

EVOLUTIONSBÄUME TECHNISCHER SYSTEME BEI N.A. SHPAKOVSKY

Leipzig, 19.01. Tom Strempel

HINTERGRÜNDE

- Basiert auf Altshullers Arbeit
- Ansatz der Evolutionsbäume wurde während der Arbeit bei Samsung entwickelt
- 2002 Verleihung des Samsung Special Award
 - Einsparungen (~900 Millionen Euro) und Verbesserungen im R&D Department
- Bei Shpakovsky sind Patente und deren Umgehung eine zentrale Anwendung
- Die Ausführungen um Buch sind um Beispiele herum aufgebaut

STRUKTURIERUNG VON TECHNISCHER INFORMATION

IDEALITÄT

- $-I = \frac{F}{C}$
 - I: Idealität
 - F: "Performance" (gemein ist die verrichtete Arbeit) der Funktion
 - C: Ausführungskosten der Funktion
- Ein ideales System erfüllt seine Funktion mit ignorierbaren Kosten im Bezug auf den Nutzen
- Analog zur Leistung in der Physik
- Trimmen, Erweitern und Optimieren um Idealität zu verbessern

PROBLEMTYPEN IM MODERNEN INGENIEURWESEN

- 1. Lösung dringender technischer Probleme
- 2. Vorhersage der Evolution von TS
- 3. Lösung zur Patentumgehung bzw. Schutz durch einen Patentschirm
- Herkömmliche Lösungsmethoden wie das Durchprobieren oder Brainstorming müssen durch ein höheres System eine "Wissenschaft des Erfindens" ersetzt werden.

STRUKTURIERUNG DES INFORMATIONSFELDES

- Viele und unterschiedliche Informationen zur Lösung der beschriebenen Probleme nötig
- Strukturierung um objektive Klassifikationskriterien nötig

ANFORDERUNGEN VON SHPAKOVSKY FÜR EIN STRUKTURIERTES INFORMATIONSFELD

- Objektivität der Klassifikationskriterien
- 2. Vollständigkeit (Vorhandensein aller sich signifikant unterscheidenden Versionen)
- 3. Geeigneter Generalisierungsgrad um universal für alle TS zu gelten und Transformationen eines spezifischen TS zu beschreiben
- 4. Visualisierbarkeit (Lücken erkennen zur Patentumgehung)
- Ausreichende Beschreibung bzw. Voraussage noch nicht existierender Versionen

OBJEKTIVE EVOLUTIONSMUSTER

EVOLUTIONSBÄUME TECHNISCHER SYSTEME BEI N.A. SHPAKOVSKY

BASISEVOLUTIONSMUSTER

ERZEUGUNG VON RESSOURCEN, STRUKTUR UND DYNAMISIERUNG

- 1. Mono-Bi-Poly
- 2. Trimmen
- 3. Expandieren und Trimmen
- 4. Segmentierung
- 5. Evolution von Oberflächeneigenschaften
- 6. Evolution von inneren Strukturen
- 7. Geometrische Evolution (auch höhere Dimensionen)
- 8. Dynamisierung (Erhöhung der Freiheitsgrade)
- 9. Erhöhung der Kontrollierbarkeit
- 10. Erhöhung der Koordination der Aktionen

MONO-BI-POLY

- Hinzufügen von ähnlichen schon vorhandenen Komponenten oder neuen Komponenten mit zusätzlichen Funktionen
- Ein Poly-System kann eine unbegrenzte Anzahl von Komponenten beinhalten
- Potenziell effektiver als unabhängig agierende Komponente
- Übergang von einem Poly-System mit ähnlichen Komponenten zu einem getrimmten Mono-System höherer Ordnung
- Mono-System → Bi-System → Poly-System → Neues Mono-System
- Pferdewagen mit einem → zwei → mehreren angespannten Pferden
- Ablösung durch PKW und LKW

KONSTRUKTION VON NEUEN EVOLUTIONSMUSTERN - REGELN

- 1. Einheit der transformierten Objekteigenschaft und des Transformationstyps
 - Nur Änderung einer Eigenschaft eines Objektes mit einer Transformation
- 2. Transformationshierarchie der Aktionen einhalten
 - Einführung neuer Objekte und Segmentierung alter Objekte: Erzeugen von Ressourcen → Koordination der Eigenschaften → Dynamisierung → Kontrollierbarkeit
- 3. Überprüfung der Koordinationsfähigkeit
 - Dazu müssen die Komponenten kontrollierbar sein, was einen gewissen Dynamisierungsgrad voraussetzt.
 - Folgt aus 1. und 2.
- 4. Optimaler Generalisierungsgrad der Information

