CHUYỂN HOÁ NĂNG LƯỢNG

Lâm Vĩnh Niên

CHU TRÌNH ACID CITRIC

Mục tiêu

- 1. Phân tích được các giai đoạn và vai trò của chu trình acid citric.
- 2. Phân tích được quá trình vận chuyển điện tử và tổng hợp ATP trong ti thể.

CHU TRÌNH ACID CITRIC

- Tên gọi khác:
 - Chu trình acid tricarboxylic (TCA)
 - Chu trình Krebs
- Quá trình "đốt cháy" oxh mạch 2C (Act~SCoA) giải phóng 2 phân tử CO₂, 4 cặp nguyên tử H (tạo thành H₂O) và năng lượng.

Vai trò chu trình acid citric

- Tạo các đương lượng khử, GTP (ATP) và CO₂
- Tạo các chất trung gian sinh tổng hợp

Chu trình acid citric: Tạo đương lượng khử, GTP (ATP), CO₂

Acetyl-CoA + 3NAD+ +FAD + GDP (ADP) + P_i + $2H_2O \rightarrow 2CO_2 + 3NADH + FADH_2 + GTP (ATP) + <math>2H^+ + CoA$

- 2 C từ nhóm acetyl đi vào CT. 2 C rời CT ở dạng CO₂.
- 4 cặp H rời chu trình trong 4 phản ứng oxy hoá khử.

Chu trình acid citric: Tạo đương lượng khử, GTP (ATP), CO_2

Acetyl-CoA + 3NAD⁺ +FAD + GDP (ADP) + P_i + $2H_2O \rightarrow 2CO_2$ + 3NADH + FADH₂ + GTP (ATP) +2H⁺ + CoA

- Tạo thành ATP hoặc GTP.
- Hai phân tử nước bị tiêu thụ

Chu trình acid citric: Tạo đương lượng khử, GTP (ATP), CO_2

- Khảo sát dùng chất đồng vị: 2 C trong CO₂
 không cùng là 2 C trong nhóm acetyl đi vào CT.
- NADH và FADH₂ có thể được oxy hoá trong chuỗi vận chuyển điện tử và tạo ATP.
 - 1 NADH tạo 2,5 ATP,
 - 1 FADH, tạo 1,5 ATP.
 - →Oxy hoá hoàn toàn 1 acetyl-CoA tạo 10 ATP.

Chu trình acid citric: Tạo đương lượng khử, GTP (ATP), CO_2

- CT acid citric chỉ xảy ra / hiếu khí.
- Trừ succinat DH gắn màng, các enzym khác được xem là hoà tan trong chất nền ti thể. Tồn tại trong các phức hợp đa enzym (metabolon).

Chu trình acid citric: Tạo các chất trung gian sinh tổng hợp

Vai trò trung tâm trong chuyển hoá: ngã ba đường cho các con đường chuyển hoá

Điều hoà chu trình acid citric

Điều hoà sự hình thành acetyl-CoA bởi phức hợp pyruvat dehydrogenase

Điều hoà các phản ứng trong chu trình ạcid citric

- Citrat synthase
- Isocitrat dehydrogenase
- α-Cetoglutarat dehydrogenase

VẬN CHUYỂN ĐIỆN TỬ VÀ TỔNG HỢP ATP

Vận chuyển điện tử và tổng hợp ATP

- Điện tử tích trữ trong các coenzym bị khử (NADH và FADH₂) → vận chuyển qua chuỗi các protein và coenzym có tổ chức cao và phức tạp gắn ở màng trong ti thể (chuỗi vận chuyển điện tử) → đến O₂ (oxy phân tử).
- Trong quá trình vận chuyển điện tử, gradient proton được hình thành xuyên qua màng trong ti thể → cung cấp năng lượng tổng hợp ATP: phosphoryl oxy hoá hay hô hấp tế bào.

Các chất nhận điện tử chung

- Điện tử từ các phản ứng khử hydro được tích trữ trong các chất nhận điện tử chung:
 - nucleotid nicotinamid (NAD+, NADP+)
 - nucleotid flavin (FMN, FAD).

NAD và NADP

(nicotinamid adenin dinucleotid [phosphat])

NAD và NADP

- NADH mang e từ dị hoá vào chuỗi HHTB. NADPH cung cấp e cho đồng hoá.
- NADH và NADPH không qua được màng trong ti thể.

