Tartalomjegyzék

Γé	itel 1: Feladat definíciója (példával)	1
	Programozási feladat	1
	Specifikációs feltételek	1
	Átmenetfeltételek	1
	Peremfeltételek	2
	Példa	2
	Feladat finomítása (szigorítása, általánosítása)	2
	Feladatok ekvivalenciája	2

Tétel 1: Feladat definíciója (példával)

Manapság sokszor nem elég gyors, nem elég hatékony csupán szekvenciális megoldásokat alkalmaznunk: szükség van párhuzamos, elosztott programozásra. A korábban tanult elő- és utófeltételek az ilyen rendszerek (például operációs rendszer) specifikálására azonban már nem elégségesek, ezért általánosítjuk a feladat fogalmát.

Programozási feladat

A egy állapottér, B egy paramétertér. Mindkettő típusértékhalmaz(ok) direktszorzata.

Definíció:
$$F \subseteq B \times (\times_{i \in [1...3]} \mathcal{P}(\mathcal{P}(A) \times \mathcal{P}(A)) \times_{i \in [1...4]} \mathcal{P}(\mathcal{P}(A)))$$

A feladat paraméterekhez rendel specifikációs feltételeket. A feladatot megoldják azok a programok, amelyek minden $b \in B$ paraméter esetén megfelelnek ezeknek a feltételeknek.

A paramétertér viselkedése megegyezik a klasszikus modellel: célja, hogy a potenciálisan végtelen sok kezdőállapotból induló programok helyett csak egy bizonyos (a paraméterek által leszűkített) halmazon vizsgálódjunk.

Például az a+b=c értéket kiszámoló feladat esetén a és b értéke paraméterek által lenne meghatározva, de c értéke nem.

A feladat reláció nem egy függvény: egy $b \in B$ értékhez több reláció-hetes is tartozhat.

Specifikációs feltételek

Legyen $h \in F(b)$. Ha F(b) egyelemű, akkor h helyett b-nek jelöljük.

Átmenetfeltételek

- $P \triangleright_h Q$, "P, feltéve, hogy nem Q", unless
 - Ha $P \wedge \neg Q$ teljesül, akkor Q érintése nélkül tilos közvetlenül a $\neg P \wedge \neg Q$ állapotba kerülni
- $P \mapsto_h Q$, "P biztosítja Q", ensures
 - $P \triangleright_h Q$ azzal kiegészítve, hogy egy lépésben kell, hogy legyen lehetősége a programnak $P \land \neg Q$ -ból Q-ba jutnia
 - Tehát előbb-utóbb ennek az átmenetnek be kell következnie, méghozzá egyetlen lépésben lehetségesnek kell lennie
- $P \hookrightarrow_h Q$, "P-ből elkerülhetetlen Q", leads-to
 - Előbb-utóbb (1, vagy több lépésben) $P \wedge \neg Q$ állapotból a program Q állapotba fog kerülni
- $P \in inv_h$, "P invariáns"
 - $-P \in inv_h \equiv inv_h P$
 - P a kezdeti értékadást követően teljesül és P igazsághalmazából minden állapotátmenet a P igazsághalmazába visz át (tehát a programnak nem szabad elhagyja P-t)

• $P \in TERM_h$, "Q-ból a program biztosan fixpontba jut" $-P \in TERM_h \equiv P \hookrightarrow FP_h$

Peremfeltételek

- $R \in FP_h$, "R teljesül fixpontban"
 - $-R \in FP_h \equiv FP_h \Rightarrow R$
 - Szükséges feltételek arra vonatkozóan, hogy mi teljesüljön fixpontban
- $Q \in INIT_h$, "Q igaz kezdetben"
 - Elégséges, ha egy program csak az itt definiált állapotokból indulva működik helyesen

Példa

Elemenkénti feldolgozás feladata.

$$A = \stackrel{X}{x} \times \stackrel{Y}{y}$$
 és $B = \stackrel{X}{x'}$

- Q = (x = x')
- $Q \in INIT_h$
- $Q \hookrightarrow FP_h$ (vagy $Igaz \hookrightarrow FP_h$)
- $FP_h \Rightarrow (y = f(x'))$

Feladat finomítása (szigorítása, általánosítása)

 F_1 finomítása F_2 -nek, ha minden F_1 -et megoldó S program megoldja F_2 -t is.

Másképp: $(\forall S: S \text{ megold } F_1 \Rightarrow S \text{ megold } F_2) \Longleftrightarrow F_1$ finomítása F_2 -nek

Feladatok ekvivalenciája

Két feladat ekvivalens, ha egymásnak finomításai.