Conection examen du 29 avril 2015

(2.1) IES, debit et probabilité d'enneu	2.1	IES,	delit	J	probabilité	dernen
---	-----	------	-------	---	-------------	--------

a) Transmission saws iES si
$$1+\alpha < \beta$$

i.e: $R = \frac{1}{7} < \frac{2\beta}{1+\alpha} = \frac{2\times300\,\text{k}}{1/2} = 500\,\text{kBand}$
 $\Rightarrow D_2 < 500\,\text{kGr/s} = 0.5\,\text{MGr/s}$
 $D_4 = 2R < 1\,\text{MGr/s}$
 $D_9 = 3R < 1.5\,\text{MGr/s}$

Pour M=2, Pes = Pe < 103 est atteinte pau (El) >7dB, soit D, < 2.106 lits

Pour M=4, Pes= 2Pe < 2.10⁻³ est atteint pour (Ep)>10,5dB Soit D4 < 0,9.106 Pit/s

c) Em temant compte de 2 contraintes,
$$D_2 < 0.5$$
 MbH/s
$$D_4 < 0.9$$
 MbH/s
$$D_8 < 0.3$$
 MbH/s

C'est donc M= 4 qui pernet le détet moximal

P(Rij | Sij) = 1 - P(Rij | Sij) =1-P ((ge,gs) & gone hachunie / Sij) = 1 - P (0<3c<2) et 35>2) (A:3)) . Over 3c1x = x + bc et 9s1y = y + bs= $1 - P(-\lambda < bc < \lambda \text{ et } bs > \lambda + (\lambda, 3\lambda))$ $= 1 - P(-\lambda < \ell_c < \lambda) P(\ell_s) \lambda)$ can be et be sont independants de Sij et independants entre eur Pes = P (D {(Rij, Sij) }) = Z P(Rij, Sij) (einements disjoints) - & P(R; (S;) P(S;) = 1 (4x4+4x2+8x3)Q(2/0) $= 3Q\left(\frac{\lambda}{\sigma}\right)$

- les 4 semboles intérseurs ont 4 + proches voisins - les 4 coins en ont 2 - les 8 autres en ont 3 Donc en moyenne, K=3 Pour Cz, - les le symboles centrains ont 2 plus proches voisins - les 8 symboles sur les asses en ont 1 - Les le autres en ont 0 Pom C, domin = 22. Pom Ce, domin = 2 Donc $P_{e_{S_n}} = 3 Q(\frac{\lambda}{\sigma})$ or $P_{e_{S_n}} = Q(\frac{1}{\sigma})$ or retrouve lier le résultat de la guestion le d) Pour compare les deux modulations, on se place à puissance ezal : $P_1 = P_2$, soit $5 \lambda^2 = \frac{27}{4}$, donc $\lambda = \sqrt{\frac{27}{20}}$ Comme Q'est décroissante et $\lambda > 1$, $Q(\frac{\lambda}{\sigma}) < Q(\frac{1}{\sigma})$ Il est donc difficile de concluse Les courbes d'erneurs en fondron de 16 seront Pesa Pesa