Cálculo II

16 de junio de 2014

1. Probar que, para todo $x \in \mathbb{R}$ con $0 < x \le 1$ se tiene

arctgx < x < arcsen x

2. Sea $A = \{x \in \mathbb{R}^* : -\pi/2 < x < \pi/2\}$ y $f : A \to \mathbb{R}$ la función definida por

$$f(x) = \frac{6(x - \operatorname{sen} x)\operatorname{tg} x - x^4}{x^6} \quad \forall x \in \mathbb{R}^*$$

Estudiar el comportamiento de f en $-\pi/2$, 0 y $\pi/2$.

3. Se considera la función $H: \mathbb{R} \to \mathbb{R}$ dada por

$$H(x) = \int_0^{x^2} \frac{e^{\sqrt{t}} dt}{\sqrt[4]{1+t^2}} \quad \forall x \in \mathbb{R}$$

- a) Estudiar los posibles extremos absolutos y relativos de H
- b) Probar que $\lim_{x\to\infty} e^{-x} H(x) = 2$
- c) Calcular la imagen de H