1 Multiset extensions

Dershowitz-Manna

$$S_1 \succ_{mul} S_2 \iff \exists X, Y \in M(\forall y \in Y \exists x \in X : x \succ y)$$

Huet-Oppen

$$S_1 \succ_{mul}^{HO} S_2 \iff S_1 \neq S_2 \land \forall m \in M : (S_2(m) > S_1(m) \implies \exists m' \in M : m' \succ m \land S_1(m') > S_2(m'))$$

Transitive Closure \succ_{mul}^* is the transitive closure of \succ_{mul}^1 given by

$$S_1 \succ_{mul}^1 S_2 \iff \exists x \in S_1, Y : S_2 = (S_1 - \{x\}) \cup Y \land \forall y \in Y : x \succ y$$

Y is a multiset over M

2 Propositional Logic

Polarities			\mathbf{CDCL}			
$pol(F, \epsilon)$:=	1	Unit prop.	$M\ N \cup \{C \vee L\}$	\implies CDCL	$ML N \cup \{C \vee L\}$
$pol(\neg F, 1p)$:=	-pol(F,p)	Decide	$M\ N$	\implies CDCL	$ML^d N$
$pol(F_1 \circ F_2)$:=	$pol(F_i, p)$	Fail	$M N \cup \{C\}$	\implies CDCL	fail
$pol(F_1 \implies F_2)$:=	$-pol(F_1,p)$	Backjump	$M'L^dM''\ N$	\implies CDCL	$M'L'\ N$
$pol(F_1 \implies F_2)$:=	$pol(F_2, p)$		on backjump clause $C \vee L'$		
$pol(F_1 \iff F_2)$:=	0	Learn	$M\ N$	\implies CDCL	$M N \cup \{C\}$
			Forget	$M N \cup \{C\}$	\implies CDCL	M N
			Restart	$M\ N$	\implies_{CDCL}	$\epsilon \ N$

 $H[Q]_p \wedge F \iff Q$

CNF transformation

- 1. eliminate trivial subformulas
- 2. replace beneficial subformulas $pol(H,p) = 1: H[F]_p \qquad \Longrightarrow_{\text{OCNF}} \quad H[Q]_p \wedge Q \Longrightarrow F$ $pol(H,p) = -1: H[F]_p \qquad \Longrightarrow_{\text{OCNF}} \quad H[Q]_p \wedge F \Longrightarrow Q$

 $pol(H, p) = 0 : H[F]_p$ 3. eliminate equivalences

 $\begin{array}{lll} pol(H,p) \in \{0,1\} : H[F \iff G]_p & \Longrightarrow \text{ }_{\text{OCNF}} & H[(F \implies G) \land (G \implies F)]_p \\ pol(H,p) = -1 : H[F \iff G]_p & \Longrightarrow \text{ }_{\text{OCNF}} & H[(F \land G) \lor (\neg F \land \neg G)]_p \end{array}$

 \implies OCNF

 $pot(H,p) = -1: H[F \iff G]_p \qquad \Longrightarrow_{\text{OCNF}} H[(F \land G) \lor (\neg F \land \neg G)]_p$ $4. \quad H[F \iff G]_p \qquad \Longrightarrow_{\text{OCNF}} H[(F \implies G) \land (G \implies F)]_p$

5. $H[F \implies G]_p$ $\Longrightarrow_{OCNF} H[\neg F \lor G]_p$

6. $H[\neg (F \lor G)]_p$ $\Longrightarrow_{\text{OCNF}} H[\neg F \land \neg \widehat{G}]_p$ $\Longrightarrow_{\text{OCNF}} H[\neg F \lor \neg G]_p$

7. $H[\neg \neg F]_p$ \Longrightarrow OCNF $H[F]_p$

8. $H[(F \wedge F') \vee G]_p \implies \text{OCNF} \quad H[(F \vee G) \wedge (F' \vee G)]_p$

3 First-order logic

Substitutions

$$f(s_1,...,s_n)\sigma = f(s_1\sigma,...,s_n\sigma)$$
 similarly for predicates $\bot \sigma = \bot$ similarly for \top $(u \approx v)\sigma = (u\sigma \approx v\sigma)$ $\neg F\sigma = \neg (F\sigma)$ $(F \circ G)\sigma = (F\sigma \circ G\sigma)$ $(\mathbf{Q}xF)\sigma = \mathbf{Q}z(F\sigma[x \mapsto z])$ z is fresh

1

CNF transformation

```
eliminate trivial subformulas
                                                                                H[P(x_1,...,x_n)]_p \wedge \forall x_1,...,x_n(P(x_1,...,x_n) \implies F)
   if \ pol(H,p) = 1: \ H[F]_p
                                                              \implies OCNF
                                                                                H[P(x_1,...,x_n)]_p \wedge \forall x_1,...,x_n(F \implies P(x_1,...,x_n))
     if \ pol(H,p) = -1: \ H[F]_p
                                                              \implies OCNF
     if \ pol(H,p) = 0: \ H[F]_p
                                                                                H[P(x_1,...,x_n)]_p \wedge \forall x_1,...,x_n(F \iff P(x_1,...,x_n))
                                                              \implies OCNF
3 if pol(H, p) \in \{0, 1\}: \hat{H}[F \iff G]_p
                                                                                H[(F \implies G) \land (G \implies F)]_p
                                                               \implies NNF
     if \ pol(H,p) = -1: \ H[F \iff G]_p
                                                                                 H[(F \wedge G) \vee (\neg F \wedge \neg G)]_p
                                                               \implies NNF
     H[F \implies G]_p
                                                                                 H[\neg F \vee G]_p
                                                                     NNF
     H[\neg \neg F]_p
                                                                                H[F]_p
                                                               \implies NNF
     H[\neg(F \lor G)]_p
                                                                                 H[\neg F \wedge \neg G]_p
                                                               \implies NNF
     H[\neg (F \wedge G)]_p
                                                                                H[\neg F \vee \neg G]_p
                                                               \implies NNF
     H[\neg \mathbf{Q}xF]_p
                                                                                H[\bar{\mathbf{Q}}x\neg F]_p
                                                               \implies NNF
    Miniscoping: x free in F, F'; x not free in G
                                                                                H[(\mathbf{Q}xF) \wedge G]_p
     H[\mathbf{Q}x(F\wedge G)]_p
                                                                \Longrightarrow MS
     H[\mathbf{Q}x(F\vee G)]_p
                                                                                H[(\mathbf{Q}xF)\vee G]_p
                                                                \Longrightarrow MS
     H[\forall (F \wedge F')]_p
                                                                                H[(\forall xF) \wedge (\forall xF')]_p
                                                                \implies MS
     H[\exists (F \vee F')]_p
                                                                                H[(\exists xF) \vee (\exists xF')]_p
                                                                \Longrightarrow MS
     H[\mathbf{Q}xG]_p
                                                                \implies MS
                                                                                 H[G]_p
    Rename variables s.t. same variable isn't bound by two quantifiers
    H[\exists xF]_p
                                                                \implies SK
                                                                                 H[F\{x \mapsto f(y_1, ..., y_n)\}]_p
     for minimal length p, free variables y_i
    H[(\forall xF)\circ G]_p
                                                                                H[\forall x(F \circ G)]_p
                                                              \implies OCNF
     H[(F \wedge F') \vee G]_p
                                                                                H[(F \vee G) \wedge (F' \vee G)]_p
                                                              \implies OCNF
```