Galois Theory

Guo Haoyang

March 2025

Contents

1	Basic definitions	4
	1.1 Assigning field extensions a group	4
	1.2 Assigning groups a field	4
	1.3 Galois extension	6
	1.3.1 Calculating some Galois groups	6
2	Fundamental theorem of Galois theory	•
	2.1 Linear algebra under Galois theory	4
	2.2 An application: Hilbert's Theorem 90	
3	Galois groups of some certain extensions	١
	3.1 Finite field extensions	,
	3.2 Composite and simple extensions	
	3.3 Cyclotomic and Abelian extensions over $\mathbb Q$	
	3.4 Kummer extension	
	3.5 Artin-Schreier extension	!
4	Galois group of polynomials	١
	4.1 Galois Groups as S_n and A_n	(
	4.1.1 Symmetric functions and S_n	(
	4.1.2 More on symmetric polynomials	(
	4.1.3 Discriminant and A_n	(
	4.2 Compute the Galois groups over polynomials	(
	4.3 Inverse Galois problem	,
	III III III III III III III III III II	
5	Application to radical solutions of polynomials	7
	5.1 Solvable and radical extensions	,
	5.2 The main theorem	,
6	Transcendental extensions, inseparable extensions and infinite Galois groups	7
7	The Galois theory of étale algebras	7

1 Basic definitions

1.1 Assigning field extensions a group

Definition 1.1: Automorphism group

Let K/F be a field extension.

$$\operatorname{Aut}(K/F) := \{ \sigma : K \to K | \sigma|_F = \operatorname{id}_F \}$$

Theorem 1.1: Automorphism group permutes the roots

Let $m_{\alpha,F}(x)$ be the minimal polynomial of α . $\forall \sigma \in \operatorname{Gal}(K/F), m_{\alpha,F}(\sigma\alpha) = 0$. In other words, $\operatorname{Aut}(K/F)$ permutes the roots of $m_{\alpha,F}$.

This theorem gives us a tool to compute the automorphism groups concretely.

Example (1) $\mathbb{Q}(\sqrt{2})/\mathbb{Q}$

- $(2) \mathbb{Q}(\sqrt[3]{2})/\mathbb{Q},$
- $(3) \mathbb{R}/\mathbb{Q}$

1.2 Assigning groups a field

Consider a subgroup $H \leq \operatorname{Aut}(K) = \operatorname{Aut}(K/\{0\})$. Let F be the collection of elements of K fixed by H, i.e.

$$F = \{k \in K : \forall \sigma \in H, \sigma(k) = k\}$$

Such a collection is called fixed field. Then, we would like to say:

- (1) This collection F is indeed a field.
- (2) We will see no matter H is the subgroup of Aut(K) (it could be just a set), F is a field. But only when H is the subgroup of Aut(K). F is called a fixed field.

Definition 1.2: Fixed field

Theorem 1.2: Fixed field is a field

1.3 Galois extension

Definition 1.3: Galois extension

Theorem 1.3: Characterisation theorem for Galois extension

Let K/F be a field extension. K/F is Galois $\Leftrightarrow K$ is the splitting field of **some** separable polynomial over F

Upshot: Criteria for an extension to be Galois:

- (1) |Aut(K/F)| = [K : F]
- (2) K/F is a ?? finite extension and $f \in F[x]$ is a separable polynomial, then K is the splitting field of f.
- (3) definition

1.3.1 Calculating some Galois groups

- (1)
- (2) Finite extension of a finite field $\mathbb{F}_{p^n}/\mathbb{F}_p$: This extension is separable since $f(x) = x^{p^n} x$ is separable and \mathbb{F}_{p^n}

$$\operatorname{Gal}(\mathbb{F}_{p^n}/\mathbb{F}_p) \cong \langle \sigma_p \rangle \cong \mathbb{Z}/n\mathbb{Z}$$

(3) Finite extension of \mathbb{K}/\mathbb{F}_p : Let \mathbb{K} be a finite extension of the finite field \mathbb{F}_q , $q=p^a$. Then, \mathbb{K}/\mathbb{F}_q is a Galois extension and $\operatorname{Gal}(\mathbb{K}/\mathbb{F}_q)$ is a cyclic group of order $[\mathbb{K}:\mathbb{F}_q]$ generated by the Frobenius element $q:\mathbb{K}\to\mathbb{K}, x\mapsto x^q$, i.e. $\operatorname{Gal}(\mathbb{K}/\mathbb{F}_q)=\langle q\rangle$.

Proof: First, this extension is Galois.

