对点练 ▶ 先练透基础

类型1 求函数的极值

例1 求下列函数的极值:

 $(1) f(x) = x^3 - 12x$;

$$(2) f(x) = \frac{x^3 - 2}{2(x - 1)^2}.$$

【解析】 (1) 函数 f(x)的定义域为 R.

$$f'(x) = 3x^2 - 12 = 3(x+2)(x-2)$$
.

当 x 变化时, f'(x), f(x)的变化情况如下表:

х	$(-\infty, -2)$	-2	(-2, 2)	2	$(2, +\infty)$
f'(x)	+	0	_	0	+
f(x)	增	极大值	减	极小值	增

从表中可以看出, 当 x=-2 时, 函数 f(x)有极大值, 且 $f(-2)=(-2)^3-12\times(-2)$

=16;

当 x=2 时,函数 f(x)有极小值,

且 $f(2)=2^3-12\times2=-16$.

(2) 函数 f(x)的定义域为 $(-\infty, 1) \cup (1, +\infty)$.

$$f'(x) = \frac{(x-2)^{2}(x+1)}{2(x-1)^{3}},$$

当 x 变化时,f'(x),f(x)的变化情况如下表:

х	$(-\infty, -1)$	-1	(-1, 1)	1	(1, 2)	2	$(2, +\infty)$
f'(x)	+	0	1		+	0	+
f(x)	增	$-\frac{3}{8}$	减		增	3	增

故当 x = -1 时,函数 f(x)有极大值,

且极大值为
$$f(-1) = -\frac{3}{8}$$
.

规律总结:极值反映函数在某一点附近的大小情况,刻画了函数的局部性质,求函数的 极值必须研究导函数为零处两侧的单调性情况,进而根据极值定义获取.

变式 已知函数 $f(x) = \frac{x^2 + x - 1}{e^x}$, 求函数 y = f(x)的极值.

【解析】 函数
$$f(x) = \frac{x^2 + x - 1}{e^x}$$
 的定义域为 R,

$$=\frac{(2x+1) e^{x} - (x^{2}+x-1) e^{x}}{e^{2x}}$$

$$= \frac{-x^2 + x + 2}{e^x} = \frac{-(x+1)(x-2)}{e^x},$$

又 $e^x > 0$,由 f'(x) = 0,得 x = -1 或 x = 2,

当 $x \in (-\infty, -1)$ 和 $(2, +\infty)$ 时, f'(x) < 0,

此时 f(x)为减函数;

当 x∈(-1, 2)时, f'(x)>0, 此时 f(x)为增函数.

由 f(x)的单调性知, $f(x)_{\text{极小值}} = f(-1) = -e$,

$$f(x)_{\text{W} au \text{fi}} = f(2) = 5e^{-2} = \frac{5}{e^2}$$
.

类型 2 已知极值求参数

囫2 已知函数 $f(x)=x^3+3mx^2+nx+m^2$ 在 x=-1 时有极值 0,则 m+n=______

【答案】 11

【解析】 因为 $f(x) = x^3 + 3mx^2 + nx + m^2$,

所以 $f'(x) = 3x^2 + 6mx + n$,

$$m=2$$
, 或 $m=1$, $m=1$, $m=1$, $m=3$,

当 m=1, n=3 时, $f(x)=x^3+3x^2+3x+1$, $f'(x)=3x^2+6x+3=3(x+1)^2 \ge 0$,所以函数 f(x)在 R 上单调递增,函数 f(x)无极值,舍去. 当 m=2,n=9 时,经检验,符合题意,故 m+n=11.

规律总结:由于可导函数 y=f(x)在某一点的导数值为 0 是该函数在这点取极值的必要不充分条件,为此已知极值求参数时必须检验充分性.

囫3 若函数 y=f(x)在 $x=x_0$ 处取得极大值或极小值,则称 x_0 为函数 y=f(x)的极值点.已 知 a, b 是实数, 1 和 -1 是函数 $f(x)=x^3+ax^2+bx$ 的两个极值点.

- (1) 求 a 和 b 的值;
- (2) 设函数 g(x)的导函数 g'(x) = f(x) + 2,求 g(x)的极值点.

