APUNTES DE LOGICA DIFUSA

APUNTES DE LOGICA DIFUSA	
APUNTES DE LOGICA DIFUSA	
CONJUNTOS DE CANTOR CLARAMENTE DEFINIDOS (CRISP)	2
CONJUNTOS DIFUSOS (FUZZY)	
CONJUNTOS DIFUSOS······	
CONJON LO2 DILO202	4
OPERADORES	
LEYES DE LOS CONJUNTOS	4
CONJUNTOS DIFUSOS······	4
OPERADORES	5
RELACIONES DIFUSAS.	
LOGICA DE PREDICADOS.	
CONECTIVOS.	
METODOLOGÍA PARA EL DISEÑO DE SISTEMAS DIFUSOS	
CONJUNTOS DIFUSOS.	
CONJUNTOS CONVEXOS NORMALES	
MÉTODOS PARA DEFINIR LOS CONJUNTOS DIFUSOS	
INTUICION.	
INFERENCIA	
Ι Δ ΙΜΡΙ ΙCΑCIÓN	25

APUNTES DE LOGICA DIFUSA

CONJUNTOS DE CANTOR CLARAMENTE DEFINIDOS (CRISP)

$$x \in A$$

$$A = \{x \mid x \in A\}$$

$$x_A = \{0,1\}$$

 x_A Es la función característica

$$x_A = 0$$
 si

$$x \notin A$$

$$x_A = 1$$

$$x \in A$$

CONJUNTOS DIFUSOS (FUZZY)

X Elemento del conjunto

Función de pertenencia al conjunto

$$\widetilde{x} \in \widetilde{A}$$

$$\widetilde{A} = \{ \widetilde{x} \mid \widetilde{x} \in \widetilde{A}, 0 \le \mu(x) \le 1 \}$$

$$\mu(x) = [0,1]$$

$$\mathcal{A} = \{(1,0.1), (2,0.2), (3,0.1), (4,0.5), (5,0.), (6,0.1), (7,0.1), (8,0.1), (9,0.1), (10,0.1)\}$$

 \widetilde{A} : Números cercanos a 5 comprendidos del 1 al 10.

$$\widetilde{A} = \sum_{i=1}^{n} \frac{\mu(x)}{x_i}$$
 Notación o

Notación de Zadeh conjuntos discretos

$$\widetilde{A} = \int \frac{\mu(x)}{x_i}$$

Notación de Zadeh conjuntos continuos

$$\widetilde{A} = \frac{0.1}{1} + \frac{0.2}{2} + \frac{0.1}{3} + \frac{0.5}{4} + \frac{0.2}{5} + \frac{0.1}{6} + \frac{0.7}{7} + \frac{1}{8} + \frac{0.3}{9} + \frac{1}{10}$$

LOGICA DIFUSA - 2 de 30

"es una simple notación, en realidad no se tiene que realizar la suma aritmética"

CONJUNTOS DIFUSOS

N: núcleo del conjunto

$$N = \{x \mid x \in \widetilde{A}; \mu_{\widetilde{A}}(x) = 1\}$$

L: límites

$$L = \left\{ x \mid x \in \widetilde{A}; 0 \le \mu(x) \le 1 \right\}$$

S: Soporte

$$S = \left\{ x \mid x \in \widetilde{A}; 0 \le \mu(x) \le 1 \right\}$$

$$\mu(x) \ne 0$$

 $x \in X$: x es un elemento del conjunto x. $x \notin X$: x no es un elemento del conjunto x.

 $A \subseteq X$: A es un subconjunto de B.

 $A \subseteq X$: A esta plenamente contenido en B.

P(x): Potencia del conjunto "es el conjunto de todos los conjuntos posibles en X"

C(x): Cardinalidad que es el número de todos los conjuntos posibles en X.

Ejemplo:

$$A = \{a, b, c\}$$
 n=3

$$P(A) = \{\{a, b, c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a\}, \{b\}, \{c\}, \{\phi\}\}\}$$

$$C(A) = 2^{n} = 2^{3} = 8$$

OPERADORES

U: $A \cup B = \{x \mid x \in A, \delta, x \in B\}$ UNION

 $A \cup B = \{x \mid x \in A, \lor, x \in B\}$

 $A \cap B = \{x \mid x \in A, y, x \in B\}$ \cap : INTERSECCION

 $A \cap B = \{x \mid x \in A, \land, x \in B\}$

 $A/B = \{x \in A, \land, x \notin B\}$ /: DIFERENCIA

 $\overline{A} = \{ x \mid x \notin A, x \in X \}$ COMPLEMENTO

LEYES DE LOS CONJUNTOS

 $A \cup B = B \cup A$ $A \cap B = B \cap A$ **CONMUTATIVIDAD**

 $A \cup (B \cup C) = (A \cup B) \cup C$ $A \cap (B \cap C) = (A \cap B) \cap C$ **ASOCIATIVIDAD**

