A Practical Guide to

Diffusion Language Models

Himanshu Sahni 06/08/2025

1. Why?

The

quick

brown

fox

jumped

over

the

lazy

The

quick

brown

fox

jumped

over

the

lazy

Tokens

Why Diffusion Language Models?

Why Diffusion Language Models?

Why Diffusion Language Models?

. . .

Diffusion vs. Autoregressive Language Models

Diffusion vs. Autoregressive Language Models

	Autoregression	Diffusion	
High Quality	✓	✓	
Arbitrary Length	✓	✓	
KV Caching	✓	✓	
Parallel Decoding	×	1	

Diffusion vs. Autoregressive Language Models

	Autoregression	Diffusion	
High Quality	✓	✓	
Arbitrary Length	✓	1	
KV Caching	✓	1	
Parallel Decoding	×	1	
Self-correction	×	✓	
Unify multimodality	×	✓	

2. The hype

Our state-of-the-art, experimental text diffusion model

Join the waitlist

Benchmarks

Gemini Diffusion's external benchmark performance is comparable to much larger models, whilst also being faster.

Benchmark	GEMINI DIFFUSION	GEMINI 2.0 FLASH-LITE
Code LiveCodeBench (v6)	30.9%	28.5%
code BigCodeBench	45.4%	45.8%
Code LBPP (v2)	56.8%	56.0%
Code SWE-Bench Verified*	22.9%	28.5%
^{Code} HumanEval	89.6%	90.2%
Code MBPP	76.0%	75.8%
Science GPQA Diamond	40.4%	56.5%
Mathematics AIME 2025	23.3%	20.0%
Reasoning BIG-Bench Extra Hard	15.0%	21.0%
Multilingual Global MMLU (Lite)	69.1%	79.0%

inception

ByteDance | Seed

★ Machine Learning Research

9

3. How?

3. How?(Part 1)

Image Diffusion

Network prediction

Actual Noise

Train
$$oldsymbol{\mathcal{L}_{\mathrm{simple}}} = \mathbb{E}_{x_0, arepsilon, t} \left[\| arepsilon_{ heta}(x_t, t) - arepsilon \|^2
ight]$$

Sample
$$otin x_{t-1} = rac{1}{\sqrt{lpha_t}} \left(x_t - rac{eta_t}{\sqrt{1-arlpha_t}} arepsilon_{ heta}(x_t,t)
ight) + eta_t arepsilon$$

For each logit, compute:

$$\mathbb{E}_{p(x_0|x,t)}[x_0] = \sum_{i=1}^{V} p(x_0 = e_i|x,t) \cdot e_i$$

Logits [N,V]

$$\mathbb{E}_{p(x_0|x,t)}[x_0] = \sum_{i=1}^V p(x_0 = e_i|x,t) \cdot e_i$$

Let's say we're good at predicting these

$$egin{aligned}
abla_x \log p_t(x) &= s(x,t) \ s(x,t) &pprox s(x,t\mid x_0) &= rac{1}{t^2}(x_0-x) \end{aligned}$$

$$\hat{\mathbf{s}}(\mathbf{x},t) = rac{\mathbb{E}_{p(x_0|\mathbf{x},t)}[\mathbf{x}_0] - \mathbf{x}}{t^2}$$

[N, D]

 $\hat{\mathbf{s}}(\mathbf{x},t) = rac{\mathbb{E}_{p(x_0|\mathbf{x},t)}[\mathbf{x}_0] - \mathbf{x}}{t^2}$

Latent Diffusion Language Models - Sampling

Latent Diffusion Language Models - Sampling

How do we get good at predicting x_0 ?

 $\left\|\mathbb{E}_{p_{\theta}(x_0|x,t)}[x_0]-x_0\right\|^2$

$$oxed{\mathcal{L}_{ ext{mse}} = \left\| \sum_{i} p_{ heta}(i \mid x, t) \cdot e_{i} - e_{x_{0}}
ight\|^{2}}$$

Turns out, we can also train the embeddings!

$$oxed{\mathcal{L}_{ ext{mse}} = \left\| \sum_{i} p_{ heta}(i \mid x, t) \cdot e_{i} - e_{x_{0}}
ight\|^{2}}$$

Turns out, we can also train the embeddings!

$$oxed{\mathcal{L}_{ ext{mse}} = \left\| \sum_{i} p_{ heta}(i \mid x, t) \cdot e_{i} - e_{x_{0}}
ight\|^{2}}$$

Not so fast!

