3. Operações com Transformações Lineares

TEOREMA 3.10: Sejam V e W espaços vetoriais sobre o corpo \mathbb{F} . Se $T:V\to W$ e $L:V\to W$ são transformações lineares de V em W, então a função

$$(T+L): V \to W$$

definida por

$$(T+L)(v) = T(v) + L(v)$$
, para todo $v \in V$,

e a função

$$(\alpha T): V \to W$$
,

definida (para um escalar arbitrário $\alpha \in \mathbb{F}$) por

$$(\alpha T)(v) = \alpha T(v)$$
, para todo $v \in V$,

são transformações lineares de V em W.

Prova: Suponha que T e L são duas transformações lineares de V em W. Seja a função (T+L)=T(v)+L(v), para todo v em V. Então, dados $v,u\in V$ e $\alpha\in \mathbb{F}$, notamos que

$$(T+L)(\alpha v + u) = T(\alpha v + u) + L(\alpha v + u) = \alpha T(v) + T(u) + \alpha L(v) + L(u)$$
$$= \alpha (T(v) + L(v)) + (T(u) + L(u)) = \alpha (T+L)(v) + (T+L)(u).$$

Isto mostra que (T+L) é uma transformação linear. Analogamente, se $\alpha, \gamma \in \mathbb{F}$ e v, u são vetores em V, como $(\alpha T)(v) = \alpha T(v)$, então

$$(\alpha T)(\gamma v + u) = \alpha T(\gamma v + u) = \alpha [T(\gamma v) + T(u)] = \alpha [\gamma T(v) + T(u)]$$
$$= \gamma \alpha T(v) + \alpha T(u) = \gamma (\alpha T)(v) + (\alpha T)(u),$$

ou seja, a função (αT) é uma transformação linear.

TEOREMA 3.11: Sejam V e W espaços de dimensão finita sobre o corpo \mathbb{F} . Sejam \mathfrak{B} e \mathfrak{B}' bases ordenadas de V e W, respectivamente. Se T e L são transformações lineares de V em W, então as matrizes das aplicações lineares (T + L) e (αT) em relação às bases \mathfrak{B} e \mathfrak{B}' satisfazem as seguintes condições:

(a)
$$[(T+L)]_{\mathfrak{B}'}^{\mathfrak{B}} = [T]_{\mathfrak{B}'}^{\mathfrak{B}} + [L]_{\mathfrak{B}'}^{\mathfrak{B}}$$
.

(b)
$$[(\alpha T)]_{\mathfrak{B}'}^{\mathfrak{B}} = \alpha [T]_{\mathfrak{B}'}^{\mathfrak{B}}$$
, $\forall \alpha \in \mathbb{F}$.

Prova: Seja $\mathfrak{B} = \{\vartheta_1, ..., \vartheta_n\}$ uma base ordenada de V e $\mathfrak{B}' = \{w_1, ..., w_m\}$ uma base ordenada de W. Dadas as transformações lineares T e L de V em W, existem duas matrizes $A = [a_{ij}]$ e $B = [b_{ij}] \in \mathbb{F}^{m \times n}$ tais que $T \rightleftarrows A = [T]_{\mathfrak{B}'}^{\mathfrak{B}}$, e $L \rightleftarrows B = [L]_{\mathfrak{B}'}^{\mathfrak{B}}$. Isto significa que:

$$T(\vartheta_j) = a_{1j}w_1 + a_{2j}w_2 + \dots + a_{mj}w_m$$
 , para todo $j=1,\dots,n$,

$$L(\vartheta_j) = b_{1j}w_1 + b_{2j}w_2 + \dots + b_{mj}w_m$$
, para todo $j=1,\dots,n$.

Somando estas duas equações e tendo em vista que $(T+L)(\vartheta_j) = T(\vartheta_j) + L(\vartheta_j)$ obtemos, para todo j=1,...,n,

$$(T+L)(\vartheta_j) = T(\vartheta_j) + L(\vartheta_j) = (a_{1j} + b_{1j})w_1 + (a_{2j} + b_{2j})w_2 + \dots + (a_{mj} + b_{mj})w_m.$$

Segue-se daí que $(A + B) = [a_{ij} + b_{ij}]$ é a matriz da transformação linear (T + L) em relação às bases \mathfrak{B} e \mathfrak{B}' , ou seja,

$$[(T+L)]_{\mathfrak{B}'}^{\mathfrak{B}} = A+B = [T]_{\mathfrak{B}'}^{\mathfrak{B}} + [L]_{\mathfrak{B}'}^{\mathfrak{B}}.$$

De forma análoga, se α é um escalar arbitrário em \mathbb{F} , então notamos que

$$(\alpha T)(\vartheta_i) = \alpha T(\vartheta_i) = \alpha a_{1i}w_1 + \alpha a_{2i}w_2 + \dots + \alpha a_{mi}w_m$$
, para todo $j = 1, \dots, n$.

Assim, $(\alpha A) = [\alpha \ a_{ij}]$ é a matriz da transformação linear (αT) em relação às bases \mathfrak{B} e \mathfrak{B}' , isto é,

$$[(\alpha T)]_{\mathfrak{B}'}^{\mathfrak{B}} = \alpha A = \alpha [T]_{\mathfrak{B}'}^{\mathfrak{B}}.$$

Assim, concluímos a demonstração.

EXEMPLO 25: Seja a transformação linear $T: \mathbb{R}^2 \to \mathbb{R}^3$ definida por T(x,y) = (x-y, x, 2x+y). Sejam $\mathfrak{B} = \{(1,0), (0,1)\}$ e $\mathfrak{B}' = \{(1,1,0), (0,1,1), (2,2,3)\}$ bases ordenadas de \mathbb{R}^2 e \mathbb{R}^3 , respectivamente. Se $L: \mathbb{R}^2 \to \mathbb{R}^3$ é a transformação linear tal que

$$[L]_{\mathfrak{B}'}^{\mathfrak{B}} = \begin{bmatrix} 2 & 7/3 \\ 1 & 5 \\ 0 & -5/3 \end{bmatrix},$$

calcular a matriz da transformação linear T - 3L em relação às bases \mathfrak{B} e \mathfrak{B}' .

» SOLUÇÃO: Do teorema 3.11., temos que

$$[(T-3L)]_{\mathfrak{B}'}^{\mathfrak{B}} = [T]_{\mathfrak{B}'}^{\mathfrak{B}} - 3[L]_{\mathfrak{B}'}^{\mathfrak{B}}.$$

Para calcular $[T]_{\mathfrak{B}'}^{\mathfrak{B}}$, note que

$$T(1,0) = (1,1,2)$$
,

$$T(0.1) = (-1.0.1).$$

Em seguida, usando a metodologia descrita do exemplo 22, obtemos

$$\begin{pmatrix} 1 & 0 & 2 & 1 & -1 \\ 1 & 1 & 2 & 1 & 0 \\ 0 & 1 & 3 & 2 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 & -1/3 & -1 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 2/3 & 0 \end{pmatrix}.$$

Logo,

$$[T]_{\mathfrak{B}'}^{\mathfrak{B}} = \begin{bmatrix} -1/3 & -1\\ 0 & 1\\ 2/3 & 0 \end{bmatrix}.$$

Portanto,

$$[(T-3L)]_{\mathfrak{B}'}^{\mathfrak{B}} = \begin{bmatrix} -1/3 & -1\\ 0 & 1\\ 2/3 & 0 \end{bmatrix} - 3 \begin{bmatrix} 2 & 7/3\\ 1 & 5\\ 0 & -5/3 \end{bmatrix} = \begin{bmatrix} -19/3 & -8\\ -3 & -14\\ 2/3 & 5 \end{bmatrix}.$$

O conjunto das transformações lineares de *V* em *W* herda uma estrutura natural de espaço vetorial, em relações às operações de adição de transformações lineares e multiplicação de um escalar por uma transformação linear, como mostrado a seguir.

TEOREMA 3.12: Sejam V e W espaços vetoriais sobre o corpo \mathbb{F} . O conjunto $\mathcal{L}(V,W)$ de todas as transformações lineares de V em W, munido das operações de adição de transformações lineares e de multiplicação de um escalar por uma transformação linear, definidas no teorema 3.10, é um espaço vetorial sobre o corpo \mathbb{F} .

Prova: Se $T: V \to W$ e $L: V \to W$ estão em $\mathcal{L}(V, W)$, como definido antes, a transformação linear (T+L) é a função soma dada por (T+L)(v) = T(v) + L(v), para todo $v \in V$. Logo, para esta função tem-se: (a) a propriedade comutativa (T + L)(v) = (L + T)(v). De fato, uma vez que $T(\vartheta)$, $L(\vartheta) \in W$ e como W é um espaço vetorial, então $T(\vartheta)$ + $L(\vartheta) = L(\vartheta) + T(\vartheta)$. (b) A propriedade associativa, se $H \in \mathcal{L}(V, W)$, então $(T + L) + T(\vartheta)$ $H(\theta) = (T + (L + H))(\theta)$, que também decorre dos fatos de W ser um espaço vetorial e de $T(\vartheta), L(\vartheta), H(\vartheta) \in W$. (c) O vetor nulo do espaço $\mathcal{L}(V, W)$ é a transformação nula $0: V \to W$, definida por $O(\vartheta) = 0$, para todo $\vartheta \in V$, onde 0 é o vetor nulo do espaço vetorial W. (d) Para cada $T \in \mathcal{L}(V, W)$, existe a transformação linear $(-T) \in \mathcal{L}(V, W)$, dada por $(-T)(\vartheta) = -T(\vartheta)$, para todo $\vartheta \in W$, a qual está bem definida, pois $T(\vartheta) \in W$ e, como W é um espaço vetorial, o inverso aditivo $-T(\vartheta)$ está em W. Por outro lado, se $T, L \in \mathcal{L}(V, W)$ e $\alpha, \beta \in \mathbb{F}$, como W é um espaço vetorial, para a função produto por escalar, definida por $(\alpha T)(\vartheta) = \alpha T(\vartheta)$, tem-se claramente: (e) $(1T)(\vartheta) = 1T(\vartheta) = T(\vartheta)$, (f) $(\alpha \beta T)(\vartheta) = \alpha \beta T(\vartheta) = \alpha (\beta T(\vartheta)) = [\alpha(\beta T)](\vartheta)$, (g) $[\alpha(T+L)](\vartheta) = \alpha(T+L)(\vartheta) = \alpha(T+L)(\vartheta)$ $\alpha T(\vartheta) + \alpha L(\vartheta) = [(\alpha T) + (\alpha L)](\vartheta) \quad , \quad \text{(h)} \quad [(\alpha + \beta)T](\vartheta) = (\alpha + \beta)T(\vartheta) = \alpha T(\vartheta) + (\alpha L)(\vartheta) = (\alpha T)(\vartheta) = (\alpha T)(\vartheta) + (\alpha L)(\vartheta) = (\alpha T)(\vartheta) = (\alpha T)(\vartheta) + (\alpha L)(\vartheta) = (\alpha T)(\vartheta) = (\alpha T)(\vartheta)(\vartheta) = (\alpha T)(\vartheta)(\vartheta) = (\alpha T)(\vartheta)(\vartheta)(\vartheta)(\vartheta) = (\alpha T)(\vartheta)(\vartheta)(\vartheta)(\vartheta)(\vartheta)(\vartheta)(\vartheta)(\vartheta)(\vartheta)(\vartheta)$ $\beta T(\vartheta) = [(\alpha T) + (\beta T)](\vartheta)$, para todo $\vartheta \in V$. Portanto, de acordo com a definição 2.1, o conjunto $\mathcal{L}(V,W)$ de todas as transformações lineares de V em W, equipado com as operações descritas no teorema 3.10, é um espaço vetorial sobre o corpo F.

EXEMPLO 26: Mostrar que as transformações lineares $T: \mathbb{R}^3 \to \mathbb{R}^2$, $L: \mathbb{R}^3 \to \mathbb{R}^2$ e $H: \mathbb{R}^3 \to \mathbb{R}^2$ definas, respectivamente, por

$$T(x, y, z) = (x + y + z, x + y),$$

$$L(x, y, z) = (2x + z, x + y),$$

$$H(x, y, z) = (2y, x),$$

são vetores linearmente independentes de $\mathcal{L}(\mathbb{R}^3, \mathbb{R}^2)$.

» SOLUÇÃO: Dados três escalares arbitrários α , β e γ em \mathbb{R} , mostraremos que

$$\alpha T + \beta L + \nu H = 0$$

somente se $\alpha = \beta = \gamma = 0$, onde O denota a transformação linear nula de \mathbb{R}^3 em \mathbb{R}^2 . Para isto, considerando o vetor $(1,0,0) \in \mathbb{R}^3$, a partir de $\alpha T + \beta L + \gamma H = 0$, podemos notar que

$$\alpha T(1,0,0) + \beta L(1,0,0) + \gamma H(1,0,0) = \alpha (1,1) + \beta (2,1) + \gamma (0,1) = (0,0)$$

ou seja,

$$\alpha + 2\beta = 0$$
 e $\alpha + \beta + \gamma = 0$.

De forma análoga, tomando o vetor $(0,1,0) \in \mathbb{R}^3$, obtemos

$$\alpha T(0,1,0) + \beta L(0,1,0) + \gamma H(0,1,0) = \alpha (1,1) + \beta (0,1) + \gamma (2,0) = (0,0),$$

isto é,

$$\alpha + 2\gamma = 0$$
 e $\alpha + \beta = 0$.

As equações $\alpha + \beta + \gamma = 0$ e $\alpha + \beta = 0$ mostram que $\gamma = 0$. Enquanto que as equações $\alpha + 2\beta = 0$ e $\alpha + \beta = 0$ provam que $\alpha = \beta = 0$. Assim, concluímos que

$$\alpha = \beta = \gamma = 0$$
.

