# Analyse de données

L. BELLANGER

Master 1 Ingénierie Statistique Dpt de Mathématiques - Université de Nantes

# IV. Classification et classement

# Plan

- 0. Introduction
- I. Outils de représentation d'un échantillon
- II. Analyse en Composantes Principales (ACP)
- III. Analyse Factorielle des Correspondances (AFC)
- IV. Classification et classement
- V. Conclusion

2

# Plan

- Introduction
- I. Classification
  - 1. Idées générales
  - 2. Classification par partition
- II. Classement par AFD

3

## Introduction:

# Qu'est-ce que la classification?

- Regrouper des objets en groupes, ou classes, ou familles, ou segments, ou clusters, de sorte que :
  - 2 objets d'un même groupe se ressemblent le + possible
  - 2 objets de groupes distincts diffèrent le + possible
  - le nombre des groupes est parfois fixé
- · Méthode descriptive :
  - pas de variable cible privilégiée
  - décrire de façon simple une réalité complexe en la résumant
- · Les objets à classifier sont :
  - des individus
  - des variables

# **Introduction:**

#### Classification $\neq$ Classement

- La classification consiste à regrouper les individus d'une population en un nombre limité de classes qui :
  - ne sont pas prédéfinies mais déterminées au cours de l'opération, contrairement aux classes du classement :
  - regroupent les individus ayant des caractéristiques similaires et séparent les individus ayant des caractéristiques différentes.
- Le classement consiste à placer chaque individu de la population dans une classe, parmi plusieurs classes prédéfinies, en fonction des caractéristiques de l'individu indiquées comme variables explicatives.
- Le résultat du classement permet d'affecter chaque individu à la meilleure classe.
- Très souvent, il y a 2 classes prédéfinies (« sain » et « malade », par exemple).

# Introduction:

Classification  $\neq$  Classement (1a)

#### Le vocabulaire s'appuie aussi sur les mots suivants:

- La Classification est une méthode d'analyse non-supervisée, ce qui sous-entend que le tableau de données n'est pas structuré par opposition au
- Classement qui est une méthode d'analyse supervisée, ce qui sousentend que le tableau de données est structuré. Le classement est toujours associé à une discrimination préalable, même si ce n'est pas précisé de façon explicite: on ne peut classer des individus que dans des classes préalablement définies.
- · De surcroît, les dictionnaires ne sont pas très clairs :
  - Classer peut aussi bien vouloir dire diviser en classes que ranger dans une catégorie.
  - Par contre classifier signifie faire ou établir des classifications.

# **Introduction:**

Classification  $\neq$  Classement (1 b)

#### Donc, pour être précis:

- · Dans une classification, on classifie,
- · dans un classement, on classe.

#### Enfin de manière générale :

- on classe ou on classifie des individus (= des objets = des observations); mais
- on peut tout aussi bien réaliser ces opérations sur des variables.

О

# Introduction:

Classification  $\neq$  Classement (2)

Point de terminologie : 3 techniques de data mining
 ...3 terminologies ≠ dans la littérature!

| Auteurs anglo-<br>saxons | Certains auteurs francophones | Analyse des<br>données à la<br>française |
|--------------------------|-------------------------------|------------------------------------------|
| Clustering               | Segmentation                  | Classification                           |
| Classification           | Classification                | Classement,<br>analyse<br>discriminante  |
| Decision trees           | Arbres de décision            | segmentation                             |

# **Introduction:**

Les différentes méthodes

- · Méthodes de partitionnement
  - k-means : centres mobiles et nuées dynamiques
  - k -modes, k -prototypes, k -représentants (k medoids)
  - réseaux de Kohonen
  - méthodes basées sur une notion de densité
  - méthode « de Condorcet » (analyse relationnelle)
- · Méthodes hiérarchiques
  - ascendantes (agglomératives)
     basées sur une notion de distance ou de densité
  - descendantes (divisives)
- · Méthodes mixtes
- Analyse floue (fuzzy clustering)

## Introduction:

#### Structure des classes obtenues

- Soit 2 classes sont toujours disjointes : méthodes de partitionnement :
  - généralement, le nombre de classes est défini a priori ;
  - certaines méthodes permettent de s'affranchir de cette contrainte (analyse relationnelle, méthodes paramétriques par estimation de densité).
- Soit 2 classes sont disjointes ou l'une contient l'autre : méthodes hiérarchiques :
  - ascendantes (agglomératives : agglomération progressive d'éléments 2 à 2);
  - descendantes (divisives).
- Soit 2 classes peuvent avoir plusieurs objets en commun (classes « empiétantes » ou « recouvrantes »):
  - analyse « floue », où chaque objet a une certaine probabilité d'appartenir à une classe donnée.

10

# Introduction:

## classification des individus

- Il faut choisir une mesure de ressemblance entre individus, le plus souvent la distance euclidienne ; mais il en existe de nombreuses ! Cf. après ....
- Nécessité de standardiser les variables si elles ne sont pas toutes mesurées dans la même unité et ont des moyennes ou des variances dissemblables
- Préférable d'isoler les « outliers » (individus horsnorme)
- Quand on a des variables qualitatives ⇒ se ramener à une classification de variables continues par une AFCM

# I. Classification

## 1. IDEES GENERALES

## 1.1 Mesures de ressemblance (« similarity »)

Les mesures de ressemblance entre objets à classer dépendent de la **nature des variables mesurées** qui peuvent être binaires, nominales, ordinales ou numériques.

#### Définitions générales:

- distance
- · similarité
- dissimilarité

13

14

## 1. IDEES GENERALES

#### 1.1 Mesures de ressemblance (« similarity »)

- On définit d'abord une *distance* sur un ensemble E de n objets, comme l'application de  $E \times E$  dans  $\mathbb{R}^+$  vérifiant :
  - $d(i,j) \ge 0$  et  $d(i,j) = 0 \Leftrightarrow i = j$
  - $\bullet \quad d(i,j) = d(j,i)$
  - $d(i,j) \le d(i,k) + d(k,j)$  inégalité triangulaire
- Une *distance* est dite **euclidienne** si elle est engendrée par un produit scalaire.
- Une distance est dite ultramétrique si :

```
d(i,j) \le \sup (d(i,k);d(j,k))
```

## 1. IDEES GENERALES

#### 1.1 Mesures de ressemblance (« similarity »)

- Si inégalité triangulaire pas vérifiée : dissemblance ou dissimilarité D sur un ensemble E de n objets, est une application de  $E \times E$  dans  $\mathbb{R}^+$  vérifiant :
  - $D(i,j) \ge 0$  et  $D(i,j) = 0 \iff i = j$
  - D(i,j) = D(j,i)
- On parle de ressemblance ou de similarité si on a une application s telle que :
  - $s(i,j) \ge 0$
  - s(i,j) = s(j,i)
  - $s(i,i) \ge s(i,j) \ \forall i,j$

## 1 IDFFS GFNFRALFS

#### 1.1 Mesures de ressemblance entre individus $x_i$

**Exemples:**  $x_{ij}$ : i = 1, ... n (indiv) et j = 1, ..., p (variables)

a/ Données numériques (cf ex 1)

Tableau individus x variables quantitatives

· Distance de Minkowski (1896)

$$d(i,i') = d(x_i, x_{i'}) = \left\{ \sum_{j=1}^{p} \alpha_j \left| x_{ij} - x_{i'j} \right|^{\lambda} \right\}^{\frac{1}{\lambda}} \text{ où } \lambda \text{ et } \alpha_j \in R^+$$

- Cas particuliers:

Si  $\lambda = 1$  et  $\alpha_j = 1$ : distance de Manhattan:  $d(i,i') = \sum_{i=1}^{p} |x_{ij} - x_{i'j}|$ 

Si  $\lambda = 2$  et  $\alpha_i = 1$ : distance euclidienne classique :

$$d(i,i') = \left\{ \sum_{j=1}^{p} \left| x_{ij} - x_{i'j} \right|^{2} \right\}^{\frac{1}{2}}$$

17

19

## 1 IDEES GENERALES

#### Mesures de ressemblance entre individus $x_i$

**Exemples:**  $x_{ii}$ : i = 1, ... n et j = 1, ..., p

c/ Données binaires

i 011000010**1**0010...

i' 010100011**0**0010...

