Complejidad Computacional. Tarea 1

Semestre 2019-II

1. Encuentra y demuestra las relaciones asintóticas en términos de la notación O entre los siguientes pares de funciones.

(a)
$$f(n) = a_k n^k$$
, $g(n) = \sum_{i=0}^k a_i n^i$, donde $a_1, \dots a_k$ son constantes.

- (b) $f(n) = n^3$, $q(n) = n^3 \sqrt{n}$.
- (c) $f(n) = \sqrt[3]{n}, g(n) = \sqrt[2]{n}.$
- (d) $f(n) = \log_2(n), g(n) = \log_3(n).$
- (e) $f(n) = \log_2(n^3), g(n) = \log_2(n^2).$
- (f) $f(n) = n \log_3(n), g(n) = n \log_2(n)$.
- 2. Define una máquina de Turing que decida el siguiente lenguaje:

$$L = \{x \in \{0, 1\}^* : \exists n \in \mathbb{N}. |x| = 2^n\}.$$

Encuentra el tiempo de ejecución T(n) de esta máquina y el orden de acuerdo a O a cual que éste pertenece.

3. Se
a $c\in\mathbb{N}$ una constante. Sea Muna máquina de Turing que con función de transición

$$\delta: Q^k \times \Gamma \to Q^k \times \Gamma \times \{\to, \leftarrow\},$$

donde Q^k indica que la función de transición acepta k estados, que computa a f en tiempo T(n). De muestra que existe una máquina de Turing M' con función de transición

$$\delta':Q'\times\Gamma\to Q'\times\Gamma\times\{\to,\leftarrow\}$$

que computa a f en tiempo O(T(n)).

4. Definamos a una máquina de Turing con memoria RAM como aquella que tiene memoria de acceso aleatorio. Formalmente, la máquina cuenta con dos símbolos adicionales R y W, un estado adicional llamado q_{access} , una cinta adicional llamada cinta de dirección y una memoria en forma de un arreglo infinito A inicializado en blanco. Cada que esta máquina entra a q_{access} , si la cinta de dirección contiene la cadena lillamada lillamada lillamada <math>lillamada lillamada lillamada lillamada <math>lillamada lillamada lillamada <math>lillamada lillamada lillamada lillamada lillamada <math>lillamada lillamada lillamada lillamada lillamada lillamada lillamada lillamada <math>lillamada lillamada li

Demuestra que si una función Booleana $f: \{0,1\}^* \to \{0,1\}$ es computable en tiempo T(n) por una máquina de Turing con RAM, entonces $f \in \mathbf{DTIME}(T(n)^2)$.

5. Un número $n \in \mathbb{N}$ está representado por la cadena binaria $d_{\log n} \dots d_0 d_1$ sii

$$n = \sum_{i=0}^{n} d_i \times 2^i.$$

En general, si tomamos como *base* el número b y tenemos el alfabeto $\Sigma = \{0, \dots, b-1\}$, podemos decir que una cadena $d_{\log n} \dots d_0 d_1 \in \Sigma^*$ representa a n sii $d_{\log n} \dots d_0 d_1$ sii

$$n = \sum_{i=0}^{n} b_i \times 2^i.$$

Denotemos por $\lfloor n \rfloor_b$ a la representación del número n en base $b, \lfloor n \rfloor_b \in \{0, \dots, b-1\}^*$.

Sean $S \subseteq \mathbb{N}$ y $L_S^b = \{ \lfloor n \rfloor_b : n \in S \}$, demuestra que

$$L_S^b \in \mathbf{P} \iff L_S^2 \in \mathbf{P}.$$

Ésta es una manera formal de decir que una base distinta para representar los números no tiene ninguna ningún efecto sobre su pertenencia a \mathbf{P} .

- 6. Demuestra que los siguientes lenguajes están en \mathbf{P} (elige la representación que prefieras para las gráficas):
 - CONNECTED: el conjunto de todas las gráficas conexas.
 - BIPARTITE: el conjunto de todas las gráficas bipartitas, es decir, es decir, aquellas cuyos vértices puedan ser divididos en dos conjuntos A y B tales que todas las aristas en la gráfica tengan en un extremo un vértice de A y en el otro uno de B.
- 7. Supón que $L_1, L_2 \in NP$. ¿Qué pasa con $L_1 \cup L_2$ y $L_1 \cap L_2$? Demuestra tus conclusiones.
- 8. Demuestra que si P = NP, entonces NP = coNP.