

WCC/EPIC 70 12 JAN 2005

101-21302
STEP 03707250

BUNDESREPUBLIK DEUTSCHLAND

REC'D 01 AUG 2003

WIPO

PCT

**PRIORITY
DOCUMENT**

SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH RULE 17.1(a) OR (b)

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen: 102 31 891.3

Anmeldedatum: 12. Juli 2002

Anmelder/Inhaber: BASF Aktiengesellschaft,
Ludwigshafen/DE

Bezeichnung: Zubereitungen, enthaltend Diformiate

IPC: C 07 C, B 01 J, A 23 K

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

München, den 30. Mai 2003
Deutsches Patent- und Markenamt
Der Präsident
Im Auftrag

Weihmeyer

Ansprüche**1. Beschichtete Zubereitung, enthaltend**

Diformiate der allgemeinen Formel

XH(COOH)₂, wobei X = Na, K, Cs, NH₄

2. Zubereitung nach Anspruch 1, dadurch gekennzeichnet, dass als Diformiat Kaliumdiformiat eingesetzt wird.
3. Zubereitung nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass die Zubereitung weitere Bestandteile und/oder Zuschlagstoffe und/oder Träger enthält.
4. Zubereitungen nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass als Beschichtungsmittel wenigstens eine Verbindung eingesetzt wird, die ausgewählt ist aus der Gruppe bestehend aus
- a) Polyalkylenglycole, insbesondere Polyethylenglyolen mit einem zahlenmittleren Molekulargewicht von etwas 400 bis 15 000, wie z.B. 400 bis 10 000;
 - b) Polyalkylenoxid-Polymeren oder -Copolymeren mit einem zahlenmäßigen Molekulargewicht von etwa 4000 bis 20 000, insbesondere Blockcopolymere von Polyoxyethylen und Polyoxypropylen.
 - c) Substituierte Polystyrole, Maleinsäurederivate und Styrolmaleinsäurecopolymere
 - d) Polyvinylpyrrolidone mit einem zahlenmittleren Molekulargewicht von etwas 7 000 bis 1 000 000;
 - e) Vinylpyrrolidon/Vinylacetat-Copolymere mit einem zahlenmittleren Molekulargewicht von etwa 30 000 bis 100 000
 - f) Polyvinylalkohol mit einem zahlenmittleren Molekulargewicht von etwa 10 000 bis 200000, Polyphthalsäurevinylester
 - g) Hydroxypropylmethylecellulose mit einem zahlenmittleren Molekulargewicht von etwa 6000 bis 80 000.
 - h) Alkyl(meth)acrylat-Polymeren und -Copolymere mit einem zahlenmittleren Molekulargewicht von etwa 100 000 bis 1 000 000, insbesondere Ethylacrylat/Methylmethacrylat-Copolymere und Methacrylat/Ethylacrylat-Copolymere,

- i) Polyvinylacetat mit einem zahlenmittleren Molekulargewicht von etwas 250 000 bis 700 000 ggfl.s Stabilisiert mit Polyvinylpyrrolidon
 - j) Polyalkylenen, insbesonderen Polyethylenen
 - k) Phenoxyessigsäure-Formaldehyd-Harz
 - l) Cellulosederivate, wie Ethylcellulose, Ethylmethylcellulose, Methylcellulose, Hydroxypropylcellulose, Hydroxypropylmethylecellulose, Carboxymethylcellulose, Celluloseacetatphthalat
 - m) tierische, pflanzliche oder synthetische Fette
 - n) Tierische, pflanzliche Wachse oder chemisch modifizierte tierische, pflanzliche Wachse wie Bienenwachs, Candelillawachs, Carnaubawachs, Montanesterwachs und Reiskeimölwachs, Walrat, Lanolin, Jojobawachs, Sasolwachs
 - o) Tierische und pflanzliche Proteine wie z.B. Gelatine, Gelatinederivate, Gelatineersatzstoffe, Casein, Molke, Keratin, Sojaprotein; Zein und Weizenprotein
 - p) Mono- und Disaccharide, Oligosaccharide, Polysaccharide, z.B. Stärken, modifizierte Stärken sowie Pektine, Alginate, Chitosan, Carrageene
 - q) pflanzliche Öle, z.B. Sonnenblumen-, Distel-, Baumwollsaat-, Soja-, Maiskeim-, Oliven-, Raps-, Lein-, Ölbaum-, Kokos-, Ölpalmkernöl
 - r) synthetische oder halbsynthetische Öle, z.B. mittelkettige Triglyceride oder Mineralöle
 - s) tierische Öle wie z.B. Hering-, Sardine- und Walöl
 - t) gehärtete (hydrierte oder teilhydrierte) Öle/Fette wie z.B. von den oben genannten, insbesondere hydriertes Palmöl, hydriertes Baumwollsaatöl, hydriertes Sojaöl
 - u) Lackcoatings wie z.B. Terpene, insbesondere Schellack, Tolubalsam, Perubalsam, Sandarak, und Silikonharze
 - v) Fettsäuren, sowohl gesättigte als auch einfach und mehrfach ungesättigte C6 bis C24-Carbonsäuren
 - w) Kieselsäuren
5. Zubereitungen nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass sie als Pulver mit einer mittleren Partikelgröße von 20 µm bis 5000 µm vorliegt.
6. Verfahren zur Herstellung von beschichteten Zubereitungen nach mindestens einem der vorangegangenen Ansprüche, bei dem man
- (i) Diformate, gegebenenfalls unter Zumischung weiterer Bestandteile und/oder Zuschlagstoffe vorlegt
 - (ii) die so erhaltene Mischung mit einem Beschichtungsmittel, gegebenenfalls zusammen mit weiteren Bestandteilen beschichtet.

7. Verfahren zur Herstellung von beschichteten Zubereitungen nach mindestens einem der vorangegangenen Ansprüche, bei dem man

- (i) Beschichtungsmittel, gegebenenfalls unter Zugabe weiterer Bestandteile in einem geeigneten Apparat vorlegt
- (ii) Diformiate, gegebenenfalls zusammen mit weiteren Bestandteilen und/oder Zuschlagstoffen, zugibt

8. Verfahren zur Herstellung von Zubereitungen nach mindestens einem der vorangegangenen Ansprüche bei dem man die Diformiate vor der Beschichtung auf ein Trägermaterial aufbringt.

Verfahren zur Herstellung von beschichteten Zubereitungen nach mindestens einem der vorangegangenen Ansprüche bei dem man

- (i) Diformiate, gegebenenfalls zusammen mit weiteren Bestandteilen und/oder Zuschlagstoffen in Schmelzen geeigneter Beschichtungsmittel dispergiert
- (ii) die so erhaltenen Dispersionen zerteilt und erstarrt.

