填空题: (每题 4 分)

1.
$$\lim_{\substack{x \to 0 \\ y \to 0}} \arctan \left[\frac{(|xy|)^{\frac{2021}{2020}}}{x^2 + y^2} \right] =$$

- 2. 在 yO_z 平面上,曲线 $y^2 + 2z^2 = 4z$ 绕 z 轴旋转, 所得的旋转曲面方程_____
- 3. 过原点到直线 $\frac{x-1}{2} = \frac{y-2}{1} = \frac{z-3}{4}$ 的垂线, 垂足坐标为______.
- 4. 求直线 $\frac{x-1}{1} = \frac{y}{1} = \frac{z-1}{-1}$ 在平面 x y + 2z 1 = 0 上的投影直线方程_____
- 5. 设函数 $u = u(x, y, z) = \left(\frac{x}{y}\right)^{\frac{1}{z}}$,则 $du|_{(1,1,1)} =$ ________.
- 6. 函数 f(x,y) 可微,且满足 f(1,1)=1, $f_x'(1,1)=2$, $f_y'(1,1)=-1$.定义函数 $\varphi(x)=f(x^{-1},f(x,f(x^2,x^3)))$,则导数 $\varphi'(1)=$ _______.
- 7. 已知 $f(\frac{y}{x},\frac{z}{x})=0$, 其中f为二元可微函数. 由此确定的隐函数z=z(x,y), 它的偏导

$$\underbrace{\partial z}_{\partial x} = \underline{\qquad} ; \; \frac{\partial z}{\partial y} = \underline{\qquad} .$$

- 10. 空间曲线 $\begin{cases} 2x^2 + y^2 + 3z^2 &= 5 \\ x y + z &= 2 \end{cases}$ 它在点 (1,0,1) 处切线的方程为______