# 7. A VILLAMOS GÉPEK ELMÉLETÉNEK ÚJABB TÁRGYALÁSI MÓDSZEREI

# 7.1. A VILLAMOS GÉPEK NYOMATÉKA AZ ENERGIASZEMLÉLET ALAPJÁN

# 7.1.1. Energiaviszonyok, a nyomatékszámítás alapképletei

A villamos gépek elektromechanikai energiaátalakítók, nyomatékuk a mágneses tér állapotának megváltozásával függ össze. A nyomaték meghatározása érdekében megvizsgáljuk az egy- és kéttekercses gép energiaviszonyait. Vizsgálatunk forrásként [6]-ot használja fel, amely ezt a kérdést részletesebben tárgyalja.

A 7.1a ábrán felrajzolt egytekercses (állórészoldalról gerjesztett) gép esetén a 7.1b ábra a forgórész **a** helyzetében mutatja a tekercs valóságos  $\Psi$  fluxuskapcsolódását az i áram függvényében. Mint látjuk, a jelleggörbe a vasmagos részek telítődése miatt még a hiszterézis-jelenséget és az örvényáramokat elhanyagolva sem lineáris.



7.1. ábra Az egyoldalról gerjesztett gépmodell a) felépítés; b) mágneses energiák; c) linearizált eset

A gépben felhalmozott, az állórésztekercs *i* áramához tartozó *mágneses energia* ebben az *a* forgórészhelyzetben:

$$W_{t} = \int_{0}^{\Psi} i \, d\Psi \,, \tag{7.1}$$

amely a mágnesezési görbe feletti vízszintesen vonalkázott területtel egyenlő.

A mágnesezési görbe alatti

$$W_{t} = \int_{0}^{t} \Psi di \tag{7.2}$$

függőlegesen vonalkázott terület pedig definíciószerűen a mágneses koenergia.

Nemlineáris esetben a szokásosan egy-, ill. kéttekercses villamos gépek mágneses energiáinak számítása nagyon bonyolult. Segíti az áttekintőképességet és a nyomatékképzés megértését az elméleti közelítésekben gyakran alkalmazott módszer, a telítés elhanyagolása, a  $\Psi(i)$  mágnesezési jelleggörbe légrésvonallal közelítése (7.1c ábra, a linearizálás). Egytekercses gép esetén a tekercsben tárolt mágneses energia ill. a koenergia a vízszintesen, ill. a függőlegesen vonalkázott derékszögű háromszögek területével arányos, és ebből következően egymással egyenlő:

$$W_{t} = \frac{1}{2} \cdot i \cdot \Psi = \frac{1}{2} \cdot l_{a} \cdot i^{2} = W_{t}', \tag{7.3}$$

ahol  $l_a$  az állórésztekercsnek a forgórész a helyzetéhez tartozó öninduktivitása (emlékeztetőül:  $\Psi = l \cdot i$ ). Ennek felhasználásával a tekercsben tárolt mágneses energiának-, és a koenergiának az összege állandó és éppen ( $\Psi \cdot i$ )-vel egyenlő.

Miközben az elektromechanikai átalakító forgórésze a 7.1a ábra szerinti **a** helyzetből a **b** helyzetbe mozog, érvényesülnie kell az energiamegmaradás törvényének. Elektromechanikai átalakítókban az energia négy fajtája lehetséges:

Ha a gépet első közelítésben veszteségmentesnek (ideálisnak) tekintjük, vagyis a hővé alakuló- (tekercsben-, vasmagban keletkező, a súrlódási- és ventilációs-, valamint a rezgésekből adódó) veszteségeket elhanyagoljuk, (7.4) a következőképpen egyszerűsödik:

A (7.5) összefüggés természetesen kis változásokra is igaz:

$$dW_{v} = dW_{m} + dW_{t}, (7.6)$$

vagyis a betáplált villamos energia mechanikai munkára és a tekercs mágneses energiájának megváltoztatására fordítódik.

Vizsgáljuk először azt a linearizált esetet, amikor a forgórész a 7.1a ábra szerinti **a** forgórészhelyzetből a **b** helyzetbe ugrik, eközben a fluxusállandóság elve alapján a tekerccsel kapcsolódó Ψ fluxuskapcsolódás állandó értékű (7.2a ábra).

A dt idő alatt a hálózatból felvett villamos energia:





7.2. ábra Energiaváltozásoka) a Ψ fluxuskapcsolódás állandó;b) az i áram állandó

 $dW_{v} = u_{i} \cdot i \cdot dt = \left(\frac{d\Psi}{dt}\right) \cdot i \cdot dt = i \cdot d\Psi = 0.$  (7.7)

A villamos hálózatból felvett energia  $dW_v$ =0, mert  $d\Psi$ =0. A mechanikai energia megváltozása ekkor:

$$dW_{\rm m} = m \cdot d\alpha, \tag{7.8}$$

ahol m a nyomaték pillanatértéke és  $d\alpha$  az elemi elfordulási szög. Ezekkel (7.6) alapján írható:

$$dW_{\rm m} = m \cdot d\alpha = -dW_{\rm t}. \tag{7.9}$$

Az (7.9) összefüggésből a nyomatékot kifejezve:

$$m = -\left(\frac{dW_{\rm t}}{d\alpha}\right)_{\Psi = \text{áll.}}.$$
 (7.10)

Állandó fluxusú változáskor a tekercs koenergiája a függőleges vonalkázással jelölt mértékben nő, tárolt

mágneses energiája pedig csökken. Ilyen esetben a tekercs a hálózatból nem vesz fel energiát, a tekercs mágneses energiájának csökkenése a mechanikai energia növelésére fordítódik (nyomaték keletkezik).

Mivel egy adott pontban tekercsben tárolt mágneses energia és a koenergia összege a  $(\Psi \cdot i)$  állandó, állandó áram melletti változáskor (a 7.2b ábrán felrajzolt áramkényszer alkalmazása esetén) a koenergia megváltozása:

$$W_{t} = \Psi \cdot i - W_{t}. \tag{7.11}$$

A differenciákat képezve a koenergia megváltozása:

$$dW_{t} = \Psi \cdot di + i \cdot d\Psi - dW_{t}. \tag{7.12}$$

(7.6)-ból behelyettesítve a tárolt mágneses energia megváltozásának  $dW_{\rm t} = dW_{\rm v} - dW_{\rm m}$  értékét:

$$dW_{t} = \Psi \cdot di + i \cdot d\Psi - dW_{v} + dW_{m}. \tag{7.13}$$

Mivel a hálózatból felvett villamos energia az (7.7) összefüggés szerint  $dW_v = i \cdot d\Psi$ , (7.13) az összevonások után:

$$dW_{t} = \Psi \cdot di + m \cdot d\alpha , \qquad (7.14)$$

amiből i =áll. feltételnél di=0, és így a nyomaték:

$$m = \left(\frac{dW_{t}^{'}}{d\alpha}\right)_{i=\hat{n}||}.$$
(7.15)

Az előzőleg tárgyalt áramkényszernél a tekercs által a tápforrásból felvett villamos energia (a 7.2b ábrán a ferdén vonalkázott terület) egyrészt mechanikai munkára fordítódik (nyomaték képződik), másrészt a vízszintesen vonalkázott területnek megfelelő mértékben megnövekszik a tekercsben tárolt mágneses energia.

Amennyiben a változás mértékét megfelelő mértékben csökkentjük (7.10) és (7.15) egymásba megy át, és így a nyomaték akár a tekercsben tárolt mágneses energia megváltozásából, akár a mágneses koenergiából számítható:

$$m = \left(\frac{dW_{t}}{d\alpha}\right)_{i=\hat{a}|l|} = -\left(\frac{dW_{t}}{d\alpha}\right)_{\Psi=\hat{a}|l|}$$
(7.16)

A (7.16) összefüggések segítségével határozzuk meg most a 7.1a ábrán felrajzolt egytekercses, állórészoldalról táplált gép nyomatékát. Mivel linearizált esetben a mágneses energia és a koenergia (7.3)-ból  $W_t = \frac{1}{2} \cdot i \cdot \Psi = \frac{1}{2} \cdot l \cdot i^2 = W_t$ , a nyomaték pillanatértéke:

$$m(t,\alpha) = \frac{1}{2} \cdot i \cdot \left(\frac{d\Psi}{d\alpha}\right)_{i=\text{all.}} = -\frac{1}{2} \cdot \Psi \cdot \left(\frac{di}{d\alpha}\right)_{\Psi = \text{all}} = \frac{1}{2} \cdot i^2(t) \cdot \frac{dl(\alpha)}{d\alpha}. \tag{7.17}$$



7.3. ábra A kéttekercses gép ön- és kölcsönös induktivitásai

(7.17) jól használható pl. a csak egyoldalról gerjesztett kapcsolt reluktancia motorok (SRM) nyomatékának számításánál.

Az (7.16) összefüggések kéttekercses gépeknél (7.3. ábra) is alkalmazhatók. Linearizált esetben az állórészen és a forgórészen is egy-egy tekerccsel rendelkező gépnél  $l_{\rm s}(\alpha)$  állórész-,  $l_{\rm r}(\alpha)$  forgórész- és  $l_{\rm m}(\alpha) = l_{\rm rs}(\alpha) = l_{\rm sr}(\alpha)$  kölcsönös induktivitásokat feltételezve a mágneses energiák:

$$W_{t} = \frac{1}{2} \cdot l_{s}(\alpha) \cdot i_{s}^{2} + l_{m}(\alpha) \cdot i_{s} \cdot i_{r} + \frac{1}{2} \cdot l_{r}(\alpha) \cdot i_{r}^{2} = W_{t}^{'}.$$

$$(7.18)$$

(7.18)-at (7.16)-ba helyettesítve a kéttekercses linearizált gép nyomatékának pillanatértéke:

$$m(t,\alpha) = \left(\frac{dW_{t}'}{d\alpha}\right)_{i=411} = \frac{1}{2} \cdot i_{s}^{2}(t) \cdot \frac{dl_{s}(\alpha)}{d\alpha} + i_{s}(t) \cdot i_{r}(t) \cdot \frac{dl_{m}(\alpha)}{d\alpha} + \frac{1}{2} \cdot i_{r}^{2}(t) \cdot \frac{dl_{r}(\alpha)}{d\alpha}.$$
(7.19)

A nyomaték pillanatértékére kapott (7.16) összefüggés a levezetésénél alkalmazott korlátozásokkal általános érvényű. A következőkben azt vizsgáljuk, hogy ennek a nyomatéknak mikor van a zérustól eltérő középértéke, vagyis mikor jöhet létre és mekkora a nyomaték átlagos értéke.

#### 7.1.2. A frekvenciafeltétel

Minden villamos gép állandósult nyomatékának feltétele két kölcsönhatásban lévő, összetapadt, azonos pólusszámú pólusrendszer. Az egyes gépfajták csak abban különböz-



7.4. ábra A mágneses erővonalak és a tangenciális erők képződése ösz szetapadt pólusrendszerek esetén

- a) A terhelési szög motoros üzemben; b) terheletlen állapot ( $\delta = 0^{\circ}$ , m = 0;
- c) a terhelési szög  $\delta = 90^{\circ}$ ,  $m = m_{\text{max}}$ ;
- d) a terhelési szög  $\delta = 180^{\circ}$ , m = 0;
- e) a nyomaték (tangenciális erő) változása a terhelési szög függvényében;

nek egymástól, hogy milyen módszerrel hozzuk létre ezt az összetapadt pólusrendszert, és hogy ezek az állórészhez, ill. a forgórészhez képest mozgásban, vagy nyugalomban vannak-e.

A 7.4. ábrán feltételeztük, hogy az állórészen és a forgórészen elhelyezett, külön-külön gerjesztett mágnesrendszereket  $\omega_s$  és  $\omega$  szögsebességekkel forgatjuk, miközben előjelhelyesen mérjük a forgatáshoz szükséges nyomatékigényt. A 7.4a ábrán felrajzolt kétpólusú gépnél azt a pillanatot rajzoltuk fel, amikor forgásirányban a forgórész  $\delta$  terhelési szöggel lemaradt az állórészhez képest. A 7.4b...7.4d ábrákon a mozgatott pólusrendszereket a síkba kiterítettük.

Az ábrákba berajzoltuk a mágneses erővonalakat. Az erővonalakat rugalmas gumiszálaknak képzelhetjük, amelyek alaphelyzetben vannak amikor a forgórész déli pólusa az állórész északi pólusa alatt helyezkedik el (7.4b ábra), ekkor az állórész és a forgórész mágneses tengelyei között mért szög  $\delta = 0$ . A terhelést növelve (a forgórészt azonos szögsebességgel, de  $\delta$  szög lemaradással forgatva) a gumiszálak megnyúlnak (tangenciális erők lépnek fel), a forgógép nyomatékot ad le. A tangenciális erők maximális értékűek  $\delta = 90^{\circ}$ -os szögnél (7.4c ábra).

A szöget tovább növelve az ellentétes mágneses polaritású pólushoz kapcsolódó erővonalak fokozatosan "elszakadnak", a nyomaték csökken. Zérus lesz a nyomaték  $\delta = 180^{\circ}$ -os szögnél, amikor az azonos polaritású mágneses pólusok kerülnek egymás alá (7.4d ábra).

A szöget még tovább növelve a tangenciális erők  $\delta$  = 180...360° között ellentétes irányúak. A tangenciális erők változását a két pólusrendszer közötti  $\delta$  szög függvényében mutatja a 7.4e ábra.

Az ábrából több következtetést is levonhatunk: egyrészt zérus lesz a tangenciális erővel arányos nyomaték középértéke (vagyis pulzáló nyomaték keletkezik), ha a forgórész körbefordul az állórész pólusrendszeréhez képest, másrészt akkor lesz állandósult nyomatékunk, ha az azonos sebességgel forgó pólusrendszerek mágneses tengelye között van egy  $\delta$  szögeltérés.

