

Прецизионные измерения характеристик $B_{(s)}$ -мезонов и их распадов в эксперименте ATLAS

Доклад по материалам кандидатской диссертации аспиранта кафедры общей ядерной физики физического факультета МГУ имени М.В.Ломоносова Маевского Артёма Сергеевича

Научный руководитель: д. ф.-м. н., проф. Смирнова Лидия Николаевна

4 октября 2016

趙 Содержание

- Цели работы
- Введение
 - Детектор ATLAS Большого Адронного Коллайдера
 - Физика *B*-адронов в эксперименте ATLAS
- ▶ Трековый детектор переходного излучения TRT ATLAS
 - Моделирование условий регистрации переходного излучения
 - Эксперименты на тестовых пучках SPS
- ightharpoonup Прецизионное измерение массы B^+ -мезона по данным сеанса Run-2
- lacktriangle Измерение параметров СР-нарушения по характеристикам распада $B^0_s o J/\psi\phi$
- Заключение
 - Положения, выносимые на защиту
 - Личный вклад диссертанта
 - Публикации

💆 Цели работы

- Проверка качества работы внутреннего детектора в сеансе «Run-2» с помощью прецизионного измерения массы B^\pm -мезонов по распадам $B^\pm \to J/\psi(\mu^+\mu^-)K^\pm$ в зависимости от их быстроты
- Усовершенствование математической модели детектора TRT и модификация стандартных пакетов программного обеспечения (ПО) эксперимента ATLAS (реализация возможности проведения моделирования детектора при заполнении отдельных модулей TRT новыми газовыми смесями)
- Мзмерение характеристик распадов $B_s^0 o J/\psi \phi$ и определение на их основе значений слабой фазы ϕ_s , характеризующей величину СР-нарушения в этих распадах, и разницы ширин легкого и тяжелого массовых состояний B_s^0 -мезона $\Delta \Gamma_s$ на полном наборе данных сеанса «Run-1» при энергиях pp-соударений в системе центра масс 7 и 8 ТэВ

Введение

封 Детектор ATLAS

街 Детектор ATLAS

Этапы работы эксперимента:

- ▶ Первый сеанс набора данных («Run-1», до 2013 г.):
 - Энергия: 7 и 8 ТэВ
 - Максимальная светимость: $7.7 \times 10^{33} \text{ см}^{-2} \text{c}^{-1}$
- ▶ Первый период длительной остановки («Long Shutdown 1», LS1, 2013 – 2015 гг.)
- ▶ Второй сеанс набора данных («Run-2», с 2015 г.)
 - Энергия: 13 ТэВ
 - Максимальная светимость: более 10^{34} см $^{-2}$ с $^{-1}$

ᢖ Модификации ATLAS во время LS1

Основные модификации:

- ightharpoonup Увеличение энергии (до 13 ТэВ) и светимости (до более чем $10^{34}~{
 m cm}^{-2}{
 m c}^{-1}$)
- Внедрение дополнительного слоя прецизионных пиксельных детекторов (3.3 см от оси пучка)
- Модификации триггера
 - Внедрение в триггер первого уровня (аппаратный триггер) топологического модуля (вычисление на этом уровне углов раствора, инвариантных масс, скалярных и векторных сумм поперечных импульсов и т. п. на частоте 40 МГц)
 - Объединение процессорных ферм триггеров второго и третьего уровней (динамическое распределение ресурсов между этими уровнями ⇒ оптимизация процесса отбора событий)
- ▶ Изменение активной газовой смеси в некоторых модулях детектора TRT

Связанные методические задачи диссертационной работы:

- ▶ Проверка качества работы внутреннего детектора в сеансе «Run-2» с помощью прецизионного измерения массы B^\pm -мезонов по распадам $B^\pm \to J/\psi(\mu^+\mu^-)K^\pm$ в зависимости от их быстроты
- Усовершенствование математической модели детектора TRT и модификация стандартных пакетов программного обеспечения (ПО) эксперимента ATLAS (реализация возможности проведения моделирования детектора при заполнении отдельных модулей TRT новыми газовыми смесями)

🧃 *В*-физика в ATLAS

Основные направления:

- Проверка предсказаний КХД и непертурбативных моделей на ее основе
 - Измерение сечений рождения адронов и параметров их распадов
 - Спектроскопия связанных состояний
- ▶ Изучение слабых распадов В-адронов
 - Уточнение параметров Стандартной Модели (СМ)
 - Косвенные поиски проявлений новой физики по отклонениям наблюдений от предсказаний СМ:
 - ▶ Измерение характеристик редких процессов
 - Измерение параметров СР-нарушения

Основная цель диссертационной работы:

• Измерение характеристик распадов $B_s^0 o J/\psi \phi$ и определение на их основе значений слабой фазы ϕ_s , характеризующей величину СР-нарушения в этих распадах, и разницы ширин легкого и тяжелого массовых состояний B_s^0 -мезона $\Delta \Gamma_s$ на полном наборе данных сеанса «Run-1» при энергиях pp-соударений в системе центра масс 7 и 8 ТэВ

Трековый детектор переходного излучения TRT ATLAS

封 Детектор TRT

- Набор тонких (4мм) газоразрядных трубок
- Измерение координат треков по времени дрейфа (разрешение одной трубки — 130 мкм)
- Идентификация электронов с помощью переходного излучения

😝 Детектор TRT. Идентификация электронов

- Пространство между трубками заполнено радиатором веществом с переменным показателем диэлектрической проницаемости
- Пролетая через радиатор, релятивистские заряженные частицы испускают рентгеновские фотоны переходного излучения (Transition Radiation, TR)
 - Интенсивность излучения пропорциональна лоренц-фактору γ
 - Угол испускания фотонов относительно направления движения пропорционален $1/\gamma$
- Электроны из-за малой массы испускают больше фотонов TR, чем другие заряженные частицы
 - ⇒ Возможна их идентификация путем регистрации TR
- ▶ Два порога дискриминатора сигнала трубок TRT:
 - низкий (Low Threshold, LT) порядка $\sim 300 \ \mathrm{pB}$ измерение координат треков;
 - высокий (High Threshold, HT) порядка $\sim 5-6$ кэВ регистрация TR.

💆 Детектор TRT. Идентификация электронов

- Для идентификации электронов важна эффективная регистрация переходного излучения (TR)
- ightharpoonup Это определяет выбор активной газовой смеси: $Xe/CO_2/O_2$ смесь на основе ксенона
- К концу сеанса «Run-1» образовались значительные утечки активной газовой смеси TRT
- ▶ Невозможность устранения утечек \Longrightarrow замена в некоторых модулях дорогой смеси $Xe/CO_2/O_2$ на более дешевую $Ar/CO_2/O_2$ смесь на основе аргона
 - Выбор модулей определялся минимизацией ухудшения эффективности идентификации электронов в ATLAS
- ▶ Также изучалась возможность использовать смесь на основе криптона

趙 Детектор TRT. Моделирование регистрации TR

Методическая задача:

 Усовершенствование математической модели детектора TRT и модификация стандартных пакетов программного обеспечения (ПО) эксперимента ATLAS (реализация возможности проведения моделирования детектора при заполнении отдельных модулей TRT новыми газовыми смесями)

была успешно решена.

Рабочее	Значение высокого порога в модуле, эВ				ι θ τιμ (*** * * 3 * * * * * * * * * * * * * *
напряжение,	Центральная	Центральная	Торцевая	- F	
В	часть, короткие трубки (слои 0 — 8)	часть, длинные трубки (слои 9 — 18)	часть	0.25	
1500	1315	1171	1203	Ė	
1490	1560	1356	1397	0.15	
1470	1882	1590	1649		
1449	2415	2028	2118	0.1	
Модуль	Эффективность ре	гистрации переходно	0.05	Agon Agon (TR Eff as for Agon)	
Центральный	55%				Nypion (TR Eff as for Xenon)
Торцевой		80%	والم	0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.	
				_	P.

pHT vs pHT (barrel long straws)

💆 Детектор TRT. Моделирование регистрации TR

Оценка эффективности идентификации электронов

- ▶ Методом «Toy Monte-Carlo» (моделируются наперед заданные распределения)
- ▶ TRT полностью заполнен одной газовой смесью (на основе Xe, Kr или Ar)
 - Для Kr в связи с отсутствием калибровки моделируются два случая: оптимистичный и пессимистичный
- ▶ Предполагается нормальное распределение числа сигналов TRT на треке (числа пересеченных треком дрейфовых трубок)
- Одинаковая вероятность преодоления высокого порога во всех трубках для одного и того же газа
- ▶ Изучается распределение доли сигналов с высоким порогом на треке