10. Verfahren zur Herstellung von beschichteten Zubereitungen nach mindestens einem der vorangegangenen Ansprüche bei dem man bei dem man

- (i) Diformiate, gegebenenfalls zusammen mit weiteren Bestandteilen und/oder Zuschlagsstoffen in einem Beschichtungsmittel, insbesondere einem lipophilen Beschichtungsmittel dispergiert,
- (ii) in einer wässrigen Lösung eines Schutzkolloids, vorzugsweise Gelatine oder/und Gelatinederivate oder/und Gelatineersatzstoffe unter Zusatz eines oder mehrerer Stoffe aus der Gruppe der Mono-, Di- der Polysaccharide emulgiert
- (iii) und anschließend einer Formgebung durch Sprühung und anschliessender oder gleichzeitiger Trocknung unterwirft.

11. Verwendung einer Zubereitung nach mindestens einem der vorangegangenen Ansprüche in Prämixen für Tierfuttermitteln.

12. Verwendung einer Zubereitung nach mindestens einem der vorangegangenen Ansprüche in Futtermittelzusatzstoffen und/oder Tierfuttermitteln, insbesondere für Schweine, Geflügel und Kälber.

13. Verfahren zur Herstellung eines Diformiat enthaltenden Futtermittels und/oder Futtermittelzusatzstoffes, dadurch gekennzeichnet, dass man

- (iii) eine Zubereitung nach einem der Ansprüche 1 bis 5 zur einem Prämix gibt
- (iv) den so erhaltenen Prämix mit den übrigen Inhaltsstoffen des Futtermittels und/oder Futtermittelzusatzstoffes mischt.

14. Tierfuttermittel enthaltend eine Zubereitung nach mindestens einem der vorangegangenen Ansprüche.

15. Verwendung der Zubereitungen nach mindestens einem der vorangegangenen Ansprüche als Leistungsförderer und/oder Wachstumsförderer.

16. Verwendung der Zubereitungen nach mindestens einem der vorangegangenen Ansprüche als Acidifier.

17. Verwendung der Zubereitungen nach mindestens einem der vorangegangenen Ansprüche als Konservierungsmittel.

18. Verwendung der Zubereitungen nach mindestens einem der vorangegangenen Ansprüche als Siliermittel.

19. Verwendung der Zubereitungen nach mindestens einem der vorangegangenen Ansprüche in Düngemitteln.

Zubereitungen, enthaltend Diformiate

Die vorliegende Erfindung betrifft beschichtete Zubereitungen enthaltend Diformate sowie die Verwendung dieser Zubereitungen.

Ameisensaure Formate und Herstellmethoden für diese sind seit langem bekannt. So ist in Gmelins Handbuch der anorganischen Chemie, 8. Auflage, Nummer 21, Seiten 816 bis 819, Verlag Chemie GmbH, Berlin 1928 sowie Nummer 22, Seiten 919 bis 921, Verlag Chemie GmbH, Berlin 1937 die Darstellung von Natriumformiat sowie von Kaliumformiat durch Lösen von Natriumformiat sowie von Kaliumformiat in Ameisensäure beschrieben. Durch Temperaturerniedrigung beziehungsweise durch Abdampfen überschüssiger Ameisensäure sind die kristallinen Diformate zugänglich.

DE 424017 lehrt die Herstellung von ameisensauren Natriumformaten mit verschiedenem Säuregehalt durch Einbringen von Natriumformiat in wässrige Ameisensäure in entsprechendem Molverhältnis. Durch Abkühlung der Lösung können die entsprechenden Kristalle erhalten werden.

Nach J. Kendall et al., Journal of the American Chemical Society, Vol. 43, 1921, Seiten 1470 bis 1481 sind ameisensaure Kaliumformate durch Lösen von Kaliumcarbonat in 90%-iger Ameisensäure unter Bildung von Kohlendioxid zugänglich. Die entsprechenden Feststoffe können durch Kristallisation erhalten werden.

GB 1,505,388 offenbart die Herstellung carbonsaurer Carboxylat-Lösungen durch Mischen einer Carbonsäure mit einer basischen Verbindung des gewünschten Kations in wässriger Lösung. So wird beispielsweise bei der Herstellung carbonsaurer Ammoniumcarboxylat-Lösungen Ammoniakwasser als basische Verbindung eingesetzt.

US 4,261,755 beschreibt die Herstellung von ameisensauren Formaten durch Reaktion eines Überschusses an Ameisensäure mit dem Hydroxid, Carbonat oder Bicarbonat des entsprechenden Kations.

WO 96/35657 lehrt die Herstellung von Produkten, welche Disalze der Ameisensäure enthalten, durch Vermischen von Kalium-, Natrium-, Cäsium- oder Ammonium-Formiat, Kalium-, Natrium- oder Cäsium-hydroxid, -carbonat oder -bicarbonat oder Ammoniak mit gegebenenfalls wässriger Ameisensäure, anschließender Kühlung des Reaktionsgemisches,

Filtration der erhaltenen Aufschlammung und Trocknung des erhaltenen Filterkuchens sowie Rückführung des Filtrats.

Die unveröffentlichten deutschen Anmeldungen DE 101 547 15.3 und DE 102 107 30.0 beschreiben Verfahren zur Herstellung von Formiaten.

Ameisensaure Formiate besitzen eine antimikrobielle Wirkung und werden beispielsweise eingesetzt zur Konservierung sowie zur Ansäuerung von pflanzlichen und tierischen Stoffen, wie etwa von Gräsern, landwirtschaftlichen Produkten oder Fleisch, zur Behandlung von Bioabfällen oder als Additiv zur Tierernährung.

WO 96/35337 A1 beschreibt Tierfuttermittel und Tierfutterzusätze, welche Diformate, besondere Kaliumdiformiat enthalten.

WO 97/05783 A1 (EP 845 947 A1) beschreibt ein Verfahren zur Kühlung und zur Konservierung von Fisch bei dem ein Kühlungsmittel mit Ameisensäure und/oder Mono/Di oder Tetrasalzen der Ameisensäure eingesetzt wird. In einer Ausführungsform wird dem Kühlungsmedium eine C1 bis C4 Monocarbonsäure zugesetzt.

WO 98/19560 (EP 957 690 A1) beschreibt ein Verfahren zu Herstellung eines Fischfutters bei dem Ammonium-, Natrium oder Kaliumdiformiat und Ameisensäure in ein Fischprodukte gegeben werden vor der Zugabe der weiteren Futtermittelbestandteile und Verarbeitung zu Fischfutter.

WO 98/20911 A1 (EP 961 620 B1) beschreibt ein Verfahren zur Behandlung von feuchtem organischem Abfall, bei dem man eine wässriger Zubereitung aus den Mono- und Disalzen von Format, Acetat oder Propionat einsetzt.

