WHAT IS CLAIMED IS:

1	1. A method for processing target material of a microstructure			
2	while avoiding undesirable changes to adjacent non-target material having a thermal			
3	or optical property different than the target material, the target material being			
4	characterized by a relationship of fluence breakdown threshold versus laser pulse			
5	width that exhibits a rapid and distinct change in slope at a characteristic laser pulse			
6	width, the method comprising:			
7	generating a pulsed laser beam in which a first pulse of the beam has			
8	a pulse width equal to or less than the characteristic laser pulse width;			
9	focusing the pulsed laser beam to obtain a focused beam; and			
10	relatively positioning the focused beam into a spot on the target			
11	material wherein the first pulse removes all of the target material while avoiding			
12	undesirable change to the adjacent non-target material.			
1	2. The method of claim 1, wherein the microstructure is a			
2	electrically conductive, redundant memory link.			
	2 The weeks does also week in also 2 with a win the limb is next of			
1	3. The method as claimed in claim 2 wherein the link is part of			
2	a semiconductor memory device having links widths pitch less than about 1.33			
3	microns.			
1	4. The method as claimed in claim 2, wherein the link is			
2	supported on a silicon substrate, and wherein laser wavelength is greater than about			
3	$1~\mu\mathrm{m}$.			
	· · · · · · · · · · · · · · · · · · ·			
1	5. The method as claimed in claim 1, wherein the step of			
2	generating includes amplifying a seed pulse with a fiber optic amplifier.			
1	6. The method as claimed in claim 4, wherein at least one			
2	absorbing material is located between the link and the substrate to prevent damage			
3	to at least one of the substrate and a link adjacent to the memory link.			

1	7. The method as claimed in claim 6, wherein interaction of the			
2	absorbing material with the focused beam includes non-linear absorption of laser			
3	energy.			
1	8. The method as claimed in claim 1, wherein the microstructure			
2	is a link supported on a substrate and wherein at least one sacrificial material			
3	located between the link and the substrate.			
1	9. The method as claimed in claim 8, wherein the substrate is a			
2	silicon substrate.			
1	10. The method as claimed in claim 9, wherein laser wavelength			
2	is less than about 500 nm.			
1	11. The method as claimed in claim 6, wherein the at least one			
2	absorbing material includes a sacrificial layer of material.			
1	12. The method as claimed in claim 1, wherein energy density of			
2	the focused beam at the spot is greater than about 2 Joules/cm ² .			
1	13. The method as claimed in claim 12, wherein the energy			
2	density is in a range of about 25-30 Joules/cm ² .			
1	14. The method as claimed in claim 1, wherein the pulse width			
2	of the first pulse is less than about 10 ps.			
1	15. The method as claimed in claim 1, wherein the pulse width			
2	of the first pulse is less than about 150 fs.			
1	16. The method as claimed in claim 1, wherein the spot has a			
2	diameter less than about 1.6 microns			

1	17. A system for processing target material of a microstructure				
2	while avoiding undesirable changes to adjacent non-target material having a thermal				
3	or optical property different than the target material, the target material being				
4	characterized by a relationship of fluence breakdown threshold versus laser pulse				
5	width that exhibits a rapid and distinct change in slope at a characteristic laser pulse				
6	width, the system comprising:				
7	means for generating a pulsed laser beam in which a first pulse of the				
8	beam has a pulse width equal to or less than the characteristic laser pulse width;				
9	means for focusing the pulsed laser beam to obtain a focused beam;				
10	and				
11	means for relatively positioning the focused beam into a spot on the				
12	target material wherein the first pulse removes all of the target material while				
13	avoiding undesirable change to the adjacent non-target material.				
1	18. The system as claimed in claim 17, wherein the microstructure				
2	is an electrically conductive, redundant memory link.				
1	19. The system as claimed in claim 18, wherein the means for				
2	generating includes:				
3	an oscillator to generate a source pulse;				
4	a pulse stretcher to stretch the source pulse to obtain a stretched				
5	pulse;				
6	an optical amplifier for amplifying the stretched pulse to obtain an				
7	amplified pulse; and				
8	a compressor for compressing the amplified pulse so as to produce				
9	the first pulse.				
1	20. The system as claimed in claim 18, wherein the means for				
2	relatively positioning includes:				
3	a positioning subsystem for relatively positioning the link and the				
4	focused beam.				

1	21.	The system as claimed in claim 19, wherein the optical		
2	amplifier is a fiber optic amplifier.			
1	22.	The system as claimed in claim 19, wherein the pulse stretcher		
2	and the compressor are both gratings.			
1	23.	The system as claimed in claim 19, wherein the optical		
2	amplifier is an all-fiber parabolic pulse amplifier.			
1	24.	The system as claimed in claim 17, wherein the means for		
2	generating includes an oscillator and an optical amplifier and wherein the oscillator			
3	and the optical amplifier are both fiber-based.			
1	25.	The system as claimed in claim 17, wherein the means for		
2	generating uses chirped pulse amplification.			
1	26.	The system as claimed in claim 17, wherein the means for		
2	generating uses parabolic pulse amplification.			
1	27.	The system as claimed in claim 24, wherein the means for		
2	generating uses FCPA.			