SPECIFICATION

Product Type:	7''	TFT	LCD	Modul e	

LCD Nunmber: <u>7DD FOG</u>

Module No .: <u>7DD-NTE400NHT</u>

CUSTOMER	PREPARE BY	CHECK BY	APPROVED BY
APPROVED			
SUPPLI ER	PREPARE BY	CHECK BY	APPROVED BY
APPROVED			

Rev. 01 2010.06.23 1/23

	Contents				
NO.	Contents	Page			
	Cover	1			
	Contents	2			
	Document Revision History	3			
	General Description	4			
\equiv	Absolute Maximum Ratings	5			
三	Optical Specifications	6			
四	Optical Characteristics	12			
五.	Block Diagram	14			
六	Pin Assignment	15			
七	Reliability test items	18			
八	Outline Dimension	19			
九	Packing Form	20			
+	General Precaution	21			

Rev. 01 2010.06.23 2/23

	Document Revision History									
Change No.	Date	Subject And Reason	Version No.	Responser						
1	2010. 06. 23	New	01	tangzhanj un						

Rev. 01 2010.06.23 3/23

1.0 General Description

1.1 Introduction

INNOLUX Display model ATO70TN90 is a color active matrix thin film transistor (TFT) liquid crystal display (LCD) that uses amorphous silicon TFT as a switching device. This model is composed of a TFT LCD panel and a driving circuit. This TFT LCD has a 7.0 (16:9) inch diagonally measured active display area with WVGA(800 horizontal by 480 vertical pixel) resolution.

1.2. Features

7 (16:9 diagonal) inch configuration 6 bits + FRC driver with 1channel TTL interface Up/Down, Left/Right reversion selection RoHS Compliance

1.3. General information

Item	Speci fi cati on	Uni t
Outline Dimension	164.9 (H) x 100 (V) x 3.5 (D)	mm
Display area	154.08 (H) x 85.92 (V)	mm
Number of Pixel	800 RGB (H) x 480 (V)	pi xel s
Pixel pitch	0.0642 (H) x 0.1790(V)s	mm
Pixel arrangement	RGB Vertical stripe	
Color Filter Array	RGB vertical stripes	
Backl i ght	White LED	

Rev. 01 2010.06.23 4/23

2.0 Absolute Maximum Ratings

2.1 Electrical Absolute Rating

2.1.1 TFT LCD Module

Item	Symbol	Mi n.	Max.	Uni t	Note
	VCC	-0.3	6	V	GND=0
	VGH	0.3	40	V	GND=0
Power supply voltage	VGL	-20	0.3	V	GND=0
	AVDD	0.5	15	V	AGND=0
	VCOM	0	6	V	
Logic Signal Input Level	Vı	-0.3	VCC +0.3	V	

Note (1) Permanent damage may occur to the LCD module if beyond this specification.

Functional operation should be restricted to the conditions described under normal operating conditions.

(2) Ta =25±2°C

2.2 Environment Absolute Rating

Item	Symbol	Mi n.	Max.	Uni t	Note
Operating Temperature	Тора	-10	60	${\mathbb C}$	
Storage Temperature	Tstg	-20	70	$^{\circ}$	

2.3 Back-light Unit:

PARAMETER	Sym.	Min.	Тур.	Max.	Unit	Test Condition	Note		
LED Current	IF	ı	180	_	mA	_	_		
LED Voltage (Total)	VF	9	9.9	10.5	V	_	_		
Life Time		_	25000	_	Hr.	I≦180mA	_		
Color		White							

Rev. 01 2010.06.23 5/23

3. Operation Specifications

3.1. Absolute Maximum Ratings

(Note 1)

Item	Cumbal	Val	ues	Unit	Remark
iteiii	Symbol	Min.	Max.	Oilit	Remark
	DV _{DD}	-0.3	5.0	>	
	AV _{DD}	6.5	13.5	٧	
Power voltage	V_{GH}	-0.3	40.0	٧	
	V_{GL}	-20.0	0.3	٧	
	V_{GH} - V_{GL}	-	40.0	٧	
Operation Temperature	T _{OP}	-20	70	°C	
Storage Temperature	T _{ST}	-30	80	$^{\circ}$	

Note 1: The absolute maximum rating values of this product are not allowed to be exceeded at any times. Should a module be used with any of the absolute maximum ratings exceeded, the characteristics of the module may not be recovered, or in an extreme case, the module may be permanently destroyed.

