和雲行動服務 X NTUDAC 合作專案

【期末報告】

2024.05.31

專案目標 分為「舊場貼標」及全台不同地區網格單位車格月收入之「新場預測」。 舊場整體前3大重要特徵為:附近公園面積、假日費率、附近餐廳數量。 舊場貼標 建議在合理情況可提高費率至特定金額. 並考慮提高部分停車場之最高收費上限 。 以廣州街、愛國西路停車場為例,推測造成兩場收入差異的原因 海車場入口位置。 新場整體重要特徵多為附近地點類別數量. 建議新場選址時可著重觀察。 新場預測 「住商用建築比例」與網格的預測收入呈現正相關:反之.「超市與交通樞紐之覆蓋率」與 網格的預測收入則為負相關。 舊場貼標: 整體、各場重要特徵之圖表、試算表與 Power BI 儀錶板。 成果展示 新場預測:12 個月之新場網格預測收入的Power BI 儀錶板。

- 1 專案目標
- 2 舊場貼標流程
- 3 舊場貼標結果
- 4 新場預測流程
- 5 新場預測結果
- 6 Q&A
- 7 Appendix

- 1 專案目標
- 2 舊場貼標流程
- 3 舊場貼標結果
- 4 新場預測流程
- 5 新場預測結果
- 6 Q&A
- 7 Appendix

將專案目標分為舊場貼標,及預測全台不同地區新場之 單位車格月收入。

舊場貼標

● 整合停車場周邊及內部資訊,如附近餐廳數量、停車場費率等因素對 於單位車格月收入影響的重要性.並挖掘 **重要影響變數以作為標籤**。

新場預測收入

將台灣拆分為數個網格,利用舊場訓練之模型預測不同網格的單位車格月收入,最後呈現不同地區之預測收入高低。

AGENDA

- 1 專案目標
- 2 舊場貼標流程
- 3 舊場貼標結果
- 4 新場預測流程
- 5 新場預測結果
- 6 Q&A
- 7 Appendix

訓練模型後. 選擇最佳模型並運用 SHAP 與 PDP 尋找與解讀重要影響特徵

舊場訓練資料以場站 x 月作為單筆資料定義, 以 Training Set 訓練模型, Validation Set 調整模型參數, Testing Set 測試模型表現。

停車場 / 月份	單位車格收入	平日費率	假日費率	土地面積	人口數	人口密度
A 停車場 / 1 月	105,080	50	60	7.6071	146,970	19,320.10885
B 停車場 / 2 月	115,180	50	60	13	147,515	19,391.75244
C 停車場 / 3 月	103,135	50	60	18	148,103	19,469.04865

80% Train + Validation

. . . .

20% Test

D 停車場 / 1 月	48,510	20	20	8.5	147,515	19,391.75244
E 停車場 / 2 月	50,400	20	20	9.2	148,103	19,469.04865
F 停車場 / 3 月	64,830	20	20	10	148,505	19,521.89402

註:資料皆已經過標準化、遺漏值處理。(詳見 Appendix 2)

舊場貼標模型以 XGBoost 表現最佳, 預測平均誤差 18.31 %。

- MAPE 18.31% 代表平均而言預測
 單位車格月收入的實際 值會落在預測值的 ±18.31% 區間內。
- RMSE 719.6 代表平均而言模型對於單位車格月收入的預測 值和實際值會差 719.6 元/格。
- R² 0.95 代表模型可以**解釋資料** 95% 的變化。

指標\模型	Random Forest	XGBoost	LGBM
MAPE	61.82%	18.31%	20.67%
RMSE	1467.5	719.6	724.3
R^2	0.79	0.95	0.95

註:指標為該模型在Testing Set 的表現

- 專案目標
- 2
- 舊場貼標流程
- 3
- 舊場貼標結果
- 4
- 新場預測流程
- 5
- 新場預測結果
- 6
- Q & A
- 7
- **Appendix**

AGENDA

▲ | ◇ 和雲行動服務

由上到下為 前 20 大重要特徵排序

資料點的顏色代表各個特徵 的數值大小:

- 愈紅 = 特徵數值愈大
- 憨藍 = 特徵數值愈小

SHAP Value 代表特徵的重要性:

- 正值 = 對預測收入有正向影響
- 負值 = 對預測收入有負向影

11

舊場貼標流程

紅色的資料點代表較高的假日費率, 藍色則較低。

12

A&Q

舊場貼標流程

-1000

2000

1000

SHAP value (impact on model output)

以假日費率為例

假日費率愈高,單位車格收入愈高。

舊場貼標流程

以平均臨停時間為

舊場貼標結果

紅色的資料點代表較長的 平均臨停時間, 藍色則較短。

新場預測結果

14

以平均臨停時間為

15

舊場貼標流程

分析**可透過營運策略改變的變數**, 以提升停車場單位車格月收入。

可透過營運策略改變的變數:

- 平/假日費率
- 平均臨停時間

國定假日比例降水量

1000

SHAP value (impact on model output)

2000

3000

-1000

平/假日費率 與 平均臨停時間 為重要影響特徵, 且可透過內部策略改動對收入帶來正向影響。

平/假日費率

- 平/假日費率的資料點分別集中在20~50及20~60。
- 此範圍內假日費率愈高,預測單位車格月收入愈高。

若能在合理情況下, 將平日費率提升至 60、假日費率提升至 70, 預計可對收入造成顯著的正向影響。

和 和 要 行動服務

平均臨停時間

- <u>平均臨停時間 <= 2 小時</u>:對收入有正向影響。
- <u>平均臨停時間>2小時</u>:預測收入有<u>明顯跌幅</u>,且此 後呈現<u>負向影響</u>。

推測可能原因: 臨停時間過久, 造成停車場持續滿位。⇒ 對於<u>平均臨停時間長</u>, 且有收費上限的停車場, 若提升最高收費上限, 可能避免損失潛在收入。

專案目標

單一停車場的重要特徵解釋:

和雲行動服務

透過儀錶板可了解特徵數 值高低對於各場收入的影響程度。

各場之重要特徵不同,影響機制也不同:以廣州街及愛國西路停車場為例。

廣州街停車場

餐廳、商辦與遊憩場所數量多, 對收入有正向影響。

台北愛國西路停車 場

入場尖峰時段平均車次低、鄰近停車場數量多, 對收入的影響力較大,且為負向影響。

舊場貼標結果

廣州街停車場的費率較高、車格數較少, 相比僅隔一條巷弄的愛國西路停車場,單位車格月收入卻較高。

停車場	費率	車格數
廣州街	高	少
愛國西路	低	多

專案目標

受惠於停車場入口位置, 廣州街停車場的單位車格收入較愛國西路停車場高出許多。

愛國西路 42 巷為<mark>單行道</mark>, 進入後將首先遇到 廣州街停車場, 因此雖廣州街停車場的費率較高、車格數較少, 然受惠停車場入口位置, 單位車格月收入仍比愛國西路停車場高。

受到停車場入口位置影響, 廣州街及愛國西路停車場的重要特徵不同。

廣州街停車場

受到附近地點數量 影響較大, 與入場尖峰時段平均車次、鄰近停車場較無關。

台北愛國西路停車場

受到入場尖峰時段平均車次、**鄰近停車場數量** 影響較大。

- 1 專案目標
- 2 舊場貼標流程
- 3 舊場貼標結果
- 4 新場預測流程
- 5 新場預測結果
- 6 Q&A
- 7 Appendix

訓練模型後,選擇最佳模型並用以預測各網格 在未來 2025 年 12 個月的單位車格月收入。

新場訓練資料以網格 x 月作為單筆資料定義, 以 Training Set 訓練模 型, Validation Set 調整模型參數, Testing Set 測試模型表現。

網格索引	月份 1	₹₹	國民住宅	一般假日	國定假日
0	0	5	0.007236	6	3
1	0	50	0.007236	5	2
2	1	24	0.007236	3	4

單位車格收入
2,569.880952
3,182.559524
2,201.369048

80% **Train Validation**

網格索引	月份 1	雨量	國民住宅	一般假日	國定假日
39XXX	1	23	0.00157	3	4
39XXX	0	34	0.00157	6	2

單位車格收入	
2,569.880952	
3,182.559524	

20% Test

註:資料皆已經過遺漏值處理。

將台灣劃分成等面積(1km * 1km)的網格 **每列資料都是某網格某月份的資料**

以網格 x 月作為單筆資料定義, 預測 2025的12個月 各網格的單位車格月收入

網格索引	月份 1	雨量	國民住宅	一般假日	國定假日
0	0	24	0.012	4	4
1	1	27	0.013	2	8
2	1	100	0.0172	2	8

•
•

39XXX	1	127	0.007	2	8
39XXX	0	29	0.02	4	3
39XXX	0	39	0.01	3	2

單位車格收入
?
?
?

