PROJET INFORMATIQUE INDIVIDUELLE

ENSC – Semestre 8

Théorie du perceptron multi-couches

Plan du cours

1.	Problème	
2.	Correction des poids de la dernière couche	
3.	Correction des poids de l'avant-dernière précédentes	
4.	Correction des poids des précédentes couches	

1. Problème

Soit le perceptron multi-couches dont les couches sont liées entre elles par des relations de type :

$$f_B(B*W) = A \Leftrightarrow f_B\left(\begin{bmatrix} B_1 & \cdots & B_{n_B} \end{bmatrix} * \begin{bmatrix} W_{1,1} & \cdots & W_{1,n_A} \\ \vdots & & \vdots \\ W_{n_B,1} & \cdots & W_{n_B,n_A} \end{bmatrix}\right) = \begin{bmatrix} A_1 & \cdots & A_{n_A} \end{bmatrix}$$

avec

- n_B le nombre d'entrées dans la couche B
- $-n_A$ le nombre de sorties dans la couche A
- f_B la fonction d'activation de la couche B (f_B : \mathbb{R} → [-1, 1])
- $-B \in \mathcal{M}_{1,n_B}$ la matrice contenant les valeurs d'entrée
- $\{B_b, \forall b \in [[1, n_B]]\}$ les valeurs des entrées
- $-A \in \mathcal{M}_{1,n_A}$ la matrice contenant les valeurs de sortie
- $-\{A_j, \forall a \in [[1, n_A]]\}$ les valeurs des sorties
- $-W \in \mathcal{M}_{n_B,n_A}$ la matrice contenant les poids
- $-\{W_{b,a}, \forall (b,a) \in [[1,n_B]] \times [[1,n_A]]\}$ les poids entre les B_b et les A_a

Figure 1 – Représentation des relations entre quelques couches de neurones

Dans le reste du document, * désignera la multiplication matricielle et \times la multiplication terme à terme. On notera ${}^{\mathbf{t}}M$ la transposée de la matrice M.

Émilie ROGER Page 2 | 7

2. Correction des poids de la dernière couche

Supposons que pour tout $a \in [1, n_A]$ la sortie théorique soit α_a et non A_a .

L'erreur quadratique \mathcal{E} commise sur un tel réseau est : $\mathcal{E} = \frac{1}{2} \sum_{\ell=1}^{n_A} (\alpha_\ell - A_\ell)^2$.

On s'intéresse aux variations qu'apporteraient les modifications de $W_{b,a}$ ($(b,a) \in [1, n_B] \times [1, n_A]$) sur l'erreur quadratique.

Il s'agit donc de faire varier les $W_{b,a}$ pour chaque couple $(b,a) \in [[1,n_B]] \times [[1,n_A]]$ de telle façon à ce que réduire au maximum \mathcal{E} .

On va donc calculer pour tout $(b, a) \in [[1, n_B]] \times [[1, n_A]]$ les dérivées partielles $\varepsilon_{b,a}$ de \mathcal{E} par rapport aux $W_{b,a}$. Pour un b et un a donnés :

