Chapter 2.7: Bracketing Numbers

Geerten Koers

Reading group Weak Convergence and Empirical Processes

2020-02-17

Outline

- Smooth functions
- Monotone Functions
- Convex sets and functions
- 4 Lipschitz in a Parameter

For $\alpha > 0$, let $\underline{\alpha}$ be the greatest integer smaller than α . For $k \in \mathbb{N}^d$, let $k = \sum k_i$ and define

$$D^k = \frac{\partial^{k.}}{\partial x_1^{k_1} \cdots \partial x_d^{k_d}}.$$

For $\alpha > 0$, let $\underline{\alpha}$ be the greatest integer smaller than α . For $k \in \mathbb{N}^d$, let $k = \sum k_i$ and define

$$D^k = \frac{\partial^{k.}}{\partial x_1^{k_1} \cdots \partial x_d^{k_d}}.$$

Definition

For $\alpha > 0$, and $M \ge 0$, a function $f : \mathcal{X} \to \mathbb{R}$ is an element of $C_M^{\alpha}(\mathcal{X})$ if for

$$||f||_{\alpha} \equiv \max_{k. \leq \underline{\alpha}} \sup_{x} |D^{k} f(x)|$$

$$+ \max_{k. = \underline{\alpha}} \sup_{x,y} \frac{|D^{k} f(x) - D^{k} f(y)|}{||x - y||^{\alpha - \underline{\alpha}}},$$

we have $||f||_{\alpha} \leq M$.

Theorem (2.7.1)

Let X be a bounded, convex subset of \mathbb{R}^d with nonempty interior. There exists a constant K depending only on α and d such that

$$\log N(\epsilon, C_1^{\alpha}(\mathcal{X}), \|\cdot\|_{\infty}) \leq K\lambda(\mathcal{X}^1)(\frac{1}{\epsilon})^{d/\alpha}$$

for every $\epsilon > 0$, where $\lambda(\chi^1)$ is the Lebesgue measure of the set $\{x: ||x - \chi|| < 1\}.$

<u>α-s</u>moothness

Proof:

• For $\delta = \epsilon^{1/\alpha}$, fix a δ -net x_1, \ldots, x_m of χ .

Proof:

- For $\delta = \epsilon^{1/\alpha}$, fix a δ -net x_1, \ldots, x_m of χ .
- $m \lesssim \lambda(\chi^1)/\delta^d.$

Proof:

- For $\delta = \epsilon^{1/\alpha}$, fix a δ -net x_1, \ldots, x_m of χ .
- $m \leq \lambda(\chi^1)/\delta^d$.
- **o** For $k = (k_1, ..., k_d)$, define

$$A_k f = \left(\left\lfloor \frac{D^k f(x_1)}{\delta^{\alpha - k}} \right\rfloor, \dots, \left\lfloor \frac{D^k f(x_m)}{\delta^{\alpha - k}} \right\rfloor \right)$$

Proof:

- For $\delta = \epsilon^{1/\alpha}$, fix a δ -net x_1, \ldots, x_m of χ .
- $m \lesssim \lambda(\chi^1)/\delta^d.$
- **5** For $k = (k_1, ..., k_d)$, define

$$A_k f = \left(\left\lfloor \frac{D^k f(x_1)}{\delta^{\alpha - k}} \right\rfloor, \dots, \left\lfloor \frac{D^k f(x_m)}{\delta^{\alpha - k}} \right\rfloor \right)$$

3 $\delta^{\alpha-k}A_kf$ is the discretization of the (k_1,\ldots,k_d) -partial derivative of f evaluated at the net.

① Claim: if $A_k f = A_k g$ for all k, then $||f - g||_{\infty} \lesssim \epsilon$.

- Claim: if $A_k f = A_k g$ for all k, then $||f g||_{\infty} \lesssim \epsilon$.
- **9** For each x there is an x_i with $||x x_i|| \le \delta$. Then

$$(f - g)(x) = \sum_{k \le \beta} D^k (f - g)(x_i) \frac{(x - x_i)^k}{k!} + R$$

- **Olaim:** if $A_k f = A_k g$ for all k, then $||f g||_{\infty} \lesssim \epsilon$.
- **②** For each x there is an x_i with $||x x_i|| \le \delta$. Then

$$(f - g)(x) = \sum_{k \le \beta} D^k (f - g)(x_i) \frac{(x - x_i)^k}{k!} + R$$

 $|R| \lesssim ||x - x_i||^{\alpha}.$

- **Olyapsi Solution** Olyapsi If $A_k f = A_k g$ for all k, then $||f g||_{\infty} \lesssim \epsilon$.
- **②** For each x there is an x_i with $||x x_i|| \le \delta$. Then

$$(f - g)(x) = \sum_{k \le \beta} D^{k}(f - g)(x_{i}) \frac{(x - x_{i})^{k}}{k!} + R$$

