

General Description

The TP6311 is a VFD (Vacuum Fluorescent Display) controller/driver that is driven on a 1/8 to 1/16-duty factor. It consists of 12 segment output lines, 8 grid output lines, 8 segment/grid output drivelines, a display memory, a control circuit, and a key scan circuit. Serial data is input to TP6311 through a three-line serial interface. This VFD controller/driver is ideal as a peripheral device of a single-chip microcomputer.

Ordering Information

Features

- Multiple display modes (12-segment & 16-digit to 20-segment & 8-digit)
- Key scanning (12×4 matrices)
- Dimming circuit (eight steps)
- High-voltage output (V_{DD} 35V max)
- LED ports (5 chs, 20 mA max)
- General-purpose input port (4 bits)
- No external resistor necessary for driver outputs (P-ch open-drain + pull-down resistor output)
- Serial interface (CLK, STB, D_{IN}, D_{OUT})

Package Type			
Footprint	L: 3.2 mm		

Block Diagram

Pin Configuration (Top View)

Pin Description

Till Description									
Pin No	Symbol	Pin Name	Description						
6	D_IN	Date input	Input serial data at rising edge of shift clock, starting from lower bit.						
5	D _{OUT}	Date output	Outputs serial data at falling edge of shift clock, starting from lower bit. This is N-ch open-drain output pin.						
9	STB	Strobe	Initializes serial interface at rising or falling edge to make TP6311 waiting for reception of command. Data input after STB has fallen is processed as command. While command data is processed, current processing is stopped, and serial interface is initialized. While STB is high, CLK is ignored.						
8	CLK	Clock input	Reads serial data at rising edge, and outputs data at falling edge.						
52	osc	Oscillator pin	Connect resistor for determining oscillation frequency to this pin.						
15 to 26	Seg1/KS1 to Seg12/KS12	High-voltage output (Segment)	Segment output pins (Dual function as key source)						
44 to 37	Grid1 to Grid8	High-voltage output (Grid)	Grid output pins						
27 to 32 35 to 36	Seg13/Grid16 to Seg20/Grid9	High-voltage output (Segment/grid)	These pins are selectable for segment or grid output.						
50 to 46	LED1 to LED5	LED output	CMOS output. +20 mA max						
10 to 13	Key1 to Key4	Key data input	Data input to these pins is latched at end of display cycle.						
1 to 4	SW1 to SW4	Switch input	These pins constitute 4-bit general-purpose input port.						
14, 33, 45	V_{DD}	Logic power	5V ± 10%						
51	V_{SS}	Logic ground	Connect this pin to GND of system.						
34	V_{EE}	Pull-down level	VDD – 35 V max						
7	IC	Internally connected	Be sure to leave this pin open (this pin is at V _{DD} level).						

Functional Description

Display RAM Address and Display Mode

The display RAM stores the data transmitted from an external device to TP6311 through the serial interface, and is assigned addresses as follows, in units of 8 bits:

Seg ₁ S	eg ₄	Seg ₈	Seg ₁₂ S	eg ₁₆ S	eg ₂₀
00H _L	$00H_{U}$	01H _L	01H _U	02H _L	DIG1
03H _L	03H _∪	04H _L	04H _U	05H∟	DIG2
06H∟	06H _∪	07H∟	07H∪	08H∟	DIG3
09H∟	09H∪	0AH _L	0AH _U	0BH _L	DIG4
0CH _L	0CH _U	0DH _L	$0DH_{U}$	0EH _L	DIG5
0FH _L	0FH _∪	10H∟	10H∪	11H∟	DIG
12H _L	12H _∪	13H _L	13H _∪	14H _L	DIG7
15H _L	15H _∪	16H _L	16H _∪	17H∟	DIG8
18H _L	18H _∪	19H _L	19H _∪	$1AH_{L}$	DIG9
1BH _L	1BH _∪	1CH _L	1CH _∪	1DH _L	DIG10
1EH _L	1EH _∪	1FH _L	1FH _∪	20H _L	DIG11
21H _L	21H _∪	22H _L	22H _U	23H _L	DIG12
24H _L	24H _∪	25H _L	25H _U	26H _L	DIG13
27H _L	27H _∪	28H _L	28H _U	29H _L	DIG14
2AH _L	$2AH_U$	2BH _L	2BH _U	2CH _L	DIG15
2DH _L	$2DH_U$	2EH _L	2EH _∪	2FH _L	DIG16

b_0		b ₃ b ₄	b ₇
	XXH_{L}	>	X H _∪
Lov	ver 4 bits	Highe	r 4 bits.

Only the lower 4 bits of the addresses assigned to Seg17 through Seg20 are valid, and the higher 4 bits are ignored.

Key Matrix and Key-Input Data Storage RAM

The Key matrix is of 12×4 configuration, as shown below:

The data of each Key is stored as illustrated below, and is read by a read command, starting from the least significant bit.

