Chem 30324 outline

Wm. F. Schneider

July 3, 2014

I. Lecture 0: Introduction

- A. Burning lighter example
- B. Foundations of physical chemistry:
 - 1. Quantum mechanics
 - 2. Statistical mechanics
 - 3. Thermodynamics, kinetics, spectroscopy
 - 4. Physical and chemical properties of matter

II. Lecture 1: Basic statistics

- A. Discrete probability distributions—Coin flip
 - 1. Example of Bernoulli trial, 2^n possible outcomes from n flips
 - 2. Number of ways to get i heads in n flips, ${}_{n}C_{i} = n!/i!(n-i)!$
 - 3. Probability of i heads $P_i \propto {}_nC_i$
 - 4. Normalized probability, $\tilde{P}_i = P_i / \sum_i P_i = {}_{n}C_i / 2^n$
 - 5. Expectation value $\langle i \rangle = \sum_i i \tilde{P}_i$
- B. Continuous distributions—temperature
 - 1. Probability density P(x) has units 1/x
 - 2. Normalized $\tilde{P}(x) = P(x) / \int P(x) dx$
 - 3. (Unitless) probability $a < x < b = \int_a^b \tilde{P}(x) dx$
 - 4. Expectation value $\langle f(x) \rangle = \int f(x) \tilde{P}(x) dx$
 - 5. Mean = $\langle x \rangle$
 - 6. Mean squared = $\langle x^2 \rangle$
 - 7. Variance $\sigma^2 = \langle x^2 \rangle \langle x \rangle^2$
 - 8. Standard deviation $\Delta x = \sigma$
- C. Boltzmann distribution
 - 1. $P(E) \propto e^{-E/k_BT}$, in some sense the definition of temperature
 - 2. Energy and its units
 - 3. Absolute temperature and its units
 - 4. k_BT as an energy scale, ≈ 0.026 eV at 298 K
 - 5. Gravity example
 - a. E(h) = mgh, linear, continuous energy spectrum

eV

 6.02214×10^{23} mol^{-1} $N_{\rm Av}$: 1.6605×10^{-27} 1 amu: kg $\rm J~K^{-1}$ 1.38065×10^{-23} 8.61734×10^{-5} ${
m eV~K^{-1}}$ $k_{\rm B}$: $\rm J~K^{-1}~mol^{-1}$ 8.314472 8.2057×10^{-2} l atm mol⁻¹ K⁻¹ R: 5.6704×10^{-8} ${
m J}~{
m s}^{-1}~{
m m}^{-2}~{
m K}^{-4}$ $\sigma_{\rm SB}$: 2.99792458×10^{8} ${\rm m\ s^{-1}}$ c: 6.62607×10^{-34} 4.13566×10^{-15} Js eV sh: 6.58212×10^{-16} 1.05457×10^{-34} J seV s \hbar : ${
m eV}$ nm 1239.8hc: 1.60218×10^{-19} \mathbf{C} e: $9.10938215 \times 10^{-31}$ ${
m MeV}~{
m c}^{-2}$ m_e : kg 1: 0.5109989 $C^2 J^{-1} m^{-1}$ 5.52635×10^{-3} $e^2 \text{ Å}^{-1} \text{ eV}^{-1}$ 8.85419×10^{-12} ϵ_0 : $e^2/4\pi\epsilon_0$: 2.30708×10^{-28} J m14.39964eV Å 0.529177×10^{-10} 0.529177Å \mathbf{m} a_0 : 27.212

Table 1: Key units in Physical Chemistry

Table 2: Energy conversions and correspondences

На

	J	eV	Hartree	${ m kJ~mol^{-1}}$	cm^{-1}
1 J =	1	6.2415×10^{18}	2.2937×10^{17}	6.0221×10^{20}	5.0340×10^{22}
1 eV =	1.6022×10^{-19}	1	0.036748	96.485	8065.5
1 Ha =	4.3598×10^{-18}	27.212	1	2625.6	219474.6
$1 \text{ kJ mol}^{-1} =$	1.6605×10^{-21}	0.010364	3.8087×10^{-4}	1	83.5935
$1 \text{ cm}^{-1} =$	1.986410^{-23}	1.23984×10^{-4}	4.55623×10^{-6}	0.011963	1

Figure 1: Boltzmann probability distribution at various temperatures

 $E_{\rm H}$:

Figure 2: One-dimensional (Gaussian) velocities of N₂ gas

- b. molecule vs. car in a gravitational field
- c. Barometric law for gases, $P = P_0 e^{-mgh/k_BT}$
- 6. Kinetic energy in 1-D example
 - a. $KE = \frac{1}{2}mv_x^2$

b.
$$P_{1D}(v_x) = \left(\frac{m}{2\pi k_B T}\right)^{1/2} \exp\left(-\frac{m|v_x|^2}{2k_B T}\right)$$

- c. Gaussian distribution, $G(x) = \frac{1}{\sigma\sqrt{2\pi}}\exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$, mean μ , variance σ^2
- d. By inspection, $\mu = \langle v_x \rangle = 0, \, \sigma^2 = \langle v_x^2 \rangle = k_B T/m$
- e. Molecule vs. car again
- 7. Equipartition energy freely exchanged between all degrees of freedom

III. Lecture 2: Kinetic theory of gases

- A. Postulates
 - 1. Gas is composed of molecules in constant random, thermal motion
 - 2. Molecules only interact by perfectly elastic collisions
 - 3. Volume of molecules is << total volume
- B. Maxwell-Boltzmann distribution of molecular speeds
 - 1. Speed $v = \sqrt{v_x^2 + v_y^2 + v_z^2}$
 - 2. $P_{MB}(v)dv = P_{1D}(v_x)P_{1D}(v_y)P_{1D}(v_z) * degeneracy(v)dv$
 - 3. mean speeds $\propto \sqrt{T}$
 - 4. mean energy $U = \frac{3}{2}RT$ and heat capacity $C_v = \frac{3}{2}R$
- C. Flux and pressure
 - 1. Velocity flux $j(v_x)dv_x = v_x \frac{N}{V} P(v_x) dv_x$, molecules /area /time / v_x
 - 2. Wall collisions, J_w , total collisions /area /time
 - 3. Momentum exchange, pressure, ideal gas law
- D. Collisions and mean free path

Table 3: Kinetic theory of gases key equations

Boltzmann distribution $(g(E))$: degeneracy of E)	$P(E) = g(E)e^{-E/k_BT}$
Maxwell-Boltzmann distribution	$P_{\rm MB}(v) = 4\pi v^2 \left(\frac{m}{2\pi k_B T}\right)^{3/2} \exp\left(-\frac{mv^2}{2k_B T}\right)$
Mean and RMS speeds	$\langle v \rangle = \left(\frac{8k_BT}{\pi m}\right)^{1/2} \qquad \langle v^2 \rangle^{1/2} = \left(\frac{3k_BT}{m}\right)^{1/2}$
Pressure	$\langle P \rangle = \frac{\Delta p}{\Delta t} = m \frac{N}{V} \frac{1}{3} \langle v^2 \rangle = \frac{N k_B T}{V} = \frac{nRT}{V}$
Wall collision frequency	$J_W = \frac{1}{4} \frac{N}{V} \langle v \rangle = \frac{P}{(2\pi m k_B T)^{1/2}}$
Molecular collision frequency	$z = \sqrt{2}\sigma \langle v \rangle \frac{N}{V} = \frac{4\sigma P}{(\pi m k_B T)^{1/2}}$
Total collisions	$z_{AA} = \frac{1}{2} \frac{N}{V} z$
Mean free path	$\lambda = \frac{\langle v \rangle}{z} = \frac{V}{\sqrt{2}\sigma N}$
Graham's effusion law	$\frac{dN}{dt} = \text{Area} \cdot J_w \propto 1/m^{1/2}$
Effusion from a vessel	$P = P_0 e^{-t/\tau}, \tau = \frac{V}{A} \left(\frac{2\pi m}{k_B T}\right)^{1/2}$
Self-diffusion constant	$D_{11} = \frac{1}{3} \langle v \rangle \lambda$
Diffusion rate	$\langle x^2 \rangle^{1/2} = \sqrt{2Dt} \langle r^2 \rangle^{1/2} = \sqrt{6Dt}$
Einstein-Smoluchowski equation	$D_{11} = \frac{\delta^2}{2\tau}$
Stokes-Einstein equation for liquids	$D_{11} = \frac{k_B T}{4\pi \eta r}$ "Slip" boundary
	$D_{\mathrm{Brownian}} = \frac{k_B T}{6\pi \eta r}$ "Stick" boundary