Les n indiv. à classer sont caractérisés par p variables binaires codées 0 ou 1. La ressemblance ou similarité entre 2 individus i et i' s(i,i') se calcule à partir des informations du tableau de contingence suivant:

| :_         | 1 50 | 0   | Tot |
|------------|------|-----|-----|
| <u>.</u> 1 | а    | Ь   | a+b |
| 0 20       | C    | d   | c+d |
| Tot        | a+c  | b+d | n   |

- a: nb de concordances communes 11.
- b: nb de concordances 10, c: nb de concordances 01,
- d: nb de concordances 00.

Ces 4 nbs définissent des indices de similarités entre individus. par exemple :

#### 1. IDEES GENERALES

#### 1.1 Mesures de ressemblance entre individus $x_i$

**Exemples:**  $x_{ii} : i = 1, ..., n$  et j = 1, ..., p

b/ Données de fréquences (cf ex 4)

Tableau de contingence

· Distance entre 2 lignes = Distance du Chi-deux

$$d^{2}(i,i') = \sum_{j=1}^{p} \frac{1}{f_{+j}} \left( \frac{f_{ij}}{f_{i+}} - \frac{f_{i'j}}{f_{i'+}} \right)^{2}$$

 $S_1 = \frac{a}{a+b+c}$ Indice de communauté de Jaccard  $S_2 = \frac{a+d}{n}$ Indice de Sokal & Michener  $S_3 = \frac{a}{a + 2(b + c)}$ Indice de Sokal & Sneath  $S_4 = \frac{a+d}{a+2(b+c)+d}$ Indice de Rogers et Tanimoto  $S_5 = \frac{2a}{2a+b+c}$ Indice de Sorensen  $S_6 = \frac{a - b - c + d}{n}$ Indice de Gower & Legendre  $S_7 = \frac{a}{\sqrt{(a+b)(a+c)}}$ Indice de Ochiai  $S_8 = \frac{ad}{\sqrt{(a+b)(a+c)(d+b)(d+c)}}$ Indice de Sockal & Sneath Phi de Pearson

Ces indices sont tous  $\leq 1$  et la dissimilarité associée est définie par :

$$d_k = (1 - s_k)^{1/2}$$

## 1. IDEES GENERALES

#### 1.1 Mesures de ressemblance entre individus $x_i$

**Exemples:**  $x_{ij} : i = 1, ..., p$ 

c/ Données binaires

On peut les calculer par la fonction dist.binary dans ade4 qui demandera de choisir:

```
1 = JACCARD index (1901) S3 coefficient of GOWER & LEGENDRE
s1 = a/(a+b+c) --> d = sqrt(1 - s)
2 = SOCKAL & MICHENER index (1958) S4 coefficient of GOWER & LEGENDRE
s2 = (a+d)/(a+b+c+d) --> d = sqrt(1 - s)
3 = SOCKAL & SNEATH(1963) S5 coefficient of GOWER & LEGENDRE
s3 = a/(a+2(b+c)) --> d = sqrt(1 - s)
4 = ROGERS & TANIMOTO (1960) S6 coefficient of GOWER & LEGENDRE
s4 = (a+d)/(a+2(b+c)+d) \longrightarrow d = sqrt(1 - s)
5 = CZEKANOWSKI (1913) or SORENSEN (1948) S7 coefficient of GOWER & LEGENDRE
s5 = 2*a/(2*a+b+c) --> d = sqrt(1 - s)
6 = S9 index of GOWER & LEGENDRE (1986)
s6 = (a-(b+c)+d)/(a+b+c+d) --> d = sgrt(1 - s)
7 = OCHIAI (1957) S12 coefficient of GOWER & LEGENDRE
s7 = a/sqrt((a+b)(a+c)) --> d = sqrt(1 - s)
8 = SOKAL & SNEATH (1963) S13 coefficient of GOWER & LEGENDRE
s8 = ad/sqrt((a+b)(a+c)(d+b)(d+c)) --> d = sqrt(1 - s)
9 = Phi of PEARSON = S14 coefficient of GOWER & LEGENDRE
s9 = ad-bc)/sqrt((a+b)(a+c)(b+d)(d+c)) --> d = sqrt(1 - s)
10 = S2 coefficient of GOWER & LEGENDRE
s10 = a/(a+b+c+d) --> d = sqrt(1 - s) and unit self-similarity
Select an integer (1-10): 0
```

#### 1 IDEES GENERALES

#### 1.2 Qualité d'une classification

- · Détecter les structures présentes dans les données
- · Permettre de déterminer le nombre optimal de classes
- · Fournir des classes bien différenciées
- Fournir des classes stables vis-à-vis de légères modifications des données
- · Traiter efficacement les grands volumes de données
- Traiter tous les types de variables (quantitatives et qualitatives)
  - Ce point est rarement obtenu sans transformation
- Conduire à une interprétation et une utilisation facile des résultats

22

## 1. IDEES GENERALES

## 1.3 Concepts courants en classification

Deux idées complémentaires :

- cohésion interne des classes
- isolement entre classes.

A ces deux idées s'ajoute celle de *hiérarchie* possible entre classes.

Certaines techniques peuvent permettre un certain *recouvrement* des classes.

## 1. IDEES GENERALES

## 1.4 Considérations combinatoires

 $B_{n,k}$ : nb de partitions en k classes de n objets = nb de Stirling

## Propriétés:

- $B_{n,1} = B_{n,n} = 1$  et  $B_{n,n-1} = C_n^2$
- $B_{n,k} = B_{n-1,k-1} + kB_{n-1,k}$ , (récurrence)

**Exemple** :  $B_{12,5} = 1379400$ 

•  $B_n$ = nb total de partitions de n objets (nb de Bell)

$$B_n = \sum_{k=1}^{n} B_{n,k} = \frac{1}{e} \sum_{i=1}^{\infty} \frac{i^n}{i!}$$

**Exemple** :  $B_{12} = 4213597$ 

⇒ Nécessité d'algorithmes pour trouver une « bonne » partition.

Comment définir la qualité d'une partition ?

## 1. IDEES GENERALES



Schéma de quelques concepts courants en classification.

## 1. IDEES GENERALES

Illustration du Théorème de Huyghens : T = B + W



#### Comparaison de deux partitions en k classes :

La meilleure est celle qui a l'inertie  $I_W$  la plus faible (ou l'inertie  $I_B$  la plus forte).

