

LEGv8 Reference Data

<u> LLC </u>			rence		
CORE INSTRUCT	TION SET				
NAME AND	MONIC		OPCODE (9		Notes
NAME, MNE	ADD	MAT R	(Hex) 458	OPERATION (in Verilog)	
ADD Immediate	ADDI	I	488-489	R[Rd] = R[Rn] + R[Rm] R[Rd] = R[Rn] + ALUImm	(2,9)
ADD Immediate &				R[Rd] - R[Rii] + ALOHiiii R[Rd] + FLAGS = R[Rii] +	
Set flags	ADDIS	I	588-589	ALUImm	(1,2,9)
ADD & Set flags	ADDS	R	558	R[Rd], $FLAGS = R[Rn] + R[Rm]$	(1)
AND	AND	R	450	R[Rd] = R[Rn] & R[Rm]	
AND Immediate	ANDI	I	490-491	R[Rd] = R[Rn] & ALUImm	(2,9)
AND Immediate & Set flags	ANDIS	I	790-791	R[Rd], $FLAGS = R[Rn]$ & ALUImm	(1,2,9)
AND & Set flags	ANDS	R	750	R[Rd], $FLAGS = R[Rn]$ & $R[Rm]$	(1)
Branch	В	В	0A0-0BF	PC = PC + BranchAddr	(3,9)
Branch conditionally	B.cond	CB	2A0-2A7	if(FLAGS==cond) PC = PC + CondBranchAddr	(4,9)
Branch with Link	BL	В	4A0-4BF	R[30] = PC + 4; PC = PC + BranchAddr	(3,9)
Branch to Register	BR	R	6B0	PC = R[Rt]	
Compare & Branch	CBNZ	CP	SAO SAE	if(R[Rt]!=0)	(4.0)
if Not Zero	CBNZ	CB	5A8-5AF	PC = PC + CondBranchAddr	(4,9)
Compare & Branch if Zero	CBZ	СВ	5A0-5A7	if(R[Rt]==0) PC = PC + CondBranchAddr	(4,9)
Exclusive OR	EOR	R	650	$R[Rd] = R[Rn] \wedge R[Rm]$	
Exclusive OR Immediate	EORI	I	690-691	$R[Rd] = R[Rn] \wedge ALUImm$	(2,9)
LoaD Register Unscaled offset	LDUR	D	7C2	R[Rt] = M[R[Rn] + DTAddr]	(5)
LoaD Byte Unscaled offset	LDURB	D	1C2	R[Rt]={56'b0, M[R[Rn] + DTAddr](7:0)}	(5)
LoaD Half Unscaled offset	LDURH	D	3C2	R[Rt]={48'b0, M[R[Rn] + DTAddr] (15:0)}	(5)
LoaD Signed Word Unscaled offset	LDURSW	D	5C4	R[Rt] = { 32 { M[R[Rn] + DTAddr] [31]}, M[R[Rn] + DTAddr] (31:0)}	(5)
LoaD eXclusive	LDXR	D	642	M[R[Rn] + DTAddr] (31:0) R[Rd] = M[R[Rn] + DTAddr]	(5,7)
Register	DDAR				(3,7)
Logical Shift Left	LSL	R	69B	$R[Rd] = R[Rn] \ll shamt$	
Logical Shift Right	LSR	R	69A	R[Rd] = R[Rn] >>> shamt	
MOVe wide with Keep	MOVK	IM	794-797	R[Rd] (Instruction[22:21]*16: Instruction[22:21]*16-15) = MOVImm	(6,9)
MOVe wide with				R[Rd] = { MOVImm <<	
Zero	MOVZ	IM	694-697	(Instruction[22:21]*16) }	(6,9)
Inclusive OR	ORR	R	550	R[Rd] = R[Rn] R[Rm]	
Inclusive OR	ORRI	I	590-591	D(D4) = D(Da) ALUlana	(2.0)
Immediate	OKKI	1	390-391	$R[Rd] = R[Rn] \mid ALUImm$	(2,9)
STore Register Unscaled offset	STUR	D	7C0	M[R[Rn] + DTAddr] = R[Rt]	(5)
STore Byte Unscaled offset	STURB	D	1C0	M[R[Rn] + DTAddr](7:0) = $R[Rt](7:0)$	(5)
STore Half Unscaled offset	STURH	D	3C0	M[R[Rn] + DTAddr](15:0) = R[Rt](15:0)	(5)
STore Word Unscaled offset	STURW	D	5C0	M[R[Rn] + DTAddr](31:0) = R[Rt](31:0)	(5)
STore eXclusive	STXR	D	640	M[R[Rn] + DTAddr] = R[Rt];	(5,7)
Register				R[Rm] = (atomic) ? 0 : 1	(-,-)
SUBtract SUBtract	SUB	R	658	R[Rd] = R[Rn] - R[Rm]	
Immediate	SUBI	I	688-689	R[Rd] = R[Rn] - ALUImm	(2,9)
SUBtract Immediate & Set flags	SUBIS	I	788-789	R[Rd], $FLAGS = R[Rn] - ALUImm$	(1,2,9)
SUBtract & Set flags	SUBS	R	758	R[Rd], $FLAGS = R[Rn] - R[Rm]$	(1)

