自然科探究與實作

建國中學 124 29 潘仰祐

同組組員

07 李博宇

14 康恩杰

30 鄭鈞澤

指導老師:王慶豪、朱信翰

目次

實作	主是	題:液體體積與質量的量測	3
	情步	竟】	3
	藥品	品與器材清單】	3
	探多	密與實作】	3
	注意	意事項】	4
	實馬	鐱數據與作圖分析】	5
	實作	作結果與討論】1	1
	結訴	侖】 12	2
實作	主是	題:食鹽水的密度測量與濃度分析	3
	情步	竟】	3
	藥品	品與器材清單】	3
	探乳	密與實作】14	4
	注意	意事項】14	4
	實馬	鐱數據與作圖分析】 15	5
	實化	作結果與討論】19	9
	結訴	侖】 2	1
課程	2-2	2 濁度與光度之測量與意義2	2
_	`	實驗目的	2
=	•	實驗器材與藥品	2
		光度測量儀之製作2	
四	`	實驗步驟2	5
五	`	實驗數據整理20	6
六	•	結果與討論3	0

實作主題:液體體積與質量的量測

【情境】

常溫時,水的密度固定,以容器量取水的體積,常出現在飲食、飲水、配藥等日常生活中,要精準量取水的體積,是用試管、滴管、定量吸管、燒杯、錐形瓶、量筒、定量瓶、滴定管,還是廚房中塑膠製的大量杯呢?為什麼?要如何證明呢?

【藥品與器材清單】

藥品名稱	數 量	藥品名稱	數 量
自來水	各組水龍頭		

盆中器材名稱	數 量	盆中器材名稱	數 量
燒杯 (50 mL)	1個/組	塑膠滴管 (3 mL、帶刻度)	1支/組
燒杯 (100 mL)	1個/組	量筒 (25 mL)	
錐形瓶 (50 mL)	1個/組	刷子	1支/組
容量瓶 (10 mL)	1支/組	抹布	1塊/組

額外待發器材名稱	數 量	額外待發器材名稱	數 量
天平 (含鈕三樑,實驗桌上)	1台/組	滴定管架 (實驗桌下)	1支/組
吸量管 (25 mL)	1支/組	滴定管夾	1個/組
吸球	1個/組	鹼式滴定管 (50 mL)	1支/組
溫度計	1支/組		

【探究與實作】

以容器量取同一體積的水數次,記錄其質量以討論哪一種容器量取液體體積 之精準度最高,亦可同時熟悉實作器材的操作方式。

- 1. 取 A 燒杯 (100 mL), 置於天平的秤盤上, 量測空燒杯質量。
- 2. 取 B 燒杯 (50 mL),利用燒杯上之刻度精確量取 10 mL 水,倒入天平秤盤上 之 A 燒杯中,待天平讀數穩定後,記錄其讀數。
- 3. 重複步驟 2.四次,共以B燒杯(50 mL)量測水 10 mL 的體積五次,A 燒杯中累積了五次的水量(約10.0 mL→20.0 mL→30.0 mL→40.0 mL→50.0 mL)。
- 4. 將步驟 2.~3.中之 B 燒杯 (50 mL), 依序改為下列五器材, 各重複步驟 1.~3.: 錐形瓶 (50 mL)、吸量管 (25 mL)、容量瓶 (10 mL)、量筒 (25 mL)、

臺北市立建國高級中學 109 學年度【自然科學探究與實作】1-1 滴定管 (50 mL)。

【注意事項】

- 1 務必記錄當天的氣溫、實驗的水溫及盛裝溶液秤重的容器重。
- 2 請以天平讀數 (g)為Y軸、累積的水總體積(mL)為X軸,以試算表軟體作 圖並顯示校準曲線(calibration curve)公式及 R²值並分析討論其意義。

