6.3 Układy sterujące

Ogólny model systemu cyfrowego jako współpracujących ze sobą 2 części, części wykonawczej, przetwarzającej informację (a dokładniej słowa binarne) i części sterującej przekazującej do części wykonawczej sygnały sterujące. Sygnały sterujące mogą być uzależnione od stanu części wykonawczej (stanu układu).

Rys.1. Schemat blokowy typowego systemu cyfrowego

1. Mikroprogramowanie

Rys.2. Układ sterowania mikroprogramowanego

Mikroprogramowane układy sterowania są prostą regularną metodą projektowania układów sterujących systemów cyfrowych. Na Rys.2. pokazany jest schemat mikroprogramowanego układu sterującego. Z punktu widzenia teorii układów logicznych jest to automat skończony. Układ pracuje synchronicznie w takt zegara. Do rejestru adresu mikroinstrukcji wczytywany jest w każdym takcie zegara adres pod którym w pamięci ROM (pamięci mikroprogramów) umieszczone są sygnały sterujące. Sygnały sterujące pojawiają się więc wyjściu układu w takt zegara. Sygnały warunków $w_1, w_2, ..., w_r$, za pomocą tzw. *sekwensera* mogą modyfikować sposób w jaki wykonuje się mikroprogram. Sygnały sterujące sterują przepływem danych w części wykonawczej systemu.

2. Maszyny liniowe

Rejestr liczący to układ pokazany na Rys.3.

Rys.3. Rejestr liczący

Rejestr liniowy nazywamy też rejestrem LFSR (ang. Linear Feedback Shift Register). Jest to rejestr liczący z funkcją boolowską *f* zadaną wzorem

$$f(Q_n, Q_{n-1}, ..., Q_0) = k_n Q_n \oplus k_{n-1} Q_{n-1} \oplus \oplus k_0 Q_0$$
(*)

gdzie $(k_n, k_{n-1}, ..., k_0) \in \{0,1\}^{n+1}$ jest ustalonym słowem binarnym definiującym rejestr liniowy. Funkcja $f:\{0,1\}^{n+1} \to \{0,1\}$ zdefiniowana wzorem (*) jest przekształceniem liniowym stąd nazwa rejestru. Rejestr liniowy jest szczególnym przypadkiem tzw. maszyny liniowej lub automatu liniowego (Linear Sequential Machine). Każdy rejestr liniowy jest scharakteryzowany przez swój tzw. wielomian charakterystyczny

$$w(x) = k_n x^n \oplus k_{n-1} x^{n-1} \oplus \dots \oplus k_1 x \oplus k_0$$

Jest to wielomian o współczynnikach w ciele Z_2 . Jeśli wielomian charakterystyczny jest nierozkładalny, to rejestr liniowy wychodzący z dowolnego stanu różnego od samych zer przechodzi przez $2^{n+1}-1$ stanów.

Rejestry liniowe stosowane są między innymi jako generatory liczb pseudolosowych.

3. Klawiatura

Klawisz to przełącznik, klucz włączany na czas przyciśnięcia. Zestaw takich przełączników wyposażony w układy umożliwiające jednoznaczne przypisanie wciśniętemu klawiszowi pewnego słowa binarnego kodującego klawisz nazywamy klawiaturą. Najprostszym rozwiązaniem układu klawiatury jest zastosowanie przełączników dołączonych bezpośrednio do wejść kodera tzn. translatora kodu "1 z n" na kod NKB.

Dla dużych klawiatur stosuje się najczęściej rozwiązanie polegające na tzw. skenowaniu (tzn. przeszukiwaniu) układu kluczy metodą macierzową. Klawisze umieszczone są tak jak współrzędne w macierzy. Przeglądając przełączniki klawiatury i poszukując klawisza włączonego wybieramy numer wiersza i numer kolumny i sprawdzamy, czy klawisz jest przyciśnięty. Jeśli tak, to ponieważ para uporządkowana (numer wiersza, numer kolumny) jest słowem kodującym klawisz, wyprowadzamy ją na wyjście sygnalizując jednocześnie przyciśnięcie klawisza.

4. Układy PLD

Systemy cyfrowe możemy realizować w różny sposób. Możemy np. skonstruować jeden specjalizowany układ scalony realizujących cały system. Takie rozwiązanie nazywamy *układem ASIC* od Application Specific Integrated Circuit. Jest to rozwiązanie na ogół najlepsze ale dosyć kosztowne przy małych seriach produkcyjnych. Innym rozwiązaniem jest zastosowanie *układów PLD* zaliczanych do tzw. układów scalonych semi custom. PLD to skrót od Programmable Logic Design. Układy PLD nazywamy również *układami logiki programowalnej*.

W praktyce mamy cały szereg rodzin układów PLD o bardzo różnych możliwościach. Na ogół dzieli się układy PLD na 3 kategorie.

- układy SPLD (Simple Programmable Logic Device) czyli proste układy programowalne
- układy CPLD (Complex Programmable Logic Devices) czyli złożone układy programowalne
- FPGA (Field Programmable Gate Array) czyli programowalne matryce bramkowe

Cechą charakterystyczną wszystkich układów programowalnych są programowalne połączenia elektryczne wewnątrz struktury krzemowej. Część układów PLD to układy, które można w łatwy sposób wielokrotnie reprogramować.