

Redes de Computadores

Relatório da Terceira Fase do Trabalho Prático

Docente

Prof. Diego Passos

Aluna

53255 Magali dos Santos Leodato

Índice

Introdução	II
Visão Geral da Expansão de Rede	III
Funções dos Roteadores	III
Planejamento do Número de Clientes	IV
Estrutura dos calculos	V
Endereçamento Base	VI
Tabela de configuração	VII
Tabela de configuração e explicação	VIII
Imagem do ping1, 2, 3	IX
Imagem do ping 4, 5, 6	X
Conclusão	XI

Introdução

Nesta etapa do projeto de redes, abordaremos a conexão de **múltiplas redes locais (LANs)** utilizando **roteadores e uma rede de trânsito (Transit Network)**. Com o conhecimento adquirido sobre **subnetting**, agora é possível aplicar esse conceito para organizar, distribuir e interligar subredes de forma eficiente e escalável.

Este cenário simula uma rede corporativa moderna com diferentes departamentos (A e B), uma rede de servidores centralizada (LAN Server) e acesso à Internet por meio de um roteador de borda. A interligação entre os componentes da rede será feita utilizando uma topologia com dois roteadores (R1 e R2) conectados entre si por uma rede de trânsito (LAN Transit A).

Visão Geral da Expansão de Rede

A proposta consiste em estruturar uma rede com as seguintes LANs:

- LAN A: destinada aos usuários do Departamento A.
- LAN B: destinada aos usuários do Departamento B.
- LAN Server: onde estão localizados servidores essenciais à operação da empresa, como servidor de arquivos, banco de dados, autenticação, etc.

Além dessas, introduzimos uma nova rede:

• LAN Transit A: uma rede especial de interligação entre os roteadores R1 e R2, que permite o tráfego de dados entre as demais redes.

Objetivo:

Permitir que:

- Os usuários da LAN A acessem os servidores.
- Os usuários da LAN B acessem os servidores.
- Todos tenham acesso à Internet.
- O tráfego entre departamentos seja separado logicamente.

Funções dos Roteadores

Para garantir o roteamento adequado entre as redes, utilizamos **dois roteadores** com funções específicas:

Roteador R1:

- Conectado à LAN A e à LAN B.
- Responsável por encaminhar pacotes das redes dos departamentos para o roteador R2 via LAN Transit A.

Roteador R2:

- Conectado à LAN Server.
- Atua como **roteador de borda (edge router)**, ou seja, conecta a rede corporativa à **Internet**.
- Recebe pacotes de R1 e os direciona para os servidores internos ou para fora da rede.

Essa divisão melhora a organização da rede e garante mais segurança, pois o tráfego é controlado e roteado de forma específica por cada roteador.

LAN Transit A – Rede de Trânsito

A LAN Transit A é uma sub-rede que conecta diretamente os dois roteadores (R1 e R2).

Essa rede é usada **exclusivamente para o tráfego entre roteadores**, e não é acessada por usuários ou servidores.

Funções:

- Permitir comunicação entre as LANs A/B e a LAN Server.
- Encaminhar pacotes de/para a Internet.
- Manter a separação lógica entre as sub-redes locais.

A LAN Transit A precisa de poucos endereços IP, pois será usada apenas pelos dois roteadores. Por isso, pode ser planejada com uma sub-rede pequena (como uma /30, que permite apenas 2 hosts utilizáveis).

Planejamento do Número de Clientes

Para dimensionar corretamente as sub-redes (LAN A e LAN B), é preciso saber **quantos dispositivos (clientes) estarão conectados** a cada uma. Foi fornecida a seguinte fórmula para esse cálculo:

Fórmulas:

- Clientes LAN $A = max(20, (\Sigma student_number_k mod 100))$
- Clientes LAN B = mesmo número de clientes que LAN A

Explicação:

- Cada membro do grupo soma os valores do seu número de matrícula.
- A soma é feita para todos os membros.
- O valor total é dividido por 100 e o **resto (mod)** é usado como base.
- Se o resultado for menor que 20, o valor mínimo adotado é **20**.

