QUANTUM ALGORITHMS HOMEWORK 9 ADDITIONAL PROBLEMS

PROF. MATTHEW MOORE

Due: 2021-04-13

Definition. Let \mathbb{V} be a vector space and let $\mathbb{A}, \mathbb{B} \leq \mathbb{V}$ be subspaces.

- We say that A is *orthogonal* to B if for every $|a\rangle \in A$ and $|b\rangle \in B$ we have $\langle a \mid b\rangle = 0$.
- Define the sum of $\mathbb A$ and $\mathbb B$ to be $\mathbb A+\mathbb B=\Big\{\,|a\rangle+|b\rangle\;|\;|a\rangle\in A,|b\rangle\in B\Big\}.$
- 1. Suppose that \mathbb{A} and \mathbb{B} are orthogonal to each other.
 - (i) What is $\dim(\mathbb{A} + \mathbb{B})$?
 - (ii) Show that $\mathcal{P}(|v\rangle, \mathbb{A} + \mathbb{B}) = \mathcal{P}(|v\rangle, \mathbb{A}) + \mathcal{P}(|v\rangle, \mathbb{B}).$
 - (iii) Show that $\Pi_{\mathbb{A}}\Pi_{\mathbb{B}} = \Pi_{\mathbb{B}}\Pi_{\mathbb{A}}$.
- **2.** Suppose that $\mathbb{A} \leq \mathbb{V}$ and $\mathbb{B} \leq \mathbb{W}$ are two subspaces.
 - (i) Prove that $\Pi_{\mathbb{A}\otimes\mathbb{B}} = \Pi_{\mathbb{A}}\otimes\Pi_{\mathbb{B}}$.
- (ii) Let ρ and τ be density matrices. Prove that $\mathcal{P}(\rho \otimes \tau, \mathbb{A} \otimes \mathbb{B}) = \mathcal{P}(\rho, \mathbb{A})\mathcal{P}(\tau, \mathbb{B})$. You may use the fact that $\text{Tr}(X \otimes Y) = \text{Tr}(X) \text{Tr}(Y)$.