Parameterized Verification with Byzantine Model Checker (2)

Igor Konnov

<igor@informal.systems>

Tutorial at FORTE, June 15, 2020

streaming from Vienna / Austria to Valletta / Malta

Timeline

Fault-tolerant distributed algorithms and threshold automata

Safety of **asynchronous** threshold-guarded algorithms

Liveness and **beyond** asynchronous algorithms

The examples and links for this talk:

bit.ly/2z8mE51

Byzantine model checker:

[github.com/konnov/bymc]
[forsyte.at/software/bymc]

(source code, benchmarks, virtual machines, etc.)

Verifying **asynchronous** threshold-guarded distributed algorithms

[K., Veith, Widder. CAV'15]

[K., Lazić, Veith, Widder. POPL'17]

[K., Lazić, Veith, Widder. FMSD'17]

[K., Widder. ISoLA'18]

. . .

Faults and communication

Byzantine behavior:

[Lamport, Shostak, Pease, 1982]

More than two-thirds must be correct: n > 3t

(resilience)

Communication is reliable:

[Fischer, Lynch, Paterson, 1985] if a correct process sends a message m, m is eventually delivered to all correct processes

Formalizing pseudo-code of naïve majority voting...

- 1 input $u_i \in \{0, 1\}$
- 2 **send** u_i **to** all
- 3 wait until some value $v_i \in \{0,1\}$ is received $\lceil \frac{n+1}{2} \rceil$ times
- 4 decide **on** v_j

for Byzantine faults:

run n - f copies for n > 3t and $t \ge f$

Let's run ByMC again this time for Byzantine faults...

```
user@bvmc: ~/fault-tolerant-benchmarks/forte20 80x29
 --limit-time: limit (in seconds) cpu time of subprocesses (ulimit -t)
 --limit-mem: limit (in MB) virtual memory of subprocesses (ulimit -v)
 -hi--help: show this help message
 bymc options are as follows:
 -0 schema.tech=ltl
                              (default, safety + liveness as in POPL'17)
 -O schema.tech=ltl-mpi
                              (parallel safety + liveness as in ISOLA'18)
 -0 schema.tech=cav15
                              (reachability as in CAV'15)
 --smt 'lib2[z3[-smt2[-in'
                              (default, use z3 as the backend solver)
 --smt 'lib2|mysolver|arg1|arg2|arg3' (use an SMT2 solver)
 --smt 'vices'
                              (use vices 1.x as the backend solver, DEPRECATED)
 - V
                   (verbose output, all debug messages get printed)
 Fine tuning of schema.tech=ltl:
 -O schema_incremental=1 (enable the incremental solver, default: 0)
 -0 schema.noflowopt=1 (disable the control flow optimizations, default: 0
                          may lead to a combinatorial explosion of quards)
  -0 schema.noreachopt=1 (disable the reachability optimization, default: 0
                          i.e., reachability is not checked on-the-fly)
 -0 schema.noadaptive=1 (disable the adaptive reachability optimization, defaul
† · A
                          i.e., the tool will not try to choose between
                          enabling/disabling the reachability optimization)
 -O schema.noguardpreds=1 (do not introduce predicates for
                            the threshold quards, default: 0)
 -0 schema.compute-nschemas=1 (always compute the total number of
                                schemas, even if takes long, default: 0)
user@bvmc:~/fault-tolerant-benchmarks/forte205
```

Counterexample to agreement

proc. 1	snd ₀					dec_0		
proc. 2		snd_1						dec₁
proc. 3			snd_0					
proc. 4				snd_1				
proc. 5					snd_0			
proc. 6							snd_1	

Representative of the counterexample

 $snd_0, snd_1, snd_0, snd_1, snd_0, dec_0, snd_1, dec_1$

becomes:

 $\mathsf{snd}_0, \mathsf{snd}_0, \mathsf{snd}_1, \mathsf{snd}_1, \mathsf{snd}_0, \mathsf{dec}_0, \mathsf{snd}_1, \mathsf{dec}_1$

and this gives us a pattern (schema):

