Chapter 2.

基礎 C++ 程式設計導論 ||

Introduction to Basic C++ Program Design II

嘉義女中數資班資訊組課程

National Chia-Yi Girls' Senior High School Information Course

講師:陳俊安 Colten

陣列 Array

● 當我想要一次宣告大量變數時,就會需要陣列的幫忙

```
28 int a[20]; // 宣告 20 個名字叫做 a 的整數
```

陣列 Array

- 可以把陣列想像成很多個箱子,每一個箱子都有一個編號
- int a[20]; 宣告了 20 個名字叫做 a 的整數
- 那如果我想讓第 5 個箱子等於 100, 應該怎麼做?
 - \circ a[4] = 100;
 - 記得編號 (index 索引值) 是從 0 開始的

陣列 Array

● 假設我有 n 個整數要輸入 (1 <= n <= 100)

```
17 int a[100];
18
19 int main()
20 {
21
   int n;
22
       cin >> n;
23
24
   for(int i=0;i<n;i++)</pre>
25
26
           cin >> a[i];
27
28 }
```

二維陣列

- 給你一個 n * m 的表格,每一個表格上的資訊都是整數
- 請你把所有資訊輸入近來
- 陣列好像只能輸入序列?

二維陣列

- 陣列是可以多維宣告的,一個中括號表示一個維度
- 因此我們可以宣告 int a[3][3]; 來表示 3 * 3 的表格
- 把資訊輸入近來

```
17 int a[3][3];
18
19 int main()
20 {
21
       for(int i=0;i<3;i++)
22
23
           for(int k=0;k<3;k++)
24
25
                cin >> a[i][k];
26
27
28 }
```

字元與字串 char and string

- char & string
- stringstream
- ASCII

string 字串

- 字串就是一個被很多字元串接起來的東西
 - 因此在 C 中,字串的表示法為一個字元陣列
- 既然字串是一個字元陣列,那我們應該如何存取字串中某一個字元?
- 我們可以直接將字串當一般陣列使用,用索引指定字元位置

```
string s = "Hello";
cout << s[0] << " " << s[2] << " " << s.size() << "\n"; // H 1 5</pre>
```

string 字串加法

- 字串跟字串之間是可以做相加的
- 相加完的結果會是兩個字串接起來的結果
- 舉例:
 - Apple + Banana = AppleBanana

- 這個會輸出什麼東西?
- 為什麼字元可以被轉型成數字?依據是什麼?

```
19
20 cout << (int)'c' << "\n"; // 99
21
```

||16進制表示法:0、1、2、3、4、5、6、7、8、9、A、B、C、D、E、F、10...

16進制表不法 . 0 · 1 · 2 · 3 · 4 · 3 · 6 · 7 · 8 · 9 · A · B · C · D · E · F · 10														_			
Ctrl	Dec	Hex	Char	Code		Dec	Hex	Char		Dec	Hex	Char		Dec	Hex	Char	
^@	0	00		NUL		32	20			64	40	0		96	60	•	
^A	1	01		SOH		33	21	!		65	41	A		97	61	a	
^в	2	02		STX		34	22			66	42	B		98	62	b	
^C	3	03		ETX		35	23	#		67	43	C		99	63	С	
^D	4	04		EOT		36	24	\$		68	44	D		100	64	d	
^E	5	05		ENQ		37	25	%		69	45	E		101	65	е	
^F	6	06		ACK		38	26	&		70	46	F		102	66	f	
^G	7	07		BEL		39	27	,		71	47	G		103	67	g	
^H	8	08		BS		40	28	(72	48	H		104	68	h	
^I	9	09		HT		41	29)		73	49	I		105	69	į	
^յ	10	0A		LF		42	2A	*		74	4A	J		106	6A	j	
^K	11	0B		VT		43	2B	+		75	4B	K		107	6B	k	
^L	12	0C		FF		44	2C	,		76	4C	L		108	6C	1	
^M	13	0D		CR		45	2D	-		77	4D	M		109	6D	m	
^N	14	0E		so		46	2E			78	4E	N		110	6E	n	
^0	15	0F		SI		47	2F	/		79	4F	0		111	6F	0	
^P	16	10		DLE		48	30	0		80	50	P		112	70	р	
^Q	17	11		DC1		49	31	1		81	51	Q		113	71	q	
^R	18	12		DC2		50	32	2		82	52	R		114	72	r	
^s	19	13		DC3		51	33	3		83	53	S		115	73	S	
^T	20	14		DC4		52	34	4		84	54	T		116	74	t	
^U	21	15		NAK		53	35	5		85	55	U		117	75	u	
^٧	22	16		SYN		54	36	6		86	56	V		118	76	V	
\sim W	23	17		ETB		55	37	7		87	57	W		119	77	W	
^X	24	18		CAN		56	38	8		88	58	X		120	78	×	
^Y	25	19		EM		57	39	9		89	59	Υ		121	79	У	
^Z	26	1A		SUB		58	ЗА	:		90	5A	Z		122	7A	Z	
]^	27	1B		ESC		59	3B	;		91	5B	[123	7B	{	
^\	28	1C		FS		60	3C	<		92	5C	\		124	7C		
^]	29	1D		GS		61	3D	=		93	5D]		125	7D	j	
^^	30	1E	A	RS		62	3E	>		94	5E	^		126	7E		
^-	31	1F	▼	US		63	3F	?		95	5F	_		127	7F	_∆*	

^{*} ASCII 碼 127 具有代碼 DEL。在 MS-DOS下,這個代碼與 ASCII 8 (BS)的效果相同。 DEL 代碼可以由 CTRL + BKSP 鍵產生。

- 所以當你拿字元做加減乘除的運算的時候
- 程式會自動幫你把字元轉乘相對應的 ASCII Code 整數才做運算

- 如果我現在想判斷一個數字有沒有某一個位數出現 2 或 3
 - 出現的話要把這一個位數 + x(1 <= x <= 5)</p>
- 但我這個數字大到 10^100, 使用 C++ 該怎麼做?
 - Example : 12345, x = 5
 - Answer: 17845
- Hint: 可以掃過整個字串

- 把整個字串掃過一次, 碰到 2 or 3 的時候就直接 +x
 - 字元 + 整數 x = 字元的 ASCII + x
 - 然後由於我們是存到字元裡面,所以新的字元的 ASCII Code 會等 於 ASCII + x,程式會自動幫你轉回字元型態

```
20
21    int x;
22    string s;
23    cin >> s >> x;
24
25    for(int i=0;i<s.size();i++)
26    {
27        if( s[i] == '2' || s[i] == '3' ) s[i] += x;
28    }
29
30    cout << s << "\n";</pre>
```

stringstream

- #include <sstream>
- 一種處理字元的好工具
- 兩大功能
 - 切割字串
 - 型態轉型

- 一般陣列的題目都會先跟你說他會輸入幾個
- 但如果你遇到的題目一開始不會告訴你他要輸入幾個怎麼辦?
- 這個時候我們就只能先把整段字串先讀取進來了!

• stringstream 是一個工具,使用前必須先宣告

stringstream name;

- 接下來有兩種操作,假設我的 stringstream 的名字是 ss
 - ss << 變數; // 將變數放入 ss 裡面
 - ss >> 變數; // 將 ss 裡面的東西放入到變數

- 現在有一個字串 100 200 300, 我想把他切成三份
- 每一份都是一個整數,依序存入 a[0],a[1],a[2]
- 如何用 stringstream 達成?
- 我們來解析一下吧!

```
string s;
21
22
       getline(cin,s);
23
24
       stringstream ss;
25
26
       ss << s;
27
       int number, a[3], idx = 0;
28
       while( ss >> number )
30
31
           a[idx] = number;
32
33
           idx++:
```

getline(cin,s)

- 由於我們必須使用字串讀入,字串含有空白字元
- 所以我們必須使用 getline

```
string s;
22
       getline(cin,s);
23
24
       stringstream ss;
25
26
       ss << s;
27
       int number,a[3],idx = 0;
28
29
       while( ss >> number )
30
31
           a[idx] = number;
32
33
           idx++;
```

stringstream ss; & ss << s;

- 宣告 stringstream
- 然後把我們要處理的字串丟入到這一個 stringstream 裡面

```
string s;
22
       getline(cin,s);
23
24
       stringstream ss;
25
26
       ss << s;
27
       int number,a[3],idx = 0;
28
       while( ss >> number )
30
31
           a[idx] = number;
32
33
           idx++;
```

int number, a[3], idx = 0;

- 宣告一個整數的 number, 用來存 stringstream 切下來的東西
 - 因為我們切下來的東西是整數,所以 number 要是整數
- 宣告 a[3] 與 idx 來存取資料

```
string s;
21
22
       getline(cin,s);
23
24
       stringstream ss;
25
26
       ss << s;
27
       int number, a[3], idx = 0;
28
29
       while( ss >> number )
30
31
           a[idx] = number;
32
33
           idx++:
```

while(ss >> number)

- stringstream 會依序把東西切下來然後放入 number
- 使用 while 迴圈的目的是:當沒有切到東西的時候才會停止

```
string s;
22
       getline(cin,s);
23
24
       stringstream ss;
25
26
       ss << s;
27
       int number, a[3], idx = 0;
28
29
       while( ss >> number )
30
31
           a[idx] = number;
32
33
           idx++;
```

大功告成!

- 這麼一來我們的 a[0] = 100, a[1] = 200, a[2] = 300 了!
- 都是整數型態的哦!

```
string s;
22
       getline(cin,s);
23
24
       stringstream ss;
25
26
       ss << s;
27
       int number,a[3],idx = 0;
28
29
       while( ss >> number )
30
31
           a[idx] = number;
32
33
           idx++;
```

stringstream 型態轉型

- 假設我有一個字串是 "1.414", 想要轉成 double 的型態?
- stringstream 也可以做到!寫法跟剛剛切字串很像

```
string s = "1.414";
28
29
       stringstream ss;
30
31
32
       ss << s;
33
34
       double u;
35
36
       ss >> u;
37
38
       cout << u << "\n"; // 1.414
```

練習題

- 輸入字串 "10 20 30000" 請使用 stringstream 切割成 3 個整數
- 輸入字串 "5454", 請你使用 stringstream 轉成整數型態
- 呈上題,你能想到不使用 stringstream 的轉型方法口?

兩個字串比大小

- 字串之間是可以比大小的
- 比較的規則使用 字典序, 也就是 ASCII Code 的順序
- 我們來看看兩個字串是怎麼比較的吧!

兩個字串比大小

- 假設字串 a = "apple", b = "apprl", a 跟 b 誰比較大?
- 比較的時候會由左到右開始逐一字元比較,直到分出勝負
 - a = a (字元 1)
 - p = p (字元 2)
 - p = p (字元 3)
 - I < r (字元 4, 分出勝負了, 字串 b 比較大)

兩個字串比大小

- 即使字串長度不一樣也是可以比較的,規則一樣
 - Example:
 - abzzzzz < ac
 - gjosgjosjgojsojgosemnmn < z

兩個字串比大小 - 特殊情況

- 那 abb 跟 abba 誰比較大?
- 由於 abb 比到已經沒有東西了還沒分出勝負
- 因此 abba 比 abb 還要大

練習題

- 輸入兩個超過 long long 的正整數,請你寫一個程式判斷誰比較大
 - Hint: ASCII Code 字典序