Introduction to Neural Networks and Backpropagation

Computing Science
University of Alberta
Nilanjan Ray

Agenda

- What is a Neural Net?
 - Neural net as a computational graph
- Approximating "XOR" function with neural net
- Applying a neural net to classify MNIST
- Universal function approximation by a neural net
- (re)Introduction to gradient descent optimization
- Chain rule of derivatives
- Understanding backpropagation algorithm

Feed forward neural network

Feed forward net: non-linear functions

- Non-linear functions at hidden nodes are known as "activation function"
 - Sigmoid, ReLU, ELU,

Feedforward net in general: Directed acyclic graph

What's the big deal about neural net?

- Mathematically rich: it can approximate any function
- It is biologically inspired: (loosely) resembles brain connections
- Computationally:
 - Simple: matrix-vector multiplication and point-wise non-linear function
 - Highly paralleizable: cuBLAS, GEMM, Batched GEMM!
- Excellent empirical results on "generalization capability" over variety of applications!

Neural network as a computational graph

$$\sigma(a) = \frac{1}{1 + \exp(-a)}$$

Sigmoid function; applied pointwise to a vector or matrix input

This network is trying to learn XOR function

Ideal output (4x1 vector)

See Learn_XOR.ipynb

How does PyTorch optimize parameters?

- By gradient descent PyTorch adjusts network parameters to reduce the value of the loss function.
- But how?
 - Answer: Backpropagation
- We will learn to do backpropagation on a computational graph later

Using PyTorch to Learn XOR

Learning algorithm has this basic structure as we have already seen in logistic regression

- Define an architecture for the neural network and instantiate it
- Instantiate an optimizer to adjust the parameters of the neural net
- Iterate
 - Load data (*X*, *y*)
 - Do a forward pass, i.e., compute output of neural net: $f(X;\theta)$
 - Do a backward pass:
 - Compute loss $L(f(X;\theta), y)$. The function L (loss) measures discrepancy between ground truth annotation y and the output of the neural net $f(X;\theta)$
 - Adjust parameters θ of the neural network to reduce loss value
 - Diagnostic: from time to time print loss value

MNIST classification problem

Small 28 pixels-by-28 pixels images of hand written digits

The visual recognition problem definition: to recognize the digit from an image

Pixel values (feature) Digit: 1-hot vector

NN Architecture for MNIST Classification

Activation function, *f* is ReLU in our implementation

Learning MNIST NN with Backprop and SGD

Initialize all parameters of the neural network Initialize learning rate variable *Ir*Iterate:

(Load Data): Get training data batch X

(Forward pass): Compute Z1, Z2, Z3, Yp

(Compute loss): Compute a suitable loss between ideal output Y and output of NN Yp

(Backward pass): Ask PyTorch optimizer to adjust neural network parameters

(Diagnostics): Compute loss on training and validation sets

MNIST_NN.ipynb

Neural Net as Universal Function Approximator

http://neuralnetworksanddeeplearning.com/index.html

Gradient Descent: PyTorch under the hood

- How does PyTorch optimizes parameters of a model to reduce loss value?
 - Using gradient descent
- We will apply GD to multiple linear regression
- Then we will move on to using it for a neural net
 - We must learn how to use the chain rule of differentiation

Gradient of a function

Example:

$$f(x,y) = -(\cos^2 x + \cos^2 y)^2$$

$$\nabla f(x,y) = \begin{bmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{bmatrix} = \begin{bmatrix} 4(\cos^2(x) + \cos^2(y))\cos(x)\sin(x) \\ 4(\cos^2(x) + \cos^2(y))\cos(y)\sin(y) \end{bmatrix}$$

Note 1: *f* is a function of two variables, so gradient of *f* is a two dimensional vector

Note 2: Gradient (vector) of f points toward the steepest ascent for f

Note 3: At a (local) minimum of *f* its gradient becomes a zero vector

Gradient descent optimization

Start at an initial guess for the optimization variable: x_0

Iterate until gradient magnitude becomes too small: $\mathbf{x}^{t+1} = \mathbf{x}^t - \alpha \nabla f(\mathbf{x}^t)$

Gradient descent algorithm

 α is called the step-length.

