

Distributed Intelligent Systems – W3 An Introduction to Sensing, Action, and Control in Mobile Robotics

Outline

- General concepts
 - Autonomy
 - Perception-to-action loop
 - Sensing, actuating, computing
- Education tools of the course
 - e-puck
 - Webots
- Main example of reactive control architectures
 - Proximal architectures
 - Distal architectures

General Concepts and Principles for Mobile Robotics

Autonomy

- Different levels/degrees of autonomy
 - Energetic level
 - Sensory, motor, and computational level
 - Decisional level
- Needed degree of autonomy depends on task/environment in which the unit has to operate
- Environmental unpredictability is crucial: robot manipulator vs. mobile robot vs. sensor node

Autonomy – Mobile Robotics

Task Complexity

State of the Art in Mobile Robotics

Perception-to-Action Loop

Sensors

- Proprioceptive ("body") vs. exteroceptive ("environment")
 - Ex. proprioceptive: motor speed/robot arm joint angle, battery voltage
 - Ex. exteroceptive: distance measurement, light intensity, sound amplitude
- Passive ("measure ambient energy") vs. active ("emit energy in the environment and measure the environmental reaction")
 - Ex. passive: temperature probes, microphones, cameras
 - Ex. active: laser rangefinder, IR proximity sensors, ultrasound sonars

Classification of Typical Sensors

General classification (typical use)	Sensor Sensor System	PC or EC	A or P
Tactile sensors	Contact switches, bumpers	EC	P
(detection of physical contact or	Optical barriers	EC	A
closeness; security switches)	Noncontact proximity sensors	EC	A
Wheel/motor sensors (wheel/motor speed and position)	Brush encoders	PC	P
	Potentiometers	PC	P
	Synchros, resolvers	PC	A
	Optical encoders	PC	A
	Magnetic encoders	PC	A
	Inductive encoders	PC	A
	Capacitive encoders	PC	A
Heading sensors (orientation of the robot in relation to a fixed reference frame)	Compass	EC	P
	Gyroscopes	PC	P
	Inclinometers	EC	A/P

A, active; P, passive; P/A, passive/active; PC, proprioceptive; EC, exteroceptive.

Classification of Typical Sensors

General classification (typical use)	Sensor Sensor System	PC or EC	A or P
Ground-based beacons (localization in a fixed reference frame)	GPS Active optical or RF beacons Active ultrasonic beacons Reflective beacons	EC EC EC EC	A A A
Active ranging (reflectivity, time-of-flight, and geometric triangulation)	Reflectivity sensors Ultrasonic sensor Laser rangefinder Optical triangulation (1D) Structured light (2D)	EC EC EC EC EC	A A A A
Motion/speed sensors (speed relative to fixed or moving objects)	Doppler radar Doppler sound	EC EC	A A
Vision-based sensors (visual ranging, whole-image analysis, segmentation, object recognition)	CCD/CMOS camera(s) Visual ranging packages Object tracking packages	EC	P

Action - Actuators

- For different purposes: locomotion, control a part of the body (e.g., arm), heating, sound producing, etc.
- Examples of electrical-to-mechanical actuators: DC motors, stepper motors, servos, loudspeakers, etc.

Computation

- Usually microcontroller-based; extra memory capabilities can be added and multiple microcontrollers are becoming standard
- ADC: Analog-to-Digital Conversion (continuous amplitude and time converted in discrete amplitude and time)
- DAC: Digital-to-Analog Conversion (discrete amplitude and time converted in continuous amplitude and time)
- Different types of control architectures: e.g., reactive ('reflex-based') vs. deliberative ("planning")

Sensor Performance

- Range
 - Upper limit
- Dynamic range
 - ratio between lower and upper limits, usually in decibels (dB for power and amplitude)
 - e.g. voltage measurement from 1 mV to 20 V

$$20 \cdot \log \left[\frac{20}{0.001} \right] = 86 dB$$

Note: similar to the acoustic amplitude

• e.g. power measurement from 1 mW to 20 W

$$10 \cdot \log \left\lceil \frac{20}{0.001} \right\rceil = 43 dB \qquad P = U \cdot I = \frac{1}{R} U^2$$

Note: 10 instead of 20 because power involves a squared amplitude!!

