CERTAMEN Nº1 COMPUTACIÓN CIENTÍFICA II SCT - Lu.05.09.16

Nombre:	Rol:

Instrucciones: Usted tiene 90 minutos para responder el Certamen.

Usted tiene que mostrar todo su trabajo para obtener todos los puntos.

Puntos parciales serán entregados a preguntas incompletas. Respuestas finales sin desarrollo o **sin nombre** reciben 0 puntos. ¡Buena Suerte!

1. Un grafo se define como la tupla G = (V, E), donde V es el conjunto de vértices $\{v_1, v_2, \ldots, v_n\}$ y E es el conjunto de arcos $\{(v_i, v_j), \ldots\}$. La matriz de Adyacencia del grafo G, llamada A_G , es una matriz de $n \times n$ con coeficientes a_{ij} que se definen como:

$$a_{ij} = \begin{cases} 1 & \text{si } (v_i, v_j) \in E \\ 0 & \text{en otro caso} \end{cases}$$

Considere el grado de un vértice v_i como $\delta_i = \sum_{j=1}^n a_{ij}$. La matriz Laplaciana del grafo G, denominada L_G , es una matriz de $n \times n$ cuyos coeficientes l_{ij} se definen como:

$$l_{ij} = \begin{cases} \delta_i & \text{si } i = j \\ -a_{ij} & \text{si } i \neq j \end{cases}$$

Ahora considere que el grafo es simple, por lo que $(v_i, v_i) \notin E$ para todo i. Además, el grafo es no dirigido, por lo que si $(v_i, v_j) \in E$, entonces $(v_j, v_i) \in E$ para todo $i \neq j$. Desde el punto de vista de la matriz de adyacencia, se cumple que $a_{ii} = 0$ y $a_{ij} = a_{ji}$.

- (a) [5 puntos] Si $\delta_i = \alpha$, para todo $i \in \{1, 2, ..., n\}$ con $\alpha \in \mathbb{N}$, y además, se sabe que la matriz A_G tiene valores propios $\lambda_1, \lambda_2, ..., \lambda_n$. ¿Cuáles son los valores propios de la matriz Laplaciana L_G en función de los valores propios de A_G ? Hint: think about the relation between A_G and L_G .
- (b) [5 puntos] El teorema del círculo de Gershgorin se puede utilizar para encontrar una cota para los valores propios de una matriz $A \in \mathbb{C}^{n \times n}$ con coeficientes a_{ij} . Se definen discos d_1, d_2, \ldots, d_n con centro a_{ii} y radio $r_i = \sum_{j=1, j \neq i}^n |a_{ij}|$. Entonces los valores propios se encuentran en la unión de los n discos y se satisface la desigualdad $|a_{ii} \lambda_i| \leq r_i$. Utilice este teorema para mostrar que todos los valores propios de la matriz A_G se encuentran acotados superiormente por $\delta_{\text{máx}} = \max_i \delta_i$, es decir, $\lambda_i \leq \delta_{\text{máx}}$ para todo $i \in \{1, 2, \ldots, n\}$.
- (c) [5 puntos] El mayor valor propio de A_G , denotado por λ_1 , puede ser encontrado mediante la expresión:

$$\lambda_1 = \max_{\mathbf{x} \in \mathbb{R}^n} \frac{\mathbf{x}^T A_G \mathbf{x}}{\mathbf{x}^T \mathbf{x}}$$

Utilizando $\mathbf{x} = \mathbf{1}$, con $\mathbf{1} = \langle 1, 1, \dots, 1 \rangle^T$ un vector de dimensión n, determine una cota inferior para el valor propio λ_1 .

(d) [10 puntos] Una matriz A simétrica es semidefinida positiva si $x^T A x \ge 0$, para todo $x \in \mathbb{R}^n$. Demuestre que L_G es semidefinida positiva si y solo si $\mu_i \ge 0$ para todo $i \in \{1, 2, ..., n\}$, donde μ_i son los valores propios de L_G .

