1 Groups

1.1 Introduction

The lecturer is **Davesh Maulik**. These notes are taken by **Jakin Ng**, **Sanjana Das**, and **Ethan Yang**, and the note-taking is supervised by Ashay Athalye. Here is some basic information about the class:

- The text used in this class will be the 3rd edition of **Algebra**, by Artin.
- The course website is found on Canvas, and the problem sets will be submitted on Gradescope.
- The problem sets will be due every Tuesday at midnight.

Throughout this semester, we will discuss the fundamentals of *linear algebra* and *group theory*, which is the study of symmetries. In this class, we will mostly study groups derived from geometric objects or vector spaces, but in the next course, 18.702^1 , more exotic groups will be studied.

As a review of basic linear algebra, let's review invertible matrices.

Definition 1.1

An $n \times n$ matrix A^{-1} is invertible if there exists some other matrix A^{-1} such that $AA^{-1} = A^{-1}A = I$, the $n \times n$ identity matrix. Equivalently, A is invertible if and only if the determinant $\det(A) \neq 0$.

 a An array of numbers (or some other type of object) with n rows and n columns

Example 1.2 (n = 2)

Let $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ be a 2×2 matrix. Then its inverse A^{-1} is $\frac{1}{ad-bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$.

Example 1.3 $(GL_n(\mathbb{R}))$

A main example that will guide our discussion of groups^a is the **general linear group**, $GL_n(\mathbb{R})$, which is the group of $n \times n$ invertible real matrices.

 a The concept of a group will be fleshed out later in this lecture

Throughout the course, we will be returning to this example to illustrate various concepts that we learn about.

1.2 Laws of Composition

With our example in mind, let's start.

Guiding Question

How can we generalize the nice properties of matrices and matrix multiplication in a useful way?

Given two matrices $A, B \in GL_n(\mathbb{R})$, there is an operation combining them, in particular matrix multiplication, which returns a matrix $AB \in GL_n(\mathbb{R})$. The matrices under matrix multiplication satisfy several properties:

- Noncommutativity. Matrix multiplication is noncommutative, which means that AB is not necessarily the same matrix as BA. So the order that they are listed in *does* matter.
- Associativity. This means that (AB)C = A(BC), which means that the matrices to be multiplied can be grouped together in different configurations. As a result, we can omit parentheses when writing the product of more than two matrices.
- Inverse. The product of two invertible matrices is also invertible. In particular,

$$(AB)^{-1} = B^{-1}A^{-1}$$
.

¹Algebra 2

²Since the determinant is multiplicative, det(AB) = det(A) det(B), which is nonzero.

Another way to think of matrices is as an *operation* on a different space. Given a matrix $A \in GL_n(\mathbb{R})$, a function or transformation on \mathbb{R}^{n3} can be associated to it, namely

$$T_A: \mathbb{R}^n \longrightarrow \mathbb{R}^n$$
 $\overrightarrow{v} = (x_1, \cdots, x_n) \longmapsto A \overrightarrow{v}^4$

Since $A\vec{v}$ is the matrix product, we notice that $T_{AB}(\vec{v}) = T_A(T_B(\vec{v}))$, and so matrix multiplication is the same as function composition.

With this motivation, we can define the notion of a group.

Definition 1.4 (Group)

A group is a set G with a composition (or product) law

$$G \times G \longrightarrow G$$
$$(a,b) \longmapsto a \cdot b^5$$

fulfilling the following conditions:

- **Identity.** There exists some element $e \in G$ such that $a \cdot e = e \cdot a = a$
- Inverse. For all $a \in G$, there exists $b \in G$, denoted a^{-1} , such that $a \cdot b = b \cdot a = e$.
- Associative. For $a, b, c \in G$,

$$(ab)c = a(bc).$$

Also denoted ab

In the definition, both the first and second conditions automatically give us a unique inverse and identity. For example, if e and e' both satisfy property 1, then $e \cdot e' = e = e'$, so they must be the same element. A similar argument holds for inverses.

Why does associativity matter? It allows us to define the product $g_1 \cdot g_2 \cdot \cdots \cdot g_n$ without the parentheses indicating which groupings they're multiplied in.

Definition 1.5

Let g taken to the power n be the element $g^n = \underbrace{g \cdot \cdots \cdot g}_{n \text{ times}}$ for n > 0, $g^n = \underbrace{g^{-1} \cdot \cdots \cdot g^{-1}}_{n \text{ times}}$ for n < 0, and e for n = 0.

Example 1.6

Some common groups include:

Group Composition Law Identity Inverse
$$GL_n(\mathbb{R})^a$$
 matrix multiplication I_n $A \mapsto A^{-1}$ \mathbb{Z}^b $+$ 0 $n \mapsto -n$ $\mathbb{C}^{\times} = \mathbb{C} \setminus \{0\}^c$ \times 1 $z \mapsto \frac{1}{z}$

For the last two groups, there is additional structure: the composition law is *commutative*. This motivates the following definition.

Definition 1.7

A group G is abelian if $a \cdot b = b \cdot a$ for all $a, b \in G$. Otherwise, G is called **nonabelian**.

 $[^]a$ The general linear group

^bThe integers under addition

 $^{{}^}c\mathrm{The}$ complex numbers (except 0) under multiplication

 $^{^3}$ Vectors with n entries which are real numbers.