 $\mathsf{snd}_0^*, \mathsf{snd}_1^*, \underline{\mathsf{snd}_0}, \mathsf{snd}_0^*, \mathsf{snd}_1^*, \mathsf{dec}_0^*, \underline{\mathsf{snd}_1}, \mathsf{snd}_0^*, \mathsf{snd}_1^*, \mathsf{dec}_0^*, \mathsf{dec}_1^*$

Execution patterns

one pattern

 $\mathsf{snd}_0^*, \mathsf{snd}_1^*, \underline{\mathsf{snd}}_0, \mathsf{snd}_0^*, \mathsf{snd}_1^*, \mathsf{dec}_0^*, \underline{\mathsf{snd}}_1, \mathsf{snd}_0^*, \mathsf{snd}_1^*, \mathsf{dec}_0^*, \mathsf{dec}_1^*$

and another one:

 $\mathsf{snd}_0^*, \mathsf{snd}_1^*, \underline{\mathsf{snd}}_1, \mathsf{snd}_0^*, \mathsf{snd}_1^*, \mathsf{dec}_1^*, \underline{\mathsf{snd}}_0, \mathsf{snd}_0^*, \mathsf{snd}_1^*, \mathsf{dec}_0^*, \mathsf{dec}_1^*$

how many are there?

can we construct them?

do they work for all parameters?

The theoretical framework behind ByMC

Parameterized verification problem:

$$\forall n, f.$$
 $n-f$ copies of

Our approach:

- (I) Counting processes,
- (II) Acceleration,
- (III) Bounded model checking, and

(IV) Schemas

(I) Counting processes

Threshold guards (e.g., $s_0 + s_1 + t \ge n - t$) do not use process ids

A transition by a single process:

$$\begin{cases} \kappa_{\text{V1}} = 4 \, \wedge \, \kappa_{\text{SENT}} = 1 \, \wedge \, s_0 = 1 \end{cases}$$

$$\kappa_{\text{V1}} - ; \, \kappa_{\text{SENT}++}; \, s_{0++};$$

$$\begin{cases} \kappa_{\text{V1}} = 3 \, \wedge \, \kappa_{\text{SENT}} = 2 \, \wedge \, s_0 = 2 \end{cases}$$

(II) Acceleration

The same transition by unboundedly many processes in one step:

Acceleration factor can be any natural number δ

(III) Bounded model checking with SMT

A transition by δ_i processes (in linear integer arithmetic):

$$T(\sigma_{i}, \sigma_{i+1}, \delta_{i}) = \begin{bmatrix} \kappa_{V1}^{i+1} = \kappa_{V1}^{i} - \delta_{i} \land \\ \kappa_{SENT}^{i+1} = \kappa_{SENT}^{i} + \delta_{i} \land \\ s_{0}^{i+1} = s_{0}^{i} + \delta_{i} \end{bmatrix} \qquad \sigma_{i} \bigcirc \sigma_{i+1}$$

SMT formula: $T(\sigma_0, \sigma_1, \delta_0) \wedge T(\sigma_1, \sigma_2, \delta_1) \wedge \cdots \wedge T(\sigma_{k-1}, \sigma_k, \delta_{k-1}) \wedge \text{Spec}$

how long should the executions be?

Completeness of bounded model checking

What we can do:

What we want to do:

Complete and efficient BMC for:

- reachability
- safety and liveness

[K., Veith, Widder: CAV'15]

[K., Lazić, Veith, Widder: POPL'17]

Mover analysis

Exploring all bounded executions is inefficient

The argument contains:

- reordering:

s₀₊₊; s₁₊₊; s₀₊₊ becomes s₀₊₊; s₀₊₊; s₁₊₊

- acceleration

 s_{0++} ; s_{0++} ; s_{1++} becomes $s_{0} += 2$; s_{1++}

Schema: $\{pre_1\}$ actions₁ $\{post_1\}$... $\{pre_k\}$ actions_k $\{post_k\}$

Example:

SMT solver tries to find: parameters n, t, f, acceleration factors $\delta(1), \ldots, \delta(6)$, counters $\kappa_{D0}^i, \kappa_{D1}^i, \ldots$

(a) the schema does not violate the property (**UNSAT**), or (b) there is a counterexample (**SAT**)

Schema: $\{pre_1\}$ actions₁ $\{post_1\}$... $\{pre_k\}$ actions_k $\{post_k\}$

Example:

SMT solver tries to find: parameters n, t, f, acceleration factors $\delta(1), \ldots, \delta(6)$, counters $\kappa_{D0}^i, \kappa_{D1}^i, \ldots$

(a) the schema does not violate the property (**UNSAT**), or (b) there is a counterexample (**SAT**)

Schema: $\{pre_1\}$ actions₁ $\{post_1\}$... $\{pre_k\}$ actions_k $\{post_k\}$

Example:

SMT solver tries to find: parameters n, t, f, acceleration factors $\delta(1), \ldots, \delta(6)$, counters $\kappa_{D0}^i, \kappa_{D1}^i, \ldots$

(a) the schema does not violate the property (UNSAT), or

(b) there is a counterexample (SAT

Schema: $\{pre_1\}$ actions₁ $\{post_1\}$... $\{pre_k\}$ actions_k $\{post_k\}$

Example:

SMT solver tries to find: parameters n, t, f, acceleration factors $\delta(1), \ldots, \delta(6)$, counters $\kappa_{D0}^i, \kappa_{D1}^i, \ldots$

(a) the schema does not violate the property (UNSAT), or

(b) there is a counterexample (SAT

Schema:
$$\{pre_1\}$$
 actions₁ $\{post_1\}$... $\{pre_k\}$ actions_k $\{post_k\}$

Example:

$$\begin{array}{lll} \{\} & (\mathsf{V0} \to \mathsf{SE0})^{\delta_1} & \{\mathsf{s_0} + \mathit{f} \geq \tau_{\mathsf{D0}}\} & (\mathsf{V1} \to \mathsf{SE1})^{\delta_2} & \{\dots, \mathsf{s_1} + \mathit{f} \geq \tau_{\mathsf{D1}}\} \\ (\mathsf{V0} \to \mathsf{SE0})^{\delta_3}, (\mathsf{V1} \to \mathsf{SE1})^{\delta_4} & \{\dots, \phi_{\mathsf{A}}\} & (\mathsf{SE0} \to \mathsf{D0})^{\delta_5}, (\mathsf{SE1} \to \mathsf{D1})^{\delta_6} \\ & \{\kappa_{\mathsf{D0}}^6 \neq 0 \land \kappa_{\mathsf{D1}}^6 \neq 0\} \end{array}$$

SMT solver tries to find: parameters n, t, f, acceleration factors $\delta(1), \ldots, \delta(6)$, counters $\kappa_{D0}^{i}, \kappa_{D1}^{i}, \ldots$

(a) the schema does not violate the property (UNSAT), or(b) there is a counterexample (SAT)

Overview of the verification algorithm

Threshold automaton schemas $\{S_1, \ldots, S_k\}$

$$egin{array}{c} Z3 &\models S_1 & \text{sat} \\ Z3 &\models S_2 & \text{counterexample} \\ & \ddots & \\ Z3 &\models S_k & \\ & & \\ & & & \\ & &$$

Overview of the verification algorithm

Threshold automaton \longrightarrow schemas $\{S_1, \dots, S_k\}$

Overview of the verification algorithm

Threshold automaton \longrightarrow schemas $\{S_1, \dots, S_k\}$

Vienna Scientific Cluster GRID 5000 (France)

Time for questions!

Threshold automata to model asynchronous algorithms

Bounded model checking of counter systems

Completeness due to the bounds

(liveness and general safety in part 3)