Stock price booms from technology news in a heterogeneous agent model with portfolio choice

Maximilian Weiß

RTG 2281 · Bonn Graduate School of Economics

October 11, 2022

Motivation: Stock price fluctuations

Stylized facts about the stock market:

- Stock prices co-move with the business cycle (especially investment)
- Stock-returns co-move with real return on liquid savings
- ► Ex-post rationalization: Time-varying discount rates, not dividends (Campbell and Shiller, 1988, Cochrane, 2011)

My explanation hinges on incomplete markets and heterogeneous agents

- two sorts of capital: public equity, liquid, and private equity/capital, illiquid
- ▶ heterogeneous exposure to *illiquid* capital income risk
- equilibrium return on liquid assets fluctuates with marginal trader's need for self-insurance

Motivation: Stock price fluctuations

Stylized facts about the stock market:

- Stock prices co-move with the business cycle (especially investment)
- Stock-returns co-move with real return on liquid savings
- ► Ex-post rationalization: Time-varying discount rates, not dividends (Campbell and Shiller, 1988, Cochrane, 2011)

My explanation hinges on incomplete markets and heterogeneous agents

- two sorts of capital: public equity, liquid, and private equity/capital, illiquid
- heterogeneous exposure to illiquid capital income risk
- equilibrium return on liquid assets fluctuates with marginal trader's need for self-insurance

Motivation: real federal funds rate and stock market

Stock market: S&P 500 data (Shiller). Shaded areas: NBER recession dates.

Dashed line: mean quarterly FFR (25 bp)

Motivation: ex-post rationalization I

Campbell and Shiller (1988):

$$\log\left(\frac{\mathsf{Dividend}}{\mathsf{Stock\ price}_t}\right) = c + \mathbb{E}_t \sum_{j=0}^{\infty} \rho^j \left[\underbrace{-\Delta \mathsf{Dividend}_{t+1+j}}_{\mathsf{dividend\ growth\ news}} \underbrace{+r_{t+1+j}}_{\mathsf{discount\ rate\ news}}\right], \quad (1)$$

Motivation: ex-post rationalization II

Motivation: ex-post rationalization III

Stock market: S&P 500 data by Robert Shiller.

News-induced stock-price cycle

- lacktriangleright news about future productivity ightarrow higher real returns today
- ightharpoonup investment boom: rich willing to hold more illiquid capital ightarrow risk \uparrow
- increases liquidity value of holding stocks
- once capital rents fall again, rich demand more liquid assets
 - ightarrow "bust" of the cycle, low real returns

Key elements

- ▶ Illiquidity premium of physical capital over publicly traded stocks
- ▶ Income effect of higher real returns for households with *high marginal* propensity to invest (MPI)
- ▶ Risk rises *endogenously* through portfolio choice: testable in survey data

News-induced stock-price cycle

- ightharpoonup news about future productivity ightharpoonup higher real returns today
- ightharpoonup investment boom: rich willing to hold more illiquid capital ightarrow risk \uparrow
- increases liquidity value of holding stocks
- once capital rents fall again, rich demand more liquid assets
 - ightarrow "bust" of the cycle, low real returns

Key elements:

- Illiquidity premium of physical capital over publicly traded stocks
- ▶ Income effect of higher real returns for households with *high marginal* propensity to invest (MPI)
- ► Risk rises endogenously through portfolio choice: testable in survey data

Relations to literature

Consumption-based asset-pricing

Constantinides and Duffie (1996), Time-varying risk-aversion (Campbell and Cochrane, 1999, Kekre and Lenel, 2021), long-run risk/uncertainty (Bansal and Yaron, 2004), trading frictions (Chien et al., 2012), learning/extrapolative expectations (Adam and Merkel, 2019)

Heterogeneous agents

Time-varying idiosyncratic risk amplifies cycle, as in Ravn and Sterk (2017). "Rentiers" price liquid asset return, as in Bilbiie (2020). Importance of income-effects, wealthy-hand-to-mouth, illiquid investment: Kaplan et al. (2018), Auclert et al. (2020), Fernández-Villaverde et al. (2020)

