(2) Japanese Patent Application Laid-Open No. 2003-8407 (2003)

"Comparator Capable of Compensating for Offset and D/A Converter Capable of Compensating for Offset".

The following is an extract relevant to relevant to the present invention:

It is an object of this invention to provide a comparator with a simplified structure which is capable of canceling an offset.

To attain the foregoing object, transistors N1 and N2 forming a differential pair, a current mirror load (P1, P2), a transistor P3 in an output stage, and a passage through which an output of the transistor P3 is fed back as a substrate bias, are provided. Then, control is given to provide negative feedback so that currents respectively flowing through the transistors N1 and N2 are balanced with each other.

10

5

(19)日本国特許庁 (JP)

(12)公開特許公報 (A)

(11)特許出願公開番号 特開2003—8407

(P2003-8407A)

(43)公開日 平成15年1月10日(2003.1.10)

(51)Int.Cl. 7

識別記号

FΙ

テーマコート

H03K 5/08

HO3M 1/10

H03K 5/08

B 5J022

HO3M 1/10

B 5J039

審査請求 有 請求項の数8 0L (全12頁)

(21)出願番号

特願2001-190149(P2001-190149)

105821

(王北)

(22)出顧日

平成13年6月22日(2001.6.22)

(71)出願人 000005821

松下電器産業株式会社

大阪府門真市大字門真1006番地

(72)発明者 森 宏一

大阪府門真市大字門真1006番地 松下電器

産業株式会社内

(74)代理人 100105050

弁理士 鷲田 公一

Fターム(参考) 5J022 AB01 AB02 BA03 CA07 CB04

CB06 CE01 CE05 CE08 CF01

CF02 CG01

5J039 DA05 DC05

(54) 【発明の名称】オフセット補償機能付きコンパレータおよびオフセット補償機能付きD/A変換装置

(57)【要約】

【課題】 オフセットキャンセル機能をもつ、構成 が簡素化されたコンパレータを提供すること。

【解決手段】 差動対をなすトランジスタN1,N2 と、カレントミラー負荷 (P1,P2)と、出力段トランジスタP3と、トランジスタP3の出力を、トランジスタN1の基板パイアスとして帰還させる経路と、を設ける。基板パイアス効果を利用して、トランジスタN1,N2のそれぞれを流れる電流をパランスさせるように、負帰還制御を行う。

1

【特許請求の範囲】

【請求項1】 通常動作モードとオフセットキャンセル モードとを切り換えることができる、半導体基板に集積 されたコンパレータであって、

差動対をなすトランジスタと、

前記オフセットキャンセルモードのときにのみ、前記差 動対をなすトランジスタのゲート電位を同じにするため の回路と、

この差動対をなすトランジスタの負荷として動作するカ レントミラーと、

このカレントミラーのシングルエンド出力を受ける第1 のトランジスタと、この第1のトランジスタとは逆の導 電型である第2のトランジスタとを含む出力段回路と、 前記オフセットキャンセルモードのときにのみ、前記第 1のトランジスタのゲートとドレインの間に接続される 位相觀整回路と、

前記オフセットキャンセルモードのときにのみ、前記出 力段回路の出力端の電圧を、前記差動対をなすトランジ スタのうちの、入力信号を受けるトランジスタの基板に 与えるための経路と、

この経路を介して前記入力信号を受けるトランジスタの 基板に与えられる電圧を、前記オフセットキャンセルモ ードが解除された後も保持する容量素子と、

を有することを特徴とするオフセット補償機能付きコン パレータ。

【請求項2】 請求項1において、

前記差動対をなすトランジスタの電流能力にあらかじめ オフセットが与えられていることを特徴とするオフセッ ト補償機能付きコンパレータ。

【請求項3】 D/A変換器と、このD/A変換器の出 30 力電圧を基準電圧と比較する、請求項1記載のオフセッ トキャンセル機能付きコンパレータと、このコンパレー タの出力に基づき、前記D/A変換器の入力と出力のオ フセットを補償するオフセット補償回路と、を有するこ とを特徴とするオフセット補償機能付きD/A変換装 置。

【請求項4】 シングル入力/差動出力タイプのD/A 変換器と、このD/A変換器の差動出力をシングル出力 に変換する差動/シングル変換回路と、この差動/シン グル変換回路の出力電圧を基準電圧と比較する、請求項 40 1記載のオフセットキャンセル機能付きコンパレータ と、このコンパレータの出力に基づき、前記D/A変換 器の入力と出力のオフセットを補償するオフセット補償 回路と、を有することを特徴とするオフセット補償機能 付きD/A変換装置。

【請求項5】 請求項4において、

負帰還制御ループの追従能力を可変としたことを特徴と するD/A変換装置。

【請求項6】 シングル入力/差動出力タイプのD/A

するスイッチドキャパシタフィルタと、このスイッチド キャパシタフィルタから出力される差動出力をシングル 出力に変換する差動/シングル変換回路と、この差動/ シングル変換回路の出力電圧を基準電圧と比較する、請 **求項1記載のオフセットキャンセル機能付きコンバレー** タと、このコンパレータの出力に基づき、前記D/A変 換器の入力と出力のオフセットを補償するオフセット補 償回路と、を有することを特徴とするオフセット補償機 能付きD/A変換装置。

