Analisi e rappresentazione del comportamento dei ritardi di rete dei principali fornitori di Cloud Computing

Candidato

Alberto Bagnacani

Relatore

Prof. Paolo Bellavista

Correlatore

Dott. Ing. Luca Foschini

Introduzione

Cloud Computing paradigma in continua crescita → Necessità di potersi basare su un modello affidabile di ritardi all'interno di differenti aree terrestri.

Esigenza di uno strumento per il **monitoraggio** della **latenza** tra datacenter → Progetto full-stack per la **raccolta**, **analisi** e **presentazione** della **latenza** di comunicazione che caratterizza i vari **data center**, per diversi Cloud Provider.

Cloud Provider **esaminati**: Amazon Web Services, Google Cloud Platform (Microsoft Azure, IBM Cloud)

Obiettivo e deployment

- Sistema di monitoraggio dinamico unificato → Progettazione del deployment
- Deployment world wide a regime dell'algoritmo di raccolta dati

Architettura e funzionalità

Tecnologie

MongoDB

Express

React

Node.js

Database NoSQL Framework back-end

Framework front-end

Ambiente runtime JavaScript

Expedia Bosch Cisco IBM Accenture Uber Facebook AirBnb Bloomberg

Google Intel NASA

Probing

- Algoritmo di raccolta ed invio dati realizzato in linguaggio shell
- Files di report giornalieri in formato CSV
- Soluzione semplice ed efficace

Persistenza

```
mongoimport -h IP -d database -c collection
-u albertobagnacani -p password
-type csv --columnsHaveTypes
--fields "provider.string\(\), src_zone.string\(\), dst_zone.string\(\), src_host.string\(\), dst_host.string\(\), icmp_seq.int32\(\), tll.int32\(\), time.double\(\), timestamp.date\(\)"
```

- Mongoimport strumento per parsing e memorizzazione dei files su database
- Definizione dei tipi dei campi
- Buona efficienza

Analisi software

- Un processo "mongoimport" per ogni probe
- Analisi delle caratteristiche del software: evidenziazione della scalabilità del sistema

Risultati

AWS - Agosto 2018

Interfaccia grafica semplice e reattiva

Immediatezza del risultato grazie ai grafici

Stima visiva della latenza che caratterizza ogni Cloud Provider

Conclusioni e sviluppi futuri

Conclusioni

- Progetto per monitoraggio dinamico, analisi e presentazione dei ritardi di rete dei principali data center, per i diversi fornitori di servizi Cloud
- Possibilità di deployment world wide

Sviluppi futuri

- Scaling orizzontale attraverso sharding del database per migliori prestazioni
- Deployment su Microsoft Azure e IBM Cloud
- Implementazione di ulteriori grafici per ampliare il potere espressivo

Grazie

Competitors

Esistenza di concorrenti che permettono di stimare la latenza.

Scenari e problemi principali:

- Possibilità di valutazione della latenza tra regioni, ma per un solo provider →
 Nessuna unificazione e comparazione tra fornitori
- Possibilità di analisi dei ritardi dal proprio terminale ad una regione, per tutti i providers → Nessun riferimento al modello ad inter-data center

Back-end

- Definizione di **endpoint**
- Paginazione delle API
- Interrogazione database: query

Front-end

- Struttura a componenti
- Risultati visualizzati mediante grafici
- Comunicazione asincrona con il back-end