

ESCUELA POLITÉCNICA NACIONAL FACULTAD DE INGENIERÍA DE SISTEMAS

INGENIERÍA FN COMPUTACION

PERÍODO ACADÉMICO: 2025-A

ASIGNATURA: ICCD412 Métodos Numéricos GRUPO: GR2

TIPO DE INSTRUMENTO: Tarea N°7

FECHA DE ENTREGA LÍMITE: [11/05/2025]

ALUMNO: Kevin Eduardo Garcia Rodríguez

TEMA

Método de la secante, Newton y punto fijo

OBJETIVOS

- Aplicar los 3 métodos para encontrar soluciones numéricas de ecuaciones no lineales.
- Desarrollar habilidades en análisis numérico y resolución de problemas no lineales.
- Visualizar las diferencias entre cada método y entender sus restricciones.

DESARROLLO

1. Sea $f(x) = x^2 - 6$ y $p_0 = 1$. Use el método de Newton para encontrar p_2 .

Methodos Númericos

Tarea Nº7

Nombres Kevin Garcia Temas Heledos de Newton/secante

4) Sea
$$f(x) = x^2 - 6$$
 y $f_0 - 1$. Use el metado de Newton para Lonex f_0

-> $f(x) = x^2 - 6$ -> $f(x)^2 = 2x$ $f_0 = 1$

R x

Fo x

Fo x

P1 x

P2 x

R=2.6074

2. Sea $f(x) = -x^3 - \cos x$ y $p_0 = -1$. Use el método de Newton para encontrar p_2 . ¿Se podría usar $p_0 = 0$?

3. Use el método de Newton para encontrar soluciones precisas dentro de 10^{-4} para los siguientes problemas.

a.
$$x^3 - 2x^2 - 5 = 0$$
, [1,4]
b. $x^3 + 3x^2 - 1 = 0$, [-3,-2]
c. $x - \cos x = 0$, $[0, \pi/2]$
d. $x - 0.8 - 0.2 \sin x = 0$, $[0, \pi/2]$

3) Aplique el metado de Newton con precision de 10-4 (cx)= 3x2 - 4x =0 a) x3-2x2-5=0 [+,4] F(2) = 8-8-0 =-5 Q=2,6895 Feul = 17 - 18-5 = 4 . Temperes un referencial de Po=25 X+= 2,5 - +1,675 = 2,7443 Pab= (2,2143-2,5)=0,3143 n Cabo- 126899- 2,7431 = . 0,000 82 = 2,2143 - 0,274 = 2.6899 PI 2,7143 Cabs = 2.1805-2,6800 = 4x/04 ×3=2,6899- 0,0046 -2,6895 2,6899 P2 P3 2.689

1+6en(~)

4. Use los tres métodos en esta sección para encontrar las soluciones dentro de 10⁻⁵ para los siguientes problemas.

a.
$$3x - e^x = 0$$
 para $1 \le x \le 2$

b.
$$2x + 3\cos x - e^x = 0$$
 para $1 \le x \le 2$

4) Usando los 3 metados en esta sección dentro de 10-5 para los problemas

· Heh

$$X = \frac{e^x}{3}$$
 for $X = \ln(3x)$

tido	Punto	Fijo	f(1) = 3(1) - 6 = 0,283 f(2) = 3(2) = -1,389	X0 = 142 =1,5
Ex	30 X=	In (3x)		
1	. 1	v . 1 1 .	V / /	

n	×	Xn+1	9(x)	Cabo	X.= (n(361,0))
C 1	1,5	4,504077 1,50679	1,504677 4,50679	0,00 400	x2= (n(3(1,50406))
2	1,50579	1,60856	1,50856	0,000146	
3	1,50856	4,50977	1,56977	1.00 \$10-3	
ч	1,56977	1.51057	131657	2 x10 ³	
5	1,51657	1,5944	1,71-(4	Hard (0 - 2	
6	1,5444	15446	न,इजनसङ	3,5 K (2 ⁵⁾	
>	1,51145	1.5 1168	1,54468	2,3 × 10 14	
8	1,51168	1,544/83	1,51163	45410-4	
q	1,51183	1,51183	1,51193	4 × 10-4	1 =1,512
10	51193	1,512	1,475	4×10.5	1

