

# **Summit Semiconductor Model# 444-2216 (Glenwood)**

Report #: FOCU0127.1



Report Prepared By Northwest EMC Inc.

NORTHWEST EMC – (888) 364-2378 – www.nwemc.com

California – Minnesota – Oregon – New York – Washington



22975 NW Evergreen Parkway Suite 400 Hillsboro, Oregon 97124

### **Certificate of Test**

Last Date of Test: March 23, 2012 Summit Semiconductor Model: Model# 444-2216 (Glenwood)

#### **Emissions**

| Test Description                        | Specification   | Test Method      | Pass/Fail |
|-----------------------------------------|-----------------|------------------|-----------|
| Emissions Bandwidth                     | FCC 15.407:2012 | ANSI C63.10:2009 | Pass      |
| Maximum Conducted Output Power          | FCC 15.407:2012 | ANSI C63.10:2009 | Pass      |
| Peak Power Spectral Density             | FCC 15.407:2012 | ANSI C63.10:2009 | Pass      |
| Peak Excursion                          | FCC 15.407:2012 | ANSI C63.10:2009 | Pass      |
| Duty Cycle, Transmission Pulse Duration | FCC 15.407:2012 | ANSI C63.10:2009 | Pass      |
| Unwanted Emissions                      | FCC 15.407:2012 | ANSI C63.10:2009 | Pass      |
| Unwanted Emissions                      | FCC 15.209:2012 | ANSI C63.10:2009 | Pass      |
| Frequency Stability                     | FCC 15.407:2012 | ANSI C63.10:2009 | Pass      |
| AC Powerline Conducted Emissions        | FCC 15.207:2012 | ANSI C63.10:2009 | Pass      |

### **Deviations From Test Standards**

None

Approved By:

Tim O'Shea, Operations Manager

NVLAP Lab Code: 200630-0

#### Test Facility

The measurement facility used to collect the data is located at:

Northwest EMC, Inc. 22975 NW Evergreen Parkway, Suite 400 Hillsboro, OR 97124

Phone: (503) 844-4066 Fax: 844-3826

This site has been fully described in a report filed with and accepted by the FCC (Federal Communications Commission) and Industry Canada (Site filing #2834D-1).

This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government of the United States of America.

Product compliance is the responsibility of the client, therefore the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. This Report may only be duplicated in its entirety. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test.

## **Revision History**

| Revision Number | Description | Date | Page Number |
|-----------------|-------------|------|-------------|
|                 |             |      |             |
| 00              | None        |      |             |



# Accreditations and Authorizations

#### **United States**

**FCC** - Designated by the FCC as a Telecommunications Certification Body (TCB). Certification chambers, Open Area Test Sites, and conducted measurement facilities are listed with the FCC.

**A2LA** - Accredited by A2LA to ISO / IEC Guide 65 as a product certifier. This allows Northwest EMC to certify transmitters to FCC and IC specifications.

**NVLAP** - Each laboratory is accredited by NVLAP to ISO 17025. The scope includes radio, ITE, and medical standards from around the world. See: <a href="http://www.nwemc.com/accreditations/">http://www.nwemc.com/accreditations/</a>

#### Canada

IC - Recognized by Industry Canada as a Certification Body (CB). Certification chambers and Open Area Test Sites are filed with IC.

#### **European Union**

**European Commission** — Validated by the European Commission as a Conformity Assessment Body (CAB) under the EMC directive and as a Notified Body under the R&TTE Directive.

#### Australia/New Zealand

**ACMA** - Recognized by ACMA as a CAB for the acceptance of test data.

#### Korea

KCC / RRA - Recognized by KCC's RRA as a CAB for the acceptance of test data.

#### Japan

VCCI - Associate Member of the VCCI. Conducted and radiated measurement facilities are registered.

#### **Taiwan**

**BSMI** – Recognized by BSMI as a CAB for the acceptance of test data.

NCC - Recognized by NCC as a CAB for the acceptance of test data.

#### **Singapore**

IDA – Recognized by IDA as a CAB for the acceptance of test data.

#### Hong Kong

**OFTA** – Recognized by OFTA as a CAB for the acceptance of test data.

#### Vietnam

**MIC** – Recognized by MIC as a CAB for the acceptance of test data.

#### Russia

**GOST** — Accredited by Certinform VNIINMASH, CERTINFO, SAMTES, and Federal CHEC to perform EMC and Hygienic testing for Information Technology products to GOST standards.



## Locations





| Oregon                        |
|-------------------------------|
| Labs EV01-EV12                |
| 22975 NW Evergreen Pkwy, #400 |
| Hillsboro, OR 97124           |
| (503) 844-4066                |

**California**Labs OC01-OC13
41 Tesla
Irvine, CA 92618
(949) 861-8918

New York Labs WA01-WA04 4939 Jordan Rd. Elbridge, NY 13060 (315) 685-0796 Minnesota Labs MN01-MN08 9349 W Broadway Ave. Brooklyn Park, MN 55445 (763) 425-2281 **Washington** Labs SU01-SU07 14128 339<sup>th</sup> Ave. SE Sultan, WA 98294 (360) 793-8675

| C-1071, R-1025, G-84,  |
|------------------------|
| C-2687, T-1658, R-2318 |

R-1943, G-85, C-2766, T-1659, G-548 R-3125, G-86, G-141, C-3464, T-1634 R-871, G-83, C-3265, T-1511

**Industry Canada** 

VCCI

2834D-1, 2834D-2

2834B-1, 2834B-2, 2834B-3

2834E-1

2834C-1









## **Product Description**

## **Client and Equipment Under Test (EUT) Information**

| Company Name:               | Summit Semiconductor           |  |
|-----------------------------|--------------------------------|--|
| Address:                    | 22867 NW Bennett St, Suite 200 |  |
| City, State, Zip:           | Hillsboro, OR 97124            |  |
| Test Requested By:          | Ponnappa Pasura                |  |
| Model:                      | Model# 444-2216 (Glenwood)     |  |
| First Date of Test:         | March 13, 2012                 |  |
| Last Date of Test:          | March 23, 2012                 |  |
| Receipt Date of Samples:    | March 13, 2012                 |  |
| Equipment Design Stage:     | Preproduction                  |  |
| <b>Equipment Condition:</b> | No Damage                      |  |

## **Information Provided by the Party Requesting the Test**

| Functiona | I Description | of the FIIT | (Fauinment      | t Under Test):  |
|-----------|---------------|-------------|-----------------|-----------------|
| i uncuona | I DESCHULIOH  | OI LIIC LOI | ( Luuibiii eiii | L Ulluci icali. |

UNII radio module

#### **Testing Objective:**

Seeking limited modular approval of the master under FCC 15.407 for operation in the 5.2, 5.3, and 5.6 GHz bands



## **Configuration 1 FOCU0127**

| Software/Firmware Running during test |         |  |
|---------------------------------------|---------|--|
| Description                           | Version |  |
| Hood BIST Monitor                     | 157     |  |

| EUT                                   |                      |                      |               |
|---------------------------------------|----------------------|----------------------|---------------|
| Description                           | Manufacturer         | Model/Part<br>Number | Serial Number |
| Wireless Audio Board - Direct Connect | Summit Semiconductor | 444-2216             | 02EA060000024 |

| Peripherals in test setup boundary |                      |                   |               |
|------------------------------------|----------------------|-------------------|---------------|
| Description Manufacturer Model/F   |                      | Model/Part Number | Serial Number |
| Developer I/O Board                | Summit Semiconductor | None              | C0-4          |
| RS-232 Serial Interface            | Summit Semiconductor | None              | None          |
| DC Block                           | MCL                  | BLK-89-S+         | 15542         |
| AC Adapter                         | Condor               | SA-183A61V        | 0950          |

| Remote Equipment Outside of Test Setup Boundary |              |                   |               |
|-------------------------------------------------|--------------|-------------------|---------------|
| Description                                     | Manufacturer | Model/Part Number | Serial Number |
| Remote PC                                       | Dell         | Latitude D820     | 2006-00516    |

| Cables                                                                                                 |        |            |         |                                          |                                           |
|--------------------------------------------------------------------------------------------------------|--------|------------|---------|------------------------------------------|-------------------------------------------|
| Cable Type                                                                                             | Shield | Length (m) | Ferrite | Connection 1                             | Connection 2                              |
| Multi-pin cable                                                                                        | No     | 0.2m       | No      | Wireless Audio Board -<br>Direct Connect | DC Power / RS-<br>232 Serial<br>Interface |
| Serial                                                                                                 | Yes    | 2.0m       | No      | Developer I/O Board                      | Remote PC                                 |
| DC Lead                                                                                                | PA     | 1.8m       | PA      | AC Adapter                               | Developer I/O<br>Board                    |
| PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown. |        |            |         |                                          |                                           |



## **Configuration 2 FOCU0127**

| Software/Firmware Running during test |         |  |
|---------------------------------------|---------|--|
| Description                           | Version |  |
| Hood BIST Monitor                     | 157     |  |

| EUT                             |                      |                   |               |
|---------------------------------|----------------------|-------------------|---------------|
| Description                     | Manufacturer         | Model/Part Number | Serial Number |
| Wireless Audio Board - Radiated | Summit Semiconductor | 444-2216          | 02EA060000012 |

| Peripherals in test setup boundary                       |                      |           |       |  |
|----------------------------------------------------------|----------------------|-----------|-------|--|
| Description Manufacturer Model/Part Number Serial Number |                      |           |       |  |
| Developer I/O Board                                      | Summit Semiconductor | None      | C0-4  |  |
| DC Block                                                 | MCL                  | BLK-89-S+ | 15542 |  |

| Remote Equipment Outside of Test Setup Boundary          |                      |               |            |  |
|----------------------------------------------------------|----------------------|---------------|------------|--|
| Description Manufacturer Model/Part Number Serial Number |                      |               |            |  |
| RS-232 Serial Interface                                  | Summit Semiconductor | None          | None       |  |
| Remote PC                                                | Dell                 | Latitude D820 | 2006-00516 |  |
| DC Power Supply                                          | Topward              | 6303D         | 743645     |  |

| Cables          |        |            |         |                                          |                                           |
|-----------------|--------|------------|---------|------------------------------------------|-------------------------------------------|
| Cable Type      | Shield | Length (m) | Ferrite | Connection 1                             | Connection 2                              |
| Multi-pin cable | No     | 0.2m       | No      | Wireless Audio Board -<br>Direct Connect | DC Power / RS-<br>232 Serial<br>Interface |
| Serial          | Yes    | 2.0m       | No      | Developer I/O Board                      | Remote PC                                 |
| DC Lead         | PA     | 1.8m       | PA      | AC Adapter                               | Developer I/O<br>Board                    |

PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown.



## **Configuration 3 FOCU0127**

| Software/Firmware Running during test |         |  |  |
|---------------------------------------|---------|--|--|
| Description                           | Version |  |  |
| Hood BIST Monitor                     | 157     |  |  |

| EUT                                   |                      |                      |               |  |  |  |
|---------------------------------------|----------------------|----------------------|---------------|--|--|--|
| Description                           | Manufacturer         | Model/Part<br>Number | Serial Number |  |  |  |
| Wireless Audio Board - Direct Connect | Summit Semiconductor | 444-2216             | 02EA060000024 |  |  |  |

| Peripherals in test setup boundary                       |                      |            |      |  |  |
|----------------------------------------------------------|----------------------|------------|------|--|--|
| Description Manufacturer Model/Part Number Serial Number |                      |            |      |  |  |
| Developer I/O Board                                      | Summit Semiconductor | None       | C0-4 |  |  |
| RS-232 Serial Interface                                  | Summit Semiconductor | None       | None |  |  |
| AC Adapter                                               | Condor               | SA-183A61V | 0950 |  |  |

| Remote Equipment Outside of Test Setup Boundary          |      |               |            |  |
|----------------------------------------------------------|------|---------------|------------|--|
| Description Manufacturer Model/Part Number Serial Number |      |               |            |  |
| Remote PC                                                | Dell | Latitude D820 | 2006-00516 |  |

| Cables                                                                                                 |        |            |         |              |                        |
|--------------------------------------------------------------------------------------------------------|--------|------------|---------|--------------|------------------------|
| Cable Type                                                                                             | Shield | Length (m) | Ferrite | Connection 1 | Connection 2           |
| DC Lead                                                                                                | PA     | 1.8m       | PA      | AC Adapter   | Developer I/O<br>Board |
| PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown. |        |            |         |              |                        |



## Configuration 4 FOCU0127

| Software/Firmware Running during test |         |  |  |
|---------------------------------------|---------|--|--|
| Description                           | Version |  |  |
| Hood BIST Monitor                     | 157     |  |  |

| EUT                             |                      |                   |               |
|---------------------------------|----------------------|-------------------|---------------|
| Description                     | Manufacturer         | Model/Part Number | Serial Number |
| Wireless Audio Board - Radiated | Summit Semiconductor | 444-2216          | 02EA060000012 |

| Peripherals in test setup boundary                       |                      |       |        |  |
|----------------------------------------------------------|----------------------|-------|--------|--|
| Description Manufacturer Model/Part Number Serial Number |                      |       |        |  |
| Developer I/O Board                                      | Summit Semiconductor | None  | C0-4   |  |
| DC Power Supply                                          | Topward              | 6303D | 743645 |  |

| Remote Equipment Outside | e of Test Setup Boundary |                   |               |
|--------------------------|--------------------------|-------------------|---------------|
| Description              | Manufacturer             | Model/Part Number | Serial Number |
| RS-232 Serial Interface  | Summit Semiconductor     | None              | None          |
| Remote PC                | Dell                     | Latitude D820     | 2006-00516    |

| Cables     |              |                       |                |                                  |                        |
|------------|--------------|-----------------------|----------------|----------------------------------|------------------------|
| Cable Type | Shield       | Length (m)            | Ferrite        | Connection 1                     | Connection 2           |
| DC Lead    | PA           | 1.8m                  | PA             | AC Adapter                       | Developer I/O<br>Board |
| PA = Cable | is permanent | ly attached to the de | vice. Shieldin | g and/or presence of ferrite may | y be unknown.          |



## **Modifications**

## **Equipment Modifications**

| Item | Date      | Test                                             | Modification                         | Note                                                                | Disposition of EUT                                      |
|------|-----------|--------------------------------------------------|--------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------|
| 1    | 3/13/2012 | Duty Cycle,<br>Transmission<br>Pulse<br>Duration | Tested as delivered to Test Station. | No EMI suppression devices were added or modified during this test. | EUT remained at<br>Northwest EMC<br>following the test. |
| 2    | 3/15/2012 | Unwanted<br>Emissions                            | Tested as delivered to Test Station. | No EMI suppression devices were added or modified during this test. | EUT remained at<br>Northwest EMC<br>following the test. |
| 3    | 3/19/2012 | Peak Power<br>Spectral<br>Density                | Tested as delivered to Test Station. | No EMI suppression devices were added or modified during this test. | EUT remained at<br>Northwest EMC<br>following the test. |
| 4    | 3/19/2012 | Maximum Conducted Output Power                   | Tested as delivered to Test Station. | No EMI suppression devices were added or modified during this test. | EUT remained at<br>Northwest EMC<br>following the test. |
| 5    | 3/19/2012 | Emissions<br>Bandwidth                           | Tested as delivered to Test Station. | No EMI suppression devices were added or modified during this test. | EUT remained at<br>Northwest EMC<br>following the test. |
| 6    | 3/19/2012 | Peak<br>Excursion                                | Tested as delivered to Test Station. | No EMI suppression devices were added or modified during this test. | EUT remained at<br>Northwest EMC<br>following the test. |
| 7    | 3/20/2012 | Frequency<br>Stability                           | Tested as delivered to Test Station. | No EMI suppression devices were added or modified during this test. | EUT remained at<br>Northwest EMC<br>following the test. |
| 8    | 3/23/2012 | AC Powerline Conducted Emissions                 | Tested as delivered to Test Station. | No EMI suppression devices were added or modified during this test. | Scheduled testing was completed.                        |



Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

#### **TEST EQUIPMENT**

| Description                     | Manufacturer     | Model    | ID  | Last Cal. | Interval |
|---------------------------------|------------------|----------|-----|-----------|----------|
| Spectrum Analyzer               | Agilent          | E4440A   | AFD | 7/5/2011  | 12       |
| 40GHz DC Block                  | Miteq            | DCB4000  | AMD | 8/12/2011 | 12       |
| Attenuator 20 dB, SMA M/F 26GHz | S.M. Electronics | SA26B-20 | AUY | 8/2/2011  | 12       |
| EV06 Direct Connect Cable       | ESM Cable Corp.  | TT       | ECA | NCR       | 0        |

#### **MEASUREMENT UNCERTAINTY**

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.

#### **TEST DESCRIPTION**

FCC Public Notice KDB 789033 D01 was followed. The transmit frequency was set to the lowest, a medium, and the highest channels in each band. The transmit power was set to its default maximum. The lowest, a medium, and the highest data rates were measured if available. A direct connection was made between the RF output of the EUT and a spectrum analyzer. Attenuation and a DC block were used. The reference level offset on the spectrum analyzer was adjusted to compensate for cable loss and the external attenuation used between the RF output and the spectrum analyzer input.

The spectrum analyzer settings were as follows:

- > Span = approximately 1.5 to 2 times the emission bandwidth, centered on the transmit channel.
- >RBW = Approx. 1% of the emission bandwidth (B). This was an iterative process where an exact match of 1% may not be achieved. The largest value of RBW that came close to 1% of the emission bandwidth was used.
- >A peak detector was used.

The Occupied Bandwidth measurement function of the analyzer was used to measure x dB -26 dB emission bandwidth



|                               | Model# 444-2216 (Glenw                                                                                                                                         | ood)                                                            |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | Work Order:                                                        |                                                               |                              |
|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------------------------------------------------------------|---------------------------------------------------------------|------------------------------|
|                               | 02EA06000024                                                                                                                                                   |                                                                 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                                    | 03/19/12                                                      |                              |
|                               | Summit Semiconductor                                                                                                                                           |                                                                 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | Temperature:                                                       |                                                               |                              |
|                               | Ponnappa Pasura                                                                                                                                                |                                                                 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | Humidity:                                                          |                                                               |                              |
| Project:                      |                                                                                                                                                                |                                                                 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | Barometric Pres.:                                                  |                                                               |                              |
|                               | Rod Peloquin                                                                                                                                                   |                                                                 | Por             | ver: 18 VDC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          | Job Site:                                                          | EV06                                                          |                              |
| TEST SPECIFICATI              | IONS                                                                                                                                                           |                                                                 |                 | Test Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |                                                                    |                                                               |                              |
| FCC 15.407:2012               |                                                                                                                                                                |                                                                 |                 | ANSI C63.10:2009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |                                                                    |                                                               |                              |
|                               |                                                                                                                                                                |                                                                 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                                    |                                                               |                              |
| COMMENTS                      |                                                                                                                                                                |                                                                 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                                    |                                                               |                              |
| None                          |                                                                                                                                                                | <u> </u>                                                        |                 | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <u> </u> |                                                                    |                                                               |                              |
|                               |                                                                                                                                                                |                                                                 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                                    |                                                               |                              |
|                               |                                                                                                                                                                |                                                                 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                                    |                                                               |                              |
| DEVIATIONS FROM               | M TEST STANDARD                                                                                                                                                |                                                                 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                                    |                                                               |                              |
| ,,                            | II ILOI GIANDAND                                                                                                                                               |                                                                 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                                    |                                                               |                              |
| None                          | I ILOI OTANDAND                                                                                                                                                |                                                                 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                                    |                                                               |                              |
| None                          | I I I I I I I I I I I I I I I I I I I                                                                                                                          |                                                                 | 10 1 P.         | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |                                                                    |                                                               |                              |
|                               | 1                                                                                                                                                              |                                                                 | Rolly be Rel    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                                    |                                                               |                              |
| None                          | 1                                                                                                                                                              | Signature                                                       | Rocky be Rel    | ery.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |                                                                    |                                                               |                              |
| None                          | 1                                                                                                                                                              | Signature                                                       | Porly le Rel    | رادر                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |                                                                    |                                                               |                              |
| None Configuration#           | 1                                                                                                                                                              | Signature                                                       | Pooling be Feel | in the second se |          | Value                                                              | Limit                                                         | Result                       |
| None Configuration # 6 Mbps   | 1                                                                                                                                                              | Signature                                                       | Poly la Rel     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | Value                                                              | Limit                                                         | Result                       |
| None Configuration # 6 Mbps   | 1<br>5150 - 5250 MHz Band                                                                                                                                      |                                                                 | Poling la Rel   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                                    |                                                               |                              |
| None Configuration # 6 Mbps   | 1<br>5150 - 5250 MHz Band<br>Channel 36,                                                                                                                       | Low Channel                                                     | Poeley la Rol   | ly-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          | 24.385 MHz                                                         | ≥ 500 kHz                                                     | Pass                         |
| None Configuration # 6 Mbps   | 1<br>5150 - 5250 MHz Band<br>Channel 36,<br>Channel 48,                                                                                                        |                                                                 | Pooling les Rel |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                                    |                                                               |                              |
| None Configuration # 6 Mbps   | 1<br>5150 - 5250 MHz Band<br>Channel 36,<br>Channel 48,<br>5250 - 5350 MHz Band                                                                                | Low Channel<br>High Channel                                     | Poeling les Rol |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 24.385 MHz<br>19.665 MHz                                           | ≥ 500 kHz<br>≥ 500 kHz                                        | Pass<br>Pass                 |
| None Configuration # 6 Mbps   | 5150 - 5250 MHz Band<br>Channel 36,<br>Channel 48,<br>5250 - 5350 MHz Band<br>Channel 52,                                                                      | Low Channel<br>High Channel<br>Low Channel                      | Pooling la Rol  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 24.385 MHz<br>19.665 MHz<br>19.602 MHz                             | ≥ 500 kHz<br>≥ 500 kHz<br>≥ 500 kHz                           | Pass<br>Pass<br>Pass         |
| None  Configuration #  6 Mbps | 1<br>5150 - 5250 MHz Band<br>Channel 36,<br>Channel 48,<br>5250 - 5350 MHz Band<br>Channel 52,<br>Channel 64,                                                  | Low Channel<br>High Channel                                     | Pooling la Rel  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 24.385 MHz<br>19.665 MHz                                           | ≥ 500 kHz<br>≥ 500 kHz                                        | Pass<br>Pass                 |
| None  Configuration #  6 Mbps | 1<br>5150 - 5250 MHz Band<br>Channel 36,<br>5250 - 5350 MHz Band<br>Channel 52,<br>Channel 64,<br>5470 - 5725 MHz Band                                         | Low Channel<br>High Channel<br>Low Channel<br>High Channel      | Poeling las Rol |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 24.385 MHz<br>19.665 MHz<br>19.602 MHz<br>19.576 MHz               | ≥ 500 kHz<br>≥ 500 kHz<br>≥ 500 kHz<br>≥ 500 kHz              | Pass<br>Pass<br>Pass<br>Pass |
| None  Configuration #  6 Mbps | 5150 - 5250 MHz Band<br>Channel 36,<br>Channel 48,<br>5250 - 5350 MHz Band<br>Channel 52,<br>Channel 64,<br>5470 - 5725 MHz Band<br>Channel 100                | Low Channel High Channel Low Channel High Channel , Low Channel | Pooling les Rel |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 24.385 MHz<br>19.665 MHz<br>19.602 MHz<br>19.576 MHz<br>21.695 MHz | ≥ 500 kHz<br>≥ 500 kHz<br>≥ 500 kHz<br>≥ 500 kHz<br>≥ 500 kHz | Pass<br>Pass<br>Pass<br>Pass |
| None  Configuration #  6 Mbps | 5150 - 5250 MHz Band<br>Channel 36,<br>Channel 48,<br>5250 - 5350 MHz Band<br>Channel 52,<br>Channel 64,<br>5470 - 5725 MHz Band<br>Channel 100<br>Channel 116 | Low Channel<br>High Channel<br>Low Channel<br>High Channel      | Porly le Rel    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 24.385 MHz<br>19.665 MHz<br>19.602 MHz<br>19.576 MHz               | ≥ 500 kHz<br>≥ 500 kHz<br>≥ 500 kHz<br>≥ 500 kHz              | Pass<br>Pass<br>Pass<br>Pass |





|  | 6 MI | bps, 5150 - 5250 | MHz Band, Chan | nel 48, High Char | inel      |        |
|--|------|------------------|----------------|-------------------|-----------|--------|
|  |      |                  |                |                   |           |        |
|  |      |                  |                | Value             | Limit     | Result |
|  |      |                  |                | 19.665 MHz        | ≥ 500 kHz | Pass   |







|  | 6 Mb | ps, 5250 - 5350 | MHz Band, Chan | nel 64, High Char | nel       |        |
|--|------|-----------------|----------------|-------------------|-----------|--------|
|  |      |                 |                |                   |           |        |
|  |      |                 |                | Value             | Limit     | Result |
|  |      |                 |                | 19.576 MHz        | ≥ 500 kHz | Pass   |







|   | 6 Mb | ops, 5470 - 5725 | MHz Band, Chani | nel 116, Mid Char | nnel      |        |
|---|------|------------------|-----------------|-------------------|-----------|--------|
|   |      |                  |                 |                   |           |        |
|   |      |                  |                 | Value             | Limit     | Result |
| • |      |                  |                 | 21.565 MHz        | ≥ 500 kHz | Pass   |











Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

#### **TEST EQUIPMENT**

| Description                     | Manufacturer     | Model    | ID  | Last Cal. | Interval |
|---------------------------------|------------------|----------|-----|-----------|----------|
| Spectrum Analyzer               | Agilent          | E4440A   | AFD | 7/5/2011  | 12       |
| 40GHz DC Block                  | Miteq            | DCB4000  | AMD | 8/12/2011 | 12       |
| Attenuator 20 dB, SMA M/F 26GHz | S.M. Electronics | SA26B-20 | AUY | 8/2/2011  | 12       |
| EV06 Direct Connect Cable       | ESM Cable Corp.  | TT       | ECA | NCR       | 0        |
| Power Meter                     | Gigatronics      | 8651A    | SPM | 1/9/2012  | 24       |
| Power Sensor                    | Gigatronics      | 80701A   | SPL | 7/8/2011  | 24       |
| MXG Vector Signal Generator     | Agilent          | N5182A   | TIF | NCR       | 0        |
| Attenuator, 6dB                 | S.M. Electronics | 18N-06   | AWN | 5/5/2011  | 12       |

#### **MEASUREMENT UNCERTAINTY**

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.