WO 01/19207 A1 beschreibt ein flüssiges Konservierungsmittel /Acidifier für Grass sowie landwirtschaftliche Erzeugnisse, Fische und Fischprodukte sowie Fleischprodukte, welches mindestens 50 Gew.-% Ameisensäure und Formate, Ammoniumtetraformat und 2-6 Gew.-% Kalium oder 2-10 Gew.-% Natrium in Form ihrer Hydroxide oder Formate enthält.

Die gemäß EP 0 824 511 B1 erhältlichen Diformate können in einem sich dem Herstellungsverfahren anschließenden Schritt getrocknet werden. Man erhält Produkte, die als Pulver vorliegen und in der Regel unter 5 Gew.-% Wasser aufweisen. Die so erhältlichen Diformate sind jedoch zur Formulierung in komplexen Substraten ungeeignet.

Kommerziell erhältliche Zubereitungen enthaltend Diformiate, wie sie beispielsweise unter der Bezeichnung FORMITM für die Tierernährung erhältlich sind, können nicht in sog. Prämixe eingearbeitet werden, da es zu Verklumpungen und oder Verbackungen des Prämixes kommt, der eine weitere Verarbeitung des Prämixes zu Futtermitteln unmöglich macht.

Bei der Herstellung von Futtermitteln werden Vitamine, Mineralstoffe, Spurenelemente, organische Säure und ggf. Enzyme in Form sogenannter „Prämixe“ oder „Base-Mixe“ zubereitet und dann mit den übrigen Inhaltsstoffen des Futtermittels gemischt. Mischt man die nach dem Stand der Technik bekannten (so z.B. nach EP 0 824 511 B1 erhältlichen) Diformiate in einen „Prämix“ ein, kommt es zu Verklumpungen und Verbackungen sowie zum Abau von Inhaltsstoffen des Prämix.

Aufgabe der vorliegenden Erfindung bestand darin, Zubereitungen zu Verfügung zu stellen, die es ermöglichen Diformiate in komplexen Substrate, beispielsweise in Tierfuttermitteln oder Prämixen für Tierfuttermitteln einzuarbeiten, ohne dass es zu Verklumpungen oder Verbackungen des Substrates kommt. Dabei ist von besonderem Interesse, dass die übrigen Inhaltsstoffe des komplexen Substrats durch die Zumischung nicht beeinflusst werden. Besondere Bedeutung bei den komplexen Substraten haben die sogenannten „Base-Mixe“ wie sie üblicherweise für die Futtermittelherstellung verwendet werden.

Es wurde gefunden, das diese Aufgabe mit den erfindungsgemäßigen Zubereitungen gelöst wird.

Gegenstand der Erfindung sind demnach beschichtete Zubereitungen, enthaltend Diformiate der allgemeinen Formel

Der Begriff „beschichtete Zubereitungen“ umfasst dabei alle Zubereitungen, bei denen die Oberfläche der Partikel der Zubereitung zu mindestens 50, insbesondere mindestens 70, ganz besonders bevorzugt mindestens 80, insbesondere mindestens 90 % bedeckt ist. Die Begriffe „beschichtet“, „verkapselt“, „umhüllt“ und „gecoatet“ werden im Sinne der vorliegenden Anmeldung synonym verwendet. Entsprechend werden die Begriffe Beschichtungsmittel/material, Coating-Material, Hüllmittel und Beschichtungsmittel synonym verwendet.

Beschichtete Zubereitungen sind insbesondere solche Zubereitungen, die im Kontakt mit Calciumcarbonat chemisch weitgehend unverändert bleiben. Ein Parameter für eine chemische Veränderung der Diformate ist die Freisetzung von CO₂.

Diformate

Diformate und ihre Herstellung sind im Stand der Technik beschrieben. Die erfindungsgemäß einzusetzenden Diformate sind beispielsweise nach dem in EP 0 824 511 B1 beschriebenen Verfahren erhältlich oder nach den in den noch unveröffentlichten deutschen Patentanmeldungen DE 101 547 15.3 und DE 102 107 30.0 beschriebenen Verfahren.

Diformate geeignet sind Natriumdiformat, Kaliumdiformat, Cäsiumdiformat sowie Ammoniumdiformat. In einer bevorzugten Ausführungsform wird als Diformat Kaliumdiformat eingesetzt. In einer weiteren Ausführungsform können die genannten Diformate in Mischungen untereinander eingesetzt werden.

Beschichtungsmittel

Als Beschichtungsmittel können alle Materialien eingesetzt werden, die in der Lage sind die Oberfläche von Zubereitungen, enthaltend Diformate zumindest 50 %, insbesondere mindestens 70, ganz besonders bevorzugt mindestes 80, insbesondere mindestens 90 % zu bedecken.

Als Beschichtungsmittel können alle Materialien eingesetzt werden, die in der Lage sind Zubereitungen, enthaltend Diformate so zu beschichten, dass diese im Kontakt mit Calciumcarbonat chemisch unverändert bleiben.

Der Fachmann wählt die Methode der Beschichtung in Abhängigkeit von dem eingesetzten Beschichtungsmittel.

In einer bevorzugten Ausführungsform sind die erfindungsgemäß beschichteten Zubereitungen mit einem Beschichtungsmittel versehen, welches wenigstens eine Verbindung enthält, die ausgewählt ist aus der Gruppe bestehend aus

- a) Polyalkylenglycole, insbesondere Polyethylenglycolen mit einem zahlenmittleren Molekulargewicht von etwas 400 bis 15 000, wie z.B. 400 bis 10 000:

- b) Polyalkylenoxid-Polymeren oder -Copolymeren mit einem zahlenmäßigen Molekulargewicht von etwa 4000 bis 20 000, insbesondere Blockcopolymere von Polyoxyethylen und Polyoxypropylen.
- c) Substituierte Polystyrole, Maleinsäurederivate und Styrolmaleinsäurecopolymere
- d) Polyvinylpyrrolidone mit einem zahlenmittleren Molekulargewicht von etwas 7 000 bis 1 000 000;
- e) Vinylpyrrolidon/Vinylacetat-Copolymere mit einem zahlenmittleren Molekulargewicht von etwa 30 000 bis 100 000
- f) Polyvinylalkohol mit einem zahlenmittleren Molekulargewicht von etwa 10 000 bis 200 000, Polyphthalsäurevinylester
- g) Hydroxypropylmethylcellulose mit einem zahlenmittleren Molekulargewicht von etwa 6000 bis 80 000.