Gradient descent creates a zig-zag path leading to a local minimum of f

Look at GradientDescentDemo.ipynb

Picture source: Wikipedia

PyTorch optimizer uses GD

Let's try our own gradient descent for multiple linear regression

Gradient of loss function for multiple linear regression: $\nabla_W L = (X^T X + \gamma I)W - X^T Y$

$$\nabla_W L = (X^T X + \gamma I)W - X^T Y$$

$$\nabla_b L = \sum_{i=1}^n (y_i^p - y_i)$$

Exercise: write GD for MNIST multiple linear regression

For implementation of this GD, look at MNIST Multiple Linear Regression.ipynb

How do we apply GD for learning a neural net?

We need to compute gradient of the loss function with respect to all parameters in a neural net:

$$\delta\theta_i \equiv \nabla_{\theta_i} L(y^p, y)$$

Parameter in the *i*th layer

Ground truth/tag

Output (aka prediction) from neural net

Once we have this loss gradient, we can adjust parameters using gradient descent rule:

$$\theta_i = \theta_i - \alpha \delta \theta_i$$

Learning rate/step size

How do we apply GD for learning a neural net?

We need to compute gradient of the loss function with respect to all parameters in a neural net:

$$\delta\theta_i \equiv \nabla_{\theta_i} L(y^p, y)$$

Therefore, we need chain rule of derivative to compute $\delta heta_i$

To apply chain rule of derivative in a neural net...

- We need to understand chain rule of derivative for multivariate functions: Jacobian vector product
- We also need to understand the notion of a computational graph and how to apply Jacobian vector product to a computational graph
- These components will lead us to the well acclaimed backpropagation algorithm for learning parameters of a neural net using GD

Example gradient computations

• Let's consider the following function of four variables:

$$f(x_1, x_2, x_3, x_4) = (x_1 + 10x_2)^2 + 5(x_3 - x_4)^2 + (x_2 + 2x_3)^4 + 10(x_1 - x_4)^4$$

• Let's compute derivative (gradient) of this function at

$$[x_1, x_2, x_3, x_4] = [3, -1, 0, 1]$$

- Cross-verify PyTorch partial derivative computations with math formulas
- Gradient descent optimization

Look into Understanding_chain_rule.ipynb

Chain rule of derivatives

Let consider the same function as before:

$$f(x_1, x_2, x_3, x_4) = (x_1 + 10x_2)^2 + 5(x_3 - x_4)^2 + (x_2 + 2x_3)^4 + 10(x_1 - x_4)^4$$

• But this time x is a (vector-valued) function of two variables z_1 and z_2 :

$$x_1 = z_1 - z_2,$$

 $x_2 = z_1^2,$
 $x_3 = z_2^2,$
 $x_4 = z_1^2 + z_1 z_2$

Let's compute gradient of f with respect to z using chain rule:
 Jacobian vector product

Chain rule of derivative for a computational node

If X, Z, W are all scalars, then usual chain rule of derivative applies:

$$\frac{\partial (\text{Loss})}{\partial X} = \frac{\partial Z}{\partial X} \frac{\partial (\text{Loss})}{\partial Z}$$

$$\frac{\partial (\text{Loss})}{\partial W} = \frac{\partial Z}{\partial W} \frac{\partial (\text{Loss})}{\partial Z}$$

OK, let's apply chain rule to a computational graph where all variables and parameters are scalars

So, our scalar neural net is:

$$Y^p = \sigma(XW_1 + b_1)W_2 + b_2$$

with a square (aka Euclidean) loss function:

$$L(Y^p, Y) = \frac{1}{2}(Y^p - Y)^2$$

As usual, X is the input, Y^p is the output, and W_1 , b_1 , W_2 , b_2 are parameters of the neural net, σ is a non-linear function.