**Remarque** : Ce critère ne permet pas de comparer des partitions à nombres différents de classes.

## 1. IDEES GENERALES

#### 1.5 Inertie inter-classe et inertie intra-classe

- n points dans un espace euclidien ;  $d^2(i,i')$  distance euclidienne
- Soit une partition en K classes de poids  $p_i = 1/n$
- $g_1, g_2, ..., g_K$ : centres de gravité
- $I_1, I_2, ..., I_K$ : inerties associées

| Inertie totale                           | $I_T = \frac{1}{n} \sum_{i=1}^n d^2(\boldsymbol{i}, \boldsymbol{g}) \text{ où } \boldsymbol{g} = \frac{1}{n} \sum_{i=1}^n \boldsymbol{x}_i$ |
|------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| Inertie d'une classe $C_k$ $(k = 1,, K)$ | $I_k = \frac{1}{n_k} \sum_{i \in C_k} d^2(i, g_k)$ où $g_k = \frac{1}{n_k} \sum_{i \in C_k} x_i$                                            |
| Inertie intra-classe<br>(W= within)      | $I_W = \sum_{k=1}^K \frac{n_k}{n} I_k = \frac{1}{n} \sum_{k=1}^K \sum_{i \in C_k} d^2(i, g_k)$                                              |
| Inertie inter-classe<br>(B= between)     | $I_B = \sum_{k=1}^K \frac{n_k}{n} d^2(\boldsymbol{g}_k, \boldsymbol{g})$                                                                    |
| Théorème de Huyghens: $T = B + W$        | $I_T = I_B + I_W$                                                                                                                           |

## 1. IDEES GENERALES

#### Critère de classification

- Comparaison de deux partitions en K classes :
  - La meilleure est celle qui a l'inertie  $I_W$  la plus faible (ou l'inertie  $I_R$  la plus forte).
  - Critère global de qualité de la classification :  $C_K^2 = \frac{I_B}{I_T}$ 
    - > Indique la part de la variabilité totale exprimée par la partition (souvent exprimé en %).
    - $ightharpoonup rac{\mathsf{Exemple}:}{\mathsf{Si}}$  Si  $C_K^2$ =0.88 pour une partition en K=3 classes de 6 individus; 88% de la variabilité des individus est prise en compte par la partition en 3 classes.
    - > Tenir compte du nb de classes au regard du nb d'individus ! nb de classes  $K \nearrow \Rightarrow \mathcal{C}_K^2 \nearrow$

Remarque : critère permettant de comparer des partitions ayant un même nombre de classes !!!

### 2. CLASSIFICATION PAR PARTITION

2.2 Regroupement d'observations autour de centres mobiles : méthodes k-means Algorithme de Lloyd

Fixer le nombre K de classes, puis :

- Etape 1 : Choix des K centres  $g_k^{(0)}$  (par ex par tirage pseudo-aléatoire) et  $\mathbf{1}^{\mathtt{ère}}$  partition associée  $c_k^{(0)}$   $(k=1,\cdots,K)$  La classe  $C_k^{(0)}$  est formée de tous les points plus proches de  $\mathbf{g}_k^{(0)}$  que de tout autre centre.
- Etape 2 : Calcul des centres de gravité de chaque classe  $g_{\nu}^{(1)}$ 
  - $\Rightarrow$  définition d'une nouvelle partition  $C_{\nu}^{(1)}$ .
- · Etape 3 : Itérations successives de ces étapes

⇒ jusqu'à stabilisation du critère de classification retenu, i.e. quand le contenu des classes n'est plus modifié.

RÉSULTAT FONDAMENTAL

L'inertie intra-classe  $I_W$  diminue à chaque étape.

### 2. CLASSIFICATION PAR PARTITION

Il existe de nombreuses méthodes k-means puisque :

Un centre mobile peut être :

- une observation unique,
- quelques observations ou
- · leur centre de gravité ou
- tout élément résumant la position d'un certain nombre d'observations.

Le *choix initial* peut aussi être fait:

- par le classificateur lui-même en fonction, par exemple, de ses connaissances *a priori*,
- suite à une autre analyse statistique préalable, comme des points très éloignés sur un plan d'analyse en composantes principales,
- · au hasard, faute de mieux!

#### 2. CLASSIFICATION PAR PARTITION

#### 2.2 Regroupement d'observations autour de centres mobiles :

#### RÉSULTAT FONDAMENTAL

L'inertie intra-classe  $I_{w}$  diminue à chaque étape qd K est fixé.

On définit le critère :  $I_{\boldsymbol{W}}^{(m)} = \frac{1}{n} \sum_{k=1}^{k=K} \sum_{i \in C^{(m)}_k} d^2(\mathbf{i}, \mathbf{g_k}^{(m)})$ 

associé à la partition  $C_k^{(m)}(k=1,...,K)$  de centre de gravité  $\mathbf{g_k}^{(m+1)}$ 

- $\cdot \quad \text{II suffit de montrer que}: \quad I_{\boldsymbol{W}}^{(m+1)} = \frac{1}{n} \sum_{k=1}^{k=K} \sum_{i \in C^{(m)}_k} d^2(\mathbf{i}, \mathbf{g_k}^{(m+1)}) \leq I_{\boldsymbol{W}}^{(m)}$
- A l'étape m+1, on associe chaque pt au centre le plus proche donc

$$I_{W}^{(m+1)} \le I_{W}^{(m)}$$

• Le nuage de pts étant fini et la suite  $\left(I_W^{(m)}\right)$  étant décroissante et >0, l'algorithme converge vers une valeur minimale  $I_W^{lim}$ .

### 2. CLASSIFICATION PAR PARTITION

### Segmentation par centres mobiles

· Principe

Regrouper les individus en fonction de leur distance au « centre » des différentes classes

· Variante: nuées dynamiques

Une classe est caractérisée par un noyau (ensemble formé de q pts appelés étalons).

#### 2. CLASSIFICATION PAR PARTITION

#### Schématisation de la méthode des centres mobiles



#### 2. CLASSIFICATION PAR PARTITION

## Avantages des méthodes k-means :

- algorithmes simples
- applicables à des corpus de données de grande quantité d'observations.

#### Inconvénients:

- le résultat dépend fortement du tirage initial des pts représentant les centres des classes.
  - Remèdes: rechercher les individus partageant les mêmes groupes lors de partitions répétées (formes fortes); combiner avec CAH (classification mixte).
- méthodes ne permettant pas de détecter la présence d'outliers.

Faire exemple 2 page 3 Td/TP ch 4

34

#### 2. CLASSIFICATION PAR PARTITION

2.3 Exemple sous R (E. H. Ruspini (1970): Numerical methods for fuzzy clustering. *Inform. Sci.*, 2, 319–350.)



#### 2. CLASSIFICATION PAR PARTITION

2.3 Exemple sous R (E. H. Ruspini (1970): Numerical methods for fuzzy clustering. *Inform. Sci.*, 2, 319—350.)

#### Sous R:

- > library(stats)
- > Ruspkmeans.2<-kmeans(ruspini,2)</pre>
- > Ruspkmeans.3<-kmeans(ruspini,3)</pre>
- > Ruspkmeans.4<-kmeans(ruspini,4)</pre>
- > Ruspkmeans.5<-kmeans(ruspini,5)</pre>



# Ce qu'il faut retenir

- · La classification automatique ou non supervisée permet d'organiser un ensemble d'objets ou d'individus en classes homogènes.
- Il existe un grand nombre de méthodes en fonction
  - de la nature des observations et
  - du type de classes que l'on cherche.
  - Attention :
    - Par partition : Kmeans : algorithme CV mais instable !

37

39

- On retiendra la plus appropriée en fonction de l'objectif recherché:
  - une partition sera bien souvent jugée satisfaisante si elle est composée de classes interprétables.

# II. Classement par AFD

## Exercices Td/TP ch IV: classification « à la main ». fonction sous R

## Données test supplémentaires

| Données      | Description                                                                                           |  |
|--------------|-------------------------------------------------------------------------------------------------------|--|
| Eaux1.txt    | Corpus 24 eaux minérales décrites par 6 variables                                                     |  |
| Eaux2010,txt | Corpus 113 eaux minérales décrites par 9 variables                                                    |  |
| ChaZeb-a.txt | Corpus de 23 bovins (Charolais & Zébus) décrits par 6<br>variables<br>pondérales.                     |  |
| Loup.txt     | Description de 43 crânes Chien/Loup par 6 variables.<br>Identification d'un crane d'origine inconnue. |  |
| CamRiz.xls   | données agronomiques concernant la culture du riz                                                     |  |
| Iris.xls     | caractéristiques de 3 variétés d'iris                                                                 |  |

# L'analyse discriminante : introduction

## Objet d'étude de l'analyse discriminante

- Technique statistique visant à décrire, expliquer et/ou prédire l'appartenance à des groupes prédéfinis d'un ens. d'obs. (individus,...) caractérisées par une variable à expliquer Y qualitative à partir de variables explicatives **X**j
- · Cas particulier de l'ACC pour lequel X décrit un ensemble de variables quantitatives et Y représente les variables indicatrices associées aux K modalités d'une variable qualitative.

