Основные формулы

Число к определяется по формуле Стерджеса

$$k = 1 + [3,322 \ lgn] = 1 + [log_2n],$$
 где n – объем выборки.

Степенная средняя порядка
$$p$$
: $\bar{x}_p = \left(\frac{1}{n}\sum_{i=1}^n x_i^p\right)^{\frac{1}{p}}$ $\bar{x}_p = \left(\frac{1}{n}\sum_{i=1}^k m_i x^p_{(i)}\right)^{\frac{1}{p}} = \left(\sum_{i=1}^k w_i x^p_{(i)}\right)^{\frac{1}{p}}.$

Порядок, р	Название	Формула вычисления для несгруппированного ряда	Формула вычисления для сгруппированного ряда (ВР)
-1	Средняя гармоническая	$\overline{x}_{-1} = \frac{n}{\sum_{i=1}^{n} \frac{1}{x_i}}$	$\bar{x}_{-1} = \frac{n}{\sum_{i=1}^{k} \frac{m_i}{x_{(i)}}}$
0	Средняя геометрическая	$\bar{x}_0 = \sqrt[n]{x_1 \dots x_n}$	$\bar{x}_0 = \sqrt[n]{x_1^{m_1} \dots x_k^{m_k}}, \ n = \sum_{i=1}^k m_i$
1	Средняя арифметическая	$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$	$\overline{x} = \frac{1}{n} \sum_{i=1}^{k} m_i x_{(i)}$
2	Средняя квадратическая	$\bar{x}_2 = \sqrt{\frac{1}{n} \sum_{i=1}^n x_i^2}$	$\bar{x}_2 = \sqrt{\frac{1}{n} \sum_{i=1}^{k} m_i x^2_{(i)}}$
3	Средняя кубическая	$\bar{x}_3 = \sqrt[3]{\frac{1}{n} \sum_{i=1}^{n} x_i^3}$	$\bar{x}_3 = \sqrt[3]{\frac{1}{n} \sum_{i=1}^{k} m_i x^3_{(i)}}$

Медиана

ДВР	ИВР	
$Me = \begin{cases} x *_{l+1}, n = 2l+1, \\ \frac{x *_{l} + x *_{l+1}}{2}, n = 2l. \end{cases}$	$Me = x_{Me} + h \frac{\frac{1}{2} - w_{Me-1}^c}{w_{Me}} Me = x_{Me} + h \frac{\frac{n}{2} - m_{Me-1}^c}{m_{Me}},$ где x_{Me} — нижняя граница медианного интервала.	

Свойство медианы: $\sum_{i=1}^{n} |x_i - Me| \le \sum_{i=1}^{n} |x_i - L|, \quad \forall L \in \mathbb{R}.$

Kвантиль порядка p для MBP: $Q_p = x_{Q_p} + h \frac{np - m_{Q_p-1}^c}{m_{Q_p}}, \quad Q_p = x_{Q_p} + h \frac{p - w_{Q_p-1}^c}{w_{Q_p}},$

 x_{Qp} – нижняя граница квантильного интервала, порядка p;

Квартили:
$$q_1=Q_{1/4}=x_{q_1}+hrac{rac{1}{4}n-m_{q_1-1}^c}{m_{q_1}}, \ q_2=Me, \ q_3=Q_{3/4}=x_{q_3}+hrac{rac{3}{4}n-m_{q_3-1}^c}{m_{q_3}}.$$

Место квартили:
$$N_{q_1}=\frac{\sum\limits_{i=1}^km_i}{4}$$
 , $N_{q_2}=\frac{2\sum\limits_{i=1}^km_i}{4}$, $N_{q_3}=\frac{3\sum\limits_{i=1}^km_i}{4}$.

Мода

ДВР		ИВР
Варианта с доминирующей частотой Применяют соглашения:		$Mo = x_{Mo} + h \frac{w_{Mo} - w_{Mo-1}}{2w_{Mo} - w_{Mo-1} - w_{Mo+1}},$
*	Если все варианты имеют одинаковую частоту, то говорят, что вариационный ряд не имеет моды.	где x_{Mo} — нижняя граница модального интервала.
*	Если две или более соседние варианты имеют одинаковую доминирующую частоту, то мода равна средней арифметической этих вариант.	
*	Если две (или более) несоседние варианты, имеют одинаковую доминирующую частоту, то говорят, что признак имеет две (или более) моды и называется бимодальным (полимодальным).	