Rev. 01 2010.06.23 6/23

3.1.1. Typical Operation Conditions

(Note 1)

Item	Sumbal		Values	Unit	Remark	
item	Symbol	Min.	Тур.	Max.	Onic	Remark
	DV _{DD}	3.0	3.3	3.6	>	Note 2
Power voltage	AV_{DD}	10.2	10.4	10.6	٧	
	V_{GH}	15.3	16.0	16.7	٧	
	V_{GL}	-7.7	-7.0	-6.3	٧	
Input signal voltage	V _{COM}	3.6	3.8	4.0	٧	
Input logic high voltage	VIIH	0.7 DV _{DD}	-	DV _{DD}	٧	Note 3
Input logic low voltage	٧L	0	-	0.3 DV _{DD}	>	Note 5

Note 1: Be sure to apply DV_{DD} and V_{GL} to the LCD first, and then apply V_{GH} . Note 2: DV_{DD} setting should match the signals output voltage (refer to Note 3) of customer's system board.

Note 3: DCLK,HS,VS,RESET,U/D, L/R,DE,R0~R7,G0~G7,B0~B7,MODE,DITHB.

3.1.2. Current Consumption

	Symbol		Values		Unit	Remark	
Item	Syllibol	Min.	Тур.	Max.	Onic		
	I _{GH}	•	0.2	1.0	mΑ	V _{GH} =16.0V	
Current for Driver	I _{GL}	-	0.2	1.0	mΑ	V _{GL} = -7.0V	
Current for Driver	IDV _{DD}	-	4.0	10	mΑ	DV _{DD} =3.3V	
	IAV _{DD}		20	50	mΑ	AV _{DD} =10.4V	

Rev. 01 2010.06.23 7/23

3.2. Power Sequence

a. Power on:

 $DV_{DD} \rightarrow VGL \rightarrow AVDD \rightarrow VGH \rightarrow Data \rightarrow B/L$

b. Power off:

 $B/L \rightarrow Data \rightarrow VGH \rightarrow AVDD \rightarrow VGL \rightarrow DV_{DD}$

Note: Data include R0~R7, B0~B7, GO~G7, U/D, L/R, DCLK, HS,VS,DE.

Rev. 01 2010.06.23 8/23

3.3. Timing Characteristics

3.3.1. AC Electrical Characteristics

Item	Combal		Values		Unit Remark	
	Symbol	Min.	Тур.	Max.	Unit	Remark
HS setup time	That	8	-		ns	(3)
HS hold time	Third	8	-		ns	5
VS setup time	Tvet	8	-		ns	
VS hold time	Tvhd	8		200	ns	
Data setup time	Tdsu	8	-	(2)	ns	
Data hole time	Tdhd	8	-	-	ns	
DE setup time	Tesu	8		12	ns	55
DE hole time	Tehd	8			ns	5
DV _{DD} Power On Slew rate	Tpor	1.51		20	ms	From 0 to 90% DV _{DD}
RESET pulse width	TRst	1			ms	
DCLK cycle time	Tooh	20	-		ns	
DCLK pulse duty	Town	40	50	60	%	

3.3.2. Input Clock and Data Timing Diagram

Rev. 01 2010.06.23 9/23

3.3.3. Timing

Item	Symbol		Values	Unit	Remark	
item		Min.	Тур.	Max.	Oille	Kelliark
Horizontal Display Area	thd	ı	800	1	DCLK	
DCLK Frequency	fclk	26.4	33.3	46.8	MHz	
One Horizontal Line	th	862	1056	1200	DCLK	
HS pulse width	thpw	1		40	DCLK	
HS Blanking	thb	46	46	46	DCLK	
HS Front Porch	thfp	16	210	354	DCLK	

