Underactuated Robots Lecture 3: Differential Dynamic Programming

Nicola Scianca

September 2024

introduction

- the Bellman equation is at the core of dynamic programming, a technique for solving optimization problems by breaking them down into smaller subproblems
- it defines a recursive relationship, where the expected value at a particular time depends on the value at a future time
- it has important applications not only in optimal control and trajectory optimization, but also in reinforcement learning and other areas

the value function

$$V_k(x_k) = \min_{u_k, \dots, u_{N-1}} \left(\sum_{i=k}^{N-1} l_k(x_i, u_i) + l_N(x_N) \right)$$
s. t. $x_{k+1} = f(x_k, u_k)$

- the value function $V_k(x_k)$ tells us the cost we will pay if we always take optimal actions in the future
- the cost is a reward in maximization problems, hence the name "value function"
- at time k, it depends on the state xk, but not on the input (we are choosing the best possible input sequence)

the Bellman equation

now, take out the first item of the sum

$$\begin{split} V_k(x_k) &= \min_{u_k, \dots, u_{N-1}} \left(l_k(x_k, u_k) + \sum_{i=k+1}^{N-1} l_k(x_i, u_i) + l_N(x_N) \right) \\ &= \min_{u_k} \left(l_k(x_k, u_k) + \left(\min_{u_{t+1}, \dots, u_{N-1}} \sum_{i=k+1}^{N-1} l_k(x_i, u_i) + l_N(x_N) \right) \right) \\ &= \min_{u_k} \left(l_k(x_k, u_k) + V_{k+1}(x_{k+1}) \right) \end{split}$$

• since \square is the value function at k+1, we get a nice recursive expression: this is the Bellman equation

the Bellman equation

- remember: this minimization must take into account the dynamic constraint $x_{k+1} = f(x_k, u_k)$
- if we substitute this inside the recursive expression, we get

$$V(x_k) = \min_{u_k} \left(l_k(x_k, u_k) + V_{k+1}(f(x_k, u_k)) \right)$$

which is the Bellman equation in the discrete case

the Bellman equation

$$V(x_k) = \min_{u_k} \left(l_k(x_k, u_k) + V_{k+1}(f(x_k, u_k)) \right)$$

- ullet the Bellman equation relates the value of V_k to the value of V_{k+1} in a recursive way
- ullet if we had perfect knowledge of V, this would make it easy to derive an optimal control law, but usually we cannot explicitly solve for V and we have to approximate
- however, there is at least one case in which we can find an explicit solution: the Linear Quadratic Regulator (LQR)

 in the LQR we are trying to regulate the state x to zero, thus the cost function to minimize looks like

$$J = \sum_{k=0}^{N-1} (x_k^T Q x_k + u_k^T R u_k) + x_N^T Q_f x_N$$

where $Q \succeq 0$, $R \succ 0$, and $Q_f \succeq 0$ are weight matrices

the system dynamics equation is linear

$$x_{k+1} = Ax_k + Bu_k$$

the value function at time step k is

$$V_k(x_k) = \min_{u_k, \dots, u_{N-1}} \sum_{i=k}^{N-1} \left(x_i^T Q x_i + u_i^T R u_i \right) + x_N^T Q_f x_N$$

using the Bellman equation we can write it recursively as

$$V_k(x_k) = \min_{u_k} \left(x_k^T Q x_k + u_k^T R u_k + V_{k+1}(x_{k+1}) \right)$$

with system dynamics $x_{k+1} = Ax_k + Bu_k$.

• let's assume that the value function is quadratic

$$V_k(x_k) = x_k^T P_k x_k$$

• the value function at the next time-step k+1 can be related to the current x_k and u_k via the system dynamics

$$V_{k+1} = x_{k+1}^T P_{k+1} x_{k+1} = (Ax_k + Bu_k)^T P_{k+1} (Ax_k + Bu_k)$$

substitute into the Bellman equation:

$$V_k(x_k) = \min_{u_k} \left(x_k^T Q x_k + u_k^T R u_k + (A x_k + B u_k)^T P_{k+1} (A x_k + B u_k) \right)$$