Предположим, что вся совокупность значений признака X разбита на j групп

$$\underbrace{x_1, \dots, x_{n_1}}_{(1)}$$
, $\underbrace{x_{n_1+1}, \dots, x_{n_1+n_2}}_{(2)}$, ..., $\underbrace{x_{n_1+\dots+n_{j-1}+1}, \dots, x_n}_{(j)}$

и для каждой группы вычисляется групповая средняя $\bar{x}^{(l)}$, $l=\overline{1,j}$.

Тогда средняя общая
$$\bar{x} = \frac{1}{n} \sum_{l=1}^{j} n_l \bar{x}^{(l)}$$
.

Правило сложения дисперсий:

$$D_{\text{OMII}} = \overline{D} + \overline{\delta}^2$$
,

$$\overline{D} = \frac{D_1 n_1 + D_2 n_2 + \ldots + D_j n_j}{n}; \qquad \overline{\delta}^2 = \frac{n_1 (\overline{x}^{(1)} - \overline{x})^2 + \ldots + n_j (\overline{x}^{(j)} - \overline{x})^2}{n}.$$

 \overline{D} — средняя из внутригрупповых дисперсий; $\overline{\delta}^2$ — межгрупповая дисперсия.

Коэффициент асимметрии:
$$A_s = \frac{\mu_{3,\bar{x}}}{\sigma^3} = r_3$$
, где $\mu_{3,\bar{x}} = \frac{1}{n} \sum_{i=1}^k m_i (x_{(i)} - \bar{x})^3$.

Если $A_s > 0$, то распределение скошено вправо, т.е. преобладают положительные отклонения от математического ожидания;

Если $A_s < 0$, то распределение скошено влево, т.е. преобладают отрицательные отклонения от математического ожидания;

Если $A_s = 0$, то распределение симметрично относительно математического ожидания.

Принято считать асимметрию при значении:

$$|A_s| \le 0,25$$
 малой, $0,25 < |A_s| \le 0,5$ умеренной, $0,5 < |A_s| \le 1,5$ большой, $1,5 < |A_s|$ исключительно большой.

Иногда используют первый $A_s \approx \frac{\overline{x} - Mo}{\sigma}$ или второй $A_s \approx \frac{3(\overline{x} - Me)}{\sigma}$ приближенные коэффициенты асимметрии Пирсона.

Об остроте вершины кривой распределения судят по коэффициенту эксцесса:

$$E_x = r_4 - 3 = \frac{\mu_{4,\bar{x}}}{\sigma^4} - 3$$
.

Если $E_x > 0$, то распределение имеет острый пик (по сравнению с нормальным распределением);

Если $E_x < 0$ (минимальное значение $E_x = -2$), то распределение имеет плосковершинную форму (по сравнению с нормальным распределением, для которого $E_x = 0$).

При $-0.5 < E_x < 3$ считают, что распределение приближается к нормальному.

В общем случае:

Условные средние:
$$\bar{y}_{x_i} = \frac{1}{m_{x_i}} \sum_{j=1}^l m_{ij} y_j$$
 и $\bar{x}_{y_j} = \frac{1}{m_{y_j}} \sum_{i=1}^k m_{ij} x_i$.

Общее среднее
$$\bar{y} = \frac{1}{n} \sum_{j=1}^{l} m_{y_j} y_j$$
; $\bar{x} = \frac{1}{n} \sum_{i=1}^{k} m_{x_i} x_i$;

В частном случае:

Общее среднее:
$$\bar{y} = \frac{1}{k} \sum_{j=1}^{k} y_j$$
; $\bar{x} = \frac{1}{k} \sum_{i=1}^{k} x_i$;

ковариация:
$$\sigma_{xy} = \frac{1}{k} \sum_{i=1}^{k} (x_i - \overline{x})(y_i - \overline{y}) = \overline{xy} - \overline{x} \ \overline{y}.$$

Коэффициент корреляции Пирсона: $r_{xy} = \frac{\sigma_{xy}}{\sigma_x \sigma_y}$.

Оценка существенности линейного коэффициента корреляции при *большом* объеме выборки (свыше 50) проводится с использованием следующего отношения для наблюдаемого значения критерия: $t_{\text{расч}} = \frac{r_{xy}}{\sigma_r}$, где $\sigma_r = \frac{1-r_{xy}^2}{\sqrt{n-1}}$ среднеквадратическая ошибка линейного коэффициента корреляции, n – объем выборки. При n недостаточно большом объеме выборки величину среднеквадратической ошибки коэффициента корреляции определяют по формуле: $\sigma_r = \frac{\sqrt{1-r_{xy}^2}}{\sqrt{n-2}}$.