#### **TEST DESCRIPTION**

FCC KDB 789033 D01 General UNII Test Procedures was followed. The transmit frequency was set to the required channels in each band. The transmit power was set to its default maximum. A direct connection was made between the RF output of the EUT and a spectrum analyzer. Attenuation and a DC block were used. The reference level offset on the spectrum analyzer was adjusted to compensate for cable loss and the external attenuation used between the RF output and the spectrum analyzer input. The amplitude accuracy of the spectrum analyzer was further enhanced by calibrating the setup using the power meter and synthesized signal generator.

Prior to measuring peak transmit power; the emission bandwidth (B) was measured. The method of measuring the emission bandwidth and the associated data are found elsewhere in this test report

Method SA-2 Alternate (RMS detection with slow sweep across on and off times of the EUT transmission and use of a duty cycle correction factor) was used for this test.

The spectrum analyzer settings were set per the guidance as well as the following specifics:

The number of points was set to 601. This satisfied the requirement of being > 2 \* span (25) / RBW (1)

Sweep time was to 2.2 seconds to satisfy the function of > 10  $^{*}$  (number of points being 601)  $^{*}$  (total transmitter period of 360  $\mu$ s)



| EUT.             |                                                                                                                                                 |                                                            |                  |                                  |                      |                          |                              |                      |                              |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|------------------|----------------------------------|----------------------|--------------------------|------------------------------|----------------------|------------------------------|
| EUI:             | Model# 444-2216 (Glenw                                                                                                                          | rood)                                                      |                  |                                  |                      |                          | Work Order:                  | FOCU0127             |                              |
| Serial Number:   | 02EA06000024                                                                                                                                    | -                                                          |                  |                                  |                      |                          | Date:                        | 03/19/12             |                              |
| Customer:        | Summit Semiconductor                                                                                                                            |                                                            |                  |                                  |                      |                          | Temperature:                 | 21°C                 |                              |
| Attendees:       | Ponnappa Pasura                                                                                                                                 |                                                            |                  |                                  |                      |                          | Humidity:                    | 28%                  |                              |
| Project:         | None                                                                                                                                            |                                                            |                  |                                  |                      |                          | Barometric Pres.:            | 1013.5 mb            |                              |
|                  | Rod Peloquin                                                                                                                                    |                                                            | Powe             | r: 18 VDC                        |                      |                          | Job Site:                    | EV06                 |                              |
| TEST SPECIFICATI | IONS                                                                                                                                            |                                                            |                  | Test Method                      |                      |                          |                              |                      |                              |
| FCC 15.407:2012  |                                                                                                                                                 |                                                            |                  | ANSI C63.10:2009                 |                      |                          |                              |                      |                              |
|                  |                                                                                                                                                 |                                                            |                  |                                  |                      |                          |                              |                      |                              |
| COMMENTS         |                                                                                                                                                 |                                                            |                  |                                  |                      |                          |                              |                      |                              |
| None             |                                                                                                                                                 |                                                            |                  |                                  |                      |                          |                              |                      |                              |
| İ                |                                                                                                                                                 |                                                            |                  |                                  |                      |                          |                              |                      |                              |
|                  |                                                                                                                                                 |                                                            |                  |                                  |                      |                          |                              |                      |                              |
| DEVIATIONS FROM  | M TEST STANDARD                                                                                                                                 |                                                            |                  |                                  |                      |                          |                              |                      |                              |
| None             |                                                                                                                                                 |                                                            |                  |                                  |                      |                          |                              |                      |                              |
| Configuration #  | 1                                                                                                                                               |                                                            | 00120            |                                  |                      |                          |                              |                      |                              |
| g                | '                                                                                                                                               | Signatura                                                  | Rolly be Rolly   |                                  |                      |                          |                              |                      |                              |
| g                | '                                                                                                                                               | Signature                                                  | hours in seeing  | Channel Power                    | Duty Cycle           | Correction               | Power                        | Limit                |                              |
| <b>3</b>         | 1                                                                                                                                               | Signature                                                  | Today to selegy  | Channel Power                    | Duty Cycle           | Correction               | Power                        | Limit                | Result                       |
|                  | '                                                                                                                                               | Signature                                                  | Today le sely    | Channel Power<br>dB              | Duty Cycle<br>%      | Correction<br>dB         | Power<br>dBm                 | Limit<br>dBm         | Result                       |
| 6 Mbps           |                                                                                                                                                 | Signature                                                  | Poerry to Holays |                                  |                      |                          |                              |                      | Result                       |
| 6 Mbps           | 5150 - 5250 MHz Band                                                                                                                            |                                                            | rang in salays   | dB                               | %                    | dB                       | dBm                          | dBm                  |                              |
| 6 Mbps           | 5150 - 5250 MHz Band<br>Channel 36,                                                                                                             | Low Channel                                                | rang in salays   |                                  |                      |                          |                              |                      | Result  Pass Pass            |
| 6 Mbps           | 5150 - 5250 MHz Band<br>Channel 36,                                                                                                             |                                                            | rough a sough    | dB<br>13.00                      | 55                   | dB<br>2.6                | dBm<br>15.6                  | dBm<br>17            | Pass                         |
| 6 Mbps           | 5150 - 5250 MHz Band<br>Channel 36,<br>Channel 48,<br>5250 - 5350 MHz Band                                                                      | Low Channel<br>High Channel                                | roung in soungs  | dB<br>13.00                      | %<br>55<br>55        | 2.6<br>2.6               | 15.6<br>15.2                 | dBm<br>17<br>17      | Pass                         |
| 6 Mbps           | 5150 - 5250 MHz Band<br>Channel 36,<br>Channel 48,<br>5250 - 5350 MHz Band<br>Channel 52,                                                       | Low Channel<br>High Channel<br>Low Channel                 | rang is sangs    | 13.00<br>12.56                   | 55                   | dB<br>2.6                | dBm<br>15.6                  | dBm<br>17            | Pass<br>Pass                 |
| 6 Mbps           | 5150 - 5250 MHz Band<br>Channel 36,<br>Channel 48,<br>5250 - 5350 MHz Band<br>Channel 52,                                                       | Low Channel<br>High Channel                                | rough a sough    | 13.00<br>12.56<br>12.89          | 55<br>55<br>55       | 2.6<br>2.6<br>2.6        | 15.6<br>15.2                 | 17<br>17<br>24       | Pass<br>Pass<br>Pass         |
| 6 Mbps           | 5150 - 5250 MHz Band<br>Channel 36,<br>Channel 48,<br>5250 - 5350 MHz Band<br>Channel 52,<br>Channel 64,<br>5470 - 5725 MHz Band                | Low Channel<br>High Channel<br>Low Channel                 | rang a sangs     | 13.00<br>12.56<br>12.89          | 55<br>55<br>55       | 2.6<br>2.6<br>2.6        | 15.6<br>15.2                 | 17<br>17<br>24       | Pass<br>Pass<br>Pass         |
| 6 Mbps           | 5150 - 5250 MHz Band<br>Channel 36,<br>Channel 48,<br>5250 - 5350 MHz Band<br>Channel 52,<br>Channel 64,<br>5470 - 5725 MHz Band<br>Channel 100 | Low Channel<br>High Channel<br>Low Channel<br>High Channel | rough sough      | 13.00<br>12.56<br>12.89<br>12.41 | 55<br>55<br>55<br>55 | 2.6<br>2.6<br>2.6<br>2.6 | 15.6<br>15.2<br>15.5<br>15.0 | 17<br>17<br>24<br>24 | Pass<br>Pass<br>Pass<br>Pass |





| 6 Mbps, 5150 - 5250 MHz Band, Channel 48, High Channel |            |            |       |       |        |  |
|--------------------------------------------------------|------------|------------|-------|-------|--------|--|
| Channel Power                                          | Duty Cycle | Correction | Power | Limit |        |  |
| dB                                                     | %          | dB         | dBm   | dBm   | Result |  |
| 12.56                                                  | 55         | 2.6        | 15.2  | 17    | Pass   |  |







| 6 Mbps, 5250 - 5350 MHz Band, Channel 64, High Channel |            |            |       |       |        |  |  |
|--------------------------------------------------------|------------|------------|-------|-------|--------|--|--|
| <b>Channel Power</b>                                   | Duty Cycle | Correction | Power | Limit |        |  |  |
| dB                                                     | %          | dB         | dBm   | dBm   | Result |  |  |
| 12.41                                                  | 55         | 2.6        | 15.0  | 24    | Pass   |  |  |







| 6 Mb          | ps, 5470 - 5725 | MHz Band, Chan | nel 116, Mid Chai | nnel  |        |
|---------------|-----------------|----------------|-------------------|-------|--------|
| Channel Power | Duty Cycle      | Correction     | Power             | Limit |        |
| dB            | %               | dB             | dBm               | dBm   | Result |
| 12.71         | 55              | 2.6            | 15.3              | 24    | Pass   |





| 6 Mbps, 5470 - 5725 MHz Band, Channel 140, High Channel |            |            |       |       |        |
|---------------------------------------------------------|------------|------------|-------|-------|--------|
| Channel Power                                           | Duty Cycle | Correction | Power | Limit |        |
| dB                                                      | %          | dB         | dBm   | dBm   | Result |
| 12.83                                                   | 55         | 2.6        | 15.4  | 24    | Pass   |





Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

#### **TEST EQUIPMENT**

| Description                     | Manufacturer     | Model    | ID  | Last Cal. | Interval |
|---------------------------------|------------------|----------|-----|-----------|----------|
| Spectrum Analyzer               | Agilent          | E4440A   | AFD | 7/5/2011  | 12       |
| 40GHz DC Block                  | Miteq            | DCB4000  | AMD | 8/12/2011 | 12       |
| Attenuator 20 dB, SMA M/F 26GHz | S.M. Electronics | SA26B-20 | AUY | 8/2/2011  | 12       |
| EV06 Direct Connect Cable       | ESM Cable Corp.  | TT       | ECA | NCR       | 0        |
| Power Meter                     | Gigatronics      | 8651A    | SPM | 1/9/2012  | 24       |
| Power Sensor                    | Gigatronics      | 80701A   | SPL | 7/8/2011  | 24       |
| MXG Vector Signal Generator     | Agilent          | N5182A   | TIF | NCR       | 0        |
| Attenuator, 6dB                 | S.M. Electronics | 18N-06   | AWN | 5/5/2011  | 12       |

#### **MEASUREMENT UNCERTAINTY**

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.

#### **TEST DESCRIPTION**

FCC KDB 789033 D01 General UNII Test Procedures was followed. The transmit frequency was set to the required channels in each band. The transmit power was set to its default maximum. A direct connection was made between the RF output of the EUT and a spectrum analyzer. Attenuation and a DC block were used. The reference level offset on the spectrum analyzer was adjusted to compensate for cable loss and the external attenuation used between the RF output and the spectrum analyzer input. The amplitude accuracy of the spectrum analyzer was further enhanced by calibrating the setup using the power meter and synthesized signal generator.

Method SA-2 Alternate (RMS detection with slow sweep across on and off times of the EUT transmission and use of a duty cycle correction factor) was used for this test.

The spectrum analyzer settings were set per the guidance as well as the following specifics:

The number of points was set to 601. This satisfied the requirement of being > 2 \* span (25) / RBW (1)

Sweep time was to 2.2 seconds to satisfy the function of > 10 \* (number of points being 601) \* (total transmitter period of 360 µs)

Power was integrated across "B", by using the channel power function of the analyzer.

The duty cycle correction of 2.6 dB was added to the measured value as measured and calculated in the Duty Cycle, Transmission Pulse Duration test module located elsewhere in this report.

The power limits are based on the following formulas:

- 5.15 MHz 5.25 MHz band The lesser of 50 mW or 4 dBm + 10 log B, where B is the -26dB emission bandwidth in MHz.
- 5.25 MHz 5.35 MHz band The lesser of 250 mW or 11 dBm + 10 log B, where B is the -26dB emission bandwidth in MHz.
- 5.47 MHz 5.725 MHz band The lesser of 250 mW or 11 dBm + 10 log B, where B is the -26dB emission bandwidth in MHz.



|                         | : Model# 444-2216 (Glenw                                                                                                                                       | rood)                                                                        |               |                 |                              |                            |                                 | Work Order:                     |                         |                              |
|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|---------------|-----------------|------------------------------|----------------------------|---------------------------------|---------------------------------|-------------------------|------------------------------|
|                         | : 02EA06000024                                                                                                                                                 |                                                                              |               |                 |                              |                            |                                 |                                 | 03/19/12                |                              |
|                         | : Summit Semiconductor                                                                                                                                         |                                                                              |               |                 |                              |                            |                                 | Temperature:                    |                         |                              |
|                         | : Ponnappa Pasura                                                                                                                                              |                                                                              |               |                 |                              |                            |                                 | Humidity:                       |                         |                              |
| Project:                |                                                                                                                                                                |                                                                              |               |                 |                              |                            |                                 | Barometric Pres.:               |                         |                              |
|                         | : Rod Peloquin                                                                                                                                                 |                                                                              |               | Power:          | 18 VDC                       |                            |                                 | Job Site:                       | EV06                    |                              |
| TEST SPECIFICAT         | TIONS                                                                                                                                                          |                                                                              |               |                 | Test Method                  |                            |                                 |                                 |                         |                              |
| FCC 15.407:2012         |                                                                                                                                                                |                                                                              |               |                 | ANSI C63.10:200              | 9                          |                                 |                                 |                         |                              |
|                         |                                                                                                                                                                |                                                                              |               |                 |                              |                            |                                 |                                 |                         |                              |
| COMMENTS                |                                                                                                                                                                |                                                                              |               |                 |                              |                            |                                 |                                 |                         |                              |
| None                    | <u> </u>                                                                                                                                                       |                                                                              |               |                 |                              |                            | _                               |                                 |                         |                              |
|                         |                                                                                                                                                                |                                                                              |               |                 |                              |                            |                                 |                                 |                         |                              |
|                         |                                                                                                                                                                |                                                                              |               |                 |                              |                            |                                 |                                 |                         |                              |
|                         |                                                                                                                                                                |                                                                              |               |                 |                              |                            |                                 |                                 |                         |                              |
| DEVIATIONS FROM         | M TEST STANDARD                                                                                                                                                |                                                                              |               |                 |                              |                            |                                 |                                 |                         |                              |
| DEVIATIONS FROM         | M TEST STANDARD                                                                                                                                                |                                                                              |               |                 |                              |                            |                                 |                                 |                         |                              |
|                         | M TEST STANDARD                                                                                                                                                |                                                                              | Rock          | ny le Reling    |                              |                            |                                 |                                 |                         |                              |
| None                    | T                                                                                                                                                              | Signa                                                                        | Rock          | ley la Roley,   |                              |                            |                                 |                                 |                         |                              |
| None                    | T                                                                                                                                                              | Signa                                                                        | Rock          | ly le Religy    | Peak                         | Duty Cycle                 | Correction                      | PPSD                            | Limit                   |                              |
| None<br>Configuration#  | T                                                                                                                                                              | Signa                                                                        | Rock          | ly le Pelyy,    | Peak<br>dB                   | Duty Cycle<br>%            | Correction<br>dB                | PPSD<br>dBm                     | Limit<br>dBm            | Result                       |
| None<br>Configuration # | 1                                                                                                                                                              | Signa                                                                        | Rock          | ly le Roley,    |                              |                            |                                 |                                 |                         | Result                       |
| None<br>Configuration # | 1<br>5150 - 5250 MHz Band                                                                                                                                      |                                                                              | Rock          | lig be Rolings, | dB                           | %                          | dB                              | dBm                             | dBm                     |                              |
| None<br>Configuration # | 1<br>5150 - 5250 MHz Band<br>Channel 36,                                                                                                                       | Low Channel                                                                  | Rock          | lig te Rollings | dB<br>1.39                   | 55                         | dB<br>2.6                       | <b>dBm</b><br>4.0               |                         | Pass                         |
| None<br>Configuration # | 1<br>5150 - 5250 MHz Band<br>Channel 36,<br>Channel 48,                                                                                                        |                                                                              | Port          | by to Roley,    | dB                           | %                          | dB                              | dBm                             | dBm                     |                              |
| None<br>Configuration # | 1<br>5150 - 5250 MHz Band<br>Channel 36,<br>Channel 48,<br>5250 - 5350 MHz Band                                                                                | Low Channel<br>High Channel                                                  | Rock<br>ture  | ny le Roleys    | 1.39<br>0.94                 | %<br>55<br>55              | 2.6<br>2.6                      | 4.0<br>3.5                      | <b>dBm</b> 4 4          | Pass<br>Pass                 |
| None<br>Configuration # | 5150 - 5250 MHz Band<br>Channel 36,<br>Channel 48,<br>5250 - 5350 MHz Band<br>Channel 52,                                                                      | Low Channel High Channel Low Channel                                         | North (       | by he Robyry    | 1.39<br>0.94                 | %<br>55<br>55<br>55        | 2.6<br>2.6<br>2.6               | 4.0<br>3.5<br>4.0               | 4<br>4<br>11            | Pass<br>Pass<br>Pass         |
| None<br>Configuration # | 1<br>5150 - 5250 MHz Band<br>Channel 36,<br>Channel 48,<br>5250 - 5350 MHz Band<br>Channel 52,<br>Channel 64,                                                  | Low Channel<br>High Channel                                                  | Angle<br>ture | by he Robyy,    | 1.39<br>0.94                 | %<br>55<br>55              | 2.6<br>2.6                      | 4.0<br>3.5                      | <b>dBm</b> 4 4          | Pass<br>Pass                 |
| None<br>Configuration#  | 5150 - 5250 MHz Band<br>Channel 36,<br>Channel 48,<br>5250 - 5350 MHz Band<br>Channel 52,<br>Channel 64,<br>5470 - 5725 MHz Band                               | Low Channel<br>High Channel<br>Low Channel<br>High Channel                   | Rock<br>dure  | leg be Roleys   | 1.39<br>0.94<br>1.37<br>0.83 | 55<br>55<br>55<br>55       | 2.6<br>2.6<br>2.6<br>2.6        | 4.0<br>3.5<br>4.0<br>3.4        | 4<br>4<br>4<br>11<br>11 | Pass<br>Pass<br>Pass<br>Pass |
| None                    | 5150 - 5250 MHz Band<br>Channel 36,<br>Channel 48,<br>5250 - 5350 MHz Band<br>Channel 52,<br>Channel 64,<br>5470 - 5725 MHz Band<br>Channel 100                | Low Channel<br>High Channel<br>Low Channel<br>High Channel<br>), Low Channel | North (       | ly he Robyry    | 1.39<br>0.94<br>1.37<br>0.83 | 55<br>55<br>55<br>55<br>55 | 2.6<br>2.6<br>2.6<br>2.6<br>2.6 | 4.0<br>3.5<br>4.0<br>3.4<br>3.9 | 4<br>4<br>4<br>11<br>11 | Pass<br>Pass<br>Pass<br>Pass |
| None<br>Configuration#  | 5150 - 5250 MHz Band<br>Channel 36,<br>Channel 48,<br>5250 - 5350 MHz Band<br>Channel 52,<br>Channel 64,<br>5470 - 5725 MHz Band<br>Channel 100<br>Channel 116 | Low Channel<br>High Channel<br>Low Channel<br>High Channel                   | Angle<br>ture | by he Robyry    | 1.39<br>0.94<br>1.37<br>0.83 | 55<br>55<br>55<br>55       | 2.6<br>2.6<br>2.6<br>2.6        | 4.0<br>3.5<br>4.0<br>3.4        | 4<br>4<br>4<br>11<br>11 | Pass<br>Pass<br>Pass<br>Pass |







| 6 M  | ops, 5150 - 5250 | MHz Band, Chan | nel 48, High Char | nnel  |        |
|------|------------------|----------------|-------------------|-------|--------|
| Peak | Duty Cycle       | Correction     | PPSD              | Limit |        |
| dB   | %                | dB             | dBm               | dBm   | Result |
| 0.94 | 55               | 2.6            | 3.5               | 4     | Pass   |







| 6 M  | ops, 5250 - 5350 | MHz Band, Chan | nel 64, High Char | nnel  |        |
|------|------------------|----------------|-------------------|-------|--------|
| Peak | Duty Cycle       | Correction     | PPSD              | Limit |        |
| dB   | %                | dB             | dBm               | dBm   | Result |
| 0.83 | 55               | 2.6            | 3.4               | 11    | Pass   |









| 6 N  | lbps, 5470 - 5725 | MHz Band, Chan | nel 116, Mid Cha | nnel  |        |
|------|-------------------|----------------|------------------|-------|--------|
| Peak | Duty Cycle        | Correction     | PPSD             | Limit |        |
| dB   | %                 | dB             | dBm              | dBm   | Result |
| 1.21 | 55                | 2.6            | 3.8              | 11    | Pass   |





| 6 Mbps, 5470 - 5725 MHz Band, Channel 140, High Channel |      |            |            |      |       |        |
|---------------------------------------------------------|------|------------|------------|------|-------|--------|
|                                                         | Peak | Duty Cycle | Correction | PPSD | Limit |        |
|                                                         | dB   | %          | dB         | dBm  | dBm   | Result |
|                                                         | 1.27 | 55         | 2.6        | 3.9  | 11    | Pass   |





Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

#### **TEST EQUIPMENT**

| Description                     | Manufacturer     | Model    | ID  | Last Cal. | Interval |
|---------------------------------|------------------|----------|-----|-----------|----------|
| Spectrum Analyzer               | Agilent          | E4440A   | AFD | 7/5/2011  | 12       |
| 40GHz DC Block                  | Miteq            | DCB4000  | AMD | 8/12/2011 | 12       |
| Attenuator 20 dB, SMA M/F 26GHz | S.M. Electronics | SA26B-20 | AUY | 8/2/2011  | 12       |
| EV06 Direct Connect Cable       | ESM Cable Corp.  | TT       | ECA | NCR       | 0        |
| Power Meter                     | Gigatronics      | 8651A    | SPM | 1/9/2012  | 24       |
| Power Sensor                    | Gigatronics      | 80701A   | SPL | 7/8/2011  | 24       |
| MXG Vector Signal Generator     | Agilent          | N5182A   | TIF | NCR       | 0        |
| Attenuator, 6dB                 | S.M. Electronics | 18N-06   | AWN | 5/5/2011  | 12       |

#### **MEASUREMENT UNCERTAINTY**

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.

#### **TEST DESCRIPTION**

FCC KDB 789033 D01 General UNII Test Procedures was followed to show that the radio of the maximum peak-max-hold spectrum to the maximum of the average spectrum does not exceed 13 dBm.

The transmit frequency was set to the required channels in each band. The transmit power was set to its default maximum. A direct connection was made between the RF output of the EUT and a spectrum analyzer. Attenuation and a DC block were used. The reference level offset on the spectrum analyzer was adjusted to compensate for cable loss and the external attenuation used between the RF output and the spectrum analyzer input.

The spectrum analyzer settings were as follows:

Span set to encompass the entire emission bandwidth (B), centered on the transmit channel.

Using the marker delta function, the largest difference between the following two traces was measured:

1st Trace: RBW = 1 MHz, VBW >= 3 MHz with peak detector and trace max-hold...

