1. **a**) Dla $\varepsilon = 10^{-1}$ znaleźć liczbę naturalną N taką, że

$$\left|\frac{n^2+n}{2n^2-2n+1}-\frac{1}{2}\right|<\varepsilon,\quad n>N.$$

- **b**) Wykonać to polecenie dla dowolnej wartości $\varepsilon > 0.1$
- 2. Dwa ciągi a_n i b_n są zbieżne do liczb a i b odpowiednio. Pokazać, że dla ustalonej dodatniej wartości ε istnieje liczba naturalna N spełniająca

$$|a_n - a| < \varepsilon$$
, $|b_n - b| < \varepsilon$, $dla \ n > N$.

3. Wyprowadzić z definicji zbieżności ciągu następujące równości

a)
$$\lim_{n \to \infty} \frac{n}{n+1} = 1, \qquad \lim_{n \to \infty} \frac{n^2 - 3n + 1}{2n^2 + n + 1} = \frac{1}{2},$$
b)
$$\lim_{n \to \infty} \frac{2n}{n^2 + 1} = 0, \qquad \lim_{n \to \infty} \frac{n}{2^n} = 0.$$

- 4. a) Pokazać, że jeśli ciąg a_n^2 jest zbieżny, to ciąg a_n nie musi być zbieżny.
 - $\overset{\cdot}{\mathbf{b}}$) Co jeśli ciąg a_n^2 jest zbieżny do zera?
- **5.** Uzasadnić, że ciąg a_n jest zbieżny do liczby a wtedy i tylko wtedy, gdy ciąg $|a_n a|$ jest zbieżny do zera.
- **6.** Pokazać, że jeśli nieujemny ciąg a_n jest zbieżny do liczby a > 0, to ciąg $\sqrt{a_n}$ jest zbieżny do liczby \sqrt{a} .
- 7. Obliczyć granice podanych ciągów, niekoniecznie z definicji.

a)
$$\frac{n^2 - 3n + 6}{1 - 2n^3}$$
b)
$$\frac{1 + a + a^2 + \dots + a^n}{1 + b + b^2 + \dots + b^n} (1 < a < b)$$
b)
$$\frac{n^4 + 2(-1)^n n^2}{\sin n - 2n^4}$$
c)
$$\frac{1}{n^2} + \frac{2}{n^2} + \dots + \frac{n-1}{n^2}$$
d)
$$\frac{1}{n} - \frac{2}{n} + \frac{3}{n} - \dots + \frac{(-1)^{n-1}n}{n}$$
k)
$$\frac{1}{n} - \frac{2}{n} + \frac{3}{n} - \dots + \frac{(-1)^{n-1}n}{n}$$
k)
$$\frac{1}{n^3} [1^2 + 3^2 + \dots + (2n-1)^2]$$
f)
$$\frac{(-2)^n + 3^n}{(-2)^{n+1} + 3^{n+1}}$$
g)
$$\frac{3\sqrt{n^2} \sin(n!)}{n+1}$$
ii)
$$\frac{1}{1 \cdot 2} + \frac{3}{2 \cdot 3} + \dots + \frac{1}{n(n+1)}$$

 $^{^1\}mathit{Uwaga} :$ Wartość liczby Nnie musi być najmniejsza możliwa.

- **8.** Ciąg a_n spełnia $a_1 = \sqrt{2}$ oraz $a_{n+1} = \sqrt{a_n + 2}$. Udowodnić zbieżność ciągu a_n i obliczyć granicę.
- $\ddot{9}$. Zbadać zbieżność ciągu a_n określonego rekurencyjnie:

$$a_{n+1} = 5\frac{3a_n + 1}{2a_n + 6},$$

gdzie $a_1 > 1.3$

- **10.** Udowodnić, że jeśli ciąg a_n jest zbieżny do 0 to $(1+a_n^2)^{1/3}$ jest zbieżny do 1.
- 11. Udowodnić następujące równości

$$\lim_{n\to\infty}\frac{2^n}{n!}=0, \qquad \lim_{n\to\infty}\sqrt[n]{a}=1, \qquad a>0,$$

$$\lim_{n\to\infty}\sqrt[n]{a}=1, \qquad a>0,$$

$$\lim_{n\to\infty}\sqrt[n]{n}=1,$$

$$\lim_{n\to\infty}\sqrt[n]{n}=1,$$

 $\lim_{n \to \infty} \frac{n^k}{a^n} = 0, \qquad a > 1, k \in \mathbb{N},$

$$\lim_{n \to \infty} \frac{1}{\sqrt[n]{n!}} = 0.$$

12. Znaleźć liczbę naturalną k jeśli

$$\lim_{n \to \infty} \frac{n^{2021}}{n^k - (n-1)^k} = \frac{1}{2022}$$

ï3. Znaleźć granicę

$$\lim_{n\to\infty}\sin^2(\pi\sqrt{n^2+n}).$$

 $[\]overline{\ \ \ \ \ \ \ \ \ \ \ }^2 Wskazówka:$ (Wersja a) Pokazać przez indukcję, że $a_n < 2$ a następnie, że a_n jest ciągiem rosnącym. (Wersja b) Pokazać, że $|2-a_{n+1}| \leq |2-a_n|/2$.

 $^{^3}W\!skaz\'owka:$ Użyj twierdzenia o ciągu monotonicznym i ograniczonym.