

Universidade Federal do Espírito Santo Centro Tecnológico Departamento de Engenharia Elétrica Prof. Hélio Marcos André Antunes

Instalações Elétricas I Engenharia Elétrica

8.2.11 - LEDs

- LED: Light Emissor Diode (Diodo Emissor de Luz).
- Trata-se de um simples diodo, formado pela junção de dois materiais semicondutores,
 P e N.
- Quando uma corrente elétrica atravessa a junção PN, luz é emitida.
- Os LEDs de potência surgiram na década de 90, com a tecnologia InGaN. Possuem potência de 1W a 15W, em várias cores.

LEDs

Características:

- Não possuem filamentos nem descarga elétrica;
- Trabalham em baixa tensão, normalmente 5 ou 12 volts;
- Grande eficiência energética;
- Vida útil de até 25000 horas;
- Pode apresentar IRC na escala de 0 a 100 e TCC entre 2760 K a 10000 K;
- Tem a vantagem de praticamente não emitir radiações infravermelha e ultravioleta;
- Oferecem a possibilidade de criar cenas no modo RGB, comandadas por controle remoto ou computador;
- Cores variadas.
- Custo elevado quando comparado as fluorescentes compactas.

Eficiência Luminosa

Fonte: Manual Prático Osram

8.3- Luminárias

- São aparelhos destinados à fixação das lâmpadas, devendo apresentar as seguintes características básicas:
 - serem agradáveis ao observador;
 - modificam o fluxo luminoso da fonte de luz;
 - possibilitam uma fácil instalação da lâmpada e sua posterior manutenção.

Principais componentes

- Corpo
- Refletor
 - Reflete e distribui a luz emitida pela lâmpada do interior da luminária;
 - Pode ser parabólico, elipsoidal, esférico ou hiperbólico;
 - Podem ter a superfície:
 - Esmaltada;
 - Anodizada;
 - Pelicular;
- Aletas
 - Tem como função evitar o ofuscamento;
- Porta lâmpada

8.4 - Projeto Luminotécnico

- Considerações importantes no projeto de iluminação:
 - Recomenda-se que a relação das iluminâncias dos pontos de maior e menor iluminamento não seja menor a 70% (mínimo 10%);
 - Em prédios com pé-direito igual ou inferior a 6 m é conveniente utilizar lâmpadas fluorescentes em linhas contínuas ou ininterruptas;
 - Em prédios com pé-direito superior a 6 m é conveniente utilizar lâmpadas de descarga de alto fluxo luminoso.
- Existem três métodos para a determinação do iluminamento dos diversos ambientes de trabalho: método dos lúmens, método das cavidades zonais e método ponto a ponto.

8.4.1- Método dos Lúmens

• É baseado na determinação do fluxo luminoso necessário para se obter um iluminamento médio desejado no plano de trabalho.

$$\phi_{t} = \frac{E \times S}{F_{u} \times F_{dl}}$$

- Φ_t Fluxo total a ser emitido pelas lâmpadas, em lúmens;
- E iluminamento médio requerido pelo ambiente a iluminar, em lux;
- S área do recinto, em m^2 ;
- F_{dl} fator de depreciação do serviço da luminária;
- F_u fator de utilização do recinto.

Iluminamento

- Nível de Iluminamento adequado é definido pela ABNT NBR ISO/CIE 8995-1.
- Divido por tipo de ambiente, com recomendação do IRC (Ra).

Tipo de ambiente, tarefa ou atividade	E _m	Ra	Observações
24. Restaurantes e hotéis			
Recepção/caixa/portaria	300	80	
Cozinha	500	80	
Restaurante, sala de jantar, sala de eventos	200	80	Recomenda-se que a iluminação seja projetada para criar um ambiente íntimo.
Restaurante self-service	200	80	
Bufê	300	80	
Salas de conferência	500	80	Recomenda-se que a iluminação seja controlável.

Fator de Depreciação do Serviço da Luminária

• Mede a relação entre o fluxo luminoso emitido por uma luminária no fim do período considerado para iniciar o processo de manutenção e o fluxo no início de operação.

Tipo de aparelho	Fa
Luminária comercial	0,75
Luminária ampla utilizada em linhas contínuas	0,73
Refletor parabólico para 2 lâmpadas incandescentes	
Refletor industrial para lâmpada VM	
Aparelho para lâmpada incandescente para iluminação indireta	0,70
Luminária industrial tipo Miller	0,70
Luminária com difusor de acrílico	
Globo de vidro fechado para lâmpada incandescente	
Refletor com difusor plástico	
Luminária comercial para lâmpada high output com colmeia	0,60
Luminária para lâmpada fluorescente para iluminação indireta	

Fator de Utilização

- É a relação entre o fluxo luminoso que chega ao plano de trabalho e o fluxo luminoso total emitido pelas lâmpadas.
- Refletâncias médias:
 - Teto: Branco = 70%, claro = 50%, escuro = 30%;
 - Paredes: Claras = 50%, escuras = 30%;
 - Pisos: escuros = 10%.
- Índice do recinto K:
 - A comprimento do recinto em m;
 - B largura do recinto, em m;
 - H_{lp} altura da fonte de luz, sobre o plano de trabalho, em m.

$$K = \frac{A \times B}{H_{lp} \times (A + B)}$$

Fator de Utilização

$$H_{lp} = H - h_{pend} - h_{ptrab}$$

H – Altura do pé direito.

h_{pend} – Altura de instalação da luminária.

h_{ptrab} – Altura do plano de trabalho.

H_{lp} – Altura entre o plano de trabalho e a luminária.

Fator de Utilização

Tabela de Fator de Utilização -TBS027 - $2 \times TLDRS 32W$

Fator de	80	0		7	0	,	5	0	3	0	0
Área	50	50	50	50	50	30	30	10	30	10	0
K	30	10	30	20	10	10	10	10	10	10	0
0.60	.42	.40	.41	.40	.39	.34	.33	.30	.33	.30	.28
0.80	.50	.47	.49	.48	.46	.41	.40	.37	.40	.37	.35
1.00	.57	.53	.56	.54	.52	.47	.46	.43	.46	.42	.41
1.25	.64	.58	.62	.60	.58	.53	.52	.48	.51	.48	.46
1.50	.69	.62	.67	.64	.62	.57	.56	.53	.55	.52	.51
2.00	.76	.68	.74	.71	.67	.64	.63	.60	.62	.59	.57
2.50	.81	.72	.79	.75	.71	.68	.67	.64	.66	.63	.62
3.00	.85	.74	.82	.78	.73	.71	.70	.67	.68	.67	.65
4.00	.89	.77	.87	.81	.76	.74	.73	.71	.72	.70	.68
5.00	.92	.79	.89	.83	.78	.76	.75	.74	.74	.72	.70

Cálculo do Número de Luminárias

• É dado pela equação:

$$N_{lu} = \frac{\phi_t}{N_{la} \times \phi_l}$$

- $-\phi_t$: Fluxo luminoso total.
- N_{la}: Número de lâmpadas por luminária.
- $-\phi_1$: Fluxo luminoso emitido por uma lâmpada.
- N_{lu}. Número de luminárias

Distribuição das luminárias

- O espaçamento entre as luminárias depende da altura útil.
- A distância máxima entre os centros das luminárias deve ser de 1 a 1,5 da altura útil $(H_{lp} \le X \le 1,5 \; H_{lp} \; e \; H_{lp} \le Y \le 1,5 \; H_{lp})$.
- O espaçamento da luminária à parede deve corresponder a metade deste valor, $Y_1=Y/2$ e $X_1=X/2$).

