

Segment, Mask, and Predict: Augmenting Chinese Word Segmentation with Self-Supervision

Mieradlijiang Maimaiti¹, Yang Liu¹, Yuanhang Zheng¹, Gang Chen¹ Kaiyu Huang², Ji Zhang³, Huanbo Luan¹, and Maosong Sun¹

¹Department of Computer Science and Technology, Tsinghua University

²School of Computer Science, Dalian University of Technology

³Alibaba DAMO Academy

EMNLP2021, Nov. 2021, Punta Cana

Outline

- Chinese Word Segmentation
- Background & Significance
- Challenges & Motivation
- Methodology
- Experiment & Results
- Conclusion & Future

Chinese Word Segmentation

Conception

- Much like **sentences** are composed of **words**, words themselves are composed of **smaller units**.
- Chinese sentences consist of chars which is the smallest unit.

Original

segmentation

毫无疑问的 ------ 毫无/疑问/的

Outline

- Chinese Word Segmentation
- Background & Significance
- Challenges & Motivation
- Methodology
- Experiment & Results
- Conclusion & Future

Background

Humans understand Chinese sentences

Provide word level info for **downstream** tasks

Significance

Wy Does it make sense?

Application value --- MT, IR, NER, NLU, QA...

Low-Resource Languages NMT

● ★ ∨ □ ∨晒照为 多语种翻译系统 كۆپ تىللىق تەرجىمە سىستېمىسى 维吾尔语 ≫ ▼ ئامما تۈزگەن چاسا ئەترەت ئالدىغا جۇڭگو كوممۇنىستىك پارتىيەسى مەركىزىي كومىتېتى، 群众组成方队,面对的是中共中央。,全国人民代表大会常务委员会,国务院 مەملىكەتلىك خەلق قۇرۇلتىيى دائىمىي كومىتېتى، گوۋۇيۈەن، مەملىكەتلىك سىياسى كېڭەش، 全国政协:,中央军事委员会;,各民主党派,全国工商联及无党派爱国人士,各 مەركىزىي ھەربىي كومىتېت، ھەرقايىسى دېموكراتىك پارتىيە–گۇرۇھلار، مەملىكەتلىك سودا– 人民团体和各界群众,老战士,老同志和革命先烈的家属。,以中国少先队命名的 سانائەتچىلەر بىرلەشمىسى ۋە پارتىيە–گۇرۇھسىز ۋەتەنپەرۋەر زاتلار، ھەرقايسى خەلق 九个大型花束排列。 تەشكىلاتلىرى ۋە ھەر ساھە ئاممىسى، پېشقەدەم جەڭچىلەر، پېشقەدەم يولداشلار ۋە ئىنقىلابىي قۇربانلارنىڭ ئائىلە تاۋابىئاتلىرى، جۇڭگۈ پىيونېرلار ئەترىتىنىڭ ناسدا تەقدىم قىلىنغان چوڭ نىپتىكى توققۇز گۈل سېۋىتى قاتار تىزىلغانىدى. 最多可以输入500个字符 دەملەر بىلەن خەلق قەھرىيانلىرى خاتىرە مۇنارىغا قاراپ مېڭىپ، گۆل سېۋەتلىرىنى خاتىرە مۇنارىنىڭ ئۆل تەكچىسگە قويدى.

Cross-Lingual Information Retrieval

Significance

Wy Does it make sense?

