

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»

КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»

Отчёт по лабораторной работе №1 по курсу

«Математическая статистика»

Тема <u>Гистограмма и эмпирическая функция распределения.</u>									
Студент Сироткина П.Ю.									
Номер варианта12									
Группа <u>ИУ7-66Б</u>									
Преподаватель Андреева Т.В.									
Оценка									

1. Цель работы

Построение гистограммы и эмпирической функции распределения.

2. Постановка задачи

- 1. Для выборки объема n из генеральной совокупности X реализовать в виде программы на ЭВМ:
 - (a) вычисление максимального значения M_{max} и минимального значения M_{min} ;
 - (b) размаха R выборки;
 - (c) вычисление оценок $\hat{\mu}$ и S^2 математического ожидания MX и дисперсии DX;
 - (d) группировку значений выборки в $m = [log_2 n] + 2$ интервала;
 - (e) построение на одной координатной плоскости гистограммы и графика функции плотности распределения вероятностей нормальной случайной величины с математическим ожиданием $\hat{\mu}$ и дисперсией S^2 ;
 - (f) построение на другой координатной плоскости графика эмпирической функции распределения и функции распределения нормальной случайной величины с математическим ожиданием $\hat{\mu}$ и дисперсией S^2 .
- 2. Провести вычисления и построить графики для выборки из индивидуального варианта.

3. Данные для лабораторной работы согласно индивидуальному варианту

Листинг 1: Выборка для варианта №12

Г									
1	x = (11.89,	9.60,	9.29,	10.06,	9.50,	8.93,	9.58,	6.81,	8.69,
2	9.62,	9.01,	10.59,	10.50,	11.53,	9.94,	8.84,	8.91,	6.90,
3	9.76,	7.09,	11.29,	11.25,	10.84,	10.76,	7.42,	8.49,	10.10,
4	8.79,	11.87,	8.77,	9.43,	12.41,	9.75,	8.53,	9.72,	9.45,
5	7.20,	9.23,	8.93,	9.15,	10.19,	9.57,	11.09,	9.97,	8.81,
6	10.73,	9.57,	8.53,	9.21,	10.08,	9.10,	11.03,	10.10,	9.47,
7	9.72,	9.60,	8.21,	7.78,	10.21,	8.99,	9.14,	8.60,	9.14,
8	10.95,	9.33,	9.98,	9.09,	10.35,	8.61,	9.35,	10.04,	7.85,
9	9.64,	9.99,	9.65,	10.89,	9.08,	8.60,	7.56,	9.27,	10.33,
10	10.09,	8.51,	9.86,	9.24,	9.63,	8.67,	8.85,	11.57,	9.85,
11	9.27,	9.69,	10.90,	8.84,	11.10,	8.19,	9.26,	9.93,	10.15,
12	8.42,	9.36,	9.93,	9.11,	9.07,	7.21,	8.22,	9.08,	8.88,
13	8.71,	9.93,	12.04,	10.41,	10.80,	7.17,	9.00,	9.46,	10.42,
14	10.43,	8.38,	9.01)						
L									

4. Выполнение лабораторной работы

4.1 Формулы для вычисления некоторых требуемых величин

- 1. Максимальное и минимальное значение выборки: $M_{max} = X_{(n)}, M_{min} = X_{(1)};$
- 2. Размах R выборки: $R = M_{max} M_{min}$;
- 3. Оценки $\hat{\mu}$ и S^2 математического ожидания MX и дисперсии DX:
 - Выборочное среднее: $\hat{\mu}(\vec{X}) = \overline{X} = \frac{1}{n} \cdot \sum_{i=1}^{n} X_i;$
 - Выборочная дисперсия: $S^2(\vec{X}) = \frac{1}{n} \cdot \sum_{i=1}^n (X_i \overline{X})^2$.

4.2 Интервальный статистический ряд

Если объем выборки достаточно велик (n > 50), то элементы выборки группируют в т.н. интервальный статистический ряд. Для этого отрезок $J = [x_{(1)}; x_{(n)}]$ разбивают на m равновеликих промежутков. Ширина каждого из них определяется следующим образом:

$$\Delta = \frac{x_{(n)} - x_{(1)}}{m}.$$

Количество отрезков определяется следующей формулой: $m = [log_2 n] + 2$, где n - объем выборки.

Далее полагают:

$$J_i = [x(1) + (i-1) \cdot \Delta; x(1) + i \cdot \Delta], i = \overline{1, m}.$$

$$J_m = [x(1) + (m-1) \cdot \Delta; x(n)].$$

Интервальным статистическим рядом называют таблицу вида:

Здесь n_i - число элементов выборки \vec{x} , попавших в промежуток J_i .

4.3 Гистограмма

Пусть для данной выборки \vec{x} построен интервальный статистический ряд $(J_i, n_i), i = \overline{1, m}$.

2

 $\mathcal{I}_{\mathcal{M}}$ плотностью распределения, соответствующей выборке \vec{x} , называется функция:

$$f_n(x) = \begin{cases} rac{n_i}{n \cdot \Delta}, x \in J_i, i = \overline{1; m} \\ 0,$$
иначе

Функция $f_n(x)$ является статистическим аналогом функции плотности.

