QR factorization of a matrix

QR decomposition

Any real $m \times n$ matrix ${\bf A}$ can be decomposed into

$$\mathbf{A} = \mathbf{Q}\mathbf{R}$$

where ${\bf Q}$ is an $m \times m$ orthogonal matrix (${\bf Q}^T {\bf Q} = 1$) and ${\bf R}$ is an $m \times n$ upper triangular matrix.

IOW, a rectangular matrix can be reduced to an upper triangular form by an orthogonal transformation \mathbf{Q}^T

$$\mathbf{Q}^T \mathbf{A} = \mathbf{R}$$

Thin QR factorization

If
$$m > n$$

$$\mathbf{A} = \mathbf{Q} \begin{pmatrix} \mathbf{R}_1 \\ 0 \end{pmatrix}$$
$$= (\mathbf{Q}_1 \mathbf{Q}_2) \begin{pmatrix} \mathbf{R}_1 \\ 0 \end{pmatrix}$$
$$= \mathbf{Q}_1 \mathbf{R}_1$$

where \mathbf{R}_1 is $m \times m$ uppper triangular, \mathbf{Q}_1 is $m \times n$ and has orthonormal columns.

This is a *thin* $\mathbf{Q}\mathbf{R}$ factorization (or *economic*, or *reduced* factorization).

Thin QR factorization

If ${\bf A}$ has full column rank (i.e., columns of ${\bf A}$ are all linearly independent), then

- lacktriangle The thin factorization ${f A}={f Q}_1{f R}_1$ is unique
- ▶ Diagonal elements of \mathbf{R}_1 are positive
- $lackbox{f R}_1^T$ is a lower triangular Cholesky factor of ${f A}^T{f A}$

Constructing the QR factorization

- Householder reflections
- Givens rotations

Both reduce ${\bf A}$ to ${\bf R}$ column by column, and construct ${\bf Q}$ as a product of orthogonal matrices.

Given a vector $\mathbf{x} \in \mathbb{R}^m$, reflect it across a hyperplane with the normal vector \mathbf{u} ($\|\mathbf{u}\|_2 = 1$)

$$\begin{aligned} \mathbf{x} &= \mathbf{x}_{\parallel} + \mathbf{x}_{\perp}, & \mathbf{x}_{\perp} \perp \mathbf{x}_{\parallel} \\ & \mathbf{x}_{\perp} \parallel \mathbf{u} \end{aligned}$$

The perp component is given by $\mathbf{x}_{\perp} = \mathbf{u} \langle \mathbf{u} \cdot \mathbf{x} \rangle$

$$\mathbf{y} = \mathbf{x}_{\parallel} - \mathbf{x}_{\perp} = (\mathbf{x}_{\parallel} + \mathbf{x}_{\perp}) - 2\mathbf{x}_{\perp} = \mathbf{x} - 2\mathbf{u}\langle\mathbf{u}\cdot\mathbf{x}\rangle$$

In the matrix form, $\langle {\bf u}\cdot {\bf x}\rangle\equiv {\bf u}^T{\bf x}$, and the Householder transformation is

$$\mathbf{y} = \mathbf{H}\mathbf{x} = \left(\mathbf{1} - 2\mathbf{u}\mathbf{u}^T\right)\mathbf{x}$$

The Householder matrices are

- Symmetric, $\mathbf{H}^T = \mathbf{H}$
- lacksquare Orthogonal, $\mathbf{H}^T\mathbf{H}=\mathbf{1}$

Given two vectors ${\bf x}$ and ${\bf y}$ with $\|{\bf x}\|_2 = \|{\bf y}\|_2$, construct a ${\bf H}$ which converts ${\bf x}$ to ${\bf y}$.

Reflect x across the hyperplane which bisects the angle between x and y.

The Householder transformation with

$$\mathbf{u} = (\mathbf{x} - \mathbf{y}) / \|\mathbf{x} - \mathbf{y}\|_2$$

Given two vectors ${\bf x}$ and ${\bf y}$ with $\|{\bf x}\|_2 = \|{\bf y}\|_2$, construct a ${\bf H}$ which converts ${\bf x}$ to ${\bf y}$.

Reflect ${\bf x}$ across the hyperplane which bisects the angle between ${\bf x}$ and ${\bf y}$.