# L'analyse discriminante : introduction

L'analyse discriminante est *utilisée dans de nombreux* domaines:

- Médecine : détection de groupes à hauts risques cardiaques à partir de caractéristiques telles que l'âge, l'alimentation, le fait de fumer ou pas, les antécédents familiaux, etc.
- Domaine bancaire : évaluation de la fiabilité d'un demandeur de crédit à partir de ses revenus, du nb de personnes à charge, des encours de crédits qu'il détient, etc.
- Biologie : affectation d'un objet à sa famille d'appartenance à partir de ses caractéristiques physiques.
  - Ex très fameux des iris de Fisher, à l'origine de cette méthode. Il s'agit de reconnaître le type d'iris (setosa, virginica, et versicolor) à partir de la longueur/largeur de ses pétales et sépales (4 variables explicatives).

# Introduction

- Objectif 2 : Classer (Analyse discriminante prédictive ou décisionnelle)
   : construire une fonction de classement (règles d'affectation des individus,...) pour prédire le groupe y d'appartenance d'un individu à partir des valeurs des X<sup>j</sup>.
  - repose sur un cadre probabiliste.
    - Le plus connu : distribution multinormale (loi Normale) + homoscédasticité, les nuages de points conditionnels ont la même forme, nous aboutissons à l'analyse discriminante linéaire.
    - très séduisante dans la pratique car la fonction de classement s'exprime comme une combinaison linéaire des X<sup>j</sup>, facile à analyser et à interpréter.
- **Distinction** entre ces 2 approches n'est pas aussi tranchée.
  - possible de dériver des règles géométriques d'affectation à partir de l'analyse factorielle discriminante.

## Introduction

## 2 approches différentes selon les objectifs

Y variable à expliquer qualitative à K catégories  $X^1, X^2, ..., X^p$  variables explicatives centrées

- Objectif 1 : Décrire (Analyse discriminante descriptive ou analyse factorielle discriminante)
  - Étude de la distribution des X<sup>j</sup>/ Y
  - Géométrie : Analyse Factorielle Discriminante (AFD)
    - trouver une représentation graphique dans un espace réduit qui permette de discerner le plus possible les groupes d'individus (ie liaison entre Y et les X<sup>j</sup>).

En ce sens, elle se rapproche de l'analyse factorielle.

- Tests: Analyse de variance multidimensionnelle MANOVA

42

# Les différentes formes d'analyse discriminante

|                                          | Méthode descriptive<br>(représenter les groupes) | Méthode prédictive<br>(prédire l'appartenance<br>à un groupe)                                                               |  |
|------------------------------------------|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--|
| Approche<br>géométrique                  | Oui<br>analyse factorielle discriminante         | Oui analyse discriminante linéaire multinormalité homoscédastici                                                            |  |
| Approche<br>probabiliste<br>(bayésienne) | Non                                              | Oui équiprobabilit<br>analyse discriminante linéair<br>a. d. quadratique<br>a. d. non paramétrique<br>régression logistique |  |

(canonical discriminant analysis en anglais)

- 1. Principe et notations
- 2. Les axes et les variables discriminantes
- 3. Méthodes géométriques de classement

# I. L' analyse factorielle discriminante

#### 1. Principe et notations

- Y variable cible qualitative à K modalités correspondant à K groupes  $G_{\nu}$ ;
- $X^{j}$  j = 1,..., p. p variables explicatives continues centrées (cas courant K < p' < n);
- $X_i$  individu i défini dans  $\mathbb{R}^p$

## But AFD est de répondre à:

« les K classes diffèrent-elles sur l'ensemble des caractères quantitatifs? »

45

# I. L' analyse factorielle discriminante

#### 1. Principe et notations

L'AFD vise à produire un nouveau système de représentation, constitué de combinaisons linéaires des variables initiales XJ, qui permet de séparer au mieux les K catégories.

#### Pour cela, il faudra:

- Remplacer les  $\mathbf{X}^j$  par  $d \leq \min(K-1;p)$  variables discriminantes  $\mathbf{F}^{(k)} \cdot k = 1, ..., d$ 
  - $F^{(k)} = u_1^{(k)} X^{1} + ... u_n^{(k)} X^p$  combinaisons linéaires des Xj (centrées);
  - prenant des valeurs les plus ≠ possibles pour des individus différents sur la variable cible **Y**.
- Trouver les  $d \le \min(K 1; p)$  vecteurs **u** normalisés (facteurs ou fonctions linéaires discriminantes) et orthogonaux. d'est la dimension de la représentation des groupes.
  - $\Rightarrow$  Il existe une grande analogie avec l'*ACP*.

# I. L' analyse factorielle discriminante

## 1. Principe et notations

- descriptive technique obtention représentation graphique permettant de visualiser les proximités entre les obs, appartenant au même groupe ou non.
- technique explicative : possibilité d'interpréter les axes factoriels, combinaisons linéaires des variables initiales, et ainsi de comprendre les caractéristiques qui distinguent les ≠ groupes.
- Contrairement à l'analyse discriminante prédictive, ne repose sur aucune hypothèse probabiliste :
  - méthode essentiellement géométrique.

## Exemple historique : Les iris de Fisher

(http://cs-people.bu.edu/mdassaro/pp3/







setosa

versicolor

virginica

**Problème**: reconnaître les 3 types d'iris (setosa, virginica, et versicolor) à partir de la longueur/largeur de ses pétales et sépales (4 variables explicatives). Ici  $d = \min(4; 3-1) = 2$ 

## I. L'analyse factorielle discriminante Les iris de Fisher data (iris)





Histogrammes par espèce et par variable

Représentation des nuages bivariés

## I. L'analyse factorielle discriminante Les iris de Fisher data (iris)

La valeur discriminante d'un plan varie fortement dans  $\mathbb{R}^4$ !

Une mesure varie-t-elle entre espèces, plus généralement entre groupe ?

En dimension 3, on peut encore voir ....



# Illustration de la problématique descriptive

Données simulées : 2 populations Normales de 50 obs chacune

de 50 obs chacune définies par 2 variables.

⇒ Choisir la direction D et projeter les pts sur l'axe ainsi défini permet une meilleure séparation les obs de chacun des 2 groupes (rouge et bleu).

Par contre la direction B ne permet aucune séparation entre elles!

⇒ Suivant la direction de projection, les 2 populations apparaîtront un peu, bcp ou pas du tout différentes.



## 1. Principe et notations

Les n individus forment un nuage de n points dans  $\mathbb{R}^p$ , formé des K sous-nuages  $G_k$  à différencier.

On construit une  $1^{\text{ère}}$  variable  $F^1$ , combinaison linéaire des p variables initiales qui :

- minimise la variance intra  $W_k$   $k=1,...,K \Rightarrow$  dispersion intra groupe ; *Within*
- maximise la variance inter  $B \Rightarrow$  dispersion inter groupe.



