Scilab Textbook Companion for Heat Transfer by K. A. Gavhane¹

Created by
Deepak
Bachelor of Technology
Chemical Engineering
DCRUST,Murthal
College Teacher
Ms. Sunanda
Cross-Checked by
Lavitha Pereira

May 24, 2016

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Heat Transfer

Author: K. A. Gavhane

Publisher: Nirali Prakashan, Pune

Edition: 10

Year: 2010

ISBN: 8190639617

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

List of Scilab Codes		4
2	Conduction	5
3	Convection	48
4	Radiation	96
5	Heat Exchangers	114
6	Evaporation	149

List of Scilab Codes

Exa 2.1	Thickness of insulation
Exa 2.2	Heat loss per metre
Exa 2.3	Heat Loss
Exa 2.4	Heat loss
Exa 2.5	Heat loss
Exa 2.7	Heat loss
Exa 2.8	Loss per area
Exa 2.9	Heat loss
Exa 2.10	Heat Passed
Exa 2.11	Insulated pipe
Exa 2.12	Composite brick
Exa 2.13	Heat flow in a pipe
Exa 2.15	Thickness of insulation
Exa 2.16	Reduction in heat loss in insulated pipe 17
Exa 2.17	Heat loss in a pipe
Exa 2.18	Arrangements for heat loss
Exa 2.19	Insulation thickness
Exa 2.20	Heat loss in furnace
Exa 2.21	Rate of heat loss in pipe
Exa 2.22	Heat loss from insulated steel pipe
Exa 2.23	Heat loss from furnace
Exa 2.24	Rate of heat loss
Exa 2.25	Thickness of insulation
Exa 2.26	Heat loss per metre
Exa 2.27	Mineral wool insulation
Exa 2.28	Furnace wall
Exa 2.29	Thickness of insulating brick
Exa 2.30	Heat flow through furnace wall

Exa 2.31	Heat loss in pipe
Exa 2.32	Heat flux through layers
Exa 2.33	Conductive conductance furnace wall
Exa 2.34	Critical radius of insulation
Exa 2.36	Critical radius of pipe
Exa 2.37	Time required for steel ball
Exa 2.38	Steel ball quenched
Exa 2.39	Ball plunged in a medium
Exa 2.40	Slab temperature suddenly lowered
Exa 2.41	Flow over a flat plate
Exa 2.42	Stainless steel rod immersed in water
Exa 2.43	Chromel alumel thermocouple
Exa 2.44	Thermocouple junction
Exa 2.45	Batch reactor
Exa 2.46	Heat dissipation by aluminium rod 42
Exa 2.47	Aluminium fin efficiency
Exa 2.49	Pin fins
Exa 2.50	Metallic wall surrounded by oil and water 45
Exa 2.51	Brass wall
Exa 3.1	Boundary layer thickness
Exa 3.2	Boundary layer thickness of plate
Exa 3.3	Thickness of hydrodynamic boundary layer 50
Exa 3.4	Flat plate boundary layer
Exa 3.5	Rate of heat removed from plate
Exa 3.6	Heat removed from plate
Exa 3.7	Local heat transfer coefficient
Exa 3.8	Width of plate
Exa 3.9	Heat transferred in flat plate
Exa 3.10	Rate of heat transferred in turbulent flow
Exa 3.11	Heat transfer from plate in unit direction
Exa 3.12	Heat lost by sphere
Exa 3.13	Heat lost by sphere
Exa 3.14	Percent power lost in bulb
Exa 3.15	Heat lost by cylinder
Exa 3.16	Heat transfer in tube
Exa 3.17	Heat transfer coefficient 61
Exa 3.18	Heat transfer coefficient in heated tube 62
Exa 3.19	h of water flowing in tube

Exa 3.20	Overall heat transfer coefficient	64
Exa 3.21	Number of tubes in exchanger	65
Exa 3.22	Convective film coefficient	67
Exa 3.23	Length of tube	68
Exa 3.24	Cooling coil	69
Exa 3.25	Outlet temperature of water	69
Exa 3.26	Inside heat transfer coefficient	70
Exa 3.27	Film heat transfer coefficient	71
Exa 3.28	Area of exchanger	72
Exa 3.29	Natural and forced convection	73
Exa 3.30	Natural convection	74
Exa 3.31	Free convection in vertical pipe	75
Exa 3.32	Heat loss per unit length	76
Exa 3.33	Free convection in pipe	77
Exa 3.34	Free convection in plate	77
Exa 3.35	Heat transfer from disc	78
Exa 3.36	Rate of heat input to plate	79
Exa 3.37	Two cases in disc	80
Exa 3.38	Total heat loss in a pipe	82
Exa 3.39	Heat loss by free convection	83
Exa 3.40	Heat loss from cube	83
Exa 3.41	Plate exposed to heat	84
Exa 3.42	Nucleate poolboiling	86
Exa 3.43	Peak Heat flux	86
Exa 3.44	Stable film pool boiling	87
Exa 3.45	Heat transfer in tube	88
Exa 3.46	Nucleat boiling and heat flux	89
Exa 3.47	Dry steam condensate	89
Exa 3.48	Laminar Condensate film	90
Exa 3.49	Saturated vapour condensate in array	91
Exa 3.50	Mass rate of steam condensation	92
Exa 3.51	Saturated tube condensate in a wall	93
Exa 3.52	Condensation rate	94
Exa 3.53	Condensation on vertical plate	94
Exa 4.1	Heat loss by radiation	96
Exa 4.2	Radiation from unlagged steam pipe	96
Exa 4.3	Interchange of radiation energy	97
Exa. 4.4	Heat loss in unlarged steam pine	97

Exa 4.5	Loss from horizontal pipe
Exa 4.6	Heat loss by radiation in tube
Exa 4.7	Net radiant interchange
Exa 4.8	Radiant interchange between plates 100
Exa 4.9	Heat loss from thermflask
Exa 4.10	Diwar flask
Exa 4.11	Heat flow due to radiation
Exa 4.12	Heat exchange between concentric shell 102
Exa 4.13	Evaporation in concentric vessels
Exa 4.15	infinitely long plates
Exa 4.16	Heat exchange between parallel plates 105
Exa 4.17	Thermal radiation in pipe
Exa 4.18	Heat transfer in concentric tube
Exa 4.19	Heat exchange between black plates 107
Exa 4.20	Radiation shield
Exa 4.21	Heat transfer with radiation shield 109
Exa 4.22	Radiaition shape factor
Exa 4.23	Radiation loss in plates
Exa 4.24	Concentric tube
Exa 5.1	Harpin exchanger
Exa 5.2	Length of pipe
Exa 5.3	Double pipe heat exchanger
Exa 5.4	Parallel flow arrangement
Exa 5.5	Counter flow exchanger
Exa 5.6	LMTD approach
Exa 5.7	Shell and tube exchanger
Exa 5.8	Order of Scale resistance
Exa 5.9	Length of tube required
Exa 5.10	Suitability of Exchanger
Exa 5.11	Number of tubes required
Exa 5.12	Shell and tube heat exchanger
Exa 5.13	Length of pipe in Exchanger
Exa 5.14	Dirt factor
Exa 5.15	Heat transfer area
Exa 5.16	Oil Cooler
Exa 5.17	Countercurrent flow heat exchanger
Exa 5.18	Vertical Exchanger
Exa 5 19	Countercurrent Heat Exchanger 140

Exa 5.20	Number of tube side pass	141
Exa 5.21	Number of tubes passes	142
Exa 5.22		143
Exa 5.23	Counterflow concentric heat exchanger	145
Exa 5.24		146
Exa 5.25	Parallel and Countercurrent flow	147
Exa 6.1		149
Exa 6.2		149
Exa 6.3		150
Exa 6.4		151
Exa 6.5		153
Exa 6.6		154
Exa 6.7		155
Exa 6.8		156
Exa 6.9		156
Exa 6.10	Triple effect evaporator	157
Exa 6.11	Double effect evaporator	158
Exa 6.12		161
Exa 6.13		164
Exa 6.14		165
Exa 6.15		167
Exa 6.16		169

Chapter 2

Conduction

Scilab code Exa 2.1 Thickness of insulation

```
1 clc;
2 clear;
3 printf ("Example 2.1 \n Page no. 2.18 \n Part - (a)")
4 A=1; //sq metre
5 printf("Area of heat transfer, A=\%f m^2\n", A)
6 \quad Q=450; //W/sq \quad mtre
7 printf("Rate of heat loss/unit area=\%f W/m<sup>2</sup>\n",Q)
8 dT = 400; // K
9 printf("Temperature difference across insulation
      layer \ t, dT = \%f \ K \ n", dT)
10 k=0.11 / W/(m.K)
11 printf ("For asbestos, k=\%f \ n", k)
12 / Q = (k * A*dT) / x
13 x=(k*A*dT)/Q
14 X = x * 1000;
15
16 //for fire clay insulation
17 k=0.84; // W/(m.K)
18 printf ("For fire clay insulation, k=\%f W/(m.K) \setminus n", k);
19 x = (k * A * dT) / Q;
20 X = x * 1000;
```

Scilab code Exa 2.2 Heat loss per metre

```
1
2 clc;
3 printf("Example 2.2, \n Page no.2.18\n");
4 L=1 // m
5 printf("Length of ppipe, L = \%f m n", L);
6 \text{ r1} = (50/2) // \text{ in mm}
7 r1=r1/1000 // in m
8 printf("r1=%f m\n",r1);
9 \text{ r2}=(25+3)/1000 // \text{ m}
10 printf ("r2=\%f m n", r2)
11 rm1 = (r2-r1)/log(r2/r1);
12 printf ("rm1=\%f m\n",rm1)
13 k1 = 45 / W/(m.K)
14 R1=(r2-r1)/(k1*(2*%pi*rm1*L)) // K/W
15 printf ("Thermal resistance of wall pipe=R1=%f K/W\n"
      ,R1);
16 printf("For inner lagging:\n");
17 k2=0.08 //W/(m.K)
18 \text{ ri1} = 0.028 / \text{m}
19 ri2=(ri1+r1) // m
20 rmi1=(ri2-ri1)/log(ri2/ri1)
21 R2=(ri2-ri1)/(k2*2*%pi*rmi1*L)
22 printf ("Thermal resistance of inner lagging=R2=%f K/
      W, R2);
23 printf("For outer lagging:\n");
24 k3=0.04 //W/(m.K)
25 \text{ ro1} = 0.053 / \text{m}
26 \text{ ro2} = (\text{ro1} + 0.04) // \text{m}
```

```
27 rmo1=(ro2-ro1)/log(ro2/ro1)
28 R3=(ro2-ro1)/(k3*2*%pi*rmo1*L)
29 printf("Thermal resistance of inner lagging=R2=%f K/W\n",R3);
30 R=R1+R2+R3
31 Ti=550 //K //inside
32 To=330 //K // outside
33 dT=Ti-To; //Temperature difference
34 Q=dT/R
35 printf("Rate of heat loss per metre of pipe,Q=%f W/m",Q)
```

Scilab code Exa 2.3 Heat Loss

```
1 clear;
2 clc;
3 printf("Example 2.3")
4 // Given
5 \text{ r1} = 44 // [mm]
6 r1=r1/1000 //[m]
7 r2=0.094 // [m]
             // [m]
8 \text{ r3} = 0.124
9 T1=623 //Temperature at outer surface of wall in [K]
10 T3=313
          //Temperature at outer surface of outer
      insulation
                 [K]
11 k1 = 0.087
            //Thermal conductivity of insulation layer
       1... in [W/m.K]
12 k2=0.064 //Thermal conductivity of insulation layer
       2
         [W/m.K]
         // Length of pipe
                              [m]
14 rm1=(r2-r1)/log(r2/r1) //log mean radius of
      insulation layer 1 [m]
15 rm2=(r3-r2)/log(r3/r2) //log mean radius of
      insulation layer 2[m]
16 // Putting values in following eqn:
```

Scilab code Exa 2.4 Heat loss

```
1 clc;
2 clear;
\frac{3}{2} //Example 2.4
4 printf("Example 2.4")
5 // Given
6 A=1 //Heat transfer area [sq m]
            // thickness of fire brick in [m]
7 x1=0.229
            // thickness of insulating brick in [m]
8 x2=0.115
            // thickness of building brick in [m]
9 x3=0.229
10 \text{ k1} = 6.05
            //thermal conductivity of fir brick [W/(m.
     (K)
            //thermal conductivity of insulating brick
11 k2=0.581
         [W/m.K]
           //thermal conductivity of building brick
12 k3=2.33
      [W/m.K]
13 T1=1223 // inside temperature [K]
14 T2=323 // Outside temperature [K]
15 dT=T1-T2 // Overall temp drop [K]
16 R1=(x1/k1*A) //thermal resistance 1
17 R2=(x2/k2*A) // Thermal resistance 2
18 R3=(x3/k3*A) //Thermal resistance 3
19 Q=dT/(R1+R2+R3) / w/SQ m
20 Ta=-((Q*R1)-T1) //\text{from} Q1=Q=(T1-Ta)/(x1/k1*A)
21 // Similarly
22 Tb = (Q*R3) + T2;
23 printf ("Interface temperature:\n i-Between FB-IB=%f
      K \setminus nii-Between IB-PB=\%fK", Ta, Tb);
```

Scilab code Exa 2.5 Heat loss

```
1 clc;
2 clear;
3 //Example 2.5
4 printf ("Example 2.5\nPage 2.23")
5 //Given
        //let [sq m]
6 \quad A = 1;
7 x1=0.23;
            //thickness of fir brick layer[m]
8 x2=0.115;
               // [m]
               //[m]
9 x3=0.23;
10 T1=1213;
              //Temperature of furnace [K]
11 T2=318;
             //Temperature of furnace
12 dT = T1 - T2;
             //[K]
13 \text{ k1=6.047};
              //W/(m.K) (fire brick)
               //W/(m.K) (insulating brick)
14 \text{ k2=0.581};
              //W/(m.K) (building brick)
15 k3=2.33;
16 Q_by_A=dT/((x1/k1)+(x2/k2)+(x3/k3)) //Heat lost per
       unit Area in Watt
17
18 R1 = (x1/k1)
                //Thermal resistance
                //Approximate
19 R1=0.04
20 R2 = (x2/k2)
                   //Approximate
21 R2 = 0.2025
22 R3 = (x3/k3)
23 R3 = 0.1
                //Approximate
24 Ta=T1-((dT*R1)/(R1+R2+R3))
25 Tb = ((dT*R3)/(R1+R2+R3))+T2
26 Tb=565
                    //Approximation
27 printf("\nAnswer: Heat loss per unit area is %f W=%f
      J/s \n", Q_by_A, Q_by_A);
28 printf("\nAnswer:\n Ta=\%f K =Temperature at the
      interface between fire brick and insulating brick
      \n Tb=%d K Temperature at the interface between
```

Scilab code Exa 2.7 Heat loss

```
1 clc
2 printf("Example 2.7, Page no 2/26 \setminus n");
3 printf("Part-(a)\n");
4 A=1; // sq metre
5 \times 1 = 114 // mm
6 \text{ x1=114/1000 } // \text{ metre}
7 \text{ k1=0.138} // \text{W/(m.K)}
8 R1 = x1/(k1*A)
9 \times 2 = 229 / mm
10 \text{ x2= x2/1000} // metre
11 k2=1.38 // W/m.K
12 R2=x2/(k2*A)
13 dT = 1033 - 349
14 //Heat loss
15 Q=dT/(R1+R2)
16 printf("ANSWER: Heat loss from 1 sq metre wall=%f W"
       ,Q);
17 printf("Part(b)\n");
18 //contact resistance=cr
19 cr=0.09 //K/W
20 R = R1 + R2 + cr
21 Q=dT/R
22 printf ("ANSWER: Heat loss from 1 sq metre when
       resistance present=%f W",Q);
```

Scilab code Exa 2.8 Loss per area

```
1 clear;
2 clc;
```

```
3 //Example 2.8
4 printf("Example 2.8 \n")
5 // Given:
6 x1=0.02
             // [m]
7 x2=0.01
             // [m]
8 x3=0.02
             // [m]
             //W/(m.k)
9 k1 = 0.105
10 k3=k1 / W/(m.K)
            //W/(m.K)
11 k2=0.041
12 T1=303
13 T2=263
14 dT = T1 - T2
             //[K]
15 Q_by_A=dT/((x1/k1)+(x2/k2)+(x3/k3))
16 R=0.625
             //K/W
17 \text{ Tx} = 293
             //K
18 \text{ Rx} = 0.9524
               //K/W
19 x=R*(T1-Tx)/(dT*Rx)
20 x = x * 100 / mm
21 printf ("The temperature of 293 K will be reached at
      point %f mm from the outermost wall surface of
      the ice-box",x)
```

Scilab code Exa 2.9 Heat loss

```
1 clc
2 printf("Example 2.9, Page 2.28\n");
3 //Given
4 ID=50 //mm;
5 dT=(573-303);
6 printf("Internal diameter, ID=%f mm", ID);
7 r1=ID/2 //mm
8 r1=r1/1000 // metres
9 OD=150 // mm
10 printf("Outer diameter, OD=%f mm", OD);
11 r2=OD/2 // mm
```

```
12 r2=75/1000 // m
13 //Thermal conductivity
14 k=17.45 // W/(m.K)
15 //Solution
16 printf("Q/A=dT/(r2-r1)/k\n");
17 A1=4*%pi*(r1^2);
18 A2=4*%pi*(r2^2);
19 A=sqrt(A1*A2)
20 Q=(A*k*dT)/(r2-r1)
21 printf("ANSWER:\nHeat loss=Q=%f W",Q);
```

Scilab code Exa 2.10 Heat Passed

```
1 clear;
2 clc;
3 //Example 2.10
4 printf("Example 2.10")
5 A = 1 //sq m
6 x1=0.15
7 x2=0.01
8 x4=0.15
9 T1=973
           //[K]
          // [K]
10 T2=288
11 dT = T1 - T2 // [K]
12 //Thermal conductivities
13 k1=1.75
14 \text{ k}2=16.86
15 \text{ k3} = 0.033
16 \text{ k4} = 5.23
17 //in absence of air gap, sum of thermal resistances
18 sR=(x1/k1*A)+(x2/k2*A)+(x4/k4*A)
19 Q = dT/sR
20 printf("Heat lost per sq meter is %d W/sq m",Q);
21 //When heat loss, Q=1163, then new resistance =sR1
22 Q1=1163 //[W/sq m]
```

```
23 sR1=dT/Q1

24 //width of air gap be w then

25 w=(sR1-sR)*k3*A // [m]

26 w=w*1000 //in [mm]

27 printf("Width of air gap is %f mm",w);
```

Scilab code Exa 2.11 Insulated pipe

```
1 clear;
2 clc;
3 //Example 2.11
4 printf("Example 2.11");
5 d1 = 300 // [mm]
6 \text{ r1}=d1/2 // [mm]
7 r1=r1/1000 // [m]
8 r2=r1+0.05 //[m]
9 r3 = r2 + 0.04 //[m]
10 \times 1 = 0.05
           //[m]
           //[m]
11 \times 2 = 0.04
12 k1=0.105 / W/(m.K)
13 k2=0.07 //W/(m.K)
14 rm1= (r2-r1)/log(r2/r1); // [m]
                            //[m]
15 rm2=(r3-r2)/log(r3/r2);
16 L=1 // let
17 A1=%pi*rm1*L
                 // let L=1
18 R1=x1/(k1*A1);
19 A2=%pi*rm2*L
20 R2=x2/(k2*A2)
21 T1 = 623 / [K]
22 T2 = 323 / [K]
23 dT = T1 - T2 // [K]
24 // Part a
25 Q_by_L= dT/(R1+R2) //Heat loss
26 printf("Heat loss is %f W/m",Q_by_L);
27 // Part b:
```

Scilab code Exa 2.12 Composite brick

```
1 //Example 2.12
2 clear;
3 clc;
4 printf ("Example 2.12 \ n")
5 // Given
           // [m]
6 \text{ x} 1 = 0.01
7 \text{ x} 2 = 0.15 //[m]
8 \times 3 = 0.15 //[m]
9 T1=973
           //[K]
10 T2 = 423
          //[K]
11 dT=T1-T2;
12 //Thermal conductivities
13 k1 = 16.86 // [W/m.K]
           // [W/m.K]
14 k2=1.75
15 k3=5.23 // [W/m.K]
17 A=1 //[sq m]
18 sigma_R = (x1/(k1*A)+x2/(k2*A)+x3/(k3*A))
19 Q=dT/sigma_R //Heat flow in [W]
20 Tm = Q*x3/k3 //Temperature drop in magnesite brick
21 //Interface temperature=iT
22 iT=T2+Tm //[K]
```

```
23 sigma_xbyk= A*dT/1163  //with air gap for reducing
     heat loss to 1163 per sq m
24 x_by_k=sigma_xbyk-sigma_R  //x/k for air
25 t=x_by_k*k_air
26 t=t*1000;
27 printf("Width of the air gap is %f mm",t);
```

Scilab code Exa 2.13 Heat flow in a pipe

```
1 //Example 2.13
2 printf("Example 2.13 \n");
         //assume
4 L=1
                   [m]
6 \text{ k1} = 43.03 // [W/(m.K)]
7
8 k2=0.07 //(W/m.K)
9
10 T1=423 //inside temperature [K]
11
12 T2=305
          // [K]
13
              // [mm]
14 r1=0.0525
15
16 r2=0.0575; //[m]
17
18 \text{ r3} = 0.1075 // [m]
19 // r3 = r3 / 1000; // [m]
20 Q=(2*\%pi*L*(T1-T2))/(((log(r2/r1))/k1)+((log(r3/r2)))
      /k2)); //Heat loss per metre
21
22 printf("Heat flow per metre of pipe is %f W/m",Q);
23
24 printf("Part 2 \setminus n");
25 //T=Temperature of outer surface
```

```
26 T=T1-(Q*log(r2/r1))/(k1*2*%pi*L);
27
28 printf("Temperature at outer surface of steel pipe:
     \%f K",T);
29
30 printf("\nPart iii\n");
31 id=0.105
            //inside diametre in [m]
32
33 A=%pi*id*1
              //inside area in [sq m]
34
35 C=Q/(A*(T1-T2)); //conductance per length
36
37 printf("Conductance per m length based on inside
     area is %f W/K",C)
```

Scilab code Exa 2.15 Thickness of insulation

```
1 //Example 2.15
2 printf ("Example 2.15 \n")
3 A=1 // [sq m]
     x1 = 0.1
                //m
5
     x2 = 0.04
6
     k1 = 0.7
7
     k2 = 0.48
     sigma=x1/(k1*A)+x2/(k2*A) //K/W
     //Q = 4.42 * dT
9
10
     //Q=dT/sigma
11
     //with rockwool insulation added, Q_dash=0.75*Q
12
    k3 = 0.065
                  // W/(m.K)
     //Q_dash=dT/sigma+x3/k3*A
13
14
     //On solving Q and Q_dash we get
                                         // [m]
15
     x3 = ((1/(0.75*4.42)) - sigma)*k3
     x3 = x3 * 1000
16
                     // [mm]
17
     printf("Thickness of rockwool insulation required=
        \%f mm", x3)
```

Scilab code Exa 2.16 Reduction in heat loss in insulated pipe

```
1 clc;
2 clear;
3 //Example 2.16, Page no 2.36
4 d1=40; // Diameter of pipe [mm]
5 \text{ r1}=(d1/2)/1000 // Outside radius in [m]
            //Insulation 1 thickness in [mm]
6 t1=20;
7 t1=t1/1000
                 // [m]
8 t2=t1;
                 //Insulation 2 thickness in [m]
9 r2=r1+t1;
                 //radius after 1st insulation in [m]
                 //Radius after second insulation in [m
10 r3=r2+t2;
11
12 //Since Scilab does not handles symbolic constants,
     we will assume some values:
14 printf("Let the layer M-1 be nearer to the surface")
15 L=1;
                // [m]
16 T1=10;
                //Temperature of inner surface of pipe
      [K]
17 T2=5;
                //Temperature of outer surface of
      insulation [K]
                //Thermal conductivity
18 k = 1;
                //For M-1 material
19 k1=k;
20 \text{ k2=3*k};
                //For material M-2
21 Q1=(T1-T2)/(\log(r2/r1)/(2*\%pi*L*k1)+\log(r3/r2)/(2*
     %pi*L*k2))
22
23 / (2)
24 printf("Let the layer of material M-2 be nearer to
      the surface");
Q2 = (T1-T2)/(\log(r2/r1)/(2*\%pi*L*k2) + \log(r3/r2)/(2*
     %pi*L*k1))
```

```
26 printf("Q1=%f and Q2= %f \n For dummy variables
        unity...\nFor any value of k,T1 and T2,Q1 is
        always less than Q2",Q1,Q2);
27 printf("\n So,M-1 near the surface is advisable(i.e
        Arrangement one will result i ,ess heat loss\n)")
;
28 per_red=(Q2-Q1)*100/Q2
29 printf("Percent reduction in heat loss is %f percent
        ",per_red)
30 printf("\nNOTE: Slight variation in answers due to
        less precise calculation in book. If performed
        manually, this answer stands to be correct")
```

Scilab code Exa 2.17 Heat loss in a pipe

```
1 / Example 2.17
2 T1=523
             //[K]
     T2 = 323
               //[K]
3
                 //[m]
4
     r1 = 0.05
     r2 = 0.055
5
                  // [m]
     r3 = 0.105
                  // [m]
     r4=0.155
7
                  // [m]
                  //[W/(m.K)]
8
     k1 = 50
9
     k2 = 0.06
                  //[W/(m.K)]
     k3 = 0.12
                  //W/(m.K)
10
11
     //CASE 1
12
     Q_by_L1 = 2*\%pi*(T1-T2)/((log(r2/r1))/k1+(log(r3/r2))
        )/k2+(log(r4/r3))/k3)
                                   //[W/m]
13
     printf ("Heat loss=\%f W/m", Q_by_L1)
     //Case 2
14
     Q_by_L2=2*\%pi*(T1-T2)/((log(r2/r1))/k1+(log(r3/r2))
15
        )/k3+(log(r4/r3))/k2)
    perct = (Q_by_L2 - Q_by_L1)*100/Q_by_L1
16
17
     printf("If order is changed then heat loss=%f W/m"
         ,Q_by_L2)
```

```
printf("\n loss of heat is increased by %f percent
by putting material with higher thermal
conductivity near the pipe surface", perct)
```

Scilab code Exa 2.18 Arrangements for heat loss

```
1
2 clc;
3 clear;
4 //Example 2.18, Page no 2.38
5 // Given
6 //Assume:
7 L=1
         // [m]
8 r1=0.10 //[m] Outside radius od pipe
            //inner insulaiton [m]
9 ia=0.025
10
11 r2=r1+ia
               //Outer radius of inner insulation
               //Outer radius of outer insulation
12 r3=r2+ia
13 //CASE 1: 'a' near the pipe surface
14 // let k1=1
15 k1=1;
            //Thermal conductivity of A[W/m.K]
16 // \text{and } k2 = 3k1 = 3
17 \text{ k2=3};
            //Thermal conductivity of B[W/m.K]
18 / \text{Let dT} = 1
19 dT=1
20 Q1=dT/(log(r2/r1)/(2*\%pi*k1*L)+log(r3/r2)/(2*\%pi*k2*
     L))
               //Approximate
21 Q1=22.12
22 //CASE 2: 'b' near the pipe surface
23 Q2=dT/(log(r2/r1)/(2*\%pi*k2*L)+log(r3/r2)/(2*\%pi*k1*
      L))
24 Q2=24.39
                   //Approximation
25 printf ("ANSWER-(i)\nQ1=%f W\nQ2= %f W\nQ1 is less
      than Q2.i.e arrangement A near the pipe surface
      and B as outer layer gives less heat loss \n", Q1,
```

```
Q2);
26 percent=(Q2-Q1)*100/Q1; //percent reduction in heat loss
27 printf("\nANSWER-(ii) \nPercent reduction in heat loss (with near the pipe surface)=%f percent", percent);
```

Scilab code Exa 2.19 Insulation thickness

```
1 clc
2 clear
3 printf("Example 2.19.Page no.2.39")
4 //Given
5 x1=0.224 // m
6 k1=1.3 // W/(m.K)
7 k2=0.346 // W/(m.K)
8 T1=1588 // K
9 T2= 299 // K
10 QA=1830 // W/ sq metre //heat loss
11 //solution
12 printf("Q/A=(T1-T2)/x1/k1+x2/k2");
13 x2=k2*((T1-T2)*1/(QA)-(x1/k1))
14 x2=x2*1000;
15 printf("Thickness of insulation=%f mm",x2)
```

Scilab code Exa 2.20 Heat loss in furnace

```
1 //Example 2.20
2 //Given
3 //for clay
4 k1=0.533 //[W/(m.K)]
5 //for red brick
6 k2=0.7 //[W/m.K]
```

```
//Case 1
              //Area
     A = 1
                  // [m]
     x1 = 0.125
9
     x2 = 0.5
                   // [m]
10
     //Resistances
11
12
     r1=x1/(k1*A) //Res of fire clay [K/W]
     r2=x2/(k2*A) //Res of red brick [K/W]
13
14
     r=r1+r2
15
     //Temperatures
16
     T1 = 1373
                 //[K]
                 // [K]
17
     T2 = 323
     Q=(T1-T2)/r //[W/sq m]
18
19
     Tdash=T1-Q*r1 // [K]
20
   // Case 2
21
    // Heat loss must remain unchanged, Thickness of
       red brick also reduces to its half
22
     x3 = x2/2
                // [m]
23
     r3=x3/(k2*A)
                    // [K/W]
24
     Tdd = T2 + (Q*r3)
                          //[K]
25
     //Thickness of diatomite be x2,km be mean
        conductivity
26
     Tm = (Tdash + Tdd)/2
                          //[K]
                               //[W/(m.K]]
     km = 0.113 + (0.00016 * Tm)
27
                               // [m]
     x2=km*A*(Tdash-Tdd)/Q
28
29
     x2=x2*1000
                       // [mm]
30
     printf("Thickness of diatomite layer=%f mm", x2)
```

Scilab code Exa 2.21 Rate of heat loss in pipe

```
1    //Exaample2.21
2    //Given
3    k1=0.7    //common brick    W/((m.K)
4    k2=0.48    //gypsum layer [W/(m.K)
5    k3=0.065    //Rockwool [W/m.K]
6    //Heat loss with insulatiob will be 20% of without
```

```
insulation
7 A = 1
              //sq m
              //[m]
8 x1=0.1
9 \times 2 = 0.04 / [m]
10 R1 = x1/(k1 * A)
                     //K/W
11 R2=x2/(k2*A)
                     //K/W
12 R=R1+R2
                     //K/W
13 / R3 = x3 / (k3 *A)
14 \, QbyQd=0.2
15 sigRbyRd=QbyQd
16 x3 = (R/QbyQd - R)/15.4 / m
17 \quad x3 = x3 * 1000
                           // [mm]
18 printf("Thickness of rockwool insulation = %f mm", x3)
```

Scilab code Exa 2.22 Heat loss from insulated steel pipe

```
1 clc;
2 clear;
3 //Example 2.22
                   //Steam temperature in [K]
4 Ts = 451;
5 \text{ Ta} = 294;
                   //Air temperature in [K]
6 Di=25;
             //Internal diameter of pipe
                                                  mm
                                   // [m]
7 Di=Di/1000;
8 \text{ od} = 33;
              //Outer diameter of pipe
                                                [mm]
9 \text{ od} = \text{od} / 1000;
                                  // [m]
10 hi=5678; //Inside heat transfer coefficient [W/(m<sup>2</sup>.
      K)
11 ho=11.36; //Outsideheat transfer coefficient
                                                             W/(sq)
       m.K)
12 \text{ xw} = (\text{od} - \text{Di})/2;
                        //Thickness of steel pipe [m]
13 \text{ k2} = 44.97;
                        //k for steel in W/(m.K)
14 \text{ k3=0.175};
                        //k for rockwool in W/(m.K)
15 ti=38/1000;
                               //thickness of insulation in [
      m
16 \text{ r1=Di/2};
                        // [m]
```

```
17 \text{ r2=od/2};
                        // [m]
18 rm1 = (r2-r1)/log(r2/r1);
                                       // [m]
19 r3=r2+ti;
20 \text{ rm2}=(r3-r2)/\log(r3/r2);
                                  // [m]
21 \quad Dm1 = 2 * rm1;
                                   // [m]
22 \text{ Dm}2 = 2 * \text{rm}2;
                                   // [m]
23 //Rate of heat loss = dT/(sigma_R)
24 L=1;
                        // [m]
                             // [K/W]
25 R1=1/(hi*%pi*Di*L);
26 R2=xw/(k2*\%pi*Dm1*L);
27 R3=(r3-r2)/(k3*\%pi*Dm2*L);
28 \text{ Do} = (\text{od} + 2*\text{ti});
                                 // [mm]
29 R4=1/(ho*\%pi*Do*L);
                                            // [m]
30 \text{ sigma}_R = R1 + R2 + R3 + R4;
31 //Heat loss
                                  //[K]
32 	 dT = Ts - Ta;
                                  //Heat loss [W/m]
33 Q=dT/sigma_R;
34 printf("\nAns:Rate of heat loss is \%fW/m",Q);
35 printf("\n NOTE: Slight variation in final answer due
        to lack of precision in calculation of R1, R2, R3
      and R4. In book an approximate values of these is
      taken\n ")
```

