Graph Theory Part Two

Outline for Today

- Walks, Paths, and Reachability
 - Walking around a graph.
- Graph Complements
 - Flipping what's in a graph.
- The Pigeonhole Principle
 - Everyone finding a place.

Recap from Last Time

Graphs and Digraphs

- A *graph* is a pair G = (V, E) of a set of nodes V and set of edges E.
 - Nodes can be anything.
 - Edges are *unordered pairs* (i.e., sets with cardinality 2) of nodes. If $\{u, v\} \in E$, then there's an edge from u to v.

New Stuff!

Walks, Paths, and Reachability

Two nodes are called *adjacent* if there is an edge between them.

Using our Formalisms

- Let G = (V, E) be an (undirected) graph.
- Intuitively, two nodes are adjacent if they're linked by an edge.
- Formally speaking, we say that two nodes $u, v \in V$ are *adjacent* if we have $\{u, v\} \in E$.

The *length* of the walk $v_1, ..., v_n$ is n - 1.

The *length* of the walk $v_1, ..., v_n$ is n - 1.

(This walk has length 10, but visits 11 cities.)

The *length* of the walk $v_1, ..., v_n$ is n - 1.

The *length* of the walk $v_1, ..., v_n$ is n - 1.

Question:

Is a "staycation" a valid walk? In other words, can a walk be just "SF"?

The *length* of the walk $v_1, ..., v_n$ is n - 1.

The *length* of the walk $v_1, ..., v_n$ is n - 1.

Sac, Port, Sea, But, SLC, Mon, LV, Bar, LA, Sac

The *length* of the walk $v_1, ..., v_n$ is n - 1.

A *closed walk* in a graph is a walk from a node back to itself. (By convention, a closed walk cannot have length zero.)

(No "staycation" closed walks, because of this rule.)

Sac, Port, Sea, But, SLC, Mon, LV, Bar, LA, Sac

The *length* of the walk $v_1, ..., v_n$ is n - 1.

A *closed walk* in a graph is a walk from a node back to itself. (By convention, a closed walk cannot have length zero.)

(This closed walk has length nine and visits nine different cities.)

Sac, Port, Sea, But, SLC, Mon, LV, Bar, LA, Sac

The *length* of the walk $v_1, ..., v_n$ is n - 1.

The *length* of the walk $v_1, ..., v_n$ is n - 1.

The *length* of the walk $v_1, ..., v_n$ is n - 1.

The *length* of the walk $v_1, ..., v_n$ is n - 1.

The *length* of the walk $v_1, ..., v_n$ is n - 1.

The *length* of the walk $v_1, ..., v_n$ is n - 1.

The *length* of the walk $v_1, ..., v_n$ is n - 1.

The *length* of the walk $v_1, ..., v_n$ is n - 1.

The *length* of the walk $v_1, ..., v_n$ is n - 1.

The *length* of the walk $v_1, ..., v_n$ is n - 1.

The *length* of the walk $v_1, ..., v_n$ is n - 1.

A *closed walk* in a graph is a walk from a node back to itself. (By convention, a closed walk cannot have length zero.)

A *path* in a graph is walk that does not repeat any nodes.

The *length* of the walk $v_1, ..., v_n$ is n - 1.

A *closed walk* in a graph is a walk from a node back to itself. (By convention, a closed walk cannot have length zero.)

A *path* in a graph is walk that does not repeat any nodes.

SF, Sac, LA, Phoe, Flag, Bar, LA

The *length* of the walk $v_1, ..., v_n$ is n - 1.

A *closed walk* in a graph is a walk from a node back to itself. (By convention, a closed walk cannot have length zero.)

A *path* in a graph is walk that does not repeat any nodes.

SF, Sac, LA, Phoe, Flag, Bar, LA

The *length* of the walk $v_1, ..., v_n$ is n - 1.

A *closed walk* in a graph is a walk from a node back to itself. (By convention, a closed walk cannot have length zero.)

The *length* of the walk $v_1, ..., v_n$ is n - 1.

A *closed walk* in a graph is a walk from a node back to itself. (By convention, a closed walk cannot have length zero.)

The *length* of the walk $v_1, ..., v_n$ is n - 1.

A *closed walk* in a graph is a walk from a node back to itself. (By convention, a closed walk cannot have length zero.)

The *length* of the walk $v_1, ..., v_n$ is n - 1.

A *closed walk* in a graph is a walk from a node back to itself. (By convention, a closed walk cannot have length zero.)

The *length* of the walk $v_1, ..., v_n$ is n - 1.

A *closed walk* in a graph is a walk from a node back to itself. (By convention, a closed walk cannot have length zero.)

The *length* of the walk $v_1, ..., v_n$ is n - 1.