- Alkyl(meth)acrylat-Polymeren und -Copolymere mit einem zahlenmittleren Molekulargewicht von etwa 100 000 bis 1 000 000, insbesondere Ethylacrylat/Methylmethacrylat-Copolymere und Methacrylat/Ethylacrylat-Copolymere,
- i) Polyvinylacetat mit einem zahlenmittleren Molekulargewicht von etwas 250 000 bis 700 000 ggfl.s Stabilisiert mit Polyvinylpyrrolidon
- j) Polyalkylenen, insbesonderen Polyethylenen
- k) Phenoxyessigsäure-Formaldehyd-Harz
- l) Cellulosederivate, wie Ethylcellulose, Ethylmethylcellulose, Methylcellulose, Hydroxypropylcellulose, Hydroxypropylmethylcellulose, Carboxymethylcellulose, Celluloseacetatphthalat
- m) Tierische, pflanzliche oder synthetische Fette
- n) Tierische, pflanzliche Wachse oder chemisch modifizierte tierische, pflanzliche Wachse wie Bienenwachs, Candelillawachs, Carnaubawachs, Montanesterwachs und Reiskeimölwachs, Walrat, Lanolin, Jojobawachs, Sasolwachs
- o) Tierische und pflanzliche Proteine wie z.B. Gelatine, Gelatinederivate, Gelatineersatzstoffe, Casein, Molke, Keratin, Sojaprotein; Zein und Weizenprotein
- p) Mono- und Disaccharide, Oligosaccharide, Polysaccharide, z.B. Stärken, modifizierte Stärken sowie Pektine, Alginate, Chitosan, Carrageene
- q) Pflanzliche Öle, z.B. Sonnenblumen-, Distel-, Baumwollsaat-, Soja-, Maiskeim-, Oliven-, Raps-, Lein-, Ölbaum-, Kokos-, Ölpalmkernöl
- r) Synthetische oder halbsynthetische Öle, z.B. mittelketige Triglyceride oder Mineralöle
- s) Tierische Öle wie z.B. Hering-, Sardine- und Walöl
- t) Gehärtete (hydrierte oder teilhydrierte) Öle/Fette wie z.B. von den oben genannten, insbesondere hydriertes Palmöl, hydriertes Baumwollsaatöl, hydriertes Sojaöl

- u) Lackcoatings wie z.B. Terpene, insbesondere Schellack, Tolubalsam, Perubalsam, Sandarak, und Silikonharze
- v) Fettsäuren, sowohl gesättigte als auch einfach und mehrfach ungesättigte C6 bis C24-Carbonsäuren
- w) Kieselsäuren

Die genannten Beschichtungsmittel können auch in Mischungen untereinander eingesetzt werden.

Als Beispiele für geeignete Polyalkylenglykole a) sind zu nennen: Polypropylenglykole und insbesondere Polyethylenglykole unterschiedlicher Molmasse, wie z. B. PEG 4000 oder PEG 6000, erhältlich von der BASF AG unter den Handelsnamen Lutrol E 4000 und Lutrol E 6000.

Als Beispiele für obige Polymere b) sind zu nennen: Polyethylenoxide und Polypropylenoxide, Ethylenoxid/Propylenoxid-Mischpolymere sowie Blockcopolymere, aufgebaut aus Polyethylenoxid- und Polypropylenoxidblöcken, wie z. B. Polymere, die von der BASF AG unter der Handelsbezeichnung Lutrol F68 und Lutrol F127 erhältlich sind.

Von den Polymeren a) und b) können vorzugsweise hochkonzentrierte Lösungen von bis zu etwa 50 Gew.-%, wie z. B. etwa 30 bis 50 Gew.-%, bezogen auf das Gesamtgewicht der Lösung, vorteilhaft eingesetzt werden.

Als Beispiele für obige Polymere d) sind zu nennen: Polyvinylpyrrolidone, wie sie beispielsweise von der BASF AG unter dem Handelsnamen Kollidon oder Luvikol vertrieben werden. Von diesen Polymeren können hochkonzentrierte Lösungen mit einem Zeststoffanteil von etwa 30 bis 40 Gew.-%, bezogen auf das Gesamtgewicht der Lösung, vorteilhaft eingesetzt werden.

Als Beispiel für oben genannte Polymere e) ist zu nennen: ein Vinylpyrrolidon/Vinylacetat-Copolymeres, welches von der BASF AG unter der Handelsbezeichnung Kollidon VA64 oder Kollicoat SR vertrieben wird. Von diesen Copolymeren können hochkonzentrierte Lösungen von etwa 30 bis 40 Gew.-%, bezogen auf das Gesamtgewicht der Lösung, besonders vorteilhaft eingesetzt werden.

Als Beispiel für obige Polymere f) sind zu nennen: Produkte, wie sie beispielsweise von der Fa. Hoechst unter der Handelsbezeichnung Mowiol vertrieben werden. Von diesen

Polymeren können Lösungen mit einem Feststoffanteil im Bereich von etwa 8 bis 20 Gew.-% vorteilhaft eingesetzt werden.

Als Beispiele für geeignete Polymere g) sind zu nennen: Hydroxypropylmethylcellulosen, wie sie z. B. vertrieben werden von Shin Etsu unter dem Handelsnamen Pharmacoat.

Als Beispiele für oben genannte Polymere h) sind zu nennen: Alkyl(meth)acrylat-Polymeren und -Copolymere, deren Alkylgruppe 1 bis 4 Kohlenstoffatome aufweist. Als konkrete Beispiele für geeignete Copolymeren sind zu nennen: Ethylacrylat/Methylmethacrylat-Copolymere, welche beispielsweise unter den Handelsnamen Kollicoat EMM 30D von der BASF AG oder unter dem Handelsnamen Eutragit NE 30 D von der Fa. Röhm vertrieben werden; sowie Methacrylat/Ethylacrylat-Copolymere, wie sie beispielsweise unter dem Handelsnamen Kollicoat MAE 30DP von der BASF AG oder unter dem Handelsnamen Eutragit 30/55 von der Fa. Röhm vertrieben werden. Derartige Copolymeren können beispielsweise als 10 bis 40 gew.-%ige Dispersionen erfindungsgemäß verarbeitet werden.

Als Beispiele für obige Polymere i) sind zu nennen: Polyvinylacetat-Dispersionen, welche mit Polyvinylpyrrolidon stabilisiert sind und beispielsweise unter der Handelsbezeichnung Kollicoat SR 30D von der BASF AG vertrieben werden (Feststoffgehalt der Dispersion etwa 20 bis 30 Gew.-%).

Fette, z.B. solche tierischen, pflanzlichen oder synthetischen Ursprungs; Wachse, z.B. pflanzliche Wachse, wie z.B. Candelilawachs, Carnaubawachs, Reiskeimölwachs etc.; tierische Wachse, wie z.B. Lanolin, Bienenwachs, Schellackwachs, Walrat sowie chemisch modifizierte Wachse wie Jojobawachs, Sasolwachs, Montaneesterwachs.

Weitere Beschichtungsmittel sind Gelatine, z.B. vom Rind, vom Schwein, vom Fisch.

Prinzipiell sind auch andere Beschichtungen aus der Lösung vorstellbar: z.B. Zuckercoating. Ebenso können pflanzliche Öle, z.B. Sonnenblumen-, Distel-, Baumwollsaat-, Soja-, Maiskeim- und Olivenöl, Raps-, Lein-, Ölbaum-, Kokosnuss-, Ölpalmkern- und Ölpalmöl; halbsynthetische Öle, z.B. mittelkettige Triglyceride oder Mineralöle und/oder tierische Öle, z.B. Hering-, Sardine- und Walöle in Betracht kommen.