53

55

# I. L' analyse factorielle discriminante

## 1. Principe et notations

#### Calcul de W et B:

les n observations  $x_i$ 

- ont chacune un poids  $p_i$  ( $i=1,\ldots,n$ ) défini dans la matrice diagonale  $\mathbf{D}_{n\times n}$  et
- forment un nuage de pts de  $\mathbb{R}^p$ , formé des K sous-nuages  $G_k$   $(k=1,\ldots,K)$  qui ont chacun un poids  $q_k=\sum_{i\in G}p_i$

#### · 2 niveaux de variabilité :

- Variance intraclasse ( $\alpha$  within  $\alpha$ )  $\alpha$  = movenne des matrices de covariance  $\alpha$  des classes  $\alpha$ 

$$\mathbf{W}_{k} = \frac{1}{q_{k}} \sum_{i \in G_{k}} p_{i} (\mathbf{x}_{i} - \mathbf{g}_{k}) (\mathbf{x}_{i} - \mathbf{g}_{k})^{T}$$

- D'où la matrice de covariance intraclasse

$$\mathbf{W} = \sum_{k=1}^{k=K} q_k \mathbf{W_k}$$

54

## I. L' analyse factorielle discriminante

## 1. Principe et notations

Calcul de W et B:

- Variance interclasse (« between ») B = variance des barycentres  $g_k$  des classes  $G_k$ , k = 1, ..., K.

$$\mathbf{B} = \sum_{k=1}^{k=K} q_k (\mathbf{g_k} - \overline{\mathbf{g}}) (\mathbf{g_k} - \overline{\mathbf{g}})^{\mathrm{T}}$$

matrice de covariance « between »

 Théorème de Huyghens : Si T est la matrice de covariance totale

$$B + W = T$$

# I. L' analyse factorielle discriminante

## 1. Principe et notations

Calcul de W et B:

Matriciellement, supposant les var. explicatives centrées, ie  $\overline{g} = 0$  Et notant  $X_K(n \times K)$  la matrice indicatrice des classes :

$$\mathbf{X}_{\mathbf{K}} = \begin{bmatrix} 1 & 2 & \cdots & K \\ 1 & 0 & \cdots & 0 \\ \vdots & & \cdots & 0 \\ 0 & 0 & 1 & 0 \\ \vdots & & \cdots & \\ 0 & 0 & \cdots & 1 \end{bmatrix}$$

• Les K barycentres  $g_1, g_2, ..., g_K$  sont les lignes de la matrice :

$$(\mathbf{X}_{\mathbf{K}}^{\mathbf{T}}\mathbf{D}\mathbf{X}_{\mathbf{K}})^{-1}(\mathbf{X}_{\mathbf{K}}^{\mathbf{T}}\mathbf{D}\mathbf{X})$$

où  $\mathbf{X}_K^{\mathrm{T}}\mathbf{D}\mathbf{X}_k$  est la matrice diagonale ( $K \times K$ ) des poids  $q_k$  des sousnuages et  $\mathbf{D} = \mathrm{diag}(p_i$ ;  $i=1,\ldots,n$ ).

## 1. Principe et notations

• La matrice de variance interclasse s'écrit (si  $\overline{g} = 0$  ) :

$$\mathbf{B} = \left( \left( \mathbf{X}_{K}^{T} \mathbf{D} \mathbf{X}_{K} \right)^{-1} \left( \mathbf{X}_{K}^{T} \mathbf{D} \mathbf{X} \right) \right)^{T} \mathbf{X}_{K}^{T} \mathbf{D} \mathbf{X}_{K} \left( \left( \mathbf{X}_{K}^{T} \mathbf{D} \mathbf{X}_{K} \right)^{-1} \left( \mathbf{X}_{K}^{T} \mathbf{D} \mathbf{X} \right) \right)$$
$$= \mathbf{X}^{T} \mathbf{D} \mathbf{X}_{K} \left( \mathbf{X}_{K}^{T} \mathbf{D} \mathbf{X}_{K} \right)^{-1} \mathbf{X}_{K}^{T} \mathbf{D} \mathbf{X} = \left( \mathbf{X}^{T} \mathbf{D} \mathbf{X}_{K} \right) \left( \mathbf{X}_{K}^{T} \mathbf{D} \mathbf{X}_{K} \right)^{-1} \left( \mathbf{X}_{K}^{T} \mathbf{D} \mathbf{X} \right)$$

• Dans le cas où  $p_i=1/n$ , en notant les effectifs des  $\underline{K}$  sous-nuages  $n_1,n_2,\ldots,n_K$ , on montre que l'on a :

$$\begin{cases} \mathbf{B} &= \frac{1}{n} \sum_{k=1}^{k=K} n_k (\mathbf{g_k} - \overline{\mathbf{g}}) (\mathbf{g_k} - \overline{\mathbf{g}})^{\mathrm{T}} \\ \mathbf{W} &= \frac{1}{n} \sum_{k=1}^{k=K} n_k \mathbf{W_k} \end{cases}$$

57

# I. L' analyse factorielle discriminante

## 2. Les axes et les variables discriminantes

Soit  $\mathbb{R}^p$  (espace des obs.) muni de la métrique  $\mathbf{Q}_{p imes p}$  (cf. ACP).

On notera:

- $a_{n\times 1}$  l'axe discriminant,
- $u_{p\times 1}$  le facteur associé u=Qa,
- F = Xu la variable discriminante



En projection sur l'axe a,

- les K centres de gravité doivent être le + plus séparés possible, tandis que
- chaque sous-nuage doit se projeter de manière groupée autour de la projection de sous centre de gravité.

58

# I. L' analyse factorielle discriminante

#### 2. Les axes et les variables discriminantes

Axes discriminants a (Q-normé à 1): 2 objectifs simultanés

• Dispersion inter classe maximale:  $\max a^T B a$ 



• Dispersion intra classe minimale:  $min a^TWa$ 



# I. L' analyse factorielle discriminante

## 2. Les axes et les variables discriminantes

Axes discriminants : 2 objectifs simultanés

Géométriquement ceci signifie que :

· la matrice d'inertie des barycentres  $g_k$ , QBQ doit être maximale en projection sur a,

cette inertie vaut :  $a^{\mathrm{T}}\mathrm{QBQ}a$  si a est Q-normé à 1

Pour qu'un sous-nuage reste bien groupé il faut, qu'en projection sur a,  $a^{\mathrm{T}}\mathrm{Q}\mathbf{W}_{k}\mathrm{Q}a$  soit la plus faible possible pour toutes les classes,  $k=1,\ldots,K$ .

On cherche donc à minimiser la somme de ces inerties soit :

$$\sum_{k=1}^{k=K} \mathbf{a}^{\mathsf{T}} \mathbf{Q} \mathbf{W}_{k} \mathbf{Q} \mathbf{a} = \mathbf{a}^{\mathsf{T}} \mathbf{Q} \mathbf{W} \mathbf{Q} \mathbf{a}$$

#### 2. Les axes et les variables discriminantes

Axes discriminants : 2 objectifs simultanés

- · Simultanéïté impossible
  - $\max_{a} a^{\mathrm{T}} \mathbf{B} a \Rightarrow a \mathsf{tq} \; \mathbf{B} a = \alpha a$  ,  $\alpha \; \mathsf{max}$
- · Compromis: On reformule l'objectif

Le théorème de Huyghens entraîne:

$$\mathbf{a}^{\mathsf{T}}\mathbf{Q}\mathbf{T}\mathbf{Q}\mathbf{a} = \mathbf{a}^{\mathsf{T}}\mathbf{Q}\mathbf{B}\mathbf{Q}\mathbf{a} + \mathbf{a}^{\mathsf{T}}\mathbf{Q}\mathbf{W}\mathbf{Q}\mathbf{a}.$$

Avec u = Qa le facteur associé à a, on a donc :

$$u^{\mathrm{T}}\mathbf{T}u = u^{\mathrm{T}}\mathbf{B}u + u^{\mathrm{T}}\mathbf{W}u$$

$$max \qquad min$$

=> On peut alors prendre comme critère à maximiser soit

le rapport «  $\it inertie interclasse/inertie intraclasse$  » ou

le rapport « inertie interclasse/inertie totale ».

61

## I. L' analyse factorielle discriminante

#### 2. Les axes et les variables discriminantes

Axes discriminants : 2 objectifs simultanés

On prendra comme critère soit :

(a) inter/intra 
$$\Rightarrow$$
 maximiser  $F_v = v^{\mathrm{T}} \mathbf{B} v / v^{\mathrm{T}} \mathbf{W} v$  sous la contrainte  $v^{\mathrm{T}} \mathbf{W} v = 1$ 

 $\Rightarrow$ 

(b) inter/totale  $\Rightarrow$  maximiser  $F_u = u^T B u / u^T T u$  (Huyghens) sous la contrainte  $u^T T u = 1$ .