A továbbiakban a 7.5. ábrán felrajzolt, mindkét oldalon hengeres felépítésű, egy-egy fázistekerccsel rendelkező gépet vizsgálunk. A vastestek hengeres kialakítása miatt a tekercsek a kerület menti körbefordulás közben végig azonos mágneses ellenállást "látnak", ezért az  $l_{\rm s}(\alpha) = L_{\rm s} =$  áll. és  $l_{\rm r}(\alpha) = L_{\rm r} =$  áll. A nyomaték (7.19) kifejezéséből így csak a középső tag marad meg:

$$m(t,\alpha) = i_{\rm s}(t) \cdot i_{\rm r}(t) \cdot \frac{dl_{\rm m}(\alpha)}{d\alpha}$$
 (7.20)

Folyjék az állórész tekercselésben  $i_s(t) = I_s \cdot \sin \omega_{vs} t$  áram, a forgórész tekercselésben  $i_r(t) = I_r \cdot \sin \omega_{vr} t$  áram és a forgórész szögelfordulása történjen az



 $l_{\rm s}(\alpha) = L_{\rm s} = {\rm all.}$   $l_{\rm r}(\alpha) = L_{\rm r} = {\rm all.}$ 

7.5. ábra A hengeres álló- és forgórészű gép öninduktivitásai

$$\alpha_{v}(t) = p \cdot (\omega t + \delta) = \omega_{v} t + \delta_{v}$$
 (7.21)

időfüggvény szerint. (Emlékeztetőül: *v* index-el jelöljük a villamos szögsebességeket.)

Ha a  $\delta_v$  szöget a 7.5. ábrán látható módon mérjük, az állórész- és forgórész tekercsek közötti kölcsönös induktivitások az  $\alpha_v$  villamos szögelfordulás ( $p \ge 1$  esetén  $\alpha_v = p \cdot \alpha_g$ ) koszinusz függvénye szerint változnak:

$$l_{\rm m}(\alpha) = l_{\rm rs}(\alpha) = l_{\rm sr}(\alpha) = L_{\rm rs} \cdot \cos \alpha_{\rm v}. \tag{7.22}$$

A fluxuskapcsolódás és így a mágneses vezetőképesség a 7.5. ábra szerint  $\delta_v = 0^\circ$ -nál a legnagyobb, az ehhez a helyzethez tartozó kölcsönös induktivitás  $L_{\rm rs}$ értékű. A kölcsönös induktivitás  $\delta_v = 90^\circ$ -nál zérus. (7.21) felhasználásával (7.20)-ból a nyomaték:

$$m(\alpha_{v}) = -I_{s} \cdot I_{r} \cdot L_{rs} \cdot \sin \omega_{vs} t \cdot \sin \omega_{vr} t \cdot \sin(\omega_{v} t + \delta_{v}). \tag{7.23}$$

Ebből a nyomaték az ismert szögfüggvény átalakítások felhasználásával az

$$m(t,\alpha) = \frac{I_{s} \cdot I_{r} \cdot L_{rs}}{4} \cdot \begin{cases} \sin[(\omega_{v} + \omega_{vs} - \omega_{vr})t + \delta] + \sin[(\omega_{v} - \omega_{vs} + \omega_{vr})t + \delta_{v}] \\ -\sin[(\omega_{v} + \omega_{vs} + \omega_{vr})t + \delta] - \sin[(\omega_{v} - \omega_{vs} - \omega_{vr})t + \delta_{v}] \end{cases}.$$
(7.24)

alakba írható. Átlagos (zérustól eltérő, *nem pulzáló*) nyomatékot akkor kapunk, ha *t* valamelyik együtthatója zérus. Ez akkor teljesül, ha az

$$\omega_{\rm v} = \pm \omega_{\rm vs} \pm \omega_{\rm vr}$$
, és  $\sin \delta_{\rm v} \neq 0$  (7.25)

egyenletben megfogalmazott ún. *frekvenciafeltételek* legalább egyike megvalósul. Ez nem zárja ki, hogy az állandó nyomatékot létrehozó komponensen kívül valamelyik másik is létrehozzon nyomatékot. Ez utóbbi(ak) azonban zérus középértékű, pulzáló nyomaték(ok) lesz(nek), amely(ek)nek a jelenléte a gép üzeme szempontjából nem kívánatos.

A 7.6a ábrán felrajzoltuk a lehetséges eseteket. Ezek a Ferraris tételből közvetlenül is következnek. A Ferraris-tétel ugyanis kimondja, hogy bármelyik lüktető mező (márpedig



7.6. ábra Az álló és a forgórész vele- és elleneforgó mezői a) lüktető mező esetén; b) forgómező esetén

mind az állórész-, mind a forgórész tekercsben folyó szinuszos áram lüktető mezőt hoz létre) felbontható két fele akkora amplitúdójú, egymással szembeforgó mezőre. A többfázisú (a gyakorlatban két- és háromfázisú) rendszerek alkalmazása azért célszerű, mert ezek bizonyos feltételek teljesülése esetén nem lüktető, hanem for-

gómezőt hoznak létre. Ekkor a (7.24)-ben megfogalmazott négy feltétel közül mindig <u>csak</u> <u>egy fog teljesülni</u>. Például a

$$\omega_{\rm v} = +\omega_{\rm vs} - \omega_{\rm vr}, \quad \text{\'es} \quad \sin \delta_{\rm v} \neq 0$$
 (7.26)

feltétel teljesülése esetén (7.6b ábra) nem keletkeznek pulzáló nyomatékok. A (7.25)-ben megfogalmazott többi feltétel ekkor fázissorrend-cserével lehetőséget nyújt a gép forgásirányának megváltoztatására. A (7.26) frekvenciafeltétel kielégítése esetén az állandósult nyomaték az

$$M = -L_{rs} \cdot I_{s} \cdot I_{r} \cdot \sin \delta_{v} = M_{Bh} \cdot \sin \delta_{v} = c_{M} \cdot (\bar{\mathbf{i}}_{s} \times \bar{\mathbf{i}}_{r})$$

$$(7.27)$$



7.7. ábra Kiálló pólusú gép öninduktivitásának változása a) kiálló pólusú forgórész; b) az állórész induktivitás hosszirányban c) az állórész induktivitás keresztirányban d) az állórész induktivitás változása az elfordulás függvényében

összefüggés szerint arányos az állórész- és a forgórész árammal, valamint a közöttük lévő szög szinuszával.  $\{\bar{i}_r - t \text{ és } \bar{i}_s - t \text{ vektoroknak te-} \}$ kintve a nyomaték arányos az  $i_s \times i_r$ vektoriális szorzattal, lásd még ezzel kapcsolatban később a (7.69) összefüggést.} Ezt a 7.8a ábrán felrajzolt nyomatékot szokták hengeres- ill. gerjesztési nyomatéknak is nevezni kiindulva a gép forgó- és állórészének hengeres kialakításából, ill. hogy a képződéséhez a forgórészt is gerjeszteni kell ( $M_{\rm Bh}$  az ilyen esetben fellépő legnagyobb nyomaték, az ún. billenőnyomaték).

A továbbiakban vizsgáljunk meg még egy nyomatékfajtát! Ehhez tételezzük fel, hogy a 7.1a ábrával összehasonlítva a gép forgórésze nem hengeres, hanem ún. kiálló  $p\acute{o}lus\acute{u}$  (7.7 $a\acute{a}bra$ ). Ennek az a jellegzetessége, hogy a forgórész forgása közben az állórészen elhelyezett tekercselés fluxussal kapcsolódó mágneses vezetőképessége az  $\alpha$  szögelfordulás közben változó. Legnagyobb a mágneses vezetőképesség és így az  $L_{\rm d}$  induktivitás akkor, amikor az állórész-tekercs tengelye egybeesik a forgórész *hosszirányú* mágneses tengelyével, az ún. d-iránnyal (7.7 $b\acute{a}bra$ ); legkisebb pedig az erre villamosan merőleges q keresztirányban, amelyhez  $L_{\rm q}$  (zérustól eltérő) induktivitás tartozik. Az induktivitás változását a szögelfordulás függvényében a 7.7 $d\acute{a}br\acute{a}n$  rajzoltuk fel. Láthatóan az állórész induktivitás az

$$l_{\rm s}(\alpha_{\rm v}) = L_0 + \frac{(L_{\rm d} - L_{\rm q})}{2} \cdot \cos 2\alpha_{\rm v} \tag{7.28}$$

összefüggés szerint változik. Ekkor (7.19) és (7.21) felhasználásával:

$$m(t,\alpha_{\rm v}) = i_{\rm s}(t) \cdot i_{\rm r}(t) \cdot \frac{dl_{\rm m}(\alpha_{\rm v})}{d\alpha} + \frac{1}{2}i_{\rm s}^2 \cdot \frac{dl_{\rm s}(\alpha_{\rm v})}{d\alpha}. \tag{7.29}$$

Behelyettesítve az induktivitásokat és elvégezve a differenciálást a pillanatnyi nyomaték:

$$m(t,\alpha_{\rm v}) = -i_{\rm s}(t) \cdot i_{\rm r} \cdot \sin \alpha_{\rm v} + \frac{1}{2}i_{\rm s}^2(t) \cdot (L_{\rm d} - L_{\rm q}) \cdot \sin 2\alpha_{\rm v}. \tag{7.30}$$

Folyjék ismét az állórész tekercselésben  $i_s(t) = I_s \cdot \sin \omega_{vs} t$  áram, a forgórész tekercselésben  $i_r(t) = I_r \cdot \sin \omega_{vr} t$  áram és a forgórész szögelfordulása történjen az  $\alpha_v(t) = p \cdot (\omega t + \delta) = \omega_v t + \delta_v$  időfüggvény szerint. Ezekkel az első tagra a (7.25) összefüggésből a már ismert frekvenciafeltételt, és (7.27) kapcsán ismertetett hengeres nyomatékot kapjuk. A második, a mágneses ellenállás változásából származó, és ezért *reluktancia*nyomatéknak nevezett komponens létrejöttének feltétele:

$$m(t,\alpha_{\rm v}) = \frac{I_{\rm s}^2 \cdot (L_{\rm d} - L_{\rm q})}{2} \cdot \sin^2 \omega_{\rm vs} t \cdot \sin(2\omega_{\rm v} t + 2\delta_{\rm v}) =$$

$$= \frac{I_{\rm s}^2 \cdot (L_{\rm d} - L_{\rm q})}{8} \cdot \begin{cases} 2 \cdot \sin(2\omega_{\rm v}t + 2\delta_{\rm v}) - \\ -\sin[2(\omega_{\rm v} + \omega_{\rm vs})t + 2\delta_{\rm v}] - \sin[2(\omega_{\rm v} - \omega_{\rm vs})t + 2\delta_{\rm v}] \end{cases}$$
(7.31)

(7.31) első tagja csak  $\omega_v = 0$  álló helyzetben nem eredményez pulzáló nyomatékot, a második és harmadik tagja pedig csak ha  $\sin 2\delta_v \neq 0$ , azaz az

$$\omega_{\rm v} = \pm \omega_{\rm vs}$$
, (7.32)

állórész szinkron fordulatszámokon. Ekkor a reluktancianyomaték értéke:

$$M_r(\delta_{\rm v}) = I_{\rm s}^2 \cdot \frac{L_{\rm d} - L_{\rm q}}{8} \cdot \sin 2\delta_{\rm v} = M_{\rm Br} \cdot \sin 2\delta_{\rm v}, \tag{7.33}$$

ahol  $M_{\rm Br}$  a nyomaték maximális értéke. (7.33)-ból látható, hogy a reluktancianyomaték kialakulásának nem feltétele, hogy a forgórész tekercsben áram folyjon (vagyis a forgórészen nem szükséges gerjesztőtekercset elhelyezni). Feltétel viszont, hogy a mágneses



**nyomatékkomponensei** *a)* a hengeres nyomaték; *b)* a reluktancianyomaték *c)* az eredő nyomaték

vezetőképesség d és q irányban különbözzék. Ez a nyomaték  $\sin 2\delta_{\rm v}$  szerint változik (7.8b ábra). Az ilyen elven működő gépek a reluktanciamotorok.

A hengeres- (7.8a ábra) és a reluktancia (7.8b ábra) nyomatékkomponensek az állórész szinkron fordulatszámán kiálló pólusú, kétoldalról gerjesztett gépeknél együtt is felléphetnek (7.8c ábra):

$$M(\delta_{\rm v}) = M_{\rm Bh} \cdot \sin \delta_{\rm v} + M_{\rm Br} \cdot \sin 2\delta_{\rm v}$$
 (7.34)

A 7.1.2. pont elején már megállapítottuk, hogy minden villamos gép állandósult nyomatékának feltétele két együttforgó mező, két összetapadt, azonos pólusszámú pólusrendszer. Ezt egészíti ki a frekvenciafeltétel, amely azt mondja meg, hogy ez milyen forgórész fordulatszámokon lehetséges. A nyomatéki összefüggésekből látszik továbbá, hogy a nyomaték zérustól eltérő értékéhez az szükséges, hogy a két pólusrendszer mágneses tengelyei között szögeltérés legyen.

Vizsgáljuk meg most, hogy az egyes forgógépek hogyan teljesítik az itt megfogalmazott feltételeket! Vizsgálatunkban induljunk ki a (7.26)-ban megfogalmazott  $\omega_{\rm v} = +\omega_{\rm vs} - \omega_{\rm vr}$  frekvenciafeltételből!

Arr <u>Gerjesztett szinkron gépek</u> esetén (amelyek lehetnek hengeres- és kiálló pólusú forgórészűek) a gép forgórészét egyenárammal gerjesztjük, ezért a forgórész mező a forgórész *d*-tengelyéhez rögzített:  $\omega_{\rm vr} = 0$ . Ebben az esetben a frekvenciafeltétel egyedül az

$$\omega_{\rm v} = \omega_0 = \omega_{\rm vs}$$

gerjesztő állórész frekvencia és a póluspárok száma által megszabott *forgórész szinkron szögsebességen* teljesül. Ezért ezt a nyomatékot *szinkron jellegűnek* nevezzük. A forgórész kialakításától függően reluktancia nyomaték is felléphet.

- Reluktancia motoroknál csak az állórészt gerjesztjük, a forgórész tekercs nélküli. A nyomaték képzéséhez kiálló pólusú (d és q irányban eltérő mágneses ellenállású) forgórész-kialakítás szükséges. Az  $\omega_{\rm v} = \omega_0 = \omega_{\rm vs}$  frekvenciafeltétel álló állapotban és szinkron fordulatszámon teljesül (ez a nyomaték is szinkron jellegű).
- **Aszinkron gépek** esetén az állórész által a forgórészbe transzformátorosan átindukált feszültség hatására a forgórészben

$$\omega_{\rm vs} - \omega_{\rm v} = s \cdot \omega_0$$

körfrekvenciájú, az állórész által létrehozott forgómező és a forgórész fordulatszáma közötti fordulatszám-eltéréssel, az s szlippel arányos frekvenciájú feszültség indukálódik. A feszültség azonos szlipfrekvenciájú áramot indít, amely a forgórészhez képest  $\omega_{vs} - \omega_v = s \cdot \omega_0$  körfrekvenciával az állórész mező irányába forgó mezőt hoz létre. Ezzel a frekvenciafeltétel azonosságszerűen teljesül minden fordulatszámon. A forgórészben szinkron fordulatszámon nem indukálódik feszültség (a tekercsekben az együttforgás miatt nincs fluxusváltozás), ezért szinkron fordulatszámon nem keletkezik nyomaték. Az ilyen módon képzett nyomatékot *aszinkron jellegű* nyomatéknak nevezzük. A nyomaték képzéséhez az szükséges, az állórész fluxusra merőleges forgórész áramkomponens-igény miatt a forgórész ellenállásnak zérustól eltérőnek kell lennie.

Egyenáramú gépek esetén mind az állórészt, mind a forgórészt egyenárammal gerjesztjük, ezért az  $\omega_{\rm vs}=0$  és  $\omega_{\rm vr}=0$  feltételek esetén az  $\omega_{\rm v}=+\omega_{\rm vs}-\omega_{\rm vr}=0$  frekvenciafeltétel csak zérus fordulatszámon teljesülhetne. A problémát a kommutátor-kefe együttes mint frekvenciaátalakító oldja meg a  $0\to\omega_{\rm vr}$  frekvenciaátalakítással. (A kommutátor-kefe együttes ugyanis egy olyan frekvenciaátalakító, amelynél a kefékről levehető feszültség frekvenciáját a feszültséget indukáló mező- és a kefék relatív fordulatszáma szabja meg.) Ezzel a frekvenciaátalakítással egyenáramú gépek esetén az  $\omega_{\rm v}=\omega_{\rm vr}$  frekvenciafeltétel minden forgórész fordulatszámon teljesül.

A mechanikus kommutálás további előnye, hogy a forgórész gerjesztést a terheléstől függetlenül az állórész fluxusra merőlegesen rögzíti, és így a nyomaték a  $\sin \delta_{\rm v} = \sin 90^{\circ} = 1$  miatt maximális értékű lesz.

#### 7.2. PARK VEKTOROK

A Park vektorok a háromfázisú mennyiségeket egyetlen tér-idő vektorba foglalják össze, alkalmazásuk különösen a nemszimmetrikus, tranziens viszonyok tanulmányozása esetén előnyös. Több elnevezése is ismeretes: *háromfázisú-vektor, térvektor, Park-Gorev vektor, Rácz-vektor*. A vektorok oszcilloszkóp-, vagy számítógép képernyőjén történő megjelenítésükkel sokszor áttekinthetőbbé teszik a lezajló folyamatokat, mint az időfüggvények. Segítségükkel következtetéseket vonhatunk le a háromfázisú rendszer felharmonikus-tartalmáról, vagy hibáiról (pl. egy fázis szakadása).

#### 7.2.1. Park-vektor alapfogalmak

# 7.2.1.1. A vektor definíciója

A vektorok definíciós egyenleteit az áramvektorra írjuk fel és tulajdonságait az áramvektor elemzése alapján végezzük, de a leírtak a többi fizikailag értelmezhető vektorra: a *gerjesztés*-re, a *feszültség*-re, és a *fluxus*-ra is érvényesek. A Park-vektorokat megkülönböztetésül az eddig használt vektoroktól vastag betűvel jelöljük.

Az áram Park-vektor (a továbbiakban egyszerűen csak áramvektor) definíciós egyenlete:

$$\bar{i} = \frac{2}{3} \cdot \left( i_{\mathbf{a}} + \bar{a} \cdot i_{\mathbf{b}} + \bar{a}^{2} \cdot i_{\mathbf{c}} \right), \tag{7.35}$$

amelyben

$$\bar{a} = e^{j\frac{2\pi}{3}} = -\frac{1}{2} + j\frac{\sqrt{3}}{2} \quad \text{és} \quad \bar{a}^2 = e^{-j\frac{2\pi}{3}} = -\frac{1}{2} - j\frac{\sqrt{3}}{2}$$
 (7.36)

a háromfázisú rendszerek tárgyalásánál is használt (+120°-ot és -120°-ot) forgató), komplex egységvektorok. A vektor nem tartalmazza az  $i_0$  zérus sorrendű (azonos fázisú) összetevőt, mert a mindhárom fázisban fellépő  $i_0$ -t a (7.35) definíciós egyenletbe helyettesítve, abból az  $1+\overline{a}+\overline{a}^2=0$  azonosság miatt kiesik. Ezért a zérus sorrendű összetevőt külön kell figyelembe venni.



7.9. ábra Park vektorok

a) A Park-vektorok értelmezésénél használt koordináta-rendszer;

b) a vetület-szabály és az x-y összetevőkre bontás

A vektoroknál alkalmazott koordinátarendszert és a fázistekercsek *térbeli* elhelyezkedését a 7.9a ábrán rajzoltuk fel. Mivel a Park-vektorok bevezetésénél a fázissorrend ellentétes volt, mint amit a jelenlegi szabvány előír, (7.35)-ben és a továbbiakban megkülönböztetésül, a könyv előző fejezeteiben használt jelölésektől eltérően s-el jelöljük az állórész-, r-el a forgórész mennyiségeket, ill. a, b és c-vel a fázisokat.

#### 7.2.1.2. A vetületszabály

Az alábbi egyenletekben megadott

$$i_{\rm a} = \operatorname{Re}\left[\bar{\boldsymbol{i}}\right], \quad i_{\rm b} = \operatorname{Re}\left[a^{-2} \cdot \bar{\boldsymbol{i}}\right] \quad \text{és} \quad i_{\rm c} = \operatorname{Re}\left[a \cdot \bar{\boldsymbol{i}}\right]$$
 (7.37)

ún. *vetületszabályok* szerint a vektornak az adott fázistekercs tengelyére eső merőleges vetülete az illető fázismennyiségek pillanatértékeit adja. A vetületeket egy adott időpillanatban berajzoltuk a 7.9b ábrába.

A vetületszabály könnyen bizonyítható a definíciós egyenletbe helyettesítéssel. Például az *a* fázisra:

$$\begin{split} i_{\mathbf{a}} &= \mathrm{Re} \Big[ \overline{\boldsymbol{i}} \, \Big] = \mathrm{Re} \left\{ \frac{2}{3} \cdot \left[ i_{\mathbf{a}} + \left( -\frac{1}{2} + j \frac{\sqrt{3}}{2} \right) \cdot i_{\mathbf{b}} + \left( -\frac{1}{2} - j \frac{\sqrt{3}}{2} \right) \cdot i_{\mathbf{c}} \, \right] \right\} = \\ &= \frac{2}{3} \cdot \left[ \frac{3}{2} \cdot i_{\mathbf{a}} - \frac{1}{2} \left( i_{\mathbf{a}} + i_{\mathbf{b}} + i_{\mathbf{c}} \right) \right], \end{split}$$

amely a zérus sorrendű áramok nélkül ( $i_a + i_b + i_c = 0$  miatt)  $i_a$ -val egyenlő.

# 7.2.1.3. A vektor megjelenítése

A vektor láthatóvá tétele, és néha a számítások egyszerűsítése érdekében a vektort célszerű derékszögű x-y komponensekre bontani. (Megjelenítéskor az x koordináta-értékkel az oszcilloszkóp függőleges-, az -y koordinátával pedig a vízszintes eltérítését vezéreljük.) Az x-y komponensekre bontás összefüggései a {a 7.9b ábra és a (7.35) definíciós összefüggésbe helyettesítés alapján  $i_a + i_b + i_c = 0$ -t feltételezve}:

$$\bar{\boldsymbol{i}} = i_x + j \cdot i_y$$
, amelyben  $i_x = \text{Re}[\bar{\boldsymbol{i}}] = i_a$  és  $i_y = \text{Im}[\bar{\boldsymbol{i}}] = \frac{1}{\sqrt{3}} \cdot (i_b - i_c)$ . (7.38)

#### 7.2.1.4. A vonali vektor

Gyakran a háromfázisú rendszer nullavezető nélküli. Ilyenkor a fázisértékek helyett a vonali értékekkel dolgozunk. A térvektorok esetén szokásos vonatkoztatási irányokat csillagkapcsolásra a 7.10a ábra, háromszögkapcsolásra a 7.10b ábra mutatja.

Az ábrák alapján a vonali áramok ill. vonali feszültségek definíciói:

**7.10. ábra Park vektor vonali vonatkozási irányok** *a)* csillagkapcsolás; *b)* háromszögkapcsolás

$$i_{A} = i_{b} - i_{c}, \quad i_{B} = i_{c} - i_{a} \quad \text{és} \quad i_{C} = i_{a} - i_{b};$$
 (7.39)

illetve

$$u_{A} = u_{b} - u_{c}, \quad u_{B} = u_{c} - u_{a} \quad \text{és} \quad u_{C} = u_{a} - u_{b}.$$
 (7.40)

A vonali értékeket a (7.35) definíciós összefüggésbe helyettesítve és elvégezve az átalakításokat a vonali áramvektor:

$$\bar{\boldsymbol{i}}_{v} = \frac{2}{3} \cdot \left( i_{A} + \bar{a} \cdot i_{B} + \bar{a}^{2} \cdot i_{C} \right) = \left( \bar{a}^{2} - \bar{a} \right) \cdot \frac{2}{3} \cdot \left( i_{a} + \bar{a} \cdot i_{b} + \bar{a}^{2} \cdot i_{C} \right)$$

$$\bar{\boldsymbol{i}}_{v} = \left( \bar{a}^{2} - \bar{a} \right) \cdot \bar{\boldsymbol{i}} = -j \cdot \sqrt{3} \cdot \bar{\boldsymbol{i}} . \tag{7.41}$$



7.11. ábra Az A-B-C koordináta-rendszer a vonali vektor pillanatértékeinek fázisvektorból történő meghatározásához

A (7.39) szerint értelmezett vonali vektor tehát 90°-al késik a fázisvektorhoz képest, nagysága pedig a fázisérték  $\sqrt{3}$ -szorosa. A vonali pillanatértékeket bizonyíthatóan megkaphatjuk, ha fázis-vektort a 7.11. ábra szerinti A-B-C tengelyekre vetítjük és  $\sqrt{3}$ -al szorozzuk. Például az  $i_A$  vonali áramra (7.37)-el analóg módon írható:

$$i_{A} = \text{Re}[\bar{i}_{v}] = \text{Re}[-j \cdot \sqrt{3} \cdot \bar{i}] =$$

$$= \sqrt{3} \cdot \text{Im}[\bar{i}] = \sqrt{3} \cdot i_{y} \qquad (7.42)$$

Nullavezető nélküli esetben a megjelenítéshez szükséges x-y komponensek a vonali értékekből számíthatók.

(7.38)-at és (7.39)-et felhasználva:

$$i_{x} = i_{a} = \frac{1}{3} \cdot (i_{C} - i_{B})$$
 és  $i_{y} = \frac{1}{\sqrt{3}} \cdot (i_{b} - i_{c}) = \frac{1}{\sqrt{3}} \cdot i_{A} = -\frac{1}{\sqrt{3}} \cdot (i_{C} + i_{B}).$  (7.43)

(7.43) azt mutatja, hogy az x-y komponens meghatározáshoz elegendő csak az  $i_B$  és  $i_C$  vonali értékek ismerete, illetve tárolása.

#### 7.2.1.5. Szimmetrikus összetevők

Tételezzük fel, hogy egy szimmetrikus háromfázisú, *pozitív sorrendű* rendszer*t* vizsgálunk, melyet az alábbi időbeli egyenletek írnak le:

$$\begin{cases}
i_{aI} = I_{I} \cdot \cos(\omega_{I}t + \varphi_{I}) \\
i_{bI} = I_{I} \cdot \cos(\omega_{I}t + \varphi_{I} - 2\pi/3) \\
i_{cI} = I_{I} \cdot \cos(\omega_{I}t + \varphi_{I} - 4\pi/3)
\end{cases}$$
(7.44)

A (7.44)-ben megadott időfüggvényeket a (7.35) definíciós egyenletbe helyettesítve rövid átalakítások után a pozitív sorrendű áramra az

$$\bar{\boldsymbol{i}}_{\mathrm{I}} = \boldsymbol{I}_{\mathrm{I}} \cdot e^{j\varphi_{\mathrm{I}}} \cdot e^{j\omega_{\mathrm{I}}t} = \bar{\boldsymbol{I}}_{\mathrm{I}} \cdot e^{j\omega_{\mathrm{I}}t} = \bar{\boldsymbol{i}}_{\mathrm{al}}. \tag{7.45}$$

összefüggést kapjuk. Az összefüggés szerint a szimmetrikus, pozitív sorrendű áram Parkvektora megegyezik az a fázis komplex vektorával, azaz változatlan amplitúdóval és  $\omega_I$  szögsebességgel pozitív irányban forog, végpontja kört ír le.

A 7.12a ábrán a pozitív sorrendű vektorrendszert, a 7.12b ábrán a Park-vektort és a végpontja által leírt pályát rajzoltuk fel.



7.12. ábra A pozitív sorrendű rendszer

a) a pozitív sorrendű háromfázisú rendszer; b) a pozitív sorrendű rendszer Park-vektora

Második esetként egy szimmetrikus háromfázisú, *negatív sorrendű* rendszert vizsgálunk, melyet az alábbi időbeli egyenletek írnak le:

$$\begin{cases}
i_{\text{aII}} = I_{\text{II}} \cdot \cos(\omega_{\text{II}}t + \varphi_{\text{II}}) \\
i_{\text{bII}} = I_{\text{II}} \cdot \cos(\omega_{\text{II}}t + \varphi_{\text{II}} + 2\pi/3) \\
i_{\text{cII}} = I_{\text{II}} \cdot \cos(\omega_{\text{II}}t + \varphi_{\text{II}} + 4\pi/3)
\end{cases}.$$
(7.46)



7.13. ábra A negatív sorrendű rendszer

a) a negatív sorrendű háromfázisú rendszer; b) a negatív sorrendű rendszer Park-vektora

A (7.46)-ben megadott időfüggvényeket a (7.35) definíciós egyenletbe helyettesítve rövid átalakítások után a negatív sorrendű áramra az

$$\bar{\boldsymbol{i}}_{\mathrm{II}} = \boldsymbol{I}_{\mathrm{II}} \cdot e^{-j\varphi_{\mathrm{II}}} \cdot e^{-j\omega_{\mathrm{I}}t} = \bar{\boldsymbol{I}}_{\mathrm{II}}^* \cdot e^{-j\omega_{\mathrm{I}}t} = \bar{\boldsymbol{i}}_{\mathrm{aII}}^*$$
(7.47)

összefüggést kapjuk. Az összefüggés szerint a szimmetrikus, negatív sorrendű áram Parkvektora megegyezik az *a* fázis komplex vektorának konjugáltjával; amely változatlan amplitúdóval és  $\omega_1$  szögsebességgel negatív irányban forog, így végpontja kört ír le. A 7.13a ábrán a negatív sorrendű vektorrendszert, a 7.13b ábrán a Park-vektort és a végpontja által leírt pályát rajzoltuk fel.

*Aszimmetrikus üzemállapotban* az összetevők együtt lépnek fel és a vektor lineáris definíciós egyenlete miatt szuperponálhatók:

$$\bar{\boldsymbol{i}} = \bar{\boldsymbol{i}}_{\mathrm{I}} + \bar{\boldsymbol{i}}_{\mathrm{II}} = \bar{\boldsymbol{i}}_{\mathrm{I}} = \boldsymbol{I}_{\mathrm{I}} \cdot e^{j\varphi_{\mathrm{I}}} \cdot e^{j\omega_{\mathrm{I}}t} + \boldsymbol{I}_{\mathrm{II}} \cdot e^{-j\varphi_{\mathrm{II}}} \cdot e^{-j\omega_{\mathrm{I}}t} = \bar{\boldsymbol{I}}_{\mathrm{I}} \cdot e^{j\omega_{\mathrm{I}}t} + \bar{\boldsymbol{I}}_{\mathrm{II}}^* \cdot e^{-j\omega_{\mathrm{I}}t}$$

$$(7.48)$$

Az eredmény egy olyan vektor, melynek végpontja elliptikus pályán mozog (7.14a ábra). Az ellipszis főtengelye a pozitív-, ill. a negatív sorrendű összetevők  $\left|I_{\rm I}+I_{\rm II}\right|$  összegével-, kistengelye pedig az összetevők  $\left|I_{\rm I}-I_{\rm II}\right|$  különbségével arányos.



7.14. ábra Park vektorok

a) aszimmetrikus üzemállapot Park vektora; b) Park-vektor végpontja által leírt pálya a b-fázis szakadása esetén

Amennyiben az egyik fázis (pl. a 7.14b ábrán a b fázis) szakadása miatt a fázisban nem folyik áram, a pozitív- és a negatív sorrendű összetevő egyenlő értékű lesz. Ekkor a vetületszabályból adódóan a vektor egy olyan egyenessé fajul, amely a szakadt fázis tengelyére merőleges.

# 7.2.1.6. A háromfázisú hatásos teljesítmény

A háromfázisú rendszer pillanatnyi hatásos teljesítménye a



7.15. ábra A háromfázisú pillanatnyi teljesítmény számítása a feszültség- és az áram Park vektorok x-y összetevőiből

$$p = u_{\mathbf{a}} \cdot i_{\mathbf{a}} + u_{\mathbf{b}} \cdot i_{\mathbf{b}} + u_{\mathbf{c}} \cdot i_{\mathbf{c}} \tag{7.49}$$

összefüggésből számítható. Ez kifejezhető az  $\overline{u}$  feszültség-, és az  $\overline{i}$  áram térvektor skaláris szorzataként is:

$$p = \frac{3}{2} \cdot \overline{\boldsymbol{u}} \cdot \overline{\boldsymbol{i}} + 3 \cdot u_0 \cdot i_0, \qquad (7.50)$$

ahol  $3 \cdot u_0 \cdot i_0$  a pillanatnyi zérus sorrendű teljesítmény (a továbbiakban feltételezzük, hogy nincs zérus sorrendű teljesítmény). A (7.50) összefüggés akár a definíciós képletbe helyettesítéssel, akár a vetületszabállyal igazolható. A térvektorok skaláris szorzata:

$$\overline{u} \cdot \overline{i} = \operatorname{Re} \left[ \overline{u} \cdot \overline{i}^* \right] = \operatorname{Re} \left[ \overline{u}^* \cdot \overline{i} \right]. \tag{7.51}$$

A szorzat a (7.51) összefüggés szerint komplex alakban is számítható. Mivel a Parkvektor bevezetése nem változtatja meg sem a vektor amplitúdóját, sem a feszültségek és az áramok közötti szöget, a skaláris szorzat a vektorok bevezetése után is változatlan értékű. A szorzat bármilyen koordináta-rendszerben számítható. Példaként határozzuk meg a háromfázisú pillanatnyi teljesítményt az x-y álló, derékszögű koordináta-rendszerben! A skaláris szorzat:

$$p = \frac{3}{2} \cdot \mathbf{u} \cdot \mathbf{\dot{i}} = \frac{3}{2} \cdot u \cdot i \cdot \cos(\varphi_{\mathbf{u}} - \varphi_{\mathbf{i}}) = \frac{3}{2} \cdot u \cdot i \cdot (\cos\varphi_{\mathbf{u}} \cdot \cos\varphi_{\mathbf{i}} + \sin\varphi_{\mathbf{u}} \cdot \sin\varphi_{\mathbf{i}})$$

Ebbe behelyettesítve a feszültség- és áram térvektorok x-y tengelyre eső vetületét (lásd a 7.15. ábrát) a háromfázisú pillanatnyi teljesítmény:

$$p = \frac{3}{2} \cdot u \cdot i \left( \frac{u_x}{u} \cdot \frac{i_x}{i} + \frac{u_y}{u} \cdot \frac{i_y}{i} \right) = \frac{3}{2} \cdot (u_x \cdot i_x + u_y \cdot i_y)$$
 (7.52)

### 7.2.1.7. A koordináta-transzformáció

Amikor a villamos gépeket tanulmányozzuk, sokszor leegyszerűsíti a viszonyokat és

 $\operatorname{Re}^{\triangleleft}$   $\operatorname{Re}$   $x^{\triangleleft}$   $y^{\triangleleft}$   $w_{k}$   $\operatorname{Im}^{\vee}$ 

segít a megértésben, ha a vizsgálatokat egy közös (pl. a forgórésszel együtt-, vagy szinkron szögsebességgel forgó) koordináta-rendszerben végezzük.

Tételezzük fel, hogy az új  $x^4 - y^4$  derékszögű koordináta-rendszer a természetes (pl. x-y álló) koordináta-rendszerhez képesti szögelfordulása  $\gamma_k = \omega_k t$ , szögsebessége  $\omega_k$ . A 7.16. ábra alapján látható, hogy az új koordináta-rendszer a természeteshez képest  $\gamma_k$  szöggel előbbre jár, így az áram Park-vektor az új rendszerben:

$$\bar{i}^{\triangleleft} = \bar{i} \cdot e^{-j\gamma_{k}} \tag{7.53}$$

Visszatranszformáláskor fordított irányú lépést kell végrehajtanunk:

7.16. ábra Vektortranszformáció más szögsebességgel forgó koordináta-rendszerbe

$$\bar{\boldsymbol{i}} = \bar{\boldsymbol{i}}^{\triangleleft} \cdot e^{j\gamma_{k}} . \tag{7.54}$$

A (7.53) és a (7.54) összefüggésekből az is látható, hogy a koordináta oda- és visszatranszformációk nem változtatják meg sem a vektor amplitúdóját, sem a fázisszögét.

#### 7.2.2. A Park-vektorok alkalmazása

# 7.2.2.1. Aszinkron és szinkron gépek feszültség- és fluxus-egyenletei térvektoros alakban

A háromfázisú szimmetrikus felépítésű forgógép állórészének feszültségegyenletei álló (természetes) koordináta-rendszerben felírva:

$$u_{\rm sa} = i_{\rm sa} \cdot R_{\rm l} + \frac{d\psi_{\rm sa}}{dt}, \quad u_{\rm sb} = i_{\rm sb} \cdot R_{\rm l} + \frac{d\psi_{\rm sb}}{dt} \quad \text{és} \quad u_{\rm sc} = i_{\rm sc} \cdot R_{\rm l} + \frac{d\psi_{\rm sc}}{dt}$$
(7.55)

Úgy, ahogy az előző pontban a (7.35) összefüggésben az áramokkal tettük, felírható az állórész feszültségek és fluxusok Park-vektora:

$$\overline{u}_{s} = \frac{2}{3} \cdot \left( u_{sa} + \overline{a} \cdot u_{sb} + \overline{a}^{2} \cdot u_{sc} \right), \text{ \'es}$$
 (7.56)

$$\overline{\psi}_{s} = \frac{2}{3} \cdot \left( \psi_{sa} + \overline{a} \cdot \psi_{sb} + \overline{a}^{2} \cdot \psi_{sc} \right). \tag{7.57}$$

Ezekkel az állórész (7.55)-ben megadott feszültségegyenletei Park-vektoros alakban:

$$\overline{\boldsymbol{u}}_{s} = \overline{\boldsymbol{i}}_{s} \cdot R_{1} + \frac{d\overline{\boldsymbol{\psi}}_{s}}{dt} \tag{7.58}$$

Hasonló egyenlet írható fel a motor forgórészére a forgórésszel együttforgó (a forgórész szempontjából az  $\omega$  szögsebességgel forgó koordináta rendszer a természetes) koor-

dináta rendszerben:



7.17. ábra Vektortranszformáció a szinkron szögsebességgel forgó közös rendszerbe

 $\overline{\boldsymbol{u}}_{\mathrm{r}} = \overline{\boldsymbol{i}}_{\mathrm{r}} \cdot R_2 + \frac{d\overline{\boldsymbol{\psi}}_{\mathrm{r}}}{dt} \tag{7.59}$ 

A gép eredő fluxusát meghatározó gerjesztések azonban csak egy közös koordináta rendszerben öszszegezhetők. Aszinkron gépnél a forgórész tekercselésben folyó szlipfrekvenciás áramok a forgórészhez képest szlipfrekvenciával az állórész mező irányába forgó mezőt hoznak létre, így a forgórész által létrehozott mező is  $\omega_0$  szinkron szögsebességgel forog.

Ezért célszerű közös koordináta-rendszernek az  $\omega_0$  szinkron szögsebességgel forgót választani (7.17.

*ábra*), ami szinkron gépeknél egyébként is a forgórészre nézve természetes. Felhasználva a (7.53) transzformációs összefüggést a (7.58) állórész egyenletet  $e^{-j\omega_0 t}$ -vel, a (7.59) forgórész egyenletet  $e^{-j(\omega_0-\omega)t}$ -vel kell szorozni. Ezekkel az aszinkron és szinkron gépekre is érvényes álló- és forgórész egyenletek szinkron szögsebességgel forgó koordináta-rendszerben ( $^{\triangleleft}$  jelöléssel különböztetve meg az új rendszerben felírt egyenleteket):

$$\vec{u}_{s}^{\triangleleft} = \vec{i}_{s}^{\triangleleft} \cdot R_{1} + \frac{d\vec{\psi}_{s}^{\triangleleft}}{dt} + j \cdot \omega_{0} \cdot \vec{\psi}_{s}^{\triangleleft} \qquad \text{és}$$
 (7.60)

$$\vec{u}_{r}^{\triangleleft} = \vec{i}_{r}^{\triangleleft} \cdot R_{2} + \frac{d\vec{\psi}_{r}^{\triangleleft}}{dt} + j \cdot (\omega_{0} - \omega) \cdot \vec{\psi}_{r}^{\triangleleft}.$$
 (7.61)



7.18. ábra Helyettesítő vázlat a közös, szinkronforgó koordináta rendszerben

Az álló- és forgórészkör (teljes) induktivitásai

$$L_{\rm s}=L_{\rm m}+L_{\rm s1} \quad {\rm \acute{e}s}$$
 
$$L_{\rm r}=L_{\rm m}+L_{\rm s2}^{'}\,,$$
 amelyben  $L_{\rm s1}$  az állórész szórási-;  $L_{\rm s2}$  a for-

amelyben  $L_{\rm s1}$  az állórész szórási-;  $L_{\rm s2}$  a forgórész szórási-;  $L_{\rm m}$  az állórész és a forgórész tekercsek közötti kölcsönös (főmező) induktivitás. A szinkronforgó koordinátarendszerbe transzformálás után a (7.60) és

(7.61) egyenletek utolsó tagjaként (a differenciálásból adódóan) megjelentek a *forgási* feszültségek.

