BME Gépészmérnöki Kar	REZGÉSTAN	Név:	
Műszaki Mechanikai Tanszék	Neptun kód: KZX06G		
2021/22 II.	Határidő: 2022. 05. 16 10:00	Késedelmes beadás: □ Javítás: □	
Nyilatkozat: Aláírásommal igazolom, hogy	Aláírás:		
szítettem el, az abban leírtak saját megértése			

Csak a formai követelményeknek megfelelő és az ellenőrző program által helyesnek ítélt végeredményeket tartalmazó házi feladatokat értékeljük! https://www.mm.bme.hu/hwchk

Feladatkitűzés

Az ábrán vázolt, függőleges síkban elhelyezkedő két szabadságfokú lengőrendszer az m_1+m_2 tömegű Lalakú lengőkarból, a hozzá merev rudakkal kapcsolódó m_3 tömegű korongból, valamint az k_1 merevségű rugóval kapcsolódó m_4 tömegű hasábból épül fel. Az ábrán látható helyzet a lengőrendszer egyensúlyi helyzete, amely állapotban az k_2 rugó erőmentes. A tárcsa a kellően érdes felületnek köszönhetően gördül. A hasábhoz kapcsolódó m_0 tömegű anyagi pont e excentricitással és ω szögsebességgel forog. Ezenkívül a mechanikai rendszerre $F_{\rm A}(t)=F_{\rm A0}\sin(\omega t+\varepsilon), \, F_{\rm B}(t)=F_{\rm B0}\sin(\omega t+\varepsilon)$ erőgerjesztések, $M(t)=M_0\sin(\omega t+\varepsilon)$ nyomatékgerjesztés és $r(t)=r_0\sin\omega t$ útgerjesztés működik.

Vizsgálja meg a rendszer kis kitérésű rezgéseit a megadott általános koordináták segítségével!

- 1. Határozza meg a rendszer mátrix együtthatós differenciálegyenletét!
- 2. Számítsa ki a rendszer sajátkörfrekvenciáit (ω_{ni}) és az azokhoz tartozó lengésképeket ($\mathbf{A}_i = [1 \ A_{i2}]^T$)!
- 3. Ábrázolja szemléletesen és arányosan a lengésképeket a szerkezeti ábra alapján!
- 4. Határozza meg a gerjesztett rendszer állandósult állapotbeli mozgását ($\mathbf{q}_{p}(t) = \mathbf{L}\cos(\omega t) + \mathbf{N}\sin(\omega t)$)!
- 5. Adja meg az k_1 rugóban ébredő maximális rugóerőt az állandósult állapotban!

Adatok

Az általános koordináták vektora:

$$\mathbf{q} = \left[egin{array}{c} y_{
m B} \ arphi \end{array}
ight] \, .$$

m_1 [kg]	0.35
m_2 [kg]	0.5
m_3 [kg]	0.5
m_4 [kg]	0.3
l_1 [m]	0.25
l_2 [m]	0.3
R [m]	0.06
k _t [Nm/rad]	10
k ₁ [N/m]	340
k_2 [N/m]	440

m_0 [kg]	0
<i>e</i> [m]	0
F_{A0} [N]	30
$F_{\rm B0}$ [N]	35
M_0 [Nm]	0
r_0 [m]	0.02
ε [rad]	$\pi/3$
ω [rad/s]	100

(Rész)eredmények

$\omega_{\rm n1}$ [rad/s]	$\omega_{\rm n2}$ [rad/s]	A_{12} []	A_{22} []	$ \begin{array}{ c c } L_1 \\ [\dots \dots] \end{array} $	L_2 []	$egin{array}{c} N_1 \ [] \end{array}$	N_2 []	$ F_{r1,max} $ [N]