Order-Independent Transparency for Contour-Buildup Algorithm

Contour-Buildup Algorithm

 Totrov et al. (1996) – The contour-buildup algorithm to calculate the analytical molecular surface

Calculation of SES/SAS

Patches, tori, triangles

Parallelizations of CB

- Lindow et al. (2010) Accelerated visualization of dynamic molecular surfaces
 - Parallelization on CPUs
 - Implemented in OpenMP
 - GPU ray-casting of surface primitives
- Krone et al. (2011) Parallel contour-buildup algorithm for the molecular surface
 - Massive parallelization on GPU
 - 9 kernels in CUDA

Order-Independent Transparency

Depth Peeling

- Multiple transparent object rendering
- Peeling layers one by one
- Dual Depth Peeling two layers in one pass

A-buffering

- All fragments are stored
- Sorting and composition

CM 2015 4

OIT for Molecules

- Kauker et al. (2013) Rendering molecular surfaces using order-independent transparency
 - Puxels CSG operations on A-buffer
 - vdW, SES and SAS

Transparency problems

- Rendering using CB
 - Artifacts "inner remains"
 - Cavity surface
- Rendering with Puxels
 - CSG operations using Reduced Surface
 - Big amount of fragments

Surface Graph I

- Surfaces = isolated connected components:
 - 1) Spheres connected with tori
 - Easy already computed during CB
 - Spheres may form multiple surfaces!

Surface Graph II

- Surfaces = isolated connected components:
 - 2) Triangles connected with tori
 - Spherical polygons enclosed with tori
 - Benefit every vertex has three edges

Surface Graph – Implementation

- CB modifications output SG edges
- CC analysis on GPU:
 - 1) Build adjacency matrix
 - 2) Label components parallel BFS
 - 3) Find polygon circles CC again

9

Rendering Spherical Polygons

- Spherical geometry
 - Surface of sphere
 - Every two lines (great circles) intersect
- SES patches = polygons
 - Lines on sphere (small circles)
 - Odd-even rule + point outside

Results I

- Visualization of 1CRN (PDB)
 - 327 atoms, transparent SES probe 1,4 Å

Results II

Performance comparison (FPS@1024x1024)

	Solvent excluded surface (SES)				Solvent accesible surface (SAS)			
PDB	1YV8		1VIS		1YV8		1VIS	
Atoms	641		2482		641		2482	
Coverage	18,0 %		48,0 %		23,0 %		55,4 %	
Method	our	Kauker	our	Kauker	our	Kauker	our	Kauker
GTX 580	18,3	31,0	7,3	11,2	17,8	14,7	7,4	4,8
GTX 680	32,3	22,1	13,9	7,7	33,2	10,3	14,9	3,3
R9 270X	19,8	-	9,4	-	20,5	-	10,1	-
GTX 980	48,3	-	21,8	-	49,8	-	22,5	-

Conclusion

- Contribution
 - Novel and faster transparent dynamic SES/SAS visualization method
 - OpenGL 4.3 implementation nVIDIA, ATI
- (Near) Future work
 - Bug fixing 2 known bugs
 - Publication

Thank you for your attention!