ゼミノート#8

Algebraic-ness of Spaces and Stacks

七条彰紀

2019年1月4日

affine scheme, scheme. algebraic space, algebraic stack という貼り合わせの連なりを意識した定義をした後、algebraic stack が scheme の貼り合わせとして定義できることを示す。algebraic space と algebraic stack の定義は全く平行に行われる。そのことが分かりやすい記述を志向する。

1 Fiber Product of Fibered Categories

 ${f B}$:: category とする. この時, ${f Fib}^{
m bp}({f B})$ は以下のような圏であった.

Objects: fibered categories over B.

Arrows: base-preserving natural transformation.

新たに圏 CFG(B) を以下のように定義する.

Objects: categories fibered in groupoids over **B**. Arrows: base-preserving natural transformation.

重要なのは次の存在命題である.

命題 **1.1** ([1] p.10)

 ${f Fib}^{
m bp}({f B})$ と ${f CFG}({f B})$ は fibered product を持つ.

(証明). $\mathbf{Fib}^{\mathrm{bp}}(\mathbf{B})$ の射 $F: \mathfrak{X} \to \mathfrak{X}$ と $F: \mathcal{Y} \to \mathfrak{X}$ をとり、F, G の fiber product を実際に構成する.

■圏 P の構成 圏 P を以下のように定義する.

Objects: 以下の4つ組

- (i) $b \in \mathbf{B}$,
- (ii) $x \in \mathfrak{X}(b)$,
- (iii) $y \in \mathcal{Y}(b)$,
- (iv) \mathfrak{Z} の恒等射上の同型射 $\alpha: Fx \to Gy$.

Arrows:

射 $(b, x, y, \alpha) \rightarrow (b', x', y', \alpha')$ は、二つの射 $\phi_{\mathfrak{X}}: x \rightarrow x', \phi_{\mathfrak{Y}}: y \rightarrow y'$ であって以下を満たすもの:

 $\phi_{\mathfrak{X}}, \phi_{\mathfrak{Y}}$ は同じ射 $b' \to b$ 上の射で、以下の可換図式を満たすもの.

$$Fx \xrightarrow{\alpha} Gy$$

$$F\phi_x \downarrow \qquad \qquad \downarrow G\phi_y$$

$$Fx' \xrightarrow{\alpha'} Gy'$$

- ■P は fibered category / category fibered by groupoids. この圏は $(b,x,y,\alpha) \mapsto b$ によって fibered category と成る. 特に $\mathfrak{X}, \mathfrak{Y}, \mathfrak{X}$ が CFG ならば \mathbf{P} も C.F.G となる. このことは次のことから分かる: $\phi_{\mathfrak{X}}: x \to x'$ と $\phi_{\mathfrak{Y}}: y \to y'$ の両方が cartesian ならば $(\phi_{\mathfrak{X}}, \phi_{\mathfrak{Y}}): (b,x,y,\alpha) \to (b',x',y',\alpha')$ は cartesian である.
- **■P からの射影写像.** 定義から明らかに $\operatorname{pr}_1\colon \mathbf{P}\to \mathfrak{X}, \operatorname{pr}_2\colon \mathbf{P}\to \mathcal{Y}$ が定義できる. 射の定義にある可換図 式は,以下の A が natural transformation であることを意味している.

$$\begin{array}{cccc} A\colon & F\operatorname{pr}_1 & \to & G\operatorname{pr}_2 \\ & (F\operatorname{pr}_1)((b,x,y,\alpha)) = Fx & \mapsto & \alpha(Fx) = \alpha((F\operatorname{pr}_1)((b,x,y,\alpha))) \end{array}$$

A が base-preserving であることは α が恒等射上のもの (i.e. $\pi_{\mathfrak{T}}(\alpha)=\mathrm{id}$) であることから、isomorphism であることは α が同型であることから示される.

■P:: fiber product. 今, $W \in \mathbf{CFG}(\mathbf{B})$ と射 $S: W \to \mathfrak{X}, T: W \to \mathcal{Y}$ 及び base-preserving isomorphism:: $\delta: FS \to GT$ をとる. base-preserving なので, 任意の $w \in W$ について $\pi_{\mathfrak{X}}(FS(w)) = \pi_{\mathfrak{X}}(GT(w))$. そこで次のように関手が定義できる.

このように置くと、 $S=\operatorname{pr}_1H,T=\operatorname{pr}_2H$ となる。逆に $S\cong\operatorname{pr}_1H',T\cong\operatorname{pr}_2H'$ となる関手 $H':\mathcal{W}\to\mathbf{P}$ は H と同型に成ることが直ちに分かる.

注意 1.2

session4 命題 4.5 より、CFG の恒等射上の射は同型射である. したがって α : $Fx \to Gy$ に課せられた条件 は、 \mathcal{Z} が CFG ならば一つしか無い.

例 1.3

representable fibered category \mathcal{O} fiber product.

我々が扱うのは stack であるから、stack という性質が fiber product で保たれていて欲しいが、果たしてそうなる.

