Collateral Constraints and Asset Composition

Chengzi Yi

European University Institute

26/11/2024

Capital Asset Composition of Chinese Listed Manufacturing Firms

Source: Financial Reports of Listed Companies in China. Based on asset types classified by the author.

by industry

- Real Estate Capital (RE): Buildings, houses, and land
- Non-real Estate Capital (Non-RE): Equipment, machinery, and other facilities

Capital Composition and Capital Size

Source: Financial Reports of Listed Companies in China. Based on asset types classified by the author.

Introduction

Asset composition between real estate capital (RE) and non-real estate capital (Non-RE) for Chinese firms

- Distinct capital inputs for production.
- Distinct adjustment costs.
- Differences in pledgeability.
 - Credit constraints → firms' precautionary investment (Perez-Orive, 2016; Aghion et al., 2010)
 - ▶ Binding collateral constraints → capital investment (Gan, 2007; Chaney et al., 2012)

Research Questions

How do collateral constraints shape firms' investment allocation between RE and Non-RE?

• Effect of collateral constraints on aggregate outcomes.

How do variations in real estate pledgeability influence firms' overall capital investment decisions?

• Effect of change in RE pledgeability in China.

This Paper

- A capital adjustment model with two capital inputs.
 - CES aggregator in production
 - Convex and non-convex adjustment costs
 - Collateral constraints
- Estimates the revenue function and idiosyncratic shock process using GMM.
- Estimates adjustment costs and pledgeability parameters using SMM:
 - \Longrightarrow Compares the "Goodness of fit" across models with different frictions.
- Decomposes the effects of production technology, adjustment costs, and collateral constraints on asset composition.
- Performs a counterfactual exercise under a real estate crisis scenario.

Takeaways

- RE and Non-RE are perfect complement in production.
 - ▶ ⇒ Optimal asset composition in a frictionless economy.
- Higher fixed cost of adjusting real estate capital.
 - equivalent to 24% of the period's cash flow if + investment.
 - ▶ ⇒ Non-degenerate distribution of asset composition.
- Higher pledgeability of real estate capital.
 - ▶ RE secures external financing equivalent to 2.55 units of RE. Non-RE secures external financing equivalent to 2.33 units of Non-RE.
 - ightharpoonup \Rightarrow Smaller firms allocate a larger share of capital to real estate.

Takeaways

- Effect of collateral constraints: By relaxing collateral constraints,
 - Average RE/Non-RE ratio ↓ by 16%.
 - Aggregate productivity(TFPR) ¹ ↑ by 5%. Aggregate capital ↓ by 4%. Aggregate revenue ↓ by 0.8%.
- Effect of Δ in RE pledgeability: If RE is not pledgeable,
 - ► Average RE/Non-RE ratio ↓ by 9%.
 - Aggregate productivity(TFPR) ↓ by 3.6%. Aggregate capital ↑ by 3%. Aggregate revenue ↓ by 0.3%.

¹aggregation weighted by capital size.

Literature

- Real Estate and Collateral Constraints: Gan (2007), Chaney et al. (2012), Catherine et al. (2022), Wu et al. (2015), Chen et al. (2015)
 - ⇒ Endogenous decisions on real estate assets. Evidence for Chinese Economy.
- Financial Frictions and Investment Composition: Matsuyama (2007), Aghion et al. (2010), Perez-Orive (2016), Ottonello and Winberry (2023)
 - \Rightarrow Composition between RE and Non-RE.
- Non-convex Adjustment Cost and Investment Lumpiness: Abel and Eberly (1994), Doms and Dunne (1998), Cooper and Haltiwanger (2006), Yan (2012), Chiavari and Goraya (2021), Kermani and Ma (2023)
 - \Rightarrow Adjustment costs of RE and Non-RE.

Table of Contents

Capital Adjustment Model

Structural Estimation

Data

Pre-set Parameters

Estimation Results

Counterfactual Exercise

Revenue Function

- Idiosyncratic shock: z. $log(z_t) = \rho_z log(z_{t-1}) + \sigma_z \xi_t$, $\xi_t \sim N(0,1)$
- Non-real estate capital: k
- Real estate capital: h

Decreasing-return-to-scale Revenue Function

$$\pi(k,h,z)=z\{(a^{\frac{1}{\sigma}}k^{\frac{\sigma-1}{\sigma}}+(1-a)^{\frac{1}{\sigma}}h^{\frac{\sigma-1}{\sigma}})^{\frac{\sigma}{\sigma-1}}\}^{\alpha},\ \alpha\leq 1.$$

- if $\sigma \to 0$, $min\{\frac{k}{a}, \frac{h}{1-a}\}$.
- if $\sigma \to +\infty$, k + h.
- if $\sigma \to 1$, $(\frac{k}{a})^a(\frac{h}{1-a})^{1-a}$.