The computational graph for this scalar neural net is (also showing loss gradient symbols):

Chain rule for a scalar neural net...

$$Z_{1} = XW_{1}$$

$$SZ_{1} = XW_{1}$$

$$SZ_{1} = XW_{1}$$

$$SZ_{2} = Z_{1} + b_{1}$$

$$SZ_{3} = S(Z_{2})$$

$$SZ_{4} = Z_{3}W_{2}$$

$$SZ_{5} = Z_{4}$$

$$SZ_{5} = Z_{5}$$

$$SZ_{5} = Z_$$

$$\delta Y^p \equiv \frac{\partial L}{\partial Y^p} = \frac{\partial}{\partial Y^p} \left[\frac{1}{2} (Y^p - Y)^2 \right] = y^p - y \qquad \qquad \qquad \\ \delta Z_2 \equiv \frac{\partial L}{\partial Z_2} = \frac{\partial Z_3}{\partial Z_2} \frac{\partial L}{\partial Z_3} = \sigma'(Z_2) \delta Z_3$$

$$\delta Z_2 \equiv \frac{\partial L}{\partial Z_2} = \frac{\partial Z_3}{\partial Z_2} \frac{\partial L}{\partial Z_3} = \sigma'(Z_2) \delta Z_3$$

$$\delta Z_4 \equiv \frac{\partial L}{\partial Z_4} = \frac{\partial Y^p}{\partial Z_4} \frac{\partial L}{\partial Y^p} = \delta Y^p$$

Because
$$Z_3 = \sigma(Z_2), \frac{\partial Z_3}{\partial Z_2} = \sigma'(Z_2)$$

Because
$$Y^p = Z_4 + b_2$$
, $\frac{\partial Y^p}{\partial Z_4} = 1$

$$\delta Z_1 \equiv \frac{\partial L}{\partial Z_1} = \frac{\partial Z_2}{\partial Z_1} \frac{\partial L}{\partial Z_2} = \delta Z_2$$

$$\delta Z_3 \equiv \frac{\partial L}{\partial Z_3} = \frac{\partial Z_4}{\partial Z_3} \frac{\partial L}{\partial Z_4} = W_2 \delta Z_4$$

Because
$$Z_2 = Z_1 + b_1$$
, $\frac{\partial Z_2}{\partial Z_1} = 1$

Because $Z_4 = Z_3 W_2$, $\frac{\partial Z_4}{\partial Z_2} = W_2$

Loss derivatives w.r.t. parameters

$$\delta W_1 \equiv \frac{\partial L}{\partial W_1} = \frac{\partial Z_1}{\partial W_1} \frac{\partial L}{\partial Z_1} = X \delta Z_1$$

$$\delta W_2 \equiv \frac{\partial L}{\partial W_2} = \frac{\partial Z_4}{\partial W_2} \frac{\partial L}{\partial Z_4} = Z_3 \delta Z_4$$

Because
$$Z_1 = XW_1, \frac{\partial Z_1}{\partial W_1} = X$$

$$\delta b_1 \equiv \frac{\partial L}{\partial b_1} = \frac{\partial Z_2}{\partial b_1} \frac{\partial L}{\partial Z_2} = \delta Z_2$$

Because
$$Z_2 = Z_1 + b_1$$
, $\frac{\partial Z_2}{\partial b_1} = 1$

$$\delta W_2 \equiv \frac{\partial L}{\partial W_2} = \frac{\partial Z_4}{\partial W_2} \frac{\partial L}{\partial Z_4} = Z_3 \delta Z_4$$

Because
$$Z_4 = Z_3 W_2$$
, $\frac{\partial Z_4}{\partial W_2} = Z_3$

$$\delta b_2 \equiv \frac{\partial L}{\partial b_2} = \frac{\partial Y^p}{\partial b_2} \frac{\partial L}{\partial Y^p} = \delta Y^p$$

Because
$$Y^p = Z_4 + b_2$$
, $\frac{\partial Y^p}{\partial b_2} = 1$

Chain rule of derivative...

