

GANTRY LOADER TURNING MACHINE (GLTM)

PROJECT REPORT

Submitted By,

Keshavbalaje K	99007991
Shreyas Katti	99007992
Ninad Deshpande	99007993
Darshan Walvekar	99007994
Prashant Bhajantri	99007944
Shivaprasad Sajjanar	99007945

Table of Contents

S. No	Content	Page No
1.	Problem Statement	3
2.	Abstract	3
3.	Software Used	3
4.	Timeline	4
5.	Design Alternatives.	5
	Design Alternative1	5
	Design Alternative2	6
6.	Pugh chart	7
7.	Material Selection	7
8.	Design Calculations	8
9.	CAD Designs of Part Models	15
10.	CAD Design of Assembly	16
11.	System Design Project	21
12.	Sensor Selection	21
13.	Controller Selection	28
14.	Flow Chart	30
15.	Conclusion	32
16.	References	32
17.	Annexure	33

1. Problem Statement

It is required to design a gantry loader system for CNC turning machine/lathe for picking the workpiece from a specified location and place it in position for the chuck or collet to grip it. The weight carrying capacity of the loader should be minimum 3 kg. A vertical lift of 1500 mm, horizontal travel of 1000 mm is essential in the working envelope. The pick up position is in vertical orientation and the chuck/collet is horizontal orientation. The loader is required to be equipped with provision to orient the workpiece appropriately.

It is required to design the mechanism for picking the workpiece from the pick up location and transfer it to the chuck/collet. The design should clearly provide the mechanism implemented, design calculations for strength/dimensions for each link/component and justify selection of any off-the-shelf component like bolts, bearings, bushes, motors, couplings etc. You can select the gripper/end effector of your choice but you need to clearly specify its features and limitations.

2. Abstract

The Gantry Loader for Turning machine to pick two workpieces from the workpiece station and load them on the turning machine, while collecting and carrying the finished parts from the machines to the respective station is designed based on the given dimension constraints, and clearly provide the mechanisms implemented, design calculations for justifying the design choices made for each component/mechanism.

3. Software Used

Creo parametric 7.0 is used to design the CAD model for parts and assembly.

4. Timeline

5. Design Alternatives

Two Design alternatives were selected after conducting literature surveys and brainstorming ideas. The main goal was to design for two consecutive turning machines, while being compliant to the problem statement.

Design Alternative 1

Three gripper GLTM with simply supported horizontal beam

Advantages:

- Can Handle two workpieces in a single cycle.
- Maximum Bending Moment generated is less as compared to cantilever structure, so that it can take up heavy loads.
- Less Design complexity.
- Since the system is assembled with positive drives, No slip during transmission occurs.

Disadvantages:

- Need two mounting places
- Deflection will be more at the center of Horizontal beam

Design Alternative 2

Three gripper GLTM with cantilever beam for horizontal translation

Advantages:

- Capable of sensing load, mainly by resistance against bending
- Only one ground support is required.

Disadvantages:

- More design complexity.
- Less accurate movements with heavy workpieces, due to bending.

PUGH CHART

Requirements	Weightage	Design 1	Design 2	Reference
Design	9	+	0	0
Machinability	8	0	+	0
Supporting member	7	+	-	0
Position Accuracy	9	+	0	0
Height Adjustment	8	0	+	0
Failure of beam	9	0	0	0
Weighted Total		25	9	
Yes/No		Yes	No	

SELECTED BEST DESIGN: DESIGN ALTERNATIVE 1

6.Material Selection

For Side Support Columns

Material selection for Side support columns was carried out by conducting compressive load calculations while assuming the load as 45 kg. Consequently, Structural steel A36 was finalized for the application.

For Gripper Station Shaft

Material selection for the gripper station actuator shaft was carried out by conducting cantilever shaft calculations with torsional and bending combined loading. As a result, Aluminum Al 6061 T6 was selected for the application.