- $|R| \lesssim ||x x_i||^{\alpha}.$
- 4

$$|f-g|(x) \lesssim \sum_{k,\leq \beta} \delta^{\alpha-k} \frac{\delta^{\kappa}}{k!} + \delta^{\alpha}.$$

- **Olyapsi Solution** Olyapsi If $A_k f = A_k g$ for all k, then $||f g||_{\infty} \lesssim \epsilon$.
- **②** For each x there is an x_i with $||x x_i|| \le \delta$. Then

$$(f - g)(x) = \sum_{k \le \beta} D^{k}(f - g)(x_{i}) \frac{(x - x_{i})^{k}}{k!} + R$$

- $|R| \lesssim ||x x_i||^{\alpha}.$
- 4

$$|f-g|(x) \lesssim \sum_{k \leq \beta} \delta^{\alpha-k} \cdot \frac{\delta^{k}}{k!} + \delta^{\alpha}.$$

Thus

$$|f - g|(x) \le \delta^{\alpha}(e^d + 1).$$

• The covering number is bounded by the number of matrices

$$Af = \begin{pmatrix} A_{0,0,\dots,0}f \\ A_{1,0,\dots,0}f \\ \vdots \\ A_{0,0,\dots,\beta}f \end{pmatrix}$$

The covering number is bounded by the number of matrices

$$Af = \begin{pmatrix} A_{0,0,\dots,0}f \\ A_{1,0,\dots,0}f \\ \vdots \\ A_{0,0,\dots,\beta}f \end{pmatrix}$$

2 Number of rows is bounded by $(\beta + 1)^d$.

The covering number is bounded by the number of matrices

$$Af = \begin{pmatrix} A_{0,0,\dots,0}f \\ A_{1,0,\dots,0}f \\ \vdots \\ A_{0,0,\dots,\beta}f \end{pmatrix}$$

- **②** Number of rows is bounded by $(\beta + 1)^d$.
- **Since** $|D^k f(x_i)| \le 1$, the number of possible values of $A_k f$ is bounded by $2/\delta^{\alpha-k} + 2$.

• The covering number is bounded by the number of matrices

$$Af = \begin{pmatrix} A_{0,0,\dots,0}f \\ A_{1,0,\dots,0}f \\ \vdots \\ A_{0,0,\dots,\beta}f \end{pmatrix}$$

- **②** Number of rows is bounded by $(\beta + 1)^d$.
- **③** Since $|D^k f(x_i)| \le 1$, the number of possible values of $A_k f$ is bounded by $2/\delta^{\alpha-k} + 2$.
- **1** Therefore each column has at most $(2\delta^{-\alpha} + 2)^{(\beta+1)^d}$ different values.

At most $(2\delta^{-\alpha}+2)^{(\beta+1)^d}$ different values for Af in

• Let the x_i be such that for all j there is an index i < j with $||x_i - x_j|| < 2\delta$.

- Let the x_i be such that for all j there is an index i < j with $||x_i x_j|| < 2\delta$.
- **2** For such x_i, x_j :

$$D^{k}f(x_{j}) = \sum_{k,+l,\leq\beta} D^{k+l}f(x_{i}) \frac{(x_{i} - x_{j})^{l}}{l!} + R.$$

- Let the x_i be such that for all j there is an index i < j with $||x_i x_j|| < 2\delta$.
- **2** For such x_i, x_j :

$$D^{k}f(x_{j}) = \sum_{k,+l,\leq\beta} D^{k+l}f(x_{i}) \frac{(x_{i} - x_{j})^{l}}{l!} + R.$$

 $|R| \lesssim ||x_i - x_j||^{\alpha - k}.$

- Let the x_i be such that for all j there is an index i < j with $||x_i x_j|| < 2\delta$.
- **2** For such x_i, x_j :

$$D^{k}f(x_{j}) = \sum_{k,+l,\leq\beta} D^{k+l}f(x_{i}) \frac{(x_{i} - x_{j})^{l}}{l!} + R.$$

- $|R| \lesssim ||x_i x_j||^{\alpha k}.$
- $\bullet B_k f := \delta^{\alpha k} A_k f.$

