$$f'(\xi) \cdot \frac{f(b) - f(a)}{e^b - e^a} = \frac{f(b) - f(a)}{b - a} \cdot \frac{f'(\tau)}{e^{\tau}}$$
(1)

成立,由 f(x) 在[a,b]上满足拉格朗日定理条件,有 $f'(\xi) = \frac{f(b) - f(a)}{b-a}$ (2)

又
$$f(x)$$
, e^x 在 $[a,b]$ 上满足柯西定理条件,有 $\frac{f(b)-f(a)}{e^b-e^a}=\frac{f'(\tau)}{e^\tau}$. (3)

即等式(1)成立,由每一步可逆,所以原等式成立.

13.设 f(x) 可微,证明 f(x) 的任意两个零点之间必有 f(x) + f'(x) 的零点.

证 由条件知,存在 $x_1, x_2 \in (-\infty, +\infty)$, 且 $x_1 < x_2$, 使 $f(x_1) = 0$, $f(x_2) = 0$. 要证结论成立,只要证[f(x) + f'(x)] $e^x = 0$ 在 x_1, x_2 之间有一个根.

设 $F(x) = f(x)e^x$, 有 $F'(x) = [f(x) + f'(x)]e^x$, 只要证至少存在一点 $\xi \in (x_1, x_2)$ 使 $F'(\xi) = 0$ (1) 成立, 由 F(x) 在 $[x_1, x_2]$ 上连续, 在 $[x_1, x_2]$ 内 可导, 且 $F(x_1) = f(x_1)e^{x_1} = 0 = F(x_2) = f(x_2)e^{x_2}$. 根据罗尔定理知至少存在一点 $\xi \in (x_1, x_2)$, 使 $F'(\xi) = 0$, 即等式(1) 成立, 由每一步可逆, 所以结论成立.

14. 设 f(x) 在[0,2]上连续,在(0,2) 内可导,且有 f(2) = 5f(0),试证明在(0,2) 内至少存在一点 ξ ,使得 $(1+\xi^2)f'(\xi) = 2\xi f(\xi)$.

证 要证原等式成立,只要证
$$\frac{(1+\xi^2)f'(\xi)-2\xi f(\xi)}{(1+\xi^2)^2}=0$$

成立, 只要证
$$\left[\frac{(1+x^2)f'(x)-2xf(x)}{(1+x^2)^2}\right]_{x=\xi} = 0$$
, 成立, 只要证 $\left[\frac{f(x)}{1+x^2}\right]'_{x=\xi} = 0$ 成立, 设 $F(x) = \frac{f(x)}{1+x^2}$, 只要证 $F'(\xi) = 0$ (1)

成立,由 F(x) 在[0,2]上连续,在(0,2) 内 可导,又 f(2) = 5f(0) 或 $\frac{f(2)}{5} = f(0)$,知 $F(0) = f(0) = F(2) = \frac{f(2)}{1+2^2} = \frac{f(2)}{5}$

根据罗尔定理,至少存在一点 $\xi \in (0,2)$,使 $F'(\xi) = 0$,即等式(1)成立,由每一步可逆,所以原等式成立.

15. 设 f(x) 在[a,b]上三阶可导,证明至少存在一点 $\xi \in (a,b)$,有

$$f(b) = f(a) + (b-a)f'(\frac{a+b}{2}) + \frac{1}{24}(b-a)^3 f'''(\xi).$$

证
$$\Rightarrow \frac{24}{(b-a)^3} [f(b) - f(a) - f'(\frac{a+b}{2})(b-a)] = k, 有$$

 $f(b) - f(a) - f'(\frac{a+b}{2})(b-a) - \frac{1}{24}k(b-a)^3 = 0,$ 其中 k 为常数, 只要证 $k = f'''(\epsilon)$.

设 $F(x) = f(x) - f(a) - f'(\frac{a+x}{2})(x-a) - \frac{1}{24}k(x-a)^3$, 则 F(x) 在[a,b] 上满足罗尔定理条件,故存在一点 $c \in (a,b)$,使

$$F'(c) = f'(c) - f'(\frac{a+c}{2}) - \frac{1}{2}(c-a)f''(\frac{a+c}{2}) - \frac{1}{8}k(c-a)^2$$

对 f'(x) 在点 $\frac{1}{2}(a+c)$ 处应用一阶泰勒公式,有

$$f'(c) = f'(\frac{a+c}{2}) + f''(\frac{a+c}{2})(c - \frac{a+c}{2}) + \frac{1}{2!}f'''(\xi)(c - \frac{a+c}{2})^2,$$

其中 $\xi \in (\frac{a+c}{2},c) \subset (a,b)$ 把它代入上式得 $k=f'''(\xi)$, 所以原等式成立。

16. 设 f(x) 在 [a,b]上可导, [a,b] 上可导, [a,b] ([a,b]) 一切适合不等式 f'(a) < c < f'(b) 的 [c,b] 存在 [c,b] 使 [c,b] 使 [c,b] 一定 (导数的价值定理或导数的达布定理).