7.Design Calculation

Gripping force

Gripping Force of Transportable Work Part Weight F: Gripping Force (N) ... sum of Push Forces M: Coefficient of static friction between the finger attachment 4 the work gost in : Work part weight (19) 3: Gravitational acceleration (9,8 m/32) Furb F>mg "Necessary grapping force as the recommended safety factor of 2 normal transportation F>mg x2 (safety factor) When the fortion Coefficient 12 is between 0.140.2 F>mg x2 = (10 to 20) mg. 0.1 to 0.2 When remarkable acceleration, deceleration 4 los impact occur at work part transportation Necessary grapping force -> 30 to 50 times the work part weight Ol more. Gripping force = 30 kmg. m= 3kg 7 = 30×3×9.81 F = 882.9 NI For this gropping we have choosen Blandard Pneumatic DEM UPG 100 Grippes foolding force is 900 N. where it can suits the application.

Gripper mount Torque

The idea was to design a system for replacing and loading workpieces for 2 turning machines consecutively. Hence, a mechanism was developed to do the same. The Mechanism involves 3 grippers assembled in the same plane on the gripper station at 120 degrees separation. The working algorithm goes as follows:

- The gripper station initially above the workpiece tray, Picks up two workpieces at two of its grippers.
- The gripper station is taken near the first turning chuck, the free gripper picks the finished part from the chuck, one of the grippers loads the chuck with a workpiece after rotating the station by 120 degrees.
- Then the station is taken to the second turning station, where the recently freed gripper picks the finished part, and the second workpiece is loaded after rotating the station by 120 degrees.
- Then, the station carrying two finished parts delivers them to the finished tray.

Shaft design calculations

```
Joippes Accomply Aduation shaft
shaft longth breakdown:
  Explose wount blate = 12 mm
   fastnes cleasance = 15 mm
  Charance from support = 70 mm
 Load on shaft:
  Bending = 20 Kg = 200 N X 100 X 103 : 20 Nm
  Torsion: 8,124 xlm
  Equivalent Torque for Combined Load
     > Te = VM2+T2 = 21.58 Nm
  Equivalent bending moment for Combined Load.
    => Me = 1 [M+VM2112] = 20.79 xm
   Material used for shaft
  Aluminium AL 606 ITG
  Density = 2.79cc
   Vield Strength = 276 MPa
  Rigidally modulus = 9=26.0 GRA
   Flostic modulus E. 68.9 979
Shear atrength = 2071994
The shaft dimensions are selected by considering availability 4
   machinability.
   Do = 25.4mm = 1 inch
   Di = 12.7 mm = 0.5 inch
 choosing hollow shaft since It helps with packing of connecting channels
   for grippers 4 better weight characteretics
                   J= 15 (dd-dd)
                    = II (25A9-(12.74)
                    J= 0.383 × 10 5 mms
                   R= A0 = 25.4 = 12.7 mm
  I= = (dd-di4) = 0,1915 ×105 mm4
    4=do = 12.7mm
```

Torsional equation

\[\frac{T}{T} = \frac{Te}{R} = \frac{Ge}{R} \]

Considering negligible lingth of shaft \(l = 100mm \)

Ide design the shaft with focus on strength

\[\frac{Te}{T} = \frac{\text{of}}{R} \]

\[\frac{21.58 \text{ kid}}{12.7} = \frac{\text{of}}{12.7} \]

\[\frac{21.58 \text{ kid}}{12.7} = \frac{\text{of}}{12.7} \]

\[\frac{\text{of}}{12.74 \text{ kid}} = \frac{\text{of}}{12.7} \]

Shear strength of AL6061T6 = 2DTMPg

Bending equation

\[\text{F} = \frac{My}{T} \]

\[\frac{20.79 \times 13.7k \text{ kid}}{12.7k \text{ kid}} \]

\[\frac{13.70 \text{ kid}}{12.7k \text{ kid}} \]

Allowable stress for the material is 276 MPg

\[\frac{1}{2} \text{ since the obsesses developed in the shaft are less than allowable 4 fall into the asymptotic region of sN arsue for the material, 4 har inferiol to the.

