Update to the status of yelloweye rockfish (Sebastes ruberrimus) off the U.S. West Coast in 2007

by

John R. Wallace

NOAA/NMFS/NWFSC/FRAMD 2725 Montlake Blvd E, F/NWC4 Seattle, Washington 98112-2097

Executive Summary

Stock

This assessment update reports the status of the yelloweye rockfish (*Sebastes ruberrimus*) resource off the west coast of the United States, from the Mexican border to the Canadian border. The assessment on which this update is based (Wallace et al. 2006) contained both a coast-wide model and area models for Washington, Oregon, and California. This update only looks at the coast-wide model, on which management is currently based.

Catches

For this update, new catch data were added for 2006, based on the Groundfish Management Team's Bycatch Scorecard, and catch histories for all fleets were refreshed for the period 1983-2005. Catches prior to 1983 are taken from Wallace et al. (2006). Annual total catch of yelloweye rockfish peaked around 1980, and remained above 200 mt throughout the mid-1990s. Catch declined sharply between 1997 and 2001.

Figure ES1. Reconstructed historical catch (mt) by year and fleet, 1925-2006.

Table ES1. Updated (perhaps to the same value) recent commercial fishery catches by state and fishery. Fleets in the model combine trawl and line for all years in California and Oregon, and from 1923 to 1999 in Washington. Line gear in Washington from 1999 to 2006 is modeled as a separate fleet. (For values not updated see Wallace et al. 2006.)

		California			Oregon		Washington			
Year	Trawl	Line	Sport	Trawl	Line	Sport	Trawl	Line	Sport	
1997	6.0	56.4	15.1	71.4	44.1		6.5			
1998	4.0	16.8	5.5	20.8	20.6		4.8			
1999	8.7	13.6	12.6	7.1	54.2		9.9			
2000	0.7	3.3	7.5	0.3	3.3		0.2			
2001	0.6	3.9	4.6	0.7	5.5		0.8			
2002	0.2	0.0	2.1	0.4	0.3		0.4	2.2		
2003	0.0	0.0	3.7	0.2	0.0		0.2	0.3		
2004	0.3	0.1	0.8	0.8	0.1	2.4	1.0	0.9	3.7	
2005	0.1	0.0	1.6	0.3	0.1	4.1	0.4	3.0	5.2	
2006	0.0	0.3	3.5	0.3	0.6	2.5	0.3	5.2	1.7	

Data and Assessment

The most recent assessment for yelloweye rockfish was conducted using SS2, version 1.21 in 2006 by Wallace et al. Fishery-independent data used in that assessment included a CPUE index and size-compositions from the longline survey conducted by the International Pacific Halibut Commission. Catch data, as well as age and size compositions, were included for commercial and recreational fisheries off Washington, Oregon, and California. CPUE indices were also constructed from recreational data from each state.

In the process of refreshing data for use in this updated assessment, several errors were uncovered in the data and input files used for the previous assessment. These include the misspecification of the age- and length-bin values in the SS2 input file and the inclusion of Washington trawl ages in constructing age-composition inputs for the Washington hook and line fishery. These problems were corrected in developing the 2007 base model. Since the corrected bin values were lower than those used in the previous assessment and the Washington trawl data contained a higher proportion of old fish, all three of these corrections led to downward revisions in the amount of spawning biomass and the level of depletion, relative to the 2006 assessment.

In converting the model to SS2c, the prior assessment's old SS1 "super-year" approach for dealing with small sample sizes for age and size compositions in some years was updated using the recommended SS2 method. This change had little effect on model results. Additionally, during the 2006 STAR Panel review, a representative from the Canadian Department of Fisheries and Oceans, who was present, reported that their current model's estimated value for yelloweye natural mortality (M) off British Columbia was 0.033. This information led the Panel to recommend lowering the value of M in the U.S. model from 0.045 (as used in 2005) to 0.036. Subsequently, the Canadian model was updated and a new value of M estimated at 0.043. The Chair of the STAR Panel has conveyed that if the 0.043 value had been available during the review, it would likely have been recommended for use, rather than the 0.036 value (Owen Hamel, personal communication). Additionally, sensitivity analysis conducted across a range of M values, as part of the current assessment, indicates a substantial degradation in model fit with M=0.036, relative to values of M in the 0.043-0.046 range. As a result, current and projected biomass and depletion levels for an alternative base case (with M=0.043) are also reported in this document.

For comparative purposes, the depletion level for 2006, using the 2006 base model was 17.7%. The 2007 base model estimates depletion in 2006 as 14%. The alternative base model, with M=0.043, estimates the 2006 depletion level as 15.8%.

Figure ES2. Comparison of spawning biomass estimates for 1) the uncorrected 2006 coast-wide base model, 2) the 2007 base model, including corrected length- and age-composition specifications and adaptation of the "super-year" method for use with SS2, and 3) the 2007 base model run with natural mortality (M) fixed at 0.043 instead of 0.036. All models were run in SS2c.

Stock Biomass and Reference Points

The long-term biomass trajectory in this assessment is very similar to that in the 2006 assessment. Spawning biomass declined steadily and rather rapidly, beginning in the early-1970s, with no indication of increase until roughly 2001. The amount of spawning biomass in all years is lower in the current base model than in the previous assessment, due to the correction of data/input errors discussed above. Figure ES3 shows the complete spawning biomass trajectory for the 2007 base model. Table ES2 reports the estimated amounts of spawning biomass and depletions levels for the last 10 years. Figure ES4 shows the history of estimated depletion levels for the entire assessment period.

The unfished spawning stock biomass is estimated to be 3,019 mt in the base model, and 3,062 mt in the alternative (M=0.043) model (Table ES3). The spawning biomass targets for these models are 1,208 mt and 1,225 mt, respectively. The overfished biomass levels for these models are 755 mt and 766 mt, respectively. The current spawning biomass is estimated to be 422 mt with the base model and 485 mt with the alternative model. Current depletion estimates for these models are 14.5% and 16.4%, respectively.

Figure ES3. Estimated spawning biomass time-series with approximate asymptotic 95% confidence interval, using the 2007 base model.

Table ES2. Recent trend in yelloweye spawning biomass and depletion level, using the 2007 base model.

	Estimated	~95%		~95%
Year	spawning	confidence	Estimated	confidence
	biomass (mt)	interval	depletion	interval
1998	349	298-399	11.6%	NA
1999	346	292-400	11.5%	NA
2000	322	264-380	10.6%	NA
2001	336	274-398	11.1%	NA
2002	344	278-410	11.4%	NA
2003	365	295-435	12.1%	NA
2004	386	312-459	12.8%	NA
2005	406	328-483	13.4%	NA
2006	422	342-503	14.0%	11.4-16.6%
2007	438	355-522	14.5%	11.8-17.2%

Figure ES4. Time-series of estimated depletion level, 1925-2007 with approximate asymptotic 95% confidence interval for 2006 and 2007, using the 2007 base model.

Table ES3. Benchmarks for comparison of the coast-wide 2006 base model to the 2007 base and alternative models.

		2007 Base model, with all	2007 Alternative
Reference Point	2006 Base	corrections to age- and size-	model with
	Model	composition data	M = 0.043
¹ /Unfished Spawning Stock Biomass (SSB ₀)	3,322	3,019	3,062
Unfished Exploitable Biomass (B0)	7,448	6,811	7,044
Unfished Recruitment (log(R0))	4.85	4.76	4.76
$^{1/}$ SSB ₂₀₀₆	588	422	485
Depletion Level (2006)	17.7%	14.0%	15.8%
Depletion Level (2007)		14.5%	16.4%

 $^{^{1/}}$ These values are expressed in female biomass (one-half of the single-sex model's SSB₀).

Recruitment

As in the 2006 assessment, the level of recruitment is deterministic from the start of the modeled time-period through 1967. From 1968 through 1992, the model estimates very large recruitments in four of the years, and recruitments below the initial level in all other years (Figure ES6). Recruitments after 1992 are taken from the stock-recruit curve. The last 10 years of these amounts are reported in Table ES4.

Figure ES6. Time-series of estimated yelloweye recruitments with approximate asymptotic 95% confidence interval.

Table ES4. Recent estimated trend in yelloweye recruitment, using the 2007 base model

	Estimated	
Year	recruitment	~95% confidence
	(1000's)	interval
1998	34.8	30.6 - 39.5
1999	34.5	30.1 - 39.6
2000	32.6	27.9 - 38.2
2001	33.7	28.8 - 39.6
2002	34.4	29.2 - 40.5
2003	36.1	30.7 - 42.4
2004	37.6	32.1 - 44.2
2005	39.1	33.4 - 45.8
2006	40.4	34.5 - 47.2
2007	41.5	16.3 - 105.8

Exploitation status

The estimated spawning potential ratio (SPR) for yelloweye rockfish first dropped below the proxy target of 50% in the early 1970s, where it remained until 2002 (Figure ES7). Throughout the 1980s and 1990s, SPR was below 20%.

Figure ES7. Time-series of estimated spawning potential ratio 1925-2006.

Figure ES8. Time-series of relative exploitation rate (catch/biomass of age 3+ fish) 1925-2006.

Figure ES9. One minus the estimated spawning potential ratio relative to the proxy target of 50% vs. estimated spawning biomass relative to the proxy 40% level. Higher biomass occurs on the left side of the x-axis, higher exploitation rates occur on the upper side of the y-axis.

Figure ES10. Relative exploitation rate/exploitation rate at SPR = 0.5 target vs. estimated spawning biomass relative to the proxy 40% level.

Management Performance

Total catches of yelloweye rockfish have been below the specified OYs and ABCs since individual specifications were first established for this species in 2002.

Table ES5. Yelloweye rockfish management performance.

	Total Catch mt	OY mt	ABC mt
2002	13.0	22	52
2003	10.8	22	52
2004	15.7	22	52
2005	15.7	26	54
2006	14.4	27	55

Unresolved problems and major uncertainties (from Wallace et al. 2006)

As in the previous assessments, the sparseness of the size and age composition data and the lack of a relevant fishery-independent survey has limited the model's ability to properly assess the status of the resource... Further, due to catch restrictions since 2002, catch-per-unit-effort (CPUE) data no longer reflect the real changes in population abundance, and discard estimates are highly uncertain.

The landings data are basically derived from total landings of unclassified rockfish times an estimated fraction that are yelloweye. In recent years, actual samples are available in many areas, but because yelloweye are rare in the overall catch and that species composition estimates derived from mixed rockfish categories is limited, substantial substitution for missing cells is required. In earlier years (prior to 1983), estimates of fraction yelloweye had to be borrowed from remote years and areas. The consequence of these estimation steps is that the catch is known only with considerable uncertainty and the current version of SS2 does not allow for uncertainty measurements of landings. This makes it nearly impossible to evaluate the true uncertainty of model results. Internal estimates of standard error on depletion estimates were on the order of 2-2.5% and are likely to be serious underestimates of uncertainty.

Research and Data Needs (from Wallace et al. 2006)

Additional effort to collect age and maturity data is essential for improved population assessment. Collection of these data can only be accomplished through research studies and/or by onboard observers because this species is now prohibited. In 2006, IPHC and WDFW scientists are conducting a study to increase our knowledge of current stock biomass off Washington coast. Loss of the study due to declining OY will have significant detrimental effects on our ability to adequately assess this stock in the future. We strongly urge Management to make this study the highest priority. Increased effort toward habitat mapping and in-situ observation of behavior will provide information on the essential habitat and distribution for this species.

Alternative survey such as the in-situ 2002 US Vancouver submersible survey in untrawlable habitat is required for future assessment of yelloweye rebuilding status. This study has

demonstrated that submersible visual transect surveys can provide a unique alternative method for estimating demersal fish biomass in habitats not accessible to conventional survey tools. For example, because of the low frequency of yelloweye rockfish encountered in the NMFS shelf trawl survey tows, those data were not considered a reliable indicator of abundance and were not used in the 2002 yelloweye stock assessment for PFMC (Methot et al. 2002). Results from this study support this conclusion and illustrate the need for large-scale surveys to assess bottomfish densities in habitats that are not accessible to trawl survey gear. Further, stratified random sampling designs should be employed with sample sizes sufficient to ensure acceptable levels of statistical power (Jagielo et al. 2003). At present, the in-situ visual transect submersible survey method appears to be a useful tool for this purpose, and the utility of this method will likely improve further with technological advances such as the 3-Beam Quantitative Mensuration System (QMS).

Forecasts

Ten-year forecasts were generated for the base and alternative models. In both cases, harvests for 2007-2010 were fixed at the ramped-down amounts adopted by the Council in the 2006 yelloweye rebuilding plan. OY amounts for 2011-2018 were estimated through application of the harvest rate (SPR=71.9%) adopted for 2011 and beyond in existing rebuilding plan. Given these specifications, both models exhibit increases in depletion percentage throughout the forecast period. However, in the base model, the projected OY for 2011 declines from 14 mt (the 2010 ramp-down amount) to 10.3 mt (Table ES6). In the alternative model, with M=0.043, the 2011 OY is 13.7 mt.

Table ES6. Forecast for yelloweye rockfish. OY for 2007-2010 represents the currently adopted ramp-down; 2011-2018 represents fishing at SPR = 71.9% to mimic rebuilding plan.

Year	Bio-Smry	Spawn Bio ^{1/}	Depletion	Recruit-0	OY (mt)	ABC						
	2007 Base with M = 0.036											
2007	1134	438	0.15	41.5	23							
2008	1150	455	0.15	42.3	20							
2009	1168	470	0.15	43.1	17	22.9						
2010	1187	484	0.16	43.9	14	23.3						
2011	1208	497	0.16	44.7	10.3							
2012	1231	508	0.16	45.5	10.5							
2013	1254	518	0.17	46.2	10.7							
2014	1276	527	0.17	46.9	10.9							
2015	1298	535	0.17	47.5	11.1							
2016	1319	542	0.18	48.1	11.3							
2017	1339	549	0.18	48.6	11.5							
2018	1360	555	0.18	49.2	11.6							
		2007 Alternat	ive Model wi	th $M = 0.043$								
2007	1327	503	0.16	61.8	23							
2008	1348	517	0.17	63.0	20							
2009	1371	530	0.17	64.2	17	30.4						
2010	1396	544	0.18	65.4	14	31.0						
2011	1423	557	0.18	66.5	13.7							
2012	1449	570	0.19	67.6	14.0							
2013	1474	582	0.19	68.5	14.2							
2014	1499	592	0.19	69.4	14.5							
2015	1523	602	0.20	70.2	14.7							
2016	1547	612	0.20	71.0	15.0							
2017	1570	621	0.20	71.7	15.2							
2018	1593	630	0.21	72.4	15.4							

^{1/}These values are expressed in female biomass (one-half of the single-sex model's SSB₀).

Table ES7. Summary of recent trends in yelloweye exploitation and stock levels; all values reported at the beginning of the year.

	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007		
Landings (mt)	106.6	157.6	42.3	52.7	13.0	10.8	10.1	14.8	14.4	NA		
Estimated Discards (mt)	0	0	0	0	0	0	0	0	0	NA		
Estimated Total Catch	106.6	157.6	42.3	52.7	13.0	10.8	10.1	14.8	14.4	NA		
Exploitation Rate												
(catch/age 3+ biomass)	0.096	0.148	0.043	0.054	0.013	0.011	0.010	0.014	0.013	NA		
Age 3+ Biomass (mt)	1110.0	1068.2	975.0	984.8	984.2	1016.8	1049.7	1082.1	1108.8	1134.4		
Base with M = 0.036												
Spawning Biomass (mt)	348.7	345.9	321.9	335.6	343.8	364.9	385.6	405.5	422.5	438.4		
~95% Interval	298.4-	291.9-	264.2-	273.8-	277.9-	295.0-	311.9-	328.2-	341.9-	354.8-		
	399	399.8	379.7	397.5	409.7	434.8	459.4	482.8	503.1	521.9		
Recruitment (1000's)	34.8	34.5	32.6	33.7	34.4	36.1	37.6	39.1	40.4	41.5		
~95% Interval	30.6-39.5	30.1-39.6	27.9-38.2	28.8-39.6	29.2-40.5	30.7-42.4	32.1-44.2	33.4-45.8	34.5-47.2	16.3-		
										105.8		
Depletion	11.6	11.5	10.7	11.1	11.4	12.1	12.8	13.4	14.0	14.5		
~95% Interval	NA	NA	NA	NA	NA	NA	NA	NA	11.4-16.6	11.8-17.2		
			Alterna	tive model v	with $M = 0.0$	143						
Spawning Biomass (mt)	392.5	391.9	369.8	386.3	396.9	420.7	443.9	466.2	485.3	503.4		
~95% Interval	334.3-	329.9-	303.8-	316.0-	322.4-	342.0-	361.4-	380.1-	396.0-	411.2-		
	450.8	453.9	435.8	456.5	471.4	499.3	526.4	552.2	574.6	595.6		
Recruitment (1000's)	51.2	51.2	48.9	50.6	51.7	54.1	56.3	58.4	60.2	61.8		
~95% Interval	45.0-58.3	44.7-58.6	42.0-57.0	43.4-59.1	44.2-60.5	46.3-63.1	48.4-65.6	50.3-67.8	51.9-69.8	24.3-		
										157.4		
Depletion	12.8	12.8	12.1	12.6	13.0	13.7	14.5	15.2	15.8	16.4		
~95% Interval	NA	NA	NA	NA	NA	NA	NA	NA	13.0-18.7	13.5-19.3		

Table ES8. Summary of yelloweye reference points. The symmetric approximation of the 95% confidence interval included zero for some quantities, the lower limit is therefore rounded up.

Quantity	Estimate	~95% Confidence interval
Unfished spawning stock biomass (SB_0 , mt)	3,019	2,933 - 3,105
Unfished 3+ biomass (mt)	6,810	NA
Unfished recruitment (R_0 , thousands)	116.2	111.4 - 121.0
Reference points based on SB _{40%}		
MSY Proxy Spawning Stock Biomass (SB _{40%})	1,208	1,173 - 1,242
SPR resulting in $SB_{40\%}$ ($SPR_{SB40\%}$)	0.583	0.583 - 0.583
Exploitation rate resulting in $SB_{40\%}$	0.015	NA
Yield with $SPR_{SB40\%}$ at $SB_{40\%}$ (mt)	43.7	42.3 - 45.0
Reference points based on SPR proxy for MSY		
Spawning Stock Biomass at SPR (SB_{SPR}) (mt)		
$SPR_{MSY-proxy}$		
Exploitation rate corresponding to SPR		
Yield with $SPR_{MSY-proxy}$ at SB_{SPR} (mt)		
Reference points based on estimated MSY values		
Spawning Stock Biomass at $MSY(SB_{MSY})$ (mt)	1,164	1,130 - 1,198
SPR_{MSY}	0.573	0.573 - 0.574
Exploitation Rate corresponding to SPR_{MSY}	0.016	NA
MSY (mt)	43.7	42.4 - 45.1

Introduction

Life History

Yelloweye rockfish (*Sebastes ruberrimus*) can be characterized as relatively low in abundance, extremely long-lived (aged up to 120 years), late maturing, and slow growing. They primarily inhabit high-relief rocky areas from northern Baja to the Aleutian Islands in depths 15 to 550 meters (Rosenthal et al. 1982; Eschemeyer et al. 1983; Love et al. 2000). Adult yelloweye are carnivorous feeding primarily on other rockfishes, herring, sand lance, crab and shrimp (Washington et al. 1978; Rosenthal et al. 1988; Reilly et al. 1994; Love 1996).

Stock Structure

This assessment update treats the yelloweye stock as a single coast-wide assemblage; no attempt to evaluate the separate WOC (Washington, Oregon, California) models has been made. Additional information about stock structure can be found in Wallace et al. (2006).

Fishery

Yelloweye rockfish are highly prized by sport fishers due to their size, beauty, and quality. Commercial fishers value their high market demand and ex-vessel price. Yelloweye rockfish inhabit areas typically inaccessible to trawl gear and catch in the coastal trawl fishery primarily results from incidental harvest associated with other target fisheries operating at the fringes of this habitat. However, due to lack of information it is impossible to determine if yelloweye distribution is now limited due to past intense fishing pressure in more easily accessible habitats. Yelloweye are also caught incidentally in both commercial hook-and-line and sport fisheries targeting other species found in association with the yelloweye habitat preferences. This species has been subjected to a periodic target fishery for both commercial hook-and-line and sport fisheries at least since the 1970's. (Wallace et al. 2006).

Management history

Management of rockfish has had a long history beginning in 1983 when the Pacific Fisheries Management Council (PFMC) first imposed trip limits on landings on about 50 species comprising the *Sebastes* complex. Yelloweye were managed as part of the *Sebastes* complex until 2000, when the Council established three minor rockfish groupings: Nearshore, Shelf and Slope. Since 2002, yelloweye has been managed with its own ABC, OY, and trip limit specifications. See Wallace et al. (2006), for more on management history and performance, including commercial and sport fisheries information.