Item	Symbol	Values			Unit _I	Remark
iteiii	Symbol	Min.	Тур.	Max.	Oiiii	Kemark
Vertical Display Area	tvd	1	480		TH	
VS period time	tv	510	525	650	TH	
VS pulse width	tvpw	1	-	20	TH	
VS Blanking	tvb	23	23	23	TH	
VS Front Porch	tvfp	7	22	147	TH	

Rev. 01 2010.06.23 10/23

Rev. 01 2010.06.23 11/23

4.0 Optical Characteristics

4.1 Optical specification

Item		Symbol	Condi ti on	Mi n.	Тур.	Max	Uni t	Note
Threshold voltage		Vsat		_		_		(5)
Till estior u voi	tage	Vth				_		(5)
LCM luminance (Center)		YL	I =180mA	350	400	_	cd/m²	9 point AVG
Transmittance (W	ith PZ)	Т		_	5.8	_		
Contrast		CR		400	500	_		(1)(2)
Response	Rising	Tr	θ=0 Normal viewing angle	_	5	7	msec	(1)(3)
time	Falling	TF		_	20	28		
Color gamu	t	S		_	49	_	%	
Color chromaticity	Whi te	Wx		0.30	0.32	0.34		
(CI E1931)		Wy		0.32	0.34	0.36		
	Hor.	θL	. CR>10	60	70	_		(1)(4)
Viewing angle		θR		60	70	_		
	Ver.	θυ		40	50	_		
		θр		50	60	_		

4.2 Measuring Condition

■ Measuring surrounding : dark room

 \blacksquare Ambient temperature : $25\pm2^{\circ}$ C

■ 30min. warm-up time.

4.3 Measuring Equipment

■ TOPCON BM-7

■ Measuring spot size : field 2°

Rev. 01 2010.06.23 12/23

Note (1) Definition of Viewing Angle:

Note (2) Definition of Contrast Ratio(CR) : $\mbox{measured at the center point of panel}$

CR = Luminance with all pixels white

Luminance with all pixels black

Note (3) Definition of Response Time: Sum of TR and TF

Rev. 01 2010.06.23 13/23

Note (4) Definition of optical measurement setup

Note (5) Definition of Vsat and Vth(at 20°C)

Note (6) Definition of brightness uniformity

5.0 Block Diagram

5.1 TFT-LCD Module

Rev. 01 2010.06.23 14/23

6.0 Pin Assignment

FPC Connector is used for the module electronics interface. The recommended model is

FH12A-50S-0.5SH manufactured by Hirose.

Pin No.	Symbol	1/0	Function	Remark
1	NC	1	No connection	Note 8
2	NC	1	No connection	Note 8
3	NC	1	No connection	Note 8
4	NC	1	No connection	Note 8
5	GND	Ρ	Power ground	
6	V _{сом}	I	Common voltage	
7	DV _{DD}	Р	Power for Digital Circuit	
8	MODE	Ι	DE/SYNC mode select	Note 1
9	DE	Ι	Data Input Enable	
10	VS	ı	Vertical Sync Input	
11	HS	ı	Horizontal Sync Input	
12	B7	I	Blue data(MSB)	
13	B6	ı	Blue data	
14	B5	I	Blue data	
15	B4	ı	Blue data	
16	В3	ı	Blue data	
17	B2	ı	Blue data	
18	B1	I	Blue data	Note 2
19	В0	I	Blue data(LSB)	Note 2
20	G7	ı	Green data(MSB)	
21	G6	I	Green data	
22	G5	1	Green data	
23	G4	I	Green data	
24	G3	-	Green data	
25	G2	-	Green data	
26	G1	- 1	Green data	Note 2

Rev. 01 2010.06.23 15/23

27	G0	ı	Green data(LSB)	Note 2
28	R7	I	Red data(MSB)	
29	R6	- 1	Red data	
30	R5	Ι	Red data	
31	R4	I	Red data	
32	R3	I	Red data	
33	R2	I	Red data	
34	R1	I	Red data	Note 2
35	R0	I	Red data(LSB)	Note 2
36	GND	Р	Power Ground	
37	DCLK	ı	Sample clock	Note 3
38	GND	Р	Power Ground	
39	L/R	ı	Left / right selection	Note 4,5
40	U/D	I	Up/down selection	Note 4,5
41	V _{GH}	Р	Gate ON Voltage	
42	V _{GL}	Р	Gate OFF Voltage	
43	AV _{DD}	Р	Power for Analog Circuit	
44	RESET	I	Global reset pin.	Note 6
45	NC	-	No connection	
46	V _{сом}	- 1	Common Voltage	
47	DITHB	ı	Dithering function	Note 7
48	GND	Р	Power Ground	
49	NC	-	No connection	
50	NC	-	No connection	

I: input, O: output, P: Power

Note 1: DE/SYNC mode select. Normally pull high.

