ESP8266 快速入门指南

版本 1.4 版权 © 2017

关于本手册

本手册为 ESP8266 快速入门指南, 结构如下:

章	标题	内容
第1章	快速玩转开发板	介绍如何使用开发板,烧录可运行固件。
第2章	快速编译代码	以 <i>ESP8266_NONOS_SDK/AT</i> 为例,介绍如何编译代码。
第3章	RTOS SDK 编译	介绍编译步骤和框架结构。
第4章	常用调试方法	介绍常用调试方法和示例代码。
第5章	官方模组 ESP-WROOM-02 烧录方式	介绍官方模组 ESP-WROOM-02 烧录方式
附录 A	学习资源	介绍 ESP8266 相关的必读资料,必备资源和视频资源。

发布说明

日期	版本	发布说明
2016.08	V1.0	首次发布。
2016.11	V1.1	增加附录 A—学习资源。
2017.01	V1.2	增加附录 A.2-必备资源中 RTOS 和 non-OS 常用功能的示例代码的链接。
2017.02	V1.3	修改章节 2.1 中 Lubuntu OVA 镜像文件的下载链接。
2017.05	V1.4	更新章节 1.2 和 1.3。

1.	快速	玩转开发板	1
	1.1.	硬件准备	1
	1.2.	软件准备	1
	1.3.	ESP8266 开发板烧录教程	2
2.	快速	编译代码	7
	2.1.	工具获取	7
	2.2.	搭建编译环境	7
	2.3.	编译步骤	10
3. RTOS SDK 编译			
	3.1.	编译步骤	12
	3.2.	RTOS SDK 框架结构	15
4.	常用	调试方法	16
	4.1.	常用调试方法	16
		4.1.1. 添加 UART 打印	16
		4.1.2. Fatal 查证方法	16
5.	官方	模组 ESP-WROOM-02 烧录方式	17
A.	附录	-学习资源	.19
	A.1.	必读资料	19
	A.2.	必备资源	20
	A.3.	视频资源	20

1.

快速玩转开发板

1.1. 硬件准备

- ESP8266EX 硬件模块,可从以下方案中,选择其一。
 - 乐鑫官方开发板 ESP-LAUNCHER, 见表 1-1;
 - 乐鑫官方模组 ESP-WROOM-02, 见第 5 章。
- PC, 建议使用 Windows XP 或 Windows 7 系统。
- Micro-USB 数据线。

単 说明:

- 如要使用其他集成 ESP8266EX 的开发板或者模组,请使用相应厂商提供的开发固件。
- 如需购买 ESP-WROOM-02 或 ESP-LAUNCHER, 请访问乐鑫网上商店:
 https://espressif.taobao.com。

表 1-1. 硬件准备 (开发板方案)

- 1 个 ESP-LAUNCHER
- 1 根 Micro-USB 数据线

ESP8266 Wi-Fi 模块需要保证 3.3V 电源和最少 500 mA 的电流。

1.2. 软件准备

- 乐鑫官方 ESP8266 Flash Download Tool
 - 下载链接: ESP8266 Flash Download Tools
- 获取乐鑫 ESP8266 开发板默认固件
 - ESP8266 SDK 下载链接: *ESP8266 SDK*
 - 乐鑫官方 AT 固件 (*ESP8266_NONOS_SDK\bin\at*),可参考同一路径下 *Readme* 文件烧录。烧录示例见后文**章节 1.3**。

PC 串口工具

ESP8266 的默认波特率为 74880, 推荐使用可以支持默认波特率的串口工具。如果用户使用第三方开发板, 需要注意有些 USB-UART 转换器不能支持所有的波特率。

1.3. ESP8266 开发板烧录教程

1. 以 *ESP8266_NONOS_SDK_V2.0.0_16_07_19* 为例,下载并解压缩后,乐鑫官方编译可运行的 AT 固件位于路径:

ESP8266_NONOS_SDK_V2.0.0_16_07_19\ESP8266_NONOS_SDK\bin

图 1-1. ESP8266_NONOS_SDK BIN 文件夹

2. 开发板设置。

图 1-2. ESP8266 开发板

- 标号 1 开关拨下;
- 标号2开关拨下;
- 标号 3 开关拨上;

- 标号 4 跳线帽插入上方的两个针脚;
- 标号 5 插入跳线帽。
- 3. 使用 Micro-USB 线连接 ESP8266 开发板和 PC, 在 PC 端安装驱动。

