

CH334/CH335 数据手册

V1.3

概述

CH334 和 CH335 是符合 USB2. 0 协议规范的 4 端口 USB HUB 控制器芯片,上行端口支持 USB2. 0 高速和全速,下行端口支持 USB2. 0 高速 480Mbps、全速 12Mbps 和低速 1. 5Mbps,支持 STT 和高性能的 MTT。

CH335 其中一个下行端口支持 USB3. 0 SuperSpeed 直通上行端口。

工业级设计,外围精简,可应用于计算机和工控机主板、外设、嵌入式系统等。

特点

- 4 口 USB 集线器, 提供 4 个 USB2. 0 下行端口, 向下兼容 USB1. 1 协议规范
- 支持各端口独立电源控制或 GANG 整体联动电源控制,提供 5V 控制信号输出
- 支持各端口独立过流检测或 GANG 整体过流检测,支持 5V 耐压过流信号输入
- 支持低成本的 STT 或高性能的 MTT 模式,MTT 为每个端口配置独立 TT 实现满带宽并发传输
- 支持端口状态 LED 指示灯
- 可通过外部 EEPROM 配置是否支持复合设备、不可移除设备、自定义 VID、PID 和端口配置
- 针对行业特殊需求可批量定制厂商或产品信息及配置
- 低功耗,支持自供电或总线供电
- 可通过 I/O 引脚或外部 EEPROM 配置自供电或总线供电模式
- 提供晶体振荡器, 内置电容, 支持外部 12MHz 输入, 内置 PLL 为 USB PHY 提供 480MHz 时钟
- 上行端口内置 1.5KΩ上拉电阻,下行端口内置 USB Host 主机所需下拉电阻,外围精简
- 内置 LDO 线性降压调节器,可将 USB 总线电源电压转换为芯片的 3.3V 工作电源
- 6KV 高 ESD 性能
- 工业级温度范围: -40~85℃
- 提供 QFN28、SOP16、QSOP28 等多种小体积、低成本、易加工的封装形式

第1章 引脚信息

1.1 引脚排列

图 1-1 CH334、CH335 引脚分布

注: 0#引脚是指 QFN 封装的底板。

1.2 型号对比

表 1-1 CH334/CH335 同簇型号功能对比

型号	CH334G	CH334R	CH334U	CH334S/Q	CH334H/L	CH335F	
TT 模式	STT	MTT	MTT	MTT	MTT	MTT	
过流检测	×	×	GANG 模式	GANG 模式	独立	独立/GANG	
电源控制	×	×	GANG 模式	GANG 模式	GANG 模式	独立/GANG	
LED 指示灯	×	×	5 灯/9 灯	1 灯	1 灯	5 灯/9 灯	
1/0 引脚配置		×	√	,	√		
供电模式	×			√		√	
外部 EEPROM			,	,	,	,	
提供配置信息	×	×	√	√	√	√	
定制配置信息	√	√	√	√	√	√	
USB3. 0 直通	×	_	_	_	_	√	

1.3 封装

表 1-2 CH334/CH335 封装说明

封装形式	塑体宽度		引脚	间距	封装说明	订货型号
S0P16	3. 9mm	150mil	1.27mm 50mil		标准 16 脚贴片	CH334G
QSOP16	3. 9mm	150mil	0. 635mm	25mil	1/4 尺寸 16 脚贴片	CH334R
QSOP28	3. 9mm	150mil	0. 635mm	25mil	1/4 尺寸 28 脚贴片	CH334U
SSOP28	5. 3mm	209mil	0. 65mm	25mil	缩小型 28 脚贴片	CH334S
QFN28_5x5	5*5mm		0. 5mm	19. 7mil	方形无引线 28 脚	СН334Н
LQFP48	7*7mm		0. 5mm	19.7mil	标准 LQFP48 脚贴片	CH334L
QFN36_6×6	6*6mm		0. 5mm	19. 7mil	方形无引线 36 脚	CH334Q
QFN28_4×4	4*4mm		0. 4mm	15.7mil	方形无引线 28 脚	CH335F