A közös koordináta-rendszerben a gerjesztések alapján most már meghatározhatók az állórész és forgórész fluxusok (lásd a 7.18. ábrán a vasveszteség elhanyagolásával felrajzolt helyettesítő vázlatot):

$$\overline{\psi}_{s}^{\triangleleft} = L_{s} \cdot \overline{\boldsymbol{i}}_{s}^{\triangleleft} + L_{m} \cdot \overline{\boldsymbol{i}}_{r}^{\triangleleft} = L_{s1} \cdot \overline{\boldsymbol{i}}_{s}^{\triangleleft} + L_{m} \cdot \left(\overline{\boldsymbol{i}}_{s}^{\triangleleft} + \overline{\boldsymbol{i}}_{r}^{\triangleleft}\right) = L_{s1} \cdot \overline{\boldsymbol{i}}_{s}^{\triangleleft} + L_{m} \cdot \overline{\boldsymbol{i}}_{m}^{\triangleleft}$$

$$(7.63)$$

$$\overline{\boldsymbol{\psi}}_{r}^{\triangleleft} = L_{m} \cdot \overline{\boldsymbol{i}}_{s}^{\triangleleft} + L_{r}^{'} \cdot \overline{\boldsymbol{i}}_{r}^{' \triangleleft} = L_{s2} \cdot \overline{\boldsymbol{i}}_{r}^{' \triangleleft} + L_{m} \cdot \left(\overline{\boldsymbol{i}}_{s}^{\triangleleft} + \overline{\boldsymbol{i}}_{r}^{' \triangleleft}\right) = L_{s2}^{'} \cdot \overline{\boldsymbol{i}}_{r}^{' \triangleleft} + L_{m} \cdot \overline{\boldsymbol{i}}_{m}^{\triangleleft}$$

$$(7.64)$$

A (7.60)...(7.64)  $\omega_0$  szögsebességgel forgó rendszerben felírt egyenletek többek között az aszinkron gépek ún. mezőorientált szabályozásának alapegyenletei. A módszernél ezen túlmenően a szinkronforgó koordináta-rendszert úgy rögzítik, hogy annak reális tengelye a forgórész gerjesztési tengelyével, a d-tengellyel essen egybe. Ezzel a választással a forgórész d irányú árama adja a nyomatékképzésben résztvevő fluxus létrehozásához szükséges gerjesztést, q irányú árama pedig a nyomaték szempontjából hatásos forgórész áramot. Ezzel a gépet a szabályozástechnikában kedvelt egyenáramú gépre vezetik vissza, amelynél egymástól függetlenül tudjuk szabályozni a fluxust és a nyomatékképzéshez szükséges armatúraáramot. A módszer hátránya bonyolultsága. A gyors mikroszámítógépek (Digitális Szignál Processzorok, angolból rövidítve DSP-k) egyre olcsóbbá válása és a koordináta transzformációkra kifejlesztett céláramkörök azonban egyre több frekvenciaváltóban teszik lehetővé a mezőorientáció alkalmazását.

A következőkben a (7.60)...(7.64) egyenletek alapján gyakorlásképpen szinkronforgó koordináta-rendszerben (elhagyva a <sup>d</sup> jelölést) felírjuk az <u>aszinkron gép</u> állandósult állapotra érvényes térvektoros egyenletét és felrajzoljuk a helyettesítő vázlatot.

Állandósult állapotban  $\frac{d\overline{\psi}_s}{dt}$  =0 és  $\frac{d\overline{\psi}_r}{dt}$  =0, valamint felhasználva még  $\omega_0$ – $\omega$ = $s\cdot\omega_0$  összefüggést írható:

$$\overline{\boldsymbol{u}}_{s} = \overline{\boldsymbol{i}}_{s} \cdot R_{1} + j \cdot \omega_{0} \cdot \overline{\boldsymbol{\varPsi}}_{s}, \quad \text{és}$$
 (7.65)

$$\overline{\boldsymbol{u}}_{r} = \overline{\boldsymbol{i}}_{r} \cdot R_{1} + j \cdot s \cdot \omega_{0} \cdot \overline{\boldsymbol{\Psi}}_{r}. \tag{7.66}$$

Rövidrezárt forgórészű motorok esetén  $\mathbf{u}_r = 0$ . A (7.66) egyenletet az s szlippel végigosztva és az állórészre redukálva:

$$\frac{\vec{u}_{\rm r}}{s} = 0 = \vec{i}_{\rm r} \cdot \frac{R_2}{s} + j \cdot \omega_0 \cdot \overline{\Psi}_{\rm r}. \tag{7.67}$$



7.19. ábra Rövidrezárt aszinkron gép állandósult üzemben érvényes helyettesítő vázlata térvektoros alakban

A (7.65) és (7.67) egyenletek alapján a 7.19. ábrán térvektorokkal felrajzoltuk a rövidrezárt forgórészű motor állandósult állapothoz tartozó helyettesítő vázlatát.

Ehhez hasonlóan (7.60...7.64) egyenletekből kiindulva szinkronforgó koordináta-rendszerben felírjuk a <u>hengeres forgórészű szinkron gép</u> állandósult állapotban ér-

vényes térvektoros egyenleteit és felrajzoljuk az armatúrakör helyettesítő vázlatát.

Állandósult állapotban  $\frac{d\overline{\psi}_s}{dt} = 0$  és  $\frac{d\overline{\psi}_r}{dt} = 0$ ; és mivel  $\omega = \omega_0$ , (7.61) utolsó tagja

kiesik, írható:

$$\overline{\mathbf{u}}_{s} = \overline{\mathbf{i}}_{s} \cdot R_{s} + j \cdot \omega_{0} \cdot \overline{\mathbf{\Psi}}_{s}, \quad \text{és}$$
 (7.68)

$$\overline{u}_{r} = \overline{i}_{r} \cdot R_{r}. \tag{7.69}$$

(7.63) alapján az állórész fluxusa:

$$\overline{\boldsymbol{\Psi}}_{s} = L_{s} \cdot \bar{\boldsymbol{i}}_{s} + L_{a} \cdot (\bar{\boldsymbol{i}}_{s} + \bar{\boldsymbol{i}}_{r}) = L_{s} \cdot \bar{\boldsymbol{i}}_{s} + L_{m} \cdot \bar{\boldsymbol{i}}_{s} + L_{m} \cdot \bar{\boldsymbol{i}}_{r}. \tag{7.70}$$

A (7.70) egyenletekben az  $\bar{i}_r$  forgórészáram csak a gerjesztőáramtól függ, a gerjesztőáramnak az állórészre redukált értéke. A redukciót a következő összefüggés alapján végezhetjük (levezetése megtalálható [19]-ben):

$$I_{\rm r}' = \frac{\sqrt{2}}{3} \cdot \frac{N_{\rm r} \cdot \xi_{\rm r}}{N_{\rm s} \cdot \xi_{\rm s}} \cdot I_{\rm g} \,, \tag{7.71}$$

amelyben  $N_s$  és  $N_r$  az armatúra- ill. a gerjesztőtekercs menetszáma;  $\xi_s$  és  $\xi_r$  a tekercselési tényezők. Ez a forgórész egyenáram az armatúrakörben váltakozó áramot hoz létre, amelynek értéke a terheléstől független.

A szinkron gépnél használt jelölések:  $R_1 = R_a$ ;  $L_{s1} = L_s$ ;  $L_{m} = L_a$  és  $L_{d} = L_a + L_s$ . (7.70)-et (7.68)-ba helyettesítve:

$$\overline{\boldsymbol{u}} = \overline{\boldsymbol{i}}_{a} \cdot R_{a} + j \cdot \omega_{0} \cdot L_{s} \cdot \overline{\boldsymbol{i}}_{a} + j \cdot \omega_{0} \cdot L_{a} \cdot \overline{\boldsymbol{i}}_{a} + j \cdot \omega_{0} \cdot L_{a} \cdot \overline{\boldsymbol{i}}_{r} = . \tag{7.72}$$

(7.72) alapján felrajzolható a szinkron gép állandósult állapotra érvényes térvektoros helyettesítő vázlata (7.20a ábra). Az egyenlet átrendezett alakja:



7.20. ábra Szinkron gép állandósult üzemben érvényes helyettesítő vázlata térvektoros alakban

$$\overline{\boldsymbol{u}} = \overline{\boldsymbol{i}}_{a} \cdot R_{a} + j \cdot \omega_{0} \cdot (L_{s} + L_{a}) \cdot \overline{\boldsymbol{i}}_{a} + j \cdot \omega_{0} \cdot L_{a} \cdot \overline{\boldsymbol{i}}_{r} = 
= \overline{\boldsymbol{i}}_{a} \cdot R_{a} + j \cdot \omega_{0} \cdot (L_{s} + L_{a}) \cdot \overline{\boldsymbol{i}}_{a} + \overline{\boldsymbol{u}}_{p}.$$
(7.73)

a megszokott helyettesítő vázlatot adja (7.20b ábra).

A teljesség kedvéért összefoglaljuk a nyomaték képleteket is (levezetését lásd az ebben a témakörben alapműnek számító [19] 4.2.8.4 fejezetében):

$$m = c \cdot p \cdot (\overline{\psi}_{s} \times \overline{i}_{s}) = -c \cdot p \cdot (\overline{\psi}_{r} \times \overline{i}_{r})$$
 és (7.74)

$$m = c \cdot p \cdot L_{\rm m} \cdot (\bar{i}_{\rm r} \times \bar{i}_{\rm s}) \tag{7.75}$$

ahol p a póluspárok száma, a c konstans értéke c=3/2 háromfázisú-, és c=1 kétfázisú gépekre.

#### 7.2.2.2. A fluxusvektor és a nyomaték időfüggvényének mérése

A (7.58) térvektoros állórész feszültségegyenlet átrendezett alakja lehetőséget biztosít az állórész fluxusvektor mérésére:

$$\overline{\boldsymbol{\Psi}}_{s} = \int_{0}^{t} (\overline{\boldsymbol{u}}_{s} - \overline{\boldsymbol{i}}_{s} \cdot \boldsymbol{R}_{s}) dt + \overline{\boldsymbol{\Psi}}_{0}$$
 (7.76)

(7.70) szerint a fluxusvektor meghatározásához az állórész feszültségből először le kell vonni az állórész ellenálláson eső feszültséget, majd az így kapott indukált feszültséget integrálni kell és végül hozzáadni a kiindulási feltételt.



7.21. ábra A nyomaték számítása az állórész áram- és a fluxus térvektor x-y komponenseiből

A 7.21a ábra aszinkron motor esetén, egy adott pillanatban mutatja a  $\overline{\psi}_s$  és  $\overline{i}_s$  vektorok térbeli elhelyezkedését. A nyomaték pillanatértéke (7.74) szerint a  $\overline{\psi}_s$  az állórész fluxus és az  $\overline{i}_s$  állórészáram vektoriális szorzatából határozható meg:

$$m = c \cdot p \cdot (\overline{\boldsymbol{\psi}}_{s} \times \overline{\boldsymbol{i}}_{s}). \tag{7.77}$$

Az ezzel az eljárással kapott nyomaték csak a vasveszteség elhanyagolása miatt nagyobb a valóságosnál, ami viszont számításba vehető.

A vektoriális szorzat a  $\overline{\psi}_s$  fluxus- és az  $\overline{i}_s$  áram térvektor 7.21b ábra alapján x-y komponenseire bontott értékeiből:

$$\begin{split} &(\overline{\psi}_{s} \times \overline{\boldsymbol{i}}_{s}) = \psi \cdot i \cdot \sin \delta = \psi \cdot i \cdot \sin \delta = \psi \cdot i \cdot \sin (\alpha - \beta) = \\ &= \psi \cdot i \cdot \left( \sin \alpha \cdot \cos \beta - \cos \alpha \cdot \sin \beta \right) = \psi \cdot i \cdot \left( \frac{i_{y}}{i} \cdot \frac{\psi_{x}}{\psi} - \frac{i_{x}}{i} \cdot \frac{\psi_{y}}{\psi} \right). \end{split}$$

Ezt behelyettesítve a (7.71) összefüggésbe a pillanatnyi nyomaték:

$$m = c \cdot p \cdot (\overline{\psi}_{s} \times \overline{i}_{s}) = c \cdot p \cdot (\psi_{x} \cdot i_{y} - \psi_{y} \cdot i_{x})$$

$$(7.78)$$

Ezen az elven méri a nyomatékot a BME Villamosgépek Tanszéken kifejlesztett nyomatékmérő berendezés [16], [25]. A készülék tranziens üzemállapotban (pl. félvezetős táplálás esetén) is használható, a nyomatékméréshez nem szükséges mérleggép és erőmérő cella illetve nyomatékmérő tengely.

