Modeling Crime in Los Angeles

Julia McNerney, Yue Wan & Xukan Zhang

ACMS40842

Background

- Los Angeles ranks 17th in crime rate for US cities with population >100,000
 - Highest among the biggest cities in the US (NYC, Chicago, Houston, Phoenix, Philadelphia)
- 3rd largest police department in US
 - \$1.74 billion budge
 - \$420 per resident
- One of the most diverse cities in the US
 - 50% latino, 11% asian, 10% black

Dataset Overview: 01/01/2020 - 10/08/2023 Over 700k Crime Case

Selected Features: Area, Crime Type, Victim Sex, Age & Descent, Exact Time

Research Questions

Examine how crime trends differ for different groups of victims.

- Enable policy makers to create more appropriate solutions to fighting crime
- Deeper understanding of who is most affected by crime
- Help the general public become aware of the possible crimes

Overall crime count model (monthly)

ARIMA(1,1,0)

No seasonality

Segmented by Victims' Gender (Monthly): EDA

Segmented by Victims' Gender (Monthly): EDA

Female Victims Series: fem_month_ts

Indicate AR(1) Model

Male Victims

Segmented by Victims' Gender (Monthly): Model Selection

Female Victims: ARIMA(1,1,0)

All diagnostic plots look good

Male Victims: ARIMA(1,1,0)

Segmented by Victims' Gender (Monthly): Forecasting

Female Victims:

Male Victims

Summary of monthly trend

No difference in crime count trends toward male and female victims

- Efforts aimed to reduce crime against males or females may be effective in reducing crime overall
- Analysis into type of crime, area, etc may be more insightful when dealing with gender of victim

Overall crime count model (weekly)

3 months seasonality

Victim Descent

Obvious
differences in
average counts
Possibly different
trends and
seasonality

Weekly Asian Victim Crime Count

No seasonality
Possible Model: ARIMA(0,1,1)

Weekly Asian Victim Crime Count

ARIMA(0,1,1)

Prediction: constant trend

ARIMA Forecast with Actual Data

Weekly Black Victim Crime Count

Seasonality with S=13 Possible Model: MA(1), undetermined for seasonal component

Weekly Black Victim Crime Count

 $ARIMA(0,1,1) imes (1,1,0)_{13}$

Prediction: decreasing trend with seasonality ARIMA Forecast with Actual Data

Weekly Hispanic Victim Crime Count

Seasonality with S=4
Possible Model: both seasonal and non-seasonal components cannot be determined from the ACF and PACF plot

Weekly Hispanic Victim Crime Count

 $ARIMA(2,1,1) imes(1,1,0)_4$

Prediction: constant trend with seasonality ARIMA Forecast with Actual Data

Weekly White Victim Crime Count

Seasonality with S=13
Possible Model: both seasonal and non-seasonal components cannot be determined from the ACF and PACF plot

Weekly White Victim Crime Count

 $ARIMA(0,1,2) imes (2,1,0)_{13}$

Prediction: decreasing trend with seasonality ARIMA Forecast with Actual Data

Models for different Victim Descent

Victim Descent	Asian	Black	Hispanic	White
Model Fitted	ARIMA(0,1,1)	$ARIMA(0,1,1) imes (1,1,0)_{13}$	$ARIMA(2,1,1) imes (1,1,0)_4$	$ARIMA(0,1,2) imes (2,1,0)_{13}$
Equation of Model	$x_t = x_{t-1} + w_t \ -0.7364w_{t-1} \ w_t \sim N(0, 131.8)$	$z_t = egin{array}{c} +x_{t-14} \ z_t = 0.474x_{t-13} + w_t \ -0.520w_{t-1} \end{array}$	$egin{aligned} z_t &= x_t - x_{t-1} - x_{t-4} + x_{t-5} \ z_t &= 0.2325 x_{t-1} + 0.2727 x_{t-2} \ &- 0.3278 x_{t-4} + 0.0762 x_{t-5} \ &+ 0.0894 x_{t-6} + w_t - w_{t-1} \ w_t &\sim N(0, 10415) \end{aligned}$	$x_{t-26} + w_t - 0.5175w_{t-1} \ -0.1922w_{t-2} \ w_t \sim N(0, 1850)$
39-week Prediction	ARIMA Forecast with Actual Data ARIMAForecast ACAUNI Data B B B B B B B B B B B B B B B B B B	ARIMA Forecast with Actual Data ARIMA Forecast with Actual Data	ARIMA Forecast with Actual Data ARIMAForecast ARIMAForecast ARIMAForecast Data D 100 150 200	ARIMA Forecast with Actual Data ARIMA Forecast Actual Data Actual Data Actual Data Actual Data 50 50 100 150 200

Segmented by Crime Type: EDA

210 Crime Types Overall

Segmented by Crime Type: EDA

Battery - Simple Assault

Theft - Plain (Under 950\$)

Segmented by Crime Type: EDA

Battery: possible MA(1) model

Theft: possible AR(2) model

Segmented by Crime Type: Model Diagnostics

Segmented by Crime Type: Forecasting

Battery: slight increase 12 weeks ahead

Theft

Summary of Crime Type Trend

Difference in modeling the type of crime occurred

- ARIMA(0,1,1) vs MA(2) indicate a more complex relationship with previous theft incidents compared to battery crimes
- Measures to prevent theft may be more difficult to predict the success of compared to battery

Segmented crime count model EDA (hourly)

01/01/2020 - 02/29/2020

Overall Hourly Crime Count

Hourly Crime Count over 2 months

Segmented crime count model fitting (hourly)

- Question: Is there a relationship between victim profile and crime info?
- Instead of overall crime count trend, can we predict a future crime within one hour time precision?

Proposed Solution: RNN model (Capture Sequential Dependencies)

- Using victim's profile (sex, age & descent) to predict crime area and type

Data Pre-processing: 700k crime => 4k crime

- Rounding each crime time to the closest integer hour
- Rounding each age to multiples of 5
- Use mode for each feature at the same rounding hour:
 - Do not choose real crime, choose the most possible crime pattern

Training and Prediction Results

Take aways:

- Training is effective, best accuracies are good compared to untrained accuracies
- Model converges quickly (within each epoch), may be due to lack of data, and model is relatively complex (500 hidden neurons)
- Unbalanced class (crime type)
- Future analysis and models can be developed to predict crime more precisely

Q&A

ASK US ANYTHING!!!

