Data Collection. o Collect the dataset or Create the dataset. Data Preprocessing. o Import the Libraries. o Importing the dataset. o Checking for Null Values. o Data Visualization. o Outlier Detection o Splitting Dependent and Independent variables o- Encoding o Feature Scaling. o Splitting Data into Train and Test. • Model Building o Import the model building Libraries o Initializing the model o Training and testing the model o Evaluation of Model o Save the Model • Application Building o Create an HTML file o Build a Python Code

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

df = pd.read_csv("WA_Fn-UseC_-HR-Employee-Attrition.csv")

df.head()
```

	Age	Attrition	BusinessTravel	DailyRate	Department	DistanceFromHome	Education	EducationField	EmployeeCount	Emplo
0	41	Yes	Travel_Rarely	1102	Sales	1	2	Life Sciences	1	
1	49	No	Travel_Frequently	279	Research & Development	8	1	Life Sciences	1	
2	37	Yes	Travel_Rarely	1373	Research & Development	2	2	Other	1	
3	33	No	Travel_Frequently	1392	Research & Development	3	4	Life Sciences	1	
4	27	No	Travel_Rarely	591	Research & Development	2	1	Medical	1	

5 rows × 35 columns

df.shape

(1470, 35)

df.StockOptionLevel.value_counts()

- 0 631 1 596
- 2 158
- 3 85

Name: StockOptionLevel, dtype: int64

df.info()

<i>'''</i>		Non-Null Count	рсуре
0	Age	1470 non-null	int64
1	Attrition	1470 non-null	object
2	BusinessTravel	1470 non-null	object
3	DailyRate	1470 non-null	int64
4	Department	1470 non-null	object
5	DistanceFromHome	1470 non-null	int64
6	Education	1470 non-null	int64
7	EducationField	1470 non-null	object
8	EmployeeCount	1470 non-null	int64
9	EmployeeNumber	1470 non-null	int64
10	EnvironmentSatisfaction	1470 non-null	int64
11	Gender	1470 non-null	object
12	HourlyRate	1470 non-null	int64
13	JobInvolvement	1470 non-null	int64
14	JobLevel	1470 non-null	int64
15	JobRole	1470 non-null	object
16	JobSatisfaction	1470 non-null	int64
17	MaritalStatus	1470 non-null	object
18	MonthlyIncome	1470 non-null	int64
19	MonthlyRate	1470 non-null	int64
20	NumCompaniesWorked	1470 non-null	int64
21	Over18	1470 non-null	object
22	OverTime	1470 non-null	object
23	PercentSalaryHike	1470 non-null	int64
24	PerformanceRating	1470 non-null	int64
25	RelationshipSatisfaction	1470 non-null	int64
26	StandardHours	1470 non-null	int64
27	StockOptionLevel	1470 non-null	int64
28	TotalWorkingYears	1470 non-null	int64

29	TrainingTimesLastYear	1470	non-null	int64