🗦 Детектор TRT. Моделирование регистрации TR

HT fraction

ᢖ Эксперименты на тестовых пучках SPS

- Исследование свойств регистрации переходного излучения при использовании различных газовых смесей на тестовых пучках электронов и пионов энергии 20 ГэВ (май 2015 г.)
- ightharpoonup Экспериментальная установка (расстояние между соседними трубками \sim 20 мм):

- Калибровка установки сопоставление номера канала считывающей электроники соответствующей ему поглощенной газом энергии
- ightharpoonup Облучение прототипа фотонами источника 55 Fe с известной энергией (\sim 5.95 кэВ)
- Калибровка осуществлена путем фитирования распределений сигнала ⁵⁵ Fe (всего 15 калибровок для каждой из 11 трубок):

Прецизионное измерение массы B^+ -мезона по данным сеанса Run-2

 $^{^1 \}mbox{B}$ данной задаче под B^+ подразумеваются оба зарядово сопряженных состояния B^+ и B^-

Мотивация

- Получение одного из первых физических результатов на новых данных, при новых условиях (проверка качества работы детектора в сеансе «Run-2»):
 - Новая энергия 13 TeV
 - Интервал между pp-соударениями 25 нс (в конце «Run-1» 50 нс)
 - Новый слой пиксельного детектора во Внутреннем Детекторе ATLAS
- Подготовка к другим измерениям В-физики:
 - время жизни B^{\pm} ,
 - сечение рождения B^{\pm} ,
 - СР-нарушение в распаде $B_s o J/\psi \phi$
 - и др...

ightharpoonstable for B - Измерение массы B^+ - мезона

Отбор кандидатов

- ▶ Данные pp-соударений 2015 г., соответствующие интегральной светимости 3.2 фб $^{-1}$
- ▶ Отбор производился по критериям качества реконструкции треков, их кинематическим характеристикам и качеству $\chi^2/N_{\rm d.o.f.}$ вершинных фитов $(\mu^+\mu^-$ и $\mu^+\mu^-$ К $^\pm)$

Массовый фит

$$\ln \mathcal{L} = \sum_{i=1}^{N} \{ \ln(f_{s} \cdot \mathcal{F}_{s}(m_{i})) + f_{s} \cdot f_{B_{x}} \cdot \mathcal{F}_{B_{x}}(m_{i}) + f_{s} \cdot f_{B_{\pi}} \cdot \mathcal{F}_{B_{\pi}}(m_{i}) + (1 - f_{s} \cdot (1 + f_{B_{x}} + f_{B_{\pi}})) \mathcal{F}_{bkg}(m_{i}) \}$$

- Сигнал двойной Гаусс с общим средним
- ▶ Комбинаторный фон линейная функция
- ightharpoonup Частично реконструированные распады $B o J/\psi X$ гиперболический тангенс
- Резонансный фон от $B^\pm \to J/\psi \pi^\pm$ Гаусс (с фиксированными параметрами, определенными моделированием данного канала методом Монте-Карло)

Измерение массы B⁺-мезона

▶ Результат фита стабилен с великолепной точностью (отн. отклонения < 0.001)</p>

🗃 Измерение массы *В*+-мезона

Сравнение с другими экспериментами

- ▶ Сравнение с мировым средним (PDG)
- ▶ Сравнение с результатом LHCb
- Самосогласованность результата (при наличии и отсутствии дополнительного требования на поперечную длину пробега)

Фит	Масса <i>В</i> ⁺ -мезона, МэВ	Погрешность, МэВ			
Стандартный	5279.31	± 0.11			
$L_{xy}>0.2~\mathrm{mm}$	5279.34	± 0.09			
Мировое среднее	5279.29	± 0.15			
LHCb	5279.38	$\pm 0.11 \pm 0.33$			

- ▶ Оцененная систематическая неопределенность (неполная) 0.25 МэВ
- В оценку систематической погрешности не входит погрешность калибровки измерения координат и импульсов Внутреннего Детектора

Измерение параметров СР-нарушения по характеристикам распада $B_s^0 o J/\psi \phi$