Portanto, os vetores T, L e H de $\mathcal{L}(\mathbb{R}^3, \mathbb{R}^2)$ são linearmente independentes.

TEOREMA 3.13: Sejam \mathcal{V} , \mathcal{W} e \mathcal{U} espaços vetoriais sobre o corpo \mathbb{F} . Seja $\mathcal{T}: \mathcal{V} \to \mathcal{W}$ uma transformação linear de \mathcal{V} em \mathcal{W} e $\mathcal{L}: \mathcal{W} \to \mathcal{U}$ uma transformação linear de \mathcal{W} em \mathcal{U} . Então, a função composta

$$L \circ T : \mathcal{V} \to \mathcal{U}$$
,

definida por

$$(L \circ T)(v) = L(T(v));$$
 para todo $v \in \mathcal{V}$,

é uma transformação linear de $\mathcal V$ em $\mathcal U$.

Prova: Sejam ϑ e ν vetores arbitrários de ν e α um escalar qualquer em \mathbb{F} . Então,

$$(L \circ T)(\alpha \vartheta + v) = L(T(\alpha \vartheta + v)) = L(\alpha T(\vartheta) + T(v))$$
$$= L(\alpha T(\vartheta)) + L(T(v)) = \alpha L(T(\vartheta)) + L(T(v))$$
$$= \alpha (L \circ T)(\vartheta) + (L \circ T)(v).$$

Isto conclui a prova.

A Fig. 3.15 mostra um esquema ilustrativo para a transformação linear $L \circ T \colon \mathcal{V} \to \mathcal{U}$ resultante da composição das transformações $T \colon \mathcal{V} \to \mathcal{W}$ e $L \colon \mathcal{W} \to \mathcal{U}$.

Fig. 3.15

Álgebra dos Operadores Lineares

Aplicando o teorema 3.13 para $\mathcal{V} = \mathcal{W} = \mathcal{U} = V$, de modo que $T: V \to V$ e $L: V \to V$ sejam operadores lineares sobre V, vemos que a composta $L \circ T: V \to V$ ainda é um operador linear sobre V. Assim, o espaço vetorial $\mathcal{L}(V)$ dos operados de V em V sobre o corpo \mathbb{F} possui uma espécie de "multiplicação", definida por meio da composição de operadores lineares, tal que

$$LT = L \circ T$$
 para todo $T \in L \text{ em } \mathcal{L}(V)$

Neste caso, também está definida a operação $TL = T \circ L$. No entanto, deve-se notar que, em geral, $LT \neq TL$, isto é, $LT - TL \neq 0$, onde $0: V \rightarrow V$ é o operador nulo.

EXEMPLO 27: Seja V um espaço vetorial sobre o corpo \mathbb{F} . Se L, T e H são operadores lineares em $\mathcal{L}(V)$ e λ é um escalar em \mathbb{F} , mostrar que

- (a) $\lambda(LT) = (\lambda L)T$.
- (b) H(L + T) = HL + HT.
- (c) (LT)H = L(TH).
- » SOLUÇÃO: (a) Para todo $v \in V$, temos

$$[\lambda(LT)](v) = \lambda(LT(v)) = \lambda[L(T(v))] = (\lambda L)(T(v)) = [(\lambda L)T](v).$$

Logo, $\lambda(LT) = (\lambda LT)$.

(b) Para todo $v \in V$, ocorre

$$H(L+T)(v) = H[(L+T)(v)] = H[L(v) + T(v)]$$

= $H[L(v)] + H[T(v)] = HL(v) + HT(v)$.

Assim, H(L+T) = HL + HT.

(c) Para todo $v \in V$, notamos que

$$[(LT)H](v) = (LT)\big(H(v)\big) = L\big[T\big(H(v)\big)\big] = L\big[(TH)(v)\big].$$

Portanto, (LT)H = L(TH).

Seja V um espaço vetorial sobre o corpo \mathbb{F} . Se $T:V\to V$ é um operador linear sobre V, então podemos compor T com T. Neste caso, empregaremos a notação usual:

$$T^2 = TT = T \circ T$$

Em geral, para n = 1,2,... escreveremos

$$T^n = \underbrace{T \dots T}_{n-\text{vezes}} = \underbrace{T \circ T \circ \dots \circ T}_{n-\text{vezes}}.$$

Definiremos

$$T^0 = I$$
, se $T \neq 0$.

onde $I: V \to V$ é o operador identidade sobre V. Assim, é claro que

$$IT = TI = T$$
.

■ DEFINIÇÃO 3.6: Seja V um espaço vetorial sobre o corpo \mathbb{F} e $T:V\to V$ um operador linear em $\mathcal{L}(V)$. Dizemos que T é nilpotente se existe algum inteiro $n\geq 1$ tal que

$$T^n = 0$$
,

onde $O: V \to V$ é o operador nulo sobre V. Neste caso, o menor inteiro positivo com esta propriedade é chamado de índice de nilpotência do operador T.

EXEMPLO28: Seja $\mathcal{P}_k(\mathbb{F})$ o espaço vetorial de todas as funções polinomiais de grau $\leq k$ sobre o corpo \mathbb{F} . Seja $D: \mathcal{P}_k(\mathbb{F}) \to \mathcal{P}_k(\mathbb{F})$ o operador derivação, que leva cada polinômio

$$p(x) = \alpha_0 + \alpha_1 x + \dots + \alpha_k x^k$$

na sua derivada $(DP)(x) = \alpha_1 + \dots + k\alpha_k x^{k-1}$. Mostrar que o operador D é nilpotente, com índice de nilpotência igual k+1.

» SOLUÇÃO: Seja $p(x) = \alpha_0 + \alpha_1 x + \alpha_2 x^2 + \dots + \alpha_k x^k$ um polinômio arbitrário em $\mathcal{P}_k(\mathbb{F})$, onde $\alpha_k \neq 0$. Assim temos

$$(Dp)(x) = \alpha_1 + 2\alpha_2 x + 3\alpha_3 x^2 \dots + k\alpha_k x^{k-1}$$

$$(D^2p)(x) = 2\alpha_2 + 3.2\alpha_3 x + \dots + k(k-1)\alpha_k x^{k-2},$$

$$(D^3p)(x) = 3.2.\alpha_3 + \dots + k(k-1)(k-2)\alpha_k x^{k-3},$$

$$\vdots$$

$$(D^kp)(x) = k! \alpha_k.$$

Logo, obtemos $(D^{k+1}p)(x) = 0$, para $\forall x \in \mathbb{F}$. Desse modo, mostramos que $D^{k+1} = 0$. Como isto ocorre para $\alpha_k \neq 0$, então claramente o mesmo ocorrerá para $\alpha_k = 0$. Portanto, o operador derivação sobre $\mathcal{P}_k(\mathbb{F})$ é nilpotente. Note também que $D^n = 0$, para todo $n \geq k+1$ e, para $\alpha_k \neq 0$, temos que $(D^kp)(x) = k! \alpha_k \neq 0$. Isto mostra que o índice de nilpotência deste operador é k+1.

Se V é um espaço vetorial sobre o corpo \mathbb{F} , a operação de multiplicação de operadores lineares permite definir polinômios em $\mathcal{L}(V)$ que são construídos a partir de polinômios de uma variável sobre \mathbb{F} . Para observar este fato, considere os escalares $\alpha_0, \alpha_1, ..., \alpha_m$ em \mathbb{F} e seja

$$p(x) = \alpha_0 + \alpha_1 x + \dots + \alpha_m x^m$$

um polinômio arbitrário de uma variável x e de grau $\leq m$, tomado sobre o corpo \mathbb{F} . Para cada operado linear $T \in \mathcal{L}(V)$, a expressão

$$p(T) = \alpha_0 I + \alpha_1 T + \dots + \alpha_m T^m,$$

onde I é o operador identidade de $\mathcal{L}(V)$, define um novo operador linear p(T) de $\mathcal{L}(V)$, o qual é chamado de um polinômio de uma variável do operador linear $T:V\to V$.

Se p(x) e q(x) são dois polinômios de uma variável tais que p(x) = q(x), então é claro que p(T) = q(T).

Sabe-se que a multiplicação de dois polinômios p(x) e q(x), de uma mesma variável x, obedece a propriedade comutativa:

$$p(x)q(x) = q(x)p(x).$$

Neste caso, teremos que p(T)q(T) = q(T)p(T) para todo $T \in \mathcal{L}(V)$. Isto significa que polinômios (em uma variável) de um mesmo operador linear sempre comutam.

EXEMPLO 29: Seja V um espaço vetorial. Se $T \in \mathcal{L}(V)$, mostrar que

(a)
$$T^2 - I = (T - I)(T + I)$$
.

(b)
$$(T-I)(T+I) = (T+I)(T-I)$$
.

» SOLUÇÃO: (a) Sejam os polinômios, em uma variável x, dados por $p(x) = x^2 - 1$ e q(x) = (x-1)(x+1). É bem conhecido que $p(x) = x^2 - 1 = (x-1)(x+1) = q(x)$. Então p(T) = q(T), para todo $T \in \mathcal{L}(V)$, ou seja,

$$T^2 - I = (T - I)(T + I).$$

(b) Dados os polinômios em uma variável g(x) = (x - 1) e h(x) = (x + 1), é válida a comutatividade g(x)h(x) = (x - 1)(x + 1) = (x + 1)(x - 1) = h(x)g(x). Então,

$$g(T)h(T) = h(T)g(T)$$
, para todo $T \in \mathcal{L}(V)$,

ou seja,

$$(T-I)(T+I) = (T+I)(T-I)$$
.

TEOREMA 3.14: Sejam \mathcal{V} , \mathcal{W} e \mathcal{U} espaços vetoriais de dimensão finita sobre o corpo \mathbb{F} . Seja $T: \mathcal{V} \to \mathcal{W}$ uma transformação linear de \mathcal{V} em \mathcal{W} e $L: \mathcal{W} \to \mathcal{U}$ uma transformação linear de \mathcal{W} em \mathcal{U} . Sejam \mathcal{B} , \mathcal{B}' e \mathcal{B}'' bases ordenadas dos espaços \mathcal{V} , \mathcal{W} e \mathcal{U} , respectivamente. Se $L \circ T: \mathcal{V} \to \mathcal{U}$ é a composta de L com T, então

$$[L \circ T]^{\mathfrak{B}}_{\mathfrak{B}''} = [L]^{\mathfrak{B}'}_{\mathfrak{B}''} [T]^{\mathfrak{B}}_{\mathfrak{B}'}.$$

Prova: Sejam $\mathfrak{B} = \{v_1, ..., v_n\}, \mathfrak{B}' = \{w_1, ..., w_m\}$ e $\mathfrak{B}'' = \{u_1, ..., u_s\}$ bases ordenadas dos espaços \mathcal{V}, \mathcal{W} e \mathcal{U} , respectivamente. Sejam $A = [T]_{\mathfrak{B}'}^{\mathfrak{B}} \in \mathbb{F}^{m \times n}, B = [L]_{\mathfrak{B}''}^{\mathfrak{B}'} \in \mathbb{F}^{s \times m}$ e $C = [L \circ T]_{\mathfrak{B}''}^{\mathfrak{B}} \in \mathbb{F}^{s \times n}$ as matrizes das transformações T, L e $L \circ T$ em relação às referidas bases. Dado v_j em \mathfrak{B} , usando o fato de que $A = [a_{ij}], B = [b_{ij}]$ e $C = [c_{ij}]$ são as matrizes das transformações lineares consideradas acima, notamos que

$$(L \circ T)(v_j) = L(T(v_j)) = L(\sum_{k=1}^m a_{kj} w_k) = \sum_{k=1}^m a_{kj} (L(w_k))$$
$$= \sum_{k=1}^m a_{kj} (\sum_{i=1}^s b_{ik} u_i) = \sum_{i=1}^s (\sum_{k=1}^m b_{ik} a_{kj}) u_i.$$

Por outro lado, temos que $(L \circ T)(v_j) = \sum_{i=1}^{s} c_{ij}u_i$. Então, comparando estas equações, notamos que

$$c_{ij} = \sum_{k=1}^m b_{ik} a_{kj}$$
, para todo $i=1,\dots,s$ e $j=1,\dots,n.$

Portanto, C = BA, ou seja, $[L \circ T]_{\mathfrak{B}''}^{\mathfrak{B}} = [L]_{\mathfrak{B}''}^{\mathfrak{B}'}[T]_{\mathfrak{B}'}^{\mathfrak{B}}$.

EXEMPLO 30: Sejam $\mathcal{P}_2(\mathbb{R})$ e $\mathcal{P}_3(\mathbb{R})$ os espaços vetoriais dos polinômios reais de graus menor ≤ 2 e 3, respectivamente. Sejam $L: \mathcal{P}_3(\mathbb{R}) \to \mathcal{P}_2(\mathbb{R})$ e $T: \mathcal{P}_2(\mathbb{R}) \to \mathcal{P}_3(\mathbb{R})$ as transformações lineares definidas, respectivamente, por

$$L(p(x)) = \frac{dp(x)}{dx}$$
 e $T(p(x)) = \int_{0}^{x} p(t)dt$.

Sejam $\mathfrak{B}=\{1,x,x^2\}$ e $\mathfrak{B}'=\{1,x,x^2,x^3\}$ bases ordenadas de $\mathcal{P}_3(\mathbb{R})$ e $\mathcal{P}_2(\mathbb{R})$, respectivamente. Calcular as matrizes $[T]_{\mathfrak{B}'}^{\mathfrak{B}}$ e $[L]_{\mathfrak{B}}^{\mathfrak{B}'}$ e verificar que $[L\circ T]_{\mathfrak{B}}^{\mathfrak{B}}=[L]_{\mathfrak{B}'}^{\mathfrak{B}'}[T]_{\mathfrak{B}'}^{\mathfrak{B}}=I$, onde I denota a matriz identidade 3×3 .