График этой функции называется гистограммой.

4.4 Эмпирическая функция распределения

Пусть $\vec{x} = (x_1, ..., x_n)$ – выборка из генеральной совокупности X. Обозначим $n(t, \vec{x})$ – число компонент вектора \vec{x} , которые меньше t.

 $Эмпирической функцией распределения, построенной по выборке <math>\vec{x}$, называют функцию $F_n: \mathbb{R} \to \mathbb{R}$, определенную правилом:

$$F_n(t) = \frac{n(t, \vec{x})}{n}.$$

4.5 Функция плотности и функция распределения нормальной случайной величины

$$f(x) = \frac{1}{\sigma \cdot \sqrt{(2 \cdot \pi)}} \cdot e^{-\frac{(x-m)^2}{(x-m)^2}}.$$

 Φy нкция распределения случайной величины X, распределенной по нормальному закону, имеет вид:

$$F(x) = \frac{1}{\sigma \cdot \sqrt{(2 \cdot \pi)}} \cdot \int_{-\infty}^{x} e^{-\frac{(x-m)^2}{2 \cdot \sigma^2}}$$

4.6 Код программы

```
_{1}|X = [11.89]
                  9.60,
                            9.29,
                                      10.06,
                                               9.50,
                                                         8.93,
                                                                   9.58,
                                                                             6.81,
         8.69,
                  9.62,
                            9.01,
                                      10.59,
                                                10.50,
                                                         11.53,
                                                                   9.94,
                                                                             8.84,
                  6.90,
         8.91,
                                      7.09,
                                                11.29,
                                                         11.25.
                                                                   10.84.
                            9.76,
                                                                             10.76.
                                                                   9.43,
         7.42,
                  8.49,
                            10.10,
                                      8.79,
                                                11.87,
                                                         8.77,
                                                                             12.41,
                                                         9.23,
        9.75,
                  8.53,
                            9.72,
                                      9.45,
                                               7.20,
                                                                   8.93,
                                                                             9.15,
                  9.57,
         10.19,
                            11.09,
                                      9.97,
                                               8.81,
                                                         10.73,
                                                                   9.57.
                                                                             8.53,
         9.21,
                  10.08,
                            9.10,
                                      11.03,
                                                10.10,
                                                         9.47,
                                                                   9.72,
                                                                             9.60,
        8.21,
                  7.78,
                            10.21,
                                      8.99,
                                               9.14,
                                                         8.60,
                                                                   9.14,
                                                                             10.95,
                                                         9.35,
        9.33,
                  9.98,
                            9.09,
                                      10.35,
                                               8.61,
                                                                   10.04,
                                                                             7.85,
9
         9.64,
                  9.99,
                            9.65,
                                      10.89,
                                               9.08,
                                                         8.60,
                                                                   7.56,
                                                                             9.27,
                                               9.24,
         10.33,
                  10.09,
                            8.51,
                                      9.86,
                                                         9.63,
                                                                   8.67,
                                                                             8.85,
11
         11.57,
                            9.27,
                                      9.69,
                                               10.90,
                                                         8.84,
                                                                   11.10,
                                                                             8.19,
                  9.85,
12
        9.26,
                  9.93,
                            10.15,
                                      8.42,
                                               9.36,
                                                         9.93,
                                                                   9.11,
                                                                             9.07,
13
                  8.22,
                            9.08,
                                                                   12.04,
         7.21,
                                      8.88,
                                               8.71,
                                                         9.93,
                                                                             10.41,
14
         10.80,
                  7.17,
                            9.00,
                                      9.46,
                                                10.42,
                                                         10.43,
                                                                   8.38,
                                                                             9.01
15
16
  \max m = \max(X);
18
  min m = min(X);
19
20
^{21}
  R = \max m - \min m;
^{22}
  MX = mean(X);
  DX = var(X);
^{24}
^{25}
  sigma = std(X);
27
  m = floor(log2(length(X))) + 2;
  delta = R / m;
29
30
  x = (min m - 1) : (sigma / 250) : (max m + 1);
  y1 = normpdf(x, MX, sigma);
^{32}
33
  hold on;
34
  hist(X, m, 1 / delta);
35
36
  plot(x, y1);
37
  figure;
38
  hold on;
  y2 = empirical cdf(x, X);
  y3 = normcdf(x, MX, sigma);
  plot(x, y2);
  plot(x, y3);
```

4.7 Результат работы программы

Числовые характеристики:

$$M_{\text{min}} = 6.81$$
, $M_{\text{max}} = 12.41$, $R = 5.6$, $m = 8$, $\hat{\mu}(\vec{x}) = 9.4872$, $S^2(\vec{x}) = 1.2173$

Рис. 1: Гистограмма и график функции плотности распределения вероятностей нормальной случайной величины с математическим ожиданием $\hat{\mu}$ и дисперсией S^2

Рис. 2: График эмпирической функции распределения и функции распределения нормальной случайной величины с математическим ожиданием $\hat{\mu}$ и дисперсией S^2