The Householder transformation with

$$\mathbf{u} = (\mathbf{x} - \mathbf{y}) / \|\mathbf{x} - \mathbf{y}\|_2$$

$$\mathbf{x} = \begin{pmatrix} \times \\ \times \\ \vdots \\ \times \end{pmatrix} \qquad \qquad \mathbf{y} = \begin{pmatrix} \times \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

$$\mathbf{H}_{1}\mathbf{A} = \begin{pmatrix} \times & \times & \times & \cdots & \times \\ 0 & \times & \times & \cdots & \times \\ 0 & \times & \times & \cdots & \times \\ & & \cdots & & \\ 0 & \times & \times & \cdots & \times \end{pmatrix}$$

$$\mathbf{H}_{1}\mathbf{A} = \begin{pmatrix} \times & \times & \times & \cdots & \times \\ 0 & \times & \times & \cdots & \times \\ 0 & \times & \times & \cdots & \times \\ & & \cdots & & \\ 0 & \times & \times & \cdots & \times \end{pmatrix}$$

$$\mathbf{H}_{2}\mathbf{H}_{1}\mathbf{A} = \begin{pmatrix} \times & \times & \times & \cdots & \times \\ 0 & \times & \times & \cdots & \times \\ 0 & 0 & \times & \cdots & \times \\ & & \cdots & & \\ 0 & 0 & \times & \cdots & \times \end{pmatrix}$$

After *n* steps: so that

 $\mathbf{H}_n\cdots\mathbf{H}_2\mathbf{H}_1\mathbf{A}=\mathbf{R}$

A = QR

with

 $\mathbf{Q} = \mathbf{H}_1 \mathbf{H}_2 \cdots \mathbf{H}_n$

After n steps:

$$\mathbf{H}_n \cdots \mathbf{H}_2 \mathbf{H}_1 \mathbf{A} = \mathbf{R}$$

so that

$$A = QR$$

with

$$\mathbf{Q} = \mathbf{H}_1 \mathbf{H}_2 \cdots \mathbf{H}_n$$

Computational complexity strongly depends on the order of calculations.

$$\begin{pmatrix} \mathbf{u}\mathbf{u}^T \end{pmatrix} \mathbf{x}$$
 is $O(m^2)$
 $\mathbf{u} \begin{pmatrix} \mathbf{u}^T \mathbf{x} \end{pmatrix}$ is $O(m)$

In practice, never form the H matrices explicitly.

Householder reflections: avoiding the roundoff

$$\mathbf{H} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{pmatrix} = \begin{pmatrix} \|\mathbf{x}\|_2 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

involves computing $x_1 - \|\mathbf{x}\|_2$ which is prone to a catastrophic cancellation.

For $x_1 > 0$, write

$$x_1 - \|\mathbf{x}\|_2 = \frac{x_1^2 - \|\mathbf{x}\|_2^2}{x_1 + \|\mathbf{x}\|_2}$$
$$= \frac{-x_2^2 - \dots - x_m^2}{x_1 + \|\mathbf{x}\|_2}$$

The Householder QR algorithm:

- has excellent stability
- for square matrices involves only several times more work than
 LU
- is not easy to parallelize

Givens rotations

Givens rotations

$$\begin{pmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1m} \\ a_{21} & a_{22} & a_{23} & \cdots & a_{2m} \\ & & & \ddots & & \\ a_{m1} & a_{m2} & a_{m3} & \cdots & a_{mm} \end{pmatrix}$$

Find ϕ such that

$$\begin{pmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{pmatrix} \begin{pmatrix} a_{11} \\ a_{21} \end{pmatrix} = \begin{pmatrix} \times \\ 0 \end{pmatrix}$$

Givens rotations

$$\begin{pmatrix} \cos \phi & 0 & -\sin \phi \\ 0 & 1 & 0 \\ \sin \phi & 0 & \cos \phi \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1m} \\ a_{21} & a_{22} & a_{23} & \cdots & a_{2m} \\ a_{31} & a_{32} & a_{33} & \cdots & a_{3m} \\ & & & \ddots & & \\ a_{m1} & a_{m2} & a_{m3} & \cdots & a_{mm} \end{pmatrix}$$

Find ϕ such that

$$\begin{pmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{pmatrix} \begin{pmatrix} a_{11} \\ a_{31} \end{pmatrix} = \begin{pmatrix} \times \\ 0 \end{pmatrix}$$

16/17

QR decomposition via Givens rotations

- ightharpoonup Complexity is 3/2 of the Householder $\mathbf{Q}\mathbf{R}$ algorithm
- ► There is flexibility in selecting the order of introducing zeros.