

Prédiction séquence-à-séquence de séries temporelles multivariées et déséquilibrées avec réseaux de neurones convolutifs unidimensionnels

Mercredi 27 Janvier 2021

Mehdi Elion

Sonia Tabti

Julien Budynek

Contexte et motivation

<u>Données industrielles</u>

<u>Évènements rares</u>

- Pannes
- Anomalies, non conformités
- Baisses de qualité

Données déséquilibrées

Augmentation de données

État de l'art

2002	•	SMOTE (Synthetic Minority Oversampling Technique for classification)	Chawla et al.
2013	•	SMOTE for Regression	Torgo et al
2017	•	Adaptation de SMOTE-R à la prédiction de séries temporelles univariée à un pas dans le futur	Moniz et al
2020	•	SMOTEST (Synthetic Minority Oversampling Technique for Sequence-To-sequence)	Notre proposition

Approche proposée: SMOTEST

Sur-échantillonnage des données d'entraînement

Séries temporelles multivariées

Séquence-à-séquence

CNN-1D

Algorithme de sur-échantillonnage

<u>Illustration</u>

Exemple sur jeu de données synthétiques

Approche proposée: SMOTEST

Sur-échantillonnage des données d'entraînement

Séries temporelles multivariées

Séquence-à-séquence

CNN-1D

Algorithme de sur-échantillonnage

Algorithm 1 Algorithme de sur-échantillonnage

```
Require: n_g: nombre de cas synthétiques à générer par cas positif existant, k: nombre de voisins, G: générateur de nombres aléatoires, \mathcal{D}_P = \{(X,Y) \mid \Phi(Y) \geq \theta\}: ensemble des cas positifs
```

```
1: function GENSYNTHCASES(\mathcal{D}_P, n_q, k, G)
          \mathcal{D}_{qen} \leftarrow \emptyset
          for all (X,Y) \in \mathcal{D}_P do
 3:
                NNS \leftarrow KNN(k, Y, \mathcal{D}_P \setminus \{(X,Y)\})
                for i = 1 to n_a do
                      (X_{nn}, Y_{nn}) \leftarrow un cas choisi aléatoirement parmi NNS
                      Initialiser (X_{new}, Y_{new}) pour contenir le ième cas synthétique
                      for all s \in [1, n_X] do
                           diff \leftarrow X_{nn}[:,s] - X[:,s]
                           X_{new}[:,s] \leftarrow X[:,s] + G(0,1) \times diff
10:
                     end for
11:
                     d_1 \leftarrow DIST(X_{new}, X)
                                                                                                         \begin{aligned} & d_2 \leftarrow \textit{DIST}(X_{new}, X_{nn}) \\ & Y_{new} \leftarrow \frac{d_2Y + d_1Y_{nn}}{d_1 + d_2} \end{aligned}
                      \mathcal{D}_{gen} \leftarrow \mathcal{D}_{gen} \cup \{(X_{new}, Y_{new})\}
                end for
           end for
17:
           return \mathcal{D}_{gen}
19: end function
```


Résultats

Fonctions forme

$$f_n(x) = (x - 0.5)^n$$

Fonctions densité

$$g_n(x) = f_n(x) / \int_0^1 f_n(t) dt$$

Synthèse de séquences
$$\begin{cases} s_{\lambda} = \lambda s_0 + (1-\lambda)s_1 \\ \lambda \sim \mathcal{P}(g_n) \end{cases}$$

Résultats

R2 sur cas minoritaires

La distribution uniforme donne les meilleurs résultats

> La réplication de données donne de moins bons résultats

R2 sur cas majoritaires

Expérience sur données industrielles

Problématique

- Contrôle qualité
- Variable cible à prédire : taux d'impureté
- Évènement rares à anticiper : augmentations brutales du taux d'impureté

Caractéristiques du jeu de données

- 10 variables (cible incluse)
- 90 points en entrées, 20 points en sortie
- 74000 échantillons
- 77% pour l'entraînement, 23% pour le test
- Envion 7% de cas rares

Résultats

- Amélioration des résultats sur cas rares
- Baisse de performance sur cas majoritaires

	Cas p	ositifs	Cas négatifs				
	MAE	RMSE	MAE	RMSE			
Original	0.36 ± 0.37	0.46 ± 0.43	0.16 ± 0.21	0.19 ± 0.23			
SMOTEST	0.34 ± 0.35	0.42 ± 0.40	0.19 ± 0.21	0.22 ± 0.23			

TAB. 1: Résultats sur les données industrielles de test $(w_{in}=90,w_{out}=20)$. Les valeurs à gauche et à droite du signe \pm correspondent resp. à la moyenne et l'écart type de l'erreur.

2011	TP	TN	FP	FN	bAcc	Rappel	Précision	Spécificité
Orig	3.87	89.88	3.22	3.03	76.31	56.08	54.58	96.54
OS + Unif	4.61	88.94	4.15	2.29	81.17	66.81	52.62	95.54

TAB. 6: Métriques de confusion sur le jeu de données industrielles (test).