Für die Beschichtung kann z.B. eine möglichst hochkonzentrierte, noch sprühfähige Flüssigkeit, wie z. B. eine bis 50 Gew.-%ige wässrige oder nichtwässrige Lösung oder Dispersion eines oder mehrerer der genannten Beschichtungsmaterialien eingesetzt werden. Ebenso können pulverförmige Beschichtungsmaterialien eingesetzt werden.

In einer weiteren Ausführungsform können die erfindungsgemäßen Zubereitungen neben den Diformiaten weitere Bestandteil enthalten. Die Wahl der weiteren Bestandteile richtet sich dabei nach dem gewählten Einsatzgebiet der so erhältlichen Zubereitungen. Als weitere Bestandteile im Sinne der vorliegenden Erfindung werden beispielsweise folgende Stoffe genannt: Organischen Säuren, Vitamine, Carotinoide, Spurenelementen, Antioxidantien, Enzyme, Aminosäuren, Mineralstoffen, Emulgatoren, Stabilisatoren, Konservierungsmittel, Bindemittel, Antibackmittel und/oder Geschmacksstoffe.

Die erfindungsgemäßen Zubereitungen können weiterhin enthalten Benzoesäure und/oder Salze der Benzoesäure und/oder Ester der Benzoesäure und/ oder Benzoesäurederivate und/oder Salze der Benzoesäurederivate und/oder Ester der Benzoesäurederivate.

Benzoesäurederivate sind beispielsweise hydroxysubstituierte Benzoesäuren, insbesondere p-Hydroxybenzoesäure.

Als Salze der Benzoesäure bzw. Benzoesäurederivate seien Alkali- und/oder Erdalkalisalze der Benzoesäure sowie Ammoniumbenzoat genannt. Als Alkalosalze seien genannt: Lithium, Natrium, Kalium und Caesium-benzoate. Besonders bevorzugt sind Natrium und/oder Kaliumbenzoate. Als Erdalkalisalze seien genannt Calcium, Strontium und Magnesiumbenzoate, besonders bevorzugt sind Calcium- und Magnesiumbenzoate.

Als Ester der Benzoesäure bzw. Benzoesäurederivate seien die Ester der Benzoesäure bzw. Benzoesäurederivate mit Alkoholen genannt. Als Alkohole sind sowohl monofunktionelle als auch bifunktionelle sowie polyfunktionelle (mehr als 2 Hydroxylgruppen) geeignet. Als Alkohole sind sowohl lineare als auch verzweigte Alkohole geeignet. Besonders geeignet sind Alkohole mit 1 bis 10 C-Atomen, insbesondere mit 1 bis 6 C-Atomen. Exemplarisch seien genannt: Methanol, Ethanol, n-Propanol, Isopropanol, n-Butylalkohol, i-Butylalkohol. Bevorzugt sind Methanol, Ethanol, n-Propanol und Isopropanol. Geeignete Ester der Benzoesäure bzw. Benzoesäurederivate sind weiterhin Ester mit Alkoholen mit mehr als einer Hydroxylgruppe, wie beispielsweise Glykole, exemplarisch sei 1,2 Propandiol genannt oder Triole, wie beispielsweise Glycerol.

Bevorzugt sind Methylbenzoat, Ethylbenzoat, n-Propylbenzoat und Isopropylbenzoat sowie Ethyl-p-Hydroxybenzoat, Natriummethyl-p-hydroxybenzoat, Propyl-p-hydroxybenzoat, Natriumpropyl-p-hydroxybenzoat, Methyl-p-hydroxybenzoat und Natriummethyl-p-hydroxybenzoat

In einer weiteren Ausführungsform können die genannten Benzoate in Mischungen untereinander eingesetzt werden.

In einer weiteren Ausführungsform können die erfindungsgemäßen Zubereitungen neben den Diformiaten Träger enthalten. In dieser Ausführungsform liegen die Diformiate bevorzugt an den Träger gebunden vor. Als Träger eignen sich „inerte“ Trägermaterialien, d.h. Materialien die keine negativen Wechselwirkungen mit den in der erfindungsgemäßen Zubereitung eingesetzten Komponenten zeigen. Selbstverständlich muss das Trägermaterial für die jeweilige Verwendungen als Hilfsstoff, z.B. in Tierfuttermitteln, unbedenklich sein. Als Trägermaterialien eignen sich sowohl anorganische als auch organisch Träger. Als Beispiele für geeignete Trägermaterialien sind zu nennen: niedermolekulare anorganische oder organische Verbindungen sowie höhermolekulare organische Verbindungen natürlichen oder synthetischen Ursprungs. Beispiele für geeignete niedermolekulare anorganische Träger sind Salze, wie Natriumchlorid, Calciumcarbonat, Natriumsulfat und Magnesiumsulfat Kieselgur oder Kieselsäure bzw. Kieselsäurederivate, wie z.B. Siliziumdioxide, Silicate oder Kieselgele. Beispiele für geeignete organische Träger sind insbesondere Zucker, wie z. B. Glucose, Fructose, Saccharose sowie Dextrine und Stärkeprodukte. Als Beispiele für höhermolekulare organische Träger sind zu nennen: Stärke- und Cellulosepräparate, wie insbesondere Maisstärke, Maisspindelmehl, gemahlene Reishüllen, Weizengrieskleie oder Getreidemehle, wie z. B. Weizen-, Roggen-, Gersten- und Hafermehl oder -Kleie oder Gemische davon.

In einer weiteren Ausführungsform können die erfindungsgemäßen Zubereitungen neben den Diformiaten Zuschlagstoffe enthalten. Unter "Zuschlagstoffen" werden Stoffe verstanden, die der Verbesserung der Produkteigenschaften, wie Staubverhalten, Fließeigenschaften, Wasseraufnahmefähigkeit und Lagerstabilität dienen. Zuschlagstoffe und/oder Mischungen davon können auf der Basis von Zuckern z.B. Lactose oder Maltodextrin, auf der Basis von Getreide- oder Hülsenfruchtprodukten z.B. Maisspindelmehl, Weizenkleie und Sojaschrot, auf der Basis von Mineralsalzen u.a. Calcium-, Magnesium-, Natrium-, Kaliumsalze, sowie auch D-Pantothensäure oder deren Salze selbst (chemisch oder fermentativ hergestelltes D-Pantothensäuresalz) sein.

Die erfindungsgemäßen Zubereitungen können die weiteren Bestandteile, Träger und Zuschlagsstoffe in Mischungen enthalten.

Die erfindungsgemäßen Zubereitungen liegen üblicherweise in fester Form, wie z.B. Pulver, Agglomerat, Adsorbat, Granulat und/oder Extrudat vor. Die Pulver weisen üblicherweise eine mittlere Partikelgröße von 20 µm bis 5000 µm auf.

