Wydział FiIS	1. Mikołaj Gralczyk 2. Karolina Nowosad		Rok III	Grupa VII	Zespół III
Pracownia Izotopowa WFiIS	Temat: Efel	Nr ćwiczenia 18			
Data wykonania 18.03.2015	Data oddania 22.06.2015	Zwrot do popr.	Data oddania	Data zaliczenia	OCENA

0. Cel ćwiczenia

Celem ćwiczenia było:

- zapoznanie się z efektem Szilarda Chalmersa i zastosowanie go do wydzielenia izotopu ⁵⁶Mn z roztworu KmnO₄,
- sprawdzenie wydajności efektu w zależności od pH roztworu.

1. Wstęp teoretyczny

Efekt Szilarda-Chalmersa - jeżeli jądro atomu wchodzącego w skład jakiegoś połączenia chemicznego ulegnie przemianie (n,γ) , to emisja kwantów towarzysząca wychwytowi neutronu udziela jądru pewnej energii odskoku zgodnie z prawem zachowania pędu. Ta energia odskoku jest w stanie zerwać wiązanie chemiczne atomu z cząsteczką. Jeżeli tak wyrwany atom nie ulegnie rekombinacji z cząsteczką, można go wydzielić z substancji macierzystej.

Efektywność metody Szilarda-Chalmersa zależy od wyboru substancji wyjściowej, warunków napromieniowania i metody wydzielania, przy czym miarą tej efektywności jest wydajność izotopu promieniotwórczego i współczynnik wzbogacenia.

2. Układ pomiarowy

W skład układu pomiarowego wchodzą:

- urządzenie do pomiaru aktywności z licznikiem scyntylacyjnym,
- źródło neutronów termicznych.

Odczynniki wykorzystane podczas ćwiczenia:

• 3% roztwór KMnO₄ o pH 7 i 12.

3. Metody pomiaru

W pierwszej kolejności przelano naświetlony roztwór KMnO₄ o pH 7 do cylindra w celu zmierzenia jego objętości, wyniosła 40 ml. Następnie przelano całą objętość do zlewki i intensywnie wymieszano. Pobrano 4 ml roztworu wraz z osadem pipetą automatyczną do zakręcanego pojemnika (symbol 1O). Resztę roztworu przesączono. W międzyczasie umyto cylinder oraz zlewkę. Osad pozostały po sączeniu wraz z sączkiem umieszczono w zakręcanym pojemniku (symbol 2O). Przesącz przelano do zlewki, a następnie do cylindra w celu zmierzenia końcowej objętości, która wyniosła 36 ml. Pobrano z cylindra 4 ml przesączu pipetą automatyczną do zakręcanego pojemnika (symbol 3O). Po wykonaniu tej części ćwiczenia dokładnie umyto cylinder, zlewkę oraz układ do przesączania.

Postąpiono tak samo z naświetlonym roztworem KMnO₄ o pH 12, czyli przelano do cylindra i zmierzono jego objętość, która wyniosła 44 ml. Kolejno całą objętość przelano do zlewki i intensywnie wymieszano. Pobrano 4 ml roztworu wraz z osadem pipetą automatyczną do zakręcanego pojemnika (symbol 1Z). Następnie przesączono mieszaninę. Sączek umieszczono w zakręconym pojemniku (symbol 2Z). Objętość przesączu zmierzono w cylindrze, wyniosła 40 ml, a następnie pobrano 4 ml przesączu pipetą automatyczną do zakręcanego pojemnika (symbol 3Z).

Widmo wszystkich próbek zmierzono za pomocą licznika scyntylacyjnego.

4. Wyniki pomiarów

tabela 1 Zestawienie wyników pomiaru właściwego.

Symbol	Area	u(Area)	Integral
1Z	555	7,34%	877
2Z	1368	5,32%	2509
3Z	214	15,14%	458
10	600	6,68%	892
20	2741	3,31%	4437
3O	93	23,16%	200

tabela 2Zestawienie wyników pomiarów przeskalowanych wyników pomiaru właściwego.

		<i>J</i> - · · · <i>J</i>		
Symbol	A	u(A)	A_c	u(A _c)
1Z	555	24	6105	259
2Z	1368	37	1368	37
3Z	214	15	2140	146
10	600	24	6000	245
20	2741	52	2741	52
3O	93,0	9,6	837	87

A – pomiar właściwy,

A_C – przeskalowany pomiar właściwy

5. Opracowanie wyników

5.1. Sprawdzenie, czy ⁵⁶Mn w mieszaninie MnO₂ i KmnO₂ jest sumą zawartości tego izotopu (w granicach niepewności pomiaru) w osadzie i przesączu (bilans ⁵⁶Mn)

W pierwszej kolejności przeskalowano wyniki aktywności według objętości roztworu, przesączu i sączka zgodnie z poniższym schematem:

- roztwór zasadowy pomnożono razy 44/4
- sączek z roztworu zasadowego przemnożono razy 40/40
- przesacz z roztworu zasadowego przemnożono razy 40/4
- roztwór obojętny pomnożono razy 40/4
- sączek z roztworu obojętnego przemnożono razy 36/36
- przesącz z roztworu obojętnego przemnożono razy 36/4

Ta sama czynność wykonano dla niepewności aktywności. Wyniki zamieszczono w tabeli 2.

