

Análisis I - Matemática I - Análisis II (C) - Análisis Matemático I (Q)

Práctica 6: Polinomio de Taylor

- 1. (a) Hallar el polinomio de Maclaurin de grado tres para la función $f(x) = \ln(x+1)^2$.
 - (b) Hallar el polinomio de Maclaurin de grado tres para la función $g(x) = e^{x+2}$.
 - (c) Desarrollar la función $p(x) = x^4 5x^3 + 5x^2 + x + 2$ en potencias de x 2;
 - (d) Desarrollar la función $g(x) = \sqrt{x}$ en potencias de x 1 hasta orden 3.
- 2. (a) Hallar p el polinomio de Maclaurin de orden 2 y la expresión del resto para la función $f(x) = \sqrt{1+x}$.
 - (b) Estimar el error que se comete al aproximar f(0,2) por p(0,2).
- 3. Calcular el polinomio de Taylor de segundo orden de las funciones dadas en el punto indicado. Escribir la forma de Lagrange del resto.
 - (a) $f(x,y) = (x+y)^2$ en (0,0),
 - (b) $f(x,y) = e^{x+y}$ en (0,0),
 - (c) $f(x,y) = \frac{1}{x^2 + y^2 + 1}$ en (0,0),
 - (d) f(x,y) = x + xy + 2y en (1,1),
 - (e) $f(x,y) = e^{(x-1)^2} \cos(y)$ en (1,0),
 - (f) $f(x,y) = e^x \sin(xy)$ en $(2, \frac{\pi}{4})$,
 - (g) $f(x,y) = \ln(1+xy)$ en (2,3),
 - (h) $f(x, y, z) = x + \sqrt{y} + \sqrt[3]{z}$ en (2, 3, 4).
- 4. Sea $f(x,y) = 1 + e^{x+y-7x^2-9y^2}$. Calcular el polinomio de Taylor de orden 1 y 2 de f en P = (0,0). Usando geogebra graficar f y superponer el gráfico de cada uno de los polinomios. Hacer lo mismo para $f(x,y) = \sin(xy)$ y para $f(x,y) = e^{x-y}$.
- 5. Utilizando el polinomio de Taylor de $f(x,y) = x^y$, aproximar $(0.95)^{2.01}$
 - (a) con error menor que 1/200.
 - (b) con error menor que 1/5000.
- 6. Sea $f: \mathbb{R}^2 \to \mathbb{R}$ definida por $f(x,y) = xe^y$.
 - (a) Calcular el polinomio de Taylor de orden 1 de f centrado en (1,0).
 - (b) Usar este polinomio para aproximar el valor f(0.98, 0.02). Estimar el error cometido.

- 7. Sea $f: \mathbb{R}^2 \to \mathbb{R}$ definida por $f(x,y) = e^{x^2 y^2}$.
 - (a) Calcular el polinomio de Taylor de orden 1 de f centrado en (1,1).
 - (b) Usar el item anterior para aproximar $e^{\frac{4}{10}}$ usando que $\frac{4}{10} = (1 + \frac{1}{10})^2 (1 \frac{1}{10})^2$. Comprobar que el error cometido es menor que 0.3.
- 8. Calcular el polinomio de segundo grado que mejor aproxima en el origen a la función

$$f(x,y) = \sin(x)\sin(y).$$

9. Sean $f: \mathbb{R}^2 \to \mathbb{R}^2$ definida por $f(x,y) = (x+1,2y-e^x)$ y $g: \mathbb{R}^2 \to \mathbb{R}$ diferenciable, tales que el polinomio de Taylor de grado 2 de $g \circ f$ en (0,0) es

$$p(x,y) = 4 + 3x - 2y - x^2 + 5xy.$$

Calcular $\nabla g(1,-1)$.

- 10. Sea $g: \mathbb{R}^2 \to \mathbb{R}$ de clase C^2 tal que su polinomio de McLaurin de orden 2 es $p(x,y) = 3x + 2y x^2 + y^2 2xy$. Sea $f(x,y) = \ln(1+g(x,y))$. Calcular el polinomio de McLaurin de orden 2 de f.
- 11. Sea f de clase C^2 tal que su polinomio de Taylor de orden 2 en el $P=(1,\frac{\pi}{2})$ es $p(x,y)=-\pi+4(y-\frac{\pi}{2})+2(x-1)^2+(x-1)(y-\frac{\pi}{2})$. Sea $g(x,y)=f(x,y)y^2+x\sin(y)$. Hallar $\frac{\partial g}{\partial v}(P)$ con $v=(\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}})$, y luego hallar Hg(P).
- 12. Mostrar que $ye^{xy} = 1$ define una función implícita y = f(x) en un entorno del punto $x_0 = 0, y_0 = 1$. Hallar el polinomio de McLaurin de orden 2 de f.
- 13. Sea $f(x, y) = e^{xy} \cos(x + y)$.
 - (a) Hallar el polinomio de Taylor de orden 2 de f centrado en (0,0).
 - (b) Calcular

$$\lim_{(x,y)\to(0,0)} \frac{f(x,y)+x^2+y^2-1}{x^2+y^2}.$$

14. Sea $f: \mathbb{R}^2 \to \mathbb{R}$ una función de clase C^3 tal que su polinomio de Taylor de orden 3 en (1,1) es $p(x,y)=1-3x+x^2+xy+y^2-y^3$. Analizar la existencia de los siguientes límites:

(a)
$$\lim_{(x,y)\to(1,1)} \frac{f(x,y)}{\|(x,y)-(1,1)\|}$$
, (b) $\lim_{(x,y)\to(1,1)} \frac{f(x,y)}{\|(x,y)-(1,1)\|^2}$.