Figure 3: Maxwell-Boltzmann speed distribution of N_2 gas

Figure 4: Diffusional spreading, $\sqrt{\langle x^2 \rangle} = \sqrt{2Dt}$

- 1. Collision cross section $\sigma = \pi d^2$, size of molecule
- 2. Molecular collisions, z per molecule and $z_{\rm AA}$ per volume
- 3. Mean free path, λ , mean distance between collisions

IV. Lecture 3: Transport

- A. Effusion and Graham's law, effusion rate $\propto MW^{-1/2}$
- B. Fick's first law: net flux proportional to concentration gradient
 - 1. $j_x = -D\frac{dc}{dx}$
 - 2. Self-diffusion constant, $D = \frac{1}{3}\lambda \langle v \rangle$
- C. Knudsen diffusion, $D = \frac{1}{3}l\langle v \rangle$
- D. Fick's second law: time evolution of concentration gradient
 - 1. Continuity with no advection: $\frac{\partial c}{\partial t} = -\nabla \cdot \vec{j} + \text{gen}$
 - 2. One-dimension: $\frac{dc}{dt} = D \frac{d^2c}{dx^2}$
 - 3. Diffusion has Gaussian probability distribution: $c(x,t)/c_0 = [2\sqrt{\pi Dt}]^{-1} \exp(-x^2/4Dt)$

- E. Seeing is believing—Brownian motion
 - 1. Seemingly random motion of large particles ("dust") due to "kicks" from invisible molecules
 - 2. Einstein receives Nobel Prize for showing:
 - a. Motion follows same Gaussian diffusion behavior
 - b. From steady-state arguments in a field, diffusion constant is ratio of Boltzmann energy, k_BT , to mobility
 - c. Mobility inversely related to viscosity
 - 3. Stokes-Einstein equation
 - 4. Allows measurement of Avogadro's number, final proof of kinetic theory
 - 5. Similar model for diffusion of liquid molecules, slip boundary
- F. Random walk model of diffusion
 - 1. Binomial distribution
 - 2. Large N and Stirling approximation
 - 3. Einstein-Smoluchowski relation

V. Lecture 4: Duality and demise of classical physics

- A. Properties of waves
 - 1. traveling waves, $\psi(x,t) = A\sin(kx \omega t)$, $k = 2\pi/\lambda$, $\omega = 2\pi\nu$
 - 2. standing waves, $\psi(x,t) = A\sin(kx)\cos(\omega t)$
 - 3. interference, diffraction
 - 4. energy proportional to amplitude squared
 - 5. Expected energy of a classical oscillator, $\langle \epsilon \rangle_{\nu} = k_B T$ for all ν
- B. Blackbody radiation
 - 1. Hohlraum spectrum
 - 2. Stefan-Boltzmann law, total irradiance
 - 3. Wien's displacement law
 - 4. Rayleigh-Jeans and ultraviolet catastrophe
 - 5. Planck model
 - a. Energy spectrum of oscillators are quantized, $\epsilon_{\nu} = nh\nu$
 - b. Expected energy of a quantized oscillator, $\langle \epsilon \rangle_{\nu} = h\nu/\left(e^{h\nu/k_BT} 1\right)$
 - c. Planck expression for blackbody radiation works!
- C. Heat capacities of solids and gases
 - 1. Law of DuLong and Pettite, $C_v = 3R$, fails at low T
 - 2. Einstein solid
 - a. Quantized vibrational energy, $\epsilon_n = nh\nu$
 - b. Heat capacity goes to zero at low T
- D. Photoelectric effect
 - 1. Stopping potential and work function, $T = h\nu W$
 - 2. Frequency and intensity dependence
 - 3. Wave-particle duality

Figure 5: Planck oscillator energy $\langle \epsilon \rangle_{\lambda}$ vs. wavelength, normalized to k_BT

Figure 6: Black body radiation intensity $I(\lambda, T)$ vs. wavelength

Table 4: The new physics

Stefan-Boltzmann Law	$\int I(\lambda, T) d\lambda = \sigma_{\rm SB} T^4$
Wien's Law	$\lambda_{\rm max}T=2897768~{\rm nm~K}$
Rayleigh-Jeans eq	$I(\lambda, T) = \frac{8\pi}{\lambda^4} k_B T c$
Blackbody irradiance	$I(\lambda, T) = \frac{8\pi}{\lambda^5} \frac{hc^2}{e^{hc/\lambda k_B T} - 1}$
Einstein crystal	$C_v = 3R \left(\frac{h\nu}{k_B T}\right)^2 \frac{e^{h\nu/k_B T}}{\left(e^{h\nu/k_B T} - 1\right)^2}$
Photon energy	$\epsilon = h u$
Rydberg equation	$\nu = R_H c \left(1/n^2 - 1/k^2 \right)$
Bohr equations $n = 1, 2, \dots$	$l_n = n\hbar$ $r_n = n^2 \left(\frac{4\pi\epsilon_0 \hbar^2}{e^2 m_e}\right) = n^2 a_0$ $E_n = -\frac{m_e e^4}{8\epsilon_0^2 h^2} \frac{1}{n^2} = -\frac{E_H}{2} \frac{1}{n^2}$ $p_n = \frac{e^2}{4\pi\epsilon_0} \frac{m_e}{\hbar} \frac{1}{n} = p_0 \frac{1}{n}$
de Broglie equation	$\lambda = h/p$

- 4. Photon properties, $\epsilon = h\nu, p = h/\lambda$
- 5. Compton effect, light scattering of electrons changes λ
- E. Rutherford, planetary model of atom, and inconsistency with Maxwell's equations
- F. Bohr model of H atom
 - 1. Discrete H energy spectrum and Rydberg formala
 - 2. Bohr model (the old quantum mechanics)
 - a. Stable electron "orbits," quantized angular momentum
 - b. Light emission corresponds to orbital jumps, $\nu = \Delta E/h$
 - c. Bohr equations
 - d. Comparison with Rydberg formula
 - e. Failure for larger atoms
- G. de Broglie relation
 - 1. $\lambda = h/p$ universally
 - 2. Relation to Bohr orbits
 - 3. Davison and Germer experiment, e^- diffraction off Ni

VI. Lecture 5: Postulates of quantum mechanics

- A. Schrödinger equation describes wave-like properties of matter
- B. Born interpretation
 - 1. wavefunction is a probability amplitude
 - 2. wavefunction squared is probability density
- C. Postulates
 - 1. Wavefunction contains all information about a system
 - 2. Operators used to extract that information
 - a. QM operators are Hermitian
 - b. Have eigenvectors and real eigenvalues, $\hat{O}\psi_i = o\psi_i$
 - c. Are orthogonal, $\langle \psi_i | \psi_i \rangle = \delta_{ij}$
 - d. Always observe an eigenvalue when making an observation
 - 3. Expectation values
 - 4. Energy-invariant wavefunctions given by Schrödinger equation
 - 5. Uncertainty principle
- D. Particle in a box illustrations

VII. Lecture 6: Particle in a box model

- A. Particle between infinite walls, electron confined in a wire
- B. Classical solution, either stationary or uniform bouncing back and forth
- C. One-dimesional QM solutions
 - 1. Schrödinder equation and boundary conditions
 - 2. discrete, quantized solutions
 - 3. standing waves, $\lambda = 2L/n$, n-1 nodes, non-uniform probability

Table 5: Postulates of Non-relativistic Quantum Mechanics

Postulate 1: The physical state of a system is completely described by its wavefunction

 Ψ . In general, Ψ is a complex function of the spatial coordinates and time. Ψ is required to be:

- A. Single-valued
- B. continuous and twice differentiable
- C. square-integrable ($\int \Psi^* \Psi d\tau$ is defined over all finite domains)
- D. For bound systems, Ψ can always be normalized such that $\int \Psi^* \Psi d\tau = 1$

Postulate 2: To every physical observable quantity M there corresponds a Hermitian operator \hat{M} . The only observable values of M are the eignevalues of \hat{M} .