# 7.3. ELLENŐRZŐ KÉRDÉSEK

- 1. Definiálja a mágneses energia fogalmát!
- 2. Definiálja a koenergia energia fogalmát!
- 3. Mire fordítódik egytekercses esetben a tekercsbe betáplált villamos energia?
- 4. Hogyan számítható ki linearizált esetben a nyomaték, ha a változás közben a tekerccsel kapcsolódó fluxus állandó?
- 5. Hogyan számítható ki linearizált esetben a nyomaték, ha a változás közben a tekercs árama állandó (áramkényszer)?
- 6. Linearizált esetben hogyan számítható ki egy egyoldalról táplált villamos gép nyomatéka a tekercsben tárolt mágneses-, illetve a koenergiából?
- 7. Mit mond ki a frekvenciafeltétel?
- 8. Mit mond ki a Ferraris tétel?
- 9. Definiálja a Park-vektor fogalmát!
- 10. Milyen összetevőt nem tartalmaz a Park-vektor?
- 11. Mit mond ki Park-vektorok esetén a vetület szabály?
- 12. Definiálja a vonali Park-vektort!
- 13. Hogyan jelenítjük meg a Park-vektort?
- 14. Milyen helygörbét ír le, és milyen irányban forog a Park vektor szimmetrikus háromfázisú rendszer esetén?
- 15. Milyen helygörbét ír le az áram Park-vektor, ha egy háromfázisú rendszer valamelyik fázisa szakadt?
- 16. Milyen helygörbét ír le az áram Park-vektor, ha a háromfázisú rendszer nem szimmetrikus (eltérő értékű pozitív- és negatív sorrendű összetevőt is tartalmaz)?
- 17. Hogy számítható ki a két összetevő értéke nem szimmetrikus háromfázisú rendszer esetén?
- 18. Mit nevezünk levélgörbének?
- 19. Hogyan számítható ki a háromfázisú hatásos teljesítmény a Park-vektor összetevők segítségével?
- 20. Hogyan határozható meg az állórész fluxusvektor a feszültségvektor és a gépparaméterek ismeretében?
- 21. Hogyan számítható ki a nyomaték az áram- és a fluxus térvektor összetevők segítségével?

# JELÖLÉSEK JEGYZÉKE

- a a áttétel, kommutátoros tekercselés ágpárainak a száma;  $a_1$ ,  $a_2$  a primer- és szekunder tekercselés párhuzamos ágainak száma
- A A felület, keresztmetszet, kerületi áram, gyorsító energia;  $A_{\rm f}$  fog tiszta vaskeresztmetszete;  $A_{\rm h}$  horony keresztmetszete
- b sávszélesség;  $b_{\rm i}$  ideális pólusív;  $b_{\rm k}$  kefeszélesség;  $b_{\rm p}$  pólustörzs szélessége;  $b_{\rm sp}$  segédpólussaru szélessége  $b_{\rm sza}$  és  $b_{\rm szp}$  radiális szellőzőrések szélessége az armatúrában, illetve a póluskerékben
- B indukció;  $B_{\rm ak}$  armatúrakoszorú indukciója,  $B_{\rm f}$  valóságos fogindukció;  $B_{\rm f}$  látszólagos fogindukció;  $B_{\rm p}$  pólustörzs indukciója;  $B_{\delta}$  légrésindukció;  $B_{\delta}$  illesztési légrés indukciója;  $B_{\delta a}$  légrésindukció a geomatriai semleges vonalban segédpólus nélkül;  $B_{\delta k}$  közepes légrésindukció;  $B_{\delta m}$  maximális légrésindukció;  $B_{\delta m}$  légrésindukció a segédpólus alatt
- c c horonyszáj szélessége;  $c_{\rm a}$  és  $c_{\rm p}$  horonyszáj szélessége az armatúrában, illetve a pólusokban; c párhuzamos szálak száma a tekercselésekben
- d d a hosszirány jelölése
- D  $D_{\rm a}$  armatúraátmérő;  $D_{\rm k}$  kommutátorátmérő;  $D_{\rm pk}$  póluskoszorú átmérője
- E villamos térerősség; erősítési tényező
- f frekvencia; fogszélesség;  $f_{\rm I}$  hullámos áram formatényezője;  $f_{\rm I}$  lengési frekvencia;  $f_{\rm r}$  rezonanciafrekvencia
- *F* erő, formatényező
- G grafit; súly
- $h \hspace{1cm} h_{\mathrm{pk}}\hspace{0.1cm}$  póluskoszorú,  $h_{\mathrm{ak}}\hspace{0.1cm}$  az aramatúrakoszorú sugárirányú mérete
- H mágneses térerősség;  $H_{\rm ak}$  mágneses térerősség az armatúrakoszorúban;  $H_{\rm f}$  mágneses térerősség a fogban;  $H_{\rm m}$  mágneses térerősség állandó mágnesben;  $H_{\rm p}$  mágneses térerősség a pólusban;  $H_{\rm pk}$  mágneses térerősség a póluskoszorúban;  $H_{\rm sz}$  mágneses térerősség a széles fogban;  $H_{\rm v}$  mágneses térerősség a vasban;  $H_{\delta}$  mágneses térerősség a légrésben;  $H_{\delta}$  mágneses térerősség az illesztési légrésben

- i az áram pillanatértéke;  $i_k$  a kommutáló tekercs árama;  $i_{\rm azm}$  rövidzárlati armatúraáram váltakozó összetevőjének csúcsértéke;  $i_{\rm az}^*$  rövidzárlat utáni armatúraáram pillanatértéke;  $i_{\rm gz}^*$  rövidzárlat utáni gerjesztőáram pillanatértéke; i a mechanikai áttétel
- $I_{
  m a}$  armatúraáram;  $I_{
  m ág}$  ágáram kommutátoros forgórészben;  $I_{
  m ad}$  armatúraáram hosszirányú összetevője;  $I_{
  m amax}$  legnagyobb armatúraáram indításkor;  $I_{
  m amin}$  legkisebb armatúraáram indításkor;  $I_{
  m an}$  névleges armatúraáram;  $I_{
  m aq}$  armatúraáram keresztirányú összetevője;  $I_{
  m az}$  állandósult rövidzárási áram;  $I_{
  m az}$  rövidzárlat utáni tranziens áram váltakozó összetevőjének effektív értéke;  $I_{
  m az}$  rövidzárlat utáni szubtranziens áram váltakozó összetevőjének effektív értéke;  $I_{
  m eff}$  rövidzárlati áram egyenáramú összetevőjének a kezdeti értéke;  $I_{
  m eff}$  hullámos áram effektív értéke;  $I_{
  m g}$  gerjesztőáram;  $I_{
  m d}$  hullámos áram középértéke;  $I_{
  m ko}$  kompenzáló tekercselés áram;  $I_{
  m gy}$  gyűrűáram;  $I_{
  m sp}$  segédpólustekercselés árama;  $I_{
  m r}$  rúdáram;  $I_{
  m v}$  vezérlőáram, vasveszteségi áram;  $I_{
  m l}$  és  $I_{
  m 2}$  primer, ill. szekunder áram;  $I_{
  m 0}$  üresjárási áram;  $I_{
  m n}$  névleges áram;  $I_{
  m t}$  terhelőáram;  $I_{
  m z}$  rövidzárási áram
- J J jósági tényező; J tehetetlenségi nyomaték
- k csillapítási tényező, a kompenzáltság mértéke;  $k_{\rm c}$  Carter-tényező;  $k_{\rm ca}$  és  $k_{\rm cp}$  az armatúra-, illetve a pólusok adataival számított Carter-tényező;  $k_{\rm csp}$  a segédpólus légréssel számított Carter-tényező;  $k_{\rm d}$  és  $k_{\rm q}$  tényező a hatásos hosszirányú, illetve keresztirányú armatúragerjesztés számításához;  $k_{\rm h}$  horonyvezetési tényező;  $k_{\rm v}$  vaskitöltési tényező;  $k_{\rm f}$  formatényező
- K K kommutátorszeletek száma;  $K_{\rm a}$  armatúrafurat köbtartalma;  $V_{\rm a}$  a forgórész köbtartalma
- $l_{\rm a}$  armatúrahossz;  $l_{\rm gk}$  gerjesztőtekercs közepes menethossza;  $l_{\rm i}$  ideális armatúrahossz;  $l_k$  közepes menethossz;  $l_{\rm p}$  pólushossz;  $l_{\rm pk}$  póluskoszorú tengelyirányú mérete;  $l_{\rm s}$  segédpólussaru hossza;  $l_t$  közepes tekercsfejhossz;  $l_{\rm v}$  tiszta vashossz
- L önindukciós tényező;  $L_{\rm a}$  armatúra induktivitása;  $L_{\rm ak}$  armatúrakoszorú közepes erővonalhossza;  $L_{\rm f}$  fog közepes erővonalhossza; fojtótekercs induktivitása;  $L_{\rm g}$  gerjesztőkör induktivitása;  $L_{\rm m}$  kölcsönös induktivitás, közepes erővonalhossza állandó mágnesben;  $L_{\rm p}$  pólus közepes erővonalhossza;  $L_{\rm pk}$  póluskoszorú közepes erővonalhossza;  $L_{\rm s}$  szórási induktivitás, állórész induktivitás;  $L_{\rm r}$  forgórész induktivitás;  $L_{\rm sh}$  horonyszórási induktivitás;  $L_{\rm sz}$  széles fog sugárirányú mérete;  $L_{\rm t}$  egy tekercs induktivitása

- m fázisszám, nyomaték-időfüggvény, járatok száma, tömeg, fokozatok száma
- M nyomaték; kölcsönös induktivitás;  $M_{\rm B}$  billenőnyomaték;  $M_{\rm M}$  motor nyomatéka;  $M_{\rm S}$  szinkronozó nyomaték;  $M_{\rm T}$  terhelőnyomaték;  $M_{\rm T0}$  statikus terhelőnyomaték (tengelyen);  $M_{\rm v}$  villamos nyomaték;  $M_{\rm v0}$  statikus villamos nyomaték;  $M_{\rm d}$  tömeggyorsítási nyomaték
- n n fordulatszám;  $n_{sz}$  szellőzőrések száma;  $n_0$  szinkron fordulatszám
- N menetszám; fázisonkénti menetszám;  $N_{\rm g}$  gerjesztőtekercs menetszáma;  $N_{\rm sp}$  segédpólustekercs menetszáma;  $N_{\rm t}$  egy tekercs menetszáma
- p póluspárok száma
- P hatásos teljesítmény;  $P_{\rm b}$  belső teljesítmény;  $P_{\rm v}$  vasveszteség, vezérlőteljesítmény;  $P_{\rm t}$  tekercsveszteség;  $P_{\delta}$  légrésteljesítmény;  $P_{\rm l}$  és  $P_{\rm l}$  felvett, ill. leadott teljesítmény;  $P_{\rm s+v}$  súrlódási- és ventilációs veszteség
- q huzalkeresztmetszet, fázisonkénti és pólusonkénti horonyszám, keresztirány jelölése; q ill.  $q_{\rm s}$  a legkisebb és a legnagyobb indítási/fékezési áram hányadosa állandó fluxusú, ill. soros gépeknél
- Q meddőteljesítmény, az árammunkadiagram pontjainak jelölése
- R  $R_{\rm a}$  az armatúra ellenállása;  $R_{\rm b}$  belső ellenállás;  $R_{\rm e}$  előtételellenállás;  $R_{\rm g}$  gerjesztőtekercs ellenállása;  $R_{\rm i}$  indítóellenállás;  $R_{\rm f}$  fékező ellenállás;  $R_{\rm l}$  ill.  $R_{\rm s}$  állórész fázisellenállás;  $R_{\rm l}$  ill.  $R_{\rm r}$  forgórész fázisellenállás;  $R_{\rm sz}$  gerjesztőkör előtétellenállása;  $R_{\rm t}$  terhelőellenállás
- s szlip, áramsűrűség;  $s_{\rm B}$  billenőszlip;  $s_{\rm k}$  kefe átlagos áramsűrűsége
- S látszólagos teljesítmény, tekercsszélesség
- t t idő
- T időállandó;  $T_{\rm m}$  elektromechanikai időállandó;  $T_{\rm d}$  és  $T_{\rm d}$  tranziens, ill. szubtranziens időállandó;
- u tekercsoldalszám; feszültség pillanatértéke; u<sub>i</sub> indukált feszültség pillanatértéke
- U kapocsfeszültség;  $U_{\rm a}$  armatúrareaktancia feszültsége;  $\Delta U_{\rm k}$  kefeátmeneti feszültségesés;  $U_{\rm g}$  gerjesztőfeszültség;  $U_{\rm i}$  indukált feszültség;  $U_{\rm iG}$  és  $U_{\rm iM}$  generátor, ill. motor indukált feszültsége;  $U_{\rm rem}$  remanenciafeszültség;  $U_{\rm it}$  terhelési indukált feszültség;  $U_{\rm fv}$  ív feszültségesése;  $U_{\rm d}$  hullámos feszültség középértéke;  $U_{\rm m}$  mágneses feszültség;  $U_{\rm mak}$  armatúrakoszorú mágneses feszültsége;  $U_{\rm maf}$  armatúrafog mágneses feszültsége;  $U_{\rm mpf}$  pólusfog mágneses feszültsége;