 $A \cup (B \cap C) = (A \cup B) \cup (A \cup B)$ $A \cap (B \cup C) = (A \cap B) \cup (A \cap B)$ DISTRIBUTIVIDAD

 $A \cap A = A$ $A \cup A = A$ **IDEM POTENCIA** $A \cup \phi = A$ $A \cap \phi = \phi$

IDENTIDAD

Sí $A \subseteq B \subseteq C$ Entonces $A \subseteq C$ **TRANSITIVIDAD**

 $\overline{A} = A$ (al parecer no se muestra la INVOLUCION

doble raya.)

LEYES DE DE $\overline{A \cup B} = \overline{A} \cap \overline{B}$ $\overline{A \cap B} = \overline{A \cup B}$ **MORGAN**

LEY DEL MEDIO $A \cup \overline{A} = X$

EXCLUIDO

LEY De LA $A \cap \overline{A} = \phi$

CONTRADICCION

CONJUNTOS DIFUSOS

$$A; B; A \subseteq X; B \subseteq X$$

Universo bien definido

OPERADORES

$$\cap : \quad \mathsf{INTERSECCION} \quad \overset{A}{\mathcal{A}} \cap \overset{B}{\mathcal{B}} \quad \mu_{\underline{\mathcal{A}} \cup \underline{\mathcal{B}}}(x) = \left\{ \mu_{\underline{\mathcal{A}}}(x) \land \mu_{\underline{\mathcal{B}}}(x) \right\} \quad \quad \mu_{\underline{\mathcal{A}} \cap \underline{\mathcal{B}}}(x) = MIN \left(\mu_{\underline{\mathcal{A}}}(x), \mu_{\underline{\mathcal{B}}}(x) \right)$$

-: COMPLEMENTO
$$\overline{A}$$
 $\mu_{\overline{A}}(x) = 1 - \mu_{A}(x)$

EJEMPLOS:

(HACER GRAFICAS)

SEA

$$A = \frac{0.2}{1} + \frac{0.6}{2} + \frac{1}{3} + \frac{0}{4} + \frac{0}{5}$$

$$B = \frac{0}{1} + \frac{0.7}{2} + \frac{0.4}{3} + \frac{0.2}{4} + \frac{1}{5}$$

$$\underbrace{A \cup B}_{\mathcal{A}} = \frac{MAX(0.2,0)}{1} + \frac{MAX(0.6,0.7)}{2} + \frac{MAX(1,0.4)}{3} + \frac{MAX(0,0.2)}{4} + \frac{MAX(0,1)}{5}$$

$$\underbrace{A \cup B}_{\mathcal{A}} = \frac{0.2}{1} + \frac{0.7}{2} + \frac{1}{3} + \frac{0.2}{4} + \frac{1}{5}$$

$$\underbrace{A \cap B}_{\mathcal{A}} = \frac{MIN(0.2,0)}{1} + \frac{MIN(0.6,0.7)}{2} + \frac{MIN(1,0.4)}{3} + \frac{MIN(0,0.2)}{4} + \frac{MIN(0,1)}{5}$$

$$\underbrace{A \cap B}_{\mathcal{A}} = \frac{0}{1} + \frac{0.6}{2} + \frac{0.4}{3} + \frac{0}{4} + \frac{0}{5}$$

$$\overline{\overline{A}} = \frac{1 - 0.2}{1} + \frac{1 - 0.6}{2} + \frac{1 - 1}{3} + \frac{1 - 0}{4} + \frac{1 - 0}{5}$$

$$\overline{\overline{A}} = \frac{0.8}{1} + \frac{0.4}{2} + \frac{0}{3} + \frac{1}{4} + \frac{1}{5}$$

y de esta manera podemos calcular lo siguiente:

SANTIAGO CRUZ CARLOS 21/03/2007 09:11 03/P3

$$\underline{A} \cap \overline{\underline{A}} = \frac{0.2}{1} + \frac{0.4}{2} + \frac{0}{3} + \frac{0}{4} + \frac{0}{5}$$

$$\underline{A} \cap \overline{\underline{A}} = \frac{0.2}{1} + \frac{0.4}{2}$$

SANTIAGO CRUZ CARLOS 21/03/2007 09:11 03/P3

Al conjunto de candidatos a operadores para la conjunción difusa (y) se les llama **normas** t, para la disyunción difusa (o) se les llama **normas S** o **conormas t**.

