Devoir à la maison n°15 : corrigé

Problème 1 — Equation intégrale

Partie I –

1. Remarquons tout d'abord que la relation (1) peut s'écrire

$$\forall x \in \mathbb{R}, \ f(x) - x \int_0^x f(t) \ dt + \int_0^x tf(t) \ dt = g(x)$$

On a donc $f(x) = g(x) + x \int_0^x f(t) dt - \int_0^x tf(t) dt$ pour tout $x \in \mathbb{R}$. Les fonctions $x \mapsto \int_0^x f(t) dt$ et $x \mapsto \int_0^x tf(t) dt$ sont de classe \mathcal{C}^1 comme primitives de fonctions continues. Puisque $x \mapsto x$ et g sont également de classe \mathcal{C}^1 , f est de classe \mathcal{C}^1 . Les fonctions $x \mapsto \int_0^x f(t) dt$ et $x \mapsto \int_0^x tf(t) dt$ sont donc de classe \mathcal{C}^2 comme primitives de fonctions de classe \mathcal{C}^1 . Puisque $x \mapsto x$ et g sont également de classe \mathcal{C}^2 , g de classe g. En dérivant une première fois la relation g, on obtient pour tout g is g.

$$f'(x) - \int_0^x f(t) dt = g'(x)$$

En dérivant cette relation une seconde fois, on obtient pour tout $x \in \mathbb{R}$:

$$f''(x) - f(x) = g''(x)$$

2. Dans les trois cas qui suivent, g'' est nulle. Si f est solution de (1), elle est solution de (2) et il existe donc A, B $\in \mathbb{R}$ tels que $f(x) = Ae^x + Be^{-x}$ pour tout $x \in \mathbb{R}$. En reportant dans (1), on voit que f est solution de (1) *si et seulement si*

$$\forall x \in \mathbb{R}, (A - B)x + (A + B) = g(x)$$

On rappelle que la famille $(x \mapsto 1, x \mapsto x)$ est une famille libre de $\mathbb{R}^{\mathbb{R}}$.

- **a.** Si g est nulle, f est solution de (1) si et seulement si $\begin{cases} A B = 0 \\ A + B = 0 \end{cases}$ i.e. A = B = 0. L'unique solution de (1) est donc la solution nulle.
- **b.** Si g est constante, notons C cette constante. f est solution de (1) si et seulement si $\begin{cases} A B = 0 \\ A + B = C \end{cases}$ i.e. $A = B = \frac{C}{2}$. L'unique solution est donc $x \mapsto C$ ch x.
- **c.** Si g est affine, il existe λ , $\mu \in \mathbb{R}$ tels que $g(x) = \lambda x + \mu$ pour tout $x \in \mathbb{R}$. f est solution de (1) *si et seulement si* $\begin{cases} A B = \lambda \\ A + B = \mu \end{cases}$ i.e. $A = \frac{\lambda + \mu}{2}$ et $B = \frac{\mu \lambda}{2}$. L'unique solution est donc $x \mapsto \lambda \operatorname{sh} x + \mu \operatorname{ch} x$.
- 3. Soient f_1 et f_2 deux solutions éventuelles de (1). Par linéarité de l'intégrale, $f_1 f_2$ est solution d'une équation du type (1) avec un second membre nul. La question **I.2.a** montre que $f_1 f_2 = 0$ i.e. $f_1 = f_2$. Ainsi (1) admet au plus une solution.
- **4.** Soit f une fonction de la forme donnée par l'énoncé. f est bien dérivable puisque $x \mapsto \int_0^x e^{-t} g''(t) dt$ et $x \mapsto \int_0^x e^t g''(t) dt$ sont des primitives des fonctions $x \mapsto e^{-x} g''(x)$ et $x \mapsto e^x g''(x)$ en vertu du théorème fondamental de l'analyse : ce sont donc des fonctions dérivables. On a de plus pour tout $x \in \mathbb{R}$:

$$f'(x) = \frac{e^x}{2} \left[\int_0^x e^{-t} g''(t) \ dt + k_A \right] + \frac{e^{-x}}{2} \left[\int_0^x e^t g''(t) \ dt + k_B \right]$$

On en déduit que f' est à nouveau dérivable et que pour tout $x \in \mathbb{R}$:

$$f''(x) = \frac{e^x}{2} \left[\int_0^x e^{-t} g''(t) \ dt + k_A \right] - \frac{e^{-x}}{2} \left[\int_0^x e^t g''(t) \ dt + k_B \right] + g''(x) = f(x) + g''(x)$$

Autrement dit, f est solution de (2).