2nd Trace: The same procedure and settings as was used for peak power spectral density



|                               | Model# 444-2216 (Glenw                                                                                                                                         | ood)                                                                        |         |             |                  | Work Order:                              |                        |                              |
|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|---------|-------------|------------------|------------------------------------------|------------------------|------------------------------|
| Serial Number:                |                                                                                                                                                                |                                                                             |         |             |                  |                                          | 03/19/12               |                              |
|                               | Summit Semiconductor                                                                                                                                           |                                                                             |         |             |                  | Temperature:                             |                        |                              |
|                               | Ponnappa Pasura                                                                                                                                                |                                                                             |         |             |                  | Humidity:                                |                        |                              |
| Project:                      |                                                                                                                                                                |                                                                             |         |             |                  | Barometric Pres.:                        |                        |                              |
|                               | Rod Peloquin                                                                                                                                                   |                                                                             |         | Powe        | : 18 VDC         | Job Site:                                | EV06                   |                              |
| TEST SPECIFICATION            | ONS                                                                                                                                                            |                                                                             |         |             | Test Method      |                                          |                        |                              |
| FCC 15.407:2012               |                                                                                                                                                                |                                                                             |         |             | ANSI C63.10:2009 |                                          |                        |                              |
|                               |                                                                                                                                                                |                                                                             |         |             |                  |                                          |                        |                              |
| COMMENTS                      |                                                                                                                                                                |                                                                             |         |             |                  |                                          |                        |                              |
| None                          |                                                                                                                                                                |                                                                             |         |             |                  | <br>                                     |                        |                              |
|                               |                                                                                                                                                                |                                                                             |         |             |                  |                                          |                        |                              |
|                               |                                                                                                                                                                |                                                                             |         |             |                  |                                          |                        |                              |
|                               |                                                                                                                                                                |                                                                             |         |             |                  |                                          |                        |                              |
| DEVIATIONS FROM               | I TEST STANDARD                                                                                                                                                |                                                                             |         |             |                  |                                          |                        |                              |
| DEVIATIONS FROM<br>None       | I TEST STANDARD                                                                                                                                                |                                                                             |         |             |                  |                                          |                        |                              |
| None                          | I TEST STANDARD                                                                                                                                                |                                                                             | 00      | 120         |                  |                                          |                        |                              |
|                               | 1 TEST STANDARD                                                                                                                                                |                                                                             | Rolly   | Le Religs   |                  |                                          |                        |                              |
| None                          |                                                                                                                                                                | Signature                                                                   | Roely   | le Roleys   |                  |                                          |                        |                              |
| None                          |                                                                                                                                                                | Signature                                                                   | Rolly   | he Roleys   |                  | Value                                    | Limit                  |                              |
| None Configuration #          |                                                                                                                                                                | Signature                                                                   | Poeling | le Roley    |                  | Value<br>dB                              | Limit<br>dB            | Result                       |
| None Configuration # 6 Mbps   | 1                                                                                                                                                              | Signature                                                                   | Poeling | le Roleys   |                  |                                          |                        | Result                       |
| None Configuration # 6 Mbps   | 1<br>5150 - 5250 MHz Band                                                                                                                                      |                                                                             | Poeling | le Robings, |                  | dB                                       | dB                     |                              |
| None Configuration # 6 Mbps   | 1<br>5150 - 5250 MHz Band<br>Channel 36,                                                                                                                       | Low Channel                                                                 | Roly    | he Religy   |                  | dB<br>10.3                               | dB<br>≤ 13             | Pass                         |
| None Configuration # 6 Mbps   | 1<br>5150 - 5250 MHz Band<br>Channel 36,<br>Channel 48,                                                                                                        |                                                                             | Rolly   | le Robings  |                  | dB                                       | dB                     |                              |
| None Configuration # 6 Mbps   | 5150 - 5250 MHz Band<br>Channel 36,<br>Channel 48,<br>5250 - 5350 MHz Band                                                                                     | Low Channel<br>High Channel                                                 | Robin   | le Folgy,   |                  | dB<br>10.3<br>10.47                      | dB<br>≤ 13<br>≤ 13     | Pass<br>Pass                 |
| None Configuration # 6 Mbps   | 5150 - 5250 MHz Band<br>Channel 36,<br>Channel 48,<br>5250 - 5350 MHz Band<br>Channel 52,                                                                      | Low Channel<br>High Channel<br>Low Channel                                  | Perlin  | la Roleyy   |                  | dB<br>10.3<br>10.47<br>10.45             | dB<br>≤ 13<br>≤ 13     | Pass<br>Pass<br>Pass         |
| None  Configuration #  6 Mbps | 1<br>5150 - 5250 MHz Band<br>Channel 36,<br>Channel 48,<br>5250 - 5350 MHz Band<br>Channel 52,<br>Channel 64,                                                  | Low Channel<br>High Channel                                                 | Peeling | le Roleys   |                  | dB<br>10.3<br>10.47                      | dB<br>≤ 13<br>≤ 13     | Pass<br>Pass                 |
| None  Configuration #  6 Mbps | 5150 - 5250 MHz Band<br>Channel 36,<br>5250 - 5350 MHz Band<br>Channel 52,<br>Channel 64,<br>5470 - 5725 MHz Band                                              | Low Channel<br>High Channel<br>Low Channel<br>High Channel                  | Parley  | le Polinys  |                  | 10.3<br>10.47<br>10.45<br>10.47          | dB ≤ 13 ≤ 13 ≤ 13 ≤ 13 | Pass<br>Pass<br>Pass<br>Pass |
| None  Configuration #  6 Mbps | 5150 - 5250 MHz Band<br>Channel 36,<br>Channel 48,<br>5250 - 5350 MHz Band<br>Channel 52,<br>Channel 64,<br>5470 - 5725 MHz Band<br>Channel 100                | Low Channel<br>High Channel<br>Low Channel<br>High Channel<br>, Low Channel | Rolly   | le Robert   |                  | 10.3<br>10.47<br>10.45<br>10.47<br>10.37 | dB ≤13 ≤13 ≤13 ≤13 ≤13 | Pass<br>Pass<br>Pass<br>Pass |
| None  Configuration #  6 Mbps | 5150 - 5250 MHz Band<br>Channel 36,<br>Channel 48,<br>5250 - 5350 MHz Band<br>Channel 52,<br>Channel 64,<br>5470 - 5725 MHz Band<br>Channel 100<br>Channel 116 | Low Channel<br>High Channel<br>Low Channel<br>High Channel                  | Relig   | le Roleys   |                  | 10.3<br>10.47<br>10.45<br>10.47          | dB ≤ 13 ≤ 13 ≤ 13 ≤ 13 | Pass<br>Pass<br>Pass<br>Pass |





|  | 6 M | bps, 5150 - 5250 | MHz Band, Chan | nel 48, High Char | nnel  |        |
|--|-----|------------------|----------------|-------------------|-------|--------|
|  |     |                  |                | Value             | Limit |        |
|  |     |                  |                | dB                | dB    | Result |
|  |     |                  |                | 10.47             | ≤ 13  | Pass   |







|  | 6 MI | bps, 5250 - 5350 | MHz Band, Chan | nel 64, High Char | nnel  |        |
|--|------|------------------|----------------|-------------------|-------|--------|
|  |      |                  |                | Value             | Limit |        |
|  |      |                  |                | dB                | dB    | Result |
|  |      |                  |                | 10.47             | ≤ 13  | Pass   |







| 6 Mbps, 5470 - 5725 MHz Band, Channel 116, Mid Channel |  |  |  |  |       |       |        |
|--------------------------------------------------------|--|--|--|--|-------|-------|--------|
|                                                        |  |  |  |  | Value | Limit |        |
|                                                        |  |  |  |  | dB    | dB    | Result |
|                                                        |  |  |  |  | 10.19 | ≤ 13  | Pass   |









Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

#### MODES OF OPERATION

Transmitting 55% duty cycle, 6 Mbps

#### **CHANNELS TESTED**

| Channel 36 (8), 5180 MHz   |  |  |
|----------------------------|--|--|
| Channel 48 (10), 5240 MHz  |  |  |
| Channel 52 (14), 5260 MHz  |  |  |
| Channel 64 (18), 5320 MHz  |  |  |
| Channel 100 (19), 5500 MHz |  |  |
| Channel 116 (23), 5580 MHz |  |  |
| Channel 140 (20) 5700 MHz  |  |  |

#### POWER SETTINGS INVESTIGATED

18 VDC

#### CONFIGURATIONS INVESTIGATED

FOCU0127 - 2

#### FREQUENCY RANGE INVESTIGATED

| Start Frequency | 30 MHz | Stop Frequency | 40 GHz |  |
|-----------------|--------|----------------|--------|--|

#### SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

#### TEST EQUIDMENT

| 1EST EQUIPMENT          |                 |                            |     |           |          |
|-------------------------|-----------------|----------------------------|-----|-----------|----------|
| Description             | Manufacturer    | Model                      | ID  | Last Cal. | Interval |
| Spectrum Analyzer       | Agilent         | E4446A                     | AAQ | 2/7/2012  | 12       |
| Pre-Amplifier           | Miteq           | AM-1616-1000               | AOL | 6/28/2011 | 12       |
| Antenna, Biconilog      | EMCO            | 3142                       | AXJ | 5/17/2011 | 12       |
| EV01 Cables             | N/A             | Bilog Cables               | EVA | 6/28/2011 | 12       |
| Pre-Amplifier           | Miteq           | AMF-4D-010100-24-10P       | APW | 6/28/2011 | 12       |
| Antenna, Horn           | ETS             | 3115                       | AIZ | 1/24/2011 | 24       |
| EV01 Cables             | N/A             | Double Ridge Horn Cables   | EVB | 6/28/2011 | 12       |
| Antenna, Horn           | ETS             | 3160-07                    | AHU | NCR       | 0        |
| Pre-Amplifier           | Miteq           | AMF-6F-08001200-30-10P     | AVC | 2/28/2012 | 12       |
| Antenna, Horn           | ETS             | 3160-08                    | AHV | NCR       | 0        |
| Pre-Amplifier           | Miteq           | AMF-6F-12001800-30-10P     | AVD | 2/28/2012 | 12       |
| EV01 Cables             | N/A             | Standard Gain Horns Cables | EVF | 2/28/2012 | 12       |
| Antenna, Horn           | ETS Lindgren    | 3160-09                    | AIV | NCR       | 0        |
| Pre-Amplifier           | Miteq           | AMF-6F-18002650-25-10P     | AVU | 9/12/2011 | 12       |
| Cable                   | ESM Cable Corp. | KMKM-72                    | EVY | 9/12/2011 | 12       |
| Pre-Amplifier           | Miteq           | JSW45-26004000-40-5P       | AVR | 7/1/2011  | 12       |
| Antenna, Horn           | ETS Lindgren    | 3160-10                    | AIW | NCR       | 0        |
| OC Cable                | ESM Cable Corp. | KMKM-72                    | OCV | 7/1/2011  | 12       |
| 5.25 GHz Notch Filter   | K&L Microwave   | 8N50-5250/X200-0/0         | HFK | 4/2/2010  | 24       |
| 5.47-5.725 Notch Filter | Micro-Tronics   | BRC50704                   | HGI | 10/8/2010 | 24       |
| High Pass Filter        | Micro-Tronics   | HPM50112                   | HGA | 10/8/2010 | 24       |

#### MEASUREMENT BANDWIDTHS

| Frequency Range<br>(MHz) | Peak Data<br>(kHz) | Quasi-Peak Data<br>(kHz) | Average Data<br>(kHz) |
|--------------------------|--------------------|--------------------------|-----------------------|
| 0.01 - 0.15              | 1.0                | 0.2                      | 0.2                   |
| 0.15 - 30.0              | 10.0               | 9.0                      | 9.0                   |
| 30.0 - 1000              | 100.0              | 120.0                    | 120.0                 |
| Above 1000               | 1000.0             | N/A                      | 1000.0                |

Measurements were made using the IF bandwidths and detectors specified. No video filter was used, except in the case of the FCC

#### MEASUREMENT UNCERTAINTY

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.

#### TEST DESCRIPTION

The EUT was configured for the lowest, a middle, and the highest transmit frequency in each operational band. For each configuration, the spectrum was scanned throughout the specified range. Measurements were made to satisfy the three requirements of 47 CFR 15.407: Field strength under 1GHz, Restricted Bands of 47 CFR 15.205, and EIRP of 47 CFR 15.407. While scanning, emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and EUT antenna in three orthogonal axis, and adjusting the measurement antenna height and polarization (per ANSI C63.10:2009). A preamp and high pass filter (and notch filter) were used for this test in order to provide sufficient measurement sensitivity.

Average detector measurements as required to satisfy the FCC 15.205 requirements were made with the method called out in the FCC KDB 789033 D01 General UNII Tes Procedures. The measurement uses a slow sweep RMS Detector and trace averaging with the final number corrected up in value based on the formula of 10°LOG(duty cycle). The duty cycle test data of the EUT can be found elsewhere in this report



| EUT:           | Model# 444-2216 (Glenwood) | Work Order:          | FOCU0127  |      |  |  |  |  |  |  |
|----------------|----------------------------|----------------------|-----------|------|--|--|--|--|--|--|
| Serial Number: | 02EA06000012               | 2EA06000012          |           |      |  |  |  |  |  |  |
| Customer:      | Summit Semiconductor       | Summit Semiconductor |           |      |  |  |  |  |  |  |
| Attendees:     | None                       |                      | Humidity: | 31%  |  |  |  |  |  |  |
| Project:       | None                       | Barometric Pres.:    | 1005.9 mb |      |  |  |  |  |  |  |
| Tested by:     | Rod Peloguin               | Power: 18 VDC        | Job Site: | EV01 |  |  |  |  |  |  |

### TEST SPECIFICATIONS FCC 15.209:2012

**Test Method** 

ANSI C63.10:2009

## TEST PARAMETERS Antenna Height(s) (m)

Test Distance (m) 1 - 4

### COMMENTS None

Transmitting 55% duty cycle, 6 Mbps

#### **DEVIATIONS FROM TEST STANDARD**

No deviations.

| Run #           | 1    | 10.20           |
|-----------------|------|-----------------|
| Configuration # | 2    | Rocky le Keleng |
| Results         | Pass | Signature       |



| Freq<br>(MHz) | Amplitude<br>(dBuV) | Factor<br>(dB) | Azimuth (degrees) | Height (meters) | Duty Cycle<br>Correction<br>Factor | External<br>Attenuation<br>(dB) | Polarity | Detector | Distance<br>Adjustment<br>(dB) | Adjusted<br>dBuV/m | Spec. Limit<br>dBuV/m | Compared to<br>Spec.<br>(dB) | Comments                     |
|---------------|---------------------|----------------|-------------------|-----------------|------------------------------------|---------------------------------|----------|----------|--------------------------------|--------------------|-----------------------|------------------------------|------------------------------|
| 11160.000     | 60.3                | -9.3           | 61.0              | 1.0             | -2.6                               | 0.0                             | H-Horn   | AV       | 0.0                            | 53.6               | 54.0                  | -0.4                         | Ch. 116 (23), EUT on side    |
| 11000.000     | 59.3                | -10.6          | 57.0              | 1.2             | -2.6                               | 0.0                             | H-Horn   | AV       | 0.0                            | 51.3               | 54.0                  | -2.7                         | Ch. 100 (19), EUT on side    |
| 10640.000     | 60.3                | -11.8          | 118.0             | 1.3             | -2.6                               | 0.0                             | H-Horn   | AV       | 0.0                            | 51.1               | 54.0                  | -2.9                         | Ch. 64 (18), EUT on side     |
| 11160.000     | 57.6                | -9.3           | 269.0             | 1.0             | -2.6                               | 0.0                             | V-Horn   | AV       | 0.0                            | 50.9               | 54.0                  | -3.1                         | Ch. 116 (23), EUT up         |
| 11400.000     | 55.6                | -7.5           | 112.0             | 1.0             | -2.6                               | 0.0                             | H-Horn   | AV       | 0.0                            | 50.7               | 54.0                  | -3.3                         | Ch. 140 (29), EUT on side    |
| 11160.000     | 55.8                | -9.3           | 242.0             | 1.0             | -2.6                               | 0.0                             | H-Horn   | AV       | 0.0                            | 49.1               | 54.0                  | -4.9                         | Ch. 116 (23), EUT up         |
| 11400.000     | 53.9                | -7.5           | 288.0             | 1.1             | -2.6                               | 0.0                             | V-Horn   | AV       | 0.0                            | 49.0               | 54.0                  | -5.0                         | Ch. 140 (29), EUT up         |
| 11160.000     | 54.9                | -9.3           | 100.0             | 1.4             | -2.6                               | 0.0                             | V-Horn   | AV       | 0.0                            | 48.2               | 54.0                  | -5.8                         | Ch. 116 (23), EUT on side    |
| 10640.000     | 57.0                | -11.8          | 100.0             | 1.0             | -2.6                               | 0.0                             | V-Horn   | AV       | 0.0                            | 47.8               | 54.0                  | -6.2                         | Ch. 64 (18), EUT up          |
| 11160.000     | 54.2                | -9.3           | 44.0              | 1.4             | -2.6                               | 0.0                             | V-Horn   | AV       | 0.0                            | 47.5               | 54.0                  | -6.5                         | Ch. 116 (23), EUT horizontal |
| 11000.000     | 54.9                | -10.6          | 289.0             | 1.1             | -2.6                               | 0.0                             | V-Horn   | AV       | 0.0                            | 46.9               | 54.0                  | -7.1                         | Ch. 100 (19), EUT up         |
| 11160.000     | 52.4                | -9.3           | 103.0             | 1.3             | -2.6                               | 0.0                             | H-Horn   | AV       | 0.0                            | 45.7               | 54.0                  | -8.3                         | Ch. 116 (23), EUT horizontal |
| 11152.200     | 72.8                | -9.3           | 73.0              | 1.2             | 0.0                                | 0.0                             | H-Horn   | PK       | 0.0                            | 63.5               | 74.0                  | -10.5                        | Ch. 116 (23), EUT on side    |
| 11397.850     | 69.1                | -7.5           | 131.0             | 1.2             | 0.0                                | 0.0                             | H-Horn   | PK       | 0.0                            | 61.6               | 74.0                  | -12.4                        | Ch. 140 (29), EUT on side    |
| 10992.150     | 72.0                | -10.6          | 57.0              | 1.2             | 0.0                                | 0.0                             | H-Horn   | PK       | 0.0                            | 61.4               | 74.0                  | -12.6                        | Ch. 100 (19), EUT on side    |
| 11151.950     | 70.3                | -9.3           | 267.0             | 1.1             | 0.0                                | 0.0                             | V-Horn   | PK       | 0.0                            | 61.0               | 74.0                  | -13.0                        | Ch. 116 (23), EUT up         |
| 10637.800     | 72.5                | -11.8          | 118.0             | 1.3             | 0.0                                | 0.0                             | H-Horn   | PK       | 0.0                            | 60.7               | 74.0                  | -13.3                        | Ch. 64 (18), EUT on side     |
| 11151.800     | 68.3                | -9.3           | 242.0             | 1.0             | 0.0                                | 0.0                             | H-Horn   | PK       | 0.0                            | 59.0               | 74.0                  | -15.0                        | Ch. 116 (23), EUT up         |
| 11392.000     | 66.2                | -7.5           | 288.0             | 1.1             | 0.0                                | 0.0                             | V-Horn   | PK       | 0.0                            | 58.7               | 74.0                  | -15.3                        | Ch. 140 (29), EUT up         |
| 10632.300     | 69.7                | -11.8          | 100.0             | 1.0             | 0.0                                | 0.0                             | V-Horn   | PK       | 0.0                            | 57.9               | 74.0                  | -16.1                        | Ch. 64 (18), EUT up          |



| EUT:           | Model# 444-2216 (Glenwood) | Work Order:          | FOCU0127  |     |  |  |  |  |  |
|----------------|----------------------------|----------------------|-----------|-----|--|--|--|--|--|
| Serial Number: | 02EA06000012               | Date:                | 03/15/12  |     |  |  |  |  |  |
| Customer:      | Summit Semiconductor       | Summit Semiconductor |           |     |  |  |  |  |  |
| Attendees:     | None                       |                      | Humidity: | 31% |  |  |  |  |  |
| Project:       | None                       | Barometric Pres.:    | 1005.9 mb |     |  |  |  |  |  |
| Tested by:     | Rod Peloguin               | Job Site:            | EV01      |     |  |  |  |  |  |

### TEST SPECIFICATIONS FCC 15.407:2012

**Test Method** ANSI C63.10:2009

| TEST PARAMETERS       |       |                   |   |  |
|-----------------------|-------|-------------------|---|--|
| Antenna Height(s) (m) | 1 - 4 | Test Distance (m) | 3 |  |

### COMMENTS None

## EUT OPERATING MODES Transmitting 55% duty cycle, 6 Mbps

#### **DEVIATIONS FROM TEST STANDARD**

No deviations.

| Run #           | 1    | 10.21             |
|-----------------|------|-------------------|
| Configuration # | 2    | Rolling le Keling |
| Results         | Pass | Signature         |



MHz

| Freq<br>(MHz) | Azimuth (degrees) | Height (meters) | Polarity | Detector | EIRP<br>(Watts) | EIRP<br>(dBm) | Spec. Limit<br>(dBm) | Compared to<br>Spec.<br>(dB) | Comments                     |
|---------------|-------------------|-----------------|----------|----------|-----------------|---------------|----------------------|------------------------------|------------------------------|
| 10357.900     | 91.0              | 1.0             | V-Horn   | PK       | 6.87E-07        | -31.6         | -27.0                | -4.6                         | Ch. 36 (8), EUT up           |
| 11152.200     | 73.0              | 1.2             | H-Horn   | PK       | 6.72E-07        | -31.7         | -27.0                | -4.7                         | Ch. 116 (23), EUT on side    |
| 10471.950     | 107.0             | 1.3             | H-Horn   | PK       | 5.85E-07        | -32.3         | -27.0                | -5.3                         | Ch. 48 (14), EUT on side     |
| 10357.800     | 230.0             | 1.0             | H-Horn   | PK       | 5.59E-07        | -32.5         | -27.0                | -5.5                         | Ch. 52 (15), EUT on side     |
| 10471.900     | 92.0              | 1.0             | V-Horn   | PK       | 5.09E-07        | -32.9         | -27.0                | -5.9                         | Ch. 48 (14), EUT up          |
| 10512.050     | 99.0              | 1.1             | V-Horn   | PK       | 4.75E-07        | -33.2         | -27.0                | -6.2                         | Ch. 52 (15), EUT up          |
| 11397.850     | 131.0             | 1.2             | H-Horn   | PK       | 4.34E-07        | -33.6         | -27.0                | -6.6                         | Ch. 140 (29), EUT on side    |
| 10992.150     | 57.0              | 1.2             | H-Horn   | PK       | 4.14E-07        | -33.8         | -27.0                | -6.8                         | Ch. 100 (19), EUT on side    |
| 11151.950     | 267.0             | 1.1             | V-Horn   | PK       | 3.78E-07        | -34.2         | -27.0                | -7.2                         | Ch. 116 (23), EUT up         |
| 10637.800     | 118.0             | 1.3             | H-Horn   | PK       | 3.52E-07        | -34.5         | -27.0                | -7.5                         | Ch. 64 (18), EUT on side     |
| 10517.800     | 127.0             | 1.2             | H-Horn   | PK       | 3.37E-07        | -34.7         | -27.0                | -7.7                         | Ch. 64 (18), EUT on side     |
| 11151.800     | 242.0             | 1.0             | H-Horn   | PK       | 2.38E-07        | -36.2         | -27.0                | -9.2                         | Ch. 116 (23), EUT up         |
| 11392.000     | 288.0             | 1.1             | V-Horn   | PK       | 2.22E-07        | -36.5         | -27.0                | -9.5                         | Ch. 140 (29), EUT up         |
| 10632.300     | 100.0             | 1.0             | V-Horn   | PK       | 1.85E-07        | -37.3         | -27.0                | -10.3                        | Ch. 64 (18), EUT up          |
| 11160.200     | 100.0             | 1.4             | V-Horn   | PK       | 1.77E-07        | -37.5         | -27.0                | -10.5                        | Ch. 116 (23), EUT on side    |
| 11152.050     | 44.0              | 1.4             | V-Horn   | PK       | 1.61E-07        | -37.9         | -27.0                | -10.9                        | Ch. 116 (23), EUT horizontal |
| 11000.000     | 289.0             | 1.1             | V-Horn   | PK       | 1.34E-07        | -38.7         | -27.0                | -11.7                        | Ch. 100 (19), EUT up         |
| 11160.050     | 103.0             | 1.3             | H-Horn   | PK       | 1.04E-07        | -39.8         | -27.0                | -12.8                        | Ch. 116 (23), EUT horizontal |



|                | mic-ap-azina ayanin        |               |                   |           |
|----------------|----------------------------|---------------|-------------------|-----------|
| EUT:           | Model# 444-2216 (Glenwood) | Work Order:   | FOCU0127          |           |
| Serial Number: | 02EA06000012               | Date:         | 03/16/12          |           |
| Customer:      | Summit Semiconductor       |               | Temperature:      | 22°C      |
| Attendees      | None                       |               | Humidity:         | 31%       |
| Project:       | None                       |               | Barometric Pres.: | 1005.9 mb |
| Tested by:     | Rod Peloguin               | Power: 18 VDC | Job Site:         | EV01      |

**TEST SPECIFICATIONS** 

FCC 15.209:2012

**Test Method** 

ANSI C63.10:2009

TEST PARAMETERS
Antenna Height(s) (m)

Test Distance (m) 1 - 4

COMMENTS None

## EUT OPERATING MODES Transmitting 55% duty cycle

#### **DEVIATIONS FROM TEST STANDARD**

No deviations.

| Run #           | 3    |           | 20.00              |
|-----------------|------|-----------|--------------------|
| Configuration # | 2    |           | Rocking le Lelengs |
| Results         | Pass | Signature | 0                  |



| Freq<br>(MHz) | Amplitude<br>(dBuV) | Factor<br>(dB) | Azimuth (degrees) | Height (meters) | Duty Cycle<br>Correction | External<br>Attenuation<br>(dB) | Polarity | Detector | Distance<br>Adjustment<br>(dB) | Adjusted<br>dBuV/m | Spec. Limit | Compared to<br>Spec.<br>(dB) |                          |
|---------------|---------------------|----------------|-------------------|-----------------|--------------------------|---------------------------------|----------|----------|--------------------------------|--------------------|-------------|------------------------------|--------------------------|
|               | , ,                 |                |                   | . ,             | Factor                   |                                 | V-Horn   | AV       | , ,                            |                    |             |                              | Comments                 |
| 15540.000     | 34.0                | 11.2           | 306.0             | 1.2             | -2.6                     | 0.0                             |          |          | 0.0                            | 47.8               | 54.0        |                              | Ch. 36 (10), EUT up      |
| 15540.000     | 32.4                | 11.2           | 100.0             | 1.2             | -2.6                     | 0.0                             | H-Horn   | AV       | 0.0                            | 46.2               | 54.0        | -7.8                         | Ch. 36 (10), EUT on side |
| 15720.000     | 32.5                | 10.9           | 322.0             | 1.2             | -2.6                     | 0.0                             | V-Horn   | AV       | 0.0                            | 46.0               | 54.0        | -8.0                         | Ch. 48 (14), EUT up      |
| 15720.000     | 32.3                | 10.9           | 41.0              | 1.2             | -2.6                     | 0.0                             | H-Horn   | AV       | 0.0                            | 45.8               | 54.0        | -8.2                         | Ch. 48 (14), EUT on side |
| 15780.000     | 32.0                | 10.8           | 36.0              | 1.2             | -2.6                     | 0.0                             | H-Horn   | AV       | 0.0                            | 45.4               | 54.0        | -8.6                         | Ch. 52 (15), EUT on side |
| 15780.000     | 31.8                | 10.8           | 259.0             | 1.1             | -2.6                     | 0.0                             | V-Horn   | AV       | 0.0                            | 45.2               | 54.0        | -8.8                         | Ch. 52 (15), EUT up      |
| 15960.000     | 31.1                | 11.0           | 302.0             | 1.2             | -2.6                     | 0.0                             | V-Horn   | AV       | 0.0                            | 44.7               | 54.0        | -9.3                         | Ch. 64 (18), EUT up      |
| 15960.000     | 30.5                | 11.0           | 89.0              | 1.3             | -2.6                     | 0.0                             | H-Horn   | AV       | 0.0                            | 44.1               | 54.0        | -9.9                         | Ch. 64 (18), EUT on side |
| 15542.300     | 47.4                | 11.2           | 307.0             | 1.2             | 0.0                      | 0.0                             | V-Horn   | PK       | 0.0                            | 58.6               | 68.2        | -9.6                         | Ch. 36 (10), EUT up      |
| 15722.250     | 46.6                | 10.9           | 322.0             | 1.2             | 0.0                      | 0.0                             | V-Horn   | PK       | 0.0                            | 57.5               | 68.2        | -10.7                        | Ch. 48 (14), EUT up      |
| 15540.030     | 46.0                | 11.2           | 100.0             | 1.2             | 0.0                      | 0.0                             | H-Horn   | PK       | 0.0                            | 57.2               | 68.2        | -11.0                        | Ch. 36 (10), EUT on side |
| 15782.000     | 45.4                | 10.8           | 259.0             | 1.1             | 0.0                      | 0.0                             | V-Horn   | PK       | 0.0                            | 56.2               | 68.2        | -12.0                        | Ch. 52 (15), EUT up      |
| 15782.330     | 45.4                | 10.8           | 36.0              | 1.2             | 0.0                      | 0.0                             | H-Horn   | PK       | 0.0                            | 56.2               | 68.2        | -12.0                        | Ch. 52 (15), EUT on side |
| 15709.540     | 44.9                | 10.9           | 41.0              | 1.2             | 0.0                      | 0.0                             | H-Horn   | PK       | 0.0                            | 55.8               | 68.2        | -12.4                        | Ch. 48 (14), EUT on side |
| 15965.830     | 43.6                | 11.0           | 302.0             | 1.2             | 0.0                      | 0.0                             | V-Horn   | PK       | 0.0                            | 54.6               | 68.2        | -13.6                        | Ch. 64 (18), EUT up      |
| 15962.170     | 43.1                | 11.0           | 89.0              | 1.3             | 0.0                      | 0.0                             | H-Horn   | PK       | 0.0                            | 54.1               | 68.2        | -14.1                        | Ch. 64 (18), EUT on side |



|                | THE SALVANIAN              |                   |              |          |
|----------------|----------------------------|-------------------|--------------|----------|
| EUT:           | Model# 444-2216 (Glenwood) | Work Order:       | FOCU0127     |          |
| Serial Number: | 02EA06000012               |                   | Date:        | 03/16/12 |
| Customer:      | Summit Semiconductor       |                   | Temperature: | 22°C     |
| Attendees:     | None                       |                   | Humidity:    | 31%      |
| Project:       | None                       | Barometric Pres.: | 1005.9 mb    |          |
| Tested by:     | Rod Peloquin               | Power: 18 VDC     | Job Site:    | EV01     |

