

MAHATMA EDUCATION SOCIETY'S PILLAI COLLEGE OF ARTS, COMMERCE & SCIENCE (Autonomous) NEW PANVEL

CA - II PROJECT ON

"covid -19 Dataset Analysis using Python"

IN PARTIAL FULFILLMENT OF

BACHELOR OF SCIENCE IN INFORMATION TECHNOLOGY

SEMESTER III – 2023-24

PROJECT GUIDE

Prof. Pradnya Kumavat

SUBMITTED BY

Athary sawant

Roll No.: 6208

INTRODUCTION

This project aims to harness the power of data visualization using Python to gain valuable insights from COVID-19 datasets. Through visual representations of the data, we can uncover trends, patterns, and anomalies that are not always apparent when examining raw numbers. By doing so, we can contribute to a better understanding of the pandemic's progression, the effectiveness of public health measures, and the impact of vaccination campaigns.

Project Goals:

<u>Data Exploration:</u> We will start by exploring various COVID-19 datasets, which may include information on confirmed cases, deaths, recoveries, testing rates, vaccination coverage, and more. We will source these datasets from reputable sources such as the World Health Organization (WHO), the Centers for Disease Control and Prevention (CDC), or other reliable sources.

<u>Data Preprocessing:</u> Data preprocessing is a crucial step in any data analysis project. We will clean and format the data to ensure it is suitable for visualization. This may involve handling missing values, converting data types, and aggregating data by relevant categories (e.g., date, region).

<u>Data Visualization:</u> The heart of this project lies in creating meaningful and insightful visualizations. We will use Python libraries such as Matplotlib, Seaborn, and Plotly to generate various types of plots and charts, including line plots, bar charts, scatterplots, heatmaps, and more. These visualizations will provide clear representations of COVID-19 trends over time and across different variables.

<u>Interactive Dashboards:</u> To enhance the project's interactivity, we may develop interactive dashboards using libraries like Dash or Bokeh. Dashboards enable users to explore the data dynamically, select specific regions or time periods, and gain a deeper understanding of the pandemic's impact.

ACTUAL ANALYSIS

```
[5] import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns
import pandas as pd

[6] from google.colab import drive
drive.mount('/content/drive')

Mounted at /content/drive
```


	Country/Region	Confirmed	Deaths	Secovered	Active	tores.	Mew deaths	Now recovered	Deaths / 100 Cases	Recovered / 100 Cases	Deaths / 100 Recovered	Confirmed Last week	1 wet charge	1 week % Increase	MAC Region
03	Alghanistan	36263	1269	25100	3796	396	10.	16	3.50	69.49	5.04	36936	737	2.07	Eastern Medicitaneuri
1	Abonia	4000	144	2745	1991	137	1.0	65	2.95	56.25	6.25	4171	209	17.00	Ewope
2	Algeria	27973	1163	10837	7973	616		745	4.95	67.04	6.17	23691	4262	10.07	Afficia
3	Andorra	907	52	805	52	10		0	5.79	HE 53	6.40	884	25	2.60	Europe
	Angola	350	41	242	667	15	1		4.32	25.67	1634	749	201	26.84	Affice
-															
182	West Bank and Goza	10621	23	3712	6791	152	- 2	0	0.73	35.33	2.00	2015	1700	19.12	Eastern Medicitaceur
183	Western Sahara	10				.0		0	10.00	80.00	13.50	10	0	0.00	Atrea
184	Yesten	1691	411	833	375	10		×	28.56	4126	57.34	1619	22	6.45	Eastern Mortherrances
186	Zantra	4152	140	2010	1397	21		460	3.06	51.04	430	3326	1226	36.86	Africa
186	Zimpopwe	2704	36	542	2126	137	7	24	1.35	2004	6.64	1713	991	STAS	Abus

df = pd.read_csv('/atharva.csv') df.head()