- Let the x_i be such that for all j there is an index i < j with $||x_i x_j|| < 2\delta$.
- **2** For such x_i, x_j :

$$D^{k}f(x_{j}) = \sum_{k,+l,\leq\beta} D^{k+l}f(x_{i}) \frac{(x_{i} - x_{j})^{l}}{l!} + R.$$

- $|R| \lesssim ||x_i x_j||^{\alpha k}.$
- $\bullet B_k f := \delta^{\alpha k} A_k f.$
- 5

$$\left| D^k f(x_j) - \sum_{k,+l,\leq \beta} B_{k+l} f(x_i) \frac{(x_i - x_j)^l}{l!} \right| \leq \delta^{\alpha - k}.$$

• Given *i*th column of Af, $D^k f(x_j)$ ranges over an interval of length proportional to $\delta^{\alpha-k}$.

- Given *i*th column of Af, $D^k f(x_j)$ ranges over an interval of length proportional to $\delta^{\alpha-k}$.
- **②** Thus the *j*th column of Af ranges over an interval proportional to $\delta^{k.-\alpha}\delta^{\alpha-k.}=1$.

- Given *i*th column of Af, $D^k f(x_j)$ ranges over an interval of length proportional to $\delta^{\alpha-k}$.
- **②** Thus the *j*th column of Af ranges over an interval proportional to $\delta^{k.-\alpha}\delta^{\alpha-k.}=1$.
- **1** Thus there exists a constant C (depending only on α and d) such that

$$#Af \le (2\delta^{-\alpha} + 1)^{(\beta+1)^d} C^{m-1}.$$

Corollary (2.7.2)

Let X be a bounded, convex subset of \mathbb{R}^d with nonempty interior. There exists a constant K depending only on α , diam X, and d such that

$$\log N_{[]}(\epsilon, C_1^{\alpha}(\chi), L_r(Q)) \leq K(\frac{1}{\epsilon})^{d/\alpha},$$

for every $r \ge 1$, $\epsilon > 0$, and probability measure Q on \mathbb{R}^d .

Corollary (2.7.2)

Let X be a bounded, convex subset of \mathbb{R}^d with nonempty interior. There exists a constant K depending only on α , diam X, and d such that

$$\log N_{[]}(\epsilon, C_1^{\alpha}(\chi), L_r(Q)) \leq K(\frac{1}{\epsilon})^{d/\alpha},$$

for every $r \geq 1$, $\epsilon > 0$, and probability measure Q on \mathbb{R}^d .

Proof.

Consider brackets $[f_i - \epsilon, f_i + \epsilon]$ for f_1, \ldots, f_p the centers of $\|\cdot\|_{\infty}$ balls of radius ϵ that cover $C_1^{\alpha}(X)$.

Corollary (2.7.3)

Let $C_{\alpha,d}$ be the collection of subgraphs of $C_1^{\alpha}[0,1]^d$. There exists a constant K depending only on α and d such that

$$\log N_{[]}(\epsilon, \mathcal{C}_{\alpha,d}, L_r(Q)) \leq K \|q\|_{\infty}^{d/\alpha} (\frac{1}{\epsilon})^{dr/\alpha},$$

for every $r \geq 1$, $\epsilon > 0$, and probability measure Q with bounded Lebesge density q on \mathbb{R}^d .

• f_1, \ldots, f_p centers of $\|\cdot\|_{\infty}$ -balls of radius ϵ covering $C_1^{\alpha}[0,1]^d$.

- f_1, \ldots, f_p centers of $\|\cdot\|_{\infty}$ -balls of radius ϵ covering $C_1^{\alpha}[0,1]^d$.
- **2** C_i and D_i subgraphs of $f_i \epsilon$ and $f_i + \epsilon$.

- f_1, \ldots, f_p centers of $\|\cdot\|_{\infty}$ -balls of radius ϵ covering $C_1^{\alpha}[0,1]^d$.
- **2** C_i and D_i subgraphs of $f_i \epsilon$ and $f_i + \epsilon$.
- **1** Then $[C_i, D_i]$ form brackets that cover C.