Un operador de normas t dado por t(x,y) es una función de mapeo [0,1]x[0,1] a [0,1] que satisface las siguientes condiciones para cualquier w,x,y,z que pertenece a [0,1]

Normas t

1. (0,0)=0	t(x,1)=t(1,x)=x

2.
$$t(x,y) \le t(z,w)$$
 $si x \le z y y \le w$

3.
$$t(x,y) = t(y,x)$$
 conmutatividad

4.
$$t(x,t(y,z)) = t(t(x,y),z)$$
 asociatividad

Normas s

1.
$$(1,1) = 1$$
 $S(x,0) = S(0,X) = X$

2.
$$S(x,y) \le S(z,w)$$
; $si x \le z \quad y \quad y \le z$

3.
$$S(x,y) = S(y,x)$$
 conmutatividad monotonicidad

Fuzzy logic

The new computer science and how is changing our World

Mcneil

Iriedeberg 1993

Simon & Schuster

Fuzzy thinking

Bart kosko

1994 hyperion

PROBLEMA EJEMPLO

C= "casa comfortable para familia de 4 personas"

c= grado de comfort / número de recámaras

Respuesta en clase

$$\tilde{C} = \frac{0.15}{1} + \frac{0.5}{2} + \frac{0.85}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6}$$

Respuesta bibliografía alemana:

$$C = \frac{0.2}{1} + \frac{0.5}{2} + \frac{0.8}{3} + \frac{1}{4} + \frac{0.7}{5} + \frac{0.3}{6}$$

SANTIAGO CRUZ CARLOS 21/03/2007 09:11 03/P3

Tarea:

Encontrar los tipos de operadores para la and (y) y para la or (o) Usando matlab graficar:

$$\mu_{A}(x) = \frac{1}{\left(1 + \frac{x}{5}\right)^{3}}$$

$$\mu_{B}(x) = \frac{1}{1+3(x-5)^{2}}$$

$$0 \le x \le 20$$

GRAFICAR

Ą,

B, Ā

 $A \cup B$

 $A \cap B$

 $\bar{A} \cap \bar{B}$

 $\overline{A} \cup \overline{B}$

 $A \cap \overline{A}$

 $B \cap \overline{B}$

Código en matlab

x=[0:0.1:20];

 $muA=((1+x/5).^3).^{-1};$

 $muB=(1+3*(x-5).^2).^-1;$

plot(x,muA)

plot(x,muB)

muA_neg=1-((1+x/5).^3).^-1;

 $muB_neg=1-(1+3*(x-5).^2).^-1;$

plot(x,muA_neg)

plot(x,muB_neg)

A_union_B=max(muA,muB);

plot(x,A_union_B)

A_interseccion_B=min(muA,muB);

plot(x,A_interseccion_B)

A_neg_union_B_neg=max(muA_neg,muB_neg);

plot(x,A_neg_union_B_neg)

A_neg_inters_B_neg=min(muA_neg,muB_neg);

plot(x,A_neg_inters_B_neg)
A_inters_A_neg=min(muA,muA_neg);
plot(x,A_inters_A_neg)
B_inters_B_neg=min(muB,muB_neg);
plot(x,B_inters_B_neg)

 $A_{\tilde{\epsilon}}$

LOGICA DIFUSA - 10 de 30

SANTIAGO CRUZ CARLOS 21/03/2007 09:11 03/P3

Graficas de A de B

 $\underline{A} \cap \underline{B}$

$$\underline{B} \cap \overline{\underline{B}}$$

SANTIAGO CRUZ CARLOS 21/03/2007 09:11 03/P3

$$x_1$$
 y_2

$$x_2$$
 z_2

 y_3 z_3

R relaciona X con Y S relaciona Y con Z T relaciona X con Z

Max-min
$$T = R \circ S$$

Max-prod $T = R \bullet S$

$$\begin{aligned} x_T(x_i, z_i) &= V_{y \in Y} \big[x_R(x_i, y_i) \land x_S(y_i, z_i) \big] \\ x_T(x_i, z_i) &= \max \big[\min \big(x_R(x_i, y_i), x_S(y_i, z_i) \big) \big] \end{aligned}$$

RELACIONES DIFUSAS

Si
$$A \subseteq X$$
 y $B \subseteq Y$

$$R \subseteq A \times B$$

$$\underline{A} \times \underline{B} \subseteq \underline{X} \times \underline{Y}$$

$$\mu_{R}(x, y) = \mu_{A \times B}(x, y) = \min \left(\mu_{A}(x), \mu_{B}(x) \right)$$

Diagrama sagital

$$\tilde{R} = \begin{vmatrix} 0.8 & 0.6 & 0.1 \\ 0.5 & 0.3 & 0.2 \end{vmatrix}$$

Matriz de relación R, entre X y Y

Ejemplo:

LOGICA DIFUSA - 16 de 30

Sea:

$$A = \frac{0.2}{x_1} + \frac{0.6}{x_2} + \frac{0.1}{x_3}$$

$$A = \begin{vmatrix} 0.2 \\ 0.5 \\ 0.1 \end{vmatrix}$$

$$B = \frac{0.3}{y_1} + \frac{0.9}{y_2}$$

$$B = \begin{vmatrix} 0.3 \\ 0.9 \end{vmatrix}$$

$$\tilde{R} = \begin{vmatrix} \min \left[\mu(x_1), \mu(y_1) \right] & \min \left[\mu(x_1), \mu(y_2) \right] \\ \min \left[\mu(x_2), \mu(y_1) \right] & \min \left[\mu(x_2), \mu(y_2) \right] \\ \min \left[\mu(x_3), \mu(y_1) \right] & \min \left[\mu(x_3), \mu(y_2) \right] \end{vmatrix}$$

$$R = \begin{vmatrix} \min[0.2, 0.3] & \min[0.2, 0.9] \\ \min[0.5, 0.3] & \min[0.5, 0.9] \\ \min[0.1, 0.3] & \min[0.1, 0.9] \end{vmatrix}$$

$$R = \begin{vmatrix} 0.2 & 0.2 \\ 0.3 & 0.5 \\ 0.1 & 0.1 \end{vmatrix}$$

Tarea

Tarea
$$R_{se} = \{R_{se1}, R_{se2}, \dots R_{se1}\}$$

$$I_{a} = \{I_{a1}, I_{a2}, \dots I_{am}\}$$

$$N = \{N_{1}, N_{2}, N_{3}, \dots N_{p}\}$$

$$\widetilde{R} = \widetilde{R}_{se} \times \widetilde{L}_{a}$$

$$\widetilde{S} = \widetilde{L}_{a} \times \widetilde{N}$$

$$\tilde{R}_{se}(\%) = \frac{0.3}{30} + \frac{0.6}{60} + \frac{1}{100} + \frac{0.2}{120}
\tilde{L}_a(\%) = \frac{0.2}{20} + \frac{0.4}{40} + \frac{0.6}{60} + \frac{0.8}{80} + \frac{1}{100} + \frac{0.1}{120}
\tilde{N}(RPM) = \frac{0.33}{500} + \frac{0.67}{1000} + \frac{1}{1500} + \frac{0.15}{1800}$$

