Property-based testing for Spark Streaming

A. Riesco and J. Rodríguez-Hortalá

Facultad de Informática Universidad Complutense de Madrid, Madrid, Spain

Apache: Big Data Europe 2016 November 14th, 2016 - Seville

Motivation

- Most of the time in the software developing cycle is devoted to testing and debugging.
- Batch systems provide different testing approaches.
- However, the tools for testing streaming systems are still immature.
- This is unfortunate, since more complex systems require closer attention.

Motivation

- However, it also makes sense, since probably the tools themselves need to be more complex.
- It is difficult to find the adequate tradeoff between complexity and power.
- A notable exception is Spark testing base [2].

Motivation

- We present here sscheck, a property-based testing framework for Spark Streaming.
- sscheck allows users to define generators and properties in LTL.
- The current version works for Spark 1.6.2.
- It is implemented in Scala.
- It allows users to define generators and properties in LTL.

Summary

- Preliminaries
- 2 Towards sscheck
- 3 sscheck
- 4 Implementation Notes
- **5** Conclusions and Ongoing Work

Scala

- Scala is a general purpose programming language.
- It is an object-oriented language with full support for functional programming.
- These features includes higher-order types, lazy evaluation, and pattern matching.
- Scala code is compiled to Java bytecode, so it can be run in the Java Virtual Machine.

- Apache Spark is an open source cluster computing framework.
- Programs are executed up to 100x faster than Hadoop MapReduce in memory, or 10x faster on disk.
- This performance is obtained thanks to its capabilities for in memory processing, and caching for iterative algorithms.

- Spark is implemented in Scala.
- Spark programs can be written in Java, Scala, Python, or R.
- The core of Spark is a batch computing framework based on manipulating so called Resilient Distributed Datasets (RDDs).
- RDDs provide a fault tolerant implementation of distributed immutable multisets.

- The set of predefined RDD transformations include typical higher-order functions like map, filter, etc.
- It also includes aggregations by key and joins for RDDs of key-value pairs.
- We can also use Spark actions, which allow us to collect results into the program driver, or store them into an external data store.
- Spark powers a stack of libraries including SQL and DataFrames, MLlib for machine learning, GraphX, and Spark Streaming.

- By using parallelize we obtain an RDD {let's count some letters} with 3 partitions.
- ② Applying map we have {(1,1)(e,1)(t,1)(',1)(s,1)(,1)(c,1)(o,1)
 (u,1)(n,1)(t,1)(,1)(s,1)(o,1)...}
- The function reduceByKey applies addition to the second component of those pairs whose first component is the same.
- The action collect allows us to print the final result.

- By using parallelize we obtain an RDD {let's count some letters} with 3 partitions.
- 2 Applying map we have {(1,1)(e,1)(t,1)(',1)(s,1)(',1)(c,1)(o,1)
 (u,1)(n,1)(t,1)(',1)(s,1)(o,1)...}
- The function reduceByKey applies addition to the second component of those pairs whose first component is the same.
- The action collect allows us to print the final result

- By using parallelize we obtain an RDD {let's count some letters} with 3 partitions.
- 2 Applying map we have {(1,1)(e,1)(t,1)(',1)(s,1)(',1)(c,1)(o,1)
 (u,1)(n,1)(t,1)(',1)(s,1)(o,1)...}
- 3 The function reduceByKey applies addition to the second component of those pairs whose first component is the same.
- The action collect allows us to print the final result.

- By using parallelize we obtain an RDD {let's count some letters} with 3 partitions.
- 2 Applying map we have {(1,1)(e,1)(t,1)(',1)(s,1)(',1)(c,1)(o,1)
 (u,1)(n,1)(t,1)(',1)(s,1)(o,1)...}
- 3 The function reduceByKey applies addition to the second component of those pairs whose first component is the same.
- 4 The action collect allows us to print the final result.

Spark Streaming

- These notions of transformations and actions are extended in Spark Streaming from RDDs to DStreams (Discretized Streams).
- DStreams are series of RDDs corresponding to micro-batches.
- These batches are generated at a fixed rate according to the configured batch interval.
- Spark Streaming is synchronous: given a collection of input and transformed DStreams, all the batches for each DStream are generated at the same time as the batch interval is met.
- Actions on DStreams are also periodic and are executed synchronously for each micro batch.
- Actions are impure, so idempotent actions are recommended in order to ensure a deterministic behavior even in the presence of recomputations.