$$\begin{split} \varepsilon_{b,a} &= \frac{\mathrm{d}}{\mathrm{d}W_{b,a}} \mathcal{E} \\ &= \frac{\mathrm{d}}{\mathrm{d}W_{b,a}} \frac{1}{2} \sum_{\ell=1}^{n_{A}} (\alpha_{\ell} - A_{\ell})^{2} \\ &= \frac{\mathrm{d}}{\mathrm{d}W_{b,a}} \frac{1}{2} \sum_{\ell=1}^{n_{A}} \left(\alpha_{\ell} - f_{B} \left(\sum_{k=1}^{n_{B}} B_{k} W_{\ell,k} \right) \right)^{2} \\ &= \frac{1}{2} \sum_{\ell=1}^{n_{A}} \left[\frac{\mathrm{d}}{\mathrm{d}W_{b,a}} \left(\alpha_{\ell} - f_{B} \left(\sum_{k=1}^{n_{B}} B_{k} W_{\ell,k} \right) \right)^{2} \right] \\ &= \sum_{\ell=1}^{n_{A}} \left[\left(\alpha_{\ell} - f_{B} \left(\sum_{j=1}^{n_{B}} B_{j} W_{\ell,j} \right) \right) \frac{\mathrm{d}}{\mathrm{d}W_{b,a}} \left(\alpha_{\ell} - f_{B} \left(\sum_{k=1}^{n_{B}} B_{k} W_{\ell,k} \right) \right) \right] \\ &= -\sum_{\ell=1}^{n_{A}} \left[\left(\alpha_{\ell} - f_{B} \left(\sum_{j=1}^{n_{B}} B_{j} W_{\ell,j} \right) \right) f_{B}' \left(\sum_{k=1}^{n_{B}} B_{k} W_{\ell,k} \right) \frac{\mathrm{d}}{\mathrm{d}W_{b,a}} \sum_{k=1}^{n_{B}} B_{k} W_{\ell,k} \right] \\ &= -\sum_{\ell=1}^{n_{A}} \left[\left(\alpha_{\ell} - f_{B} \left(\sum_{j=1}^{n_{B}} B_{j} W_{\ell,j} \right) \right) f_{B}' \left(\sum_{i=1}^{n_{B}} B_{i} W_{\ell,i} \right) \sum_{k=1}^{n_{B}} \frac{\mathrm{d}}{\mathrm{d}W_{b,a}} B_{k} W_{\ell,k} \right] \\ &= -\sum_{\ell=1}^{n_{A}} \left[\left(\alpha_{\ell} - f_{B} \left(\sum_{j=1}^{n_{B}} B_{j} W_{\ell,j} \right) \right) f_{B}' \left(\sum_{i=1}^{n_{B}} B_{i} W_{\ell,i} \right) \sum_{k=1}^{n_{B}} \frac{\mathrm{d}}{\mathrm{d}W_{b,a}} B_{k} W_{\ell,k} \right] \\ &= -\left(\alpha_{a} - f_{B} \left(\sum_{j=1}^{n_{B}} B_{j} W_{a,j} \right) \right) f_{B}' \left(\sum_{i=1}^{n_{B}} B_{i} W_{a,i} \right) d \frac{\mathrm{d}}{\mathrm{d}W_{b,a}} B_{b} W_{a,b} \\ &= -\left(\alpha_{a} - f_{B} \left(\sum_{j=1}^{n_{B}} B_{j} W_{a,j} \right) \right) f_{B}' \left(\sum_{i=1}^{n_{B}} B_{i} W_{a,i} \right) B_{b} \\ &= -\left(\alpha_{a} - A_{a} \right) f_{B}' \left(\sum_{j=1}^{n_{B}} B_{i} W_{a,i} \right) B_{b} \end{split}$$

Émilie ROGER Page 3 | 7

En notant $\varepsilon_a = \begin{bmatrix} \varepsilon_{1,a} & \cdots & \varepsilon_{n_B,a} \end{bmatrix} \in \mathcal{M}_{1,n_B}$, on a donc:

$$\varepsilon_a = -(\alpha_a - A_a) f_B' \left(\sum_{i=1}^{n_B} B_i W_{a,i} \right) \left[B_1 \quad \cdots \quad B_{n_B} \right] = -(\alpha_a - A_a) f_B' \left(\sum_{i=1}^{n_B} B_i W_{a,i} \right) B$$

Puis en notant $\varepsilon = \begin{bmatrix} \varepsilon_{1,1} & \cdots & \varepsilon_{1,n_A} \\ \vdots & & \vdots \\ \varepsilon_{n_B,1} & \cdots & \varepsilon_{n_B,n_A} \end{bmatrix} = \begin{bmatrix} \mathbf{t}_{\varepsilon_1} & \cdots & \mathbf{t}_{\varepsilon_{n_B}} \end{bmatrix} \in \mathcal{M}_{n_B,n_A}$, on en déduit que :

$$\varepsilon = \left[-(\alpha_{1} - A_{1}) f'_{B} \left(\sum_{i=1}^{n_{B}} B_{i} W_{1,i} \right)^{t} B \cdot \cdots - (\alpha_{n_{A}} - A_{n_{A}}) f'_{B} \left(\sum_{i=1}^{n_{B}} B_{i} W_{n_{A},i} \right)^{t} B \right]$$