Vertical Rack and Pinion Calculations

Horizontal Pinion Calculations

Horizontal Beam Calculations

6. CAD Design

Part Models of Subsystems

1.Gripper Station

2. Vertical Rack

3.Pinion

4.Motor

5.Extension

6.Motor Mount

7.Simply Supported Beam

9. CAD Design of Assembly

(Isometric view)

(Front view)

(Top view)

SYSTEM DESIGN PROJECT

1. Problem Statement: Select suitable sensors to control the degrees of freedom you have designed. Generate the operational sequence and fault detection logic. Also suggest a suitable controller for the system. Locate the sensors on your assembly.

To automate the mechanical design project we found out some sensors which can be used in the project to automate and we listed how many sensors to use and where to use.

1)GRIPPER SENSOR FOR UPG 100

SC4 sensor is used for UPG 100 Gripper

Specifications:

- Extremely small housing(12.2 mm) with LED for indicating the state.
- Output type:PNP or NPN
- Protecting class: IP67

Mounting:

<u>SC4</u> sensor is directly going to mount on the UPG 100 gripper in the C slot of the gripper like shown in below diagram.

2)VERTICAL SENSOR:

We identified some sensor which helps in measurement of vertical distance

- SU series ultrasonic sensor
- Long range inductive proximity sensor

By comparing the above two sensors we find the SU series ultrasonic sensor which best suits our application because of its high resolution and long range detection capacity..

SU series ultrasonic sensor:

M18 (18mm) plastic –DC or analog output

Specifications:

- High resolution
- 2 DC models available with adjustable sensitivity
- 3 analog models available
- Complete overload protection
- IP67 rated
- LED status indicator on DC models

Characteristic Curves

Analog Output

Detection Area SU1 Analog output

Detection Area SU2 Analog output

SU Series Ultrasonic DC Output Sensor Selection Chart

Туре	SU1-B0-0A	SU2-A0-0A	SU1-B1-0*	SU2-A1-0E
Differential Travel	±2.5%	±2.0%		
Repeatability	0.2	0%	±2r	mm
Operating Voltage	15-3	OVDC	18-30	OVDC
Linear Error			≤0.	3%
No load supply current		≤35	mA	
load current	≤50	0mA	55≀	mA
leakage current		≤10	μΑ	
voltage drop	≤2.5	volts		
output voltage	PNP	/ N.O.	0-10	VDC
Ultrasonic Frequency	300KHz	180KHz	300KHz	180KHz
Ultrasonic Beam Angle	8°			
Switching Frequency	25Hz	8Hz		
Max. Response Time			50ms	150ms
(tv) Time Delay Before Availability	≤200ms ≤500ms		0ms	
Control Input		Hold /	Sync Sync	
Sensitivity Adjustment	Y	es		
Input Voltage Transient Production	Yes, only if	transient peak	does not exc	eed 30VDC
Input power polarity reversal protection	Yes			
Output power short circuit protection	Yes (Switch auto resets after overload is removed)			
Temperature range	25° to +70° C (-13° to 158° F)			
Temperature compensation	Yes			
Protection degree	IEC IP67			
LED Indicators	Yellow	(Output		
	energized)			
Housing Materials	PBT			
Tightening Torque	3Nm (2.21lb./ft.)			
weight (cable/connector)	54g (1.90oz) / 38g (1.34oz)			

Mounting:

<u>SU Series Ultrasonic Sensor</u> is going to mount on rack because as rack moves from horizontal support below distance varies for detection we mounted sensor on rack.

3)HORIZONTAL SENSOR

We identified some sensor which helps in measurement of horizontal distance

- TU series ultrasonic sensor.
- Long range inductive proximity sensor
- Banner 2000 mm Mid range Photoelectric Sensor

By comparing the above sensors we find the TU series ultrasonic sensor which best suits our application because of its high resolution and long range detection capacity.