Assessment

Documentation of updated data sources

Catch Data

The updated yelloweye catch data by year and fishery is given in Table 1. The 2005 GMT Scorecard data in the 2006 model was updated with more finalized data, and the 2006 catch, the majority of which is from the 2006 GMT Scorecard, was divided up by state, using a ratio that included the previous two years of catch data by state. Catch histories for all fleets were

refreshed for the period 1983-2005. Catches prior to 1983 are taken from Wallace et al. (2006). Table 2 shows the difference in the catch from the 2007 and 2006 models. Annual total catch of yelloweye rockfish peaked around 1980, and remained above 200 mt throughout the mid-1990s. Catch declined sharply between 1997 and 2001 (Figure 1).

Fishery size and age

Length composition data were updated for the following fisheries: California recreation; California, Oregon, and Washington trawl; and Washington hook & line. Length data were also updated for the IPHC survey index.

Age composition data were updated for these fisheries: California and Washington trawl, and Washington hook & line. The new composition data are available in the SS2c data file in Appendix A.

Indexes

The IPHC survey was the only index that needed to be updated, and the 2006 value was provided by Washington Department of Fish and Wildlife (WDFW) (Theresa Tsou, personal communication).

It appears from the data provided for the IPHC survey and the Washington recreation index that the standard deviation of the non-log-transformed data was input into the SS2 data file for the variability of the indexes. However, index variability is appropriately provided to SS2 in the form of the *standard deviation of the logged data* (or its proxy – the un-logged data's 'standard deviation CV' for values less than 0.2). This header is labeled 'selog' (not 'sdlog' as the need for the standard deviation might imply) in the standard SS2 data file. A change in the 'selog' values for the IPHC survey proved insignificant. There was insufficient time to fully explore the specification of variability the other indexes, and they remain unchanged.

Model Structure

The stock assessment program, Stock Synthesis 2 version 'c', was used for this assessment update. SS2 was written by Dr. Richard Methot, NOAA Fisheries Service in Seattle (Methot 2000). SS2 is a forward population projection model that simulates the dynamics of a stock within a statistical estimation framework.

In the process of compiling data for this updated assessment, several errors were uncovered in the data input files used for the previous assessment. These errors and their associated corrections are detailed below.

Length Composition Vector Correction

The length-composition vector for the 2006 assessment is specified in Appendix A of Wallace et al. (2006) as:

37#N length bins

18	20	22	24	26	28	30	32	34	36	38	40
42	44	46	48	50	52	54	56	58	60	62	64
66	68	70	72	74	76	78	80	82	84	86	88
90											

This vector incorrectly specifies the upper bound of the length bins, not their lower bound, as required by SS2. This error was verified with the prior assessment author (personal communication, Farron Wallace, WDFW).

The correct length composition vector for the 2006 model is:

37 #N length bins

16	18	20	22	24	26	28	30	32	34	36	38
40	42	44	46	48	50	52	54	56	58	60	62
64	66	68	70	72	74	76	78	80	82	84	86
88											

Since the corrected model now sees the entire population as being of smaller length, estimated biomass is reduced throughout the time series, relative to the 2006 assessment. The effect of correcting these model inputs on the 2006 base-model estimates of spawning biomass is presented in Table 3 and Figure 2.

Age Composition Vector Correction

A comparable problem was discovered with the specification of the age-composition vector. In the 2006 model, the age composition vector was specified as:

36 # N age' bins

3	4	5	6	7	8	9	10	11	12	13	14
15	16	17	18	19	20	21	22	23	24	25	26
27	28	29	30	35	40	45	50	55	60	65	70

The correct specification of the age bins is:

36 # N age' bins

2	3	4	5	6	7	8	9	10	11	12	13
14	15	16	17	18	19	20	21	22	23	24	25
26	27	28	29	30	35	40	45	50	55	60	65

The resulting changes in age compositions can be seen in Figures 3-5. Since the corrected model now sees the entire population as being of younger age, estimated biomass is reduced throughout the time series. The effect of correcting this error on model results is also presented in Table 3 and Figure 2.

Washington Trawl Ages Included with Washington Hook & Line Age compositions

Close examination of data extracted for this assessment revealed that the Washington hook-and-line age compositions used in the 2006 coast-wide base model included the Washington trawl ages for two of the three years (2002 and 2004). These trawl ages had a significant proportion of older fish (see Figures 3 and 4) which were included in the age compositions of both fleets. Additionally, the hook-and-line age composition in 2001 of the 2006 base model showed a large spike of fish at 29 cm (Figure 5) that is not observed in the data extracted for this assessment. Since there were no trawl age-composition data available for 2001, the source of this difference remains unknown. The 2007 base model reflects the correction of the 2002/2004 problem and the revision of the 2001 age composition (Figures 6 and 7). With the older fish from the trawl fishery no longer included in both fleets' age compositions, recent biomass and depletion levels in the 2007 model are reduced further, relative to the 2006 model.

Conversion to SS2c

The 2006 SS2 ver. 1.21 model was converted to SS2c and the models compared. It was found, that in order to make the two models perform comparably during the forecast period, the emphasis for the forecast recruitment devs that occur prior to endyyr + 1 needed to be set to a large value (1000) in the new SS2c, see Figure 8. Methot (2007) states on page 70:

"The structure of SS2 creates no sharp dividing line between the estimation period and the forecast period. In many cases one or more recruitments at the end of the time series will lack appreciable signal in the data and should therefore be treated as forecast recruit deviations. To the degree that some variability is observed in these recruitments, partial or full bias correction may be desirable for these devs separate from the purely forecast devs, there is therefore an additional control for the level of bias correction applied to forecast deviations occurring prior to endyear+1."

Super Year Method Updated

The 2006 assessment employed a "super-year" approach for dealing with small sample sizes for age and size compositions in some years. The method by which super years were handled was updated from the method used in the earlier version of SS2 to the 'compare expected aggregation to observed aggregation' method put forth in the SS2 documentation. This change slightly increased the model estimates of spawning biomass (see Figure 6 and compare the length and age compositions in Appendix A for Wallace et al. (2006) to those in Appendix A of this document.)

Data Added

New and updated data were added in two steps. First, the 2005 data, updated as described above and the 2006 catch data from Table 1 were added to the 2007 model. Length- and age-composition data for 2005 and 2006 were also updated. Secondly, all updated/refreshed data were added to the model. Figures 6 and 7 and Table 4 provide comparisons of the spawning biomass trajectories of the updated and prior models.

Base-run Results

Spawning biomass and spawning depletion for the 2007 base model are displayed in Figure 9.

The 2007 fits to the length-composition data for California, Oregon, and Washington fisheries and the IPHC survey are displayed in Figures 10-13.

Figure 14 shows the expected numbers-at-age, by year, and mean age, by year, for the 2007 base model.

Sensitivity Analysis for Natural Mortality

During the course of the STAR panel which reviewed the 2006 yelloweye rockfish assessment, consensus was reached to reduce the value of M in the models from 0.045 to 0.036. This decision was based on information provided at the meeting by CaiHong Fu (DFO, Canada), who communicated to the STAT team that her current yelloweye model value for M was being estimated with good stability at 0.033. After the 2006 STAR panel, CaiHong updated her catch and dropped some composition data; this resulted in the updated model estimating M at 0.043 (Fu et al., submitted). The Chair of the STAR Panel has conveyed that if the 0.043 value had been available during the review, it would likely have been recommended for use, rather than the 0.036 value (Owen Hamel, personal communication).

The sensitivity of the 2007 base model fit to changes in M is shown in Figures 15 and 16. Models below the dashed line are not significantly different from the lowest model which has an M of 0.045. Model fit is degraded by roughly 19 log-likelihood units with M=0.036, relative to values of M in the 0.043-0.046 range.

Based on this guidance and the sensitivity testing, an alternative model (M=0.043) to the 2007 base case (M=0.036) was developed, to provide a basis for correcting the errant advice received during the 2006 STAR panel. For more information on yelloweye natural mortality, please refer to Table 11 and the section on natural mortality (starting on page 16) in Wallace et al. (2006).

Reference Points

The unfished spawning stock biomass is estimated to be 3,019 mt in the base model, and 3,062 mt in the alternative (M=0.043) model (Table 5). The spawning biomass targets for these models are 1,208 mt and 1,225 mt, respectively. The overfished biomass levels for these models are 755 mt and 766 mt, respectively. The current spawning biomass is estimated to be 422 mt with the base model and 485 mt with the alternative model. Current depletion estimates for these models are 14.5% and 16.4%, respectively. The F_{MSY} proxy harvest rate for yelloweye rockfish if $F_{50\%}$. Reference points for the base model are presented in Table 6.

Harvest projections

Ten-year forecasts were generated for the base and alternative models (Table 7). In both cases, harvests for 2007-2010 were fixed at the ramped-down amounts adopted by the Council in the 2006 yelloweye rebuilding plan. OY amounts for 2011-2018 were estimated through application of the harvest rate (SPR=71.9%) adopted for 2011 and beyond in existing rebuilding plan. Given these specifications, both models exhibit increases in depletion percentage throughout the forecast period. However, in the base model, the projected OY for 2011 declines from 14 mt (the 2010 ramp-down amount) to 10.3 mt (Table ES5). In the alternative model, with M=0.043), the 2011 OY is 13.7 mt. Spawning biomass and spawning depletion forecasts for the 2007 base model can be seen in Figure 9.

Comparison of Alternative Washington Recreational CPUE Indexes

The comparison of including an OSP bottom fish only (BFO) index to an aggregate index that includes both the OSP BFO and OSP halibut-directed trips is shown in Figure 17. See Figure 7 in Wallace et al. (2006) for a plot of these abundance indexes. The 2007 depletion level for the model with both the OSP BFO and OSP halibut is 14.7% versus 14.5% for the 2007 base model (Table 4).

Acknowledgments

I wish to thank Farron Wallace for help with the 2006 yelloweye model, Theresa Tsou for assistance with WDFW data, Wade Van Buskirk for aid with RecFIN data, and Don Bodenmiller for help with the Oregon data. I would also like to heartily thank Ian Stewart for help with SS2 and Jim Hastie for reviewing the manuscript.

Literature cited

- Fu, C., Yamanaka, L., Fargo, J.J., Lacko, L.C., Grandin, C.J. 2007. Stock Assessment and Recovery Potential Analysis of Yelloweye Rockfish off the Canadian West Coast. Submitted to North American Journal of Fisheries Management.
- Hastie, J. and Bellman, M. 2006. Estimated 2005 discard and total catch of selected groundfish species. FRAMD/NWFSC report. http://www.nwfsc.noaa.gov/research/divisions/fram/observer/datareport/docs/totalmortality2005_final.pdf
- Hastie, J. 2006. Revised estimated 2004 discard and total catch of selected groundfish species. FRAMD/NWFSC report. http://www.nwfsc.noaa.gov/research/divisions/fram/observer/datareport/docs/revised_total_fg_catch_estimation2004.pdf
- Methot, R.D. 2000. Technical description of the stock synthesis assessment program. U.S. Dept. Commer., NOAA Tech. Memo. NWFD-NWFSC-43, 46 p.
- Methot, R.D. 2007. User Manual for the Integrated Analysis Program Stock Synthesis 2 (SS2), Model Version 2.00b. NWFSC unpublished document. 84 p.
- Wallace, F., Tsou, T., Jagielo, T., and Cheng, Y.W. 2006. Status of Yelloweye Rockfish off the U.S. West Coast in 2006. *In* Stock Assessment and Fishery Evaluation. Pacific Fishery Management Council 2130 SW fifth Ave. Suite 224, Portland, Ore. 97210.

Table 1. Updated yelloweye catch data by state and fishery for the 2007 model. Note that in the footnotes, 'Hastie' refers to Hastie (2006) for data listed in year 2004, and Hastie and Bellman (2006) for data listed in year 2005. Light grey in the California sport fishery indicates that the data were interpolated. Dark grey in Washington hook & line fishery indicates that the data from an unlisted source, given in the Table 1 of Wallace et al. (2006), has been used, and the absence of PacFIN data for those years was not assumed to imply zero catch.

	California				Oregon			Washington		
Year	Trawl ^{1/}	Line ^{2/}	Sport ^{3/}	Trawl ^{1/}	Line ^{4/}	Sport ^{5/}	Trawl ^{1/}	Line ^{6/}	Sport ^{7/}	
1980			67.1							
1981			46.9							
1982			102.1	14.4						
1983	57.0	5.3	50.5	177.3			6.5			
1984	44.0	3.6	77.3	57.1			3.0			
1985	7.4	3.7	123.6	91.9			10.5			
1986	9.9	22.0	64.6	59.8			2.7			
1987	16.8	34.2	75.2	65.1			6.0			
1988	30.6	23.8	57.5	110.7			15.8			
1989	9.4	34.1	58.7	170.1			27.9			
1990	10.1	59.0	46.1	61.1			18.8			
1991	14.0	129.5	33.6	104.8	33.0		15.8			
1992	15.8	95.5	21.0	107.8	58.0		25.1			
1993	6.2	46.1	8.5	119.3	63.9		17.6			
1994	4.7	48.8	14.4	77.6	24.6		7.2			
1995	3.7	46.9	12.6	125.6	22.7		8.1			
1996	16.2	54.3	12.5	70.3	22.2		8.6			
1997	6.0	56.4	15.1	71.4	44.1		6.5			
1998	4.0	16.8	5.5	20.8	20.6		4.8			
1999	8.7	13.6	12.6	7.1	54.2		9.9			
2000	0.7	3.3	7.5	0.3	3.3		0.2			
2001	0.6	3.9	4.6	0.7	5.5		0.8			
2002	0.2	0.0	2.1	0.4	0.3		0.4	2.2		
2003	0.0	0.0	3.7	0.2	0.0		0.2	0.3		
2004	0.3	0.0	0.8	0.9	0.7	2.4	0.9	4.0	3.7	
2005	0.1	0.0	1.6	0.3	0.5	4.1	0.4	3.2	5.2	
2006	0.0	0.0	3.5	0.3	0.5	2.5	0.3	2.9	1.7	

¹/PacFIN:1983-2003, 2006; Hastie:2004-2005.

²/PacFIN:1983-2003; Hastie:2004-2005; GMT Scorecard:2006.

³/MRFSS:1980-1989,1993-2006; Interpolated:1990-1992.

⁴/PacFIN:1991-2003; Hastie:2004-2005; GMT Scorecard:2006.

⁵/Hastie:2004-2005; GMT Scorecard:2006.

⁶ PacFIN:2002-2003; Hastie:2004-2005; GMT Scorecard:2006. 2004, 2005, & 2006 include 1.0, 0.8, & 0.5 for tribal, respectively.

^{7/}Hastie:2004; Wallace, F. (personal communication):2005; GMT Scorecard:2006.

Table 2. Difference in catch between 2007 coast-wide model and the 2006 coast-wide model. (i.e. 2007 catch data minus 2006 catch data). California and Oregon commercial include hook & line data.

Year	CaRec	CaCom	OrRec	OrCom	WaRec	WaCom6	WaLine
1983	-0.5	4.7	0	0	0	0	0
1984	-3.5	2.7	0	0	0	0	0
1985	-2.2	2.3	0	0	0	0	0
1986	-0.9	0.9	0	0	0	0	0
1987	0	-2.7	0	-0.6	0	0	0
1988	0	-10.5	0	0	0	0	0
1989	0	-6.6	0	0.7	0	0	0
1990	0	-10.7	0	0	0	0	0
1991	0	2.4	0	1.8	0	0	0
1992	0	-0.9	0	0	0	0	0
1993	0	-0.7	0	0	0	0	0
1994	0	-0.9	0	0	0	0	0
1995	0	2.1	0	-0.8	0	0	0
1996	0	4.7	0	-5.2	0	0	0
1997	0	0.2	0	-0.1	0	0	0
1998	-0.3	-0.8	0	0.1	0	0	0
1999	0	0.1	0	0.1	0	-0.1	0
2000	0	0	0	0	0	0	0
2001	0	0	0	0	0	-0.2	0
2002	0	0.1	0	0	0	0	0
2003	0	0	0	-0.8	0	0	0
2004	-2.7	0.3	0	0.9	-0.8	0.8	3.2
2005	-2.1	-1.5	-0.2	-3.7	0.1	-3.9	3.2

Table 3. Model benchmarks for comparison of 2006 coast-wide models in SS2 ver. 1.21.

	Models (All SS2 ver. 1.21)					
Reference Point	2006 Star Base	2006 Base: Length Comp	2006 Base: Length & Age			
		Vector Corrected	Comp Vector Corrected			
^{1/} Unfished Spawning Stock Biomass (SSB ₀)	3322	3168	3141			
Unfished Exploitable Biomass (B0)	7448	7176	7100			
Unfished Recruitment (log(R0))	4.85	4.87	4.82			
^{1/} SSB ₂₀₀₆	588	506	501			
Depletion Level (2006)	17.7%	16.0%	16.0%			

^{1/}These values are expressed in female biomass (one-half of the single-sex model's SSB₀).

Table 4. Model benchmarks for comparison of coast-wide models in SS2c. (Includes a small correction for a change in the IPHC Index proxy for the standard error of the log of the index.)

	Model (All SS2c)				
Reference Point	2006 Base: Length & Age	2005 Data Updated and	All Catch, Length & Age		
	Comp Vector Corrected	2006 Data Added	Comps Updated (2007 Base)		
^{1/} Unfished Spawning Stock Biomass (SSB ₀)	3103	3143	3019		
Unfished Exploitable Biomass (B0)	7033	7033 7155			
Unfished Recruitment (log(R0))	4.81	4.87	4.76		
$^{1/}SSB_{2006}$	483	503	422		
Depletion Level (2006)	15.6%	16.0%	14.0%		
Depletion Level (2007)		16.5%	14.5%		

 $^{^{1/}}$ These values are expressed in female biomass (one-half of the single-sex model's SSB_0)

Table 5. Benchmarks for comparison of the coast-wide 2006 base model to the 2007 base and alternative models.

Reference Point	2006 Star Base	2006 Base: Length & Age Comp Vector Corrected	All Catch, Length & Age Comps Updated (2007 Base)	2007Alternative Model with M = 0.043
^{1/} Unfished Spawning Stock Biomass (SSB ₀)	3322	3141	3019	3062
Unfished Exploitable Biomass (B0)	7448	7100	6811	7044
Unfished Recruitment (log(R0))	4.85	4.82	4.76	4.76
^{1/} SSB ₂₀₀₆	588	501	422	485
Depletion Level (2006)	17.7%	16.0%	14.0%	15.8%
Depletion Level (2007)			14.5%	16.4%

Table 6. Summary of yelloweye reference points. The symmetric approximation of the 95% confidence interval included zero for some quantities, the lower limit is therefore rounded up. Biomass is in metric tons and numbers are in thousands.

Quantity	Estimate	~95% Confidence interval
Unfished spawning stock biomass (SB_0 , mt)	3,019	2,933 - 3,105
Unfished 3+ biomass (mt)	6,810	NA
Unfished recruitment (R_0 , thousands)	116.2	111.4 - 121.0
Reference points based on SB _{40%}		
MSY Proxy Spawning Stock Biomass (SB _{40%})	1,208	1,173 - 1,242
SPR resulting in $SB_{40\%}$ ($SPR_{SB40\%}$)	0.583	0.583 - 0.583
Exploitation rate resulting in $SB_{40\%}$	0.015	NA
Yield with $SPR_{SB40\%}$ at $SB_{40\%}$ (mt)	43.7	42.3 - 45.0
Reference points based on SPR proxy for MSY		
Spawning Stock Biomass at SPR (SB_{SPR}) (mt)	845	821 - 869
$SPR_{MSY-proxy}$	0.500	0.500 - 0.500
Exploitation rate corresponding to SPR	0.020	NA
Yield with $SPR_{MSY-proxy}$ at SB_{SPR} (mt)	41.5	40.2 - 42.8
Reference points based on estimated MSY values		
Spawning Stock Biomass at $MSY(SB_{MSY})$ (mt)	1,164	1,130 - 1,198
SPR_{MSY}	0.573	0.573 - 0.574
Exploitation Rate corresponding to SPR_{MSY}	0.016	NA
MSY (mt)	43.7	42.4 - 45.1

Table 7. Proxy for rebuilding projection. OY for 2007-2010 represents the currently adopted ramp-down; 2011-2018 represents fishing at SPR = 71.9% to mimic rebuilding plan.

Year	Bio-Smry	Spawn Bio ^{1/}	Depletion	Recruit-0	OY (mt) Ramp-down Mortality (mt)	ABC			
2007 Base with $M = 0.036$									
2007	1134	438	0.15	41.5	23				
2008	1150	455	0.15	42.3	20				
2009	1168	470	0.15	43.1	17	22.9			
2010	1187	484	0.16	43.9	14	23.3			
2011	1208	497	0.16	44.7	10.3				
2012	1231	508	0.16	45.5	10.5				
2013	1254	518	0.17	46.2	10.7				
2014	1276	527	0.17	46.9	10.9				
2015	1298	535	0.17	47.5	11.1				
2016	1319	542	0.18	48.1	11.3				
2017	1339	549	0.18	48.6	11.5				
2018	1360	555	0.18	49.2	11.6				
		2007 Alternat	ive Model wi	th M = 0.043					
2007	1327	503	0.16	61.8	23				
2008	1348	517	0.17	63.0	20				
2009	1371	530	0.17	64.2	17	30.4			
2010	1396	544	0.18	65.4	14	31.0			
2011	1423	557	0.18	66.5	13.7				
2012	1449	570	0.19	67.6	14.0				
2013	1474	582	0.19	68.5	14.2				
2014	1499	592	0.19	69.4	14.5				
2015	1523	602	0.20	70.2	14.7				
2016	1547	612	0.20	71.0	15.0				
2017	1570	621	0.20	71.7	15.2				
2018	1593	630	0.21	72.4	15.4				

These values are expressed in female biomass (one-half of the single-sex model's SSB₀).