Spark Streaming

We present the streaming version of the previous function.

```
object HelloSparkStreaming extends App {
                                                                    Time: 1449638784400 ms
 val conf = new SparkConf().setAppName("HelloSparkStreaming")
                             .setMaster("local[5]")
                                                                    (e.1)
 val sc = new SparkContext(conf)
                                                                    (t,1)
 val batchInterval = Duration(100)
                                                                    (1,1)
 val ssc = new StreamingContext(sc, batchInterval)
                                                                    (',1)
 val batches = "let's count some letters, again and again"
                .grouped(4)
 val queue = new Queue[RDD[Char]]
                                                                    Time: 1449638785300 ms
 queue ++= batches.map(sc.parallelize(_, numSlices = 3))
 val css : DStream[Char] = ssc.queueStream(queue.
                                                                    (i.1)
                                             oneAtATime = true)
                                                                    (a, 2)
 css.map{(_, 1)}.reduceByKey{_+_}.print()
                                                                    (g,1)
 ssc.start()
  ssc.awaitTerminationOrTimeout(5000)
                                                                    Time: 1449638785400 ms
 ssc.stop(stopSparkContext = true)
                                                                    (n,1)
```

Spark Streaming

- A list of 4 characters arrive in each batch interval.
- For each of these batches, we apply the previous count.

```
u \equiv \boxed{ \left\{ \text{"let'"} \right\} \left[ \left\{ \text{"s co"} \right\} \left[ \left\{ \text{"unt "} \right\} \right] \right] \dots \left[ \left\{ \text{"n"} \right\} \right] }
```

```
Time: 1449638784400 ms ... Time: 1449638785400 ms ... (e,1) (n,1) (t,1) (1,1) (',1)
```

Property-based testing

- In Property-based testing [1] tests are stated as properties, which are first order logic formulas that relate program inputs and outputs.
- PBT works as follows:
 - Several inputs are generated randomly.
 - The tool checks whether the outputs fulfill the formula.
- The main advantage is that the assertions are exercised against hundreds of generated test cases, instead of against a single value like in xUnit frameworks

Scalacheck

- Scalacheck [3] is a library written in Scala and used for automated property-based testing of Scala programs.
- It is also fully integrated in the test framework specs2.

```
import org.scalacheck.Properties
import org.scalacheck.Prop.forAll
object StringSpecification extends Properties("String") {
 property("startsWith") = forAll { (a: String, b: String) =>
    (a+b).startsWith(a)
 property("concatenate") = forAll { (a: String, b: String) =>
    (a+b).length > a.length && (a+b).length > b.length
```

Scalacheck

We obtain the following results when executed:

```
$ sbt test
+ String.startsWith: OK, passed 100 tests.
! String.concat: Falsified after 0 passed tests.
> ARG_0: ""
> ARG_1: ""
```

How is the magic done?

- Create random values (of any kind).
- Used by ScalaCheck to generate test cases.

val g1: Gen[Int] = Gen.choose(0,10)

- Can be used in any other application or testing environment.
- Scalacheck provides basic generators:

```
val g2: Gen[Double] = Gen.choose(0,0.5)
val g3: Gen[Int] = Gen.chooseNum(-10,10)
val g4: Gen[Double] = Gen.posNum[Double]

Gen.alphaStr: Gen[String]; Gen.numStr: Gen[String]
Gen.identifier: Gen[String]; Gen.uuid: Gen[java.util.UUID]
```

It is also possible to pick values with a given frequency:

We can generate lists and sets as well:

Finally, we can create our own generators:

```
case class User(name: String, age: Int)
val userGen: Gen[User] =
  for {
    name <- Gen.alphaStr
    age <- Gen.choose(0,200)
  } yield User(name, age)

val gLU1: Gen[List[User]] = Gen.listOfN[User](100, userGen)</pre>
```

Property-based testing for Core Spark

- Is it possible to use random testing for Core Spark?
- Is is just an adaptation of the existing framework.
- We can generate random inputs from lists by using parallelize.
- And then state formulas using them.