TU Series Ultrasonic Sensor:

M30 (30mm) Plastic - DC or Analog Output

- High Resolution
- DC output available
- Complete Overload protection
- IP67 rated
- LED status indicator on DC models

TU Series Ultrasonic DC Output Sensor Selection Chart

Sensor Type TU1-C0-OE Accuracy 0.2% Operating Voltage 19-30 V DC Load Current <=500mA No load supply current <=35mA Ultrasonic Frequency 130KHz Ultrasonic Beam angle 8 degree Switch frequency 1Hz Response time 100ms Protection degree IP67 Weight 124g	·	
Operating Voltage 19-30 V DC Load Current <=500mA No load supply current <=35mA Ultrasonic Frequency 130KHz Ultrasonic Beam angle 8 degree Switch frequency 1Hz Response time 100ms Protection degree IP67	Sensor Type	TU1-C0-OE
Load Current <=500mA No load supply current <=35mA Ultrasonic Frequency 130KHz Ultrasonic Beam angle 8 degree Switch frequency 1Hz Response time 100ms Protection degree IP67	Accuracy	0.2%
No load supply current <=35mA Ultrasonic Frequency 130KHz Ultrasonic Beam angle 8 degree Switch frequency 1Hz Response time 100ms Protection degree IP67	Operating Voltage	19-30 V DC
Ultrasonic Frequency 130KHz Ultrasonic Beam angle 8 degree Switch frequency 1Hz Response time 100ms Protection degree IP67	Load Current	<=500mA
Ultrasonic Beam angle 8 degree Switch frequency 1Hz Response time 100ms Protection degree IP67	No load supply current	<=35mA
Switch frequency 1Hz Response time 100ms Protection degree IP67	Ultrasonic Frequency	130KHz
Response time 100ms Protection degree IP67	Ultrasonic Beam angle	8 degree
Protection degree IP67	Switch frequency	1Hz
	Response time	100ms
Weight 124g	Protection degree	IP67
	Weight	124g

Mounting:

<u>TU Series Ultrasonic Sensor</u> is going to mount on the I section towards the direction of motor mounting to detect varying horizontal distance.

4) Rotation Sensor:

Gyroscope: CRS07 Gyroscope

Specifications:

Typical Data	CRS07-02S	CRS07-11S	CRS07-13S
Angular Rate Range	±100°/s	±573°/s	±100°/s
Output	Anal	ogue voltage (ration	metric)
Scale Factor			
Nomina l	20mV/º/s	3.49mV/º/s	20mV/º/s
Variation over temperature range		< ±5%	
Non-linearity		< ±0.5% of fu∎sca	le
Bias			
Setting tolerance	< ±3°/s	< ±30°/s	< ±3°/s
Variation over temperature range	< ±3/s	< ±30°/s	< ±3°/s
Ratiometric error		< ±1°/s	
Drift vs time	< ±55°/s in a	ny 30s period (afte	r start-up time)
g sensitivity	<	±0.1º/s/g on any a	xis
Bandwidth	10Hz (-3dB)	> 30Hz (-3dB)	> 10Hz (-3dB)
Quiescent Noise		< 1mV rms	
Environment			
Temperature	-40°C to +85°C	-20°C to +60°C	-40°C to +85°C
Linear acceleration		< 100g	
Shock		200g (1 ms, ½ sine	e)
Vibration	2g rm	s (20Hz to 2kHz, ra	andom)
Cross-axis sensitivity		< 5%	
Mass	< 10 gram		
Electrical			
S upply voltage		+4.75V to +5.25V	
S upply current	< 35mA (steady state)		
Noise and ripple	< 15mV rms (DC to 100Hz)		
Start-up time		< 0.2s	
RoHS Compliant		Yes	

Mounting:

<u>CRS07</u> Gyroscope is directly mounted on the gripper assembly because the gripper assembly is a rotating member to detect the angular position of the gripper assembly. We use gyroscopes.

5) Workpiece pick and place sensor:

We use two ultrasonic sensors each on a workpiece picking conveyor and workpiece placing(machined component) conveyor.

Total number of sensor used are:

- 3 for gripper
- 1 for vertical
- 1 for horizontal
- 1 for angular position
- 2 for work piece and place

Therefore there are 7 sensors used in the project.

