Kristian Wahlroos, Ilkka Vähämaa, Sean Lang

Method

Parametrizati

inal System

Results

Team Raspberry - Image Classification

Kristian Wahlroos IIkka Vähämaa Sean Lang

December 15, 2017

Kristian Wahlroos, Ilkka Vähämaa, Sean Lang

Method

Parametrization

Final System

Result

Overview

- Methods
- 2 Parametrization
- 3 Final System
- 4 Results

Kristian Wahlroos, Ilkka Vähämaa, Sean Lang

Methods

Parametrizat

Final Systen

Results

Methods Data representation

- Treat every image as a 3D-tensor (RGB)
 - Repeat the value of grayscale images three times
 - Colorized are handled as the original tensors
- Original data has 14 labels, we used 15
 - Extra one for the unclassified images
 - One-hot encoded labels

Kristian Wahlroos, Ilkka Vähämaa, Sean Lang

Methods

Parametrizat

Final System

Result

Methods Data processing

- Read images in batches of size 2000
 - Helps to avoid filling the RAM
- Normalize the pixel values between [0.0, 1.0]
- For every batch augmenting the data
 - Provided by Keras
 - Centerify, shear, zoom, rotate and flip
 - To get more variation and samples from classes with few labels

Kristian Wahlroos, Ilkka Vähämaa, Sean Lang

Methods

Parametrizati

nal System

Results

Methods

Class weights 1/2

Classes are very unbalanced

Figure: Class distribution

Kristian Wahlroos, Ilkka Vähämaa, Sean Lang

Methods

Farallietriza

Final System

Results

Methods

Class weights 2/2

- We tackled this problem by custom weights per class
 - Giving them at training phase

Class weight function

$$S(c_i; \lambda) = \ln\left(\lambda \frac{\sum_c |c|}{|c_i|}\right)$$

$$W(c_i; \lambda) = \max(S(c_i; \lambda), 1)$$

Kristian Wahlroos, Ilkka Vähämaa, Sean Lang

Methods

Final System

Results

Methods Network topology

- One network that outputs 15 classes
- Four convolution layers all followed by max pooling
 - Filters 16, 32, 32, 64
 - Kernel size 3x3
 - Max pool size 2x2
 - · ReLU as activation function
- After pooling flattening via dropout to dense layer with sigmoid activation
 - Dropout value: 0.4
- Very simple network

Kristian Wahlroos, Ilkka Vähämaa, Sean Lang

Methods

Parametrizat

Final System

Results

Methods Loss function 1/2

- Categorical crossentropy wouldn't work as one image can be in many classes
- Binary crossentropy was suggested in many forum posts
 - Still not viable solution when there are many overlapping categories
 - Loss is too forgiving for giving 0 labels

Kristian Wahlroos, Ilkka Vähämaa, Sean Lang

Methods

Parametrizati

Final Systen

Results

Methods

Loss function 2/2

- Solution: "custom" loss function **BP-MLL***
 - Actually taken directly from the paper [1][†]
 - Designed for multi-label problems
 - Implementation for Keras can be found from internet
 - Punishes more from just giving 0 labels

$$E = \sum_{i=1}^{m} \frac{1}{|Y_i||\bar{Y}_i|} \sum_{(k,l) \in Y_i \times \bar{Y}_i} \exp(-(c_k^i - c_l^i))$$

^{*}Backpropagation for Multilabel Learning

[†][1] Multilabel Neural Networks with Applications to Functional Genomics and Text Categorization, 2006

Kristian Wahlroos, Ilkka Vähämaa, Sean Lang

Methods

Parametrizat

Final System

Results

Methods Validation

- Per batch, 10% of the data is randomly selected
- This subset is left out from the training phase
- Validated against in the final step
- With F1-score, we also inspected
 - Binary accuracy
 - Categorical accuracy
 - Hamming loss
 - Micro averaged precision score

Kristian Wahlroos, Ilkka Vähämaa, Sean Lang

Method

Parametrization

Final Systen

Decelo

Parametrization

Tweaks

- "Default"
- 2 Increased deeply-connected layers
- 3 Adagrad optimizer
- 4 Nadam optimizer
- More convolutions
- 6 Even more convolutions
- Reverse convolution triangle
- 8 Learning Rate Adjustments
 - 1 lr=0.0005
 - 2 1r=0.000333
 - 3 lr=0.002
 - 4 lr=0.005
- Activation Functions
 - 1 Leaky ReLU ($\alpha = 0.3$)
 - tanh

Kristian Wahlroos, Ilkka Vähämaa, Sean Lang

Method

Parametrization

Final Systen

Result

Parametrization Results

Model n.	F1	HL^\ddagger
1	0.462	0.125
2	0.452	0.128
3	0.459	0.125
4	0.469	0.123
5	0.462	0.124
6	0.462	0.126
7	0.463	0.125
8.1	0.464	0.124
8.2	0.457	0.126
8.3	0.465	0.124
8.4	0.457	0.125
9.1	0.083	0.796
9.2	0.378	0.184

[‡]Hamming Loss

Kristian Wahlroos, Ilkka Vähämaa, Sean Lang

Method

Parametrization

Final System

Results

Parametrization Training

(a) "Default" (1)

(c) More Convolutional Layers (6)

(b) More Dense Layers (2)

Kristian Wahlroos, Ilkka Vähämaa, Sean Lang

Method

Parametrizat

Final System

Results

Final System

Hyper-parameters of the final system

- Same as described in Methods section
- 1 epoch
- BP-MLL Loss
- RMSprop optimizer (learning rate of 0.002 [twice default])

Kristian Wahlroos, Ilkka Vähämaa, Sean Lang

Method

Parametrizat

Results

Results
Accuracy and Loss

Figure: Final Model (trained over 250 epochs)

Kristian Wahlroos, Ilkka Vähämaa, Sean Lang

Method

Parametriza

Final System

Results

Results Sample Output

. . .

Kristian Wahlroos, Ilkka Vähämaa, Sean Lang

Methods

Parametriza

Final System

Results

Results Confusion Matrix

• Always predicts same result for each label on every picture