WO9925819

Publication Title:

ANTISENSE OLIGONUCLEOTIDES AGAINST TENASCIN FOR TREATING VITILIGO

Abstract:

Abstract of WO9925819

The invention relates to specific, optionally modified oligonucleotides with a length of f6e up to 18 nucleotides. Said oligonucleotides correspond to segments of tenascin-coding sequences or can bind to these sequences. The invention also relates to the production and use of the oligonucleotides, for example for the specific inhibition of the expression of tenascin and for producing medicaments used to treat vitiligo. Data supplied from the esp@cenet database - Worldwide

Courtesy of http://v3.espacenet.com

This Patent PDF Generated by Patent Fetcher(TM), a service of Stroke of Color, Inc.

PCT

WELTORGANISATION FÜR GEISTIGES EIGENTUM Internationales Büro

INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation 6:

C12N 15/11, A61K 31/70, C07H 21/00, C12Q 1/68

(11) Internationale Veröffentlichungsnummer:

WO 99/25819

A2

(43) Internationales
Veröffentlichungsdatum:

27. Mai 1999 (27.05.99)

(21) Internationales Aktenzeichen:

PCT/EP98/06868

(22) Internationales Anmeldedatum: 29. Oktober 1998 (29.10.98)

(30) Prioritätsdaten:

197 50 702.6

15. November 1997 (15.11.97) DE

(71) Anmelder (für alle Bestimmungsstaaten ausser US):
HOECHST MARION ROUSSEL DEUTSCHLAND
GMBH [DE/DE]; Brüningstrasse 50, D-65929 Frankfurt
am Main (DE).

(72) Erfinder; und

- (75) Erfinder/Anmelder (nur für US): PEYMAN, Anuschirwan [DE/DE]; Zeilsheimer Strasse 46, D-65779 Kelkheim (DE). UHLMANN, Eugen [DE/DE]; Zum Talblick 31, D-61479 Glashütten (DE). WEISER, Caroline [DE/DE]; Karl-Staib-Strasse 37, D-65795 Hattersheim (DE).
- (74) Gemeinsamer Vertreter: HOECHST MARION ROUSSEL DEUTSCHLAND GMBH; Patent- und Lizenzabteilung, Gebäude K 801, D-65926 Frankfurt am Main (DE).

(81) Bestimmungsstaaten: AL, AU, BA, BB, BG, BR, CA, CN, CU, CZ, EE, GE, HR, HU, ID, IL, IS, JP, KR, LC, LK, LR, LT, LV, MG, MK, MN, MX, NO, NZ, PL, RO, RU, SG, SI, SK, SL, TR, TT, UA, US, UZ, VN, YU, ARIPO Patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht

Ohne internationalen Recherchenbericht und erneut zu veröffentlichen nach Erhalt des Berichts.

- (54) Title: ANTISENSE OLIGONUCLEOTIDES AGAINST TENASCIN FOR TREATING VITILIGO
- (54) Bezeichnung: ANTISENSE OLIGONUKLEOTIDE GEGEN TENASCIN ZUR BEHANDLUNG VON VITILIGO

(57) Abstract

The invention relates to specific, optionally modified oligonucleotides with a length of up to 18 nucleotides. Said oligonucleotides correspond to segments of tenascin—coding sequences or can bind to these sequences. The invention also relates to the production and use of the oligonucleotides, for example for the specific inhibition of the expression of tenascin and for producing medicaments used to treat vitiligo.

(57) Zusammenfassung

Die Erfindung betrifft spezifische, gegebenenfalls modifizierte Oligonukleotide mit einer Länge von bis zu 18 Nukleotiden, die Abschnitten Tenascin-kodierender Sequenzen entsprechen bzw. die an diese Sequenzen binden können, deren Herstellung sowie die Verwendung derselben, beispielsweise zur spezifischen Inhibition der Expression von Tenascin und zur Herstellung von Arzneimitteln, die zur Behandlung von Vitiligo verwendet werden können.

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AL	Albanien	ES	Spanien	LS	Lesotho	SI	Slowenien
AM	Armenien	FI	Finnland	LT	Litauen	SK	Slowakei
AT	Österreich	FR	Frankreich	LU	Luxemburg	SN	Senegal
ΑU	Australien	GA	Gabun	LV	Lettland	SZ	Swasiland
ΑZ	Aserbaidschan	GB	Vereinigtes Königreich	MC	Monaco	TD	Tschad
BA	Bosnien-Herzegowina	GE	Georgien	MD	Republik Moldau	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagaskar	ΤJ	Tadschikistan
BE	Belgien	GN	Guinea	MK	Die ehemalige jugoslawische	TM	Turkmenistan
BF	Burkina Faso	GR	Griechenland		Republik Mazedonien	TR	Türkei
BG	Bulgarien	HU	Ungam	ML	Mali	TT	Trinidad und Tobago
BJ	Benin	IE	Irland	MN	Mongolei	UA	Ukraine
BR	Brasilien	IL	Israel	MR	Mauretanien	UG	Uganda
BY	Belarus	IS	Island	MW	Malawi	US	Vereinigte Staaten von
CA	Kanada	IT	Italien	MX	Mexiko		Amerika
CF	Zentralafrikanische Republik	JP	Japan	NE	Niger	UZ	Usbekistan
CG	Kongo	KE	Kenia	NL	Niederlande	VN	Vietnam
CH	Schweiz	KG	Kirgisistan	NO	Norwegen	YU	Jugoslawien
CI	Côte d'Ivoire	KP	Demokratische Volksrepublik	NZ	Neuseeland	zw	Zimbabwe
CM	Kamerun		Korea	PL	Polen	_,,	5400
CN	China	KR	Republik Korea	PT	Portugal		
CU	Kuba	KZ	Kasachstan	RO	Rumänien		
CZ	Tschechische Republik	LC	St. Lucia	RU	Russische Föderation		
DE	Deutschland	LI	Liechtenstein	SD	Sudan		
DK	Dänemark	LK	Sri Lanka	SE	Schweden		
EE	Estland	LR	Liberia	SG	Singapur		

Antisense Oligonukleotide gegen Tenascin zur Behandlung von Vitiligo

Die Erfindung betrifft spezifische, gegebenenfalls modifizierte Oligonukleotide mit einer Länge von bis zu 18 Nukleotiden, vorzugsweise einer Länge von 7-15 Nukleotiden, die Abschnitten Tenascin-kodierender Sequenzen entsprechenden und die an diese Sequenzen binden können, deren Herstellung sowie die Verwendung derselben, beispielsweise zur spezifischen Inhibition der Expression von Tenascin und zur Herstellung von Arzneimitteln, die zur Behandlung von Vitiligo verwendet werden können.

Unter Vitiligo wird ein erworbenes Fehlen von Melanozyten verstanden, wodurch hypopigmentierte Hautbereiche entstehen, die in der Regel scharf begrenzt und häufig symmetrisch angeordnet sind, einen oder zwei Flecke bilden oder fast die ganze Haut erfassen. Das Haar in hypopigmentierten Bezirken ist normalerweise weiß und erscheint auch im Wood-Licht weiß. Die betroffenen Hautstellen sind anfällig gegen Sonnenbrand. Die Ursache der Erkrankung ist unbekannt. Obwohl die Vitiligo als eine im Laufe des Lebens erworbene Krankheit gilt, findet sich gelegentlich eine familiäre Häufung (autosomal-dominant, mit inkompletter Penetranz und variabler Ausprägung). Sie kann auch einem ungewöhnlichen physischen Trauma, insbesondere einer Schädelverletzung, folgen. Die Assoziation von Vitiligo mit einem Morbus Addison, Diabetes mellitus, permiziöser Anämie oder Schilddrüsendysfunktion wie auch das gehäufte Vorkommen von Antikörpern gegen Thyreoglobulin, Zellen der Nebenniere und Belegzellen des Magens im Serum haben dazu geführt, eine immunologische oder neurochemische Ursache zu vermuten. Antikörper gegen Melanin wurden bei einigen Patienten gefunden.

Alle verfügbaren Therapiemethoden führen nur bei einem Teil der Patienten zu befriedigenden Therapieerfolgen (F. Wach et al., H+G 71 (1996) 206). Zu den vorhandenen Therapien (S. P. W. Kumarasinghe, Ceylon Medical Journal 40 (1995) 94) gehören Photochemotherapien (PUVA), beispielsweise mit Methoxypsoralen, Phenylalanin, oder Khellin, die Transplantation von kultivierten

Melanocyten, "epidermal grafting", und die Behandlung mit Steroiden oder Plazenta-Extrakten. Kürzlich wurde über die Behandlung mit Pseudokatalase berichtet (Schallreuter et al., Dermatology 190 (1995) 223). Kleine Herde können auch mit kosmetischer Schminke oder Gerblösungen abgedeckt werden.

Poole et al. (British Journal of Dermatol. 137 (1997) 171) konnten zeigen, daß die Vitiligo befallene Haut im Vergleich zu normaler Haut einen hohen Gehalt an Tenascin aufweist. Der hohe Tenascin-Gehalt kann zum Verlust der Pigmentierung beitragen und die Repigmentierung verhindern. Tenascin (Crossin, J. Cell. Biol. 61 (1996) 592) ist ein extrazelluläres Matrix Glykoprotein, das aus sechs identischen Untereinheiten besteht, welche am Amino-Terminus über Disulfid-Brücken verknüpft sind. Die Tenascin Untereinheiten weisen eine charakteristische Domänenstruktur auf: Auf eine Cystein-reiche Sequenz am aminotermialen Ende folgen drei, jeweils aus sich wiederholenden Einheiten aufgebaute Sequenzabschnitte aus zum EGF homologen Einheiten, aus zum Fibronektin (Typ III) homologen Einheiten und aus zum Fibrinogen homologen Einheiten.

Es existieren mehrere Isoformen der Tenascin Untereinheiten (im folgenden als Tenascin Isoformen bezeichnet), die sich in der Anzahl der sich wiederholenden Einheiten, die zum Fibronektin Typ III homolog sind, unterscheiden. Diese Isoformen werden durch alternatives splicing der Tenascin pre-mRNA und anschließende Translation der verschiedenen Splicevarianten gebildet (A. Leprini et al., Perspectives on Developmental Neurobiology 2 (1994) 117-123). Eine cDNA von humanem Tenascin wurde von A. Siri et al. (Nucl. Acids Res. 19 (1991) 525-531) beschrieben (Sequenz in Tabelle 1). Diese cDNA ist unter der Zugangsnummer X56160 in Gen-Datenbanken gespeichert und kann unter dieser Nummer beispielsweise unter EMBL/Genbank/DDBJ/NBRF-PIR erhalten werden. Diese cDNA enthält einen Sequenzabschnitt, der für 12 sich wiederholende Einheiten, die zum Fibrinogen Typ III homolog sind, kodiert. Die cDNAs der anderen Isoformen humanen Tenascins sind in diesem Sequenzabschnitt verkürzt und kodieren für weniger als 12 dieser sich wiederholenden Einheiten.

Die Expression von Tenascin ist räumlich und zeitlich begrenzt und ihm wird eine Bedeutung während der Entwicklung eines Organismus sowie bei pathologischen Veränderungen zugeschrieben (Crossin, vide supra). Solche pathologischen Veränderungen sind beispielsweise Vitiligo, Tumore und Entzündungen.

Eine Möglichkeit zur Regulation der Genexpression bieten Antisense-Oligonukleotide (E. Uhlmann and A. Peyman, Chemical Reviews 90, 543 (1990); S. Agrawal, TIBTECH 1996, 376). In WO 94/21664 (L. Denner et al.) werden Antisense Oligonukleotide gegen Tenascin, die zur Inhibition der Proliferation der glatten Zellmuskulatur eingesetzt werden, beschrieben. Die dort beschriebenen Oligonukleotide haben eine Länge von mindestens 18 Nukleotiden.

Eine Aufgabe der vorliegenden Erfindung war es, neue Oligonukleotide, die vorteilhafte Eigenschaften aufweisen und die zur vollständigen und/oder teilweisen Inhibition der Genexpression von Tenascin verwendet werden können, bereitzustellen.

Überraschenderweise wurde gefunden, daß Oligonukleotide, die ein Länge von bis zu 18 Nukleotiden aufweisen, die Expression von Tenascin effektiv beeinflussen können. Gegenstand der vorliegenden Erfindung sind Oligonukleotide mit 7 - 17 Nukleotid-Einheiten, die gegebenenfalls modifiziert sind. In besonderen Ausführungsformen der Erfindung weist das Oligonukleotid eine Länge von 17, 16, 15, 14, 13, 12, 11, 10, 9, 8 oder 7 Nukleotiden auf. Das Oligonukleotid entspricht Abschnitten Tenascin-kodierender Sequenzen (d.h. das Oligonukleotid hat eine Sequenz, die zu dem entsprechenden Abschnitt einer Tenascin-kodierenden Sequenz komplementär ist) und das Oligonukleotid bindet spezifisch an diese Tenascin-kodierende Sequenz (Nukleinsäure), beispielsweise an das Tenascin-Gen und/oder Tenascin mRNA und/oder Tenascin cDNA, wobei die Tenascin-kodierende Sequenz vorzugsweise humanen Ursprungs ist (z.B. humanes Tenascin Gen, humane Tenascin mRNA, humane Tenascin cDNA). Der Abschnitt der Tenascin-

kodierenden Sequenz, dem das Oligonukleotid entspricht bzw. zu dem das Oligonukleotid komplementär ist, hat vorzugsweise eine Länge von 17, 16, 15, 14, 13, 12, 11, 10, 9, 8 oder 7 Nukleotid-Einheiten (dies gilt insbesondere für die Bestimmung der Länge eines modifizierten und/oder chimären Oligonukleotids bzw. von Oligonukleotid-Analoga).

Eine besondere Ausführungsform der Erfindung betrifft ein Oligonukleotid, das an eine Nukleinsäure, die für eine der Isoformen humanen Tenascins oder Teile derselben kodiert, bindet und deren Expression inhibiert, wobei das Oligonukleotid eine Länge von 7 bis 15 Nukleotiden aufweist und gegebenenfalls modifiziert sein kann sowie die physiologisch verträglichen Salze des Oligonukleotids.

Eine besondere Ausführungsform der Erfindung betrifft ein Oligonukleotid, das gegen einen oder mehrere bestimmte Bereiche einer Tenascin-kodierenden Sequenz gerichtet ist, beispielsweise den Translationsstart, den 5'- nicht translatierten Bereich, den kodierenden Bereich und/oder den 3'-nicht-kodierenden Bereich. In einer besonderen Ausführungsform der Erfindung kann das Oligonukleotid auch gegen einen oder mehrere Bereiche einer Tenascinkodierenden Sequenz gerichtet sein, die z.B. für bestimmte Domänen des Tenascins kodiert, beispielsweise gegen die Cystein-reiche Domäne, gegen eine zum EGF homologe Domäne, gegen eine zum Fibronektin Typ III homologe Domäne und/oder gegen eine zum Fibrinogen homologe Domäne.

Eine Ausführungsform der Erfindung betrifft ein Oligonukleotid, das an eine Nukleinsäure, die für eine der Isoformen humanen Tenascins oder Teile derselben kodiert, bindet und deren Expression inhibiert, wobei das Oligonukleotid an einen Bereich der Nukleinsäure binden kann, der

- einen Teil des 5'-nichtkodierenden Bereichs und/oder den Translationsstart oder
- b) den Translationsstart und/oder
 einen Teil des kodierenden Bereichs oder

c) einen Teil des kodierenden Bereichs und/oder einen Teil des 3'-nichtkodierenden Bereichs umfaßt.

Gegenstand der Erfindung ist insbesondere ein Oligonukleotid, das einem Sequenzabschnitt der humanen cDNA gemäß SEQ ID NO. 1 (Tabelle 1) entspricht. Gegenstand der Erfindung ist weiterhin ein Oligonukleotid, das einem Sequenzabschnitt der cDNA, die in Gendatenbanken unter der Zugangsnummer X56160 gespeichert ist, entspricht.

In speziellen Ausführungsformen der Erfindung kann ein Oligonukleotid beispielsweise eine der folgenden Sequenzen oder Teile derselben haben:

3'- GGTTTGGGTGGAGGTGG -5' SEQ ID NO. 2: SEQ ID NO. 3: 3'- GGAGGTGGTACCCCCGG -5' SEQ ID NO. 4: 3'- GGTGGTACCCCCGG -5' SEQ ID NO. 5: 3'- GGAGGTGGTACCCC -5' SEQ ID NO. 6: 3'- AGAAAGAACGAAAGGAA -5' 3'- GGAGGTGGTACC -5' SEQ ID NO. 7: 3'- GGAGCGATGGCTTCCA -5' SEQ ID NO. 8: 3'- AAAGGAACGGGAGCG -5' SEQ ID NO.. 9: 3'- GGTCGGTTTGGGTGG -5' SEQ ID NO. 10: 3'- CTTACAGGTCCGTTGA -5' **SEQ ID NO. 11:** 3'- GGCCGTGTTCGCTGT -5' SEQ ID NO. 12: 3'- TCACCCCTCTTTCTGG -5' **SEQ ID NO. 13:** 3'- GGACACCGACACGG -5' SEQ ID NO. 14: 3'- AACGGGAGCGATGG -5' **SEQ ID NO. 15:** 3'- ATCTCGGGGTCGTC -5' SEQ ID NO. 16: **SEQ ID NO. 17:** 3'- AAAGAACGAAAGGAA -5' SEQ ID NO. 18: 3'- GGTGGTACCCC -5' SEQ ID NO. 19: 3'- CCCGGTACTGA -5' und

SEQ ID NO. 20: 3'- CCACAGAAAGAAC -5'.

Die Sequenzen SEQ ID NO. 2 bis SEQ ID NO. 20 entsprechen Abschnitten der Tenascin-kodierenden cDNA, wie sie in Tabelle 1 dargestellt ist. Ein Oligonukleotid, das eine der Sequenzen SEQ ID NO. 2 bis SEQ ID NO. 20 hat, ist komplementär zu einem entsprechenden Abschnitt einer Tenascin-kodierenden Nukleinsäure, z.B. einer humanen Tenascin cDNA und kann an diese Nukleinsäure binden. Sequenzen SEQ ID NO.3, SEQ ID NO. 4, SEQ ID NO. 5, SEQ ID NO. 7 und SEQ ID NO. 18 sind Beispiele für Oligonukleotide, die eine Sequenz aufweisen, die gegen den Translationsstart der Tenascin-kodierenden Sequenzen gerichtet ist.

