IOE 611: Homework 2

Yulun Zhuang

October 8, 2024

Problem 1

Inverse of an increasing convex function. Suppose $f: \mathbb{R} \to \mathbb{R}$ is increasing and convex on its domain (a,b). Let g denote its inverse, i.e., the function with domain (f(a),f(b)) and g(f(x))=x for a < x < b. What can you say about convexity or concavity of g?

Proof. Since g and f are both differentiable, by the chain rule we have

$$g(f(x)) = x$$

$$g'(f(x))f'(x) = 1$$

$$\Rightarrow g'(f(x)) = \frac{1}{f'(x)} > 0$$

$$g''(f(x))f'(x)^{2} + g'(f(x))f''(x) = 0$$

$$g''(f(x))f'(x)^{2} + \frac{f''(x)}{f'(x)} = 0$$

$$\Rightarrow g''(f(x)) = -\frac{f''(x)}{f'(x)^{3}} < 0$$

Since f(x) is increasing, f'(x) > 0, such that g' > 0. Also because f(x) is convex, $f''(x) >= 0, \forall x \in \text{dom } f$, such that g'' <= 0.

Thus, g is concave.

Problem 2

A family of concave utility functions. For $0 < \alpha \le 1$ let

$$u_{\alpha}(x) = \frac{x^{\alpha} - 1}{\alpha}$$

with $\operatorname{dom} u_{\alpha} = \mathbb{R}_{+}$. We also define $u_{0}(x) = \log x$ (with $\operatorname{dom} u_{0} = \mathbb{R}_{++}$).

(a) Show that for x > 0, $u_0(x) = \lim_{\alpha \to 0} u_{\alpha}(x)$.

Proof. Since at $\lim_{\alpha\to 0} u_{\alpha}(x)$, both numerator and denominator go to zero, by the L'Hopital's rule, we have

$$\lim_{\alpha \to 0} u_{\alpha}(x) = \lim_{\alpha \to 0} \frac{\frac{\mathrm{d}}{\mathrm{d}\alpha}(x^{\alpha} - 1)}{\frac{\mathrm{d}}{\mathrm{d}\alpha}\alpha}$$
$$= \lim_{\alpha \to 0} \frac{x^{\alpha} \log(x)}{1}$$
$$= \log(x)$$

(b) Show that u_{α} are concave, monotone increasing, and all satisfy $u_{\alpha}(1) = 0$.

Proof. For $\alpha \in (0,1]$

$$u_{\alpha}(1) = \frac{1^{\alpha} - 1}{\alpha} = 0$$

$$u'_{\alpha}(x) = x^{\alpha - 1} \ge 0 \Rightarrow \text{monotone increasing}$$

$$u''_{\alpha}(x) = (\alpha - 1)x^{\alpha - 2} \le 0 \Rightarrow \text{concave}$$

For each of the following functions determine whether it is convex, concave, quasiconvex, or quasiconcave.

(a)
$$f(x) = e^x - 1$$
 on \mathbb{R}

Solution.

$$f'(x) = e^x > 0 \Rightarrow \text{monotonic} \Rightarrow \text{quasilinear}$$

 $f''(x) = e^x > 0 \Rightarrow \text{convex}, \text{ not concave}$

(b) $f(x_1, x_2) = x_1 x_2$ on \mathbb{R}^2_{++} .

Solution.

$$\nabla f = \begin{bmatrix} x_2 \\ x_1 \end{bmatrix}$$

$$\nabla^2 f = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

$$\Rightarrow \text{ indefinite} \Rightarrow \text{ not convex or concave}$$

The superlevel sets $\{x_1, x_2 \mid x_1x_2 \geq \alpha\}$ on \mathbb{R}^2_{++} are convex, so f is quasiconcave but not quasiconvex.

(c)
$$f(x_1, x_2) = 1/(x_1 x_2)$$
 on \mathbb{R}^2_{++} .

Solution.

$$\nabla f = \begin{bmatrix} -\frac{1}{x_1^2 x_2} \\ -\frac{1}{x_1 x_2^2} \end{bmatrix}$$

$$\nabla^2 f = \begin{bmatrix} \frac{2}{x_1^3 x_2} & \frac{1}{x_1^2 x_2^2} \\ \frac{1}{x_1^2 x_2^2} & \frac{2}{x_1 x_2^3} \end{bmatrix} \succ 0$$

⇒ convex, not concave; quasiconvex, not quasiconcave

(d)
$$f(x_1, x_2) = x_1/x_2$$
 on \mathbb{R}^2_{++} .

