B.Tech II Semester (2020 Batch) PROBABILITY AND STATISTICS (20BM1104) (For CSE-3 & CSE-4)

Unit – 5: Correlation and Regression

(The method of least squares, curvilinear regression, multiple regressions, correlation (excluding causation))

Curve fitting: Computing a curve corresponding to a given set of points is called a curve fitting

Regression: A relation between independent and dependent variables obtained from a given set of points is called a regression

Simple regression: A relation between one dependent variable and one independent variable obtained from a given set of points is called a simple regression

Multiple regression: A relation between one dependent variable and two or more independent variables obtained from a given set of points is called a simple regression

Regression line of y on x: A relation of the form y = a + bx is called a regression line of y on x

Regression line of x **on** y : A relation of the form x = a + by is called a regression line of x on y

Regression curve of y on x_1 , x_2 : A relation of the form $y = a + bx_1 + cx_2$ is called a regression curve of y on x_1 , x_2

Least Squares Method: The method of computing a curve (or regression curve) by using a given set of points such that the sum of the squares of deviations from the points to the curve along y - axis is minimum

Curve fitting by Least Squares Method:

1. To fit a straight line of the form y = a + bx, the Normal equation are given by

$$\sum y = na + b \sum x$$
$$\sum xy = a \sum x + b \sum x^2$$

2. To fit a straight line of the form x = a + by, the Normal equation are given by

$$\sum x = na + b \sum y$$
$$\sum xy = a \sum y + b \sum y^2$$

3. To fit an exponential curve of the form $y = ae^{bx}$,

First write $\ln y = \ln a + bx$ and then the Normal equation are given by

$$\sum \ln y = n \ln a + b \sum x$$

$$\sum x \ln y = \ln a \sum x + b \sum x^2$$

- 4. To fit an exponential curve of the form $y = ab^x$,
 - First write $\log y = \log a + x \log b$ and then the Normal equation are given by

$$\sum \log y = n \log a + \log b \sum x$$

$$\sum x \log y = \log a \sum x + \log b \sum x^2$$

- 5. To fit a power curve (geometric curve) of the form $y = ax^b$,
 - First write $\log y = \log a + b \log x$ and then the Normal equation are given by

$$\sum \log y = n \log a + b \sum \log x$$

$$\sum_{x = 1}^{\infty} \log x \log y = \log a \sum_{x = 1}^{\infty} \log x + b \sum_{x = 1}^{\infty} (\log x)^{2}$$

6. To fit a parabola of 2^{nd} degree (or quadratic curve) of the form $y = a + bx + cx^2$, the Normal equation are given by

$$\sum y = na + b \sum x + c \sum x^2$$

$$\sum xy = a\sum x + b\sum x^2 + c\sum x^3$$

$$\sum x^2 y = a \sum x^2 + b \sum x^3 + c \sum x^4$$

7. To fit a multiple regression curve of the form z = a + bx + cy, the Normal equation are given by

$$\sum z = na + b \sum x + c \sum y$$

$$\sum xz = a\sum x + b\sum x^2 + c\sum xy$$

$$\sum yz = a\sum y + b\sum xy + c\sum y^2$$

8. To fit a multiple regression curve of the form $y = a + bx_1 + cx_2$, the Normal equation are given by

$$\sum y = na + b \sum x_1 + c \sum x_2$$

$$\sum x_1 y = a \sum x_1 + b \sum x_1^2 + c \sum x_1 x_2$$

$$\sum x_2 y = a \sum x_2 + b \sum x_1 x_2 + b \sum x_2^2$$

Problems:

1. Fit a straight line y = a + bx for the following data by least squares method

х	1	2	3	4	5
у	12	25	40	50	65

Solution: The normal equations for the straight line y = a + bx are

$$\sum y = na + b \sum x$$
 and $\sum xy = a \sum x + b \sum x^2$

Consider

х	у	x^2	xy
1	12	1	12
2	25	4	50
3	40	9	120
4	50	16	200
5	65	25	325
$\sum x = 15$	$\sum y = 192$	$\sum x^2 = 55$	$\sum xy = 707$

Here
$$\sum x = 15$$
, $\sum y = 192$, $\sum x^2 = 55$, $\sum xy = 707$ and $n = 5$

The normal equations becomes $192 = 5a + 15b \cdots (1)$

and
$$707 = 15a + 55b \cdots (2)$$

Solving (1) and (2), a = -0.9 and b = 13.1

Hence the straight line is y = -0.9 + 13.1x

2. By the method of least squares, fit a straight line y = a + bx for the following data

х	50	70	100	120
у	12	15	21	25

Solution: The normal equations for the straight line y = a + bx are

$$\sum y = na + b \sum x$$
 and $\sum xy = a \sum x + b \sum x^2$

Consider

x	У	x^2	xy
50	12	2500	600
70	15	4900	1050
100	21	10000	2100
120	25	14400	3000
$\sum x = 340$	$\sum y = 73$	$\sum x^2 = 31800$	$\sum xy = 6750$

Here
$$\sum x = 340$$
, $\sum y = 73$, $\sum x^2 = 31800$, $\sum xy = 6750$ and $n = 4$

The normal equations becomes $73 = 4a + 340b \cdots \cdots \cdots (1)$

and
$$6750 = 340a + 31800b \cdots (2)$$

Solving (1) and (2), a = 2.2758 and b = 0.1879

Hence the straight line is y = 2.2758 + 0.1879x

3. By the method of least squares, fit a straight line x = a + by for the following data

Х	12	15	21	25
у	50	70	100	120

Solution: The normal equations for the straight line x = a + by are

$$\sum x = na + b \sum y$$
 and $\sum xy = a \sum y + b \sum y^2$

Consider

х	У	y^2	xy
12	50	2500	600
15	70	4900	1050
21	100	10000	2100
25	120	14400	3000
$\sum x = 73$	$\sum y = 340$	$\sum y^2 = 31800$	$\sum xy = 6750$

Here
$$\sum x = 73, \sum y = 340, \sum y^2 = 31800, \sum xy = 6750$$
 and $n = 4$

The normal equations becomes $73 = 4a + 340b \cdots \cdots (1)$

and
$$6750 = 340a + 31800b \cdots (2)$$

Solving (1) and (2), a = 2.2785 and b = 0.1879

Hence the straight line is x = 2.2785 + 0.1879y

4. Fit an exponential curve $y = ae^{bx}$ for the following data

х	1	3	5	7	9
у	100	81	73	54	43

Solution: The curve is $y = ae^{bx}$

Taking log on both sides, $\log y = \log a + bx \log e$

That is, Y = A + Bx, where $Y = \log y$, $A = \log a$, $B = b \log e$

Now the normal equations for Y = A + Bx are

$$\sum Y = nA + B\sum x$$
 and $\sum xY = A\sum x + B\sum x^2$

Consider,

x	у	$Y = \log y$	x^2	xY
1	100	2	1	2
3	81	1.9085	9	5.7255
5	73	1.8633	25	9.3165
7	54	1.7324	49	12.1268
9	43	1.6335	81	14.7015
$\sum x = 25$		$\sum Y = 9.1377$	$\sum x^2 = 165$	$\sum xY = 43.8703$

Here
$$\sum x = 25$$
, $\sum Y = 9.1377$, $\sum x^2 = 165$, $\sum xY = 43.8703$ and $n = 5$

