Assigment II

Advance Machine Learning

Dăscălescu Dana

May 31, 2023

1. Consider \mathcal{H} the class of 3-piece classifiers (signed intervals):

$$\mathcal{H} = \{ h_{a,b,s} : \mathbb{R} \to \{-1,1\} \mid a \le b, s \in \{-1,1\} \}, \text{ where } h_{a,b,s}(x) = \begin{cases} s, & x \in [a,b] \\ -s, & x \notin [a,b] \end{cases}$$

- a. Compute the shattering coefficient $\tau_H(m)$ of the growth function for $m \geq 0$ for hypothesis class \mathcal{H} .
- b. Compare your result with the general upper bound for the growth functions and show that $\tau_H(m)$ obtained at previous point a is not equal with the upper bound.
- c. Does there exist a hypothesis class \mathcal{H} for which the shattering coefficient $\tau_H(m)$ of the growth function for $m \geq 0$ is equal to the general upper bound (over \mathbb{R} or another domain \mathcal{X})? If your answer is yes please provide an example, if your answer is no please provide a justification.

Solution.

a. The growth function of a hypothesis class \mathcal{H} , denoted by $\tau_{\mathcal{H}}$, is defined as the maximum number of distinct functions from a set C of size m to $\{0,1\}$, that can be obtained by restricting \mathcal{H} to C. (Chapter 6 in [1])

$$\tau_{\mathcal{H}}: \mathbb{N} \to \mathbb{N}, \qquad \tau_{\mathcal{H}} = \max_{C \subseteq \mathcal{X}: |C| = m} |\mathcal{H}_{\mathcal{C}}|$$

Let $C \subset \mathbb{R}$ be a set of m points, $C = \{c_1, c_2, \dots, c_m\}$. Without loss of generality, we will consider $c_1 < c_2 < \dots < c_m$.

In general, the concept class assigns two different types of labels based on the s parameter (sequence of either 1 or -1, respectively, surrounded by two sequences of -1 or 1, respectively):

Now, we will count how many possibilities of labeling we have for each case:

s = 1: We will count the number of labelings for each sequence of i positive points, $i = \overline{0, m}$.

$$i = 0 \text{ (for the base case we have no positive label)} : (-1, -1, -1, \dots, -1, -1, -1) \Rightarrow 1 \text{ label}$$

$$i = 1 : (1, -1, -1, \dots, -1, -1, -1), \dots, (-1, -1, -1, \dots, -1, -1, 1) \Rightarrow m \text{ labels}$$

$$i = 2 : (1, 1, -1, \dots, -1, -1, -1), \dots, (-1, -1, -1, \dots, -1, 1, 1) \Rightarrow (m - 1) \text{ labels}$$

$$\vdots$$

$$i = m - 1 : (1, 1, 1, \dots, 1, 1, -1), \ (-1, 1, 1, \dots, 1, 1, 1) \Rightarrow 2 \text{ labels}$$

$$i = m : (1, 1, 1, \dots, 1, 1, 1) \Rightarrow 1 \text{ label}$$

In total, we can obtain $1 + m + (m-1) + \cdots + 2 + 1 = 1 + \frac{m(m+1)}{2}$ functions in the first case.

s = -1: To count the possible labels that do not appear in the first case, we will count how many labelings we have for each sequence of i negative points surrounded by positive points on both sides, $i = \overline{1, m-2}$. In other words, we want to obtain the reunion of the all labelings sets for each case, minus their intersection.

$$\begin{split} i &= 1: (1,-1,1,\ldots,1,1,1), (1,1,-1,\ldots,1,1,1), \ldots, (1,1,1,\ldots,1,-1,1) \Rightarrow (m-2) \text{ labels} \\ i &= 2: (1,-1,-1,\ldots,1,1,1), \ldots, (1,1,1,\ldots,-1,-1,1) \Rightarrow (m-3) \text{ labels} \\ \vdots \\ i &= m-2: (1,-1,-1,\ldots,-1,-1,1) \Rightarrow 1 \text{ label} \end{split}$$

In total, we can obtain $(m-2)+(m-3)+\cdots+1=\frac{(m-2)(m-1)}{2}$ functions in the second case.

Thus,
$$\tau_m = 1 + \frac{m(m+1)}{2} + \frac{(m-2)(m-1)}{2} = m^2 - m + 2$$
.

b. According to the Sauer-Shelah-Perles Lemma, for a hypothesis class \mathcal{H} with $VCdim(\mathcal{H}) < d$ and all m, we have that $\tau_{\mathcal{H}}(m) \leq \sum_{i=0}^{d} {m \choose i}$. (Chapter 6 in [1])

First, we will calculate the Vapnik-Chervonenkis dimension of our hypothesis class \mathcal{H} (as in Seminar 3).

Let's consider $C = \{c_1, c_2, c_3\}$ a set of 3 distinct points with $c_1 < c_2 < c_3$.

for label
$$(-1,-1,-1)$$
, take $a=c_1-1$, $b=c_3+1$, and $s=-1$ for label $(-1,-1,1)$, take $a=c_1$, $b=\frac{c_2+c_3}{2}$, and $s=-1$ for label $(-1,1,-1)$, take $a=\frac{c_1+c_2}{2}$, $b=\frac{c_2+c_3}{2}$, and $s=1$ for label $(1,-1,-1)$, take $a=c_1$, $b=\frac{c_1+c_2}{2}$, and $s=1$ for label $(-1,1,1)$, take $a=\frac{c_1+c_2}{2}$, $b=c_3+1$, and $b=1$ for label $(1,-1,1)$, take $a=\frac{c_1+c_2}{2}$, $b=\frac{c_2+c_3}{2}$, and $b=1$ for label $(1,1,-1)$, take $b=c_1$, $b=\frac{c_2+c_3}{2}$, and $b=1$ for label $(1,1,-1)$, take $b=c_1$, $b=\frac{c_2+c_3}{2}$, and $b=1$

 \mathcal{H} shatters C, so $VCdim(\mathcal{H}) \geq 3$. (*)

Now, we will show that $VCdim(\mathcal{H}) < 4$. Take a set of points $C = \{c_1, c_2, c_3, c_4\}$, and consider, with no loss of generality, $c_1 < c_2 < c_3 < c_4$. \mathcal{H} cannot shatter the following labelling: (-1, 1, -1, 1) (or we could also take (1, -1, 1, -1)). This holds for any C, |C| = 4. So $VCdim(\mathcal{H}) < 4$. (**)

$$(*)(**) \implies VCdim(\mathcal{H}) = 3$$

In our case, $VCdim(\mathcal{H}) = 3$, thus the general upper bound is:

$$C_m^0 + C_m^1 + C_m^2 + C_m^3 = 1 + m + \frac{m(m-1)}{2} + \frac{m(m-1)(m-2)}{6} = \frac{m^3 + 5m + 6}{6}$$

Therefore we have that $m^2 - m + 2 \le \frac{m^3 + 5m + 6}{6}$, $\forall m \in \mathbb{N} \Leftrightarrow$

$$\Leftrightarrow \frac{m^3 + 5m + 6}{6} - m^2 + m - 2 \ge 0 \left| \cdot 6, \ \forall m \in \mathbb{N} \right| \Leftrightarrow m^3 + 5m + 6 - 6m^2 + 6m - 12 \ge 0, \ \forall m \in \mathbb{N}$$

$$\Leftrightarrow m^3 - 6m^2 + 11m - 6 \ge 0, \ \forall m \in \mathbb{N} \right| \stackrel{\text{observe that } m = 1}{\Leftrightarrow \text{is a solution}} (m - 1)(m^2 - 5m + 6) \ge 0, \ \forall m \in \mathbb{N}$$

$$\Leftrightarrow (m - 1)(m - 2)(m - 3) \ge 0, \ \forall m \in \mathbb{N}$$

m	0	1	2	3	∞
m-1		0++	-+++	-+++	-++++++
m-2			0+-	++++	++++++++
m-3				0+-	++++++++
(m-1)(m-2)(m-3)		0+-	+ + 0	0+-	++++++++

The solution of the inequality $m^2 - m + 2 \le \frac{m^3 + 5m + 6}{6}$ is $[1, 2] \cup [3, \infty)$. So, we have that the general upper bound is greater or equal to the shatter coefficient found for subpoint a, for all

 $m \in \mathbb{N}, m \in [1, 2] \cup [3, \infty] \implies m \in \{1, 2, 3, 4, \dots\}$, and it is less than the shatter coefficient $\tau_{\mathcal{H}}$ of the growth function for m = 0.

c. Lets consider \mathcal{H} the class of threshold functions over the real line:

$$\mathcal{H}_{thresholds} = \{ h_{\theta} : \mathbb{R} \to \{0, 1\}, \ h_{\theta}(x) = \mathbb{1}_{[x < \theta]}(x), \ \theta \in \mathbb{R} \}, \text{ where}$$

$$\mathbb{1}_{[x < \theta]} = \begin{cases} 1, & x \in (-\infty, \theta] \\ 0, & otherwise \end{cases}$$

First, we will calculate the Vapnik-Chervonenkis dimension for our hypothesis class.

Consider $C = \{c_1\}$. Then $\mathcal{H}_C = \{h : C \to \{0, 1\} \mid h \in \mathcal{H}\}$ has two elements $\{h_a, h_b\}$ with $a < c_1$ and $b \ge c_1$, so \mathcal{H} shatters $C \implies VCdim(\mathcal{H}) \ge 1$. (1)

Let $C = \{c_1, c_2\}$ and without the loss of generality, we will consider $c_1 < c_2$. \mathcal{H}_C does not shatter C, since we cannot label simultaneously the point c_1 negatively and c_2 positively (if c_1 has label 0, it means that $c_1 > \theta$ so no point $c > c_1$ can have label 1), so there is no function that realizes the labelling $(0,1) \implies VCdim(\mathcal{H}) < 2$. (2)

$$(1),(2) \implies VCdim(\mathcal{H}) = 1$$

Now, lets calculate the shattering coefficient of the growth function.

Let $C = \{c_1, c_2, \ldots, c_m\}$ be a set of m points. Without loosing generality, consider $c_1 < c_2 < \cdots < c_m$. Our hypothesis class can only output a sequence of ones followed by a sequence of zeros. Now, for $i = \overline{0, m}$, we count the number of labellings with a sequence of length i of positive points (because there are m elements, the length of the sequences of ones is between 0 and m):

```
i=0 \text{ (we have no positive label)}: (0,0,0,\dots,0,0,0) \Rightarrow 1 \text{ label} i=1:(1,0,0,\dots,0,0,0) \Rightarrow 1 \text{ label} i=2:(1,1,0,\dots,0,0,0) \Rightarrow 1 \text{ label} \vdots i=m-1:(1,1,1,\dots,1,1,0) \Rightarrow 1 \text{ label} i=m:(1,1,1,\dots,1,1,1) \Rightarrow 1 \text{ label} \Rightarrow \tau_{\mathcal{H}(m)}=m+1
```

Using the Sauer's lemma, we get that the general upper bound for our hypothesis class \mathcal{H} with $VCdim(\mathcal{H})=1$ is $\sum_{i=0}^{1} C_m^i = C_m^0 + C_m^1 = \frac{m!}{0 \cdot m!} + \frac{m!}{1! \cdot m!} = 1 + m = \tau_{\mathcal{H}}(m)$. Thus, we showed that there exists a class H for which the shattering coefficient $\tau_{\mathcal{H}}(m)$ of the growth function is equal to the general upper bound.

- **2.** Consider the concept class C_2 formed by the union of two closed intervals $[a, b] \cup [c, d]$, where $a, b, c, d \in \mathbb{R}$, $a \leq b \leq c \leq d$. Give an efficient ERM algorithm for learning the concept class C_2 and compute its complexity for each of the following cases:
 - a. realizability case
 - b. agnostic case

Solution.

$$\mathcal{H} = \left\{ h_{a,b,c,d} : \mathbb{R} \to \{0,1\}, h_{a,b,c,d} = \mathbb{1}_{[a,b] \cup [c,d]}, h_{a,b,c,d}(x) = \left\{ \begin{array}{cc} 1 & if \ x \in [a,b] \cup [c,d] \\ 0 & otherwise \end{array} \right\} \right\}$$

Consider a training set S of size m:

$$S = \{(x_1, y_1), (x_2, y_2), \dots, (x_m, y_m) \mid x_i \in \mathbb{R}, y_i \in \{0, 1\}, i = \overline{1, m}\}$$

In the following, we will present an ERM_{\mathcal{H}} learning rule implementation in both the realizability and agnostic scenarios (similar to the approach took in the Seminar class 5), which is equivalent to finding the hypothesis h_{a_S,b_S,c_S,d_S} with the smallest empirical risk.

a. In the realizable case, we assume that there exists a function $h^* = h_{a^*,b^*,c^*,d^*}$ taken from the hypothesis class \mathcal{H} , which is known to the learner and that labels all the training points (i.e. $y_i = h^*(x_i), i = \overline{1,m}$).

We may have the following possibilities for examples appearing in S:

Consider the following algorithm:

- 1. Initialization: $a_S = b_S = -\infty$, $c_S = d_S = \infty$
- 2. Sort S and obtain $S = \{(x_{\sigma(1)}, y_{\sigma(1)}), (x_{\sigma(2)}, y_{\sigma(2)}), \dots, (x_{\sigma(m)}, y_{\sigma(m)})\}$
- 3. If there are only positive points, return:

$$h_{a_S,b_S,c_S,d_S}$$
, where $a_S = x_{\sigma(1)}$, $b_S = c_S = d_S = x_{\sigma(m)}$

If there are no positive examples, return:

$$h_{a_S,b_S,c_S,d_S}$$
, where $a_S = x_{\sigma(1)} - 2$, $d_S = x_{\sigma(1)} - 1$, $b_S = a_S + e^{-5}$, $c_S = d_S - e^{-5}$

4.

$$a_S, \ left = \min_{\substack{i = \overline{1,m} \\ y_{\sigma(i)} = 1}} x_{\sigma(i)}, \ \underset{\substack{i = \overline{1,m} \\ y_{\sigma(i)} = 1}}{\operatorname{argmin}} \ x_{\sigma(i)}$$

$$d_S, \ right = \max_{\substack{i=\overline{1,m} \\ y_{\sigma(i)}=1}} x_{\sigma(i)}, \ \operatorname*{argmax}_{\substack{i=\overline{1,m} \\ y_{\sigma(i)}=1}} x_{\sigma(i)}$$

$$b_S = a_S + e^{-5}, \ c_S = d_S - e^{-5}$$

5. for
$$i = \overline{left + 1, right}$$

if $y_{\sigma(i-1)} == 1$ and $y_{\sigma(i)} == 0$ then
$$b_S = x_{\sigma(i-1)}$$
if $y_{\sigma(i-1)} == 0$ and $y_{\sigma(i)} == 1$ then
$$c_S = x_{\sigma(i)}$$
return: h_{a_S,b_S,c_S,d_S}

Complexity:

- 1. Sorting the training set: $\mathcal{O}(m \cdot \log_2 m)$
- 2. Determining that there are either only positive labels or negative labels: $\mathcal{O}(m)$
- 3. Determining the ranges of the intervals: $\mathcal{O}(m)$
- 4. Adjusting the ends of the intervals (b and c values): $\mathcal{O}(m)$

Total: $\mathcal{O}(m \cdot \log_2 m)$

b. In this case, the realizability assumption is waived, which means that we no longer assume that all labels are generated by some $h^* \in \mathcal{H}$, but rather that we are dealing with a distribution \mathcal{D} over $\mathcal{X} \times \{0,1\}$ (the same point might have different labels), in our case $\mathcal{X} = \mathbb{R}$.

Idea of the implementation of $ERM_{\mathcal{H}}$

We begin by sorting the training set S in ascending order of x's, as we did in the realizable case. We obtain $S = \{(x_{\sigma(1)}, y_{\sigma(1)}), (x_{\sigma(2)}, x_{\sigma(2)}), \dots, (x_{\sigma(m)}, y_{\sigma(m)}) \mid x_{\sigma(1)} \leq \dots \leq x_{\sigma(m)}\}.$

Consider the set Z containing the values x' with no repetition:

$$Z = \{z_1, z_2, \dots, z_n\}, \qquad z_1 = x_{\sigma(1)} < z_2 < \dots < z_n = x_{\sigma(m)}, \qquad n \le m$$

If all initial x values are different, then $z_1 = x_{\sigma(1)}, \ldots, z_n = x_{\sigma(m)}, \ n = m$.

In the following, we should consider the following cases:

1. If all $y_i = 0$, return an interval not containing any point x from the training set. Let's take as example: $a_S = z_1 - 2$, $d_S = z_1 - 1$, $b_S = a_S + e^{-5}$, $c_S = d_S - e^{-5}$.

2. Consider all possible reunions of intervals $Z_{i,j,k,l} = [z_i, z_j] \cup [z_k, z_l], i = \overline{1, n}, j = \overline{i, n}, k = \overline{j, n}, l = \overline{k, n}.$

There are
$$n^2 + \cdots + 2 + 1 = \frac{n^2(n^2 + 1)}{2}$$
 such intervals.

An ERM algorithm will have to determine the intervals $Z^* = Z_{i^*,j^*,k^*,l^*}$ with the smallest empirical risk. $Z_{i^*,j^*,k^*,l^*} = \underset{\substack{i=\overline{1,m}\\k=\overline{1,m}\\l=1}}{\operatorname{argmin}} Loss(Z_{i,j,k,l})$, where

$$Loss(Z_{i,j,k,l}) = \frac{\# \text{ negative points inside } Z_{i,j,k,l} + \# \text{ positive points outside } Z_{i,j,k,l}}{m}$$

A dynamic programming approach will be used to efficiently compute $Loss(Z_{i,j,k,l})$. As a prerequisite, we must calculate the total number of positive points less than or equal to a given point z_i , as well as the total number of negative points less than or equal to a given point z_i . We will use two prefix-sum arrays for this (linear runtime complexity)[2]. We will use this partial results to calculate in constant time the number of positives or negative examples on any given interval [i, j] with $i = \overline{1, m}$, $j = \overline{1, m}$. We will also need to pre-compute for each z_i the number of positive and negative points $x_{\sigma(i)}$, $i = \overline{1, n}$ (as we did in Seminar class 5), since we are in the agnostic case and can have $x_{\sigma(i)} = x_{\sigma(i+1)}$ and $y_{\sigma(i)}$.

 $positive_prefixSums[0] = 0$

for $i = \overline{1, m}$:

 $positive_prefixSums[i] = positive_prefixSums[i-1] + \# points z_i = x_j \text{ with label } y_i = 1$

 $negative_prefixSums[0] = 0$

for $i = \overline{1, m}$:

 $negative_prefixSums[i] = negative_prefixSums[i-1] + \# points z_i = x_j \text{ with label } y_i = 0$

For each selected reunion of intervals $[i,j] \cup [k,l], \ i = \overline{1,n}, \ j = \overline{i,n}, \ k = \overline{j,n}, \ l = \overline{k,n}$, the loss function is calculated as follows:

$$Loss(Z_{i,j,k,l}) = \frac{positive_prefixSums[n]}{m} - \frac{positive_prefixSums[j] - positive_prefixSums[i]}{m} - \frac{positive_prefixSums[l] - positive_prefixSums[k]}{m} + \frac{negative_prefixSums[j] - negative_prefixSums[j]}{m}$$

Consider the following implementation of the $ERM_{\mathcal{H}}$ rule for \mathcal{C}_2 :

- 1. Sort S and obtain $x_{\sigma(1)} \leq x_{\sigma(2)} \leq \cdots \leq x_{\sigma(m)}$. Build set Z containing value x without repetition, $Z = \{z_1, z_2, \ldots, z_n\}, \ z_1 = x_{\sigma(1)} < z_2 < \cdots < z_n = x_{\sigma(m)}$
- 2. Check if all y_i , $i = \overline{1,m}$ have value 0. If so, return h_{a_S,b_S,c_S,d_S} , where $a_S = z_1 2, d_S = z_1 1, b_S = a_S + e^{-5}, c_S = d_S e^{-5}$
- 3. positive_prefixSums[0] = 0, negative_prefixSums[0] = 0

for $i = \overline{1, n}$:

if $y_i = 1$ then

 $positive_prefixSums[i] = positive_prefixSums[i-1] + \# points z_i = x_j$ with label

if $y_i = 0$ then

 $negative_prefixSums[i] = negative_prefixSums[i-1] + \# points z_i = x_j$ with label

4. $min_error = 1$, $a_S = None$, $b_S = None$, $c_S = None$, $d_S = None$

for $i = \overline{1, n}$:

for
$$j = \overline{1, n}$$
:

for $k = \overline{1, n}$:

for $l = \overline{1, n}$:

$$\begin{split} Loss(Z_{i,j,k,l}) &= \frac{positive_prefixSums[n]}{m} - \frac{positive_prefixSums[j]}{m} \\ &+ \frac{positive_prefixSums[i]}{m} - \frac{positive_prefixSums[l]}{m} \\ &+ \frac{positive_prefixSums[k]}{m} + \frac{negative_prefixSums[j]}{m} \\ &- \frac{negatives_prefixSums[i]}{m} \end{split}$$

if $Loss(Z_{i,j,k,l}) < min_error$ then $min_error = Loss(Z_{i,j,k,l}), a_S = i, b_S = j, c_S = k, d_S = l$

return a_S, b_S, c_S, d_S

Complexity:

- 1. Sorting the training set: $\mathcal{O}(m \cdot \log_2 m)$
- 2. Determining that there are only negative labels: $\mathcal{O}(m)$
- 3. Computing the pre-fix sums vectors: O(m)
- 4. Determining the ranges of the intervals: $\mathcal{O}(m^4)$
 - Constant time for computing the value of the loss function

Total: $\mathcal{O}(m^4)$

- **3.** Consider a modified version of the AdaBoost algorithm that runs exactly three rounds as follows:
 - the first two rounds run exactly as in AdaBoost (at round 1 we obtain distribution $\mathbf{D}^{(1)}$, weak classifier h_1 with error ϵ_1 ; at round 2 we obtain distribution $\mathbf{D}^{(2)}$, weak classifier h_2 with error ϵ_2)
 - in the third round we compute for each i = 1, 2, ..., m:

$$\mathbf{D}^{(3)}(i) = \begin{cases} \frac{D^{(1)}(i)}{Z}, & \text{if } h_1(x_i) \neq h_2(x_i) \\ 0, & \text{otherwise} \end{cases}$$

where Z is a normalization factor such that $\mathbf{D}^{(3)}$ is a probability distribution.

- obtain weak classifier h_3 with error ϵ_3 .
- output the final classifier $h_{final}(x) = sign(h_1(x) + h_2(x) + h_3(x))$.

Assume that at each round t = 1, 2, 3 the weak learner returns a weak classifier h_t for which the error ϵ_t satisfies $\epsilon_t \leq \frac{1}{2} - \gamma_t, \gamma_t > 0$.

- a. What is the probability that the classifier h_1 (selected at round 1) will be selected again at round 2? Justify your answer.
- b. Consider $\gamma = min\{\gamma_1, \gamma_2, \gamma_3\}$. Show that the training error of the final classifier h_{final} is at most $\frac{1}{2} \frac{3}{2}\gamma + 2\gamma^3$ and show that this is strictly smaller than $\frac{1}{2} \gamma$.

Solution. a. Assume that the classifier h_1 (selected in round 1) is chosen again in round 2. The error of the classifier h_1 with respect to the distribution $\mathbf{D}^{(2)}$ is:

$$\varepsilon_2' = \Pr_{i \sim \mathbf{D}^{(2)}}[h_1(x_i) \neq y_i] = \sum_{i=1}^m \mathbf{D}^{(2)}(i) \cdot \mathbb{1}_{[h_1(x) \neq y_i]}$$
(1)

where:

•
$$\mathbf{D}^{(2)}(i) = \frac{\mathbf{D}^{(1)}(i) \cdot e^{-w_1 \cdot h_1(x_i) \cdot y_i}}{Z_2}$$

•
$$w_1 = \frac{1}{2} \cdot ln\left(\frac{1}{\varepsilon_1} - 1\right) = ln\left(\sqrt{\frac{1-\varepsilon_1}{\varepsilon_1}}\right)$$

•
$$Z_2 = \sum_{i=1}^m \mathbf{D}^{(1)}(i) \cdot e^{-w_t \cdot h_1(x_i) \cdot y_i}$$

- for
$$h_1(x_i) = y_i \implies \mathbf{D}^{(2)}(i) = \frac{\mathbf{D}^{(1)}(i) \cdot e^{-w_1}}{Z_2} = \frac{\mathbf{D}^{(1)}(i) \cdot e^{-ln\left(\frac{1-\varepsilon_1}{\varepsilon_1}\right)}}{Z_2} = \frac{\mathbf{D}^{(1)}(i) \cdot \sqrt{\frac{\varepsilon_1}{1-\varepsilon_1}}}{Z_2}$$

- for
$$h_1(x_i) \neq y_i \implies \mathbf{D}^{(2)}(i) = \frac{\mathbf{D}^{(1)}(i) \cdot e^{w_1}}{Z_2} = \frac{\mathbf{D}^{(1)}(i) \cdot e^{\ln\left(\frac{1-\varepsilon_1}{\varepsilon_1}\right)}}{Z_2} = \frac{\mathbf{D}^{(1)}(i) \cdot \sqrt{\frac{1-\varepsilon_1}{\varepsilon_1}}}{Z_2}$$

From the definition of Z_2 we obtain:

$$Z_2 = \sum_{i=1}^m \mathbf{D}^{(1)}(i) \cdot e^{-w_t \cdot h_1(x_i) \cdot y_i} = \sum_{\substack{i=1\\h_1(x_i) \neq y_i}}^m \mathbf{D}^{(1)}(i) \cdot e^{-w_t \cdot h_1(x_i) \cdot y_i} + \sum_{\substack{i=1\\h_1(x_i) \neq y_i}}^m \mathbf{D}^{(1)}(i) \cdot e^{-w_t \cdot h_1(x_i) \cdot y_i}$$

$$= (1 - \varepsilon_1) \cdot \sqrt{\frac{\varepsilon_1}{1 - \varepsilon_1}} + \varepsilon_1 \cdot \sqrt{\frac{1 - \varepsilon_1}{\varepsilon_1}} = 2\sqrt{\varepsilon_1(1 - \varepsilon_1)}$$

Replacing these relations in equation 1 we obtain:

$$\varepsilon_{2}' = \sum_{\substack{i=1\\h_{1}(x_{i})\neq y_{i}}}^{m} \frac{\mathbf{D}^{(1)}(i) \cdot \sqrt{\frac{1-\varepsilon_{1}}{\varepsilon_{1}}}}{2 \cdot \sqrt{\varepsilon_{1} \cdot (1-\varepsilon)}} = \frac{\sqrt{\frac{1-\varepsilon_{1}}{\varepsilon_{1}}}}{2 \cdot \sqrt{\varepsilon_{1} \cdot (1-\varepsilon_{1})}} \cdot \sum_{\substack{i=1\\h_{1}(x_{i})\neq y_{i}}}^{m} \mathbf{D}^{(1)}(i) = \frac{\sqrt{\frac{1-\varepsilon_{1}}{\varepsilon_{1}}}}{2 \cdot \sqrt{\varepsilon_{1} \cdot (1-\varepsilon_{1})}} \cdot \varepsilon_{1} = \frac{\sqrt{\varepsilon_{1} \cdot (1-\varepsilon_{1})}}{2 \cdot \sqrt{\varepsilon_{1} \cdot (1-\varepsilon_{1})}} = \frac{1}{2}$$

- \implies contradiction with the hypothesis of the problem $\varepsilon_2 \leq \frac{1}{2} \gamma_2, \gamma_2 > 0$
- \implies classifier h_1 will always we replaced at round 2

Therefore, the probability of the classifier h_1 to be selected again at round 2 is 0.

In general, we can demonstrate that at each iteration j of the AdaBoost algorithm, the error of the classifier h_j with respect to the distribution $\mathbf{D}^{(j+1)}(j)$ equals $\frac{1}{2}$, implying that the probability of the classifier h_j being selected again at the next iteration is 0.

References

- [1] Shai Shalev-Shwartz and Shai Ben-David. *Understanding Machine Learning: From Theory to Algorithms*. USA: Cambridge University Press, 2014. ISBN: 1107057132.
- [2] Rohit Thapliyal. Prefix Sum Array Implementation and Applications in Competitive Programming GeeksforGeeks. Available at: https://www.geeksforgeeks.org/prefix-sum-array-implementation-applications-competitive-programming/. [Accessed 15 June 2022].