Deuxième année — Méthodes mathématiques

Richard Degenne, L3-B

28 septembre 2014

Table des matières

1	$\mathbf{Int} \epsilon$	égrales générales, ou impropres	2
	I	Définition	2
	II	Exemples	3
	III	Propriétés	4
	IV	Intégrale absolument convergente	4
2	Séries numériques		
	I	Convergence d'une série de nombres complexes	5
	II	Séries à termes réels positifs	6
	III	Séries absolument convergentes	8
3	Transformée de Laplace		9
	I	Intégrale de Laplace	9
	Ħ	Transformée de Laplace des fonctions usuelles	10

Chapitre 1

Intégrales générales, ou impropres

I Définition

Soit $I \subset \mathbb{R}$ un intervalle dont les extrémités a < b (pouvant être $\pm \infty$) sont exclues et $f: I \to \mathbb{R}$ une fonction continue par morceaux sur I. Pour chaque intervalle $[x; y] \in I$, l'intégrale $\int_x^y f(t) dt$ est bien définie.

Si, pour x tendant vers a et y tendant vers b, l'intégrale admet une limite finie, alors on dit que l'intégrale impropre $\int_a^b f(t) dt$ est convergente, et, par définition,

$$\int_{a}^{b} f(t) dt = \lim_{x \to a, y \to b} \int_{x}^{y} f(t) dt$$

Si la limite est infinie ou s'il n'y a pas de limite, on dit que l'intégrale impropre est divergente.

1 Relation de Chasles

Pour $c \in I$, on a

$$\int_{x}^{y} f(t) dt = \int_{x}^{c} f(t) dt \int_{c}^{y} f(t) dt$$

Si une intégrale impropre converge, alors toute relation de Chasles formé à partir de cette intégrale converge également. En prenant le cas particulier c=a, on peut en déduire que

$$\int_{a}^{b} f(t) dt \text{ converge} \iff \lim_{y \to b} \int_{a}^{y} f(t) dt \text{ existe et est fini.} \\ \iff \lim_{x \to a} \int_{x}^{b} f(t) dt \text{ existe et est fini.}$$

II Exemples

Exemple 1.

$$\int_{1}^{x} \frac{1}{t^{2}} dt = \left[-\frac{1}{t} \right]_{1}^{x}$$
$$= 1 - \frac{1}{x}$$

Exemple 2.

$$\int_{1}^{\infty} \frac{1}{t^2} dt = \lim_{x \to +\infty} \int_{1}^{x} \frac{1}{t^2} dt$$
$$= \lim_{x \to +\infty} 1 - \frac{1}{x}$$
$$= 1$$

Exemple 3.

$$\int_{1}^{\infty} \frac{1}{t} dt = \lim_{x \to +\infty} \int_{1}^{x} \frac{1}{t} dt$$
$$= \lim_{x \to +\infty} 1 - \ln(x)$$
$$= +\infty$$

Exemple 4.

$$\int_0^x \cos(t) dt = [\sin(t)]_0^x$$
$$= \sin(x)$$

Or, $\lim_{x\to\infty} \sin(x)$ n'existe pas. Donc, $\int_0^x \cos(t) dt$ diverge.

Exemple 5.

$$\int_0^\infty e^{-t} dt = \lim_{x \to \infty} \int_0^x e^{-t} dt$$
$$= \lim_{x \to \infty} [-e^{-t}]_0^x$$
$$= \lim_{x \to \infty} 1 - e^{-x}$$
$$= 1$$

Exemple 6.

$$\int_0^1 \frac{1}{\sqrt{t}} dt = \lim_{x \to 0} \int_x^1 \frac{1}{\sqrt{t}} dt$$
$$= \lim_{x \to 0} \left[2\sqrt{t} \right]_x^1$$
$$= 2$$

III Propriétés

Si a et b sont des valeurs finies et si f est une fonction continue dans l'un des intervalles [a;b[,]a;b] ou]a;b[qui se prolonge par continuité à [a;b], alors $\int_a^b f(t) dt$ converge.

Exemple 7.

$$\int_0^1 \frac{\sin(t)}{t} \, \mathrm{d}t$$

est convergente. 1

Évidemment, les résultats et propriétés valables pour les intégrales classiques (changements de variable, intégration par parties, linéarité,...) restent valables pour les intégrales impropres.

