]: (8	L 2 1 1 Cumings, Mrs. John Bradley (Florence Briggs Th female 38.0 1 0 PC 17599 71.2833 C85 C
3 4 Va	3 4 1 1 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0 1 0 113803 53.1000 C123 S
O <	sns.pairplot(df) seaborn.axisgrid.PairGrid at 0x227f5abe1c0>
Prince	02 00 30 25 1.5 1.0
Fare	#Check basic statistics for each columns:-
co m	Passengerid Survived Pclass Age SibSp Parch Fare
<(C)	75% 668.50000 1.00000 3.00000 38.00000 1.00000 0.00000 31.00000 max 891.00000 1.00000 3.00000 80.00000 6.00000 512.329200 df.info() cclass 'pandas.core.frame.DataFrame'> cangeIndex: 891 entries, 0 to 890 oata columns (total 12 columns): # Column Non-Null Count Dtype
((((((((((SAXESSUBplot:> Age 714 non-null float64 6 SibSp 891 non-null int64 7 Parch 891 non-null int64 8 Ticket 891 non-null object 9 Fare 891 non-null float64 10 Cabin 204 non-null object 11 Embarked 889 non-null object 1types: float64(2), int64(5), object(5) nemory usage: 83.7+ KB # Correlation between the columns sns.heatmap(df.corr() , annot=True)
Pē	Passengerid - 1
]: </td <td>df.corr()["Survived"].sort_values(ascending=True).plot(kind="bar") **AxesSubplot:></td>	df.corr()["Survived"].sort_values(ascending=True).plot(kind="bar") **AxesSubplot:>
-	# To check there is imblance in DataSet:-
]: 0 1 Na	
N	80t Survived 61.6% 38.4% Survived
moont	# How many are survived w.r to Sex sns.countplot("Survived", hue="Sex", data=df, palette="rainbow") sns.set_style("whitegrid") Sex male semale
]: *	# To check distribution of data and identify outliers:- df.hist(figsize=(14,10)) plt.show() Passengerld Survived Pclass
15	500 400 400 200 0 200 400 600 800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
60	50
: # S	# Distribution of Fare on datset sns.distplot(df["Fare"],color="red") sns.set_style("whitegrid") 0035 0030 0025
) :	0.020
Density	AxesSubplot:xlabel='Age', ylabel='Density'> 0.040 0.035 0.025 0.015 0.010 0.005
]: (l 216 2 184 Name: Pclass, dtype: int64 # Pie chart of Pclass Column for better visualization :- plt.pie(df["Pclass"].value_counts(),
	<pre>labels = ["PasssengerClass3", "PassengerClass2"] , colors= ["magenta", "yellow", "c"] , autopct = "%.1f%%", radius=1.3, shadow=True, explode=(0,0,0.2)) plt.show()</pre> PasssengerClass3
]:	# Checking nan values in the dataset using heatmap for better visualization sns.heatmap(df.isna() , yticklabels=False,cbar=False)
]: </td <td>EAXesSubplot:></td>	EAXesSubplot:>
]: (If the dataset has more than 50% of null values we will drop that column If the dataset has less than 50% of null values we will fill the null values If the dataset has less than 5% of null values we will use dropna() df.drop("Cabin", axis=1, inplace=True)
#	2 1 1 Cumings, Mrs. John Bradley (Florence Briggs Th female 38.0 1 0 PC 17599 71.2833 C 2 3 1 3 Heikkinen, Miss. Laina female 26.0 0 0 STON/O2. 3101282 7.9250 S 3 4 1 1 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0 1 0 113803 53.1000 S 4 5 0 3 Allen, Mr. William Henry male 35.0 0 0 373450 8.0500 S # Checking age w.r to PClass for equally filling the Age values. # Not just directly applying mean of age and using fillna
]: </td <td>sns.boxplot(df["Pclass"],df["Age"],data=df , palette="magma") *AxesSubplot:xlabel='Pclass', ylabel='Age'> **** **** **** **** **** **** ****</td>	sns.boxplot(df["Pclass"],df["Age"],data=df , palette="magma") *AxesSubplot:xlabel='Pclass', ylabel='Age'> **** **** **** **** **** **** ****
]: (<pre>def compute_age(cols): age = cols[0] pclass = cols[0] if pd.isna(age): if pclass == 1: return 38 elif pclass == 2: return 28 else:</pre>
