

# Introduction to RNA-Seq – Mapping & Aligning

Wandrille Duchemin































## "Aligning" & "Mapping" Sequencing Reads





- 1. Li and Durbin 2009
- 2. Langemead et al. 2009
- 3. Trapenell et al. 2009; Kim et al. 2013
- 4. Dobin et al. 2013

## Alignment using STAR

Phase 1 – Mapping using "Maximum Mappable Prefix



Fig. 1. Schematic representation of the Maximum Mappable Prefix search in the STAR algorithm for detecting (a) splice junctions, (b) mismatches and (c) tails

Phase 2 – "Stitching"



## Benchmarking the Aligners (simulated dataset)

|         | Correctly<br>mapped<br>200 | >=150<br>bases<br>correctly<br>mapped | Unmapped | True positive junctions |             | False positive junctions |      |
|---------|----------------------------|---------------------------------------|----------|-------------------------|-------------|--------------------------|------|
|         | bases                      |                                       |          | Number                  | Sensitivity | Number                   | FDR  |
| Aligner | 1                          | 2                                     | 4        | 5                       | 6           | 7                        | 8    |
| STAR    | 81.3%                      | 95.0%                                 | 4.82%    | 148,487                 | 92.7%       | 409                      | 0.3% |
| TopHat2 | 82.6%                      | 83.7%                                 | 6.70%    | 135,006                 | 84.3%       | 1,228                    | 0.9% |

• Star : x20 faster than Tophat2

Tophat2 : x6 more memory efficient (can be run on recent laptops)

Dobin & Gingeras 2013

## Benchmarking the Aligners (simulated dataset)

|         | Correctly<br>mapped<br>200 | >=150<br>bases<br>correctly | Unmapped | True positive junctions |             | False positive junctions |      |
|---------|----------------------------|-----------------------------|----------|-------------------------|-------------|--------------------------|------|
|         | bases                      | mapped                      |          | Number                  | Sensitivity | Number                   | FDR  |
| Aligner | 1                          | 2                           | 4        | 5                       | 6           | 7                        | 8    |
| STAR    | 81.3%                      | 95.0%                       | 4.82%    | 148,487                 | 92.7%       | 409                      | 0.3% |
| TopHat2 | 82.6%                      | 83.7%                       | 6.70%    | 135,006                 | 84.3%       | 1,228                    | 0.9% |

• Star : x20 faster than Tophat2

Tophat2 : x6 more memory efficient (can be run on recent laptops)

Dobin & Gingeras 2013

Essentially, if you have access to a cluster you should be using STAR

## Reference Index Preparation

#### Different for each software!

- Need a suitable reference genome
  - sequence
  - annotation

https://www.ensembl.org/info/data/ftp/index.html

https://hgdownload.soe.ucsc.edu/downloads.html

#### **Genome Annotation Files**

- text file describing genomic features
  - Gene, CDS, exon, intron, miRNA, etc
  - Chromosome, start, end, strand, attributes, etc

most common format: gtf / gff3

http://www.ensembl.org/info/website/upload/gff.html

#### **Example GTF**

```
MT
    RefSeq
                            2751 3707 .
                                                     gene id "ENSMUSG00000064341";
                                                                                    gene ver
              gene
                                                     gene id "ENSMUSG00000064341";
ΜT
    RefSeq
              transcript
                            2751 3707 .
                                                                                    gene ver
    RefSea
                            2751 3707 .
                                                     gene id "ENSMUSG00000064341";
MT
              exon
                                                                                    gene ver
    RefSea
              CDS
MT
                            2751 3704 .
                                                     gene id "ENSMUSG00000064341";
                                                                                    gene ver
MT
    RefSeq
              start codon
                            2751 2753 .
                                                     gene id "ENSMUSG00000064341";
                                                                                    gene ver
                            3705 3707 .
                                                     gene id "ENSMUSG0000064341";
MT
    RefSeq
              stop codon
                                                                                    gene ver
```

## **Practical**

Go to the website and do the mapping practical

## REFERENCES

<u>Li H & Durbin R (2009) "Fast and accurate short read alignment with Burrows-Wheeler transform" Bioinformatics 25(14):1754-60</u>

<u>Langmead et al (2009) "Ultrafast</u> <u>and memory-efficient alignment of short DNA sequences to the human</u> <u>genome" Genome Biology 10(3):R25.</u>

<u>Trapnell *et al* (2009) "TopHat: discovering splice junctions with RNA-Seq" Bioinformatics 25(9):1105-11.</u>

Kim et al (2013) "TopHat2

: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions" Genome Biology 14(4):R36.