Deseja-se iluminar um escritório de contabilidade, que possui 10m de comprimento por 5m de largura e um pé direito de 3,3m, com lâmpadas fluorescentes tubulares colocadas em luminárias embutidas no teto (o teto foi rebaixado em 0,5m). O ambiente tem teto branco, paredes claras, piso escuro e é considerado limpo. Considere o plano de trabalho com 0,8m, com iluminância de 500 lux. Calcule o número de luminárias e distribua no ambiente.

Resolução Exemplo

- a) Definindo o fator do local (K):
 - Altura da luminária ao plano de trabalho: H_{lp}

$$H_{lp} = H - h_{pend} - h_{ptrab} = 3,3 - 0,8 - 0,5 = 2 \text{ m}$$

Resolução Exemplo

Definindo o fator do local (K):

$$K = \frac{A \times B}{H_{lp} \times (A+B)} = \frac{10 \times 5}{2 \times (10+5)} = 1,667$$

- A comprimento do recinto em m;
- B largura do recinto, em m;
- H_{lp} altura da fonte de luz, sobre o plano de trabalho, em m.

b) Definindo o fator de utilização:

Escolhendo a luminária

Fabricante:

CURVA DE DISTRIBUIÇÃO LUMINOSA

Especificação: Luminária de embutir em forro de gesso ou modulado para 2 lâmpadas fluorescentes tubulares de 28W. Corpo em chapa de aço tratada com acabamento em pintura eletrostática epóxi-pó na cor branca. Refletor e aletas parabólicas em alumínio anodizado de alto brilho e cobre soquete com acabamento especular de alto brilho. Equipada com porta-lâmpada antivibratório em policarbonato, com trava de segurança e proteção contra aquecimento nos contatos.

Aplicação: Locais de trabalho com uso freqüente de computadores como sala de controle ou monitoramento, CPD, escritório, telemarketing, área de atendimento, etc.

Rendimento: 71%

Dimensões: A= 55 x L= 203 x C= 1243 mm. / Modulação: 212 x 1250 mm. / Nicho: 180 x 1230 mm.

Obtido em: http://www.itaim.ind.br

Definindo o fator de utilização:

FATOR DE UTILIZAÇÃO

TETO (%)		70			50		- 3	10:	: 0:
PAREDE (N)	50	30	10	50	30	10	30	10	0
PISO (%)		10			10		1	0	0
Kr.			EAT	OR DE I	JTILIZAC	DAO DEO	:01]		
0.60	37	33	29	37	32	29	32	29	2.8
0.80	45	40	37	44	40	36	39	36	35
1.00	50	4.6	43	4.9	45	42	45	42	41
1.25	55	51	4.8	54	50	4.8	50	4.7	46
1.50	58	55	52	57	54	52	53	51	50
2.00	63	60	58	62	60.	57	59	57	55
2.50	66	64	62	65	63	61	62	60	59
3.00	68	66	64	67	65	63	64	63	61
4.00	70	69	67	69	67	66	66	65	63
5.00	7.1	7.0	69	70	69	67	67	67	65

Refletâncias médias:

Teto: Branco = 70%,

Paredes: Claras = 50%

Pisos: escuros = 10%

Qual f_u para K=1,667?

Obtido em: http://www.itaim.ind.br

Definindo o fator de utilização:

FATOR DE UTILIZAÇÃO

TETO (%)		70			50		- 2	30:	: 0:
PAREDE (%)	50	30	10	50	30	10	30	10	0
PISO (%)		10			10			0	0
K/			EAT	OR DE L	JTHIZAC	AO NO	:01]:		
0.60	37	33	2.9	37	32	29	32	29	2.8
0.80	45	40	37	44	40	36	39	36	35
1.00	50	4.6	43	49	45	42	45	42	41
1.25	55	51	4.8	54	50	4.8	50	47	46
1,50	58	55	52	57	54	52	53	51	50
2.80	63	60	58	62	60.	57	59	57	55
2.50	66	64	62	65	63	61	62	60	59
3.00	68	66	64	67	65	63	64	63	61
4.00	70	69	67	69	67	66	66	65	63
5.00	7.1	7.0	69	70	69	67	67	67	65

