姓名:何苏燕 学号: 15320170155231 应用微观计量 hw2

— Using stata to show the example of "Wage Profile"

1. Fourth order polylomial

import delimited using "Wage.csv", clear

gen age2=age*age

gen age3=age*age*age

gen age4=age*age*age*age

reg wage age age 2 age 3 age 4

. reg wage age age2 age3 age4

	Source	SS	di	MS	Numb	er of obs	3 =	3,000
-					- F(4,	2995)	=	70.69
	Model	450481.49	4	112620.372	2 Prob	> F	=	0.0000
	Residual	4771604.22	2,995	1593.19000	6 R-sq	uared	=	0.0863
-					- Adj	R-square	= E	0.0850
	Total	5222085.71	2,999	1741.2756	6 Root	MSE	=	39.915
		•						
	wage	Coef.	Std. Err.	t	P> t	[95% (Conf.	Interval]
	age	21.2455	5.886747	3.61	0.000	9.7030	019	32.78797
	age2	5638585	.2061082	-2.74	0.006	96798	865	1597304
	age3	.0068107	.0030659	2.22	0.026	.00079	991	.0128222
	age4	000032	.0000164	-1.95	0.051	0000	642	1.45e-07
	cons	-184 1539	60 04037	-3 07	0.002	-301 81	785	-66 42941

2. Piecewise constant regression

gen cut1=1 if age >17.9 & age <=33.5

replace cut1=0 if cut1==.

gen cut2=1 if age >33.5 & age <=49

replace cut2=0 if cut2==.

gen cut3=1 if age >49 & age <=64.5

replace cut3=0 if cut3==.

gen cut4=1 if age >64.5 & age <=80.1

replace cut4=0 if cut4==.

reg wage cut1 cut2 cut3 cut4,noconstant

. reg wage cut1 cut2 cut3 cut4, noconstant

Source	SS	df	MS	Number of ob - F(4, 2996))s = =	3,000 5776.85
Model Residual	37759456.5 4895717.38	4 2,996	9439864.13 1634.08457	Prob > F R-squared	=	0.0000 0.8852
Total	42655173.9	3,000	14218.3913	- Adj R-square 3 Root MSE	:d =	0.8851 40.424
wage	Coef.	Std. Err.	t	P> t [95%	Conf.	Interval]
cut1	94.15839	1.476069	63.79	0.000 91.26	418	97.0526
cut2	118.2119	1.080758	109.38	0.000 116.0	1928	120.331
cut3	117.823	1.448333	81.35	0.000 114.9	831	120.6628
cut4	101.799	4.763992	21.37	0.000 92.45	796	111.14

- \square . Using stata to show the example of "Is the CEF linear?"
- 1. To calculate the mean, variance and covariance of variables import delimited using "anscombe.csv",clear

sum x1 x2 x3 x4

. sum x1 x2 x3 x4

Variable	Obs	Mean	Std. Dev.	Min	Max
x1	11	9	3.316625	4	14
x2	11	9	3.316625	4	14
ж3	11	9	3.316625	4	14
x4	11	9	3.316625	8	19

sum y1 y2 y3 y4

. sum y1 y2 y3 y4

	Variable	0bs	Mean	Std. Dev.	Min	Max
	у1	11	7.500909	2.031568	4.26	10.84
	y2	11	7.500909	2.031657	3.1	9.26
	уЗ	11	7.5	2.030424	5.39	12.74
	у4	11	7.500909	2.030579	5.25	12.5
ш						

pwcorr x1 y1

pwcorr x2 y2

pwcorr x3 y3

pwcorr x4 y4

. pwcorr x1 y1 x1 у1 x1 1.0000 y1 0.8164 1.0000 . pwcorr x2 y2 x2 y2 1.0000 x2 y2 0.8162 1.0000 . pwcorr x3 y3 жЗ у3 жЗ 1.0000 у3 0.8163 1.0000 pwcorr x4 y4 y4 ×4 1.0000 у4 0.8165

