Statistique – Visualisation de données

Somme

python : sum()

Usage:sum(liste)

Entrée : une liste de nombres

Sortie: un nombre

Exemple: sum([4,8,3]) renvoie 15

Minimum/maximum

python : min()

Usage:min(liste) ou min(a,b)

Entrée : une liste de nombres ou bien deux nombres

Sortie: un nombre

Exemple:

• min(12,7) renvoie 7

• min([10,5,9,12]) renvoie 5

Variance et écart-type

La *variance* d'une série de données $(x_1, x_2, ..., x_n)$ est définie comme la moyenne des carrés des écarts à la moyenne. C'est-à-dire :

$$v = \frac{1}{n} ((x_1 - m)^2 + (x_2 - m)^2 + \dots + (x_n - m)^2)$$

où m est la moyenne de (x_1, x_2, \dots, x_n) .

Par exemple, pour la série (6, 8, 2, 10), la moyenne est m = 6.5, la variance est

$$v = \frac{1}{4} ((6 - 6.5)^2 + (8 - 6.5)^2 + (2 - 6.5)^2 + (10 - 6.5)^2) = 8.75$$

L'écart-type d'une série (x_1,x_2,\ldots,x_n) est la racine carrée de la variance :

$$e = \sqrt{v}$$

où ν est la variance.

Exemple:

$$e = \sqrt{v} = \sqrt{8.75} = 2.95...$$

Graphiques avec tkinter

- create_rectangle(x1,y1,x2,y2)
- create_oval(x1,y1,x2,y2)
- create_text(x,y,text="Mon texte")

Tracer un arc

create_arc(x1,y1,x2,y2,start=debut_angle,extent=mon_angle)

L'option style=PIESLICE affiche un secteur au lieu d'un arc.

Diagramme en boîte

Un *diagramme en boîte* (appelé aussi *boîte à moustaches*) est un graphique qui représente les principales caractéristiques d'une série statistique : minimum, maximum, médiane et quartiles. Le schéma de principe est le suivant :

Médiane et quartiles

Par définition, la moitié des valeurs est inférieure ou égale à la médiane, l'autre moitié est supérieure ou égale à la *médiane*.

Rappels. On note n la longueur de la liste et on suppose que la liste est ordonnée (du plus petit au plus grand élément).

- Cas *n* impair. La médiane est la valeur de la liste au rang $\frac{n-1}{2}$. Exemple avec liste = [12,12,14,15,19]:
 - la longueur de la liste est n = 5 (les indices vont de 0 à 4),
 - l'indice du milieu est l'indice 2,
 - la médiane est la valeur liste[2], c'est donc 14.
- Cas n pair. La médiane est la moyenne entre la valeur de la liste au rang $\frac{n}{2}-1$ et au rang $\frac{n}{2}$. Exemple avec liste = [13,14,19,20]:
 - la longueur de la liste est n = 4 (les indices vont de 0 à 3),
 - les indices du milieu sont 1 et 2,
 - la médiane est la moyenne entre liste[1] et liste[2], c'est donc $\frac{14+19}{2} = 16.5$.

Quartiles

Les quartiles répartissent les valeurs en : un quart en-dessous de Q_1 , un quart entre Q_1 et Q_2 , un quart entre Q_2 et Q_3 , un quart au-dessus de Q_3 . Pour le calcul, on utilise que :

- Q_2 est simplement la médiane de la liste entière (supposée ordonnée),
- Q_1 est la médiane de la sous-liste formée de la première moitié des valeurs,
- Q_3 est la médiane de la sous-liste formée de la seconde moitié des valeurs.

Effectifs

Les résultats d'une classe sont collectés sous la forme suivante d'un effectif par note :

effectif_notes = [0,0,0,0,0,1,0,2,0,1,5,1,2,3,2,4,1,2,0,1,0]

Le rang i va de 0 à 20. Et la valeur au rang i indique le nombre d'élèves ayant eu la note i.

Écris une fonction notes_vers_liste(effectif_notes) qui prend en entrée un effectif de notes et renvoie la liste des notes. Pour notre exemple la fonction doit renvoyer [5,7,7,9,10,10,10,10,10,10,...].