Academic value

CWS for NMT

Segmentation Method	BLEU (Zh – En)
CHAR	21.16
TEACHER	23.51
CRF	23.37
ConPrune	23.73

(Huang et al., 2021)

CWS for Name Entity Recognition

Segmentation Method	NR	NP	NT
CHAR	89.50	88.00	86.40
TEACHER	89.70	87.50	86.20
CRF	90.70	88.00	87.70
ConPrune	91.50	88.40	87.70

(Huang et al., 2021)

Outline

- Chinese Word Segmentation
- Background & Significance
- Challenges & Motivation
- Methodology
- Experiment & Results
- Conclusion & Future

Challenges && Motivation

Main challenges

- Annotation inconsistency
 - 操作系统 (operating system) VS. 操作 (operating) /系统 (system)
 - eight times

six times

- Word boundary detection
 - 犯罪(crime) / 案(case) 走私案 (smuggling case)

Same sentences in different corpus

Corpus	Zhang	Xiao Fan		attend	a tourn	ament
PKU	张	小凡		参加	比武 大会	
MSRA	张小凡			参加	比武	大会
Zhuxian		张小凡		参加	比武	大会

Challenges && Motivation

Main challenges

- Complex architecture
 - Computational cost
 - Memory consumption
 - RoBERTa
 - GPU
 - 1080 or TITAN
 - 12G memory X
 - 3090
 - 24G memory

BMES

BMES

Tag Inference Layer

BMES

Poor robustness

BMES

BMES

Outline

- Chinese Word Segmentation
- Background & Significance
- Challenges & Motivation
- Methodology
- Experiment & Results
- Conclusion & Future

是是 General architecture of CWS

• Input sequence (Char level)

$$X = \{x_1, \dots, x_n\}; \quad Y^* = \{y_1^*, \dots, y_n^*\}$$

$$Y^* = \arg\max_{Y \in \mathcal{L}^n} p(Y|X)$$

$$\mathcal{L} = \{B, M, E, S\}$$

- Vector representation
 - Mapping x_i into $\mathbf{e}_{x_i} \in \mathbb{R}^{d_e}$
- Feature extraction

$$\mathbf{h}_{i} = \mathbf{h}_{i} \oplus \mathbf{h}_{i}$$

$$= \text{Bi-LSTM}(\mathbf{e}_{x_{i}}, \mathbf{h}_{i-1}, \mathbf{h}_{i+1}, \theta)$$

(Chen et al., 2017)

• Output (CRF 4 labels)

$$p(Y|X) = \frac{\Psi(Y|X)}{\sum_{Y' \in \mathcal{L}^n} \Psi(Y'|X)}$$

Self-supervised word segmentation model

Segmenter

Self-supervised word segmentation model

Self-supervised word segmentation model

How does it work?

• Input sequence

$$q(\mathbf{y}|\mathbf{x}) = \mathbb{E}_{\mathbf{x}_{m}|\mathbf{x}_{o}^{(s)},\mathbf{y};\gamma} \left[\Delta \left(\mathbf{x}_{m}, \mathbf{x}_{m}^{(s)} \right) \right]$$
$$= \sum_{\mathbf{x}_{m} \in M(\mathbf{x},\mathbf{y})} P\left(\mathbf{x}_{m}|\mathbf{x}_{o}^{(s)};\gamma \right) \Delta \left(\mathbf{x}_{m}, \mathbf{x}_{m}^{(s)} \right)$$

- **x** input seq, **y** label seq;
- $M(\mathbf{x}, \mathbf{y})$ all the legal masking of \mathbf{x} when seg result is \mathbf{y} .
- \mathbf{x}_m predicted result, $\mathbf{x}_m^{(s)}$ ground truth of masked part, $\mathbf{x}_o^{(s)}$ non-masked part of MLM.

$$\Delta\left(\mathbf{x}_{m}, \mathbf{x}_{m}^{(s)}\right) = 1 - sim\left(\mathbf{x}_{m}, \mathbf{x}_{m}^{(s)}\right)$$

Revised masking strategy

All the legal masked sequence when Mask count = 2

Segmented sequence	小明 喜欢 吃 巧克力。
Masked Input	[M] [M] 喜欢吃巧克力。 小明 [M] [M] 吃巧克力。 小明喜欢 [M] 巧克力。 小明喜欢吃 [M] [M] 力。 小明喜欢吃巧 [M] [M]。 小明喜欢吃巧克力 [M]

How to optimize the model?