Physical quantity	Operator	Expression
Position x, y, z	\hat{x},\hat{y},\hat{z}	$x\cdot,y\cdot,z\cdot$
Linear momentum p_x, \dots	\hat{p}_x,\dots	$-i\hbarrac{\partial}{\partial x},\dots$
Angular momentum l_x, \dots	\hat{p}_x,\dots	$-i\hbar \frac{\partial}{\partial x}, \dots$ $-i\hbar \left(y \frac{\partial}{\partial z} - z \frac{\partial}{\partial y} \right), \dots$
Kinetic energy T	\hat{T}	$\left(\begin{array}{cc} \partial z & \partial y \end{array} \right)^{\gamma} - \frac{\hbar^2}{2m} \nabla^2$
Potential energy V	\hat{V}	$V({f r},t)$
Total energy E	\hat{H}	$V(\mathbf{r},t) = -rac{\hbar^2}{2m} abla^2 + V(\mathbf{r},t)$

Postulate 3: If a particular observable M is measured many times on many identical systems is a state Ψ , the average results with be the expectation value of the operator \hat{M} :

$$\langle M \rangle = \int \Psi^*(\hat{M}\Psi)d\tau$$

Postulate 4: The energy-invariant states of a system are solutions of the equation

$$\hat{H}\Psi(\mathbf{r},t) = i\hbar \frac{\partial}{\partial t}\Psi(\mathbf{r},t)$$

$$\hat{H} = \hat{T} + \hat{V}$$

The time-independent, stationary states of the system are solutions to the equation

$$\hat{H}\Psi(\mathbf{r}) = E\Psi(\mathbf{r})$$

Postulate 5: (The uncertainty principle.) Operators that do not commute $(\hat{A}(\hat{B}\Psi) \neq \hat{B}(\hat{A}\Psi))$ are called *conjugate*. Conjugate observables cannot be determined simultaneously to arbitrary accuracy. For example, the standard deviation in the measured positions and momenta of particles all described by the same Ψ must satisfy $\Delta x \Delta p_x \geq \hbar/2$.

Table 6: Particle-in-a-box model

- 4. Ho paper, STM of Pd wire
- 5. zero point energy and uncertainty
- 6. correspondence principle
- 7. superpositions

D. Finite walls and tunneling

- 1. Potential well of finite depth V_0
- 2. Finite number of bound states
- 3. Classical region, $\psi(x) e^{ikx} + e^{-ikx}, k = \sqrt{2mE}/\hbar$
- 4. "Forbidden" region, $\psi(x)$ $e^{\kappa x} + e^{-\kappa x}$, $\kappa = \sqrt{2m(V_0 E)}/\hbar$
- 5. Non-zero probability to "tunnel" into forbidden region
- 6. Tunneling between two adjacent wells: chemical bonding, STM, nanoelectronics
- 7. H atom tunneling: NH₃ inversion, H transfer, kinetic isotope effect

E. Multiple dimensions

- 1. separation of variables
- F. Introduce Pauli principle for fermions?

VIII. Lecture 7: Harmonic oscillator

- A. Classical harmonic oscillator
 - 1. Hooke's law, $F = -k(x x_0)$, k spring constant
 - 2. Continuous sinusoidal motion
 - 3. $x(t) = A\sin(\frac{k}{\mu})^{1/2}t, \nu = \frac{1}{2\pi}(\frac{k}{\mu})^{1/2}, E = \frac{1}{2}kA^2$
 - 4. Exchanging kinetic and potential energies
- B. Quantum harmonic oscillator
 - 1. Solutions like P-I-A-B, waves, nodes
 - 2. Zero-point energy
 - 3. Expectation values $\langle x^2 \rangle = \alpha^2(v+1/2), \langle V(x) \rangle = \frac{1}{2}h\nu(v+\frac{1}{2})$
 - 4. Classical turning point and tunneling
 - 5. Classical limiting behavior
- C. HCl example
 - 1. Reduced mass, $\frac{1}{\mu} = \frac{1}{m_A} + \frac{1}{m_B}$
- D. Anharmonicity, Morse potential

IX. Lecture 8: Vibrational spectroscopy

- A. Spectroscopy, measuring interaction of light with matter, $I(\nu)/I(\nu_0)$
- B. Bohr condition, $|E_f E_i|/h = \nu = c\tilde{\nu} = c/\lambda$
- C. Intensities determined by state populations and transition probabilities
- D. Einstein coefficients
 - 1. Stimulated absorption, $dn_1/dt = -n_1B\rho(\nu)$
 - 2. Stimulated emission, $dn_2/dt = -n_2B\rho(\nu)$
 - 3. Spontaneous emission, $dn_2/dt = -n_2A$, $A = \left(\frac{8\pi h\nu^3}{c^3}\right)B$
 - 4. 1/A = lifetime
- E. Transition probability
 - 1. Einstein coefficient $B_{if} = \frac{|\mu_{if}|^2}{6\epsilon_0 \hbar^2}$
 - 2. Classical electric dipole, $\overrightarrow{\mu} = q \cdot \overrightarrow{l}$, quantum dipole operator $\hat{\mu} = e \cdot \overrightarrow{r}$
 - 3. Transition dipole moment, $\mu_{if} = \left(\frac{d\mu}{dx}\right) \langle \psi_i | \hat{\mu} | \psi_f \rangle$
 - 4. Selection rules—conditions that make μ_{if} non-zero, "allowed" vs. "forbidden" transitions
- F. Vibrational transitions
 - 1. Gross selection rule: dynamic dipole $d\mu/dx$ non-zero
 - 2. Specific selection rule: dipole integral $\langle \psi_v | \hat{\mu} | \psi_{v'} \rangle = 0$ unless $\Delta v = \pm 1$
 - 3. Allowed $\Delta E = h\nu$
 - 4. Boltzmann, v = 1 states dominate at normal T
- G. Vibrational spectroscopy
 - 1. Diatomics, homo- vs. heteronuclear
 - 2. Polyatomics, 3n-6 (3n-5 for linear polyatomic) vibrational modes
 - 3. CO_2 example

Table 7: Harmonic oscillator model

H. Raman spectroscopy

X. Lecture 9: Rigid rotor

- A. Classical rigid rotor
 - 1. Rotation about an axis vs. linear motion
 - 2. Moment of intertia $I = \mu r^2$
 - 3. Angular momentum, $\mathbf{l} = I\omega = \mathbf{r} \times \mathbf{p}, T = |\mathbf{l}|^2/2I$
 - 4. Angular momentum and energy continuous variable
- B. Quantum rotor in a plane
 - 1. Angular momentum and kinetic energy operators in polar coordinates, $\hat{l}_z = -i\hbar \frac{d}{d\phi}$
 - 2. Eigenfunctions and energy spectrum
 - 3. No zero point energy
 - 4. Angular momentum eignefunctions, $l_z = m_l \hbar$
 - 5. Energy superpositions and localization

Table 8: 2-D rigid rotor model

C. Quantum rotor in 3-D

- 1. Angular momentum and kinetic energy operators in spherical coordinates
- 2. Spherical harmonic solutions, Y_{lm_l}
- 3. Azimuthal QN l = 0, 1, ...
- 4. Magnetic QN $m_l = -l, -l + 1, ..., l$
- 5. Energy spectrum, 2l + 1 degeneracy
- 6. Vector model can only know total total |L| and L_z
- 7. Wavefunctions look like atomic orbitals, l nodes

