```
In [104]: import pandas as pd
    df=pd.read_excel("MIDMARKS-MINOR1-EXAM.xlsx")
    df
```

Out[104]:

	S.NO	SECTION	DV	M-II	PP	BEEE	FL	FIMS
 0	1	ALPHA	12	0	17	9	19	15
1	2	ALPHA	19	12	16	16	18	3
2	3	ALPHA	18	14	18	18	18	16
3	4	ALPHA	15	9	19	17	19	15
4	5	ALPHA	18	17	19	19	20	18
475	476	NaN	18	2	12	3	17	15
476	477	NaN	20	6	16	11	20	14
477	478	NaN	20	NaN	18	13	20	18
478	479	NaN	20	20	5	19	18	14
479	480	NaN	20	16	18	19	20	19

480 rows × 8 columns

```
In [105]: df.info()
          <class 'pandas.core.frame.DataFrame'>
          RangeIndex: 480 entries, 0 to 479
          Data columns (total 8 columns):
               Column
                      Non-Null Count Dtype
              S.NO
                       480 non-null
                                       int64
           0
               SECTION 439 non-null
                                       object
              DV
                       479 non-null
                                       object
              M-II
                       477 non-null
                                       object
               PP
                       480 non-null
                                       object
               BEEE
                      478 non-null
                                       object
               FL
                       479 non-null
                                       object
                       480 non-null
               FIMS
                                       object
          dtypes: int64(1), object(7)
          memory usage: 30.1+ KB
In [106]: df.describe()
```

Out[106]:

	S.NO
count	480.000000
mean	240.500000
std	138.708327
min	1.000000
25%	120.750000
50%	240.500000
75%	360.250000
max	480.000000

```
In [107]: df.dtypes
Out[107]: S.NO
                     int64
         SECTION
                    object
         DV
                    object
         M-II
                    object
                    object
         PP
         BEEE
                    object
         FL
                    object
         FIMS
                    object
         dtype: object
In [108]: df.isnull().sum()
Out[108]: S.NO
                     0
         SECTION
                    41
         DV
                     1
         M-II
                     3
         PP
                     0
         BEEE
                     2
         FL
                     1
         FIMS
                     0
         dtype: int64
```

```
In [109]: df['PP'].value_counts()
Out[109]: 20
                 70
35
35
           18
           19
           17
                 31
29
28
28
28
           12
           16
           14
           11
                 27
24
           15
           9
           10
                 19
                 18
           6
           13
                 15
                 15
13
                 13
12
                 10
                 10
           1
                  7
6
3
3
           AΒ
                   1
           Name: PP, dtype: int64
```

```
In [110]: df['DV'].value_counts()
Out[110]: 17
                   53
53
48
            20
            18
            16
                   48
45
38
31
27
            15
            19
            11
            12
                   25
24
22
            13
            14
            10
                   14
            9
                   10
9
8
6
6
4
3
1
            Name: DV, dtype: int64
```

```
In [111]: df['FIMS'].value_counts()
Out[111]: 18
                  62
                  57
           15
                  50
           16
                  41
           17
                  40
36
35
28
           14
           13
           19
           9
           11
                  22
20
19
12
11
           12
           10
           20
           8
           AB
                   8
6
5
5
5
3
3
```

Name: FIMS, dtype: int64

```
In [112]: df['M-II'].value_counts()
Out[112]: 20
                44
                34
                32
          17
                29
24
24
          8
          0
          12
                24
          11
          15
                24
               23
23
22
20
          5
          18
          4
          10
          6
                18
               18
17
          13
          9
               17
          14
          1
                17
          16
               16
                14
          7
                13
12
          2
          19
                5
3
2
          ΑB
                 1
1
          II
          Ι
```