• Training step is similar to MRT (Shen et al., 2016)

$$J(\theta) = \sum_{\mathbf{x} \in \mathbf{X}} \mathbb{E}_{\mathbf{y}|\mathbf{x};\theta}[q(\mathbf{y}|\mathbf{x})] = \sum_{\mathbf{x} \in \mathbf{X}} \sum_{\mathbf{y} \in Y(\mathbf{x})} P(\mathbf{y}|\mathbf{x};\theta)q(\mathbf{y}|\mathbf{x})$$

- $Y(\mathbf{x})$ is the set of all the possible segmentation results.
- Hard to calculate the cost, need to sample a sub-set $S(\mathbf{x})$.

$$Q(\mathbf{y}|\mathbf{x};\theta,\alpha) = \frac{P(\mathbf{y}|\mathbf{x};\theta)^{\alpha}}{\sum_{\mathbf{y}'\in S(\mathbf{x})} P(\mathbf{y}'|\mathbf{x};\theta)^{\alpha}}$$

• Final training procedure with improved MRT.

$$J(\theta) = \sum_{\mathbf{x} \in \mathbf{X}} \left(\sum_{\mathbf{y} \in S(\mathbf{x})} Q(\mathbf{y}|\mathbf{x}; \theta, \alpha) q(\mathbf{y}|\mathbf{x}) - \lambda \sum_{\mathbf{y}' \in S(\mathbf{x})} P(\mathbf{y}'|\mathbf{x}; \theta)^{\alpha} \right)$$

Outline

- Chinese Word Segmentation
- Background & Significance
- Challenges & Motivation
- Methodology
- Experiment & Results
- Conclusion & Future

Experiment settings

Data Characteristics of the Corpus

C	T	D	Togt		Word			Char	
Corpora	Train	Dev.	Test	Type	Token.	Avglen.	Type	Token.	Avglen.
MSRA	84.80K	2.0K	4.0K	90.10K	2.50M	27.24	5.20K	4.01M	46.62
PKU	19.06K	2.0K	1.9K	58.20K	1.21M	57.82	4.70K	1.83M	95.85
AS	0.7M	2.0K	14.4K	0.14M	5.60M	7.7	6.11K	8.37M	11.80
CITYU	53.02K	2.0K	1.5K	70.76K	1.50M	27.45	4.92K	2.40M	45.33
CTB	24.42K	1.9K	2.0K	47.60K	0.80M	27.67	4.44K	1.30M	45.50
SXU	15.62K	1.5K	3.7K	35.92K	0.64M	30.90	4.28K	1.04M	50.50
CNC	0.21M	25.9K	25.9K	0.14M	7.30M	28.19	6.86K	10.08M	43.28
UDC	4.0K	0.5K	0.5K	20.13K	0.12M	24.67	3.60K	0.20M	39.14
ZX	2.37K	0.8K	1.4K	9.14K	0.12M	26.87	2.61K	0.17M	38.05

Results of Single Criterion Learning

M. d. d.		SIGH	AN05		SIGH	AN08		OTHER		
Methods	MSRA	PKU	AS	CITYU	CTB	SXU	CNC	UDC	ZX	
Chen et al. (2017)	95.84	93.30	94.20	94.07	95.30	95.17	_	_	_	
Zhou et al. (2017)	97.80	96.00	—	_	96.20					
Yang et al. (2017)	97.50	96.30	95.70	96.90	96.20					
He et al. (2018)	97.29	95.22	94.90	94.51	95.21	95.78	97.11	93.98	95.57	
Gong et al. (2019)	96.46	95.74	94.51	93.71	97.09	95.57				
LSTM+BEAM	97.10	95.80	95.30	95.60	<u>96.10</u>	<u>95.95</u>	96.10	96.20	96.30	
LSTM+CRF	98.10	96.10	96.00	96.80	96.30	<u>96.55</u>	96.61	96.00	96.40	
BERT	96.91	95.34	<u>96.47</u>	<u>97.10</u>	<u>97.27</u>	<u>96.40</u>	96.66	97.23	96.49	
SELFATT+SOFT	97.60	95.50	95.70	96.40	<u>97.28</u>	<u>96.60</u>	96.88	97.12	96.50	
BERT+LTL	97.53	96.23	<u>97.03</u>	<u>97.63</u>	<u>97.34</u>	<u>96.65</u>	96.89	<u>97.51</u>	<u>96.72</u>	
Ours	98.12	96.24	97.30	97.83	97.45	96.97	97.25	97.74	96.82	

