Formulaire de trigonométrie circulaire

$$\cos(x) = \text{abscisse de } M$$

 $\sin(x) = \text{ordonn\'ee de } M$
 $\tan(x) = \overline{AH}$
 $\cot \tan(x) = \overline{BK}$
 $e^{ix} = z_M$

Pour $x \notin \frac{\pi}{2} + \pi \mathbb{Z}$, $\tan(x) = \frac{\sin(x)}{\cos(x)}$ et pour $x \notin \pi \mathbb{Z}$, $\cot(x) = \frac{\cos(x)}{\sin(x)}$. Enfin pour $x \notin \frac{\pi}{2} \mathbb{Z}$, $\cot(x) = \frac{1}{\tan(x)}$. Valeurs usuelles.

x en °	0	30	45	60	90
x en rd	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
$\sin(x)$	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
$\cos(x)$	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
tan(x)	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	∞
$\cot an(x)$	∞	$\sqrt{3}$	1	$\frac{1}{\sqrt{3}}$	0

$$\begin{aligned} \forall x \in \mathbb{R}, & \cos^2 x + \sin^2 x = 1 \\ \forall x \notin \frac{\pi}{2} + \pi \mathbb{Z}, & 1 + \tan^2 x = \frac{1}{\cos^2 x}. \\ \forall x \notin \pi \mathbb{Z}, & 1 + \cot^2 x = \frac{1}{\sin^2 x}. \end{aligned}$$

addition d'un tour	addition d'un demi-tour	angle opposé	angle supplémentaire
$cos(x + 2\pi) = cos x$ $sin(x + 2\pi) = sin x$ $tan(x + 2\pi) = tan x$ $cotan(x + 2\pi) = cotan x$	$cos(x + \pi) = -cos x$ $sin(x + \pi) = -sin x$ $tan(x + \pi) = tan x$ $cotan(x + \pi) = cotan x$	cos(-x) = cos x $sin(-x) = -sin x$ $tan(-x) = -tan x$ $cotan(-x) = -cotan x$	$cos(\pi - x) = -cos x$ $sin(\pi - x) = sin x$ $tan(\pi - x) = -tan x$ $cotan(\pi - x) = -cotan x$
angle complémentaire	quart de tour direct	quart de tour indirect	
$\cos(\frac{\pi}{2} - x) = \sin x$	$\cos(x + \frac{\pi}{2}) = -\sin x$	$\cos(x - \frac{\pi}{2}) = \sin x$	
$\sin(\frac{\pi}{2} - x) = \cos x$	$\sin(x + \frac{\pi}{2}) = \cos x$	$\sin(x - \frac{\pi}{2}) = -\cos x$	
$\tan(\frac{\pi}{2} - x) = \cot x$	$\tan(x + \frac{\pi}{2}) = -\cot x$	$\tan(x - \frac{\pi}{2}) = -\cot x$	
$\cot (\frac{\pi}{2} - x) = \tan x$	$\cot (x + \frac{\pi}{2}) = -\tan x$	$\cot (x - \frac{\pi}{2}) = -\tan x$	

Formules d'addition

$$\cos(a+b) = \cos a \cos b - \sin a \sin b$$

$$\cos(a-b) = \cos a \cos b + \sin a \sin b$$

$$\sin(a+b) = \sin a \cos b + \sin b \cos a$$

$$\sin(a-b) = \sin a \cos b - \sin b \cos a$$

Formules de duplication

$$\cos(2\alpha) = \cos^2 \alpha - \sin^2 \alpha$$
$$= 2\cos^2 \alpha - 1$$
$$= 1 - 2\sin^2 \alpha$$
$$\sin(2\alpha) = 2\sin \alpha \cos \alpha$$

$$\tan(a+b) = \frac{\tan a + \tan b}{1 - \tan a \tan b}$$

$$\tan(2\alpha) = \frac{2\tan\alpha}{1 - \tan^2\alpha}$$

$$\tan(a - b) = \frac{\tan a - \tan b}{1 + \tan a \tan b}$$

Formules de linéarisation

$$\cos a \cos b = \frac{1}{2}(\cos(a - b) + \cos(a + b)) \qquad \cos^2 a = \frac{1 + \cos(2a)}{2}$$
$$\sin a \sin b = \frac{1}{2}(\cos(a - b) - \cos(a + b)) \qquad \sin^2 a = \frac{1 - \cos(2a)}{2}$$

Formules de factorisation

 $\sin a \cos b = \frac{1}{2}(\sin(a+b) + \sin(a-b))$

$\cos x$, $\sin x$ et $\tan x$ en fonction de t=tan(x/2)