10 【請求項7】 請求項3~請求項6のいずれかに記載の D/A変換装置を、無線送信信号の同相成分および直交 成分のデータをアナログ信号に変換するD/A変換器と して使用することを特徴とする無線送信機。

【請求項8】 請求項3~請求項6のいずれかに記載の D/A変換装置における前記D/A変換器の入出力オフ セットを補償する方法であって、

前記コンパレータをオフセットキャンセルモードに切り 換え、負帰還制御により、前記差動対をなすトランジス タのうちのいずれかのトランジスタの基板パイアスを制 20 御することにより、前記コンパレータのオフセットをキ ャンセルするステップと、

前記コンパレータを、通常動作モードに戻すステップ

前記コンパレータに内蔵されている前記容量素子によ り、前記オフセットキャンセル用のパイアス電圧が保持 されている期間内に、前記D/A変換装置において、前 記D/A変換器の入出力オフセットキャンセルのための 負帰還制御を完了させるステップと、

を含むことを特徴とする、D/A変換器の入出力オフセ ット補償方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、オフセット補償機 能付きコンパレータおよびオフセット補償機能付きD/ A変換装置に関する。

[0002]

【従来の技術】CDMA送信機では、QPSK変調され たI(正相)、Q(直交)各々の信号をD/A変換し て、アンテナに送り出す。D/A変換器の入力値と出力 電圧は一致しているのが理想であるが、実際には、種々 の要因で、入出力オフセットが生じる。

【0003】 I信号, Q信号の各々に対応するD/A変 換器の間で、オフセット量が異なっている(つまり、2 つのD/A変換器の入出力特性が異なっている)と、 I, Qの各信号の位相がずれて送信誤差となる。

【0004】よって、D/A変換器の入出力オフセット をキャンセルして、D/A変換器の特性を揃える必要が ある。

【0005】D/A変換器の入出力オフセットをキャン 変換器と、このD/A変換器の差動出力の各々を入力と 50 セルするためには、まず、オフセット量を測定する必要

があり、このためにコンパレータ (電圧比較器) が用い られる。

【0006】そして、このコンパレータによる比較結果 に基づいて、オフセットを補償するための制御信号を得 て、D/A変換器のオフセットをキャンセルする。

【0007】このような、D/A変換器の入出力オフセ ットをキャンセルするための構成は、例えば、特開平1 1-234130号公報に記載されている。

[0008]

A変換器の入出力オフセットをキャンセルするために は、オフセット量をコンパレータで測定する必要があ る。正しくオフセット量を測定するためには、当然のこ とながら、コンパレータ自体のオフセットが、所定の範 囲内に収まっている必要がある。

【0009】コンパレータ(電圧比較器)は、差動増幅 器を主体として構成される。差動増幅器は、左右の電流 能力がバランスするように設計されるが、実際に差動増 幅器を構成するトランジスタのサイズのばらつき等に起 因して、オフセットが生じるのが通常である。

【0010】本発明者の検討によると、コンパレータの オフセット量は、かなりばらつき、ときには、許容範囲 を大きく逸脱する場合もあることがわかった。

【0011】このような許容範囲を超えるオフセットを もつコンパレータを用いて、D/A変換器の入出力オフ セットを調整した場合(つまり、負帰還制御によるD/ A変換器のオフセットキャンセルを実行した場合)、本 来なら、オフセットが数mVに収まるはずのものが、依 然として20mV以上のオフセットが残っている場合も あることが確認された。

【0012】このような問題をなくすには、D/A変換 器の入出力オフセットのキャンセルに先立ち、そのため に使用されるコンパレータのオフセット(左右の電流能 力のオフセット)をキャンセルする必要がある。

【0013】しかし、現実には、コンパレータのオフセ ットキャンセルだけのためだけに、専用回路を設けるこ とは、半導体装置 (IC) の占有面積の増大防止の観 点、あるいは低消費電力の要請などからみて、困難であ る。

【0014】本発明はこのような問題に着目してなされ 40 たものであり、その目的は、オフセットを自動的に調整 するオフセットキャンセル機能をもつ、簡易な構成のコ ンパレータを実現すること、ならびに、これを用いて、 D/A変換器のオフセットを高精度に調整することにあ る。

[0015]

【課題を解決するための手段】本発明のコンパレータで は、通常動作モードとオフセットキャンセルモードとを 切り換えることができるようにする。

負荷としてカレントミラーを使用し、また、カレントミ ラーのシングルエンド出力を出力段トランジスタで受け てコンパレータ出力を得るようになし、そして、オフャ ットキャンセルモード時には、そのコンパレータの出力 電圧を、差動対をなすトランジスタのうちの、受信信号 を受ける側のトランジスタの基板パイアスとして供給す る (フィードバックする) ようにする。

