SRFeat

SRFeat: Single Image Super-Resolution with Feature Discrimination

SRFeat - Objective

- Super-resolution
- GAN-based method

• Use multiple discriminator

SRFeat - Contribution

- New Generator network
 - Residual block & long-range connection

- Use feature discriminator
 - Previous GAN often make meaningless HR feature(not realistic)
 - Make realistic structural component

SRFeat - Architecture

Generator

- Generating high-resolution image
- Stacked 16 residual blocks(128 channels) + 15 long-range connections
- 2 Sub-pixel convolution blocks (for upscaling)

SRFeat - Architecture

Discriminator

- Discriminate generated/real image
- Stacked conv blocks + Dense layer
- Use two discriminators
 - 1. Image discriminator : pixel domain
 - 2. Feature discriminator : structural components

- Training (2 phases)
 - 1. Pre-training (with MSE loss)
 - <Dataset>
 - Use COCO 2017 dataset (116620 images)
 - Apply center crop : 296 X 296
 - HR/LR: 296 X 296 / 74 X 74
 - <Hyperparameters>
 - Batch size : 9 (≈ 12958 iterations/epoch)
 - Epochs: 20 (about 260 thousand iterations)
 - Learning rate : $10^{-4} \rightarrow 10^{-5}$ (10 epoch~) $\rightarrow 10^{-6}$ (15 epoch~)

- Training (2 phases)
 - * Loss function MSE loss

$$L_{MSE} = \frac{1}{WHC} \sum_{i}^{W} \sum_{j}^{H} \sum_{k}^{C} (I_{i,j,k}^{h} - I_{i,j,k}^{g})^{2}.$$

- Use Image pairs
- Sum of difference between two corresponding pixels in images
- Guarantees high PSNR, but not guarantees high perceptual quality!

- Training (2 phases)
 - 2. GAN training
 - <Dataset>
 - Use DIV2K Dataset (800 -> 104000, augmented by the author's MATLAB script)
 - Apply random flip, rotation, crop
 - HR/LR: 296 X 296 / 74 X 74
 - <Hyperparameters>
 - Batch size : 5 (20800 iterations/epoch)
 - Epochs: 5 (about 104,000 iterations)
 - Learning rate : $10^{-4} \rightarrow 10^{-5}$ (3 epoch~) $\rightarrow 10^{-6}$ (last epoch)

- GAN Training
 - * Loss function perceptual loss

$$L_p = \frac{1}{W_m H_m C_m} \sum_{i}^{W_m} \sum_{j}^{H_m} \sum_{k}^{C_m} \left(\phi_{i,j,k}^m(I^h) - \phi_{i,j,k}^m(I^g) \right)^2$$

- MSE about Image feature pairs
- We can measure feature-wise difference
- Can improve perceptual quality

- GAN Training
 - * Loss function perceptual loss

- GAN Training
 - * Loss function Image Discriminator

$$L_a^i = -\log(d^i(I^g)), \quad \text{and}$$

$$L_d^i = -\log(d^i(I^h)) - \log(1 - d^i(I^g))$$

- Pixel-wise discriminator
- Discriminate fake/real image
- Can improve perceptual quality significantly

- GAN Training
 - * Loss function Feature Discriminator

$$L_a^f = -\log\left(d^f\left(\phi^m\left(I^g\right)\right)\right), \quad \text{and}$$

$$L_d^f = -\log\left(d^f\left(\phi^m\left(I^h\right)\right)\right) - \log\left(1 - d^f\left(\phi^m\left(I^g\right)\right)\right)$$

- Feature-wise discriminator
- Discriminate fake/real image features
- Can improve realistic(meaningful) structural feature

- GAN Training
 - * Loss function Final

$$L_g = L_p + \lambda \left(L_a^i + L_a^f \right)$$

- $\lambda = 10^{-3}$
- Pixel values of input feature maps for L_p and L_a^f are scaled to 1/12.75 of its original value.

SRFeat - Result

• Training Curve (pre-training)

Validation result

Dataset	PSNR(dB)
BSD100	25.78
Set14	26.38
Set5	30.56

SRFeat - Result

• Fully-Trained Network

<Fully-train>

SRFeat - Result

<Fully-train>

SRFeat - Verification

• Verification of the effectiveness of the feature discriminator

Version	Pretrained	Trained with Discriminators(epoch 3)	Trained with Discriminators(final)	Target
Feature				

SRFeat - Verification

• Verification of the effectiveness of the feature discriminator

Version	Pretrained	Trained with Discriminators(epoch 3)	Trained with Discriminators(final)	Target
Feature				

Enhanced Resblock (NotBN block)

- From EDSR paper (CVPRW 2017)
- BN layers get rid of range flexibility from networks!
- So, let's remove them!

Lim et al., Enhanced Deep Residual Networks for Single Image Super-Resolution

NotBN Generator

- Generating high-resolution image
- Stacked 16 NotBN residual blocks + 15 long-range connections
- 2 Sub-pixel convolution blocks (for upscaling)

Cosine Annealing

- From SGDR paper (ICLR 2017)
- Change Ir along the cosine curve
 - 1. More stable training
 - 2. Get better performance (probably)
- In this problem, I set the learning rate to reach the 10^{-6} at 15 epoch.

Ilya Loshchilov, Frank Hutter, "SGDR: Stochastic Gradient Descent with Warm Restarts"

Training Curve (NotBN pre-training)

Validation result

Dataset	PSNR(dB)		
	BN	NotBN	
BSD100	25.78	25.82	
Set14	26.38	26.44	
Set5	30.56	30.72	

• Fully-Trained Network

• Fully-Trained Network

<Original>

<NotBN>