Property-based testing for Spark Streaming

- However, properties for streaming systems are not straightforward.
- We have to consider temporal relations:
 - Events happen after/at the same time as other events.
 - Events take a specific time to happen.
- A property in first order logic would require to state all the possible combinations.
- We need a logic (and a tool) that handles time.

Linear Temporal Logic

- Linear Temporal Logic (LTL) is an extension of propositional logic that includes operator for indicating that:
 - A property *always* holds $(\Box \varphi)$.
 - A property *eventually* holds $(\lozenge \varphi)$.
 - A property holds *until* some other property holds $(\varphi_1 \cup \varphi_2)$.
 - A property holds in the *next* instant $(\bigcirc \varphi)$.

Linear Temporal Logic

- We still have problems.
- First, these properties are defined for infinite streams, but in practice we test finite ones.
- Moreover, it is not straightforward to relate different events within a fixed window.
- We require a temporal logic that explicitly introduces time.

- The operators in the logic are:
 - Always *for the next n batches*, and indicates that a property holds for the next *n* batches.
 - Eventually *in the next n batches*, and indicates that a property holds in at least one of the next *n* batches.
 - Until φ_1 until φ_2 in the next n batches, and indicates that, before n batches have passed, φ_2 must hold and, for all batches before that, φ_1 must hold.
 - Next indicates that the property holds in the next state.

Assume the set of atomic propositions $AP \equiv \{a, b, c\}$ and the word $u \equiv \boxed{\{b\}} \boxed{\{b\}} \boxed{\{a, b\}} \boxed{\{a\}}$. Then we have the following results:

• $u \models (\lozenge_4 c) : \bot$, since c does not hold in the first four states.

Assume the set of atomic propositions $AP \equiv \{a, b, c\}$ and the word $u \equiv \boxed{\{b\}} \boxed{\{b\}} \boxed{\{a, b\}} \boxed{\{a\}}$. Then we have the following results:

- $u \models (\lozenge_4 c) : \bot$, since c does not hold in the first four states.
- $u \models (\lozenge_5 c)$: ?, since we have consumed the whole word, c did not hold in those states, and the timeout has not expired.

Assume the set of atomic propositions $AP \equiv \{a, b, c\}$ and the word $u \equiv \boxed{\{b\}} \boxed{\{b\}} \boxed{\{a, b\}} \boxed{\{a\}}$. Then we have the following results:

- $u \models (\lozenge_4 c) : \bot$, since c does not hold in the first four states.
- $u \models (\lozenge_5 c)$: ?, since we have consumed the whole word, c did not hold in those states, and the timeout has not expired.
- $u \models \Box_4 (a \lor b) : \top$, since either a or b is found in the first four states.

Assume the set of atomic propositions $AP \equiv \{a, b, c\}$ and the word $u \equiv [b][b][a, b][a]$. Then we have the following results:

- $u \models (\lozenge_4 c) : \bot$, since c does not hold in the first four states.
- $u \models (\lozenge_5 c)$: ?, since we have consumed the whole word, c did not hold in those states, and the timeout has not expired.
- $u \models \Box_4 (a \lor b) : \top$, since either a or b is found in the first four states.
- $u \models \Box_5 (a \lor b)$: ?, since the property holds until the word is consumed, but the user required more steps.

Assume the set of atomic propositions $AP \equiv \{a, b, c\}$ and the word $u \equiv [b][b][a, b][a]$. Then we have the following results:

- $u \models (\lozenge_4 c) : \bot$, since c does not hold in the first four states.
- $u \models (\lozenge_5 c)$: ?, since we have consumed the whole word, c did not hold in those states, and the timeout has not expired.
- $u \models \Box_4 (a \lor b) : \top$, since either a or b is found in the first four states.
- $u \models \Box_5 (a \lor b)$: ?, since the property holds until the word is consumed, but the user required more steps.
- $u \models \Box_5 c : \bot$, since the proposition does not hold in the first state.

Assume the set of atomic propositions $AP \equiv \{a, b, c\}$ and the word $u \equiv \boxed{\{b\}} \boxed{\{b\}} \boxed{\{a, b\}} \boxed{\{a\}}$. Then we have the following results:

 u ⊨ (b U₂ a): ⊥, since a holds in the third state, but the user wanted to check just the first two states.