Adjustment Costs

Cost of adjusting k

$$C(k,k') = \begin{cases} x_k + \frac{\gamma}{2} \frac{x_k^2}{k} + F_k k & \text{if } x_k \neq 0; \\ 0 & \text{if } x_k = 0; \end{cases}$$

Cost of adjusting *h*

$$\tilde{C}(h,h') = \begin{cases} p_h x_h + \frac{\omega}{2} \frac{x_h^2}{h} + F_h h & \text{if } x_h \neq 0; \\ 0 & \text{if } x_h = 0; \end{cases}$$

where $x_k = k' - (1 - \delta_k)k$, and $x_h = h' - (1 - \delta_h)h$.

- γ/ω : gradual building/installing process, capacity constraints of the seller, limitation of financial capacities...
- F_k/F_h : indivisibility, worker retraining, organizational restructuring...

Adjustment Costs

Cost of adjusting k

$$C(k,k') = \begin{cases} x_k + \frac{\gamma}{2} \frac{x_k^2}{k} + F_k k & \text{if } x_k \neq 0; \\ 0 & \text{if } x_k = 0; \end{cases}$$

Cost of adjusting h

$$\tilde{C}(h,h') = \begin{cases} p_h x_h + \frac{\omega}{2} \frac{x_h^2}{h} + F_h h & \text{if } x_h \neq 0; \\ 0 & \text{if } x_h = 0; \end{cases}$$

where $x_k = k' - (1 - \delta_k)k$, and $x_h = h' - (1 - \delta_h)h$.

- γ/ω : gradual building/installing process, capacity constraints of the seller, limitation of financial capacities...
- F_k/F_h : indivisibility, worker retraining, organizational restructuring...

Adjustment Costs

Cost of adjusting k

$$C(k,k') = \begin{cases} x_k + \frac{\gamma}{2} \frac{x_k^2}{k} + F_k k & \text{if } x_k \neq 0; \\ 0 & \text{if } x_k = 0; \end{cases}$$

Cost of adjusting h

$$\tilde{C}(h,h') = \begin{cases} p_h x_h + \frac{\omega}{2} \frac{x_h^2}{h} + F_h h & \text{if } x_h \neq 0; \\ 0 & \text{if } x_h = 0; \end{cases}$$

where $x_k = k' - (1 - \delta_k)k$, and $x_h = h' - (1 - \delta_h)h$.

- γ/ω : gradual building/installing process, capacity constraints of the seller, limitation of financial capacities...
- F_k/F_h : indivisibility, worker retraining, organizational restructuring...

Firm's Problem

Extensive Margin

$$V(k, h, z) = \max\{V^{a}(k, h, z), V^{k}(k, h, z), V^{h}(k, h, z), V^{i}(k, h, z)\}$$

- $V^a(k, h, z)$ is the value if adjusting k and h.
- $V^k(k, h, z)$ is the value if only adjusting k.
- $V^h(k, h, z)$ is the value if only adjusting h.
- $V^{i}(k, h, z)$ is the value of inaction.

Firm's Problem

Intensive Margin

$$V^{a}(k, h, z) = \max_{k', h' > 0} \pi(k, h, z) - C(k, k') - \tilde{C}(h, h') + \beta \mathbb{E}V(k', h', z')$$
s.t. $C(k, k') + \tilde{C}(h, h') \leq \underbrace{\pi(k, h, z)}_{internal funding} + \underbrace{\phi_{k}k(1 - \delta_{k}) + \phi_{h}p_{h}h(1 - \delta_{h})}_{external funding}$