Gegenstand der Erfindung sind auch Derivate eines Oligonukleotids, beispielsweise dessen Salze, insbesondere dessen physiologisch verträglichen Salze. Unter physiologisch verträglichen Salzen werden in Wasser leicht lösliche, lösliche und wenig lösliche Verbindungen, beispielsweise gemäß der Definition im "Deutschen Arzneibuch" (9. Ausgabe 1986, Amtliche Ausgabe, Deutscher Apotheker Verlag Stuttgart), Seite 19, verstanden. Eine spezielle Ausführungsform der Erfindung betrifft das Natriumsalz des erfindungsgemäßen Oligonukleotids. Derivate sind auch modifizierte Oligonukleotide.

Ein Oligonukleotid kann beispielsweise vollständig oder teilweise aus den natürlichen Nukleotiden Adenosinphosphat, Guanosinphosphat, Inosinphosphat, Cytidinphosphat, Uridinphosphat und Thymidinphosphat aufgebaut sein. Eine Ausführungsform der Erfindung betrifft ein Oligonukleotid, das aus den natürlichen Nukleosiden Adenosin, Guanosin, Inosin, Cytidin, Uridin und Thymidin aufgebaut ist und in welchem die Nukleoside über Phosphorsäurediester Internukleosid-Brücken ("Phosphorsäurediester-Brücken") miteinander verknüpft sind.

In anderen Ausführungsformen der Erfindung kann ein Oligonukleotid gegebenenfalls ein oder mehrere Modifikationen, beispielsweise chemische Modifikationen, enthalten. Ein Oligonukleotid kann mehrere gleiche und/oder

verschiedene Modifikationen aufweisen. Modifikationen können an bestimmten Nukleosid Positionen (Nukleobase und/oder ß-D-2'-Deoxyribose Einheit) und/oder bestimmten Internukleosid-Brücken lokalisiert sein.

Beispiele für chemische Modifikationen sind dem Fachmann bekannt und beispielsweise in E. Uhlmann and A. Peyman, Chemical Reviews 90 (1990) 543 und "Protocols for Oligonukleotides and Analogs" Synthesis and Properties & Synthesis and Analytical Techniques, S. Agrawal, Ed, Humana Press, Totowa, USA 1993, S. T. Crooke, F. Bennet, Ann. Rev. Pharmacol. Toxicol. 36 (1996) 107-129 und J. Hunziber and C. Leumann (1995) Mod. Synt. Methods, 7, 331-417 beschrieben.

Die chemische Modifikation eines Oligonukleotids kann beispielsweise

a) den vollständigen oder teilweisen Ersatz der Phosphorsäurediester-Brücken (Internukleosid-Brücke) durch modifizierte Phosphobrücken bedeuten, wobei Phosphorothioat-, Phoshorodithioat-, NR¹R¹¹-Phosphoramidat-, Boranophosphat-, Phosphat-(C₁-C₂₁)-O-Alkylester, Phosphat-[(C₆-C₁₂)Aryl-(C₁-C₂₁)-O-Alkyl]ester, (C₁-C₃)Alkylphosphonat- und/oder (C₆-C₁₂)-Arylphosphonat-Brücken Beispiele für modifizierte Phosphobrücken sind, wobei

 R^1 und R^1 unabhängig voneinander für Wasserstoff, (C_1-C_{18}) -Alkyl, (C_6-C_{20}) -Aryl, (C_6-C_{14}) -Aryl- (C_1-C_8) -alkyl, bevorzugt für Wasserstoff, (C_1-C_8) -Alkyl und/oder Methoxyethyl, besonders bevorzugt für Wasserstoff, (C_1-C_4) -Alkyl und/oder Methoxyethyl stehen

oder

R¹ und R¹ zusammen mit dem sie tragenden Stickstoffatom einen 5-6-gliedrigen heterocyclischen Ring bilden, der zusätzlich ein weiteres Heteroatom aus der Reihe O, S, N enthalten kann; und/oder

b) den vollständigen oder teilweisen Ersatz der 3'- und/oder 5'Phosphorsäurediester Internukleosid Brücken ("Phosphorsäurediesterbrücken")
durch "Dephospho"-Brücken (beschrieben beispielsweise in Uhlmann, E. und
Peyman, A. in "Methods in Molecular Biology", Vol. 20, "Protocols for

Oligonukleotides and Analogs", S. Agrawal, Ed., Humana Press, Totowa 1993, Chapter 16, 355ff) bedeuten, wobei Formacetal-, 3'-Thioformacetal-, Methylhydroxylamin-, Oxim-, Methylendimethylhydrazo-, Dimethylensulfon- und/oder Silylgruppen Beispiele für "Dephospho"-Brücken sind; und/oder

- c) den vollständigen oder teilweisen Ersatz des Zuckerphosphat-Rückgrats (Ersatz von Zucker-Phosphat-Einheiten) durch andere Einheiten bedeuten, wobei die andere Einheit beispielsweise geeignet, ist ein "Morpholin-Derivat"-Oligomer (beispielweise in E. P. Stirchak et al., Nucleic Acids Res. 17 (1989) 6129 beschrieben) aufzubauen (d.h. Ersatz durch eine Morpholino-Derivat Einheit) und/oder geeignet ist eine Polyamid Nucleinsäure ("PNA") (beispielsweise beschrieben in P. E. Nielsen et al, Bioconj. Chem. 5 (1994) 3 (EP 0 672 677)) aufzubauen (d.h. Ersatz durch eine PNA Einheit, beispielsweise 2-Amino-ethylglycin) und/oder geeignet ist, eine Phosphomonosäureester Nukleinsäure ("PHONA", "PMENA") (beschrieben beispielsweise in Peyman et al., Angew. Chem. Int. Ed. Engl. 35 (1996) 2632-2638, EP 0 739 898) aufzubauen (d.h. Ersatz durch eine PHONA Einheit); und/oder
- den vollständigen oder teilweisen Ersatz der ß-D-2'-Desoxyribose (ß-D-2'-Desoxyribose-Einheiten) durch modifizierte Zuckereinheiten bedeuten, wobei α-D-2'-Desoxyribose, L-2'-Desoxyribose, 2'-F-2'-Desoxyribose, 2'-O-(C₁-C₆)Alkyl-Ribose, vorzugsweise 2'-O-Methylribose, 2'-O-(C₂-C₆)Alkenyl-Ribose, 2'-[O-(C₁-C₆)Alkyl-O-(C₁-C₆)Alkyl]-Ribose, 2'-NH₂-2'-desoxyribose, β-D-Xylofuranose, a-Arabinofuranose, 2,4-Dideoxy-β-D-erythro-hexo-pyranose, carbocyclische Zuckeranlaoga (beschrieben beispielsweise in Froehler, J.Am.Chem.Soc. 114 (1992) 8320), offenkettige Zuckeranaloga (beschrieben beispielsweise in Vandendriessche et al., Tetrahedron 49 (1993) 7223) und Bicyclo-Zuckeranaloga (beschrieben beispielsweise in M. Tarkov et al., Helv. Chim. Acta 76 (1993) 481) Beispiele für modifizierte Zuckereinheiten sind; und/oder

- e) die Modifikation beziehungsweise den vollständigen oder teilweisen Ersatz der natürlichen Nukleosid-Basen durch modifizierte (Nukleosid-) Basen ("Nukleobasen") bedeuten, wobei 5-(Hydroxymethyl)uracil, 5-Aminouracil, Pseudouracil, Dihydrouracil, 5-(C₁-C₆)-Alkyl-uracil, 5-(C₂-C₆)-Alkenyl-uracil, 5-(C₂-C₆)-Alkinyl-uracil, 5-(C₁-C₆)-Alkyl-cytosin, 5-(C₂-C₆)-Alkenyl-cytosin, 5-(C₂-C₆)-Alkinyl-cytosin, 5-Fluoruracil, 5-Fluorcytosin, 5-Chloruracil, 5-Chloruracil, 5-Bromuracil, 5-Bromuracil, 5-Bromuracil, 5-Bromuracil, 5-Bromuracil, 5-Bromuracil, 5-Bromuracil, 5-Chloruracil, 5-Fluoruracil, 5-Fluoruracil, 5-Fluoruracil, 5-Fluoruracil, Hypoxanthin und Uracil Beispiele für modifizierte Basen sind; und/oder
- die Konjugation mit einem oder mehreren Molekülen (Oligonukleotidf) Konjugate), die die Eigenschaft(en) des Oligonukleotids an spezielle Anforderungen anpassen bzw. die Eigenschaften (z.B. Zellpenetration, Nukleasestablilität, Affinität zur Tenascin-kodierenden Target-Sequenz, Pharmakokinetik) des Oligonukleotids (z.B. Antisense-Oligonukleotid, Tripelhelixbildendes Oligonukleotid) günstig beeinflußen und/oder bei der Hybridisierung des Oligonukleotids an die Target-Sequenz diese unter Bindung und/oder Quervernetzung angreifen kann bzw. können, bedeuten, wobei Poly-Lysin, Interkalatoren wie Pyren, Acridin, Phenazin, Phenanthridin, fluoreszierende Verbindungen wie Fluorescein, Cross-Linker wie Psoralen, Azidoproflavin, lipophile Moleküle wie (C₁₂-C₂₀)-Alkyl, Lipide wie 1,2-Di-hexadecyl-rac-glycerin, Steroide wie Cholesterin, Testosteron, Vitamine wie Vitamin E, Poly- bzw. Oligo-ethylengylcol, (C₁₂-C₁₈)-Alkyl-Phosphatdiester und -O-CH₂-CH(OH)-O-(C₁₂-C₁₈)-Alkyl Beispiele für Moleküle sind, die an ein Oligonukleotid konjugiert werden können, wobei solche Moleküle am 5'- und/oder am 3'-Ende und/oder innerhalb der Sequenz, z.B. über eine Nukleobase an das Oligonukleotid konjugiert sein können; und/oder
 - g) die Konjugation an ein 2'5'-verbundenes Oligoadenylat oder ein Derivat desselben bedeutet, wobei ein 2'5'-verbundenes Triodenylat, ein 2'5'-verbundenes Tetraadenylat, ein 2'5'-verbundenes Pentaadenylat u.s.w. Beispiele für 2'5'-

verbundene Oligoadenylate sind und Cordycepin (2'5'-verbundenes 3'Deoxyadenylat) ein Beispiel für ein Derivat eines 2'5'-verbundenen Oligoadenylats
ist, wobei die Konjugation vorzugsweise über einen Linker erfolgt, wobei das 5'Ende des 2'5'-verbundenen Oligoadenylats vorzugsweise eine Phosphat-,
Diphosphat- oder Triphosphatgruppe sein kann, wobei der Linker beispielsweise ein
Oligoethylenglykole sein kann, wobei Triethylenglykol, Tetraethylenglykol und
Hexaethylenglykol Beispiele für Oligoethylenglykol Linker sind;
und/oder

h) die Einführung einer 3'-3'- und/oder 5'-5'-Inversion am 3' und/oder am 5'-Ende des Oligonukleotids bedeuten, wobei diese Art der chemischen Modifikation dem Fachmann bekannt und beispielsweise in M. Koga et al., J. Org. Chem. 56 (1991) 3757 beschrieben ist.

In bevorzugten Ausführungsformen der Erfindung weist das Oligonukleotid eine oder mehrere chemische Modifikationen auf, die unabhängig voneinander ausgewählt werden aus

- a) dem vollständigen oder teilweisen Ersatz der Phosphorsäurediesterbrücken durch Phosphorothioat- und/oder (C₁-C₈)Alkylphosphonat-Brücken,
- b) dem vollständigen oder teilweisen Ersatz des Zuckerphosphat-Rückgrats durch PNA-Einheiten und/oder PHONA-Einheiten.
- c) den vollständigen oder teilweisen Ersatz der β -D-2'-Desoxyriboseeinheiten durch 2'-F-2'-Desoxyribose, 2'-O-(C_1 - C_6)Alkyl-Ribose und/oder 2'-[O-(C_1 - C_6)Alkyl-Ribose,
- d) den vollständigen oder teilweisen Ersatz der natürlichen Nucleosid-Basen durch $5-(C_2-C_6)$ -Alkinyl-uracil und/oder $5-(C_2-C_6)$ -Alkinyl-ura
- e) die Konjugation des Oligonukleotids mit einem oder mehreren Molekülen, die unabhängig voneinander ausgewählt werden können aus der Reihe enthaltend lipophile Moleküle, z.B. (C₁₂-C₂₀)-Alkyl, Lipide, z.B. 1,2-Di-hexadecyl-rac-glycerin, Steroide, z.B. Cholesterin und/oder Testosteron, Vitamine, z.B. Vitamin E, Polybzw. Oligo-ethylengylcol, (C₁₂-C₁₈)-Alkyl-Phosphatdiestern und -O-CH₂-CH(OH)-O-(C₁₂-C₁₈)-Alkyl und

WO 99/25819

11

- ein oder mehreren 3'-3'- Inversionen am 3'-Ende des Oligonucleotids, f) In einer anderen bevorzugten Ausführungsform der Erfindung weist das Oligonukleotid eine oder mehrere chemische Modifikationen auf, die unabhängig voneinander ausgewählt werden können aus der Reihe enthaltend
- den vollständigen oder teilweisen Ersatz der Phosphorsäurediesterbrücken (Phosphodiester Brücken) durch Phosphorothioat-Brücken,
- den vollständigen oder teilweisen Ersatz der ß-D-2'-Desoxyriboseeinheiten durch 2'-F-2'-Desoxyribose, 2'-O-(C₁-C₆)Alkyl-Ribose und/oder 2'-[O-(C₁-C₆)Alkyl-O-(C₁-C₆)Alkyl]-Ribose,
- die Konjugation mit lipophilen Molekülen, z.B. (C₁₂-C₂₀)-Alkyl, mit Lipiden, z.B. 1,2-Di-hexadecyl-rac-glycerin, mit (C₁₂-C₁₈)-Alkyl-Phosphatdiestern und/oder mit -O-CH₂-CH(OH)-O-(C₁₂-C₁₈)-Alkyl.

Verfahren zur Herstellung eines Oligonukleotid-Konjugats sind dem Fachmann bekannt und z.B. in Uhlmann, E. & Peyman, A., Chem. Rev. 90 (1990) 543 und/oder M. Manoharan in "Antisense Research and Applications", Crooke and Lebleu, Eds., CRC Press, Boca Raton, 1993, Chapter 17, S.303ff. und/oder EP-A 0 552 766 beschrieben.

In einer besonderen Ausführungsform der Erfindung wird ein Oligonukleotid bereitgestellt, das eine oder mehrere Modifikationen aufweisen kann und das eine der Sequenzen SEQ ID NO. 2 - SEQ ID NO. 20 aufweist bzw. das einer der Sequenzen SEQ ID NO. 2 bis SEQ ID NO. 20 entspricht bzw. das den entsprechenden Sequenz-Abschnitten einer Tenascin-kodierenden Sequenz entspricht und an diesen Abschnitt der Tenascin-kodierenden Sequenz binden kann.

In einer besonderen Ausführungsform der Erfindung wird Oligonukleotid bereitgestellt, in dessen Sequenz jedes Nukleotid (Base und/oder Zucker und/oder Internukleosid Brücke) modifiziert ist . In einer besonderen Ausführungsform der Erfindung ist beispielsweise das Oligonukleotid vollständig aus Phosphorothioaten WÓ 99/25819 PCT/EP98/06868

12

aufgebaut (durchgängig modifiziertes Phosphothioat, alle Internukleosid Brücken modifiziert). In einer weiteren speziellen Ausführungsform der Erfindung wird ein Oligonukleotid bereitgestellt, das einer der Sequenzen SEQ ID NO. 2 - SEQ ID NO. 20 entspricht, wobei aber die Phosphodiester Brücken zwischen den einzelnen Nukleosiden (d.h. die Internukleosid-Brücken zwischen den einzelnen Nukleosiden) vollständig durch Phosphothioat Brücken (d.h. Phosphothioatgruppen zwischen den Nukleosiden) ersetzt sind.

In einer weiteren besonderen Ausführungsform der Erfindung wird ein Oligonukleotid bereitgestellt, indem nur ein Teil der Phosphodiester Brücken durch Phosphothioat Brücken ersetzt ist. Insbesondere beinhaltet die Erfindung Oligonukleotide die nur minimal (bzw. partiell) modifiziert sind. Das Prinzip der minimal modifizierten Oligonukleotide ist beschrieben in A. Peyman, E. Uhlmann, Biol. Chem. Hoppe-Seyler, 377 (1996) 67-70. Dabei werden 1-5, vorzugsweise 1-3 endständige Nukleotid-Einheiten (bzw. vorzugsweise die entsprechenden Internukleosid-Brücken) am 5'- und/oder am 3'-Ende und ggf. zusätzlich ausgewählte interne Pyrimidin-Positionen bzw. vorzugsweise die entsprechenden Internukleosid Brücken, die am 3'- und/oder 5'-Ende des entsprechenden Pyrimidin Nukleosids lokalisierte sind, modifiziert bzw. ersetzt, wobei vorzugsweise Internukleosid Brücken durch Phosphorothioat Brücken ersetzt werden. Auf diese Weise minimal modifizierte Oligonukleotide weisen besonders vorteilhafte Eigenschaften auf, beispielsweise zeigen sie besondere Nukleasestabilität bei minimaler Modifikation.

Eine besondere Ausführungsform der Erfindung betrifft ein Oligonukleotid, bei dem ausgewählte Internukleosid Brücken durch modifizierte Internukleosid Brücken ersetzt wird, vorzugsweise durch Phosphorothioat Brücken.

Gegenstand der Erfindung ist ein Oligonukleotid bei dem entweder

- a) nur bestimmte Phosphodiester Internukleosid-Brücken oder
- b) alle Phosphodiester Internukleosid-Brücken

modifiziert sind.

Gegenstand der Erfindung ist weiterhin ein bei dem 1 - 5 endständige Internukleosid-Brücken am 5'-und/oder am 3'-Ende des Oligonukleotids modifiziert sind. Gegenstand der Erfindung ist auch ein Oligonukleotid, bei dem die am 3'- und/oder 5'-Ende von nicht endständigen Nukleosiden, die eine Pyrimidin Base enthalten (interne Pyrimidin Nukleoside), lokalisierten Internukleosid-Brücken modifiziert sind.