The normal equations becomes $9.1377 = 5A + 25B \cdots \cdots (1)$

and
$$43.8703 = 25A + 165B \cdots (2)$$

Solving (1) and (2), A = 2.0548 and B = -0.0455 or

Therefore,
$$a = 10^A = 113.4488$$
 and $b = \frac{B}{\log e} = -0.1048$

Hence the required curve is $y = 113.4488e^{-0.1048x}$

5. Fit an exponential curve $y = ab^x$ for the following data

х	1	2	3	4	5
у	130	152.2	177.3	190.2	244.7

Solution: The curve is $y = ab^x$

Taking log on both sides, $\log y = \log a + x \log b$

That is, Y = A + Bx, where $Y = \log y$, $A = \log a$, $B = \log b$

Now the normal equations for Y = A + Bx are

$$\sum Y = nA + B\sum x$$
 and $\sum xY = A\sum x + B\sum x^2$

Consider,

x	у	$Y = \log y$	x^2	xY
1	130	2.1139	1	2.1139
2	152.2	2.1824	4	4.3648
3	177.3	2.2487	9	6.7461
4	190.2	2.2792	16	9.1168
5	244.7	2.3886	25	11.9432
$\sum x = 15$		$\sum Y = 11.2129$	$\sum x^2 = 55$	$\sum xY = 34.2849$

Here
$$\sum x = 15$$
, $\sum Y = 11.2129$, $\sum x^2 = 55$, $\sum xY = 34.2849$ and $n = 5$

The normal equations becomes $11.2129 = 5A + 15B \cdots \cdots (1)$

and
$$34.2849 = 15A + 55B \cdots \cdots (2)$$

Solving (1) and (2), A = 2.0487 and B = 0.0646

Therefore, $a = 10^A = 111.8716$ and $b = 10^B = 1.1604$

Hence the required curve is $y = 111.8716 (1.1604)^{x}$

6. Fit an exponential curve $y = ab^x$ for the following data

Х	2	3	4	5	6
у	144	172.8	207.4	248.8	298.6

 $\log y = \log a + x \log b$ or Y = A + Bx, where $Y = \log y$, $A = \log a$, $B = \log b$

The normal equations for Y = A + Bx are

$$\sum Y = nA + B \sum x$$
 and $\sum xY = A \sum x + B \sum x^2$

Here
$$\sum x = 20$$
, $\sum Y = \sum \log y = 11.5837$, $\sum x^2 = 90$, $\sum xY = \sum x \log y = 47.1266$ and $n = 5$

The normal equations becomes 11.5837 = 5A + 20B and 47.1266 = 20A + 90B

On solving, A = 2 and B = 0.0792 or a = 100 and b = 1.2

Hence the exponential curve $y = 100(1.2)^{x}$

7. Fit a power curve $y = ax^b$ for the following data

х	1	2	3	4	5	6
У	2.98	4.26	5.21	6.10	6.80	7.50

Solution: The power curve is $y = ax^b$

Taking log on both sides, $\log y = \log a + b \log x$

That is, Y = A + bX, where $Y = \log y$, $X = \log x$, $A = \log a$

Now the normal equations for Y = A + bX are

$$\sum Y = nA + b\sum X$$
 and $\sum XY = A\sum X + b\sum X^2$

Consider,

X	у	$X = \log x$	$Y = \log y$	X^2	XY
1	2.98	0	0.4742	0	0
2	4.26	0.3010	0.6294	0.0906	0.1895
3	5.21	0.4771	0.7168	0.2276	0.3420
4	6.10	0.6021	0.7853	0.3625	0.4728
5	6.80	0.6990	0.8325	0.4886	0.5819
6	7.50	0.7782	0.8751	0.6055	0.6809
		$\sum X = 2.8573$	$\sum Y = 4.3134$	$\sum X^2 = 1.7748$	$\sum XY = 2.2671$

Here
$$\sum X = 2.8573$$
, $\sum Y = 4.3134$ $\sum X^2 = 1.7748$, $\sum XY = 2.2671$ and $n = 6$

The normal equations become $4.3134 = 6A + 2.8573b \cdots \cdots (1)$

and
$$2.2671 = 2.8573A + 1.7748b \cdots (2)$$

Solving (1) and (2), A = 0.4740 and b = 0.5143

Therefore, $a = 10^{A} = 2.9783$

Hence the curve is $y = 2.9783(x)^{0.5143}$

8. Determine the regression line of y on x for the following data

X	20	25	28	35	43
у	52	48	63	79	95

Solution: The regression line of y on x is given by y = a + bx

The normal equations for are

$$\sum y = na + b \sum x$$
 and $\sum xy = a \sum x + b \sum x^2$

Consider

х	у	x^2	xy
20	52	400	1040
25	48	625	1200
28	63	784	1764
35	79	1225	2765
43	95	1849	4085
$\sum x = 151$	$\sum y = 337$	$\sum x^2 = 4883$	$\sum xy = 10854$

Here
$$\sum x = 151$$
, $\sum y = 337$, $\sum x^2 = 4883$, $\sum xy = 10854$ and $n = 5$

The normal equations become $337 = 5a + 151b \cdots (1)$

and
$$10854 = 151a + 4883b \cdots (2)$$

Solving (1) and (2), a = 4.0998 and b = 2.096Hence the regression line of y on x is y = 4.0998 + 2.096x

9. Determine the regression line of x on y for the following data

х	1.1	2.3	4.5	7.6
у	21	35	64	84

And estimate the value of x at y = 4.8

Solution: The regression line of x on y is given by x = a + by

The normal equations for the straight line x = a + by are

$$\sum x = na + b \sum y$$

$$\sum x = na + b \sum y$$
 and $\sum xy = a \sum y + b \sum y^2$

Consider

x	у	y ²	xy	
1.1	21	441	23.1	
2.3	35	1225	80.5	
4.5	64	4096	288	
7.6	84	7056	638.4	
$\sum x = 15.5$	$\sum y = 204$	$\sum y^2 = 12818$	$\sum xy = 1030$	

Here
$$\sum x = 15.5$$
, $\sum y = 204$, $\sum y^2 = 12818$, $\sum xy = 1030$ and $n = 4$

The normal equations become $15.5 = 4a + 204b \cdots \cdots \cdots (1)$

and
$$1030 = 204a + 12818b \cdots (2)$$

Solving (1) and (2), a = -1.1849 and b = 0.0992

Hence the regression line of x on y is x = -1.1849 + 0.0992y

Therefore, the value of x at y = 4.8 is given by x = -1.1849 + 0.0992 (4.8) = 0.70874

10. Fit a second degree parabola $y = a + bx + cx^2$ for the following data

Х	1	3	5	7	9
у	2	7	10	11	9

Solution: The curve is $y = a + bx + cx^2$

The normal equations are

$$\sum y = na + b\sum x + c\sum x^{2},$$

$$\sum xy = a\sum x + b\sum x^{2} + c\sum x^{3}$$

$$\sum x^{2}y = a\sum x^{2} + b\sum x^{3} + c\sum x^{4}$$

Consider.