注: 部分封装形式例如 CH334S/L/Q 仅支持批量预订。另有更小体积的 QFN_3*3 封装可供批量预订。

1.4 引脚描述

表 1-3 CH334/CH335 引脚定义

引服	却号(不同却	討装的	同名引	脚可参	参考)	引脚	14 mil	-1 W 1H 1 D
335F	334G	334R	334U	3348	334H	334L	名称	类型	功能描述
20	10	10	15	25	1	3	DMU	USB	上行端口 USB2. 0 信号线 D-
21	11	11	16	26	2	4	DPU	USB	上行端口 USB2. 0 信号线 D+
6	7	7	10	27	3	5	DM1	USB	1#下行端口 USB 信号线 D-
7	8	8	11	28	4	6	DP1	USB	1#下行端口 USB 信号线 D+
8	5	5	8	2	6	9	DM2	USB	2#下行端口 USB 信号线 D-
9	6	6	9	3	7	10	DP2	USB	2#下行端口 USB 信号线 D+
13	3	3	6	8	12	17	DM3	USB	3#下行端口 USB 信号线 D-
14	4	4	7	9	13	18	DP3	USB	3#下行端口 USB 信号线 D+
15	1	1	4	11	15	21	DM4	USB	4#下行端口 USB 信号线 D-
16	2	2	5	12	16	22	DP4	USB	4#下行端口 USB 信号线 D+
11	16	16	3	6	10	14	ΧI	-1	晶体振荡器输入端,接外部晶体一端
12	15	15	2	7	11	15	ХО	0	晶体振荡器反相输出端,接外部晶体另一端
17	9	9	17	13	17	26	RESET#	51	外部复位输入,内置上拉电阻,低电平有效,
17	Э	อ	17	13	17	20	CDP	51	不复位时建议完全悬空
26	12	12	20	23	27	47	V 5	Р	5V 或 3. 3V 电源输入,外接 1uF 退耦电容
28	13	13	21	24	28	48	VDD33	Р	LDO 输出及 3. 3V 输入,外接 1uF 退耦电容
			13	10	14	19	VDD33	Р	3. 3V 电源输入,外接 0. 1uF 退耦电容
			13	16	21	19	VDD33	Г	3. 3V 电源输入,并接 0. Tur 这柄电台
			1			2			
27	14	14	12	15	-	8	GND	Р	公共接地端
-,			28	10		13	GIVE		2 / (12 / C/III)
						20			
0	-	-	-	-	0	-	GND	Р	公共接地端(底板)
24	_	_	26	21	25	42	OVCUR#	51	GANG 整体模式下行端口过流检测输入引脚;
							0VCUR1#	•	1#下行端口过流检测输入引脚,低电平过流
23	-	-	-	-	24	40	0VCUR2#	51	2#下行端口过流检测输入引脚,低电平过流
19	-	-	-	-	20	30	OVCUR3#	51	3#下行端口过流检测输入引脚,低电平过流
18	-	-	-	-	19	28	0VCUR4#	51	4#下行端口过流检测输入引脚,低电平过流
4	_	_	25	4	8	11	PWREN#	50	GANG 整体模式下行端口电源输出控制引脚;
				7			PWREN1#	- 55	1#下行端口电源输出控制引脚,低电平开启
2	_	_	_	ı	-	_	PWREN2#	50	2#下行端口电源输出控制引脚,低电平开启
10	-	-	_	ı	ı	-	PWREN3#	50	3#下行端口电源输出控制引脚,低电平开启