Assume the set of atomic propositions $AP \equiv \{a, b, c\}$ and the word $u \equiv \boxed{\{b\}} \boxed{\{b\}} \boxed{\{a, b\}} \boxed{\{a\}}$. Then we have the following results:

- u ⊨ (b U₂ a): ⊥, since a holds in the third state, but the user wanted to check just the first two states.
- $u \models (b \ U_5 \ a) : \top$, since a holds in the third state and, before that, b held in all the states.

Assume the set of atomic propositions $AP \equiv \{a, b, c\}$ and the word $u \equiv \boxed{\{b\}} \boxed{\{b\}} \boxed{\{a, b\}} \boxed{\{a\}}$. Then we have the following results:

- u ⊨ (b U₂ a): ⊥, since a holds in the third state, but the user wanted to check just the first two states.
- $u \models (b \ U_5 \ a) : \top$, since a holds in the third state and, before that, b held in all the states.
- $u \models \Box_4(a \to X \ a)$: ?, since we do not know what happens in the fifth state, which is required to check the formula in the fourth state (because of next).

Example

Assume the set of atomic propositions $AP \equiv \{a, b, c\}$ and the word $u \equiv [b][b][a, b][a]$. Then we have the following results:

- *u* ⊨ (*b U*₂ *a*) : ⊥, since *a* holds in the third state, but the user wanted to check just the first two states.
- $u \models (b \ U_5 \ a) : \top$, since a holds in the third state and, before that, b held in all the states.
- $u \models \Box_4(a \to X \ a)$: ?, since we do not know what happens in the fifth state, which is required to check the formula in the fourth state (because of next).
- $u \models \Box_2(b \to \Diamond_2 a) : \bot$, since in the first state we have b but we do not have a until the third state.

Example

Assume the set of atomic propositions $AP \equiv \{a, b, c\}$ and the word $u \equiv [b][b][a,b][a]$. Then we have the following results:

- *u* ⊨ (*b U*₂ *a*) : ⊥, since *a* holds in the third state, but the user wanted to check just the first two states.
- $u \models (b \ U_5 \ a) : \top$, since a holds in the third state and, before that, b held in all the states.
- $u \models \Box_4(a \to X \ a)$: ?, since we do not know what happens in the fifth state, which is required to check the formula in the fourth state (because of next).
- $u \models \Box_2(b \to \Diamond_2 a) : \bot$, since in the first state we have b but we do not have a until the third state.
- $u \models b\ U_2\ X\ (a \land X\ a)$: \top , since $X(a \land X\ a)$ holds in the second state (that is, $a \land X\ a$ holds in the third state, which can also be understood as a holds in the third and fourth states).

sscheck

- sscheck implements this logic for defining generators and properties.
- Generators use Scalacheck generators for generating batches.
- We can combine them with LTL_{ss} operators to define time constraints.
- In the same way, properties are defined by using LTL_{ss} operators.
- Temporal formulas refer to logic time, that is, they count the number of batches.

Example - Twitter

- Assume we have implemented some functions that take tweets as arguments and we want to test them.
- We can check whether all the hashtags are correctly extracted.
- We can check whether the top hashtag is properly computed.
- We can use a reference implementation (a regular expression) for checking that the implementation works for batches.

Example - Twitter

- The tested functions are from the ampcamp 3: http://ampcamp.berkeley.edu/3/exercises/ realtime-processing-with-spark-streaming.html.
- We first define the generators: https://goo.gl/6oLJPm.
- Then the properties: https://goo.gl/RUd77U.
- The results are available at: https://goo.gl/LLpgYl.

Beyond propositional logic

- The problem when using *LTL*_{ss} is that it is *stateless*.
- That is, we cannot bind values appearing in the batches.
- Hence, we are forced to state properties that only refer to the data in the current batch.
- This problem is solved by using first-order logic.
- Formulas in higher-order logic can be of the form $\forall (x,y)\varphi$, where x binds values in the current batch and y binds the current execution time.
- It is possible to use bound variables in both temporal operators and atomic propositions.

