Due: 2013/10/11 before class

Homework 2

Problem 1. Consider a poset $\mathcal{P} = (X, \preceq)$, where

$$X = \{(a_1, a_2, a_3, a_4) : a_i \in [4]\}$$

and $(a_1, a_2, a_3, a_4) \leq (b_1, b_2, b_3, b_4)$ iff $a_i \leq b_i$ for all i. What is the number of pairs $x, y \in X$ such that $\mu(x, y) < 0$? Briefly justify your answer.

Problem 2. Prove

$$\sum_{r=0}^{n} r^2 \binom{n}{r} = n(n+1)2^{n-2}.$$

For extra challenge, find a combinatorial proof.

Problem 3. Give a combinatorial proof for the following equation. For any positive integers a and b,

$$\sum_{i=0}^{a} \binom{a}{i} \binom{b+i}{a} = \sum_{i=0}^{a} \binom{a}{i} \binom{b}{i} 2^{i}.$$

Problem 4. Given $n \geq 1$, we construct a graph on the set of all permutations of [2n]. Two permutations π and π' are adjacent if (1) π and π' are the same except on two positions i and i+1; and (2) $|\pi(i)-\pi(i+1)|=n$. Explain that the number of connected components in this graph is $\sum_{i=0}^{n} (-1)^{i} \binom{n}{i} (2n-i)!$.

Problem 5 (Extra). Give a combinatorial proof for

$$\sum_{k=0}^{n} {2k \choose k} {2n-2k \choose n-k} = 4^{n}.$$