Verfahren zur Herstellung

Zur Herstellung der erfindungsgemäßen Zubereitungen sind alle Verfahren geeignet, bei denen man Zubereitungen erhält, deren Oberfläche zumindest zu 50 % insbesondere mindestens 70, ganz besonders bevorzugt mindestes 80, insbesondere mindestens 90 % bedeckt ist.

Ein Gegenstand der vorliegenden Erfindung betrifft ein Verfahren zur Herstellung von beschichteten Zubereitungen enthaltend Diformiate bei dem man die Diformate, ebenfalls zusammen mit weiteren Bestandteilen und/oder Zuschlagstoffen in einem geeigneten Apparat vorlegt und mit einem Beschichtungsmittel, gegebenenfalls unter Zugabe weiterer Bestandteile, beschichtet.

Als geeignete Apparate seien exemplarisch genannt: Mischer, Wirbelschicht, Dragiertrommeln, Kugelcoater, etc..

Die vorteilhafterweise pulverförmig vorliegenden Diformate (z.B. in kristalliner, amorpher Form, in Form von Adsorbaten, Extrudaten, Granulaten und oder Agglomeraten) werden hierbei in dem geeigneten Apparat, bevorzugt in einer Wirbelschicht oder einem Mischer vorgelegt. Die Diformate werden, ggfs zusammen mit sogenannten Zuschlagstoffen und weiteren Bestandteilen vorgelegt. Pflugscharen, Schaufeln, Schnecken oder ähnliches dienen für eine mehr oder minder intensive Produktdurchmischung. Klassische Beispiele sind Pflugscharmischer, Konusschneckenmischer oder ähnliche Apparate.

Auch sehr flache, kasten- oder trogförmige Bauformen mit einer oder mehreren Schnecken sind einsetzbar. Weitere Bauformen sind schnelllaufende Mischer wie z.B. der Turbolizer ® Mixer/Coater von Hosokawa Micron B.V. sowie alle Arten von Trommelcoatern oder Dragiertrommeln.

Alternativ ist die Produktdurchmischung über eine Bewegung des gesamten Behälters möglich. Beispiele hierfür sind Taumelmischer, Trommelmischer oder ähnliches. Eine weitere Möglichkeit besteht in der Verwendung von pneumatischen Mischern. Die Mischung von Feststoffen ist beispielsweise in Ullmann's Encyclopedia of Industrial Chemistry, Sixth Edition, 2000, Mixing of Solids beschrieben.

Die Beschichtung kann entweder direkt in dem Apparat nachgeschaltet durchgeführt werden.

Das genannte Verfahren kann sowohl kontinuierlich als auch diskontinuierlich durchgeführt werden (in entsprechend diskontinuierlich oder kontinuierlich arbeitenden Mischern)

In Einzelfällen kann es erforderlich sein, beim Aufbringen des Beschichtungsmittels oder unmittelbar danach/davor Puderungsmittel wie Talkum, Silikate oder ähnliches zum Vermeiden von Verklebungen zuzugeben.

Die Dosierung/Zugabe des Beschichtungsmittels erfolgt ggf. zusammen mit weiteren Bestandteilen üblicherweise über Einrichtungen zum Auftröpfen oder Aufdüsen. Beispiele für sind Lanzen, Brauseköpfe, Einstoff- oder Mehrstoffdüsen, in seltenen Fällen rotierende Tropf- oder Zerstäubungseinrichtungen. Im einfachsten Fall ist die Zugabe auch lokal als konzentrierter Strahl möglich.

Ein Gegenstand der vorliegenden Erfindung betrifft ein Verfahren zur Herstellung von beschichteten Zubereitungen enthaltend Diformiate bei dem man Beschichtungsmittel, gegebenenfalls unter Zugabe weiterer Bestandteile in einem geeigneten Apparat vorlegt und Diformiate, gegebenenfalls zusammen mit weiteren Bestandteilen und/oder Zuschlagstoffen, zugibt.

In einer Ausführungsform dieses Verfahrens wird das zunächst feste Beschichtungsmittel in einen geeigneten Apparat gegeben und infolge einer Wandbeheizung des Apparats oder der Wärme oder infolge des mechanischen Energieeintrags geschmolzen oder erweicht. Die Diformiate und gegebenenfalls weiteren Bestandteile und/oder Zuschlagsstoffe werden zugegeben und mit dem geschmolzenen oder erweichten Beschichtungsmittel überzogen.

In einer Ausführungsform dieses Verfahren werden zusätzlich zum werden Beschichtungsmittel Träger im Mischer vorgelegt und ggf. vorgemischt und infolge hohem mechanischem Energieeintrags im selben oder in separaten Apparaten (Beispiele sind alle bereits genannten Mischer aber auch langsamlaufende Mühlen und Trockner) werden die Diformiaten sowie gegebenenfalls weiteren Bestandteilen und/oder Zuschlagstoffen beschichtet.

Die Zugabe der Beschichtungsmittel kann bei Überdruck, Normaldruck oder bei Unterdruck gegen Atmosphäre, vorzugsweise bei Normaldruck und Unterdruck erfolgen.

In einzelnen Fällen kann es vorteilhaft sein, die Diformiate sowie gegebenenfalls weitere Bestandteile und/oder Zuschlagsstoffe und/oder das Beschichtungsmittel vorzuheizen oder zu kühlen (Veränderung von Viskosität, Veränderung der Benetzungseigenschaften, Beeinflussung der Erstarrungseigenschaften) sowie Wärme über die Behälterwand und/oder die Mischwerkzeuge zuzuführen oder zu entziehen. In einzelnen Fällen kann es erforderlich sein, Wasser- oder Lösungsmitteldämpfe abzuführen. Eine Veränderung der Benetzungseigenschaften kann auch durch Zugabe oberflächenaktiver Substanzen wie Emulgatoren oder ähnliches erreicht werden.

Zur Verbesserung der Beschichtungseigenschaften kann es vorteilhaft sein, den Mischer zu evakuieren sowie ggfs mit Schutzgas zu überdecken. In Abhängigkeit vom Beschichtungsmaterial ist dies mehrfach zu wiederholen.

Die Zugabe der Diformiate, ggf. weiterer Bestandteile und/oder Zuschlagsstoffen sowie der Beschichtungsmittel kann bei Bedarf an unterschiedlichen Orten im Apparat erfolgen.

In einer weiteren Ausführungsform der vorliegenden Erfindung erfolgt die Herstellung der erfindungsgemäß beschichteten Zubereitungen diskontinuierlich oder kontinuierlich in Wirbelschichten erfolgen. Die Bewegung der Partikeln erfolgt durch das gegebenenfalls heiße oder gekühlte Wirbelgas. Als Wirbelgas sind z.B. Luft oder auch Inertgas (z.B. Stickstoff) geeignet. In Einzelfällen kann es sinnvoll sein, über die Behälterwand sowie über in die Wirbelschicht eingetauchte Wärmetauscherflächen Wärme zuzuführen oder zu entziehen. Geeignete Wirbelschichten sowie die erforderliche Peripherie sind Stand der Technik.