Scilab code Exa 2.23 Heat loss from furnace

```
1 clc;
2 //Example 2.23
3 T1=913 //[K]
4 T=513 //[K]
5 T2=313 //[K]
6 //Q=(T1-T)/(x/(k*A))
7 //Q=(T-T2)/(1/(h*A))
8 //x=2k/h
9 //Q=(T1-T2)/(x/(kA)+1/(h*A))
10 //Therefore,Q=hA/3*(T1-T2)
```

```
//With increase in thickness(100%)
//x1=4*k/h
//Q2=(T1-T2)/(x1/k*A+1/(h*A))
//Q2=(h*A)/5)*(T1-T2)
//Now
h=1; //Assume
//Assume for calculation
Q1=(h*A/3)*(T1-T2)
Q2=((h*A)/5)*(T1-T2)
percent=(Q1-Q2)*100/Q1 //Percent reduction in heat loss
printf("\nTherefore, Percentage reduction in heat loss is %d percent", percent);
```

Scilab code Exa 2.24 Rate of heat loss

```
1 clc;
2 clear;
3 printf ("Example 2.24\n Page no. 2.47");
4 //given
5 L=1/m
6 thp=2//Thickness of pipe; in mm
7 thi=10//Thickness of insulation; in mm
8 T1 = 373 / K
9 T2 = 298 / K
10 id = 30 / mm
11 r1 = id/2 / mm
12 \text{ r2=r1+thp}/\text{mm}
13 r3=r2+thi/mm
14 //In S.I units
15 r1=r1/1000 //m
16 \text{ r2=r2/1000//m}
17 r3=r3/1000/m
18 k1=17.44 / W/ (m.K)
19 k2=0.58 / W/(m.K)
```

```
20 hi=11.63/W/(sq m.K)
21 ho=11.63/W/(sq m.K)
22 //Solution
23 Q=(2*%pi*L*(T1-T2))/(1/(r1*hi)+(log(r2/r1))/k1+((log(r3/r2)))/k2)+(1/(0.02*ho)))
24 printf("ANSWER: \n Rate of heat loss,Q=%f W",Q);
```

Scilab code Exa 2.25 Thickness of insulation

```
1 clc;
2 clear;
3 //Examplr 2.25
4 h=8.5;
                //[W/sq m.K]
                 //[K]
5 dT = 175;
6 \text{ r2=0.0167};
                         // [m]
                                 // [W/m]
7 Q_by_1=h*2*\%pi*r2*dT
8 k=0.07;
                     //For insulating material in [W/m.
     K
9 //for insulated pipe --50\% reduction in heat loss
10 Q_by_11=0.5*Q_by_1 // [w/m]
11 deff('[x]=f(r3)', 'x=Q_by_l1-dT/((log(r3/r2))/(2*\%pi*
      k)+1/(2*\%pi*r3*h))')
12
13 //by trial and error method we get:
14 r3 = fsolve(0.05, f)
15 t=r3-r2
                    //thickness of insulation in [m]
16 printf('\n Hence, required thickness of insulation is
       \%f m=\%f mm or \%d m", t, t *1000, round (t *1000));
```

Scilab code Exa 2.26 Heat loss per metre

```
1 2 //Example 2.26
```

```
3 // Calculate heat loss per metre length
4 // Given
5 id=0.1
              //internal diameter in [m]
6 \text{ od} = 0.12
              //outer diameter in [m]
7 T1=358
              //Temperature of fluid
8 T2 = 298
              //Temperature of surrounding
                                                  [K]
9 t = 0.03
              //thickness of insulation
                                                 [m]
10 k1 = 58
             // [W/m.K]
11 k2=0.2
              //W/(m.K) insulating material
              //inside heat transfer coeff [W/sq m .K]
12 h1=720
13 h2=9
              //W/sq m.K
14 r1 = id/2
               //[m]
15 \text{ r} 2 = \text{od} / 2
               // [m]
16 r3=r2+t
               // [m]
17 //Heat loss per meter=Q_by_L
18 Q_{by_L}=(T1-T2)/(1/(2*\%pi*r1*h1)+log(r2/r1)/(2*\%pi*k1)
      )+\log(r3/r2)/(2*\%pi*k2)+1/(2*\%pi*r3*h2)); //W/m
19 printf("Heat loss per metre length of pipe=%f W",
      Q_by_L)
```

Scilab code Exa 2.27 Mineral wool insulation

```
1
2 clc;
3 clear;
4 //Example 2.26
5 // Given:
6 T1 = 573;
                       //[K]
7 T2 = 323;
                      // [K]
                      //[K]
8 T3 = 298;
                      // Outside heat transfer
9 h1 = 29;
      coefficients [W/sq m.K]
10 h2=12;
                      //[W/sq m.K]
11 \text{ r1=0.047};
                            //Internal radius [m]
12 r2=0.05;
                            //Outer radius [m]
```

```
// [W/m.K]
13 \text{ k1} = 58;
14 k2=0.052;
                         //[W/m.K]
15 //Q=(T1-T2)/(1/(r1*h1)+log(r2/r1)/k1+log(r3/r2)/k2)
      =(T2-T3)/(1/(r3*h2))
16 deff('[x]=f(r3)', 'x=(T1-T2)/(1/(r1*h1)+log(r2/r1)/k1
     +\log(r3/r2)/k2)-(T2-T3)/(1/(r3*h2))')
17 //by trial and error method :
18 r3 = fsolve(0.05, f)
                        //Thickness of insulation in [m]
19 t=r3-r2
20 //Q=h2*2*\%pi*r3*L*(T2-T3)
21 Q_by_1=h2*2*\%pi*r3*(T2-T3)
                                     // [W/m]
22 printf("\n Thicknesss of insulation is %d mm \n Rate
       of heat loss per unit length is %f W/m", round(t
      *1000),Q_by_l);
```

Scilab code Exa 2.28 Furnace wall

```
1
2 clc;
3 clear;
4 //Example 2.28
5 // Calculate heat loss per sq m and temperature of
      outside surface
6 // Given
7 A=1 //assume [sq m]
8 x1=0.006
                 // [m]
                 // [m]
9 x2=0.075
10 \times 3 = 0.2
               // [m]
11 k1=39
             // [W/m.K]
              // [W/m.K]
12 k2=1.1
               // [W/m.K]
13 \text{ k3} = 0.66
             //W/sq m . K
14 h0=65
              //K
15 T1=900
16 T2=300
              //K
17 sigma_R = (x1/(k1*A)+x2/(k2*A)+x3/(k3*A)+1/(h0*A));
```

```
//To calculate heat loss/sq m area
| Q=(T1-T2)/sigma_R //[W/sq m]
| printf("Heat loss per sq metre area is: %f W/sq m",Q);
| //Q/A=T-T2/(1/h0), where T=Temp of outside surface
| //So, T=T2+Q/(A*h0)
| T=Q/(A*h0)+T2 //[K]
| printf("Temperature of utside surface of furnace is: %f K (%f degree C)",T,T-273)
```

Scilab code Exa 2.29 Thickness of insulating brick

```
1
   2 clear;
   3 clc;
   4 //Example 2.29
   5 // Determine necessary thickness of insulation brick
   6 //Given
   7 \quad A = 1
                                                //Assume sq m
   8 x1 = 0.003
                                                                        // [m]
  9 x3 = 0.008
                                                                        // [m]
                                                         //[W/m.K]
10 k1 = 30
                                                              // [W/m.K]
11 k2=0.7
12 k3 = 40
                                                          // [W/m.K]
                                                              //[K]
13 T1=363
14 T=333
                                                          //[K]
                                                              //[K]
15 T2=300
16 h0=10
                                                         //W/sq m.K
17 /Q=(T1-T2)/(x1/(k1*A)+x2/(k2*A)+x3/(k3*A)+1/(h0*A))
18 //Also, Q=(T-T_2)/(1/(h_0*A))
19 //So, (T1-T2)/((x1/(k1*A)+x2/(k2*A)+x3/(k3*A)+1/(h0*A)+x2/(k2*A)+x3/(k3*A)+1/(h0*A)+x2/(k2*A)+x3/(k3*A)+1/(h0*A)+x2/(k2*A)+x3/(k3*A)+1/(h0*A)+x2/(k2*A)+x3/(k3*A)+1/(h0*A)+x2/(k2*A)+x3/(k3*A)+1/(h0*A)+x2/(k2*A)+x3/(k3*A)+1/(h0*A)+x2/(k2*A)+x3/(k3*A)+1/(h0*A)+x2/(k2*A)+x3/(k3*A)+1/(h0*A)+x2/(k2*A)+x3/(k3*A)+1/(h0*A)+x2/(k2*A)+x3/(k3*A)+1/(h0*A)+x2/(k2*A)+x3/(k3*A)+1/(h0*A)+x2/(k2*A)+x3/(k3*A)+1/(h0*A)+x2/(k2*A)+x3/(k3*A)+x2/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A)+x3/(k3*A
                          A) = (T-T_2) / (1/(h_0*A))
20 // \text{ or }, x2=k2*A((T1-T2)/((T-T2)*h0*A)-1/(h0*A)-x1/(k1*A)
                            )-x3/(k3*A))
21 	ext{ } 	ext{x2=k2*A*((T1-T2)/((T-T2)*h0*A)-1/(h0*A)-x1/(k1*A)-x3}
```

Scilab code Exa 2.30 Heat flow through furnace wall

```
1
2 clear;
3 clc;
4 //Example 2.30
5 // Given
                 // [W/sq m.K)
6 \text{ hi} = 75
              //m
7 x1=0.2
8 x2=0.1
              // [m]
              //[m]
9 x3=0.1
              //[K]
10 T1=1943
              //W/m.K
11 k1=1.25
                ///W/m.K
12 k2=0.074
                //W/m.K
13 k3 = 0.555
              //K
14 T2=343
          //assume [sq m]
16 sigma_R=1/(hi*A)+x1/(k1*A)+x2/(k2*A)+x3/(k3*A);
17 //Heat loss per i sq m
18 Q=(T1-T2)/sigma_R
                         // [W]
19 //if T=temperature between chrome brick and koalin
      brick then
20 /Q=(T1-T)/(1/(hi*A)+x1/(k1*A))
21 // \text{ or } T=T1-(Q*(1/(hi*A)+x1/(k1*A)))
22 T=T1-(Q*(1/(hi*A)+x1/(k1*A)));
                                        //[K]
23 printf ("Temperature at inner surface of middle layer
      =\%f K(\%f degree C)", T, T-273);
24 //if Tdash=temperature at the outer surface of
      middel layer, then
25 //Q=(Tdash-T2)/(x3/(k1*A))
26 //or Tdash=T2+(Q*x3/(k3*A))
```

```
27 Tdash=T2+(Q*x3/(k3*A)) // [K]
28 printf ("Temperature at outer surface of middle layer
=%f K (%f degree C)", Tdash, Tdash-273);
```

Scilab code Exa 2.31 Heat loss in pipe

```
1
   2 clear;
   3 clc;
   4 //Example 2.31
   5 // Calculate: (a) Heat loss per unit length
   6 //(b) Reduction in heat loss
   7 // Given
   8 hi = 10
                                                     //W/sq m.K
  9 h0=hi
                                                     //W/sq.m.K
10 \text{ r1} = 0.09
                                                             //m
                                                              //m
11 \quad r2 = 0.12
12 t=0.05
                                                          //thickness of insulation [m]
13 k1 = 40
                                                      //W/m.K
14 k2 = 0.05
                                                             //W/m.K
15 T1=473
                                                          //K
                                                         //K
16 T2 = 373
17 Q_{by}_{L=2*\pi}(T1-T2)/(1/(r1*hi)+\log(r2/r1)/k1+1/(r2*
                         h0));
                                                                //W/m
18 printf("Ans (a) Heat loss=\%fW/m",Q_by_L)
19 // After addition of insulation:
                                                         //radius of outer surface of insulaiton
20 \text{ r3=r2+t};
Q_{y_L1=2*\%pi*(T1-T2)/(1/(r1*hi)+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2)/k1+\log(r2/r2
                         r3/r2)/k2+1/(r3*h0));
                                                                                                                                     // W
22 \quad Red = Q_by_L - Q_by_L1
                                                                                                     //Reduciton in heat loss in [W
                         /\mathrm{m}
23 percent_red=(Red/Q_by_L)*100 /\% Reduction in
                         heat loss
24 printf("Ans (b) Percent reduction in heat loss is %f
                              percent", percent_red)
```

Scilab code Exa 2.32 Heat flux through layers

```
1
2 clear;
3 clc;
4 //Example 2.32
5 // Determine: i-Heat flux across the layers and
  //ii-Interfacial temperature between the layers
8 //Given
9 T1=798
              //K
10 T2=298
              //K
11 \times 1 = 0.02
               //m
12 x2=x1
             //m
13 k1=60
             //W/m.K
14 k2=0.1
             //W/m.K
              //W/sq m.K
15 \text{ hi} = 100
16 h0=25
             //W/sq m.K
17 Q_by_A = (T1-T2)/(1/hi+x1/k1+x2/k2+1/h0);
                                                   //W/sq m
18 printf("Ans (i) - Heat flux across the layers is %f W
      / \operatorname{sq} \operatorname{m}, Q_by_A);
  //If Tis the interfacial temperature between steel
      plate and insulating material
20 //Q_by_A = (T-T_2)/(x_2/k_2+1/h_0)
21 T = Q_by_A * (x2/k2+1/h0) + T2
22 printf("Ans-(ii)-Interfacial temperature between
      layers is \%f K (\%f degree C)", T, T-273);
```

Scilab code Exa 2.33 Conductive conductance furnace wall

1

```
2
3 clc;
4 clear;
5 //Example 2.33
6 // Determine Temperature at the outer surface of wall
       and convective conductance on the outer wall
       //Temperature of hot gas:
              //K
  T1 = 2273
       //Ambient aur temperature:
10 T4=318
            //K
       //Heat flow by radiation from gases to inside
11
          surface of wall:
                    //[W/sq m]
12 Qr1_by_A=23260
       //Heat transfer coefficient on inside wall:
13
14 hi=11.63
            //W/sq m.K
       //Thermal conductivity of wall:
16 K=58
          //W. sq m/K
       //Heat flow by radiation from external surface
17
          to ambient:
                  //W/sq m.
18 Qr4_by_A=9300
       //Inside Wall temperature:
19
20 T2 = 1273
           //K
21
22 Qr1 = Qr1_by_A
                    //W for
23 A=1
       //\mathrm{sq} m
24
                        //W/sq m
25 \quad Qc1_by_A=hi*(T1-T2)
26 Qc1=Qc1_by_A // for A=1 sq m
       //Thermal resistance:
27
28 R = 1/K
            //K/W per sq m
29 / \text{Now Q} = (T2 - T3) / R, i.e
30 //External wall temp T3=T2-Q*R
31 //Q entering wall=
32 Q_enter=Qr1+Qc1
                       //W
33 \quad T3=T2-Q_enter*R
34 T3=673
               //Approximate
35 //Heat loss due to convection:
36 \quad Qc4_by_A = Q_enter - Qr4_by_A
                               //W/sq m
```

Scilab code Exa 2.34 Critical radius of insulation

```
1 clc:
2 clear;
3 //Example 2.34
4 // Given
5 T1 = 473
             //[K]
6 T2 = 293
             //[K]
7 k=0.17
             //W/(m.K)
          //W/(sq m.K)
8 h=3
           //W/sq m.K
9 h0=h
10 \text{ rc=k/h}
             //m
               //Inside radius of insulaiton [mm]
11 r1=0.025
12 q_by_11=2*\%pi*(T1-T2)/(log(rc/r1)/k+1/(rc*h0))
                                                        //
     Heat transfer with insulation in W/m
13 //Without insulation:
14 q_by_12=h*2*\%pi*r1*(T1-T2) //W/m
15 inc=(q_by_11-q_by_12)*100/q_by_12 //Increase of
     heat transfer
16 printf ("When covered with insulation, \n heat loss=\%f
      W \n When without insulation, heat loss= \%f W \n
      percent increase = %f percent", q_by_11, q_by_12, inc
     );
17 k = 0.04
             //Fibre glass insulaiton W/(sq m.K)
             //Critical radius of insulaiton
18 \text{ rc=k/h}
19 printf("In this case the avlue of rc=%f m is less
      than the outside radius of pipe (%f),\n So
      additon of any fibre glass would cause a decrease
       in the heat transfer \n",rc,r1)
```

Scilab code Exa 2.36 Critical radius of pipe

```
1
2 clear;
3 clc;
4 //Example 2.36
5 // Calculate the heat loss per metre of pipe and
      outer surface temperature
6 //Given
          //Thermal conductivity in [W/sq m.K]
7 k=1
          //Het transfer coeff in W/sq m.K
9 \text{ rc=k/h}
          // Critical radius in m
             //K
10 T1=473
             //K
11 T2=293
              //Outer radius =inner radius in [m]
12 \text{ r1} = 0.055
13 Q_{by_L=2*\%pi*(T1-T2)/(log(rc/r1)/k+1/(rc*h))}
14 printf ("Heat loss per meter of pipe is %f W/m",
      Q_by_L)
15 //For outer surface
16 //Q_by_L=2*\%pi*(T-T2)/(1/rc*h)
17 // implies that, T=T2+Q_by_L/(rc*2*\%pi)
18 T=T2+Q_by_L/(rc*2*\%pi*h)
                             //K
19 printf ("Outer surface temperature is: %f K(%f degree
      C)", T, T-273)
```

Scilab code Exa 2.37 Time required for steel ball

```
1
2 clc;
3 clear;
4 //Example 2.37
```

```
5 // Calculate the time required for a ball to attain a
       temperature of 423 K
6 //Given
7 k_steel=35
                 //W/m.K
8 Cp_steel=0.46
                    //kJ/(kg*K)
9 Cp_steel=Cp_steel*1000 //J/(kg*K)
          //W/sq m.K
10 h=10
                    //kg/cubic m
11 rho_steel = 7800
12 dia=50
            //mm
13 dia=dia/1000
                   //m
                 //radius in m
14 R=dia/2
                //Area in sq m
15 A = 4 * \%pi * R^2
                //Volume in cubic meter
16 \ V = A * R / 3
17 Nbi=h*(V/A)/k\_steel
18 //As Nbi<0.10, internal temp gradient is negligible
19 T = 423
             //K
20 \quad T0 = 723
21 T_inf=373
                //K
22 //(T-T_{inf})/(T0-T_{inf})=e^{-(-h*At/rho*Cp*V)}
23 t=-rho_steel*Cp_steel*R*log((T-T_inf)/(T0-T_inf))
     /(3*h);
                //s
24 printf("Time required for a ball to attain a
      temperature of 423 K is \%f s= \%f h",t,t/(3600))
```

Scilab code Exa 2.38 Steel ball quenched

```
1
2 clc;
3 clear;
4 //Example 2.38
5 //Given
6 dia=50 //mm
7 dia=dia/1000 //m
8 r=dia/2 //radius in m
9 h=115 //W/sq m.K
```

```
10 rho=8000 //kg/cubic m
             //kJ/kg.K
11 Cp = 0.42
12 Cp=Cp*1000
                  //J/(kg*K)
                  //Area in sq m
13 A = 4 * \%pi * r^2
14 \ V = A * r / 3
              //Volume in cubic m
             //K
15 T=423
                 //K
16 T_inf=363
              //K
17 \quad T0 = 723
18 //(T-T_inf)/(T0-T_inf)=e^{(-3ht/(rho*Cp*r))}
19 t=-rho*Cp*r*log((T-T_inf)/(T0-T_inf))/(3*h);
      Time in seconds
20 printf("Time taken by centre of ball to reach a
      temperature of 423 K is %f s (=%f minutes",t,t
      /60);
```

Scilab code Exa 2.39 Ball plunged in a medium

```
1
2 clc;
3 clear;
4 //Example 2.39
5 // Given
               //W/sq m.K
6 h=11.36
7 k = 43.3
              //w/(m.K)
              //radius in mm
8 r = 25.4
9 r=r/1000
               // radius in m
10 A = 4 * \%pi * r^2
                  //Area of sphere [sq m]
11 V=A*r/3
               //Volume in [cubic m]
12 rho=7849
                //kg/cubic m
                      //J/kg.K
13 Cp = 0.4606 * 10^3
14 t = 1
           //hour
15 t=t*3600
                //seconds
                    // [K]
16 T_{inf} = 394.3
17 T0=700
              //[K]
18 // (T-T_inf)/(T0-T_inf) = e^{(-3*h*t/rho*Cp*V)}
```

```
19  T=T_inf+(T0-T_inf)*(%e^((-h*A*t)/(rho*Cp*V)));
20  printf("Temperature of ball after 1 h= %f K (%f degree C)",T,T-273)
```

Scilab code Exa 2.40 Slab temperature suddenly lowered

```
1 clc;
2 clear;
\frac{3}{2} //Example 2.40
4 //Given
5 rho=9000; //kg/cubic m
6 Cp=0.38; //kJ/(kg.K)
7 Cp=Cp*1000
                  //J/(kg.K)
8 k = 370;
              //W/m.K
9 h = 90;
              //W/sq m.K
10 \ 1 = 400;
              //mm
11 l=1/1000; //length of copper slab
12 t=5/1000;
                 //thickness in [m]
13 \quad A = 2 * 1^2
                //Area of slab
14 V=t*1^2
                  //Volume in [cubic m]
                  //[m]
15 L_dash=V/A
16 //for slab of thickness 2x
17 //L_dash=x
18 L_dash=0.025;
                     // [m]
                     //< 0.10
19 Nbi=h*L_dash/k
20 \text{ var=h*A/(rho*Cp*V)}
21 //As Nbi < 0.10, we can apply lumped capacity analysis
22 T=363
             // [K]
23 T_inf=303
                 //[K]
              //[K]
24 T0=523
25 t=-(log((T-T_inf)/(T0-T_inf)))/var
26 printf("Time at which slab temperature becomes 363 K
       is %f s",t)
27 printf("CALCULATION MISTAKE IN BOOK IN LAST LINE")
```

Scilab code Exa 2.41 Flow over a flat plate

```
1
2 clc;
3 clear;
4 //Example 2.41
5 // Given
                 //kg/cubic meter
6 rho=9000
                //kJ/(kg.K)
7 \text{ Cp} = 0.38
8 Cp=Cp*1000
                    //J/kg.K
              //W/(m.K)
9 k = 370
10 T0=483
             //K
11 T_{inf} = 373
                  //K
12 \text{ delta_T=40}
                    //K
                    //K
13 T=T0-delta_T
          //time in [minutes]
14 t=5
15 t=t*60
            //[seconds]
16 //A=2A.... Two faces
17 / V = A.2 x
18 / 2x = t \operatorname{hickness} \quad \text{of} \quad slab = 30
                                      mm = 0.03
                                                    \mathbf{m}
19 \quad x = 0.015
             // [m]
               //thickness of slab
20 \quad th = 2 * x
21 h=-rho*Cp*x*log((T-T_inf)/(T0-T_inf))/t
22 printf("Heat transfer coefficient is: %f W/(sq m.K)"
       ,h)
```

Scilab code Exa 2.42 Stainless steel rod immersed in water

```
1
2 clear;
3 clc;
4 //Example 2.42
```

```
5 // Given
6 \text{ rho} = 7800
               //[kg per cubic m]
             //W/(sq m.K) Convective heat transfer
7 h = 100
      coeff
8 \text{ Cp} = 460
              //J/(kg.K)
9 k = 40
            //W/(m.K)
           //[m] length ofrod
10 L = 1
11 D=10
           / /mm
12 D = D / 1000
                //diameter in [m]
             //raidus in [m]
13 R = D/2
14 //For cylindrical rod:
15 A = 2 * \%pi * R * L
                 //Area in [sq m]
16 \ V = \%pi * R^2 + L
                    //Volume in [cubic m]
17 L_dash=V/A
                   // [m]
18 Nbi=h*L_dash/k //Biot number
19 // N_bi < 0.10, Hence lumped heat capacity is possible
20 T = 473
             // [K]
21 T_inf=393
                 //[K]
              //[K]
22 T0=593
23 t=-rho*Cp*V*log((T-T_inf)/(TO-T_inf))/(h*A)
24 printf("Time required to reach temperature %f is %f
      s",T,t);
```

Scilab code Exa 2.43 Chromel alumel thermocouple

```
1
2 clear;
3 clc;
4 //Example 2.43
5 //Given
6 rho=8600 //[kg/cubic m]
7 Cp=0.42 //kJ/(kg.K)
8 Cp=Cp*1000 //J/(kg.K)
9 dia=0.71 //[mm]
10 dia=dia/1000 //[dia in m]
```

```
//radius [m]
11 R=dia/2
            //convective coeff W/(sq m.K)
12 h=600
13 //Let length =L=1
14 L=1
               // [m]
15 A=2*\%pi*R*L;
16 V = \%pi * (R^2) * L;
17 tao=(rho*Cp*V)/(h*A);
18 printf ("Time constant of the thermocouple is %f s",
     tao);
19 / at
20 t = tao
21 //From (T-T_i nf)/(T0-T_i nf) = e^(-t/tao)
22 ratio=%e^(-t/tao) //Ratio of thermocouple
      difference to initial temperature difference
23 printf ("At the end of the time period t=tao=%f s
     Temperature difference b/n the thermocouple and
      the gas stream would be %f of the initial
     temperature difference",tao,ratio);
24 printf("\n It should be reordered after \%f s",4*tao)
```

Scilab code Exa 2.44 Thermocouple junction

```
1
2 clc;
3 clear;
4 //Example 2.44
            //kg/cubic m
5 rho=8000
6 \text{ Cp} = 420
              //J/(kg.K)
             // for hot stream W/(sq m.K)
7 h_hot=60
            // [mm]
8 \text{ dia=4}
9 t = 10;
10 r=dia/(2*1000)
                    //radius in [m]
11 //For sphere
12 V=(4/3)*\%pi*r^3 //Volume in [cubic m]
```

```
13 A=4*\%pi*r^2
                     //Volume in [sq m]
14 tao=rho*Cp*V/(h_hot*A) // Time constant in [s]
15 ratio=%e^(-t/tao) // %e^(-t/tao)=(T-T-inf)/(T0-
     T_i n f
16 T_{inf} = 573
               // [K]
17 T0=313
            //[K]
18 T=T_inf+ratio*(T0-T_inf)
19 //ANS-[i]
20 printf("\n Answer: Time constant of thermocouple is
     %f s", tao);
21
22 //IN STILL AIR:
            //W/(sq m .K)
23 h_air=10
                              //[s]
24 tao_air=rho*Cp*V/(h_air*A)
25 t_air=20
            //[s]
26 ratio_air=%e^(-t_air/tao_air)
27 T_inf_air=303 //[K]
28 T0_air=T;
29 T_air=T_inf_air+ratio_air*(T0_air-T_inf_air)
30 /ANS-[ii]
31 printf ("Temperature attained by junction 20 s after
     removing from the hot air stream is: %d K", round(
     T_air))
```

Scilab code Exa 2.45 Batch reactor

```
//[K]
10 To = 290;
11 T = 360;
                              //[K]
12 h=8.5
                             //[W/sq m.K]
13 //Heat gained from the steam=Rate of increase of
      internal energy
14 //U*A*(T_inf-T)=m*Cp*dT
15 deff('[x]=f(t)', 'x=log((T_inf-T_0)/(T_inf-T))-U*Ac*t
      /(m*Cp);
16 t=fsolve(1,f);
                            //[in s]
              //[in s]
17 t = round(t)
18 \text{ Ts} = 290;
19 printf("\nTime taken to heat the reactants over the
      same temperature range is %f h",t);
20 function t1=g(T), t1=m*Cp/(U*Ac*(T_inf-T)-h*Av*(T-Ts)
      ), endfunction
21 t1=intg(To,T,g);
22 deff('[m]=fx(Tmax)', 'm=U*Ac*(T_inf-Tmax)-h*Av*(Tmax-
      Ts)')
23 T_{max} = fsolve(1, fx)
24 printf("\nANS: In CASE 1\nTime taken to heat the
      reactants = \%f s .ie \%f h \n",t,t/3600);
25 printf("\nANS: In CASE 2 \n Time taken to heat the
      reactants = \%f s\n",t1);
26 printf("\nANS.: Maximum temperature at which
      temperature can be raised is \%f \ K\n", T_max);
```

Scilab code Exa 2.46 Heat dissipation by aluminium rod

```
1
2 clc;
3 clear;
4 //Example 2.46
5 dia=3 //[mm]
6 dia=dia/1000 //[m]
7 r=dia/2 //radius in [m]
```

Scilab code Exa 2.47 Aluminium fin efficiency

```
1
2 clc;
3 clear;
4 //Example 2.47
5 //Given
             //W/(m.K)
6 k = 200
            //W/(sq m.K)
7 h = 15
              //[K]
8 T0 = 523
9 T_inf=288
                 //[K]
10 \quad \text{theta_0=T0-T_inf}
           //diameter [mm]
11 dia=25
12 dia=dia/1000 //diameter[m]
              //radius in [m]
13 \text{ r=dia/2}
14 P = \%pi * dia
                 // [m]
15 A = \%pi * r^2
                  //[sq m]
16 //For insulated fin:
17 m = sqrt(h*P/(k*A))
           //length of rod in [mm]
18 L=100
19 L=L/1000
                //length of rod in [m]
20 Q=theta_0*tanh(m*L)*sqrt(h*P*k*A)
                                            //Heat loss
21 / ANSWER-1
22 printf ("Heat loss by the insulated rod is \% f W \setminus n", Q
      )
```

Scilab code Exa 2.49 Pin fins

```
1
2 clc;
3 clear;
4 //Example 2.49
5 // Given
             //W/(m.K)
6 k = 300
7 h = 20
            //W. (sq m.K)
8 P = 0.05
              // [m]
           //[sq cm]
9 \quad A = 2
10 \quad A = A / 10000
                  //[sq m]
              //[K]
11 T0=503
12 T_inf=303
                  //[K]
                          //[K]
13 \text{ theta_0=T0-T_inf}
14 m = sqrt(h*P/(k*A))
15 //CASE 1: 6 Fins of 100 mm length
              //Length of fin in [m]
16 L1=0.1
                                               // [W]
17 Q=sqrt(h*P*k*A)*theta_0*tanh(m*L1)
18 // For 6 fins
19 Q=Q*6
           //for 6 fins [W]
20 //CASE 2: 10 fins of 60 mm length
21 L2=60
           //[mm]
```

Scilab code Exa 2.50 Metallic wall surrounded by oil and water

```
1 clc;
2 clear;
3 //Example 2.50
4 // Given
5 h_oil=180
                  //W/(sq m.K)
                 //W/(sq m.K)
6 h_air=15
7 T_{oil} = 353
                  //[K]
                  //[K]
8 T_air=293
9 delta_T=T_oil-T_air;
                               //[K]
           //Conductivity in [W/(m.K)]
10 k=80
11 \text{ for\_section} = 11*10^-3
                              //[m]
12 L=25
             // [mm]
13 L=L/1000
                 //[m]
           //[m] Width , . . let
14 \quad W = 1
           // [mm]
15 t=1
16 t=t/1000
                 // [m]
             //[m]
17 \quad A = W * t
18 P = 2 * t
19 Af = 2 * L * W
                 // sq m
20 N = 1
21 Ab=for_section-A
                           //[sq m]
22 //CASE 1: Fin on oil side only
23 m = sqrt(h_oil*P/(k*A))
24 nf_oil=tanh(m*L)/(m*L)
25 Ae_oil=Ab+nf_oil*Af*N
                                 //[sq m]
```