FAD và FMN

- Gắn rất chặt trong flavoprotein.
- Thế khử chuẩn phụ thuộc vào protein gắn với nó.
- Dạng bị khử có thể nhận 1 điện tử (tạo semiquinon) hoặc 2 điện tử (tạo FADH₂ hoặc FMNH₂).

FAD và FMN

Các chất vận chuyển điện tử gắn màng

- Ubiquinon
- Cytochrom
- Protein sắt-lưu huỳnh

Ubiquinon

- Coenzym Q, Q
- Benozquinon có mạch bên isoprenoid dài.
- Nhận 1 điện tử (tạo gốc semiquinon, *QH) hoặc 2 điện tử (tạo quinol, QH₂).
- Phân tử nhỏ, kị nước → khuếch tán / lớp lipid kép của màng trong ti thể → con thoi mang đương lượng khử.
- Mang được cả e và proton → vai trò trung tâm trong ghép dòng e với sự di chuyển của proton.

Cytochrom

- Các protein hấp thụ mạnh ánh sáng nhìn thấy được do nhóm phụ hem chứa sắt.
- Ti thể chứa 3 lớp cytochrom, a, b và c, tuỳ theo phổ hấp thụ ánh sáng.
 - Cytochrom loại a, b và một số loại c tích hợp ở màng trong ti thể.
 - Cytochrom c: hoà tan, gắn với mặt ngoài màng trong.
- Thế khử chuẩn của nguyên tử sắt trong hem khác nhau giữa các cytochrom.

$$\begin{array}{c} \text{CH}_3\text{O} \\ \text{CH}_3\text{O} \\ \text{CH}_2\text{--CH} = \text{C} - \text{CH}_2)_{10} - \text{H} \\ \text{Ubiquinon (Q)} \\ \text{(bi oxy hoá hoàn toàn)} \\ \text{CH}_3\text{O} \\ \text{CH}_3\text{O} \\ \text{CH}_3\text{O} \\ \text{CH}_3\text{O} \\ \text{CH}_3 \\ \text{OH} \\ \end{array}$$

Protein sắt-lưu huỳnh

- Nguyên tử sắt nối với lưu huỳnh vô cơ và/hoặc lưu huỳnh của Cys (protein).
- Protein sắt-lưu huỳnh Rieske: sắt nối 2 gốc His.
- Vận chuyển 1 e (1 nguyên tử sắt của cụm Fe-S bị oxy hoá hoặc khử).

Các phức hợp vận chuyển điện tử

- Các chất vận chuyển điện tử của chuỗi hô hấp:
 tổ chức thành các phức hợp siêu phân tử gắn màng, có thể tách rời về mặt vật lí.
- Mỗi phức hợp xúc tác một phần riêng biệt trong quá trình dẫn truyền năng lượng.
- Đánh số từ I đến IV. Phức hợp V là ATP synthase.
- Dòng điện tử: theo chiều tăng thế khử.

Protein sắt-lưu huỳnh

Các trung tâm sắt-lưu huỳnh (chỉ tính số nguyên tử lưu huỳnh vô cơ).

Phức hợp I: Từ NADH đến ubiquinon

- Tên khác: NADH:ubiquinon oxidoreductase hay NADH dehydrogenase.
- Lớn, 42 chuỗi polypeptid khác nhau
 - Có flavoprotein chứa FMN
 - Ít nhất 6 trung tâm Fe-S.
- Cấu trúc hình L với một cánh tay trong màng và một cánh tay vươn vào chất nền.

Phức hợp I: Từ NADH đến ubiquinon

- NADH cung cấp e ở mặt trong của màng cho phức hợp I.
- FMN nhận 2 e (dạng ion hydrid) từ NADH và 1 proton từ chất nền, tạo FMNH₂.
- FMNH₂ được oxy hoá 2 bước, mỗi lần giải phóng 1 điện tử lần lượt vào cụm Fe-S.
- Fe-S lần lượt chuyển từng e đến ubiquinon (Q) (gắn với phức hợp I ở bên trong màng) → ubiquinol (QH₂).

(ETF: electron-transferring flavoprotein)

Phức hợp I: Từ NADH đến ubiquinon

- Úng với mỗi cặp e từ NADH đến QH₂ → 4 proton từ chất nền ra khoang gian màng.
- Phản ứng tổng quát:

NADH +
$$5H_N^+$$
 + Q \longrightarrow NAD+ + QH₂ + 4 H_P^+
P: phía tích điện dương của màng trong (khoảng gian màng); N: phía tích điện âm (chất nền).