62

# I. L' analyse factorielle discriminante

#### 2. Les axes et les variables discriminantes

### On montre que dans le cas :

- (a)  $v^1: \mathbf{1}^{\mathrm{er}}$  vecteur propre de  $\mathbf{W}^{-1}\mathbf{B}$  , de valeur propre  $\mu_1 = \lambda_1/(1-\lambda_1)$  (contrainte  $v^T\mathbf{W}v=1$ ).
- **(b)**  $u^1$  est le  $1^{er}$  vecteur propre de  $\mathbf{T}^{-1}\mathbf{B}$  associé à  $\lambda_1 \in [0;1]$  la plus grande valeur propre de  $\mathbf{T}^{-1}\mathbf{B}$  (contrainte  $u^T\mathbf{T}u=1$ ) tq  $F_u$  est max .

 $oldsymbol{u}^1$  est le  $1^{\mathrm{er}}$  facteur discriminant,  $\lambda_1$  son pouvoir discriminant.

la 1ère variable discriminante  $F^1=Xu^1$  obtenue, on cherche  $F^2=Xu^2$  non corrélé à  $F^1$  tq le rapport  $F_u$  soit maximum et ainsi de suite ...

 $\Rightarrow \lambda$  a les caractéristiques d'un  $R^2$  en régression.

# I. L' analyse factorielle discriminante

#### 2. Les axes et les variables discriminantes

#### On montre que :

• Les vecteurs propres u et v sont liés par la relation :

$$\boldsymbol{u} = (\sqrt{1-\lambda})\boldsymbol{v}$$

 Il existe d ≤ min(K - 1,p) axes factoriels discriminants correspondants aux d valeurs propres de W<sup>-1</sup>B (ou de T<sup>-1</sup>B) et aux d vecteurs propres associés.

#### 2. Les axes et les variables discriminantes

Les différents cas selon  $\lambda_1 \in [0; 1] : \cos(b) \operatorname{diag} \operatorname{de} \mathbf{T}^{-1} \mathbf{B}$ 

1.  $\lambda_1 = 0$ : aucune séparation linéaire n'est possible, groupes concentriques



3. Mais  $0 < \lambda_1 < 1$ : séparation possible avec groupes non recouvrants



13

67

## I. L' analyse factorielle discriminante

#### 2. Les axes et les variables discriminantes

#### Remarques:

- Les pratiques anglaise et française diffèrent un peu, et naturellement les logiciels qui en découlent :
  - <u>les anglais</u> : souvent le  $1^{er}$  rapport **(a)**, dans « l'esprit » du modèle linéaire classique (ANOVA, avec 1 seule variable le rapport  $\frac{inter/(K-1)}{intra/(n-K)}$  est strict<sup>†</sup> une statistique F utilisée dans le modèle linéaire :
    - un F élevé traduit une différence importante entre les traitements;
  - <u>les français</u> préfèrent le  $2^{nd}$  (b), lié à la relation entre le tableau des variables indicatrices des classes  $X_k$  et le tableau de données X.
- · Sous R

1da (MASS) utilise W<sup>-1</sup>B et 
$$v^{T}Wv = 1 \Rightarrow$$
 (a) discrimin (ade4) utilise T<sup>-1</sup>B et  $u^{T}Tu = 1 \Rightarrow$  (b)

66

# I. L' analyse factorielle discriminante

#### 2. Les axes et les variables discriminantes

<u>Rappel</u>:  $d \le \min(K-1;p)$  axes factoriels discriminants correspondents aux d valeurs propres  $\mu_k$  de W<sup>-1</sup>B, et aux d vecteurs propres associés. Choix du nb ????

Des <u>tests sont possibles</u> sous réserve d'accepter l'hypothèse de Normalité (ou de ne pas en être « trop » éloigné).

1/ Test global de la dimension d de représentation  $\approx$  MANOVA 1:  $H_0$ :  $\mu_1 = \mu_2 = \cdots = \mu_d$  on calcule le Lambda de *Wilks*:

$$\Lambda = \frac{|\mathbf{W}|}{|\mathbf{T}|} = \frac{|\mathbf{W}|}{|\mathbf{W} + \mathbf{B}|} = \frac{1}{|\mathbf{W}^{-1}\mathbf{B} + \mathbf{I}|} = \prod_{k=1}^{k=d} (1 - \lambda_k) = \prod_{k=1}^{k=d} \left(\frac{1}{1 + \mu_k}\right)$$

# I. L' analyse factorielle discriminante

#### 2. Les axes et les variables discriminantes

$$\Lambda = \frac{|\mathbf{W}|}{|\mathbf{T}|} = \frac{|\mathbf{W}|}{|\mathbf{W} + \mathbf{B}|} = \frac{1}{|\mathbf{W}^{-1}\mathbf{B} + \mathbf{I}|} = \prod_{k=1}^{k=d} (1 - \lambda_k) = \prod_{k=1}^{k=d} \left(\frac{1}{1 + \mu_k}\right)$$

Sous  ${\sf H}_0$  ,  $\Lambda$  suit la loi du même nom, à 3 paramètres (p,n-K,K-1) On utilise généralement l'approximation :

$$-\left[n-1-\frac{1}{2}(p+K)\right]\ln(\Lambda) \approx \chi_{p(K-1)}^{2}$$

Il existe 3 autres tests que l'on peut utiliser, en option dans R, dans la directive summary.manova:

- Lawley-Hotelling:  $U^{(d)} = trace(\mathbf{W}^{-1}\mathbf{B}) = \sum_{k=1}^{d} \mu_k$
- *Pillai*:  $V^{(d)} = trace(\mathbf{T}^{-1}\mathbf{B}) = \sum_{k=1}^{d} \frac{\mu_k}{1-\mu_k}$
- La plus grande valeur propre de Roy:  $\theta = \mu_1$

#### 2. Les axes et les variables discriminantes

2/ Détermination du nombre d'axes d-q suffisants pour discriminer les nuages de points :

=> repose sur le Lambda de Wilks suivant :

$$\Lambda_q = \prod_{k=d-q}^d (1 - \lambda_k) = \prod_{k=d-q}^d \left(\frac{1}{1 + \mu_k}\right)$$

 $H_0$ : non significativité simultanée des q derniers axes discriminants

Introduction pas à pas de variables dans la règle d'après leur capacité à faire baisser le Lambda de Wilks :

Test de variation du Lambda de Wilks

$$\boxed{\frac{n-K-q}{K-1}\bigg(\frac{\Lambda_q}{\Lambda_{q+1}}-1\bigg)\cong F_{(K-1;n-K-q)} \text{ ; } q=1,\dots,K-1\text{ ss }H_0\text{ "NS de l'axe }q+1\text{"}}$$

dès que la statistique précédente n'est plus significative, on décide que la dimension de représentation est d-q.

69

## I. L' analyse factorielle discriminante

#### 3. Une ACP particulière

définissons la matrice indicatrice  $X_{\nu}$  (n × K) des classes.

initial  $n \times p$ , centré

# I. L' analyse factorielle discriminante

### 3. Une ACP particulière

- AFD  $\Leftrightarrow$  ACP ( $X_{Gk}$  Q, D) du nuage  $X_{Gk}$  des K centroïdes

  - <u>La métrique  $D_{K\times K}$  sur  $\mathbb{R}^K$  (espace des variables):</u>
     la matrice diagonale des poids  $q_k = n_k/n$  des classes
  - <u>la métrique  $Q_{p\times p}$  sur  $\mathbb{R}^p$  (espaces des individus):</u>
      $T^{-1}$  ou  $W^{-1}$  dite métrique de *Mahalanobis*.