Die diskontinuierliche oder kontinuierliche Dosierung und gegebenenfalls die Vorheizung der Diformate, gegebenenfalls der weiteren Bestandteile und Zuschlagstoffe erfolgt durch oben beschriebenen Einrichtungen, die dem Fachmann bekannt sind.

Beispielsweise können die Diformate in einem Wirbelbett vorgelegt werden. Diese werden verwirbelt und durch Aufsprühen einer wässrigen oder nichtwässrigen Lösung oder Dispersion oder einer Schmelze eines geeigneten Beschichtungsmittels beschichtet.

Hilfreich sind nach dem Stand der Technik bekannte Einbauten, welche eine gezielte Durchmischung des zu beschichtenden Feststoffs unterstützen. Beispiele hierfür sind drehende Verdrängungskörper, Wursterrohre aber auch speziell gefertigte Wirbelboden geometrien (Neigung und/oder Perforierung des Bodens) oder die

Unterstützung der gezielten Feststoffbewegung durch sinnvoll angeordnete Düsen, z.B. tangential angeordnete Einstoff- oder Zweistoff oder Mehrstoffdüsen.

Die Herstellung von beschichteten Zubereitungen, enthaltend Diformiate kann in Einzelfällen vorteilhaft in Kombination von Mischer und Wirbelschicht erfolgen.

Ein Gegenstand der vorliegenden Erfindung betrifft ein Verfahren zur Herstellung von beschichteten Zubereitungen enthaltend Diformiate bei dem Diformate, gegebenenfalls zusammen mit weiteren Bestandteilen und/oder Zuschlagstoffen in Schmelzen geeigneter Beschichtungsmittel dispergiert und anschließend die so erhaltenen Dispersionen zerteilt und erstarrt.

In einer Ausführungsform dieses Verfahren können die Diformate, gegebenenfalls zusammen mit weiteren Bestandteilen und/oder Zuschlagstoffen in Form einer Schmelze eingesetzt werden.

In einer weiteren Ausführungsform werden die erfindungsgemäßen Zubereitungen erhalten, indem man die Diformate (und gegebenenfalls die weiteren Bestandteile und/oder Zuschlagsstoffe) in Schmelzen geeigneter Beschichtungsmittel suspendiert und anschließend die so erhaltenen Dispersionen zerstäubt und/oder zerteilt und erstarren lässt. Geeignete Beschichtungsmittel in Form von Schmelzen sind Stoffe deren Schmelzpunkt kleiner ist als der Schmelzpunkt der zu suspendierenden Diformate. Beispielsweise seien genannt Fette, Wachse, Öle, Lipide, lipidartige und lipidlösliche Substanzen mit entsprechenden Schmelzpunkten.

Diese Suspensionen werden anschließend in einem Kaltgasstrom –mit und ohne Verwendung von Bepuderungsmitteln – zerstäubt, so dass beschichtete Zubereitungen, enthaltend Diformate, entstehen. Diese Verfahren sind dem Fachmann beispielsweise unter den Begriffen Sprühkühlung, Sprüherstarrung, Prillen oder Schmelzeverkapselung sowie Erstarren auf Kühlbändern, - walzen, Pastilliertellern und –bändern bekannt.

Bevorzugt werden die Schmelzen in einem ersten Schritt hergestellt, bevor die Diformate zugegeben und suspendiert werden. Das Suspendieren kann batchweise im Rührkessel oder auch kontinuierlich in z.B. dafür geeigneten Pumpen oder infolge ausreichend hoher Turbulenz einfach in Injektoren und Rohrleitungen erfolgen. Möglich ist auch der Einsatz statischer Mischer. Die Schutzbeheizung der erforderlichen Anlagenteile – einschließlich der Leitungen und Zerstäubungsorgane – ist dem Fachmann bekannt.

Als Kühlgas kommen bevorzugt Luft und Stickstoff in Frage. Die Gasführung kann im Gleich-, Gegen- oder Kreuzstrom erfolgen. Das Verfahren kann in klassischen Sprüh-, Prilltürmen oder sonstigen Behältern durchgeführt werden. Wirbelschichten mit und ohne Hold-up sind ebenfalls geeignet. Das Verfahren kann diskontinuierlich oder kontinuierlich betrieben werden. Die Abtrennung des Feststoffs ist z.B. in Zyklen oder Filtern möglich. Alternativ ist das Auffangen des Feststoffs mit und ohne Nachkühlung in Wirbelschichten oder Mischern denkbar.

Als Zerstäubungsorgane sind Düsen (Ein- und Zweistoffdüsen oder Sonderbauformen) sowie Zerstäuberräder oder Zerstäuberscheiben oder -teller oder Zerstäuberkörbe - oder Sonderbauformen hier von - geeignet.

In einer weiteren Ausführungsform zerstäubt und erstarrt man die so erhältlichen Dispersionen in Flüssigkeiten, in denen weder die Diformiate noch die Beschichtungsmittel löslich sind. Eine klassische Festflüssigtrennung mit anschließender Trocknung führen zur erfindungsgemäßen Zubereitung.

Ein weiterer Gegenstand der vorliegenden Erfindung betrifft ein Verfahren zur Herstellung von beschichteten Zubereitungen enthaltend Diformiate, bei dem man Diformate, ggf. weiterer Bestandteile und/oder Zuschlagsstoffen in einem Beschichtungsmittel, insbesondere einem lipophilen Beschichtungsmittel dispergiert, in einer wässrigen Lösung eines Schutzkolloids, vorzugsweise Gelatine oder/und Gelatinederivate oder/und Gelatineersatzstoffe unter Zusatz eines oder mehrerer Stoffe aus der Gruppe der Mono-, Di- oder Polysaccharide emulgiert und anschließend einer Sprühtrocknung unterwirft.

In diesem Verfahren werden bevorzugt sehr feinkörnige Diformiate eingesetzt, die beispielsweise durch Fällung, Kristallisation, Sprühtrocknung oder Mahlung erhalten werden.

In einer Ausführungsform können den Diformaten vor der Dispergierung in der lipophilen Komponente ein oder mehrere Emulgatoren und/oder Stabilisatoren zugegeben werden.

Als lipophile Beschichtungsmittel eignen sich Schmelzen aus Fetten, Ölen, Wachsen, Lipiden, lipidartigen und -lipidlöslichen Stoffen mit einem Schmelzpunkt der kleiner ist als der Schmelzpunkt der eingesetzten Diformate.