- f_1, \ldots, f_p centers of $\|\cdot\|_{\infty}$ -balls of radius ϵ covering $C_1^{\alpha}[0,1]^d$.
- **2** C_i and D_i subgraphs of $f_i \epsilon$ and $f_i + \epsilon$.
- **1** Then $[C_i, D_i]$ form brackets that cover C.
- Their $L_1(Q)$ size is

$$\int_{[0,1]^d} \int_{\mathbb{R}} 1\{f_i(x) - \epsilon \le t < f_i(x) + \epsilon\} dQ(t,x) \le 2\epsilon \|q\|_{\infty}.$$

- f_1, \ldots, f_p centers of $\|\cdot\|_{\infty}$ -balls of radius ϵ covering $C_1^{\alpha}[0,1]^d$.
- **2** C_i and D_i subgraphs of $f_i \epsilon$ and $f_i + \epsilon$.
- **1** Then $[C_i, D_i]$ form brackets that cover C.
- Their $L_1(Q)$ size is

$$\int_{[0,1]^d} \int_{\mathbb{R}} 1\{f_i(x) - \epsilon \le t < f_i(x) + \epsilon\} dQ(t,x) \le 2\epsilon \|q\|_{\infty}.$$

Thus

$$N_{[]}((2\epsilon \|q\|_{\infty})^{1/r}, \mathcal{C}_{\alpha,d}, L_r(Q))$$

is bounded by p.

Theorem (2.7.4)

Let (I_j) be a partition for \mathbb{R}^d . If \mathcal{F} is such that $f \in \mathcal{F}$ implies that $f|_{I_j} \in C^{\alpha}_{M_i}(I_j)$, we have

$$\log N_{[]}(\epsilon, \mathcal{F}, L_r(Q)) \leq K\left(\frac{1}{\epsilon}\right)^{d/\alpha}$$

with

$$K = C \left(\sum_{j=1}^{\infty} \lambda(I_j^1)^{\frac{r}{V+r}} M_j^{\frac{Vr}{V+r}} Q(I_j)^{\frac{V}{V+r}} \right)^{\frac{V+r}{r}}.$$

Theorem (2.7.4)

Let (I_j) be a partition for \mathbb{R}^d . If \mathcal{F} is such that $f \in \mathcal{F}$ implies that $f|_{I_j} \in C^{\alpha}_{M_j}(I_j)$, we have

$$\log N_{[]}(\epsilon, \mathcal{F}, L_r(Q)) \leq K\left(\frac{1}{\epsilon}\right)^{d/\alpha}$$

with

$$K = C \left(\sum_{j=1}^{\infty} \lambda(I_j^1)^{\frac{r}{V+r}} M_j^{\frac{Vr}{V+r}} Q(I_j)^{\frac{V}{V+r}} \right)^{\frac{V+r}{r}}.$$

If $\alpha > 1/2$ and $\sum_{j=1}^{\infty} P([j,j+1))^s < \infty$ for some s < 1/2, then

$$\log N_{[]}(\epsilon, C_1^{\alpha}(\mathbb{R}), L_2(P)) \le K \left(\frac{1}{\epsilon}\right)^{2-\delta}$$

Theorem (2.7.5)

The class \mathcal{F} of monotone functions $f: \mathbb{R} \mapsto [0,1]$ satisfies

$$\log N_{[]}(\epsilon, \mathcal{F}, L_r(Q)) \leq K(\frac{1}{\epsilon}),$$

for every probability measure Q, every $r \ge 1$, and a constant K that depends on r only.

② Suffices to check for $\lambda = \text{Unif}(0,1)$:

- **②** Suffices to check for $\lambda = \text{Unif}(0,1)$:
- $Q^{-1}(u) = \inf\{x : Q(x) \ge u\}.$

- **①** Suffices to check for $\lambda = \text{Unif}(0,1)$:
- $Q^{-1}(u) = \inf\{x : Q(x) \ge u\}.$
- **o** $f \circ Q^{-1} : [0,1] \to [0,1]$ is monotone.

- **Output** Suffices to check for $\lambda = \text{Unif}(0,1)$:
- $Q^{-1}(u) = \inf\{x : Q(x) \ge u\}.$
- **o** $f \circ Q^{-1} : [0,1] \to [0,1]$ is monotone.
- $Q^{-1} \circ Q(x) \le x$ and $u \le Q \circ Q^{-1}(u)$.

