

Operational research for urban solar development

"PV failure detection based on operational time series"

02/12/2024<u>Alexandre Mathieu</u>

Curriculum Plan

Day	Time	Duration	Content
Wednesday 13/11/2024	11h15-12h45 14h15-15h45	1h30 + 1h30	50% Lecture / 50 % Hands-on
Tuesday 26/11/2024	9h45-13h00	1h30 + 1h30	25% Lecture / 75 % Hands-on
Monday 02/12/2024	13h15-16h15	3h	15% Lecture / 85 % Hands-on
Monday 09/12/2024	8h-11h 13h15-16h15	6h	10% Lecture / 90 % Hands-on/Project
Tuesday 10/12/2024	8h-11h	3h	10% Lecture / 90 % Project
Monday 16/12/2024	8-11h	3h	10% Lecture / 90 % Project
Thursday 19/12/2024	9h45-12h45	3h	10% Lecture / 90 % Project
Monday 06/01/2025	13h15-14h45	1h30	100% Project
Monday 13/01/2025	9h45-11h45	1h30	100% Project
Total		27h	

Agenda

Review notebook last week

PV performance model steps

Agenda

Review notebook last week

PV performance model steps

Review first notebook

Notebook recap 26/11/2024

Google collab link: https://colab.research.google.com/drive/1hB1pmBw-n7RiS99vCHQi2OKicfcQxpcO?usp=sharing

Correction: https://github.com/AlexandreHugoMathieu/pvfault_detection_solar_academy/blob/master/notebooks/python_intro2_horizon_mask.ipynb

Notebook recap 26/11/2024

Python commands

import matplotlib.pyplot as plt

```
# Apply filters
filter 1 = weather data["ghi"] > 800
filter_2 = (weather_data.index > pd.to_datetime("20220701").tz_localize("CET"))
filter = (filter 1) & (filter 2) # Combine with a "and" condition
weather data.loc[filter, "dhi"] # Select only the rows which fulfills the filter condition
and show the DHI column from weather data
# If statement
a=1
if a<0: # assertion: is "a" under 0 ? Do not forget the ":" at the end of the line
           print("a is lower than 0") # Line non-executed since the assertion above is wrong, do not
forget the "tab" indentation after a "if"
# Loop over all elements of a list or pd. Series which allow to perform task on each of the element
For element in ["a","b"]:
           print(element)
for index, row in df.iterrows(): # Loop over all rows and index of the dataframe one by one
           print(row["column1"] + row["column2"])
# Plot with matplotlib
plt.plot(x, y, linewidth=0, marker="o") # scatter plot with no line in that case
```


Agenda

Review notebook last week

PV performance model steps

4. Module and Cell temperature

The hotter a module is, the less efficient it is!

4. Cell temperature

Ross model:

Model to estimate the cell temperature T_c [°C] as function of ambient temperature and irradiance G_{POA} [W/m²].

$$T_c = T_a + G_{POA} \cdot k_{Ross}$$

 k_{ROSS} , typically in the range 0.02-0.05 K/m²/W.

 $k_{\it Ross}$ can be fitted from datasheet values. NOCT conditions:

 G_{POA} = 800 W/m² T_a = 20°C

4. Cell temperature

Ross model:

Model to estimate the cell temperature T_c [°C] as function of ambient temperature and irradiance G_{POA} [W/m²].

$$T_c = T_a + G_{POA} \cdot k_{Ross}$$

 k_{ROSS} , typically in the range 0.02-0.05 K/m²/W.

L-G5 325-345

4. Cell temperature

Faiman model:

Model to estimate the module temperature T_m [°C] as function of ambient temperature and irradiance G_{POA} [W/m²] AND wind WS $\left[\frac{m}{s}\right]$.

$$T_m = T_a + \frac{G_{POA}}{U_0 + U_1 \cdot WS}$$

 U_0 is the constant heat transfer component $[\frac{W}{Km^2}]$ U_1 is the convective heat transfer component $[\frac{W}{Km^2}]$

4. Cell temperature

Faiman model:

Model to estimate the module temperature T_m [°C] as function of ambient temperature and irradiance G_{POA} [W/m²] AND wind WS $\left[\frac{m}{s}\right]$.

$$T_m = T_a + \frac{G_{POA}}{U_0 + U_1 \cdot WS}$$

 U_0 is the constant heat transfer component $[\frac{W}{Km^2}]$ U_1 is the convective heat transfer component $[\frac{W}{Km^2}]$

In some cases, $T_c \simeq T_m$ can be assumed Between T_c and T_m , only few degrees of difference

5. Module and String IV Curve

5. Module and String IV Curve

For a fixed irradiance and module temperature, the PV module has its I, current which depends on V, voltage and it can take many operating points.

