Data visualization in R Basic graphics

In this lecture

- Basic graphics
 - Scatter
 - Line
 - Bar
- Need for sophisticated graphics

Scatter plot

```
R – code:

X = 1:10

Y= X^2

plot (Y)
```


Scatter plot

dataset 'mtcars':

The data was extracted from the 1974 Motor Trend US magazine, and comprises fuel consumption and 10 aspects of automobile design and performance for 32 automobiles (1973–74 models).

Usage

mtcars

Format

A data frame with 32 observations on 11 variables.

```
[, 1] mpg Miles/(US) gallon
[, 2] cyl Number of cylinders
[, 3] disp Displacement (cu.in.)
[, 4] hp Gross horsepower
[, 5] drat Rear axle ratio
[, 6] wt Weight (1000 lbs)
[, 7] qsec 1/4 mile time
[, 8] vs V/S
[, 9] am Transmission (0 = automatic, 1 = manual)
[,10] gear Number of forward gears
[.11] carb Number of carburetors
```

Source

Henderson and Velleman (1981), Building multiple regression models interactively. Biometrics, 37, 391-411.

Scatter plot

R – code:

Corresponds to different shapes for points, for more such options check 'graphics parameters' in help main="Scatterplot Example",

xlab="Car Weight", ylab="Miles Per Gallon", pch=19)

Scatterplot Example

Basic graphics

Line plot

```
R - code :
X = 1:10
Y = X^2
plot(X, Y, type = 'l')
```


Bar plot

Syntax:

barplot(H, names.arg, xlab, ylab, main, names.arg, col)

```
R – code:
```

 $H \leftarrow c(7,12,28,3,41)$

M <- c("Mar", "Apr", "May", "Jun", "Jul")

barplot(H,names.arg = M, xlab = "Month", ylab = "Revenue",

col = "blue", main = "Revenue chart",border = "red")

Bar plot

Need for sophisticated graphics

Lets us say there is a need for you to show multiple plots in a single figure such as the following:

Basic graphics

Challenges

The exact figure as per the previous slide can be reproduced with the following code:

```
par(mfrow=c(2,4))
days <- c("Thur", "Fri", "Sat", "Sun")
sexes <- unique(tips$sex)
for (i in 1:length(sexes)) {
 for (j in 1:length(days)) {
  currdata <- tips[tips$day == days[j] & tips$sex == sexes[i],]
  plot(currdata$total_bill, currdata$tip/currdata$total_bill,
     main=paste(days[j], sexes[i], sep=", "), ylim=c(0,0.7), las=1)
```

Challenges

But the code requires work such as :

- Knowing when to introduce a for loop
- Which columns of the data.frame to select
- The positioning of each graph in the grid etc
- Less pleasing visuals

Summary

- 1) Scatter plots
- 2) Line plots
- 3) Bar plots
- 4) Challenges and disadvantages of basic graphics