天岸大学

《计算机网络》课程设计 周进度报告

题目: 第三周 实现 HTTP 的并发请求

学	号:	3020202184 3020244344
姓	名:	刘锦帆 李镇州
学	院:	智能与计算学部
专	亚:	计算机科学与技术
年	级:	2020 级
任课教师:		石高涛

2022年3月31日

目 录

第一章	协议设计 · · · · · · · · · · · · · · · ·	• •	 	1
1.1 协议		. . .	 	1
1.2 HTT	'P pipeline 设计 ·····	. . .	 	1
第二章	协议实现 · · · · · · · · · · · · · · · ·		 	3
2.1 Pipel	lining 实现 ·······		 	3
第三章	实验结果及分析 · · · · · · · · ·		 	4
3.1 测试	详例	, <u>.</u> .	 	4
第四章	进度总结及项目分工 · · · · · ·		 	5
4.1 本周]进度情况	. . .	 	5
4.2 人品。	分工 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		 	5

一 协议设计

1.1 协议设计

- 首先要求服务器能连续响应客户端使用同一个 TCP 连接同时发送多个请求,即可以实现 http 管线化。
- HTTP/1.1 中单个 TCP 连接在同一时刻只能处理一个请求,为了解决这个问题,HTTP/1.1 在 RFC 2616 中规定了 Pipelining。因此 RFC 2616 中规定:一个支持持久连接的客户端可以在一个连接中发送多个请求(不需要等待任意请求的响应)。收到请求的服务器必须按照请求收到的顺序发送响应。
- 对于 HTTP 的并发请求,如果服务器认为其中一个请求是错误的,为了避免服务器把它和其他并发的请求全部拒绝了,服务器需要设计可以识别这条错误的请求的下一条请求,使得尽量多的正确并发请求得到满足。

1.2 HTTP pipeline 设计

- 1. 什么是 HTTP pipelining: http 管线化是一项实现了多个 http 请求但不需要等待响应就能够写进同一个 socket 的技术,采用管线化的请求会对页面载入时间产生动态的提高,尤其是当通过高延迟的网络,例如通过卫星网络连接;普通情况下通过同一个 tcp 数据包发送多个 http 请求,而 http 管线化向网络上发送更少的 tcp 数据包,大幅减轻网络负载;只有幂等的请求能够被管线化,例如 get 和 head 请求; post 请求不应该被管线化;新建立连接的请求因为无法判断源服务器(代理服务器)是否支持 http1.1 协议,也不应该被管线化处理。所以,仅在重用已经成功建立的持久化连接的情况下,才可以使用管线化。http 管线化需要客户端和服务器双方都能够支持,http1.1 规定服务器必须支持管线化,但并未提及服务器必须管线化响应信息,但如果客户端选择管线化的通信方式,服务器必须能够支持和受理。
- 2. HTTP pipelining 的优势:减少 cpu 和内存占用,减轻网络堵塞,减轻后续请求的延迟。不采用管道化意味着每次请求必须被应答之后,它的连接才能空闲以便发送下一次请求;不采用管道化会导致平均每个连接带来额外的延迟,或者如果服务器不支持 http 长连接,进行其他的 tcp 三次握手增加了额外的请求往返,双倍延迟;不需要牺牲当前的 tcp 连接,就能够报告错误.一个单用户客户端对于任何一台服务器或者代理服务器都可以

维护不多于两个的连接数. 在当前由 n 台服务器组成的网络中, 任意一台代理服务器对另外的服务器或者代理服务器应该维护 2*n 个连接. 这些指南目的在于提升 http 响应性能, 避免网络堵塞。

二 协议实现

2.1 Pipelining 实现

本周的实现较为简单。由于在 Lab2 中我们实现了缓冲区的自动化更新、防溢出。可以支持任意大小的文件传入。所以本周的任务中,我们只需要关注如何将收到的信息拆分为单个单个的报文。然后处理之即可。

我们的实现方式,是通过函数 strstr() 获得拆分每个报文。strstr(str,dest) 函数得到 dest 在 str 第一次出现的地址。于是就能通过 strstr() 得到报文结束前" \r\n\r\n" 的位置。然后通过简单的字符串处理,就能开始处理单个报文了。部分代码如图2-1。

图 2-1 Liso Server Pipelining

三 实验结果及分析

3.1 测试样例

我们通过 client 端发送测试样例 sample/request_pipelining , 得到如图3-1 的结果,表明我们的实现是正确的。

图 3-1 pipelining test

图 3-2 Autolab Test Result

四 进度总结及项目分工

4.1 本周进度情况

本周对 pipelining 进行了实现。

	本周任务要求	完成	备注
1	实现 pipelining	✓	无

表 4-1 本周进度完成表

4.2 人员分工

人员分工如表4-2所示。

人员	项目分工
刘锦帆	完成大部分代码工作,以及协议
	实现部分
李镇州	完成 client 端的处理以及协议设
	计部分的写作
	表 4-2 人员分工表