

Optimización Combinatoria

Autor:

Jesús Emmanuel Mmartínez García

Tema: Introducción, técnicas y áreas de aplicación

¿Qué es la Optimización Combinatoria?

Rama de la **optimización matemática** que busca la **mejor combinación o selección** posible dentro de un conjunto finito pero grande de soluciones.

Características:

- Las soluciones son discretas o enteras.
- Los problemas suelen ser NP-duros.
- El número de soluciones crece factorial o exponencialmente.

Ejemplos de Problemas Combinatorios

Problema	Descripción	Tipo
Viajante (TSP)	Ruta mínima que visita todas las ciudades una vez	Ruta / Permutación
Mochila (Knapsack)	Seleccionar objetos maximizando valor y sin exceder peso	Selección
Asignación	Asignar tareas a trabajadores minimizando coste	Emparejamiento
Coloración de grafos	Asignar colores a nodos sin que los adyacentes coincidan	Grafos
Ruteo de vehículos	Optimizar rutas múltiples con capacidad limitada	Logística

Elementos clave

1. Conjunto de soluciones posibles

Finito pero enorme.

2. Función objetivo

o Minimizar o maximizar un valor (coste, tiempo, distancia...).

3. Restricciones

Condiciones que deben cumplirse (capacidad, nodos visitados, etc.).

Métodos para resolver problemas combinatorios

1. Métodos Exactos

Buscan el óptimo garantizado, pero son lentos para problemas grandes.

Ejemplos:

- Programación Lineal Entera (PLE)
- Branch and Bound
- Branch and Cut
- Programación Dinámica (Held–Karp)

Métodos Aproximados

Cuando el tamaño del problema es grande, se usan métodos que **no garantizan el óptimo**, pero **proporcionan soluciones muy buenas en menos tiempo**.

Se dividen en:

- Heurísticas
- Metaheurísticas

Heurísticas

Estrategias simples que construyen soluciones **buenas** (aunque no perfectas).

Ejemplos:

- Vecino más cercano (TSP)
- Greedy / Voraz (mochila)
- Inserción más barata
- Búsqueda local

Metaheurísticas

Algoritmos **más generales y potentes** que guían la búsqueda global, evitan óptimos locales y mejoran soluciones heurísticas.

Ejemplos principales:

Metaheurística	Inspiración	Tipo
Recocido simulado (Simulated Annealing)	Física (enfriamiento del metal)	Búsqueda local probabilística
Algoritmos genéticos	Evolución biológica	Poblacional
* Colonia de hormigas	Comportamiento social	Poblacional
🙎 Búsqueda Tabú	Memoria adaptativa	Búsqueda local
♣ PSO (Optimización por enjambre de partículas)	Movimiento de partículas	Poblacional

Áreas de aplicación

- Logística y transporte
- ✓ Planificación y asignación de recursos
- Telecomunicaciones
- ✓ Diseño de redes
- Bioinformática
- Producción y manufactura
- ✓ Finanzas (carteras óptimas)

Claves para dominar la Optimización Combinatoria

- 1. Comprender la **naturaleza discreta** de los problemas.
- 2. Aprender a **formular matemáticamente** el problema (variables, restricciones, función objetivo).
- 3. Conocer los **métodos exactos** y sus límites.
- 4. Experimentar con **metaheurísticas** y ajustes de parámetros.
- 5. Evaluar soluciones con **métricas de calidad y tiempo**.

END Conclusión

La optimización combinatoria es el corazón de muchos problemas reales de decisión y planificación.

- Permite ahorrar recursos y mejorar eficiencia.
- Une matemática, computación e inteligencia artificial.
- Las **metaheurísticas** hacen posible resolver problemas imposibles para los métodos exactos.

Referencias sugeridas

- Papadimitriou, C., & Steiglitz, K. (1998). Combinatorial Optimization: Algorithms and Complexity.
- Glover, F., & Kochenberger, G. (2003). Handbook of Metaheuristics.
- Aarts, E., & Lenstra, J. K. (2003). Local Search in Combinatorial Optimization.