Note that we assume $0 < \varepsilon < \frac{1}{3}$ in our paper.

1 Proof of Theorem 3

According to (3.1),(3.5),(3.6) in [1] (Chernoff inequality), we have:

$$Pr(\hat{p}_n - p > \varepsilon) \le f^n(p, \varepsilon) \qquad (p < 1 - \varepsilon)$$
 (1)

$$Pr(p - \hat{p}_n > \varepsilon) \le f^n(1 - p, \varepsilon) \qquad (p > \varepsilon)$$
 (2)

Note that:

$$Pr(|\hat{p}_n - p| > \varepsilon) = Pr(\hat{p}_n - p > \varepsilon) + Pr(p - \hat{p}_n > \varepsilon)$$
 (3)

therefore,

$$Pr(|\hat{p}_n - p| > \varepsilon) \le f^n(p, \varepsilon) + f^n(1 - p, \varepsilon) \qquad (\varepsilon (4)$$

When $p \leq \varepsilon$,

$$Pr(p - \hat{p}_n > \varepsilon) = 0 \tag{5}$$

therefore,

$$Pr(|\hat{p}_n - p| > \varepsilon) = Pr(\hat{p}_n - p > \varepsilon) \le f^n(p, \varepsilon) \qquad (p < 1 - \varepsilon \land p \le \varepsilon)$$
 (6)

Similarly, when $p \geq 1 - \varepsilon$,

$$Pr(|\hat{p}_n - p| > \varepsilon) = Pr(p - \hat{p}_n > \varepsilon) \le f^n(1 - p, \varepsilon) \qquad (p > \varepsilon \land p \ge 1 - \varepsilon) \quad (7)$$

When $\frac{1-\varepsilon}{2} \leq p \leq \frac{1+\varepsilon}{2}$, we directly use the Okamoto bound.

2 Proof of Theorem 4

Lemma 1: $f(p,\varepsilon)$ is monotonically increasing when $p\in[0,\frac{1-\varepsilon}{2}]$, and monotonically decreasing when $p\in[\frac{1}{2},1-\varepsilon)$.

Proof. As $f(0,\varepsilon) = 0$, and when $0 , <math>f(p,\varepsilon) > 0$, therefore, we only need to consider $g(p,\varepsilon) \triangleq \ln(f(p,\varepsilon)) = (p+\varepsilon)(\ln(p) - \ln(p+\varepsilon)) + (1-p-\varepsilon)(\ln(1-p) - \ln(1-p-\varepsilon))$ when $p \in (0,1-\varepsilon)$.

$$g_p'(p,\varepsilon) = \ln(p) - \ln(p+\varepsilon) + \frac{\varepsilon}{p} - \ln(1-p) + \ln(1-p-\varepsilon) + \frac{\varepsilon}{1-p}$$
 (8)

$$g_p''(p,\varepsilon) = -\varepsilon^2 \left(\frac{1}{p^2(p+\varepsilon)} + \frac{1}{(1-p)^2(1-p-\varepsilon)}\right) < 0 \tag{9}$$

Therefore, $g_p'(p,\varepsilon)$ is monotonically decreasing when $p \in (0, 1-\varepsilon)$. Moreover,

$$g_p'(\frac{1-\varepsilon}{2},\varepsilon) = 2 \cdot \ln(\frac{1-\varepsilon}{1+\varepsilon}) + \frac{4\varepsilon}{1-\varepsilon^2} > 0$$
 (10)

$$g_p'(\frac{1}{2},\varepsilon) = \ln(\frac{1-2\varepsilon}{1+2\varepsilon}) + 4\varepsilon < 0 \tag{11}$$

Therefore, when $p \in (0, \frac{1-\varepsilon}{2}], g_p'(p, \varepsilon) > 0$, and when $p \in [\frac{1}{2}, 1-\varepsilon), g_p'(p, \varepsilon) < 0$

Lemma 2: When $0 < \varepsilon < 1$ and $p < 1 - \varepsilon$, $f(p, \varepsilon) < C(\varepsilon) < 1$.

Proof. It is trivial that $C(\varepsilon) < 1$. To prove $f(p,\varepsilon) < C(\varepsilon)$, we take logarithm on both sides, we only need to prove:

$$h(p,\varepsilon) \triangleq (p+\varepsilon)\ln(\frac{p+\varepsilon}{p}) + (1-p-\varepsilon)\ln(\frac{1-p-\varepsilon}{1-p}) - 2\varepsilon^2 > 0$$
 (12)

It follows immediately from the fact that h(p,0) = 0 and

$$h_{\varepsilon}'(p,\varepsilon) = \ln\left(1 + \frac{\varepsilon}{-(p - \frac{1-\varepsilon}{2})^2 + \frac{(1-\varepsilon)^2}{4}}\right) - 4\varepsilon > \ln\left(1 + \frac{4\varepsilon}{(1-\varepsilon)^2}\right) - 4\varepsilon > 0 \quad (13)$$

Theorem 4:

(1) For any ε and n, when $0 \le p_1 < p_2 \le \frac{1}{2}$, $F(p_1, \varepsilon, n) \le F(p_2, \varepsilon, n)$; when $\frac{1}{2} \leq p_1 < p_2 \leq 1, \ F(p_1, \varepsilon, n) \geq F(p_2, \varepsilon, n).$ (2) For any ε and p, when $n_1 > n_2$, $F(p, \varepsilon, n_1) < F(p, \varepsilon, n_2)$.

Proof. For (2), from Lemma 2, we know that $f(p,\varepsilon) < C(\varepsilon) < 1$, therefore, for any ε and p, when $n_1 > n_2$, $F(p, \varepsilon, n_1) < F(p, \varepsilon, n_2)$.