30	WorkLifeBalance	1470	non-null	int64
31	YearsAtCompany	1470	non-null	int64
32	YearsInCurrentRole	1470	non-null	int64
33	YearsSinceLastPromotion	1470	non-null	int64
34	YearsWithCurrManager	1470	non-null	int64

dtypes: int64(26), object(9)
memory usage: 402.1+ KB

df.describe()

	Age	DailyRate	DistanceFromHome	Education	EmployeeCount	EmployeeNumber	EnvironmentSatisfaction	Hourly
count	1470.000000	1470.000000	1470.000000	1470.000000	1470.0	1470.000000	1470.000000	1470.00
mean	36.923810	802.485714	9.192517	2.912925	1.0	1024.865306	2.721769	65.89
std	9.135373	403.509100	8.106864	1.024165	0.0	602.024335	1.093082	20.32
min	18.000000	102.000000	1.000000	1.000000	1.0	1.000000	1.000000	30.00
25%	30.000000	465.000000	2.000000	2.000000	1.0	491.250000	2.000000	48.00
50%	36.000000	802.000000	7.000000	3.000000	1.0	1020.500000	3.000000	66.00
75%	43.000000	1157.000000	14.000000	4.000000	1.0	1555.750000	4.000000	83.75
max	60.000000	1499.000000	29.000000	5.000000	1.0	2068.000000	4.000000	100.00

df.isnull().any()

8 rows × 26 columns

False Age Attrition False BusinessTravel False DailyRate False Department False ${\tt DistanceFromHome}$ False Education False EducationField False EmployeeCount False EmployeeNumber False EnvironmentSatisfaction False Gender False HourlyRate False JobInvolvement False JobLevel False JobRole False JobSatisfaction False MaritalStatus False MonthlyIncome False MonthlyRate False NumCompaniesWorked False Over18 False OverTime False PercentSalaryHike False PerformanceRating False RelationshipSatisfaction False StandardHours False StockOptionLevel False TotalWorkingYears False TrainingTimesLastYear False WorkLifeBalance False YearsAtCompany False YearsInCurrentRole False YearsSinceLastPromotion False YearsWithCurrManager False dtype: bool

df.isnull().sum()

Age Attrition BusinessTravel 0 DailyRate 0 0 Department ${\tt DistanceFromHome}$ 0 Education 0 EducationField 0 EmployeeCount 0 EmployeeNumber ${\tt EnvironmentSatisfaction}$ Gender 0 HourlyRate 0 JobInvolvement JobLevel

JobRole 0 JobSatisfaction 0 MaritalStatus 0 MonthlyIncome MonthlyRate NumCompaniesWorked Over18 0 OverTime 0 PercentSalaryHike 0 PerformanceRating 0 RelationshipSatisfaction 0 StandardHours 0 ${\tt StockOptionLevel}$ 0 TotalWorkingYears TrainingTimesLastYear WorkLifeBalance 0 YearsAtCompany 0 YearsInCurrentRole 0 YearsSinceLastPromotion 0 YearsWithCurrManager dtype: int64

