

SUSPENSION SUPPORT

Aims

- ⇒ Guarantee the contact between the tires and the road permanently.
- ⇒ Tune the car's handling

Conception steps

Step 1: Wheel rate calculation

Ride frequency chosen and the wheel rate based on it:

	Front	Rear
Ride frequency (Hz)	1.78	1.67
Wheel rate (N/mm)	36.4	32.2

Step 2: Determination of the geometry

Reminder: The motion ratio is defined as:

$$MR = \frac{Wheel\ travel}{Spring\ travel}$$

Hence, we have:

$$MR^2 = \frac{Spring\ rate}{Wheel\ rate}$$

The goal of the geometry was to aim a linear descending motion ratio with a value of 1.1 in static. To reach this value, 2D model were used thanks to Geogebra.

Figure 1: 2D model to determine rear suspension geometry

Figure 2: 2D model to determine front suspension geometry

This lead to the following Motion Ratio curves:

Figure 4: 3D model used to confirm the motion ratio curves