

Topics to be covered

1

Wedge constraint and important questions NLM

Q. Find constraint relation for following fig.

Method-2:

$$N_1$$
. $a_1 + N_2$. $a_2 = 0$
 $Na_1 \cos (90 - \theta) + Na_2 \cos (90 + 90 - \theta) = 0$
 $a_1 \sin \theta - a_2 \cos \theta = 0$

$$a_1 \sin\theta = a_2 \cos\theta$$

WEDGE CONSTRAINT

Method-1:

- * There no relative motion along common normal.
- * Component of acc of A & B along the common normal same

 $a_1 \sin\theta = a_2 \cos\theta$

Newton's Laws of Motion & Friction

wedge Constraint

.

100

$$a_2 \cos 0 = a_1 \cos (90 - 0)$$

$$a_2 \cos 0 = a_1 \sin 0$$

$$a_2 = a_1 + \cos 0$$

$$a_1\cos\theta = a_2\cos(90-0)$$

$$a_1\cos\theta = a_2\sin\theta$$

$$a_1\cos\theta = a_2\sin\theta$$

$$(fs)_{max} = 80$$

$$T = 40N$$

$$T = 100N$$

$$T = 8$$

$$f = 80 = (f_s)_{max}$$
 $f = 80$
 $T = 20N$

$$f_1 = 60$$

 $T = 40$
 $T = f_2 = 40$

both move

4

9

$$a_1 = a_2 = \frac{(m_1 + m_2)gsine - f_1 - f_2}{m_1 + m_2}$$

$$f_1 = M_1 M_1 g \cos \alpha$$

 $f_2 = M_2 M_2 g \cos \alpha$

Agan aage wate Ka M jyada hai to Sath-Sath chalenge With Same acc

Peeche wate ka m jyada hai to vo dheere hone ki wajah se peeche Rah jayega N=0

1 kg 2 kg - 02 - 98ino - 1128 (886) a = gsing - Migrano (N=0)

Agan aage wate Ka M jyada hai to Sath-Sath chalenge With Same acc

Peeche wate ka u jyada hai to vo dheere hone ki wajah se peeche Rah jayega 14. A block of mass m lies on wedge of mass M as shown in figure. द्रव्यमान m का एक ब्लॉक चित्रानुसार M द्रव्यमान के वेज पर रखा हुआ है।

With what minimum acceleration must the wedge be moved towards right horizontally so that block m falls freely.

वेज को दांयी ओर क्षैतिज रूप से किस न्यूनतम त्वरण से गति कराई जाये ताकि ब्लॉक m मुक्त रूप से गिर सके?

Ans. $a = g \cot \theta$

24. Block M slides down on frictionless incline as shown. Find the minimum friction coefficient so that m does not slide with respect to M.

चित्रानुसार ब्लॉक M एक घर्षणरहित नत तल पर नीचे की ओर फिसलता है। वह न्यूनतम घर्षण गुणांक ज्ञात कीजिये ताकि

m, M के सापेक्ष इस पर गति ना करे?

does not slide with respect to M.

चित्रानुसार ब्लॉक M एक घर्षणरहित नत तल पर नीचे की ओर फिसलता है। वह न्यूनतम घर्षण गुणांक ज्ञात

m, M के सापेक्ष इस पर गति ना करे?

mgsino.coso =
$$(fs)$$
 max
mgsino coso = $u(mg-mgsin^20)$ gino
solue & get