Dobin et al (2013) "STAR: ultrafast universal RNA-seq aligner" Bioinformatics 29(1):15-21.

Patro et al (2014) "Sailfish enables alignment-free isoform quantification from RNA-seq reads using lightweight algorithms" Nature Biotechnology 32(5):462-4.

Patro et al (2017) "Salmon provides fast and bias-aware quantification of transcript expression" Nature Methods 14(4):417-419.

Bray et al (2016) "Near-optimal probabilistic RNA-seq quantification (Kallisto)" Nature Biotechnology 34(5):525-7.



## **Contributors:**

Wandrille Duchemin Geoffrey Fucile Walid Gharib Pablo Escobar Lopez

















## Annex: Pseudoalignment

transcript-level quantification →

pseudo alignment generally better than alignment

https://www.nature.com/articles/s41598-017-01617-3

https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-021-04198-1

kallisto & salmon : very close, maybe small advantage for salmon

See: <a href="https://github.com/mikelove/salmon\_kallisto\_diffs">https://github.com/mikelove/salmon\_kallisto\_diffs</a> + publications above

## Annex: GTF (GFF2) Annotation Format

- http://www.ensembl.org/info/website/upload/gff.html
- Tab-delimited, empty columns denoted with "."
- Column order:
  - seqname chromosome, scaffold, etc
  - source origin of the annotation, db/project
  - feature gene, transcript, exon, etc
  - start feature start coordinate (1-based)
  - end feature end coordinate (1-based)
  - score floating point, eg quality score
  - **strand** + (forward) or (reverse)
  - **frame** reading frame, 0, 1, or 2
  - attribute semicolon-delimited feature descriptions

## GTF vs GFF3

| GTF2                                                                                                                                                                                                                                                                                         | GFF3                                                                                                                                                                                                                                                                                                                            |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| same                                                                                                                                                                                                                                                                                         | same                                                                                                                                                                                                                                                                                                                            |  |  |
| same                                                                                                                                                                                                                                                                                         | same                                                                                                                                                                                                                                                                                                                            |  |  |
| CDS, start_codon, end_codon are required. feature requirements depend on software.                                                                                                                                                                                                           | can be anything                                                                                                                                                                                                                                                                                                                 |  |  |
| same                                                                                                                                                                                                                                                                                         | same                                                                                                                                                                                                                                                                                                                            |  |  |
| same                                                                                                                                                                                                                                                                                         | same                                                                                                                                                                                                                                                                                                                            |  |  |
| not used                                                                                                                                                                                                                                                                                     | optional                                                                                                                                                                                                                                                                                                                        |  |  |
| same                                                                                                                                                                                                                                                                                         | same                                                                                                                                                                                                                                                                                                                            |  |  |
| same                                                                                                                                                                                                                                                                                         | same                                                                                                                                                                                                                                                                                                                            |  |  |
| <ul> <li>tag/value delimited by a space</li> <li>each attribute must end with a semi-colon</li> <li>must begin with gene_id and transcript_id attributes</li> <li>Text values must be in quotes</li> <li>ex. gene_id "gene01"; transcript_id "transcript01"; created_by "Damian";</li> </ul> | <ul> <li>tag/value delimited by '='</li> <li>each attribute delimited by semi-colon</li> <li>there are a list of pre-defined attributes here</li> <li>must have a unique ID attribute</li> <li>ex. ID=geneA;Parent=geneAP;Name=geneA</li> </ul>                                                                                 |  |  |
|                                                                                                                                                                                                                                                                                              | same  CDS, start_codon, end_codon are required. feature requirements depend on software.  same  not used same same  • tag/value delimited by a space • each attribute must end with a semi-colon • must begin with gene_id and transcript_id attributes • Text values must be in quotes • ex. gene_id "gene01"; transcript_01"; |  |  |

http://blog.nextgenetics.net/?e=27

## Annex: SAM Alignment Format

```
@SQ
       SN:1 LN:30427671
@SQ
       SN:2 LN:19698289
@SQ
       SN:3 LN:23459830
@SQ
       SN:4 LN:18585056
@SQ
       SN:5 LN:26975502
@SQ
       SN:M LN:366924
@SQ
       SN:C LN:154478
@RG
       ID:Col0 R1 PL:Illumina LB:1342 SM:Col0 R1
```