Scilab code Exa 2.51 Brass wall

```
1
2 clc;
3 clear;
4 //Example 2.51
5 // Given
6 k = 75
            //Thermal conductivity [W/(m.K)]
7 T_{water} = 363
                   // [K]
8 T_air = 303
                 //[K]
9 dT=T_water-T_air
                     //delta T
10 h1=150 // for water [W/(sq m.K)]
11 h2=15
                // for air [W/(sq m.K)]
12 W = 0.5
            //Width of wall [m]
13 L=0.025
             //[m]
               //Base Area [sq m]
14 \text{ Area=W}^2
15 t = 1
         // [mm]
16 t=t/1000
               //[m]
17 pitch=10
               // [mm]
18 pitch=pitch/1000
                        // [m]
```

```
//[No of fins]
19 N=W/pitch
20 // Calculations
21 A = N * W * t
               //Total cross-sectional area of fins
       sq m
22 Ab=Area-A
                //[sq m]
23 Af = 2 * W * L
                //Surface area of fins
                                         [sq m]
24
25 //CASE 1: HEAT TRANSFER WITHOUT FINS
26 A1=Area
             //[sq m]
27 \quad A2 = A1
             //[sq m]
Q=dT/(1/(h1*A1)+1/(h2*A2));
29 printf("\nWithout fins,Q=\%f W\n",Q);
30 //CASE 2: Fins on the water side
31 P=2*(t+W);
32 A=0.5*10^{-3};
33 \text{ m=sqrt}(h1*P/(k*A))
34 nfw=tanh(m*L)/(m*L) // Effeciency on water side
                       //Effective area on the water
35 \quad Aew = Ab + nfw * Af * N
              sq m
      side
36 \ Q=dT/(1/(h1*Aew)+1/(h2*A2));
                                           // [W]
37 printf("\n With fins on water side,Q=\%f W \n",Q);
38 //CASE 3: FINS ON THE AIR SIDE
39 \text{ m=sqrt}(h2*P/(k*A))
40 \operatorname{nf_air} = \operatorname{tanh}(m*L)/(m*L) // Effeciency
                          //Effective area on air side
41 Aea=Ab+nf_air*Af*N
42 \ Q=dT/(1/(h1*A1)+1/(h2*Aea));
43 printf("\n With Fins on Air side,Q=\%f W \n",Q)
44 //BOTH SIDE:
45 \quad Q=dT/(1/(h1*Aew)+1/(h2*Aea));
46 printf("\n With Fins on both side, Q=\%f W\n",Q);
```

Chapter 3

Convection

Scilab code Exa 3.1 Boundary layer thickness

```
1 clc;
2 clear;
3 //Example 3.1
4 \text{ mu} = 10^{-3}
                     //N. s/m^2
5 //At distance y from surface
6 //ux=a+by+cy^2+dy^3
7 //At y=0,ux=0 therefore a=0
8 //i.e.tao=0
9 //At edge of boundary layer, ie y=del
10 //ux = u_i n f
11 / At y=0, c=0
12 //At y=del, ux=b*del+d*del^3
13
14 / Therefore, b=-3*d*del^3
15 //d = -u_i n f / (2 * d e l^2)
16 / b = 3*u_i nf / (2*del)
17
18 //For velocity profile, we have:
19 // del/x = 4.64*(Nre_x)^(-1/2)
20
21 //Evaluate N re_x
```

```
22
23 x = 75;
                //[mm]
24 x = x / 1000;
                     // [m]
                         //[m/s]
25 u_inf=3;
26 rho=1000
                         //[kg/m^3] for air
27 \text{ Nre_x=u_inf*rho*x/mu}
                                 //Reynold number
28 //Substituting the value, we get
29 del=x*4.64*(Nre_x^{(-1/2)})
                                      // [m]
30 printf("\nBoundary layer thickness is del=%f m or %f
      mm", del, del *1000);
31 printf("\nWrong units in answer of book, m and mm are
       wrongly interchanged");
```

Scilab code Exa 3.2 Boundary layer thickness of plate

```
1 clc;
2 clear;
3 / Example 3.2
4 // Given
5 \text{ mu}=15*10^-6 //\text{sq m}/\text{s}
6 v=2
          //m/s
7 L=2
          //[m] length of plate
8 \text{ Nre}_x = 3*10^5
  xc=Nre_x*mu/v
                    //critical length at whihe the
      transition takes place
10 //Since xc is less than 2 m. Therefore the flow is
      laminar
11 //at any distance x, it is calculated from
12 // del/x = 4.64/(sqrt(NRe,x))
13 //At x=L=2 m
14 Nre_l=v*L/mu
15 del_l=4.64*L/sqrt(Nre_l)
16 del_l=del_l*1000
                     // [mm]
17 printf("Boundary layerthickness at the trailing edge
       is \%f mm", del_1);
```

Scilab code Exa 3.3 Thickness of hydrodynamic boundary layer

```
1 clc;
2 clear;
3 //Example 3.3
4 // Given
5 \text{ mu} = 15 * 10^{-6}
                    //Kinematic viscosity in [sq m /s]
             //[m]
6 x = 0.4
7 u_inf=3
               // [m/s]
8 / At x = 0.4 m
9 Nre_x=u_inf*x/mu
10 printf("Since Nre,x (%f) is Less than 3*10^5,...the
      boundary layer is laminar", Nre_x);
11 del=4.64*x/sqrt(Nre_x)
                                // [m]
12 del=del*1000
                     // [mm]
13 printf("\nThickness of boundary layer at x=%f m =%f
     mm \setminus n", x, del);
14 Cf_x=0.664/sqrt(Nre_x);
15 printf("Local skin friction coefficient is :%f",Cf_x
      );
```

Scilab code Exa 3.4 Flat plate boundary layer

```
//[kg/m^3]
9 rho=P*M_avg/(R*T)
                          //Viscosity in [m/s]
10 \quad u_inf=2
11 / At x = 20 cm = 0.2 m
                                //[m]
12 x = 0.2;
                                //[Reynolds number]
13 Nre_x=rho*u_inf*x/mu
14 del_by_x=4.64/sqrt(Nre_x) //[Boundary layer]
                                   //[m]
15 \text{ del=del_by_x*x}
16 / del = del * 1000
                                      //[mm]
17
18 //At
19 x = 0.4;
                     // [m]
20 Nre_x=(rho*u_inf*x)/mu
                                   //<3*10^5
21 //Boundary layer is laminar
22 \text{ del_by_x=} 4.64/\text{sqrt}(Nre_x)
                                    //[m]
23 \text{ del1=del_by_x*x}
                                        //[\mathrm{mm}]
24 / del1 = del1 * 1000
25 d = del1 - del
                                        //Del
26 function m_{dot=f(y), m_{dot=u_inf*(1.5*(y/d)-0.5*(y/d)}
      ^3) *rho, endfunction
27 \text{ m\_dot} = intg(0,d,f)
28 printf("\nBoundary layer thickness at distance 20 cm
       from leading edge is \%f m=\%f mm\n",del,del*1000)
29 printf("\nBoundary layer thickness at distance 40 cm
       from leading edge is %f m=%f mm\n",del1,del1
      *1000);
30 printf("\nThus, Mass flow rate entering the boundary
      layer is %f kg/s", m_dot);
```

Scilab code Exa 3.5 Rate of heat removed from plate

```
1
2 clc;
3 clear;
4 //Example 3.5
```

```
5 //Given
6 mu=3.9*10^-4 //Kinematic viscosity in sq m/s
7 k=36.4*10^{-3} //Thermal conductivity in W/(m.K)
8 \text{ Npr} = 0.69
9 u_inf=8
              // [m/s]
10 L = 1
         //Lenght of plate in [m]
11 Nre_l=u_inf*L/mu
12 //Since Nre_l is less than 3*10^5, the flow is
     laminar over the entire length of plate
13 Nnu=0.664*sqrt(Nre_1)*Npr^(1.0/3.0) //=hL/k
14
                //w/sq m.K
15 h=k*Nnu/L
16 h=3.06
               // Approximation
                                 [W/sq m.K]
17 T_inf=523
                // [K]
             //[K]
18 \text{ Tw} = 351
            //Width of plate [m]
19 \ W=0.3
         //Area in [sq m]
20 A = W * L
21 \quad Q=h*A*(T_inf-Tw)
                      // Rate of heat removal from one
       side in [W]
22 printf("\nRate of heat removal is \%f \nN\n",Q)
23 //from two side:
          // [W]
24 \ Q = 2 * Q
25 printf("\n %f W heat should be removed continously
      from the plate",Q);
```

Scilab code Exa 3.6 Heat removed from plate

```
1
2 clc;
3 clear;
4 //Example 3.6
5 P1=101.325 //Pressure in [kPa]
6 mu1=30.8*10^-6 //Kinematic viscosity in [sq m /s]
7 k=36.4*10^-3 //[W/(m.K)]
8 Npr=0.69
```

```
9 u_inf=8 // Velocity in [m/s]
10 \text{ Cp} = 1.08
              //kJ/(kg.K)
            //Length of plate in [m]
11 L=1.5
12 W = 0.3
            //Width in [m]
13 A = L * W
            //Area in [sq m]
14 //At constant temperature: mu1/mu2=P2/P1
15 P2=8
            //[kPa]
16 mu2=mu1*P1/P2
                  //Kinematic viscosity at P2 in [sq
     m/s
17 Nre_l=u_inf*L/mu2 //Reynold's no.
18 //Since this is less than 3*10^5
19 Nnu=0.664*sqrt(Nre_1)*(Npr^(1.0/3.0))
20 h=Nnu*k/L // Heat transfer coeffficient in [W/sq m.
     K
21 h = 2.5
               //Approximation in [W/sq m.K]
22 T_inf=523
                // [K]
23 \text{ Tw} = 353
           //[K]
24 Q=2*h*A*(T_inf-Tw) //Heat removed from both sides
       in [W]
25 printf("Rate of heat removed from both sides of
      plate is %f W',Q);
```

Scilab code Exa 3.7 Local heat transfer coefficient

```
12 //Since this is less than 3*10^5. The flow is laminar
       upto x=0.4 \text{ m}
13 \text{mu=rho*v} // [kg/(m.s)]
14
15 Cp=1.009 //[kJ/kg.K]
16 Cp=Cp*1000
                 //[J/kg.K]
17 k = 0.03
            //W/(m.K)
18 Npr=Cp*mu/k
19 Nnu_x=0.332*(sqrt(Nre_x))*(Npr^(1.0/3.0))
20 hx=Nnu_x*k/x // [W/(m.K)]
21 //Average value is twice this value
          //[W/(m.K)]
22 h=2*hx
              // Approximation
23 h = 10.6
24 A=x*w //Area in [sq m]
25 \text{ Tw} = 407
          //[k]
26 \text{ T_inf} = 293 //[K]
27 \quad Q=h*A*(Tw-T_inf) \quad //[W]
28 //From both sides of the plate:
29 Q=2*Q
          / / [W]
30 printf("The heat transferred from both sides of the
      plate is %d W', round(Q));
```

Scilab code Exa 3.8 Width of plate

```
12 //therefore flow is laminar and
13 \text{Nnu}_x=0.332*\text{sqrt}(\text{Nre}_x)*(\text{Npr}^(1.0/3.0));
                    // [W/sq m.K]
14 \text{ hx} = \text{Nnu}_x * k/x
15 // Average heat tarnsfer coefficient is twice this
       value
16 h = 2 * hx
               //[W/sq m.K]
17 // Given:
18 Q=1450
                // [W]
                //[K]
19 \text{ Tw} = 407
20 T_{inf} = 293
                //[K]
               //[m]
21 L=0.4
22 / Q = h*w*L*(Tw-T_inf)
23 //L=Q/(h*w*(Tw-T_inf))
24 w = Q/(h*L*(Tw-T_inf))
                                 // m
25 printf("\n Width of plate is \%f m", w);
```

Scilab code Exa 3.9 Heat transferred in flat plate

```
1
2 clc;
3 clear;
4 //Example 3.9
                   //Viscosity for air [sq m./s]
5 v = 17.36 * 10^{-6}
6 k=0.0275
             //for air ..[W/(m.K)]
7 \text{ Cp} = 1.006
                //[kJ/(kg.K)]
               //for air
8 \text{ Npr} = 0.7
              // [m/s]
9 u_inf=2
10 x = 0.2
             //[m]
                     //Reynolds number at x=0.2
11 Nre_x=u_inf*x/v
                                                           \mathbf{m}
12 //Since this is less than 3*10^5
13 Nnu_x=0.332*sqrt(Nre_x)*(Npr^(1.0/3.0))
14 \text{ hx} = \text{Nnu}_x * k/x
                  //[W/(sq m.K]]
15 //Average value of heat transfer coeff is twice this
       value
              // [W/sq m.K)]
16 h=2*hx
```

```
17 h = 12.3
                //Approximation
           //width in [m]
18 \quad w = 1
              //[sq m] Area of plate
19 A = x * w
               //[K]
20 \text{ Tw} = 333
                  //[K]
21 T_{inf} = 300
22 \quad Q=h*A*(Tw-T_inf)
                         //Heat flow in [W]
23 printf("\nANSWER:\nHeat flow is :\%f W\n",Q)
24 //From both sides of plate:
25 Q = 2 * Q
             // |W|
26 printf("\nANSWER\n Heat flow from both sides of
      plate is %f W",Q);
```

Scilab code Exa 3.10 Rate of heat transferred in turbulent flow

```
1 clc;
2 clear;
\frac{3}{2} //Example 3.10
4 v = 16.96 * 10^{-6}
                      //[sq m./s]
              //[kg/cubic m]
5 rho=1.128
               //Prandtl number
6 \text{ Npr} = 0.699
7 k=0.0276
                // [W/m.K]
                //[m/s]
8 u_inf=15
             //[m]
9 L = 0.2
10 Nre_l=L*u_inf/v //Reynold's number
11 //Since this is less than 3*10<sup>5</sup>, the boundary layer
      is laminar over entire length
12 Nnu=0.664*sqrt(Nre_1)*(Npr^(1.0/3.0))
                 //[W/sq m.K]
13 h=Nnu*k/L
14 \quad A = L^2
             //Area in [sq m]
              //[K]
15 \text{ Tw} = 293
16 T_{inf} = 333
                  //[K]
17 //Rate of heat transfer from BOTH sides is:
18 Q=2*h*A*(T_inf-Tw) // [W]
19 printf ("Rate of heat transfer from both sides of
      plate is %f W n,Q);
```

Scilab code Exa 3.11 Heat transfer from plate in unit direction

```
1 clc;
2 clear;
3 //Example 3.11
4 mu=1.906*10^-5
                         //[kg/(m.s)]
                  //W/m.K
5 k=0.02723
                 //[kJ/(kg.K)]
6 \text{ Cp} = 1.007
                 //[kg/cubic m]
7 \text{ rho} = 1.129
8 \text{ Npr} = 0.70
9 \text{ Mavg} = 29
10 u_inf=35
               // [m/s]
               // [m]
11 L=0.75
               //[K]
12 \text{ Tm} = 313
13 P=101.325
                   //[kPa]
14 Nre_l=rho*u_inf*L/mu
                             //\text{Reynold 's number } > 5*10^5
15 Nnu=0.0366*Nre_l^(0.8)*Npr^(1.0/3.0);
                // [W/s m.K]
16 h=Nnu*k/L
              //[sq m]
17 A = 1 * L
               //[K]
18 \text{ Tw} = 333
19 T_inf=293
                   //[K]
20 Q=h*A*(Tw-T_inf);
                            // [W]
21 printf("Heat transfer from the plate is %f W",Q);
```

Scilab code Exa 3.12 Heat lost by sphere

```
1 clc;
2 clear;
3 //Example 3.12
4 v = 18.23 * 10^{-6}
                    // sq m/s
5 k=0.02814 / [W/m.K]
              //[m]
6 D = 0.012
7 r = 0.006
              // [m]
8 u_inf=4
              // [m/s]
9 Nre=D*u_inf/v //Reynold's number
10 Nnu=0.37*Nre^(0.6);
11 h=Nnu*(k/D)
                //Area of sphere in [sq m]
12 A=4*\%pi*r^2
           //[K]
13 \text{ Tw} = 350
               //[K]
14 T_inf=300
15 Q=h*A*(Tw-T_inf)
                        //Heat lost by sphere in [W]
16 printf("\n Heat lost by sphere is \%f W",Q);
```

Scilab code Exa 3.13 Heat lost by sphere

```
1 clc;
2 clear;
3 //Exmaple 3.13
4 v = 15.69 * 10^{-6}
                         //[sq m./s]
                // [W/m.K]
5 k=0.02624
6 Npr=0.708 // Prandtl number
7 \text{ mu} = 2.075 * 10^{-5}
                      // \text{kg/m.s}
8 \text{ u\_inf} = 4 // [\text{m/s}]
                             //[m/s] velocity
9 \text{ mu\_inf} = 1.8462 * 10^{-5}
10 \text{ Tw} = 350
            //[K]
11 T_{inf} = 300 // [K]
```

Scilab code Exa 3.14 Percent power lost in bulb

```
1 clc;
2 clear;
3 //Example 3.14
4 v = 2.08 * 10^{-5}
                     //[sq m/s]
5 k=0.03
              //W/(m.K)
6 \text{ Npr} = 0.697
               //Prandtl number
7 D = 0.06
              // [m]
8 \text{ u\_inf} = 0.3
                 // [m/s]
9 Nre=D*u_inf/v //Reynolds number
10 //Average nusselt number is given by:
11 Nnu=0.37*(Nre^0.6);
                 //W/sq m.K
12 h=Nnu*k/D
              //[K]
13 \text{ Tw} = 400
              //\left[ \mathrm{K}\right]
14 T_inf=300
15 D = 0.06
              // [m]
              //[m]
16 r = 0.03
17 A=4*%pi*r^2 //Area in [sq m]
18 Q=h*A*(Tw-T_inf) // [W]
19 per = Q * 100/100
                     //Percent of heat lost by forced
      convection
20 printf ("Heat transfer rate is %f W, And percentage of
       power lost by convectio is: %f percent ",Q,per);
```

Scilab code Exa 3.15 Heat lost by cylinder

```
1
2 clc;
3 clear;
4 //Example 3.15
             //velocity in [m/s]
5 u_inf=50
6 \text{ mu} = 2.14 * 10^{-5}
                    //[kg/(m.s)]
                //[kg/cubic m]
7 \text{ rho} = 0.966
                //[W/(m.K)]
8 k=0.0312
9 \text{ Npr} = 0.695
                //Prandtl number
            //Diameter in [m]
10 D = 0.05
11 Nre=D*u_inf*rho/mu; //Reynold's number
12 printf("%f", Nre)
13 Nnu=0.0266*Nre^0.805*Npr^(1/3);
14 h=Nnu*k/D
              ; //W/sq m.K
                //Approximation
15 h=171.7
16 printf("\n\%f",h)
17 \text{ Tw} = 423
             //[K]
18 T_inf=308
                 // [K]
19 //Heat loss per unit length is :
20 Q_by_1=h*\%pi*D*(Tw-T_inf); //[W]
21 printf("Heat lost per unit length of cylinder is %f
     W(approx)", round(Q_by_1));
```

Scilab code Exa 3.16 Heat transfer in tube

```
1
2 clc;
3 clear;
4 //Example 3.16
```

```
5 v = 20.92*10^-6 //sq m/s
6 k=3*10^-2 /W/(m.K)
7 \text{ Npr} = 0.7
            // [m/s]
8 u_inf=25
         // [mm]
9 d=50
10 d=d/1000
              // [m]
11 Nre=u_inf*d/v //Reynold's number
12 Tw = 397 // [K]
13 T_{inf} = 303 // [K]
14
15 // Case 1: Circular tube
16
17 Nnu=0.0266*Nre^(0.805)*Npr^(1.0/3.0);
18 h=Nnu*k/d // [W/sq m.K]
19 A=%pi*d //Area in [sq m]
20 Q=h*A*(Tw-T_inf) // [W]
21 Q_by_l1=h*%pi*d*(Tw-T_inf) //[W/m]
22
23 // Case 2: Square tube
24 A=50*50 //Area in [sq mm]
                 //Perimeter [mm]
25 P=2*(50+50)
                 // [mm]
26 \ 1 = 4 * A / P
27 \quad 1=1/1000
                  // [m]
28 Nnu=0.102*(Nre^0.675)*(Npr^(1.0/3.0))
29 h=Nnu*k/d //W/(sq m.K)
                  //[sq m]
30 \quad A = 4 * 1 * 1
31
32 \quad Q=h*A*(Tw-T_inf)
33 Q_by_12=Q/1
                 // [W/m]
34 printf("\nRate of heat flow from the square pipe=%f
     W/m \n which is more than that from the circular
       pipe which is equal to %f W/m", Q_by_12, Q_by_11);
```

Scilab code Exa 3.17 Heat transfer coefficient

```
1
2 clc;
3 clear;
4 //Example 3.17
5 \text{ mu} = 0.8
             //Viscosity of flowing fluid [N.s/sq m]
6 \text{ rho}=1.1
             //Density of flowinf fluid [g/cubic cm]
7 rho=rho*1000
                  //Density in [kg/cubic m]
8 Cp=1.26 // Specific heat [kJ/kg.K]
9 Cp = Cp * 10^3
                 // in [J/(kg.K)]
10 \text{ k=0.384}
              //[W/(m.K)]
             //Viscosity at wall temperature [N.s/sq m]
11 \quad mu_w=1
12 L=5
          // [m]
13 vfr=300
              //Volumetric flow rate in [cubic cm/s]
14 vfr=vfr*10^-6
                     //[cubic m/s]
                  //Mass flow rate of flowinf fluid [kg
15 mfr=vfr*rho
      /s]
            //Inside diameter in [mm]
16 Di=20
17 Di=Di/1000
                  // [m]
18 Area=(%pi/4)*Di^2
                         //Area of cross-section [sq m]
19 u=vfr/Area
              //Veloctiv in [m/s]
                      //Reynold's number
20 Nre=Di*u*rho/mu
21 //As reynold's number is less than 2100, he flow is
     laminar
22 Npr=Cp*mu/k
                   //Prandtl number
23 Nnu=1.86*(Nre*Npr*Di/L)^(1.0/3.0)*(mu/mu_w)^(0.14)
24 hi=Nnu*k/Di
                  //inside heat transfer coefficient [W
      /sq m.K]
25 printf ("Inside heat transfer coefficient is %f W/(sq
      m.K)",hi);
26 // Note:
27 printf("\n The answer given in book..ie 1225 is
      wrong. please redo the calculation of last line
      manually to check\n");
```

Scilab code Exa 3.18 Heat transfer coefficient in heated tube

```
1 clc;
2 clear;
3 //Example 3.18
4 m = 5500
             //Mass flow rate in [kg/h]
5 m = m/3600
               //[kg/s]
                //Density of fluid in [g/cm<sup>3</sup>]
6 \text{ rho} = 1.07
7 rho=rho*1000 //[kg/m^3]
                //Volumetric flow rate in [m<sup>3</sup>/s]
8 vfr=m/rho
9 \text{ Di} = 40
            //Diameter of tube [mm]
10 Di=Di/1000
                  // [m]
11 A = (\%pi/4) * Di^2
                      //Area of cross-section in [sq m]
              //Velocity of flowing fluid
                                                  [m/s]
12 u = vfr/A
               //Density in [kg/m<sup>3</sup>]
13 rho=1070
                //Viscosity in [kg/m.s]
14 \text{ mu} = 0.004
15 Nre=Di*u*rho/mu
16 Nre=12198
                     //Approx
17 //Since this reynold's number is less than 10000, the
       flow is turbulent
               //Specific heat in [kJ/kg.K]
18 \text{ Cp} = 2.72
19 Cp = Cp * 10^3
                  //Specific heat in [J/kg.K]
20 k = 0.256
             //thermal conductivity in [W/m.K]
21 Npr=Cp*mu/k
                   //Prandtl number
22 Nnu=0.023*(Nre^0.8)*(Npr^0.4)
                                       //Nusselt number
                   //Inside heat transfer coefficient in
23 hi=k*Nnu/Di
       [W/m^2.K]
24 printf ("Inside heat transfer coefficient is %f W/sq
     m.K",hi);
```

Scilab code Exa 3.19 h of water flowing in tube

```
1
2 clc;
3 clear;
4 //Example 3.19
```

```
6 //DATA:
7 \text{ rho} = 984.1
                //Density of water [kg/m<sup>3</sup>]
           //Specific heat in [J/kg.K]
8 \text{ Cp} = 4187
9 mu = 485*10^-6 // Viscosity at 331 K[Pa.s]
10 k = 0.657
           //[W/(m.K)]
11 mu_w=920*10^-6 // Viscosity at 297 K [Pa.s]
12 //Solution
          //Diameter in [mm]
13 D=16
               //Diameter in [m]
14 D = D / 1000
         //Velocity in [m/s]
                //[kg/m^3]
16 rho=984.1
                    //Reynolds number
17 Nre=D*u*rho/mu
18 Nre=round(Nre)
19 Npr=Cp*mu/k
                  //Prandtl number
20
21 // Dittus-Boelter equation (i)
22 Nnu=0.023*(Nre^0.8)*(Npr^0.3)
                                   //nusselt number
               //Heat transfer coefficient [W/m^2.K]
23 h=k*Nnu/D
24 printf("\nANSWER-(i) \nBy Dittus-Boelter equation we
       get h=\%f W/sq m.K \n \n' n', h);
25
\frac{26}{\sqrt{\text{sieder-tate equation (ii)}}}
27 Nnu=0.023*(Nre^0.8)*(Npr^(1.0/3.0))*((mu/mu_w)^0.14)
          //Nusselt number
28 h=k*Nnu/D //Heat transfer coefficient in [W/sq m.
     K
29 printf("\nAnswer-(ii)\n-By Sieder-Tate equation we
      get h=\%f W/sq m.K n, h);
30 printf("\nNOTE: Calculation mistake in book in part 2
       ie sieder tate eqn\n")
```

Scilab code Exa 3.20 Overall heat transfer coefficient

```
1 clc;
2 clear;
```

```
\frac{3}{2} //Example 3.20
4 m_dot=2250
                 //Mass flow arte in [kg/h]
            //Specific heat in [kJ/(kg.K)]
5 \text{ Cp} = 3.35
6 dT=316-288.5 //Temperature drop for oil
                                                      [K]
7 Q=Cp*m_dot*dT //Rate of heat transfer in [kJ/h]
8 \ Q=round(Q*1000/3600)
                             //[J/s] or [W]
             //Inside diameter [m]
9 \text{ Di} = 0.04
10 \, \text{Do} = 0.048
             //Outside diamter in [m]
11 hi=4070
               //for steam [W/sq m.K]
               //For oil [W/sq m.K]
12 ho=18.26
              // [sq m.K/W]
13 Rdo=0.123
                 // [sq m.K/W]
14 Rdi=0.215
15 Uo=1/(1/ho+Do/(hi*Di)+Rdo+Rdi*(Do/Di)) // W/m^2.K
16 \text{ Uo} = 2.3
17 \quad dT1 = 373 - 288.5
                    // [K]
                   //[K]
18 dT2=373-316
19 dTm = (dT1 - dT2) / log(dT1/dT2) / [K]
20 Ao=Q/(Uo*dTm) //Heat transfer area in [m^2]
21 printf("Heatr transfer area is: %f m^2", Ao);
```

Scilab code Exa 3.21 Number of tubes in exchanger

```
1
2 clc;
3 clear;
4 //Example 3.21
5 k_tube=111.65
                  // [W/m.K]
          //[kg/h]
6 W = 4500
             //[kg/sq m]
7 rho=995.7
               //[kJ/(kg.K)]
8 \text{ Cp} = 4.174
9 k = 0.617
              //[W/(m.K)]
10 v=0.659*10^-6 //Kinematic viscosity [sq m/s]
11 m_dot=1720
                 //kg/h
12 T1=293
          //Initial temperature in [K]
```

```
//Final temperature in [K]
13 T2=318
                 //[K]
14 dT=T2-T1
15 \quad Q=m_dot*Cp*dT
                       //Heat transfer rate in [kJ/h]
                       //[J/s] or [W]
16 \quad Q = Q * 1000 / 3600
                  //[m]
17 Di=0.0225
18 u = 1.2
             // [m/s]
19 //Nre=Di*u*rho/mu or
                //Reynolds number
20 \text{ Nre=Di*u/v}
21 //As Nre is greater than 10000, Dittus Boelter
      equation is applicable
22 \text{ Cp=Cp*10^3}
                   //J/(kg.K)
                 //[kg/(m.s)]
23 \text{ mu=v*rho}
24 \text{ Npr=Cp*mu/k}
                    //Prandtl number
25 //Dittus-Boelter equation for heating is
26 Nnu=0.023*(Nre^0.8)*(Npr^0.4)
27 \text{ hi=k*Nnu/Di}
                 //Heat transfer coefficient [W/(sq m
      .K)]
28 \text{ Do} = 0.025
                //[m]
29 Dw = (Do - Di) / log(Do / Di)
                                //Log mean diameter in [m]
                //[W/sq m.K]
30 \text{ ho} = 4650
                // [W/m.K]
31 k = 111.65
32 \text{ xw} = (\text{Do} - \text{Di})/2
                     // |m|
33 Uo=1/(1/ho+Do/(hi*Di)+xw*Do/(k*Dw)) // Overall
      heat transfer coefficient in W/(m<sup>2</sup>.K)
34 T_steam=373
                 //Temperature of condensing steam in
      [K]
35 	 dT1=T_steam-T1+10
                            //[K]
36 \quad dT2=T_steam-T2+10
                            //[K]
37 \quad dTm = (dT1 - dT2) / log(dT1/dT2)
                                      // [K]
38 Ao=Q/(Uo*dTm)//Area in [m^2]
          //length of tube [m]
                      //number of tubes
40 \quad n=Ao/(\%pi*Do*L)
41 printf("No. of tubes required=%d\n", round(n));
42 printf("\n NOTE: there is an error in book in
      calculation of dT1 and dT2,\n 373-293 is written
      as 90, instead of 80... similarly in dT_2, nS_0, in
      compliance with the book, 10 is added to both of
      them")
```

Scilab code Exa 3.22 Convective film coefficient

```
1 clc;
2 clear;
3 //Example 3.22
                   //massflow rate of water [kg/h]
4 \text{ m\_dot} = 25000
5 rho=992.2
                 //[kg/m^3]
               // [W/m.K]
6 k=0.634
7 vfr=m_dot/rho
                   //[m^3/h]
                //Prandtl numberl
8 \text{ Npr} = 4.31
9 Di = 50
            // [mm]
              //[m]
10 \text{ Di} = 0.05
11 dT = 10
             //[K] as the wall is at a temperature of 10
      K above the bulk temperature
12 u=(vfr/3600)/(%pi*(Di/2)^2)
                                    //Velocity of water
      in [m/s]
13 u=3.56
                    //Approximation
14 / Nre=Di*u*rho/mu=Di*u/v
                                 as v=mu/rho
                      //[m^2/s]
15 \quad v=0.659*10^-6;
                 //Reynolds number
16 Nre=Di*u/v
17 //As it is less than 10000, the flow is in the
      turbulent region for heat transfer and Dittus
      Boelter eqn is used
18 Nnu=0.023*(Nre^0.8)*(Npr^0.4);
                                        // Nusselt number
19 hi=Nnu*k/Di //Heat transfer coefficiet in [W/sq m
      .K]
20 q_by_l=hi*%pi*Di*dT
                         //Heat transfer per unit
      length [kW/m]
21 printf("Average value of convective film coefficient
       is hi= %d W/sq m.K \nHeat transferred per unit
      length is Q/L=\%f \ kW/m, round(hi), q_by_1/1000);
```

Scilab code Exa 3.23 Length of tube

```
1 clc;
2 clear;
3 //Example 3.23
4 vfr=1200; //Water flow rate in [1/h]
5 rho=0.98; //Density of water in g/[cubic cm]
6 m_dot=vfr*rho //Mass flow rate of water [kg/h]
7 m_dot2=m_dot/3600 // [kg/s]
8 \text{ Cp}=4.187*10^3;
                   //[J/kg.K]
9 Di=0.025 ; // Diameter in [m]
10 mu = 0.0006; //[kg/(m.s)]
11 Ai = \%pi * ((Di/2)^2) // Area of cross-section in [m]
      ^2]
12 Nre=(Di/mu)*(m_dot2/Ai) //Reynolds number
13 k=0.63; //for metal wall in [W/(m.K)]
14 Npr=Cp*mu/k; //Prandtl number
15 //Since Nre>10000
16 //therefore , Dittus boelter eqn for heating is
17 Nnu=0.023*(Nre^(0.8))*(Npr^(0.4))
18 ho=5800; //Film heat coefficientW/(m^2.K)
19 hi=Nnu*k/Di //Heat transfer coeffcient in [W/(sq
     m.K)]
20 \text{ Do} = 0.028;
               // [m]
21 Di=0.025; //[m]
22 \text{ xw} = (Do - Di) / 2;
                  // [m]
23 Dw = (Do - Di) / log(Do / Di);
                           // [m]
24 k=50; // for metal wall in [W/(m.K)]
25 Uo=1/(1/ho+Do/(hi*Di)+xw*Do/(k*Dw)); //in [W/sq m
      .K]
26 \text{ dT} = 343 - 303 \; ; \; //[K]
27 dT1=393-303 ;
                  //[K]
28 dT2=393-343 ;
                   // [K]
29 dTm = (dT1 - dT2) / log(dT1/dT2); //[K]
30 Cp=Cp/1000; //[in [kJ/kg.K]]
31 Q=m_dot*Cp*dT; //Rate of heat transfer in [kJ/h]
                    //[J/s] or [W]
32 Q=Q*1000/3600;
33 Ao=Q/(Uo*dTm); //Heat transfer area in [sq m]
```

```
34 //Also,..Ao=%pi*Do*L ..implies that
35 L=Ao/(%pi*Do) //[m]
36 printf("Length of tube required is %f m",round(L));
```

