PRÁCTICA 7

CIRCUITO MIXTO SERIE-PARALELO

INTRODUCCIÓN

Vamos a usar las cuatro mismas resistencias de la práctica anterior, pero conectándolas como indica el esquema de abajo. Hemos transformado entonces el circuito en otro mixto, pero ahora serie-paralelo.

El trabajo con este tipo de circuitos es similar al que ya hemos visto: reducir las resistencias en serie a una equivalente y, posteriormente, reducir las dos que quedaron en paralelo a una final.

COMPONENTES NECESARIOS:

Generadores	Receptores	Elementos de maniobra	Aparatos de medida
✓ 1 pila	✓ 4 resistencias fijas	1 Interruptor	✓ 1 amperimetro ✓ 1 voltimetro

PROCEDIMIENTO:

- 1) Elige los componentes y los aparatos de medida necesarios, y llévalos al área de trabajo.
- 2) Fija la pila a 12 V y R_1 = 20 Ω , R_2 = 80 Ω , R_3 = 40 Ω y R_4 = 60 Ω y acaba de montar el circuito.
- 3) Guarda el montaje con el nombre *practica7_nombre1_nombre2.cxt*.
- 4) Cierra el interruptor y mide la intensidad que atraviesa cada resistencia (llamémoslas I₁, I₂, I₃ e I₄, respectivamente). Anota las medidas en la hoja de respuestas.
- 5) Mide la intensidad que suministra la pila (I_{pila}).
- 6) Observa cómo están asociadas R_1 y R_3 por un lado y R_2 y R_4 por otro. Calcula sus resistencias equivalentes (a las que llamaremos R_{13} y R_{24}). Dibuja el circuito equivalente intermedio en tu hoja de respuestas.
- 7) Observa cómo quedan R_{13} y R_{24} entre sí. Calcula su resistencia equivalente (R_e) y dibuja el circuito equivalente final en la hoja de respuestas.
- 8) Calcula la intensidad que pasa por el circuito equivalente final.
- 9) Entrega el archivo .cxt a tu profesor.

ESQUEMA DEL CIRCUITO:

