# INTRODUCCIÓN A LA VARIABLE COMPLEJA

Números complejos (repaso). Funciones de variable compleja. Límite y continuidad. Diferenciabilidad y funciones analíticas. Integración en el campo complejo. Sucesiones y series.

#### Manuel Carlevaro

Departamento de Ingeniería Mecánica

Grupo de Materiales Granulares - UTN FRLP

manuel.carlevaro@gmail.com

### Los números complejos

Sistema de enteros:

$$2x = 3$$
$$x = ?$$

Números "reales":  $\{x: x^2 \ge 0\}$ 

$$x^2 = -1$$
$$x = ?$$

Motivación:  $x^2 + 1 = 0$  ¿tiene solución?

Ejemplo: usar  $y = e^{rx}$  para resolver:

$$y'' + y = 0$$

$$r^{2}e^{rx} + e^{rx} = 0$$

$$\therefore r^{2} + 1 = 0 \therefore r = \pm \sqrt{-1} = \pm i$$

$$\therefore y = e^{ix} \circ y = e^{-ix}$$

De "alguna manera" i debe existir y  $e^{ix}$  debe estar relacionado a  $\sin x$  y  $\cos x$ .

 $y = \cos x$  o  $y = \sin x$ 

El sistema de números complejos:

$$\mathbb{C} = \{x + iy : x \text{ y } y \text{ son reales.} \}$$
 con la estructura:

(1) 
$$x_1 + iy_1 = x_2 + iy_2 \Leftrightarrow x_1 = x_2 \mid y_1 = y_2$$

$$(2) (x_1 + iy_1) + (x_2 + iy_2) =$$

$$= (x_1 + x_2) + i(y_1 + y_2)$$

(3) 
$$r(x+iy) = rx + iry$$
  
 $r$  real.

 $\therefore$  los números complejos son un espacio vectorial por definición.



Estructura adicional de 
$$\mathbb{C}$$
:

$$(4) (a+ib)(c+id) =$$

$$= (ac-bd) + i(bc+ad)$$

$$(c-bd) + i(bc+ad)$$

Caso especial:

$$(a+ib)(a-ib) = a^2 + b^2 \ge 0$$
  
=  $|a+ib|^2$ 

Definición: el complejo conjugado de z = x + yi es

$$\bar{z} = x - yi$$



 $\frac{c+di}{a+bi} = \left(\frac{c+di}{a+bi}\right) \left(\frac{a-bi}{a-bi}\right)$  $=\frac{(ac+bd)+(ad-bc)i}{a^2+b^2}$ 

$$\frac{3+2i}{4+i} = \frac{(3+2i)(4-i)}{(4+i)(4-i)}$$

 $=\frac{14}{17}+\frac{5}{17}i$  $\therefore \frac{\text{complejo}}{\text{complejo}} = \text{complejo}$ 

 $=\frac{14+5i}{17}$ 

cero).

Producto en coordenadas polares:

$$(r_1, \theta_1)(r_2, \theta_2) = (r_1 \cos \theta_1 + ir_1 \sin \theta_1)$$

$$(r_2 \cos \theta_2 + ir_2 \sin \theta_2) =$$

$$r_1 r_2 (\cos \theta_1 \cos \theta_2 - \sin \theta_1 \sin \theta_2) +$$

$$ir_1 r_2 (\sin \theta_1 \cos \theta_2 + \sin \theta_2 \cos \theta_1) =$$

$$r_1 r_2 \cos(\theta_1 + \theta_2) + ir_1 r_2 \sin(\theta_1 + \theta_2) =$$

 $(r_1r_2,\theta_1+\theta_2)$ 

Por inducción:

$$(r_1, \theta_1) \cdots (r_n, \theta_n) =$$

$$(r_1 \cdots r_n, \theta_1 + \cdots + \theta_n)$$

Caso especial:

$$(r,\theta)^n = (r^n, n\theta)$$

$$\therefore r = 1 \to (1, \theta)^n = (1, n\theta)$$

Teorema de De Moivre:

$$(\cos\theta + i\sin\theta)^n = \cos n\theta + i\sin n\theta$$

Ejemplo:

$$(\cos \theta + i \sin \theta)^{2} = \cos 2\theta + i \sin 2\theta$$
$$= (\cos^{2} \theta - \sin^{2} \theta) + i2 \sin \theta \cos \theta$$

$$\therefore \sin 2\theta = 2 \sin \theta \cos \theta$$
$$\cos 2\theta = \cos^2 \theta - \sin^2 \theta$$

Raíces: encontrar  $\sqrt{i}$ 

$$\sqrt[6]{i} = x + iy \rightarrow i = (x + iy)^6 = 0 + 1i$$

$$\therefore x^6 + 15x^4(iy)^2 + 15x^2(iy)^4 + (iy)^6 + 6x^5(iy) + 20x^3(iy)^3 + 6x(iy)^5$$

Sistema complicado a resolver:

$$\begin{cases} x^6 + 15x^4(iy)^2 + 15x^2(iy)^4 + (iy)^6 = 0\\ 6x^5(iy) + 20x^3(iy)^3 + 6x(iy)^5 = 1 \end{cases}$$

Teorema de De Moivre:

$$(\cos\theta + i\sin\theta)^n = \cos n\theta + i\sin n\theta$$

Ejemplo:

$$(\cos \theta + i \sin \theta)^{2} = \cos 2\theta + i \sin 2\theta$$
$$= (\cos^{2} \theta - \sin^{2} \theta) + i2 \sin \theta \cos \theta$$

$$\therefore \sin 2\theta = 2 \sin \theta \cos \theta$$
$$\cos 2\theta = \cos^2 \theta - \sin^2 \theta$$

Raíces: encontrar  $\sqrt{i}$ 

$$\sqrt[6]{i} = x + iy \rightarrow i = (x + iy)^6 = 0 + 1i$$

$$\therefore x^6 + 15x^4(iy)^2 + 15x^2(iy)^4 + (iy)^6 = 0$$
$$+ 6x^5(iy) + 20x^3(iy)^3 + 6x(iy)^5 = 1$$

Sistema complicado a resolver:

$$\begin{cases} x^6 + 15x^4(iy)^2 + 15x^2(iy)^4 + (iy)^6 = 0\\ 6x^5(iy) + 20x^3(iy)^3 + 6x(iy)^5 = 1 \end{cases}$$

En coordenadas polares:

$$i = (1, \pi/2) \therefore \sqrt[6]{i} = (r, \theta)$$

$$\rightarrow i = (r, \theta)^6 = (r^6, 6\theta)$$

$$\therefore r = 1, \quad 6\theta = \frac{\pi}{2} + 2\pi k = \frac{1 + 4k}{2}\pi$$

$$r = 1,$$

$$\theta = \frac{\pi}{12}, \frac{5\pi}{12}, \frac{9\pi}{12}, \frac{13\pi}{12}, \frac{17\pi}{12}, \frac{21\pi}{12},$$

$$\frac{25\pi}{12}, \dots$$

$$\left(1, \frac{3\pi}{4}\right) = \cos\frac{3\pi}{4} + i \sin\frac{3\pi}{4}$$
$$= \frac{1}{\sqrt{2}}(-1+i)$$



### Sistema de números complejos:

Los números complejos son **cerrados** respecto de la radicación.

Pausa para resolver problemas: 1 – 8.

# Funciones de variable compleja



## FUNCIONES DE VARIABLE COMPLEJA





### FUNCIONES DE VARIABLE COMPLEJA



# Ejemplo:

$$f(z) = z^2 = (x + iy)^2$$
  
=  $x^2 + 2xiy + i^2y^2 = x^2 - y^2 + 2ixy$   
\therefore  $f(x, y) = (x^2 - y^2, 2xy)$ 

#### FUNCIONES DE VARIABLE COMPLEJA



# Ejemplo:

$$f(z) = z^{2} = (x + iy)^{2}$$
$$= x^{2} + 2xiy + i^{2}y^{2} = x^{2} - y^{2} + 2ixy$$
$$\therefore f(x, y) = (x^{2} - y^{2}, 2xy)$$