News literature

News generate business cycle booms in New Keynesian model (Christiano et al., 2010), with financial accelerator (Görtz et al., 2022)

Outline

Simple model

Full HANK model

Model outline

Calibration

Results

General equilibrium channels

Evidence from Microdata

Conclusion

Two agent endowment economy

- ▶ Households receive high (h) or low (l) endowment each period
 - \rightarrow income risk
- ► There are liquid and illiquid assets ("capital")
- ▶ There is an ad-hoc borrowing constraint on liquid assets
- ▶ Liquid asset return R_t (ex ante), illiquid capital rent d_t
- ► Two household types:
 - 1. no capital holding, perfectly ensured against income risk
 - 2. high capital wealth, but cannot trade Arrow securities against income risk
 - \rightarrow need for self-insurance in liquid assets
- \rightarrow Idea: isolate illiquid capital income risk of type 2 ("rentiers")

Equilibrium conditions

Return on liquid assets R_t determined in equilibrium:

$$\frac{1}{R_t} \ge \mathbb{E}_t^i \left[SDF_{t+1}^i \right] \ \forall \ i, \tag{2}$$

where SDF^{i} is stochastic discount factor of hh i

- ▶ Type 1 households with $SDF = \beta$
- ▶ Type 2 households with positive liquid savings \tilde{b} marginal traders, price R_t
- ▶ Other type 2 households are at borrowing constraint \underline{b}

Steady state wealth-income distribution with 4 mass-points of rentiers (Challe and Ragot, 2016):

$$(\tilde{b},h),(\underline{b},h),(\tilde{b},\tilde{l}),(\underline{b},l)$$

Experiment I

```
In t = 0:
```

- ▶ News about capital rent increase $d_1 \uparrow$
- ightharpoonup \Rightarrow SDF of rentiers \downarrow , demand for liquid assets \downarrow
- ▶ For market clearing: $R_0 \uparrow$, liquid asset supply \downarrow

In t = 1:

- ▶ Rentiers consume more, type 1 no change
- Expectation of capital rent decrease, $d_2 \searrow \overline{d}$
- ightharpoonup Rentiers with low endowment have higher capital income ightarrow can save
- ightharpoonup for self-insurance, rentiers drive R_1 down, below steady state

In t = 2 back to steady state

Experiment II

General case: tradable capital

Intuition behind liquid return fluctuation carries over to general case:

- capital k tradable with probability λ at price q
- Gross return R^K , vs gross return on liquid assets, R^L

It holds that (without aggregate risk)

illiquidity premium
$$ILP_t := R_t^K - R_t^L \ge \beta (1 - \lambda) \frac{\mathbb{E}\left[\gamma_{t+1,i}\right]}{u'(c_{t,i})q_t},$$
 (3)

 $\gamma_i := q_t u'(c_t^{i,n}) - \beta \mathbb{E}_t^i V_{t,k}^{i'}(b_t^{i,n},k) = \text{shadow price of selling capital}$

- ▶ Technology news \rightarrow expected incomes \uparrow & exp. shadow price \downarrow \rightarrow *ILP* \downarrow
- ▶ Capital rents \searrow → exp. rentiers' incomes \downarrow & exp. shadow price \uparrow → ILP \uparrow

Full HANK model

Household optimization

Household *i* solves

$$\max_{k_{it+1},b_{it+1}} \mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t u(c_{it},n_{it})$$
(4)

with period utility u including GHH-disutility in work n_i , CRRA σ , and

- $ightharpoonup b_{it+1}$ liquid asset holding, ad hoc borrowing constraint \underline{b}
- $ightharpoonup k_{it+1}$ illiquid asset holding: adjustment-probability λ each period, non-negativity constraint
- $ightharpoonup h_{it}$ idiosyncratic productivity

Production sector

Intermediate goods firms have technology

$$Y_t = A_t N_t^{1-\alpha_t} (u_t K_t)^{\alpha_t}$$
 (5)