图 1-3. PC 安装驱动

安装结束画面:

图 1-4. PC 安装驱动完成

4. 在 PC 打开烧录工具,双击运行: ESPFlashDownloadTool_v3.3.4.exe。

图 1-5. ESP8266 Flash Download Tool

例如图 1-5,使用 **16Mbit-C1** (1024+1024 map) Flash,烧录如下:

BIN	烧录地址	说明
blank.bin	0x1FB000	初始化 RF_CAL 参数区。
esp_init_data_default.bin	0x1FC000	初始化其他射频参数区,至少烧录一次。 当 RF_CAL 参数区初始化烧录时,本区域也需烧录。
blank.bin	0xFE000	初始化用户参数区。
blank.bin	0x1FE000	初始化系统参数区。
boot.bin	0x00000	主程序,位于 \bin\at 。

BIN	烧录地址	说明
user1.2048.new.5.bin	0x01000	主程序,位于 \bin\at\1024+1024 。

単 说明:

请根据开发板的实际硬件情况配置烧录工具 SpiFlashConfig 区域和 COM 口。

- 5. 点击烧录工具的 **START** 按键,进入**等待上电同步**状态。
- 6. 将 ESP8266 开发板上电,开始下载。

将图 1-2 ESP8266 开发板中标号 1 拨上,给开发板上电;标号 2 开关拨下,进入下载状态。

7. 烧录工具开始下载固件到 ESP8266 开发板中,**DETECTED INFO** 区域显示工具检测到的 ESP8266 开发板 Flash 信息。

图 1-6. ESP8266 Download Tool 正在下载

8. 等待下载完成后(如下图所示),将 ESP8266 开发板标号 1 开关拨下,关闭开发板电源。

图 1-7. ESP8266 Download Tool 下载完成

9. 在 PC 打开串口工具,配置波特率为 115200,配置新行模式。

业 说明:

如果使用 AT 指令,则波特率为 115200,并且要求设置新行模式。

10.将 ESP8266 开发板标号 2 开关拨上,设置开发板为运行模式;将标号 1 开关拨上,给 开发板上电。

PC 串口工具可能会打印一串乱码(这是正常现象,因为启动时波特率为 74880),出现"ready"信息,即表示 ESP8266 开发板正常运行。

11.通过串口工具、输入指令 AT+GMR 后、回车、显示 AT 固件版本信息。

图 1-8. AT 串口打印信息

更多 AT 指令及使用示例请参考文档《ESP8266 AT 指令集》和《ESP8266 AT 指令使用示例》。

2.

快速编译代码

本章以编译 ESP8266 NONOS SDK 的 AT 固件为例,介绍如何快速编译 SDK。

2.1. 工具获取

- 1. 乐鑫建议 PC 环境为: Windows XP/Windows 7
- 2. 乐鑫目前官方提供的开发环境为 Lubuntu,为了方便开发环境的快速搭建,乐鑫提供了基于虚拟机 VirtualBox 的 Lubuntu 镜像、获取途径如下:
 - VirtualBox-5.0.16-105871-Win.exe

 https://www.virtualbox.org/wiki/Downloads
 - Lubuntu 镜像 ESP8266_lubuntu_20141021.ova

 http://downloads.espressif.com/FB/ESP8266_GCC.zip

2.2. 搭建编译环境

步骤 结果

4. 设置虚拟机共享文件夹。

- PC 本地新建 *D:\VM\share* 文件夹, 作为与虚拟机共享的文件夹。
- 在虚拟机主菜单中选择 Machine > Settings > Shared Folders...,系 统显示如右图 ← 所示对话框。
- 在 *Machine Folders* 中选择虚拟机 的共享文件夹。如: *D:\VM\share*。

5. 运行虚拟机。

- 双击 ESP8266_lubuntu 或单击 Start 运行虚拟机。

- 如果虚拟机进入待机状态,显示如下图 → 所示锁定对话框,请输入解锁密码: espressif。

• 点击虚拟机桌面的 *LXTerminal* 进入 编译,详见下文章节 2.3。

2.3. 编译步骤

- 1. 运行虚拟机,点击虚拟机桌面上的终端工具 LXTerminal。
- 2. 在 PC 本地复制 ESP8266_NONOS_SDK 至与虚拟机共享的目录中。