Name: M-II, dtype: int64

```
In [113]: df['BEEE'].value_counts()
Out[113]: 20
                 76
46
42
          17
          19
          18
                 31
31
28
23
21
          11
          15
          16
          12
                 21
20
          14
          10
                 19
           9
                 15
           6
          7
                 15
          13
                14
                 14
           3
                 13
13
12
           8
                 10
9
3
          1
                  1
                  1
          Name: BEEE, dtype: int64
```

```
In [114]: | df['FL'].value_counts()
Out[114]: 20
                121
          15
                 85
          18
                  59
          10
                  55
                  50
34
          13
          19
                 15
11
          16
          14
          11
                 10
9
9
8
6
3
          17
          Α
          12
                   2
          7
                   2
          Name: FL, dtype: int64
```

```
In [115]: df.rename(columns={"M-II":"M2"},inplace=True)
df
```

Out[115]:

	S.NO	SECTION	DV	M2	PP	BEEE	FL	FIMS
0	1	ALPHA	12	0	17	9	19	15
1	2	ALPHA	19	12	16	16	18	3
2	3	ALPHA	18	14	18	18	18	16
3	4	ALPHA	15	9	19	17	19	15
4	5	ALPHA	18	17	19	19	20	18
475	476	NaN	18	2	12	3	17	15
476	477	NaN	20	6	16	11	20	14
477	478	NaN	20	NaN	18	13	20	18
478	479	NaN	20	20	5	19	18	14
479	480	NaN	20	16	18	19	20	19

480 rows × 8 columns

```
In [116]: df["SECTION"].value_counts()
```

Out[116]: ALPHA 60 BETA 60 DELTA 60 **EPSILON** 60 GAMMA 60 OMEGA 60 SIGMA 60 ZETA 19

Name: SECTION, dtype: int64

```
In [117]: df["SECTION"]=df["SECTION"].fillna("ZETA")
In [118]: df["SECTION"].value counts()
Out[118]: ALPHA
                     60
          BETA
                     60
          DELTA
                     60
          ZETA
                     60
          EPSILON
                     60
          GAMMA
                     60
          OMEGA
                     60
          SIGMA
                     60
          Name: SECTION, dtype: int64
In [119]: df[df['DV'].isnull()]
Out[119]:
               S.NO SECTION
                            DV M2 PP BEEE FL FIMS
                     OMEGA NaN 17 17
                                           19 20
           389
                390
                                                   17
In [120]: df[df['M2'].isnull()]
Out[120]:
               S.NO SECTION DV
                                 M2 PP BEEE FL FIMS
                    EPSILON 11 NaN 10
                228
                                           12 10
           227
                                                   16
                324
                      SIGMA
                              9 NaN
                                     2
           323
                                           3 11
                                                    1
                       ZETA 20 NaN 18
           477
                478
                                           13 20
                                                   18
In [121]: df[df['BEEE'].isnull()]
Out[121]:
               S.NO SECTION DV M2 PP BEEE FL FIMS
           192
                    EPSILON 16 18 15
                                        NaN 18
                                                  18
                    EPSILON 20 16 20
                                        NaN 20
           439
                                                  18
```

```
In [122]: df[df['FL'].isnull()]
```

Out[122]:

	S.NO	SECTION	DV	M2	PP	BEEE	FL	FIMS
102	103	BETA	10	12	17	9	NaN	16

```
In [123]: df.replace('A',0,inplace=True)
    df.replace('AB',0,inplace=True)
    df.replace('MP',0,inplace=True)
    df.replace('I',1,inplace=True)
    df.replace('II',11,inplace=True)
    df.replace('o',0,inplace=True)
    df
```

Out[123]:

_		S.NO	SECTION	DV	M2	PP	BEEE	FL	FIMS
	0	1	ALPHA	12.0	0.0	17	9.0	19.0	15
	1	2	ALPHA	19.0	12.0	16	16.0	18.0	3
	2	3	ALPHA	18.0	14.0	18	18.0	18.0	16
	3	4	ALPHA	15.0	9.0	19	17.0	19.0	15
	4	5	ALPHA	18.0	17.0	19	19.0	20.0	18
	475	476	ZETA	18.0	2.0	12	3.0	17.0	15
	476	477	ZETA	20.0	6.0	16	11.0	20.0	14
	477	478	ZETA	20.0	NaN	18	13.0	20.0	18
	478	479	ZETA	20.0	20.0	5	19.0	18.0	14
	479	480	ZETA	20.0	16.0	18	19.0	20.0	19