 $ightharpoonup \alpha_t$ capital share of production, with

$$\alpha_t = (1 - \rho_\alpha)\overline{\alpha} + \rho_\alpha \alpha_{t-1} + \epsilon_{t-\ell}^{\alpha,\ell} + \epsilon_t^\alpha$$
(6)

- ullet $\epsilon_{t-\ell}^{lpha,\ell}$ news shock, known ℓ periods in advance
- (results robust to TFP-news shock)
- ► Final goods firms: monopolistic competition, Calvo-price stickiness
- ▶ Smoothed profits $\Pi_t^F = (\mu_t 1)Y_t$ payed to entrepreneurs
- lacktriangle Distribute fraction ω^{Π} as stock asset dividend div_t

Production sector

Intermediate goods firms have technology

$$Y_t = A_t N_t^{1-\alpha_t} (u_t K_t)^{\alpha_t}$$
 (5)

 $ightharpoonup \alpha_t$ capital share of production, with

$$\alpha_t = (1 - \rho_\alpha)\overline{\alpha} + \rho_\alpha \alpha_{t-1} + \epsilon_{t-\ell}^{\alpha,\ell} + \epsilon_t^\alpha \tag{6}$$

- ullet $\epsilon_{t-\ell}^{lpha,\ell}$ news shock, known ℓ periods in advance
- (results robust to TFP-news shock)
- ► Final goods firms: monopolistic competition, Calvo-price stickiness
- Smoothed profits $\Pi_t^F = (\mu_t 1)Y_t$ payed to entrepreneurs
- ▶ Distribute fraction ω^{Π} as stock asset dividend div_t

Factor and Profit incomes

	labor income	firm profits Π^F	capital rents r
workers	with h_i	via stocks, if $b_i \neq 0$	$ \text{if } k_i > 0$
entrepreneurs	-	lump-sum	$ $ if $k_i > 0$

- stochastic transition between workers and entrepreneurs
- additional:
 - labor union profits, lump-sum to workers
 - progressive tax-system (Heathcote et al., 2017)

Asset returns

	government bond	ls p	$rofit\ shares = stocks$	capital shares
liquid asset b_i	R_t^b/π_t		$(q_t^\Pi + extit{div}_t)/q_{t-1}^\Pi$	-
illiquid asset k_i	-		-	$\mid R^k := (q_t + r_t)/q_{t-1}$

- ightharpoonup under aggregate certainty, bond and stock returns equal ex-ante ightharpoonup common stock-share s_t for all households
- $ightharpoonup R^L := \text{ex-post return on } b_i$

$$c_{it} + b_{it+1} + \mathbb{I}_{\{k' \neq k\}} q_t (k_{it+1} - k_{it})$$

$$\leq h_{it} N_t W_t + \mathbb{I}_{\{entr\}} \Pi_t^F + R_t^L b_{it} + r_t k_{it}$$
(7)

Asset returns

	government bonds		profit shares = stocks	capital shares
liquid asset b _i	R_t^b/π_t		$(q_t^\Pi + extit{div}_t)/q_{t-1}^\Pi$	-
illiquid asset k_i	-		-	$\mid R^k := (q_t + r_t)/q_{t-1}$

- ightharpoonup under aggregate certainty, bond and stock returns equal ex-ante ightharpoonup common stock-share s_t for all households
- $ightharpoonup R^L := \text{ex-post return on } b_i$

$$c_{it} + b_{it+1} + \mathbb{I}_{\{k' \neq k\}} q_t(k_{it+1} - k_{it})$$

$$\leq h_{it} N_t W_t + \mathbb{I}_{\{entr\}} \Pi_t^F + R_t^L b_{it} + r_t k_{it}$$
(7)

Government sector

► Taylor rule

$$\frac{R_{t+1}^b}{\bar{R}^b} = \left(\frac{R_t^b}{\bar{R}^b}\right)^{\rho_R} \left(\frac{\pi_t}{\bar{\pi}}\right)^{(1-\rho_R)\theta_\pi} \left(\frac{Y_t}{Y_t^*}\right)^{(1-\rho_R)\theta_Y} \tag{8}$$