3. 加载共享目录。

4. 在终端 LXTerminal 中切换到 /Share/ESP8266_NONOS_SDK/at 路径,进行编译。

単 说明:

详细的编译说明,请参考文档《ESP8266 SDK 入门指南》。

5. 编译成功后系统显示生成的 BIN 文件及其下载到 Flash 中的地址,如下所示。

```
Support boot_v1.4 and +

Generate user1.2048.new.5.bin successfully in folder bin/upgrade.

boot.bin----->0x00000

user1.2048.new.5.bin--->0x01000

!!!
```

単 说明:

用户可以进入 /home/esp8266/Share/ESP8266 NONOS SDK/bin/upgrade 目录检查生成的 BIN 文件。

6. 参考前文章节 1.3 ESP8266 开发板烧录教程,将生成的 BIN 文件烧录到开发板中,运行 AT 指令。

3.

RTOS SDK 编译

3.1. 编译步骤

1. *ESP8266_RTOS_SDK* 下载链接: https://github.com/espressif/ESP8266_RTOS_SDK 的应用示例。

下载链接: https://github.com/espressif/ESP8266_IOT_PLATFORM

2. 在 PC 本地复制 *ESP8266_RTOS_SDK* 和 *ESP8266_IOT_PLATFORM* 到与虚拟机共享的目录中。

3. 运行虚拟机,点击虚拟机桌面上的终端工具 LXTerminal。

4. 加载共享目录。

5. 修改 ESP8266_IOT_PLATFORM/gen_misc.sh 文件,设置 SDK_PATH 和 BIN PATH。

6. 修改 ESP8266_IOT_PLATFORM/makefile 文件。

7. 在终端 LXTerminal 中切换到 /Share/ESP8266_IOT_PLATFORM 路径,进行编译。

単 说明:

详细的编译说明,请参考文档《ESP8266 SDK 入门指南》。

8. 编译成功后系统显示生成的 BIN 文件及其下载到 Flash 中的地址,如下所示。

```
Support boot_v1.4 and +

Generate user1.1024.new.2.bin successfully in BIN_PATH

boot.bin----->0x00000

user1.1024.new.2.bin--->0x01000

!!!
```

Ⅲ 说明:

用户可以进入 /home/esp8266/Share/ESP8266_RTOS_SDK/bin/upgrade 目录检查生成的 BIN 文件。

9. 将生成的 BIN 文件烧录到开发板中, 运行测试。

山 说明:

ESP8266 默认波特率为 74880。

3.2. RTOS SDK 框架结构

图 3-1. ESP8266_RTOS_SDK 结构

4.

常用调试方法

4.1. 常用调试方法

4.1.1. 添加 UART 打印

对于 ESP8266_NONOS_SDK, 示例代码

os_printf("SDK version:%s\n", system_get_sdk_version());

对于 ESP8266 RTOS SDK, 示例代码

printf("SDK version:%s\n", system_get_sdk_version());

4.1.2. Fatal 查证方法

如果运行过程中,出现 fatal exception 打印信息,ESP8266 异常重启。

Fatal exception (28):

epc1=0x4025bfa6, epc2=0x000000000, epc3=0x000000000, excvaddr=0x00000000f, depc=0x000000000

查证步骤如下:

- 1. 在当前运行固件的文件夹 (*ESP8266_SDK/bin*) 中,找到当前运行固件对应的 .s 文件。例如,烧录运行的是 *eagle.flash.bin* 和 *eagle.irom0text.bin*,则对应 *eagle.s* 文件。
- 2. 在运行固件对应的 .s 文件中搜索 exception 报错的 epc1 地址(形如 0x40XXXXXX), 定位问题出现在哪个函数。
- 3. 在出现问题的函数调用前后,添加 UART 打印信息,进一步查证。

5. 官方模组 ESP-WROOM-02 烧 录方式

固件烧录步骤如下:

1. 将 ESP-WROOM-02 的如表 5-1 所示的管脚引出。

管脚名称 管脚状态 实物图 ΕN 上拉 3.3 V 供电 (VDD) 3V3 I015 下拉 UART 下载模式:下拉; I00 FLASH 启动模式:悬空/上拉 GND **GND** RXD UART 下载的接收端 GND I 104 TXD UART 下载的发送端,悬空/上拉

