Introduction and Review

COT4210 DISCRETE STRUCTURES

DR. MATTHEW B. GERBER

PORTIONS FROM SIPSER, INTRODUCTION TO THE THEORY OF COMPUTATION, 3RD ED., 2013

Overview (0.1)

What is *computability*?

- What are the fundamental capabilities and limitations of computers?
- Why are some problems harder than others?
 - Sorting is pretty easy...
 - ...but scheduling is very hard
- Why are some problems flat-out impossible?
 - The halting problem
 - Determining the truth or falsehood of a statement
- What are automata?
 - Why are they important?
 - More importantly, why are they useful?

Review of Mathematical Essentials

SECTION 0.2

Sets

Given elements x and y, and sets A and B:

Containment

- $x \in A A$ contains x.
- \circ *x* ∉ *A A* doesn't contain *x*.
- $A = \{x, y\}$ A contains only x and y.
- $A = \{x \mid x \in \mathbb{N}, x > 50\}$ A contains the natural numbers higher than 50.

Operators

- \circ $A \cup B$ union
- $A \cap B$ intersection
- $\circ \overline{A}$ complement

Subsets

- \circ $A \subset B A$ is a subset of B.
 - $\lor \forall x \in A, x \in B$
- \circ $A \subset B A$ is a proper subset of B.
 - $\forall x \in A, x \in B \text{ and } A \neq B$.
- The power set of A is the set of all subsets of A.

Common sets

- Z the set of all integers
- N the set of all natural numbers
- \circ \varnothing or ϕ the empty set

Sequences and Functions

Sequences

- Like ordered sets
- Finite sequences are called *k*-tuples
- 2-tuples are also known as ordered pairs

Cartesian products of sets:

- \circ A × B = {(a, b) | a ∈ A and b ∈ B}
- Can take it of any number of sets
- $A \times A = A^2$, $A \times A \times A = A^3$, etc.

Functions

- Map a domain onto a range
- *n*-ary functions take *n* arguments
- $f: D \rightarrow R$
 - $abs: Z \rightarrow Z$
 - $add: Z \times Z \rightarrow Z$

A function is...

- One-to-one (an injection) if it maps every element of the range from at most one element of the domain
- Onto (a surjection) if it maps every element of the range from at least one element of the domain
- A bijection if every element of the range is mapped by exactly one element of the domain

Relations

A predicate or property is a function with range {TRUE, FALSE}

A property with a domain of n-tuples A^n is an n-ary relation

Binary relations are common, and like binary functions, we use infix notations for them

Let R be a binary relation on A^2 . R is:

- *Reflexive* if $\forall x \in a, x R x$
- Symmetric if $x R y \rightarrow y R x$
- Transitive if $(x R y, y R z) \rightarrow x R z$
- An equivalence relation if it is reflexive, symmetric and transitive

Graphs: Undirected Graphs

An undirected *graph* is a collection of *nodes* (or *vertices*) and *edges* that connect them

- The degree of a node is the number of edges that connect to that node
- Edges are unique you can't have two edges between the same pair of nodes
- Nodes can have self-loops
- Edges can also be labeled

Graphs: Subgraphs

An undirected *graph* is a collection of *nodes* (or *vertices*) and *edges* that connect them

- The degree of a node is the number of edges that connect to that node
- Edges are unique you can't have two edges between the same pair of nodes
- Nodes can have self-loops
- Edges can also be labeled

A graph G is a subgraph of graph H if it has a subset of H's nodes and all the related edges

Graphs: Paths

A *path* is a sequence of nodes connected by edges

- A simple path doesn't repeat any nodes
- A graph is connected if every two nodes have a path

Graphs: Cycles

A *path* is a sequence of nodes connected by edges

- A simple path doesn't repeat any nodes
- A graph is connected if every two nodes have a path
- A path is a cycle if it starts and ends on the same node
- A simple cycle contains at least three nodes and repeats only the first/last

Graphs: Trees

A *path* is a sequence of nodes connected by edges

- A simple path doesn't repeat any nodes
- A graph is connected if every two nodes have a path
- A path is a cycle if it starts and ends on the same node
- A simple cycle contains at least three nodes and repeats only the first/last
- A graph is a tree if it is connected and has no simple cycles

Graphs: Directed Graphs

A *directed graph* is a graph with arrows instead of lines

- Edges between nodes i and j are ordered pairs (i, j)
- Directed paths are paths that follow the direction of the edges

Graphs: Directed Graphs

A directed graph is a graph with arrows instead of lines

- Edges between nodes i and j are ordered pairs (i, j)
- Directed paths are paths that follow the direction of the edges
- A directed graph is strongly connected if every pair of nodes has a directed path

Directed Graphs and Binary Relations

Consider the relation "beats"

Strings

- An alphabet is a non-empty, finite set of symbols
- A string over an alphabet is a finite sequence of symbols from that alphabet
- Strings have *length*, like any sequence; the empty string ϵ is the string with length 0
- A language is a set of strings over a given alphabet
- Do not confound the empty language with the empty string

Given strings *S*, *T*, *U* and *V*, we write:

- S_i to denote the i^{th} symbol in S
- ST to denote the concatenation of S and T
- S^R to denote the reverse of S

...and we say:

- S is a substring of V if $\exists T, U \ni TSU = V$
 - ...and a proper substring if $S \neq V$
- S is a prefix of V if $\exists T \ni ST = V$
 - ...and a proper prefix if $S \neq V$
- S is a suffix of V if $\exists T \ni TS = V$
 - ...and a proper suffix if $S \neq V$

Proofs

SECTIONS 0.3-0.4

Proofs and Friends

All of these should be clear and concise; they must be precise

- Definitions describe the mathematical objects and ideas we want to work with
- Statements or assertions are things we say about mathematics; they can be true or false
- Proofs are unassailable logical demonstrations that statements are true
- Theorems are statements that have been proven true
- Lemmas are theorems that are only any good for proving other theorems
- Corollaries are follow-on theorems that are easy to prove once you prove their parent theorems

How To Prove Something

- 1. Understand the statement
- 2. Convince yourself of whether it is true or false
- 3. Work out its implications until you have a general sense of why it is true or false
 - "Warm fuzzy feelings" don't prove anything but they can help you get ready to prove something
- 4. Break down any sub-cases you will need to prove
 - After this you may need to cycle back to step 2
- 5. Get started

Formats of Proofs

- The book uses a highly narrative proof format
- There are several other valid ones
- Let's look at two

Quasi-Narrative Format

Prove $\overline{A \cup B} = \overline{A} \cap \overline{B}$

We can show this by showing $\overline{A \cup B} \subseteq \overline{A} \cap \overline{B}$ and $\overline{A} \cap \overline{B} \subseteq \overline{A \cup B}$.

Suppose $x \in \overline{A \cup B}$.

Then by definition of complement, $x \notin A \cup B$.

Then by definition of union, $x \notin A$ and $x \notin B$.

Then by def. of complement, $x \in \overline{A}$ and $x \in \overline{B}$.

Then by definition of intersection, $x \in \overline{A} \cap \overline{B}$.

We have shown that if $x \in \overline{A \cup B}$, $x \in \overline{A} \cap \overline{B}$.

Hence by definition of subset, $\overline{A \cup B} \subseteq \overline{A} \cap \overline{B}$.

Now suppose $x \in \overline{A} \cap \overline{B}$.

Then by def. of intersection, $x \in \overline{A}$ and $x \in \overline{B}$.

Then by def. of complement, $x \notin A$ and $x \notin B$.

Then by definition of union, $x \notin A \cup B$.

Then by definition of complement, $x \in \overline{A \cup B}$.

We have shown that if $x \in \overline{A} \cap \overline{B}$, $x \in \overline{A \cup B}$.

Hence by definition of subset, $\overline{A} \cap \overline{B} \subseteq \overline{A \cup B}$.

We have shown that $\overline{A \cup B} \subseteq \overline{A} \cap \overline{B}$ and $\overline{A} \cap \overline{B} \subseteq \overline{A \cup B}$.

Hence by set equality, $\overline{A \cup B} = \overline{A} \cap \overline{B}$, QED.

Two-Column Format

Prove $\overline{A \cup B} = \overline{A} \cap \overline{B}$

1	STS $\overline{A \cup B} \subseteq \overline{A} \cap \overline{B}, \overline{A} \cap \overline{B} \subseteq \overline{A \cup B}$	set equality
2 3 4 5 6 7	Let $x \in \overline{A \cup B}$ $\therefore x \notin \underline{A \cup B}$ $\therefore x \in \overline{A}, x \in \overline{B}$ $\therefore x \in \overline{A \cap B}$ $x \in \overline{A \cup B} \Rightarrow x \in \overline{A \cap B}$ $\therefore \overline{A \cup B} \subseteq \overline{A \cap B}$	complement union intersection 2-5 subset
8 9 10 11 12 13 14	Let $x \in \overline{A} \cap \overline{B}$ $\therefore x \in \overline{A}, x \in \overline{B}$ $\therefore x \notin A, x \notin B$ $\therefore x \notin \overline{A \cup B}$ $\therefore x \in \overline{A \cup B}$ $\therefore x \in \overline{A \cap B} \Rightarrow x \in \overline{A \cup B}$ $\therefore \overline{A} \cap \overline{B} \subseteq \overline{A \cup B}$	intersection complement union complement 9-13 subset
15 16	$\overline{A \cup B} \subseteq \overline{A} \cap \overline{B}, \overline{A} \cap \overline{B} \subseteq \overline{A \cup B}$ $\therefore \overline{A \cup B} = \overline{A} \cap \overline{B}$	7, 14 set equality

Types of Proofs

Direct Argument

What we just did

Construction

 Prove something exists by showing how to make it

Contradiction

 Prove something is true by showing it can't be false

Weak Induction

- Show that a statement is true for the case of 0
- Show that if it's true for the case of i,
 then it's true for the case of i + 1

Strong Induction

- Show that a statement is true for the case of 0
- Show that if it's true for all of the cases
 i, then it's true for the case of i

Next Time: Finite Automata