DB-HW12

16.5

Consider the relations r_1 (A,B,C), r_2 (C,D,E), and r_3 (E,F), with primary keys A, C, and E, respectively. Assume that r_1 has 1000 tuples, r_2 has 1500 tuples, and r_3 has 750 tuples. Estimate the size of $r_1 \bowtie r_2 \bowtie r_3$, and give an efficient strategy for computing the join.

Answer:

Size Estimation:

As the Natural Join operation is associative, we could estimate the size based on strategy $((r_1 \bowtie r_2) \bowtie r_3)$.

For C is the key of r_2 , the result of $r_1 \bowtie r_2$ could at most include 1000 tuples.

Similarly, as E is the key of r_3 , the result of $((r_1 \bowtie r_2) \bowtie r_3)$ could at most include 1000 tuples.

Thus, the size of $r_1 \bowtie r_2 \bowtie r_3$ would have no more than 1000 tuples.

Strategy:

- 1. Create index_1 on attribute 'C' for relation r_2 and index_2 on attribute 'E' for relation r_3
- 2. For each tuple in relation r_1 :
 - Use index_1 to find the tuple in r₂ which matches the value of attribute 'C' o f relation r₁.
 - If found, index_2 to find the tuple in r₃ which matches the value of attribute 'E' of relation r₁.

16.6

Consider the relation r_1 (A,B,C), r_2 (C,D,E), and r_3 (E,F) of Practice Exercise 16.5. Assume that there are no primary keys, except the entire schema. Let V(C, r_1), V(C, r_2) be 1100, V(E, r_2) be 50, and V(E, r_3) be 100. Assume that r_1 has 1000 tuples, r_2 has 1500 tuples, and r_3 has 750 tuples. Estimate the size of $r_1 \bowtie r_2 \bowtie r_3$ and give an efficient strategy for computing the join.

Answer:

Size Estimation:

For $r_1\bowtie r_2$, it would have $\frac{n_{r1}*n_{r2}}{V(C,r_2)}=\frac{1000*1500}{1100}=\frac{15000}{11}$ tuples.

Rename the intermediate as $\mathbf{r_{l}}'$, then $n_{r1'}=\frac{15000}{11}$.

Similarly, for
$$r_1'\bowtie r_3$$
, it would have $\frac{n_{r_1l}*n_{r_3}}{V(C,r_3)}=\frac{\frac{15000}{11}*750}{100}=10227$ tuples.

Strategy:

As $r_2 \bowtie r_3$ would have $\frac{n_{r_2*n_{r_3}}}{V(C,r_3)} = \frac{1500*750}{50} = 22500$ tuples which is much larger than the size of $r_1 \bowtie r_2$, thus we should do $r_1 \bowtie r_2$ first, and then make r_3 joined to the intermediate.

16.16

Suppose that a B⁺-tree index on (*dept-name*, *building*) is available on relation *department*. What would be the best wat yo handle the following selection?

$$\sigma_{(bulding < 'Watson') \ \land \ (budget < 55000) \ \land \ (dept_name = 'Music')} \big(department \big)$$

Answer:

As we have index on attributes dept_name and building, we can do the query like this:

- 1. Use the index on (*dept-name*, *building*) to locate the **first** tuple meeting the condition "building = 'Watson' AND dept_name = 'Music'".
- 2. Follow the pointers, retrieve all the successive tuples whose value of attribute 'building' is less than 'Watson'.
- 3. For every tuple retrieved in Step 2, check whether it the satisfies the condition "budget < 55000".

16.20

Explain how to use a histogram to estimate the size of a selection of the form $\sigma_{A \leqslant v}(r)$?

Answer:

Suppose the histogram H store the values in range $r_1, r_2, r_3, \ldots, r_n$,

and
$$r_i = [i_low, \ i_high], \ i \in \ [1,n], \ i \ \in \ \mathbb{Z}^+.$$

• Case 1 - i high < v

Add the number of tuples = $H(r_i)$ to the estimated total.

 $\bullet \quad \text{Case 2-----} i_low \leq v < i_high$

Assume that values in r; are uniformly distributed:

Add
$$rac{v-r_{i_low}}{r_{i_high}-r_{i_low}}*H(r_i)$$
 to the estimated total.