Phức hợp II: Từ succinat đến ubiquinon

- Năng lượng giải phóng từ phức hợp II rất ít
 →không kèm vận chuyển proton qua màng.
- Một số chất chuyển e trực tiếp vào chuỗi hô hấp ở mức ubiquinon nhưng không qua phức hợp II
 - Acid béo
 - Glycerol 3-phosphat

Phức hợp II: Từ succinat đến ubiquinon

- Còn gọi succinat:ubiquinon oxidoreductase, hay succinat dehydrogenase.
- Cũng là enzym xúc tác trong CT acid citric.
- Nhỏ, đơn giản hơn phức hợp I. Chứa 5 nhóm phụ và 4 tiểu đơn vị protein.
- Nhận điện tử từ succinat và khử Q thành QH₂.
- Điện tử từ vị trí gắn succinat → FAD → các trung tâm Fe-S → vị trí gắn Q.

Phức hợp III: Từ ubiquinon đến cytochrom *c*

- Còn gọi ubiquinol:cytochrom c oxidoreductase hay phức hợp cytochrom bc_1 .
- Ghép
 - vận chuyển e từ ubiquinol sang cytochrom c với
 - vận chuyển proton từ chất nền ra khoảng gian màng.
- Homodimer, mỗi monomer có 11 tiểu đơn vị khác nhau.

Phức hợp III: Từ ubiquinon đến cytochrom *c*

- Có 3 hem trong 2 cytochrom:
 - hem $b_{\rm L}$ (L: ái lực thấp) và hem $b_{\rm H}$ (H: ái lực cao) thuộc cytochrom $b_{\rm r}$
 - -1 hem thuộc cytochrom c_1 .
- Chứa trung tâm 2Fe-2S (protein sắt-lưu huỳnh Rieske).
- Có 2 vị trí gắn Q:
 - $-Q_N$ (phía N của màng, gần b_H)
 - $-Q_P$ (phía P, gần trung tâm 2Fe-2S và b_I).

Phức hợp III: Từ ubiquinon đến cytochrom *c*

- 2 proton được lấy từ chất nền.
- Một chu trình Q:

2 QH₂ + Q + 2 cyt
$$c_1$$
 (bị oxy hoá) + 2 H_N⁺ \longrightarrow
2 Q + QH₂ + 2 cyt c_1 (bị khử) + 4 H_P⁺

hay:

QH₂ + 2 cyt
$$c_1$$
 (bị oxy hoá) + 2H_N⁺ \rightarrow Q + 2 cyt c_1 (bị khử) + 4H_P⁺

Phức hợp III: Từ ubiquinon đến cytochrom *c*

- Chu trình Q → chuyển đổi từ chất vận chuyển
 2 điện tử ubiquinon sang chất vận chuyển 1
 điên tử.
- Cytochrom *c*:
 - protein hoà tan trong khoảng gian màng.
 - nhận điện tử từ phức hợp III → di chuyển đến phức hợp IV.

Phức hợp IV: Từ cytochrom c đến O_2

- Còn gọi là cytochrom c oxidase; gồm 13 tiểu đơn vị, chứa 2 nhóm hem (a và a_3) và 3 ion đồng.
 - Hai ion đồng tạo trung tâm hai nhân Cu_A.
 - Hem a_3 và ion đồng còn lại (Cu_B) → trung tâm hai nhân thứ hai.
- Điện tử từ cytochrom c → trung tâm Cu_A → hem
 a→ trung tâm hem a₃-Cu_B→ O₂

Phức hợp IV: Từ cytochrom c đến O_2

- 4 điện tử đi qua phức hợp IV → tiêu thụ 4 proton "cơ chất" từ chất nền khi chuyển O₂ thành 2H₂O.
 - → mỗi điện tử di chuyển qua ↔ 1 proton từ chất nền ra khoảng gian màng.
- Phản ứng tổng quát:

4 cyt c (bị khử) +
$$8H_N^+ + O_2 \rightarrow$$

4 cyt c (bị oxy hoá) + $4H_P^+ + 2H_2O$

Năng lượng của sự vận chuyển điện tử

 Phần lớn năng lượng trên được dùng để bơm proton ra khỏi chất nền.