【解析】 (1) 由 $f(x) = x^3 + ax^2 + bx$,

得 $f(x) = 3x^2 + 2ax + b$.

因为 1 和 -1 是函数 f(x)的两个极值点,

所以 f(1)=3+2a+b=0, f'(-1)=3-2a+b=0, 解得 a=0, b=-3.

经检验, a=0, b=-3 时, $f'(x)=3x^2-3$, 显然符合题意.

综上所述, a=0, b=-3.

(2) 由(1)得 $f(x)=x^3-3x$,所以令 $g'(x)=f(x)+2=x^3-3x+2=(x-1)^2(x+2)=0$,解得 $x_1=x_2=1$, $x_3=-2$.

因为当 x < -2 时,g'(x) < 0;

当-2 < x < 1 时,g'(x) > 0,

所以-2 是 g(x)的极小值点.

因为当-2 < x < 1 或 x > 1 时,g'(x) > 0,

所以 1 不是 g(x)的极值点.

所以g(x)的极小值点是一2,无极大值点.

综合练 ▶ 再融会贯通

一、 单项选择题

1. 函数 $y=x+2\cos x$ 在 $\left[0,\frac{\pi}{2}\right]$ 上的极大值点为()

A. 0 B.
$$\frac{\pi}{3}$$
 C. $\frac{\pi}{6}$ D. $\frac{\pi}{2}$

【答案】 C

【解析】 函数 $y=x+2\cos x$ 的导数为 $y'=1-2\sin x$,因为 $x\in\left[0,\frac{\pi}{2}\right]$,由 $y'=1-2\sin x$ x=0,可得 $\sin x=\frac{1}{2}$,解得 $x=\frac{\pi}{6}$.当 $x\in\left(0,\frac{\pi}{6}\right)$ 时,y'>0,当 $x\in\left(\frac{\pi}{6},\frac{\pi}{2}\right)$ 时,y'<0,所以函数 $y=x+2\cos x$ 在 $x\in\left(0,\frac{\pi}{6}\right)$ 上单调递增,在 $x\in\left(\frac{\pi}{6},\frac{\pi}{2}\right)$ 上单调递减,所以使得函数 $y=x+2\cos x$ 取得极大值时 x 的值为 x=x=10

2. 若函数 $f(x) = x^3 - ax^2(a > 0)$ 的极大值点为 a - 2,则 a 等于()

A. 1 B. 2 C. 4 D.

【答案】B

【解析】 $f(x)=3x^2-2ax$.当 x<0 或 $x>\frac{2a}{3}$ 时,f'(x)>0;当 $0< x<\frac{2a}{3}$ 时,f'(x)<0.所以 f(x) 的极大值点为 0,则 a-2=0,解得 a=2.

3. 如果函数 $f(x)=x^3-3ax^2+bx-2a^2$ 在 x=2 时有极值 0,那么 a+b 的值为()

A. 14 B. 40

C. 48 D. 14 或 40

【答案】 B

【解析】 函数 $f(x)=x^3-3ax^2+bx-2a^2$, $f'(x)=3x^2-6ax+b$, 若在 x=2 时有极值 0,

可得
$$f(2) = 0$$
, 则 $8-12a+2b-2a^2=0$, 解得 $a=2$, 或 $a=4$, $b=36$ 时,

 $f'(x)=3x^2-24x+36$,满足函数 $f(x)=x^3-3ax^2+bx-2a^2$ 在 x=2 时有极值 0.当 a=2,b=12 时, $f'(x)=3x^2-12x+12=3(x-2)^2\ge 0$,不满足函数 $f(x)=x^3-3ax^2+bx-2a^2$ 在 x=2 时有极值 0.所以 a=4,b=36,a+b=40.

