Sampling and Uncertainty

Nikodem Lewandowski

Intro

- We know how to build easy models:
 - ▶ use distributions to represent observed and unobserved variables
 - ▶ update priors with likelihood (taking into account all possible hypotheses)
 - obtain a posterior
- What we can do with a posterior?
- We can ask it questions by sampling (as our models are generative) and evaluating samples

Mass shootings

Prior signs of mental illness (US mass shootings 1982–2015)

grid approximated model of a parameter: being mentally ill

- Now we will make 10k samples from our posterior, so simulate 10k scenarios
 - ▶ randomly choose a value from the posterior distribution

dens(samples)

Summary of 10k Samples

Evaluation

You evaluate sample with questions like:

- How much posterior probability lies below some parameter value?
- How much posterior probability lies between two parameter values?
- Which parameter value marks the lower 5% of the posterior probability?
- Which range of parameter values contains 90% of the posterior probability?
- Which parameter value has highest posterior probability?


```
sum(posterior[p_grid > .6]) # probability that p is smaller than 0.6

[1] 0.9357886
sum(samples > .6) / 1e4

[1] 0.9333
sum(samples > .6 & samples < .7) / 1e4</pre>
```


[1] 0.5259

```
quantile(samples, c(.1,.9)) # 0.8 credible interval
  10% 90%
0.614 0.754
PI(samples, .8) # Percentile Interval
  10% 90%
0.614 0.754
HPDI(samples, .8) # Highest Posterior Density Interval
 10.8 0.81
```


0.615 0.754

PI vs HPDI

Now with model building

Mass Shootings dataset again, this time weapons obtained legally variable

sh\$WEAPONSOBTAINEDLEGALLY

```
[1] "Yes" "Yes" "No" "" "Yes" "Yes" "Yes" "Yes" "Yes" "Yes" "No" "Yes" "Yes" "Yes" "Yes" "Yes" "Yes" "Yes" "Yes" "Yes" "No" "Yes" "Yes" "Yes" "No" "Yes" "Yes" "Yes" "No" "Yes" "Yes" "Yes" "Yes" "Yes" "Yes" "Yes" "No" "No" "Yes" "Yes" "Yes" "No" "No" "Yes" "Yes" "Yes" "Yes" "Yes" "No" "Yes" "Ye
```

$$\begin{aligned} & \mathsf{legal} \sim \mathsf{Binomial}(N, \theta) \\ & \theta \sim \mathsf{Uniform}(0, 1) \end{aligned}$$

Now with model building

```
legal <- sum(sh$WEAPONSOBTAINEDLEGALLY == "Yes")</pre>
illegal <- sum(sh$WEAPONSOBTAINEDLEGALLY == "No")</pre>
total <- legal + illegal
datweapons = list (legal = legal, illegal = illegal,
                    total = total)
weaponsModel <- ulam(</pre>
  alist(
    legal ~ dbinom( total , theta),
    theta ~ dunif(0,1)
  data= datweapons )
```


Model Summary and Sampling

3 0.831108 4 0.763048 5 0.775173 6 0.707148

Samples and Density

Parameter visits

Posterior counts

Posterior density

Beyond binomial: lots of small factors

```
set.seed(212)
runif(1,-1,1)

[1] -0.1890287
person1 <- runif(40,-1,1)
person1[1:15]

[1] 0.68966791 0.50155319 -0.64601248 -0.98532639 -0.85444486 0.78535156
[7] 0.84621936 -0.25596481 -0.15321414 0.12277733 -0.08131306 0.70020409
[13] -0.48404981 -0.56437817 0.56608362
person1pos <- cumsum(person1)
person1pos</pre>
```

```
[1]
     0.68966791
                 1.19122110
                             0.54520862 - 0.44011778 - 1.29456263 - 0.50921107
[7]
     0.33700829
                 0.08104348 -0.07217066
                                        0.05060667 -0.03070639 0.66949770
                            0.18715334
Γ137
     0.18544790 -0.37893027
                                        0.65272745 -0.06900282 0.16638617
Γ197
     0.99165463 1.11116518 1.26215532 1.65187720 0.65364415 0.09298024
[25]
    0.80587173 1.74517056 2.55006080
                                        3.11954291
                                                    2.30616824 1.32723905
Γ317
     1.94501019 1.11388091 0.48335103 -0.20944751 -0.26375439 -1.09592587
[37] -1.24518649 -1.27292195 -0.91852718 -0.50006697
```


Beyond binomial: lots of small factors

Path through the steps

Beyond binomial: lots of small factors

Final destinations of 10, 100, and 1e6 drunkards

sd(positions1e6)

[1] 3.651049

the proportion of values one sd from the mean
mean(abs(positions1e6) < abs(sd(positions1e6)))</pre>