- U  $U_{
  m mp}$  pólus mágneses feszültsége;  $U_{
  m mpk}$  póluskoszorú mágneses feszültsége;  $U_{
  m msp}$  segédpóluslégrés mágneses feszültsége;  $U_{
  m msz}$  széles fog mágneses feszültsége;  $U_{
  m m\delta}$  illesztési légrés mágneses feszültsége;  $U_{
  m m\delta}$  illesztési légrés mágneses feszültsége;  $U_{
  m p}$  pólusfeszültség;  $U_{
  m re}$  reaktanciafeszültség;  $U_{
  m n}$  névleges feszültség;  $U_{
  m R}$  ohmos feszültségesés;  $U_{
  m s}$  szórási feszültség;  $U_{
  m szh}$  szeletfeszültség középértéke;  $U_{
  m szh}$  szeletfeszültség üresjárási maximális értéke;  $U_{
  m szh}$  szeletfeszültség terhelési maximális értéke;  $U_{
  m v}$  vezérlőfeszültség;  $U_{
  m 0}$  üresjárási feszültség;  $U_{
  m zh}$  névleges rövidzárási feszültség
- v  $v_{\rm a}$  armatúra kerületi sebessége;  $v_{\rm k}$  kommutátor kerületi sebessége;  $v_{\rm 1,0}$  veszteségi szám
- V  $V_{\rm a}$  az armatúra vastest köbtartalma
- x x távolság;
- X szinkron reaktancia;  $X_{\rm a}$  armatúrareaktancia;  $X_{\rm m}$  főmező reaktancia;  $X_{\rm ad}$  és  $X_{\rm aq}$  hosszirányú, ill. keresztirányú armatúrareaktancia;  $X_{\rm d}$  hosszirányú szinkron reaktancia;  $X_{\rm d}$  hosszirányú tranziens reaktancia;  $X_{\rm d}$  hosszirányú szubtranziens reaktancia;  $X_{\rm n}$  névleges reaktancia;  $X_{\rm q}$  keresztirányú szinkron reaktancia;  $X_{\rm 2}$  negatív sorrendű reaktancia
- y eredő tekercselési lépés;  $y_h$  horonylépés;  $y_k$  kommutátorlépés;  $y_1$  tekercsszélesség;  $y_2$  kapcsolási lépés
- z összes hatásos vezetők száma;  $z_{\rm ko}$  kompenzáló tekercselés pólusonkénti vezetőszáma;
- Z Z horonyszám, impedancia;  $Z_k$  kalicka rúdszáma;  $Z_z$  rövidzárási impedancia
- lpha lengési szög;  $lpha_{
  m g}$  geometriai szög;  $lpha_{
  m i}$  ideális pólusív és pólusosztás hányadosa;  $lpha_{
  m v}$  villamos szög
- $\beta$   $\beta$  egyenlőtlenségi fok;
- γ lépésrövidítési szög
- $\varepsilon$   $\varepsilon_{\rm h}$  lépésrövidítés horony-lépésben
- $\Theta$  gerjesztés;  $\Theta_{\rm a}$  armatúragerjesztés;  $\Theta_{\rm ad}$  hosszirányú armatúragerjesztés;  $\Theta_{\rm ae}$  ellenforgó (negatív sorrendű) gerjesztés;  $\Theta_{\rm aq}$  keresztirányú armatúragerjesztés;  $\Theta_{\rm ko}$  kompenzáló tekercs gerjesztése;  $\Theta_{\rm m}$  gerjesztés térbeli maximuma;

- $\Theta$   $\Theta_{\rm p}$  (mellékáramkörű) pólusgerjesztés;  $\Theta_{\rm ps}$  soros tekercs gerjesztése;  $\Theta_{\rm sp}$  segédpólustekercs gerjesztése;  $\Theta_{\rm v}$  vasra jutó gerjesztés;  $\Theta_{\delta}$  légrésre jutó gerjesztés;  $\Theta_{\rm l}$  gerjesztés alapharmonikusának amplitúdója
- $\lambda$  legnagyobb és legkisebb indítási áram hányadosa;  $\lambda_{\rm t}$  armatúrahorony egységnyi hosszának egyenértékű mágneses vezetőképessége
- Λ mágneses vezetőképesség; Λ<sub>h</sub> horony mágneses vezetőképessége; Λ<sub>ps</sub> pólus szórt fluxusának mágneses vezetőképessége; Λ<sub>S</sub> eredő szórási vezetőképesség; Λ<sub>t</sub> tekercsfejszórási vezetőképesség
- $\mu$  lengési körfrekvencia;  $\mu_{\rm r}$  relatív permeabilitási tényező;  $\mu_0$  vákuum permeabilitási tényezője
- *v* felharmonikus rendszám
- $\gamma$   $\gamma_{\rm I}$  áramhullámosság;  $\gamma_{\rm U}$  feszültséghullámosság;
- $\rho$   $\rho$  fajlagos ellenállás, sűrűség
- $\sigma$   $\sigma$  szórási tényező
- $\tau$   $\tau_{\rm h}$  horonyosztás;  $\tau_{\rm p}$  pólusosztás
- $\varphi$   $\varphi$  fázisszög
- $\Phi$  hasznos fluxus;  $\Phi_{\rm a}$  armatúrafluxus;  $\Phi_{\rm d}$  hosszirányú fluxus;  $\Phi_{\rm f}$  a fog fluxusa;  $\Phi_{\rm m}$  maximális fluxus;  $\Phi_{\rm h}$  a horony fluxusa;  $\Phi_{\rm max}$  és  $\Phi_{\rm min}$  legnagyobb és legkisebb fluxus indításkor/fékezéskor;  $\Phi_{\rm p}$  pólus hasznos és szórt fluxusának összege;  $\Phi_{\rm pf}$  széles fog hasznos és szórt fluxusának összege;  $\Phi_{\rm ps}$  pólus szórt fluxusa;  $\Phi_{\rm q}$  keresztirányú fluxus;  $\Phi_{\rm rem}$  remanens fluxus;
- $\Psi$  pólusfeszültség és armatúraáram vektorai által bezárt szög, tekercsfluxus
- $\xi$  tekercselési tényező;  $\xi_{\rm e}$  elosztási tényező;  $\xi_{\rm h}$  húrtényező;  $\xi_{\rm ev}$  a felharmonikus elosztási tényezője
- $\omega$  mechanikai szögsebesség, körfrekvencia;  $\omega_{\rm v}$  villamos szögsebesség

# **IRODALOMJEGYZÉK**

- [1]. Barabás M.: Villamos gépek I. (1. rész) Műszaki Könyvkiadó, Budapest, 1981
- [2]. Barabás M.: Villamos gépek I. (2. rész) Műszaki Könyvkiadó, Budapest, 1981
- [3]. Pálfi Z.: Villamos hajtások Műszaki Könyvkiadó, Budapest, 1978
- [4]. Danku A. Farkas A. Nagy L.: Villamos gépek példatár Műszaki Könyvkiadó, Budapest, 1978
- [5]. Mersichné Nagy L. Farkas A. Peresztegi S.: Különleges villamos gépek Műszaki Könyvkiadó, Budapest, 1983
- [6]. Retter Gy.: Az egységes villamosgépelmélet Műszaki Könyvkiadó, Budapest, 1976
- [7]. Halász S.: Villamos hajtások Havas&Társa, Budapest, 1993
- [8]. Rajki I.: Törpe és automatikai villamos gépek Műszaki Könyvkiadó, Budapest, 1990
- [9]. Liska J.: Transzformátorok Tankönyvkiadó, Budapest, 1962
- [10]. Liska J.: Egyenáramú gépek Tankönyvkiadó, Budapest, 1962
- [11]. Liska J.: Szinkron gépek Tankönyvkiadó, Budapest, 1963
- [12]. Liska J.: Aszinkron gépek Tankönyvkiadó, Budapest, 1960
- [13]. Géring T.: Villamos gépek szerkezettana Műszaki Könyvkiadó, Budapest, 1969
- [14]. Retter Gy.: Villamosenergia-átalakítók (1. kötet) Műszaki Könyvkiadó, Budapest, 1986
- [15]. Asztalos P. szerk.: Villamosgépek II. Tankönyvkiadó, Budapest, 1972

- [16]. Istvánfy Gy.: Erősáramú átalakítók mérése Tankönyvkiadó, Budapest, 1984
- [17]. Moczala H.: Törpe villamos motorok és alkalmazásaik Műszaki Könyvkiadó, Budapest, 1984
- [18]. Lázár J.: Park-vector theory of line-commutated three-phase bridge converters OMIKK Publisher, Budapest, 1987
- [19]. Kovács K. P. Rácz I.: Váltakozóáramú gépek tranziens folyamatai Akadémia Kiadó, Budapest, 1954
- [20]. Fitzgerald Kingsley Kusko.: Electric machinery McGraw-Hill, Tokyo, 1971
- [21]. Schönfeld R.: Villamos hajtások kézikönyve Műszaki Könyvkiadó, Budapest, 1977
- [22]. Selmeczi Gy.: Villamos gépek hővédelme Elektrotechnika, 1987. 6. sz.
- [23]. Budai F.: Motorvédelem termikus túlterhelésrelével Elektrotechnika, 1994. 10. sz.
- [24]. Nagy P.: Elektronikus motorvédő relék Elektrotechnika, 1994. 10. sz.
- [25]. Rácz I. Csörgits F. Halász S. Hunyár M. Schmidt I.: Nyomatékmérő készülék váltakozóáramú gépek nyomatékának mérésére Elektrotechnika, 1973. 6. sz.
- [26]. Lamár, K. Veszprémi, K.: A mikroszámítógépek térnyerése a villamos hajtások szabályozásában, Proceedings of the International Conference "Kandó 2002", Budapest, Hungary, p.7. 2002. ISBN 963 7158 03
- [27]. Mika Sippola: Developments for high frequency power transformer design and implementation Helsinki University of Technology Electronics Publication E3 Espoo 2003
- [28] Lamár Krisztián: A világ leggyorsabb mikrovezérlője, Második, bővített kiadás, ChipCAD Kft., p.102. 2012, ISBN 978-963-08-5166-4
- [29]. Ed Blum: Cost-effective, Low profile Transformer and Inductor Designs.

  Magnetic Business & Technology <a href="https://www.magneticsmagazine.com">www.magneticsmagazine.com</a> August 2002

# TARTALOMJEGYZÉK

| ELŐSZÓ                                                                     | •••••                                   |
|----------------------------------------------------------------------------|-----------------------------------------|
| A VILLAMOS GÉPEK FEJLŐDÉSÉNEK TÖRTÉNELMI ÁTTEKINTÉSE                       | •••••                                   |
| 1. A VILLAMOS GÉPEK MŰKÖDÉSI ALAPELVEI                                     |                                         |
| 1.1. A villamos gépek mint energiaátalakítók. A villamos gépek csoportosít | ása                                     |
| 1.2. A villamos gépek mágneses köre, a mágnesező áram                      |                                         |
| 1.3. A villamos gépek indukált feszültsége                                 |                                         |
| 1.3.1. A transzformátoros indukált feszültség                              |                                         |
| 1.3.2. A forgógépek indukált feszültsége                                   |                                         |
| 1.3.3. Az önindukciós feszültség                                           |                                         |
| 1.4. Villamos gépek veszteségei                                            |                                         |
| 1.4.1. Üresjárási veszteségek                                              |                                         |
| 1.4.2. Terhelési veszteségek                                               |                                         |
| 1.4.2.1. Az egyenáramú tekercselési veszteség                              |                                         |
| 1.4.2.2. A váltakozóáramú tekercselési veszteség (áramkiszorul             | ás)                                     |
| 1.5. A villamos forgógépek nyomatéka, teljesítményviszonyai                |                                         |
| 1.5.1 Nyomatékok és erőhatások                                             |                                         |
| 1.5.2 Üzemmódok, teljesítményviszonyok                                     | · • • • • • • • • • • • • • • • • • • • |
| 1.6. Ellenőrző kérdések                                                    |                                         |
| 2. TRANSZFORMÁTOROK                                                        |                                         |
| 2.1. Működési elv                                                          |                                         |
| 2.1.1. Feszültség- és áramviszonyok                                        |                                         |
| 2.1.2. Helyettesítő kapcsolási vázlat                                      |                                         |
| 2.2. Elvi szerkezeti felépítés                                             |                                         |
| 2.2.1. Tekercselések                                                       |                                         |
| 2.2.2. Vasmagok                                                            |                                         |
| 2.3. Üresjárási üzemállapot                                                |                                         |
| 2.3.1. A transzformátor mágnesező árama                                    |                                         |
| 2.3.2. A vasveszteség                                                      |                                         |
| 2.3.3. A transzformátor üresjárási árama                                   |                                         |
| 2.3.4. Üresjárási jelleggörbék                                             |                                         |
| 2.4. Rövidzárási üzemállapot                                               |                                         |
| 2.4.1. Névleges rövidzárási feszültség, a drop                             |                                         |
| 2.4.2. A transzformátor szórási reaktanciája                               |                                         |
| 2.4.3. A tekercsveszteség                                                  |                                         |

| 2.4        | I.4. Rövidzárási jelleggörbék             |
|------------|-------------------------------------------|
| 2.5. Tra   | anszformátor üzeme                        |
| 2.5        | 5.1. A transzformátor feszültségváltozása |
| 2.5        | 5.2. Egyenlőtlen terhelés                 |
| 2.5        | 5.3. Párhuzamos üzem                      |
| 2.5        | 5.4. Transzformátor hatásfoka             |
| 2.6. Átı   | meneti jelenségek                         |
| 2.6        | 5.1. Bekapcsolási áramlökés               |
| 2.6        | 5.2. Hirtelen rövidzárlat                 |
| 2.7. Kü    | ilönleges transzformátorok                |
| 2.7        | 7.1. Takarékkapcsolású transzformátor     |
| 2.7        | 7.2. Hegesztőtranszformátorok             |
| 2.7        | 7.3. Mérőtranszformátorok                 |
|            | 2.7.3.1. Áramtávadók                      |
| 2.7        | 7.4 Nagyfrekvenciás transzformátorok      |
|            | 2.7.4.1. Vasveszteségek                   |
|            | 2.7.4.2. Tekercselési veszteségek         |
|            | 2.7.4.3. Hőmérsékletemelkedés             |
|            | 2.7.4.4. Planár transzformátorok          |
| 2.8. Fo    | jtótekercsek                              |
| 2.8        | 3.1. Légmagos fojtótekercsek              |
| 2.8        | 3.2. Vasmagos fojtótekercsek              |
| 2.9. Tra   | anszformátor számpéldák                   |
| 2.10. E    | llenőrző kérdések 1                       |
| 3. SZINKRO | ON GÉPEK 1                                |
|            | íködési elv                               |
|            | .1. Az indukált feszültség 1              |
|            | .2. Az armatúra mágneses tere             |
|            | .3. A terhelési szög fogalma 1            |
|            | erkezeti felépítés 1                      |
|            | 2.1. Forgórész 1                          |
|            | 2.2. Állórész 1                           |
|            | 2.3. Csapágyazás 1                        |
|            | 2.4. Hűtés 1                              |
|            | landósult üzemállapotok1                  |
|            | 3.1. Helyettesítő vázlat 1                |
|            | 3.2. Vektorábrák                          |
|            | 3.3. A szinkron gépek nyomatéka           |
|            | 3.3.3.1. Hengeres forgórészű gépek        |
|            | 3.3.3.2. Kiálló pólusú gépek              |