【0017】差動対をなすトランジスタ(差動対トラン ジスタ:入力段トランジスタ)を流れる電流の量にアン 【発明が解決しようとする課題】上述したように、D/ 10 パランスがあると、そのオフセット分だけカレントミラ 一の出力端の電位が変動し、その変動分が、出力段トラ ンジスタで反転され、その結果、差動対をなすトランジ スタの基板電位が変化する。基板電位が変化すると、基 板パイアス効果により、そのトランジスタのしきい値電 圧が変化し、その結果、そのトランジスタを流れる電流 量が変化する。

> 【0018】このようにして、ネガティブフィードバッ クループが構成され、ほとんど余分な素子を付加するこ となく、きわめて簡素化された構成でもって、コンパレ 20 ータのオフセットキャンセルが可能となる。

【0019】ただし、基板パイアスを正方向および負方 向に変化させている途中で、寄生ダイオードがオンして しまうと、そのダイオードの定電圧特性により基板電圧 がクランプされてしまい、所望の基板バイアスを与える ことができないという事態が生じる。

【0020】よって、これを防止するため、予め、差動 対をなすトランジスタのサイズを異ならせて、初期状態 において左右の電流能力にオフセットを意図的に与えて おくことにより、基板パイアスのダイナミックレンジ が、寄生ダイオードがオンしない範囲におさまるように する。これにより、寄生ダイオードのオンを確実に防止 することができる。

【0021】このような、簡素化された構成のオフセッ トキャンセル機能付きコンパレータを用いて、D/A変 換器のオフセットキャンセルを実施すれば、きわめて高 精度なオフセット調整をすることが可能となる。

[0022]

【発明の実施の形態】 (実施の形態1) 図1は、本発明 のオフセットキャンセル機能付きコンパレータの構成の 一例を示す回路図である。

【0023】図示されるように、差動対をなすトランジ スタN1,N2と、カレントミラーを構成する負荷トラ ンジスタ P 1, P 2 と、ブッシュブル構成の出力段回路 を構成する出力段トランジスタP3, N4と、定電流源 トランジスタN3と、位相調整回路410(位相調整抵 抗Rc,位相調整容量Ccと、オフセット調整時にオン 状態となるスイッチS2からなる)と、コンデンサ(容 量素子) C1と、スイッチS1,スイッチS3と、を具 備する。

【0016】このコンパレータは、差動トランジスタの 50 【0024】図中、NはN型MOSトランジスタを意味

し、PはP型MOSトランジスタを意味する。VDDは 電源電圧(例えば3V)であり、VSSは回路の最低電 位(GND)である。

【0025】スイッチS1~S3は、通常動作モード と、オフセット調整モードとを切り換えるために設けら れている。

【0026】スイッチS3は、通常動作時にはa端子側 に切り換えられ、オフセットキャンセルモードのときに はり端子側に切り換えられる。同様に、スイッチS1 は、通常動作時にはa端子側に切り換えられ、オフセッ 10 トキャンセルモードのときにはb端子側に切り換えられ

【0027】スイッチS2は、オフセットキャンセルモ ードにおいてオンし、コンパレータとしての通常動作時 にはオフする。オフセットキャンセルのための負帰週制 御では、制御信号がリニアに変化する必要がある。よっ て、オフセットキャンセル時には、位相調整回路410 をアクティブとして、コンパレータをオペアンプとして 動作させる。

【0028】図1の回路のうち、差動対をなすトランジ スタN1, N2の、半導体デバイスの断面構造を図2に 示す。

【0029】図示されるように、2重のウエル構造が採 用され、P型基板11中にN型ウエル12が形成され、 そのN型ウエル中にP型ウエル14,16が形成され、 各P型ウエル14, 16中に、ソース・ドレイン層 (1 8,20,22,24)が形成されている。

【0030】左側がトランジスタN1であり、右側がト ランジスタN2である。トランジスタN1の基板パイア スというときは、図2では、P型ウエル14の電圧を意 30

 $V t h = 2 \phi_i + \{2 \varepsilon_i q N_i (2 \phi_i + V_{ij})\}^{1/i} / C i \cdots (1)$

ここで、 ϕ_1 は基板のポテンシャルであり、 ϵ_1 はシリコ ンの誘電率であり、qは単位電荷であり、N.は基板の 不純物濃度であり、V.,は基板とソースの電位差であ り、Ciはゲート容量を示す。

【0037】結局、しきい値電圧Vthは、ソース電位 V.: (すなわち、基板を基準としたソースの電位) に依 存し、この値が大きくなるほど、しきい値電圧(反転電 圧) Vthは増大する。

上昇させることと、ソース電位を固定して基板電位を低 下させることは等価であり、どちらも、基板電位からみ たソース電位を上昇させることであり、この場合には、 上述の(1)式から、しきい値Vthは上昇することに なる。

【0039】以下、オフセットの自動調整動作を説明す

【0040】まず、スイッチS1をb側に接続し、か つ、スイッチS2をオンして位相調整回路410をアク ティブとする。

味する。また、後で説明するように、本来は、トランジ スタN1のサイズはトランジスタN2のサイズよりも大 きく設定されるのであるが、図2では、図面の複雑化を さけるために、どちらも同じサイズとして描いている。 【0031】以下、図1のコンパレータについての、オ フセット調整時の動作を説明する。