- lacktriangledown Нейтральный B_s^0 -мезон смешивается со своей античастицей посредством петлевых диаграмм с двумя W-бозонами (аналогично нейтральным каонам)
- ▶ СР-нарушение происходит за счет интерференции между прямым распадом $B_s^0 \to J/\psi \phi$ и распадом посредством осцилляции:

$$\Gamma^{\left[B_{s(\leadsto \bar{B}_{s}^{\mathbf{0}})}^{\mathbf{0}} \to J/\psi\phi\right]}(t) \neq \Gamma^{\left[\bar{B}_{s(\leadsto B_{s}^{\mathbf{0}})}^{\mathbf{0}} \to J/\psi\phi\right]}(t)$$

- lacktriangle Временная эволюция системы $B_s^0 \overline{B}_s^0$ определяется следующими параметрами:
 - $-\Delta m_s = m_s^H m_s^L$
 - $-\Delta\Gamma_s = \Gamma_s^L \Gamma_s^H$
 - ϕ_s разница слабых фаз между амплитудами смешивания B_s^0 \overline{B}_s^0 и распада b-кварка $b o c \overline{c} s$ характеризует величину СР-нарушения
- lacktriangle Вклады гипотетических частиц новой физики могут повлиять на значение ϕ_s
- \blacktriangleright Значительного влияния новой физики на $\Delta\Gamma_s$ не ожидается

- ▶ Измерение ϕ_s и $\Delta\Gamma_s$ осуществлено по данным pp-соударений при энергии 8 ТэВ, соответствующим интегральной светимости 14.3 фб $^{-1}$
- Результат статистически скомбинирован с аналогичным измерением на данных 7 ТэВ ($4.9~\phi6^{-1}$ интегральной светимости)
- Распад псевдоскалярного B_s^0 -мезона на состояние с двумя векторными мезонами $J/\psi(\mu^+\mu^-)\phi(K^+K^-)$
 - \implies Три конечных состояния с орбитальным моментом L=0, 2 (СР-четные) и L=1 (СР-нечетные)
 - + Одно дополнительное СР-нечетное состояние с S-волновой конфигурацией K^+K^-
- \implies 4 амплитуды распада $(A_\parallel,\,A_\perp,\,A_0\,$ и $A_S)$ и соответствующие интерференционные члены
 - lacktriangle Используется временной анализ для извлечения параметров ϕ_s и $\Delta\Gamma_s$
 - ▶ Угловой анализ для разделения компонент различных амплитуд
 - \blacktriangleright Метод мечения (таггирования) аромата B_s^0 -мезона (flavour tagging)

$B_s^0 o J/\psi \phi$: таггирование аромата

- $lue{b}$ -кварки рождаются парами. Аромат B^0_s -мезона коррелирует с зарядом $e/\mu/$ струи от распада парного ему B-адрона
- ightharpoonup Калибровка метода с помощью распадов $B^\pm o J/\psi K^\pm$, где аромат известен

封 Фитирование

- Резонансные фоновые каналы:
 - $-~B_d^0 o J/\psi K^{*0}(K\pi) (3.3 \pm 0.5)\%$ по отношению к сигналу
 - $-B_d^0 o J/\psi K\pi (0.7 \pm 0.5)\%$ по отношению к сигналу (не участвует в фите, учитывается в виде систематической неопределенности)
 - $-\Lambda_b^0 o J/\psi p K (1.8 \pm 0.5)\%$ по отношению к сигналу
- Доли определены с помощью Монте-Карло моделирования эффективностей реконструкции данных каналов, а также с использованием измеренных относительных парциальных ширин соответствующих распадов и вероятностей фрагментации b-кварка в соответствующие адроны
- ightharpoonup Для моделирования Λ_b^0 также учтен измеренный коллаборацией LHCb нетривиальный спектр инвариантной массы системы pK