[1] 0.681833

University

mean(abs(positions1e6) < 2 * abs(sd(positions1e6))) # two sds from the mean

[1] 0.954926

Crime rates and normal distribution

```
cbs <- read.csv(file = "../../datasets/CrimeByState.csv")
#these are registered violent incidents per 100k citizens
cbs$CrimeRate</pre>
```

```
[1]
     45.5 52.3 56.6 60.3 64.2 67.6 70.5 73.2 75.0
                                                          78.1 79.8 82.3
[13]
           84.9
                 85.6
                       88.0
                            92.3
                                   94.3
                                         95.3 96.8 97.4
                                                          98.7
[25] 104.3 105.9 106.6 107.2 108.3 109.4 112.1 114.3 115.1 117.2 119.7 121.6
[37] 123.4 127.2 132.4 135.5 137.8 140.8 145.4 149.3 154.3 157.7 161.8
cbsPlot <- grid.arrange(ggplot(cbs)+geom_point(aes(x=1:nrow(cbs),y = CrimeRate))+th+
              ggtitle("Violent crime rate"),
ggplot(cbs)+geom density(aes(x=CrimeRate))+th, ncol=2)
```

Violent crime rate 160 160 0.010 0.000 40 10 20 30 40 80 120 160 120 1

Normal Distribution

$$x \leftarrow seq(0, 1000, 1)$$

 $dnorm(x, mean = 500, sd = 100)$

Normal Distribution

$$f(x|\mu,\sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Crime rates and normal distribution

```
\begin{aligned} & \mathsf{rate} \sim \mathsf{Normal}(\mu, \sigma) \\ & \mu \sim \mathsf{Normal}(100, 100) \\ & \sigma \sim \mathsf{Uniform}(0, 50) \end{aligned}
```

```
dat <- list(rate = cbs$CrimeRate)

set.seed(123)
meanModel <- quap(
   alist(
   rate ~ dnorm( mu , sigma ) ,
   mu ~ dnorm( 100 , 100 ) ,
   sigma ~ dunif( 0 , 50 )
   ), data = dat
)</pre>
```


1k samples from the prior and the posterior

Evaluating posteriors

100 posteriors vs true data

- \bullet result of extracting 10k samples of mu and sigma, sub-setting them to 0.89~HPDI
- $\, \bullet \,$ then sampling 100 values of mu and sigma from that subset
- creating their normal distributions (10k samples for each)
- plotted as gray lines contrasted with blue real distribution of crime rate

Universitu

Simulating predictions

The model is generative!

```
precis(meanModel)
                            5.5%
                                     94.5%
                     sd
     102.79877 4.165765 96.14107 109.45646
sigma 28.58386 2.948141 23.87216 33.29556
pred <- sim(meanModel) # sampling 1k values for 47 states</pre>
str(pred)
num [1:1000, 1:47] 122.7 121.3 122.4 112.1 89.2 ...
pred[1:5, 1:5] # 5 first predictions of 5 first states
          [.1]
                   [.2]
                             [.3] [.4]
                                                 [.5]
[1,] 122.67885 59.50806 126.56907 140.01684 114.28618
[2,] 121,34297 96,89885 96,61248 91,25465 104,74498
[3,] 122,36585 89,71487
                         83.79871 63.91233
                                            77.50755
[4,] 112.13829 134.25018 70.44354 126.19677 115.70459
```

89.24531 94.29293 59.70020 73.55355 155.21582

[5.]

Predictions for 1 chosen state

dens (pred[,1], col= UGblue)

Density and Counts

Summarizing our predictions

```
# calculating the mean of predictions for all of the states
(meanpreds <- apply(pred, MARGIN = 2, FUN = mean))

[1] 102.9239 100.9950 102.7737 101.8810 103.2923 102.5786 103.1034 102.9789
[9] 103.6875 103.5586 103.4715 104.6334 101.0434 101.8701 102.1192 102.7659
[17] 104.0520 102.7163 103.3319 104.4945 102.5480 102.5901 101.0424 103.1863
[25] 103.1677 101.7346 103.7943 102.8545 102.0906 103.2580 103.3311 103.3371
[33] 102.0324 103.2610 103.4838 103.0043 102.9440 103.5319 102.4780 104.8545
[41] 103.1585 102.9238 103.6589 102.4998 103.1766 102.7622 102.8955
# calculating 0.89 HPDI for all of the states predictions
hpdipreds <- as.data.frame(t(apply(pred, MARGIN = 2, FUN = HPDI)))
head(hpdipreds, n=10)
```

```
| 0.89 | 0.89|

1 61.23970 | 156.6802

2 56.04788 | 148.6105

3 56.25650 | 142.3157

4 55.83247 | 145.9335

5 54.99760 | 142.8291

6 57.41194 | 153.0368

7 62.57198 | 149.4996

8 57.55402 | 148.5420

9 57.31166 | 153.9692

10 58.52165 | 149.4642
```


Posterior evaluation with all the scenerios

Posterior predictive check

Levels of uncertainty

```
rate ~ dnorm( mu , sigma ) ,
mu ~ dnorm( 100 , 100 ) ,
sigma ~ dunif( 0 , 50 )
```

```
mean sd 5.5% 94.5%
mu 102.79877 4.165765 96.14107 109.45646
sigma 28.58386 2.948141 23.87216 33.29556
```


Levels of uncertainty

```
est <- extract.samples( meanModel )
pred <- sim( meanModel)

head(est)

mu sigma
1 107.63613 32.53144
2 108.84932 27.21955
3 99.94191 26.31424
4 100.35519 27.11859
5 99.98968 28.35499
6 101.65342 31.55342

str(pred)
```


num [1:1000, 1:47] 115 73.3 132.7 100.9 90.8 ...

Levels of uncertainty

Levels of uncertainty

