Theoretical Computer Science Tutorial Week 4

Prof. Andrey Frolov

nnoborie

Agenda

Finite State Automaton (FSA)

- Representations of FSA
 - Formally
 - Graphical Representation
 - State Transition Table
- Operations on FSA
 - Complement
 - Intersection
 - Union
 - Difference
- Examples

FSA (Formal definition)

Definition

A (complete) Finite State Automaton is a tuple $\langle Q, \Sigma, q_0, A, \delta \rangle$, where

Q is a finite set of *states*;

 Σ is a finite input alphabet;

 $q_0 \in Q$ is the *initial* state;

 $A \subseteq Q$ is the set of *accepting* states;

 $\delta: Q \times \Sigma \to Q$ is a (total) *transition* function.

FSA: formally

Example (by formal definition)

$$M = \langle \{q_0, q_1\}, \{0, 1\}, \{(q_0, 0), q_0\}, ((q_0, 1), q_1), ((q_1, 0), q_0), ((q_1, 1), q_1)\}, q_0, \{q_1\} \rangle$$

or

Example (by formal definition)

$$M=\langle\{q_0,q_1\},\{0,1\},\delta,q_0,\{q_1\}
angle$$
, where $\delta(q_0,0)=q_0,\delta(q_0,1)=q_1,\delta(q_1,0)=q_0,\delta(q_1,1)=q_1$

FSA: formally

Example of a FSA (by formal definition)

```
\begin{array}{ll} \textit{M} = \langle \\ \{q_0,q_1\}, & \text{set of states} \\ \{0,1\}, & \text{input alphabet} \\ \{((q_0,0),q_0),((q_0,1),q_1), \\ & ((q_1,0),q_0),((q_1,1),q_1)\}, & \text{total transition function} \\ q_0, & \text{initial state} \\ \{q_1\} & \text{set of final states} \\ \rangle \end{array}
```

FSA: Graphical Representation

State Transition Diagram

Example (by formal definition)

$$M = \langle \{q_0, q_1\}, \{0, 1\}, \delta, q_0, \{q_1\} \rangle$$
, where $\delta(q_0, 0) = q_0, \delta(q_0, 1) = q_1, \delta(q_1, 0) = q_0, \delta(q_1, 1) = q_1$

FSA: Table Representation

State Transition Table

	0	1
$ ightarrow q_0$	q 0	q_1
*q_1	q 0	q_1

State Transition Diagram

FSA: Table Representation

State Transition Table

$$egin{array}{c|cccc} & 0 & 1 \ \hline
ightarrow q_0 & q_0 & q_1 \
ightarrow^*q_1 & q_0 & q_1 \ \hline \end{array}$$

Example (by formal definition)

$$M = \langle \{q_0, q_1\}, \{0, 1\}, \delta, q_0, \{q_1\} \rangle$$
, where $\delta(q_0, 0) = q_0, \delta(q_0, 1) = q_1, \delta(q_1, 0) = q_0, \delta(q_1, 1) = q_1$

Given an FSA as a State Transition Diagram, build a State Transition Table

	а	b
$ o q_0$		
q_1		
$*q_2$		

Given an FSA as a State Transition Diagram, build a State Transition Table

$$\begin{array}{c|cccc} & a & b \\ \hline \rightarrow q_0 & q_0 \\ q_1 \\ *q_2 & \end{array}$$

Given an FSA as a State Transition Diagram, build a State Transition Table

Given an FSA as a State Transition Diagram, build a State Transition Table

$$\begin{array}{c|cccc} & a & b \\ \hline \rightarrow q_0 & q_0 & q_1 \\ q_1 & q_2 \\ *q_2 & & \end{array}$$

Given an FSA as a State Transition Diagram, build a State Transition Table

$$\begin{array}{c|cccc} & a & b \\ \hline \rightarrow q_0 & q_0 & q_1 \\ q_1 & q_2 & q_0 \\ {}^*q_2 & & \end{array}$$

