

Regolatori PID digitali

Automazione

Alessandro De Luca

Sistema di controllo digitale

schema generale MIMO di controllo in feedback

schema di controllo digitale

- qui, caso scalare (SISO)
- con passo di campionamento T_c
- con convertitori A/D e D/A
- segnali a tempo continuo e discreto
- utilizza un microprocessore (con codifica binaria) ⇒ digitale

Campionamento e ricostruzione

Campionamento a impulsi

campionamento = segnale a tempo continuo × treno di impulsi di Dirac

$$x^*(t) = x(t)\delta_{T_c}(t) \qquad \delta_{T_c}(t) = \sum_{k=0}^{\infty} \delta(t - kT_c)$$

- dallo spettro $X(j\omega)$ del segnale x(t)
- e dallo sviluppo in serie di Fourier del treno di impulsi di Dirac
- l'andamento spettrale del segnale campionato x*(t) è

$$X^*(j\omega) = \frac{1}{T_c} \sum_{n=-\infty}^{\infty} X(j\omega - jn\omega_c)$$
 $\omega_c = 2\pi/T_c$ pulsazione di campionamento

il tempo di campionamento è un fattore di scala!

Teorema di Shannon e aliasing

conclusione: i segnali hanno sempre componenti a frequenza sufficientemente alta (rumore)

⇒ filtraggio anti-aliasing

5

Ricostruzione: Zero-Order Hold

- lo ZOH approssima il ricostruttore (recuperando la scala!) per T_c sufficientemente piccolo
- lo ZOH introduce nell'anello di controllo un ritardo pari a $T_c/2$, con problemi indotti di instabilità

Scelta del passo di campionamento

- T_c sufficientemente piccolo \Rightarrow evita perdita di informazione e instabilità
- T_c non troppo piccolo \Rightarrow cresce il costo computazionale (vincoli real time)

$$\alpha \omega_{\mathrm{M}} \le \omega_{c} \le 10 \alpha \omega_{\mathrm{M}}$$
 $\Rightarrow T_{c} \le \frac{2\pi}{\alpha \omega_{\mathrm{M}}}$ $\alpha \in [5 \div 10]$ parametro di progetto

Specifiche nel progetto di controllo

- stabilità asintotica!
- prestazioni statiche (errori a regime permanente)
- prestazioni dinamiche (sul transitorio)
- spesso sulla risposta a gradino (risposta indiciale), con legami da/per la risposta armonica
- specifiche riferimento-uscita
- specifiche disturbo-uscita
- sforzo di controllo
- limiti fisici (attuatori)
- realizzazione digitale (passo di campionamento e altro)

Specifiche sulla risposta indiciale

- tempo di salita T_s (da 10% al 90% del regime)
- tempo di assestamento T_a (errore inferiore al 3-5%)
- massima sovraelongazione S

$$S = \frac{y(T_m) - y_{\infty}}{y_{\infty}}$$

 istante di massima sovraelongazione T_m

Regolatore PID

Azione Proporzionale-Integrale-Derivativa (sull'errore)

- soluzione industriale standard: oltre il 95% dei dispositivi di controllo in uso, per lo più di tipo digitale, hanno una legge di controllo PID
- molteplici versioni e varietà di prodotti, differenti per feature aggiuntive
- semplice taratura dei parametri (tuning), ora spesso automatica
- facile interpretazione dei termini/effetti nella legge di controllo

$$e(t) = y_{rif}(t) - y(t)$$

$$u(t) = K_p \left(e(t) + \frac{1}{T_i} \int_0^t e(\tau) d\tau + T_d \frac{de(t)}{dt} \right)$$

$$u(t) = K_p e(t) + K_i \int_0^t e(\tau) d\tau + K_d \frac{de(t)}{dt}$$
due espressioni equivalenti del PID (in forma analogica)

Regolatore PID digitale

discretizzazione con passo T_c delle azioni del PID sull'errore $e(t) = y_{rif}(t) - y(t)$

$$K_p e(t) \implies K_p e(kT_c) = K_p e_k$$

$$K_{p} \frac{1}{T_{i}} \int_{0}^{t} e(\tau) d\tau \implies \frac{K_{p}}{T_{i}} T_{c} \sum_{j=0}^{k} e_{j}$$

$$K_p T_d \frac{de(t)}{dt} \implies K_p T_d \frac{e_k - e_{k-1}}{T_c}$$

$$u_{k} = K_{p}e_{k} + \frac{K_{p}T_{c}}{T_{i}} \sum_{j=0}^{k} e_{j} + \frac{K_{p}T_{d}}{T_{c}} (e_{k} - e_{k-1})$$