If X, Z, W are matrices or vectors, then:

$$\nabla_X(\text{Loss}) = \left(\frac{\partial Z}{\partial X}\right) * \nabla_Z(\text{Loss})$$

$$\nabla_W(\text{Loss}) = \left(\frac{\partial Z}{\partial W}\right) * \nabla_Z(\text{Loss})$$

"*" refers to matrix vector multiplication

Chain rule for a (general) neural net

$$\delta Y^{p} \equiv \frac{\partial L}{\partial Y^{p}} = \frac{\partial}{\partial Y^{p}} \left[\frac{1}{2} ||Y^{p} - Y||^{2} \right] = y^{p} - y \qquad 4 \qquad \delta Z_{2} \equiv \frac{\partial L}{\partial Z_{2}} = \frac{\partial Z_{3}}{\partial Z_{2}} \frac{\partial L}{\partial Z_{3}} = \sigma'(Z_{2}) \cdot \delta Z_{3}$$

$$\delta Z_4 \equiv \frac{\partial L}{\partial Z_4} = \frac{\partial Y^p}{\partial Z_4} \frac{\partial L}{\partial Y^p} = \delta Y^p$$

Because
$$Y^p = Z_4 + b_2$$
, $\frac{\partial Y^p}{\partial Z_4} = 1$

$$\delta Z_3 \equiv \frac{\partial L}{\partial Z_3} = \frac{\partial Z_4}{\partial Z_3} \frac{\partial L}{\partial Z_4} = \delta Z_4 W_2^T$$
Because $Z_4 = Z_3 W_2$, $\frac{\partial Z_4}{\partial Z_2} = W_2^T$

$$\delta Z_2 \equiv \frac{\partial L}{\partial Z_2} = \frac{\partial Z_3}{\partial Z_2} \frac{\partial L}{\partial Z_3} = \sigma'(Z_2) \cdot \delta Z_3$$

Because
$$Z_3 = \sigma(Z_2), \frac{\partial Z_3}{\partial Z_2} = \sigma'(Z_2)$$

$$\delta Z_1 \equiv \frac{\partial L}{\partial Z_1} = \frac{\partial Z_2}{\partial Z_1} \frac{\partial L}{\partial Z_2} = \delta Z_2$$

Because
$$Z_2 = Z_1 + b_1$$
, $\frac{\partial Z_2}{\partial Z_1} = 1$

Loss derivatives w.r.t. matrix or vector parameters

$$\delta W_1 \equiv \frac{\partial L}{\partial W_1} = \frac{\partial Z_1}{\partial W_1} \frac{\partial L}{\partial Z_1} = \mathbf{X}^T \delta \mathbf{Z_1}$$

$$\delta W_2 \equiv \frac{\partial L}{\partial W_2} = \frac{\partial Z_4}{\partial W_2} \frac{\partial L}{\partial Z_4} = \mathbf{Z_3}^T \delta Z_4$$

Because
$$Z_1 = XW_1, \frac{\partial Z_1}{\partial W_1} = X^T$$

Because
$$Z_1 = XW_1$$
, $\frac{\partial Z_1}{\partial W_1} = X^T$

$$\delta b_1 \equiv \frac{\partial L}{\partial b_1} = \frac{\partial Z_2}{\partial b_1} \frac{\partial L}{\partial Z_2} = \sum_{k} (\delta Z_2)_{k,:} \qquad \qquad \delta b_2 \equiv \frac{\partial L}{\partial b_2} = \frac{\partial Y^p}{\partial b_2} \frac{\partial L}{\partial Y^p} = \sum_{k} (\delta Y^p)_{k,:}$$