5. Soit f une solution de (2) vérifiant f(0) = g(0) et f'(0) = g'(0). En intégrant la relation f''(t) - f(t) = g''(t) entre 0 et x, on obtient f'(x) - f'(0) - F(x) = g'(x) - g'(0) où F désigne la primitive de f nulle en 0. Puisque f'(0) = g'(0), on a donc f'(t) - F(t) = g'(t). En intégrant à nouveau entre 0 et x, on obtient $f(x) - f(0) - \int_0^x F(t) dt = g(x) - g(0)$. Or f(0) = g(0) et en intégrant par parties

$$\int_0^x F(t) dt = \left[(t - x)F(t) \right]_0^x - \int_0^x (t - x)F'(t) dt = \int_0^x (x - t)f(t) dt$$

Ainsi $f(x) - \int_0^x (x - t)f(t) dt = g(x)$ pour tout $x \in \mathbb{R}$ i.e. f est solution de (1).

6. D'après la question **I.4** et en utilisant le fait que $g'' = \exp$, on a

$$\forall x \in \mathbb{R}, \ f(x) = \frac{e^x}{2}(x + k_A) - \frac{e^{-x}}{2}\left(\frac{e^{2x}}{2} + k_B\right)$$

Les conditions f(0) = g(0) et f'(0) = g'(0) de la question I.5, fournissent $\frac{k_A}{2} - \frac{k_B}{2} = 1$ et $\frac{k_A}{2} + \frac{k_B}{2} = 1$ i.e. $k_A = 2$ et $k_B = 0$. L'unique solution de (1) est donc $x \mapsto e^x \left(\frac{x}{2} + 1\right)$.

Partie II -

- 1. On raisonne comme à la question I.1 pour montrer que A(f) est de classe \mathcal{C}^1 . De plus $A(f)'(x) = \int_0^x f(t) \ dt$ pour tout $x \in \mathbb{R}$. A(f)' est donc elle-même de classe \mathcal{C}^1 i.e. A(f) est de classe \mathcal{C}^2 et A(f)'' = f.
- 2. Pour tout $f \in E$, A(f) est également continue puisqu'elle est de classe \mathcal{C}^2 d'après la question précédente. Ainsi $A(E) \subset E$. De plus, A est linéaire par linéarité de l'intégrale. Ainsi A est un endomorphisme de E. Soit $f \in \text{Ker } A$. On a donc A(f) = 0 et a fortiori A(f)'' = 0. Or A(f)'' = f donc f = 0, d'où $\text{Ker } A = \{0_E\}$ et A est injectif.
- **3.** Soient $f \in E$ et $x \in \mathbb{R}$. On procède à nouveau par intégration par parties :

$$\begin{split} U \circ A(f)(x) &= \int_0^x sh(x-t)A(f)(t) \ dt = -\left[ch(x-t)A(f)(t) \right]_{t=0}^{t=x} + \int_0^x ch(x-t)A(f)'(t) \ dt \\ &= -A(f)(x) - \left[sh(x-t)A(f)'(t) \right]_{t=0}^{t=x} + \int_0^x sh(x-t)A(f)''(t) \ dt \\ &= -A(f)(x) + \int_0^x sh(x-t)f(t) \ dt = -A(f)(x) + U(f)(x) \end{split}$$

en utilisant le fait que A(f)(0) = A(f)'(0) = 0 et A(f)'' = f. Les intégrations par parties sont légitimes car A(f) est de classe \mathcal{C}^2 . L'égalité précédente étant vraie pour tout réel x, on a $U \circ A(f) = U(f) - A(f)$. Ceci étant maintenant vrai pour tout $f \in E$, on en déduit $U \circ A = U - A$.

4. Faisons l'hypothèse de récurrence HR(n) suivante

$$\forall f \in E, \ \forall x \in \mathbb{R}, \ A^{n}(f)(x) = \int_{0}^{x} \frac{(x-t)^{2n-1}}{(2n-1)!} f(t) \ dt$$

 $\mathsf{HR}(1)$ est vraie par définition de A. Supposons $\mathsf{HR}(n)$ vraie pour un certain $n \in \mathbb{N}^*$. On se donne $f \in \mathsf{E}$ et $x \in \mathbb{R}$.

$$A^{n+1}(f)(x) = A^{n}(A(f))(x) = \int_{0}^{x} \frac{(x-t)^{2n-1}}{(2n-1)!} A(f)(t) dt$$