【實驗數據與作圖分析】

今日氣溫(°C): 20.5 實驗用水溫(°C): 19.5

以下做圖分析之橘色線為理論的「體積對質量」

(密度=0.998305g/mL)¹,可看趨勢線是否與其平行,大致推估準確度。

量測器材:50mL 燒杯 空燒杯重(g):38.10

次數	累積水體積(mL)	天平讀數(g)
1	10	52.73
2	20	62.83
3	30	70.80
4	40	78.82
5	50	86.09

¹ 資料來自 Handbook of Chemistry and Physics, 53rd Edition, p. F4。

量測器材:容量瓶 空燒杯重(g):38.14

次數	累積水體積(mL)	天平讀數(g)
1	10.0	53.45
2	20.0	63.21
3	30.0	72.92
4	40.0	82.71
5	50.0	92.37

量測器材:錐形瓶 空燒杯重(g):38.11

次數	累積水體積(mL)	天平讀數(g)
1	20	67.47
2	40	91.89
3	60	118.89
4	80	142.77
5	100	166.38

量測器材:分度吸量管 空燒杯重(g):38.13

次數	累積水體積(mL)	天平讀數(g)
1	10.00	53.67
2	20.00	62.46
3	30.00	73.09
4	40.00	82.88
5	50.00	92.62

量測器材:量筒 空燒杯重(g):38.11

次數	累積水體積(mL)	天平讀數(g)
1	10.0	53.64
2	20.0	63.67
3	30.0	73.60
4	40.0	83.66
5	50.0	93.68

量測器材:滴定管 空燒杯重(g):38.11

次數	累積水體積(mL)	天平讀數(g)
1	10.00	53.67
2	20.00	63.62
3	30.00	73.70
4	40.00	83.69
5	50.00	93.54

【實作結果與討論】

一、請解釋說明校準曲線公式中的斜率及截距之意義。答:

密度= 質量

→ 質量= 密度 × 體積

→ 天平讀數= 密度 × 體積 +(校準值 + 容器重)

其中 「校準值」指因為天平無法校準,故必須手動增減之值。由上述,斜率即為密度,截距即為(校準值+容器重)

二、請解釋說明 R²值之意義。

答:其為相關係數(R)之平方。R 用於表示數據關聯度,由於有正負,故進行平方,以使其成為正數。由於 $-1 \le R \le 1$,故 $0 \le R^2 \le 1$ 。當 R^2 越接近 1,則實驗結果的精確度越大,人為造成之誤差越小。

三、何謂「準確度(accuracy)」?何謂「精確度(precision)」?請定義並詳細說明。

答:

*準確度:在每一次獨立的測量之間,其平均值與理論/已知可信的數據之間的接近程度。常由實驗器材影響,形成系統誤差,並且在部分情況下可以透過數據處理校正(例如:忘記校準天平,則在數據處理時共同增減數值)。

四、 請比較六種器材量測的準確度,並將之由高至低排列,並說明你的理由。 答:

理論密度: 19.5°C下, 0.998305 g/mL。此處取 0.9983 g/mL。²

與理論差: 0.0002< 0.0024< 0.0151< 0.0249< 0.1712< 0.2452

五、 請比較六種量測器材的精確度,並將之由高至低排列,並說明你的理由。 答:

器 材:滴定管 量筒 容量瓶 分度吸量管 錐形瓶 50mL 燒杯

R² 值:1.0000=1.0000=1.0000> 0.9994= 0.9994> 0.9963

精確度:高-----

² 資料來自 Handbook of Chemistry and Physics, 53rd Edition, p. F4。

【結論】

1 本針對本實作的結果,下一結論。

答:

由此實驗可知,使用不同容器取同體積液體,準確與精確度確實有差異。

若求準確度,則建議用滴定管、量筒、分度吸量管;

若求精確度,則建議用滴定管、量筒、容量瓶;

若二皆要求,則建議用滴定管;

再考慮方便,則建議用量筒。

2 請分享本探究與實作的活動的心得及所學會的能力。

答:這次實驗讓我深刻體會到,實作與空想有極大的區別:空想中,幾秒便結束;實驗時,費時耗精神。實驗後,我獲得了操作三樑天平的能力,並練習了如何使用試算表的線性回歸。

實作主題: 食鹽水的密度測量與濃度分析

【情境】

食鹽是廚房中常見的調味料,亦是人體中不可或缺的電解質。不同濃度的食鹽水可用在不同的用途上,比方說:飽和食鹽水可用來醃漬鹹鴨蛋,但隱形眼鏡的人會需要點生理食鹽水以維持眼球表面的濕潤。不同濃度的食鹽水其濃度與密度是否有相關性呢?我們是否可利用密度的變化得知飽和食鹽水的濃度呢?我們是否可以利用量測密度的方式標定未知濃度食鹽水的濃度呢?