CONTROLLER:

Sensor:

- 1. Gripper sensor-SC4 Sensor(3 numbers for each gripper)
- 2.For vertical motion distance measurement-Ultrasonic sensor
- 3. For Horizontal motion distance measurement-Ultrasonic sensor
- 4. For rotation angle sensing-Gyroscope
- 5. For component picked and placed detection proximity sensor

For 7 Sensors we require 10 input/output pins. For that we chose ARDUINO UNO which has 14 input/output pins which suits our requirements and its ease of use.

ARDUINO UNO:

Specifications:

MICROCONTROLLER	ATmega328P
OPERATING VOLTAGE	5V
INPUT VOLTAGE (RECOMMENDED)	7-12V
INPUT VOLTAGE (LIMIT)	6-20V
DIGITAL I/O PINS	14 (of which 6 provide PWM output)
PWM DIGITAL I/O PINS	6
ANALOG INPUT PINS	6
DC CURRENT PER I/O PIN	20 mA
DC CURRENT FOR 3.3V PIN	50 mA
FLASH MEMORY	32 KB (ATmega328P) of which 0.5 KB used by bootloader
SRAM	2 KB (ATmega328P)
EEPROM	1 KB (ATmega328P)
CLOCK SPEED	16 MHz
LED_BUILTIN	13
LENGTH	68.6 mm
WIDTH	53.4 mm
WEIGHT	25 g

FLOW CHART:

SENSOR MOUNTING:

10. Conclusion

We designed the Gantry loader for a turning machine for 3kg weight which can pick and place vertical movement of 1500 mm and horizontal movement of 2000 mm deriving the design calculation of various parts like rack, pinion, motor etc and bending movements. Some standards selected from the catalogs. From these calculations we designed GLTM in Cre0 7.0

11. References

- [1] https://www.emerson.com/documents/automation/catalog-series-upg-aventics-en-6913078.pdf
- [2] https://download.schneider-electric.com/files?p_enDocType=Catalog&p_File_Na me=Catalog+Lexium+SH3+MH3+SHS+Servo+motors+for+Lexium+62+and+Le xium+52+servo+drives+-+English+October+2020.pdf&p_Doc_Ref=DIA7ED216 0308EN
- [3] https://www.robotics.org.za/FY86EM400A
- [4] https://andantex.com/wp-content/uploads/2016/06/RackSelectionsRatings.pdf
- [5] https://www.se.com/ww/en/product/download-pdf/MH31403P01F2200
- [6] https://www.aventics.com/media/AVENTICS_USA/Service/Documentation_down loads/Sales_Catalog/AVENTICS_UPG_Grippers_R500000589.pdf
- [7] https://www.emerson.com/en-us/catalog/aventics-sc4?fetchFacets=true#facet:&partsFacet:&facetLimit:&productBeginIndex:0&partsBeginIndex:0&orderBy:0&partsOrderBy:&pageView:list&minPrice:&maxPrice:&pageSize:&
- [8] https://www.indiamart.com/proddetail/banner-2000-mm-mid-range-photoelectric-sensor-22736233791.html
- [9] https://www.indiamart.com/proddetail/long-range-inductive-proximity-sensor-233 35199891.html

12. Annexure

<u>Gripper</u>

Gripper Name	Emerson Aventics UPG 100
Actuation type	pneumatic
Workpiece weight capacity	3.3 Kg
Gripper stroke	20mm
Gripper weight	1 kg

Servo Motor

Motor Name	Power HD Storm 2 servo
Working Torque	3 Nm
Operating voltage	6.4-8.4 V
Speed	430 rpm
Motor type	Brushless
Gear type	Titanium and steel

Servo motor MH3 140

Maximum speed	4000rpm
Tarque	24nm
Shaft Dia	24mm
Shaft length	50mm
Net weight	18.5kg
Maximum radial force (Fr)	2420 N at 1000 rpm 1920 N at 2000 rpm 1670 N at 3000 rpm
Rated supply voltage	115480 V

