表 2 1	回収針)っ	よる実測値
オンコ	口げ合き工ん	よる美測旭

項番	項目	実測値	備考(公称値など)	
1	R_E	$k\Omega$	エミッタ端子と GND 端子の間で測定*4	
2	R_C	$k\Omega$	コレクタ端子と V_{CC} の+端子の間で測定	
3	R_A	$k\Omega$	ベース端子と GND 端子の間で測定	
4	R_B	$k\Omega$	ベース端子と V_{CC} の+端子の間で測定	
5	V_{CC}	V	直流安定化電源装置(DC12V)	
6	h_{FE}		Tr の名称は()	
7	V_{RC}	V	設計時の目標は $V_{RC} \coloneqq V_{CE} = (V_{CC} - V_{RE})/2$ だけど?	
8	V_{CE}	V	$V_{RC} \coloneqq V_{CE}$ で最大値の大きな交流信号出力が得られる	
9	V_{BE}	V	シリコン Tr の値になっているかな?	
10	V_{RE}	V	設計時の条件、 V_{CC} の $10\% = ($) V になってる?	
11	V_{RA}	V	$V_{BE} + V_{RE} = ($) V と比べてどうかな?	
12	$V_{RE} + V_{CE}$	V	$V_{CC}-V_{RC}=($) V と比べてどうかな?	

図 2.2 実際の回路で測定した時の値

^{*4} 抵抗値の測定ではトランジスタを実習装置から取り外すこと