IV Intégrale absolument convergente

Soit I un intervalle d'extrémités a et b appartenant à $\mathbb{R} = \mathbb{R} \setminus \pm \infty$. Soit $f: I \to \mathbb{R}$ une fonction continue par morceaux et $g: I \to \mathbb{R}^+$ telle que $\forall t \in I, |f(t)| \leq g(t)$. On a alors

$$\int_a^b g(t) dt$$
 converge $\implies \int_a^b f(t) dt$ converge

Ainsi, on dit que $\int_a^b f(t) dt$ est absolument convergente si $\int_a^b |f(t)| dt$ converge. Toute intégrale imporpre absolument convergente est convergente.

Remarque 1. La réciproque est généralement fausse. Par exemple, $\int_0^\infty \frac{\sin(t)}{t} dt$ converge, mais $\int_0^\infty \left| \frac{\sin(t)}{t} \right| dt$ diverge.

^{1.} cf. le développement limité de $\sin(t)$ au voisinage de t.

Chapitre 2

Séries numériques

I Convergence d'une série de nombres complexes

1 Définitions

Soit (u_n) une suite de nombres complexes. On appelle somme partielle d'indice n le nombre $S_n = \sum_{k=0}^n u_k = u_0 + u_1 + \cdots + u_n$. On dit que la série de terme général u_n converge lorsque la suite (S_n) converge, autrement dit quand $\lim_{n\to\infty} \sum_{k=0}^n u_k$ existe et est finie.

On dit que $\lim_{n\to\infty} S_n$ est la somme de la série de terme général u_n et on note $\sum_{n=0}^{\infty} u_n$.

Exemple 8.

$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = \lim_{n \to \infty} \sum_{k=1}^{n} \frac{1}{k(k+1)}$$

$$= \lim_{n \to \infty} \sum_{k=1}^{n} \left(\frac{1}{n} - \frac{1}{n+1}\right)$$

$$= \lim_{n \to \infty} 1 - \frac{1}{n+1} \qquad (La \ somme \ se \ t\'el\'escope.)$$

$$= 1$$

On dit que la série de terme général $\frac{1}{n(n+1)}$ converge et que sa somme vaut 1.

2 Condition nécessaire de convergence

Si la série de terme général u_n converge vers l, autrement dit si la somme partielle S_n vérifie $\lim_{n\to\infty} S_n = l$, alors il est nécessaire que

$$\lim_{n \to \infty} S_n - S_{n-1} = \lim_{n \to \infty} u_n = 0$$

Si on prend $q \in \mathbb{C}$, la série géométrique de terme général q^n converge dans \mathbb{C} si, et seulement si, |q| < 1. À ce moment-là, $\sum_{0}^{\infty} = \frac{1}{1-q}$.

Exemple 9.

$$\sum_{0}^{\infty} \left(\frac{1}{2}\right)^{n} = \frac{1}{1 - \frac{1}{2}}$$
$$= 2$$

Soient u_n et v_n les termes généraux de deux séries convergentes. Pour tout $\lambda, \mu \in \mathbb{C}$, on a

$$\sum_{n=0}^{\infty} \lambda u_n + \mu v_n = \lambda \sum_{n=0}^{\infty} u_n + \mu \sum_{n=0}^{\infty} v_n$$

On en déduit alors que la série de terme général $\lambda u_n + \mu v_n$ converge également.

II Séries à termes réels positifs

1 Condition nécessaire et suffisante de convergence

Soit (u_n) une suite de nombres réels positifs. La série de terme général u_n converge si, et seulement si,

$$\exists M > 0 \mid \forall n \in \mathbb{N}, \sum_{k=0}^{n} u_k < M \iff \sum k = 0^{\infty} u_k < +\infty$$

En effet, la suite composée des sommes partielles d'une suite à termes positifs est croissante. Dans la mesure où toute suite croissante majorée converge, on peut affirmer que si la suite des sommes partielles est majorée, alors elle converge vers sup $(\{\sum_{k=0}^n u_k, n \in \mathbb{N}\})$.

2 Critère de comparaison

Soient u_n et v_n les termes généraux de deux séries à termes positifs tels que, pour tout $n \in \mathbb{N}$, on ait $0 < u_n < v_n$.

