Homework 1 solution

1. Please rewrite the while loop in the pseudocode of Insertion sort.

Insertion-sort(A)

for
$$j \leftarrow 2$$
 to length[A]

do key $\leftarrow A[j]$
 $i \leftarrow j - 1$

while __(1)__ and __(2)__

do __(3)__
 $i \leftarrow i - 1$
 $A[i+1] \leftarrow \text{key}$

(1)
$$i > 0$$
 (2) $A[i] > \text{key}$ (3) $A[i+1] \leftarrow A[i]$ ((1)、(2) 可交換)

2. Please rewrite the **for** loop in the pseudocode of **Merge sort.**

$$Merge-sort(A, p, r)$$

if
$$p < r$$

then $q \leftarrow \lfloor (p+r)/2 \rfloor$

MERGE-SORT
$$(A, p, q)$$

MERGE-SORT $(A, q + 1, r)$
MERGE (A, p, q, r)
(1) $A[k] \leftarrow L[i]$ (2) $i \leftarrow i + 1$ (3) $A[k] \leftarrow R[j]$ (4) $j \leftarrow j + 1$

3. Illustrate the operation of **Merge sort** on the array $\langle 7, 4, 1, 8, 5, 2, 6, 3 \rangle$.

4. Briefly explain what in-place sorting algorithm is.

A sorting algorithm is in-place if the numbers are rearranged within the array A, with at most a constant number of them sorted outside the array at any time.

5. Determine whether Insertion sort and Merge sort is **in-place** or not.

Insertion sort is in-place.

Merge sort is NOT in-place.

6. Briefly describe the definition of the set $\Theta(g(n))$.

$$\Theta(g(n)) =$$

$$\{ f(n) : \exists \text{ positive constants } c_1, c_2, n_0 \text{ s.t. } \forall n \ge n_0, 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \}$$

7. Verify that
$$\frac{1}{1000}n^3 + 10n^2 + 100n = \Theta(n^3)$$
. (Need to find c_1, c_2, n_0 and verify.)

Let
$$c_1 = \frac{1}{1000}$$
, $c_2 = 3$, $n_0 = 10$,

$$0 \le c_1 g(n) = \frac{1}{1000} n^3 \le \frac{1}{1000} n^3 + 10n^2 + 100n \le f(n) \text{ for all } n > 0 \quad \dots \text{ (A)}$$

As
$$n \ge n_0 = 10$$
, $f(n) = \frac{1}{1000}n^3 + 10n^2 + 100n \le \frac{1}{1000}n^3 + (n)n^2 + (n^2)n = \frac{2001}{1000}n^3$
 $\le 3n^3 = c_2g(n)$... (B)

By (A), (B),
$$\frac{1}{1000}n^3 + 10n^2 + 100n = \Theta(n^3)$$
.

8. Prove that $f(n) = \Theta(g(n))$ if and only if f(n) = O(g(n)) and $f(n) = \Omega(g(n))$.

(⇒):

$$f(n) = \Theta(g(n))$$
 imply \exists positive constants c_1, c_2, n_0 s.t. $\forall n \geq n_0, 0 \leq c_1 g(n) \leq f$ $(n) \leq c_2 g(n)$,

from
$$0 \le c_1 g(n) \le f(n)$$
, we get $f(n) = \Omega(g(n))$,

from
$$f(n) \le c_2 g(n)$$
, we get $f(n) = O(g(n))$.

(⇐):

$$f(n) = O(g(n))$$
 imply \exists positive constants c_1 , n_1 s.t. $\forall n \ge n_1$, $f(n) \le c_1 g(n)$, $f(n) = \Omega(g(n))$ imply \exists positive constants c_2 , n_2 s.t. $\forall n \ge n_2$, $0 \le c_2 g(n) \le f(n)$, therefore, let $n_0 = \max\{n_1, n_2\}$, \exists positive constants c_1 , c_2 , n_0 s.t. $\forall n \ge n_0$, $0 \le n_0$

$$c_2g(n) \le f(n) \le c_1g(n)$$
, we get that $f(n) = \Theta(g(n))$.

9. (Multiple choice) Choose the correct statements.

(A)
$$(n+1)! = \Theta(n!)$$

(B)
$$2^{n+1} = \Theta(2^n)$$

(C)
$$(n+1)^{100} = \Theta(n^{100})$$

(D)
$$\sqrt{n+1} = \Theta(\sqrt{n})$$

(E)
$$\lg(n+1) = \Theta(\lg(n))$$

BCDE

10. (Multiple choice) Choose the correct statements.

