MATH 337 - Fall 2024 T.-P. Nguyen

14 Lecture 15: Spanning, Independence and Basis

14.1 Vector Space

A vector space is a nonempty set of vectors that is closed under the formation of linear combinations. That is, $V \subset \mathbb{R}^n$ is a real vector space if and only if

$$\{\mathbf{u}_1, \dots, \mathbf{u}_p\} \subset V \text{ then } \alpha_1 \mathbf{u}_1 + \dots \alpha_p \mathbf{u}_p \in \mathbf{V}, \text{ for all } \alpha_1, \dots, \alpha_p \in \mathbb{R}.$$
 (14.1)

A vector space that is a subset of another vector space is called a **subspace**.

Example 14.1. • \mathbb{R}^n is a vector space.

- The singleton set $\{\mathbf{0}\} \subset \mathbb{R}^n$ is a vector space and is a subspace of \mathbb{R}^n .
- The solution set of a homogeneous linear system of n unknown is a vector space, and is a subspace of \mathbb{R}^n .

14.2 Spanning set

Let $S = \{\mathbf{u}_1, \dots, \mathbf{u}_n\} \subset \mathbb{R}^n$, the set of p vectors in \mathbb{R}^n . The set of all linear combinations of S:

$$V := \{ \mathbf{v} = \alpha_1 \mathbf{u}_1 + \dots \alpha_p \mathbf{u}_p | \alpha_1, \dots, \alpha_p \in \mathbb{R} \}$$

is called the span of S, denoted by Span(S).

Remark:

- Span(S) is a vector space for any set $S \subset \mathbb{R}^n$, including the empty set.
- $\operatorname{Span}(\emptyset) = \{\mathbf{0}\}.$

For each vector space V, the set S such that V = Span(S) is called the **spanning set** of V.

14.3 Dependence/Independence

The set of p vectors $S = \{\mathbf{u}_1, \dots, \mathbf{u}_p\} \subset \mathbb{R}^n$ is called **linearly independent** of the vector equation

$$\alpha_1 \mathbf{u}_1 + \dots \alpha_n \mathbf{u}_n = \mathbf{0} \tag{14.2}$$

has only trivial solution.

If a set of vectors is **not linearly independent**, it is said to be **linearly dependent** (or simply **dependent**). Equivalently, if the equation (14.2) has non-trivial solution, the set $S = \{\mathbf{u}_1, \dots, \mathbf{u}_p\}$ is **linear dependent**.

Equivalent conditions for the linearly dependence/independence

Denote
$$S = \{\mathbf{u}_1, \dots, \mathbf{u}_p\} \subset \mathbb{R}^n$$
 and $\mathbf{A} = \begin{bmatrix} \mathbf{u}_1 & \mathbf{u}_2 & \dots & \mathbf{u}_p \end{bmatrix}$ an $n \times p$ matrix.

- If **A** has p pivot columns, i.e., $rank(\mathbf{A}) = p$, then S is linearly independent.
- **A** has *p* pivot columns, then *S* is linearly dependent.

Some special case for the linearly dependence/independence

Denote $S = {\mathbf{u}_1, \dots, \mathbf{u}_p} \subset \mathbb{R}^n$.

- ullet If S contains the zero vector, then S is linearly dependent.
- If S contains more than n vectors, i.e., p > n, then S is linearly dependent.
- \bullet If there is a vector in S is a linear combination of the others, then S is linearly dependent.
- ullet If S is the set of one nonzero vector, then S is linearly independent.
- **Example 14.2.** The set $S = \left\{ \begin{bmatrix} 1 \\ 3 \\ 4 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \right\}$ is linearly dependent due to S contains the zero

vector, so $\begin{bmatrix} 1 \\ 3 \\ 4 \end{bmatrix} + \alpha \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ for any $\alpha \in \mathbb{R}$.

• The set $S = \left\{ \begin{bmatrix} 1 \\ 3 \\ 4 \end{bmatrix}, \begin{bmatrix} 2 \\ 3 \\ 2 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix} \right\}$ is linearly dependent due to matrix $\mathbf{A} = \begin{bmatrix} 1 & 2 & 2 & 1 \\ 3 & 3 & 1 & 0 \\ 4 & 2 & 1 & 2 \end{bmatrix}$

has at least one column which is not pivot.