证 任给常数 c, 且 f'(a) < c < f'(b), 设 F(x) = f(x) - cx, 有 F'(x) = f'(x) - c, 而且 F'(a) = f'(a) - c < 0, F'(b) = f'(b) - c > 0,

由导数定义知 $\lim_{x \to a^+} \frac{F(x) - F(a)}{x - a} = F'(a) < 0$, 由极限的保号性知, 存在 $\delta_1 > 0$, 当 $x \in (a, a + \delta_1)$ 时, $\frac{F(x) - F(a)}{x - a} < 0$. 由 x - a > 0, 得 F(x) - F(a) < 0, 取 $x_1 \in (a, a + \delta_1)$, $F(x_1) - F(x) < 0$ 或 $F(x_1) < F(a)$ 又 $\lim_{x \to a^+} \frac{F(x) - F(b)}{x - b} = F'(b) > 0$,

同理存在 $\delta_2 > 0$ (使 $b - \delta_2 > x_1$), 当 $x_2 \in (b - \delta_2, b)$, $F(x_2) - F(b) < 0$ 或 $F(x_2)$ < F(b), 且 $x_1 < x_2$ 由 F(x) 在区间 [a, b] 上连续, 根据最大值最小值定理存在一点 $\xi \in [a, b]$, 使 F(x) 在 ξ 取到最小值, 且 $\xi \neq a$, $\xi \neq b$, 知 $\xi \in (a, b)$, 知, ξ 也是 F(x) 在 $\{a, b\}$ 内的极小值, 又 $F'(\xi)$ 存在, 由费马定理知 $F'(\xi) = 0$, 即 $f'(\xi) = c$.

17.设 f(x) 二阶可导,且在[0,a]内某点取到最大值,对一切 $x \in [0,a]$,都有 $|f''(x)| \leq m(m)$ 为常数),证明 $|f'(0)| + |f'(a)| \leq am$,

证 由条件知存在 $x_0 \in (0, a)$, 使 $f(x_0)$ 为最大值, 则 $f(x_0)$ 也是极大值, 又 $f'(x_0)$ 存在, 由费马定理知 $f'(x_0) = 0$. 于是

$$\begin{aligned} &|f'(0)| + |f'(a)| = |f'(x_0) - f'(0)| + |f'(a) - f'(x_0)| \\ &= |f'(\xi_1)(x_0 - 0)| + |f'(\xi_2)(a - x_0)| \leqslant mx_0 + m(a - x_0) = am. \end{aligned}$$

18. 设 f''(x) < 0, f(0) = 0, 证明任给 $x_1, x_2 > 0$, 有 $f(x_1 + x_2) < f(x_1) + f(x_2)$.

证法一
$$\Leftrightarrow F(x) = f(x + x_2) - f(x)$$
则

 $F'(x) = f'(x + x_2) - f'(x) = x_2 f''(x + \theta x_2) < 0, 0 < \theta < 1,$

所以 F(x) 单调减小,又 $x_1 > 0$,故 $F(x_1) < F(0)$,即

$$f(x_1 + x_2) - f(x_1) < f(x_2) - f(0)$$
.

但 f(0) = 0, 故 $f(x_1 + x_2) < f(x_1) + f(x_2)$.

证法二 不妨设 $x_1 \leqslant x_2 (x_2 \leqslant x_1$ 时类似可证),则由拉格朗日中值定理可得

$$f(x_1) - f(0) = x_1 f'(\xi_1), \qquad 0 < \xi_1 < x_1,$$

$$f(x_1 + x_2) - f(x_2) = x_1 f'(\xi_2), x_2 < \xi_2 < x_1 + x_2.$$

又已知 f'(x) < 0, 故 $f'(\xi_2) < f'(\xi_1)$. 比较以上两式即得

$$f(x_1 + x_2) < f(x_1) + f(x_2).$$

19. 证明当 x > 0, y > 0 及 $0 < \alpha < \beta$ 时, 有 $(x^{\alpha} + y^{\alpha})^{\frac{1}{\alpha}} > (x^{\beta} + y^{\beta})^{\frac{1}{\beta}}$.