너 Результат

趙 Результат


```
\begin{array}{rcl} \phi_s & = & -0.090 \pm 0.078 \; (\mathrm{stat.}) \pm 0.041 \; (\mathrm{syst.}) \; \mathrm{rad} \\ \Delta \Gamma_s & = & 0.085 \pm 0.011 \; (\mathrm{stat.}) \pm 0.007 \; (\mathrm{syst.}) \; \mathrm{ps}^{-1} \\ \Gamma_s & = & 0.675 \pm 0.003 \; (\mathrm{stat.}) \pm 0.003 \; (\mathrm{syst.}) \; \mathrm{ps}^{-1} \\ |A_{\parallel}(0)|^2 & = & 0.227 \pm 0.004 \; (\mathrm{stat.}) \pm 0.006 \; (\mathrm{syst.}) \\ |A_0(0)|^2 & = & 0.522 \pm 0.003 \; (\mathrm{stat.}) \pm 0.007 \; (\mathrm{syst.}) \\ |A_S(0)|^2 & = & 0.072 \pm 0.007 \; (\mathrm{stat.}) \pm 0.018 \; (\mathrm{syst.}) \\ \delta_{\perp} & = & 4.15 \pm 0.32 \; (\mathrm{stat.}) \pm 0.16 \; (\mathrm{syst.}) \; \mathrm{rad} \\ \delta_{\parallel} & = & 3.15 \pm 0.10 \; (\mathrm{stat.}) \pm 0.05 \; (\mathrm{syst.}) \; \mathrm{rad} \\ \delta_{\perp} - \delta_S & = & -0.08 \pm 0.03 \; (\mathrm{stat.}) \pm 0.01 \; (\mathrm{syst.}) \; \mathrm{rad}. \end{array}
```

- ▶ Результат ATLAS согласуется с результатами других экспериментов и с предсказанием СМ
- Мировое среднее согласуется с СМ

🗯 Заключение

- Осуществлена модификация стандартных пакетов ПО эксперимента ATLAS с целью моделирования новых активных газовых смесей (на основе аргона и криптона) в ТRT. Определены калибровочные константы для регистрации переходного излучения смесью на основе аргона. Произведено моделрование регистрации переходного излучения при использовании новых смесей, осуществлена количественная оценка ухудшения эффективности идентификации электронов.
- Выполнено прецизионное измерение массы B^+ -мезона по данным сеанса «Run-2». Результаты данного измерения в различных областях детектора стабильны и не отклоняются от среднего более чем на 0.1%. Результаты согласуются с измерением эксперимента LHCb и с мировым средним.
- ▶ Измерены значения параметров СР-нарушения в распадах $B^0_s \to J/\psi \phi$, учтены фоновые процессы $B^0_d \to J/\psi K^{*0}$, $B^0_d \to J/\psi K^+ \pi^-$ и $\Lambda^0_b \to J/\psi p^+ K^-$. Результат измерения согласуется с другими экспериментами и с предсказанием СМ. Мировое средние измерений этих параметров также согласуется с СМ.

뷸 Положения, выносимые на защиту

Автор защищает:

- Моделирование условий регистрации переходного излучения при использовании смесей на основе аргона и криптона в подсистеме TRT ATLAS.
- 2. Результаты определения калибровочных констант для регистрации переходного излучения при использовании газовой смеси на основе аргона в TRT, используемых в стандартных пакетах ПО эксперимента ATLAS при полном математическом моделировании детектора методом Монте-Карло.
- 3. Прецизионное измерение массы B^+ мезона по первым данным pp-соударений в сеансе Run-2 при энергии 13 ТэВ, демонстрирующие стабильность работы внутреннего детектора ATLAS после проведенной модернизации.
- 4. Методику учета вкладов резонансного фона в анализе распада $B^0_s o J/\psi\phi$.
- 5. Результаты измерения значений параметров ϕ_s и $\Delta\Gamma_s$ в канале $B_s^0 \to J/\psi \phi$ по данным сеанса Run-1.

👆 Личный вклад диссертанта

Диссертант принимает активное участие в работе группы TRT эксперимента ATLAS с 2013 г. Им осуществлена модификация стандартных пакетов ПО эксперимента ATLAS для моделирования использования газовых смесей на основе аргона и криптона в различных модулях TRT. В ходе данной работы диссертантом была обнаружена и решена при его участии проблема, связанная с двойным учетом вклада от дельта-электронов при моделировании сигналов TRT.

Диссертант произвел определение калибровочных констант, используемых для описания регистрации переходного излучения в TRT с помощью активной газовой смеси на основе аргона, по данным соударений протонов с ионами свинца в начале 2013 г. Он также участвовал в 2015 и 2016 гг. в экспериментах на тестовых пучках SPS, посвященных изучению свойств переходного излучения и его регистрации в дрейфовых трубках при использовании различных радиаторов и газовых смесей. Диссертант был задействован в предварительной подготовке к этим экспериментам и в сменных дежурствах. Им также была осуществлена калибровка результатов эксперимента 2015 г.

