Calcolatori Elettronici (12AGA) – esame del 21.1.2014

Domande a risposta chiusa (è necessario rispondere correttamente ad almeno 6 domande). Non è possibile consultare alcun tipo di materiale. Tempo: 15 minuti.

1	Si consideri una PLA: quale delle seguenti	Una PLA implementa una funzione combinatoria	A
	affermazioni è falsa?	La funzione combinatoria implementata dalla PLA può essere modificata	В
		dopo la sua realizzazione fisica	
		PLA è la sigla di <i>Programmable Logic Array</i>	С
		Una delle applicazioni delle PLA è nella realizzazione delle Unità di	D
		Controllo dei processori	
2	Si consideri un processore RISC: quale delle	Un processore RISC ha un'unità di controllo cablata	A
	seguenti affermazioni è falsa?	Un processore RISC può completare l'esecuzione di più di un'istruzione	В
		per colpo di clock	
		Un processore RISC possiede un numero elevato di registri	C
		Un processore RISC ha un set di istruzioni ridotto e composto da istruzioni semplici	D
3	Si confrontino le memorie RAM statiche	Le SRAM non sono volatili, al contrario delle DRAM	A
	(SRAM) e dinamiche (DRAM): quale delle	Le SRAM sono più sensibili ai guasti transitori delle DRAM	В
	seguenti affermazioni è vera?	Una cella di DRAM richiede un numero di transistor superiore ad una cella di SRAM	С
		Le DRAM sono più lente delle SRAM	D
4	Si consideri il meccanismo della Memoria	Nella memoria principale	A
	Virtuale: dove è memorizzata la MAT	All'interno della MMU	В
	(Memory Address Table)?	All'interno del TLB	С
		Nella memoria secondaria	D
5	Si consideri il meccanismo di arbitraggio noto come Daisy Chaining: quale delle	Il Daisy Chaining permette di modificare facilmente la priorità dei moduli che competono per la risorsa condivisa (ad esempio, il bus)	A
	seguenti affermazioni è vera?		В
		Il tempo per eseguire l'arbitraggio dipende dalla posizione del modulo che assumerà il controllo del bus	С
		Il maggiore vantaggio del Daisy Chaining sta nella sua robustezza rispetto a possibili guasti che possono colpire i moduli connessi	D
6	Si consideri una cache composta da 512		A
	linee, ciascuna corrispondente a 32 byte, che	9	В
	utilizza il meccanismo del Direct Mapping.	18	С
	Quanti bit compongono il campo tag, assumendo che il processore emetta indirizzi su 32 bit?	27	D
7	Come si modifica l'Interrupt Flag (IF)	Agendo su un apposito piedino di input	A
	nell'8086?	Utilizzando le istruzioni CLI e STI	В
		Attraverso 1'8259	C
		Tutte le istruzioni modificano automaticamente l'IF	D

8	Si considerino le seguenti istruzioni 8086:	NOP	A	
	NOP INC AX	INC AX	В	
	ADD AD, BX MOV VAR, 310	ADD AD, BX	С	
	Quale dei corrispondenti codici macchina sarà composto dal massimo numero di byte?	MOV VAR, 310	D	
9	Si consideri il seguente frammento di codice assembler 8086:	DX=0, AX=16384	A	
	MOV DX, 0	DX=16384, AX=0	В	
	MOV AL, 128 MUL AL	DX=1, AX=6384	С	
	Quale valore sarà presente in DX e in AX al termine dell'esecuzione delle 3 istruzioni?	Le 3 istruzioni non sono corrette e non passano quindi la fase di assemblaggio	D	

Risposte corrette

	1	2	3	4	5	6	7	8	9
Ī	В	В	D	A	C	С	В	D	A

	Domande a risposta aperta (sino a 5 punti per ogni domanda) – Non è possibile consultare alcun materiale - Tempo: 40 minuti.
10	Si progetti una memoria composta da 64Kparole da 32 bit ciascuna utilizzando moduli composti ciascuno da 16Kparole da un byte ciascuna.
11	Si consideri un circuito combinatorio. Che cosa si intende per <i>ritardo</i> associato a tale circuito? Come si calcola, una volta nota la
	struttura del circuito?

12	Si disegni l'architettura di un'Unità di Controllo microprogrammata e se ne illustri il funzionamento.
13	Si descriva il funzionamento e le connessioni di una porta di un 8255, quando programmata in modo 1
13	Si descriva il funzionamento e le connessioni di una porta di un 8255, quando programmata in modo 1.
13	Si descriva il funzionamento e le connessioni di una porta di un 8255, quando programmata in modo 1.
13	Si descriva il funzionamento e le connessioni di una porta di un 8255, quando programmata in modo 1.
13	Si descriva il funzionamento e le connessioni di una porta di un 8255, quando programmata in modo 1.
13	Si descriva il funzionamento e le connessioni di una porta di un 8255, quando programmata in modo 1.
13	Si descriva il funzionamento e le connessioni di una porta di un 8255, quando programmata in modo 1.
13	Si descriva il funzionamento e le connessioni di una porta di un 8255, quando programmata in modo 1.
13	Si descriva il funzionamento e le connessioni di una porta di un 8255, quando programmata in modo 1.
13	Si descriva il funzionamento e le connessioni di una porta di un 8255, quando programmata in modo 1.
13	Si descriva il funzionamento e le connessioni di una porta di un 8255, quando programmata in modo 1.
13	Si descriva il funzionamento e le connessioni di una porta di un 8255, quando programmata in modo 1.
13	Si descriva il funzionamento e le connessioni di una porta di un 8255, quando programmata in modo 1.
13	Si descriva il funzionamento e le connessioni di una porta di un 8255, quando programmata in modo 1.
13	Si descriva il funzionamento e le connessioni di una porta di un 8255, quando programmata in modo 1.
13	Si descriva il funzionamento e le connessioni di una porta di un 8255, quando programmata in modo 1.
13	Si descriva il funzionamento e le connessioni di una porta di un 8255, quando programmata in modo 1.
13	Si descriva il funzionamento e le connessioni di una porta di un 8255, quando programmata in modo 1.
13	Si descriva il funzionamento e le connessioni di una porta di un 8255, quando programmata in modo 1.
13	Si descriva il funzionamento e le connessioni di una porta di un 8255, quando programmata in modo 1.
13	Si descriva il funzionamento e le connessioni di una porta di un 8255, quando programmata in modo 1.
13	Si descriva il funzionamento e le connessioni di una porta di un 8255, quando programmata in modo 1.
13	Si descriva il funzionamento e le connessioni di una porta di un 8255, quando programmata in modo 1.
13	Si descriva il funzionamento e le connessioni di una porta di un 8255, quando programmata in modo 1.
13	Si descriva il funzionamento e le connessioni di una porta di un 8255, quando programmata in modo 1.
13	Si descriva il funzionamento e le connessioni di una porta di un 8255, quando programmata in modo 1.
13	Si descriva il funzionamento e le connessioni di una porta di un 8255, quando programmata in modo 1.
13	Si descriva il funzionamento e le connessioni di una porta di un 8255, quando programmata in modo 1.
13	Si descriva il funzionamento e le connessioni di una porta di un 8255, quando programmata in modo 1.
13	Si descriva il funzionamento e le connessioni di una porta di un 8255, quando programmata in modo 1.

Nome, cognome, matricola

Esercizio di programmazione

sino a 12 punti – è possibile consultare qualunque materiale cartaceo - tempo: 60 minuti

Si scriva una procedura **potenza** in linguaggio Assembly 8086 in grado di calcolare la potenza b^e di due interi positivi b e e.

La procedura riceve base ed esponente come *word unsigned* mediante lo stack e restitisce il risultato come *doubleword unsigned*, sempre mediante lo stack.

Di seguito un esempio di programma chiamante:

```
[...]
risult DD ?
        .code
        .startup
                  ; base
        PUSH 3
        PUSH 12
                     ; esponente
        SUB SP, 4
        CALL potenza
        POP AX
        POP DX
        ADD SP, 4
        mov risult, AX
        mov risult+2, DX
[...]
```

È inoltre richiesto di verificare la presenza di eventuali condizioni di *overflow*, che devono essere segnalate restituendo il valore esadecimale 0FFFFFFFh.