Sức proton động

- Năng lượng do gradient nồng độ proton (tương tự sức điện động [do điện tử di chuyển] trong điện hoá).
- Do:
 - (1) thế năng hoá học: khác biệt nồng độ H⁺ ở 2 bên màng,
 - (2) thế năng điện học: phân li điện tích xảy ra khi proton di chuyển qua màng mà không trao đổi với ion khác.

Tổng hợp ATP

Thuyết hoá thẩm thấu: gradient nồng độ
proton (sức proton động) → năng lượng cho
sự tổng hợp ATP khi proton di chuyển trở lại
vào chất nền qua kênh proton trên ATP
synthase.

ATP synthase

- (Phức hợp V)
- Hình quả đấm và cuống, 2 thành phần:
 - F_o: gắn màng, chứa kênh proton xuyên màng. 3 loại tiểu đơn vị ab₂c₁₀₋₁₂.
 - F_1 : nhô vào chất nền, chứa các tiểu đơn vị xúc tác. F_1 tách rời có hoạt tính ATPase (thuỷ phân ATP). 9 tiểu đơn vị /5 loại: $\alpha_3 \beta_3 \gamma \delta \epsilon$.

ATP synthase

- α và β xếp xen kẽ thành hexamer hình quả đấm. β có vị trí xúc tác tổng hợp ATP.
- Các c rất kị nước, xếp thành nền hình trụ bên trong màng.
- $\alpha_3\beta_3$ nối vào các c bằng cuống $\gamma \epsilon$. γ có cấu trúc bất đối xứng, gồm một trục xuyên F_1 và một vùng tiếp xúc với một trong ba β . Đơn vị c- ϵ - γ "rotor" quay bên trong màng.
- Cánh tay **a-b-** δ gắn F_o vào $\alpha_3\beta_3$. Đơn vị a-b- δ - $\alpha_3\beta_3$ \rightarrow "stator."

ATP synthase

- Proton di chuyển từ khoảng gian màng có nồng độ proton cao vào chất nền có nồng độ proton thấp qua kênh ở giao diện giữa c và a
 → rotor quay theo một chiều tương đối với stator.
- Toàn bộ cấu trúc này được gọi là motor phân tử.

Tổng hợp ATP

- Mỗi vòng quay của γ → từng β chuyển đổi qua cả 3 cấu hình → tổng hợp 3 ATP.
- Mỗi c quay một vòng cần dẫn bởi 1 proton
 - vòng c có 10 tiểu đơn vị → cần 10 proton / vòng
 - → chuyển vị khoảng 3 proton cho mỗi ATP được tổng hợp.

Tổng hợp ATP: Cơ chế xúc tác quay vòng

- Mỗi lần quay 120° ngược chiều kim đồng hồ (nhìn từ chất nền)
- γ tiếp xúc với từng β và khiến β đó có cấu hình β-trống

Tổng hợp ATP

- ADP³⁻ từ khoảng gian màng vào chất nền, trao đổi với ATP⁴⁻ theo chiều ngược lại (enzym adenin nucleotid translocase) > được hỗ trợ bởi sự khác biệt điện tích qua màng trong (bên ngoài dương hơn), tức là phần điện tích trong sức proton đông.
- 1 H₂PO₄ đồng vận chuyển với 1 H⁺ vào chất nền (enzyme phosphat translocase). Được hỗ trợ bởi sự khác biệt nồng độ qua màng, tức là phần hoá học trong sức proton động.
- → Tổng năng lượng tiêu hao cho quá trình vận chuyển ATP ra ngoài và ADP, P_i vào trong *xấp xỉ với 1 proton* đi vào.
- → Tổng hợp 1 ATP bằng ATP synthase cần 4 proton từ khoảng gian màng đi vào chất nền.

Chỉ số P/O

- Tỉ lệ giữa số phân tử ATP được tạo thành trên số nguyên tử oxy bị khử. Cho biết mối quan hệ giữa sự tiêu thụ oxy và tổng hợp ATP.
- Cần 2 e để khử 1 nguyên tử oxy (1/2 O₂) → chỉ số P/O = số proton được bơm ra khỏi chất nền cho mỗi cặp e đi qua chuỗi hô hấp / số proton di chuyển vào chất nền để tổng hợp 1 ATP.
- 1 cặp e NADH → O₂ có 10 H⁺ được bơm ra ngoài và 4 H⁺ di chuyển trở lại chất nền cho 1 ATP bào tương → chỉ số P/O =10/4 = 2,5.
- Chỉ số P/O đối với succinat là 6/4 = 1,5.

