CMPE 185 Autonomous Mobile Robots

Navigation and Control

Dr. Wencen Wu

Computer Engineering Department

Control

- Suppose we have a plan:
 - "Hey robot! Move north one meter, then east one meter, then north again for one meter."
- How do we execute this plan?
 - How do we go exactly one meter?
 - How do we go exactly north?

How do we control the robots?

Control Architectures

- Today, most robots control systems have a mixture of planning and behavior-based control strategies
- To implement these strategies, a control architecture is used
- Control architectures should consider:
 - Code Modularity
 - Allows programmers to interchange environment types sensors, path planners, propulsion, etc.

Localization

 Embed specific navigation functions within modules to allow different levels of control (e.g., from task planning to wheel velocity control)

Control Architectures – Decomposition

- Decomposition allows us to modularize our control system based on different axes:
 - Temporal **Decomposition**
 - Facilitates varying degrees of real-time processes

Control Decomposition

 Defines how modules should interact: serial or parallel?

Global

See-think-act Model of Mobile Robots

 An example of a decomposition using a mixture of serial and parallel approaches

Recall: Mobile Robot Kinematics – Two Models

Two models

How to design *v* and *w* so that the robot can follow a given trajectory?

$$\begin{cases} \dot{x} = v \cos \theta \\ \dot{y} = v \sin \theta \\ \dot{\theta} = w \end{cases}$$

Design for this model!

$$\begin{cases} \dot{x} = \frac{r}{2}(\dot{\varphi}_1 + \dot{\varphi}_2)\cos\theta \\ \dot{y} = \frac{r}{2}(\dot{\varphi}_1 + \dot{\varphi}_2)\sin\theta \\ \dot{\theta} = \frac{r}{2L}(\dot{\varphi}_2 - \dot{\varphi}_1) \end{cases}$$

Implement this model

The Basic Building Blocks

- State = Representation of what the system is currently doing
- **Dynamics** = Description of how the state changes
- Reference = What we want the system to do
- *Output* = Measurement of (some aspects of the) system
- Input = Control signal
- Feedback = Mapping from outputs to inputs
 Control Theory = How to pick the input signal u?

Open-loop

- If I command the motors to "full power" for three seconds, the robot probably will go forward one meter
- Open-loop system with
 - Reference *R*
 - Control U
 - Disturbance W

• Recall: Errors in odometry reading

Closed-loop

- Use real-time information about system performance to improve system performance
- Closed-loop system with
 - Reference *R*
 - Control U
 - Disturbance W
 - Sensor noise V

- Types:
 - Bang Bang
 - PID

Feedback Control System Basic Ingredients

• Component block diagram

Reference

Controller

Actuator

Process

Output

Sensor

Noise

- Goal may be to design
 - Regulating control: maintain a fixed output
 - Servo control: follow a changing reference
- so that the system
 - is stable (e.g., bounded-input-bounded-output)
 - rejects disturbances
 - is robust to parameter changes

Control System: Example

Automobile cruise control

Open-Loop Step Response

Time-Domain Specifications

- Rise time t_r : how fast the system reacts to a change in its input
- Setting time t_s: how fast the system's transient decays
- Overshoot M_p : How far the response grows beyond its final value during transients
- Peak time t_p : How far the response reaches the peak value

Figure: Definitions of time-domain specifications.

Dynamic Models

- Effective control strategies rely on predictive models
- Discrete time:

$$x_{k+1} = f(x_k, u_k)$$
 \leftarrow Difference equation

Example: clock

$$x_{k+1} = x_k + 1$$

Discrete Time Clock

Dynamic Models

- Laws of Physics are all in continuous time
- Instead of "next" state, we need derivatives w.r.t. time
- Continuous time:

$$\frac{dx}{dt} = f(x, u) \sim \dot{x} = f(x, u)$$
 C Differential equation

Example: clock $\dot{x} = 1$

Continuous Time Clock

Dynamic Models

- Effective control strategies rely on predictive models
- For the unicycle model:

$$\begin{cases} \dot{x} = v \cos \theta \\ \dot{y} = v \sin \theta \\ \dot{\theta} = w \end{cases}$$

- In implementation, everything is discrete/sampled!
- From time step *k* to time step *k*+ 1, the position changes to

$$\begin{cases} x_{k+1} = x_k + v\Delta t \cos \theta_k \\ y_{k+1} = y_k + v\Delta t \sin \theta_k \\ \theta_{k+1} = \theta_k + w\Delta t \end{cases}$$
 v, w: control input!

