Section:

Pattern identification and steering for spatio-temporal and network dynamics

Project Summary

- Background: Attractor clustering for pattern detection
 - DMDC
 - CkNN for attractor clustering
 - Application to Liquid Crystal data
 - Preliminary study of geometric pattern identification (dim/vol)
- Observability: Extension of DMDC to neuron data and spike trains
 - Introduce observability condition number for Takens embedding theorem
 - Empirical estimation of observability conditioning?
 - Improving conditioning through convolution/low-pass filtering?

• Pattern identification

- Step 1: Attractor Discrimination: DMDC+CkNN reconstructs/separates attractors
- Step 2: Pattern Identification: Separate attractors may represent similar patterns
 - * Topological: Attractors with the same topology have a similar dynamical constraints at a very coarse level
 - * Geometric: Attractors with the same geometry only differ in how the pattern evolves dynamically
 - * Dynamical: Attractors with the same dynamical properties (Lyapunov spectrum and stochastic forcing) represent identical patterns
- Step 3: **Steering**: Move to nearest attractor with desired pattern
 - * Transition probabilities
 - * Basin identification for pattern classes?
 - * State space exploration?

• Application to Spatiotemporal and Network Dynamics

- **Diffusion distance**: Hierarchical metric using a *dictionary* built from data subsets which are localized in the spatial or network structure. Can be designed to be invariant to spatial/network transformations (translation, rotation, ect.).
- Nematic Liquid Crystals:
- Neuronal Networks:

Section:

Pattern identification and steering for spatio-temporal and network dynamics

- 1 Background and motivation
- 1.1 Preliminary research: Attractor clustering for pattern detection

References Cited