```
sns.distplot(df["Age"])
```

<ipython-input-12-cf0334540b62>:1: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see $\frac{\text{https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751}}{\text{https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751}}$

sns.distplot(df["Age"])
<Axes: xlabel='Age', ylabel='Density'>

df.corr()

sns.

<ipython-input-13-2f6f6606aa2c>:1: FutureWarning: The default value of numeric_only in DataFrame.corr is deprecated. In
df.corr()

	Age	DailyRate	DistanceFromHome	Education	EmployeeCount	EmployeeNumber	EnvironmentSatisfac
Age	1.000000	0.010661	-0.001686	0.208034	NaN	-0.010145	0.0
DailyRate	0.010661	1.000000	-0.004985	-0.016806	NaN	-0.050990	0.0
DistanceFromHome	-0.001686	-0.004985	1.000000	0.021042	NaN	0.032916	-0.0
Education	0.208034	-0.016806	0.021042	1.000000	NaN	0.042070	-0.02
EmployeeCount	NaN	NaN	NaN	NaN	NaN	NaN	
EmployeeNumber	-0.010145	-0.050990	0.032916	0.042070	NaN	1.000000	0.0
EnvironmentSatisfaction	0.010146	0.018355	-0.016075	-0.027128	NaN	0.017621	1.00
HourlyRate	0.024287	0.023381	0.031131	0.016775	NaN	0.035179	-0.04
Joblnvolvement	0.029820	0.046135	0.008783	0.042438	NaN	-0.006888	-0.00
JobLevel	0.509604	0.002966	0.005303	0.101589	NaN	-0.018519	0.00
JobSatisfaction	-0.004892	0.030571	-0.003669	-0.011296	NaN	-0.046247	-0.00
MonthlyIncome	0.497855	0.007707	-0.017014	0.094961	NaN	-0.014829	-0.00
MonthlyRate	0.028051	-0.032182	0.027473	-0.026084	NaN	0.012648	0.00
NumCompaniesWorked	0.299635	0.038153	-0.029251	0.126317	NaN	-0.001251	0.0
PercentSalarvHike	0.003634	0.022704	0.040235	-0.011111	NaN	-0.012944	-0.00
.heatmap(df.corr() , ann	ot = True)					<u>s</u>

<ipython-input-14-19b7fba43d4c>:1: FutureWarning: The default value of numeric_only in DataFrame.corr is deprecated. In {
 sns.heatmap(df.corr() , annot = True)
<Axes: >

sns.boxplot(df.DailyRate)

sns.boxplot(df.Age)

df.head()

	Age	Attrition	BusinessTravel	DailyRate	Department	DistanceFromHome	Education	EducationField	EmployeeCount	Emplo
0	41	Yes	Travel_Rarely	1102	Sales	1	2	Life Sciences	1	
1	49	No	Travel_Frequently	279	Research & Development	8	1	Life Sciences	1	
2	37	Yes	Travel_Rarely	1373	Research & Development	2	2	Other	1	
3	33	No	Travel_Frequently	1392	Research & Development	3	4	Life Sciences	1	
4	27	No	Travel_Rarely	591	Research & Development	2	1	Medical	1	

5 rows × 35 columns

x = df.iloc[:,:4]
x.head()

	Age	Attrition	BusinessTravel	DailyRate	
0	41	Yes	Travel_Rarely	1102	īl.
1	49	No	Travel_Frequently	279	
2	37	Yes	Travel_Rarely	1373	
3	33	No	Travel_Frequently	1392	
4	27	No	Travel_Rarely	591	

y = df.StockOptionLevel
y.head()

0 0 1 1

2 0

3 0

Name: StockOptionLevel, dtype: int64

