Corrigé : détection de collisions entre particules (X PSI-PT 2016)

Partie I. Simulation du mouvement des particules

Question 1.

```
def deplacerParticule(particule, largeur, hauteur):
 x, y, vx, vy = particule
 if x + vx <= 0 or x + vx >= largeur:
     vx = -vx
 if y + vy <= 0 or y + vy >= hauteur:
     vy = -vy
 return (x + vx, y + vy, vx, vy)
```

Partie II. Représentation par une grille

Question 2.

```
def nouvelleGrille(largeur, hauteur):
 return [[None for j in range(hauteur)] for i in range(largeur)]
```

Question 3.

Chaque case de la grille est examinée; si son contenu est vide, on passe à la suivante (ceci est réalisé grâce à l'instruction continue). Si elle contient une particule, on calcule à l'aide de la fonction deplacerParticule sa position au temps t+1. Si la case qu'elle atteint dans la nouvelle grille est déjà occupée, une collision se produit.

Question 4.

```
def attendreCollisionGrille(grille, tMax):
 for t in range(1, tMax + 1):
     grille = majGrilleOuCollision(grille)
     if grille is None:
         return t
 return None
```

Question 5. La fonction deplacerParticule est de complexité constante et la fonction nouvelleGrille de complexité en $O(largeur \times hauteur)$. De ceci il résulte que la fonction majGrilleOuCollision est de complexité $O(largeur \times hauteur)$: chaque case de la grille est scrutée à la recherche d'une particule, et quand une particule est trouvée on calcule en temps constant sa nouvelle position.

On en déduit que la complexité de la fonction attendreCollisionGrille est en $O(tMax \times largeur \times hauteur)$.

Partie III. Représentation par liste de particules

Listes non triées

Question 6. Deux particules entrent en collision lorsque la distance aux centres est inférieure au diamètre.

```
def detecterCollisionEntreParticules(p1, p2):
 x1, y1, _, _ = p1
 x2, y2, _, _ = p2
 return (x2 - x1)**2 + (y2 - y1)**2 <= 4 * rayon**2</pre>
```

Ouestion 7.

```
def maj(particules):
 largeur, hauteur, listeParticules = particules
 nvlleListe = []
 for p in listeParticules:
     nvlleListe.append(deplacerParticule(largeur, hauteur, p))
 return largeur, hauteur, nvlleListe
```

Question 8. Une fois les nouvelles positions calculées, on détermine pour chacun des couples de particules possibles si celles-ci sentrent en collision.

```
def majOuCollision(particules):
 nvlleParticules = maj(particules)
 _, _, liste = nvlleParticules
 for i in range(len(liste)-1):
     for j in range(i+1, len(liste)):
         if detecterCollisionEntreParticules(liste[i], liste[j]):
             return None
 return nvlleParticules
```

Question 9.

```
def attendreCollision(particules, tMax):
 for t in range(1, tMax + 1):
     particules = majOuCollision(particules)
     if particules is None:
         return t
 return None
```

La fonction detecter Collision Entre Particules est de complexité constante et la fonction maj de complexité linéaire O(n) où n est le nombre de particules puisque la fonction deplacer Particule est de complexité constante.

La détermination d'une collision entre deux particules possède une complexité en $O(n^2)$ puisqu'il y a $\frac{n(n-1)}{2}$ couples à examiner, donc la fonction majOuCollision a une complexité en $O(n^2)$. Il en résulte que la complexité de la fonction attendreCollision est en $O(n^2 \times tMax)$.

Listes triées

Question 10. Entre les dates t et t+1 une particule se déplace d'une distance inférieure ou égale à vMax donc deux particules se rapprochent d'une distance inférieure ou égale à 2vMax. Pour qu'elles se heurtent, il faut que leur distance à la date t+1 soit inférieure ou égale à 2rayon, et donc que leur distance à la date t soit inférieure ou égale à 2(rayon+vMax).

Question 11. Dès lors qu'à la date t la différence entre les abscisses de deux particules excède 2(rayon + vMax), il ne peut y avoir de collision à la date t+1; il est donc inutile de faire appel à la fonction detecterCollisionEntreParticules. D'où la fonction :

On rappelle que l'instruction **break** interrompt l'énumération en cours (dans le cas présent l'énumération des entiers j de l'intervalle [i+1,n[]).

Partie IV. Trier des listes partiellement triées

Partitionnement en scm

Question 12.

La fonction ci-dessus utilise deux invariants : d et f désignent respectivement les indices de début et de fin de la *scm* en cours de lecture.

Fusions de deux scm consécutives

Question 13. On commence par copier dans deux nouveaux tableaux les deux scm concernées, puis on fusionne la réunion de ces deux tableaux au sein du tableau *s*.

```
def fusionner(s, r1, r2):
 d1, f1 = r1
 d2, f2 = r2
 s1 = s[d1:f1+1]
 s2 = s[d2:f2+1]
 i, j = 0, 0
 for k in range(d1, f2+1):
     if j >= len(s2) or i < len(s1) and s1[i] <= s2[j]:
         s[k] = s1[i]
         i += 1
 else:
     s[k] = s2[j]
     j += 1</pre>
```

Algorithme α -tri

Question 14. On suppose bien entendu que les scm rangées dans la pile sont consécutives.

```
def depileFusionneRemplace(s, pile):
 d2, f2 = pile.pop()
 d1, f1 = pile.pop()
 fusionner(s, (d1, f1), (d2, f2))
 pile.append((d1, f2))
```

Question 15.

```
def alphaTri(s):
listeScm = scm(s)
 pile = [listeScm[0]]
 for i in range(1, len(listeScm)): # première phase
     pile.append(listeScm[i])
     while len(pile) > 1:
         d2, f2 = pile.pop()
         d1, f1 = pile.pop()
         if (f1 - d1 + 1) < 2 * (f2 - d2 + 1):
             fusionner(s, (d1, f1), (d2, f2))
             pile.append((d1, f2))
             pile.append((d1, f1))
             pile.append((d2, f2))
             break
                                    # deuxième phase
while len(pile) > 1:
     depileFusionneRemplace(s, pile)
```