Fiscal rule

$$\frac{B_{t+1}}{B_t} = \left(\frac{B_t}{\bar{B}}\right)^{-\gamma_B} \left(\frac{\pi_t}{\bar{\pi}}\right)^{-\gamma_\pi} \left(\frac{Y_t}{Y_t^*}\right)^{-\gamma_Y} \tag{9}$$

- \rightarrow determine net bond supply B_{t+1} , real rate R_t^b/π_t
- ► Government adjusts expenditure to fulfill budget:

$$G_t = B_{t+1} + T_t - R_t^b / \pi_t B_t$$

Stockshare within liquid asset category calibrated to s = 0.39 (mid-1990s)

Parameter choice

- Model also has capital production sector with adjustment costs, wage stickiness, endogenous idiosyncratic risk
- Micro-parameters calibrated to micro evidence in the SCF: $\sigma=4$, $\lambda=6.5\%$
- Calibrate $R^K = 3.7\%$, $R^L = 2.5\%$
- Macro-parameters taken as estimated in Bayer et al. (2020)

Additional calibrations:

- Stock depreciation, dividend smoothing: calibrated to match moments of S&P 500
- ▶ News shock, government bond supply elasticity calibrated to match evidence from 1990s stock-price boom
 - anticipation horizon: 5 years

Experiment

- ▶ 3 exogenous shocks: surprise TFP-shocks, surprise price markup-shocks, News about capital share in production
 - Stochastic processes estimated in Bayer et al. (2020) (surprise shocks) / calibrated from 1990s (news shock)
- ▶ 3 model varieties:
 - ► HANK with Two Asset-classes (baseline)
 - ► HANK with One Asset-class (capital liquid)
 - RANK

where time-discount factors β calibrated such that $R^L = 2.5\%$ in all models

• "Only Noise": all news are disappointed $(\alpha_t = \overline{\alpha})$

Experiment

- ➤ 3 exogenous shocks: surprise TFP-shocks, surprise price markup-shocks, News about capital share in production
 - ► Stochastic processes estimated in Bayer et al. (2020) (surprise shocks) / calibrated from 1990s (news shock)
- ▶ 3 model varieties:
 - HANK with Two Asset-classes (baseline)
 - HANK with One Asset-class (capital liquid)
 - RANK

where time-discount factors β calibrated such that $R^L = 2.5\%$ in all models

• "Only Noise": all news are disappointed $(\alpha_t = \overline{\alpha})$

Experiment

- ➤ 3 exogenous shocks: surprise TFP-shocks, surprise price markup-shocks, News about capital share in production
 - ► Stochastic processes estimated in Bayer et al. (2020) (surprise shocks) / calibrated from 1990s (news shock)
- ▶ 3 model varieties:
 - HANK with Two Asset-classes (baseline)
 - HANK with One Asset-class (capital liquid)
 - RANK

where time-discount factors β calibrated such that $R^L = 2.5\%$ in all models

• "Only Noise": all news are disappointed $(\alpha_t = \overline{\alpha})$

Variables	Data	(1)	(II)	(III)	(IV)	(V)
mean(P/D)	152*	151	148	147	146	149
$\sigma(P/D)$	63	48	35	28	28	42
$\rho(P/D)$	0.98	0.986	0.985	0.99	0.996	0.96
$\rho(\Delta P/D)$	0.99	0.11	0.01	0.41	0.41	-0.04
$\sigma(\Delta D)$	1.75%*	1.74%	1.27%	1.81%	1.49%	1.46%
$\rho(I/Y, P/D)$	15.2%	62%	32%	-5%	-24%	41%
$\rho(\Delta I/Y, \Delta P/D)$	17.5%	34%	29%	4.8%	-22%	64%
$\rho(\Delta C/Y, \Delta P/D)$	15.4%	2.1%	-58%	7.9%	-72%	64%
$\rho(R^b/\pi, R^{stocks})$	0.13-0.19	0.24	0.24	0.05	-0.11	0.3
$\sigma(R^{stocks})$	7.28%	5.07%	4.27%	1.63%	1.45%	7.84%
$\sigma(R^{stocks})/\sigma(R^b/\pi)$	1.7-8.9	2.9	5.3	3.7	4.26	12.2