 \bullet to compute the minimum, derive with respect to u_k and set equal to zero

$$\frac{d}{du_k} \left(x_k^T Q x_k + u_k^T R u_k + (A x_k + B u_k)^T P_{k+1} (A x_k + B u_k) \right)$$

$$= 2R u_k + 2B^T P_{k+1} (A x_k + B u_k)$$

$$= (R + B^T P_{k+1} B) u_k + B^T P_{k+1} A x_k = 0$$

$$\implies u_k = -(R + B^T P_{k+1} B)^{-1} B^T P_{k+1} A x_k$$

substituting into the Bellman equation yields the Riccati recursion

$$P_k = Q + A^T P_{k+1} A - A^T P_{k+1} B (R + B^T P_{k+1} B)^{-1} B^T P_{k+1} A$$

• now we start from the final state with $P_N=Q_f$, and going backwards with the Riccati recursion we can compute P_k at each time step

$$P_k = Q + A^T P_{k+1} A - A^T P_{k+1} B (R + B^T P_{k+1} B)^{-1} B^T P_{k+1} A$$

• once we have full knowledge of P_k (which means full knowledge of the value function), the optimal control law is simply given by

$$u_k = -(R + B^T P_{k+1} B)^{-1} B^T P_{k+1} A x_k$$

differential dynamic programming

- if the systems dynamics are nonlinear, we usually can't directly solve for the value function
- if we discretize the state space we can compute V numerically everywhere (dynamic programming), but for large systems this is impossible due to the curse of dimensionality
- what we can do is find a quadratic approximation of the value function: Differential Dynamic Programming (DDP)

• let's recall the Bellman equation

$$V(x_k) = \min_{u_k} \left(l_k(x_k, u_k) + V_{k+1}(f(x_k, u_k)) \right)$$

ullet call Q the argument of the minimization

$$Q(x_k, u_k) = l_k(x_k, u_k) + V_{k+1}(f(x_k, u_k))$$

• a quadratic approximation Q, around the point (\bar{x}_k, \bar{u}_k) , would look like

$$Q(x_k, u_k) \simeq Q(\bar{x}_k, \bar{u}_k) + \frac{dQ}{dx_k} \Big|_{\substack{\bar{x}_k \\ \bar{u}_k}} \Delta x_k + \frac{dQ}{du_k} \Big|_{\substack{\bar{x}_k \\ \bar{u}_k}} \Delta u_k$$
$$+ \frac{1}{2} \Delta x_k^T \frac{d^2 Q}{dx_k^2} \Big|_{\substack{\bar{x}_k \\ \bar{u}_k}} \Delta x_k^T + \frac{1}{2} \Delta u_k^T \frac{d^2 Q}{du_k^2} \Big|_{\substack{\bar{x}_k \\ \bar{u}_k}} \Delta u_k^T$$
$$+ \Delta u_k^T \frac{d^2 Q}{dx_k du_k} \Big|_{\substack{\bar{x}_k \\ \bar{x}_k}} \Delta x_k^T$$

• let's use a more compact notation

$$\tilde{Q}(x_k, u_k) = \bar{Q}_k + \bar{Q}_k^x \Delta x_k + \bar{Q}_k^u \Delta u_k + \frac{1}{2} \Delta x_k^T \bar{Q}_k^{xx} \Delta x_k + \frac{1}{2} \Delta u_k^T \bar{Q}_k^{uu} \Delta u_k + \Delta u_k^T \bar{Q}_k^{ux} \Delta x_k^T$$

 $\bullet\,$ let's compute, as an example, \bar{Q}^x_k

$$\bar{Q}_k^x = \frac{\partial}{\partial x_k} \left(l_k(x_k, u_k) + V_{k+1}(f(x_k, u_k)) \right) = \frac{\partial l}{\partial x_k} \Big|_{\bar{x}_k} + \frac{\partial V_{k+1}}{\partial x_k} \Big|_{\bar{x}_k}$$