$$u_{i,k} = u_{i,k-1} + \frac{K_p T_d}{T_i} e_k$$

$$u_k = K_p e_k + \frac{K_p T_d}{T_c} (e_k - e_{k-1}) + u_{i,k}$$

integrazione rettangolare in avanti (detta anche di Eulero a sinistra)

derivazione all'indietro (backward)

forma di posizione del PID digitale

implementazione **ricorsiva** della forma di posizione del PID digitale

Regolatore PID digitale

$$u_{k} = K_{p}e_{k} + \frac{K_{p}T_{c}}{T_{i}} \sum_{j=0}^{k} e_{j} + \frac{K_{p}T_{d}}{T_{c}} (e_{k} - e_{k-1})$$

$$u_{k-1} = K_p e_{k-1} + \frac{K_p T_c}{T_i} \sum_{j=0}^{k-1} e_j + \frac{K_p T_d}{T_c} (e_{k-1} - e_{k-2})$$

facendo la differenza di due campioni di controllo successivi...

$$\Delta u_k = u_k - u_{k-1}$$

$$= K_p(e_k - e_{k-1}) + \frac{K_p T_c}{T_i} e_k + \frac{K_p T_d}{T_c} (e_k - 2e_{k-1} + e_{k-2})$$

$$u_k = u_{k-1} + \Delta u_k$$

forma di velocità del PID digitale

introducendo l'operatore di ritardo $z^{-1}=1/z$ (di un passo T_c) ... $y_{k-1}=z^{-1}y_k$

$$(1-z^{-1})u_k = K_p(1-z^{-1})e_k + \frac{K_pT_c}{T_i}e_k + \frac{K_pT_d}{T_c}(1-2z^{-1}+z^{-2})e_k$$

$$= (1-z^{-1})^2$$

$$u_{k} = \left[K_{p} + \frac{K_{p}}{T_{i}} \frac{T_{c}}{1 - z^{-1}} + \frac{K_{p}}{T_{c}} T_{d} (1 - z^{-1})\right] e_{k} = PID(z) e_{k}$$

Derivata filtrata in banda...

$$u(t) = K_p \left(e(t) + \frac{1}{T_i} \int_0^t e(\tau) d\tau + T_d \frac{de(t)}{dt} \right)$$

il termine derivativo puro del PID non è realizzabile

$$u(s) = K_p \left(1 + \frac{1}{T_i} \frac{1}{s} + T_d s \right) e(s) = \frac{K_p \left((1/T_i) + s + T_d s^2 \right)}{s} e(s)$$
 funzione di trasferimento impropria (non causale)

$$K_p T_d s \implies K_p T_d \frac{s}{1 + (T_d/N) s}$$

aggiunta di un polo in alta frequenza (la derivazione viene filtrata in banda)

si considerano N campioni a tempo discreto con $5 \le \frac{T_d}{\kappa \tau} \le 20$

realizzazione solo con blocchi "causali"

...e sua realizzazione digitale

$$u_d(s) = K_p T_d \frac{s}{1 + \frac{T_d}{N} s} e(s)$$
derive

$$\left(1 + \frac{T_d}{N}s\right)u_d(s) = K_p T_d s \ e(s)$$

derivate realizzate con le differenze all'indietro

$$u_{d,k} + \frac{T_d}{N} \frac{u_{d,k} - u_{d,k-1}}{T_c} = K_p T_d \frac{e_k - e_{k-1}}{T_c}$$

$$\left(1 + \frac{T_d}{NT_c} - \frac{T_d}{NT_c}z^{-1}\right)u_{d,k} = \frac{K_p T_d}{T_c} (1 - z^{-1})e_k$$

$$u_{d,k} = \frac{1}{1 + \frac{T_d}{NT}} \left[\frac{T_d}{NT_c} u_{d,k-1} + \frac{K_p T_d}{T_c} e_k - \frac{K_p T_d}{T_c} e_{k-1} \right] \qquad u_{d,k} = \frac{\frac{K_p T_d}{T_c} (1 - z^{-1})}{1 + \frac{T_d}{NT} - \frac{T_d}{NT} z^{-1}} e_k$$

$$u_{d,k} = \frac{\frac{K_p T_d}{T_c} (1 - z^{-1})}{1 + \frac{T_d}{NT_c} - \frac{T_d}{NT_c} z^{-1}} e_k$$

$$u_k = K_p e_k + u_{i,k} + u_{d,k}$$

$$u_{k} = \left[K_{p} + \frac{K_{p}}{T_{i}} \frac{T_{c}}{1 - z^{-1}} + \frac{K_{p}T_{d}}{T_{c}} \frac{1 - z^{-1}}{1 + \frac{T_{d}}{NT_{c}} - \frac{T_{d}}{NT_{c}} z^{-1}} \right] e_{k} = PID^{*}(z)e_{k}$$