Điều hoà phosphoryl oxy hoá

- Thiếu oxy → vận chuyển e đến oxy chậm lại làm giảm sức proton động → ATP synthase hoạt động theo chiều ngược lại, thuỷ phân ATP để bơm proton ra ngoài.
 - Chất ức chế protein ${\rm IF_1}$ ngăn chặn hoạt động này, chống lại sự giảm mạnh nồng độ ATP.

Điều hoà phosphoryl oxy hoá

- Theo nhu cầu năng lượng của tế bào.
 - [ADP] phản ánh nhu cầu ATP → điều hoà theo
 [ADP] nội bào được gọi là kiểm soát chất nhận.
 - Tỉ số tác dụng khối lượng của hệ ATP-ADP ([ATP]/([ADP][P_i])). Bình thường tỉ số này được giữ ở mức rất cao; khi tế bào cần năng lượng, tỉ số này giảm →tốc độ hô hấp tăng lên.

Các chất ức chế phosphoryl oxy hoá

CHUYỂN HOÁ GLUCID

ĐẠI CƯƠNG

- Glucid là nguồn cung cấp năng lượng chính cho cơ thể động vật
- Glucose trong máu là nguồn nhiên liệu chính cho mọi hoạt động sống, có nguồn gốc từ sự hấp thu ở đường tiêu hóa, từ các tiền chất glycogen, fructose, galactose, amino acid chuyển hóa ở gan.
- Hàm lượng glucose máu được điều hoà nhờ hoạt động của gan và các hormon.

MŲC TIÊU

- 1. Mô tả bằng sơ đồ các con đường chuyển hoá chính của glucid.
- 2. Xác định vai trò tạo năng và tạo hình của glucid qua 2 con đường HDP, HMP. Mối liên quan giữa 2 con đường này.
- 3. Trình bày chuyển hoá của glycogen
- 4. Xác lập mối quan hệ giữa chuyển hoá của glucid, lipid và protid qua sự tân tạo đường.
- 5. Nêu mối quan hệ và đặc điểm chuyển hoá glucid ở các mô.
- 6. Trình bày nguồn gốc, sự điều hoà đường huyết.

ĐAI CƯƠNG

- Glucid (carbohydrate) chiếm lượng lớn trong thức ăn hàng ngày:
 - Thực vật: chủ yếu; tinh bột (gạo ngô khoai...), đường sacarose (mía, củ cải đường ...), maltose (mạch nha), glucose (nho), fructose (trái cây)
 - Động vật: không nhiều; lactose (sữa), glycogen (gan, cơ)

SƠ ĐÒ TỔNG QUÁT CHUYỂN HÓA GLUCID

SỰ TIÊU HOÁ VÀ HẤP THU GLUCID

Tiêu hoá glucid:

- -Thuỷ phân các oligosacarid (OS) và polysacarid (PS) thành monosacarid (MS) không bị thuỷ phân
- -Bắt đầu từ miệng (amylase nước bọt), chủ yếu ở ruột non (tá tràng, phần trên hỗng tràng)
- -Các enzym:
 - Amylase: tạo dextrin, disacarid
 - Disacaridase: tạo monosacarid.

Các disacarase thủy phân các disacarid

HẤP THU

- MS được hấp thu ở phần đầu của ruột non, qua TM cửa đến gan.
- Tốc độ hấp thu MS khác nhau: galactose > glucose > fructose > mannose > pentose.
- -Cơ chế:
- + Cơ chế khuếch tán: fructose, mannose, arabinose...
- + Vận chuyển tích cực: glucose, galactose, hấp thu nhanh, không phụ thuộc gradient nồng độ.