### TEST SPECIFICATIONS FCC 15.407:2012

Test Method ANSI C63.10:2009

| TEST PARAMETERS       |       |  |
|-----------------------|-------|--|
| Antenna Height(s) (m) | 1 - 4 |  |

Test Distance (m)

### COMMENTS None

#### EUT OPERATING MODES

Transmitting 55% duty cycle

### DEVIATIONS FROM TEST STANDARD No deviations.

| Run#            | 3    | 11.21           |
|-----------------|------|-----------------|
| Configuration # | 2    | Rocky le Leleng |
| Desults         | Dace | Signatura       |



| Freq      |  | Azimuth   | Height   |  | Polarity | Detector | EIRP     | EIRP  | Spec. Limit | Compared to<br>Spec. |                          |
|-----------|--|-----------|----------|--|----------|----------|----------|-------|-------------|----------------------|--------------------------|
| (MHz)     |  | (degrees) | (meters) |  |          |          | (Watts)  | (dBm) | (dBm)       | (dB)                 | Comments                 |
| 15542.300 |  | 307.0     | 1.2      |  | V-Horn   | PK       | 2.17E-07 | -36.6 | -27.0       | -9.6                 | Ch. 36 (10), EUT up      |
| 15722.250 |  | 322.0     | 1.2      |  | V-Horn   | PK       | 1.69E-07 | -37.7 | -27.0       | -10.7                | Ch. 48 (14), EUT up      |
| 15540.030 |  | 100.0     | 1.2      |  | H-Horn   | PK       | 1.57E-07 | -38.0 | -27.0       | -11.0                | Ch. 36 (10), EUT on side |
| 15782.000 |  | 259.0     | 1.1      |  | V-Horn   | PK       | 1.25E-07 | -39.0 | -27.0       | -12.0                | Ch. 52 (15), EUT up      |
| 15782.330 |  | 36.0      | 1.2      |  | H-Horn   | PK       | 1.25E-07 | -39.0 | -27.0       | -12.0                | Ch. 52 (15), EUT on side |
| 15709.540 |  | 41.0      | 1.2      |  | H-Horn   | PK       | 1.14E-07 | -39.4 | -27.0       | -12.4                | Ch. 48 (14), EUT on side |



| The second second |                            |               |                   |           |
|-------------------|----------------------------|---------------|-------------------|-----------|
| EUT:              | Model# 444-2216 (Glenwood) | Work Order:   | FOCU0127          |           |
| Serial Number:    | 02EA06000012               |               | Date:             | 03/21/12  |
| Customer:         | Summit Semiconductor       |               | Temperature:      | 22°C      |
| Attendees:        | Ponnappa Pasura            |               | Humidity:         | 31%       |
| Project:          | None                       | •             | Barometric Pres.: | 1005.9 mb |
| Tested by:        | Rod Peloquin               | Power: 18 VDC | Job Site:         | FV01      |

TEST SPECIFICATIONS FCC 15.209:2012

**Test Method** 

ANSI C63.10:2009

TEST PARAMETERS

Antenna Height(s) (m) Test Distance (m)

COMMENTS None

## EUT OPERATING MODES Transmitting 55% duty cycle

#### DEVIATIONS FROM TEST STANDARD

No deviations.

| Run #           | 5    | 10.20             |
|-----------------|------|-------------------|
| Configuration # | 2    | Poeling le Keling |
| Results         | Pass | Signature         |



| Freq<br>(MHz) | Amplitude<br>(dBuV) | Factor<br>(dB) | Azimuth (degrees) | Height (meters) | Duty Cycle<br>Correction<br>Factor | External<br>Attenuation<br>(dB) | Polarity | Detector | Distance<br>Adjustment<br>(dB) | Adjusted<br>dBuV/m | Spec. Limit | Compared to<br>Spec.<br>(dB) | Comments                    |
|---------------|---------------------|----------------|-------------------|-----------------|------------------------------------|---------------------------------|----------|----------|--------------------------------|--------------------|-------------|------------------------------|-----------------------------|
| 5351.000      | 22.8                | 36.9           | 42.0              | 1.0             | -2.6                               | 0.0                             | H-Horn   | AV       | -9.5                           | 52.8               | 54.0        | -1.2                         | Ch. 64 (18), EUT on end     |
| 5351.000      | 22.8                | 36.9           | 196.0             | 1.2             | -2.6                               | 0.0                             | V-Horn   | AV       | -9.5                           | 52.8               | 54.0        | -1.2                         | Ch. 64 (18), EUT on side    |
| 5149.000      | 23.3                | 36.3           | 74.0              | 1.0             | -2.6                               | 0.0                             | H-Horn   | AV       | -9.5                           | 52.7               | 54.0        | -1.3                         | Ch. 36 (8), EUT on end      |
| 5351.000      | 22.5                | 36.9           | 23.0              | 1.3             | -2.6                               | 0.0                             | H-Horn   | AV       | -9.5                           | 52.5               | 54.0        | -1.5                         | Ch. 64 (18), EUT horizontal |
| 5149.707      | 19.9                | 36.3           | 244.0             | 1.0             | -2.6                               | 0.0                             | V-Horn   | AV       | -9.5                           | 49.3               | 54.0        | -4.7                         | Ch. 36 (8), EUT on side     |
| 5350.087      | 37.3                | 36.9           | 42.0              | 1.0             | 0.0                                | 0.0                             | H-Horn   | PK       | -9.5                           | 64.7               | 74.0        | -9.3                         | Ch. 64 (18), EUT on end     |
| 5149.203      | 37.7                | 36.3           | 74.0              | 1.0             | 0.0                                | 0.0                             | H-Horn   | PK       | -9.5                           | 64.5               | 74.0        | -9.5                         | Ch. 36 (8), EUT on end      |
| 5350.070      | 37.1                | 36.9           | 196.0             | 1.2             | 0.0                                | 0.0                             | V-Horn   | PK       | -9.5                           | 64.5               | 74.0        | -9.5                         | Ch. 64 (18), EUT on side    |
| 5350.090      | 36.4                | 36.9           | 23.0              | 1.3             | 0.0                                | 0.0                             | H-Horn   | PK       | -9.5                           | 63.8               | 74.0        | -10.2                        | Ch. 64 (18), EUT horizontal |
| 5148.707      | 36.7                | 36.3           | 244.0             | 1.0             | 0.0                                | 0.0                             | V-Horn   | PK       | -9.5                           | 63.5               | 74.0        | -10.5                        | Ch. 36 (8), EUT on side     |



| EUT:       | Model# 444-2216 (Glenwood) | odel# 444-2216 (Glenwood) |                      |           |      |  |  |
|------------|----------------------------|---------------------------|----------------------|-----------|------|--|--|
|            | 02EA06000012               |                           | Work Order:<br>Date: | 03/21/12  |      |  |  |
| Customer:  | Summit Semiconductor       | ummit Semiconductor       |                      |           |      |  |  |
| Attendees: | Ponnappa Pasura            | Onnappa Pasura            |                      |           |      |  |  |
| Project:   | None                       | Barometric Pres.:         | 1005.9 mb            |           |      |  |  |
| Tested by: | Rod Peloquin               | Power:                    | 18 VDC               | Job Site: | EV01 |  |  |

TEST SPECIFICATIONS FCC 15.407:2012

**Test Method** 

ANSI C63.10:2009

TEST PARAMETERS

Antenna Height(s) (m) Test Distance (m)

COMMENTS None

## EUT OPERATING MODES Transmitting 55% duty cycle

#### DEVIATIONS FROM TEST STANDARD

No deviations.

| Run #           | 5    | 20.20             |
|-----------------|------|-------------------|
| Configuration # | 2    | Poeling le Keling |
| Results         | Pass | Signature         |



MHz

| Freq     | Azimuth   | Height   |  | Polarity | Detector | EIRP     | EIRP  | Spec. Limit | Compared to Spec. |                             |
|----------|-----------|----------|--|----------|----------|----------|-------|-------------|-------------------|-----------------------------|
| (MHz)    | (degrees) | (meters) |  |          |          | (Watts)  | (dBm) | (dBm)       | (dB)              | Comments                    |
| 5350.087 | 42.0      | 1.0      |  | H-Horn   | PK       | 8.77E-07 | -30.6 | -27.0       | -3.6              | Ch. 64 (18), EUT on end     |
| 5149.203 | 74.0      | 1.0      |  | H-Horn   | PK       | 8.37E-07 | -30.8 | -27.0       | -3.8              | Ch. 36 (8), EUT on end      |
| 5350.070 | 196.0     | 1.2      |  | V-Horn   | PK       | 8.37E-07 | -30.8 | -27.0       | -3.8              | Ch. 64 (18), EUT on side    |
| 5350.090 | 23.0      | 1.3      |  | H-Horn   | PK       | 7.13E-07 | -31.5 | -27.0       | -4.5              | Ch. 64 (18), EUT horizontal |
| 5148.707 | 244.0     | 1.0      |  | V-Horn   | PK       | 6.65E-07 | -31.8 | -27.0       | -4.8              | Ch. 36 (8), EUT on side     |



| EUT:           | Model# 444-2216 (Glenwood) | Work Order:   | FOCU0127          |           |  |  |  |
|----------------|----------------------------|---------------|-------------------|-----------|--|--|--|
| Serial Number: | 02EA06000012               |               | Date:             | 03/21/12  |  |  |  |
| Customer:      | Summit Semiconductor       |               | Temperature:      | 22°C      |  |  |  |
| Attendees:     | Ponnappa Pasura            |               | Humidity:         | 31%       |  |  |  |
| Project:       | None                       |               | Barometric Pres.: | 1005.9 mb |  |  |  |
| Tested by:     | Rod Peloquin               | Power: 18 VDC | Job Site:         | EV01      |  |  |  |

#### **TEST SPECIFICATIONS**

FCC 15.209:2012

**Test Method** ANSI C63.10:2009

| TECT | D 4 | D 4 | BALL | TED |
|------|-----|-----|------|-----|

TEST PARAMETERS
Antenna Height(s) (m) Test Distance (m) 1 - 4

## COMMENTS None

## EUT OPERATING MODES Transmitting 55% duty cycle

#### **DEVIATIONS FROM TEST STANDARD**

No deviations.

| Run #           | 6    | 10,30          |
|-----------------|------|----------------|
| Configuration # | 2    | Rocky le Leley |
| Results         | Pass | Signature      |



| Freq<br>(MHz) | Amplitude<br>(dBuV) | Factor<br>(dB) | Azimuth (degrees) | Height (meters) | Duty Cycle<br>Correction<br>Factor | External<br>Attenuation<br>(dB) | Polarity | Detector | Distance<br>Adjustment<br>(dB) | Adjusted<br>dBuV/m | Spec. Limit<br>dBuV/m | Compared to<br>Spec.<br>(dB) | Comments                  |
|---------------|---------------------|----------------|-------------------|-----------------|------------------------------------|---------------------------------|----------|----------|--------------------------------|--------------------|-----------------------|------------------------------|---------------------------|
| 5386.300      | 23.3                | 36.9           | 297.0             | 1.1             | -2.6                               | 0.0                             | H-Horn   | AV       | -9.5                           | 53.3               | 54.0                  | -0.7                         | Ch. 100 (19), EUT up      |
| 5378.737      | 23.2                | 36.9           | 222.0             | 1.0             | -2.6                               | 0.0                             | V-Horn   | AV       | -9.5                           | 53.2               | 54.0                  | -0.8                         | Ch. 100 (19), EUT on side |
| 5378.900      | 23.2                | 36.9           | 292.0             | 1.1             | -2.6                               | 0.0                             | H-Horn   | AV       | -9.5                           | 53.2               | 54.0                  | -0.8                         | Ch. 52 (15), EUT up       |
| 5386.470      | 23.0                | 36.9           | 229.0             | 1.1             | -2.6                               | 0.0                             | V-Horn   | AV       | -9.5                           | 53.0               | 54.0                  | -1.0                         | Ch. 52 (15), EUT on side  |
| 5378.957      | 35.0                | 36.9           | 222.0             | 1.1             | 0.0                                | 0.0                             | V-Horn   | PK       | -9.5                           | 62.4               | 74.0                  | -11.6                        | Ch. 100 (19), EUT on side |
| 5380.370      | 34.8                | 36.9           | 292.0             | 1.1             | 0.0                                | 0.0                             | H-Horn   | PK       | -9.5                           | 62.2               | 74.0                  | -11.8                        | Ch. 52 (15), EUT up       |
| 5377.200      | 34.7                | 36.9           | 229.0             | 1.1             | 0.0                                | 0.0                             | V-Horn   | PK       | -9.5                           | 62.1               | 74.0                  | -11.9                        | Ch. 52 (15), EUT on side  |
| 5387.300      | 34.6                | 36.9           | 297.0             | 1.1             | 0.0                                | 0.0                             | H-Horn   | PK       | -9.5                           | 62.0               | 74.0                  | -12.0                        | Ch. 100 (19), EUT up      |



|                | LEI FIGURE VIII            |               |                   |           |
|----------------|----------------------------|---------------|-------------------|-----------|
| EUT:           | Model# 444-2216 (Glenwood) |               | Work Order:       | FOCU0127  |
| Serial Number: | 02EA06000012               |               | Date:             | 03/21/12  |
| Customer:      | Summit Semiconductor       |               | Temperature:      | 22°C      |
| Attendees:     | Ponnappa Pasura            |               | Humidity:         | 31%       |
| Project:       | None                       |               | Barometric Pres.: | 1005.9 mb |
| Tested by:     | Rod Peloquin               | Power: 18 VDC | Job Site:         | EV01      |

#### **TEST SPECIFICATIONS**

FCC 15.407:2012

**Test Method** 

ANSI C63.10:2009

TEST PARAMETERS
Antenna Height(s) (m) Test Distance (m) 1 - 4

## COMMENTS None

## EUT OPERATING MODES Transmitting 55% duty cycle

#### **DEVIATIONS FROM TEST STANDARD**

No deviations.

| Run #           | 6    |           | 20.30           |
|-----------------|------|-----------|-----------------|
| Configuration # | 2    |           | Horly be Leleng |
| Results         | Pass | Signature |                 |



| Freq<br>(MHz) | Azimuth (degrees) | Height (meters) |   |   | Polarity | Detector | EIRP<br>(Watts) | EIRP<br>(dBm) | Spec. Limit<br>(dBm) | Compared to<br>Spec.<br>(dB) | Comments                  |
|---------------|-------------------|-----------------|---|---|----------|----------|-----------------|---------------|----------------------|------------------------------|---------------------------|
| 5378.957      | 222.0             | 1.1             | • | • | V-Horn   | PK       | 5.16E-07        | -32.9         | -27.0                | -5.9                         | Ch. 100 (19), EUT on side |
| 5380.370      | 292.0             | 1.1             |   |   | H-Horn   | PK       | 4.93E-07        | -33.1         | -27.0                | -6.1                         | Ch. 52 (15), EUT up       |
| 5377.200      | 229.0             | 1.1             |   |   | V-Horn   | PK       | 4.82E-07        | -33.2         | -27.0                | -6.2                         | Ch. 52 (15), EUT on side  |
| 5387.300      | 297.0             | 1.1             |   |   | H-Horn   | PK       | 4.71E-07        | -33.3         | -27.0                | -6.3                         | Ch. 100 (19), EUT up      |



Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

#### **TEST EQUIPMENT**

| Description                     | Manufacturer     | Model    | ID  | Last Cal. | Interval |
|---------------------------------|------------------|----------|-----|-----------|----------|
| Spectrum Analyzer               | Agilent          | E4440A   | AFD | 7/5/2011  | 12       |
| 40GHz DC Block                  | Miteq            | DCB4000  | AMD | 8/12/2011 | 12       |
| Attenuator 20 dB, SMA M/F 26GHz | S.M. Electronics | SA26B-20 | AUY | 8/2/2011  | 12       |
| EV06 Direct Connect Cable       | ESM Cable Corp.  | TT       | ECA | NCR       | 0        |
| Power Meter                     | Gigatronics      | 8651A    | SPM | 1/9/2012  | 24       |
| Power Sensor                    | Gigatronics      | 80701A   | SPL | 7/8/2011  | 24       |
| MXG Vector Signal Generator     | Agilent          | N5182A   | TIF | NCR       | 0        |
| Attenuator, 6dB                 | S.M. Electronics | 18N-06   | AWN | 5/5/2011  | 12       |

#### **MEASUREMENT UNCERTAINTY**

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.

#### **TEST DESCRIPTION**

The transmission pulse duration (T) and Duty Cycle (x) were measured for each of the EUT operating modes per the FCC KDB 789033 D01 General UNII Test Procedures.

The measurements were made using a zero span on the spectrum analyzer to see the pulses in the time domain. The transmit power was set to its default maximum. A direct connection was made between the RF output of the EUT and a spectrum analyzer. Attenuation and a DC block were used

The duty cycle was calculated by dividing the transmission pulse duration (T) by the total period of a single on and total off time.

If the transmit duty cycle < 98 percent, a duty cycle correction factor in dB can be calculated to add to power measurements if required in the method guidance.

10 \* LOG (1/x) = dB

10 \* LOG(1/.55) = 2.6 dB



|                         | Model# 444-2216 (Glenw                                                                                                                          | ood)                                                         |                    |                  | Work Order: F                        |                                      |                          |
|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|--------------------|------------------|--------------------------------------|--------------------------------------|--------------------------|
|                         | : 02EA06000013                                                                                                                                  |                                                              |                    |                  | Date: 0                              |                                      |                          |
|                         | Summit Semiconductor                                                                                                                            |                                                              |                    |                  | Temperature: 2                       |                                      |                          |
|                         | Ponnappa Pasura                                                                                                                                 |                                                              |                    |                  | Humidity: 3                          |                                      |                          |
| Project:                |                                                                                                                                                 |                                                              |                    |                  | Barometric Pres.: 1                  |                                      |                          |
|                         | Rod Peloquin                                                                                                                                    |                                                              | Power              | 18 VDC           | Job Site: E                          | V06                                  |                          |
| TEST SPECIFICAT         | IONS                                                                                                                                            |                                                              |                    | Test Method      |                                      |                                      |                          |
| FCC 15.407:2012         |                                                                                                                                                 |                                                              |                    | ANSI C63.10:2009 |                                      |                                      |                          |
|                         |                                                                                                                                                 |                                                              |                    | 1                |                                      |                                      |                          |
| COMMENTS                |                                                                                                                                                 |                                                              |                    |                  |                                      |                                      |                          |
| None                    |                                                                                                                                                 |                                                              |                    |                  |                                      |                                      |                          |
|                         |                                                                                                                                                 |                                                              |                    |                  |                                      |                                      |                          |
| DEL // 4 TION 10 ED 01  | M TEST STANDARD                                                                                                                                 |                                                              |                    |                  |                                      |                                      |                          |
|                         |                                                                                                                                                 |                                                              |                    |                  |                                      |                                      |                          |
|                         | 1201 01712712                                                                                                                                   |                                                              |                    |                  |                                      |                                      |                          |
|                         |                                                                                                                                                 |                                                              |                    |                  |                                      |                                      |                          |
| None                    | 1                                                                                                                                               |                                                              | Rolling la Rolling |                  |                                      |                                      |                          |
| None                    | 1                                                                                                                                               | Signatura                                                    | Roly le Religs     |                  |                                      |                                      |                          |
|                         | 1                                                                                                                                               | Signature                                                    | Paling to Rolling. |                  |                                      |                                      |                          |
| None                    | 1                                                                                                                                               | Signature                                                    | Rolly be Rolly     |                  | Transmission                         | Period                               | Result                   |
| None Configuration #    | 1                                                                                                                                               | Signature                                                    | Paliz le Rolings   |                  | Transmission                         | Period                               | Result                   |
| None<br>Configuration # | 1                                                                                                                                               | Signature                                                    | Relig to Rolly     |                  | Transmission                         | Period                               | Result                   |
| None<br>Configuration # | 1<br>5150 - 5250 MHz Band                                                                                                                       | Signature                                                    | Relig le Rolays    |                  |                                      |                                      |                          |
| None<br>Configuration # | 1<br>5150 - 5250 MHz Band<br>Channel 36,                                                                                                        | Signature Low Channel                                        | boly le Rolays     |                  | 197 µs                               | 361 µs                               | 55%                      |
| None<br>Configuration # | 1<br>5150 - 5250 MHz Band<br>Channel 36,<br>Channel 48,                                                                                         | Signature                                                    | Arley la Rolays    |                  |                                      |                                      |                          |
| None<br>Configuration # | 1<br>5150 - 5250 MHz Band<br>Channel 36,<br>Channel 48,<br>5250 - 5350 MHz Band                                                                 | Signature Low Channel                                        | boly le Robays     |                  | 197 µs<br>198 µs                     | 361 µs                               | 55%                      |
| None<br>Configuration # | 5150 - 5250 MHz Band<br>Channel 36,<br>Channel 48,<br>5250 - 5350 MHz Band<br>Channel 52,                                                       | Signature Low Channel High Channel                           | bely le Rolays     |                  | 197 µs                               | 361 µs<br>361 µs                     | 55%<br>55%               |
| None<br>Configuration # | 5150 - 5250 MHz Band<br>Channel 36,<br>Channel 48,<br>5250 - 5350 MHz Band<br>Channel 52,                                                       | Signature  Low Channel High Channel  Low Channel             | beleg le Roleys    |                  | 197 µs<br>198 µs<br>198 µs           | 361 µs<br>361 µs<br>361 µs           | 55%<br>55%<br>55%        |
| None<br>Configuration # | 5150 - 5250 MHz Band<br>Channel 36,<br>Channel 48,<br>5250 - 5350 MHz Band<br>Channel 52,<br>Channel 64,<br>5470 - 5725 MHz Band                | Signature  Low Channel High Channel  Low Channel             | boly le Robert     |                  | 197 µs<br>198 µs<br>198 µs           | 361 µs<br>361 µs<br>361 µs           | 55%<br>55%<br>55%        |
| None                    | 5150 - 5250 MHz Band<br>Channel 36,<br>Channel 48,<br>5250 - 5350 MHz Band<br>Channel 52,<br>Channel 64,<br>5470 - 5725 MHz Band<br>Channel 100 | Signature  Low Channel High Channel Low Channel High Channel | bely le Rolays     |                  | 197 µs<br>198 µs<br>198 µs<br>198 µs | 361 µs<br>361 µs<br>361 µs<br>360 µs | 55%<br>55%<br>55%<br>55% |





| Transmission Device Popula |  | 6 M | bps, 5150 - 5250 | MHz Band, Chan | nel 48, High Char | nnel   |        |
|----------------------------|--|-----|------------------|----------------|-------------------|--------|--------|
|                            |  |     |                  |                | Transmission      | Period | Result |
|                            |  |     |                  |                | 198 µs            | 361 µs | 55%    |









|  | 6 M | bps, 5250 - 5350 | MHz Band, Chan | nel 64, High Char | nnel   |        |
|--|-----|------------------|----------------|-------------------|--------|--------|
|  |     |                  |                |                   |        |        |
|  |     |                  |                | Transmission      | Period | Result |
|  |     |                  |                | 198 µs            | 360 µs | 55%    |









|  | 6 N | Mbps, 5470 - 5725 | MHz Band, Chan | nel 116, Mid Char | nnel   |        |   |
|--|-----|-------------------|----------------|-------------------|--------|--------|---|
|  |     |                   |                |                   |        |        |   |
|  |     |                   |                | Transmission      | Period | Result | _ |
|  |     |                   | l              | 199 µs            | 360 µs | 55%    | 7 |











#### FREQUENCY STABILITY

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

#### **TEST EQUIPMENT**

| Description                         | Manufacturer              | Model          | ID  | Last Cal. | Interval |
|-------------------------------------|---------------------------|----------------|-----|-----------|----------|
| Spectrum Analyzer                   | Agilent                   | E4440A         | AFD | 7/5/2011  | 12       |
| 40GHz DC Block                      | Miteq                     | DCB4000        | AMD | 8/12/2011 | 12       |
| Attenuator 20 dB, SMA M/F 26GHz     | S.M. Electronics          | SA26B-20       | AUY | 8/2/2011  | 12       |
| Chamber Temp. & Humidity Controller | ESZ / Eurotherm           | Dimension II   | TBC | NCR       | 0        |
| Chamber, Temp./Humidity Chamber     | Cincinnati Sub Zero (CSZ) | ZH-32-2-2-H/AC | TBA | 8/20/2010 | 24       |
| Humidity Temperature Meter          | Omegaette                 | HH311          | DTY | 3/29/2011 | 24       |
| Multimeter                          | Tektronix                 | DMM912         | MMH | 1/28/2011 | 24       |
| DC Power Supply                     | Topward                   | TPS-2000       | TPD | NCR       | 0        |
| EV06 Direct Connect Cable           | ESM Cable Corp.           | TT             | ECA | NCR       | 0        |

#### **MEASUREMENT UNCERTAINTY**

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.

