目录

第 1 章 SPCE061A 单片机简介	<u>1</u>
1.1 凌阳 16 位单片机	<u>1</u>
1.2 SPCE061A 简介	<u>1</u>
1.2.1 总述	<u>1</u>
1.2.2 性能	<u>1</u>
1.2.3 结构概览	<u>2</u>
1.2.4 芯片的引脚说明	<u>3</u>
1.2.5 SPCE061A 开发方法	<u>4</u>
1.2.6 应用领域	<u>4</u>
第2章 C语言的基本知识	<u>5</u>
2.1 数据与运算	<u>5</u>
2.1.1 数据与数据类型	<u>5</u>
2.1.2 常量、变量、运算符与表达式	<u>5</u>
2.2 流程控制语句	<u>7</u>
2.2.1 程序的基本结构及控制语句	<u>7</u>
2.3 构造数据类型	<u>10</u>
2.3.1 数组	<u>11</u>
2.3.2 指针	<u>12</u>
2.3.3 结构体和共用体	<u>14</u>
2.4 函数	<u>15</u>
2.5 unSP 的 C 语言嵌入式汇编	<u>20</u>
第3章 I/O端口的C语言程序设计	<u>24</u>
3.1 IO 端口的结构	<u>24</u>
3.2 IO 端口设置的寄存器	<u>24</u>
3.2.1 A 口相应的寄存器	<u>25</u>
3.2.2 并行 I/O 口的组合控制	<u>25</u>
3.2.3 B 口相应的寄存器	<u>26</u>
3.2.4 B 口的特殊功能	<u>26</u>
3.3 IO 端口设置的 C 库函数	<u>27</u>
3.4 IO 端口的应用实例	
第4章 系统设置的 C 语言程序设计	<u>33</u>
4.1 硬件结构	<u>33</u>
4.1.1 系统时钟	
4.1.2 锁相环 PLL (Phase Lock Loop)振荡器	
4.1.3 利用 B 口的特殊功能产生振荡信号	<u>34</u>
4.1.4 低电压监测/低电压复位 (LVD/LVR)	<u>34</u>
4.1.5 看门狗计数器(WatchDog)	<u>35</u>
4.2 系统设置的寄存器	<u>35</u>
4.3 系统设置的 C 函数	<u>38</u>
4.4 系统设置的应用实例	39

第5章	定时/计数器的 C 语言程序设计	<u>42</u>
5.1	定时/计数器的结构	<u>42</u>
	5.1.1 时基信号发生器	<u>42</u>
	5.1.2 定时器/计数器	<u>42</u>
5.2	定时/计数器控制的寄存器	<u>44</u>
5.3	定时/计数器设置的 C 函数	<u>47</u>
5.4	定时/计数器的应用实例	<u>49</u>
	5.4.1 时基频率的选择	<u>49</u>
	5.4.2 用 TimerA 产生方波	<u>50</u>
第6章	中断系统的 C 语言程序设计	<u>52</u>
6.1	中断系统	<u>52</u>
	6.1.1 中断源	
	6.1.2 中断优先级和中断入口地址	
6.2	中断控制	
	6.2.1 中断控制的寄存器	<u>54</u>
	6.2.2 中断响应过程	
	中断控制的相关 C 函数	
6.4	中断系统的应用实例	
	6.4.1 单中断源的应用	<u>60</u>
	6.4.2 多中断源应用	
	AD 转换和 DA 转换的 C 语言程序设计	
7.1	ADC 和 DAC 的硬件特性	
	7.1.1 ADC 输入接口的结构	
	7.1.2 ADC 的直流电气特性	
	7.1.3 DAC 音频输出的结构	
7.2	ADC 和 DAC 设置的寄存器	
	7.2.1 MIC 输入的存储单元	
	7.2.2 ADC 的控制端口	
	7.2.3 ADC 多通道控制单元	·
	7.2.4 模拟电压输入的存储单元	
	7.2.5 DAC 数据存放的单元	
	7.2.6 DAC 音频输出方式的控制单元	
	ADC 和 DAC 设置的 C 函数	
7.4	ADC 和 DAC 的应用实例	
	7.4.1 AD 转换的牛刀小试	
	7.4.2 锯齿波的产生	
然。文	7.4.3 声音的录入和播放	
第8章	串行接口 SIO 和 UART 的 C 语言程序设计	
	串行口的硬件特性	
	串行口控制的寄存器	
	串行口设置的 C 函数	
	串行口应用实例	
	凌阳音频的 C 语言程序设计	
9.1	压缩分类和压缩算法	

	9.1.1 凌阳音频压缩算法的编码标准	<u>93</u>
	9.1.2 压缩分类	
	9.1.3 凌阳常用的音频形式和压缩算法	<u>93</u>
9.2	常用的应用程序接口 API 的功能介绍及应用	<u>94</u>
	9.2.1 概述	<u>94</u>
	9.2.2 SACM_A2000	<u>95</u>
	9.2.3 SACM_S480	<u>101</u>
	9.2.4 SACM_S240	<u>104</u>
	9.2.5 SACM_MS01	<u>109</u>
	9.2.6 SACM_DVR	<u>115</u>
9.3	语音辨识	<u>118</u>
9.4	本章 API 函数中所占用的寄存器	<u>127</u>
	综合应用实例	
10.1	1 开发背景	<u>129</u>
10.2	2 硬件设计	<u>129</u>
	10.2.2 电源部分	<u>130</u>
	10.2.3 音频录入部分	<u>130</u>
	10.2.4 键盘部分	<u>131</u>
	10.2.5 外扩存储器部分	<u>132</u>
	10.2.6 通信接口部分	<u>133</u>
	10.2.7 音频输出部分	<u>134</u>
10.3	3 软件设计	<u>134</u>
	10.3.1 主程序	<u>134</u>
	10.3.2 硬件系统初始化程序	<u>142</u>
	10.3.3 内部 FLASH 的读写程序	<u>143</u>
	10.3.4 串行 FLASH 的读写程序	<u>146</u>
	10.3.5 UART 通讯程序	<u>151</u>
	10.3.6 键盘扫描程序	<u>152</u>
10.4	4 小结	<u>152</u>