CHM129

Chemical Equilibrium and the Equilibrium Constant

- 1. Write the equilibrium constant expression for the following. Classify them as homogeneous or heterogeneous equilibria.
 - (a) C_3H_8 (g) + 5 O_2 (g) \leftrightarrow 3 CO_2 (g) + 4 H_2O (g)

$$K = \frac{[C0_2]^3 [H_20]^4}{[C_3H_6][0_2]^5}$$

homogeneous

(b)
$$CaCO_3$$
 (s) \leftrightarrow CaO (s) + CO_2 (g)

heterogeneous

(c)
$$HNO_2$$
 (aq) + H_2O (1) \leftrightarrow H_3O^+ (aq) + NO_2^- (aq)

homogeneous

(d)
$$Cr_{(s)} + 3 Ag^{+}_{(aq)} \leftrightarrow Cr^{3+}_{(aq)} + 3 Ag_{(s)}$$

$$K = \frac{\Gamma Cr^{3}}{\Gamma Ag^{\dagger}J^{3}}$$

heterogeneous

- 2. Consider the dissolution of two salts, NaCl and AgCl, in water:
 - a. Write the chemical equation for the dissolution of each salt and the corresponding equilibrium constant expression.
 - b. Based on the value of the equilibrium constant, classify salts as soluble or insoluble: NaCl: K=38 and AgCl: K=1.8x10⁻¹⁰

3. Consider the following reaction:

$$COCl_{2(g)} \leftrightarrow CO_{(g)} + Cl_{2(g)}$$

- (a) Write the equilibrium constant expression.
- (b) An equilibrium mixture contains the following concentrations at 100°C: $[COCl_2] = 0.0100M$, $[CO] = 1.48 \times 10^{-6}M$, $[Cl_2] = 1.48 \times 10^{-6}M$. Calculate K_c .
- (c) Which reaction is favored, forward or reverse?

$$K = \frac{[C0][C12]}{[C0C12]}$$

$$= \frac{(1.48 \times 10^{-6})(1.48 \times 10^{-6})}{(0.0100)} = 2.19 \times 10^{-10}$$