BATTERY TEST DEVICE, AND ELECTRIC POWER DEVICE

Title: HAVING THE TEST DEVICE BUILT IN

Patent Number: JP7128414
Publication date: 95-05-19

Inventor(s): OZU KIYOTSUGU; others: 08

Applicant(s): SHINDENGEN ELECTRIC MFG CO LTD; others: 03

Application Number: JP930294100 931029

Priority Number(s):

PC Classification: G01R31/36 Requested Patent: JP7128414

Equivalents:

Abstract

PURPOSE: To eliminate a dedicated data accumulation RAM, to miniaturize a system, further to provide a battery test device of high frequency wave noise- proof and an electric power device which contains the test device for improved reliability by sampling with a relatively low-speed sample hold circuit and A convertor and by utilizing filter effect with the use of an integration circuit consisting of, for example, a capacitor and a resistor for reduced detected data amount sampled at sampling point.

CONSTITUTION: The output signal from a battery voltage detection circuit 7 and that from a battery current detection circuit 1 are alternately switched over by A pair analogue multiplexer 15, and after hold by a pair of low-speed sample hold circuit 16, converted into digital signal by a pair of AD converter 17, so that, instead of being stored in a dedicated data accumulation RAM, directly stored in the RAM positioned as the periphery of a microprocessor 12, for collective processing of digital data.

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号

特開平7-128414

(43)公開日 平成7年(1995)5月19日

(51) Int.Cl.

識別記号

庁内整理番号

FΙ

技術表示箇所

G01R 31/36

Α

審査請求 未請求 請求項の数2 FD (全 5 頁)

(21)出願番号

特願平5-294100

(22)出願日

平成5年(1993)10月29日

(71)出願人 000002037

新電元工業株式会社

東京都千代田区大手町2丁目2番1号

(71)出額人 000004226

日本電信電話株式会社

東京都千代田区内幸町一丁目1番6号

(71)出願人 591011834

株式会社アフティ

東京都武蔵野市緑町3-9-11

(74)代理人 弁理士 川井 治男

最終頁に続く

(54) 【発明の名称】 パッテリ試験装置表び向試験装置を内蔵した電力装置

(57)【要約】

【目的】 本発明は、比較的低速のサンプルホールド回路及びAD変換器でサンプリングを行い、例えばコンデンサと抵抗からなる積分回路でフィルタ効果を利用し、サンプリングポイント及びサンプリングされた検出データ数を少なくすることで、データ蓄積専用RAMを削減、システムを小型化し、さらに高周波ノイズに強くしたパッテリ試験装置、および同試験装置を内蔵して、信頼性の向上を計った電力装置を提供することを目的とする

【構成】 パッテリ電圧検出回路からの出力信号とパッテリ電流検出回路からの出力信号は、1 組のマルチプレクサにより交互に切替えられ、1 組の低速のサンプルホールド回路によりホールドされた後、1 組のA D 変換器によりディジタル信号に変換され、データ蓄積専用R A Mにより保管することなく、直接マイクロプロセッサの周辺として位置づけられたRAMに保管し、ディジタルデータを一括処理するように構成したパッテリ試験装置及び同試験装置を内蔵した電力装置。

れる.

【特許請求の範囲】

【請求項1】 バッテリペ子により、バッテリ電圧とバッテリ充電電流又は放電電流を検出し、前配パッテリの内部抵抗を算出し、該バッテリの残容量判定又は劣化判定を行うパッテリ試験装置に於いて、前配パッテリ電圧検出回路からの出力信号と前記パッテリ電流検出回路からの出力信号は、1組のアナログマルチブレクサにより交互に切替え入力された後、1組の低速のサンプルホールド回路により、前配アナログマルチブレクサからの出力信号はホールドされた後、1組のAD変換器によりディジタル信号に変換され、直接マイクロブロセッサの周辺として位置づけられたRAMに保管し、該RAMに保管されたディジタルデータを前記マイクロブロセッサで一括処理することにより、前記パッテリ残容量判定又は劣化判定を行うことを特徴とするパッテリ試験装置。

【
団球項2】 交流入力を電源とし、直流出力を得るA C/DCコンパータ、又は交流出力を得るAC/ACコ ンパータが、蓄電池を充電しながら負荷に電力を供給 し、前配交流入力停電時には前記蓄電池を電源とし、直 流又は交流電力を負荷に供給する様構成された電力装置 に於いて、特許請求の範囲第一項記載のパッテリ試験装置を内蔵し、該パッテリ試験装置は前記蓄電池の残容量 の判定又は劣化状態を観測し、測定結果を前記電力装置 より外部に送出する機能を備えたことを特徴とする電力 装置。