Spezielle Ausführungsformen der Erfindung beinhalten ein minimal modifiziertes Oligonukleotid, das ist eine der Sequenzen, ausgewählt aus der Reihe der Sequenzen SEQ ID NO. 21 bis SEQ ID NO. 39, aufweist, wobei

```
SEQ ID NO. 21: 3'- GsGsTsTsTGGGTsGGAGGsTsGsG -5',
SEQ ID NO. 22: 3'- GsGsAsGGTsGGTsACsCCsCCsGsG -5',
SEQ ID NO. 23: 3'- GsGsTGGTsACsCsCsCsGsG -5',
SEQ ID NO. 24: 3'- GsGsAGGTsGGTsACsCsCsC -5',
SEQ ID NO. 25: 3'- AsGsAAAGAAsCsGAAAGGsAsA -5',
SEQ ID NO. 26: 3'- GsGsAGGTsGGTsAsCsC -5',
SEQ ID NO. 27: 3'- GsGsAGCsGATsGGCsTsTsCsCsA -5',
              3'- AsAsAGGAACsGGGAGsCsG -5',
SEQ ID NO. 28:
SEQ ID NO. 29: 3'- GsGsTCGGTsTsTGGGTsGsG -5',
SEQ ID NO. 30:
               3'- CsTsTACAGGTsCsCGTsTsGsA -5',
SEQ ID NO. 31: 3'- GsGsCsCGsTGTsTCGCsTsGsT -5',
SEQ ID NO. 32: 3'- TsCsACsCCsCTsCsTTsTsCsTsGsG -5',
SEQ ID NO. 33: 3'- GsGsAsCACsCGACsACsGsG -5',
SEQ ID NO. 34: 3'- AsAsCsGGGAGCGATsGsG -5',
SEQ ID NO. 35: 3'- AsTsCsTCGGGGTsCsGsTsC -5',
SEQ ID NO. 36: 3'- AsAsAGAACsGAAAGGsAsA -5',
SEQ ID NO. 37: 3'- GsGsTGGTsACsCsCsC -5',
SEQ ID NO. 38: 3'- CsCsCsGGTsACsTsGsA -5',
```

SEQ ID NO. 39: 3'- CsCsAsCAGAAAGsAsAsC -5' ist und

wobei "s" die Position einer modifzierten Internukleosid-Brücke bzw. Dephosphobrücke angibt, wobei "s" vorzugsweise die Position einer Phosphorothioat Brücke angibt.

Die Sequenzen SEQ ID NO. 21 bis SEQ ID NO. 39 entsprechen den Sequenzen SEQ ID NO. 2 - SEQ ID NO. 20, d.h. sie können an die gleichen Bereiche einer Tenascin-kodierenden Sequenz binden, wobei allerdings im Gegensatz den SEQ ID NO. 2-20 ein Teil der Phosphodiester Brücken durch modifizierte Phosphodiester-Brücken bzw. Dephosphobrücken, vorzugsweise durch Phosphothioat-Brücken (in der Sequenz durch ein "s" gekennzeichnet) ersetzt ist.

Eine weitere Ausführungsform der Erfindung betrifft chimäre Oligonukleotide. Ein chimäres Oligonukleotid ist aus mindestens zwei verschiedenen Sequenzabschnitten aufgebaut, beispielsweise aus einem DNA-Abschnitt und einem modifizierten Abschnitt, z.B. einem PNA-Abschnitt und/oder einem PHONA-Abschnitt. Diese unterschiedlichen Abschnitte verleihen dem gesamten Oligonukleotid besondere Eigenschaften.

Eine besondere Form chimärer Oligonukleotide ist beispielsweise in Matteucci und Wagner, Nature 384 SUPP (1996) 20-22 beschrieben. Ein chimäres Oligonukleotid kann z.B.

- eine sogenannte "Core Sequenz", die aus etwa sieben Nukleotiden besteht und die die RNase H aktivieren kann sowie
- 2. eine oder mehrere flankierende Sequenzen, welche die Affinität, Spezifität und/oder Nuklease-Stabilität des Oligonukleotids erhöhen, enthalten.

Beispielsweise kann die "Core Sequenz" an bestimmten Positionen modifizierte Internukleosid Brücken aufweisen, beispielsweise kann die "Core Sequenz" Phosphorothioat und/oder Phosphodiester Brücken enthalten. Als flankierende Sequenzen eignen sich beispielsweise Sequenzen, bei denen das Zuckerphosphat Rückgrat (Ersatz einer oder mehrerer Zuckerphosphat Einheiten) und/oder ß-D-2′-

Deoxyriboseeinheiten ersetzt sind. Als flankierende Sequenzen eignen sich beispielsweise PNAs und/oder 2'-O-Alkyl-Derivate wie etwa 2'-O-Methyl- und/oder 2'-O-Propyl- und/oder 2'-Methoxyethoxy-Derivate.

Eine besondere Ausführungsform der Erfindung betrifft ein chimäres Oligonukleotid, das eine der Sequenzen SEQ ID NO. 40 - SEQ ID NO. 58 aufweist, wobei

x unabhängig voneinander für eine unmodifizierte oder eine modifizierte Phosphodiester Internukleosid Brücke oder eine Dephosphobrücke, vorzugsweise für Phosphorothioat und/oder Phosphordiester steht

und

y unabhängig voneinander für den Ersatz einer Zuckerphosphat Einheit oder einer ß-D-2'-Deoxyriboseeinheit, vorzugsweise für 2'-O-Methyl-, 2'-O-Propyl-und/oder 2'-Methoxyethoxyribose oder einen PNA-Baustein steht,

wobei

SEO ID NO. 40: 3'- GyGyTyTyTyGxGxGxGxGxGxAxGyGyTyGyG -5', 3'- GyGyAyGyGyTxGxGxTxAxCxCxCyCyCyGyG -5', SEQ ID NO. 41: 3'- GyGyTxGxGxTxAxCxCxCxCyCyGyG -5', SEQ ID NO. 42: 3'- GyGyAyGyGxTxGxGxTxAxCyCyCyC -5', **SEQ ID NO. 43:** 3'- AyGyAyAxAxGxAxAxCxGxAxAxAyGyGyAyA -5', **SEQ ID NO. 44:** 3'- GyGyAxGxGxTxGxGxTxAyCyC -5', **SEQ ID NO. 45: SEQ ID NO. 46:** 3'- GyGyAxGxCxGxAxTxGyGyCyTyTyCyCyA -5', 3'- AvAvAvGxGxAxAxCxGxGyGyAyGyCyG -5', **SEQ ID NO. 47:** 3'- GyGyTyCxGxGxTxTxTxGxGyGyTyGyG -5', **SEQ ID NO. 48:** 3'- CyTyTyAxCxAxGxGxTxCxCxGyTyTyGyA -5', SEQ ID NO. 49: 3'- GyGyCyCxGxTxGxTxTxCxGyCyTyGyT -5', **SEQ ID NO. 50:** 3'- TyCyAyCxCxCxCxTxCxTxTyTyCyTyGyG -5', **SEQ ID NO. 51:** 3'- GyGyAyCxAxCxCxGxAxCxAyCyGyG -5', SEQ ID NO. 52: **SEQ ID NO. 53:** 3'- AyAyCyGxGxGxAxGxCxGxAyTyGyG -5', SEQ ID NO. 54: 3'- AyTyCyTxCxGxGxGxGxGxTxCxGyTyC -5', SEQ ID NO. 55: 3'- AyAyAyGxAxAxCxGxAxAxAxGyGyAyA -5', SEQ ID NO. 56: 3'- GyGyTxGxGxTxAxCxCyCyC -5',

WO 99/25819 PCT/EP98/06868

16

SEQ ID NO. 57: 3'- CyCxCxGxGxTxAxCyTyGyA -5',

SEQ ID NO. 58: 3'- CyCyAxCxAxGxAxAxAxGyAyAyC -5' ist.

Die Sequenzen SEQ ID NO. 40 - SEQ ID NO. 58 entsprechen den oben genannten Sequenzen SEQ ID NO. 2 bis SEQ ID NO. 20, d.h. sie binden an die entsprechenden Sequenzabschnitte einer Tenascin-kodierenden Sequenz, wobei allerdings die genannten Modifikationen enthalten sind.

Die Erfindung betrifft Verfahren zur Herstellung der Oligonukleotide. Die beschriebenen Oligonukleotide können mit Hilfe verschiedener bekannter, chemischer Verfahren, z.B. unter Anwendung der Standard Phosphoramidit-Chemie unter Verwendung von Jod bzw. TED (Tetraethythiuramdisulfid) als Oxidationsmittel, hergestellt werde. Dieses Verfahren ist z.B. in Eckstein, F. (1991) "Oligonukleotides and Analogues, A Practical Approach", IRL Press, Oxford beschrieben. Die Oligonukleotide können auch durch Verfahren hergestellt werden, die gegebenenfalls einen oder mehrere enzymatische Schritte enthalten.

Die Erfindung betrifft die Verwendung der Oligonukleotide. Die Oligonukleotide können zur Hybridisierung bzw. Bindung an Tenascin-kodierende (einzelsträngige und/oder doppelsträngige) Nukleinsäuren, beispielsweise DNA (z.B. Gene, cDNA) und/oder RNA (z.B. pre-mRNA, mRNA) verwendet werden. Insbesondere betrifft dies die Verwendung der Oligonukleotide zur Hybridisierung mit bzw. Bindung an Nukleinsäuren, die die Sequenz SEQ ID NO. 1 gemäß Tabelle 1 aufweisen bzw. mit Nukleinsäuren, die Teile diese Sequenz aufweisen (beispielsweise Sequenzen, die für Tenascin Isoformen kodieren) bzw. mit Nukleinsäuren, deren Sequenz geringfügig von diesen Sequenzen abweicht (die z.B. eine oder mehrere Punktmutationen aufweisen).

Die Erfindung betrifft weiterhin die Verwendung der Oligonukleotide zur Modulation sowie zur ganzen oder teilweisen Inhibition der Expression von Tenascin bzw. verschiedener Tenascin Isoformen bzw. von Mutanten derselben, beispielsweise zur ganzen oder teilweisen Inhibition der Transkription und/oder der Translation.

Die Erfindung betrifft beispielsweise die Verwendung der Oligonukleotide als Antisense Oligonukleotide. Darüber hinaus können die Oligonukleotide als Hilfsmittel in der Molekularbiologie verwendet werden.

Die Erfindung betrifft weiterhin die Verwendung der Oligonukleotide als Arzneimittel und/oder Diagnostikum bzw. die Verwendung der Oligonukleotide zur Herstellung von Arzneimitteln und/oder Diagnostika. Insbesondere können die Oligonukleotide in Arzneimitteln, die zur Prävention und/oder Behandlung von Krankheiten, die mit der Expression bzw. einer Überexpression von Tenascin einhergehen, eingesetzt werden. Da die Expression von Tenascin normalerweise, d.h. z.B. beim gesunden Menschen räumlich und zeitlich begrenzt ist, kann ein Abweichen von dieser normalen räumlichen und zeitlichen Expression, als Überexpression angesehen werden. Weiterhin können die Oligonukleotide für in Diagnostischen Verfahren eingesetzt werden. Solche Diagnostischen Verfahren können z.B. zur Diagnose bzw. Früherkennung von Krankheiten eingesetzt, die mit einer abnormalen Expression (z.B. Überexpression) von Tenascin einhergehen werden.

Die Erfindung betrifft auch einen Testkit, der ein oder mehrere erfindungsgemäße Oligonukleotide und gegenenfalls weitere Komponenten enthält. Solch ein Testkit kann beispielsweise in der Diagnostik und zur Vorsorge, beispielsweise von Hautkrebserkrankungen, eingesetzt werden.

Die Erfindung betrifft weiterhin die Verwendung der Oligonukleotide bzw. von Arzneimitteln, die diese Oligonukleotide enthalten, zur Behandlung von Krankheiten, bei denen Tenascin bzw. eine Überexpression von Tenacsin ursächlich bzw. beteiligt ist.

Die Erfindung betrifft insbesondere die Verwendung der Oligonukleotide bzw. von Arzneimitteln, die diese Oligonukleotide enthalten, zur Behandlung und/oder Prävention von Krankheiten, bei denen eine Fehlsteuerung bzw. Störung der Einwanderung bzw. des Vorhandenseins bzw. der Einlagerung von Melanocyten in Epithelzellschichten, beispielsweise in Epithelzellschicht der Epidermis, der Aderhaut des Auges oder der Substantia nigra, zugrunde liegt bzw. beteiligt ist und

von Morbus Addison, Diabetes mellitus, pernizi öser Anämie und/oder Schilddrüsendysfunktionen.

Die Erfindung betrifft insbesondere die Verwendung der Oligonukleotide bzw. von Arzneimitteln, die diese Oligonukleotide enthalten zur Behandlung und/oder Prävention von Vitiligo und anderen Depigmentierungskrankheiten bzw. Depigmentierungsstörungen (z.B. der Haut, Haare, Augen) beispielsweise Albinismus und/oder zur Behandlung von Psoriasis und/oder zur Behandlung von Krebs, z.B. zur Inhibitoren von Tumorwachstum und Tumormetastasierung, beispielsweise bei Melanomen und/oder zur Behandlung von Entzündungen, insbesondere als Entzündungshemmer und/oder zur Behandlung und/oder Prophylaxe cardiovaskulärer Erkrankungen, beispielsweise der Restenose.

Insbesondere betrifft die Erfindung die Verwendung der Oligonukleotide zur Behandlung von Vitiligo bzw. zur Herstellung von Arzneimitteln, die zur Behandlung von Vitiligo verwendet werden können. Die Erfindung betrifft darüber hinaus ganz allgemein (d.h. auch Oligonukleotide mit einer Länge von größer oder gleich 18 Nukleotiden) die Verwendung von Oligonukleotiden zur Behandlung von Vitiligo bzw. die Herstellung von Arzneimitteln, die zur Behandlung von Vitiligo verwendet werden können.

Die Erfindung betrifft weiterhin die Verwendung zur Behandlung von Vitiligo in Kombination mit bekannten therapeutischen Verfahren, beispielsweise in Kombination a) mit Photochemotherapie (PUVA), z.B. unter Verwendung von Methoxypsoralen, Phenylalanin und/oder Khellin und/oder b) mit der Transplantation von kultivierten Melanozyten ("epidermal grafting") und/oder c) mit einer Steroid-Behandlung und/oder d) mit einer Behandlung mit Plazenta-Extrakten und/oder e) mit einer Behandlung mit Pseudokatalase.

Die Erfindung betrifft weiterhin Verfahren zur Herstellung von Arzneimitteln (pharmazeutischen Zubereitungen). Zur Herstellung von Arzneimitteln werden ein oder mehrere verschiedene Oligonukleotide bzw. deren physiologisch verträgliche

Salze vermischt, wobei gegebenfalls weitere pharmazeutische Träger- und/oder Zusatzstoffe zugegeben werden können.

Die Erfindung betrifft weiterhin pharmazeutische Zubereitungen (Arzneimittel), die ein oder mehrere verschiedene Oligonukleotide und/oder deren physiologisch verträgliche Salze sowie gegebenfalls pharmazeutische Träger- und/oder Zusatzstoffe enthalten.

Das bzw. die Oligonukleotid(e) und/oder deren physiologisch verträgliche Salze können am Tier, bevorzugt am Säugetier, insbesondere am Menschen als Arzneimittel für sich allein, in Mischungen untereinander oder in Form von pharmazeutischen Zubereitungen verabreicht werden. Die Arzneimittel können eine topische, perkutane, parenterale und/oder enterale Anwendung gestatten. Die jeweils bevorzugte Anwendungsfrom hängt von den jeweils speziellen Gegebenheiten ab. Zur Behandlung von Vitiligo beispielsweise wird eine topische Anwendung, z.B. in Form von Salben, Lotionen oder Tinkturen, Emulsionen, Suspensionen bevorzugt. Ebenso hängt die Häufigkeit der Applikation von den individuellen Gegebenheiten ab. Zur Behandlung von Vitiligo kann beispielsweise eine topische Komposition ein bis zweimal am Tag auf die depigmentierte Hautstelle aufgetragen werden.

Arzneimittel bzw. pharmazeutische Zubereitungen können als aktiven Bestandteil eine wirksame Dosis mindestens eines Oligonukleotids und/oder eine Mischung mehrerer Oligonukleotide und gegebenfalls zusätzliche, pharmazeutisch einwandfreie Träger- und/oder Zusatzstoffe enthalten. Eine pharmazeutische Zubereitung kann etwa 0,1 % (Gewichtsprozent) oder weniger bis etwa 90 % (Gewichtsprozent) oder mehr des therapeutisch wirksamen Oligonukleotids bzw. der pharmazeutisch wirksamen Oligonukleotide enthalten.

Die pharmazeutisch wirksame Dosis des jeweiligen Oligonukleotids bzw. eines Oligonukleotids, welches Bestandteil einer Mischung verschiedener Oligonukleotide

WO 99/25819 PCT/EP98/06868

20

ist, kann innerhalb weiter Grenzen variieren und ist in jedem einzelnen Fall den individuellen Gegebenheiten anzupassen.

Die Herstellung der pharmazeutischen Zubereitungen kann in an sich bekannter Weise, z. B. beschrieben in Remingtons Pharmaceutical Sciences (1985), Mack Publ. Co., Easton, PA. durchgeführt werden, wobei gegebenfalls pharmazeutisch inerte anorganische und/oder organische Trägerstoffe verwendet werden können. Für die Herstellung von Pillen, Tabletten, Dragees und/oder Hartgelatinekapseln können z.B. Lactose, Maisstärke und/oder Derivate derselben, Talk, Stearinsäure und/oder deren Salze verwendet werden. Als Trägerstoffe für Weichgelatinekapseln und/oder Suppositorien können z.B. Fette, Wachse, halbfeste und/oder flüssige Polyole, natürliche und/oder gehärtete Öle verwendet werden. Als Trägerstoffe für die Herstellung von Lösungen und/oder Sirupen können z.B. Wasser, Saccharose, Invertzucker, Glukose und/oder Polyole verwendet werden. Als Trägerstoffe für die Herstellung von Injektionslösungen können z.B. Wasser, Alkohole, Glycerin, Polyole und/oder pflanzliche Öle verwendet werden. Als Trägerstoffe für Mikrokapseln, Implantate und/oder Rods können beispielsweise Mischpolymerisate, z.B. aus Glykolsäure und Milchsäure verwendet werden. Darüber hinaus sind Liposomenformulierungen, die dem Fachmann bekannt sind (N. Weiner, Drug Develop Ind Pharm 15 (1989) 1523; "Liposome Dermatics, Springer Verlag 1992), beispielsweise HVJ-Liposomen (Hayashi, Gene Therapy 3 (1996) 878) geeignet. Die dermale Applikation kann beispielsweise auch auch unter Zuhilfenahme ionophoretischer Methoden und/oder mit Hilfe der Elektroporation erfolgen. Darüber hinaus können Lipofektine und/oder andere (Nukleinsäure- bzw. DNA-)Carriersysteme, beispielsweise solche, die in der Gentherapie Anwendung finden, verwendet werden. Insbesondere sind Systeme geeignet, mit deren Hilfe Oligonukleotide mit großer Effizienz in eukaryotische Zellen bzw. die Kerne eukaryotischer Zellen eingebracht werden können.