Solution.

$$\nabla f = \begin{bmatrix} \frac{1}{x_2} \\ -\frac{x_1}{x_2^2} \end{bmatrix}$$

$$\nabla^2 f = \begin{bmatrix} 0 & -\frac{1}{x_2^2} \\ -\frac{1}{x_2^2} & \frac{2x_1}{x_2^3} \end{bmatrix}$$

 \Rightarrow indefinite \Rightarrow not convex or concave

The sublevel sets of both f and -f are convex, so it is quasilinear.

(e)
$$f(x_1, x_2) = x_1^2/x_2$$
 on $\mathbb{R} \times \mathbb{R}_{++}$.

Solution.

$$\nabla f = \begin{bmatrix} \frac{2x_1}{x_2} \\ -\frac{x_1^2}{x_2^2} \end{bmatrix}$$

$$\nabla^2 f = \begin{bmatrix} \frac{2}{x_2} & -\frac{2x_1}{x_2^2} \\ -\frac{2x_1}{x_2^2} & \frac{2x_1^2}{x_2^3} \end{bmatrix}$$

The leading principal minors of $\nabla^2 f$ are one positive and one zero, so $\nabla^2 f$ is positive semidefinite and f is convex and quasiconvex, but not concave and quasiconcave.

(f)
$$f(x_1, x_2) = x_1^{\alpha} x_2^{1-\alpha}$$
, where $0 \le \alpha \le 1$, on \mathbb{R}^2_{++} .

Solution.

$$\nabla f = \begin{bmatrix} \alpha x_1^{\alpha - 1} x_2^{1 - \alpha} \\ (1 - \alpha) x_1^{\alpha} x_2^{-\alpha} \end{bmatrix}$$

$$\nabla^2 f = \begin{bmatrix} \alpha(\alpha - 1) x_1^{\alpha - 2} x_2^{1 - \alpha} & \alpha(1 - \alpha) x_1^{\alpha - 1} x_2^{-\alpha} \\ \alpha(1 - \alpha) x_1^{\alpha - 1} x_2^{-\alpha} & -\alpha(1 - \alpha) x_1^{\alpha} x_2^{-\alpha - 1} \end{bmatrix}$$

$$= \alpha(1 - \alpha) x^{\alpha} x^{1 - \alpha} \begin{bmatrix} -\frac{1}{x_1^2} & \frac{1}{x_1 x_2} \\ \frac{1}{x_1 x_2} & -\frac{1}{x_2^2} \end{bmatrix}$$

$$= -\alpha(1 - \alpha) x^{\alpha} x^{1 - \alpha} \begin{bmatrix} \frac{1}{x_1} \\ -\frac{1}{x_2} \end{bmatrix} \begin{bmatrix} \frac{1}{x_1} \\ -\frac{1}{x_2} \end{bmatrix}^{\top} \preceq 0$$

⇒ concave, not convex; quasiconcave, not quasiconvex

Adapt the proof of concavity of the log-determinant function to show the following.

(a)
$$f(X) = \operatorname{tr}(X^{-1})$$
 is convex on $\operatorname{dom} f = \mathbb{S}_{++}^n$.

Proof. Define g(t) = f(Z + tV) where $Z \succ 0$ and $V \in \mathbb{S}^n$.

$$g(t) = f(Z + tV)$$

$$= \operatorname{tr} ((Z + tV)^{-1})$$

$$= \operatorname{tr} \left(Z^{-1} \left(I + tZ^{-\frac{1}{2}} V Z^{-\frac{1}{2}} \right)^{-1} \right)$$

$$= \sum_{i=1}^{n} Z_{ii}^{-1} (1 + t\lambda_i)^{-1}$$

where $\lambda_i, i = 1, \dots, n$ are eigenvalues of $Z^{-\frac{1}{2}}VZ^{-\frac{1}{2}}$.

We have $Z_{ii}^{-1} > 0$ because the inverse of a positive definite matrix is also positive definite. g(t) is convex since it is a positive weighted sum of convex functions $(1+t\lambda_i)^{-1}$. Thus, f(X) is convex. \square

(b)
$$f(X) = (\det X)^{1/n}$$
 is concave on $\operatorname{dom} f = \mathbb{S}_{++}^n$.

Proof. Define g(t) = f(Z + tV) where $Z \succ 0$ and $V \in \mathbb{S}^n$.

$$g(t) = (\det(Z + tV))^{1/n}$$

$$= \left(\det Z^{1/2} \det \left(I + tZ^{-1/2}VZ^{-1/2}\right) \det Z^{1/2}\right)^{1/n}$$

$$= (\det Z)^{1/n} \left(\prod_{i=1}^{n} (1 + t\lambda_i)\right)^{1/n}$$

where $\lambda_i, i = 1, ..., n$ are eigenvalues of $Z^{-\frac{1}{2}}VZ^{-\frac{1}{2}}$.

g(t) is concave since $\det Z > 0$ and the geometric mean $(\prod_{i=1}^n x_i)^{1/n}$ is concave on \mathbb{R}^n_{++} . Thus f(X) is concave.