» SOLUÇÃO: Para determinar $[T]_{\mathfrak{B}'}^{\mathfrak{B}}$ note que

$$T(1) = \int_{0}^{x} dt = x = 0.1 + 1.x + 0.x^{2} + 0.x^{3},$$

$$T(x) = \int_{0}^{x} t dt = \frac{1}{2}x^{2} = 0.1 + 0.x + \frac{1}{2}.x^{2} + 0.x^{3},$$

$$T(x^2) = \int_0^x t^2 dt = \frac{1}{3}x^3 = 0.1 + 0.x + 0.x^2 + \frac{1}{3}.x^3.$$

Logo, a matriz de T em relação às bases \mathfrak{B} e \mathfrak{B}' é $[T]_{\mathfrak{B}'}^{\mathfrak{B}} = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1/2 & 0 \\ 0 & 0 & 1/3 \end{bmatrix}$. Por outro

lado, para determinar $[L]_{\mathfrak{B}}^{\mathfrak{B}'}$, notamos que

$$L(1) = 0 = 0.1 + 0.x + 0.x^{2}$$

$$L(x) = 1 = 1.1 + 0.x + 0.x^2$$

$$L(x^2) = 2x = 0.1 + 2.x + 0.x^2$$

$$L(x^3) = 3x^2 = 0.1 + 0.x + 3.x^2$$
.

Assim, obtemos a matriz $[L]_{\mathfrak{B}}^{\mathfrak{B}'} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix}$. Finalmente, note que

$$[L \circ T]_{\mathfrak{B}}^{\mathfrak{B}} = [L]_{\mathfrak{B}}^{\mathfrak{B}'}[T]_{\mathfrak{B}'}^{\mathfrak{B}} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1/2 & 0 \\ 0 & 0 & 1/3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = I.$$

Aplicando o teorema 3.14 para $\mathcal{V} = \mathcal{W} = \mathcal{U} = V$ e $\mathfrak{B} = \mathfrak{B}' = \mathfrak{B}''$, obtemos os operadores lineares $T: V \to V$ e $L: V \to V$, sobre V, e a relação:

$$[LT]_{\mathfrak{B}}^{\mathfrak{B}} = [L]_{\mathfrak{B}}^{\mathfrak{B}}[T]_{\mathfrak{B}}^{\mathfrak{B}}.$$

Isto significa que a matriz do produto de dois operadores lineares é o produto das matrizes desses operadores, na ordem que se dá esta operação. Semelhantemente,

$$[TL]_{\mathfrak{B}}^{\mathfrak{B}} = [T]_{\mathfrak{B}}^{\mathfrak{B}}[L]_{\mathfrak{B}}^{\mathfrak{B}}.$$

No entanto, como geralmente ocorre $LT \neq TL$, então também temos que, em geral,

$$[T]_{\mathfrak{B}}^{\mathfrak{B}}[L]_{\mathfrak{B}}^{\mathfrak{B}} \neq [L]_{\mathfrak{B}}^{\mathfrak{B}} [T]_{\mathfrak{B}}^{\mathfrak{B}}.$$

Por outro lado, podemos ver que

$$[T^n]_{\mathfrak{B}}^{\mathfrak{B}} = \underbrace{[T]_{\mathfrak{B}}^{\mathfrak{B}} \dots [T]_{\mathfrak{B}}^{\mathfrak{B}}}_{n-\text{verses}} = \left([T]_{\mathfrak{B}}^{\mathfrak{B}}\right)^n.$$

EXEMPLO 31: Seja $T: \mathbb{R}^2 \to \mathbb{R}^2$ o operador do plano no plano que realiza uma reflexão em torno do eixo x, dado por T(x,y)=(x,-y). Determinar a matriz $[H]^{\mathfrak{B}}_{\mathfrak{B}}$ do operador linear $H: \mathbb{R}^2 \to \mathbb{R}^2$ em relação à base ordenada canônica $\mathfrak{B} = \{(1,0), (0,1)\}$, onde

$$H = T^3 + T^2 + T + I$$
.

» SOLUÇÃO: Usaremos a fórmula $[H]_{\mathfrak{B}}^{\mathfrak{B}} = \left([T]_{\mathfrak{B}}^{\mathfrak{B}}\right)^3 + \left([T]_{\mathfrak{B}}^{\mathfrak{B}}\right)^2 + [T]_{\mathfrak{B}}^{\mathfrak{B}} + I$, onde I é a matriz identidade 2 × 2. Inicialmente, determinaremos $[T]_{\Re}^{\Re}$. Para isto, note que

$$T(1,0) = (1,0) = 1(1,0) + 0(0,1)$$
 e $T(0,1) = (0,-1) = 0(1,0) - 1(0,1)$.

Assim,
$$[T]_{\mathfrak{B}}^{\mathfrak{B}} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$
. Logo, $([T]_{\mathfrak{B}}^{\mathfrak{B}})^2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ e $([T]_{\mathfrak{B}}^{\mathfrak{B}})^3 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$. Portanto, $[H]_{\mathfrak{B}}^{\mathfrak{B}} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} 4 & 0 \\ 0 & 2 \end{bmatrix}$.

Exercícios

- 1. Seja V um espaço vetorial bidimensional sobre o corpo \mathbb{F} e seja \mathfrak{B} uma base ordenada de V. Se $T: V \to V$ é um operador linear sobre V tal que $[T]_{\mathfrak{B}}^{\mathfrak{B}} =$ $\begin{bmatrix} \alpha & \beta \\ \gamma & \lambda \end{bmatrix}, \text{ onde } \alpha, \beta, \gamma, \lambda \in \mathbb{F}, \text{ mostrar que } T^2 - (\alpha + \lambda) T + (\alpha \lambda - \beta \gamma) I = 0.$ 2. Sejam as transformações lineares $F: \mathbb{R}^3 \to \mathbb{R}^2$, $G: \mathbb{R}^3 \to \mathbb{R}^2$, $H: \mathbb{R}^2 \to \mathbb{R}^2$
- definidas por

F(x,y,z) = (y,x+z), G(x,y,z) = (2z,x-y), H(x,y) = (y,2x). Seja a base ordenada $\mathfrak{B} = \{(1,1,0), (0,1,1), (1,01)\}$ de \mathbb{R}^3 e a base ordenada $\mathfrak{B}'=\{(1,1),(0,1)\}$ de \mathbb{R}^2 . Utilizando as matrizes $[F]^{\mathfrak{B}}_{\mathfrak{B}'},[G]^{\mathfrak{B}}_{\mathfrak{B}'}$ e $[H]^{\mathfrak{B}'}_{\mathfrak{B}'}$, calcular (a) $[F+3G]_{\mathfrak{B}'}^{\mathfrak{B}}$, (b) $[G-2F]_{\mathfrak{B}'}^{\mathfrak{B}}$, (c) $[H\circ (F+G)]_{\mathfrak{B}'}^{\mathfrak{B}}$, (d) $[p(H)g(H)]_{\mathfrak{B}'}^{\mathfrak{B}'}$, onde $p(x) = 3 - 6x + x^2 e g(x) = x^3 - 1.$

- 3. Seja T o operador linear do espaço no espaço que leva um vetor de \mathbb{R}^3 na sua projeção ortogonal no plano xy. Provar que $T^2 = T$.
- 4. Seja V um espaço vetorial e $T: V \to V$ um operador nilpotente, com índice de nilpotência igual a 3. Se θ é um vetor de V tal que $T^2(\theta) \neq 0$, provar que os vetores ϑ , $T(\vartheta)$, $T^2(\vartheta)$ são linearmente independentes.
- 5. Sejam V e W espaços vetoriais sobre um corpo \mathbb{F} . Seja $\mathcal{A} \subset W$ um subespaço de W. Mostrar que o conjunto

$$\omega_{\mathcal{A}} = \{ T \in \mathcal{L}(V, W); T(\vartheta) \in \mathcal{A}, \forall \vartheta \in V \}$$

é um subespaço do espaço vetorial $\mathcal{L}(V, W)$.

6. Seja V um espaço vetorial sobre o corpo \mathbb{R} . Mostrar que, para todo $T \in \mathcal{L}(V)$, ocorre

$$(T+I)^2 + (T-I)^2 - 2T^2 = 2I$$
.

- 7. Sejam T_{φ} e T_{ψ} os operadores lineares do plano no plano que realizam rotações por ângulos φ e ψ , respectivamente, em torno da origem no sentido anti-horário. Mostrar que este é um caso raro onde $T_{\omega}T_{\psi}$ = $T_{\psi}T_{\omega}$.
- 8. Sejam T_{φ} e T_{ψ} os operadores lineares considerados no exercício 7 e $\mathfrak B$ a base ordenada canônica de \mathbb{R}^2 . Usando a identidade $\left[T_{\varphi}T_{\psi}\right]_{\mathfrak{R}}^{\mathfrak{B}}=$ $\left[T_{\varphi}\right]_{\mathfrak{R}}^{\mathfrak{B}}\left[T_{\psi}\right]_{\mathfrak{R}}^{\mathfrak{B}}$, deduzir as fórmulas para $\operatorname{sen}(\varphi+\psi)$ e $\cos(\varphi+\psi)$.
- 9. Seja V um espaço vetorial sobre o corpo \mathbb{F} . Sejam $\alpha_1, \dots, \alpha_n$ escalares em \mathbb{F} e T é um operador linear sobre V tais que

$$I + \alpha_1 T + \alpha_2 T^2 + \dots + \alpha_n T^n = 0.$$

Mostrar que $T(\vartheta) = 0$ se, e somente se, ϑ é o vetor nulo de V.

4. Isomorfismos

■ DEFINIÇÃO 3.7 . Sejam V e W espaços vetoriais sobre o corpo \mathbb{F} . Uma transformação linear $T: V \to W$ de V em W é denominada um isomorfismo de V em W, se T é uma função bijetora (injetora e sobrejetora). Se existir um isomorfismo entre V e W, se diz que V e W são espaços vetoriais isomorfos.

Como é bem conhecido da teoria básica sobre funções, uma função qualquer $f:\Omega\to \Sigma$, definida entre dois conjuntos arbitrários Ω e Σ , é dita inversível se existe uma função $f^{-1}:\Sigma\to\Omega$ tal que $f^{-1}\circ f=i$ e $f\circ f^{-1}=i$, onde $i:\Omega\to\Omega$ é a função identidade de Ω em Ω e $i:\Sigma\to\Sigma$ é a função identidade de Σ em Σ . Neste caso, f^{-1} (chamada a inversa de f) é a única função com esta propriedade, sendo tal que: $f^{-1}(f(x))=x$, para todo $x\in\Omega$ e $f(f^{-1}(y))=y$, para todo $y\in\Sigma$. A partir da teoria básica, se sabe também que f é inversível se, e somente se, f é bijetora.

Portanto, uma transformação linear $T: V \to W$ é inversível se, e somente se, é um isomorfismo entre os espaços vetoriais V e W. Neste caso, existe uma única função $T^{-1}: W \to V$ do espaço W no espaço V, chamada a inversa de T, tal que $T^{-1} \circ T$ é a função identidade de V em V e T o T é a função identidade de T0 e T1.

Uma transformação linear $T:V\to W$ que não é inversível será denominada de singular.

TEOREMA 3.15: Sejam V e W espaços vetoriais sobre o corpo \mathbb{F} . Se $T:V \to W$ é uma transformação linear inversível de V em W, então a função inversa $T^{-1}:W \to V$ é uma transformação linear de W em V.

Prova: Suponha que a transformação linear $T: V \to W$ é uma função inversível, ou seja, é um isomorfismo de V em W. Sejam w e u vetores em W. Então, de forma única, existem dois vetores ϑ e v em V tais que $w = T(\vartheta)$, u = T(v) e $\vartheta = T^{-1}(w)$, $v = T^{-1}(u)$. Se α é um escalar qualquer em \mathbb{F} , como T é linear, então $T(\alpha\vartheta + v) = \alpha T(\vartheta) + T(v)$. Desde que $T(\vartheta) = w$ e T(v) = u, temos

$$T(\alpha \vartheta + v) = \alpha w + u$$
.

Aplicando a função inversa T^{-1} : $W \to V$ a ambos os lados desta equação, obtemos

$$\alpha\vartheta + v = T^{-1}(\alpha w + u)$$
.

Como $\vartheta = T^{-1}(w)$ e $v = T^{-1}(u)$, a última equação pode ser reescrita na seguinte forma equivalente:

$$\alpha T^{-1}(w) + T^{-1}(u) = T^{-1}(\alpha w + u)$$
.

Isto prova que que a transformação inversa T^{-1} é linear.

TEOREMA 3.16: Sejam V e W espaços vetoriais sobre o corpo \mathbb{F} . Uma transformação linear $T:V \to W$ é injetora se, e somente se, T leva um subconjunto linearmente independente de V sobre um subconjunto linearmente independente de W.

Prova: (\Rightarrow) Seja $T:V\to W$ uma transformação linear. Então T leva o vetor nulo de V no vetor nulo de W, ou seja, T(0)=0. Se T é injetora, sabemos que para quaisquer vetores

 $\vartheta_1 \neq \vartheta_2 \in V$ tem-se que $T(\vartheta_1) \neq T(\vartheta_2)$. Portanto, se T é uma transformação linear injetora, então $T(\vartheta) = 0 \Longleftrightarrow \vartheta = 0$. Agora, seja $S \subset V$ um subconjunto linearmente independente de V. Suponha que $\vartheta_1, \dots, \vartheta_k$ são vetores arbitrários em S e $\alpha_1, \dots, \alpha_k$ são escalares em $\mathbb F$ tais que

$$\alpha_1 T(\vartheta_1) + \dots + \alpha_k T(\vartheta_k) = 0$$
.

