1 Ladungsträger pro Atom

Die Ladungsträger pro Atom berechnen sich nach:

$$Z = \frac{n*m}{\rho*N_A}$$

Dabei ist m
 die molare Masse von Kupfer, ρ ist die Dichte von Kupfer und N_A ist die Avogadro-Konstante. $\rho=8.96~m=63.546e-3$

Die Rechnung ergibt:

 \pm

Ladungsträger pro Volumen \pm Gauß-Fehler	Ladungsträger pro Atom \pm Gauß-Fehler
$-2.6088847454095256 * 10^{30} \pm 2.608884745409526 * 10^{27}$	-30724.4558 ± 30.7244
$-9.375861670676898 * 10^{30} \pm 9.375861670676899 * 10^{27}$	-110418.1579 ± 110.4181
$-1.7340192518405735*10^{31} \pm 1.7340192518405736*10^{28}$	-204212.9228 ± 04.2129
$-2.8998249303089926*10^{31} \pm 2.899824930308992*10^{28}$	-341508.1603 ± 341.5081
$-4.108537223356665 * 10^{31} \pm 4.108537223356666 * 10^{28}$	$-483856.4474 \pm 483.8564$
$-5.506911710141514*10^{31} \pm 5.506911710141516*10^{28}$	-648540.9748 ± 648.5409
$-6.565587430250072*10^{31} \pm 6.5655874302500725*10^{28}$	-773219.6731 ± 773.2196
$-7.809670538066778 * 10^{31} \pm 7.8096705380667795 * 10^{28}$	$-919733.5295 \pm 919.7335$
$-8.963167117987643*10^{31} \pm 8.963167117987643*10^{28}$	-1055579.1425 ± 1055.5791
$-1.001706478691359 * 10^{32} \pm 1.001706478691359 * 10^{29}$	$-1179695.1366 \pm 1179.6951$

2 mittlere Flugzeit

Die mittlere Flugzeit berechnet sich nach:

$$\tau = \frac{2m_0}{ne_0^2 * \rho}$$

Die Rechnung ergibt:

	土
Mittlere Flugze	it \pm Gauß-Fehler
$-3.036 * 10^{24}$ $-8.448 * 10^{25}$ $-4.568 * 10^{25}$ $-2.731 * 10^{25}$	
$-1.927 * 10^{25}$ $-1.438 * 10^{25}$ $-1.206 * 10^{25}$ $-1.014 * 10^{25}$ $-8.837 * 10^{26}$ $-7.907 * 10^{26}$	$ \begin{array}{l} \pm 1.9279*10^{28} \\ \pm 1.4384*10^{28} \\ \pm 1.2064*10^{28} \\ \pm 1.0142*10^{28} \\ \pm 8.8374*10^{29} \\ \pm 7.9076*10^{29} \end{array}$

2.1 mittlere freie Weglänge

Die mittlere freie Weglänge berechnet sich dur die Formel:

$$l = -\tau * v$$

Einsetzen der Werte aus den voherigen Rechnungen liefert:

	±
Mittlere freie We	glänge \pm Gauß-Fehler
2483.064	± 2.483
690.926	± 0.6909
373.584	± 0.3735
223.393	± 0.223
157.672	± 0.1576
117.634	± 0.1176
98.6663	± 0.0986
82.9488	± 0.0829
72.2738	$\pm \ 0.0722$
64.6699	± 0.0646