Cost-Sensitive Label Embedding for Multi-Label Classification

Kuan-Hao Huang

Advisor: Hsuan-Tien Lin

Department of Computer Science & Information Engineering National Taiwan University

TAAI, November 27, 2016

Multi-Label Classification (MLC)

Multi-label classification

- an extension of the multiclass classification
- ▶ allow instance with multiple associated classes

Example: image tag with (dog, cat, rabbit, shark)

image				
tag	{ dog, cat }	{ dog }	{ dog, cat, rabbit }	{ shark }
label	(1, 1, 0, 0)	(1,0,0,0)	(1,1,1,0)	(0,0,0,1)

Multi-Label Classification (MLC)

Notation

- feature vector (image): $\mathbf{x} \in \mathcal{X} \subseteq \mathbb{R}^d$
- ▶ label vector (tag): $\mathbf{y} \in \mathcal{Y} \subseteq \{0, 1\}^K$

Multi-label classification (MLC)

- \blacktriangleright given training instances $\mathcal{D} = \{(\mathbf{x}^{(n)}, \mathbf{y}^{(n)})\}_{n=1}^N$
- learn a **predictor** h from \mathcal{D}
- for testing instance (\mathbf{x}, \mathbf{y}) , prediction $\tilde{\mathbf{y}} = h(\mathbf{x})$
- let the prediction \tilde{y} is close to ground truth y

Evaluation of closeness

- ightharpoonup cost function $c(\mathbf{y}, \tilde{\mathbf{y}})$: the penalty of predicting \mathbf{y} as $\tilde{\mathbf{y}}$
- ► Hamming loss, 0/1 loss, Rank loss, F1 score(loss), Accuracy score(loss)

Cost-Sensitive Multi-Label Classification (CSMLC)

Notation

- feature vector (image): $\mathbf{x} \in \mathcal{X} \subseteq \mathbb{R}^d$
- ▶ label vector (tag): $\mathbf{y} \in \mathcal{Y} \subseteq \{0, 1\}^K$

Cost-sensitive multi-label classification (CSMLC)

- ▶ given training instances $\mathcal{D} = \{(\mathbf{x}^{(n)}, \mathbf{y}^{(n)})\}_{n=1}^{N}$ and cost function c
- learn a predictor h from both D and c
- for testing instance (\mathbf{x}, \mathbf{y}) , prediction $\tilde{\mathbf{y}} = h(\mathbf{x})$
- let the prediction \tilde{y} is close to ground truth y

Evaluation of closeness

- ightharpoonup cost function $c(\mathbf{y}, \tilde{\mathbf{y}})$: the penalty of predicting \mathbf{y} as $\tilde{\mathbf{y}}$
- ► Hamming loss, 0/1 loss, Rank loss, F1 score(loss), Accuracy score(loss)

Label Embedding

Training stage

- $\blacktriangleright \ \ \text{embedding function} \ \ \underline{\Phi} \text{: label vector} \ \mathbf{y} \to \text{embedded vector} \ \mathbf{z}$
- $\blacktriangleright \ \, \text{train a regressor} \, g \, \, \text{from} \, \{(\mathbf{x}^{(n)},\mathbf{z}^{(n)})\}_{n=1}^{N}$

Predicting stage

- for testing instance x, predicted embedded vector $\tilde{\mathbf{z}} = g(\mathbf{x})$
- ▶ decoding function Ψ : predicted embedded vector $\tilde{\mathbf{z}}$ → predicted label vector $\tilde{\mathbf{y}}$

Cost-Sensitive Label Embedding

Existing works

- ▶ label embedding: PLST, FaIE, RAkEL, ECC-based [Tai et al., 2012; Lin et al., 2014; Tsoumakas et al., 2011; Ferng et al., 2013]
- cost-sensitivity: CFT, PCC [Li et al., 2014; Dembczynski et al., 2010]
- cost-sensitivity + label embedding: no existing works