En intégrant une première fois par parties :

$$A^{n+1}(f)(x) = -\left[\frac{(x-t)^{2n}}{(2n)!}A(f)(t)\right]_{t=0}^{t=x} + \int_{0}^{x} \frac{(x-t)^{2n}}{(2n)!}A(f)'(t) dt = \int_{0}^{x} \frac{(x-t)^{2n}}{(2n)!}A(f)'(t) dt$$

car A(f)(0) = 0. En intégrant à nouveau par parties :

$$A^{n+1}(f)(x) = -\left[\frac{(x-t)^{2n+1}}{(2n+1)!}A(f)'(t)\right]_{t=0}^{t=x} + \int_0^x \frac{(x-t)^{2n+1}}{(2n+1)!}A(f)''(t) dt = \int_0^x \frac{(x-t)^{2n+1}}{(2n+1)!}f(t) dt$$

car A(f)'(0) = 0 et A(f)'' = f.

5. a. Puisque sh est de classe \mathcal{C}^{∞} sur \mathbb{R} , on peut appliquer l'inégalité de Taylor-Lagrange à la fonction sh entre 0 et u à l'ordre 2n:

$$\left| \operatorname{sh} u - \sum_{p=0}^{2n} \frac{\operatorname{sh}^{(p)}(0)}{p!} u^p \right| \leq M \frac{|u|^{2n+1}}{(2n+1)!}$$

où M désigne le maximum de $|\sinh^{(2n+1)}|$ sur [0,u] ou [u,0] suivant le signe de u.

Or pour p pair, $sh^{(p)} = sh$ et donc $sh^{(p)}(0) = 0$ et pour p impair $sh^{(p)} = ch$ et donc $sh^{(p)}(0) = 1$. Ainsi

$$\sum_{p=0}^{2n} \frac{\mathrm{sh}^{(p)}(0)}{p!} u^k = \sum_{k=1}^n \frac{u^{2k-1}}{(2k-1)!}.$$

On a donc également $\operatorname{sh}^{(2n+1)}=\operatorname{ch}$. Puisque ch est paire et croissante $\operatorname{sur}\mathbb{R}_+$, on a donc $M=\operatorname{ch}\mathfrak{u}$ en distinguant les cas $\mathfrak{u}\geqslant 0$ et $\mathfrak{u}\leqslant 0$. On en déduit donc la formule demandée.

b. En utilisant l'expression de $A_n(f)(x)$ trouvée en **II.4**, on peut écrire :

$$U(f)(x) - U_n(f)(x) = \int_0^x \left(sh(x-t) - \sum_{k=1}^n \frac{(x-t)^{2k-1}}{(2k-1)!} \right) f(t) dt$$

Par conséquent

$$|U(f)(x) - U_n(f)(x)| \leqslant \left| \int_0^x \left| sh(x-t) - \sum_{k=1}^n \frac{u^{2k-1}}{(2k-1)!} \right| |f(t)| \ dt \right|$$

Mais grâce à la majoration de la question II.5.a, on a donc

$$|U(f)(x) - U_n(f)(x)| \le \left| \int_0^x \frac{ch(x-t)|x-t|^{2n+1}}{(2n+1)!} |f(t)| dt \right|$$

On en déduit par inégalité de la moyenne

$$|U(f)(x) - U_n(f)(x)| \le M \left| \int_0^x |f(t)| dt \right|$$

où M désigne le maximum de $t\mapsto \frac{ch(x-t)|x-t|^{2n+1}}{(2n+1)!}$ sur l'intervalle [0,x] ou [x,0]. Par changement de variables, M est aussi le maximum de $t\mapsto \frac{ch(t)|t|^{2n+1}}{(2n+1)!}$ sur l'intervalle [0,x] ou [x,0]. Cette fonction étant paire et croissante sur \mathbb{R}_+ , on trouve $M=\frac{ch(x)|x|^{2n+1}}{(2n+1)!}$ en distinguant les cas $x\geqslant 0$ et $x\leqslant 0$.

Les théorèmes de comparaison sur les suites usuelles donnent $|x|^{2n+1} = o((2n+1)!)$. Par conséquent,

$$\lim_{n \to +\infty} \frac{\operatorname{ch}(x)|x|^{2n+1}}{(2n+1)!} \left| \int_0^x |f(t)| \ dt \right| = 0$$

Par encadrement, $\lim_{n\to+\infty} U(f)(x) - U_n(f)(x) = 0$.

c. Remarquons que $A \circ U_n = U_n \circ A = U_{n+1} - A$. On peut donc écrire

$$U \circ A = (U - U_n) \circ A + U_n \circ A = (U - U_n) \circ A + U_{n+1} - A = (U - U_n) \circ A + (U_{n+1} - U) + (U - A)$$