Given an FSA as a State Transition Diagram, build a State Transition Table

	a	b
$ ightarrow q_0$	q 0	q_1
q_1	q_2	q_0
$*q_{2}$	q_2	

Given an FSA as a State Transition Diagram, build a State Transition Table

	а	b
$ ightarrow q_0$	q 0	q_1
q_1	q_2	q_0
$*q_{2}$	q_2	q_1

If a FSA is not complete?

$$egin{array}{c|cccc} & a & b \\ \hline
ightarrow q_0 & q_1 & \\
ightarrow q_1 & q_1 & \end{array}$$

Agenda

Finite State Automaton (FSA)

- Representations of FSA
 - Formally
 - Graphical Representation
 - State Transition Table
- Operations on FSA
 - Complement
 - Intersection
 - Union
 - Difference
- Examples

Operations

Problem

If we have an algorithm to accept L, how can we formulate an algorithm to accept L^c ?

Problem

Suppose L_1 and L_2 are both languages over the alphabet A.

If we have one algorithm to accept L_1 and another to accept L_2 , how can we formulate an algorithm to accept $L_1 \cap L_2$? (similarly, $L_1 \cup L_2$ or $L_1 \setminus L_2$).

Operations

Problem

Suppose $M=(Q^1,A,\delta^1,q_0^1,F^1)$ is a finite automaton accepting L.

What is an automaton which accepts L^c ?

Problem

Suppose $M^1=(Q^1,A,\delta^1,q_0^1,F^1)$ and $M^2=(Q^2,A,\delta^2,q_0^2,F^2)$ are finite automata accepting L_1 and L_2 , respectively.

What is an automaton which accepts $L_1 \cap L_2$? (similarly, $L_1 \cup L_2$, $L_1 \setminus L_2$)?

Agenda

Finite State Automaton (FSA)

- Representations of FSA
 - Formally
 - Graphical Representation
 - State Transition Table
- Operations on FSA
 - Complement
 - Intersection
 - Union
 - Difference
- Examples

Complement

Suppose $M = (Q, A, \delta, q_0, F)$ is a finite automaton accepting L.

The automaton $M^c=(Q,A,\delta,q_0,F^c)$ accepts the language L^c .

Recall that

$$F^c = Q \setminus F$$

$$\begin{aligned} M &= \langle \{q_0, q_1\}, \{a\}, \\ &\{ ((q_0, a), q_1), ((q_1, a), q_0)\}, \\ &q_0, \{q_1\} \rangle \end{aligned}$$

$$M^{c} = \langle \{q_{0}, q_{1}\}, \{a\}, \{((q_{0}, a), q_{1}), ((q_{1}, a), q_{0})\}, q_{0}, \{q_{0}\} \rangle$$

What would be the complement M^c ?

What would be the complement M^c ?

Agenda

Finite State Automaton (FSA)

- Representations of FSA
 - Formally
 - Graphical Representation
 - State Transition Table
- Operations on FSA
 - Complement
 - Intersection
 - Union
 - Difference
- Examples

Intersection

Suppose $M^1 = (Q^1, A, \delta^1, q_0^1, F^1)$ and $M^2 = (Q^2, A, \delta^2, q_0^2, F^2)$ are finite automata accepting L_1 and L_2 , respectively.

$$egin{aligned} Q &= Q^1 imes Q^2 \ A \ q_0 &= (q_0^1, q_0^2) \ \delta((q, p), a) &= (\delta^1(q, a), \delta^2(p, a)) \ F &= \{(q, p) \in Q^1 imes Q^2 \mid q \in F^1 \& p \in F^2\} \end{aligned}$$

The automaton $M = (Q, A, \delta, q_0, F)$ accepts the language $L_1 \cap L_2$.