⁽I): Two-Asset HANK with News

(V): Two-Asset HANK, only Noise

⁽II): Two-Asset HANK without News

⁽III): One-Asset HANK with News (IV): One-Asset HANK without News

Variables	Data	(I)	(II)	(III)	(IV)	(V)
mean(P/D)	152*	151	148	147	146	149
$\sigma(P/D)$	63	48	35	28	28	42
$\rho(P/D)$	0.98	0.986	0.985	0.99	0.996	0.96
$\rho(\Delta P/D)$	0.99	0.11	0.01	0.41	0.41	-0.04
$\sigma(\Delta D)$	1.75%*	1.74%	1.27%	1.81%	1.49%	1.46%
$\rho(I/Y, P/D)$	15.2%	62%	32%	-5%	-24%	41%
$\rho(\Delta I/Y, \Delta P/D)$	17.5%	34%	29%	4.8%	-22%	64%
$\rho(\Delta C/Y, \Delta P/D)$	15.4%	2.1%	-58%	7.9%	-72%	64%
$\rho(R^b/\pi, R^{stocks})$	0.13-0.19	0.24	0.24	0.05	-0.11	0.3
$\sigma(R^{stocks})$	7.28%	5.07%	4.27%	1.63%	1.45%	7.84%
$\sigma(R^{stocks})/\sigma(R^b/\pi)$	1.7-8.9	2.9	5.3	3.7	4.26	12.2

⁽I): Two-Asset HANK with News

(V): Two-Asset HANK, only Noise

⁽II): Two-Asset HANK without News

⁽III): One-Asset HANK with News (IV): One-Asset HANK without News

Variables	Data	(1)	(II)	(III)	(IV)	(V)
mean(P/D)	152*	151	148	147	146	149
$\sigma(P/D)$	63	48	35	28	28	42
$\rho(P/D)$	0.98	0.986	0.985	0.99	0.996	0.96
$ ho(\Delta P/D)$	0.99	0.11	0.01	0.41	0.41	-0.04
$\sigma(\Delta D)$	1.75%*	1.74%	1.27%	1.81%	1.49%	1.46%
$\rho(I/Y, P/D)$	15.2%	62%	32%	-5%	-24%	41%
$\rho(\Delta I/Y, \Delta P/D)$	17.5%	34%	29%	4.8%	-22%	64%
$\rho(\Delta C/Y, \Delta P/D)$	15.4%	2.1%	-58%	7.9%	-72%	64%
$\rho(R^b/\pi, R^{stocks})$	0.13-0.19	0.24	0.24	0.05	-0.11	0.3
$\sigma(R^{stocks})$	7.28%	5.07%	4.27%	1.63%	1.45%	7.84%
$\sigma(R^{stocks})/\sigma(R^b/\pi)$	1.7-8.9	2.9	5.3	3.7	4.26	12.2

(V): Two-Asset HANK, only Noise

⁽I): Two-Asset HANK with News

⁽II): Two-Asset HANK without News

⁽III): One-Asset HANK with News (IV): One-Asset HANK without News

Variables	Data	(1)	(II)	(III)	(IV)	(V)
mean(P/D)	152*	151	148	147	146	149
$\sigma(P/D)$	63	48	35	28	28	42
$\rho(P/D)$	0.98	0.986	0.985	0.99	0.996	0.96
$\rho(\Delta P/D)$	0.99	0.11	0.01	0.41	0.41	-0.04
$\sigma(\Delta D)$	1.75%*	1.74%	1.27%	1.81%	1.49%	1.46%
$\rho(I/Y, P/D)$	15.2%	62%	32%	-5%	-24%	41%
$\rho(\Delta I/Y, \Delta P/D)$	17.5%	34%	29%	4.8%	-22%	64%
$\rho(\Delta C/Y, \Delta P/D)$	15.4%	2.1%	-58%	7.9%	-72%	64%
$ ho(R^b/\pi,R^{stocks})$	0.13-0.19	0.24	0.24	0.05	-0.11	0.3
$\sigma(R^{stocks})$	7.28%	5.07%	4.27%	1.63%	1.45%	7.84%
$\sigma(R^{stocks})/\sigma(R^b/\pi)$	1.7-8.9	2.9	5.3	3.7	4.26	12.2

