Random Value Function Iteration for Dynamic Programming

Jenö Pál John Stachurski

Central European University

Australian National University

July 2011

What's it about?

Topic: Numerical Dynamic Programming

What we do:

- Consider a continuous state stochastic DP problem
- Propose solution method: variation of value function iteration
- Analyze algorithm, show convergence

Objectives:

- Algorithm works for a very general class of stochastic DPs
- Guaranteed convergence

Related Literature

Closest papers:

- Szepesvári and Munos (2008)
- Rust's curse-of-dimensionality paper (1997)

Our setting is somewhat less restrictive

Generic Dynamic Programming Problem

while 1:

- \circ Agent observes state $x \in \mathbb{X}$ of a given system
- \circ Responds with action $a \in \mathbb{A}$ from feasible set $\Gamma(x) \subset \mathbb{A}$
- \circ Receives current reward $r(x,a) \in \mathbb{R}$
- \circ Current shock U drawn from distribution ϕ
- \circ New state determined as x' = F(x, a, U)

Examples:

• Most stationary DP problems

Assumptions:

- State and action spaces are compact metric spaces
- Functions and correspondences are continuous

Value Function Iteration

Figure: VFI for the optimal consumption model

Let

- $\mathscr{C}(\mathbb{X})$ be all continuous $w \colon \mathbb{X} \to \mathbb{R}$
- $T : \mathscr{C}(\mathbb{X}) \to \mathscr{C}(\mathbb{X})$ be the Bellman operator

$$Tw(x) := \max_{a \in \Gamma(x)} \left\{ r(x, a) + \rho \int w[F(x, a, u)] \phi(du) \right\}$$

• $V_T \in \mathscr{C}(\mathbb{X})$ be the value function

Standard results:

- V_T is the unique fixed point of T
- $||T^k w V_T|| = O(\rho^k)$ for all $w \in \mathscr{C}(\mathbb{X})$

Numerical Issue Number 1: Numerical Integration

Consider iterating with Bellman operator

$$Tw(x) := \max_{a \in \Gamma(x)} \left\{ r(x, a) + \rho \int w[F(x, a, u)] \phi(du) \right\}$$

Must approximate integral for many different a, x and w

To compute integrals we use Monte Carlo:

- 1. Draw $\{U_i\}_{i=1}^n \stackrel{\text{IID}}{\sim} \phi$ using r.n.g.
- 2. Replace the Bellman operator

$$Tw(x) := \max_{a \in \Gamma(x)} \left\{ r(x, a) + \rho \int w[F(x, a, u)] \phi(du) \right\}$$

with R_n , where

$$R_n w(x) := \max_{a \in \Gamma(x)} \left\{ r(x, a) + \rho \frac{1}{n} \sum_{i=1}^n w[F(x, a, U_i)] \right\}$$

Numerical Issue Number 2: Function Approximation

Recall definition of R_n

$$R_n w(x) := \max_{a \in \Gamma(x)} \left\{ r(x, a) + \rho \frac{1}{n} \sum_{i=1}^n w[F(x, a, U_i)] \right\}$$

When X infinite,

- cannot evaluate $R_n w(x)$ at all x in finite time
- cannot store $R_n w(x)$ at all x with finite memory

Function approximation step:

Introduce approximation operator $A \colon \mathscr{C}(\mathbb{X}) \to \mathscr{C}(\mathbb{X})$ s.t.

ullet Aw= finite parametric representation of w

Restriction: A is nonexpansive on $\mathscr{C}(\mathbb{X})$:

$$\|Aw - Aw'\| \le \|w - w'\| \quad \text{for all } w, w' \in \mathscr{C}(\mathbb{X})$$

(Kernel smoothers, continuous piecewise linear interpolation, etc.)

Lemma: If A is nonexpansive and M is a contraction of mod ρ , then $AM=A\circ M$ is a contraction of mod ρ

The Algorithm: Iterate with AR_n instead of T

Error Analysis

The following operators are contractions of mod ρ :

- T (obvious)
- AT (because A nonexpansive)
- AR_n (for each $n \in \mathbb{N}$, almost surely)

Corresponding fixed points:

- V_T fixed point of T (value function)
- V_{AT} fixed point of AT
- V_{AR_n} fixed point of AR_n (random)

What we want to compute: V_T (value function)

What we can compute: V_{AR_n} (up to any tolerance)

Error decomposition:

$$||V_T - V_{AR_n}|| \le ||V_T - V_{AT}|| + ||V_{AT} - V_{AR_n}|| =: \mathbf{FA} + \mathbf{NI}$$

- FA := Function approximation error
- NI := Numerical integration (Monte Carlo) error

Results

1. Regarding the function approximation error,

$$orall \, arepsilon > 0, \; \exists \, A \; \mathsf{such \; that \; } \mathbf{FA} := \|V_T - V_{AT}\| < arepsilon$$

2. Without any additional conditions,

$$\mathbf{NI} = ||V_{AT} - V_{AR_n}|| \to 0 \qquad (\mathbf{P}^* \text{-a.s.})$$

3. With some additional conditions,

$$NI = ||V_{AT} - V_{AR_n}|| \le \mathcal{E}_n = O_P(n^{-1/2})$$

Sketch of proof that $\mathbf{NI} = \|V_{AT} - V_{AR_n}\| \to 0$ \mathbf{P}^* -a.s.

We show that

$$\begin{split} \|V_{AT} - V_{AR_n}\| &\leq \text{ const. } \times \\ \max_{(x,a) \in \mathbb{G}} \left| \frac{1}{n} \sum_{i=1}^n V_{AT}[F(x,a,U_i)] - \int V_{AT}[F(x,a,u)] \phi(du) \right| \end{split}$$

We can write this as

$$||V_{AT} - V_{AR_n}|| \le c \cdot \sup_{h \in \mathcal{H}} \left| \frac{1}{n} \sum_{i=1}^n h(U_i) - \int h(u)\phi(du) \right|$$

When does r.h.s. $\rightarrow 0$?

A sufficient condition: \mathcal{H} consists of functions $h_{\alpha} \colon \mathbb{U} \to \mathbb{R}$ with index α in metric space Λ where

- 1. Λ is compact
- 2. $\Lambda \ni \alpha \mapsto h_{\alpha}(u) \in \mathbb{R}$ is continuous for every $u \in \mathbb{U}$
- 3. $\exists H \colon \mathbb{U} \to \mathbb{R} \text{ s.t. } \int H d\phi < \infty \text{ and } |h_{\alpha}| \leq H \text{ for every } \alpha \in \Lambda$

These conditions easily verified for our set of functions

$$h_{a,x}(\cdot) = V_{AT}[F(x,a,\cdot)]$$
 with $(a,x) \in \mathbb{G}$

Final Comments

Why Not Just Discretize?

Because:

- Analysis of errors more problematic
- Curse of dimensionality

Example: In engineering and other sciences, discrete problems often replaced with continuous ones to make them tractable

Why Bother with Error Analysis?

Errors propagated at each iteration of approx. Bellman operator

Figure: Iteration with nearby maps