- The set $S = \left\{ \begin{bmatrix} 1\\3\\4 \end{bmatrix}, \begin{bmatrix} 2\\3\\6\\6 \end{bmatrix} \right\}$ is linearly dependent due to $\begin{bmatrix} 3\\6\\6 \end{bmatrix} = \begin{bmatrix} 1\\3\\4 \end{bmatrix} + \begin{bmatrix} 2\\3\\2 \end{bmatrix}$, which implies $\begin{bmatrix} 1\\3\\4 \end{bmatrix} + \begin{bmatrix} 2\\3\\2 \end{bmatrix} \begin{bmatrix} 3\\6\\6 \end{bmatrix} = \begin{bmatrix} 0\\0\\0 \end{bmatrix}.$
- The set $S = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$ is linearly independent since the equation $x \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$ has only trivial solution x = 0.
- **Example 14.3.** Check whether the set $S = \left\{ \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix} \right\}$ is dependent or independent.

MATH 337 - Fall 2024 T.-P. Nguyen

Solution: We find the rank of matrix

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 3 & 1 \\ 3 & 2 & 1 \end{bmatrix}.$$

Row reduce matrix \mathbf{A} ,

$$\mathbf{A} \sim \begin{bmatrix} 1 & 2 & 2 \\ 0 & -1 & -3 \\ 0 & -4 & -5 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 2 \\ 0 & -1 & -3 \\ 0 & 0 & -17 \end{bmatrix}. \tag{14.3}$$

A has three pivot columns, so $rank(\mathbf{A}) = 3$, which is the number of column of **A**. Thus, the set S is linearly independent.

14.4 Basis

If S is a spanning set of a vector space V and S is linearly independent then S is a basis of V. In another word, a basis of a vector space V is a linearly independent set that spans V.

Note: The basis of a vector space is not unique, that is, a vector space $V \neq \{0\}$ has more than one basis. However, the number of vectors in all bases of a vector space is the same.

Example 14.4. • $S_1 = \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\}$ is a basis of \mathbb{R}^2 . Indeed, S_1 is a linearly independent set, and $\operatorname{Span}(S_1) \equiv \mathbb{R}^2$.

• $S_2 = \left\{ \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 3 \\ 1 \end{bmatrix} \right\}$ is also a basis of \mathbb{R}^2 . Indeed, S_2 is a linearly independent set (due to the matrix $\mathbf{A} = \begin{bmatrix} 1 & 3 \\ 2 & 1 \end{bmatrix}$ is invertible, so all columns of \mathbf{A} are pivots), and $\operatorname{Span}(S_2) \equiv \mathbb{R}^2$. To verify $\operatorname{Span}(S_2) \equiv \mathbb{R}^2.$

we see that
$$S_2 \subset \mathbb{R}^2$$
, so $\operatorname{Span}(S_2) \subset \mathbb{R}^2$. On the other hand, for each $\mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} \in \mathbb{R}^2$, the equation $\mathbf{A}\mathbf{x} = b$ always has a unique solution, which implies, \mathbf{b} is a linear combination of vectors in S_2 . Thus, $\mathbb{R}^2 \subset \operatorname{Span}(S_2)$. Combining $\operatorname{Span}(S_2) \subset \mathbb{R}^2$ and $\mathbb{R}^2 \subset \operatorname{Span}(S_2)$ we have

vectors in S_2 . Thus, $\mathbb{R}^2 \subset \operatorname{Span}(S_2)$. Combining $\operatorname{Span}(S_2) \subset \mathbb{R}^2$ and $\mathbb{R}^2 \subset \operatorname{Span}(S_2)$ we have $\operatorname{Span}(S_2) \equiv \mathbb{R}^2$.

• More general, a basis of \mathbb{R}^2 has 2 vectors. In addition, a set $A = \{\mathbf{u}_1, \mathbf{u}_2\}$ where \mathbf{u}_1 is not a scalar multiplication of \mathbf{u}_2 is a basis of \mathbb{R}^2 .