Results of Multiple Criteria Learning

Madhada		SIGH	AN05		SIGHAN08		OTHER		
Methods	MSRA	PKU	AS	CITYU	CTB	SXU	CNC	UDC	ZX
Chen et al. (2017)	96.04	94.32	94.64	95.55	96.18	96.04			
He et al. (2018)	97.35	95.78	95.47	95.60	95.84	96.49	97.00	94.44	95.72
Gong et al. (2019)	97.78	96.15	95.22	96.22	97.26	97.25	<u>—</u>	<u>—</u>	_
BERT	97.22	96.06	<u>97.07</u>	97.39	<u>97.36</u>	96.81	96.71	97.48	96.60
BERT+LTL	96.67	<u>96.30</u>	<u>97.16</u>	<u>97.72</u>	<u>97.38</u>	96.90	97.10	<u>97.61</u>	96.81
Ours	98.19	96.32	97.43	97.80	97.66	97.03	97.34	98.25	97.08

Results on Noisy Datasets

Mothodo		SIGH	AN05		SIGHAN08		OTHER		
Methods	MSRA	PKU	AS	CITYU	CTB	SXU	CNC	UDC	ZX
LSTM+BEAM	96.86	95.70	95.17	95.35	95.89	95.83	95.89	96.07	96.18
LSTM+CRF	97.89	95.89	95.88	96.67	96.19	96.47	96.49	95.85	96.25
BERT	96.78	95.20	96.28	97.01	97.14	96.24	96.51	97.11	96.30
SELFATT+SOFT	97.47	95.40	95.57	96.29	97.16	96.49	96.61	97.08	96.33
BERT+LTL	97.42	96.15	96.76	97.52	97.27	96.55	96.69	97.40	96.53
Ours	97.93	96.18	97.12	97.68	97.32	96.83	97.12	97.63	96.67

Results on Different Domains

Madhada	SIGHAN10						
Methods	Finance	Literature	Medicine				
Chen et al. (2015b)	95.20	92.89	92.16				
Cai et al. (2017)	95.38	92.90	92.10				
Huang et al. (2017)	95.81	94.33	92.26				
Zhao et al. (2018)	95.84	93.23	93.73				
Zhang et al. (2018)	96.06	94.76	94.18				
BERT	95.87	<u>95.57</u>	<u>94.66</u>				
BERT+LTL	<u>95.96</u>	<u>95.88</u>	94.87				
Ours	95.93	95.96	95.08				

Ablation Study

With and without the PTM

Results on Downstream Task

Outline

- Chinese Word Segmentation
- Background & Significance
- Challenges & Motivation
- Methodology
- Experiment & Results
- Conclusion & Future

Conclusion && Future

- We propose a self-supervised method for CWS, which uses the predictions of revised MLM to assist the word segmentation model.
- We present an improved version of MRT by adding regularization terms to boost the performance of the word segmentation model.
- Experimental results show that our approach outperforms previous methods with different criteria training, and our proposed method also improves the robustness of the model.
- In the future, we can also extend our work to tasks of morphological word segmentation (e.g., morphological analysis).

About our work

Paper

Poster

Blog

Code

Scan them use WeChat

