

DIGITAL DESIGN PROJECT

Team Members:

Mohammad Wael Monir Mostapha Sayed Abdelaal Saad-Eddin Seif Allah Magdy Gad Saied

SPI Project

RTL Design Code:

```
module RAM(
    input [9:0] din,
    input clk,
    input rst_n,
    input rx_valid,
    output [7:0] dout,
    output tx_valid
);
    parameter MEM_DEPTH = 256;
    parameter ADDR_SIZE = 8;
    localparam WRITE_ADD=2'b00,WRITE_DATA=2'b01,READ_ADD=2'b10,READ_DATA=2'b11;
    (* RAM_STYLE = "block" *)
    reg [7:0] memory [0:MEM_DEPTH-1];
    reg [ADDR_SIZE-1:0] wr_addr;
    reg [ADDR_SIZE-1:0] rd_addr;
    always @(posedge clk or negedge rst_n) begin
        if (!rst_n) begin
            wr_addr <= 0;
            rd_addr <= 0;
        end else if (rx_valid) begin
            case (din[9:8])
                WRITE ADD: wr addr <= din[7:0];</pre>
                WRITE_DATA: memory[wr_addr] <= din[7:0];</pre>
                READ_ADD: rd_addr <= din[7:0];</pre>
            endcase
        end
    end
    assign dout = memory[rd addr];
    assign tx_valid = (din[9:8] == READ_DATA);
endmodule
```

```
module spi_slave (
    input clk,
    input rst_n,
    input SS_n,
    input MOSI,
    output reg MISO,
    output reg [9:0] din,
    output reg rx_valid,
    input [7:0] dout,
    input tx_valid
);
    parameter IDLE = 3'b000;
    parameter CHK CMD = 3'b001;
    parameter WRITE = 3'b010;
    parameter READ_ADD = 3'b011;
    parameter READ_DATA = 3'b100;
    (*fsm_encoding="one_hot"*)
    reg [2:0] cs, ns;
    reg [9:0] rx_data,tx_data;
    reg [3:0] bit_count;
    reg [7:0] read_reg;
    wire flag;
    always@(posedge clk or negedge rst_n) begin
        if(!rst_n)
        read_reg<=0;</pre>
        else
       read_reg<=dout;</pre>
    end
    always @(posedge clk or negedge rst_n) begin
        if (!rst_n) begin
            cs <= IDLE;</pre>
        end else begin
            cs <= ns;
        end
    end
```

```
always @(posedge clk or negedge rst_n) begin
    if(!rst_n)
    bit_count<=0;</pre>
    else if ((cs==WRITE || cs==READ_ADD)&&(bit_count<10)) begin</pre>
             rx_data[9-bit_count] <= MOSI;</pre>
             bit_count <= bit_count + 1;</pre>
        end
    else if (flag) begin
             bit_count<=bit_count+1;</pre>
        end
     else
     bit_count<=0;</pre>
end
always @(*) begin
    case (cs)
        IDLE: begin
             if (SS_n) begin
                 ns = IDLE;
             end else begin
                 ns = CHK_CMD;
             end
        end
        CHK_CMD: begin
             if(SS_n)
             ns=IDLE;
             else if (MOSI == 1'b0) begin
                 ns = WRITE;
             end
             else begin
                 ns = READ_ADD;
             end
        end
        WRITE: begin
```

```
if (SS_n) begin
                ns = IDLE;
            end
            else begin
                ns = WRITE;
            end
        end
        READ_ADD: begin
            if (SS_n) begin
                ns = IDLE;
            end
            else if((rx_data[8]==1)&&(bit_count==4'd10))
            ns=READ_DATA;
            else begin
            ns = READ_ADD;
            end
        end
        READ_DATA: begin
            if (SS_n) begin
                ns = IDLE;
            end else begin
                ns = READ_DATA;
            end
        end
        default:ns=IDLE;
    endcase
end
always @(*) begin
    case (cs)
        WRITE, READ_ADD: begin
            din = rx_data;
            rx_valid = (bit_count==4'd10)?1:0;
            MISO = 1'b0;
        end
        READ_DATA: begin
            din = rx_data;
            rx_valid = (bit_count==4'd10)?1:0;
```

```
MISO=(flag)?read_reg[7-bit_count]:0;
            end
            default:begin
                din=0;
                rx_valid = 1'b0;
                MISO = 1'b0;
            end
        endcase
    end
assign flag=((cs==READ_DATA)&&(tx_valid==1)&&(bit_count<8))?1:0;</pre>
endmodule
module SPI_Wrapper(clk,rst_n,SS_n,MOSI,MISO);
    input clk,rst_n,SS_n,MOSI;
    output MISO;
    wire [9:0] din;
    wire [7:0] dout;
    wire tx valid, rx valid;
spi_slave spi_slave0(clk,rst_n,SS_n,MOSI,MISO,din,rx_valid,dout,tx_valid);
RAM
RAMO(.din(din),.clk(clk),.rst_n(rst_n),.rx_valid(rx_valid),.dout(dout),.tx_valid(
tx valid));
endmodule
```

