Эндоморфная криптосистема и расстояние Хэмминга

ОПР (Эндоморфная криптосистема)

Эндоморфная КС — криптосистема, у которой множество открытых текстов совпадает с множеством криптограмм.

Пусть

- Σ алфавит,
- $\mathcal{M} = \mathcal{C} = \bigcup_{k=0}^{L} \Sigma^{k}$, т.е. открытые тексты и криптограммы это цепочки букв длины не более L,
- $E(_,k): \mathcal{M} \to \mathcal{M}$ шифрующая функция.

Так как обратная к $E(_,k):\mathcal{M}\to\mathcal{M}$ также является функцией, то $E(_,k)$ — биекция:

$$E(\ ,k):\mathcal{M}\twoheadrightarrow\mathcal{M}$$

Существует множество $\mathcal{M},$ на котором определено множество биекций E, а $D=E^{-1}.$

Таким образом, вместо криптосистемы $(\mathcal{M}, \mathcal{C}, \mathcal{K}, E, D)$ можно рассматривать её упрощённый вариант (\mathcal{M}, E) , где

$$E = \{e \mid e : \mathcal{M} \twoheadrightarrow \mathcal{M}\}$$

Каждая e — это функция со своим ключом.

ОПР (Искажения типа "замена")

Искажения типа "замена" — это бинарное отношение $\alpha \in \mathcal{M} \times \mathcal{M}$:

$$(u,v) \in \alpha \Leftrightarrow \exists! k \in \{1,\ldots,n\} \colon u_k \neq v_k$$

где

- $\bullet \ u = (u_1, \dots, u_n),$
- $v = (v_1, \ldots, v_n),$
- $\forall i : u_i, v_i \in \Sigma$.

То есть, слова u и v отличаются только в одной позиции.

ОПР (Расстояние Хэмминга между словами)

Расстояние Хэмминга между словами $u \in \Sigma^n$ и $v \in \Sigma^n$:

$$\rho(u, v) = |\{i \mid i \in \{1, \dots, n\}, u_i \neq v_i\}|$$

• Расстояние Хэмминга — это метрика.

ОПР (Шифр, не распространяющий искажений типа "замена")

Шифр $(\mathcal{M}, \mathcal{C})$ не распространяет искажения типа "замена", если:

$$\forall x, y \in \Sigma^r, \forall e \in E : \rho(e^{-1}(x), e^{-1}(y)) \le \rho(x, y), \quad r \in \{0, \dots, L\}$$

То есть, расстояние Хэмминга между открытыми текстами не больше, чем между криптограммами.

Лемма о метрике и биекции

Пусть

- ρ произвольная метрика на Σ^n ,
- $e: \Sigma^r \to \Sigma^r$.

Тогда

$$\forall x, y \in \Sigma^r : \rho(e^{-1}(x), e^{-1}(y)) \le \rho(x, y) \Leftrightarrow \rho(e^{-1}(x), e^{-1}(y)) = \rho(x, y)$$

Доказательство (=)

Очевидно следует из равенства.

Доказательство (⇒)

Рассмотрим e как отображение на $S = \Sigma^r \times \Sigma^r$:

$$e: S \twoheadrightarrow S, \quad e(x,y) = (e(x), e(y))$$

Тогда:

$$\sum_{(x,y)\in S} \rho(e^{-1}(x,y)) \le \sum_{(x,y)\in S} \rho(x,y)$$

Если существует $(x,y) \in S$ такое, что $\rho(e^{-1}(x,y)) < \rho(x,y)$, то сумма в левой части была бы строго меньше.

ОПР (Изометрия)

 $e:X \to X$ — **изометрия** относительно метрики ρ на X, если

$$\forall a, b \in X : \rho(e(a), e(b)) = \rho(a, b)$$

Изометрия на конечном множестве — это инъективная функция, то есть биекция.

Важные примеры изометрий на Σ^r относительно расстояния Хэмминга

1. Шифр перестановки

$$\sigma(a_1,\ldots,a_r)=a_{\sigma(1)},\ldots,a_{\sigma(r)}$$

- $\sigma \in S_r$ перестановка длины r,
- здесь в качестве ключа выступает σ ,
- \bullet σ изометрия, не распространяющая искажения типа "замена
- для расшифровки применяем обратную перестановку.

2. Шифр многоалфавитной замены

$$\tau = (\tau_1, \dots, \tau_r) \in (S_{\Sigma})^r$$

$$\tau(a_1, \dots, a_r) = \tau_1(a_1), \dots, \tau_r(a_r)$$

- это ШМЗ,
- для расшифровки применяем к каждой букве свою обратную перестановку,
- это изометрия.

Теорема Маркова

 $e \in E$ — изометрия $\Leftrightarrow \exists \sigma, \tau$ из примеров 1 и 2, такие что $e = \sigma \circ \tau$

То есть e — это суперпозиция σ и τ .

Доказательство смотри в билете про Т. Маркова

Из теоремы А.А. Маркова следует, что в классе эндоморфных шифров, не изменяющих длины сообщений, не распространяют искажений типа замены знаков, например, шифры перестановки, поточные шифры однозначной замены, а так же композиции шифров перестановки и замены.