

Contents

Lecture 9.1

- Introduction
- II. Predictive Techniques

Lecture 9.2

- Image Coding in Visual Telephony
- Coding of Two-Tone Images
- III. References

Information Theory

Image Data Compression

- Introduction:
- Image data Compression is concerned with minimizing the number of bits required to represent an image.
- Applications of data compression are primarily in "Transmission" and "Storage" of information.
- Application of data compression is also in the development of "fast algorithms" where the number of operations required to implement an algorithm is reduced by working with the compressed data.
 - --- Compressed Domain Signal Processing

Information Theory

3

Δ

- Information lossless Predictive coding: DM, DPCM
- B. Entropy Coding:
 - Entropy reduction
 - Inevitably results in some distortion Transform coding
- For digitized data, "Distortionless Compression" techniques are possible.

Information Theory

Some methods for Entropy reduction: Subsampling : reduce the sampling rate Coarse Quantization : reduce the number of quantization levels ■ Frame Repetition / Interlacing : reduce the refresh rate (number of frames per second) TV signals Information Theory

Basic Principle:

: to remove mutual redundancy between successive pixels and encode only the new information.

DPCM:

A Sampled sequence u(m), coded up to m=n-1. Let $\widetilde{u}(n-1), \widetilde{u}(n-2), \cdots$ be the value of the reproduced (decoded) sequence.

Information Theory

7

At m=n, when u(n) arrives, a quantity $\overline{\widetilde{u}}(n)$, an estimate of u(n), is predicted from the previously decoded samples $\widetilde{u}(n-1),\widetilde{u}(n-2),\cdots$, i.e., $\overline{\widetilde{U}}(n)=\psi(\widetilde{u}(n-1),\widetilde{u}(n-2),\cdots)$; $\psi(\cdot)$:"prediction rule"

prediction error : $e(n) = u(n) - \overline{\widetilde{u}}(n)$

If $\widetilde{e}(n)$ is the quantized value of e(n), then the reproduced value of u(n) is :

$$\widetilde{u}(n) = \overline{\widetilde{u}}(n) + \widetilde{e}(n)$$

Information Theory

Q

Note :

$$u(n) = \overline{\widetilde{u}}(n) + e(n)$$

$$u(n) - \widetilde{u}(n) \stackrel{\triangle}{=} \delta u(n)$$

$$= (\overline{\widetilde{u}}(n) + e(n)) - (\overline{\widetilde{u}}(n) + \widetilde{e}(n))$$

$$= e(n) - \widetilde{e}(n)$$

$$= q(n) : \text{ the Quantization error in } e(n)$$

- Remarks:
 - 1. The pointwise coding error in the input sequence is exactly equal to q(n), the quantization error in e(n)
 - 2. With a reasonable predictor the mean square value of the differential signal e(n) is much smaller than that of u(n)

Information Theory

Feedback Versus Feedforward Prediction An important aspect of DPCM is that the prediction is based on the output — the quantized samples — rather than the input — the unquantized samples. This results in the predictor being in the "feedback loop" around the quantizer, so that the quantization error at a given step is fed back to the quantizer input at the next step. This has a "stabling effect" that prevents DC drift and accumulation of error in the reconstructed signal $\widetilde{u}(n)$.

If the prediction rule is based on the past input, the signal reconstruction error would depend on all the past and present quantization errors in the feedforward prediction-error sequence $\varepsilon(n)$. Generally, the MSE of feedforward reconstruction will be greater than that in DPCM.

Feedforward coding

Information Theory

13

Example

The sequence 100, 102, 120, 120, 120, 118, 116, is to be predictively coded using the prediction rule:

$$\widetilde{u}(n) = \widetilde{u}(n-1)$$
 for DPCM

 $\overline{u}(n) = u(n-1)$ for the feedforward predictive coder. Assume a 2-bit quantizer, as shown below, is used,

Except the first sample is quantized separately by a 7-bit uniform quantizer, given $\widetilde{u}(0) = u(0) = 100$.

Information Theory

Adaptive Delta Modulation

$$\begin{split} E_{K+1} &= \mathrm{sgn} \big[S_{K+1} - X_K \big] \\ \Delta_{K+1} &= \begin{cases} \left| \Delta_K \middle| \big[E_{K+1} - \frac{1}{2} E_K \big] & \text{if } \left| \Delta_K \middle| \ge \Delta_{\min} \right. \\ \Delta_{\min} E_{K+1} & \text{if } \left| \Delta_K \middle| < \Delta_{\min} \right. \end{cases} \end{split}$$

$$X_{K+1} = X_K + \Delta_{K+1}$$

This adaptive approach simultaneously minimizes the effects of both slope overload and granular noise.

Information Theory

DPCM Design

- There are two components to design in a DPCM system :
 - i. The predictor
 - ii. The quantizer

Ideally, the predictor and quantizer would be optimized together using a linear or Nonlinear technique. In practice, a suboptimum design approach is adopted:

- i. Linear predictor
- ii. Zero-memory quantizer

Remark: For this approach, the number of quantizing levels, M, must be relatively large (M≥8) to achieve good performance.