【藥品與器材清單】

藥品名稱	數 量	藥品名稱	數 量
自來水	各組水龍頭	氯化鈉晶體 (食鹽)	全班共用

盆中器材名稱	數 量	盆中器材名稱	數 量
燒杯 (50 mL)	1個/組	容量瓶 (10 mL)	1個/組
燒杯 (100 mL)	1個/組	塑膠量筒 (25mL)	1支/組
錐形瓶 (50 mL)	1個/組	塑膠滴管 (3 mL、帶刻度	1台/組
玻棒	1支/組		

額外待發器材名稱	數 量	額外待發器材名稱	數 量
天平 (三樑)	1台/組	滴定管架	1支/組
滴定管夾	1個/組	鹼式滴定管 (50 mL)	1支/組
吸量管 (25 mL)	1支/組	安全吸球	1個/組
溫度計	1支/組		

共用器材名稱	數 量	注意事項:
電子天平	5台/實驗室	電子天平僅准使用於食鹽秤重使用,電子
		天平絕對不准秤量水溶液的重量

【探究與實作】

- 1 配製重量百分濃度分別為:0%(蒸餾水)、 10%、15%、20%、25%、30%、35%之食鹽水溶液。(若有沉澱請小心傾析 以取其澄清溶液,此澄清溶液依序稱為溶液甲、乙、丙、丁、戊、己、庚, 且配製完成之澄清溶液至少要有100克)
- 2 以容器量取溶液體積並秤量其質量,將其體積與質量記錄下來。
- 3 重複 2. 步驟, 測量不同濃度之溶液(建議由低濃度往高濃度操作), 記錄 其質量並推算密度。
- 4 討論食鹽水的濃度(重量百分濃度)與食鹽水密度之關係。
- 5 向課堂教師領取少量未知濃度食鹽水X,請標定其濃度(重量百分濃度)

【注意事項】

- 1 務必記錄當天的氣溫、實驗水溶液的水溫及盛裝溶液秤重的容器重。
- 2 請以天平讀數 (g)為Y軸、累積的水溶液總體積(mL)為X軸,以試算表 軟體作圖並顯示校準曲線(calibration curve)公式及R²值並分析討論其意義。
- 3 請以試算表軟體作圖,並利用所做之圖形討論飽和食鹽水的濃度及未知濃度食鹽水X之濃度為多少。

【實驗數據與作圖分析】

一、最初數據:

	(測得質	賃量待扣校	準值):	6. 14			氣溫(°	C): 23.9
代號	目標濃度(%)	i建議用水 (g)	建議用鹽	容器重 (含儀器誤 差) (g)	實際用鹽(g)	溶液温度 (°C)	溶液體積 (mL)	質量 (含容器) (含儀器誤 差) (g)
甲	0	100	0	19.53	0.00	25	21	40.32
ح	10	90	10	58.80	10.00	24. 1	93. 1	158.84
丙	15	85	15	58. 50	15.01	23.6	89. 5	158.65
丁	20	80	20	58. 51	20.00	22.8	85. 6	158. 34
戊	25	75	25	19. 53	25.00	23. 2	?	?
							6	26. 9
							11	32. 7
							23. 4	47. 59
己=>去除沉澱	30	70->77	30->33	19. 53	?	?	10	32.01
							15.5	37. 85
							20.6	44.35
X	???	X	X	19. 53	X	24.8	10.4	30. 2
							15. 7	35. 43
							20.3	40.22
							25. 2	45. 74

※黃底色表示應有數據而缺失。

※儀器誤差:三梁天秤秤盤產生 6.14g 誤差。因為秤盤放上去後天秤即往左傾,只能手動修正。

二、密度分析:

代號	目標濃度(%)	容器淨重 (g)	溶液温度 (°C)		質量 (含容器) (含校準 誤差) (g)	濃度	密度 (g/mL)
戊	25	19. 53	23. 2	6	26. 9	?缺漏, 以目標濃 度代替 =>25%	
				11	32. 7		1. 2003
				23. 4	47. 59		
己=>去除沉 澱	30	19. 53	?	10	32. 01	最大溶解量 (未知)	
				15. 5	37. 85		1. 2032
				20.6	44. 35		
X	???	19. 53	24. 8	10.4	30. 2	所求	
				15. 7	35. 43		1 0000
				20. 3	40. 22		1. 0280
				25. 2	45. 74		

三、密度與濃度關係

代號	溶液濃度 (%)	 溶液密度 (g/mL)
甲	0	0. 9900
乙	9. 96	1.0745
丙	14. 99	1.1190
丁	20.03	1.1662
戊	25	1.2003
己=>去除沉澱	A	1. 2032
X	В	1.0280

由其中甲~戊做出散佈圖。

溶液濃度與密度關係圖

由 R²值可知其為食鹽水[濃度]&[密度]高度相關。

並且將 己(A, 1.2032), x(B, 1.0280) 分別代換入方程式運算,可得其中 A = 24.9063, B = 4.3852。

故得知:當時最大溶解度造成的濃度即是接近於24.9063%。x溶液之濃度接近4.3852%。

至於為何 己濃度<戊濃度,推測是因為當時並未等到回溫即測量,實為 疏失。

【實作結果與討論】

1 請詳細說明或列出算式演示你們求得溶液甲~庚及X密度的方法。 答:

原本,我們使用三樑天秤依序測量溶液連同燒杯,扣除燒杯質量與校準值(天平因為無法校準而須手動增減之值,減去 6.14)後,即為溶液本身質量(M)。再以量筒測量體積:量筒為 25mL。每次倒滿量筒後即把量筒內溶液倒掉,量筒裝滿的次數*25+剩下的溶液體積=溶液總體積(V)。則:

$$\frac{\ddot{\alpha}\ddot{\alpha}$$
本身質量 (M) = 溶液密度 (D) 容液總體積 (V)

後來,我們發現這不是最正確也最精準的做法,但是為時已晚。於是從戊實驗開始,我們使用量筒,取隨意體積,數次精準量測體積(V),測量溶液連量筒,扣除量筒質量與校準值後,即為溶液本身質量(M)。將數據輸入LibreOffice Calc,繪製散佈圖,進行線性回歸。最後取出算式:

由上式,斜率即是密度。

2 若需求得飽和食鹽水之濃度時,應以哪一個實驗值為 X 軸、哪一個實驗值為 Y 軸?請說明並解釋理由。

答:

由上述甲~戊所取得的濃度對密度,繪製散佈圖,進行線性回歸。 獲得濃度(x)對密度 f(x)關係:

$$f(x) = 0.0085x + 0.9905$$

因為已知飽和食鹽水之密度,故以其為y=f(x)軸,反求飽和食鹽水之未知濃度(x)軸。

3 試討論不同食鹽水的濃度與食鹽水的密度有何相關性?
答:食鹽水濃度越高,則其密度也會跟著升高。且兩者之相關係數平方(R²)
高至 0.9986,故成高度正相關。

- 4 請推測食鹽溶於水中時,其飽和溶液之重量百分濃度為何?請詳細說明你的 做法或理由
 - 答: 照道理,經過計算,由我們的燒杯戊與己可以得知,因為燒杯己為 飽和食鹽水(有沉澱),得飽和食鹽水重量百分濃度必定小於30g/100g 水,又得兩燒杯之密度只差了0.02g/ml,已大於戊,可推算飽和食鹽水 之重量百分濃度介於25%到26%之間。

然而,由實驗結果與討論[2.],將(A, 1.2032)帶入換算,得出 A = 24.9063%,其值小於未飽和溶液戊(濃度=25%)。推測是由於當時混亂,未待其回溫便逕行測量,故使此(較低溫)飽和食鹽水之濃度低於其餘食鹽水。亦或是因為趨勢線方程式僅能表達推測,而非準確值,故所得之濃度並非完全正確。

