EE288 Data Conversions/Analog Mixed-Signal ICs Spring 2020

Project Description

May 11, 2020

Prof. Sang-Soo Lee sang-soo.lee@sjsu.edu ENG-259

Target Spec

You may not be able to meet all the target spec. Do your best to meet the spec as much as you can.

Process Technology	45nm CMOS with 1V device only
--------------------------------------	-------------------------------

Differential Input Signal

Project Logistic

- Due May 16, 11PM
- 2 students per group
- Single student per group is fine
- Reference schematics: Async SAR ADC tb2 in 288lib
- Score 25% of the total course score

	Report in	IEEE	format & neatness	20%
--	-----------	------	-------------------	-----

- Verilog-A code for every block20%
- Clear Transistor level schematics20%
- Functionality and performance20%
 - Design1CIDxxyy.tbz2 file will be used to check the circuit function
- Additional effort and creativity20%

Project Submission

Report file - EE288ReportCIDxxyy.pdf

- Prepare your project report in IEEE 2-column Word format
- Total pages should be between 4 and 6 pages
- Include the following sections in the report
 Abstract, Introduction, Circuit Design, Simulation Results, Conclusions, References

Slide file - EE288SlideCIDxxyy.pdf

- Include as many additional pages as you like in power point slide format
- Include Verilog-A codes, schematics, simulation setup and results

Design file - Design1CIDxxyy.tbz2

- Create Design1.tbz2 and rename it to Design1CIDxxyy.tbz2
- See the instruction described in EE288_Design_file_for_Instructor_Review.pdf

Submission

- Upload 3 files to Canvas by 11PM on the due date
- File name:
 - EE288ReportCIDxxyy.pdf
 - EE288SlideCIDxxyy.pdf
 - Design1CIDxxyy.tbz2
 where xx and yy are CIDs of your group

Implementation Detail

Architecture

- Fully-differential Asynchronous SAR
- Top-plate sampling with monotonic switching scheme
- Use VDD as VREF
- Assume 100MHz Ideal clock with reasonable clock edges

Capacitive DAC

- Optimize the unit capacitor value based on kT/C noise, mismatch, and other considerations
- Optimize the top plate parasitic capacitor value, CH
- Choose switches based on RC delay, linearity, and switching scheme to optimize power

Comparator

- Design comparator based on the offset you can tolerate for the SAR ADC
- You must simulate the comparator separately to ensure functionality

Asynchronous clock generator

- You should optimize the delay timing between Clkc and Valid
- You can try a different asynchronous circuit to optimize the overall design

SAR Logic

You should implement the SAR logic in Verilog code first and then in transistor level

Simulations

Run at the following simulation condition

Process TT

Voltage1 V

■ Temperature 27 C

 Use an ideal DAC to create FFT spectrum of the ADC with an input frequency of (7/64)*fs MHz

 Report dynamic and static performance as well as ADC figure of merit based on FoM = Power / (fs x 2^EBOB)

References

- 1. Olga Kardonik, MS Thesis, University of Texas, Austin, A study of SAR ADC and implementation of 10-bit asynchronous design, 2013
- 2. Albert Hsu Ting Chang, *PhD Thesis, MIT*, Low-power high-performance SAR ADC with redundancy and digital background calibration, 2013
- 3. C. Liu, S. Chang, G. Huang, Y. Lin, "A 10-bit 50-MS/s SAR ADC with a monotonic capacitor switching procedure," *IEEE J. Solid-State Circuits*, pp. 731–740, April 2010
- 4. Pieter Harpe, Cui Zhou, et. al. "A 26 W 8 bit 10 MS/s asynchronous SAR ADC for low energy radios," *IEEE J. Solid-State Circuits*, pp. 1585–1595, July 2011
- 5. T. Cao, S. Aunet, T. Ytterdal, "A 9-bit 50MS/s asynchronous SAR ADC in 28nm CMOS," NORCHIP 2012
- 6. Brian P. Ginsburg and Anantha P. Chandrakasan, "An energy-efficient charge recycling approach for a SAR converter with capacitive DAC," *IEEE ISCAS* 2005
- 7. Victor Gylling, MS Thesis, Lund University, Sweden, Implementation of a 200 MSps 12-bit SAR ADC, 2015

10-bit SAR ADC Example

Async_SAR_ADC_tb2 in 288lib

SAR_ADC2

8-bit DAC Array with C_H

Bootstrapped Switch Example

C. Liu, S. Chang, G. Huang, Y. Lin, "A 10-bit 50-MS/s SAR ADC with a monotonic capacitor switching procedure," *IEEE J. Solid-State Circuits*, pp. 731–740, April 2010

Will not be required to use bootstrapped switch in the project

→Use ideal_swn

Dynamic Comparator Example

Flow Chart and Switching Schemes

Conventional Switching Scheme

Monotonic Switching Scheme

Switching Energy vs Output Code

C. Liu, S. Chang, G. Huang, Y. Lin, "A 10-bit 50-MS/s SAR ADC with a monotonic capacitor switching procedure," *IEEE J. Solid-State Circuits*, pp. 731–740, April 2010

Comparison of Switching Procedures

Switching Procedure	Conventional	Split Capacitor	Energy- saving	Proposed
Normalized Switching Power	1	0.63	0.44	0.19
No. of Switches	4 <i>N</i> +10	8 <i>N</i> +6	8 <i>N</i> +2	4N
No. of Capacitors	2N+2	4N	4N-2	2 <i>N</i>
No. of Unit Capacitors in Capacitor Array	2 ^N	2 ^N	2 ^N	2 ^{N-1}

Asynchronous Control Logic and Timing

DAC Control Logic

Change in Asynchronous Control Logic and Timing

Change in DAC Control Logic

Make sure that Outp is settled to a new value before Clkid goes high.

ADC Summary

Specification (Unit)	Experimental Result	
Supply Voltage (V)	1.2	
Input CM Voltage (V)	0.6	
Input Range (V _{p-p})	2	
Sampling Capacitance (pF)	2.5	
Sampling Rate (MS/s)	50	
Active Area (mm²)	0.052	
DNL (LSB)	0.91 / -0.63	
INL (LSB)	1.27 / -1.36	
	57.0 / 65.9 (0.5 MHz)	
SNDR/SFDR (dB)	56.5 / 64.6 (10 MHz)	
	54.4 / 61.8 (50 MHz)	
ENOB (bit)	9.18	
ERBW (MHz)	50	
Power (mW)	0.826	

Fig. 15. Measured 32,768-point FFT spectrum at 50 MS/s.

Fig. 16. Measured dynamic performance versus input frequency at 12 V and 50 MS/s. VDD=1V

Fig. 17. Measured dynamic performance versus sampling frequency.

Simulation Setup with $C_H = 0$

Simulation Result with $C_H = 0$

Simulation Setup with $C_H = 85$

Simulation Result with $C_H = 85$