表 5-1. ESP-WROOM-02 的管脚

2. 按照图 5-1 用杜邦线将 ESP-WROOM-02 和 USB 转 TTL 串口模块连接。

图 5-1. ESP-WROOM-02 下载模式

- 3. 将 USB 转 TTL 串口模块与 PC 机连接。
- 4. 通过下载工具 (ESP8266 Download Tool) 将固件下载到 Flash 中。

Espressif 17/21 2017.05

単 说明:

关于如何下载固件,请参考**章节 1.3**。

- 5. 下载完毕后,将 100 悬空或者上拉,使 ESP-WROOM-02 切换为工作模式。
- 6. 重新上电,芯片初始化时会从 Flash 中读取程序运行。

単 说明:

IOO 管脚为内置高电平,更多 ESP-WROOM-02 的硬件信息,请参考《ESP-8266 系统描述》和《ESP-WROOM-02 技术规格表》。

A.

附录—学习资源

A.1. 必读资料

• ESP8266 技术规格表

说明:该手册介绍了ESP8266产品参数,概述了ESP8266(特点、协议、技术参数和应用)、管脚的布局和定义、描述ESP8266上的功能模块和协议(包括CPU、闪存和存储、时钟、射频、Wi-Fi和低功耗管理)、描述ESP8266上所集成的外设接口、电气参数和封装信息。

• ESP8266 硬件资源

说明:该压缩包的内容主要是硬件原理图,包括板和模组的制造规范,物料清单和原理图。

• ESP8266 Non-OS SDK IoT_Demo 指南

说明:该文档针对智能插座,智能灯,智能传感器对 IoT Demo 做了详解,以及 curl 工具的使用,和局域网功能和广域网功能的介绍。

• ESP8266 RTOS SDK 编程指南

说明:该手册提供 ESP8266_RTOS_SDK 的编程示例,包括熟悉 EAP8266 基础示例,网络协议示例,和一些高级示例。

• ESP8266 AT 指令使用示例

说明:该手册介绍几种常见的 Espressif AT 指令使用示例,包括单链接 TCP Client、UDP 传输、透传、多链接 TCP Service 等。

• ESP8266 AT 指令集

说明:该手册提供了ESP8266_NONOS_SDK的AT指令说明,包括烧录AT固件、自定义AT命令、基本AT指令、Wi-Fi相关的AT指令和TCP/IP相关的AT指令等。

• ESP8266 Non-OS SDK API 参考

说明:该手册提供了ESP8266_NONOS_SDK的API说明,包括对ESP8266_NONOS_SDK的概述、应用程序接口、TCP/UDP接口、Mesh接口、应用相关接口、结构体与宏定义、外设驱动接口等。

• ESP8266 RTOS SDK API 参考

说明:该手册提供了ESP8266_RTOS_SDK的API说明,包括对ESP8266_RTOS_SDKWi-Fi、Boot等一系列接口函数。

• 常见问题

A.2. 必备资源

• ESP8266 SDK

说明:该页面提供了ESP8266 所有版本 SDK。

• RTOS 示例代码

说明:该页面提供了常用功能的示例代码。

• Non-OS 示例代码

说明:该页面提供了常用功能的示例代码。

• ESP8266 工具

说明:该页面提供了ESP8266 Flash 下载工具以及ESP8266 性能评估工具。

- ESP8266 APK
- ESP8266 认证测试指南
- ESP8266 官方论坛
- ESP8266 资源合集

A.3. 视频资源

- ESP8266 开发板使用教程
- ESP8266 Non-OS SDK 编译教程

乐鑫 IOT 团队 www.espressif.com

免责申明和版权公告

本文中的信息,包括供参考的 URL 地址,如有变更,恕不另行通知。

文档"按现状"提供,不负任何担保责任,包括对适销性、适用于特定用途或非侵权性的任何担保,和任何提案、规格或样品在他处提到的任何担保。本文档不负任何责任,包括使用本文档内信息产生的侵犯任何专利权行为的责任。本文档在此未以禁止反言或其他方式授予任何知识产权使用许可,不管是明示许可还是暗示许可。

Wi-Fi 联盟成员标志归 Wi-Fi 联盟所有。蓝牙标志是 Bluetooth SIG 的注册商标。 文中提到的所有商标名称、商标和注册商标均属其各自所有者的财产,特此声明。

版权归© 2017 乐鑫所有。保留所有权利。