Figure 1. Reconstructed historical catch (mt) by year and fleet, 1925-2006.

Figure 2. Spawning biomass by year for the 2006 base run in SS2 ver. 1.21, the base run with the length comp vector corrected, and both the length and comp vectors corrected. The top figure is all years, while the bottom figure is zoomed into the most recent years of data.

Figure 3. 2002 Washington hook-and-line age compositions for the 2006 coast-wide base model (circles) and the 2007 base model (squares).

Figure 4. 2004 Washington hook-and-line age compositions for the 2006 coast-wide base model (circles) and the 2007 base model (squares).

Figure 5. 2001 Washington hook-and-line age compositions used in the 2006 coast-wide base model (circles) and the 2007 base model (squares).

Figure 6. Comparison of spawning biomass by year for 1) the non-adjusted 2006 coast-wide base model, 2) the corrected length and age comp. vector model, 3) the SS2 super year method updated model, 4) the model with 2005 data updated and 2006 data added, and 5) the model with all catch, length and age compositions updated. All models were run in SS2c.

Figure 7. Comparison of spawning biomass by year for the 1) non-adjusted 2006 coast-wide base model, 2) the corrected length and age comp. vector model, 3) the model with all catch and length compositions. updated (but not age compositions), 4) the model with all catch and all length compositions updated plus the WA trawl and WA hook & line age compositions (CA commercial age compositions not updated), and 5) the model with all catch, length and age compositions updated. All models were run in SS2c.

Figure 8. Comparison of spawning biomass by year for the 2006 coast-wide base model, the 2006 model in SS2c with no emphasis on the forecast devs, and the 2006 model in SS2c with emphasis on the forecast devs. All models have length and age comp vector correction.

Figure 9. Spawning biomass and spawning depletion, with model forecasts, for the 2007 base model.

Combined sex whole catch length fits for fleet 1

Combined sex whole catch length fits for fleet 2

Figure 10. 2007 base model fits to the length-composition data for California recreation (top) and commercial (bottom) fisheries.

Combined sex whole catch length fits for fleet 3

Combined sex whole catch length fits for fleet 4

Figure 11. 2007 base model fits to the length-composition data for Oregon recreation (top) and commercial (bottom) fisheries.

Combined sex whole catch length fits for fleet 5

Combined sex whole catch length fits for fleet 6

Figure 12. 2007 base model fits to the length-composition data for Washington recreation (top) and commercial (bottom) fisheries.

Combined sex whole catch length fits for fleet 7

Combined sex whole catch length fits for fleet 12

Figure 13. 2007 base model fits to the length-composition data for Washington hook and line (top) fishery and the IPHC survey (bottom).

Expected numbers at age in thousands (max=979.469)

Figure 14. Expected numbers of age, by year (top), and mean age, by year (bottom), for the coast-wide 2007 base model.

Figure 15. Spawning biomass by year for the uncorrected 2006 base model and the new (corrected) 2007 base model with various levels of natural mortality. Projections from 2007 and beyond are only for comparison purposes.

Figure 16. Relative negative log likelihood versus natural mortality (M), showing the sensitivity of the model to changes in M. Models below the dashed are not significantly different from the lowest model. The current base model has an M of 0.036. Assuming a symmetric parabolic curve than the vertical line that bifurcates the curve occurs at a value of approximately 0.041.

Figure 17. Comparisons of Washington recreational indexes of OSP bottom fish only (BFO) directed trips to a combination of OSP BFO and OSP halibut directed trips.

Appendix A: Control, Forecast, and Data Files for the 2007 Coast-wide Yelloweye Model

Control File

```
#_data_and_control_files: CST_BASE.dat // CST_BASE.CTL
1 #_N_Growth_Patterns
1 #_N_submorphs
1 #_N_areas
1 1 1 1 1 1 1 1 1 1 1 1 #_area_assignments_for_each_fishery_and_survey
#_recruit_design_(G_Pattern_x_birthseas_x_area)_X_(0/1_flag)
0 #_recr_distr_interaction
0 #_Do_migration
#_movement_pattern_(season_x_source_x_destination)_x_(0/1_flag)_minage_maxage
000
0 #_Nblock_Designs
0.5 #_fracfemale
1000 #_submorph_between/within
1 #vector_submorphdist_(-1_first_val_for_normal_approx)
4 # natM amin
10 # natM amax
6 #_Growth_Age-at-L1
60 #_Growth_Age-at-L2
0.1 #_SD_add_to_LAA
0 #_CV_Growth_Pattern
1 #_maturity_option
1 #_First_Mature_Age
3 #_parameter_offset_approach
1 #_env/block/dev_adjust_method
-1 #_MGparm_Dev_Phase
```

#Mortality-Growth Parameters

		-	1 di dilicic						_	_	_	_
#_LC	HI			PRIOR	PR_type	SD	PHASE	env-var	use_dev	dev_	dev_	dev_
		Block	Block_									
#										minyr	maxyr	stddev
		Fxn										
0.01	0.1	0.043		0.1	0	0.8	-3	0	0	0	0	0.5
		0	0	#Natmort_young _	Gpattern:_	_1_Gender	r:_1					
-3	3	0		0	0	0.8	-3	0	0	0	0	0.5
		0	0	#Natmort_old								
10	35	22.618		30	0	10	2	0	0	0	0	0.5
		0	0	#Lmin								
40	120	64.6346		66	0	10	2	0	0	0	0	0.5
		0	0	#Lmax								
0.01	0.2	0.0626		0.05	0	0.8	3	0	0	0	0	0.5
		0	0	#VBK								
0.05	0.2	0.0819		0.14	0	0.8	3	0	0	0	0	0.5
		0	0	#CV-young								
-1	1	0.5773		0.4	0	0.8	3	0	0	0	0	0.5
		0	0	#CV-old								
-3	3	2.0873e-0	005	2.0873e-005	0	0.8	-2	0	0	0	0	0.5
		0	0	#Female_scale								
-3	3	2.96956		2.96956	0	0.8	-2	0	0	0	0	0.5
		0	0	#Female_exp								
				•								

-3	3	42.1 0	0	42.1 #Mat_inflection	0	0.8	-2	0	0	0	0	0.5
-3	3	-0.415 0	0	-0.415 #Mat_slope	0	0.8	-2	0	0	0	0	0.5
-3	3	1		1	0	0.8	-2	0	0	0	0	0.5
-3	3	$0 \\ 0$	0	#Alpha 0	0	0.8	-2	0	0	0	0	0.5
		0	0	#Beta								
#Sea	ason	al Recruit	ment									
-4	4	0		0	-1	99	-3	0	0	0	0	0.5
		0	0	#_recrdistribution	_by_grow	th_pattern						
-4	4	0		0	-1	99	-3	0	0	0	0	0.5
		0	0	#_recrdistribution	_by_area	1						
-4	4	4		0	-1	99	-3	0	0	0	0	0.5
		0	0	#_recrdistribution	_by_seaso	n 1						
#Co	hort	Growth D	D ev									
1	1	1		1	-1	99	-3	0	0	0	0	0.5
		0	0	#_cohort_growth_	_deviation							

0 #_custom_MG-env_setup

0 #_custom_MG-block_setup

#_Spawner-Recruitment

1	#51	K_fxn: 1=.	Beverton-	Holt with	flat-top be	eyond Bze	ro
#LO	HI	INIT	PRIOR	Pr_type	SD	PHASE	
3	31	5.172	5	0	50	1	#Ln(R0)
0.2	1	0.45	1	0	50	-6	#steepness
0	5	0.5	1	0	0.8	-3	#SD_recruitments
-5	5	0	0	0	1	-3	#Env_link
-5	5	0	0	0	1	-3	#init_eq
0	0	0	0	-1	0	-99	#Future autocorrelation

0 #_SR_env_link 1 #_SR_env_target_1=devs;_2=R0;_3=steepness 1 #do_recr_dev: 0=none; 1=devvector; 2=simple deviations 1968 1992 -10 10 1 #_recr_devs 1492 #_first_yr_fullbias_adj_in_MPD

#_initial_F_parms

#_LO HI INIT PRIOR PR_type SD PHASE

 $0\ 1\ 0\ 0.01\ 0\ 99\ 1$

0 1 0 0.01 0 99 1

0 1 0 0.01 0 99 1

0100.010991

0 1 0 0.01 0 99 1

0 1 0 0.01 0 99 1

0 1 0 0.01 0 99 1

#_Q_setup

A=do power, B=env-var, C=extra SD, D=devtype(<0=mirror, 0/1=none, 2=cons, 3=rand, 4=randwalk); E=0=num/1=bio, F=err_type

#_A B C D E F

 $0\,\overline{0}\,0\,0\,1\,0$

000010

 $0 \ 0 \ 0 \ 0 \ 1 \ 0$

 $0\ 0\ 0\ 0\ 1\ 0$

```
000010
0\,0\,0\,0\,1\,0
0\,0\,0\,0\,1\,0
0\,0\,0\,0\,0\,0
0\,0\,0\,0\,0\,0
000000
0\,0\,0\,0\,0\,0
0\,0\,0\,0\,0\,0
#_Q_parms(if_any)
#_size_selex_types
#_Pattern Discard Male Special
1000#1
1000#2
1000#3
1000#4
1000#5
1000#6
1000#7
5001#8
5001#9
5003#10
5005#11
1000#12
#_age_selex_types
#_Pattern Discard Male Special
10000#1
10000#2
10000#3
10000#4
10000#5
10000#6
10000#7
15001#8
15001#9
15 0 0 3 # 10
15 0 0 5 # 11
10 0 0 0 # 12
#_selex_parms
#_LO HI INIT PRIOR PR_type SD PHASE env-var use_dev dev_minyr dev_maxyr dev_stddev Block_Fxn
#_size_sel: 1
10 70 31.29 30 0 99 3 0 0 0 0 0.5 0 0 # 1
0.001\ 60\ 9.54\ 15\ 0\ 99\ 4\ 0\ 0\ 0\ 0\ 0.5\ 0\ 0\ \#\ 2
# size sel: 2
10 70 33.24 30 0 99 3 0 0 0 0 0.5 0 0 # 3
0.001 60 8.93 15 0 99 4 0 0 0 0 0.5 0 0 # 4
# size sel: 3
10 70 28.61 30 0 99 4 0 0 0 0 0.5 0 0 # 5
0.001\ 60\ 6.69\ 15\ 0\ 99\ 5\ 0\ 0\ 0\ 0\ 0.5\ 0\ 0\ \#\ 6
#_size_sel: 4
10 70 34.71 30 0 99 4 0 0 0 0 0.5 0 0 # 7
0.001 60 8.23 15 0 99 5 0 0 0 0 0.5 0 0 # 8
# size sel: 5
10 70 29.7191 30 0 99 4 0 0 0 0 0.5 0 0 # 9
0.001\ 60\ 7.66227\ 15\ 0\ 99\ 5\ 0\ 0\ 0\ 0\ 0.5\ 0\ 0\ \#\ 10
#_size_sel: 6
10 70 34.167 30 0 99 4 0 0 0 0 0.5 0 0 # 11
0.001 60 7.36903 15 0 99 5 0 0 0 0 0.5 0 0 # 12
```

```
#_size_sel: 7
10 70 41.96 30 0 99 4 0 0 0 0 0.5 0 0 # 13
0.001 60 13.63 15 0 99 5 0 0 0 0 0.5 0 0 # 14
#_size_sel: 8
1 37 1 5 0 99 -1 0 0 0 0 0.5 0 0 # 15
1 37 37 6 0 99 -1 0 0 0 0 0.5 0 0 # 16
# size sel: 9
1 37 1 5 0 99 -1 0 0 0 0 0.5 0 0 # 17
1 37 37 6 0 99 -1 0 0 0 0 0.5 0 0 # 18
#_size_sel: 10
1 37 1 5 0 99 -1 0 0 0 0 0.5 0 0 # 19
1 37 37 6 0 99 -1 0 0 0 0 0.5 0 0 # 20
# size sel: 11
1 37 1 5 0 99 -1 0 0 0 0 0.5 0 0 # 21
1 37 37 6 0 99 -1 0 0 0 0 0.5 0 0 # 22
#_size_sel: 12
10 70 41.96 30 0 99 4 0 0 0 0 0.5 0 0 # 23
0.001 60 13.63 15 0 99 5 0 0 0 0 0.5 0 0 # 24
#_age_sel: 1
#_age_sel: 2
#_age_sel: 3
#_age_sel: 4
#_age_sel: 5
#_age_sel: 6
#_age_sel: 7
#_age_sel: 8
#_age_sel: 9
#_age_sel: 10
# age sel: 11
#_age_sel: 12
1 #_env/block/dev_adjust_method
0 #_custom_sel-env_setup
0 #_custom_sel-block_setup
-1 #_selparmdev-phase
#_Variance_adjustments_to_input_values
# 123456789101112
0 0 0 0 0 0 0 0 0 0 0 0 0 #_add_to_survey_CV
0 0 0 0 0 0 0 0 0 0 0 0 0 #_add_to_discard_CV
0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ \#\_add\_to\_bodywt\_CV
1 1 1 1 1 1 1 1 1 1 1 1 1 #_mult_by_lencomp_N
1 1 1 1 1 1 1 1 1 1 1 1 1 #_mult_by_agecomp_N
1 1 1 1 1 1 1 1 1 1 1 1 #_mult_by_size-at-age_N
30 #_DF_for_discard_like
30 #_DF_for_meanbodywt_like
1 #_maxlambdaphase
1 # sd offset
#_lambdas_(columns_for_phases)
1 #_CPUE/survey:_1
1 #_CPUE/survey:_2
1 #_CPUE/survey:_3
1 #_CPUE/survey:_4
1 #_CPUE/survey:_5
1 #_CPUE/survey:_6
1 #_CPUE/survey:_7
1 #_CPUE/survey:_8
1 #_CPUE/survey:_9
```

- 1 #_CPUE/survey:_10
- 1 #_CPUE/survey:_11
- 1 #_CPUE/survey:_12
- 0 #_discard:_1
- 0 #_discard:_2
- 0 #_discard:_3
- 0 #_discard:_4
- 0 #_discard:_5
- 0 #_discard:_6
- 0 #_discard:_7
- 0 #_discard:_8
- 0 #_discard:_9
- 0 #_discard:_10
- 0 #_discard:_11
- 0 #_discard:_12
- 0 #_meanbodyweight
- 0.6 #_lencomp:_1
- 0.6 #_lencomp:_2
- 0.6 #_lencomp:_3
- 0.6 #_lencomp:_4
- 0.6 #_lencomp:_5
- 0.6 #_lencomp:_6
- 0.6 #_lencomp:_7
- 0 #_lencomp:_8
- 0 #_lencomp:_9
- 0 #_lencomp:_10
- 0 #_lencomp:_11
- 0.6 #_lencomp:_12
- 0.6 #_agecomp:_1
- 0.6 #_agecomp:_2
- 0.6 #_agecomp:_3
- 0.6 #_agecomp:_4
- 0.6 #_agecomp:_5
- 0.6 #_agecomp:_6 0.6 #_agecomp:_7
- 0 #_agecomp:_8
- 0 #_agecomp:_9 0 #_agecomp:_10
- 0 #_agecomp:_11
- 0.6 #_agecomp:_12
- 0.6 #_size-age:_1
- 0.6 #_size-age:_2
- 0.6 #_size-age:_3 0.6 #_size-age:_4
- 0.6 #_size-age:_5
- 0.6 #_size-age:_6
- 0.6 #_size-age:_7
- 0 #_size-age:_8
- 0 #_size-age:_9
- 0 #_size-age:_10
- 0 #_size-age:_11
- 0 #_size-age:_12
- 1 #_init_equ_catch
- 0.5 #_recruitments
- 1 #_parameter-priors
- 1e-005 #_parameter-dev-vectors
- 100 #_crashPenLambda
- 0.9 #_maximum allowed harvest rate

999

Forecast File

```
0.5
      # target SPR
12
         # number of forecast years
         # number of forecast years with stddev
12
1000
         # emphasis for the forecast recrutment devs that occur prior to endyyr+1
0
         # fraction of bias adjustment to use with forecast recruitment devs before endyr+1
         # fraction of bias adjustment to use with forecast_recruitment_devs after endyr
0
         # topend of 40:10 option; set to 0.0 for no 40:10
0.40
         # bottomend of 40:10 option
0.10
         # OY scalar relative to ABC
1.0
         # first yr for average fish selex to use in MSY and forecast
-3
0
         # last yr for average fish selex to use in MSY and forecast
         # for forecast: 1=set relative F from endyr; 2=use relative F read below
# relative Fs used for forecast; rows are seasons; columns are fleets
# Fleet 1 Fleet 2
0.30
         0.02
                   0.30
                             0.05
                                       0.30
                                                 0.02
                                                           0.01
# starwars battlefront
# verify end of input harvest rates
999
# specified actual catches into the future
# (negative values are not used, but there must be a sufficient number of values)
# fleet1 fleet2
                                       -7.8
-7.8
         -0.52
                   -7.8
                             -1.3
                                                 -0.52
                                                           -0.26 #year
                                                                                         season
-7.8
         -0.52
                   -7.8
                                       -7.8
                                                 -0.52
                                                           -0.26 #year
                             -1.3
                                                                               2
                                                                                                   1
                                                                                         season
-7.8
         -0.52
                   -7.8
                             -1.3
                                       -7.8
                                                 -0.52
                                                           -0.26 #year
                                                                               3
                                                                                                   1
                                                                                         season
-7.8
         -0.52
                   -7.8
                             -1.3
                                       -7.8
                                                 -0.52
                                                           -0.26 #year
                                                                                         season
                                                                                                   1
-7.8
         -0.52
                   -7.8
                             -1.3
                                       -7.8
                                                 -0.52
                                                           -0.26 #year
                                                                               5
                                                                                         season
                                                                                                   1
                                                           -0.26 #year
-7.8
         -0.52
                   -7.8
                             -1.3
                                       -7.8
                                                 -0.52
                                                                               6
                                                                                         season
                                                                                                   1
         -0.52
                                                 -0.52
                                                           -0.26 #year
-7.8
                   -7.8
                             -1.3
                                       -7.8
                                                                               7
                                                                                         season
                                                                                                   1
         -0.52
                                                 -0.52
                                                           -0.26 #year
-7.8
                   -7.8
                             -1.3
                                       -7.8
                                                                               8
                                                                                         season
                                                                                                   1
-7.8
         -0.52
                   -7.8
                             -1.3
                                       -7.8
                                                 -0.52
                                                           -0.26 #year
                                                                               9
                                                                                          season
                                                                                                   1
                                                 -0.52
         -0.52
                                       -7.8
                                                           -0.26 #year
                                                                               10
-7.8
                   -7.8
                             -1.3
                                                                                         season
                                                                                                  1
         -0.52
                                       -7.8
                                                 -0.52
                                                           -0.26 #year
-7.8
                   -7.8
                             -1.3
                                                                               11
                                                                                                  1
                                                                                         season
         -0.52
                                       -7.8
                                                 -0.52
                                                           -0.26 #year
                                                                                                  1
-7.8
                   -7.8
                             -1.3
                                                                               12
                                                                                         season
```

Data File

192 200 1 12 1 7		# # N vector spawning N	start end seasons with g season fishing	year year per N	year months	in	each	season				
5	# fisheries	N	surveys;		type	ID	below	is	sequentia	al	with	the
			rRec3%O	rCom4%V	VaRec5%	WaCom6%	%WaLine7	7%CPFV_	8%CaMR	FSS_9%C	OrRec_109	%WaRec_1
0.5	0.5 #_survey	0.5 rtiming_in	0.5 _season	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	
1 70	# #Accumi	number	of age	genders	(1/2);	females	are	gender	1			
	0.2	4	0.2	1	0.2	0.1	#_init_ed	quil_catch	_for_each	_fishery		
0	0	0	0	0	0	0	#_init_ed	quil_catch	_for_each	_fishery		
	catch_bior aRec1	nass(mton CaCom2		ns_are_fi OrCom4		_rows_a: WaCome	re_year*se 6 WaLine7	eason 7				
0	8	0	2	0	1	0	#1925					
0	8	0	2	0	1	0	#1926					
0	8	0	2	0	1	0	#1927					
0	8	0	2	0	1	0	#1928					
0	8	0	2	0	1	0	#1929					
0	8	0	2	0	1	0	#1930					
0	8	0	2	0	1	0	#1931					
0	8	0	2	0	1	0	#1932					
0	8	0	2	0	1	0	#1933					
0	8	0	2	0	1	0	#1934					
0	8	0	2	0	1	0	#1935					
0	8	0	2	0	1	0	#1936					
0	8	0	2	0	1	0	#1937					
0	8	0	2	0	1	0	#1938					
0	8	0	2	0	1	0	#1939					
0	8	0	2	0	1	0	#1940					
0	8	0	2	0	1	0	#1941					
0	8	0	2	0	1	0	#1942					
0	8	0	2	0	1	0	#1943					
0	8	0	2	0	1	0	#1944					
0	8	0	2	0	1	0	#1945					
0	8	0	2	0	1	0	#1946					
0	8	0	2	0	1	0	#1947					
0	8	0	2	0	1	0	#1948					
0	8	0	2	0	1	0	#1949					
0	8	0	2	0	1	0	#1950					
0	8	0	2	0	1	0	#1951					
0	8	0	2	0	1	0	#1952					
0	8	0	2	0	1	0	#1953					
0	8	0	2	0	1	0	#1954	CaCOM	.005	CaCOM.	.01	
	OrCOM.		OrCOM.			_	_					
14.		24.05	6.2	9.85	1	2	0	#1955	24.05	48.1	9.85	19.7
16.		28.8	6.5	10.1	1	2	0	#1956	28.8	57.6	10.1	20.2
12.		31.5	6.7	10.35	1	2	0	#1957	31.5	63	10.35	20.7
15.		35.45	7	10.6	2	2	0	#1958	35.45	70.9	10.6	21.2
12.		30.85	7.2	10.85	2	2	0	#1959	30.85	61.7	10.85	21.7
10	28.1	7.5	11.1	2	2	0	#1960	28.1	56.2	11.1	22.2	

