Spatial II

Peter Ganong and Maggie Shi

October 31, 2024

Table of contents I

Introduction to data structures in geopandas (6.2)

Geometries in geopandas (6.2)

Common geometric operations (6.3)

Spatial Join and Nearest Neighbor Analysis (6.7, 6.8)

Introduction to data structures in geopandas (6.2)

Geopandas roadmap

In practice, we won't be coding our geodata by hand... Instead we are going to use shapefiles!

import geopandas as gpd

Roadmap

- Vocabulary
- ▶ File formats

▶ Read in data

Preview data

Define vocabulary

Vocabulary

- ➤ A GeoDataFrame is basically like a pandas.DataFrame that contains dedicated columns for storing geometries.
 - We will start with examples with a single column and later teach you how to use more than one column
- ➤ That column is called a GeoSeries. This can be any of data types (point, line, polygon) from the prior section. All of the methods you saw in the last section can also be used on a GeoSeries

File format I: Shapefile

- consists of at least three files .shp has feature geometrics, .shx has a positional index, .dbf has attribute information
- Usually also have .prj which describes the Coordinate Reference System (CRS)
- When you read in map.shp it automatically reads the rest of them as well to give you proper GeoDataFrame composed of geometry, attributes and projection.

Coordinate Reference Systems

- ▶ Coordinate Reference System (CRS) is a combination of:
 - ► "Datum": origin of latitude and longitude
 - "Project": representation of curved surface onto flat map
- Most common CRS: WGS84 (used for GPS)
- All coordinates are consistent within a CRS, but not always across CRS's
- ▶ Different CRS's suit different needs
 - optimized for local vs. global accuracy
 - different approaches to approx. shape of the earth

Reading a Shapefile .shp

```
#in same dir: `.shx` and `.dbf`
filepath = "data/shp/austin_pop_2019.shp"
data = gpd.read_file(filepath)
```

File format II: GeoPackage

- single file .gpkg
- Supports both raster and vector data
- ▶ Efficiently decodable by software, particularly in mobile devices

GeoPackage is more modern, but you will encounter shapefiles everywhere you look so good to be familiar with it.

Reading a GeoPackage gpkg

```
filepath = "data/austin_pop_2019.gpkg"
data = gpd.read_file(filepath)
type(data)
```

 ${\tt geopandas.geodataframe.GeoDataFrame}$

Previewing a GeoDataFrame

data.head()

	pop2019	tract	geometry
0	6070.0	002422	POLYGON ((615643.487 3338728.496, 615645.4
1	2203.0	001751	POLYGON ((618576.586 3359381.053, 618614.3
2	7419.0	002411	POLYGON ((619200.163 3341784.654, 619270.8
3	4229.0	000401	POLYGON ((621623.757 3350508.165, 621656.2
4	4589.0	002313	POLYGON ((621630.247 3345130.744, 621717.9

Previewing a GeoSeries

data.plot().set_axis_off()

Discussion question: Why isn't it enough to just to head()?

Geopandas summary

- GeoDataFrame and GeoSeries are the counterparts of pandas.DataFrame and pandas.Series
- .shp and .gpkg are two ways of storing geo data
- Always plot your map before you do anything else

Geometries in geopandas (6.2)

geometries: roadmap

- methods applied to GeoSeries
- my first choropleth

GeoSeries

```
type(data["geometry"])
```

 ${\tt geopandas.geoseries.GeoSeries}$

head()

```
data["geometry"].head()

0    POLYGON ((615643.487 3338728.496, 615645.477 3...
1    POLYGON ((618576.586 3359381.053, 618614.330 3...
2    POLYGON ((619200.163 3341784.654, 619270.849 3...
3    POLYGON ((621623.757 3350508.165, 621656.294 3...
4    POLYGON ((621630.247 3345130.744, 621717.926 3...
Name: geometry, dtype: geometry
```