【発明の詳細な説明】

[0001]

- 【産業上の利用分野】本発明は、バッテリ残容量判定又 は労化判定を行うバッテリ試験装置、および同試験装置 を内蔵した電力装置に関するものである。

[0002]

【従来の技術】図4は、従来のバッテリ試験装置に於ける検出方法の一例を示すブロック図である。図4において、1はバッテリ電流検出回路、2,8は高速広帯域オペアンプ、3,9は高速のサンプルホールド回路、4,10は高速のAD変換器、5はデータ処理回路、6,11はデータ蓄積専用RAM、7はパッテリ電圧検出回路、12はマイクロプロセッサである。

[0003] 所定の期間に、パッテリの充放電電流 I IIIIは、パッテリ電流検出回路1に於てシャント抵抗あ 40 るいはホール素子等の検出方法で電流電圧変換され、該電圧は、高速広帯域オペアンプ2に於て、高速に、かつ後段の回路が処理できる範囲の適当な電圧値まで増幅される。増幅された該電圧は、高速のサンプルホールド回路3により、何えば10MHzサンプリングのような高速動作でサンブリング(100nsサンプリング)され、かつホールドされる。ホールドされたデータは、高速のAD変換器4によりディジタル変換され、データ処理回路5の選択回路によりデータ蓄積専用RAM6に逐次保管される。

【0004】この間は、例えば50μs間内に500データの収集で、1データ当たりの検出から保管までのトータル処理時間は100nsと極めて高速に行う。一方、パッテリの端子電圧Valitは、前配パッテリの充放電電流検出と同様の所定の期間に、パッテリ電圧検出回路7において直接若しくは抵抗分圧回路等の検出方法で高速広帯域オペアンプ8に送られ、パッテリの充放電流の検出方法と同様に、高速広帯域オペアンプ8に対で、高速に、かつ後段の回路が処理できる範囲の適当な電圧値まで増幅される。増幅された酸電圧は、高速のサンブルホールド回路9により、例えば10MHzサンブリングのような高速動作でサンブリングされ、かつホールドされる。ホールドされたデータは、高速のAD変換器10によりディジタル変換され、データ処理回路5の選択回路によりデータ蓄積専用RAM11に逐次保管さ

【0005】以上の方法で検出したRAM6,11内のパッテリ端子電圧及びパッテリ充放電電流のデータを、所定の期間内の検出が終了した時点で、データ処理回路5を通してマイクロプロセッサ12の周辺として位置づけられたRAM(図示せず)に逐次保管又は加算され、マイクロプロセッサ12で一括処理される。そして該パッテリ端子電圧及びパッテリ充放電電流の平均値を計算し、パッテリの内部抵抗を算出することにより、パッテリの残容量判定若しくは劣化判定を行うものであった。【0006】

【発明が解決しようとする課題】しかし、上記の技術は 以下のごとき欠点を有していた。

○量子化誤差を減らすために、所定の期間内でのサンプ
のリングを多くすると、高速広帯域オペアンプ及び、高速
動作可能なサンプルホールド回路及びAD変換器が必要
になる。

②所定の期間内でサンプリングされた、多くのデータを 収集し一括処理するため、データを保管するためのデー タ**替**積専用RAMが必要である。

③通常の高速サンプリングでは、電流出力回路と電圧出力回路の各々の系統に高速広帯域オペアンプ、サンプルホールド回路及び高速AD変換器を必要とした。また、 更に高速化することは回路構成が複雑になり一般的でない。

【0007】以上の要因は全てシステムが大型化して、 しかも高価になりやすく、又多数の高速で動作する個別 部品を使用する事により、部品間の配線からの高周波ノ イズの送受信が行われ、高周波ノイズに弱い原因にな る。

【0008】従って、本発明は、上記問題点を解決するため、比較的低速のオペアンプやサンプルホールド回路及びAD変換器でサンプリングやAD変換を行う。サンプルホールド回路はコンデンサと抵抗からなる積分回路50を用いているので、そのフィルタ効果によりサンプリン

グされたデータを平均化するので、サンプルデータ数を 少なくすることが出来、データ蓄積専用RAMを削減 し、システムを小型化にし、さらに高周波ノイズに強く することを目的とするものである。

[0009]