Si $\sum_{n=0}^{\infty} v_n$ converge, alors $\sum_{n=0}^{\infty} u_n$ converge également et $\sum_{n=0}^{\infty} u_n \leq \sum_{n=0}^{\infty} v_n$. Inversement, si $\sum n = 0^{\infty} u_n$ diverge, alors $\sum_{n=0}^{\infty} v_n$ diverge également.

Exemple 10. $\sum_{n=0}^{\infty} \frac{1}{n^2 \sqrt{n}}$ converge car on a $\frac{1}{n^2 \sqrt{n}} \leq \frac{1}{n^2}$, qui est convergente.

Exemple 11. $\sum_{n=0}^{\infty} \frac{1}{\sqrt{n}}$ diverge car on a $\frac{1}{\sqrt{n}} \geq \frac{1}{n}$, qui diverge.

3 Critère d'Alembert

Soit (u_n) une suite de réels positifs telle que $\lim_{n\to\infty}\frac{u_{n+1}}{u_n}=q$.

- Si q < 1, alors la série converge;
- Si q > 1, alors la série diverge;
- Si q = 1, on ne peut pas se prononcer.

Exemple 12.

$$u_n = \frac{n}{2^n}$$

$$\lim_{n \to \infty} \frac{u_{n+1}}{u_n} = \lim_{n \to \infty} \frac{n+1}{2^{n+1}} \times \frac{2^n}{n}$$

$$= \lim_{n \to \infty} \frac{1}{2} \times \frac{n+1}{n}$$

$$= \frac{1}{2}$$

On a q < 1, donc la série de terme général $\frac{n}{2^n}$ converge.

Exemple 13.

$$u_n = \frac{2^n}{2!}$$

$$\lim_{n \to \infty} \frac{u_{n+1}}{u_n} = \lim_{n \to \infty} \frac{2^{n+1}}{(n+1)!} \times \frac{n!}{2^n}$$

$$= \lim_{n \to \infty} \frac{2}{n+1}$$

$$= 0$$

On a q < 1, donc la série de terme général $\frac{2^n}{n!}$ converge.

4 Comparaison d'une série et d'une intégrale

Soit $f:[1;+\infty]\to\mathbb{R}^+$ une fonction continue et décroissante. On a alors l'équivalences suivante,

$$\sum_{n=0}^{\infty} f(n) \text{ converge } \iff \int_{1}^{\infty} f(t) \, \mathrm{d}t \text{ converge}$$

Un corollaire de ce théorème est que la série de terme général $\frac{1}{n^{\alpha}}$ converge si, et seulement si, $\alpha > 1$.

III Séries absolument convergentes

Soit $(u_n)_{n\in\mathbb{N}}$ une suite de nombres complexes. Une série est dite absolument convergente si $\sum_{n=0}^{\infty} |u_n|$ converge. De plus, on en peut en déduire que $\sum_{n=0}^{\infty} u_n$ converge également, mais la réciproque est généralement fausse.

Remarque 2 (Cas des séries alternées). Soit (u_n) une suite de nombres réels alternativement positifs et négatifs. Si la suite $(|u_n|)$ est décroissante et si $\lim_{n\to\infty} |u_n| = 0$, alors $\sum_{n=0}^{\infty}$ est convergente.

Chapitre 3

Transformée de Laplace

I Intégrale de Laplace

1 Définition

Soit f une fonction définie sur $\mathbb R$ et supposée nulle pour tout $t<0.^1$ On appelle transformée de Laplace de f la fonction F définie par

$$F(p) = \int_0^\infty e^{-pt} f(t) \, \mathrm{d}t$$

où p est une variable complexe.

On écrit $F(p) = \mathcal{L}\{f(t)\}$, ou bien $f(t) \xrightarrow{\mathcal{L}} F(p)$. On dit que F(p) est l'image de f(t) et que f(t) est l'originial de F(p).

Remarque 3. F(p) est bien à valeur dans \mathbb{C} bien que f(t) soit à valeurs dans \mathbb{R} .

2 Conditions d'existence

La transformée de Laplace d'une fonction f(t) n'existe que si $\int_0^\infty e^{-pt} f(t) dt$ converge. On est alors amené à définir deux conditions sur f pour s'assurer de l'existence de sa transformée de Laplace :

- Elle doit être continue par morceau sur tout intervalle $[0; t_0]$ de \mathbb{R} ;
- Elle doit être d'ordre exponentiel à l'infini, c'est-à-dire respecter la relation suivante

$$\exists M > 0, \alpha \in \mathbb{R} \mid |f(t)| < M e^{\alpha t}$$

^{1.} On parle alors de fonction causale.