- 5 請判斷並詳細說明標定未知濃度食鹽水X濃度的依據。
 - 答: 依實驗結果與討論[1.],我們求出密度=1.0280。並將此數據代入實驗數據與做圖分析[三]所得之密度 f(x)與濃度(x)關係式:

$$f(x) = 0.0085x + 0.9905$$

依照最終結果,其濃度約為4.3852%。

- 6 【探究與實作】步驟 3. 中所描述操作,為什麼量測食鹽水溶液質量時須先量 測低濃度食鹽水溶液,再量測高濃度食鹽水溶液?請詳細說明理由。
 - 答: 其一、如果我們按照由低到高的方式去進行,遇到溶液達飽和(有沉澱)的情況,即可從前後的數據判斷出飽和食鹽水的濃度區間,知其達到飽和之時機。

其二、避免實驗中,容器未洗淨而不慎殘留造成之影響過大:低濃 度殘留對高濃度之影響<高濃度殘留對低濃度之影響。

【結論】

請由本實驗活動的相關數據歸納出結論。

答: 由趨勢線及 R^2 值可看出,其濃度與密度有高度相關。而濃度 x[%]與 密度 f(x)[g/mL]之關係為:

$$f(x) = 0.0085x + 0.9905$$

經過本探究與實作的活動,你學到了什麼?請與全班分享。

答:由於事先並未做好萬全的規劃(分配工作、依序順理所有的實驗步驟、與同學交流),因此使得我們手忙腳亂,也有遺漏數據之情事。並且因為事前並未思考、與同學交流更好的測量密度之方式,而使得我們的數據(甲~丁)是更不準確的。

請反思本次實驗中造成誤差的原因。哪些是儀器或器材所造成不可避免的誤差?哪些是人為操作所造成的誤差?請詳細說明。

答: 儀器誤差:因為三樑天秤本身問題,無法校正至完全平衡,故只好 於數據處理時,手動於測得質量扣除校準值6.14,以提高準確度。

人為誤差:

- 1.1 重新測量時器材沒擦乾淨。器材上可能殘留有測量上一項目的溶液,導致測量輕微失準,精確度或降低。
- 1.2己溶液並未等待至溶液回溫後測量,故飽和溶液之密度不準確, 所反求之濃度也不準,精確度降低。
- 1.3手忙腳亂之下或許有測量不精準之情事(例:測量體積時,雙眼 未平視液面)而未發覺,精準度或降低。

課程 2-2 濁度與光度之測量與意義

實驗結報

班級:124 姓名:潘仰祐 座號:29

一、 實驗目的

搭配手機上安裝的應用程式,使用其內置的光度感測器,以完成自行製作簡易光度測量儀。透過固定濁度,測量並記錄光度的方式,尋找出濁度與穿透光光度、散射光光度之關係,以便未來認識酵母菌、觀察酵母菌的繁殖使用。

二、 實驗器材與藥品

- 1. 10% 重量濃度之酵母菌懸濁液(即重量比 酵母:水=1:9)
- 2. 容量 5mL 注射器
- 3. 簡易微量吸管 (容量 1mL 注射器尖端附有可量測 10µL 之微量吸管尖)
- 4. 手機:紅米 Note 6 Pro
- 5. 雙面膠一捆
- 6. 自製光度測量儀(詳見 三、光度測量儀之製作)

