### **IFRN**

CICLOS BIOGEOQUÍMICOS

**Prof. Hanniel Freitas** 

 Elementos químicos tendem a circular na biosfera.

 Ciclagem de nutrientes - movimento desses elementos e compostos inorgânicos essenciais à vida no ambiente.



### Transporte físico



### Interferência do homem



### Transformações químicas



Representando fica assim....



### Processos naturais dos ciclos biogeoquímicos



#### SER HUMANO



Acelera o movimento de muitos materiais



Ciclos tendem a se tornar imperfeitos (acíclico)



Carência/excesso

# Ciclos biogeoquímicos Impactos Ambientais de ações Antrópicas

- Acumulo de agrotóxicos e metais na cadeia alimentar;
- Eutrofização de corpos receptores;
- Contaminação de lençóis freáticos;
- Ecossistemas costeiros: metais em sedimentos;
- Amazônia: desmatamento e garimpos;
- Pantanal: projetos agropecuários sem sustentabilidade;
- Aterros e esgotos sanitários e industriais;
- Poluiçao da água, solo e ar;
- Extração de recursos minerais aumento de elementos disponíveis;

### Uso aplicado do estudo quantitativo dos ciclos Biogeoquímicos

- Monitoramento da poluição;
- · Estabelecimento de técnicas de manejo;
- · Determinação e controle da perda de fertilizantes;
- · Uso racional de recursos hídricos, minerais;
- Controle do aumento de CO<sub>2</sub> na atmosfera.



Os ciclos biogeoquímicos se classificam em três grupos básicos:

- 1) Tipos gasosos Reservatório situado na atmosfera ou hidrosfera. Ex. Nitrogênio, Oxigênio
- 2) Tipos sedimentares Reservatório localizado na crosta terrestre. Ex. fósforo, cálcio e enxofre
- 3) Tipos mistos Possuem ambos os compartimentos. Ex. água, carbono e enxofre.

Nutrientes: elementos essenciais à vida disponíveis para os produtores, em forma molecular ou iônica.

#### Macronutrientes:

 carbono (C), hidrogênio (H), oxigênio (O), nitrogênio (N), fósforo (P), enxofre (S), cloro (CI), potássio (K), sódio (Na), cálcio (Ca), magnésio (Mg) e ferro(Fe).

#### Micronutrientes:

alumínio (AI), boro (B), cromo (Cr), zinco (Zn),
 molibdênio (Mo), vanádio (V) e cobalto (Co).

Elementos essenciais ao seres vivos



# Os elementos de maior preocupação em todo o mundo hoje são:

### Elementos Químicos

 Arsênio, mercúrio, chumbo, cromo, níquel, zinco, elementos radioativos

### Orgânicos:

 Pesticidas, dioxinas, furanos, PCBs, hidrocarbonetos, hormônios, etc.

# Rio Tietê



# Rio Tietê – espuma invade a rua em Pirapora do Bom Jesus



- Ciclos podem tornar-se desequilibrados e elementos acumularem-se ou serem removidos do sistema.
- Matéria orgânica pode acumular nos sedimentos dos lagos e pântanos. Condições anaeróbias desaceleram a decomposição.
- Retirada da vegetação = erosão pode lavar as camadas do solo com nutrientes.

# Ciclos Biogeoquímicos - Água



- Refere-se à troca contínua de água na hidrosfera, entre a atmosfera, a água do solo, águas superficiais, subterrâneas e das plantas.
- Se fôssemos dividir a água do planeta incluindo a congelada, salgada e potável daria
  7 piscinas olímpicas para cada pessoa da
  Terra por toda a vida, mas se dividirmos só a
  potável daria somente 2 litros para cada
  habitante do planeta por toda a vida.

## Ciclos Biogeoquímicos - Nitrogênio

 Circularidade dos fluxos e os tipos de organismos que são necessários para as trocas básicas.





### Ciclos biogeoquímicos - Nitrogênio

Maior reservatório: atmosfera (80%).

- Entrada na atmosfera = bactérias desnitrificantes.
- Retorno = ação das bactérias (ou algas) fixadoras de nitrogênio), por meio da radiação e por outras formas de fixação física.



#### Medições no solo e na água:

nitritos, nitrato, nitrogênio total e amônia.

# Ciclo do fósforo

- Constituinte dos ácidos nucléicos, das membranas celulares, dos sistemas de transferência de energia, dos ossos e dos dentes.
- Mais simples que o do nitrogênio, poucas formas químicas e não passa por reações de oxido-redução.



