Karya Matematika itu sebenarnya apa?

Aditya Firman Ihsan

$$\frac{d}{dx}e^x = e^x$$

Sedikit Perjalanan...

S1 - > Teori Koding (Aljabar, Kombinatorik)

S2 -> Analisis Non Linear (Analisis)

S3 -> PDP dan Perturbasi (Analisis, Terapan)

PPMS -> Pemodelan Jaringan Migas (Numerik, Terapan)

Tel-U -> Data Sains dan Deep Learning (Numerik, Statistik)

Mungkin lebih tepat bertanya dulu ...

 $\Phi_{=\frac{1+\sqrt{5}}{2}} \simeq 1,618033988749894848204586834365$

Apa sebenarnya matematika?

$$\forall x \forall y [\forall z (z \in x \Leftrightarrow z \in y) \Rightarrow x = y].$$

$$\forall u \forall v (\exists w (x \times w = u \times v) \rightarrow (\exists w (x \times w = u) \vee \exists w (x \times w = v))) \wedge x \neq 0 \wedge x \neq 1$$

$$3 domba + 2 domba = 5 domba$$

$$3 \text{ juta} + 2 \text{ juta} = 5 \text{ juta}$$

$$3 \quad x \quad + 2 \quad x \quad = 5 \quad x$$

$$3 e^{\pi + x^2} + 2 e^{\pi + x^2} = 5 e^{\pi + x^2}$$

$$= 50$$

$$= 10$$

$$\begin{pmatrix} 5 & 2 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 50 \\ 10 \end{pmatrix}$$

$$\mathbf{A} x = b$$

Pelajari karakter A secara umum, maka masalah serupa akan dapat lebih mudah diselesaikan

$$R_{\frac{\pi}{2}} \circ R_{\frac{\pi}{2}} = R_{\pi}$$

$$R_{\pi} \circ R_{\pi} = I$$

$$R_{\frac{\pi}{2}} \circ R_{-\frac{\pi}{2}} = I$$

:

Grup Rotasi:
$$\left\{R_{\frac{\pi}{2}}, R_{-\frac{\pi}{2}}, R_{\pi}, I\right\}$$

Dunia nyata

Dunia Matematis

Menggali Matematika

Matematika: Abstraksi + Deduksi

Menggali Matematika

Kita coba telusuri yuk!

 $\Phi = \frac{1 + \sqrt{5}}{2} \simeq 1,618033988749894848204586834365$

Menghayati keutuhan matematika

Paling dasar, sekelompok hal di dunia ini terkadang butuh dienumerasi

Jadilah bilangan bulat

Bilangan Bulat

 $\Phi = \frac{1 + \sqrt{5}}{2} \simeq 1,618033988749894848204586834365$

Kelompok-kelompok hal ini terkadang bergabung dan terpisah

Jadilah operasi penjumlahan, pengurangan, perkalian, dan pembagian

Bilangan Bulat

Aritmatika

Tidak semua enumerasi bisa terbagi. Di sisi lain, beberapa hal kontinu juga perlu diukur

Jadilah bilangan rasional (dan riil)

Bilangan Riil

Aritmatika

Beberapa perhitungan melibatkan nilai-nilai yang belum diketahui, sehingga dibuat aturan dasar penggunaan variabel

Jadilah aljabar

Beberapa perhitungan aljabar memiliki banyak informasi yang saling berkaitan

Jadilah system persamaan linear

Sementara itu, manusia butuh memahami bentukbentuk untuk bisa mencipta dan membangun

Jadilah konsep geometri dasar

Aritmatika

Sistem Persamaan Linear Geometri Euklid

Manusia mulai berusaha memanipulasi gerak

Jadilah geometri kartesius dan konsep vektor

Sifat-sifat vektor diformalisasi untuk memudahkan perluasan aplikasi

Jadilah konsep ruang vektor

Konsep ruang vektor ternyata dapat diperluas untuk menyelesaikan SPL

Jadilah aljabar linear

Dunia ini selalu bergerak dan berubah, maka pemahaman akan konsep kontinu

Jadilah konsep limit

Konsep mekanika disempurnakan seiring fisika berkembang

Dan dengan itu juga berkembang konsep turunan

Di tempat lain, beberapa bentuk geometri tidak berbentuk sehingga sukar dihitung luas/volumenya

Jadilah metode-metode integrasi numerik

Ternyata, salah satu integrasi numerik, yakni jumlah Riemann, terkait dengan konsep anti-turunan

Jadilah kalkulus

Sementara itu, kembali ke...

Bilangan Bulat

Beberapa orang cukup tertarik dengan bilangan bulat, dan menemukan banyak sifat khusus

Jadilah teori bilangan

Bilangan Bulat

Teori Bilangan

Teori bilangan berkembang dan menyusun struktur-struktur baru.