Information Theory

19

Design of linear predictor

$$\begin{split} \hat{S}_0 &= a_1 S_1 + a_2 S_2 + \dots + a_n S_n \\ e_0 &= S_0 - \hat{S}_0 \\ \frac{\partial E \Big[\Big(S_0 - \hat{S}_0 \Big)^2 \Big]}{\partial a_i} &= \frac{\partial E \Big[\Big(S_0 - \Big(a_1 S_1 + a_2 S_2 + \dots + a_n S_n \Big) \Big)^2 \Big]}{\partial a_i} \\ &= -2 E \Big[\Big(S_0 - \Big(a_1 S_1 + a_2 S_2 + \dots + a_n S_n \Big) \Big) S_i \Big] \\ &= 0 \quad , \quad i = 1, 2, \dots n \\ &\Rightarrow E \Big[\Big(S_0 - \Big(a_1 S_1 + a_2 S_2 + \dots + a_n S_n \Big) \Big) S_i \Big] = 0 \\ &E \Big[\Big(S_0 - \hat{S}_0 \Big) S_i \Big] &= 0, \quad i = 1, 2, \dots n \\ &R_{ij} &= E \Big[S_i S_j \Big] \\ &E \Big[S_0 S_i \Big] &= E \Big[\hat{S}_0 S_i \Big] \\ &R_{0i} &= E \Big[a_1 S_1 S_i + a_2 S_2 S_i + \dots + a_n S_n S_i \Big] \\ &= a_1 R_{1i} + a_2 R_{2i} + \dots + a_n R_{ni} \\ &\Big[R_{0i} \Big] &= \Big[R_{1i}, R_{2i}, \dots, R_{ni} \Big] \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \Big] \\ &[a_i] &= \Big[R_{1i}, R_{2i}, \dots, R_{ni} \Big]^{-1} \Big[R_{0i} \Big] \end{split}$$

Information Theory

• When \hat{S}_0 comprises these optimized coefficients, ${\bf a_i}$, then the mean square error signal is :

$$\sigma_{e}^{2} = E\left[\left(S_{0} - \hat{S}_{0}\right)^{2}\right]$$

$$= E\left[\left(S_{0} - \hat{S}_{0}\right)S_{0}\right] - E\left[\left(S_{0} - \hat{S}_{0}\right)\hat{S}_{0}\right]$$
But $E\left[\left(S_{0} - \hat{S}_{0}\right)\hat{S}_{0}\right] = 0$ (orthogonal principle)
$$\sigma_{e}^{2} = E\left[\left(S_{0} - \hat{S}_{0}\right)S_{0}\right] = E\left[S_{0}^{2}\right] - E\left[\hat{S}_{0}S_{0}\right]$$

$$= R_{00} - \left(a_{1}R_{01} + a_{2}R_{02} + \dots + a_{n}R_{0n}\right)$$

 $\sigma_{\rm e}^2$: the variance of the difference signal R_{00} : the variance of the original signal

The variance of the error signal is less than the variance of the original signal.

Information Theory

21

- 1. The complexity of the predictor depends on "n".
- "n" depends on the covariance properties of the original signal.

Information Theory

__

Compressor
C(X)

Non-uniform Quantizer

Non-uniform Quantizer

Expander

Solve the second of the sec

$$D = \frac{1}{12M^2} \int_{L_1}^{L_2} \frac{p(x)}{[\lambda(x)]^2} \cdot dx$$

$$\lambda(x) = \frac{C'(x)}{(L_2 - L_1)}$$

 $L_2 - L_1$ is the quantizer range

C'(x) is the slope of the nonlinear function

Information Theory

31

Lloyd-Max Quantizer: the most popular one.

1. Each interval limit should be midway between the neighboring levels, $x_i = \frac{(y_i + y_{i+1})}{2}$

$$x_i = \frac{(y_i + y_{i+1})}{2}$$

2. Each level should be at the centroid of the input prob. Density function over the interval for that level, that is

$$\int_{x_{i-1}}^{x_i} (x - y_i) p(x) dx = 0$$

Logarithmic Quantizer:

 $\frac{dC(x)}{dx} = (KX)^{-1} \quad y(x) = \frac{V \log(1 + \frac{1 + \mu x}{V})}{\log(1 + \mu)}$

A-law : US. Canada, Japan

(log PCM)

: Europe Information Theory

$$p(e) = \frac{1}{\sqrt{2}\sigma_e} \exp\left(-\frac{\sqrt{2}}{\sigma_e}|e|\right)$$

Input pdf of the DPCM Quantizer then the variance of the quantization error is:

$$\sigma_g^2 = \frac{2}{3M^2} \left[\int_0^V \frac{1}{(\sqrt{2}\sigma_e)^{1/3}} \exp\left(\frac{-\sqrt{2}}{3\sigma_e} |e|\right) de \right]^3$$

$$\sigma_g^2 \cong \frac{9\sigma_e^2}{2M^2}$$
 as $V \to \infty$

 \Rightarrow the SNR for the non-uniform quantizer in DPCM becomes :

$$SNR = 10 \log_{10} \left(\frac{\sigma^2}{\sigma_g^2} \right)$$
$$\approx 10 \log_{10} \left(\frac{2M^2 \sigma^2}{9\sigma_z^2} \right)$$

$$SNR \cong -6.5 + 6n + 10 \log_{10} \frac{\sigma^2}{\sigma^2}$$

For the same pdf, PCM gives:

$$SNR \cong -6.5 + 6n$$

 \Rightarrow DPCM improves the SNR by

$$10\log_{10}\frac{\sigma^2}{\sigma_e^2}$$

Information Theory

33

ADPCM:

- Adaptive prediction
- ii. Adaptive Quantization

DPCM for Image Coding:

Each scan line of the image is coded independently by the DPCM techniques. For every slow time-varying image (ρ =0.95) and a Laplacian-pdf Quantizer,

8 to 10 dB SNR improvement over PCM can be expected : that is

The SNR of 6-bit PCM can be achieved by 4-bit line-by-line DPCM for ρ =0.97.

Two-Dimensional DPCM: two-D predictor

$$\overline{u}(m,n) = a, u(m-1,n) + a_2 u(m,n-1)$$

 $a_3u(m-1,n-1)+a_4u(m-1,n+1)$

Information Theory