Exemplo:

Se a soma total dos números de matrícula é 50142 + 53255 = 103397, então: $103397 \mod 100 = 97 + 1 \mod + 2$ endereços que não podemser usados Logo:

A LAN A precisa de 100 endereços IP. Como o número de endereços deve ser uma potência de base 2 (devido à forma como os endereços IP são estruturados), buscamos a potência de 2 mais próxima de 100, mas que seja **maior ou igual**. Nesse caso, $2^7 = 128$, o que atende à necessidade da rede.

Lembrando que um endereço IP possui 32 bits, normalmente divididos em dois blocos:

- Prefixo (ou parte de rede): identifica a rede;
- Sufixo (ou parte de host): identifica os dispositivos dentro da rede.

Ao criar sub-redes, o **prefixo permanece inalterado** e é o **sufixo** que determina quantos endereços podem ser atribuídos. Assim, ao reservar 7 bits para o sufixo ($2^7 = 128$), conseguimos acomodar os 100 endereços necessários para a LAN A.

LANA = 128 endereços

LAN B = 64 endereços

Obs: Precisamos de 51 endereços (48 dispositivos + 1 broadcast + 2 reservas), então usamos $2^6 = 64$.

LAN T = 4 endereços $2^2 = 4$

LANS = 32 endereços $2^5 = 32$

Subnetting – Planejamento de Endereçamento IP

$$LANA = 10.0.47.0 \dots 10.0.47.127$$

Regras para Organização dos IPs:

- Não utilizar o primeiro e o último endereço de cada intervalo de IPs, pois:
 - O primeiro IP é reservado como endereço de rede.
 - O último IP é reservado como endereço de broadcast.
- Portanto, devem ser utilizados apenas os **endereços úteis** dentro de cada intervalo (ou subrede).
- É permitido utilizar o último endereço útil da sub-rede, ou seja, o penúltimo IP do intervalo.

Notação CIDR 10.0.47.0/25

LAN B =
$$10.0.47.128$$
 ... $10.0.47.191$ ($128 + 64 - 1 = 191$)

Notação CIDR
$$10.0.47.128/26$$
 ($191 - 128 + 1 = 64 \Rightarrow 2^6 = 26$)

LAN T =
$$10.0.47.192 \dots 10.0.47.195 (192 + 4 - 1 = 195)$$

Notação CIDR 10.0.47.192/30 ($195 - 192 + 1 = 4 \Rightarrow 2$ elevado a $4 \Rightarrow 190 + 190 = 190$)

LAN
$$S = 10.0.47.224 \dots 10.0.47.255 (224+32-1=255)$$

Notação CIDR 10.0.47.224/27 (255 - 224 + 1 = 32 \Rightarrow 2⁵ 5 \Rightarrow temos 32 - 5 = 27)

Endereçamento Base

A rede utilizada como base é a 10.0.47.0./24, o que significa que ela possui 256 endereços IP possíveis (de 10.0.47..0 a 10.0.47.255)

Divisão das Sub-redes

A rede foi subdividida em partes menores com base na quantidade de dispositivos (endereços) necessários em cada LAN:

LAN A

- Precisa de 100 dispositivos.
- Para isso, utilizamos uma sub-rede com 128 endereços (/25), pois 2^7 = 128, o menor valor de potência de 2 que atende a 100 hosts.

LAN B

- Necessita de aproximadamente 50 dispositivos.
- Para isso, usamos uma sub-rede com 64 endereços (/26), pois $2^6 = 64$.

Rede T

- Pequena, com até 4 dispositivos.
- Sub-rede com 32 endereços (/27), suficiente para até 30 hosts úteis.

Rede S

- Também pequena, até 4 dispositivos.
- Sub-rede com 32 endereços (/27).

Tabela de preenchimento das Informações para que a conexão seja realizada:

Dispositivos	IPV4 address	Subnet Mesk	FastEthenert
PC0	10.0.47.129	255.255.255.192.	0/0
Laptop0	10.0.47.130	255.255.255.192.	0/0
PC1	10.0.47.1	255.255.255.128.	0/0
Laptop1	10.0.47.2	255.255.255.128.	0/0
R1	10.0.47.190	255.255.255.192.	0/0
R1	10.0.47.126	255.255.255.128.	0/1
R2	10.0.47.254	255.255.255.224.	0/0
R2	8.8.8.2	255.255.255.252.	0/1
Server PT Externo	8.8.8.1	255.255.255.252.	0

Server DHCP	10.0.47.225	255.255.255.224.	0
Server DNS	10.0.47.226	255.255.255.224.	0
Server HTTP	10.0.47.227	255.255.255.224.	0

Explicação do preenchimento da tabela de dispositivos e endereços IP

Para preencher a tabela de dispositivos com endereços IPv4, máscaras de sub-rede e interfaces FastEthernet, utilizamos o seguinte raciocínio baseado no conceito de sub-redes (subnetting). O objetivo foi organizar os dispositivos em diferentes redes para manter a comunicação organizada e segura entre eles.

