\underline{PC}

Rappels Sup: Fonctions usuelles

1. Fonctions polynômes et fractions rationnelles

 $f: x \longmapsto \sum_{k=0}^{n} a_k x^k$ avec $a_n \neq 0$ alors f est continue (même c^{∞}) sur \mathbb{R} $f(x) \sim a_n x^n$ en $+\infty$ et en $-\infty$ $x \longmapsto ax$ est linéaire et $x \longmapsto ax + b$ est affine

Une fraction rationnelle est le quotient de deux polynômes définie et continue sur R privé des pôles (zéros du dénominateur)

2. Logarithme néperien

Si $x \in \mathbb{R}_+^*$ $\ln(x) = \int_1^x \frac{dt}{t}$

ln est continue (et même c^{∞}) sur \mathbb{R}_+^* de dérivée $x \mapsto \frac{1}{x}$

 $\forall (x,y) \in (\mathbb{R}_+^*)^2 \quad \ln(xy) = \ln(x) + \ln(y) \qquad \ln\left(\frac{x}{y}\right) \stackrel{x}{=} \ln(x) - \ln(y) \qquad \ln(x^r) = r \ln x$

Si $a \in \mathbb{R}_+^* \setminus \{1\}$, on définit le logarithme en base a par $\log_a(x) = \frac{\ln(x)}{\ln(a)}$

Si a=10 , on parle du logarithme décimal noté log ou \log_{10} .

3. Exponentielle

exp est la solution de l'équation différentielle $y^\prime=y$ prenant la valeur 1 en 0

exp est continue (et même c^{∞}) sur $\mathbb R$ de dérivée elle-même

exp est la fonction réciproque de ln : $\forall \ x \in \mathbb{R} \quad \forall \ y \in \mathbb{R}_+^* \quad y = e^x \Longleftrightarrow x = \ln y$

$$\forall (x,y) \in \mathbb{R}^2 \quad e^{x+y} = e^x e^y \qquad e^{x-y} = \frac{e^x}{e^y} \qquad (e^x)^r = e^{rx}$$

si $a \in \mathbb{R}_+^*$, on définit l'exponentielle en base a par $a^x {=} \mathrm{e}^{x \ln a}$

4. Fonction puissance

 $\alpha \in \mathbb{R} \quad x^{\alpha} {=} \mathrm{e}^{\alpha \ln(x)} \quad \text{ fonction puis$ $sance définie sur } \mathbb{R}_{+}^{*}$

Cette fonction est continue (même c^{∞}) sur \mathbb{R}_+^* de dérivée $x\mapsto \alpha x^{\alpha-1}$

$$\forall \; (x,y) \in (\mathbb{R}_+^*)^2 \quad x^\alpha \; y^\alpha = (xy)^\alpha \qquad x^\alpha \; x^\beta = x^{\alpha+\beta} \qquad x^{-\alpha} = \frac{1}{x^\alpha}$$

 $\mathbf{fonctions}\ u^v\colon\, u^v(x) = \exp(v(x)\ln(u(x)))$

5. Fonctions hyperboliques

$$\cosh(x) = \frac{e^x + e^{-x}}{2} \qquad \sinh(x) = \frac{e^x - e^{-x}}{2} \qquad \tanh(x) = \frac{\sinh(x)}{\cosh(x)}$$

 \cosh , \sinh , \tanh sont définies sur $\mathbb R$, continues (même c^∞ sur $\mathbb R$) de dérivées respectives \sinh , \cosh ,

$$\frac{1}{\cosh^2} = 1 - \tanh^2$$

sinh et tanh sont impaires, cosh est paire

On a $\forall x \in \mathbb{R} \quad \cosh^2(x) - \sinh^2(x) = 1$

6. Fonctions circulaires

$$\cos(x) = \frac{e^{ix} + e^{-ix}}{2} \qquad \sin(x) = \frac{e^{ix} - e^{-ix}}{2i} \qquad \tan(x) = \frac{\sin(x)}{\cos(x)}$$

$$\sin(x) = \frac{e^{ix} - e^{-ix}}{2i}$$

$$\tan(x) = \frac{\sin(x)}{\cos(x)}$$

cos, sin sont définies sur \mathbb{R} , continues (même c^{∞}) de dérivées respectives -sin , cos

tan est définie et continue sur $\mathbb{R}\setminus\{\frac{\pi}{2}+k\pi,k\in\mathbf{Z}\}$ (même c^{∞} sur cet ensemble) de dérivée $\frac{1}{\cos^2}=1+\tan^2$ sin et tan sont impaires, cos est paire

Leurs fonctions réciproques sont arccos, arcsin, arctan

On a \forall $(x,y) \in [0,\pi] \times [-1,1]$ $y = \cos(x) \iff x = \arccos(y)$

 $\forall \; (x,y) \in \left[-\frac{\pi}{2},\frac{\pi}{2}\right] \times [\text{-}1,\!1] \quad y = \sin(x) \Longleftrightarrow x = \arcsin(y)$

 $\forall \; (x,y) \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[\times \mathbb{R} \quad y = \tan(x) \Longleftrightarrow x = \arctan(y)$

arcsin est définie sur [-1,1] à valeurs sur $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$, continue sur [-1,1], dérivable (c^{∞}) sur]-1,1[de dérivée $x \mapsto \frac{1}{\sqrt{1-x^2}}$, elle est impaire, strictement croissante.

arccos est définie sur [-1,1] à valeurs sur $[0,\pi]$, continue sur [-1,1] , dérivable (c^{∞}) sur]-1,1[de dérivée $x\mapsto -\frac{1}{\sqrt{1-x^2}}$, elle est strictement décroissante.

arctan est définie sur \mathbb{R} à valeurs sur $\left]-\frac{\pi}{2},\frac{\pi}{2}\right[$, continue (c^{∞}) sur \mathbb{R} de dérivée $x\mapsto\frac{1}{1+x^2}$, elle est impaire, strictement croissante.

On a $\forall x \in [-1,1]$ $\arcsin(x) + \arccos(x) = \frac{\pi}{2}$

 $\forall \ x \in \mathbb{R}^* \quad \arctan(x) + \arctan\left(\frac{1}{x}\right) = sign(x) \ \frac{\pi}{2} \qquad \text{où } sign(x) \text{ désigne le signe de } x$