Then, the Frobenius element belongs to the Galois group $\operatorname{Gal}(\mathbb{K}/\mathbb{F}_q)$. \bullet $_q$ is an automorphism. \bullet $_q$ fixes every element in \mathbb{F}_q^{\times} has order q-1. So, $\forall x \in \mathbb{F}_q$, $_q(x) = x^q = x$. Thus, $_q \in \operatorname{Gal}(\mathbb{K}/\mathbb{F}_q)$.

There is nothing more than $\langle q \rangle$ in $\operatorname{Gal}(\mathbb{K}/\mathbb{F}_q)$. ?? gives that \mathbb{K}^{\times} is cyclic. So, $\exists y \in \mathbb{K}^{\times}$ with order q^n , i.e. $\forall 1 \leq l \leq q^n-1, \ y^l \neq y$. Apply q k times: ${}^k_q(y) = y^{q^k}$. $\forall 1 \leq k \leq n-1, \ {}^k_q(y) \neq 1$. But for $n, \ {}^n_q(y) = y$. This shows that q generates a cyclic subgroup of order n in $\operatorname{Gal}(\mathbb{K}/\mathbb{F}_q)$. But, $|\operatorname{Gal}(\mathbb{K}/\mathbb{F}_q)| = [\mathbb{K} : \mathbb{F}_q] = n$. So, the only possibility is $\operatorname{Gal}(\mathbb{K}/\mathbb{F}_q) = \langle q \rangle$.

(4) Finite cyclotomic extension over Q

2 Fundamental theorem of Galois theory

Theorem 2.1: Artin's theorem [Connd]

Let E be a field and $H \leq \operatorname{Aut}(E)$ be a finite subgroup. $[E:E^H] < +\infty$. Then E/E^H is a Galois extension with $\operatorname{Gal}(E/E^H) = H$.

Moreover, this also implies that $[E : E^H] = |Gal(E/E^H)| = |H|$.

Proof: • First we show that the field extension E/E^H is separable and every element $\alpha \in E$ has bounded degree. Suppose that $\{\sigma_1(\alpha), \ldots, \sigma_k(\alpha)\}$ are distinct elements of $\{\sigma(\alpha) : \sigma \in H\}$ into . Consider the polynomial $h_{\alpha}(x) = \prod_{i=1}^k (x - \sigma_i(\alpha))$. Definitely, α is a root of $h_{\alpha}(x)$ and $h_{\alpha}(x) \in E^H[x]$ state the reason. Because every $\alpha \in E$ is algebraic and separable over E^H . So, E/E^H is an algebraic extension, and each α has a degree $\leq |H|$ over E^H . why extension finite

Hence, by the primitive element theorem, $\exists \alpha \in E$, such that $E = E^H(\alpha)$. So there is an element β , such that $[E^H(\beta) : E^H]$ is maximal.

- Next, we claim that $E = E^H(\beta)$ 1: $\forall \gamma \in E, E^H(\beta) \subseteq E^H(\beta, \gamma) \subseteq E$. Since $E^H(\beta, \gamma)/E^H(\beta)$ is a finite separable extension, the primitive element theorem predicts again that $\exists \delta \in E, E^H(\beta, \gamma) = E^H(\delta)$. Then, $[E^H(\beta) : E^H] \le [E^H(\beta, \gamma) : E^H] = [E^H(\gamma) : E^H]$. But as we assumed, $[E^H(\beta) : E^H]$ is the largest, so $[E^H(\beta) : E^H] = [E^H(\gamma) : E^H]$, meaning $E^H(\beta) = E^H(\beta, \gamma)$ and then $\gamma \in E^H(\beta)$. Since this is for arbitrary $\gamma \in E$, this implies that $E \subseteq E^H(\beta)$. Hence, $E = E^H(\beta)$.
- Then, we are going to use the fact that $[E:E^H]<\infty$

$$[E:E^{H}] = [E^{H}(\alpha):E^{H}] = \deg m_{\alpha,E^{H}}(x) \le \deg h_{\alpha}(x) \le |H|$$

 $h_{\alpha}(x)$ splits over E splitting fields?, so E/E^H is a Galois extension. $\forall \sigma \in H, \sigma|_{E^H} = \mathrm{id}_{E^H}$, hence $H \leq \mathrm{Gal}(E/E^H)$.