4. 已知函数 f(x)和 g(x)的导函数 f(x),g'(x)的图象如图所示,则关于函数 y=g(x)-f(x)的判断正确的是()

A. 有3个极大值点

B. 有3个极小值点

- C. 有1个极大值点和2个极小值点
- D. 有 2 个极大值点和 1 个极小值点

【答案】 D

【解析】如图(1),结合函数图象可知,当 x<a 时,f'(x)<g'(x),此时 y'=g'(x)-f'(x)>0,函数 y 单调递增;当 a<x<0 时,f'(x)>g'(x),此时 y'=g'(x)-f'(x)<0,函数 y 单调递减;当 0<x<b 时,f'(x)<g'(x),此时 y'=g'(x)-f'(x)>0,函数 y 单调递增;当 x>b 时,f'(x)>g'(x),此时 y'=g'(x)-f'(x)<0,函数 y 单调递减,故函数 y 在 x=a, x=b 处取得极大值,在 x=0 处取得极小值。

二、多项选择题

5. 下列四个函数中, 在 x=0 处取得极值的函数有()

A. $y=x^3$ B. $y=x^2+1$

C. y=|x| D. $y=2^x$

【答案】 BC

【解析】 A 选项, $y'=3x^2\geqslant 0$ 恒成立,所以函数在 R 上单调递增,无极值点,故 A 错误. B 选项,y'=2x,当 x>0 时函数 y 单调递增,当 x<0 时函数 y 单调递减,且 $y'|_{x=0}=0$,故 B 正确. C 选项,结合该函数图象可知它在 $(0,+\infty)$ 上单调递增,在 $(-\infty,0]$ 上单调递减,故 C 正确;D 选项, $y=2^x$ 在 R 上单调递增,无极值点,故 D 错误.

6. 若函数 y = f(x)的导函数的图象如图所示,则下列判断中错误的是()

A. 函数 y=f(x)在区间 $\left(-3, -\frac{1}{2}\right)$ 内单调递增

- B. 函数 y=f(x)在区间(4,5)内单调递增
- C. 当 x=2 时,函数 y=f(x)有极小值
- D. 当 $x = -\frac{1}{2}$ 时,函数 y = f(x)有极大值

【答案】 ACD

- 7. 设函数 f(x)的定义域为 R, $x_0(x_0 \neq 0)$ 是 f(x)的极大值点,以下结论错误的是(
- B. $-x_0$ 是 f(-x)的极大值点
- $C. -x_0$ 是-f(x)的极小值点
- D. $-x_0$ 是-f(-x)的极小值点

【答案】 AC

【解析】 $x_0(x_0 \neq 0)$ 是 f(x)的极大值点,并不是最大值点,故 A 错误;f(-x)的图象相当于 f(x)的图象关于 y 轴对称,故 $-x_0$ 应是 f(-x)的极大值点,故 B 正确;-f(x)的图象相当于 f(x)的图象关于 x 轴对称,故 x_0 应是 -f(x)的极小值点,跟 $-x_0$ 没有关系,故 C 错误;-f(-x)的图象相当于 f(x)的图象先关于 y 轴对称,再关于 x 轴对称.故 D 正确.

三、 填空题

8. 函数 $f(x)=x^2-\ln x$ 的极值点是 .

【答案】
$$\frac{\sqrt{2}}{2}$$

【解析】函数 f(x)的定义域为 $\{x|x>0\}$, $f'(x)=2x-\frac{1}{x}=\frac{2x^2-1}{x}$, 令 f(x)=0, 得 $x=\frac{\sqrt{2}}{2}$ 或一 $\frac{\sqrt{2}}{2}$ (舍去).当 $x\in\left(0,\frac{\sqrt{2}}{2}\right)$ 时, f'(x)<0, f(x)单调递减; 当 $x\in\left(\frac{\sqrt{2}}{2},+\infty\right)$ 时, f'(x)>0, f(x)单调递增,所以函数 f(x)的极值点是 $\frac{\sqrt{2}}{2}$.

9. 设函数 $f(x)=ax^3+x^2+bx+1$ 在 x=1 和 x=2 处都有极值,则 ab=_____,极大值是_____.

【答案】 $\frac{8}{27}$ $\frac{5}{9}$

【解析】 $f(x)=3ax^2+2x+b$,因为函数 $f(x)=ax^3+x^2+bx+1$ 在 x=1 和 x=2 处都有极值.