- FLAGS are 4 condition codes set by the ALU operation: Negative, Zero, oVerflow, Carry ALUImm = {52*b0, ALU immediate } BranchAddr = {36*IBR_address {25}}, BR_address, 2*b0 } CondBranchAddr = {43*(COND_BR_address {25}}, COND_BR_address, 2*b0 } D1Addr = {55*(D7_address {8}}, D7_address {}) MOVImm = {48*b0, MOV_immediate } Atomic test&set pair, R(Rm] = 0 if pair atomic, 1 if not atomic Operands considered unsigned numbers (vs. 2*s complement) Since I, B, and CB instruction formats have opcodes narrower than 11 bits, they occupy a range of 11-bit oncodes

(10) If neither is operand a NaN and Valuel == Value2, FLAGS = 4'b0110; If neither is operand a NaN and Value1 < Value2, FLAGS = 4'b1000; If neither is operand a NaN and Value1 > Value2, FLAGS = 4'b0010; If an operand is a Nan, operands are unordered

ARITHMETIC CORE	INSTR	UCTIO	N SET		(2)
NAME, MNEMON	ıc	FOR- MAT	OPCODE/ SHAMT (Hex)	OPERATION (in Verilog)	Notes
Floating-point ADD Single	FADDS	R	0F1 / 0A	S[Rd] = S[Rn] + S[Rm]	
Floating-point ADD Double	FADDD	R	0F3 / 0A	D[Rd] = D[Rn] + D[Rm]	
Floating-point CoMPare Single	FCMPS	R	0F1 / 08	FLAGS = (S[Rn] vs S[Rm])	(1,10)
Floating-point CoMPare Double	FCMPD	R	0F3 / 08	FLAGS = (D[Rn] vs D[Rm])	(1,10)
Floating-point DIVide Single	FDIVS	R	0F1 / 06	S[Rd] = S[Rn] / S[Rm]	
Floating-point DIVide Double	FDIVD	R	0F3 / 06	D[Rd] = D[Rn] / D[Rm]	
Floating-point MULtiply Single	FMULS	R	0F1 / 02	S[Rd] = S[Rn] * S[Rm]	
Floating-point MULtiply Double	FMULD	R	0F3 / 02	D[Rd] = D[Rn] * D[Rm]	
Floating-point SUBtract Single	FSUBS	R	0F1 / 0E	S[Rd] = S[Rn] - S[Rm]	
Floating-point SUBtract Double	FSUBD	R	0F3 / 0E	D[Rd] = D[Rn] - D[Rm]	
LoaD Single floating-point	LDURS	R	7C2	S[Rt] = M[R[Rn] + DTAddr]	(5)
LoaD Double floating-point	LDURD	R	7C0	D[Rt] = M[R[Rn] + DTAddr]	(5)
MULtiply	MUL	R	4D8 / 1F	R[Rd] = (R[Rn] * R[Rm]) (63:0)	
Signed DIVide	SDIV	R	4D6 / 02	R[Rd] = R[Rn] / R[Rm]	
Signed MULtiply High	SMULH	R	4DA	R[Rd] = (R[Rn] * R[Rm]) (127:64)	
STore Single floating-point	STURS	R	7E2	M[R[Rn] + DTAddr] = S[Rt]	(5)
STore Double floating-point	STURD	R	7E0	M[R[Rn] + DTAddr] = D[Rt]	(5)
Unsigned DIVide	UDIV	R	4D6 / 03	R[Rd] = R[Rn] / R[Rm]	(8)