Eine pharmazeutische Zubereitung kann neben den Wirk- und Trägerstoffen noch Zusatzstoffe, wie z.B. Füllstoffe, Streck-, Spreng-, Binde-, Gleit-, Netz-, Stabilisierungs-, Emulgier-, Konservierungs-, Süß-, Färbe-, Geschmacks- oder

Aromatisierungs-, Dickungs-, Verdünnungsmittel, Puffersubstanzen, ferner Lösungsmittel und/oder Lösungsvermittler und/oder Mittel zur Erzielung eines Depoteffekts, sowie Salze zur Veränderung des osmotischen Drucks, Überzugsmittel und/oder Antioxidantien enthalten. Sie können auch zwei oder mehrere verschiedene Oligonukleotide und/oder deren physiologisch verträgliche Salze enthalten sowie ferner neben mindestens einem Oligonukleotid einen oder mehrere andere therapeutisch wirksame Stoffe.

Beispiele

Beispiel 1: Oligonukleotidsynthese

Das Oligonukleotid wurde auf einem automatischen DNA Synthesizer (Applied Biosystems Model 380B oder 394) unter Anwendung der Standard Phosphoramidit-Chemie und Oxidation mit Jod synthetisiert (F. Eckstein, Ed "Oligonucleotides and Analogues, A Practical Approach", IRL Press, Oxford, 1991). Zur Einführung von Phosphorthioat-Brücken in gemischten Phosphorothioaten und Phosphodiester Oligonukleotid wurde anstelle von Jod mit TETD (Tetraethylthiuramdisulfid) oxidiert (Applied Biosystems User Bulletin 65). Nach Abspaltung vom festen Träger (CPG oder Tentagel) und Entfernung der Schutzgruppen mit konz. NH3 bei 55°C (18h) wurde das Oligonukleotid zunächst durch Butanol-Fällung (Sawadogo, Van Dyke, Nucl. Acids Res. 19 (1991) 674) gereinigt. Das Natriumsalz wurde dann durch Ausfällung aus einer 0.5 M NaCl Lösung mit 2.5 Volumenteilen Ethanol erhalten.

Das Oligonukleotid wurde mit Hilfe der

- a) Analytischen Gelelektrophorese (Gel: 20% Acrylamid, 8M Harnstoff; Laufpuffer: 454M Tris-borat Puffer, pH 7.0) und/oder
- b) HPLC-Analyse (Säulenmaterial: Waters GenPak FAX; Gradient: CH₃CN (400ml), H₂O (1.6l), NaH₂PO₄ (3.1g), NaCl (11.7g), pH6.8 (0.1M an NaCl) nach CH₃CN

(400ml), H₂O (1.6l), NaH₂PO₄ (3.1g), NaCl (175.3g), pH6.8 (1.5M an NaCl)) und/oder

- c) Kapillargelelektrophorese (Beckmann Kapillare eCAPTM, U100P Gel Column, 65 cm length, 100 mm l.D., window 15 cm from one end; Puffer: 140 µM Tris, 360mM Borsäure, 7M Harnstoff) und/oder
- d) Elektrospray Massenspektroskopie

analysiert.

Die Analyse des Oligonukleotids ergab, daß dieses jeweils in einer Reinheit von größer 90% vorlag. Die Methoden zur Analyse von Oligonukleotiden sind z.B. in Schweiber und Engler "Analysis of oligonucleotides" (in "Antisense – from technology to therapy", a laboratory manual and textbook, Schlingensiepen et al. eds., Biol. Science, Vol. 6 (1997) p. 78-103) beschrieben.

Synthetisiertes Oligonukleotid:

ODN1 (Sequenz SEQ ID NO. 24): 3'- GsGsAGGTsGGTsACsCsCsC -5'

Beispiel 2: Herstellung einer pharmazeutischen Zubereitung

50 mg ODN 1 aus Beispiel 1 können z.B. mit 1g Dermatop[®] (Hoechst Aktiengesellschaft, Frankfurt am Main, Germany) Basiscreme eng vermischt und die Mischung bei Temperaturen < 10 °C aufbewahrt.

Beispiel 3:

Die Creme aus Beispiel 2 kann dann beispielsweise zweimal täglich (morgens und nachmittags bzw. abends) auf eine depigmentierte Hautstelle eines Vitiligo-Patienten aufgetragen werden.

Tabelle 1: Sequenz SEQ ID NO. 1:

Sequenz der humanen Tenascins cDNA nach A. Siri et al. Nucl. Acids Res. 19 (1991) 525-531.

GAATTCGCTA	GAGCCCTAGA	GCCCAGCAG	CACCCAGCCA	AACCCACCTC	CACCATGGGG	60
GCCATGACTC	AGCTGTTGGC	AGGTGTCTTT	CTTGCTTTCC	TTGCCCTCGC	TACCGAAGGT	120
GGGGTCCTCA	AGAAAGTCAT	CCGGCACAAG	CGACAGAGTG	GGGTGAACGC	CACCCTGCCA	180
GAAGAGAACC	AGCCAGTGGT	GTTTAACCAC	GTTTACAACA	TCAAGCTGCC	AGTGGGATCC	240
CAGTGTTCGG	TGGATCTGGA	GTCAGCCAGT	GGGGAGAAAG	ACCTGGCACC	GCCTTCAGAG	300
CCCAGCGAAA	GCTTTCAGGA	GCACACAGTA	GATGGGGAAA	ACCAGATTGT	CTTCACACAT	360
CGCATCAACA	TCCCCGCCG	GGCCTGTGGC	TGTGCCGCAG	CCCCTGATGT	TAAGGAGCTG	420
CTGAGCAGAC	TGGAGGAGCT	GGAGAACCTG	GTGTCTTCCC	TGAGGGAGCA	ATGTACTGCA	480
GGAGCAGGCT	GCTGTCTCCA	GCCTGCCACA	GGCCGCTTGG	ACACCAGGCC	CTTCTGTAGC	540
GGTCGGGGCA	ACTTCAGCAC	TGAAGGATGT	GGCTGTGTCT	GCGAACCTGG	CTGGAAAGGC	600
CCCAACTGCT	CTGAGCCCGA	ATGTCCAGGC	AACTGTCACC	TTCGAGGCCG	GTGCATTGAT	660
GGGCAGTGCA	TCTGTGACGA	CGGCTTCACG	GGCGAGGACT	GCAGCCAGCT	GGCTTGCCCC	720
AGCGACTGCA	ATGACCAGGG	CAAGTGCGTG	AATGGAGTCT	GCATCTGTTT	CGAAGGCTAC	780
GCGGCTGACT	GCAGCCGTGA	AATCTGCCCA	GTGCCCTGCA	GTGAGGAGCA	CGGCACATGT	840
GTAGATGGCT	TGTGTGTGTG	CCACGATGGC	TTTGCAGGCG	ATGACTGCAA	CAAGCCTCTG	900
TGTCTCAACA	ATTGCTACAA	CCGTGGACGA	TGCGTGGAGA	ATGAGTGCGT	GTGTGATGAG	960
GGTTTCACGG	GCGAAGACTG	CAGTGAGCTC	: ATCTGCCCCA	ATGACTGCTT	CGACCGGGGC	1020
CGCTGCATCA	ATGGCACCTG	CTACTGCGAA	GAAGGCTTCA	CAGGTGAAGA	CTGCGGGAAA	1080
CCCACCTGCC	: CACATGCCTG	CCACACCCAG	GGCCGGTGTG	AGGAGGGCA	GTGTGTATGT	1140

WO 99/25819

	GATGAGGGC'	T TTGCCGGTG	r ggactgcag	C GAGAAGAGG	T GTCCTGCTG	A CTGTCACAAT	1200
	CGTGGCCGC	T GTGTAGACGO	G GCGGTGTGA	G TGTGATGAT	G GTTTCACTG	G AGCTGACTGT	1260
	GGGGAGCTC	A AGTGTCCCA	A TGGCTGCAG	r ggccatggc	GCTGTGTCA	A TGGGCAGTGT	1320
	GTGTGTGAT	G AGGGCTATAC	TGGGGAGGA	C TGCAGCCAG	TACGGTGCC	CAATGACTGT	1380
	CACAGTCGGG	GCCGCTGTGT	CGAGGGCAAA	A TGTGTATGTG	AGCAAGGCTT	CAAGGGCTAT	1440
	GACTGCAGTG	ACATGAGCTG	CCCTAATGAC	TGTCACCAGO	ACGGCCGCTG	TGTGAATGGC	1500
	ATGTGTGTTT	GTGATGACGG	CTACACAGGG	GAAGACTGCC	GGGATCGCCA	ATGCCCCAGG	1560
	GACTGCAGCA	ACAGGGGCCT	CTGTGTGGAC	GGACAGTGCG	TCTGTGAGGA	CGGCTTCACC	1620
•	GGCCCTGACT	GTGCAGAACT	CTCCTGTCCA	AATGACTGCC	ATGGCCAGGG	TCGCTGTGTG	1680
i	AATGGGCAGT	GCGTGTGCCA	TGAAGGATTT	ATGGGCAAAG	ACTGCAAGGA	GCAAAGATGT	1740
(CCCAGTGACT	GTCATGGCCA	GGGCCGCTGC	GTGGACGGCC	AGTGCATCTG	CCACGAGGC	1800
7	FTCACAGGCC	TGGACTGTGG	CCAGCACTCC	TGCCCCAGTG	ACTGCAACAA	CTTAGGACAA	1860
7	rgcgtctcgg	GCCGCTGCAT	CTGCAACGAG	GGCTACAGCG	GAGAAGACTG	CTCAGAGGTG	1920
1	CTCCTCCCA	AAGACCTCGT	TGTGACAGAA	GTGACGGAAG	AGACGGTCAA	CCTGGCCTGG	1980
C	GACAATGAGA	TGCGGGTCAC	AGAGTACCTT	GTCGTGTACA	CGCCCACCCA	CGAGGGTGGT	2040
C	TGGAAATGC	AGTTCCGTGT	GCCTGGGGAC	CAGACGTCCA	CCATCATCCG	GGAGCTGGAG	2100
C	CTGGTGTGG	AGTACTTTAT	CCGTGTATTT	GCCATCCTGG	AGAACAAGAA	GAGCATTCCT	2160
G	TCAGCGCCA	GGGTGGCCAC	GTACTTACCT	GCACCTGAAG	GCCTGAAATT	CAAGTCCATC	2220
A	AGGAGACAT	CTGTGGAAGT	GGAGTGGGAT	CCTCTAGACA	TTGCTTTTGA	AACCTGGGAG	2280
A	TCATCTTCC	GGAATATGAA	TAAAGAAGAT	GAGGGAGAGA	TCACCAAAAG	CCTGAGGAGG	2340
C	CAGAGACCT	CTTACCGGCA	AACTGGTCTA	GCTCCTGGGC	AAGAGTATGA	GATATCTCTG	2400
С	ACATAGTGA	AAAACAATAC	CCGGGGCCCT	GGCCTGAAGA	GGGTGACCAC	CACACGCTTG	2460

WO 99/25819 PCT/EP98/06868

GATGCCCCCA	GCCAGATCGA	GGTGAAAGAT	GTCACAGACA	CCACTGCCTT	GATCACCTGG	2520
TTCAAGCCCC	TGGCTGAGAT	CGATGGCATT	GAGCTGACCT	ACGGCATCAA	AGACGTGCCA	2580
GGAGACCGTA	CCACCATCGA	TCTCACAGAG	GACGAGAACC	AGTACTCCAT	CGGGAACCTG	2640
AAGCCTGACA	CTGAGTACGA	GGTGTCCCTC	ATCTCCCGCA	GAGGTGACAT	GTCAAGCAAC	2700
CCAGCCAAAG	AGACCTTCAC	AACAGGCCTC	GATGCTCCCA	GGAATCTTCG	ACGTGTTTCC	2760
CAGACAGATA	ACAGCATCAC	CCTGGAATGG	AGGAATGGCA	AGGCAGCTAT	TGACAGTTAC	2820
AGAATTAAGT	ATGCCCCCAT	CTCTGGAGGG	GACCACGCTG	AGGTTGATGT	TCCAAAGAGC	2880
CAACAAGCCA	CAACCAAAAC	CACACTCACA	GGTCTGAGGC	CGGGAACTGA	ATATGGGATT	2940
GGAGTTTCTG	CTGTGAAGGA	AGACAAGGAG	AGCAATCCAG	CGACCATCAA	CGCAGCCACA	3000
GAGTTGGACA	CGCCCAAGGA	CCTTCAGGTT	TCTGAAACTG	CAGAGACCAG	CCTGACCCTG	3060
CTCTGGAAGA	CACCGTTGGC	CAAATTTGAC	CGCTACCGCC	TCAATTACAG	TCTCCCCACA	3120
GGCCAGTGGG	TGGGAGTGCA	GCTTCCAAGA	AACACCACTT	CCTATGTCCT	GAGAGGCCTG	3180
GAACCAGGAC	AGGAGTACAA	TGTCCTCCTG	ACAGCCGAGA	AAGGCAGACA	CAAGAGCAAG	3240
CCCGCACGTG	TGAAGGCATC	CACTGAACAA	GCCCCTGAGC	TGGAAAACCT	CACCGTGACT	3300
GAGGTTGGCT	GGGATGGCCT	CAGACTCAAC	TGGACCGCGG	CTGACCAGGC	CTATGAGCAC	3360
TTTATCATTC	AGGTGCAGGA	GGCCAACAAG	GTGGAGGCAG	CTCGGAACCT	CACCGTGCCT	3420
GGCAGCCTTC	GGGCTGTGGA	CATACCGGGC	CTCAAGGCTG	CTACGCCTTA	TACAGTCTCC	3480
ATCTATGGGG	TGATCCAGGG	CTATAGAACA	CCAGTGCTCT	CTGCTGAGGC	CTCCACAGGG	3540
GAAACTCCCA	ATTTGGGAGA	GGTCGTGGTG	GCCGAGGTGG	GCTGGGATGC	CCTCAAACTC	3600
AACTGGACTG	CTCCAGAAGG	GGCCTATGAG	TACTTTTTCA	TTCAGGTGCA	GGAGGCTGAC	3660
ACAGTAGAGG	CAGCCCAGAA	CCTCACCGTC	CCAGGAGGAC	TGAGGTCCAC	AGACCTGCCT	3720
GGGCTCAAAG	CAGCCACTCA	TTATACCATC	ACCATCCGCG	GGGTCACTCA	GGACTTCAGC	3780

ACAA	CCCCTC	TCTCTGTTGA	AGTCTTGACA	GAGGAGGTTC	CAGATATGGG	AAACCTCACA	3840
GTGA	CCGAGG	TTAGCTGGGA	TGCTCTCAGA	CTGAACTGGA	CCACGCCAGA	TGGAACCTAT	3900
GACC	AGTTTA	CTATTCAGGT	CCAGGAGGCT	GACCAGGTGG	AAGAGGCTCA	CAATCTCACG	3960
GTTC	CTGGCA	GCCTGCGTTC	CATGGAAATC	CCAGGCCTCA	GGGCTGGCAC	TCCTTACACA	4020
GTCA	CCCTGC	ACGGCGAGGT	CAGGGGCCAC	AGCACTCGAC	CCCTTGCTGT	AGAGGTCGTC	4080
CAGTO	GGACG	TGCCGCTCCA	GTCCCCGGTG	TCGTGAGCTG	GGGAACGACA	TCTCCAGCAG	4140
ACAG	AGGATC	TCCCACAGCT	GGGAGATTTA	GCCGTGTCTG	AGGTTGGCTG	GGATGGCCTC	4200
AGACT	CAACT	GGACCGCAGC	TGACAATGCC	TATGAGCACT	TTGTCATTCA	GGTGCAGGAG	4260
GTCAR	ACAAAG	TGGAGGCAGC	CCAGAACCTC	ACGTTGCCTG	GCAGCCTCAG	GGCTGTGGAC	4320
ATCCC	CGGCC	TCGAGGCTGC	CACGCCTTAT	AGAGTCTCCA	TCTATGGGGT	GATCCGGGGC	4380
TATAG	BAACAC	CAGTACTCTC	TGCTGAGGCC	TCCACAGCCA	AAGAACCTGA	AATTGGAAAC	4440
TTAAA	TGTTT	CTGACATAAC	TCCCGAGAGC	TTCAATCTCT	CCTGGATGGC	TACCGATGGG	4500
ATCTT	CGAGA	CCTTTACCAT	TGAAATTATT	GATTCCAATA	GGTTGCTGGA	GACTGTGGAA	4560
TATAA	TATCT	CTGGTGCTGA	ACGAACTGCC	CATATCTCAG	GGCTACCCC	TAGTACTGAT	4620
TTTAT	TGTCT	ACCTCTCTGG	ACTTGCTCCC	AGCATCCGGA	CCAAAACCAT	CAGTGCCACA	4680
GCCAC	GACAG	AGGCCCTGCC	CCTTCTGGAA	AACCTAACCA	TTTCCGACAT	TAATCCCTAC	4740
GGGTT	CACAG	TTTCCTGGAT	GGCATCGGAG	AATGCCTTTG	ACAGCTTTCT	AGTAACGGTG	4800
GTGGA	TTCTG	GGAAGCTGCT	GGACCCCCAG	GAATTCACAC	TTTCAGGAAC	CCAGAGGAAG	4860
CTGGA	GCTTA	GAGGCCTCAT	AACTGGCATT	GGCTATGAGG	TTATGGTCTC	TGGCTTCACC	4920
CAAGG	GCATC	AAACCAAGCC	CTTGAGGGCT	GAGATTGTTA	CAGAAGCCGA	ACCGGAAGTT	4980
GACAA	CCTTC	TGGTTTCAGA	TGCCACCCCA	GACGGTTTCC	GTCTGTCCTG	GACAGCTGAT	5040
GAAGG	GGTCT	TCGACAATTT	TGTTCTCAAA	ATCAGAGATA	CCAAAAAGCA	GTCTGAGCCA	5100