(I): Two-Asset HANK with News

(II): Two-Asset HANK without News

(III): One-Asset HANK with News (IV): One-Asset HANK without News

(V): Two-Asset HANK, only Noise

Simulation: Campbell-Shiller decomposition

Regress on today's price-dividend ratio (Cochrane, 2011):

- sum of future dividend growth
- ▶ (minus) sum of future stock returns
- future price-dividend ratio

Dividends	Returns	PD-ratio
0.11	1.01	0.11
0.39	0.52	0.08
0.97	-0.04	0.07
0.29	0.44	0.28
0.25	0.57	0.18
	0.11 0.39 0.97 0.29	0.11 1.01 0.39 0.52 0.97 -0.04 0.29 0.44

Stock price cycle from technology news

- ► Shock: news about transitory higher future capital share in production (alternatively: TFP), 5-year horizon
- ► Compare across model varieties: with liquid capital (*One Asset*), complete markets (*Rep. Agent*)

Illiquidity premium and marginal saver

(a) Illiquidity premium $R^K - R^L$

(b) Portfolio liquidity of top 10% (b25: lowest quartile of portf.-liqu. distr.)

Portfolio liquidity: share of liquid wealth over total wealth

- ► Heterogeneity allows identification of marginal saver: households with income dominated by capital rents
- increase consumption risk in anticipation phase Theory

Marginal savers in full model: evidence

"rest": households who have not

- been wealthy hand-to-mouth in $t \ge 0$
- became unconstrained in s > t

cash at
$$\text{hand}_{it} = y_{it} + b_{it}R_t^L/\pi_t + k_{it}(r_t + \mathbb{1}_{\{k \text{ adjustable}\}}q_t) - \underline{B}$$

Marginal savers in full model: optimality

Income and GE-price effects \rightarrow "rentiers" become wealthy hand-to-mouth

Monetary and fiscal policy

Results go through without price-stickiness

→ monetary policy largely unimportant plots

Importance of fiscal rule:

- lower demand for liquid assets in the anticipation phase (expected higher income)
- lacktriangleright no bond supply reduction ightarrow inflation
- ▶ → investment boom *inhibited*: rich households with high marginal propensities to invest lose
- ightarrow positive news can be $\it harnessed$ by government to have more productive, i.e. illiquid, portfolios

Intensive vs extensive margin of capital holding

- ▶ investment-boom driven by *intensive* margin of wealthy households
- ▶ bottom 50% buy capital *after* boom, when illiquidity premium high

High capital price from extensive margin-demand incentivizes investment-boom

Evidence from Microdata

Survey evidence for marginal saver ("Rentiers")

- ▶ Definition: hhs with capital income > 75% of total income
- $ightharpoonup \sim 1.5\%$ of households in the data
- ► Compute portfolio liquidity := liquid wealth total wealth
- ▶ Use *relative* portfolio liquidity within top 10%

Capital income:

- ▶ In SCF+, sums up to
 - (1) non-taxable investments (e.g. municipal bonds) +
 - (2) other interest + (3) dividends +
 - (4) other businesses or investments, net rent, trusts, or royalties
- ► Robustness: use only (4) as capital income Problem: separately only available since 1983

Survey evidence for marginal saver ("Rentiers")

- ▶ Definition: hhs with capital income > 75% of total income
- $ightharpoonup \sim 1.5\%$ of households in the data
- ► Compute portfolio liquidity := liquid wealth total wealth
- ▶ Use *relative* portfolio liquidity within top 10%

Capital income:

- ► In SCF+, sums up to
 - (1) non-taxable investments (e.g. municipal bonds) +
 - (2) other interest + (3) dividends +
 - (4) other businesses or investments, net rent, trusts, or royalties
- ► Robustness: use only (4) as capital income Problem: separately only available since 1983

Regression: price-dividend ratio on portfolio liquidity

$$\Delta_{i}rac{q^{\Pi}}{d}=\sum_{m{g}}eta_{m{g}}\Delta_{i} ext{pflq}^{m{g}}+\epsilon_{i},\ i=1,..,19$$

Variables	(1)	(11)	(III)	(IV)	(V)
high cap. inc.	-0.290	-0.361	-0.477*	-0.381**	-0.876*
middle 40%	0.113	-0.089	0.824*	0.086	0.482
bottom 50%	-0.442**	-	-0.27	-0.481**	-0.237
rel. stock share	-	-	-	0.420*	0.679

Notes: All variables are standardized.

(III) & (V): all regressors are indicator variables $\mathbb{I}_{\{\Delta: pf|q^g>0\}}$ (not standardized).

(IV) & (V): include growth of ratio of the stock share of high capital-households by the stock share of households in the top 10% as a regressor.

Newey-West (one lag) standard errors. Asterisks indicate t-statistic of coefficient above the 5% (**) or 10% (*) level.

For narrower capital income definition, results are robust

Relative portfolio liquidity and S&P 500

Portfolio liquidity: ratio of portfolio liquidity of households with high capital income share (> 75%) by portfolio liquidity of top 10%. Data: SCF+ (Kuhn et al., 2020). Stock market: S&P 500 (Shiller). Whiskers: 68% CIs

SCF: Who are the "rentiers"?

- ▶ 68% self-employed, managers/professionals
- ▶ most are in top 10% of wealth and income-distribution
- ▶ 42% of wealth is in business wealth
- ▶ income from self-employment not so high, but asset income very high

Conclusion & Outlook

- Incomplete markets generate stock price fluctuations via time-varying illiquidity premium
- ► Portfolio choice and anticipation together produce investment-driven stock-price booms
- Microfoundation testable with survey data

Outlook: modelling aggregate risk

- ► channel should become *more* important in boom: higher stock-shares in boom imply higher risk premia, lowering stock prices
- ▶ Analyze heterogeneous stock shares: aggregate and welfare implications

Conclusion & Outlook

- Incomplete markets generate stock price fluctuations via time-varying illiquidity premium
- ► Portfolio choice and anticipation together produce investment-driven stock-price booms
- Microfoundation testable with survey data

Outlook: modelling aggregate risk

- ► channel should become *more* important in boom: higher stock-shares in boom imply higher risk premia, lowering stock prices
- ► Analyze heterogeneous stock shares: aggregate and welfare implications

References I

Adam, K. and Merkel, S. (2019), Stock price cycles and business cycles, ECB Working Paper 2316.

URL: https://ssrn.com/abstract=3455237

Auclert, A., Rognlie, M. and Straub, L. (2020), 'Micro jumps, macro humps: Monetary policy and business cycles in an estimated hank model'. Revise and resubmit at American Economic Review.

Bansal, R. and Yaron, A. (2004), 'Risks for the long run: A potential resolution of asset pricing puzzles', *The Journal of Finance* **59**(4), 1481–1509.

Bayer, C., Born, B. and Luetticke, R. (2020), 'Shocks, frictions, and inequality in us business cycles'.

Bilbiie, F. O. (2020), 'The new keynesian cross', *Journal of Monetary Economics* **114**, 90–108.

