Unit 1 Physical Quantities and Measurements

1.1 Calculate the number of second in a (a) day (b) week (c) month and state your answers using SI prefixes. Given Data

(a) t = 1 day

(b) t = 1 week

(c) t = 1 month

To Find

No. of seconds in SI prefixes =?

Solution

(a)
$$t = 1 day$$

$$t = 1 \times 24 \times 60 \times 60 s$$

$$t = 86400 s$$

$$t = 8.64 \times 10^{4} s$$

$$t = 86.4 \times 10^{-1} \times 10^{4} s$$

$$t = 86.4 \times 10^{-1+4} s$$

$$t = 86.4 \times 10^{3} s$$

$$t = 86.4 ks \quad \because k = 10^{3}$$

(b)
$$t = 1 \text{ week}$$

$$t = 1 \times 7 \times 24 \times 60 \times 60 \text{ s}$$

$$t = 604800 \text{ s}$$

$$t = 6.048 \times 10^5 \text{ s}$$

$$t = 604.8 \times 10^{-2} \times 10^5 \text{ s}$$

$$t = 604.8 \times 10^{-2+5} \text{ s}$$

$$t = 604.8 \times 10^3 \text{ s}$$

$$t = 604.8 \text{ ks} \qquad \because k = 10^3$$

(c)
$$t = 1 month$$

 $t = 1 \times 30 \times 24 \times 60 \times 60 s$
 $t = 2592000 s$
 $t = 2.592 \times 10^6 s$
 $t = 2.592 Ms$ $\therefore M = 10^6$

1.2 State the answers of problem 1.1 in scientific notation.

Given Data

(a) 86.4 ks

(b) 604.8 ks

(c) 2.592 Ms

To Find

Answers in scientific notation =?

Solution (a)

$$86.4 ks$$

$$= 86.4 \times 10^{3} s$$

$$= 8.64 \times 10^{1} \times 10^{3} s$$

$$= 8.64 \times 10^{1+3} s$$

$$= 8.64 \times 10^{4} s$$

$$604.8 ks$$

 $= 2.592 \times 10^6 s$

604.8
$$ks$$

= 604.8 × 10³ s
= 6.048 × 10² × 10³ s
= 6.048 × 10²⁺³ s
= 6.048 × 10⁵ s
(c) 2.592 Ms

1.3 Solve the following addition or subtraction. State your answers in scientific notation.

(a) $4 \times 10^{-4} \ kg + 3 \times 10^{-5} \ kg$

(b) $5.4 \times 10^{-6} m - 3.2 \times 10^{-5} m$

Given Data

(a)
$$4 \times 10^{-4} kg + 3 \times 10^{-5} kg$$

(b)
$$5.4 \times 10^{-6} m - 3.2 \times 10^{-5} m$$

To Find

Answers in scientific notation =?

Solution

(a)
$$4 \times 10^{-4} kg + 3 \times 10^{-5} kg$$

$$= 4 \times 10^{-4} kg + 0.3 \times 10^{1} \times 10^{-5} kg$$

$$= 4 \times 10^{-4} kg + 0.3 \times 10^{1-5} kg$$

$$= 4 \times 10^{-4} kg + 0.3 \times 10^{-4} kg$$

$$= (4 + 0.3) \times 10^{-4} kg$$

$$= 4.03 \times 10^{-4} kg$$

$$= 4.03 \times 10^{-6} m - 3.2 \times 10^{-5} m$$

$$= 0.54 \times 10^{1-6} m - 3.2 \times 10^{-5} m$$

$$= 0.54 \times 10^{1-6} m - 3.2 \times 10^{-5} m$$

 $= 0.54 \times 10^{-5} \, \text{m} \quad 3.2 \times 10^{-5} \, m$ $= (0.54 - 3.2) \times 10^{-5} \, m$ $= -2.66 \quad 0^{-5} \, m$ 1.4 Solve the following multiplication or division. State

your answers in scientific notation.

(a)
$$(5 \times 10^4 m) \times (3 \times 10^{-2} m)$$

(b) $\frac{10^8 kg}{3 \times 10^4 m^3}$

Given Data

(a)
$$(5 \times 10^4 m) \times (3 \times 10^{-2} m)$$

(b)
$$\frac{6 \times 10^8 \ kg}{3 \times 10^4 \ m^3}$$

To Find

Answers in scientific notation =?

Solution

(a)
$$(5 \times 10^{4} m) \times (3 \times 10^{-2} m)$$

$$= 5 \times 3 \times 10^{4-2} m^{2}$$

$$= 15 \times 10^{2} m^{2}$$

$$= 1.5 \times 10^{1} \times 10^{2} m^{2}$$

$$= 1.5 \times 10^{1+2} m^{2}$$

$$= 1.5 \times 10^{3} m^{2}$$
(b)
$$\frac{6 \times 10^{8} kg}{3 \times 10^{4} m^{3}}$$

$$= \frac{6}{3} \times 10^{8-4} kgm^{-3}$$

$$= 2.0 \times 10^{4} kgm^{-3}$$

1.5 Calculate the following and state your answer in scientific notation. $\frac{(3\times 10^2~kg)\times (4.0~km)}{5\times 10^2~s^2}$

Given Data

$$\frac{(3 \times 10^2 \, kg) \times (4.0 \, km)}{5 \times 10^2 \, s^2}$$

To Find

Answers in scientific notation =?