#### Remarques:

- L'utilisation de T-1 et W-1 comme métrique est donc indifférente, on dit qu'elles sont équivalentes.
- La métrique W-1 (métrique de Mahalanobis) est plus utilisée par les Anglo-saxons et les éditeurs de logiciels.
- Distance d de 2 indiv x et y:  $d^2(x,y) = (x-y)^T W^{-1}(x-y)$
- · Ces métriques correspondent à une projection oblique. Sans cette oblicité, il s'agirait d'une simple ACP; mais les groupes seraient mal séparés.
- Nombre d'axes discriminants est au plus égal à K=1dans le cas courant où n > p > K.

# I. L' analyse factorielle discriminante

- · Conséquences construction AFD
  - Lien avec d'autres méthodes (cf. Lebart & al. (1995), p. 259):
    - ACP
      - les variables discriminantes sont non corrélées 2 à 2
      - On pourra interpréter les variables discriminantes au moyen du cercle de corrélation
    - · ACC
  - Pas de test, mais ... sous réserve de ne pas rejeter l'hypothèse de Normalité ....
  - Pas d'erreurs standard sur les coefficients
  - MAIS possibilité d'utiliser les méthodes de type « pas à pas » comme en régression. Sous R : stepclass(klaR).

## 4. Méthodes géométriques de classement



· Échantillon d'apprentissage



e observation de groupe inconnu



 Règle géométrique de classement :
 e classé dans le groupe k tel que d(e; g<sub>k</sub>) soit minimale

73

## L' analyse factorielle discriminante

## 4. Méthodes géométriques de classement

• Règles géométriques : e classé ds le groupe  $G_k$  pour lequel la distance (définie par  $\mathbf{W}^{-1}$ ) à  $g_k$  est minimale : Cte ne dépendant pas de k

$$d^{2}(\boldsymbol{e},\boldsymbol{g}_{k}) = (\boldsymbol{e} - \boldsymbol{g}_{k})^{\mathrm{T}} \mathbf{W}^{-1} (\boldsymbol{e} - \boldsymbol{g}_{k}) = (\boldsymbol{e}^{\mathrm{T}} \mathbf{W}^{-1} \boldsymbol{e}) - 2\boldsymbol{g}_{k}^{\mathrm{T}} \mathbf{W}^{-1} \boldsymbol{e} + \boldsymbol{g}_{k}^{\mathrm{T}} \mathbf{W}^{-1} \boldsymbol{g}_{k}$$

- D'où

Minimiser  $d^2(\pmb{e}, \pmb{g}_k) \Leftrightarrow \mathsf{maximiser} \left( 2\pmb{g}_k^{\mathrm{T}} \mathbf{W}^{-1} \pmb{e} - \pmb{g}_k^{\mathrm{T}} \mathbf{W}^{-1} \pmb{g}_k \right)$ 

 $\Rightarrow$  règle linéaire par rapport aux coordonnées de e

 Pour chacun des K groupes G<sub>k</sub>, on a une fonction discriminante de Fisher (fonction de classement!) obtenue après inversion de la matrice W:

$$\alpha_k + \beta_{k,1} \mathbf{X}^1 + \beta_{k,2} \mathbf{X}^2 + \dots + \beta_{k,p} \mathbf{X}^p$$

=> e classé dans le groupe k où la fonction est maximale. Sous R, utiliser la fonction predict

74

## L'analyse discriminante linéaire Les iris de Fisher data (iris)

> library (MASS)

Proportion of trace:

0.9912 0.0088

LD2

> ir.lda<-lda(Species ~ ., iris); ir.lda #va et vp de  $W^{-1}B$  [...]

Group means:

|            | Sepal.Length | Sepal.Width | Petal.Length | Petal.Width |
|------------|--------------|-------------|--------------|-------------|
| setosa     | 5.006        | 3.428       | 1.462        | 0.246       |
| versicolor | 5.936        | 2.770       | 4.260        | 1.326       |
| virginica  | 6.588        | 2.974       | 5.552        | 2.026       |

Coefficients of linear discriminants:

|              | LD1        | LD2         |   |
|--------------|------------|-------------|---|
| Sepal.Length | 0.8293776  | 0.02410215  | 4 |
| Sepal.Width  | 1.5344731  | 2.16452123  |   |
| Petal.Length | -2.2012117 | -0.93192121 |   |
| Petal.Width  | -2.8104603 | 2.83918785  |   |

Coefficients des 2=3-1 fonctions discriminantes.

Coordonnées des indiv sur les 2 variables discriminantes (non corrélées ) = combinaisons linéaires des variables initiales centrées.

99.1% de la variabilité interclasse est expliquée par le 1er axe discriminant! 75

## L'analyse discriminante linéaire Les iris de Fisher data (iris)

> plot(ir.lda)

- # règles géométriques
- > pred<-predict(ir.lda)\$class
- > table(iris\$Species,pred)

pred setosa versicolor virginica setosa 50 0 0 0 versicolor 0 48 2 virginica 0 1 49



# L'analyse discriminante linéaire

## Les iris de Fisher data (iris)

Utilisation de la fonction discrimin (ade4)
 #va et vp de T-1B

```
ACP du nuage des centroïdes qk
```

```
> dis1 <- discrimin(dudi.pca(iris[, 1:4], scan = F),
    iris$Species, scan = F)</pre>
```

> dis1

```
Discriminant analysis
call: discrimin(dudi = dudi.pca(iris[, 1:4], scan = F), fac = iris$Species, scannf = F)
class: discrimin
$nf (axis saved) : 2
```

eigen values: 0.9699 0.222 (cf résultats précédents)
data.frame nrow ncol content

```
1 $fa 4 2 loadings / canonical weights u
2 $li 150 2 canonical scores F=Xu
3 $va 4 2 cos(variables, canonical scores)
4 $cp 4 2 cos(components, canonical scores)
5 $qc 3 2 class scores
```

77

# II Analyse discriminante probabiliste

- Approche géométrique de classement ne prend pas en compte les proba *a priori* des différentes classes, qui peuvent être très inégales!
- · Modèle bayésien d'affectation :
  - Pour tout  $i \leq k$ , soient:
    - P(G<sub>i</sub>/x) = proba a posteriori d'appartenance à G<sub>i</sub> sachant x (connaissant les caractéristiques de x, son « dossier »)
    - $p_i = P(G_i) = proba \ a \ priori \ d'appartenance à G_i$  (proportion de  $G_i$  dans la population)
    - $f_i(x) = P(x/G_i)$  = densité conditionnelle de la loi de x connaissant son groupe  $G_i$
  - D'après le théorème de Bayes :

$$P(G_i/\mathbf{x}) = \frac{p_i f_i(\mathbf{x})}{\sum_{i=1}^k p_i f_i(\mathbf{x})}$$

- Règle de classement bayésienne :
  - on classe x dans le groupe  $G_i$  où  $P(G_i/x)$  est maximum
  - $\Rightarrow$  **Pb** = estimer  $P(G_i/x)$ !

