Ecuaciones diferenciales II

29 de diciembre de 2022

Índice general

1.	Teoremas de existencia y unicidad global para problemas de	
	valores iniciales	3
	1.1. Ecuación integral equivalente a un problema de Cauchy	3
	1.2. Condiciones de Lipschitz	4
	1.3. El teorema de existencia y unicidad global	5
2.	Teoremas de existencia y unicidad local para problemas de va-	
	lores iniciales	6
3.	Resultados de unicidad para ecuaciones diferenciales	8
	3.1. La propiedad de unicidad global	8
	3.2. Funciones localmente lipschitzianas	8
	3.3. Comparación de soluciones	9
	3.4. El teorema de unicidad global	9
	3.5. El criterio de unicidad de Peano	10
	3.6. Dependencia continua de las soluciones	10
4.	Teoremas de existencia de soluciones para problemas de valores	
	iniciales	12
	4.1. Teoremas de existencia local de Peano	12
	4.2. El teorema de existencia global de Peano	13
5.	Prolongaciones de soluciones y soluciones maximales	14
	5.1. Existencia y unicidad de soluciones no prolongables	15
	5.2. Soluciones maximales con gráficas contenidas en compactos	15
	5.3. Puntos límites y el lema de Wintner	16
	5.4. Soluciones maximales con gráficas contenidas en abiertos	16
	5.5. Soluciones maximales de las ecuaciones diferenciales autónomas .	16
6.	Espacios de soluciones de los sistemas y ecuaciones diferenciales	
	lineales	18
	6.1. Matrices soluciones y matrices fundamentales	18
	6.2. Fórmula de Abel-Liouville	20

	6.3. Soluciones de un sistema diferencial no homogéne o $\ \ldots \ \ldots \ \ldots$	20
7.	Resolución de sistemas y ecuaciones diferenciales lineales con	ı
	coeficientes constantes	21
	7.1. Exponencial de una matriz cuadrada	21
	7.2. Determinación de una matriz fundamental	21
	7.3. Cálculo de la exponencial de una matriz	22
	7.4. Formas canónicas de Jordan	23
	7.5. Ecuaciones diferenciales lineales de orden superior	26

Teoremas de existencia y unicidad global para problemas de valores iniciales

1.1. Ecuación integral equivalente a un problema de Cauchy

Teorema 1.1. Consideramos el problema de Cauchy:

$$(P) \begin{cases} x'(t) = f(t, x(t)) \\ x(t_0) = x^0 \end{cases}$$

donde $f: D \to \mathbb{R}^n$ es continua en $D \subset \mathbb{R} \times \mathbb{R}^n$, $n \geq 1$ y $(t_0, x^0) \in D$. Sea I un intervalo en \mathbb{R} tal que $t_0 \in I$ y $x: I \to \mathbb{R}^n$ una función cuya gráfica está contenida en D:

Entonces, las siguientes afirmaciones son equivalentes:

- $x: I \to \mathbb{R}^n$ es solución de (P).
- x es una función continua en I que verifica:

$$x(t) = x^0 + \int_{t_0}^t f(s, x(s)) ds, \quad \forall t \in I$$

1.2. Condiciones de Lipschitz

Definición 1.1. Sea $D \subset \mathbb{R}^2$. Una función $f: D \to \mathbb{R}$, $(t, x) \mapsto f(t, x)$, se dice que es lipschitziana en D respecto de la segunda variable x cuando existe una constante L > 0 tal que:

$$|f(t,x) - f(t,y)| < L|x-y|, \quad (t,x), (t,y) \in D$$

En tal caso se escribe $f \in Lip(x, D)$ y se dice que L es una constante de Lipschitz para f en D respecto a la segunda variable.

Definición 1.2. Sean n > 1, $\|.\|$ una norma en \mathbb{R}^n y $D \subset \mathbb{R} \times \mathbb{R}^n$.

■ Una función $f: D \to \mathbb{R}^n$, $(t,x) \mapsto f(t,x)$, se dice que es lipschitziana en D respecto de la variable vectorial $x \in \mathbb{R}^n$ cuando existe una constante L > 0 tal que:

$$||f(t,x) - f(t,y)|| \le L||x - y||, \quad (t,x), (t,y) \in D$$

• Una función $f: D \to \mathbb{R}$, $(t,x) \mapsto f(t,x)$, se dice que es lipschitziana en D respecto de la variable vectorial $x \in \mathbb{R}^n$ cuando existe una constante L > 0 tal que:

$$|f(t,x) - f(t,y)| \le L||x - y||, \quad (t,x), (t,y) \in D$$

Proposición 1.2. Sean n > 1, $D \subset \mathbb{R} \times \mathbb{R}^n$ $y \ f : D \to \mathbb{R}^n$ con $f = (f_1, \dots, f_n)$. Se verifica:

$$f \in Lip(x, D) \Leftrightarrow f_k \in Lip(x, D), \quad \forall k \in \{1, \dots, n\}$$

Proposición 1.3 (Caracterización de la condición de Lipschitz). Si D es un conjunto convexo en \mathbb{R}^2 y $f: D \to \mathbb{R}$ es una función tal que existe $\frac{\partial f}{\partial x}: D \to \mathbb{R}$, entonces:

$$f \in Lip(x, D) \Leftrightarrow \frac{\partial f}{\partial x}$$
 es acotada en D

Observación. Si K es un conjunto convexo y compacto en \mathbb{R}^2 y existe $\frac{\partial f}{\partial x}$ y es continua sobre K, entonces $f \in Lip(x,K)$.

Definición 1.3. Sea I cualquier intervalo en \mathbb{R} . Se dice que una función $f:D=I\times\mathbb{R}\to\mathbb{R},\ (t,x)\mapsto f(t,x)$, satisface una condición de Lipschitz generalizada en D respecto de la segunda variable x cuando existe una función $L:I\to\mathbb{R}$ continua en I y no negativa tal que:

$$|f(t,x) - f(t,y)| \le L(t)|x-y|, \quad \forall (t,x), (t,y) \in D$$

En tal caso se escribe $f \in LipG(x, D)$.