【0032】なお、差動対をなすトランジスタ(差動ト ランジスタ、入力段トランジスタ)のチャネルコンダク タンス(W/L)は、寄生ダイオード10がオンするこ とを防止するために、例えば、2:1に設定されている のであるが(この点は後述する)、カレントミラー負荷 を使用している以上、チャネルコンダクタンスの違いに 関係なく、差動回路の左と右の電流量は、理論値として は1:1になる。

【0033】図示されるように、スイッチS1はb端子 側に切り換えられ、これにより、差動対トランジスタN 1,N2のゲート電圧VIN,VIPは、基準電圧Vr efに固定される。

【0034】上述のように、差動回路の左側と右側の電 流量は理論値では同じであるが、実際は、種々の要因に より、アンパランスが生じる。本発明によれば、このア ンパランスが解消される方向に自動的に調整される。こ の調整は、MOSトランジスタの基板バイアスを変化さ せることにより実現される。

【0035】具体的な説明に入る前に、MOSトランジ スタのしきい値電圧Vthと、基板パイアスとの関係に ついて説明する。

【0036】NMOSトランジスタのしきい値電圧Vt hは、下記(1)式のように表される。

【0041】以下の説明では、前提条件として、VIN =VIP、トランジスタP1とP2が同特性、トランジ スタN1とN2が同特性であるものとする。

【0042】本発明の場合、トランジスタN1の基板電 位は固定されていない。よって、初期状態では、トラン ジスタN1の基板電位が決まっておらず、不安定な状態 である。

【0043】仮に、トランジスタN1の基板電位がトラ 【0038】ここで、基板電位を固定してソース電位を 40 ンジスタN2の基板電位より低いとすると、上述の説明 のように、トランジスタN1のしきい値電圧Vthが高 くなり、トランジスタN1の電流能力が低くなる。この 状態は、オペアンプの反転入力VINに非反転入力VI Pより低い電圧を与えた状態と同じである。ここで、図 1の回路は、通常のオペアンプ出力を、PMOSトラン ジスタP3によるインパータを介して出力する構成をと るので、通常のオペアンプと入力関係が逆になってお り、VINが反転入力であり、VIPが非反転入力であ る点、注意を要する。

【0044】オペアンプの反転入力VINに非反転入力

8

VIPより低い電圧を与えた状態となると、図1のオペアンプ(位相調整回路410をオンさせているので、コンパレータとしてではなく、オペアンプとして機能する)の出力電圧Voutは、上昇する。現在、スイッチS1はり側に切り換えられているから、出力電圧Voutは、そのまま、トランジスタN1の基板電位となる。すなわち、トランジスタN1の基板電位が上昇する。この動作を繰り返し、結局、トランジスタN1の基板電位は、トランジスタN2の基板電位と同じになり安定する。この動作は、VIN=VIPの条件下で、差動回路 10の左側の系(P1-N1の系)と右側の系(P2-N2の系)が同一特性になるように、トランジスタN1の基板電位が調整されることを意味する。

【0045】しかし、実際には、上述したように、差動 回路の左右の系は、トランジスタの製造ばらつきに起因 して同特性とはならず、オフセットが生じる。ここでは、トランジスタN1の方が、トランジスタN2よりも 電流能力が高くなった場合を想定し、説明する。

【0046】トランジスタN1がトランジスタN2より も電流能力が高い状態は、反転入力VINに非反転入力 20 VIPより高い電圧を与えた状態と同じである。

【0047】すなわち出力電圧Voutは低くなり、トランジスタN1の基板電位は低下する。トランジスタN 1の基板電位がトランジスタN2の基板電位より低いとすると、トランジスタN1のVthが高くなり、トランジスタN1のVthが高くなり、トランジスタN1の電流能力が低くなる。

【0048】このような負帰還動作が繰り返えされて、 結局、トランジスタN1とN2が同一特性となったとき に安定する。このことは、VIN=VIPの条件下で、 差動回路の左右の系が同一特性になるように、トランジ 30 スタN1の基板電位が調整されることを意味する。

【0049】次に、カレントミラーを構成するトランジスタP1がP2よりも電流能力が低くなった場合を想定する。

【0050】トランジスタP1がP2よりも電流能力が低い場合、トランジスタP1のドレイン電圧は、トランジスタP2のドレイン電圧より低くなる。すなわち、トランジスタN1のドレイン電圧が、トランジスタP2のドレイン電圧より低い状態である。この状態は反転入力VINに、非反転入力VIPより高い電圧を与えた状態と同じである。

【0051】すなわち、出力電圧Voutは低くなり、トランジスタN1の基板電位が低くなる。トランジスタN1の基板電位がトランジスタN2の基板電位より低いとすると、トランジスタN1のしきい値Vthが高くなり、トランジスタN1の電流能力が低くなる。

