Laboratory #2: System Identification of a 2nd Order System through Step Response

Report by:

Lee Brady

Ryan Nand

James Ward

Nic Knoblich

Date of Report submission: 04/20/2020

ECE 317 - Signals and Systems III

Department of Electrical and Computer Engineering

Portland State University

Instructor: Professor Richard Tymerski

The figure above shows the voltage (VP1) across the 25 $\,\Omega$ resistor from our PECS schematic.

Overshoot	C' _{max}	5.931 V
Steady State Voltage	$c^{'}_{final}$	5.5 V

As the table above shows, our max overshoot is 5.931 V and the steady state voltage is 5.5 V.

$$c_{max} = c'_{max} - c'_{0}$$

$$c_{max} = 0.931 V$$

$$c_{final} = c'_{final} - c'_{0}$$

$$c_{final} = 0.5 V$$

%OS =
$$\frac{Cmax - Cfinal}{Cfinal} \times 100 \implies \frac{0.931 - 0.5}{0.5} \times 100 = 86.2\%$$

$$\zeta = \frac{-ln(\%OS/100)}{\sqrt{\pi^2 + ln^2(\%OS/100)}} \Rightarrow \frac{-ln(86.2/100)}{\sqrt{\pi^2 + ln^2(86.2/100)}} = 0.047$$

$$T's = 0.1168s$$
 0.12942 19.42
 $Ts = T's - \text{step time} \Rightarrow 0.1168 - 0.11 = 6.8ms$

$$K = \frac{\Delta c}{\Delta v} = \frac{Cfinal - Co}{Vfinal - Vo} \Rightarrow \frac{5.5 - 5.0}{5.5 - 5.0} = 1$$

LCR transfer function derivation:

$$Z_L = sL$$
 and $Z_C = \frac{1}{sC}$

Using KCL and the relations of the impedances above we get the following:

$$\frac{V_o - 0}{R} + \frac{V_o - 0}{Z_C} + \frac{V_o - V_i}{Z_L} = 0$$

Isolate input and output.

$$V_o(\frac{1}{R} + \frac{1}{Z_C} + \frac{1}{Z_L}) = \frac{V_i}{Z_L}$$

Combine impedances.

$$V_o(\frac{Z_L Z_C + R Z_L + R Z_C}{R Z_C Z_L}) = \frac{V_i}{Z_L}$$

Divide for transfer function.

$$\frac{V_o}{V_i} = \frac{RZ_C}{Z_L Z_C + RZ_L + RZ_C}$$

Now looking only at the right hand side of the transfer function, plug in the impedance values.

$$\frac{R\frac{1}{sC}}{sL\frac{1}{sC} + RsL + R\frac{1}{sC}}$$

Multiply by sC.

$$\frac{R}{sL+RsLsC+R}$$

Simplify.

$$\frac{R}{s^2RLC+sL+R}$$

Divide by R.

$$\frac{1}{s^2LC + s\frac{L}{R} + 1}$$

Now we have the desired transfer function.

$$\frac{1}{s^2 L C + s \frac{L}{R} + 1} = \frac{K}{a_1 s^2 + a_2 s + 1} = \frac{K}{(\frac{s}{\omega_n})^2 + 2\xi \frac{s}{\omega_n} + 1}$$

From the relationships of the transfer functions above K = 1.

$$a_1 = \frac{1}{\omega_n^2} = LC$$

Therefore, $\omega_n = \frac{1}{\sqrt{LC}}$.

$$a_2 = 2\xi \frac{1}{\omega_n} = \frac{L}{R}$$

Plug in ω_n .

$$2\xi(\sqrt{LC}) = \frac{L}{R}$$

Therefore,
$$\xi = \frac{L}{2R\sqrt{LC}}$$
.