Perspective of a function.

(a) Show that for p > 1,

$$f(x,t) = \frac{|x_1|^p + \dots + |x_n|^p}{t^{p-1}} = \frac{\|x\|_p^p}{t^{p-1}}$$

is convex on $\{(x,t) \mid t > 0\}$

Proof. Define $g(x) = ||x||_p^p$, $\operatorname{dom} g = \{x \mid x \in \mathbb{R}^n\}$ which is convex. The perspective function of g(x) on $\{(x,t) \mid x/t \in \operatorname{dom} g, t > 0\}$ is

$$tg(x/t) = t \frac{\|x\|_p^p}{t^p} = \frac{\|x\|_p^p}{t^{p-1}} = f(x,t)$$

Thus, f(x,t), $\operatorname{\mathbf{dom}} f = \{(x,t) \mid t > 0\}$ is the perspective function of a convex function $||x||_p^p$, so it is convex.

(b) Show that

$$f(x) = \frac{\|Ax + b\|_2^2}{c^{\top}x + d}$$

is convex on $\{x \mid c^{\top}x + d > 0\}$, where $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m, c \in \mathbb{R}^n$ and $d \in \mathbb{R}$.

Proof. Let $g(x) = ||Ax + b||_2^2$, $\operatorname{dom} g = \{x \mid x \in \mathbb{R}^n\}$, then $\nabla^2 g(x) = 2A^{\top}A \succeq 0$, which implies g is convex.

Therefore, the perspective function

$$h(x,t) = \frac{\|Ax + \|_2^2}{t}, \quad \mathbf{dom} \, h = \{(x,t) \mid x \in \mathbb{R}^n, t > 0\}$$

is also convex. Since $f(x) = h(x, c^{T}x + d)$, $\operatorname{dom} f = \{x \mid c^{T}x + d > 0\}$ is a composition of an affine function and a convex function, then it is also a convex function.

Problem 6

Subgradient. A vector $g \in \mathbb{R}^n$ is a subgradient of function $f : \mathbb{R}^n \to \mathbb{R}$ at point $x \in \operatorname{dom} f$ if

$$f(y) \ge f(x) + g^{\top}(y - x)$$

for any $y \in \operatorname{dom} f$.

(a) Suppose f is a convex function, and $x \in \mathbf{int} \operatorname{dom} f$. Prove that there exists a subgradient of f at x.

Proof. Since f is convex, $\operatorname{\mathbf{epi}} f = \{(x,t) \mid f(x) \leq t, x \in \operatorname{\mathbf{dom}} f\}$ is a convex set in \mathbb{R}^{n+1} . Therefore, for any $x_0 \in \operatorname{\mathbf{dom}} f$, $(x_0, f(x_0))$ is on the boundary of $\operatorname{\mathbf{epi}} f$, thus there exists a supporting hyperplane on x_0 , i.e. $\exists (a,b) \in \mathbb{R}^{n+1}$ nonzero, such that for any $(x,t) \in \operatorname{\mathbf{epi}} f$,

$$a^{\top}x + bt \ge a^{\top}x_0 + bf(x_0)$$

If b = 0, then $a \neq 0$. We have $a^{\top}x \geq a^{\top}x_0$ for all $x \in \operatorname{\mathbf{dom}} f$. However, since $x_0 \in \operatorname{\mathbf{int}} \operatorname{\mathbf{dom}} f$, there exists $\epsilon > 0$, such that $B(x_0, \epsilon) \subseteq \operatorname{\mathbf{dom}} f$. Consider $x = x_0 - \epsilon a$, we have

$$a^{\top}x = a^{\top}x_0 - \epsilon ||a||_2^2 < a^{\top}x_0$$

which violates the inequality.

If b < 0, then t can be arbitrarily large, such that $a^{T}x + bt$ is arbitrarily small which will violate the inequality.

Therefore, b has to be positive. Let x = y, t = f(y), we have

$$a^{\top}y + bf(y) \ge a^{\top}x_0 + bf(x_0)$$

 $bf(y) \ge bf(x_0) + a^{\top}(x_0 - y)$
 $f(y) \ge f(x_0) + \frac{-a^{\top}}{b}(y - x_0)$

where $g = -a^{\top}/b$ is the subgradient of f at x_0 .