Jadilah konsep lapangan (hingga)

Sementara ternyata geometri euklid sendiri punya banyak sifat transformasi yang dapat diperumum

Jadilah teori grup

Teori grup dan konsep lapangan diperluas dan dikaitkan

Jadilah aljabar modern (struktur aljabar)

Konsep geometri diperluas lagi menjadi konsep ruang yang lebih umum, dimana hanya melihat titik-titik dalam himpunan

Jadilah topologi

Di bilangan riil sendiri, konsep fungsi diperluas dan juga dengan itu perangkat kalkulusnya

Jadilah teori ukuran dan integral Lebesgue

Teori ukuran digunakan sebagai basis untuk teori peluang

Jadilah statistik

Fyuh, Let's Summarize

Ups, ada yang terlewat

 $\Phi_{=\frac{1+\sqrt{5}}{2}} \simeq 1,618033988749894848204586834365$

Cukup?

Coba kita zoom in sedikit

 $\Phi = \frac{1 + \sqrt{5}}{2} \simeq 1,618033988749894848204586834365$

Group-like structures

	Totality ^α	Associativity	Identity	Invertibility	Commutativity
Semigroupoid	Unneeded	Required	Unneeded	Unneeded	Unneeded
Small Category	Unneeded	Required	Required	Unneeded	Unneeded
Groupoid	Unneeded	Required	Required	Required	Unneeded
Magma	Required	Unneeded	Unneeded	Unneeded	Unneeded
Quasigroup	Required	Unneeded	Unneeded	Required	Unneeded
Unital Magma	Required	Unneeded	Required	Unneeded	Unneeded
Loop	Required	Unneeded	Required	Required	Unneeded
Semigroup	Required	Required	Unneeded	Unneeded	Unneeded
Inverse Semigroup	Required	Required	Unneeded	Required	Unneeded
Monoid	Required	Required	Required	Unneeded	Unneeded
Commutative monoid	Required	Required	Required	Unneeded	Required
Group	Required	Required	Required	Required	Unneeded
Abelian group	Required	Required	Required	Required	Required

[^]α Closure, which is used in many sources, is an equivalent axiom to totality, though defined differently.

Proses abstraksi ini dapat dilakukan terus, karena pada dasarnya pohon itu bentuknya seperti ini

Lah, yang terapan bagaimana?

1. Geometri + Kalkulus = Geometri Diferensial Desain kurvatur, fisika relativitas, pemodelan membrane, analisis permukaan (computer vision)

$$z = \frac{x^2}{a^2} - \frac{y^2}{b^2}, \quad \frac{x^2}{a^2} + \frac{y^2}{b^2} < 1$$

2. Kalkulus + Aljabar Linear = Sistem Dinamik Analisis perubahan system, dinamika populasi, biomatematika, epidemologi, mekanika

3. Kalkulus + Aljabar Linear = Optimisasi Penjadwalan, rekayasa kontrol, decision-making, machine learning, analisis efisisensi

4. Teori Bilangan + Struktur Aljabar = Kriptografi, Teori Koding

 $\Phi = \frac{1+\sqrt{5}}{2} \simeq 1,618033988749894848204586834365$

5. Statistika + Aljabar Linier = Proses Stokastik Teori Resiko, aktuaria, teori antrian, gerak acak, reinforcement learning

6. Statistika + Kalkulus + MatDiskrit = Analisis Numerik Regresi, Interpolasi, Persamaan Beda, Integrasi numerik

7. Graf + Topologi + Statistik = Teori Jaringan Social Network Analysis, Computer Network, dll

Dan.. Masih banyak lagi

Matematika terapan adalah penggunaan toolbox yang sudah tersedia

Teori vs Terapan?

Dunia nyata

Dunia Matematis

Matematika Murni

Apa yang bisa dipakai matematikawan terapan, adalah akumulasi apa yang dikembangkan di dunia murni

Namun juga, sebagian teknik dan metode di matematika terapan justru berkembang di ilmu lain (terutama fisika)

Bagaimana cara memilihnya?

1. Memahami peta utuh

Gagal melihat keseluruhan, akan gagal menentukan arah perjalanan, atau terasingkan di tengah kerumitan

2. Memahami sense dari setiap perkembangan

Bukan bertanya untuk apa, tapi kenapa ada yang mau mengembangkan itu

3. Haus Mencari Tahu

Baca bukan karena ada mata kuliahnya atau karena mau tugas akhir / tesis

4. Berangkat dari Kesenangan

Matematika berkembang selayaknya dua hal, yakni berkembangnya kedokteran dan berkembangnya industri game. Yang pertama, karena dibutuhkan, yang kedua, karena itu menyenangkan.

Di balik karya Matematika

Haruskah dengan cara seperti itu?

Dunia Akademik

Selama matematikawan sibuk dengan dunianya sendiri, akan selalu dibutuhkan puluhan tahun hingga ilmu itu sampai ke masyarakat

Sedangkan manfaat ilmu matematika di masyarakat bukan hanya dari produknya, tapi dari kemampuan berpikirnya

It is clear that the chief end of mathematical study must be to make the students think.

— John Wesley Young

"The intention of mathematics teaching is to promote the learning of mathematics"