5. Module and String IV Curve

For a fixed irradiance and module temperature, the PV module has its I, current which depends on V, voltage and it can take many operating points.

In reality, the IV characteristics go out of the 1st quadrant and the module can potentially consume power.

5. Module and String IV Curve

For a fixed irradiance and module temperature, the PV module has its I, current which depends on V, voltage and it can take many operating points.

Then, the inverter is constantly searching for the operating point which maximizes the power MPP: Maximum Power Point.

5. Module and String IV Curve

For a fixed irradiance and module temperature, the PV module has its I, current which depends on V, voltage and it can take many operating points.

Then, the inverter is constantly searching for the operating point which maximizes the power MPP: Maximum Power Point.

Especially, it changes the voltage with the MPP-Tracker (MPPT) to maximize power.

5. Module and String IV Curve

By the way... the IV curves can be summed up when the modules are connected in series or parallel! The inverter, then, maximizes the power of the PV array IV curve.

PV Performance Modeling Steps

5. Module and String IV Curve

The IV curves' dependencies:

- Higher cell temperatures mostly decrease the voltage
- Higher irradiance level mostly increase the current

Example of I-V curves as function of different module temperature

10

15

20

Voltage [V]

25

30

35

6. DC & Mismatch Losses

Not the focus of this class. However, keep in mind that:

- **DC wiring losses** are around 0.5%-2%.
- **Mismatch losses** refers to the fact that PV modules have different IV curves and this can entail significant losses.

6. DC & Mismatch Losses

Not the focus of this class. However, keep in mind that:

- **DC wiring losses** are around 0.5%-2%.
- Mismatch losses refers to the fact that PV modules have different IV curves and this can entail significant losses.
 For instance, if one of them has a very degraded IV curve (shading or other), it can significantly degrade the IV curve at the array level.

5./6./7. Power model

Constant efficiency model:

$$P_{dc} = \eta \cdot G_{POA} \cdot A$$

With:

- P_{dc} , DC power in [W]
- η efficiency around 20% (from datasheet)
- G_{POA} the irradiance in the plane of array [W/m²]
- A, the PV installation area [m2]

5./6./7. Power model

Constant efficiency model:

$$P_{dc} = \eta \cdot G_{POA} \cdot A$$

With:

- P_{dc} , DC power in [W]
- η efficiency around 20% (from datasheet)
- G_{POA} the irradiance in the plane of array [W/m²]
- A, the PV installation area [m2]

Not really precise for instantaneous values

5./6./7. Power model

The <u>PVWatts power model</u> enables to take into account the effect of the cell temperature

$$P_{dc} = P_{dc0} \cdot \frac{G_{POA}}{1000 \, W/m^2} \cdot \left(1 + \gamma_{pdc} \cdot (T_{cell} - 25^{\circ}C)\right)$$

With:

- P_{dc0} Nominal DC power [Wp] (installed capacity)
- G_{POA} the irradiance in the plane of array [W/m²]
- γ_{pdc} , the temperature coefficient (negative, usually between -0.2 -0.5 %/°C)
- T_{cell} , the cell temperature [°C]

5./6./7. Power model

The Huld model (used in PVGIS) enables to take into account the module temperature and non-lineary with irradiance.

$$P_{dc} = \eta_{Huld}(G, T_m) \cdot G' \cdot P_{dc0}$$

$$\eta_{Huld}(G) = 1 + k_1 \cdot \ln(G') + k_2 \cdot \ln(G')^2 + k_3 \cdot T_{m'} + k_4 \cdot T_{m'} \cdot \ln(G') + k_5 \cdot T_{m'} \cdot \ln(G')^2 + k_6 \cdot T_{m'}^2$$

With:

- P_{dc0} Nominal DC power [Wp] (installed capacity)
- G_{POA} the irradiance in the plane of array [W/m²]
- $G' = \frac{G_{POA}}{1000 W/m^2}$ the normalized irradiance
- $T_m' = T_m 25$ °C, the module temperature delta [°C]
- $k_1 \dots k_6$, the model coefficients

5./6./7. Power model

The Huld model (used in PVGIS) enables to take into account the module temperature and non-lineary with irradiance.