х	У	x^2	x^3	x^4	xy	x^2y
1	2	1	1	1	2	2
3	7	9	27	81	21	63
5	10	25	125	625	50	250
7	11	49	343	2401	77	539
9	9	81	729	6561	81	729
$\sum x = 25$	$\sum y = 39$	$\sum x^2 = 165$	$\sum x^3 = 1225$	$\sum x^4 = 9669$	$\sum xy = 231$	$\sum x^2 y = 1583$

Here
$$\sum x = 25$$
, $\sum y = 39$, $\sum x^2 = 165$, $\sum x^3 = 1225$, $\sum x^4 = 9669$, $\sum xy = 231$ $\sum x^2 y = 1583$ and $n = 5$

The normal equations
$$39 = 5a + 25b + 165c$$
 (1)
 $231 = 25a + 165b + 1225c$ (2)
and $1583 = 165a + 1225b + 9669c$ (3)
Solving (1), (2) and (3), $a = -1.5571$, $b = 3.7571$ and $c = -0.2857$
Hence the parabola is $y = -1.5571 + 3.7571x - 0.2857x^2$

11. Fit a second degree parabola $y = a + bx + cx^2$ for the following data

х	1.0	1.5	2.0	2.5	3.0	3.5	4.0
у	1.1	1.3	1.6	2.0	2.7	3.4	4.1

Solution: The curve is $y = a + bx + cx^2$

The normal equations are

$$\sum y = na + b\sum x + c\sum x^{2},$$

$$\sum xy = a\sum x + b\sum x^{2} + c\sum x^{3}$$

$$\sum x^{2}y = a\sum x^{2} + b\sum x^{3} + c\sum x^{4}$$

Consider,

х	у	x^2	x^3	x^4	xy	x^2y
1.0	1.1	1	1	1	1.1	1.1
1.5	1.3	2.25	3.375	5.0625	1.95	2.925
2.0	1.6	4	8	16	3.2	6.4
2.5	2.0	6.25	15.625	39.0625	5	12.5
3.0	2.7	9	27	81	8.1	24.3
3.5	3.4	12.25	42.875	150.0625	11.9	41.65
4.0	4.1	16	64	256	0.4	1.6
$\sum x =$	$\sum y =$	$\sum x^2 =$	$\sum x^3 =$	$\sum x^4 =$	$\sum xy =$	$\sum x^2 y =$
17.5	12.2	50.75	161.875	548.1875	31.65	90.475

The normal equations
$$12.2 = 7a + 17.5b + 50.75c \cdots \cdots (1)$$

 $31.65 = 17.5a + 50.75b + 161.875c \cdots (2)$
and $90.475 = 50.75a + 161.875b + 548.1875c \cdots (3)$

Solving (1), (2) and (3), a = -2.3929, b = 3.7119 and c = -0.7095

Hence the parabola is $y = -2.3929 + 3.7119 x - 0.7095 x^2$

12. Determine the Normal equations to fit a straight line of the form y = a + bxSolution: Let y = f(x), where f(x) = a + bx

Let $A = (x_i \ y_i)$ be any given data point

At $x = x_i$, the observed (given) value of y is y_i ; that is $AC = y_i$

At $x = x_i$, the expected value of y is $f(x_i)$; that is $BC = f(x_i)$

Therefore, the deviation (d_i) at $x = x_i$ is given by AB = AC - BC

That is, $d_i = |y_i - f(x_i)|$ so that $d_i^2 = [y_i - f(x_i)]^2$

Sum of the squares of the deviations is given by $S = \sum d_i^2 = \sum [y_i - f(x_i)]^2 = \sum [y_i - (a + bx_i)]^2$ According least squares method S is minimum

To get S minimum, we need $\frac{\partial S}{\partial a} = 0$ and $\frac{\partial S}{\partial b} = 0$

Now
$$\frac{\partial S}{\partial a} = 0 \Rightarrow 2\sum [y_i - (a + bx_i)](1) = 0$$

$$\Rightarrow \sum [y_i - (a + bx_i)] = 0$$

$$\Rightarrow \sum y_i = \sum a + \sum bx_i$$

$$\Rightarrow \sum y_i = n a + b \sum x_i \quad \cdots \quad \cdots \quad (1)$$

And
$$\frac{\partial S}{\partial b} = 0 \Rightarrow 2\sum [y_i - (a + bx_i)](x_i) = 0$$

$$\Rightarrow \sum [x_i y_i - (ax_i + bx_i^2)] = 0$$

$$\Rightarrow \sum x_i y_i = \sum ax_i + \sum bx_i^2$$

$$\Rightarrow \sum x_i y_i = a \sum x_i + b \sum x_i^2 \cdots \cdots (2)$$

Therefore (1) and (2) are the required normal equations

13. Determine the least squares regression equation of the form $y = a + bx_1 + cx_2$ for the following data

У	3	5	6	8	12	14
x_1	16	10	7	4	3	2
x_2	90	72	54	42	30	12

Solution: The equation is $y = a + bx_1 + cx_2$

The normal equations are

$$\sum y = na + b \sum x_1 + c \sum x_2,$$

$$\sum x_1 y = a \sum x_1 + b \sum x_1^2 + c \sum x_1 x_2$$

$$\sum x_2 y = a \sum x_2 + b \sum x_1 x_2 + c \sum x_2^2$$

Consider,

У	x_1	x_2	x_1^2	x_{2}^{2}	x_1x_2	$x_1 y$	$x_2 y$
3	16	90	256	8100	1440	48	270
5	10	72	100	5184	720	50	360
6	7	54	49	2916	378	42	324
8	4	42	16	1764	168	32	336
12	3	30	9	900	90	36	360
14	2	12	4	144	24	28	168
$\sum y =$	$\sum x_1 =$	$\sum x_2 =$	$\sum x_1^2 =$	$\sum x_2^2 =$	$\sum x_1 x_2 =$	$\sum x_1 y =$	$\sum x_2 y =$
48	42	300	434	19008	2820	236	1818

The normal equations
$$48 = 6a + 42b + 300c \cdots \cdots (1)$$

$$236 = 42a + 434b + 2820c \cdots (2)$$

and
$$1818 = 300a + 2820b + 19008c \cdots (3)$$

Solving (1), (2) and (3), a = 16.1067, b = 0.4270 and c = -0.2219

Hence the regression equation is $y = 16.1067 + 0.4270x_1 - 0.2219x_2$

14. Determine the least squares regression equation of the form z = a + bx + cy for the following data

z	16	19	23	20	26	23	28
x	1	2	3	4	5	6	7
у	4	5	7	2	6	1	4

Solution: The equation is z = a + bx + cy

The normal equations are

$$\sum z = na + b \sum x + c \sum y,$$

$$\sum xz = a \sum x + b \sum x^2 + c \sum xy$$

$$\sum yz = a \sum y + b \sum xy + c \sum y^2$$

Consider,

z	x	У	x^2	y^2	xy	XZ	yz
16	1	4	1	16	4	16	64
19	2	5	4	25	10	38	95
23	3	7	9	49	21	69	161
20	4	2	16	4	8	80	40
26	5	6	25	36	30	130	156
23	6	1	36	1	6	138	23
28	7	4	49	16	28	196	112
$\sum z =$	$\sum x =$	$\sum y =$	$\sum x^2 =$	$\sum y^2 =$	$\sum xy =$	$\sum xz =$	$\sum yz =$
155	28	29	140	147	107	667	651

The normal equations $155 = 7a + 28b + 29c \cdots (1)$

$$667 = 28a + 140b + 107c \cdots (2)$$

and
$$651 = 29a + 107b + 147c \cdots (3)$$

Solving (1), (2) and (3), a = 10, b = 2 and c = 1

Hence the regression equation is z = 10 + 2x + y

Exercise:

1. Fit a straight line y = a + bx for the following data by least squares method

х	1	2	3	4	5	6
у	14	33	40	63	76	85

2. Fit a straight line y = a + bx for the following data by least squares method

x	0	2	3	5	9
у	-3	4	3	8	15

3. Fit a straight line x = a + by for the following data by least squares method

х	18.5	25.4	30	64.5	34.6	89.8	20.8
y	5	8	10	25	12	36	6

(Ans: x = 7 + 2.3y)

4. The following shows the improvement of eight students in a speed-reading program, and the number of weeks they have been in the program:

No.of weeks <i>x</i>	3	5	2	8	6	9	3	4
Speed gain (words/min.) y	86	118	49	193	164	232	73	109

Fit a straight line by the method of least squares

5. If p is the pull required to lift a load w by means of a pulley block, find a linear law of the form p = mw + c using the data

p	12	15	21	25
W	50	70	100	120

6. Predict y at x = 3.75 by fitting power curve $y = a x^b$ for the following data

х	1	2	3	4	5	6
У	2.98	4.26	5.21	6.10	6.80	7.50

7. Fit a second degree parabola $y = a + bx + cx^2$ for the following data

х	2.5	3.6	4.6	5.2	6.8	7.2	8.9	9.2
У	1.8	2.6	4.8	6.2	8.9	4.2	2.9	4.5

(Ans: $y = -7.7504 + 4.422x - 0.3472x^2$)

8. Determine the regression line of y on x for the following data

Х	50	60	70	90	100
у	65	51	40	26	08

9. Find Y when $X_1 = 10$ and $X_2 = 6$ from the least square regression equation of Y on X_1 and X_2 for the following data

Y	90	72	54	42	30	12
X_1	3	5	6	8	12	14
X_2	16	10	7	4	3	2

10. Fit a least-squares regression plane for the following data and also find y at $x_1 = 2.2$ and $x_2 = 90$.

	5.3									
x_1	1.5	2.5	0.5	1.2	2.6	0.3	2.4	2	0.7	1.6
x_2	66	87	69	141	93	105	111	78	66	123

Correlation: The relationship between two variables such that a change in one variable results in a + ve or -ve change in the other and also greater change in one variable results in corresponding greater change in the other is called a correlation. For a change in one variable, if there is a corresponding change in the other variable then the variables are called correlated.

Note:

- (i) If the variables deviate in the same direction then the correlation is called direct or +ve correlation
- (ii) If the variables deviate in the opposite direction then the correlation is called inverse or -ve correlation

Correlation Coefficient (or Karl Pearson coefficient of correlation): The numerical measurement of linear relationship between the variables x and y is called the coefficient of correlation of x and y and it is denoted by r(x, y) or r

Note:

- (i) The coefficient of correlation r is always lies between -1 and 1; that is, $-1 \le r \le 1$
- (ii) If r = 0 then the variables are not correlated
- (iii) If r = 1 then the variables are positively and perfectly correlated
- (iv) If r = -1 then the variables are negatively and perfectly correlated
- (v) If 0 < r < 1 then the variables are positively and partially correlated
- (vi) If -1 < r < 0 then the variables are negatively and partially correlated

Correlation formulas:

(i) Mean of x is given by
$$\bar{x} = \frac{\sum x}{n}$$

(ii) Variance of x is given by
$$\sigma_x^2 = \frac{\sum (x - \overline{x})^2}{n}$$
 or $\sigma_x^2 = \frac{\sum x^2}{n} - (\overline{x})^2$

(iii) Covariance of x and y is given by
$$Cov(x, y) = \frac{\sum (x - \overline{x})(y - \overline{y})}{n}$$
 or $Cov(x, y) = \frac{\sum xy}{n} - (\overline{x})(\overline{y})$

(iv) Coefficient of correlation of
$$x$$
 and y is given by $r = \frac{Cov(x, y)}{\sigma_x \sigma_y}$ or $r = \frac{\sum (x - \overline{x})(y - \overline{y})}{\sqrt{\sum (x - \overline{x})^2} \sqrt{\sum (y - \overline{y})^2}}$

(v)
$$r = \frac{\sigma_x^2 + \sigma_y^2 - \sigma_{x-y}^2}{2\sigma_x\sigma_y} \quad \text{or} \quad r = \frac{\sigma_{x+y}^2 - \sigma_x^2 - \sigma_y^2}{2\sigma_x\sigma_y}$$

(vi) Regression line of y on x is given by
$$y - \bar{y} = r \frac{\sigma_y}{\sigma_x} (x - \bar{x})$$

The slope of the regression line of y on x is called regression coefficient of y on x.

It is denoted by b_{yx} and is given by $b_{yx} = r \frac{\sigma_y}{\sigma_x}$

(vii) Regression line of
$$x$$
 on y is given by $x - \overline{x} = r \frac{\sigma_x}{\sigma_y} (y - \overline{y})$
The slope of the regression line of x on y is called regression coefficient of x on y

It is denoted by b_{xy} and is given by $b_{xy} = r \frac{\sigma_x}{\sigma_y}$

- (viii) Both the regression lines passes through the point (\bar{x}, \bar{y})
- (ix) The Geometric Mean of the regression coefficients is r; that is $r^2 = b_{xy} \times b_{yx} = r \frac{\sigma_x}{\sigma_y} \times r \frac{\sigma_y}{\sigma_x}$

Problems:

1. Determine the coefficient of correlation for the following data

х	1	3	4	6	8	9	11	14
У	1	2	4	4	5	7	8	9

Solution: The coefficient of correlation
$$r = \frac{\sum (x - \overline{x})(y - \overline{y})}{\sqrt{\sum (x - \overline{x})^2} \sqrt{\sum (y - \overline{y})^2}}$$

Here
$$\bar{x} = \frac{\sum x}{n} = \frac{56}{8} = 7$$
 and $\bar{y} = \frac{\sum y}{n} = \frac{40}{8} = 5$

х	у	$x-\bar{x}$	$y-\bar{y}$	$(x-\overline{x})(y-\overline{y})$	$(x-\overline{x})^2$	$(y-\overline{y})^2$
1	1	- 6	- 4	24	36	16
3	2	- 4	- 3	12	16	9
4	4	- 3	- 1	3	9	1
6	4	- 1	- 1	1	1	1
8	5	1	0	0	1	0
9	7	2	2	4	4	4
11	8	4	3	12	16	9
14	9	7	4	28	49	16
$\sum x =$	$\sum y =$			$\sum (x - \overline{x})(y - \overline{y}) =$	$\sum (x - \bar{x})^2 =$	$\sum (y - \bar{y})^2 =$
56	40			84	132	56

Observe that,
$$\sum (x - \bar{x})^2 = 132$$
, $\sum (y - \bar{y})^2 = 56$, $\sum (x - \bar{x})(y - \bar{y}) = 84$
Therefore, the coefficient of correlation $r = \frac{\sum (x - \bar{x})(y - \bar{y})}{\sqrt{\sum (x - \bar{x})^2} \sqrt{\sum (y - \bar{y})^2}} = \frac{84}{\sqrt{(132)(56)}} = 0.977$

