NMMB430 - DÚ 5 Jan Oupický

1

Using E.7 we get that we have to set $a = \frac{A-2}{B}$, $d = \frac{A+2}{B}$ which we can always do since $B \neq 0$ and $A \neq \pm 2$ and therefore $a \neq d$ and $a, d \in K^*$. Here are the Montgomery curves from the previous exercise and their birationally equivalent Edwards counterparts. We are working with $K = \mathbb{Z}_5$:

$$M: 2y^{2} = x^{3} + x^{2} + x \implies (A, B) = (1, 2) \implies$$

$$(a, d) = \left(-\frac{1}{2}, \frac{3}{2}\right) = (2, 4) \implies E: 2x^{2} + y^{2} = 1 + 4x^{2}y^{2}$$

$$M: y^{2} = x^{3} + 4x^{2} + x \implies (A, B) = (4, 1) \implies$$

$$(a, d) = (2, 1) \implies E: 2x^{2} + y^{2} = 1 + x^{2}y^{2}$$

$$M: y^{2} = x^{3} + x \implies (A, B) = (0, 1) \implies$$

$$(a, d) = (3, 2) \implies E: 3x^{2} + y^{2} = 1 + 2x^{2}y^{2}$$
since $3 = 2^{3} = 2 \cdot 2^{2}$ in \mathbb{Z}_{5} we get E is \mathbb{Z}_{5} -equivalent to E' :
$$E': 2x^{2} + y^{2} = 1 + 3x^{2}y^{2}$$

$$M: 2y^{2} = x^{3} + x \implies (A, B) = (0, 2) \implies$$

$$(a, d) = (4, 1) \implies E: 4x^{2} + y^{2} = 1 + x^{2}y^{2}$$
which is \mathbb{Z}_{5} -equivalent to E' :
$$E': x^{2} + y^{2} = 1 + 4x^{2}y^{2}$$

2

First assume d>0. Since a<0 we can easily see that $y^2=1+dx^2y^2-ax^2\geq 1$ \Longrightarrow all points (α,β) on the curve must have $|\beta|\geq 1$. Also we can express the equation as $y^2=\frac{1-ax^2}{1-dx^2}\Longrightarrow y=\pm\sqrt{\frac{1-ax^2}{1-dx^2}}$. Real points therefore must satisfy $\frac{1-a\alpha^2}{1-d\alpha^2}\geq 0$. The numerator is always positive. Therefore we have to only look at the denominator. We have condition $1-d\alpha^2>0$ and this happens only if $|\alpha|<\sqrt{\frac{1}{d}}$. From this we can conclude that the curve is bounded by lines $x=\pm\sqrt{\frac{1}{d}}$. It is symmetrical with respect to the lines x=0 and y=0. It has therefore 2 parts. If we look at the part where $\beta\geq 1$ it has a U-shape form bounded by the lines mentioned. The part $\beta\leq -1$ looks similar since it is symmetrical. Changing the a parameter affects the "narrowness" of the U-shape. Changing the parameter d changes the bounds of the U-shape.

Now assuming d < 0. We still have $y = \pm \sqrt{\frac{1-ax^2}{1-dx^2}}$ which is defined everywhere since both the denominator and numerator is positive. It is symmetrical with respect to the lines x = 0 and y = 0. We have to differentiate between cases when a < d and a > d.

First assuming a < d we get that $\frac{1-ax^2}{1-dx^2} \ge 1 \implies |\beta| \ge 1$. But we also have an upper bound since $\lim_{x\to\infty} \sqrt{\frac{1-ax^2}{1-dx^2}} = \sqrt{\frac{a}{d}}$. Considering only the part $\beta \ge 1$ the curve has a V-shape upper bounded by the line $y = \sqrt{\frac{a}{d}}$. Similarly the part $\beta \le -1$ is lower bounded by the line $y = -\sqrt{\frac{a}{d}}$

The case a > d means that $\frac{1-ax^2}{1-dx^2} \le 1 \implies |\beta| \le 1$ and the limit is the same but $\sqrt{\frac{a}{d}} < 1$ therefore it is a lower bound. Considering the case for $\beta > \sqrt{\frac{a}{d}}$ we get that the shape is a flipped V with an upper bound y = 1 and the mentioned lower bound $y = \sqrt{\frac{a}{d}}$ and symetrically for the case $\beta < -\sqrt{\frac{a}{d}}$.