С 2014 г. диссертант участвует в работе группы B-физики. Он принимал участие в измерении параметров CP-нарушения по угловым и временным характеристикам распадов $B^0_s \to J/\psi\phi$ по полному набору данных сеанса Run-1 и в реконструкции массы B^+ -мезона по данным сеанса Run-2. Диссертантом проведена оценка числа событий от фоновых процессов $B^0_d \to J/\psi K^{*0}$ и $B^0_d \to J/\psi K^+\pi^-$ в анализе распадов $B^0_s \to J/\psi\phi$. Для этого же анализа им были осуществлены моделирование, оценка вклада и определение систематических неопределенностей от распадов $A^0_b \to J/\psi p^+K^-$. Участие диссертанта в реконструкции массы B^+ -мезона по распадам $B^+ \to J/\psi K^+$ заключалось в моделировании, фитировании и оценке систематических неопределенностей от фонового процесса $B^+ \to J/\psi \pi^+$.

별 Публикации

Публикации, удовлетворяющие требованиям ВАК:

- 1. Aad G., ..., Maevskiy A. et al (ATLAS Collaboration). Measurement of the CP-violating phase ϕ_s and the B_s^0 meson decay width difference with $B_s^0 \to J/\psi\phi$ decays in ATLAS // JHEP. 2016. Vol. 08. P. 147. DOI:10.1007/JHEP08(2016)147. arXiv:1601.03297 [hep-ex].
- Болдырев А., Маевский А. Моделирование условий регистрации переходного излучения при использовании Аг и Кг смесей в TRT ATLAS // Ядерная физика и инжиниринг. — 2014. — Т. 5, № 9-10. — С. 857–860. — DOI:10.1134/S2079562914080065.

Прочие публикации:

- 3. ATLAS Collaboration. B^\pm mass reconstruction in $B^\pm \to J/\psi K^\pm$ decay at ATLAS at 13 TeV pp collisions at the LHC // ATLAS-CONF-2015-064. 2015. Dec. URL: https://cds.cern.ch/record/2114830.
- Маевский А. С. Калибровка порогов регистрации переходного излучения в TRT ATLAS для аргоновой смеси // Труды XV межвузовской научной школы молодых специалистов Концентрированные потоки энергии в космической технике, электронике, экологии медицине. — 25 – 26 ноября 2014. — С. 28-32.
- 5. Lobanov S., Maevskiy A., Smirnova L. K/ π ratio and strangeness suppression in pp collisions at the LHC // PoS. 2011. Vol. IHEP-LHC-2011. P. 008.
- Boldyrev A. S., Lobanov S. Y., Maevsky A. S. et al. Measurements and simulations of b and c-quark production at hadron colliders // Proceedings of the Eighteenth Annual Seminar NPCS'2011. — Minsk, Belarus, 2011. — Vol. 18. — P. 216-222.

😉 Публикации II

Работы, направленные в редакции журналов:

- Maevskiy A. Recent results on B-Physics and Quarkonia with the ATLAS detector // PoS. — 2016. — Vol. DIS2016. — Р. 136. (статья принята редакцией журнала)
- 2. Maevskiy A. Flavour Tagged Time Dependent Angular Analysis of the $B_s^0 o J/\psi\phi$ Decay on Run 1 Data in ATLAS // AIP. LHCP2015. (статья направлена в редакцию журнала)
- 3. Маевский А. Измерение массы B^+ -мезона в распаде $B^+ \to J/\psi K^+$ в эксперименте ATLAS в pp-соударениях при $\sqrt{s}=13$ ТэВ на Большом Адронном Коллайдере // Ядерная физика. (статья направлена в редакцию журнала)
- 4. Маевский А. С., Смирнова Л. Н. Распады B-мезонов в состояния с чармонием в эксперименте ATLAS // Физика элементарных частиц и атомного ядра (статья направлена в редакцию журнала)

🔠 Апробация работы

Результаты неоднократно докладывались автором и обсуждались на научных конференциях «Ломоносовские чтения», на рабочих совещаниях групп TRT и B-физики эксперимента ATLAS и на совещаниях российских групп, являющихся участниками эксперимента. Автором были также сделаны доклады на следующих совещаниях, конференциях и школах:

- 1. TRT workshop (25-27 июня 2014 г., Краков, Польша);
- 2. Международная сессия-конференция Секции ядерной физики ОФН РАН «Физика фундаментальных взаимодействий» (17–21 ноября 2014 г., МИФИ, Москва, Россия)
- The Third Annual Large Hadron Collider Physics Conference (LHCP2015, 31 августа 5 сентября 2015 г., Санкт-Петербург, Россия)
- 4. 19th International Moscow School of Physics and 44th ITEP Winter School of Physics (16-22 февраля 2016 г., Москва, Россия)
- 24th International Workshop on Deep-Inelastic Scattering and Related Subjects (DIS 2016, 11–15 апреля 2016 г., DESY, Гамбург, Германия)
- 6. Международная сессия-конференция Секции ядерной физики ОФН РАН «Физика фундаментальных взаимодействий» (12–15 апреля 2016 г., ОИЯИ, Дубна, Россия)
- 7. Hadron Structure and QCD: from Low to High Energies (HSQCD2016, 27 июня 1 июля 2016 г., ПИЯФ, Гатчина, Россия)

Спасибо за внимание!

Дополнительные слайды

Спектры заряженных частиц

Вероятность распада в зависимости от углов и времени жизни:

$$\frac{\mathrm{d}^4 \Gamma}{\mathrm{d}t \, \mathrm{d}\Omega} = \sum_{k=1}^{10} O^{(k)}(t) g^{(k)}(\theta_T, \psi_T, \phi_T)$$

k	$O^{(k)}(t)$	$g^{(k)}(\theta_T, \psi_T, \phi_T)$
1	$\frac{1}{2} A_0(0) ^2 \left[(1+\cos\phi_s) e^{-\Gamma_L^{(s)}t} + (1-\cos\phi_s) e^{-\Gamma_H^{(s)}t} \pm 2e^{-\Gamma_s t} \sin(\Delta m_s t) \sin\phi_s \right]$	$2\cos^2\psi_T(1-\sin^2\theta_T\cos^2\phi_T)$
2	$\frac{1}{2} A_{\parallel}(0) ^{2}\left[(1+\cos\phi_{s})e^{-\Gamma_{L}^{(s)}t}+(1-\cos\phi_{s})e^{-\Gamma_{H}^{(s)}t}\pm2e^{-\Gamma_{s}t}\sin(\Delta m_{s}t)\sin\phi_{s}\right]$	$\sin^2 \psi_T (1 - \sin^2 \theta_T \sin^2 \phi_T)$
3	$\frac{1}{2} A_{\perp}(0) ^{2}\left[(1-\cos\phi_{s})e^{-\Gamma_{L}^{(s)}t}+(1+\cos\phi_{s})e^{-\Gamma_{H}^{(s)}t}\mp2e^{-\Gamma_{s}t}\sin(\Delta m_{s}t)\sin\phi_{s}\right]$	$\sin^2 \psi_T \sin^2 \theta_T$
4	$\frac{1}{2} A_0(0) A_{ }^{L}(0) \cos\delta_{ }$	$\frac{1}{\sqrt{2}}\sin 2\psi_T \sin^2 \theta_T \sin 2\phi_T$
	$\left[(1 + \cos \phi_s) e^{-\Gamma_L^{(s)} t} + (1 - \cos \phi_s) e^{-\Gamma_H^{(s)} t} \pm 2e^{-\Gamma_s t} \sin(\Delta m_s t) \sin \phi_s \right]$	
5	$ A_{\parallel}(0) A_{\perp}(0) \frac{1}{2}(e^{-\Gamma_{\rm L}^{(s)}t} - e^{-\Gamma_{\rm H}^{(s)}t})\cos(\delta_{\perp} - \delta_{\parallel})\sin\phi_{s}$	$-\sin^2\psi_T\sin 2\theta_T\sin\phi_T$
	$\pm e^{-\Gamma_s t} (\sin(\delta_{\perp} - \delta_{\parallel}) \cos(\Delta m_s t) - \cos(\delta_{\perp} - \delta_{\parallel}) \cos\phi_s \sin(\Delta m_s t))]$	
6	$ A_0(0) A_{\perp}(0) \frac{1}{2}(e^{-\Gamma_{\rm L}^{(s)}t}-e^{-\Gamma_{\rm H}^{(s)}t})\cos\delta_{\perp}\sin\phi_s$	$\frac{1}{\sqrt{2}}\sin 2\psi_T \sin 2\theta_T \cos \phi_T$
	$\pm e^{-\Gamma_s t} (\sin \delta_{\perp} \cos(\Delta m_s t) - \cos \delta_{\perp} \cos \phi_s \sin(\Delta m_s t))]$	'2
7	$\frac{1}{2} A_{S}(0) ^{2}\left[(1-\cos\phi_{s})e^{-\Gamma_{L}^{(s)}t}+(1+\cos\phi_{s})e^{-\Gamma_{H}^{(s)}t}\mp2e^{-\Gamma_{s}t}\sin(\Delta m_{s}t)\sin\phi_{s}\right]$	$\frac{2}{3}\left(1-\sin^2\theta_T\cos^2\phi_T\right)$
8	$ A_S(0) A_{\parallel}(0) \frac{1}{2}(e^{-\Gamma_L^{(s)}t} - e^{-\Gamma_H^{(s)}t})\sin(\delta_{\parallel} - \delta_S)\frac{\sin\phi_s}{}$	$\frac{1}{3}\sqrt{6}\sin\psi_T\sin^2\theta_T\sin2\phi_T$
	$\pm e^{-\Gamma_s t} (\cos(\delta_{\parallel} - \delta_S) \cos(\Delta m_s t) - \sin(\delta_{\parallel} - \delta_S) \cos \phi_s \sin(\Delta m_s t))]$	
9	$\frac{1}{2} A_S(0) A_{\perp}(0) \sin(\delta_{\perp}-\delta_S)$	$\frac{1}{3}\sqrt{6}\sin\psi_T\sin 2\theta_T\cos\phi_T$
	$(1 - \cos \phi_s) e^{-\Gamma_L^{(s)}t} + (1 + \cos \phi_s) e^{-\Gamma_H^{(s)}t} \mp 2e^{-\Gamma_s t} \sin(\Delta m_s t) \frac{\sin \phi_s}{\sin \phi_s}$	
10	$ A_0(0) A_S(0) [\frac{1}{2}(e^{-\Gamma_H^{(s)}t}-e^{-\Gamma_L^{(s)}t})\sin\delta_S\sin\phi_S$	$\frac{4}{3}\sqrt{3}\cos\psi_T\left(1-\sin^2\theta_T\cos^2\phi_T\right)$
	$\pm e^{-\Gamma_s t} (\cos \delta_S \cos(\Delta m_s t) + \sin \delta_S \cos \phi_s \sin(\Delta m_s t))]$, , ,