Definición 1.4. Sean $n>1, \|.\|$ una norma en \mathbb{R}^n, I un intervalo en \mathbb{R} y $D=I\times\mathbb{R}^n.$

■ Se dice que la función vectorial $f: D \to \mathbb{R}^n$, $(t, x) \mapsto f(t, x)$, satisface una condición de Lipschitz generalizada en D respecto de la variable vectorial $x \in \mathbb{R}^n$ cuando existe una función $L: I \to \mathbb{R}^+$ continua en I tal que:

$$||f(t,x) - f(t,y)|| \le L(t)||x - y||, \quad (t,x), (t,y) \in D$$

■ Se dice que la función vectorial $f: D \to \mathbb{R}$, $(t,x) \mapsto f(t,x)$, satisface una condición de Lipschitz generalizada en D respecto de la variable vectorial $x \in \mathbb{R}^n$ cuando existe una función $L: I \to \mathbb{R}^+$ continua en I tal que:

$$|f(t,x) - f(t,y)| \le L(t)||x - y||, \quad (t,x), (t,y) \in D$$

Proposición 1.4. Sean n > 1, I un intervalo en \mathbb{R} y $f: D = I \times \mathbb{R}^n \to \mathbb{R}^n$ con $f = (f_1, \ldots, f_n)$. Se verifica:

$$f \in LipG(x, D) \Leftrightarrow f_k \in LipG(x, D), \quad \forall k \in \{1, \dots, n\}$$

Proposición 1.5 (Caracterización de la condición de Lipschitz generalizada). Sean I un intervalo de \mathbb{R} y $f: D = I \times \mathbb{R} \to \mathbb{R}$, tal que existe la función derivada parcial $\frac{\partial f}{\partial x}: D \to \mathbb{R}$. Las dos siguientes condiciones son equivalentes:

- $f \in LipG(x, D)$.
- Existe una función $L: I \to \mathbb{R}^+$ continua en I tal que:

$$\left|\frac{\partial f}{\partial x}(t,x)\right| \le L(t), \quad \forall (t,x) \in D$$

1.3. El teorema de existencia y unicidad global

Teorema 1.6 (Teorema de existencia y unicidad global). Sea $n \ge 1$ y supongamos las tres siguientes condiciones:

- 1. $D = I \times \mathbb{R}^n$ donde I es un intervalo no degenerado en \mathbb{R} .
- 2. La función $f: D \to \mathbb{R}^n$, $(t, x) \mapsto f(t, x)$, es continua en D.
- 3. $f \in LipG(x, D)$.

En tal situación, para cada $(t_0, x^0) \in D$ el problema de Cauchy:

$$(P) \begin{cases} x'(t) = f(t, x(t)) \\ x(t_0) = x^0 \end{cases}$$

tiene una única solución definida en el intervalo I.

Teoremas de existencia y unicidad local para problemas de valores iniciales

Teorema 2.1 (Teorema de existencia y unicidad local). Sean $n \ge 1$ y ||.|| una norma en \mathbb{R}^n . Sea el problema de valor inicial:

(P)
$$\begin{cases} x'(t) = f(t, x(t)) \\ x(t_0) = x^0 \end{cases}$$

donde $f: D \to \mathbb{R}^n$, $(t, x) \mapsto f(t, x)$, $D \subset \mathbb{R} \times \mathbb{R}^n$ $y(t_0, x^0) \in D$.

Supongamos que existen a > 0 y b > 0 tales que:

$$Q = [t_0 - a, t_0 + a] \times \bar{B}(x^0; b) \subset D$$

y la función f verifica las dos siguientes condiciones:

- 1. f es continua en Q.
- 2. $f \in Lip(x, Q)$.

Entonces, existen intervalos $I = [t_0 - h, t_0 + h]$, siendo $0 < h \le a$, tales que (P) posee una única solución $x : I \to \mathbb{R}^n$. Esto sucede si:

$$0 < h \leq \min\{a, \frac{b}{M}\}, \quad siendo \ M \geq \max_{(t, x) \in Q} \|f(t, x)\|$$

Observación. Existen versiones laterales del teorema local:

- Tomando $Q = [t_0, t_0 + a] \times \bar{B}(x^0; b)$, para obtener una única solución $x : [t_0, t_0 + h] \to \mathbb{R}^n$ del problema (P) (solución lateral a la derecha).
- Tomando $Q = [t_0 a, t_0] \times \bar{B}(x^0; b)$, para obtener una única solución $x : [t_0 h, t_0] \to \mathbb{R}^n$ del problema (P) (solución lateral a la izquierda).

Corolario 2.2. Supongamos que se verifican las siguientes condiciones:

- D es un subconjunto de \mathbb{R}^2 con interior \dot{D} no vacío.
- La función $f: D \to \mathbb{R}$, $(t, x) \mapsto f(t, x)$, es continua en D.
- Existe la función derivada parcial $\frac{\partial f}{\partial x}: D \to \mathbb{R}$ y es continua en D.

En tal situación, para cualquier punto $(t_0, x^0) \in \dot{D}$ existen intervalos $I = [t_0 - h, t_0 + h]$, siendo h > 0, tales que el problema de Cauchy:

$$(P) \begin{cases} x'(t) = f(t, x(t)) \\ x(t_0) = x^0 \end{cases}$$

tiene una única solución $x: I \to \mathbb{R}$.

Observación. Si D es un abierto de \mathbb{R}^2 y $f \in \mathcal{C}^1(D, \mathbb{R})$, entonces f satisface las condiciones del teorema de existencia y unicidad local.

Resultados de unicidad para ecuaciones diferenciales

3.1. La propiedad de unicidad global

Definición 3.1 (Propiedad de unicidad global). Sean $n \geq 1$, $y \in I$: $\Omega \to \mathbb{R}^n$, donde $\Omega \subset \mathbb{R} \times \mathbb{R}^n$. Se dice que la ecuación diferencial x'(t) = f(t, x(t)) tiene la propiedad de unicidad global en una región $D \subset \Omega$ cuando, dadas dos soluciones $x : I \to \mathbb{R}^n$, $y : J \to \mathbb{R}^n$ con gráficas contenidas en D, sucede que si existe $t_0 \in I \cap J$ tal que $x(t_0) = y(t_0)$ entonces x(t) = y(t) para cada $t \in I \cap J$.

3.2. Funciones localmente lipschitzianas

Definición 3.2. Sean $n \geq 1$ y $\Omega \subset \mathbb{R} \times \mathbb{R}^n$. Una función $f: \Omega \to \mathbb{R}^n$, $(t, x) \mapsto f(t, x)$, se dice que es localmente lipschitziana en la región $D \subset \Omega$ respecto de la variable x cuando para cada punto $(t_0, x^0) \in D$ existe un entorno U de (t_0, x^0) tal que $f \in Lip(x, U \cap D)$. Cuando esto sucede escribiremos $f \in Lip_{Loc}(x, D)$.

Definición 3.3. Sean n > 1 y $\Omega \subset \mathbb{R} \times \mathbb{R}^n$. Una función $f : \Omega \to \mathbb{R}$, $(t, x) \mapsto f(t, x)$, se dice que es localmente lipschitziana en la región $D \subset \Omega$ respecto de la variable x cuando para cada punto $(t_0, x^0) \in D$ existe un entorno U de (t_0, x^0) tal que $f \in Lip(x, U \cap D)$.