Scilab code Exa 3.24 Cooling coil

```
1 clc;
2 clear;
3 //Example 3.24
4 //1. For initial conditions:
5 T = 360;
                     //[K]
                     //[K]
6 T1 = 280;
7 T2 = 320;
                    // [K]
8 dT1=T-T1;
                     //[K]
9 	 dT2=T-T2;
                    //[K]
10 //Q1 = m1_dot*Cp1*(T2-T1)
11 Cp1=4.187
                         //Heat capacity
12 dTlm = (dT1 - dT2) / log(dT1/dT2) / [K]
13 m1_by_UA = dTlm/(Cp1*(T2-T1))
14 //For final conditions :
15 / m2_dot = m1_dot
16 / U2 = U1
17 / A2 = 5 * A1
18 deff('x=f(t)', 'x=m1_by_UA*Cp1*(t-T1)-5*((dT1-(T-t)))/
      \log (dT1/(T-t)));
19 T = fsolve(350.5, f)
20 printf("\nOutlet temperature of water is \%f K\n",T);
```

Scilab code Exa 3.25 Outlet temperature of water

```
1 clc;
2 clear;
3 //Example 3.25
```

```
4 mo_dot=60 //Mass flow rate of oilin [g/s]
5 mo_dot=6*10^-2 // [kg/s]
           //\mathrm{Specific} heat of oil in [\mathrm{kJ/(kg.K)}]
6 Cpo=2.0
7 T1 = 420
           //[K]
          //[K]
8 T2=320
9 Q=mo_dot*Cpo*(T1-T2) //Rate of heat flow in [kJ/s]
                  //Mass flow rate of water
                                                  //kg/s
10 \text{ mw\_dot=mo\_dot}
11 t1=290 //[K]
             //[kJ/(kg.K)]
12 \text{ Cpw} = 4.18
13 //For finding outlet temperature of water
14 t2=t1+Q/(mw_dot*Cpw) //[K]
15 dT1=T1-t2
              //[K]
              // [K]
16 dT2=T2-t1
17 dTm = (dT1 - dT2) / log(dT1/dT2) / [K]
18 ho=1.6 //Oil side heat transfer coefficient in [kW
      /(sq m.K)]
          //Water side heat transfer coeff in [kW/(sq
19 hi=3.6
     m.K)
20 // Overall heat transfer coefficient is:
21 U=1/(1/ho+1/hi) / [kW/(m^2.K)]
22
23 A=Q/(U*dTm) // [sq m]
24 Do=25
         // [mm]
25 \text{ Do=Do}/1000 //[m]
26 L=A/(\%pi*Do) //Length of tube in [m]
27 printf("\nOutlet temperature of water is \%f K\n",
      round(t2));
28 printf ("Area of heat transfer required is %f sq m\n"
      , A);
29 printf("Length of tube required is %f m",L)
```

Scilab code Exa 3.26 Inside heat transfer coefficient

```
2 clc;
3 clear;
4 //Example 3.26
5 \text{ k=0.14} // for oil [W/m.K]
6 Cp=2.1 // for oil [kJ/kg.K]
7 Cp = Cp * 10^3 / J/kg . K
8 \text{ mu}=154 //[\text{mN.s/sq m}]
9 mu_w=87 / (mn.s/sq m)
          // [m]
10 L=1.5
11 \quad m_dot=0.5
               //Mass flow rate of oil[kg/s]
12 Di=0.019 //Diameter of tube [m]
13 mean_T=319 //Mean temperature of oil [K]
14 mu = mu * 10^- - 3 // [N. s/sq m] or [kg/(m. s)]
                    //[sq m]
15 A = \%pi*(Di/2)^2
               //Mass velocity in [kg/sq m.s]
16 G=m_dot/A
17 Nre=Di*G/mu //Reynolds number
18 //As Nre < 2100, the flow is laminar
19 mu_w=mu_w*10^-3 // [N.s/sq m] or kg/(m.s)
20 //The sieder tate equation is
21 hi=(k*(2.0*((m_dot*Cp)/(k*L))^(1.0/3.0)*(mu/mu_w))
      ^(0.14)))/Di
                    //Heat transfer coeff in [W/sq m.K
22 printf("\n The inside heat transfer coefficient is
      %f W/(m^2.K) ",hi);
23
24 printf('\nNOTE: Calculation mistake in last line.ie
      in the calculation of hi in book, please perform
      the calculation manually to check the answer\n")
```

Scilab code Exa 3.27 Film heat transfer coefficient

```
1 clc;
2 clear;
3 //Example 3.27
```

```
5 m_dot=0.217 //Water flow rate in [kg/s]
          //Outside diameter in [mm]
6 \, \text{Do} = 19
7 \text{ rho} = 1000
               //Density
         //Wall thickness in [mm]
8 t=1.6
9 Di = Do - 2 * t
               //i.d of tube in [mm]
10 Di=Di/1000
               // [m]
11 Do=Do/1000
               // [m]
12 Ai = \%pi * (Di/2)^2 / Cross - sectional area in sq m
13 u=m_dot/(rho*Ai) //Water velocity through tube
      \mathbf{s}
14 u=1.12
          //approx in book
15 Di=0.0157 //apprx in book
16 T1=301
          //Inlet temperature of water in [K]
17 T2=315
          //Outlet temperature of water in [K]
18 T = (T1+T2)/2 //[K]
19 hi = (1063*(1+0.00293*T)*(u^0.8))/(Di^0.20) //Inside
      heat transfer coefficient W/(sq m.K)
20 hi=5084
               //Approximation
21 printf("%f",hi);
22 hio=hi*(Di/Do) //Inside heat transfer coeff based
      on outside diameter in W/(sq m.K)
23 printf("\%f",hio);
24 printf ("Based on outside temperature, Inside heat
      transfer coefficient is %d W/(m^2.K) or %f kW/(m
      ^2.K)", round(hio), round(hio)/1000);
```

Scilab code Exa 3.28 Area of exchanger

```
1 clc;
2 clear;
3 //Example 3.28
4 mair_dot=0.90 //[kg/s]
5 T1=283 //[K]
6 T2=366 //[K]
7 dT=(T1+T2)/2 //[K]
```

```
// [mm]
8 \text{ Di} = 12
9 Di = Di / 1000 / [m]
          //[kg/(sq m.s)]
10 G = 19.9
11 mu = 0.0198 // [mN. s / (sq m)]
12 mu = mu * 10^{-3} / [N.s/sq m] or [kg/(m.s)]
13 Nre=Di*G/mu //Reynolds number
14 //It is greater than 10^4
15 k=0.029 / W/(m.K)
           //[kJ/kg.K]
16 \text{ Cp}=1
17 Cp1=Cp*10^3 //[J/kg.K]
18 Npr=Cp1*mu/k // Parndtl number
19 // Dittus-Boelter equation is
20 hi=0.023*(Nre^0.8)*(Npr^0.4)*k/Di //[W/sq m.K]
21 ho = 232 //W/sq m.K
22 U=1/(1/hi+1/ho) //Overall heat transfer coefficient
       [W/m^2.K]
23 Q=mair_dot*Cp*(T2-T1) //kJ/s
              //[J/s] or [W]
24 \ Q=Q*10^3
          //[K]
25 T = 700
26 \, dT1 = T - T2
               // [K]
               //[K]
27 dT2 = T2 - T1
28 dTm = (dT1 - dT2) / log(dT1/dT2) / [K]
29 / Q = U*A*dTm
30 A=Q/(U*dTm) //Area in sq m
31 printf ("Heat transfer area of equipment is %f sq m",
      A);
```

Scilab code Exa 3.29 Natural and forced convection

```
1 clc;
2 clear;
3 //Example 3.29
4 v=18.41*10^-6 //[sq m./s]
5 k=28.15*10^-3 //[W/m.K]
6 Npr=0.7 //Prandtl number
```

```
//K^{-1}
7 Beta=3.077*10^-3
8 \text{ g=9.81} //\text{m/s}^2
9 Tw = 350 / [K]
10 T_inf=300
             //[K]
11 dT = Tw - T_inf / [K]
12 L=0.3 //[m]
13 // 1. Free Convection
14 Ngr=(g*Beta*dT*L^3)/(v^2) //Grashof number
15 Npr=0.7 //Prandtl number
16
17 Nnu=0.59*(Ngr*Npr)^(1.0/4.0) // Nusselt number
               //Average heat transfer coefficient [W/
18 h=Nnu*k/L
      sq m K]
19 printf("\n In free convection, heat transfer coeff, h=
      %f W/(sq m.K) n,h)
20 // 2. Forced Convestion
21 \text{ u_inf} = 4 //[m/s]
22 \text{ Nre_l=u_inf*L/v}
23 Nnu=0.664*(Nre_l^(1/2))*(Npr^(1.0/3.0))
                                                  //
      Nusselt number
              // [W/sq m.K]
24 h=Nnu*k/L
25 printf("\n In forced convection, heat transfer coeff,
     h=\%f W/(sq m.K) n, h)
26 printf("\n From above it is clear that heat transfer
       coefficient in forced convection is much larger
      than that in free convection \n ");
```

Scilab code Exa 3.30 Natural convection

```
1
2 clc;
3 clear;
4 //Example 3.30
5 k=0.02685 //W/(m.K)
6 v=16.5*10^-6 //kg/(m.s)
```

```
7 Npr=0.7 //Prandtl number
8 Beta=3.25*10^-3 //K^-1
9 g=9.81 /m/(s^2)
10 Tw=333; //[k]
              // [K]
11 T_inf=283
12 dT=Tw-T_inf //[K]
13 L=4 //Length/height of plate [m]
14 Ngr=(g*Beta*dT*(L^3))/(v^2) //Grashoff number
15 // Let const=Ngr*Npr
16 const=Ngr*Npr
17 // Sice it is >10^9
18 Nnu=0.10*(const^(1.0/3.0)) // Nusselt number
19 h=Nnu*k/L //W/(sq m.K)
               //Approx in book
20 h = 4.3
21 \text{ W=7} //\text{width in } [m]
22 A=L*W //Area of heat transfer in [sq m]
23 \quad Q=h*A*dT
             / / [W]
24 printf("\nHeat transferred is %d W\n",Q)
```

Scilab code Exa 3.31 Free convection in vertical pipe

```
1 clc;
2 clear;
3 //Example 3.31
4 v=18.97*10^-6 //m^2/s
5 k=28.96*10^{-3} / W/(m.K)
6 \text{ Npr} = 0.696
          //Outer diameter [mm]
7 D=100
8 D=D/1000 //[m]
           //Film temperature in [K]
9 \text{ Tf} = 333
10 \text{ Tw} = 373
           // [K]
11 T_inf=293
               //\left[ \mathrm{K} \right]
12 dT=Tw-T_inf //[K]
13 Beta=1/Tf //[K^{\hat{}}-1]
14 g=9.81 / [m/s^2]
```

Scilab code Exa 3.32 Heat loss per unit length

```
1 clc;
2 clear;
3 //Example 3.32
4 k=0.630 / W/(m.K)
5 Beta=3.04*10^--4 //K^--1
6 \quad \texttt{rho=1000} \qquad //\,\texttt{kg/m^3}
7 mu=8.0*10^-4 // [kg/(m.s)]
8 Cp=4.187 //kJ/(kg.K)
9 g=9.81 //[m/(s^2)]
10 Tw = 313 / [K]
11 T_{inf} = 298 // [K]
12 dT=Tw-T_inf //[K]
13 D=20
         // [mm]
14 D=D/1000 //[m]
15 Ngr=9.81*(rho^2)*Beta*dT*(D^3)/(mu^2) //Grashoff
      number
16 Cp1=Cp*1000 //[J/kg.K]
17 Npr=Cp1*mu/k // Prandtl number
18 //Average nusselt number is
19 Nnu=0.53*(Ngr*Npr)^{(1.0/4.0)}
20 h=Nnu*k/D //[W/ sqm.K]
21 Q_by_l=h*\%pi*D*dT // Heat loss per unit length [W/m]
```

```
]
22 printf("\nHeat loss per unit length of the heater is %f W/m",Q_by_1);
```

Scilab code Exa 3.33 Free convection in pipe

```
1 clc;
2 clear;
3 //Example 3.33
             // [W/(m/K)]
4 k=0.03406
5 Beta=2.47*10^-3 //K^-1
6 Npr=0.687 // Prandtl number
7 v = 26.54 * 10^- - 6 //m^2/s
8 g=9.81
          //[m/s^2]
9 \text{ Tw} = 523
          //[K]
10 T_inf=288
               // [K]
11 dT=Tw-T_inf //[K]
12 D=0.3048
            // [m]
13 Ngr = (g*Beta*dT*(D^3))/(v^2) // Grashof number
14 Nra=Ngr*Npr
15 //For Nra less than 10<sup>9</sup>, we have for horizontal
      cylinder
                               //Nusselt number
16 Nnu=0.53*(Nra^(1.0/4.0))
17 h=Nnu*k/D // [W/sq m.K]
18 Q_by_l=h*%pi*D*dT; //W/m
19 printf ("Heat loss of heat transfer per meter lengh
      is \%f W/m",Q_by_1);
```

Scilab code Exa 3.34 Free convection in plate

```
1
2 clc;
3 clear;
```

```
4 //Example 3.34
5 rho=960.63 // Density in [kg/m^3]
6 Cp=4.216*10^3 //Specific heat in [J/(kg.K)]
7 D = 16
        //Diameter in [cm]
8 D=D/100 //[m]
9 k=0.68 //Thermal conductivity in [W/m.K]
10 A = (\%pi*(D/2)^2)
11 L=A/(\%pi*D) //Length=A/P in [m]
12 Beta=0.75*10^-3 //[K^{-1}]
13 alpha=1.68*10^-7
                      //[m^2/s]
14 g=9.81 //[m/s^2]
15 Tw = 403 / [K]
16 T_inf=343
             // [K]
17 dT=Tw-T_inf //[K]
18 v=0.294*10^-6 // [m^2/s]
19 Nra=(g*Beta*(L^3)*dT)/(v*alpha)
20
21 //1. For Top surface
22 Nnu=0.15*(Nra)^(1.0/3.0) // Nusselt number
23 ht=Nnu*k/L //Heat transfer coeff for top surface in
      W/(m^2.K)
24 ht=round(ht)
25 //2. For bottom surface
26 Nnu=0.27*Nra^(1.0/4.0) //Nusselt number
27 \text{ hb=Nnu*k/L}
              //[W/sq m.K]
28 hb=round(hb)
29 Q = (ht+hb)*A*dT; //[W]
30 printf("The rate of heat input is %f W',Q)
```

Scilab code Exa 3.35 Heat transfer from disc

```
1 clc;
2 clear;
3 //Example 3.35
4 v=2*10^-5 //[m^2/s]
```

```
5 Npr=0.7 // Prandtl number
6 \text{ k=0.03} //[W/m.K]
7 D=0.25 // Diameter in [m]
8 L=0.90*D // Characteristic length, let
9 T1=298
          // [K]
10 T2 = 403
          //[K]
             // [K]
11 dT=T2-T1
12 Tf = (T1+T2)/2 // [K]
             //[K^{-1}]
13 Beta=1/Tf
14 A=\%pi*(D/2)^2 //Area in [sq m]
15 g=9.81 / [m/s^2]
16
17 // Case 1: Hot surface facing up
18 Ngr=g*Beta*dT*(L^3)/(v^2) // Grashoff number
19 Nnu=0.15*((Ngr*Npr)^(1.0/3.0)) //Nusselt number
20 h=Nnu*k/L
              //[W/sq m.K]
21 \quad Q=h*A*dT
               // [W]
22 printf("\n Heat transferred when hot surface is
      facing up is \%f W n,Q);
23
24
25 // Case 2: For hot surface facing down
26 Nnu=0.27*(Ngr*Npr)^(1.0/4.0); //Grashof Number
              //[W/sqm.K]
27 h=Nnu*k/L
28 \quad Q=h*A*dT
              / / [W]
29 printf("\n Heat transferred when hot surface is
      facing down is %f W\n",Q);
```

Scilab code Exa 3.36 Rate of heat input to plate

```
1
2
3 clc;
4 clear;
5 //Example 3.36
```

```
6 rho=960 //[kg/m^3]
7 Beta=0.75*10^-3 //[K^{-1}]
8 k=0.68 / [W/m.K]
9 alpha=1.68*10^-7
                        //[m^2/s]
10 v = 2.94*10^-7 // [m^2/s]
11 Cp=4.216 // [kJ/kg.K]
12 Tw = 403 / [K]
             // [K]
13 T_inf=343
14 dT = Tw - T_inf
                    //[K]
15 g=9.81 / [m/s^2]
16 1=0.8
          // [m]
           // [m]
17 W = 0.08
          //Area in [m<sup>2</sup>]
18 A = 1 * W
19 P=2*(0.8+0.08) // Perimeter in [m]
          // Characteristic dimension/length, L in
20 L=A/P
                                                       [m]
21 \text{ Nra=g*Beta*L}^3*dT/(v*alpha)
22
23 //(i) for natural convection, heat transfer from top/
      upper surface heated
                                //Nusselt number
24 Nnu=0.15*(Nra^(1.0/3.0))
25 ht=Nnu*k/L //[W/m^2.K]
               //Approximation in book, If done manually
26 ht=2115.3
       then answer diff
27 //(ii) For the bottom/lower surface of the heated
      plate
28 Nnu=0.27*(Nra^(1.0/4.0))
                                //Nusselt number
              //[W/(m^2.K)]
29 \text{ hb=Nnu*k/L}
30 hb=round(hb)
31 //Rate of heat input is equal to rate of heat
      dissipation from the upper and lower surfaces of
      the plate
32 Q=(ht+hb)*A*(Tw-T_inf)
                             // [W]
33 printf("\n Rate of heat input is equal to heat
      dissipation = %f W",Q);
```

Scilab code Exa 3.37 Two cases in disc

```
1 clc;
2 clear;
3 //Example 3.37
4 k=0.03
          //W/(m.K)
5 Npr=0.697 // Prandtl number
6 \quad v=2.076*10^-6
                    //\mathrm{m}^2/\mathrm{s}
                    //K^{-1}
7 Beta=0.002915
8 D=25;
           //[Diameter in cm]
9 D=D/100 //[m]
10 Tf=343 //Film temperature in [K]
                  //Area in [m<sup>2</sup>]
11 A = \%pi*(D/2)^2
12 P=%pi*D // Perimeter [m]
          //[K]
13 T1=293
          //[K]
14 T2=393
          //[m/s^2]
15 g=9.81
16
17 // Case (i) HOT SURFACE FACING UPWARD
18 L=A/P
          //Characteristic length in [m]
19 Beta=1/Tf; //[K^{-1}]
20 dT = T2 - T1
                // [K]
21 Ngr=(g*Beta*dT*(L^3))/(v^2) //Grashoff number
22 Nra=Ngr*Npr
23 Nnu=0.15*(Nra^(1.0/3.0))
                                 //Nusselt number
24 h=Nnu*k/L
               //[W/m^2.K]
25 \quad Q=h*A*dT
                // [W]
26 printf("\nHeat transferred when disc is horizontal
      with hot surface facing upward is %f W\n",Q);
27
28 //Case-(ii) HOT FACE FACING DOWNWARD
29 Nnu=0.27*(Nra^(1/4))
                             //Nusselt number
                //W/(m^2.K)
30 h=Nnu*k/L
31 \quad Q=h*A*dT
                // [W]
32 printf("\nHeat transferred when disc is horizontal
      with hot surface facing downward is %f W\n",Q);
33
34
```

Scilab code Exa 3.38 Total heat loss in a pipe

```
1 clc;
2 clear;
3 //Example 3.38
4 v=23.13*10^-6 ; //[m^2/s]
5 \text{ k=0.0321} ; //[W/m.K]
6 Beta=2.68*10^-3; //[K^-1]
7 Tw = 443 ; //[K]
8 \text{ T_inf} = 303 ; //[K]
9 dT=Tw-T_inf; //[K]
10 g=9.81; //[m/s^2]
11 Npr=0.688; // Prandtl number
12 D=100 ; //Diameter [mm]
13 D = D / 1000
              //Diameter [m]
14 Nra=(g*Beta*dT*(D^3)*Npr)/(v^2)
15 Nnu=0.53*(Nra^(1.0/4.0))
                              //Nusselt number
             //[W/(m^2.K)]
16 h=Nnu*k/D
               //Approximation
17 h = 7.93
18 e=0.90; //Emissivity
19 sigma=5.67*10^-8;
20 //Q=Q_{conv}+Q_{rad} //Total heat loss
```

Scilab code Exa 3.39 Heat loss by free convection

```
1 clc;
2 clear;
3 //Example 3.39
4 k=0.035; //[W/(m.K)]
5 Npr=0.684 ; // Prandtl number
6 Beta=2.42*10^-3; //[K^-1]
                   //[\mathrm{m^2/s}]
7 v = 27.8 * 10^{-6};
8 Tw=533; //[K]
9 T_{inf} = 363; //[K]
10 dT=Tw-T_inf //[K]
11 D=0.01 ; //[m]
12 g=9.81; //[m/s^2]
13 Nra=(g*Beta*dT*(D^3))/(v^2)
14 //For this <10^5, we have for sphere
15 A=4*\%pi*(D/2)^2 //Area of sphere in [m<sup>2</sup>]
16 Nnu=(2+0.43*Nra^(1.0/4.0))//Nusslet number
17 h = Nnu * k/D
               //W/(m^2.K)
18 \quad Q=h*A*dT
               // [W]
19 printf("\nRate of heat loss is %f W',Q)
```

Scilab code Exa 3.40 Heat loss from cube

```
1
2 clc;
3 clear;
```

```
4 //Exampe 3.40
5 v = 17.95 * 10^{-6}
                   //[m^2/s]
              //[K]
6 dT = 353 - 293
7 k=0.0283
               // [W/m.K]
8 g=9.81 //[m/s^2]
9 Npr=0.698 //Prandtl number
10 Cp=1005 //J/(kg.K)
11 Tf=323 //Film temperature in [K]
              //[K^{-1}]
12 Beta=1/Tf
13 \ 1=1 \ //[m]
14 Nra=(g*Beta*dT*(1^3)*Npr)/(v^2)
15
16 //In textbook result of above statement is wrongly
      calculated, So
17 Nra=3.95*10<sup>8</sup>
18 //For Nra <10^9, for a vertical plate, the average
      nusselt number is
19 Nnu=0.59*Nra^(1.0/4.0)
                            //Nusselt number
20 h=Nnu*k/1
               //[W/m^2.K]
21 h=2.35
                //Approx in book
22 A=1^2
          //Area [m^2]
23 // Heat loss form 4 vertical faces of 1m*1m is
24 Q1=4*(h*A*dT) //[W]
25 //For top surface
26 P = 4 * 1
           //Perimeter in [m]
27 L=A/P
           //[m]
28 Nra=(Npr*g*Beta*dT*(L^3))/(v^2)
29 Nnu=0.15*Nra^(1.0/3.0) // Nusselt number
              //[W/m^2.K]
30 h=Nnu*k/L
                    //Approx
31 h=6.7
               // [W]
32 \quad Q2=h*A*dT
33 Q_total = Q1 + Q2
                  //Total heat loss [W]
34 printf("\n Therefore total heat loss is %d W",
      Q_total);
```

Scilab code Exa 3.41 Plate exposed to heat

```
1 clc;
2 clear;
3 //Example 3.41
4 \text{ rho} = 0.910;
                             //Density in [kg/m<sup>3</sup>]
                                   //[J/kg.K]
5 Cp=1.009*1000;
                             // [W/m.K]
6 k=0.0331;
7 mu = 22.65 * 10^-6;
                             //[N.s/m^2]
8 //Let a=smaller side
9 //b=bigger side
10 / Qa = ha *A*dT
11 //Qb = hb*A*dT
12 / Qa = 1.14 * Qb
13 / \text{Given a} *b = 15 * 10^{-4}
14 //On solving we get:
15 \quad a=0.03;
                        // [m]
16 b=0.05;
                        // [m]
                       //Area in [sq m]
17 \quad A=a*b
                        // [K]
18 Tf=388;
                       //[K^{-1}]
19 Beta=1/Tf
20 \text{ T1} = 303;
                        // [K]
                       //[K]
21 \quad T2 = 473;
22 dT = T2 - T1
                       // [K]
23 \text{ v=mu/rho}
24 g = 9.81
                  //m/s^2[acceleration due to gravity]
  hb=0.59*(((g*Beta*dT*(b^3))/(v^2))*Cp*mu/k)^(1/4)*(k
                   //[W/sq m.K]
      /b)
26 \quad Qb = hb * A * (dT)
                                 // [W]
27
                                 // [W]
28 \quad Qa = 1.14 * Qb
29 printf("\nDimensions of the plate are <math>\%fx\%f m\n",a,b
      );
30 printf("\nHeat transfer when the bigger side held
       vertical is %f W n, Qb);
31 printf("\nHeat transfer when the small side held
       vertical is %f W\n",Qa);
```

Scilab code Exa 3.42 Nucleate poolboiling

```
1 clc;
2 clear;
3 //Example 3.42
4 \text{ Ts} = 373
          //[K]
5 rho_1=957.9
                   // \text{rho} * l [kg/m^3]
              //[J/kg.K]
6 Cpl=4217
7 mu_1=27.9*10^-5 / [kg/(m.s)]
8 rho_v=0.5955 //[kg/m^3]
9 \text{ Csf} = 0.013
10 \text{ sigma=}5.89*10^-2
                        //[N/m]
11 Nprl=1.76
12 lambda=2257 //[kJ/kg]
13 lambda=lambda*1000 //in [J/kg]
14 n=1 //for water
15 m_{dot}=30 //Mass flow rate [kg/h]
16 \quad m_dot=m_dot/3600
                       //[kg/s]
17 D=30
          //Diameter of pan [cm]
18 D=D/100 //[m]
19 g=9.81 / [m/s^2]
20 A=\%pi*(D/2)^2 //Area in [sq m]
21 Q_by_A=m_dot*lambda/A
                            //[W/sq m]
22 //For nucleate boiling point we have:
23 dT=(lambda/Cpl)*Csf*(((Q_by_A)/(mu_l*lambda))*sqrt(
      sigma/(g*(rho_l-rho_v)))^(1.0/3.0)*(Nprl^n) //[K
               // [K]
24 \quad Tw = Ts + dT
25 printf("\n Temperature of the bottom surface of the
      pan is \%f W/(sq m)", Tw);
```

Scilab code Exa 3.43 Peak Heat flux

```
1 clc;
2 clear;
3 //Example 3.4
4 lambda=2257 //[kJ/kg]
5 \quad lambda=lambda*1000
                        //in [J/kg]
                   // \text{rho} * l [kg/m^3]
6 rho_1=957.9
                   //[kg/m^3]
7 \text{ rho_v} = 0.5955
8 \text{ sigma=}5.89*10^-2
                         //[N/m]
9 g=9.81 //[m/s^2]
10 //Peak heat flux is given by
11 Q_by_A_max=(%pi/24)*(lambda*rho_v^0.5*(sigma*g*(
      rho_l-rho_v))^(1/4))
                                //W/m^2
12 Q_by_A_max = Q_by_A_max/(10^6)
                                     /MW/(sq m)
13 printf("\n Peak heat flux is %f MW/sq m",Q_by_A_max)
```

Scilab code Exa 3.44 Stable film pool boiling

```
1 clc;
2 clear;
3 //Example 3.44
4 rho_1=957.9 //[kg/m^3]
5 \quad lambda=2257 \quad // [kJ/kg]
6 lambda=lambda*10^3 //[J/kg]
7 rho_v=31.54 //[kg/m^3]
              //[kJ/kg.K]
8 \text{ Cpv} = 4.64
9 Cpv = Cpv * 10^3 / [J/kg.K]
10 kv=58.3*10^-3/[W/(m.K)]
11 g=9.81 //[m/s^2]
12 mu_v = 18.6 * 10^-6 / [kg/(m.s)]
13 e = 1.0
           //Emissivity
14 \text{ sigma=5.67*10^-8};
15 \text{ Ts} = 373
           //[K]
           //[K]
16 \text{ Tw} = 628
17 dT=Tw-Ts //[K]
```

```
18 D=1.6*10^-3 //[m]
19 T = (Tw + Ts)/2 / [K]
20 \text{ hc} = 0.62*((kv^3)*rho_v*(rho_l-rho_v)*g*(lambda+0.40*)
      Cpv*dT)/(D*mu_v*dT))^(1.0/4.0)//Convective heat
      transfer coeff
                      [W/sq m.K]
21 \text{ hr=e*sigma*}(Tw^4-Ts^4)/(Tw-Ts)
                                      //Radiation heat
      transfer coeff in [W/sq m.K]
22 h=hc+(3/4)*hr
                   //Total heat transfer coefficient W
      /(sq m.K)
  Q_by_1=h*\%pi*D*dT
                       //Heat dissipation rate per unit
       length in [kW/m]
24 printf("\n Stable film boiling point heat transfer
      coefficient is %f W/(sq m.K)",h);
25 \quad Q_by_1=Q_by_1/1000 \quad // [kW/m]
26 printf("\n Heat dissipated per unit length of the
      heater is \%f \text{ kW/m}, Q_by_1);
```

Scilab code Exa 3.45 Heat transfer in tube

```
1 clc;
2 clear;
\frac{3}{2} //Exmaple \frac{3.45}{2}
4 dT = 10
             //[K]
5 P=506.625
                 //[kPa]
                 // [Mpa]
6 P=P/10^3
7 D=25.4 //Diameter [mm]
8 D = D/1000
                // [m]
9 h=2.54*(dT<sup>3</sup>)*(%e<sup>(P/1.551)</sup>) // [W/sq m.K]
10 / Q = h * \%pi * D * L * dT
11 //Heat transfer rate per meter length of tube is
12 \quad Q_by_l=h*\%pi*D*dT
                           // [W/m]
13 printf("\n Rate of heat transfer per 1m length of
      tube is %f W/m", round(Q_by_1));
```

Scilab code Exa 3.46 Nucleat boiling and heat flux

```
1 clc;
2 clear;
3 //Example 3.46
4 dT=8
          //[K]
5 P = 0.17 / [Mpa]
6 P=P*1000 //[kPa]
7 h1 = 2847 / [W/(sq m.K)]
8 P1=101.325 //[kPa]
9 h=5.56*(dT^3) //[W/sq m.K]
10 Q_by_A=h*dT //[W/sq m]
11 hp=h*(P/P1)^(0.4) //[W/sq m.K]
12 //Correponding heat flux is:
13 Q_by_A1=hp*dT //[W/sq m]
14 per=(Q_by_A1-Q_by_A)*100/Q_by_A // Percent increase
     in heat flux
15 printf("\nHeat flux when pressure is 101.325 kPa is
      %f W/sq m/n", Q_by_A);
16 printf("\n Percent increase in heat flux is %f
     percent", round(per));
```

Scilab code Exa 3.47 Dry steam condensate

```
1 clc;
2 clear;
3 //Example 3.47
4 mu=306*10^-6 //[N.s/m^2]
5 k=0.668 //[W/m.K]
6 rho=974 //[kg/m^3]
7 lambda=2225 //[kJ/kg]
8 lambda=lambda*10^3 //[J/kg.K]
```

```
//[m/s^2]
9 g = 9.81
10 \text{ Ts} = 373
            //[K]
           //[K]
11 \text{ Tw} = 357
12 dT=Ts-Tw
               // [K]
13 \, \text{Do} = 25
            // [mm]
14 Do=Do/1000
                // [m]
15 h=0.725*((rho^2*g*lambda*k^3)/(mu*Do*dT))^(1.0/4.0)
      //[W/sq m.K]
16 Q_by_l=h*%pi*Do*dT //[W/m]
17 m_dot_byl=(Q_by_1/lambda)
                                  //[kg/s]
                                  //[kg/h]
18 \text{ m\_dot\_byl=m\_dot\_byl}*3600
19
20 printf("\nMean heat transfer coefficient is %f W/(sq
       m.K) \setminus n, h);
21 printf("\nHeat transfer per unit length is %f W/m\n"
      ,Q_by_1);
22 printf("\nCondensate rate per unit length is %f kg/h
      ",m_dot_byl);
```

