PGMs – An Odyssey

Book 1: Bayesian & Markov networks

Ben Teo 4/25/2022

Bayesian networks (BN)

- 1. Distribution, P
- 2. Directed graph, \mathcal{G} : Represents a set of (conditional) independencies, $I(\mathcal{G})$.

Definition. Bayesian network, $\mathcal{B}=(\mathcal{G},P)$ such that P satisfies $I(\mathcal{G})$. Also written as $I(\mathcal{G})\subseteq I(P)$.

· If $I(\mathcal{G}) \subseteq I(P)$, we call \mathcal{G} an *I-map* for P.

Odyssey:

1: a long wandering or voyage usually marked by many changes of fortune

2: an intellectual or spiritual wandering or quest

Motivation:

Draw upon the extensive PGM literature to extend Phylogenetic Comparative Methods and software implementations.

Charting a (tentative) course:

Koller, Daphne, and Nir Friedman. *Probabilistic graphical models: principles and techniques*. MIT press, 2009

· Chapters 3, 4, 7, 9, 10, 11, 14

2/12

1(i). P can be factored as a product of $\it conditional\ probability\ distributions$ (CPDs) via the chain rule. E.g.:

$$P(X_1, X_2, X_3) = P(X_1 \mid X_2, X_3) P(X_2 \mid X_3) P(X_3)$$

= $P(X_2 \mid X_1, X_3) P(X_3 \mid X_1) P(X_1)$

2(i). P factorizes over ${\mathcal G}$ if

3/12

$$P(X_1,\ldots,X_n) = \prod_i P(X_i \mid \mathrm{Pa}_{X_i}^{\mathcal{G}})$$

- · That is, P satisfies the *local independencies* of \mathcal{G} , $I_{\ell}(\mathcal{G})$.
- · $I_{\ell}(\mathcal{G})$: node $\perp \!\!\! \perp$ non-descendants | parents

Theorem. \mathcal{G} is an I-map for $P \Leftrightarrow P$ factorizes over \mathcal{G} .

· Bayesian network, $\mathcal{B}=(\mathcal{G},P)$ where P factorizes over $\mathcal{G}.$

4/12

So far $I(\mathcal{G}) = I_{\ell}(\mathcal{G})$. $\mathcal{B} = (\mathcal{G}, P)$ must satisfy $I_{\ell}(\mathcal{G}) \subseteq I(P)$.

- · But what other (non-local) independencies does $I_{\ell}(\mathcal{G})$ imply? By definition, $I(\mathcal{G})$ should also include those.
- 3. D-separation: Define *active trails* between two sets of nodes given a conditioning set.
- · Absence of an active trail indicates a *global independency*.
- Conditioning on Z "blocks" the following paths:
 - X o Z o Y
 - $X \leftarrow Z \leftarrow Y$
 - $X \leftarrow Z \rightarrow Y$
- $X \to Z \leftarrow Y$ is "active" if we condition on any $Z^* \in Z \cup \mathrm{Desc}_Z^\mathcal{G}$
 - A v-structure without a covering edge (e.g. $X \leftrightarrow Y$) is called an $\mathit{immorality}$.

So we define $I(\mathcal{G}) = \{ (\mathbf{X} \perp \!\!\! \perp \mathbf{Y} \mid \mathbf{Z}) : d\text{-sep}_{\mathcal{G}}(\mathbf{X}; \mathbf{Y} \mid \mathbf{Z}) \}.$

Theorem. D-separation is sound, but not complete.

- $\cdot \ \operatorname{d-sep}_{\mathcal{G}}(\mathbf{X};\mathbf{Y} \mid \mathbf{Z}) \not\in \mathit{I}(\mathcal{G}) \text{ does not imply } \mathbf{X} \not\perp\!\!\!\!\perp \mathbf{Y} \mid \mathbf{Z}!$
- 4. Minimal I-maps & P-maps
- · \mathcal{G} is a *minimal* I-map for P if no edge can be removed without $I(\mathcal{G}) \nsubseteq I(P)$.
 - E.g. construct such a ${\cal G}$ given a topological ordering of the X_i s by selecting minimal ${\rm Pa}_{X_i}^{\cal G}$ s.

6/12

· \mathcal{K} is a P-map for P if $I(\mathcal{K}) = I(P)$.

5/12

Not every P can be perfectly represented by some \mathcal{G} . E.g.

$$P(x,y,z) = \begin{cases} 1/12, \ x \oplus y \oplus z = \text{false} \\ 1/6, \ x \oplus y \oplus z = \text{true} \end{cases}$$

- X, Y, Z are pairwise independent (\Rightarrow no edges), but not jointly independent (\Rightarrow some edges) $-\!\!\!\!-$
- · Finer-grained independencies (i.e. that hold for specific variable values)
- · Symmetric independencies (e.g. ♦ structure)

Markov networks (MN)

- 1. Gibbs distribution, $P_{\Phi} \propto \prod_i \phi_i(\mathbf{D}_i)$
- · Φ denotes $\{\phi_1(\mathbf{D}_1),\ldots,\phi_k(\mathbf{D}_k)\}$
- 2. Undirected graph, ${\cal H}$

7/12

- \cdot **X** is *separated* from **Y** given **Z** if every path from **X** to **Y** passes through **Z**.
- $\cdot \ I(\mathcal{H}) = \{ (\mathbf{X} \perp \!\!\! \perp \mathbf{Y} \mid \mathbf{Z}) : \mathrm{sep}_{\mathcal{H}}(\mathbf{X}; \mathbf{Y} \mid \mathbf{Z}) \}$

Definition. Markov network, $\mathcal{M} = (\mathcal{H}, P_{\Phi})$ such that $I(\mathcal{H}) \subseteq I(P_{\Phi})$.