8.3 22.55	7.7	11.35	2	2	0	#1961	22.55	45.1	11.35	22.7	
9.1 20.75	8	11.6	2	2	0	#1962	20.75	41.5	11.6	23.2	
9.4 25.15	8.2	11.85	3	4	0	#1963	25.15	50.3	11.85	23.7	
8.5 17.65	8.5	12.1	3	4	0	#1964	17.65	35.3	12.1	24.2	
12.5	20.7	8.7	12.35	3	4	0	#1965	20.7	41.4	12.35	24.7
15 22.45	9	12.6	3	4	0	#1966	22.45	44.9	12.6	25.2	
16.1	22.2	9.2	12.85	3	4	0	#1967	22.2	44.4	12.85	25.7
17.3	21.65	9.5	13.1	3	4	0	#1968	21.65	43.3	13.1	26.2
16.8	40.5	9.7	27.2	3	4	0	#1969				
21.8	47.1	10	19.2	4	5.1	0	#1970				
18.1	46.8	13.1	19	4	4.6	0	#1971				
24.2	70.6	16.3	24	4	5.5	0	#1972				
29.6	91.7	19.5	22.2	4	7.4	0	#1973				
33 84.3	22.6	18.2	4	8.5	0	#1974					
32 92.4	25.8	14.8	4	7.1	0	#1975					
31 103.7	29	25.9	4.3	10.3	0	#1976					
27.5	100.7	32.1	29.3	8.8	17.8	0	#1977				
24.5	99.3	35.3	28.5	4.5	23.9	0	#1978				
29.9	134.2	38.5	62.2	3.5	28.5	0	#1979				
75.9	168.1	27.5	68.2	2.4	35	0	#1980				
46.9	209.8	34.2	102.2	3.4	9.7	0	#1981				
103.8	177	48.7	114.5	3.4	12.6	0	#1982				
50.5	62.3	62.9	193.2	6.7	16.6	0	#1983				
77.3	47.6	43.6	67.1	12.2	13.4	0	#1984				
123.6	11.1	26.8	101.9	8.8	26.4	0	#1985				
64.6	31.9	27.2	70.6	9	14.7	0	#1986				
75.2	51.0	29.4	80.1	10.5	25.1	0	#1987				
57.5	54.4	9.6	120.1	8.3	25.6	0	#1988				
58.7	43.5	16	180.7	14.6	39.2	0	#1989				
46.1	69.1	16.6	74.3	9.9	26.3	0	#1990				
33.6	143.5	14.9	137.7	18	20.4	0	#1991				
21.0	111.3	25.9	165.8	16.2	33.8	0	#1992				
8.5 52.2	19.7	183.2	18	29.8	0	#1993					
14.4	53.5	18.3	102.2	10.3	19.6	0	#1994				
12.6	50.6	13.8	148.3	9.9	18.0	0	#1995				
12.5	70.5	8.4	92.5	10.8	16.9	0	#1996				
15.1	62.4	14.4	115.4	11.4	18.7	0	#1997				
5.5 20.8	18.9	41.5	14.4	5.5	0	#1998					
12.6	22.3	17.8	61.4	10.6	9.9	23	#1999				
7.5 4.0	9.2	3.6	10.1	0.2	7.7	#2000					
4.6 4.5	3.1	6.2	12.5	0.8	21	#2001					
2.1 0.3	3.6	0.7	3.7	0.4	2.2	#2002					
3.7 0.0	3.8	0.2	2.6	0.2	0.3	#2003					
0.8 0.3	2.4	1.6	3.7	0.9	4.0	#2004					
1.6 0.1	4.1	0.8	5.2	0.4	3.2	#2005					
3.5 0.0	2.5	0.8	1.7	0.3	2.9	#2006					

#CaRec1 CaCom2 OrRec3 OrCom4 WaRec5 WaCom6 WaLine7

 $65\ \#_N_cpue_and_survey abundance_observations$

#Note	all	values	for	indexes	are	the	same	as	SS1	ye-dat09.dat
#Year	seas	index	obs	selog						
# CA	CPFV	CPUE;	using	Henrys	delta	lognorm	nal	and	estCV	's
1988	1	8	26.19	0.2112						
1989	1	8	25.52	0.1298						
1990	1	8	32.16	0.2652						
1991	1	8	31.59	0.1565						
1992	1	8	20.88	0.1297						
1993	1	8	23.63	0.1555						
1994	1	8	21.67	0.1321						

```
1995
                      8
                                        0.1592
            1
                               16.33
1996
                      8
                               17.9
                                        0.1541
            1
1997
                      8
                               13.31
                                        0.1371
             1
1998
            1
                      8
                               10.13
                                        0.2478
            MRFSS CPUE
# CA
                               Henrys
                                        DeltaLogNormaland
                                                                    CV's
1980
            1
                      9
                               4.48
                                        0.2396
                      9
                               2.78
            1
                                        0.5057
1981
                      9
1982
            1
                               11.27
                                        0.3608
                      9
                                        0.5789
1983
             1
                               4.64
                      9
1984
            1
                               8.46
                                        0.4129
1985
            1
                      9
                               13.57
                                        0.3634
1986
            1
                      9
                               6.25
                                        0.3138
#1987
                      9
            1
                               11.7
                                        0.3697
#1988
             1
                      9
                               2.96
                                        0.3046
#1989
             1
                      9
                               3.94
                                        0.3245
1993
             1
                      9
                               7.72
                                        0.5523
                      9
1994
             1
                               1.87
                                        0.6164
                      9
1995
            1
                               3.06
                                        0.3144
                      9
1996
             1
                               2.08
                                        0.1932
1997
                      9
                               4.23
                                        0.2492
             1
                      9
1998
             1
                               3.12
                                        0.2951
                      9
1999
                               2.14
             1
                                        0.2106
2000
                      9
                               3.39
                                        0.4028
             1
2001
            1
                      9
                               1.18
                                        0.3972
# Oregon
            Sport
                      CPUE
                              Henry
                                        2/14/2006
                                                          MRFSSversion
1979
                                        0.224886142
                      10
                               16.988
             1
1980
                      10
                               22.237
                                        0.178339382
             1
1981
                      10
                               17.9801333
                                                 0.168786567
             1
1982
            1
                      10
                               25.7039667
                                                 0.185204629
1983
             1
                      10
                               31.94824 0.188876127
1984
             1
                      10
                               21.7533333
                                                 0.150233401
1986
             1
                                                 0.143419913
                      10
                               15.2668148
1987
             1
                      10
                               25.2302857
                                                 0.257165588
1988
             1
                      10
                               14.80976 0.267684898
             1
                      10
1989
                               10.1664 0.275531766
1990
             1
                      10
                               16.0214138
                                                 0.208205411
1991
             1
                      10
                               19.0812857
                                                 0.171424481
1992
             1
                      10
                               16.4627 0.20899499
                               12.6602333
1993
             1
                      10
                                                 0.136904372
1994
             1
                      10
                               10.1659667
                                                 0.13175002
1995
             1
                      10
                               9.6534667
                                                 0.257078825
1996
             1
                      10
                               6.0977241
                                                 0.134448599
1998
             1
                      10
                               10.7553 0.126699316
1999
                               13.8429655
                                                 0.185692573
             1
                      10
# WA
                      CPUE
                               Henrys_Delta_Lognormal
            sport
1990
             1
                      11
                               6.9
                                        0.7
                               16.03
                                        1.7
1991
             1
                      11
1992
                               15.29
                                        1.24
             1
                      11
1993
            1
                               13.19
                                        1.01
                      11
1994
            1
                      11
                               7.15
                                        0.42
1995
             1
                      11
                               5.7
                                        0.46
1996
                               5.72
                                        0.5
             1
                      11
1997
                               8.75
                                        1.05
             1
                      11
1998
             1
                      11
                               11.06
                                        1.24
1999
             1
                      11
                               6.88
                                        0.85
2000
             1
                      11
                               6.45
                                        0.54
2001
             1
                      11
                               4.42
# IPHC
            Oregon
                               Wash
                                        TSOU_CPUE (Changed to using CV not std dev, and not taking the index
                     and
times 10. -JRW)
                      12
1999
                               0.571
                                        0.181
             1
2001
                      12
                                        0.171
             1
                               0.482
2002
            1
                      12
                               0.336
                                        0.212
```

2003 2004 2005 2006	1 1 1	12 12 12 12	0.480 0.337 0.265 0.214	0.136 0.162 0.153 0.187							
2 # 0 #	Discard Number	in of	fraction Discard	of observaio	total ons	catch (-	value	causes	program	to	ignore)
0 #_N_me	anbodywt <u></u>	_obs									
0.0001 is	# greater	compress	s tails this	of value	composit	ion	until	observed	#	proportio	on
0.0001 and	# age	constant tail	added	to sion	observed occurs	and first	expected	proportio	ons	at	length
#_LengthCo	mp										
37 #	N	length	bins	and	Describe	d	Below				
16 18 42 66	20 44 68	22 46 70	24 48 72	26 50 74	28 52 76	30 54 78	32 56 80	34 58 82	36 60 84	38 62 86	40 64 88
117#N	Length	comp	observati	ions							
# #Year [28,30) [52,54) [76,78)	Seas [30,32) [54,56) [78,80)	Type [32,34) [56,58) [80,82)	(market) Gender [34,36) [58,60) [82,84)	Partitn [36,38) [60,62) [84,86)	Nsamp [38,40) [62,64) [86,88)	[16,18) [40,42) [64,66) [88,90)	[18,20) [42,44) [66,68)	[20,22) [44,46) [68,70)	[22,24) [46,48) [70,72)	[24,26) [48,50) [72,74)	[26,28) [50,52) [74,76)
1980 0.02381 0.03571	1 0.02381 0.04762	1 0.05952 0.03571	0 0.04762 0.02381	0 0.04762 0.02381	85 0.11905 0.03571	0 0.07143 0.0119	0.0119 0.03571 0	0.0119 0.05952 0.02381	0 0.08333 0	0.0119 0.03571 0	0.02381 0.09524 0
0 1981 0 0.09524	0 1 0 0.04762	0 1 0.02381 0.02381 0	0 0 0.02381 0.04762 0	0 0 0.07143 0.02381	0 42 0 0.04762 0	0 0 0.09524 0 0	0 0.11905 0	0 0.09524 0	0.02381 0.07143 0	0 0.09524 0	0 0.09524 0
1982 0	1 0.04167	1 0.02778	0 0.02778	0 0.04167	72 0	0 0.06944	0 0.05556 0.06944			0.01389 0.04167 0	
1983 0.04762	1	1 0.04762	0 0.0119	0	84 0.04762	0 0.05952	0 0.11905 0.03571				
1984 0.03704	1 0.08889	1 0.03704	0 0.05926	0 0.06667	135 0.07407	0.00741 0.06667	0 0.03704 0.00741	0.05185			0.05926
1985	1 0.08333 0.02	1 0.04	0 0.08 0.02333	0 0.08	200 0.07	0 0.07333	0 0.05 0.02333		0.05667		0.04333 0.02 0.00667
1986 0.02913	1 0.04369 0.03883	1 0.06796	0 0.04369				0 0.06311 0.00971			0.01456 0.01942 0	

1987 0.02667 0.06667	1 0.02667 0.12	1 0.04 0.05333	0 0.04 0.02667	0 0.08 0.04	79 0.01333 0.02667		0 0.06667 0	0 0.04 0.01333	0 0.04 0	0.04 0.08 0	0.01333 0.08 0
	0 1 0 0.07317	0.04878	0 0 0.04878 0.09756	0 0 0.07317 0	0 44 0 0.07317	0	0 0.02439 0	0 0.04878 0	0 0.04878 0.02439		0.02439 0.04878 0
0.04717	0.03774	0.01887	0.0283	0 0 0.12264 0.01887	0.01887	0.00943		0 0.08491 0	0 0.04717 0	0 0.04717 0	0.0283 0.0283 0
0 1993 0 0.0303	0 1 0.0303 0.0303	0 1 0 0.0303	0	0 0 0.12121 0.0303	0.06061	0	0 0.12121 0	0 0 0	0 0 0	0.0303 0.0303 0	0.06061 0.06061 0
0 1994 0.04918 0 0	0 1 0.03279 0.03279 0	0 1 0.08197 0.01639 0	0 0 0.16393 0.01639	0 0 0.08197 0	0 68 0.06557 0	0 0 0.06557 0 0	0 0.18033 0	0 0.04918 0	0 0.04918 0	0 0.04918 0	0.06557 0 0
1995 0.06383	1 0.10638 0.04255	1	0	0 0.06383 0 0	48 0.14894	0		0.02128 0.02128 0	0 0.02128 0	0 0 0	0.04255 0.02128 0
1996 0.01333	1 0.05333 0.01333 0	1 0.02667	0 0.09333 0.04 0	0 0.10667 0	77	0 0.09333 0 0	0.01333 0.04 0.01333	0.08		0.02667 0.05333 0	0.08 0.04 0
1997 0.00943	1 0.03774 0.03774 0	1 0.0566	0 0.06604	0 0.04717 0.00943 0	112 0.08491	0	0 0.04717 0	0.00943 0.04717 0		0.03774 0.10377 0	0.01887 0.08491 0
1998 0.07143	1 0.02857 0.05714 0	1 0.1	0	0 0.07143 0 0	71 0.05714	0.01429			0 0.07143 0	0.01429 0.04286 0	0.02857 0.02857 0
0.05185	0.08148	0.00741	0.01481	0 0.04444 0.00741	0.01481	0.00741	0 0.06667 0.00741	0.11111		0.02963 0.08889 0	0.00741 0.08148 0
0.05185	0.08148	0.00741	0.01481	0 0 0.04444 0.00741	0.01481	0.00741		0.11111	0.05926	0.02963 0.08889 0	
	0.03704			0 0.04444 0.00741	0.02963	0.1037	0.06667	0.11111		0.02963 0.08889 0	
2000 0.02222	1 0.03704 0.08148	1 0.07407	0 0.02222	0 0.04444 0.00741	-9998 0.02963	0 0.1037	0.06667	0.11111			0.00741 0.08148 0
0.05172 0.03448	0.01724	0.03448	0	0 0.03448 0	$0.17241 \\ 0$	$0.12069 \\ 0.01724$		0.10345			
0.05172		0 1 0.03448 0.03448 0	0.08621	0 0.03448 0	0 -86 0.17241 0 0			0.10345		0.03448	0.01724 0.03448 0

	1 0.05172 0.01724 0		0 0.08621 0 0	0 0.03448 0 0	86 0.17241 0 0			0 0.10345 0	0.01724 0.06897 0		0.01724 0.03448 0
	1 0.05172 0.01724 0		0 0.08621 0 0	0 0.03448 0 0	-9998 0.17241 0 0			0 0.10345 0	0.01724 0.06897 0		0.01724 0.03448 0
		1 0.03509 0.03509 0		0 0.03509 0 0	62 0.12281 0.01754 0		0 0.08772 0	0 0.17544 0	0 0.10526 0	0 0.07018 0	0.01754 0.03509 0
2006 0.03158	1 0.03158	1 0.03158	0 0.06316 0.01053 0	0 0.07368	101	0 0.04211	0 0.10526 0	0 0.13684 0	0 0.11579 0	0 0.15789 0	0 0.03158 0
1978 0.0303 0.03788 0	1 0.0303 0.06061 0							0 0.06061 0.02273		-	0.00758 0.09848 0
1979 0.0303 0.03788 0	1 0.0303 0.06061 0	2 0.05303	0 0.06818	0 0.05303		$0 \\ 0.03788$	0 0.06818 0.01515	0 0.06061 0.02273	0.00758 0.02273 0	0 0.0303 0	0.00758 0.09848 0
1980 0.0303 0.03788 0	1 0.0303	2 0.05303	0 0.06818	0 0.05303	-132 0.04545	0 0.03788	0 0.06818 0.01515	0 0.06061 0.02273	0.00758 0.02273 0		0.00758 0.09848 0
1981 0.0303 0.03788 0	1 0.0303 0.06061 0						0 0.06818 0.01515	0 0.06061 0.02273	0.00758 0.02273 0	0 0.0303 0	0.00758 0.09848 0
1982 0.0303 0.03788 0	1 0.0303 0.06061 0						0 0.06818 0.01515		0.00758 0.02273 0	0 0.0303 0	0.00758 0.09848 0
1983 0.0303	1 0.0303	2 0.05303	0 0.06818	0 0.05303	-132 0.04545	0 0.03788	0 0.06818 0.01515	0 0.06061 0.02273	0.00758 0.02273 0		0.00758 0.09848 0
1984 0.0303	1 0.0303	2 0.05303	0 0.06818	0 0.05303	-132 0.04545	0 0.03788		0 0.06061 0.02273		0.0303	0.00758 0.09848 0
1985 0.0303	1 0.0303	2 0.05303	0 0.06818	0 0.05303	-132 0.04545	0 0.03788		0 0.06061 0.02273			0.00758 0.09848 0
1986 0.0303	1 0.0303	2 0.05303	0 0.06818	0 0.05303	-132 0.04545	0 0.03788		0 0.06061 0.02273			0.00758 0.09848 0
1987 0.0303	1 0.0303	2 0.05303	0 0.06818	0 0.05303	-132 0.04545	0 0.03788		0 0.06061 0.02273			0.00758 0.09848 0
1988 0.0303	1 0.0303	2 0.05303	0 0.06818	0 0.05303	-132 0.04545	0 0.03788		0 0.06061 0.02273			0.00758 0.09848 0

1989 0.0303 0.03788 0 1990 0.0303 0.03788 0	1 0.0303 0.06061 0 1 0.0303 0.06061 0	0.03788 0 2 0.05303	0.05303 0 0 0.06818	0 0.05303 0.03788 0 0 0.05303 0.03788 0	0.06818 0 -9998 0.04545	0.05303 0 0 0.03788	0.01515 0 0.06818	0.02273 0 0.06061	0 0.00758 0.02273	0.0303 0	0.00758 0.09848 0 0.00758 0.09848 0
1991 0.01395 0.06977	0.06047	0.08837	0 0.08372 0.02791	0 0.04186 0.05581	0.0186	0 0.06977 0.01395		0 0.09302 0.0093	0.00465 0.09302 0	-	0 0.05116 0
0 1992 0.015 0.0575	0 1 0.0425 0.0325	0 2 0.065 0.0375	0 0 0.0575 0.035	0 0 0.0575 0.015	0 200 0.075 0.015	0 0 0.09 0.0075	0 0.115 0.005	0 0.085 0	0 0.0725 0	0.0075 0.04 0	0.015 0.0575 0
	0.01866	0.02052		0.02239		0 0 0.0653 0.00373	0 0.08022 0.0056	0 0.07836 0	0.00373 0.04851 0	0.01306 0.0541 0	0.03545 0.04291 0
	0.02235		0.01639	0.01937		0.00894	0 0.09091 0.00149	0.00149 0.08197 0.00149	0.07452	0.00745 0.05961 0	0.01341 0.05067 0
1995 0.03188			0 0 0.06087 0.01159	0 0 0.09275 0.01449	0 200 0.08696 0.0087	0 0 0.09565 0.0058	0 0.10145 0.0029	0.0029 0.07536 0	0 0.06957 0	0.0029 0.06667 0	0.01739 0.04058 0
1996 0.03913	0 1 0.07391 0.01957 0	2	0 0.05435 0.01522 0	0 0.1087	200 0.09565 0.0087 0	0	0 0.08478 0	0.00217 0.06522 0		0.00435 0.0587 0	0.01739 0.06087 0
1997 0.05634	1 0.0669 0.02817	2 0.0669	0	0 0.08451	200 0.07394	0 0.0669			0.08451	0.01761 0.04225 0	0.02113 0.0493 0
1998 0 0 0	1 0 0 0	2 0.125 0.04167 0	0	0 0.16667 0 0	24	0	0 0.125 0	0 0.16667 0	0 0.04167 0	0 0 0	0 0.04167 0
0.05208	0.02865	0.02083	0.07292 0.01042	0 0.07552 0.01042	0.11198 0.0026	0.0026	0.11198		0 0.0651 0.0026	0.0026 0.0625 0	0.01823 0.04948 0
				0 0 0.07552 0.01042			0 0.11198 0.00521		0 0.0651 0.0026	0.0026 0.0625 0	0.01823 0.04948 0
2000 0.01302	1 0.01042	2 0.05729	0 0.07292	0 0.07552 0.01042 0	384 0.11198	0 0.09896	0 0.11198 0.00521		0 0.0651 0.0026	0.0026 0.0625 0	0.01823 0.04948 0
2000 0.01302	1 0.01042	2 0.05729	0 0.07292	0 0.07552 0.01042 0	-9998 0.11198	0 0.09896		0 0.11198 0.0026		0.0026 0.0625 0	0.01823 0.04948 0
2001 0.18447	1 0.09709	2 0.12621	0 0.02913	0 0.01942	103 0.02913	0 0.05825	0 0.05825			0.03883 0.01942	