## Ciclos biogeoquímicos - Fósforo



Figura 4-4. O ciclo do fósforo. O fósforo é um elemento raro comparado com o nitrogênio. A proporção de fósforo para nitrogênio em águas naturais é de cerca de 1 para 23 (Hutchinson, 1944). A erosão química nos Estados Unidos foi estimada em 34 toneladas por km² por ano. Cinqüenta anos de cultivo de solos virgens do centro-oeste dos Estados Unidos reduziram o conteúdo de P<sub>2</sub>O<sub>5</sub> em 36% (Clarke, 1924). Conforme mostra o diagrama, os dados evidenciam que o volume de fósforo que volta à terra não tem acompanhado o de perdas para o oceano.

#### Ciclo do fósforo

Não existem muitos compostos gasosos de fósforo e, portanto, não há passagem de fósforo pela atmosfera.

O composto de fósforo realmente importante para os seres vivos é o íon fosfato (PO<sub>4</sub><sup>3-</sup>).

A decomposição devolve o fósforo que fazia parte da matéria orgânica ao solo ou à água.

### Acidez do solo afeta a disponibilidade de fósforo:

- pH baixo liga-se as partículas de argila do solo e forma compostos insolúveis com ferro e alumínio.
- pH alto formam-se compostos insolúveis com cálcio.

### Sob condições anaeróbias:

 fósforo entra na coluna d'água quando o ferro é reduzido do estado férrico para o ferroso, porque o ferro forma sulfetos em vez de compostos de fosfato.

### Ciclos biogeoquímicos - Fósforo



### Ciclos biogeoquímicos – Fósforo



**Fig. 8.6 Dois tipos de micorrizas são identificados.** Na ectomicorriza os fungos formam uma bainha em volta da raiz; na endomicorriza os fungos penetram na raiz.

### Ciclos biogeoquímicos - Fósforo



I Fig. 8.7 A micorriza promove o crescimento da planta mais intensamente em solos pobres. Os efeitos de quantidades diferentes de fertilizante fosfatado e inoculação com o fungo micorriza Enmdogene macrocarpa no crescimento de tomates (Lycopersicon esculentum) são apresentados. Segundo J. L. Harley e S. E. Smith, Mycorrhizal Symbiosis, Academic Press, Londres (1983).

#### Ciclo do Enxofre



Figura 2. Ciclo do Enxofre (adaptado da Ref. 30)

Fonte: http://www.scielo.br/img/fbpe/qn/v25n2/10454f2.jpg

### Diagrama do ciclo de carbono



Fonte: http://pt.wikipedia.org/wiki

### O Cálcio

É um elemento químico muito importante para os seres vivos.

No vegetais, ele participa principalmente como ativador de enzimas, além de participar como componente estrutural de sais de compostos pécticos da lamela média.

A maior participação do cálcio nos animais está relacionada com a formação de esqueletos, pois ele é parte constituinte dos exoesqueletos de invertebrados e conchas.

Além disso, atua em processos metabólicos: sua participação é fundamental no processo de coagulação do sangue, além de ser muito útil no processo de contração muscular.



### Ciclo do oxigênio

#### Reservatórios de Oxigênio

A maior parte do oxigênio existente (99.5%) está concentrada na crosta e manto da Litosfera. Apenas uma pequena fração do oxigênio existente está contida na atmosfera (0.49%), esta porcentagem representa cerca de 20% da atmosfera. Uma parte muito menor do oxigênio está contida na biosfera (0.01%).





Uma teoria interessante é que o fósforo no oceano ajuda a regular a quantidade de oxigênio atmosférico.

O fósforo é essencial para a fotossíntese das algas e fator limitativo.

A fotossíntese nos oceanos contribui com ~45% do oxigênio total livre do ciclo.

O crescimento da população de organismos que fazem fotossíntese é limitada principalmente pela disponibilidade de fósforo dissolvido.

Um dos efeitos secundários da atividade antrópica é o aumento de fósforo nos oceanos. No entanto, este aumento não se reflete num aumento da fotossíntese pois os elevados níveis de oxigênio promovem o crescimento de bactérias que competem pelo fósforo dissolvido.



# Fluxo de Matéria e Energia Calor Luz solar **Produtores** Energia Nutrientes Consumidores Sais minerais Decompositores