Name: Hung Pham

Email address: mryo.hp@gmail.com

Project description/introduction text (the background information)

In astronomy, Stellar Classification has become an important factor for astronomers to identify and categorize different kinds of objects in space. The problem is that many scientists have collected an enormous amount of data in space through telescopes and other astronomical devices but most of them are not classified.

We need to classify objects into different categories such as **stars**, **galaxies**, **and quasars** to understand more about space and its components. There are many attempts to solve the problem with this type of classification and each of them provides a different approach to the problem.

In this project, I will use the "Stellar Classification Dataset - SDSS17" to build a model to classify those astronomical objects into their spectral characteristics. What I would do differently is that I will try to use many different machine learning techniques to classify the objects and compare those techniques to find a better solution to the problem.

Machine learning algorithm selected for this project

The machine learning algorithms I used in this project are:

- LinearSVC
- SVC with RBF kernel
- Logistic Regression
- K-Nearest Neighbour Classifier(KNN)

• Random Forest Classifier

Dataset source

https://www.kaggle.com/datasets/fedesoriano/stellar-classification-dataset-sdss17

References and sources

https://seaborn.pydata.org/generated/seaborn.countplot.html

https://seaborn.pydata.org/generated/seaborn.heatmap.html

https://seaborn.pydata.org/generated/seaborn.pairplot.html

https://seaborn.pydata.org/generated/seaborn.scatterplot.html

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html

https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html

https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.ConfusionMatrixDisplay.html

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.classification_report.html

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.cross_val_score.html

https://www.scikit-yb.org/en/latest/api/classifier/class_prediction_error.html

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html

Solution

Load libraries and set random number generator seed

In [6]:

import numpy as np

```
import pandas as pd
from sklearn import datasets
from sklearn.svm import SVC
from sklearn.svm import LinearSVC
from sklearn.neighbors import KNeighborsClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import cross_val_score
from sklearn.metrics import confusion matrix, ConfusionMatrixDisplay
from sklearn.cluster import KMeans
from sklearn.model selection import train_test_split
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.preprocessing import StandardScaler
from mlxtend.plotting import plot decision regions
from sklearn.metrics import classification report
from yellowbrick.classifier import ClassPredictionError
from sklearn.linear model import LogisticRegression
from yellowbrick.style import set palette
```

In [7]:

np.random.seed(42)

Load the dataset

In [8]: df = pd.read_csv('./star_classification.csv')

In [9]:

df.describe()

50% 1.237663e+18

Out[9]: obj_ID alpha delta g r Z run ID **count** 1.000000e+05 100000.000000 100000.000000 100000.000000 100000.000000 100000.000000 100000.000000 100000.000000 100000.000000 mean 1.237665e+18 177.629117 24.135305 21.980468 20.531387 19.645762 19.084854 18.668810 4481.366060 **std** 8.438560e+12 96.502241 19.644665 31.769291 31.750292 1.854760 1.757895 31.728152 1964.764593 min 1.237646e+18 0.005528 -18.785328 -9999.000000 -9999.000000 9.822070 9.469903 -9999.000000 109.000000 25% 1.237659e+18 127.518222 5.146771 20.352353 18.965230 18.135828 17.732285 17.460677 3187.000000

21.099835

20.125290

19.405145

19.004595

22.179135

180.900700

23.645922

4188.000000

	obj_ID	alpha	delta	u	g	r	i	z	run_ID
75%	1.237668e+18	233.895005	39.901550	23.687440	22.123767	21.044785	20.396495	19.921120	5326.000000
max	1.237681e+18	359.999810	83.000519	32.781390	31.602240	29.571860	32.141470	29.383740	8162.000000
4									>

Only keep useful attributes and remove others.

:		alpha	delta	u	g	r	i	Z	redshift	class
	0	135.689107	32.494632	23.87882	22.27530	20.39501	19.16573	18.79371	0.634794	GALAXY
	1	144.826101	31.274185	24.77759	22.83188	22.58444	21.16812	21.61427	0.779136	GALAXY
	2	142.188790	35.582444	25.26307	22.66389	20.60976	19.34857	18.94827	0.644195	GALAXY
	3	338.741038	-0.402828	22.13682	23.77656	21.61162	20.50454	19.25010	0.932346	GALAXY
	4	345.282593	21.183866	19.43718	17.58028	16.49747	15.97711	15.54461	0.116123	GALAXY