Proposición 3.1. Sean n > 1, $\Omega \subset \mathbb{R} \times \mathbb{R}^n$ $y \ f : \Omega \to \mathbb{R}^n$ con $f = (f_1, \dots, f_n)$. Sea $D \subset \Omega$. Se verifica:

$$f \in Lip_{Loc}(x, D) \Leftrightarrow f_i \in Lip_{Loc}(x, D), \quad \forall i = 1, \dots, n$$

Proposición 3.2 (Condición suficiente para la condición de Lipschitz local). *Supongamos:*

- $n \ge 1$ y A un abierto en $\mathbb{R} \times \mathbb{R}^n$.
- $f: A \to \mathbb{R}$, $(t,x) = (t,x_1,\ldots,x_n) \mapsto f(t,x_1,\ldots,x_n)$, una función tal que, para cada $k \in \{1,\ldots,n\}$, existe la función derivada parcial $\frac{\partial f}{\partial x_k}: A \to \mathbb{R}$ y es continua en A.

Entonces $f \in Lip_{Loc}(x, A)$, siendo $x = (x_1, \dots, x_n)$.

Teorema 3.3 (Caracterización de la condición de Lipschitz local). Sean $n \ge 1$, D un abierto en $\mathbb{R} \times \mathbb{R}^n$ y $f: D \to \mathbb{R}^n$ continua en D. Entonces:

$$f \in Lip_{Loc}(x, D) \Leftrightarrow f \in Lip(x, K), \quad \forall K \subset D \ compacto$$

3.3. Comparación de soluciones

Proposición 3.4 (Lema de Gronwall). Sean k una constante no negativa, $u, v : I \to \mathbb{R}^+$ dos funciones continuas en el intervalo I y $t_0 \in I$ tales que:

$$u(t) \le k + \left| \int_{t_0}^t v(s)u(s)ds \right|, \quad \forall t \in I$$

Entonces, se verifica:

$$u(t) \le k \exp \left| \int_{t_0}^t v(s) ds \right|, \quad \forall t \in I$$

Teorema 3.5 (Estimación de la diferencia entre dos soluciones). Sean $n \geq 1$, $\|.\|$ una norma en \mathbb{R}^n , $x: I \to \mathbb{R}^n$ e $y: I \to \mathbb{R}^n$ dos soluciones de la ecuación diferencial x'(t) = f(t, x(t)) con gráficas contenidas en una región $D \subset \mathbb{R} \times \mathbb{R}^n$ y sea $t_0 \in I$.

1. Si $f \in \mathcal{C}(D,\mathbb{R}^n) \cap Lip(x,D)$ con constante de Lipschitz L, se tiene la siguiente estimación:

$$||x(t) - y(t)|| \le ||x(t_0) - y(t_0)||e^{L|t - t_0|}, \quad \forall t \in I$$

2. Si $D = J \times \mathbb{R}^n$, donde J es un intervalo en \mathbb{R} , $y \in \mathcal{C}(D, \mathbb{R}^n) \cap LipG(x, D)$ con función de Lipschitz $L : J \to \mathbb{R}$, $t \mapsto L(t)$, entonces:

$$||x(t) - y(t)|| \le ||x(t_0) - y(t_0)|| \exp \left| \int_{t_0}^t L(s)ds \right|, \quad \forall t \in I$$

3.4. El teorema de unicidad global

Teorema 3.6 (Teorema de unicidad global). Sean $n \geq 1$ y $f : \Omega \to \mathbb{R}^n$, $(t,x) \mapsto f(t,x)$, donde $\Omega \subset \mathbb{R} \times \mathbb{R}^n$. Supongamos que existe $D \subset \Omega$ tal que:

$$f \in \mathcal{C}(D, \mathbb{R}^n) \cap Lip_{Loc}(x, D)$$

Entonces, la ecuación diferencial x'(t) = f(t, x(t)) tiene la propiedad de unicidad global en D.

Observación. Si D es abierto y $f \in \mathcal{C}^1(D,\mathbb{R}^n)$, entonces f satisface las condiciones del teorema de unicidad global. Recordamos que satisface además las condiciones del teorema de existencia y unicidad local.

3.5. El criterio de unicidad de Peano

Proposición 3.7 (Criterio de unicidad de Peano). Sean J y K intervalos en \mathbb{R} y consideramos el problema de valor inicial:

$$(P) \begin{cases} x'(t) = f(t, x(t)) \\ x(t_0) = x^0 \end{cases}$$

donde $f: D = J \times K \to \mathbb{R} \ y \ (t_0, x^0) \in D$.

Por otra parte, sea I un intervalo tal que $t_0 \in I \subset J$ y consideramos:

$$I^- = \{t \in I : t \le t_0\}, \quad I^+ = \{t \in I : t \ge t_0\}$$

suponiendo que los intervalos I^- e I^+ no sean degenerados.

- 1. Unicidad a la izquierda. Si para cada $t \in I^-$ la función $f_t : K \to \mathbb{R}$, $x \mapsto f_t(x) = f(t,x)$ es creciente, entonces (P) tiene a lo sumo una solución definida en I^- .
- 2. Unicidad a la derecha. Si para cada $t \in I^+$ la función $f_t : K \to \mathbb{R}$, $x \mapsto f_t(x) = f(t,x)$ es decreciente, entonces (P) tiene a lo sumo una solución definida en I^+ .

3.6. Dependencia continua de las soluciones

Teorema 3.8 (Teorema de dependencia continua). Sean I un intervalo acotado en \mathbb{R} , $n \geq 1$ $y \parallel . \parallel$ una norma en \mathbb{R}^n . Consideramos el problema de valor inicial:

$$(P) \begin{cases} x'(t) = f(t, x(t)) \\ x(t_0) = x^0 \end{cases}$$

donde $f: D = I \times \mathbb{R}^n \to \mathbb{R}^n$, $(t_0, x^0) \in D$ y $f \in \mathcal{C}(D, \mathbb{R}^n) \cap Lip(x, D)$.

Sea $x: I \to \mathbb{R}^n$ la solución de (P) y para cada $v \in \mathbb{R}^n$ sea:

$$(P_v) \begin{cases} x'(t) = f(t, x(t)) \\ x(t_0) = v \end{cases}$$

Se verifica lo siguiente:

1. Dado cualquier $\varepsilon > 0$ existe $\delta = \delta(\varepsilon) > 0$ tal que, si $y^0 \in \mathbb{R}^n$ verifica que $\|x^0 - y^0\| < \delta$, entonces la solución $y: I \to \mathbb{R}^n$ del problema (P_{y^0}) verifica que:

$$||x(t) - y(t)|| < \varepsilon, \quad \forall t \in I$$

2. Si (v_m) es una sucesión en \mathbb{R}^n tal que $v_m \to x^0$ en \mathbb{R}^n y $\phi_m : I \to \mathbb{R}^n$, $m=1,2,\ldots$, es la solución del problema (P_{v_m}) , entonces la sucesión (ϕ_m) converge uniformemente hacia la solución del problema (P) en el intervalo I.

