Announcements

No class Monday 11/27 (day after Fall Break)

Quiz 3: Fri. 11/10 in class

Midferm 3: Wed. 11/15 7:00-8:30pm Noyes 217

We already know using greedy coloring that $\chi(G) \leq \Delta(G) + 1$

And equality is possible.

$$\chi(k_n) = n = \Delta(k_n) + 1$$

 $\chi(c_{2k+1}) = 3 = \Delta(c_{2k+1}) + 1$

Brooks' Thm (5.1.22): If G is connected and G is not a complete graph or odd cycle, then $\chi(G) \leq \Delta(G)$.

Pf: Let G be a connected graph, and let $k = \Delta(G)$.

Last time: showed that for all G, $\chi(G) \geq \omega(G)$, and for interval graphs, $\chi(G) = \omega(G)$.

Turns out $\chi(G)$ can be way bigger than $\omega(G)$. In fact,

Thm 5.2.3: For all $k \ge 1$, there exists a triangle-free graph G with $\chi(G) = k$.

Def 5.2.1: Let G be a simple graph with $V(G) = \{v_1, ..., v_n\}$. Let $V = \{u_1, ..., u_n\}$.

Mycielski's construction sives a graph G':= Myc(G) with

V(G) = V(G) U U U {w}

E(G) = E(G) 1 {u, V | 1 sign, v ∈ N(vi)} 1 {u, w | 1 sign}

Class activity: Find

a) Myc(K2)

b) Myc (Myc (k2))

Pf of Thm 5.2.3: