CHAPITRE 12

TD

II Exercice 2

Table des matières

I Exercice 3	1			
II Exercice 2	1			
III Exercice 6	2			
IV Exercice 7	2			
V Exercice 12	3			
VI Exercice 19	3			
VII Exercice 20	4			
VIII Exercice 10	5			
IX Exercice 15	6			
Première partie				
Exercice 3				
Soit $f: \mathbb{C}_* \to \mathbb{R}_*$ un isomorphisme. $i^2 = -1 \text{ donc } f(i^2) = f(-1) \text{ donc } f(i)^2 = f(-1)$ $(-1)^2 = 1 \text{ donc } f\left((-1)^2\right) = f(1) = 1 \text{ donc } f(-1)^2 = 1 \text{ donc } f(-1) = \pm 1$ Or, $f(-1) = 1 \iff f(-1) = f(1) \iff -1 = 1$: une contradiction Donc, $\underbrace{f(i)^2}_{>0} = -1$ une contradiction aussi				

IV Exercice 7

Deuxième partie

Exercice 2

1. " $i \implies ii$ "

$$\forall a, b \in G, (ab)^2 = abab$$
$$= aabb$$
$$= a^2b^2$$

" $ii \implies i$ "

$$\forall (a,b) \in G^2, abab = a^2b^2$$

$$\operatorname{donc} bab = ab^2$$

$$\operatorname{donc} ba = ab$$

' $\implies iii$ "

$$\forall a, b \in G, (a, b)^{-1} = b^{-1}a^{-1} = a^{-1}b^{-1}$$

" $iii \implies i$ "

$$\forall a, b \in G, ab = (b^{-1}a^{-1})^{-1} = (b^{-1})^{-1} = ba$$

2. Soit $a, b \in G$

$$\begin{split} & - \ (a,b)^2 = e \\ & - \ a^2b^2 = e \cdot e = e \\ & \text{Donc, } (a,b)^2 = a^2b^2 \text{ donc } G \text{ est abélien} \end{split}$$

Troisième partie

Exercice 6

$$\langle 1 \rangle = \mathbb{Z}$$
 à prouver avec $\mathbb{Z} \subset \langle 1 \rangle \subset \mathbb{Z}$

$$\langle 2 \rangle = 2\mathbb{Z}$$

Quatrième partie

Exercice 7

Soit $f:(\mathbb{Q},+)\to(\mathbb{Q}_*,\times)$ un isomorphisme.

VIExercice 19

On pose

$$\begin{cases} a = f^{-1}(2) \in \mathbb{Q} \\ b = \frac{a}{2} \in \mathbb{Q} \end{cases}$$

Domme a = 2b, on a $2 = f(a) = f(b+b) = f(b) \times f(b) = f(b)^2$ Donc, $f(b) = \pm \sqrt{2}$. Or, $f(b) \in \mathbb{Q}_*$. \mathcal{L}

Cinquième partie

Exercice 12

 $G \cap \mathbb{R}_{*}^{+} \neq \emptyset$ minoré par 0 donc a existe

1. $a = \min(G \cap \mathbb{R}_*^+)$. On adapte l'exercice 5. Soit $g \in G$

On pose
$$q = \left\lfloor \frac{g}{a} \right\rfloor \in \mathbb{Z}$$
 et $r = g - qa \in G$
Or, $q \leqslant \frac{g}{a}$ donc $aq \leqslant g$ donc $r \geqslant 0$

Or,
$$q \leqslant \frac{g}{a}$$
 donc $aq \leqslant g$ donc $r \geqslant 0$

$$\frac{g}{a} < q + 1 \text{ donc } g < aq + a \text{ donc } r < a$$

Si
$$r > 0$$
, alors
$$\begin{cases} r \in G \cap \mathbb{R}_*^+ \\ r < a \leqslant r : \text{une contradiction } \not z \end{cases}$$

