H3

Find the limits.

1.
$$\lim_{x \to -7} (2x + 5)$$

3.
$$\lim_{x \to 2} (-x^2 + 5x - 2)$$

15.
$$\lim_{h\to 0} \frac{3}{\sqrt{3h+1}+1}$$

B

42. Suppose that $\lim_{x\to -2} p(x) = 4$, $\lim_{x\to -2} r(x) = 0$, and $\lim_{x\to -2} s(x) = -3$. Find

a.
$$\lim_{x \to -2} (p(x) + r(x) + s(x))$$

b.
$$\lim_{x \to -2} p(x) \cdot r(x) \cdot s(x)$$

c.
$$\lim_{x \to -2} (-4p(x) + 5r(x))/s(x)$$

$$\Box$$

- **49.** If $\sqrt{5 2x^2} \le f(x) \le \sqrt{5 x^2}$ for $-1 \le x \le 1$, find $\lim_{x \to 0} f(x)$.
- **50.** If $2 x^2 \le g(x) \le 2 \cos x$ for all x, find $\lim_{x \to 0} g(x)$.

53. If $x^4 \le f(x) \le x^2$ for x in [-1, 1] and $x^2 \le f(x) \le x^4$ for x < -1 and x > 1, at what points c do you automatically know $\lim_{x \to c} f(x)$? What can you say about the value of the limit at these points?

In Exercises \checkmark , use the graphs to find a $\delta>0$ such that for all x

$$0 < |x - x_0| < \delta \implies |f(x) - L| < \epsilon.$$

- **51.** Define what it means to say that $\lim_{x\to 0} g(x) = k$.
- **52.** Prove that $\lim_{x \to c} f(x) = L$ if and only if $\lim_{h \to 0} f(h + c) = L$.