Introduction to Data Science

Statistical Charts

Visualizing Numerical Data

Scatterplot

• *Scatterplots* are useful for visualizing the relationship between two numerical variables.

Scatterplot

Evaluating the relationship

J

Line Graph

 Line graphs are used to plot continuous data often in some unit of time.

Histogram

income per person

- Histograms provide a view of the data density.
- Histograms are especially convenient for describing the shape of the data distribution.
- The chosen bin width can alter the story the histogram is telling

Bin Width

- When the bin width is too wide, we might lose interesting details.
- When the bin width is too narrow, it might be difficult to get an overall picture of the distribution.

Skewness

• Distributions are skewed to the side of the long tail

9

Modality

Modality

Box plot

Useful for highlighting outliers, median, IQR.

Determining the skewness from a box plot

Intensity Map

Useful for highlighting the spatial distribution.

Measures of Center

- Mean: arithmetic average
 - Sample mean: $\bar{x} = \frac{x_1 + x_2 + \dots + x_n}{n}$
 - Population mean: *μ*
- Median: midpoint of the distribution
 - 50th percentile
- Mode: most frequent observation

15

Example

Nine students exam score:

mean:
$$\frac{75+69+88+93+95+54+87+88+27}{9} = 75.11$$

mode: 88

median: 27, 54, 69, 75, 88, 88, 93, 95

Relation between Mean and Median

Skewness vs. Measures of Center

Measures of Spread

 In other words, statistics that tell us about the variability in the data:

- Variance
- Standard deviation
- Inter-quartile range

19

Variance

Variance: roughly the average squared deviation from the mean

• Sample variance: $s^2 = \frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1}$

• Population variance: σ^2

• Example: Given that the average life expectancy is 70.5, and there are 201 countries in the dataset:

c ² –	$\frac{(60.3 - 70.5)^2 + (77.2 - 70.5)^2 + + (58.1 - 70.5)^2}{}$
3 —	201 – 1

 $= 83.06 \text{ years}^2$

	data	life expectancy
1	Afghanistan	60.254
2	Albania	77.185
3	Algeria	70.874
÷	i	i
201	Zimbabwe	58.142

Standard Deviation

- Standard deviation: roughly the average deviation from the mean that has the same units as the data
 - Sample standard deviation:

$$s = \sqrt{s^2} = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1}}$$
 square root of the variance

- Population standard deviation: σ
- Example: Given that the average life expectancy is 70.5, and there are 201 countries in the dataset:

$$s = \sqrt{83.06} = 9.11$$
 years

21

Interquartile Range

• Range of the middle 50% of the data, distance between the first quartile (25th percentile) and third quartile (75th percentile):

Whiskers

• The whiskers attempt to capture the data outside of the box, however, their reach is never allowed to be more than $1.5 \times IQR$:

max upper whisker reach =
$$Q_3 + 1.5 \times IQR$$

max lower whisker reach = $Q_1 - 1.5 \times IQR$

Example:

IQR:
$$20 - 10 = 10$$

max upper whisker reach = $20 + 1.5 \times 10 = 35$
max lower whisker reach = $10 - 1.5 \times 10 = -5$

- A potential outlier is defined as an observation beyond the maximum reach of the whiskers.
 - An observation that appears extreme relative to the rest of the data.

Outliers

- Why it is important to look for outliers?
- Examination of data for possible outliers serves many useful purposes, including:
 - 1. Identifying strong skew in the distribution.
 - 2. Identifying data collection or entry errors.
 - 3. Providing insight into interesting properties of the data.

25

Robust Statistics

- We define robust statistics as measures on which extreme observations have little effect.
- Example:

Data	Mean	Median
1, 2, 3, 4, 5, 6	3.5	3.5
1, 2, 3, 4, 5, 1000	169	3.5

Violin Plot

27

Violin Plot vs. Box Plot

Data Transformation

- A transformation is a rescaling of the data using a function.
 - Log transformation
 - Square root transformation
 - Inverse transformation
- When data are very strongly skewed, we sometimes transform them so they are easier to model.

29

Log Transformation

 Often applied when much of the data cluster near zero (relative to the larger values in the data set) and all observations are positive.

Log Transformation

 To make the relationship between the variables more linear, and hence easier to model with simple methods

Other Transformations

Goals of Transformation

- To see the data structure differently.
- To reduce skew and assist in modeling.
- To straighten a nonlinear relationship in a scatterplot.
- To model the relationship with simpler methods.

33

Describing Categorical Variables

Frequency Table & Bar Plot

Difficulty saving money	Counts	Frequencies
Very	231	46%
Somewhat	196	39%
Not very	58	12%
Not at all	14	3%
Not sure	1	~0%
Total	500	100%

35

Birthdays in Iran

- Based on 1395 Census (A sample of 1,048,575 individuals)
 - Total number of valid data with Persian calendar: 1,000,222

Grouped Bar Chart

37

Bar Plot + Error Bar

Bar Plots vs. Histograms

- Barplots for categorical variables, but histograms for numerical variables.
- x-axis on a histogram is a number line, and the ordering of the bars are not interchangeable.

39

Bar Plots vs. Line Charts

Discrete values

Bar Plot Abuse

41

Bar Plot Abuse

Non-zero baseline: as originally graphed

STANCOUTS EXPIRE TOP TAX RATE ## 42% ## 40% ## 35% ## 35% ## 36% ## 34% ## 3

Zero baseline: as it should be graphed

42

Contingency Table

		< \$40K	\$40-80K	> \$80K	Refused	Total
	Very <	128	63	31	9	231
Difficulty saving	Somewhat	54	71	61	10	196
	Not very	17	7	27	7	58
	Not at all	3	6	5	0	14
	Not sure	0		0	0	I
	Total <	202	148	124	26	500

 A table that summarizes data for two categorical variables is called a contingency table.

43

Relative Frequency

< \$40K: 128/202 = 63% find it very difficult to save

\$40K-\$80K: 63/148 = 43% \$80K: 31/124 = 25%

Refused: 9/26 = 35%

feelings about difficulty of saving money and income are associated (dependent)

Heatmap

 A heatmap is a way to visualize data in tabular format, where in place of (or in addition to) the numbers, you leverage colored cells that convey the relative magnitude of the numbers.

Table				Heatmap			
				LOW- HIGH			
	Α	В	С		Α	В	С
Category 1	15%	22%	42%	Category 1	15%	22%	42%
Category 2	40%	36%	20%	Category 2			
Category 3	35%	17%	34%	Category 3		17%	
Category 4	30%	29%	26%	Category 4			26%
Category 5	55%	30%	58%	Category 5	55%		58%
Category 6	11%	25%	49%	Category 6	11%	25%	49%

45

Segmented (Stacked) Bar Plot

- Useful for visualizing conditional frequency distributions
- frequencies to explore the relationship between the variables

Stacked Bar Plot

Comparing these is hard

47

Horizontal Bar Plot

Single series

Two series

Multiple series

Relative Frequency Bar Plot

49

A Common Mistake in Comparing Relative Frequencies

Side-by-side box plots

 Does there appear to be a relationship between class year and number of societies students are in?

51

Side-by-side Violin Plot

Violin Plots for Comparison

53

To Be Avoided

3D Pie Charts

Terrible Pie Chart

57

Donut Chart

The donut chart

Area Graphs

 Humans' eyes don't do a great job of attributing quantitative value to two-dimensional space.

59

Never use 3D

Number of issues

Secondary y-axis

61

Alternatives for Secondary y-axis

Alternative 1: label directly

Alternative 2: pull apart vertically

Inverse Charts

63

Cumulative Charts

Cumulative Charts