Soient $f \in E$, $x \in \mathbb{R}$ et $n \in \mathbb{N}^*$. On a donc

$$U \circ A(f)(x) = (U - U_n) \circ A(f)(x) + (U_{n+1} - U)(f)(x) + (U - A)(f)(x)$$

En appliquant la question précédente, on a $(U_{n+1}-U)(f)(x) \underset{n \to +\infty}{\longrightarrow} 0$. On peut également appliquer la question précédente à A(f) qui est bien une fonction de E de sorte que $(U-U_n) \circ A(f)(x) \underset{n \to +\infty}{\longrightarrow} 0$. Par unicité de la limite, on a donc $U \circ A(f)(x) = (U-A)(f)(x)$. Ceci étant valable pour tout $x \in \mathbb{R}$, on a donc $U \circ A(f) = (U-A)(f)$. Ceci étant valable pour tout $f \in E$, on a finalement $U \circ A = U - A$.

6. a. On a $(I - A) \circ (I + U) = I - A + U - A \circ U = I$ d'après la question **II.5.c**. De même, $(I + U) \circ (I - A) = I - A + U + U \circ A = I$ d'après la question **II.3**. Ainsi I - A et I + U sont inversibles et inverses l'une de l'autre.

b. Une fonction f de E est solution de (1) *si et seulement si* (I-A)(f) = g i.e. f = (I+U)(g). L'unique solution f de (1) est donc définie par

$$\forall x \in \mathbb{R}, \ f(x) = g(x) + \int_0^x sh(x-t)g(t) \ dt$$

c. g est bien continue mais n'est pas de classe C^2 : on ne peut plus utiliser les résultats de la première partie. Tout d'abord, remarquons que f est paire. En effet, en utilisant la parité de g:

$$f(-x) = g(-x) + \int_0^{-x} sh(-x-t)g(t) dt = g(x) + \int_0^{-x} sh(-x-t)g(-t) dt$$

Effectuons le changement de variables u=-t et utilisons l'imparité de sh :

$$f(-x) = g(x) - \int_0^x sh(-x + u)g(u) du = g(x) + \int_0^x sh(x - u)g(u) du = f(x)$$

Déterminons maintenant f sur \mathbb{R}_+ en distinguant des cas.

► Si $x \in [0, 1[$,

$$f(x) = x + \int_0^x t \, sh(x-t) \, dt = x - [t \, ch(x-t)]_{t=0}^{t=x} + \int_0^x ch(x-t) \, dt = -[sh(x-t)]_{t=0}^{t=x} = sh(x)$$

► Si $x \in [0, 2]$,

$$\begin{split} f(x) &= 2 - x + \int_0^x \mathrm{sh}(x-t)g(t) \ dt = 2 - x + \int_0^1 t \, \mathrm{sh}(x-t) \ dt + \int_1^x (2-t) \, \mathrm{sh}(x-t) \ dt \\ &= 2 - x - [t \, \mathrm{ch}(x-t)]_{t=0}^{t=1} + \int_0^1 \mathrm{ch}(x-t) \ dt - [(2-t) \, \mathrm{ch}(x-t)]_{t=1}^{t=x} - \int_1^x \mathrm{ch}(x-t) \ dt \\ &= - [\mathrm{sh}(x-t)]_{t=0}^{t=1} + [\mathrm{sh}(x-t)]_{t=1}^{t=x} \\ &= \mathrm{sh}(x) - 2 \, \mathrm{sh}(x-1) \end{split}$$

ightharpoonup Si $x \geqslant 2$,

$$\begin{split} f(x) &= \int_0^x \mathrm{sh}(x-t)g(t) \ \mathrm{d}t = \int_0^1 t \, \mathrm{sh}(x-t) \ \mathrm{d}t + \int_1^2 (2-t) \, \mathrm{sh}(x-t) \ \mathrm{d}t \\ &= -\left[t \, \mathrm{ch}(x-t)\right]_{t=0}^{t=1} + \int_0^1 \mathrm{ch}(x-t) \ \mathrm{d}t - \left[(2-t) \, \mathrm{ch}(x-t)\right]_{t=1}^{t=2} - \int_1^2 \mathrm{ch}(x-t) \ \mathrm{d}t \\ &= -\left[\mathrm{sh}(x-t)\right]_{t=0}^{t=1} + \left[\mathrm{sh}(x-t)\right]_{t=1}^{t=2} \\ &= \mathrm{sh}(x) - 2 \, \mathrm{sh}(x-1) + \mathrm{sh}(x-2) \end{split}$$