A *closed walk* in a graph is a walk from a node back to itself. (By convention, a closed walk cannot have length zero.)

The *length* of the walk $v_1, ..., v_n$ is n - 1.

A *closed walk* in a graph is a walk from a node back to itself. (By convention, a closed walk cannot have length zero.)

The *length* of the walk $v_1, ..., v_n$ is n - 1.

A *closed walk* in a graph is a walk from a node back to itself. (By convention, a closed walk cannot have length zero.)

The *length* of the walk $v_1, ..., v_n$ is n - 1.

A *closed walk* in a graph is a walk from a node back to itself. (By convention, a closed walk cannot have length zero.)

A *path* in a graph is walk that does not repeat any nodes.

The *length* of the walk $v_1, ..., v_n$ is n - 1.

A *closed walk* in a graph is a walk from a node back to itself. (By convention, a closed walk cannot have length zero.)

A *path* in a graph is walk that does not repeat any nodes.

The *length* of the walk $v_1, ..., v_n$ is n - 1.

A *closed walk* in a graph is a walk from a node back to itself. (By convention, a closed walk cannot have length zero.)

A *path* in a graph is walk that does not repeat any nodes.

The *length* of the walk $v_1, ..., v_n$ is n - 1.

A *closed walk* in a graph is a walk from a node back to itself. (By convention, a closed walk cannot have length zero.)

A *path* in a graph is walk that does not repeat any nodes.

The *length* of the walk $v_1, ..., v_n$ is n - 1.

A *closed walk* in a graph is a walk from a node back to itself. (By convention, a closed walk cannot have length zero.)

A *path* in a graph is walk that does not repeat any nodes.

A *path* in a graph is walk that does not repeat any nodes.

A node *v* is *reachable* from a node *u* if there is a path from *u* to *v*.

A *path* in a graph is walk that does not repeat any nodes.

A node *v* is *reachable* from a node *u* if there is a path from *u* to *v*.

A *path* in a graph is walk that does not repeat any nodes.

A node v is **reachable** from a node u if there is a path from u to v.

A graph *G* is called *connected* if all pairs of distinct nodes in *G* are reachable.

A *path* in a graph is walk that does not repeat any nodes.

A node *v* is *reachable* from a node *u* if there is a path from *u* to *v*.

A graph *G* is called *connected* if all pairs of distinct nodes in *G* are reachable.

(This graph is not connected.)

A *path* in a graph is walk that does not repeat any nodes.

A node *v* is *reachable* from a node *u* if there is a path from *u* to *v*.

A graph *G* is called *connected* if all pairs of distinct nodes in *G* are reachable.

A *path* in a graph is walk that does not repeat any nodes.

A node *v* is *reachable* from a node *u* if there is a path from *u* to *v*.

A graph *G* is called *connected* if all pairs of distinct nodes in *G* are reachable.

A *connected component* (or *CC*) of *G* is a maximal set of mutually reachable nodes.

Travelling Salesman Problem

Given a set of vertices (towns/cities/shops/facilities) what is the shortest tour (visit each vertex at least once). This is usually a hard problem.

So we have met several (usually hard) problems: Maximum Independent Set Minimum Vertex Cover, Travelling Salesman....

Indeed, there is a whole class (NP-complete) https://en.wikipedia.org/wiki/List_of_NP-complete_problems

(Note - there are often different versions of these problems - e.g., decision problem (given a set of vertices is it the minimum vertex cover), the search problem (given a graph - find the minimum vertex cover)).

Graph Complements

Let G = (V, E) be an undirected graph. The **complement of** G is the graph $G^c = (V, E^c)$, where $E^c = \{ \{u, v\} \mid u \in V, v \in V, u \neq v, \text{ and } \{u, v\} \notin E \}$ **Theorem:** For any graph G = (V, E), at least one of G and G^c is connected.

Degrees

 The degree of a node v in a graph is the number of nodes that v is adjacent to.

- *Theorem:* Every graph with at least two nodes has at least two nodes with the same degree.
 - Equivalently: at any party with at least two people, there are at least two people with the same number of friends at the party.

0/5

Theorem: In any graph with at least two nodes, there are at least two nodes of the same degree.

An Application: Friends and Strangers

Friends and Strangers

- Suppose you have a party of six people. Each pair of people are either friends (they know each other) or strangers (they do not).
- *Theorem:* Any such party must have a group of three mutual friends (three people who all know one another) or three mutual strangers (three people, none of whom know any of the others).

This graph is called a **6-clique**, by the way.

Friends and Strangers Restated

 From a graph-theoretic perspective, the Theorem on Friends and Strangers can be restated as follows:

Theorem: Any 6-clique whose edges are colored red and blue contains a red triangle or a blue triangle (or both).

How can we prove this?