Como a transformação *T* é linear, então esta equação pode ser reescrita como

$$T(\alpha_1\vartheta_1 + \dots + \alpha_k\vartheta_k) = 0.$$

Logo $\alpha_1\vartheta_1+\dots+\alpha_k\vartheta_k=0$, pois T é injetora. Como os vetores $\vartheta_1,\dots,\vartheta_k$ são linearmente independentes, posto que são partes de um conjunto linearmente independente, então $\alpha_1=\dots=\alpha_k=0$. Isto prova que os vetores $T(\vartheta_1),\dots,T(\vartheta_k)$ são linearmente independentes. Este fato mostra que a imagem de S pela transformação T é um conjunto linearmente independente.

(⇐) Seja $\vartheta \in V$ um vetor não-nulo qualquer de V. Então é claro que o conjunto constituído apenas deste vetor $\vartheta \in V$ é linearmente independente. Como $T:V \to W$ leva um conjunto linearmente independente em um conjunto linearmente independente, então o conjunto constituído apenas do vetor $T(\vartheta)$ é linearmente independente. Logo, $T(\vartheta) \neq 0$, para todo $\vartheta \neq 0$. Agora, sejam $\vartheta_1 \neq \vartheta_2 \in V$ dois vetores distintos de V. Assim, $\vartheta_1 - \vartheta_2 \neq 0$ e, consequentemente,

$$T(\vartheta_1) - T(\vartheta_2) = T(\vartheta_1 - \vartheta_2) \neq 0$$
.

Portanto, ocorre $T(\vartheta_1) \neq T(\vartheta_2)$, sempre que $\vartheta_1 \neq \vartheta_2$. Isto significa que T é injetora.

EXEMPLO 32: Mostrar que a transformação linear $H: \mathbb{R}^{2\times 2} \to \mathcal{P}_3(\mathbb{R})$ definida na base ordenada canônica de $\mathbb{R}^{2\times 2}$ por

$$H\left(\begin{bmatrix}1 & 0\\ 0 & 0\end{bmatrix}\right) = x, \ H\left(\begin{bmatrix}0 & 1\\ 0 & 0\end{bmatrix}\right) = x - 1, \ H\left(\begin{bmatrix}0 & 0\\ 1 & 0\end{bmatrix}\right) = (x - 1)^2, \ H\left(\begin{bmatrix}0 & 0\\ 0 & 1\end{bmatrix}\right) = (x + 1)(x - 1)$$

é singular.

» SOLUÇÃO: Devido à combinação linear (x+1)(x-1)=1 $(x-1)^2+2$ (x-1), notamos que o subconjunto $\{x, x-1, (x-1)^2, (x+1)(x-1)\}$ é linearmente dependente. Assim, H leva a base canônica de $\mathbb{R}^{2\times 2}$ sobre um subconjunto linearmente dependente de $\mathcal{P}_3(\mathbb{R})$. Logo, pelo teorema 3.16, H não é injetora e, consequentemente, é singular.

Agora, tem lugar para um importante teorema da álgebra linear dos espaços vetoriais de dimensão finita.

TEOREMA 3.17: Dois espaços vetoriais V e W de dimensão finita sobre o corpo \mathbb{F} são isomorfos se, e somente se, dim $V = \dim W$.

Prova: (\Longrightarrow) Suponha que $T:V\to W$ é um isomorfismo entre os espaços vetoriais de dimensão finita V e W. Se dim V=n e dim W=m, mostraremos que n=m. Para isto, seja $\mathfrak{B}=\{\vartheta_1,\ldots,\vartheta_n\}$ uma base de V. Então, pelo teorema 3.16, sabemos que os vetores $T(\vartheta_1),\ldots,T(\vartheta_n)$ em W são linearmente independentes. Portanto, estes vetores formam uma base ou são parte de uma base de W, ou seja, $n\leq m$. De forma semelhante, seja $\mathfrak{B}'=\{w_1,\ldots,w_m\}$ uma base de W, então, a partir do teorema 3.16, conhecemos também que os vetores $T^{-1}(w_1),\ldots,T^{-1}(w_m)$ em V são linearmente independentes. Logo, $m\leq$

n. Portanto, provamos que $n \le m$ e $m \le n$. Isto nos permite concluir que n = m, ou seja, dim $V = \dim W$.

(⇐) Suponha que dim $V = \dim W = n$. Se $\mathfrak{B} = \{\vartheta_1, ..., \vartheta_n\}$ é uma base ordenada de V, como vimos na seção 5 capítulo 2, existe uma função bijetora

$$g:V\to \mathbb{F}^n$$

que associa a cada vetor $\vartheta \in V$ uma única n-lista ordenada $(x_1, ..., x_n)$ em \mathbb{F}^n , onde os componentes desta lista são as coordenadas do vetor ϑ na base \mathfrak{B} . Note que esta função \mathfrak{g} é uma transformação linear de V em \mathbb{F}^n . De fato, se $\vartheta, v \in V$ são tais que $\vartheta \rightleftarrows (x_1, ..., x_n)$ e $v \rightleftarrows (y_1, ..., y_n)$ então, para todo escalar $\alpha \in \mathbb{F}$, temos que $\alpha\vartheta \rightleftarrows (\alpha x_1, ..., \alpha x_n)$ e $(\alpha\vartheta + v) \rightleftarrows (\alpha x_1 + y_1, ..., \alpha x_n + y_n)$. Em outras palavras,

$$\alpha g(\vartheta) + g(v) = (\alpha x_1, \dots, \alpha x_n) + (y_1, \dots, y_n) = (\alpha x_1 + y_1, \dots, \alpha x_n + y_n) = g(\alpha \vartheta + v).$$

Portanto, g é um isomorfismo de V em \mathbb{F}^n . Semelhantemente, fixada uma base ordenada $\mathfrak{B}'=\{\vartheta_1',\dots,\vartheta_n'\}$ em W, existe uma transformação linear bijetora, ou seja, um isomorfismo

$$h: W \to \mathbb{F}^n$$

que associa a cada vetor $w \in W$ uma única n-lista ordenada $(x'_1, ..., x'_n)$ em \mathbb{F}^n constituída pelas coordenadas do vetor w na base \mathfrak{B}' . Agora, na presença destas bases ordenadas \mathfrak{B} e \mathfrak{B}' , consideraremos a função T de V em W,

$$T: V \to W$$
.

definida pela composição dos isomorfismos h e g, ou seja,

$$T(\vartheta) = (h \circ g)(\vartheta).$$

Posto que a composta de funções bijetoras é também uma função bijetora, então a função T, assim definida, descreve uma relação bijetora do espaço vetorial V sobre o espaço vetorial W. Além disto, a partir do teorema 3.13, conhecemos que a composta de transformações lineares é uma transformação linear. Consequentemente, a composta de dois isomorfismos é também um isomorfismo. Portanto, esta função $T: V \to W$ é um isomorfismo, ou seja, os espaços V em W são isomorfos.

EXEMPLO 33: Seja \mathbb{F} um corpo. Como dim $\mathbb{F}^{n\times n}=n^2$ e dim $\mathcal{P}_n(\mathbb{F})=n+1$ e posto que $n^2\neq n+1$, para qualquer número inteiro positivo, então o teorema 3.17 garante que toda transformação linear $T\colon \mathbb{F}^{n\times n}\to \mathcal{P}_n(\mathbb{F})$, entre o espaço das matrizes quadradas de ordem n e os polinômios de grau $\leq n$, é singular.

A existência do isomorfismo $g: V \to \mathbb{F}^n$, descrito na segunda parte da demostração do teorema 3.17, nos brinda com o seguinte resultado.

COROLÁRIO 3.18: Todo espaço vetorial V n-dimensional sobre o corpo \mathbb{F} é isomorfo ao espaço \mathbb{F}^n .

COROLÁRIO 3.19: Sejam V e W espaços vetoriais isomorfos sobre o corpo \mathbb{F} . Se W é de dimensão finita, então V é também de dimensão finita e dim V = dim W.

Prova: Seja $T: V \to W$ um isomorfismo entre V e W. Suponha que o espaço vetorial W tem dimensão finita. Digamos que dim W = n. Seja $\{w_1, ..., w_n\}$ uma base de W. Então,

a partir do teorema 3.16, sabemos que os vetores $T^{-1}(w_1), ..., T^{-1}(w_n)$ formam um subconjunto de V linearmente independente. Afirmamos que este conjunto gera V, ou seja, $[T^{-1}(w_1), ..., T^{-1}(w_n)] = V$. Para provar este fato, suponha (por contradição) que $[T^{-1}(w_1), ..., T^{-1}(w_n)] \neq V$. Então existe um vetor v em V que não pode ser representado como uma combinação linear dos vetores $T^{-1}(w_1), ..., T^{-1}(w_n)$. Logo, $\{T^{-1}(w), ..., T^{-1}(w_n)\} \cup \{v\}$ é um subconjunto de vetores de V linearmente independente. Então, pelo teorema 3.16, $w_1 = T(T^{-1}(w_1)), ..., w_n = T(T^{-1}(w_n)), T(v)$ formam um subconjunto de V com V0 conjunto V1 vetores linearmente independentes. Mas isto é um absurdo, pois dim V2 V3 gera V4 e, além disto, é linearmente independente. Portanto, este conjunto é uma base de V5. Consequentemente, V1 possui dimensão finita, com dim V2 V3 e dim V4 V5 gera V6.

COROLÁRIO 3.20: Se V e W são espaços vetoriais de dimensão finita sobre o corpo \mathbb{F} tais que dim V = n e dim W = m, então o espaço vetorial $\mathcal{L}(V, W)$ tem dimensão finita e

$$\dim \mathcal{L}(V, W) = \dim W \dim V = mn$$
.

Prova: Se os espaços vetoriais V e W são tais que dim V = n e dim W = m, então, fixadas duas bases ordenadas $\mathfrak B$ de V e $\mathfrak B'$ de W, a partir do teorema 3.3, sabemos que existe uma função bijetora do espaço $\mathcal L(V,W)$ das transformações lineares de V em W sobre o espaço $\mathbb F^{m\times n}$ das matrizes $m\times n$ sobre o corpo $\mathbb F$:

$$\mathfrak{J} \colon \mathcal{L}(V,W) \longrightarrow \mathbb{F}^{m \times n}$$

$$T \longmapsto [T]_{\mathfrak{B}'}^{\mathfrak{B}}$$

Agora, estamos em condições de mostrar que esta função é uma transformação linear. De fato, se T e L são duas transformações lineares em $\mathcal{L}(V,W)$ e α é um escalar em \mathbb{F} , então, de acordo com o teorema 3.10, $\alpha T + L$ é uma transformação linear em $\mathcal{L}(V,W)$ e, pelo teorema 3.11, temos

$$\Im(\alpha T+L)=[\alpha T+L]^{\mathfrak{B}}_{\mathfrak{B}'}=\alpha [T]^{\mathfrak{B}}_{\mathfrak{B}'}+[L]^{\mathfrak{B}}_{\mathfrak{B}'}=\alpha\,\Im(T)+\Im(L)\,.$$

Logo esta função bijetora é uma transformação linear. Portanto, \Im é um isomorfismo entre $\mathcal{L}(V,W)$ e $\mathbb{F}^{m\times n}$. Como o espaço $\mathbb{F}^{m\times n}$ tem dimensão finita, então segue do corolário 3.19 que $\mathcal{L}(V,W)$ tem dimensão finita e $\dim \mathcal{L}(V,W) = \dim \mathbb{F}^{m\times n} = mn$, o que conclui a demostração.

O leitor atento deve ter observado que a prova do corolário 3.20 mostra que os espaços $\mathcal{L}(V, W)$ e $\mathbb{F}^{m \times n}$ são isomorfos. Isto é destacado a seguir.

COROLÁRIO 3.21: Se V e W são espaços vetoriais de dimensão finita sobre o corpo \mathbb{F} , tais que dim V=n e dim W=m, então os espaços vetoriais $\mathcal{L}(V,W)$ e $\mathbb{F}^{m\times n}$ são isomorfos.

TEOREMA 3.22: Sejam V e W espaços vetoriais de dimensão finita sobre o corpo \mathbb{F} tais que dim $V = \dim W$. Se uma transformação linear $T: V \to W$ é um isomorfismo entre V e W, então a sua matriz $[T]_{\mathfrak{B}'}^{\mathfrak{B}}$ é inversível, para qualquer par de bases ordenadas \mathfrak{B} e \mathfrak{B}' , com \mathfrak{B} fixada em V e \mathfrak{B}' em W. Além disto, $([T]_{\mathfrak{B}'}^{\mathfrak{B}})^{-1} = [T^{-1}]_{\mathfrak{B}}^{\mathfrak{B}'}$.