 $\therefore f(z) = z^2$  es equivalente al sistema real:

$$\begin{cases} u = x^2 + y \\ v = 2xy \end{cases}$$

# LÍMITES

 $\mathbb{C}$ : números complejos

$$f: \mathbb{C} \mapsto \mathbb{C}, a \in \mathbb{C}$$

## Definición:

$$\lim_{z \to a} f(z) = L$$

dado  $\epsilon>0$  existe  $\delta>0$  tal que

$$0 < |z - a| < \delta \rightarrowtail |f(z) - L| < \epsilon$$

# LÍMITES

 $\mathbb{C}$ : números complejos

$$f: \mathbb{C} \mapsto \mathbb{C}, a \in \mathbb{C}$$

## Definición:

$$\lim_{z \to a} f(z) = L$$

dado  $\epsilon>0$  existe  $\delta>0$  tal que

$$0 < |z - a| < \delta \rightarrowtail |f(z) - L| < \epsilon$$



## LÍMITES

 $\mathbb{C} \colon \mathsf{n\'umeros}\ \mathsf{complejos}$ 

$$f:\mathbb{C}\mapsto\mathbb{C},a\in\mathbb{C}$$

### Definición:

$$\lim_{z \to a} f(z) = L$$

dado  $\epsilon > 0$  existe  $\delta > 0$  tal que

$$0 < |z - a| < \delta \rightarrow |f(z) - L| < \epsilon$$



Los teoremas usuales sobre límites son válidos. En particular:

Si

Entonces:

$$f(z) = u(x, y) + iv(x, y)$$
$$L = L_1 + iL_2$$
$$a = a_1 + ia_2$$

$$\lim_{z \to a} f(z) = L \longleftrightarrow \begin{cases} \lim_{(x,y) \to (a_1,a_2)} u(x,y) = L_1 \\ \lim_{(x,y) \to (a_1,a_2)} v(x,y) = L_2 \end{cases}$$

# Derivada

# Definición:

$$f'(z_0) = \lim_{\Delta z \to 0} \left[ \frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z} \right]$$

### DERIVADA

### Definición:

$$f'(z_0) = \lim_{\Delta z \to 0} \left[ \frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z} \right]$$

Si 
$$w = f(z) = u(x, y) + iv(x, y)$$
: 
$$f'(z_0) = \frac{dw}{dz} = \lim_{\Delta z \to 0} \frac{\Delta w}{\Delta z}$$
$$= \lim_{\Delta z \to 0} \left[ \frac{\Delta u + i\Delta v}{\Delta x + i\Delta y} \right]$$

## Definición:

$$f'(z_0) = \lim_{\Delta z \to 0} \left[ \frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z} \right]$$

Si 
$$w = f(z) = u(x, y) + iv(x, y)$$
:
$$f'(z_0) = \frac{dw}{dz} = \lim_{\Delta z \to 0} \frac{\Delta w}{\Delta z}$$

$$= \lim_{\Delta z \to 0} \left[ \frac{\Delta u + i\Delta v}{\Delta x + i\Delta y} \right]$$



# DERIVADA: CASOS ESPECIALES

## Caso 1: $\Delta y \equiv 0$ .

$$\therefore f'(z_0) = \lim_{\Delta x \to 0} \left[ \frac{\Delta u}{\Delta x} + i \frac{\Delta v}{\Delta x} \right]$$
$$= \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x} \Big|_{z_0 = (x_0, y_0)}$$

### DERIVADA: CASOS ESPECIALES

Caso 1:  $\Delta y \equiv 0$ .

$$\therefore f'(z_0) = \lim_{\Delta x \to 0} \left[ \frac{\Delta u}{\Delta x} + i \frac{\Delta v}{\Delta x} \right]$$
$$= \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x} \Big|_{z_0 = (x_0, y_0)}$$

Caso 2:  $\Delta x \equiv 0$ .

$$\therefore f'(z_0) = \lim_{\Delta y \to 0} \left[ \frac{\Delta u}{i\Delta y} + \frac{\Delta v}{\Delta y} \right] = \frac{\partial v}{\partial y} + \frac{1}{i} \frac{\partial u}{\partial y} \Big|_{z_0 = (x_0, y_0)}$$
$$= \frac{\partial v}{\partial y} - i \frac{\partial u}{\partial y} \Big|_{z_0 = (x_0, y_0)}$$

