Solution for Assignment of Chapter 6

6-1 Using the straight-line approximations, plot the Bode Diagram (Log-magnitude diagram and Log-phase diagram) of the systems described by the following open-loop transfer functions. Determine the Gain crossover frequency ω_c and Phase crossover frequency ω_g .

(1)
$$G(s) = \frac{20}{s(s+10)(s+20)}$$

(2)
$$G(s) = \frac{5}{s(0.01s^2 + 0.1s + 1)}$$

(3)
$$G(s) = \frac{40}{s(s-10)(s+20)}$$

Solution:

(1)
$$G(s) = \frac{20}{s(s+10)(s+20)} = \frac{1}{10} \frac{1}{s(s/10+1)(s/20+1)}$$

The break frequencies are $\omega_1 = 10, \omega_2 = 20$

In the low frequency part, it is a straight line with the slop of -20dB/dec. It goes through the point of $\omega=1$, L(1)=-20dB.

At $\omega_1 = 10$, the slope changes to -40 dB/dec.

At $\omega_2 = 20$, the slope changes to -60dB/dec

It follows from $\varphi(\omega_g) = -90^\circ$ - arg $tg \, 0.1 \omega_g$ - arg $tg \, 0.05 \omega_g = -180^\circ$ that $\omega_g = 14.4$.

(2)
$$G(s) = \frac{5}{s(0.01s^2 + 0.1s + 1)} = \frac{5}{s((\frac{s}{10})^2 + s/10 + 1)}$$

$$\omega_{=1}$$
, 20 lg K = 20 lg(5) = 14

$$\omega_c = 5$$

$$\omega_g = 10$$

(3)
$$G(s) = \frac{40}{s(s-10)(s+20)} = \frac{0.2}{s(s/10-1)(s/20+1)}$$

$$20 \lg K = 20 \lg (0.2) = -14$$

$$\omega_c = 0.2$$

There does not exist ω_g .

6-2 Please sketch the Nyquist Diagram of the systems described by the following open-loop transfer functions.

(1)
$$G(s) = \frac{100}{s(s+10)(s+20)}$$

(2)
$$G(s) = \frac{10}{s^3(s+1)(s+2)}$$

(3)
$$G(s) = \frac{10(s-1)}{s(s+2)}$$

Solution:

(1)
$$G(s) = \frac{100}{s(s+10)(s+20)} = \frac{0.5}{s(0.1s+1)(0.05s+1)}$$

$$G(j\omega) = \frac{100}{s(s+10)(s+20)} = \frac{0.5}{j\omega(0.1j\omega+1)(0.05j\omega+1)}$$
$$= \frac{-3000}{900\omega^2 + (200-\omega^2)^2} - j\frac{100(200-\omega^2)}{900\omega^3 + \omega(200-\omega^2)^2}$$

$$\operatorname{Re}[G(j\omega)] < 0$$
 for any ω

$$\varphi(\omega) = -90^{\circ} - arctg \, 0.1\omega - arctg \, 0.05\omega$$

For
$$\omega = 0$$
, $A(\omega) = \infty$, $\varphi(\omega) = -90^{\circ}$

For
$$\omega = \infty$$
, $A(\omega) = 0$, $\varphi(\omega) = -270^{\circ}$

Let
$$\operatorname{Im}[G(j\omega)] = 0$$
 and get $\omega = 10\sqrt{2}$.

Substitute $\omega = 10\sqrt{2}$ into Re $[G(j\omega)]$ and get the interception with the real axis

$$\operatorname{Re}[G(j\omega)] = -\frac{1}{60}$$

Note: The above Nyquist diagram is drawn by Matlab. It is only needed to sketch for positive frequency, i.e. $\omega = [0, +\infty)$. The interception with the real axis should be calculated.

(2)
$$G(s) = \frac{10}{s^3(s+1)(s+2)} = \frac{5}{s^3(s+1)(0.5s+1)}$$

$$G(j\omega) = \frac{30}{\omega^2 (1 + \omega^2)(4 + \omega^2)} + j \frac{10(2 - \omega^2)}{\omega^3 (1 + \omega^2)(4 + \omega^2)}$$

 $Re[G(j\omega)] > 0$ for any positive ω

$$\varphi(\omega) = -270^{\circ} - arctg\omega - arctg0.5\omega$$

For
$$\omega = 0$$
, $A(\omega) = \infty$, $\varphi(\omega) = -270^{\circ}$

For
$$\omega = \infty$$
, $A(\omega) = 0$, $\varphi(\omega) = -450^{\circ}$

The interception with the real axis is $Re[G(j\omega)] = \frac{5}{6}$ for $\omega = \sqrt{2}$

(3)
$$G(s) = \frac{10(s-1)}{s(s+2)} = \frac{5(s-1)}{s(0.5s+1)}$$

$$G(j\omega) = \frac{30}{\omega^2 + 4} + j\frac{20 - 10\omega^2}{\omega^3 + 4\omega}$$

 $\operatorname{Re}[G(j\omega)] > 0$ for any positive ω

$$\varphi(\omega) = -90^{\circ} + 180^{\circ} - arctg\omega - arctg0.5\omega = 90^{\circ} - arctg\omega - arctg0.5\omega$$

For
$$\omega = 0$$
, $A(\omega) = \infty$, $\varphi(\omega) = 90^{\circ}$

For
$$\omega = \infty$$
, $A(\omega) = 0$, $\varphi(\omega) = -90^{\circ}$

The interception with the real axis is $Re[G(j\omega)] = 5$ for $\omega = \sqrt{2}$

6-3 Consider the unity-feedback control system described by the open-loop transfer function

$$G(s) = \frac{K(s+8)(as+1)}{s(0.1s+1)(0.25s+1)(bs+1)}.$$

Its Bode diagram is shown in the following figure. Determine the values of K, a and b.