GRUNDLEGENDER EVOLUTIONSBAUM

ERSTELLUNG VON EVOLUTIONSBÄUMEN

FUNKTIONEN

- Jede von zwei interagierenden Objekten ausgeführte Funktion kann in elementare Funktionen zerlegt werden
- Elementare Funktionen k\u00f6nnen nicht in neue Funktionen zerlegt werden
- Ein TS hat eine Hauptfunktion und Hilfsfunktionen
 - Nimmt man Bezug auf eine Hilfsfunktion muss man das TS darauf umstrukturieren

Einschub:

Was ist die elementare Funktion eines Bildschirms?

MORPHOLOGISCHE TABELLE BZW. BOX VON FRITZ ZWICKY

SPEZIFISCHE AUSPRÄGUNGEN VON GRUNDLEGENDEN KONZEPTEN

Farbe	Schreibutensil	Körpermaterial	Tintenzufuhrmet hode
Rot	Kugelschreiber	Stahl	Kapillar
Blau	Füllfeder	Plastik	Schwerkraft
Schwarz	Poröser Schaft	Aluminium	Pumpe
Geld	Röhre	Holz	Manuell
Silber	Gänsefeder	Gummi	Trockene Tinte

PROBLEME

- Intuitives Finden der grundlegenden Versionen eines Objektes
- Schlechte Verständlichkeit für Außenstehende
- Keine visuelle Struktur
- Abhängigkeiten zwischen verschiedenen Ausprägungen

GRUNDLEGENDE UND SPEZIFISCHE EVOLUTIONSBÄUME

- Grundlegende Evolutionsbäume:
 - In einen Baum organisierte Menge von Evolutionsmustern von generalisierten Eigenschaften technischer Objekte
 - Start von der simpelsten Version (z. B. monolithisch, fest, simple Form, Glatte Oberfläche)
 - Koordination und Kontrollierbarkeit kommen nur in sehr simplen Formen vor

Baumstamm:

- Hauptachse der Entwicklung
- Essentielle Evolutionsmuster wie Segmentierung bevorzugt
- Je höher der Stamm, desto koordinierter ist gewöhnlich das beschriebene technische Objekt

SPEZIFISCHE EVOLUTIONSBÄUME

- Organisierte Menge von Transformationsversionen eines untersuchten Objektes
- Baum ist einzigartig für jedes Objekt
- Jedes Evolutionsmuster wird einmal generell und einmal spezifisch repräsentiert
- Lücken im spezifischen Evolutionsbaum deuten auf unbekannte Versionen eines entweder bereits existierenden oder zukünftigen Objektes hin
- Häufig fehlen die höheren Transformationen eines Musters im spezifischen Evolutionsbaum

 Vielversprechende Transformationsversionen für neue und bessere Lösungen

ANFORDERUNGEN VON SHPAKOVSKY FÜR EIN STRUKTURIERTES INFORMATIONSFELD

- Objektivität → basiert auf der Evolution vieler realer TS
- Vollständigkeit → Baumstruktur erlaubt Beschreibung aller grundlegenden Versionen eines untersuchten Objektes
- Geeigneter Generalisierungsgrad → grundlegende und spezifische Evolutionsbäume
- Visualisierbarkeit → Baumstruktur
- Ausreichende Beschreibung bzw. Voraussage noch nicht existierender Versionen → Grundlegender Evolutionsbaum

KONSTRUKTUIONSREGELN EINES EVOLUTIONSBAUMS

- 1. Bestimmung der elementaren Funktion des untersuchten Objektes
- 2. Informationen ähnlicher Objekte sammeln
- 3. Primäres Evolutionsmuster für den Stamm auswählen
- Dynamisierung + Sekundäre Evolutionsmuster zur Bereitstellung von Ressourcen
- 5. Sekundäre Evolutionsmuster zur Veränderung von Strukturen
- 6. Dynamisierung einfügen nach den Evolutionsmustern aus 4.
- 7. Erhöhung der Kontrollierbarkeit und der Koordination
- 8. Zusätzliche Informationssuche zum Vervollständigen der Baumstruktur
- Muster der Dynamisierung, Kontrollierbarkeit und Koordination nur an geeigneten Stellen einbringen

(Erstellt um 2002)