PHÂN BỐ GLUCID

Dạng dự trữ: ở động vật là glycogen

-Gan: tỷ lệ cao nhất (2,5-10%, có khi 10-12%), chung cho cơ thể

-Cơ: chứa 1-3% glycogen; vì khối lượng cơ lớn nên chứa nhiều glycogen nhất (~1/2 tổng lượng glycogen cơ thể); chỉ riêng cho cơ

Dạng vận chuyển: chủ yếu là glucose; 15 g ở dịch ngoại bào và 15 g ở dịch nội bào

Vận chuyển và chuyển hóa glucose

VAI TRÒ CỦA CHUYỂN HOÁ GLUCID

- -Tạo năng:
 - -Cung cấp #60% tổng năng lượng cơ thể
 - -Nguồn năng lượng không thể thay thế hoàn toàn được
- -Tạo hình:
 - -Cung cấp chất tham gia cấu trúc tế bào (ribose của acid nucleic; glucose, galactose trong polysacarid tap...)

Chuyển hóa trung gian của carbohydrate

CHUYỂN HOÁ GLUCOSE

- 1. Thoái hoá: theo 2 con đường chính:
- 1.1. Con đường hexosediphosphat (HDP)

(Embden-Meyerhof pathway)

1.2 Con đường hexosemonophosphat (HMP)

14: phức hợp pyruvate dehydrogenase

Năng lượng * Điều kiện yếm khí: - Từ glucose: 2 ATP

HDP:

glucose

pyruvat

(Đường phân)

Τừ

tới

- Từ glycogen:

3 ATP

* Điều kiện hiếu khí: 32 ATP

- Từ glucose:

- Từ glycogen:

33 ATP

Ý nghĩa:

- Cung cấp năng lượng cho tb.
- Tạo các sản phẩm trung gian cho các quá trình chuyển hóa.

HDP yếm khí tạo năng lượng dự trữ ít (2 ATP), vẫn là nguồn năng lượng có giá trị khi: cung cấp oxy bị hạn chế, cơ hoạt động mạnh, mô ít/không có ty thể (hồng cầu, bạch cầu, vùng tuỷ thận, thuỷ tinh thể, tinh hoàn)

Cơ hoạt động mạnh \rightarrow NADH,H+ được tạo thành bởi 3 PGAD và enzym trong chu trình acid citric vượt quá khả năng oxh của chỗi hhtb \rightarrow tỉ lệ NADH,H+/NAD+ tăng \rightarrow khử pyruvat thành lactat \rightarrow chuột rút

Điều hòa quá trình đường phân: Có 3 khâu:

Con đường hexosemonophosphat (chu trình pentose phosphat)

Xảy ra song song với con đường hexosediphosphat, nhưng tỉ lệ thấp (7-10%). Tại hồng cầu, gan, tuyến sữa (thời kì hoạt động), tổ chức mỡ..., sự thoái hóa glucose theo con đường này chiếm ưu thế.

Không tạo ATP mà cung cấp nguyên liệu cho qt tổng hợp các chất khác.

Các phản ứng của HMP xảy ra tại tb chất của tb.

Ý nghĩa chu trình pentose phosphat:

- Quan trọng nhất là cung cấp NADPHH+
 - + NADPHH+ là coenzym của nhiều phản ứng cần cung cấp hydro như tổng hợp acid béo, cholesterol, các hormon steroid.
- + NADPHH+ giúp chuyển glutathion dạng OXH sang dạng khử: phân hủy H_2O_2 . Sự ứ đọng H_2O_2 gây oxy hóa màng tb, phá vỡ màng tb hồng cầu gây ra tiêu huyết. (vd: thiếu men G6PD)

- Chu trình pentose phosphat cung cấp các pentose® cho qt tổng hợp acid nucleic.

LIÊN QUAN GIỮA HMP VÀ HDP

- 1) N\u00e9u nhu c\u00eau Ribose 5P > NADPHH+ → tho\u00e1i ho\u00e1 ch\u00fc y\u00e9u theo HDP; F6G v\u00ea PGA l\u00eay t\u00fc du\u00fcng ph\u00ean tao th\u00eanh ribose 5P nh\u00fc nh\u00fcmng ph\u00ean \u00fcmng ngu\u00fcc c\u00eda transcetolase v\u00e4 transaldolase
- 2) Nếu nhu cầu Rib 5P = NADPHH⁺ → theo giai đoạn 1 của HMP
- 3) Nếu nhu cầu NADPHH⁺ > Rib P → theo giai đoạn 1 và 2 của HMP. HMP cung cấp phần lớn NADPHH⁺ cho tế bào, đặc biệt ở gan và tuyến vú (tổng hợp acid béo), vỏ thượng thận (tổng hợp steroid)

