Лабораторная работа №6 по математическому моделированию

Задача об эпидемии

Хусайнова Фароиз Дилшодовна

Содержание

1 Цель работы	5
2 Задание	6
3 Выполнение лабораторной работы	7
4 Выводы	11

Список таблиц

Список иллюстраций

3.1	Код программы	8
3.2	График изменения $I(t)$ и $R(t)$, если $I(0) \leq I^*$	9
3.3	График изменения $S(t)$, $I(t)$ и $R(t)$, если $I(0) \le I^*$	9
3.4	График изменения, $S(t)$, $I(t)$ и $R(t)$, если $I(0) > I^*$	10

1 Цель работы

Ознакомиться с простейшей моделью Эпидемии и ее построение с помощью языка программирования Modelica.

2 Задание

- 1. Построить график изменения числа особей в каждой из трех групп по модели SIR.
- 2. Рассмотреть развитие эпидемии в двух случаях.

3 Выполнение лабораторной работы

Предположим, что некая популяция, состоящая из N особей, (считаем, что популяция изолирована) подразделяется на три группы

- 1. S(t) восприимчивые к болезни, но пока здоровые особи
- 2. I(t) это число инфицированных особей, которые также при этом являются распространителями инфекции
- 3. R(t) это здоровые особи с иммунитетом к болезни.

До того, как число заболевших не превышает критического значения I*, считаем, что все больные изолированы и не заражают здоровых. Когда I(t) > I*, тогда инфицирование способны заражать восприимчивых к болезни особей.

Скорость изменения числа особей, восприимчивых к болезни S(t) меняется по следующему закону:

$$\frac{dS}{dt} = \begin{cases} -\alpha S, \text{если}I(t) > I^* \\ 0, \text{если}I(t) \le I^* \end{cases}$$

Скорость изменения числа инфекционных особей I(t) меняется по следующему закону:

$$rac{dI}{dt} = egin{cases} lpha S - eta I, ext{если} I(t) > I^* \ -eta I, ext{если} I(t) \le I^* \end{cases}$$

Скорость изменения числа выздоравливающих особей R(t) меняется по следующему закону:

$$\frac{dI}{dt} = \beta I$$

Постоянные пропорциональности:

- α коэффициент заболеваемости
- β коэффициент выздоровления

Код программы, реализованный на языке программирования Modelica (рис. @fig:001)

Рис. 3.1: Код программы

Посторим графики, когда $I(0) \le I^*$ с начальными условиями I(0) = 117, R(0) = 17. Коэффициенты $\alpha = 0.01, \beta = 0.02$. (рис. @fig:001)

Рис. 3.2: График изменения I(t) и R(t), если $I(0) \leq I^*$

А теперь добавим график изменения числа особей, восприимчивых к болезни, S(0) = 17000, если число инфицированных не превышает критического значения (рис. @fig:001).

Рис. 3.3: График изменения S(t), I(t) и R(t), если $I(0) \leq I^*$.

Теперь же построим график, когда $I(0) > I^*$ с начальными условиями I(0) = 117, R(0) = 17, S(0) = 17000. Коэффициенты $\alpha = 0.01, \beta = 0.02$. (рис. @fig:001)

Рис. 3.4: График изменения, S(t), I(t) и R(t), если $I(0) > I^*$.

4 Выводы

При выполнении данной лабораторной работы я ознакомилась с простейшей моделью Эпидемии, построив для нее графики изменения числа особей в трех группах для двух случаев: $I(0) \leq I^*$ и $I(0) > I^*$.