Teoremas de existencia de soluciones para problemas de valores iniciales

4.1. Teoremas de existencia local de Peano

Teorema 4.1 (Versión lateral a la derecha del teorema de existencia local de Peano). Sean $n \ge 1$ y $\|.\|$ una norma en \mathbb{R}^n . Sea el problema de valor inicial:

(P)
$$\begin{cases} x'(t) = f(t, x(t)) \\ x(t_0) = x^0 \end{cases}$$

donde $f: D \to \mathbb{R}^n$, $D \subset \mathbb{R} \times \mathbb{R}^n$ $y(t_0, x^0) \in D$.

Supongamos que existen a > 0 y b > 0 tales que $Q = [t_0, t_0 + a] \times \bar{B}(x^0; b) \subset D$ y f es continua en Q.

Entonces, (P) tiene al menos una solución definida en el intervalo $I = [t_0, t_0 + h]$, donde:

$$h=\min\{a,\frac{b}{M}\}, \quad M\geq \max_{(t,x)\in Q}\|f(t,x)\|$$

Observación. La versión lateral a la izquierda del teorema de existencia local de Peano consiste en tomar

$$Q = [t_0 - a, t_0] \times \bar{B}(x^0; b) \subset D$$

De esta forma, el problema (P) tiene al menos una solución definida en el intervalo $I=[t_0-h,t_0]$.

Corolario 4.2 (Versión centrada del teorema de existencia local de Peano). Sean $n \ge 1$ y $\|.\|$ una norma en \mathbb{R}^n . Sea el problema de valor inicial:

$$(P) \begin{cases} x'(t) = f(t, x(t)) \\ x(t_0) = x^0 \end{cases}$$

donde $f: D \to \mathbb{R}^n$, $D \subset \mathbb{R} \times \mathbb{R}^n$ y $(t_0, x^0) \in D$. Supongamos que existen a > 0 y b > 0 tales que $Q = [t_0 - a, t_0 + a] \times \bar{B}(x^0; b) \subset D$ y f es continua en Q.

Entonces, (P) tiene al menos una solución definida en el intervalo $I = [t_0 - h, t_0 + h]$, donde:

$$h = \min\{a, \frac{b}{M}\}, \quad M \geq \max_{(t, x) \in Q} \|f(t, x)\|$$

4.2. El teorema de existencia global de Peano

Teorema 4.3 (Teorema de existencia global de Peano). Sean I un intervalo compacto en \mathbb{R} , $n \geq 1$ y $f: D = I \times \mathbb{R}^n \to \mathbb{R}^n$ una función continua y acotada en D. Entonces, para cada $(t_0, x^0) \in D$, el problema

(P)
$$\begin{cases} x'(t) = f(t, x(t)) \\ x(t_0) = x^0 \end{cases}$$

tiene al menos una solución definida en I.

Prolongaciones de soluciones y soluciones maximales

Definición 5.1 (Soluciones estrictamente prolongables y soluciones maximales). Una solución $x:I\to\mathbb{R}^n$ de una ecuación diferencial o de un problema de Cauchy se dice que es estrictamente prolongable cuando existe otra solución $y:J\to\mathbb{R}^n$ tal que:

$$I \subsetneq J, \quad y_{|_{I}} = x$$

Cuando esto sucede, se dice que $y:J\to\mathbb{R}^n$ es una prolongación estricta de $x:I\to\mathbb{R}^n$. Una solución que no admite prolongación estricta se dice que es no prolongable o que es maximal.

Definición 5.2 (Soluciones estrictamente prolongables lateralmente).

■ Una solución $x: I \to \mathbb{R}^n$ de (P) se dice que es estrictamente prolongable a la derecha cuando existe otra solución $y: J \to \mathbb{R}^n$ de (P) con $I \subset J$ tal que:

$$I^+ = \{t \in I : t \ge t_0\} \subseteq J^+ = \{t \in J : t \ge t_0\} \quad \text{y} \quad y|_I = x$$

Cuando esto sucede, se dice que $y: J \to \mathbb{R}^n$ es una prolongación estricta a la derecha de $x: I \to \mathbb{R}^n$. Una solución de (P) que no admite prolongación estricta a la derecha se dice que no es prolongable a la derecha.

■ Una solución $x: I \to \mathbb{R}^n$ de (P) se dice que es estrictamente prolongable a la izquierda cuando existe otra solución $y: J \to \mathbb{R}^n$ de (P) con $I \subset J$ tal que:

$$I^- = \{t \in I : t \le t_0\} \subsetneq J^- = \{t \in J : t \le t_0\} \quad \text{y} \quad y|_I = x$$

Cuando esto sucede, se dice que $y: J \to \mathbb{R}^n$ es una prolongación estricta a la izquierda de $x: I \to \mathbb{R}^n$. Una solución de (P) que no admite prolongación estricta a la izquierda se dice que no es prolongable a la izquierda.

5.1. Existencia y unicidad de soluciones no prolongables

Teorema 5.1 (Existencia y unicidad de soluciones no prolongables). $Si\ f\ es$ continua en $D\ se\ verifica$:

- 1. Si (t_0, x^0) es un punto interior a D, entonces (P) tiene al menos una solución que no es prolongable definida en un intervalo que contiene al punto t_0 en el interior. Si además $f \in Lip_{Loc}(x, D)$, esta solución maximal es única.
- 2. Si existen a > 0 y b > 0 tales que $Q = [t_0, t_0 + a] \times \overline{B}(x^0; b) \subset D$, entonces (P) posee al menos una solución lateral a la derecha que no es prolongable a la derecha.
- 3. Si existen a > 0 y b > 0 tales que $Q = [t_0 a, t_0] \times \bar{B}(x^0; b) \subset D$, entonces (P) posee al menos una solución lateral a la izquierda que no es prolongable a la izquierda.

Observación. Si D es abierto y f es de clase C^1 en D, entonces (P) tiene una única solución maximal, que está definida en un intervalo que contiene a t_0 en su interior.

5.2. Soluciones maximales con gráficas contenidas en compactos

Teorema 5.2. Sea el problema de valor inicial:

$$(P) \begin{cases} x'(t) = f(t, x(t)) \\ x(t_0) = x^0 \end{cases}$$

donde $f: D \to \mathbb{R}^n$, $D \subset \mathbb{R} \times \mathbb{R}^n$, $n \ge 1$ y $(t_0, x^0) \in D$. Sea $x: I \to \mathbb{R}^n$ una solución maximal de (P) y sea Γ su gráfica.

Supongamos que existe un conjunto K compacto en $\mathbb{R} \times \mathbb{R}^n$ tal que $\Gamma \subset K \subset D$ y f es continua en K. Entonces:

- 1. I es un intervalo compacto, es decir, I = [a, b].
- 2. Los puntos (a, x(a)) y (b, x(b)) están en la frontera de K.