Tân tạo đường

- Là sự tạo thành glucose và glycogen từ những chất không phải là glucid: lactat, pyruvat, acid amin ...
- Glucose cung cấp nguồn năng lượng lớn cần thiết cho cơ thể. Nếu thức ăn không cung cấp đủ glucose, cơ thể phải tạo glucose từ các chất khác bằng sự tân tạo glucose.
- Tân tạo glucose quan trọng ở não và hồng cầu, vì nguồn năng lượng ở đó hầu như chỉ là glucose.
- Nói chung quá trình tân tạo glucose diễn ra ngược với đường phân (HDP) với 3 khâu không thuận nghịch (phải nhờ enzym khác hoặc con đường khác cho phản ứng ngược)

Thoái hoá glucose tạo acid URONIC

Uronic acid giữ vai trò khử độc, tạo các polysacarid tạp. GEpimerase $G1P \longrightarrow UDPG \longrightarrow UDPGal$ $2NAD^+ \longrightarrow UDPGlucuronat$ $2NAD^+ \longrightarrow UDPGlucuronat$ $2NADHH^+ \longrightarrow UDP-Galacturonat$ $2NADHH^+ \longrightarrow UDP-Galacturonat$

PS tạp

1. Tổng hợp glucose từ pyruvat

Là quá trình đường phân đảo ngược, có 3 gđ không thuận nghịch.

Tân tạo đường

2.Tổng hợp glucose từ lactat.

Chu trình acid lactic (Cori)

3.Tổng hợp glucose từ acid amin

- 4. Tân tạo Glucose từ glycerol
- -Từ AB: không thể được vì Pyruvat \rightarrow CO₂ + ActCoA (pư 1 chiều)
- Từ glycerol:

(1) Glycerol-Kinase (gan)

Sự tân tạo glucose từ những sản phẩm của chu trình acid citric

CHUYỂN HÓA GLYCOGEN

1. Thoái hóa glycogen thành glucose

Glycogen dự trữ chủ yếu ở gan, cơ

- ➤ Thuỷ phân mạch thẳng nhờ glycogen phosphorylase tạo G1P + glycogen ngắn hơn 1 glucose. Quá trình lặp lại đến khi mạch thẳng còn 4 gốc G.
- ➤Giai đoạn cắt nhánh.
- ➤Sản phẩm của thoái hoá glycogen là G1P (chiếm 93%) và glucose tự do (7%).
- ➤Tại gan: G1P → G6P→ G cung cấp glucose trực tiếp cho nguồn G máu.

Glucose 6 P → Glucose (enz: G6Phosphatase)

2. Tổng hợp glycogen

Nguyên liệu để tổng hợp glycogen của th là glucose.

Glycogen synthase (GS) hay UDP-glucose-glycogen transglucosylase: xúc tác sự gắn từng gốc glucose vào mạch glycogen bằng liên kết 1,4; tác dụng kéo dài mạch. Glucose được gắn vào từ dạng hoạt hóa UDPG (uridin diphosphat glucose)

Khi mạch glycogen được kéo dài đến một mức nào đó (6 – 11 glucose) thì enzym tạo nhánh tức amylo (α -1,4 \rightarrow α -1,6 transglucosidase (AT) hay glucosyl α -4 : 6 transferase) chuyển một đoạn gồm 5 – 8 gốc glucose sang mạch bên cạnh bằng liên kết 1 \rightarrow 6 tạo nên mạch nhánh mới

Tổng hợp glycogen

Tổng hợp glycogen từ glucose

2 - UDP-G-pyrophosphorylase

3 - glycogen synthase

4 – Amylo 1, 4 \rightarrow 1, 6 transglucosidase (AT)

ĐIỀU HÒA ĐƯỜNG HUYẾT

Đường huyết luôn ổn định nhờ sự cân bằng giữa 2 nguồn:

- Bổ sung, cung cấp glucose vào máu:
 - Nguồn glucid ngoại sinh từ thức ăn
 - Nguồn nội sinh do phân giải glycogen và tân tạo glucose ở khoảng giữa các bữa ăn.
- Sử dụng glucose ở các tổ chức, quan trọng nhất là ở mô cơ, mô mỡ, mô thần kinh và tổng hợp glycogen dự trữ ở tất cả các tổ chức (nhiều nhất ở gan và cơ)
- Glucose được liên tục lọc qua cầu thận và được tái hấp thu hoàn toàn ở ống thận. Khi lượng glucose máu vượt quá ngưỡng thận (khoảng 180 mg%) thì glucose được thải ra qua nước tiểu (đường niệu)