calculate area

data["geometry"].area

```
4.029772e+06
      1.532030e+06
      3.960344e+06
3
      2.181762e+06
4
      2.431208e+06
125
      2.321182e+06
126 4.388407e+06
127 1.702764e+06
128 3.540893e+06
129 2.054702e+06
Length: 130, dtype: float64
```

calculate area

data["geometry"].area

```
0
      4.029772e+06
      1.532030e+06
      3.960344e+06
3
      2.181762e+06
4
      2.431208e+06
125
      2.321182e+06
126 4.388407e+06
127 1.702764e+06
128 3.540893e+06
129 2.054702e+06
Length: 130, dtype: float64
```

In-class exercise: what unit is this? Open the
austin_pop_2019.prj file in Quarto, then copy into ChatGPT
and query it.

add column to data frame

```
data["area_km2"] = data.area / 1000000
data[['tract', 'area_km2', 'geometry']].head()
```

	tract	area_km2	geometry
0	002422	4.029772	POLYGON ((615643.487 3338728.496, 615645.477 3
1	001751	1.532030	POLYGON ((618576.586 3359381.053, 618614.330 3
2	002411	3.960344	POLYGON ((619200.163 3341784.654, 619270.849 3
3	000401	2.181762	POLYGON ((621623.757 3350508.165, 621656.294 3
4	002313	2.431208	POLYGON ((621630.247 3345130.744, 621717.926 3

my first choropleth

```
data.plot(column="area_km2",
    legend=True).set_axis_off()
```


Discussion question – are the colors in this graph useful?

geometries: summary

- can do all the same operations on a GeoSeries that you would do on any other polygon, like Area
- data.plot(column="var") draws a choropleth map with shading corresponding to the highlighted variable

Common geometric operations (6.3)

common geometric operations: roadmap

- load and explore data
- methods
 - centroid
 - bounding box
 - buffer
 - dissolve
- ▶ do-pair-share

Austin, continued

```
(The textbook uses a slightly different file here, unclear why to us.)

filepath = "data/austin_pop_density_2019.gpkg"
data = gpd.read_file(filepath)
```

explore the data I

data.head()

	pop2019	tract	area_km2	pop_density_km2	geometry
0	6070.0	002422	4.029772	1506.288778	MULTIPOLYG
1	2203.0	001751	1.532030	1437.961394	MULTIPOLYG
2	7419.0	002411	3.960344	1873.322161	MULTIPOLYG
3	4229.0	000401	2.181762	1938.341859	MULTIPOLYG
4	4589.0	002313	2.431208	1887.538658	MULTIPOLYG
_					

explore the data II

```
type(data["geometry"].values[0])
```

 $\verb|shapely.geometry.multipolygon.MultiPolygon|\\$

explore the data III

```
import matplotlib.pyplot as plt
data.plot(facecolor="none", linewidth=0.2).set_axis_off()
```


- ▶ Import matplotlib.pyplot to access additional plotting options
- ▶ facecolor (or fc or color) defines a uniform color across all geometries

explore the data IV

data.plot(column="pop_density_km2").set_axis_off()

in contrast to facecolor, columns generates colors based on the underlying values

methods: centroid I

What it is: arithmetic mean position of all the points in a polygon

```
data["geometry"].centroid.head()

0    POINT (616990.190 3339736.002)
1    POINT (619378.303 3359650.002)
2    POINT (620418.753 3342194.171)
3    POINT (622613.506 3351414.386)
4    POINT (622605.359 3343869.554)
dtype: geometry
```