Conclusions

Mode de rééchantillonnage

- Le sur-échantillonnage fournit les meilleurs résultats
- Le sous-échantillonnage rend le modèle sous-performant

Distribution aléatoire pour synthèse de séquences

- Une distribution uniforme fournit des résultats satisfaisants
- Une distribution proche de la duplication a tendance à rendre le modèle sous-performant

Données industrielles

Augmentation des performances sur les cas d'intérêt

Perspectives

- Comparer d'autres méthodes d'augmentation de données
- Expérimenter sur plus de données industrielles
- Expérimenter avec d'autres modèles prédictifs (e.g. réseaux récurrents)
- Expérimenter sur d'autres types d'événements rares

Contacts

www.fieldbox.ai

melion@fieldbox.ai

<u>fieldboxai/predict-rare-events-smotest</u>

Merci pour votre attention!

melion@fieldbox.ai

www.fieldbox.ai

fieldboxai/predict-rare-events-smotest

Annexes

Caractérisation des cas rares

Ensemble de cas $\mathcal{D}: (X,Y) \in \mathbb{R}^{w_{in} \times n} \times \mathbb{R}^{w_{out}}$

- win : taille des séquences d'entrée
- w_{out} : taille des séquences de sortie
- n : nombre de signaux d'entrée
- $X \in \mathbb{R}^{w_{in} \times n}$: signaux d'entrée d'un cas donné
- $Y \in \mathbb{R}^{w_{out}}$: signal de sortie associé à X

Caractérisation d'un cas

$$\Phi: \mathbb{R}^{w_{out}} \mapsto \mathbb{R}$$

Exemple: augmentation maximale

$$\Phi\left(\left(y(t+k)\right)_{k\in 1, w_{out}}\right) = \max_{\substack{t\in 1, w_{out}-1\\\tau\in 1, w_{out}-t}} y(t+\tau) - y(t)$$

Ensemble des cas rares

$$D_P = \{(X, Y) \in \mathcal{D} \mid \Phi(Y) \ge \theta\}$$

Evaluation

Métriques de régression

$$\begin{split} \text{RMSE}(Y, \hat{Y}) &= \sqrt{\frac{1}{w_{out}} \sum_{t=1}^{w_{out}} (Y[t] - \hat{Y}[t])^2} \\ \text{MAE}(Y, \hat{Y}) &= \frac{1}{w_{out}} \sum_{t=1}^{w_{out}} \left| Y[t] - \hat{Y}[t] \right| \end{split}$$

Métriques de confusion

$$\begin{aligned} \operatorname{Rappel}(Y,\hat{Y}) &= \frac{TP}{TP + FN} \\ \operatorname{Pr\'{e}cision}(Y,\hat{Y}) &= \frac{TP}{TP + FP} \\ \operatorname{Sp\'{e}cificit\'{e}}(Y,\hat{Y}) &= \frac{TN}{TN + FP} \\ \operatorname{bAcc}(Y,\hat{Y}) &= \frac{1}{2} \left(\frac{TP}{TP + FN} + \frac{TN}{TN + FP} \right) \end{aligned}$$

Jeu de données synthétique

Caractéristiques du jeu de données

- 4 variables (cible incluse)
- 15 points en entrées, 5 points en sortie
- 9960 échantillons

- 70% pour l'entraînement, 30% pour le test
- Moins de 10% de cas rares

Résultats

Résultats

Résultats

Métriques de confusion sur les données de test

	P	N	TP	TN	FP	FN	accuracy	recall	precision	specificity
ORIGINAL	8.43	91.57	4.15	90.37	1.2	4.28	94.52	49.21	77.5	98.69
os	8.43	91.57	5.22	89.97	1.61	3.21	95.18	61.9	76.47	98.25
US	8.43	91.57	3.88	85.69	5.89	4.55	89.57	46.03	39.73	93.57
OS & US	8.43	91.57	5.55	89.36	2.21	2.88	94.92	65.87	71.55	97.59

Métriques de confusion sur les données d'entraînement

	P	N	TP	TN	FP	FN	accuracy	recall	precision	specificity
ORIGINAL	7.86	92.14	4.35	91.32	0.82	3.51	95.67	55.29	84.17	99.11
os	47.74	52.26	41.39	51.51	0.75	6.34	92.9	86.71	98.21	98.56
US	50	50	31.66	48.54	1.46	18.34	80.2	63.32	95.59	97.08
OS & US	48.03	51.97	42.2	51.01	0.96	5.83	93.21	87.86	97.78	98.15

Fonctions forme

$$f_n(x) = (x - 0.5)^n$$

Fonctions densité

$$g_n(x) = f_n(x) / \int_0^1 f_n(t) dt$$

Synthèse de séquences
$$\begin{cases} s_{\lambda} = \lambda s_0 + (1-\lambda)s_1 \\ \lambda \sim \mathcal{P}(g_n) \end{cases}$$

