Prime specification

Shigeo Hattori

November 10, 2019

First revision: November, 2019

bayship.org@gmail.com

https://github.com/bayship-org/mathematics

1 Prerequisite definitions

$GitHub:Minor_of_memBer.pdf$

In the article above, in its first two pages, all prerequisite definitions for this article are given. Especially, the second page of the above article defines that:

- A memBer as a member of a set.
- A deep member y of a memBer x is calcurated the deep number relative to x.
- Two memBers (x, y) are said (x is a minor of y).

2 Notations

Definition 2.1.

```
"And" is also written as " _{and}\wedge ".
```

 $(x \text{ and} \land y)$ is not commutative because y possibly depends on x.

 $(x \circ_{r} \lor y)$ is not commutative because y possibly depends on $\neg x$.

3 Introduction

All definition D of variables is said a **variable context**.

More precisely, D must be a sequence of sub definitions of which each defines

[&]quot;Or" is also written as " $_{or} \lor$ ".

exactly one variable. And all terms of D must be pairwise in order of depen-	0
dencies, i.e., the dependent appears later.	4
All variable context V is said independent if all term is only dependent of	5
terms in V . All independent variable context V is also said an antecedent context .	7
All variable context V is said a consequent context of an antecedent context	8
A if ((A followed by C) is independent as a new variable context).	9
11 II ((11 followed by C) is independent as a new variable context).	10
In the rest of this section, take $\forall (A,C)$ as an antecedent context A and a	11
consequent context C of A .	12
	13
Take $\forall x$ as a variable of A. Then x is said specified if x represents exactly one	14
entity.	15
For example, $x := 1$ then x is said specified; $\forall x :\in \mathbb{N}$ then x is not specified; let	16
x be a point then x is not specified.	17
	18
Take $\forall x$ as a variable of C . Then x is said specified relatively to A if (19
x represents exactly one entity if you assume that all variables of A are specified	20
).	21
For example, let A define $\forall n :\in \mathbb{N}$ and C define $x := n + 1$. Then x is specified	22
relatively to A because if n had been specified in A then x represented exactly	23
one natural number.	2 4
	25
	26
Take $\forall (x,y)$ as (a variable x of C) and (a deep member y of x such that y's	27
deep number relative to x is countable). Then y is said specified relatively to A	28
if x is specified relatively to A .	29
Take $\forall x$ as a variable of C such that x is specified relatively to A .	30 31
Then x is said primary specified relatively to A if $\neg(*1 \text{ and} \land *2 \text{ and} \land *3)$.	32
	02
1. x^{-1} is a set.	33
2. There exists $\exists N : \subset \mathbb{N}$ as a countable index set.	34
3. There exists $\exists \{S\}_{i \in N}$ as a collection of sets bijectively indexed by N such	35
that (*a1 $and \wedge \dots and \wedge *a3$).	36
a1. $x = \bigcup_{i \in N} S_i$	37

 1 As a value, x is a set.

a2. Take $\forall (i,j) :\in N$ such that $i \neq j$. Then $S_i \cap S_j \neq \emptyset$.	38
a3. Take $\forall i :\in \mathbb{N}$. Then C specifies S_i relatively to A .	39
	40
For example, let A define (X, T, M) as the Euclidean space of 2-dimension where	41
needless to say no absolute coordinate system is defined.	42
Then (C probably can define x to be prime specified)	43
as x:="the set of all topological equivalences of a line segment in (X, T, M) ".	44
4 Conjecture	45
Conjecture 4.1 (Conjecture).	46
	47
	48
	49
	50
	51
	52
variable x of C .	53
If $*1$ holds then x is a minor of T .	54
1. x is primary specified relatively to A .	55
5 Examples	56
This section just gives examples of substituting actual values into variables of	57
	58
	59
Definition 5.1 (Unknot).	60
Refer to the main conjecture for (n, X, T, M) .	61
Take $\forall k1$ as an unknot such that $\operatorname{Space}(k1) \subset X$.	62
For the main conjecture, this example substitutes values	63
into (n, x) as $(*1 _{and} \land{and} \land *7)$.	64
1. Let $n := 3$.	65
2. Let $K := \{k \mid ((T, k), (T, k1)) \text{ are isomorphic } \}.$	66
3. Take $\forall k : \in K$.	67

4. $f1(k) := \{d \mid d \text{ is a proper knot diagram of } k\}$.

5. $f2(k) := \{r \mid 69$ $\exists d :\in f1(k) \ _{and} \land$ r is the number of crossings on d $}$.

6. f(k) := "the maximum number of f2(k).

7. $x := \{k \mid f(k) = f(k1)\}$.