#### DERIVADA: CASOS ESPECIALES

Caso 1:  $\Delta y \equiv 0$ .

$$\therefore f'(z_0) = \lim_{\Delta x \to 0} \left[ \frac{\Delta u}{\Delta x} + i \frac{\Delta v}{\Delta x} \right]$$
$$= \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x} \Big|_{z_0 = (x_0, y_0)}$$

Caso 2:  $\Delta x \equiv 0$ .

$$\therefore f'(z_0) = \lim_{\Delta y \to 0} \left[ \frac{\Delta u}{i\Delta y} + \frac{\Delta v}{\Delta y} \right] = \frac{\partial v}{\partial y} + \frac{1}{i} \frac{\partial u}{\partial y} \Big|_{z_0 = (x_0, y_0)}$$
$$= \frac{\partial v}{\partial y} - i \frac{\partial u}{\partial y} \Big|_{z_0 = (x_0, y_0)}$$

### Ecuaciones de Cauchy-Riemann

Si f = u + iv es diferenciable (analítica), entonces:

$$u_x = v_y$$

$$u_y = -v_x$$

Ecuaciones de Cauchy-Riemann:

$$\begin{split} f(z) &= z^2 = (x+iy)^2 \\ &= (x^2-y^2) + i(2xy) \end{split}$$
 
$$\begin{aligned} u_x &= 2x, & v_x &= 2y \\ u_y &= -2y, & v_y &= 2x \end{aligned} \} \Rightarrow \begin{array}{l} u_x &= v_y \\ u_y &= -v_x \end{aligned}$$
 
$$f(z) \mapsto \text{diferenciable}$$

Ecuaciones de Cauchy-Riemann:

$$f(z) = z^{2} = (x + iy)^{2}$$

$$= (x^{2} - y^{2}) + i(2xy)$$

$$u_{x} = 2x, \quad v_{x} = 2y$$

$$u_{y} = -2y, \quad v_{y} = 2x$$

$$\Rightarrow \quad u_{x} = v_{y}$$

$$u_{y} = -v_{x}$$

$$f(z) \mapsto \text{diferenciable}$$

Derivada por definición:

$$\frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z} = \frac{(z_0 + \Delta z)^2 - z_0^2}{\Delta z}$$

$$= \frac{2z_0 \Delta z + \Delta z^2}{\Delta z} \quad (\Delta z \neq 0)$$

$$= 2z_0 + \Delta z$$

$$\therefore \quad \boxed{f'(z_0) = 2z_0}$$

$$f(z) = \bar{z} = x - iy$$
  
 
$$u = x, \ v = -y \Rightarrow u_x \neq v_y$$

$$f(z) = \bar{z} = x - iy$$
  
$$u = x, \ v = -y \Rightarrow u_x \neq v_y$$

$$\begin{split} \frac{\Delta w}{\Delta z} &= \frac{\Delta x - i \Delta y}{\Delta x + i \Delta y} \\ &= \frac{1 - i \frac{\Delta y}{\Delta x}}{1 + i \frac{\Delta y}{\Delta x}} \rightarrow \frac{1 - \frac{dy}{dx}}{1 + i \frac{dy}{dx}} \end{split}$$

$$f(z) = \bar{z} = x - iy$$
  
$$u = x, \ v = -y \Rightarrow u_x \neq v_y$$

$$\begin{split} \frac{\Delta w}{\Delta z} &= \frac{\Delta x - i \Delta y}{\Delta x + i \Delta y} \\ &= \frac{1 - i \frac{\Delta y}{\Delta x}}{1 + i \frac{\Delta y}{\Delta x}} \rightarrow \frac{1 - \frac{dy}{dx}}{1 + i \frac{dy}{dx}} \end{split}$$



# Aplicación: ecuación de Laplace y ejemplo

u(x,y) satisface la ecuación de Laplace si:

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$$

# Aplicación: ecuación de Laplace y ejemplo

u(x,y) satisface la ecuación de Laplace si:

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$$

Si u + iv es analítica:

$$u_x = v_y \therefore u_{xx} = v_{yx}$$

$$u_y = -v_x \therefore u_{yy} = -v_{xy}$$

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$$

$$\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial u^2} = 0$$

## Aplicación: ecuación de Laplace y ejemplo

u(x,y) satisface la ecuación de Laplace si:

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$$

Si u + iv es analítica:

$$u_x = v_y : u_{xx} = v_{yx}$$

$$u_y = -v_x : u_{yy} = -v_{xy}$$

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$$

$$\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} = 0$$

# Ejemplo:

$$f(z) = z^2 \longrightarrow \begin{cases} u = x^2 - y^2 \\ v = 2xy \end{cases}$$

$$\therefore \begin{array}{l} u_{xx} + u_{yy} = 0 \\ v_{xx} + v_{yy} = 0 \end{array} \right\}$$

Pausa para resolver problemas: 9 – 13.

# INTEGRACIÓN DE FUNCIONES COMPLEJAS

### Revisión:

$$\int_{x_0}^{x_1} f(x) dx = \lim_{\substack{\text{max} \\ \Delta x \to 0}} \sum_{k=1}^{n} f(c_k^*) \Delta x_k$$

$$= F(x_1) - F(x_0), \ F' = f$$
rango de  $f$ 

$$y = f(x)$$

$$x_0$$

$$x_1$$
dominio de  $f$ 

#### Revisión:

$$\int_{x_0}^{x_1} f(x) dx = \lim_{\substack{\text{max} \\ \Delta x \to 0}} \sum_{k=1}^{n} f(c_k^*) \Delta x_k$$

$$= F(x_1) - F(x_0), \ F' = f$$
rango de  $f$ 

$$y = f(x)$$

$$R$$

$$\downarrow x_0$$

$$\downarrow x_1$$

$$\downarrow x_2$$

$$\downarrow x_3$$

$$\downarrow x_4$$



En términos de  $u \ y \ v : f(z) = u + iv$ ,

$$\Delta z = \Delta x + i \Delta y$$

$$\int_{C_0}^{z_1} f(z) dz = \int_{(x_0, y_0)}^{(x_1, y_1)} (u + iv)(dx + idy) =$$

$$\int_{(x_0, y_0)}^{C} (u dx - v dy) + i \int_{(x_0, y_0)}^{C} (v dx + u dy)$$

$$C : \begin{cases} x = x(t) \\ y = y(t) \end{cases}$$

Si u + iv es analítica:  $u_x = v_y, \ u_y = -v_x$ .

$$\therefore \frac{u \, dx - v \, dy}{v \, dx + u \, dy}$$
 es diferencial exacta.

 $\therefore$  Si f = u + iv en analítica:

$$\int_{z_0}^{z_1} f(z) \, dz$$

es **independiente** de C, y

$$\oint_C f(z) \, dz = 0, \quad \forall C$$

f analítica ightarrow

$$\int_{z_0}^{z_1} f(z) dz = F(z_1) - F(z_0), \quad F' = f$$

#### Nota:

$$\oint_C f(z) dz$$

no necesariamente es  $\mathbf{0}$  si f no es analítica.

### EJEMPLO

Calcular:

$$\oint_C \frac{dz}{z}$$

donde



El integrando es analítico en  $\mathbb C$  excepto en z=0.

Método #1:

$$\begin{split} \oint_C \frac{dz}{z} &= \oint_C \frac{dx + idy}{x + iy} \\ &= \oint_C \frac{(x - iy)(dx + idy)}{x^2 + y^2} &= \\ \oint_C \frac{x \, dx + y \, dy}{x^2 + y^2} + i \oint_C \frac{-y \, dx + x \, dy}{x^2 + y^2} \end{split}$$

En 
$$C$$
:  $x = R\cos\theta$ ,  $y = R\sin\theta$ ,  $dx = -R\sin\theta \, d\theta$ ,

$$dy = R\cos\theta \, d\theta,$$
  
$$x^2 + y^2 = R^2, \, 0 \le \theta \le 2\pi.$$

$$\therefore \oint_C \frac{dz}{z} = 0$$

$$+ i \int_0^{2\pi} \frac{R^2(\sin^2 \theta + \cos^2 \theta) d\theta}{R^2}$$

$$= \boxed{2\pi i}$$

### EJEMPLO

Calcular:

$$\oint_C \frac{dz}{z}$$

donde



El integrando es analítico en  $\mathbb C$  excepto en z=0.