	ϕ_s	$\Delta\Gamma_s$	Γ_s	$ A_{ }(0) ^2$	$ A_0(0) ^2$	$ A_S(0) ^2$	δ_{\perp}	δ_{\parallel}	$\delta_{\perp} - \delta_{S}$
	[rad]	$[ps^{-1}]$	$[ps^{-1}]$				[rad]	[rad]	[rad]
Tagging	0.025	0.003	$<10^{-3}$	$<10^{-3}$	$<10^{-3}$	0.001	0.236	0.014	0.004
Acceptance	<10 ⁻³	$<10^{-3}$	$<10^{-3}$	0.003	$<10^{-3}$	0.001	0.004	0.008	$<10^{-3}$
Inner detector alignment	0.005	$<10^{-3}$	0.002	$<10^{-3}$	$<10^{-3}$	$<10^{-3}$	0.134	0.007	$<10^{-3}$
Background angles model:									
Choice of p_T bins	0.020	0.006	0.003	0.003	$<10^{-3}$	0.008	0.004	0.006	0.008
Choice of mass interval	0.008	0.001	0.001	$<10^{-3}$	$<10^{-3}$	0.002	0.021	0.005	0.003
B_d^0 background model	0.023	0.001	$<10^{-3}$	0.002	0.002	0.017	0.090	0.011	0.009
Λ_b background model	0.011	0.002	0.001	0.001	0.007	0.009	0.045	0.006	0.007
Fit model:									
Mass signal model	0.004	$<10^{-3}$	$<10^{-3}$	0.002	$<10^{-3}$	0.001	0.015	0.017	$<10^{-3}$
Mass background model	<10 ⁻³	0.002	$<10^{-3}$	0.002	$<10^{-3}$	0.002	0.027	0.038	$<10^{-3}$
Time resolution model	0.003	$<10^{-3}$	0.001	0.002	$<10^{-3}$	0.002	0.057	0.011	0.001
Default fit model	0.001	0.002	$<10^{-3}$	0.002	$<10^{-3}$	0.002	0.025	0.015	0.002
Total	0.042	0.007	0.004	0.006	0.007	0.022	0.30	0.05	0.01