【0052】トランジスタN1の電流能力が低くなるまう点である。と、トランジスタN1のドレイン電圧、すなわちトランジスタP1のドレイン電圧が高くなる。この動作を繰りOSトラン返し、トランジスタP1とP2、トランジスタN1とN 50 てしまう。

2がそれぞれ異なった特性をもつが、結局、VIN=VIPの条件下で、差動回路のP1-N1の系とP2-N2の系が同一特性になるようにN1の基板電位が調整されることを意味する。以上の説明では、VIN=VIPを条件としているため、結局、VIN=VIPのとき、オフセット(差動回路の左右の電流オフセット)が0となるように調整される。

【0053】ここで、さらに、 $VIN=VIP+\alpha$ という条件を与えた場合について考察する。この場合、 $VIN=VIP+\alpha$ の条件下で差動回路のP1-N1の系と P2-N2の系が同一特性になるように、トランジスタ N1の基板電位が調整される。これは、 $VIN=VIP+\alpha$ のとき、オフセット0となるようにできるということである。

【0054】この状態で、図1のように、強制的にVIN=VIPにした場合を考える。本来なら、VINはVIPよりも α だけ高くなければならないから、VIN=VIPの状態は、 α 分だけVINが低い状態であることになる。

0 【0055】反転入力VINが $-\alpha$ ならば、出力電圧V $outは+\alpha$ を発生する。つまり、 $+\alpha$ 分のオフセットを持たせることができる。

【0056】逆に、 $VIN-\alpha=VIP$ という条件を与えた場合において、強制的にVIN=VIPとすると、反転入力VINは α だけ高いことになるから、出力電圧Voutは $-\alpha$ を発生させる。

【0057】本発明では、このような、初期状態から意図的にオフセットを与える手法を積極的に利用する。すなわち、トランジスタN1のサイズをN2のサイズよりも大きく設計し、最初から、電流能力に差を与えておき、これにより、寄生ダイオードのオンを防止して、基板パイアスを正方向,負方向のどちらにも振れるようにする。トランジスタN1のサイズをN2のサイズよりも大きく設計することは、上述の、VIN $-\alpha=VIP$ という条件下で、強制的にVIN=VIPとし、出力電圧Voutに強制的に $-\alpha$ のオフセットを初期状態から与えることを意味する。

【0058】以下、この点について説明する。

ドレイン電圧より低い状態である。この状態は反転入力 【0059】ここで、電流のアンパランスを調整するた VINに、非反転入力VIPより高い電圧を与えた状態 40 めに、入力段トランジスタN1の基板電位が上昇した場 と同じである。 合を考える。

【0060】このとき、基板とソース間に介在する寄生ダイオード10がオンしてしまうと、ソース電位 (VK) にダイオード10の順方向電圧 (VF) を加えた電圧 (VK+VF) でもって、基板電位がクランプされてしまい、それ以上の基板電位の上昇が不可能になってしまう点である。

【0061】これでは、基板パイアス効果を利用したM OSトランジスタの電流調整能力が不完全なものとなっ てしまう。

【0062】このような事態が生じるのを防止するた め、本実施の形態では、入力段トランジスタN1とN2 のサイズを、例えば、2:1に設定している。

【0063】トランジスタN1の方が電流能力が高いと いうことは、トランジスタN2に比べて低いゲート電圧 でもって、同量の電流を流すことができるということで あるから、トランジスタN1の入力電圧VINと、他方 のトランジスタVIPの入力電圧VIPとの間に、VI $N-\alpha=VIP$ (α は初期オフセット電圧)という初期 条件を与えたことになる。

【0064】この場合には、上述のとおり、出力電圧V outには、-αの電圧オフセットが発生する。このオ フセット電圧がトランジスタN1の基板パイアスとなる から、初期状態において、トランジスタN1の基板パイ アスは、トランジスタN1とN2のサイズを同じとした 場合に比べて、一α分だけ、絶えず、低くなるように帰 **遠を受けていることになる。**

【0065】つまり、NMOSトランジスタN1の基板 電位は、当初から低下する方向 (マイナスの方向) にの み帰還が働くことになる。よって、NMOSトランジス 20 タN1の基板電位VA(すなわち、寄生ダイオード10 のアノード電位)は、ソース電位(寄生ダイオード10 のカソード電位) よりも上昇しないため、寄生ダイオー ド10は、決してオンしない。

【0066】基板電位(VA)とソース電位(VK)、 ならびにクランプ電位の相互の関係を図3に示す。

【0067】図3の左側に示されるのが、初期オフセッ ト (α) を与えない場合の基板パイアスの変化を示す。 基板パイアスが上昇すると、クランプ電位VC(VK+ VF)でクランプされてしまい、それ以上の変化は不可 30 能となる。

【0068】一方、初期オフセット(α)を与えた場合 には、その分だけ、当初から基板電位が、マイナス側に VQ (上述の-α分の電圧に相当) だけシフトするか ら、基板パイアスがダイナミックレンジいっぱいに振れ たとしても、寄生ダイオード10はオンせず、基板パイ アスがクランプされることはない。つまり、寄生ダイオ ードによるクランプの危険性がないため、常に、適正な 負帰還制御による基板パイアスの調整(帰還信号のダイ ナミックレンジ)が確保されることになる。