• since V_{k+1} is the value function at k+1, it doesn't depend on x_k directly but through the dynamics $f(x_k,u_k)$; therefore, we must use the chain rule

$$\bar{Q}_k^x = \left. \frac{\partial l}{\partial x_k} \right|_{\bar{x}_k} + \left. \frac{\partial V_{k+1}}{\partial x_{k+1}} \right|_{\bar{x}_k} \left. \frac{\partial f}{\partial x_k} \right|_{\bar{x}_k} = \bar{l}_k^x + V_{k+1}^x \bar{f}_k^x$$

similarly we can compute all the other terms

$$\begin{split} \bar{Q}_k^x &= l_k^x + V_{k+1}^x f_k^x \\ \bar{Q}_k^u &= l_k^u + V_{k+1}^x f_k^u \\ \bar{Q}_k^{xx} &= l_k^{xx} + (f_k^x)^T V_{k+1}^{xx} f_k^x + \underbrace{V_{k+1}^x f_k^x}_{k+1} \\ \bar{Q}_k^{uu} &= l_k^{uu} + (f_k^u)^T V_{k+1}^{xx} f_k^u + \underbrace{V_{k+1}^x f_k^{ux}}_{k+1} \\ \bar{Q}_k^{ux} &= l_k^{ux} + (f_k^u)^T V_{k+1}^{xx} f_k^x + \underbrace{V_{k+1}^x f_k^{ux}}_{\text{second derivative, usually neglected} \end{split}$$

 the second-order derivatives of the dynamics are often neglected because they take a lot of time to compute (this variant of DDP is sometimes called iLQR or iLQG)

• remember that Q is the argument of the minimization; to find the value function approximation we derive it with respect to Δu_k and set it equal to zero

$$\frac{\partial \tilde{Q}(x_k, u_k)}{\partial \Delta u_k} = \bar{Q}_k^u + \bar{Q}_k^{uu} \Delta u_k + \bar{Q}_k^{ux} \Delta x_k = 0$$

• the optimal Δu_k is therefore

$$\Delta u_k = -(\bar{Q}_k^{uu})^{-1} \left(\bar{Q}_k^u + \bar{Q}_k^{ux} \Delta x_k \right)$$

• this is a local feedback control law, which we can write as

$$\Delta u_k = k_k + K_k \Delta x_k$$
 $k_k = -(\bar{Q}_k^{uu})^{-1} \bar{Q}_k^u$ $K_k = -(\bar{Q}_k^{uu})^{-1} \bar{Q}_k^{ux}$

 k_k is a feedforward term, and K_k is a local optimal gain

DDP algorithm

- start with an initial guess trajectory (\bar{x}, \bar{u})
- backward pass:
 - lacktriangle compute the value function approximation in the terminal state x_N
 - ightharpoonup compute the approximation in the previous state x_{N-1}
 - lacktriangle in the process, you also obtain the optimal control law (k_k,K_k)
 - repeat until reaching the start of the horizon
- forward pass:
 - start from the current state $x_0 = \bar{x}_0$
 - lacktriangle compute the new input using the local gains $u_k=ar{u}_k k_k + K_k \Delta x_k$
 - propagate the dynamics forward $x_{k+1} = f(x_k, u_k)$
 - repeat until reaching the end of the horizon
- we now have a new guess trajectory $(\bar{x}, \bar{u}) \leftarrow (x, u)$
- repeat backward pass and forward pass until convergence

line search

- the local optimal control law $\Delta u_k = k_k + K_k \Delta x_k$ is only valid for a quadratic approximation, not for the true value function
- in reality, the value function is not quadratic, so this adjustment might overshoot the local minimum, and increase the cost of the new guess instead of decreasing it

line search

- therefore, we modify the forward pass and perform something similar to a line search procedure:
 - ightharpoonup start with an $\alpha=1$
 - propagate the dynamics $x_{k+1} = f(x_k, \bar{u}_k + \alpha k_k + K_k \Delta x_k)$
 - evaluate the cost function over the new trajectory
 - ightharpoonup if it increased, choose a smaller α and repeat the forward pass
 - if it decreased, accept the new trajectory (line search finished)

computational complexity

 no large matrix factorization is required! DDP scales linearly with the number of variables