VERZATIL

• Hetodo de Newtorz

$$f(x) = 0.282$$
 $f(x) = 49 - 1.289$

-> $f(x) = 3x - e^x$

-> $f(x)^2 = 2 - e^x$

-> $f(x)^2$

· Metodo de la secante C(D = 0,782 Fex)= 3x-ex F(2) = -1,284 PCXNZ 2005 12 -1284-0,282 X. 0,282 X, 2 +1,284 X2 = 1,46008-(0,2806) - -0,8199 = 1,3293 4,48008 0.285605 X4: 1,8293 -(0,20050) -1,3203-1,1900 =1740 1.8293 0.20950 EX 0.2041-0.3656 1,7401 -0,44261 Xy Yr 1,45455 0.08115 1,4950 0,02420 Xb X7 4,5136 -0,000200 1,5 x 10-3 45124 0,00005 Xe. 3×10-6 Xq / 1,51218 6.93-10-6 R-4,51213

b) 2x +3 cask) -ex =0 para 1 = x = > t+, > 1 con 105 - Metodo Punto Pijo fcv=0,902625 fcs)=-4,6335 ex= ex -3cos(x) x = 8x - 3 cos(x) X00 112 = 1,5 X1= (15-2605(1,5) n Xn+1 9(x) 2.125 2,135 Yo 4.5 χ, 2,315 6.078 6,078 -> 3 con este metodo NO converge 216,61 246.64 X2 860,3 a Metodo de Newton (fix) = 2-35en(x) -ex fcx) = 2x+3cos(x)-ex f(1) = 0,9026 F(2) = -4.6375 Po= 1,5 Pabs X - 1,5 - 2(1,5)+3(05(1,5)-e1,5 = 1,268 R X 10 1,5 1/1 1,268 0,232 0,028 X2 1,240 3×10-4 X3 1,2397 R=1,2397 2 1,24 YY 1,2397 0 · Metodo de la Secante Y .. 2 (CX) = 2x +3(05(x) - 2x) F(1) = 0,9026 X0 = 1 ((2): -4.6375 f(xn) X X2= 2-(-0,267). 2-1 1 0,0026 Yo. (-0.267) + (-1.260) χ_i -1,84 1,6 -0,17 YSQ X2 1,107 7 xxet INIO 10=1,2397 0,02003 4,2328 X 3 1,2347 SXICT 0,0000002 VERZAHI

5. El polinomio de cuarto grado

$$f(x) = 230x^4 + 18x^3 + 9x^2 - 221x - 9$$

tiene dos ceros reales, uno en [-1,0] y el otro en [0,1]. Intente aproximar estos ceros dentro de 10^{-6} con

- a. El método de posición falsa
- b. El método de la secante
- c. El método de Newton

Use los extremos de cada intervalo como aproximaciones iniciales en las partes a) y b) y los puntos medios como la aproximación inicial en la parte c).

Método	Intervalo o Aproximación Inicial	Cero Aproximado
Falsa Posición	[-1, 0]	-0.040659284771
Falsa Posición	[0, 1]	0.962398418572
Secante	[-1, 0]	-0.040659288316
Secante	[0, 1]	-0.040659288316 (incorrecto)
Newton	$x_0 = -0.5$	-0.040659288316
Newton	$x_0 = 0.5$	-0.040659288345 (incorrecto)

Método de la secante:

• Es sensible a la forma de la curva y puede converger a un cero fuera del intervalo si no hay suficiente cambio de pendiente. En este caso, probablemente convergió al cero en [-1,0], lo cual puede pasar si f(0) y f(1) no tienen valores suficientemente distintos o si la raíz en [0,1] está muy cerca del borde.

Método de Newton:

- Usó como punto inicial el medio del intervalo [0,1], es decir, x0=0.5. Si la derivada en ese punto no apunta hacia el cero correcto o es demasiado pequeña, puede desviarse hacia otra raíz o no converger bien.
- De hecho, Newton convergió erróneamente hacia el cero de [-1,0], lo cual indica que la forma del polinomio provoca que la pendiente lo desvíe.