```
from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
x.Attrition = le.fit_transform(x.Attrition)
x.head()
```

	Age	Attrition	BusinessTravel	DailyRate	
0	41	1	Travel_Rarely	1102	ıl.
1	49	0	Travel_Frequently	279	
2	37	1	Travel_Rarely	1373	
3	33	0	Travel_Frequently	1392	
4	27	0	Travel_Rarely	591	

```
le = LabelEncoder()
x.BusinessTravel = le.fit_transform(x.BusinessTravel)
x.head()
```

	Age	Attrition	BusinessTravel	DailyRate	\blacksquare
0	41	1	2	1102	ılı
1	49	0	1	279	
2	37	1	2	1373	
3	33	0	1	1392	
4	27	0	2	591	

from sklearn.preprocessing import MinMaxScaler
ms = MinMaxScaler()
x_scaled = pd.DataFrame(ms.fit_transform(x) , columns = x.columns)
x_scaled

		Age	Attrition	BusinessTravel	DailyRate	
	0	0.547619	1.0	1.0	0.715820	ıl.
	1	0.738095	0.0	0.5	0.126700	
	2	0.452381	1.0	1.0	0.909807	
	3	0.357143	0.0	0.5	0.923407	
	4	0.214286	0.0	1.0	0.350036	
14	165	0.428571	0.0	0.5	0.559771	
14	166	0.500000	0.0	1.0	0.365784	
14	167	0.214286	0.0	1.0	0.037938	
14	168	0.738095	0.0	0.5	0.659270	
14	169	0.380952	0.0	1.0	0.376521	
	70	4 1				

1470 rows × 4 columns

```
from sklearn.model_selection import train_test_split
x_train , x_test , y_train , y_test = train_test_split(x_scaled , y , test_size = 0.2 , random_state = 0)
```

