Dashboard / My courses / MA101 / Tutorial Quizzes / Quiz 2_01012	Dashboard / My courses	/ MA101 /	Tutorial Quizzes	/ Quiz 2	_01012021
--	------------------------	-----------	-------------------------	----------	-----------

Started on Friday, 1 January 2021, 2:30 PM
State Finished

Completed on Friday, 1 January 2021, 2:45 PM

Time taken 14 mins 52 secs

Grade 7.00 out of 10.00 (**70**%)

Question 1

Incorrect

Mark 0.00 out of 1.00

Let
$$A = \begin{pmatrix} 0 & -2 \\ 2 & 0 \end{pmatrix}$$
. Which of the following is the correct geometric interpretation of the associated linear transformation?

- a. rotates clockwise through 90 degrees and doubles the length.
- b. rotates counterclockwise through 90 degrees and halves the length.
- c. rotates counterclockwise through 90 degrees and doubles the length.
- od. rotates clockwise through 90 degrees and halves the length.

The correct answer is:

rotates counterclockwise through 90 degrees and doubles the length.

Question 2

Correct

Mark 1.00 out of 1.00

Which of the following sets of vector span \mathbb{R}^3 ?

$$\overset{\text{c.}}{\left\{ \begin{bmatrix} 1\\0\\2 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \begin{bmatrix} -1\\3\\0 \end{bmatrix}, \begin{bmatrix} 1\\-4\\1 \end{bmatrix} \right\}. }$$

The correct answers are:

$$\left\{ \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\-2 \end{bmatrix}, \begin{bmatrix} 1\\3\\1 \end{bmatrix} \right\}.$$

,

$$\left\{ \begin{bmatrix} 1\\0\\2 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \begin{bmatrix} -1\\3\\0 \end{bmatrix}, \begin{bmatrix} 1\\-4\\1 \end{bmatrix} \right\}.$$

Question 3

Correct

Mark 1.00 out of 1.00

Let $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ be a linear transformation given by

$$T(\begin{bmatrix} 1 \\ 1 \end{bmatrix}) = \begin{bmatrix} -3 \\ -3 \end{bmatrix}, T(\begin{bmatrix} 2 \\ 1 \end{bmatrix}) = \begin{bmatrix} 4 \\ 2 \end{bmatrix}.$$

Find $T(\begin{bmatrix} 4 \\ 3 \end{bmatrix})$

- \bigcirc a. $\begin{bmatrix} 2 \\ 4 \end{bmatrix}$
- \bigcirc b. $\begin{bmatrix} 0 \\ -4 \end{bmatrix}$
- \bigcirc c. $\begin{bmatrix} -2 \\ 0 \end{bmatrix}$
- \odot d. $\begin{bmatrix} -2 \\ -4 \end{bmatrix}$

The correct answer is: $\begin{bmatrix} -2 \\ -4 \end{bmatrix}$

Question 4

Correct

Mark 1.00 out of 1.00

The set $\{u,v\}\subseteq\mathbb{R}^2$ is linearly independent if and only if $\{u+v,u-v\}$ is linearly independent.

Select one:

- True
- False

The correct answer is 'True'.

Question 5
Incorrect
Mark 0.00 out of 1.00
A set of three vectors is linearly dependent only if one of them is a scalar multiple of another.
A sect of times vesters to linearly dependent only if one of them is a section multiple of another.
Select one:
True ▼
○ False
The correct answer is 'False'.
Question 6
Correct
Mark 1.00 out of 1.00
If $\{v_1, v_2, v_3, v_4\}$ are in \mathbb{R}^4 and v_4 is not a linear combination of $\{v_1, v_2, v_3\}$, then $\{v_1, v_2, v_3, v_4\}$ must be linearly independent.
Select one:
○ True
○ Fulse ▼
The correct answer is 'False'.
-
Question 7
Incorrect Mark 0.00 out of 1.00
Walk 0.00 dut of 1.00
A finite set of vectors is linearly independent iff its every proper finite subset is linearly independent.
Select one:
True ★
○ False
The correct answer is 'False'.
The contest unione is Tuise.

Question 8

Correct

Mark 1.00 out of 1.00

Let A, b be given. Then AX = b has infinitely many solutions if and only if AX = 0 has infinitely many solutions.

Select one:

- True
- False

The correct answer is 'False'.

Question 9

Correct

Mark 1.00 out of 1.00

$$T:\mathbb{R}^2\longrightarrow\mathbb{R}^2$$
 defined by $T(\begin{bmatrix}x_1\\x_2\end{bmatrix})=\begin{bmatrix}x_1+x_2\\x_1-x_2+1\end{bmatrix}$ is a linear transformation.

Select one:

- True
- False

The correct answer is 'False'.

Question 10

Correct

Mark 1.00 out of 1.00

Let
$$T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$$
 be the function that sends $T \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_3 + x_1 \\ x_1 . x_2 \\ 3x_3 \end{bmatrix}$. Is T a linear transformation?

Select one:

- True
- False

The correct answer is 'False'.

Announcements

Jump to...

Midsem 1 ▶