Split X,Y

```
In [11]:
          X = df.drop(['class'], axis = 1)
          Y = df.loc[:,'class'].values
          X, Y
                      alpha
                                delta
                                                                           i \
                                                        g
Out[11]:
                 135.689107
                            32.494632 23.87882 22.27530
                                                          20.39501 19.16573
          1
                 144.826101
                            31.274185 24.77759
                                                 22.83188
                                                          22.58444
                                                                    21.16812
          2
                            35.582444 25.26307 22.66389
                 142.188790
                                                          20.60976 19.34857
          3
                 338.741038
                            -0.402828 22.13682 23.77656
                                                          21.61162
                                                                    20.50454
          4
                 345.282593
                            21.183866 19.43718 17.58028
                                                         16.49747
                                                                    15.97711
                                                 22.97586
          99995
                  39.620709
                            -2.594074 22.16759
                                                          21.90404
                                                                    21.30548
          99996
                  29.493819
                            19.798874 22.69118
                                                 22.38628
                                                          20.45003
                                                                    19.75759
                 224.587407
                            15.700707 21.16916 19.26997
          99997
                                                          18.20428
                                                                   17.69034
                 212.268621
                            46.660365
                                      25.35039
                                                 21.63757
          99998
                                                          19.91386
                                                                    19.07254
          99999
                 196.896053 49.464643 22.62171 21.79745 20.60115 20.00959
```

```
z redshift
0
      18.79371 0.634794
1
      21.61427 0.779136
2
      18.94827 0.644195
3
      19.25010 0.932346
      15.54461 0.116123
           . . .
99995 20.73569 0.000000
99996 19.41526 0.404895
99997 17.35221 0.143366
99998 18.62482 0.455040
99999 19.28075 0.542944
[100000 rows x 8 columns],
array(['GALAXY', 'GALAXY', 'GALAXY', 'GALAXY', 'GALAXY'],
     dtype=object))
```

Count the targets. Count how many Galaxy, how many QSO, and how many Stars are there.

```
In [12]:
    ax = sns.countplot(x="class", data=df, palette="Set3")
    sns.set(rc = {'figure.figsize':(15,9)})
    plt.show()
    df["class"].value_counts()
```


Out[12]: GALAXY 59445 STAR 21594 QSO 18961

Name: class, dtype: int64

Heat Map Correlation

In [9]: sns.heatmap(data= df.corr(), annot= True)

Out[9]: <matplotlib.axes._subplots.AxesSubplot at 0x7f3428370750>

Visualizing data

r i z red

```
In [10]:
sns.scatterplot(x='alpha', y='redshift', hue='class', data=df)
```

Out[10]: <matplotlib.axes._subplots.AxesSubplot at 0x7f39acc56850>


```
In [11]: sns.scatterplot(x='r', y='i', hue='class', data=df)
```

Out[11]: <matplotlib.axes._subplots.AxesSubplot at 0x7f39ac9eeb10>

In [17]:
 ax = sns.violinplot(x=df["redshift"], y=df["class"], hue="class", data=df)

Data preprocessing

```
scaler = StandardScaler()
scaler.fit(X)
X_rescaled = scaler.transform(X)
```

Split into random train, validation, and test subsets

```
In [14]:
    X_train, X_test, Y_train, Y_test = train_test_split(X_rescaled, Y, test_size=0.2, random_state=0)
    X_train.shape, Y_train.shape, X_test.shape
```

```
Out[14]: ((80000, 8), (80000,), (20000, 8), (20000,))
```

Define the models with different algorithms

```
models = {
    "Linear SVC" : LinearSVC(dual=False,max_iter=100000),
    "RBF SVC" : SVC(C=10, kernel='rbf',random_state = 0),
    "Logistic Regression" : LogisticRegression(solver='lbfgs', max_iter=100000,random_state=0),
    "K-Nearest Neighbour" : KNeighborsClassifier(n_neighbors=3),
    "Random Forest" : RandomForestClassifier(random_state=0)
}
```

Training the models

```
for model in models.values():
    print(model)
    model.fit(X_train,Y_train)

LinearSVC(dual=False, max_iter=100000)
    SVC(C=10, random_state=0)
    LogisticRegression(max_iter=100000, random_state=0)
    KNeighborsClassifier(n_neighbors=3)
    RandomForestClassifier(random_state=0)
```

Cross validation check

Confusion matrix to measure how well the models perform

Acuracy of Random Forest is 0.977449999999999

```
for model_name, model in models.items():
    print("")
    title = str(model_name)+" - Confusion Matrix"
```

<Figure size 216x216 with 0 Axes>

Generate a classification report

```
In [30]:
         for model name, model in models.items():
             Y_predicted = model.predict(X_test)
             print(f"----- Classification Report - {model name} -----")
             print(classification report(Y test,Y predicted))
         ----- Classification Report - Linear SVC ------
                      precision
                                  recall f1-score
                                                    support
              GALAXY
                           0.94
                                    0.95
                                             0.95
                                                      11851
                 QS0
                           0.91
                                    0.91
                                             0.91
                                                       3835
                STAR
                           0.95
                                    0.92
                                             0.94
                                                       4314
             accuracy
                                             0.94
                                                      20000
            macro avg
                           0.94
                                    0.93
                                             0.93
                                                      20000
         weighted avg
                           0.94
                                    0.94
                                             0.94
                                                      20000
         ----- Classification Report - RBF SVC ------
                                  recall f1-score
                      precision
                                                   support
```