Prova: Sejam V e W espaços vetoriais tais que $\dim V = \dim W = n$. Se a transformação

linear $T: V \to W$ é inversível, então $T^{-1} \circ T = I_V$, onde $I_V: V \to V$ é o operador identidade sobre V, e $T \circ T^{-1} = I_W$, onde $I_W: W \to W$ é o operador identidade sobre W. Assim, fixada a base ordenada $\mathfrak{B} = \{\vartheta_1, \dots, \vartheta_n\}$ de V e a base ordenada $\mathfrak{B}' = \{\vartheta_1', \dots, \vartheta_n'\}$ de W, a partir do teorema 3.14, sabemos que

$$[I_V]_{\mathfrak{B}}^{\mathfrak{B}} = [T^{-1} \circ T]_{\mathfrak{B}}^{\mathfrak{B}} = [T^{-1}]_{\mathfrak{B}}^{\mathfrak{B}'} [T]_{\mathfrak{B}'}^{\mathfrak{B}}$$

$$[I_W]_{\mathfrak{B}'}^{\mathfrak{B}'} = [T \circ T^{-1}]_{\mathfrak{B}'}^{\mathfrak{B}'} = [T]_{\mathfrak{B}'}^{\mathfrak{B}}[T^{-1}]_{\mathfrak{B}}^{\mathfrak{B}'} \,,$$

onde todas as matrizes consideradas acima tem dimensão $n \times n$. Posto que, para todo j = 1, ..., n, temos

$$I_V (\vartheta_j) = \vartheta_j = 0 \ \vartheta_1 + \dots + 1 \vartheta_j + \dots + 0 \ \vartheta_n$$
 ,

$$I_W(\vartheta_i') = \vartheta_i' = 0 \vartheta_1' + \dots + 1 \vartheta_i' + \dots + 0 \vartheta_n',$$

então $[I_V]_{\mathfrak{B}}^{\mathfrak{B}}=[I_W]_{\mathfrak{B}'}^{\mathfrak{B}'}=I$, onde I é a matriz identidade $n\times n$. Logo, podemos escrever:

$$[T^{-1}]_{\mathfrak{B}}^{\mathfrak{B}'}[T]_{\mathfrak{B}'}^{\mathfrak{B}} = [T]_{\mathfrak{B}'}^{\mathfrak{B}}[T^{-1}]_{\mathfrak{B}}^{\mathfrak{B}'} = I.$$

Portanto, a matriz $[T]_{\mathfrak{B}'}^{\mathfrak{B}}$ é inversível e sua inversa é a matriz $[T^{-1}]_{\mathfrak{B}}^{\mathfrak{B}'}$.

O próximo resultado é um caso particular do teorema 3.22, especializado para operadores lineares $T: V \to V$, onde toma-se apenas uma base ordenada $\mathfrak B$ de V.

COROLÁRIO 3.23: Seja V um espaço vetorial de dimensão finita sobre o corpo \mathbb{F} . Se um operador linear $T:V\to V$ é inversível, então a matriz $[T]^{\mathfrak{B}}_{\mathfrak{B}}$ é inversível, para qualquer base ordenada \mathfrak{B} de V. Além disto, $([T]^{\mathfrak{B}}_{\mathfrak{B}})^{-1} = [T^{-1}]^{\mathfrak{B}}_{\mathfrak{B}}$.

EXEMPLO 34: Seja V um espaço vetorial de dimensão finita. Sejam $T: V \to V$ e $L: V \to V$ operadores lineares sobre V. Se T é inversível, provar que, para qualquer base ordenada \mathfrak{B} de V, as matrizes $[LT]_{\mathfrak{B}}^{\mathfrak{B}}$ e $[TL]_{\mathfrak{B}}^{\mathfrak{B}}$ são semelhantes.

» SOLUÇÃO: Seja V um espaço de dimensão finita e $\mathfrak B$ uma base ordenada de V. Se T e L são operadores lineares sobre V, conhecemos que

$$[TL]_{\mathfrak{B}}^{\mathfrak{B}} = [T]_{\mathfrak{B}}^{\mathfrak{B}}[L]_{\mathfrak{B}}^{\mathfrak{B}}.$$

Se $T: V \to V$ é inversível, então (pelo corolário 3.23) sabemos que matriz $[T]_{\mathfrak{B}}^{\mathfrak{B}}$ é inversível. Assim, multiplicando-se a última equação por esta inversa, obtemos:

$$([T]_{\mathfrak{B}}^{\mathfrak{B}})^{-1}[TL]_{\mathfrak{B}}^{\mathfrak{B}} = [L]_{\mathfrak{B}}^{\mathfrak{B}}.$$

Multiplicando a última equação por $[T]_{\mathfrak{B}}^{\mathfrak{B}}$, temos

$$([T]_{\mathfrak{B}}^{\mathfrak{B}})^{-1}[TL]_{\mathfrak{B}}^{\mathfrak{B}}[T]_{\mathfrak{B}}^{\mathfrak{B}} = [L]_{\mathfrak{B}}^{\mathfrak{B}}[T]_{\mathfrak{B}}^{\mathfrak{B}}.$$

Por outro lado, conhecemos também que

$$[L]_{\mathfrak{B}}^{\mathfrak{B}}[T]_{\mathfrak{B}}^{\mathfrak{B}} = [LT]_{\mathfrak{B}}^{\mathfrak{B}}.$$

Combinado estas equações, chegamos ao resultado,

$$[LT]_{\mathfrak{B}}^{\mathfrak{B}} = \left([T]_{\mathfrak{B}}^{\mathfrak{B}} \right)^{-1} [TL]_{\mathfrak{B}}^{\mathfrak{B}} [T]_{\mathfrak{B}}^{\mathfrak{B}},.$$

Assim, existe $S = [T]_{\mathfrak{B}}^{\mathfrak{B}}$, tal que $[LT]_{\mathfrak{B}}^{\mathfrak{B}} = S^{-1}[TL]_{\mathfrak{B}}^{\mathfrak{B}}S$. Logo estas matrizes são semelhantes.

Exercícios

- 1. Seja $T: \mathbb{R}^3 \to \mathbb{R}^3$ a transformação linear definida na base canônica de \mathbb{R}^3 por: T(1,0,0) = (1,2,3), T(0,1,0) = (0,1,5) e T(0,0,1) = (-5,0,35). Usar o resultado do teorema 3.16 para mostrar que T é singular.
- 2. Seja $T \in \mathcal{L}(\mathcal{P}_4(\mathbb{R}), \mathbb{R}^5)$ a transformação linear definida na base canônica de $\mathcal{P}_4(\mathbb{R})$ por: T(1) = (1,0,0,0,0), T(x) = (-1,1,0,0,0), $T(x^2) = (1,-2,1,0,0)$, $T(x^3) = (-1,3,-3,1,0)$, $T(x^4) = (1,-4,6,-4,1)$. Provar que T é bijetora. Encontrar uma expressão para T^{-1} . Escolher \mathfrak{B} e \mathfrak{B}' bases ordenadas de $\mathcal{P}_4(\mathbb{R})$ e \mathbb{R}^5 , respectivamente, e verificar que $\left([T]_{\mathfrak{R}'}^{\mathfrak{B}}\right)^{-1} = [T^{-1}]_{\mathfrak{B}}^{\mathfrak{B}'}$.
- 3. Seja T uma transformação linear de \mathbb{R}^2 em \mathbb{R}^3 e L um operador linear sobre \mathbb{R}^3 . A transformação linear $L \circ T$ é inversível?
- 4. Seja V um espaço vetorial e T um operador linear de $\mathcal{L}(V)$. Se T é nilpotente, com grau de nilpotência igual a n, mostrar que $(I T) \in \mathcal{L}(V)$ é inversível e $(I T)^{-1} = I + T + T^2 + \dots + T^{n-1}.$
- 5. Sejam V e W espaços vetoriais de dimensão finita sobre um corpo $\mathbb F$ tais que dim V=n e dim W=m. Seja $\mathcal L(V,W)$ o espaço vetorial das transformações lineares de V em W. Sejam $\mathfrak B=\{\vartheta_1,\dots,\vartheta_n\}$ e $\mathfrak B'=\{w_1,\dots,w_m\}$ bases ordenadas de V e W, respectivamente. Para cada par de números inteiros (r,s) com $1\leq r\leq m$ e $1\leq s\leq n$, seja a transformação linear $T^{r,s}\colon V\to W$ definida na base $\mathfrak B$ por:

$$T^{r,s}(\vartheta_i) = \begin{cases} 0 \text{ , se } i \neq s \\ w_r, \text{ se } i = s \end{cases}$$

Mostrar que estas mn transformações lineares geram o espaço $\mathcal{L}(V,W)$. Usando o corolário 3.20, concluir que o conjunto formado por estas transformações lineares é uma base de $\mathcal{L}(V,W)$. Seja T em $\mathcal{L}(V,W)$ definida por $T=\sum_{r=1}^m \sum_{s=1}^n a_{rs} T^{r,s}$, onde a_{rs} são escalares em \mathbb{F} (as coordenadas de T em relação a esta base de $\mathcal{L}(V,W)$). Provar que $A=[a_{rs}]$ é exatamente a matriz da transformação linear T em relação às bases \mathfrak{B} e \mathfrak{B}' .

4. Núcleo e Imagem

■ DEFINIÇÃO 3.8. Sejam V e W espaços vetoriais sobre o corpo \mathbb{F} e seja $T:V \to W$ uma transformação linear de V em W. O Núcleo de T, denotado por $\mathcal{N}(T)$, é o conjunto de todos os vetores ϑ de V tais que $T(\vartheta) = 0$, onde 0 é o vetor nulo de W:

$$\mathcal{N}(T) = \{ \vartheta \in V : T(\vartheta) = 0 \}.$$

A imagem de T, denotado por $\mathcal{I}m(T)$, é o subconjunto constituído pelos vetores $w \in W$ tais que $w = T(\vartheta)$, para algum $\vartheta \in V$:

$$\mathcal{I}m(T) = \{ w \in W; w = T(\vartheta), \text{ para } \vartheta \in V \}.$$

Visualizações destes conjuntos são encontradas na Fig. 3.16, onde nota-se que $\mathcal{N}(T)$ é um subconjunto do espaço V e $\mathcal{I}m(T)$ é um subconjunto do espaço W.

Fig. 3.16

EXEMPLO 35 : Seja $\mathcal{P}(\mathbb{R})$ o espaço de dimensão infinita constituído de todos os polinômios de uma variável com coeficientes reais. Seja $H:\mathcal{P}(\mathbb{R})\to\mathcal{P}(\mathbb{R})$ o operador linear derivada terceira:

$$H(p) = \frac{d^3p}{dx^3}$$
, para todo $p(x) \in \mathcal{P}(\mathbb{R})$.

Mostrar que $\mathcal{N}(H) = \mathcal{P}_2(\mathbb{R})$ e $\mathcal{I}m(H) = \mathcal{P}(\mathbb{R})$.

» SOLUÇÃO: Seja p um polinômio arbitrário em $\mathcal{P}(\mathbb{R})$, dado por

$$p(x) = \alpha_0 + \alpha_1 x + \alpha_2 x^2 + \alpha_3 x^3 + \dots + \alpha_m x^m$$

Se $p \in \mathcal{N}(H)$, então, para todo $x \in \mathbb{R}$, temos

$$H(p)(x) = \frac{d^3p}{dx^3}(x) = 6\alpha_3 + \dots + m(m-1)(m-2)\alpha_m x^{m-3} = 0.$$

Isto significa que $\alpha_3=\alpha_4=\cdots=\alpha_m=0$. Assim, se $p\in\mathcal{N}(H)$, então p é da forma

$$p(x) = \alpha_0 + \alpha_1 x + \alpha_2 x^2$$
, para todo $x \in \mathbb{R}$,

ou seja, $\mathcal{N}(H) \subset \mathcal{P}_2(\mathbb{R})$. Se p é um vetor qualquer em $\mathcal{P}_2(\mathbb{R})$, então p possui a forma $p(x) = \alpha_0 + \alpha_1 x + \alpha_2 x^2$ e, consequentemente, $H(p) = \frac{d^3 p}{dx^3} = 0$. Logo, $\mathcal{P}_2(\mathbb{R}) \subset \mathcal{N}(H)$. Portanto, $\mathcal{N}(H) = \mathcal{P}_2(\mathbb{R})$. Por outro lado, note que, para todo vetor $p(x) = \alpha_0 + \alpha_1 x + \alpha_2 x^2 + \alpha_3 x^3 + \dots + \alpha_m x^m$ em $\mathcal{P}(\mathbb{R})$, existe um vetor

$$g(x) = \frac{\alpha_0}{2.3}x^3 + \frac{\alpha_1}{2.3.4}x^4 + \frac{\alpha_2}{3.4.5}x^5 + \frac{\alpha_3}{4.5.6}x^6 + \dots + \frac{\alpha_m}{(m+1)(m+2)(m+3)}x^{m+3}$$

em $\mathcal{P}(\mathbb{R})$ tal que

$$H(g)(x) = \frac{d^3g}{dx^3}(x) = \alpha_0 + \alpha_1 x + \alpha_2 x^2 + \alpha_3 x^3 + \dots + \alpha_m x^m = p(x), \forall x \in \mathbb{R}.$$

Isto significa que $\mathcal{I}m(H) = \mathcal{P}(\mathbb{R})$.

EXEMPLO 36: Determinar o núcleo e a imagem da transformação $T: \mathbb{R}^3 \to \mathbb{R}^2$ definida por

$$T(x, y, z) = (x - y, 2z).$$

» SOLUÇÃO: Se $(x, y, z) \in \mathcal{N}(T)$, então T(x, y, z) = (x - y, 2z) = (0, 0), ou seja, $\mathcal{P}(\mathbb{R})$

$$x - y = 0,$$

$$2z = 0$$
.

Logo, x = y e z = 0. Portanto,

$$\mathcal{N}(T) = \{(x, x, 0); x \in \mathbb{R}\}.$$

Se $(\alpha, \beta) \in \mathcal{I}m(T)$, então existe $(x, y, z) \in \mathbb{R}^3$ tal que $T(x, y, z) = (x - y, 2z) = (\alpha, \beta)$. Isto pode ser escrito como

$$x - y = \alpha$$
,

$$2z = \beta$$
.

Assim, $y = x - \alpha$ e $z = \beta/2$. Logo, para cada $(\alpha, \beta) \in \mathbb{R}^2$, existe $(x, x - \alpha, \beta/2) \in \mathbb{R}^3$ tal que $T(x, x - \alpha, \beta/2) = (\alpha, \beta)$. Portanto, $\Im m = \mathbb{R}^2$.

