Math 240 Tutorial Solutions

May 23

Question 1. For each part, explain whether or not the stated matrix–vector multiplication can be carried out. If it can, do the multiplication.

(a)

$$\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}.$$

The matrix and the vector are not conformable; to be specific, the number of columns of the matrix does not equal the number of entries in the column. So, the multiplication cannot be carried out.

(b)

$$\begin{pmatrix} x & 1 & 1 \\ 1 & x & 1 \\ 1 & 1 & x \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}.$$

Here the matrix and the vector are conformable. Their product is given by

$$\begin{pmatrix} x \\ 1 \\ 1 \end{pmatrix}$$
.

Question 2. Write the following linear system first as a vector equation and then as a matrix equation

$$u + 2v - w - 2x + 3y = b_1,$$

$$x - y + 2z = b_2,$$

$$2u + 4v - 2w - 4x + 7y - 4z = b_3,$$

$$-x + y - 2z = b_4,$$

$$3u + 6v - 3w - 6x + 7y + 8z = b_5,$$

where $b_1, b_2, b_3, b_4, b_5 \in \mathbf{R}$.

The vector equation is given by

$$u\begin{pmatrix}1\\0\\2\\0\\3\end{pmatrix}+v\begin{pmatrix}2\\0\\4\\0\\6\end{pmatrix}+w\begin{pmatrix}-1\\0\\-2\\0\\-3\end{pmatrix}+x\begin{pmatrix}-2\\1\\-4\\-1\\-6\end{pmatrix}+y\begin{pmatrix}3\\-1\\7\\1\\7\end{pmatrix}+z\begin{pmatrix}0\\2\\-4\\-2\\8\end{pmatrix}=\begin{pmatrix}b_1\\b_2\\b_3\\b_4\\b_5\end{pmatrix}.$$

The matrix equation is given by

$$\begin{pmatrix} 1 & 2 & -1 & -2 & 3 & 0 \\ 0 & 0 & 0 & 1 & -1 & 2 \\ 2 & 4 & -2 & -4 & 7 & -4 \\ 0 & 0 & 0 & -1 & 1 & -2 \\ 3 & 6 & -3 & -6 & 7 & 8 \end{pmatrix} \begin{pmatrix} u \\ v \\ w \\ x \\ y \\ z \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \\ b_5 \end{pmatrix}.$$

Question 3. For each of the following lists of row vectors in \mathbb{R}^3 , determine whether the first vector can be expressed as a linear combination of the other two vectors.

(a)
$$(-2,0,3)$$
, $(1,3,0)$, $(2,4,-1)$.

We have

$$\left(\begin{array}{cc|c} 1 & 2 & -2 \\ 3 & 4 & 0 \\ 0 & -1 & 3 \end{array}\right) \sim \left(\begin{array}{cc|c} 1 & 0 & 4 \\ 0 & 1 & -3 \\ 0 & 0 & 0 \end{array}\right).$$

Therefore, $(-2,0,3) \in \text{span}\{(1,3,0), (2,4,-1)\}.$

(b)
$$(1,2,-3), (-3,2,1), (2,-1,-1).$$

We have

$$\left(\begin{array}{cc|c} -3 & 2 & 1 \\ 2 & -1 & 2 \\ 1 & -1 & -3 \end{array}\right) \sim \left(\begin{array}{cc|c} 1 & 0 & 5 \\ 0 & 1 & 8 \\ 0 & 0 & 0 \end{array}\right).$$

Therefore, $(1, 2, -3) \in \text{span}\{(-3, 2, 1), (2, -1, -1)\}.$

(c)
$$(3,4,1), (1,-2,1), (-2,-1,1).$$

We have

$$\left(\begin{array}{cc|c} 1 & -2 & 3 \\ -2 & -1 & 4 \\ 1 & 1 & 1 \end{array}\right) \sim \left(\begin{array}{cc|c} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right).$$

Therefore, $(1, 2, -3) \notin \text{span}\{(-3, 2, 1), (2, -1, -1)\}.$

(d)
$$(2,-1,0)$$
, $(1,2,-3)$, $(1,-3,2)$.