$$\tilde{R} = \tilde{R}_{se} \times \tilde{L}_{a}$$

$$\tilde{R} = \tilde{R}_{se} \times \tilde{L}_{a}$$

$$\tilde{R} = \tilde{R}_{se} \times \tilde{L}_{a}$$

$$\tilde{R} = \begin{bmatrix} 20 & 40 & 60 & 80 & 100 & 120 \\ 30 & \min[\mu(R_{se1}), \mu(I_{a1})] & \min[\mu(R_{se1}), \mu(I_{a2})] & \min[\mu(R_{se1}), \mu(I_{a3})] & \min[\mu(R_{se1}), \mu(I_{a4})] & \min[\mu(R_{se1}), \mu(I_{a5})] & \min[\mu(R_{se1}), \mu(I_{a6})] \\ 60 & \min[\mu(R_{se2}), \mu(I_{a1})] & \min[\mu(R_{se2}), \mu(I_{a2})] & \min[\mu(R_{se2}), \mu(I_{a3})] & \min[\mu(R_{se2}), \mu(I_{a4})] & \min[\mu(R_{se2}), \mu(I_{a5})] & \min[\mu(R_{se2}), \mu(I_{a6})] \\ 100 & \min[\mu(R_{se3}), \mu(I_{a1})] & \min[\mu(R_{se3}), \mu(I_{a2})] & \min[\mu(R_{se3}), \mu(I_{a3})] & \min[\mu(R_{se3}), \mu(I_{a4})] & \min[\mu(R_{se3}), \mu(I_{a5})] & \min[\mu(R_{se3}), \mu(I_{a6})] \\ 120 & \min[\mu(R_{se4}), \mu(I_{a1})] & \min[\mu(R_{se4}), \mu(I_{a2})] & \min[\mu(R_{se4}), \mu(I_{a3})] & \min[\mu(R_{se4}), \mu(I_{a4})] & \min[\mu(R_{se4}), \mu(I_{a5})] & \min[\mu(R_{se4}), \mu(I_{a6})] \\ 30 & \min[0.3, 0.2] & \min[0.3, 0.4] & \min[0.3, 0.6] & \min[0.3, 0.8] & \min[0.3, 1] & \min[0.3, 0.1] \\ R = \begin{bmatrix} 20 & 40 & 60 & 80 & 100 & 120 \\ 30 & \min[0.3, 0.2] & \min[0.3, 0.4] & \min[0.3, 0.6] & \min[0.3, 0.8] & \min[0.3, 1] & \min[0.3, 0.1] \\ R = \begin{bmatrix} 60 & \min[0.6, 0.2] & \min[0.6, 0.4] & \min[0.6, 0.6] & \min[0.6, 0.8] & \min[0.6, 0.8] & \min[0.6, 0.1] \\ R = \begin{bmatrix} 60 & \min[0.6, 0.2] & \min[0.6, 0.4] & \min[0.6, 0.6] & \min[0.6, 0.8] & \min[0.6, 0.8] \\ R = \begin{bmatrix} 60 & \min[0.6, 0.2] & \min[0.6, 0.4] & \min[0.6, 0.6] & \min[0.6, 0.8] & \min[0.6, 0.8] \\ R = \begin{bmatrix} 60 & \min[0.6, 0.2] & \min[0.6, 0.4] & \min[0.6, 0.6] & \min[0.6, 0.8] & \min[0.6, 0.8] \\ R = \begin{bmatrix} 60 & \min[0.6, 0.2] & \min[0.6, 0.4] & \min[0.6, 0.6] & \min[0.6, 0.8] \\ R = \begin{bmatrix} 60 & \min[0.6, 0.2] & \min[0.6, 0.4] & \min[0.6, 0.6] & \min[0.6, 0.8] \\ R = \begin{bmatrix} 60 & \min[0.6, 0.2] & \min[0.6, 0.4] & \min[0.6, 0.6] \\ R = \begin{bmatrix} 60 & \min[0.6, 0.2] & \min[0.6, 0.6] & \min[0.6, 0.8] \\ R = \begin{bmatrix} 60 & \min[0.6, 0.2] & \min[0.6, 0.6] & \min[0.6, 0.8] \\ R = \begin{bmatrix} 60 & \min[0.6, 0.2] & \min[0.6, 0.8] & \min[0.6, 0.8] \\ R = \begin{bmatrix} 60 & \min[0.6, 0.2] & \min[0.6, 0.8] & \min[0.6, 0.8] \\ R = \begin{bmatrix} 60 & \min[0.6, 0.2] & \min[0.6, 0.8] & \min[0.6, 0.8] \\ R = \begin{bmatrix} 60 & \min[0.6, 0.2] & \min[0.6, 0.8] & \min[0.6, 0.8] \\ R = \begin{bmatrix} 60 & \min[0.6, 0.2] & \min[0.6, 0.8] & \min[0.6, 0.8] \\ R = \begin{bmatrix} 60 & \min[0.6, 0.2] & \min[0.6, 0.8] & \min[0.6, 0.8] \\ R = \begin{bmatrix} 60 & \min[0.6, 0.2] & \min[0.6, 0.8] & \min[0.6, 0.8] \\ R = \begin{bmatrix} 60 & \min[0.6, 0.2]$$

$$\tilde{R} = \begin{bmatrix} 30 & \min[0.3, 0.2] & \min[0.3, 0.4] & \min[0.3, 0.6] & \min[0.3, 0.8] & \min[0.3, 1] & \min[0.3, 0.1] \\ 60 & \min[0.6, 0.2] & \min[0.6, 0.4] & \min[0.6, 0.6] & \min[0.6, 0.8] & \min[0.6, 1] \\ 100 & \min[1, 0.2] & \min[1, 0.4] & \min[1, 0.6] & \min[1, 0.8] & \min[1, 1] & \min[1, 0.1] \\ 120 & \min[0.2, 0.2] & \min[0.2, 0.4] & \min[0.2, 0.6] & \min[0.2, 0.8] & \min[0.2, 1] \end{bmatrix}$$

$$\tilde{R} = \begin{bmatrix}
20 & 40 & 60 & 80 & 100 & 120 \\
30 & 0.2 & 0.3 & 0.3 & 0.3 & 0.3 & 0.1 \\
60 & 0.2 & 0.4 & 0.6 & 0.6 & 0.6 & 0.1 \\
100 & 0.2 & 0.4 & 0.6 & 0.8 & 1 & 0.1 \\
120 & 0.2 & 0.2 & 0.2 & 0.2 & 0.2 & 0.1
\end{bmatrix}$$

ojo, primera y segunda columna.

