문제 1

패키지 참조

데이터 가져오기

데이터 타입 확인

날짜 인덱스 설정

결측치 검사

데이터 검정

ARIMA 분석

분석 모델 만들기

학습 모델에 대한 예측치

학습한 내용을 토대로 1년간의 예 상치 생성

시각화

연습문제 풀이

문제 1

패키지 참조

```
import sys
sys.path.append("../../")

from datetime import datetime as dt
from datetime import timedelta
from pandas import read_excel, to_datetime
from matplotlib import pyplot as plt
from matplotlib import dates as mdates
from statsmodels.tsa.arima.model import ARIMA
from pmdarima.arima import auto_arima
import seaborn as sb

from helper import set_datetime_index, exp_time_data
```

데이터 가져오기

```
origin = read_excel("https://data.hossam.kr/E06/temperatures_seoul.xlsx"
```

문제 1

패키지 참조

데이터 가져오기

데이터 타입 확인

날짜 인덱스 설정

결측치 검사

데이터 검정

ARIMA 분석

분석 모델 만들기

학습 모델에 대한 예측치

학습한 내용을 토대로 1년간의 예 상치 생성

시각화

origin.	head())
---------	--------	---

	날짜	평균기온(℃)
0	1973-07-01	22.7
1	1973-07-02	23.8
2	1973-07-03	27.2
3	1973-07-04	25.2
4	1973-07-05	26.9

데이터 타입 확인

origin.dtypes

날짜 datetime64[ns]

평균기온(℃) float64

dtype: object

날짜 인덱스 설정

df = set_datetime_index(origin, '날짜')
df.head()

문제 1

패키지 참조

데이터 가져오기

데이터 타입 확인

날짜 인덱스 설정

결측치 검사

데이터 검정

ARIMA 분석

분석 모델 만들기

학습 모델에 대한 예측치

학습한 내용을 토대로 1년간의 예 상치 생성

시각화

	평균기온(℃)
1973-07-01	22.7
1973-07-02	23.8
1973-07-03	27.2
1973-07-04	25.2
1973-07-05	26.9

결측치 검사

df.isna().sum()

평균기온(℃) 0 dtype: int64

데이터 검정

데이터가 너무 많으므로 최신 1000건만으로 검정을 시도함

df2 = df.tail(365*5)
df2.head()

	평균기온(℃)		
2018-08-08	31.0		

문제 1

패키지 참조

데이터 가져오기

데이터 타입 확인

날짜 인덱스 설정

결측치 검사

데이터 검정

ARIMA 분석

분석 모델 만들기

학습 모델에 대한 예측치

학습한 내용을 토대로 1년간의 예 상치 생성

시각화

2018-08-09	평귷기온(℃)	
2018-08-10	30.7	
2018-08-11	31.0	
2018-08-12	30.6	

```
exp_time_data(data=df2, yname="평균기온(°)", sd_model="a", max_diff=10)
```

결측치 수: 0

문제 1

패키지 참조

데이터 가져오기

데이터 타입 확인

날짜 인덱스 설정

결측치 검사

데이터 검정

ARIMA 분석

분석 모델 만들기

학습 모델에 대한 예측치

학습한 내용을 토대로 1년간의 예 상치 생성

연습문제_풀이.ipynb

연습문제 풀이

문제 1

패키지 참조

데이터 가져오기

데이터 타입 확인

날짜 인덱스 설정

결측치 검사

데이터 검정

ARIMA 분석

분석 모델 만들기

학습 모델에 대한 예측치

학습한 내용을 토대로 1년간의 예 상치 생성

문제 1

패키지 참조

데이터 가져오기

데이터 타입 확인

날짜 인덱스 설정

결측치 검사

데이터 검정

ARIMA 분석

분석 모델 만들기

학습 모델에 대한 예측치

학습한 내용을 토대로 1년간의 예 상치 생성

문제 1

패키지 참조

데이터 가져오기

데이터 타입 확인

날짜 인덱스 설정

결측치 검사

데이터 검정

ARIMA 분석

분석 모델 만들기

학습 모델에 대한 예측치

학습한 내용을 토대로 1년간의 예 상치 생성

시각화

검정통계량(ADF Statistic)	-2.00483
유의수준(p-value)	0.284458
최적차수(num of lags)	19
관측치 개수(num of observations)	1805
기각값(Critical Values) 1%	-3.43398
기각값(Critical Values) 5%	-2.86314
기각값(Critical Values) 10%	-2.56762
데이터 정상성 여부(0=Flase,1=True)	0
======== 1차 차분 데이터 ======= ADF Test	== -+
ADF Test	+
ADF Test 검정통계량(ADF Statistic)	+
ADF Test 검정통계량(ADF Statistic) 유의수준(p-value)	+
ADF Test 검정통계량(ADF Statistic) 유의수준(p-value) 최적차수(num of lags)	+
ADF Test 검정통계량(ADF Statistic) 유의수준(p-value) 최적차수(num of lags) 관측치 개수(num of observations)	+
ADF Test 검정통계량(ADF Statistic) 유의수준(p-value) 최적차수(num of lags) 관측치 개수(num of observations) 기각값(Critical Values) 1%	+
ADF Test 검정통계량(ADF Statistic) 유의수준(p-value) 최적차수(num of lags) 관측치 개수(num of observations) 기각값(Critical Values) 1% 기각값(Critical Values) 5%	+
ADF Test 검정통계량(ADF Statistic) 유의수준(p-value) 최적차수(num of lags) 관측치 개수(num of observations) 기각값(Critical Values) 1%	+