(A)
$$(2n)! = \Theta(n!)$$

(B)
$$2^{2n} = \Theta(2^n)$$

(C)
$$(2n)^{100} = \Theta(n^{100})$$

(D)
$$\sqrt{2n} = \Theta(\sqrt{n})$$

(E)
$$\lg(2n) = \Theta(\lg(n))$$

CDE

11. (Multiple choice) Let f(n) and g(n) be positive increasing function. Choose the correct statements.

(A)
$$f(n) = \Theta(g(n))$$
 imply $(f(n))^2 = \Theta((g(n))^2)$

(B)
$$f(n) = \Theta(g(n)) \text{ imply } 2^{f(n)} = \Theta(2^{g(n)})$$

(C)
$$f(n) = o(g(n)) \text{ imply } 2^{f(n)} = o(2^{g(n)})$$

(D)
$$f(n) = \Theta(g(n))$$
 imply $\lg(f(n)) = \Theta(\lg(g(n)))$

(E)
$$f(n) = o(g(n))$$
 imply $\lg(f(n)) = o(\lg(g(n)))$

ACD (C和D的證明在最後面) (D)可選可不選

沒選(D)不扣分之原因:

有同學反應像 $1-\frac{1}{n}$ 和其他遞增但恆小於 2 的函數取 \log 後會變成負數,根據投影片對 Θ 之定義 \exists positive constants c_1, c_2, n_0 s.t. $\forall n \geq n_0, 0 \leq c_1 g(n) \leq f(n) \leq c_2 g(n)$,因為這些函數恆負,確實無法找到使不等式滿足之正數 c_1, c_2, n_0 ,因此即使負函數並不合理,仍斟酌不扣分。

12. Derive that $\lg(n!) = \Theta(n \lg n)$.

Method 1: Using Stirling's approximation,

$$\lg(n!) = \lg(\sqrt{2\pi n} \left(\frac{n}{a}\right)^n) = \lg(\sqrt{2\pi n}) + \lg\left(\left(\frac{n}{a}\right)^n\right) = \Theta(\lg n) + \Theta(n \lg n) = \Theta(n \lg n). \quad \blacksquare$$

Method 2: Finding the asymptotic upper and lower bound,

$$n! = n \times (n-1) \times \cdots \times 1 \le n \times n \times \cdots \times n = n^n$$
 for all $n > 0$

$$\Rightarrow \lg(n!) \le \lg(n^n) = n \lg n \text{ for all } n > 0$$

$$\Rightarrow \lg(n!) = O(n \lg n)$$

$$n! = n \times (n-1) \times \cdots \times \left\lfloor \frac{n}{2} \right\rfloor \times \cdots \times 1 \ge n \times (n-1) \times \cdots \times \left\lfloor \frac{n}{2} \right\rfloor \ge \left(\frac{n}{2} \right)^{\frac{n}{2}}$$
 for all $n > 0$

$$\Rightarrow \lg(n!) \ge \lg((\frac{n}{2})^{\frac{n}{2}}) = \frac{n}{2} \lg \frac{n}{2} = \frac{n}{2} \lg n - \frac{n}{2} \text{ for all } n > 0$$

$$\Rightarrow \lg(n!) = \Omega(\frac{n}{2} \lg n - \frac{n}{2}) = \Omega(n \lg n).$$

$$\lg(n!) = O(n \lg n)$$
 and $\lg(n!) = \Omega(n \lg n)$ imply $\lg(n!) = \Theta(n \lg n)$.

13. Consider the following pseudocodes

ITERATE(n)

while n > k

do
$$n \leftarrow f(n)$$

- (a) What is the time complexity when $f(n) = \frac{n}{2}$ and k = 1
- (b) What is the time complexity when $f(n) = \sqrt{n}$ and k = 2
- (c) What is the time complexity when $f(n) = \lg(n)$ and k = 1
- (a) $\Theta(\lg n)$ (b) $\Theta(\lg \lg n)$ (c) $\Theta(\lg^* n)$
- 14. Rank the following functions by order of growth from higher to lower.

$$\sqrt{\lg n}$$
, $(\lg n)!$, n^n , \sqrt{n} , n^{100} , 3^n , $\lg n$, $n^{\lg n}$, n , $n \lg n$, $\sqrt[3]{n}$, 2^{2^n} , $n2^n$, $99n^{99}$, $n!$, $\lg^*(\lg n)$, $\lg(\lg^*n)$, $\lg\lg n$

$$2^{2^n} > n^n > n! > 3^n > n2^n > n^{\lg n} > (\lg n)! > n^{100} > 99n^{99} > n \lg n > n > \sqrt{n} > \sqrt[3]{n} > \lg n > \sqrt{\lg n} > \lg \lg n > \lg^*(\lg n) > \lg(\lg^*n)$$

15. Assume that T(n) is constant for sufficiently small n. Show that the tight bound of $T(n) = 3T(n/3) + \Theta(n)$ is $\Theta(n \lg n)$ by substitution method.