#### **TEST DESCRIPTION**

Variation of Supply Voltage

The primary supply voltage was varied from 85% of nominal to 115% of nominal DC voltage of 18 VDC.

#### Variation of Ambient Temperature

Using a temperature chamber, the transmit frequency was recorded at the extremes of the specified temperature range (-30 ° to +50° C) and at 10°C intervals.

A direct connect measurement was made between the EUT's antenna cable and a spectrum analyzer. The spectrum analyzer is equipped with a precision frequency reference that exceeds the stability requirement of the EUT. Measurements were made at the lowest and highest channel of each band to determine frequency stability.



#### **FREQUENCY STABILITY**

| EUT: Model# 444-2216 (Glenwood)          | Work Order:       | FOCU0127    |
|------------------------------------------|-------------------|-------------|
| Serial Number: 02EA06000024              |                   | 03/20/12    |
| Customer: Summit Semiconductor           | Temperature:      | 21.5°C      |
| Attendees: None                          | Humidity:         | 34%         |
| Project: None                            | Barometric Pres.: |             |
| Tested by: Rod Peloquin Power: 18 VDC    | Job Site:         | ev06 & EV09 |
| TEST SPECIFICATIONS Test Method          |                   |             |
| FCC 15.407:2012 ANSI C63.10:2009         |                   |             |
|                                          |                   |             |
| COMMENTS                                 |                   |             |
| None                                     |                   |             |
| DEVIATIONS FROM TEST STANDARD            |                   |             |
| None                                     |                   |             |
| Configuration # 3 Reby to Roby Signature |                   |             |
| Low Changed 5150 MHz 5250 MHz Band       |                   |             |

Frequency Stability with Variation of DC Voltage (Ambient Temperature = 20°C)

| Voltage<br>(VDC) | Assigned Frequency (MHz) | Measured Frequency<br>(MHz) | Tolerance<br>(ppm) | Specification (ppm) |
|------------------|--------------------------|-----------------------------|--------------------|---------------------|
| 20.7 (115%)      | 5180.000000              | 5179.975200                 | 4.79               | n/a                 |
| 18.0 (100%)      | 5180.000000              | 5179.975300                 | 4.77               | n/a                 |
| 15.3 (85%)       | 5180.000000              | 5179.975590                 | 4.71               | n/a                 |

Frequency Stability with Variation of Ambient Temperature (Primary Supply = 18 VDC)

| Temp | Assigned Frequency | Measured Frequency | Tolerance | Specification |
|------|--------------------|--------------------|-----------|---------------|
| (°C) | (MHz)              | (MHz)              | (ppm)     | (ppm)         |
| 50   | 5180.000000        | 5179.976150        | 4.60      | n/a           |
| 40   | 5180.000000        | 5179.966700        | 6.43      | n/a           |
| 30   | 5180.000000        | 5179.968670        | 6.05      | n/a           |
| 20   | 5180.000000        | 5179.975300        | 4.77      | n/a           |
| 10   | 5180.000000        | 5179.982000        | 3.47      | n/a           |
| 0    | 5180.000000        | 5179.986600        | 2.59      | n/a           |
| -10  | 5180.000000        | 5179.985150        | 2.87      | n/a           |
| -20  | 5180.000000        | 5179.976400        | 4.56      | n/a           |
| -30  | 5180.000000        | 5179.951400        | 9.38      | n/a           |

High Channel, 5250 MHz - 5350 MHz Band

Frequency Stability with Variation of DC Voltage (Ambient Temperature = 20°C)

|   | Voltage<br>(VDC) | Assigned Frequency<br>(MHz) | Measured Frequency<br>(MHz) | Tolerance<br>(ppm) | Specification (ppm) |
|---|------------------|-----------------------------|-----------------------------|--------------------|---------------------|
| ſ | 20.7 (115%)      | 5320.000000                 | 5319.975300                 | 4.64               | n/a                 |
| ſ | 18.0 (100%)      | 5320.000000                 | 5319.975750                 | 4.56               | n/a                 |
| ſ | 15.3 (85%)       | 5320,000000                 | 5319.975100                 | 4.68               | n/a                 |

Frequency Stability with Variation of Ambient Temperature (Primary Supply = 18 VDC)

| Temp | Assigned Frequency | Measured Frequency | Tolerance | Specification |
|------|--------------------|--------------------|-----------|---------------|
| (°C) | (MHz)              | (MHz)              | (ppm)     | (ppm)         |
| 50   | 5320.000000        | 5319.976900        | 4.34      | n/a           |
| 40   | 5320.000000        | 5319.966600        | 6.28      | n/a           |
| 30   | 5320.000000        | 5319.968700        | 5.88      | n/a           |
| 20   | 5320.000000        | 5319.975750        | 4.56      | n/a           |
| 10   | 5320.000000        | 5319.982400        | 3.31      | n/a           |
| 0    | 5320.000000        | 5319.986830        | 2.48      | n/a           |
| -10  | 5320.000000        | 5319.985400        | 2.74      | n/a           |
| -20  | 5320.000000        | 5319.976000        | 4.51      | n/a           |
| -30  | 5320.000000        | 5319.950800        | 9.25      | n/a           |

Low Channel, 5470 MHz - 5725 MHz Band

Frequency Stability with Variation of DC Voltage (Ambient Temperature = 20°C)

| 1 | Voltage<br>(VDC) | Assigned Frequency<br>(MHz) | Measured Frequency<br>(MHz) | Tolerance<br>(ppm) | Specification (ppm) |
|---|------------------|-----------------------------|-----------------------------|--------------------|---------------------|
|   | 20.7 (115%)      | 5500.000000                 | 5499.974700                 | 4.60               | n/a                 |
|   | 18.0 (100%)      | 5500.000000                 | 5499.975100                 | 4.53               | n/a                 |
|   | 15.3 (85%)       | 5500.000000                 | 5499.975200                 | 4.51               | n/a                 |

Frequency Stability with Variation of Ambient Temperature (Primary Supply = 18 VDC)

| Temp<br>(°C) | Assigned Frequency<br>(MHz) | Measured Frequency<br>(MHz) | Tolerance<br>(ppm) | Specification (ppm) |
|--------------|-----------------------------|-----------------------------|--------------------|---------------------|
| 50           | 5500.000000                 | 5499.976240                 | 4.32               | n/a                 |
| 40           | 5500.000000                 | 5499.965700                 | 6.24               | n/a                 |
| 30           | 5500.000000                 | 5499.967770                 | 5.86               | n/a                 |
| 20           | 5500.000000                 | 5499.975100                 | 4.53               | n/a                 |
| 10           | 5500.000000                 | 5499.982300                 | 3.22               | n/a                 |
| 0            | 5500.000000                 | 5499.986500                 | 2.45               | n/a                 |
| -10          | 5500.000000                 | 5499.984800                 | 2.76               | n/a                 |
| -20          | 5500.000000                 | 5499.974500                 | 4.64               | n/a                 |
| -30          | 5500.000000                 | 5499.948000                 | 9.45               | n/a                 |

High Channel, 5470 MHz - 5725 MHz Band

Frequency Stability with Variation of DC Voltage (Ambient Temperature =  $20^{\circ}$  C)

| Voltage     | Assigned Frequency | Measured Frequency | Tolerance | Specification |
|-------------|--------------------|--------------------|-----------|---------------|
| (VDC)       | (MHz)              | (MHz)              | (ppm)     | (ppm)         |
| 20.7 (115%) | 5700.000000        | 5699.973600        | 4.63      | n/a           |
| 18.0 (100%) | 5700.000000        | 5699.975000        | 4.39      | n/a           |
| 15.3 (85%)  | 5700.000000        | 5699.973400        | 4.67      | n/a           |

Frequency Stability with Variation of Ambient Temperature (Primary Supply = 18 VDC)

| Temp | Assigned Frequency | Measured Frequency | Tolerance | Specification |
|------|--------------------|--------------------|-----------|---------------|
| (°C) | (MHz)              | (MHz)              | (ppm)     | (ppm)         |
| 50   | 5700.000000        | 5699.975020        | 4.38      | n/a           |
| 40   | 5700.000000        | 5699.964200        | 6.28      | n/a           |
| 30   | 5700.000000        | 5699.966300        | 5.91      | n/a           |
| 20   | 5700.000000        | 5699.975000        | 4.39      | n/a           |
| 10   | 5700.000000        | 5699.981400        | 3.26      | n/a           |
| 0    | 5700.000000        | 5699.985800        | 2.49      | n/a           |
| -10  | 5700.000000        | 5699.983850        | 2.83      | n/a           |
| -20  | 5700.000000        | 5699.972400        | 4.84      | n/a           |
| -30  | 5700.000000        | 5699.943200        | 9.96      | n/a           |



Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

#### **MODES OF OPERATION**

| Transmitting 55% duty cycle, Ch. 140 (29) 5700 MHz |
|----------------------------------------------------|
| Transmitting 55% duty cycle, Ch. 116 (23) 5580 MHz |
| Transmitting 55% duty cycle, Ch. 100 (19) 5500 MHz |
| Transmitting 55% duty cycle, Ch. 64 (18) 5320 MHz  |
| Transmitting 55% duty cycle, Ch. 52 (15) 5260 MHz  |
| Transmitting 55% duty cycle, Ch. 48 (14) 5240 MHz  |
| Transmitting 55% duty cycle, Ch. 36 (8) 5180 MHz   |

#### **POWER SETTINGS INVESTIGATED**

18 VDC

#### **CONFIGURATIONS INVESTIGATED**

FOCU0127 - 4

#### **SAMPLE CALCULATIONS**

Conducted Emissions: Adjusted Level = Measured Level + Transducer Factor + Cable Attenuation Factor + External Attenuator

#### **TEST EQUIPMENT**

| Description       | Manufacturer | Model            | ID  | Last Cal. | Interval |
|-------------------|--------------|------------------|-----|-----------|----------|
| Spectrum Analyzer | Agilent      | E4440            | AFE | 1/23/2012 | 12 mo    |
| High Pass Filter  | TTE          | H97-100K-50-720B | HFX | 2/9/2011  | 24 mo    |
| Attenuator        | Coaxicom     | 66702 5910-20    | RBJ | 4/4/2011  | 12 mo    |
| LISN              | Solar        | 9252-50-R-24-BNC | LIR | 11/4/2011 | 12 mo    |
| EV07 Cables       | N/A          | Conducted Cables | EVG | 6/17/2011 | 12 mo    |

#### **MEASUREMENT BANDWIDTHS**

| Frequency Range | Peak Data | Quasi-Peak Data | Average Data |
|-----------------|-----------|-----------------|--------------|
| (MHz)           | (kHz)     | (kHz)           | (kHz)        |
| 0.01 - 0.15     | 1.0       | 0.2             | 0.2          |
| 0.15 - 30.0     | 10.0      | 9.0             | 9.0          |
| 30.0 - 1000     | 100.0     | 120.0           | 120.0        |
| Above 1000      | 1000.0    | N/A             | 1000.0       |

Measurements were made using the bandwidths and detectors specified. No video filter was used.

#### **MEASUREMENT UNCERTAINTY**

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.

#### **TEST DESCRIPTION**

The EUT will be powered indirectly from the AC power line while operating in a host device. Therefore, conducted emissions measurements were made on the DC input of the EUT, or on the DC input of the device used to power the EUT. The AC power line conducted emissions were measured on a linear power supply providing DC power to the module while providing no filtering of the power inputs to the module.

The AC power line conducted emissions were measured with the EUT operating at the lowest, the highest, and a middle channel in the operational band or bands. The EUT was transmitting in the mode which has the highest output power for the band. For each mode, the spectrum was scanned from 150 kHz to 30 MHz. The test setup and procedures were in accordance with ANSI C63.10-2009.



| Woi         | rk Order: | FOCU0127              | Date:                    | 03/23/12          |          | 10100               |      |
|-------------|-----------|-----------------------|--------------------------|-------------------|----------|---------------------|------|
|             | Project:  | None                  | Temperature:             | 21 °C             | /4       | orly be Reley       |      |
|             | Job Site: | EV07                  | Humidity:                | 32% RH            |          |                     |      |
| Serial      | Number:   | 02EA06000012          | Barometric Pres.:        | 10411.5 mbar      | Tes      | sted by: Rod Peloqu | in   |
|             | EUT:      | Model# 444-2216 (Gle  | enwood)                  |                   |          |                     |      |
| Confi       | guration: | 4                     |                          |                   |          |                     |      |
| C           | ustomer:  | Summit Semiconducto   | or                       |                   |          |                     |      |
| At          | tendees:  | None                  |                          |                   |          |                     |      |
| EU          | T Power:  | 18 VDC                |                          |                   |          |                     |      |
| Operation   | ng Mode:  | Transmitting 55% duty | y cycle, Ch. 36 (8) 5180 | 0 MHz             |          |                     |      |
| De          | viations: | No deviations.        |                          |                   |          |                     |      |
| Со          | mments:   | None                  |                          |                   |          |                     |      |
| Test Specif | fications |                       |                          | Test Meth         | od       |                     |      |
| FCC 15.207  | 7:2012    |                       |                          | ANSI C63          | .10:2009 |                     |      |
|             |           |                       |                          |                   |          |                     |      |
|             |           |                       |                          |                   |          |                     |      |
|             |           |                       |                          |                   |          |                     |      |
|             |           |                       |                          |                   |          |                     |      |
| Run #       | 1         | Line:                 | High Line                | Ext. Attenuation: | 20       | Results             | Pass |

#### Peak Data - vs - Quasi Peak Limit

#### 100 90 80 70 60 50 40 30 20 10 0.1 1.0 MHz

#### Peak Data - vs - Average Limit



| Freq<br>(MHz) | Amplitude<br>(dBuV) | Factor<br>(dB) | Adjusted<br>(dBuV) | Spec. Limit<br>(dBuV) | Compared to<br>Spec.<br>(dB) |
|---------------|---------------------|----------------|--------------------|-----------------------|------------------------------|
| 0.150         | 30.0                | 20.1           | 50.1               | 66.0                  | -15.9                        |
| 1.823         | 13.5                | 20.1           | 33.6               | 56.0                  | -22.4                        |
| 2.522         | 12.0                | 20.1           | 32.1               | 56.0                  | -23.9                        |
| 1.477         | 11.8                | 20.1           | 31.9               | 56.0                  | -24.1                        |
| 0.463         | 12.2                | 20.1           | 32.3               | 56.6                  | -24.3                        |
| 0.737         | 11.3                | 20.1           | 31.4               | 56.0                  | -24.6                        |
| 0.442         | 12.3                | 20.1           | 32.4               | 57.0                  | -24.6                        |
| 0.660         | 11.2                | 20.1           | 31.3               | 56.0                  | -24.7                        |
| 0.926         | 11.1                | 20.1           | 31.2               | 56.0                  | -24.8                        |
| 1.192         | 10.9                | 20.1           | 31.0               | 56.0                  | -25.0                        |
| 2.071         | 10.9                | 20.1           | 31.0               | 56.0                  | -25.0                        |
| 1.134         | 10.5                | 20.1           | 30.6               | 56.0                  | -25.4                        |
| 1.159         | 10.2                | 20.1           | 30.3               | 56.0                  | -25.7                        |
| 1.794         | 10.2                | 20.1           | 30.3               | 56.0                  | -25.7                        |
| 0.412         | 11.8                | 20.1           | 31.9               | 57.6                  | -25.7                        |
| 1.611         | 10.1                | 20.1           | 30.2               | 56.0                  | -25.8                        |
| 4.202         | 10.0                | 20.1           | 30.1               | 56.0                  | -25.9                        |
| 1.433         | 10.0                | 20.1           | 30.1               | 56.0                  | -25.9                        |
| 2.019         | 10.0                | 20.1           | 30.1               | 56.0                  | -25.9                        |
| 1.633         | 9.9                 | 20.1           | 30.0               | 56.0                  | -26.0                        |

Peak Data - vs - Average Limit

| Feak Data - VS - Average Limit |                     |                |                    |                       |                              |  |
|--------------------------------|---------------------|----------------|--------------------|-----------------------|------------------------------|--|
| Freq<br>(MHz)                  | Amplitude<br>(dBuV) | Factor<br>(dB) | Adjusted<br>(dBuV) | Spec. Limit<br>(dBuV) | Compared to<br>Spec.<br>(dB) |  |
| 0.150                          | 30.0                | 20.1           | 50.1               | 56.0                  | -5.9                         |  |
| 1.823                          | 13.5                | 20.1           | 33.6               | 46.0                  | -12.4                        |  |
| 2.522                          | 12.0                | 20.1           | 32.1               | 46.0                  | -13.9                        |  |
| 1.477                          | 11.8                | 20.1           | 31.9               | 46.0                  | -14.1                        |  |
| 0.463                          | 12.2                | 20.1           | 32.3               | 46.6                  | -14.3                        |  |
| 0.737                          | 11.3                | 20.1           | 31.4               | 46.0                  | -14.6                        |  |
| 0.442                          | 12.3                | 20.1           | 32.4               | 47.0                  | -14.6                        |  |
| 0.660                          | 11.2                | 20.1           | 31.3               | 46.0                  | -14.7                        |  |
| 0.926                          | 11.1                | 20.1           | 31.2               | 46.0                  | -14.8                        |  |
| 1.192                          | 10.9                | 20.1           | 31.0               | 46.0                  | -15.0                        |  |
| 2.071                          | 10.9                | 20.1           | 31.0               | 46.0                  | -15.0                        |  |
| 1.134                          | 10.5                | 20.1           | 30.6               | 46.0                  | -15.4                        |  |
| 1.159                          | 10.2                | 20.1           | 30.3               | 46.0                  | -15.7                        |  |
| 1.794                          | 10.2                | 20.1           | 30.3               | 46.0                  | -15.7                        |  |
| 0.412                          | 11.8                | 20.1           | 31.9               | 47.6                  | -15.7                        |  |
| 1.611                          | 10.1                | 20.1           | 30.2               | 46.0                  | -15.8                        |  |
| 4.202                          | 10.0                | 20.1           | 30.1               | 46.0                  | -15.9                        |  |
| 1.433                          | 10.0                | 20.1           | 30.1               | 46.0                  | -15.9                        |  |
| 2.019                          | 10.0                | 20.1           | 30.1               | 46.0                  | -15.9                        |  |
| 1.633                          | 9.9                 | 20.1           | 30.0               | 46.0                  | -16.0                        |  |



| Work Order:         | FOCU0127              | Date:                   | 03/23/12          | 101        | 20           |
|---------------------|-----------------------|-------------------------|-------------------|------------|--------------|
| Project:            | None                  | Temperature:            | 21 °C             | Rolly le   | teling       |
| Job Site:           | EV07                  | Humidity:               | 32% RH            |            |              |
| Serial Number:      | 02EA06000012          | Barometric Pres.:       | 10411.5 mbar      | Tested by: | Rod Peloquin |
| EUT:                | Model# 444-2216 (Gle  | enwood)                 |                   |            |              |
| Configuration:      |                       |                         |                   |            |              |
| Customer:           | Summit Semiconductor  | or                      |                   |            |              |
| Attendees:          | None                  |                         |                   |            |              |
| EUT Power:          | 18 VDC                |                         |                   |            |              |
| Operating Mode:     | Transmitting 55% duty | y cycle, Ch. 36 (8) 518 | 0 MHz             |            |              |
| Deviations:         | No deviations.        |                         |                   |            |              |
| Comments:           | None                  |                         |                   |            |              |
| Test Specifications |                       |                         | Test Meth         | od         |              |
| FCC 15.207:2012     |                       |                         | ANSI C63.         | 10:2009    |              |
|                     |                       |                         |                   |            |              |
|                     |                       |                         |                   |            |              |
|                     |                       |                         |                   |            |              |
|                     |                       |                         |                   |            |              |
| Run # 2             | Line:                 | Neutral                 | Ext. Attenuation: | 20         | Results Pass |

#### Peak Data - vs - Quasi Peak Limit

#### 100 90 80 70 60 40 30 20 10 0.1 1.0 MHz

#### Peak Data - vs - Average Limit



| Freq<br>(MHz) | Amplitude<br>(dBuV) | Factor<br>(dB) | Adjusted<br>(dBuV) | Spec. Limit<br>(dBuV) | Compared to<br>Spec.<br>(dB) |
|---------------|---------------------|----------------|--------------------|-----------------------|------------------------------|
| 0.150         | 30.3                | 20.1           | 50.4               | 66.0                  | -15.6                        |
| 0.216         | 20.2                | 20.1           | 40.3               | 63.0                  | -22.7                        |
| 24.781        | 16.3                | 20.9           | 37.2               | 60.0                  | -22.8                        |
| 24.825        | 15.9                | 21.0           | 36.9               | 60.0                  | -23.1                        |
| 0.598         | 12.6                | 20.1           | 32.7               | 56.0                  | -23.3                        |
| 1.367         | 12.2                | 20.1           | 32.3               | 56.0                  | -23.7                        |
| 24.986        | 15.1                | 21.0           | 36.1               | 60.0                  | -23.9                        |
| 24.195        | 15.0                | 20.9           | 35.9               | 60.0                  | -24.1                        |
| 23.845        | 15.0                | 20.9           | 35.9               | 60.0                  | -24.1                        |
| 24.071        | 14.8                | 20.9           | 35.7               | 60.0                  | -24.3                        |
| 0.525         | 11.6                | 20.1           | 31.7               | 56.0                  | -24.3                        |
| 22.821        | 14.8                | 20.9           | 35.7               | 60.0                  | -24.3                        |
| 24.898        | 14.7                | 21.0           | 35.7               | 60.0                  | -24.3                        |
| 23.681        | 14.6                | 20.9           | 35.5               | 60.0                  | -24.5                        |
| 0.638         | 11.4                | 20.1           | 31.5               | 56.0                  | -24.5                        |
| 24.355        | 14.4                | 20.9           | 35.3               | 60.0                  | -24.7                        |
| 0.923         | 11.2                | 20.1           | 31.3               | 56.0                  | -24.7                        |
| 0.493         | 11.3                | 20.1           | 31.4               | 56.1                  | -24.7                        |
| 24.537        | 14.3                | 20.9           | 35.2               | 60.0                  | -24.8                        |
| 1.061         | 11.1                | 20.1           | 31.2               | 56.0                  | -24.8                        |

Peak Data - vs - Average Limit

|               | i ca                | N Dala - VS    | - Average i        | _1111111              |                              |
|---------------|---------------------|----------------|--------------------|-----------------------|------------------------------|
| Freq<br>(MHz) | Amplitude<br>(dBuV) | Factor<br>(dB) | Adjusted<br>(dBuV) | Spec. Limit<br>(dBuV) | Compared to<br>Spec.<br>(dB) |
| 0.150         | 30.3                | 20.1           | 50.4               | 56.0                  | -5.6                         |
| 0.216         | 20.2                | 20.1           | 40.3               | 53.0                  | -12.7                        |
| 24.781        | 16.3                | 20.9           | 37.2               | 50.0                  | -12.8                        |
| 24.825        | 15.9                | 21.0           | 36.9               | 50.0                  | -13.1                        |
| 0.598         | 12.6                | 20.1           | 32.7               | 46.0                  | -13.3                        |
| 1.367         | 12.2                | 20.1           | 32.3               | 46.0                  | -13.7                        |
| 24.986        | 15.1                | 21.0           | 36.1               | 50.0                  | -13.9                        |
| 24.195        | 15.0                | 20.9           | 35.9               | 50.0                  | -14.1                        |
| 23.845        | 15.0                | 20.9           | 35.9               | 50.0                  | -14.1                        |
| 24.071        | 14.8                | 20.9           | 35.7               | 50.0                  | -14.3                        |
| 0.525         | 11.6                | 20.1           | 31.7               | 46.0                  | -14.3                        |
| 22.821        | 14.8                | 20.9           | 35.7               | 50.0                  | -14.3                        |
| 24.898        | 14.7                | 21.0           | 35.7               | 50.0                  | -14.3                        |
| 23.681        | 14.6                | 20.9           | 35.5               | 50.0                  | -14.5                        |
| 0.638         | 11.4                | 20.1           | 31.5               | 46.0                  | -14.5                        |
| 24.355        | 14.4                | 20.9           | 35.3               | 50.0                  | -14.7                        |
| 0.923         | 11.2                | 20.1           | 31.3               | 46.0                  | -14.7                        |
| 0.493         | 11.3                | 20.1           | 31.4               | 46.1                  | -14.7                        |
| 24.537        | 14.3                | 20.9           | 35.2               | 50.0                  | -14.8                        |
| 1.061         | 11.1                | 20.1           | 31.2               | 46.0                  | -14.8                        |



| Work Order:         | FOCU0127              | Date:                    | 03/23/12          | 10120                   |
|---------------------|-----------------------|--------------------------|-------------------|-------------------------|
| Project:            | None                  | Temperature:             | 21 °C             | Rolly be Rolly,         |
| Job Site:           | EV07                  | Humidity:                | 32% RH            |                         |
| Serial Number:      | 02EA06000012          | Barometric Pres.:        | 10411.5 mbar      | Tested by: Rod Peloquin |
| EUT:                | Model# 444-2216 (Gle  | enwood)                  |                   |                         |
| Configuration:      | 4                     |                          |                   |                         |
| Customer:           | Summit Semiconducto   | or                       |                   |                         |
| Attendees:          | None                  |                          |                   |                         |
| EUT Power:          | 18 VDC                |                          |                   |                         |
| Operating Mode:     | Transmitting 55% duty | y cycle, Ch. 48 (14) 524 | 40 MHz            |                         |
| Deviations:         | No deviations.        |                          |                   |                         |
| Comments:           | None                  |                          |                   |                         |
| Test Specifications |                       |                          | Test Metho        | od                      |
| FCC 15.207:2012     | •                     |                          | ANSI C63.         | .10:2009                |
|                     |                       |                          |                   |                         |
|                     |                       |                          |                   |                         |
|                     |                       |                          |                   |                         |
| Run # 3             | Line:                 | High Line                | Ext. Attenuation: | 20 Results Pass         |

