MATH311: Homework 4 (due Mar. 21)

손량(20220323)

Last compiled on: Wednesday 22nd March, 2023, 02:38

1 Problem #6

First, let's prove that E' is closed. Consider a limit point p of E'. We need to show that $p \in E'$. Let r > 0, then we need to find a point $q \in E$ such that $p \neq q$ and d(p,q) < r. Since p is a limit point of E', there exists a point $t \in E'$ such that $p \neq t$ and d(p,t) < r. There exists $q \in E$ with $q \neq t$ and d(t,q) < s, where $s = \min(r - d(p,t), d(p,t))$ since $t \in E'$. By triangular inequality, $d(p,q) \leq d(p,t) + d(t,q) < d(p,t) + s \leq r$ and $d(p,q) \geq d(p,t) - d(t,q)$. Since $s \leq d(p,t)$ by definition, $d(p,t) - d(t,q) > d(p,t) - s \geq 0$, so d(p,q) > 0. Thus, by definition of limit points, every limit point p of E' is a limit point of E, so $(E')' \subset E'$ and E' is closed.

Let's show that $E'=(\bar{E})'$. Consider $p\in E'$. For all r>0, there exists a point $q\in E$ such that $p\neq q$ and d(p,q)< r since $p\in E'$. Since $\bar{E}=E\cup E',\ q\in \bar{E}$ and it is evident that $p\in (\bar{E})'$, by the definition of limit points. Thus, $E'\subset (\bar{E})'$ holds. Now consider $s\in (\bar{E})'$. Let r'>0, we need to find a point $t\in E$ such that $s\neq t$ and d(s,t)< r' to show that s is a limit point of E, There exists a point $u\in \bar{E}$ such that $s\neq u$ and d(s,u)< r' since $s\in (\bar{E})'$. Since $\bar{E}=E\cup E',\ u\in E$ or $u\in E'$. If $u\in E$, we can take t=u and done. If $u\not\in E$, then $u\in E'$ and there exists $t\in E$ with $t\neq u$ and d(t,u)< r'', where $r''=\min(r'-d(s,u),d(s,u))$. By triangular inequality, $d(s,t)\leq d(s,u)+d(t,u)< d(s,u)+r''< r'$ and $d(s,t)\geq d(s,u)-d(t,u)$. Since $r''\leq d(s,u)$ by definition, $d(s,u)-d(t,u)>d(s,u)-r''\geq 0$, so d(s,t)>0, so we get the desired t. Thus, $(\bar{E})'\subset E'$ also holds, and E and E has the same limit points.

E and E' generally does not share the same limit points. Consider $E = \{0\} \subset \mathbb{R}$, then $E' = \emptyset$ since for all $x \in \mathbb{R}$, $B_r(x) \cap E = \emptyset$ if 0 < r < d(0, x) and x cannot be a limit point of E.

2 Problem #9

2.1 Proof for (d)

From (c), we can see that E° is the union of all open sets contained in E. Thus, its complement is the intersection of all closed sets contained in E^{C} , by theorem 2.22. Then, by theorem 2.27, $(E^{\circ})^{C}$ is the closure of E^{C} .

2.2 Solution for (e)

If E is \mathbb{Q} in \mathbb{R} , for all $x \in \mathbb{R} \setminus \mathbb{Q}$ and r > 0, there exists $y \in \mathbb{Q}$ such that x - r < y < x because \mathbb{Q} is dense in \mathbb{R} . Thus, $x \in E'$ so $\mathbb{R} \setminus \mathbb{Q} \subset E'$, and $\bar{E} = E \cup E' \supset \mathbb{Q} \cup (\mathbb{R} \setminus \mathbb{Q}) = \mathbb{R}$. Since $\bar{E} \subset \mathbb{R}$, $\bar{E} = \mathbb{R}$ holds. Then, \bar{E} is an open set, so x is an interrior point of \bar{E} but it isn't for E since $x \notin E$, and we can conclude that it is generally false.

2.3 Solution for (f)

If $E = \{0\}$ in \mathbb{R} , then $\bar{E} = \{0\}$ since $E' = \emptyset$, but $E^{\circ} = \emptyset$ so $\bar{E}^{\circ} = \emptyset$. Thus, it is generally false.

3 Problem #16

 E^C can be written as follows:

$$\begin{split} E^C &= \{ p \in \mathbb{Q}; \ p^2 \leq 2 \} \cup \{ p \in \mathbb{Q}; \ p^2 \geq 3 \} \\ &= \{ p \in \mathbb{Q}; \ -\sqrt{2} \leq p \leq \sqrt{2} \} \cup \{ p \in \mathbb{Q}; \ p \geq \sqrt{3} \} \cup \{ p \in \mathbb{Q}; \ p \leq -\sqrt{3} \} \end{split}$$

