Tianjin International Engineering Institute

Formal Languages and Automata

Lesson 8: Limitations of finite automata

Marc Gaetano Edition 2018

Many examples of regular languages

all strings not containing pattern 010 followed by 101

Is every language regular?

Which are regular?

$$L_1 = \{0^n 1^m : n, m \ge 0\}$$

$$L_2 = \{0^n 1^n : n \ge 0\}$$
 $\Sigma = \{0, 1\}$

$$L_3 = \{1^n: n \text{ is divisible by 3}\}$$

$$L_4 = \{1^n: n \text{ is prime}\}$$

$$\Sigma = \{1\}$$

$$L_5 = \{x: x \text{ has same number of 0s and 1s}\}$$
 $\Sigma = \{0, 1\}$
 $L_6 = \{x: x \text{ has same number of patterns 01 and 10}\}$

Which are regular?

$$L_1 = \{0^n 1^m : n, m \ge 0\} = 0*1*$$
, so regular

How about:

$$L_2 = \{0^n 1^n : n \ge 0\} = \{\varepsilon, 01, 0011, 000111, \ldots\}$$

Let's try to design a DFA for it

Theorem

The language $L_2 = \{0^n 1^n : n \ge 0\}$ is not regular.

- To prove this, we argue by contradiction:
 - Suppose we have managed to construct a DFA ${
 m M}$ for L_2
 - We show something must be wrong with this DFA
 - In particular, M must accept some strings not in L_2

imaginary DFA for L_2 with n states

- What happens when we run M on input $x = 0^{n+1}1^{n+1}$?
 - M better accept, because $x \in L_2$

- What happens when we run M on input $x = 0^{n+1}1^{n+1}$?
 - M better accept, because $x \in L_2$
 - But since M has n states, it must revisit at least one of its states while reading 0^{n+1}

Pigeonhole principle

Suppose you are tossing n + 1 balls into n bins. Then two balls end up in the same bin.

Here, balls are 0s, bins are states:

If you have a DFA with n states and it reads n + 1 consecutive 0s, then it must end up in the same state twice.

- What happens when we run M on input $x = 0^{n+1}1^{n+1}$?
 - M better accept, because $x \in L_2$
 - But since M has n states, it must revisit at least one of its states while reading 0^{n+1}
 - But then the DFA must contain a loop with 0s

- The DFA will then also accept strings that go around the loop multiple times
- But such strings have more 0s than 1s, so they are not in L_2 !

General method for showing nonregularity

• Every regular language L has a property:

• For every sufficiently long input z in L, there is a "middle part" in z that, even if repeated several times, keeps the input inside L

Pumping lemma for regular languages

• Theorem: For every regular language L

There exists a number n such that for every string $z \in L$, $|z| \geq n$ we can write z = u v w where

- $\bigcirc |uv| \leq n$
- $|v| \ge 1$
- ③ For every i ≥ 0, the string $u v^i w$ is in L.

Proving non-regularity

• If L is regular, then:

There exists n such that for every z in L, $|z| \ge n$, we can write z = u v w where $|uv| \le n$, $|v| \ge 1$ and $|v| \le n$, the string $|uv| \le n$ is in $|uv| \le n$.

• So to prove L is not regular, it is enough to show:

For every n there exists z in L, $|z| \ge n$, such that for every way of writing z = u v w where $|uv| \le n$ and $|v| \ge 1$, the string $|uv| \le n$ is not in $|uv| \le n$.

Proving non regularity

For every n there exists z in L, $|z| \ge n$, such that for every way of writing z = u v w where $|uv| \le n$ and $|v| \ge 1$, the string $|uv| \le n$ is not in L for some $|i| \ge 0$.

This is a game between you and an imagined adversary

adversary	you
I choose n	choose $z \in L$, $ z \ge n$
2 write $z = uvw (uv \le n, v \ge 1)$	choose i
	you win if $uv^iw \notin L$

Proving non-regularity

 You need to give a strategy that, regardless of what the adversary does, always wins you the game

adversary	you
I choose n	choose $z \in L$, $ z \ge n$
2 write $z = uvw (uv \le n, v \ge 1)$	choose i
	you win if $uv^iw \notin L$

Example

adversary

- I choose n
- 2 write $z = uvw (|uv| \le n, |v| \ge 1)$

•
$$L_2 = \{0^n 1^n : n \ge 0\}$$

adversary

- I choose n
- 2 write $z = uvw (|uv| \le n, |v| \ge 1)$ $u = 0^{j}, v = 0^{k}, w = 0^{l}1^{n+1}$ j + k + l = n + 1

you

choose $z \in L$, $|z| \ge n$ choose i you win if $uv^i w \notin L$

$$\Sigma = \{0, 1\}$$

you

$$z = 0^{n+1}1^{n+1}$$

$$i = 2$$

$$uv^{i}w = 0^{j+2k+l}1^{n+1}$$

$$= 0^{n+1+k}1^{n+1}$$

$$\notin L$$

More examples

```
L_3 = \{1^n: n \text{ is divisible by } 3\} \Sigma = \{1\}
L_4 = \{1^n: n \text{ is prime}\}
L_5 = \{x: x \text{ has same number of 0s and 1s}\} \Sigma = \{0, 1\}
L_6 = \{x: x \text{ has same number of patterns 01 and 10}\}
L_7 = \{x: x \text{ has more 0s than 1s}\}
L_8 = \{x: x \text{ has different number of 0s and 1s}\}
```