Soient $(E, |\cdot|_E)$ et $(F, |\cdot|_F)$ deux evn, on suppose que F est complet. Montrons que l'ensemble L(E, F) des applications linéaires continues de E vers F, muni de la norme subordonnée $|\cdot||$ est complet.

Soit (f_n) une suite de Cauchy de L(E,F). Montrons que cette suite converge dans L(E,F).

Etape 1 : construction de la potentielle limite par convergence simple

On montre dans cette étape que pour tout $x \in E$, la suite de F $f_n(x)$ converge dans F vers un élément que l'on note g(x).

Soit $x \in E$, soit $\epsilon > 0$.

Si x=0 alors pour tout $n, p \in \mathbb{N}$, $|f_n(x)-fp(x)|_F=|0-0|_F=0$.

Sinon comme la suite f_n est de Cauchy, il existe $N \leq N$ tel que pour tout $n, p \geq N$, $||f_n - f_p|| \leq \epsilon |x|_E$. Alors soient $n, p \geq N$, $|f_n(x) - f_p(x)|_F = \frac{1}{|x|_E} |f_n(\frac{x}{|x|_E}) - f_p(\frac{x}{|x|_E})|_F \leq \frac{1}{|x|_E} ||f_n - f_p|| \leq \epsilon$.

Dans tous les cas il existe donc un entier N tel que pour tout $n, p \ge N$, $|f_n(x) - fp(x)|_F \le \epsilon$: $(f_n(x))_n$ est une suite de Cauchy de F. Comme F est complet on en déduit que $f_n(x)$ converge vers un élément de F que l'on note g(x).

On définit la fonction $g: x \in E \mapsto g(x) \in F$. On a donc montré que la suite f_n converge simplement vers g.

Etape 2 : Montrer que $g \in L(E, F)$

Il faut donc montrer que g est linéaire et continue.

Montrons tout d'abord qu'elle est linéaire : soient $x, y \in E$ et soit λ un scalaire. Alors pour tout $n \in \mathbb{N}$, $f_n(x + \lambda y) = f_n(x) + \lambda f_n(y)$. De plus d'après la convergence simple, on sait que chacun de ces termes converge et donc on peut passer à la limite : $g(x + \lambda y) = g(x) + \lambda g(y)$.

Montrons maintenant que g est continue. Soit $x \in E$ et soit $\epsilon > 0$. Comme la suite f_n est de Cauchy, il existe $N \in \mathbb{N}$ tel que pour tout $n, p \geq N$, $||f_n - f_p|| \leq \epsilon/(4 \times (|x|_E + 1))$. De plus comme $f_n(x) \longrightarrow g(x)$ (limite simple), il existe n > N tel que $|g(x) - f_n(x)|_F \leq \epsilon/4$. On a donc fixé deux entiers N et n (qui dépend de x). Par hypothèse f_n est continue donc il existe $1 \geq \eta > 0$ tel que pour $y \in E$, si $|x - y| \leq \eta$ alors $|f_n(x) - f_n(y)|_F \leq \epsilon/4$. Fixons ce réel positif η (qui dépend donc de x).

Soit maintenant $y \in E$ tel que $|x-y| \le \eta$. D'après la convergence simple, il existe p > N tel que $|f_p(y) - g(y)|_F \le \epsilon/4$. Alors :

$$|f_n(y) - f_p(y)|_F \le |y|_E ||f_n - f_p|| \le (|x|_E + \eta)||f_n - f_p|| \le (|x|_E + 1)||f_n - f_p|| \le \epsilon/4$$
. On en déduit :

$$|g(x) - g(y)|_F \le |g(x) - f_n(x)|_F + |f_n(x) - f_n(y)|_F + |f_n(y) - f_p(y)|_F + |f_p(y) - g(y)|_F \le \epsilon.$$

On a donc montré que g est continue en x. Comme x est quelconque, on a montré que g est continue. Ainsi $g \in L(E, F)$.

Etape 3: Montrer que f_n tend vers g dans L(E,F)

Il faut donc montrer que $||f_n - g|| \longrightarrow 0$. Soit $\epsilon > 0$, soit $N \in \mathbb{N}$ tel que $\forall p, q \geq N$, $||f_p - f_q|| \leq \epsilon$. Soit $x \in E$ tel que |x| = 1. Alors $|f_p(x) - f_q(x)| \leq ||f_p - f_q|| \leq \epsilon$, cette inégalité est vraie pour tous $p, q \geq N$. Le terme de gauche tend vers $|f_p(x) - g(x)|$ quand $q \longrightarrow \infty$ et donc $|f_p(x) - g(x)| \leq \epsilon$ pour tout $x \in E$ tel que |x| = 1 et tout $p \geq N$ (N ne dépendant pas de x). Ainsi pour tout $p \geq N$, $||f_p - g|| \leq \epsilon$. On a donc montré la convergence de f_p vers g.