0.00971 0	0.00971 0	0.00971 0	0.01942 0	0	0	0	0	0	0	0	0
1978 0.08333 0.05 0	1 0.025 0.1 0	3 0.03333 0.03333 0	0 0.05 0.05 0	0 0.00833 0.03333 0	120 0.05 0.10833 0	0 0.04167 0.04167 0	0 0.05 0.03333 #	0 0.025 0.03333 120	0 0.01667 0.01667	0.04167 0.04167 0	0.025 0.00833 0
1979 0.01887 0.06604 0	1 0.03774 0.13208 0	3	0 0.0283 0.03774 0	0 0.0283 0.04717 0	106 0.00943 0.04717 0	0 0.0283 0.01887 0	0 0.0283 0.00943 #	0 0.01887 0.00943 106	0.01887 0.03774 0	0.00943 0.04717 0	0.0283 0.10377 0
1980 0.0431 0.01724 0	1 0.06034 0.0431 0	3 0.07759 0.0431 0		0 0.06034 0.03448 0	-9999 0.06897 0.02586 0	0 0.03448 0.00862 0	0 0.11207 0.00862 #	0 0.0431 0.00862 combine	0 0.06034 0.01724 80-83	0.00862 0.07759 0	0.01724 0.03448 0.00862
1981 0.0431 0.01724 0	1 0.06034 0.0431 0	3 0.07759 0.0431 0	0.02586 0	0.03448 0	-29 0.06897 0.02586 0	$0.00862 \\ 0$	0 0.11207 0.00862 #	0 0.0431 0.00862 combine	80-83	0.00862 0.07759 0	0.01724 0.03448 0.00862
0.0431 0.01724 0	1 0.06034 0.0431 0	3 0.07759 0.0431 0	0.02586 0	0 0.06034 0.03448 0	116 0.06897 0.02586 0	$0.00862 \\ 0$	0 0.11207 0.00862 #	0.00862 combine		0	0.01724 0.03448 0.00862
1983 0.0431 0.01724 0	1 0.06034 0.0431 0	3 0.07759 0.0431 0		0 0.06034 0.03448 0	-9998 0.06897 0.02586 0	0 0.03448 0.00862 0	0 0.11207 0.00862 #	0 0.0431 0.00862 combine	0 0.06034 0.01724 80-83	0.00862 0.07759 0	0.01724 0.03448 0.00862
1984 0.03217 0.03217 0	1 0.08043 0.00804 0	3 0.09115 0.03217 0	0 0.08043 0.05362 0	0 0.09651 0.03485 0	200 0.08847 0.01877 0	0 0.07239 0.00536 0	0 0.05094 0.00536 #	0 0.04826 0.00536 161	0.00804 0.04021 0.00268 373	0.00804 0.01609 0.00536	0.0429
1985 0.04054 0.03153 0	1 0.02252 0.04505 0	3 0.07207 0.07207 0	0 0.03153 0.03604 0	0 0.1036 0.04054 0	200 0.05405 0.02252 0	0 0.04955 0.02703 0	0 0.08108 0.02252 #	0 0.04505 0.00901 98	0 0.07207 0.0045 222	0.0045 0.03153 0	0.02703 0.05405 0
1986 0.0113 0.06215 0	0	3 0.0565 0.0565 0	0 0.0565 0.0565 0	0 0.10169 0.0339 0	177 0.03955 0.0565 0	0 0.0678 0.0113	0.0113 0.03955 0.01695 #	37	177	0 0.01695 0	0.01695 0.0452 0
0.06135 0	1 0.02454 0.02454 0.00613	0.07975 0	0.03681 0	0.05521 0	0.04294 0	0.0184 0	0.01227 #	0.04908 0.01227 40	0.04294 0 163	0	0.04294 0
0.02632 0	1 0.02632 0.07895 0	0.05263 0	0 0	0.02632	0 0	0	0 #	0 38	0 38	0	0
	1 0.08036 0.01786 0		0.03571	0		0.01786 0	0.0625 0.00893 #	0.07143 0 80	0.03571 0.00893 112		0.05357 0
0.07975 0.0184 0	0	0.09202 0.04294 0	0.12883 0.0184 0	0.10429 0.00613 0.00613	0.06135 0.02454 0	0	0.01227 #	0.02454 0.00613 163	0 163	0	0.0184
1994 0.06623	1 0.10596	3 0.09272	0 0.15232	0 0.07285	151 0.12583	0 0.0596	0 0.04636	0.00662 0.03311		0.01325 0.04636	

0.01325 0	0.03311	0.00662 0	0	0.00662 0	0.00662 0	0.01325 0	0	0 151	0 151	0	0
1995 0.03636	1 0.08182 0.01818	3	0	0 0.1 0.00909	110 0.07273 0.00909	0 0.06364 0.01818	0 0.02727 0	0 0.07273 0	0.00909 0.02727 0	0.02727 0.06364 0	0 0.03636 0
0.03030	0.01818	0.02727	0.03433	0.00909	0.00909	0.01818	# 0	110 0	110 0.0137	0.0137	0.0411
0.0274 0	0.0411 0.0137	0.12329 0.0137	0.10959 0.0137	0.12329 0.0274	0.17808 0 0	0.05479 0 0	0.09589 0 #	0.0411 0 73	0.0274 0 73	0.0137	0.0274 0
0 1997 0.0404	0 1 0.07071	0 3 0.07071	0 0 0.09091	0 0 0.09091	99 0.14141	0 0.06061	0 0.12121	0.0101 0.0404	0.0101 0.0202	0.0101 0.06061	0.0303 0.0303
0.05051	0	0.0101	0.0101	0.0101	0.0101	0.0101	0 #	0 99	0 99	0	0
0.02721 0.02041 0	1 0.04082 0.02721 0	3 0.04762 0.02041 0	0 0.14286 0 0	0 0.13605 0.01361 0	147 0.10204 0.0068 0	0 0.12245 0 0	0 0.09524 0 #	0 0.07483 0 147	0 0.03401 0 147	0 0.05442 0	0.02041 0.01361 0
1999 0.03252	1 0.05285	3 0.06504	0 0.10976 0.01626	0 0.15041	200 0.09756 0.00407	0 0.10569 0	0 0.07724 0	0.00407 0.07724 0	0 0.04065 0	0.00407 0.05691 0	0.00813 0.03252 0
0 2000	0	0 3	0 0	0 0	0 62	0	# 0	246 0	246 0	0	0
0.04839	0.04839 0.03226 0		0.06452 0.03226 0		0.16129 0 0	0.17742 0 0	0.06452 0 #	0.03226 0 62	0.06452 0 62	0	0.04839 0
2001	1	3	0	0 0.05707 0.00272	200	0	0 0.10326 0.00543	0	0.00272 0.09783	0.00815 0.05707 0	0.01359 0.07337 0.00272
0 2002	0.03333 0 1 0.02679	0 3	0	0 0 0 0.08036	0 200	0 0 0 0.09152	# 0	0 0.11607	0.00446	0.00893 0.09152	0.00893 0.04464
0.01780 0.04464 0	0.02075 0.03125 0	0.01563	0.03134	0.02009	0.01563 0	0.00446 0	0.00446 #		0.10043	0.05132	0.04404
2003 0.02449 0.08367	1 0.0102 0.05102	0.02857	0 0.03061 0.01837	0.02041	200 0.06531 0.01429		0.00204 0.07755 0.01429	0.08571		0.0102 0.10816 0.00204	0.0102 0.06327 0
0	0	0	0	0	0	0	#				
	0.02041	0.05102	0.05102	0 0.07143 0.04082	0.02041		0 0.06122 0	0 0.10204 0	0 0.08163 0	0 0.08163 0	0 0.08163 0
1996 0	1 0.01242	4 0.03106	0 0.08696	0 0 0.07453	161 0.13665	0 0.09317					
0.00621 1997	0 1	0 4	0	0.04348 0 0	0 200	0	0	0.00391	0	0	0
				0.11328 0.01562 0			0.125 0.01172		0.05859 0.00391		0.02734 0
0.00588	0.02941	0.01765	0.02941	0 0.06471 0.01176 0	0.00588	0.00588				0 0.05882 0	0 0.04706 0
0 1999 0 0.05505			0.02752	0 0.0367 0.02294		0.11009		0.11009	0.11009		0 0.08716 0.00459
	0 1 0.01143	0 4 0.02857	0 0 0.06286	0 0 0.14286	0 175 0.11429	0 0 0.11429	0 0.11429		0	0 0.05714	0 0.04571

0.05714 0	0.01714 0	0.01714 0	0.00571 0	0	0.01143 0	0.01143 0	0	0.00571	0.00571	0	0
2001	1	4 0.05208	0	0	200	0 10060	0	0	0	0	0.01736 0.03125
		0.03208						0.00694		0.03208	0.03123
0	0	0	0	0	0	0					
1980	1	5	0	0	-9999	0	0	0	0	0.01138	0.02987
	_	0.11522		0.09388			0.02703				0.02418
		0.05974								0.00711	0.00569
		0		0.00569		0	#	combine		111	0.00007
1981	1 0.07539	5 0.11522	0 0825	0 0.09388	-29 0.0441	0 03841	0 0.02703	0 03120	0 04694	0.01138	0.02987
		0.11322						0.03129		0.0128	0.02418
		0		0.00569		0	#	combine	80-88		
1982	1	5	0	0	-29	0	0	0	0	0.01138	0.02987
		0.11522		0.09388			0.02703			0.0128	0.02418
	0.02987	0.05974 0		0.01991		0.01849	#	combine		0.00711	0.00569
1983	1	5	0.00507	0.00507	-29	0	0	0	0	0.01138	0.02987
		0.11522		0.09388			0.02703				0.02418
		0.05974								0.00711	0.00569
0.00569 1984	0.00569	0 5	0.00569	0.00569	0 -29	0	# 0	combine 0	80-88 0	0.01138	0.02987
	_	0.11522		0.09388			0.02703	-		0.01138	0.02418
		0.05974									
	0.00569	0		0.00569	0	0	#	combine			
1985	1	5	0	0	-29	0	0	0	0	0.01138	
		0.11522 0.05974		0.09388			0.02703				0.02418
	0.00569	0.03774		0.00569		0.01042	#	combine		0.00711	0.00507
1986	1	5	0	0	-29	0	0	0	0		0.02987
		0.11522		0.09388			0.02703				0.02418
	0.02987	0.05974 0		0.01991		0.01849	0.00711 #	combine		0.00711	0.00569
1987	1	5	0.00307	0.00307	259	0	0	0	0	0.01138	0.02987
0.06543		0.11522		0.09388	0.0441		0.02703				0.02418
		0.05974								0.00711	0.00569
0.00569	0.00569	0 5	0.00569	0.00569	0 -9998	0	# 0	combine 0	80-88 0	0.01138	0.02087
	-	0.11522		0.09388			0.02703				0.02987
0.05405	0.02987	0.05974									
0.00569	0.00569	0	0.00569	0.00569	0	0	#	combine	80-88		
1995	1	5	0	0	-9999	0	0	0	0	0	0
		0.08696						-	-	0.04348	
0	0	0	0	0	0	0	0	0.04348		0.04348	0.04348
0	0	0	0	0	0	0	#	combine		0	0
1995 0.30435	1 0.04348	5	0 08606	0 08606	-11	0 08606	0 04348	0 04348	-	0 0.04348	
0.30433	0.04348	0.08090	0.08090	0.08090	0.04348	0.08090	0.04348	0.04348		0.04348	
0	0	0	0	0	0	0	#	combine			
1996	1	5	0	0	23	0	0	0	0	0	0
0.30435	0.04348	0.08696 0	0.08696	0.08696	0.04348	0.08696	0.04348			0.04348	
0	0	0	0	0	0	0	#	0.04348 combine		0.04348	0.04348
1996	J	9	9	-						0	0
	1	5	0	0	-9998	0	0	0	U	0	0
	0.04348	0.08696	0.08696	0.08696	0.04348	0.08696	0.04348	0.04348	0	0.04348	0
0.30435 0 0	_	-	-	-				-	0		0

1998 0.02083 0.04167 0 1999 0 0.07292 0 2000 0.00529 0.06349 0 2001 0.0099 0.06931 0	1 0 0.04167 0.02083 1 0 0.0625 0 1 0.01587 0.06349 0 1 0.0099 0.05941 0	0 5 0.05208 0.05208 0 5 0.02116	0 0.04167 0.02083 0 0 0.02083 0.10417 0 0 0.04762 0 0 0.004762 0 0.0099 0.0495	0.0625 0 0 0.03125 0.03125 0 0 0	0.10417 0 189	0 0 0.08333 0.04167 0 0 0.08995	0 0.16667 0.04167 # 0 0.08333 0.01042 # 0 0.07407 0.01058 # 0 0.09901 0 #	0.02083 48 0 0.03125 0.01042 96 0	0 0.08333 0 48 0 0.0625 0 96 0 0.09524 0 189 0 0.09901 0.0099 101	0 0.0625 0 0 0.04167 0 0 0.06349 0 0 0.0495 0.0099	0 0 0 0 0.01042 0 0 0.0582 0 0.05941
0.03383 0 1997 0.00855	0 1	0 6 0.04274		0 0 0.07692	0.05639 0 117 0.10256	0.04887 0 0 0.11966	0 0.10526 0.01504 0 0.15385 0.00855	0 0.12821		0 0.02256 0 0 0.06838	0.00752 0.03759 0.00376 0 0.01709 0
1998 0.02941 0.07843 0 1999 0.02941 0.07843 0 2000 0.02941 0.07843 0	0.07843 0 1	6 0.02941 0.02941 0 6 0.02941 0 6 0.02941 0.02941 0	0 0.06863 0.02941 0 0 0.06863 0.02941 0 0 0.06863 0.02941 0	0 0 0 0 0 0 0 0 0 0 0	0.04902 0 102	0.02941 0 0 0.06863 0.02941 0	0.02941 0 0.09804 0.02941 0	0 0.09804 0 0 0 0.09804	0.01961 0 0.04902 0.01961 0	0 0.08824 0 0 0.08824	0.0098 0.01961 0.03922 0.0098 0.01961
0.03077 0 2003 0.01538 0.03077 0 2004 0.01538	0 1 0.01538 0.04615 0 1 0.01538	0 6 0 0.07692 0 6 0	0 0 0 0.01538 0 0	0 0 0 0.03077 0 0	0 65 0 0.16923 0 -9998 0	0.13846 0 0 0.03077 0.13846 0 0 0.03077	0 0.03077 0.10769 0 0.03077	0.03077 0 0.07692 0.03077 0 0.07692	0.01538 0 0.04615 0.01538 0 0.04615	0.01538 0.03077 0.01538 0.01538	0.04615 0 0.01538 0.04615 0 0.01538 0.04615
0 2001 0	0 1 0	0.08187 0 7 0	0.0614 0 0 0.00183 0.04945 0	0.03801 0 0 0.00183 0.02747 0	0.01462 0 200 0.01282 0.0293 0 91	0.03509 0.02047 0 0 0.02015 0.01099 0	0.01462 0 0.05861 0.00549	0.10234 0 0 0.07509 0.00366	0.14035 0 0 0.13553 0	0 0.10526 0 0 0.15385 0 0 0.14286	0 0.14103 0

	0	0.02198 0	0.04396 0	0	0	0	0.01099 0	0	0	0.01099	0.02198	0
200		1	7	0	0	5	0	0	0	0	0	0
	0	0	0	0	0.2	0	0.2	0.2	0.2	0	0.2	0
	0	0	0	0	0	0	0	0	0	0	0	0
200	0 M	0	0 7	0	0	0 24	0	0	0	0	0	0
200	0	0	0	0	0	0	0.04167	0.04167	0.16667	0.125	0.16667	
		-	0.04167	-	0	0	0.04107	0.04107	0.10007	0.123	0.10007	0.10007
	0.20033	0.04107	0.04107	0	0	0	0	O	O	O	Ü	Ü
#IF	PHC											
200	02	1	12	0	0	141	0	0	0	0	0	0
	0	0	0				0.06383			0.13475		0.09929
			0.07092					0.02837		0	0	0
200	0	0	0	0	0	0	0	#	2002	IPHC	0	0
200		1	12 0.00631	0	0	200	0	0	0 00464	0	0 0.11672	0 0.07886
	0 08517	-	0.00031			0.01577 0.05994		0.07256 0	0.09404		0.11072	0.07880
	0.00317	0.00202	0.07371	0.0054	0.03774	0.03774	0.02324	#	2003	IPHC	O	O
200		1	12	0	0	174	0	0	0	0	0	0
	0	0	0	0	0.00571	0	0.01143	0.08	0.11429	0.12	0.13143	0.12
	0.10286			0.05714			0.02857		0	0	0	0
	0	0	0	0	0	0	0	#	2004	IPHC		
200		1	12	0	0	155	0	0	0	0	0	0
	0	0	0	0			0.04487					
	0.12821	0.05769	0.12179 0	0.07051	0.0641	0.05769	0.01282 0	# #	2005	0 IPHC	0	0
	U	U	U	U	U	U	U	#	2003	irnc		
200	06	1	12	0	0	70	0	0	0	0	0	0
	0	0	0	0	0	0		0.01429				
		0.17143					0.04286	0	0.01429	0.04286	0.01429	0
	0	0	0	0	0	0	0					
36	#	N	age'	bins								
_	_		_		_	_	_					
2	3	4	5	6	7	8	9	10	11	12	13	14
	15 27	16 28	17 29	18 30	19 35	20 40	21 45	22 50	23 55	24 60	25 65	26
	21	20	29	30	33	40	43	30	33	00	03	
1	#	number	of	unique	ageing	error	matrices	to	generate			
0.5	1.5	2.5	3.5	4.5	5.5	6.5	7.5	8.5	9.5	10.5	11.5	12.5
	13.5	14.5	15.5	16.5	17.5	18.5	19.5	20.5	21.5	22.5	23.5	24.5
	25.5 37.5	26.5 38.5	27.5 39.5	28.5 40.5	29.5 41.5	30.5 42.5	31.5 43.5	32.5 44.5	33.5 45.5	34.5 46.5	35.5 47.5	36.5 48.5
	49.5	50.5	51.5	52.5	53.5	54.5	55.5	56.5	57.5	58.5	59.5	60.5
	61.5	62.5	63.5	64.5	65.5	66.5	67.5	68.5	69.5	70.5	#71.5	72.5
	73.5	74.5	75.5	76.5	77.5	78.5	79.5	80.5	81.5	82.5	83.5	84.5
	85.5	86.5	87.5	88.5	89.5	90.5						
#S	S1	Age	Error	Vector1.	51.53	1.57	1.6	1.64	1.67	1.71	1.74	1.78
	1.81	1.85	1.88	1.92	1.95	1.99	2.02	2.06	2.09	2.13	2.16	2.2
	2.23	2.27	2.3	2.33	2.37	2.4	2.44	2.47	2.51	2.54	2.58	2.61
	2.65	2.68	2.72	2.75	2.79	2.82	2.86	2.89	2.93	2.96	3	3.03
	3.07 3.48	3.1 3.52	3.13 3.55	3.17 3.59	3.2 3.62	3.24 3.66	3.27 3.69	3.31 3.73	3.34 3.76	3.38 3.8	3.41 3.83	3.45 3.87
	3.48	3.52	3.33 #3.97	3.39 4	3.02 4.04	4.07	3.09 4.11	3.73 4.14	4.18	3.8 4.21	3.83 4.25	4.28
	4.32	4.35	4.39	4.42	4.46	4.49	4.11	4.14	4.16	4.63	7.23	7.20
#1.		1.06	1.1	1.14	1.19	1.23	1.27	1.31	1.36	1.4	1.44	1.49
	1.53	1.57	1.62	1.66	1.7	1.75	1.79	1.83	1.87	1.92	1.96	2