Divisão por Sub-redes

O endereço de rede base é 10.0.47.0. Com base nesse endereço, usamos **diferentes máscaras de sub-rede** para criar **várias sub-redes menores**, cada uma com um número específico de hosts (dispositivos). A máscara determina quantos dispositivos podem existir naquela sub-rede. Exemplos:

- $255.255.255.192 \rightarrow 64$ endereços (62 utilizáveis)
- $255.255.255.128 \rightarrow 128$ endereços (126 utilizáveis)
- 255.255.255.224 → 32 endereços (30 utilizáveis)
- 255.255.255.252 → 4 endereços (2 utilizáveis ideal para ponto a ponto)

Atribuição por Grupos

Os IPs foram atribuídos conforme o tipo de dispositivo e a quantidade necessária por rede:

- PC0 e Laptop0 compartilham a sub-rede 10.0.47.128/26 (com máscara 255.255.255.192), pois precisam apenas de poucos dispositivos na mesma rede.
- PC1 e Laptop1 estão na sub-rede 10.0.47.0/25 (com máscara 255.255.255.128), que também suporta até 126 hosts.
- R1 conecta duas redes: uma com máscara /26 e outra com /25, por isso possui duas interfaces com IPs correspondentes (10.0.47.190 e 10.0.47.126).
- **R2** conecta uma rede local (10.0.47.224/27) e a internet (através do IP 8.8.8.2/30, que é ponto a ponto).
- Servidores DHCP, DNS e HTTP estão na mesma sub-rede com máscara /27 (255.255.255.224), pois são poucos e devem se comunicar facilmente com o roteador R2.
- Servidor Externo (Server PT Externo) e R2 (fa interface 0/1) usam IPs públicos (8.8.8.1 e 8.8.2) com uma máscara /30, própria para ligações ponto a ponto entre dois dispositivos apenas.

Interfaces FastEthernet

Cada dispositivo possui uma **interface FastEthernet (FE)** conectada a uma rede. As interfaces foram numeradas como 0/0, 0/1, ou 0, indicando a porta utilizada pelo dispositivo para se conectar à rede

LANB-10.0.47.128/26

- Intervalo de endereços possíveis: 10.0.47.128 a 10.0.47.191
- Endereços utilizáveis: 10.0.47.129 a 10.0.47.190
- **Broadcast:** 10.0.47.191
- Usado na tabela:
 - PC0: 10.0.47.129
 - Laptop0: 10.0.47.130
 - R1 (interface para essa LAN): 10.0.47.190

 Tudo dentro dos endereços válidos. O broadcast (.191) não foi utilizado.

LAN T – 10.0.47.192/30 (Ponto a ponto entre R2 e servidor externo)

- Intervalo: 10.0.47.192 a 10.0.47.195
- Endereços utilizáveis: 10.0.47.193 e 10.0.47.194
- Usado na tabela: na verdade usaram o IP externo 8.8.1 e 8.8.2 para essa comunicação por determinação do enunciado.

LANS-10.0.47.224/27

- Intervalo de endereços possíveis: 10.0.47.224 a 10.0.47.255
- Endereços utilizáveis: 10.0.47.225 a 10.0.47.254
- **Broadcast:** 10.0.47.255
- Usado na tabela:
 - Server DHCP: 10.0.47.225
 - Server DNS: 10.0.47.226
 - Server HTTP: 10.0.47.227
 - R2 (interface local): 10.0.47.254

IX

Imagem do ping1:

```
Physical Config Desktop Programming Attributes

Command Prompt

Cisco Packet Tracer PC Command Line 1.0

C:\>
C:\>
ping 10.0.47.2

Pinging 10.0.47.2 with 32 bytes of data:

Request timed out.
Reply from 10.0.47.2: bytes=32 time<lms TTL=127
Reply from 10.0.47.2: bytes=32 time<lms TTL=127
Reply from 10.0.47.2: bytes=32 time<lms TTL=127

Ping statistics for 10.0.47.2:

Packets: Sent = 4, Received = 3, Lost = 1 (25% loss),
Approximate round trip times in milli-seconds:
Minimum = Oms, Maximum = Oms, Average = Oms
```

A imagem mostra que o comando *ping* foi executado com sucesso, indicando que o **PCO** conseguiu se comunicar com o **Laptop 1** na rede.

