date: thursday, january 11, 2024 Fundamental Theorem of Finite Abelian Groups I Motivating Question: How many "distinct" groups are there of order n≥1? eg. $U(8) = \{ a \mid \gcd(a,8) = 1, a = \{0,...,7\} \}$ = $\{1,3,5,7\} < -multiplicative group$ $\mathbb{Z}_2 \times \mathbb{Z}_2 = \{(0,0), (0,1), (1,0), (1,1)\}$ These groups are not "distinct" U(8) 1 3 5 7 $\mathbb{Z}_2 \times \mathbb{Z}_2$ (0,0) (1,0) (0,1) (1,1) (0,0) (0,0) (1,0) (0,1) (1,1)
 3
 3
 1
 7
 5
 (1,0)
 (1,0)
 (0,0)
 (1,1)
 (0,1)

 5
 5
 7
 1
 3
 (0,1)
 (0,1)
 (1,1)
 (0,0)
 (1,0)

 7
 7
 5
 3
 1
 (1,1)
 (1,1)
 (0,4)
 (1,0)
 (0,0)
 Same group if we identify: 1 <-> (0,0) 3 < - > (1.0)5<->(0.1) 7<->(1,1) Homomorphisms/Isomorphisms Def^{a} : Let G and H be groups. Then a group homomorphism is a function f:G->H such that $f(a*b) = f(a) \cdot f(b)$ group operation group operation in G in H Properties of Homomorphisms: Let f.G-H be a homomorphism. Then, ① $f(e_{G}) = e_{H}$ @ f(0-1)=f(0)-1 ③ If $G_i \subseteq G$ is a subgroup, then $f(G_i) = \{f(g) | g \in G_i\} \subseteq H$ is a subgroup

 \P If $H \subseteq H$ is a subgroup, then $f'(H) = \{g \in G \mid f(g) \in H, \}$ is a subgroup of G.

Defⁿ: $\ker f = \{g \in G | f(g) = e_H \} < -\ker e_H \}$, $\operatorname{Im} f = \{f(g) | g \in G \} \subseteq H < -\operatorname{im} age$ Facts ① $\ker f$ is a normal subaroup of G

Facts ① kerf is a normal subgroup of G
② kerf= \(\xi_{\text{G}} \xi_{\text{S}} \) iff \(f \) is injective
③ Imf is a subgroup of H

De \(\xi_{\text{D}}^n \xi_{\text{S}} \xi_{\text{D}} \) homomorphism is an isomorphism if \(\xi_{\text{C}} \xi_{\text{C}} \xi_{\text{S}} \xi_{\text{S}} \)

Defⁿ: A homomorphism is an isomorphism if $f:G\to H$ is both injective and surjective. We say G and H are isomorphic and write $G\cong H$.

Our motivating question <=> "distinct" means nonisomorphic eg. $\mathbb{Z}_4 \not\simeq \mathbb{Z}_2 \times \mathbb{Z}_2$ The group \mathbb{Z}_4 has an element of order 4 and $\mathbb{Z}_2 \times \mathbb{Z}_2$ does not.

First Isomorphism Theorem: Let $f:G \rightarrow H$ be a group homomorphism. Then $G_{\ker f} \cong Imf \cong H$.

Fundamental Theorem of Finite Abelian Groups

Refined Motivating Question: For each integer nelly, list all groups G with IGI=n such that any group of order n is isomorphic to one group in the list.

eg. Suppose p is prime. If |G|=p, then $G \cong \mathbb{Z}_p$.

Proof

From first lecture, if |G|=p, then G is cyclic. So $G=\{a^a,a^i,...,a^{p-i}\}$.

Define a map $\Phi:G\to\mathbb{Z}_p$ by $\Phi(a^a)=i$. This is clearly a bijection. It is

Define a map $\Phi: G \rightarrow \mathbb{Z}_p$ by $\Phi(a^c) = i$. This is clearly a bijection. It is also a homomorphism since if $i+j=k \mod p$,

eg. Write out all non-isomorphic abelian groups of order 100. $100 = 2^2 \cdot 5^2$ <-determine all ways to write 100 as a product of prime $100 = 2^2 \cdot 5^2 < -> \mathbb{Z}_{2} \times \mathbb{Z}_{5^2}$ $= 2^{1} \cdot 2^{1} \cdot 5^{1} \cdot 5^{1} \leftarrow \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{5} \times \mathbb{Z}_{5}$ $= 2^{2} \cdot 5^{1} \cdot 5^{1} < -> \mathbb{Z}_{2^{2}} \times \mathbb{Z}_{5} \times \mathbb{Z}_{5}$ Corollary: If n is squarefree, ie. $n=p_1'p_2'\cdots p_r'$, then only one abelian group of order n, ie. $\mathbb{Z}_{p_r}\times \mathbb{Z}_{p_r}$. eq. $\mathbb{Z}_{15} \cong \mathbb{Z}_3 \times \mathbb{Z}_5$ is only abelian group of order 15