5.3. Puntos límites y el lema de Wintner

Definición 5.3 (Puntos límites). Sean $n \ge 1$ y $x : [t_0, t_1) \to \mathbb{R}^n$ una función tal que $t_1 < \infty$. Sea $x^1 \in \mathbb{R}^n$. Se dice que (t_1, x^1) es un punto límite de la gráfica de x para $t \to t_1$ cuando existe una sucesión (s_m) en el intervalo $[t_0, t_1)$ tal que $(s_m, x(s_m)) \to (t_1, x^1)$ en $\mathbb{R} \times \mathbb{R}^n$.

Proposición 5.3. Sean $n \geq 1$, $t_1 < \infty$, $x : [t_0, t_1) \to \mathbb{R}^n$ una función, Γ su gráfica $y \parallel . \parallel$ una norma en \mathbb{R}^n . Se verifica una y solamente una de las dos siguientes situaciones:

- $\blacksquare \lim_{t \to t_1} ||x(t)|| = \infty$
- Γ tiene al menos un punto límite para $t \to t_1$.

Teorema 5.4 (Lema de Wintner). Sea $x:[t_0,t_1)\to\mathbb{R}^n$, siendo $t_1<\infty$, una solución de la ecuación diferencial x'(t)=f(t,x(t)), con gráfica Γ contenida en $D\subset\mathbb{R}\times\mathbb{R}^n$ y sea $f:D\to\mathbb{R}^n$ una función continua en D. Sea (t_1,x^1) un punto límite de Γ para $t\to t_1$ y supongamos que se verifica la siguiente condición:

Existe un entorno U de (t_1, x^1) tal que f es acotada de $U \cap D$.

Entonces $\lim_{t \to t_1} x(t) = x^1$.

5.4. Soluciones maximales con gráficas contenidas en abiertos

Teorema 5.5. Sean A un abierto en $\mathbb{R} \times \mathbb{R}^n$, $n \geq 1$, $f: A \to \mathbb{R}^n$ una función continua en A y $\|.\|$ una norma en \mathbb{R}^n . Si $x: I \to \mathbb{R}^n$ es una solución no prolongable de la ecuación diferencial x'(t) = f(t, x(t)) con gráfica Γ contenida en A, se verifica:

- 1. El intervalo I es abierto.
- 2. Si I tiene un extremo finito α , entonces $\lim_{t\to\alpha} \|x(t)\| = \infty$ o bien cualquier punto límite de Γ para $t\to \alpha$ está en la frontera de A.

5.5. Soluciones maximales de las ecuaciones diferenciales autónomas

Teorema 5.6 (Teorema fundamental de las ecuaciones autónomas). Supongamos que $g \in C^1(\mathbb{R}, \mathbb{R})$. Sea $x : I \to \mathbb{R}$ una solución no prolongable de la ecuación X' = g(x) y sea $t_0 \in \dot{I}$. Se verifica lo siguiente:

- 1. El intervalo I es abierto.
- 2. Si x es acotada en $I^+ = [t_0, \infty)$, existe $\lim_{t \to \infty} x(t) = a$, siendo $a \in \mathbb{R}$, y la función constante dada por $y(t) \equiv a$ es solución de la ecuación x' = g(x).

3. Si x es acotada en $I^- = (-\infty, t_0]$, existe $\lim_{t \to -\infty} x(t) = b$, siendo $b \in \mathbb{R}$, y la función constante dada por $y(t) \equiv b$ es solución de la ecuación x' = g(x).

Espacios de soluciones de los sistemas y ecuaciones diferenciales lineales

Teorema 6.1. Si $A: I \to \mathcal{M}_n(\mathbb{R})$ es continua en el intervalo I, el conjunto de soluciones del sistema diferencial lineal homogéneo x' = A(t)x es un subespacio vectorial de $\mathcal{C}^1(I, \mathbb{R}^n)$ de dimensión finita iqual a n.

6.1. Matrices soluciones y matrices fundamentales

Definición 6.1 (Matrices soluciones y matrices fundamentales). Sea el sistema diferencial homogéneo x' = A(t)x, donde $A : I \to \mathcal{M}_n(\mathbb{R})$ es continua en I.

- Una matriz solución del sistema es una función matricial $\Phi: I \to \mathcal{M}_n(\mathbb{R})$ cuyas n columnas son soluciones del sistema.
- Una matriz fundamental del sistema es una función matricial $\mathcal{M}_n(\mathbb{R})$ cuyas n columnas forman un sistema fundamental de soluciones del sistema.

Si Φ es matriz fundamental del sistema x' = A(t)x, el conjunto de soluciones del sistema viene dado por:

$$\{x: I \to \mathbb{R}^n : x(t) = \Phi(t)c, \ c \in \mathbb{R}\}$$

Teorema 6.2 (Caracterización de las matrices solución). Una función matricial $\Phi: I \to \mathcal{M}_n(\mathbb{R})$, derivable en I, es matriz solución del sistema x' = A(t)x si y solo si verifica:

$$\Phi'(t) = A(t)\Phi(t), \quad \forall t \in I$$

Teorema 6.3 (Caracterización de las matrices fundamentales). Si Φ es matriz solución del sistema diferencial lineal x' = A(t)x, las tres siguientes afirmaciones son equivalentes:

- 1. Φ es matriz fundamental de x' = A(t)x.
- 2. $\det(\Phi(t)) \neq 0$ para cada $t \in I$.
- 3. Existe $t_0 \in I$ tal que $det(\Phi(t_0)) \neq 0$.

Corolario 6.4. Para una matriz solución Φ solo caben las dos siguientes posibilidades:

- 1. $det(\Phi(t)) \neq 0$ para cada $t \in I$.
- 2. $det(\Phi(t)) = 0$ para cada $t \in I$.

En la primera situación la matriz Φ es fundamental.

Proposición 6.5. Sea Φ una matriz fundamental del sistema x' = A(t)x. Una función matricial $\Psi: I \to \mathcal{M}_n(\mathbb{R})$ es matriz fundamental de x' = A(t)x si y solo si:

$$\Psi(t) = \Phi(t)C, \quad \forall t \in I$$

donde $C \in \mathcal{M}_n(\mathbb{R})$ $y \det(C) \neq 0$.

Proposición 6.6. Si $A: I \to \mathcal{M}_n(\mathbb{R})$ es continua en el intervalo I, entonces para cada $t_0 \in I$ existe una única matriz fundamental Φ del sistema x' = A(t)x tal que $\Phi(t_0) = I_n$. Tal función matricial se conoce como matriz fundamental canónica del sistema x' = A(t)x en el punto $t_0 \in I$.

Observación. Consideramos el problema de Cauchy:

$$(P): \begin{cases} x' = A(t)x \\ x(t_0) = x^0 \end{cases}$$

con $A: I \to \mathcal{M}_n(\mathbb{R})$ continua en $I, t_0 \in I$ y $x_0 \in \mathbb{R}^n$. Sabemos que (P) tiene una única solución $x: I \to \mathbb{R}^n$.

