Model-free based pitch control of a wind turbine blade section: aerodynamic simulation

E. Guilmineau^a, L. Michel^b, W. Kouraich^b, C. Braud^a, J.-P. Barbot^b & F. Plestan^b

Centrale Nantes, France

Principle of the lift control

• The control of the lift is performed thanks to a control loop that drives the *pitch* angle according to the measured lift, to track the lift reference

Principle of the lift control

Methodology

The lift L can be modified using the pitch angle

<u>Goal</u>: What is the control to apply to track the lift L (associated to the output variable y) closed to a reference L^* (associated to the output variable reference y^*)?

ISIS-CFD flow solver

- Developed at ECN/CNRS,
- Part of FINE/Marine from Cadence.
- Two-fluid Navier-Stokes,
- Face-based Finite-Volume discretisation,
- Several RANS and hybrid RANS/LES turbulence models,
- Body motion,
- Adaptive grid refinement.

Model-Free Control methods

- (Fliess, Join 2008) ¹ The model-free control algorithm can be considered as an extended PI (Proportionnal Integral) controller that uses a very simple local approximation of any complex system
- (Michel 2011) ² A derivative-free version has been proposed as a "self-tuned integrator" (recent applications in neural-network learning, HIV epidemiology control)

¹Int. J of Control, 2013 & Int. J of Robust and Nonlinear Control, 2021 presentation available at https://mps2016.labri.fr/archives/join.pdf

²preprint arXiv (2011): https://arxiv.org/abs/1202.4707

Derivative-free & model-free control

A system $u \mapsto y$ can be controlled to track a reference y^*

Para-model control

$$u_k = \Psi_k \cdot \int_0^t K_i(y_k^* - y_k) d\tau$$

with

$$\Psi_k = \Psi_{k-1} + K_p (k_\alpha e^{-k_\beta . k} - y_k)$$

where: u_k is the output of the control; y^* is the output reference trajectory; y is the measured output; k is the discrete iteration index; K_D , K_I , k_α and k_β are real positive tuning gains

 Ψ is a series that "adjusts" online the gain of the integrator \rightarrow adaptive control

Test-case

Airfoil shape = 2MW wind turbine blade section at 82% of its length

- Chord: C = 1.25 m
- Upstream velocity: $U_{\infty}=28.4$ m/s, 42.5 m/s, 56.7 m/s,
- Reynolds number: Re = 2.35×10^6 , 3.52×10^6 , 4.70×10^6 ,
- Angle of attack: $-10^{\circ} \le \alpha \le 20^{\circ}$

Numerical setup

- Turbulence model: k-ω SST
- Time steps:
 - Re = 2.35×10^6 : $\Delta t = 4.4 \times 10^{-4}$ sec
 - Re = 3.52×10^6 : $\Delta t = 2.9 \times 10^{-4}$ sec
 - Re = 4.70×10^6 : $\Delta t = 2.2 \times 10^{-4}$ sec
- Automatic grid refinement:
 - Refinement criterion: Flux component Hessian
- Size of the computational domain:
 - $-20 \times C \le X \le 20 \times C$
 - $-20 \times C \le Y \le 20 \times C$
- Mesh generated using $Hexpress^{TM}$ (y⁺ < 1): Unstructured mesh

Views of the mesh

$$AoA = 10^{\circ}$$

 $AoA = 15^{\circ}$

Static angles

- Further Reynolds number investigated for AoA ∈ [-5°; 20°]
- ullet \Longrightarrow Know the evolution of aerodynamic forces

Aerodynamic forces

Static angle of attack for Re = 2.35E06 and Re = 4.70E06

Velocity

 $AoA = 10^{\circ}$

 $AoA = 15^{\circ}$

Velocity and streamlines

 $AoA = 10^{\circ}$ $AoA = 15^{\circ}$

Pitch control

- Objective: Control by the lift force or the lift coefficient
- For some cases, the inlet speed will vary over time
- \bullet For all cases, the simulation will start from the simulation result obtained for an AoA of 0 $^\circ$

$$F_V = 1500 \text{ N/m}, \text{ Re} = 4.70 \times 10^6 \text{ (U}_{\infty} = 51.715 \text{ m/s)}$$

$$Fy = 1500 \text{ N/m}, CI = 0.75$$

$$AoA = 1.43^{\circ}$$

 $Fy = 1500 \text{ N/m}, Re = 4.70 \times 10^6$

$$F_V = 3000 \text{ N/m}, \text{ Re} = 4.70 \times 10^6 \text{ (U}_{\infty} = 51.715 \text{ m/s)}$$

Time [s]

$$Fy = 3000 \text{ N/m}, Cl = 1.24$$

$$AoA = 7.64^{\circ}$$

 $Fy = 3000 \text{ N/m}, Re = 4.70 \times 10^6$

Pitch control by imposing lift coefficient

Pitch control by imposing lift coefficient

$$Fy = 1347 \text{ n/m}, U_{\infty} = 42.54 \text{ m/s} (Re = 3.52 \times 10^6)$$

Fy = 1347 n/m, $U_{\infty} = 42.54$ m/s (Re = 3.52×10^6 t = 32.00 sec: $U_{\infty} = 42.54 \text{ m/s}$ \implies AoA = 5.02° t = 32.0012 s 1400 AoA [deg.] Fy [N/m] Setpoint

Time [s]

Fy = 1347 n/m, $U_{\infty} = 42.54$ m/s (Re = 3.52×10^6 t = 37.64 sec: $U_{\infty} = 45.03 \text{ m/s}$ \implies AoA = 3.92° 0.2 t = 37.6435 s 1400 Fy [N/m] Setpoint

AoA [deg.]

Time [s]

Fy = 1347 n/m, $U_{\infty} = 42.54$ m/s (Re = 3.52×10^6

Fy = 1347 n/m, $U_{\infty} =$ 42.54 m/s (Re = $3\underline{.}52{\times}10^6$

Fy = 1347 n/m, $U_{\infty} = 42.54$ m/s (Re = 3.52×10^6 t = 54.26 sec: $U_{\infty} = 42.54 \text{ m/s}$ \implies AoA = 4.98° t = 54.2646 s 1400 AoA [deg.] Fy [N/m] Setpoint

Time [s]

Conclusion

- A model-free control based algorithm for the manipulation of the lift force using pitch angle has been used numerically
- Different scenarios of tests³ have been carried out to illustrate the robustness of the control
- Good tracking performances have been obtained despite the strong perturbations at the beginning of the simulation
- Further studies will be carried out to compare with the experimental data
- 3D simulations are also planned

³Video available at https://uncloud.univ-nantes.fr/index.php/s/jKqz4jkWyswSiCb

Thank you for your attention!