Nombre:	Rol:
	. 10011

2. Se define un coloreo de vértices de un grafo no dirigido G = (V, E) como una función $c : V \to \mathbb{N}$ tal que $c(v_i) \neq c(v_j)$ siempre que $(v_i, v_j) \in E$. El número cromático de un grafo G, denotado por $\chi(G)$, es el mínimo entero k tal que el grafo tiene un coloreo de k colores.

Considerar la Matriz de Adyacencia A_G , con valores propios $\lambda_1, \lambda_2, \dots, \lambda_n$ que satisfacen la relación $\lambda_1 \geq \lambda_2 \geq \dots \geq \lambda_n$. Entonces, el número cromático del grafo $\chi(G)$ se encuentra acotado inferiormente por la relación:

$$\chi(G) \ge 1 - \frac{\lambda_1}{\lambda_n}$$

Esta desigualdad corresponde a la cota de Hoffman para el coloreo de vértices.

- (a) [20 puntos] Usted conoce varios métodos para encontrar valores y vectores propios de una matriz. Desafortunadamente, la relación que estaríamos esperando para algunos de estos métodos, $|\lambda_1| > |\lambda_2| > \ldots > |\lambda_n|$, no se cumple necesariamente. Esto no significa que aquellos métodos no puedan ser usados. Construya un algoritmo que estime numéricamente la cota de Hoffman para el coloreo de vértices y explique como obtendrá los valores propios λ_1 y λ_n en su algoritmo. Solo podrá hacer uso de *Power Iteration*, *Inverse Power Iteration* y/o *Rayleigh Quotient Iteration* según estime necesario. Hint: A convenient shift could be helpful..
- (b) [5 puntos] Un caso especial en coloreo de grafos ocurrre cuando $\chi(G) = 2$. En este caso el grafo G recibe el nombre de *Grafo Bipartito* y se cumple que $\lambda_1 = -\lambda_n$. ¿Sigue funcionando el algoritmo propuesto en la pregunta anterior? **Justifique** su respuesta y proponga cambios si ya no funciona.

Nombre:	Rol:	
_		

- 3. El primer teorema de valor medio para integrales definidas indica lo siguiente: Sea $f(x):[a,b]\to\mathbb{R}$ una función continua. Entonces existe c en [a,b] tal que $\int_a^b f(x)\,dx=f(c)(b-a)$.
 - (a) [15 puntos] Construya un algoritmo que reciba una función f, el intervalo [a, b], m (número de puntos de integración) y determine c basado en la integración del punto medio.
 - (b) [10 puntos] Encuentre c para $f(x) = 1 + x 20 x^2$ en el intervalo [-1, 2].

4. La siguiente ecuación diferencial ordinaria y''(x) = xy(x) es conocida como la ecuación de Airy. Esta ecuación tiene 2 soluciones linealmente independientes, llamadas Ai(x) y Bi(x). Ver Figura 1 donde se grafican Ai(x) y Bi(x).

Figura 1: Funciones de Airy Ai''(x) (línea sólida) y Bi''(x) (línea punteada) en x = [-9.165362310991792, 1]

Además conocemos una representación integral de Ai(x) en variable compleja:

$$\operatorname{Ai}(z) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \exp\left(\mathrm{i}\left(z\,t + \frac{t^3}{3}\right)\right)\,dt$$

donde i = $\sqrt{-1}$, y su versión simplificada para variable real:

$$\operatorname{Ai}(x) = \frac{1}{\pi} \int_0^\infty \cos\left(\left(x t + \frac{t^3}{3}\right)\right) dt$$

(a) [25 puntos] Estime numéricamente la siguiente integral doble:

$$\int_{-9.165362310991792}^{1} \frac{1}{\pi} \int_{0}^{\infty} \cos \left(\left(x \, t + \frac{t^3}{3} \right) \right) \, dt \, dx$$

de la mejor forma posible utilizando por lo menos 5 puntos de integración para la variable x y por lo menos 20 puntos de integración en la variable t (si fuera necesario).

Hint: Read the question carefully, then read the question carefully, and finally think before computing anything. It may save you a lot of work read the plot.