Transfer Function Parameters	PECS Simulation Derived Values	Symbolic Transfer Function	Evaluated Transfer Function
ξ	.047	$\frac{L}{2R\sqrt{LC}}$.047
ω_n	12515.6 4380	$\frac{1}{\sqrt{LC}}$	4225.77
K	1	1	1

```
% Component values
L = 560e - 06;
C = 100e-06;
R = 25;
% Transfer function parameters
K = 1:
           % DC gain
al = L*C; % Coefficient of s^2 of denominator
a2 = L/R: % Coefficient of s^1 of denominator
% Tranfer function
tf LCR = tf(K, [a1, a2, 1]);
% t is a vector of 1000 time values linearly spaced between 0 and .2
t = linspace(0, .2, 1000);
% Create step function
u = 5*ones(length(t), 1);
% Create the time for step excitation
step_time = .11;
% n accounts for all time after excitation
n = find(t >= step_time);
% The input after the excitation time initiates
u(n) = u(n) + .5; % A 10% step
% Simulation of the LCR network
y = lsim(tf LCR, u, t);
% The output response
figure (1)
plot(t,y)
title ('Output response including the large-signal start-up transient')
% Isolate the small-signal step response
c prime 0 = y(n(1)-1); % Initial output before the step
ys = y(n) - c_prime_0; % Small signal output response
ts = t(n) - step time; % Small signal response times
% Small signal step response
figure (2)
plot(ts, ys)
title('Step response')
% Small signal step response metrics
stepinfo(ys,ts)
```

LCR Low-Pass Filter Matlab Code

RiseTime: 2.9428e-04

SettlingTime: 0.0188
SettlingMin: 0.1539
SettlingMax: 0.9187
Overshoot: 83.7408
Undershoot: 1.2966e-07

Peak: 0.9187 PeakTime: 9.1091e-04

Output of Matlab stepinfo function

Response Feature	From PECS	From Matlab	
%OS	86.2	83.74	
T _s (taken from plots when V<0.39)	8ms _{19.42}	7.5ms 19.5	

Derivation of transfer function with rL included:

Adding in Series Resistor with inductor called $\boldsymbol{r}_{\!\scriptscriptstyle L}$ Leads to voltage divider equation

$$\frac{V_o}{V_{IN}} = \frac{R}{CLRs^2 + (Cr_LR + L)s + r_L + R}$$

Transfer function with simplification applied:

$$\frac{V_o}{V_{IN}} = \frac{R}{CLRs^2 + (Cr_L + L)s + R} = \frac{1}{CLs^2 + (Cr_L + \frac{L}{R})s + 1}$$

Appreciable change in DC gain?

No change in DC gain after approximation r_L +R=R.

Appreciable change in undamped natural frequency?

No change in undamped natural frequency.

Appreciable change in damping factor?

This factor is what gets changed the most from transfer function above

$$2\xi \frac{1}{\omega_n} = Cr_L + \frac{L}{R}$$
$$\xi = \frac{CRr_L + L}{2R\sqrt{LC}}$$

1.	Task 1: Your PECS schematic	/
2.	Task 4:	
	(i) Plot	/
	(ii) c'_{max}	/
	(iii) $c_{final}^{'}$	/
3.	Task 5:	
	(i) c _{max}	/
	(ii) c _{final}	/
4.	Task 6:	
	(i) %OS	/:
	(ii) ζ	/:
5.	Task 7:	
	(i) T_s' 0	
	(ii) Ts0	/
6.	Task 8: K	/:
7.	Task 9:	
	(i) LCR transfer function derivation	/
	(ii) K as a function of elements	/
	(iii) a1 as a function of elements	/
	(iv) a2 as a function of elements	
	(v) completed table 5.5	
	Task 10: Your complete Matlab code	/
9.	Task 11:	
	(i) Matlab plot 1	
	(ii) Matlab plot 2	/
0.	Task 12:	
	(i) Output of Matlab stepinfo function	
	, ,	/:
1.	Task 13:	
	(i) Derivation of transfer function with rL included	
	(ii) Transfer function with simplification applied	
	(iii) Appreciable change in DC gain?	
	(iv) Appreciable change in undamped natural frequency?	
	(v) Appreciable change in damping factor?	
poi	rt:	/7