WHAT IS CLAIMED IS:

1	1.	A method for hemostasis of a puncture site in a blood vessel at an end		
2	of a tissue tract, the method comprising:			
3	pre	oviding a compression member having a proximal end and a distal end and		
4	an expansible ele	an expansible element disposed at the distal end thereof;		
5	ins	serting the compression member through an opening in a skin surface;		
5	po	sitioning a distal end of the expansible element at a predetermined distance		
7	away from a wall of the blood vessel; and			
8	expanding the expansible element within the tissue tract and against			
9	subcutaneous tiss	ue.		
1	2.	The method of claim 1, wherein the expansible element is only		
2	engageable agains	st subcutaneous tissue surrounding the blood vessel wall.		
l	3.	The method of claim 1, wherein the predetermined distance is in a		
2	range from about	0.05 inch to about 0.5 inch.		
l	4.	The method of claim 3, wherein the predetermined distance is in a		
2	range from about	0.2 inch to about 0.3 inch.		
l	5.	The method of claim 1, wherein the expansible element comprises a		
2	balloon.			
l	6.	The method of claim 5, wherein expanding comprises at least one of		
2	axial or radial dilation of the balloon so as to cause compression of the subcutaneous tissue			
3	surrounding the blood vessel wall.			
l	7.	The method of claim 5, wherein expanding comprises inflating a		
2	superior aspect of	the balloon greater than an inferior aspect of the balloon.		
1	8.	The method of claim 5, wherein expanding comprises inflating a distal		
2	face of the balloon at an angle to the compression member similar to an angle formed			
3	between the compression member and the blood vessel.			
1	9.	The method of claim 5, wherein expanding comprises inflating the		
)	halloon to a denic	oved configuration comprising a conical shape		

Ţ	10.	The method of claim 5, wherein expanding comprises unfolding		
2	concentric folds of the balloon.			
1	11.	The method of claim 5, wherein expanding comprises inflating the		
2	balloon to a deployed configuration having a concave distal end.			
1	12.	The method of claim 1, further comprising providing a locating		
2	member having a proximal end and a distal end and an expansible member disposed on the			
3	distal end thereof.			
1	13.	The method of claim 12, further comprising inserting the locating		
2	member through the opening in the skin and in the puncture site prior to or simultaneously			
3	with compression member insertion.			
1	14.	The method of claim 13, further comprising deploying the expansible		
2	member to an expan	ded configuration within the blood vessel having a diameter in a range		
3	from about 0.05 inch to about 0.5 inch.			
1	15.	The method of claim 14, further comprising locating the puncture site		
2	in the blood vessel wall.			
1	16.	The method of claim 15, further comprising providing temporary		
2	hemostasis of the puncture site with a plug coupleable to the distal end of the locating			
3	member.			
1	17.	The method of claim 16, further comprising contracting and		
2	withdrawing the loca	ating member.		
1	18.	The method of claim 1, further comprising imaging the expansible		
2	element during posit	ioning.		
1	19.	The method of claim 1, further comprising delivering radio frequency		
2	energy, ultrasound e	nergy, or microwave energy to the puncture site.		
1	20.	The method of claim 1, further comprising delivering a clot promoting		
2	agent or anti-infection agent to the puncture site.			
1	21.	A kit comprising:		

2	a compression member; and				
3	instructions to use the compression member for hemostasis of a puncture site				
4	in a blood vessel according to claim 1.				
_					
1	22. A system for hemostasis of a puncture site in a body lumen, the device				
2	comprising:				
3	a locating member having a proximal end and a distal end and an expansible				
4	nber disposed on the distal end thereof; and				
5	a compression member at least partially coaxial with the locating member, the				
6	compression member having a proximal end and a distal end and an expansible element				
7	disposed at the distal end thereof, wherein a distal end of the expansible element is				
8	postionable at a predetermined distance away from a wall of the body lumen.				
1	23. The system of claim 22, further comprising deployment means				
2	coupleable to the proximal end of the locating member so as to move the expansible member				
3	between a contracted configuration and an expanded configuration.				
1	24. The system of claim 23, wherein the expansible member in the				
2	expanded configuration has a diameter in a range from about 0.05 inch to about 0.5 inch.				
_	expanded configuration has a diameter in a range from about 0.05 from to about 0.5 from				
1	25. The system of claim 24, wherein the expansible member in the				
2	expanded configuration has a diameter in a range from about 0.15 inch to about 0.30 inch.				
1	26. The system of claim 22, wherein the expansible member comprises				
2	stainless steel, shape memory material, or superelastic material.				
1	27. The system of claim 22, further comprising a temporary hemostasis				
2	member coupleable to the distal end of the locating member.				
2	member coupleable to the distar end of the locating member.				
1	28. The system of claim 27, wherein the expansible element is disposed				
2	between the distal end of the compression member and a proximal end of the temporary				
3	hemostasis member.				
1	29. The system of claim 22, further comprising a deformable membrane at				
2	least partially disposed over the expansible member.				