CORE	INSTRUCTIO	ON FORMATS	
R	opcode	Rn	n s
	31	21.20	16.15

Unsigned MULtiply High UMULH R

ĸ	opcode		Rm	shamt	Rn	Rd	
	31	21 20	16 15	10 9		5 4	0
I	opcode		ALU_immed	liate	Rn	Rd	
	31	22 21		109	5	5 4	0
D	opcode		DT_address	s op	Rn	Rt	
	31	21 20		12 11 10 9	5	5 4	0
В	opcode			BR_address			
	31 26 25			20.20			0
CB	Opcode		COND_BR	address		Rt	
	31 24 23					5 4	0
IW	opcode		MO	V_immediate		Rd	
	31	21 20			5	5 4	0

4DE R[Rd] = (R[Rn] * R[Rm]) (127:64)

(8)

PSEUDOINSTRUCTION SET

NAME	MNEMONIC	OPERATION
CoMPare	CMP	FLAGS = R[Rn] - R[Rm]
CoMPare Immediate	CMPI	FLAGS = R[Rn] - ALUImm
LoaD Address	LDA	R[Rd] = R[Rn] + DTAddr
MOVe	VOM	R[Rd] = R[Rn]

REGISTER NAME, NUMBER, USE, CALL CONVENTION

NAME	NUMBER	USE	PRESERVED ACROSS A CALL?
X0 - X7	0-7	Arguments / Results	No
X8	8	Indirect result location register	No
X9 - X15	9-15	Temporaries	No
X16 (IP0)	16	May be used by linker as a scratch register; other times used as temporary register	No
X17 (IP1)	17	May be used by linker as a scratch register; other times used as temporary register	No
X18	18	Platform register for platform independent code; otherwise a temporary register	No
X19-X27	19-27	Saved	Yes
X28 (SP)	28	Stack Pointer	Yes
X29 (FP)	29	Frame Pointer	Yes
X30 (LR)	30	Return Address	Yes
XZR	31	The Constant Value 0	N.A.

		_		CI.	11-bit C	
Instruc Mnemonic	Format	Width (bits)	pcode) Binary	Shamt Binary	Range Start (Hex)	
R	В	6	000101	Billary	0A0	0BF
FMULS	R	11	00011110001	000010	0F	
FDIVS	R	11	00011110001	000110	0F	
FCMPS	R	11	00011110001	001000	0F	1
FADDS	R	11	00011110001	001010	0F	1
FSUBS	R	11	00011110001	001110	0F	1
FMULD	R	11	00011110011	000010	0F	3
FDIVD	R	11	00011110011	000110	0F	3
FCMPD	R	11	00011110011	001000	0F	3
FADDD	R	11	00011110011	001010	0F	
FSUBD	R	11	00011110011	001110	0F	
STURB	D	11	00111000000		1C	
LDURB	D	11	00111000010		1C	
B.cond	CB	8	01010100		2A0	2A7
STURH	D	11	01111000000		3C	
LDURH	D	11	01111000010		3C	
AND	R	11	10001010000		45	
ADD	R	11	10001011000		45	
ADDI	I	10	1001000100		488	489
ANDI	I	10	1001001000		490	491
BL	В	6	100101	000010	4A0	4BF
SDIV	R	11	10011010110	000010	4D	
UDIV	R R	11	10011010110	000011	4D 4D	
MUL	R	11	10011011000	011111		
SMULH UMULH	R	11	10011011010		4D.	
ORR	R	11	10101010100		55	
ADDS	R	11	1010101000		55	
ADDIS	I	10	1011000100		588	589
ORRI	I	10	101100100		590	591
CBZ	СВ	8	10110100		5A0	5A7
CBNZ	CB	8	10110101		5A8	5AF
STURW	D	11	10111000000		5C	
LDURSW	D	11	10111000100		5C	
STURS	R	11	101111100000		5E	
LDURS	R	11	101111100010		5E	2
STXR	D	11	11001000000		64	0
LDXR	D	11	11001000010		64	2
EOR	R	11	11001010000		65	0
SUB	R	11	11001011000		65	8
SUBI	I	10	1101000100		688	689
EORI	I	10	1101001000		690	691
MOVZ	IM	9	110100101		694	697
LSR	R	11	11010011010		69,	A
LSL	R	11	11010011011		691	В
BR	R	11	11010110000		6B	0
ANDS	R	11	11101010000		75	
SUBS	R	11	11101011000		75	
SUBIS	I	10	1111000100		788	789
ANDIS	I	10	1111001000		790	791
MOVK	IM	9	111100101		794	797
STUR	D	11	111111000000		7C	
LDUR	D	11	11111000010		7C	
STURD	R	11	11111100000		7E	
LDURD	R	11	111111100010		7E	2