▲ 自製光度測量儀使用雙面膠安裝於手機上

三、 光度測量儀之製作

1. 耗材

[1] 厚度 1.2cm 之黑色 EVA 發泡板 1 塊/組

[2] LED 燈泡 (綠色) 1 顆/人

[3] 樣品槽 1支/人

[4] CR2032 電池 1 顆/人

[5] 黑色電工膠布 1捆/組

[6] 保麗龍膠 1支/組

2. 工具

[1] 電鑽 2 支/班

[2] 切割墊 2片/組

[3] 模板 2種×4片/組

[4] 鉗子 2把/組

[5] 牙刷 2支/組

 [6] 美工刀
 1支/人

 [7] 橡皮筋
 2條/人

3. 步驟

- [1] 輔以模板,用美工刀將 EVA 板切做 1.2cm × 4cm × 7cm 之長方形板 (每人 3 片)
- [2] 取步驟[1]之兩片,輔以模板,用電鑽於其中心位置磨出直徑 0.5cm 透光口
- [3] 取步驟[1]之一片,輔以模板,用美工刀於其中心位置切出 1.2cm × 1.2cm × 4.5cm 之槽,且選擇其中一個 4cm 之邊為頂端,此槽應距離頂端 1.2cm
- [4] 續上步,將槽填回以免塌陷,輔以模板,用電鑽於其側邊中心位置磨出直徑 0.5cm 之透光口
- [5] 取步驟[4]之一片夾於步驟[2]之兩片,用保麗龍膠黏著。可使用牙刷以幫助塗抹均勻
- [6] 續上步,綁上橡皮筋輔助固定,待乾
- [7] 續上步,取下橡皮筋,用美工刀於偏頂端之1/3處切下
- [8] 用鉗子將 LED 燈泡之腳彎折 使用上可配合黑色電工膠布,固定電池於燈腳之間。並根據實驗,將 LED 燈插於適當洞口。也可使用電工膠布纏繞成品,使其美觀

▲ 組件示意圖:步驟[1]~[4]

▲ 組件示意圖:步驟[5]~[6]

▲ 成品示意圖(不含LED)

四、 實驗步驟

- 1. 将光度測量儀安裝於手機上:
- [1] 在手機上安裝光度測量應用程式(本次使用 Light Meter,可於 Google Play 取得 https://play.google.com/store/apps/details? id=com.dask780.Light Meter)
- [2] 取可使光直接穿透測量儀的兩孔之一,於該面黏上雙面膠
- [3] 將上步所取之孔對準手機的光度感測器(通常位於安卓手機之正面),此時可以開啟光度測量應用程式,以輔助對準
- [4] 輕壓以將光度測量儀黏在手機上

2. 安裝 LED 燈

- [1] 如果要測量穿透光度,則將其插於相對的孔
- [2] 如果要測量散射光度,則將其插於側面的孔
- 3. 樣品槽插入光度測量儀,用 5mL 注射器,注入 3mL 清水
- 4. 記錄光度
- 5. 為避免沉澱,先輕微搖晃10%濃度之酵母懸濁液
- 用簡易微量吸管,取10μL酵母懸濁液,滴入樣品槽
- 7. 為幫助樣品槽內部混合均勻,可以使用簡易微量吸管吸取空氣,伸入樣品槽 底部擠出
- 8. 重複執行實驗步驟 4.~7.多次

五、 實驗數據整理

以下數據的記錄,皆是概略值:光度數據會有微幅變動,故取變動之中間值記錄。

最大光度(〔入射光光度〕	: 2440 lx
40/C/U/C \	· · • · · · · · · · · · · · · · · · · ·	

取入几及(八和几九及)·24+0 IX						
水 (mL)	10%酵母菌 懸浮液 (μL)	穿透光度 (lx)	散射光度 (lx)	酵母菌懸浮液實際濃度(%)		
3	0	2250	0	0.0000		
3	10	1123	0	0.0332		
3	20	520	0	0.0662		
3	30	309	0	0.0990		
3	40	195	0	0.1316		
3	50	144	0	0.1639		
3	60	111	0	0.1961		
3	70	85	1	0.2280		

由於散射光度的值差異性不足,因此僅針對穿透光度進行探討。 先將數據(濃度——光度)繪製於圖表上:

穿透光度與懸浮液濃度

觀察數據,我們可以看見當濃度增高,穿透光度會隨之降低;數據點會看似彎曲的弧線。於是我們可以使用 LibreOffice Calc 等試算表軟體的趨勢線功能,推測他們應該屬於以下幾種關係之一:

 $f(x) = -525.4346 \ln(x) - 798.8528$ $R^2 = 0.9266$

懸浮液濃度與穿透光度之關聯

其中「次方/乘冪關係」有著最高的 R^2 (相關度),因此我最初假定它或許是正確的關係。然而,若將0代入其趨勢線方程式,則會注意到算出的結果無意義(0之負數次方相當於除某數以0)。故我在網路上多方查詢,找到了<u>比爾——朗伯定律</u>(Beer-Lambert Law):