480 rows × 8 columns

```
In [124]: subjects = ["DV", "M2", "PP", "BEEE", "FL", "FIMS"]
    df[subjects] = df[subjects].apply(lambda row: row.fillna(row.mean()), axis=1)
    print("Missing marks filled correctly with row-wise mean.")

Missing marks filled correctly with row-wise mean.
```

```
In [125]: df.iloc[102]
```

```
Out[125]: S.NO
                     103
         SECTION
                    BETA
         DV
                    10.0
         Μ2
                    12.0
         PP
                    17.0
         BEEE
                     9.0
         FL
                    12.8
         FIMS
                    16.0
```

Name: 102, dtype: object

```
In [126]: df[subjects] = df[subjects].astype(int)
df
```

Out[126]:

	S.NO	SECTION	DV	M2	PP	BEEE	FL	FIMS
0	1	ALPHA	12	0	17	9	19	15
1	2	ALPHA	19	12	16	16	18	3
2	3	ALPHA	18	14	18	18	18	16
3	4	ALPHA	15	9	19	17	19	15
4	5	ALPHA	18	17	19	19	20	18
475	476	ZETA	18	2	12	3	17	15
476	477	ZETA	20	6	16	11	20	14
477	478	ZETA	20	17	18	13	20	18
478	479	ZETA	20	20	5	19	18	14
479	480	ZETA	20	16	18	19	20	19

480 rows × 8 columns

In [127]: df.dtypes

Out[127]: S.NO

int64 SECTION object int32 DV int32 M2 PP int32 BEEE int32 FL int32 FIMS int32 dtype: object

Out[152]:

	S.NO	SECTION	DV	M2	PP	BEEE	FL	FIMS	Total
0	1	ALPHA	12	0	17	9	19	15	72
1	2	ALPHA	19	12	16	16	18	3	84
2	3	ALPHA	18	14	18	18	18	16	102
3	4	ALPHA	15	9	19	17	19	15	94
4	5	ALPHA	18	17	19	19	20	18	111
475	476	ZETA	18	2	12	3	17	15	67
476	477	ZETA	20	6	16	11	20	14	87
477	478	ZETA	20	17	18	13	20	18	106
478	479	ZETA	20	20	5	19	18	14	96
479	480	ZETA	20	16	18	19	20	19	112

480 rows × 9 columns

```
In [154]: df["Total"].value_counts()
```

```
In [156]: def grade(total):
              if total>=110:
                  return "0"
              elif total>=100:
                 return "A+"
              elif total>=90:
                  return "A"
              elif total>=80:
                  return "B+"
              elif total>=70:
                  return "B"
              elif total>=60:
                 return "C+"
              elif total>=50:
                 return "C"
              else:
                  return "F"
          df["Grade"]=df["Total"].apply(grade)
          df
```

Out[156]:

	S.NO	SECTION	DV	M2	PP	BEEE	FL	FIMS	Total	Grade
0	1	ALPHA	12	0	17	9	19	15	72	В
1	2	ALPHA	19	12	16	16	18	3	84	B+
2	3	ALPHA	18	14	18	18	18	16	102	A+
3	4	ALPHA	15	9	19	17	19	15	94	Α
4	5	ALPHA	18	17	19	19	20	18	111	0
475	476	ZETA	18	2	12	3	17	15	67	C+
476	477	ZETA	20	6	16	11	20	14	87	B+
477	478	ZETA	20	17	18	13	20	18	106	A+
478	479	ZETA	20	20	5	19	18	14	96	Α
479	480	ZETA	20	16	18	19	20	19	112	0

480 rows × 10 columns

```
In [166]: subjects = ["DV", "M2", "PP", "BEEE", "FL", "FIMS"]
     df["Backlogs"] = (df[subjects] < 10).sum(axis=1)
     df</pre>
```

Out[166]:

	S.NO	SECTION	DV	M2	PP	BEEE	FL	FIMS	Total	Grade	Backlogs
0	1	ALPHA	12	0	17	9	19	15	72	В	2
1	2	ALPHA	19	12	16	16	18	3	84	B+	1
2	3	ALPHA	18	14	18	18	18	16	102	A+	0
3	4	ALPHA	15	9	19	17	19	15	94	Α	1
4	5	ALPHA	18	17	19	19	20	18	111	0	0
475	476	ZETA	18	2	12	3	17	15	67	C+	2
476	477	ZETA	20	6	16	11	20	14	87	B+	1
477	478	ZETA	20	17	18	13	20	18	106	A+	0
478	479	ZETA	20	20	5	19	18	14	96	Α	1
479	480	ZETA	20	16	18	19	20	19	112	0	0

480 rows × 11 columns

Out[168]:

	S.NO	SECTION	DV	M2	PP	BEEE	FL	FIMS	Total	Grade	Backlogs	Programming_Skills
0	1	ALPHA	12	0	17	9	19	15	72	В	2	Good
1	2	ALPHA	19	12	16	16	18	3	84	B+	1	Good
2	3	ALPHA	18	14	18	18	18	16	102	A+	0	Good
3	4	ALPHA	15	9	19	17	19	15	94	Α	1	Very Good
4	5	ALPHA	18	17	19	19	20	18	111	0	0	Very Good
475	476	ZETA	18	2	12	3	17	15	67	C+	2	Average
476	477	ZETA	20	6	16	11	20	14	87	B+	1	Good
477	478	ZETA	20	17	18	13	20	18	106	A+	0	Good
478	479	ZETA	20	20	5	19	18	14	96	Α	1	Poor
479	480	ZETA	20	16	18	19	20	19	112	0	0	Good

480 rows × 12 columns

```
In [170]: def analytical(dv):
    if dv>18:
        return "Very Good"
    elif dv>15:
        return "Good"
    elif dv>10:
        return "Average"
    else:
        return "Poor"

df["Analytical_Skills"]=df["DV"].apply(programming)
df
```

Out[170]:

	S.NO	SECTION	DV	M2	PP	BEEE	FL	FIMS	Total	Grade	Backlogs	Programming_Skills	Analytical_Skills
0	1	ALPHA	12	0	17	9	19	15	72	В	2	Good	Average
1	2	ALPHA	19	12	16	16	18	3	84	B+	1	Good	Very Good
2	3	ALPHA	18	14	18	18	18	16	102	A+	0	Good	Good
3	4	ALPHA	15	9	19	17	19	15	94	Α	1	Very Good	Average
4	5	ALPHA	18	17	19	19	20	18	111	0	0	Very Good	Good
475	476	ZETA	18	2	12	3	17	15	67	C+	2	Average	Good
476	477	ZETA	20	6	16	11	20	14	87	B+	1	Good	Very Good
477	478	ZETA	20	17	18	13	20	18	106	A+	0	Good	Very Good
478	479	ZETA	20	20	5	19	18	14	96	Α	1	Poor	Very Good
479	480	ZETA	20	16	18	19	20	19	112	0	0	Good	Very Good

480 rows × 13 columns

```
In [190]: df.isnull().sum()
Out[190]: S.NO
                               0
         SECTION
                               0
         DV
                               0
         Μ2
         PP
         BEEE
         FL
         FIMS
         Total
         Grade
                               0
         Backlogs
         Programming_Skills
         Analytical_Skills
         dtype: int64
In [174]: import matplotlib.pyplot as plt
         import seaborn as sns
```

Marks Distribution for Each Subject


```
In [188]: plt.figure(figsize=(10, 5))
    df.groupby("SECTION")[subjects].mean().plot(kind="bar", figsize=(10, 5))
    plt.title("Average Marks per Section")
    plt.xlabel("Section")
    plt.ylabel("Average Marks")
    plt.xticks(rotation=45)
    plt.legend(title="Subjects")
    plt.show()
```

