Edinburgh Biodiversity

Tash Ramsden

11/08/2021

```
A <- c("a", "a", "b", "b")
B \leftarrow c(5, 10, 15, 20)
dataframe <- data.frame(A, B)</pre>
print(dataframe)
     A B
## 1 a 5
## 2 a 10
## 3 b 15
## 4 b 20
A <- c("a", "a", "b", "b")
B \leftarrow c(5, 10, 15, 20)
dataframe <- data.frame(A, B)</pre>
print(dataframe)
##
     A B
## 1 a 5
## 2 a 10
## 3 b 15
## 4 b 20
boxplot(B~A,data=dataframe)
```



```
library(knitr)
kable(dataframe, digits = 2)
```

```
A B a 5 a 10 b 15 b 20
```

```
library(pander)
plant <- c("a", "b", "c")
temperature <- c(20, 20, 20)
growth <- c(0.65, 0.95, 0.15)
dataframe <- data.frame(plant, temperature, growth)
emphasize.italics.cols(3)  # Make the 3rd column italics
pander(dataframe)  # Create the table</pre>
```

plant	temperature	growth	
a	20	0.65	
b	20	0.95	
С	20	0.15	

Plant	Temp.	Growth	
Α	20	0.65	
В	20	0.95	
С	20	0.15	

```
library(broom)
library(pander)
A <- c(20, 15, 10)
B <- c(1, 2, 3)

lm_test <- lm(A ~ B)  # Creating linear model

table_obj <- tidy(lm_test)  # Using tidy() to create a new R object called table

pander(table_obj, digits = 3)  # Using pander() to view the created table, with 3 sig figs</pre>
```

term	estimate	std.error	statistic	p.value
(Intercept)	25	4.07e-15	6.14e+15	1.04e-16
	-5	1.88e-15	-2.65e+15	2.4e-16