Donc
$$r = 0$$
 donc $g = aq$ avec $q \in \mathbb{Z}$ donc $g \in a\mathbb{Z}$

Donc,
$$G \subset a\mathbb{Z}$$

$$a \in G \text{ donc } a\mathbb{Z} \subset G$$

Donc
$$G = a\mathbb{Z}$$

2. Soit $g \in G \cap \mathbb{R}_*^+$. Comme $a \notin (G \cap \mathbb{R}_*^+), g \neq a$

Or,
$$g \geqslant a$$
 donc $g > a$ donc g ne minore pas $G \cap \mathbb{R}^+_*$ donc il existe $g_1 \in G \cap \mathbb{R}^+_*$ tel que $g_1 < g$

De cette façon, on fabrique une suite (g_n) strictement décroissante minorée par a. Donc (g_n) converge. On pose $\ell = \lim_{n \to +\infty} g_n$

Donc
$$\underbrace{g_{n+1} - g_n}_{\in G} \xrightarrow[n \to +\infty]{} \ell - \ell = 0$$

On vient de trouver une suite $(g_{n+1} - g_n)_{n \in \mathbb{N}_*}$ de G qui converge vers 0.

Donc
$$a=0$$

Soit
$$I =]a, b[$$
 et $g \in G$ tel que $0 < g < b - a$

On pose
$$n = \left| \frac{a}{g} \right|$$
. On a donc

$$n \leqslant \frac{a}{g} < n+1$$

donc
$$ng \leqslant a < g(n+1)$$
.

Or,

$$g(n+1) = ng + g \leqslant a + g < a + b - a < b$$

donc
$$(n+1) \in]a,b[\cap G]$$

Sixième partie

Exercice 19

Soit $a \in A \setminus \{0\}$

$$f:A\longrightarrow A \\ x\longmapsto ax$$

 $1 \in \operatorname{Im}(f)$?

— Soient $x, y \in A$

$$f(x+y) = a(x+y)ax + ay = f(x) + f(y)$$

donc f est un endomorphisme de (A, +)

— Soit $x \in A$

$$x \in \text{Ker}(f) \iff f(x) = 0$$

 $\iff ax = 0$
 $\iff a = 0 \text{ ou } x = 0$
 $\iff x = 0$

 $\operatorname{Ker}(f) = \{0\}$ donc f est injective. Comme A est $\operatorname{\underline{fini}}, f$ est bijective donc $\operatorname{Im} = A \ni 1$

Septième partie

Exercice 20

Analyse : Soit $\mathbb{K} = (\{0, 1, a, b\}, +, \times)$ un corps à 4 éléments.

+	0	1	a	b	
0	0	1	a	b	
1	1	b 0	0	a	
a	a	0 b	b 1	1	
b	b		1	0	

×	0	1	a	b
0	0	0	0	0
1	0	1	a	b
a	0	a	b	1
b	0	b	1	a

VIII Exercice 10

$$a^{2} = b \neq 1$$

$$b^{2} = a \neq 1$$

$$\implies -1 \notin \{0, a, b\}$$

$$\implies -1 = 1$$

$$\implies 1 + 1 = 0$$

$$a + a = a(1+1)$$
$$= a \times 0$$
$$= 0$$

Donc, $\mathbb{K} = \{0, 1, a, a^{-1}\}$: le sous-corps engendré par a

+	0	1	a	a^{-1}
0	0	1	a	a^{-1}
1	1	0	a^{-1}	a
a	a	a^{-1}	0	1
a^{-1}	a^{-1}	a	1	0

×	0	1	a	a^{-1}
0	0	0	0	0
1	0	1	a	a^{-1}
a	0	a	a^{-1}	1
a^{-1}	0	a^{-1}	1	a

Synthèse : Il faut vérifier que

- $\overline{-+\text{est}}$ associative
- -- × est associative
- la distributivité