General Sensor Performance

Resolution

- minimum difference between two values
- usually: lower limit of dynamic range = resolution
- for digital sensors it is usually the A/D resolution.
 - e.g. 8 bit A/D with upper range of 5V: resolution = 5 / 255

Linearity

- variation of output signal as function of the input signal
- linearity is less important when signal is treated with a digital device (e.g., microcontroller, computer)

$$\begin{array}{ll}
x \to f(x) & ? \\
y \to f(y) & \alpha \cdot x + \beta \cdot y \to f(\alpha \cdot x + \beta \cdot y) = \alpha \cdot f(x) + \beta \cdot f(y)
\end{array}$$

General Sensor Performance

- Bandwidth or Frequency
 - the speed with which a sensor can provide a stream of readings
 - usually there is an upper limit depending on the sensor and the sampling rate
 - lower limit is also possible, e.g. acceleration sensor
 - frequency response: phase (delay, lag) of the signal and amplitude might be influenced

In Situ Sensor Performance

Characteristics that are especially relevant for real world environments

- Sensitivity
 - ratio of output change to input change
 - however, in real world environment, the sensor has very often high sensitivity to other environmental changes, e.g. illumination
- Cross-sensitivity (and cross-talk)
 - sensitivity to other environmental parameters
 - influence of other active sensors
- Error / Accuracy
 - difference between the sensor's output and the true value

$$\begin{pmatrix}
accuracy = 1 - v \\
v
\end{pmatrix} error \\
m = measured value \\
v = true value$$

In Situ Sensor Performance

Characteristics that are especially relevant for real world environments

- Systematic error -> deterministic errors
 - caused by factors that can (in theory) be modeled -> prediction
 - e.g. calibration of a laser sensor or of the distortion cause by the optic of a camera
- Random error -> non-deterministic
 - no deterministic prediction possible
 - however, they can be described probabilistically
 - e.g. gaussian noise on a distance sensor, black level noise of camera
- Precision (different from accuracy!)
 - reproducibility of sensor results

$$precision = \frac{range}{\sigma}$$

 σ = standard dev of the sensor noise

Educational Tools for This Course

The e-puck Mobile Robot

http://www.e-puck.org/

Main features

- Cylindrical, Ø 70mm
- dsPIC processor
- Two stepper motors
- Ring of LEDs
- Many sensors:
 - ✓ Camera
 - ✓ Sound
 - ✓ IR proximity
 - ✓ 3D accelerometer
- Li-ion accumulator
- Bluetooth wireless communication
- Open hardware (and software)

e-puck Block Schema

Actuators?

Sensors?

Computation?

Communication?

Simulation: Why?

- Hardware prototyping is time-consuming and in general more expensive
- Flexibility in the experimental setup
- Easier for monitoring experiments (and evaluating specific metrics)
- Evaluation of algorithms in settings difficult (e.g., very large number of robots) or even impossible (e.g., noise-free sensors) to reproduce in reality
- Predictive value: asking questions in simulation before building hardware

Real and Simulated e-puck

Real e-puck

Realistically simulated e-puck (Webots)

- intra robot details: discrete sensors, actuators, transceivers, etc.
- noise, nonlinearities of S&A reproduced

Webots: High-Fidelity Simulator

In this course, we will focus on steps 2 and 3 only.

Webots Features

- As of Jan 2019 open source
- Faithful physics-based robotics simulator
- Tuneable trade-off between faithfulness and computational cost through kinematic (e.g., speed, position) vs. dynamic (e.g., forces, friction, mass) modes
- Fast prototyping; can be interfaced with ROS
- Can usually run faster than real-time
- Available sensors: distance sensors, light sensors, cameras, accelerometers, touch sensors, position sensors, GPSs, receivers, force sensors, etc.
- Available actuators: linear and rotational motors, grippers, LEDs, emitters, etc.

Webots Principles

The more robots, the slower the simulation!

scene tree

Webots GUI world view

editor

Examples of Reactive Control Architectures

Reactive Architectures: Proximal vs. Distal in Theory

• Proximal:

- close to sensor and actuators
- very simple linear/nonlinear operators on crude data
- high flexibility in shaping the behavior
- Difficult to engineer in a "human-guided" way;
 machine-learning usually perform better

Reactive Architectures: Proximal vs. Distal in Theory

- Distal architectures
 - Further from sensor and actuators
 - Self-contained behavioral blocks
 - Less flexibility in shaping the behavior
 - Easier to engineer in a "human-guided" way the basic block (handcoding); more difficult to compose the blocks in the right way (e.g., sequence, parallel, ...)

Reactive Architectures: Proximal vs. Distal in Practice

- A whole blend!
- Five "classical" examples of reactive control architecture for solving the same problem: obstacle avoidance.
- Two proximal: Braitenberg and Artificial Neural Network
- Three distal: rule-based and two behavior-based (Subsumption and Motor Schema)

Ex. 1: Braitenberg's Vehicles

- Work on the difference (gradient) between sensors
- + excitation, inhibition; linear controller (output = signed coefficient * input)
- Symmetry axis along main axis of the vehicle (----)
- Originally omni-directional sensors but work even better with directional sensors
- Originally: light sensors; works perfectly also with proximity sensors (3c?)