2. Determine the coefficient of correlation for the following data

х	78	36	98	25	75	82	90	62	65	39
У	84	51	91	60	68	62	86	58	53	47

Solution: The coefficient of correlation
$$r = \frac{\sum (x - \overline{x})(y - \overline{y})}{\sqrt{\sum (x - \overline{x})^2} \sqrt{\sum (y - \overline{y})^2}}$$

Here
$$\bar{x} = \frac{\sum x}{n} = \frac{650}{10} = 65$$
 and $\bar{y} = \frac{\sum y}{n} = \frac{660}{10} = 66$

X	У	$x - \overline{x}$	$y - \overline{y}$	$(x-\overline{x})(y-\overline{y})$	$(x-\overline{x})^2$	$(y-\overline{y})^2$
78	84	13	18	234	169	324
36	51	- 29	-15	435	841	225
98	91	33	25	825	1089	625
25	60	- 40	-6	240	1600	36
75	68	10	2	20	100	4
82	62	17	-4	-68	289	16
90	86	25	20	500	625	400
62	58	- 3	-8	24	9	64
65	53	0	-13	0	0	169
39	47	- 26	-19	494	676	361
$\sum x =$	$\sum y =$			$\sum (x - \overline{x})(y - \overline{y}) = 2704$	$\sum (x - \overline{x})^2 =$	$\sum (y - \overline{y})^2 =$
650	660			2704	5398	2224

Observe that,
$$\sum (x - \bar{x})^2 = 5398$$
, $\sum (y - \bar{y})^2 = 2224$, $\sum (x - \bar{x})(y - \bar{y}) = 2704$
Therefore, the coefficient of correlation $r = \frac{\sum (x - \bar{x})(y - \bar{y})}{\sqrt{\sum (x - \bar{x})^2} \sqrt{\sum (y - \bar{y})^2}} = \frac{2704}{\sqrt{(5398)(2224)}} = 0.7804$

3. Determine the coefficient of correlation for the following data

х	65	66	67	67	68	69	70	72
у	67	68	65	68	72	72	69	71

Solution: The coefficient of correlation
$$r = \frac{\sum (x - \overline{x})(y - \overline{y})}{\sqrt{\sum (x - \overline{x})^2} \sqrt{\sum (y - \overline{y})^2}}$$

Here
$$\bar{x} = \frac{\sum x}{n} = \frac{544}{8} = 68$$
 and $\bar{y} = \frac{\sum y}{n} = \frac{552}{8} = 69$

X	у	$x-\overline{x}$	$y - \overline{y}$	$(x-\overline{x})(y-\overline{y})$	$(x-\overline{x})^2$	$(y-\overline{y})^2$
65	67	-3	-2	6	9	4
66	68	-2	-1	2	4	1
67	65	-1	-4	4	1	16
67	68	-1	-1	1	1	1
68	72	0	3	0	0	9
69	72	1	3	3	1	9
70	69	2	0	0	4	0
72	71	4	2	8	16	4
$\sum x =$	$\sum y =$			$\sum (x - \overline{x})(y - \overline{y}) =$	$\sum (x - \bar{x})^2 =$	$\sum (y - \bar{y})^2 =$
544	552			24	36	44

Observe that,
$$\sum (x - \bar{x})^2 = 36$$
, $\sum (y - \bar{y})^2 = 44$, $\sum (x - \bar{x})(y - \bar{y}) = 24$
Therefore, the coefficient of correlation $r = \frac{\sum (x - \bar{x})(y - \bar{y})}{\sqrt{\sum (x - \bar{x})^2} \sqrt{\sum (y - \bar{y})^2}} = \frac{24}{\sqrt{(36)(44)}} = 0.603$

4. From the following data

Ī	х	65	66	67	67	68	69	70	72
ſ	у	67	68	65	68	72	72	69	71

Determine (i) \bar{x} and \bar{y} (ii) σ_x and σ_y (iii) Cov(x,y) (iv) the correlation coefficient between x and y

Solution: We know that
$$\bar{x} = \frac{\sum x}{n}$$
, $\sigma_x^2 = \frac{\sum (x - \bar{x})^2}{n}$, $Cov(x, y) = \frac{\sum (x - \bar{x})(y - \bar{y})}{n}$ and $r = \frac{Cov(x, y)}{\sigma_x \sigma_y}$

Consider,

X	У	$x - \overline{x}$	$y - \overline{y}$	$(x-\overline{x})(y-\overline{y})$	$(x-\overline{x})^2$	$(y-\overline{y})^2$
65	67	-3	-2	6	9	4
66	68	-2	-1	2	4	1
67	65	-1	-4	4	1	16
67	68	-1	-1	1	1	1
68	72	0	3	0	0	9
69	72	1	3	3	1	9
70	69	2	0	0	4	0
72	71	4	2	8	16	4
$\sum x =$	$\sum y =$			$\sum (x - \bar{x})(y - \bar{y}) =$	$\sum (x - \bar{x})^2 =$	$\sum (y - \overline{y})^2 =$
544	552			24	36	44

(i)
$$\bar{x} = \frac{\sum x}{n} = \frac{544}{8} = 68$$
 and $\bar{y} = \frac{\sum y}{n} = \frac{552}{8} = 69$
(ii) $\sigma_x^2 = \frac{\sum (x - \bar{x})^2}{n} = \frac{36}{8} = 4.5$, $\sigma_x = \sqrt{4.5} = 2.1213$
 $\sigma_y^2 = \frac{\sum (y - \bar{y})^2}{n} = \frac{44}{8} = 5.5$, $\sigma_y = \sqrt{5.5} = 2.3452$
(iii) $Cov(x, y) = \frac{\sum (x - \bar{x})(y - \bar{y})}{n} = \frac{24}{8} = 3$
(iv) $r = \frac{Cov(x, y)}{\sigma_x \sigma_y} = \frac{3}{2.1213 \times 2.3452} = 0.6030$

5. Find the correlation coefficient between x and y from the following data

х	78	89	97	69	59	79	68	57
у	125	137	156	112	107	138	123	108

Solution: The coefficient of correlation
$$r = \frac{\sum (x - \overline{x})(y - \overline{y})}{\sqrt{\sum (x - \overline{x})^2} \sqrt{\sum (y - \overline{y})^2}}$$

Here
$$\bar{x} = \frac{\sum x}{n} = \frac{596}{8} = 74.5$$
 and $\bar{y} = \frac{\sum y}{n} = \frac{1006}{8} = 125.75$

onsider,						
x	У	$x-\bar{x}$	$y - \overline{y}$	$(x-\overline{x})(y-\overline{y})$	$(x-\overline{x})^2$	$(y-\overline{y})^2$
78	125	3.5	-0.75	-2.625	12.25	0.5625
89	137	14.5	11.25	163.125	210.25	126.5625
97	156	22.5	30.25	680.625	506.25	915.0625
69	112	-5.5	-13.75	75.625	30.25	189.0625
59	107	-15.5	-18.75	290.625	240.25	351.5625
79	138	4.5	12.25	55.125	20.25	150.0625
68	123	-6.5	-2.75	17.875	42.25	7.5625
57	108	-17.5	-17.75	310.625	306.25	315.0625
$\sum x =$	$\sum y =$			$\sum (x - \overline{x})(y - \overline{y}) =$	$\sum (x - \bar{x})^2 =$	$\sum (y - \overline{y})^2 =$
596	1006			1591	1368	2055.5

Observe that,
$$\sum (x - \bar{x})^2 = 1368$$
, $\sum (y - \bar{y})^2 = 2055.5$, $\sum (x - \bar{x})(y - \bar{y}) = 1591$
Therefore, the coefficient of correlation $r = \frac{\sum (x - \bar{x})(y - \bar{y})}{\sqrt{\sum (x - \bar{x})^2} \sqrt{\sum (y - \bar{y})^2}} = \frac{1591}{\sqrt{(1368)(2055.5)}} = 0.9488$

6. From the following data

Х	78	89	97	69	59	79	68	57
у	125	137	156	112	107	138	123	108

Determine

- (i) \bar{x} and \bar{y}
- (ii) σ_x and σ_y
- (iii) Cov(x, y)
- (iv) the correlation coefficient between x and y
- (v) two regression lines

Solution: We know that
$$\bar{x} = \frac{\sum x}{n}$$
, $\sigma_x^2 = \frac{\sum (x - \bar{x})^2}{n}$, $Cov(x, y) = \frac{\sum (x - \bar{x})(y - \bar{y})}{n}$ and $r = \frac{Cov(x, y)}{\sigma_x \sigma_y}$

Consider.