【0069】なお、図1のコンデンサC1は、NMOS トランジスタN1の基板パイアスが、ソース電位や、あ るいはNMOSトランジスタN2の基板電位に影響を与 えるのを防止する直流カットコンデンサとして機能する と共に、オフセット調整が終わって、スイッチS1がa 端子側に切り換えられた後も、少なくとも所定の時間 は、NMOSトランジスタN1の基板に、調整された電 圧を与えつづけるための保持コンデンサとしても機能す

タをPMOSトランジスタで構成したコンパレータを示 す。図1の回路とトランジスタの導電型が逆になってい るが、基本的な動作は、同じである。

【0071】(実施の形態2)本実施の形態では、前掲 の実施の形態のオフセットキャンセル機能をもつコンバ レータを用いて、CDMA送信機に含まれるD/A変換 器の入出力オフセットをキャンセルする。

【0072】図5 (a) は、D/A変換器のオフセット をキャンセルするための回路構成を示す回路図である。 図5(b)は、CDMA送信機の要部の構成を示すプロ 10 ック図である。

【0073】図5 (b) に示すように、CDMA送信機 では、拡散変調器300から出力されるI (同相)、Q (直交)2系統の送信データをそれぞれ、D/A変換器 500a, 500bでアナログ信号に変換し、QPSK 変調器600、送信回路700を経て、アンテナ710 から信号が送信される。

【0074】このとき、I,Qの2系統の信号それぞれ に位相誤差を生じさせないためには、2つのD/A変換 器500a,500bの入出力特性が正確に一致してい る必要がある。

【0075】そこで、図5(a)に示すような負帰還回 路を用いて、D/A変換器500a,500bのそれぞ れの入出力オフセットをキャンセルし、双方のD/A変 換器の入出力特性を一致させる。

【0076】ここで、コンパレータとして、前掲の実施 の形態で説明したオフセット調整 (補償) 機能付きコン パレータ400を使用する。D/A変換器のオフセット をキャンセルするのに先立ち、コンパレータ400の入 力段に設けられているスイッチS3をa端子側に切り換 えて、左右の電流オフセットをキャンセルする。

【0077】次に、スイッチS3をb側に切り換える。 このとき、同時に、図1のスイッチS1もa側に切り換 えられ、また、スイッチS2は開放される。

【0078】以後、図1の回路のコンデンサC1に、翻 整電圧が保持されてコンパレータのオフセットがキャン セルされている期間内において、D/A変換器500a (500b) の入出力オフセットをキャンセルするため の動作が実施される。

【0079】つまり、D/A変換器の入出力にオフセッ トがある場合には、そのオフセットを打ち消すような補 正値が、補正値生成回路411から出力され、加算器4 20において、その補正値が入力信号に与えられる。

【0080】以下、その動作の概要を説明する。

【0081】最初、加算器420に、例えば、1.7V の直流信号に相当するデータを入力する。このとき、

1.7 Vのデータ入力と同期して、カウンタ412がア ップカウントを開始する。ラッチ回路414は、コンパ レータ400の出力信号がローレベルに反転するまでの 【0070】図4は、入力段の差動対をなすトランジス 50 間、カウンタ412から出力されるカウント値をそのま

20

ま、加算器420に与える。

【0082】当初、加算器に当初与えられる補正値は "0"であるため、1.7Vの入力は、D/A変換器5 00a(500b)にそのまま与えられる。

【0083】D/A変換器500a (500b) の変換 出力は、ポルテージホロワ401でインピーダンス変換 されて、コンパレータ400の反転端子に与えられる。 コンパレータ400の非反転端子には基準電圧Vェef (ここでは2∨とする) が与えられている。非反転端子 の電位の方が高いため、コンパレータ400の出力はハ 10 イレベルであり、ゆえに、カウンタ412のカウント値 は加算器420に与えられ、入力信号に加算される。

【0084】同様な動作が繰り返され、D/A変換器5 00a (500b) の出力がVref (2V) を超える と、コンパレータ400の出力はローレベルに反転し、 これにより、カウンタ412はリセットされ、また、そ の時点のカウンタ出力がラッチ414に保持される。

【0085】この結果、D/A変換器500a(500 b) の入力および出力は、ともに、Vref (= 2 v) に統一され、オフセットがキャンセルされる。

【0086】 (実施の形態3) 図6は、本実施の形態の D/A変換器のオフセットをキャンセルする回路の構成 を示す回路図である。

【0087】基本的な動作は、図5と同様である。ただ し、本実施の形態では、補正値生成回路430におい て、加減算回路432を使用している。当初、スイッチ S4は、b端子側に接続される。

【0088】ここでは、加算器420の入力として、コ ンパレータ400の基準電圧Vrefと同じ、2Vの直 流電圧に相当するデータを与える。加減算回路から出力 30 される補正値の初期値は"0"である。