```
x_train.shape , x_test.shape , y_train.shape , y_test.shape
```

```
((1176, 4), (294, 4), (1176,), (294,))
```

x_train.head()

df

```
Age Attrition BusinessTravel DailyRate
Logistic regression
from sklearn.linear_model import LogisticRegression
model = LogisticRegression()
model.fit(x_train , y_train)
     ▼ LogisticRegression
     LogisticRegression()
pred = model.predict(x_test)
pred
     array([1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1,
            0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1,
            0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1,
            0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1,
            1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1,
            0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0,
            0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0,
            1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0,
            0,\ 0,\ 0,\ 1,\ 0,\ 1,\ 1,\ 0,\ 1,\ 0,\ 1,\ 0,\ 0,\ 0,\ 0,\ 0,\ 0,\ 0,\ 1,\ 0,\ 1,
            0,\ 0,\ 0,\ 0,\ 0,\ 1,\ 0,\ 0,\ 1,\ 0,\ 1,\ 1,\ 1,\ 1,\ 0,\ 0,\ 1,\ 1,\ 1,\ 1,\ 0,
            1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0,
            1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0,
            0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1,
            1, 0, 1, 1, 0, 0, 1, 1])
y_test
     442
     1091
             0
     981
             1
     785
     1332
             0
            . .
             2
     1439
     481
             1
     124
             0
     198
             0
     1229
     Name: StockOptionLevel, Length: 294, dtype: int64
```

```
Age Attrition BusinessTravel DailyRate Department DistanceFromHome Education EducationField EmployeeCount Em
            41
                              Travel_Rarely
                                                1102
                                                           Sales
                                                                                                  Life Sciences
                      Yes
model.predict(ms.transform([[0.357143,0.0,0.5,0.923407]]))
    /usr/local/lib/python3.10/dist-packages/sklearn/base.py:439: UserWarning: X does not have valid feature names, but MinMa
      warnings.warn(
    /usr/local/lib/python3.10/dist-packages/sklearn/base.py:439: UserWarning: X does not have valid feature names, but Logis
      warnings.warn(
    array([0])
                              mayor_marony
                                                Development
#Accuracy score
from sklearn.metrics import accuracy_score, confusion_matrix, classification_report, roc_auc_score , roc_curve
                                                884 _ 1163661011 &
                     No Travel Frequently
     1465 36
                                                                               23
                                                                                                      Medical
accuracy_score(y_test , pred)
    0.48299319727891155
                              ııavcı_naıcıy
                                                 Develonment
                                                                                                  THE OFFICES
confusion_matrix(y_test , pred)
    array([[72, 55, 0,
                         01,
           [56, 70, 0, 0],
           [12, 17, 0, 0],
           [ 7, 5, 0, 0]])
pd.crosstab(y test , pred)
                col_0 0 1 I
     StockOptionLevel
             n
                       72 55
                       56 70
             1
             2
                       12 17
             3
                        7 5
print(classification_report(y_test , pred))
                  precision recall f1-score support
               0
                        0.49
                                  0.57
                                            0.53
                                                       127
                                            0.51
                        0.48
                                  0.56
                                                       126
               2
                        0.00
                                  0.00
                                            0.00
                                                        29
                        0.00
                                  0.00
                                            0.00
                                                        12
                                                       294
                                            0.48
        accuracy
                                  0.28
       macro avg
                        0.24
                                            0.26
                                                       294
                                                       294
    weighted avg
                       0.42
                                  0.48
                                            0.45
     /usr/local/lib/python3.10/dist-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Precision and F
       _warn_prf(average, modifier, msg_start, len(result))
     /usr/local/lib/python3.10/dist-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Precision and F
       warn prf(average, modifier, msg start, len(result))
     /usr/local/lib/python3.10/dist-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Precision and F
      _warn_prf(average, modifier, msg_start, len(result))
probability = model.predict_proba(x_test)[:,1]
probability
           0.37704638, 0.25474628, 0.39212757, 0.48998872, 0.36423451,
            0.47675607, 0.27529761, 0.37631384, 0.22763938, 0.47588246,
            0.41186374,\ 0.40322484,\ 0.20308884,\ 0.41755869,\ 0.49406593,
            0.32449296,\ 0.46289286,\ 0.39567549,\ 0.4568658\ ,\ 0.36679296,
            0.39639401, 0.49833031, 0.48254698, 0.33404629, 0.49284674,
            0.40651582, 0.41672567, 0.4753446 , 0.37650721, 0.47087929,
           0.3818264 , 0.43843179, 0.34549193, 0.31224176, 0.4145689 ,
            0.46418122, 0.41166599, 0.42824331, 0.42744064, 0.38709819,
           0.23978081,\ 0.36786845,\ 0.35316342,\ 0.18654034,\ 0.2120848\ ,
            0.5464013 \ , \ 0.29032349, \ 0.4126091 \ , \ 0.47089042, \ 0.2702083 \ , \\
            0.42973823, 0.41521412, 0.32885513, 0.37706001, 0.46085173,
            0.45856421, 0.36106089, 0.43606135, 0.36033219, 0.4493689 ,
            0.51142985, 0.28933998, 0.24729348, 0.45154839, 0.25633732,
```

U.358/4909, U.52420839, U.558124/0, U.23/98133, U.44232100, $0.4759602 \ , \ 0.40957438, \ 0.43000671, \ 0.38269376, \ 0.37436428,$

y_test

442

981

785 1332

481

124

198

pred