Divers

$$\cos p + \cos q = 2\cos\frac{p+q}{2}\cos\frac{p-q}{2}$$

$$\cos p - \cos q = -2\sin\frac{p+q}{2}\sin\frac{p-q}{2}$$

$$\sin p + \sin q = 2\sin\frac{p+q}{2}\cos\frac{p-q}{2}$$

$$\sin p - \sin q = 2\sin\frac{p-q}{2}\cos\frac{p+q}{2}$$

$$\cos x = \frac{1 - t^2}{1 + t^2}$$
$$\sin x = \frac{2t}{1 + t^2}$$
$$\tan x = \frac{2t}{1 - t^2}$$

$$1 + \cos x = 2\cos^2\frac{x}{2}$$
$$1 - \cos x = 2\sin^2\frac{x}{2}$$
$$\cos(3x) = 4\cos^3 x - 3\cos x$$
$$\sin(3x) = 3\sin x - 4\sin^3 x$$

Résolution d'équations

$$\begin{array}{lll} \cos x = \cos \alpha \Leftrightarrow & \sin x = \sin \alpha \Leftrightarrow & \tan x = \tan \alpha \Leftrightarrow \\ \exists k \in \mathbb{Z}/x = \alpha + 2k\pi & \exists k \in \mathbb{Z}/x = \alpha + 2k\pi & \exists k \in \mathbb{Z}/x = \alpha + k\pi \\ \text{ou} & \text{ou} & \\ \exists k \in \mathbb{Z}/x = -\alpha + 2k\pi & \exists k \in \mathbb{Z}/x = \pi - \alpha + 2k\pi \end{array}$$

Exponentielle complexe

 $\forall x \in \mathbb{R}, e^{ix} = \cos x + i \sin x.$

Valeurs usuelles

$$e^0=1,\ e^{i\pi/2}=i,\ e^{i\pi}=-1,\ e^{-i\pi/2}=-i,\ e^{2i\pi/3}=j=-\frac{1}{2}+i\frac{\sqrt{3}}{2},\ \sqrt{2}e^{i\pi/4}=1+i.$$

Propriétés algébriques

$$\begin{aligned} &\forall x \in \mathbb{R}, \, |e^{ix}| = 1. \\ &\forall (x,y) \in \mathbb{R}^2, \, e^{ix} \times e^{iy} = e^{i(x+y)}, \quad \frac{e^{ix}}{e^{iy}} = e^{i(x-y)}, \quad \frac{1}{e^{ix}} = e^{-ix} = \overline{e^{ix}} \end{aligned}$$

$$e^{i(x+y)}, \quad \frac{e^{ix}}{e^{iy}} = e^{i(x-y)}, \quad \frac{1}{e^{ix}} = e^{-ix} = \overline{e^{ix}}$$

Formules d'Euler

$$\begin{split} \forall x \in \mathbb{R}, & \cos x = \frac{e^{\mathrm{i}x} + e^{-\mathrm{i}x}}{2} \text{ et } e^{\mathrm{i}x} + e^{-\mathrm{i}x} = 2\cos x. \\ \forall x \in \mathbb{R}, & \sin x = \frac{e^{\mathrm{i}x} - e^{-\mathrm{i}x}}{2\mathrm{i}} \text{ et } e^{\mathrm{i}x} - e^{-\mathrm{i}x} = 2\mathrm{i}\sin x. \end{split}$$

Formule de Moivre

 $\forall x \in \mathbb{R}, \forall n \in \mathbb{Z}, (e^{ix})^n = e^{inx}.$

Développements limités usuels

Les développements limités ci-dessous sont valables quand x tend vers 0 et uniquement dans ce cas.

Formule de Taylor-Young en 0.
$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} x^k + o(x^n)$$
.