CTGGAAATAA	CCCTACTTGC	CCCCGAACGT	ACCAGGGACA	TAACAGGICI	CAGAGAGGCI	2100
ACTGAATACG	AAATTGAACT	CTATGGAATA	AGCAAAGGAA	GGCGATCCCA	GACAGTCAGT	5220
GCTATAGCAA	CAACAGCCAT	GGGCTCCCCA	AAGGAAGTCA	TTTTCTCAGA	CATCACTGAA	5280
AATTCGGCTA	CTGTCAGCTG	GAGGGCACCC	ACGGCCCAAG	TGGAGAGCTT	CCGGATTACC	5340
TATGTGCCCA	TTACAGGAGG	TACACCCTCC	ATGGTAACTG	TGGACGGAAC	CAAGACTCAG	5400
ACCAGGCTGG	TGAAACTCAT	ACCTGGCGTG	GAGTACCTTG	TCAGCATCAT	CGCCATGAAG	5460
GGCTTTGAGG	AAAGTGAACC	TGTCTCAGGG	TCATTCACCA	CAGCTCTGGA	TGGCCCATCT	5520
GCCTGGTGA	CAGCCAACAT	CACTGACTCA	GAAGCCTTGG	CCAGGTGGCA	GCCAGCCATT	5580
GCCACTGTGG	ACAGTTATGT	CATCTCCTAC	ACAGGCGAGA	AAGTGCCAGA	AATTACACGC	5640
ACGGTGTCCG	GGAACACAGT	GGAGTATGCT	CTGACCGACC	TCGAGCCTGC	CACGGAATAC	5700
ACACTGAGAA	TCTTTGCAGA	GAAAGGCCC	CAGAAGAGCT	CAACCATCAC	TGCCAAGTTC	5760
ACAACAGACC	TCGATTCTCC	AAGAGACTTG	ACTGCTACTG	AGGTTCAGTC	GGAAACTGCC	5820
CTCCTTACCT	GGCGACCCCC	CCGGGCATCA	GTCACCGGTT	ACCTGCTGGT	CTATGAATCA	5880
GTGGATGGCA	CAGTCAAGGA	AGTCATTGTG	GGTCCAGATA	CCACCTCCTA	CAGCCTGGCA	5940
GACCTGAGCC	CATCCACCCA	CTACACAGCC	AAGATCCAGG	CACTCAATGG	GCCCCTGAGG	6000
AGCAATATGA	TCCAGACCAT	CTTCACCACA	ATTGGACTCC	TGTACCCCTT	CCCCAAGGAC	6060
TGCTCCCAAG	CAATGCTGAA	TGGAGACACG	ACCTCTGGCC	TCTACACCAT	TTATCTGAAT	6120
GGTGATAAGG	CTCAGGCGCT	GGAAGTCTTC	TGTGACATGA	CCTCTGATGG	GGGTGGATGG	6180
ATTGTGTTCC	TGAGACGCAA	AAACGGACGC	GAGAACTTCT	ACCAAAACTG	GAAGGCATAT	6240
GCTGCTGGAT	TTGGGGACCG	CAGAGAAGAA	TTCTGGCTTG	GGCTGGACAA	CCTGAACAAA	6300
ATCACAGCCC	AGGGGCAGTA	CGAGCTCCGG	GTGGACCTGC	GGGACCATGG	GGAGACAGCC	6360
TTTGCTGTCT	ATGACAAGTT	CAGCGTGGGA	GATGCCAAGA	CTCGCTACAA	GCTGAAGGTG	6420

WO 99/25819 PCT/EP98/06868

28

GAGGGGTACA	GTGGGACAGC	AGGTGACTCC	ATGGCCTACC	ACAATGGCAG	ATCCTTCTCC	6480
ACCTTTGACA	AGGACACAGA	TTCAGCCATC	CACCAACTGTG	CTCTGTCTAC	AAGGGGCTTC	6540
TGGTACAGGA	ACTGTCACCG	TGTCAACCTG	ATGGGGAGAT	' ATGGGGACAA	TAACCACAGT	6600
CAGGGCGTTA	ACTGGTTCCA	CTGGAAGGGC	CACGAACACT	CAATCCAGTT	TGCTGAGATG	6660
AAGCTGAGAC	CAAGCAACTT	CAGAAATCTT	GAAĢGCAGGC	GCAAACGGGC	ATAAATTGGA	6720
GGGACCACTG	GGTGAGAGAG	GAATAAGGCG	GCCCAGAGCG	AGGAAAGGAT	TTTACCAAAG	6780
CATCAATACA	ACCAGCCCAA	CCATCGGTCC	ACACCTGGGC	ATTTGGTGAG	AATCAAAGCT	6840
GACCATGGAT	CCCTGGGGCC	AACGGCAACA	GCATGGGCCT	CACCTCCTCT	GTGATTTCTT	6900
TCTTTGCACC	AAAGACATCA	GTCTCCAACA	TGTTTCTGTT	TTGTTGTTTG	ATTCAGCAAA	6960
AATCTCCCAG	TGACAACATC	GCAATAGTTT	TTTACTTCTC	TTAGGTGGCT	CTGGGATGGG	7020
AGAGGGGTAG	GATGTACAGG	GGTAGTTTGT	TTTAGAACCA	GCCGTATTTT	ACATGAAGCT	7080
STATAATTAA	TTGTCATTAT	TTTTGTTAGC	AAAGATTAAA	TGTGTCATTG	GAAGCCATCC	7140
CTTTTTTTAC	ATTTCATACA	ACAGAAACCA	GAAAAGCAAT	ACTGTTTCCA	TTTTAAGGAT	7200
ATGATTAATA	TTATTAATAT	AATAATGATG	ATGATGATGA	TGAAAACTAA	GGATTTTTCA	7260
AGAGATCTTT	CTTTCCAAAA	CATTTCTGGA	CAGTACCTGA	TTGTATTTT	TTTTTAAATA	7320
AAAGCACAAG	TACTTTTGAA	AAAAA				7346

Patentansprüche:

- 1. Oligonukleotid, das an eine Nukleinsäure, die für eine der Isoformen humanen Tenascins oder Teile derselben kodiert, bindet und deren Expression inhibiert, wobei das Oligonukleotid eine Länge von 7 bis 15 Nukleotideinheiten aufweist und wobei das Oligonukleotid gegebenfalls modifiziert sein kann sowie die physiologisch verträglichen Salze des Oligonukleotids.
- 2. Oligonukleotid nach Anspruch 1, wobei das Oligonukleotid an einen Bereich der Nukleinsäure bindet, der
 - einen Teil des 5'-nichtkodierenden Bereichs und/oder den Translationsstart oder
 - b) den Translationsstart und/oder einen Teil des kodierenden Bereichs oder
 - einen Teil des kodierenden Bereichs und/oder
 einen Teil des 3'-nichtkodierenden Bereichs

umfaßt.

3. Oligonukleotid nach Anspruch 1, wobei das Oligonukleotid eine der Sequenzen SEQ ID NO. 2 bis SEQ ID NO. 20 hat, wobei SEQ ID NO. 2 bis SEQ ID NO. 20 folgende Bedeutung haben:

```
SEQ. ID NO. 2: 3'- GGTTTGGGTGGAGGTGG -5'
```

SEQ. ID NO. 3: 3'- GGAGGTGGTACCCCCGG -5'

SEQ. ID NO. 4: 3'- GGTGGTACCCCCGG -5'

SEQ. ID NO. 5: 3'- GGAGGTGGTACCCC -5'

SEQ. ID NO. 6: 3'- AGAAAGAACGAAAGGAA -5'

SEQ. ID NO. 7: 3'- GGAGGTGGTACC -5'

SEQ. ID NO. 8: 3'- GGAGCGATGGCTTCCA -5'

SEQ. ID NO. 9: 3'- AAAGGAACGGGAGCG -5'

SEQ. ID NO. 10: 3'- GGTCGGTTTGGGTGG -5'

SEQ. ID NO. 11: 3'- CTTACAGGTCCGTTGA -5'
SEQ. ID NO. 12: 3'- GGCCGTGTTCGCTGT -5'
SEQ. ID NO. 13: 3'- TCACCCCTCTTTCTGG -5'
SEQ. ID NO. 14: 3'- GGACACCGACACGG -5'
SEQ. ID NO. 15: 3'- AACGGGAGCGATGG -5'
SEQ. ID NO. 16: 3'- ATCTCGGGGTCGTC -5'
SEQ. ID NO. 17: 3'- AAAGAACGAAAGGAA -5'
SEQ. ID NO. 18: 3'- GGTGGTACCCC -5'
SEQ. ID NO. 19: 3'- CCCGGTACTGA -5'
SEQ. ID NO. 20: 3'- CCACAGAAAGAAC -5'

- 4. Oligonukleotid nach einem oder mehreren der Ansprüche 1 bis 3, wobei das Oligonukleotid eine oder mehrere Modifikationen aufweist, die an bestimmten Nukleosid Positionen und/oder Internukleosid Brücken lokalisiert sind.
- 5. Oligonukleotid nach einem oder mehreren der Ansprüche 1 bis 4, wobei die chemischen Modifikationen unabhängig voneinander ausgewählt werden können aus der Reihe der chemischen Modifikationen a) bis h), wobei
- a) den Ersatz einer Phosphorsäurediester Internukleosid-Brücke lokalisiert ist durch eine modifizierte Phospho-Brücke,
- b) den Ersatz einer Phosphorsäurediester Internukleosid-Brücke durch eine "Dephospho"-Brücke,
- c) den Ersatz einer Zuckerphosphat-Einheit durch eine andere Einheit,
- d) den Ersatz einer ß-D-2'-Desoxyribose-Einheit durch eine modifizierte Zuckereinheit,
- e) die Modifikation beziehungsweise den Ersatz einer natürlichen Nukleosid-Base, durch eine modifizierte Nukleosid-Base.
- f) die Konjugation des Oligonukleotids mit einem Molekül, welches die Eigenschaften des Oligonukleotids an eine spezielle Anforderung anpaßt,

- g) die Konjugation des Oligonukleotids an ein 2'5'-verbundenes Oligoadenylat oder ein Derivat davon, wobei die Konjugation des 2'5'-verbundenen Oligoadenylats oder eines Derivats davon gegebenenfalls über einen Linker erfolgt, und
- h) die Einführung einer 3'-3'-Inversion und/oder 5'-5'-Inversion am 3'beziehungsweise 5'- Ende des Oligonukleotids, bedeuten.
- 6. Oligonukleotid nach einem oder mehreren der Ansprüche 1 bis 5, wobei das Oligonukleotid eine oder mehrere chemische Modifikationen enthält, die unabhängig voneinander ausgewählt werden können aus der Reihe der chemischen Modifikationen a) bis h), wobei
- a) den Ersatz einer Phosphorsäurediester Internukleosid-Brücke durch eine modifizierte Phosphobrücke bedeutet,

wobei eine modifizierte Phosphobrücke eine Phosphorothioat-, Phosphorodithioat-, NR^1R^1 -Phosphoramidat-, Boranophosphat-, Phosphat-(C_1 - C_2)-O-Alkylester-, Phosphat-[(C_6 - C_{12})Aryl-(C_1 - C_2)-O-Alkylphosphonat- oder (C_6 - C_{12})-Arylphosphonat-Brücke ist, wobei

 R^1 und R^1 unabhängig voneinander ausgewählt werden aus der Reihe enthaltend Wasserstoff, (C_1 - C_{18})-Alkyl, (C_6 - C_{20})-Aryl, (C_6 - C_{14})-Aryl-(C_1 - C_8)-alkyl oder

R¹ und R¹ zusammen mit dem sie tragenden Stickstoffatom einen 5-6gliedrigen heterocyclischen Ring bilden, der zusätzlich ein weiteres Heteroatom aus der Reihe O, S, N enthalten kann,

b) den Ersatz einer Phosphorsäurediester Internukleosid-Brücke durch eine "Dephospho"-Brücke bedeutet,

wobei eine "Dephospho-Brücken" eine Formacetal-, 3'-Thioformacetal-, Methylhydroxylamin-, Oxim-, Methylendimethylhydrazo-, Dimethylensulfonoder Silyl-Brücke ist,

WO 99/25819 PCT/EP98/06868

32

c) den vollständigen oder teilweisen Ersatz des Zuckerphosphat-Rückgrats (Ersatz von Zucker-Phosphat-Einheiten) durch andere Einheiten bedeutet,

wobei eine andere Einheit geeignet ist, ein "Morpholin-Derivat"-Oligomer, eine Polyamid Nukleinsäure ("PNA") oder eine Phosphomonosäureester Nukleinsäure aufzubauen.

c) den Ersatz einer ß-D-2'-Desoxyribose-Einheit durch eine modifizierte Zuckereinheit bedeutet.

wobei eine modifizierte Zuckereinheit eine α-D-2'-Desoxyribose, L-2'-Desoxyribose, 2'-F-2'-Desoxyribose, 2'-O-(C₁-C₆)Alkyl-Ribose, 2'-O-(C₂-C₆)Alkenyl-Ribose, 2'-[O-(C₁-C₆)Alkyl-O-(C₁-C₆)Alkyl]-Ribose, 2'-NH₂-2'desoxyribose, ß-D-Xylofuranose, a-Arabinofuranose, 2,4-Dideoxy-ß-Derythro-hexo-pyranose, ein carbozyklisches Zuckeranalogon, ein offenkettiges Zuckeranalogon oder ein Bicyclo-Zuckeranalogon ist,

d) den Ersatz einer natürlichen Nukleosid-Base durch eine modifizierte Nukleosid-Base bedeutet.

wobei eine modifizierte Nukleosid-Base 5-(Hydroxymethyl)uracil, 5-Aminouracil, Pseudouracil, Dihydrouracil, 5-(C₁-C₆)-Alkyl-uracil, 5-(C₂-C₆)-Alkenyl-uracil, 5-(C2-C6)-Alkinyl-uracil, 5-(C1-C6)-Alkyl-cytosin, 5-(C2-C6)-Alkenyl-cytosin, 5-(C₂-C₆)-Alkinyl-cytosin, 5-Fluoruracil, 5-Fluorcytosin, 5-Chloruracil, 5-Chlorcytosin, 5-Bromuracil, 5-Bromcytosin, ein 7-Deaza-7substituiertes Purin ,oder ein 7-Deaza-8-substituiertes Purin ist,

- e) die Konjugation mit einem Molekül bedeutet.
 - wobei das Molekül ein Poly-Lysin, Interkalator, fluoreszierendes Molekül, Cross-Linker, lipophiles Molekül, Lipid, Steroid, Vitamin, Polyethlyenglykol, Oligoethylenglykol, (C₁₂-C₁₈)-Alkyl-Phosphatdiester oder -O-CH₂-CH(OH)-O-(C₁₂-C₁₈)-Alkyl-Gruppe ist.
- f) die Konjugation an ein 2'5'-verbundenes Oligoadenylat oder ein Derivat desselben bedeutet.

wobei ein 2'5'-verbundenes Oligoadenylat oder ein Derivat desselben ein 2'5'-verbundenes Triadenylat, 2'5'-verbundenes Tetraadenylat, 2'5'-

verbundenes Pentaadenylat oder Cordycepin (2'5'-verbundenes 3'-Deoxyadenylat) ist,

wobei die Konjugation gegebenenfalls über einen Linker erfolgt und wobei das 5'-Ende des 2'5'-verbundenen Oligoadenylats gegebenenfalls eine Phosphat-, Diphosphat- oder Triphosphatgruppe enthält und

- g) die Einführung einer 3'-3'- und/oder 5'-5'-Inversion am 3' und/oder am 5'-Ende des Oligonukleotids bedeutet.
- 7. Oligonukleotid nach einem oder mehreren der Ansprüche 1 bis 6, wobei entweder a) nur bestimmte Phosphodiester Internukleosid-Brücken oder
- b) alle Phosphodiester Internukleosid-Brücken durch modifiziert sind.
- 8. Oligonukleotid nach einem oder mehreren der Ansprüche 1 bis 7, wobei 1 5 endständige Internukleosid-Brücken am 5'-und/oder am 3'-Ende des Oligonukleotids modifiziert sind.
- 9. Oligonukleotid nach einem oder mehreren der Ansprüche 1 bis 8, wobei die am 3'- und/oder 5'-Ende von nicht endständigen Nukleosiden, die eine Pyrimidin Base enthalten, lokalisierten Internukleosid-Brücken modifiziert sind.
- 10. Oligonukleotid nach einem oder mehreren der Ansprüche 1 bis 9, wobei das Oligonukleotid eine Sequenz ausgewählt aus der Reihe der Sequenzen SEQ ID NO. 21 bis SEQ ID NO. 39 hat, wobei die Sequenzen SEQ ID NO. 21 bis SEQ ID NO. 39 folgende Bedeutung haben:

SEQ ID NO. 21: 3'- GsGsTsTsTGGGTsGGAGGsTsGsG -5',

SEQ ID NO. 22: 3'- GsGsAsGGTsGGTsACsCCsCCsGsG -5',

SEQ ID NO. 23: 3'- GsGsTGGTsACsCsCsCsGsG -5',

SEQ ID NO. 24: 3'- GsGsAGGTsGGTsACsCsCsC -5',

SEQ ID NO. 25: 3'- AsGsAAAGAAsCsGAAAGGsAsA -5',

```
SEQ ID NO. 26:
               3'- GsGsAGGTsGGTsAsCsC -5',
SEQ ID NO. 27:
               3'- GsGsAGCsGATsGGCsTsTsCsCsA -5'.
SEQ ID NO. 28:
               3'- AsAsAGGAACsGGGAGsCsG -5'.
SEQ ID NO. 29:
               3'- GsGsTCGGTsTsTGGGTsGsG -5'.
SEQ ID NO. 30:
               3'- CsTsTACAGGTsCsCGTsTsGsA -5',
SEQ ID NO. 31:
               3'- GsGsCsCGsTGTsTCGCsTsGsT -5',
SEQ ID NO. 32:
               3'- TsCsACsCCsCTsCsTTsTsCsTsGsG -5',
SEQ ID NO. 33:
               3'- GsGsAsCACsCGACsACsGsG -5'.
SEQ ID NO. 34:
               3'- AsAsCsGGGAGCGATsGsG -5'.
SEQ ID NO. 35:
               3'- AsTsCsTCGGGGTsCsGsTsC -5',
SEQ ID NO. 36:
               3'- AsAsAGAACsGAAAGGsAsA -5'.
SEQ ID NO. 37:
               3'- GsGsTGGTsACsCsCsC -5'.
SEQ ID NO. 38:
               3'- CsCsCsGGTsACsTsGsA -5' und
SEQ ID NO. 39:
               3'- CsCsAsCAGAAAGsAsAsC -5'.
```

wobei "s" die Position einer modifizierten Internukleosid-Brücke angibt.