KEY ₁ KEY ₄	KEY ₁		KEY.
-----------------------------------	------------------	--	------

Seg ₁ / KS ₁	Seg ₂ / KS ₂
Seg ₃ / KS ₃	Seg ₄ / KS ₄
Seg ₅ / KS ₅	Seg ₆ / KS ₆
Seg ₇ / KS ₇	Seg ₈ / KS ₈
Seg ₉ / KS ₉	Seg ₁₀ / KS ₁₀
Seg ₁₁ / KS ₁₁	Seg ₁₂ / KS ₁₂

Reading Sequence

b0 b3 b4 b7

When the most significant bit data (Seg12 b7) has been read, the least significant bit of the next data (Seg1 b0) is read.

LED Port

Data is written to the LED port by a writing command, starting from the least significant bit of the port. When a bit of this port is 0, the corresponding LED lights; when the bit is 1, the LED goes off. The data of bits 6 through 8 is ignored.

On power application, all the LEDs remain dark.

SW Data

The SW data is read by a reading command, starting from the least significant bit. Bits 5 through 8 of the SW data are 0.

Commands

A command sets the display mode and status of the VFD driver.

The first 1 byte input to TP6311 through the D_{IN} pin after the STB pin has fallen is regarded as a command.

If STB is high while a command/data is transmitted, serial communication is initialized, and the transmitting command/data is invalid; however, the command/data already transmitted remains valid.

(1) Display mode setting command

This command initializes the TP6311 and selects the number of segments and number of grids (1/8 to 1/11-duty, 12 segments to 20 segments).

On power application, the 16-digit, 12-segment mode is selected.

(2) Data setting commands

This command sets data write and read modes.

On power application, the normal operation mode and address increment mode set.

(3) Address setting command

This command sets an address of the display memory.

If address 30H or higher is set, the data is ignored and unit a correct address is set.

On power application, the address is set to 00H.

(4) Display control command

"*": On power application, the key scanning is stopped.

On power application, the 14/16-pulse width is set and the display is turned off.

Key Scanning and Display Timing

One cycle of key scanning consists of two frames, and data of 12×4 matrices is stored in RAM.

Serial Communication Format

Reception (command/data write)

Transmission (data read)

Because the D_{OUT} pin is an N-ch open-drain output pin, be sure to connect an external pull-up resistor to this pin (1k Ω to 10 k Ω).

"*": When data is read, a wait time (t_{WAIT}) of $1\mu s$ is necessary from the rising of the eighth clock that has set the command till the falling of the first clock that has read the data.

Absolute Maximum Ratings (Ta = 25°C, V_{SS} = 0V)

Parameter	Symbol	Ratings	Unit
Logic Supply Voltage	V_{DD}	-0.5 to + 7.0	V
Driver Supply Voltage	V_{EE}	V_{DD} +0.5 to V_{DD} -40	V
Logic Input Voltage	V_{IL}	-0.5 to V _{DD} +0.5	V
VFD Driver Output Voltage	V _{o2}	V_{EE} –0.5 to V_{DD} +0.5	V
LED Driver Output Current	I _{o1}	+25	mA
VFD Driver Output Current	I ₀₂	-40 (grid) -15 (segment)	mA
Power Dissipation	P_D	1200 [*]	mW
Operating Ambient Temperature	T _{opt}	-40 to +85	°C
Storage Temperature	T _{stg}	-65 to +150	°C

^{*} Derate at -9.6 mW/°C at Ta = 25°C or higher.

Recommended Operating Conditions (Ta = -20°C to +70°C, $V_{SS} = 0V$)

Parameter	Symbol	Min.	Тур.	Max.	Unit
Logic Supply Voltage	V_{DD}	4.5	5	5.5	V
High-Level Input Voltage	V_{IH}	$0.7V_{DD}$		V_{DD}	V
Low-Level Input Voltage	V_{IL}	0		$0.3V_{DD}$	V
Driver Supply Voltage	V_{EE}	0		V _{DD} -35	V

 $Maximum\ power\ consumption\ P_{MAX} = VFD\ driver\ dissipation\ +\ R_L\ dissipation\ +\ LED\ driver\ dissipation\ +\ dynamic\ power\ consumption.$

When segment current = 3 mA, grid current = 15mA, and LED current = 20 mA,

VFD driver dissipation = number of segments x 6 + number of grids/(number of grids + 1) x 30(mW)

 R_L dissipation $(V_{DD}-V_{EE})^2/50 \text{ x (segment+1) (mW)}$

LED driver dissipation = number of LEDs x 20(mW)

Dynamic power consumption = $V_{DD} x 5 (mW)$

Example

When V_{EE} = -30V, V_{DD} = 5V, and in 16-segment and 12-digit modes:

VFD driver dissipation = 16 x 6 + 12/13 x 35 =	128
R_L dissipation = $35^2/50 \times 17 =$	417
LED driver dissipation = 5 x 20 =	100
Dynamic power consumption = 5 x 5 =	25
Total	670 mW

DC Electrical Characteristics

 $(Ta = -20^{\circ}C \text{ to } +70^{\circ}C, V_{DD} = 4.5 \text{V to } 5.5 \text{V}, V_{S} = 0 \text{V}, V_{EF} = V_{DD} - 35 \text{V})$