$$P_{dc} = \eta_{Huld}(G, T_m) \cdot G' \cdot P_{dc0}$$

$$\eta_{Huld}(G) = 1 + k_1 \cdot \ln(G') + k_2 \cdot \ln(G')^2 + k_3 \cdot T_{m'} + k_4 \cdot T_{m'} \cdot \ln(G') + k_5 \cdot T_{m'} \cdot \ln(G')^2 + k_6 \cdot T_{m'}^2$$

With:

- P_{dc0} Nominal DC power [Wp] (installed capacity)
- G_{POA} the irradiance in the plane of array [W/m²]
- $G' = \frac{G_{POA}}{1000 W/m^2}$ the normalized irradiance
- $T_m' = T_m 25$ °C, the module temperature delta [°C]
- $k_1 \dots k_6$, the model coefficients

PVGIS coefficients

Coefficient	c-Si	CIS	CdTe
<i>k</i> ₁	-0.017237	-0.005554	-0.046689
<i>k</i> ₂	-0.040465	-0.038724	-0.072844
k ₃	-0.004702	-0.003723	-0.002262
<i>k</i> ₄	0.000149	-0.000905	0.000276
<i>k</i> ₅	0.000170	-0.001256	0.000159
<i>k</i> ₆	0.000005	0.000001	-0.000006

8. Inverter model

The PVWatts inverter model enables to calculate a generic AC/DC efficiency

$$\eta = \frac{\eta_{nom}}{\eta_{ref}} \cdot \left(-0.0162 \cdot \frac{P_{dc}}{P_{dc0}} - \frac{0.0059}{\frac{P_{dc}}{P_{dc0}}} + 0.9858 \right)$$

With:

- η_{nom} The nominal inverter efficiency [-], by default 96%
- η_{ref} The reference inverter efficiency [-], by default 96.4%
- P_{dc} The DC power $\left[\frac{W}{m^2}\right]$
- P_{dc0} The DC input power limit [W/m2]

8. Inverter model

The Sandia inverter model enables to include the voltage and be more precise

$$P_{AC} = \left[\frac{P_{AC0}}{A - B} - C \cdot (A - B) \right] \cdot (P_{dc} - B) + C \cdot [P_{dc} - B]^{2}$$

Where:

- $A = P_{dc0} \cdot [1 + C1 \cdot (V_{dc} V_{dc0})]$
- $B = P_{s0} \cdot [1 + C2 \cdot (V_{dc} V_{dc0})]$
- $A = C_0 \cdot [1 + C3 \cdot (V_{dc} V_{dc0})]$

Parameters:

- V_{dc} : DC input voltage (V).
- ullet V_{dc0} : DC voltage level (V) at which the AC power rating is achieved
- P_{AC} : AC output power (W)
- P_{AC0} : Maximum AC power rating for inverter at reference conditions (W).
- P_{dc0} : DC power level (W) at which the AC power rating is achieved.
- P_{s0} : DC power required to start the inversion process (W)
- C_0, C_1, C_2, C_3 : Empirical coefficients

10. Performance Metrics

Performance Ratio PR (IEC 61724): To calculate real performance

$$PR = \frac{E_{out}}{E_{POA}} / \frac{P_0}{G_{ref}}$$

Real efficiency normalized by the efficiency in STC conditions **STC**: Standard Test Conditions (1000 W/m2, cell temperature of 25 °C, and AM1.5 spectrum)

With:

- E_{out}: Energy produced [Wh] over the period of time T
- E_{POA} : Irradiation received [Wh/m²] over the period of time T
- P₀: Installation DC rated power [Wp]
- $G_{ref} = 1000 \frac{W}{m^2}$, reference irradiation

10. Performance Metrics

Performance Ratio PR (*IEC 61724*): *To calculate real performance*

$$PR = \frac{E_{out}}{E_{POA}} / \frac{P_0}{G_{ref}}$$

Real efficiency normalized by the efficiency in STC conditions **STC**: Standard Test Conditions (1000 W/m2, cell temperature of 25 °C, and AM1.5 spectrum)

With:

- E_{out} : Energy produced [Wh] over the period of time T
- E_{POA} : Irradiation received [Wh/m²] over the period of time T
- P_0 : Installation DC rated power [Wp]
- $G_{ref} = 1000 \frac{W}{m^2}$, reference irradiation

Energy Performance Index EPI:

To monitor performance

$$EPI = \frac{PR}{PR_{expected}}$$

Time for some hands-on exercises!

Use the following notebook:

https://colab.research.google.com/drive/1ncPYAOFvJvU Tc5goPQL9F9wLNUh1FzQ?usp=sharing

Follow the python tutorial and estimate the AC power for one year.

That's it