【課題を解決するための手段】すなわち、本発明は上記 の目的に対応して次の様な手段を有している。本発明の パッテリ試験装置はパッテリ婚子により、パッテリ電圧 とパッテリ充電電流又は放電電流を検出し、前記パッテ リの内部抵抗を算出し、酸パッテリの残容量判定又は劣 10 化判定を行うパッテリ試験装置に於て、前記パッテリ電 圧検出回路からの出力信号と前記パッテリ電流検出回路 からの出力信号は、1組のアナログマルチプレクサによ り交互に切替え入力された後、1組の低速のサンプルホ ールド回路により、前記アナログマルチプレクサからの 出力信号はホールドされた後、1組のAD変換器により ディジタル信号に変換され、前記ディジタル信号をデー 夕莕積用RAMに保管することなく、直接マイクロプロ セッサの周辺として位置づけられたRAMに保管し、該 ロセッサで一括処理することにより、前記パッテリ残容 量判定又は劣化判定を行うことを特徴としている。

【0010】さらに本発明の電力装置は交流入力を電源とし、直流出力を得るAC/DCコンパータ、又は交流出力を得るAC/ACコンパータが、蓄電池を充電しながら負荷に電力を供給し、前配交流入力停電時には前記蓄電池を電源とし、直流又は交流電力を負荷に供給する-様構成された電力装置が前記パッテリ試験装置を内蔵し、前記パッテリ試験装置は前記蓄電池の残容量の推定判定又は劣化状態を観測し、その測定結果を前記電力装30置より外部に送出する機能を備えたことを特徴としている。

[0011]

【作用】パッテリ内部抵抗を算出する為のパッテリ電流 検出値とパッテリ電圧検出値を、1組のマルチプレクサ で交互切替えして取出し、積分回路を有するサンプルホ ールド回路によって、低速かつ少ない検出データを有効 に取り出し、AD変換器によりデジタル信号に変換す る。このデジタル信号は低速である為、データ蓄積用R AMに保管する事なく、直接、マイクロプロセッサで処 40 理し、パッテリ内部抵抗演算を行う事を可能にしたパッ テリ試験装置である。

【0012】又、上記作用を行う、パッテリ試験装置を電力装置に内蔵して、電力装置内に収納され、停電時パックアップ電源としてのパッテリ内部抵抗を観測し、この測定データを電力装置より外部に送出する様に構成され、電力装置の信頼性向上を計っている。

[0013]

【実施例】図1は本発明のパッテリ試験装置の実施例であって、1はパッテリ電流検出回路、13,14はオペ 50

アンプ、15はアナログマルチプレクサ、16は低速の サンプルホールド回路、17はAD変換器、7はパッテ リ電圧検出回路、12はマイクロプロセッサである。

【0014】次にその動作を説明する。所定の期間内で、パッテリの充放電電流 I a a t t は、パッテリ電流検出回路 1 においてシャント抵抗若しくはホール素子等の検出方法で電流電圧変換され、オペアンプ13に於て、後段の回路が処理できる範囲の適当な電圧値まで増幅される。

0 【0015】一方、パッテリの端子電圧VIATIは、所定の期間内で、パッテリ電圧検出回路?において直接若しくは抵抗分圧回路等の検出方法でオペアンプ14に送られ、パッテリの充放電電流の検出方法と同様に、後段の回路が処理できる範囲の適当な電圧値まで増幅される。

ールド回路により、前記アナログマルチブレクサからの 出力信号はホールドされた後、1組のAD変換器により ディジタル信号に変換され、前記ディジタル信号をデー 夕替積用RAMに保管することなく、直接マイクロプロ セッサの周辺として位置づけられたRAMに保管し、該 RAMに保管されたディジタルデータを前記マイクロプロ ロセッサで一括処理することにより、前記パッテリ残容 量利定又は劣化判定を行うことを特徴としている。 【0010】さらに本発明の電力装置は交流入力を電源

[0017] この間は例えば試験用パッテリの充放電電流の上昇又は降下時間の 100μ s を除いて、 400μ s の時間内で28 データの収集で、1 データ当たり検出から保管まで 14μ s と低速である。また、サンプリングデータ数が少ないため、収集したデータのためのデータ で 行事用RAMは必要とせず、サンプルホールド回路 16 はコンデンサと抵抗からなる積分回路により低速に動作するから、その効果として高周波のノイズに対して 頑強になる。

【0018】又、従来回路では高速サンプリングを行っており、サンプリングを高速化する為には、システムの大型化をまねいた。しかし、本発明の回路はサンプルホールド回路の積分回路により、サンプリングデータを平均化する事が出来るため、サンプリングの低速化が可能であるので、電流検出信号と電圧検出信号は、アナログマルチプレクサにより交互に切替え処理が可能なので、1系統のサンプルホールド回路及びAD変換器で構成することができる。

