

CMPE 258, Deep Learning

Logistic Regression

Feb 8, 2018

DMH 149A

Taehee Jeong

Ph.D., Data Scientist

Recap

- Overfitting of polynomial regression
- Regularization
 - sum of square value, L2 norm, Ridge
 - sum of absolute value, L1 norm, Lasso
- Bias & Variance trade off

Overfitting of polynomial regression

$$\hat{y} = W_0 + W_1 x_1 + W_2 x_1^2 + W_3 x_1^3 + \cdots$$

Symptom of overfitting

- Very large value of regression coefficients, W
- Lots of input features
- Small number of observations

Avoiding Overfitting through Regularization

Sum of squares

Ridge: L2 norm

$$W_0^2 + W_1^2 + W_2^2 + \dots = \sum_{j=1}^n W_j^2 = ||W||_2^2$$

Cost function $+\lambda ||W||_2^2$

Sum of absolute value

Lasso: L1 norm

$$|w_0| + |w_1| + |w_2| + \dots = \sum_{i=1}^n |w_i| = ||W||_1$$

Cost function $+\lambda ||W||_1$

Ridge regression (L2 penalty)

Cost function

$$J = \frac{1}{m} \sum_{i=1}^{m} (\widehat{y}^{i} - y^{i})^{2} + \frac{\lambda}{m} \sum_{j=1}^{n} W_{j}^{2}$$

Ridge regression (L2 penalty)

Gradient

$$\frac{\partial J}{\partial W_0} = \frac{2}{m} \sum_{i=1}^{m} (\widehat{y}^i - y^i) x_0^i$$

$$\frac{\partial J}{\partial W_j} = \frac{2}{m} \sum_{i=1}^m (\widehat{y}^i - y^i) x_j^i + \frac{2\lambda}{m} W_j$$

Ridge regression (L2 penalty)

Gradient descant

Repeat {

$$W_0 = W_0 - \alpha \frac{2}{m} \sum_{i=1}^{m} (\widehat{y}^i - y^i) x_0^i$$
 when j=0

$$W_j = W_j - \alpha \left[\frac{2}{m} \sum_{i=1}^m (\widehat{y}^i - y^i) x_j^i + \frac{2\lambda}{m} W_j \right] \quad \text{when j>=1}$$

Ridge regression (L2 penalty)

Matrix form

Cost function

$$J = \frac{1}{m} [(W \cdot X - Y)^T (W \cdot X - Y) + \lambda W^T \cdot W]$$

Gradient Descent

$$\frac{\partial J}{\partial W} = \frac{2}{m} \left[(X \cdot W - Y)^T \cdot X + \lambda W \right]$$

$$\frac{\partial J}{\partial W} = \frac{2}{m} \left[(X \cdot W - Y)^T \cdot X + \lambda I \cdot W \right]$$

I: identity matrix

Ridge regression (L2 penalty)

Normalization equation for ridge regression

$$W = (X^T \cdot X + \lambda I)^{-1} \cdot X^T \cdot Y$$

when
$$\lambda=0$$
, $W=(X^T\cdot X)^{-1}\cdot X^T\cdot Y$

When λ = infinite, W=0

Ridge regression (L2 penalty)

Lasso regression (L1 penalty)

Matrix form

Cost function

$$J = \frac{1}{m} [(W \cdot X - Y)^T (W \cdot X - Y) + \lambda |W|]$$

Gradient Descent

Coordinate descent method

Lasso regression (L1 penalty)

Bias / Variance Trade off

Large λ : high bias, low variance

Small λ : low bias, high variance

Bias

This part of the generalization error is due to wrong assumptions, such as assuming that the data is linear when it is actually quadratic. A high-bias model is most likely to underfit the training data.

Variance

This part is due to the model's excessive sensitivity to small variations in the training data. A model with many degrees of freedom (such as a high-degree polynomial model) is likely to have high variance, and thus to overfit the training data.

<Hands-On ML, Aurelien Geron>

Overfitting and regularization

Assignment_2: Any question?

Due 2/15

- 1 (30pts). Polynomial regression / overfitting / regularization
- 2 (30pts). Polynomial regression with train/validation/test
- 3 (40pts). Regularization with Tensorflow
- using L2 penalty (Ridge)
- using L1 penalty (Lasso)
- using matrix (gradient descent)
- using scikit-learn linear regression model
- using TensorFlow gradient descent method

Binary classification

- Logistic regression is commonly used for binary classification.
- The output of classification is categorical value instead of continuous value.
- The output of binary classification is 1 or 0.
- For example,
 - Email: Spam / Not spam,
 - Online transaction: Fraudulent (Yes / No)

Given x, the probability if y = 1

$$\hat{y} = P(y = 1|x)$$

$$P = \sigma(W^T x + b)$$

Logistic function (sigmoid)

$$\sigma(z) = \frac{1}{1 + \exp(-z)}$$

Model Prediction

$$P(y=1|x)$$

$$= \frac{1}{1 + \exp(-W^T x - b)}$$

$$\hat{y} = \begin{cases} 1 & \text{if } P \ge 0.5 \\ 0 & \text{if } P < 0.5 \end{cases}$$

Cost function

$$J = -\frac{1}{m} \sum_{i=1}^{m} [y^{i} \log(\widehat{y^{i}}) + (1 - y^{i}) \log(1 - \widehat{y^{i}})]$$

