University of Tlemcen

Academic year 2023-2024

Faculty of Sciences

(L1 ING-INF)

Semester 2

Department of Informatic

Algebra (First Year)

Worksheet N°3/ "Vector Spaces"

Exercice 01: (Corrected in the course) Determine whether a subset of a vector space is a subspace?

(1)
$$A = \{(x, y) \in \mathbb{R}^2 / y = x^3 \}$$

For $\alpha = 2$ and (2,8) we have $2 \times (2,8) = (4,16) \notin A$.

wich implies that A is n't a subspace of \mathbb{R}^2 .

(2)
$$B = \{(x, y) \in \mathbb{R}^2 / x^2 + y^2 = 2\}$$
.

$$0^2 + 0^2 = 0 \neq 2 \Rightarrow (0,0) \notin B$$
,

wich implies that B is n't a subspace of \mathbb{R}^2 .

(3)
$$C = \{(x, y) \in \mathbb{R}^2 / x^2 + y^2 \le 2\}$$
.

For $\alpha = 2$ and (1,1) we have $2 \times (1,1) = (2,2) \notin A$,

because $2^2 + 2^2 = 8 > 2$, wich implies that C is n't a subspace of \mathbb{R}^2 .

(4)
$$D = \{(x, y, z); 2x + 3y - 5z = 0\}$$

= $\{\left(\frac{-3y + 5z}{2}, y, z\right); y, z \in \mathbb{R}\}$

is a subspace of \mathbb{R}^3 , because:

a)
$$(0,0,0) = \left(\frac{-3 \times 0 + 5 \times 0}{2}, 0, 0\right) \in D \Rightarrow D \neq \emptyset.$$

b)
$$\forall u_1 \left(\frac{-3y_1 + 5z_1}{2}, y_1, z_1 \right), u_2 \left(\frac{-3y_2 + 5z_2}{2}, y_2, z_2 \right) \in D,$$

$$u_1 + u_2 =_1 \left(\frac{-3(y_1 + y_2) + 5(y_1 + y_2)}{2}, y_1, (z_1 + z_2) \right) \in D.$$

c)
$$\forall \alpha \in \mathbb{R}, \forall u \left(\frac{-3y+5z}{2}, y, z\right) \in D,$$

$$\alpha u =_1 \left(\frac{-3(\alpha y) + 5(\alpha z)}{2}, (\alpha y), (\alpha z)\right) \in D.$$

(5) $E = \{f \in E_1; f(0) = f'(0) = 0\}$. $(E_1 = \mathcal{F}(\mathbb{R}, \mathbb{R}))$ the set of derivable functions) is a subspace of E_1 , because:

a) If we put the identity element $f_0(x) = 0, \forall x \in \mathbb{R}$ (null function)

$$\Rightarrow f_0(0) = f'_0(0) = 0 \Rightarrow f_0 \in E \Rightarrow E \neq \varnothing.$$

b)
$$\forall f_1, f_2 \in E$$
,

$$(f_1 + f_2)(0) = \underbrace{f_1(0)}_{=0} + \underbrace{f_2(0)}_{=0} = 0,$$

and

$$(f_1' + f_2')(0) = \underbrace{f_1'(0)}_{=0} + \underbrace{f_2'(0)}_{=0} = 0,$$

wich implies that $f_1 + f_2 \in E$.

c)
$$\forall \alpha \in \mathbb{R}, \forall f \in E$$
,

$$(\alpha f)(0) = \alpha \underbrace{f(0)}_{-0} = 0,$$

and

$$(\alpha f')(0) = \alpha \underbrace{f'(0)}_{=0} = 0,$$

wich implies that $\alpha f \in E$.

- (6) $F = \{P \in \mathbb{R}_n [X] / P(1) = P'(1)\}$. $\mathbb{R}_n [X]$: set polynomials of degree $\leq n$. is a subspace of $\mathbb{R}_n [X]$, because:
 - a) If we put the identity element $P_0(x) = 0, \forall x \in \mathbb{R}$ (null polynomial)

$$\Rightarrow P_{0}(1) = P'_{0}(1) = 0 \Rightarrow P_{0} \in F \Rightarrow F \neq \emptyset.$$

$$b) \forall P_{1}, P_{2} \in F,$$

$$(P_{1} + P_{2})(1) = \underbrace{P_{1}(1)}_{\in F} + \underbrace{P_{2}(1)}_{\in F} = P'_{1}(1) + P'_{2}(1) = (P_{1} + P_{2})'(1),$$

wich implies that $P_1 + P_2 \in F$.

$$c) \ \forall \alpha \in \mathbb{R}, \forall P \in F,$$
$$(\alpha P)(1) = \alpha \underbrace{P(1)}_{\in F} = \alpha P'(1) = (\alpha P)'(1),$$

wich implies that $\alpha P \in E$.