#### Peak Data - vs - Quasi Peak Limit

#### 100 80 60 dBuV 50 40 30 20 10 1.0 10.0 100.0 0.1 MHz

#### Peak Data - vs - Average Limit



| Freq<br>(MHz) | Amplitude<br>(dBuV) | Factor<br>(dB) | Adjusted<br>(dBuV) | Spec. Limit<br>(dBuV) | Compared to<br>Spec.<br>(dB) |
|---------------|---------------------|----------------|--------------------|-----------------------|------------------------------|
| 0.150         | 31.6                | 20.1           | 51.7               | 66.0                  | -14.3                        |
| 0.467         | 12.8                | 20.1           | 32.9               | 56.6                  | -23.7                        |
| 1.455         | 12.2                | 20.1           | 32.3               | 56.0                  | -23.7                        |
| 0.536         | 12.0                | 20.1           | 32.1               | 56.0                  | -23.9                        |
| 0.678         | 11.6                | 20.1           | 31.7               | 56.0                  | -24.3                        |
| 1.105         | 11.6                | 20.1           | 31.7               | 56.0                  | -24.3                        |
| 0.602         | 11.5                | 20.1           | 31.6               | 56.0                  | -24.4                        |
| 0.977         | 11.1                | 20.1           | 31.2               | 56.0                  | -24.8                        |
| 1.364         | 11.0                | 20.1           | 31.1               | 56.0                  | -24.9                        |
| 0.897         | 10.9                | 20.1           | 31.0               | 56.0                  | -25.0                        |
| 0.773         | 10.7                | 20.1           | 30.8               | 56.0                  | -25.2                        |
| 15.128        | 14.2                | 20.5           | 34.7               | 60.0                  | -25.3                        |
| 0.737         | 10.5                | 20.1           | 30.6               | 56.0                  | -25.4                        |
| 24.541        | 13.6                | 20.9           | 34.5               | 60.0                  | -25.5                        |
| 1.192         | 10.2                | 20.1           | 30.3               | 56.0                  | -25.7                        |
| 3.630         | 10.2                | 20.1           | 30.3               | 56.0                  | -25.7                        |
| 24.763        | 13.1                | 20.9           | 34.0               | 60.0                  | -26.0                        |
| 4.257         | 9.9                 | 20.1           | 30.0               | 56.0                  | -26.0                        |
| 1.874         | 9.9                 | 20.1           | 30.0               | 56.0                  | -26.0                        |
| 3.288         | 9.9                 | 20.1           | 30.0               | 56.0                  | -26.0                        |

| Peak Data - vs - Average Limit |                     |                |                    |                       |                              |
|--------------------------------|---------------------|----------------|--------------------|-----------------------|------------------------------|
| Freq<br>(MHz)                  | Amplitude<br>(dBuV) | Factor<br>(dB) | Adjusted<br>(dBuV) | Spec. Limit<br>(dBuV) | Compared to<br>Spec.<br>(dB) |
| 0.150                          | 31.6                | 20.1           | 51.7               | 56.0                  | -4.3                         |
| 0.467                          | 12.8                | 20.1           | 32.9               | 46.6                  | -13.7                        |
| 1.455                          | 12.2                | 20.1           | 32.3               | 46.0                  | -13.7                        |
| 0.536                          | 12.0                | 20.1           | 32.1               | 46.0                  | -13.9                        |
| 0.678                          | 11.6                | 20.1           | 31.7               | 46.0                  | -14.3                        |
| 1.105                          | 11.6                | 20.1           | 31.7               | 46.0                  | -14.3                        |
| 0.602                          | 11.5                | 20.1           | 31.6               | 46.0                  | -14.4                        |
| 0.977                          | 11.1                | 20.1           | 31.2               | 46.0                  | -14.8                        |
| 1.364                          | 11.0                | 20.1           | 31.1               | 46.0                  | -14.9                        |
| 0.897                          | 10.9                | 20.1           | 31.0               | 46.0                  | -15.0                        |
| 0.773                          | 10.7                | 20.1           | 30.8               | 46.0                  | -15.2                        |
| 15.128                         | 14.2                | 20.5           | 34.7               | 50.0                  | -15.3                        |
| 0.737                          | 10.5                | 20.1           | 30.6               | 46.0                  | -15.4                        |
| 24.541                         | 13.6                | 20.9           | 34.5               | 50.0                  | -15.5                        |
| 1.192                          | 10.2                | 20.1           | 30.3               | 46.0                  | -15.7                        |
| 3.630                          | 10.2                | 20.1           | 30.3               | 46.0                  | -15.7                        |
| 24.763                         | 13.1                | 20.9           | 34.0               | 50.0                  | -16.0                        |
| 4.257                          | 9.9                 | 20.1           | 30.0               | 46.0                  | -16.0                        |
| 1.874                          | 9.9                 | 20.1           | 30.0               | 46.0                  | -16.0                        |
| 3.288                          | 9.9                 | 20.1           | 30.0               | 46.0                  | -16.0                        |



| Work Order:         | FOCU0127             | Date:                    | 03/23/12          | 1 0        | - 0          |
|---------------------|----------------------|--------------------------|-------------------|------------|--------------|
| Project:            |                      | Temperature:             | 21 °C             | Rocking le | - Relings    |
| Job Site:           |                      | Humidity:                | 32% RH            | 0          |              |
| Serial Number:      |                      | Barometric Pres.:        | 10411.5 mbar      | Tested by: | Rod Peloquin |
| EUT:                | Model# 444-2216 (Gl  | enwood)                  |                   |            |              |
| Configuration:      |                      | ,                        |                   |            |              |
| Customer:           | Summit Semiconduct   | or                       |                   |            |              |
| Attendees:          | None                 |                          |                   |            |              |
| EUT Power:          | 18 VDC               |                          |                   |            |              |
| Operating Mode:     | Transmitting 55% dut | y cycle, Ch. 48 (14) 524 | 10 MHz            |            |              |
| Deviations:         | No deviations.       |                          |                   |            |              |
| Comments:           | None                 |                          |                   |            |              |
| Test Specifications |                      |                          | Test Metho        | od         |              |
| FCC 15.207:2012     | •                    |                          | ANSI C63.         | 10:2009    |              |
|                     |                      |                          |                   |            |              |
|                     |                      |                          |                   |            |              |
|                     |                      |                          |                   |            |              |
| Run# 4              | Line:                | Neutral                  | Ext. Attenuation: | 20         | Results Pass |

#### Peak Data - vs - Quasi Peak Limit



#### Peak Data - vs - Average Limit



Peak Data - vs - Quasi Peak Limit

| Freq<br>(MHz) | Amplitude<br>(dBuV) | Factor<br>(dB) | Adjusted<br>(dBuV) | Spec. Limit<br>(dBuV) | Compared to<br>Spec.<br>(dB) |
|---------------|---------------------|----------------|--------------------|-----------------------|------------------------------|
| 0.150         | 31.4                | 20.1           | 51.5               | 66.0                  | -14.5                        |
| 0.507         | 13.0                | 20.1           | 33.1               | 56.0                  | -22.9                        |
| 0.766         | 13.0                | 20.1           | 33.1               | 56.0                  | -22.9                        |
| 25.787        | 15.8                | 21.0           | 36.8               | 60.0                  | -23.2                        |
| 23.517        | 15.7                | 20.9           | 36.6               | 60.0                  | -23.4                        |
| 0.573         | 12.3                | 20.1           | 32.4               | 56.0                  | -23.6                        |
| 24.730        | 15.3                | 20.9           | 36.2               | 60.0                  | -23.8                        |
| 1.859         | 12.0                | 20.1           | 32.1               | 56.0                  | -23.9                        |
| 0.919         | 11.9                | 20.1           | 32.0               | 56.0                  | -24.0                        |
| 24.053        | 14.8                | 20.9           | 35.7               | 60.0                  | -24.3                        |
| 0.970         | 11.6                | 20.1           | 31.7               | 56.0                  | -24.3                        |
| 1.447         | 11.5                | 20.1           | 31.6               | 56.0                  | -24.4                        |
| 14.964        | 15.1                | 20.5           | 35.6               | 60.0                  | -24.4                        |
| 15.911        | 15.0                | 20.5           | 35.5               | 60.0                  | -24.5                        |
| 1.087         | 11.4                | 20.1           | 31.5               | 56.0                  | -24.5                        |
| 1.046         | 11.3                | 20.1           | 31.4               | 56.0                  | -24.6                        |
| 24.876        | 14.4                | 21.0           | 35.4               | 60.0                  | -24.6                        |
| 23.892        | 14.4                | 20.9           | 35.3               | 60.0                  | -24.7                        |
| 24.362        | 14.3                | 20.9           | 35.2               | 60.0                  | -24.8                        |
| 24.319        | 14.2                | 20.9           | 35.1               | 60.0                  | -24.9                        |

|               | Peak Data - vs - Average Limit |                |                    |                       |                              |  |
|---------------|--------------------------------|----------------|--------------------|-----------------------|------------------------------|--|
| Freq<br>(MHz) | Amplitude<br>(dBuV)            | Factor<br>(dB) | Adjusted<br>(dBuV) | Spec. Limit<br>(dBuV) | Compared to<br>Spec.<br>(dB) |  |
| 0.150         | 31.4                           | 20.1           | 51.5               | 56.0                  | -4.5                         |  |
| 0.507         | 13.0                           | 20.1           | 33.1               | 46.0                  | -12.9                        |  |
| 0.766         | 13.0                           | 20.1           | 33.1               | 46.0                  | -12.9                        |  |
| 25.787        | 15.8                           | 21.0           | 36.8               | 50.0                  | -13.2                        |  |
| 23.517        | 15.7                           | 20.9           | 36.6               | 50.0                  | -13.4                        |  |
| 0.573         | 12.3                           | 20.1           | 32.4               | 46.0                  | -13.6                        |  |
| 24.730        | 15.3                           | 20.9           | 36.2               | 50.0                  | -13.8                        |  |
| 1.859         | 12.0                           | 20.1           | 32.1               | 46.0                  | -13.9                        |  |
| 0.919         | 11.9                           | 20.1           | 32.0               | 46.0                  | -14.0                        |  |
| 24.053        | 14.8                           | 20.9           | 35.7               | 50.0                  | -14.3                        |  |
| 0.970         | 11.6                           | 20.1           | 31.7               | 46.0                  | -14.3                        |  |
| 1.447         | 11.5                           | 20.1           | 31.6               | 46.0                  | -14.4                        |  |
| 14.964        | 15.1                           | 20.5           | 35.6               | 50.0                  | -14.4                        |  |
| 15.911        | 15.0                           | 20.5           | 35.5               | 50.0                  | -14.5                        |  |
| 1.087         | 11.4                           | 20.1           | 31.5               | 46.0                  | -14.5                        |  |
| 1.046         | 11.3                           | 20.1           | 31.4               | 46.0                  | -14.6                        |  |
| 24.876        | 14.4                           | 21.0           | 35.4               | 50.0                  | -14.6                        |  |
| 23.892        | 14.4                           | 20.9           | 35.3               | 50.0                  | -14.7                        |  |
| 24.362        | 14.3                           | 20.9           | 35.2               | 50.0                  | -14.8                        |  |
| 24.319        | 14.2                           | 20.9           | 35.1               | 50.0                  | -14.9                        |  |



| Woi         | rk Order: | FOCU0127              | Date:                    | 03/23/12          | 101        | PO               |      |
|-------------|-----------|-----------------------|--------------------------|-------------------|------------|------------------|------|
|             | Project:  | None                  | Temperature:             | 21 °C             | Mockey le  | Rocky be Relengs |      |
|             | Job Site: | EV07                  | Humidity:                | 32% RH            |            |                  |      |
| Serial      | Number:   | 02EA06000012          | Barometric Pres.:        | 10411.5 mbar      | Tested by: | Rod Peloquin     |      |
|             | EUT:      | Model# 444-2216 (Gle  | enwood)                  |                   |            |                  |      |
|             | guration: |                       |                          |                   |            |                  |      |
| Cı          | ustomer:  | Summit Semiconducto   | or                       |                   |            |                  |      |
| At          | tendees:  | None                  |                          |                   |            |                  |      |
| EU'         | T Power:  | 18 VDC                |                          |                   |            |                  |      |
| Operatir    | ng Mode:  | Transmitting 55% duty | y cycle, Ch. 52 (15) 526 | 60 MHz            |            |                  |      |
| De          | viations: | No deviations.        |                          |                   |            |                  |      |
| Со          | mments:   | None                  |                          |                   |            |                  |      |
| Test Specif | ications  |                       |                          | Test Meth         | od         |                  |      |
| FCC 15.207  | ':2012    |                       |                          | ANSI C63.         | 10:2009    |                  |      |
|             |           |                       |                          |                   |            |                  |      |
|             |           |                       |                          |                   |            |                  |      |
|             |           |                       |                          |                   |            |                  |      |
|             |           |                       |                          |                   |            |                  |      |
|             |           |                       |                          |                   |            |                  |      |
| Run #       | 5         | Line:                 | High Line                | Ext. Attenuation: | 20         | Results          | Pass |

#### Peak Data - vs - Quasi Peak Limit

#### 100 80 60 dBuV 50 40 30 20 10 1.0 10.0 100.0 0.1 MHz

#### Peak Data - vs - Average Limit



| Freq<br>(MHz) | Amplitude<br>(dBuV) | Factor<br>(dB) | Adjusted<br>(dBuV) | Spec. Limit<br>(dBuV) | Compared to<br>Spec.<br>(dB) |
|---------------|---------------------|----------------|--------------------|-----------------------|------------------------------|
| 0.150         | 31.6                | 20.1           | 51.7               | 66.0                  | -14.3                        |
| 1.043         | 12.1                | 20.1           | 32.2               | 56.0                  | -23.8                        |
| 0.587         | 11.4                | 20.1           | 31.5               | 56.0                  | -24.5                        |
| 0.708         | 11.4                | 20.1           | 31.5               | 56.0                  | -24.5                        |
| 0.835         | 11.0                | 20.1           | 31.1               | 56.0                  | -24.9                        |
| 1.542         | 11.0                | 20.1           | 31.1               | 56.0                  | -24.9                        |
| 1.845         | 11.0                | 20.1           | 31.1               | 56.0                  | -24.9                        |
| 1.560         | 10.7                | 20.1           | 30.8               | 56.0                  | -25.2                        |
| 25.088        | 13.8                | 21.0           | 34.8               | 60.0                  | -25.2                        |
| 1.203         | 10.6                | 20.1           | 30.7               | 56.0                  | -25.3                        |
| 0.449         | 11.3                | 20.1           | 31.4               | 56.9                  | -25.5                        |
| 1.083         | 10.4                | 20.1           | 30.5               | 56.0                  | -25.5                        |
| 1.480         | 10.4                | 20.1           | 30.5               | 56.0                  | -25.5                        |
| 1.298         | 10.3                | 20.1           | 30.4               | 56.0                  | -25.6                        |
| 2.256         | 10.3                | 20.1           | 30.4               | 56.0                  | -25.6                        |
| 1.418         | 10.2                | 20.1           | 30.3               | 56.0                  | -25.7                        |
| 1.622         | 10.2                | 20.1           | 30.3               | 56.0                  | -25.7                        |
| 4.013         | 10.2                | 20.1           | 30.3               | 56.0                  | -25.7                        |
| 0.354         | 13.0                | 20.1           | 33.1               | 58.9                  | -25.8                        |
| 0.974         | 10.1                | 20.1           | 30.2               | 56.0                  | -25.8                        |

|               | Peak Data - vs - Average Limit |                |                    |                       |                              |  |
|---------------|--------------------------------|----------------|--------------------|-----------------------|------------------------------|--|
| Freq<br>(MHz) | Amplitude<br>(dBuV)            | Factor<br>(dB) | Adjusted<br>(dBuV) | Spec. Limit<br>(dBuV) | Compared to<br>Spec.<br>(dB) |  |
| 0.150         | 31.6                           | 20.1           | 51.7               | 56.0                  | -4.3                         |  |
| 1.043         | 12.1                           | 20.1           | 32.2               | 46.0                  | -13.8                        |  |
| 0.587         | 11.4                           | 20.1           | 31.5               | 46.0                  | -14.5                        |  |
| 0.708         | 11.4                           | 20.1           | 31.5               | 46.0                  | -14.5                        |  |
| 0.835         | 11.0                           | 20.1           | 31.1               | 46.0                  | -14.9                        |  |
| 1.542         | 11.0                           | 20.1           | 31.1               | 46.0                  | -14.9                        |  |
| 1.845         | 11.0                           | 20.1           | 31.1               | 46.0                  | -14.9                        |  |
| 1.560         | 10.7                           | 20.1           | 30.8               | 46.0                  | -15.2                        |  |
| 25.088        | 13.8                           | 21.0           | 34.8               | 50.0                  | -15.2                        |  |
| 1.203         | 10.6                           | 20.1           | 30.7               | 46.0                  | -15.3                        |  |
| 0.449         | 11.3                           | 20.1           | 31.4               | 46.9                  | -15.5                        |  |
| 1.083         | 10.4                           | 20.1           | 30.5               | 46.0                  | -15.5                        |  |
| 1.480         | 10.4                           | 20.1           | 30.5               | 46.0                  | -15.5                        |  |
| 1.298         | 10.3                           | 20.1           | 30.4               | 46.0                  | -15.6                        |  |
| 2.256         | 10.3                           | 20.1           | 30.4               | 46.0                  | -15.6                        |  |
| 1.418         | 10.2                           | 20.1           | 30.3               | 46.0                  | -15.7                        |  |
| 1.622         | 10.2                           | 20.1           | 30.3               | 46.0                  | -15.7                        |  |
| 4.013         | 10.2                           | 20.1           | 30.3               | 46.0                  | -15.7                        |  |
| 0.354         | 13.0                           | 20.1           | 33.1               | 48.9                  | -15.8                        |  |
| 0.974         | 10.1                           | 20.1           | 30.2               | 46.0                  | -15.8                        |  |



| Wo          | rk Order: | FOCU0127              | Date:                   | 03/23/12          |          | 10100              |      |
|-------------|-----------|-----------------------|-------------------------|-------------------|----------|--------------------|------|
|             | Project:  | None                  | Temperature:            | 21 °C             | /4       | orly be Releng     |      |
|             | Job Site: | EV07                  | Humidity:               | 32% RH            |          |                    |      |
| Serial      | Number:   | 02EA06000012          | Barometric Pres.:       | 10411.5 mbar      | Tes      | ted by: Rod Peloqu | in   |
|             | EUT:      | Model# 444-2216 (Gle  | enwood)                 |                   |          |                    |      |
| Confi       | guration: | 4                     |                         |                   |          |                    |      |
| С           | ustomer:  | Summit Semiconducto   | or                      |                   |          |                    |      |
| At          | tendees:  | None                  |                         |                   |          |                    |      |
| EU          | T Power:  | 18 VDC                |                         |                   |          |                    |      |
| Operation   | ng Mode:  | Transmitting 55% duty | y cycle, Ch. 52 (15) 52 | 60 MHz            |          |                    |      |
| De          | viations: | No deviations.        |                         |                   |          |                    |      |
| Co          | mments:   | None                  |                         |                   |          |                    |      |
| Test Specif | fications |                       |                         | Test Meth         | od       |                    |      |
| FCC 15.207  | 7:2012    |                       |                         | ANSI C63          | .10:2009 |                    |      |
|             |           |                       |                         |                   |          |                    |      |
|             |           |                       |                         |                   |          |                    |      |
|             |           |                       |                         |                   |          |                    |      |
|             |           |                       |                         |                   |          |                    |      |
| Run#        | 6         | Line:                 | Neutral                 | Ext. Attenuation: | 20       | Results            | Pass |

#### Peak Data - vs - Quasi Peak Limit

### 90 80 70 60 30 20 10 0.1 1.0 MHz

#### Peak Data - vs - Average Limit



| Freq<br>(MHz) | Amplitude<br>(dBuV) | Factor<br>(dB) | Adjusted<br>(dBuV) | Spec. Limit<br>(dBuV) | Compared to<br>Spec.<br>(dB) |
|---------------|---------------------|----------------|--------------------|-----------------------|------------------------------|
| 0.150         | 31.7                | 20.1           | 51.8               | 66.0                  | -14.2                        |
| 24.439        | 17.0                | 20.9           | 37.9               | 60.0                  | -22.1                        |
| 24.275        | 16.4                | 20.9           | 37.3               | 60.0                  | -22.7                        |
| 24.767        | 15.8                | 20.9           | 36.7               | 60.0                  | -23.3                        |
| 1.116         | 12.5                | 20.1           | 32.6               | 56.0                  | -23.4                        |
| 24.355        | 15.6                | 20.9           | 36.5               | 60.0                  | -23.5                        |
| 24.173        | 15.5                | 20.9           | 36.4               | 60.0                  | -23.6                        |
| 23.597        | 15.5                | 20.9           | 36.4               | 60.0                  | -23.6                        |
| 25.215        | 15.4                | 21.0           | 36.4               | 60.0                  | -23.6                        |
| 24.133        | 15.4                | 20.9           | 36.3               | 60.0                  | -23.7                        |
| 23.994        | 15.4                | 20.9           | 36.3               | 60.0                  | -23.7                        |
| 25.004        | 15.1                | 21.0           | 36.1               | 60.0                  | -23.9                        |
| 24.235        | 15.1                | 20.9           | 36.0               | 60.0                  | -24.0                        |
| 23.768        | 15.1                | 20.9           | 36.0               | 60.0                  | -24.0                        |
| 0.974         | 11.8                | 20.1           | 31.9               | 56.0                  | -24.1                        |
| 23.327        | 15.0                | 20.9           | 35.9               | 60.0                  | -24.1                        |
| 1.028         | 11.7                | 20.1           | 31.8               | 56.0                  | -24.2                        |
| 25.299        | 14.8                | 21.0           | 35.8               | 60.0                  | -24.2                        |
| 24.668        | 14.8                | 20.9           | 35.7               | 60.0                  | -24.3                        |
| 24.552        | 14.8                | 20.9           | 35.7               | 60.0                  | -24.3                        |

Peak Data - vs - Average Limit

| Feak Data - VS - Average Littlit |                     |                |                    |                       |                              |  |
|----------------------------------|---------------------|----------------|--------------------|-----------------------|------------------------------|--|
| Freq<br>(MHz)                    | Amplitude<br>(dBuV) | Factor<br>(dB) | Adjusted<br>(dBuV) | Spec. Limit<br>(dBuV) | Compared to<br>Spec.<br>(dB) |  |
| 0.150                            | 31.7                | 20.1           | 51.8               | 56.0                  | -4.2                         |  |
| 24.439                           | 17.0                | 20.9           | 37.9               | 50.0                  | -12.1                        |  |
| 24.275                           | 16.4                | 20.9           | 37.3               | 50.0                  | -12.7                        |  |
| 24.767                           | 15.8                | 20.9           | 36.7               | 50.0                  | -13.3                        |  |
| 1.116                            | 12.5                | 20.1           | 32.6               | 46.0                  | -13.4                        |  |
| 24.355                           | 15.6                | 20.9           | 36.5               | 50.0                  | -13.5                        |  |
| 24.173                           | 15.5                | 20.9           | 36.4               | 50.0                  | -13.6                        |  |
| 23.597                           | 15.5                | 20.9           | 36.4               | 50.0                  | -13.6                        |  |
| 25.215                           | 15.4                | 21.0           | 36.4               | 50.0                  | -13.6                        |  |
| 24.133                           | 15.4                | 20.9           | 36.3               | 50.0                  | -13.7                        |  |
| 23.994                           | 15.4                | 20.9           | 36.3               | 50.0                  | -13.7                        |  |
| 25.004                           | 15.1                | 21.0           | 36.1               | 50.0                  | -13.9                        |  |
| 24.235                           | 15.1                | 20.9           | 36.0               | 50.0                  | -14.0                        |  |
| 23.768                           | 15.1                | 20.9           | 36.0               | 50.0                  | -14.0                        |  |
| 0.974                            | 11.8                | 20.1           | 31.9               | 46.0                  | -14.1                        |  |
| 23.327                           | 15.0                | 20.9           | 35.9               | 50.0                  | -14.1                        |  |
| 1.028                            | 11.7                | 20.1           | 31.8               | 46.0                  | -14.2                        |  |
| 25.299                           | 14.8                | 21.0           | 35.8               | 50.0                  | -14.2                        |  |
| 24.668                           | 14.8                | 20.9           | 35.7               | 50.0                  | -14.3                        |  |
| 24.552                           | 14.8                | 20.9           | 35.7               | 50.0                  | -14.3                        |  |



| Work          | Order:   | FOCU0127              | Date:                    | 03/23/12          | 101        | PO             |      |
|---------------|----------|-----------------------|--------------------------|-------------------|------------|----------------|------|
| F             | Project: | None                  | Temperature:             | 21 °C             | rocking to | - Relengs      |      |
| Jo            | ob Site: | EV07                  | Humidity:                | 32% RH            |            |                |      |
| Serial N      | lumber:  | 02EA06000012          | Barometric Pres.:        | 10411.5 mbar      | Tested by  | : Rod Peloquin |      |
|               | EUT:     | Model# 444-2216 (Gle  | enwood)                  |                   |            |                |      |
| Configu       | uration: | 4                     |                          |                   |            |                |      |
| Cus           | stomer:  | Summit Semiconducto   | or                       |                   |            |                |      |
| Atte          | endees:  | None                  |                          |                   |            |                |      |
| EUT           | Power:   | 18 VDC                |                          |                   |            |                |      |
| Operating     | g Mode:  | Transmitting 55% duty | y cycle, Ch. 64 (18) 532 | 20 MHz            |            |                |      |
| Devi          | iations: | No deviations.        |                          |                   |            |                |      |
| Com           | nments:  | None                  |                          |                   |            |                |      |
| Test Specific | ations   |                       |                          | Test Meth         | od         |                |      |
| FCC 15.207:2  | 2012     |                       |                          | ANSI C63          | .10:2009   |                |      |
|               |          |                       |                          |                   |            |                |      |
| Run #         | 7        | Line:                 | High Line                | Ext. Attenuation: | 20         | Results        | Pass |

