2/26/23, 3:49 PM Data 607 lab 5

Data 607 lab 5

Yina Qiao

2023-02-26

Introduction

This assignment will import uncleaned data from a csv. file. My task is to tidy and transform data as described below. (1) Read the information from a .CSV file into R, and use tidyr and dplyr as needed to tidy and transform the data. (2) Perform analysis to compare the arrival delays for the two airlines

Install and load pakages

Load dataset

```
url = r"(https://raw.githubusercontent.com/yinaS1234/data-607/main/data%20607%201ab%205/lab5data.csv)"
suppressMessages(
df <- read_csv(url, skip_empty_rows = TRUE, show_col_types = FALSE)[-3,]
)
names(df)[1:2] <- c("Airline", "Status")
df</pre>
```

```
## # A tibble: 4 × 7
## Airline Status `Los Angeles` Phoenix `San Diego` `San Francisco` Seattle
## <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> ## 1 ALASKA on time 497 221 212
                                                         <dbl>
                                                                 503
                                                                        1841
                             62 12
694 4840
## 2 <NA>
           delayed
                                                 20
                                                                 102
                                                                         305
## 3 AM WEST on time 694 4840
## 4 <NA> delayed 117 415
                                                383
                                                                 320
                                                                          201
                                                                  129
```

Clean and tidy the data

fixing NA transform data, rename

```
for(x in seq(from=2, to=nrow(df), by=2))
{
   df[x, 1] = df[x-1, 1]
}
```

```
library(tidyr)

df_unpivot = df %>%
    gather(key="City", value="Count", c("Los Angeles", "Phoenix", "San Diego", "San Francisco", "Seattle"))

df_unpivot
```

file:///Users/linda/lab5.html

2/26/23, 3:49 PM Data 607 lab 5

```
## # A tibble: 20 × 4
## Airline Status City
                                Count
    <chr> <chr> <chr>
## 1 ALASKA on time Los Angeles
                                497
## 2 ALASKA delayed Los Angeles
                                   62
## 3 AM WEST on time Los Angeles 694
## 4 AM WEST delayed Los Angeles 117
## 5 ALASKA on time Phoenix
## 6 ALASKA delayed Phoenix
                                  12
## 7 AM WEST on time Phoenix
## 8 AM WEST delayed Phoenix
                                 415
                                 212
## 9 ALASKA on time San Diego
## 10 ALASKA delayed San Diego
                                  20
                                383
## 11 AM WEST on time San Diego
## 12 AM WEST delayed San Diego
                                  65
## 13 ALASKA on time San Francisco 503
## 14 ALASKA delayed San Francisco 102
## 15 AM WEST on time San Francisco \, 320 \,
## 16 AM WEST delayed San Francisco
## 17 ALASKA on time Seattle 1841
                                 305
## 18 ALASKA delayed Seattle
                                 201
61
## 19 AM WEST on time Seattle
## 20 AM WEST delayed Seattle
```

```
library(dplyr)

df_unpivot_2 = df_unpivot %>%
    spread(key="Status", value="Count")

df_unpivot_2 = df_unpivot_2 %>%
    rename(on_time = `on time`)
```

Data Analysis

On Time Percentage By City by airline

```
df_unpivot_2 = df_unpivot_2 %>%
  mutate(otp = on_time/(on_time + delayed)) %>%
  arrange(desc(otp))

df_unpivot_2
```

Overall On Time Percentage By Airline.

• we see that AM West Outperform ALASKA overall. However, could the result skewed due to more flights in certain city?

```
df_unpivot_2 %>%
  select(Airline, delayed, on_time) %>%
  group_by(Airline) %>%
  summarise(delayed = sum(delayed), on_time = sum(on_time), otp = sum(on_time) / (sum(on_time) + sum(delayed))) %
  >%
  arrange(desc(otp))
```

• it seems like AM WEST has more flights in Phoenix, so lets compute the OTP without phoenix.*

file:///Users/linda/lab5.html 2/3

2/26/23, 3:49 PM Data 607 lab 5

```
df_unpivot_2 %>%
  filter(City != "Phoenix") %>%
  select(Airline, delayed, on_time) %>%
  group_by(Airline) %>%
  summarise(delay = sum(delayed), on_time = sum(on_time), otp = sum(on_time) / (sum(on_time) + sum(delayed))) %>%
  arrange(desc(otp))
```

Conclusion

Based on the data provided,ALASKA consistently outperforms AM WEST. For flying to Phoenix specifically, I would recommend AM WEST as the on time performance is on par with ALASKA and have more flights available.

file:///Users/linda/lab5.html 3/3