU EN_MCAL 1: 启动后台实时地磁校准(出厂默认)。
- CONFIG IMU EN_MCAL 0: 关闭后台实时地磁校准。

如果您只想手动执行一次地磁校准,而不想让模块实时后台尝试地磁校准,可以按如下步骤操作:

- 1. 在无地磁干扰的情况下(室外)让模块(包括与其刚性固连的载体,如机器人,无人机等)进行1-2分钟缓慢8字运动,让模块完成一次自动地磁校准,并使用LOG MAGCONFIG检查校准已经完成。
- 2. 输入 CONFIG IMU EN_MCAL 0 并 SAVECONFIG 掉电保存该配置,此后模块无论重启与否,后台不再进行任何自动地磁校准尝试。

8.3 再次强调

在室内环境下,空间磁场干扰尤其严重,而且空间磁干扰并不能通过校准来消除。在室内环境下尽管模块内置均质磁场检测及屏蔽机制,但地磁辅助(9轴)模式航向角的准确度很大程度上取决于室内磁场畸变程度,如果室内磁场环境很差(如电脑机房旁,实验室,车间,地下车库等),即使校准后航向角精度可能还不如6轴模式甚至会出现大角度误差。

模块的自动地磁校准系统只能处理和模块安装在一起的,固定的磁场干扰。安装环境如果有磁场干扰,这种干扰必须是固定的,并且这个干扰磁场与模块安装之后不会再发生距离变化(例:模块安装在一个导磁刚体(机器人/机械设备/车辆/船舶等)之上,以机器人为例:因为机器人金属材料会有磁场干扰,这时就需要把机器人与模块一起旋转校准,并且模块在使用当中是不会和机器人再分开的(发生相对位移),一旦分开是需要再重新校准。

9. 附录1 四元数/欧拉角/旋转矩阵互转

9.1 四元数转欧拉角(东北天-312(Z->X->Y)旋转顺序下的欧拉角)

给定四元数 $Q_{b2n}=[q_0,q_1,q_2,q_3]^T$,其中 q_0 为标量部分, $[q_1,q_2,q_3]$ 为矢量部分。 Q_{b2n} 代表b系到n系的坐标旋转四元数:

东北天-312(Z->X->Y)旋转顺序下的欧拉角计算如下:

$$egin{split} pitch &= rcsin(2(q_0q_1+q_2q_3)) \ roll &= -rctan2(2(q_1q_3-q_0q_2),q_0^2-q_1^2-q_2^2+q_3^2) \ yaw &= -rctan2(2(q_1q_2-q_0q_3),q_0^2-q_1^2+q_2^2-q_3^2) \end{split}$$

其中:

• pitch: 绕X轴的旋转角度, 范围 $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

• roll: 绕Y轴的旋转角度, 范围 $[-\pi,\pi]$

• yaw: 绕Z轴的旋转角度, 范围 $[-\pi,\pi]$

9.2 四元数转旋转矩阵

给定四元数 $[Q_{b2n}=[q_0,q_1,q_2,q_3]^T]$, 方向余弦矩阵为:

$$C_{b2n} = egin{bmatrix} q_0^2 + q_1^2 - q_2^2 - q_3^2 & 2(q_1q_2 - q_0q_3) & 2(q_1q_3 + q_0q_2) \ 2(q_1q_2 + q_0q_3) & q_0^2 - q_1^2 + q_2^2 - q_3^2 & 2(q_2q_3 - q_0q_1) \ 2(q_1q_3 - q_0q_2) & 2(q_2q_3 + q_0q_1) & q_0^2 - q_1^2 - q_2^2 + q_3^2 \end{bmatrix}$$

10. 附录2 固件升级

本产品支持固件升级,请使用CHCenter上位机软件按下图步骤进行固件升级,固件升级文件(.hex)请向我司技术支持人员索取。

11. 附录3 技术支持

新产品与资料信息可以通过网站以及公众号获得