LDURD R 11 11111100010 7E2

(1) Since I, B, and CB instruction formats have opcodes narrower than 11 bits, they occupy a range of 11-bit opcodes, e.g., the 6-bit B format occupies 32 (2⁵) 11-bit opcodes.

IEEE 754 FLOATING-POINT STANDARD

(-1)^s × (1 + Fraction) × 2^(Exponent - Bias) where Single Precision Bias = 127, Double Precision Bias = 1023

IEEE 754 Symbols						
Fraction	Object					
0	± 0					
≠ 0	± Denorm					
anything	± F1. Pt. Num.					
0	± ∞					
≠ 0	NaN					
	Fraction 0 ≠ 0 anything 0					

IEEE Single Precision and Double Precision Formats:

S.P. MAX = 255, D.P. MAX = 2047 S Exponent Fraction Fraction Exponent 52.51

DATA ALIGNMENT

L	Double Word								
	Word				Word				
	Halfword Halfword		Halfword		Halfword				
	Byte	Byte	Byte	Byte	Byte	Byte	Byte	Byte	
-	0	1	2	3	4	5	6	7	

Value of three least significant bits of byte address (Big Endian)

	EACEF HON S	I NDROME I	ŒĠ	ISTER (ESR)	
	Exception Class (EC)	Instruction Length (IL)		Instruction Specific Syndrome field (ISS)	
3	1 26	25	24		0

CEPI	ION CLAS	s			
EC	Class	Cause of Exception	Number	Name	Cause of Exception
0	Unknown	Unknown	34	PC	Misaligned PC exception
7	SIMD	SIMD/FP registers disabled	36	Data	Data Abort
14	FPE	Illegal Execution State	40	FPE	Floating-point exception
17	Sys	Supervisor Call Exception	52	WPT	Data Breakpoint exception
32	Instr	Instruction Abort	56	BKPT	SW Breakpoint Exception

SIZE PREFIXES AND SYMBOLS

SIZE	PREFIX	SYMBOL	SIZE	PREFIX	SYMBOL
10^{3}	Kilo-	K	210	Kibi-	Ki
10^{6}	Mega-	M	220	Mebi-	Mi
10 ⁹	Giga-	G	230	Gibi-	Gi
10 ¹²	Tera-	T	2 ⁴⁰	Tebi-	Ti
10 ¹⁵	Peta-	P	250	Pebi-	Pi
10^{18}	Exa-	Е	260	Exbi-	Ei
10^{21}	Zetta-	Z	270	Zebi-	Zi
10^{24}	Yotta-	Y	280	Yobi-	Yi
10 ⁻³	milli-	m	10-15	femto-	f
10 ⁻⁶	micro-	μ	10 ⁻¹⁸	atto-	a
10 ⁻⁹	nano-	n	10-21	zepto-	Z
10-12	pico-	р	10-24	yocto-	у