GALAXY	0.97	0.97	0.97	11851	
QS0	0.96	0.91	0.93	3835	
STAR	0.96	1.00	0.98	4314	
accuracy			0.97	20000	
macro avg	0.96	0.96	0.96	20000	
weighted avg	0.97	0.97	0.97	20000	
	precision	recall	f1-score	support	
GALAXY		0.96	0.96	11851	
QS0		0.88	0.91	3835	
STAR	0.95	1.00	0.97	4314	
accuracy			0.95	20000	
macro avg		0.95	0.95	20000	
weighted avg	0.95	0.95	0.95	20000	
	Classificati	on Report	- K-Neares	st Neighbour	
	precision	recall	f1-score	support	
24.400					
GALAXY	0.95	0.95	0.95	11851	
QS0	0.95 0.95	0.95 0.90	0.95 0.93	11851 3835	
_	0.95 0.95	0.95	0.95	11851	
QSO STAR	0.95 0.95 0.91	0.95 0.90	0.95 0.93 0.93	11851 3835 4314	
QSO STAR accuracy	0.95 0.95 0.91	0.95 0.90 0.94	0.95 0.93 0.93	11851 3835 4314 20000	
QSO STAR accuracy macro avg	0.95 0.95 0.91	0.95 0.90 0.94	0.95 0.93 0.93 0.94 0.94	11851 3835 4314 20000 20000	
QSO STAR accuracy	0.95 0.95 0.91	0.95 0.90 0.94	0.95 0.93 0.93	11851 3835 4314 20000	
QSO STAR accuracy macro avg weighted avg	0.95 0.95 0.91 0.94 0.94	0.95 0.90 0.94 0.93 0.94	0.95 0.93 0.93 0.94 0.94	11851 3835 4314 20000 20000	
QSO STAR accuracy macro avg weighted avg	0.95 0.95 0.91 0.94 0.94	0.95 0.90 0.94 0.93 0.94 on Report	0.95 0.93 0.93 0.94 0.94 0.94	11851 3835 4314 20000 20000 20000	
QSO STAR accuracy macro avg weighted avg	0.95 0.95 0.91 0.94 0.94	0.95 0.90 0.94 0.93 0.94 on Report	0.95 0.93 0.93 0.94 0.94	11851 3835 4314 20000 20000 20000	
QSO STAR accuracy macro avg weighted avg	0.95 0.95 0.91 0.94 0.94 Classificati precision	0.95 0.90 0.94 0.93 0.94 on Report recall	0.95 0.93 0.93 0.94 0.94 0.94 - Random F	11851 3835 4314 20000 20000 20000 Forestsupport	
QSO STAR accuracy macro avg weighted avg	0.95 0.95 0.91 0.94 0.94 Classificati precision 0.98	0.95 0.90 0.94 0.93 0.94 on Report recall 0.99	0.95 0.93 0.93 0.94 0.94 0.94 - Random Ff1-score	11851 3835 4314 20000 20000 20000 Forestsupport	
QSO STAR accuracy macro avg weighted avg	0.95 0.95 0.91 0.94 0.94 Classificati precision 0.98 0.96	0.95 0.90 0.94 0.93 0.94 on Report recall 0.99 0.93	0.95 0.93 0.93 0.94 0.94 0.94 - Random F f1-score 0.98 0.95	11851 3835 4314 20000 20000 20000 Forest support 11851 3835	
QSO STAR accuracy macro avg weighted avg 	0.95 0.95 0.91 0.94 0.94 Classificati precision 0.98 0.96	0.95 0.90 0.94 0.93 0.94 on Report recall 0.99	0.95 0.93 0.93 0.94 0.94 0.94 - Random Ff1-score	11851 3835 4314 20000 20000 20000 Forestsupport	
QSO STAR accuracy macro avg weighted avg 	0.95 0.95 0.91 0.94 0.94 Classificati precision 0.98 0.96	0.95 0.90 0.94 0.93 0.94 on Report recall 0.99 0.93	0.95 0.93 0.93 0.94 0.94 0.94 - Random F f1-score 0.98 0.95	11851 3835 4314 20000 20000 20000 Forest support 11851 3835	
QSO STAR accuracy macro avg weighted avg GALAXY QSO STAR accuracy	0.95 0.95 0.91 0.94 0.94 Classificati precision 0.98 0.96 0.99	0.95 0.90 0.94 0.93 0.94 on Report recall 0.99 0.93 1.00	0.95 0.93 0.93 0.94 0.94 - Random F f1-score 0.98 0.95 1.00	11851 3835 4314 20000 20000 20000 Forestsupport 11851 3835 4314	
QSO STAR accuracy macro avg weighted avg 	0.95 0.95 0.91 0.94 0.94 Classificati precision 0.98 0.96 0.99	0.95 0.90 0.94 0.93 0.94 on Report recall 0.99 0.93	0.95 0.93 0.93 0.94 0.94 - Random F f1-score 0.98 0.95 1.00	11851 3835 4314 20000 20000 20000 Forestsupport 11851 3835 4314 20000	

Class Prediction Error

```
In [22]: for model_name, model in models.items():
```

```
visualizer = ClassPredictionError(model, classes=model.classes_)
set_palette('pastel')
visualizer.fit(X_train, Y_train)
visualizer.score(X_test, Y_test)
visualizer.show()
```