$$S = I_a \times N$$

SANTIAGO CRUZ CARLOS 21/03/2007 09:11 03/P3

$$S = \begin{bmatrix} 500 & 1000 & 1500 & 1800 \\ 20 & \min[\mu(I_{a1}), \mu(N_1)] & \min[\mu(I_{a1}), \mu(N_2)] & \min[\mu(I_{a1}), \mu(N_3)] & \min[\mu(I_{a1}), \mu(N_4)] \\ 40 & \min[\mu(I_{a2}), \mu(N_1)] & \min[\mu(I_{a2}), \mu(N_2)] & \min[\mu(I_{a2}), \mu(N_3)] & \min[\mu(I_{a2}), \mu(N_4)] \\ 60 & \min[\mu(I_{a3}), \mu(N_1)] & \min[\mu(I_{a3}), \mu(N_2)] & \min[\mu(I_{a3}), \mu(N_3)] & \min[\mu(I_{a3}), \mu(N_4)] \\ 80 & \min[\mu(I_{a4}), \mu(N_1)] & \min[\mu(I_{a4}), \mu(N_2)] & \min[\mu(I_{a4}), \mu(N_3)] & \min[\mu(I_{a4}), \mu(N_4)] \\ 100 & \min[\mu(I_{a5}), \mu(N_1)] & \min[\mu(I_{a5}), \mu(N_2)] & \min[\mu(I_{a5}), \mu(N_3)] & \min[\mu(I_{a5}), \mu(N_4)] \\ 120 & \min[\mu(I_{a6}), \mu(N_1)] & \min[\mu(I_{a6}), \mu(N_2)] & \min[\mu(I_{a6}), \mu(N_3)] & \min[\mu(I_{a5}), \mu(N_4)] \\ 20 & \min[\mu(I_{a6}), \mu(N_1)] & \min[\mu(I_{a6}), \mu(N_2)] & \min[\mu(I_{a6}), \mu(N_3)] & \min[\mu(I_{a6}), \mu(N_4)] \\ 40 & \min[0.2, 0.33] & \min[0.2, 0.67] & \min[0.2, 1] & \min[0.2, 0.15] \\ 40 & \min[0.4, 0.33] & \min[0.4, 0.67] & \min[0.4, 1] & \min[0.4, 0.15] \\ 80 & \min[0.8, 0.33] & \min[0.8, 0.67] & \min[0.8, 1] & \min[0.8, 0.15] \\ 100 & \min[1, 0.33] & \min[0.1, 0.67] & \min[0.1, 1] & \min[0.1, 0.15] \\ 20 & 0.2 & 0.2 & 0.2 & 0.15 \\ 40 & 0.33 & 0.4 & 0.4 & 0.15 \\ 80 & 0.33 & 0.67 & 0.8 & 0.15 \\ 100 & 0.33 & 0.67 & 1 & 0.15 \\ 120 & 0.1 & 0.1 & 0.1 & 0.1 \\ \end{bmatrix}$$

SANTIAGO CRUZ CARLOS 21/03/2007 09:11 03/P3

_	
п.	
×	_
•	

0.2000	0.3000	0.3000	0.3000	0.3000	0.1000
0.2000	0.4000	0.6000	0.6000	0.6000	0.1000
0.2000	0.4000	0.6000	0.8000	1.0000	0.1000
0.2000	0.2000	0.2000	0.2000	0.2000	0.1000

S =

0.2000	0.2000	0.2000	0.1500
0.3300	0.4000	0.4000	0.1500
0.3300	0.6000	0.6000	0.1500
0.3300	0.6700	0.8000	0.1500
0.3300	0.6700	1.0000	0.1500
0.1000	0.1000	0.1000	0.1000

SANTIAGO CRUZ CARLOS 21/03/2007 09:11 03/P3

LOGICA DE PREDICADOS

P: Proposición difusa en el universo del discurso

 $T(P) = \mu(x)$: Grado de verdad de P $0 \le \mu(x) \le 1$

CONECTIVOS

Si $_{\sim}^{P}$ y $_{\sim}^{Q}$ son proposiciones difusas en el mismo universo X, entonces $_{\sim}^{P}$ y $_{\sim}^{Q}$ se pueden unir mediante conectivos.

$$\land : \qquad \text{Conjunción} \qquad \underset{\sim}{P} \land \underset{\sim}{Q} \qquad \qquad T\left(\underset{\sim}{P} \land \underset{\sim}{Q}\right) = MIN[T\left(\underset{\sim}{P}\right), T\left(\underset{\sim}{Q}\right)]$$

-: Negación
$$\overline{P}$$
 $T(\overline{P}) = 1 - T(P)$

$$\text{Implicación} \qquad \underset{\sim}{P} \to \underset{\sim}{Q} \qquad \qquad T\left(\underset{\sim}{P} \to \underset{\sim}{Q}\right) = T\left(\underset{\sim}{\overline{P}} \vee \underset{\sim}{Q}\right) = MAX[1 - T\left(\underset{\sim}{P}\right), T\left(\underset{\sim}{Q}\right)]$$

