1.2. ABC is a triangle. D and E are any two points on AB and AC. The bisectors of the angles ABE and ACD meet in F. Show that  $\angle BDC + \angle BEC = 2 \angle BFC$ .

Example 1 85: As shown in Figure 1, in  $\triangle ABC$ , D and E are points on AB and AC respectively, and the angle bisectors of  $\angle ABE$  and  $\angle ACD$  intersect at F. Prove:  $\angle BDC + \angle BEC = 2 \angle BFC$ .



$$\frac{D-B}{D-C}\frac{E-B}{E-C} = \frac{C-F}{C-D}\frac{B-E}{B-F}$$

$$\left(\frac{F-B}{F-C}\right)^{2} = \frac{C-F}{C-F}\frac{B-E}{B-F}$$