Następnie sprawdzono, czy ⁵⁶Mn w mieszaninie MnO₂ i KmnO₂ jest sumą zawartości tego izotopu w osadzie i przesączu.

$$A_{c_z} = A_{C_{zz}} + A_{C_{3z}} = 3508$$

$$u(A_{c_z}) = \sqrt{(u(A_{C_{zz}}))^2 + (u(A_{C_{3z}}))^2} = 151$$

$$A_{c_o} = A_{C_{20}} + A_{C_{30}} = 3578$$

$$u(A_{c_o}) = \sqrt{(u(A_{C_{20}}))^2 + (u(A_{C_{30}}))^2} = 101$$

Wydajność efektu Szilarda-Chalmersa wyraża się poniższym wzorem (1).

$$W = \frac{A_{sqczka}}{A_{sqczka} + A_{przesqczu}} \tag{1}$$

$$W_Z = \frac{A_{c_{2Z}}}{A_{c_{2Z}} + A_{c_{3Z}}} = \frac{1368}{1368 + 2140} = \mathbf{0.390}$$

$$u(W_{Z}) = \sqrt{\left[\frac{\delta W_{Z}}{\delta A_{c_{2Z}}} \cdot u(A_{c_{2Z}})\right]^{2} + \left[\frac{\delta W_{Z}}{\delta A_{c_{3Z}}} \cdot u(A_{c_{3Z}})\right]^{2}} = \sqrt{\left[\frac{A_{c_{3Z}}}{(A_{c_{2Z}} + A_{c_{3Z}})^{2}} \cdot u(A_{c_{2Z}})\right]^{2} + \left[\frac{-A_{c_{2Z}}}{(A_{c_{2Z}} + A_{c_{3Z}})^{2}} \cdot u(A_{c_{3Z}})\right]^{2}} = \sqrt{\left[\frac{2140}{(1368 + 2140)^{2}} \cdot 37\right]^{2} + \left[\frac{-1368}{(1368 + 2140)^{2}} \cdot 146\right]^{2}} = \mathbf{0.017}$$

$$W_{O} = \frac{A_{c_{20}}}{A_{c_{20}} + A_{c_{30}}} = \frac{2741}{2741 + 837} = \mathbf{0.766}$$

$$u(W_{O}) = \sqrt{\left[\frac{\delta W_{O}}{\delta A_{c_{20}}} \cdot u(A_{c_{20}})\right]^{2} + \left[\frac{\delta W_{O}}{\delta A_{c_{30}}} \cdot u(A_{c_{30}})\right]^{2}} = \sqrt{\left[\frac{A_{c_{30}}}{(A_{c_{20}} + A_{c_{30}})^{2}} \cdot u(A_{c_{20}})\right]^{2} + \left[\frac{-A_{c_{20}}}{(A_{c_{20}} + A_{c_{30}})^{2}} \cdot u(A_{c_{30}})\right]^{2}} = \sqrt{\left[\frac{837}{(2741 + 837)^{2}} \cdot 52\right]^{2} + \left[\frac{-2741}{(2741 + 837)^{2}} \cdot 87\right]^{2}} = \mathbf{0.019}$$

5.3. Energia odskoku atomu ⁵⁶Mn

Do wyliczenia energii odskoku atomu ⁵⁶Mn skorzystano ze wzoru (2). Założono również, że energia kwantów γ wynosi E_{γ} = 2MeV .

$$E_{odskoku} = \frac{E_{\gamma}^{2}}{1863 \cdot A} = \frac{4}{1862 \cdot 56} = 38,34 \, eV \tag{2}$$

6. Wnioski

- wydajność efektu Szilarda-Chalmersa jest większa dla roztworów organicznych o pH obojętnym co jest zgodne z przewidywaniami teoretycznymi. W przeprowadzonym doświadczeniu wydajność ta była prawie dwa razy większa dla roztworu o pH=7 w porównaniu do roztworu o pH=12. Wiadomo również, że zawartość procentowa ⁵⁶Mn w MnO⁻₄ jest większa dla roztworu o odczynie zasadowym, zatem wydajność efektu Szilarda-Charmelsa będzie w tym środowisku mniejsza.
- wyliczony bilans zawartości ⁵⁶Mn dla próbek roztworu obojętnego i zasadowego nie jest zgodny w
 granicach niepewności. Wynikać to może z nieprawidłowego wykonania sączenia oraz z
 pozostałości resztek roztworu po przelewaniu na ściankach naczyń laboratoryjnych,
- wyznaczona energia odrzutu E_{odskoku} wyniosła 38.34 eV, a więc zgodnie z przewidywaniami przekracza energię wiązań chemicznych kilkukrotnie.