MATH 1021-02 & -03: Precalculus - Algebra

Sections 1.1 & 1.2 Handout

Warm-up:

Please try the following exercises:

- a) Expand: 6(t+4)
- b) Evaluate the expression shown in Problem 3 below.

Section 1.1 - The Real Numbers:

The Number Line and Absolute Value:

Problem 1. Graph the following intervals on a number line:

a)
$$(-8, -1)$$
,

b)
$$[-1, 10)$$
,

c)
$$[-5, \infty)$$

Problem 2. Fill in the blank with one of <, >, or =:

a)
$$|5| |-6$$

a)
$$|5| = |-6|$$
, **b)** $|3| \cdot |-5| = |3(-5)|$,

b)
$$|6 - (-4)| = |-4 - 6|$$

Order of Operations & Parentheses: Evaluate the following expressions:

Problem 3.
$$9-3\times 4-(-2)*(3-5)+2*6 \div 3$$

Problem 4.
$$3(2+4(6+1))$$

Problem 5.
$$\frac{\left[4 - (1 + 2(6 - 3)^2)\right]^2}{2 - 3}$$

Properties of Fractions: Evaluate the following expressions:

Problem 6.
$$\frac{1}{3} + \frac{2}{5}$$

Problem 7.
$$\frac{a}{b} - \frac{c}{d}$$

Problem 8.
$$24 \div \frac{2}{3}$$

Section 1.2 - Exponents and Radicals:

Definition & Properties of Exponents: Evaluate the following Expressions:

Problem 9.
$$(-2)^4 =$$
____, $-(2)^4 =$ ____

$$-(2)^4 =$$

Problem 10.
$$3(-2)^5 =$$
____, $(3 \cdot (-2))^5 =$ ____

$$(3 \cdot (-2))^5 =$$

Write as an expression with a single exponent:

Problem 11.
$$2^5 \cdot 2^2$$

Problem 12.
$$(3^2)^6$$

Problem 13.
$$(9^{50} \cdot 9^2)^{10}$$

Radicals: Evaluate the following Expressions:

Problem 14.
$$\sqrt{64}$$

Problem 15.
$$\sqrt[3]{-64}$$

Problem 16.
$$\sqrt[5]{-32}$$

Problem 17.
$$\left(-\frac{27}{8}\right)^{2/3}$$

Work the Problems on the Laws of Exponents Handout (next page \rightarrow)

Laws of Exponents:

$$a^0=1$$
 , $a^{-n}=\frac{1}{a^n}$

$$\bigcirc a^m a^n = a^{m+n}$$

am an = am+n = to multiply povers of 1:ke bases, add exponen

$$2 \frac{a^m}{a^n} = a^{m-n}$$

- to divide pavers of like bases, subract

$$(a^m)^n = a^{mn}$$

3 (am)" = amn - to raise a power to a power, multiply distribu

(4) (ab)"= a"b" = raise each factor to the power (the exponent)

e raise top and botten to power

(a)
$$\left(\frac{a}{b}\right)^n = \left(\frac{b}{a}\right)^n$$

(6) $\left(\frac{a}{b}\right)^n = \left(\frac{b}{a}\right)^n$ to raise a number to a negative pover, muert and change

$$\frac{a^{-n}}{b^{-m}} = \frac{b^m}{a^n}$$

7) $\frac{a^{-n}}{b^{-m}} = \frac{b^m}{a^n}$ / sign of the power

Properties of non roots:

Simplify Each Expression

$$C)\left(\frac{x^4z^2}{4y^5}\right)\left(\frac{2x^3y^2}{z^3}\right)^2$$

of)
$$\left(\frac{y}{5x^{-2}}\right)^{-3}$$

e)
$$\frac{5^{3/2}}{5^{1/2}}$$