Коэффициент Фехнера: $K_{\Phi} = \frac{\Sigma C - \Sigma H}{\Sigma C + \Sigma H}$.

Коэффициент Спирмена: $r_c = 1 - \frac{i=1}{n^3 - n}$, $d_i = R_{x_i} - R_{y_i}$ — разность рангов.

В случае присутствия связанных рангов

$$r_{c} = \frac{\frac{1}{6}(n^{3} - n) - \sum_{i=1}^{n} d_{i}^{2} - T_{x} - T_{y}}{\sqrt{\frac{1}{6}(n^{3} - n) - 2T_{x}} + \frac{1}{6}(n^{3} - n) - 2T_{y}}},$$

$$T_{x} = \frac{1}{12} \sum_{i=1}^{p} (t_{i}^{3}(x) - t_{i}(x)), \qquad T_{x} = \frac{1}{12} \sum_{i=1}^{q} (t_{j}^{3}(y) - t_{j}(y)),$$

p – количество связанных рангов признака X;

 $t_i(x)$ – количество значений признака X в i-ом связанном ранге;

q – количество связанных рангов признака Y;

 $t_{j}(y)$ – количество значений признака Y в j-ом связанном ранге.

Коэффициент ассоциации $K_a = \frac{m_{11}m_{22} - m_{12}m_{21}}{\sqrt{m_{x_0}m_{x_1}m_{y_0}m_{y_1}}};$

Коэффициент контингенции $K_{\kappa} = \frac{m_{11}m_{22} - m_{12}m_{21}}{m_{11}m_{22} + m_{11}m_{22}}$.

Всегда $|K_a| \le |K_\kappa|$. Статистическая зависимость считается существенной, если $|K_\kappa| \ge 0.5, \ |K_a| \ge 0.3.$

Коэффициент корреляции Пирсона $\varphi = \frac{p_{xy} - p_x p_y}{\sqrt{p_x (1 - p_x) p_y (1 - p_y)}}$,

где p_x – доля выборочных значений признака x, равных 1;

 p_y – доля выборочных значений признака у, равных 1;

 p_{xy} – доля вариант (x_i, y_i) с единичными значениями у обоих признаков.

Каждый из двух признаков состоит более чем из двух групп:

Коэффициент взаимной сопряженности Пирсона $K_{\Pi} = \sqrt{\frac{\varphi^2}{1+\varphi^2}}$,

$$arphi^2 = \sum_{i=1}^k \sum_{j=1}^l rac{m_{ij}^2}{m_{x_i} m_{y_j}} - 1\,, \qquad k,l$$
 — число групп по двум признакам.

Коэффициент взаимной сопряженности Чупрова $K_{q} = \sqrt{\frac{\varphi^{2}}{\sqrt{(k-1)(l-1)}}}$.

Коэффициенты линейной модели регрессии: $a = \frac{\sigma_{xy}}{\sigma_x^2} = r_{xy} \frac{\sigma_y}{\sigma_x}$, $b = \bar{y} - r_{xy} \frac{\sigma_y}{\sigma_x} \bar{x}$.

Дисперсия отклонения ε : $\sigma_{\varepsilon}^2 = \sigma_y^2 (1 - r_{xy}^2)$.

Если $r_{xy} = \pm 1$ (т.е. $r_{xy}^2 = 1$), то $\sigma_{\varepsilon}^2 = 0$; модель является адекватной.

Если $r_{xy} = 0$, тогда σ_{ε}^2 совпадает с σ_{y}^2 , т.е. модель не является адекватной.

Коэффициент детерминации:
$$\eta_{y(x)}^2 = \frac{\overline{\delta^2}}{\sigma_y^2} = \frac{\sigma_y^2 - \sigma_{y/x}^2}{\sigma_y^2} = 1 - \frac{\sigma_{y/x}^2}{\sigma_y^2}$$
.

Чем ближе $\frac{\sigma_{y/x}^2}{\sigma_y^2}$ к нулю, тем модель адекватнее.

$$\eta_{y(x)} = \sqrt{1 - \frac{\sigma_{y/x}^2}{\sigma_y^2}}$$
, $0 \le \eta_{y(x)} \le 1 - \kappa oppe$ ляционное отношение.

В случае линейной зависимости: $\eta_{y(x)}^2 = r_{xy}^2$.

В остальных случаях $\eta_{y(x)}^2 \ge r_{xy}^2$.