```
0.393337
                      , 0.53418509, 0.54200145, 0.42252918, 0.37666595,
            0.31115076, 0.4234845 , 0.41759473, 0.41743188, 0.38067797,
            0.43036209, 0.41348247, 0.3862818 , 0.42829305, 0.39334226,
            0.24389453, 0.27524722, 0.49659614, 0.51217095, 0.41536427,
            0.51237664, 0.45147217, 0.38348501, 0.50354111, 0.42822098,
            0.37803376, 0.44542215, 0.54556825, 0.40341246, 0.36999256,
            0.45346718, 0.37536645, 0.45135752, 0.50475678, 0.41125781,
            0.47666215, 0.39174442, 0.39017922, 0.22388436, 0.52991052,
            0.53875244, 0.52885558, 0.41117769, 0.46378499, 0.36508042,
             0.46370068, \ 0.28228228, \ 0.2711845 \ , \ 0.37046887, \ 0.54204887, \\
            0.46345639, 0.21254482, 0.50503544, 0.38794113, 0.43251129,
            0.46265583,\ 0.44661362,\ 0.37796196,\ 0.38673975,\ 0.52430746,
            0.33019464, 0.44825008, 0.45497594, 0.26233078, 0.35549572,
            0.38115736, 0.38523308, 0.40289597, 0.31050269, 0.53585229,
            0.49022334, 0.50599687, 0.40118256, 0.39944439, 0.37694233,
            0.28769715, 0.43524988, 0.35834837, 0.24310768, 0.5388659,
            0.4574191 , 0.41050837, 0.35458345, 0.43315299, 0.46340716, 0.44992134, 0.35866514, 0.54027371, 0.37191693, 0.29033496,
            0.33196845,\ 0.39371539,\ 0.39684214,\ 0.38233935,\ 0.50103299,
             0.38302139 , \ 0.45748894 , \ 0.49874452 , \ 0.3517435 \ , \ 0.51834644 , 
            0.39828366,\ 0.56545729,\ 0.40217817,\ 0.25788292,\ 0.35426626,
            0.37819206, 0.20631961, 0.40150258, 0.40446605, 0.3607504 ,
            0.48274959, 0.40562294, 0.53022358, 0.23131845, 0.37556291,
            0.39383319, 0.41219961, 0.21352296, 0.42063161, 0.37969579,
             0.38107731, \ 0.3613703 \ , \ 0.50504306, \ 0.38739066, \ 0.42481061, \\
            0.42780344, 0.41790206, 0.45610417, 0.22744096, 0.34421021,
            0.43552882, 0.47013808, 0.40441442, 0.45806973, 0.3779163,
            0.45709677, 0.38148689, 0.33027823, 0.52017576, 0.3526529 ,
             0.52386752, \ 0.5273219 \ , \ 0.35931882, \ 0.20473947, \ 0.35990531, 
            0.43273755,\ 0.42979931,\ 0.38711668,\ 0.45590059,\ 0.42938181,
            0.4016247 \ , \ 0.38967641, \ 0.48275064, \ 0.37195487, \ 0.51773987,
            0.29730218,\ 0.35662129,\ 0.52416294,\ 0.39683313,\ 0.47303644,
            0.39565078, 0.40380083, 0.45177485, 0.38674601, 0.39435472,
            0.42419323, 0.43791179, 0.21220383, 0.46139059, 0.4296156 ,
            0.49436096, 0.50037494, 0.23329727, 0.37128198, 0.24701072,
            0.4144757 \ , \ 0.3993662 \ , \ 0.40381922, \ 0.39649409, \ 0.39916637,
            0.50479319, 0.39651705, 0.21091855, 0.26673986, 0.44039745,
            0.4104556 , 0.39113026, 0.38678767, 0.4907775 , 0.44881472,
            0.46128229, 0.41010836, 0.48868465, 0.52609987, 0.36496048,
            0.20327885, 0.37711095, 0.34774677, 0.48018454, 0.53267315,
            0.41492672, 0.40368745, 0.23839733, 0.48261862, 0.41950735,
            0.40515757. 0.23781019. 0.43509554. 0.441689991)
     1091
             0
             1
             0
     1439
             2
             1
             0
             0
     1229
     Name: StockOptionLevel, Length: 294, dtype: int64
from sklearn.tree import DecisionTreeClassifier
dtc = DecisionTreeClassifier()
dtc.fit(x_train , y_train)
     ▼ DecisionTreeClassifier
     DecisionTreeClassifier()
pred = dtc.predict(x_test)
     array([0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0,
            3, 0, 1, 1, 0, 0, 0, 3, 1, 1, 0, 1, 1, 1, 1, 1, 1, 3, 1, 0, 0, 0,
            2, 0, 0, 1, 0, 3, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 2, 0,
                                                                     2, 2,
            1, 1, 1, 0, 1,
                           2, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 3,
            1, 1, 0, 0, 1, 1, 1, 1, 2, 1, 1, 0, 0, 0, 1, 0, 2, 1, 1, 1, 0, 1,
            3, 1, 1, 2, 1, 0, 0, 1, 1, 1, 2, 0, 1, 3, 2, 1, 2, 0, 1, 2, 2,
            0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 2, 2, 0,
```

2, 2, 1, 1, 0, 2, 1, 1, 2, 0, 1, 1, 0, 3, 2, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 2, 1, 1, 0, 0, 0, 3, 1, 1, 0, 0, 1, 3, 3, 0, 1, 1, 0, 0, 0, 3, 2, 0, 1, 0, 3, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 2, 0, 2, 1, 1, 3, 1, 1, 1, 1, 0, 0, 0, 0, 0, 2, 1, 0, 0, 1, 1, 0, 1, 1, 0,