computational complexity

 compared with the way SQP scales, we have a clear advantage when operating with a long horizon


```
import ... [numpy, casadi, model, etc ...]
# parameters
n, m = 4, 1
N = 100
max_ddp_iters = 10
max_line_search_iters = 10
Q = np.eye(n) * 0
R = np.eye(m) * 0.01
Q_ter = np.eye(n) * 10000
x_ter = np.array((math.pi, 0, 0, 0))
# symbolic variables
opt = cs.Opti()
X = opt.variable(n)
U = opt.variable(m)
# ... continues in the next slide ->
```

```
# cost function
...
L_ = lambda х, и: (х_ter — х).Т @ Q @ (х_ter — х) + и.Т @ R @ и
L_{ter} = lambda \times (x_{ter} - x).T @ Q_{ter} @ (x_{ter} - x)
       = cs.Function('L', [X, U], [L_(X,U)])
1
L_ter = cs.Function('L_ter'
                               , [X] , [L_ter_(X)])
, [X, U], [cs.jacobian(L(X,U), X)])
Lx = cs.Function('Lx'
Lu = cs. Function ('Lu'
                              . [X. U]. [cs.iacobian(L(X.U). U)])
Lxx = cs.Function('Lxx'), [X, U], [cs.jacobian(Lx(X,U), X)]
Lux = cs.Function('Lux', [X, U], [cs.jacobian(Lu(X,U), X)])
Luu = cs. Function ('Luu' , [X, U], [cs.jacobian (Lu(X,U), U)])
L_{terx} = cs.Function('L_{terx}', [X], [cs.jacobian(L_{ter}(X), X)])
L_{terxx} = cs.Function('L_{terxx}', [X], [cs.jacobian(L_{terx}(X), X)])
# dvnamics
f = model.get_pendubot_model()
f = cs.Function('f', [X, U], [f_(X,U)])
fx = cs.Function('fx', [X, U], [cs.jacobian(f_(X,U), X)])
fu = cs.Function('fu', [X, U], [cs.jacobian(f_(X,U), U)])
# ... continues in the next slide ->
```

```
for iter in range (max_ddp_iters):
 # backward pass
 backward_pass_start_time = time.time()
 V[N] = L_ter(x[:,N])
 Vx[:,N] = L_terx(x[:,N])
 Vxx[:,:,N] = L_terxx(x[:,N])
 for i in reversed (range(N)):
   fx_eval = fx(x[:,i], u[:,i])
   fu_eval = fu(x[:.i], u[:.i])
   Qx = Lx(x[:,i], u[:,i]).T + fx_eval.T @ Vx[:,i+1]

Qu = Lu(x[:,i], u[:,i]).T + fu_eval.T @ Vx[:,i+1]
   Qux = Lux(x[:,i], u[:,i]) + fu_eval.T @ Vxx[:,:,i+1] @ fx_eval
   Quu_inv = np.linalg.inv(Quu)
   k[i] = - Quu_inv @ Qu
   K[i] = - Quu_inv @ Qux
   V[i] = V[i+1] - 0.5 * k[i].T @ Quu @ k[i]
   Vx[:,i] = np.array(Qx - K[i].T @ Quu @ k[i]).flatten()
   Vxx[:,:,i] = Qxx - K[i].T @ Quu @ K[i]
   # ... continues in the next slide ->
```

```
# forward pass
forward_pass_start_time = time.time()
unew = np.ones((m, N))
xnew = np.zeros((n, N+1))
# line search
alpha = 1.
for Is_iter in range(max_line_search_iters):
  new cost = 0
  for i in range(N):
    unew[:,i] = u[:,i] + alpha * k[i] + K[i] @ (xnew[:,i] - x[:,i])
    xnew[:,i+1] = np.array(f(xnew[:,i], unew[:,i])).flatten()
    new\_cost = new\_cost + L(xnew[:,i], unew[:,i])
  new\_cost = new\_cost + L\_ter(xnew[:,N])
  if new_cost < cost:</pre>
    cost = new_cost
    x = xnew
    u = unew
    hreak
  else:
    alpha /= 2.
```

pros and cons

- pro: the computations are propagated forward and backward along the horizon: if you double the horizon length you just double the number of computations
- this means that the computational cost is linear with the horizon length
- by contrast, the complexity of SQP depends on the complexity of the QP subproblem, which in turns depends on the solver used (we don't know it apriori)

pros and cons

- con: it does not directly allow to set constraints, whereas in SQP this is straightforward
- con: it is a single shooting method, which means that when integrating the initial input guess you could get a diverging trajectory
- pro: there are variants of DDP that use an initial guess on the state, incorporating defects in a way that is similar to multiple shooting [Mastalli et al., 2020]

Mastalli et al., "Crocoddyl: An Efficient and Versatile Framework for Multi-Contact Optimal Control", Robotics and Automation Letters 2020

