Digital Integrated Circuit Lecture 18 Interconnect

Sung-Min Hong (smhong@gist.ac.kr)
Semiconductor Device Simulation Laboratory
School of Electrical Engineering and Computer Science
Gwangju Institute of Science and Technology

GIST Lecture

Review of Previous Lecture

Lecture 17

- Static power
 - -Two major causes of the leakage current are the subthreshold current and the gate leakage current.
 - -Subthreshold current: 60 mV/dec is the limiting value of the subthreshold slope.
 - -Stack effect
 - Gate leakage current: Due to the tunneling. Extremely sensitive to the thickness. By introducing the high-k metal gate, it can be significantly reduced.

5.3. Static power (7)

NAND3 leakage example (Leakage current in nA)

Input State (ABC)	I _{sub}	Igate	I _{total}	V _x	V _z
000	0.4	0	0.4	stack effect	stack effect
001	0.7	0	0.7	stack effect	$V_{DD} - V_{t}$
010	0.7	1.3	2.0	intermediate	intermediate
011	3.8	0	3.8	$V_{DD} - V_{t}$	$V_{DD} - V_{t}$
100	0.7	6.3	7.0	0	stack effect
101	3.8	6.3	10.1	0	$V_{DD} - V_{t}$
110	5.6	12.6	18.2	0	0
111	28	18.9	46.9	0	0

Fig. 5.23

Table 5.2

5.3. Static power (8)

- Power gating
 - -Turn OFF power to block when they are idle.
 - -Use virtual V_{DD} (V_{DDV})
 - Gate outputs to prevent invalid logic level to next block

Fig. 5.24

6.1 Introduction

6.1. Introduction (1)

- Wire geometry
 - -Pitch = w + s
 - -Aspect ratio (AR) = $\frac{t}{w}$
 - -Older processes had AR << 1.</p>
 - Modern processes have AR ≈ 2.

6.1. Introduction (2)

Example: Intel metal stacks

90 nm technology

1 μm

45 nm technology

Intel 45 nm metal stack

Fig. 6.2

6.1. Introduction (3)

- Backside power delivery network (BSPDN)
 - -The hottest topic in VLSI in these days!

Buried Power Rail without BS-PDN

6.2. Interconnect modeling (1)

- Lumped element models
 - A wire is a distributed circuit with a resistance and capacitance per unit length.

Fig. 6.5

6.2. Interconnect modeling (2)

- Wire resistance
 - Resistance of a wire

$$R = \frac{\rho}{t} \frac{l}{w} = R_{\Box} \frac{l}{w}$$

 $-R_{\square}$ is the sheet resistance.

Fig. 6.6

6.2. Interconnect modeling (3)

- Al versus Cu
 - Dual damascene process

Metal	Bulk resistivity (μΩ • cm)		
Silver (Ag)	1.6		
Copper (Cu)	1.7		
Gold (Au)	2.2		
Aluminum (Al)	2.8		
Tungsten (W)	5.3		
Titanium (Ti)	43.0		

Table 6.2

(Chang et al., "Copper metal for semiconductor interconnects")

6.2. Interconnect modeling (4)

Wire capacitance

– For a parallel plate,
$$C = \epsilon_{ox} \frac{A}{d}$$

– For a parallel plate,
$$C = \epsilon_{ox} \frac{A}{d}$$

$$C_{total} = C_{top} + C_{bot} + 2C_{adj} \approx \epsilon_o l \left[2k_{vert} \frac{w}{h} + 2k_{horiz} \frac{t}{s} \right] + C_{fringe}$$

Fig. 6.11

6.2. Interconnect modeling (5)

- M2 capacitance data (180nm process)
 - Wire and oxide thicknesses of 0.7 μ m
 - Minimun width/spacing of 0.32 μm
 - -Typical dense wires have 0.2 fF/ μ m.

Fig. 6.12

Thank you!