Written Test for Degree Engineering Interview

Marks:20

Date:20/07/2024 Branch: E & TC Engineering Time:1 hr

Note: All questions are compulsory and carry 2 marks each

- 1. Let m(t) be a strictly band-limited signal with bandwidth B and energy E. Assuming $\omega_0 = 10B$, the energy in the signal $m(t) \cos \omega_0 t$ is
 - A. $\frac{E}{4}$ B. $\frac{E}{2}$ C. E D. 2E
- 2. In feedback control system shown in Figure 1 below $G(s) = \frac{6}{s(s+1)(s+2)}$, where R(s), Y(s), &E(s) are Laplace transform of r(t), y(t), &e(t) respectively, if the input r(t) is a unit ramp function then
 - A. $\lim_{t\to\infty} e(t)=0$ B. $\lim_{t\to\infty} e(t)=\frac{1}{3}$ C. $\lim_{t\to\infty} e(t)=\frac{1}{4}$ D. $\lim_{t\to\infty} e(t)$ does not exist, e(t) is oscillatory.

Figure 1: Q.2

3. What is the z-transform of the following finite duration signal?

$$x[n] = \{2, 4, 5, 7, 0, 1\}$$

A.
$$2 + 4z + 5z^2 + 7z^3 + z^4$$
 B. $2 + 4z + 5z^2 + 7z^3 + z^5$ C. $2 + 4z^{-1} + 5z^{-2} + 7z^{-3} + z^{-5}$ D. $2z^2 + 4z + 5 + 7z^{-1} + z^{-3}$

- 4. The BJT as a switch is operated in one of the following: A. Only saturation region B. Active region C. Only cut off region D. Both saturation and cut off region
- 5. A DC power supply has no load voltage of 30 V and full load voltage of 25 V at full load current of 1 A. Its output resistance and load regulation respectively are.
 - A. 5Ω and 20% B. 25Ω and 20% C. 5Ω and 16.7% D. 25Ω and 16.7%
- 6. A 500 W carrier signal is amplitude modulated with modulation percentage of 60%. The total power in the modulated signal if the amplitude modulation used is the double sideband AM with full carrier(A3E) is.

A. 590 W B. 534 W C. 125 W D. 300 W

7. What will be the o/p of the given logic gate of Figure 2?

Figure 2: Q.7

A. NOR B. NAND C. AND D. OR

- 8. Let \hat{i} and \hat{j} be the unit vectors along x and y axes respectively, and let A be the positive constant. Which one of the following is true for vector fields $\bar{F}_1 = A(\hat{i}y + \hat{j}x)$, $\bar{F}_2 = A(\hat{i}y \hat{j}x)$
 - A. Both \bar{F}_1 and \bar{F}_2 are electrostatic fields. B. Only \bar{F}_1 is an electrostatic fields. C. Only \bar{F}_2 is an electrostatic fields. D. Neither \bar{F}_1 nor \bar{F}_2 are electrostatic fields.
- 9. The current I_y flowing through 660 $\!\Omega$ resistance is (Refer Figure 3):

Figure 3: Q.9

A.
$$I_x$$
 B. $I_x/2$ C. $I_x/4$ D. $I_x/3$

10. In the circuit shown below, P and Q are the inputs. The logical function realized by the circuit shown Figure 4 below is:

Figure 4: Q.10

A.
$$Y = PQ$$
 B. $Y = P + Q$ C. $Y = \overline{PQ}$ D. $Y = \overline{P + Q}$