|     | 3.4. Szinkron gépek jelleggörbéi                                      |
|-----|-----------------------------------------------------------------------|
|     | 3.4.1. Üresjárási jelleggörbe                                         |
|     | 3.4.2. Rövidzárási jelleggörbe                                        |
|     | 3.4.3. A szinkron reaktancia meghatározása                            |
|     | 3.4.4. Terhelési jelleggörbék                                         |
|     | 3.4.5. Szabályozási jelleggörbék                                      |
|     | 3.4.6. Hálózatra kapcsolt gép jelleggörbéi                            |
|     | 3.5. Átmeneti üzemállapotok                                           |
|     | 3.5.1. A szinkron gép indítása                                        |
|     | 3.5.2. A szinkron generátorok rövidzárlata                            |
|     | 3.5.2.1. A fluxusállandóság elve                                      |
|     | 3.5.2.2. A zárlatot követő tranziens folyamatok                       |
|     | 3.5.2.3. Aszimmetrikus zárlatok                                       |
|     | 3.5.3. A szinkron gép lengései                                        |
|     | 3.6. Különleges szinkron gépek                                        |
|     | 3.6.1. Körmöspólusú generátor                                         |
|     | 3.6.2. Kefenélküli, forgódiódás szinkrongenerátor                     |
|     | 3.6.3. Reluktancia motor                                              |
|     | 3.6.4. Léptetőmotorok                                                 |
|     | 3.7. Szinkron gép számpéldák                                          |
|     | 3.8. Ellenőrző kérdések                                               |
| . 4 | ASZINKRON GÉPEK                                                       |
|     | 4.1.Aszinkron gépek elvi szerkezeti vázlata és működési elve          |
|     | 4.2. Az aszinkron gép helyettesítő vázlata, vektorábrák               |
|     | 4.3. Az aszinkron gép teljesítményei és veszteségei                   |
|     | 4.4. Az aszinkron gép nyomatéka                                       |
|     | 4.4.1. Felharmonikus nyomatékok                                       |
|     | 4.5. Az aszinkron gép áram-munkadiagramja                             |
|     | 4.5.1. Az aszinkron gép kördiagramjának szerkesztése mérési adatokból |
|     | 4.5.2. A szlipskála szerkesztése                                      |
|     | 4.5.3. Az áram-munkadiagram kiértékelése                              |
|     | 4.6. Áramkiszorításos forgórészű motorok                              |
|     | 4.7. Aszinkron motorok indítási és fékezési módszerei                 |
|     | 4.7.1. Aszinkron motorok indítása                                     |
|     | 4.7.1.1. Rövidrezárt forgórészű motorok indítása                      |
|     | 4.7.1.2. Csúszógyűrűs aszinkron motorok indítása                      |
|     | 4.7.2. Aszinkron motorok fékezési módszerei                           |
|     | 4.7.2.1 Generátorüzemi, visszatápláló fékezés                         |
|     | 4.7.2.2 Ellenáramú fékezés                                            |
|     | 4.7.2.3 Dinamikus fékezés                                             |
|     | 4.7.3. Indítási és fékezési veszteségek                               |
|     |                                                                       |

| 4.8. Az aszinkron motorok fordulatszám változtatása                                 | 2 |
|-------------------------------------------------------------------------------------|---|
| 4.8.1. A szlip változtatása                                                         | 2 |
| 4.8.2. Póluspárszám-változtatás                                                     | 2 |
| 4.8.3. A primer frekvencia változtatása                                             | 2 |
| 4.9. Aszinkron motorok egyszerűsített hatásvázlata                                  | 2 |
| 4.10. Áramirányítós aszinkron motoros hajtások üzemviszonyai                        | 2 |
| 4.10.1. Aszinkron motor forgórészköri áramirányítós beavatkozószervvel              | 2 |
| 4.10.2. Aszinkron motor állórészköri áramirányítós beavatkozószervvel               | 2 |
| 4.11. Különleges aszinkron gépek                                                    | 2 |
| 4.11.1. Egyfázisú aszinkron motorok                                                 | 2 |
| 4.11.2. Indukciós szabályozók                                                       | 2 |
| 4.11.2.1. Egyfázisú indukciós szabályozók                                           | 2 |
| 4.11.2.2. Háromfázisú indukciós szabályozók                                         | 2 |
| 4.11.3. Lineáris motorok                                                            | 2 |
| 4.11.4. Aszinkron generátorok                                                       | 2 |
| 4.12. Energiatakarékos motorok                                                      | 2 |
| 4.13. Aszinkron gép számpéldák                                                      | 2 |
| 4.14. Ellenőrző kérdések                                                            | 2 |
| 5. EGYENÁRAMÚ GÉPEK                                                                 | 2 |
| 5.1. Az egyenáramú gép működési elve és elvi szerkezeti felépítése                  |   |
| 5.2. Kommutátoros tekercselések alapfogalmai                                        |   |
| 5.2.1. Egyenáramú gépek hurkos armatúra tekercselése                                |   |
| 5.2.2. Egyenáramú gépek hullámos armatúra tekercselése                              |   |
| 5.3. Az egyenáramú gép indukált feszültsége és nyomatéka                            |   |
| 5.3.1. Az egyenáramú gépek indukált feszültsége                                     |   |
| 5.3.2. Az egyenáramú gépek nyomatéka                                                |   |
| 5.4. Az egyenáramú gép helyettesítő kapcsolási vázlata állandósult üzemben          | 2 |
| 5.5. Az armatúra-visszahatás, a szeletfeszültség és a kompenzálás                   | 3 |
| 5.5.1. Az armatúra-visszahatás                                                      | 3 |
| 5.5.2. A szeletfeszültség                                                           | 3 |
| 5.5.3. A kompenzálás                                                                | 3 |
| 5.6. A kommutáció és a segédpólus szerepei                                          | 3 |
| 5.6.1. A reaktancia feszültség                                                      | 3 |
| 5.6.2. A segédpólus feladatai                                                       |   |
| 5.6.3. A kommutáció ellenőrzése                                                     | 3 |
| 5.7. Az egyenáramú gép mágneses köre, az üresjárási és belső terhelési jelleg görbe | _ |
| 5.7.1. Az egyenáramú gép mágneses köre                                              |   |
| 5.7.2. Az egyenáramú gép üresjárási- és belső terhelési jelleggörbéje               |   |
| 5 8 Az egyenáramú gének geriesztési módiai                                          | 3 |

| 5.9. Az egyenáramú generátorok jelleggörbéi                                 | 324 |
|-----------------------------------------------------------------------------|-----|
| 5.9.1. A külsőgerjesztésű generátor                                         | 324 |
| 5.9.2. A párhuzamos gerjesztésű generátor                                   | 326 |
| 5.9.3. A vegyes gerjesztésű generátor                                       | 328 |
| 5.10. Az egyenáramú motorok jelleggörbéi                                    | 329 |
| 5.10.1. A külsőgerjesztésű és mellékáramkörű motorok terhelési jelleggörbéi | 329 |
| 5.10.2. A sorosgerjesztésű motorok terhelési jelleggörbéi                   | 330 |
| 5.10.3. Vegyesgerjesztésű motorok jelleggörbéi                              | 332 |
| 5.11. Állandó feszültségről táplált egyenáramú motorok üzeme                | 333 |
| 5.11.1. Relatív egységek                                                    | 333 |
| 5.11.2. Állandó feszültségről táplált egyenáramú motorok indítása           | 335 |
| 5.11.2.1. Állandó fluxusú gépek indítása                                    | 335 |
| 5.11.1.2. Soros (terheléstől függő fluxusú) motorok indítása                | 337 |
| 5.11.3. Állandó feszültségről táplált egyenáramú motorok fordulatszám       |     |
| változtatása                                                                | 339 |
| 5.11.3.1. Állandó fluxusú motorok fordulatszám változtatása                 | 339 |
| 5.11.3.2. Soros (terheléstől függő fluxusú) motorok fordulatszám            |     |
| változtatása                                                                | 340 |
| 5.11.3. Állandó feszültségről táplált egyenáramú motorok fékezése           | 341 |
| 5.12. Változó kapocsfeszültségről táplált egyenáramú motoros hajtások       | 344 |
| 5.12.1. Változó kapocsfeszültségről táplált egyenáramú motorok fordulat-    |     |
| szám változtatása. A Ward-Leonard hajtás                                    | 344 |
| 5.12.2. Nem sima egyenfeszültségről táplált egyenáramú motorok              | 347 |
| 5.12.3. Egyenáramú motorok terhelhetőségi határai                           | 349 |
| 5.12.4. Egyenáramú motoros hajtások hatásvázlata. Egyenáramú gépek idő-     |     |
| állandói                                                                    | 350 |
| 5.13. Egyenáramú gépek veszteségei és hatásfoka                             | 353 |
| 5.14. Egyenáramú gépek főméretei és felépítése                              | 354 |
| 5.15. Különleges egyenáramú gépek                                           | 356 |
| 5.15.1. Mérleggépek                                                         | 356 |
| 5.15.2. Állandómágneses egyenáramú gépek                                    | 357 |
| 5.15.3. Egyenáramú szervomotorok                                            | 360 |
| 5.15.4. Elektronikus kommutációjú egyenáramú gépek                          | 363 |
| 5.15.5. Soros kommutátoros (univerzális) motorok                            | 366 |
| 5.16. Egyenáramú gép számpéldák                                             | 369 |
| 5.17. Ellenőrző kérdések                                                    | 385 |
| 6. VILLAMOS GÉPEK ÜZEMELTETÉSE                                              |     |
|                                                                             | 386 |
| 6.1. Villamos hajtások kinetikai kérdései                                   | 386 |
| 6.1.1. Tehetetlenségi nyomaték                                              | 387 |
| 6.1.2. Nyomatékok osztályozása                                              | 388 |
| 6.1.3. Terhelő és tehetetlenségi nyomatékok átszámítása a motor tengelyér   | 390 |

|        | 6.1.4. Mozgásegyenlet, stabilitásvizsgálat                              |
|--------|-------------------------------------------------------------------------|
|        | 6.1.5. Szögsebesség-időfüggvények meghatározása átmeneti üzemálla-      |
|        | potokban, időállandók                                                   |
|        | $6.1.5.1. \ M_{\rm d} = $ áll                                           |
|        | 6.1.5.2. $M_{\rm d}(\omega) = \text{linearis}$                          |
|        | .1.5.3. $M_{\rm d}(\omega)$ = tetszőleges                               |
| 6.2    | Építési alakok, védettség, szigetelési osztályok                        |
|        | 6.2.1. Villamos forgógépek építési alakjai                              |
|        | 6.2.2. Villamos forgógépek védettsége                                   |
|        | 6.2.3. Villamos forgógépek szigetelési osztályai                        |
| 6.3    | . Villamos forgógépek melegedése, hűlése és hűtése                      |
|        | 6.3.1. Villamos forgógépek melegedése és hűlése                         |
|        | 6.3.2. Villamos forgógépek hűtése                                       |
| 6.4    | . Villamos motorok üzemtípusai, a motorkiválasztás szempontjai          |
|        | 6.4.1. Villamos motorok üzemtípusai                                     |
|        | 6.4.2. A villamos motorok kiválasztásának szempontjai                   |
| 6.5    | . Villamos hajtások szabályozásának általános kérdései                  |
| 6.6    | . Villamos forgógépek hővédelme                                         |
|        | 6.6.1. Közvetett áramérzékelésen alapuló védelmek                       |
|        | 6.6.1.1. Olvadó biztosítók                                              |
|        | 6.6.1.2. Bimetallos hővédelmi relék                                     |
|        | 6.6.1.3. Elektronikus hőmás modell                                      |
|        | 6.6.2. Közvetlen hőérzékelésű, beépített hőérzékelővel működő hővédelmi |
|        | rendszerek                                                              |
| 6.7    | . Villamos gépek üzemeltetése számpéldák                                |
| 6.8    | Ellenőrző kérdések                                                      |
| 7. VIL | LAMOS GÉPEK ELMÉLETÉNEK ÚJABB TÁRGYALÁSI MÓDSZEREI                      |
|        | . Villamos gépek nyomatéka az energiaszemlélet alapján                  |
|        | 7.1.1. Energiaviszonyok, a nyomatékszámítás alapképletei                |
|        | 7.1.2. A frekvenciafeltétel                                             |
| 7.2    | . Park-vektorok                                                         |
|        | 7.2.1. Park-vektor alapfogalmak                                         |
|        | 7.2.1.1. A vektor definíciója                                           |
|        | 7.2.1.2. A vetületszabály                                               |
|        | 7.2.1.3. A vektor megjelenítése                                         |
|        | 7.2.1.4. A vonali vektor                                                |
|        | 7.2.1.5. A szimmetrikus összetevők                                      |
|        | 7.2.1.6. A háromfázisú hatásos teljesítmény                             |
|        | 7.2.1.7. A koordináta-transzformáció                                    |

| 7.2.2. Park-vektorok alkalmazása                                                         | 466        |
|------------------------------------------------------------------------------------------|------------|
| 7.2.2.1. Aszinkron és szinkron gépek feszültség és fluxus egyenletei térvektoros alakban | 466        |
| 7.2.2.2. A fluxusvektor és a nyomaték időfüggvényének mérése 7.3. Ellenőrző kérdések     | 469<br>471 |
| JELÖLÉSEK JEGYZÉKE                                                                       | 471        |
| IRODALOMJEGYZÉK                                                                          | 477        |
| TARTALOMJEGYZÉK                                                                          | 479        |