TEOREMA 3.24: Sejam V e W espaços vetoriais sobre o corpo \mathbb{F} . Se $T: V \to W$ é uma transformação linear de V em W, então:

- (a) $\mathcal{N}(T)$ é um subespaço de V.
- (b) $\mathcal{I}m(T)$ é um subespaço de W.

Prova: (a) Como toda transformação linear entre V e W leva o vetor nulo de V no vetor nulo de W, então o vetor nulo de V está em $\mathcal{N}(T)$ e, portanto, $\mathcal{N}(T) \neq \emptyset$. Se $\vartheta, v \in \mathcal{N}(T)$, então $T(\vartheta+v)=T(\vartheta)+T(v)=0$, ou seja, $(\vartheta+v)\in \mathcal{N}(T)$. Semelhantemente, se $\alpha\in\mathbb{F}$, então $T(\alpha\vartheta)=\alpha T(\vartheta)=\alpha 0=0$, ou seja, $(\alpha\vartheta)\in\mathcal{N}(T)$. Portanto, o núcleo de T é um subespaço de V.

(b) Como T leva o vetor nulo de V no vetor nulo de W, então o vetor nulo de W pertence a $\mathcal{I}m(T)$ e, assim, $\mathcal{I}m(T) \neq \emptyset$. Sejam w e u vetores em W. Então existem ϑ , $v \in V$ tais que $T(\vartheta) = w$ e T(v) = u. Assim, $T(\vartheta + v) = T(\vartheta) + T(v) = w + u$, logo $(w + u) \in \mathcal{I}m(T)$. Por outro lado, se $\alpha \in \mathbb{F}$, como $T(\vartheta) = w$, então $T(\alpha\vartheta) = \alpha T(\vartheta) = \alpha \vartheta = \alpha w$, ou seja, $\alpha\vartheta \in \mathcal{I}m(T)$. Portanto, a imagem de T é um subespaço de W.

EXEMPLO 37: Seja $T: \mathbb{R}^4 \to \mathbb{R}^3$ a transformação linear definida por

$$T(x, y, z, w) = (x - y + z + w, x + 2z - w, x + y + 3z - 3w)$$
.

Determinar uma base e a dimensão de $\mathcal{N}(T)$.

» SOLUÇÃO: Se $\vartheta = (x, y, z, w) \in \mathcal{N}(T)$, então

$$(x-y+z+w, x+2z-w, x+y+3z-3w) = (0,0,0)$$
.

Igualando os compenetres destes vetores, obtemos o sistema linear

$$\begin{bmatrix} 1 & -1 & 1 & 1 \\ 1 & 0 & 2 & -1 \\ 1 & 1 & 3 & -3 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$$

Assim, fica claro que o núcleo $\mathcal{N}(T)$ da transformação linear $T: \mathbb{R}^4 \to \mathbb{R}^3$ é exatamente o espaço-solução deste sistema linear homogêneo. Escalonando a matriz dos coeficientes do sistema, temos

$$\begin{bmatrix} 1 & -1 & 1 & 1 \\ 1 & 0 & 2 & -1 \\ 1 & 1 & 3 & -3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 & 1 & 1 \\ 0 & 1 & 1 & -2 \\ 0 & 2 & 2 & -4 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 2 & -1 \\ 0 & 1 & 1 & -2 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

Assim, o sistema linear equivalente pode ser escrito como

$$x = -2z + w$$

$$v = -z + 2w$$

Este sistema possui infinitas soluções, sendo z e w as variáveis livres. Logo: (i) tomando z=1 e w=0, obtemos o vetor solução (-2,-1,1,0). (ii) Tomando z=0 e w=1, obtemos o vetor solução (1,2,0,1). Portanto, $\{(-2,-1,1,0),(1,2,0,1)\}$ é uma base de $\mathcal{N}(T)$ e dim $\mathcal{N}(T)=2$.

TEOREMA 3.25: Sejam V e W espaços vetoriais sobre o corpo \mathbb{F} . Uma transformação linear $T: V \to W$ de V em W é injetora se, e somente se, $\mathcal{N}(T) = \{0\}$.

Prova: (\Rightarrow) Suponha que a transformação linear $T: V \to W$ é injetora. Isto significa que dados $\vartheta, v \in V$, se $T(\vartheta) = T(v)$, então $\vartheta = v$. Sabemos que o vetor nulo de V está no núcleo de T, ou seja, $\{0\} \subset \mathcal{N}(T)$. Para mostrar que $\mathcal{N}(T) = \{0\}$, suponha, por contradição, que $v_1 \neq v_2$ são dois vetores distintos de $\mathcal{N}(T)$. Como o núcleo de T é um subespaço então $(v_1 - v_2) \in \mathcal{N}(T)$. Logo,

$$0 = T(v_1 - v_2) = T(v_1) - T(v_2),$$

ou seja, $T(v_1) = T(v_2)$. Como T é injetora, então $v_1 = v_2$. Mas isto é um absurdo, pois por hipótese $v_1 \neq v_2$. Assim, não existem dois vetores distintos no núcleo de T. Portanto, $\mathcal{N}(T) = \{0\}$.

(\Leftarrow) Suponha que a transformação linear $T:V \to W$ é tal que $\mathcal{N}(T) = \{0\}$. Sejam ϑ e v vetores em V tais que $T(\vartheta) = T(v)$. Como V é um espaço vetorial, então $(\vartheta - v) \in V$. Logo

$$T(\vartheta - v) = T(\vartheta) - T(v) = 0$$

Assim, $(\vartheta - v) \in \mathcal{N}(T)$. Como $\mathcal{N}(T) = \{0\}$, então $(\vartheta - v) = 0$, ou seja, $\vartheta = v$. Isto mostra que a transformação linear T é injetora.

EXEMPLO 38: Dados os escalares $\alpha, \beta, \gamma, \lambda \in \mathbb{R}$, seja $T: \mathbb{R}^2 \to \mathbb{R}^2$ o operador linear sobre \mathbb{R}^2 definido por

$$T(x, y) = (\alpha x + \beta y, \gamma x + \lambda y).$$

Mostrar que *T* é injetora se, e somente se, $\alpha\lambda - \beta\gamma \neq 0$.

» SOLUÇÃO: Pelo teorema 3.25,

$$T
in injetora
\Leftrightarrow \mathcal{N}(T) = \{(0,0)\}.$$

Se $(x,y) \in \mathcal{N}(T)$, temos que $(\alpha x + \beta y, \gamma x + \lambda y) = (0,0)$. Igualando as coordenadas destes vetores, podemos escrever

$$\underbrace{\begin{bmatrix} \alpha & \beta \\ \gamma & \lambda \end{bmatrix}}_{A} \underbrace{\begin{bmatrix} x \\ y \end{bmatrix}}_{X} = \underbrace{\begin{bmatrix} 0 \\ 0 \end{bmatrix}}_{0}.$$

Assim.

$$\mathcal{N}(T) = \{(0,0)\} \Leftrightarrow \begin{bmatrix} \alpha & \beta \\ \gamma & \lambda \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \text{ admite apenas a solução trivial.}$$

Efetuando operações elementares sobre as linhas da matriz *A* dos coeficientes do sistema, obtemos a seguinte matriz *B* equivalente por linhas a *A*:

$$A = \begin{bmatrix} \alpha & \beta \\ \gamma & \lambda \end{bmatrix} \rightarrow \begin{bmatrix} \alpha\lambda & \beta\lambda \\ \gamma & \lambda \end{bmatrix} \rightarrow \begin{bmatrix} \alpha\lambda & \beta\lambda \\ -\beta\gamma & -\beta\lambda \end{bmatrix} \rightarrow \begin{bmatrix} \alpha\lambda & \beta\lambda \\ \alpha\lambda - \beta\gamma & 0 \end{bmatrix} = B.$$

Isto mostra que a matriz $\begin{bmatrix} \alpha & \beta \\ \gamma & \lambda \end{bmatrix}$ é inversível se, e somente se, $\alpha\lambda - \beta\gamma \neq 0$. Portanto,

$$\begin{bmatrix} \alpha & \beta \\ \gamma & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \text{ admite apenas a solução trivial} \Leftrightarrow \alpha\lambda - \beta\gamma \neq 0 \ .$$

Agora é claro que

T é injetora
$$\Leftrightarrow \alpha \lambda - \beta \gamma \neq 0$$
.

EXEMPLO 39: Mostrar que a aplicação $T: \mathbb{R}^3 \to \mathbb{R}^3$ que determina a rotação no sentido anti-horário em torno do eixo z por um dado ângulo θ , definida por

$$T(x, y, z) = (x \cos \theta - y \sin \theta, x \cos \theta + y \sin \theta, z),$$

é injetora e a aplicação $L:\mathbb{R}^3 \to \mathbb{R}^3$ que descreve a projeção ortogonal sobre o plano x-y, dada por

$$L(x, y, z) = (x, y, 0)$$
,

é singular.

» SOLUÇÃO: Para qualquer θ , se $(x, y, z) \in \mathcal{N}(T)$ notamos que z = 0, $x \cos \theta = y \sin \theta$ e $x \cos \theta = -y \sin \theta$. Daí segue que x = y = z = 0. Logo, $\mathcal{N}(T) = \{(0,0,0\} \text{ e, pelo teorema } 3.25, T \text{ é injetora. Por outro lado, note que } \mathcal{N}(L) = \{(0,0,z); z \in \mathbb{R}\}, \text{ ou seja, o núcleo de } L \text{ é o eixo } z$. Assim, L não é injetora e, portanto, não é inversível, ou seja, é singular.

TEOREMA 3.26: Sejam V e W espaços vetoriais de dimensão finita sobre o corpo \mathbb{F} e $T: V \to W$ uma transformação linear de V em W. Se $\mathfrak{B} = \{\vartheta_1, ..., \vartheta_n\}$ é uma base de V, então o conjunto $\{T(\vartheta_1), ..., T(\vartheta_n)\}$ gera a imagem de T, ou seja,

$$[T(\vartheta_1),\dots,T(\vartheta_n)]=\mathcal{I}m(T)\,.$$

Prova: Se w é um vetor arbitrário de $[T(\vartheta_1), ..., T(\vartheta_n)]$, então existem escalares $\alpha_1, ..., \alpha_n \in \mathbb{F}$ tais que

$$w = \alpha_1 T(\theta_1) + \dots + \alpha_n T(\theta_n).$$

Logo, $w = T(\alpha_1 \vartheta_1 + \dots + \alpha_n \vartheta_n)$. Assim, existe $\vartheta = \alpha_1 \vartheta_1 + \dots + \alpha_n \vartheta_n$ em V tal que $w = T(\vartheta)$ e, portanto, $w \in \mathcal{I}m(T)$. Isto significa que $[T(\vartheta_1), \dots, T(\vartheta_n)] \subset \mathcal{I}m(T)$. Por outro

lado, seja u um vetor qualquer em $\mathcal{I}m(T)$. Então, existe $v \in V$ tal que T(v) = u. Como $\mathfrak{B} = \{\,\vartheta_1, ..., \vartheta_n\,\}$ é uma base de V, então existem escalares $\beta_1, ..., \beta_n$ em \mathbb{F} tais que $v = \beta_1\vartheta_1 + \cdots + \beta_n\vartheta_n$. Logo, $u = T(v) = T(\beta_1\vartheta_1 + \cdots + \beta_n\vartheta_n) = \beta_1T(\vartheta_1) + \cdots + \beta_nT(\vartheta_n)$ e, assim, $u \in [T(\vartheta_1), ..., T(\vartheta_n)]$, ou seja, $\mathcal{I}m(T) \subset [T(\vartheta_1), ..., T(\vartheta_n)]$. Portanto, concluímos que $[T(\vartheta_1), ..., T(\vartheta_n)] = \mathcal{I}m(T)$.

EXEMPLO 40: Seja $T: \mathcal{P}_2(\mathbb{R}) \to \mathbb{R}^{2\times 2}$ a transformação linear definida por

$$T(p) = \begin{bmatrix} p(1) - p(2) & 0 \\ 0 & p(0) \end{bmatrix}, \forall p(x) \in \mathcal{P}_2(\mathbb{R}).$$

Determinar uma base e a dimensão de Im(T).

» SOLUÇÃO: Considerando a base $\mathfrak{B} = \{1, x, x^2\}$ de $\mathcal{P}_2(\mathbb{R})$, notamos que

$$T(1) = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix},$$

$$T(x) = \begin{bmatrix} -1 & 0 \\ 0 & 0 \end{bmatrix},$$

$$T(x^2) = \begin{bmatrix} -3 & 0 \\ 0 & 0 \end{bmatrix}.$$

Logo, pelo teorema 3.26, sabemos que estas matrizes geram $\mathcal{I}m(T)$, ou seja,

$$\left[\begin{bmatrix}0 & 0\\ 0 & 1\end{bmatrix}, \begin{bmatrix}-1 & 0\\ 0 & 0\end{bmatrix}, \begin{bmatrix}-3 & 0\\ 0 & 0\end{bmatrix}\right] = \Im m(T) \ .$$

Mas, devido a combinação linear

$$\begin{bmatrix} -3 & 0 \\ 0 & 0 \end{bmatrix} = 3 \begin{bmatrix} -1 & 0 \\ 0 & 0 \end{bmatrix} + 0 \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix},$$

observamos que $\begin{bmatrix} -3 & 0 \\ 0 & 0 \end{bmatrix}$ não contribui para gerar $\mathcal{I}m(T)$. Assim,

$$\left[\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} -1 & 0 \\ 0 & 0 \end{bmatrix} \right] = \mathcal{I}m(T) \; .$$

Como estas matrizes são linearmente independentes, então o conjunto

$$\left\{ \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} -1 & 0 \\ 0 & 0 \end{bmatrix} \right\}$$

é uma base de $\mathcal{I}m(T)$ e, portanto, dim $\mathcal{I}m(T) = 2$.

