ELECTRÓNICA

<u>3º DE GRADO EN FÍSICA</u>

Conv. Ordinaria (23/5/2018)

(fasor)

...Nombre.....

Problema 1. (2/12 puntos) Para el circuito de la figura, obtener la tensión de Thévenin y la corriente de Norton. ambas en función del tiempo, entre los terminales A y B.

Datos: $i_1(t) = 10 \text{mAcos} t$; a = 4, L = 2 mH, $C = 3 \mu \text{F}$.

in :
$$\frac{aV_c}{V_c} = \frac{aV_c}{V_c} = 0$$
, $\frac{aV_c}{V_c} = 0$ $\frac{aV_c}{V$

Problema 2. (2/12 puntos) El diodo LED del circuito de la figura tiene una tensión umbral de 2V con resistencia dinámica despreciable. Los amplificadores operacionales son ideales y están alimentados con ±15V. Teniendo en cuenta la curva de entrada para $v_i(t)$ representada en la gráfica adjunta, dibujar $v_v(t), v_o(t)$ e $i_o(t)$ definiendo con claridad todos los ejes y escalas en cada una de esas magnitudes.

4.0.1: realin. negativa > V_+=V_ (valvo que V_x alcance ±15V).

$$\mathcal{C}_{-} = \mathcal{C}_{+} = \mathcal{C}_{i}$$
, $\mathcal{C}_{\times} - \mathcal{C}_{i} = \frac{\mathcal{C}_{i}}{5\kappa\Omega}$
, $\mathcal{C}_{\times} = 6\mathcal{C}_{i}$
, $\mathcal{C}_{\times} = 6\mathcal{C}_{\times}$
, $\mathcal{C}_{\times} = 6\mathcal{C}$

region liceal en todo t.

A.O.2: en la 30 abierto => $V_0 = \begin{cases} +15V & \text{in } U_+ = U_\times > U_- = 2V \Leftrightarrow V_0 > \frac{1}{3}V \\ 0 & \text{si } U_+ = U_- \end{cases} \Leftrightarrow V_0 = \begin{cases} 15V & \text{in } U_+ = U_\times > U_- = 2V \Leftrightarrow V_0 > \frac{1}{3}V \\ -15V & \text{si } U_+ < U_- \end{cases} \Leftrightarrow V_0 = \begin{cases} 15V & \text{si } U_+ < U_- \\ 0 & \text{si } U_+ < U_- \end{cases} \Leftrightarrow V_0 = \begin{cases} 15V & \text{si } U_+ < U_- \\ 0 & \text{si } U_+ < U_- \end{cases} \Leftrightarrow V_0 = \begin{cases} 15V & \text{si } U_+ < U_- \\ 0 & \text{si } U_+ < U_- \end{cases} \Leftrightarrow V_0 = \begin{cases} 15V & \text{si } U_+ < U_- \\ 0 & \text{si } U_+ < U_- \end{cases} \Leftrightarrow V_0 = \begin{cases} 15V & \text{si } U_+ < U_- \\ 0 & \text{si } U_+ < U_- \end{cases} \Leftrightarrow V_0 = \begin{cases} 15V & \text{si } U_+ < U_- \\ 0 & \text{si } U_+ < U_- \end{cases} \Leftrightarrow V_0 = \begin{cases} 15V & \text{si } U_+ < U_- \\ 0 & \text{si } U_+ < U_- \end{cases} \Leftrightarrow V_0 = \begin{cases} 15V & \text{si } U_+ < U_- \\ 0 & \text{si } U_+ < U_- \end{cases} \Leftrightarrow V_0 = \begin{cases} 15V & \text{si } U_+ < U_- \\ 0 & \text{si } U_+ < U_- \end{cases} \Leftrightarrow V_0 = \begin{cases} 15V & \text{si } U_+ < U_- \\ 0 & \text{si } U_+ < U_- \end{cases} \Leftrightarrow V_0 = \begin{cases} 15V & \text{si } U_+ < U_- \\ 0 & \text{si } U_+ < U_- \end{cases} \Leftrightarrow V_0 = \begin{cases} 15V & \text{si } U_+ < U_- \\ 0 & \text{si } U_+ < U_- \end{cases} \Leftrightarrow V_0 = \begin{cases} 15V & \text{si } U_+ < U_- \\ 0 & \text{si } U_+ < U_- \end{cases} \Leftrightarrow V_0 = \begin{cases} 15V & \text{si } U_+ < U_- \\ 0 & \text{si } U_+ < U_- \end{cases} \Leftrightarrow V_0 = \begin{cases} 15V & \text{si } U_+ < U_- \\ 0 & \text{si } U_+ < U_- \end{cases} \Leftrightarrow V_0 = \begin{cases} 15V & \text{si } U_+ < U_- \\ 0 & \text{si } U_+ < U_- \end{cases} \Leftrightarrow V_0 = \begin{cases} 15V & \text{si } U_+ < U_- \\ 0 & \text{si } U_+ < U_- \end{cases} \Leftrightarrow V_0 = \begin{cases} 15V & \text{si } U_+ < U_- \\ 0 & \text{si } U_+ < U_- \end{cases} \Leftrightarrow V_0 = \begin{cases} 15V & \text{si } U_+ < U_- \\ 0 & \text{si } U_+ < U_- \end{cases} \Leftrightarrow V_0 = \begin{cases} 15V & \text{si } U_+ < U_- \\ 0 & \text{si } U_+ < U_- \end{aligned} \Leftrightarrow V_0 = \begin{cases} 15V & \text{si } U_+ < U_- \\ 0 & \text{si } U_+ < U_- \end{aligned} \Leftrightarrow V_0 = \begin{cases} 15V & \text{si } U_+ < U_- \\ 0 & \text{si } U_+ < U_- \end{aligned} \Leftrightarrow V_0 = \begin{cases} 15V & \text{si } U_+ < U_- \\ 0 & \text{si } U_+ < U_- \end{aligned} \Leftrightarrow V_0 = \begin{cases} 15V & \text{si } U_+ < U_- \\ 0 & \text{si } U_+ < U_- \end{aligned} \Leftrightarrow V_0 = \begin{cases} 15V & \text{si } U_+ < U_- \\ 0 & \text{si } U_+ < U_- \end{aligned} \Leftrightarrow V_0 = \begin{cases} 15V & \text{si } U_+ < U_- \\ 0 & \text{si } U_+ < U_- \end{aligned} \Leftrightarrow V_0 = \begin{cases} 15V & \text{si } U_+ < U_- \\ 0 & \text{si } U_+ < U_- \end{aligned} \Leftrightarrow V_0 = \begin{cases} 15V & \text{si } U_+ < U_- \\ 0 & \text{si } U_+ < U_- \end{aligned} \end{cases} \Leftrightarrow V_0 = \begin{cases} 15V & \text{si } U_+ < U_- \\ 0 & \text{si } U_+ < U_- \end{aligned} \Leftrightarrow V_0 = \begin{cases} 15V & \text{si } U_+ < U_- \\ 0 & \text{si } U_+ < U_- \end{aligned} \end{cases} \Leftrightarrow V_0 = \begin{cases} 15V & \text{si } U_+ < U_- \\ 0 & \text{si } U_+ < U_- \end{aligned} \end{cases} \Leftrightarrow V_0 = \begin{cases} 15V & \text{si } U_+ < U_- \\ 0 &$ €(V)

El LED rólo puede conducir enando vo <-2V, y por tanto arando el 4.0.2 satura negativa necet. $-i_0(t) = +i_{LED}(t) = \frac{0 - (-15V + 2V)}{1 \text{ MA}} = \frac{13}{100}$ 4 6 (mA)

Problema 3. (2/12 puntos) En el circuito de la figura, si $\beta = 50$, $V_{BE,\gamma} = 0.7V$, $V_{CE,sat} = 0.2V$, calcular el valor de la resistencia R_1 para que la corriente de emisor sea 2mA.

