2) Device the maximum likelihood ectimator for X.

$$x \rightarrow [h \in N3] \rightarrow y$$

$$y \in N3 = x \in N3 + u \in N3 = \sum_{k=-\infty}^{+\infty} x \in k \setminus h \in N-2 \setminus k \in N3$$

$$(change equation)$$
additive while causian

(additive while causian charrel)

$$\frac{\lambda [50]}{\lambda [50]} = \begin{bmatrix} \mu [50] & 0 & 0 & --- & 0 \\ \mu [50] & \mu [50] & \mu [50] & --- & 0 \\ \mu [50] & \mu [50] & \mu [50] & --- & 0 \\ \mu [50] & \mu [50] & \mu [50] & --- & 0 \\ \mu [50] & \mu [50] & \mu [50] & --- & 0 \\ \mu [50] & \mu [50] & \mu [50] & --- & 0 \\ \mu [50] & \mu [50] & \mu [50] & --- & 0 \\ \mu [50] & \mu [50] & \mu [50] & --- & 0 \\ \mu [50] & \mu [50] & \mu [50] & --- & 0 \\ \mu [50] & \mu [50] & \mu [50] & \mu [50] & --- & 0 \\ \mu [50] & \mu [50] & \mu [50] & \mu [50] & --- & 0 \\ \mu [50] & \mu [50] & \mu [50] & \mu [50] \\ \mu [50] & \mu [50] & \mu [50] & \mu [50] \\ \mu [50] & \mu [50] & \mu [50] & \mu [50] \\ \mu [50] & \mu [50] & \mu [50] & \mu [50] \\ \mu [50] & \mu [50] & \mu [50] & \mu [50] \\ \mu$$

$$\frac{\partial}{\partial z} (L^{A|X}(z|X)) = \frac{\partial}{\partial z} (L^{A|X}(z|X)) = \frac{\partial}{\partial z} (L^{A|X}(z|X)) = \frac{\partial}{\partial z} (L^{A|X}(z|X))$$

$$= \frac{\partial}{\partial z} (L^{A|X}(z|X)) = \frac{\partial}{\partial z} (L^{A|X}(z|X|X))$$

$$= \frac{\partial}{\partial z} (L^{A|X}(z|X)) = \frac{\partial}{\partial z} (L^{A|X}(z|X|X))$$

likelihood,
$$f_{Y|X}(y|X) = \frac{1}{2y}(y-X)$$

Maximum likelihood:
$$\frac{MLX-3\chi}{3(x)} = \frac{1}{2} \log(2\lambda du^2) - \frac{1}{2\kappa u^2} (y-Hx)^T (y-Hx)$$

$$= \frac{1}{2^2 vu^2} (y^T y - y^T Hx - (Hx)^T y + (Hx)^T Hx) + constant$$

$$= \frac{1}{2^2 vu^2} (y^T y - y^T Hx - x^T H^T y + x^T H^T Hx) + constant$$

$$= \frac{1}{2^2 vu^2} (y^T y - 2x^T y + x^T H^T Hx) + constant$$

$$= -\frac{1}{2^2 vu^2} (y^T y - 2x^T y + x^T H^T Hx) + constant$$

$$J(x) = -\frac{1}{2^{2}} (y^{T}y - 2x^{T}H^{T}y + x^{T}H^{T}Hx) + (xx)(xx)$$

We wont to minimize $J(y)$ term. So will get derivative and equals it to seed

$$\frac{2J(x)}{2x} = 0 \quad , \quad -\frac{1}{2^{2}} (-2H^{T}y + 2H^{T}Hx) = 0$$

$$H^{T}Hx = H^{T}y$$

$$X_{Maximum} = (H^{T}H)^{-1}H^{T}y$$

$$X_{Maximum} = (H^{T}H)^{-1}H^{T}y$$

$$X_{Maximum} = \exp\left\{-\frac{1}{2^{2}}(y - Hx)^{T}(y - Hx)\right\}$$

$$Y_{Maximum} = \exp\left\{-\frac{1}{2^{2}}(x - Hx)^{T}(y - Hx)\right\}$$

$$Y_{Maximum} = \exp\left\{-\frac{1}{2^{2}}(x - Hx)^{T}(y - Hx)\right\}$$

$$X_{Maximum} = \exp\left\{-\frac{1}{2^{2}}(x - Hx)^{T}(y - Hx)\right\}$$

$$Y_{Maximum} = \exp\left\{-\frac{1}{2^{2}$$

1 HT (3-Hx) - 2x-1(x-Nx) = 0

$$\frac{1}{\left(\frac{1}{8^{M^2}}H^7H + 2x^{-1}\right)^{X}} = \frac{1}{4^{M^2}}H^{7}9 + 2x^{-1}\mu x$$

X meximum = [HTH+ 25x10-4. (ALTL)] - ! [HTy+25x10-4. (ALTL).0]

e) Deive the minimum mean square error (MNSE) Linear estimator for for X.

for Gaussian case, the Livear MMSE astimeter is the same as MMSE estimater. So, I'll colculate the MMSE estimator, because It is more easy for me and I'll find the samp result with Linear MMSE (orthogonalis principled theorem).

XMMSE = E[XIY=5] (expected value of A given Y=5) Bayman: $f(x|y) = \frac{f(y|x) f(x)}{+\omega f(y|x) f(x') dx'} = \frac{\text{(likelihed & x prior)}}{\text{normalization term.}}$

E (me trom observation is transcion) $\frac{1}{2} P(A|X) = \frac{7}{(524)^{2}} \exp \left\{ \frac{1}{25m^{2}} (3-4X)^{2} (3-4X)^{2} \right\}$

 $\frac{1}{2} f(x) = \frac{1}{(251)^{\frac{1}{2}} \cdot |\Sigma_{1}|^{\frac{1}{2}}} \exp \left\{ \frac{1}{2} (x - \mu x)^{\frac{1}{2}} Z x^{-\frac{1}{2}} (x - \mu x)^{\frac{1}{2}} \right\}$

ne'll calculate the f(x1) posterior.

F(X): Gaussian, f(XIX) Gaussian: and Wand X are Independent

joins hat of xim:

[x]~N([Mx],[Exo]) mu: men of X.

Ix: covarionae metrix of X, and crosses terms are sero

pecause of many x are independent.

Joing loft of A'X:

[x]nW(d,e), d: mean, e: verliance.

$$d = \begin{bmatrix} H & I \\ I & O \end{bmatrix} \begin{bmatrix} Mx \\ O \end{bmatrix} = \begin{bmatrix} H Mx \\ Mx \end{bmatrix}$$

$$G = \begin{bmatrix} I & O \end{bmatrix} \begin{bmatrix} O & D \\ I & O \end{bmatrix} \begin{bmatrix} O & D \\ I & I \end{bmatrix} \begin{bmatrix} I & O \\ I &$$

Conditional Ter:

X1 SY=>3 ~W (\(\frac{\infty H^{\tau} + \infty M^{\tau} + \infty M^{\tau} \) \(\frac{\infty M \infty H^{\tau} + \infty M^{\tau} \) \)

X Linear MUSE = Xmuse = IXHT (HZXHT+VWZZ)-1(y-HXXX)+MX

9) Calculate the peak sisnol-to-noise ratio PSNR of each estimate such that $PSNR = 2010916 \left(\frac{max(x)\sqrt{156'}}{11x-$11} \right)$

			Control of
		400	MW2F (> = 1000)
		MAP	11 1809 18
PSNR (dB	-11,252018	-9, 5941 dB	-11/210343