$$\begin{split} e^x &\underset{x \to 0}{=} 1 + x + \frac{x^2}{2} + \ldots + \frac{x^n}{n!} + o(x^n) \underset{x \to 0}{=} \sum_{k=0}^n \frac{x^k}{k!} + o(x^n) \\ &\operatorname{chx} \underset{x \to 0}{=} 1 + \frac{x^2}{2} + \ldots + \frac{x^{2n}}{(2n)!} + o(x^{2n}) \underset{x \to 0}{=} \sum_{k=0}^n \frac{x^{2k}}{(2k)!} + o(x^{2n}) \quad (\text{et même o}(x^{2n+1}) \text{ et même O}(x^{2n+2})) \\ &\operatorname{shx} \underset{x \to 0}{=} x + \frac{x^3}{6} + \ldots + \frac{x^{2n+1}}{(2n+1)!} + o(x^{2n+1}) \underset{x \to 0}{=} \sum_{k=0}^n \frac{x^{2k+1}}{(2k+1)!} + o(x^{2n+1}) \quad (\text{et même o}(x^{2n+2}) \text{ ou } O(x^{2n+3})) \\ &\operatorname{cos} x \underset{x \to 0}{=} 1 - \frac{x^2}{2} + \ldots + (-1)^n \frac{x^{2n}}{(2n)!} + o(x^{2n}) \underset{x \to 0}{=} \sum_{k=0}^n (-1)^k \frac{x^{2k}}{(2k)!} + o(x^{2n}) \quad (\text{et même o}(x^{2n+1}) \text{ ou } O(x^{2n+2})) \\ &\sin x \underset{x \to 0}{=} x - \frac{x^3}{6} + \ldots + (-1)^n \frac{x^{2n+1}}{(2n+1)!} + o(x^{2n+1}) \underset{x \to 0}{=} \sum_{k=0}^n (-1)^k \frac{x^{2k+1}}{(2k+1)!} + o(x^{2n+1}) \quad (\text{et même o}(x^{2n+2}) \text{ ou } O(x^{2n+3})) \\ &\tan x \underset{x \to 0}{=} x + \frac{x^3}{3} + \frac{2x^5}{15} + \frac{17x^7}{315} + o(x^7) \end{split}$$

$$\begin{split} &\frac{1}{1-x} \underset{x \to 0}{=} 1 + x + x^2 + ... + x^n + o(x^n) \underset{x \to 0}{=} \sum_{k=0}^n x^k + o(x^n) \\ &\frac{1}{1+x} \underset{x \to 0}{=} 1 - x + x^2 + ... + (-1)^n x^n + o(x^n) \underset{x \to 0}{=} \sum_{k=0}^n (-1)^k x^k + o(x^n) \\ &\ln(1+x) \underset{x \to 0}{=} x - \frac{x^2}{2} + ... + (-1)^{n-1} \frac{x^n}{n} + o(x^n) \underset{x \to 0}{=} \sum_{k=1}^n (-1)^{k-1} \frac{x^k}{k} + o(x^n) \\ &\ln(1-x) \underset{x \to 0}{=} -x - \frac{x^2}{2} + ... + (-1)^n \frac{x^n}{n} + o(x^n) \underset{x \to 0}{=} -\sum_{k=1}^n \frac{x^k}{k} + o(x^n) \\ &\operatorname{Arctanx} \underset{x \to 0}{=} x - \frac{x^3}{3} + ... + (-1)^n \frac{x^{2n+1}}{2n+1} + o(x^{2n+1}) \underset{x \to 0}{=} \sum_{k=0}^n (-1)^k \frac{x^{2k+1}}{2k+1} + o(x^{2n+1}) \quad \text{(et même } o(x^{2n+2}) \text{ ou } O(x^{2n+3})) \\ &\operatorname{Argth} x \underset{x \to 0}{=} x + \frac{x^3}{3} + ... + \frac{x^{2n+1}}{2n+1} + o(x^{2n+1}) \underset{x \to 0}{=} \sum_{k=0}^n \frac{x^{2k+1}}{2k+1} + o(x^{2n+1}) \quad \text{(et même } o(x^{2n+2}) \text{ ou } O(x^{2n+3})) \end{split}$$

$$\begin{split} (1+x)^{\alpha} &\underset{x\to 0}{=} 1 + \alpha x + \frac{\alpha(\alpha-1)}{2} x^2 + ... + \frac{\alpha(\alpha-1)...(\alpha-(n-1))}{n!} x^n + o(x^n) \quad (\alpha \text{ r\'eel donn\'e}) \\ &\underset{x\to 0}{=} \sum_{k=0}^n \binom{\alpha}{k} x^k + o(x^n) \\ &\frac{1}{(1-x)^2} \underset{x\to 0}{=} 1 + 2x + 3x^2 + ... (n+1) x^n + o(x^n) \end{split}$$

On obtient un développement de Arcsin x (resp. argsh x) en intégrant un développement de $\frac{1}{\sqrt{1-x^2}} = (1-x^2)^{-1/2}$ (resp. $\frac{1}{\sqrt{1+x^2}} = (1+x^2)^{-1/2}$).