TEOREMA 3.27 (Teorema do Núcleo e da Imagem): Sejam V e W espaços vetoriais sobre o corpo \mathbb{F} e $T:V\to W$ uma transformação linear de V em W. Se V é de dimensão finita, então

$$\dim \mathcal{I}m(T) + \dim \mathcal{N}(T) = \dim V$$
.

Prova: Suponha que $\dim V = n$ e $\dim \mathcal{N}(T) = r$. Se $\{\vartheta_1, \dots, \vartheta_r\}$ é uma base de $\mathcal{N}(T)$, então existem vetores $\vartheta_{r+1}, \dots, \vartheta_n$ tais que $\{\vartheta_1, \dots, \vartheta_n\}$ é uma base de V. Mostraremos que o conjunto $\{T(\vartheta_{r+1}), \dots, T(\vartheta_n)\}$ é uma base de $\mathcal{I}m(T)$. A partir do teorema 3.26, sabemos que os vetores $T(\vartheta_1), \dots, T(\vartheta_n)$ geram $\mathcal{I}m(T)$. Como $T(\vartheta_1) = \dots = T(\vartheta_r) = 0$, então a imagem $\mathcal{I}m(T)$ é efetivamente gerada pelo conjunto $\{T(\vartheta_{r+1}), \dots, T(\vartheta_n)\}$. Para ver que este conjunto é linearmente independente, suponha que $\alpha_{r+1}, \dots, \alpha_n$ são escalares em \mathbb{F} tais que

$$\alpha_{r+1}T(\vartheta_{r+1}) + \cdots + \alpha_nT(\vartheta_n) = 0$$
.

Logo, temos que $T(\alpha_{r+1}\vartheta_{r+1}+\cdots+\alpha_n\vartheta_n)=0$ e, assim, $(\alpha_{r+1}\vartheta_{r+1}+\cdots+\alpha_n\vartheta_n)\in \mathcal{N}(T)$. Como $\{\vartheta_1,\ldots,\vartheta_r\}$ é uma base de $\mathcal{N}(T)$, então existem escalares β_1,\ldots,β_r em $\mathbb F$ tais que

$$(\alpha_{r+1}\vartheta_{r+1} + \dots + \alpha_n\vartheta_n) = \beta_1\vartheta_1 + \dots + \beta_r\vartheta_r.$$

Logo,

$$\beta_1 \vartheta_1 + \dots + \beta_r \vartheta_r - \alpha_{r+1} \vartheta_{r+1} + \dots - \alpha_n \vartheta_n = 0.$$

Como os vetores $\vartheta_1, \dots, \vartheta_n$ são linearmente independentes, observamos que, necessariamente, todos os escalares que aparecem na última equação são zeros. Em particular, temos

$$\alpha_{r+1} = \cdots = \alpha_n = 0$$
.

Isto mostra que o conjunto $\{T(\vartheta_{r+1}), ..., T(\vartheta_n)\}$ é linearmente independente e, assim, é uma base da imagem $\mathcal{I}m(T)$. Logo, $\dim \mathcal{I}m(T) = n - r$. Portanto, obtemos

$$\dim \mathcal{I}m(T) + \dim \mathcal{N}(T) = (n-r) + r = n = \dim V.$$

Como queríamos demonstrar.

TEOREMA 3.28: Sejam V e W espaços vetoriais de dimensão finita sobre o corpo \mathbb{F} . Seja $T:V\to W$ uma transformação linear arbitrária de V em W. Sejam \mathfrak{B} e \mathfrak{B}' bases ordenadas quaisquer de V e W, respectivamente. Se $[T]_{\mathfrak{B}'}^{\mathfrak{B}}$ é a matriz de T com relação às bases \mathfrak{B} e \mathfrak{B}' , então

- (a) $\mathcal{N}(T)$ é isomorfo ao espaço solução do sistema AX = 0, onde $A = [T]_{\mathfrak{R}'}^{\mathfrak{B}}$.
- (b) dim $\mathcal{N}(T) = \text{Nulidade}[T]_{\mathfrak{B}'}^{\mathfrak{B}}$.
- (c) $\mathcal{I}m(T)$ é isomorfo ao espaço-coluna da matriz $A = [T]_{\mathfrak{B}'}^{\mathfrak{B}}$.
- (b) $\dim \mathcal{I}m(T) = \operatorname{Posto}[T]_{\mathfrak{B}'}^{\mathfrak{B}}$.

Prova: (a-b) Seja $T: V \to W$ uma transformação linear de V em W. Suponha que dim V = n e dim W = m. Seja $A = [T]_{\mathfrak{B}'}^{\mathfrak{B}} \in \mathbb{F}^{m \times n}$ a matriz da transformação linear $T: V \to W$ em relação às bases ordenadas arbitrárias \mathfrak{B} e \mathfrak{B}' de V e W, respectivamente, onde $\mathfrak{B} = \{\vartheta_1, \dots, \vartheta_n\}$. Mostraremos que $\mathcal{N}(T)$ é isomorfo ao conjunto $\{X \in \mathbb{F}^{n \times 1}; AX = 0\}$, o espaço-solução do sistema linear homogêneo AX = 0. Para isto, seja L a função com domínio em $\mathcal{N}(T)$, definida por

$$L(v) = [v]_{\mathfrak{B}} \, \forall \, v \in \mathcal{N}(T) \, .$$

Como $[T]_{\mathfrak{B}'}^{\mathfrak{B}}[v]_{\mathfrak{B}}=[T(v)]_{\mathfrak{B}'}=0$, para todo $v\in\mathcal{N}(T)$, então L (assim definida) assume valores no espaço-solução do sistema homogêneo AX=0. Se $v_1,v_2\in\mathcal{N}(T)$ e $\alpha\in\mathbb{F}$, então

$$L(\alpha v_1 + v_2) = [\alpha v_1 + v_2]_{\mathfrak{B}} = \alpha [v_1]_{\mathfrak{B}} + [v_2]_{\mathfrak{B}} = \alpha L(v_1) + L(v_2).$$

Logo, L é uma transformação linear. Se $L(v_1) = L(v_2)$, então

$$0 = L(v_1 - v_2) = [v_1]_{\Re} - [v_2]_{\Re}$$
.

Isto significa que $v_1 = v_2$. Portanto, L é injetora. Seja $X \in F^{n \times 1}$ tal que AX = 0, onde

$$X = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}.$$

Considerando a base $\mathfrak{B}=\{\vartheta_1,\dots,\vartheta_n\}$ de V, tome ϑ como sendo a combinação linear $\vartheta=x_1\vartheta_1+\dots+x_n\vartheta_n$, isto é, seja $\vartheta\in V$ tal que $[\vartheta]_{\mathfrak{B}}=X$. Então $[T(\vartheta)]_{\mathfrak{B}}=[T]_{\mathfrak{B}'}^{\mathfrak{B}}[\vartheta]_{\mathfrak{B}}=AX=0$. Em outras palavras, existe $\vartheta\in\mathcal{N}(T)$ tal que $L(\vartheta)=[\vartheta]_{\mathfrak{B}}=X$. Isto prova que L é sobrejetora. Resumindo, mostramos L é uma transformação linear injetora e sobrejetora (bijetora). Logo, L é um isomorfismo entre $\mathcal{N}(T)$ e o espaço-solução do sistema AX=0. Como $\mathcal{N}(T)$ é de dimensão finita (pois V é de dimensão finita) e L é um isomorfismo, então, de acordo com o teorema 3.19, o espaço-solução de AX=0 é de dimensão finita e Nulidade $[T]_{\mathfrak{B}'}^{\mathfrak{B}}=\dim\mathcal{N}(T)$.

(c-d) Seja $T: V \to W$ uma transformação linear, onde V e W são espaços de dimensão finita, com $\dim V = n$ e $\dim W = m$. A seguir, mostraremos que o espaço $\mathcal{I}m(T)$ é isomorfo ao espaço coluna da matriz $A = [T]_{\mathfrak{B}'}^{\mathfrak{B}} \in \mathbb{F}^{m \times n}$, onde \mathfrak{B} e \mathfrak{B}' são bases ordenadas arbitrárias em V e W, respectivamente, com $\mathfrak{B} = \{\vartheta_1, \dots, \vartheta_n\}$. O espaçocoluna de A é o espaço vetorial gerado pelas colunas dessa matriz. Assim, se $Y \in \mathbb{F}^{m \times 1}$ está nesse espaço-coluna, então

$$Y = x_1 \boldsymbol{a}_{:1} + \dots + x_n \boldsymbol{a}_{:n}$$

onde $a_{:1}, ..., a_{:n} \in \mathbb{F}^{m \times 1}$ são os vetores-colunas de $A = [T]_{\mathfrak{B}'}^{\mathfrak{B}}$ e $x_1, ..., x_n$ são escalares em \mathbb{F} . Esta equação vetorial pode ser reescrita na seguinte forma equivalente

$$Y = AX$$

onde

$$X = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} \in \mathbb{F}^{n \times 1} .$$

Usando a base $\mathfrak{B} = \{\vartheta_1, \dots, \vartheta_n\}$ de V, seja $v = x_1\vartheta_1 + \dots + x_n\vartheta_n$. Então $X = [v]_{\mathfrak{B}}$ e, portanto,

$$Y = AX = [T]_{\mathfrak{B}'}^{\mathfrak{B}} [v]_{\mathfrak{B}} = [T(v)]_{\mathfrak{B}'}.$$

Assim, consideraremos a função H com domínio em $\mathcal{I}m(T)$, definida por

$$H(T(v)) = [T(v)]_{\mathfrak{R}'}, \forall T(v) \in \mathfrak{I}m(T)$$

e assumindo valores no espaço-coluna da matriz $A = [T]_{\mathfrak{B}'}^{\mathfrak{B}}$. Sejam $T(v_1), T(v_2) \in \mathfrak{Im}(T)$ e $\alpha \in \mathbb{F}$, então, usando a definição de H, notamos que

$$H(\alpha T(v_1) + T(v_2)) = [\alpha T(v_1) + T(v_2)]_{\mathfrak{B}'} = \alpha [T(v_1)]_{\mathfrak{B}'} + [T(v_2)]_{\mathfrak{B}'}$$
$$= \alpha H(T(v_1)) + H(T(v_2)).$$

Logo, a função H é uma transformação linear. Se $H(T(v_1)) = H(T(v_2))$, então

$$0 = H(T(v_1)) - H(T(v_2)) = [T(v_1)]_{\mathfrak{R}'} + [T(v_2)]_{\mathfrak{R}'}.$$

Isto significa que $T(v_1) = T(v_2)$ e, consequentemente, H é injetora. Seja Y = AX, onde

$$X = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$$

é um dado vetor em $\mathbb{F}^{n\times 1}$. Usando a base $\mathfrak{B}=\{\vartheta_1,\dots,\vartheta_n\}$ de V, considere $\vartheta=x_1\vartheta_1+\dots+x_n\vartheta_n$. Então, $Y=AX=[T]^{\mathfrak{B}}_{\mathfrak{B}'}[\vartheta]_{\mathfrak{B}}=[T(\vartheta)]_{\mathfrak{B}'}=H(T(\vartheta))$, para algum $T(\vartheta)\in \mathcal{I}m(T)$. Assim, a função H é sobrejetora. Portanto, mostramos que H é injetora e sobrejetora (bijetora). Logo, H é um isomorfismo entre $\mathcal{I}m(T)$ e o espaço-coluna da matriz $A=[T]^{\mathfrak{B}}_{\mathfrak{B}'}$. Como espaços isomorfos de dimensão finita possuem a mesma dimensão, então $\dim \mathcal{I}m(T)=$ Posto-coluna $([T]^{\mathfrak{B}}_{\mathfrak{B}'})$. Mas, a partir do teorema 2.28 (capítulo 2) , sabemos que Posto-coluna $([T]^{\mathfrak{B}}_{\mathfrak{B}'})=$ Posto $([T]^{\mathfrak{B}}_{\mathfrak{B}'})$. Portanto, $\dim \mathcal{I}m(T)=$ Posto $[T]^{\mathfrak{B}}_{\mathfrak{B}'}$. Isto conclui a demonstração. \blacksquare

EXEMPLO 41: Sejam os vetores-colunas u e w em \mathbb{R}^4 dados por

$$u = \begin{bmatrix} 1 \\ 2 \\ 0 \\ -4 \end{bmatrix} \quad \mathbf{e} \quad w = \begin{bmatrix} 2 \\ 0 \\ -1 \\ -3 \end{bmatrix}.$$

Encontrar uma transformação linear $L: \mathbb{R}^3 \to \mathbb{R}^4$ cuja imagem é gerada por esses vetores, ou seja, $\mathcal{I}m(L) = [u, w]$.

» SOLUÇÃO: Consideraremos uma transformação linear $L: \mathbb{R}^3 \to \mathbb{R}^4$ da forma

$$L(X) = AX$$
, para todo $X \in \mathbb{R}^3$,

onde A é uma matriz 4×3 . Neste caso, o conjunto $\mathcal{I}m(L)$ é constituído por vetores do tipo Y = AX, com $X \in \mathbb{R}^3$. Fazendo

$$X = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix},$$

A condição Y = AX pode ser reescrita na forma equivalente,

$$Y = x_1 \boldsymbol{a}_{:1} + x_2 \boldsymbol{a}_{:2} + x_3 \boldsymbol{a}_{:3}$$
,

onde $a_{:1}$, $a_{:2}$, $a_{:3}$ são os vetores-colunas de A. Em outras palavras, como observado antes, os vetores colunas de A geram a imagem dessa transformação linear L(X) = AX. Mas, por hipótese, os vetores u e w geram $\mathfrak{Im}(L)$, então (por exemplo) podemos escolher $a_{:1} = u$, $a_{:2} = w$ e tomar $a_{:3}$ como sendo uma combinação linear desses dois vetores-colunas, ou seja, um vetor na forma $a_{:3} = \alpha u + \beta w$, para quaisquer $\alpha, \beta \in \mathbb{R}$. Isto garante que $[a_{:1}, a_{:2}, a_{:3}] = [u, w] = \mathfrak{Im}(L)$. Faremos isto, mas por simplicidade tomaremos $\alpha = 0$ e $\beta = 1$. Deste modo, obtemos a matriz

$$A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 0 & 0 \\ 0 & -1 & -1 \\ -4 & -3 & -3 \end{bmatrix}$$

e, consequentemente, determinamos a transformação $L: \mathbb{R}^3 \to \mathbb{R}^4$, dada por L(X) = AX, onde $\mathcal{I}m(L) = [u, w]$.