We have

$$\begin{pmatrix} 1 & 1 & 2 \\ 2 & -3 & -1 \\ -3 & 2 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Therefore, $(2, -1, 0) \notin \text{span}\{(1, 2, -3), (1, -3, 2)\}.$

(e)
$$(5,1,-5)$$
, $(1,-2,-3)$, $(-2,3,-4)$.

We have

$$\begin{pmatrix} 1 & -2 & 5 \\ -2 & 3 & 1 \\ -3 & -4 & -5 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Therefore, $(5, 1, -5) \notin \text{span}\{(1, -2, -3), (-2, 3, -4)\}.$

(f)
$$(-2,2,2)$$
, $(1,2,-1)$, $(-3,-3,3)$.

We have

$$\left(\begin{array}{cc|c} 1 & -3 & -2 \\ 2 & -3 & 2 \\ -1 & 3 & 2 \end{array}\right) \sim \left(\begin{array}{cc|c} 1 & 0 & 4 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{array}\right).$$

Therefore, $(-2, 2, 2) \in \text{span}\{(1, 2, -1), (-3, -3, 3)\}.$

Question 4. Consider the following three vectors in \mathbb{R}^3

$$\vec{u}_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \quad \vec{u}_2 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \quad \vec{u}_3 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}.$$

Show that $\mathbf{R}^3 = \text{span}\{\vec{u}_1, \vec{u}_2, \vec{u}_3\}.$

We will prove this result in two ways. First, observing that

$$\left(\begin{array}{ccc} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{array}\right) \sim \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right)$$

the result follows. If, however, we required more information in how a vector of R^3 is decomposable as a linear combination of \vec{u}_1 , \vec{u}_2 , \vec{u}_3 , we could note the following

$$\begin{pmatrix} 1 & 0 & 1 & a_1 \\ 1 & 1 & 0 & a_2 \\ 0 & 1 & 1 & a_3 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 & \frac{1}{2}a_1 + \frac{1}{2}a_2 - \frac{1}{2}a_3 \\ 0 & 1 & 0 & -\frac{1}{2}a_1 + \frac{1}{2}a_2 + \frac{1}{2}a_3 \\ 0 & 0 & 1 & \frac{1}{2}a_1 - \frac{1}{2}a_2 + \frac{1}{2}a_3 \end{pmatrix}.$$

This means that if $\begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \in \mathbf{R}^3$, then

$$\left(\frac{1}{2}a_1 + \frac{1}{2}a_2 - \frac{1}{2}a_3\right)\vec{u}_1 - \left(\frac{1}{2}a_1 - \frac{1}{2}a_2 - \frac{1}{2}a_3\right)\vec{u}_2 + \left(\frac{1}{2}a_1 - \frac{1}{2}a_2 + \frac{1}{2}a_3\right)\vec{u}_3 = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}.$$

Question 5. Show that span $\{\vec{u}, \vec{v}, \vec{w}\} = \text{span}\{\vec{u}, \vec{v} + \vec{w}, \vec{v} - \vec{w}\}.$

Since each of u, v + w, v - w are in $\operatorname{span}\{u, v, w\}$, it follows that $\operatorname{span}\{u, v + w, v - w\} \subseteq \operatorname{span}\{u, v, w\}$. Conversely, $\frac{1}{2}\Big((v+w)+(v-w)\Big)=v$ and $\frac{1}{2}\Big((v+w)-(v-w)\Big)=w$ so that $\operatorname{span}\{u, v, w\}\subseteq \operatorname{span}\{u, v + w, v - w\}$. These two containments show the desired equality.

Question 6. Consider the following four vectors in \mathbb{R}^4 given by

$$\vec{v}_1 = \begin{pmatrix} +1 \\ -1 \\ -1 \\ -1 \end{pmatrix}, \quad \vec{v}_2 = \begin{pmatrix} -1 \\ +1 \\ -1 \\ -1 \end{pmatrix}, \quad \vec{v}_3 = \begin{pmatrix} -1 \\ -1 \\ +1 \\ -1 \end{pmatrix}, \quad \vec{v}_4 = \begin{pmatrix} -1 \\ -1 \\ -1 \\ +1 \end{pmatrix}.$$

(a) Show whether $\vec{v}_1 \in \text{span}\{\vec{v}_2, \vec{v}_3, \vec{v}_4\}$ or not by solving the corresponding system of linear equations.

3

Observe

so that $\vec{v}_1 \notin \text{span}\{\vec{v}_2, \vec{v}_3, \vec{v}_4\}$.

(b) Let $a_1, a_2, a_3, a_4 \in \mathbf{R}$. Under what conditions on a_1, a_2, a_3, a_4 is $a_1\vec{v}_1 + a_2\vec{v}_2 + a_3\vec{v}_3 + a_4\vec{v}_4 = \vec{0}$ true?

We have

so that only the solution $a_1 = a_2 = a_3 = a_4 = 0$ exists.

(c) How can we use part (b) to provide a second proof of part (a)? Can you generalize to answer the following question: Is $\vec{v_i} \in \text{span}\{\vec{v_j}, \vec{v_k}, \vec{v_l}\}$ for i, j, k, l distinct?

We show only the second question (the first being a special case of the second). We will use proof by contradiction. Assume to the contrary that there exists $a_j, a_k, a_l \in \mathbf{R}$ not all zero such that $\vec{v}_i = a_j \vec{v}_j + a_k \vec{v}_k + a_l \vec{v}_l$. But then $\vec{v}_i - a_j \vec{v}_j - a_k \vec{v}_k - a_l \vec{v}_l = \vec{0}$. From our answer to part (b), it follows that $a_j = a_k = a_l = 0$ and 1 = 0. But 1 = 0 is a contradiction. Therefore, our original assumption that $\vec{v}_i \in \operatorname{span}\{\vec{v}_j, \vec{v}_k, \vec{v}_l\}$ is incorrect. That is, we must have $\vec{v}_i \notin \operatorname{span}\{\vec{v}_j, \vec{v}_k, \vec{v}_l\}$

Question 7. Let $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_m \in \mathbf{R}^n$ be such that if $a_1\vec{v}_1 + a_2\vec{v}_2 + \cdots + a_m\vec{v}_m = \vec{0}$ then $a_1 = a_2 = \cdots = a_m = 0$. Show this implies that every vector in span $\{\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_m\}$ can be written *uniquely* as a linear combination of $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_m$.

Let $\vec{u} \in \text{span}\{\vec{v}_1, \ \vec{v}_2, \dots, \ \vec{v}_m\}$. Then there are scalars $a_1, \ a_2, \dots, \ a_m$ such that $\vec{u} = a_1\vec{v}_1 + a_2\vec{v}_2 + \dots + a_m\vec{v}_m$. Assume there is another collection $b_1, \ b_2, \dots, \ b_m$ of scalars such that $\vec{u} = b_1\vec{v}_1 + b_2\vec{v}_2 + \dots + b_m\vec{v}_m$. Then

$$\vec{0} = \vec{u} - \vec{u} = (a_1 - b_1)\vec{v}_1 + (a_2 - b_2)\vec{v}_2 + \dots + (a_m - b_m)\vec{v}_m.$$

By assumption,

$$a_1 - b_1 = a_2 - b_2 = \dots = a_m - b_m = 0$$

so that

$$a_1 = b_1, \quad a_2 = b_2, \dots, a_m = b_m$$

as desired.

Question 8. Let V_1 and V_2 be two subsets of \mathbf{R}^n , and define $V_1 + V_2 = \{\vec{v}_1 + \vec{v}_2 : \vec{v}_1 \in V_1 \text{ and } \vec{v}_2 \in V_2\}$. Show (a) $\operatorname{span}(V_1 \cup V_2) = \operatorname{span}(V_1) + \operatorname{span}(V_2)$, and (b) $\operatorname{span}(V_1 \cap V_2) \subseteq \operatorname{span}(V_1) \cap \operatorname{span}(V_2)$. Further, give an example of subsets V_1 and V_2 of \mathbf{R}^n , for some n, for which $\operatorname{span}(V_1 \cap V_2) \subsetneq \operatorname{span}(V_1) \cap \operatorname{span}(V_2)$.