Scilab code Exa 3.48 Laminar Condensate film

```
1 clc;
2 clear;
3 //Example 3.48
4 rho=960 //[kh/m^3]
5 \text{ mu} = 2.82 * 10^{-4}
                     //[kg/(m.s)]
6 \text{ k=0.68} //[W/(m.K)]
7 lambda=2255 //[kJ/kg]
8 lambda=lambda*10^3
                          //[J/kg]
            //Saturation temperature of steam [K]
9 \text{ Ts} = 373
           //[K]
10 \text{ Tw} = 371
                 //[K]
11 dT = Ts - Tw
            //Dimension [m]
12 L=0.3
           //[m/s^2]
13 g=9.81
14 h=0.943*(rho^2*g*lambda*k^3/(L*mu*dT))^(1/4)
                                                            //W/
```

Scilab code Exa 3.49 Saturated vapour condensate in array

```
1
2 clc;
3 clear;
4 //EXample 3.49
5 rho=1174 //[kg/m^3]
6 \text{ k=0.069 } // [W/(m.K)]
7 mu = 2.5*10^-4 // [N.s/m<sup>2</sup>]
8 lambda=132*10^3 //[J/kg]
9 g=9.81 //[m/s^2]
          // [K]
10 \text{ Ts} = 323
11 \text{ Tw} = 313
           //[K]
12 dT = Ts - Tw
               // [K]
13 //For square array, n=4
14 n=4 //number of tubes
15 Do=12
           // [mm]
16 Do=Do/1000
               //[m]
17 h=0.725*(rho^2*lambda*g*k^3/(n*Do*mu*dT))^(1/4) / W
      /(sq m.K)
18 //For heat transfer area calculation, n=16
19 A=n*\%pi*Do //[sq m]
20 A=0.603
21 Q=h*A*dT / [W/m]
```

```
22 m_dot=Q/lambda //[kg/s]

23 m_dot=0.049 //Appriximation in book

24 m_dot=m_dot*3600 //[kg/h]

25 printf("\n Rate of condensation per unit length is %f kg/h",m_dot);
```

Scilab code Exa 3.50 Mass rate of steam condensation

```
1
2 clc;
3 clear;
4 //Example 3.50
5 rho=960 //[kg/m^3]
6 \text{ k=0.68}
          // [W/m.K]
7 mu=282*10^-6
                   // [kg/(m.s)]
          //Tube wall temperature [K]
8 \text{ Tw} = 371
9 Ts=373 //Saturation temperature in [K]
10 dT = Ts - Tw
               //[K]
11 lambda=2256.9
                    //[kJ/kg]
12 lambda=lambda*10^3 //[J/kg]
13 //Fora square array with 100 tubes, n=10
14 Do = 0.0125 / [m]
15 g=9.81 //[m/s^2]
16 n = 10
17 h=0.725*(((rho^2)*g*lambda*(k^3)/(mu*n*Do*dT))
      (1.0/4.0) //W/(sq m.K)
18
19 L=1 //[m]
20 / n = 100
21 n = 100;
22 A=n*\%pi*Do*L // [m^2/m length]
             //Heat transfer rate in [W/m]
23 \quad Q=h*A*dT
24 ms_dot=Q/lambda //[kg/s]
25 ms_dot=ms_dot*3600 //[kg/h]
26 printf("\n Mass rate of steam condensation is %d kg/
```

```
h\n",round(ms_dot));
27
28 printf("\n NOTE:ERROR in Solution in book.Do is wrongly taken as 0.012 in lines 17 and 22 of the book, Also A is wrongly calculated\n")
```

Scilab code Exa 3.51 Saturated tube condensate in a wall

```
1
2 clc;
3 clear;
4 //Example 3.51
5 rho=975 //[kg/m^3]
6 \quad \texttt{k=0.871} \quad / \ / \ [\text{W/m.K}]
          //[K]
7 dT = 10
8 \text{ mu} = 380.5 * 10^{-6}
                   //[N. s/m^2]
9 lambda=2300 //[kJ/kg]
10 lambda=lambda*1000 // Latent heat of condensation [
      J/kg
11 Do=100 //Outer diameter [mm]
12 Do=Do/1000 //[m]
13 g=9.81 //[m/s^2]
14 //for horizontal tube
15 h1=0.725*((rho^2*lambda*g*k^3)/(mu*Do*dT))^(1/4)
      //Average heat transfer coefficient
16 //for vertical tube
17 / h2 = 0.943*((rho^2*lambda*g*k^3)/(mu*L*dT))^(1/4)
         //Average heat transfer coefficient
           //For vertical tube
18 h2=h1
19 //implies that
20 L=(0.943*((rho^2*lambda*g*k^3)^(1/4))/(h1*((mu*dT)))
      ^(1/4))))^4 //[m]
          //Approximate in book
21 L=0.29
22 h=0.943*((rho^2*lambda*g*k^3)/(mu*L*dT))^(1/4) //[W
      /(sq m.K)
```

```
23 A=%pi*Do*L //Area in [m^2]
24 Q=h*A*dT //Heat transfer rate [W]
25 mc_dot=Q/lambda //[Rate of condensation]in [kg/s]
26 mc_dot=mc_dot*3600 //[kg/h]
27 printf("\n Tube length is %f m\n",L);
28 printf("\n Rate of condemsation per hour is %f kg/h",mc_dot);
```

Scilab code Exa 3.52 Condensation rate

```
1 clc;
2 clear;
3 //Example 3.52
4 \text{ m1\_dot} = 50
                // For horizontal position [kg/h]
5 \, \text{Do} = 10
            // [mm]
6 Do = Do / 1000 / [m]
7 L=1 //[m]
8 //For 100 tubes n=10
9 n = 10;
10 //We know that
11 //m_dot=Q/lambda=h*A*dT/lambda
12 //m_dot is proportional to h
13 / m1_{dot} prop to h1
14 //m2_{-}dot propn to h2
15 //m1_dot/m2_dot=h1/h2
16 //or :
17 m2_dot=m1_dot/((0.725/0.943)*(L/(n*Do))^(1/4))
18 printf("\n For vertical position, Rate of
      condensationis %f kg/h", m2_dot);
```

Scilab code Exa 3.53 Condensation on vertical plate

```
1 clc;
2 clear;
3 rho=975 //[kg/m^3]
4 k=0.671 / [W/(m.K)]
5 \text{ mu} = 3.8 * 10^{-4}
                 //[N.s/m^2]
6 dT = 10
          // [K]
7 lambda=2300*10^3 //[J/kg]
8 L=1 //[m]
9 g=9.81 //[m/s^2]
10 h=0.943*((rho^2*lambda*g*k^3)/(mu*L*dT))^(1/4) /W
      /(sq m.K) //[W/sq m.K]
11
12 printf("\n (i)- Average heat transfer coefficient is
      %d W/(m^2.K) n, round (h);
13
14 //Local heat transfer coefficient
15 // \text{at } x = 0.5 // [m]
16 \quad x = 0.5
          //[m]
17 h=((rho^2*lambda*g*k^3)/(4*mu*dT*x))^(1/4) // W/sq
     m.K
18 printf("\n (ii)-Local heat transfer coefficient at
      0.5 m height is %d W/(sq m.K) \n, round(h);
19 delta=((4*mu*dT*k*x)/(lambda*rho^2*g))^(1/4)
                                                      // [m
20 delta=delta*10^3 // [mm]
21 printf("\n (iii)-Film thickness is %f mm", delta);
```

Chapter 4

Radiation

Scilab code Exa 4.1 Heat loss by radiaiton

```
1 clc;
2 clear;
3 //Example 4.1
4 e=0.9 //[Emissivity]
5 sigma=5.67*10^-8 //[W/m^2.K^4]
6 T1=377 //[K]
7 T2=283 //[K]
8 Qr_by_a=e*sigma*(T1^4-T2^4) //[W/sq m]
9 printf("Heat loss by radiation is %d W/sq m",round(Qr_by_a));
```

Scilab code Exa 4.2 Radiation from unlagged steam pipe

```
1 clc;
2 clear;
3 //Example 4.2
4 e=0.9 //Emissivity
5 T1=393 //[K]
```

```
6 T2=293  //[K]
7 sigma=5.67*10^-8  //[W/sq m.K]
8 Qr_by_a=e*sigma*(T1^4-T2^4) //W/sq m
9 printf("\n Rate of heat transfer by radiation is %f W/sq m",Qr_by_a);
```

Scilab code Exa 4.3 Interchange of radiation energy

```
1
2 clc;
3 clear;
4 //Example 4.3
5 L=1; //[m]
6 \text{ e=0.8}; //\text{Emissivity}
7 sigma=5.67*10^-8; //[m^2.K^4]
8 T1 = 423; //[K]
             //[K]
9 T2 = 300;
            // [mm]
10 Do=60;
11 Do=Do/1000; //[m]
12 A = \%pi * Do * L // [sq m]
                //Approx in book [m<sup>2</sup>]
13 \quad A = 0.189
14 Qr=e*sigma*A*(T1^4-T2^4) // [W/m]
15 printf("\n Net radiaiton rate per 1 metre length of
      pipe is %d W/m", round(Qr));
```

Scilab code Exa 4.4 Heat loss in unlagged steam pipe

```
1 clc;
2 clear;
3 //Example 4.4
4 e=0.9 //Emissivity
5 L=1 //[m]
6 Do=50 //[mm]
```

```
7 Do=Do/1000 //[m]
                     //[W/(m^2.K^4)]
8 \text{ sigma} = 5.67 * 10^-8
9 T1=415
          //[K]
10 T2=290
          //[K]
11 dT=T1-T2
              // [K]
12 hc=1.18*(dT/Do)^(0.25) //[W/sq m.K]
13 A=\%pi*Do*L //Area in [sq m]
14 Qc=hc*A*dT //Heat loss by convection W/m
15 Qr=e*sigma*A*(T1^4-T2^4) //Heat loss by radiation
      per length W/m
16 Qt=Qc+Qr //Total heat loss in [W/m]
17 printf("\n Total heat loss by convection is %f W/m",
     Qt);
```

Scilab code Exa 4.5 Loss from horizontal pipe

```
1 clc;
2 clear;
\frac{3}{\text{Example }}
4 e = 0.85
5 sigma=5.67*10^-8 //[W/sq m.K]
6 T1 = 443
          //[K]
          // [K]
7 T2 = 290
8 dT = T1 - T2 // [K]
                        //W/sq m.K
9 \text{ hc}=1.64*dT^0.25
10 Do=60
           // [mm]
11 Do=Do/1000 //[m]
12 L=6 / Length [m]
13 A=%pi*Do*L //Surface area of pipe in [sq m]
14 Qr=e*sigma*A*(T1^4-T2^4) // Rate of heat loss by
      radiaiton W
15 Qc=hc*A*(T1-T2) // Rate of heat loss by convection [
     W]
16 \quad Qt = Qr + Qc
             //Total heat loss [W]
17 printf("\n Total heat loss is %d W", round(Qt))
```

Scilab code Exa 4.6 Heat loss by radiation in tube

```
1
2 clc;
3 clear;
4 //EXample 4.6
5 \  \, \text{sigma=5.67*10^--8} \qquad \  \  \, //\left[W/m^2.K^4\right]
6 \text{ e1=0.79};
7 e2=0.93;
8 \text{ T1=500}; //[K]
9 \text{ T2=300} ; //[K]
         // [mm]
10 D = 70
11 D = D / 1000
                  // [m]
12 L=3 //[m]
13 W=0.3 //Side of conduit [m]
14 A1=%pi*D*L //[sq m]
                       //Approximate calculation in book in
15 \quad A1 = 0.659
        [m^2]
16 \quad A2 = 4*(L*W)
                 //[sq m]
17 Q=sigma*A1*(T1^4-T2^4)/(1/e1+((A1/A2)*(1/e2-1)))
18 printf("\n Heat lost by radiation is %f W',Q);
```

Scilab code Exa 4.7 Net radiant interchange

```
1 clc;
2 clear;
3 //Example 4.7
4 sigma=5.67*10^-8 //[W/sq m.K^4]
5 T1=703 //[K]
6 T2=513 //[K]
```

```
7 e1=0.85
8 e2=0.75
9 Q_by_Ar=sigma*(T1^4-T2^4)/(1/e1+1/e2-1) //[W/sq m]
10 printf("\n Net radiant interchange per square metre
    is %d W/sq m",round(Q_by_Ar));
```

Scilab code Exa 4.8 Radiant interchange between plates

```
1 clc;
2 clear;
\frac{3}{2} //Example 4.8
4 L=3; //[m]
           //Area in [sq m]
5 A=L^2
6 sigma=5.67*10^-8; //[W/sq m.K^4]
7 T1=373; //[K]
8 T2 = 313;
            //[K]
9 \text{ e1=0.736};
10 e2=e1;
11 F12=1/((1/e1)+(1/e2)-1)
12 Q=sigma*A*F12*(T1^4-T2^4) // [W]
13 printf("\n Net radiant interchange is %d W", round(Q)
      );
```

Scilab code Exa 4.9 Heat loss from thermflask

```
9 F12=1/(1/e1+(A1/A2)*(1/e2-1))
10 T1=368
           //[K]
11 T2=293
          //[K]
12 Q_by_A=sigma*F12*(T1^4-T2^4) //Heat loss per unit
       Area [W/sq m]
13 printf("\nRate of heat loss when of silvered surface
       is \%f W/sq m",Q_by_A);
14 //When both the surfaces are black
15 \text{ e1=1};
16 e2=1;
17 F12=1/(1/e1+(A1/A2)*(1/e2-1))
18 Q_by_A=sigma*F12*(T1^4-T2^4) //[W/sq m]
19 printf("\n When both surfaces are black, Rate of heat
             is %d W/sq m", round(Q_by_A));
```

Scilab code Exa 4.10 Diwar flask

```
1 clc;
2 clear;
3 //Example 4.10
4 e1=0.05
5 e2 = e1
6 \quad A1 = 0.6944;
7 \quad A2=1;
            //[K]
8 T1=293
            //[K]
9 T2 = 90
                         //[W/m^2.K^4]
10 sigma=5.67*10^-8
11 D = 0.3
            //Diameter in [m]
12
13 F12=1/(1/e1+(A1/A2)*(1/e2-1))
                                        //[W/sq m]
14 Q_by_A=sigma*F12*(T1^4-T2^4)
15 Q=Q_by_A*\%pi*(D^2) // [kJ/h]
16 \quad Q = Q * 3600 / 1000
                     //[kJ/h]
17 lambda=21.44
                     //Latent heat in [kJ/kg]
18 \text{ m\_dot=Q/lambda}
                       //kg/h
```

Scilab code Exa 4.11 Heat flow due to radiation

```
1 clc;
2 clear;
3 //Example4.11
4 sigma=5.67*10^-8 //W/(m^2.K^4)
5 e1=0.3;
6 e2=e1;
          // [m]
7 D1 = 0.3
          // [m]
8 D2 = 0.5
           // [K]
9 T1=90
10 T2=313
          //[K]
11 A1=\%pi*D1^2 //Area in [sq m]
12 A2 = \%pi * D2^2 / Area in [sq m]
13 Q1=sigma*A1*(T1^4-T2^4)/(1/e1+(A1/A2)*(1/e2-1))
     W
14 Q1=abs(Q1); //Absolute value in [W]
15 printf("\n Rate of heat flow due to radiation is %f
     W, Q1);
16 //When Aluminium is used
17 e1=0.05
18 \text{ e} 2 = 0.5
19 Q2=sigma*A1*(T1^4-T2^4)/(1/e1+(A1/A2)*(1/0.3-1))
      [W]
20 Q2=abs(Q2) // Absolute value in [W]
21 Red=(Q1-Q2)*100/Q1 //Percent reduction
22 printf("\n Reduction in heat flow will be \%f percent
       ", Red);
```

Scilab code Exa 4.12 Heat exchange between concentric shell

```
1
2 clc;
3 clear;
4 //Example 4.12
5 \hspace{0.1cm} \texttt{sigma=5.67*10^--8} \hspace{0.5cm} // \left[ W\hspace{-0.1cm}/\hspace{-0.1cm} \hspace{-0.1cm} \text{sq} \hspace{0.1cm} m.K^{\hspace{-0.1cm} \wedge} 4 \right]
6 T1 = 77
             //[K]
              //[K]
7 T2 = 303
8 D1=32
             //cm
9 D1 = D1/100 // [m]
            // [cm]
10 D2 = 36
11 D2=D2/100 // [m]
12 A1=\%pi*D1^2 //[sq m]
13 A2=%pi*D2^2 //[sq m]
14 \text{ e1=0.03};
15 e2=e1;
16 Q=sigma*A1*(T1^4-T2^4)/(1/e1+(A1/A2)*(1/e2-1)) // [W
17 Q=Q*3600/1000 // [kJ/h]
                   //[kJ/h]
18 Q=abs(Q);
19 lambda=201 //kJ/kg
20 m_dot=Q/lambda //Evaporation rate in [kg/h]
21 printf("\n Nitrogen evaporates at %f kg/h",m_dot);
```

Scilab code Exa 4.13 Evaporation in concentric vessels

```
1
2 clc;
3 clear;
4 //Example 4.13
5 D1=250 //Inner sphere idameter [mm]
6 D1=D1/1000 //Outer diameter [m]
7 D2=350 // [mm]
8 D2=D2/1000 // [m]
9 sigma=5.67*10^-8 //W/(sq m.K^4)
10 A1=%pi*D1^2 // [sq m]
```

```
11 A2=%pi*D2^2 //[sq m]
12 T1=76
           //[K]
13 T2=300
           //[K]
14 \text{ e1=0.04};
15 e2=e1;
16 Q=sigma*A1*(T1^4-T2^4)/((1/e1)+(A1/A2)*((1/e2)-1))
17 \quad Q = -2.45
                 //Approximate
                 // [W]
18 Q = abs(Q)
19 Q = Q * 3600/1000
                     //[kJ/h]
                 //kJ/kg
20 \quad lambda = 200
21 Rate=Q/lambda //[kg/h]
22 printf("\n Rate of evaporation is %f kg/h(approx)",
      Rate);
```

Scilab code Exa 4.15 infinitely long plates

```
1 clc;
2 clear;
3 //Example 4.15
4 sigma=5.67*10^-8 //[W/(m^2.K^4)]
5 e1=0.4
6 \text{ e3=0.2}
7 T1 = 473
          // [K]
           //[K]
8 T3=303
9 Q_by_a=sigma*(T1^4-T3^4)/((1/e1)+(1/e3)-1) // [W/sq
     m
10 / Q1_by_a = sigma * (T1^4 - T2^4) / ((1/e1) + (1/e2) - 1) = sigma *
      A*(T2^4-T3^4)/((1/e^2)+(1/e^3)-1) //[W/sq m]
11 e2=0.5
12 //Solving we get
13 T2 = ((6/9.5)*((3.5/6)*T3^4+T1^4))^(1/4) //[K]
14 Q1_by_a=sigma*(T1^4-T2^4)/((1/e1)+(1/e2)-1) // [W/sq
     \mathbf{m}
15 red=(Q_by_a-Q1_by_a)*100/Q_by_a
```

Scilab code Exa 4.16 Heat exchange between parallel plates

```
1 clc;
2 clear;
3 //Example 4.16
4 //In steady state, we can write:
5 //Qcd=Qdb
6 // sigma (Tc^4-Td^4) */(1/ec+1/ed-1) = sigma (Td^4-Tb^4)
      /(1/ed+1/eb-1)
7 // i.e Td^4=0.5*(Tc^4-Tb^4)
8 // \text{Given}:
            //[K]
9 \text{ Ta} = 600
10 eA = 0.8;
11 eC=0.5;
12 \text{ eD=0.4};
13 \text{ sigma} = 5.67 * 10^- 8
                                //For air
14 / (600^4 - \text{Tc}^4) / 2.25 = (\text{Tc}^4 - \text{Td}^4) / 3.5
15 / 1.56*(600^4 - Tc^4) = Tc^4 - Td^4
16 //Putting value of Td in terms of Tc
17 / 1.56*(600^4 - Tc^4) = Tc^4 - 0.5*(Tc^4 - 300^4)
18 function y=f(Tc)
     y=1.56*(600^4-Tc^4)-Tc^4+0.5*(Tc^4-300^4)
19
20 endfunction
21 Tc=fsolve(500,f);
                                     // [K]
22 //or
23 Tc=560.94
                      //[K] Approximate after solving
24 Td = sqrt(sqrt(0.5*(Tc^4-300^4)))
                                                   //[K]
```

```
25 Q_by_a=sigma*(Ta^4-Tc^4)/(1/eA+1/eC-1) // [W/sq
m]
26 printf("\nRate of heat exchange per unit area=%f W/m
^2",Q_by_a);
27 printf("\nSteady state temperatures,Tc=%f K, and Td=
%f K",Tc,Td);
```

Scilab code Exa 4.17 Thermal radiation in pipe

```
1 clc;
2 clear;
3 //Example 4.17
4 sigma=5.67*10^-8 //[W/(sq m.K^4)]
5 e = 0.8
6 T1 = 673;
             //[K]
7 T2=303; //[K]
           // [mm]
8 \, \text{Do} = 200
9 Do = Do / 1000 / [m]
            //Let [m]
10 L = 1
11 A1=%pi*Do*L //[m^2/m]
12 //CAse 1: Pipe to surrundings
13
14 Q1=e*A1*sigma*(T1^4-T2^4)
                                  //[W/m]
15 Q1=5600
            //Approximated
                       //[W/m] approximated in book for
16 / Q1 = 5600
      calculation purpose
17 // Concentric cylinders
18 \text{ e1=0.8};
19 e2=0.91;
20 D1=0.2 //[m]
21 D2 = 0.4
          //[m]
22 \quad Q2 = sigma * 0.628 * (T1^4 - T2^4) / ((1/e1) + (D1/D2) * ((1/e2))
      -1)) // [W/m] length
23 Red=Q1-Q2 //Reduction in heat loss
24
```

Scilab code Exa 4.18 Heat transfer in concentric tube

```
1
2
3 clc;
4 clear;
5 //Example 4.18
6
8 sigma=5.67*10^-8; //[W/(sq m.K^4)]
9 T1 = 813;
            //[K]
10 \quad T2 = 473;
             //[K]
11 e1=0.87;
12 e2=0.26;
13 D1=0.25 ; // [m]
14 D2=0.3; //[m]
15 Q_{by_a1}=sigma*(T1^4-T2^4)/(1/e1+(D1/D2)*(1/e2-1))
      // [W/ sqm]
16 printf("\n Heat transfer by radiation is %d W/sq m",
      Q_by_a1);
```

Scilab code Exa 4.19 Heat exchange between black plates

```
1 2 clc;
```

```
3 clear;
4 //Example 4.19
5 sigma=5.67*10^-8 //[W/sq m.K^4]
6 A1=0.5*1 //[sq m]
7 F12=0.285
8 T1=1273 ///[K]
9 T2=773 //[K]
10 Q=sigma*A1*F12*(T1^4-T2^4) //[W]
11 printf("\n Net radiant heat exchange between plates is %d W",Q);
```

Scilab code Exa 4.20 Radiation shield

```
1 clc;
2 clear;
\frac{3}{2} //Example 4.20
4 \hspace{0.1cm} \texttt{sigma=5.67*10^--8} \hspace{1.1cm} // \hspace{0.1cm} [\text{W/sq m.K$^-$4}]
            //[K]
5 T1=750
            //[K]
6 T2 = 500
7 e1=0.75;
8 e2=0.5;
9 //Heat transfer without shield:
10
11 Q_by_a=sigma*(T1^4-T2^4)/((1/e1)+(1/e2)-1) // [W/sq
      m
12
13 //Heat transfer with shield:
14 R1=(1-e1)/e1 // Resistance 1
15
16 F13=1;
                       //Resistance 2
17 R2 = 1/F13
18
19 e3 = 0.05
20 R3=(1-e3)/e3 //Resistance 3
21
```

```
//Resistance 4
22 R4 = (1-e3)/e3
23
24 \text{ F32=1};
                    //Resistance 5
25 R5 = 1/F32
26
27 R6 = (1-e2)/e2
                       //Resistance 6
28
29 Total_R=R1+R2+R3+R4+R5+R6 // Total resistance
30
                                          //[W/sq m]
31 \quad Q_by_as = sigma*(T1^4-T2^4)/Total_R
32
33 Red=(Q_by_a-Q_by_as)*100/Q_by_a
                                          //Reduciton in
      heat tranfer due to shield
34
35 printf("\n Reduction in heat transfer rate as a
      result of radiaiotn shield is %f percent", Red);
```

Scilab code Exa 4.21 Heat transfer with radiaiton shield

```
1 clc;
2 clear;
3 //Example 4.21
4 e1=0.3
5 e2=0.8
6 //Let sigma*(T1^4-T2^4)=z=1(const)
7 z=1; //Let
8 Q_by_A=z/(1/e1+1/e2-1) //W/sq m
9
10 //Heat transfer with radiation shield
11 e3=0.04
12 F13=1;
13 F32=1;
14 //The resistances are:
15 R1=(1-e1)/e1
16 R2=1/F13
```

Scilab code Exa 4.22 Radiaition shape factor

```
1
2 clc;
3 clear;
4 //Example 4.22
5 sigma=5.67*10^-8;
6 T1 = 1273 / [K]
7 T2 = 773
           //[K]
8 T3=300
            //[K]
            //[sq m]
9 \quad A1 = 0.5
           //[sq m]
10 A2=A1;
11 F12=0.285;
12 F21=F12;
13 F13=1-F12;
14 F23=1-F21;
15 \text{ e1=0.2};
16 e2=0.5;
17 // Resistance in the network are calculated as:
18 R1=1-e1/(e1*A1)
19 R2=1-e2/(e2*A2)
20 R3 = 1/(A1 * F12)
21 R4 = 1/(A1 * F13)
22 R5=1/(A2*F23)
```

```
// \text{Given } (1-e3)/e3*A3=0
23 R6 = 0
24 // Also
25 Eb1=sigma*T1^4
                     //W/sq m
26 \quad \text{Eb2=sigma*T2}^4
                    //[W/sq m]
27 Eb3=sigma*T3^4 //[W/sq m]
28
29 //Equations are:
30 / (Eb1-J1)/2+(J2-J1)/7.018+(Eb3-J1)/2.797=0
31 //(J1-J2)/7.018+(Eb3-J2)/2.797+(Eb2-J2)/2=0
32
33 //On solving we get:
34 J1=33515
                //[W/sq m]
35 J2=15048
                // [W/sqm]
          //[W/sq m]
36 J3=Eb3
                                            //[W/sq m]
37 Q1 = (Eb1 - J1) / ((1 - e1) / (e1 * A1))
                                            //[W/sq m]
38 Q2=(Eb2-J2)/((1-e2)/(e2*A2))
39 \quad Q3 = (J1 - J3) / (1/(A1*F13)) + (J2 - J3) / (1/(A2*F23))
                                                          // [W
      / \text{sq m}
40 printf("\n Total heat lost by plate 1 is %f W/sq m\n
      ",Q1);
41 printf("\n Total heat lost by plate 2 is %f W/sq m\n
      ",Q2);
42 printf("\nThe net energy lost by both plates must be
       absorbed by the room, \n \%f = \%f", Q3, Q1+Q2)
```

Scilab code Exa 4.23 Radiation loss in plates

```
1 clc;
2 clear;
3 //Example 4.23
4 sigma=5.67*10^-8 // [W/sq m.K^4]
5 e1=0.7;
6 e2=0.7;
7 T1=866.5 // [K]
8 T2=588.8 // [K]
```

Scilab code Exa 4.24 Concentric tube

```
1 clc;
    2 clear;
     3 //Example 4.24
    4 // 1.WITHOUT SHIELD
     5 \text{ sigma} = 5.67 * 10^-8
     6 \text{ e1=0.12};
    7 e2=0.15;
    8 T1 = 100 / [K]
    9 T2 = 300 / [K]
 10 r1=0.015
                                                                                            // [m]
11 \quad r2=0.045
                                                                                                     // [m]
                                                                                                      // [m]
 12 L=1
13 A1=2*%pi*r1*L //[sq m]
 14 \quad Q_by_L=2*\%pi*r1*sigma*(T1^4-T2^4)/(1/e1+(r1/r2)*(1/e1+(r1/r2))*(1/e1+(r1/r2))*(1/e1+(r1/r2))*(1/e1+(r1/r2))*(1/e1+(r1/r2))*(1/e1+(r1/r2))*(1/e1+(r1/r2))*(1/e1+(r1/r2))*(1/e1+(r1/r2))*(1/e1+(r1/r2))*(1/e1+(r1/r2))*(1/e1+(r1/r2))*(1/e1+(r1/r2))*(1/e1+(r1/r2))*(1/e1+(r1/r2))*(1/e1+(r1/r2))*(1/e1+(r1/r2))*(1/e1+(r1/r2))*(1/e1+(r1/r2))*(1/e1+(r1/r2))*(1/e1+(r1/r2))*(1/e1+(r1/r2))*(1/e1+(r1/r2))*(1/e1+(r1/r2))*(1/e1+(r1/r2))*(1/e1+(r1/r2))*(1/e1+(r1/r2))*(1/e1+(r1/r2))*(1/e1+(r1/r2))*(1/e1+(r1/r2))*(1/e1+(r1/r2))*(1/e1+(r1/r2))*(1/e1+(r1/r2))*(1/e1+(r1/r2))*(1/e1+(r1/r2))*(1/e1+(r1/r2))*(1/e1+(r1/r2))*(1/e1+(r1/r2))*(1/e1+(r1/r2))*(1/e1+(r1/r2))*(1/e1+(r1/r2))*(1/e1+(r1/r2))*(1/e1+(r1/r2))*(1/e1+(r1/r2))*(1/e1+(r1/r2))*(1/e1+(r1/r2))*(1/e1+(r1/r2))*(1/e1+(r1/r2))*(1/e1+(r1/r2))*(1/e1+(r1/r2))*(1/e1+(r1/r2))*(1/e1+(r1/r2))*(1/e1+(r1/r2))*(1/e1+(r1/r2))*(1/e1+(r1/r2))*(1/e1+(r1/r2))*(1/e1+(r1/r2))*(1/e1+(r1/r2))*(1/e1+(r1/r2))*(1/e1+(r1/r2))*(1/e1+(r1/r2))*(1/e1+(r1/r2))*(1/e1+(r1/r2))*(1/e1+(r1/r2))*(1/e1+(r1/r2))*(1/e1+(r1/r2))*(1/e1+(r1/r2))*(1/e1+(r1/r2))*(1/e1+(r1/r2))*(1/e1+(r1/r2))*(1/e1+(r1/r2))*(1/e1+(r1/r2))*(1/e1+(r1/r2))*(1/e1+(r1/r2))*(1/e1+(r1/r2))*(1/e1+(r1/r2))*(1/e1+(r1/r2))*(1/e1+(r1/r2))*(1/e1+(r1/r2))*(1/e1+(r1/r2))*(1/e1+(r1/r2))*(1/e1+(r1/r2))*(1/e1+(r1/r2))*(1/e1+(r1/r2))*(1/e1+(r1/r2))*(1/e1+(r1/r2))*(1/e1+(r1/r2))*(1/e1+(r1/r2))*(1/e1+(r1/r2))*(1/e1+(r1/r2))*(1/e1+(r1/r2))*(1/e1+(r1/r2))*(1/e1+(r1/r2))*(1/e1+(r1/r2))*(1/e1+(r1/r2))*(1/e1+(r1/r2))*(1/e1+(r1/r2))*(1/e1+(r1/r2))*(1/e1+(r1/r2))*(1/e1+(r1/r2))*(1/e1+(r1/r2))*(1/e1+(r1/r2))*(1/e1+(r1/r2))*(1/e1+(r1/r2))*(1/e1+(r1/r2))*(1/e1+(r1/r2))*(1/e1+(r1/r2))*(1/e1+(r1/r2))*(1/e1+(r1/r2))*(1/e1+(r1/r2))*(1/e1+(r1/r2))*(1/e1+(r1/r2))*(1/e1+(r1/r2))*(1/e1+(r1/r2))*(1/e1+(r1/r2))*(1/e1+(r1/r2))*(1/e1+(r1/r2))*(1/e1+(r1/r2))*(1/e1+(r1/r2))*(1/e1+(r1/r2))*(1/e1+(r1/r2))*(1/e1+(r1/r2))*(1/e1+(r1/r2))*(1/e1+(r1/r2))*(1/e1+(r1/r2))*(1/e1+(r1/r2))*(1/e1+(r1/r2))*(1/e1+(r1/r2))*(1/e1+(r1/r2))*(1/e1+(r1/r2))*(1/e1+(r1/r2))*(1/e1+(r1/r2))*(1/e1+(r1/r
                                      e2-1)) //[W/m]
15 //-ve saign indicates that the net heat flow is in
                                       the radial inward direction
```

```
16 // 2. WITH CYLINDRICAL RADIATION SHIELD
17 e3=0.10;
18 \text{ e}4=0.05;
19 r3=0.0225
                                                  // [m]
20 Qs_by_L=2*\%pi*r1*sigma*(T1^4-T2^4)/(1/e1+r1/r2*(1/e2))
                    -1)+(r1/r3)*(1/e3+1/e4-1)) // [W/sq m]
21 red=(abs(Q_by_L)-abs(Qs_by_L))*100/abs(Q_by_L)
                    percent reduction in heat gain
22
23 // Radiation network approach
24 \quad A3 = 2 * \%pi * r3
                                                                   //[sq m]
25 \quad A2 = 2 * \%pi * r2
                                                                   //[sq m]
26 \text{ F13=1};
27 F32=1;
28 R1 = (1-e1)/(e1*A1)
29 R2=1/(A1*F13)
30 R3 = (1-e3)/(e3*A3)
31 R4 = (1-e4)/(e4*A3)
32 R5=1/(A3*F32)
33 R6=(1-e2)/(e2*A2)
34
35 \ Qs = sigma*(T1^4-T2^4)/((1-e1)/(e1*A1)+1/(A1*F13)+(1-e1)/(e1*A1)+1/(A1*F13)+(1-e1)/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1)+1/(e1*A1
                    e3)/(e3*A3)+(1-e4)/(e4*A3)+1/(A3*F32)+(1-e2)/(e2*
                    A2))
36 printf("\n With cylindrical radiation shield Heat
                    gained by fluid per 1 m lengh of tube is %f W/m\n
                    ",Qs_by_L);
37 printf("\nPercent reduction in heat gain is %f
                    percent \n", red);
38 printf("\nWith radiaiton network approach %f W/sqm"
                    ,Qs);
```

