i. Animals with pancreatic b-cells destroyed by specific chemical cytotoxins such as Alloxan or Streptozotocin (e.g. the Streptozotocin-treated mouse, -rat, dog, and -monkey). Kodama, H., Fujita, M., Yamaguchi, I., *Japanese Journal of Pharmacology* **1994**, *66*, 331-336 (mouse); Youn, J.H., Kim, J.K., Buchanan, T.A., *Diabetes* **1994**, *43*, 564-571 (rat); Le Marchand, Y., Loten, E.G., Assimacopoulos-Jannet, F., et al., *Diabetes* **1978**, *27*, 1182-88 (dog); and Pitkin, R.M., Reynolds, W.A., *Diabetes* **1970**, *19*, 70-85 (monkey).

At page 91, please replace the paragraph beginning on line 24 with the following paragraph:

Phosphofructokinase: Enzyme (rabbit liver) was purchased from Sigma. Activity was measured at 30 °C in reactions in which the formation of fructose 1,6-bisphosphate was coupled to the oxidation of NADH via the action of aldolase, triosephosphate isomerase, and α-glycerophosphate dehydrogenase. Reaction mixtures (200 μl) were made up in 96-well microtitre plates and were read at 340 nm in a Molecular Devices Microplate Reader. The mixtures consisted of 200 mM Tris-HCl pH 7.0, 2 mM DTT, 2 mM MgCl₂, 0.2 mM NADH, 0.2 mM ATP, 0.5 mM Fructose 6-phosphate, 1 unit aldolase/mL, 3 units/mL triosephosphate isomerase, and 4 units/mL α -glycerophosphate dehydrogenase. Test compound concentrations ranged from 1 to 500 μM. Reactions were started by the addition of 0.0025 units of phosphofructokinase and were monitored for 15 minutes.

IN THE CLAIMS

Please cancel claims 2-33, 40 and 43 without prejudice. Please amend claims 1, 34-37, 39 and 42 as follows:

1. (Amended) A compound of formula 1:

A23

S

wherein

A is selected from the group consisting of -NR⁸₂, -NHSO₂R³, -OR⁵, -SR⁵, halo, lower alkyl, -CON(R⁴)₂, guanidino, amidino, -H, and perhaloalkyl;

E is selected from the group consisting of -H, halo, lower alkylthio, lower perhaloalkyl, lower alkyl, lower alkynyl, lower alkoxy, -CN, and -NR⁷₂;

X together with Y forms a cyclic group selected from the group of cyclic alkyl, heterocyclic, and aryl;

 R^1 is independently selected from the group consisting of -H, alkyl, aryl, heteroalicyclic where the cyclic moiety contains a carbonate or thiocarbonate, $-C(R^2)_2$ -aryl, -alk-aryl, $-C(R^2)_2$ OC(O)NR 2 , $-NR^2$ -C(O)-R 3 , $-C(R^2)_2$ -OC (O)R 3 , $-C(R^2)_2$ -O-C(O)OR 3 , $-C(R^2)_2$ OC(O)SR 3 , -alk-S-C(O)R 3 , -alk-S-S-alkylhydroxy, and -alk-S-S-alkylhydroxy, or together R 1 and R 1 are -alk-S-S-alk- to form a cyclic group, wherein each "alk" is an independently selected alkylene, or together R 1 and R 1 are

Z W

wherein

V and W are independently selected from the group consisting of hydrogen, aryl, substituted aryl, heteroaryl, substituted heteroaryl, 1-alkenyl, 1-alkynyl, and -R⁹; or

together V and Z are connected via a chain of 3-5 atoms, only one of which can be a heteroatom, to form part of a cyclic group substituted with hydroxy, acyloxy, alkoxycarboxy, or aryloxycarboxy attached to a carbon atom that is three atoms from an oxygen attached to the phosphorus; or

together V and W are connected via a chain of 3 carbon atoms to form part of a cyclic group substituted with hydroxy, acyloxy, alkoxycarboxy, alkylthiocarboxy, hydroxymethyl, or aryloxycarboxy attached to a carbon atom that is three atoms from an oxygen attached to the phosphorus;

Z is selected from the group consisting of -CH₂OH, -CH₂OCOR³, -CH₂OC(O)SR³, -CH₂OCO₂R³, -SR³, -S(O)R³, -CH₂NR₂, -CH₂NR₂, -CH₂Ar, -CH(Ar)OH, -CH(CH=CR²R²)OH, -CH(C \equiv CR²)OH, and -R²;

with the provisos that:

- a) $\sqrt[4]{Z}$, W are not all -H; and
- b) when Z is -R², then at least one of V and W is not -H or -R⁹;

R² is selected from the group consisting of R³ and -H;

R³ is selected from the group consisting of alkyl, aryl, alicyclic, heteroalicyclic, and aralkyl;

R⁴ is independently selected from the group consisting of -H, lower alkyl, lower alicyclic, lower heteroalicyclic, lower aralkyl, and lower aryl;

R⁵ is selected from the group consisting of lower alkyl, lower aryl, lower aralkyl, lower heteroalicyclic, and lower alicyclic;

R⁶ is independently selected from the group consisting of -H, and lower alkyl;

R⁷ is independently selected from the group consisting of -H, lower alkyl, lower alicyclic, lower heteroalicyclic, lower aralkyl, lower aryl, and -C(Q)R¹⁰;

R⁸ is independently selected from the group consisting of -H, lower alkyl, lower aralkyl, lower aryl, lower alicyclic, -C(O)R¹⁰, or together said R⁸ groups form a bidendate alkylene;

R⁹ is selected from the group consisting of alkyl, aralkyl, heteroalicyclic, and alicyclic; R¹⁰ is selected from the group consisting of -H, lower alkyl, NH₂, lower aryl, and lower perhaloalkyl;

R¹¹ is selected from the group consisting of alkyl, aryl, -OH, -NH₂ and -OR³; and pharmaceutically acceptable prodrugs and salts thereof.

34. (Amended) A method of treating an animal for diabetes mellitus, comprising administering to said animal a therapeutically effective amount of a compound of formula (1):

$$\begin{array}{c|c}
0 & A \\
R^1O - P - X - N & N \\
R^1O & V & N
\end{array}$$

wherein

A is selected from the group consisting of $-NR^8_2$, $-NHSO_2R^3$, $-OR^5$, $-SR^5$, halo, lower alkyl, $-CON(R^4)_2$, guanidino, amidino, -H, and perhaloalkyl;

E is selected from the group consisting of -H, halo, lower alkylthio, lower perhaloalkyl, lower alkyl, lower alkynyl, lower alkoxy, -CN, and -NR⁷₂;

X together with Y forms a cyclic group selected from the group of cyclic alkyl, heterocyclic, and aryl;

 R^1 is independently selected from the group consisting of -H, alkyl, aryl, heteroalicyclic where the cyclic moiety contains a carbonate or thiocarbonate, $-C(R^2)_2$ -aryl, -alk-aryl, $-C(R^2)_2$ OC(O)NR 2 , $-NR^2$ -C(O)-R 3 , $-C(R^2)_2$ -OC (O)R 3 , $-C(R^2)_2$ -O-C(O)OR 3 , $-C(R^2)_2$ OC(O)SR 3 , -alk-S-S-alkylhydroxy, and -alk-S-S-alkylhydroxy, or together R 1 and R 1 are -alk-S-S-alk- to form a cyclic group, wherein each "alk" is an independently selected alkylene, or together R 1 and R 1 are

wherein

V and W are independently selected from the group consisting of hydrogen, aryl, substituted aryl, heteroaryl, substituted heteroaryl, 1-alkenyl, 1-alkynyl, and -R⁹; or

together V and Z are connected via a chain of 3-5 atoms, only one of which can be a heteroatom, to form part of a cyclic group substituted with hydroxy, acyloxy, alkoxycarboxy, or aryloxycarboxy attached to a carbon atom that is three atoms from an oxygen attached to the phosphorus; or

together V and W are connected via a chain of 3 carbon atoms to form part of a cyclic group substituted with hydroxy, acyloxy, alkoxycarboxy, alkylthiocarboxy, hydroxymethyl, or aryloxycarboxy attached to a carbon atom that is three atoms from an oxygen attached to the phosphorus;

Z is selected from the group consisting of -CH₂OH, -CH₂OCOR³, -CH₂OC(O)SR³, -CH₂OCO₂R³, -SR³, -S(O)R³, -CH₂NR²₂, -CH₂Ar, -CH(Ar)OH, -CH(CH $\stackrel{\downarrow}{=}$ CR²R²)OH, -CH(C $\stackrel{\scriptstyle}{=}$ CR²)OH, and -R²;

