Mintazh (számításelmélet rész)

1. feladat. [5 pont]

Tekintsük az alábbi f(n) és a g(n) függvényeket. Az $f(n) = \mathcal{O}(g(n)), f(n) = \Omega(g(n)), f(n) = \Theta(g(n))$ állítások közül melyik igaz? A választ indokold is!

1.
$$f(n) = n^2$$
 és a $g(n) = 10^{13}n$,

2.
$$f(n) = n^{\log n}$$
 és a $g(n) = 2^n$.

2. feladat. [10 pont]

Készíts egy- vagy többszalagos, determinisztikus Turing gépet, ami az $L = \{u \in \{a,b,c\}^* \mid u\text{-ban ugyanannyi } a, b és c karakter van\}$ nyelvet fogadja el.

3. Az $\mathcal{M} = \langle \{q_0, q_1, q_2, q_3, q_4, q_5, q_6, q_7, q_8, q_i, q_n\}, \{0, 1\}, \{0, 1, \#, \sqcup\}, \delta, q_0, q_i, q_n \rangle$ determinisztikus Turinggép állapotátmenetei az alábbi átmenetdiagrammal vannak megadva. \mathcal{M} egy $f : \{0, 1\}^* \to \{0, 1, \#\}^*$ szófüggvényt számít ki (tehát az $u \in \{0, 1\}^*$ input esetén a Turing-gép megállásakor $f(u) \in \{0, 1, \#\}^*$ olvasható a szalagon).

- (a) Adjuk meg a 01110 szóra a kezdőkonfigurációból a megállási konfigurációba a konfigurációátmenetek sorozatát! (5 pont)
- (b) Adjuk meg azt az f szófüggvényt, melyet \mathcal{M} kiszámol! A választ röviden indokoljuk is! (5 pont)
- 4. Készíts olyan egyszalagos Turing gépet, ami minden $w \in \{a,b\}^*$ szóra kiszámítja az f(w) = ww függvényt! (10 pont)

5. feladat. 10 pont] Legyen M az a Turing gép, melynek szalagszimbólumai rendre a, b, \sqcup , állapotai pedig q_0, q_1, q_i és q_n . A gép átmeneti függvényét pedig az alábbi bitsorozat kódolja (a kódolás a fenti felsorolásoknak megfelelően történt és feltesszük, hogy a fej irányai az L, R, S sorrendben vannak kódolva):

Mit csinál M, ha a szalagján az abba szóval indítjuk? Mit csinál M egy tetszőleges bemenetre?

6. feladat. 7 pont] Adj meg két olyan dominókészletet, melyek két-két dominóból állnak és nincs a Post Megfelelkezési Probléma szerint megoldásuk. Viszont ha a négy dominót egy készletnek vesszük, akkor ennek a készletnek már lesz megoldása. A megoldást igazold is!