【0089】コンパレータ400において、基準値Vェ ef (=2V)と入力信号の大小を判定し、入力信号の 方が大きければ、加減算回路432で、一定値(所定の ステップ幅に相当する値)の減算を行う。逆に、入力信 号の方が小さければ、加減算回路432で、一定値の加 算を行う。

【0090】このようにして、D/A変換器500a (500b)の入出力特性に存在するオフセットを補償 するべく、ループが回っていくのであるが、入力と出力 40 が一致するようになると(帰還値が基準値に収束した状 態となると)、コンパレータ400の出力はハイ/ロー の出力を交互に繰り返すようになる。

【0091】この状態となったときに、スイッチS4を a端子側に切り換え、ラッチ434に保持されている補 正値を、加算器420に供給する。これにより、D/A 変換器500a (500b) の入力および出力は、Vr ef(=2V)に揃えられる。これにより、入出力オフ セットはキャンセルされる。

【0092】図6の構成では、アップカウンタ(あるい 50 【0100】その出力値をコンパレータ400で基準電

はダウンカウンタ)を使用している。よって、あらかじ め、入力信号の値とコンパレータの基準値 (Vref) との間にオフセットを設け、オフセットをキャンセルす る方向を、加算かあるいは減算の一方向に決める必要が ある。このとき、初期条件として入力信号に与えるオフ セットは、実際に発生するD/A変換器のオフセットよ りも十分マージンを持って決める必要がある (つまり、 十分マージンをとって入力信号の初期値を決めなければ ならない)という制約があった。これに対し、本実施の 形態の構成なら、そのような制約がないので、使い勝手 がよい。

【0093】 (実施の形態4) 図7は本発明の実施の形 態4に係る、D/A変換器のオフセットキャンセラーの 構成を示す回路図である。

【0094】本実施の形態でも、基本的な動作は前掲の 実施の形態と同じである。ただし、本実施の形態では、 D/A変換器500a (500b) を差動出力する構成 とする。そして、その差動出力を、差動/シングル変換 回路510でシングル出力に戻す。

【0095】このような構成とすると、D/A変換出力 のダイナミックレンジは2倍に拡大されるため、オフセ ットを調整する(キャンセルする)精度も2倍となる。 この分解能をそのまま利用するために、ラッチも90 2, 904の2つを設け、また、D/A変換器500a (500b)の前段には、加算器906または減算器9 08を設け、これらの加算器,減算器は、各々正相側あ るいは逆相側のみ演算を行い、もう一方は演算を行わな い。このような構成により、D/A変換部のビット精度 の2倍の精度で、D/Aコンパータ全体のオフセットキ ャンセルを行うことができる。

【0096】ただし、分解能が2倍になると、1回あた りのステップ変化が細かくなる分、負帰還ループ制御に よる追従速度が遅くなるため、当初は、スイッチS4、 S5をa側に倒して、通常の速度でループを回してい き、収束に近づいた時点で、スイッチS4,S5をb端 子側に切り換え、高分解能の負帰還制御を行わせる。 【0097】以下、具体的に説明する。

【0098】まず、入力にはデジタル信号として所望の 値を入力する。その値は後に波形出力する際の基準とな る値を入力する。通常は出力したい波形の中心値を入力 する。その値は正相側で加算器、逆相側で減算器を通る が、初期段階ではスイッチS4をa側に切り換え、加減 算回路900と接続する。

【0099】初期値は所望の値でよいが通常は0に設定 する。そのため、加算器906及び減算器908から は、1回目は入力値がそのまま出力される。その出力値 はD/A変換器500a (500b) と、差動/シング ル変換回路510を通り、出力にはオフセットが発生す

位(想定値)と比較し、想定値より高いか低いか判定して出力する。その出力が高いと判断した場合、加減算回路900で、ある一定値分の減算を行う。出力が低いと判断した場合は逆にある一定値分の加算を行う。

【0101】加算及び減算を行うタイミングは、一定のタイミングで行う。加減算回路の出力はスイッチS4を介して加算器によりデジタル入力値と加算される。この動作を繰り返し、比較器はオフセットキャンセルされた時点から出力が"日"、"L"を繰り返し加減算回路で加減算を繰り返しほぼ一定値となる。この状態でD/A 10コンパータの出力はオフセットがキャンセルされた状態となる。

【0102】しかしこの状態では、まだD/A変換部の ピット精度のオフセットキャンセルしかされない。

【0103】そこで、スイッチS4,S5をa側に切り換える。そして、この状態の加減算回路900の出力を、逆相側のラッチ(902,904)に取り込み、スイッチS4をラッチ出力に接続することで、オフセットをキャンセルする値が保持され、減算器908により減算される。正相側はさらにオフセットキャンセル動作を20続けD/A変換部のピット精度の2倍のオフセットキャンセル動作を行う。