Note the data type: we're making a new geometry object

methods: centroid II

```
data.centroid.plot(markersize=1).set_axis_off()
plt.axis("off")
plt.show()
```


example use cases: centroid

- measuring distance between center of each multipolygon
- ▶ simplifying data representation for dense or complex polygons
- label placement in mapping

aside: change active geometry

- a GeoDataFrame can store multiple Geoseries
- ▶ and we can switch which one is the "main" one the one that geopandas will by default do spatial operations on

```
data["centroid"] = data.centroid
data.set_geometry("centroid")
data[['tract', 'centroid', 'geometry']].head()
```

	tract	centroid	geometry
0	002422	POINT (616990.190 3339736.002)	MULTIPOLYGON (((615643
1	001751	POINT (619378.303 3359650.002)	MULTIPOLYGON (((618576
2	002411	POINT (620418.753 3342194.171)	MULTIPOLYGON (((619200
3	000401	POINT (622613.506 3351414.386)	MULTIPOLYGON (((621623
4	002313	POINT (622605.359 3343869.554)	MULTIPOLYGON (((621630

methods: bounding box definition

What it is: the tightest possible rectangle around a shape, capturing all of its points within this rectangle.

methods: bounding box for each polygon I

data.envelope.head()

```
O POLYGON ((615643.488 3337909.895, 618358.033 3...

POLYGON ((618529.497 3358797.000, 620192.632 3...

POLYGON ((619198.456 3340875.421, 621733.880 3...

POLYGON ((621599.087 3350329.320, 623714.365 3...

POLYGON ((621630.247 3343015.679, 624133.189 3...

dtype: geometry
```

methods: bounding box for each polygon II

data.envelope.plot().set_axis_off()

example use cases: bounding box

- use this when you don't have a better way to filter the data
- when would you not have a better way?
 - when pulling data to make a map. maps are rectangular because screens are rectangular
 - when you want to do something fast computationally. because it just compares points in XY space to X_min, X_max, Y_min, Y_max, it is much faster than using a spatial join (discussed below)

methods: bounding box for whole data

We can also retrieve the corner coordinates of the bounding box for a GeoDataFrame

```
data.total_bounds
```

```
array([ 608125.39429998, 3337909.89499998, 629828.38850021, 3370513.68260002])
```

use cases: bounding box for whole data

- identifying total coverage area of a map
- making cropped or zoomed-in maps start with the overall bounding box, then "zoom" in by reducing coordinates
- make loading large spatial datasets easier load only a subset of the data based on the bounding box

methods: buffer I

What it is: shape representing all points that are less than a certain distance from the original shape

methods: buffer II

```
data.buffer(1000).plot(edgecolor="white").set_axis_off()
plt.axis("off")
plt.show()
```


Since our CRS is in meters, the buffer is defined to be 1000 meters around the border

methods: buffer III

```
data.centroid.buffer(1000).plot(edgecolor="white").set_axis_off(
plt.axis("off")
plt.show()
```


example use cases: buffer

- how many stores or parks near a neighborhood
- identify safety/hazard zones around buildings
- add bike lines or parking spots along roads
- working with geometries that have complicated borders (e.g. coasts)
- ▶ selecting nearby geometries example below with spatial join

methods: dissolve I

What it is: combining geometries into coarser spatial units based on some attributes.

example use cases: dissolve

- aggregating from smaller spatial unit to larger: counties to states, census tracts to school districts
- reducing complexity of large, dense spatial datasets
- ▶ Example with Austin data: we will construct the geometries that you might want to serve with public transit by identifying dense vs. non-dense tracts

dissolve example I

97 33

Name: count, dtype: int64

dissolve example II

geometry

dense

```
dissolved = data[["pop2019", "area_km2", "dense",
```

→ "geometry"]].dlssolve(
by="dense", aggfunc="sum"			
)			
<pre>dissolved = dissolved.reset_index()</pre>			
dissolved			

***	•
Aggregating alters the way the data is indexed a grouping variable the index	and makes the

MULTIPOLYGON (((618185.858 3340270.827, 618127... MULTIPOLYGON (((619541.045.3341062.710.619547...