Причем отклонение от линейности считается существенным, если $\eta_{y(x)}^2 - r_{xy}^2 \ge 0,1$. Если $\eta_{y(x)}^2 - r_{xy}^2 \le 0,1$, то несущественным.

$$\begin{cases} a_{1}\sigma_{11} + a_{2}\sigma_{12} \dots + a_{k}\sigma_{1k} = \sigma_{1y} \\ \dots & a_{0} = \overline{y} - a_{1}\overline{x}_{1} - a_{2}\overline{x}_{2} - \dots - a_{k}\overline{x}_{k} = \overline{y} - \sum_{j=1}^{k} a_{j}\overline{x}_{j} \\ a_{1}\sigma_{k1} + a_{2}\sigma_{k2} \dots + a_{k}\sigma_{kk} = \sigma_{ky} \end{cases}$$

$$\sigma_{ij} = \sigma_{x_{i}x_{j}}, \quad \sigma_{ii} = \sigma^{2}_{x_{i}} = \sigma_{i}^{2}; \quad \sigma_{jy} = \sigma_{x_{j}y}.$$

$$a_{1} = \frac{\sigma_{2}^{2}\sigma_{1y} - \sigma_{12}\sigma_{2y}}{\sigma_{1}^{2}\sigma_{2}^{2} - \sigma_{12}^{2}}, \qquad a_{2} = \frac{\sigma_{1}^{2}\sigma_{2y} - \sigma_{12}\sigma_{1y}}{\sigma_{1}^{2}\sigma_{2}^{2} - \sigma_{12}^{2}}.$$

Стандартизированные коэффициенты множественной регрессии $\beta_i = a_i \frac{\sigma_i}{\sigma_v}$.

$$\begin{cases} \beta_1 + \beta_2 r_{12} + \dots + \beta_k r_{1k} = r_{1y} \\ \dots \\ \beta_1 r_{k1} + \beta_2 r_{k2} + \dots + \beta_k = r_{ky} \end{cases}$$

Корреляционная матрица

$$R = \begin{pmatrix} 1 & r_{12} & \dots & r_{1k} \\ r_{21} & 1 & & r_{2k} \\ \dots & & & \dots \\ r_{k1} & r_{k2} & \dots & 1 \end{pmatrix}$$

Коэффициент множественной детерминации: $r_y^2 = \frac{\overline{\delta}^2}{\sigma_y^2} = \sum_{i=1}^k \beta_i r_{iy} = -\Delta_{k+1}/\Delta_k$.

$$\Delta_{k} = \begin{vmatrix} 1 & r_{12} \dots & r_{1k-1} & r_{1k} \\ r_{21} & 1 & r_{2k-1} & r_{2k} \\ \dots & & & \dots \\ r_{k1} & r_{k2} & \dots & 1 \end{vmatrix}, \qquad \Delta_{k+1} = \begin{vmatrix} 1 & r_{12} \dots & r_{1k} & r_{1y} \\ r_{21} & 1 & r_{2k} & r_{2y} \\ r_{k1} & r_{k2} \dots & 1 & r_{ky} \\ r_{1y} & r_{2y} \dots & r_{ky} & 0 \end{vmatrix}$$

Частный коэффициент детерминации:

$$r_{yx_{j}}^{2} \setminus x_{1}...x_{j-1} = \frac{r_{y}^{2} - r_{y \setminus x_{j}}^{2}}{1 - r_{y \setminus x_{j}}^{2}}, \qquad r_{yx_{m}}^{2} \setminus x_{1}...x_{m-1}x_{m+1}...x_{k} = \frac{r_{y}^{2} - r_{y \setminus x_{m}}^{2}}{1 - r_{y \setminus x_{m}}^{2}}.$$

В случае
$$\mathbf{k}=2$$
:
$$r_{y}^{2}=\frac{r_{1y}^{2}+r_{2y}^{2}-2r_{1y}r_{2y}r_{12}}{1-r_{12}^{2}}\,.$$

$$r_{yx_{1}}^{2}\setminus x_{2}=\frac{r_{y}^{2}-r_{y\backslash x_{1}}^{2}}{1-r_{y\backslash x_{1}}^{2}}=/r_{y\backslash x_{1}}^{2}=r_{2y}^{2},\;r_{y\backslash x_{2}}^{2}=r_{1y}^{2}/=\frac{(r_{1y}-r_{12}r_{2y})^{2}}{(1-r_{12}^{2})(1-r_{2y}^{2})}\,.$$

$$r_{yx_{2}}^{2}\setminus x_{1}=\frac{(r_{2y}-r_{12}r_{1y})^{2}}{(1-r_{2y}^{2})(1-r_{2y}^{2})}\,.$$