$(18 = -20^{\circ}C \ 10 + 70^{\circ}C, \ V_{DD} = 4.5 \ V \ 10 \ 5.5 \ V, \ V_{S} = 0 \ V, \ V_{EE} = V_{DD} - 35 \ V)$									
Parameter	Symbol	Min	Тур.	Max.	Unit	Test Conditions			
High-Level Output Voltage	V _{OH1}	$0.9 V_{DD}$			V	$LED_1 - LED_5$, $I_{OH1} = -1$ mA			
Low-Level Output Voltage	V _{OL1}			1	V	$LED_1 - LED_5$, $I_{OL1} = 20 \text{ mA}$			
Low-Level Output Voltage	V_{OL2}			0.4	V	D_{OUT} , $I_{OL2} = 4 \text{ mA}$			
High-Level Output Current	I _{OH21}	-3			mΑ	$V_O = V_{DD} - 2V$, Seg ₁ to Seg ₁₂			
High-Level Output Current	lauss	-15			mA	$V_O = V_{DD} - 2V, Grid_1 \text{ to } Grid_8,$			
riigii-Level Output Current	I _{OH22}	-13				Seg ₁₃ /Seg ₁₆ to Seg ₂₀ /Seg ₉			
Driver Leakage Current	I _{OLEAK}			-10	μΑ	$V_O = V_{DD}$ - 35V, Drive off			
Output Pull-Down Resistor	R_L	50	100	150	kΩ	Drive output			
Input Current	li			±1	μΑ	$V_I = V_{DD} - V_{SS}$			
High-Level Input Voltage	V _{IH}	$0.6 V_{DD}$			V				
Low-Level Input Voltage	V_{IL}			$0.3 V_{DD}$	V				
Hysteresis Voltage	V_{H}		0.35		V	CLK, D _{IN} , STB			
Dynamic Current Consumption	I_{DDdyn}			5	mA	Under no load, display off			

AC (Switching) Electrical Characteristics

(Ta = -20°C to +70°C, V_{DD} = 4.5V to 5.5V, V_{EE} = -30V)

Parameter	Symbol	Min	Тур.	Max.	Unit	Test Conditions	
Oscillation Frequency	tosc	350	500	650	kHz	$R = 56k\Omega$	
Propagation Delay Time	t_{PLZ}			300	ns	CLK ⇒ DOUT	
Tropagation Delay Time	t_{PZL}			100	ns	$CL = 15pF$, $RL = 10k\Omega$	
	t _{TZH1}			2	μS	Seg1 to Seg11	
Rise Time	t _{TZH2}			0.5	μS	CL = 300 PF Grid1 to Grid8, Seg13/Grid15 to Seg20/Grid9	
Fall Time	t _{THZ}			120	μS	CL = 300 pF, Segn, Gridn	
Maximum Clock Frequency	f _{max}	1			MHz	Duty = 50%	
Input Capacitance	C1			15	pF		

Timing Conditions (Ta = -20°C to +70°C, V_{DD} = 4.5V to 5.5V)

Parameter	Symbol	Min	Тур.	Max.	Unit	Test	Conditions
Clock Pulse Width	PW _{CLK}	400			ns		
Strobe Pulse Width	PW _{STB}	1			μS		
Data Setup Time	t _{SETUP}	100			ns		
Data Hold Time	t _{HOLD}	100			ns		
Clock-Strobe Time	t _{CLK-STB}	1			μS	CLK	STB
Wait Time	t _{WAIT}	1			μS	CLK	CLK

Switching Characteristic Waveform

Application

For DVD, VCR, SVCD and Power Amplifier.

Updating display memory by incrementing address

Command1: sets display mode

Command2: sets data
Command3: sets address

Data 1 to n: transfers display data (22 bytes max.)

Command4: controls display

Updating specific address

Command1: sets data
Command2: sets address
Data: display data

Package Information

52-Pin Plastic QFP Long-Lead (Footprint = 3.2mm)

NOTE

Each lead centerline is located within 0.16 mm of its true position (T.P.) at maximum material

(Unit: mm)

Item	Millimeters	
Α	17.2 BSC	
В	14.0 BSC	
С	14.0 BSC	
D	17.2 BSC	
Е	0.4 (TYP.)	
F	1.0 (TYP.)	
G	0.15	+0.05
		-0.05
Н	1.6	
Ι	1.81 MAX	
L	2.7 MAX	
М	2.0± 0.2	
Q	0.25	+0.25
		-0.00
R	+3°	+7°
		-3°

Topro Technology Inc.

Headquarters

5 F, No. 10, Prosperity Road 1, Science-Based Industrial Park, Hsinchu 300, Taiwan, R.O.C

Tel.: 886-3-563-2515 Fax: 886-3-564-1728

Taipei Office

5 F, No.27, Min Chuan W. Rd. Taipei 104, Taiwan, R.O.C Tel.: 886-2-2585-6858 Fax: 886-2-2594-1104

Shenzhen Office

Room 802, Tower A, World Trade Plaza, Fuhong Rd., Futian, Shenzhen, China

Tel.: 86-755-8367-9985 Fax: 86-755-8367-9518