Upper bound: $T(n) \le 3T(\frac{n}{3}) + cn$ for some c > 0

Guess: $T(n) \le dn \lg n$ for some d > 0,

$$T(n) \le 3\left(d\,\frac{n}{3}\lg\frac{n}{3}\right) + cn$$

$$= dn \lg \frac{n}{3} + cn$$

$$= dn \lg n - dn \lg 3 + cn$$

$$= dn \lg n + n(c - d \lg 3)$$

$$\leq dn \lg n$$
 if $c - d \lg 3 \leq 0$

$$\Rightarrow \exists d = c > 0 \text{ s.t. } T(n) \le dn \lg n \text{ , therefore, } T(n) = O(n \lg n)$$

Lower bound: $T(n) \ge 3T(\frac{n}{3}) + cn$ for some c > 0

Guess: $T(n) \ge dn \lg n$ for some d > 0,

$$T(n) \ge 3\left(d \frac{n}{3} \lg \frac{n}{3}\right) + cn$$

$$= dn \lg \frac{n}{3} + cn$$

$$= dn \lg n - dn \lg 3 + cn$$

$$= dn \lg n + n(c - d \lg 3)$$

$$\ge dn \lg n \qquad \text{if } c - d \lg 3 \ge 0$$

$$\Rightarrow \exists d = \frac{c}{2} > 0 \text{ s.t. } T(n) \ge dn \lg n, \text{ therefore, } T(n) = \Omega(n \lg n)$$

$$T(n) = O(n \lg n) \text{ and } T(n) = \Omega(n \lg n) \text{ imply } T(n) = \Theta(n \lg n).$$

16. Assume that T(n) is constant for sufficiently small n. Show that the upper bound of $T(n) = T(n-1) + \Theta(n \lg n)$ is $O(n^2 \lg n)$ by substitution method.

$$T(n) \le T(n-1) + cn \lg n \text{ for some } c > 0$$
Guess: $T(n) \le dn^2 \lg n \text{ for some } d > 0$

$$T(n) \le d(n-1)^2 \lg(n-1) + cn \lg n$$

$$\le d(n-1)^2 \lg n + cn \lg n$$

$$= dn^2 \lg n - 2dn \lg n + d \lg n + cn \lg n$$

$$\le dn^2 \lg n - dn \lg n + cn \lg n$$

$$\le dn^2 \lg n - (d-c) n \lg n$$

$$\le dn^2 \lg n \quad \text{if } d - c > 0$$

$$\Rightarrow \exists d = 2c > 0 \text{ s.t. } T(n) \le dn^2 \lg n,$$
therefore, $T(n) = O(n^2 \lg n)$.

17. Assume that T(n) is constant for sufficiently small n. Show that the lower bound of $T(n) = T(n-1) + \Theta(n \lg n)$ is $\Omega(n^2 \lg n)$ by substitution method. Conclude that the tight bound is $\Theta(n^2 \lg n)$. (Hint: $n \lg \frac{n}{n-1} \le 2$ for $n \ge 2$)

$$T(n) \ge T(n-1) + cn \lg n \text{ for some } c > 0$$

Guess: $T(n) \ge dn^2 \lg n \text{ for some } d > 0$
 $T(n) \ge d(n-1)^2 \lg(n-1) + cn \lg n$
 $= dn^2 \lg(n-1) - 2dn \lg(n-1) + d \lg(n-1) + cn \lg n$
 $\ge dn^2 \lg(n-1) - 2dn \lg(n-1) + cn \lg n$
 $\ge dn^2 \lg(n-1) - 2dn \lg n + cn \lg n$
 $= dn^2 \lg(n-1) + (c-2d)n \lg n$

$$\geq dn^2 \lg(n-1) + (c-2d)n \quad (\text{if } d \leq \frac{c}{2})$$

$$\geq dn^2 \lg n \qquad \text{if } (c-2d)n \geq dn^2 \lg n - dn^2 \lg(n-1) = dn^2 \lg \frac{n}{n-1}$$

$$c-2d \geq dn \lg \frac{n}{n-1}$$

Since $n \lg \frac{n}{n-1} \le 2$ for $n \ge 2$, $\exists d = \frac{c}{4} > 0$ s.t. $T(n) \ge dn^2 \lg n$, therefore, $T(n) = \Omega(n^2 \lg n)$. (with $T(n) = O(n^2 \lg n)$, we conclude that $T(n) = \Theta(n^2 \lg n)$)