Next: PID Control

 With the important concepts in feedback control theory, now we are ready to introduce

PID Control

PID Controller Explained

P Control

- Let us start with a simple controller: P controller
- Proportional Feedback Control (P Control)
 - Uses the error between the desired and measured sate to determine the control signal
- If $x_{desired}$ is the desired state, and x is the actual state, we define the error as

$$e = x_{desired} - x$$

• The control signal u is calculated as $u = K_P e$

where K_P is called the proportional gain

Consider the orientation control of a mobile robot

$$\begin{aligned} \dot{\theta} &= w \\ \theta_{k+1} &= \theta_k + w \Delta t \end{aligned}$$

• The control signal u is the angular velocity w, and is calculated as

$$u = K_P(\theta_{desired} - \theta)$$

- Note:
 - If $\theta_{desired} = \theta$, the control signal is 0
 - If $\theta_{desired} < \theta$, the control signal is negative, resulting in an decrease in θ
 - If $\theta_{desired} > \theta$, the control signal is positive, resulting in an increase in θ
 - The magnitude of the increase/decrease depends on K_P

• Block Diagram

$$u = K_P(\theta_{desired} - \theta)$$

$$\dot{\theta} = w = u$$

- Time Domain Response of Step Response
- Step from $\theta_{\text{desired}} = 0$ to $\theta_{\text{desired}} = 1$

- Time Domain Response of Step Response
- Step from $\theta_{\text{desired}} = 0$ to $\theta_{\text{desired}} = 8$

Another Example: Cruise Controllers

- Make a car drive at a desired, reference speed r
- Newton's Second Law: F = ma
- State: velocity x
- Input: gas/brake u
- Dynamics:

$$m\dot{x} = cu - bx$$

$$\dot{x} = \frac{c}{m}u - \gamma x$$

$$\gamma = \frac{b}{m}$$

c = electro-mechanical transmission coefficient

Cruise Controllers

- Assume that we measure the velocity y = x
- The control signal should be a function of

$$r - y (= e)$$

- What properties should the control signal have?
 - Small *e* gives small *u*
 - *u* should not be "jerky"
 - u should not depend on us knowing c and m exactly
- Car model: $\dot{x} = \frac{c}{m}u \gamma x$
- Want:

$$x \rightarrow r$$
 as $t \rightarrow \infty$ ($e = r - x \rightarrow 0$)

Bang-Bang Control

Attempt 1: Bang-Bang control

$$u = \begin{cases} u_{max} & if \ e > 0 \\ -u_{max} & if \ e < 0 \\ 0 & if \ e = 0 \end{cases}$$

Bumpy ride
Burns out actuators

Problem: the controller over-reacts to small errors

Proportional Control

Attempt 2: P Control

$$u(t) = K_P e(t)$$

- Intuition: if e(t) > 0, the goal velocity is larger than the current velocity. So, command a larger acceleration
- Small error yields small control signals
- Nice and smooth

Proportional Control

 At steady state (x does not change any more)

$$\dot{x} = 0 = \frac{c}{m}u - \gamma x$$

$$= \frac{c}{m}k(r - x) - \gamma x$$

$$\to (ck + m\gamma)x = ckr$$

$$x = \frac{ck}{ck + m\gamma}r < r$$

$$\dot{x} = \frac{c}{m}u - \gamma x$$

Proportional Control

- We want to drive error to zero quickly
 - This implies large gains
- We want to get rid of steady-state error
 - If we're close to desired output, proportional output will be small. This makes it hard to drive steady-state error to zero.
 - This implies large gains.
- What's wrong with really large gains?
 - Oscillations

PI Controller

Attempt 3: PI-Controllers

$$u(t) = K_P e(t) + K_I \int_0^t e(\tau) d\tau$$

- If we have error for a long period of time, it argues for additional correction
- The integral term in the controller is the sum of the instantaneous error over time and gives the accumulated offset
- Force average error to zero (in steady state)

PI Controller

• Pros:

- accelerates the movement of the process towards setpoint
- eliminates the residual steady-state error

• Cons:

may result in overshooting the setpoint

Derivative Controller

- Damping friction is a force opposing motion, proportional to velocity
- Try to prevent overshoot by damping controller response
- Derivative term:

$$K_D \dot{e}(t)$$

- Derivative control is "happy" the error is not changing
 - Things not getting better, but not getting worse either
- Estimating a derivative from measurements is fragile, and amplifies noise
- The Derivative term is rarely used along