- **①** Suffices to check for $\lambda = \text{Unif}(0,1)$:
- $Q^{-1}(u) = \inf\{x : Q(x) \ge u\}.$
- $f \circ Q^{-1} : [0,1] \to [0,1]$ is monotone.
- **1** $Q^{-1} \circ Q(x) \le x$ and $u \le Q \circ Q^{-1}(u)$.
- **5 Thus** $<math>l \circ Q \leq f \circ Q^{-1} \circ Q \leq f.$

- **Our Suffices to check for** $\lambda = \text{Unif}(0,1)$ **:**
- $Q^{-1}(u) = \inf\{x : Q(x) \ge u\}.$
- **o** $f \circ Q^{-1} : [0,1] \to [0,1]$ is monotone.
- **1** $Q^{-1} \circ Q(x) \le x$ and $u \le Q \circ Q^{-1}(u)$.
- **Thus** $l \circ Q \leq f \circ Q^{-1} \circ Q \leq f$.
- **o** For [l, u] a bracket for $f \circ Q^{-1}$, then

$$||f - l \circ Q||_{Q,r} = ||f \circ Q^{-1} - l \circ Q \circ Q^{-1}||_{\lambda,r}$$

$$\leq ||f \circ Q^{-1} - l||_{\lambda,r}$$

$$< \epsilon$$

Definition

For subsets *C* and *D* of a metric space, the Hausdorff distance is

$$h(C,D) = \sup_{x \in C} d(x,D) \vee \sup_{x \in D} d(x,C).$$

Definition

For subsets *C* and *D* of a metric space, the Hausdorff distance is

$$h(C,D) = \sup_{x \in C} d(x,D) \vee \sup_{x \in D} d(x,C).$$

 $h(C, D) \le \epsilon$ is equivalent with

$$\begin{cases} \forall x \in C : \exists y \in D : d(x,y) \le \epsilon \\ \forall y \in D : \exists x \in C : d(y,x) \le \epsilon \end{cases}$$

Lemma (2.7.8)

For the class C of all compact, convex subsets of a fixed, bounded subset of \mathbb{R}^d , with $d \geq 2$, one has

$$\log N(\epsilon, C, h) \simeq \left(\frac{1}{\epsilon}\right)^{(d-1)/2},$$

with a constant depending only on d and the bounded set.

Corollary (2.7.9)

For the class C of all compact, convex subsets of a fixed, bounded subset of \mathbb{R}^d , with $d \geq 2$, one has

$$\log N_{[]}(\epsilon, \mathcal{C}, L_r(Q)) \leq K\left(\frac{1}{\epsilon}\right)^{(d-1)r/2}$$

- $C^{\epsilon} = \{x : d(x,C) < \epsilon.$

- $\bullet \epsilon C = \{x : d(x, C^c) > \epsilon\}.$
- $C^{\epsilon} = \{x : d(x,C) < \epsilon.$

- $\bullet \epsilon C = \{x : d(x, C^c) > \epsilon\}.$
- $C^{\epsilon} = \{x : d(x,C) < \epsilon.$

- $C^{\epsilon} = \{x : d(x,C) < \epsilon.$

• There is a K > 0:

$$\lambda(C^{\epsilon} -_{\epsilon} C) \leq K\epsilon.$$

• If $h(C, D) < \epsilon$, then $\epsilon C \subset D \subset C^{\epsilon}$.

- If $h(C, D) < \epsilon$, then $\epsilon C \subset D \subset C^{\epsilon}$.
- **②** For C_1, \ldots, C_p centers of Hausdorff balls of radius ϵ , then $[\epsilon C_i, C_i^{\epsilon}]$ are covering brackets.

- If $h(C, D) < \epsilon$, then $\epsilon C \subset D \subset C^{\epsilon}$.
- **②** For C_1, \ldots, C_p centers of Hausdorff balls of radius ϵ , then $[\epsilon C_i, C_i^{\epsilon}]$ are covering brackets.
- **1** The size of the bracket is bounded by $||q||_{\infty}^{1/r}(K\epsilon)^{1/r}$.

- If $h(C, D) < \epsilon$, then $\epsilon C \subset D \subset C^{\epsilon}$.
- **②** For C_1, \ldots, C_p centers of Hausdorff balls of radius ϵ , then $[\epsilon C_i, C_i^{\epsilon}]$ are covering brackets.
- **1** The size of the bracket is bounded by $||q||_{\infty}^{1/r}(K\epsilon)^{1/r}$.
- p is bounded by Lemma 2.7.8.

Corollary (2.7.10)

Let \mathcal{F} be the class of all convex functions $f: C \to [0,1]$ defined on a compact, convex subset $C \subset \mathbb{R}^d$ such that $|f(x) - f(y)| \le L||x - y||$. Then

$$\log N(\epsilon, \mathcal{F}, \|\cdot\|_{\infty}) \leq K(1+L)^{d/2} \left(\frac{1}{\epsilon}\right)^{d/2}.$$

• For x with f(x) < g(x), the closest point from (x, f(x)) to the supergraph of g is (y, g(y)).