 $\it P$ es el antecedente y $\it Q$ el consecuente, un antecedente verdadero no puede implicar un consecuente falso.

$$\Leftrightarrow$$
: Equivalencia $P \leftrightarrow Q$

Un antecedente <u>verdadero</u> **no** puede implicar un consecuente <u>falso</u>. Un antecedente <u>verdadero</u> **si** puede implicar un consecuente <u>verdadero</u> Un antecedente <u>falso</u> **si** puede implicar un consecuente <u>falso</u> Un antecedenete falso **si** puede implicar un consecuente verdadero

P	Q	\overline{P}	\overline{Q}	$P \lor Q$	$P \wedge Q$	$P \rightarrow Q$	$P \leftrightarrow Q$	$\overline{P} \vee Q$
F	F	٧	٧	F	F	٧	٧	V
F	V	V	F	V	F	V	F	V
٧	F	F	٧	٧	F	F	F	F
V	V	F	F	V	V	V	V	V

T(P)	T(Q)	$T(\overline{P})$	$T(\overline{Q})$	$T(P \lor Q)$	$T(P \land Q)$	$T(P \to Q)$	$T(P \leftrightarrow Q)$	$T(\overline{P} \vee Q)$
0	0	1	1	0	0	1	1	1
0	1	1	0	1	0	1	0	1
1	0	0	1	1	0	0	0	0
1	1	0	0	1	1	1	1	1

-

_

-

- Si las proposiciones o juicios están en diferentes universidad, entonces:
- Sea P un juicio o proposición en A

$$P \subseteq A$$

y $A \subseteq X$

sea Q un juicio o proposición en B

$$Q \subseteq A$$

y $B \subseteq Y$

$$R = P \to Q$$

$$R = (A \times B) \cup (\overline{A} \times Y)$$

Ilustración 1 IMPLICACION

LOGICA DIFUSA - 23 de 30

$$(T \to Q) = T(\overline{P} \vee Q)$$

$$P \rightarrow Q = \overline{P} \cup Q$$

METODOLOGÍA PARA EL DISEÑO DE SISTEMAS DIFUSOS

- 1. Identificar las entradas y las salidas del sistema
- 2. Dividir el sistema o los universos del discurso
- 3. Definir los conjuntos difusos de entrada y de salida
- 4. Escoger las reglas del sistema
- 5. Optimizar el sistema
- 6. Implementar el sistema difuso en la plataforma a utilizar

CONJUNTOS DIFUSOS

$S(\alpha, oldsymbol{eta})$		
	$\begin{vmatrix} 0 \\ x- \end{vmatrix}$	$x < \alpha$ $\frac{\alpha}{\alpha} \alpha \le x \le \beta$ $x > \beta$
	$\mu(x) = \begin{cases} \frac{\beta}{\beta} - \frac{\beta}{$	$\alpha \alpha \leq x \leq \beta$
	[1	$x > \beta$
$Z(\alpha, \beta)$		
	$\begin{vmatrix} x \\ x \end{vmatrix}$	$x < \alpha$ $\frac{\alpha}{\alpha} \alpha \le x \le \beta$ $x > \beta$
	$\mu(x) = \frac{1}{\beta}$	$\overline{\alpha} \alpha \le x \le \beta$
+	0	$x > \beta$
$\lambda(\alpha,eta,\gamma)$ o $\Lambda(\alpha,eta,\gamma)$	0	$x < \alpha$
	$u(x) = \int_{\beta} \frac{x-\beta}{\beta}$	$\frac{\alpha}{\alpha} \alpha < x < \beta$ $\frac{\gamma}{\lambda} \beta < x < \lambda$
	$\frac{x-}{\beta-}$	$\frac{\gamma}{\lambda}$ $\beta < x < \lambda$
	[1	$x = \beta$
$\pi(\alpha, \beta, \gamma, \delta)$ o $\Pi(\alpha, \beta, \gamma, \delta)$		$x < \alpha$
<u> </u>	$\rightarrow \frac{x-}{\beta-}$	$\frac{\alpha}{\alpha}$ $\alpha < x < \beta$
	$\mu(x) = \begin{cases} 1 \end{cases}$	$\beta < x < \lambda$
	$\frac{x-}{\beta-}$	$ \frac{\alpha}{\alpha} \alpha < x < \beta \\ \beta < x < \lambda $ $ \frac{\alpha}{\alpha} \beta < x < \gamma $
		$x > \delta$

VERSIONES ACAMPANADAS

(FALTAN TRES GRAFICAS)

CONJUNTOS CONVEXOS NORMALES

Los conjuntos convexos son aquellos cuya función de membresía es: estrictamente creciente o decreciente, o creciente y luego decreciente. Los conjuntos normales son aquellos en los que por lo menos existe un elemento del universo con un grado de pertenencia unitario.