Método #1:

$$\begin{split} &\oint_C \frac{dz}{z} = \oint_C \frac{dx + idy}{x + iy} \\ &= \oint_C \frac{(x - iy)(dx + idy)}{x^2 + y^2} = \\ &\oint_C \frac{x \, dx + y \, dy}{x^2 + y^2} + i \oint_C \frac{-y \, dx + x \, dy}{x^2 + y^2} \\ &\text{En } C \colon x = R \cos \theta, \ y = R \sin \theta, \\ &dx = -R \sin \theta \, d\theta, \end{split}$$

$$dy = R\cos\theta \, d\theta,$$
  
$$x^2 + y^2 = R^2, \, 0 \le \theta \le 2\pi.$$

$$\therefore \oint_C \frac{dz}{z} = 0$$

$$+ i \int_0^{2\pi} \frac{R^2(\sin^2 \theta + \cos^2 \theta) d\theta}{R^2}$$

$$= \boxed{2\pi i}$$

Método #2:

$$C: z = Re^{i\theta}, \ 0 \le \theta \le 2\pi.$$

$$\begin{split} \frac{dz}{d\theta} &= iRe^{i\theta} \\ \oint_C \frac{dz}{z} &= \int_0^{2\pi} \frac{1}{z(\theta)} \frac{dz}{d\theta} d\theta \\ &= \int_0^{2\pi} \frac{iRe^{i\theta}}{Re^{i\theta}} d\theta \\ &= \boxed{2\pi i} \end{split}$$

Geometría elástica (topología):



$$\oint_{\not\subset} f(z) \, dz = \oint_{C_2} f(z) \, dz - \oint_{C_1} f(z) \, dz = 0$$

Si f es analítica en  $C_1$  y  $C_2$ , y en la región entre ellas, entonces:

$$\oint_{C_1} f(z) dz = \oint_{C_2} f(z) dz$$



Geometría elástica (topología):



Si f es analítica en  $C_1$  y  $C_2$ , y en la región entre ellas, entonces:

ntonces: 
$$\oint_{C_1} f(z) dz = \oint_{C_2} f(z) dz$$



$$\oint_{\underline{\phi}} f(z) \, dz = \oint_{C_2} f(z) \, dz - \oint_{C_1} f(z) \, dz = 0$$

Ejemplo: calcular

$$\oint_C \frac{dz}{z}$$

donde



$$\oint_C \frac{dz}{z} = \oint_{C_1} \frac{dz}{z} = 2\pi i$$

Pausa para resolver problemas: 14 – 17.

#### SECUENCIAS Y SERIES

$$e^z = ?$$
,  $\operatorname{sen} z = ?$ 

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$

$$e^z = \sum_{n=0}^{\infty} \frac{z^n}{n!} = ?$$

## Definición:.

 $\lim_{n \to \infty} a_n = L$  significa que

dado  $\varepsilon>0, (\varepsilon\in\mathbb{R})$ , existe N, tal que

$$n > N \to |a_n - L| < \varepsilon$$

Gráficamente:



En forma similar podemos definir:

$$\sum_{n=1}^{\infty} c_n = \lim_{n \to \infty} (c_1 + \dots + c_n)$$

Por su estructura, **son válidos** todos los teoremas usuales.

En particular, si

$$S = \{z : \sum a_n z^n \text{ converge } \}$$
, entonces pueden darse los siquientes casos:

- I)  $S = \{0\}.$
- II)  $S = \mathbb{C}$  (todos los números complejos).
- III) Existe un R>0 tal que  $S=\{z:|z|< R\}, \ {\rm y\ la}$  convergencia es absoluta e uniforme para  $|z|\leq r< R$ .