(b) Suppose $x \in \operatorname{dom} f$, but is not an interior point of the domain. Does there (always) exist a subgradient of f at x?

Proof. Not always.

Consider a convex function f(x), $\operatorname{dom} f = (-\infty, 1]$

$$f(x) = \begin{cases} 0, & \text{if } x < 1\\ 1, & \text{if } x = 1 \end{cases}$$

However, for any $g \in \mathbb{R}$, let $y = 1 - \frac{1}{|g|} < 1, f(y) = 0$, then

$$f(1) + g(y - 1) = 1 - \frac{g}{|g|}$$

 $\ge 0 = f(y)$

which indicates subgradient function may not exist at boundaries.

Problem 7

Show that the so-called logarithmic barrier for the second order cone, $f(x,t) = -log(t^2 - x^{\top}x)$ with $\operatorname{dom} f = \{(x,t) \in \mathbb{R}^{n+1} | t > \|x\|_2\}$, is convex. While this can be done by demonstrating that the Hessian of f is positive semidefinite everywhere on its domain, the following is an outline of a much simpler and more elegant proof:

(a) Show that $t - \frac{u^{\top}u}{t}$ is a concave function on **dom** f.

Proof. Let $g(u) = u^{\top}u$, $\operatorname{dom} g = \{u \in \mathbb{R}^n\}$, which is convex, hence $h(u,t) = u^{\top}u/t$, $\operatorname{dom} h = \{(u,t) \in \mathbb{R}^{n+1} \mid u/t \in \operatorname{dom} g, t > \|u\|_2\}$ is the perspective of g(u) so it is convex. Note that $-\frac{u^{\top}u}{t}$ is concave and $t - \frac{u^{\top}u}{t} > 0$ is a combination of an affine function and a concave function so it is also concave.

(b) Show that $-\log(t - \frac{u^{\top}u}{t})$ is a convex function on **dom** f.

Proof. Since the negative logarithm is convex, its extended-value extension is non-increasing. By the composition rules, given h(u,t) is concave, $-\log(h(u,t))$ is convex.

(c) Show that f is convex.

Proof.

$$f(x,t) = -\log(t^2 - x^{\top}x)$$
$$= -\log(t \cdot h(x,t))$$
$$= -\log(t) - \log(h(x,t))$$

which is a sum of two convex function and thus also convex on $\operatorname{dom} f$.

Suppose that $f(x): \mathbb{R}^n \to \mathbb{R}$ is a twice differentiable function (but not necessarily convex). Show that if \bar{x} is a local minimum of f(x), then we must have $\nabla f(\bar{x}) = 0$.

Proof. Given \bar{x} is a local minimum of f(x), there exists $\epsilon > 0, y \in \mathbb{R}^n, y \neq x$, such that $f(y) \geq f(\bar{x})$ for $||y - \bar{x}|| \leq \epsilon$.

Since f(x) is twice differentiable, expand $f(y) = f(\bar{x}) + \nabla f(\bar{x})(y - \bar{x}) \ge f(\bar{x})$, i.e.

$$\nabla f(\bar{x})(y - \bar{x}) \ge 0$$

Choose $y_1 > \bar{x}$ and $y_2 < \bar{x}$, the inequality must holds for both y, thus

$$\nabla f(\bar{x})(y - \bar{x}) = 0 \Rightarrow \nabla f(\bar{x}) = 0$$

Problem 9

Given a set of points $\{v_1, v_2, \ldots, v_k\}$, define

$$\mathbf{conv}\{v_1, v_2, \dots, v_k\} = \{\alpha_1 v_1 + \dots + \alpha_k v_k \mid \alpha_1 + \dots + \alpha$$

Show that the maximum of a convex function f over $\mathbf{conv}\{v_1, v_2, \dots, v_k\}$ is achieved at one of its vertices, i.e.,

$$\sup_{x \in \mathbf{conv}\{v1,\dots,v_k\}} f(x) = \max_{1 \leq i \leq k} f(v_i)$$

Proof. Let $x = \alpha_1 v_1 + \cdots + \alpha_k v_k \in \mathbf{conv}\{v_1, v_2, \dots, v_k\},\$

$$f(x) = f(\alpha_1 v_1 + \dots + \alpha_k v_k)$$

$$\leq \alpha_1 f(v_1) + \dots + \alpha_k f(v_k)$$

$$\leq \max_{1 \leq i \leq k} f(v_i)$$

$$= \sup_{x} f(x)$$

That is, the maximum of f(x) is achieved at one of its vertices $f(v_i)$.