$$M = M_1 \cap M_2$$

Intersection: Example 1

$$M^1 = \langle \{q_0, q_1\}, \{a\}, \ \{((q_0, a), q_1), ((q_1, a), q_0)\}, \ q_0, \{q_1\} \rangle$$

Intersection: Example 1

$$M^2 = \langle \{p_0\}, \{a\},$$
$$\{((p_0, a), p_0)\},$$
$$p_0, \{p_0\}\rangle$$
$$\text{start} \longrightarrow \boxed{p_0} \quad \text{a}$$

Intersection: Example 1

$$M^1 = \langle \{q_0, q_1\}, \{a\}, \ \{((q_0, a), q_1), ((q_1, a), q_0)\}, \ q_0, \{q_1\} \rangle$$
 $M^2 = \langle \{p_0\}, \{a\}, \ \{((p_0, a), p_0)\}, \ p_0, \{p_0\} \rangle$

$$(M^{1} \cap M^{2}) = \langle \{(q_{0}, p_{0}), (q_{1}, p_{0})\}, \{a\},$$

$$\Big\{ \Big(((q_{0}, p_{0}), a), (q_{1}, p_{0}) \Big), \Big(((q_{1}, p_{0}), a), (q_{0}, p_{0}) \Big) \Big\},$$

$$(q_{0}, p_{0}), \{(q_{1}, p_{0})\} \rangle$$

Agenda

Finite State Automaton (FSA)

- Representations of FSA
 - Formally
 - Graphical Representation
 - State Transition Table
- Operations on FSA
 - Complement
 - Intersection
 - Union
 - Difference
- Examples

Union

Suppose $M^1=(Q^1,A,\delta^1,q_0^1,F^1)$ and $M^2=(Q^2,A,\delta^2,q_0^2,F^2)$ are finite automata accepting L_1 and L_2 , respectively.

$$Q = Q^{1} \times Q^{2}$$

$$A$$

$$q_{0} = (q_{0}^{1}, q_{0}^{2})$$

$$\delta((q, p), a) = (\delta^{1}(q, a), \delta^{2}(p, a))$$

$$F = \{(q, p) \in Q^{1} \times Q^{2} \mid q \in F^{1} \lor p \in F^{2}\}$$

The automaton $M = (Q, A, \delta, q_0, F)$ accepts the language $L_1 \cup L_2$.

$$M = M_1 \cup M_2$$

Union: Example 1

J

_

Union: Example 2

Union: Example 2

Agenda

Finite State Automaton (FSA)

- Representations of FSA
 - Formally
 - Graphical Representation
 - State Transition Table
- Operations on FSA
 - Complement
 - Intersection
 - Union
 - Difference
- Examples

Difference

Suppose $M^1=(Q^1,A,\delta^1,q_0^1,F^1)$ and $M^2=(Q^2,A,\delta^2,q_0^2,F^2)$ are finite automata accepting L_1 and L_2 , respectively.

$$\begin{split} Q &= Q^1 \times Q^2 \\ A \\ q_0 &= (q_0^1, q_0^2) \\ \delta((q, p), a) &= (\delta^1(q, a), \delta^2(p, a)) \\ F &= \{(q, p) \in Q^1 \times Q^2 \mid q \in F^1 \& p \notin F^2\} \end{split}$$

The automaton $M = (Q, A, \delta, q_0, F)$ accepts the language $L_1 \setminus L_2$.

$$M = M_1 \setminus M_2$$

Difference (Example 1 $L_1 \setminus L_2$)

Difference (Example 2 $L_2 \setminus L_1$)

Difference (Example 3)

Difference (Example 3)

Agenda

Finite State Automaton (FSA)

- Representations of FSA
 - Formally
 - Graphical Representation
 - State Transition Table
- Operations on FSA
 - Complement
 - Intersection
 - Union
 - Difference
- Examples