****a)

V, Z, W are not all -H; and

when Z is $-R^2$, then at least one of V and W is not -H or $-R^9$;

R² is selected from the group consisting of R³ and -H;

R³ is selected from the group consisting of alkyl, aryl, alicyclic, heteroalicyclic, and aralkyl;

R⁴ is independently selected from the group consisting of -H, lower alkyl, lower alicyclic, lower aralkyl, and lower aryl;

R⁵ is selected from the group consisting of lower alkyl, lower aryl, lower aralkyl, lower heteroalicyclic, and lower alicyclic;

R⁶ is independently selected from the group consisting of -H, and lower alkyl;

R⁷ is independently selected from the group consisting of -H, lower alkyl, lower alicyclic, lower heteroalicyclic, lower aralkyl, lower aryl, and -C(O)R¹⁰;

R⁸ is independently selected from the group consisting of -H, lower alkyl, lower aralkyl, lower aryl, lower alicyclic, -C(O)R¹⁰, or together said R⁸ groups form a bidendate alkylene;

R⁹ is selected from the group consisting of alkyl, aralkyl, , heteroalicyclic, and alicyclic;

R¹⁰ is selected from the group consisting of -N, lower alkyl, -NH₂, lower aryl, and lower perhaloalkyl;

R¹¹ is selected from the group consisting of alkyl, aryl, -OH, -NH₂ and -OR³; and pharmaceutically acceptable prodrugs and salts thereof.

35. (Amended) A method of lowering blood glucose levels in an animal in need thereof, comprising administering to said animal a pharmaceutically acceptable amount of a compound of formula (1):

wherein

A is selected from the group consisting of -NR⁸₂, -NHSO₂R³, -OR⁵, -SR⁵, halo, lower alkyl, -CON(R⁴)₂, guanidino, amidino, -H, and perhaloalkyl;

E is selected from the group consisting of -H, halo, lower alkylthio, lower perhaloalkyl, lower alkyl, lower alkynyl, lower alkoxy, -CN, and -NR⁷₂;

X together with Y forms a cyclic group selected from the group of cyclic alkyl, heterocyclic, and aryl;

 R^1 is independently selected from the group consisting of -H, alkyl, aryl, heteroalicyclic where the cyclic moiety contains a carbonate or thiocarbonate, $-C(R^2)_2$ -aryl, -alk-aryl, $-C(R^2)_2$ OC(O)NR 2 , $-NR^2$ -C(O)-R 3 , $-C(R^2)_2$ -OC (O)R 3 , $-C(R^2)_2$ -O-C(O)OR 3 , $-C(R^2)_2$ OC(O)SR 3 , -alk-S-S-alkylhydroxy, and -alk-S-S-alkylhydroxy, or together R 1 and R 1 are -alk-S-S-alk- to form a cyclic group, wherein each "alk" is an independently selected alkylene, or together R 1 and R 1 are

wherein

V and W are independently selected from the group consisting of hydrogen, aryl, substituted aryl, heteroaryl, substituted heteroaryl, 1-alkenyl, 1-alkynyl, and -R⁹; or

together V and Z are connected via a chain of 3-5 atoms, only one of which can be a heteroatom, to form part of a cyclic group substituted with hydroxy, acyloxy, alkoxycarboxy, or aryloxycarboxy attached to a carbon atom that is three atoms from an oxygen attached to the phosphorus; or

together V and W are connected via a chain of 3 carbon atoms to form part of a cyclic group substituted with hydroxy, acyloxy, alkoxycarboxy, alkylthiocarboxy, hydroxymethyl, or aryloxycarboxy attached to a carbon atom that is three atoms from an oxygen attached to the phosphorus;

Z is selected from the group consisting of -CH₂OH, -CH₂OCOR³, -CH₂OC(O)SR³, -CH₂OCO₂R³, -SR³, -S(O)R³, -CH₂NR₂, -CH₂NR₂, -CH₂Ar, -CH(Ar)OH, -CH(CH=CR²R²)OH, -CH(C=CR²)OH, and -R²;

_

V, Z, W are not all -H; and

when Z is $-R^2$, then at least one of V and W is not -H or $-R^9$;

R² is selected from the group consisting of R³ and -H;

R³ is selected from the group consisting of alkyl, aryl, alicyclic, heteroalicyclic, and aralkyl;

R⁴ is independently selected from the group consisting of -H, lower alkyl, lower alicyclic, lower aralkyl, and lower aryl;

R⁵ is selected from the group consisting of lower alkyl, lower aralkyl, lower a

R⁶ is independently selected from the group consisting of -H, and lower alkyl;

R⁷ is independently selected from the group consisting of -H, lower alkyl, lower alicyclic, lower heteroalicyclic, lower aralkyl, lower aryl, and -C(O)R¹⁰;

 R^8 is independently selected from the group consisting of -H, lower alkyl, lower aralkyl, lower aryl, lower alicyclic, -C(O) R^{10} , or together said R^8 groups form a bidendate alkylene;

R⁹ is selected from the group consisting of alkyl, aralkyl, , heteroalicyclic, and alicyclic;

R¹⁰ is selected from the group consisting of -H, lower alkyl, -NH₂, lower aryl, and lower perhaloalkyl;

R¹¹ is selected from the group consisting of alkyl, aryl, -OH, -NH₂ and -OR³; and pharmaceutically acceptable prodrugs and salts thereof.

36. (Amended) A method of inhibiting FBPase at the AMP site in patients in need thereof, comprising administering to said patients an FBPase inhibitory amount of a compound of formula (1):

wherein

A is selected from the group consisting of -NR⁸₂, -NHSO₂R³, -OR⁵, -SR⁵, halo, lower alkyl, -CON(R⁴)₂, guanidino, amidino, -H, and perhaloalkyl;

E is selected from the group consisting of -H, halo, lower alkylthio, lower perhaloalkyl, lower alkyl, lower alkynyl, lower alkoxy, -CN, and -NR⁷₂;

X together with Y forms a cyclic group selected from the group of cyclic alkyl, heterocyclic, and aryl;

 R^1 is independently selected from the group consisting of -H, alkyl, aryl, heteroalicyclic where the cyclic moiety contains a carbonate or thiocarbonate, $-C(R^2)_2$ -aryl, -alk-aryl, $-C(R^2)_2$ OC(O)NR 2 , $-NR^2$ -C(O)-R 3 , $-C(R^2)_2$ -OC (O)R 3 , $-C(R^2)_2$ -O-C(O)OR 3 , $-C(R^2)_2$ OC(O)SR 3 , -alk-S-C(O)R 3 , -alk-S-S-alkylhydroxy, and -alk-S-S-alkylhydroxy, or together R 1 and R 1 are -alk-S-S-alk- to form a cyclic group, wherein each "alk" is an independently selected alkylene, or together R 1 and R 1 are

wherein

V and W are independently selected from the group consisting of hydrogen, aryl, substituted aryl, heteroaryl, substituted heteroaryl, 1-alkenyl, 1-alkynyl, and -R⁹; or

together V and Z are connected via a chain of 3-5 atoms, only one of which can be a heteroatom, to form part of a cyclic group substituted with hydroxy, acyloxy, alkoxycarboxy, or aryloxycarboxy attached to a carbon atom that is three atoms from an oxygen attached to the phosphorus; or

together V and W are connected via a chain of 3 carbon atoms to form part of a cyclic group substituted with hydroxy, acyloxy, alkoxycarboxy, alkylthiocarboxy, hydroxymethyl, or aryloxycarboxy attached to a carbon atom that is three atoms from an oxygen attached to the phosphorus;

Z is selected from the group consisting of -CH₂OH, -CH₂OCOR³, -CH₂OC(O)SR³, -CH₂OCO₂R³, -SR³, -S(O)R³, -CH₂NR₂, -CH₂NR₂, -CH₂Ar, -CH(Ar)OH, -CH(CH=CR²R²)OH, -CH(C=CR²)OH, and -R²;

- a) V, Z, W are not all -H; and
- b) when Z is $-R^2$, then at least one of V and W is not -H or $-R^9$;

Cont

R² is selected from the group consisting of R³ and -H;

R³ is selected from the group consisting of alkyl, aryl, alicyclic, heteroalicyclic, and aralkyl;

R⁴ is independently selected from the group consisting of -H, lower alkyl, lower alicyclic, lower heteroalicyclic, lower aralkyl, and lower aryl;

R⁵ is selected from the group consisting of lower alkyl, lower aralkyl, lower aralkyl, lower aralkyl, lower aralkyl, lower alicyclic;

R⁶ is independently selected from the group consisting of -H, and lower alkyl;

R⁷ is independently selected from the group consisting of -H, lower alkyl, lower alicyclic, lower heteroalicyclic, lower aralkyl, lower aryl, and -C(O)R¹⁰;

 R^8 is independently selected from the group consisting of -H, lower alkyl, lower aralkyl, lower aryl, lower alicyclic, -C(O) R^{10} , or together said R^8 groups form a bidendate alkylene;

R⁹ is selected from the group consisting of alkyl, aralkyl, , heteroalicyclic, and alicyclic; R¹⁰ is selected from the group consisting of -H, lower alkyl, -NH₂, lower aryl, and lower perhaloalkyl;

R¹¹ is selected from the group consisting of alkyl, aryl, -OH, -NH₂ and -OR³; and pharmaceutically acceptable prodrugs and salts thereof.

37. (Amended) A method of inhibiting gluconeogenesis in animal in need thereof, comprising administering to said animal an effective amount of a compound of formula (1):

$$\begin{array}{c|c}
0 & A \\
R^1O - P - X - N & N \\
R^1O & V \\
\end{array}$$

wherein

A is selected from the group consisting of -NR⁸₂, -NHSO₂R³, -OR⁵, -SR⁵, halo, lower alkyl, -CON(R⁴)₂, guanidino, amidino, -H, and perhaloalkyl;

E is selected from the group consisting of -H, halo, lower alkylthio, lower perhaloalkyl lower alkyl, lower alkynyl, lower alkoxy, -CN, and -NR⁷₂;

X together with Y forms a cyclic group selected from the group of cyclic alkyl, heterocyclic, and aryl;

R is independently selected from the group consisting of -H, alkyl, aryl, heteroalicyclic where the cyclic moiety contains a carbonate or thiocarbonate, $-C(R^2)_2$ -aryl, -alk-aryl, $-C(R^2)_2OC(O)NR^2_2$, $-NR^2-C(O)-R^3$, $-C(R^2)_2-OC(O)R^3$, $-C(R^2)_2-O-C(O)OR^3$, $-C(R^2)_2OC(O)SR^3$, -alk-S-S-alkylhydroxy, and -alk-S-S-alkylhydroxy, or together R^1 and R^1 are -alk-S-S-alk- to form a cyclic group, wherein each "alk" is an independently selected alkylene, or together R^1 and R^1 are

$$\bigvee_{w}^{V}$$

wherein

V and W are independently selected from the group consisting of hydrogen, aryl, substituted aryl, heteroaryl, substituted heteroaryl, 1-alkenyl, 1-alkynyl, and -R⁹; or

together V and Z are connected via a chain of 3-5 atoms, only one of which can be a heteroatom, to form part of a cyclic group substituted with hydroxy, acyloxy, alkoxycarboxy, or aryloxycarboxy attached to a carbon atom that is three atoms from an oxygen attached to the phosphorus; or

together V and W are connected via a chain of 3 carbon atoms to form part of a cyclic group substituted with hydroxy, acyloxy, alkoxycarboxy, alkylthiocarboxy, hydroxymethyl, or aryloxycarboxy attached to a carbon atom that is three atoms from an oxygen attached to the phosphorus;

Z is selected from the group consisting of -CH₂OH, -CH₂OCQR³, -CH₂OC(O)SR³, -CH₂OCO₂R³, -SR³, -S(O)R³, -CH₂NR²₂, -CH₂Ar, -CH(Ar)OH, -CH(C=CR²R²)OH, -CH(C=CR²)OH, and -R²;

- a) V, Z, W are not all -H; and
- b) when Z is -R², then at least one of V and W is not -H or -R⁹; R² is selected from the group consisting of R³ and -H;

Cont

R³ is selected from the group consisting of alkyl, aryl, alicyclic, heteroalicyclic, and aralkyl;

R⁴ is independently selected from the group consisting of -H, lower alkyl, lower alicyclic, lower heteroalicyclic, lower aralkyl, and lower aryl;

R⁵ is selected from the group consisting of lower alkyl, lower aryl, lower aralkyl, lower heteroalicyclic, and lower alicyclic;

R⁶ is independently selected from the group consisting of -H, and lower alkyl;

 R^7 is independently selected from the group consisting of -H, lower alkyl, lower alicyclic, lower heteroalicyclic, lower aralkyl, lower aryl, and $C(O)R^{10}$;

 R^8 is independently selected from the group consisting of -H, lower alkyl, lower aralkyl, lower aryl, lower alicyclic, -C(O) R^{10} , or together said R^8 groups form a bidendate alkylene;

R⁹ is selected from the group consisting of alkyl, aralkyl, , heteroalicyclic, and alicyclic;

R¹⁰ is selected from the group consisting of -H, lower alkyl, -NH₂, lower aryl, and lower perhaloalkyl;

R¹¹ is selected from the group consisting of alkyl, aryl, -OH, -NH₂ and -OR³; and pharmaceutically acceptable prodrugs and salts thereof.

39. (Amended) A method of treating an animal for a disease derived from abnormally elevated insulin levels, comprising administering to said animal a therapeutically effective amount of a fructose-1,6-bisphosphatase inhibitor wherein said inhibitor is a compound of formula (1):

wherein

A is selected from the group consisting of -NR⁸₂, -NHSQ₂R³, -OR⁵, -SR⁵, halo, lower alkyl, -CON(R⁴)₂, guanidino, amidino, -H, and perhaloalkyl;

E is selected from the group consisting of -H, halo, lower alkylthio, lower perhaloalkyl, lower alkyl, lower alkynyl, lower alkoxy, -CN, and -NR⁷2,

X together with Y forms a cyclic group selected from the group of cyclic alkyl, heterocyclic, and aryl;

R is independently selected from the group consisting of -H, alkyl, aryl, heteroalicyclic where the cyclic moiety contains a carbonate or thiocarbonate, $-C(R^2)_2$ -aryl, -alk-aryl, $-C(R^2)_2$ OC(O)NR²₂, $-NR^2$ -C(O)-R³, $-C(R^2)_2$ -OC (O)R³, $-C(R^2)_2$ -O-C(O)OR³, $-C(R^2)_2$ OC(O)SR³, -alk-S-S-alkylhydroxy, and -alk-S-S-alkylhydroxy, or together R¹ and R¹ are -alk-S-S-alk- to form a cyclic group, wherein each "alk" is an independently selected alkylene, or together R¹ and R¹ are

25

wherein

V and W are independently selected from the group consisting of hydrogen, aryl, substituted aryl, heteroaryl, substituted heteroaryl, 1-alkenyl, 1-alkynyl, and -R⁹; or

together V and Z are connected via a chain of 3-5 atoms, only one of which can be a heteroatom, to form part of a cyclic group substituted with hydroxy, acyloxy, alkoxycarboxy, or aryloxycarboxy attached to a carbon atom that is three atoms from an oxygen attached to the phosphorus; or

together V and W are connected via a chain of 3 carbon atoms to form part of a cyclic group substituted with hydroxy, acyloxy, alkoxycarboxy, alkylthiocarboxy, hydroxymethyl, or aryloxycarboxy attached to a carbon atom that is three atoms from an oxygen attached to the phosphorus;

Z is selected from the group consisting of -CH₂OH, -CH₂OCOR³, -CH₂OC(O)SR³, -CH₂OCO₂R³, -SR³, -S(O)R³, -CH₂NR²₂, -CH₂Ar, -CH(Ar)OH, -CH(CH=CR²R²)OH, -CH(C=CR²)OH, and -R²;

with the provisos that:

- a) V, Z, W are not all -H; and
- b) when Z is $-R^2$, then at least one of V and W is not -H or $-R^9$;

R² is selected from the group consisting of R³ and -H;

3 and

R³ is selected from the group consisting of alkyl, aryl, alicyclic, heteroalicyclic, and aralkyl;

R⁴ is independently selected from the group consisting of -H, lower alkyl, lower alicyclic, lower heteroalicyclic, lower aralkyl, and lower aryl;

R⁵ is selected from the group consisting of lower alkyl, lower aryl, lower aralkyl, lower heteroalicyclic, and lower alicyclic;

R⁶ is independently selected from the group consisting of -H, and lower alkyl;

R⁷ is independently selected from the group consisting of -H, lower alkyl, lower alicyclic, lower heteroalicyclic, lower aralkyl, lower aryl, and -S(O)R¹⁰;

R⁸ is independently selected from the group consisting of -H, lower alkyl, lower aralkyl, lower aryl, lower alicyclic, -C(O)R¹⁰, or together said R⁸ groups form a bidendate alkylene;

R⁹ is selected from the group consisting of alkyl, aralkyl, , heteroalicyclic, and alicyclic;

R¹⁰ is selected from the group consisting of -H, lower alkyl, -NH₂, lower aryl, and lower perhaloalkyl;

R¹¹ is selected from the group consisting of alkyl, aryl, -OH, -NH₂ and -OR³, and pharmaceutically acceptable prodrugs and salts thereof.

42. (Amended) A method of treating an animal with excess glycogen storage disease, comprising administering to said animal in need thereof a therapeutically effective amount of a fructose-1,6-bisphosphatase inhibitor, wherein said inhibitor is a compound of formula (1):

$$\begin{array}{c|c}
0 & A & A \\
R^{1}O - P - X - N & N & E
\end{array}$$

wherein

A is selected from the group consisting of -NR⁸₂, -NHSO₂R³, -OR⁵, -SR⁵, halo, lower alkyl, -CON(R⁴)₂, guanidino, amidino, -H, and perhaloalkyl;

E is selected from the group consisting of -H, halo, lower alkylthio, lower perhaloalkyl, lower alkyl, lower alkynyl, lower alkoxy, -CN, and -NR⁷₂;

X together with Y forms a cyclic group selected from the group of cyclic alkyl, heterocyclic, and aryl;

 R^1 is independently selected from the group consisting of -H, alkyl, aryl, heteroalicyclic where the cyclic moiety contains a carbonate or thiocarbonate, $-C(R^2)_2$ -aryl, -alk-aryl, $-C(R^2)_2$ OC(O)NR 2 , $-NR^2$ -C(O)-R 3 , $-C(R^2)_2$ -OC (O)R 3 , $-C(R^2)_2$ -O-C(O)OR 3 , $-C(R^2)_2$ OC(O)SR 3 , -alk-S-S-alkylhydroxy, and -alk-S-S-alkylhydroxy, or together R 1 and R 1 are -alk-S-S-alk- to form a cyclic group, wherein each "alk" is an independently selected alkylene, or together R 1 and R 1 are

$$\bigvee_{W}^{V}$$

wherein

V and W are independently selected from the group consisting of hydrogen, aryl, substituted aryl, heteroaryl, substituted heteroaryl, 1-alkenyl, 1-alkynyl, and -R⁹; or

together V and Z are connected via a chain of 3-5 atoms, only one of which can be a heteroatom, to form part of a cyclic group substituted with hydroxy, acyloxy, alkoxycarboxy, or aryloxycarboxy attached to a carbon atom that is three atoms from an oxygen attached to the phosphorus; or

together V and W are connected via a chain of 3 carbon atoms to form part of a cyclic group substituted with hydroxy, acyloxy, alkoxycarboxy, alkylthrocarboxy, hydroxymethyl, or aryloxycarboxy attached to a carbon atom that is three atoms from an oxygen attached to the phosphorus;

Z is selected from the group consisting of -CH₂OH, -CH₂OCOR³, -CH₂OC(O)SR³, -CH₂OCO₂R³, -SR³, -S(O)R³, -CH₂NR²₂, -CH₂Ar, -CH(Ar)OH, -CH(C=CR²)OH, and -R²;

- a) V, Z, W are not all -H; and
- b) when Z is -R², then at least one of V and W is not -H or -R⁹; R² is selected from the group consisting of R³ and -H;

Cont

A24

R³ is selected from the group consisting of alkyl, aryl, alicyclic, heteroalicyclic, and aralkyl;

R⁴ is independently selected from the group consisting of -H, lower alkyl, lower alicyclic, lower aralkyl, and lower aryl;

R⁵ is selected from the group consisting of lower alkyl, lower aryl, lower aralkyl, lower heteroalicyclic, and lower alicyclic;

R⁶ is independently selected from the group consisting of -H, and lower alkyl;

R⁷ is independently selected from the group consisting of -H, lower alkyl, lower alicyclic, lower heteroalicyclic, lower aralkyl, lower aryl, and -C(O)R¹⁰;

R⁸ is independently selected from the group consisting of -H, lower alkyl, lower aralkyl, lower aryl, lower alicyclic, -C(O)R¹⁰, or together said R⁸ groups form a bidendate alkylene;

R⁹ is selected from the group consisting of alkyl, aralkyl, heteroalicyclic, and alicyclic; R¹⁰ is selected from the group consisting of -H, lower alkyl, -NH₂, lower aryl, and lower perhaloalkyl;

R¹¹ is selected from the group consisting of alkyl, aryl, -OH, -NH₂ and -OR³; and pharmaceutically acceptable prodrugs and salts thereof.