х	У	$x-\overline{x}$	$y - \overline{y}$	$(x-\overline{x})(y-\overline{y})$	$(x-\overline{x})^2$	$(y-\bar{y})^2$
78	125	3.5	-0.75	-2.625	12.25	0.5625
89	137	14.5	11.25	163.125	210.25	126.5625
97	156	22.5	30.25	680.625	506.25	915.0625
69	112	-5.5	-13.75	75.625	30.25	189.0625
59	107	-15.5	-18.75	290.625	240.25	351.5625
79	138	4.5	12.25	55.125	20.25	150.0625
68	123	-6.5	-2.75	17.875	42.25	7.5625
57	108	-17.5	-17.75	310.625	306.25	315.0625
$\sum x =$	$\sum y =$			$\sum (x - \overline{x})(y - \overline{y}) =$	$\sum (x - \bar{x})^2 =$	$\sum (y - \bar{y})^2 =$
596	1006			1591	1368	2055.5

(i)
$$\bar{x} = \frac{\sum x}{n} = \frac{596}{8} = 74.5$$
 and $\bar{y} = \frac{\sum y}{n} = \frac{1006}{8} = 125.75$
(ii) $\sigma_x^2 = \frac{\sum (x - \bar{x})^2}{n} = \frac{1368}{8} = 171$, $\sigma_x = \sqrt{171} = 13.0767$
 $\sigma_y^2 = \frac{\sum (y - \bar{y})^2}{n} = \frac{2055.5}{8} = 256.9375$, $\sigma_y = \sqrt{256.9375} = 16.0293$
 $\sum (x - \bar{x})(y - \bar{y})$ 1591

(iii)
$$Cov(x, y) = \frac{\sum (x - \overline{x})(y - \overline{y})}{n} = \frac{1591}{8} = 198.875$$

(iv)
$$r = \frac{Cov(x, y)}{\sigma_x \sigma_y} = \frac{198.875}{13.0767 \times 16.0293} = 0.9488$$

(v) The regression line of y on x is given by $y - \bar{y} = r \frac{\sigma_y}{\sigma} (x - \bar{x})$

That is,
$$y - 125.75 = (0.9488) \frac{16.0293}{13.0767} (x - 74.5)$$

$$\Rightarrow$$
 y -125.75 = 1.1630 (x - 74.5)

$$\Rightarrow$$
 y -125.75 = 1.1630 x - 86.6435

$$\Rightarrow$$
 y = 39.1065 + 1.163 x

And the regression line of x on y is given by $x - \overline{x} = r \frac{\sigma_x}{\sigma_y} (y - \overline{y})$

That is,
$$x - 74.5 = (0.9488) \frac{13.0767}{16.0293} (y - 125.75)$$

$$\Rightarrow$$
 x - 74.5 = 0.7740 (y - 125.75)

$$\Rightarrow x - 74.5 = 0.774 y - 97.3305$$

$$\Rightarrow x = -22.8305 + 0.774 \text{ y}$$

7. The two regression equations of the variables x and y are y-0.399x-6.934=0 and x-1.212y+2.461=0. Find (i) mean of x (ii) mean of y (iii) correlation coefficient between x and y

Solution: Solving the given equations, x=11.5083 and y=11.5258

Therefore, $\bar{x} = 11.5083$ and $\bar{y} = 11.5258$

The regression coefficient of y on x is given by $r \frac{\sigma_y}{\sigma_x} = 0.399$

The regression coefficient of x on y is given by $r \frac{\sigma_x}{\sigma_y} = 1.212$

Correlation coefficient
$$r = \sqrt{\left(r\frac{\sigma_y}{\sigma_x}\right)\left(r\frac{\sigma_x}{\sigma_y}\right)} = \sqrt{(0.399)(1.212)} = 0.6954$$

(r is positive since both the regression coefficients are positive)

8. The two regression equations of the variables x and y are x=19.13-0.87y and y=11.64-0.50x. Find (i) mean of x (ii) mean of y (iii) correlation coefficient between x and y

Solution: Solving the given equations, x=15.9349 and y=3.6726Therefore, $\bar{x}=15.9349$ and $\bar{y}=3.6726$

The regression coefficient of y on x is given by $r \frac{\sigma_y}{\sigma_z} = -0.50$

The regression coefficient of x on y is given by $r \frac{\sigma_x}{\sigma_y} = -0.87$

Correlation coefficient
$$r = \sqrt{\left(r\frac{\sigma_y}{\sigma_x}\right)\left(r\frac{\sigma_x}{\sigma_y}\right)} = \sqrt{(-0.50)(-0.87)} = -0.66$$

(r is negative since both the regression coefficients are negative)

9. Establish the formula
$$r = \frac{\sigma_x^2 + \sigma_y^2 - \sigma_{x-y}^2}{2\sigma_x\sigma_y}$$

Solution: Consider,

$$\sigma_{x-y}^2 = \frac{1}{n} \sum \left[(x-y) - (\overline{x} - \overline{y}) \right]^2 = \frac{1}{n} \sum \left[(x-\overline{x}) - (y-\overline{y}) \right]^2$$

$$= \frac{1}{n} \sum (x-\overline{x})^2 + \frac{1}{n} \sum (y-\overline{y})^2 - \frac{2}{n} \sum (x-\overline{x})(y-\overline{y})$$

$$= \sigma_x^2 + \sigma_y^2 - 2r\sigma_x\sigma_y$$
Therefore, $r = \frac{\sigma_x^2 + \sigma_y^2 - \sigma_{x-y}^2}{2\sigma_x\sigma_y}$

10. Establish the formula
$$r = \frac{\sigma_{x+y}^2 - \sigma_x^2 - \sigma_y^2}{2\sigma_x \sigma_y}$$

Solution: Consider,

$$\sigma_{x+y}^{2} = \frac{1}{n} \sum [(x+y) - (\bar{x}+\bar{y})]^{2} = \frac{1}{n} \sum [(x-\bar{x}) + (y-\bar{y})]^{2}$$

$$= \frac{1}{n} \sum (x-\bar{x})^{2} + \frac{1}{n} \sum (y-\bar{y})^{2} + \frac{2}{n} \sum (x-\bar{x})(y-\bar{y})$$

$$= \sigma_{x}^{2} + \sigma_{y}^{2} + 2r\sigma_{x}\sigma_{y}$$

Therefore,
$$r = \frac{\sigma_{x+y}^2 - \sigma_x^2 - \sigma_y^2}{2\sigma_x \sigma_y}$$