Imagem do ping 2:

```
C:\>ping 10.0.47.225

Pinging 10.0.47.225 with 32 bytes of data:

Request timed out.

Request timed out.

Reply from 10.0.47.225: bytes=32 time<lms TTL=126

Reply from 10.0.47.225: bytes=32 time<lms TTL=126

Ping statistics for 10.0.47.225:

Packets: Sent = 4, Received = 2, Lost = 2 (50% loss),

Approximate round trip times in milli-seconds:

Minimum = 0ms, Maximum = 0ms, Average = 0ms
```

A imagem mostra que o comando *ping* foi executado com sucesso, indicando que o **PCO** conseguiu se comunicar com o **Server DHCP** na rede.

Imagem do ping 3:

```
C:\>ping 10.0.47.227

Pinging 10.0.47.227 with 32 bytes of data:

Reply from 10.0.47.227: bytes=32 time=19ms TTL=127

Reply from 10.0.47.227: bytes=32 time<1ms TTL=127

Reply from 10.0.47.227: bytes=32 time=1ms TTL=127

Reply from 10.0.47.227: bytes=32 time<1ms TTL=127

Reply from 10.0.47.227: bytes=32 time<1ms TTL=127

Ping statistics for 10.0.47.227:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),

Approximate round trip times in milli-seconds:

Minimum = 0ms, Maximum = 19ms, Average = 5ms
```

A imagem mostra que o comando ping foi executado com sucesso, indicando que o Server

External conseguiu se comunicar com o Server HTTP na rede.

Imagem do ping 4:

```
Pinging 10.0.47.254 with 32 bytes of data:

Reply from 10.0.47.254: bytes=32 time<1ms TTL=255
Ping statistics for 10.0.47.254:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:

Minimum = 0ms, Maximum = 0ms, Average = 0ms
```

A imagem mostra que o comando *ping* foi executado com sucesso, indicando que o **Server External** conseguiu se comunicar com o **Server DNS** na rede.

Imagem do ping 5:

```
C:\>ping 10.0.47.129 with 32 bytes of data:

Reply from 10.0.47.129: bytes=32 time=lms TTL=126
Reply from 10.0.47.129: bytes=32 time<lms TTL=126

Ping statistics for 10.0.47.129:
Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
Minimum = 0ms, Maximum = 1ms, Average = 0ms
```

A imagem mostra que o comando *ping* foi executado com sucesso, indicando que o **Server External** conseguiu se comunicar com o **PC0** na rede.

Imagem do ping6:

```
C:\>ping 10.0.47.254

Pinging 10.0.47.254 with 32 bytes of data:

Reply from 10.0.47.254: bytes=32 time<lms TTL=254
Reply from 10.0.47.254: bytes=32 time=lms TTL=254

Ping statistics for 10.0.47.254:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:

Minimum = 0ms, Maximum = 1ms, Average = 0ms
```

A imagem mostra que o comando *ping* foi executado com sucesso, indicando que o laptop1 conseguiu se comunicar com o **Server Http** na rede.

Conclusão

A terceira fase do projeto refere-se a construção de uma rede com múltiplas LANs interligadas por roteadores é um passo essencial para o desenvolvimento de infraestruturas de rede mais realistas e escaláveis. A utilização de **subnetting** para adaptar os endereços IP às necessidades de cada rede traz flexibilidade e economia de endereços.

Além disso, a criação de uma **rede de trânsito (Transit Network)** permite a separação clara entre funções de roteamento e acesso dos usuários, melhorando o desempenho e a segurança.

Com essa topologia:

- Os departamentos estão isolados, mas ainda podem acessar os servidores.
- O acesso à Internet é centralizado e controlado.
- A rede é modular e preparada para crescer.