Résultats

MAE sur cas minoritaires

MAE sur cas majoritaires

Fonctions forme

$$f_n(x) = (x - 0.5)^n$$

Fonctions densité

$$g_n(x) = f_n(x) / \int_0^1 f_n(t) dt$$

Synthèse de séquences
$$\begin{cases} s_{\lambda} = \lambda s_0 + (1-\lambda)s_1 \\ \lambda \sim \mathcal{P}(g_n) \end{cases}$$

Résultats

RMSE sur cas minoritaires

RMSE sur cas majoritaires

Fonctions forme

$$f_n(x) = (x - 0.5)^n$$

Fonctions densité

$$g_n(x) = f_n(x) / \int_0^1 f_n(t) dt$$

Synthèse de séquences
$$\begin{cases} s_{\lambda} = \lambda s_0 + (1-\lambda)s_1 \\ \lambda \sim \mathcal{P}(g_n) \end{cases}$$

Résultats

Métriques de confusion sur les données de test

		11				uccuracy	recuir	precision	Specificity
8.43	91.57	3.75	90.43	1.14	4.68	94.18	44.44	76.71	98.76
8.43	91.57	5.55	90.5	1.07	2.88	96.05	65.87	83.84	98.83
8.43	91.57	5.42	90.17	1.4	3.01	95.59	64.29	79.41	98.47
8.43	91.57	5.82	89.77	1.81	2.61	95.59	69.05	76.32	98.0
8.43	91.57	4.75	90.7	0.87	3.68	95.45	56.35	84.52	99.05
8.43	91.57	4.62	90.77	0.8	3.81	95.38	54.76	85.19	99.12
	8.43 8.43 8.43 8.43	8.43 91.57 8.43 91.57 8.43 91.57 8.43 91.57 8.43 91.57	8.43 91.57 3.75 8.43 91.57 5.55 8.43 91.57 5.42 8.43 91.57 5.82 8.43 91.57 4.75	8.43 91.57 3.75 90.43 8.43 91.57 5.55 90.5 8.43 91.57 5.42 90.17 8.43 91.57 5.82 89.77 8.43 91.57 4.75 90.7	8.43 91.57 3.75 90.43 1.14 8.43 91.57 5.55 90.5 1.07 8.43 91.57 5.42 90.17 1.4 8.43 91.57 5.82 89.77 1.81 8.43 91.57 4.75 90.7 0.87	8.43 91.57 3.75 90.43 1.14 4.68 8.43 91.57 5.55 90.5 1.07 2.88 8.43 91.57 5.42 90.17 1.4 3.01 8.43 91.57 5.82 89.77 1.81 2.61 8.43 91.57 4.75 90.7 0.87 3.68 8.43 91.57 4.62 90.77 0.8 3.81	8.43 91.57 3.75 90.43 1.14 4.68 94.18 8.43 91.57 5.55 90.5 1.07 2.88 96.05 8.43 91.57 5.42 90.17 1.4 3.01 95.59 8.43 91.57 5.82 89.77 1.81 2.61 95.59 8.43 91.57 4.75 90.7 0.87 3.68 95.45	8.43 91.57 3.75 90.43 1.14 4.68 94.18 44.44 8.43 91.57 5.55 90.5 1.07 2.88 96.05 65.87 8.43 91.57 5.42 90.17 1.4 3.01 95.59 64.29 8.43 91.57 5.82 89.77 1.81 2.61 95.59 69.05 8.43 91.57 4.75 90.7 0.87 3.68 95.45 56.35	8.43 91.57 3.75 90.43 1.14 4.68 94.18 44.44 76.71 8.43 91.57 5.55 90.5 1.07 2.88 96.05 65.87 83.84 8.43 91.57 5.42 90.17 1.4 3.01 95.59 64.29 79.41 8.43 91.57 5.82 89.77 1.81 2.61 95.59 69.05 76.32 8.43 91.57 4.75 90.7 0.87 3.68 95.45 56.35 84.52

Métriques de confusion sur les données d'entraînement

	P	N	TP	TN	FP	FN	accuracy	recall	precision	specificity
Original and Resampled Datasets										
ORIGINAL	7.86	92.14	4.65	91.05	1.09	3.21	95.7	59.12	81	98.82
f(x) = 1	47.94	52.06	41.02	51.42	0.63	6.92	92.44	85.56	98.48	98.78
$f(x) = (x - 0.5)^2$	47.9	52.1	41.38	51.5	0.59	6.52	92.88	86.39	98.58	98.86
$f(x) = (x - 0.5)^6$	48.06	51.94	42.68	50.86	1.08	5.38	93.54	88.81	97.54	97.93
$f(x) = (x - 0.5)^{10}$	47.99	52.01	39.42	51.3	0.71	8.57	90.72	82.15	98.24	98.64
$f(x) = (x - 0.5)^{24}$	48.02	51.98	40.78	51.04	0.94	7.24	91.82	84.93	97.75	98.19