11. Use the formula
$$r = \frac{\sigma_x^2 + \sigma_y^2 - \sigma_{x-y}^2}{2\sigma_x\sigma_y}$$
 to compute the correlation coefficient to the following data

х	78	89	97	69	59	79	68	57
у	125	137	156	112	107	138	123	108

Solution: Consider,

х	у	$x-\overline{x}$	$y - \overline{y}$	$(x-\overline{x})^2$	$(y-\overline{y})^2$	z = x - y	$z - \overline{z}$	$(z-\bar{z})^2$
78	125	3.5	-0.8	12.25	0.64	-47	4.25	18.0625
89	137	14.5	11.2	210.25	125.44	-48	3.25	10.5625
97	156	22.5	30.2	506.25	912.04	-59	-7.75	60.0625
69	112	-5.5	-13.8	30.25	190.44	-43	8.25	68.0625
59	107	-15.5	-18.8	240.25	353.44	-48	3.25	10.5625
79	138	4.5	12.2	20.25	148.84	-59	-7.75	60.0625
68	123	-6.5	-2.8	42.25	7.84	-55	-3.75	14.0625
57	108	-17.5	-17.8	306.25	316.84	-51	0.25	0.0625
$\sum x =$	$\sum y =$			$\sum (x - \bar{x})^2$	$\sum (y - \overline{y})^2$	$\sum z =$		$\sum (z-\bar{z})^2$
596	1006			=1368	= 2055.52	-410		= 241.5

(i)
$$\bar{x} = \frac{\sum x}{n} = \frac{596}{8} = 74.5$$
, $\bar{y} = \frac{\sum y}{n} = \frac{1006}{8} = 125.75$ and $\bar{z} = x - y = \frac{\sum z}{n} = \frac{-410}{8} = -51.25$
(ii) $\sigma_x^2 = \frac{\sum (x - \bar{x})^2}{n} = \frac{1368}{8} = 171$, $\sigma_x = \sqrt{171} = 13.0767$
 $\sigma_y^2 = \frac{\sum (y - \bar{y})^2}{n} = \frac{2055.52}{8} = 256.94$, $\sigma_y = \sqrt{256.94} = 16.0293$
 $\sigma_{x-y}^2 = \sigma_z^2 = \frac{\sum (z - \bar{z})^2}{n} = \frac{241.5}{8} = 30.1875$, $\sigma_{x-y} = \sigma_z = 30.1875 = 5.4943$
(iii) $r = \frac{\sigma_x^2 + \sigma_y^2 - \sigma_{x-y}^2}{2\sigma_x\sigma_y} = \frac{171 + 256.94 - 30.1875}{2 \times 13.0767 \times 16.0293} = 0.9488$

12. If θ is the angle between the two regression lines, prove that $\tan \theta = \frac{r^2 - 1}{r} \left(\frac{\sigma_x \sigma_y}{\sigma_x^2 + \sigma_y^2} \right)$

Solution: We know that the two regression lines

$$y - \overline{y} = r \frac{\sigma_y}{\sigma_x} (x - \overline{x}) \cdots (1)$$

$$x - \bar{x} = r \frac{\sigma_x}{\sigma_y} (y - \bar{y}) \quad \cdots \quad (2)$$

From (2),
$$y - \overline{y} = \frac{1}{r} \frac{\sigma_y}{\sigma_x} (x - \overline{x})$$

The slope of the line (1), $m_1 = r \frac{\sigma_y}{\sigma_x}$

The slope of the line (2), $m_2 = \frac{1}{r} \frac{\sigma_y}{\sigma_x}$

Therefore,
$$\tan \theta = \frac{m_1 - m_2}{1 + m_1 m_2} = \frac{r \frac{\sigma_y}{\sigma_x} - \frac{1}{r} \frac{\sigma_y}{\sigma_x}}{1 + \left(r \frac{\sigma_y}{\sigma_x}\right) \left(\frac{1}{r} \frac{\sigma_y}{\sigma_x}\right)} = \frac{\left(\frac{r^2 - 1}{r}\right) \frac{\sigma_y}{\sigma_x}}{\left(\frac{\sigma_x^2 + \sigma_y^2}{\sigma_x^2}\right)} = \frac{r^2 - 1}{r} \left(\frac{\sigma_x \sigma_y}{\sigma_x^2 + \sigma_y^2}\right)$$

If θ is acute angle then $\tan \theta$ is positive, and therefore $\tan \theta = \left| \frac{r^2 - 1}{r} \right| \left(\frac{\sigma_x \sigma_y}{\sigma_x^2 + \sigma_y^2} \right)$

Exercise:

1. Determine the correlation coefficient for the following data

х	11.1	10.3	12	15.1	13.7	18.5	17.3	14.2	14.8	15.3
y	10.9	14.2	13.8	21.5	13.2	21.1	16.4	19.3	17.4	19.0

2. Compute the correlation coefficient to the following data

						75		
y	58	44	51	58	60	68	62	84

3. Compute the correlation coefficient to the following data

Х	8	1	5	4	7
У	3	4	0	2	1

4. From the following data

х	50	60	70	90	100
у	65	51	40	26	08

Determine

- (i) \bar{x} and \bar{y}
- (ii) σ_x and σ_y
- (iii) Cov(x, y)
- (iv) the correlation coefficient between x and y
- (v) two regression lines
- 5. The equations of two regression lines obtained in a correlation analysis are 4x-5y+33=0 and 20x-9y=107. Compute (i) mean of x (ii) mean of y (iii) correlation coefficient between x and y
- 6. Psychological tests of intelligence and engineering ability were applied to 10 students. Here is a record of ungrouped data showing intelligence ratio (IR) and engineering ratio (ER). Calculate the coefficient of correlation

Student	A	В	С	D	Е	F	G	Н	Ι	J
IR	105	104	102	101	100	99	98	96	93	92
ER	101	103	100	98	95	96	104	92	97	94

$$\bar{x} = 99, \, \bar{y} = 98, \, \sum (x - \bar{x})^2 = 170, \, \sum (y - \bar{y})^2 = 140, \, \sum (x - \bar{x})(y - \bar{y}) = 92$$
Correlation coefficient $r = \frac{\sum (x - \bar{x})(y - \bar{y})}{\sqrt{\sum (x - \bar{x})^2} \sqrt{\sum (y - \bar{y})^2}} = 0.59$

7. Use the formula $r = \frac{\sigma_x^2 + \sigma_y^2 - \sigma_{x-y}^2}{2\sigma_x\sigma_y}$ to compute the correlation coefficient to the following data

				66				
Y	58	44	51	58	60	68	62	84

8. Given that $\bar{x} = 31.6$, $\bar{y} = 38$, $\sigma_x = 3.72$, $\sigma_y = 6.31$ and r = -0.36. Determine the two regression lines

Rank Correlation: The correlation between the ranks of the variables x and y is called the rank correlation

Rank Correlation Coefficient (or Spearman Rank Correlation Coefficient): It is denoted by $\rho(x, y)$ or ρ and is given by $\rho = 1 - \frac{6\sum d^2}{n(n^2 - 1)}$, where d is the difference between the ranks of corresponding values of x, y and n is the number of pairs of data points.