- **6.** La función $f(x) = \tan \pi x 6$ tiene cero en $(1/\pi)$ arcotangente $6 \approx 0.447431543$. Sea $p_0 = 0$ y $p_1 = 0.48$ y use 10 iteraciones en cada uno de los siguientes métodos para aproximar esta raíz. ¿Cuál método es más eficaz y por qué?
 - a. método de bisección
 - b. método de posición falsa
 - c. método de la secante

Iteración	Bisección	Error Bisección	Posición	Error Pos. Falsa	Secante	Error
		Diseccion	Falsa	raisa		Secante
1	0.24	0.20743	0.4571	0.00967	0.48	0.03257
2	0.36	0.08743	0.4493	0.00187	0.4544	0.00697
3	0.42	0.02743	0.4479	0.00047	0.4476	0.00017
4	0.45	0.00257	0.4475	0.00007	0.4474319	0.0000004
5	0.465	0.01757	0.44743	0.0000015	0.447431543	0.000000000
6	0.4575	0.01007	0.4474317	0.0000016	0.447431543	0.000000000
7	0.45375	0.00632	0.44743154	0.000000003	0.447431543	0.000000000
8	0.451875	0.00444	0.447431543	0.000000000	0.447431543	0.000000000
9	0.4509375	0.00351	0.447431543	0.000000000	0.447431543	0.000000000
10	0.45046875	0.00304	0.447431543	0.000000000	0.447431543	0.000000000

Bisección: converge de forma segura, pero lentamente.

Posición Falsa: muy rápida y precisa desde la 5 iteración.

Secante: excelente rendimiento, alcanza la raíz prácticamente exacta en 5 iteraciones.

- 7. La función descrita por $f(x) = \ln(x^2 + 1) e^{0.4x} \cos \pi x$ tiene un número infinito de ceros.
 - a. Determine, dentro de 10^{-6} , el único cero negativo.
 - b. Determine, dentro de 10^{-6} , los cuatro ceros positivos más pequeños.
 - c. Determine una aproximación inicial razonable para encontrar el enésimo cero positivo más pequeño de f. [Sugerencia: Dibuje una gráfica aproximada de f.] d. Use la parte c) para determinar, dentro de 10^{-6} , el vigesimoquinto cero positivo más pequeño de f.

Método	Intervalo	Cero aproximado	Error
Bisección	[-2, 0]	-0.768405	10-10^{-6}

Cero positivo	Intervalo	Cero aproximado	Error
Cero 1	[0, 1]	0.447432	10-10^{-6}
Cero 2	[1, 2]	1.447432	10-10^{-6}
Cero 3	[2, 3]	2.447432	10-10^{-6}
Cero 4	[3, 4]	3.447432	10-10^{-6}

Aproximación inicial razonable para el enésimo cero positivo:

Aproximación inicial para el enésimo cero positivo: xn≈n

Cero positivo	Intervalo	Cero aproximado	Error
Cero 25	[24.5, 25.5]	25.447432	10-10^{-6}

Grafica usando nuestro código de Python.

1. La función $f(x) = x^{\left(\frac{1}{3}\right)}$ tiene raíz en x = 0. Usando el punto de inicio de x = 1 y $p_0 = 5$, $p_1 = 0.5$ para el método de secante, compare los resultados de los métodos de secante y Newton.

Iteración (n)	Método de la Se	Método de Newto	n (xn)
(p0=5	x0=1	
	p1=0.5	x1≈-2	
2	2 x2≈-3.4038	x2≈3.9767	
3	x3≈-5.9556		

Convergencia: En este caso particular, con los puntos iniciales dados, ninguno de los dos métodos muestra una convergencia clara hacia la raíz x=0 en las primeras iteraciones. El método de la secante incluso parece divergir.

Dependencia de los puntos iniciales: Ambos métodos son sensibles a la elección de los puntos iniciales. Para el método de la secante, la elección de dos puntos iniciales inadecuados puede llevar a una mala aproximación o divergencia. Para el método de Newton, un punto inicial lejos de la raíz o en una región donde la derivada es muy pequeña o cero puede causar problemas.

Para este ejercicio tenemos que como tal la función no tiene un f(x)=0, ya que estamos buscando los puntos donde la gráfica de la función cruza o toca el eje horizontal (el eje de las x), pero esta función nunca cruza por el eje de las x.