							SUSP		GANG 整体模式 SUSPEND 睡眠状态输出引脚,
5	-	-	_	_	_	_	PWREN4#	50	高电平指示睡眠态,低电平指示正常态;
									4#下行端口电源输出控制引脚,低电平开启
_	_	_	19	17	22	37	PSELF	ı	配置供电模式,内置上拉电阻: 默认高电平为
			10	1,7	22	07	I OLLI	'	自供电,低电平为总线供电
									在复位期间配置电源过流保护模式,内置上拉
									电阻,在复位完成后转为睡眠/正常状态输出:
				18	23	39	PGANG	G 1/0	默认高电平为整体过流检测和整体电源控制,
	_	_	_	18	23	39	PGANG		复位后输出低指示正常态,高指示睡眠态;
									外加下拉置低为独立过流检测,复位后输出高
									指示正常态,低指示睡眠态
							L ED1		LED1: 端口状态指示信号 1
1	_	_	23	_	_	_	LED1	1/0	PSELF: 在复位期间配置供电模式,内置上拉,
							PSELF		默认高为自供电,外加下拉置低为总线供电
									LED2: 端口状态指示信号 2
			0.4				LED2	1.70	PGANG: 在复位期间配置电源过流保护模式,
3	-	_	24	_	_	_	PGANG	1/0	内置上拉,默认高为整体过流检测和整体电源
									控制,外加下拉置低为独立过流检测
					40	0.7	LED3	1./6	LED3:端口状态指示信号 3
22	_	_	14	14	18	27	SCL	1/0	SCL: 在复位期间为 EEPROM 时钟信号线输出
							LED4	. /5	LED4:端口状态指示信号 4
25	_	_	22	22	26	43	SDA	1/0	SDA: 在复位期间为 EEPROM 双向数据信号线
				1					
			18		5				
_	_	_	- 27	19	9	*	NC.		空脚或保留引脚,禁止连接
				20					
		l	l	ı	l	l	i	l	1

引脚类型:

- (1) I: 3.3V 信号输入。
- (2) 0: 3.3V 信号输出。
- (3) 51: 额定 3. 3V 信号输入,支持 5V 耐压,与 V5 电压无关。
- (4) 50: 5V 信号输出,高电平由 V5 电源提供;如果 V5 短接 VDD33,则 PWREN#不宜直接驱动 PMOS。
- (5) P: 电源或地。

CH334/335 数据手册 6 <u>http://wch.cn</u>

第2章 系统结构

2.1 系统结构

图 2-1 系统框图

图 2-1 是 HUB 控制器系统内部结构框图。HUB 控制器主要包括三大模块: Repeater、TT 和控制器。 控制器类似 MCU 处理器,用于全局管理和控制。当上行端口与下行端口速度一致时,路由逻辑会将端口连接至 Repeater,当上行端口与下行端口速度不一致时,路由逻辑会将端口连接至 TT。

TT 又分为单个 TT 和多个 TT 两种,即 STT 和 MTT,STT 是单个 TT 分时处理 USB 主机下发至所有下行端口的事务,MTT 指多个 TT 并行,是 4 个 TT 分别对应并实时处理一个下行端口的事务,因此 MTT 可以为各下行端口的接入设备提供更高更满的带宽,更好的支持多端口大数据量的并发传输。

注:

USPORT Transceiver: 上行端口收发器 PHY DSPORT Transceiver: 下行端口收发器 PHY

REPEATER: HUB 中继器

TT: 处理转换器。

第3章 功能描述

3.1 过流检测

CH334/CH335 支持三种过流保护模式:独立控制电源和独立过流检测、GANG 整体控制电源和独立过流检测、GANG 整体联动控制电源和整体过流检测,如表 3-1 所示。

过流保护模式	电源控制引脚	过流检测的采样引脚	简化参考图
双独立模式	PWREN1#, PWREN2#,	OVCUR1#, OVCUR2#, OVCUR3#, OVCUR4#	图 3-2(a)
	PWREN3#, PWREN4#	OVGURI#, UVGURZ#, UVGUR3#, UVGUR4#	图 3-2(a)
整控独检模式	PWREN1#或 PWREN#	OVCUR1#, OVCUR2#, OVCUR3#, OVCUR4#	图 3-2(b)
GANG 整体模式	PWREN1#或 PWREN#	OVCUR1#或 OVCUR#	图 3-2(c)

表 3-1 过流保护控制引脚说明

CH335F 支持双独立模式和 GANG 整体模式; CH334H/L 支持整控独检模式和 GANG 整体模式; CH334U/S/Q 只支持 GANG 整体模式; CH334G/R 不支持过流检测。

建议采用 VBUS 电源管理专用器件实现精密过流保护,包括集成的电源开关和过流检测。如果 U1 是开漏输出,那么需要 R1 上拉,否则不需要 R1。如果是 OC_LEVEL=1 的设置,则 R1 需要上拉到 5V。

图 3-1 精密的电源控制和过流保护电路示意图

对于 V5 引脚供电为 5V 或者 5V 串联了肖特基二极管降压的应用,还可以由 PWREN#引脚直接驱动 PMOS 管控制 VBUS 电源,并由 CH334/CH335 引脚直接进行过电流采样,建议 OVCUR#引脚串联数 K Ω 电阻后再连接 VBUS 电源。该方案精度和保护效果不如专用器件,仅供参考。下图为结构示意。

(a) GANG 整体模式,建议 PMOS 漏端串联保险电阻或采用内阻较大的 PMOS 器件

(b) 整控独检模式, 电阻建议是保险电阻

(c) 双独立模式,建议 PMOS 漏端各串联保险电阻或采用内阻较大的 PMOS 器件图 3-2 简化的电源控制和过流保护电路示意图

注:

VBUS_ALL: 4 个下行端口的 VBUS;

VBUS1: 下行端口 1 的 VBUS;

VBUS2: 下行端口 2 的 VBUS;

VBUS3: 下行端口 3 的 VBUS;

VBUS4: 下行端口 4 的 VBUS。

3.2 复位

芯片内嵌有上电复位模块,一般情况下,无需外部提供复位信号。同时也提供了外部复位输入引脚 RESET#/CDP,该引脚内置有上拉电阻。

3.2.1 上电复位

当电源上电时,芯片内部 POR 上电复位模块会产生上电复位时序,并延时 Trpor 约 12mS 以等待电源稳定。在运行过程中,当电源电压低于 V_w 时,芯片内部 LVR 低压复位模块会产生低压复位直到电压回升,并延时以等待电源稳定。图 3-2 为上电复位过程以及低压复位过程。

图 3-2 上电复位

3.2.2 外部复位

外部复位输入引脚 RESET#/CDP 已内置约 $25K\Omega$ 上拉电阻,如果外部需要对芯片进行复位,那么可以将该引脚驱动为低电平,驱动内阻建议不大于 800Ω ,复位的低电平脉宽需要大于 4uS。

对于 MCU 引脚直接驱动 HUB 芯片 RESET#/CDP 引脚的应用,如果上电期间 MCU 引脚输出高电平则会启用 CH334/CH335 的充电功能并关闭低功耗睡眠,如需避免启用充电功能并降低睡眠电流,那么需要在 MCU 引脚与 HUB 芯片 RESET#/CDP 引脚之间串联二极管(阴极接 MCU 引脚)。

3.2.3 充电功能

可以提供 Type-C 及 USB PD 高压快充整机方案。

3.3 LED 指示灯

根据 USB2. 0 协议规范,CH334/CH335 提供了下行端口状态 LED 指示灯控制引脚,绿灯亮起表明端口状态正常,绿灯熄灭表明端口无设备或挂起 Suspend,红灯亮起表明端口异常。CH334/CH335 根据封装的不同,可以支持 1 灯模式(R5 串联的蓝灯,亮表示 Active,灭表示 Suspend)、5 灯模式、9 灯模式。具体实现如图 3-3 所示,图中 LED 限流电阻 R1 \sim R5 为 220 Ω ,可选 100 Ω \sim 1K Ω 范围。

LED1 和 LED2 还可以分别用于配置 PSELF 和 PGANG,如果需要配置则可以在外部加 $10K\Omega$ 下拉电阻,可选 $3K\Omega\sim12K\Omega$ 范围。因为兼做 LED 驱动输出,所以 LED1 和 LED2 不能直接短路到 GND。

图 3-3 LED 指示灯示意图

3.4 EEPROM 配置接口

CH334 和 CH335 提供两线 I2C 接口与外部 EEPROM 存储芯片通信,EEPROM 芯片地址为 0,EEPROM 中存储有自定义的厂商 ID、产品 ID、配置等信息。SCL 引脚输出时钟频率为 187. 5KHz,SDA 引脚已内置约 250uA 上拉电流以支持开漏双向数据通讯,无需外部上拉电阻。

3.5 EEPROM 内容

CH334/CH335 支持从外部 EEPROM 中加载厂商识别码 VID、产品识别码 PID 等配置信息,芯片上电后首先加载内部 ROM 的数据,加载完内部 ROM 数据后加载外部 EEPROM 的数据。如果 EEPROM 中数据的校验和 CHKSUM 无效,则放弃 EEPROM 中所有数据;如果 EEPROM 的 CHKSUM 有效,则加载 EEPROM 中所有数据。EEPROM 具体布局如表 3-3 所示,EEPROM 中各地址定义说明如表 3-4 所示。

