Muhammad Izham Bin Norhamadi B032020039 BITZ S2G1

Tutorial 2: Introduction to Finite Field F2

0. Let us take a number $x = 100 + (ID \mod 100)$ and $y = 200 + (MyKAD \mod 100)$

An addition is an exclusive-or operation

$$x = 187$$
 and $y = 239$.
 $x = 187_{10} = 1011 \ 1011_2 = x^7 + x^5 + x^4 + x^3 + x + 1$ and $y = 239_{10} = 1110 \ 1111_2 = x^7 + x^6 + x^5 + x^3 + x^2 + x + 1$, $x + y = 1011 \ 1011_2 + 1110 \ 1111_2 = 1$

In mathematical notation
$$x + y = (x^7 + x^5 + x^4 + x^3 + x + 1) + (x^7 + x^6 + x^5 + x^3 + x^2 + x + 1)$$

= $2x^7 + x^6 + 2x^5 + x^4 + 2x^3 + x^2 + x + 2$
= $0x^7 + x^6 + 0x^5 + x^4 + 0x^3 + x^2 + x + 0 \pmod{2}$
= $x^6 + x^4 + x^2 + x$

1. Multiplication is a convolution modulo 2.

2. Division gives quotient and remainder.

Let us divide by $283_{10} = 100011011_2 = x^8 + x^4 + x^3 + x + 1$

Quotient	$110001011011001 = 25,305_{10}$
1	100011011
	10010000011001
11	100011011
	0011101111001
11001	100011011
	1100010101
110011	100011011
	10010001
1100111	100011011
	$00111000 = 56_{10}$ Reminder

3. An inverse is a good starting point to be a cryptographer.

Lets compute an inverse $x^5+x^4+x^3$ from previous number modulo $x^8+x^4+x^3+x+1$

Let us invoke an Extended Euclidean Algorithm

Extended Euclidean Algorithm

Extended Euclidean Algorithm												
i		b =	a *		q	+		r	и	ν	w=u-vq	
0		100011011	111	000	1101			11	0	1	1101	
1		111000		11	10111			1	1	1101	11110011	
Line	0:	Quotient 1000 1100 1101	111 11 11 0	0110 1000 1110 1110)11 <u>)</u>)11	nair	nder	w=u-v	q =0-1·11	01=1101		
Line	1:	Quotient 10000 10100 10110 10111	<u>1</u>	000 000 1 100 11 10 11 1	Remai	nde	ar.	w=u-v	$q = 1 - 110$ $= 10111$ 1011 $\frac{10}{11110}$	1 111		
				_	1/611101	.1100	- -					

Line 0:
$$v \cdot q = 1.1101 = 1 \cdot (x^3 + x^2 + 1) = 1101$$

Always remember to check your answer whether $a \cdot a^{-1} \equiv 1 \pmod{p}$ 4. Check your division: Another say another A.

```
Let us check that
```

```
a^{-1} = 11110011 is indeed an inverse of a = 111000 modulo 100011011.
      a \cdot a^{-1}
= 111000 * 11110011
  11110011
    11110011
    11110011
= \overline{1011011001}
  100011011
    011101111
```