Continuous Processing of High Thermal Conductivity Polyethylene Fibers and Sheets

DE-EE0005756

Massachusetts Institute of Technology September 01, 2012 – February 28, 2016

Professor Gang Chen, Carl Richard Soderberg Professor of Power Engineering

U.S. DOE Advanced Manufacturing Office Program Review Meeting
Washington, D.C.

June 14-15, 2016

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

Project Objective

- Develop a continuous manufacturing process to fabricate aligned polyethylene chains in sheet form with high thermal conductivity values, within three budget years.
- Fabricate 1 × 10 cm² polymer sheets with thermal conductivity values as high as 60 Wm⁻¹K⁻¹.

Technical Innovation

Scientific and Technical Concept:

Natural 0.4 W/mK

Thermal conductivity of an individual polymer chain?

A. Henry and G. Chen, Physical Review Letters, 101, 235502, 2008.

Technical Innovation

Technical Approach

Extrusion process

Drawing process

Transition and Deployment

• End Users:

microelectronics packaging companies
automobile supplier companies
materials companies, consumer product companies...

• Mission/capabilities improvements:

Cost and energy savings.

Light weight, highly chemical resistant, bio-compatible, electrically isolating, and highly thermally conductive materials.

Commercialization approach:
 Exploring a startup company.

Measure of Success

- What impact will success have?
 - High thermal conductivity PE is a platform material for many applications. Principle can be extended to other plastics.
- How will it be measured?
 - High thermal conductivity, ease of manufacturing, good chemically stability.
- What is the potential energy impact? Economic impact?
 - Cost and energy savings.
 - Polyethylene is also cheap and good potential for scale up.

~7.75 g/cm³ (stainless steel) ~2.70 g/cm³ (aluminum)

16 W/mK (stainless steel) 237 W/mK (aluminum) ~\$21,000/m³ (stainless steel) ~\$4,500/m³ (aluminum) Electrically conductive & Chemically corrosive

Project Management & Budget

• Tasks and key milestones: Quarterly milestone targets and annual go/no-go criteria

Budget Year	Go/No-go Description	Verification Method	Planned Completion Date
1	Development of 1st PE processing apparatus	Demonstrate PE sheet	10/01/13
-		(1 × 10 cm ²) fabrication	
2	Development of 2 nd PE	Achieve thermal conductivity values	44/20/44
	rocessing apparatus 30 W/mK		11/30/14
3	Development of 3 rd PE	Achieve thermal conductivity values	2/28/16
	processing apparatus	60 W/mK	

Total Project Budget						
DOE Investment	\$1M					
Cost Share	\$0					
Project Total	\$1M					

Results and Accomplishments

Completed milestones since last review in 2015:

Milestone #		Milestone completion date				Milestone progress
	Milestone title or brief description	Original planned	Revised planned	Actual complete	Percent complete	notes
3.1	Achieve a sheet thermal conductivity of 60 W/mK.	2/28/16			100%	On schedule
3.2	Optimizing the polymer processing parameter.	11/30/15			100%	On schedule
3.3	Characterization of polymer sheets.	2/28/16			100%	On schedule
3.4	Development of third and final generation polymer processing apparatus.	10/31/15			100%	On schedule

- What results do you have to report?
 - o Demonstrated polyethylene films with thermal conductivity of 61.7 W m⁻¹K⁻¹ (commercial films have thermal conductivity of ~0.1 0.4 Wm⁻¹K⁻¹).
- Future work:

Starting a company or partnering with another company to scale up for commercialization of materials or aiming for specific applications.

Questions?

U.S. DEPARTMENT OF

Energy Efficiency & ENERGY Renewable Energy

U. S. Department of Energy, Advanced Manufacturing Office (AMO) Innovative Manufacturing Initiative

Massachusetts Institute of Technology Department of Mechanical Engineering Principal Investigator: Prof. Gang Chen

Thank you.