ĐƯỜNG HUYẾT VÀ ĐIỀU HÒA ĐƯỜNG HUYẾT

Điều hoà ĐH do gan

Điều hoà ĐH nhờ hormon:

- > Gây \ DH: insulin (TB β của tuy)
- > Gây ↑ ĐH: adrenalin (TTT), glucagon (TB α của tuy)

T4 = thyroxin (giáp), glucocorticoid (VTT), hormon GH = tăng trưởng (yên), ACTH (yên).GC

CHỨC NĂNG ĐIỀU HÒA ĐƯỜNG MÁU CỦA GAN:

- -Chức năng glycogen của gan
- Gan tổng hợp và phân giải glycogen:
- + Khi Glucose máu ≥1,2g/l: giảm sản xuất glucose, tăng tổng hợp glycogen dự trữ.
- + Khi **G** ≤ **0,7g/l**: phân giải glycogen tạo glucose cung cấp cho máu nhờ **G6Pase**.

ĐẶC ĐIỂM CHUYỂN HÓA GLUCID/CÁC MÔ

- Hồng cầu: Hồng cầu có Hb, không thể ty
- + Chuyển hóa G theo đường phân (HDP) \rightarrow lactat
- + HMP \rightarrow NADPHH $^+$ giữ glutathion G-SH \rightarrow nguyên vẹn + ổn định màng HC **Thiếu G6PDH** \rightarrow HC dễ vỡ

Thiếu <u>G6PDH</u> \rightarrow HC dễ vỡ... G \downarrow Hexokinase thiếu : \downarrow 2-3 DPG \rightarrow \uparrow ái lực Hb-O₂ \rightarrow \downarrow O₂ \rightarrow TB G6P \downarrow \downarrow 1.3-DPG $\xrightarrow{\text{ATP}}$ \downarrow 2.3-DPG (giữ dạng Hb...) 3-PG \downarrow Pvc \downarrow PYR.Kinase thiếu \rightarrow \uparrow 2,3 DPG \rightarrow \downarrow ái lực PYR \downarrow HbO₂ \rightarrow \uparrow cấp O₂ tới TB \downarrow

QUAN HỆ VÀ ĐẶC ĐIỂM CHUYỂN HÓA Ở CÁC MÔ

2. Gan và cơ:

GAN:

- Gan là bộ máy điều hòa, dự trữ và cung cấp glucose cho toàn cơ thể
- Gan nhận glucose từ máu để tổng hợp glycogen khi cần dự trữ
- Khi cơ thể cần, glycogen ở gan bị phân ly thành glucose nhờ sự phosphoryl-phân và bị thủy phân nhờ glucosidase
- Glucose tự do vào máu và được máu chuyển đi các mô

CO:

- Cơ và các mô khác chỉ có khả năng nhận glucose từ máu để tổng hợp glycogen dự trữ riêng cho chúng
- Không có khả năng cung cấp glucose cho máu vì không có enzym glucose-6-phosphatase

QUAN HỆ VÀ ĐẶC ĐIỂM CHUYỂN HÓA Ở CÁC MÔ

2. Gan và cơ:

- Glucose thoái hóa tạo năng lượng cho cơ hoạt động theo con đường HDP (hiếu khí và yếm khí)
- Khi cơ hoạt động nhiều cả hai con đường đều tăng lên nhưng đường yếm khí tăng nhiều hơn, tạo nhiều lactat
- Lactat vào máu, về gan; ở gan, qua pyruvat tân tạo lại glucose, cung cấp tiếp glucose tự do vào máu cho cơ hoạt động hoặc tái tạo glycogen dự trữ
- Quan hệ chuyển hóa trên giữa gan và cơ được gọi là chu trình Cori hay chu trình acid lactic

3. NÃO-THẦN KINH

- ☐ Nguồn năng lượng duy nhất là từ quá trình thoái hoá theo đường hiếu khí, chủ yếu là từ Glucose tự do trong máu.
- ☐ Trường hợp nhịn đói lâu ngày hoặc ở trẻ sơ sinh, có thể từ ceton.
- ☐ Ở trạng thái nghỉ ngơi não sử dụng 20% lượng oxy dù chỉ chiếm 2% thân trọng.