K-Nearest Neighbors

Nipun Batra

July 21, 2025

IIT Gandhinagar

REGRESSION

VORONOL DIAGRAM FOR I-NA

VIDRONOL DIAGRAM FOR I-NN

VINRONOL DIAGRAM FOR I-NN

LINCAR REGRESSION

REGRESSION

KNN IS NON- PARAMETRIC

MODEL

LINEAR

IS NOW- PARAMETRIC

LINEAR MODEL

y = matc (# params = 2)

LINEAR MODEL

S Y = mate (# params = 2)

RNN (K=1)

Pars (LIKE Y = mate

PARAMETRIC

TRARAMS FIXED WRT DATASET SIZE

MAKE ASSUMPTIONS
(LIKE FUNCTIONAL FORM)

SUALLY QUICKER

Eq: LINEAR MODELS,
SUM (LINEAR, POZY NOMIAL)

ON -PARAM ETRIC

PARAMS GROWS WRT DATASET SIZE

SLER ASSUMPTION

Eg: KNN, DT, Sum (with

Parametric vs Non-Parametric Models

	Parametric	Non-Parametric
Parameter	Number of parame-	Number of parame-
	ters is fixed w.r.t	ters grows w.r.t. to
	dataset size	an increase in dataset
		size
Speed	Quicker (as the num-	Longer (as number of
	ber of parameters are	parameters are less)
	less)	
Assumptions	Strong Assumptions	Very few (sometimes
	(like linearity in Linear	no) assumptions
	Regression)	
Examples	Linear Regression	KNN, Decision Tree

Lazy vs Eager Strategies

	Lazy	Eager
Train Time	0	≠ 0
Test	Long (due to compar-	Quick (as only
	ison with train data)	"parameters" are
		involved)
Memory	Store/Memorise en-	Store only learnt pa-
	tire data	rameters
Utility	Useful for online set-	
	tings	
Examples	KNN	Linear Regression,
		Decision Tree

 What are the **features** that will be considered for data similarity?

- What are the **features** that will be considered for data similarity?
- What is the distance metric that will be used to calculate data similarity?

- What are the **features** that will be considered for data similarity?
- What is the distance metric that will be used to calculate data similarity?
- What is the **aggregation function** that is going to be used?

- What are the features that will be considered for data similarity?
- What is the distance metric that will be used to calculate data similarity?
- What is the aggregation function that is going to be used?
- What are the number of neighbors that you are going to take into consideration?

- What are the features that will be considered for data similarity?
- What is the distance metric that will be used to calculate data similarity?
- What is the aggregation function that is going to be used?
- What are the number of neighbors that you are going to take into consideration?
- What is the computational complexity of the algorithm that you are implementing?

Euclidean Distance

Hamming Distance

Manhattan Distance

Choosing the correct value of K is difficult.

Choosing the correct value of K is difficult.

Low values of K will result in each point having a very high influence on the final output ⇒ noise will influence the result

Choosing the correct value of K is difficult.

Low values of K will result in each point having a very high influence on the final output ⇒ noise will influence the result

High values of K will result in smoother decision boundaries ⇒ lower variance but also higher bias

Aggregating data

There are different ways to go about aggregating the data from the K nearest neighbors.

Median

Aggregating data

There are different ways to go about aggregating the data from the ${\sf K}$ nearest neighbors.

- Median
- Mean

Aggregating data

There are different ways to go about aggregating the data from the K nearest neighbors.

- Median
- Mean
- Mode

• Keep the entire dataset: (x, y)

- Keep the entire dataset: (x, y)
- For a query vector *q*:

- Keep the entire dataset: (x, y)
- For a query vector q:
 - 1. Find the k-closest data point(s) x^*

- Keep the entire dataset: (x, y)
- For a query vector *q*:
 - 1. Find the k-closest data point(s) x^*
 - 2. Predict y^*

With an increase in the number of dimensions:

With an increase in the number of dimensions:

1. the distance between points starts to increase

For a unifromly random dataset

With an increase in the number of dimensions:

1. the distance between points starts to increase

With an increase in the number of dimensions:

- 1. the distance between points starts to increase
- 2. the variation in distances between points starts to decrease

With an increase in the number of dimensions:

- 1. the distance between points starts to increase
- 2. the variation in distances between points starts to decrease

For a unifromly random dataset

With an increase in the number of dimensions:

1. the distance between points starts to increase

Due to this, distance metrics lose their efficacy as a similarity metric.

With an increase in the number of dimensions:

- 1. the distance between points starts to increase
- 2. the variation in distances between points starts to decrease

Due to this, distance metrics lose their efficacy as a similarity metric.

Doing an exhaustive search over all the points is time consuming, especially if you have a large number of data points.

Example of a big dataset

Doing an exhaustive search over all the points is time consuming, especially if you have a large number of data points.

If you are willing to sacrifice accuracy there are algorithms that can give you improvements that go into orders of magnitude.

Doing an exhaustive search over all the points is time consuming, especially if you have a large number of data points.

If you are willing to sacrifice accuracy there are algorithms that can give you improvements that go into orders of magnitude.

Such techniques include:

Doing an exhaustive search over all the points is time consuming, especially if you have a large number of data points.

If you are willing to sacrifice accuracy there are algorithms that can give you improvements that go into orders of magnitude.

Such techniques include:

Locality sensitive hashing

Doing an exhaustive search over all the points is time consuming, especially if you have a large number of data points.

If you are willing to sacrifice accuracy there are algorithms that can give you improvements that go into orders of magnitude.

Such techniques include:

- Locality sensitive hashing
- Vector approximation files

Doing an exhaustive search over all the points is time consuming, especially if you have a large number of data points.

If you are willing to sacrifice accuracy there are algorithms that can give you improvements that go into orders of magnitude.

Such techniques include:

- Locality sensitive hashing
- Vector approximation files
- Greedy search in proximity neighborhood graphs

Locality sensitive hashing

Normal hash functions H(x) try to keep the collision of points across bins uniform.

Example of a big dataset

Locality sensitive hashing

Normal hash functions H(x) try to keep the collision of points across bins uniform.

A locality sensitive hash (LSH) function L(x) would be designed such that similar values are mapped to similar bins.

Example of a big dataset

Locality sensitive hashing

A locality sensitive hash (LSH) function L(x) would be designed such that similar values are mapped to similar bins.

For such cases, all elements in a bin would be given the same label, which again can be decided on the basis of different aggregation methods

Example of a big dataset

