Flight Test Q9

Given an infinite collection $A_n, n=1,2,...$ of intervals of the real line, their intersection is defined to be

$$igcap_{n=1}^{n=\infty}A_n=\{x|(orall n)(x\in A_n)\}$$

Give an example of a family of intervals $A_n, n=1,2,...$, such that $A_{n+1}\subset A_n$ for all n and $\bigcap_{n=1}^{n=\infty}A_n=\emptyset$

Let A_1 be the interval of all real numbers greater than 0, i.e. the interval $(l_1,r_1)=(0,\infty)$. Let subsequent intervals be reduced by a value of 2ϵ : For $A_n,(l_n,r_n)=(l_{n-1}+\epsilon,r_{n-1}-\epsilon)$. At $n=\infty,A_\infty=\emptyset$

Graphically, this looks like the diagram below.

Every interval A_{n+1} is a subset of the previous interval A_n , a requirement of the family of intervals: $A_{n+1}\subset A_n$ for all n.

From the definition of set intersection,

 $\bigcap_{n=1}^{n=\infty}A_n=\{x|(\forall n)(x\in A_n)\}\setminus$, there must be at least one $x\in A_n$ for all n. In the family of intervals defined above, the last interval $A_\infty=\emptyset$ has no members. Therefore there does not exist an x which is member of all intervals A_n for $n=1,2,...\infty$.

The family of intervals as constructed meet the requirements in the statement.