Examples of Braitenberg's Vehicles

Excitatory connections

Inhibitory connections

Braitenberg Applied to e-puck

- 2 actuators
- 8 proximity sensors

• Motor speed is a linear combination:

$$\begin{bmatrix} v_{L} \\ v_{R} \end{bmatrix} = \begin{bmatrix} \alpha_{L0} & \alpha_{L1} & \cdots & \alpha_{L7} \\ \alpha_{R0} & \alpha_{R1} & \cdots & \alpha_{R7} \end{bmatrix} \cdot \begin{bmatrix} d_{IR0} \\ \vdots \\ d_{IR7} \end{bmatrix} + \begin{bmatrix} v_{L0} \\ v_{R0} \end{bmatrix}$$
bias

weight

Ex. 2: Artificial Neural Network

input

neuron N with sigmoid transfer function f(x)

$$O_i = f(x_i)$$

$$f(x) = \frac{2}{1 + e^{-x}} - 1$$

$$x_{i} = \sum_{j=1}^{m} w_{ij} I_{j} + I_{0}$$

Ex. 3: Rule-Based

Rule 1:

if (proximity sensors on the left active) then
turn right

Rule 2:

if (proximity sensors on the right active) then
turn left

Rule 3:

if (no proximity sensors active) then
move forwards

Subsumption Architecture

- Rodney Brooks 1986, MIT
- Precursors: Braitenberg (1984), Walter (1953)
- Behavioral modules (basic behaviors) represented by Augmented Finite State machines (AFSM)
- Response encoding: predominantly discrete (rule based)
- Behavioral coordination method: competitive (priority-based arbitration via inhibition and suppression)

Subsumption Architecture

Classical paradigm (serial); emphasis on deliberative control Subsumption (parallel); emphasis on reactive control

Subsumption Architecture: AFSM

Ex. 4: Behavior-Based with Subsumption

Evaluation of Subsumption

- + Support for parallelism: each behavioral layer can run independently and asynchronously (including different loop time)
- + Fast execution time possible
- Coordination mechanisms restrictive ("black or white")
- Limited support for modularity (upper layers design cannot be independent from lower layers).

Motor Schemas

- Ronald Arkin 1987, Georgia Tech
- Precursors: Arbib (1981), Khatib (1985)
- Parametrized behavioral libraries (schemas)
- Response encoding: continuous using potential field analog
- Behavioral coordination method: cooperative via vector summation and normalization

Motor Schemas

Ex. 5: Behavior-Based with Motor Schemas

Visualization of Vector field for Ex. 5

Avoid-static-obstacle

$$V_{\text{magnitude}} = \begin{cases} 0 & \text{for} & d > S \\ \frac{S - d}{S - R}G & \text{for} & R < d \le S \\ \infty & \text{for} & d \le R \end{cases}$$

S = obstacle's sphere of influence

 \mathbf{R} = radius of the obstacle

G = gain

d = distance robot to obstacle's center

Visualization of Vector field for Ex. 5

Move-to-goal (ballistic)

Output = vector = (r, φ) (magnitude, direction)

 $V_{\text{magnitude}} = \text{fixed gain value}$

 $V_{direction}$ = towards perceived goal

Visualization of Vector field for Ex. 5

Move-to-goal + avoid obstacle

Linear combination (weigthed sum)

Ex. 5: Behavior-Based with Motor Schemas

Adding noise is a simple solution for avoiding to get stuck in local minima using arbitrary vector fields

Alternative more complex approach: use harmonic potential functions (explicitly designed for not generating local minima)

Evaluation of Motor Schemas

- + Support for parallelism: motor schemas are naturally parallelizable
- + Fine-tuned behavioral blending possible
- Robustness -> well-known problems of potential field approach -> extra introduction of noise or more complex functions
- Slow and computationally expensive sometimes

Evaluation of both Architectures in Practice

- In practice (my expertise) you tend to mix both and even more ...
- The way to combine basic behavior (cooperative and/or competitive) depends from how you developed the basic behaviors (or motor schemas), reaction time required, on-board computational capabilities, ...

Conclusion

Take Home Messages

- Perception-to-action loop is key in robotics, several sensor and actuator modalities
- Key categories for sensor classification are exteroceptive vs. proprioceptive and active vs. passive
- Experimental work can be carried out with real and realistically simulated robots
- A given behavior can be obtained with different control architectures
- Control architectures can be roughly classified in proximal and distal architectures
- Braitenberg vehicles and artificial neural networks are two typical examples of proximal architectures, motor schemas and subsumption are typical example of distal architectures

Additional Literature – Week 3

Books

- Braitenberg V., "Vehicles: Experiments in Synthetic Psychology", MIT Press, 1986.
- Siegwart R., Nourbakhsh I. R., and Scaramuzza D., "Introduction to Autonomous Mobile Robots", 2nd edition, MIT Press, 2011.
- Arkin R. C., "Behavior-Based Robotics". MIT Press, 1998.
- Everett, H. R., "Sensors for Mobile Robots, Theory and Application", A. K. Peters, Ltd., 1995