- For x with f(x) < g(x), the closest point from (x, f(x)) to the supergraph of g is (y, g(y)).
- Their distance is bounded by

$$|f(x) - g(y)| + ||x - y|| \le h(C_f, C_g).$$

- For x with f(x) < g(x), the closest point from (x, f(x)) to the supergraph of g is (y, g(y)).
- Their distance is bounded by

$$|f(x) - g(y)| + ||x - y|| \le h(C_f, C_g).$$

Furthermore

$$|f(x) - g(x)| \le |f(x) - g(y)| + |g(y) - g(x)|$$

$$\le |f(x) - g(y)| + L||x - y||$$

$$\le (1 + L)(|f(x) - g(y)| + ||x - y||).$$

- For x with f(x) < g(x), the closest point from (x, f(x)) to the supergraph of g is (y, g(y)).
- Their distance is bounded by

$$|f(x) - g(y)| + ||x - y|| \le h(C_f, C_g).$$

Furthermore

$$|f(x) - g(x)| \le |f(x) - g(y)| + |g(y) - g(x)|$$

$$\le |f(x) - g(y)| + L||x - y||$$

$$\le (1 + L)(|f(x) - g(y)| + ||x - y||).$$

4 Hence

$$||x - y|| + |f(x) - g(y)| \ge (1 + L)^{-1}|f(x) - g(x)|.$$

From

$$(1+L)^{-1}|f(x)-g(x)| \le |f(x)-f(y)| + ||x-y||.$$

From

$$(1+L)^{-1}|f(x)-g(x)| \le |f(x)-f(y)| + ||x-y||.$$

and

$$|f(x) - g(y)| + ||x - y|| \le h(C_f, C_g)$$

From

$$(1+L)^{-1}|f(x)-g(x)| \le |f(x)-f(y)| + ||x-y||.$$

and

$$|f(x) - g(y)| + ||x - y|| \le h(C_f, C_g)$$

we get

$$|f(x) - g(x)| \le (1 + L)h(C_f, C_g).$$

From

$$(1+L)^{-1}|f(x)-g(x)| \le |f(x)-f(y)| + ||x-y||.$$

and

$$|f(x) - g(y)| + ||x - y|| \le h(C_f, C_g)$$

we get

$$|f(x)-g(x)|\leq (1+L)h(C_f,C_g).$$

• Thus $||f - g||_{\infty} \le (1 + L)h(C_f, C_g)$.

From

$$(1+L)^{-1}|f(x)-g(x)| \le |f(x)-f(y)| + ||x-y||.$$

and

$$|f(x) - g(y)| + ||x - y|| \le h(C_f, C_g)$$

we get

$$|f(x) - g(x)| \le (1 + L)h(C_f, C_g).$$

- **1** Thus $||f g||_{\infty} \le (1 + L)h(C_f, C_g)$.
- **Now apply Lemma** 2.7.8.

Lipschitz in a parameter

Consider functions $x \mapsto f_t(x)$ indexed by $t \in T$ such that

$$|f_s(x) - f_t(x)| \le d(s, t)F(x)$$

for some metric d and a function F.

Lipschitz in a parameter

Consider functions $x \mapsto f_t(x)$ indexed by $t \in T$ such that

$$|f_s(x) - f_t(x)| \le d(s, t)F(x)$$

for some metric *d* and a function *F*.

Theorem (2.7.11)

Let $\mathcal{F} = \{f_t : t \in R\}$ be a class of functions satisfying the preceding display for every s and t and some fixed function F. Then, for any norm $\|\cdot\|$,

$$N_{[]}(2\epsilon ||F||, \mathcal{F}, ||\cdot||) \leq N(\epsilon, T, d).$$

Lipschitz in a parameter

Consider functions $x \mapsto f_t(x)$ indexed by $t \in T$ such that

$$|f_s(x) - f_t(x)| \le d(s, t)F(x)$$

for some metric d and a function F.

Theorem (2.7.11)

Let $\mathcal{F} = \{f_t : t \in R\}$ be a class of functions satisfying the preceding display for every s and t and some fixed function F. Then, for any norm $\|\cdot\|$,

$$N_{[]}(2\epsilon ||F||, \mathcal{F}, ||\cdot||) \leq N(\epsilon, T, d).$$

Proof.

For t_1, \ldots, t_p an ϵ -net of T, the brackets $[f_{t_i} - \epsilon F, f_{t_i} + \epsilon F]$ cover \mathcal{F} .