表 3-3 EEPROM 地址布局

	00	01	02	03	04	05	06	07	08	09	OA	0B	0C	OD	0E	0F
00h	VID_L	VID_H	PID_L	PID_H	CHKSUM	FF	Device Removable	Port Number	Max Power	SIG	CFG	FF	FF	FF	FF	FF
10h	Vendor Length					Ve	ndor Strin	g (UNIC	ODE)							
20h																
30h	Vendor String End															
40h	Product					Pro	oduct Strir	ng (UNIC	ODE)							
	Length								-							
50h																
60h											Pro	duc	t S	trin	ng	End
70h	SN				Sar	. ; !	Number St	ring (II		:)						
7011	Length	Serial Number String (UNICODE) gth														
80h-BFh		Serial Number String End														
C0h-FFh							Reserved									

表 3-4 EEPROM 地址内容定义

字节地址	参数简称	参数说明	默认值			
00h	VID_L	厂商识别码 VID 的低字节。	86h			
01h	VID_H	厂商识别码 VID 的高字节。	1Ah			
02h	PID_L	产品识别码 PID 的低字节。	随型号			
03h	PID_H	产品识别码 PID 的高字节。	80h			
04h	CHKSUM	校验和 CHKSUM 必须等于 VID_H+VID_L+PID_L+PID_H+1,				
U4ri	UUVSUM	否则忽略 EEPROM 的所有数据。				

	Davisa	Bit7~Bit4: 保留 reserved。	
		Bit3: 为 1 表示连接至下行端口 4 的设备不可移除。	
06h	Device	Bit2: 为 1 表示连接至下行端口 3 的设备不可移除。	00h
	Removable	Bit1: 为 1 表示连接至下行端口 2 的设备不可移除。	
		Bit0: 为 1 表示连接至下行端口 1 的设备不可移除。	
07h	Port Number	下行端口个数,有效值范围 1~4。	04h
08h	Max Power	最大工作电流,单位为 2mA。	32h
09h	SIG	OAh 信息 CFG 有效的签名标志,必须是 5Ah,否则 CFG 无效。	5Ah
		Bit7: 保留 reserved。	
		Bit6: EEPROM 写允许,0=写保护,1=允许被 USB 工具改写。	
		Bit5: 过流检测电压阈值 OC_LEVEL 选择,	
		默认 0=2. 4V 且弱上拉,1=4. 1V 且弱下拉。	
		当用 PMOS 简化电源控制时可选 4. 1V,否则用 2. 4V。	
		Bit4&3:选择电源开启后延时多久后检测过流 0C_DELAY:	
		00:约 300uS,适用于开启快、VBUS 电容小的情况;	
		01: 约 3mS;	
0Ah	CFG	10: 约 10mS;	57h
		11:约 30mS,适用于开启慢、VBUS 电容大的情况。	
		Bit2: 配置供电模式 SELF_POWER,	
		默认 1=自供电 (建议), 0=总线供电。	
		EEPROM 配置优先于 10 引脚 PSELF 设置。	
		Bit1: 指示灯使能 INDICATOR_EN,默认 0,1=使能指示灯。	
		BitO: 配置电源过流保护模式 GANG_MODE,	
		默认 1=整体联动过流检测,0=独立过流检测。	
		EEPROM 配置优先于 10 引脚 PGANG 设置。	

第4章 参数

4.1 绝对最大值(临界或者超过绝对最大值将可能导致芯片工作不正常甚至损坏)

名称	参数说明	最小值	最大值	单位
TA	工作时的环境温度	-40	85	${\mathbb C}$
TS	储存时的环境温度	− 55	150	${\mathbb C}$
V5	LDO 输入电源电压(V5 引脚接电源,GND 引脚接地)	-0. 4	5. 5	٧
VDD33	工作电源电压(VDD33 引脚接电源,GND 引脚接地)	-0. 4	4. 0	٧
V51	5V 耐压输入引脚上的电压	-0. 4	5. 5	٧
V50	5V 输出引脚上的电压	-0. 4	V5+0. 2	٧
VUSB	USB 信号引脚上的电压	-0. 4	VDD33+0. 4	٧
VGP10	其它(3.3V)输入或者输出引脚上的电压	-0. 4	VDD33+0. 4	٧
VESD	USB 信号引脚上的 HBM 人体模型 ESD 耐压	5K	10K	٧

