Дії з ідеалами

Євгенія Кочубінська

Київський національний університет імені Тараса Шевченка

22 лютого 2023

FACULTY OF MECHANICS AND MATHEMATICS

Перетин ідеалів

Означення

Нехай I, J — ідеали кільця R. Перетин $I \cap J$ ідеалів I та J визначається як звичайний теоретико-множинний перетин.

Перетин ідеалів

Твердження

Перетин ідеалів є ідеалом.

Доведення.

Нехай $a, b ∈ I \cap J$. Тоді

$$a, b \in I \Rightarrow a - b \in I$$
, $ar, ra \in I \ \forall r \in R$

$$\Rightarrow a-b \in I \cap I$$
, $ar, ra \in I \cap I$

$$a, b \in J \Rightarrow a - b \in J$$
, $ar, ra \in J \ \forall r \in R$

Перетин ідеалів

Твердження

Перетин довільної сім'ї ідеалів ϵ ідеалом.

Сума ідеалів

Означення

Нехай I,J — ідеали кільця R. Сума ідеалів I та J визначається як множина

$$I+J=\left\{\alpha+b\,|\,\alpha\in I,b\in J\right\}.$$

Сума ідеалів

Твердження

Сума ідеалів є ідеалом.

Доведення.

Нехай $a, b \in I+J \Rightarrow a=i_1+j_1, b=i_2+j_2, i_{1,2} \in I, j_{1,2} \in J.$ Тоді для всіх $a, b \in I+J$:

$$a-b=(i_1+j_1)-(i_2+j_2)=(i_1-i_2)+(j_1-j_2)\in I+J,$$
 $ra=r(i_1+j_1)=ri_1+rj_1\in I+J,$ $ar=(i_1+j_1)r=i_1r+j_1r\in I+J$ для всіх $r\in R.$

Добуток ідеалів

Означення

Добуток ідеалів I та J визначається як множина

$$IJ = \{a_1b_1 + \ldots + a_kb_k \mid a_i \in I, b_i \in J, k \in \mathbb{N}\},\$$

що містить усі скінченні суми елементів вигляду ab, $a \in I$, $b \in J$.

Твердження

Добуток ідеалів є ідеалом.

Доведення.

Для всіх $a_i, a_i' \in I, b_i, b_i' \in J, r \in R$:

$$(a_1b_1 + \ldots + a_kb_k) - (a'_1b'_1 + \ldots + a'_kb'_k) =$$

= $a_1b_1 + \ldots + a_kb_k + (-a'_1)b'_1 + \ldots + (-a'_k)b'_k \in IJ;$

$$r(a_1b_1 + \ldots + a_kb_k) = (ra_1)b_1 + \ldots + (ra_k)b_k \in IJ;$$

 $(a_1b_1 + \ldots + a_kb_k)r = a_1(b_1r) + \ldots + a_k(b_kr) \in IJ.$

Добуток ідеалів

Зауваження

Множина $\{ab \mid a \in I, b \in J\}$ як правило не є замкненою відносно додавання, а отже, не обов'язково має бути ідеалом.

Задача (3 бали, до 31.03.2023)

Наведіть приклад, який ілюструє наведене вище твердження.

Твердження

Нехай I_1, I_2, I_3 — ідеали кільця R. Тоді

- ② $(I_1 + I_2)I_3 = I_1I_3 + I_2I_3$;

Доведення.

Вправа.

Діаграма включень

Сума I+J ідеалів I та J є найменшим ідеалом в R, який містить одночасно I та J. Добуток IJ є найбільшим ідеалом, який міститься в $I\cap J$. Діаграма включень має наступний вигляд:

В кільці **Z**:

- $6\mathbb{Z} \cap 10\mathbb{Z} = 30\mathbb{Z}$;
- $6\mathbb{Z} + 10\mathbb{Z} = \{6k + 10l | k, l \in \mathbb{Z}\} = 2\mathbb{Z};$
- $6\mathbb{Z} \cdot 10\mathbb{Z} = \{(6k_1)(10l_1) + \dots + (6k_s)(10l_s) | k_i, l_i \in \mathbb{Z}\} = 60\mathbb{Z}.$

Степінь ідеалу

Добуток ідеалів I_1, I_2, \ldots, I_k визначається індуктивно:

$$I_1I_2...I_k = I_1(I_2...(I_{k-1}I_k)) = \left\{ \sum_{l} x_{1l}x_{2l}...x_{kl} \mid x_{il} \in I_i, i = \overline{1,k} \right\}.$$

Для $n \in \mathbb{N}$ можна індуктивно визначити n-й степінь I^n ідеалу I:

$$I^{1} = I$$
, $I^{2} = II$, ..., $I^{n} = I \cdot I^{n-1}$,

тобто це множина, що складається з усіх скінчених сум елементів вигляду $a_1a_2\dots a_n$, де $a_i\in I$ для $i=1,2,\dots,n$.

Нільпотентний ідеал

Означення

Ідеал I називається *нільпотентним*, якщо для деякого $n \in \mathbb{N}$ виконується $I^n = \{0\}$, тобто добуток довільних n елементів ідеалу I дорівнює 0.

Приклад

(30) — нільпотентний ідеал в кільці \mathbb{Z}_{240} .

Радикал ідеалу

Означення

Радикал ідеалу I — це множина

$$\sqrt{I} = \{ a \in R \mid a^n \in I \text{ для деякого } n \in \mathbb{N} \}.$$

Приклад

 $(\overline{30})$ — радикал ідеалу $(\overline{60})$ в кільці \mathbb{Z}_{240} .