Let's show that E^C is open. Suppose $x \in \mathbb{Q} \setminus E$. If $x^2 \le 2$, then $x^2 < 2$, so $-\sqrt{2} < x < \sqrt{2}$ since there is no rational number whose square is 2. Since \mathbb{Q} is dense in \mathbb{R} , there exists $y, z \in \mathbb{Q}$ such that $-\sqrt{2} < y < x$ and $x < z < \sqrt{2}$. Let $r = \min(x - y, z - x)$, and consider $w \in (x - r, x + r)$. If r = x - y, then $w \in (y, 2x - y)$, and $2x - y \le z$ so $w \in (y, z)$, thus $-\sqrt{2} < w < \sqrt{2}$ and $w^2 < 2$ holds. Otherwise, then $w \in (2x - z, z)$, and $2x - z \ge y$ so $w \in (y, z)$, thus $-\sqrt{2} < w < \sqrt{2}$ and $w^2 < 2$ also holds. If $x^2 \ge 3$, then $x^2 > 3$, so $x > \sqrt{3}$ or $x < -\sqrt{3}$ since there is no rational number whose square is 3. If $x > \sqrt{3}$ then there exists $t \in \mathbb{Q}$ such that $\sqrt{3} < t < x$ since \mathbb{Q} is dense in \mathbb{R} . Let s = x - t, and consider $w \in (x - s, x + s)$. Since $x - s = t > \sqrt{3}$, $w^2 > t^2 > 3$ holds. If $x < -\sqrt{3}$ then there exists $u \in \mathbb{Q}$ such that $x < u < -\sqrt{3}$ since \mathbb{Q} is dense in \mathbb{R} . Let v = u - x, and consider $v \in (x - v, x + v)$. Since $v = u < -\sqrt{3}$, $v = v = u < -\sqrt{3}$, $v = v = u < -\sqrt{3}$ holds. Thus, $v = v = u < -\sqrt{3}$ is open in \mathbb{Q} , so $v = v = u < -\sqrt{3}$, $v = v = u < -\sqrt{3}$, $v = v = u < -\sqrt{3}$, $v = v = u < -\sqrt{3}$ holds. Thus, $v = v = u < -\sqrt{3}$, so $v = v = u < -\sqrt{3}$.

For all $p \in E$, d(p, 0) = |p| < 2 so E is bounded.

Consider a collection of sets $\{G_n\} = \{p \in \mathbb{Q}; 2 < p^2 < 3 - 1/n\}$. We can write

$$G_n = [(\sqrt{2}, \sqrt{3 - 1/n}) \cap \mathbb{Q}] \cup [(-\sqrt{3 - 1/n}, -\sqrt{2}) \cap \mathbb{Q}]$$

and since \mathbb{Q} is a open set, G_n is open by (a) and (c) of theorem 2.24. Thus, $\{G_n\}$ is an open cover of E. G_n cover E since \mathbb{Q} is dense in \mathbb{R} , but no finite collection of $\{G_n\}$ covers E. Thus, E is not compact. Since E can be written as

$$E = [(\sqrt{2}, \sqrt{3}) \cap \mathbb{Q}] \cup [(-\sqrt{3}, -\sqrt{2}) \cap \mathbb{Q}]$$

and by (a) and (c) of theorem 2.24, E is also open.

4 Problem #22

By corollary of theorem 2.13, \mathbb{Q} is countable and \mathbb{Q}^k is also countable by theorem 2.13. For all $x=(x_1,x_2,\ldots,x_k)\in\mathbb{R}^k$, $x\in\mathbb{Q}^k$ or $x\notin\mathbb{Q}^k$. Let r>0. If $x\notin\mathbb{Q}^k$, then there exists some $y=(y_1,y_2,\ldots,y_k)\in\mathbb{Q}^k$ such that $x_i< y_i< x_i+\sqrt{r^2/k},\,(i=1,2,\ldots,k)$ since \mathbb{Q} is dense in \mathbb{R} . Then, $0< y_i-x_i<\sqrt{r^2/k},\,(i=1,2,\ldots,k)$ holds. We can write

$$d(x,y) = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2 + \dots + (x_k - y_k)^2} < \sqrt{k \cdot \left(\sqrt{\frac{r^2}{k}}\right)^2} = r$$

From this, we can conclude that x is a limit point of \mathbb{Q}^k , so \mathbb{Q}^k is dense in \mathbb{R}^k by the definition of dense sets. Thus, \mathbb{R}^k contains a countable dense subset \mathbb{Q}^k , so it is separable.

5 Problem #26

Using the hint, let E be a set of x_n where $x_n \notin G_1 \cup G_2 \cup \cdots \cup G_n$. There are infinitely many finite unions of G_1, \ldots, G_n and every point is in some set of G_1, \ldots, G_n by definition, so E cannot be finite. Now consider a limit point z of E, there exists G_n where $z \in G_n$ by definition. Since G_n is open, there exists r > 0 where $B_r(z) \subset G_n$. Then, $x_m \notin B_r(z)$ if $m \ge n$, since $x_m \notin G_1 \cup \cdots \cup G_m$, so z cannot be a limit point of E, which is a contradiction.

6 Problem #29

Let $E \subset \mathbb{R}$ be such open subset. Consider a collection $\{G_{\alpha}\}$ consisting of $(\alpha - r, \alpha + r)$, where $\alpha, r \in \mathbb{Q}$ and r > 0. For all $x \in E$, there exists r > 0 such that $(x - r, x + r) \subset E$ since E is open. Since \mathbb{Q} is dense in \mathbb{R} , there exists $s \in \mathbb{Q}$ such that 0 < s < r, and $\beta \in \mathbb{Q}$ such that $x < \beta < x + s/2$. Then, $(\beta - s/2, \beta + s/2) \subset (x - s, x + s) \subset (x - r, x + r)$ and $x \in (\beta - s/2, \beta + s/2)$ holds, and $(\beta - s/2, \beta + s/2) \subset \{G_{\alpha}\}$ so $\{G_{\alpha}\}$ is a base of \mathbb{R} . By definition, every open set in \mathbb{R} is the union of a subcollection of $\{G_{\alpha}\}$. Fix a subcollection $\{V_{\alpha}\}$ of $\{G_{\alpha}\}$, where $E = \cup_{\alpha} V_{\alpha}$. Let I_x be the union of sets $A \in \{V_{\alpha}\}$ such that A intersects an open interval in $\{V_{\alpha}\}$ that contains x. I_x is also a segment and $I_x \subset E$. If $y \in E$ then $I_x = I_y$ or they are disjoint. The collection $\{I_x\}$ where $x \in E$ covers E. Since \mathbb{R} is separable, it can be reduced to a countable subcover and we get the desired result.