本定律描述 光的吸收度 (A) 與 吸收係數 (α) 、光徑長 (l, 2) 、光於樣品溶液中行進的路徑長 (A) 、濃度 (C) 三者均成正比。並且將其透過入射光強度 (I_0) 、穿透光強度 (I_1) 定義為:

$$A=lpha lc=-lograc{I_1}{I_0}$$

(張育唐、陳藹然,2011)³

綜上所述,我們可以看出濃度 (c) 與穿透光度 (I_1) 所成的應該是指數關係。然而為何指數關係的相關度 (R^2) $0.9589 \le 次方/乘幂關係的相關度 <math>0.9946$ 呢?也許是因為我們的懸浮液不符合理想溶液,也許是因為次方/乘幂關係跳過了一個數據:

³ 參考資料:張育唐、陳藹然 (2011)。**比爾定律與吸收度**。2021年4月15日 · 取自科學 Online https://highscope.ch.ntu.edu.tw/wordpress/?p=40839。

比爾定律並不適用各種狀況,只適用在某些前提與限制下:

- 1. 溶液必須是一個均質的溶液
- 2. 溶液分子不互相作用 (例如稀薄溶液)
- 3. 溶質分子不因入射光的照射而反應
- 4. 溶液澄清,不產生散射現象
- 5. 僅考慮光的吸收,忽略光的散射、反射等行為
- 6. 光源使用單色的平行光。也就是每一束光是相同的波長,且通過相同長度 的介質溶液,因為莫耳吸收係數會隨著波長而有所不同

(張育唐、陳藹然,2011)4

依上述看來,我們能夠發現本溶液與實驗不合之處,尤其是上述1、4點

- 1. 此次所作,為「酵母菌懸浮液」,即「非」溶液。
- 4. 本次實驗懸浮液有散射現象。

至於另外一個原因,便是我們可以發現次方/乘冪關係之趨勢線,直接地略過了濃度為0的數據,而用剩餘的數據作出了趨勢線:由於該趨勢線所要參考的數據更少,故其可以更好地符合餘下的數據,也造成了較高的 R²值。

⁴ 參考資料:張育唐、陳藹然 (2011)。**比爾定律(Beer's Law)的限制**。2021年4月15日,取自科學 Online https://highscope.ch.ntu.edu.tw/wordpress/?p=40848。

六、 結果與討論

- 1. 本次得到的趨勢線 (y = f(x)為光度(lx), x 為濃度(%)):
 - [1] 若要看總體(即可能較為正確的): 指數關係, $y = f(x) = 1629.1229 \times e^{-14.2058x}$
 - [2] 若要以光度(尤其是 1123 以下)反推酵母菌懸浮液濃度: 次方/乘冪關係(因其 R^2 較高), $y = f(x) = 12.5726x^{-1.3453}$ =>為了方便,故化為 $x = (12.5726/y)^{0.7433}$
- 2. 誤差的來源:可能有
 - [1] 光度計安裝不穩:僅僅使用雙面膠暫時黏貼於手機上,因此可能因為操作 而輕微位移,並且可能隨著時間過去變得越來越鬆。
 - [2] 量測的誤差:因為人為操作,致使取酵母懸濁液時,所取量可能不精準。
 - [3] 光度感測器(手機)本身問題:其最小單位並非1lx,再加上可以猜想其 所顯示之數據便包含了一定範圍的估計值,故數據或許因此有更大誤差。
- 3. 每次使用自製光度計都要重新安裝,一定有誤差,未來如何沿用本次的結果?
 - [1] 每次先測量最大光度(入射光光度),並將 測得的數值÷該數 × (本次的最大光度=)2440 lx 即可將數據代入本次所得之趨勢線。 =>建立在忽略空氣變化之前提上
 - [2] 每次先測量清水穿透光度,並將 測得的數值÷該數 × (本次的清水穿透光度=)1123 lx 即可將數據代入本次所得之趨勢線。 =>建立在忽略清水或有微小不同之前提上
- 4. 實驗結束後的反思
 - [1] 由於手機性能或者自製簡易光度計做工問題,測量不到散射光度,無法進行濁度探討,稍與實驗離題,實屬可惜。