EXEMPLO 42: Mostrar que dim $\mathcal{I}m(T) = \dim \mathcal{N}(T)$, onde T é a transformação linear $T: \mathbb{R}^{2\times 2} \to \mathbb{R}^{2\times 2}$ definida por

$$T(A) = \begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix} A + A \begin{bmatrix} -3 & 1 \\ -4 & 1 \end{bmatrix}, \forall A \in \mathbb{R}^{2 \times 2}.$$

» SOLUÇÃO: Seja $\mathfrak{B} = \{M_1, M_2, M_3, M_4\}$ a base canônica de $\mathbb{R}^{2 \times 2}$, onde $M_1 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$, $M_2 = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$, $M_3 = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$ e $M_4 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$. Então,

$$T(M_1) = \begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} -3 & 1 \\ -4 & 1 \end{bmatrix} = \begin{bmatrix} -1 & 1 \\ 1 & 0 \end{bmatrix} = -1M_1 + 1M_2 + 1M_3 + 0M_4,$$

$$T(M_2) = \begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} -3 & 1 \\ -4 & 1 \end{bmatrix} = \begin{bmatrix} -4 & 3 \\ 0 & 1 \end{bmatrix} = -4M_1 + 3M_2 + 0M_3 + 1M_4$$

$$T(M_3) = \begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} -3 & 1 \\ -4 & 1 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ -3 & 1 \end{bmatrix} = -1M_1 + 0M_2 - 3M_3 + 1M_4$$

$$T(M_4) = \begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} -3 & 1 \\ -4 & 1 \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ -4 & 1 \end{bmatrix} = 0M_1 - 1M_2 - 4M_3 + 1M_4.$$

Assim, temos

$$[T]_{\mathfrak{B}}^{\mathfrak{B}} = \begin{bmatrix} -1 & -4 & -1 & 0\\ 1 & 3 & 0 & -1\\ 1 & 0 & -3 & -4\\ 0 & 1 & 1 & 1 \end{bmatrix}$$

A seguir, usaremos o processo de escalonamento para determinar o posto de $[T]_{\mathfrak{B}}^{\mathfrak{B}}$:

$$\begin{bmatrix} -1 & -4 & -1 & 0 \\ 1 & 3 & 0 & -1 \\ 1 & 0 & -3 & -4 \\ 0 & 1 & 1 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 4 & 1 & 0 \\ 1 & 3 & 0 & -1 \\ 1 & 0 & -3 & -4 \\ 0 & 1 & 1 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 4 & 1 & 0 \\ 0 & -1 & -1 & -1 \\ 0 & -4 & -4 & -4 \\ 0 & 1 & 1 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & -3 & -4 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

Desse modo, usando o corolário 2.24 (capítulo 2), podemos afirmar que: Posto $([T]_{\mathfrak{B}}^{\mathfrak{B}})$ = 2. Como Posto $([T]_{\mathfrak{B}}^{\mathfrak{B}})$ = dim $\mathfrak{I}m(T)$, então dim $\mathfrak{I}m(T)$ = 2. Sabemos que dim $\mathfrak{I}m(T)$ + dim $\mathcal{N}(T)$ = dim $\mathbb{R}^{2\times 2}$ = 4. Logo, $\mathcal{N}(T)$ = 2. Portanto, dim $\mathfrak{I}m(T)$ = dim $\mathcal{N}(T)$ = 2.

COROLÁRIO 3.29: Sejam V e W espaços vetoriais de dimensão finita sobre o corpo \mathbb{F} e $T:V\to W$ uma transformação linear. Se $\dim V=\dim W$, então as seguintes afirmações são equivalentes:

- (a) $T: V \to W$ é inversível.
- (b) $\mathcal{N}(T) = \{0\}.$
- (c) $\Im m(T) = W$.

Prova: A nossa demonstração seguirá o diagrama de equivalência ilustrado da Fig. 3.17.

Fig. 3.17.

- $(a) \Rightarrow (b)$ Suponha que a transformação linear $T: V \to W$ é inversível. Então T é bijetora e, logo, é injetora. Assim, pelo teorema 3.25, temos que $\mathcal{N}(T) = \{0\}$.
- (b) \Rightarrow (c) Suponha que $\mathcal{N}(T) = \{0\}$. Então $\dim \mathcal{N}(T) = 0$. Pelo teorema 3.27, $\dim \mathcal{I}m(T) + \dim \mathcal{N}(T) = \dim V$. Logo, $\mathcal{I}m(T) = \dim V$. Mas, por hipótese, $\dim V = \dim W$. Assim, $\mathcal{I}m(T) = \dim W$ e, portanto, $\mathcal{I}m(T) = W$, pois $\mathcal{I}m(T) \subset W$.
- $(c)\Rightarrow (a)$ Suponha que $\mathcal{I}m(T)=W$. Isto significa que $T:V\to W$ é sobrejetora. Observando que $\dim\mathcal{I}m(T)+\dim\mathcal{N}(T)=\dim W$ e $\dim\mathcal{I}m(T)=\dim W$, notamos que $\dim\mathcal{N}(T)=0$. Assim, pelo teorema 2.25, a transformação linear T é injetora. Resumindo, T é injetora e sobrejetora (bijetora) e, portanto, é inversível.

OBSERVAÇÃO: O leitor deve ter cuidado para não utilizar os resultados do corolário 3.30, se não houver comprovação de que $\dim V = \dim W$.

EXEMPLO 43: Seja V um espaço de dimensão finita sobre \mathbb{R} . Seja $T: V \to V$ um operador linear sobre V. Se $(T-I)^2 = O$, mostrar que T é inversível.

» SOLUÇÃO: Se $T: V \to V$ é um operador linear, sabemos que $(T-I)^2 = T^2 - 2T + I$. Assim, a condição $(T-I)^2 = 0$ pode ser escrita como

$$T^2 - 2T + I = 0.$$

Seja $\vartheta \in \mathcal{N}(T)$ um vetor qualquer no núcleo de T. Então,

$$(T^2 - 2T + I)(\vartheta) = O(\vartheta) = 0.$$

Daí segue que

$$T(T(\vartheta)) - 2T(\vartheta) + \vartheta = 0.$$

Mas como $\vartheta \in \mathcal{N}(T)$, então $T(\vartheta) = 0$. Assim, esta equação pode ser reescrita na seguinte forma equivalente

$$\vartheta = 0$$
.

Portanto, provamos que $\mathcal{N}(T) = \{0\}$. Como V é de dimensão finita, pelo corolário 3.29, podemos afirmar que o operador linear $T: V \to V$ é inversível.

EXEMPLO 44: Seja $T: \mathbb{R}^2 \to \mathbb{R}^2$ o operador que efetua uma reflexão em torno do eixo x, dado por T(x,y) = (x,-y). Seja o operador $H: \mathbb{R}^2 \to \mathbb{R}^2$ definido por

$$H = T^3 + T^2 - T.$$

Mostrar que $\mathcal{N}(H) = \{(0,0)\}$. Calcular a matriz do operador inverso H em relação à base ordenada canônica $\mathfrak{B} = \{(1,0),(0,1)\}$ de \mathbb{R}^2 .

»SOLUÇÃO: Note que T(x,y)=(x,-y), $T^2(x,y)=(x,y)$ e $T^3(x,y)=(x,-y)$. Portanto,

$$H(x,y) = (x,-y) + (x,y) - (x,-y) = (x,y) = I(x,y)$$

onde $I: \mathbb{R}^2 \to \mathbb{R}^2$ é o operador identidade sobre \mathbb{R}^2 . Assim, é claro que H é inversível e $H^{-1} = H = I$. Logo $\mathcal{N}(H) = \{(0,0)\}$. Finalmente, notamos que a matriz do operador linear H = I na base ordenada canônica de \mathbb{R}^2 é a matriz identidade $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$.

Exercício

- 1. Seja $T: \mathbb{C}^3 \to \mathbb{C}^3$ o único operador linear sobre \mathbb{C}^3 para o qual T(1,0,0) = (1,0,i), T(0,1,0) = (0,1,1), T(0,0,1) = (i,1,0). T é inversível?
- 2. Seja T o operador linear sobre \mathbb{R}^3 definido por

$$T(x, y, z) = (3x, x - y, 2x + y + z).$$

Mostrar que $(T^2 - I)(T - 3I) = 0$. T é inversível? Em caso afirmativo, determinar uma regra para T^{-1} .

- 3. Seja $\mathbb{R}^{2\times 2}$ o espaço das matrizes reais 2×2 . Seja $B=\begin{bmatrix}1 & -1\\ -4 & 4\end{bmatrix}\in\mathbb{R}^{2\times 2}$ e T o operador linear sobre $\mathbb{R}^{2\times 2}$ definido por T(A)=BA, $\forall A\in\mathbb{R}^{2\times 2}$. Determinar uma base do núcleo de T. Calcular o posto da matriz $[T]_{\mathfrak{B}}^{\mathfrak{B}}$, onde \mathfrak{B} é uma base ordenada arbitrária de $\mathbb{R}^{2\times 2}$.
- 4. Seja $T: \mathbb{R}^3 \to \mathbb{R}^3$ o operador linear sobre \mathbb{R}^3 , cuja matriz em relação à base ordenada canônica de \mathbb{R}^3 é

$$\begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & 1 \\ -1 & 3 & 4 \end{bmatrix}.$$

Determinar uma base e a dimensão da imagem de *T* e uma base e a dimensão do núcleo de *T*.

- 5. Seja o operador linear $T: \mathbb{R}^2 \to \mathbb{R}^2$ definido por T(x,y) = (y,0). Se \mathfrak{B} é uma base ordenada de \mathbb{R}^2 , provar que Nulidade $[T]_{\mathfrak{R}}^{\mathfrak{B}} = \dim \mathcal{I}m(T)$.
- 6. Seja V um espaço vetorial sobre o corpo \mathbb{F} . Se T é um operador nilpotente sobre V, mostrar que $\mathcal{N}(\alpha I T) = \{0\}$, para todo $\alpha \neq 0$ em \mathbb{F} .
- 7. Seja $T: \mathbb{R}^5 \to \mathbb{R}^4$ a transformação linear definida por $T(x_1, x_2, x_3, x_4, x_5) = (x_1 x_3 + 3x_4 x_5, x_1 + 2x_4 x_5, 2x_1 x_3 + 5x_4 x_5, -x_3 + x_4)$. Encontrar uma base e a dimensão de: (a) $\mathcal{I}m$, (b) $\mathcal{N}(T)$.
- 8. Mostrar que a transformação linear $T: \mathbb{R}^3 \to \mathbb{R}^3$ definida por

$$T(x, y, z) = (x + z, x + y + 2z, 2x + y + 3z)$$

não é injetora nem sobrejetora.

- 9. Seja V um espaço vetorial de dimensão finita e $T: V \to V$ um operador linear não-nulo sobre V. Mostrar que $T^2 = 0$ se, e somente se, $\Im m(T) = \Re T(T)$. Neste caso, dim $\Im m(T) = n/2$ e, portanto, n é par.
- 10. Seja $T \in \mathcal{L}(V, M)$, onde por hipótese dim $V = \dim W = n$. Se existirem bases ordenadas \mathfrak{B} e \mathfrak{B}' em V e W, respectivamente, tais que a matriz $[T]_{\mathfrak{B}'}^{\mathfrak{B}}$ é inversível, mostra que a transformação linear T é inversível.
- 11. Sejam V e W espaços vetoriais, de modo que V é de dimensão finita com $\dim V = n$. Sejam $\mathcal{A} \subset W$ e $\mathcal{B} \subset V$ subespaços de W e V, respectivamente. Se $\dim \mathcal{A} + \dim \mathcal{B} = n$,

mostrar que existe uma transformação linear $T: V \to W$ de V em W tal que $\mathcal{A} = \mathcal{I}m(T)$ e $\mathcal{B} = \mathcal{N}(T)$.

12. Seja $H \colon \mathcal{P}_4(\mathbb{R}) \to \mathcal{P}_2(\mathbb{R})$ a transformação linear definida por

$$H(p(x)) = (x-1)\frac{d^3p(x)}{dx^3}$$
, para todo $p(x) \in \mathcal{P}_4(\mathbb{R})$.

Determinar a imagem e o núcleo de H. Se \mathfrak{B} e \mathfrak{B}' são bases ordenadas arbitrárias de $\mathcal{P}_4(\mathbb{R})$ e $\mathcal{P}_2(\mathbb{R})$, respectivamente, qual é a Nulidade $[H]_{\mathfrak{R}'}^{\mathfrak{B}}$?

13. Seja V um espaço vetorial sobre o corpo \mathbb{F} . Sejam T e L operadores lineares não-nulos do espaço vetorial $\mathcal{L}(V)$. Se $\mathcal{I}m(T) \neq \mathcal{I}m(L)$, mostrar que T e L são vetores linearmente independentes em $\mathcal{L}(V)$.