When select DE mode, MODE="1", VS and HS must pull high.

When select SYNC mode, MODE= "0", DE must be grounded.

Note 2: When input 18 bits RGB data, the two low bits of R,G and B data must be grounded.

Note 3: Data shall be latched at the falling edge of DCLK.

Rev. 01 2010.06.23 16/23

Note 4: Selection of scanning mode

Setting of scar	n control input	Scanning direction		
U/D	L/R	Scarring direction		
GND	DV _{DD}	Up to down, left to right		
DV _{DD}	GND	Down to up, right to left		
GND	GND	Up to down, right to left		
DV _{DD}	DV _{DD}	Down to up, left to right		

Note 5: Definition of scanning direction. Refer to the figure as below:

Note 6: Global reset pin. Active low to enter reset state. Suggest to connect with an RC reset circuit for stability. Normally pull high.

- Note 7: Dithering function enable control, normally pull high. When DITHB="1", Disable internal dithering function, When DITHB="0", Enable internal dithering function,
- Note 8: Reserve for LED power input.

Rev. 01 2010.06.23 17/23

7.0 Reliability test items

NO	Item	Conditions	Remark
1	High Temperature Storage	Ta=+70°C, 240hrs	
2	Low Temperature Storage	Ta=-20°C, 240hrs	
3	High Temperature Operation	Ta=+60°C, 240hrs	
4	Low Temperature Operation	Ta=-10°C, 240hrs	
5	High Temperature and High Humidity (operation)	Ta=+60°C, 90%RH, 240hrs	
6	Thermal Cycling Test (non operation)	-20°C (0.5hr)→+70°C (0.5hr), 200cycl es	
7	Vi brati on	1. Random: 1. 04G, 10-500HZ, X, Y, Zdirection 30min/each direction 2. Sweep sine: 1. 5G, 5~500Hz, X/Y/Z, 30min/each direction	
8	Shock	100G,6ms, \pm X, \pm Y, \pm Z 3 time for each direction	JIS C7021, A-10 (Condition A)
9	Vibration (with carton)	Random: 1.04Grms, 10~500Hz, X/Y/Z 45min/each direction Fixed: 5Hz, 1.5Grms, X/Y/Z 45min/each direction	
10	Drop (with carton)	Height: 60cm 1 corner, 3 edges, 6 surfaces	JIS Z0202
11	Electrostatic Discharge	± 200 V, 200PF, 0 Ω 1 time/each terminal	

Note: All tests above are practiced at module type.

There is no display function NG issue occurred, All the cosmetic specification is judged before the reliability stress.

Rev. 01 2010.06.23 18/23

Rev. 01 2010.06.23 19/23

Rev. 01 2010.06.23 20/23

Rev. 01 2010.06.23 21/23

10.0 General Precaution

10.1 Use Restriction

This product is not authorized for use in life supporting systems, aircraft navigation control systems, military systems and any other application where performance failure could be life-threatening or otherwise catastrophic.