证 要证原不等式成立,只要证
$$(x^{\alpha})^{\frac{1}{\alpha}} \left[1 + (\frac{y}{x})^{\alpha}\right]^{\frac{1}{\alpha}} > (x^{\beta})^{\frac{1}{\beta}} \left[1 + (\frac{y}{x})^{\beta}\right]^{\frac{1}{\beta}}$$

或
$$\left[1+(\frac{y}{x})^{\alpha}\right]^{\frac{1}{\alpha}} > \left[1+(\frac{y}{x})^{\beta}\right]^{\frac{1}{\beta}}$$
 成立,不妨设 $y \geqslant x$,设 $\frac{y}{x} = c \geqslant 1$,只要证

 $0 < \alpha < \beta$ 时, $(1 + c^{\alpha})^{\frac{1}{\alpha}} > (1 + c^{\beta})^{\frac{1}{\beta}}$ 成立. 设 $f(t) = (1 + c^{t})^{\frac{1}{\ell}}$,只要证 $0 < \alpha < \beta$ 时, $f(\alpha) > f(\beta)$ (1) 成立,由 f(t) 在 $[\alpha, \beta]$ 上连续, $t \in (\alpha, \beta)$ 时,

$$f'(t) = \left[e^{\frac{\ln(1+c^{t})}{t}}\right]' = (1+c^{t})^{\frac{1}{t}} \cdot \frac{\frac{tc^{t}\ln c}{1+c^{t}} - \ln(1+c^{t})}{t^{2}}$$

 $= (1 + c^t)^{\frac{1}{t}} \cdot \frac{c^t \ln c^t - (1 + c^t) \ln (1 + c^t)}{t^2 (1 + c^t)} < 0, \text{知 } f(t) \ \text{在}[\alpha, \beta] 上严格递减, 故$

 $\alpha < \beta$ 时, $f(\alpha) > f(\beta)$ 即不等式(1) 成立, 由每一步可逆, 所以原不等式成立.

20. 设
$$p, q$$
 均是大于 1 的常数, 且 $\frac{1}{p} + \frac{1}{q} = 1$, 证明任给 $x > 0$, 都有 $\frac{1}{p}x^p + \frac{1}{q} \ge x$.

$$\mathbf{ii} \quad \Leftrightarrow f(x) = \frac{1}{p} x^p + \frac{1}{q} - x, \quad \text{if } f'(x) = x^{p-1} + 1, \quad f''(x) = (p-1) x^{p-2}.$$

令 f'(x) = 0, 得 x = 1. 由 f''(1) = p - 1 > 0, 知当 x = 1 时, f(x) 取极小值, 即最

小值, 从而当
$$x > 0$$
 时, 有 $f(x) \ge f(1) = 0$, 即 $\frac{1}{p}x^p + \frac{1}{q} \ge x$.

21.设 $x \in (0,1)$,证明

(1)
$$(1+x)\ln^2(1+x) < x^2$$
; (2) $\frac{1}{\ln 2} - 1 < \frac{1}{\ln(1+x)} - \frac{1}{x} < \frac{1}{2}$.
证 (1) $\Leftrightarrow \varphi(x) = (1+x)\ln^2(1+x) - x^2$, 则有 $\varphi(0) = 0$, $\varphi'(x) = \ln^2(1+x) + 2\ln(1+x) - 2x$, $\varphi'(0) = 0$.

因为当 $x \in (0,1)$ 时, $\varphi''(x) = \frac{2}{1+x} [\ln(1+x) - x] < 0$, 所以 $\varphi'(x) < 0$, 从而 $\varphi(x) < 0$, 即 $(1+x)\ln^2(1+x) < x^2$.

(2) 令
$$f(x) = \frac{1}{\ln(1+x)} - \frac{1}{x}$$
, $x \in (0,1]$, 则有 $f'(x) = \frac{(1+x)\ln^2(1+x) - x^2}{x^2(1+x)\ln^2(1+x)}$.
由(1) 知, $f'(x) < 0$ (当 $x \in (0,1)$), 于是推知在(0,1) 内 $f(x)$ 单调减少. 又 $f(x)$ 在区间(0,1) 上连续, 且 $f(1) = \frac{1}{\ln 2} - 1$, 故当 $x \in (0,1)$ 时,

$$f(x) = \frac{1}{\ln(1+x)} - \frac{1}{x} > \frac{1}{\ln 2} - 1.$$

不等式左边证毕,又

$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \frac{x - \ln(1+x)}{x \ln(1+x)} = \lim_{x \to 0^+} \frac{x - \ln(1+x)}{x^2} = \lim_{x \to 0^+} \frac{x}{2x(1+x)} = \frac{1}{2}$$
 故当 $x \in (0,1)$ 时, $f(x) = \frac{1}{\ln(1+x)} - \frac{1}{x} < \frac{1}{2}$. 不等式右边证明.

22. 证明 $\frac{1}{2^{p-1}} \leqslant x^p + (1-x)^p \leqslant 1 \quad (0 \leqslant x \leqslant 1, p > 1)$.