First-order modal logic

Example

Assume the set of atomic propositions $AP \equiv \{a, b, c\}$, the set of variables $\mathcal{V} \equiv \{x, y, z\}$, and the word $u \equiv \boxed{(\{b\}, 0)} \boxed{(\{b\}, 2)} \boxed{(\{a, b\}, 3)} \boxed{(\{a\}, 6)}$. Then we have the following results:

- $u \models \forall (-,x).\Box_{x+1}b$: \top , since the first state contains a b.
- $u \models \forall (-,x).\Box_3 \ x < 3: \ \top$, since it is always the case that 0 < 3.
- $u \models \Box_3 \forall (-, x).x < 3 : \bot$, since in the third state we have the time is 3.
- $u \models \Diamond_3(\forall (x, _).X \ \forall (y, z).(x = y \land z < 3))$: \top , since the proposition in the first step (b) is equal to the one in the second state, and the time in the second step (2) is smaller than 3.
- $u \models \forall (_, x)$. $\square_{x+1}b\ U_3\ a$: \bot , since a is not found until the third state but the first formula does not hold in the second state.

Example - Twitter revisited

- We can now define more powerful properties on our Twitter example.
- More powerful properties including quantifiers are available here: https://goo.gl/BnMOV1.
- The traces are available here: https://goo.gl/3fXGwk.

- An interesting point of LTL_{ss} formulas is that they can be translated into an
 equivalent formula that only contains next as temporal operator.
- Formulas in next form distinguish between the current state and all the following ones, represented by means of nested next operators.
- Hence, generators in next form can generate one batch at a time.
- Similarly, formulas can process just one batch.
- This behavior is possible thanks to the timeouts in temporal operators.
- It can be efficiently implemented using the lazy features in Scala.

Definition (Next transformation)

Given an alphabet Σ and a formula $\varphi \in LTL_{ss}$, the function $nt(\varphi)$ computes another formula $\varphi' \in LTL_{ss}$, such that φ' is in *next form* and

```
\begin{array}{lll} \forall u \in \Sigma^*. u \vDash \varphi & \Longleftrightarrow u \vDash \varphi'. \\ nt(\top) & = & \top \\ nt(\bot) & = & \bot \\ nt(t) & = & t \\ nt(ap) & = & ap \\ nt(t_1 = t_2) & = & t_1 = t_2 \\ nt(\varphi_1 \lor \varphi_2) & = & nt(\varphi_1) \lor nt(\varphi_2) \\ nt(\varphi_1 \land \varphi_2) & = & nt(\varphi_1) \land nt(\varphi_2) \\ nt(\varphi_1 \to \varphi_2) & = & nt(\varphi_1) \to nt(\varphi_2) \\ for & p \in AP \text{ and } \varphi, \varphi_1, \varphi_2 \in LTL_{ss}. \end{array}
```

Definition (Next transformation)

Given an alphabet Σ and a formula $\varphi \in LTL_{ss}$, the function $nt(\varphi)$ computes another formula $\varphi' \in LTL_{ss}$, such that φ' is in *next form* and

```
\begin{array}{lll} \forall u \in \Sigma^*. u \vDash \varphi & \Longleftrightarrow u \vDash \varphi'. \\ nt(X \ \varphi) & = & X \ nt(\varphi) \\ nt(\lozenge_1 \varphi) & = & nt(\varphi) \\ nt(\lozenge_t \varphi) & = & nt(\varphi) \lor X \ nt(\lozenge_{t-1} \varphi) & \text{if} \ t \geq 2 \\ nt(\square_1 \varphi) & = & nt(\varphi) \\ nt(\square_t \varphi) & = & nt(\varphi) \land X \ nt(\square_{t-1} \varphi) & \text{if} \ t \geq 2 \\ nt(\varphi_1 \ U_1 \ \varphi_2) & = & nt(\varphi_2) \\ nt(\varphi_1 \ U_t \ \varphi_2) & = & nt(\varphi_2) \lor \\ & & & & & & & & \\ nt(\forall (b,r).\varphi) & = & \forall (b,r).nt(\varphi) \\ \text{for} \ p \in AP \ \text{and} \ \varphi, \varphi_1, \varphi_2 \in LTL_{ss}. \end{array}
```

- Lazy evaluation is specially important when dealing with variables in temporal operators:
- For example, the following formula cannot be further reduced:

$$nt((\forall (_,x) . \square_{x+1}b) \ U_3 \ a) = a \lor (\forall (_,x) . \ nt(\square_{x+1}b) \land X \ nt((\forall (_,x) . \square_{x+1}b) \ U_2 \ a))$$

