ПОРТИРОВАНИЕ ТРЕХУРОВНЕВОЙ СИСТЕМЫ ПОДКЛЮЧЕНИЯ МАТЕМАТИЧЕСКИХ БИБЛИОТЕК НА ПЛАТФОРМУ .NET

Автор: Максим Андреевич Максимов

Научный руководитель: Вадим Валериевич Монахов

Рецензент: Евгений Александрович Яревский

Введение

- Анализ особенностей вызова неуправляемого (unmanaged) кода из CLR (Common Language Runtime)
- Изучение способов вызова из CLR DLL-библиотек, написанных на внешних по отношению к .NET языках программирования.
- Разработка пакета NLAPACK, обеспечивающего унифицированный доступ из Common Language Runtime(CLR) к библиотекам LAPACK и BLAS.
- Сравнение производительности разработанного пакета NLAPACK с JavaLapack и пакетами линейной алгебры, написанными для платформы .NET.

Трехуровневая система подключения математических библиотек

- Нижний уровень (ядро)
- Средний уровень (оболочка)
- Верхний уровень

Архитектура системы NLAPACK

Сравнение производительности

- Генерация набора входных данных
- Пробный запуск исследуемой функции
- Генерация нового набора входных данных
- Запуск исследуемой функции с измерением времени выполнения
- Каждый тест запускался заданное число раз (для уменьшения погрешности измерений для небольших размеров матриц), затем результаты усреднялись

Время решения СЛАУ для вещественных и комплексных матриц NxN систем NLapack, JavaLapack

Время решения СЛАУ для вещественных матриц NxN систем NLapack, JavaLapack

N	Ratio
250	1
500	1
750	1.018848168
1000	1.02122449
1250	1.018378174
1500	0.981974922
1750	0.986715235
2000	1.011571797
2250	0.990165742
2500	0.980814541
2750	0.983734358
3000	1.0076157
3250	1.014999028
3500	0.984645914

Время решения СЛАУ для комплексных матриц NxN систем NLapack, JavaLapack

N	Ratio
250	1.009174
500	1.019778
750	1.009118
1000	1.018249
1250	1.007535
1500	0.999316
1750	1.019002
2000	0.987464
2250	0.995315
2500	1.013183
2750	0.995709
3000	1.008825
3250	1.026569
3500	1.002743

Отношение времени решения СЛАУ для комплексных матриц к вещественным NxN для библиотеки NLapack

Время выполнения SVD – разложения для вещественных и комплексных матриц NxN систем NLapack, JavaLapack

Отношение времени выполнения SVD-разложения для вещественных(Ratio_{real}) и комплексных(Ratio_{complex}) матриц для для пакета NLapack к пакету JavaLapack

N	Ratio _{real}	Ratio _{complex}
500	0.928266	0.99708
1000	0.989342	1.012897
1500	0.943864	1.002358
2000	1.059294	0.944901
2500	0.947748	0.994446
3000	1.037273	1.004995

Время выполнения умножения вещественных матриц NxN библиотек NLapack, Meta Numerics, DotNetMatrix

Время выполнения умножения вещественных матриц NxN библиотек NLapack, Meta Numerics, DotNetMatrix

Отношение времени выполнения умножения вещественных матриц NxN библиотек Nlapack к библиотекам Meta Numerics, DotNetMatrix

N	MetaNumerics	DotNetMatrix	CSLAPACK
500	2.668712	5.840491	14.67485
1000	2.024031	4.35172	12.24249
1500	2.01023	4.240569	12.7289
2000	1.895881	4.266832	11.65704
2500	2.014138	4.184552	10.54045
3000	1.945629	4.086922	9.034295

Выводы

- Проведено портирование трехуровневой системы подключения математических библиотек на платформу .NET
- Результаты измерения производительности показали, что производительность системы NLapack находится на уровне JavaLapack.
- Показано, что производительность JavaLapack и NLapack заметно превосходит производительность математических библиотек, имеющихся в настоящее время для платформы .NET.
- Разработана методика по портированию неуправляемого(unmanaged) C++ кода на платформу .NET, а также методика подключения к .NET-коду библиотек, написанных на языке Fortran.

Спасибо за внимание!

- Репозиторий исходного кода:
 https://subversion.assembla.com/svn/nlapack/
- Контактный email:
 m_a_maximov@inbox.ru