Chapter 5

Heat Exchangers

Scilab code Exa 5.1 Harpin exchanger

```
1
2
3 clc;
4 clear;
5 / \text{Example } 5.1
                  // [mm]
6 Di=35
                     //[m]
7 Di=Di/1000
                 // [mm]
8 \text{ Do} = 42
                    //[m]
9 Do=Do/1000
10 // for benzene
                     //[kg/h]
11 \text{ mb\_dot} = 4450
                     //[kJ/(kg.K)]
12 \text{ Cpb} = 1.779
                      // [K]
13 t2=322
14 \text{ t1=300} / [K]
                            // for benzene in [kJ/h]
15 \quad Q=mb_dot*Cpb*(t2-t1)
16
17 //For toulene
18 T1=344 //[K]
                // [K]
19 T2=311
20 \text{ Cpt} = 1.842
                      //[kJ/kg.K]
                                     //[kg/h]
21 mt_dot=Q/(Cpt*(T1-T2))
```

```
// [W]
22 Q = Q * 1000/3600
23 //Hot fluid (toluene)
24 //Cold fluid (benzene)
25 dT1=22
                    //[K]
26 dT2 = 11
                    // [K]
27 	 dTlm = (dT1 - dT2) / (log(dT1/dT2))
                                                    //[K]
28
29 //Clod fluid:Inner pipe, benzene
30 \text{ Di} = 0.035
                         // |m|
31 \text{ Ai} = (\%\text{pi}/4) * \text{Di}^2
                               //Flow area [sq m]
                               //Mass velocity [kg/m<sup>2</sup>.h]
32 Gi=mb_dot/Ai
                               //[kg/m^2.s]
33 Gi=Gi/3600
34 \text{ mu} = 4.09 * 10^{-4}
                               // [kg/(m.s)]
35 Nre=Di*Gi/mu
                               //Reynolds number
36
37 \text{ Cp=Cpb*10^3}
                               //[J/(kg.K)]
                               //[W/m.K]
38 \text{ k} = 0.147
                               //Prandtl number
39 Npr=Cp*mu/k
40 hi=(k/Di)*0.023*(Nre^0.8)*(Npr^0.4)
                                                         //[W/sq m.K]
41 hio=hi*Di/Do
                                    //[W/sq m.K]
                                    //Outside dia of inside pipe
42 D1=0.042
       |\mathbf{m}\mathbf{m}|
43 D2=0.0525
                               //Inside dia of outside pipe [m]
44 De=(D2^2-D1^2)/D1
                                         // [m]
45 \text{ De} = 0.0236
                                    //Approximated
46 \text{ aa=\%pi*(D2^2-D1^2)/4}
                                             //Flow area [sq m]
47 \text{ Ga=mt\_dot/aa}
                               //Mass velocity in [kg/m^2.h]
48 \text{ Ga} = \text{Ga} / 3600
                               //[kg/m^2.s]
49 \text{ mu} = 5.01 * 10^{-4}
                               // [kg/(m.s)]
                               //Reynolds number
50 Nre=De*Ga/mu
51 Npr=Cp*mu/k
                         //Prandtl number
                                                         // [W/sq m.K]
52 \text{ ho} = (k/De)*0.023*(Nre^0.8)*(Npr^0.3)
53 \text{ Uc} = 1/(1/\text{ho} + 1/\text{hio})
                                    //[W/sq m.K]
                                    //Fouling factor [m<sup>2</sup>.K/W]
54 \text{ Rdi} = 1.6 * 10^{-4}
55 \text{ Rdo} = 1.6 * 10^{-4}
                                    //Fouling factor [m<sup>2</sup>.K/W]
                                    //(m^2.K/W)
56 Rd=Rdi+Rdo
                                    //[W/sq m.K]
57 \text{ Ud} = 1/(1/\text{Uc} + \text{Rd})
58 A=Q/(Ud*dTlm)
                                    // sq m
```

Scilab code Exa 5.2 Length of pipe

```
1 clc;
2 clear;
3 //Example 5.2
4 \text{ ma\_dot} = 300*1000/24
                                       //Mass flow rate of acid
        in [kg/h]
5 \text{ mw\_dot} = 500 * 1000 / 24
                                        //Mass flow rate of
       water in [kg/h]
6 \text{ Cp1} = 1.465
                                         //[kJ/kg.K]
                                        //[K]
7 T1=333
8 T2 = 313
                                        //[K]
9 Q=ma_dot*Cp1*(T1-T2)
                                        //[kJ/h]
10 \quad Q = Q * 1000/3600
                                        // [W]
                                        //[kJ/kg.K]
11 \text{ Cp2}=4.187
                                        //[K]
12 t1=288
13 t2=(Q/(mw_dot*Cp2))+t1
                                         // |K|
                                        //[K]
14 dT1=T1-t2
                                        // [K]
15 dT2=T2-t1
16 dTlm = (dT1 - dT2) / log(dT1/dT2) / [K]
17 \, dTlm = 32.26
                                  //Approximation in [K]
18 //Inner pipe
19 m_dot=12500
                                        //[kg/h]
                                        // [m]
20 \text{ Di} = 0.075
21 \text{ Ai} = (\%\text{pi}/4) * \text{Di}^2
                                        //[sq m]
22 G=ma_dot/Ai
                                        // [kg/m<sup>2</sup>.h]
23 G = G/3600
                                        //[kg/m^2.s]
```

```
//[kg/m.s]
24 \text{ mu} = 0.0112
25 k=0.302
                                       //W/(m.K)
                                       //Reynold number
26 \text{ Nre=Di*G/mu}
27 \text{ Npr=Cp1*10^3*mu/k}
                                             //Prandtl number
28 hi=(k/Di)*0.023*(Nre^0.8)*(Npr^0.3)
                                                      //W/sq m.K
29 \, \text{Do} = 0.1
                                      // [m]
                                       //W/sq m.K
30 hio=hi*Di/Do
31 \quad D1 = 0.1
                                       // [m]
32 D2 = 0.125
                                       // [m]
33 De = (D2^2 - D1^2)/D1
                                       //[m]
34 \text{ Aa} = (\%\text{pi}/4) * (D2^2 - D1^2)
                                       //[sq m]
35 \text{ Ga=mw\_dot/Aa}
                                       //[kg/m^2.h]
36 Ga=Ga/3600
                                       //[kg/sq m.s]
                                       // [kg/m.s]
37 \text{ mu} = 0.0011
38 Nre=De*Ga/mu
                                       //Reynolds number
                                       //for water
39 k = 0.669
                                              //Prandtl number
40 Npr = Cp2 * 10^3 * mu/k
41 ho=(k/De)*0.023*(Nre^0.8)*Npr^0.4
                                                //[W/sq m.K]
                                             // [m]
42 \quad xw = (Do - Di)/2
                                            //[m]
43 Dw = (Do - Di) / log (Do / Di)
44 \text{ kw} = 46.52
                                       //thermal conductivity
       of wall in [W/m.K]
45 Uc=1/(1/ho+1/hio+xw*Do/(kw*Dw)) // [W/sq m.K]
46 \, \text{Ud} = \text{Uc}
                                       //As dirt factor values
       are not given
47 Ud=195.32
                             //Approximation
48 \quad A=Q/(Ud*dTlm)
                                    //[sq m]
49
50 L=A/(\%pi*Do)
                                      //[sq m]
51 printf ("\nArea = %f m^2,\nLength fo pipe required = %f
       m(approx)",A,L)
```

Scilab code Exa 5.3 Double pipe heat exchanger

```
1 clc;
```

```
2 clear;
\frac{3}{2} //Example 5.3
4 me_dot=5500 ;
                             //[kg/h]
5 \text{ me_dot1=me_dot/3600}
                                       //[kg/s]
6 \text{ Di} = 0.037
                        //I.D of inner pipe in [m]
7 Ai = (\%pi/4) * Di^2
                                //|sqm|
                                  //[kg/sq m.s]
8 G=me_dot1/Ai
9 \text{ mu} = 3.4 * 10^{-3}
                                  //[Pa.s] or [kg/(m.s)]
10 Nre=Di*G/mu
                                 //Reynolds number
11 \text{ Cp} = 2.68
                        //[kJ/kg.K]
                             //[J/kgK]
12 Cp1 = Cp * 10^3
                      ; // [W/m.K]
13 k=0.248
                        //Prandtl number
14 \text{ Npr=Cp1*mu/k}
15 //Nre is greater than 10,000, Use Dittus-Boelter eqn:
16 Nnu=0.023*(Nre^0.8)*(Npr^0.3)
                                               //Nusselt number
17 hi=k*Nnu/Di
                                      //[W/sq m.K]
18 T2=358
                       // [K]
                       //[K]
19 T1=341
                            //[kJ/kg.K]
20 \text{ Cp2}=1.80
21 t2 = 335
                            //[K]
                            //[K]
22 t1 = 303
                                                    //[kg/h]
23 mt_dot=me_dot*Cp*(T2-T1)/(Cp2*(t2-t1))
                                                     //[kg/s]
24 \text{ mt\_dot=mt\_dot}/3600
                                 // [m]
25 D1=0.043
26 D2=0.064
                            //Inside dia of outer pipe
27 \text{ De} = (D2^2 - D1^2)/D1
                                     //Equivalent diameter [m
                                       //[sq m]
28 Aa = \%pi/4*(D2^2-D1^2)
29 Ga=mt_dot/Aa
                                           // kg/(sq m.s)
30 \text{ mu} 2 = 4.4 * 10^{-4}
                                            // Viscosity of
       toluene Pa.s
31 \text{ k}2=0.146
                                      //For toluene [W/m.K]
32 \text{ Cp2=1.8*10^3}
                                 //J/kg.K
33 Nre=De*Ga/mu2
                                  //Reynolds number
                                 //Prandtl number
34 \text{ Npr=Cp2*mu2/k2}
35 Nnu=0.023*Nre^0.8*Npr^0.4
                                           //Nusselt number
                                            //W/(sq m.K)
36 \text{ ho}=\text{k2}*\text{Nnu/De}
37 Dw = (D1 - Di) / log(D1/Di)
                                             // [m]
```

```
//Wall thickness in [m]
38 x = 0.003
39 Uo=1/(1/ho+(1/hi)*(D1/Di)+(x*D1/(46.52*Dw)))
                                                            //[
      W/sq m.K
40 \, dT1 = 38
                 // [K]
41 dT2 = 23
                 // [K]
42 \quad dTlm = (dT1 - dT2) / log(dT1/dT2)
                                                      //[K]
                                  //[kJ/s]
43 Q=me_dot1*Cp*(T2-T1)
                               //[J/s]
44 \quad Q = Q * 1000
                              // [m]
45 L=Q/(Uo*\%pi*D1*dTlm)
46 printf("\nTotal lenggth of double pipe heat
      exchanger is %f m",L)
```

Scilab code Exa 5.4 Parallel flow arrangement

```
1 clc;
2 clear;
\frac{3}{2} //Example 5.4
4 \text{ mc\_dot} = 1000
                           //[kg/h]
5 \text{ mc\_dot=mc\_dot/3600}
                               //[kg/s]
6 \text{ mh\_dot} = 250
                           //[kg/h]
                          //[kg/s]
7 \quad mh_dot=mh_dot/3600
8 \text{ Cpc} = 4187
                        // [J/(kg.K)]
                      //[W/K]
9 Cph = 3350
10 \text{ w=mc\_dot*Cpc}
                           // [W/K]
                           // [W/K]
11 l=mh_dot*Cph
12 C=mh_dot*Cph/(mc_dot*Cpc)
13 U=1160
               // [W/sq m.K]
14 \quad A = 0.25
                 //Heat transfer surface for exchanger in
        sq m
15 ntu=U*A/(mh_dot*Cph)
                                        //Effectiveness of
16 E=(1-\%e^{(-ntu*(1+C))})/(1+C)
      heat exchanger
                 //Inlet temperature in [K]
17 T1=393
                 //Cooling water [K]
18 t1=283
19 T2=T1-E*(T1-t1)
                      //Outlet T of hot liquid
```

Scilab code Exa 5.5 Counter flow exchanger

```
1
2 clc;
3 clear;
4 //Example 5.5
                                //Specific heat of water in
5 \text{ Cpc} = 4187
      [J/(kg.K)]
6 Cph=2000
                                //\mathrm{Sp} heat of oil in [\mathrm{J}/(\mathrm{kg.K})]
      ) |
7 \text{ mc\_dot} = 1300/3600
                                //[kg/s]
8 mh_dot=550/3600
                                //[kg/s]
9 \text{ w=mc\_dot*Cpc}
                           // [W/K]
10 \text{ o=mh\_dot*Cph}
                            // [W/K]
11 //Heat capacity of rate of hot fluid is smaller than
        water
                      //[W/sq m.K]
12 U=1075
13 A=1
               //[sq m]
14 ntu=(U*A)/(mh_dot*Cph)
15 C=mh_dot*Cph/(mc_dot*Cpc)
16 E=(1-\%e^{(-ntu*(1-C))})/(1-C*\%e^{(-ntu*(1-C))})
                                                              //
       Effeciency
17 T1=367
                       //[K]
18 t1=288
                       // [K]
19 T2=T1-E*(T1-t1)
                                          //Outlet temperature
        [K]
20 T2=291.83
                                     //Approximated in book
```

Scilab code Exa 5.6 LMTD approach

```
1 clc;
2 clear;
\frac{3}{\sqrt{\text{Example } 5.6}}
4 printf("\nLMTD Approach\n")
6 \text{ Cph} = 4187
                           //[J/(kg.K)]
                           //Hot side flow rate [kg/s]
7 mh_dot=600/3600
8 mc_dot=1500/3600
                                //[kg/s]
                            //[J/kg.K]
9 \text{ Cpc} = \text{Cph}
10 T1=343
                            //[K]
11 T2=323
                            //[K]
12 Q=mh_dot*Cph*(T1-T2)
13 t1=298
                                //[K]
14 t2=(mh_dot*Cph*(T1-T2))/(mc_dot*Cpc)+t1 //[K]
15 dT1 = 45
                  //[K]
                       //[K]
16 dT2=17
17 \quad dTlm = (dT1 - dT2) / log(dT1/dT2)
                                               //[K]
                      //Heat transfer coeff in [W/sq m.K]
18 hi=1600
                       //[W/sq m.K]
19 \text{ ho=hi}
20 \ U=1/(1/hi+1/ho)
                           //[W/sq m.K]
                           //[sq m]
21 A=Q/(U*dTlm)
22
23 printf("\nEffectiveness-NTU approach\n");
24
```

```
25 //hot water:
26 h=mh_dot*Cph
                            // [W/K]
27 c = mc_dot * Cpc
                            // [W/K]
28 //Heat capacity rate of hot fluid is small
29 C=mh_dot*Cph/(mc_dot*Cpc)
30 E = (T1 - T2) / (T1 - t1)
                            //Effectiveness
31 //for paralell flow:
32 ntu = -\log(1-E*(1+C))/(1+C)
                             //[sq m]
33 A2 = (ntu*mh_dot*Cph)/U
34 t2=C*(T1-T2)+t1
                            //[K]
35 printf("\n By LMTD approach area of heat exchanger
      is %f   sq   m n, A);
  printf("\nBy Ntu approach Area of heat exchanger is
     37 printf("\n Outlet temperature of cold water=\%f K\n",
     t2)
```

Scilab code Exa 5.7 Shell and tube exchanger

```
1 clc;
2 clear;
3 //Example 5.7
4 mw_dot=10
                           // [ kg/s ]
                           //[kJ/(kg.K)]
5 \text{ Cpw} = 4.187
                           // [K]
6 t2 = 318
7 t1 = 295
                           // [K]
                               //[kJ/s]
8 Q=mw_dot*Cpw*(t2-t1)
9 Q = Q * 1000
                                //W
10 dT1=98
                           //[K]
                           //[K]
11 dT2 = 75
                                               //[K]
12 dTlm = (dT1 - dT2)/log(dT1/dT2)
13 hi=850
                      //[W/sq m.K]
                           //Inside dia [m]
14 id=0.027
15 \text{ od} = 0.031
                                 //Outside dia [m]
16 hio=hi*id/od
                                //[W/sq m.K]
```

Scilab code Exa 5.8 Order of Scale resistance

```
1 clc;
2 clear;
3 //Example 5.8
4 mdot=7250;
                             //Nitrobenzene in shell in [kg/
      h]
5 Cp=2.387;
                             //[kJ/(kg.K)]
                             //Pa.s
6 mu = 7 * 10^{-4};
7 k=0.151;
                             // [W/m.K]
                             // [K]
8 T1 = 400;
9 T2 = 317;
                             //[K]
10 \text{ t1} = 305;
                             // [K]
11 t2=345;
                             //[K]
                               //[K]
12 dT1=T1-t2
13 dT2=T2-t1
                               //[K]
14 \quad dTlm = (dT1 - dT2) / log(dT1/dT2)
                                          // [K]
                            //[kJ/h]
15 Q=mdot*Cp*(T1-T2)
16 \quad Q = Q * 1000 / 3600
                                 // [W]
17 n = 166;
                                  //no of tubes
18 L=5;
                                  // [m]
19 Do = 0.019;
                                  // [m]
20 Di=0.015
                                  // [m]
                                 //[sq m]
21 \quad Ao=n*\%pi*Do*L
22 \text{ Uo=Q/(Ao*dTlm)}
                                 //[W/sq m.K]
23 Ud=Uo
24 //Shell side heat transfer coefficient
```

```
25 Pt=0.025
26 \quad C_{dash} = Pt - (0.5*Do + 0.5*Do)
27
28 //Shell side crossflow area
29 B = 0.15
                              // [m]
30 id=0.45
                   // [m]
31 as=id*C_dash*B/Pt
                                   //[sq m]
32 //As there are two shell passes, area per pass is :
33 \text{ as\_dash=as/2}
                                   //[sq m]
34
   //Equivalent diameter of shell
35
36 \text{ De} = 4*(Pt^2-(\%pi/4)*Do^2)/(\%pi*Do)
                                                        //[m]
37
38 //Mass velocity on shell side
39 Gs=mdot/as_dash
                                 //[kg/m^2.h]
40 \text{ Gs} = \text{Gs} / 3600
                                   //[kg/m^2.s]
41 \text{ mu} = 7 * 10^{-4}
                                   //Pa.s
42 Cp=Cp*1000
                                   //J/kg.K
43 Nre=De*Gs/mu //Reynold number
44 Npr=Cp*mu/k //Prandtls number
45 Nnu=0.36*Nre^0.55*Npr^(1.0/3.0) //Nusselts number
                             //[W/sq m .K]
46 hi=1050
47 \text{ ho=Nnu*k/De}
                              //[W/sq m.K]
                                                   // [W/sq m K]
48 Uo=1/(1/ho+(1/hi*(Do/Di)))
49 \text{ Uc=Uo}
                                                   //m^2.K/W
50 \text{ Rd} = (\text{Uc} - \text{Ud}) / (\text{Uc} * \text{Ud})
51 printf("\n Fouling factor=Sclae resistance=%f m^2.K/
      W \setminus n", Rd);
```

Scilab code Exa 5.9 Length of tube required

```
1 clc;
2 clear;
3 //Example 5.9
4 k=0.628 //W/(m.K)
```

```
5 rho=980
                 //[kg/m^3]
                     // kg/(m.s)
6 \text{ mu} = 6 * 10^{-4}
7 Cpw = 4.187
                      //kJ/(kg.K)
                       //J/(kg.K)
8 Cp = Cpw * 10^3
9 \text{ Di} = 25
                      // [mm]
10 Di=Di/1000
                      // [m]
11 mw_dot=1200*10^-3*rho
                                      //Mass flow rate of
      water [kg/h]
12 \text{ mw\_dot=mw\_dot/3600}
                                       // [kg/s]
13 Ai = (\%pi * Di^2)/4
                                      //Inside area of tube
      in sq m
14 G=mw_dot/Ai
                                     // kg/m^2.s
15 Nre=Di*G/mu
                                     //Reynolds number
                                     //Pranddtl number
16 Npr=Cp*mu/k
17 //Inside heat transfer coefficient
                                         //Nusselt number
18 Nnu=0.023*Nre^0.8*Npr^0.4
                                //[W/sq m.K]
19 hi=Nnu*k/Di
                 //[W//sq m.K]
20 ho=6000
21 \text{ Do} = 0.028
                      // [m]
22 Dw = (Do - Di) / log(Do / Di)
                                     // [m]
23 \quad x = (Do - Di)/2
                                      // [m]
24 k2 = 348.9
                           //thermal conductivity of metal
      in [W/m.K]
  Uo=1/((1/ho)+(1/hi)*(Do/Di)+(x/k2)*(Do/Dw))
                                                        // [W/sq
       m.K
26 t1=303
                      //[K]
27 t2 = 343
                      // [K]
28 Q=mw_dot*Cpw*(t2-t1)
                             // [W]
29 Q=Q*1000
                                     //[K]
30 \text{ Ts} = 393
31
32 dT1=Ts-t1
                                     //[K]
33 dT2=Ts-t2
                                     // |K|
                                          //[K]
34 \quad dTlm = (dT1 - dT2) / log(dT1 / dT2)
35 \text{ Ao=Q/(Uo*dTlm)}
                                //[sq m]
36 L=Ao/(\%pi*Do)
                                //Length
37 printf("\n therefore length of tube required is %f m
      n, L);
```

Scilab code Exa 5.10 Suitability of Exchanger

```
1
2 clc;
3 clear;
4 //Example 5.10
5 \text{ m\_dot} = 7250
                        //[kg/h] of nitrobenzene
                              //[kJ/kg.K]
6 Cp=2.387;
                              //[kg/m.s]
7 mu = 7 * 10^- - 4;
                              // [W/m.K]
8 k=0.151;
9 \text{ vis}=1;
10 Ft = 0.9;
                             //LMTD correction factor
11 T1=400
                             //[K]
12 T2=317
                             // [K]
13 t1=333
                             // [K]
                             //[K]
14 t2=300
                            //[K]
15 dT1 = T1 - t1
                            //[K]
16 dT2 = T2 - t2
17 dTlm = (dT1 - dT2) / log(dT1/dT2)
                                               // [K]
18 //For nitrobenzene
19 Q=m_dot*Cp*(T1-T2)
                                        //[kJ/h]
                                             // [W]
20 \quad Q = Q * 1000/3600
21 n = 170
                        //No. of tubes
22 L=5
              // [m]
23 \, \text{Do} = 0.019
                             // [m]
24 \text{ Di} = 0.015
                              //[m]
25 \quad Ao = n * \%pi * Do * L
                             //[sq m]
                             //[W/sq m.K]
26 \text{ Uo=Q/(Ao*Ft*dTlm)}
                        // [W/sq m.K]
27 \text{ Ud=Uo}
28 B = 0.15
                             //Baffle spacing [m]
                             //Tube pitch in [m]
29 \text{ Pt} = 0.025
30 C_dash=Pt-Do
                             //Clearance in [m]
31 id=0.45
                             //[m]
32
```

```
33 //Shell side cross flow area
34 as=id*C_dash*B/Pt
                                      //[sq m]
35
36 //Equivalent diameter of shell
37 \text{ De}=4*(Pt^2-(\%pi/4)*(Do^2))/(\%pi*Do)
                                                         // [m]
38
39 //Mass velocity on shell side
40 \text{ Gs=m\_dot/as}
                                 // [kg/(m.h)]
41 \text{ Gs=Gs}/3600
                                 //[kg/m^2.s]
42 mu=7*10^-4
                            //[kg/m.s]
                       //[J/kg.K]
43 \text{ Cp=Cp*1000}
                            //Reynolds number
44 Nre=De*Gs/mu
45 \text{ Npr=Cp*mu/k}
                            //Prandtl number
46
47 //From empirical eqn:
48 \quad mu_w=mu
49 Nnu=0.36*Nre^0.55*Npr^(1/3)
                            //[W/sq m.K]
50 \text{ ho=Nnu*k/De}
                            //Given [W/sq m.K]
51 \text{ hi} = 1050
52 \text{ Uo}=1/(1/\text{ho}+(1/\text{hi})*(\text{Do}/\text{Di}))
                                           // [W/sq m.K]
53 \text{ Uc=Uo}
                            //W/sq m.K
54
55 // Suitability of heat exchanger
56 Rd_given=9*10^-4
                                    //[W/sq m.K]
57 \text{ Rd} = (\text{Uc} - \text{Ud}) / (\text{Uc} * \text{Ud})
                                      //[W/sq m.K]
58 printf("\n Rd calculated(%f W/m^2.K) is maximum
       allowable scale resistance \n", Rd);
59 printf("\n\nAs Rd calculated (%f W/sq m.K)(OR
       1.1*10^{-3} is more than Rd given (%f W/sq m,K), the
        given heat exchanger is suitable \n", Rd, Rd_given)
       ;
```

Scilab code Exa 5.11 Number of tubes required

```
1 clc;
```

```
2 clear;
3 //Example 5.11
4 mw_dot=1720;
                            //water in [kg/h]
5 t1=293;
                            //[K]
6 t2=318;
                            // [K]
7 Cpw=4.28;
                            //[kJ/kg.K]
8 Q=mw_dot*Cpw*(t2-t1)
                               //[kJ/h]
9 Q = Q * 1000 / 3600
                                //W
                            //[kJ/kg]
10 lambda=2230;
                            //[K]
11 dT1=90;
                            //[K]
12 dT2 = 65;
                                         //[K]
13 \quad dTlm = (dT1 - dT2) / log(dT1/dT2)
14
15 // Calculation of inside heat transfer coefficient
                             // [m]
16 \quad Di = 0.0225;
17 u=1.2;
                       // [m/s]\
                            //[kg/m^3]
18 rho=995.7;
19 v=0.659*10^-6
                                // [m/s]
20 \text{ mu=v*rho}
                       // [kg/m.s]
                           //reynolds number
21 Nre=Di*u*rho/mu
22 \text{ Cp=Cpw}*1000
                           //[J/kg.K]
                   //[kJ/h.m.K]
23 \text{ k} = 2.54;
                                // [W/m.K]
24 k=k*1000/3600
                                //Prandtl number
25 Npr=Cp*mu/k
26 Nnu=0.023*Nre^0.8*Npr^0.4
                                         //Nusselt number
27 hi=k*Nnu/Di
                                //[W/sq m.K]
                           //[kJ/h.m^2.K]
28 ho=19200
                           //[W/m^2.K]
29 ho=ho*1000/3600
30 \, \text{Do} = 0.025
                      // [m]
                                    // [m]
31 Dw = (Do - Di) / log(Do / Di)
32 x = (Do - Di)/2
                      // [m]
33 \text{ kt} = 460
                        //For tube wall material [kJ/h.m.K]
34 \text{ kt}=\text{kt}*1000/3600
                                // [W/m.K]
                                                              //[
35 Uo=1/(1/ho+(1/hi)*(Do/Di)+(x/kt)*(Do/Dw))
      W/sq m.K
36 //Q = Uo*Ao*dTlm
37 \text{ Ao=Q/(Uo*dTlm)}
                                //[sq m]
                      //Tube length in [m]
38 L = 4
```

```
39 n=Ao/(%pi*Do*L) //[Number of tubes]
40 n=round(n) //Approximate
41 printf("\n Number of tubes reuired= %d",n);
```

Scilab code Exa 5.12 Shell and tube heat exchanger

```
1 clc;
2 clear;
3 //Example 5.12
4 t1=290
                      //Inlet temperature of cooling water
        [K]
5 ho = 2250
                      //Heat transfer coefficient based on
       inside area in [W/sq m.K]
                      //[kJ/kg] LAtent heat of benzene
6 \quad lambda=400
7 \text{ mb\_dot} = 14.4
                      //[t/h] Condensation rate of benzene
       vapour
8 \text{ Cpw} = 4.187
                      //Specific heat
9 //With no Scale
10
                                //Heat duty of condenser in
11 \quad Q=mb_dot*1000*lambda
       [kJ/h]
12 Q = (Q/3600) *1000
                          // [W]
13 //Shell and tube type of heat exchanger is used as a
       single pass surface condenser
14 \text{ Di} = 0.022
                      //I.D of tube [m]
15 L=2.5
                      //Length of each tube in [m]
                      //Number of tubes
16 n=120
17 A = \%pi * Di * L
                      //Area of heat transfer per metre
      length in [m<sup>2</sup>/m]
                      //Total area of heat transfer in [m
18 \quad A = n * A
      ^2]
19 Ai = (\%pi/4)*Di^2 //Cross-sectional area of each tube
      in [m^2]
                      //Total area of flow in [m<sup>2</sup>]
20 \quad Ai = n * Ai
21 u = 0.75
                      // Velocty of water [ms^{-1}]
```

```
//Volumetric flow of water
22 V = u * Ai
23 rho=1000
                       //[Density of water in [kg/m<sup>3</sup>]]
24 \text{ mw\_dot=V*rho}
                       //Mass flow rate of water in [kg/s]
25
26 //Heat balance
27
28 / Q = mw_dot*Cpw*(t2-t1)
                                            //[K]
29 t2=Q/(mw_dot*Cpw*1000)+t1
30 T=350
                  //Condensing benzene temperature in [K]
                  //[K]
31 dT1=T-t1
                  // [K]
32 dT2=T-t2
33 dTlm = (dT1 - dT2) / log(dT1/dT2)
                                           //LMTD
34 \text{ U=Q/(A*dTlm)}
                                           //[W/m^2.K]
35 \text{ U=round}(U)
36 // Neglecting resistance, we have:
37 \text{ hi} = 1/(1/U-1/ho)
                                //[W/m^2.K]
38 //hi is proportional to u^0.8
39 C=hi/(u^0.8)
                            //Constant
40
41 //With Scale
42
                            //[m^2 K./W]
43 Rd=2.5*10^-4
44 //1/U=1/hi+1/ho+Rd
45 //U = hi/(1+3.38*u^0.8)
                              //[kg/s]
46 / \text{mw_dot} = \text{rho} * u * \text{Ai}
47 //Let t2 be the outlet temperature of water
48 / \mathbb{Q} = mw_dot*Cpw*(t2-t1)
49 / t2 = Q/(mw_dot*Cpw) + t1
50 dT1 = 60
\frac{1}{\sqrt{dT}} = T - (t1 + 8.373/u)
52 / dTlm = 8.373 / (u*log(60*u/(60*u-8.373)))
53 / Q = U*A*dTlm
54 / (1.89 = ((u^- - 0.2) / (1 + 3.38 * u^- 0.8)) * (1 / \log ((60 * u) / 60 * u)
       -8.373)
55 //If we assume values of u greater than 0.75 m/s
56 / \text{For u} = 3.8
                       //[ms^{-1}]
57 u=3.8
                       //] ms^{-1}
58 printf("\nWater velocity must be 3.88 \text{ ms}^-1");
```