Regolatore PID* digitale

controllore PID digitale con derivata filtrata in banda = PID*

Schemi realizzativi del PID

quando $e(t)\approx 0$, a causa dei rumori di misura il rapporto S/N peggiora

2 azione **derivativa** calcolata solo **sull'uscita** (per riferimento costante a lungo o a tratti): evita "spikes" dovuti a variazioni di r a gradino

$$r = \cos t \Rightarrow \frac{de(t)}{dt} = -\frac{dy(t)}{dt}$$

1 schema **standard** con tutte le azioni P+I+D sull'errore

azione **P+D** calcolata **sull'uscita**(il solo termine integrale recupererà l'errore):
evita saturazioni da salto a gradino del riferimento

4 azione derivativa assimilata a quella di una rete anticipatrice opportuna: facilita il tuning del PID con le regole del "loop shaping" in frequenza

Schema PID con feedforward

 $\alpha + \beta T_d s$

schema a due gradi di libertà (α e β)

da discretizzare come prima per ottenere un PID + ffw digitale

G(s)

schema equivalente

con sole azioni di feedback (fbk)

(dall'errore e dall'uscita misurata)

vedi schemi pagina precedente

y(t)

Regolatore PID* sull'uscita

2 controllore PID digitale con derivata (filtrata in banda) calcolata sull'uscita = PID*,

Saturazione dell'attuatore sotto PID

saturazione fisica dell'attuatore

(di solito simmetrica rispetto allo 0, ma non necessariamente)

> il comando attuato NON dipende più dall'uscita del PID (ossia dall'azione di controllo in feedback calcolata dall'errore)

ad esempio, attuatore saturato al suo valore massimo

come fosse ad anello aperto (o con una riduzione dei guadagni)

la saturazione del comando di controllo è critica se c'è un'azione integrale che "accumula" errore anche quando l'attuatore è in saturazione

PID digitale anti-windup

- □ si conosce una "misura" dell'effettivo segnale attuato (≠ dal controllo calcolato) oppure si usa un modello algebrico dell'attuatore con stessi valori di saturazione
- nello schema, ci sono due saturazioni: sulla sola azione PD e sul comando finale
- □ l'integrazione dell'errore viene bloccata automaticamente quando c'è saturazione
- □ non evita saturazioni, ma solo l'inutile "accumulo" dell'azione integrale sull'errore
 - andrebbe poi "scaricata" quando l'errore si è ridotto, prima di poter rientrare nel dominio di linearità dell'attuatore
 - si rallenterebbe quindi il recupero della corretta azione del PID

Analisi del comportamento anti-windup

nella regione di linearità

$$u_{k} = (w_{k} =) u_{1,k} + \frac{K_{p}T_{c}}{T_{i}} e_{k} + (u_{k-1} - u_{1,k-1}) = (1 - z^{-1})u_{1,k} + \frac{K_{p}T_{c}}{T_{i}} e_{k} + z^{-1}u_{k}$$

$$u_{k} = u_{1,k} + \frac{K_{p}T_{c}}{T_{i}} \frac{e_{k}}{1 - z^{-1}} \qquad \text{esegue l'azione PD+I standard}$$

• entrambi i blocchi in saturazione (da almeno 1 passo di campionamento)

 $u_{k-1} = u_H$ $u_{1,k} = u_{1,k-1} = u_H$ ad esempio, attuatore saturato al suo valore massimo

$$u_k = u_H + \frac{K_p T_c}{T_i} e_k + (u_H - u_H) = u_H + \frac{K_p T_c}{T_i} e_k$$
NON integra più!

Effetto dell'anti-windup nel PID

simulazione di un controllo in retroazione di tipo PID in presenza di saturazione dell'attuatore: realizzazione standard (a-c) e realizzazione anti-windup (b-d)

Tuning del PID - 1

metodo basato su un modello semplice (guadagno, costante di tempo, ritardo finito)

$$G(s) = K \frac{e^{-\theta s}}{1 + \tau s}$$

che approssima il processo fisico, ricavato da parametri della risposta ad un gradino Δu

esempi di deduzione per via grafica del modello di progetto G(s): processo del primo ordine (a) e processo di ordine superiore (b)

