```
In [2]:
```

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings("ignore")
```

In []:

In [26]:

#1st dataset
weather=pd.read_csv(r"C:\Users\Pranav\Desktop\Prachi\titanic-dataset\weather data.csv")
weather.head(10)

Out[26]:

	date	country	city	Latitude	Longitude	tavg	tmin	tmax	wdir	wspd	pres
0	21-07-2018	Abkhazia	Sukhumi	43.001525	41.023415	23.4	20.9	25.5	329.0	9.3	1009.6
1	22-07-2018	Abkhazia	Sukhumi	43.001525	41.023415	23.5	21.0	25.7	337.0	9.4	1010.0
2	23-07-2018	Abkhazia	Sukhumi	43.001525	41.023415	23.5	21.1	25.5	41.0	8.2	1007.7
3	24-07-2018	Abkhazia	Sukhumi	43.001525	41.023415	24.3	20.8	27.1	10.0	9.3	1004.4
4	25-07-2018	Abkhazia	Sukhumi	43.001525	41.023415	26.5	22.7	30.0	9.0	9.7	1002.0
5	26-07-2018	Abkhazia	Sukhumi	43.001525	41.023415	26.7	24.6	28.7	10.0	9.8	1006.7
6	27-07-2018	Abkhazia	Sukhumi	43.001525	41.023415	26.5	24.6	28.1	343.0	8.4	1009.1
7	28-07-2018	Abkhazia	Sukhumi	43.001525	41.023415	26.4	24.5	28.2	342.0	8.6	1007.5
8	29-07-2018	Abkhazia	Sukhumi	43.001525	41.023415	26.3	24.4	28.1	334.0	9.3	1007.0
9	30-07-2018	Abkhazia	Sukhumi	43.001525	41.023415	26.5	24.5	28.4	347.0	9.3	1007.4

In [23]:

```
row=weather.shape[0]
r_null=weather.isnull().sum()
r_null #to check where are null values
```

Out[23]:

date 0
country 0
city 0
Latitude 0
Longitude 0
tavg 0
tmin 0
tmax 0
wdir 0
wspd 0
pres 0
dtype: int64

In [25]:

r_null/row*100

Out[25]:

date 0.0 country 0.0 city 0.0 Latitude 0.0 Longitude 0.0 tavg 0.0 0.0 tmin tmax 0.0 wdir 0.0 wspd 0.0 pres 0.0 dtype: float64

```
In [22]:
```

```
weather['tavg']=weather['tavg'].fillna(weather['tavg'].mean())
weather['tmin']=weather['tmin'].fillna(weather['tmin'].mean())
weather['tmax']=weather['tmax'].fillna(weather['tmax'].mean())
weather['wdir']=weather['wdir'].fillna(weather['wdir'].mean())
weather['wspd']=weather['wspd'].fillna(weather['tavg'].mean())
weather['pres']=weather['pres'].fillna(weather['pres'].mean())
```

In [28]:

```
sns.barplot(y=weather['country'],x=weather['tavg'])
```

Out[28]:

<AxesSubplot:xlabel='tavg', ylabel='country'>

In [32]:

```
sns.distplot(weather['tavg'])
```

Out[32]:

<AxesSubplot:xlabel='tavg', ylabel='Density'>

In [33]:

```
sns.heatmap(weather.corr(),cbar=True)
```

Out[33]:

<AxesSubplot:>

In [50]:

In []:	
In []:	
In []:	
In []:	
In []:	
In []:	