

Pós Graduação Lato Sensu

Bancos de dados não relacionais

Casos de uso

Trabalho Prático

- Coletar informações de redes sociais ou <u>importar dados</u>
 <u>externos</u> e armazenar ~1M de dados em um banco NoSQL
- Extrair informações do tipo:
 - Termos mais frequentes
 - Volume x dia
 - Volume x hora do dia
- Entregar até o dia 23/12/2016 e submeter via github.

"Todo banco de dados é ótimo até que você comece a usá-los"

- Dashboards realtime;
- Pouca interatividade;
- Acompanhamento de atividades.

- Variedade de conjunto de banco de dados;
- Processamento de um grande volume de informação;
- Variedade de informações;
- Complexidade de infraestrutura.

Por que não fazer tudo em um só lugar?

- SQL
 - Inserção rápida dos dados;
 - Poluir aplicação.
- NoSQL
 - Necessidade das transações;
- Hadoop
 - Overhead de processamento;

Banco de dados as a Service

Data Base as a Service

- Projetos com poucos recursos;
- Sem necessidade de dev-ops;
- Aplicações pequenas;
- Pay as you use:
 - Transações
 - Quantidade de dados

Data Base as a Service

- Azure Table Service
- DynamoDB
- BigTable
- Amazon Redshift

Data Base as a Service

- Fluxo **contínuo** de informação
- Inserção de uma grande quantidade de dados
- Aplicações resistentes a falhas

Casos:

- loT
- Redes sociais
- Coleta de grande volumes em geral

Sharding

Como utilizar tecnologias NoSQL para auxiliar a construção de sistemas resilientes

Sistemas de filas

- Armazenamento temporário de dados
- Compartilhamento de informação

Principais Sistemas:

- Kafka
- RabbitMQ
- ActiveMQ
- Kestrel

Chave-Valor (Key-Value)

Sistema de filas

→ Producer

→ Producer

→ Producer

Overview

Connections

Channels

Exchanges

Queues

Admin

+/-

Queues

Y	AII	queues	(6

Pagination

Page 1 ▼ of 1 - Filter: ■ Regex (?)(?)

Overview		Messages			Message rates			
Name	Features	State	Ready	Unacked	Total	incoming	deliver / get	ack
events	D	running	71	0	71	0.00/s	0.00/s	0.00/s
events_update	D	running	0	6,546	6,546	0.00/s	89/s	0.00/s
posts	D	idle	0	0	0			
similarity	D	running	8,809	9,897	18,706	0.00/s	810/s	0.00/s
sources	D	idle	5,776	0	5,776	0.00/s	0.00/s	0.00/s
users	D	running	0	0	0			

Add a new queue

Infraestrutura Big Data

- Inserção de uma grande quantidade de dados textual;
- Diferentes tipos de indexação de texto;
- Filtro de informações
 - Remove stop-words, em diversas línguas
 - Identifica tags HTML e aproveita somente o necessário

a sticsearch

 Stemming: Processo de identificação de derivações e inflexões de palavras

"Aula de **bando** de dados não relacionais"

Termo de pesquisa: banco

Tokenização:
 "Aula de bando de dados não relacionais"

Tokens: "Aula", "de", "bando", "de", "dados", "não", "relacionais"

- Score de relevância
- Entende padrões
 - URL
 - Emails
 - #hashtags
 - @menções
 - Valores monetários R\$, \$...

Parser:
 "Hoje é dia 24/11/2008"

Formato do parser: dd/mm/aaaa

Retorna: Date(2008,11,24)

Procura por texto usando linguagem DSL

banco AND dados OR professor

Monitoramento de LOG

Monitoramento de LOG

- LOG: Registro de ações realizados por aplicações;
- Muito utilizados em sistemas complexos.

Infraestrutura Big Data

NoSQL + Hadoop

Aplicações em infraestrutura BigData

- Modelagem de risco;
- Análises preditivas e em retrospecto;
- Aprendizado de máquina;
- Identificação de padrões frequentes.

Hadoop + NoSQL

NoSQL

Gerenciamento dos preços e datas de disponibilidade

<u>Hadoop</u>

Estudo de segmentação dos consumidores

Pull data from Couchbase using the rest API into Graphite

Hadoop + BD - Mundo financeiro

NoSQL

Tick data, quants analysis, reference data distribution

<u>Hadoop</u>

Análises de risco, segurança e detecção de fraude.

Hadoop + BD - Logística

NoSQL

Armazenamento de dados de sensores conectados aos veículos

Hadoop

Programa de manutenção preventiva e análise de comportamento de motoristas

Hadoop + BD - Logística

NoSQL

Armazenamento de dados de sensores conectados aos veículos

Hadoop

Programa de manutenção preventiva e análise de comportamento de motoristas

Hadoop + BD - Planos de saúde

NoSQL

Armazenamento das várias transações de itens de saúde e comportamento diário

Hadoop

Análise predição dos filiados que tem chances de terem grande quantidade de gastos nos próximos meses.

Mensagem para os cientistas de dados

Ciência de dados

Dia a dia do cientista de dados

Banco de dados não relacionais:

- Operações e consulta a dados;
- Entender os índices;
- Sempre questionar se a opção que de BD é a melhor para a aplicação em questão.

Ciência de dados

Análise de dados:

- Aprendizado de máquina;
- Validações estatísticas;
- Senso crítico;

Otimização	O que de melhor pode acontecer?			
Modelagem preditiva	O que vai acontecer?			
Forecasting	O que acontece se essa tendência continuar?			
Análise estatística	Por que isso está acontecendo?			
Alertas	Quais ações são necessárias?			
Consultas	Onde exatamente está o problema?			
Relatórios Adhoc	Quantos, qual frequência e onde?			
Relatórios	O que aconteceu?			

Análise

Relatório

Exercícios

Para cada uma das situações dos exercícios escolha a infraestrutura que você acha mais adequada e justifique sua escolha.

Exercício 1

Você e um grupo de amigos da faculdade decidem-se juntar e criar uma empresa de na área de IoT. Todos seus amigos são excelentes programadores porém estão em dúvida como montar a infraestrutura para suportar a grande quantidade de dados gerados pelos sensores da aplicação. O que vocês devem fazer?

Exercício 2

Dentro de sua empresa certamente existem pontos que podem ser adaptados para a

Explique a infraestrutura atual e o que você mudaria para melhorar a eficiência

Pode ser alguma infraestrutura que já lidou no passado:)

Referências

http://nosql-database.org/

https://dzone.com/articles/better-explaining-cap-theorem

Bases de dados

http://www.kaggle.com

http://www.bigdatabusiness.com.br/6-bases-de-dados-gratuitas-para-mineracao-estudos-e-testes/

Orbitz:

http://www.couchbase.com/cn/presentations/couchbase-at-orbitz