证 设 $f(x) = x^p + (1-x)^p$, 由 f(x) 在 [0,1] 上连续, 故一定能取到最大值 M 与最小值 m. 由于 $f'(x) = px^{p-1} - p(1-x)^{p-1}$, 令 f'(x) = 0, 解得 $x = \frac{1}{2}$. 且 f(x) 在 (0,1) 内无导数的不存在的点。而 f(0) = 1, f(1) = 1, $f(\frac{1}{2}) = \frac{1}{2^p} + \frac{1}{2^p} = \frac{1}{2^{p-1}} < 1$, 则 $m = \frac{1}{2^{p-1}}$, M = 1. 因此, 对一切 $x \in [0,1]$, 都有 $\frac{1}{2^{p-1}} \le x^p + (1-x)^p \le 1$.

23. 试证: 当
$$x > 0$$
 时, $(x^2 - 1) \ln x \ge (x - 1)^2$

证法一
$$\Leftrightarrow \varphi(x) = (x^2 - 1) \ln x - (x - 1)^2$$
, 易知 $\varphi(1) = 0$. 由于

$$\varphi'(x) = 2x \ln x - x + 2 - \frac{1}{x}, \varphi'(1) = 0,$$

$$\varphi''(x) = 2\ln x + 1 + \frac{1}{x^2}, \varphi''(1) = 2 > 0, \varphi'''(x) = \frac{2(x^2 - 1)}{x^3},$$

故当 0 < x < 1 时 $\varphi'''(x) < 0$; 当 $1 < x < + \infty$ 时 $\varphi'''(x) > 0$, 从而当 $x \in (0, +\infty)$ 时 $\varphi''(x) > 0$.

由 $\varphi'(1) = 0$ 推知当 0 < x < 1 时 $\varphi'(x) < 0$; 当 $1 < x < + \infty$ 时 $\varphi'(x) > 0$. 再由 $\varphi(1) = 0$ 推知当 x > 0 时 $(x^2 - 1) \ln x \geqslant (x - 1)^2$.

证法二 令
$$\varphi(x) = \ln x - \frac{x-1}{x+1}$$
, 则 $\varphi'(x) = \frac{1}{x} - \frac{2}{(x+1)^2} = \frac{x^2+1}{x(x+1)^2} > 0$ (当 $x > 0$). 因为 $\varphi(1) = 0$, 所以当 $0 < x < 1$ 时, $\varphi(x) < 0$; 当 $1 < x < + \infty$ 时, $\varphi(x) > 0$. 于是当 $x > 0$ 时, $(x^2 - 1)\varphi(x) = (x^2 - 1)\ln x - (x - 1)^2 \ge 0$, 即 $(x^2 - 1)\ln x \ge (x - 1)^2$.

证法三 当
$$x \neq 1$$
 时, $(x^2 - 1)\ln x - (x - 1)^2 = (x - 1)^2 \left[\frac{\ln x}{x - 1}(x + 1) - 1\right]$

$$= (x - 1)^2 \left[\frac{\ln x - \ln 1}{x - 1}(x + 1) - 1\right] = (x - 1)^2 \left[\frac{1}{\varepsilon}(x + 1) - 1\right] (\text{由拉朗日定理知})$$
由 ε 介 T 1, x 之间,当 $0 < x < 1$,知 $x < \varepsilon < 1$,得 $0 < \varepsilon < 1 + x$,当 $1 < x$,知
$$1 < \varepsilon < x$$
 得 $0 < \varepsilon < 1 + x$,总有 $\frac{1 + x}{\varepsilon} > 1$,从而 $(x^2 + 1)\ln x - (x - 1)^2 > 0$
当 $x = 1$ 时, $(x^2 - 1)\ln x = (x - 1)^2 = 0$ 故 $x > 0$ 时, $(x^2 - 1)\ln x \geqslant (x - 1)^2$ 进一步,我们还可以证明:当 $x > 0$ 时 $(x^2 - 1)\ln x \geqslant 2(x - 1)^2$.
事实上,令 $\varphi(x) = (x + 1)\ln x$,则 $\varphi(1) = 0$, $\varphi'(x) = \ln x + (x + 1)/x$, $\varphi'(1) = 2\varphi''(x) = \frac{x - 1}{x^2}$. 在 $x = 1$ 处,利用 Taylor 公式,得
$$\varphi(x) = \varphi(1) + \varphi(1)(x - 1) + \varphi''(\varepsilon) \frac{(x - 1)^2}{2} (\varepsilon + x + 1) = 2(x - 1)^2 + \frac{(x - 1)^2}{2} \cdot \frac{\varepsilon - 1}{\varepsilon^2}$$
或 $(x^2 - 1)\ln x = 2(x - 1)^2 + \frac{(x - 1)^3}{2} \cdot \frac{\varepsilon - 1}{\varepsilon^2}$
当 $x > 0$ 时, $\frac{(x - 1)^3(\varepsilon - 1)}{\varepsilon^2} \geqslant 0$,从而有 $(x^2 - 1)\ln x \geqslant 2(x - 1)^2$.