

Fundamentals of Image Processing and Machine Learning on HiPerGator-Al

Yunchao Yang

UF Research Computing

Al Research Facilitator

yunchyang@ufl.edu

Al in computer vision

Progress of Al in computer vision

Terminator 2, 1991

Object detection YOLOv5 algorithm, 2022

Outline

- What you will learn in this workshop?
 - Intro to Image Processing/Computer Vision
 - Hands-on tutorials of basic Imaging processing on HiPerGator using OpenCV and TorchVision
 - Intro to advanced Deep Learning models in Computer Vision
 - Demo of applying PyTorch on a Transfer Learning example
 - Demo of applying PyTorch on a real-time Object detection example
 - Intro to Medical Imaging Processing/Analysis
 - Demo of applying MONAI on a Medical Imaging processing
- What you can learn offline?
 - Neural network models used in the tutorial
 - Math and statistics of deep learning model

How are images represented in Computer?

Grayscale

1Byte 8-bit grayscale numerical representations: [0, 255]

Color images

Color images are often built of several stacked color channels:

RGB: red, green, blue primary color

CMYK: cyan, magenta, yellow, black ink plate.

Basic image operations and manipulation

- Reading and Writing Image/Video I/O
- Pre-processing
 - Scaling, Interpolations, And Re-Sizing
 - Cropping
 - Padding
 - Perspective Transformation
 - Changing Color spaces: Gray-BGR, BGR-HSV
 - Thresholding, Adaptive Thresholding
 - Sharpening
 - Dilation, Opening, Closing, And Erosion
 - Blurring
 - Contours
 - Counting Circles And Ellipses
 - Image Pyramids
 - Mask
 - ..

Feature extraction

Finding Lines, edges and ridges Localized interest points such as corners, blobs or points.

Image/Video Processing Libraries

- C++
 - OpenCV
 - ITK (Insight Segmentation and Registration Toolkit)

- Python
 - OpenCV-Python
 - SimpleITK
 - Pillow/PIL
 - Sk-Image
 - Scipy
 - Rendering
 - Matplotlib
 - Seaborn
- Matlab

Data augmentation

Image Processing in OpenCV

Modules

- Image Filtering
- Geometric Image Transformations
- Miscellaneous Image Transformations
- Drawing Functions
- Color Space Conversions
- Histograms
- Feature Detection
- Object Detection
- Image Segmentation

• ..

OpenCV HiPerGator Demo

Access jupyter notebook on HiPerGator

- To access the jupyterlab notebook on HPG with A100,
- 1 using Open On Demand application
 - Connect your web browser to:

https://ood.rc.ufl.edu

 Please note, if you are off campus or on the wifi, you will need to connect to the campus VPN service first:

https://vpn.ufl.edu

- Input resources to be allocated to this job.
- 2 using jupyter hub,
 - Connect your web browser to:

https://jhub.rc.ufl.edu,

- select the resources configuration with A100 GPU.
- More details can be found at UFRC help page: <u>JupyterHub - UFRC (ufl.edu)</u>

TorchVision

- Transforming and augmenting images
 - torchvision.transform on PIL image or tensor
 - Compose()
 - Functional Transforms
- Models and pre-trained weights
 - torchvision.models
 - torch.hub
- Datasets
 - subclasses of torch.utils.data.Dataset
 - Built-in dataset and Custom dataset
- Utils
 - draw_bounding_box,
 - draw_segmentation_mask,
 - draw_keypoints,
 - make_grid
 - save_image

Data augmentation

Source: albumentations.ai

Computer Vision tasks

- Image classification
 - Backbone/feature extraction
 - Classifier
- Semantic Segmentation
 - Pixel-level segmentation
- Image Localization
 - Coordinates of bounding box
- Object Detection
 - Image classification + Localization
- Instance Segmentation
 - Semantic + Multiple objects segmentation

Image Classification

- fundamental task
- Models (keep evolving):
 - AlexNet, 2012
 - VGG
 - Inception
 - ResNet
 - •
 - ViT, 2020
 - <u>ConvNext</u>, 2022
 - CoAtNet, 2022
 - CoCa, 2022

Convolution models Supervised learning

Transformer

Self-supervised learning

Detection/Segmentation

- One-stage Object Detection
 - SSD, 2015
 - YOLO, 2016
 - retinaNet, 2017
- Two-stages Region Proposals
 - R-CNN, 2013
 - Fast-RCNN, 2015
 - Faster-RCNN, 2015
 - Mask-RCNN, 2017
- Transformer based
 - DETR,2020
 - DINO, 2022
 - SwinV2, 2022

Single-Stage Object Detectors: YOLO / SSD / RetinaNet

Real time Object Detection using PyTorch and OpenCV Demo

- Object detection
 - Using pre-trained YOLOv5 model on torch.hub
 - Reading The Video Stream or a webcam

•

Real time Object Detection Demo

Other Computer Vision Applications

- Pose Estimation
- Image generation
- Domain Adaptation
- Face Mesh/3D Face Animation
- Image registration

Face Detection

Face Mesh

Pose estimation

Source: Mediapipe

animal pose estimation Source: DeepLabCut

Image-to-image translation

CV in Healthcare and Medicine

- Medical image processing
 - Registration/labeling
 - Detection of Tutor
- Drug discovery
- Machine-assisted Diagnosis and Treatment
- Al in genetics

Tools/Libraries:

- Deep Learning framework
 - MONAI
 - MONAI label
- SimpleITK
- Visualization
 - 3D slicer
 - Itk-snap
 - ...

Modality

Format

- DICOM
- Nifti

• ...

Intro to Medical Imaging Processing/Analysis

- 3-D voxels volume elements
- Modalities:
- Enhancement
 - Increase contrast
 - Remove noise
 - Emphasize edges: Edge boost, Unsharp masking.
 - Modify shapes
- Segmentation
- Registration
- Visualization
- Communication

Process medical images in Python

- Medical images might have different extensions, "DICOM" and "NifTi"
- SimpleITK
 - a simplified programming interface to the algorithms and data structures of the <u>Insight</u>
 <u>Toolkit</u> (ITK) for segmentation, registration and advanced image analysis.
 - Fundamental concepts
 - Images
 - Transforms
 - Resampling
 - Registration
 - https://simpleitk.org/TUTORIAL/
- Nibabel
 - Support common neuroimaging file formats
- PyDICOM
 - DICOM medical image datasets, storage and transfer

Exactly the same intensities, but in a different physical location.

MONAI (Medical Open Network for A. I.)

Pytorch-based open-source framework

- I/O, processing and augmentation
- <u>Datasets and Data Loading</u>
- <u>Differentiable components, networks, losses and optimizers</u>
- Evaluation
- Visualization
- Workflows
- Bundle
- Federated Learning
- Auto3dseg
- Multi-GPU parallel support

MONAI HiPerGator Demo

Questions?

Open datasets and CV models

Dataset hosted

- ImageNet
- CIFAR-10/CIFAR-100
- CelebA
- COCO
- Google Landmarks Dataset v2
- Open Images Dataset
- VisualGenome
- ADE20K
- Kinetics-400
- ...

Transfer learning

- using Pretrained Model weights
- The backbone neural architecture can be download from the official release of Tensorflow or TorchVision.
- For example:

model_ft = models.resnet18(pretrained=use_pretrained)

https://pytorch.org/vision/stable/models.html
https://www.tensorflow.org/tutorials/images/transfer_learning