D. Particle angular momentum

- 1. Fermions, mass, half-integer spin
 - a. Electron, $s = 1/2, m_s = \pm 1/2$

- 2. Bosons, force-carrying, integer spin
- E. Diatomic rotational spectroscopy
 - 1. Rotational constant $B = \hbar/4\pi Ic$ cm⁻¹, $I = \mu R^2$
 - 2. Gross selection rule: dipole moment non-zero
 - 3. Specific selection rule: $\Delta l = \pm 1, \, \Delta m_l = 0, \pm 1$
 - 4. $\Delta \tilde{E}_l = 2B(l+1) \text{ cm}^{-1}$
 - 5. Rotational state populations
- F. Polyatomic rotational spectroscopy
- G. Vibration-rotation spectroscopy
 - 1. Harmonic oscillator + rigid rotor
 - 2. Selection rules: $\Delta v = \pm 1, \Delta l = \pm 1$
 - 3. R branch: $\Delta \tilde{E} = \tilde{\nu} + 2B(l+1), \Delta l = 1$
 - 4. P branch: $\Delta \tilde{E} = \tilde{\nu} 2B(l), \Delta l = -1$

XI. Lecture 10: Hydrogen atom

- A. Schrödinger equation
 - 1. Spherical coordinates and separation of variables
 - 2. Coulomb potential $v_{\text{Coulomb}}(r) = -\frac{e^2}{4\pi\epsilon_0} \frac{1}{r}$
 - 3. Centripetal potential $v = \hbar^2 \frac{l(l+1)}{2\mu r^2}$
- B. Solutions
 - 1. $\psi(r, \theta, \phi) = R_{nl}(r)Y_{lm}(\theta, \phi)$
 - 2. Principle quantum number n = 1, 2, ...
 - a. K, L, M, N, \dots shells
 - b. n-1 radial nodes
 - 3. Azimuthal quantum number l = 0, 1, ..., n-1
 - a. s, p, d, \dots orbital sub-shells
 - b. l angular nodes
 - 4. Magnetic quantum number $m_l = -l, -l+1, ..., l$
 - 5. Spin quantum number $m_s = \pm 1/2$
- C. Energy spectrum and populations
- D. Electronic selection rules
 - 1. $\Delta l = \pm 1, \ \Delta m_s = 0, \ \Delta m_l = 0, \pm 1$
- E. Wavefunctions = "orbitals"
- F. Radial probability function $P_{nl}(r) = r^2 R_{nl}^2(r)$
 - 1. $\langle r \rangle = \int r P_{nl}(r) dr = (\frac{3}{2}n^2 l(l+1))a_0$

XII. Lecture 11: Many-electron atoms

- A. Many-electron problem, Schrödinger equation not exactly solvable
 - 1. $e^- e^-$ interaction terms prevent separation of variables

Table 9: 3-D rigid rotor model

$$V(\theta,\phi) = 0, 0 \le \phi \le 2\pi, 0 \le \theta < \pi$$

$$\hat{L}^2 = -\hbar^2 \left[\frac{1}{\sin^2 \theta} \frac{\partial^2}{\partial \phi^2} + \frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) \right]$$

$$\hat{H}_{\text{rot}} = \frac{1}{2I} \hat{L}^2$$

$$Y_{lm_l}(\theta,\phi) = N_l^{|m|} P_l^{|m|} (\cos(\theta)) e^{im_l \phi}$$

$$l = 0, 1, 2, \dots, \qquad m_l = 0, \pm 1, \dots, \pm l$$

$$E_l = \frac{\hbar^2}{2I} l(l+1)$$

$$|L| = \hbar \sqrt{l(l+1)}, L_z = m_l \hbar$$

$$I_{\gamma_0 + \gamma_0}$$

$$I_{\gamma_1 + \gamma_{1,1}}$$

$$I_{\gamma_1 + \gamma_{1,1}}$$

$$I_{\gamma_1 + \gamma_{1,1}}$$

$$I_{\gamma_1 + \gamma_{1,1}}$$

- B. Independent electron model basis of all solutions, describes each electron by its own wavefunction, or "orbital"
- C. Qualitative solutions
 - 1. ψ_i look like H atom orbitals, labeled by same quantum numbers
 - 2. Aufbau principle: "Build-up" electron configuration by adding electrons into H-atom-like orbitals, from bottom up
 - 3. Pauli exclusion principle: Every electron in atom must have a unique set of quantum numbers, so only two per orbital (with opposite spin)
 - 4. Pauli exclusion principle (formally): The wavefunction of a multi-particle system must be anti-symmetric to coordinate exchange if the particles are fermions, and symmetric to coordinate exchange if the particles are bosons
 - 5. *Hund's rule*: Electrons in degenerate orbitals prefer to be spin-aligned. Configuration with highest *spin multiplicity* is the most preferred
 - 6. Rules give the familiar structure of the periodic table

Table 10: Hydrogen atom

$$V(r) = -\frac{e^2}{4\pi\epsilon_0} \frac{1}{r}, 0 < r < \infty$$

$$\hat{H} = -\frac{\hbar^2}{2m_e} \frac{1}{r^2} \left[\frac{\partial}{\partial r} r^2 \frac{\partial}{\partial r} + \hat{L}^2 \right] + V(r)$$

$$\psi(r, \theta, \phi) = R(r) Y_{l,m_l}(\theta, \phi)$$

$$\left\{ -\frac{\hbar^2}{2m_e} \frac{1}{r^2} \frac{d}{dr} \left(r^2 \frac{d}{dr} \right) + \frac{\hbar^2 l(l+1)}{2m_e r^2} - \frac{e^2}{4\pi\epsilon_0} \frac{1}{r} \right\} R(r) = ER(r)$$

$$R_{nl}(r) = N_{nl} e^{-x/2} x^l L_{nl}(x), \quad x = \frac{2r}{na_0}$$

$$P_{nl}(r) = r^2 R_{nl}^2$$

$$n = 1, 2, \dots, \quad l = 0, \dots, n-1 \quad m_l = 0, \pm 1, \dots, \pm l$$

$$E_n = -\frac{1}{2} \frac{\hbar^2}{m_e a_0^2} \frac{1}{n^2} = -\frac{E_H}{2} \frac{1}{n^2}$$

$$|L| = \hbar \sqrt{l(l+1)}, L_z = m_l \hbar$$

- 7. Electrons in different subshells experience different effective nuclear charge $Z_{\rm eff}=Z-\sigma_{nl}$
 - a. Inner ("core") shells not shielded well at all
 - b. Inner shell electrons "shield" outer electrons well
 - c. Within a shell, s shielded less than p less than d ..., causes degeneracy to break down
 - d. Electrons in same subshell shield each other poorly, causing ionization energy to increase across the subshell
- D. Variational principle—True wavefunction energy is lower bound on energy of any trial wavefunction
 - 1. Because true solutions form a complete set
 - 2. Use to optimize candidate wavefunctions (give an example?)
- E. Quantitative solutions
 - 1. Schrödinger equation

a.
$$\hat{H}\Psi(\mathbf{r}_1, \mathbf{r}_2, ...) = E\Psi(\mathbf{r}_1, \mathbf{r}_2, ...)$$

b.
$$\hat{H} = \sum_{i} \hat{h}_{i} + \frac{e^{2}}{4\pi\epsilon_{0}} \sum_{i} \sum_{j>i} \frac{1}{|\mathbf{r}_{i} - \mathbf{r}_{j}|}$$

c.
$$\hat{h}_i = -\frac{\hbar^2}{2m_e} \nabla_i^2 - \frac{Ze^2}{4\pi\epsilon_0} \frac{1}{|\mathbf{r}_i|}$$

