BACK TO OVERVIEW

Quiz #10

Attempts

Attempt 1: 90% (9/10 points), Nov 29 at 10:50am MST

(i) Answer explanations will be available on December 10, 2023 at 11:59 PM Mountain Standard Time.

Questions to show:

QUESTION 1 · 1/1 POINTS

Solve the following for θ , in radians, where $0 \le \theta < 2\pi$.

$$-5\sin^2(\theta) + 4\sin(\theta) + 5 = 0$$

Round to the nearest hundredth.

That is correct!

 $3.89\mathrm{rad},\,5.54\mathrm{rad}$

Content attribution

1 of 6 11/29/23, 10:51 AM

QUESTION 2 · 1/1 POINTS

Determine the exact value of θ in the following equation if $0 \le \theta < 2\pi$.

$$8\sin^2\theta + 8 = 16$$

Enter your answers in radians separated by commas.

That is correct!

$$\theta = \frac{\pi}{2}, \frac{3\pi}{2}$$

Content attribution

QUESTION 3 · 1/1 POINTS

If $-\pi \le \theta < \pi$, find all values of θ that satisfy the equation below.

$$4\tan^2\theta = 4\tan\theta$$
.

Separate multiple answers with a comma.

That is correct!

$$\theta = 0, -\pi, \frac{\pi}{4}, -\frac{3\pi}{4}$$

■ FEEDBACK

QUESTION 4 · 1/1 POINTS

Given that $\sec(\theta) = \frac{\sqrt{13}}{3}$ and θ is in Quadrant IV, what is $\tan(\theta)$? Write your answer in exact form. Do not round.

That is correct!

$$\tan\left(\theta\right) = -\frac{2}{3}$$

Content attribution

QUESTION 5 · 1/1 POINTS

Which of the following is equivalent to $\frac{(1+\cos\alpha)(1-\cos\alpha)}{\sin^3\alpha}$ for all values of α for which $\frac{(1+\cos\alpha)(1-\cos\alpha)}{\sin^3\alpha}$ is defined?

That is correct!

- \bigcirc sec α tan α
- \bigcirc 1
- \bigcirc csc α
- $\bigcirc \cos^2 \alpha$
- \bigcirc sin α

QUESTION 6 · 1/1 POINTS

Solve the equation below for θ , where $0 \le \theta < 2\pi$.

$$-8\sin^2\theta - 4 = -10$$

Enter your answer in radians and separate multiple answers with a comma.

That is correct!

$$\theta = \frac{\pi}{3}, \frac{2\pi}{3}, \frac{4\pi}{3}, \frac{5\pi}{3}$$

Content attribution

QUESTION 7 · 1/1 POINTS

Solve the following for θ , in radians, where $0 \le \theta < 2\pi$.

$$-7\sin^2(\theta) + 4\sin(\theta) + 7 = 0$$

Round your answers to two decimal places.

That is correct!

$$\theta = 4.0$$
 and $\theta = 5.43$

■ FEEDBACK

QUESTION 8 · 1/1 POINTS

Solve the following for θ , in radians, where $0 \le \theta < 2\pi$.

$$-5\cos^2(\theta) + 4\cos(\theta) + 6 = 0$$

Round your answers to the nearest hundredth of a radian.

That is correct!

$$\theta = 2.44$$
 and $\theta = 3.84$

■ FEEDBACK

Content attribution

QUESTION 9 · 1/1 POINTS

Given that $\sec(\theta) = \frac{\sqrt{221}}{11}$ and θ is in Quadrant IV, what is $\tan(\theta)$?

Give an exact answer in the form of a fraction.

That is correct!

$$\tan\left(\theta\right) = -\frac{10}{11}$$

■ FEEDBACK

QUESTION 10 · 0/1 POINTS

Solve the equation below given that $-\pi \le \beta < \pi$.

$$4\tan^2\beta + 4\tan\beta = 0$$

Separate multiple answers with commas.

That's not right.

$$\beta = \frac{\pi}{4}, -\frac{3\pi}{4}$$

■ FEEDBACK