Solution

$$= \frac{\frac{(3 \times 10^2 \, kg) \times (4.0 \, km)}{5 \times 10^2 \, s^2}}{\frac{(3 \times 10^2 \, kg) \times (4.0 \times 10^3 \, m)}{5 \times 10^2 \, s^2}}$$

$$= \frac{3 \times 4.0}{5} \times 10^{2+3-2} kgms^{-2}$$
$$= 2.4 \times 10^{3} kgms^{-2}$$

1.6 State the number of significant digits in each measurement. (a) $0.0045\,m$ (b) $2.047\,m$ (c) $3.40\,m$ (d) $3.420\times10^4\,m$

Given Data

- (a) 0.0045 m
- **(b)** 2.047 m
- (c) 3.40 m
- (d) $3.420 \times 10^4 m$

To Find

 $Significant \ digits = ?$

Solution

- (a) 0.0045 m (b) 2.047 m 2 (Significant digits) (c) 3.40 m 3 (Significant digits) (d) $3.420 \times 10^4 m$ 4 (Significant digits)
- 1.7 Write in scientific notation: (a) $0.0035\,m$ (b) $206.4\times10^2\,m$

Given Data

- (a) 0.0035 m
- **(b)** $206.4 \times 10^2 \, m$

To Find

Answers in scientific notation =?

Solution

(a)
$$0.0035 m$$

 $= 3.5 \times 10^{-3} m$
(b) $206.4 \times 10^2 m$
 $= 2.064 \times 10^2 \times 10^2 m$
 $= 2.064 \times 10^{2+2} m$
 $= 2.064 \times 10^4 m$

1.8 Write using correct prefixes: (a) 5.0×10^4 cm (b 580×10^2 g (c) 45×10^{-4} s

Given Data

- (a) $5.0 \times 10^4 \ cm$
- **(b)** $580 \times 10^2 g$
- (c) 45×10^{-4} s

To Find

Correct prefixes =

Solution

(a)
$$5.0 \times 10^4 \text{ cm}$$

 $= 5.0 \times 10^4 \times 10^{-2} \text{ m}$
 $5.0 \times 10^{4-2} \text{ m}$
 $= 5.0 \times 10^2 \text{ m}$
 $= 0.5 \times 10^1 \times 10^2 \text{ m}$
 $= 0.5 \times 10^{1+2} \text{ m}$
 $= 0.5 \times 10^3 \text{ m}$
 $= 0.5 \text{ km}$ (kilometer)
(b) $580 \times 10^2 \text{ g}$
 $= 58.0 \times 10^1 \times 10^2 \text{ g}$
 $= 58.0 \times 10^{1+2} \text{ g}$
 $= 58.0 \times 10^3 \text{ g}$
 $= 58.0 \text{ kg}$ (kilogram)
(c) $45 \times 10^{-4} \text{ s}$
 $= 4.5 \times 10^{1-4} \text{ s}$
 $= 4.5 \times 10^{1-4} \text{ s}$
 $= 4.5 \times 10^{-3} \text{ s}$

1.9 Light year is a unit of distance used in Astronomy. It is the distance covered by light in one year. Taking the speed of light as $3.0\times10^8\,ms^{-1}$, calculate the distance.

Given Data

Speed of light =
$$c = 3.0 \times 10^8 ms^{-1}$$

 $Time = t = 1 \ year$
 $t = 1 \times 365 \times 24 \times 60 \times 60 \ s$
 $t = 31536000 \ s$
 $t = 3.1536 \times 10^7 \ s$

To Find

 $Distance\ covered = S = ?$

Solution

By using formula of distance

1.10 Express the density of mercury given as 13.6 gcm^{-3} in kgm^{-3} .

Given Data

Density of mercury = 13.6 gcm^{-3}

To Find

Density of mercury in $kgm^{-3} = ?$

Solution 13.6 Cm⁻

$$= 13.6 \times \frac{1 g}{1 cm^{3}}$$

$$= 13.6 \times \frac{10^{-3} kg}{10^{-6} m^{3}} :: 1 g = 10^{-3} kg \& 1 cm^{3} = 10^{-6} m^{3}$$

$$= 13.6 \times 10^{-3+6} kgm^{-3}$$

$$= 13.6 \times 10^{3} kgm^{-3}$$

 $= 1.36 \times 10^{1} \text{ kgm}^{-3}$ $= 1.36 \times 10^{1} \times 10^{3} \text{ kgm}^{-3}$ $= 1.36 \times 10^{1+3} \text{ kgm}^{-3}$

 $= 1.36 \times 10^4 \, kgm^{-3}$

Prepared By: M. Tayyab, SSE(Math) Govt Christian High School, Daska. Mobile: 03338114798

(millisecond)

= 4.5 ms