]: #	return 25 else: return age df["Age"] = df[["Age", "Pclass"]].apply(compute_age, axis=1) # Dropna for Embarked column which has 2-3% of nan values df.dropna(inplace=True) sns.heatmap(df.isna(),yticklabels=False,cbar=False)
]: </td <td><pre>sAxesSubplot:></pre></td>	<pre>sAxesSubplot:></pre>
]: (]: 0 1 2	2 1 1 Cumings, Mrs. John Bradley (Florence Briggs Th female 38.0 1 0 PC 17599 71.2833 C 2 3 1 3 Heikkinen, Miss. Laina female 26.0 0 0 STON/O2. 3101282 7.9250 S
]: (c	# Droping columns which is no use df.drop(["PassengerId", "Name", "Ticket"], axis=1, inplace=True) df.head() Survived Pclass Sex Age SibSp Parch Fare Embarked 0 0 3 male 22.0 1 0 7.2500 S
>	2 1 3 female 26.0 0 0 7.9250 S 3 1 1 female 35.0 1 0 53.1000 S
)	<pre>from sklearn.preprocessing import OneHotEncoder from sklearn.compose import ColumnTransformer ct = ColumnTransformer([("encoder" ,</pre>
1 >	1. , 0. , 7.25], [1. , 0. , 1. , 0. , 0. , 1. , 38. , 1. , 0. , 71.2833], [1. , 0. , 0. , 0. , 1. , 3. , 26. , 0. , 0. , 7.925]]) # Applying train_test_split on x y variables from sklearn.model_selection import train_test_split Xtrain,Xtest,ytrain,ytest = train_test_split(x, y, test_size=0.25, random_state=1) # Default Paramters
1 1 1 1 5	<pre>from sklearn.metrics import accuracy_score , confusion_matrix , classification_report from sklearn.neighbors import KNeighborsClassifier knn = KNeighborsClassifier(n_neighbors=4) from sklearn.linear_model import LogisticRegression lr = LogisticRegression() from sklearn.svm import SVC svm = SVC() from sklearn.tree import DecisionTreeClassifier dt = DecisionTreeClassifier()</pre>
	<pre>from sklearn.ensemble import RandomForestClassifier rf = RandomForestClassifier() def classifiers(model): model.fit(Xtrain, ytrain) ypred = model.predict(Xtest) print(f"Accuracy_Score:- {accuracy_score(ytest,ypred)}\n\n{confusion_matrix(ytest,ypred)}\n{classification_report(ytest,ypred)}") return model classifiers(knn) accuracy_Score:- 0.7085201793721974</pre>
	[117 21] [44 41]] precision recall f1-score support 0 0.73 0.85 0.78 138 1 0.66 0.48 0.56 85 accuracy 0.69 0.67 0.67 223 weighted avg 0.70 0.71 0.70 223 WeighborsClassifier(n_neighbors=4) # Using n_neighbors
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	<pre>for improving the accuracy accuracy = [] n = list(range(1,30)) for i in n: knn = KNeighborsClassifier(n_neighbors=i) knn.fit(Xtrain,ytrain) ypred = knn.predict(Xtest) ac = accuracy_score(ytest,ypred) accuracy_append(ac)</pre> plt.plot(n,accuracy,ls=":",lw=2,marker="o",markerfacecolor="red")
r k	plt.title("accuracy v K") plt.xlabel("k") plt.ylabel("accuracy") plt.show() accuracy v K 074 072 078 068 068
]: 	knn = KNeighborsClassifier(n_neighbors=3) classifiers(knn) accuracy_Score:- 0.7399103139013453 [[110 28] [30 55]]
]: KI	0 0.79 0.80 0.79 138 1 0.66 0.65 0.65 85
w(]: L([119 19] [16 69]] precision recall f1-score support 0 0.88 0.86 0.87 138 1 0.78 0.81 0.80 85 accuracy macro avg 0.83 0.84 0.84 223 weighted avg 0.84 0.84 0.84 223 cogisticRegression() classifiers(svm)
We	Accuracy_Score:- 0.6502242152466368 [[113 25]
A(Classifiers(dt) Accuracy_Score:- 0.7937219730941704 [[115 23]
): (classifiers(rf) accuracy_Score:- 0.8251121076233184 [[119
C . B	Conclusion BEST SCORES LOGISTIC REGRESSION CLASSIFIER HAVE 84% OF ACCURACY. RANDOM FOREST CLASSIFIER HAVE 83% OF ACCURACY. DECISION TREE CLASSIFIER HAVE 79% OF ACCURACY. K-NEAREST NEIGHBORS HAVE 74% OF ACCURACY. SUPPORT VECTOR CLASSIFIER HAVE 65% OF ACCURACY.
•	 Default Logisitc Regression is performing well because the dataset is well linearly seprable and the datapoints are not overlapping. The Dataset is also small not much samples are present. We can improve the Logistic Regression accuracy and also decrease the FN values by optimising thresshold values