References II

- Campbell, J. and Shiller, R. (1988), 'The dividend-price ratio and expectations of future dividends and discount factors', *Review of Financial Studies* **1**(3), 195–228.
- Campbell, J. Y. and Cochrane, J. H. (1999), 'By force of habit: A consumption-based explanation of aggregate stock market behavior', *Journal of Political Economy* **107**(2), 205–251.
- Challe, E. and Ragot, X. (2016), 'Precautionary saving over the business cycle', *The Economic Journal* **126**(590), 135–164.
- Chien, Y., Cole, H. and Lustig, H. (2012), 'Is the volatility of the market price of risk due to intermittent portfolio rebalancing?', *American Economic Review* **102**(6), 2859–96.
- Christiano, L., Ilut, C., Motto, R. and Rostagno, M. (2010), 'Monetary policy and stock market booms.', *Proceedings Economic Policy Symposium Jackson Hole* pp. 85–145.

References III

- Cochrane, J. H. (2011), 'Presidential address: Discount rates', *The Journal of Finance* **66**(4), 1047–1108.
- Constantinides, G. M. and Duffie, D. (1996), 'Asset pricing with heterogeneous consumers', *Journal of Political Economy* **104**(2), 219–240.
- Fernández-Villaverde, J., Hurtado, S. and Nuño, G. (2020), Financial frictions and the wealth distribution, unpublished.
- Görtz, C., Tsoukalas, J. D. and Zanetti, F. (2022), 'News shocks under financial frictions', forthcoming in American Economic Journal: Macroeconomics.
- Heathcote, J., Storesletten, K. and Violante, G. (2017), 'Optimal tax progressivity: An analytical framework', *The Quarterly Journal of Economics* **132**(4), 1693–1754.
- Kaplan, G., Moll, B. and Violante, G. L. (2018), 'Monetary policy according to hank', *American Economic Review* **108**(3), 697–743.
- Kekre, R. and Lenel, M. (2021), Monetary policy, redistribution, and risk premia, NBER Working Paper No. w28869.

References IV

Kuhn, M., Schularick, M. and Steins, U. (2020), 'Income and wealth inequality in america, 1949-2016', *Journal of Political Economy* **128**(9), 3469–3519.

Ravn, M. O. and Sterk, V. (2017), 'Job uncertainty and deep recessions', *Journal of Monetary Economics* **90**, 125–141.

Theory: Consumption-based asset pricing with het. agents

I show that (without aggregate risk)

$$ILP_t := R_t^K - R_t^L \ge \beta (1 - \lambda) \frac{\mathbb{E}_t \left[\gamma_{t+1,i} \right]}{u'(c_{t,i})q_t}$$

$$\tag{10}$$

for all households i

 $\gamma_i := \mathsf{shadow} \; \mathsf{price} \; \mathsf{of} \; \mathsf{selling} \; \mathsf{capital}$

Implications

- ▶ ILP low in anticipation phase \rightarrow implies business cycle boom: all households expect rising income
- ▶ *ILP* high after realized capital returns \rightarrow *some* households have high γ_i : "Rentiers" with largest expected (capital) income decline

Theory: Consumption-based asset pricing with het. agents

I show that (without aggregate risk)

$$ILP_t := R_t^K - R_t^L \ge \beta (1 - \lambda) \frac{\mathbb{E}_t \left[\gamma_{t+1,i} \right]}{u'(c_{t,i})q_t}$$

$$\tag{10}$$

for all households i

 $\gamma_i := \mathsf{shadow} \mathsf{ price} \mathsf{ of} \mathsf{ selling} \mathsf{ capital}$

Implications:

- ▶ ILP low in anticipation phase \rightarrow implies business cycle boom: all households expect rising income
- ▶ *ILP* high after realized capital returns \rightarrow *some* households have high γ_i : "Rentiers" with largest expected (capital) income decline

Relative portfolio liquidity of bottom 90%

Survey of Consumer Finances: Heterogeneous Portfolios I

Source: SCF+ (Kuhn et al., 2020)

Survey of Consumer Finances: Heterogeneous Portfolios II

Impulse responses to news shock (back)

(c) Inflation

(d) Goverment bonds

No price stickiness back

Importance of liquid asset supply elasticity

Empirical data series

(c) 3-M T-Bill (real)

(b) Corporate profits (real, growth-adj.)

(d) Share of Stocks in liquid assets

Empirical data series (business cycle)

1990 1992 1994 1996 1998 2000 2002