Examples: Complement

M_1

M_2

Examples: Complement

M_1^c

M_2^c

M_1

M_2

$M_1 \cap M_2$

$M_1 \cap M_2$

Table representation of M_1

δ	a	b
$ ightarrow q_0$	q_1	q_3
q_1	q ₂	q_3
* q 2	q 2	q_2
q_3	q 3	q_3

Table representation of M_2

$$\begin{array}{c|ccccc}
\delta & a & b \\
\hline
\rightarrow \rho_0 & \rho_1 & \rho_0 \\
\rho_1 & \rho_2 & \rho_0 \\
*\rho_2 & \rho_2 & \rho_2
\end{array}$$

Table representation of $M_1 \cap M_2$

δ	a	b
$ ightarrow (q_0p_0)$	(q_1p_1)	(q_3p_0)
(q_1p_0)	(q_2p_1)	(q_3p_0)
(q_2p_0)	(q_2p_1)	(q_2p_0)
(q_3p_0)	(q_3p_1)	(q_3p_0)
(q_0p_1)	(q_1p_2)	(q_3p_0)
(q_1p_1)	(q_2p_2)	(q_3p_0)
(q_2p_1)	(q_2p_2)	(q_2p_0)
(q_3p_1)	(q_3p_2)	(q_3p_0)
(q_0p_2)	(q_1p_2)	(q_3p_2)
(q_1p_2)	(q_2p_2)	(q_3p_2)
$^{*}(q_{2}p_{2})$	(q_2p_2)	(q_2p_2)
(q_3p_2)	(q_3p_2)	(q_3p_2)

Let us remove unreachable states

Table representation of $M_1 \cap M_2$

δ	a	b
$ ightarrow (q_0p_0)$	(q_1p_1)	(q_3p_0)
(q_3p_0)	(q_3p_1)	(q_3p_0)
(q_1p_1)	(q_2p_2)	(q_3p_0)
(q_3p_1)	(q_3p_2)	(q_3p_0)
$^{*}(q_{2}p_{2})$	(q_2p_2)	(q_2p_2)
(q_3p_2)	(q_3p_2)	(q_3p_2)

M_1

M_2

$M_1 \cup M_2$

$M_1 \cup M_2$

Table representation of $M_1 \cup M_2$

δ	a	Ь
$ ightarrow (q_0p_0)$	(q_1p_1)	(q_3p_0)
(q_3p_0)	(q_3p_1)	(q_3p_0)
(q_1p_1)	(q_2p_2)	(q_3p_0)
(q_3p_1)	(q_3p_2)	(q_3p_0)
$^{*}(q_{2}p_{2})$	(q_2p_2)	(q_2p_2)
$^{*}(q_{3}p_{2})$	(q_3p_2)	(q_3p_2)

Examples: Difference

The accepting state of M_1 is q_2 . The accepting state of M_2 is p_2

Table representation of $M_1 \setminus M_2$

δ	a	Ь
$ ightarrow (q_0p_0)$	(q_1p_1)	(q_3p_0)
(q_3p_0)	(q_3p_1)	(q_3p_0)
(q_1p_1)	(q_2p_2)	(q_3p_0)
(q_3p_1)	(q_3p_2)	(q_3p_0)
(q_2p_2)	(q_2p_2)	(q_2p_2)
(q_3p_2)	(q_3p_2)	(q_3p_2)

Examples: Difference

The accepting state of M_1 is q_2 . The accepting state of M_2 is p_2

Table representation of $M_2 \setminus M_1$

δ	a	Ь
$ ightarrow (q_0p_0)$	(q_1p_1)	(q_3p_0)
(q_3p_0)	(q_3p_1)	(q_3p_0)
(q_1p_1)	(q_2p_2)	(q_3p_0)
(q_3p_1)	(q_3p_2)	(q_3p_0)
(q_2p_2)	(q_2p_2)	(q_2p_2)
$*(q_3p_2)$	(q_3p_2)	(q_3p_2)

Thank you for your attention!