Modélisation, Simulation multi-niveau pour l'optimisation de politiques de vaccination

Oct 1st 2012 - Mar 2016

TRAN Thi Cam Giang, Jean Daniel ZUCKER, Marc CHOISY, Yann CHEVALEYRE

I. State of the art

Sep 2015	Oct 2015
I I	

- 1. Epidemiology (and monitoring)
 - 1. Epidemiology
 - 2. Control
- 2. Dynamics/ spatial structures (théorie métapopulations, réseaux, etc. . .)
- 3. Stochastic simulation Algorithms
 - 1. Exact stochastic simulation
 - 1. First reaction method (FRM)/Direct method (DM)/Next Reaction Method (NRM)
 - 2. Compare the direct method (DM) to the next reaction method (NRM), which algorithm is most efficient?
 - 2. Approximate methods
 - 1. τ leaping method
 - 2. Adaptive tau-leaping method
 - 3. Hybrid and multiscale methods
- 4. Reinforcement learning

II. DIZZYS: Description du modèle

$100 \text{ NoV } 1^{10} \text{ 2015} \rightarrow 100 \text{ NoV } 15^{10} \text{ 2015} \rightarrow 100 \text{ NoV } 30^{10} \text{ 2015}$	Nov 1 st 2015 → Nov 15 th 2015	Nov 15 th 2015 → Nov 30 th 2015
--	--	---

- 1. Epidemiological models
 - 1. SIR model
 - 2. SEIR model
- 2. Infection force proposed by YANN

- 3. The equilibrium state for the SEIR model.
- 4. Improvement on the exact method "DIRECT METHOD" of a single population to a metapopulation of n subpopulations
- 5. DIZZYS: Description of package dizzys
 - 1. Introduction
 - 2. Methods
 - 1. Deterministic SEIR model:
 - 2. Stochastic models:
 - 1. Direct method
 - 2. Adaptive tau-leaping algorithm
 - 3. Transformation SEIR model into SIR model
 - 3. Example
 - 1. Example 1
 - 2. Example
 - 4. Comparison between the package "dizzys" and other packages
 - 5. Conclusion

III. Relation structure/ spatial dynamics and persistence

Dec 1 st 2015 → Dec 15 th 2015	Nov $15^{th} 2015 \rightarrow \text{Nov } 30^{th} 2015$

- 1. Introduction
- 2. Material and methods
 - 1. Material
 - 1. Deterministic model for many subpopulations
 - 2. Stochastic model for many subpopulations
 - 3. Spatial structures
 - 2. Methods
 - 1. Stationary distribution in metapopulation
 - 2. Global persistence in a metapopulation
 - 3. Characterization of synchrony
- 3. Plan of experience
 - 1. Quantifying disease persistence in the simplest metapopulation

- 2. Quantifying global extinction and asynchrony level φ max
- 3. Influence of other parameters on the mass extinction rate
- 4. Stochastic metapopulation simulations

4. Results

- 1. Quantifying disease persistence in the simplest metapopulation
- 2. Quantifying global extinction rate and asynchrony level φ max
- 3. Influence of other parameters on global extinction rate
 - 1. Number of subpopulation in a metapopulation
 - 2. Influence of the metapopulation size
 - 3. Coupling rate
- 5. Discussion and Conclusion

IV. Disease control by reinforcement learning

Dec 15th 2015 → Dec 30th 2015

V. Conclusion and perspective

 $Jan \ 1^{st} \ 2016 \ \to \ Jan \ 15^{th} \ 2016$