1 Stable Matching

Consider the set of candidates $C = \{1, 2, 3\}$ and the set of jobs $J = \{A, B, C\}$ with the following preferences.

С		J	
1	A	В	С
2	В	A	С
3	Α	В	С

J		C	
A	2	1	3
В	1	2	3
С	1	2	3

Run the applicant propose-and-reject algorithm on this example. How many days does it take and what is the resulting pairing? (Show your work)

Solution:

The algorithm takes 3 days to produce a matching. The resulting pairing is $\{(A, 1), (B, 2), (C, 3)\}$

Jobs	Day 1	Day 2	Day 3
A	1),3	1	1
В	2	2,3	2
С			3

2 Good, Better, Best

In a particular instance of the stable marriage problem with n applicants and n jobs, it turns out that there are exactly three distinct stable matchings, S_1 , S_2 , and S_3 . Also, each applicant m has a different partner in the three matchings. Therefore each applicant has a clear preference ordering of the three matchings (according to the ranking of his partners in his preference list). Now, suppose for applicant m_1 , this order is $S_1 > S_2 > S_3$.

Prove that every applicant has the same preference ordering $S_1 > S_2 > S_3$.

Hint: Recall that a applicant-optimal matching always exists and can be generated using applicant proposes matching algorithm. By reversing the roles of stable matching algorithm, what other matching can we generate?

Solution:

In class, you were given the traditional propose-and-reject algorithm, which was guaranteed to produce a applicant-optimal matching. By switching applicant's and jobs's roles, you would be

CS 70, Fall 2020, DIS 02A

guaranteed to produce a job-optimal matching, which, by a lemma from class, would also be applicant-pessimal. By the very fact that these algorithms exist and have been proven to work in this way, you're guaranteed that an applicant-optimal and a applicant-pessimal matching always exist.

Since there are only three matchings in this particular stable matching instance, we thus know that one of them must be applicant-optimal and one must be applicant-pessimal. Since m_1 prefers S_1 above the other stable matchings, only that one can be applicant-optimal by definition of applicant-optimality. Similarly, since m_1 prefers S_3 the least, it must be the applicant-pessimal. Therefore, again from definitions of optimality/pessimality, since each applicant has different matches in the three stable matchings, they *must* strictly prefer S_1 to both of the others, and they *must* like S_3 strictly less than both of the others. Thus, each applicant's preference order of stable matchings must be S_1, S_2, S_3 .

CS 70, Fall 2020, DIS 02A 2