- 2. Construct candidate many-electron wavefunction Ψ from one electron wavefunctions (mathematical details vary with exact approach)
 - a. $\Psi(\mathbf{r}_1, \mathbf{r}_2, ...) \approx \psi_1(\mathbf{r}_1)\psi_2(\mathbf{r}_2)...\psi_n(\mathbf{r}_n)$
- 3. Calculate expectation value of E of approximate model and apply variational principle to find equations that describe "best" (lowest total energy) set of ψ_i
 - a. $\frac{\partial E}{\partial \psi_i} = 0 \quad \forall i$
 - b. $\hat{f}\psi = \left\{\hat{h} + \hat{v}_{\text{Coul}}[\psi_i] + \hat{v}_{\text{ex}}[\psi_i] + \hat{v}_{\text{corr}}[\psi_i]\right\}\psi = \epsilon\psi$
 - c. (Motivate as equation for an electron moving in a "field" of other electrons, adding an electron to a known set of ψ_i)
 - d. $E = \sum_{i} \epsilon_i \frac{1}{2} \langle \Psi | \hat{v}_{\text{Coul}}[\psi_i] + \hat{v}_{\text{ex}}[\psi_i] + \hat{v}_{\text{corr}}[\psi_i] | \Psi \rangle$
- 4. Electron-electron interactions
 - a. Coulomb (\hat{v}_{Coul}): classical electrostatic repulsion between distinguishable electron "clouds"
 - b. Exchange (\hat{v}_{ex}) : accounts for electron indistinguishability (Pauli principle for fermions). Decreases Coulomb repulsion because electrons of like spin intrinsically avoid one another
 - c. Correlation (\hat{v}_{corr}): decrease in Coulomb repulsion due to dynamic ability of electrons to avoid one another; "fixes" orbital approximation
- 5. General form of exchange potential is expensive to calculate; general form of correlation potential is unknown
 - a. Hartree model: Include only classical Coulomb repulsion \hat{v}_{Coul}
 - b. Hartree-Fock model: Include Coulomb and exchange
 - c. $Density-functional\ theory\ (DFT)$: Include Coulomb and approximate expressions for exchange and correlation
- 6. All the potential terms \hat{v} depend on the solutions, so equations must be solved iteratively to self-consistency
- F. Herman-Skillman code for DFT calculations on atoms

XIII. Lecture 12: Molecular orbital theory of molecules

- A. Clamped nucleus ("Born-Oppenheimer") approximation
 - 1. Write one-electron equations parametrically in terms of positions of all atoms
 - 2. $\hat{h}_i = -\frac{\hbar^2}{2m_e} \nabla_i^2 \sum_{\alpha} \frac{Z_{\alpha} e^2}{4\pi\epsilon_0} \frac{1}{|\mathbf{r}_i \mathbf{R}_{\alpha}|}$
 - 3. Solve as for atoms, using some model for electron-electron interactions
 - 4. Potential energy surface (PES)
 - a. $E(\mathbf{R}_{\alpha}, \mathbf{R}_{\beta}, ...) = E_{\text{elec}} + \frac{e^2}{4\pi\epsilon_0} \sum_{\alpha} \sum_{\beta > \alpha} \frac{Z_{\alpha}Z_{\beta}}{|\mathbf{R}_{\alpha} \mathbf{R}_{\beta}|}$
- B. H₂ molecule as perturbation on two H atoms brought from infinite distance
 - 1. "Bonding" orbital, $\sigma_q(\mathbf{r}) = 1s_A + 1s_B$
 - 2. "Anti-bonding" orbital, $\sigma_u(\mathbf{r}) = 1s_A 1s_B$
 - 3. Interaction scales with "overlap" $\langle 1s_A | 1s_B \rangle$
 - 4. Ground "configuration" = σ_q^2
 - 5. Bond order = $\frac{1}{2}(n-n^*)$
- C. Secular equations

1. Expand molecular orbitals in "basis" of atomic-like orbitals

$$\psi_{\text{MO}} = \sum_{a} c_a \phi_a(\mathbf{r}) \tag{1}$$

- 2. Problem reduces to finding set of c_a that give best molecular orbitals (MOs)
- 3. Substituting into Fock equation and integrating yields set of linear equations for the c_a for each MO

$$\begin{pmatrix} F_{11} - \epsilon S_{11} & F_{12} - \epsilon S_{12} & \dots \\ F_{21} - \epsilon S_{21} & F_{22} - \epsilon S_{22} & \dots \\ \vdots & \vdots & \vdots \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ \vdots \end{pmatrix} = 0$$

- a. $F_{ij} = F_{ji} = \langle \phi_i | \hat{f} | \phi_j \rangle$ are Fock "matrix elements"
- b. $S_{ij} = S_{ji} = \langle \phi_i | \phi_j \rangle$ are overlaps
- c. Typically basis functions normalized such that $S_{ii}=1$
- d. ϵ are molecular orbital energies (to be solved for, as many as there are equations)
- 4. From linear algebra, only possible solutions are those that make the determinant vanish

$$\begin{vmatrix} F_{11} - \epsilon S_{11} & F_{12} - \epsilon S_{12} & \dots \\ F_{21} - \epsilon S_{21} & F_{22} - \epsilon S_{22} & \dots \\ \vdots & \vdots & \vdots \end{vmatrix} = 0$$

- 5. Solve for ϵ s and back-substitute to find correspond c_i s
- D. Qualitative solutions of secular equations
 - 1. Lot's of insight into chemical bonding can be obtained from approximate solutions to secular equations, basis of "molecular orbital theory"
 - 2. Two general assumptions
 - a. Diagonal Fock elements are approximately equal to energies of corresponding atomic orbitals: $F_{ii} \approx \epsilon_{i,ao}$
 - b. Off-diagonal elements proportional to overlap and inversely proportional to energy difference:

$$F_{ij} \propto \frac{S_{ij}}{\epsilon_{i,ao} - \epsilon_{j,ao}}$$

- c. (Often) set differential overlap $S_{ij} = 0$
- E. H_2 example, again
 - 1. Assign one 1s atomic orbital ("basis function") to each atom

$$F_{11} = F_{22} = \epsilon_{1s} = \alpha$$
$$F_{12} = F_{21} = \beta$$
$$\alpha < \beta < 0 \text{ typically}$$

2. Set-up and solve secular matrix

$$\left| \begin{array}{cc} \alpha - \epsilon & \beta - \epsilon S \\ \beta - \epsilon S & \alpha - \epsilon \end{array} \right| = 0$$

$$\epsilon_{+} = \frac{\alpha + \beta}{1 + S}, \quad c_{1} = c_{2} = \frac{1}{\sqrt{2(1 + S)}}$$

$$\epsilon_{-} = \frac{\alpha - \beta}{1 - S}, \quad c_{1} = -c_{2} = \frac{1}{\sqrt{2(1 - S)}}$$

3. From Taylor expansion get picture of atomic orbitals destabilized by electron repulsion βS and split by interaction β

$$\epsilon_{+} \approx \alpha - \beta S + \beta$$
 $\epsilon_{-} \approx \alpha - \beta S - \beta$

- 4. Makes clear that bonding stabilization < anti-bonding destabilization
- F. Heteronuclear diatomic: LiH, HF, BH example
 - 1. Only AOs of appropriate symmetry, overlap, and energy match can combine to form MOs

$$\epsilon_{+} \approx \alpha_{1} - \beta S - \beta^{2}/|\alpha_{1} - \alpha_{2}|$$

 $\epsilon_{-} \approx \alpha_{2} - \beta S + \beta^{2}/|\alpha_{1} - \alpha_{2}|$

- 2. LiH: H 1s + Li 2s, bond polarized towards H
- 3. HF: H 1s + F 2p, bond polarized towards F, lots of non-bonding orbitals
- 4. BH: H 1s, B 2s and $2p_z \rightarrow bonding$, non-bonding, anti-bonding orbitals
- G. Homonuclear diatomic: O_2
 - 1. Assign aos, 1s, 2s, 2p for each atom (10 total)
 - 2. In principle, solve 10×10 secular matrix
 - 3. In practice, matrix elements rules mean only a few off-diagonal elements survive
 - a. 1s + 1s do nothing
 - b. 2s + 2s form σ bond and anti-bond
 - c. $2p_z + 2p_z$ form second bond and anti-bond
 - d. $2p_{x,y} + 2p_{x,y}$ form degenerate π bonds and anti-bonds
 - e. O_2 is a triplet, consistent with experiment!
- H. The Hückel/tight binding model
 - 1. $F_{ii} = \alpha, S_{ij} = \delta_{ij}, F_{ij} = \beta$ iff i adjacent to j
 - 2. Ethylene example
 - 3. Butadiene example
 - 4. Benzene example
 - 5. Infinite chain example