Repeated Values: If an item of x or y is repeated m times, then we give the average rank for the repeated items and add the factor $\frac{m(m^2-1)}{12}$ to $\sum d^2$ in the formula of ρ .

Problems:

1. Determine the rank correlation coefficient for the following data

Ī	х	68	64	75	50	64	80	75	40	55	64
Ī	у	62	58	68	45	81	60	68	48	50	70

Solution: The rank correlation of x, y is given by $\rho = 1 - \frac{6\sum d^2}{n(n^2 - 1)}$

The values of *x* in decreasing order: 80, 75, 75, 68, 64, 64, 64, 55, 50, 40 The values of *y* in decreasing order: 81, 70, 68, 68, 62, 60, 58, 50, 48, 45

Consider,

<u></u>					
X	У	Rank X	Rank <i>y</i>	$d = \operatorname{Rank} x - \operatorname{Rank} y$	d^{2}
68	62	4	5	-1	1
64	58	6	7	-1	1
75	68	2.5	3.5	-1	1
50	45	9	10	-1	1
64	81	6	1	5	25
80	60	1	6	-5	25
75	68	2.5	3.5	-1	1
40	48	10	9	1	1
55	50	8	8	0	0
64	70	6	2	4	16
					$\sum d^2 = 72$

Here, in the values of x, 75 is repeated 2 times and 64 is repeated 3 times

And in the values of y, 68 is repeated 2 times

Therefore the correction factor is given by

$$\frac{\sum m (m^2 - 1)}{12} = \frac{2(2^2 - 1)}{12} + \frac{3(3^2 - 1)}{12} + \frac{2(2^2 - 1)}{12} = \frac{1}{2} + 2 + \frac{1}{2} = 3$$

Now,
$$n = 10$$
, $\sum d^2 = 72$ and $\sum d^2 + \frac{\sum m (m^2 - 1)}{12} = 72 + 3 = 75$

Hence the Rank correlation coefficient,

$$\rho = 1 - \frac{6\sum d^2}{n(n^2 - 1)} = 1 - \frac{6(75)}{10(10^2 - 1)} = 1 - \frac{450}{990} = 1 - 0.4545 = 0.5455$$

2. Determine the rank correlation coefficient for the following data

х	10	15	12	17	13	16	24	14	22
у	30	42	45	46	33	34	40	35	39

Solution: The rank correlation of x, y is given by $\rho = 1 - \frac{6\sum d^2}{n(n^2 - 1)}$

Consider,

X	У	Rank X	Rank <i>y</i>	$d = \operatorname{Rank} x - \operatorname{Rank} y$	d^2
10	30	9	9	0	0
15	42	5	3	2	4
12	45	8	2	6	36
17	46	3	1	2	4
13	33	7	8	-1	1
16	34	4	7	-3	9
24	40	1	4	-3	9
14	39	6	5	1	1
22	35	2	6	-4	16
					$\sum d^2 = 80$

Here, there are no repetitions in the values of x and y

Now,
$$n = 9$$
, $\sum d^2 = 80$

Hence the Rank correlation coefficient,

$$\rho = 1 - \frac{6\sum d^2}{n(n^2 - 1)} = 1 - \frac{6(80)}{9(9^2 - 1)} = 1 - \frac{480}{720} = 1 - 0.6667 = 0.3333$$

3. Ten participants in a contest are ranked by two judges as follows

х	1	6	5	10	3	2	4	9	7	8
у	6	4	9	8	1	2	3	10	5	7

Calculate the rank correlation coefficient

Solution: The rank correlation of x, y is given by $\rho = 1 - \frac{6\sum d^2}{n(n^2 - 1)}$

Consider,

u <u>cı,</u>					
X	У	Rank X	Rank <i>y</i>	$d = \operatorname{Rank} x - \operatorname{Rank} y$	d^{2}
1	6	1	6	-5	25
6	4	6	4	2	4
5	9	5	9	-4	16
10	8	10	8	2	4
3	1	3	1	2	4
2	2	2	2	0	0
4	3	4	3	1	1
9	10	9	10	-1	1
7	5	7	5	2	4
8	7	8	7	1	1
					$\sum d^2 = 60$

Here, there are no repetitions in the values of x and y

Now,
$$n = 10$$
, $\sum d^2 = 60$

Hence the Rank correlation coefficient,

$$\rho = 1 - \frac{6\sum d^2}{n(n^2 - 1)} = 1 - \frac{6(60)}{10(10^2 - 1)} = 1 - \frac{360}{990} = 1 - 0.3636 = 0.6364$$

4. Determine the rank correlation coefficient for the following data

	х	5	10	6	3	19	5	6	12	8	2	10	19
ſ	у	8	3	2	9	12	3	17	18	22	12	17	20

Solution: The rank correlation of x, y is given by $\rho = 1 - \frac{6\sum d^2}{n(n^2 - 1)}$

Consider,

X	У	Rank X	Rank <i>y</i>	$d = \operatorname{Rank} x - \operatorname{Rank} y$	d^{2}
5	8	9.5	9	0.5	0.25
10	3	4.5	10.5	-6	36
6	2	7.5	12	-4.5	20.25
3	9	11	8	3	9
19	12	1.5	6.5	-5	25
5	3	9.5	10.5	-1	1
6	17	7.5	4.5	3	9
12	18	3	3	0	0
8	22	6	1	5	25
2	12	12	6.5	5.5	30.25
10	17	4.5	4.5	0	0
19	20	1.5	2	-0.5	0.25
	_				$\sum d^2 = 156$

Here, in the values of x, 19 is repeated 2 times, 10 is repeated 2 times, 6 is repeated 2 times, and 5 is repeated 2 times

And in the values of y, 17 is repeated 2 times, 12 is repeated 2 times and 3 is repeated 2 times, Therefore the correction factor is given by

$$\frac{\sum m (m^2 - 1)}{12} = 7 \times \frac{2(2^2 - 1)}{12} = \frac{7}{2} = 3.5$$

Now,
$$n = 12$$
, $\sum d^2 = 156$ and $\sum d^2 + \frac{\sum m (m^2 - 1)}{12} = 156 + 3.5 = 159.5$

Hence the Rank correlation coefficient,

$$\rho = 1 - \frac{6\sum d^2}{n(n^2 - 1)} = 1 - \frac{6(159.5)}{12(12^2 - 1)} = 1 - \frac{957}{1716} = 1 - 0.5577 = 0.4423$$

Exercise:

1. Determine the rank correlation coefficient for the following data

х	8	3	9	2	7	10	4	6	1	5
У	9	5	10	1	8	7	3	4	2	6

Ans:
$$n = 10$$
, $\sum d^2 = 24$ and $\rho = 0.8545$

2. Determine the rank correlation coefficient for the following data

х	78	56	36	66	25	75	82	62
У	84	44	57	58	60	68	62	58

Ans:
$$n = 10$$
, $\sum d^2 = 28.5$, $\frac{\sum m (m^2 - 1)}{12} = \frac{1}{2}$ and $\rho = 0.655$

3. Determine the rank correlation coefficient for the following data

х	65	63	67	64	68	62	70	66	68	67	69	71
y	68	66	68	65	69	66	68	65	71	67	68	70

Ans:
$$n = 12$$
, $\sum d^2 = 72.5$, $\frac{\sum m (m^2 - 1)}{12} = 7$ and $\rho = 0.722$