Interpolação de primeira ordem:

$$f_{ij} = 0.597$$
 (para K=1.667)

Obtido em: http://www.itaim.ind.br

c) Fator de depreciação da luminária (f_{dl}):

Luminária comercial

Tipo de aparelho	Fa	
Luminária comercial	0,75	
Luminária ampla utilizada em linhas contínuas	0,73	
Refletor parabólico para 2 lâmpadas incandescentes		
Refletor industrial para lâmpada VM		
Aparelho para lâmpada incandescente para iluminação indireta	0.70	
Luminária industrial tipo Miller	0,70	
Luminária com difusor de acrílico		
Globo de vidro fechado para lâmpada incandescente		

d) Cálculo do fluxo total:

$$\phi_t = \frac{E \times S}{F_u \times F_{dl}} = \frac{500 \times 10 \times 5}{0,597 \times 0,75} = 55865,9 \text{ lúmens}$$

- e) Número de luminárias:
- Duas lâmpadas T5 por luminária, com fluxo luminoso de 2900 lúmens por lâmpada.

$$N_{lu} = \frac{\phi_t}{N_{la} \times \phi_l} = \frac{55865,9}{2 \times 2900} = 9,63 \approx 10 \text{ luminárias}$$

Lâmpada fluorescente tubular – T5/ Fabricante: GE

Código do produto	Código	comercial		Potência Nom. (Watts)	Fluxo Luminos após 100 (lumens	h Nom.	Acabamen	ito	Comp. Nom. (mm)	Diâm. Nom. (mm)	H
T5 STAF	RCOAT	(Fig. 1)									
Bulbo T	5, Base	Bipino Minia	itura								
90247	F14W/T	5/840/GE/STARC	OAT/SL/1-30	14	1350	20.000	840 - 4.000K/IRC=85	/Starcoat™	563	16	
90255	F28W/T	28	2.900	20	0.000	840 - 4.000K/IF	!C=85/Starcoat™	1163	16	16	

- f) Distribuição das luminárias
- Deve atender a relação:

$$H_{lp} \le (X, Y) \le 1.5 H_{lp} \rightarrow 2m \le (X, Y) \le 3.3m$$

Distribuição das luminárias

- Distribuição inicial: duas colunas, com cinco luminárias cada.

$$X = \frac{C}{n^o de \ luminarias} = \frac{10}{5} = 2 \ m$$

$$Y = \frac{L}{n^{o} de \ luminarias} = \frac{5}{2} = 2,5 \ m$$

$$2m \le (X=2, Y=2,5) \le 3,3m (OK!)$$

- g) Especificação final
- 10 luminárias para escritório fabricante ITAIM.
- 20 lâmpadas do tipo fluorescente tubular T5 (16mm) de 28W, IRC=85, TCC=4000K, GE, 127V.
- 10 reatores eletrônicos de partida rápida com fp=0,99, 127V/60Hz, para duas lâmpadas TL5 de 28W, 64W.

Reator eletrônico modelo: Ecotronic Plus TL5/ Fabricante: Philips

Código Comercial	Partida	Lâmpada (W)	Tensão Nominal (V)	Freqüência (Hz)	Corrente da Rede (A)	Potência Total (W)	Fator de Potência
ES14A16 TL5 ES28A16 TL5	Rápida Rápida	1 x 14 1 x 28	127 127	50/60 50/60	0,15 0,28	18 34	0,99 0,99
ED28A16 TL5		27	50/60		53	64	0,99
ES28A26 TL5	Rápida Rápida	1 x 14 1 x 28	220 220	50/60 50/60	0,09 0,15	33	0,98 0,98
ED14A26 TL5 ED28A26 TL5	Rápida Rápida	2 x 14 2 x 28	220 220	50/60 50/60	0,17 0.33	37 68	0,98 0,98

Ecotronic Plus® TL5