1、根据下列数据. 用最小二乘法求形如 y=aebx 的径验公式

Χì	-0.5	-0.2	0.25	0.75
Уi	1.2	1.25	2.5	4.25

由题可知 lny=lna+bx 含lny=z lna=A b=B 则z=A+BX

l''''	,	l /	ĺ	/
Χì	-0.5	-0.2	0.25	0.75
Уi	1.2	1.25	2.5	4.25
Ζi]n1.2	ln 1.25	ln2-5	/n 4.25

对数组 [(Xi. Zi)]; 进行线性拟合 Z=A+BX. 可得法方程.

$$\sum_{i=1}^{4} X_{i} = 0.3 \quad \sum_{i=1}^{4} X_{i}^{2} = 0.915. \quad \sum_{i=1}^{4} Z_{i} = 2.76867 \quad \sum_{i=1}^{4} X_{i}Z_{i} = 1.7847$$

$$\begin{pmatrix} 4 & 0.3 \\ 0.3 & 0.915 \end{pmatrix} \begin{pmatrix} A \\ B \end{pmatrix} = \begin{pmatrix} z.76867 \\ 1.17847 \end{pmatrix} \Rightarrow A \approx 0.610586 \quad B \approx 1.087753$$

$$\alpha = e^A \approx 1.841510$$
 $b = B \approx 1.087753$

2. 说 n>1 给出用牛顿法计算 \sqrt{a} (a>0) 财的迭代公式. 并用此公式来计算 \sqrt{n} 取初值 $X_0=2$. 迭代 4 次. 求 X_k 令 $f(x)=x^n-a$. 则 Newton 迭代公式为 $X_{k+1}=X_k-\frac{f(x_k)}{f(x_k)}$ 》 $X_{k+1}=\frac{n-1}{n}X_k+\frac{a}{n \times k^{-1}}$

$$4 = 11 \quad N = 5 \quad \text{M} \quad X_{k+1} = \frac{4}{5} X_k + \frac{11}{5 X_k^4}$$

3. 写出对方程 X³-4X²+5X-2=0 求根时的 Newton 迭代公式. Xn= 4P(Xn+) 取初值 Xo=0. 判断极限 ltm. Xn是否存在. 请给出你的俚由或证明

令
$$f(x) = \chi^3 - 4\chi^2 + 5\chi - 2$$
 则 $f(x) = 3\chi^2 - 8\chi + 5$ 则 Newton 迭代公式为 $\chi_n = \chi_{n-1} - \frac{f(\chi_n)}{f(\chi_n)} = \frac{2\chi_{n-1}^2 - 4\chi_{n-1}^2 + 2}{3\chi_{n-1}^2 - 8\chi_{n-1} + 5}$

記録: 後
$$\psi(x) = \frac{2X^{3} - 4X^{2} + 2}{3X^{2} - 8X + 5}$$
 $f(x) = 2X^{3} - 4X^{2} + 2$ $g(x) = 3X^{2} - 8X + 5$ $\forall x \in [0,1]$ $f(x) > 0$ $g(x) > 0$. $\Rightarrow \frac{f(x)}{g(x)} = \psi(x) > 0$
且. $f(x) - g(x) = 2X^{3} - 7x^{2} + 8x - 3$. < 0 $x \in [0,1]$ $\therefore \frac{f(x)}{g(x)} = \psi(x) \le 1$

$$0 \in \phi(x) \in [0.1]$$

说
$$h(x) = \chi^3 - 4\chi^2 + 5\chi - 2$$
 则 $\phi'(x) = \frac{h(x)h''(x)}{[h'(x)]}$

根据 $\phi(x)$ 的单调性可知 $\exists 0 < L < 1$. $\operatorname{St.}$ 对 $\forall x \in [0,1]$ 有 $|\phi'(x)| \leq L$.

故由压缩映射定理 YXoe[0.1]. 迭代序列[Xii)收较