Because
$$Z_2 = Z_1 + b_1, \frac{\partial Z_2}{\partial b_1} = [1, ..., 1]$$

$$\delta W_2 \equiv \frac{\partial L}{\partial W_2} = \frac{\partial Z_4}{\partial W_2} \frac{\partial L}{\partial Z_4} = \mathbf{Z_3^T} \delta Z_4$$

Because
$$Z_4 = Z_3 W_2$$
, $\frac{\partial Z_4}{\partial W_2} = \mathbf{Z_3^T}$

$$\delta b_2 \equiv \frac{\partial L}{\partial b_2} = \frac{\partial Y^p}{\partial b_2} \frac{\partial L}{\partial Y^p} = \sum_{k} (\delta Y^p)_{k,k}$$

Because
$$Z_2 = Z_1 + b_1$$
, $\frac{\partial Z_2}{\partial b_1} = [1, ..., 1]$ Because $Y^p = Z_4 + b_2$, $\frac{\partial Y^p}{\partial b_2} = [1, ..., 1]$

Example 1

Chain rules:
$$\nabla_X(\text{Loss}) = W^T \frac{\partial(\text{Loss})}{\partial Z} = [w1 \ w2] \frac{\partial(\text{Loss})}{\partial Z}$$
 Why?
$$\nabla_W(\text{Loss}) = X^T \frac{\partial(\text{Loss})}{\partial Z} = \begin{bmatrix} x1 \\ x2 \end{bmatrix} \frac{\partial(\text{Loss})}{\partial Z}$$

Example 2

 $\nabla_W(\text{Loss}) = X^T \nabla_Z(\text{Loss})$

31

Backprop derivation

Backprop derivation...

Backprop derivation...

 k^{th} component of δZ vector

Backprop derivation...

"Broadcast" addition: X Z = X+bParameter (2x1 vector)

$$\delta X_{i,j} = \sum_k \sum_l \frac{\partial Z_{k,l}}{\partial X_{i,j}} \delta Z_{k,l} = \sum_k \sum_l \frac{\partial}{\partial X_{i,j}} \big[X_{k,l} + b_k \big] \delta Z_{k,l} = \delta Z_{i,j}$$

$$\delta X = \delta Z$$
 Substitute $Z_{k,l}$ Because,
$$\frac{\partial}{\partial X_{i,j}} \big[X_{k,l} + b_k \big] = \begin{cases} 1, \text{ if } i = k \text{ and } j = l, \\ 0, \text{ otherwise.} \end{cases}$$

Backprop derivation for broadcast addition

Backprop derivation for activation function

(applied pointwise)

$$X \qquad Z = \sigma(X)$$

Non-linear function:
$$X$$
Using chain rule: $\delta X_{i,j} = \frac{dZ_{i,j}}{dX_{i,j}} \delta Z_{i,j} = \frac{d\sigma(X_{i,j})}{dX_{i,j}} \delta Z_{i,j}$

If the non-linear function is sigmoid,

$$\sigma(a) = \frac{1}{1 + \exp(-a)}$$

$$\frac{d\sigma}{da} = \frac{\exp(-a)}{(1 + \exp(-a))^2} = \frac{1}{1 + \exp(-a)} \left(1 - \frac{1}{1 + \exp(-a)} \right) = \sigma(a)(1 - \sigma(a))$$

$$\delta X_{i,j} = \sigma(X_{i,j})(1 - \sigma(X_{i,j}))\delta Z_{i,j}$$

Backprop derivation for loss function

Euclidean loss function:
$$Loss(Y^p, Y) = \frac{1}{2} ||Y^p - Y||^2 = \frac{1}{2} \sum_i (Y_i^p - Y_i)^2$$

$$i^{\text{th}}$$
 component of δY^p vector: $\delta Y_i^p = \frac{\partial}{\partial Y_i^p} Loss(Y^p, Y) = \frac{\partial}{\partial Y_i^p} \frac{1}{2} \sum_k (Y_k^p - Y_k)^2 = Y_i^p - Y_i$