¹This β may not be agree with the α making $E^H(\alpha) = E$, so we cannot directly say that $E^H(\beta) = E$

Theorem 2.2: Fundamental theorem of Galois theory

Let K/F be a Galois extension. There is a bijection:

{intermediate field E between K and F: K/E/F} \longleftrightarrow {intermediate group $H: \{1\} \le H \le \operatorname{Gal}(K/F)$ }

$$f: \quad E \mapsto \operatorname{Gal}(K/E)$$
$$q: K^H \longleftrightarrow H$$

so that $K^{\text{Gal}(K/E)} = (g \circ f)(E) = E$ and $\text{Gal}(K/K^H) = (f \circ g)(H) = H$. f, g are inverse to each other. Moreover, let intermediate fields E_1, E_2 correspond to two intermediate groups H_1, H_2 , respectively. This bijection has the following properties:

- (1) (inclusion-reversing) $E_1 \subseteq E_2 \Leftrightarrow H_2 \leq H_1$.
- (2) $[E_2:E_1]=[H_1:H_2]$
- (3) E_2/E_1 is a Galois extension $\Leftrightarrow H_2 \subseteq H_1$. In this case, $Gal(E_2/E_1) \cong H_1/H_2$
- (4) $E_1 \cap E_2$ corresponds to the group $\langle H_1, H_2 \rangle$. $H_1 \cap H_2$ corresponds to the composite field $E_1 E_2$

Remark The last properties is illustrated as:

The lattice of subfields and the lattice of subgroups are dual—they are upside down to each other.

Proof: • This map is well-defined. Given $H \leq G$, we have the unique fixed field K^H . $\forall \sigma \in H \subseteq \operatorname{Gal}(K/F)$, σ fixes all elements in F. Hence, $F \subseteq K^H$. Hence, g is injective.

For the other side, since K/F is Galois, so theorem 1.3 gives the existence of a polynomial $f(x) \in F[x]$ such that K is the splitting field of f which is separable. f(x) can also be viewed as $\in E[x]$. By theorem 1.3 again, K/E is Galois. So, f is well-defined.

Example (1) For finite fields \mathbb{F}_p , \mathbb{F}_{p^n} . Every subfield of \mathbb{F}_{p^n} is \mathbb{F}_{p^d} with d|n.

(2) For cyclotomic field extension $\mathbb{Q}(\zeta_n)/\mathbb{Q}$, every intermediate field of this extension is $\mathbb{Q}(\zeta_m)$ with m|n.

2.1 Linear algebra under Galois theory

[DF03]

Definition 2.1: Norm of Galois extensions

Let L/K/F be finite extensions with $\alpha \in K$, K/F finite and L/F Galois. The **norm** of α from K to F, denoted $\operatorname{Nm}_{K/F}(\alpha)$,

$$\operatorname{Nm}_{K/F}(\alpha) := \prod_{\sigma \in \{K \hookrightarrow \overline{F}\}} \sigma(\alpha)$$

In particular, if K/F is Galois, $\operatorname{Nm}_{K/F}(\alpha) := \prod_{\sigma \in \operatorname{Gal}(K/F)} \sigma(\alpha)$.

Remark Notice that this definition works broadly. Even for the extension K/F that is not Galois.

Theorem 2.3: Properties of norm

Let L/K/F be finite extensions with $\alpha \in K$, K/F finite, L/F Galois.

- (1) $\operatorname{Nm}_{K/F}: K \to F$ is a multiplicative map.
- (2) Let $K = F(\sqrt{D})$ be a quadratic extension. Then, $Nm_{K/F}(a + b\sqrt{D}) = a^2 Db^2$.
- (3) Let $m_{\alpha}(x) = x^d + a_{d-1}x^{d-1} + \dots + a_1x + a_0 \in F[x]$ be the minimal polynomial for $\alpha \in K$ over F. Let n := [K : F] and d|n, then $\operatorname{Nm}_{K/F}(\alpha) = (-1)^n a_0^{n/d}$.

Proof: • First, $\operatorname{Nm}_{K/F}(\alpha) \in F$, by showing it is fixed by any $\tau \in \operatorname{Gal}(K/F)$.

Suppose that $m_{\alpha}(x)$ has roots $\alpha_1, \alpha_2, \ldots, \alpha_n$, then $m_{\alpha}(x) = \prod_{i=1}^{d} (x - \alpha_i)$. Expand it and compare the coefficients with the form $x^d + a_{d-1}x^{d-1} + \cdots + a_1x + a_0$. $(-1)^d \alpha_0 \alpha_1 \cdots \alpha_d = a_0$. Since Galois group permutes the roots of $m_{\alpha}(x)$, there are d distinct elements of $m_{\alpha}(x)$.

Definition 2.2: Trace of Galois extensions

Let L/K/F be finite extensions with $\alpha \in K$, K/F finite and L/F Galois. The **trace** of α from K to F, denoted $\text{Tr}_{K/F}(\alpha)$,

$$\mathrm{Tr}_{K/F}(\alpha) := \sum_{\sigma \in \{K \hookrightarrow \overline{F}\}} \sigma(\alpha)$$

Theorem 2.4: Properties of trace

Let L/K/F be finite extensions with $\alpha \in K$, K/F finite, L/F Galois.