使用 訓練完畢 的模型 進行預測

註 1: 資料皆已經過遺漏值處理。

註 2:天氣等資料由歷史資料取平均而得, 平假日天數則為實際值。

新場預測模型以 XGBoost 表現最佳, 預測平均誤差為 16.65%。

- MAPE 16.65% 代表平均而言預 測單位車格月收入的實際值會落 在預測值的±16.65% 區間內,儀 錶板中將呈現此預測範圍。
- RMSE 837.98 代表平均而言模型 對於單位車格月收入的預測值和 實際值會差 837.98 元/格。
- R^2 0.93 代表模型可以解釋資料 93% 的變化。

指標\模型	Random Forest	GBM	XGBoost	LGBM
MAPE	15.77%	19.40%	16.65%	24.64%
RMSE	879.36	890.23	837.98	878.61
R^2	0.92	0.92	0.93	0.92

註:指標為該模型在Testing Set 的表現, 新場模型處理詳見Appendix 6。

- 1 專案目標
- 2 舊場貼標流程
- 3 舊場貼標結果
- 4 新場預測流程
- 5 新場預測結果
- 6 Q&A
- 7 Appendix

預測結果 Power BI 儀錶板展示

註:準確度計算方式詳見Appendix 7。

整體以網格內附近地點類別數量、住商用建築比例 為重要特徵。

建議新場選址時

可著重觀察上述的地理特徵。

整體網格重要特徵之 PDP 解釋

住商用建築比例越高, 網格的預測單位車格月收入愈高。

住商用建築比例

住商用建築比例越高, 則單位車格收入越高, 故建議將新停車場設置在商業區。

超市與交通樞紐之覆蓋率愈高,網格的預測單位車格月收入愈低。

超市覆蓋率

由於超市可能附設停車場, 排擠其他停車場的營利空間, 故超市覆蓋率愈高, 單位車格收入愈低。

交通樞紐覆蓋率

推測當網格附近公共運輸選擇較多時,開車的誘因降低,進而減少停車需求。

- 1 專案目標
- 2 舊場貼標流程
- 3 舊場貼標結果
- 4 新場預測流程
- 5 新場預測結果
- 6 Q&A
- 7 Appendix

Any Question?

- 1 專案目標
- 2 舊場貼標流程
- 3 舊場貼標結果
- 4 新場預測流程
- 5 新場預測結果
- 6 Q & A
- 7 Appendix

Appendix 1 | 舊場資料蒐集

目標變數(Y)	停車場臨停月營收	各停車場單位車格月收入
	停車場費率表+場站資訊	優惠與否、平/假日費率、車格數
	附近停車場資料	附近停車場最低平/假日白天費率
解釋變數(X)	人口資料	人口數、人口密度、土地面積、信令人口
	氣象資料	氣溫、風速、降水量、相對濕度
	附近各地點類別數量	交通樞紐 / 學校 / 運動 / 商辦大樓 / 購物 / 遊憩 / 停車場 / 餐廳 / 公園

Appendix 2 | 資料處理過程

欄位

問題 & 處理方式

處理後示意圖

- 每月平均氣溫
- 毎月平均風速
- 每月相對溼度
- 附近停車場費率

問題說明:有缺漏值

處理方式:

- 停車場費率使用眾數補值。
- 其他欄位使用平均數補值。

氣溫	風速	停車場費率
13	400	40*
15	390	40
16	380	40
	13	13 400 15 390

*紅字代表原為缺漏值, 經補值的資料。

• 停車場附近各地點特徵數量

處理方式:

- 方法一:直接紀錄地點數量。
- 方法二:根據各地點類別數量由少至多分為 1、2、3 三個等級。

方法一	學校	商辦	遊憩
A 停車場 / 1 月	78	152	5
A 停車場 / 2 月	43	43	31
A 停車場 / 3 月	68	16	18

方法二	學校	商辮	遊蘭
A 停車場 / 2 月	3	3	1
A 停車場 / 3 月	1	2	3
A 停車場 / 1 月	2	1	2

Appendix 2 | 資料處理過程(續)