2. linear regression on each dataset

twoway (scatter y1 x1) (lfit y1 x1)

graph save scatter1

twoway (scatter y2 x2) (lfit y2 x2)

graph save scatter2

twoway (scatter y3 x3) (lfit y3 x3)

graph save scatter3

twoway (scatter y4 x4) (lfit y4 x4)

graph save scatter4

graph combine scatter1.gph scatter2.gph scatter3.gph scatter4.gph

reg y1 x1 predict reg1residual,r predict reg1fitted, xb scatter reg1residual reg1fitted graph save scatter5 reg y2 x2 predict reg2residual,r predict reg2fitted, xb scatter reg2residual reg2fitted graph save scatter6 reg y3 x3 predict reg3residual,r predict reg3fitted, xb scatter reg3residual reg3fitted graph save scatter7 reg y4 x4 predict reg4residual,r predict reg4fitted, xb scatter reg4residual reg4fitted

graph save scatter8 graph combine scatter5.gph scatter6.gph scatter7.gph scatter8.gph

\equiv 、Tring bootstrap using data from Chengqiang's textbook use grilic.dta,clear

reg lw iq s expr tenure rns smsa //homoskedastic std err

. reg lw iq s expr tenure rns smsa

Source	SS	df	MS		er of obs	=	758
				- F(6,	751)	=	70.39
Model	50.1363131	6	8.35605219	9 Prob	> F	=	0.0000
Residual	89.1498367	751	.118708171	1 R-sq	quared	=	0.3600
				- Adj	R-squared	=	0.3548
Total	139.28615	757	.18399755	6 Root	MSE	=	.34454
lw	Coef.	Std. Err.	t	P> t	[95% Co:	nf.	Interval]
iq	.0032792	.0010829	3.03	0.003	.001153	2	.0054051
9	.0927874	.0066659	13.92	0.000	.079701	3	.1058734
expr	.0393443	.0063057	6.24	0.000	.026965	3	.0517232
tenure	.034209	.0077146	4.43	0.000	.019064	1	.0493538
rns	0745325	.0288152	-2.59	0.010	131100	3	0179647
smsa	.1367369	.0279476	4.89	0.000	.081872		.1916016
	3.895172	.1091103	35.70	0.000	3.68097		4.109369
_cons	3.095172	.1091103	30.70	0.000	3.68097	*	4.109369

```
reg lw iq s expr tenure rns smsa,vce(robust) //robust std err
```

. reg lw iq s expr tenure rns smsa,vce(robust) //robust std err

Linear regression Number of obs = 758
F(6, 751) = 71.89
Prob > F = 0.0000
R-squared = 0.3600
Root MSE = .34454

lw	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
iq	.0032792	.0011321	2.90	0.004	.0010567	.0055016
9	.0927874	.0069763	13.30	0.000	.0790921	.1064826
expr	.0393443	.0066603	5.91	0.000	.0262692	.0524193
tenure	.034209	.0078957	4.33	0.000	.0187088	.0497092
rns	0745325	.0299772	-2.49	0.013	1333815	0156834
smsa	.1367369	.0277712	4.92	0.000	.0822186	.1912553
_cons	3.895172	.1159286	33.60	0.000	3.667589	4.122754

bootstrap,reps(400) seed(10101) nodots : reg lw iq s expr tenure rns smsa

. bootstrap ,reps(400) seed(10101) nodots:reg lw iq s expr tenure rns smsa

Linear regression Number of obs = 758

Replications = 400

Wald chi2(6) = 395.74

Prob > chi2 = 0.0000

R-squared = 0.3600

Adj R-squared = 0.3548

Root MSE = 0.3445

	Observed	Bootstrap			Normal	Normal-based		
lw	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]		
iq	.0032792	.0010852	3.02	0.003	.0011522	.0054061		
s	.0927874	.0071037	13.06	0.000	.0788644	.1067104		
expr	.0393443	.0061098	6.44	0.000	.0273693	.0513192		
tenure	.034209	.0080162	4.27	0.000	.0184975	.0499204		
rns	0745325	.0286239	-2.60	0.009	1306343	0184307		
smsa	.1367369	.0276958	4.94	0.000	.0824542	.1910197		
_cons	3.895172	.1194029	32.62	0.000	3.661146	4.129197		

所有,我们可以看到,用 bootstrap 得到的 standard error 更接近上述回归中采用 稳健标准误得到的 standard error。