Throughout, let $V_1 \cap V_2 = \{w_1, w_2, \dots, w_p\}$, $V_1 = \{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_{n-p}, \vec{w}_1, \vec{w}_2, \dots, \vec{w}_p\}$, $V_2 = \{\vec{u}_1, \vec{u}_2, \dots, \vec{u}_{m-p}, \vec{w}_1, \vec{w}_2, \dots, \vec{w}_p\}$.

(a) Let $\vec{x} \in \text{span}(V_1 \cup V_2)$. Then there exists scalars $a_1, a_2, \ldots, a_{n-p} \in \mathbf{R}$ and $b_1, b_2, \ldots, b_{m-p} \in \mathbf{R}$ and $c_1, c_2, \ldots, c_p \in \mathbf{R}$ such that

$$\vec{x} = \sum_{i=1}^{n-p} a_i \vec{v}_i + \sum_{j=1}^{m-p} b_j \vec{u}_j + \sum_{k=1}^{p} c_k \vec{w}_k.$$

But

$$\sum_{i=1}^{n-p} a_i \vec{v}_i + \sum_{k=1}^p c_k \vec{w}_k \in \operatorname{span}(V_1)$$

and

$$\sum_{j=1}^{m-p} b_j \vec{u}_j \in \operatorname{span}(V_2).$$

Therefore, $\vec{x} \in \text{span}(V_1) + \text{span}(V_2)$, and $\text{span}(V_1 \cup V_2) \subseteq \text{span}(V_1) + \text{span}(V_2)$. Conversely, let $\vec{y} \in \text{span}(V_1) + \text{span}(V_2)$. Then there exists scalars $\alpha_1, \alpha_2, \ldots, \alpha_n \in \mathbf{R}$ and $\beta_1, \beta_2, \ldots, \beta_m \in \mathbf{R}$ such that

$$y = \sum_{i=1}^{n-p} \alpha_i \vec{v}_i + \sum_{j=1}^{p} (\alpha_j + \beta_j) \vec{w}_j + \sum_{k=1}^{m-p} \beta_k \vec{u}_k.$$

Since $V_1 \cup V_2 = \{\vec{v}_1, \ldots, \vec{v}_n, \vec{u}_1, \ldots, \vec{u}_m, \vec{w}_1, \ldots, \vec{w}_p\}$, we have that $\vec{y} \in \text{span}(V_1 \cup V_2)$, and $\text{span}(V_1 \cup V_2) \supseteq \text{span}(V_1) + \text{span}(V_2)$.

(b) Let $\vec{x} \in \text{span}(V_1 \cap V_2)$. Then there exists scalars a_1, a_2, \ldots, a_p such that

$$\vec{x} = a_1 \vec{w}_1 + a_2 \vec{w}_2 + \dots + a_p \vec{w}_p.$$

Since $V_1 \cap V_2 \subseteq V_1$ and $V_1 \cap V_2 \subseteq V_2$, we see at once that \vec{x} is in both $\mathrm{span}(V_1)$ and $\mathrm{span}(V_2)$, that is, $\vec{x} \in \mathrm{span}(V_1) \cap \mathrm{span}(V_2)$, as desired. Any number of counter examples can be found to show that $\mathrm{span}(V_1 \cap V_2) = \mathrm{span}(V_1) \cap \mathrm{span}(V_2)$ is not true in general. It isn't difficult to see that $V_1 = \{\begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}\}$ and $V_2 = \{\begin{pmatrix} 1 \\ 1 \end{pmatrix}\}$ give a counter example. Since then $\mathrm{span}(V_1 \cap V_2) = \{\vec{0}\}$ and $\mathrm{span}(V_1) \cap \mathrm{span}(V_2) = \mathrm{span}(V_2) \neq \{\vec{0}\}$.