Scelta dei parametri del PID

Tipo	Ziegler-Nichols	Cohen-Coon	3C
P	$K K_p = (\theta/\tau)^{-1}$	$K K_p = (\theta/\tau)^{-1} + 0.333$	$K K_p = 1.208 (\theta/\tau)^{-0.956}$
PI	$K K_p = 0.9(\theta/\tau)^{-1}$	$K K_p = 0.9 (\theta/ au)^{-1} + 0.082$	$K K_p = 0.928 (\theta/\tau)^{-0.946}$
	$T_i/ au = 3.33(heta/ au)$	$T_i/\tau = \frac{3.33(\theta/\tau)[1+(\theta/\tau)/11]}{1+2.2(\theta/\tau)}$	$T_i/ au = 0.928(\theta/ au)^{0.583}$
PID	$K K_p = 1.2(\theta/\tau)^{-1}$	$K K_p = 1.35 (\theta/\tau)^{-1} + 0.27$	$K K_p = 1.37 (\theta/\tau)^{-0.95}$
	$T_i/ au=2(heta/ au)$	$T_i/\tau = \frac{2.5(\theta/\tau)[1+(\theta/\tau)/5]}{1+0.6(\theta/\tau)}$	$T_i/ au = 0.74(\theta/ au)^{0.738}$
	$T_d/ au = 0.5(heta/ au)$	$T_d/\tau = \frac{0.37(\theta/\tau)}{1 + 0.2(\theta/\tau)}$	$T_d/ au = 0.365(heta/ au)^{0.95}$

PID analogico (e sue varianti più semplici)

nel caso di PID digitale, si tiene conto del passo di campionamento T_c e si pone

$$\theta \rightarrow \theta^D = \theta + \frac{T_c}{2}$$
 utilizzando nella tabella $\frac{\theta^D}{\tau} \Rightarrow \text{per } KK_p, T_i/\tau, T_d/\tau$

23

Esempio di tuning del PID

$$P(s) = \frac{1}{(1+0.5s)(1+s)^2(1+2s)} \xrightarrow{\text{dall'analisi grafica}} G(s) = K \frac{e^{-1.46s}}{1+3.34s} \quad (K=1, \theta=1.46 \text{ s}, \tau=3.34 \text{ s})$$
processo da controllare modello per il progetto del PID (uso delle tabelle)

modello per il progetto del PID (uso delle tabelle)

regolatore PID digitale con
$$T_c = 0.3 \,\mathrm{s} \Rightarrow \theta^D = \theta + T_c/2 = 1.46 + 0.15 = 1.61 \Rightarrow \theta^D/\tau = 0.482$$

dalla tabella (1° metodo di Ziegler-Nichols)

$$KK_p = 2.4894$$
, $T_i/\tau = 0.9641$, $T_d/\tau = 0.241$
 $\Rightarrow K_p = 2.4894$, $T_i = 3.22$, $T_d = 0.805$

risposta indiciale (a tempo continuo)

uscita del regolatore PID (dopo organo ZOH)

Tuning del PID - 2

2° metodo di Ziegler-Nichols (ad anello chiuso)

[posizione di tuning b]

- 1. si chiude l'anello di controllo con la sola azione proporzionale
- 2. si aumenta il guadagno K fino al valore critico K_c che porta il sistema in oscillazione
- 3. si ricava il periodo P_c dell'oscillazione critica

[posizione di operazione a] PID (o sue varianti), dopo la scelta dei guadagni come da tabella

$\leftarrow R_c$	->	
$(-1,j0)$ ω_c		 →
ω		interpretazione sul diagramma
		di Nyquist

Tipo	K_p	T_i	$ T_d $
Р	$0.5K_c$	∞	0
PI	$0.45K_c$	$P_{c}/1.2$	0
PID	$0.6K_c$	$0.5P_c$	$0.125P_c$

Tuning del PID - 2

- 2° metodo di Ziegler-Nichols (schema alternativo ad anello chiuso) [posizione di tuning b]
- 1. si chiude l'anello con una funzione a relè di ampiezza d
- 2. la retroazione non lineare innesca una oscillazione critica...
- 3. dalla teoria delle funzioni descrittive:
 - il segnale di uscita a regime è periodico quasi-sinusoidale di periodo P_c
 - la prima armonica dell'uscita ha un'ampiezza $A=4d/\pi$
- 4. si misura il periodo P_c dell'oscillazione critica e dall'ampiezza A dell'uscita si ricava K_c [posizione di operazione a] PID (o sue varianti), dopo la scelta dei guadagni come da tabella

$$K_c = 4d/\pi A$$

Tipo	K_p	T_i	T_d
Р	$0.5K_c$	∞	0
PI	$0.45K_c$	$P_{c}/1.2$	0
PID	$0.6K_c$	$0.5P_c$	$0.125P_c$