```
0, 0, 2, 0, 0, 3, 0, 1, 2, 0, 0, 1, 2, 0, 1, 0, 1, 3, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 3])
```

```
y_test
    442
             0
    1091
    981
             1
    785
    1332
            0
    1439
            2
    481
             1
    124
             0
    198
             0
    1229
    Name: StockOptionLevel, Length: 294, dtype: int64
```

df

	Ano.	Attrition	RusinessTravel	DailwPate	Denartment	DistanceFromHome	Education	EducationField	EmployeeCount F	'm
									Emproyeccount E	
0	41	Yes	Travel_Rarely	1102	Sales	1	2	Life Sciences	1	
1	49	No	Travel_Frequently	279	Research & Development	8	1	Life Sciences	1	
2	37	Yes	Travel_Rarely	1373	Research & Development	2	2	Other	1	
3	33	No	Travel_Frequently	1392	Research & Development	3	4	Life Sciences	1	
4	27	No	Travel_Rarely	591	Research & Development	2	1	Medical	1	
1465	36	No	Travel_Frequently	884	Research & Development	23	2	Medical	1	
1466	39	No	Travel_Rarely	613	Research & Development	6	1	Medical	1	
1467	27	No	Travel_Rarely	155	Research & Development	4	3	Life Sciences	1	
1468	49	No	Travel_Frequently	1023	Sales	2	3	Medical	1	
1469	34	No	Travel_Rarely	628	Research & Development	8	3	Medical	1	
1470 rd	ows × 3	35 columns								

```
dtc.predict(ms.transform([[0.357143,0.0,0.5,0.923407]]))
```

/usr/local/lib/python3.10/dist-packages/sklearn/base.py:439: UserWarning: X does not have valid feature names, but MinMa warnings.warn(

/usr/local/lib/python3.10/dist-packages/sklearn/base.py:439: UserWarning: X does not have valid feature names, but Decis warnings.warn(array([0])

```
accuracy_score(y_test , pred)
```

0.3979591836734694

```
confusion_matrix(y_test , pred)

array([[57, 53, 8, 9],
       [43, 56, 19, 8],
       [11, 13, 4, 1],
       [5, 6, 1, 0]])
```

```
pd.crosstab(y_test , pred)
```

```
col_0 0 1 2 3 ==
                StockOptionLevel
                                                                                                               ıl.
                                                              57 53 8 9
                                      0
                                                                  43 56 19 8
print(classification_report(y_test , pred))
                                                     precision recall f1-score support
                                                                    0.49
                                                                                            0.45
                                                                                                                              0.47
                                                                    0.44
                                                                                               0.44
                                                                                                                              0.44
                                                                                                                                                              126
                                             1
                                                                                                                              0.13
                                             2
                                                                    0.12
                                                                                                0.14
                                                                                                                                                                29
                                             3
                                                                    0.00
                                                                                              0.00
                                                                                                                            0.00
                                                                                                                                                                12
                                                                                                                              0.40
                                                                                                                                                               294
                         accuracy
                      macro avg
                                                                    0.26
                                                                                                 0.26
                                                                                                                              0.26
                                                                                                                                                                294
             weighted avg
                                                                    0.41
                                                                                                  0.40
                                                                                                                              0.40
                                                                                                                                                               294
probability = dtc.predict_proba(x_test)[:,1]
# roc_curve
fpr , tpr , threshsholds = roc_curve(y_test , probability)
             ValueError
                                                                                                                                       Traceback (most recent call last)
             <ipython-input-52-17b0a15ba9ba> in <cell line: 2>()
                             1 # roc_curve
              ----> 2 fpr , tpr , threshsholds = roc_curve(y_test , probability)
                                                                                                   - 🗘 1 frames
              <u>/usr/local/lib/python3.10/dist-packages/sklearn/metrics/_ranking.py</u> in _binary_clf_curve(y_true, y_score, pos_label, sample of the control 
                                                y_type = type_of_target(y_true, input_name="y_true")
if not (y_type == "binary" or (y_type == "multiclass" and pos_label is not None)):
    raise ValueError("{0} format is not supported".format(y_type))
                         747
                         748
              --> 749
                         750
                         751
                                                check_consistent_length(y_true, y_score, sample_weight)
              ValueError: multiclass format is not supported
                SEARCH STACK OVERFLOW
from sklearn import tree
plt.figure(figsize=(25,15))
tree.plot_tree(dtc,filled=True)
```