2. Full Adder:

The downfall of half adders is that while they can generate a carry out output, they cannot deal with a carry in signal.

A full adder solves this problem by adding three numbers together - the two addends as in the half adder, and a carry in input. The outputs of the full adder are designated as Sum (5) and Carry out (Cout). A block diagram of Full Adder implementation is as follows:

Truth Table:

Inputs			Outputs	
Λ	В	Cin	5	Cout
0	0	0	0	0
0	0	1	1	0
0	1	0	L	0
in 0	1	1	0	1
1	Ô	0	1	9
1	n	1	0	1
1	1	0	0	1
Î.	1	1	Ĺ	1

LAB TASKS

Name Mohammad Yehija Hayati Student ID 21K-3309 Section BCS-26

Exercise # 1 Use K-Map to find expression for Carry and Sum for Full Adder, Use Truth Table Given in manual.

Exercise # 2

Design and implement Full Adder Circuit on Bread board

Exercise #3

Design and implement Full Subtractor Circuit on Bread board.