东南大学考试卷(A卷)

课程名称		称 柞	概率论与数理统计			考试学期 13-14-3				
	适用专	<u>√I</u>	全校	考试形式		闭卷 考		试时间长度 120 分钟		
	题号		<u> </u>	三	四	五.	六	七	八	
	得分									-

 $\Phi(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-t^2/2} dt \, \text{表示标准正态分布的分布函数},$

 $\Phi(-1.645) = 0.05;$ $\Phi(-1.96) = 0.025;$ $\Phi(0) = 0.5;$ $\Phi(1) = 0.8413$ $\Phi(1.3) = 0.9032;$ $\Phi(1.96) = 0.975;$ $\Phi(2) = 0.9772$

 $T_n \sim t(n), P(T_8 > 2.3) = 0.025, P(T_9 > 2.26) = 0.025,$ $P(T_8 > 1.86) = 0.05, P(T_9 > 1.83) = 0.05,$

- 一、填充题(每空格 2', 共 36')
 - 1) 己知 P(B)=0.5, P(A)=0.3, A⊂B, 则 P(A|B)=_____;P(AUB)=____。

 - 3) 设随机变量 X 服从正态分布 N(2,9),则 P(X<5)=_____。
 - 4) 随机变量 X, Y 相互独立, X~N(-2,3), Y~N(10,5), 则 2X-Y 的方差为 。
 - 5) 随 机 变 量 X , Y 的 联 合 分 布 律 为 : P(X=2,Y=4)=0.4; P(X=2,Y=5)=0.2; P(X=3,Y=4)=0.2; P(X=3,Y=5)=0.2. 则 X-Y 分布律为_____。X 的边缘分布律为_____。
 - 6) 随机变量 X, Y 的相互独立, DX=DY=4, 则 cov(X-2Y, X+Y)=____。
 - 7) 设随机变量序列 $\{Xn,n=1,2,...\}$ 独立同分于均匀分布 U[-2,2],则 $\frac{1}{n}(X_1^2 + X_2^2 + ... + X_n^2) \xrightarrow{p} \underline{\hspace{1cm}}.$
 - 8) 设总体 X 的均值和方差分别为 10 和 4, $X_1, X_2, ..., X_{20}$ 是来此该总体的样本,

第1页共4页-

此答

无效

 \bar{X}, S^2 分别表示样本均值和样本方差,则 $D(\bar{X})$, ES^2 。

- 9) 随机变量 X 的分布函数为 $F(x) = 0, x < 0; F(x) = x^2, 0 \le x < 1; F(x) = 1, x \ge 1.$ 则 其密度函数为
- 10) 随机变量 X 服从均值为 1 的指数分布,则 Y=1-X, 的密度函数为____。
- 12) 设从服从 N(m,1) 的总体中获得容量为 16 的简单随机样本,样本均值为 2,样本方差为 1.1,则 m 的置信度为 90% 的置信区间为_____。
- 13) 设总体服从均匀分布 U[a-1,a+1],**a** 为未知参数,若 $X_1,X_2,...,X_n$ 是来自该总体的简单随机样本,**a** 的矩估计量为_____。
- 二、(10') 设有一批产品的合格率为 0.95。 某产品检测方法将正品检测为正品的概率为 0.95,次品检测为次品的概率为 0.95。现任取一件产品进行检测。问(1) 求取出产品检测为正品的概率; (2) 如果取出产品检测为正品,该产品确为正品的概率是多少?

三、(15') 设随机变量(X,Y)的联合密度为

$$f(x,y) = \begin{cases} ax^2y & x^2 \le y \le 1 \\ 0 & 其他 \end{cases}.$$

求(1)常数 a; (2)X 的边缘密度函数; (3)求条件概率 P(Y>0.75|X=0.5)。

姓名

四、(10')设随机变量 X 和 Y 相互独立,且 X 服从均匀分布 U[2,3],Y 服从均匀分布 U[0,1]。 令 Z=X + Y ,求随机变量 Z 的概率分布函数 $f_z(z)$ 。

五、(10') 假设一大批电子元件的寿命服从均值为 200 小时的指数分布,现从中随机抽取 100 件。试用中心极限定理计算 100 件电子元件的平均寿命大于 220 小时的近似概率。

如考

无

效

六、(10')设总体 X 的概率密度如下,

$$f(x,\theta) = \begin{cases} \frac{1}{1+\theta} & 0 < x < \theta + 1 \\ 0 & \text{ 其他} \end{cases}$$

设 $X_1,...X_n$ 为来自该总体的样本, (1)求参数 θ 的最大似然估计量 $\hat{\theta}$, (2) $\hat{\theta}$ 是否是 θ 的无偏估计量,说明理由。.

七、 (9')设总体 X 服从正态分布 N (u,b),u,b 均未知。 现有来自该总体样本容量为 9 的样本,其样本均值为 5,样本方差为 4. 试检验 H_0 : u=4.5 v.s. H_1 : $u \neq 4.5$ (检验水平 $\alpha = 0.05$)。