#### Peak Data - vs - Quasi Peak Limit

#### 100 80 60 dBuV 50 40 30 20 10 1.0 10.0 100.0 0.1 MHz

#### Peak Data - vs - Average Limit



| Freq<br>(MHz) | Amplitude<br>(dBuV) | Factor<br>(dB) | Adjusted<br>(dBuV) | Spec. Limit<br>(dBuV) | Compared to<br>Spec.<br>(dB) |
|---------------|---------------------|----------------|--------------------|-----------------------|------------------------------|
| 0.150         | 30.9                | 20.1           | 51.0               | 66.0                  | -15.0                        |
| 1.666         | 12.4                | 20.1           | 32.5               | 56.0                  | -23.5                        |
| 1.360         | 12.1                | 20.1           | 32.2               | 56.0                  | -23.8                        |
| 0.602         | 11.6                | 20.1           | 31.7               | 56.0                  | -24.3                        |
| 0.886         | 11.5                | 20.1           | 31.6               | 56.0                  | -24.4                        |
| 0.573         | 11.3                | 20.1           | 31.4               | 56.0                  | -24.6                        |
| 1.025         | 11.1                | 20.1           | 31.2               | 56.0                  | -24.8                        |
| 1.954         | 11.1                | 20.1           | 31.2               | 56.0                  | -24.8                        |
| 0.675         | 10.9                | 20.1           | 31.0               | 56.0                  | -25.0                        |
| 1.170         | 10.8                | 20.1           | 30.9               | 56.0                  | -25.1                        |
| 2.056         | 10.8                | 20.1           | 30.9               | 56.0                  | -25.1                        |
| 0.722         | 10.7                | 20.1           | 30.8               | 56.0                  | -25.2                        |
| 1.469         | 10.5                | 20.1           | 30.6               | 56.0                  | -25.4                        |
| 1.622         | 10.5                | 20.1           | 30.6               | 56.0                  | -25.4                        |
| 3.412         | 10.5                | 20.1           | 30.6               | 56.0                  | -25.4                        |
| 3.131         | 10.4                | 20.1           | 30.5               | 56.0                  | -25.5                        |
| 1.440         | 10.3                | 20.1           | 30.4               | 56.0                  | -25.6                        |
| 3.251         | 10.3                | 20.1           | 30.4               | 56.0                  | -25.6                        |
| 1.775         | 10.2                | 20.1           | 30.3               | 56.0                  | -25.7                        |
| 1.877         | 10.2                | 20.1           | 30.3               | 56.0                  | -25.7                        |

|               | Pea                 | k Data - vs    | <ul> <li>Average I</li> </ul> | Limit                 |                              |
|---------------|---------------------|----------------|-------------------------------|-----------------------|------------------------------|
| Freq<br>(MHz) | Amplitude<br>(dBuV) | Factor<br>(dB) | Adjusted<br>(dBuV)            | Spec. Limit<br>(dBuV) | Compared to<br>Spec.<br>(dB) |
| 0.150         | 30.9                | 20.1           | 51.0                          | 56.0                  | -5.0                         |
| 1.666         | 12.4                | 20.1           | 32.5                          | 46.0                  | -13.5                        |
| 1.360         | 12.1                | 20.1           | 32.2                          | 46.0                  | -13.8                        |
| 0.602         | 11.6                | 20.1           | 31.7                          | 46.0                  | -14.3                        |
| 0.886         | 11.5                | 20.1           | 31.6                          | 46.0                  | -14.4                        |
| 0.573         | 11.3                | 20.1           | 31.4                          | 46.0                  | -14.6                        |
| 1.025         | 11.1                | 20.1           | 31.2                          | 46.0                  | -14.8                        |
| 1.954         | 11.1                | 20.1           | 31.2                          | 46.0                  | -14.8                        |
| 0.675         | 10.9                | 20.1           | 31.0                          | 46.0                  | -15.0                        |
| 1.170         | 10.8                | 20.1           | 30.9                          | 46.0                  | -15.1                        |
| 2.056         | 10.8                | 20.1           | 30.9                          | 46.0                  | -15.1                        |
| 0.722         | 10.7                | 20.1           | 30.8                          | 46.0                  | -15.2                        |
| 1.469         | 10.5                | 20.1           | 30.6                          | 46.0                  | -15.4                        |
| 1.622         | 10.5                | 20.1           | 30.6                          | 46.0                  | -15.4                        |
| 3.412         | 10.5                | 20.1           | 30.6                          | 46.0                  | -15.4                        |
| 3.131         | 10.4                | 20.1           | 30.5                          | 46.0                  | -15.5                        |
| 1.440         | 10.3                | 20.1           | 30.4                          | 46.0                  | -15.6                        |
| 3.251         | 10.3                | 20.1           | 30.4                          | 46.0                  | -15.6                        |
| 1.775         | 10.2                | 20.1           | 30.3                          | 46.0                  | -15.7                        |
| 1.877         | 10.2                | 20.1           | 30.3                          | 46.0                  | -15.7                        |



| Work Or            | der: FOCU0127          | Date:                      | 03/23/12          | 10120                   |      |
|--------------------|------------------------|----------------------------|-------------------|-------------------------|------|
| Proj               | ect: None              | Temperature:               | 21 °C             | Rolly be Releys         |      |
| Job S              | Site: EV07             | Humidity:                  | 32% RH            |                         |      |
| Serial Num         | ber: 02EA06000012      | Barometric Pres.:          | 10411.5 mbar      | Tested by: Rod Peloquin |      |
| E                  | UT: Model# 444-2216 (C | Glenwood)                  |                   |                         |      |
| Configurat         | ion: 4                 |                            |                   |                         |      |
| Custor             | ner: Summit Semiconduc | ctor                       |                   |                         |      |
| Attende            | es: None               |                            |                   |                         |      |
| EUT Po             | ver: 18 VDC            |                            |                   |                         |      |
| Operating Mo       | Transmitting 55% du    | ity cycle, Ch. 64 (18) 532 | 20 MHz            |                         |      |
| Deviation          | No deviations.         |                            |                   |                         |      |
| Comme              | nts:                   |                            |                   |                         |      |
| Test Specification | ons                    |                            | Test Meth         | od                      |      |
| FCC 15.207:2012    | 2                      |                            | ANSI C63.         | 10:2009                 |      |
|                    |                        |                            |                   |                         |      |
| <b>Run #</b> 8     | Line                   | : Neutral                  | Ext. Attenuation: | 20 Results              | Pass |

#### Peak Data - vs - Quasi Peak Limit

#### 100 90 80 70 60 40 30 20 10 0.1 1.0 MHz

#### Peak Data - vs - Average Limit



| Freq<br>(MHz) | Amplitude<br>(dBuV) | Factor<br>(dB) | Adjusted<br>(dBuV) | Spec. Limit<br>(dBuV) | Compared to<br>Spec.<br>(dB) |
|---------------|---------------------|----------------|--------------------|-----------------------|------------------------------|
| 0.150         | 31.3                | 20.1           | 51.4               | 66.0                  | -14.6                        |
| 25.795        | 16.3                | 21.0           | 37.3               | 60.0                  | -22.7                        |
| 24.687        | 16.1                | 20.9           | 37.0               | 60.0                  | -23.0                        |
| 2.318         | 12.9                | 20.1           | 33.0               | 56.0                  | -23.0                        |
| 24.752        | 15.8                | 20.9           | 36.7               | 60.0                  | -23.3                        |
| 24.891        | 15.6                | 21.0           | 36.6               | 60.0                  | -23.4                        |
| 15.481        | 15.8                | 20.5           | 36.3               | 60.0                  | -23.7                        |
| 25.314        | 15.3                | 21.0           | 36.3               | 60.0                  | -23.7                        |
| 15.226        | 15.7                | 20.5           | 36.2               | 60.0                  | -23.8                        |
| 16.024        | 15.5                | 20.5           | 36.0               | 60.0                  | -24.0                        |
| 24.249        | 15.1                | 20.9           | 36.0               | 60.0                  | -24.0                        |
| 0.780         | 11.8                | 20.1           | 31.9               | 56.0                  | -24.1                        |
| 2.450         | 11.8                | 20.1           | 31.9               | 56.0                  | -24.1                        |
| 14.895        | 15.4                | 20.5           | 35.9               | 60.0                  | -24.1                        |
| 24.330        | 14.9                | 20.9           | 35.8               | 60.0                  | -24.2                        |
| 14.767        | 15.3                | 20.5           | 35.8               | 60.0                  | -24.2                        |
| 0.496         | 11.7                | 20.1           | 31.8               | 56.1                  | -24.3                        |
| 15.875        | 15.2                | 20.5           | 35.7               | 60.0                  | -24.3                        |
| 15.135        | 15.2                | 20.5           | 35.7               | 60.0                  | -24.3                        |
| 24.792        | 14.7                | 20.9           | 35.6               | 60.0                  | -24.4                        |

Peak Data - vs - Average Limit

|               | Peak Data - vs - Average Limit |                |                    |                       |                              |  |
|---------------|--------------------------------|----------------|--------------------|-----------------------|------------------------------|--|
| Freq<br>(MHz) | Amplitude<br>(dBuV)            | Factor<br>(dB) | Adjusted<br>(dBuV) | Spec. Limit<br>(dBuV) | Compared to<br>Spec.<br>(dB) |  |
| 0.150         | 31.3                           | 20.1           | 51.4               | 56.0                  | -4.6                         |  |
| 25.795        | 16.3                           | 21.0           | 37.3               | 50.0                  | -12.7                        |  |
| 24.687        | 16.1                           | 20.9           | 37.0               | 50.0                  | -13.0                        |  |
| 2.318         | 12.9                           | 20.1           | 33.0               | 46.0                  | -13.0                        |  |
| 24.752        | 15.8                           | 20.9           | 36.7               | 50.0                  | -13.3                        |  |
| 24.891        | 15.6                           | 21.0           | 36.6               | 50.0                  | -13.4                        |  |
| 15.481        | 15.8                           | 20.5           | 36.3               | 50.0                  | -13.7                        |  |
| 25.314        | 15.3                           | 21.0           | 36.3               | 50.0                  | -13.7                        |  |
| 15.226        | 15.7                           | 20.5           | 36.2               | 50.0                  | -13.8                        |  |
| 16.024        | 15.5                           | 20.5           | 36.0               | 50.0                  | -14.0                        |  |
| 24.249        | 15.1                           | 20.9           | 36.0               | 50.0                  | -14.0                        |  |
| 0.780         | 11.8                           | 20.1           | 31.9               | 46.0                  | -14.1                        |  |
| 2.450         | 11.8                           | 20.1           | 31.9               | 46.0                  | -14.1                        |  |
| 14.895        | 15.4                           | 20.5           | 35.9               | 50.0                  | -14.1                        |  |
| 24.330        | 14.9                           | 20.9           | 35.8               | 50.0                  | -14.2                        |  |
| 14.767        | 15.3                           | 20.5           | 35.8               | 50.0                  | -14.2                        |  |
| 0.496         | 11.7                           | 20.1           | 31.8               | 46.1                  | -14.3                        |  |
| 15.875        | 15.2                           | 20.5           | 35.7               | 50.0                  | -14.3                        |  |
| 15.135        | 15.2                           | 20.5           | 35.7               | 50.0                  | -14.3                        |  |
| 24.792        | 14.7                           | 20.9           | 35.6               | 50.0                  | -14.4                        |  |



| Work Order          | FOCU0127              | Date:                   | 03/23/12          | 101        | 20           |  |
|---------------------|-----------------------|-------------------------|-------------------|------------|--------------|--|
| Project             | : None                | Temperature:            | 21 °C             | Rocky le   | - Feling     |  |
| Job Site            | : EV07                | Humidity:               | 32% RH            |            |              |  |
| Serial Number       | : 02EA06000012        | Barometric Pres.:       | 10411.5 mbar      | Tested by: | Rod Peloquin |  |
| EUT                 | : Model# 444-2216 (Gl | enwood)                 |                   |            |              |  |
| Configuration       |                       |                         |                   |            |              |  |
| Customer            | : Summit Semiconduct  | or                      |                   |            |              |  |
| Attendees           | : None                |                         |                   |            |              |  |
| EUT Power           | : 18 VDC              |                         |                   |            |              |  |
| Operating Mode      | Transmitting 55% dut  | y cycle, Ch. 100 (19) 5 | 500 MHz           |            |              |  |
| Deviations          | No deviations.        |                         |                   |            |              |  |
| Comments            | None :                |                         |                   |            |              |  |
| Test Specifications |                       |                         | Test Meth         | od         |              |  |
| FCC 15.207:2012     |                       |                         | ANSI C63.         | 10:2009    |              |  |
|                     |                       |                         |                   |            |              |  |
|                     |                       |                         |                   |            |              |  |
|                     |                       |                         |                   |            |              |  |
|                     |                       |                         |                   |            |              |  |
| <b>Run #</b> 9      | Line:                 | High Line               | Ext. Attenuation: | 20         | Results Pass |  |

#### Peak Data - vs - Quasi Peak Limit

#### 100 80 60 dBuV 50 40 30 20 10 1.0 10.0 100.0 0.1 MHz

#### Peak Data - vs - Average Limit



| Freq<br>(MHz) | Amplitude<br>(dBuV) | Factor<br>(dB) | Adjusted<br>(dBuV) | Spec. Limit<br>(dBuV) | Compared to<br>Spec.<br>(dB) |
|---------------|---------------------|----------------|--------------------|-----------------------|------------------------------|
| 0.150         | 30.7                | 20.1           | 50.8               | 66.0                  | -15.2                        |
| 0.547         | 11.9                | 20.1           | 32.0               | 56.0                  | -24.0                        |
| 0.485         | 12.0                | 20.1           | 32.1               | 56.2                  | -24.1                        |
| 0.456         | 12.5                | 20.1           | 32.6               | 56.8                  | -24.2                        |
| 1.283         | 11.4                | 20.1           | 31.5               | 56.0                  | -24.5                        |
| 0.893         | 11.1                | 20.1           | 31.2               | 56.0                  | -24.8                        |
| 0.686         | 11.0                | 20.1           | 31.1               | 56.0                  | -24.9                        |
| 1.170         | 10.7                | 20.1           | 30.8               | 56.0                  | -25.2                        |
| 1.710         | 10.7                | 20.1           | 30.8               | 56.0                  | -25.2                        |
| 1.837         | 10.6                | 20.1           | 30.7               | 56.0                  | -25.3                        |
| 0.223         | 17.2                | 20.1           | 37.3               | 62.7                  | -25.4                        |
| 1.447         | 10.4                | 20.1           | 30.5               | 56.0                  | -25.5                        |
| 3.175         | 10.4                | 20.1           | 30.5               | 56.0                  | -25.5                        |
| 1.254         | 10.3                | 20.1           | 30.4               | 56.0                  | -25.6                        |
| 1.396         | 10.3                | 20.1           | 30.4               | 56.0                  | -25.6                        |
| 1.804         | 10.3                | 20.1           | 30.4               | 56.0                  | -25.6                        |
| 2.581         | 10.3                | 20.1           | 30.4               | 56.0                  | -25.6                        |
| 1.600         | 10.1                | 20.1           | 30.2               | 56.0                  | -25.8                        |
| 2.333         | 10.1                | 20.1           | 30.2               | 56.0                  | -25.8                        |
| 4.596         | 10.0                | 20.2           | 30.2               | 56.0                  | -25.8                        |

|               | Peak Data - vs - Average Limit |                |                    |                       |                              |  |  |  |
|---------------|--------------------------------|----------------|--------------------|-----------------------|------------------------------|--|--|--|
| Freq<br>(MHz) | Amplitude<br>(dBuV)            | Factor<br>(dB) | Adjusted<br>(dBuV) | Spec. Limit<br>(dBuV) | Compared to<br>Spec.<br>(dB) |  |  |  |
| 0.150         | 30.7                           | 20.1           | 50.8               | 56.0                  | -5.2                         |  |  |  |
| 0.547         | 11.9                           | 20.1           | 32.0               | 46.0                  | -14.0                        |  |  |  |
| 0.485         | 12.0                           | 20.1           | 32.1               | 46.2                  | -14.1                        |  |  |  |
| 0.456         | 12.5                           | 20.1           | 32.6               | 46.8                  | -14.2                        |  |  |  |
| 1.283         | 11.4                           | 20.1           | 31.5               | 46.0                  | -14.5                        |  |  |  |
| 0.893         | 11.1                           | 20.1           | 31.2               | 46.0                  | -14.8                        |  |  |  |
| 0.686         | 11.0                           | 20.1           | 31.1               | 46.0                  | -14.9                        |  |  |  |
| 1.170         | 10.7                           | 20.1           | 30.8               | 46.0                  | -15.2                        |  |  |  |
| 1.710         | 10.7                           | 20.1           | 30.8               | 46.0                  | -15.2                        |  |  |  |
| 1.837         | 10.6                           | 20.1           | 30.7               | 46.0                  | -15.3                        |  |  |  |
| 0.223         | 17.2                           | 20.1           | 37.3               | 52.7                  | -15.4                        |  |  |  |
| 1.447         | 10.4                           | 20.1           | 30.5               | 46.0                  | -15.5                        |  |  |  |
| 3.175         | 10.4                           | 20.1           | 30.5               | 46.0                  | -15.5                        |  |  |  |
| 1.254         | 10.3                           | 20.1           | 30.4               | 46.0                  | -15.6                        |  |  |  |
| 1.396         | 10.3                           | 20.1           | 30.4               | 46.0                  | -15.6                        |  |  |  |
| 1.804         | 10.3                           | 20.1           | 30.4               | 46.0                  | -15.6                        |  |  |  |
| 2.581         | 10.3                           | 20.1           | 30.4               | 46.0                  | -15.6                        |  |  |  |
| 1.600         | 10.1                           | 20.1           | 30.2               | 46.0                  | -15.8                        |  |  |  |
| 2.333         | 10.1                           | 20.1           | 30.2               | 46.0                  | -15.8                        |  |  |  |
| 4.596         | 10.0                           | 20.2           | 30.2               | 46.0                  | -15.8                        |  |  |  |



| Work Order:                | FOCU0127              | Date:                    | 03/23/12          |         | 10120                 |      |
|----------------------------|-----------------------|--------------------------|-------------------|---------|-----------------------|------|
| Project:                   | None                  | Temperature:             | 21 °C             | /       | Rolly be Releys       |      |
| Job Site:                  | EV07                  | Humidity:                | 32% RH            |         |                       |      |
| Serial Number:             | 02EA06000012          | Barometric Pres.:        | 10411.5 mbar      | Tes     | sted by: Rod Peloquin |      |
| EUT:                       | Model# 444-2216 (Gle  | enwood)                  |                   |         |                       |      |
| Configuration:             |                       |                          |                   |         |                       |      |
| Customer:                  | Summit Semiconducto   | or                       |                   |         |                       |      |
| Attendees:                 | None                  |                          |                   |         |                       |      |
| EUT Power:                 | 18 VDC                |                          |                   |         |                       |      |
| Operating Mode:            | Transmitting 55% duty | y cycle, Ch. 100 (19) 55 | 500 MHz           |         |                       |      |
| Deviations:                | No deviations.        |                          |                   |         |                       |      |
| Comments:                  | None                  |                          |                   |         |                       |      |
| <b>Test Specifications</b> |                       |                          | Test Meth         | od      |                       |      |
| FCC 15.207:2012            |                       |                          | ANSI C63.         | 10:2009 |                       |      |
|                            |                       |                          |                   |         |                       |      |
|                            |                       |                          |                   |         |                       |      |
|                            |                       |                          |                   |         |                       |      |
|                            |                       |                          |                   |         |                       |      |
|                            |                       |                          |                   |         |                       |      |
| <b>Run #</b> 10            | Line:                 | Neutral                  | Ext. Attenuation: | 20      | Results               | Pass |

#### Peak Data - vs - Quasi Peak Limit

#### 100 80 60 dBuV 50 40 30 20 10 1.0 10.0 100.0 0.1 MHz

#### Peak Data - vs - Average Limit



| Freq<br>(MHz) | Amplitude<br>(dBuV) | Factor<br>(dB) | Adjusted<br>(dBuV) | Spec. Limit<br>(dBuV) | Compared to<br>Spec.<br>(dB) |
|---------------|---------------------|----------------|--------------------|-----------------------|------------------------------|
| 0.150         | 32.6                | 20.1           | 52.7               | 66.0                  | -13.3                        |
| 0.194         | 22.6                | 20.1           | 42.7               | 63.9                  | -21.2                        |
| 24.235        | 17.1                | 20.9           | 38.0               | 60.0                  | -22.0                        |
| 25.051        | 16.3                | 21.0           | 37.3               | 60.0                  | -22.7                        |
| 24.989        | 16.3                | 21.0           | 37.3               | 60.0                  | -22.7                        |
| 24.756        | 15.9                | 20.9           | 36.8               | 60.0                  | -23.2                        |
| 24.829        | 15.8                | 21.0           | 36.8               | 60.0                  | -23.2                        |
| 24.483        | 15.6                | 20.9           | 36.5               | 60.0                  | -23.5                        |
| 24.701        | 15.3                | 20.9           | 36.2               | 60.0                  | -23.8                        |
| 24.789        | 15.2                | 20.9           | 36.1               | 60.0                  | -23.9                        |
| 24.384        | 15.2                | 20.9           | 36.1               | 60.0                  | -23.9                        |
| 24.144        | 15.2                | 20.9           | 36.1               | 60.0                  | -23.9                        |
| 24.275        | 15.1                | 20.9           | 36.0               | 60.0                  | -24.0                        |
| 2.621         | 11.9                | 20.1           | 32.0               | 56.0                  | -24.0                        |
| 24.023        | 15.0                | 20.9           | 35.9               | 60.0                  | -24.1                        |
| 0.219         | 18.6                | 20.1           | 38.7               | 62.8                  | -24.1                        |
| 24.096        | 14.9                | 20.9           | 35.8               | 60.0                  | -24.2                        |
| 23.637        | 14.9                | 20.9           | 35.8               | 60.0                  | -24.2                        |
| 25.558        | 14.7                | 21.0           | 35.7               | 60.0                  | -24.3                        |
| 24.883        | 14.7                | 21.0           | 35.7               | 60.0                  | -24.3                        |

|               | Peak Data - vs - Average Limit |                |                    |                       |                              |  |  |
|---------------|--------------------------------|----------------|--------------------|-----------------------|------------------------------|--|--|
| Freq<br>(MHz) | Amplitude<br>(dBuV)            | Factor<br>(dB) | Adjusted<br>(dBuV) | Spec. Limit<br>(dBuV) | Compared to<br>Spec.<br>(dB) |  |  |
| 0.150         | 32.6                           | 20.1           | 52.7               | 56.0                  | -3.3                         |  |  |
| 0.194         | 22.6                           | 20.1           | 42.7               | 53.9                  | -11.2                        |  |  |
| 24.235        | 17.1                           | 20.9           | 38.0               | 50.0                  | -12.0                        |  |  |
| 25.051        | 16.3                           | 21.0           | 37.3               | 50.0                  | -12.7                        |  |  |
| 24.989        | 16.3                           | 21.0           | 37.3               | 50.0                  | -12.7                        |  |  |
| 24.756        | 15.9                           | 20.9           | 36.8               | 50.0                  | -13.2                        |  |  |
| 24.829        | 15.8                           | 21.0           | 36.8               | 50.0                  | -13.2                        |  |  |
| 24.483        | 15.6                           | 20.9           | 36.5               | 50.0                  | -13.5                        |  |  |
| 24.701        | 15.3                           | 20.9           | 36.2               | 50.0                  | -13.8                        |  |  |
| 24.789        | 15.2                           | 20.9           | 36.1               | 50.0                  | -13.9                        |  |  |
| 24.384        | 15.2                           | 20.9           | 36.1               | 50.0                  | -13.9                        |  |  |
| 24.144        | 15.2                           | 20.9           | 36.1               | 50.0                  | -13.9                        |  |  |
| 24.275        | 15.1                           | 20.9           | 36.0               | 50.0                  | -14.0                        |  |  |
| 2.621         | 11.9                           | 20.1           | 32.0               | 46.0                  | -14.0                        |  |  |
| 24.023        | 15.0                           | 20.9           | 35.9               | 50.0                  | -14.1                        |  |  |
| 0.219         | 18.6                           | 20.1           | 38.7               | 52.8                  | -14.1                        |  |  |
| 24.096        | 14.9                           | 20.9           | 35.8               | 50.0                  | -14.2                        |  |  |
| 23.637        | 14.9                           | 20.9           | 35.8               | 50.0                  | -14.2                        |  |  |
| 25.558        | 14.7                           | 21.0           | 35.7               | 50.0                  | -14.3                        |  |  |
| 24.883        | 14.7                           | 21.0           | 35.7               | 50.0                  | -14.3                        |  |  |



| Work Order:         | FOCU0127             | Date:                    | 03/23/12          | 4 -        | - 0           |
|---------------------|----------------------|--------------------------|-------------------|------------|---------------|
| Project:            |                      | Temperature:             | 21 °C             | Poeley le  | Relina        |
| Job Site:           |                      | Humidity:                | 32% RH            |            |               |
| Serial Number:      |                      | Barometric Pres.:        | 10411.5 mbar      | Tostod by: | Rod Peloquin  |
|                     | Model# 444-2216 (Gl  |                          | 10411.5 IIIbai    | resieu by. | Nou Feloquiii |
| Configuration:      |                      | eriwoou)                 |                   |            |               |
|                     | Summit Semiconduct   | or.                      |                   |            |               |
|                     |                      | UI                       |                   |            |               |
| Attendees:          |                      |                          |                   |            |               |
| EUT Power:          |                      |                          |                   |            |               |
| Operating Mode:     | Transmitting 55% dut | y cycle, Ch. 116 (23) 55 | 580 MHz           |            |               |
| Deviations:         | No deviations.       |                          |                   |            |               |
| Comments:           | None                 |                          |                   |            |               |
| Test Specifications |                      |                          | Test Metho        | od         |               |
| FCC 15.207:2012     |                      |                          | ANSI C63.         | 0:2009     |               |
|                     |                      |                          |                   |            |               |
| Run # 11            | Line:                | High Line                | Ext. Attenuation: | 20         | Results Pass  |