15.~17.扣分標準:

有些許計算錯誤或小細節不夠嚴謹,但整體觀念正確扣1分 過程有些許問題扣2分

過程有較大問題扣3分

未使用 substitution method 或連初始條件都寫錯扣 4 分 幾乎完全沒寫或內容毫無相關扣 5 分

18. Assume that T(n) is constant for sufficiently small n. Use a recursion tree to determine the tight bound on the recurrence $T(n) = T(n/5) + T(4n/5) + \Theta(n)$.

 $T(n) \ge h(cn) = cn \log_5 n = (c \lg 5) n \lg n \implies T(n) = \Omega(n \lg n).$ $T(n) \le h'(cn) = cn \log_{\frac{5}{4}} n = (c \lg \frac{5}{4}) n \lg n \implies T(n) = O(n \lg n).$

$$T(n) = \Omega(n \lg n)$$
 and $T(n) = O(n \lg n)$ imply $T(n) = \Theta(n \lg n)$.

19. Assume that T(n) is constant for sufficiently small n. Use the master method to determine the tight bound on the recurrence $T(n) = 4T(n/2) + \Theta(n^2 \lg n)$.

$$a = 4, b = 2, \log_b a = 2, f(n) = \Theta(n^2 \lg n)$$

- \Rightarrow satisfy the condition of case 2 with k = 1
- \Rightarrow by master theorem, $T(n) = \Theta(n^2 \lg^{k+1} n) = \Theta(n^2 \lg^2 n)$

若答案是錯的:

有寫出 k=1 得 4 分,若沒有則 有寫出此題為 Case 2 得 3 分,若仍沒有則 有比較 $n^2 \lg n$ 和 $n^{\log_b a}$ 得 2 分,若還是沒有則 0 分

- 20. (Multiple choice) Assume that T(n) is constant for sufficiently small n. Choose the correct statements.
 - (A) If $T(n) = 3T(n/3) + n \lg n$, then the tight bound is $T(n) = \Theta(n \lg n)$
 - (B) If $T(n) = 9T(n/3) + n \lg n$, then the tight bound is $T(n) = \Theta(n \lg n)$
 - (C) If $T(n) = 3T(n/9) + n \lg n$, then the tight bound is $T(n) = \Theta(n \lg n)$
 - (D) If $T(n) = 3T(n/3) + n^2 \lg n$, then the tight bound is $T(n) = \Theta(n^2 \lg^2 n)$
 - (E) If $T(n) = 9T(n/3) + n^2 \lg n$, then the tight bound is $T(n) = \Theta(n^2 \lg^2 n)$

CE

%Proof of 11 (C) and (D)

(C):

If g(n) is bounded, then f(n) = 0 or $\lim_{n \to \infty} f(n) = 0$, contradict to f(n), g(n) are positive increasing function, therefore g(n) is unbounded.

Given c > 0, f(n) = o(g(n)) gives that $\exists n_1 > 0$ s.t. for all $n > n_1$, $0 < f(n) < \frac{g(n)}{2}$.

Since g(n) is unbounded $\exists n_2 > 0$ s.t. for all $n > n_2$, $g(n) > 2|\lg c| \Rightarrow g(n) + \lg c > \frac{g(n)}{2}$.

For all $n > n_0 = \max\{n_1, n_2\}, \ 0 < 2^{f(n)} < 2^{\frac{g(n)}{2}} < 2^{g(n) + \lg c} = c2^{g(n)}.$

Therefore, $2^{f(n)} = o(2^{g(n)})$.

(D):

According to (C), ω notation has similar property since

$$f(n) = \omega(g(n)) \Rightarrow g(n) = o(f(n)) \Rightarrow 2^{g(n)} = o(2^{f(n)}) \Rightarrow 2^{f(n)} = \omega(2^{g(n)}).$$

We can conclude that $f(n) \neq \Theta(g(n))$ imply $2^{f(n)} \neq \Theta(2^{g(n)})$.

Thus, $2^{f(n)} = \Theta(2^{g(n)})$ imply $f(n) = \Theta(g(n))$, which is equivalent to

$$f(n) = \Theta(g(n))$$
 imply $\lg(f(n)) = \Theta(\lg(g(n)))$

if $\lg(f(n))$ and $\lg(g(n))$ are positive increasing function.