Definition (Letter simplification)

Given a formula ψ in next form and a letter $s \equiv (v_1, v_2) \in \Sigma \times \mathbb{N}$, the function $ls(\psi, s)$ simplifies ψ with s as follows:

- ls(b, s) = b if $b \in \{\top, \bot\}$.
- $ls(p, s) = p \in s$.
- $ls(\psi_1 \vee \psi_2, s) = ls(\psi_1, s) \vee ls(\psi_2, s)$.
- $ls(\psi_1 \wedge \psi_2, s) = ls(\psi_1, s) \wedge ls(\psi_2, s)$.
- $ls(\psi_1 \rightarrow \psi_2, s) = ls(\psi_1, s) \rightarrow ls(\psi_2, s)$.
- $ls(X \psi, s) = \psi$.
- $ls(\forall (b, r).\psi, (v_1, v_2)) = \psi[b \mapsto v_1][r \mapsto v_2].$

Example

We present the evaluation process for the formula above using the word $u \equiv \overline{(\{b\},0)} \overline{(\{b\},2)} \overline{(\{a,b\},3)} \overline{(\{a\},6)}$.

- $ls(a \lor (\forall (_, x) . nt(\square_{x+1}b) \land X nt((\forall (_, x) . \square_{x+1}b) U_2 a)), (\{b\}, 0)) = a \lor (\forall (_, x) . nt(\square_{x+1}b) \land X nt((\forall (_, x) . \square_{x+1}b) U_1 a)$
- $ls(a \lor (\forall (_,x) . nt(\square_{x+1}b) \land X nt((\forall (_,x) . \square_{x+1}b) U_1 a)), (\{b\},2)) = b \land X nt(\square_1 b) \land a$
- $ls(b \wedge X \ nt(\square_1 b) \wedge a, (\{a,b\},3)) = \top \wedge nt(\square_1 b) \wedge \top \equiv b$
- $ls(b, (\{a\}, 6)) = \bot$

Definition (Random word generation)

Given a formula ψ in next form without quantifiers, the function *gen* generates a finite word u such that $u \models \varphi$. If different equations can be applied for a given formula any of them can be randomly chosen:

```
\begin{array}{lll} \operatorname{gen}(\top) & = & \emptyset \\ \operatorname{gen}(\bot) & = & \operatorname{err} \\ \operatorname{gen}(p) & = & \{p\} \\ \operatorname{gen}(\varphi_1 \vee \varphi_2) & = & \operatorname{gen}(\varphi_1) \\ \operatorname{gen}(\varphi_1 \vee \varphi_2) & = & \operatorname{gen}(\varphi_2) \\ \operatorname{gen}(\varphi_1 \wedge \varphi_2) & = & \operatorname{gen}(\varphi_1) \cup \operatorname{gen}(\varphi_2) \\ \operatorname{gen}(\varphi_1 \to \varphi_2) & = & \operatorname{gen}(\varphi_2) \\ \operatorname{gen}(X \varphi) & = & \emptyset + \operatorname{gen}(\varphi) \end{array}
```

These words can be extended by pairing each letter with a number generated by random monotonically increasing function, hence generating valid inputs.

Conclusions

- We have implemented a property-based testing framework for Spark Streaming.
- It allows users to check temporal properties.
- Logic time is handled, so we consider a batch a time unit.
- Besides the usual limitations of LTL, we provide a first-order approach for more complex properties.

Ongoing Work

- Release sscheck for Spark 2.0.
- Implement shrinking.
- Study similar approaches, like Apache Flink.
- Real users are required!
- Collaborations are welcomed!

References

K. Claessen and J. Hughes.

QuickCheck: a lightweight tool for random testing of Haskell programs. *Acm sigplan notices*, 46(4):53–64, 2011.

Holden Karau.

Spark-testing-base.

http://spark-packages.org/package/holdenk/spark-testing-base, 2015.

R. Nilsson.

ScalaCheck: The Definitive Guide.

IT Pro. Artima Incorporated, 2014.

Thanks!

https://github.com/juanrh/sscheck/wiki/Quickstart

ariesco@fdi.ucm.es

juan.rodriguez.hortala@gmail.com