【0019】尚、検出からデータ処理までの一連の動作は、市販のシングルチップマイコン18に置き換えるとシステムが簡素化される。しかしこれらのシングルチップマイコンは最大10ビットが一般的である。従って、測定精度を上げるためには図2のようにマイクロプロセッサ12を別チップとし、他の部分をAD変換チップ19とすれば、最大16ビットが可能となり測定精度を上げることができる。

【0020】図3は本発明のパッテリ試験装置を内蔵し

た電力装置の一実施例である。図において、20は交流 入力であり、AC/DCコンパータ21、蓄電池22に 前記パッテリ試験装置23を組込んだものが電力装置2 4である。尚25は負荷である。

【0021】交流入力20を受電し、AC/DCコンパ 一夕21より負荷25に電力を供給しながら蓄電池22 を充電し、交流入力20が停電時には蓄電池22より負 荷25に電力を供給する電力装置にパッテリ試験装置2 3を組み込んだものである。

【0022】パッテリ試験装置23は、例えば各電池毎 10 5 データ処理回路 に配線を設けておき、蓄電池22の単セル毎の残容量又 は劣化状態を定期的に測定し、結果を外部に転送した り、あるいはタイマーを内蔵し、周期毎に測定を自動的 に行う等して、監視強化を図り、装置全体の信頼性を向 上させると共に、蓄電池劣化による電力装置のトラブル を未然に防ぐことができる。

[0023]

【発明の効果】本発明によれば、汎用のオペアンプ、低 速のサンプルホールド回路及びAD変換器を使用し、さ らにデータ蓄積専用RAMを必要としない為、パッテリ 20 15 アナログマルチプレクサ 試験装置は低価格になり、システムが小型化される。 又、サンプルホールド回路はコンデンサと抵抗の積分回 路により低速動作するから、高周波ノイズに対して頑強 になり、耐ノイズ性が改善されることが期待される。ま た、このパッテリ試験装置を電力装置に組み込むことに より、監視強化が図られるため電力装置全体の信頼性を 向上させることができる。

- 【図面の簡単な説明】

【図1】本発明のパッテリ試験装置に於ける実施例を示 すブロック図。

【図2】本発明のバッテリ試験装置に於ける他の実施例

を示すプロック図。

【図3】本発明の電力装置システム図。

【図4】従来のパッテリ試験装置に於ける検出方法の一 例を示すプロック図。

6

【符号の説明】

- 1 パッテリ電流検出回路
- 2 高速広帯域オペアンプ
- 3 高速のサンブルボールド回路
- 4 高速のAD変換器
- - 6 データ蓄積専用RAM
 - 7 パッテリ電圧検出回路
 - 8 高速広帯域オペアンプ
 - 9 高速のサンプルホールド回路
 - 10 高速のAD変換器
 - 11 データ蓄積専用RAM
 - 12 マイクロプロセッサ
 - 13 オペアンプ
 - 14 オペアンプ
- - 16 低速のサンブルホールド回路
 - 17 AD変換器
 - 18 シングルチップマイコン
 - 19 AD変換チップ
 - 20 交流入力
 - 21 AC/DCコンパータ
 - 22 蓄電池
 - 23 パッテリ試験装置
 - 24 電力装置
- 30 25 負荷

[図1]

[図2]

[図3]

フロントページの続き

(71)出願人 000004282

日本電池株式会社

京都府京都市南区吉祥院西ノ庄猪之馬場町 1番地

(72)発明者 小津 清嗣

埼玉県飯能市南町10番13号 新電元工業株

式会社工場内

(72)発明者 小林 公禎 埼玉県飯能市南町10番13号 新電元工業株 式会社工場内

(72)発明者 佐々木 正博

埼玉県飯能市南町10番13号 新電元工業株

式会社工場内

(72)発明者 高野 和夫

東京都千代田区内幸町一丁目1番6号 日本電信電話株式会社内

(72)発明者 尾形 努

東京都千代田区内幸町一丁目1番6号 日

本電信電話株式会社内

(72)発明者 河野 膀

東京都千代田区内幸町一丁目1番6号 日

本電信電話株式会社内

(72)発明者 稲垣 伸夫

東京都武蔵野市緑町三丁目 9番11号 株式

会社アフティ内

(72)発明者 山野 佳哉

京都府京都市甬区吉祥院西ノ庄猪之馬場町

1番地 日本電池株式会社内

(72)発明者 多田 幸生

京都府京都市南区吉祥院西ノ庄猪之馬場町

1番地 日本電池株式会社内