

Description

The Power MOSFET is fabricated using the advanced planar VDMOS technology. The resulting device has low conduction resistance, superior switching performance and high avalanche energy.

Features

- ♦ Low R_{DS(on)}
- ◆ Low gate charge (typ. Q_g =50.5 nC)
- 100% UIS tested
- RoHS compliant

Applications

- Electronic ballast
- Switched mode power supplies.
- UPS.

Product Summary

 $\begin{array}{lll} V_{DSS} & 500V \\ I_{D} & 18A \\ R_{DS(on),max} & 0.28\Omega \\ Q_{g,typ} & 50.5 \ nC \end{array}$

Pin Configuration

Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
Drain-Source Voltage	V _{DSS}	500	V
Continuous drain current (T _C = 25°C)	ID	18	А
(T _C = 100°C)		11.4	Α
Pulsed drain current 1)	I _{DM}	72	А
Gate-Source voltage	V _{GSS}	±30	V
Avalanche energy, single pulse 2)	Eas	810	mJ
Power Dissipation			
C C C TO-220F /TO-220Fc = 25°C)	P _D	37.5	W
Power Dissipation C C TO-22TC = 25°C)		232	W
Operating junction and storage temperature range	T _J , T _{STG}	-55 to +150	°C
Continuous diode forward current	Is	18	А
Diode pulse current	I _{S,pulse}	72	А

Thermal Characteristics

Parameter	Symbol	Value		Unit	
Farameter	C	C C TO-220F /TO-220F	C C C TO-220	Offic	
Thermal resistance, Junction-to-case	Rejc	3.3	0.54	°C/W	
Thermal resistance, Junction-to-ambient 3)	R _{θJA}	62.5	62.5	°C/W	

Package Marking and Ordering Information

Device	Device Package	Marking	Units/Tube
VSM18N50-TF	TO-220F	VSM18N50-TF	50
VSM18N50-TC	TO-220C	VSM18N50-TC	50

Electrical Characteristics T_c = 25°C unless otherwise noted

Parameter	Symbol	Test Condition	Min.	Тур.	Max.	Unit
Static characteristics						
Gate threshold voltage	V _{GS(th)}	V _{DS} =V _{GS} , I _D =0.25 mA	2	-	4	V
Drain cut-off current	I _{DSS}	V _{DS} =500 V, V _{GS} =0 V,				
		T _j = 25°C	-	-	1	μA
		T _j = 125°C	-		100	
Gate leakage current, Forward	I _{GSSF}	V _{GS} =30 V, V _{DS} =0 V	-	-	100	nA
Gate leakage current, Reverse	I _{GSSR}	V _{GS} =-30 V, V _{DS} =0 V	-	-	-100	nA
Drain-source on-state resistance	R _{DS(on)}	V _{GS} =10 V, I _D =9 A	-	0.24	0.28	Ω
Dynamic characteristics						•
Input capacitance	Ciss	.,	-	3045	-	pF
Output capacitance	Coss	$V_{DS} = 25 \text{ V}, V_{GS} = 0 \text{ V},$	-	284	-	
Reverse transfer capacitance	C _{rss}	- f = 1 MHz	-	12	-	
Turn-on delay time	t _{d(on)}		-	17.5	-	
Rise time	t _r	$V_{DD} = 250 \text{ V}, I_{D} = 18 \text{ A}$ $R_{G} = 10 \Omega, V_{GS} = 15 \text{ V}$	-	42	-	- ns
Turn-off delay time	t _{d(off)}		-	101	-	
Fall time	t _f		-	15.5	-	
Gate charge characteristics	'		1			
Gate to source charge	Q _{gs}		-	12.7	-	
Gate to drain charge	Q _{gd}	V _{DD} =400 V, I _D =18 A,	-	15.8	-	nC
Gate charge total	Qg	V _{GS} =0 to 10 V	-	50.5	-	1
Gate plateau voltage	V _{plateau}		-	5	-	V
Reverse diode characteristics	<u>.</u>					
Diode forward voltage	V _{SD}	V _{GS} =0 V, I _F =18 A	-	-	1.3	V
Reverse recovery time	t _{rr}	V =400 V I =40 A	-	368	-	ns
Reverse recovery charge	Q _{rr}	V _R =400 V, I _F =18 A,	-	4.6	-	μC
Peak reverse recovery current	I _{rrm}	- dl _F /dt=100 A/μs	-	25	-	Α
			_			

Notes:

- 1. Pulse width limited by maximum junction temperature.
- 2. L=5mH, I_{AS} = 18A, Starting T_j = 25°C.
- 3. The value of R_{thJA} is measured by placing the device in a still air box which is one cubic foot.

Electrical Characteristics Diagrams

Figure 1. Typical Output Characteristics

Figure 2. Transfer Characteristics

Figure 3. On-Resistance Variation vs. Drain Current

Figure 4. Threshold Voltage vs. Temperature

Figure 5. Breakdown Voltage vs. Temperature

Figure 6. On-Resistance vs. Temperature

T_i ,Junction temperature (°C)

Figure 7. Capacitance Characteristics

V_{DS} ,Drain-Source Voltage (V)

Figure 9: Safe Operating Area (TO-220F/TO-220NF) 100 Limited b Rds(on) 10 I_D (A) 1 0.1 Single pulse Tc=25°C 0.01 10 100 0.1 1 1000 V_{DS} (V)

Figure 11. Power Dissipation vs. Temperature C TO-220F /TO-220F

Figure 8. Gate Charge Characteristics

Q_G ,Total Gate Charge (nC)

Figure 10: Safe Operating Area (TO-220)

Figure 12. Power Dissipation vs. Temperature

Figure 13. Continuous Drain Current vs. Temperature

Figure 14. Body Diode Transfer Characteristics

Figure 15. Transient Thermal Impedance, Junction to CaseC TO-220F /TO-220F

Figure 16. Transient Thermal Impedance, Junction to CaseC TO-220

Test Circuit & Waveforms

Gate Charge Test Circuit & Waveform

Resistive Switching Test Circuit & Waveform

Unclamped Inductive Switching (UIS) Test Circuit & Waveform

Diode Recovery Test Circuit & Waveform