ARIMA 분석

분석 모델 만들기

날씨에 대한 데이터이므로 계절성은 1년마다 돌아온다고 보는 것이 맞지만 컴퓨터 성능상의 한 계로 계절성을 1주일 단위(=7일)로 제한함

문제 1

패키지 참조

데이터 가져오기

데이터 타입 확인

날짜 인덱스 설정

결측치 검사

데이터 검정

ARIMA 분석

분석 모델 만들기

학습 모델에 대한 예측치

학습한 내용을 토대로 1년간의 예 상치 생성

시각화

```
model = ARIMA(df2['평균기온(°)'], order=(1,1,0), seasonal_order=(1,1,0,3)
fit = model.fit()
print(fit.summary())
```

Dep. Variable:				-	명균:	기온(℃))	No.	Observations:
Model:	ARIMA(1,	1,	0)x(1,	1,	0,	30)	Log	Lik	elihood

Date: Tue, 08 Aug 2023 AIC
Time: 10:14:03 BIC
Sample: 08-08-2018 HQIC

- 08-06-2023

SARIMAX Results

Covariance Type: opg

	coef	std err	Z	P> z	[0.025
ar.L1	0.0862	0.020	4.333	0.000	0.047
ar.S.L30	-0.4916	0.017	-29.565	0.000	-0.524
sigma2	8.7805	0.216	40.699	0.000	8.358
Ljung-Box (L1) (Q):		1.15	Jarque-Bera	(JB):	
Prob(Q):			0.28	<pre>Prob(JB):</pre>	
Heteroskeda	cedasticity (H): 1.		1.10	Skew:	
Prob(H) (tw	o-sided):		0.27	Kurtosis:	

문제 1

패키지 참조

데이터 가져오기

데이터 타입 확인

날짜 인덱스 설정

결측치 검사

데이터 검정

ARIMA 분석

분석 모델 만들기

학습 모델에 대한 예측치

학습한 내용을 토대로 1년간의 예 상치 생성

시각화

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (c

학습 모델에 대한 예측치

fv = fit.fittedvalues
fv.head()

2018-08-08 0.0000000 2018-08-09 31.000016 2018-08-10 28.799999 2018-08-11 30.700002 2018-08-12 31.000000 Freq: D, dtype: float64

학습한 내용을 토대로 1년간의 예상치 생성

fc = fit.forecast(365)
fc.head()

2023-08-0728.6857552023-08-0829.6482182023-08-0930.4120962023-08-1028.447706

연습문제 풀이.ipynb

연습문제 풀이

문제 1

패키지 참조

데이터 가져오기

데이터 타입 확인

날짜 인덱스 설정

결측치 검사

데이터 검정

ARIMA 분석

분석 모델 만들기

학습 모델에 대한 예측치

학습한 내용을 토대로 1년간의 예 상치 생성

시각화

```
2023-08-11 29.666272
Freq: D, Name: predicted_mean, dtype: float64
```

```
last = df.index.max()

xmin = last-timedelta(days=365)

xmax = last+timedelta(days=365+10)

ymax = df['평균기온(°)'][xmin:xmax].max()

ymin = df['평균기온(°)'][xmin:xmax].min()

xmin, xmax, ymax, ymin
```

```
(Timestamp('2022-08-06 00:00:00'),
Timestamp('2024-08-15 00:00:00'),
30.3,
-14.7)
```

```
plt.figure(figsize=(20,8))

# 원본 데이터
sb.lineplot(data=df, x=df.index, y='평균기온(°C)', label='Original')

# 원본에 대한 학습결과
sb.lineplot(x=fv.index, y=fv.values, label='FittedValues', linestyle='--

# 향후 1년간의 예측값
sb.lineplot(x=fc.index, y=fc.values, label='Predict', linestyle='--', cc
```

문제 1

패키지 참조

데이터 가져오기

데이터 타입 확인

날짜 인덱스 설정

결측치 검사

데이터 검정

ARIMA 분석

분석 모델 만들기

학습 모델에 대한 예측치

학습한 내용을 토대로 1년간의 예 상치 생성

```
plt.xlabel('Day')
plt.ylabel('평균기온(°)')
plt.legend()

plt.xlim([xmin, xmax])
#plt.ylim([ymin * 0.8, ymax*1.2])

# 그래프의 x축이 날짜로 구성되어 있을 경우 형식 지정
monthyearFmt = mdates.DateFormatter('%y.%m.%d')
plt.gca().xaxis.set_major_formatter(monthyearFmt)

plt.grid()
plt.show()
plt.close()
```


문제 1

패키지 참조

데이터 가져오기

데이터 타입 확인

날짜 인덱스 설정

결측치 검사

데이터 검정

ARIMA 분석

분석 모델 만들기

학습 모델에 대한 예측치

학습한 내용을 토대로 1년간의 예 상치 생성