⁴The notation $A\vec{v}$ refers to the matrix product of A and \vec{v} , considered as $n \times n$ and $n \times 1$ matrices.

Often, the composition law in an abelian group is denoted + instead of \cdot .

1.3 Permutation and Symmetric Groups

Now, we will look at an extended example of another family of nonabelian groups.

Definition 1.8

Given a set S, a **permutation** of S is a bijection $p: S \longrightarrow S$.

^aA function $f:A\longrightarrow B$ is a bijection if for all $y\in B$, there exists a unique $x\in A$ such that f(x)=y. Equivalently, it must be one-to-one and onto.

Definition 1.9

Let Perm(S) be the set of permutations of S.

In fact, Perm(S) is a group, where the product rule is function composition.⁶

- **Identity.** The identity function $e: x \longmapsto x$ is is the identity element of the group.
- Inverse. Because p is a bijection, it is invertible. Let $p^{-1}(x)$ be the unique $y \in S$ such that p(y) = x.
- Associativity. Function composition is always associative.

Like groups of matrices, Perm(S) is a group coming from a set of *transformations* acting on some object; in this case, S.

Definition 1.10

When $S = \{1, 2, \dots, n\}$, the permutation group Perm(S) is called the **symmetric group**, denoted S_n .

Definition 1.11

For a group G, the number of elements in the set G, |G|, is called the **order** of the group G, denoted |G| or ord(G).

The order of the symmetric group is $|S_n| = n!^7$ so the symmetric group S_n is a finite group.

For n = 6, consider the two permutations p and q

where the upper number is mapped to the lower number.

We can also write these in **cycle notation**, which is a shorthand way of describing a permutation that does not affect what the permutation actually is. In cycle notation, each group of parentheses describes a cycle, where the number is mapped to the following number, and it wraps around.

Example 1.12 (Cycle notation)

In cycle notation, p is written as (124)(35), where the 6 is omitted. In the first cycle, 1 maps to 2, 2 maps to 4, and 4 maps to 1, and in the second cycle, 3 maps to 5 and 5 maps back to 3.a

aIn fact, we say that p has cycle type (3,2), which is the lengths of each cycle.

⁶We can check that the composition of two bijections $p \circ q$ is also a bijection.

⁷The number of permutations of the numbers 1 through n is n! — there are n possibilities for where 1 maps to, and then n-1 for where 2 maps to, and so on to get $n(n-1)\cdots(2)(1)=n!$

Similarly, q is written as (135)(246).⁸ In cycle notation, it is clear that there are multiple ways to write or represent the same permutation. For example, p could have been written as (241)(53) instead, but it represents the *same* element $p \in S_6$.

Cycle notation allows us to more easily invert or compose two permutations; we simply have to follow where each number maps to.

Example 1.13 (Inversion)

The inverse p^{-1} flips the rows of the table:

In cycle notation, it reverses the cycles, since each number should be mapped under p^{-1} to the number that maps to it under p:

$$p^{-1} = (421)(53) = (142)(35).$$

Example 1.14 (Composition)

The composition is

$$q \circ p = (143)(26).$$

Under p, 1 maps to 2, which maps to 4 under q, and so 1 maps to 4 under $q \circ p$.^a Similarly, 4 maps to 3 and 3 maps back to 1, which gives us the first cycle. The second cycle is similar.

 a Remember that the rightmost permutation is applied first, and then the leftmost, and not the other way around, due to the notation used for function composition.

Example 1.15 (Conjugation)

Another example of composition is

$$p^{-1} \circ q \circ p = (126)(345).$$

This is also known as *conjugation* of q by $p.^a$

^aNotice that under conjugation, q retains its cycle type (3,3). In fact, this is true for conjugation of any element by any other element!

1.4 Examples of Symmetric Groups

For $n \geq 3$, S_n is always non-abelian. Let's consider S_n for small $n \leq 3$.

Example 1.16 (S_1)

In this case, S_1 only has one element, the identity element, and so it is $\{e\}$, the trivial group.

Example 1.17 (S_2)

For n = 2, the only possibilities are the identity permutation e and the transposition (12). Then $S_2 = \{e, (12)\}$; it has order 2.

Once n gets larger, the symmetric group becomes more interesting.

 $^{^{8}}$ It has cycle type (3,3).

Example 1.18 (S_3)

The symmetric group on three elements is of order 3! = 6. It must contain the identity e. It can also contain x = (123). Then we also get the element $x^2 = (132)$, but

$$x^3 = e.$$

Higher powers are just $x^4 = x, x^5 = x^2$, and so on. Now, we can introduce y = (12), which is its own inverse, and so

$$y^2 = e$$
.

Taking products gives xy = (13) and $x^2y = (23)$. So we have all six elements of S_3 :

$$S_3 = \{e, (123), (132), (12), (13), (23)\}.$$

In fact, $yx = (23) = x^2y$, so taking products in the other order does not provide any new elements. The relation

$$yx = x^2y$$

holds. In particular, using the boxed relations, we can compute any crazy combination of x and y and reduce it to one of the elements we listed. For example, $xyx^{-1}y = xyx^2y = xyyx = xy^2x = x^2$.