Firm's Problem

Intensive Margin

$$V^{a}(k, h, z) = \max_{k', h' > 0} \pi(k, h, z) - C(k, k') - \tilde{C}(h, h') + \beta \mathbb{E}V(k', h', z')$$
s.t. $C(k, k') + \tilde{C}(h, h') \leq \underbrace{\pi(k, h, z)}_{internal \ funding} + \underbrace{\phi_{k}k(1 - \delta_{k}) + \phi_{h}p_{h}h(1 - \delta_{h})}_{external \ funding}$

$$V^{k}(k, h, z) = \max_{\substack{k' > 0}} \pi(k, h, z) - C(k, k') + \beta \mathbb{E}V(k', h(1 - \delta_{h}), z')$$
s.t. $C(k, k') \leq \pi(k, h, z) + \phi_{k}k(1 - \delta_{k}) + \phi_{h}p_{h}h(1 - \delta_{h})$

$$V^{i}(k, h, z) = \pi(k, h, z) + \beta \mathbb{E} V(k(1 - \delta_{k}), h(1 - \delta_{h}), z')$$

cash/debt dynamics in data

Table of Contents

Capital Adjustment Model

Structural Estimation

Data

Pre-set Parameters

Estimation Results

Counterfactual Exercise

Data

- Financial Reports of Chinese Listed Manufacturing Firms (CSMAR). Unbalanced panel with 2,137 firms and 21,783 firm-year observations from 2003 to 2019.
 - classification of Non-RE and RE from Financial Statement Appendix.
 - ightharpoonup stock values of Non-RE (k) and RE(h) by perpetual inventory method:

$$k_{t+1} = k_t(1 - \delta_k) + i_t^k; h_{t+1} = h_t(1 - \delta_h) + i_t^h.$$

where $\delta_k = 0.1275$ and $\delta_h = 0.0487$.

- lacksquare investment rate: $rac{i_t^k}{k_t}; rac{i_t^k}{h_t}$. Distribution Trend
- variables adjusted for year-fixed effects.

Revenue Function Estimation

$$\pi(k, h, z) = z \{ \underbrace{\left(a^{\frac{1}{\sigma}} k^{\frac{\sigma-1}{\sigma}} + (1 - a)^{\frac{1}{\sigma}} h^{\frac{\sigma-1}{\sigma}}\right)^{\frac{\sigma}{\sigma-1}}}_{\mathbf{K}} \}^{\alpha} = z \mathbf{K}^{\alpha},$$

$$log(z_t) = \rho_z log(z_{t-1}) + \sigma_z \xi_t$$

$$\log \pi_{it} = \frac{\rho_{z}}{\log \pi_{it-1}} + \frac{\alpha}{\alpha} \cdot (\log \mathbf{K}_{it} - \frac{\rho_{z}}{\log \mathbf{K}_{it-1}}) + \sigma_{z} \xi_{t}$$

Orthogonality conditions: ξ_t orthogonal to k_s , h_s , and π_{s-1} , $\forall s \leq t$.

Instruments: $log(k_s), log(h_s), s \in \{t, t-1, t-2\}; log(\pi_s), s \in \{t-1, t-2\}$

Revenue Function Estimation

Figure: Objective Function

Revenue Function Estimation

Figure: Revenue Function Estimation

Note: The GMM is performed to estimate ρ_z , α , and a while fixing σ at different values. Panel (a), (b), (c) present the parameter estimates as functions of σ , with 95% confidence intervals included.

Pre-defined Parameters

	Value	Description	Source
β	0.9479	discount factor	$\frac{1}{1+r}$, $r = 0.055$
p	1.5522	relative price of h	sample mean
$\delta_{\pmb{k}}$	0.1275	depreciation rate of k	in-use depreciation rate
δ_{h}	0.0487	depreciation rate of h	in-use depreciation rate
α	0.7659	curvature of revenue function	GMM estimation
σ	0.0500	CES elasticity of substitution	pprox Leontief aggregator
a	0.6857	share of k	GMM estimation
$ ho_{z}$	0.7077	idiosync. prof.: persistency	GMM estimation
$\sigma_{\it z}$	0.5716	idiosync. prof.: stand. dev.	GMM estimation

[•] $a = 0.6857 \Rightarrow \frac{h}{k} = \frac{1-a}{a} \approx 0.4584$.

Pre-defined Parameters

	Value	Description	Source
β	0.9479	discount factor	$\frac{1}{1+r}$, $r = 0.055$
p	1.5522	relative price of h	sample mean
$\delta_{\pmb{k}}$	0.1275	depreciation rate of k	in-use depreciation rate
δ_{h}	0.0487	depreciation rate of h	in-use depreciation rate
α	0.7659	curvature of revenue function	GMM estimation
σ	0.0500	CES elasticity of substitution	pprox Leontief aggregator
a	0.6857	share of k	GMM estimation
$ ho_{z}$	0.7077	idiosync. prof.: persistency	GMM estimation
$\sigma_{\it z}$	0.5716	idiosync. prof.: stand. dev.	GMM estimation

[•] $a = 0.6857 \Rightarrow \frac{h}{k} = \frac{1-a}{a} \approx 0.4584$.

