3 Преобразование Фурье функций из пространства $S^\infty(\mathbb{R})$

Опр. Введем класс быстро убывающих бесконечно дифференцируемых функций $S^{\infty}(\mathbb{R})$ как множество таких функций $f \in C^{\infty}(\mathbb{R})$, для которых

$$M_{n,k} = \sup_{x \in \mathbb{R}} |x^k f^{(n)}(x)| < \infty \quad \forall k \ge 0, \ n \ge 0.$$

Как следствие,

$$|f^{(n)}(x)| \leqslant \frac{M_{n,k}}{|x|^k} \quad \forall |x| \geqslant 1, \quad \forall k \geqslant 0, \ n \geqslant 0,$$

то есть функция f и все ее производные убывают не бесконечности бустрее любой степени x.

Примером функции из пространства $S^{\infty}(\mathbb{R})$ является $f(x)=e^{-x^2/2}$. Ясно также, что

$$C_0^{\infty}(\mathbb{R}) \subset S^{\infty}(\mathbb{R}).$$

Заметим, что

$$f \in S^{\infty}(\mathbb{R}) \Rightarrow x^k f^{(n)}(x) \in L_1(\mathbb{R}) \qquad \forall k \geqslant 0, \ n \geqslant 0.$$

Действительно,

$$\left|x^{k+2}f^{(n)}(x)\right| \leqslant M_{n,k+2} \quad \forall \left|x\right| \geqslant 1 \Rightarrow \left|x^{k}f^{(n)}(x)\right| \leqslant \frac{M_{n,k+2}}{x^{2}} \quad \forall \left|x\right| \geqslant 1.$$

Таким образом, $\widetilde{f}(\xi) \in C^{\infty}(\mathbb{R})$.

Теорема 3.1. Оператор Фурье \mathscr{F} является взаимно однозначным отображением $S^{\infty}(\mathbb{R})$ на $S^{\infty}(\mathbb{R})$.

Доказательство. Пусть $f \in S^{\infty}(\mathbb{R})$. Напомним, что

$$\frac{d^n}{d\xi^n} \mathscr{F}[f](\xi) = \mathscr{F}[(-ix)^n f](\xi),$$
$$(i\xi)^k \frac{d^n}{d\xi^n} \mathscr{F}[f](\xi) = \mathscr{F}[((-ix)^n f)^{(k)}](\xi)$$

Функции $\xi^k \frac{d^n}{d\xi^n} \mathscr{F}[f](\xi)$ ограничены для всех k и $n \Rightarrow \mathscr{F}[f] \in S^\infty(\mathbb{R})$.

Возьмем теперь $g \in S^{\infty}(\mathbb{R})$ и положим $f(x) = \mathscr{F}^{-1}[g](x) = \mathscr{F}[g](-x)$. Ясно, что $f \in S^{\infty}(\mathbb{R})$ и $\mathscr{F}[f] = g$. Действительно,

$$\mathscr{F}[f](\xi) = \mathscr{F}\mathscr{F}^{-1}[g](\xi) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \left[\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} g(y)e^{iyx} \, dy \right] e^{-i\xi x} \, dx =$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \left[\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} g(y)e^{-iyx} \, dy \right] e^{i\xi x} \, dx = \mathscr{F}^{-1}\mathscr{F}[g](\xi) = g(\xi).$$

(Мы сделали замену переменных $x \to -x$.)

Осталось заметить, что в силу следствия 2.2 имеем $\operatorname{Ker}\mathscr{F}=0$, то есть $\mathscr{F}[f]\equiv 0\Rightarrow f\equiv 0.$

Теорема доказана.