Tópicos de Matemática Discreta

folha 9 –

4. Funções

- **4.1.** Consider os conjuntos $A = \{1, 2, 3\}$ e $B = \{a, b, c, d\}$.
 - (a) Dê exemplo de uma correspondência de A para B que não seja função.
 - (b) Quantas funções existem de A para B e quantas de B para A?
- **4.2.** Considere as funções:

 $g: \mathbb{R} \longrightarrow \mathbb{R}$, definida por $g(x) = x^2 - 1$, para todo $x \in \mathbb{R}$;

 $f: \mathbb{N} \longrightarrow \mathbb{N}$, definida por f(x) = 2x - 1, para todo $x \in \mathbb{N}$.

Determine:

(a)
$$g(\{-1,0,1\});$$

(b)
$$g(]-\infty,0]);$$

(c)
$$q(\mathbb{R})$$
;

(d)
$$g^{\leftarrow}(\{0\});$$

(b)
$$g(]-\infty,0]);$$
 (c) $g(\mathbb{R});$
(e) $g^{\leftarrow}(]-\infty,0]);$ (f) $f(\{4,6,9\});$

(f)
$$f({4,6,9})$$
;

(g)
$$f(\{x \in \mathbb{N} \mid \exists_{y \in \mathbb{N}} \ x = 3y\});$$
 (h) $f^{\leftarrow}(\{2\});$

(h)
$$f^{\leftarrow}(\{2\});$$

(i)
$$f^{\leftarrow}(\{3,4,5\})$$
.

4.3. Sejam $f, g \in h$ as funções de \mathbb{N}_0 para \mathbb{N}_0 definidas por:

$$f\left(n\right)=n+1; \qquad g\left(n\right)=2n; \qquad h\left(n\right)=\left\{ egin{array}{ll} 0, \ \mbox{se } n \ \mbox{\'e par} \\ 1, \ \mbox{se } n \ \mbox{\'e impar}. \end{array}
ight.$$

Determine:

(a)
$$f \circ f$$

(b)
$$f \circ g$$

$$\mbox{(a) } f \circ f; \mbox{(b) } f \circ g; \mbox{(c) } g \circ f; \mbox{(d) } g \circ h;$$

(d)
$$a \circ h$$

(e)
$$f \circ g \circ h$$
; (f) $h \circ f$; (g) $h \circ g$; (h) $h \circ f \circ g$.

$$(f)$$
 $h \circ f$.

$$(a)b \circ a$$

(h)
$$h \circ f \circ g$$

4.4. Dê exemplos de:

- (a) duas funções $f, g : \mathbb{R} \longrightarrow \mathbb{R}$ tais que f e g não sejam constantes e $f \circ g$ seja constante.
- (b) uma função $f: \mathbb{R} \longrightarrow \mathbb{R}$ tal que $f \neq id_{\mathbb{R}}$ mas $f \circ f = id_{\mathbb{R}}$.
- **4.5.** Sejam A, B conjuntos e $f: A \to B$ uma função. Mostre que $id_B \circ f = f = f \circ id_A$.
- **4.6.** Considere os conjuntos $A = \{1, 2, 3\}$ e $B = \{a, b, c, d\}$. Indique, caso exista, uma função de A para B que seja: (a) não injetiva; (b) injetiva; (c) sobrejetiva; (d) não sobrejetiva.
- 4.7. Diga, justificando, quais das seguintes funções são injetivas, sobrejetivas ou bijetivas:

$$f_1: \mathbb{N} \longrightarrow \mathbb{N}, \quad f_1(x) = 2x;$$

$$f_1: \mathbb{N} \longrightarrow \mathbb{N}, \quad f_1(x) = 2x;$$
 $f_2: \mathbb{Q} \setminus \{0\} \longrightarrow \mathbb{Q} \setminus \{0\}, \quad f_2(x) = \frac{1}{x};$

$$f_3: \mathbb{R} \longrightarrow [0, +\infty[, f_3(x) = x^2; f_4: \mathbb{Z} \longrightarrow \mathbb{N}, f_4(x) = |x| + 2.$$

$$f_4: \mathbb{Z} \longrightarrow \mathbb{N}, \quad f_4(x) = |x| + 2.$$

Tópicos de Matemática Discreta

folha 10 –

4.8. Considere as seguintes funções

Verifique que f, g e h são funções bijetivas e determine as respetivas funções inversas.

4.9. Sejam A e B conjuntos não vazios. Considere a função $f: A \times B \to B \times A$ definida por f(a,b) = (b,a), para todo $(a,b) \in A \times B$.

- (a) Mostre que f é bijetiva.
- (b) Determine f^{-1} .

4.10. Considere as funções $f: \mathbb{R} \to \mathbb{R}$ definida por f(x) = |x| + 2, para todo o real x, e $g: \mathbb{R} \to \mathbb{R}$ definida da seguinte forma

$$g(x) = \left\{ \begin{array}{ll} x^2 & \text{se } x \le -2 \\ x+2 & \text{se } x > -2 \end{array} \right..$$

- (a) Determine $f(\{-2,2\})$ e f(]-2,4]).
- (b) Determine $f^{\leftarrow}(\{-2,0,1,2\})$.
- (c) Diga se $g\circ f$ é injetiva e se é sobrejetiva.

4.11. Considere a função $f: \mathbb{R} \to \{3,10\}$ definida da seguinte forma

$$f(x) = \begin{cases} 3 \text{ se } x \in]-\infty, 4[\cup]20, 30] \\ \\ 10 \text{ se } x \in [4, 20] \cup]30, +\infty[\end{cases}.$$

e a função $g: \mathbb{N} \to \mathbb{R}$ definida por $g(n) = 2 - \frac{1}{n}$, para todo o $n \in \mathbb{N}$.

- (a) Determine $g(\{1,2,3,4\})$ e $g^{\leftarrow}(\{1,5\})$.
- (b) Determine $f({x \in \mathbb{R} : x^2 16 = 0}) \in f^{\leftarrow}({10})$.
- (c) Mostre que $f\circ g$ é uma função constante.
- (d) Indique se alguma das funções f ou g é injetiva.