Plokštieji grafai

JUSTAS JANUŠAUSKAS

Plokščiasis grafas – grafas G=(U,V), vadinamas plokščiuoju, jei jį galima plokštumoje pavaizduoti taip, kad briaunos kirstųsi tik viršūnėse.

Grafo siena – tai plokštumos dalis, apribota ciklu, kurioje nėra nei viršūnės, nei briaunos

Oilerio formulė

Teorema - plokščiojo grafo **baigtinių** sienų minimalūs ciklai yra tiesiškai nepriklausomi ir sudaro bazę.

Išvada. (Oilerio formulė). Plokščiojo grafo sienų skaičius f, briaunų skaičius m ir viršūnių skaičius n susieti formule f-m+n=2

Plokščiojo grafo ciklomatinis skaičius: v(G) = f - 1

Iš čia
$$m - n + 1 = f - 1$$

Oilerio formulė

K4

$$\circ$$
 m – 6

$$f - m + n = 4 - 6 + 4 = 2$$

K_5 ir $K_{3,3}$

$K_{3,3}$

$$f = 2 + 9 - 6 = 5$$

Minimalus sieną sudarančio ciklo briaunų skaičius – 4

Viena briauna gali priklausyti tik 2 sienoms

Todėl minimalus briaunų skaičius = $\frac{4f}{2} = 2f$

Gavome, kad grafas turi bent 2*5=10 briaunų

Plokščiojo grafo savybės

1. Jei G – jungusis plokštusis (m,n)-grafas yra nemultigrafas, tai, kai $n \ge 3$, $m \le 3n-6$

Plokščiojo grafo savybės

- 1. Jei G jungusis plokštusis (m,n)-grafas yra nemultigrafas, tai, kai $n \ge 3$, $m \le 3n 6$
- 2. Bet kuriame plokščiajame grafe G, kuris nėra multigrafas, yra bent viena viršūnė, kurios laipsnis nedidesnis nei 5.

Vagnerio teorema

Grafas G yra plokštusis tada ir tiktai tada, kada jis neturi pografių, kuriuos galima sutraukti į $K_{3,3}$ arba $K_5\,$ grafus.

Vagnerio teorema

Plokščiojo grafo dažymas

Užduotis - K₅

Užduotis - K₅

$$f = 2 + 10 - 5 = 7$$

Minimalus ciklas – 3

$$\frac{7*3}{2} = 10,5$$