Huitième partie

Exercice 10

$$\mathbb{Z}[i] = \{a + ib \mid (a, b) \in \mathbb{Z}^2\}$$

 $\begin{array}{ll} & - & \mathbb{Z}[i] \subset \mathbb{C} \\ & - & \text{Soient } u,v \in \mathbb{Z}[i]. \text{ On pose } u=a+ib \text{ et } v=c+id \text{ avec } (a,b,c,d) \in \mathbb{Z}^4. \end{array}$

$$u+v = \underbrace{(a+c)}_{\in \mathbb{Z}} + i \underbrace{(b+d)}_{\in \mathbb{Z}} \in \mathbb{Z}[i]$$
$$uv = \underbrace{(ac-bd)}_{\in \mathbb{Z}} + i \underbrace{(ad+bc)}_{\in \mathbb{Z}} \in \mathbb{Z}[i]$$

IX Exercice 15

$$-u = -a - ib \in \mathbb{Z}[i]$$

$$0 = 0 + i \times 0 \in \mathbb{Z}[i]1 \qquad = 1 + i \times 0 \in \mathbb{Z}[i]$$

$$- \text{Soit } u \in \mathbb{Z}[i]^{\times}. \text{ On sait qu'il existe } v \in \mathbb{Z}[i] \text{ tel que } uv = 1.$$

$$\text{Donc, } |u|^{2}|v|^{2} = |uv|^{2} = 1^{2} = 1$$

$$\text{Comme } u \in \mathbb{Z}[i], |u|^{2} = \Re \mathfrak{e}(u)^{2} + \Im \mathfrak{m}(u)^{2} \in \mathbb{N}$$

$$\text{De même, } |v|^{2} \in \mathbb{N}$$

$$\text{Donc, } |u|^{2} = 1.$$

$$\text{On pose } u = a + ib, (a, b) \in \mathbb{Z}^{2}. \text{ On a } a^{2} + b^{2} = 1$$

$$\text{donc } \begin{cases} 0 \leqslant a^{2} \leqslant 1 \\ 0 \leqslant b^{2} \leqslant 1 \end{cases}$$

$$\text{Donc, } \begin{cases} a^{2} \in \{0, 1\} \\ b^{2} \in \{0, 1\} \\ a^{2} + b^{2} = 1 \end{cases}$$

$$\text{Donc, } u \in \{\pm i, \pm 1\}$$

$$1^{-1} = 1 \in \mathbb{Z}[i]$$
$$(-1)^{-1} = -1 \in \mathbb{Z}[i]$$
$$i^{-1} = -i \in \mathbb{Z}[i]$$
$$(-i)^{-1} = i \in \mathbb{Z}[i]$$

AUTRE MÉTHODE $u \in \mathbb{Z}[i] \setminus \{0\}$. u = a + ib avec $a, b \in \mathbb{Z}$.

$$\begin{split} \frac{1}{u} \in \mathbb{Z}[i] &\iff \frac{1}{a+ib} \in \mathbb{Z}[i] \\ &\iff \frac{a-ib}{a^2-b^2} \in \mathbb{Z}[i] \\ &\iff \begin{cases} \frac{a}{a^2+b^2} \in \mathbb{Z} \\ \frac{-b}{a^2+b^2} \in \mathbb{Z} \end{cases} &\iff \begin{cases} a^2+b^2 \mid a \\ a^2+b^2 \mid b \end{cases} \\ &\implies \begin{cases} a^2+b^2 \leqslant |a| \\ a^2+b^2 \leqslant |b| \end{cases} &\implies \begin{cases} a \in \{0,1,-1\} \\ b \in \{0,1,-1\} \\ a^2+b^2 = 1 \end{cases} \end{split}$$

Neuvième partie

Exercice 15

 $f:\mathbb{C}\longrightarrow\mathbb{C}$ morphisme d'anneaux $f_{\mathbb{R}}=\mathrm{id}_{\mathbb{R}}$

IX Exercice 15

Soit $z \in \mathbb{C}$. On pose $z = a + ib, \, (a,b) \in \mathbb{R}^2$

$$f(z) = f(a+ib)$$

$$= f(a) + f(ib)$$

$$= a + f(i)f(b)$$

$$= a + bf(i)$$

$$i^2=-1$$
donc $f\left(i^2\right)=f(-1)=-1$ donc $f(i)^2=-1$ donc $f(i)\in\{i,-i\}$ Donc $f\in\{\mathrm{id}_{\mathbb C},z\mapsto\overline z\}$