Solution:

$$G(s) = \frac{K(s+8)(as+1)}{s(0.1s+1)(0.25s+1)(bs+1)} = \frac{8K(\frac{1}{8}s+1)(as+1)}{s(0.1s+1)(0.25s+1)(bs+1)}$$

It follows from the figure that 1/b a=3, a=1/3; 1/b=20, b=1/20.

$$20\lg(8K) = 3 \times 20\lg\frac{8K}{8} = 60\lg K$$

$$K = 2\sqrt{2}$$

Note: If an extra condition is given in the figure that $L(\omega) = 40$ at $\omega = 1$, we can have $20 \log K = 40.8k = 100, K = 12.5$.

6-4 By using Bode Diagram based stability analysis, please judge if the systems (1)-(3) in 6-1 are stable. If they are stable, please determine the phase margin γ and gain margin GM.

Solution:

(1) Stable, $\gamma = 89.14^{\circ}$ gain margin $K_g = 200$ or GM = 46 dB

(2) Stable, $\gamma = 50.3^{\circ}$ GM = 6 dB, $K_g = 2$

(3) Unstable, $\gamma = -89.4^{\circ}$ GM = Inf

6-5 Please use Nyquist criterion to judge if the systems in 6-2 are stable. Please determine Phase Mai-183度 in GM.

(1) Stable,
$$\gamma = 85.7^{\circ}$$
 $K_g = 60$, $GM = 35.6 \text{dB}$

(2) Unstable,
$$\gamma = -93^{\circ}$$
 $K_g = \infty$

(3) Unstable,
$$\gamma = -107.3^{\circ}$$
 $K_{g} = \infty$

6-6 Consider the unity-feedback control system described by the open-loop transfer function

$$G(s) = \frac{K_r}{s(s+10)} .$$

(1) If the overshot of the closed-loop system satisfies $M_p \le 5\%$, please determine the open-loop gain (Bode's gain);

- (2) resonant peak $M_{p\omega}$ of the closed-loop system;
- (3) resonant frequency ω_r of the closed-loop system;
- (4) band-width ω_b ;
- (5) unit step response of the closed-loop system.

Solution:

(1)
$$\Phi(s) = \frac{G(s)}{1 + G(s)H(s)} = \frac{K_r}{s^2 + 10s + K_r} = \frac{\omega_n^2}{s^2 + 2\xi\omega_n s + \omega_n^2}$$
It follows from $M_p = e^{-\pi\varepsilon/\sqrt{1-\varepsilon^2}} < 5\%$ that $\varepsilon > 0.69$.

Since $2\xi\omega_n$ =10, it yields ω_n <7.25 and thus K_r = ω_n^2 <52.6

(2)
$$M_{p\omega} = \frac{1}{2\varepsilon\sqrt{1-\varepsilon^2}} = 1$$

(3)
$$\omega_r = \omega_n \sqrt{1 - 2\varepsilon^2} = 1.585$$

(4)
$$\omega_b = 7.43$$

(5)

6-7 Sketch the Nyquist diagram of the systems described by the following open-loop transfer functions. From the obtained Nyquist diagrams, find the range of *K* for which the systems are stable.

(1)
$$G(s) = \frac{K}{s(s^2 + 2s + 4)}$$

(2)
$$G(s) = \frac{K(s+1)(s-2)}{s^2(s+4)(-s+1)}$$

Solution:

(1) Please sketch the Nyquist diagram step by step by yourself. It is omitted here.

The interception with the real axis is -k/8. If -K/8 > -1, i.e. K<8, the closed-loop system is table.

(2)

P=1, N=1, Z=P+N=2

The system is unstable for any *K*.

6-8 A control system is shown in the block diagram (a), and G(s) and $G_c(s)$ are both of minimum phase. The Log-magnitude diagrams of G(s) and $G_c(s)G(s)$ are given in Figure (b). Please determine

- (1) the transfer function of $G_c(s)$;
- (2) steady-state error constants K_p , K_v and K_a of G(s) and $G_c(s)G(s)$, respectively;
- (3) phase margin of G(s) and $G_c(s)G(s)$;
- (4) the system overshoots with and without $G_c(s)$, respectively.

(b)

Solution:

(1)
$$L(1) = 20 \lg K = 10$$
, $K = \sqrt{10}$

$$G(s) = \frac{\sqrt{10}}{s(\frac{1}{3}s+1)(\frac{1}{300}s+1)}$$

(2) For G(s), we have $K_p = \infty$, $K_v = \sqrt{10}$, $K_a = 0$

For
$$G(s)G_c(s) = \frac{10^{\frac{3}{4}}(0.1s+1)}{s(\frac{1}{3}s+1)(0.01s+1)(\frac{1}{300}s+1)}$$
, we have

$$K_{p} = \infty$$
, $K_{v} = 10^{\frac{3}{4}}$, $K_{a} = 0$

- (3) For G(s), $\omega_c = 3.08$, and the phase margin is $\gamma = 43.66^{\circ}$. For $G(s)G_c(s)$, $\omega_c = 5.48$, and the phase margin is $\gamma = 53.3^{\circ}$
- (4) The overshoot of the system $G(s)G_c(s)$ is smaller than that of G(s) since γ is increased. The transient response is improved.