• Testbench Code:

```
module SPI_Wrapper_tb;
    reg clk,rst_n,MOSI,SS_n;
    wire MISO;

SPI_Wrapper DUT(clk,rst_n,SS_n,MOSI,MISO);
    initial begin
    clk=0;
```

```
forever
end
integer signed i,j;
initial begin
   rst_n=0;
   repeat(30) begin
          MOSI=$random;
          SS_n=$random;
          @(negedge clk);
   end
   rst_n=1;
   for(i=0;i<40;i=i+1) begin</pre>
      SS_n=0;
      MOSI=0;
      #6;
      for(j=7;j>=0;j=j-1) begin
          MOSI=i[j];
        end
      SS_n=1;
      SS_n=0;
      MOSI=0;
      MOSI=1;
```

```
for(j=0;j<8;j=j+1) begin
       MOSI=$random;
   end
   SS_n=1;
end
for(i=0;i<40;i=i+1) begin</pre>
  SS_n=0;
   MOSI=1;
   MOSI=0;
   for(j=7;j>=0;j=j-1) begin
       MOSI=i[j];
     end
   SS_n=1;
   SS_n=0;
   MOSI=1;
   #6;
   MOSI=$random;
   SS_n=1;
```

```
end
$stop;
end
end
```

Do File:

```
vlib work
vlog SPI_Wrapper_tb.v
vsim -voptargs=+acc work.SPI_Wrapper_tb
add wave *
run -all
```

Questa-Sim Snippets:

Reset:

Writing examples:

Memory after writing on 40 addresses:

Reading examples:

• Elaboration:

1. Gray Encoding:

SPI slave elaboration:

2. Sequential Encoding:

SPI slave elaboration:

1. One-hot Encoding:

SPI slave elaboration:

• Synthesis:

1. Gray Encoding:

← | ⇒ | @ | Q | № | № | ⊕ | ⊕ | + | − | C | 8 Cells 5 I/O Ports 43 Nets

SPI slave Synthesis:

Timing report:

Setup		Hold		Pulse Width	
Worst Negative Slack (WNS):	5.516 ns	Worst Hold Slack (WHS):	0.160 ns	Worst Pulse Width Slack (WPWS):	4.500 ns
Total Negative Slack (TNS):	0.000 ns	Total Hold Slack (THS):	0.000 ns	Total Pulse Width Negative Slack (TPWS):	0.000 ns
Number of Failing Endpoints:	0	Number of Failing Endpoints:	0	Number of Failing Endpoints:	0
Total Number of Endpoints:	6255	Total Number of Endpoints:	6255	Total Number of Endpoints:	2117
All user specified timing constrai	ints are met				

Critical Path:

Synthesis report:

)	INFO:	[Synth	8-5544]	ROM	"ns"	won't	be	mapped	to	Block	RAM	because	address	size	(1)	smaller	than	threshold	(5)
ı į	INFO:	[Synth	8-5544]	ROM	"ns"	won't	be	mapped	to	Block	RAM	because	address	size	(1)	smaller	than	threshold	(5)
2	INFO:	[Synth	8-5544]	ROM	"ns"	won't	be	mapped	to	Block	RAM	because	address	size	(1)	smaller	than	threshold	(5)
3 ;	INFO:	[Synth	8-5544]	ROM	"ns"	won't	be	mapped	to	Block	RAM	because	address	size	(1)	smaller	than	threshold	(5)
4																			
;			S	tate	1				Ne	ew Enc	ding	g I		Pre	vio	us Encod	ing		
5 ;																			
7 :				IDLE	1						000)					000		
3 ;			CHK	_CMD	1						001	L					001		
1			W	RITE	1						013	L					010		
;			READ	_ADD	1						010)					011		
L			READ_	DATA	1						111	l I					100		
2																			
3 :	INFO:	[Synth	8-3354]	enco	oded 1	FSM wit	th s	tate re	egi	ster '	s re	g' using	g encodi	ng 'gı	cay'	in modu	le 's	oi slave'	
. !											_	-	-		-			_	

2. Sequential Encoding:

SPI slave Synthesis:

Timing report:

Setup		Hold		Pulse Width	
Worst Negative Slack (WNS):	5.670 ns	Worst Hold Slack (WHS):	0.181 ns	Worst Pulse Width Slack (WPWS):	4.500 ns
Total Negative Slack (TNS):	0.000 ns	Total Hold Slack (THS):	0.000 ns	Total Pulse Width Negative Slack (TPWS):	0.000 ns
Number of Failing Endpoints:	0	Number of Failing Endpoints:	0	Number of Failing Endpoints:	0
Total Number of Endpoints:	6271	Total Number of Endpoints:	6271	Total Number of Endpoints:	2133

Critical Path:

Synthesis report:

```
100 | INFO: [Synth 8-5544] ROM "ns" won't be mapped to Block RAM because address size (1) smaller than threshold (5)
101 INFO: [Synth 8-5544] ROM "ns" won't be mapped to Block RAM because address size (1) smaller than threshold (5)
102 INFO: [Synth 8-5544] ROM "ns" won't be mapped to Block RAM because address size (1) smaller than threshold (5)
103 INFO: [Synth 8-5544] ROM "ns" won't be mapped to Block RAM because address size (1) smaller than threshold (5)
105
                   State |
                                            New Encoding |
                                                                      Previous Encoding
106
107
                    IDLE |
                                                     000 |
108
                  CHK_CMD |
                                                     001 I
                                                                                   001
109
                                                     010 |
                  READ_ADD |
110
                                                     011 |
                                                                                   011
111
                 READ_DATA |
112
113 INFO: [Synth 8-3354] encoded FSM with state register 'cs_reg' using encoding 'sequential' in module 'spi_slave'
```

3. One-hot Encoding:

SPI slave Synthesis:

Timing report:

Setup		Hold		Pulse Width	
Worst Negative Slack (WNS):	5.469 ns	Worst Hold Slack (WHS):	0.148 ns	Worst Pulse Width Slack (WPWS):	4.500 ns
Total Negative Slack (TNS):	0.000 ns	Total Hold Slack (THS):	0.000 ns	Total Pulse Width Negative Slack (TPWS):	0.000 ns
Number of Failing Endpoints:	0	Number of Failing Endpoints:	0	Number of Failing Endpoints:	0
Total Number of Endpoints:	6273	Total Number of Endpoints:	6273	Total Number of Endpoints:	2135

Critical Path:

Synthesis report:

```
100 INFO: [Synth 8-5544] ROM "ns" won't be mapped to Block RAM because address size (1) smaller than threshold (5)
101 | INFO: [Synth 8-5544] ROM "ns" won't be mapped to Block RAM because address size (1) smaller than threshold (5)
102 INFO: [Synth 8-5544] ROM "ns" won't be mapped to Block RAM because address size (1) smaller than threshold (5)
103 INFO: [Synth 8-5544] ROM "ns" won't be mapped to Block RAM because address size (1) smaller than threshold (5)
104
105
                                                                           Previous Encoding
                    State |
                                          New Encoding |
                                                     00001 |
107
                     IDLE |
                                                                                          000
108
                  CHK_CMD |
                                                       00010 |
109
                     WRITE
                                                       00100 I
                                                                                          010
                 READ_ADD |
110
111
                READ_DATA |
                                                      10000 |
112
113 INFO: [Synth 8-3354] encoded FSM with state register 'cs_reg' using encoding 'one-hot' in module 'spi_slave'
```

Implementation:

1. Gray Encoding:

Device:

Timing Report:

etup		Hold		Pulse Width	
Worst Negative Slack (WNS):	0.708 ns	Worst Hold Slack (WHS):	0.187 ns	Worst Pulse Width Slack (WPWS):	4.500 ns
Total Negative Slack (TNS):	0.000 ns	Total Hold Slack (THS):	0.000 ns	Total Pulse Width Negative Slack (TPWS):	0.000 ns
Number of Failing Endpoints:	0	Number of Failing Endpoints:	0	Number of Failing Endpoints:	0
Total Number of Endpoints:	6255	Total Number of Endpoints:	6255	Total Number of Endpoints:	2117

Utilization:

Resource	Utilization	Available	Utilization %
LUT	1117	20800	5.37
FF	2116	41600	5.09
Ю	5	106	4.72

2. Sequential:

Device:

Timing Report:

Utilization:

Resource	Utilization	Available	Utilization %
LUT	1110	20800	5.34
FF	2132	41600	5.13
Ю	5	106	4.72

3. One-hot Encoding:

Device:

Timing Report:

Utilization:

Resource	Utilization	Available	Utilization %
LUT	1104	20800	5.31
FF	2134	41600	5.13
10	5	106	4.72

One-hot has the highest slack in the implementation so it'll be used.

• Successful bitstream generation:

• No errors screenshot:

