AE: GATE 2008

ai24btech11014 Charitha Sri

I. 69-85

1) A beam occupies a region $0 \le x \le L$; $-c \le y \le c$; $-0.5 \le z \le 0.5$ as shown below. The beam can be considered to be in plane stress condition in x - y plane. Airy's stress function for the beam is given as:

$$\phi(x,y) = -\frac{Pxy^3}{4c^3} + \frac{3Pxy}{4c}$$
 (1)

where P is a constant. The above stress function pertains to a

- a) simply supported beam carrying a point load P at mid span
- b) simply supported beam carrying a uniform distributed load of intensity P per unit length
- c) cantilever beam clamped at end x = L and carrying a shear load P at x = 0
- d) cantilever beam clamped at end x = 0 and carrying a shear load P at x = L
- 2) The equation of motion of a uniform slender beam of length L in flexural vibration is given as $EI\frac{\partial^4 w}{\partial x^4} + \rho A\frac{\partial^2}{\partial wt^2} = 0$, where EI is the flexural rigidity, w is the lateral displacement and ρA is the mass per unit length. The beam is simply supported at the two ends x = 0 and x = L. Assuming the mode shape in fundamental mode to be $\sin\left(\frac{\pi x}{L}\right)$, the natural frequency in fundamental mode is

a)
$$0.5 \sqrt{\frac{EI}{\rho AL^4}} \pi^2$$

b)
$$\sqrt{\frac{EI}{\rho AL^4}}\pi^2$$

c)
$$2\sqrt{\frac{EI}{\rho AL^4}}\pi^2$$

b)
$$\sqrt{\frac{EI}{\rho AL^4}}\pi^2$$
 c) $2\sqrt{\frac{EI}{\rho AL^4}}\pi^2$ d) $4\sqrt{\frac{EI}{\rho AL^4}}\pi^2$

II. Common Data Questions

Common Data Questions 3, 4 and 5: A two-dimensional state of stress in an isotropic material is given by

$$[\sigma] = c \begin{pmatrix} -8 & 5\\ 5 & 16 \end{pmatrix} MPa \tag{2}$$

where c is linearly proportional to the applied loading. The failure stress is $\sigma_f = 350MPa$ (which is 0.2% offset yield stress)

3) The principal stresses are

a)
$$\sigma_1 = 17cMPa$$
, $\sigma_2 = -9cMPa$

c)
$$\sigma_1 = -17cMPa$$
, $\sigma_2 = -9cMPa$

b)
$$\sigma_1 = 9cMPa, \sigma_2 = 17cMPa$$

d)
$$\sigma_1 = -17cMPa$$
, $\sigma_2 = 9cMPa$

4) The maximum shear stress is

a)
$$\tau_{\text{max}} = 7cMPa$$

b)
$$\tau_{\rm max} = 10cMPa$$

b)
$$\tau_{\text{max}} = 10cMPa$$
 c) $\tau_{\text{max}} = 13cMPa$ d) $\tau_{\text{max}} = 15cMPa$

d)
$$\tau_{\text{max}} = 15cMPc$$

5) The maximum value of c for safe loading of the structure, based on von-Mises failure criterion is

	a) 10.2	b) 15.3	c) 25.4	d) 31.8			
6)	Common Data Questions 6 and 7:A liquid rocket engine with oxidiser to fuel ratio 5:1 produces a thrust of $1MN$. The initial mass of the rocket engine is $100,000kg$ and its mass at burn out is $10,000kg$. The charracteristic velocity \mathbf{C} and thrust coefficient C_f for the engine are $2386m/s$ and 1.4 , respectively. The mass flow rate of fuel is						
	a) $300.3kg/s$	b) 269.5kg/s	c) 87.4 <i>kg</i> / <i>s</i>	d) 49.9kg/s			
7)	Neglecting gravity and drag effects, if the initial velocity of the liquid rocket engine is $2.5km/s$, the velocity of the rocket at burnout is						
	a) 1.2km/s	b) 2.5km/s	c) 10.2km/s	d) 11.8km/s			
	Linked Answer Questions: 8 and 9 The following two questions relate to Simpson's rule for approximating the						
	$\int_{a}^{b} f(x) dx $ on the interval [a, b] (3)						
8)	Which of the following gives the correct formula for Simpson's rule?						
	a) $\frac{(b-a)}{2} \left[f(b) + f\left(\frac{a+b}{2}\right) \right]$ b) $\frac{(b-a)}{2} \left[\frac{f(a)+f(b)}{2} + f\left(\frac{a+b}{2}\right) \right]$	2)]	c) $\frac{(b-a)}{2} \left[\frac{f(a)+f(b)}{3} + \frac{4}{3}f \left(\frac{a+b}{2} \right) \right]$ d) $\frac{(b-a)}{2} \left[\frac{f(a)+f(b)}{3} + \frac{4}{3}f \left(\frac{a+b}{2} \right) \right]$	$\left(\frac{b}{b}\right)$			
9)	The percentage error (with respect to the exact solution) in estimation of the integral $\int_0^1 x^3 dx$ using Simpson's rule						
	a) 5.3	b) 3.5	c) 2.8	d) 0			
10)	Statement for Linked Answer Questions 10 and 11: An aircraft has a zero-lift drag coefficient $C_{\rm Do}=0.0223$, wing aspect ratio $AR_w=10.0$, and Oswald's efficiency factor $e=0.7$) The trust required for steady level flight will be minimum when the aircraft operates at a lift coefficient of						
	a) 0.65	b) 0.70	c) 0.75	d) 0.80			
11)) The glide angle that results in maximum range in a power-off glide is						
	a) 1.82degrees	b) 2.68degrees	c) 3.64degrees	d) 5.01degrees			
12)	Statement for Linked Answer Questions 11 and 12: Consider an unwisted wing of elliptical planform in inviscid incompressible irrotational flow at an angle of attack of 4 degrees. The wing aspect ratio is 7 and the zero lift angle of attack is -2 degrees. 2) The wing lift coefficient C_L is						
	a) 0.66	b) 0.51	c) 0.44	d) 0.34			
13)	The induced drag coeff	icient of the wing $C_{\rm D}$ is					

a) 0.0053	b) 0.0087	c) 0.0118	d) 0.0197		
Statement for Linked Answer Questions 13 and 14 : A multi-stage axial flow compressor operating at an adiabatic efficiency of 0.9 develops a total pressure ratio of 11. The total temperature at inlet to the compressor is 335 <i>K</i> and the stagnation enthalpy rise across each stage is 37 <i>kJ/kg</i> . Ratio of specific heats is 1.4 and specific heat at constant pressure is 1.005 <i>kJ/kgK</i> . 14) The total temperature rise across the compressor is					
a) 310.1 <i>K</i>	b) 366.3 <i>K</i>	c) 392.1 <i>K</i>	d) 405.4 <i>K</i>		
15) The total number	er of stages required are				
a) 9	b) 10	c) 11	d) 12		

Statement for Linked Answer Questions 15 and 16: An idealized thin walled two cell symmetric box beam is as shown. The shear flows in the walls are due to the applied shear forces $V_y = 480N$, $V_z = 300N$, and a torque M, all acting at the shear center.

16) The shear flows q_1 and q_2 are

a)
$$q_1 = -2N/cm, q_2 = +22N/cm$$

b) $q_1 = +2N/cm, q_2 = +22N/cm$
c) $q_1 = +2N/cm, q_2 = -22N/cm$
d) $q_1 = -2N/cm, q_2 = -22N/cm$

- 17) The torque M is
 - a) 3360*N.cm* b) 5760*N.cm* c) 6960*N.cm* d) 8160*N.cm*