- **2.5.7** Claim: For a subgroup N of a group G, the following are equivalent:
 - 1. N is normal
 - 2. $\forall a \in G, \exists b \in G, aN = Nb$.
 - 3. $\forall a \in G, aN = Na$.

Proof: To prove all three statements are equivalent to each other, we can prove that $1 \Rightarrow 2, 2 \Rightarrow 3$ and $3 \Rightarrow 1$.

 $1 \Rightarrow 2$

Since N is normal, we know $\forall g \in G, gNg^{-1} = N$ by definition.

Then, we have $\forall g \in G, gN = Ng$, which means b = a.

 $2 \Rightarrow 3$

Since $\forall a \in G, \exists b \in G, aN = Nb$, and aN is a coset of N, we know it's either $a \in aN = bN = Nb$ or $aN \cap bN = \emptyset$. Since aN = Nb, $b \in Nb = aN$, so the second possibility is ruled out. Thus, we have bN = Nb for all $b \in G$ which is equivalent to aN = Na for all $a \in G$.

 $3 \Rightarrow 1$:

Since $\forall a \in G, aN = Na$, we can get $aNa^{-1} = N$ by multiply a^{-1} on both sides, which means N is normal.

As a result, we can conclude that all three statements are equivalent.

■

2.5.13

(a) Claim: The center of group G is a normal subgroup of G.

Proof: Since Center(G) = $\{x | \forall g \in G, gx = xg\}$, we have Center(G) = $x | gxg^{-1} = x$ which is exactly the definition of normal subgroup.

(b) Based on the multiplication table of S_3 :

Element +	() •	(1,2) •	(2,3) ♦	(1,3) •	$(1,2,3) \Rightarrow$	(1,3,2) •
()	()	(1, 2)	(2, 3)	(1,3)	(1, 2, 3)	(1, 3, 2)
(1, 2)	(1, 2)	()	(1, 2, 3)	(1, 3, 2)	(2, 3)	(1, 3)
(2,3)	(2, 3)	(1, 3, 2)	()	(1, 2, 3)	(1, 3)	(1, 2)
(1, 3)	(1, 3)	(1, 2, 3)	(1, 3, 2)	()	(1, 2)	(2,3)
(1, 2, 3)	(1, 2, 3)	(1,3)	(1, 2)	(2,3)	(1, 3, 2)	()
(1, 3, 2)	(1, 3, 2)	(2,3)	(1,3)	(1, 2)	()	(1, 2, 3)

Figure 1: S_3

$$Center(S_3) = \{e\}$$

2.6.1

Claim: Relation defined on X by $x_1 \sim x_2$ if $f(x_1) = f(x_2)$ is an equivalence relation. And the associated partition of X is the partition into $f^{-1}(y)$ for $y \in Y$.

Proof: We can prove the relation is equivalent relation first by proving its reflexivity, symmetry and transitivity.

Reflexivity: $\forall x \in X$, it's obvious that x = x and f(x) = f(x), so $x \sim x$.

Symmetry: Take 2 arbitrary $x, y \in X$, then if $x \sim y$, $x = y \Rightarrow f(x) = f(y) = f(x) \Rightarrow y \sim x$. So we have $x \sim y \Leftrightarrow y \sim x$.

Transitivity: Take $x, y, z \in X$. If $x \sim y$ and $y \sim z$, then $x = y \Rightarrow f(x) = f(y)$ and $y = z \Rightarrow f(y) = f(z)$. So $x = y = z \Rightarrow f(x) = f(y) = f(z)$, which means $x \sim z$.

So we proved this relation is an equivalent relation.

Then we can prove the associated partition of X is the partition into fiber

Since f is a surjective, $\forall y \in Y, \exists x \in X \text{ that } f^{-1}(y) = x$. And as we have an equivalent relation on X, each $x \in X$ is and only is in one equivalent class is guaranteed by the correspondent partition of X. So each subsets of f^{-1} are disjoint. And since we know f is a injection by the definition of the relation, f and f^{-1} are bijections. Thus, $X = f^{-1}(Y)$, so the partition into fibers is exactly the partition of X.

2.7.9

Claim: The commutator subgroup C of group G is normal. And quotient group G/C is abelian. If $H \subseteq G$ and G/H is abelian, then $C \subseteq H$.

Proof: Let $a,b \in G$ and $x = gag^{-1}, y = gbg^{-1}, x^{-1} = ga^{-1}g^{-1}, y^{-1} = gb^{-1}g^{-1}$. Then take $c = xyx^{-1}y^{-1} \in C, gcg^{-1} = aba^{-1}b^{-1} \in C \Rightarrow gCg^{-1} = C$.

Thus, C is a normal group.

Take $a, b \in C$, so $aC, bC, Ca, Cb \in G/C$. Since C is normal as we've proved, aCbC = abC = Cab. To prove G/H is abelian, we want to prove

that Cab = Cba for all $a, b \in G$. Since we know Cab and Cba are both right cosets of C, so it's either they are equal, or they are disjoint. Let b = x = y = e, we have $a \in Cab$ and $a \in Cba$, so they can't be disjoint.

As a result, Cab = Cba, and G/C is abelian by definition.

Since H is normal and G/H is abelian, take arbitrary $c \in C$ as implied in the first part and second part of the proof, $gcg^{-1} = aba^{-1}b^{-1} \in C, Cab = Cba \Rightarrow c \in H$.

Thus, $C \subseteq H$ by definition.