11. Oligonukleotid nach einem oder mehreren der Ansprüche 1 bis 8, wobei das Oligonukleotid eine der Sequenzen SEQ ID NO. 40 bis SEQ ID NO. 58 hat, wobei die Sequenzen SEQ ID NO. 40 bis SEQ ID NO. 58 folgende Bedeutung haben

```
SEQ ID NO. 40: 3'- GyGyTyTyTyGxGxGxGxGxGxGxGxGyGyTyGyG -5',
SEQ ID NO. 41: 3'- GyGyAyGyGyTxGxGxTxAxCxCxCyCyCyGyG -5',
SEQ ID NO. 42:
               3'- GyGyTxGxGxTxAxCxCxCxCyCyGyG -5',
               3'- GyGyAyGyGxTxGxGxTxAxCyCyCyC -5',
SEQ ID NO. 43:
SEQ ID NO. 44:
               3'- AyGyAyAxAxGxAxAxCxGxAxAxAyGyGyAyA -5',
SEQ ID NO. 45:
               3'- GyGyAxGxGxTxGxGxTxAyCyC -5'.
SEQ ID NO. 46:
               3'- GyGyAxGxCxGxAxTxGyGyCyTyTyCyCyA -5'.
SEQ ID NO. 47:
               3'- AyAyAyGxGxAxAxCxGxGyGyAyGyCyG -5',
SEQ ID NO. 48:
               3'- GyGyTyCxGxGxTxTxTxGxGyGyTyGyG -5',
               3'- CyTyTyAxCxAxGxGxTxCxCxGyTyTyGyA -5',
SEQ ID NO. 49:
```

- SEQ ID NO. 50: 3'- GyGyCyCxGxTxGxTxTxCxGyCyTyGyT -5',
 SEQ ID NO. 51: 3'- TyCyAyCxCxCxCxTxCxTxTyTyCyTyGyG -5',
 SEQ ID NO. 52: 3'- GyGyAyCxAxCxCxGxAxCxAyCyGyG -5',
 SEQ ID NO. 53: 3'- AyAyCyGxGxGxAxGxCxGxAyTyGyG -5',
 SEQ ID NO. 54: 3'- AyTyCyTxCxGxGxGxGxTxCxGyTyC -5',
 SEQ ID NO. 55: 3'- AyAyAyGxAxAxCxGxAxAxAxGyGyAyA -5',
 SEQ ID NO. 56: 3'- GyGyTxGxGxTxAxCxCyCyC -5',
 SEQ ID NO. 57: 3'- CyCxCxGxGxTxAxCyTyGyA -5' und
 SEQ ID NO. 58: 3'- CyCyAxCxAxGxAxAxAxGyAyAyC -5',
 wobei
- "x" unabhängig voneinander für eine Phosphodiester Internukleosid-Brücke oder eine modifizierte Internukleosid-Brücke steht und
- "y" unabhängig voneinander für den Ersatz einer Zuckerphosphat Einheit oder einer ß-D-2'-Deoxyriboseeinheit steht, wobei die modifizierte ß-D-2'-Deoxyriboseeinheit am 3'-Ende von "y" lokalisierte ist.
- 12. Oligonukleotid nach Anspruch 11, wobei "y" für 2'-O-Methyl-, 2'-O-Propyl-, 2'-Methoxyethoxy-ribose oder eine PNA Einheit steht.
- 13. Verwendung eines Oligonukleotids nach einem oder mehreren der Ansprüche 1 bis 12 zur Inhibition der Expression von Tenascin.
- Verwendung eines Oligonukleotids nach einem oder mehreren der Ansprüche 1 bis 12 als Werkzeug in der Molekularbiologie.
- 15. Verwendung eines Oligonukleotids nach einem oder mehreren der Ansprüche 1 bis 12 als Diagnostikum.
- 16. Verwendung eines Oligonukleotids nach einem oder mehreren der Ansprüche 1 bis 12 als Arzneimittel.

- 17. Verwendung eines Oligonukleotids nach einem oder mehreren der Ansprüche 1 bis 12 zur Herstellung eines Arzneimittels.
- 18. Arzneimittel enthaltend eines oder mehrere Oligonukleotide nach einem oder mehreren der Ansprüche 1 bis 12 sowie gegebenenfalls einen oder mehrere pharmazeutische Träger- und/oder Zusatzstoffe.
- 19. Verwendung eines Arzneimittels nach Anspruch 18 in Kombination mit Photochemotherapie und/oder der Transplantation von kultivierten Melanocyten und/oder der Behandlung mit Steroiden und/oder der Behandlung mit Plazenta-Extrakten.
- 20. Verfahren zur Herstellung eines Arzneimittels, wobei eine wirksame Dosis eines oder mehrerer Oligonukleotide nach einem oder mehreren der Ansprüche 1 bis 12 mit einem oder mehreren pharmazeutischen Träger- und/oder Zusatzstoffen gemischt wird.
- 21. Verfahren zur Herstellung eines Oligonukleotids nach einem oder mehreren der Ansprüche 1 bis 12, wobei das Oligonukleotid chemisch an einer Festphase synthetisiert wird.
- 22. Diagnostikum enthaltend ein oder mehrere Oligonukleotide nach einem oder mehreren der Ansprüche 1 bis 12.
- 23. Testkit enthalten ein oder mehrere Oligonukleotide nach einem oder mehreren der Ansprüche 1 bis 12.

SEQUENZPROTOKOLL

(1) ALLGEMEINE ANGABEN:

- (i) ANMELDER:
 - (A) NAME: Hoechst Marion Roussel Deutschland GmbH
 - (B) STRASSE: -
 - (C) ORT: Frankfurt
 - (D) BUNDESLAND: -
 - (E) LAND: Deutschland
 - (F) POSTLEITZAHL: 65926
 - (G) TELEFON: 069-305-7072
 - (H) TELEFAX: 069-35-7175
 - (I) TELEX: -
- (ii) BEZEICHNUNG DER ERFINDUNG: Antisense Oligonukleotide gegen Tenascin zur Behandlung von Vitiliog
- (iii) ANZAHL DER SEQUENZEN: 58
- (iv) COMPUTER-LESBARE FASSUNG:
 - (A) DATENTROGER: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) BETRIEBSSYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.30 (EPA)
- (2) ANGABEN ZU SEQ ID NO: 1:
 - (i) SEQUENZKENNZEICHEN:
 - (A) LINGE: 7346 Basenpaare
 - (B) ART: Nukleins,ure
 - (C) STRANGFORM: Einzelstrang (D) TOPOLOGIE: linear
 - (ii) ART DES MOLEKŠLS: DNS (genomisch)
 - (ix) MERKMAL:
 - (A) NAME/SCHLŠSSEL: exon
 - (B) LAGE: 1..7346
 - (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 1:

GAATTCGCTA	GAGCCCTAGA	GCCCCAGCAG	CACCCAGCCA	AACCCACCTC	CACCATGGGG	60
GCCATGACTC	AGCTGTTGGC	AGGTGTCTTT	CTTGCTTTCC	TTGCCCTCGC	TACCGAAGGT	120
GGGGTCCTCA	AGAAAGTCAT	CCGGCACAAG	CGACAGAGTG	GGGTGAACGC	CACCCTGCCA	180
GAAGAGAACC	AGCCAGTGGT	GTTTAACCAC	GTTTACAACA	TCAAGCTGCC	AGTGGGATCC	240
CAGTGTTCGG	TGGATCTGGA	GTCAGCCAGT	GGGGAGAAAG	ACCTGGCACC	GCCTTCAGAG	300
CCCAGCGAAA	10011010		GATGGGGAAA	ACCAGATTGT	CTTCACACAT	360
		GGCCTGTGGC	TGTGCCGCAG	CCCCTGATGT	TAAGGAGCTG	420
CGCATCAACA		••••		TGAGGGAGCA	ATGTACTGCA	480
CTGAGCAGAC	TGGAGGAGCT	GGAGAACCTG				E 4 0
GGAGCAGGCT	GCTGTCTCCA	GCCTGCCACA	GGCCGCTTGG	ACACCAGGCC	CTTCTGTAGC	540
GGTCGGGGCA	ACTTCAGCAC	TGAAGGATGT	GGCTGTGTCT	GCGAACCTGG	CTGGAAAGGC	600
CCCAACTGCT	CTGAGCCCGA	ATGTCCAGGC	AACTGTCACC	TTCGAGGCCG	GTGCATTGAT	660
GGGCAGTGCA	TCTGTGACGA	CGGCTTCACG	GGCGAGGACT	GCAGCCAGCT	GGCTTGCCCC	720
AGCGACTGCA		CAAGTGCGTG	AATGGAGTCT	GCATCTGTTT	CGAAGGCTAC	780
GCGGCTGACT	GCAGCCGTGA		GTGCCCTGCA	GTGAGGAGCA	CGGCACATGT	840
GTAGATGGCT	TGTGTGTGTG		TTTGCAGGCG	ATGACTGCAA	CAAGCCTCTG	900
0111011011				· · ·	GTGTGATGAG	960
TGTCTCAACA	. ATTGCTACAA	. CCGTGGACGA				
GGTTTCACGG	GCGAAGACTG	CAGTGAGCTC	: ATCTGCCCCA	. ATGACTGCTT	CGACCGGGGC	1020
CGCTGCATCA	ATGGCACCTG	CTACTGCGAA	GAAGGCTTCA	CAGGTGAAGA	CTGCGGGAAA	1080
CCCACCTGCC		CCACACCCAG	GGCCGGTGTG	AGGAGGGGCA	GTGTGTATGT	1140

GATGAGGGCT TTGCCGGTGT GGACTGCAGC GAGAAGAGGT GTCCTGCTGA CTGTCACAAT CGTGGCCGCT GTGTAGACGG GCGGTGTGAG TGTGATGATG GTTTCACTGG AGCTGACTGT GGGGAGCTCA AGTGTCCCAA TGGCTGCAGT GGCCATGGCC GCTGTGTCAA TGGGCAGTGT 1320 GTGTGTGATG AGGGCTATAC TGGGGAGGAC TGCAGCCAGC TACGGTGCCC CAATGACTGT 1380 CACAGTCGGG GCCGCTGTGT CGAGGGCAAA TGTGTATGTG AGCAAGGCTT CAAGGGCTAT 1440 GACTGCAGTG ACATGAGCTG CCCTAATGAC TGTCACCAGC ACGGCCGCTG TGTGAATGGC 1500 ATGTGTGTTT GTGATGACGG CTACACAGGG GAAGACTGCC GGGATCGCCA ATGCCCCAGG 1560 GACTGCAGCA ACAGGGGCCT CTGTGTGGAC GGACAGTGCG TCTGTGAGGA CGGCTTCACC 1620 GGCCCTGACT GTGCAGAACT CTCCTGTCCA AATGACTGCC ATGGCCAGGG TCGCTGTGTG 1680 AATGGGCAGT GCGTGTGCCA TGAAGGATTT ATGGGCAAAG ACTGCAAGGA GCAAAGATGT 1740 CCCAGTGACT GTCATGGCCA GGGCCGCTGC GTGGACGGCC AGTGCATCTG CCACGAGGGC 1800 TTCACAGGCC TGGACTGTGG CCAGCACTCC TGCCCCAGTG ACTGCAACAA CTTAGGACAA 1860 TGCGTCTCGG GCCGCTGCAT CTGCAACGAG GGCTACAGCG GAGAAGACTG CTCAGAGGTG 1980 GACAATGAGA TGCGGGTCAC AGAGTACCTT GTCGTGTACA CGCCCACCCA CGAGGGTGGT 2040 CTGGAAATGC AGTTCCGTGT GCCTGGGGAC CAGACGTCCA CCATCATCCG GGAGCTGGAG 2100 CCTGGTGTGG AGTACTTTAT CCGTGTATTT GCCATCCTGG AGAACAAGAA GAGCATTCCT 2160 GTCAGCGCCA GGGTGGCCAC GTACTTACCT GCACCTGAAG GCCTGAAATT CAAGTCCATC AAGGAGACAT CTGTGGAAGT GGAGTGGGAT CCTCTAGACA TTGCTTTTGA AACCTGGGAG ATCATCTTCC GGAATATGAA TAAAGAAGAT GAGGGAGAGA TCACCAAAAG CCTGAGGAGG CCAGAGACCT CTTACCGGCA AACTGGTCTA GCTCCTGGGC AAGAGTATGA GATATCTCTG 2400 CACATAGTGA AAAACAATAC CCGGGGCCCT GGCCTGAAGA GGGTGACCAC CACACGCTTG GATGCCCCCA GCCAGATCGA GGTGAAAGAT GTCACAGACA CCACTGCCTT GATCACCTGG 2520 TTCAAGCCCC TGGCTGAGAT CGATGGCATT GAGCTGACCT ACGGCATCAA AGACGTGCCA 2580 GGAGACCGTA CCACCATCGA TCTCACAGAG GACGAGAACC AGTACTCCAT CGGGAACCTG 2640 AAGCCTGACA CTGAGTACGA GGTGTCCCTC ATCTCCCGCA GAGGTGACAT GTCAAGCAAC CCAGCCAAAG AGACCTTCAC AACAGGCCTC GATGCTCCCA GGAATCTTCG ACGTGTTTCC 2760 CAGACAGATA ACAGCATCAC CCTGGAATGG AGGAATGGCA AGGCAGCTAT TGACAGTTAC 2820 AGAATTAAGT ATGCCCCCAT CTCTGGAGGG GACCACGCTG AGGTTGATGT TCCAAAGAGC 2880 CAACAAGCCA CAACCAAAAC CACACTCACA GGTCTGAGGC CGGGAACTGA ATATGGGATT 2940 GGAGTTTCTG CTGTGAAGGA AGACAAGGAG AGCAATCCAG CGACCATCAA CGCAGCCACA 3000 3060 GAGTTGGACA CGCCCAAGGA CCTTCAGGTT TCTGAAACTG CAGAGACCAG CCTGACCCTG CTCTGGAAGA CACCGTTGGC CAAATTTGAC CGCTACCGCC TCAATTACAG TCTCCCCACA 3120 GGCCAGTGGG TGGGAGTGCA GCTTCCAAGA AACACCACTT CCTATGTCCT GAGAGGCCTG 3180 GAACCAGGAC AGGAGTACAA TGTCCTCCTG ACAGCCGAGA AAGGCAGACA CAAGAGCAAG CCCGCACGTG TGAAGGCATC CACTGAACAA GCCCCTGAGC TGGAAAACCT CACCGTGACT 3300 GAGGTTGGCT GGGATGGCCT CAGACTCAAC TGGACCGCGG CTGACCAGGC CTATGAGCAC 3360 TTTATCATTC AGGTGCAGGA GGCCAACAAG GTGGAGGCAG CTCGGAACCT CACCGTGCCT 3420 GGCAGCCTTC GGGCTGTGGA CATACCGGGC CTCAAGGCTG CTACGCCTTA TACAGTCTCC 3480 ATCTATGGGG TGATCCAGGG CTATAGAACA CCAGTGCTCT CTGCTGAGGC CTCCACAGGG 3540 GAAACTCCCA ATTTGGGAGA GGTCGTGGTG GCCGAGGTGG GCTGGGATGC CCTCAAACTC 3600 AACTGGACTG CTCCAGAAGG GGCCTATGAG TACTTTTTCA TTCAGGTGCA GGAGGCTGAC 3660 ACAGTAGAGG CAGCCCAGAA CCTCACCGTC CCAGGAGGAC TGAGGTCCAC AGACCTGCCT 3720 GGGCTCAAAG CAGCCACTCA TTATACCATC ACCATCCGCG GGGTCACTCA GGACTTCAGC 3780 ACAACCCCTC TCTCTGTTGA AGTCTTGACA GAGGAGGTTC CAGATATGGG AAACCTCACA 3840 GTGACCGAGG TTAGCTGGGA TGCTCTCAGA CTGAACTGGA CCACGCCAGA TGGAACCTAT 3900 GACCAGTTTA CTATTCAGGT CCAGGAGGCT GACCAGGTGG AAGAGGCTCA CAATCTCACG 3960 GTTCCTGGCA GCCTGCGTTC CATGGAAATC CCAGGCCTCA GGGCTGGCAC TCCTTACACA 4020 GTCACCCTGC ACGGCGAGGT CAGGGGCCAC AGCACTCGAC CCCTTGCTGT AGAGGTCGTC 4080 CAGTGGGACG TGCCGCTCCA GTCCCCGGTG TCGTGAGCTG GGGAACGACA TCTCCAGCAG 4140 ACAGAGGATC TCCCACAGCT GGGAGATTTA GCCGTGTCTG AGGTTGGCTG GGATGGCCTC 4200 AGACTCAACT GGACCGCAGC TGACAATGCC TATGAGCACT TTGTCATTCA GGTGCAGGAG 4260 GTCAACAAAG TGGAGGCAGC CCAGAACCTC ACGTTGCCTG GCAGCCTCAG GGCTGTGGAC 4320 ATCCCGGGCC TCGAGGCTGC CACGCCTTAT AGAGTCTCCA TCTATGGGGT GATCCGGGGC 4380 TATAGAACAC CAGTACTCTC TGCTGAGGCC TCCACAGCCA AAGAACCTGA AATTGGAAAC TTAAATGTTT CTGACATAAC TCCCGAGAGC TTCAATCTCT CCTGGATGGC TACCGATGGG 4500 ATCTTCGAGA CCTTTACCAT TGAAATTATT GATTCCAATA GGTTGCTGGA GACTGTGGAA 4560 TATAATATCT CTGGTGCTGA ACGAACTGCC CATATCTCAG GGCTACCCCC TAGTACTGAT 4620 TTTATTGTCT ACCTCTCTGG ACTTGCTCCC AGCATCCGGA CCAAAACCAT CAGTGCCACA 4680 GCCACGACAG AGGCCCTGCC CCTTCTGGAA AACCTAACCA TTTCCGACAT TAATCCCTAC 4740 GGGTTCACAG TTTCCTGGAT GGCATCGGAG AATGCCTTTG ACAGCTTTCT AGTAACGGTG 4800 GTGGATTCTG GGAAGCTGCT GGACCCCCAG GAATTCACAC TTTCAGGAAC CCAGAGGAAG 4860 CTGGAGCTTA GAGGCCTCAT AACTGGCATT GGCTATGAGG TTATGGTCTC TGGCTTCACC

