Suvival workshop, part 4

Terry Therneau

MCSA

apoepos:male

-0.512

I have learned a tremendous amount about multi-state models from an analysis of the Mayo Clinic Study of Ageing (MCSA) data. One paper's analysis in particular (doi: 10.1093/braincomms/fcac017) has a directory with 14 different 'exporatory' knitr files.

```
Call:
survcheck(formula = Surv(age1, age2, state) ~ 1, data = mcsa,
    id = ptnum, istate = cstate)
Unique identifiers
                          Observations
                                              Transitions
                                 63005
                                                      2400
Transitions table:
from
           dementia death (censored)
                                 3084
  ND
                657
                     1203
                  0
                      540
                                  111
  dementia
  death
                  0
                         0
Number of subjects with 0, 1, ... transitions to each state:
          count
state
  dementia 4287
                 657
                        0
  death
           3201 1743
           3084 1320 540
  (any)
Call:
coxph(formula = list(Surv(age1, age2, state) ~ iclgp + apoepos +
    male + educ4 + icmc, 1:2 ~ iclgp:male + apoepos:male, 1:3 ~
    yearc), data = mcsa, id = ptnum, istate = cstate)
1:2
                        coef exp(coef) se(coef) robust se
  iclgpmoderate
                       1.223
                                 3.398
                                          0.413
                                                     0.409
                                                            3.0 0.003
                       2.214
                                 9.156
                                          0.377
                                                     0.379
                                                            5.8 5e-09
  iclgphigh
                                          0.340
  iclgpmissing
                       1.284
                                 3.612
                                                     0.337
                                                            3.8 1e-04
  apoepos
                      0.846
                                 2.331
                                          0.114
                                                     0.116
                                                            7.3 3e-13
  male
                       1.318
                                 3.736
                                          0.372
                                                     0.365
                                                            3.6 3e-04
  educ4
                      -0.094
                                 0.910
                                          0.061
                                                     0.062 -1.5 0.126
  icmc
                      0.112
                                 1.119
                                          0.026
                                                     0.028 4.0 6e-05
  iclgpmoderate:male -1.287
                                 0.276
                                          0.506
                                                     0.505 - 2.5 0.011
                                 0.326
                                          0.441
                                                     0.446 -2.5 0.012
  iclgphigh:male
                      -1.122
  iclgpmissing:male
                     -1.080
                                 0.340
                                          0.382
                                                     0.380 -2.8 0.005
```

0.165

0.599

0.167 -3.1 0.002

1:3	coef	exp(coef)	se(coef)	robust se	z	р
iclgpmoderate	0.298	1.347	0.155	0.147	2.0	0.044
iclgphigh	0.189	1.208	0.183	0.173	1.1	0.275
iclgpmissing	0.542	1.719	0.102	0.098	5.5	4e-08
apoepos	-0.029	0.972	0.069	0.067	-0.4	0.668
male	0.356	1.428	0.060	0.059	6.0	2e-09
educ4	-0.129	0.879	0.045	0.046	-2.8	0.005
icmc	0.209	1.232	0.020	0.021	10.0	<2e-16
yearc1	-1.059	0.347	0.157	0.158	-6.7	2e-11
yearc2-5	-0.351	0.704	0.068	0.067	-5.2	2e-07
		((a)			
2:3	coef	exp(coef)			Z	р
iclgpmoderate	-0.039	0.962	0.254	0.225	-0.2	0.864
iclgphigh	-0.043	0.958	0.220	0.212	-0.2	0.841
iclgpmissing	0.073	1.075	0.179	0.173	0.4	0.675
apoepos	0.051	1.053	0.093	0.084	0.6	0.539
male	0.264	1.302	0.092	0.084	3.1	0.002
educ4	0.083	1.087	0.064	0.060	1.4	0.168

1.040

0.028

0.027 1.4 0.157

States: 1= ND, 2= dementia, 3= death

0.083 0.039

icmc

Likelihood ratio test=444 on 27 df, p=<2e-16 $\,$ n= 63005, number of events= 2400

Males have higher hazard of dementia, equal lifetime risk, smaller sojourn years.

There are a lot of choices in this fit. * The amlyoid level is treated as categorical, to deal with missing. *

An APOE by sex interaction is known from the literature, we sort of have to add it. The amyloid by sex interaction was also significant. * Age scale makes sense * There is an enrollment effect on the CU:death transition. But it doesn't work for the CU:dementia one, due to the 15 month visit interval. We don't expect an enrollment time effect on dementia:death. * This fit used initial amyloid level and intial CMC, which I later realized was worrisome.

Time dependent covariates and age scale

Some rules that I have stated over the years * TD covariates are very useful in Cox models * Survival curves + time dependent covariates doesn't make sense * Use landmark curves * Age scale is superior to entry scale for many problems * Multi-state models are preferred * In a mulit-state model, both HR and absolute risk are needed

For the MCSA paper we have time dependent covariates that will rise for a lot of people (amyloid and CMC), age scale makes the most sense, absolute risk is critical. But: the landmark approach no longer makes sense.

Problem: * consider the risk set for a dementia at age 82.35 * amyloid-at-baseline as a covariate * for some subjects that value is 1 month old, for some 10 years old. * what does the amyloid HR mean?

Say you had a variable X that is going up for everyone over time, and that true risk depends on the *current* value of X. In an entry time analysis, in a risk set at 10 years all the baseline X values are out of date, but perhaps they are still approximately correctly ordered.

The COX PL term can always be recentered

$$\frac{e^{\beta x_i}}{\sum_j e^{\beta x_j}} = \frac{e^{\beta(x_i - c)}}{\sum_j e^{\beta(x_j - c)}}$$

so the HR only depends on differences in X. This back of the envelope justification doesn't work on age scale, we really should use the current values of X.

A second point is the splicing problem. When I create a curve for the expected future state of someone who is currently 65. * at age 80, this will involve subjects enrolled at age 70+ (no one has 20 years of fu) * The future for a low amyloid subject will use the risk of someone who was low amyloid when they were enrolled. The curve will by systematically too good. * We inherit the EKM flaws without noticing.

Poisson approx * divide age into 5 year bins * within each bin compute rates as a function of sex, APOE, amyloid, CMC * for someone age 60 with low amyloid, compute the future state probs * take a weighted average of hazards at each age

To do * multi-state model * additive log hazards?