$$= -^{t} B * \left[(\alpha_{1} - A_{1}) f'_{B} \left(\sum_{i=1}^{n_{B}} B_{i} W_{1,i} \right) \cdot \cdots \cdot (\alpha_{n_{A}} - A_{n_{A}}) f'_{B} \left(\sum_{i=1}^{n_{B}} B_{i} W_{n_{A},i} \right) \right]$$

$$= -^{t} B * \left[\left([\alpha_{1} - A_{1}) \cdot \cdots \cdot (\alpha_{n_{A}} - A_{n_{A}}) \right] \times \left[f'_{B} \left(\sum_{i=1}^{n_{B}} B_{i} W_{1,i} \right) \cdot \cdots \cdot f'_{B} \left(\sum_{i=1}^{n_{B}} B_{i} W_{n_{A},i} \right) \right] \right]$$

$$= -^{t} B * \left[\left([\alpha_{1} \cdot \cdots \cdot \alpha_{n_{A}}] - [A_{1} \cdot \cdots \cdot A_{n_{A}}] \right) \times f'_{B} \left(\left[\sum_{i=1}^{n_{B}} B_{i} W_{1,i} \cdot \cdots \cdot \sum_{i=1}^{n_{B}} B_{i} W_{n_{A},i} \right] \right) \right]$$

$$= -^{t} B * \left[(\alpha - A) \times f'_{B} (B * W) \right]$$

On posant $\delta_B = [(\alpha - A) \times f_B'(B * W)]$, on a $\varepsilon = - {}^{\mathbf{t}}B * \delta_B$.

Émilie ROGER Page 4 | 7

3. Correction des poids de l'avant-dernière précédentes

Maintenant qu'on a calculé les variations à appliquer sur les poids entre la dernière et l'avant-dernière couche, il s'agit désormais de faire de même pour les poids entre les couches précédentes.

L'erreur quadratique \mathcal{E} commise est toujours : $\mathcal{E} = \frac{1}{2} \sum_{\ell=1}^{n_A} (\alpha_\ell - A_\ell)^2$.

On s'intéresse maintenant aux variations qu'apporteraient les modifications de $W'_{c,b}$ ($(c,b) \in [[1,n_C]] \times [[1,n_B]]$) sur l'erreur quadratique.

Il s'agit donc de faire varier les $W'_{c,b}$ pour chaque couple $(c,b) \in [[1,n_C]] \times [[1,n_B]]$ de telle façon à ce que réduire au maximum \mathcal{E} .

On va donc calculer pour tout $(c,b) \in [[1,n_C]] \times [[1,n_B]]$ les dérivées partielles $\varepsilon'_{c,b}$ de \mathcal{E} par rapport aux $W'_{c,b}$. Pour un c et un b donnés :