▶ We need to reset it in order to plot, since some plotting libraries expect data to be indexed in a specific way

methods: dissolve III

```
dissolved.plot(column="dense").set_axis_off()
plt.axis("off")
plt.show()
```


Discussion Question: What can we do to improve this map?

common geometric operations: summary

- methods
 - centroid computes arithmetic mean of points in the polygon
 - bounding box expands polygon in a rectangle
 - buffer expands polygon in every direction
 - dissolve combines several polygons
- do-pair-share

do pair share

Goal: Create and plot a 500m buffer zone around the dense areas in Austin.

Steps

- From the dissolved GeoDataFrame, get a single polygon for the dense areas
 - ▶ Hint: you can use standard pandas commands to subset
- 2. Create a new geometry object called geo, which is the dense areas with a 500m buffer around them

Plot your new geometry object geo.plot()

Spatial Join and Nearest Neighbor Analysis (6.7, 6.8)

spatial Join and Nearest neighbor analysis: roadmap

- spatial join: example with finding intersection between two layers
- nearest neighbor analysis: identify neighbors of each census tract

Spatial Join

What it is: retrieving attributes from one layer and transferring them into another layer based on their spatial relationship

Spatial Join: use cases

Example use cases:

- adding attributes from one geographic unit to another, smaller geographic unit: assigning county-level statistics to zip codes
- using one layer to crop another
- identifying where two layers do not overlap

spatial join I

Example with Austin: we want to identify all census tracts that are adjacent to the dense tracts

Step 1: get polygon of dense zones

```
dense_zones = dissolved[dissolved['dense'] == 1]
dense_zones.plot().set_axis_off()
```


spatial join II

Step 2: create 10-meter buffer around dense areas

spatial join III

Step 3: find intersection between data and dense_buffer

spatial join IV

Step 4: plot dense_zones and near_dense

spatial join V

Spatial join options:

- how: inner (default), left, right
- predicate: intersects (default), contains, covered_by, covers, crosses, overlaps, touches, within
- Discussion question: what is another type of join we could have used to identify tracts next to dense areas?

methods: nearest neighbor analysis I

What it is: for every geography unit, find the other unit(s) that are closest in distance.

Example use cases:

- ind closest voting center to an address
- public transportation planning: how far is the closest metro stop?
- real estate: how much did nearby houses sell for?

methods: nearest neighbor analysis II

```
data_for_join = data[["tract", "geometry"]]
print("N tracts " + str(len(data_for_join)))
```

N tracts 130

Example with Austin: Join every Austin tract to its closest neighbor or neighbors.

methods: nearest neighbor analysis III

```
join_to_self = gpd.sjoin_nearest(
    data_for_join, #left df
    data_for_join, #right df
    how='inner',
    distance_col="distance"
)
```

- you will always specify a left dataframe and a right dataframe
- if both dataframes have the same variable, sjoin_nearest will add suffixes indicating if it comes from the left or the right dataframe
- in our example, both left and right dataframes have the exact same columns

methods: nearest neighbor analysis IV

```
print("N tracts w closest neighbor " +
    str(len(join_to_self)))
join_to_self[['tract_left', 'tract_right',
    'distance']].head(4)
```

N tracts w closest neighbor 848

	tract_left	tract_right	distance
0	002422	002423	0.0
0	002422	002422	0.0
0	002422	002424	0.0
0	002422	002402	0.0
_			

Note that 002422 is considered its own neighbor!

methods: nearest neighbor analysis V

```
neighbor_ids = join_to_self[join_to_self['tract_left'] ==

→ '002422']['tract_right']
print(neighbor_ids)

0 002423
0 002422
0 002424
0 002402
0 002410
0 002419
Name: tract_right, dtype: object
```

methods: nearest neighbor analysis VI

summary: spatial join and nearest neighbor analysis

- ➤ Spatial joins and nearest neighbor analysis allow us to "join" different Geodataframes based on space and proximity
- Like regular joins, the order in which you specify left vs. right dataframe matters