Scilab code Exa 5.13 Length of pipe in Exchanger

```
1 clc;
2 clear;
3 //Example 5.13
4 mh_dot=1.25
                            // [ kg/s ]
  Cpw = 4.187 * 10^3
                            //Heat capacity of water in [J/
      kg.K]
  lambda=315
                            //[kJ/kg]
                            //Rate of heat transfer from
  Q=mh_dot*lambda
                    [kJ/s]
      vapour
                            // [W]
  Q = Q * 10^3
  Ts = 345
                            //Temperature of condensing
       vapour [K]
10 t1 = 290
                            //Inlet temperature of water [K]
11 t2=310
                            //Outlet temperature of water [K]
                            //[K]
12 dT1=Ts-t1
                            //[K]
13 dT2=Ts-t2
14 \quad dTlm = (dT1 - dT2) / log(dT1/dT2)
                                                //[K]
15 // Heat removed from vapour = Heat gained
16 \text{ mw\_dot=Q/(Cpw*(t2-t1))}
                                      // [ kg/s ]
17 \text{ hi} = 2.5
                                      //[kW/sq m.K]
18 hi=hi*1000
                                      //[W/sq m.K]
19 \, \text{Do} = 0.025
                                      // [m]
                                      // [m]
20 \text{ Di} = 0.020
21 hio=hi*(Di/Do)
                                      //Inside heat transfer
       cosfficient referred to outside dia in [W/sq m.K]
22 \text{ ho} = 0.8
                                      //Outside heat tranbsfer
        coefficient in [kW/sq m.K]
                                      //[W/sq m.K]
23 ho=ho*1000
24 \text{ Uo} = 1/(1/\text{ho} + 1/\text{hio})
                                      //[W/sq m.K]
25 //Ud is 80% of Uc
26 \text{ Ud} = (80/100) * \text{Uo}
                                     //[W/sq m.K]
27 \text{ Ao=Q/(Ud*dTlm)}
                                      //[sq m]
```

```
28 L = 1
                                   // [m]
29 A=%pi*Do*L
                                  //Outside area of pipe
      per m length of pipe
30 len=Ao/A
                                  //Total length of piping
       required.
31 rho=1000
                                   //[kg/m^3]
32 V = mw_dot/rho
                                   //[m^3/s]
                                   //[m/s]
33 v = 0.6
34 a=V/v
                                   //Cross-sectional area
      for flow pass [sq m]
35 a1 = (\%pi*Di^2)/4
                                   //[sq m]
36 //for single pass on tube side fluid (water)
37 n = round(a/a1)
                                          //No. of tubes
      per pass
                                   //Length of each tube in
38 l=len/n
       [m]
39 //For two passes on water side:
40 \quad tn=2*n
                                   //Total no of tubes
41 \quad 12 = len/tn
                                   //Length of each tube in
       [m]
42 //For four passes on water side/tube side
43 \text{ tn} 2 = 4 * n
                                  //Total no. of tubes
                                   //Length of each tube in
44 \quad 13 = len/tn2
       [m]
45
46 printf("\nNo. of tubes=%d ,\nLength of tube=%f m",
      tn2,13);
```

Scilab code Exa 5.14 Dirt factor

```
1
2 clc
3 clear
4 //Example 5.14
5 //Properties of crude oil:
```

```
//[kJ/(kg.K)]
6 \text{ Cpc} = 1.986
                                    //[N.s/sq m]
7 mu1=2.9*10^-3;
                                    //[W/m.K]
8 \text{ k1} = 0.136
9
10 rho1=824
                                    //[kg/m^3]
11
12 // Properties of bottom product:
13 \text{ Cp2}=2.202
                                  //[kJ/kg.K]
                                //[kg/m^3]
14 rho2=867
15 \text{ mu2}=5.2*10^{-3}
                                 //[N.s/sq m]
16 \text{ k2=0.119}
                                  // [W/sq m.K]
17
18 mc_dot=135000
                                      //Basis: cruid oil flow
       rate in [kg/h]
                                      //Bottom product flow
19 m_dot=106000
      rate inn [kg/h]
                                  //[K]
20 t1 = 295
21 t2=330
                                  //[K]
                                  //[K]
22 T1=420
                                  //[K]
23 T2=380
24 dT1=T1-t2
                                  //[K]
                                  //[K]
25 dT2 = T2 - t1
26 dTlm = (dT1 - dT2) / log(dT1/dT2)
                                               //[K]
27 \quad Q = mc_dot*Cpc*(t2-t1)
                                               //kJ/h
28 \quad Q = Q * 1000 / 3600
                                               // [W]
29
30 //Shell side calculations:
                                                 //[mm]
31 \text{ Pt} = 25
32 Pt=Pt/1000
                                                // [m]
33 B = 0.23
                                                 // [m]
34 \text{ Do} = 0.019
                                                  // [m] Outside
      diameter for square pitch
35 \text{ c\_dash=Pt-Do}
                                               //Clearance in [
      m
36 id=0.6
                                                  // [m]
37 as=id*c_dash*B/Pt
                                                 // Cross flow
      area of shell [sq m]
38 //since there is a Calculation mistake ,we take:
```

```
39 \text{ as} = 0.0353;
                                                  //Shell side
40 \text{ Gs=m\_dot/as}
      mass velocity in [kg/sq m.h]
41 Gs=Gs/3600;
                                                   //[kg/sq m.s]
42 De=4*(Pt^2-(\%pi/4)*Do^2)/(\%pi*Do)
                                                  // [m]
43 Nre=De*Gs/mu2
                                                  //Reynolds
      number
                                                         //Prandtl
44 Npr=Cp2*1000*mu2/k2
       number
45 \text{ muw=mu2}
                                                //Since mu/muw=1
46 Nnu=0.36*(Nre^0.55)*Npr^(1.0/3.0)*(mu2/muw)^(0.14)
             // Nusselt number
47 \text{ ho} = \text{Nnu} * \text{k2/De}
                                                //[W/sq m.K]
48
49 //Tube side heat transfer coefficient:
50 n = 324
                                  //No. of tubes
51 n_p = 324/2
                                  //No. of tubes per pass
                                  //Thickness in [mm]
52 t = 2.1
                                  // [m]
53 t=t/1000
54 \quad Di = Do - 2 * t
                                    //I.d of tube in [m]
55 A = (\%pi/4) * (Di^2)
                                 //Cross-sectional area of
      one tube in [sq m]
                                 //Total area for flow per
56 \quad A_p = n_p * A
      pass in [sq m]
                                 //[kg/sq m h]
57 G=mc_dot/A_p
                                 //[kg/sq m.s]
58 G = G/3600
59 Nre=Di*G/mu1
                                 //Reynolods number
                                  //Prandtl number
60 \text{ Npr} = 42.35 ;
61 Nnu=0.023*(Nre^0.8)*(Npr^0.4)
                                                //Nusselt number
62 \text{ hi=Nnu*k1/Di}
                                                 // [W/sq m.K]
                                                //[W/sq m.K]
63 hio=hi*Di/Do
64 \text{ Uo}=1/(1/\text{ho}+1/\text{hio})
                                                //[W/sq m.K]
65 \text{ Uc=Uo}
66 L=4.88;
                                                 //Length of
      tube in [m]
67 \quad Ao = n * \%pi * Do * L
                                                //[sq m]
68 \text{ Ud=Q/(Ao*dTlm)}
                                                //[W/sq m.K]
69 Rd = (Uc - Ud) / (Uc * Ud)
                                                //[m^2.K/W]
```

```
70 printf("\n The calculation of line no.36 to
        calculated as is wrongly done in Book by printing
        0.0353,...which is wrong\n");
71 printf("\nRd=%f K/w, or 7.34*10^-4 which is less than
        the provided, so this if installed will not give
        required temperarues without frequent cleaning\n\
        n",Rd);
```

Scilab code Exa 5.15 Heat transfer area

```
1 clc;
2 clear;
3 //Example 5.15
4
5 //CASE I:
6 Cp = 4 * 10^3;
                             //[J/kg.K]
7 t1=295;
                             //[K]
8 t2=375;
                             //[K]
                             //Specific gravity of liquid
9 \text{ sp=1.1};
10 v1=1.75*10^-4;
                             //Flow of liquid in [m^3/s]
11 rho=sp*1000
                            //[kg/m^3]
12 \text{ m\_dot=v1*rho}
                            // [kg/s]
13 Q=m_dot*Cp*(t2-t1)
                            // [W]
                             //[K]
14 T = 395;
15 dT1=T-t1
                            //[K]
16 dT2=T-t2
                            //[K]
17 dTlm = (dT1 - dT2) / log(dT1/dT2) / [K]
18 \text{ U1A=Q/dTlm}
                            //[W/K]
19
20 / CASE-II
                                          //Flow in [m^3/s]
21 \quad v2=3.25*10^-4
                                          // [K]
22 T2 = 370
                              //[kg/s]
23 \text{ m\_dot=v2*rho}
24 \quad Q=m_dot*Cp*(T2-t1)
25 dT1=T-t1
                                             //[K]
```

```
26 \, dT2 = T - T2
                                               // [K]
                                               //[K]
27 	 dTlm = (dT1 - dT2) / log(dT1/dT2)
                                               // [W/K]
28 \text{ U2A=Q/dTlm}
29 //since u is propn to v
30 // hi = C*v^0.8
31
32 \quad U2_by_U1=U2A/U1A
33
                                             //Heat transfer
34 \text{ ho} = 3400
       coeff for condensing steam in [W/sq m.K]
35 \quad C = poly(0, "C")
36 // Let C=1 and v=v1
37 / C = 1;
                                             //=1.75*10^-4 \text{ m}^3/\text{s}
38 v = v1;
39 \text{ hi} = C * v^0.8
40 \quad U1=1/(1/ho+1/hi)
                                              //
41
42 //When v=v2
43 v = v2;
44 \text{ hi} = C * v^0.8
45 \quad U2=1/(1/ho+1/hi)
                                           //
46
47 / Since U2=1.6U1
48 //On solving we get:
49 C=142497
50 v = v1
51 \text{ hi=C*v^0.8}
52 \text{ U1=1/(1/ho+1/hi)}
53 A = U1A/U1
                                  //Heat transfer area in [sq
      \mathbf{m}
54 printf("\n Overall heat transfer coefficient is %f W
       /sq m.K and\n\nHeat transfer area is %f sq m",U1,
       A);
```

Scilab code Exa 5.16 Oil Cooler

```
1 clc;
2 clear;
3 //Example 5.16
4 \text{ mo_dot=}6*10^-2
                                  //[kg/s]
5 Cpo = 2*10^3
                                        //Specific heat of
      oil in [J/kg.K]
6 Cpw=4.18*10^3
                                  //Specific heat of water
       in [J/kg.K]
  T1 = 420
                                  //[K]
                                  //[K]
8 T2 = 320
9 T = 290
                                  //[K] Water entering
      temperature
10 Q=mo_dot*Cpo*(T1-T2)
                                  //[J/s] = [W]
11 //Heat given out =Heat gained
                                  //[K]
12 t2=Q/(mo_dot*Cpw)+T
                                  //[K]
13 dT1 = T1 - t2
14 dT2=T2-T
                                  //[K]
15 dTlm=(dT1-dT2)/log(dT1/dT2) //[K]
                              //[W/sq m.K]
16 hi=1.6*1000
                           //[W/sq m.K]
17 ho=3.6*1000
18 U=1/(1/ho+1/hi) / [W/sq m.K]
19 A=Q/(U*dTlm)
                         //[sq m]
                         // [m]
20 D = 0.025
21 L=A/(\%pi*D)
                     // [m]
22 printf("\n Length of tube required = \%f m",L);
```

Scilab code Exa 5.17 Countercurrent flow heat exchanger

```
8 T2 = 300
9 \quad Q=mb\_dot*Cpb*(T1-T2)
10 t1 = 290
                               // [K]
11 t2=320
                               //[K]
12 dT1=T1-t2
                               //[K]
13 dT2=T2-t1
                               //[K]
14 dTlm = (dT1 - dT2) / log(dT1/dT2) / [K]
15 mw_dot=Q/(Cpw*(t2-t1))
                                      //Minimum flow rate of
       water in [kg/s]
16 hi=850
                                    //[W/sq m.K]
                                    //[W/sq m.K]
17 ho=1700
                                    //\left[ m\right]
18 \text{ Do} = 0.025
19 Di=0.022
                                    // [m]
20 x = (Do - Di) / 2
                                         //Thickness in [m]
21 hio=hi*(Di/Do)
                                    //[W/sq m.K]
                                    // [m]
22 Dw = (Do - Di) / log(Do / Di)
23 k = 45
                                    // [W/m.K]
24 Uo=1/((1/ho)+(1/hio)+(x/k)*(Do/Dw)) // [W/sq m.K]
25 \text{ Ao=Q/(Uo*dTlm)}
                                        //[sq m]
26 L=1
                                        //Length in [m]
27 area=%pi*Do*L
                                         // Outside surface
      area of tube per i m length
  Tl=Ao/area
                                        //Total length of
28
      tubing required in [m]
29 printf("\nTotal length of tubing required=%d m",
      round(T1));
```

Scilab code Exa 5.18 Vertical Exchanger

```
benzene in [kJ/kg]
6 \ Q=m_dot*lambda
                            //[kJ/h]
7 Q = Q * 1000/3600
                            // [W]
8 \text{ Cpw} = 4.18
                            //[kJ/kg.K]
9 t1 = 295
                            // [K]
10 t2 = 300
                            //[K]
11 //For water :
12 mw_dot=Q/(Cpw*1000*(t2-t1))
                                           // [ kg/s ]
13 rho=1000
                                     //[kg/m^3]
14 \ V=mw_dot/rho
                              //Volumetric flow rate in [m]
       ^3/s
                              // [m/s]
15 u=1.05
16 \quad A = V/u
                              //Cross-sectional area
       required in |sq m|
17
18 //For tube:
19 x = 1.6
                            //thickness in [mm]
20 x = x / 1000
                            //[m]
21 \text{ Do} = 0.025
                            // [m]
22 \quad Di = Do - 2 * x
                            // [m]
23 \quad A1 = (\%pi*Di^2)/4
                             //Of one tube [sq m]
24 n = A/A1
                             //No. of tubes reuired
25 n = round(n)
                            //Length of tube in [m]
26 L = 2.5
27 \quad Ao=n*\%pi*Do*L
                            //Surface area for heat transfer
       in [sq m]
   Ts = 353
                            //Condensing temp of benzene in
       [K]
29 T1=295
                            //Inlet temperature in [K]
                            //Outlet temperature in [K]
30 T2=300
                            // [K]
31 dT1=Ts-T1
32 dT2=Ts-T2
                            // [K]
33 dTlm = (dT1 - dT2)/log(dT1/dT2)
                                          // |K|
                                 //[W/sq mK]
34 \text{ Uo=Q/(Ao*dTlm)}
                                 //[W/sq m.K]
35 \text{ Ud} = \text{Uo}
36
37 //OVERALL HEAT TRANSFER COEFFCIENT:
38 //Inside side:
```

```
//[K]
39 T = (T2 + T1)/2
40
                                                            // [W/
  hi = 1063*((1+0.00293*T)*u^0.8)/(Di^0.2)
41
      sq m.K
  hio=hi*(Di/Do)
                                                               // [W
      /sq m.K]
  Dw=(Do-Di)/log(Do/Di)
                                                               // [m
                            //For tube in [W/(m.)]
44 k = 45
45
46 //Outside of tube:
47 \quad mdot_dash=1.25/n
                                           // [kg/s]
48 M=mdot_dash/(%pi*Do)
                                           //[kg/(m.s)]
49 k = 0.15
                                           //[W/(m.K)]
                                           //[kg/m^3]
50 \text{ rho} = 880
51 \text{ mu} = 0.35 * 10^{-3}
                                           //[N.s/sq m]
                                           //[m/s^2]
52 g = 9.81
       Acceleration due to gravity
53 hm = (1.47*((4*mdot_dash)/mu)^(-1/3))/(mu^2/(k^3*rho))
       ^2*g))^(1/3) // [W/sq m.K]
54 \, \text{ho} = \text{hm}
                                           //[W/sq m.K]
55 k = 45
                            // [W/m]
56 \text{ Uo} = 1/(1/\text{ho} + 1/\text{hio} + (x*\text{Do})/(k*\text{Dw}))
57 //Uo = 1/(1/ho + 1/hio + (x*Do/(k*Dw)))
                                                  //Overall heat
        transfer coefficient in [W/sq m.K]
58 \text{ Uc=Uo}
                                                //[W/sq m.K]
59
  Rd = (Uc - Ud) / (Uc * Ud)
                                                //Maximum
       allowable sclae resistance in [K/W]
61 printf("\n Uc(%f) is in excess of Ud(%f), therefore
      we allow for reasonable scale resistance,\nRd=\%f
      K/W \setminus n", Uc, Ud, Rd);
62 printf("\n No. of tubes = \%d",n)
```

Scilab code Exa 5.19 Countercurrent Heat Exchanger

```
1 clc;
2 clear;
3 //Example 5.19
4 \text{ mw\_dot=5};
                           //Water flow rate in [kg/s]
5 Cpw=4.18;
                           //Heat capacity of water [kJ/kg
      .K]
6 t1=303;
                           //[K]
7 t2=343;
                           //[K]
                              //[kJ/s]
8 Q=mw_dot*Cpw*(t2-t1)
                               // [W]
9 Q=Q*1000;
                               //[K]
10 T1 = 413;
                               //[K]
11 \quad T2 = 373;
12 dT1=T1-t2
                              //[K]
                              //[K]
13 dT2=T2-t1
                               ///[K]
14 dTlm=dT1
                      //[W/sq m.K]
15 hi=1000;
                      // [W/sq m.K]
16 \text{ ho} = 2500;
17 Rd=1/(0.714*1000)
                           //Fouling factor [m^2.K/KW]
18 U=1/(1/hi+1/ho+Rd)
                              //[W/sq m.K]
                              //[sq m]
19 A=Q/(U*dTlm)
20 printf("\nHeat transfer area is %f sq m",A);
```

Scilab code Exa 5.20 Number of tube side pass

```
1 clc;
2 clear;
\frac{3}{2} //Example 5.20
4 Cpo=1.9
                        //Heat capacity for oil [kJ/kg.K]
5 \text{ Cps} = 1.86
                     //Heat capacity for steam [kJ/kg.K]
                      //Mass flow rate in [kg/s]
6 \text{ ms\_dot}=5.2
7 T1 = 403
                      // [K]
8 T2 = 383
                       // [K]
9
10 Q=ms_dot*Cps*(T1-T2)
                                     //[kJ/s]
11 Q=Q*1000
                                     // [W]
```

```
// [K]
12 t1=288;
13 t2=358;
                                      //[K]
14 dT2 = T1 - t2
                                     //[K]
15 dT1 = T2 - t1
                                     //[K]
16 \quad dTlm = (dT1 - dT2) / log(dT1/dT2)
                                         //LMTD in [K]
17 U = 275;
                                          //Overall heat
      transfer coeffcient in [W//sq m.K]
18 \text{ Ft} = 0.97
                                         //LMTD correction
      factor
19 A=Q/(U*Ft*dTlm)
                                         //[sq m]
20 printf("\nHeat exchanger surface area is %f sq m",A)
```

Scilab code Exa 5.21 Number of tubes passes

```
1 clc;
2 clear;
\frac{3}{2} //Example 5.21
4 mc_dot=3.783;
                           //Cold water flow rate [kg/s]
                           //Hot water flow rate [kg/s]
5 mh_dot=1.892;
6 Cpc=4.18;
                           //\mathrm{Sp} heat of cold water [\mathrm{kJ/(kg.}]
      K)
7 T1 = 367;
                           // [K]
8 t2=328;
                           // [K]
9 t1 = 311;
                           //[K]
10 Cph=4.18;
                           //Specific heat of hot water [kJ
      /(kg.K)
11 rho=1000;
                            //Density [kg/m<sup>3</sup>]
12 D=0.019;
                            //Diameter of tube in [m]
                            //Overal heat transfer
13 \ U=1450;
      coefficient in [W/sq m.K]
14 T2=T1-mc_dot*Cpc*(t2-t1)/(mh_dot*Cph)
                                                  //[K]
15 \quad Q=mc_dot*Cpc*(t2-t1)
                                    //[kJ/s]
16 Q = Q * 1000
                                    // [W]
17 //For counterflow heat exchanger
```

```
//[K]
18 \ dT1 = T1 - t2
                                   //[K]
19 dT2=17;
20 dTlm=(dT1-dT2)/log(dT1/dT2) //[K]
                                   //LMTD
21 lmtd=dTlm
22 \text{ Ft} = 0.88
                                   //LMTD correction factor
23 A=Q/(U*dTlm)
                                   //[sq m]
                                   //Velocity through tubes
24 u = 0.366;
      \left[ \text{ms}^{-} - 1 \right]
25 \text{ Ai=mc\_dot/(rho*u)}
                                  //Total flow Area in [sq.
       \mathbf{m}
                                   //No. of tubes
26 n=Ai/((\%pi/4)*(D^2))
                                  //Per m length [m]
27 L = 1
28 sa=%pi*D*L
                                   //S.S per tube per 1 m
      length
29 L=A/(n*\%pi*D)
                                  //Length of tubes in [m]
30 printf("\nThe length is more than allowable 2.44 m
      length, so we must use more than one tube \n");
31
32 //For 2 passes on the tube side
33 A=Q/(U*Ft*lmtd)
                          //[sq m]
34 L=A/(2*n*\%pi*D)
                         //Length in [m]
35 printf("\n This length is within 2.44 m requirement,
      so the design choice is \n\n");
36 printf("\nType of heat exchanger: 1-2 Shell and
      tube heat exchanger\n")
37 printf("\nNo of tubes per pass= \%d\n", round(n));
38 printf("\nLength of tube per pass=\%f m\n ",L);
```

Scilab code Exa 5.22 Outlet temperature for hot and cold fluids

```
//Mass flow rate of cold fluid in
5 \text{ mc_dot=20};
       [kg/s]
6 Cph = 3.6;
                          //Sp heat of hot fluid in [kJ/kg
      .K]
   Cph = Cph * 1000;
                           //Sp heat of hot fluid in [J/kg
      . K
                          //Sp heat of cold fluid in [kJ/(
  Cpc=4.2;
      kg.K)
                           //\mathrm{Sp} heat of cold fluid in [\mathrm{J}/(
9 Cpc = Cpc * 1000;
      kg .K)
                          //Overall heat transfer
10 \quad U = 400;
      coefficient in
                       [W/sq m.K]
11 A = 100;
                          //Surface area in [sq m]
12 \text{ mCp}_h = \text{mh}_dot*Cph
                           //[J/s] or [W/K]
13 mCp_c=mc_dot*Cpc
                           //[J/s] or [W/K]
                          //[W/K]
14 mCp_small=mCp_h
                          //Capacity ratio
15 C=mCp_small/mCp_c
16 ntu=U*A/mCp_small
                          //NTU
17 T1=973;
                          //Hot fluid inlet temperature in
       [K]
                          //Cold fluid inlet temperature
18
  t1=373;
      in |K|
  //Case 1: Countercurrent flow arrangement
20 E=(1-%e^{(-(1-C)*ntu)})/(1-C*%e^{(-(1-C)*ntu)}) //
      Effectiveness
21 / W = T1 - T2 / (T1 - t1)
                         therefore:
22 \quad T2 = T1 - E * (T1 - t1)
                          //[K]
23 printf("\nExit temperature of hot fluid is %d K",
      round(T2));
24 t2=mCp_h*(T1-T2)/(mCp_c)+t1
                                        //[From energy
      balance eqn in ][K]
25
  printf("\nExit temperature of cold fluid is %d K(%d
      C) \setminus n, round (t2), round (t2-273));
26
27 // Case 2: Parallel flow arrangement
28 E1=(1-\%e^{(-(1+C)*ntu)})/(1+C)
29 //In the textbok here is a calculation mistake, and
      the value of E is taken as E=0.97
```

Scilab code Exa 5.23 Counterflow concentric heat exchanger

```
1 clc;
2 clear;
3 //Example 5.23
4 Cpo=2131;
                     //Sp heat of oil in [J/kg.K]
5 Cpw = 4187;
                     //Sp heat of water in [J/kg.K]
6 mo_dot=0.10;
                     //Oil flow rate in [kg/s]
7 mw_dot=0.20;
                     //Water flow rate in [kg/s]
8 U = 380;
                     //Overall heat transfer coeff in [W/
      sq m.K
                     //Initial temp of oil [K]
9 T1 = 373;
10 T2=333;
                     //Final temperature of oil [K]
11 t1=303;
                     //Water enter temperature in [K]
12 t2=t1+mo_dot*Cpo*(T1-T2)/(mw_dot*Cpw)
13 //1.LMTD method
14 dT1=T1-t2
                         //[K]
15 dT2=T2-t1
                         //[K]
                                      // [K]
16 \quad dTlm = (dT1 - dT2) / log(dT1/dT2)
17 lmtd=dTlm;
                          // |K|
18 Q=mo_dot*Cpo*(T1-T2)
                                  //[J/s]
19 A=Q/(U*dTlm)
                                  //[sq m]
20 \text{ Do} = 0.025;
                                  //Inner tubve diameter [
     \mathbf{m}
21 L=A/(\%pi*Do)
                                  //Length in [m]
22
23 / 2.NTU method
```

```
// [W/K]
24 \text{ mCp_c=mw_dot*Cpw}
25 \text{ mCp_h=mo_dot*Cpo}
                                       //[W/K]
26 printf("\n In textbook this value of mCp_h is
      wrongly calculated as 231.1 so we will take this
       only for calculation\n");
27 mCp_h=231.1;
                                   // [W/K]
28 //mCp_h is smaller
29 C = mCp_h/mCp_c
30 E = (T1 - T2) / (T1 - t1)
                                       // Effeciency
31 //For countercurrent flow
32 deff('[x]=f(ntu)', 'x=E-(1-\%e^(-(1-C)*ntu))/(1-C*\%e)
      (-(1-C)*ntu))')
33 \text{ ntu=} fsolve(1,f)
34 A = ntu * mCp_h/U
                          //[sq m]
35 \quad A = 0.56
                 //Approximately
36 L1=A/(\%pi*Do)
                          //Length in [m]
37 printf("\nFrom LMTD approach:\n length=\%f m\n",L);
38 printf("\nFrom NTU method:\n length=\%f m\n",L1);
```

Scilab code Exa 5.24 Number of tubes required

```
1
2 clc;
3 clear;
4 //Example 5.24
                 // [W/sq m.K]
5 ho=200;
                 // [W/sq m.K]
6 \text{ hi} = 1500;
                 //Sp heat of Water in [kJ/(kg.K)]
7 Cpw = 4.2;
8 \text{ Cpo} = 2.1;
                  //\mathrm{Sp} heat of Oil in [\mathrm{kJ}/(\mathrm{kg.K})]
                 // Effectiveness
9 E=0.8;
                 // [W/m.K]
10 k = 46;
11 m_dot=0.167;
                    //[kg/s]
12
13 mCp_oil=2*m_dot*Cpo*1000
                                       //For oil [W/K]
14 //mCp_oil is wrongly calculated as 710.4
```

```
15 mCp_water=m_dot*Cpw*1000
                                      //For water [W/K]
16 //mCp_oil is wrongly calculated as 710.4
17 //NOTE: The above two values are wrongly calculated
      in book as 710.4
18 //so we take here:
19 mCp_small = 710.4
                           // [W/K]
20 //Since both mCp_water and mCp_oil are equal,
      therefore:
21 C=1;
22
23 deff('[x]=f(ntu)', 'x=E-(ntu/(1+ntu))');
24 \text{ ntu} = fsolve(1,f)
                 //Internal diameter in [mm]
25 id=20;
                //External diameter in [mm]
26 \text{ od} = 25;
27 hio=hi*id/od
                           //[W/sq m.K]
28 Dw = (od - id) / log(od/id)
                               // [mm]
29 \, \text{Dw} = \text{Dw} / 1000
                               //[m]
30 x = (od - id)/2
                                // [mm]
31 x = x/1000
                           //[m]
                           //External dia in [m]
32 \text{ Do} = 0.025
33 L=2.5;
                           //Length of tube in [m]
34 \text{ Uo}=1/(1/\text{ho}+1/\text{hio}+(x/\text{k})*(D\text{w}/D\text{o}))
                                             //[W/sq m.K]
35 A=ntu*mCp\_small/Uo //Heat transfer area in [sq m]
36 \text{ n=A/(\%pi*Do*L)} //No of tubes
37 printf("\nNo. of tubes required = \%d", round(n+1));
```

Scilab code Exa 5.25 Parallel and Countercurrent flow

```
1 clc;
2 clear;
3 //Example 5.25
4
5 //(i)Parallel flow
6 T1=633; //[K]
7 t2=303; //[K]
```

```
// [K]
8 T2=573;
9 t1 = 400;
                 //[K]
                 // [K]
10 dT1 = T1 - t2;
11 dT2=T2-t1;
                 //[K]
12 mh_dot=1.2; //[kg/s]
13 U = 500;
                 //Overall heat transfer coefficient in [
     W/sqm.K
                     //Sp.heat of oil J/kg.K
14 \text{ Cp} = 2083;
15 dTlm = (dT1 - dT2) / log(dT1/dT2) / [K]
16 \quad Q=mh_dot*Cp*(T1-T2)
                                   // [W]
17 A=Q/(U*dTlm)
                                   //[sq m]
18
19 //(ii) Counter current flow
20 dT1 = T1 - t1;
                           //[K]
                          //[K]
21 dT2=T2-t2;
22 \quad dTlm = (dT2 - dT1) / log(dT2 / dT1)
                                        // [K]
23 A1=Q/(U*dTlm)
                           //[sq m]
24 printf("\nFor parallel flow, Area = \%f sq m \n For
      countercurrent flow, Area=\%f sq m\n", A, A1);
25 printf("\n\nFor the same terminal temperatures of
      the fluid , the surface area for the counterflow
      arrangement\n is less than the required for the
      parallel flow\n")
```

Chapter 6

Evaporation

Scilab code Exa 6.1 Boiling point Elevation

```
1 clc;
2 clear;
3 / \text{Example 6.1}
                //B.P of solution [K]
4 T=380
5 T_dash=373
                   //B.P of water [K]
                           //Boiling point elevation in [K]
6 \quad \texttt{BPE=T-T\_dash}
7 \text{ Ts} = 399
                 //Saturating temperature in [K]
                 //Driving force in [K]
8 DF = Ts - T
9 printf("\nBoiling point of elevation of the solution
       is %d K \setminus n", BPE);
10 printf("\nDriving forve for heat transfer is %d K \n
      ", DF)
```

Scilab code Exa 6.2 Capacity of evaporator

```
1 clc;
2 clear;
3 //Example 6.2
```

```
//Weak liquor entering in [kg/h]
4 \text{ m\_dot} = 10000
5 fr_in=0.04
                    //Fraciton of caustic soda IN i.e 4
     %
6 fr_out=0.25
                  //Fraciton of caustic soda OUT i.e 25
     %
7 //Let mdash_dot be the kg/h of thick liquor leaving
8 mdash_dot=fr_in*m_dot/fr_out
                                         //[kg/h]
9
10 //Overall material balance
11 //kg/h of feed=kg/h of water evaporated +kg/h of
      thick liquor
12 //we=water evaporated in kg/h
13 //Therefore
14 we=m_dot-mdash_dot
                            //|kg/h|
15 printf("\n Capacity of evaporator is \%d \text{ kg/h}", we);
```