MID Region	I week X Increase	I week change	Confirmed last week	Deaths / 108 Recovered	Recovered / 100 Canas	Deaths / 100 Cases	Rese recovered	New deaths.	Sese Carres	Action	hecovered	Deaths	Confirmed	Country/Hagian
Eastern Medicinaneas	2.07	737	265%	504	19.49	3.50	16	10.	106	.9796	25198	1209	56263	Alphaneties
Europe	17:00	709	4171	525	96.25	2.95	(63	- 6	197	1991	2745	344	A000	Abons
Alto	19.07	4282	23681	6.57	5734	A.16	749	. 8.	. 616	7973	19837	1163	27973	Algeria
Firepe	2.60	25	254	5.48	88.53	678	0	0	30	52	905	53	907	Andona
Africa	26.64	201	743	16.94	25.47	4.52	0	4	38	867	243	41	960	Argola

v 0s [1	[0] df.isnull().sum()	
	Country/Region	0
	Confirmed	0
	Deaths	0
	Recovered	0
	Active	0
	New cases	0
	New deaths	0
	New recovered	0
	Deaths / 100 Cases	0
	Recovered / 100 Cases	0
	Deaths / 100 Recovered	0
	Confirmed last week	0
	1 week change	0
	1 week % increase	0
	WHO Region	0
	dtype: int64	

/_{Os} [13] df.corr()

	Confirmed	Deaths.	Recovered	ACTIVE	Saw Eases	destiles	recovered	Swaths / 300 Cases	Securered / 500 Cases	Becovered	Int seek	1 week change	I work I
Confirmed	1.800000	0.904096	0.906377	0.107018	0.909729	0.671683	0.659252	0.063500	-0.064015	0.005175	0.999127	0.954710	-0.010101
Deaths.	0.934690	1.000000	0.002090	0.671506	0.806979	0.014161	0.765114	0.251565	0.114529	0.169006	0.909002	0.655330	-0.004708
Recovered	0.906377	0.833006	1.000000	0.582103	0.010342	9.620538	6.919000	0.049430	0.0068(10)	-0.027277	0.000312	0.910013	-0.013667
Active	6.927018	S SPISSE	0.682103	1 000000	E-851190	0.781123	6.673887	0.004360	-6 130618	0.058386	0.991459	8.847642	-0.000752
New cases	8.909720	0.006975	0.010942	0.65150	1.000000	9.955947	0.914703	0.020104	-0.00000A	0.011637	0.000004	II.909990	0.000791
New deaths	0.671683	0.014151	0.820338	0.701123	0.930947	1.000000	0.889034	0.060309	-0.062792	-0.020790	0.862118	0.094915	0.020293
New recovered.	8.809052	B.755114	0.940203	0.673007	0.954765	0.000034	1.000000	0.017000	400493	-0.003340	0.000002	0.954321	0.013682
Deaths / 900 Cases	0.003550	0,201066	0.048438	0.054380	0.029104	0.060355	0.017090	1 000000	-0.168100	0.334594	0.000694	0.015095	-0 154554
Recovered / 100 Cases	-6:054815	-0.114529	0.005510	-0 133616	-0.079666	4062792	-6 034293	-6.168000	1.000008	-0.295391	-0.064600	-0.000013	-0.394254
Deaths / 100 Recovered	8.025175	0.769006	-0.027277	0.008386	0.019037	0.000000	6 023040	0.334394	0.290001	1.000000	0.000400	0.013763	o orieno
Confirmed last week	0.999127	0.909002	0.009512	0.921409	0.000004	0.062338	6.839602	0.060894	0.064600	0.000400	1.000000	0.941448	-0.015247
week change	0.954710	0.655336	0.910013	0.847642	0.909993	0.094915	0.954321	0.015096	-0.063013	-0.013763	0.941446	7 D00000 F	0.009554
1 week % increase	-0.010161	-0.034708	-0.013697	-0.00375J	0.030791	0.005250	0.032562	-0.134534	-0.394254	-0.049083	-0.015247	0.036594	1.000000

```
correlation_matrix = df.corr()
plt.figure(figsize=(10, 8))
sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', fmt=".2f")
plt.title("Correlation Heatmap")
plt.show()
```