Formulaire : Dérivées et primitives usuelles

Dans tout le formulaire, les quantitées situées au dénominateur sont supposées non nulles

Dérivées des fonctions usuelles

Dans chaque ligne, f' est la dérivée de la fonction f sur l'intervalle I.

f(x)	I	f'(x)
λ (constante)	\mathbb{R}	0
x	\mathbb{R}	1
$x^n \ (n \in \mathbb{N}^*)$	\mathbb{R}	nx^{n-1}
$\frac{1}{x}$	$]-\infty,0[$ ou $]0,+\infty[$	$-\frac{1}{x^2}$
	$]-\infty,0[$ ou $]0,+\infty[$	$-\frac{n}{x^{n+1}}$
\sqrt{x}	$]0,+\infty[$	$\frac{1}{2\sqrt{x}}$
$\ln x$	$]0,+\infty[$	$\frac{1}{x}$
e^x	\mathbb{R}	e^x
$\sin x$	\mathbb{R}	$\cos x$
$\cos x$	\mathbb{R}	$-\sin x$
$\tan x$	$\left] -\frac{\pi}{2} + k\pi, \frac{\pi}{2} + k\pi \right[, k \in \mathbb{Z}$	$1 + \tan^2 x = \frac{1}{\cos^2 x}$

Opérations et dérivées

$$(f+g)' = f' + g'$$

 $(\lambda f)' = \lambda f'$, λ désignant une constante $(u^n)' = nu^{n-1}u' \quad (n \in \mathbb{N}, \ n \geqslant 2)$ $(fg)' = f'g + fg' \qquad \left(\frac{1}{u^n}\right)' = -\frac{nu'}{u^{n+1}} \quad (n \in \mathbb{N}, \ n \geqslant 1)$

$$(fg)' = f'g + fg'$$

$$\left(\frac{1}{g}\right)' = -\frac{g'}{g^2}$$

$$\left(\frac{f}{g}\right) = \frac{f'g - fg'}{g^2}$$

En particulier, si $u > 0 : \forall a \in \mathbb{R}$,

$$(u^a)' = \alpha u' u^{a-1}$$

1.
$$\forall x \in]-1;1[, | \arcsin'(x) = \frac{1}{\sqrt{1-x^2}}]$$

2.
$$\forall x \in]-1;1[,] \arccos'(x) = -\frac{1}{\sqrt{1-x^2}}$$

3.
$$\forall x \in \mathbb{R}, \overline{\arctan'(x) = \frac{1}{1+x^2}}$$

 $(f \circ g)' = g' \times (f' \circ g)$

Primitives des fonctions usuelles Dans chaque ligne, F est une primitive de f sur l'intervalle I. Ces primitives sont uniques à une constante près

$f\left(x\right)$	I	$F\left(x\right)$
λ (constante)	\mathbb{R}	$\lambda x + C$
x	\mathbb{R}	$\frac{x^2}{2} + C$ x^{n+1}
$x^n \ (n \in \mathbb{N}^*)$	\mathbb{R}	$\frac{x^{n+1}}{n+1} + C$
$\frac{1}{x}$	$]-\infty,0[$ ou $]0,+\infty[$	$\ln x + C$
	$]-\infty,0[$ ou $]0,+\infty[$	$-\frac{1}{(n-1)x^{n-1}} + C$
$\frac{1}{\sqrt{x}}$	$]0,+\infty[$	$2\sqrt{x} + C$
$\ln x$	\mathbb{R}_+^*	$x \ln x - x + C$
e^x	\mathbb{R}	$e^x + C$
$\sin x$	\mathbb{R}	$-\cos x + C$
$\cos x$	\mathbb{R}	$\sin x + C$
$1 + \tan^2 x = \frac{1}{\cos^2 x}$	$\left] -\frac{\pi}{2} + k\pi, \frac{\pi}{2} + k\pi \right[, k \in \mathbb{Z}$	$\tan x + C$

Opérations et primitives

On suppose que u est une fonction dérivable sur un intervalle I

- Une primitive de $u'u^n$ sur I est $\frac{u^{n+1}}{n+1}$ $(n \in \mathbb{N}^*)$
- Une primitive de $\frac{u'}{u^2}$ sur I est $-\frac{1}{u}$. Une primitive de $\frac{u'}{u^n}$ sur I est $-\frac{1}{(n-1)u^{n-1}}$. $(n \in \mathbb{N}, n \geqslant 2)$.
- Une primitive de $\frac{u'}{\sqrt{u}}$ sur I est $2\sqrt{u}$ (En supposant u>0 sur I.)
- Une primitive de $\frac{u'}{u}$ sur I est $\ln |u|$.
- Une primitive de $u'e^u$ sur I est e^u .

En particulier, si u > 0 sur I et si $a \in \mathbb{R} \setminus \{-1\}$, une primitive de $u'u^a$ sur I est :

$$\int u'u^a = \begin{cases} \frac{1}{a+1}u^{a+1} + C & \text{si } a \in \mathbb{R} \setminus \{-1\} \\ \ln u + C & \text{si } a = -1 \end{cases}$$