所以
$$f'(1) = 3a + 2 + b = 0$$
, $f'(2) = 12a + 4 + b = 0$, 解得 $a = -\frac{2}{9}$, 经检验符合题意,所以 $ab = \frac{8}{27}$. 所以 $ab = \frac{8}{27}$. 所以

 $f(x) = -\frac{2}{3} x^2 + 2x - \frac{4}{3}$, 当 $x \in (-\infty, 1)$, $(2, +\infty)$ 时,f'(x) < 0 ,所以函数 f(x)的减区间为(-∞,1), $(2, +\infty)$.当 $x \in (1, 2)$ 时,f'(x) > 0,所以函数 f(x)的增区间为(1, 2),所以函数 f(x)有极大值 $f(2) = 8a + 4 + 2b + 1 = \frac{5}{9}$.

【解析】 因为函数 $f(x)=x^3+mx^2+(m+6)x+1$ 存在极值,所以 $f'(x)=3x^2+2mx+m+6$ 有两个不相等的实根,所以 $\Delta=4m^2-12(m+6)>0$,解得 m<-3 或 m>6.

四、解答题

11. 设函数 $f(x) = ax^3 + bx^2 + cx$ 在 x = 1 和 x = -1 处有极值,且 f(1) = -1,求 a,b,c 的值,并求出相应的极值.

【解析】 $f(x)=3ax^2+2bx+c$,因为 f(x)在 x=1 和 x=-1 处有极值,且 f(1)=-1,

所以
$$\begin{cases} f'(-1) = 0, \\ f'(1) = 0, \end{cases}$$
 所以 $\begin{cases} 3a - 2b + c = 0, \\ 3a + 2b + c = 0, \end{cases}$ 所以 $\begin{cases} a = \frac{1}{2}, \\ b = 0, \\ a + b + c = -1, \end{cases}$ $\begin{cases} c = -\frac{3}{2}, \end{cases}$

所以
$$f(x) = \frac{3}{2} x^2 - \frac{3}{2} = \frac{3}{2} (x+1)(x-1).$$

当 $x \in (-\infty, -1), (1, +\infty)$ 时, f(x) > 0,

函数 f(x)为增函数;

当 $x \in (-1, 1)$ 时, f'(x) < 0, 函数 f(x)为减函数,

所以当x=-1时,f(x)有极大值f(-1)=1;

当 x=1 时, f(x)有极小值 f(1)=-1.

- 12. 设 a 为实数,函数 $f(x)=x^3-x^2-x+a$.
- (1) 求 f(x)的极值;
- (2) 当 a 在什么范围内取值时,曲线 y=f(x)与 x 轴仅有一个交点?

【解析】
$$(1) f(x) = 3x^2 - 2x - 1$$
.

当 x 变化时,f'(x),f(x)的变化情况如下表:

x	$(-\infty,$ $-\frac{1}{3})$	$-\frac{1}{3}$	$(-\frac{1}{3},$ 1)	1	(1, +∞)
f'(x)	+	0	_	0	+
f(x)	增	极大值	减	极小值	增

所以 f(x) 的极大值是 $f(-\frac{1}{3}) = \frac{5}{27} + a$,极小值是 f(1) = a - 1.

(2) 函数 $f(x)=x^3-x^2-x+a=(x-1)^2(x+1)+a-1$,

由此可知,x 取足够大的正数时,有 f(x)>0,

x 取足够小的负数时,有 f(x)<0,

所以曲线 y=f(x)与 x 轴至少有一个交点.

由(1)知
$$f(x)$$
极大值 = $f(-\frac{1}{3}) = \frac{5}{27} + a$,

 $f(x)_{\text{Whff}} = f(1) = a - 1.$

因为曲线 y=f(x)与 x 轴仅有一个交点,

所以 $f(x)_{\text{极大值}} < 0$ 或 $f(x)_{\text{极小值}} > 0$,

即
$$\frac{5}{27}$$
 +a<0 或 a-1>0,所以 a<- $\frac{5}{27}$ 或 a>1.

所以当 $a \in \left(-\infty, -\frac{5}{27}\right) \cup (1, +\infty)$ 时,曲线 y = f(x)与 x 轴仅有一个交点.