95 % A

OH TUES 2:30 - 3:30, WED 4:30 -5:30 -> Mau / exams on calendar open book you note open HW exams 2 free late none worlds

values

Molecular mass of air, M = 29 Kg/Krol 1 Km) = 6.027 × 1026 molecules 1 atm = 760 mm Hg = 1.013 x10 Pa 1 bar = 105 Pa PAIR | whm = 121 Kg/m3 20°C

WHY ROCKETS?

- TO DELIVER A PAYLOAD OF DESIRED "HEIGHT" (POSITION)

W/ DESIRED VELOCITY

TYPICAL SCENARIOS: { EARTH TO ORBIT ORBIT TRANSFER

DESINED MASS, POSITION, VELOCITY DETERMINED BY MISSION REQUIERMENTS (EM# 550/642)

ACHIEVABLE POSIT, VELOCITY,

MOST IMPORTANT ELEMENT OETER MINED BY (1. THRUST DURATION)

3. EJECTION JECOCITY

4. MASS PROPORTIONS (PAYLOAD, FUEL, STRUCTURAL)
5. GRAVITY FIELD
6. DRAG (MEDIUM, GEOMETRY, VELOCISY)
WE'LL STUDY 1.2,3,4

I. THERMO DYNAMICS

A DESCRIPTION OF THE ENERGY CONTAINED IN A SYSTEM AND OF THE DIFFERENT NAME TO CHANGE IT

DESCRIBE A "THER MO ONNIMIC STATE" WITH "VARIABLES OF STATE"

VARIABLE OF STATE = INDEPENDENT OF PROCESS USED TO REACH THAT STATE

INTERNAL ENERGY = e LOWER CASE: OF UNIT MASS UPPER: OF ENTIRE SYSTEM $[e] = \frac{J}{K_G}$

e med soles enorgy in a system due to kinetic energy of the rimour motions of molecules (or atoms depending on temperature

e POES NOT ACCOUNT FOR ANT BOLK MOTION

e changes IF:

i) HEAT IS SUPPLED TO OR REMOVED FROM OVER

20 IF SUPPLED TO THE STEEM

71) WORK IS EXCHMAED BETWEEN SYSTEM \$