欄位

問題 & 處理方式

處理後示意圖

類別型資料

- 月份
- 優惠與否

使用 One-hot Encoding:

- 月份:是該月份為1;否則為0。
- 優惠與否:有優惠為1;否則為0。

停車場 / 月份	優惠與否	1月	2月
A 停車場 / 1 月	1	1	0
A 停車場 / 2 月	1	0	1
A 停車場 / 3 月	0	0	0

數值型資料

類別型資料外的 所有欄位

使用標準化 (Standard Scaler):

● 將每個欄位標準化, 使平均為0、標準 差為 1, 統一各欄位的數值範圍。

原因:

▶ 消除不同數值單位的影響。

停車場 / 月份	人口數	雨量	車格數
A 停車場 / 1 月	1.23846	0.9463	0.36518
A 停車場 / 2 月	0.91548	0.0561	-0.4698
A 停車場 / 3 月	-2.4658	1.4681	-1.6498

Appendix 3 | 刪除共線性過高的變數並拆分資料集後, 訓練模型。

特徵篩選

● 根據 VIF 值將共線性過高的變數刪掉, 以避免模型預測結果失準。

異常值處理

- 資料中 2022 年 4~6 月的收入明顯下跌, 推測為 COVID-19 影響
- 訓練模型時將其刪除

資料集拆分

將資料拆分成訓練集、測試集,訓練集用於放入模型進行訓練,而測試集 則用來測試模型泛化性和準確度。

Appendix 4 | 新場資料蒐集方式

目標變數(Y)	單位車格月收入	預測在每個網格中建新場之單位車格月收入
	經緯度	網格中心之經緯度
	人口資料	網格所屬行政區之人口資料
	住宅建築資料	網格所屬行政區之建築型態資料
解釋變數(X)	氣象資料	距離網格中心點最近的氣象測站資料
	附近各地點類別數量	 人流受服務範圍影響較小 直接計算網格內數量,如餐廳、商辦 人流受服務範圍影響較大 計算網格「屬於該地點類型之服務範圍」的佔比,如交通樞紐。

Appendix 5 | 被刪除網格

Appendix 6 | 新場模型處理

問題 & 原因	處理方式
● 訓練資料中 單位車格月收入 呈現偏態	 將單位車格月收入做對數轉換,預測對數值, 再轉回原尺度 計算模型表現指標時,以轉回原尺度之單位 車格月收入計算
 人口密度欄位的預測結果與模型訓練結果分布不同,且較不合理 推測失準原因:人口密度是以行政區計算,與網格尺度相差較大,無法代表網格實際人口密度 	 ● 將人口密度欄位移除,並重新訓練模型

Appendix 7 | 各指標介紹

MAPE

- 用於想知道實際值和預測值的平均百分誤差
- 表示誤差的相對大小

- RMSE
- 絕對誤差分析, 適用於關心誤差較大的場合
- 適用於實際值較大的場合

- R^2
- 用於評估模型對變數的解釋能力

- 準確度
- 用於評估預測結果
- 愈靠近 1 愈好

$$MAPE = \frac{1}{n} \sum_{t=1}^{n} \left| \frac{A_t - F_t}{A_t} \right|$$

RMSE=
$$\sqrt{\frac{1}{m}\sum_{i=1}^{m}(y_i - \hat{y}_i)^2}$$

$$R^2 = \frac{SS_{res}}{SS_{total}} = 1 - \frac{\sum_{i=1}^{n} (\tilde{y}_i - y_i)^2}{\sum_{i=1}^{n} (\tilde{y}_i - \bar{y})^2}$$

與最近和雲停車場距離之倒數

Appendix 8 | 各場重要特徵不同, 影響機制也不同: 以廣州街及愛國西路停車場為例

☎ 和雲行動服務

台北廣州街停車場

台北愛國西路停車場

附近地點類別數量 (餐廳、商辦、遊憩) 對廣州街停車場 有較大的正面影響。

入場尖峰車次、 附近停車場數量 對<u>愛國西路停車場</u> 有較大的負面影響。

Appendix 9 | 針對人流受服務範圍影響較大之地點, 計算網格「屬於該地點類型之服務範圍」的佔比(覆蓋率), 如交通樞紐。

