Lecture 13: CMOS amplifier, biasing

Sung-Min Hong (smhong@gist.ac.kr)

Semiconductor Device Simulation Lab.
School of Electrical Engineering and Coumputer Science
Gwangju Institute of Science and Technology

CMOS

- 9's complementary of 123?
 - -876
- Complementary MOS
 - Here we have an NMOSFET.
 - A device where the transport is dominated by holes.

Why is it important?

Why amplifiers?

- Signal amplification
 - Usually, signals are "weak." (in the μ V or mV range)
 - It is too small for reliable processing.
 - If the signal magnitude is made larger, processing is much easier.

Amplifier

"Weak" signal

- Desirable properties
 - Low power consumption
 - High speed operation
 - Low noise

Transistor turned off

- The example 17.5 shows an amplifier circuit.
 - But, the transistor is not turned on.
 - The circuit generates no output signal.

This is a solution.

- The example 17.7 shows a revised circuit.
 - Then, how can we generate 0.75 V, for example?
 - Use of a separate battery can be a way.

Simple biasing (1/2)

A better way

- The gate bias voltage is

$$V_{GS} = \frac{R_2}{R_1 + R_2} V_{DD} \tag{17.10}$$

The drain current is

$$I_D = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} \left(\frac{R_2}{R_1 + R_2} V_{DD} - V_{TH} \right)^2 \quad (17.12)$$

Simple biasing (2/2)

- How to apply the small-signal input
 - Use a capacitor!

Small-signal model

Let's draw the small-signal model together!

Gain

- Now, calculate the v_{out} .
 - KCL for the v_{out} node gives

$$v_{out} = -g_m(R_D||r_0)v_{in}$$

Input/output impedances

Input impedance

$$R_{in} = \infty$$

Output impedance

Current-source load

- When $R_D \to \infty$,
 - The gain can be maximized.

Diode-connected load

- Use a diode-connected load.
 - It is not an ideal current source.

$$v_{out} = -g_{m1} \left(r_{O1} || \frac{1}{g_{m2}} || r_{O2} \right) v_{in}$$

$$A_v = -g_{m1} \left(r_{01} || \frac{1}{g_{m2}} || r_{02} \right)$$

Homework#6 (1)

- Due: 09:00, April 30
- Write a program, which reads a netlist file.
 - In this program, the matrix describes a system:
 - For a voltage source:
 - The voltage difference between two terminals is fixed.
 - Sum of two terminal currents vanishes.
 - For a resistor:
 - The terminal current and the voltage difference satisfy Ohm's law.
 - Sum of two terminal currents vanishes.
 - For every element terminal, the terminal voltage is equal to the circuit node voltage.
 - For the GND node, the node voltage is zero.
 - For all other circuut nodes, the KCL is applied.

Homework#6 (2)

(Continued)

- For example, consider the example in Homework#4. A voltage source and a resistor are found.
- The matrix is explicitly shown below.

Homework#6 (3)

(Continued)

- In Homework#6, just solve the set of equations shown in the previous slide.
- The fully functional code will be needed in Homework#7.

Homework#6 (4)

- Solve the following problems of the mid-term exam in 2018.
 (Not 2017)
 - P4
 - P27
 - P28
 - P35
 - P36
 - P41
 - P42