ENZYME CHEMISTRY

BACKGROUND INTO THE CLASSIFICATION AND KINETICS OF ENZYMES

ENZYME CHEMISTRY-FUNCTION

- Proteins (mostly, some RNA)
- Catalyze reaction
 - Lower activation energy
 - Not consumed
 - Maintain reaction equilibrium
- Structure
 - I°, 2°, 3°, 4°
 - Isoenzymes
 - Different physical properties
 - Electrophoretic, solubility, inactivation

ENZYME-FUNCTION

- Activation energy must be reached for a reaction to occur
 - Instead of heating up reactants to provide more energy, use enzymes to decrease energy needed

ENZYME CHEMISTRY-KINETICS

- Factors Affecting Enzymatic Reaction
 - Substrate concentration
 - First order kinetics increase with concentration
 - Zero order kinetics independent of concentration
 - Enzyme concentration
 - pH
 - Temperature
 - Cofactors
 - Inhibitors

(a) Temperature. The enzymatic activity (rate of reaction catalyzed by the enzyme) increases with increasing temperature until the enzyme, a protein, is denatured by heat and inactivated. At this point, the reaction rate falls steeply.

(b) pH. The enzyme illustrated is most active at about pH 5.0.

ENZYME CHEMISTRY-KINETICS

- When measuring Enzyme activity the amount of substrate must remain in excess for full reaction
 - If not it will be depleted and reaction will slow

• When measuring the SUBSTRATE you don't want it to go up past K_m

ENZYME CHEMISTRY-KINETICS

- Michaelis-Menten Constant
 - K_m is substrate concentration at which speed is $\frac{1}{2}V_{max}$
- Lineweaver-Burk Plot
- Inhibitors
 - Competitive
 - Noncompetitive
 - Uncompetitive

- (A) Competitive inhibition Vmax unaltered; Km appears increased.
- (B) Noncompetitive inhibition Vmax decreased; Km unchanged.
- (C) Uncompetitive inhibition Vmax decreased; Km appears decreased.

ENZYME CHEMISTRY-FUNCTION

Cofactors

- Non-protein molecules necessary for function
 - Mg²⁺ Cl⁻ are activators (inorganic)
 - Coenzymes are organic like NAD
 - If bound to the enzyme, it is a prosthetic group
 - Coenzyme + apoenzyme = holoenzyme
 - Proenzymes/zymogen secreted inactive forms, altered to become active later

ENZYME CHEMISTRY-CLASSIFICATION

- Classification: Enzyme Commission
 - Oxidoreductases: catalyze redox reactions
 - Transferases: catalyze transfer of a group other than hydrogen
 - Hydrolases: catalyze hydrolysis of bonds
 - Lyases: removal of groups without hydrolysis, product has double bonds
 - Isomerases: catalyze geometric, optical or positional changes among isomers
 - Ligases: joining of two molecules and breaking of an energetic phosphate (or similar) bond

ENZYME CHEMISTRY-CLASSIFICATION

- Relevant Examples
 - Oxidoreuctase:
 - Transferase:
 - Hydrolase:
 - Lysase:
 - Isomerase:
 - Ligase:

ENZYME CHEMISTRY-SPECIFICITY

- Group Specificity
 - Reacts will all substrates that have a particular group
- Bond Specificity
 - Catalyze reaction with substrates containing particular bond
- Absolute Specificity
 - Combines with only one substrate and catalyzes only one reaction
- Stereoisometric specificity
 - Enzymes that are specific for a specific isomer of substrate,
 - examples anyone?

- Present in small amounts
 - Measure enzyme activity instead!
 - Activity is related to enzyme concentration
 - Ensure substrate and coenzyme are in excess so amount of enzyme is what drives reaction speed
 - ?? Order Kinetics??
 - Coupled enzyme reactions also need excess
 - NADH absorbs at 340nm NAD doesn't
 - MUST BE IN EXCESS IF MEASURED
- Also must maintain pH and temperature

- Fixed Time
 - Reagent added, reaction proceeds, reaction is stopped, and measurement made
- Continuous Monitoring (kinetic)
 - \blacksquare Reagent added, measurements taken every x seconds, linearity is seen, slope calculated
- Why wouldn't it be linear?
 - High [enzyme] leads to substrate depletion

- Enzyme Activity Quantitation
 - They don't travel in mph so what do we call it?
 - International Unit I µmol of substrate catalyzed per minute
 - IU/L final unit
 - Katal (kat) mol/s of substrate concentration
 - kat/L
- Enzyme Mass Quantification
 - Immunoassays quantify by mass
 - May overestimate due to cross reactivity with zymogens etc...

- Sometimes the substrate is the analyte
 - i.e. glucose, cholesterol, triglycerides
 - Enzyme must be added in excess
- ELISA assays use enzymes as reagent
 - HRP, ALP, G6PDH