II Transformée de Laplace des fonctions usuelles

1 Échelon unité

L'échelon unité est la fonction Γ définie sur \mathbb{R} comme suit,

$$\Gamma(t) = \begin{cases} 0 & \forall t < 0 \\ 1 & \forall t \ge 0 \end{cases}$$

FIGURE 3.1 – Échelon unité

$$\mathcal{L}\left\{\Gamma(t)\right\} = \int_0^\infty e^{-pt} \times 1 \, \mathrm{d}t$$

$$= \lim_{T \to \infty} \left[-\frac{e^{-pt}}{p} \right]_0^T$$

$$= \lim_{T \to \infty} |e^{-pt}|$$

$$= \lim_{T \to \infty} |e^{\Re(p)t}|$$

$$= 0$$

Donc, $\mathcal{L}\left\{\Gamma(t)\right\}$ existe et $\mathcal{L}\left\{\Gamma(t)\right\} = \frac{1}{p}$.

2 Impulsion de Dirac

Remarque 4.

$$\forall \varepsilon > 0, \int_{-\infty}^{+\infty} \delta_{\varepsilon}(t) = 1$$

FIGURE 3.2 – Fonction créneau

La famille de fonction des δ_{ε} est appelée créneau. Cependant, lorsque ε tend vers 0, on parle d'impulsion de Dirac, notée δ , et sert à représenter en physique des évènements on des actions ayant lieu sur un temps très court. On écirt d'ailleurs abusivement

$$\delta(t) = \begin{cases} 0 & \forall t \neq 0 \\ \infty & \text{pour } t = 0 \end{cases}$$

$$\mathcal{L}\left\{\delta_{\varepsilon}\right\} = \int_{0}^{\infty} \delta_{\varepsilon}(t) e^{-pt} dt$$

$$= \int_{0}^{\varepsilon} \frac{1}{\varepsilon} e^{-pt} dt$$

$$= \frac{1}{\varepsilon} \int_{0}^{\varepsilon} e^{-pt} dt$$

$$= \frac{1 - e^{-pt}}{p \varepsilon}$$

$$\lim_{\varepsilon \to 0} \frac{1 - e^{-pt}}{p \varepsilon} = 1$$

Donc, $\mathcal{L}\left\{\delta(t)\right\}$ existe et $\mathcal{L}\left\{\delta(t)\right\}=1$.

3 Fonction puissance

Soit un entier naturel n. On pose alors $f(t) = t^n$, pour $t \ge 0$, et f(t) = 0, pour t < 0.

$$\mathcal{L}\left\{t^{n}\right\} = \int_{0}^{\infty} t^{n} e^{-pt} dt$$

$$= \left[-\frac{e^{-pt}}{p} t^{n}\right]_{0}^{\infty} + \int_{0}^{\infty} \frac{n}{p} t^{n-1} e^{-pt} dt$$

$$= 0 + \frac{n}{p} \int_{0}^{n-1} e^{-pt} dt$$

$$= \frac{n!}{p^{n}} \int_{0}^{\infty} 1 \times e^{-pt} d(t) \qquad \text{(On intègre par parties } n \text{ fois.)}$$

$$= \frac{n!}{p^{n}} \left[-\frac{e^{-pt}}{p}\right]_{0}^{\infty}$$

Donc, $\mathcal{L}\left\{t^{n}\right\}$ existe et $\mathcal{L}\left\{t^{n}\right\} = \frac{n!}{p^{n+1}}$.

4 Fonction exponentielle

On pose ici $\alpha \in \mathbb{R}$ et $f(t)e^{-\alpha t}$.

$$\mathcal{L}\left\{e^{-\alpha t}\right\} = \int_0^\infty e^{-\alpha t} e^{-pt} dt$$
$$= \int_0^\infty e^{-t(p+\alpha)} dt$$
$$= \left[-\frac{e^{-t(p+\alpha)}}{p+\alpha}\right]_0^\infty$$

Donc, $\mathcal{L}\left\{e^{-\alpha t}\right\}$ existe et vaut $\frac{1}{p+\alpha}$.