Exercício 6.3 (Papadimitriou)

Alice Duarte Scarpa, Bruno Lucian Costa 2015-06-23

1 Enunciado

O Yuckdonald's está considerando abrir uma cadeia de restaurantes em Quaint Valley Highway (QVH). Os n locais possíveis estão em uma linha reta, e as distâncias desses locais até o começo da QVH são, em milhas e em ordem crescente, m_1, m_2, \ldots, m_n . As restrições são as seguintes:

- Em cada local, o Yuckdonald's pode abrir no máximo um restaurante. O lucro esperado ao abrir um restaurante no local $i \in p_i$, onde $p_i > 0$ e i = 1, 2, ..., n.
- Quaisquer dois restaurantes devem estar a pelo menos k milhas de distância, onde k é um inteiro positivo.

Dê um algoritmo eficiente para computar o maior lucro total esperado, sujeito às restrições acima.

2 Introdução

Com este exercicio vamos abordar uma técnica chamada de programação dinâmica que tem como caracteristica que a solução ótima pode ser calculada de soluções de subproblemas.

Antes porém, vai ser apresentado uma solução utilizando um algoritmo guloso.

3 Soluções para o problema

3.1 Algoritmo gulosos

Esse algoritmo recebe duas lista de tamanho n, uma com as distancias dos locais até o ponto inicial e a outra com os respectivos lucros esperados, e um inteiro k que é a distancias em milhas desejada. E começamos nosso algoritmo saindo do ponto inicial, em direção ao fim da QVH

```
def restaurante(distancias,k,lucros):
```

```
lmax = max(distancias) # Valor maximo das distancias
rest = []
lucro = []
lucro.append(0) # iniciando lucro de 0 loja, como 0
j = 0 # posicao da loja
for i in range(lmax):# percorrendo toda a QVH
    if j in distancias: #Quando local estiver disponivel
        rest.append(distancias[distancias.index(j)]) # guarda posicao escolhida
        lucro.append(lucros[distancias.index(j)]) # guarda lucro escolhido
        j=j+k # pula k milhas a frente
    else:
        j += 1 # anda 1 milha a frente
return sum(lucro) #retorna soma dos lucros escolhidos
```

Vamos reproducir um exemplo no qual esse algoritmo não retonar o valor máximo possivel e vamos tentar entender.

```
Chamada da funcao:
  restaurante([3, 8, 9, 15],3,[5, 6, 10, 8])
Resultado:
19
```

O resultado obtido utilizando desse algoritmo não foi o resultado ótimo pois nesse exemplo é fácil perceber que o valor máximo que se pode ter respeitando as restrições é de 23, no qual a escolha seria feita pelos locais [3, 9, 15], porém o algoritmo guloso está instruido sempre a escolher o primeiro local vago respeitando as restrições, ou seja nesse exemplo ele escolhe os locais [3, 8, 15] totalizando o lucro de 19 que é inferior ao valor ótimo. O algoritmo guloso funcionaria bem para o caso que todos os locais tem o mesmo lucro esperado.

Vamos resolver esse problema com utilizando um algoritmo baseado no paradigma de programação dinâmica.

3.2 Algoritmo utilizando programação dinâmica

Esse técnica de programação utiliza as soluções dos sub-problemas para calcular a solução do problema.

Então vamos definir o nosso sub-problema: Suponha L(i) como o lucro máximo que podemos obter com os locais de 1 até i

Esse algoritmo recebe duas lista de tamanho n, uma com as distancias dos locais até o ponto inicial e a outra com os respectivos lucros esperados, e um inteiro k que é a distancias em milhas desejada.

```
def restaurante(distancias,k,pay):
    lucro = [0 for a in range(len(pay)+1)]
    for i in range(len(distancias)):
        m_novo = distancias[i]-k
        i_est=[b for b in distancias if b <= m_novo]
        if len(i_est) > 0:
            i_est=i_est[-1]
            d_est= distancias.index(i_est)
            d_novo=lucro[d_est+1]
    else:
            d_novo=0
        lucro[i+1]=max(lucro[i],pay[i]+d_novo)

    return lucro[-1]

print restaurante([3, 8, 9, 15],3,[5, 6, 10, 8])
```

4 Complexidade

Para o problema proposto foi apresentado quatro possiveis soluções. Duas opções "naive", uma força bruta e outra utilizando o método de algoritmo guloso.

A primeira solução "naive" é linear em relação ao tamanho da rua, ou seja, tem complexidade O(m), onde m é a distancia máxima que temos uma casa.

A segunda solução "naive" é linear em relação ao tamanho do vetor de distancias, ou seja, tem complexidade O(n), onde n é o número de casas na

rua.

A terceira solução é uma força bruta, escolhendo aleatóriamente uma posição para colocar a antena o que com valor de n muito grande torna-se algo exponencial.

A quarta solução é a única solução ótima e possui complexidade também linear, dependendo apenas do tamanho da rua.