EVOLUTIONSBAUM DES BILDSCHIRMS

EVOLUTIONSBAUM DES BILDSCHIRMS

EVOLUTIONSBAUM DES BILDSCHIRMES

EVOLUTIONSBAUM DES BILDSCHIRMES

EVOLUTIONSBAUM DES BILDSCHIRMES

ANWENDUNG DES EVOLUTIONSBAUMS

SUCHE ÜBER DAS INFORMATIONSFELD

- Frontale (alles unstrukturiert Durchsuchen) und strukturelle Suche
- Suche ist dann am effektivsten, wenn der Suchraum und der Evolutionsraum sich überlappen
- Strukturelle Suche: Im Voraus ermitteln wo die benötigte Information konzentriert ist → gute Startpunkte der Suche finden
 - Die größten Informationskonzentrationen finden sich an den Versionen des Basisbaumes
 - Verbindung der einzelnen Suchzonen → logisches Skelett der Informationskörpers
 - Zwei Schlüsselworte: Objektname und Transfomationsname
 - Suche erfolgt Semiautomatisiert oder manuell
 - Geeignetes System zur Suche von Patenten

ERFINDUNGSPROBLEME

- Ausgangspunkt: Viele nicht passende vorläufige Lösungen und mögliche weitere Transformationswünsche des Kunden
- 1. Auswahl von Evolutionsmustern im grundlegenden Evolutionsbaumes in welche die gefundenen Konzepte organisiert werden können
- 2. Bestimmung der Stelle der Kinzepte in den Evolutionsmustern
- 3. Bestimmung der potenziellen Transformationen
- 4. Generierung alternative Konzepte um Lücken zu füllen
- 5. Konzepte weiter verbessern

STRUKTURELLE ANALOGIE

- Spezialfälle (nicht universell anwendbar)
- Beispiele:
 - Starres Element: Tragrahmen beim Boot, Versteifungsrippen an der Kanne, Überrollkäfig
 - Doppelte Hülle: Aufblasbares Boot, Thermoskanne, Unterbodenschutz des Autos
 - Raue Oberfläche durch Pyramiden: Lichtstreuung auf Kinoleinwand, Vermeidung von Van der Waals Kräften bei Aluminiumwalzen

PATENTUMGEHUNG

- Juristische Methode
 - Schlupflöscher im Patentrecht und fehlerhafte Patentbeschreibungen nutzen
 - Patentinvaliderung
- Erfinderische Methode
 - Untersuchtes Objekt abändern
 - Bessere Lösung als das Konkurrenzprodukt finden
- Resultierender Konflikt:
 - Objekt muss abgeändert werden um ein alternatives Patent zu bekommen
 - Änderungen sollten nicht den grundlegenden Aufbau betreffen

PATENTUMGEHUNG

- Juristisch-erfinderische Methode: "change without changing"
- 1. Bestimmung der Eigenschaften des patentierten TS
- 2. Bestimmung der zu ändernden Eigenschaften
- 3. Patentsuche, Finden der alternativen Versionen des TS
- 4. Erstellung des grundlegenden und spezifischen Evolutionsbaumes
- 5. Vergleich der Evolutionsbäume → Identifizierung von nicht vom Patent abgedeckten Transformationsversionen
- 6. Bewertung der Verwendungsmöglichkeiten dieser Versionen
- 7. Ermittlung technischer Lösungen auf Grundlage dieser Versionen

QUANTITATIVE UND QUALITATIVE VORHERSAGE DER ENTWICKLUNG TS

- Quantitative Vorhersagen extrapolieren bereits bekannte Trends und Entwicklungsprozesse
- Typische Beispiele für eine quantitative Vorhersage:
 - Mooresches "Gesetz": Alle 2 Jahre verdoppelt sich die Transistorzahl integriertert Schaltkreise
 - "640 Kilobyte ought to be enough for anybody" (Bill Gates, 1981)
- Qualitative Transitionen werden nicht berücksichtigt

QUANTITATIVE UND QUALITATIVE VORHERSAGE DER ENTWICKLUNG TS

- Basiert auf den objektiven Gesetzten der TRIZ, Evolutionsbäumen und den menschlichen Bedürfnissen
- Aufstellen des Evolutionsbaums und Einschätzen der Kundenbedürfnisse

DISKUSSION

- Sind Evolutionsbäume auch für Organisationsstrukturen geeignet?
- Was hat sich an Vorhersagen im Evolutionsbaum erfüllt?
- Eigene Ideen zum Evolutionsbaum entwickeln
- Shpakovsky nutzt Empfehlungen statt Gesetze, steht damit das Konzept der Evolutionsbäume auf wackeligen Füßen?

QUELLEN

Nikolay Shpakovsky. Tree of Technology Evolution. target Invention, 2016.