Student Number: Name: Bryan Hoang

4. (5 points)

(a) Answer:

Proof.

Part 1. (\Rightarrow)

Suppose T is a stopping time. Then $\forall n \geq 0, \exists A_n \subset S^{n+1}$ such that

$${T = n} = {(X_0, X_1, \dots, X_n) \in A_n}$$

and A_n is deterministic. Then let $C_n = \bigcup_{i=0}^n A_i$. It follows that

$$\{T \le n\} = \bigcup_{i=0}^{n} \{T = i\}$$

$$= \bigcup_{i=0}^{n} \{(X_0, X_1, \dots, X_n) \in A_i\}$$

$$= \{(X_0, X_1, \dots, X_n) \in C_n\}$$

Let $B_n = C_n^{\complement}$. Then we have

$$\{(X_0, X_1, \dots, X_n) \in B_n\} = \{T \le n\}^{\complement}$$

= $\{T > n\}$

Part 2. (⇐)

 $\forall n \geq 0, \exists B_n \subset S^{n+1} \text{ such that}$

$$\{T > n\} = \{(X_0, X_1, \dots, X_n) \in B_n\}$$

and B_n is deterministic. Then let $C_n = B_n^{\complement}$. It follows that

$$\{T > n\}^{\complement} = \{(X_0, X_1, \dots, X_n) \in C_n\}$$

= $\{T \le n\}.$

Since B_n is deterministic, C_n is deterministic. Therefore, we can deterministically select subsets $A_i \in C_n, \forall i \in \{0, ..., n\}$ such that $C_n = \bigcup_{i=0}^n A_i$ and that

$$\{T \le n\} = \bigcup_{i=0}^{n} \{(X_0, X_1, \dots, X_n) \in A_i\}$$
$$= \bigcup_{i=0}^{n} \{T = i\}$$
$$\Rightarrow \{T = n\} = \{(X_0, X_1, \dots, X_n) \in A_n\}$$

Therefore, T is a stopping time.

Student Number: Name: Bryan Hoang

(b) Answer:

Proof. Suppose that T and S are two stopping times. Then $\forall n \geq 0, \exists A_n, B_n \subset S^{n+1}$ such that

$${T = n} = {(X_0, X_1, \dots, X_n) \in A_n}$$

and

$${S = n} = {(X_0, X_1, \dots, X_n) \in B_n}$$

and that A_n and B_n are deterministic. Then

$$\{W = n\}$$

$$= \{\min\{T, S\} = n\}$$

$$= (\{T = n\} \cap \{S = n\}) \cup (\{T = n\} \cap \{S > n\}) \cup (\{T < n\} \cap \{S = n\})$$

$$= \{(X_0, \dots, X_n) \in A_n \cap B_n\} \cup \{(X_0, \dots, X_n) \in A_n \cap B_n^{\complement}\} \cup \{(X_0, \dots, X_n) \in A_n^{\complement} \cap B_n\}$$

$$= \{(X_0, \dots, X_n) \in (A_n \cap B_n) \cup (A_n \cap B_n^{\complement}) \cup (A_n^{\complement} \cap B_n)\}$$

$$= \{(X_0, \dots, X_n) \in C_n\}$$

where $C_n := (A_n \cap B_n) \cup (A_n \cap B_n^{\complement}) \cup (A_n^{\complement} \cap B_n) \in S^{n+1}$ is deterministic. Therefore, W is a stopping time.