Structural Estimation

$$\hat{\Theta}_{\textit{smm}} = \mathop{\textit{argmin}}_{\Theta}(M - \tilde{M}(\Theta))'W(M - \tilde{M}(\Theta))$$

Structural parameters:

Model	Restr. Param.	Est. Param.	Model Description	
AC	$\phi_{\mathbf{k}} = \phi_{\mathbf{h}} = +\infty$	$\gamma, F_{k}, \omega, F_{h}$	Asym. Adj. Costs	
AC+FC(limit)	$\phi_{k} = \phi_{h} = 0$	$\gamma, extstyle{m{ extstyle F_k}}, \omega, extstyle{m{ extstyle F_h}}$	Asym. Adj. Costs, Sym. Pledgeability	
AC + FC(sym)	$\phi_{\mathbf{k}} = \phi_{\mathbf{h}} = \phi$	$\gamma, extstyle{ extstyle F_{ extstyle k}}, \omega, extstyle{ extstyle F_{ extstyle h}}, \phi$	Asym. Adj. Costs, Sym. Pledgeability	
AC+FC	-	$\gamma, F_k, \omega, F_h, \phi_k, \phi_h$	Asym. Adj. Costs, Asym. Pledgeability	

- Targeted Moments: $corr(i'_k, i_k), corr(i'_h, i_h), spike^+_k, spike^+_h, \overline{h/k}, med(h/k)$ detail
- ullet Weighting Matrix: Weighting matrix = (VCV matrix of data moments) $^{-1}$ detail

Table: Parameter Estimates

	γ	F_k	ω	F_h	$\phi_{\pmb{k}}$	ϕ_{h}
AC	0.0068	0.0015	0.0992	0.2541	$+\infty$	$+\infty$
	(0.0010)	(0.0015)	(0.0278)	(0.0064)		
AC+FC(limit)	0.0200	0.0021	0.0144	0.3983	0.0000	0.0000
	(0.0153)	(0.0006)	(0.0094)	(0.0179)		

	$corr(i'_k, i_k)$	$corr(i'_h, i_h)$	$spike_k^+$	$\mathit{spike}_{\mathit{h}}^{+}$	ave(h/k)	med(h/k)	Dist.
AC	0.0080	0.0293	0.2393	0.1420	0.6951	0.4822	50.80
AC+FC(limit)	0.0832	0.0661	0.1748	0.0978	0.5558	0.4979	419.66
Data	0.0508	0.0281	0.3527	0.2166	0.6549	0.4407	-

Table: Parameter Estimates

	γ	F_k	ω	F_h	$\phi_{\pmb{k}}$	$\phi_{ extsf{h}}$
AC	0.0068	0.0015	0.0992	0.2541	$+\infty$	$+\infty$
	(0.0010)	(0.0015)	(0.0278)	(0.0064)		
AC+FC(limit)	0.0200	0.0021	0.0144	0.3983	0.0000	0.0000
	(0.0153)	(0.0006)	(0.0094)	(0.0179)		

	$\overline{h/k}_{Q1}$	$\overline{h/k}_{Q2}$	$\overline{h/k}_{Q3}$	$\overline{h/k}_{Q4}$	$\overline{h/k}_{Q5}$	skew(h/k)
AC	1.20	0.65	0.67	0.47	0.48	3.23
AC+FC(limit)	0.55	0.56	0.58	0.58	0.51	1.84
Data	0.94	0.80	0.64	0.51	0.38	3.31

Table: Parameter Estimates

	γ	F_k	ω	F_h	$\phi_{\pmb{k}}$ $\phi_{\pmb{h}}$
$AC {+} FC(sym.)$					
	(0.0012)	(0.0005)	(0.0087)	(0.0078)	(0.2053)

	$corr(i'_k, i_k)$	$corr(i_h', i_h)$	$spike_k^+$	$\mathit{spike}_{\mathit{h}}^{+}$	ave(h/k)	med(h/k)	Dist.
AC + FC(sym.)	0.0180	0.0502	0.2441	0.1406	0.6826	0.4754	53.09
Data	0.0508	0.0281	0.3527	0.2166	0.6549	0.4407	-

Table: Parameter Estimates

	γ	F_k	ω	F_h	$\phi_{\pmb{k}}$ $\phi_{\pmb{h}}$
$AC {+} FC(sym.)$					
	(0.0012)	(0.0005)	(0.0087)	(0.0078)	(0.2053)