I. Band structure of solids

XIV. Lecture 13: Computational chemistry

- A. Numerical solvers of Schrödinger equation for molecules readily available today
- B. Have to specify:
 - 1. Identity of atoms
 - 2. Positions of atoms (distances, angles, ...)
 - 3. (spin multiplicity)
 - 4. exact theoretical model (how are Coulomb, exchange, and correlation described?)
 a. Hartree, Hartree-Fock, DFT (various flavors), ...
 - 5. basis set to express wavefunctions in terms of
 - 6. initial guess of wavefunction coefficients (often guessed for you)
- C. Secular equations solved iteratively until input coefficients = output coefficients
 - 1. "self-consistent field"

D. Output

- 1. energies of molecular orbitals
- 2. occupancies of molecular orbitals
- 3. coefficients describing molecular orbitals
- 4. total electron wavefunction, total electron density, dipole moment, ...
- 5. total molecular energy
- 6. derivatives ("gradients") of total energy w.r.t. atom positions
- E. Plot total energy vs. internal coordinates: potential energy surface (PES)
- F. Search iteratively for minimum point on PES (by hand or using gradient-driven search): equilibrium geometry
- G. Find second derivative of energy at minimum point on PES: harmonic vibrational frequency
- H. Find energy at minimum relative to atoms (or other molecules): reaction energy
- I. H_2 example

H2 - 2 H DFT Energy (B3LYP/6-31G)

T	Bond length		
H-H exp't: 0.742	Å		
B3LYP opt: 0.743	3		

Bond energy

H-H exp't	= 4.478 eV		
2 H: 2(-0.4969) au H ₂ : -1.1687 au	u = -27.041 eV u = <u>-31.803</u> eV		
Dissociation E	= 4.762 eV		
ZPE corrected	= 4.484 eV		

Vibrational frequencies

Experiment:	4401 cm ⁻¹
B3LYP harmonic:	4487 cm ⁻¹
ZPE:	0.278 eV

J. Polyatomic molecules

- 1. Gradient-driven optimizations, 3n-6 degrees of freedom
- 2. Hessian matrix for frequencies

XV. Lecture 14: Electronic spectroscopy

- A. Electronic spectroscopy examines electron jumps between energy states (orbitals)
- B. The orbital structure of each substance is unique, so unlike vibrational or rotational spectroscopy, there is no simple general energy model for electronic transitions. There are a couple general rules, though:
 - 1. Spin selection rule: $\Delta S = 0$
 - a. electron spins are "forbidden to change"
 - 2. Koopmans "theorem":
 - a. the energy of an electronic transition is approximately the difference in energy between the orbital an electron starts in and the one it ends up in
 - (1) $h\nu \approx \epsilon_{\rm final} \epsilon_{\rm initial}$
 - b. this theorem is an approximation because the orbitals are not static; more correctly, the energy difference is given by a full electronic structure calculation on the initial and final states

C. Various classes of transitions

- 1. UV/visible spectroscopy
 - a. electron jumps from valence filled to empty orbital
 - b. energies of an eV or so
 - c. π to π^* classic example

- 2. UV photoelectron spectroscopy
 - a. electron ionized from valence filled orbital
- 3. X-ray spectroscopy
 - a. electron ionized from core orbital or promoted from core to an empty orbital
 - b. 10s-1000s eV energies
 - c. many types, from lab scale to massive synchrotrons
 - d. information about elemental composition, oxidation state, coordination, ...
- D. Various classes of electron events
 - 1. stimulated absorption
 - a. photon causes jump from lower to higher energy electronic state
 - b. often convoluted with jumps to different vibrational, rotational states
 - 2. spontaneous emission
 - a. electron spontaneously jumps to a lower energy state and emits a photon
 - b. basis of fluorescence ($\Delta S = 0$)
 - c. basis of long-lived phosphorescence ($\Delta S \neq 0$)
 - d. long-lived because it breaks the spin selection rule
 - 3. stimulated emission
 - a. passing photon causes electron to jump from higher to a lower energy state and to emit another photon
 - b. cascade of such stimulated events is the basis of laser action

XVI. Lecture XX: Electronic and magnetic properties - skipped

XVII. Lecture 15: Statistical mechanics

- A. Need machinary to average QM information over macroscopic systems
- B. Equal a priori probabilities
- C. Two-state model
 - 1. Box of particles, each of which can have energy 0 or ϵ
 - 2. Thermodynamic state defined by number of elements N, and number of quanta q, $U=q\epsilon$
 - 3. Degeneracy of given N and q given by binomial distribution:

$$\Omega = \frac{N!}{q!(N-q)!}$$

- 4. Allow energy to flow between two such systems
 - a. Energy of a closed system is conserved (first law!)
 - b. Degeneracy of total system is always \geq degeneracy of the starting parts!
 - c. Boltzmann's tombstone, $S = k_B \ln \Omega$
 - d. Clausius: entropy of the universe seeks a maximum! Second Law...
- D. Energy flow/thermal equilibrium between two large systems
 - 1. Each subsystem has energy U_i and degeneracy $\Omega_i(U_i)$
 - 2. Bring in thermal contact, $U = U_1 + U_2$, $\Omega = \Omega_1(U_1)\Omega_2(U_2)$

- 3. If systems are very large, one combination of U_1 , U_2 and Ω will be much more probably than all others
- 4. What value of U_1 and $U_2 = U U_1$ maximizes Ω ?

$$\left(\frac{\partial \ln \Omega_1}{\partial U_1}\right)_N = \left(\frac{\partial \ln \Omega_2}{\partial U_2}\right)_N$$

$$\left(\frac{\partial S_1}{\partial U_1}\right)_N = \left(\frac{\partial S_2}{\partial U_2}\right)_N$$

5. Thermal equilibrium is determined by equal temperature!

$$\frac{1}{T} = \left(\frac{\partial S}{\partial U}\right)_N$$

- 6. When the temperatures of the two subsystems are equal, the entropy of the combined system is maximized!
- 7. (Same arguments lead to requirement that equal pressures (P_i) and equal chemical potentials (μ_i) maximize entropy when volumes or particles are exchanged)
- E. Two-state model in limit of large N
 - 1. Large N and Stirling's approximation
 - 2. Fundamental thermodynamic equation of two-state system:

$$S(U) = -k_B (x \ln x + (1 - x) \ln(1 - x))$$
, where $x = q/N = U/N\epsilon$

3. Temperature is derivative of entropy wrt energy yields

$$U(T) = \frac{N\epsilon}{1 + e^{\epsilon/k_B T}}$$

- a. $T \to 0, U \to 0, S \to 0$, minimum disorder
- b. $T \to \infty, U \to N\epsilon/2, S \to k_B \ln 2$, maximum disorder
- 4. Differentiate again to get heat capacity
- F. Canonical (NVT) ensemble
 - 1. Previous is example of microcanonical ("NVE") ensemble
 - 2. Direct evaluation of S(U) is generally intractable, so seek simpler approach
 - 3. Imagine a system brought into thermal equilibrium with a much larger "reservoir" of constant T, such that the aggregate has a total energy U
 - 4. Degeneracy of a given system microstate j with energy U_j is $\Omega_{res}(U-U_j)$

$$T = \frac{dU_{res}}{k_B d \ln \Omega_{res}}$$
$$\Omega_{res}(U - U_i) \propto e^{-U_j/k_B T}$$