CONCLUSION: heatmaps are a valuable tool for visualizing and analyzing COVID-19 data. They can help policymakers, healthcare professionals, and researchers make informed decisions and respond effectively to the pandemic. However, it's important to note that the conclusions drawn from a heatmap should be based on careful analysis and consideration of the data.

```
[14] #Recovered vs death
plt.figure(figsize=(10, 6))
sns.scatterplot(x='Recovered', y='Deaths', hue='WHO Region', data=df)
plt.title("Recovered vs. Deaths")
plt.xlabel("Recovered Cases")

plt.ylabel("Deaths")
plt.show()
```


CONCLUSION: scatterplots are a valuable tool for exploring relationships between variables in a COVID-19 dataset. They can provide insights into the dynamics of the pandemic, the effectiveness of public health measures, and the impact of vaccination efforts.

```
[15] #Bar plot for WHO Region distribution

plt.figure(figsize=(10, 6))
    sns.countplot(x='WHO Region', data=df)
    plt.title("Distribution of WHO Regions")
    plt.xticks(rotation=45)
    plt.show()
```


CONCLUSION: countplots provide a valuable way to visualize and analyze categorical data related to COVID-19. They can assist in understanding the distribution of cases, tracking trends over time, assessing the impact of interventions, and identifying disparities among different groups

Distributions of all cases worlwide

CONCLUSION: pie charts are a useful tool for visually representing the distribution of COVID-19 data across different categories or segments. They can provide quick insights into how cases or other relevant metrics are divided among various groups. It's important to use pie charts judiciously, as they are best suited for representing data with a limited number of categories, and the data should be well-suited for this type of visualization.

```
a Calculating the sum of Confirmed cases for each country and select the top 18
country_totals =df.groupby('Country/Region')['Confirmed'].sum().nlargest(10)

# Creating a pie chart
plt.figure(figsize=(15,10))
plt.pie(country_totals, labels=country_totals.index, autopct='X1.1fXX', startangle=140)
plt.title('Distribution of Confirmed Cases by Country/Region (Top 10)', fontsize = 16, color='r', loc='left',
horizontalalignment='center')
plt.axis('equal')

# Showing the pie chart
plt.legend(loc='upper left')
plt.tight_layout()
plt.show()
```



```
column_names = ['Confirmed', 'Deaths', 'Recovered', 'Active']

# Calculate the sum of specified columns
column_sums = df[column_names].sum().plot(kind="bar")
```


CONCLUSION: barplots are a versatile visualization tool for analyzing and interpreting COVID-19 data. They are particularly effective for displaying categorical or discrete data and can provide valuable insights into the pandemic's progression, regional variations, and the effectiveness of public health measures and vaccination efforts.

```
import pandas as pd
import matplotlib.pyplot as plt
# Load your dataset into a pandas DataFrame (assuming it's named 'data.csv')
df = pd.read csv('/content/atharva.csv')
# Bivariate Analysis 1: Deaths vs. Recovered
plt.scatter(df['Deaths'], df['Recovered'])
plt.xlabel('Deaths')
plt.ylabel('Recovered')
plt.title('Deaths vs. Recovered')
plt.show()
# Bivariate Analysis 2: Confirmed Cases vs. Deaths
plt.scatter(df['Confirmed'], df['Deaths'])
plt.xlabel('Confirmed Cases')
plt.ylabel('Deaths')
plt.title('Confirmed Cases vs. Deaths')
plt.show()
# Bivariate Analysis 3: Confirmed Cases vs. Recovered Cases
plt.scatter(df['Confirmed'], df['Recovered'])
plt.xlabel('Confirmed Cases')
plt.ylabel('Recovered Cases')
plt.title('Confirmed Cases vs. Recovered Cases')
plt.show()
```

```
# Calculate and print the correlation coefficients
correlation1 = df['Deaths'].corr(df['Recovered'])
correlation2 = df['Confirmed'].corr(df['Deaths'])
correlation3 = df['Confirmed'].corr(df['Recovered'])

print(f'Correlation Deaths vs. Recovered: {correlation1}')
print(f'Correlation Confirmed vs. Deaths: {correlation2}')
print(f'Correlation Confirmed vs. Recovered: {correlation3}')
```


in this code:

- 1. We import the necessary libraries, pandas for data manipulation and matplotlib for creating plots.
- 2. We load your dataset (assumed to be in a CSV file) into a pandas DataFrame.
- 3. We perform three bivariate analyses by creating scatter plots for the selected pairs of variables.
- 4. We calculate and print the correlation coefficients for each pair of variables to measure the strength and direction of the relationships.

m 100

	Country/Region	Confirmed	Deaths	Recovered	Active	New cases	Mind deaths	New recovered	/ 188 Cases	Hocovered / 386 Cases	Deaths / 200 Becovered	Confirmed last week	1 week change	1 week % Increase	WHO Region
102	West Bank and Gaza	10621	78	5752	6791	152	2	0	0.73	35.53	2.06	8916	1705	19.12	Eastern Mediterraneus
183	Western Rehard	10		R	- 1	0	0	0	10.00	R0.00	12.50	10	0	0.00	Africa
104	Yomen	1601	483	633	375	30	4	36	26.56	49.20	57.90	1019	.72	4.45	Eastern Medievanean
105	Zambia	4552	140	3815	1597	71	1	468	3.05	81.84	4.97	3026	1226	36.86	Africa
104	Zimbabwe	2704	36	542	2126	192	2	24	1.53	20.04	6.64	1713	991	57.85	Africa

```
Multivariate Analysis:

[] import seaborn as sns
   import matplotlib.pyplot as plt

# Assuming you have a DataFrame 'df' with columns 'Confirmed', 'Deaths', and 'Recovered'

# Create a pair plot with KDE diagonal
   sns.pairplot(df[['Confirmed', 'Recovered', 'New cases', 'New deaths']], diag_kind='kde')

# Set the super title above the plot
   plt.suptitle("Pair Plot of Subjects", y=1.02)

# Rotate x-axis labels by 90 degrees
   plt.xticks(rotation=90)

# Display the plot
   plt.show()
```

Pair Plot of Subjects

in this code:

We import the necessary libraries, pandas for data manipulation and matplottib for creating plots. We load your dataset (assumed to be in a CSV file) into a pandas DataFrame. We perform three multivarient analyses by creating scatter plots for the selected pairs of variables.

CONCLUSION:-

This project set out to harness the power of Python and data visualization libraries to gain deeper insights into the COVID-19 pandemic through the analysis of relevant datasets. As we conclude this project, we can reflect on the key takeaways and contributions made in our journey of visualizing COVID-19 data.

Data Exploration and Understanding:

The initial phase of this project involved the exploration and selection of COVID-19 datasets from authoritative sources.. This foundational step allowed us to delve into the vast realm of COVID-19 data with confidence.

Data Preprocessing and Cleaning:

Data preprocessing was a critical aspect of our project. It involved addressing missing values, handling data types, and aggregating data by relevant attributes such as date, region, and demographic information. These efforts were essential to ensure that the data was in a suitable format for visualization.

Data Visualization:

The heart of our project revolved around data visualization. These visualizations were instrumental in revealing the pandemic's trends, disparities, and dynamics. They enabled us to present complex data in a comprehensible and engaging manner.

Insights and Discoveries:

Through our visualizations, we were able to draw several important conclusions and insights from the COVID-19 data. We tracked the progression of the pandemic over time, identifying waves of infections and assessing the impact of public health measures.

Documentation and Reporting:

Transparency and reproducibility are paramount in data analysis. We provided clear and comprehensive documentation of our code, methodologies, and data sources.

Future Directions:

As we conclude this project, it is essential to consider its potential future directions. COVID-19 remains a dynamic situation, and data collection continues. This project can serve as a foundation for ongoing analysis and monitoring of the pandemic. Future work may include the integration of machine learning models for predictive modeling, incorporation of additional variables and data sources, and ongoing updates to the interactive dashboards.

Github link:-

https://github.com/Atharv21sawant/data visualization/blob/3252ac05c8da271fb8311938 7cef10d0411d3026/atharvaproject.ipynb