诚信应考,考试作弊将带来严重后果!

华南理工大学期末考试

《2020 Exam Calculus B》试卷

注意事项: 1. 考前请将密封线内填写清楚;

- 2. 所有答案请直接答在试卷上(或答题纸上);
- 3. 考试形式: 闭卷;

4. 本试卷共 8 大题,满分 100 分, 考试时间 120 分钟。

题 号	- 1	2 -	3,	4	5,	6	7,	8	总分
得 分									
评卷人									

- 1. Answer the questions (20):
- (1) The series as absolutely convergent, conditionally convergent or divergent series

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{1+n^2}$$

Answer -----

(2) Suppose $3x^2z + y^3 - xyz^3 = 0$, find $\partial z/\partial x$

Answer -----

(3) Find $div(curl \vec{F})$ and $grad(div\vec{F})$ if $\vec{F} = 2xyz \vec{i} - 3y^2 \vec{j} + 2y^2z \vec{k}$

Answer -----

(4) Solve differential equation y'''' - 4y = 0

Answer -----

(4') Does the limit $\lim_{(x,y)\to(0,0)} \frac{xy+x^3}{x^2+y^2}$ exist?

Answer -----

(5) Find f such that $\vec{F} = \nabla f$, while $\vec{F} = (e^x \cos y + yz)\vec{i} + (xz - e^x \sin y)\vec{j} + (xy)\vec{k}$

Answer -----

- 2. Evaluate the problems (30):
- (1) Test for the convergence or divergence $\sum_{n=1}^{\infty} \left(\frac{n}{3n+2} \right)^n$

(2) Find the convergence set for the power series

$$\sum_{n=1}^{\infty} \frac{(3x+1)^n}{n \cdot 2^n}$$

(3) Find the equation of the plane through (2,-1, 4) and perpendicular to both the plane x+y+z=2 and x-y-z=4

(4) Find the maximum $z = -4x^3y^2$ subject to $x^2 + y^2 = 1$

(5) Evaluate
$$\int_0^1 \int_0^{\sqrt{1-x^2}} (4-x^2-y^2)^{-1/2} dx dy$$
.

3. (10) Evaluate the flux of \vec{F} across G. Where $\vec{F} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$, G is the surface above x, y plane determined by $z = 1 - x^2 - y^2$ $-\infty < x < +\infty$, $-\infty < y < +\infty$, and the normal direction upward

4. (10) $\oint_C (e^{3x} + 2y)dx + (x^2 + \sin y)dy$ where *C* is the rectangle with vertices (2,1), (6,1), (6,4), (2,4)

5. **(5)** Evaluate
$$\int_{C} (x^2 + y^2 + z^2) ds$$
;

C is the curve
$$x = 4\cos t$$
, $y = 4\sin t$, $z = 3t$, $0 \le t \le 2\pi$

- 6. (7) Solve differential equation $y'' + y = \cot x$
- 6° . (7) If f is a twice differentiable function and c is a constant number, show that the function

$$y(x,t) = \frac{1}{2} [f(x-ct) + f(x+ct)]$$
 satisfies $\frac{\partial^2 y}{\partial t^2} = c^2 \frac{\partial^2 y}{\partial x^2}$.

7. (8) Evaluate the
$$\iint_{\partial S} \vec{F} \cdot \vec{n} \, dS$$
. Where

$$\vec{F}(x, y, z) = (x^2 + \cos yz)\vec{i} + (y - e^z)\vec{j} + (z^2 + x^2)\vec{k}$$
.

S is the solid bounded by
$$x^2 + y^2 = 4$$
, $x + z = 2$, $z = 0$.

8. (10) Evaluate
$$\int_{-3}^{3} \int_{-|9-x^2|}^{\sqrt{9-x^2}} \int_{-\sqrt{9-x^2-z^2}}^{\sqrt{9-x^2-z^2}} (x^2+y^2+z^2)^{3/2} dy dz dx$$