4.2 电气参数 (测试条件: TA=25℃, V5=5V 或 V5=VDD33=3.3V)

名称		参数说明		最小值	典型值	最大值	单位	
V5	LDO 输入电	□源电压@V5	启用内部 LD0	3. 9	5	5. 25	V	
Vo	外供电源电压@V5		无需内部 LD0	3. 15	3. 3	5. 25	V	
VDD33	LDO 输出F	电压@VDD33	启用内部 LD0	3. 15	3. 3	3. 5	V	
VUU33	外供 3. 3V	电压@VDD33	无需内部 LD0	3. 15	3. 3	3. 5	V	
ILD0	内部电源	源市器 LDO ヌ	· 村外负载能力			20	mA	
		上行高速	4 个下行高速		90		mA	
	工作电流	上行高速	1 个下行高速		41		mA	
		上行高速	4 个下行全速		25		mA	
ICC		上行高速	1 个下行全速		21		mA	
		上行全速	4 个下行全速		20		mA	
		上行高速	下行无设备		0. 27			
		上行全速	含 1. 5K Ω 上拉		0. 21		mA	
ISLP	深度睡眠电	源电流(不含	î 1. 5KΩ上拉)		0. 07	0. 3	mA	
ISLP	或:自身睡	眠电源电流(不接 USB 主机)		0.07	0. 3	MA	
VIL	除过流检	测外引脚的低	电平输入电压	0		0. 8	٧	
VIH	除过流检	测外引脚的高	电平输入电压	1. 9		VDD33	٧	
VILRST	RESET:	#引脚的低电平	· 输入电压	0		0. 75	٧	

VIX	过流检测	电压阈值 0C_LEVEL 的误差		±0.2		٧
VOL	低电平	LED 引脚,吸入 15mA 电流		0. 5	0. 6	٧
VOL	输出电压	PWREN#引脚,吸入 5mA 电流		0. 4	0. 6	٧
VOL	高电平	LED 引脚,输出 10mA 电流	VDD33-0. 6	VDD33-0. 5		٧
VOH	输出电压	PWREN#引脚,输出 2mA 电流	V5-0. 6	V5-0. 4		٧
IPU	上拉电流	LED1/2/3/PSELF/PGANG 引脚	30	50	80	uA
IPD	下拉电流	OVCUR#引脚	2	5	40	uA
Vlvr	电源	原低压复位的电压门限	2. 4	2. 8	3. 1	٧

第5章 封装

说明:尺寸标注的单位是 mm (毫米)。

引脚中心间距是标称值,没有误差,除此之外的尺寸误差不大于±0.2mm。

5.1 SOP16

5.2 QSOP16

5.3 QSOP28

5.4 QFN28 5x5

5.5 SSOP28

5.6 QFN28 4x4

5.7 QFN36_6x6

5.8 LQFP48

第6章 应用

6.1 简化应用

D1 建议用 1N4001 或类似二极管降压,可以在 5V 电压或 VBUS 电压过冲或者偏高时确保 V5 电压不超过 5. 2V。简化应用或者 V5 电压偏低时,D1 可以用 4. $7\Omega \sim 8.2\Omega$ 电阻,甚至 0Ω 。

如果插入大负载外设导致 5V 电压短时降低,甚至引起 HUB 芯片复位,那么如下改进:①、D1 用二极管并且 C1 改到 4. 7uF 保障 U1 供电;②、加大 C4 容量减缓 5V 跌落;③、额外 5V 供电。

如果需要控制电源和过流保护,那么可将图中 U1 换用 CH335 或 CH334 其它型号。注意,过流检测引脚不能悬空,未连接的 OVCUR#引脚建议用 $10K\Omega$ 电阻上拉或直连到 VDD33(或 5V,高于过流检测电压阈值 $0C_LEVEL$),避免未连接的 OVCUR#引脚被内部电阻下拉而处于假过流状态。

6.2 板载嵌入 HUB

如果有板载 3.3V 电源,那么建议将 V5 和 VDD33 都接 3.3V 电源,但 PWREN#不宜直接驱动 PMOS。