	$\overline{h/k}_{Q1}$	$\overline{h/k}_{Q2}$	$\overline{h/k}_{Q3}$	$\overline{h/k}_{Q4}$	$\overline{h/k}_{Q5}$	skew(h/k)
$AC {+} FC(sym.)$	1.10	0.65	0.66	0.47	0.52	3.45
Data	0.94	0.80	0.64	0.51	0.38	3.31

Table: Parameter Estimates

	γ	F_k	ω	F_h	$\phi_{m{k}}$	$\phi_{ extsf{ extit{h}}}$
AC + FC	0.0061	0.0029	0.0233	0.2684	2.3283	2.5466
	(0.0097)	(0.0048)	(0.0925)	(0.0425)	(1.3100)	(0.3221)

	$corr(i'_k, i_k)$	$corr(i'_h, i_h)$	spike_k^+	$\mathit{spike}^+_{\mathit{h}}$	ave(h/k)	med(h/k)	Dist.
AC + FC	0.0204	0.0269	0.2551	0.1589	0.6603	0.4728	36.09
Data	0.0508	0.0281	0.3527	0.2166	0.6549	0.4407	-

Table: Parameter Estimates

	γ	F_k	ω	F_h	$\phi_{m{k}}$	$\phi_{ extsf{ extit{h}}}$
AC + FC				0.2684		
	(0.0097)	(0.0048)	(0.0925)	(0.0425)	(1.3100)	(0.3221)

	$\overline{h/k}_{Q1}$	$\overline{h/k}_{Q2}$	$\overline{h/k}_{Q3}$	$\overline{h/k}_{Q4}$	$\overline{h/k}_{Q5}$	skew(h/k)
AC + FC	1.20	0.62	0.51	0.48	0.47	3.69
Data	0.94	0.80	0.64	0.51	0.38	3.31

Discussion on Results

- Model AC matches the data moments better than model AC+FC(limit).
 - Convex costs are estimated to be higher in model AC.
- Model ACFC matches the targeted moments, as well as the untargeted negative correlation between capital size and the share of real estate in total capital.

Discussion on Results

- Model AC matches the data moments better than model AC+FC(limit).
 - Convex costs are estimated to be higher in model AC.
- Model ACFC matches the targeted moments, as well as the untargeted negative correlation between capital size and the share of real estate in total capital.
- High fixed costs of adjusting h.
 - ▶ $F_h = 0.268 \Leftrightarrow$ equivalent to 24% of π on average if positive investment on h.
 - ightharpoonup \Rightarrow Variation in asset composition.
- Higher pledgeability of h.
 - ► RE secures external financing equivalent to 2.55 units of RE. Non-RE secures external financing equivalent to 2.33 units of Non-RE.
 - ightharpoonup \Rightarrow negative correlation between h/k ratio and capital size
 - upper bounds on the pledgeable values of capital assets

Role of Collateral Constraints

Figure: h/k ratio and Capital Size in Simulation and in Datas

Role of Collateral Constraints

Figure: h/k ratio and Capital Size in Simulation

Binding Constraints

Note: A firm is constrained if its constrained value is less than 97% of its unconstrained value.

Table of Contents

Capital Adjustment Mode

Structural Estimation

Data

Pre-set Parameters

Estimation Results

Counterfactual Exercise

Effect of Frictions

Table: Counterfactual Exercise on Effect of Frictions

model	γ	F_k	ω	F_h	$\phi_{\pmb{k}}$	ϕ_{h}
baseline	0.006	0.003	0.023	0.268	2.328	2.547
no FC	0.006	0.003	0.023	0.268	$+\infty$	$+\infty$
no FC & no AC	0.006	0.000	0.023	0.000	$+\infty$	$+\infty$

Table: Counterfactual Exercise Results

model	$\overline{h/k}$	$\overline{h/k}$, %	agg. profitability	agg. revenue	agg. fixed assets
baseline	0.656		1	1	1
no FC	0.549	-16%	1.050	0.992	0.960
no FC & no AC	0.471	-28%	1.032	1.318	1.367

Change in RE Pledgeability

Table: Counterfactual Exercise on Zero RE Pledgeability

model	γ	F_k	ω	F_h	$\phi_{\pmb{k}}$	$\phi_{\it h}$
baseline	0.006	0.003	0.023	0.268	2.328	2.547
$\phi_h = 0$	0.006	0.003	0.023	0.268	2.328	0.000

Table: Counterfactual Exercise Results

model	$\overline{h/k}$	$\overline{h/k}$, %	agg. profitability	agg. revenue	agg. fixed assets
baseline		00/	1	1	1
$\phi_h = 0$	0.596	-9%	0.964	0.997	1.030

