Classification and regression

Sunita Sarawagi

The setup

Input:
$$X = \{X_1, X_2, X_3\}$$
 $X_1 \in Real or categorical$
Output: $Y - Real (Regression)$

Categorical $\{1, 2, \dots k\}$ Classification

Goal:

Given training data

 $D = \{(X', Y_1), (X^2, Y_2), \dots, (X^N, Y_N)\}$

dearn:

 $\{(X) \rightarrow Y \quad 0 = \text{parame ters}\}$

Challenges in classifier training

- Given training data
 - $D = \{(x1,y1),...,(xN,yN)\}$
- Goal during training: learn function $f(x) \rightarrow y$ such that
 - Prediction error on unseen instances will be small
- Challenges:
 - Space of possible functions extremely large: need to limit the set from which f
 is chosen (Hypothesis family)
 - How to ensure f's performance on D will generalize to unseen instances
 - How to achieve computational tractability

Regression: Synthetic data

Fitting with a constant function

Overfitting with a 9th degree polynomial

How to detect overfitting

How to avoid overfitting

- Regularization: Assess a (large) penalty for a (highly) complicated model
 - Balance model penalty with data fit
- Being a Bayesian: Imagine the model is itself a random object drawn from a prior distribution
 - Then model generates observed data
 - Given data and prior, find (properties of) model
- When labeled data is abundant
 - Cross-validation with unseen data

Types of classifiers

- Probabilistic
 - Generative
 - Conditional
- Discriminative
 - Decision trees
 - Neural Networks
 - Support Vector Machines
- Distance-based
 - Nearest neighbor classifier