2.05 2.56 3.08 3.6 4 4.42 2.41775	2.09 2.61 3.12 3.64 4.04 4.46 2.39845	2.13 2.65 3.17 3.69 4.07 4.49 2.37915	2.18 2.69 3.21 3.73 4.11 4.53 2.35985	2.22 2.74 3.25 3.77 4.14 4.56	2.26 2.78 3.3 3.81 4.18 4.6	2.31 2.82 3.34 3.86 4.21 4.63	2.35 2.87 3.38 3.9 4.25	2.39 2.91 3.43 3.94 4.28 2.26335	2.44 2.95 3.47 4 4.32	2.48 3 3.51 3.93 4.35	2.52 3.04 3.56 #3.97 4.39
2.18615 1.95455 1.72295 1.49135 1.25975 1.02815	2.16685 1.93525 1.70365 1.47205	2.14755 1.91595 1.68435 1.45275 1.22115 0.98955	2.12825 1.89665 1.66505 1.43345 1.20185 0.97025	2.10895 1.87735 1.64575 1.41415 1.18255 0.95095	2.08965 1.85805 1.62645 1.39485 1.16325 0.93165	2.07035 1.83875 1.60715 1.37555 1.14395 0.91235	2.05105 1.81945 1.58785 1.35625 1.12465	2.03175 1.80015 1.56855 1.33695 1.10535	2.01245 1.78085 1.54925 1.31765 1.08605	1.99315 1.76155 1.52995 1.29835 1.06675	1.97385 1.74225 1.51065 1.27905 #1.04745
#SS1											
#3 "1=%C0 #0.31	ORRECT," 0.1	"2=C.V., 0.95	" '%AGRE		REE," @	4=RΕΑΓ 1) %AGRE (MIN)'	E 0	@AGE 70	0	0
0 #0.11	! 0.1	82 0.9	NO '%AGRE	PICK	0 @70	-1 (MAX)'	0	70	0	0	0
!	83	NO	PICK	0	-1	0					
#1 0.001 PICK	4 0	'POWER	0	0	70	0	0	0	!	84	NO
#0.04 !	0.01 85	0.3 NO	'OLD PICK	DISCOU	NT -1	0	0	70	0	0	0
#0 0.001 NO	0.1 PICK	'%MIS-S		0	0	70	0	0	0	!	86
22 "	N									•	
33 #	N	age	observati	ions	(need	to	count	and	enter	value	here)
#Year	Seas	Туре	Gender	Partitn	ageerr	LbinLo	LbinHi	Nsamp	2	3	4
					`	LbinLo 11 23					ŕ
#Year 5 17 29	Seas 6 18 30	Type 7 19 35	Gender 8 20 40	Partitn 9 21 45	ageerr 10 22 50	LbinLo 11 23 55	LbinHi 12 24 60	Nsamp 13 25 65	2 14 26	3 15 27	4 16 28
#Year 5 17 29 1980 0.04412	Seas 6 18 30 1 0.04412	Type 7 19 35 1	Gender 8 20 40 0 0.07353	Partitn 9 21 45 0 0.01471	ageerr 10 22 50 1 0.07353	LbinLo 11 23 55	LbinHi 12 24 60 -1	Nsamp 13 25 65 -9999	2 14 26 0.01471	3 15 27	4 16
#Year 5 17 29 1980 0.04412 0.01471	Seas 6 18 30 1 0.04412	Type 7 19 35 1 0.02941 0	Gender 8 20 40 0 0.07353 0.02941	Partitn 9 21 45 0 0.01471 0.02941	ageerr 10 22 50 1 0.07353	LbinLo 11 23 55 1 0.10294 0.01471	LbinHi 12 24 60 -1 0.07353	Nsamp 13 25 65 -9999 0.02941 0.02941	2 14 26 0.01471 0.02941 0.01471	3 15 27 0 0	4 16 28 0 0.01471 0
#Year 5 17 29 1980 0.04412 0.01471 0.04412 Super	Seas 6 18 30 1 0.04412 0 0.05882 Years	Type 7 19 35 1 0.02941 0 0.05882	Gender 8 20 40 0 0.07353 0.02941 0	Partitn 9 21 45 0 0.01471 0.02941 0.05882	ageerr 10 22 50 1 0.07353 0 0.04412	LbinLo 11 23 55 1 0.10294 0.01471 0	LbinHi 12 24 60 -1 0.07353 0 0.01471	Nsamp 13 25 65 -9999 0.02941 0.02941 0.04412	2 14 26 0.01471 0.02941 0.01471 #	3 15 27 0 0 0 combines	4 16 28 0 0.01471 0 8 80-82
#Year 5 17 29 1980 0.04412 0.01471 0.04412 Super 1981	Seas 6 18 30 1 0.04412 0 0.05882 Years	Type 7 19 35 1 0.02941 0 0.05882	Gender 8 20 40 0 0.07353 0.02941 0 0	Partitn 9 21 45 0 0.01471 0.02941 0.05882	ageerr 10 22 50 1 0.07353 0 0.04412	LbinLo 11 23 55 1 0.10294 0.01471 0	LbinHi 12 24 60 -1 0.07353 0 0.01471	Nsamp 13 25 65 -9999 0.02941 0.02941 0.04412	2 14 26 0.01471 0.02941 0.01471 #	3 15 27 0 0 0 combines	4 16 28 0 0.01471 0 8 80-82
#Year 5 17 29 1980 0.04412 0.01471 0.04412 Super 1981 0.04412 0.01471	Seas 6 18 30 1 0.04412 0 0.05882 Years 1 0.04412 0	Type 7 19 35 1 0.02941 0 0.05882 1 0.02941 0	Gender 8 20 40 0 0.07353 0.02941 0 0 0.07353 0.02941	Partitn 9 21 45 0 0.01471 0.02941 0.05882 0 0.01471 0.02941	ageerr 10 22 50 1 0.07353 0 0.04412 1 0.07353 0	LbinLo 11 23 55 1 0.10294 0.01471 0 1 0.10294 0.01471	LbinHi 12 24 60 -1 0.07353 0 0.01471 -1 0.07353 0	Nsamp 13 25 65 -9999 0.02941 0.04412 68 0.02941 0.02941	2 14 26 0.01471 0.02941 0.01471 # 0.01471 0.02941 0.01471	3 15 27 0 0 0 combines	4 16 28 0 0.01471 0 880-82 0 0.01471
#Year 5 17 29 1980 0.04412 0.01471 0.04412 Super 1981 0.04412 0.01471 0.04412	Seas 6 18 30 1 0.04412 0 0.05882 Years 1 0.04412 0 0.05882	Type 7 19 35 1 0.02941 0 0.05882 1 0.02941 0	Gender 8 20 40 0 0.07353 0.02941 0 0 0.07353 0.02941	Partitn 9 21 45 0 0.01471 0.02941 0.05882 0 0.01471 0.02941	ageerr 10 22 50 1 0.07353 0 0.04412 1 0.07353 0	LbinLo 11 23 55 1 0.10294 0.01471 0 1 0.10294 0.01471	LbinHi 12 24 60 -1 0.07353 0 0.01471 -1 0.07353 0	Nsamp 13 25 65 -9999 0.02941 0.02941 0.04412 68 0.02941	2 14 26 0.01471 0.02941 0.01471 # 0.01471 0.02941 0.01471	3 15 27 0 0 0 combines	4 16 28 0 0.01471 0 880-82 0 0.01471
#Year 5 17 29 1980 0.04412 0.01471 0.04412 Super 1981 0.04412 0.01471 0.04412 Super	Seas 6 18 30 1 0.04412 0 0.05882 Years 1 0.04412 0 0.05882 Years 1	Type 7 19 35 1 0.02941 0 0.05882 1 0.02941 0 0.05882 1	Gender 8 20 40 0 0.07353 0.02941 0 0 0.07353 0.02941 0 0	Partitn 9 21 45 0 0.01471 0.02941 0.05882 0 0.01471 0.05882 0	ageerr 10 22 50 1 0.07353 0 0.04412 1 0.07353 0 0.04412	LbinLo 11 23 55 1 0.10294 0.01471 0 1 0.10294 0.01471 0	LbinHi 12 24 60 -1 0.07353 0 0.01471 -1 0.07353 0 0.01471	Nsamp 13 25 65 -9999 0.02941 0.04412 68 0.02941 0.02941 0.04412 -9998	2 14 26 0.01471 0.02941 0.01471 # 0.01471 0.02941 0.01471 #	3 15 27 0 0 0 combines 0 0 combines	4 16 28 0 0.01471 0 8 80-82 0 0.01471 0 8 80-82
#Year 5 17 29 1980 0.04412 0.01471 0.04412 Super 1981 0.04412 0.01471 0.04412 Super	Seas 6 18 30 1 0.04412 0 0.05882 Years 1 0.04412 0 0.05882 Years 1 0.04412	Type 7 19 35 1 0.02941 0 0.05882 1 0.02941 0 0.05882 1	Gender 8 20 40 0 0.07353 0.02941 0 0 0.07353 0.02941 0 0 0.07353	Partitn 9 21 45 0 0.01471 0.02941 0.05882 0 0.01471 0.05882 0	ageerr 10 22 50 1 0.07353 0 0.04412 1 0.07353 0 0.04412	LbinLo 11 23 55 1 0.10294 0.01471 0 1 0.10294 0.01471 0	LbinHi 12 24 60 -1 0.07353 0 0.01471 -1 0.07353 0 0.01471 -1 0.07353	Nsamp 13 25 65 -9999 0.02941 0.04412 68 0.02941 0.02941 0.04412 -9998 0.02941	2 14 26 0.01471 0.02941 0.01471 # 0.01471 0.02941 0.01471 #	3 15 27 0 0 0 combines 0 0 combines 0 0 combines	4 16 28 0 0.01471 0 8 80-82 0 0.01471 0 8 80-82
#Year 5 17 29 1980 0.04412 0.01471 0.04412 Super 1981 0.04412 0.01471 0.04412 Super 1982 0.04412 0.01471	Seas 6 18 30 1 0.04412 0 0.05882 Years 1 0.04412 0 0.05882 Years 1 0.04412	Type 7 19 35 1 0.02941 0 0.05882 1 0.05882 1 0.05882 1 0.02941 0	Gender 8 20 40 0 0.07353 0.02941 0 0 0.07353 0.02941 0 0 0.07353 0.02941	Partitn 9 21 45 0 0.01471 0.02941 0.05882 0 0.01471 0.05882 0 0.01471 0.02941 0.05882	ageerr 10 22 50 1 0.07353 0 0.04412 1 0.07353 0 0.04412	LbinLo 11 23 55 1 0.10294 0.01471 0 1 0.10294 0.01471 0 1 0.10294 0.01471	LbinHi 12 24 60 -1 0.07353 0 0.01471 -1 0.07353 0 0.01471 -1 0.07353 0	Nsamp 13 25 65 -9999 0.02941 0.04412 68 0.02941 0.02941 0.04412 -9998 0.02941	2 14 26 0.01471 0.02941 0.01471 # 0.01471 0.02941 0.01471 0.02941 0.01471	3 15 27 0 0 0 combines 0 0 combines 0 0 combines	4 16 28 0 0.01471 0 880-82 0 0.01471 0 8 80-82 0 0.01471
#Year 5 17 29 1980 0.04412 0.01471 0.04412 Super 1981 0.04412 0.01471 0.04412 Super 1982 0.04412 0.01471 0.04412 Super	Seas 6 18 30 1 0.04412 0 0.05882 Years 1 0.04412 0 0.05882 Years 1 0.04412 0 0.05882 Years 1	Type 7 19 35 1 0.02941 0 0.05882 1 0.02941 0 0.05882 1 0.02941 0 0.05882	Gender 8 20 40 0 0.07353 0.02941 0 0 0.07353 0.02941 0 0 0.07353 0.02941 0 0	Partitn 9 21 45 0 0.01471 0.02941 0.05882 0 0.01471 0.02941 0.05882 0 0.01471 0.02941 0.05882 0 0.01471 0.02941 0.05882 0	ageerr 10 22 50 1 0.07353 0 0.04412 1 0.07353 0 0.04412 1 0.07353 0 0.04412	LbinLo 11 23 55 1 0.10294 0.01471 0 1 0.10294 0.01471 0 1 0.10294 0.01471 0	LbinHi 12 24 60 -1 0.07353 0 0.01471 -1 0.07353 0 0.01471 -1 -1 0.07353 0 0.01471	Nsamp 13 25 65 -9999 0.02941 0.04412 68 0.02941 0.04412 -9998 0.02941 0.02941 0.04412	2 14 26 0.01471 0.02941 0.01471 # 0.01471 0.01471 # 0.01471 0.02941 0.01471 #	3 15 27 0 0 0 combines 0 0 combines 0 0 combines	4 16 28 0 0.01471 0 8 80-82 0 0.01471 0 8 80-82 0 0.01471 0 8 80-82
#Year 5 17 29 1980 0.04412 0.01471 0.04412 Super 1981 0.04412 Super 1982 0.04412 0.01471 0.04412 Super 1988 0.04412 Super	Seas 6 18 30 1 0.04412 0 0.05882 Years 1 0.04412 0 0.05882 Years 1 0.04412 0 0.05882 Years	Type 7 19 35 1 0.02941 0 0.05882 1 0.02941 0 0.05882 1 0.02941 0 0.05882	Gender 8 20 40 0 0.07353 0.02941 0 0 0.07353 0.02941 0 0 0.07353 0.02941 0 0 0.07353	Partitn 9 21 45 0 0.01471 0.02941 0.05882 0 0.01471 0.02941 0.05882 0 0.01471 0.02941 0.05882 0 0.01471 0.02941 0.05882	ageerr 10 22 50 1 0.07353 0 0.04412 1 0.07353 0 0.04412 1 0.07353 0 0.04412	LbinLo 11 23 55 1 0.10294 0.01471 0 1 0.10294 0.01471 0 1 0.10294 0.01471 0	LbinHi 12 24 60 -1 0.07353 0 0.01471 -1 0.07353 0 0.01471 -1 -1 0.07353 0 0.01471	Nsamp 13 25 65 -9999 0.02941 0.04412 68 0.02941 0.04412 -9998 0.02941 0.02941 0.04412	2 14 26 0.01471 0.02941 0.01471 # 0.01471 0.01471 # 0.01471 0.02941 0.01471 #	3 15 27 0 0 0 combines 0 0 combines 0 0 combines	4 16 28 0 0.01471 0 8 80-82 0 0.01471 0 8 80-82 0 0.01471 0 8 80-82
#Year 5 17 29 1980 0.04412 0.01471 0.04412 Super 1981 0.04412 Super 1982 0.04412 0.01471 0.04412 Super 1988 0.04412 Super	Seas 6 18 30 1 0.04412 0 0.05882 Years 1 0.04412 0 0.05882 Years 1 0.04412 0 0.05882 Years 1 0.05051 0.05051	Type 7 19 35 1 0.02941 0 0.05882 1 0.02941 0 0.05882 1 0.02941 0 0.05882 2 0.05051 0 0.0202	Gender 8 20 40 0 0.07353 0.02941 0 0 0.07353 0.02941 0 0 0.07353 0.02941 0 0 0.05051 0 0.0101	Partitn 9 21 45 0 0.01471 0.02941 0.05882 0 0.01471 0.02941 0.05882 0 0.01471 0.02941 0.05882 0 0 0.05051 0.0101	ageerr 10 22 50 1 0.07353 0 0.04412 1 0.07353 0 0.04412 1 0.07353 0 0.04412	LbinLo 11 23 55 1 0.10294 0.01471 0 1 0.10294 0.01471 0 1 0.10294 0.01471 0 1 0.10294 0.0101	LbinHi 12 24 60 -1 0.07353 0 0.01471 -1 0.07353 0 0.01471 -1 0.07353 0 0.01471	Nsamp 13 25 65 -9999 0.02941 0.02941 0.04412 68 0.02941 0.04412 -9998 0.02941 0.02941 0.04412 -9999 0.10101 0.05051 0.0404	2 14 26 0.01471 0.02941 0.01471 # 0.01471 0.01471 # 0.01471 0.02941 0.01471 # 0 0 0	3 15 27 0 0 0 combines 0 0 combines 0 0 combines 0 0 combines	4 16 28 0 0.01471 0 8 80-82 0 0.01471 0 8 80-82 0 0.01471 0 8 80-82 0 0.01471 0 0 8 80-82
#Year 5 17 29 1980 0.04412 0.01471 0.04412 Super 1981 0.04412 Super 1982 0.04412 0.01471 0.04412 Super 1988 0.04412 Super	Seas 6 18 30 1 0.04412 0 0.05882 Years 1 0.04412 0 0.05882 Years 1 0.04412 0 0.05882 Years 1 0.05051 0.05051 0 1	Type 7 19 35 1 0.02941 0 0.05882 1 0.02941 0 0.05882 1 0.02941 0 0.05882 2 0.05051 0 0.0202 2	Gender 8 20 40 0 0.07353 0.02941 0 0 0.07353 0.02941 0 0 0.07353 0.02941 0 0 0.05051 0 0.0101 0	Partitn 9 21 45 0 0.01471 0.02941 0.05882 0 0.01471 0.02941 0.05882 0 0.01471 0.02941 0.05882 0 0.010101 0	ageerr 10 22 50 1 0.07353 0 0.04412 1 0.07353 0 0.04412 1 0.07353 0 0.04412 1 0.05051 0.10101 0	LbinLo 11 23 55 1 0.10294 0.01471 0 1 0.10294 0.01471 0 1 0.10294 0.01471 0 1 0.10294 1 0.10101 1	LbinHi 12 24 60 -1 0.07353 0 0.01471 -1 0.07353 0 0.01471 -1 0.07353 0 0.01471 -1 0.07353 0 0.01471	Nsamp 13 25 65 -9999 0.02941 0.02941 0.04412 68 0.02941 0.04412 -9998 0.02941 0.02941 0.04412 -9999 0.10101 0.05051 0.0404 -27	2 14 26 0.01471 0.02941 0.01471 # 0.01471 0.01471 # 0.01471 0.02941 0.01471 # 0 0 0	3 15 27 0 0 0 combines 0 0 combines 0 0 combines 0 0 combines 0 0 combines	4 16 28 0 0.01471 0 8 80-82 0 0.01471 0 8 80-82 0 0.01471 0 8 80-82 0 0.01471 0 0 8 80-82
#Year 5 17 29 1980 0.04412 0.01471 0.04412 Super 1981 0.04412 Super 1982 0.04412 0.01471 0.04412 Super 1980 0.05051 0.10101 0 1981 0.05051 0.10101	Seas 6 18 30 1 0.04412 0 0.05882 Years 1 0.04412 0 0.05882 Years 1 0.04412 0 0.05882 Years 1 0.05051 0.05051 0.05051 0.05051	Type 7 19 35 1 0.02941 0 0.05882 1 0.02941 0 0.05882 1 0.02941 0 0.05882 2 0.05051 0 0.0202 2 0.05051 0	Gender 8 20 40 0 0.07353 0.02941 0 0 0.07353 0.02941 0 0 0.07353 0.02941 0 0 0.05051 0 0.0101 0 0.05051 0	Partitn 9 21 45 0 0.01471 0.02941 0.05882 0 0.01471 0.02941 0.05882 0 0.01471 0.02941 0.05882 0 0.010101 0 0 0.05051	ageerr 10 22 50 1 0.07353 0 0.04412 1 0.07353 0 0.04412 1 0.07353 0 0.04412 1 0.05051 0.10101 0 1 0.05051 0.10101	LbinLo 11 23 55 1 0.10294 0.01471 0 1 0.10294 0.01471 0 1 0.10294 0.01471 0 1 0 0 0 0.0101 1 0 0	LbinHi 12 24 60 -1 0.07353 0 0.01471 -1 0.07353 0 0.01471 -1 0.07353 0 0.01471 -1 0 0 0 0 -1 0 0	Nsamp 13 25 65 -9999 0.02941 0.02941 0.04412 68 0.02941 0.04412 -9998 0.02941 0.02941 0.04412 -9999 0.10101 0.05051 0.0404 -27 0.10101 0.05051	2 14 26 0.01471 0.02941 0.01471 # 0.01471 0.02941 0.01471 # 0.01471 # 0 0 0 0	3 15 27 0 0 0 combines 0 0 combines 0 0 combines 0 0 combines	4 16 28 0 0.01471 0 8 80-82 0 0.01471 0 8 80-82 0 0.01471 0 8 80-82 0 0.01471 0 0 8 80-82
#Year 5 17 29 1980 0.04412 0.01471 0.04412 Super 1981 0.04412 Super 1982 0.04412 0.01471 0.04412 Super 1988 0.04412 Super 1980 0.05051 0.10101 0 1981 0.05051	Seas 6 18 30 1 0.04412 0 0.05882 Years 1 0.04412 0 0.05882 Years 1 0.04412 0 0.05882 Years 1 0.05051 0.05051 0 1 0.05051	Type 7 19 35 1 0.02941 0 0.05882 1 0.02941 0 0.05882 1 0.02941 0 0.05882 2 0.05051 0 0.0202 2 0.05051	Gender 8 20 40 0 0.07353 0.02941 0 0 0.07353 0.02941 0 0 0.07353 0.02941 0 0 0.05051 0 0.0101 0 0.05051	Partitn 9 21 45 0 0.01471 0.02941 0.05882 0 0.01471 0.02941 0.05882 0 0.01471 0.02941 0.05882 0 0.010101 0 0	ageerr 10 22 50 1 0.07353 0 0.04412 1 0.07353 0 0.04412 1 0.07353 0 0.04412 1 0.05051 0.10101 0 1 0.05051	LbinLo 11 23 55 1 0.10294 0.01471 0 1 0.10294 0.01471 0 1 0.10294 0.01471 0 1 0 0 0 0.0101 1 0	LbinHi 12 24 60 -1 0.07353 0 0.01471 -1 0.07353 0 0.01471 -1 0.07353 0 0.01471 -1 0 0 0 0 -1 0	Nsamp 13 25 65 -9999 0.02941 0.02941 0.04412 68 0.02941 0.04412 -9998 0.02941 0.02941 0.04412 -9999 0.10101 0.05051 0.0404 -27 0.10101	2 14 26 0.01471 0.02941 0.01471 # 0.01471 0.02941 0.01471 # 0.01471 # 0 0 0 0	3 15 27 0 0 0 combines 0 0 combines 0 0 combines 0 0 combines 0 0 combines 0 0 combines	4 16 28 0 0.01471 0 8 80-82 0 0.01471 0 8 80-82 0 0.01471 0 8 80-82 0 0.01471 0 0 8 80-82

