Chapitre 11: Information chiffrée

I. Proportion et pourcentage

1) Proportion d'une sous-population

Définition:

Soit A une partie d'un ensemble E.

Soit n_E le nombre d'éléments de E et n_A le nombre d'éléments de A.

La **proportion** p des éléments de A par rapport à E s'écrit : $p = \frac{\mathbf{n_A}}{\mathbf{n_E}}$

Exemple:

Cette année, au Lycée Ferney-Voltaire, environ 800 élèves sont inscrits en classe de Seconde. 35 d'entre eux sont en Seconde 12.

On peut représenter cette situation par un **diagramme de Venn** (ou diagramme en patates!) :

La population totale n_E est égale à 800.

La sous-population A des élèves de Seconde 12 $n_{\!A}$ est égale à 35.

Donc, la <u>proportion</u> d'élèves de 212 parmi tous les élèves de Seconde, notée p, est : $p=\frac{n_A}{n_E}=\frac{35}{800}=0.04375\approx 4.4\,\%$.

2) Pourcentage d'une quantité

Définition:

Pour prendre le pourcentage **de** quelque chose (= quantité), on **multiplie** cette quantité par le pourcentage souhaité.

Exemple:

10% des 50000 girafes restantes disparaissent chaque année. On fait le calcule

suivante :
$$10\% \times 50000 = \frac{10}{100} \times 50000 = 5000$$
 girafes

disparaissent.

3) Proportions échelonnées

Propriété:

Soit $A \subset B \subset E$.

La proportion p de **A** dans l'ensemble **E** est : $p = p_1 \times p_2$

Exemple:

40% des employés d'une entreprise sont des femmes. 25% d'entre elles gagnent moins de 2200€ par mois.

Quelle est la proportion de femmes gagnant moins de 2200€ par mois ?

On fait :
$$p = p_1 \times p_2 = \frac{40}{100} \times \frac{25}{100} = 10 \%$$

II. Évolution exprimée en pourcentages

1) Évolution d'une quantité

Propriétés:

- Augmenter une valeur de p% revient à la multiplier par $1 + \frac{p}{100}$.
- ❖ Diminuer une valeur de \mathbf{p} % revient à la multiplier par $1 \frac{\mathbf{p}}{100}$.
- ❖ $1 + \frac{p}{100}$ et $1 \frac{p}{100}$ sont appelés des <u>coefficients multiplicateurs</u>.

<u>Méthode</u>: Calculer une évolution

A. L'effectif d'un lycée de 1500 élèves va augmenter l'année prochaine de 4 %. Calculer le nouvel effectif.

On part de 1500 élèves et on ajoute 4 % de 1500 : $1500 + 1500 \times 4\% = 1500 \times (1 + 4\%) = 1500 \times 1,04 = 1560$ élèves.

B. Un ordinateur valant 800€ en 2010 voit son prix baisser de 10% par an. Quel est son prix en 2011 ?

On part de 800€ et on enlève 10 % de 800 : $800 \times (1 - 10\%) = 800 \times 0, 9 = 720$ élèves.

C. Un vêtement en soldes à - 70% est vendu 15€. Quel était son prix avant réduction ?

On cherche le prix de départ. Appelons-le P . La formule que l'on a vue précédemment nous indique que : $P\times (1-70\%)=15.$

On doit donc résoudre cette équation : $P \times (1 - 70\%) = P \times 0, 3 = 15$.

Donc,
$$P = \frac{15}{0.3} = 50 \in$$
.

2) Taux d'évolution

On définit le $ext{taux d'évolution}$ comme la division: $ext{t} = rac{ ext{X}_{fin} - ext{X}_{ini}}{ ext{X}_{ini}}.$

Remarque 1:

Lorsque t est exprimé en %, on parle de pourcentage d'évolution de.

Remarque 2:

Si t > 0, l'évolution est une augmentation.

Si t < 0, l'évolution est une diminution.

Méthode : Calculer un taux d'évolution

Entre deux années successives, le montant des importations d'un pays est passé de 33 millions à 29 millions.

Calculer le taux d'évolution en % du montant des importations.

$$t = \frac{29 - 33}{33} = \frac{-4}{33} \approx -0, 12 = -12\%$$
.

On conclut que les importations ont diminué de 12 % entre les deux années.

3) Evolutions successives

Propriété:

Si une grandeur subit <u>plusieurs évolutions successives</u> alors le coefficient multiplicateur global est égal <u>aux produits des coefficients multiplicateurs de</u> chaque évolution.

Méthode: Comment calculer un taux d'évolution global

En 2013, une entreprise d'automobiles voit ses ventes augmenter de 15% par rapport à 2012.

En 2014, ses ventes diminuent de 10 % par rapport à 2013.

Calculer le taux d'évolution des ventes sur les deux années.

Le coefficient multiplicateur correspondant à l'augmentation en 2013 est égal à :

$$1 + \frac{15}{100} = 1{,}15.$$

Le coefficient multiplicateur correspondant à la diminution en 2014 est égal à :

$$1 - \frac{10}{100} = 0.9.$$

Graphiquement, on peut représenter la situation comme ci-dessous :

Le coefficient multiplicateur global (sur les deux années) est donc égal à :

$$1,15\times0,9=1,035=1+\frac{3,5}{100}$$

On conclut que le taux d'évolution des ventes sur les deux années vaut 3,5 %.