1. Supongamos que Φ es una matriz fundamental del sistema x'=A(t)x. Entonces, la solución del problema (P) es:

$$x(t) = \Phi(t)\Phi^{-1}(t_0)x^0$$

2. Supongamos que Φ es una matriz fundamental canónica del sistema x'=A(t)x. Entonces, la solución del problema (P) es:

$$x(t) = \Phi(t)x^0$$

6.2. Fórmula de Abel-Liouville

Teorema 6.7. Sea $A: I \to \mathcal{M}_n(\mathbb{R})$ continua en el intervalo I y sea $t_0 \in I$. Si $\Phi: I \to \mathcal{M}_n(\mathbb{R})$ es matriz solución del sistema homogéneo x' = A(t)x, se verifica:

$$\det(\Phi(t)) = \det(\Phi(t_0)) \exp\left(\int_{t_0}^t tr(A(s))ds\right), \quad \forall t \in I$$

6.3. Soluciones de un sistema diferencial no homogéneo

Proposición 6.8. Si V_H es el espacio vectorial de las soluciones del sistema homogéneo (S_H) , con dim $V_H = n < \infty$, $y \ x_p : I \to \mathbb{R}^n$ es una solución del sistema no homogéneo (S), el conjunto de soluciones de (S) viene dado por:

$${x: I \to \mathbb{R}^n : x = x_h + x_p, \ x_h \in V_H}$$

Corolario 6.9. Si Φ es una matriz fundamental de x' = A(t)x y x_p es una solución de x' = A(t)x + b(t), entonces las soluciones del sistema no homogéneo son de la forma:

$$x(t) = \Phi(t)c + x_p(t), \quad c \in \mathbb{R}^n$$

Proposición 6.10 (Conjetura de Lagrange). Si Φ es una matriz fundamental de x' = A(t)x, existen soluciones del sistema x' = A(t)x + b(t) que son de la forma:

$$x_p(t) = \Phi(t)c(t)$$

donde la función $c: I \to \mathbb{R}^n$ es derivable y viene dada por:

$$c(t) = \int \Phi^{-1}(s)b(s)ds$$

Resolución de sistemas y ecuaciones diferenciales lineales con coeficientes constantes

7.1. Exponencial de una matriz cuadrada

Definición 7.1. Dada $A \in \mathcal{M}_n(\mathbb{R})$, se llama matriz exponencial de A y se escribe e^A a la matriz de $\mathcal{M}_n(\mathbb{R})$ definida por:

$$e^A = \sum_{k=0}^{\infty} \frac{1}{k!} A^k$$

Proposición 7.1 (Propiedades de la exponencial).

- 1. $Si \Theta \in \mathcal{M}_n(\mathbb{R})$ es la matriz nula, entonces $e^{\Theta} = I_n$.
- 2. Si $I \in \mathcal{M}_n(\mathbb{R})$ es la matriz identidad, $e^I = eI$.
- 3. Si $A, B \in \mathcal{M}_n(\mathbb{R})$ y A y B conmutan, entonces $Ae^B = e^B A$
- 4. Si $A, B \in \mathcal{M}_n(\mathbb{R})$ y A y B conmutan, entonces $e^{A+B} = e^A e^B$
- 5. Si $A \in \mathcal{M}_n(\mathbb{R})$, entonces e^A es invertible y su inversa es $(e^A)^{-1} = e^{-A}$.

7.2. Determinación de una matriz fundamental

Teorema 7.2. Supongamos que $I \subset \mathbb{R}$ es intervalo no degenerado, que $B \in \mathcal{C}^1(I, \mathcal{M}_n(\mathbb{R}))$ y que B y B' conmutan para todo $t \in I$. Entonces, fijado $t_0 \in I$,

la aplicación:

$$\Phi_{t_0}: I \to \mathcal{M}_n(\mathbb{R})$$

$$t_0 \mapsto \Phi_{t_0}(t) = e^{B(t) - B(t_0)}$$

es la matriz fundamental canónica de x' = B'(t)x en t_0 .

Corolario 7.3. Si $A \in \mathcal{M}_n(\mathbb{R})$ y $b \in \mathcal{C}(I,\mathbb{R}^n)$ entonces, para cada $t_0 \in I$ y cada $x^0 \in \mathbb{R}^n$, el problema de Cauchy

$$(P): \begin{cases} x' = Ax + b \\ x(t_0) = x^0 \end{cases}$$

tiene solución única en I.

Además, esta solución viene dada por:

$$\varphi(t) = e^{(t-t_0)A} x^0 + \int_{t_0}^t e^{(t-s)A} b(s) ds, \quad t \in I$$

7.3. Cálculo de la exponencial de una matriz

1. Si $A = diag(\lambda_1, \ldots, \lambda_n)$, entonces:

$$e^{tA} = diag(e^{t\lambda_1}, \dots, e^{t\lambda_n})$$

2. Si A es semejante a una matriz diagonal D, es decir, existe P invertible tal que $A=PDP^{-1}$, entonces:

$$e^{tA} = Pe^{tD}P^{-1}$$

3. Si A es diagonal por bloques, es decir, $A = diag(A_1, \ldots, A_l)$ siendo cada $A_j \in \mathcal{M}_{r_j}(\mathbb{R})$ con $r_1 + \cdots + r_l = n$, entonces:

$$e^{tA} = diag(e^{tA_1}, \dots, e^{tA_l})$$

4. Si A es un bloque de Jordan real del tipo

$$A = D_r(\lambda) = \begin{pmatrix} \lambda & 1 & \dots & 0 & 0 \\ 0 & \lambda & \dots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & \lambda & 1 \\ 0 & 0 & \dots & 0 & \lambda \end{pmatrix}$$

entonces:

$$e^{tA} = e^{t\lambda} I_r \sum_{k=0}^{r-1} \frac{t^k}{k!} N_r^k = e^{t\lambda} \begin{pmatrix} 1 & t & \frac{t^2}{2!} & \dots & \frac{t^{r-1}}{(r-1)!} \\ 0 & 1 & t & \dots & \frac{t^{r-2}}{(r-2)!} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & t \\ 0 & 0 & 0 & \dots & 1 \end{pmatrix}$$

5. Si A es un bloque de Jordan complejo del tipo

$$A = E_r(\mu) = \begin{pmatrix} \vec{\mu} & \vec{1} & \dots & \vec{0} & \vec{0} \\ \vec{0} & \vec{\mu} & \dots & \vec{0} & \vec{0} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ \vec{0} & \vec{0} & \dots & \vec{\mu} & \vec{1} \\ \vec{0} & \vec{0} & \dots & \vec{0} & \vec{\mu} \end{pmatrix}$$

con $\mu = \alpha + i\beta$, $\beta > 0$, y donde:

$$\vec{\mu} = \begin{pmatrix} \alpha & \beta \\ -\beta & \alpha \end{pmatrix}, \quad \vec{0} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \quad \vec{1} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

entonces:

$$e^{tA} = e^{t\vec{\mu}} \begin{pmatrix} \vec{1} & t\vec{1} & \frac{t^2}{2!}\vec{1} & \dots & \frac{t^{r-1}}{(r-1)!}\vec{1} \\ \vec{0} & \vec{1} & t\vec{1} & \dots & \frac{t^{r-2}}{(r-2)!}\vec{1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \vec{0} & \vec{0} & \vec{0} & \dots & t\vec{1} \\ \vec{0} & \vec{0} & \vec{0} & \dots & \vec{1} \end{pmatrix}$$

donde

$$e^{t\mu} = e^{t\alpha} \begin{pmatrix} \cos(t\beta) & \sin(t\beta) \\ -\sin(t\beta) & \cos(t\beta) \end{pmatrix}$$