@SQ Reference Sequence: SN name, LN length
@RG Read Group: e.g. grouping samples

# SAM alignments



## SAM Alignment Format: Flags

| Ε    | m Bit | Description                                                        |
|------|-------|--------------------------------------------------------------------|
| 1    | 0x1   | template having multiple segments in sequencing                    |
| 2    | 0x2   | each segment properly aligned according to the aligner             |
| 4    | 0x4   | segment unmapped                                                   |
| 8    | 0x8   | next segment in the template unmapped                              |
| 16   | 0x10  | SEQ being reverse complemented                                     |
| 32   | 0x20  | SEQ of the next segment in the template being reverse complemented |
| 64   | 0x40  | the first segment in the template                                  |
| 128  | 0x80  | the last segment in the template                                   |
| 256  | 0x100 | secondary alignment                                                |
| 512  | 0x200 | not passing quality controls                                       |
| 1024 | 0x400 | PCR or optical duplicate                                           |
| 2048 | 0x800 | supplementary alignment                                            |

**Example, flag 83 =** 64+16+2+1 means it's first read (0x40) of pair-end reads (0x1) and it's mapped on minus strand (0x10) and both reads mapped (0x2).

#### https://broadinstitute.github.io/picard/explain-flags.html

## SAM format: CIGAR string

- Summary of alignment to the reference
- **■** *eg*, 101M, 1S92M, 15M87N70M90N16M

| Code | Description     |                             |
|------|-----------------|-----------------------------|
| M    | Alignment match | Base-level match + mismatch |
| I    | Insertion       |                             |
| D    | Deletion        |                             |
| N    | Skipped         | eg intron                   |
| S    | Soft clipping   | Kept in SAM                 |
| Н    | Hard clipping   | Not in SAM                  |

## SAM format: optional fields

- Used by some aligners to encode additional information for downstream analyses
- Can cause incompatibilities among workflows

| Code | Description                                                                    |
|------|--------------------------------------------------------------------------------|
| RG   | Read Group e.g. sample or lane                                                 |
| MD   | String for mismatching positions                                               |
| NH   | Number of reported alignments that contains the query in the current record    |
| HI   | Query hit index, indicating the alignment record is the i-th one stored in SAM |

#### **BAM** format

- Binary SAM format
- Lossless compression of SAM format
- ~4-fold smaller file size
- Genome viewers and many downstream applications require the BAM file to be sorted and have an index (typically .bai extension)

## Annex: Assessing read coverage for biases

- The RSeQC package includes a function for evaluating "gene body coverage"
- This can be used to assess 5' or 3' bias, which might happen if your RNA is degraded or otherwise biased
- Requirements:
  - Genome annotations in the 12-column BED format
  - Index (.bai) for sorted BAM file, which can be generated using the SAMtools package

#### Annex - CRAM format

- Binary SAM format, significantly improved over BAM lossless compression
- Compatible with BAM files
- Both lossless and lossy compression possible
- https://samtools.github.io/hts-specs/CRAMv3.pdf

#### Annex - Other relevant formats: BED

- Tab-delimited text file used to describe intervals
- Minimally:
  - Sequence ID
  - Start
  - End
- Optional:
  - Name
  - Score
  - Strand
- For large files, use binary index format bigBED
- BEDtools (<u>http://code.google.com/p/bedtools</u>)

#### Annex - Other relevant formats: VCF (Variant Call Format)

- Tab-delimited text to describe SNPs, structural variants, indels etc
- Contains:
  - Chromosome
  - Position
  - Reference allele, alternative allele(s)
  - Various statistical metrics
- BCF: indexed binary format
- https://samtools.github.io/hts-specs/VCFv4.2.pdf