Lecture 2: Maximum Likelihood and Friends

Chris Conlon

February 7, 2023

NYU Stern

Computing Maximum Likelihood

Estimators

Newton's Method for Root Finding

Consider the Taylor series for f(x) approximated around $f(x_0)$:

$$f(x) \approx f(x_0) + f'(x_0) \cdot (x - x_0) + f''(x_0) \cdot (x - x_0)^2 + o_p(3)$$

Suppose we wanted to find a root of the equation where $f(x^*) = 0$ and solve for x:

$$0 = f(x_0) + f'(x_0) \cdot (x - x_0)$$
$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$$

This gives us an iterative scheme to find x^* :

- 1. Start with some x_k . Calculate $f(x_k)$, $f'(x_k)$
- 2. Update using $x_{k+1} = x_k \frac{f(x_k)}{f(x_k)}$
- 3. Stop when $|x_{k+1} x_k| < \epsilon_{tol}$.

Newton-Raphson for Minimization

We can re-write optimization as root finding;

- We want to know $\hat{\theta} = \arg \max_{\theta} \ell(\theta)$.
- ► Construct the FOCs $\frac{\partial \ell}{\partial \theta} = 0$ → and find the zeros.
- ▶ How? using Newton's method! Set $f(\theta) = \frac{\partial \ell}{\partial \theta}$

$$\theta_{k+1} = \theta_k - \left[\frac{\partial^2 \ell}{\partial \theta^2}(\theta_k)\right]^{-1} \cdot \frac{\partial \ell}{\partial \theta}(\theta_k)$$

The SOC is that $\frac{\partial^2 \ell}{\partial \theta^2} > 0$. Ideally at all θ_k .

This is all for a single variable but the multivariate version is basically the same.

Newton's Method: Multivariate

Start with the objective $Q(\theta) = -\ell(\theta)$:

- ▶ Approximate $Q(\theta)$ around some initial guess θ_0 with a quadratic function
- lacktriangle Minimize the quadratic function (because that is easy) call that $heta_1$
- ► Update the approximation and repeat.

$$\theta_{k+1} = \theta_k - \left[\frac{\partial^2 Q}{\partial \theta \partial \theta'}\right]^{-1} \frac{\partial Q}{\partial \theta}(\theta_k)$$

- ▶ The equivalent SOC is that the Hessian Matrix is positive semi-definite (ideally at all θ).
- ▶ In that case the problem is globally convex and has a unique maximum that is easy to find.

Newton's Method

We can generalize to Quasi-Newton methods:

$$\theta_{k+1} = \theta_k - \lambda_k \underbrace{\left[\frac{\partial^2 Q}{\partial \theta \partial \theta'}\right]^{-1}}_{A_k} \underbrace{\frac{\partial Q}{\partial \theta}(\theta_k)}$$

Two Choices:

- ▶ Step length λ_k
- ► Step direction $d_k = A_k \frac{\partial Q}{\partial \theta}(\theta_k)$
- ▶ Often rescale the direction to be unit length $\frac{d_k}{\|d_k\|}$.
- ▶ If we use A_k as the true Hessian and $\lambda_k = 1$ this is a full Newton step.

Newton's Method: Alternatives

Choices for A_k

- $ightharpoonup A_k = I_k$ (Identity) is known as gradient descent or steepest descent
- ▶ BHHH. Specific to MLE. Exploits the Fisher Information.

$$A_{k} = \left[\frac{1}{N} \sum_{i=1}^{N} \frac{\partial \ln f}{\partial \theta} (\theta_{k}) \frac{\partial \ln f}{\partial \theta'} (\theta_{k})\right]^{-1}$$
$$= -\mathbb{E}\left[\frac{\partial^{2} \ln f}{\partial \theta \partial \theta'} (Z, \theta^{*})\right] = \mathbb{E}\left[\frac{\partial \ln f}{\partial \theta} (Z, \theta^{*}) \frac{\partial \ln f}{\partial \theta'} (Z, \theta^{*})\right]$$

- ▶ Alternatives SR1 and DFP rely on an initial estimate of the Hessian matrix and then approximate an update to A_k .
- Usually updating the Hessian is the costly step.
- Non invertible Hessians are bad news.

EM Algorithm and Mixtures

Estimating Finite Mixtures

- ▶ In practice estimating finite mixture models can be tricky.
- ► A simple example is the mixture of normals (incomplete data likelihood)

$$f(x_1,\ldots,x_n|\theta) = \prod_{i=1}^N \sum_{k=1}^K \pi_k f(x_i|\mu_k,\sigma_k)$$

- ▶ We need to find both mixture weights $\pi_k = Pr(z_k)$ and the components (μ_k, σ_k) the weights define a valid probability measure $\sum_k \pi_k = 1$.
- ► Easy problem is label switching. Usually it helps to order the components by say decreasing $\pi_1 > \pi_2 > \dots$ or $\mu_1 > \mu_2 > \dots$
- ▶ The real problem is that which component you belong to is unobserved. We can add an extra indicator variable $z_{ik} \in \{0,1\}$.
- ightharpoonup We don't care about z_{ik} per-se so they are nuisance parameters.

Estimating Finite Mixtures

▶ We can write the complete data log-likelihood (as if we observed z_{ik}):

$$\ell(x_1,\ldots,x_n|\theta) = \sum_{i=1}^N \log \left(\sum_{k=1}^K I[z_i = k] \pi_k f(x_i,\mu_k,\sigma_k) \right)$$

lacktriangle We can instead maximized the expected log-likelihood where we take the expectation $E_{\mathsf{z}\mid\theta}$

$$\alpha_{ik}(\theta) = Pr(z_{ik} = 1 | x_i, \theta) = \frac{f_k(x_i, z_k, \mu_k, \sigma_k)\pi_k}{\sum_{m=1}^{K} f_m(x_i, z_m, \mu_m, \sigma_m)\pi_m}$$

Now we have a probability $\hat{\alpha}_{ik}$ that gives us the probability that i came from component k. We also compute $\hat{\pi}_k = \frac{1}{N} \sum_{i=1}^N \alpha_{ik}$

EM Algorithm

lacktriangle Treat the $\hat{lpha}_k(heta^{(q)})$ as data and maximize to find μ_k, σ_k for each k

$$\hat{\theta}^{(q+1)} = \arg\max_{\theta} \sum_{i=1}^{N} \log \left(\sum_{k=1}^{K} \hat{\alpha}_{k}(\theta^{(q)}) f(x_{i}|z_{ik}, \theta) \right)$$

- lacktriangle We iterate between updating $\hat{\alpha}_k(\theta^{(q)})$ (E-step) and $\hat{\theta}^{(q+1)}$ (M-step)
- ► For the mixture of normals we can compute the M-step very easily:

$$\mu_{k}^{(q+1)} = \frac{1}{N} \sum_{i=1}^{N} \hat{\alpha}_{k}(\theta^{(q)}) x_{i}$$

$$\sigma_{k}^{(q+1)} = \frac{1}{N} \sum_{i=1}^{N} \hat{\alpha}_{k}(\theta^{(q)}) (x_{i} - \overline{x})^{2}$$

EM Algorithm

- ► EM algorithm has the advantage that it avoids complicated integrals in computing the expected log-likelihood over the missing data.
- ► For a large set of families it is proven to converge to the MLE
- ► That convergence is monotonic and linear. (Newton's method is quadratic)
- ▶ This means it can be slow, but sometimes $\nabla_{\theta} f(\cdot)$ is really complicated.

Thanks!