Today's Content

- 20 matrices questions

- No. of ways from (0,0) - BR

- Brocked

TODO - min cost to reach BR

- Dungcons & Dreson.

path

(n-1, m-1)

(n-1, m-1)

(n-1, m-1)

BR cell n, m.

Cell + night, bottom movement is only allowed.

$$(0,3)$$
 $(0,1)$ $(0,2)$ $(1,2)$ $(2,2)$
 $(0,3)$ $(0,1)$ $(1,1)$ $(1,2)$ $(2,2)$
 $(0,3)$ $(0,1)$ $(1,1)$ $(2,1)$ $(2,2)$
 $(0,3)$ $(1,0)$ $(1,1)$ $(1,2)$ $(2,2)$
 $(0,3)$ $(1,0)$ $(1,1)$ $(2,1)$ $(2,2)$
 $(0,3)$ $(1,0)$ $(2,0)$ $(2,1)$ $(2,2)$

- optimal substructure.

- overlapping subproblems

ap [i][j] = # No. of ways to reach (0,0) - (1,1)

$$dp[i][i] dp + [-i][i] dp = [i][i] dp$$

 C_{ij} Code + Cod Ci-idal = Cod Cidal

Base condition

int ways (int N, int M)

int dp[N][M]

for(
$$i = 0$$
) $i < n$ $i i + + i$

for($i = 0$) $i < m$; $i + + i$

$$f(i = 0) | 1 \le 0$$

else
$$dp[i][i] = dp[i-1][i] + dp[i] | 1$$

return de Cn-1) Cm-1]

TC: O(NxM)

sc: o(NM)

O, No of ways to go from 0,0 - BR cell

Cell - stont / bottom.

Base conditions,

1==0 11 j==0 Code faill,

J = 0

$$\int_{\mathbb{R}^{n}} |f(mat[0][i]) = 1$$

$$\text{else break}$$

LUY = LMJ LNJqb

```
Int dp[N][M] = Lo]

Int dp[N][M] = Lo]

If mow 0 is taken core

for (i=0; i<m; i++)

Letter break

If (mat[i][i] == 1) dp[o][i] = 1

else break

If (mat[i][o] == 1) dp[i][o] = 1
```

for (j=1)' (j < n), j++)

for (j=1)' (j < m); j++)

If (met Li)(j)==0 (de Li)(j)=0Use do Ci) (j)= do Ei-1) (j) + do Ei) [j-j]

TC: O(NM)
SC: O(N×M)

Int ways (int mat()(), N, m) int dp[n][m] = {-13 remm func (mat, dp, N-1, M-1) int func (int mat CICI, int dp CICI, i, i) If Ci < 0 | I = 0 | return 0

If C = 0 | return 0

If C = 0 | return 1

Same C = 0 | C = 0 | return 1

Same C = 0 | C = 0 | C = 0 | return 1 CdpCi)Ci] = CdpCi] = CdpCi)Ci] = CdpCi] = CdpCi)Ci] = CdpCi] = CdpCi]return dp1

In recursive code, writing bus case

is generally relatively easier,

TC: O(N×m)

SC: O(NM)

Break

10:32

T000

Q. Mincost to reach 0,0 to BR cell

Cell = right/bothom

3	2	8
6	7	_5
A	3	2
' [8	10

- O. Given materially, whose materially indicate hearth gain at this call.
 - find min health you should start with cut (0,0) so that you can reach N-1, M-1
 - cul bottom (right
 - If your health reach 2010, game out

-3	/-5	
-2	/ 1	1

H 5

$$H = 6$$

η. 10			
	- 3	2.	
	-6		

(0,0) Haim

min (1,0)

Exprossion.
Cusc I

T rose t

-5)

x-5=1

20:6

Cast

 \mathcal{A}

[-2] |-5]6

x - 2 = 6

>L = 8

$$x - 3 = \min(3, 10)$$

$$x = 11$$

-> optimal substrature.

→ ovodapping Subproblems

 \mathcal{X} + mat [i][i] = min(de[i+i][i]) vo[i][i]+i)

decissifs = min(decinsifs, decissions) -

mes [1][2]

Decision = min health you will need start (s, j)
and reach (N-1, m-1)

$$x + 20 = 8$$

$$x = -12$$

dp[i][j] = max (1, min(do[i+1)(i), dp[i][i+1]) - mot[i][i])

Base Cases

int minH (int mat[J[], N, M)

int de [N][M] = \(\int_{-1}\)

de [N-1][M-1] = max (1, 1-mat[N-1](M-1])

setum fun (most, N, M, dp, O, O)

int fun (met, w, m, dp, i, j)

If $(i \ge N \mid 1) \mid j \ge = m)$ seturn INT_max

If C appliced $E = \sim 1$) $\int_{0}^{\infty} \int_{0}^{\infty} \int_{0}$

rerum de [[][j]

יס √—			
	~3	2,	
	-6		
			4,4
\uparrow			

. , Passing by value

passing by respense

Sending away will not creak copys.