



# Stress Testing a Markowitz Portfolio

Usama Ahmad - VR513221 Shah Rukh Aleem - VR528190

# Project Objectives

Objective: To construct and stress-test a dynamic Minimum Variance Portfolio (MVP) using a data-driven approach.

#### Key Focus Areas:

- Evaluating portfolio risk under normal and simulated stress conditions using Value at Risk (VaR) and Expected Shortfall (ES).
- Comparing MVP performance against traditional benchmarks (60/40 portfolio, S&P 500).

# Dataset

| Component       | Details                                              |  |
|-----------------|------------------------------------------------------|--|
| Selected Assets | MSFT (Microsoft), GLD (SPDR Gold Shares)             |  |
| Benchmark       | S&P 500 (^GSPC)                                      |  |
| Data Period     | January 1, 2010 – July 19, 2025                      |  |
| Data Type       | Daily Adjusted Closing Prices                        |  |
| Return Type     | Daily Simple Returns                                 |  |
| Training Set    | 2010-01-01 – 2023-12-31 (approx. 3,522 trading days) |  |
| Test Set        | 2024-01-01 – 2025-07-19 (approx. 384 trading days)   |  |

#### Dataset



#### Markowitz Portfolio Construction

| Component                | Details                                                     |
|--------------------------|-------------------------------------------------------------|
| Assets                   | MSFT (Microsoft), GLD (SPDR Gold Shares)                    |
| Covariance<br>Estimation | Ledoit-Wolf shrinkage estimator over 180-day rolling window |
| Portfolio Goal           | Minimize variance with diversification                      |
| Rebalancing<br>Strategy  | Every 21 trading days (~monthly) to adapt to market changes |
| Weight<br>Constraints    | Each asset weight between 30% and 70%                       |
| Transaction<br>Costs     | 0.1% on turnover at each rebalancing step                   |

#### Portfolio Strategy

```
[ Rolling Window ] → [ Ledoit-Wolf Estimator ] → [ Covariance Matrix ]

[ MVP Optimization ]

[ Rebalancing every 21 days ]
```

# Dynamic Portfolio Allocation



# Portfolio Performance (Training Period)



# Risk Estimation under Normal Conditions

| Component           | Description                                                                                                                        |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------|
| Goal                | Dynamically compute Value at Risk (VaR) and Expected Shortfall (ES).                                                               |
| Confidence Level    | 95%                                                                                                                                |
| Assumption          | Returns are normally distributed for baseline calculations.                                                                        |
| Dynamic<br>Approach | Recalculated daily using: • Estimated portfolio standard deviation • Current portfolio value • Reflects changing market volatility |

# VaR and ES under Normal Conditions Training Set)



# Stress Testing Framework



# Impact of Stress Testing: VaR Comparison



### Impact of Stress Testing: Expected Shortfall Comparison



# Model Evaluation and Backtesting Flowchart



#### Portfolio Value (Test Set 2024-2025)



# Performance Comparison (Normalized to \$1)

| Metric            | Min Var Portfolio | 60/40 Portfolio | S&P 500 |
|-------------------|-------------------|-----------------|---------|
| Total Return      | 54.27%            | 54.68%          | 33.13%  |
| Annualized Return | 32.72%            | 32.94%          | 20.54%  |
| Annualized Vol    | 12.85%            | 14.46%          | 16.97%  |
| Sharpe Ratio      | 254.51%           | 227.77%         | 121.06% |
| Max Drawdown      | 5.75%             | 6.47%           | 18.90%  |

# Portfolio Drawdown Analysis



# Backtesting Results (VaR Violations)

| Metric                     | Violations Rate | Expected Rate (at 95%<br>Confidence) |
|----------------------------|-----------------|--------------------------------------|
| Normal VaR<br>Violations   | 13 (3.4%)       | 5.0%                                 |
| Stressed VaR<br>Violations | 3 (0.8%)        | 5.0%                                 |

#### Conclusion & Key Takeaways

- The dynamic Minimum Variance Portfolio strategy delivered strong absolute and risk-adjusted returns.
- The implemented stress testing framework significantly enhanced risk awareness by providing more conservative VaR and ES estimates under simulated adverse conditions.
- The MVP demonstrated superior risk management capabilities (lower volatility, maximum drawdown) compared to traditional benchmarks, validating the Markowitz approach in practice.
- The low number of stressed VaR violations validates the robustness of the stress testing methodology in identifying potential tail risks.
- This project highlights how adaptive models for covariance estimation and scenario generation can enhance risk management in financial applications.
- Further work: Could explore other stress factors, advanced backtesting methods, or alternative portfolio optimization techniques (e.g., Black-Litterman model).