Cost-sensitive label embedding

▶ consider cost function c when designing embedding function Φ and decoding function Ψ (cost-sensitive embedded vectors \mathbf{z})

Cost-Sensitive Label Embedding (Training)

Training stage

- ▶ distances between embedded vectors ⇔ cost information
- ▶ larger (smaller) distance $d(\mathbf{z}_i, \mathbf{z}_j) \Leftrightarrow \text{higher (lower) cost } c(\mathbf{y}_i, \mathbf{y}_j)$
- $d(\mathbf{z}_i, \mathbf{z}_j) \approx \sqrt{c(\mathbf{y}_i, \mathbf{y}_j)}$

Cost-Sensitive Label Embedding (Predicting)

Predicting stage

- for testing instance x, predicted embedded vector $\tilde{z} = g(x)$
- find nearest embedded vector \mathbf{z}_q of $\tilde{\mathbf{z}}$
- ightharpoonup cost-sensitive prediction $\tilde{\mathbf{y}} = \mathbf{y}_q$

Cost-Sensitive Label Embedding (Theorem)

Theorem

$$c(\mathbf{y}, \tilde{\mathbf{y}}) \leq 5 \underbrace{\left(\underbrace{\left(d(\mathbf{z}, \mathbf{z}_q) - \sqrt{c(\mathbf{y}, \tilde{\mathbf{y}})} \right)^2}_{\text{embedding error}} + \underbrace{d(\mathbf{z}, \tilde{\mathbf{z}})^2}_{\text{regression error}} \right)}$$

Optimization

- ► embedding error → multidimensional scaling (manifold learning)
- regression error → regressor g

Challenge

- asymmetric cost function vs. symmetric distance?
- $c(\mathbf{y}_i, \mathbf{y}_i) \neq c(\mathbf{y}_i, \mathbf{y}_i) \text{ vs. } d(\mathbf{z}_i, \mathbf{z}_i)$

Mirroring Trick

embedded space \mathcal{Z}

- feature space X
- ightharpoonup two roles of f y: ground truth role $f z_i^{(t)}$ and prediction role $f z_i^{(p)}$
- ▶ predict \mathbf{y}_i as $\mathbf{y}_j \Rightarrow \sqrt{c(\mathbf{y}_i, \mathbf{y}_j)}$ for $\mathbf{z}_i^{(t)}$ and $\mathbf{z}_i^{(p)}$
- ▶ predict \mathbf{y}_j as $\mathbf{y}_i \Rightarrow \sqrt{c(\mathbf{y}_j, \mathbf{y}_i)}$ for $\mathbf{z}_i^{(p)}$ and $\mathbf{z}_j^{(t)}$
- $\blacktriangleright \ \ \text{learn } \mathbf{regressor} \ g \ \text{from} \ \mathbf{z}_i^{(p)}, \mathbf{z}_2^{(p)}, ..., \mathbf{z}_L^{(p)}$
- ► find nearest embedded vector of $\tilde{\mathbf{z}}$ from $\mathbf{z}_1^{(t)}, \mathbf{z}_2^{(t)}, ..., \mathbf{z}_L^{(t)}$

Candidate Set

Challenge

- ▶ label vector $\mathbf{y} \in \mathcal{Y} \subseteq \{0,1\}^K$
- \triangleright 2^K possible label vectors (too many)
- what is the important(useful) label vectors?

Candidate Set

- ightharpoonup consider a **candidate set** S instead of Y
- \triangleright only label vectors in $\mathcal S$ are embedded
- $ightharpoonup \mathcal{S}_{train}$ (all the label vectors in training set) is a reasonable choice