【0104】この構成を取れば、D/A変換部のピット 精度の2倍のオフセットキャンセルが行えると共に、オ フセットキャンセル時間を短縮できる。

【0105】(実施の形態5)図8は、本実施の形態にかかる、D/A変換器のオフセットをキャンセルする回路の構成を示す回路図である。

【0106】前掲の実施の形態の回路と、構成はほとん をキャンセルする。これによりと同じである。ただし、図8では、D/A変換器500 30 MA送信を行うことができる。 a (500b) のポストフィルタとして、スイッチドキャバシタフィルタ (SCF) 912, 914を使用して キャンセル機能付きのコンパレいるのが特徴である。 コンパレータのオフセットが小

【0107】フィルタの特性は、負帰還ループのゲインを決定することになるため、ともすすると、フィルタの応答が鈍いために、負帰還制御において所望の速度が確保できない場合も想定される。このような場合には、SCFであれば、使用するクロックを高速クロックに切り換えるだけで、簡単にフィルタ特性を変化させることができ、便利である。

【0108】図8の回路では、まず、SCF912,914の動作周波数を高く設定しておく。SCFの特性上、動作周波数を高くすると遅延時間が小さくなるのでD/A変換部から出力の間の遅延時間が小さくなる。そのような状態でD/A変換器のオフセットキャンセル動作を行う。通常はLPFの挿入により、オフセットキャンセル時間が長くなるのであるが、SCFの高速動作により、このような問題は生じない。オフセットキャンセル完了後は、SCFの動作周波数を元に戻し、所望の周波数特性を持つLPFとして使用する。

【0109】以上、説明したD/A変換器のオフセット キャンセルのための動作の、共通の特徴をまとめると、 図9のようになる。

【0110】すなわち、まず、コンパレータをオフセット調整モードに切り換え、負帰退制御によりトランジスタの基板パイアスを制御し、コンパレータのオフセットをキャンセルする(ステップ1200)。

【0111】次に、コンパレータを、通常動作モードとする(ステップ1300)。通常動作モードになっても、しばらくの間は、コンデンサに保持される電圧により、基板パイアスは維持され、コンパレータのオセット無し状態は、その期間中は、維持される。

【0112】次に、コンパレータのオフセット無し状態が維持されている期間内に、送信器におけるI,Qそれぞれの信号に対応したD/A変換器に関して、オフセットキャンセラーをアクティブにし、負帰還制御を用いて、D/A変換器のオフセットをキャンセルする(ステップ1400)。これにより、2つのD/A変換器の特性を合致させる。

【0113】その後、各D/A変換器に関し、オフセットキャンセラーをオフさせ、通常動作モードとし (ステップ1500)、送信データを入力して、D/A変換を行わせる (ステップ1600)。

【0114】以上説明したコンパレータおよびD/A変換器のオフセットをキャンセルするための回路は、すべて、一つの半導体基板に集積されている。そして、ICのテストを行う段階のみならず、ICのユーザーによる実使用時にも、適宜、上述の回路動作によりオフセットをキャンセルする。これにより、位相誤差のない、CDMA送信を行うことができる。

【0115】なお、上述の実施の形態では、オフセットキャンセル機能付きのコンパレータを使用しているが、コンパレータのオフセットが小さいのであれば、図10~図13のように、普通のコンパレータ(オフセットキャンセル機能無し)を使用してもよい。

[0116]

【発明の効果】以上説明したように本発明によれば、オフセットを自動的に調整するオフセットキャンセル機能をもつ、簡易な構成のコンパレータを実現することができる。また、このコンパレータを用いて、D/A変換器のオフセットをキャンセルするための処理を行うことにより、誤差の少ない調整が可能となる。また、オフセットキャンセル時間も短縮でき、さらに、ICの設計のしやすさ(設計の自由度)も向上する。

【図面の簡単な説明】

50

【図1】本発明のオフセットキャンセル機能付きコンパレータの構成の一例を示す回路図

【図2】図1のコンパレータが集積された半導体集積回路装置における、差動対をなすトランジスタのデバイス 断面構造を示す断面図 【図3】図1のコンパレータにおいて、基板パイアスが クランプされない理由を説明するための図

【図4】本発明のオフセットキャンセル機能付きコンパ レータの構成の他の例を示す回路図

【図5】(a) D/A変換器のオフセットキャンセラー の構成の一例を示す回路図

(b) CDMA送信機の要部の構成を示すブロック図

【図6】D/A変換器のオフセットキャンセラーの構成 の他の例を示す回路図

【図7】D/A変換器のオフセットキャンセラーの構成 10 の他の例を示す回路図

【図8】D/A変換器のオフセットキャンセラーの構成 の他の例を示す回路図

【図9】D/A変換器のオフセットをキャンセルするた

めの基本的な動作手順を示すフロー図

【図10】D/A変換器のオフセットキャンセラーの変形例を示す回路図

16

【図11】D/A変換器のオフセットキャンセラーの変形例を示す回路図

【図12】D/A変換器のオフセットキャンセラーの変形例を示す回路図

【図13】D/A変換器のオフセットキャンセラーの変形例を示す回路図

0 【符号の説明】

10 寄生ダイオード

400 コンパレータ

410 位相調整回路

S1~S3 スイッチ

[図1]

【図6】

【図2】

[図3]

【図7】

【図5】

[図10]

[図8]

[図12]

【図11】

【図13】