5. Probability for system to be in a microstate with energy U_j given by Boltzmann distribution!

$$P(U_j) \propto e^{-U_j/k_B T} = e^{-U_j \beta}$$

6. Partition function "normalizes" distribution, $Q(T) = \sum_j e^{-U_j \beta}$

7. For system of identical (distinguishable) elements with energy states ϵ_i , can factor probability to show

$$P(\epsilon_i) \propto e^{-\epsilon_i/k_B T} = e^{-\epsilon_i \beta}, \quad \beta = 1/k_B T$$

- G. Energy factoring
 - 1. If system is large, how to determine it's energy states U_j ? There would be many, many of them!
 - 2. One simplification is if we can write energy as sum of energies of individual elements (atoms, molecules) of system:

$$U_j = \epsilon_j(1) + \epsilon_j(2) + \dots + \epsilon_j(N) \tag{2}$$

$$Q(N, V, T) = \sum_{j} e^{-U_{j}\beta} \tag{3}$$

$$= \sum_{j} e^{-(\epsilon_j(1) + \epsilon_j(2) + \dots + \epsilon_j(N))\beta} \tag{4}$$

a. If molecules/elements of system can be distinguished from each other (like atoms in a fixed lattice), expression can be factored:

$$Q(N, V, T) = \left(\sum_{j} e^{-\epsilon_{j}(1)\beta}\right) \cdots \left(\sum_{j} e^{-\epsilon_{j}(N)\beta}\right)$$
(5)

$$= q(1) \cdots q(N) \tag{6}$$

Assuming all the elements are the same:

$$(7)$$

$$a^{N}$$

$$q = \sum_{j} e^{-\epsilon_{j}\beta}$$
: molecular partition function (9)

b. If not distinguishable (like molecules in a liquid or gas, or electrons in a solid), problem is difficult, because identical arrangements of energy amongst elements should only be counted once. Approximate solution, good almost all the time:

$$Q(N, V, T) = q^N / N! \tag{10}$$

- c. Sidebar: "Correct" factoring depends on whether individual elements are fermions or bosons, leads to funny things like superconductivity and superfluidity.
- H. Two-state system again
 - 1. Partition function, $q(T) = 1 + e^{-\epsilon \beta}$
 - 2. State probabilities
 - 3. Internal energy U(T)

$$U(T) = -N\left(\frac{\partial \ln(1 + e^{-\epsilon\beta})}{\partial \beta}\right) = \frac{N\epsilon e^{-\epsilon\beta}}{1 + e^{-\epsilon\beta}}$$
(11)

Table 11: Equations of the Canoncial (NVT) Ensemble

$\beta = 1/k_B T$	Full Ensemble	Distinguishable particles (e.g. atoms in a lattice)	Indistinguishable particles (e.g. molecules in a fluid)
Single particle partition function		$q(V,T) = \sum_{i} e^{-\epsilon_{i}\beta}$	$q(V,T) = \sum_{i} e^{-\epsilon_{i}\beta}$
Full partition		ι	i
function	$Q(N, V, T) = \sum e^{-U_j \beta}$	$Q = q(V, T)^N$	$Q = q(V,T)^N/N!$
Log partition function	$Q(N, V, T) = \sum_{j} e^{-U_{j}\beta}$ $\ln Q$	$N\log q$	$N \ln q - \ln N!$ $\approx N(\ln Q - \ln N + 1)$
Helmholtz energy $(A = U - TS)$	$-rac{\ln Q}{eta}$	$-\frac{N\ln q}{\beta}$	$-\frac{N}{\beta} \left(\ln \frac{q}{N} + 1 \right)$
Internal energy (U)	$-\left(\frac{\partial \ln Q}{\partial \beta}\right)_{NV}$	$-N\left(\frac{\partial \ln q}{\partial \beta}\right)_V$	$-N\left(\frac{\partial \ln q}{\partial \beta}\right)_V$
Pressure (P)	$-\left(\frac{\partial \ln Q}{\partial V}\right)_{N\beta}$	$-N\left(\frac{\partial \ln q}{\partial V}\right)_{\beta}$	$-N\left(\frac{\partial \ln q}{\partial V}\right)_{\beta}$
Entropy (S/k_B)	$\beta U + \ln Q$	$eta U + N \ln q$	$\beta U + N\left(\ln(q/N) + 1\right)$
Chemical potential (μ)	$-\frac{1}{\beta} \left(\frac{\partial \ln Q}{\partial N} \right)_{VT}$	$-\frac{\ln q}{\beta}$	$-\frac{\ln(q/N)}{\beta}$

NOTE! All energies are referenced to their values at 0 K. Enthalpy H = U + PV, Gibb's Energy G = A + PV.

- 4. Heat capacity C_v
 - a. Minimum when change in states with T is small
 - b. Maximize when chagne in states with T is large
- 5. Helmholtz energy, $A = -\ln q/\beta$, decreasing function of T
- 6. Entropy
- I. Distinguishable vs. indistinguishable particles
 - 1. Distinguishable (e.g., in a lattice): $Q(N, V, T) = q(V, T)^N$
 - 2. Indistinguishable (e.g., a gas): $Q(N, V, T) \approx q(V, T)^N/N!$
- J. Thermodynamic functions in canonical ensemble

XVIII. Lecture 16: Molecular partition functions

A. Ideal gas of molecules

$$Q_{ig}(N, V, T) = \frac{(q_{\text{trans}}q_{\text{rot}}q_{\text{vib}})^N}{N!}$$

- B. Particle-in-a-box (translational states of a gas)
 - 1. Energy states $\epsilon_n = n^2 \epsilon_0, n = 1, 2, ..., \epsilon_0$ tiny for macroscopic V

- 2. $\Theta_{\text{trans}} = \epsilon_0/k_B$ translational temperature
- 3. $\Theta_{\rm trans} << T \rightarrow many \, {\rm states} \, {\rm contribute} \, {\rm to} \, q_{\rm trans} \rightarrow {\rm integral} \, {\rm approximation}$

$$q_{\rm trans,1D} = \int_0^\infty e^{-x^2\beta\epsilon_0} dx = L/\Lambda$$

$$\Lambda = \left(\frac{h^2\beta}{2\pi m}\right)^{1/2} \mbox{ thermal wavelength}$$

$$q_{\rm trans,3D} = V/\Lambda^3$$

- 4. Internal energy
- 5. Heat capacity
- 6. Equation of state (!)
- 7. Entropy: Sackur-Tetrode equation
- C. Rigid rotor (rotational states of a gas)
 - 1. energy states and degeneracies
 - 2. $\Theta_{\rm rot} = \hbar^2/2Ik_B$
 - 3. "High" T $q_{\rm rot}(T) \approx \sigma \Theta_{\rm rot}/T$
- D. Harmonic oscillator (vibrational states of a gas)
 - 1. $\Theta_{\rm vib} = h\nu/k_B$
- E. Electronic partition functions \rightarrow spin multiplicity
- F. Non-ideality
 - 1. Real molecules interact through vdW interactions
 - 2. Particle-in-a-box model breaks down, have to work harder but can still get at same ideas
 - 3. See Hill, J. Chem. Ed. 1948, 25, p. 347, http://dx.doi.org/10.1021/ed025p347

XIX. Lecture 17: Chemical reactions and equilibrium

- A. Standard states
 - 1. Translational partition function depends on concentration N/V
 - 2. "Standard state" corresponds to some standard choice for N/V, c°
 - 3. For ideal gas, related to pressure by $P^{\circ} = c^{\circ} k_B T$
- B. Chemical reaction $A \to B$
- C. Reaction entropy $\Delta S^{\circ}(T) = S_{\rm B}^{\circ}(T) S_{\rm A}^{\circ}(T)$
- D. Reaction energy $\Delta U^{\circ}(T) = U_{\rm B}^{\circ}(T) U_{\rm A}^{\circ}(T) + \Delta E(0)$
- E. Equilibrium condition—equate chemical potentials, $\mu_A(N,V,T) = \mu_B(N,V,T)$
- F. Equilibrium constant—evaluate from partition functions directly or indirectly from thermodynamic potentials
- G. Le'Chatlier's principle
 - 1. Response to temperature: Boltzmann distribution favors higher energy things as T increases
 - 2. Response to volume chance: particle-in-a-box states increasingly favor side with more molecules as volume increases