<Figure size 1000x500 with 0 Axes>


```
In [192]: grades= df["Grade"].value_counts()
    plt.figure(figsize=(7, 7))
    plt.pie(grades, labels=grades.index, autopct="%1.1f%%")
    plt.title("Student Performance Distribution")
    plt.show()
```

Student Performance Distribution


```
In [198]: programming_skills=df['Programming_Skills'].value_counts()
    plt.figure(figsize=(7, 7))
    plt.pie(programming_skills, labels=programming_skills.index, autopct="%1.1f%%")
    plt.title("Programming Skills")
    plt.show()
```

Programming Skills


```
In [204]: def pass_fail(x):
    if x==0:
        return "Pass"
    else:
        return "Fail"

df["Pass/Fail"]=df["Backlogs"].apply(pass_fail)
    df
```

Out[204]:

	S.NO	SECTION	DV	M2	PP	BEEE	FL	FIMS	Total	Grade	Backlogs	Programming_Skills	Analytical_Skills	Pass/Fail
0	1	ALPHA	12	0	17	9	19	15	72	В	2	Good	Average	Fail
1	2	ALPHA	19	12	16	16	18	3	84	B+	1	Good	Very Good	Fail
2	3	ALPHA	18	14	18	18	18	16	102	A+	0	Good	Good	Pass
3	4	ALPHA	15	9	19	17	19	15	94	Α	1	Very Good	Average	Fail
4	5	ALPHA	18	17	19	19	20	18	111	0	0	Very Good	Good	Pass
475	476	ZETA	18	2	12	3	17	15	67	C+	2	Average	Good	Fail
476	477	ZETA	20	6	16	11	20	14	87	B+	1	Good	Very Good	Fail
477	478	ZETA	20	17	18	13	20	18	106	A+	0	Good	Very Good	Pass
478	479	ZETA	20	20	5	19	18	14	96	Α	1	Poor	Very Good	Fail
479	480	ZETA	20	16	18	19	20	19	112	0	0	Good	Very Good	Pass

480 rows × 14 columns

Pass and Fail Count in Each Section

In [218]: aggregated_data=df.groupby(['SECTION']).mean() aggregated_data

C:\Users\subha\AppData\Local\Temp\ipykernel_8836\113419422.py:1: FutureWarning: The default value of numeric_only in DataFrameGroupBy.mean is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.

aggregated data=df.groupby(['SECTION']).mean()

Out[218]:

	S.NO	DV	M2	PP	BEEE	FL	FIMS	Total	Backlogs
SECTION									
ALPHA	30.500000	14.033333	13.733333	16.066667	15.616667	16.550000	12.850000	88.850000	0.716667
BETA	90.500000	12.083333	13.683333	15.666667	12.716667	16.033333	12.983333	83.166667	1.133333
DELTA	150.500000	13.483333	11.466667	15.016667	11.050000	15.916667	15.350000	82.283333	1.216667
EPSILON	214.816667	14.333333	9.900000	12.750000	10.283333	14.566667	16.116667	77.950000	1.366667
GAMMA	270.500000	15.933333	7.800000	9.400000	14.866667	15.716667	13.050000	76.766667	1.533333
OMEGA	369.833333	14.900000	8.000000	10.216667	14.900000	15.350000	12.066667	75.433333	1.700000
SIGMA	370.166667	15.383333	7.783333	11.483333	13.916667	15.233333	12.750000	76.550000	1.616667
ZETA	427.183333	15.216667	9.133333	12.483333	13.000000	15.116667	14.000000	78.950000	1.650000

In [220]: std_data=df.groupby(['SECTION']).std() std_data

C:\Users\subha\AppData\Local\Temp\ipykernel_8836\475094170.py:1: FutureWarning: The default value of numeric_only in DataFrameGroupBy.std is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.

std data=df.groupby(['SECTION']).std()

Out[220]:

	S.NO	DV	M2	PP	BEEE	FL	FIMS	Total	Backlogs
SECTION									
ALPHA	17.464249	4.654018	5.161351	5.085262	4.476271	3.402018	4.037221	20.844725	1.090664
BETA	17.464249	4.465657	5.484931	5.183634	6.031251	3.817740	4.343285	22.804376	1.395716
DELTA	17.464249	4.268496	6.091023	4.942008	5.664115	3.585714	3.545467	21.055288	1.316025
EPSILON	34.117688	4.082483	5.876411	5.130913	5.689990	4.393241	4.100813	23.889878	1.389631
GAMMA	17.464249	2.208356	5.885345	3.945390	4.537851	3.884309	4.350823	19.912833	1.346265
OMEGA	43.493295	4.803600	6.711993	6.311388	5.745153	4.884514	5.550589	29.319032	1.768845
SIGMA	43.493295	4.166418	5.740406	5.435264	5.630702	4.110205	4.714295	24.448788	1.574066
ZETA	54.155298	6.268273	6.662485	6.867984	6.762308	5.285387	5.474130	31.942971	1.857874

```
In [224]: group1=df[df['SECTION']=='ALPHA']['DV']
    print(group1)
```

```
12
0
1
     19
     18
2
3
     15
4
     18
     17
5
     15
6
7
     17
8
     10
9
     18
     17
10
11
     20
12
     16
13
     17
14
     19
     13
15
     15
16
17
     11
18
     14
19
     19
      4
20
21
     14
22
     17
23
     20
24
     15
     6
25
26
     17
27
      5
     19
28
29
      8
30
     11
31
     12
32
     17
     14
33
34
     17
     8
35
36
     11
37
     15
     19
38
39
     20
```

```
41
      16
42
      16
      11
18
43
44
      11
14
45
46
      16
47
48
      16
15
1
6
17
8
14
49
50
51
52
53
54
      15
10
2
55
56
57
      10
19
58
59
```

Name: DV, dtype: int32

```
In [226]: group2=df[df['SECTION']=='BETA']['DV']
print(group2)
```

60	19
61	8
62	12
63	11
64	12
65	9
	12
66	12
67	12
68	16
69	20
	4
71	17 7
72	7
70 71 72 73	10
74	17
75	5
76	5 17
77	13
78	19
79	19
80	19
81	18
82	2
83	10
84	12
85	3
86	17
87	13
88	2
89	10
90	17
91	14
92	11
93	14
94	12
95	16
96	8
97	8
98	6
99	9
100	10
TOO	TO

```
101
                 13
          102
                10
          103
                11
          104
                17
          105
                12
          106
                 9
          107
                11
          108
                10
          109
                13
                 8
          110
          111
                10
          112
                16
         113
                15
          114
                11
          115
                 20
          116
                13
         117
                12
          118
                 9
                15
         119
          Name: DV, dtype: int32
In [236]: from scipy.stats import ttest_1samp
         t_statistic,p_value=ttest_1samp(group1,14.41)
          print(t_statistic,p_value)
         if p_value<0.5:</pre>
             print("Reject H0")
         else:
             print("Accept H0")
          -0.6269093116996493 0.5331371479713868
```

Reject H0

```
In [238]: from scipy.stats import ttest ind
          t statistic,p value=ttest ind(group1, group2, equal var=False)
          print(t statistic,p value)
          if p value<0.5:</pre>
              print("Reject H0")
          else:
              print("Accept H0")
          2.34181859243181 0.020869348905772172
          Accept H0
In [244]: from scipy.stats import ttest rel
          t statistic,p value=ttest rel(group1, group2)
          print(t statistic,p value)
          if p value<0.5:</pre>
              print("Reject H0")
          else:
              print("Accept H0")
          2.3172456109384103 0.023979527821469917
          Reject H0
In [242]: import pandas as pd
          from scipy.stats import chi2 contingency
          contingency table = pd.crosstab(df["Pass/Fail"], df["SECTION"])
          stat, p, dof, expected = chi2_contingency(contingency_table)
          alpha = 0.05
          print(f"p-value is {p}")
          if p <= alpha:</pre>
              print("Pass/Fail is dependent on Section (Reject H0)")
          else:
              print("Pass/Fail is independent of Section (H0 holds true)")
          p-value is 0.010968332427338603
          Pass/Fail is dependent on Section (Reject H0)
```