Cost-Sensitive Label Embedding with Multidimensional Scaling

Training stage of **CLEMS**

- given training instances $\mathcal{D} = \{(\mathbf{x}^{(n)}, \mathbf{y}^{(n)})\}_{n=1}^{N}$ and cost function c
- ightharpoonup determine the candidate set S
- ▶ find $\mathbf{z}_i^{(t)}$ and $\mathbf{z}_i^{(p)}$ for all $\mathbf{y}_i \in \mathcal{S}$ by multidimensional scaling
- \bullet $\Phi \colon \mathbf{y}_i \to \mathbf{z}_i^{(p)}$
- ▶ train a multi-target regressor g from $\{(\mathbf{x}^{(n)}, \Phi(\mathbf{y}^{(n)}))\}_{n=1}^N$

Predicting stage of **CLEMS**

- ightharpoonup given the testing instance (x, y)
- $\Psi(\cdot) = \Phi^{-1}(\text{nearest neighbor}) = \Phi^{-1}(\operatorname{argmin} d(\mathbf{z}_i^{(t)}, \cdot))$
- obtain the predicted embedded vector by $\tilde{\mathbf{z}} = g(\mathbf{x})$
- prediction $\tilde{\mathbf{y}} = \Psi(\tilde{\mathbf{z}})$

Experiments

Lists of experiments

- comparison with label embedding algorithms
 - ▶ LSDR algorithms (dim \mathcal{Z} < dim \mathcal{Y})
 - ▶ LSDE algorithms (dim $\mathcal{Z} \ge \dim \mathcal{Y}$)
- comparison with cost-sensitive algorithms
 - ► condensed filter tree (CFT) [Li et al., 2014]

Settings

- ▶ 50% for training, 25% for validation, and 25% for testing
- base learner: random forest classifier or random forest regressor
- evaluation criteria
 - ► F1 score $\frac{2\|\mathbf{y} \cap \tilde{\mathbf{y}}\|_1}{\|\mathbf{y}\|_1 + \|\tilde{\mathbf{y}}\|_1}$ (↑)
 - Accuracy score $\frac{\|\mathbf{y} \cap \tilde{\mathbf{y}}\|_1}{\|\mathbf{y} \cup \tilde{\mathbf{y}}\|_1}$ (†)
 - ▶ Rank loss $\sum_{\mathbf{y}[i]>\mathbf{y}[j]} (\llbracket \tilde{\mathbf{y}}[i] < \tilde{\mathbf{y}}[j] \rrbracket + \frac{1}{2} \llbracket \tilde{\mathbf{y}}[i] = \tilde{\mathbf{y}}[j] \rrbracket)$ (↓)
 - average results of 20 experiments

Comparison with LSDR Algorithms

CLEMS outperforms LSDR algorithms on all the cost functions!

Comparison with LSDE Algorithms

CLEMS outperforms LSDE algorithms on all the cost functions!

Comparison with Cost-sensitive Algorithms

Table: Comparison with CFT

	F1 score (↑)		Accuracy score (↑)		Rank loss (↓)	
	CFT	CLEMS	CFT	CLEMS	CFT	CLEMS
emo.	0.640	0.676	0.557	0.589	1.563	1.484
scene	0.703	0.770	0.656	0.760	0.723	0.672
yeast	0.649	0.671	0.543	0.568	8.566	8.302
birds	0.601	0.674	0.586	0.642	4.908	4.886
med.	0.635	0.814	0.613	0.786	5.811	5.170
enron	0.557	0.606	0.448	0.491	26.64	29.40
CAL.	0.371	0.419	0.237	0.273	1120.8	1247.9
EUR.	0.456	0.670	0.450	0.650	129.53	89.52

CLEMS outperforms CFT in most of the cases!

Conclusion

- algorithm design: cost-sensitive label embedding algorithm (CLEMS)
 - mapping and nearest neighbor view for the efficient decoding function
 - embed the cost information in distance by multidimensional scaling
 - mirroring trick for the asymmetric cost function
 - candidate set to reduce the computational burden
- theoretical guarantee:
 - prove the upper bound of the predicted cost for CLEMS
- empirical performance:
 - CLEMS outperforms the existing LSDR and LSDE algorithms
 - CLEMS is better than the state-of-the-art cost-sensitive algorithms

Thank you! Any question?