$$\begin{split} \varepsilon'_{c,b} &= \frac{\mathrm{d}}{\mathrm{d}W'_{c,b}} \mathcal{E} \\ &= \frac{\mathrm{d}}{\mathrm{d}W'_{c,b}} \frac{1}{2} \sum_{\ell=1}^{n_A} (\alpha_{\ell} - A_{\ell})^2 \\ &= \frac{\mathrm{d}}{\mathrm{d}W'_{c,b}} \frac{1}{2} \sum_{\ell=1}^{n_A} \left(\alpha_{\ell} - f_B \left(\sum_{k=1}^{n_B} B_k W_{k,\ell} \right) \right)^2 \\ &= \frac{\mathrm{d}}{\mathrm{d}W'_{c,b}} \frac{1}{2} \sum_{\ell=1}^{n_A} \left(\alpha_{\ell} - f_B \left(\sum_{k=1}^{n_B} f_C \left(\sum_{j=1}^{n_C} C_j W'_{j,k} \right) W_{k,\ell} \right) \right)^2 \\ &= \frac{1}{2} \sum_{\ell=1}^{n_A} \left[\frac{\mathrm{d}}{\mathrm{d}W'_{c,b}} \left(\alpha_{\ell} - f_B \left(\sum_{k=1}^{n_B} f_C \left(\sum_{j=1}^{n_C} C_j W'_{j,k} \right) W_{k,\ell} \right) \right)^2 \right] \\ &= \sum_{\ell=1}^{n_A} \left[\left(\alpha_{\ell} - f_B \left(\sum_{i=1}^{n_B} f_C \left(\sum_{j=1}^{n_C} C_i W'_{j,k} \right) W_{k,\ell} \right) \right) \right] \\ &= \sum_{\ell=1}^{n_A} \left[\left(\alpha_{\ell} - A_{\ell} \right) \frac{\mathrm{d}}{\mathrm{d}W'_{c,b}} \left(\alpha_{\ell} - f_B \left(\sum_{j=1}^{n_B} f_C \left(\sum_{j=1}^{n_C} C_j W'_{j,k} \right) W_{k,\ell} \right) \right) \right] \\ &= \sum_{\ell=1}^{n_A} \left[\left(\alpha_{\ell} - A_{\ell} \right) \frac{\mathrm{d}}{\mathrm{d}W'_{c,b}} \left(\alpha_{\ell} - f_B \left(\sum_{j=1}^{n_B} f_C \left(\sum_{j=1}^{n_C} C_j W'_{j,k} \right) W_{k,\ell} \right) \right) \right] \\ &= -\sum_{\ell=1}^{n_A} \left[\left(\alpha_{\ell} - A_{\ell} \right) f_B' \left(\sum_{i=1}^{n_B} f_C \left(\sum_{k=1}^{n_C} C_k W'_{h,i} \right) W_{i,\ell} \right) \frac{\mathrm{d}}{\mathrm{d}W'_{c,b}} \left(\sum_{k=1}^{n_B} f_C \left(\sum_{j=1}^{n_C} C_j W'_{j,k} \right) W_{k,\ell} \right) \right] \\ &= -\sum_{\ell=1}^{n_A} \left[\left(\alpha_{\ell} - A_{\ell} \right) f_B' \left(\sum_{i=1}^{n_B} B_i W_{i,\ell} \right) \frac{\mathrm{d}}{\mathrm{d}W'_{c,b}} \left(\sum_{k=1}^{n_B} f_C \left(\sum_{j=1}^{n_C} C_j W'_{j,k} \right) W_{k,\ell} \right) \right] \\ &= -\sum_{\ell=1}^{n_A} \left[\left(\alpha_{\ell} - A_{\ell} \right) f_B' \left(\sum_{i=1}^{n_B} B_i W_{i,\ell} \right) \sum_{k=1}^{n_B} \left(W_{k,\ell} f_C' \left(\sum_{h=1}^{n_C} C_h W'_{h,k} \right) \frac{\mathrm{d}}{\mathrm{d}W'_{c,b}} \left(\sum_{j=1}^{n_C} C_j W'_{j,k} \right) \right] \\ &= -\sum_{\ell=1}^{n_A} \left[\left(\alpha_{\ell} - A_{\ell} \right) f_B' \left(\sum_{i=1}^{n_B} B_i W_{i,\ell} \right) \sum_{k=1}^{n_B} \left(W_{k,\ell} f_C' \left(\sum_{h=1}^{n_C} C_h W'_{h,k} \right) \frac{\mathrm{d}}{\mathrm{d}W'_{c,b}} \left(\sum_{j=1}^{n_C} C_j W'_{j,k} \right) \right) \right] \\ &= -\sum_{\ell=1}^{n_A} \left[\left(\alpha_{\ell} - A_{\ell} \right) f_B' \left(\sum_{i=1}^{n_B} B_i W_{i,\ell} \right) \sum_{k=1}^{n_B} \left(W_{k,\ell} f_C' \left(\sum_{h=1}^{n_C} C_h W'_{h,k} \right) \frac{\mathrm{d}}{\mathrm{d}W'_{c,b}} \left(\sum_{j=1}^{n_C} C_j W'_{j,k} \right) \right] \right] \\ &= -\sum_{\ell=1}^{n_A} \left[\left(\alpha_{\ell} - A_{\ell} \right) f_B' \left(\sum_{i=1}^{n_B} B_i W_{i,\ell} \right) \sum_{k=1}^{n_B} \left(W_{k,\ell} f_C' \left(\sum_{h=1}^{n_C} C_h W'_{h,k} \right) \frac{\mathrm{d}}{\mathrm{d}W'_{c,b}} \left(\sum_{$$