0 1983 0.05051	0.05051 0 1 0.05051 0.05051 0	0.0202 2 0.05051	0 0.05051 0	0.0101 0 0 0.05051	0.10101 0 1 0.05051 0.10101 0	0.0101 1 0	0 0 -1 0 0	0.05051 0.0404 -9998 0.10101 0.05051 0.0404	0 0	0 0 0.05051 0	0 0.05051 0.10101 0
1984 0.05208 0.05208 0 1985	0.10417			0.05208	0	1 0.10417 0 0	-1 0 0 0 -1	-9999 0.10417 0 0.02083 24	0 0 0.10417	0 0.05208 0	0 0 0
0.05208 0.05208 0		0.10417 0 0.01042	0.05208 0.05208 0.01042	0.05208 0.05208 0.01042	0.05208 0 0	0	0 0 0	0.10417 0 0.02083	0 0.10417	0.05208 0	0 0
1986 0.05208 0.05208 0	0.10417			0.05208	0	1 0.10417 0 0	-1 0 0 0	-9998 0.10417 0 0.02083		0 0.05208 0	0 0 0
1978 0.08333 0.01667 0.08333		0.00833		0	0	0.04167	-1 0.00833 0.01667 0		0.00833	0.00833 0 0 120	0.05 0.00833 0.00833 120
0.01775	0.05325	3 0.06509 0.04142 0.02367	0.02367	0.0355	0.01183	0.02959		0.0355	0.04734	0.01775	
0.03279	0.0123	3 0.09836 0.0082 0.02459	0.0123	0 0.04098 0.0082 0.0041	1 0.06148 0.0123 0.0041	1 0.14344 0.0123 0.0041	-1 0.04918 0 0.0123	200 0.04918 0 0.03689	0.0041	0 0.03279 0.0082 244	0.0082 0.0123 0.0041 244
0.02419	0	3 0.01613 0 0.03226	0	0.00806	0.01613	0.00806	0.02419	0.03226	0.00806	0	
0.02143	0.00714	3 0.03571 0 0.04286	0.01429	0	0	0.02143	0.05 0.00714	0.00714	0	0.00714	
0.04065	0.04065 0.01626	3 0 0.01626 0.04878	0.04065 0.02439	0.06504 0.01626	0.07317 0.00813	0.04878 0.01626	0.01626	$0.03252 \\ 0.00813$	$0.04065 \\ 0.00813$	0.02439	0.03252
1989 0.03125 0.03125 0	0.0625	3 0.15625 0.03125 0	0.03125		0	1 0.03125 0 0		32 0.03125 0.03125 0.0625	0	0 0.03125 0 32	0.03125 0.0625 0.03125 32
	0.05814	3 0.02326 0.0814 0.01163	0.01163	0.01163	0	0	0.01163	0	0	0 0.0814 0 86	0.01163 0.0814 0.01163 86
2002 0	1 0	3 0	0 0.0137	0 0.0137			-1 0.06849		0 0.06849	0 0.13699	0 0.0411

0.06849 0.0137	0.08219 0.0411	0.10959 0	0.05479 0.0274	0.0274 0.0137	0.0274 0	0	0 0.0137	0 0.0274	0.0137 #	0 73	0 fish
1998 0 0.01667 0.04167 Super		5 0 0.00833 0.05	0 0.00833 0.00833 0.08333	0.00833	1 0.04167 0.01667 0.00833	0.01667	-1 0.05 0.04167 0.00833	-9999 0.10833 0.01667 0.03333	0 0.05 0.01667 #	0 0.06667 0.01667 combine	0.01667
1998 0	1 0 0.00833	5 0 0.00833 0.05			0.01667	1 0.06667 0.01667 0.01667	0.04167		0 0.05 0.01667 #	0 0.06667 0.01667 combine	0.01667
1999 0 0.01667 0.04167	1 0 0.00833 0.025	5 0 0.00833 0.05		0.00833	1 0.04167 0.01667 0.00833		0.04167	240 0.10833 0.01667 0.03333	0 0.05 0.01667 #	0 0.06667 0.01667 combine	0.01667
Super 1999 0 0.01667 0.04167 Super		5 0 0.00833 0.05		0.00833	1 0.04167 0.01667 0.00833		0.04167	-9998 0.10833 0.01667 0.03333	0 0.05 0.01667 #	0 0.06667 0.01667 combine	0.01667
	1 0.00529 0.06349 0.01587	5 0.00529 0.01587 0.05291	0.03704	0.01587	1 0.02646 0.01058 0.01058	0.01058	0.02646	0.04762		0 0.08466 0.03704 189	0 0.08466 0.03175 189
2001 0 0.07292 0.01042 in		5 0.01042 0.05208 0.05208 assessme	0.03125 0.03125	0.02083	1 0.03125 0.03125 0.01042	0.01042	0.02083	0	0 0.08333 0.02083 #	0 0.09375 0 was	0 0.05208 0.01042 101
	1 0.03049 0.06098 0.02439	6 0 0.06098 0.0122		0 0.03049 0.06098 0	1 0 0.03049 0.02439	1 0.03049 0 0.0122	-1 0.03049 0 0.01829	-9999 0 0 0.10976	0.03049 0.06098 0	0 0.03049 0	0.03049 0.03049 0
0.15244	1 0.03049 0.06098 0.02439	0.06098	0.03049		0.03049	0	-1 0.03049 0 0.01829	0	0.03049 0.06098 0	0 0.03049 0	0.03049 0.03049 0
		6 0 0.06098 0.0122	0.06098 0.03049	0.03049 0.06098	0.02439 1 0 0.03049 0.02439	0.03049 0	0.03049 0	0	0.06098		
2006 0 0 0.09434		6 0 0.14151 0.01887			0		()	30 0.04717 0 0	0 0.14151 0	0 0.04717 0.04717	0 0.04717 0
2001 0 0.09481 0.05988	0 0.07485		0 0.08483	0 0.0998	1 0 0.03992 0.00399	0.01497 0.05489	0.01497 0.03493	0.01497 0.01497	0.03992	0 0.05489 0.02495	0.06487
2002		7	0	0	1 0.02387	1	-1	91		0 0.04773	

