MA 374 Financial Engineering Lab Lab 01

Karan Garg - 210123076

To ensure no arbitrage during binomial pricing algorithm, the following condition is needs to be satisfied:

$$0 < d < e^r < u$$

Q1)

Result:

M	Call Price	Put Price
:	:	:
1	43.6904	25.4645
5	41.3549	23.129
10	41.5908	23.3648
20	41.4634	23.2375
50	41.2278	23.0019
100	41.1916	22.9656
200	41.2523	23.0263
400	41.2314	23.0055

M can be infinitely large, there is no constraint on its upper bound. This is because the only constraint binding us it of no-arbitrage principle

No Arbitrage Principle

$$\begin{split} u > R > d \\ \implies e^{\sigma\sqrt{\Delta t} + (r - \frac{1}{2}\sigma^2)\Delta t} > e^{r\Delta t} > e^{-\sigma\sqrt{\Delta t} + (r - \frac{1}{2}\sigma^2)\Delta t} \\ \implies \sigma\sqrt{\Delta t} - \frac{1}{2}\sigma^2\Delta t > 0 > -\sigma\sqrt{\Delta t} - \frac{1}{2}\sigma^2\Delta t \end{split}$$

The second inequality always holds true. Thus,

$$egin{aligned} \sigma\sqrt{\Delta t} &> rac{1}{2}\sigma^2\Delta t \ \Longrightarrow & \Delta t < 4/\sigma^2 \ \Longrightarrow & M > rac{T\sigma^2}{4} = 0.1125 \end{aligned}$$

Hence there is no upper bound on M.

Q2)

Graphs:

Observations:

In each case, graphs converge to specific value. The converging value is same for step size 1 and 5.

For call option, the converging price is 41.23

For put option, the converging value is 23.00

Q3)

Tabulated values:

```
Time | Call Price
            [41.463]
            [77.091 38.064 16.753]
            [136.669 72.39
                                34.584 14.474
     1
                                                   5.137]
                                                                    0.992]
                                                           3.936
            [231.472 130.635 67.555 31.011 12.189
     1.5
            [9.12435e+02 5.80301e+02 3.57732e+02 2.09127e+02 1.11825e+02 5.18910e+01 1.95010e+01 5.42200e+00 9.72000e-01 8.30000e-02 0.00000e+00 0.00000e+00
             0.00000e+00]
            [3095.238 2041.039 1334.387
                                           860.705 543.186
                                                               330.347
                                                                         187.676
                                                                                     92.042
               32.545
                          5.714
                                              0.
                                                        0.
                                          ]
                                    0.
                          0.
Put option:
    Time | Put Price
           [23.237]
            [13.974 23.397 34.563]
            [ 6.659 13.583 23.507 35.39 47.499]
     1
     1.5 L
           [ 2.212 6.017 13.08 23.554 36.25 49.123 60.341]
            [0.0000e+00 0.0000e+00 6.7000e-02 6.9900e-01 3.4340e+00 1.0557e+01
     3
             2.3116e+01 3.9167e+01 5.4914e+01 6.7564e+01 7.6556e+01 8.2639e+01
             8.6717e+01]
     4.5
              20.75
                       43.841 63.149
                                        76.092
                                                 84.768
                                                          90.583
                                                                  94.481 97.094
                                                                                    98.846
             100.02 ]
```