- (1) $\operatorname{Tr}_{K/F}: K \to F$ is an additive map.
- (2) Let $K = F(\sqrt{D})$ be a quadratic extension. Then, $\text{Tr}_{K/F}(a + b\sqrt{D}) = a^2 Db^2$.
- (3) Let $m_{\alpha}(x) = x^d + a_{d-1}x^{d-1} + \dots + a_1x + a_0 \in F[x]$ be the minimal polynomial for $\alpha \in K$ over F. Let n := [K : F] and d|n, then $\text{Tr}_{K/F}(\alpha) = (-1)^1 \frac{n}{d} a_{n-1}$.

Proof:

- 2.2 An application: Hilbert's Theorem 90
- 3 Galois groups of some certain extensions
- 3.1 Finite field extensions
- 3.2 Composite and simple extensions
- 3.3 Cyclotomic and Abelian extensions over O
- 3.4 Kummer extension
- 3.5 Artin-Schreier extension

4 Galois group of polynomials

In section 1, by 1.1, since Galois group is the special case of automorphism groups, we know that for a polynomial $f(x) \in F[x]$, $\operatorname{Gal}(f)$ permutes the roots of f. If f has degree n, the roots of f can be listed: $\{\alpha_1, \ldots, \alpha_n\}$ (counting multiplicity). So, the effect of $\operatorname{Gal}(f)$ on each α_i is what some subgroup of S_n does for i. In this sense, $\operatorname{Gal}(f)$ can be thought of as a subgroup of S_n

$$Gal(f) \hookrightarrow S_n$$

From another perspective, every finite group is asserted by Cayley's theorem to have a subgroup of S_N for some N. Seemingly, Cayley's theorem guarantees $\operatorname{Gal}(K/F) \hookrightarrow S_n$. But this is not the case, because we do not know in priori the N in S_N given by Cayley is exactly the n as the amount of roots of f.

This embedding tells us something: If K is the splitting field of $f(x) \in F[x]$ with $\deg f(x) = n$ over F, then $|\operatorname{Gal}(K/F)| \leq |S_n| = n!$. This is a group-theoretical way to explain why the degree of extension of a splitting field of f over $F \leq n!$.

If $f(x) = f_1(x) \cdots f_k(x)$ can be written as a product of irreducible polynomials (each $f_i(x)$ is irreducible). Then, $Gal(f) \leq Gal(f_1) \times \cdots \times Gal(f_k)$

How does Gal(f) act on the roots of f? (What properties does this action have?) First, this action is transitive.

4.1 Galois Groups as S_n and A_n

4.1.1 Symmetric functions and S_n

Definition 4.1: Elementary symmetric polynomials

Consider the action of $S_n \cap \{s_1, \ldots, s_n\}$, for each i, s_i is invariant under $\sigma \in S_n$, i.e. $s_{\sigma(i)} = s_i$. Then, consider an action $S_n \cap F(x_1, \ldots, x_n)$, by permuting the indexes. Then we have the general definition of symmetric polynomial

Definition 4.2: Symmetric polynomial

Theorem 4.1: Fundamental theorem of symmetric function

Definition 4.3: General polynomial

Let x_1, x_2, \ldots, x_n be indeterminates over a field F. The general polynomial over K wit respect to these indeterminates is

$$(x-x_1)(x-x_2)\cdots(x-x_n)$$

Expand this polynomial, we get $(x-x_1)(x-x_2)\cdots(x-x_n)=x^n-s_1x^{n-1}+s_2x^{n-2}+\cdots+(-1)^ns_n$. So, each s_i is an expression of these indeterminates. Then, consider the field by joining s_1,\ldots,s_n , $F(s_1,\ldots,s_n)$, $F(x_1,x_2,\ldots,x_n)$ is the splitting field of $F(s_1,\ldots,s_n)$ (it contains all roots x_1,\ldots,x_n , and $F(x_1,\ldots,x_n)$ is the smallest field generated by those roots). Hence, $F(x_1,x_2,\ldots,x_n)/F(s_1,s_2,\ldots,s_n)$ is **Galois**. From now on, let's denote $F(\underline{x}):=F(x_1,\ldots,x_n)$ and $F(\underline{s}):=F(s_1,\ldots,s_n)$

Proposition 4.1: $Gal(F(\underline{x})/F(\underline{s}))$

$$Gal(F(\underline{x})/F(\underline{s})) = S_n$$

4.1.2 More on symmetric polynomials

Project: Write symmetric polynomials into elementary symmetric polynomials: Newton's formula for symmetric polynomials: [Mos19]