			3			
CAAGGGCATC	AAACCAAGCC	CTTGAGGGCT	GAGATTGTTA	CAGAAGCCGA	ACCGGAAGTT	4980
GACAACCTTC	TGGTTTCAGA	TGCCACCCCA	GACGGTTTCC	GTCTGTCCTG	GACAGCTGAT	5040
GAAGGGGTCT	TCGACAATTT	TGTTCTCAAA	ATCAGAGATA	CCAAAAAGCA	GTCTGAGCCA	5100
CTGGAAATAA	CCCTACTTGC	CCCCGAACGT	ACCAGGGACA	TAACAGGTCT	CAGAGAGGCT	5160
ACTGAATACG	AAATTGAACT	CTATGGAATA	AGCAAAGGAA	GGCGATCCCA	GACAGTCAGT	5220
GCTATAGCAA	CAACAGCCAT	GGGCTCCCCA	AAGGAAGTCA	TTTTCTCAGA	CATCACTGAA	5280
AATTCGGCTA	CTGTCAGCTG	GAGGGCACCC	ACGGCCCAAG	TGGAGAGCTT	CCGGATTACC	5340
	TTACAGGAGG	TACACCCTCC	ATGGTAACTG	TGGACGGAAC	CAAGACTCAG	5400
ACCAGGCTGG	TGAAACTCAT	ACCTGGCGTG	GAGTACCTTG	TCAGCATCAT	CGCCATGAAG	5460
GGCTTTGAGG	AAAGTGAACC	TGTCTCAGGG	TCATTCACCA	CAGCTCTGGA		5520
GGCCTGGTGA	CAGCCAACAT	CACTGACTCA	GAAGCCTTGG	CCAGGTGGCA	GCCAGCCATT	5580
GCCACTGTGG	ACAGTTATGT			AAGTGCCAGA		5640
	GGAACACAGT			TCGAGCCTGC	CACGGAATAC	5700
ACACTGAGAA	TCTTTGCAGA	GAAAGGGCCC	CAGAAGAGCT	CAACCATCAC	TGCCAAGTTC	5760
ACAACAGACC	TCGATTCTCC	AAGAGACTTG	ACTGCTACTG	AGGTTCAGTC	GGAAACTGCC	5820
CTCCTTACCT	GGCGACCCCC	CCGGGCATCA	GTCACCGGTT	ACCTGCTGGT	CTATGAATCA	5880
GTGGATGGCA	CAGTCAAGGA	AGTCATTGTG	GGTCCAGATA		CAGCCTGGCA	5940
				CACTCAATGG	GCCCCTGAGG	6000
AGCAATATGA	TCCAGACCAT	CTTCACCACA	ATTGGACTCC		CCCCAAGGAC	6060
TGCTCCCAAG	CAATGCTGAA	TGGAGACACG	ACCTCTGGCC	TCTACACCAT	TTATCTGAAT	6120
GGTGATAAGG	CTCAGGCGCT			CCTCTGATGG		6180
ATTGTGTTCC	TGAGACGCAA			ACCAAAACTG		6240
GCTGCTGGAT	TTGGGGACCG	CAGAGAAGAA	TTCTGGCTTG	GGCTGGACAA	CCTGAACAAA	6300
ATCACAGCCC	AGGGGCAGTA	CGAGCTCCGG	GTGGACCTGC	GGGACCATGG	GGAGACAGCC	6360
			GATGCCAAGA	CTCGCTACAA	GCTGAAGGTG	6420
GAGGGGTACA	GTGGGACAGC			ACAATGGCAG		6480
ACCTTTGACA	AGGACACAGA	TTCAGCCATC	ACCAACTGTG	CTCTGTCTAC	AAGGGGCTTC	6540
				ATGGGGACAA		6600
CAGGGCGTTA	ACTGGTTCCA				TGCTGAGATG	6660
	CAAGCAACTT			GCAAACGGGC		6720
GGGACCACTG	GGTGAGAGAG	GAATAAGGCG	GCCCAGAGCG	AGGAAAGGAT	TTTACCAAAG	6780
				ATTTGGTGAG		6840
	CCCTGGGGCC			01.00101	GTGATTTCTT	6900
	AAAGACATCA			TTGTTGTTTG		6960
• • • • • • • • • • • • • • • • • • • •	TGACAACATC		TTTACTTCTC		CTGGGATGGG	7020
AGAGGGGTAG	GATGTACAGG			GCCGTATTTT		7080
	TTGTCATTAT		AAAGATTAAA		GAAGCCATCC	7140
CTTTTTTTAC	ATTTCATACA	ACAGAAACCA		ACTGTTTCCA		7200
ATGATTAATA				TGAAAACTAA		7260 7320
AGAGATCTTT			CAGTACCTGA	TTGTATTTT	TTTTTAAATA	7320
AAAGCACAAG	TACTTTTGAA	AAAAAA				/340

(2) ANGABEN ZU SEQ ID NO: 2:

(i) SEQUENZKENNZEICHEN:

(A) LONGE: 17 Basenpaare

(B) ART: Nukleins,ure

(C) STRANGFORM: Einzelstrang

(D) TOPOLOGIE: linear

(ii) ART DES MOLEKŠLS: DNA (genomisch)

(ix) MERKMAL:

(A) NAME/SCHLŠSSEL: exon

(B) LAGE:1..17

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 2:

GGTTTGGGTG GAGGTGG

17

(2) ANGABEN ZU SEQ ID NO: 3:

	(i)	SEQUENZKENNZEICHEN: (A) L@NGE: 17 Basenpaare (B) ART: Nukleins,ure (C) STRANGFORM: Einzelstrang (D) TOPOLOGIE: linear	
	(ii)	ART DES MOLEKŠLS: DNA (genomisch)	
	(ix)	MERKMAL: (A) NAME/SCHLŠSSEL: exon (B) LAGE:117	
	(xi)	SEQUENZBESCHREIBUNG: SEQ ID NO: 3:	
GGA	GGTGG	TA CCCCCGG ·	17
(2)	anga	BEN ZU SEQ ID NO: 4:	
	(i)	SEQUENZKENNZEICHEN: (A) LUNGE: 14 Basenpaare (B) ART: Nukleins,ure (C) STRANGFORM: Einzelstrang (D) TOPOLOGIE: linear	
	(ii)	ART DES MOLEKŠLS: DNA (genomisch)	
	(ix)	MERKMAL: (A) NAME/SCHLŠSSEL: exon (B) LAGE:114	
	(xi)	SEQUENZBESCHREIBUNG: SEQ ID NO: 4:	
GGT	GTAC	cc ccgc	14
(2)	ANGA	BEN ZU SEQ ID NO: 5:	
	(i)	SEQUENZKENNZEICHEN: (A) LÜNGE: 14 Basenpaare (B) ART: Nukleins,ure (C) STRANGFORM: Einzelstrang (D) TOPOLOGIE: linear	
	(ii)	ART DES MOLEKŠLS: DNA (genomisch)	
	(ix)	MERKMAL: (A) NAME/SCHLŠSSEL: exon (B) LAGE:114	
	(xi)	SEQUENZBESCHREIBUNG: SEQ ID NO: 5:	
GGA	GGTGG	TA CCCC	14
(2)	ANGA	BEN ZU SEQ ID NO: 6:	
	(i)	SEQUENZKENNZEICHEN: (A) L□NGE: 17 Basenpaare (B) ART: Nukleins,ure (C) STRANGFORM: Einzelstrang (D) TOPOLOGIE: linear	

	(ii)	ART DES MOLEKŠLS: DNA (genomisch)	
	(ix)	MERKMAL: (A) NAME/SCHLŠSSEL: exon (B) LAGE:117	
	(xi)	SEQUENZBESCHREIBUNG: SEQ ID NO: 6:	
AGAA	AGAA	CG AAAGGAA	17
(2)	ANGAE	BEN ZU SEQ ID NO: 7:	
	(i)	SEQUENZKENNZEICHEN: (A) LENGE: 12 Basenpaare (B) ART: Nukleins "ure (C) STRANGFORM: Einzelstrang (D) TOPOLOGIE: linear	
	(ii)	ART DES MOLEKŠLS: DNA (genomisch)	
	(ix)	MERKMAL: (A) NAME/SCHLŠSSEL: exon (B) LAGE:112	
	(xi)	SEQUENZBESCHREIBUNG: SEQ ID NO: 7:	
GGAG	GTGGT	TA CC	12
(2)	ANGAE	BEN ZU SEQ ID NO: 8:	
	(i)	SEQUENZKENNZEICHEN: (A) LUNGE: 16 Basenpaare (B) ART: Nukleins,ure (C) STRANGFORM: Einzelstrang (D) TOPOLOGIE: linear	
	(ii)	ART DES MOLEKILS: DNA (genomisch)	
	(ix)	MERKMAL: (A) NAME/SCHLŠSSEL: exon (B) LAGE:116	
	(xi)	SEQUENZBESCHREIBUNG: SEQ ID NO: 8:	
GGA	SCGAT	GG CTTCCA	16
(2)	ANGA	BEN ZU SEQ ID NO: 9:	
	(1)	SEQUENZKENNZEICHEN: (A) L□NGE: 15 Basenpaare (B) ART: Nukleins "ure (C) STRANGFORM: Einzelstrang (D) TOPOLOGIE: linear	
	(ii)	ART DES MOLEKILS: DNA (genomisch)	
	(ix)	MERKMAL: (A) NAME/SCHLŠSSEL: exon (B) LACE: 1 15	

(xi)	SEQUENZBESCHREIBUNG:	SEQ	ΙĐ	NO:	9:

AAAGGAACGG GAGCG

15

(2) ANGABEN ZU SEQ ID NO: 10:

- (i) SEQUENZKENNZEICHEN:
 - (A) L□NGE: 15 Basenpaare
 - (B) ART: Nukleins,ure
 - (C) STRANGFORM: Einzelstrang
 - (D) TOPOLOGIE: linear
- (ii) ART DES MOLEKŠLS: DNA (genomisch)
- (ix) MERKMAL:
 - (A) NAME/SCHL*SSEL: exon
 - (B) LAGE:1..15
- (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 10:

GGTCGGTTTG GGTGG

15

(2) ANGABEN ZU SEQ ID NO: 11:

- (i) SEQUENZKENNZEICHEN:
 - (A) LONGE: 16 Basenpaare
 - (B) ART: Nukleins,ure
 - (C) STRANGFORM: Einzelstrang
 - (D) TOPOLOGIE: linear
- (ii) ART DES MOLEKŠLS: DNA (genomisch)
- (ix) MERKMAL:
 - (A) NAME/SCHL*SSEL: exon
 - (B) LAGE: 1..16
- (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 11:

CTTACAGGTC CGTTGA

16

(2) ANGABEN ZU SEQ ID NO: 12:

- (i) SEQUENZKENNZEICHEN:
 - (A) LONGE: 15 Basenpaare
 - (B) ART: Nukleins,ure
 - (C) STRANGFORM: Einzelstrang
 - (D) TOPOLOGIE: linear
- (ii) ART DES MOLEKŠLS: DNA (genomisch)
- (ix) MERKMAL:
 - (A) NAME/SCHLSSSEL: exon
 - (B) LAGE:1..15
- (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 12:

GGCCGTGTTC GCTGT

PCT/EP98/06868 WO 99/25819 7 (2) ANGABEN ZU SEQ ID NO: 13: (i) SEQUENZKENNZEICHEN: (A) LONGE: 16 Basenpaare (B) ART: Nukleins,ure (C) STRANGFORM: Einzelstrang (D) TOPOLOGIE: linear (ii) ART DES MOLEKŠLS: DNA (genomisch) (ix) MERKMAL: (A) NAME/SCHLSSSEL: exon (B) LAGE:1..16 (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 13: 16 TCACCCCTCT TTCTGG (2) ANGABEN ZU SEQ ID NO: 14: (i) SEQUENZKENNZEICHEN: (A) LUNGE: 14 Basenpaare (B) ART: Nukleins,ure (C) STRANGFORM: Einzelstrang (D) TOPOLOGIE: linear (ii) ART DES MOLEKŠLS: DNA (genomisch) (ix) MERKMAL: (A) NAME/SCHLSSSEL: exon (B) LAGE:1..14 (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 14: 14 GGACACCGAC ACGG (2) ANGABEN ZU SEQ ID NO: 15: (i) SEQUENZKENNZEICHEN: (A) LUNGE: 14 Basenpaare (B) ART: Nukleins,ure (C) STRANGFORM: Einzelstrang (D) TOPOLOGIE: linear (ii) ART DES MOLEKŠLS: DNA (genomisch) (ix) MERKMAL: (A) NAME/SCHLŠSSEL: exon (B) LAGE:1..14 (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 15: 14 AACGGGAGCG ATGG

(2) ANGABEN ZU SEQ ID NO: 16:

- (i) SEQUENZKENNZEICHEN:
 - (A) LCNGE: 14 Basenpaare
 - (B) ART: Nukleins,ure
 - (C) STRANGFORM: Einzelstrang

		(D) TOPOLOGIE: linear	
	(ii)	ART DES MOLEKŠLS: DNA (genomisch)	
	(ix)	MERKMAL: (A) NAME/SCHLŠSSEL: exon (B) LAGE:114	
	(xi)	SEQUENZBESCHREIBUNG: SEQ ID NO: 16:	
ATC:	rcggg	GT CGTC	14
(2)	ANGA	BEN ZU SEQ ID NO: 17:	
	(i)	SEQUENZKENNZEICHEN: (A) LÜNGE: 15 Basenpaare (B) ART: Nukleins, ure (C) STRANGFORM: Einzelstrang (D) TOPOLOGIE: linear	
	(ii)	ART DES MOLEKELS: DNA (genomisch)	
	(ix)	MERKMAL: (A) NAME/SCHLŠSSEL: exon (B) LAGE:115	
	(xi)	SEQUENZBESCHREIBUNG: SEQ ID NO: 17:	
AAAG	SAACG/	A AGGAA	15
(2)	ANGAI	BEN ZU SEQ ID NO: 18:	
(2)		SEQUENZKENNZEICHEN: (A) LUNGE: 11 Basenpaare (B) ART: Nukleins,ure (C) STRANGFORM: Einzelstrang (D) TOPOLOGIE: linear	
(2)	(i)	SEQUENZKENNZEICHEN: (A) LUNGE: 11 Basenpaare (B) ART: Nukleins,ure (C) STRANGFORM: Einzelstrang	
(2)	(i) (ii)	SEQUENZKENNZEICHEN: (A) LUNGE: 11 Basenpaare (B) ART: Nukleins,ure (C) STRANGFORM: Einzelstrang (D) TOPOLOGIE: linear	
(2)	(ii) (ii) (ix)	SEQUENZKENNZEICHEN: (A) LUNGE: 11 Basenpaare (B) ART: Nukleins,ure (C) STRANGFORM: Einzelstrang (D) TOPOLOGIE: linear ART DES MOLEKŠLS: DNA (genomisch) MERKMAL: (A) NAME/SCHLŠSSEL: exon	
	(ii) (ii) (ix)	SEQUENZKENNZEICHEN: (A) LUNGE: 11 Basenpaare (B) ART: Nukleins,ure (C) STRANGFORM: Einzelstrang (D) TOPOLOGIE: linear ART DES MOLEKŠLS: DNA (genomisch) MERKMAL: (A) NAME/SCHLŠSSEL: exon (B) LAGE:111 SEQUENZBESCHREIBUNG: SEQ ID NO: 18:	11
GGT	(ii) (ii) (ix) (xi)	SEQUENZKENNZEICHEN: (A) LUNGE: 11 Basenpaare (B) ART: Nukleins,ure (C) STRANGFORM: Einzelstrang (D) TOPOLOGIE: linear ART DES MOLEKŠLS: DNA (genomisch) MERKMAL: (A) NAME/SCHLŠSSEL: exon (B) LAGE:111 SEQUENZBESCHREIBUNG: SEQ ID NO: 18:	11
GGT	(ii) (ii) (ix) (xi) GGTACG	SEQUENZKENNZEICHEN: (A) LUNGE: 11 Basenpaare (B) ART: Nukleins,ure (C) STRANGFORM: Einzelstrang (D) TOPOLOGIE: linear ART DES MOLEKŠLS: DNA (genomisch) MERKMAL: (A) NAME/SCHLŠSSEL: exon (B) LAGE:111 SEQUENZBESCHREIBUNG: SEQ ID NO: 18:	11

(ix) MERKMAL:

(A) NAME/SCHLšSSEL: exon

WO 99/25819	PCT/EP98/06868
-------------	----------------

9

(B) LAGE: 1..11

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 19:

CCCGGTACTG A

11

- (2) ANGABEN ZU SEQ ID NO: 20:
 - (i) SEQUENZKENNZEICHEN:
 - (A) LONGE: 13 Basenpaare
 - (B) ART: Nukleins,ure
 - (C) STRANGFORM: Einzelstrang
 - (D) TOPOLOGIE: linear
 - (ii) ART DES MOLEKŠLS: DNA (genomisch)
 - (ix) MERKMAL:
 - (A) NAME/SCHLSSSEL: exon
 - (B) LAGE: 1..13
 - (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 20:

CCACAGAAAG AAC

13

- (2) ANGABEN ZU SEQ ID NO: 21:
 - (1) SEQUENZKENNZEICHEN:
 - (A) LONGE: 17 Basenpaare
 - (B) ART: Nukleins,ure
 - (C) STRANGFORM: Einzelstrang
 - (D) TOPOLOGIE: linear
 - (ii) ART DES MOLEKŠLS: DNA (genomisch)
 - (ix) MERKMAL:
 - (A) NAME/SCHL*SSEL: exon
 - (B) LAGE: 1...17
 - (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 21:

GGTTTGGGTG GAGGTGG

17

- (2) ANGABEN ZU SEQ ID NO: 22:
 - (i) SEQUENZKENNZEICHEN:
 - (A) LONGE: 17 Basenpaare
 - (B) ART: Nukleins "ure
 - (C) STRANGFORM: Einzelstrang
 - (D) TOPOLOGIE: linear
 - (ii) ART DES MOLEKŠLS: DNA (genomisch)
 - (ix) MERKMAL:
 - (A) NAME/SCHLSSSEL: exon
 - (B) LAGE:1..17
 - (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 22:

GGAGGTGGTA CCCCCGG

(2)	ANGABEN ZU SEQ ID NO: 23:	
	 (i) SEQUENZKENNZEICHEN: (A) LÜNGE: 14 Basenpaare (B) ART: Nukleins "ure (C) STRANGFORM: Einzelstrang (D) TOPOLOGIE: linear 	
	(ii) ART DES MOLEKŠLS: DNA (genomisch)	
	(ix) MERKMAL: (A) NAME/SCHLŠSSEL: exon (B) LAGE:114	
	(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 23:	
GGTG	GTACCC CCGG	14
(2)	ANGABEN ZU SEQ ID NO: 24:	
	 (i) SEQUENZKENNZEICHEN: (A) LÜNGE: 14 Basenpaare (B) ART: Nukleins, ure (C) STRANGFORM: Einzelstrang (D) TOPOLOGIE: linear 	
((ii) ART DES MOLEKŠLS: DNA (genomisch)	
((ix) MERKMAL: (A) NAME/SCHLŠSSEL: exon (B) LAGE:114	
((xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 24:	
GGAGG	GTGGTA CCCC	14
(2) P	ANGABEN ZU SEQ ID NO: 25:	
	(i) SEQUENZKENNZEICHEN: (A) LCINGE: 17 Basenpaare (B) ART: Nukleins "ure (C) STRANGFORM: Einzelstrang (D) TOPOLOGIE: linear	
((ii) ART DES MOLEKŠLS: DNA (genomisch)	
((ix) MERKMAL: (A) NAME/SCHLŠSSEL: exon (B) LAGE:117	
•	(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 25:	
AGAA	AGAACG AAAGGAA	17
(2) F	ANGABEN ZU SEQ ID NO: 26:	