Émilie ROGER Page 5 | 7

$$\varepsilon'_{c,b} = -\sum_{\ell=1}^{n_A} \left[(\alpha_{\ell} - A_{\ell}) f'_B \left(\sum_{i=1}^{n_B} B_i W_{i,\ell} \right) W_{b,\ell} f'_C \left(\sum_{h=1}^{n_C} C_h W'_{h,b} \right) \frac{\mathrm{d}}{\mathrm{d} W'_{c,b}} \left(C_c W'_{c,b} \right) \right] \\
= -\sum_{\ell=1}^{n_A} \left[(\alpha_{\ell} - A_{\ell}) f'_B \left(\sum_{i=1}^{n_B} B_i W_{i,\ell} \right) W_{b,\ell} f'_C \left(\sum_{h=1}^{n_C} C_h W'_{h,b} \right) C_c \right] \\
= -\sum_{\ell=1}^{n_A} \left[(\alpha_{\ell} - A_{\ell}) f'_B \left(\sum_{i=1}^{n_B} B_i W_{i,\ell} \right) W_{b,\ell} \right] f'_C \left(\sum_{h=1}^{n_C} C_h W'_{h,b} \right) C_c$$

En notant $\varepsilon_b' = \begin{bmatrix} \varepsilon_{1,b} & \cdots & \varepsilon_{n_C,b} \end{bmatrix} \in \mathcal{M}_{1,n_C}$, on a donc:

$$\varepsilon'_{b} = -\sum_{\ell=1}^{n_{A}} \left[(\alpha_{\ell} - A_{\ell}) f'_{B} \left(\sum_{i=1}^{n_{B}} B_{i} W_{i,\ell} \right) W_{b,\ell} \right] f'_{C} \left(\sum_{h=1}^{n_{C}} C_{h} W'_{h,b} \right) \left[C_{1} \cdots C_{n_{C}} \right] \\
= -\sum_{\ell=1}^{n_{A}} \left[(\alpha_{\ell} - A_{\ell}) f'_{B} \left(\sum_{i=1}^{n_{B}} B_{i} W_{i,\ell} \right) W_{b,\ell} \right] f'_{C} \left(\sum_{h=1}^{n_{C}} C_{h} W'_{h,b} \right) C$$

Puis en notant $\varepsilon' = \begin{bmatrix} \varepsilon'_{1,1} & \cdots & \varepsilon'_{1,n_B} \\ \vdots & & \vdots \\ \varepsilon'_{n_C,1} & \cdots & \varepsilon'_{n_C,n_B} \end{bmatrix} = \begin{bmatrix} \mathbf{t} \varepsilon'_1 & \cdots & \mathbf{t} \varepsilon'_b \end{bmatrix} \in \mathcal{M}_{n_C,n_B}$, on en déduit que :