Scilab code Exa 6.3 Economy of Evaporator

```
1 clc;
2 clear;
3 //Exmaple 6.3
4 ic=0.05
                 // Initial concentration (5%)
5 \text{ fc=0.2}
                 //Final concentration
                                            (20\%)
6 T_dash=373
                     //B.P of water in [K]
                 //Boiling point elevation [K]
7 \text{ bpe}=5
8 \text{ mf\_dot} = 5000
                       //[Basis] feed to evaporator in [
      kg/h]
9 // Material balance of solute
10 mdash_dot=ic*mf_dot/fc
                                    //[kg/h]
11 // Overall material balance
12 mv_dot=mf_dot-mdash_dot
                                    //Water evaporated [kg/
      h]
                           //Latent heat of condensation
13 \quad lambda_s = 2185
      of steam [kJ/kg]
14 \quad lambda_v = 2257
                          //Latent heat of vaporisation of
```

```
water [kJ/kg]
15 lambda=lambda_v
                          //[kJ/kg]
16 T = T_dash + bpe
                          //Temperature of thick liquor [K]
                //Temperature of feed [K]
17 Tf = 298
18 Cpf = 4.187
                     //Sp. heat of feed in [kJ/kg.K]
19 //Heat balance over evaporator=ms_dot
20 ms_dot=(mf_dot*Cpf*(T-Tf)+mv_dot*lambda)/lambda_s
      //Steam consumption [kg/h]
21 Eco=mv_dot/ms_dot
                              //Economy of evaporator
                //Saturation temperature of steam in [K]
22 \text{ Ts} = 399
                //Temperature driving force [K]
23 dT = Ts - T
                //[W/sq m.K]
24 U=2350
25 Q=ms_dot*lambda_s
                              //Rate of heat transfer in [
      kJ/kg]
26 \quad Q = Q * 1000 / 3600
                              //[J/s] = [W]
                              //Heat transfer area in [sq
27 \quad A = Q/(U*dT)
      \mathbf{m}
  printf("\nANSWER Economoy pf evaporator is %f \n",
29 printf("\nHeat tarnsfer area to be provided = \%f sq
      m \setminus n", A);
```

Scilab code Exa 6.4 Steam economy

```
//Final concentration
9 \text{ fc} = 0.5
10 m_{dot}=30000 //Feed to evaporator in [kg/h]
11 mdash_dot=ic* m_dot/fc
                             //Mass flow rate of thick
      liquor in [kg/h]
12 mv_dot=m_dot-mdash_dot
                                 //Water evaporated in [
      kg/h|
13
14 // Case 1: Feed at 293K
                         //[kg/h]
15 mf_dot=30000
                          //[kg/h]
16 \text{ mv\_dot} = 24000
                     //[kJ/(kg.K)]
17 \text{ Cpf} = 3.98
                //Saturation temperature of steam in [K]
18 \text{ Ts} = 393
                //Boiling point of solution [K]
19 T=323
  lambda_s = 2202
                         //Latent heat of condensation |
      kJ/kg]
21 \quad lambda = 2383
                     //Latent heat of vaporisation[kJ/kg]
                     //Feed temperature
22 Tf = 293
23 //Enthalpy balance over the evaporator:
24 ms_dot=(mf_dot*Cpf*(T-Tf)+mv_dot*lambda)/lambda_s
             //Steam consumption [kg/h]
25 \text{ eco=}(mv\_dot/ms\_dot)
                                  //Steam economy
26 printf("\nWhen Feed introduced at 293 K, Steam
      economy is %f \ n", eco);
27 dT = Ts - T
                                   //[K]
28 U=2900
                     // [W/sq m.K]
29 Q=ms_dot*lambda_s
                                  //Heat load =Rate of
      heat transfer in [kJ/h]
30 \quad Q = Q * 1000 / 3600
                                  //[J/s]
                              //Heat transfer area
31 \quad A=Q/(U*dT)
      required [sq m]
32 printf("\n ANSWER-(i)\n\n At 293 K, Heat transfer
      area required is \%f \text{ sq m}\n", A);
33
34 //Case2: Feed at 308K
                //[Feed temperature][K]
36 ms_dot=(mf_dot*Cpf*(T-Tf)+mv_dot*lambda)/lambda_s
                 //Steam consumption in [kg/h]
37 eco=mv_dot/ms_dot
                                       //Economy of
```

Scilab code Exa 6.5 Evaporator economy

```
1 clc;
2 clear;
\frac{3}{\sqrt{\text{Example }6.5}}
4 m_{dot}=5000 //Feed to the evaporator [kg/h]
                           //Cp of feed in [kJ/kg.K]
5 \text{ Cpf} = 4.187
6 ic=0.10
                           //Initial concentration
                           //Final concentration
7 \text{ fc} = 0.4
                                         //[kg/h] of thick
8 mdash_dot=m_dot*ic/fc
      liquor
9 mv_dot=m_dot-mdash_dot
                                         //Water evaporated
      in [kg/h]
                               //Latent heat of condensing
10 \quad lambda_s = 2162
      steam [kJ/kg]
                      //Pressure in the evaporator[kPa]
11 P=101.325
12 \text{ bp} = 373
                      // [K]
13 \text{ Hy} = 2676
                 //Enthalpy of water vapor [kJ/kg]
14 \text{ H_dash} = 419
                           //[kJ/kg]
15 Hf = 170
                      //[kJ/kg]
16 ms_dot=(mv_dot*Hv+mdash_dot*H_dash-m_dot*Hf)/
                           //Steam consumption in [kg/h]
      lambda_s
17 eco=mv_dot/ms_dot
                                    //Steam economy of
      evaporator
                                    //[kJ/h]
18 Q=ms_dot*lambda_s
```

Scilab code Exa 6.6 Single effect Evaporator

```
1 clc;
2 clear;
\frac{3}{2} //Example 6.6
4 mf_dot=5000
                            //[kg/h]
5 ic=0.01
                          //Initial concentration [kg/h]
                          //Final concentration [kg/h]
6 \text{ fc} = 0.02
                          //Boiling pt of saturation in [K
7 T = 373
                          //Saturation temperature of
  Ts = 383
      steam in [K]
9 mdash_dot=ic*mf_dot/fc
                               //[kg/h]
10 mv_dot=mf_dot-mdash_dot
                                   //Water evaporated in [
      kg/h]
                          //[kJ/kg]
11 Hf = 125.79
                             //[kJ/kg]
12 Hdash=419.04
                          //[kJ/kg]
13 Hv = 2676.1
                          //[kJ/kg]
14 lambda_s=2230.2
15 ms_dot=(mdash_dot*Hdash+mv_dot*Hv-mf_dot*Hf)/
      lambda_s
                  //Steam flow rate in [kg/h]
                                  //Steam economy
16 \text{ eco=mv\_dot/ms\_dot}
17 Q=ms_dot*lambda_s
                                   //Rate of heat transfer
      in [kJ/h]
18 \quad Q = Q * 1000 / 3600
                                   //[J/s]
19 dT = Ts - T
                                   //[K]
20
21 \quad A = 69
                     //Heating area of evaporator in [sq
```

```
m]
22 U=Q/(A*dT) //Overall heat transfer coeff in [W/sq m.K]
23 printf("\nSteam economy is %f\n",eco);
24 printf("\n\nOverall heat transfer coefficient is %d
W/sq m.K",round(U));
```

Scilab code Exa 6.7 Single effect evaporator reduced pressure

```
1 clc;
2 clear;
3 //Example 6.7
4 //From previous example:
5 \text{ mf\_dot} = 5000
                          //[kg/h]
                          //[kJ/kg]
6 \text{ Hf} = 125.79
                          //[kJ/kg]
7 \quad lambda_s = 2230.2
                       //[kg/h]
8 \text{ mdash\_dot} = 2500
                           //[kJ/kg]
9 Hdash=313.93
                          //[kg/h]
10 \text{ mv\_dot} = 2500
11 Hv = 2635.3
                          //[kJ/kg]
12 ms_dot=(mdash_dot*Hdash+mv_dot*Hv-mf_dot*Hf)/
      lambda_s
                  //Steam flow rate in [kg/h]
                                    //[kJ/h]
13 Q=ms_dot*lambda_s
                               // [W]
14 \quad Q = Q * 1000 / 3600
                          //[W/sq^m.K]
15 U=2862
16 \, dT = 35
                 //[K]
                      //[sq m]
17 A=Q/(U*dT)
18 printf("\n The heat transfer area in this case is %f
       sq m n, A);
19 printf("\n\nNOTE: There is a calculation mistake in
      the book at the line12 of this code, ms_dot value
      is written as 2320.18, which is wrong\n\n");
```

Scilab code Exa 6.8 Mass flow rate

```
1 clc;
2 clear;
3 //Example 6.8
4 \text{ mf\_dot} = 6000
                          //Feed rate in [kg/h]
5 //Taking the given values from previous example (6.6)
6 \text{ Hf} = 125.79
                           //[kJ/kg]
7 \text{ ms\_dot} = 3187.56
                           //[kg/h]
8 \quad lambda_s = 2230.2
                               //[kJ/kg]
                           //[kJ/kg]
9 \text{ Hdash} = 419.04
                           //[kJ/kg]
10 \text{ Hv} = 2676.1
11 mv_dot=(mf_dot*Hf+ms_dot*lambda_s-6000*Hdash)/(Hv-
      Hdash) //Water evaporated in [kg/h]
12 mdash_dot=6000-mv_dot
                               //Mass flow rate of
      product [kg/h]
13 x = (0.01 * mf_dot) * 100/mdash_dot
                                             //Wt % of solute
       in products
14 printf("\nMass flow rate of product is \%f kg/h\n\n",
      mdash_dot);
15 printf("\n\nThe product concentration is %f percent
      by weight \langle n \rangle n, x);
```

Scilab code Exa 6.9 Heat load in single effect evaporator

```
1 clc;
2 clear;
\frac{3}{2} //Example 6.9
4 Tf=298
                 //Feed temperature in [K]
                     //[K]
5 T_dash = 373
6 \text{ Cpf} = 4
                 //[kJ/kg.K]
7 \text{ fc} = 0.2
                //Final concentration of salt
                //Initial concentration
8 ic=0.05
9 mf_dot=20000
                     //[kg/h] Feed to evaporator
10 mdash_dot=ic*mf_dot/fc
                                //Thick liquor [kg/h]
```

```
11 mv_dot=mf_dot-mdash_dot
                                 //Water evaporated in [
      kg/h]
12 \quad lambda_s = 2185
                         //[kJ/kg]
                      //[kJ/kg]
13 lambda=2257
14 bpr=7
                //Boiling point rise [K]
15 T=T_dash+bpr
                     //Boiling point of solution in [K]
                //Temperature of condensing steam in [K]
16 \text{ Ts} = 39
17 ms_dot=(mf_dot*Cpf*(T-Tf)+mv_dot*lambda)/lambda_s
      //Steam consumption in [kg/h]
                                 //Economy of evaporator
18 eco=mv_dot/ms_dot
                                      //[kJ/h]
19 Q=ms_dot*lambda_s
20 \quad Q = Q * 1000 / 3600
                             //[J/s]
21 printf("\nHeat load is %dW or J/s", round(Q));
22 printf("\n\nEconomy of evaporator is \%f ",eco);
23
24 printf("\n\nNOTE: Again there is a calcualtion
      mistake in book at line 19 of code, it is written
      as 4041507.1 instead of 40415071 \n\n");
```

Scilab code Exa 6.10 Triple effect evaporator

```
1 clc;
2 clear;
3 //Example 6.10
4 Ts = 381.3
                    // [K]
                 //[K]
5 \text{ dT} = 56.6;
6 U1=2800; //Overall heat transfer coeff in first
      effect
  U2=2200; //Overall heat transfer coeff in first
      effect
8 U3=1100; //Overall heat transfer coeff in first
      effect
9 dT1=dT/(1+(U1/U2)+(U1/U3))
                                 ///[K]
10 dT2=dT/(1+(U2/U1)+(U2/U3))
                                 ///[K]
11 dT3=dT-(dT1+dT2)
                                   //[K]
```

Scilab code Exa 6.11 Double effect evaporator

```
1 clc;
2 clear;
3 //Example 6.11
4 mf_dot=10000
                          //[kg/h] of feed
5 ic=0.09
                 //Initial concentration
                 //Final concentration
6 \text{ fc} = 0.47
7 m1dot_dash=ic*mf_dot/fc
                                   //[kg/h]
                     //Steam pressure [kPa.g]
8 \text{ Ps} = 686.616
9 \text{ Ps=Ps+101.325}
                          //[kPa]
10 \text{ Ts} = 442.7
                     //Saturation temperature in [K]
11 P2=86.660
                     //Vacuum in second effect in [kPa]
12 U1=2326
                 //Overall heat transfer in first effect
      [W/sq m.K]
                 //Overall heat transfer in 2nd effect [W
13 \quad U2 = 1744.5
      /\mathrm{sqm}.\mathrm{K}
                          //Absolute pressure in second
14 P2_abs=101.325-P2
      effect [kPa]
15 T2=326.3
                     //Temperature in 2nd effect in [K]
                     // [K]
16 dT=Ts-T2
17 Tf = 309
                 //Feed temperature in [K]
18 T = 273
                 // [K]
                     //kJ/kg.K Specific heat for all
19 Cpf = 3.77
      caustic streams
20 / Q1 = Q2
```

```
21 / U1*A1*dT1=U2*A2*dT2
22 dT2=dT/1.75
                       // [K]
23 dT1 = (U2/U1) * dT2
24 //Since there is no B.P.R
25 \text{ Tv1=Ts-dT1}
                       //Temperature in vapor space of
       first effect in [K]
                    //Second effect [K]
26 \text{ Tv}2=\text{Tv}1-\text{dT}2
                            //Feed enthalpy [kJ/kg]
27 \text{ Hf} = \text{Cpf} * (\text{Tf} - \text{T})
                                //Enthalpy of final product [
28 H1dash=Cpf*(Tv1-T)
      kJ/kg]
29 H2dash=Cpf*(Tv2-T)
                                 //kJ/kg
30 //For steam at 442.7 K
31 \quad lambda_s = 2048.7
                            //[kJ/kg]
32 //For vapour at 392.8 K
33 \text{ Hv} 1 = 2705.22
                       //[kJ/kg]
34 lambda_v1=2202.8
                                 //[kJ/kg]
35 //for vapour at 326.3 K:
36 \text{ Hv}2=2597.61
                       //[kJ/kg]
                                 //[kJ/kg]
37 \quad lambda_v2 = 2377.8
38
39 //Overall material balance:
                                           //[kg/h]
40 mv_dot=mf_dot-m1dot_dash
41
42 // Equation 4 becomes:
43 // \text{mv1\_dot} * \text{lambda\_v1} + \text{mf\_dot} * \text{Hf} = (\text{mv\_dot} - \text{mv1\_dot}) * \text{Hv2} + (
       mf_dot - mv2_dot) * H2_dash
44 mv1_dot=(H2dash*(mf_dot-mv_dot)-mf_dot*Hf+mv_dot*Hv2
      )/(Hv2+lambda_v1-H2dash)
                                                //[kg/h]
  mv2_dot=mv_dot-mv1_dot
45
46
47 //From equation 2
48
49 m2dot_dash=m1dot_dash+mv1_dot
                                                     //First
       effect material balance [kg/h]
   ms_dot=(mv1_dot*Hv1+m1dot_dash*H1dash-m2dot_dash*
      H2dash)/lambda_s
                                //[kg/h]
51
52
```

```
53 //Heat transfer Area
54 // First effect
55 A1=ms_dot*lambda_s*(10^3)/(3600*U1*dT1)
                                                //[sq m]
56
57 //Second effect
138 \ lambda_v1 = lambda_v1 * (10^3/3600)
                                           //[sq m]
59 \quad A2 = mv1_dot*lambda_v1/(U2*dT2)
60
61 / Since A1 not = A2
62
63 //SECOND TRIAL
                              //[sq m]
64 \text{ Aavg} = (A1 + A2)/2
65 dT1_dash=dT1*A1/Aavg
                                 //[K]
66 dT2_dash=dT-dT1
                              ///[K]
67
68 //Temperature distribution
69 \text{ Tv1=Ts-dT1\_dash}
                              //[K]
70 \text{ Tv2=Tv1-dT2\_dash}
                                   //[K]
71 Hf = 135.66 //[kJ/kg]
72 H1dash=Cpf*(Tv1-T) // [kJ/kg]
73 \text{ H2dash} = 200.83
                            //[kJ/kg]
74
75 //Vapour at 388.5 K
                //\left[\,\mathrm{kJ/kg}\,\right]
76 \text{ Hv1} = 2699.8
77 lambda_v1=2214.92
                             //[kJ/kg]
78 mv1_dot=(H2dash*(mf_dot-mv_dot)-mf_dot*Hf+mv_dot*Hv2
      )/(Hv2+lambda_v1-H2dash)
79 mv2_dot=mv_dot-mv1_dot // [kg/h]
80
81 // First effect Energy balance
82 ms_dot=((mv1_dot*Hv1+m1dot_dash*H1dash)-(mf_dot-
      mv2\_dot)*H2dash)/lambda\_s // [kg/h]
83
84 //Area of heat transfer
85 \quad lambda_s=lambda_s*1000/3600
                                                //[sq m]
86 A1=ms_dot*lambda_s/(U1*dT1_dash)
87
88 //Second effect:
```

Scilab code Exa 6.12 lye in Triple effect evaporator

```
1
2 clc;
3 clear;
4 //Example 6.12
5 \text{ Tf} = 353;
                      // [K]
6 T = 273
                      //[K]
7 mf_dot=10000;
                            //Feed [kg/h]
8 ic=0.07;
                      //Initial conc of glycerine
                      //FinaL CONC OF GLYCERINE
9 \text{ fc=0.4};
10 // Overall glycerine balance
11 m3dot_dash=(ic/fc)*mf_dot
                                             //[kg/h]
                                             ///[kg/h]
12 mv_dot=mf_dot-m3dot_dash
13 P = 313;
                      //Steam pressure [kPa]
                  //[from steam table][K]
14 Ts = 408;
                       //[Pressure in last effect][kPa]
15 P1=15.74;
                       //[Vapour temperature]
16 \text{ Tv3} = 328;
                    //Overall apparent [K]
17 	 dT = Ts - Tv3
                       //[K]
18 bpr1=10 ;
19 bpr2=bpr1;
```

```
20 \text{ bpr3=bpr2};
21 sum_bpr=bpr1+bpr2+bpr3
                                      //[K]
22 dT=dT-sum_bpr
                                      //True_Overall
                             //[K]
23 dT1=14.5;
24 \text{ dT2=16};
                             // [K]
25 \text{ dT3} = 19.5;
                             //[K]
                             //[kJ/(kg.K)]
26 Cpf = 3.768
27 //Enthalpies of various streams
28 Hf = Cpf * (Tf - T)
                                 //[kJ/kg]
29 \text{ H1=Cpf}*(393.5-T)
                                     //[kJ/kg]
                                     //[kJ/kg]
30 \text{ H2=Cpf}*(367.5-T)
                                  //[kJ/kg]
31 \text{ H3=Cpf}*(338-T)
32 //For steam at 40K
33 \quad lambda_s = 2160
                            //[kJ/kg]
                       //[kJ/kg]
34 \text{ Hv}1 = 2692
35 \quad lambda_v1 = 2228.3
                                 //[kJ/kg]
36 \text{ Hv2} = 2650.8
                            //[kJ/kg]
37 \quad lambda_v2 = 2297.4
                                 //[kJ/kg]
38 \text{ Hv3} = 2600.5
                                 //[kJ/kg]
                            //[kJ/kg]
39 \ lambda_v3 = 2370
40
41 //MATERIAL AND EBERGY BALANCES
42 // First effect
43 // Material balance
44
45 / m1dot_dash=mf_dot-mv1_dot
46 / m1 dot_dash = 1750 + mv2_dot + mv3_dot
47
48 //Energy balance
   //ms_dot*lambda_s+mf_Dot*hf=mv1_dot*Hv1+m1dot_dash*
   //2160*ms_dot + 2238*(mv2_dot+mv3_dot) = 19800500
50
51
52 //Second effect
53 //Energy balance:
54 / \text{mv3\_dot} = 8709.54 - 2.076 * \text{mv2\_dot}
55
56 //Third effect:
```

```
57 / m2dot_dash=mv3_dot+m3dot_dash
//m2dot_dash=mv3_dot+1750
59 //From eqn 8 we get
60 \text{ mv2\_dot}
      =(8709.54*2600.5+1750*244.92-8790.54*356.1-356.1*1750)
      /(-2.076*356.1+2297.4+2600.5*2.076)
61 //From eqn 8:
62 \text{ mv3\_dot} = 8709.54 - 2.076 * \text{mv2\_dot}
                                                //[kg/h]
                                                //[kg/h]
63 \text{ mv1\_dot=mv\_dot-(mv2\_dot+mv3\_dot)}
64 //From equation 4:
65 / m1dot_dash=mf_dot-mv1_dot
66 //ms_dot = (mv1_dot*Hv1+m1dot_dash*H1-mf_dot*Hf) /
      lambda_s
                //[kg/h]
67 \text{ ms\_dot} = (19800500 - 2238*(mv2\_dot+mv3\_dot))/2160
                 //[kg/h]
68
69 //Heat transfer Area is
70 U1=710
                     // [W/sq m.K]
                     // [W/sq m.K]
71 \quad U2 = 490
                     // [W/sq m.K]
72 \quad U3 = 454
73 A1=ms_dot*lambda_s*1000/(3600*U1*dT1)
                                                   //[sq m]
74 A2=mv1_dot*lambda_v1*1000/(3600*U2*dT2)
                                                   //[sq m]
75 A3=mv2_dot*lambda_v2*1000/(3600*U3*dT3)
                                                   //[sq m]
76 //The deviation is within +-10\%
77 //Hence maximum A1 area can be recommended
78
79 eco=(mv_dot/ms_dot)
                              //[Steam economy]
80
81 Qc=mv3_dot*lambda_v3
                                  //[kJ/h]
82 dT = 25
                     //Rise in water temperature
83 \text{ Cp} = 4.187
84 \text{ mw\_dot=Qc/(Cp*dT)}
85 printf("\nANSWER\n Area in each effect%f sq m\n",A1)
86 printf("\nANSWER \n Steam economy is\%f\n",eco);
87 printf("\nANSWER Cooling water rate is %f t/h",
      mw_dot/1000)
```

Scilab code Exa 6.13 Triple effect unit

```
1 clc;
2 clear;
3 //Example 6.13
4 Cpf = 4.18
                      //[kJ/kg.K]
5 dT1=18
                      //[K]
6 dT2 = 17
                      //[K]
7 dT3 = 34
                      //[K]
8 \text{ mf\_dot=4}
                      //[kg/s]
9 \text{ Ts} = 394
                      // [K]
10 \text{ bp} = 325
                 //Bp of water at 13.172 kPa [K]
                      //[K]
11 dT=Ts-bp
                                //[kJ/kg]
12 \quad lambda_s = 2200
                           //[K]
13 T1=Ts-dT1
                           //[kJ/kg]
14 \quad lambda1 = 2249
                               //[kJ/kg]
  lambda_v1=lambda1
15
16
17 T2 = T1 - dT2
                           //[K]
18 lambda2=2293
                           //[kJ/kg]
   lambda_v2=lambda2
                               //[kJ/kg]
19
20
21 T3=T2-dT3
                           //[K]
                           //[kJ/kg]
22 lambda3=2377
                               //[kJ/kg]
23
  lambda_v3=lambda3
24
25 ic=0.1
                 //Initial conc of solids
26 \text{ fc} = 0.5
                 //Final conc of solids
27 m3dot_dash=(ic/fc)*mf_dot
                                         //[kg/s]
28 mv_dot=mf_dot-m3dot_dash
                                         //Total evaporation
      in [kg/s]
29 // Material balance over first effect
30 //mf_dot=mv1_dot_m1dot_dash
31 //Energy balance:
```

```
32 //ms_dot*lambda_s=mf_dot*(Cpf*(T1-Tf)+mv1_dot*)
      lambda_v1)
33
34 // Material balance over second effect
35 //m1dot_dash=mv2_dot+m2dot_dash
36 //Enthalpy balance:
37 / mv1_dot*lambda_v1+m1dot_dash(cp*(T1-T2)=mv2_dot*
      lambda_v2)
38
39 // Material balance over third effect
40 //m2dot_dash=mv3_dot+m3dot+dash
41
42 //Enthalpy balance:
43 / mv2_lambda_v2+m2dot_dash*cp*(T2-T3)=mv3_dot*
      lambda_v3
44 294
45 \text{ mv2\_dot} = 3.2795/3.079
                                   // [kg/s]
46 \text{ mv1\_dot} = 1.053 * \text{mv2\_dot} - 0.1305
                                       //[kg/s]
47 \text{ mv3\_dot} = 1.026 * \text{mv2\_dot} + 0.051
                                       // [kg/s]
48 ms_dot=(mf_dot*Cpf*(T1-294)+mv1_dot*lambda_v1)/
                      //[kg/s]
      lambda_s
49 eco=mv_dot/ms_dot
                                  //Steam economy
50 eco=round(eco)
51 printf("\nSteam economy is %d\n", eco);
52 U1=3.10
                //[kW/sq m.K]
53 U2=2
             //[kW/sq m.K]
54 U3=1.10
                //[kW/sq m.K]
55 // First effect:
56 A1=ms_dot*lambda_s/(U1*dT1)
                                            //[sq m]
57 \quad A2 = mv1_dot*lambda_v1/(U2*dT2)
                                             //[sq m]
58 \quad A3 = mv2_dot*lambda_v2/(U3*dT3)
                                             //[sq m]
59 // Areas are calculated witha
                                     deviation of +-10\%
60 printf("\nArea pf heat transfer in each effect is %f
       sq m n, A3)
```

Scilab code Exa 6.14 Quadruple effect evaporator

```
1 clc;
2 clear;
3 //Example 6.14
4 mf_dot=1060
                     //[kg/h]
             //Initial concentration
5 ic = 0.04
                    //Final concentration
6 \text{ fc} = 0.25
                                //[kg/h]
7 m4dot_dash=(ic/fc)*mf_dot
8 //Total evaporation=
                                      //[kg/h]
9 mv_dot=mf_dot-m4dot_dash
10
11 //Fromsteam table:
12 P1=370
                //[kPa.g]
13 T1=422.6
               // [K]
                   //[kJ/kg]
14 lambda1=2114.4
15
               //[kPa.g]
16 P2=235
17 T2 = 410.5
                   //[K]
                       //[kJ/kg]
18 lambda2=2151.5
19
              //[kPa.g]
20 P3=80
             // [K]
21 T3=390.2
                        //[kJ/kg]
22 \quad lambda3 = 2210.2
23
             //[kPa.g]
24 P4=50.66
25 \quad T4 = 354.7
                     // [K]
                       //[kJ/kg]
26 \quad lambda4 = 2304.6
27
                //Latent heat of steam[kPa .g]
28 P=700
                             //[kJ/kg]
29 \quad lambda_s = 2046.3
30
31 //FIRST EFFECT
32 //Enthalpy balance:
33 //ms_dot = mf_dot * Cpf * (T1-Tf) + mv1_dot * lambda1
34 / \text{ms\_dot} = 1345.3 - 1.033 * \text{m1dot\_dash}
35
36 //SECOND EFFECT
```

```
37 / m1 dot_dash = m2 dot_dash + mdot_v2
38 //Enthalpy balance:
39 / m1 dot_dash = 531.38 + 0.510 * m2 dot_dash
40
41 //THIRD EFFECT
42 // Material balance:
43 / m2dot_dash-m3dot_dash+mv3_dot
44
45 //FOURTH EFFECT
46 //m3dot_dash=m4dot_dash+mv4_dot
                                   //[kg/h]
47 mv4dot_dash=169.6
                               //[kg/h]
48 \quad m3dot_dash=416.7
49
50 //From eq n 4:
                                                  //[kg/h]
51 \text{ m2dot_dash} = -176.84 + 1.98 * \text{m3dot_dash}
52
53 //From eqn 2:
54 \text{ m1dot\_dash} = 531.38 + 0.510 * \text{m2dot\_dash}
                                                  //[kg/h]
55
56 //From eqn 1:
57 \text{ ms\_dot} = 1345.3 - 1.033 * m1dot\_dash
                                   //[kg evaporation /kg
58 eco=mv_dot/ms_dot
      steam]
59 printf("\nSteam economy is %f evaporation/kg steam",
      eco);
```

Scilab code Exa 6.15 Single effect Calendria

```
//Water evaporated [kg/h]
8 mv_dot=mf_dot-m1_dot
9 P = 357
                 //Steam pressure [kN/sq m]
10 \text{ Ts} = 412
                  // [K]
11 H=2732
                 //[kJ/kg]
12 \quad lambda = 2143
                      //[kJ/kg]
13 \text{ bpr} = 18.5
                           // [K]
14 T_dash=352+bpr
                           //[K]
                  //[kJ/kg]
15 Hf = 138
16 \quad lambda_s = 2143
                           //[kJ/kg]
17 \text{ Hv} = 2659
                 //[kJ/kg]
                 //[kJ/kg]
18 H1=568
19 ms_dot=(mv_dot*Hv+m1_dot*H1-mf_dot*Hf)/lambda_s
                //Steam consumption in kg/h
20 printf("\nSteam consumption is \%f kg/h\n", ms_dot);
21 printf("\nCapacity is %f kg/h\n",mv_dot);
22 eco=mv_dot/ms_dot //Economy
23 printf("\nSteam economy is \%f\n", eco);
24 dT=Ts-T_dash
                           //[K]
                 //[W/sq m.K]
25 hi=4500
26 ho=9000
                 //[W/sq m.K]
                      // [m]
27 \text{ Do} = 0.032
                      //[m]
28 \text{ Di} = 0.028
29 \times 1 = (Do - Di) / 2
                           // [m]
30 Dw = (Do - Di) / log (32/28)
31 \times 2 = 0.25 \times 10^{-3}
                          // [m]
                 //Length [m]
32 L = 2.5
33 hio=hi*(Di/Do)
                             //[W/sq m.K]
34 printf("\n NOTE: In textbook this value of hio is
      wrongly calculated as 3975.5.. So we will take
      this \langle n \rangle;
35 hio=3975.5
                 //Tube material in [W/sq m.K]
36 k1 = 45
37 k2=2.25
                //For scale [W/m.K]
38 Uo=1/(1/ho+1/hio+(x1*Dw)/(k1*Do)+(x2/k2))
      Overall heat transfer coeff in W/sq m.K
                               //[kJ/h]
39 Q=ms_dot*lambda_s
40 \quad Q = Q * 1000 / 3600
                                // [W]
41
```

```
42 A=Q/(Uo*dT) //[sq m]

43 n=A/(%pi*Do*L) //from A=n*%pi*Do*L

44 printf("\n No. of tubes required is %d",round(n));
```

Scilab code Exa 6.16 Single effect evaporator

```
1 clc;
2 clear;
3 //Example 6.16
4 bpr=40.6;
                    // [K]
5 Cpf=1.88; //[kJ
6 Hf=214; //[kJ/kg]
                  //[kJ/kg.K]
7 H1=505; //[kJ/kg]
8 mf_dot=4536; //[kg/h] of feed solution
9 ic=0.2; //Initial conc
10 fc=0.5;
               //Final concentration
11 m1dot_dash=(ic/fc)*mf_dot
                                    //Thisck liquor flow
       arte [kg/h]
12 mv_dot=mf_dot-m1dot_dash
                                    //[kg/H]
              //Saturation temperature of steam
13 Ts = 388.5;
     in [K]
                   //b.P of solution in [K]
14 \text{ bp} = 362.5
                      //[kJ/kg]
15 lambda_s=2214;
16 P=21.7; //Vapor space in [kPa]
17 Hv = 2590.3;
                   //[kJ/kg]
18
19 //Enthalpy balance over evaporator
20 ms_dot=(m1dot_dash*H1+mv_dot*Hv-mf_dot*Hf)/lambda_s
          //[kg/h
21 printf("\nSteam consumption is \%f kg/h\n", ms_dot);
22 	 dT = Ts - bp
                   //[K]
               //[W/sq m.K]
23 U=1560
                                //[kJ/h]
24 Q=ms_dot*lambda_s
                                // [W]
25 \quad Q = Q * 1000 / 3600
              //[sq m]
26 \quad A=Q/(U*dT)
```

```
27 printf("\nHeat transfer area is \%f sq m\n",A);
28
  // Calculations considering enthalpy of superheated
29
      vapour
30
31 \text{ Hv=Hv+Cpf*bpr}
                   //[kJ/kg]
32 ms_dot=(m1dot_dash*H1+mv_dot*Hv-mf_dot*Hf)/lambda_s
          //[kg/h]
33 printf("\n Now, Steam consumption is \%f kg/h\n",
      ms_dot);
34 eco=mv_dot/ms_dot
                             //Steam economy
35 printf("\nEconomy of evaporator \%f\n", eco);
                             //[kJ/h]
36 Q=ms_dot*lambda_s
                             //[w]
37 \quad Q = Q * 1000 / 3600
                              //Area
38 \quad A2 = Q/(U*dT)
39 printf("\nNow, Area is \%f\n", A);
40 perc=(A2-A)*100/A
                                //%error in the heat
      transfer area
41 printf("\n If enthalpy of water vapour Hv were based
       on the saturated vapour at the pressure\nthe
      error introduced is only %f percent\n",perc);
```