78

# II Analyse discriminante probabiliste : 3 possibilités pour estimer $P(G_i/x)$

En commençant par calculer  $P(x/G_i)$ 

- 1. Selon une méthode paramétrique (on suppose la multinormalité de  $P(x/G_i)$  avec éventuellement égalité des  $\Sigma_i$ , donc le nb de paramètres du problème est fini : AD Linéaire ou AD Quadratique)
- 2. Selon une méthode non paramétrique (pas d'hypothèse sur la densité  $P(x/G_i)$ : méthode du noyau ou des plus proches voisins)
- 3. Directement par une approche semi-paramétrique (régression logistique) où on écrit  $P(G_i/x)$  sous la forme :

 $P(G_i/x) = \frac{e^{\alpha'x+\beta}}{1 + e^{\alpha'x+\beta}}$ 

II Analyse discriminante probabiliste :

La règle bayésienne naïve dans le cadre Normal

• La densité d'une loi multinormale  $N(\mu_i, \Sigma_i)$  est :

$$f_i(\mathbf{x}) = \frac{1}{(2\pi)^{p/2} \sqrt{\det(\Sigma_i)}} \exp\left[-\frac{1}{2} (\mathbf{x} - \mu_i)' \Sigma_i^{-1} (\mathbf{x} - \mu_i)\right]$$

• D'après Bayes, maximiser  $P(G_i/\mathbf{x}) \Leftrightarrow$  maximiser  $p_i f_i(\mathbf{x})$  ie attribuer  $\mathbf{x}$  au groupe le plus probable a posteriori

$$\max_{i} \left[ Log\left(p_{i}\right) - \frac{1}{2} \left(\mathbf{x} - \mu_{i}\right)' \Sigma_{i}^{-1} \left(\mathbf{x} - \mu_{i}\right) - \frac{1}{2} Log\left(\det\left(\Sigma_{i}\right)\right) \right]$$

 $\Rightarrow$  On obtient une règle quadratique en x!

# II Analyse discriminante probabiliste : Hypothèses Normalité + homoscédasticité

*Hypothèse* simplificatrice :  $\Sigma_1 = \Sigma_2$  ...  $= \Sigma$ 

On attribue x au groupe j tel que :

$$\max \left[ \operatorname{Ln} \, \mathbf{p}_{\mathbf{j}} - \underbrace{\frac{1}{2} \, x' \Sigma^{-1} \, x - \frac{1}{2} \, \, \mu_{j}' \, \Sigma^{1} \, \mu_{j} + x' \, \Sigma^{-1} \, \mu_{j}}_{independant \ du \ groupe} \right]$$

$$donc: \max \left[ \underbrace{\operatorname{Ln} \, \operatorname{p}_{j} - \frac{1}{2} \, \mu_{j}' \, \Sigma^{-1}}_{a_{j}} \mu_{j} + x' \Sigma^{-1} \, \mu_{j} \right]$$

Règle linéaire équivalente à la règle géométrique si équiprobabilité, après estimation de  $\mu_i$  par  $g_i$  et de  $\Sigma$  par W.

Hypothèses Normalité + homoscédasticité + équiprobabilité => équivalence des règles géométrique (maximiser la fct de Fisher) et bayésienne.

# L'analyse discriminante linéaire

Les iris de Fisher data (iris)

- > pred<-predict(ir.lda)\$class</pre>
- # classement à partir des 2 fonctions de score LD1 et LD2
- > pred.ld1<-predict(ir.lda,dimen=1)\$class</pre>
- # classement à partir de la fonction de score LD1 seult
- > table (Species, pred.ld1)

| Species    | setosa | versicolor | virginica |
|------------|--------|------------|-----------|
| setosa     | 50     | 0          | 0         |
| versicolor | 0      | 48         | 2         |
| virginica  | 0      | 0          | 50        |

qda (règle quadratique) existe sous R

## L'analyse discriminante linéaire Les iris de Fisher data (iris)

# erreur d'apprentissage : analyse disc probabiliste
> table(iris[, "Species"], predict(ir.lda, iris) \$class)
# matrice de confusion

setosa
versicolor
virginica

0
48
2
Classes
obtenues par

Classes observées n1=n2=n3 =50

82

resubstitution

# L'analyse discriminante linéaire

## Les iris de Fisher data (iris)

Autre évaluation des fonctions discriminantes = test ANOVA pour voir si les groupes considérés diffèrent pour les valeurs moyennes de 1.D1 et 1.D2

```
> ld1 <- predict(ir.lda) $x[,1] # valeurs de LD1
> 1d2 <- predict(ir.1da) $x[,2] # valeurs de LD2 pour les 150
> anova(lm(ld1 ~ Species))
Analysis of Variance Table
Response: 1d1
           Df Sum Sq Mean Sq F value
            2 4732.2 2366.1 2366.1 <(2.2e-16)
Species
Residuals 147 147.0
                          1.0
> anova(lm(ld2 ~ Species))
                                   les 2 fonctions de scores discriminent le
                                   facteurs Species
Analysis of Variance Table
Response: 1d2
           Df Sum Sq Mean Sq F value Pr(>F)
Species
            2 41.952 20.976 20.976(9.68e-09
Residuals 147 147.000
                       1.000
                                                         84
> ?qlda #rèqle quadratique
```

#### Comment estimer un tx d'erreur non biaisé?

- Les performances « par défaut » de la règle sont optimistes!
- La règle est évaluée à partir des données même qui ont conduit à son élaboration

(méthode dite de resubstitution)

Il faudrait pouvoir l'évaluer sur de nouveaux individus!

#### Les solutions :

- · Méthode d'échantillon / test
- · Validation croisée (Leave One Out ou LOO)
- Technique du bootstrap

85

# Inconvénients de l'analyse discriminante

- Ne détecte que les phénomènes linéaires, mais il existe une analyse discriminante quadratique qui, tout en s'appuyant sur les mêmes principes introduit davantage de paramètres.
- Ne s'applique pas à tout type de données (données numériques sans valeurs manquantes)
- Hypothèses contraignantes, et pour s'en rapprocher :
  - normaliser les variables
  - sélectionner soigneusement les variables les + discriminantes
  - éliminer les variables colinéaires
  - éliminer les individus hors norme
  - s'il reste de l'hétéroscédasticité, mieux vaut avoir des classes de tailles comparables
  - travailler sur des populations homogènes

# Avantages de l'analyse discriminante

- Problème à solution analytique directe (calcul des vecteurs propres de  $W^{-1}B)\,$
- Optimale quand les hypothèses de non colinéarité des variables, homoscédasticité et multinormalité sont vérifiées
- Les coef. des combinaisons linéaires constituent un résultat simple qui peut s'interpréter par la corrélation avec les variables de départ, pratiquement comme dans une régression
- · Modélise très bien les phénomènes linéaires
- · Ne nécessite pas un gros ensemble d'apprentissage
- Rapidité de calcul du modèle
- · Possibilité de sélection pas à pas
- · Facilité d'intégrer des coûts d'erreur de classement
- · Technique implémentée dans de nombreux logiciels
- · Rééchantillonnage simple en particulier le jackknife.

86

# Références bibliographiques

- L. Bellanger, R. Tomassone, Exploration de données et méthodes statistiques: Data analysis & Data mining avec R. Collection Références Sciences, Editions Ellipses, Paris, 2014.
- A. Bouchier, Documents et supports de cours disponibles sur le site : http://rstat.ouvaton.org/
- B.S. Everitt, S. Landau, L. Morven. *Cluster Analysis*, 4th ed., Oxford University Press Inc., Oxford, 2001..
- A.D., Gordon, A. D., Classification. 2nd Edition. London: Chapman and Hall / CRC 1999.
- F. Husson, S. Lê & J. Pagès, Analyse de données avec R. PUR, Rennes, 2009.
- L. Kaufman and P.J. Rousseeuw, Finding Groups in Data: An Introduction to Cluster Analysis. John Wiley & Sons, New York, 1990.
- L. Lebart, A. Morineau, M. Piron, Statistique exploratoire multidimensionnelle. Dunod, Paris, 2006.
- J.-P. Nakache, J. Confais, *Approche pragmatique de la Classification*. Editions Technip, Paris, 2005.
- G. Saporta, Probabilités, Analyse des données. Editions Technip, Paris, 2006.
- Statistics with R: <a href="http://zoonek2.free.fr/UNIX/48\_R/all.html">http://zoonek2.free.fr/UNIX/48\_R/all.html</a>
- S. Tufféry, *Data mining et statistique décisionnelle : L'intelligence dans les bases de données.* Editions Technip, Paris, 2005.