Using vector notation:
$$\delta Y^p = Y^p - Y$$

Apply chain rule to XOR neural network

backward

Ideal output (4x1 vector)

Chain rule of derivatives:
$$\delta Z_5 = \sigma(Z_5). \left(1 - \sigma(Z_5)\right). \delta Y^p$$

$$\delta Z_4 = \delta Z_5$$

$$\delta Z_3 = \delta Z_4 W_2^T$$
 New notation:
$$\delta Z_2 = \sigma(Z_2). \left(1 - \sigma(Z_2)\right). \delta Z_3$$

$$\delta S \equiv V_S(\text{Loss})$$

$$\delta Z_1 = \delta Z_2$$

Gradient of "Loss" $\delta b_2 =$ with respect to input signals $\delta W_1 =$ $\delta b_1 =$ Propagates

Gradient of "Loss" with respect to parameters

Backprop to train a neural net

Initialize all parameters of the neural network Initialize learning rate variable *Ir* Iterate:

If loading the whole training data, do it once outside the "Iterate" loop, to be efficient

(Load Data): Get training data batch

(Forward pass): Compute $Z_1, Z_2,...,Y^p$

(Backward pass): Compute gradients δY^p , δZ_5 ,..., δZ_1 , δW_2 , δW_1 , δb_2 , δb_1

(Gradient descent to update parameters): $W_2 \leftarrow W_2 - lr * \delta W_2$, $b_2 \leftarrow b_2 - lr * \delta b_2$, ...,

(Diagnostics): Compute "Loss" from time to time to check if it is decreasing

MNIST classification problem

Small 28 pixels-by-28 pixels images of hand written digits

The visual recognition problem definition: to recognize the digit from an image

Pixel values (feature) Digit: 1-hot vector

NN Architecture for MNIST Classification

Activation function, *f* is ReLU in our implementation

Softmax and cross-entropy loss

To backpropagate error, we need to compute:

$$\delta(logits)_i \equiv \frac{\partial(Loss)}{\partial(logits)_i}$$

Softmax and cross-entropy loss: backprop

Using the above two results in the chain rule,

$$\delta(logits)_{i} \equiv \frac{\partial(Loss)}{\partial(logits)_{i}} = \sum_{k} \frac{\partial(yp)_{k}}{\partial(logits)_{i}} \frac{\partial(Loss)}{\partial(yp)_{k}} = yp_{i} - y_{i}$$

Backprop across a neural net layer

Pointwise multiplication

Backprop rules:

$$\delta X = [f'(XW + b) \cdot \delta Z]W^T$$

$$\delta W = X^T [f'(XW + b) \cdot \delta Z]$$

$$\delta b = \sum_{l} [f'(XW + b) \cdot \delta Z]_{l,:}$$

Matrix multiplication

Backprop across a neural net layer: derivation

NN for MNIST Classification: Gradients and Manual Backprop

Backprop:

$$\delta Z3 = Yp-Y$$

$$\delta Z2 = (\delta Z3)W3^{\mathsf{T}}$$

$$\delta Z1 = [f(Z1W2+b2).\delta Z2]W2^{\top}$$

$$\delta W3 = (Z2^T)\delta Z3$$

$$\delta W2 = Z1^{T}[f'(Z1W2 + b2) \cdot \delta Z2]$$

$$\delta W1 = X^T [f'(XW1 + b1) \cdot \delta Z1]$$

$$\delta b3 = \sum_{l} [\delta Z3]_{l,:}$$

$$\delta b2 = \sum_{l} [f'(Z1W2 + b2) \cdot \delta Z2]_{l,:}$$

$$\delta b1 = \sum_{l} [f'(XW1 + b1) \cdot \delta Z1]_{l,:}$$