If y = 1
$$J = -\frac{1}{m} \sum_{i=1}^{m} [y^i \log(\widehat{y}^i)]$$

If y = 0
$$J = -\frac{1}{m} \sum_{i=1}^{m} [\log(1 - \hat{y}^i)]$$

SJSU SAN JOSÉ STATE UNIVERSITY

Gradient (or derivative of cost funciton)

$$\frac{\partial J}{\partial W} = -\frac{1}{m} \sum_{i=1}^{m} \left[\left(\widehat{y}^i - y^i \right) x_j^i \right]$$

$$\frac{\partial J}{\partial W} = -\frac{1}{m} \sum_{i=1}^{m} [(P - y^i) x_j^i]$$

$$\frac{\partial J}{\partial W} = -\frac{1}{m} \sum_{i=1}^{m} \left[\left(\sigma(W^T x + b) - y^i \right) x_j^i \right]$$

Regularization

Cost function

$$J = -\frac{1}{m} \sum_{i=1}^{m} \left[y^{i} \log(\widehat{y}^{i}) + (1 - y^{i}) \log(1 - \widehat{y}^{i}) \right] + \frac{2\lambda}{m} \sum_{j=1}^{n} W_{j}^{2}$$

gradient

$$\frac{\partial J}{\partial W_0} = -\frac{1}{m} \sum_{i=1}^{m} \left[\left(\widehat{y}^i - y^i \right) x_j^i \right]$$
 for j=0

$$\frac{\partial J}{\partial W_i} = -\frac{1}{m} \sum_{i=1}^m \left[\left(\widehat{y}^i - y^i \right) x_j^i \right] + \frac{\lambda}{m} W_j \quad \text{for } j \ge 1$$

Confusion matrix

Accuracy: (tp + tn) / (tp + fp + fn + tn) * 100

Precision: tp / predict positive = tp / (tp + fp) * 100

Recall (true positive rate) : tp / actual positive = tp / (tp + fn) * 100

True negative rate : tn / actual negative = tn / (fp + tn) * 100

Precision

Fraction of positive predictions that are correct.

```
precision = # true positives
# true positives + # false positives
```

Recall

Fraction of positive data points correctly classified

```
Recall = # true positives
# true positives + # false negatives
```

Tradeoff Precision & Recall

SISU SAN JOSÉ STATE UNIVERSITY

Precision & Recall curve

Mini-batch Gradient Descent

Batch Gradient Descent
 Computes the gradients based on full training set
 Ex) Offline learning

- Stochastic Gradient Descent
 Computes just one instance
 Ex) Online learning
- Mini-batch Gradient Descent
 Computes the gradients on small random sets of instances

<Hands-On ML, Aurelien Geron>

Batch vs online learning

Batch learning

 All data is available at start of training time

Online learning

- Data arrives (streams in) over time
 - Must train model as data arrives!

Stochastic gradient descent

Batch descent

Gradient
$$\frac{\partial J}{\partial W} = -\frac{1}{m} \sum_{i=1}^{m} \left[\left(\widehat{y}^i - y^i \right) x_j^i \right]$$
 (Sum over data points)

Stochastic descent

Gradient
$$\frac{\partial J}{\partial W} = -(\widehat{y^i} - y^i)x_j^i$$

(Each time, pick different data point)

Batch vs. Stochastic gradient

Total time to convergence for large data

Algorithm	Time per iteration	In theory	In practice	Sensitivity to parameters
Batch Gradient	Slow for large data	Slower	Often slower	Moderate
Stochastic gradient	Always fast	Faster	Often faster	Very high

SJSU SAN JOSÉ STATE UNIVERSITY

Batch gradient descent vs stochastic gradient descent

Consider only 'average' value in stochastic gradient

Stochastic gradient

Batch / stochastic: two extremes

Batch size effect in mini-batch

Regression with Tensorflow

Load data and set up X, y variable

```
import tensorflow as tf
import numpy as np
from sklearn.datasets import fetch_california_housing
housing = fetch_california_housing()
m,n = housing.data.shape
mean = np.mean(housing.data,axis=0)
std = np.std(housing.data, axis=0)
normal_housing_data = (housing.data - mean)/std
normal_housing_data_plus_bias = np.c_[np.ones((m,1)),normal_housing_data]
X = tf.constant(normal_housing_data_plus_bias, dtype = tf.float32, name = "X")
y = tf.constant(housing.target.reshape(-1,1), dtype = tf.float32, name = "y")
```


Regression with Tensorflow

L2 regularization

```
theta = tf.Variable(tf.random_uniform([n+1,1],-1.0,1.0), name = "theta")
y_pred = tf.matmul(X,theta,name = "Predictions")
error = y_pred - y
rmse = tf.sqrt(tf.reduce_mean(tf.square(error)), name = "rmse")
scale = 0.1
learning_rate = 0.01
base_loss = tf.reduce_mean(tf.square(error), name = "loss")
reg_loss = tf.reduce_sum(tf.square(theta))
loss = tf.add(base_loss, scale/m*reg_loss)
gradients = 2/m * tf.add(tf.matmul(tf.transpose(X),error),scale*theta)
training_op = tf.assign(theta, theta - learning_rate * gradients)
```


Regression with Tensorflow

L1 regularization

```
theta = tf.Variable(tf.random_uniform([n+1,1],-1.0,1.0), name = "theta")
y_pred = tf.matmul(X,theta,name = "Predictions")
error = y_pred - y
rmse = tf.sqrt(tf.reduce_mean(tf.square(error)), name = "rmse")
scale = 0.1
base_loss = tf.reduce_mean(tf.square(error), name = "loss")
reg_loss = tf.reduce_sum(tf.abs(theta))
loss = tf.add(base_loss, scale/m*reg_loss)
gradients = 2/m * tf.add(tf.matmul(tf.transpose(X),error),scale*theta)
training_op = tf.assign(theta, theta - learning_rate * gradients)
```


Summary

- Logistic regression
- Binary classification
- Confusion matrix: Accuracy, Precision, Recall
- Mini-batch gradient descent
- Regression with tensorflow