PD Controller

Attempt 4: PD controller

$$u(t) = K_P e(t) + K_D \dot{e}(t)$$

- Combine P and D terms
 - D term helps us avoid oscillation, allowing us to have bigger P terms
 - Faster response
 - Less oscillation

PID Control

$$u(t) = K_P e(t) + K_I \int_0^t e(\tau) d\tau + K_D \frac{de(t)}{dt}$$

PID Control

$$u(t) = K_P e(t) + K_I \int_0^t e(\tau) d\tau + K_D \frac{de(t)}{dt}$$

- P: contributes to stability, medium-rate responsiveness
- I: tracking and disturbance rejection, slow-rate responsiveness. May cause oscillations
- D: fast-rate responsiveness. Sensitive to noise
- PID: by far the most used low-level controller.
 - However, stability is not guaranteed

PID Control

- Note: we often won't use all three terms
 - Each type of term has downsides
 - Use only the terms you need for good performance

 Feedback has a remarkable ability to fight uncertainty in model parameters!

$$u(t) = K_P e(t) + K_I \int_0^t e(\tau) d\tau + K_D \frac{de(t)}{dt}$$

PID Controller Parameter Tuning

 If the parameters of the PID controller are chosen incorrectly, the controlled process input can be unstable, i.e., its output diverges, with or without oscillation.

Where do PID gains come from?

- Analysis
 - Carefully model system in terms of underlying physics and PID controller gains
 - Compute values of PID controller so that system is 1) stable and 2) performs well
- Empirical experimentation
 - Hard to make models accurate enough: many parameters
 - Often, easy to tune by hand.

PID Controller Parameter Tuning

- Parameter tuning is very important for PID controller
 - Manual tuning
 - 1. Increase P term until performance is adequate or oscillation begins
 - 2. Increase D term to dampen oscillation
 - 3. Go to 1 until no improvements possible.
 - 4. Increase I term to eliminate steady-state error.
 - Ziegler-Nichols method
 - Software

- ...

Characteristics of P, I, and D Gains

Closed Loop Response	Rise Time	Overshoot	Settling Time	Steady State Error
Increase K _P	Decrease	Increase	Small change	Decrease
Increase K _I	Decrease	Increase	Increase	Eliminate
Increase K _D	Small change	Decrease	Decrease	Small change
By properly tuning the PID gains				

Example: Go To Goal

- How to drive a robot to a goal location?
- Heading error: $e=\theta_{\mathrm{d}}$ θ

$$\begin{cases} \dot{x} = v \cos \theta \\ \dot{y} = v \sin \theta \\ \dot{\theta} = \omega \end{cases}$$

• In this case, the desired heading θ_{d} is time-varying

$$(x_g, y_g)$$

$$\varphi_d = \arctan \frac{y_g - y}{x_g - x}$$
 (x, y)

• Control: $\omega = PID(e)$

Cruise Controller

Let's consider the simplified model with the PID controller

$$u(t) = K_P e(t) + K_I \int_0^t e(\tau) d\tau + K_D \frac{de(t)}{dt}$$

$$\dot{x} = \frac{c}{m} u - \gamma x \qquad c = 1, m = 1, \gamma = 0.1, r = 1$$

Cruise Controller

PID Controller Implementation

$$u(t) = K_P e(t) + K_I \int_0^t e(\tau) d\tau + K_D \frac{de(t)}{dt}$$

$$\Delta t$$
 (sample time)

$$\dot{e} \approx \frac{e_{new} - e_{old}}{\Delta t}$$

PID Controller Implementation

$$u(t) = K_P e(t) + K_I \int_0^t e(\tau) d\tau + K_D \frac{de(t)}{dt}$$

$$\Delta t \ (sample \ time) \quad \dot{e} \approx \frac{e_{new} - e_{old}}{\Delta t}$$

$$\int_0^t e(\tau)d\tau \approx \sum_{k=0}^N e(k\Delta t)\Delta t = \Delta t E$$

$$\Delta t E_{new} = \Delta t \sum_{k=1}^{N+1} e(k\Delta t) = \Delta t e((N+1)\Delta t) + \Delta t E_{old}$$

$$E_{new} = E_{old} + e$$

PID Controller Implementation

Each time the controller is called

```
read e;
e_dot=e-old_e;
E=E+e;
u=kP*e+kD*e_dot+kI*E;
old_e=e;
```

Note: The coefficients now include the sample time and must be scaled accordingly • Thank You!