 $V_{E} = R_{E}I_{E} = 0.4V, \quad V_{B} = V_{E} + V_{BEN} = 1.1V \Rightarrow I_{25K} = \frac{V_{B}}{25KQ} = 40 \mu A$ Al ser $V_{B} = V_{C} - I_{1}R_{1} < V_{C}$ be union BC está en inverta \Rightarrow conducción en región activa. (En caso de no knerse en anenta, se de berán plantear hipóteoris sobre el estado del homesistor, activa l'antenac.) $I_{B} = \frac{I_{E}}{\beta + 1} = 39.2 \mu A, \quad I_{C} = \beta I_{B} = 1.96 \text{ mA}$ $I_{A} = I_{B} + I_{25K} = 79.2 \mu A$ $I_{O} = I_{1} + I_{E} = 2.04 \text{ mA}$ $V_{C} = 12V - I_{O} \cdot 2KJ = 12V - 4.08V = 7.92V$ $V_{CB} = R_{1}I_{1} \Rightarrow R_{1} = \frac{6.82V}{79.2\mu A} = 86.1 \text{ k}$ $V_{CB} = R_{1}I_{1} \Rightarrow R_{1} = \frac{6.82V}{79.2\mu A} = 86.1 \text{ k}$

ELECTRÓNICA

3º DE GRADO EN FÍSICA

Conv. Ordinaria (23/5/2018)

Apellidos.......Srupo.......Grupo......

Problema 4. (2/12 puntos)

Sabiendo que v_i es una fuente de tensión sinusoidal de frecuencia variable, y considerando A.O. ideal:

- a) Obtener una expresión simplificada de la función de transferencia de la ganancia de tensión, $A_v = v_o/v_i$, su módulo, su módulo en dB y su fase, en función de R, L y de la frecuencia.
- b) Representar el comportamiento aproximado del diagrama de Bode del módulo mediante suma de contribuciones lineales, dados los siguientes valores de los componentes: R= 33 Ohm, L= 10 mH.

Realise. Legative
$$\Rightarrow U_{-} = U_{+}$$
; $U_{+} = \frac{U_{i}}{4R}R = \frac{U_{i}}{4}$

$$\frac{V_{0} - U_{-}}{R} = \frac{U_{-} - U_{i}}{2L}; \quad V_{0} = U_{-} \left(\frac{R}{2L} + 1\right) - U_{i} \frac{R}{2L} = \frac{U_{i}}{4} \frac{R + 2L}{2L} - U_{i} \frac{R}{2L} = U_{i} \frac{-3R + 2L}{42L}$$

$$A_{V} = \frac{U_{0}}{U_{i}} = \frac{-3R + 2L}{42L} = \frac{-3R + j\omega L}{j\omega L} = -\frac{1 - j\omega L/3R}{j\omega L/3R}$$
o biou, $A_{V}(j\omega) = -\frac{1 - j\omega/\omega_{1}}{j\omega/\omega_{2}}$ $\omega_{1} = \frac{3R}{L}$, $\omega_{2} = \frac{3R}{4L}$

$$|A_{\gamma}| = \frac{\sqrt{1 + (\omega/\omega_1)^2}}{\omega/\omega_2}, \quad A_{dB} = 20 \text{ log } \sqrt{1 + (\omega/\omega_1)^2} - 20 \text{ log } \left(\frac{\omega}{\omega_2}\right)$$

$$Y = \Pi - avety\left(\frac{\omega}{\omega_1}\right) - \frac{\Pi}{2} = \frac{\Pi}{2} - avety\left(\frac{\omega}{\omega_1}\right) \quad (\text{ o también } Y = avety\left(\frac{\omega_1}{\omega_1}\right)$$

b)
$$W_1 = \frac{3R}{L} = 9.9 \text{ Krad/s} = 9.9 \times 10^3 \text{ rad/s}$$
; $W_2 = \frac{3R}{4L} = 2.5 \times 10^3 \text{ rad/s}$

Problema 5. (2/12 puntos) Los diodos rectificadores del circuito tienen la misma tensión umbral V_γ y resistencia dinámica despreciable. Si la fuente de tensión es una fuente de valor variable:

a) Obtener las expresiones de la tensión de salida vo en los casos siguientes: i) ambos diodos en corte; ii) sólo conduce D2; iii) ambos diodos conducen.

b) Determinar los rangos de la tensión de entrada en los que se da cada una de las situaciones del apartado anterior.

