A Physics-Informed Vector Quantized Autoencoder for Data Compression of Turbulent Flow

Mohammadreza Momenifar Enmao Diao Vahid Tarokh Andrew Bragg

Pratt School of Engineering

Duke University

Motivation

Large-scale data from **three-dimensional (3D)** high-fidelity simulations of **turbulent flows** is **memory intensive**, requiring significant resources to store, transfer and process the data

This major challenge highlights the need for **data compression** techniques. This motivated us to propose an attractive solution for situations where **fast**, **high quality and low-overhead** encoding and decoding of large data are required

Proposed Framework

■ We propose a physics-informed Deep Learning framework to generate a discrete low-dimensional representation of velocity field data of three-dimensional turbulent flow simulations

□ Our method can offer at least compression ratio (CR) = 85 and predictions that faithfully reproduce the statistics of the flow, except at the very smallest scales

Model Architecture

- □ Vector Quantized Autoencoder (VQ-AE) [1] learns a discrete (rather than continuous), low-dimensional representation of data
- ☐ Scaling Factor (**SF**) and Compression Ratio (**CR**)

$$SF \in \{2,4,6\}$$

$$CR = \frac{3 \times 32}{1 \times 9} \times SF^3$$

$$\begin{aligned} Quantize(E(x)) &= e_k, \text{ where } k = \underset{j}{\operatorname{arg\,min}} \parallel E(x) - e_j \parallel_2 \\ \mathcal{L}(x,D(e)) &= \underbrace{\parallel x - D(e) \parallel_2^2}_{reconstruction\ loss} + \underbrace{\parallel sg\{E(x)\} - e \parallel_2^2}_{codebook\ loss} + \underbrace{\beta \parallel sg\{e\} - E(x) \parallel_2^2}_{commitment\ loss} \end{aligned}$$

[1] Van Den Oord, Aaron, and Oriol Vinyals. "Neural discrete representation learning." Advances in neural information processing systems 30 (2017).

Prior Physics-Informed Knowledge

☐ Incorporating prior physics-informed knowledge into framework

Embed physics constraints of isotropic turbulence, particularly those of velocity gradient tensor $A_{ij} = \partial u_i/\partial x_j$ and "Betchov relations":

$$\langle S_{ij}S_{ij}\rangle = \langle R_{ij}R_{ij}\rangle = \frac{1}{2}\langle \omega_i\omega_i\rangle \; ; \; \langle S_{ik}S_{kj}S_{ij}\rangle = -\frac{3}{4}\langle S_{ij}\omega_i\omega_j\rangle$$

where $S_{ij} \equiv (1/2)(A_{ij} + A_{ji})$ is the strain-rate, $R_{ij} \equiv (1/2)(A_{ij} - A_{ji})$ is the rotation-rate, and $\omega_i = \epsilon_{ijk}R_{jk}$ is the vorticity

Velocity Gradient Constraint (VGC) =
$$\underbrace{\mathrm{MSE}(A_{ij}, \widehat{A_{ij}})}_{i=j} + a \times \underbrace{\mathrm{MSE}(A_{ij}, \widehat{A_{ij}})}_{i\neq j}$$

Higher Order Constraints (HOC) = $\mathrm{MAE}(\langle S_{ij}S_{ij}\rangle, \langle \widehat{S_{ij}S_{ij}}\rangle) + \mathrm{MAE}(\langle R_{ij}R_{ij}\rangle, \langle \widehat{R_{ij}R_{ij}}\rangle) + \mathrm{MAE}(\langle S_{ik}S_{ki}S_{ij}\rangle, \langle \widehat{S_{ik}S_{ki}S_{ij}}\rangle) + \mathrm{MAE}(\langle S_{ii}\omega_{i}\omega_{i}\rangle, \langle \widehat{S_{ij}\omega_{i}\omega_{i}}\rangle),$

Overall Loss (OL) = VQ-AE loss +
$$\alpha \times VGC + \gamma \times HOC$$

The Forward and Backward paths are performed in Fourier space using FFT

Experimental Setup

We train our model via only 40 realizations from Direct Numerical Simulation (DNS) data of a three-dimensional, statistically stationary, isotropic turbulent flow simulated on a cubic domain with 128 grid point in each direction

■ We implemented this framework with PyTorch. The training (one NVIDIA Pascal P100 GPU) was completed within approximately 8
 hours, and the maximum GPU memory consumed was around 5 GB

Evaluation

☐ The model is evaluated using statistical, comparison-based similarity and **physics-based metrics** (PDFs of velocity gradient tensor and its invariants, Turbulence kinetic energy spectra)

The performance of this lossy data compression scheme is evaluated on a variety of test data on the order of increasing complexity: stationary isotropic turbulence, decaying isotropic turbulence, Taylor-Green vortex flow

Evaluation

Table 1: Summary of the performance on unseen data from statistically stationary isotropic, decaying isotropic, and decaying Taylor-Green vortex turbulence.

Turbulent Flow	CR	Method	MSE	MAE	MSSIM	HOC
stationary isotropic	85 683 5461	VQ-AE	0.0044 0.0201 0.1900	0.0499 0.1070 0.3240	0.977 0.909 0.600	18.37 51.25 112.59
decaying isotropic	64 64 85 683 5461	SVD [8] AE [8] VQ-AE	2.8043 0.0865 0.0018 0.0080 0.0504	2.2944 0.3744 0.0326 0.0693 0.1720	0.198 0.946 0.970 0.882 0.598	N/A 9.81 20.39 37.83
decaying Taylor-Green vortex	64 64 85	SVD [8] AE [8] VQ-AE	0.0253 0.0017 0.0027	0.2112 0.0483 0.0395	0.398 0.953 0.830	N/A 1.33

Experimental Results

Figure 1. 2D snapshots and PDFs of velocity components. Comparing original and reconstructed 3D test data from **statistically stationary isotropic turbulence** compressed via VQ-AE with SF= 2 (CR= 85).

Experimental Results

Figure 2. (a) with and (b) without regularizations for PDFs of normalized longitudinal (left), transverse (middle) components of velocity gradient tensor A, and Turbulence Kinetic Energy spectra (right) of stationary isotropic turbulence flow

Conclusion

- ☐ We propose a vector quantized deep learning framework, the so called vector quantized autoencoder or VQ-AE, for the compression of data from turbulent flow simulations
- We calibrate the loss function of the model to infuse prior physicsinformed knowledge of the flow in the form of constraints in order to boost the model performance
- Our data compression framework is not limited to Computational Fluid

 Dynamics (CFD) simulations but can be easily applied to compress

 data from other complex physical simulations