Teorema 7.4 (Forma canónica de Jordan real). Si $A \in \mathcal{M}_n(\mathbb{R})$, entonces existen una matriz de Jordan $J \in \mathcal{M}_n(\mathbb{R})$ y una matriz $P \in \mathcal{M}_n(\mathbb{R})$ invertible tales que:

$$AP = PJ \Leftrightarrow A = PJP^{-1}$$

Más concretamente.

- Para cada $\lambda \in \mathbb{R}$ autovalor de A con multiplicidad $m(\lambda)$, J contiene tantas cajas de Jordan del tipo $D_r(\lambda)$ como indique $\dim(\ker(A \lambda I))$ y la suma de los tamaños de estas cajas es $m(\lambda)$.
- Para cada $\mu \in \mathbb{C}$ autovalor de A con multiplicidad $m(\mu)$, J contiene tantas cajas de Jordan del tipo $E_r(\mu)$ como indique $\dim(\ker(A \lambda I))$ y la suma de los tamaños de estas cajas es $m(\mu)$.

7.4. Formas canónicas de Jordan

Formas canónicas de Jordan reales asociadas a matrices 2×2

Sea $A \in \mathcal{M}_2(\mathbb{R})$. Su polinomio característico es $p(\lambda) = (A - \lambda I)$, que tiene coeficientes reales y es de grado 2, así que tiene dos raíces λ_1 y λ_2 .

1. Supongamos que $\lambda_1, \lambda_2 \in \mathbb{R}$, con $\lambda_1 \neq \lambda_2$. Sean P^1 y P^2 autovectores asociados a λ_1 y λ_2 respectivamente, entonces:

$$J = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}, \quad P = \left(P^1 | P^2\right)$$

- 2. Supongamos que $\lambda_1 = \lambda_2 = \lambda \in \mathbb{R}$. Entonces dim $(\ker(A \lambda I)) \in \{1, 2\}$.
 - a) Supongamos que dim $(\ker(A \lambda I)) = 2$. Sean P^1 y P^2 autovectores linealmente independientes asociados a λ , entonces:

$$J = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix}, \quad P = \begin{pmatrix} P^1 | P^2 \end{pmatrix}$$

b) Supongamos que dim $(\ker(A-\lambda I))=1$. Entonces solo hay un bloque de Jordan asociado a λ de tamaño 2, es decir,

$$J = \begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix}, \quad P = \left(P^1 | P^2\right)$$

donde:

- P^1 es autovector de A asociado a λ .
- \bullet $(A-\lambda I)P^2=P^1,$ es decir, P^2 es solución de $(A-\lambda I)X=P^1.$
- 3. Supongamos que $\lambda_1, \lambda_2 \in \mathbb{C}$, es decir, son de la forma $\lambda_1 = \lambda = \alpha + i\beta$, $\lambda_2 = \bar{\lambda} = \alpha i\beta$. Sea $W = P^1 + iP^2$ un autovector complejo de A asociado a λ , entonces:

$$J = \begin{pmatrix} \alpha & \beta \\ -\beta & \alpha \end{pmatrix}, \quad P = (P^1|P^2)$$

Formas canónicas de Jordan reales asociadas a matrices 3×3

Sea $A \in \mathcal{M}_3(\mathbb{R})$. Su polinomio característico es $p(\lambda) = (A - \lambda I)$, que tiene coeficientes reales y es de grado 3, así que tiene tres raíces λ_1 , λ_2 y λ_3 .

1. Supongamos que $\lambda_1, \lambda_2, \lambda_3 \in \mathbb{R}$ distintos. Sean P^1 , P^2 y P^3 autovectores asociados a λ_1 , λ_2 y λ_3 respectivamente, entonces:

$$J = \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{pmatrix}, \quad P = (P^1 | P^2 | P^3)$$

2. Supongamos que $\lambda_1, \lambda_2, \lambda_3 \in \mathbb{R}$ con $\lambda_2 = \lambda_3 = \lambda$ y $\lambda_1 \neq \lambda$. Entonces $\dim(\ker(A - \lambda I)) \in \{1, 2\}$.

a) Supongamos que dim $(\ker(A-\lambda I)) = 2$. Sea P^1 autovector asociado a λ_1 y sean P^2 y P^3 autovectores linealmente independientes asociados a λ , entonces:

$$J = \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda \end{pmatrix}, \quad P = \left(P^1 | P^2 | P^3\right)$$

b) Supongamos que dim $(\ker(A - \lambda I)) = 1$. Entonces:

$$J = \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda & 1 \\ 0 & 0 & \lambda \end{pmatrix}, \quad P = \left(P^1 | P^2 | P^3\right)$$

donde:

- P^1 es autovector de A asociado a λ_1 .
- P^2 es autovector de A asociado a λ .
- $(A \lambda I)P^3 = P^2$, es decir, P^3 es solución de $(A \lambda I)X = P^2$.
- 3. Supongamos que $\lambda_1 = \lambda_2 = \lambda_3 = \lambda \in \mathbb{R}$. Entonces dim $(\ker(A \lambda I)) \in \{1, 2, 3\}$.
 - a) Supongamos que dim $(\ker(A \lambda I)) = 3$. Sean P^1 , P^2 y P^3 autovectores linealmente independientes asociados a λ , entonces:

$$J = \begin{pmatrix} \lambda & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda \end{pmatrix}, \quad P = \left(P^1 | P^2 | P^3\right)$$

b) Supongamos que dim $(\ker(A - \lambda I)) = 2$. Entonces:

$$J = \begin{pmatrix} \lambda & 0 & 0 \\ 0 & \lambda & 1 \\ 0 & 0 & \lambda \end{pmatrix}, \quad P = \left(P^1 | P^2 | P^3\right)$$

donde:

- P^1 y P^2 son autovectores linealmente independientes asociados a λ .
- \bullet $(A-\lambda I)P^3=P^2,$ es decir, P^3 es solución de $(A-\lambda I)X=P^2.$
- c) Supongamos que dim $(\ker(A \lambda I)) = 1$. Entonces:

$$J = \begin{pmatrix} \lambda_1 & 1 & 0 \\ 0 & \lambda & 1 \\ 0 & 0 & \lambda \end{pmatrix}, \quad P = \left(P^1 | P^2 | P^3\right)$$

donde:

- P^1 es autovector de A asociado a λ .
- $(A \lambda I)P^2 = P^1$, es decir, P^2 es solución de $(A \lambda I)X = P^1$.
- $(A \lambda I)P^3 = P^2$, es decir, P^3 es solución de $(A \lambda I)X = P^2$.
- 4. Supongamos que $\lambda_1 \in \mathbb{R}$ y $\lambda_2, \lambda_3 \in \mathbb{C}$, es decir, son de la forma $\lambda_2 = \lambda = \alpha + i\beta$, $\lambda_3 = \bar{\lambda} = \alpha i\beta$. Entonces:

$$J = \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \alpha & \beta \\ 0 & -\beta & \alpha \end{pmatrix}, \quad P = \left(P^1 | P^2 | P^3\right)$$

donde:

- P^1 es autovector de A asociado a λ_1 .
- $P^2 + iP^3$ es autovector complejo de A asociado a λ .

