Imperial College London

Estimating the male circumcision rates for the evaluation of public health programmes in South Africa

Matthew Thomas

Email: matthew.thomas@imperial.ac.uk

UNAIDS Reference Group Meeting

22nd April 2020

- ▶ Objective: Produce estimates of MC rates and coverage in South Africa
 - District level
 - By age
 - Over time
- Overall MC prevalence combines not only VMMC but also traditional circumcision (TMC)
 - Survey data on the type of circumcisions performed
 - Program data on number of VMMCs

- Five surveys
 - ► SABSSM 2002, 2008, 2012, 2017
 - ▶ DHS 2016
- Variables extracted
 - ▶ Demographics: Age and residence
 - ▶ Circumcision: Status, age at circumcision, where and who circumcised
- Program data
 - Number of circumcisions reported
- ▶ How do we put these things together to get a coherent answer?

MODELLING CIRCUMCISION COVERAGE

- Region-age-time specific circumcision rates
- ► Survival analysis
- ▶ Baseline component
 - Assumed constant over time
 - Represents an underlying rate of circumcision
- Excess component
 - Assumed zero before to 2008
 - Represents circumcisions observed through VMMC programs
- Models fit using Template Model Builder (TMB)

$$\lambda_{\textit{iat}} = \begin{cases} \lambda_{\textit{ia}}^{\textit{base}} & t < 2008 \\ \lambda_{\textit{ia}}^{\textit{base}} + \lambda_{\textit{iat}}^{\textit{VMMC}} & t \geq 2008 \end{cases}$$

MODELLING CIRCUMCISION COVERAGE

Baseline rate

$$\lambda_{ia}^{base} = \alpha + \psi_i + \phi_a + \gamma_{ia}$$

- Region random effect ψ_i (ICAR prior)
- Age random effect ϕ_a (RW2 prior)
- ▶ Interactions -
 - ▶ Region-age: γ_{ia} (ICAR \otimes RW2 prior)

MODELLING CIRCUMCISION COVERAGE

Excess rate

$$\lambda_{iat}^{VMMC} = \alpha + \psi_i + \phi_a + \theta_t + \gamma_{ia} + \delta_{at} + \zeta_{it}$$

- Region random effect ψ_i (ICAR prior)
- Age random effect ϕ_a (RW2 prior)
- Time random effect θ_t (RW2 prior)
- ▶ Interactions -
 - ▶ Region-age: γ_{ia} (ICAR \otimes RW2 prior)
 - ▶ Age-time: δ_{at} (RW2 \otimes RW2 prior)
 - ► Region-time: ζ_{it} (ICAR \otimes RW2 prior)

NATIONAL RESULTS

Figure: Estimated circumcision rates by age between 2005 and 2016 in South Africa. Lines denotes the median and the shaded region denotes the 95% CI.

NATIONAL RESULTS

Figure: Estimated circumcision prevalence by age between 2005 and 2016 in South Africa.

Figure: Estimated baseline circumcision rate by age (fixed over time) in each province of South Africa.

Figure: Estimated VMMC circumcision rates by age between 2007 and 2016 in each province of South Africa.

Figure: Estimated VMMC circumcision rates by age between 2007 and 2016 in each province of South Africa.

Figure: Estimated VMMC circumcision rates by age between 2007 and 2016 in each province of South Africa.

Figure: Estimated VMMC circumcision rates by age between 2007 and 2016 in each province of South Africa.

Figure: Estimated VMMC circumcision rates by age between 2007 and 2016 in each province of South Africa.

Figure: Estimated VMMC circumcision rates by age between 2007 and 2016 in each province of South Africa.

Figure: Estimated VMMC circumcision rates by age between 2007 and 2016 in each province of South Africa.

Figure: Estimated VMMC circumcision rates by age between 2007 and 2016 in each province of South Africa.

Figure: Estimated VMMC circumcision rates by age between 2007 and 2016 in each province of South Africa.

Figure: Estimated VMMC circumcision rates by age between 2007 and 2016 in each province of South Africa.

Figure: Estimated VMMC circumcision rates by age between 2007 and 2016 in each province of South Africa.

Figure: Estimated VMMC circumcision prevalence between 2005 and 2016 in each province of South Africa.

DISTRICT RESULTS

Figure: Estimated baseline circumcision rate by age in 2016 in each district of South Africa.

DISTRICT RESULTS

Figure: Estimated VMMC circumcision prevalence between 2005 and 2016 in each district of South Africa.

Estimate an expected number of circumcisions performed

$$N_{iat} = P_{iat} \times \lambda_{iat}^{VMMC} \times \exp(-\Lambda_{iat})$$

- $ightharpoonup P_{iat}$ Male population aged a, in time t and region i
- λ_{iat}^{VMMC} VMMC circumcision rate for age a, time t and region i λ_{iat}^{iat} Cumulative hazard (total rate) from (0, t a) to (a, t) in region i
- Compare to the number of circumcisions performed

Figure: Estimated number of circumcision between 2012 and 2016 in each province of South Africa, along with the number of circumcisions reported through circumcision programs.

Expected number of circumcisions performed

$$N_{iat} = P_{iat} \times \lambda_{iat}^{VMMC} \times \exp(-\Lambda_{iat})$$

- ▶ Have the number of circumcisions performed in region i and time t, C_{it}
- ▶ Add into the model through a Poisson likelihood

$$C_{it} \sim Poisson\left(\sum_a N_{iat}\right)$$

Figure: Estimated number of circumcision between 2012 and 2016 in each province of South Africa, along with the number of circumcisions reported through circumcision programs.

Figure: Estimated number of circumcision between 2012 and 2016 in each province of South Africa, along with the number of circumcisions reported through circumcision programs.

Figure: Estimated baseline circumcision rates by age in 2016 in each province of South Africa.

Figure: Estimated VMMC circumcision rates by age in 2016 in each province of South Africa.

Figure: Estimated number of circumcision between 2012 and 2016 in each province of South Africa, along with the number of circumcisions reported through circumcision programs.

SUMMARY AND FUTURE WORK

- Produced a model that estimates circumcision rates in South Africa
 - ► National/province level
 - By age
 - Over time
- ► Future work
 - District level estimates
 - Short-term projections
 - Age disaggregates of number of circumcisions performed
 - ► Movement (between districts) for circumcisions
 - Medical vs. traditional circumcision

ANY QUESTIONS?