- 1 30. The system of claim 22, wherein the locating member and compression member form an integrated catheter assembly. 2 1 31. The system of claim 22, wherein the compression member remains 2 proximal a distal end of the expansible member. The system of claim 31, further comprising mechanical or visual 1 32. 2 means on the locating member or compression member. 1 33. The system of claim 31, wherein the predetermined distance is in a 2 range from about 0.05 inch to about 0.5 inch. 1 34. The system of claim 33, wherein the predetermined distance is in a 2 range from about 0.2 inch to about 0.3 inch. 35. 1 The system of claim 31, wherein the compression member is fixed 2 relative to the locating member. 1 36. The system of claim 31, wherein the compression member is moveable 2 relative to the locating member. 1 37. The system of claim 22, wherein the locating member is laterally offset 2 from an axis of the compression member. 1 38. The system of claim 22, wherein the expansible element comprises a 2 balloon. 1 39. The system of claim 38, wherein the balloon comprises one or more 2 materials selected from the group consisting of polyethylene, polyethylene terephthalate, 3 polytetrafluroethylene, nylon, polyurethane, silicone, latex, polyvinyl chloride, and 4 thermoplastic elastomer. 1 40. The system of claim 38, wherein the balloon is pre-formed or pre-2 molded symmetrically or asymmetrically.
- 1 41. The system of claim 38, wherein the balloon has a deployed configuration comprising a conical shape.

1	42.	The system of claim 38, wherein the balloon comprises a plurality of		
2	concentric folds that are unfolded in a deployed configuration.			
1	43.	The system of claim 38, wherein the balloon has a deployed		
2	configuration comp	rising a concave distal end.		
1	44.	The system of claim 38, wherein the balloon further comprises a radio-		
2	opaque material.			
1	45.	The system of claim 38, further comprising a coating on an outer		
2	surface of the balloon.			
1	46.	The system of claim 45, wherein the coating comprises electrically		
2	conductive material for the delivery of energy.			
1	47.	The system of claim 46, wherein the energy comprises radio frequency		
2	energy or microwave energy.			
3	48.	The system of claim 45, wherein the coating comprises a clot		
4	promoting or anti-infection agent.			
1	49.	The system of claim 38, wherein the balloon comprises a semi-		
2	permeable membras	ne.		
1	50.	The system of claim 38, further comprising an inflation assembly		
2	coupleable to the proximal end of the compression member and in communication with the			
3	balloon.			
1	51.	The system of claim 50, wherein the inflation assembly comprises a		
2	source of at least air, fluid, clot promoting agent, anti-infection agent, or radio-opaque			
3	medium.			
1	52.	A device for hemostasis of a puncture site in a body lumen, the device		
2	comprising:			

a first tubular member having a proximal end and a distal end;

- a second tubular member having a proximal end and a distal end and at least
 partially coaxial with the first tubular member so as to define an inflation lumen
 therebetween;

 a balloon disposed at the distal ends of the first and second tubular members
 and in communication with the inflation lumen, wherein a distal end of the balloon is
 postionable behind a locator and at a predetermined distance away from a wall of the body
 lumen.
- 1 53. The device of claim 52, wherein the predetermined distance is in a 2 range from about 0.05 inch to about 0.5 inch.
- 1 54. The device of claim 53, wherein the predetermined distance is in a 2 range from about 0.2 inch to about 0.3 inch.
- 1 55. The device of claim 52, wherein the balloon comprises one or more 2 materials selected from the group consisting of polyethylene, polyethylene terephthalate, 3 polytetrafluroethylene, nylon, polyurethane, silicone, latex, polyvinyl chloride, and 4 thermoplastic elastomer.
- 1 56. The device of claim 52, wherein the balloon is pre-formed or premolded symmetrically or asymmetrically.
- 1 57. The device of claim 52, wherein the balloon has an expanded 2 configuration comprising a conical shape.
- 1 58. The device of claim 52, wherein the balloon comprises a plurality of concentric folds that are unfolded in an expanded configuration.
- 1 59. The device of claim 52, wherein the balloon has an expanded configuration comprising a concave distal end.
- 1 60. The device of claim 52, wherein the balloon further comprises a radio-2 opaque material.
- 1 61. The device of claim 52, further comprising a coating on an outer 2 surface of the balloon.

- 1 62. The device of claim 61, wherein the coating comprises electrically 2 conductive material for the delivery of energy. 63. The device of claim 62, wherein the energy comprises radio frequency 1 2 energy or microwave energy. 64. The device of claim 61, wherein the coating comprises a clot 1 promoting or anti-infection agent. 2 1 65. The device of claim 52, wherein the balloon comprises a semi-2 permeable membrane. 1 66. The device of claim 52, wherein the balloon comprises an expansible
- 1 67. The device of claim 52, wherein the balloon is inflatable with air, fluid, clot promoting agent, anti-infection agent, radio-opaque medium or a combination thereof.

member and a deformable membrane at least partially disposed over the expansible member.

2