For (1), note that $F(p,\varepsilon,n)=F(1-p,\varepsilon,n)$, therefore, by symmetry, we only need to prove $F(p_1, \varepsilon, n) \leq F(p_2, \varepsilon, n)$ when $0 \leq p_1 < p_2 \leq \frac{1}{2}$. As $F(p, \varepsilon, n)$ is a piecewise continuous function (with regard to p) on $[0, \frac{1}{2}]$, we only need to prove it in three continuous intervals and two discontinuity points.

When $p \leq \varepsilon$, we know $f(p,\varepsilon)$ is monotonically increasing when $p \in [0,\varepsilon]$ (Lemma 1). Therefore, $F(p,\varepsilon,n)=f^n(p,\varepsilon)$ is also monotonically increasing when $p \in [0, \varepsilon]$.

At the discontinuity point $p = \varepsilon$, $F(\varepsilon +, \varepsilon, n) = f^n(\varepsilon, \varepsilon) + (1 - \varepsilon)^n >$ $f^n(\varepsilon,\varepsilon) = F(\varepsilon,\varepsilon,n).$

When $\varepsilon , as <math>f(p,\varepsilon)$ and $f(1-p,\varepsilon)$ are both monotonically increasing when $p \in (\varepsilon, \frac{1-\varepsilon}{2})$ (Lemma 1). Therefore, $F(p,\varepsilon,n) = f^n(p,\varepsilon) + f^n(1-p,\varepsilon)$

is also monotonically increasing when $p \in (\varepsilon, \frac{1-\varepsilon}{2})$.

At the discontinuity point $p = \frac{1-\varepsilon}{2}$, we know from Lemma 2 that $F(\frac{1-\varepsilon}{2}-,\varepsilon,n) = f^n(\frac{1-\varepsilon}{2},\varepsilon) + f^n(\frac{1+\varepsilon}{2},\varepsilon) < 2 \cdot C^n(\varepsilon) = F(\frac{1-\varepsilon}{2},\varepsilon,n)$.

When $\frac{1-\varepsilon}{2} \le p \le \frac{1}{2}$, $F(p,\varepsilon,n) = 2 \cdot C^n(\varepsilon)$ is independent of p.

3 Proof of Theorem 5

When $ub \leq \varepsilon$, $F(p,\varepsilon,n) = f^n(p,\varepsilon)$. According to Theorem 4, for any ε,n and $p \in [lb,ub]$, $F(p,\varepsilon,n) \leq F(ub,\varepsilon,n)$. Therefore, when $n_1 = \lceil \log_{f(ub,\varepsilon)} \delta \rceil$, we have $F(p,\varepsilon,n_1) \leq F(ub,\varepsilon,n_1) = f^{n_1}(ub,\varepsilon) \leq \delta$ for all $p \in [lb,ub]$. Moreover, for any $n_2 < n_1$, $F(ub,\varepsilon,n_2) = f^{n_2}(ub,\varepsilon) > \delta$. Therefore, $n_1 = \lceil \log_{f(ub,\varepsilon)} \delta \rceil$ is the smallest n such that $F(p,\varepsilon,n) \leq \delta$ for all $p \in [lb,ub]$. The case when $b \geq 1-\varepsilon$ is similar.

When $[lb, ub] \cap \left[\frac{1-\varepsilon}{2}, \frac{1+\varepsilon}{2}\right] \neq \emptyset$ (i.e. $\left(\frac{1-\varepsilon}{2} \leq ub \leq \frac{1+\varepsilon}{2}\right) \vee \left(\frac{1-\varepsilon}{2} \leq lb \leq \frac{1+\varepsilon}{2}\right) \vee (ub \geq \frac{1+\varepsilon}{2} \wedge lb \leq \frac{1-\varepsilon}{2})$), for any ε, n , the maximum of $F(p, \varepsilon, n)$ when $p \in [lb, ub]$ is $2 \cdot C^n(\varepsilon)$. Therefore, $n = \left\lceil \frac{1}{2\varepsilon^2} \ln(\frac{2}{\delta}) \right\rceil$ is the smallest n such that $F(p, \varepsilon, n) \leq \delta$ for all $p \in [lb, ub]$.

When $\varepsilon < ub < \frac{1-\varepsilon}{2}$, for any ε, n and $p \in [lb, ub]$, $F(p, \varepsilon, n) \le F(ub, \varepsilon, n) = f^n(ub, \varepsilon) + f^n(1-ub, \varepsilon)$. When we perform binary search, the initial lower bound is 0, and the initial upper bound is $\lceil \frac{1}{2\varepsilon^2} \ln(\frac{2}{\delta}) \rceil$. It is obvious that $F(ub, \varepsilon, 0) = 2 > \delta$, therefore, the initial lower bound is valid. When $n = \lceil \frac{1}{2\varepsilon^2} \ln(\frac{2}{\delta}) \rceil$, $F(ub, \varepsilon, n) = f^n(ub, \varepsilon) + f^n(1-ub, \varepsilon) < 2 \cdot C^n(\varepsilon) = \delta$ (Lemma 2), therefore, the initial upper bound is also valid. As the initial lower and upper bound are both valid, the binary search can find the smallest n such that $F(p, \varepsilon, n) \le \delta$ for all $p \in [lb, ub]$ (note that $F(p, \varepsilon, n)$ is monotonically decreasing with regard to n, see Theorem 4). The case when $\frac{1+\varepsilon}{2} < lb < 1 - \varepsilon$ is similar.

References

[1] Chernoff, H.: A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations. The Annals of Mathematical Statistics 23(4), 493–507 (December 1952)