#### Peak Data - vs - Quasi Peak Limit



#### Peak Data - vs - Average Limit



| Freq<br>(MHz) | Amplitude<br>(dBuV) | Factor<br>(dB) | Adjusted<br>(dBuV) | Spec. Limit<br>(dBuV) | Compared to<br>Spec.<br>(dB) |
|---------------|---------------------|----------------|--------------------|-----------------------|------------------------------|
| 0.150         | 30.7                | 20.1           | 50.8               | 66.0                  | -15.2                        |
| 0.631         | 12.6                | 20.1           | 32.7               | 56.0                  | -23.3                        |
| 0.540         | 12.1                | 20.1           | 32.2               | 56.0                  | -23.8                        |
| 0.197         | 19.6                | 20.1           | 39.7               | 63.7                  | -24.0                        |
| 1.790         | 11.7                | 20.1           | 31.8               | 56.0                  | -24.2                        |
| 1.706         | 11.6                | 20.1           | 31.7               | 56.0                  | -24.3                        |
| 14.406        | 14.9                | 20.5           | 35.4               | 60.0                  | -24.6                        |
| 0.212         | 18.2                | 20.1           | 38.3               | 63.1                  | -24.8                        |
| 0.868         | 10.9                | 20.1           | 31.0               | 56.0                  | -25.0                        |
| 1.061         | 10.9                | 20.1           | 31.0               | 56.0                  | -25.0                        |
| 1.302         | 10.9                | 20.1           | 31.0               | 56.0                  | -25.0                        |
| 15.438        | 14.4                | 20.5           | 34.9               | 60.0                  | -25.1                        |
| 2.041         | 10.8                | 20.1           | 30.9               | 56.0                  | -25.1                        |
| 3.732         | 10.8                | 20.1           | 30.9               | 56.0                  | -25.1                        |
| 24.366        | 13.8                | 20.9           | 34.7               | 60.0                  | -25.3                        |
| 1.415         | 10.6                | 20.1           | 30.7               | 56.0                  | -25.3                        |
| 2.694         | 10.5                | 20.1           | 30.6               | 56.0                  | -25.4                        |
| 0.766         | 10.4                | 20.1           | 30.5               | 56.0                  | -25.5                        |
| 2.912         | 10.4                | 20.1           | 30.5               | 56.0                  | -25.5                        |
| 1.138         | 10.3                | 20.1           | 30.4               | 56.0                  | -25.6                        |

Peak Data - vs - Average Limit

| Feak Data - vs - Average Littiit |                     |                |                    |                       |                              |  |
|----------------------------------|---------------------|----------------|--------------------|-----------------------|------------------------------|--|
| Freq<br>(MHz)                    | Amplitude<br>(dBuV) | Factor<br>(dB) | Adjusted<br>(dBuV) | Spec. Limit<br>(dBuV) | Compared to<br>Spec.<br>(dB) |  |
| 0.150                            | 30.7                | 20.1           | 50.8               | 56.0                  | -5.2                         |  |
| 0.631                            | 12.6                | 20.1           | 32.7               | 46.0                  | -13.3                        |  |
| 0.540                            | 12.1                | 20.1           | 32.2               | 46.0                  | -13.8                        |  |
| 0.197                            | 19.6                | 20.1           | 39.7               | 53.7                  | -14.0                        |  |
| 1.790                            | 11.7                | 20.1           | 31.8               | 46.0                  | -14.2                        |  |
| 1.706                            | 11.6                | 20.1           | 31.7               | 46.0                  | -14.3                        |  |
| 14.406                           | 14.9                | 20.5           | 35.4               | 50.0                  | -14.6                        |  |
| 0.212                            | 18.2                | 20.1           | 38.3               | 53.1                  | -14.8                        |  |
| 0.868                            | 10.9                | 20.1           | 31.0               | 46.0                  | -15.0                        |  |
| 1.061                            | 10.9                | 20.1           | 31.0               | 46.0                  | -15.0                        |  |
| 1.302                            | 10.9                | 20.1           | 31.0               | 46.0                  | -15.0                        |  |
| 15.438                           | 14.4                | 20.5           | 34.9               | 50.0                  | -15.1                        |  |
| 2.041                            | 10.8                | 20.1           | 30.9               | 46.0                  | -15.1                        |  |
| 3.732                            | 10.8                | 20.1           | 30.9               | 46.0                  | -15.1                        |  |
| 24.366                           | 13.8                | 20.9           | 34.7               | 50.0                  | -15.3                        |  |
| 1.415                            | 10.6                | 20.1           | 30.7               | 46.0                  | -15.3                        |  |
| 2.694                            | 10.5                | 20.1           | 30.6               | 46.0                  | -15.4                        |  |
| 0.766                            | 10.4                | 20.1           | 30.5               | 46.0                  | -15.5                        |  |
| 2.912                            | 10.4                | 20.1           | 30.5               | 46.0                  | -15.5                        |  |
| 1.138                            | 10.3                | 20.1           | 30.4               | 46.0                  | -15.6                        |  |



| Work Order:         | FOCU0127              | Date:                    | 03/23/12          | 0       | 0120               |      |
|---------------------|-----------------------|--------------------------|-------------------|---------|--------------------|------|
| Project:            | None                  | Temperature:             | 21 °C             | 160     | Rocky be Relengs   |      |
| Job Site:           | EV07                  | Humidity:                | 32% RH            |         |                    |      |
| Serial Number:      | 02EA06000012          | Barometric Pres.:        | 10411.5 mbar      | Teste   | d by: Rod Peloquin |      |
| EUT:                | Model# 444-2216 (Gle  | enwood)                  |                   |         |                    |      |
| Configuration:      |                       |                          |                   |         |                    |      |
| Customer:           | Summit Semiconductor  | or                       |                   |         |                    |      |
| Attendees:          | None                  |                          |                   |         |                    |      |
| EUT Power:          | 18 VDC                |                          |                   |         |                    |      |
| Operating Mode:     | Transmitting 55% duty | y cycle, Ch. 116 (23) 55 | 580 MHz           |         |                    |      |
| Deviations:         | No deviations.        |                          |                   |         |                    |      |
| Comments:           | None                  |                          |                   |         |                    |      |
| Test Specifications |                       |                          | Test Meth         | od      |                    |      |
| FCC 15.207:2012     | •                     |                          | ANSI C63          | 10:2009 |                    |      |
|                     |                       |                          |                   |         |                    |      |
|                     |                       |                          |                   |         |                    |      |
|                     |                       |                          |                   |         |                    |      |
|                     |                       |                          |                   |         |                    |      |
|                     |                       |                          |                   |         |                    |      |
| <b>Run #</b> 12     | Line:                 | Neutral                  | Ext. Attenuation: | 20      | Results            | Pass |

#### Peak Data - vs - Quasi Peak Limit

#### 100 80 60 dBuV 50 40 30 20 10 1.0 10.0 100.0 0.1 MHz

#### Peak Data - vs - Average Limit



| Freq<br>(MHz) | Amplitude<br>(dBuV) | Factor<br>(dB) | Adjusted<br>(dBuV) | Spec. Limit<br>(dBuV) | Compared to<br>Spec.<br>(dB) |
|---------------|---------------------|----------------|--------------------|-----------------------|------------------------------|
| 0.150         | 30.0                | 20.1           | 50.1               | 66.0                  | -15.9                        |
| 24.971        | 16.8                | 21.0           | 37.8               | 60.0                  | -22.2                        |
| 0.201         | 21.2                | 20.1           | 41.3               | 63.6                  | -22.3                        |
| 24.909        | 16.5                | 21.0           | 37.5               | 60.0                  | -22.5                        |
| 24.140        | 16.5                | 20.9           | 37.4               | 60.0                  | -22.6                        |
| 25.069        | 16.3                | 21.0           | 37.3               | 60.0                  | -22.7                        |
| 24.749        | 16.3                | 20.9           | 37.2               | 60.0                  | -22.8                        |
| 24.027        | 15.9                | 20.9           | 36.8               | 60.0                  | -23.2                        |
| 15.780        | 15.8                | 20.5           | 36.3               | 60.0                  | -23.7                        |
| 12.901        | 15.5                | 20.5           | 36.0               | 60.0                  | -24.0                        |
| 0.635         | 11.7                | 20.1           | 31.8               | 56.0                  | -24.2                        |
| 0.955         | 11.5                | 20.1           | 31.6               | 56.0                  | -24.4                        |
| 13.907        | 14.9                | 20.5           | 35.4               | 60.0                  | -24.6                        |
| 15.110        | 14.9                | 20.5           | 35.4               | 60.0                  | -24.6                        |
| 24.825        | 14.4                | 21.0           | 35.4               | 60.0                  | -24.6                        |
| 24.541        | 14.4                | 20.9           | 35.3               | 60.0                  | -24.7                        |
| 0.584         | 11.1                | 20.1           | 31.2               | 56.0                  | -24.8                        |
| 1.498         | 11.1                | 20.1           | 31.2               | 56.0                  | -24.8                        |
| 24.873        | 14.1                | 21.0           | 35.1               | 60.0                  | -24.9                        |
| 0.398         | 12.8                | 20.1           | 32.9               | 57.9                  | -25.0                        |

|               | Peak Data - vs - Average Limit |                |                    |                       |                              |  |  |  |
|---------------|--------------------------------|----------------|--------------------|-----------------------|------------------------------|--|--|--|
| Freq<br>(MHz) | Amplitude<br>(dBuV)            | Factor<br>(dB) | Adjusted<br>(dBuV) | Spec. Limit<br>(dBuV) | Compared to<br>Spec.<br>(dB) |  |  |  |
| 0.150         | 30.0                           | 20.1           | 50.1               | 56.0                  | -5.9                         |  |  |  |
| 24.971        | 16.8                           | 21.0           | 37.8               | 50.0                  | -12.2                        |  |  |  |
| 0.201         | 21.2                           | 20.1           | 41.3               | 53.6                  | -12.3                        |  |  |  |
| 24.909        | 16.5                           | 21.0           | 37.5               | 50.0                  | -12.5                        |  |  |  |
| 24.140        | 16.5                           | 20.9           | 37.4               | 50.0                  | -12.6                        |  |  |  |
| 25.069        | 16.3                           | 21.0           | 37.3               | 50.0                  | -12.7                        |  |  |  |
| 24.749        | 16.3                           | 20.9           | 37.2               | 50.0                  | -12.8                        |  |  |  |
| 24.027        | 15.9                           | 20.9           | 36.8               | 50.0                  | -13.2                        |  |  |  |
| 15.780        | 15.8                           | 20.5           | 36.3               | 50.0                  | -13.7                        |  |  |  |
| 12.901        | 15.5                           | 20.5           | 36.0               | 50.0                  | -14.0                        |  |  |  |
| 0.635         | 11.7                           | 20.1           | 31.8               | 46.0                  | -14.2                        |  |  |  |
| 0.955         | 11.5                           | 20.1           | 31.6               | 46.0                  | -14.4                        |  |  |  |
| 13.907        | 14.9                           | 20.5           | 35.4               | 50.0                  | -14.6                        |  |  |  |
| 15.110        | 14.9                           | 20.5           | 35.4               | 50.0                  | -14.6                        |  |  |  |
| 24.825        | 14.4                           | 21.0           | 35.4               | 50.0                  | -14.6                        |  |  |  |
| 24.541        | 14.4                           | 20.9           | 35.3               | 50.0                  | -14.7                        |  |  |  |
| 0.584         | 11.1                           | 20.1           | 31.2               | 46.0                  | -14.8                        |  |  |  |
| 1.498         | 11.1                           | 20.1           | 31.2               | 46.0                  | -14.8                        |  |  |  |
| 24.873        | 14.1                           | 21.0           | 35.1               | 50.0                  | -14.9                        |  |  |  |
| 0.398         | 12.8                           | 20.1           | 32.9               | 47.9                  | -15.0                        |  |  |  |



| Work Ord           | er: FOCU0127           | Date:                   | 03/23/12          | 001        | DO             |      |
|--------------------|------------------------|-------------------------|-------------------|------------|----------------|------|
| Proje              | t: None                | Temperature:            | 21 °C             | Mocking le | Rolly be Reley |      |
| Job Si             | e: EV07                | Humidity:               | 32% RH            |            |                |      |
| Serial Numb        | er: 02EA06000012       | Barometric Pres.:       | 10411.5 mbar      | Tested by: | Rod Peloquin   |      |
| EU                 | T: Model# 444-2216 (GI | enwood)                 |                   |            |                |      |
| Configuration      | n: 4                   |                         |                   |            |                |      |
| Custom             | er: Summit Semiconduct | or                      |                   |            |                |      |
| Attende            | s: None                |                         |                   |            |                |      |
| EUT Pow            | er: 18 VDC             |                         |                   |            |                |      |
| Operating Mod      | Transmitting 55% dut   | y cycle, Ch. 140 (29) 5 | 700 MHz           |            |                |      |
| Deviation          | No deviations.         |                         |                   |            |                |      |
| Commen             | None                   |                         |                   |            |                |      |
| Test Specification | IS                     |                         | Test Meth         | od         |                |      |
| FCC 15.207:2012    |                        |                         | ANSI C63.         | 10:2009    |                |      |
|                    |                        |                         |                   |            |                |      |
|                    |                        |                         |                   |            |                |      |
|                    |                        |                         |                   |            |                |      |
| <b>Run #</b> 13    | Line:                  | High Line               | Ext. Attenuation: | 20         | Results        | Pass |

#### Peak Data - vs - Quasi Peak Limit



#### Peak Data - vs - Average Limit



| Freq<br>(MHz) | Amplitude<br>(dBuV) | Factor<br>(dB) | Adjusted<br>(dBuV) | Spec. Limit<br>(dBuV) | Compared to<br>Spec.<br>(dB) |
|---------------|---------------------|----------------|--------------------|-----------------------|------------------------------|
| 0.150         | 30.1                | 20.1           | 50.2               | 66.0                  | -15.8                        |
| 16.097        | 15.5                | 20.5           | 36.0               | 60.0                  | -24.0                        |
| 0.693         | 11.9                | 20.1           | 32.0               | 56.0                  | -24.0                        |
| 1.254         | 11.7                | 20.1           | 31.8               | 56.0                  | -24.2                        |
| 0.522         | 11.2                | 20.1           | 31.3               | 56.0                  | -24.7                        |
| 3.364         | 11.2                | 20.1           | 31.3               | 56.0                  | -24.7                        |
| 0.460         | 11.5                | 20.1           | 31.6               | 56.7                  | -25.1                        |
| 0.773         | 10.7                | 20.1           | 30.8               | 56.0                  | -25.2                        |
| 1.579         | 10.7                | 20.1           | 30.8               | 56.0                  | -25.2                        |
| 2.089         | 10.7                | 20.1           | 30.8               | 56.0                  | -25.2                        |
| 2.071         | 10.5                | 20.1           | 30.6               | 56.0                  | -25.4                        |
| 15.197        | 14.1                | 20.5           | 34.6               | 60.0                  | -25.4                        |
| 1.134         | 10.4                | 20.1           | 30.5               | 56.0                  | -25.5                        |
| 15.091        | 14.0                | 20.5           | 34.5               | 60.0                  | -25.5                        |
| 16.115        | 13.9                | 20.5           | 34.4               | 60.0                  | -25.6                        |
| 0.821         | 10.3                | 20.1           | 30.4               | 56.0                  | -25.6                        |
| 0.937         | 10.2                | 20.1           | 30.3               | 56.0                  | -25.7                        |
| 1.207         | 10.2                | 20.1           | 30.3               | 56.0                  | -25.7                        |
| 2.909         | 10.2                | 20.1           | 30.3               | 56.0                  | -25.7                        |
| 14.993        | 13.8                | 20.5           | 34.3               | 60.0                  | -25.7                        |

Peak Data - vs - Average Limit

| Feak Data - vs - Average Littlit |                     |                |                    |                       |                              |  |
|----------------------------------|---------------------|----------------|--------------------|-----------------------|------------------------------|--|
| Freq<br>(MHz)                    | Amplitude<br>(dBuV) | Factor<br>(dB) | Adjusted<br>(dBuV) | Spec. Limit<br>(dBuV) | Compared to<br>Spec.<br>(dB) |  |
| 0.150                            | 30.1                | 20.1           | 50.2               | 56.0                  | -5.8                         |  |
| 16.097                           | 15.5                | 20.5           | 36.0               | 50.0                  | -14.0                        |  |
| 0.693                            | 11.9                | 20.1           | 32.0               | 46.0                  | -14.0                        |  |
| 1.254                            | 11.7                | 20.1           | 31.8               | 46.0                  | -14.2                        |  |
| 0.522                            | 11.2                | 20.1           | 31.3               | 46.0                  | -14.7                        |  |
| 3.364                            | 11.2                | 20.1           | 31.3               | 46.0                  | -14.7                        |  |
| 0.460                            | 11.5                | 20.1           | 31.6               | 46.7                  | -15.1                        |  |
| 0.773                            | 10.7                | 20.1           | 30.8               | 46.0                  | -15.2                        |  |
| 1.579                            | 10.7                | 20.1           | 30.8               | 46.0                  | -15.2                        |  |
| 2.089                            | 10.7                | 20.1           | 30.8               | 46.0                  | -15.2                        |  |
| 2.071                            | 10.5                | 20.1           | 30.6               | 46.0                  | -15.4                        |  |
| 15.197                           | 14.1                | 20.5           | 34.6               | 50.0                  | -15.4                        |  |
| 1.134                            | 10.4                | 20.1           | 30.5               | 46.0                  | -15.5                        |  |
| 15.091                           | 14.0                | 20.5           | 34.5               | 50.0                  | -15.5                        |  |
| 16.115                           | 13.9                | 20.5           | 34.4               | 50.0                  | -15.6                        |  |
| 0.821                            | 10.3                | 20.1           | 30.4               | 46.0                  | -15.6                        |  |
| 0.937                            | 10.2                | 20.1           | 30.3               | 46.0                  | -15.7                        |  |
| 1.207                            | 10.2                | 20.1           | 30.3               | 46.0                  | -15.7                        |  |
| 2.909                            | 10.2                | 20.1           | 30.3               | 46.0                  | -15.7                        |  |
| 14.993                           | 13.8                | 20.5           | 34.3               | 50.0                  | -15.7                        |  |



| Wor          | k Order:  | FOCU0127                                           | Date:             | 03/23/12          | 101        | D.O          |      |
|--------------|-----------|----------------------------------------------------|-------------------|-------------------|------------|--------------|------|
|              | Project:  | None                                               | Temperature:      | 21 °C             | rocking le | Relings      |      |
| ,            | Job Site: | EV07                                               | Humidity:         | 32% RH            |            |              |      |
| Serial I     | Number:   | 02EA06000012                                       | Barometric Pres.: | 10411.5 mbar      | Tested by: | Rod Peloquin |      |
|              | EUT:      | Model# 444-2216 (Gle                               | enwood)           |                   |            |              |      |
| Config       | juration: | 4                                                  |                   |                   |            |              |      |
| Cı           | ıstomer:  | Summit Semiconducto                                | or                |                   |            |              |      |
| Att          | tendees:  | None                                               |                   |                   |            |              |      |
| EU1          | T Power:  | 18 VDC                                             |                   |                   |            |              |      |
| Operatin     | g Mode:   | Transmitting 55% duty cycle, Ch. 140 (29) 5700 MHz |                   |                   |            |              |      |
| De           | viations: | No deviations.                                     |                   |                   |            |              |      |
| Cor          | mments:   | None                                               |                   |                   |            |              |      |
| Test Specifi | ications  |                                                    |                   | Test Meth         | od         |              |      |
| FCC 15.207   | :2012     |                                                    |                   | ANSI C63          | .10:2009   |              |      |
|              |           |                                                    |                   |                   |            |              |      |
| Run #        | 14        | Line:                                              | Neutral           | Ext. Attenuation: | 20         | Results      | Pass |

#### Peak Data - vs - Quasi Peak Limit



#### Peak Data - vs - Average Limit



| Freq<br>(MHz) | Amplitude<br>(dBuV) | Factor<br>(dB) | Adjusted<br>(dBuV) | Spec. Limit<br>(dBuV) | Compared to<br>Spec.<br>(dB) |
|---------------|---------------------|----------------|--------------------|-----------------------|------------------------------|
| 0.150         | 31.2                | 20.1           | 51.3               | 66.0                  | -14.7                        |
| 0.194         | 22.9                | 20.1           | 43.0               | 63.9                  | -20.9                        |
| 0.216         | 19.9                | 20.1           | 40.0               | 63.0                  | -23.0                        |
| 0.511         | 12.9                | 20.1           | 33.0               | 56.0                  | -23.0                        |
| 24.275        | 15.5                | 20.9           | 36.4               | 60.0                  | -23.6                        |
| 0.642         | 12.2                | 20.1           | 32.3               | 56.0                  | -23.7                        |
| 22.719        | 15.4                | 20.9           | 36.3               | 60.0                  | -23.7                        |
| 23.761        | 15.3                | 20.9           | 36.2               | 60.0                  | -23.8                        |
| 1.087         | 11.7                | 20.1           | 31.8               | 56.0                  | -24.2                        |
| 0.963         | 11.6                | 20.1           | 31.7               | 56.0                  | -24.3                        |
| 2.304         | 11.6                | 20.1           | 31.7               | 56.0                  | -24.3                        |
| 0.729         | 11.5                | 20.1           | 31.6               | 56.0                  | -24.4                        |
| 24.749        | 14.6                | 20.9           | 35.5               | 60.0                  | -24.5                        |
| 25.598        | 14.5                | 21.0           | 35.5               | 60.0                  | -24.5                        |
| 1.028         | 11.3                | 20.1           | 31.4               | 56.0                  | -24.6                        |
| 15.037        | 14.9                | 20.5           | 35.4               | 60.0                  | -24.6                        |
| 21.709        | 14.4                | 20.8           | 35.2               | 60.0                  | -24.8                        |
| 25.139        | 14.2                | 21.0           | 35.2               | 60.0                  | -24.8                        |
| 23.845        | 14.2                | 20.9           | 35.1               | 60.0                  | -24.9                        |
| 0.412         | 12.6                | 20.1           | 32.7               | 57.6                  | -24.9                        |

Peak Data - vs - Average Limit

| Feak Data - vs - Average Limit |                     |                |                    |                       |                              |  |
|--------------------------------|---------------------|----------------|--------------------|-----------------------|------------------------------|--|
| Freq<br>(MHz)                  | Amplitude<br>(dBuV) | Factor<br>(dB) | Adjusted<br>(dBuV) | Spec. Limit<br>(dBuV) | Compared to<br>Spec.<br>(dB) |  |
| 0.150                          | 31.2                | 20.1           | 51.3               | 56.0                  | -4.7                         |  |
| 0.194                          | 22.9                | 20.1           | 43.0               | 53.9                  | -10.9                        |  |
| 0.216                          | 19.9                | 20.1           | 40.0               | 53.0                  | -13.0                        |  |
| 0.511                          | 12.9                | 20.1           | 33.0               | 46.0                  | -13.0                        |  |
| 24.275                         | 15.5                | 20.9           | 36.4               | 50.0                  | -13.6                        |  |
| 0.642                          | 12.2                | 20.1           | 32.3               | 46.0                  | -13.7                        |  |
| 22.719                         | 15.4                | 20.9           | 36.3               | 50.0                  | -13.7                        |  |
| 23.761                         | 15.3                | 20.9           | 36.2               | 50.0                  | -13.8                        |  |
| 1.087                          | 11.7                | 20.1           | 31.8               | 46.0                  | -14.2                        |  |
| 0.963                          | 11.6                | 20.1           | 31.7               | 46.0                  | -14.3                        |  |
| 2.304                          | 11.6                | 20.1           | 31.7               | 46.0                  | -14.3                        |  |
| 0.729                          | 11.5                | 20.1           | 31.6               | 46.0                  | -14.4                        |  |
| 24.749                         | 14.6                | 20.9           | 35.5               | 50.0                  | -14.5                        |  |
| 25.598                         | 14.5                | 21.0           | 35.5               | 50.0                  | -14.5                        |  |
| 1.028                          | 11.3                | 20.1           | 31.4               | 46.0                  | -14.6                        |  |
| 15.037                         | 14.9                | 20.5           | 35.4               | 50.0                  | -14.6                        |  |
| 21.709                         | 14.4                | 20.8           | 35.2               | 50.0                  | -14.8                        |  |
| 25.139                         | 14.2                | 21.0           | 35.2               | 50.0                  | -14.8                        |  |
| 23.845                         | 14.2                | 20.9           | 35.1               | 50.0                  | -14.9                        |  |
| 0.412                          | 12.6                | 20.1           | 32.7               | 47.6                  | -14.9                        |  |