8/12

2(i). P_{Φ} factorizes over \mathcal{H} if each \mathbf{D}_i is a clique of \mathcal{H} .

Theorem. P_{Φ} factorizes over $\mathcal{H} \Rightarrow I(\mathcal{H}) \subseteq I(P_{\Phi})$.

Theorem. Suppose $P_{\Phi}>0$. P_{Φ} factorizes over $\mathcal{H}\Leftrightarrow I(\mathcal{H})\subseteq I(P_{\Phi})$.

- · Generally ($P_{\Phi} \geq 0$), factorization is sound but *not complete* for $I(\mathcal{H}) \subseteq I(P_{\Phi})$.
- · Considering only $P_\Phi>0$, Markov network, $\mathcal{M}=(\mathcal{H},P_\Phi)$ where P_Φ factorizes over $\mathcal{H}.$

For BNs, to check if $P \models I(\mathcal{G})$, it suffices to check $P \models I_{\ell}(\mathcal{G})$. Can we similarly find local criteria for $P \models I(\mathcal{H})$?

- 3. Pairwise & local independencies
- · Pairwise: $I_p(\mathcal{H}) = \{(X \perp\!\!\!\perp Y \mid \mathcal{X} \setminus \{X,Y\}) : X Y \not\in \mathcal{H}\}$
 - Two non-adjacent nodes are independent conditional on the other nodes.
- · Local: $I_{\ell}(\mathcal{H}) = \{(X \perp \!\!\! \perp \mathcal{X} \setminus \{X\} \setminus \mathrm{MB}^{\mathcal{H}}_X \mid \mathrm{MB}^{\mathcal{H}}_X) : X \in \mathcal{X}\}$
 - A node is independent of its non-neighbors conditional on its neighbors.

Theorem. Suppose P>0.

9/12

11/12

$$P \models I_p(\mathcal{H}) \Leftrightarrow P \models I_\ell(\mathcal{H}) \Leftrightarrow P \models I(\mathcal{H})$$

- · Generally, $I_p(\mathcal{H}) \subseteq I_\ell(\mathcal{H}) \subseteq I(\mathcal{H})$.
- · If P > 0, then $P \models I_p(\mathcal{H}) \Rightarrow P \models I(\mathcal{H})$.

10/12

4. Representing BNs as MNs, and vice versa

- · BN→MN: Two views
 - Given $\mathcal{B}=(\mathcal{G},P)$, \mathcal{G} implies a factorization for P. Construct \mathcal{H} such that each $\{X_i\}\cup\mathrm{Pa}_X^{\mathcal{G}}$ is a clique.
 - Construct $\mathcal H$ such that $I(\mathcal H)\subseteq I(\mathcal G)$ using $\mathrm{MB}_{X_i}^{\mathcal G}$ s identified from $\mathcal G$.

Theorem. The moral graph $\mathcal{H}=\mathcal{M}[\mathcal{G}]$ is a minimal I-map for P, and is a P-map for P if G is moral.

· $BN\leftarrow MN$

Theorem. If $\mathcal H$ is nonchordal, $\not\exists \mathcal G$ with $I(\mathcal G)=I(\mathcal H)$. If $\mathcal H$ is chordal, such a $\mathcal G$ exists.

Theorem. A set of independencies I can be perfectly represented by both some $\mathcal G$ and some $\mathcal H$ iff $I=I(\mathcal H)$ for some chordal $\mathcal H$.

The existence proofs on the previous slide use *clique trees*.

- 5. **Definition.** Tree ${\mathcal T}$ is a clique tree for ${\mathcal H}$ if
- Each node is a clique in \mathcal{H} , and each maximal clique in \mathcal{H} is a node in \mathcal{T} .
- · Each edge $\mathbf{C}_i \mathbf{C}_j$ in \mathcal{T} is associated with the sepset $\mathbf{S}_{i,j} = \mathbf{C}_i \cap \mathbf{C}_j$ (intersection of neighbor cliques).
- · Each sepset $\mathbf{S}_{i,j}$ separates $\mathbf{W}_{<(i,j)}$ and $\mathbf{W}_{<(j,i)}$ in \mathcal{H} .
 - $\mathbf{W}_{<(i,j)}$ is the union of variables in any clique (including \mathbf{C}_i) on the \mathbf{C}_i side of the $\mathbf{C}_i \mathbf{C}_i$ edge.

Theorem. Every chordal ${\mathcal H}$ has a clique tree ${\mathcal T}$.

12/12