Turns out, we can also train the embeddings!

$$oxed{\mathcal{L}_{ ext{mse}} = \left\| \sum_{i} p_{ heta}(i \mid x, t) \cdot e_{i} - e_{x_{0}}
ight\|^{2}}$$

Not so fast!

The model can just learn to make all the embeddings the same!

Turns out, we can also train the embeddings!

$$oxed{\mathcal{L}_{ ext{mse}} = \left\|\sum_{i} p_{ heta}(i \mid x, t) \cdot e_{i} - e_{x_{0}}
ight\|^{2}}$$

Not so fast!

The model can just learn to make all the embeddings the same!

Also, MSE is not a good loss for MSE data.

Turns out, we can also train the embeddings!

Not so fast!

Turns out, we can also train the embeddings!

Not so fast!

The model can just learn to push embeddings to the extreme to make them easy to predict from noise!!*

3. How? (Part Deux)

The model can just learn to push embeddings to the extreme to make them easy to predict from noise!!

- At scale, ^^ turns out to be a huge problem!
- The higher dimensional latent you use, the bigger the problem!
- How to learn embeddings suited for diffusion high frequency to low frequency with gaussian noise?

ooof!

Discrete Diffusion Language Models

Continuous noising process	Discrete noising process
Embed tokens to latent space	Operate on tokens directly
Gaussian Noise added to embeddings	Flip tokens to other tokens in the vocabulary or MASK token
Uncertainty maintained until last step	Commit to tokens at each step
Difficulty scaling beyond 1B	Straightforward to scale to 8B

Discrete noising process

Forward Process

Discrete noising process

The [M] ate [M] dog [M]
$$\longrightarrow$$
 The cat ate the dog food

$$-\mathbb{E}_{t,p_0,r_0,r_t} \left[\frac{1}{t} \sum_{i=1}^{L'} \mathbf{1}[r_t^i = \mathbf{M}] \log p_{\theta}(r_0^i | p_0, r_t) \right],$$

Discrete diffusion for text - Inference

the cat ate the dog food

Discrete diffusion for text - Inference

Many design choices and hypers

- Sampling temperature $\mathbf{T}(t_n)$
- Acceptance probability profile $p_a(t_n, t_{n-1})$
- Renoising probability profile $p_r(t_{n-1})$
- Number of denoising steps N

Discrete Diffusion Language Models are SOTA

Figure 1. **Zero/Few-Shot Benchmarks.** We scale LLaDA to an unprecedented size of 8B parameters from scratch, achieving competitive performance with strong LLMs (Dubey et al., 2024).

Discrete Diffusion Language Models are SOTA

3. How? (Part tres)

Language Models

No for loops!

Tokens

The qui.. bro.. fox jum. over the lazy

Discrete diffusion for text - Training

Discrete diffusion for text

Full attention over all tokens can be very expensive!

Discrete diffusion for text - Training

Discrete diffusion for text - Training

for block in blocks:

. . .

Discrete diffusion for text - Inference

• • •

Enables KV caching between blocks by using block causal attention pattern!

Discrete diffusion for text - Training

Can we do better?

Discrete diffusion for text - Training

Discrete diffusion for text - Efficient Training

Concatenate all noised blocks with the clean sequence!

Block 1 Block 2 Block 3 clean sequence

Discrete diffusion for text - Efficient Training

Discrete diffusion for text - Efficient Training

Discrete diffusion for text - Inference

4. What's Next?

Recent, fast Moving Field

- Dieleman et al., "Continuous Diffusion for Categorical Data Dec. 2022
- Nie et al., "Large Language Diffusion Models Feb 2025
- Gong et al., "Scaling Diffusion Language Models" April 2025
- Arriola et al., "Block Diffusion" May 2025
- Google Deepmind, "Gemini Diffusion" May 2025
- ByteDance, "Seed Diffusion" August 2025

Lots of ideas in the air:

- Edit-based Noise Process
- On-policy Diffusion Learning
- Distillation
- Adaptive Computation
- Combining Continuous and Discrete
- Post-training and RL

. . .

Twitter: @sahnihim

Gmail: himsahni@google.com