Let the general triangle distribution be 1-F(x,z)=G(x) The slope of G'(x) is positive initially but decreasing in x and at some critical level of x, c it turns negative. The point c which strictly increasing in z.

$1 \quad \tilde{x}$

This is strictly decreasing in z but the degree at which \tilde{x} is influenced decreases with higher values of z. Is strictly decreasing in a. However this the effect of a is quickly decreasing. Is increasing in p. Constant effect

$\mathbf{2} \quad \check{x}$

Is increasing in r.
Is decreasing in z.

$\hat{\mathbf{3}}$

remember, decreasing \hat{x} increases profits If p=0 then $\hat{x}=0$ Is strictly increasing in p. Note: I should compare the effects of increasing p on profits vs the decrease in \hat{x} z is strictly decreasing \hat{x} . Note:(this increase is relatively more severe in hat than check?) alpha decreases \hat{x}

4 general

There exists a critical level of r for all parameter values where the people who are willing to pay collapses.

The lower the z parameter, the more resistant to r they are, but if too low there is no equilibrium at all.

5 Who has the bigger mass

Note that the area of the intermediate triangle is $(z-\check{x})f(\check{x})\frac{1}{2}$. The area of the smaller triangle is $(z-\hat{x})f(\hat{x})\frac{1}{2}$. The area between the x's is therefore. $(z-\check{x})f(\check{x})\frac{1}{2}-(z-\hat{x})f(\hat{x})\frac{1}{2}$. There are more pirates than non-pirates iff: $(z-\check{x})f(\check{x})\frac{1}{2}-(z-\hat{x})f(\hat{x})>0$. $\rightarrow 2\hat{x}(1+\frac{1}{z}(z-\hat{x}))-\check{x}(1+\frac{2}{z}(z-\check{x}))-z>0$