Exercice 02:

(1) Are the following vectors linearly independent in E?

$$(1) v_{1}(1,2,-1), v_{2}(3,-2,2), v_{3}(-1,4,-1); E = \mathbb{R}^{3}.$$

$$(2) v_{1}(7,8,-1), v_{2}(9,-2,12), v_{3}(-1,4,-1), v_{4}(-5,5,-1); E = \mathbb{R}^{3}.$$

$$(3)P_{1}(X) = 2 - X, P_{2}(X) = 3 + X + X^{2}, P_{3}(X) = X - X^{2} + 2X^{3}; E = \mathbb{R}_{3}[X].$$

$$(4)P_{2}(X) = 4, P_{2}(X) = 2 - X, P_{3}(X) = 3 + X + X^{2},$$

$$P_{4}(X) = X^{2} + 2X^{3}, P_{5} = 5X^{3}; E = \mathbb{R}_{3}[X].$$

(2) Write the vector v = (7, -2, 4) as a linear combination of:

$$v_1 = (1, -1, 1), v_2 = (1, 2, -3) \text{ et } v_3 = (2, -5, 4).$$

(3) In $E = \mathbb{R}_2[X]$ the vector space of polynomials of degree less than or equal to 2 and with real coefficients, do the following vectors spans E?

a)
$$P = X^2 - 5X + 1$$
 and $Q = X + 7$.

a)
$$P = X^2 - 5X + 1$$
 and $Q = X + 7$.
b) $P = X^2 - 6$, $Q = 7X + 1$ and $R = 3X^2 + 8$.

c)
$$P = 5, Q = 2X - 1$$
 and $R = X(X - 1)$.

Exercice 03: Let $\mathbb{R}[X]$ the \mathbb{R} -vector space of polynomials with real coefficients and P_3 let he sub-set of $\mathbb{R}[X]$ such as $H_3 = \{P \in \mathbb{R}[X] / \deg P \leq 3\}$.

- (1) Show that H_3 is a subspace of $\mathbb{R}[X]$.
- (2) Let $Q_0 = 3$, $Q_1 = 1 2X$, $Q_2 = 3X X^2$ and $Q_3 = 4X^2 5X^3$ be a polynomials.
- a) verify that $B_2 = \{Q_0, Q_1, Q_2, Q_3\}$ is a basis of P_3 .
- b) Determine the coordinates of the polynomial $P = 1 + 6X 4X^2 2X^3$ in B_2 .

Exercice 04: (Corrected in the course) Let:

$$E_1 = \{(a, b, c) \in \mathbb{R}^3; a = 5c\}, E_2 = \{(a, b, c) \in \mathbb{R}^3; a + 3b - 7c = 0\}$$

and $E_3 = \{(0, 2c, c); c \in \mathbb{R}\}.$

- (1) Show that E_i with i = 1, 2, 3 are a subspace of \mathbb{R}^3 .
- (2) Show that $\mathbb{R}^3 = E_1 + E_2$, $\mathbb{R}^3 = E_2 + E_3$ and $\mathbb{R}^3 = E_1 + E_3$.
- (3) In which case is the sum is a direct sums?

Exercice 05: (Corrected in the course) In \mathbb{R}^3 let the two subset:

$$E_1 = \{(3a - 5b, 2b - 4a, 3a) \in \mathbb{R}^3 / a, b \in \mathbb{R}\} \text{ and } E_2 = \{(4c, c, 6c) \in \mathbb{R}^3 / c \in \mathbb{R}\}.$$

- (1) Show that E_1 and E_2 are a subspace of \mathbb{R}^3 .
- (2) determine a basis B_1 of E_1 and a basis B_2 of E_2 .
- (3) deduce dim E_1 and dim E_2 .
- (4) Show that: $\mathbb{R}^3 = E_1 + E_2$.
- (5) deduce if the sum is a direct sum or not.

<u>e 06</u>: (Additional) In $\mathbb{R}_8[X]$ the vector space of polynomials of degree less than or equal to 8 and with real coefficients,. We put: $E_0 = \{P \in \mathbb{R}_8 [X] / P(0) = 0\}$,

$$E_p = \{ P \in \mathbb{R}_8 [X] / \forall X \in \mathbb{R}, \ P(X) = P(-X) \} \text{ and } E_i = \{ P \in \mathbb{R}_8 [X] / P(X) = -P(-X) \}.$$

- (2) Show that: $\mathbb{R}_8[X] = E_0 + E_p$ and $\mathbb{R}_8[X] = E_i + E_p$.
- (3) In which case the sum is a direct sum?