Convergence of Taylor Series

SUGGESTED REFERENCE MATERIAL:

As you work through the problems listed below, you should reference your lecture notes and the relevant chapters in a textbook/online resource.

EXPECTED SKILLS:

- Know (i.e. memorize) the Remainder Estimation Theorem, and use it to find an upper bound on the error in approximating a function with its Taylor polynomial.
- Find the value(s) of x for which a Taylor series converges to a function f(x).

PRACTICE PROBLEMS:

- 1. Find an upper bound for the remainder error if the 4th Maclaurin polynomial for $f(x) = \cos x$ is used to approximate $\cos 5^{\circ}$.
- 2. Find an upper bound for the remainder error if the 2nd Maclaurin polynomial for $f(x) = e^x$ is used to approximate \sqrt{e} ? Note: You may assume that $\sqrt{e} < 2$ (this should be clear since $\sqrt{e} < \sqrt{3} < \sqrt{4} = 2$).
- 3. Find the smallest value of n that is needed so that the n-th Macluarin polynomial $p_n(x)$ approximates \sqrt{e} to four decimal-place accuracy. In other words, find the smallest value of n so that the n-th remainder $|R_n(\frac{1}{2})| \le 0.00005$.

Note: You may assume that $\sqrt{e} < 2$ (this should be clear since $\sqrt{e} < \sqrt{3} < \sqrt{4} = 2$).

- 4. Find the smallest value of n so that the Taylor polynomial for $f(x) = \ln(x)$ about $x_0 = 1$ approximates $\ln(1.2)$ to three decimal-place accuracy.
- 5. The purpose of this problem is to show that the Maclaurin series for $f(x) = \cos x$ converges to $\cos x$ for all x.
 - (a) Find the Maclaurin series for $f(x) = \cos x$.
 - (b) Find the interval of convergence for this Maclaurin series.
 - (c) Show that the *n*-th remainder goes to 0 as *n* goes to $+\infty$, i.e. show that $\lim_{n\to+\infty} |R_n(x)| = 0$.
- 6. Show that the Maclaurin series for $f(x) = \frac{1}{1-x}$ converges to f(x) for all x in its interval of convergence.
- 7. The pupose of this problem is to show that it is possible for a function f(x) to have a Maclaurin series that converges for all x but does not always converge to f(x).

1

Consider the piecewise function
$$f(x) = \begin{cases} e^{(-1/x^2)}, & \text{if } x \neq 0 \\ 0, & \text{if } x = 0 \end{cases}$$
.

- (a) Use the definition of the derivative $f'(x) = \lim_{h \to 0} \frac{f(x+h) f(x)}{h}$ to show that f'(0) = 0. Hint: Make the substitution $t = \frac{1}{h}$ and compute the one-sided limits as $h \to 0^+$ and $h \to 0^-$.
- (b) Assuming that $f^{(n)}(0) = 0$ for $n \ge 2$, find the Macluarin series for f(x) and the interval of convergence for the series.
- (c) Find the values of x for which the Maclaurin series converges to f(x).