4.1.3 Discriminant and A_n

4.2 Compute the Galois groups over polynomials

Given any polynomial $f(x) \in \mathbb{F}_p[x]$, we want to find $\operatorname{Gal}(f(x))$. Let \mathbb{K} be the splitting field of f(x) over \mathbb{F}_p . $\|\mathbb{K}/\mathbb{F}_p\|$ is a finite extension. From $\|\mathbb{F}_p\|$, $\mathbb{K} = \mathbb{F}_{p^k}$ for some k. So, $\operatorname{Gal}(f(x)) = \operatorname{Gal}(\mathbb{F}_{p^k}/\mathbb{F}_p) = \langle p \rangle$. More precisely, write $f(x) = \prod_i f_i(x)$ into some irreducible polynomials. The Galois group will be a cyclic group

More precisely, write $f(x) = \prod_i f_i(x)$ into some irreducible polynomials. The Galois group will be a cyclic group of order $i(\deg f_i)$.

What is the relation between this k and $n := \deg f(x)$? Actually, they are not relevant. k could be greater than, less than or equal to n. Here we give three examples:

- (1) For an irreducible polynomial f(x), k = n. Consider $f(x) = x^2 + x + 1 \in \mathbb{F}_2[x]$.
- (2) Consider $f(x) = x(x-1) \in \mathbb{F}_3[x]$. The roots 0, 1 are in \mathbb{F}_3 . So, $\mathbb{F}_3(0,1) = \mathbb{F}_3$ and $Gal(f(x)) = \{id\}$. In this case, k = 1 < n = 2.
- (3) Consider f(x) = g(x)h(x), where $g(x) = x^2 + x + 1$ and $h(x) = x^3 + x + 1$. g(x), f(x) are irreducible over \mathbb{F}_2 . So, the roots g(x) are in \mathbb{F}_{2^2} and the roots of h(x) are in \mathbb{F}_{2^3} . k = (2,3) = 6 > n = 5.

6

4.3 Inverse Galois problem

5 Application to radical solutions of polynomials

Galois theory is developed to answer the question: Does any quintic polynomial (over \mathbb{Q}) have a solution formula in radicals? The answer is no. To rephrase 'radicals', we formulate this by introducing 'radical extensions' and prolong a chain of field extension till it enclose the solution. To be more straight-forward, this process is for example, given $\alpha := \frac{\sqrt{3+\sqrt{5}}}{2}$ and starting from \mathbb{Q} . First adding $\sqrt{5}$ into \mathbb{Q} to get $\mathbb{Q}(\sqrt{5})$. But, $\alpha \notin \mathbb{Q}(\sqrt{5})$. ??...

5.1 Solvable and radical extensions

5.2 The main theorem

Theorem 5.1: (Abel, Galois)

Let F be a field of $\operatorname{char} K = 0$, $f(x) \in F[x]$ and K be a splitting field of F with respect to f(x). \exists a finite extension K'/K having a root tower over $F \Leftrightarrow \operatorname{Gal}(K'/F)$ is solvable

Proof:

Lemma 5.1 (Condition for irreducibility) Let F be a field of any characteristic and p be a prime number. If $x^p - a \in F[x]$ (or $a \in F$) has no solution in F, then $x^p - a$ is irreducible over F.

```
proof of lemma: (1) First assume that \operatorname{char} F \neq p. (2) Then assume that \operatorname{char} F = p \clubsuit
```

- 6 Transcendental extensions, inseparable extensions and infinite Galois groups
- 7 The Galois theory of étale algebras

provided by [Mil22]

References

- [DF03] David S. Dummit and Richard M. Foote. Abstract Algebra. 3rd. Hoboken, NJ: John Wiley & Sons, 2003. ISBN: 978-0-471-43334-7.
- [Mos19] Milan Mossé. Newton's Identities. Course notes for CS250 (Algebraic Methods in Computer Science), Stanford University. Winter 2019 Lecture Notes. 2019. URL: https://web.stanford.edu/~marykw/classes/CS250_W19/Netwons_Identities.pdf.
- [Mil22] James S. Milne. Fields and Galois Theory (v5.10). Available at www.jmilne.org/math/. 2022.
- [Connd] Keith Conrad. Fundamental Theorems of Galois Theory. Expository notes, University of Connecticut. From the author's Mathematical Blurbs collection. n.d. URL: https://kconrad.math.uconn.edu/blurbs/galoistheory/galoiscorrthms.pdf (visited on 08/20/2023).