(FALTAN DOS GRAFICAS) MÉTODOS PARA DEFINIR LOS CONJUNTOS DIFUSOS

Al definir conjuntos, es conveniente manejar números impares de conjuntos, además es conveniente que los cruces ocurran solamente entre dos conjuntos y el punto de intersección con una $\mu(x)=0.5$

Los métodos para definir conjuntos difusos son:

- Intuición
- Inferencia
- Ordenación por rango
- Conjuntos difusos angulares
- Redes neuronales
- Por algoritmos genéticos

INTUICION

Conocimiento inmediato de un objeto, también se ha definido como el conocimiento inmediato de una verdad.

Ejemplo:

Definir los conjuntos difusos para las temperaturas: fría, fresca, agradable, tibia, caliente, muy caliente.

INFERENCIA

Acción y efecto de inferir (deducir una cosa a partir de otra)

Ejemplo:

LA IMPLICACIÓN

Las proposiciones en dos universos diferentes:

Sea \mathcal{P} una proposición en \mathcal{A} Sea \mathcal{Q} una proposición en \mathcal{B}

 $P \in A$ $Q \in B$ $A \subset X$ $B \subset Y$

 $R = P \rightarrow Q$

 $R = (A \times B) \cup (A \times Y)$ $T(P \to Q) = T(P \vee Q) = MAX \{ \min[T(A), T(B)], 1 - T(A) \}$

EJEMPLO

Una compañía ha inventado un nuevo producto, y se desea realizar una evaluación de su potencial comercial, en función de su originalidad, y del tamaño del mercado. Obtener la implicación $\underline{A} \to \underline{B}$

 $A \subseteq X$: Originalidad

$$B \subseteq Y$$
: Tamaño del mercado

$$A = \frac{0}{1} + \frac{0.6}{2} + \frac{1}{3} + \frac{0.2}{4}$$

$$A = \frac{0}{1} + \frac{0.4}{2} + \frac{1}{3} + \frac{0.8}{4} + \frac{0.3}{5} + \frac{0}{6}$$

$$\underline{R} = \left(\underline{A} \times \underline{B}\right) \cup \left(\overline{\underline{A}} \times Y\right)$$

$$\mu_{\underline{R}}(x,y) = MAX \left\{ \min \left[\mu_{\underline{A}}(x), \mu_{\underline{B}}(x) \right], 1 - \mu_{\underline{A}}(x) \right\}$$

$$\underbrace{A}_{1} = \begin{bmatrix} 0 \\ a_{2} \\ a_{3} \\ a_{4} \\ 0.2 \end{bmatrix} \qquad \underbrace{\bar{A}}_{2} = \begin{bmatrix} \bar{a}_{1} \\ 0.4 \\ 0 \\ 0.8 \end{bmatrix}$$

$$b_1 \quad b_2 \quad b_3 \quad b_4 \quad b_5 \quad b_6$$

$$\underline{B} = \begin{bmatrix} 0 & 0.4 & 1 & 0.8 & 0.3 & 0 \end{bmatrix}$$

$$b_1 \quad b_2 \quad b_3 \quad b_4 \quad b_5 \quad b_6$$

$$Y = 1 \quad 1 \quad 1 \quad 1 \quad 1 \quad 1$$

$$\overline{\underline{A}} \times Y = a_{2} \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 0.4 & 0.4 & 0.4 & 0.4 & 0.4 & 0.4 \\ a_{3} & a_{4} & 0.8 & 0.8 & 0.8 & 0.8 & 0.8 \end{bmatrix}$$

$$\begin{array}{c}
 b_1 \quad b_2 \quad b_3 \quad b_4 \quad b_5 \quad b_6 \\
a_1 \quad R = a_2 \quad \begin{bmatrix}
 1 & 1 & 1 & 1 & 1 & 1 \\
 0.4 & 0.4 & 0.6 & 0.6 & 0.4 & 0.4 \\
 0 & 0.4 & 1 & 0.8 & 0.3 & 0 \\
 0.8 & 0.8 & 0.8 & 0.8 & 0.8 & 0.8
\end{array}$$

VARIABLES LINGÜÍSTICAS

jitomate es maduro

Vamos a usar variables lingüísticas, que puedan ser de tres tipos:

Juicios de asignación
 Juicios condicionales
 Ejemplos: x es grande, x es pequeña
 Ejemplos: IF el jitomate es rojo THEN el

3. Juicios incondicionales Ejemplos: órdenes, asignaciones.

FALTA 18 y 19

MÁQUINA DE INFERENCIA

Difusión: proceso que convierte las entradas nítidas en entradas difusas.

Derivada: ofrece sentido y rapidez de cómo varia la variable.