		0.1432 0.00955		0.09547 0	0.0716 0	0.05967 0	0 0.00239	0.0358 0	0 0.00716	0.0358	0.02387	0
	0431	1 0 0.08621	7 0 0.08621	0 0 0	0 0 0.0431	1 0 0.21552		-1 0 0.17241	24 0.0431 0	0 0 0.0431	0 0.0431 0.0431	0 0.0431 0
2006 0	0431 03185	0 1 0 0.03185 0.01911		0 0 0 0.09554	0 0 0 0.03185	0 1 0 0.19108 0.00637		0 -1 0 0.25478 0	0 37 0 0.12739 0.00637	0 0 0.09554	0 0 0	0 0.03185 0
#IPHC #2002		1	12 0	0	0	1	1	-1 0	141 0	0 0.00709	0 0.01418	0
	02128	0.04255 0.14184	0.06383 0.04255	0.04965 0.01418	0 0.05674 0.04255 0	0.05674	0.02837 0.03546			0.04965		0.03546 0.05674 0
0 0.0	0414		12 0 0.05414 0.04777	0.03822	0		0.03185	0 0.02548	0.00637	0.00637 0.04777 #	0.00955 0.03822 IPHC	0.03185
#2004 0		1 0	12 0 0.03448	0	0	1 0	1 0	-1 0.00575	175 0.01149 0.02299	0	0 0 0.01149	0 0.03448 0.02299
			0.03448								IPHC	0.022))
	04598		12 0 0.03448 0.03448						0.02299	0.01724	0 0 0.01149 IPHC	0 0.03448 0.02299
5 #	_N_Me	eanSize-at	-Age_obs									
#YrSe # sai		Flt/Svy ze(female-	Gender -male)	Part	Ageerr	Ignore	datavecto	or(female-	male)			
	mplesiz	-		Part	Ageerr	Ignore in	SS1	data	file			
# sar #Belov #2000	mplesiz w	ze(female- were 1	-male) what 1	was 0	used 0	in 1	SS1 2	data 30	file 30	30	35.2	32.4
# sar #Belov #2000 34	mplesiz w l.8	were 1 37.1	what 1 37.3	was 0 37.4	used 0 41.2	in 1 41	SS1 2 43.4	data 30 43.6	file 30 44.8	43.5	43.9	46.7
# sar #Belov #2000 34 48	mplesiz w k.8 3.6	were 1 37.1 48	what 1 37.3 51.8	was 0 37.4 53	used 0 41.2 53.8	in 1 41 52.9	SS1 2 43.4 53.2	data 30 43.6 54.8	file 30 44.8 56.7	43.5 56.5	43.9 57	46.7 56.6
# san #Belov #2000 34 48 62	mplesiz w k.8 3.6	were 1 37.1 48 61.7	what 1 37.3 51.8 64.2	was 0 37.4 53 64.1	used 0 41.2 53.8 64.4	in 1 41 52.9 63.8	SS1 2 43.4 53.2 65.7	data 30 43.6 54.8	file 30 44.8 56.7	43.5 56.5 1	43.9 57 5	46.7 56.6 10
# sar #Belov #2000 34 48	mplesiz w k.8 3.6	were 1 37.1 48	what 1 37.3 51.8	was 0 37.4 53	used 0 41.2 53.8	in 1 41 52.9	SS1 2 43.4 53.2	data 30 43.6 54.8	file 30 44.8 56.7	43.5 56.5	43.9 57	46.7 56.6
# sar #Belov #2000 34 48 62 9	mplesiz w 4.8 3.6 2.2	were 1 37.1 48 61.7 11	what 1 37.3 51.8 64.2 15 9 16	was 0 37.4 53 64.1 29 8 7	used 0 41.2 53.8 64.4 29 9	in 1 41 52.9 63.8 21	SS1 2 43.4 53.2 65.7 30 15	data 30 43.6 54.8 1 21	file 30 44.8 56.7 1 29	43.5 56.5 1 29	43.9 57 5 14	46.7 56.6 10 15
# sar #Belov #2000 34 48 62 9 6 23 #2000	mplesiz w 4.8 3.6 2.2	ve(female- were 1 37.1 48 61.7 11 13 22 1	what 1 37.3 51.8 64.2 15 9 16 2	was 0 37.4 53 64.1 29 8 7	used 0 41.2 53.8 64.4 29 9 5	in 1 41 52.9 63.8 21 12 6 1	SS1 2 43.4 53.2 65.7 30 15 14 2	data 30 43.6 54.8 1 21 13	file 30 44.8 56.7 1 29 10	43.5 56.5 1 29 7	43.9 57 5 14 30 35.2	46.7 56.6 10 15 15
# san #Belov #2000 34 48 62 9 6 23 #2000 34	mplesiz w J. 8 3.6 2.2	were 1 37.1 48 61.7 11 13 22 1 37.1	what 1 37.3 51.8 64.2 15 9 16 2 37.3	was 0 37.4 53 64.1 29 8 7 0 37.4	used 0 41.2 53.8 64.4 29 9 5 0 41.2	in 1 41 52.9 63.8 21 12 6 1 41	SS1 2 43.4 53.2 65.7 30 15 14 2 43.4	data 30 43.6 54.8 1 21 13 30 43.6	file 30 44.8 56.7 1 29 10 30 44.8	43.5 56.5 1 29 7 30 43.5	43.9 57 5 14 30 35.2 43.9	46.7 56.6 10 15 15 32.4 46.7
# san #Belov #2000 34 48 62 9 6 23 #2000 34 48	mplesiz w 4.8 3.6 2.2	were 1 37.1 48 61.7 11 13 22 1 37.1 48	what 1 37.3 51.8 64.2 15 9 16 2 37.3 51.8	was 0 37.4 53 64.1 29 8 7 0 37.4 53	used 0 41.2 53.8 64.4 29 9 5 0 41.2 53.8	in 1 41 52.9 63.8 21 12 6 1 41 52.9	SS1 2 43.4 53.2 65.7 30 15 14 2 43.4 53.2	data 30 43.6 54.8 1 21 13 30 43.6 54.8	file 30 44.8 56.7 1 29 10 30 44.8 56.7	43.5 56.5 1 29 7 30 43.5 56.5	43.9 57 5 14 30 35.2 43.9 57	46.7 56.6 10 15 15 32.4 46.7 56.6
# san #Belov #2000 34 48 62 9 6 23 #2000 34 48	mplesiz w 4.8 3.6 2.2	were 1 37.1 48 61.7 11 13 22 1 37.1 48 61.7	what 1 37.3 51.8 64.2 15 9 16 2 37.3 51.8 64.2	was 0 37.4 53 64.1 29 8 7 0 37.4 53 64.1	used 0 41.2 53.8 64.4 29 9 5 0 41.2 53.8 64.4	in 1 41 52.9 63.8 21 12 6 1 41 52.9 63.8	SS1 2 43.4 53.2 65.7 30 15 14 2 43.4 53.2 65.7	data 30 43.6 54.8 1 21 13 30 43.6 54.8 1	file 30 44.8 56.7 1 29 10 30 44.8 56.7 1	43.5 56.5 1 29 7 30 43.5 56.5	43.9 57 5 14 30 35.2 43.9 57 5	46.7 56.6 10 15 15 32.4 46.7 56.6
# san #Belov #2000 34 48 62 9 6 23 #2000 34 48 62 9	mplesiz w 4.8 3.6 2.2	were 1 37.1 48 61.7 11 13 22 1 37.1 48 61.7 11 11 11 11 11 11 11 11 11 11 11 11 11	what 1 37.3 51.8 64.2 15 9 16 2 37.3 51.8 64.2 15	was 0 37.4 53 64.1 29 8 7 0 37.4 53 64.1 29	used 0 41.2 53.8 64.4 29 9 5 0 41.2 53.8 64.4 29	in 1 41 52.9 63.8 21 12 6 1 41 52.9 63.8 21	SS1 2 43.4 53.2 65.7 30 15 14 2 43.4 53.2 65.7 30	data 30 43.6 54.8 1 21 13 30 43.6 54.8 1 21	file 30 44.8 56.7 1 29 10 30 44.8 56.7 1 29	43.5 56.5 1 29 7 30 43.5 56.5 1 29	43.9 57 5 14 30 35.2 43.9 57 5	46.7 56.6 10 15 15 32.4 46.7 56.6 10
# san #Belov #2000 344 48 62 9 6 23 #2000 34 48 62 9 6	mplesiz w 4.8 3.6 2.2	were 1 37.1 48 61.7 11 13 22 1 37.1 48 61.7 11 13 13 14 15 16 16 17 11 13	what 1 37.3 51.8 64.2 15 9 16 2 37.3 51.8 64.2 15 9 16 9 15 9 16 9 15 9 16 9 15 9	was 0 37.4 53 64.1 29 8 7 0 37.4 53 64.1 29 8	used 0 41.2 53.8 64.4 29 9 5 0 41.2 53.8 64.4 29 9	in 1 41 52.9 63.8 21 12 6 1 41 52.9 63.8 21 112 12 12 12 12 14 152.9 14 152.9 15 15 15 15 15 15 15 15 15 15 15 15 15	SS1 2 43.4 53.2 65.7 30 15 14 2 43.4 53.2 65.7 30 15	data 30 43.6 54.8 1 21 13 30 43.6 54.8 1	file 30 44.8 56.7 1 29 10 30 44.8 56.7 1	43.5 56.5 1 29 7 30 43.5 56.5	43.9 57 5 14 30 35.2 43.9 57 5	46.7 56.6 10 15 15 32.4 46.7 56.6
# san #Belov #2000 34 48 62 9 6 23 #2000 34 48 62 9 6 23	mplesiz w 4.8 3.6 2.2	were 1 37.1 48 61.7 11 13 22 1 37.1 48 61.7 11 13 22 1 37.1 48 61.7 11 13 22	what 1 37.3 51.8 64.2 15 9 16 2 37.3 51.8 64.2 15 9 16	was 0 37.4 53 64.1 29 8 7 0 37.4 53 64.1 29 8 7	used 0 41.2 53.8 64.4 29 9 5 0 41.2 53.8 64.4 29 9 5 5 0 5 6 6 6 6 6 6 6 6 6 6 6 6 6	in 1 41 52.9 63.8 21 12 6 1 41 52.9 63.8 21 112 6 6 3.8 21 12 6	SS1 2 43.4 53.2 65.7 30 15 14 2 43.4 53.2 65.7 30 15	data 30 43.6 54.8 1 21 13 30 43.6 54.8 1 21 13	file 30 44.8 56.7 1 29 10 30 44.8 56.7 1 29 10	43.5 56.5 1 29 7 30 43.5 56.5 1 29 7	43.9 57 5 14 30 35.2 43.9 57 5 14 30	46.7 56.6 10 15 15 32.4 46.7 56.6 10 15
# san #Belov #2000 34 48 62 9 6 23 #2000 34 48 62 9 6 23 #2000	mplesiz w 4.8 3.6 2.2	were 1 37.1 48 61.7 11 13 22 1 37.1 48 61.7 11 13 22 1 13 22 1 1 3 22 1	what 1 37.3 51.8 64.2 15 9 16 2 37.3 51.8 64.2 15 9 16 3	was 0 37.4 53 64.1 29 8 7 0 37.4 53 64.1 29 8 7 0	used 0 41.2 53.8 64.4 29 9 5 0 41.2 53.8 64.4 29 9 5 0 41.2 53.8 64.4	in 1 41 52.9 63.8 21 12 6 1 41 52.9 63.8 21 12 6 6 1 12 6 1 12 6 1	SS1 2 43.4 53.2 65.7 30 15 14 2 43.4 53.2 65.7 30 15 14 2	data 30 43.6 54.8 1 21 13 30 43.6 54.8 1 21 13	file 30 44.8 56.7 1 29 10 30 44.8 56.7 1 29 10 30 30 30 30 30	43.5 56.5 1 29 7 30 43.5 56.5 1 29 7	43.9 57 5 14 30 35.2 43.9 57 5 14 30 35.2	46.7 56.6 10 15 15 32.4 46.7 56.6 10 15 15
# san #Belov #2000 34 48 62 9 6 23 #2000 34 48 62 9 6 23 #2000 34 34	mplesiz w 4.8 3.6 2.2 4.8 3.6 2.2	were 1 37.1 48 61.7 11 13 22 1 37.1 48 61.7 11 13 22 1 37.1 48 61.7 11 13 22 1 37.1	what 1 37.3 51.8 64.2 15 9 16 2 37.3 51.8 64.2 15 9 16 3 37.3	was 0 37.4 53 64.1 29 8 7 0 37.4 53 64.1 29 8 7 0 37.4 53 64.1 29 8 7 0 37.4	used 0 41.2 53.8 64.4 29 9 5 0 41.2 53.8 64.4 29 9 5 0 41.2	in 1 41 52.9 63.8 21 12 6 1 41 52.9 63.8 21 12 6 1 12 6 1 14 1	SS1 2 43.4 53.2 65.7 30 15 14 2 43.4 53.2 65.7 30 15 14 2 43.4	data 30 43.6 54.8 1 21 13 30 43.6 54.8 1 21 13	file 30 44.8 56.7 1 29 10 30 44.8 56.7 1 29 10 30 44.8	43.5 56.5 1 29 7 30 43.5 56.5 1 29 7	43.9 57 5 14 30 35.2 43.9 57 5 14 30 35.2 43.9	46.7 56.6 10 15 15 32.4 46.7 56.6 10 15 15
# san #Belov #2000 34 48 62 9 6 23 #2000 34 48 62 9 6 23 #2000 34 48	mplesiz w 4.8 3.6 2.2 4.8 3.6 2.2	were 1 37.1 48 61.7 11 13 22 1 37.1 48 61.7 11 13 22 1 37.1 48 61.7 11 13 48 61.7 11 14 61.7 11 15	what 1 37.3 51.8 64.2 15 9 16 2 37.3 51.8 64.2 15 9 16 3 37.3 51.8	was 0 37.4 53 64.1 29 8 7 0 37.4 53 64.1 29 8 7 0 37.4 53 64.1 29 8 7 0 37.4 53	used 0 41.2 53.8 64.4 29 9 5 0 41.2 53.8 64.4 29 9 5 0 41.2 53.8	in 1 41 52.9 63.8 21 12 6 1 41 52.9 63.8 21 12 6 1 42 52.9 63.8 21 12 6 1 41 52.9 63.8 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6	SS1 2 43.4 53.2 65.7 30 15 14 2 43.4 53.2 65.7 30 15 14 2 43.4 53.2 65.7 30 15 14 2 43.4 53.2	data 30 43.6 54.8 1 21 13 30 43.6 54.8 1 21 13	file 30 44.8 56.7 1 29 10 30 44.8 56.7 1 29 10 30 30 30 30 30	43.5 56.5 1 29 7 30 43.5 56.5 1 29 7	43.9 57 5 14 30 35.2 43.9 57 5 14 30 35.2 43.9 57 5	46.7 56.6 10 15 15 32.4 46.7 56.6 10 15 15 32.4 46.7 56.6
# san #Belov #2000 34 48 62 9 6 23 #2000 34 48 62 9 6 23 #2000 34 34	mplesiz w 4.8 3.6 2.2 4.8 3.6 2.2	were 1 37.1 48 61.7 11 13 22 1 37.1 48 61.7 11 13 22 1 37.1 48 61.7 11 13 22 1 37.1	what 1 37.3 51.8 64.2 15 9 16 2 37.3 51.8 64.2 15 9 16 3 37.3	was 0 37.4 53 64.1 29 8 7 0 37.4 53 64.1 29 8 7 0 37.4 53 64.1 29 8 7 0 37.4	used 0 41.2 53.8 64.4 29 9 5 0 41.2 53.8 64.4 29 9 5 0 41.2	in 1 41 52.9 63.8 21 12 6 1 41 52.9 63.8 21 12 6 1 12 6 1 14 1	SS1 2 43.4 53.2 65.7 30 15 14 2 43.4 53.2 65.7 30 15 14 2 43.4	data 30 43.6 54.8 1 21 13 30 43.6 54.8 1 21 13	file 30 44.8 56.7 1 29 10 30 44.8 56.7 1 29 10 30 44.8 56.7 1 29 10 30 44.8 56.7	43.5 56.5 1 29 7 30 43.5 56.5 1 29 7 30 43.5 56.5	43.9 57 5 14 30 35.2 43.9 57 5 14 30 35.2 43.9	46.7 56.6 10 15 15 32.4 46.7 56.6 10 15 15
# san #Belov #2000 34 48 62 9 6 23 #2000 34 48 62 9 6 23 #2000 34 48 62	mplesiz w 4.8 3.6 2.2 4.8 3.6 2.2	were 1 37.1 48 61.7 11 13 22 1 37.1 48 61.7 11 13 22 1 37.1 48 61.7 11 48 61.7 11 61.7	what 1 37.3 51.8 64.2 15 9 16 2 37.3 51.8 64.2 15 9 16 3 37.3 51.8 64.2	was 0 37.4 53 64.1 29 8 7 0 37.4 53 64.1 29 8 7 0 37.4 53 64.1 53 64.1	used 0 41.2 53.8 64.4 29 9 5 0 41.2 53.8 64.4 29 9 5 0 41.2 53.8 64.4	in 1 41 52.9 63.8 21 12 6 1 41 52.9 63.8 21 12 6 1 41 52.9 63.8 21 12 6 1 41 52.9 63.8	SS1 2 43.4 53.2 65.7 30 15 14 2 43.4 53.2 65.7 30 15 14 2 43.4 53.2 65.7	data 30 43.6 54.8 1 21 13 30 43.6 54.8 1 21 13	file 30 44.8 56.7 1 29 10 30 44.8 56.7 1 29 10 30 44.8 56.7 1 1 29 10 44.8 56.7 1	43.5 56.5 1 29 7 30 43.5 56.5 1 29 7 30 43.5 56.5	43.9 57 5 14 30 35.2 43.9 57 5 14 30 35.2 43.9 57 5 15 16 17 18 18 18 18 18 18 18 18 18 18	46.7 56.6 10 15 15 32.4 46.7 56.6 10 15 15 32.4 46.7 56.6 10
# san #Belov #2000 34 48 62 9 6 23 #2000 34 48 62 9 6 23 #2000 34 48 62 9 6 23 #2000	mplesiz w 4.8 3.6 2.2 4.8 3.6 2.2	were 1 37.1 48 61.7 11 13 22 1 37.1 48 61.7 11 13 22 1 37.1 48 61.7 11 13 22 1 37.1 48 61.7 11 13 22	what 1 37.3 51.8 64.2 15 9 16 2 37.3 51.8 64.2 15 9 16 3 37.3 51.8 64.2 15 9 16 3 15.8 64.2 15 9 16	was 0 37.4 53 64.1 29 8 7 0 37.4 53 64.1 29 8 7 0 37.4 53 64.1 29 8 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7	used 0 41.2 53.8 64.4 29 9 5 0 41.2 53.8 64.4 29 9 5 0 41.2 53.8 64.4 29 9 5 0 41.2 53.8 64.4 29 9 5 0 41.2 53.8 64.4 29 9 5 0 41.2 53.8 64.4 29 9 5 0 41.2 53.8 64.4 29 9 5 0 41.2 53.8 64.4 29 9 5 0 41.2 53.8 64.4 29 9 5 0 41.2 53.8 64.4 29 9 5 0 41.2 53.8 64.4 29 9 5 0 41.2 53.8 64.4 29 9 5 0 41.2 5 5 0 6 4 6 6 6 6 6 6 6 6 6 6 6 6 6	in 1 41 52.9 63.8 21 12 6 1 41 52.9 63.8 21 12 6 1 41 52.9 63.8 21 12 6 1 41 52.9 63.8 21	SS1 2 43.4 53.2 65.7 30 15 14 2 43.4 53.2 65.7 30 15 14 2 43.4 53.2 65.7 30 15	data 30 43.6 54.8 1 21 13 30 43.6 54.8 1 21 13 30 43.6 54.8 1 21 13	file 30 44.8 56.7 1 29 10 30 44.8 56.7 1 29 10 30 44.8 56.7 1 29 10 30 44.8 56.7 1 1 29 10	43.5 56.5 1 29 7 30 43.5 56.5 1 29 7 30 43.5 56.5 1 29 7	43.9 57 5 14 30 35.2 43.9 57 5 14 30 35.2 43.9 57 5 14 30	46.7 56.6 10 15 15 32.4 46.7 56.6 10 15 15 32.4 46.7 56.6 10 15
# san #Belov #2000 34 48 62 9 6 23 #2000 34 48 62 9 6 23 #2000 34 48 62 9 6 23 #2000 34 48	mplesiz w 4.8 3.6 2.2 4.8 3.6 2.2	were 1 37.1 48 61.7 11 13 22 1 37.1 48 61.7 11 13 22 1 37.1 48 61.7 11 13 22 1 37.1 48 61.7 11 13 22 1 37.1 48 61.7 11 13 22 1	what 1 37.3 51.8 64.2 15 9 16 2 37.3 51.8 64.2 15 9 16 3 37.3 51.8 64.2 15 9 16 5	was 0 37.4 53 64.1 29 8 7 0 37.4 53 64.1 29 8 7 0 37.4 53 64.1 29 8 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7	used 0 41.2 53.8 64.4 29 9 5 0 41.2 53.8 64.4 29 9 5 0 41.2 53.8 64.4 29 9 5 0 41.2 53.8 64.4 29 9 5 0 41.2 53.8 64.4 29 9 5 0 41.2 53.8 64.4 29 9 5 0 41.2 53.8 64.4 29 9 5 0 41.2 53.8 64.4 29 9 5 0 64.4 29 9 5 0 64.4 29 9 9 5 0 6 0 6 0 6 0 6 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0	in 1 41 52.9 63.8 21 12 6 1 41 52.9 63.8 21 12 6 1 41 52.9 63.8 21 12 6 1 12 6 1 12 6 1 1	SS1 2 43.4 53.2 65.7 30 15 14 2 43.4 53.2 65.7 30 15 14 2 43.4 53.2 65.7 30 15 14 2 43.4 53.2 65.7 30 15 14 2 43.4 53.2 65.7 30 15 14 2	data 30 43.6 54.8 1 21 13 30 43.6 54.8 1 21 13 30 43.6 54.8 1 21 13 30 43.6 54.8 1 21 13	file 30 44.8 56.7 1 29 10 30 44.8 56.7 1 29 10 30 44.8 56.7 1 29 10 30 43.8 56.7 1 29 10 30	43.5 56.5 1 29 7 30 43.5 56.5 1 29 7 30 43.5 56.5 1 29 7	43.9 57 5 14 30 35.2 43.9 57 5 14 30 35.2 43.9 57 5 14 30	46.7 56.6 10 15 15 32.4 46.7 56.6 10 15 15 32.4 46.7 56.6 10 15 15
# san #Belov #2000 34 48 62 9 6 23 #2000 34 48 62 9 6 23 #2000 34 48 62 9 6 23 #2000 34 34 34 34 34 34 34 34 34 34 34 34 34	mplesiz w 4.8 3.6 2.2 4.8 3.6 2.2	were 1 37.1 48 61.7 11 13 22 1 37.1 48 61.7 11 13 22 1 37.1 48 61.7 11 13 22 1 37.1 48 61.7 11 13 22 1 37.1 48 61.7 11 13 22 1 37.1 48 61.7 11 13 22 1 37.1	what 1 37.3 51.8 64.2 15 9 16 2 37.3 51.8 64.2 15 9 16 3 37.3 51.8 64.2 15 9 16 5 37.3	was 0 37.4 53 64.1 29 8 7 0 37.4 53 64.1 29 8 7 0 37.4 53 64.1 29 8 7 0 37.4 53 64.1 29 8 7 0 37.4 53 64.1 29 8 7 0 37.4	used 0 41.2 53.8 64.4 29 9 5 0 41.2 53.8 64.4 29 9 5 0 41.2 53.8 64.4 29 9 5 0 41.2 53.8 64.4	in 1 41 52.9 63.8 21 12 6 1 41 52.9 63.8 21 12 6 1 41 52.9 63.8 21 12 6 1 41 52.9 63.8 21 12 6 1 41	SS1 2 43.4 53.2 65.7 30 15 14 2 43.4 53.2 65.7 30 15 14 2 43.4 53.2 65.7 30 15 14 2 43.4 53.2 65.7 30 15 14 2 43.4	data 30 43.6 54.8 1 21 13 30 43.6 54.8 1 21 13 30 43.6 54.8 1 21 13 30 43.6 54.8 1 21 13	file 30 44.8 56.7 1 29 10 30 44.8 56.7 1 29 10 30 44.8 56.7 1 29 10 30 44.8 56.7 1 29 10 30 44.8	43.5 56.5 1 29 7 30 43.5 56.5 1 29 7 30 43.5 56.5 1 29 7	43.9 57 5 14 30 35.2 43.9 57 5 14 30 35.2 43.9 57 5 14 30 35.2 43.9 57 5 14 30	46.7 56.6 10 15 15 32.4 46.7 56.6 10 15 15 32.4 46.7 56.6 10 15 15 32.4 46.7 56.6 10 15 46.7
# san #Belov #2000 34 48 62 9 6 23 #2000 34 48 62 9 6 23 #2000 34 48 62 9 6 23 #2000 34 48	mplesiz w 4.8 3.6 2.2 4.8 3.6 2.2	were 1 37.1 48 61.7 11 13 22 1 37.1 48 61.7 11 13 22 1 37.1 48 61.7 11 13 22 1 37.1 48 61.7 11 48 61.7 11 48	what 1 37.3 51.8 64.2 15 9 16 2 37.3 51.8 64.2 15 9 16 3 37.3 51.8 64.2 15 9 16 5 37.3 51.8	was 0 37.4 53 64.1 29 8 7 0 37.4 53 64.1 29 8 7 0 37.4 53 64.1 29 8 7 0 37.4 53 64.1 29 8 7 0 37.4 53	used 0 41.2 53.8 64.4 29 9 5 0 41.2 53.8 64.4 29 9 5 0 41.2 53.8 64.4 29 9 5 0 41.2 53.8 64.4 29 5 0 41.2 53.8	in 1 41 52.9 63.8 21 12 6 1 41 52.9 63.8 21 12 6 1 41 52.9 63.8 21 12 6 1 41 52.9 63.8 21 12 6 1 41 52.9 63.8 21 12 6 1 41 52.9	SS1 2 43.4 53.2 65.7 30 15 14 2 43.4 53.2 65.7 30 15 14 2 43.4 53.2 65.7 30 15 14 2 43.4 53.2 65.7 30 15 14 2 43.4 53.2	data 30 43.6 54.8 1 21 13 30 43.6 54.8 1 21 13 30 43.6 54.8 1 21 13 30 43.6 54.8 6 54.8	file 30 44.8 56.7 1 29 10 30 44.8 56.7 1 29 10 30 44.8 56.7 1 29 10 30 44.8 56.7 1 29 10 30 44.8 56.7	43.5 56.5 1 29 7 30 43.5 56.5 1 29 7 30 43.5 56.5 1 29 7	43.9 57 5 14 30 35.2 43.9 57 5 14 30 35.2 43.9 57 5 14 30 35.2 43.9 57 5 7 5 14 30	46.7 56.6 10 15 15 32.4 46.7 56.6 10 15 15 32.4 46.7 56.6 10 15 15 32.4 46.7 56.6
# san #Belov #2000 34 48 62 9 6 23 #2000 34 48 62 9 6 23 #2000 34 48 62 9 6 23 #2000 34 34 34 34 34 34 34 34 34 34 34 34 34	mplesiz w 4.8 3.6 2.2 4.8 3.6 2.2	were 1 37.1 48 61.7 11 13 22 1 37.1 48 61.7 11 13 22 1 37.1 48 61.7 11 13 22 1 37.1 48 61.7 11 13 22 1 37.1 48 61.7 11 13 22 1 37.1 48 61.7 11 13 22 1 37.1	what 1 37.3 51.8 64.2 15 9 16 2 37.3 51.8 64.2 15 9 16 3 37.3 51.8 64.2 15 9 16 5 37.3	was 0 37.4 53 64.1 29 8 7 0 37.4 53 64.1 29 8 7 0 37.4 53 64.1 29 8 7 0 37.4 53 64.1 29 8 7 0 37.4 53 64.1 29 8 7 0 37.4	used 0 41.2 53.8 64.4 29 9 5 0 41.2 53.8 64.4 29 9 5 0 41.2 53.8 64.4 29 9 5 0 41.2 53.8 64.4	in 1 41 52.9 63.8 21 12 6 1 41 52.9 63.8 21 12 6 1 41 52.9 63.8 21 12 6 1 41 52.9 63.8 21 12 6 1 41	SS1 2 43.4 53.2 65.7 30 15 14 2 43.4 53.2 65.7 30 15 14 2 43.4 53.2 65.7 30 15 14 2 43.4 53.2 65.7 30 15 14 2 43.4	data 30 43.6 54.8 1 21 13 30 43.6 54.8 1 21 13 30 43.6 54.8 1 21 13 30 43.6 54.8 1 21 13	file 30 44.8 56.7 1 29 10 30 44.8 56.7 1 29 10 30 44.8 56.7 1 29 10 30 44.8 56.7 1 29 10 30 44.8	43.5 56.5 1 29 7 30 43.5 56.5 1 29 7 30 43.5 56.5 1 29 7	43.9 57 5 14 30 35.2 43.9 57 5 14 30 35.2 43.9 57 5 14 30 35.2 43.9 57 5 14 30	46.7 56.6 10 15 15 32.4 46.7 56.6 10 15 15 32.4 46.7 56.6 10 15 15 32.4 46.7 56.6 10 15 46.7

6 23 #2000	13 22 1	9 16 7	8 7 0	9 5 0	12 6 1	15 14 2	13 30	10 30	7	30 35.2	15 32.4
34.8 48.6	37.1 48	37.3 51.8	37.4 53	41.2 53.8	41 52.9	43.4 53.2	43.6 54.8	44.8 56.7	43.5 56.5	43.9 57	46.7 56.6
62.2 9	61.7 11	64.2 15	64.1 29	64.4 29	63.8	65.7 30	1	1 29	1 29	5	10
6	13	9	8	9	21 12	30 15	21 13	29 10	29 7	14 30	15 15
23	22	16	7	5	6	14					
#Year	Season	Fleet	Gender	Partitn	ageerr	Ignore					
1981 33.5	1 40.2	1 40	0 38.6	0 38.7	1 43.6	74 41.5	24 45	24.8 44	26 42	35.3 44	36.3 45
48	50	53	53	53	53	53	64	59	60	61.3	53.6
61.5	62	62.6	64	63	62	65.3	1	0	0	3	3
2	5	1	5	7	5	2	2	0	1	1	0
0 4	3	2 5	0 3	1 0	0 1	2 3	1 #80-82	1 Californ	0	3 Sport	7
1986	1	2	0	0	1	86	24	24.8	26	30	29.8
35.4	32.7	38	38	46.7	40	43	45.5	52	48	45	45
48	47.5	54.7	53.3	56.7	50.5	53	53.8	60	58	56.2	57.5
62.3 5	61.2 3	66 1	61 2	65 6	64.5 2	64 3	0 2	0 2	1 2	1 1	5 3
2	2	3	3	3	2	1	4	1	0	5	2
4	6	1	1	1	2	4	#80-86	Californ	ia	Com	
1986	1	3	0	0	1	200	24	24.8	30.2	23.6	27.9
27.7 38.8	30.9 44.5	37.2 49.6	36.7 52.5	36.4 54.1	39.1 51.6	40.1 53.9	40.9 54	44.4 51.5	45.9 39.8	45.6 57.4	46 57.9
56.5	59.8	62.4	58.7	60.4	63.2	62.8	0	5	39.8 11	37. 4 7	22
36	55	35	41	52	46	29	23	23	17	20	6
5	8	5	6	9	7	7	3	4	4	20	47
22 2000	12 1	5 5	7 0	15 0	9 1	40 200	#84-87 24	Oregon 24.8	Sport 26	28	30
35	36	38.8	37.9	40.5	40.8	43.7	43.7	44.6	44.6	46.3	47.8
51	47.7	49.5	52.3	54.2	53.9	54	55.1	55.2	56.7	56.3	59.8
62	62.2	64.9	65.3	64.4	63	65.9	0	0	0	0	1
2 9	1 12	8 6	13 7	19 5	13 12	26 12	23 9	34 9	30 9	15 32	18 11
20	18	12	3	8	5	10	#98	-	4	Washing	
Sport											-
2000	1	7	0	0	1	200	24	24.8	26	28	30
33 48.7	36 50.9	38 51.1	39.5 50.4	42 52.3	46.3 51	43.4 54.3	46.3 53.4	47 56	47.5 54.1	48.4 56.2	48.6 56
64	62.5	62.7	65	65	67	71	0	0	0	0	0
0	0	0	2	4	4	9	12	13	14	22	25
30 1	20 4	22 6	18 3	9	13 0	3	8 #00	6	8 4	36 Washin	10
Line	4	O	3	3	U	3	#00	-	4	Washing	gion
#IPHC											
#2002	1	12	0	0	1	141	24	24.8	26	28	30
33 45	36 46 1	38 48.5	39.5	42	46.3	40.1	46 40.0	46.5	41.4	45.3	46.8
45 60.5	46.1 56.5	48.5 58.5	45.8 58	47 58	48.7 65.7	50.7 62.9	49.9 0	50 0	51 0	53.1 0	53.4 0
0	0	0	0	0	0	0	1	2	5	4	6
9	7	8	6	4	3	7	7	3	8	20	9
2 #2003	4 1	8 12	7	1	3 1	7 200	# 24	2002	IPHC	22.6	27.0
#2003 27.7	35	37.2	0 36.7	0 39	39.1	42	24 45	24.8 41.3	30.2 46.6	23.6 44.8	27.9 46.3
47.1	47.1	48.4	48.2	50.5	50.1	52.5	53.2	53.2	51.7	53.9	55.8
57.4	60.2	59.8	61.9	62.7	59.6	62.6	0	0	0	0	0

0	1	0	0	1	0	2	2	3	10	13	11
17	12	17	10	10	8	4	15	12	13	48	16
11	12	16	9	6	5	30	#	2003	IPHC		
#2004	1	12	0	0	1	174	24	24.8	26	28	30
33	36	38	39.5	42	46.3	55.5	56	44.4	50.5	52.3	50.1
48.2	49.1	50.2	51.2	49.1	49.2	53	55.7	53.5	51.8	52.7	55.8
47	55.3	57.2	55.6	61	54.7	59.5	0	0	0	0	0
0	0	0	0	0	1	2	1	0	6	8	8
6	14	11	13	7	6	4	3	2	4	23	9
1	12	6	9	5	3	10	#	2004	IPHC		
#2005	1	12	0	0	1	134	24	24.8	30.2	23.6	27.9
27.7	30.9	37.2	36.7	36.4	42	40.1	40.9	44.4	47	49	44.5
49.5	46.6	47.8	50.7	50.3	50.8	54.2	53	54.3	53	54.9	57.1
55.7	60.8	61.5	61.4	58.8	65	63.8	0	0	0	0	0
0	0	0	0	0	1	0	0	0	2	1	2
4	5	11	6	12	9	5	3	3	3	15	15
3	4	6	5	6	2	11	#	2005	IPHC		
0 #N	enviror	nmental	variabl	es							

0 #_N_environ_obs

999

#ENDDATA