(i) SEQUENZKENNZEICHEN:

(A) LONGE: 12 Basenpaare(B) ART: Nukleins,ure

WO 99/25819 PCT/EP98/06868

11

- (C) STRANGFORM: Einzelstrang
 (D) TOPOLOGIE: linear
 (ii) ART DES MOLEKŠLS: DNA (genomisch)
 (ix) MERKMAL:
 (A) NAME/SCHLŠSSEL: exon
- (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 26:

GGAGGTGGTA CC

- (2) ANGABEN ZU SEQ ID NO: 27:
 - (i) SEQUENZKENNZEICHEN:

(B) LAGE: 1..12

- (A) L□NGE: 16 Basenpaare
- (B) ART: Nukleins,ure
- (C) STRANGFORM: Einzelstrang
- (D) TOPOLOGIE: linear
- (ii) ART DES MOLEKŠLS: DNA (genomisch)
- (ix) MERKMAL:
 - (A) NAME/SCHL*SSEL: exon
 - (B) LAGE: 1..16
- (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 27:

GGAGCGATGG CTTCCA

- (2) ANGABEN ZU SEQ ID NO: 28:
 - (1) SEQUENZKENNZEICHEN:
 - (A) LONGE: 15 Basenpaare
 - (B) ART: Nukleins,ure
 - (C) STRANGFORM: Einzelstrang
 - (D) TOPOLOGIE: linear
 - (ii) ART DES MOLEKŠLS: DNA (genomisch)
 - (ix) MERKMAL:
 - (A) NAME/SCHLSSSEL: exon
 - (B) LAGE:1..15
 - (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 28:

AAAGGAACGG GAGCG

- (2) ANGABEN ZU SEQ ID NO: 29:
 - (i) SEQUENZKENNZEICHEN:
 - (A) LONGE: 15 Basenpaare
 - (B) ART: Nukleins,ure
 - (C) STRANGFORM: Einzelstrang
 - (D) TOPOLOGIE: linear
 - (ii) ART DES MOLEKŠLS: DNA (genomisch)
 - (ix) MERKMAL:

WO 99/25819

PCT/EP98/06868

15

16

12

(A) NAME/SCHLSSSEL: exon

(B) LAGE: 1..15

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 29:

GGTCGGTTTG GGTGG

(2) ANGABEN ZU SEQ ID NO: 30:

(i) SEQUENZKENNZEICHEN:

(A) LONGE: 16 Basenpaare

(B) ART: Nukleins,ure(C) STRANGFORM: Einzelstrang

(D) TOPOLOGIE: linear

(ii) ART DES MOLEKŠLS: DNA (genomisch)

(ix) MERKMAL:

(A) NAME/SCHL*SSEL: exon

(B) LAGE:1..16

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 30:

CTTACAGGTC CGTTGA 16

(2) ANGABEN ZU SEQ ID NO: 31:

(i) SEQUENZKENNZEICHEN:

- (A) LONGE: 15 Basenpaare
- (B) ART: Nukleins,ure
- (C) STRANGFORM: Einzelstrang
- (D) TOPOLOGIE: linear

(ii) ART DES MOLEKILS: DNA (genomisch)

(ix) MERKMAL:

- (A) NAME/SCHLSSSEL: exon
- (B) LAGE: 1..15

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 31:

GGCCGTGTTC GCTGT 15

(2) ANGABEN ZU SEQ ID NO: 32:

(i) SEQUENZKENNZEICHEN:

- (A) LONGE: 16 Basenpaare
- (B) ART: Nukleins,ure
- (C) STRANGFORM: Einzelstrang

(D) TOPOLOGIE: linear

(ii) ART DES MOLEKŠLS: DNA (genomisch)

(ix) MERKMAL:

TCACCCCTCT TTCTGG

- (A) NAME/SCHLSSSEL: exon
- (B) LAGE:1..16

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 32:

(2) ANGABE	N ZU SEQ ID NO: 33:	
	EQUENZKENNZEICHEN: (A) LUNGE: 14 Basenpaare (B) ART: Nukleins,ure (C) STRANGFORM: Einzelstrang (D) TOPOLOGIE: linear	
(ii) A	RT DES MOLEKŠLS: DNA (genomisch)	
(ix) M	MERKMAL: (A) NAME/SCHLŠSSEL: exon (B) LAGE:114	
(xi) S	SEQUENZBESCHREIBUNG: SEQ ID NO: 33:	
GGACACCGAC	C ACGG	14
(2) ANGABE	EN ZU SEQ ID NO: 34:	
(i) S	SEQUENZKENNZEICHEN: (A) LÜNGE: 14 Basenpaare (B) ART: Nukleins"ure (C) STRANGFORM: Einzelstrang (D) TOPOLOGIE: linear	
(ii) /	ART DES MOLEKŠLS: DNA (genomisch)	
(ix) !	MERKMAL: (A) NAME/SCHLÄSSEL: exon (B) LAGE:114	
(xi)	SEQUENZBESCHREIBUNG: SEQ ID NO: 34:	
AACGGGAGC	G ATGG	14
(2) ANGAB	SEN ZU SEQ ID NO: 35:	
(i)	SEQUENZKENNZEICHEN: (A) LINGE: 14 Basenpaare (B) ART: Nukleins, ure (C) STRANGFORM: Einzelstrang (D) TOPOLOGIE: linear	
(ii)	ART DES MOLEKŠLS: DNA (genomisch)	
(ix)	MERKMAL: (A) NAME/SCHLŠSSEL: exon (B) LAGE:114	
(xi)	SEQUENZBESCHREIBUNG: SEQ ID NO: 35:	
ATCTCGGG	GT CGTC	14
(2) BMCB	BEN ZU SEQ ID NO: 36:	
(Z) MINGA	DIN DO DE SE VICE	

(i) SEQUENZKENNZEICHEN: (A) L□NGE: 15 Basenpaare

		(B) ART: Nukleins,ure(C) STRANGFORM: Einzelstrang(D) TOPOLOGIE: linear	
	(ii)	ART DES MOLEKŠLS: DNA (genomisch)	
	(ix)	MERKMAL: (A) NAME/SCHLŠSSEL: exon (B) LAGE:115	
	(xi)	SEQUENZBESCHREIBUNG: SEQ ID NO: 36:	
AAAG	GAACG	AA AGGAA	1
(2)	ANGA	BEN ZU SEQ ID NO: 37:	
	(i)	SEQUENZKENNZEICHEN: (A) L (A) L (A) Description (B) ART: Nukleins, ure (C) STRANGFORM: Einzelstrang (D) TOPOLOGIE: linear	
	(ii)	ART DES MOLEKŠLS: DNA (genomisch)	
	(ix)	MERKMAL: (A) NAME/SCHLŠSSEL: exon (B) LAGE:111	
	(xi)	SEQUENZBESCHREIBUNG: SEQ ID NO: 37:	
GGTG	GTAC	cc c	11
(2)	ANGAI	BEN ZU SEQ ID NO: 38:	
		SEQUENZKENNZEICHEN: (A) LUNGE: 11 Basenpaare (B) ART: Nukleins "ure (C) STRANGFORM: Einzelstrang (D) TOPOLOGIE: linear	
	(ii)	ART DES MOLEKŠLS: DNA (genomisch)	
	(ix)	MERKMAL: (A) NAME/SCHLŠSSEL: exon (B) LAGE:111	
	(xi)	SEQUENZBESCHREIBUNG: SEQ ID NO: 38:	
ccc	GGTAC'	rg A	1
(2)	ANGA	BEN ZU SEQ ID NO: 39:	
	(i)	SEQUENZKENNZEICHEN: (A) L DNGE: 13 Basenpaare (B) ART: Nukleins, ure (C) STRANGFORM: Einzelstrang (D) TOPOLOGIE: linear	

(ii) ART DES MOLEKŠLS: DNA (genomisch)

15	
(ix) MERKMAL: (A) NAME/SCHLŠSSEL: exon (B) LAGE:113	
(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 39:	
CCACAGAAAG AAC	13
(2) ANGABEN ZU SEQ ID NO: 40:	
 (i) SEQUENZKENNZEICHEN: (A) L□NGE: 17 Basenpaare (B) ART: Nukleins, ure (C) STRANGFORM: Einzelstrang (D) TOPOLOGIE: linear 	
(ii) ART DES MOLEKŠLS: DNA (genomisch)	
(ix) MERKMAL: (A) NAME/SCHLŠSSEL: exon (B) LAGE:117	
(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 40:	
GGTTTGGGTG GAGGTGG	17
(2) ANGABEN ZU SEQ ID NO: 41:	
(i) SEQUENZKENNZEICHEN: (A) LÜNGE: 17 Basenpaare (B) ART: Nukleins,ure (C) STRANGFORM: Einzelstrang (D) TOPOLOGIE: linear	
(ii) ART DES MOLEKŠLS: DNA (genomisch)	
(ix) MERKMAL: (A) NAME/SCHLŠSSEL: exon (B) LAGE:117	
(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 41:	
GGAGGTGGTA CCCCCGG	17
(2) ANGABEN ZU SEQ ID NO: 42:	
 (i) SEQUENZKENNZEICHEN: (A) L□NGE: 14 Basenpaare (B) ART: Nukleins, ure (C) STRANGFORM: Einzelstrang (D) TOPOLOGIE: linear 	

(ii) ART DES MOLEKŠLS: DNA (genomisch)

(A) NAME/SCHLSSSEL: exon

(B) LAGE:1..14

(ix) MERKMAL:

wo	99/	258	319
----	-----	-----	-----

PCT/EP98/06868

16

GGTGGTACCC CCGG

14

- (2) ANGABEN ZU SEQ ID NO: 43:
 - (i) SEQUENZKENNZEICHEN:
 - (A) LONGE: 14 Basenpaare
 - (B) ART: Nukleins,ure
 - (C) STRANGFORM: Einzelstrang
 - (D) TOPOLOGIE: linear
 - (ii) ART DES MOLEKŠLS: DNA (genomisch)
 - (ix) MERKMAL:
 - (A) NAME/SCHLšSSEL: exon
 - (B) LAGE:1..14
 - (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 43:

GGAGGTGGTA CCCC

14

- (2) ANGABEN ZU SEQ ID NO: 44:
 - (i) SEQUENZKENNZEICHEN:
 - (A) LONGE: 17 Basenpaare
 - (B) ART: Nukleins,ure
 - (C) STRANGFORM: Einzelstrang
 - (D) TOPOLOGIE: linear
 - (ii) ART DES MOLEKŠLS: DNA (genomisch)
 - (ix) MERKMAL:
 - (A) NAME/SCHLESSEL: exon
 - (B) LAGE: 1...17
 - (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 44:

AGAAAGAACG AAAGGAA

17

- (2) ANGABEN ZU SEQ ID NO: 45:
 - (i) SEQUENZKENNZEICHEN:
 - (A) LONGE: 12 Basenpaare
 - (B) ART: Nukleins,ure
 - (C) STRANGFORM: Einzelstrang
 - (D) TOPOLOGIE: linear
 - (ii) ART DES MOLEKŠLS: DNA (genomisch)
 - (ix) MERKMAL:
 - (A) NAME/SCHLSSSEL: exon
 - (B) LAGE:1..12
 - (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 45:

GGAGGTGGTA CC

- (2) ANGABEN ZU SEQ ID NO: 46:
 - (i) SEQUENZKENNZEICHEN:

(A) LCNGE: 16 Basenpaare(B) ART: Nukleins ure(C) STRANGFORM: Einzelstrang(D) TOPOLOGIE: linear	
(ii) ART DES MOLEKŠLS: DNA (genomisch)	
(ix) MERKMAL: (A) NAME/SCHLŠSSEL: exon (B) LAGE:116	
(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 46:	
GGAGCGATGG CTTCCA	16
(2) ANGABEN ZU SEQ ID NO: 47:	
 (i) SEQUENZKENNZEICHEN: (A) LÜNGE: 15 Basenpaare (B) ART: Nukleins, ure (C) STRANGFORM: Einzelstrang (D) TOPOLOGIE: linear 	
(ii) ART DES MOLEKŠLS: DNA (genomisch)	
(ix) MERKMAL: (A) NAME/SCHLŠSSEL: exon (B) LAGE:115	
(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 47:	
AAAGGAACGG GAGCG	15
(2) ANGABEN ZU SEQ ID NO: 48:	
 (i) SEQUENZKENNZEICHEN: (A) LUNGE: 15 Basenpaare (B) ART: Nukleins ure (C) STRANGFORM: Einzelstrang (D) TOPOLOGIE: linear 	
(ii) ART DES MOLEKŠLS: DNA (genomisch)	
(ix) MERKMAL: (A) NAME/SCHLŠSSEL: exon (B) LAGE:115	
(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 48:	
GGTCGGTTTG GGTGG	15
(2) ANGABEN ZU SEQ ID NO: 49:	
 (i) SEQUENZKENNZEICHEN: (A) L©NGE: 16 Basenpaare (B) ART: Nukleins,ure (C) STRANGFORM: Einzelstrang (D) TOPOLOGIE: linear 	
(ii) ART DES MOLEKŠLS: DNA (genomisch)	
ERSATZRIATT (REGEL 26). Patent provided by Sughrue Mion, PLEC - http://www.sughrue.com	

(ix) MERKMAL:

		(A) NAME/SCHLšSSEL: exon (B) LAGE:116	
	(xi)	SEQUENZBESCHREIBUNG: SEQ ID NO: 49:	
CTT	ACAGGT	'C CGTTGA	16
(2)	ANGAB	EN ZU SEQ ID NO: 50:	
	(i)	SEQUENZKENNZEICHEN: (A) LINGE: 15 Basenpaare (B) ART: Nukleins,ure (C) STRANGFORM: Einzelstrang (D) TOPOLOGIE: linear	
	(ii)	ART DES MOLEKŠLS: DNA (genomisch)	
	(ix)	MERKMAL: (A) NAME/SCHLŠSSEL: exon (B) LAGE:115	
	(xi)	SEQUENZBESCHREIBUNG: SEQ ID NO: 50:	
GGC	CGTGTT	C GCTGT	15
	NUCAR	THE STATE OF THE NO. 51.	
(2)		EN ZU SEQ ID NO: 51:	
	(1)	SEQUENZKENNZEICHEN: (A) LINGE: 16 Basenpaare (B) ART: Nukleins ure (C) STRANGFORM: Einzelstrang (D) TOPOLOGIE: linear	
	(11)	ART DES MOLEKŠLS: DNA (genomisch)	
	(ix)	MERKMAL: (A) NAME/SCHLŠSSEL: exon (B) LAGE:116	
	(xi)	SEQUENZBESCHREIBUNG: SEQ ID NO: 51:	
TCA	CCCCTC	TT TTCTGG	16
(2)	ANGAE	BEN ZU SEQ ID NO: 52:	
	(i)	SEQUENZKENNZEICHEN: (A) LONGE: 14 Basenpaare (B) ART: Nukleins,ure (C) STRANGFORM: Einzelstrang (D) TOPOLOGIE: linear	
	(ii)	ART DES MOLEKŠLS: DNA (genomisch)	
	(ix)	MERKMAL: (A) NAME/SCHLŠSSEL: exon (B) LAGE:114	

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 52:

Patent provensus Patent Paten

NO 00/25910	PCT/EP98/06868
WO 99/25819	

14

19

GGACACCGAC ACGG

(2) ANGABEN ZU SEQ ID NO: 53:

() (1	QUENZKENNZEICHEN: A) LUNGE: 14 Basenpaare B) ART: Nukleins"ure C) STRANGFORM: Einzelstrang D) TOPOLOGIE: linear	
(ii) AR	T DES MOLEKŠLS: DNA (genomisch)	
(ix) ME (. (RKMAL: A) NAME/SCHLŠSSEL: exon B) LAGE:114	
(xi) SE	QUENZBESCHREIBUNG: SEQ ID NO: 53:	- 4
AACGGGAGCG	ATGG	14
(2) ANGABEN	ZU SEQ ID NO: 54:	
(QUENZKENNZEICHEN: (A) LINGE: 14 Basenpaare (B) ART: Nukleins,ure (C) STRANGFORM: Einzelstrang (D) TOPOLOGIE: linear	
(ii) AF	RT DES MOLEKŠLS: DNA (genomisch)	
	ERKMAL: (A) NAME/SCHLŠSSEL: exon (B) LAGE:114	
(xi) S	EQUENZBESCHREIBUNG: SEQ ID NO: 54:	
ATCTCGGGGT	CGTC	14
(2) ANGABE	N ZU SEQ ID NO: 55:	
(i) S	EQUENZKENNZEICHEN: (A) LINGE: 15 Basenpaare (B) ART: Nukleins,ure (C) STRANGFORM: Einzelstrang (D) TOPOLOGIE: linear	
(ii) A	ART DES MOLEKŠLS: DNA (genomisch)	
(ix) 1	MERKMAL: (A) NAME/SCHLŠSSEL: exon (B) LAGE:115	
(xi)	SEQUENZBESCHREIBUNG: SEQ ID NO: 55:	
AAAGAACGA	A AGGAA	15
(2) ANGAB	SEN ZU SEQ ID NO: 56:	

(i)) SEQUENZKENNZEICHEN: (A) LUNGE: 11 Basenpaare (B) ART: Nukleins "ure (C) STRANGFORM: Einzelstrang (D) TOPOLOGIE: linear	
(ii) ART DES MOLEKŠLS: DNA (genomisch)	
(ix) MERKMAL: (A) NAME/SCHLESSEL: exon (B) LAGE:111	
(xi	SEQUENZBESCHREIBUNG: SEQ ID NO: 56:	
GGTGGTA	ccc c	11
(2) ANG	ABEN ZU SEQ ID NO: 57:	
(主)	SEQUENZKENNZEICHEN: (A) LINGE: 11 Basenpaare (B) ART: Nukleins "ure (C) STRANGFORM: Einzelstrang (D) TOPOLOGIE: linear	
(ii)	ART DES MOLEKŠLS: DNA (genomisch)	
(ix)	MERKMAL: (A) NAME/SCHLŠSSEL: exon (B) LAGE:111	
(xi)	SEQUENZBESCHREIBUNG: SEQ ID NO: 57:	
CCCGGTAC	CTG A	11
(2) ANG	ABEN ZU SEQ ID NO: 58:	
(i)	SEQUENZKENNZEICHEN: (A) LINGE: 13 Basenpaare (B) ART: Nukleins ure (C) STRANGFORM: Einzelstrang (D) TOPOLOGIE: linear	
(11)	ART DES MOLEKŠLS: DNA (genomisch)	
(ix) MERKMAL: (A) NAME/SCHLŠSSEL: exon (B) LAGE:113	
(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 58:	
CCACAGA	AAG AAC	13

THIS PACE BLANK (USPTO)