$$V_{i} = I_{j} = R \quad V_{0} \quad V_{0} = R \cdot J = R \quad \frac{V_{i}}{4R} = \frac{V_{i}}{4}$$

$$= 2R$$

b) i)
$$U_{D1}, U_{D2} < V_{T}$$
, $U_{D1} = IR = \frac{U_{i}}{4} < V_{T} \Rightarrow U_{i} < 4V_{T}$
 $U_{D2} = I \cdot 2R = \frac{U_{i}}{2} < V_{T} \Rightarrow |U_{i} < 2V_{T}|$ (más restrictiva)

$$i_{D2} = I - I_{2R} = \frac{V_i - V_r}{2R} - \frac{V_i}{2R} = \frac{V_i - 2V_r}{2R} \rightarrow \frac{2V_s \langle \tilde{U}_i \langle 3V_s \rangle}{2}$$

$$i_{D2} = I - I_{2R} = \frac{V_i - V_r}{2R} - \frac{V_s}{2R} = \frac{V_i - 2V_r}{2R} \rightarrow \frac{V_i - 2V_r}{2R}$$

iii)
$$i_{D1}, i_{D2} > 0$$
; $i_{D1} = \frac{V_0}{R} - I_1 = \frac{V_1 - 2V_T}{R} - \frac{V_T}{R} = \frac{V_1 - 3V_T}{R} > 0 \Rightarrow V_1 > 3V_T$

$$i_{D2} = \frac{V_0}{R} - I_2 = \frac{V_1 - 2V_T}{R} - \frac{V_T}{2R} = \frac{2V_1 - 5V_T}{2R} > 0 \Rightarrow V_1 > 2/5V_T$$

$$u_{eqo} |V_1 > 3V_T| \text{ (unas restrictiva)}$$

Problema 6. (2/12 puntos)

- a) Dados dos números binarios de dos bits, A_1A_0 y B_1B_0 , escribir la tabla de verdad de las funciones C_i y R_i correspondientes al cociente (C) y al resto (R) que resultan de la división del número A entre el número B. Considerar que no es posible que se dé la división por cero.
- b) Obtener mediante las tablas de Karnaugh la máxima simplificación de las funciones de las funciones C_i "por unos" y de las funciones R_i "por ceros".
- c) Implementar el circuito que proporcione la función C₀ usando únicamente inversores y puertas NAND, transformando previamente la expresión obtenida de esta función en el apartado anterior.

a)	A	Ap	\mathbb{B}_1	B.	C4 C	o F	۲,	R _o		ط ر	41	A0	0.4	10	40	9
-	0		0	0	X	X 0	X	×			B, B.	Х	01 ×	X	10 X	
	0	0	1	0	0	0	0	0			0 (0	0	1	1)	
	٥	•	1	1	0	0	0	0			11	0	0	0	0	
	0	1	0	0	×	X 1	×	× 0			10	0	0	0	0	
	0	1	1	0	0	0	0	4		<i>y</i>		C1 = 1	A ₁ B ₁	\		
-	0	4.	1	1	0	0	e	1	1							
	4	0	0	٥	×	X	X	×				Ao				(C)
	a 1	0	0	1	1	0	10	0			81 B°	00	01	111	10	
	a 4	0	=1	0	0 -	1	0	0			00	χ	X	X	X	
	1	0	1	1	0 (>	Å	Ø			01	0	(1		0	
	J	λ	0	O	χ -	×	X	X			14	0	0	1	0	
	Å	1	O	1	1 1		٥	0					-			
		1	1	0	0	t	9	1			10	ð	0	M	1)	
	,	Λ	1	1	0 -	t i	0	.0				Co =	A _o B	1. 1 + A.	B +	A, A.
A	40				(R.						, A, A					(R _A)

C)
$$C_0 = A_0 \overline{B}_1 + A_1 \overline{B}_0 + A_1 A_0 = \overline{A_0 \overline{B}_1} \cdot \overline{A_1 \overline{B}_0} \cdot \overline{A_1 A_0}$$

$$A_1 \circ A_0 \circ C_0$$

$$A_0 \circ A_0 \circ C_0$$

$$B_1 \circ A_0 \circ C_0$$