10.2 Asembly Precaytton

- 10.2.1 Please use the mounting hole on the module side in installing and do not bending or wrenching LCD in assembling. And please do not drop, bend or twist LCD module in handling.
- 10.2.2 Please design display housing in accordance with the following guide lines.
- 10.2.2.1 Housing case must be destined carefully so as not to put stresses on LCD all sides and not to wrench module. The stresses may cause non-uniformity even if there is no non-uniformity statically.
- 10.2.2.2 Keep sufficient clearance between LCD module back surface and housing when the LCD module is mounted. The clearance in the design is recommended taking into account the tolerance of LCD module thickness and mounting structure height on the housing.
- 10.2.3 Please do not push or scratch LCD panel surface with any-thing hard. And do not soil LCD panel surface by touching with bare hands. (Polarizer film, surface of LCD panel is easy to be flawed.)
- 10.2.4 Please do not press any parts on the rear side such as source IC, gate IC, and FPC during handling LCD module. If pressing rear part is unavoidable, handle the LCD module with care not to damage them.
- 10.2.5 Please wipe out LCD panel surface with absorbent cotton or soft cloth in case of it being soiled.
- 10.2.6 Please wipe out drops of adhesives like saliva and water on LCD panel surface immediately. They might damage to cause panel surface variation and color change.
- 10.2.7 Please do not take a LCD module to pieces and reconstruct it. Resolving and reconstructing modules may cause them not to work well.

10.3 Disassembling or Modification

Do not disassemble or modify the module. It may damage sensitive parts inside LCD module, and may cause scratches or dust on the display. HannStar does not warrant the module, if customers disassemble or modify the module.

10.4 Breakage of LCD Panel

- 10.4.1 If LCD panel is broken and liquid crystal spills out, do not ingest or inhale liquid crystal, and do not contact liquid crystal with skin.
- 10.4.2 If liquid crystal contacts mouth or eyes, rinse out with water immediately.
- 10.4.3 If liquid crystal contacts skin or cloths, wash it off immediately with alcohol and rinse thoroughly with water.
- 10.4.4 Handle carefully with chips of glass that may cause injury, when the glass is broken.

Rev. 01 2010.06.23 22/23

10.5 Absolute Maximum Ratings and Power Protection Circuit

- 10.5.1 Do not exceed the absolute maximum rating values, such as the supply voltage variation, input voltage variation, variation in parts' parameters, environmental temperature, etc., otherwise LCD module may be damaged.
- 10.5.2 Please do not leave LCD module in the environment of high humidity and high temperature for a long time.
- 10.5.3 It's recommended employing protection circuit for power supply.
- 10.6 Operation
- 10.6.1 Do not touch, push or rub the polarizer with anything harder than HB pencil lead. Use fingerstalls of soft gloves in order to keep clean display quality, when persons handle the LCD module for incoming inspection or assembly.
- 10.6.2 When the surface is dusty, please wipe gently with absorbent cotton or other soft material.
- 10.6.3 Wipe off saliva or water drops as soon as possible. If saliva or water drops contact with polarizer for a long time, they may causes deformation or color fading.
- 10.6.4 When cleaning the adhesives, please use absorbent cotton wetted with a little petroleum benzine or other adequate solvent.

10.7 Static Electricity

- 10.7.1 Protection film must remove very slowly from the surface of LCD module to prevent from electrostatic occurrence.
- 10.7.2 Because LCD module uses CMOS-IC on TFT-LCD panel, it is very weak to electrostatic discharge. Please be careful with electrostatic discharge.
- 10.7.3 Persons who handle the module should be grounded through adequate methods.

10.8 Disposal

When disposing LCD module, obey the local environmental regulations.

10.9 OTHERS

- 10.9.1 A strong incident light into LCD panel might cause display characteristics' changing inferior because of polarizer film, color filter, and other materials becoming inferior. Please do not expose LCD module direct sunlight land strong UV rays.
- 10.9.2 Please pay attention to a panel side of LCD module not to contact with other materials in preserving it alone.
- 10.9.3 For the packaging box, please pay attention to the followings:
- 10.9.3.1 Packaging box and inner case for LCD are designed to protect the LCDs from the damage or scratching during transportation. Please do not open except picking LCDs up from the box.
- 10.9.3.2 Please do not pile them up more than 6 boxes. (They are not designed so.) And please do not turn over.
- 10.9.3.3 Please handle packaging box with care not to give them sudden shock and vibrations. And also please do not throw them up.
- 10.9.3.4 Packing box and inner case for LCDs are made of cardboard. So please pay attention not to get them wet. (Such like keeping them in high humidity or wet place can occur getting them wet.)

Rev. 01 2010.06.23 23/23