Last date Jubinistin Assignment 205

[31-12-200]

B1 Explaine why each of the following integrals 15 Impriper $\int_{\delta}^{\infty} \frac{1}{1+x^3} dx$ $(1) \int_{\frac{x}{2}-1}^{2} dx = 0$ (iii) $\int_{\infty}^{\infty} x^2 e^{-x^2} dx$ (iv) $\int_{\delta}^{\pi/4} c_{\delta} dx dx$ Determine whether each integral is convergent or divergent. Evaluate those that are convergent $\int_{3}^{\infty} \frac{1}{(x-2)^{3}} dx \qquad \text{(i)} \qquad \int_{-\infty}^{\infty} \frac{2}{2^{3}+4} dx$ $\int_{1}^{\infty} \frac{1}{x(\ln n)^{2}} dn \qquad (1) \int_{1}^{\infty} \frac{dn}{\sqrt{x}} \int_{1}^$ $\int_{0}^{1} \frac{dn}{\sqrt{1-x^{2}}} \left(\sqrt{1} \right) \int_{0}^{\sqrt{1}/2} \frac{\cos \theta}{\sqrt{1-\sin \theta}} d\theta$ (nn) Zulundi. $\int \frac{e^{1/x}}{x^3} dx$

Chp# 6. 1.6 63: - Sketch the region enclosed by the given curres and find its area. y=x2, y=4x-x2 y= secx, y=8 (68", -17 = x=17/3 (111) $y = x^4$, $y = \partial - |x|$ Sketch the region enclosed by the given curses, and find its area. y = x y = x y = x y = x y = x y = x y = x y = x y = x y = x y = x y = x y = x y = x y = xy= x \(\frac{\chi}{1+\chi^2} \), \(\frac{\chi}{19-\chi^2} \) J= Inx, y= (Inn)2 Find the limit, use L'Hosepital Rules where appropriate 1) $l_{x\rightarrow 4}$ $\frac{\chi^2-2\chi-8}{\chi-4}$ (1) l_{im} $\frac{Cos\chi}{1-s_{in}\chi}$ l 1+ cosn (v) lim cosmn-cosmn V $\lim_{x \to 1} \frac{x^{q-1}}{x^{b-1}}$, $b \neq 0$, $\lim_{x \to 1} \left(\frac{x}{x-1} - \frac{1}{\ln n}\right)$ (VII) lim / (osecx - cox)