7.5. Ecuaciones diferenciales lineales de orden superior

Las ecuaciones diferenciales lineales ordinarias de coeficientes constantes de orden n son de la forma:

$$(E): y^{(n)} + a_1 y^{(n-1)} + \dots + a_n y = a_0(t)$$

donde $a_0 \in \mathcal{C}(I, \mathbb{R})$ y $a_1, \ldots, a_n \in \mathbb{R}$.

El sistema asociado es (S): x' = Ax + b, donde

$$A = \begin{pmatrix} 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \\ -a_n & a_{n-1} & \dots & -a_1 \end{pmatrix}, \quad b(t) = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ a_0(t) \end{pmatrix}$$

La solución de (E) con dato inicial $y(t_0) = y_1^0$, $y'(t_0) = y_2^0$ viene dada por la primera componente de la solución de (S).

El polinomio característico de A es

$$p(\lambda) = (-1)^n (\lambda^n + a_1 \lambda^{n-1} + \dots + a_{n-2} \lambda^2 + a_{n-1} \lambda + a_n)$$

luego su ecuación característica es:

$$\lambda^{n} + a_{1}\lambda^{n-1} + \dots + a_{n-2}\lambda^{2} + a_{n-1}\lambda + a_{n} = 0$$

Ha de verificarse que

$$rg(A - \lambda I) + \dim(\ker(A - \lambda I)) = n$$

Como $rg(A - \lambda I) = n - 1$, entonces $\dim(Ker(A - \lambda I)) = 1$. Es decir, hay una caja de Jordan asociada a λ .

■ Si $\lambda \in \mathbb{R}$, la caja tiene tamaño $m(\lambda)$ y es de la forma:

$$D_{m(\lambda)}(\lambda) = \begin{pmatrix} \lambda & 1 & \dots & 0 & 0 \\ 0 & \lambda & \dots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & \lambda & 1 \\ 0 & 0 & \dots & 0 & \lambda \end{pmatrix}$$

■ Si $\lambda = \mu = \alpha + i\beta \in \mathbb{C}$ con $\beta > 0$, la caja tiene tamaño $2m(\mu)$ y es de la forma:

$$E_{m(\mu)}(\mu) = \begin{pmatrix} \vec{\mu} & \vec{1} & \dots & \vec{0} & \vec{0} \\ \vec{0} & \vec{\mu} & \dots & \vec{0} & \vec{0} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ \vec{0} & \vec{0} & \dots & \vec{\mu} & \vec{1} \\ \vec{0} & \vec{0} & \dots & \vec{0} & \vec{\mu} \end{pmatrix}$$

donde:

$$\vec{\mu} = \begin{pmatrix} \alpha & \beta \\ -\beta & \alpha \end{pmatrix}, \quad \vec{0} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \quad \vec{1} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Supongamos que $\lambda_1, \ldots, \lambda_l$ son los autovalores reales de A con multiplicidades respectivas m_1, \ldots, m_n y que μ_1, \ldots, μ_s son los autovalores complejos de A con parte imaginaria positiva y con multiplicidades respectivas v_1, \ldots, v_s . Entonces la forma canónica de Jordan real asociada a A es:

$$J = diag(D_{m_1}(\lambda_1), \dots, D_{m_l}(\lambda_l), E_{v_1}(\mu_1), \dots, E_{v_s}(\mu_s))$$

Además, existe una matriz P invertible tal que $A = PJP^{-1}$. Por tanto:

$$e^{tA} = P \operatorname{diag}(e^{tD_{m_1}(\lambda_1)}, \dots, e^{tD_{m_l}(\lambda_l)}, e^{tE_{v_1}(\mu_1)}, \dots, e^{tE_{v_s}(\mu_s)}) P^{-1}$$

Observamos que los elementos de e^{tA} son combinaciones lineales de los elementos de la colección:

$$\mathcal{F} = \{ t^k e^{\lambda_j t}, 1 \le j \le l, 0 \le k \le m_j - 1 \}$$

$$\cup \{ t^k e^{\alpha_j t} \cos(\beta_j t), 1 \le j \le s, 0 \le k \le v_j - 1 \}$$

$$\cup \{ t^k e^{\alpha_j t} \sin(\beta_j t), 1 \le j \le s, 0 \le k \le v_j - 1 \}$$

Teorema 7.5. \mathcal{F} es sistema fundamental de soluciones de:

$$(E_H): y^{(n)} + a_1 y^{(n-1)} + \dots + a_n y = 0$$

Teorema 7.6 (Método de los coeficientes indeterminados). Consideremos:

$$(E_H): y^{(n)} + a_1 y^{(n-1)} + \dots + a_n y = a_0(t)$$

 $con \ a_1, \ldots, a_n \in \mathbb{R} \ y \ a_0 \in \mathcal{C}(I, \mathbb{R}).$

■ Caso complejo. Supongamos que $a_0(t) = g(t)e^{\lambda t}$, siendo g un polinomio complejo de grado a lo sumo d y $\lambda \in \mathbb{C}$. Entonces, una solución particular de (E) es del tipo:

$$\varphi_p(t) = t^{m(\lambda)}Q(t)e^{\lambda t}$$

donde Q es un polinomio de grado a lo sumo d y $m(\lambda)$ es la multiplicidad de λ como autovalor del polinomio característico de (E_H) .

■ Caso real. Supongamos que $a_0(t) = e^{\alpha t}(q_1(t)\cos(\beta t) + q_2(t)\sin(\beta t))$, siendo q_1 y q_2 polinomios reales de grado a lo sumo d y $\alpha, \beta \in \mathbb{R}$. Entonces, una solución particular de (E) es del tipo:

$$\varphi_p(t) = t^{m(\mu)} e^{\alpha t} (Q_1(t) \cos(\beta t) + Q_2(t) \sin(\beta t))$$

donde Q_1 y Q_2 son polinomios reales de grado a lo sumo d y $m(\mu)$ es la multiplicidad de $\mu = \alpha + i\beta$ como autovalor de (E_H) .