Conclusion

- A characterization of firm capital adjustment dynamics in RE and non-RE assets of Chinese firms.
- High fixed cost in adjusting RE.
- Collateral constraints and heterogenous pledgeability help to explain the larger share of real estate in the asset composition for smaller firms.
- If no financial frictions, the average RE/Non-RE ratio ↓ by 16%. Aggregate profitability ↑ by 5%. Aggregate revenue ↓ by 0.8%.
- If real estate is not pledgeable, average RE/Non-RE ratio \downarrow by 9%. Aggregate profitability \downarrow by 3.6%. Aggregate revenue \downarrow by 0.3%.

Thank You!

Capital Composition of Chinese Listed Firms, by industry (back)

Cash/Debt dynamics around Investment Spikes (back)

Distribution of Investment Rates

Figure: Distribution of Investment Rates

Source: Financial Reports of Listed Companies in China. Based on asset types classified by the author.

Trend of Investment Rates

Figure: Trend of Investment Rates

Source: Financial Reports of Listed Companies in China. Based on asset types classified by the author.

Revenue Function Estimation (back)

	$\widehat{ ho_{z}}$	$\widehat{\alpha}$	â	$\widehat{\sigma}$	Dist
$\sigma=0.05$	0.7077 (0.011)	0.7659 (0.012)	0.6857 (0.012)	n.a.	327.56
$\sigma = 0.5375$	0.7187	0.7505	0.5968	n.a.	363.91
	(0.011) 0.7345	(0.012) 0.7277	(0.013) 0.5088		
$\sigma = 1.0250$	(0.012)	(0.012)	(0.023)	n.a.	386.43
$\sigma = 1.5125$	0.7430 (0.012)	0.7188 (0.013)	0.4196 (0.033)	n.a.	394.01
$\sigma = 2.00$	0.9000 (0.008)	0.4092 (0.021)	0.7318 (0.080)	n.a.	421.39

Note: The estimates are obtained with a two-step GMM estimator. The sample is an unbalanced panel with 2092 firms and 17 years (2003-2019).

Revenue Function Estimation (back)

	$\widehat{ ho_{z}}$	\widehat{lpha}	â	$\widehat{\sigma}$	Dist
- 0.05	0.8469	0.6497	0.7255		02.55
$\sigma = 0.05$	(0.015)	(0.032)	(0.026)	n.a.	83.55
$\sigma = 0.5375$	0.8495	0.6352	0.6471	n.a.	87.22
$\theta = 0.5575$	(0.015)	(0.031)	(0.030)	II.a.	01.22
$\sigma = 1.0250$	0.8497	0.6350	0.5744	n.a.	87.16
$\theta = 1.0250$	(0.015)	(0.031)	(0.052)	II.a.	
$\sigma=1.5125$	0.8502	0.6342	0.5082	n.a.	86.96
$\sigma = 1.3123$	(0.015)	(0.031)	(0.079)	II.a.	
$\sigma = 2.00$	0.8505	0.6335	0.4448		06.06
	(0.015)	(0.031)	(0.105)	n.a.	86.86

Note: The estimates are obtained with a two-step GMM estimator. The sample is a balanced panel with 785 firms and 5 years (2015-2019).

Data Moments

Table: Targeted Data Moments

Value	Description	Definition
0.0508	serial correlation of i_k	$corr(i'_k, i_k)$
0.0281	serial correlation of i_h	$corr(i'_h, i_h)$
0.3527	positive spikes of i_k	$spike_k^+ \equiv Pr(i_k > 30\%)$
0.2166	positive spikes of i_h	$spike_h^+ \equiv Pr(i_h > 30\%)$
0.6549	sample average of h/k	$\frac{1}{h/k}$
0.4407	sample median of h/k	med(h/k)

Weighting Matrix

Table: Weighting Matrix

	$corr(i'_k, i_k)$	$corr(i'_h, i_h)$	$spike_k^+$	$spike_h^+$	ave(h/k)	med(h/k)
$corr(i'_k, i_k)$	11,122					
$corr(i_h^{\gamma}, i_h)$	-2,141	13,187				
$spike_k^+$	-3,117	-1,773	244,679			
$spike_h^+$	-600	-397	-46,365	188,842		
ave(h/k)	819	-502	-6,245	-3,864	23,083	
med(h/k)	-1,591	1,153	2,946	4,091	-22,160	36,006