Entonces podemos definir:

$$e^{z} = \sum_{n=0}^{\infty} \frac{z^{n}}{n!}$$

$$\operatorname{sen} z = \sum_{n=0}^{\infty} \frac{(-1)^{n} z^{2n+1}}{(2n+1)!}$$

$$\operatorname{sen} x = \sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2n+1}}{(2n+1)!}$$

Se puede entonces probar que:

$$e^{iz} = \cos z + i \sin z$$

$$0$$

$$e^{ix} = \cos x + i \sin x$$

$$\therefore (r, \theta) = r \cos \theta + ir \sin \theta$$

 $=re^{i\theta}$ 

Tres observaciones:

1. 
$$z = re^{i\theta} = re^{i(\theta + 2\pi k)}$$
  

$$\therefore \log z = \log r + \log e^{i(\theta + 2\pi k)}$$

$$= \ln r + i(\theta + 2\pi k)$$

 $\log z$  es multivaluada, el valor principal es  $-\pi < \theta \leq \pi$ .

۷.

$$\cosh ix = \frac{e^{ix} + e^{-ix}}{2} = \frac{(\cos x + i \sin x)}{2} + \frac{\cos(-x) + i \sin(-x)}{2} = \cos x$$

3.  $e^z = e^{x+iy} = e^x e^{iy} =$   $e^x (\cos y + i \sin y) =$   $e^x \cos y + i e^x \sin y$  u(x, y) + i v(x, y)

u y v representan un **mapeo conforme** real:



Entonces podemos definir:

$$e^{z} = \sum_{n=0}^{\infty} \frac{z^{n}}{n!}$$

$$\operatorname{sen} z = \sum_{n=0}^{\infty} \frac{(-1)^{n} z^{2n+1}}{(2n+1)!}$$

$$\operatorname{sen} x = \sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2n+1}}{(2n+1)!}$$

Se puede entonces probar que:

$$e^{iz} = \cos z + i \operatorname{sen} z$$

$$0$$

$$e^{ix} = \cos x + i \operatorname{sen} x$$

$$\therefore (r, \theta) = r \cos \theta + ir \operatorname{sen} \theta$$

 $= r\cos\theta + ir\sin\theta$  $= re^{i\theta}$ 

Tres observaciones:

1. 
$$z = re^{i\theta} = re^{i(\theta + 2\pi k)}$$
  

$$\therefore \log z = \log r + \log e^{i(\theta + 2\pi k)}$$

$$\sum \log z = \log r + \log e^{-r}$$
$$= \ln r + i(\theta + 2\pi k)$$

 $\log z$  es multivaluada, el valor principal es  $-\pi < \theta \leq \pi$ .

۷.

$$\cosh ix = \frac{e^{ix} + e^{-ix}}{2} = \frac{(\cos x + i \sin x)}{2} + \frac{\cos(-x) + i \sin(-x)}{2} = \cos x$$

3.  $e^z = e^{x+iy} = e^x e^{iy} =$   $e^x (\cos y + i \sin y) =$   $e^x \cos y + i e^x \sin y$  u(x, y) + i v(x, y)

u y v representan un **mapeo conforme** real:



## APLICACIÓN A SERIES "REALES"

$$\frac{1}{1-u} = 1 + u + u^2 + \cdots$$
$$= \sum_{n=0}^{\infty} u^2$$

converge para |u| < 1.

$$\therefore \frac{1}{1+x^2} = 1 - x^2 + x^4 - x^6 + \cdots$$
$$= \sum_{n=0}^{\infty} (-1)^n x^{2n} \qquad \therefore z$$

converge para |x| < 1.

¿Qué pasa en 
$$x=\pm 1$$
?

$$\sum_{n=0}^{\infty} (-1)^n z^{2n} = \frac{1}{1+z^2}, \ (|z| < 1)$$
$$\frac{1}{1+z^2} = \frac{1}{(z+i)(z-i)}$$

$$\therefore z = \pm i \leftarrow \text{[problema]}$$

Gráficamente:



Los puntos problemáticos están  $\mbox{\bf sobre} \ |z|=1 \mbox{, pero no en } z=1 \mbox{ o} \\ \mbox{en } z=-1. \\ \mbox{}$ 

Pausa para resolver problemas: 18 – 19.

### LECTURAS RECOMENDADAS I

- ▶ E. Kreyszig, H. Kreyszig y E.J. Norminton. *Advanced Engineering Mathematics*. Hoboken, USA: John Wiley & Sons, Inc, 2011. Capítulo 13 16.
- ▶ M.R. Spiegel et al. *Variable compleja*. Mexico: McGraw-Hill, 1991. Capítulos 1, 2, 6, 14.