Table 12: Statistical Thermodynamics of an Ideal Gas

Translational DOFs 3-D particle in a box model

$$\begin{split} \theta_{\rm trans} &= \frac{\pi^2 \hbar^2}{2mL^2 k_B}, \, \Lambda = h \left(\frac{\beta}{2\pi m}\right)^{1/2} \\ \text{For } T >> \Theta_{\rm trans}, \, \Lambda << L, \, q_{\rm trans} = V/\Lambda^3 \text{ (essentially always true)} \\ U_{\rm trans} &= \frac{3}{2}RT \quad C_{\rm v,trans} = \frac{3}{2}R \quad S_{\rm trans}^{\circ} = R \ln \left(\frac{e^{5/2}V^{\circ}}{N^{\circ}\Lambda^3}\right) = R \ln \left(\frac{e^{5/2}k_BT}{P^{\circ}\Lambda^3}\right) \end{split}$$

Rotational DOFs Rigid rotor model

Linear molecule $\theta_{\rm rot} = hcB/k_B$

$$q_{\rm rot} = \frac{1}{\sigma} \sum_{l=0}^{\infty} (2l+1) e^{-l(l+1)\theta_{\rm rot}/T}, \approx \frac{1}{\sigma} \frac{T}{\theta_{\rm rot}}, \quad T >> \theta_{\rm rot} \quad \sigma = \left\{ \begin{array}{ll} 1, & {\rm unsymmetric} \\ 2, & {\rm symmetric} \end{array} \right.$$

$$U_{\text{rot}} = RT \quad C_{\text{v,rot}} = R \quad S_{\text{rot}}^{\circ} = R(1 - \ln(\sigma\theta_{\text{rot}}/T))$$

Non-linear molecule $\theta_{\text{rot},\alpha} = hcB_{\alpha}/k_B$

$$q_{\rm rot} \approx \frac{1}{\sigma} \left(\frac{\pi T^3}{\theta_{{
m rot},\alpha} \theta_{{
m rot},\beta} \theta_{{
m rot},\gamma}} \right)^{1/2}, \quad T >> \theta_{{
m rot},\alpha,\beta,\gamma} \quad \sigma = {
m rotational symmetry number}$$

$$U_{\rm rot} = \frac{3}{2}RT \quad C_{\rm v,rot} = \frac{3}{2}R \quad S_{\rm rot}^{\circ} = \frac{R}{2}\left(3 - \ln\frac{\sigma\theta_{\rm rot,\alpha}\theta_{\rm rot,\beta}\theta_{\rm rot,\gamma}}{\pi T^3}\right)$$

Vibrational DOFs Harmonic oscillator model

Single harmonic mode $\theta_{\rm vib} = h\nu/k_B$

$$q_{\rm vib} = \frac{1}{1 - e^{-\theta_{\rm vib}/T}} \approx \frac{T}{\theta_{\rm vib}}, \quad T >> \theta_{\rm vib}$$

$$U_{\rm vib} = \qquad \qquad S_{\rm vib,i}^{\circ} =$$

$$R \frac{\theta_{\rm vib}}{e^{\theta_{\rm vib}/T} - 1} \quad R \left(\frac{\theta_{\rm vib}}{T} \frac{e^{\theta_{\rm vib}/2T}}{e^{\theta_{\rm vib}/T} - 1} \right)^2 \quad R \left(\frac{\theta_{\rm vib}/T}{e^{\theta_{\rm vib}/T} - 1} - \ln(1 - e^{-\theta_{\rm vib}/T}) \right)$$

Multiple harmonic modes $\theta_{vib,i} = h\nu_i/k_B$

$$q_{\text{vib}} = \prod_{i} \frac{1}{1 - e^{-\theta_{\text{vib},i}/T}}$$

$$U_{\text{vib}} = C_{\text{v,vib}} = S_{\text{vib},i}^{\circ} =$$

$$R \sum_{i} \frac{\theta_{\text{vib},i}}{e^{\theta_{\text{vib},i}/T} - 1} R \sum_{i} \left(\frac{\theta_{\text{vib},i}}{T} \frac{e^{\theta_{\text{vib},i}/2T}}{e^{\theta_{\text{vib},i}/T} - 1} \right)^{2} R \left(\frac{\theta_{\text{vib},i}/T}}{e^{\theta_{\text{vib},i}/T} - 1} - \ln(1 - e^{-\theta_{\text{vib},i}/T}) \right)$$

Electronic DOFs $q_{\text{elec}} = \text{spin multiplicity}$

XX. Lecture 18: Chemical kinetics

- A. Kinetics and reaction rates
 - 1. Rate: number per unit time per unit something
- B. Empirical chemical kinetics
 - 1. Rate laws, rate orders, and rate constants
 - 2. Arrhenius expression, $k = Ae^{-E_a/k_BT}$
- C. Reaction mechanisms
- D. Elementary steps and molecularity
- E. Collision theory—overpredicts rates
- F. Transition state theory (TST)
 - 1. Existence of reaction coordinate (PES)
 - 2. Existence of dividing surface
 - 3. Equilibrium between reactants and "transition state"
 - 4. Harmonic approximation for transition state
- G. Locating transition states computationally
- H. Thermodynamic connection
- I. (Skipped) Diffusion-controlled reactions
 - 1. Intermediate complex
 - 2. Steady-state approximation
 - 3. Diffusion-controlled limit $(k_D = 4\pi(r_A + r_B)D_{AB})$
 - 4. Reaction-controlled limit $(k_{app} = (k_D/k_{-D})k_r)$

XXI. Lecture 19: Conclusion

A. Do you think about the burning lighter any differently now?

Table 13: Equilibrium and Rate Constants

Equilibrium Constants $a A + b B \rightleftharpoons c C + d D$

$$K_{eq}(T) = e^{\Delta S^{\circ}(T,V)/k_{B}} e^{-\Delta H^{\circ}(T,V)/k_{B}T}$$

$$K_{c}(T) = \left(\frac{1}{c^{\circ}}\right)^{\nu_{c}+\nu_{d}-\nu_{a}-\nu_{b}} \frac{(q_{c}/V)^{\nu_{c}}(q_{d}/V)^{\nu_{d}}}{(q_{a}/V)^{\nu_{a}}(q_{b}/V)^{\nu_{b}}} e^{-\Delta E(0)\beta}$$

$$K_{p}(T) = \left(\frac{k_{B}T}{P^{\circ}}\right)^{\nu_{c}+\nu_{d}-\nu_{a}-\nu_{b}} \frac{(q_{c}/V)^{\nu_{c}}(q_{d}/V)^{\nu_{d}}}{(q_{a}/V)^{\nu_{a}}(q_{b}/V)^{\nu_{b}}} e^{-\Delta E(0)\beta}$$

Unimolecular Reaction $[A] \rightleftharpoons [A]^{\ddagger} \rightarrow C$

$$k(T) = \nu^{\ddagger} \bar{K}^{\ddagger} = \frac{k_B T}{h} \frac{\bar{q}_{\ddagger}(T)/V}{q_A(T)/V} e^{-\Delta E^{\ddagger}(0)\beta}$$

$$E_a = \Delta H^{\circ \ddagger} + k_B T \quad A = e^1 \frac{k_B T}{h} e^{\Delta S^{\circ \ddagger}}$$

Bimolecular Reaction $A + B \rightleftharpoons [AB]^{\ddagger} \rightarrow C$

$$k(T) = \nu^{\ddagger} \bar{K}^{\ddagger} = \frac{k_B T}{h} \frac{q_{\ddagger}(T)/V}{(q_A(T)/V)(q_B(T)/V)} \left(\frac{1}{c^{\circ}}\right)^{-1} e^{-\Delta E^{\ddagger}(0)\beta}$$
$$E_a = \Delta H^{\circ \ddagger} + 2k_B T \quad A = e^2 \frac{k_B T}{h} e^{\Delta S^{\circ \ddagger}}$$