命題 **1.4** ([2] Prop 4.6.4)

 $\mathfrak{X}, \mathcal{Y}, \mathfrak{X}$:: stack over \mathbf{C} とし、morphism of stacks :: $F: \mathfrak{X} \to \mathfrak{X}, G: \mathcal{Y} \to \mathfrak{X}$ をとる. この時、F, G についての fiber product :: $\mathfrak{X} \times_{\mathfrak{X}} \mathcal{Y}$ は stack である.

2 Representable Morphism

注意 2.1

以下, S:: scheme とし, \mathbf{Sch}/S 上の site を \mathbf{C} と書く $((\mathbf{Sch}/S)_{\tau}$ といった表記も見かける). また, stack といえば stack in groupoid に限る.

定義 2.2 (Representability of Morphism of Spaces/Stacks)

- (i) morphism of spaces :: $f: \mathcal{X} \to \mathcal{Y}$ が representable(by scheme) であるとは、任意の S-scheme :: U と射 $U \to \mathcal{Y}$ について、fiber product :: $U \times_{\mathcal{Y}} \mathcal{X}$ (これは space) が representable by scheme であるということ。
- (ii) morphism of stacks :: $f: \mathfrak{X} \to \mathcal{Y}$ が representable (by space) であるとは、任意の S-space :: $U \ge$ 射 $U \to \mathcal{Y}$ について、fiber product :: $U \times_{\mathcal{Y}} \mathfrak{X}$ (これは stack) が representable by space であるということ、

補題 2.3

morphism of stacks :: $f: \mathfrak{X} \to \mathfrak{Y}$ が representable by space であることは、任意の S-scheme :: U と射 $U \to \mathfrak{Y}$ について、fiber product :: $U \times_{\mathfrak{Y}} \mathfrak{X}$ (これは stack)が representable by space であることと同値.

3 Diagonal Map

定義 3.1 (Diagonal Map)

 \mathfrak{X}/S (すなわち射 $\mathfrak{X} \to S$) の diagonal map :: Δ とは、以下の可換図式に収まる射のことである.

命題 3.2

 \mathcal{F} :: stack on $\tau(S)$ 以下は同値である.

- (i) $\Delta \colon \mathfrak{X} \to \mathfrak{X} \to \mathfrak{X}$:: representable.
- (ii) 任意の scheme :: U について, $U \to \mathfrak{X}$:: representable.
- (iii) 任意の scheme :: U,V と射 $U\to\mathfrak{X},V\to\mathfrak{X}$ について $U\times_{\mathfrak{X}}V$:: representable.

(証明). (TODO)

4 Property of Representable Space/Stack/Morphism

定義 4.1

まず space と morphism of spaces について定義する.

- (i) \mathcal{P} を scheme の性質とする. この時, representable space :: \mathcal{X} が性質 \mathcal{P} を持つとは, \mathcal{X} を represent する scheme が性質 \mathcal{P} を持つということである.
- (ii) \mathcal{P} を morphism of algebraic schemes の性質とする. この時, representable morphism of spaces :: $f: \mathcal{X} \to \mathcal{Y}$ が性質 \mathcal{P} を持つとは、任意の $U \in \mathbb{C}$ と射 $U \to \mathcal{Y}$ について、pr: $\mathcal{X} \times_{\mathcal{Y}} \mathcal{X} \to U$ (に対応 する morphism of algebraic schemes)が性質 \mathcal{P} を持つということである.

次に stack と morphism of stacks について定義する. これらは上の定義を殆ど機械的に置換すれば得られる.

- (i) \mathcal{P} を space (resp. scheme) の性質とする. この時, representable stack :: \mathcal{X} が性質 \mathcal{P} を持つとは, \mathcal{X} を represent する space(resp. scheme) が性質 \mathcal{P} を持つということである.
- (ii) \mathcal{P} を morphism of algebraic spaces の性質とする. この時, representable morphism of stacks :: $f: \mathfrak{X} \to \mathcal{Y}$ が性質 \mathcal{P} を持つとは,任意の $U \in \mathbf{C}$ と射 $U \to \mathcal{Y}$ について, $\mathrm{pr}: \mathfrak{X} \times_{\mathcal{Y}} \mathfrak{X} \to U$ (に対応 する morphism of algebraic spaces)が性質 \mathcal{P} を持つということである.

5 Algebraic-ness

5.1 Definition

定義 5.1 (Algebraic Space)

- (ii) scheme からの etale surjective morphism :: $U \to \mathcal{X}$ が存在する.

定義 5.2 (Deligne-Mumford / Artin Stack)

- (i) diagonal morphism :: $\Delta : \mathfrak{X} \to \mathfrak{X} \times_S \mathfrak{X}$ \mathfrak{h}^{\sharp} representable \mathfrak{TS} .
- (ii) algebraic space からの etale surjective morphism :: $U \to \mathfrak{X}$ が存在する.

以上の定義は Deligne-Mumford stack と呼ばれる. **algebraic stack** と言えばこちらを指す. etale でなく smooth を要求するものに弱めたものは Artin stack と呼ばれる.

参考文献

- [1] Tomàs L. Gòmez. Algebraic stacks. https://arxiv.org/abs/math/9911199v1.
- [2] Martin Olsson. Algebraic Spaces and Stacks (American Mathematical Society Colloquium Publications). Amer Mathematical Society, 4 2016.