Die so erhaltenen Dispersionen (die Diformate enthaltende Ölträpfchen) werden in einem anschließenden Verfahrensschritt in einer wässrige Lösung eines Schutzkolloids, vorzugsweise Gelatine oder/und Gelatinederivate oder/und Gelatineersatzstoffe unter Zusatz

eines oder mehrerer Stoffe aus der Gruppe der Mono-, Di- der Polysaccharide vorzugsweise Maisstärke emulgiert. Die so erhaltenen Emulsionen werden einer Formgebung durch Sprühung und anschließender oder gleichzeitiger Trocknung unterworfen.

In einer weiteren Ausführungsform enthalten die erfindungsgemäß beschichteten Zubereitungen die Diformiate an einen Träger gebunden.

Die Herstellung der Träger gebundenen Zubereitungen erfolgt nach dem Fachmann bekannten Herstellungsverfahren, wie z.B. durch Adsorption der erfindungsgemäßen Zubereitungen in flüssiger Form an die Trägersubstanzen.

Anwendung

erfindungsgemäßen Zubereitungen eignen sich zur Verwendung in Futtermittel für Tiere (Tierfuttermitteln). Beispielsweise seien genannt: Schweine, Kühe, Geflügel und Haustiere, insbesondere Ferkel, Zuchtsauen, Mastschweine und Kälber.

Die erfindungsgemäßen Zubereitungen eignen sich insbesondere als Zusatz zu Tierfuttermitteln in Form von Futtermittelzusatzstoffen.

Futtermittelzusatzstoffe sind gemäß Futtermittelgesetz insbesondere solche Stoffe, die einzeln oder in Form von Zubereitungen dazu bestimmt sind, Futtermitteln zugesetzt zu werden, um

- die Beschaffenheit der Futtermittel oder der tierischen Erzeugnisse zu beeinflussen,
 - den Bedarf der Tiere an bestimmten Nähr- oder Wirkstoffen zu decken oder die tierische Erzeugung zu verbessern, insbesondere durch Einwirkung auf die Magen- und Darmflora oder die Verdaulichkeit der Futtermittel oder durch Verringerung von Belästigungen durch Ausscheidungen der Tiere, oder
 - besondere Ernährungszwecke zu erreichen oder bestimmte zeitweilige ernährungsphysiologische Bedürfnisse der Tiere zu decken.
- Als Futtermittelzusatzstoffe gelten weiterhin Stoffe, die durch Rechtsverordnung nach § 4 Abs. 1 Nr. 3 Buchstabe b des Futtermittelgesetzes als Zusatzstoffe zugelassen sind.

Die erfindungsgemäßen Zubereitungen eignen sich insbesondere als Zusatz zu Prämixen für Tierfuttermittel. Prämixe sind Mischungen von Mineralstoffen, Vitaminen, Aminosäuren, Spurenelementen sowie ggfs. Enzymen. Mit den erfindungsgemäßen Zubereitungen ist es möglich Prämixe, enthaltend Diformiate herzustellen.

Ein weiterer Gegenstand der vorliegenden Erfindung betrifft ein Verfahren zur Herstellung eines Diformiat enthaltenden Futtermittels und/oder Futtermittelzusatzstoffes, dadurch gekennzeichnet, dass man

- (i) eine beschichtete Zubereitung enthaltend Diformate zu einem Prämix gibt
- (ii) den so erhaltenen Prämix mit den übrigen Inhaltsstoffen des Futtermittels und/oder Futtermittelzusatzstoffes mischt.

Die erfindungsgemäßen Zubereitungen eignen sich insbesondere als sogenannte „Acidifier“. Unter Acidifier werden solche Stoffe verstanden, die den pH-Wert absenken. Dabei sind sowohl solche Stoffe umfasst, die den pH-Wert im Substrat (z.B. Tierfutter) absenken als auch solche die den pH-Wert im Magen-Darm Trakt des Tier absenken.

Die erfindungsgemäßen Zubereitungen eignen sich insbesondere als Leistungsförderer. In einer bevorzugten Ausführungsform werden die erfindungsgemäßen Zubereitungen als Leistungsförderer für Schweine und Geflügel eingesetzt.

Tierfuttermittel werden so zusammengesetzt, dass der entsprechende Bedarf an Nährstoffen für die jeweilige Tierart optimal gedeckt wird. Im allgemeinen werden pflanzliche Futtermittelkomponenten wie Mais-, Weizen- oder Gerstenschrot, Sojavollbohnenschrot, Sojaextraktionsschrot, Leinextraktionsschrot, Rapsextraktionsschrot, Grünmehl oder Erbsenschrot als Rohproteinquellen gewählt. Um einen entsprechenden Energiegehalt des Futtermittels zu gewährleisten, werden Sojaöl oder andere tierische oder pflanzliche Fette gegeben. Da die pflanzlichen Proteinquellen einige essentielle Aminosäuren nur in ausreichender Menge beinhalten, werden Futtermittel häufig mit Aminosäuren angereichert. Hierbei handelt es sich vor allem um Lysin und Methionin. Um die Mineralstoff- und Vitaminversorgung der Nutztiere zu gewährleisten, werden außerdem Mineralstoffe und Vitamine zugesetzt. Die Art und Menge der zugesetzten Mineralstoffe und Vitamine hängt von der Tierspezies ab und ist dem Fachmann bekannt (s. z.B. Jeroch et al., Ernährung landwirtschaftlicher Nutztiere, Ulmer, UTB). Zur Deckung des Nährstoff- und Energiebedarfs können Alleinfutter verwendet werden, die alle Nährstoffe im bedarfsdeckenden Verhältnis zueinander enthalten. Es kann das einzige Futter der Tiere bilden. Alternativ kann zu einem Körnerfutter aus Getreide ein Ergänzungsfutter gegeben werden. Hierbei handelt es sich um eiweiß-, mineralstoff- und vitaminreiche Futtermischungen, die das Körnerfutter sinnvoll ergänzen.

Die erfindungsgemäßen Zubereitungen eignen sich weiterhin als Konservierungsmittel, insbesondere als Konservierungsmittel für Grünfutter und/oder Tierfutter.

Es wurde gefunden, dass die erfindungsgemäßen Zubereitungen vorteilhafterweise bei der Herstellung von Silage eingesetzt werden können. Sie beschleunigen die Milchsäuregärung bzw. Verhindern ein Nachgären. Ein weiterer Gegenstand der Erfindung betrifft daher die Verwendung der erfindungsgemäßen Zubereitungen als Silierungsmittel (Silierhilfsmittel).

Ein weiterer Gegenstand der vorliegenden Erfindung betrifft die Verwendung der erfindungsgemäßen Zubereitungen in Düngemitteln.

Zusammenfassung

Die vorliegende Erfindung betrifft beschichtete Zubereitung, enthaltend Diformiate der allgemeinen Formel $XH(COOH)_2$, wobei $X = \text{Na}, \text{K}, \text{Cs}, \text{NH}_4$ und deren Verwendung.