CSM151B Computer Systems Architecture

Discussion 1E 1/12/2018

Contact Info

- TA: Yuchen Hao
- Email: <u>haoyc@cs.ucla.edu</u>
- Office hours
 - Thursdays 4:30 6:30 pm
 - BH 2432

Logistics

- HW1 due next Friday
 - Please submit raw text (i.e. a .txt file) or a PDF file

Agenda

Performance

Levels of Abstraction

Problem Algorithm Program/Language **Runtime System** ISA (Architecture) Microarchitecture Logic Circuits Electrons

How to Evaluate Performance

Algorithm
Program
ISA
Compiler

ISA uarch uarch
Logic design
Circuit implementation
Technology

Improving Performance

- Reducing instructions/program
 - More efficient algorithms and programs
 - Better ISA?
- Reducing cycles/instruction (CPI)
 - Better microarchitecture design
 - Execute multiple instructions at the same time
 - Reduce latency of instructions (1-cycle vs. 100-cycle memory access)
- Reducing time/cycle (clock period)
 - Technology scaling
 - Pipelining

 A program is written in C. We execute this program on two different computers:

Computer A: has a 3GHz x86 processor

Computer B: has a 3GHz x86 processor

When we execute this program and measure its CPI in x86 instructions, we find the following results:

On computer A: CPI = 10

On computer B: CPI = 8

What can you say about on which computer this program runs faster?

- We don't know.
- Because we don't know how many instructions are actually executed for the program on either machine, we cannot conclude which computer runs faster. Although B has lower CPI, but it might be executing 2 times more instructions than A due to a less optimized compiler.

 You are on the design team for a new processor. The following table gives instruction frequencies for a benchmark, as well as how many cycles the instructions take, for the different classes of instructions.

Instruction Type	Frequency	Cycles
R type	40%	5 cycles
Load	30%	4 cycles
Store	10%	3 cycles
BEQ	20%	2 cycles

 The compiler expert says that if you double the number of registers, then the compiler will generate code that requires only half the number of loads & stores. What would the new CPI be on the benchmark?

If we say that there are 100 instructions, then

```
40 R types
```

30 loads

10 stores

20 BEQs

 We will reduce the number of loads and stores by half, so the new instruction mix will be:

40 R types

15 loads

5 stores

20 BEQs

The total number of instructions is now 80, so the answer is:

(40 * 5 + 15 * 4 + 5 * 3 + 20 * 2) / 80