

$$V = \sqrt{\frac{kx^2}{m}}$$

$$Voy = 0$$

$$\Delta x = Vox + \frac{1}{2}at^2$$

$$\Delta x = \frac{1}{2}at^2$$

$$\Delta x = \sqrt{\frac{kx^2}{m}} \cdot \sqrt{\frac{a}{a}}$$

$$Ax = \sqrt{\frac{a}{m}} \cdot \sqrt{\frac{a}{m}}$$

$$Ax = \sqrt{\frac{a}{m}} \cdot \sqrt{\frac{a}}$$

$$Ax = \sqrt{\frac{a}{m}} \cdot \sqrt{\frac{a}}$$

$$Ax = \sqrt{\frac{a}{m}} \cdot \sqrt{\frac{a}}$$

$$Ax$$

b.) According to conservation of energy

KEfinal = PEI

KEtrans + KE rot = mgh

$$\frac{1}{2}$$
 mv² + $\frac{1}{4}$ mv² = mgh

 $\frac{1}{2}$ mv² + $\frac{1}{4}$ mv² = mgh

 $\frac{3}{4}$ mv² = mgh

.: $v^2 = \frac{4}{3}$ (9.8 m/s²)(3) = 39.2 m/s²

KEtotal = KF20++ KEtsans = $\frac{3}{4}$ mu² = $\frac{3}{4}$ (a)(39.2 m/s²)

(XEtotal = S6.8 J

1a. a.) 2.97 light years			
b.) 3062 days (8.89 yrs)			
c.) constant velocity of 0.3c, w'c=3.00×108 m/s	here		