$$\begin{split} \varepsilon' &= \left[-\sum_{\ell=1}^{n_A} \left[(\alpha_\ell - A_\ell) \, f_B' \left(\sum_{i=1}^{n_B} B_i W_{i,\ell} \right) W_{1,\ell} \right] f_C' \left(\sum_{h=1}^{n_C} C_h W_{h,1}' \right)^{\mathsf{t}} C \quad \cdots \quad -\sum_{\ell=1}^{n_A} \left[(\alpha_\ell - A_\ell) \, f_B' \left(\sum_{i=1}^{n_B} B_i W_{i,\ell} \right) W_{n_B,\ell} \right] f_C' \left(\sum_{h=1}^{n_C} C_h W_{h,n_B}' \right)^{\mathsf{t}} C \right] \\ &= -{}^{\mathsf{t}} C * \left[\sum_{\ell=1}^{n_A} \left[(\alpha_\ell - A_\ell) \, f_B' \left(\sum_{i=1}^{n_B} B_i W_{i,\ell} \right) W_{1,\ell} \right] f_C' \left(\sum_{h=1}^{n_C} C_h W_{h,1}' \right) \quad \cdots \quad \sum_{\ell=1}^{n_A} \left[(\alpha_\ell - A_\ell) \, f_B' \left(\sum_{i=1}^{n_B} B_i W_{i,\ell} \right) W_{n_B,\ell} \right] f_C' \left(\sum_{h=1}^{n_C} C_h W_{h,n_B}' \right) \right] \\ &= -{}^{\mathsf{t}} C * \left[\left[\sum_{\ell=1}^{n_A} \left[(\alpha_\ell - A_\ell) \, f_B' \left(\sum_{i=1}^{n_B} B_i W_{i,\ell} \right) W_{1,\ell} \right] \right] \quad \cdots \quad \sum_{\ell=1}^{n_A} \left[(\alpha_\ell - A_\ell) \, f_B' \left(\sum_{i=1}^{n_B} B_i W_{i,\ell} \right) W_{n_B,\ell} \right] \right] \times \left[f_C' \left(\sum_{h=1}^{n_C} C_h W_{h,1}' \right) \quad \cdots \quad f_C' \left(\sum_{h=1}^{n_C} C_h W_{h,n_B}' \right) \right] \right] \\ &= -{}^{\mathsf{t}} C * \left[\left[(\alpha_1 - A_1) \, f_B' \left(\sum_{i=1}^{n_B} B_i W_{i,1} \right) \right] \cdot \cdots \quad \left(\alpha_{n_A} - A_{n_A} \right) f_B' \left(\sum_{i=1}^{n_B} B_i W_{i,n_A} \right) \right] * \left[W_{1,1} \quad \cdots \quad W_{n_B,1} \right] \right] \times f_C' \left(\left[\sum_{h=1}^{n_C} C_h W_{h,1}' \right] \quad \cdots \quad \sum_{h=1}^{n_C} C_h W_{h,n_B}' \right] \right] \\ &= -{}^{\mathsf{t}} C * \left[\left[\left[(\alpha - A) \times f_B' (B * W) \right] * {}^{\mathsf{t}} W \right) \times f_C' \left(C * W' \right) \right] \\ &= -{}^{\mathsf{t}} C * \left[\left[\left(\delta_B * {}^{\mathsf{t}} W \right) \times f_C' \left(C * W' \right) \right] \right] \end{aligned}$$

On posant $\delta_C = \left[\left(\delta_B * {}^{\mathbf{t}} W \right) \times f_C' \left(C * W' \right) \right]$, on a $\varepsilon' = - {}^{\mathbf{t}} C * \delta_C$.

Émilie ROGER Page 6 | 7

4. Correction des poids des précédentes couches

Pour une couche D ayant n_D neurones, la fonction d'activation f_D et les poids $W''_{d,c}$ $((d,c) \in [[1,n_D]] \times [[1,n_C]])$ entre les couches D et C, on peut montrer que :

$$\varepsilon'' = - {}^{\mathbf{t}}D * \left[\left(\delta_C * {}^{\mathbf{t}}W' \right) \times f'_D \left(D * W'' \right) \right]$$

On posant $\delta_D = \left[\left(\delta_C * {}^{\mathbf{t}} W' \right) \times f'_D (D * W'') \right]$, on a $\varepsilon'' = - {}^{\mathbf{t}} D * \delta_D$.

De même, pour une couche E ayant n_E neurones, la fonction d'activation f_E et les poids $W'''_{e,d}$ $((e,d) \in [[1,n_E]] \times [[1,n_D]])$ entre les couches E et D, on peut montrer que :

$$\varepsilon^{\prime\prime\prime\prime} = - {}^{\mathbf{t}}E * \left[\left(\delta_D * {}^{\mathbf{t}}W^{\prime\prime} \right) \times f_E^{\prime} \left(E * W^{\prime\prime\prime} \right) \right]$$

On posant $\delta_E = \left[\left(\delta_D * {}^{\mathbf{t}} W^{\prime\prime} \right) \times f_E^{\prime} \left(E * W^{\prime\prime\prime} \right) \right]$, on a $\varepsilon^{\prime\prime\prime} = - {}^{\mathbf{t}} E * \delta_E$.

Émilie ROGER Page 7 | 7