Solutions to Quiz 8 (version A & B)

Version A:

- 1. Which of the following statement is not true if y = -3x + 7?
 - A. The y-intercept is 7
 - B. y decreases by 3 when x increases by 4
 - C. y decreases by 3 when x increases by 1
 - D. The slope of the line is -3

ANSWER: B

- 2. The simple linear regression model is $Y = \beta_0 + \beta_1 x + \varepsilon$, where ε is a random variable assumed to be normally distributed with $E(\varepsilon) = 0$ and $V(\varepsilon) = \sigma^2$. Let x^* denote a particular value of the independent variable x. Which of the following identity is true regarding the expected or mean value of Y when $x = x^*$?
 - A. $\mu_{Y \cdot x^*} = \beta_0 + \beta_1 x^*$
 - B. $\mu_{y_{x^*}} = (\beta_0 + \beta_1)x^*$
 - $\mathsf{C.} \quad \mu_{\mathsf{Y} \cdot \mathsf{x}^*} = \beta_1 \mathsf{x}^*$
 - D. $\mu_{v,x^*} = \beta_0$
 - E. $\mu_{v,v^*} = 0$

ANSWER: A

Version B:

- 3. Which of the following statement is not true if y = -3x + 7?
 - A. The *y*-intercept is 7
 - B. y decreases by 3 when x increases by 1
 - C. y decreases by 3 when x increases by 4
 - D. The slope of the line is -3

ANSWER: C

- 4. The simple linear regression model is $Y = \beta_0 + \beta_1 x + \varepsilon$, where ε is a random variable assumed to be normally distributed with $E(\varepsilon) = 0$ and $V(\varepsilon) = \sigma^2$. Let x^* denote a particular value of the independent variable x. Which of the following identity is true regarding the expected or mean value of Y when $x = x^*$?
 - $A. \quad \mu_{Y \cdot x^*} = \beta_1 x^*$
 - $\mathsf{B.}\quad \mu_{\mathsf{Y}\cdot \mathsf{x}^*} = \beta_0$
 - C. $\mu_{Y \cdot x^*} = \beta_0 + \beta_1 x^*$
 - D. $\mu_{Y \cdot x^*} = (\beta_0 + \beta_1)x^*$
 - $\mu_{Y \cdot x^*} = 0$

ANSWER: C

[4 points for submission. 3 points for each question. Total is 10.]