Package 'Reanalysis'

November 8, 2017

Type Package
Title Reads reanalysis data for CRHM
Version 1.2.4
Date 2017-11-08
Author Kevin Shook, Centre for Hydrology, University of Saskatchewan
Maintainer Kevin Shook <kevin.shook@usask.ca></kevin.shook@usask.ca>
Description Functions to read and process files of reanalysis data from WATCH, ERA and NARR.
Depends R (>= 3.1)
Imports CRHMr (>= 2.5.0), lubridate(>= 1.3), timeDate, stringr(>= 1.0), zoo, proj4, RNetCDF, reshape2, ncdf4, PCICt
License GPL-3
LazyData true
URL www.usask.ca/hydrology
RoxygenNote 6.0.1
NeedsCompilation no
R topics documented:
Reanalysis-package CanRCM4AdjustedCreateHourlyObs CanRCM4adjustedGetNearestTimeseries CanRCM4unadjustedGetNearestTimeseries ERAdailyArealPrecip ERAdeaccum ERAgetArealPrecip ERAgetMultipleLocationTimeseries ERAgetNearestTimeseries ERAhourlyAirtemp ERAhourlyLongwave ERAhourlyPrecip ERAhourlyPrecip ERAhourlyPrecip ERAhourlyPrecip ERAhourlyPrecip
ERAhourlyShortwave

2 Reanalysis-package

	ERAhourlyVP	18
	ERAhourlyWindspeed	19
	land	20
	NARRdownloadNetCDF	21
	NARRgetNearestTimeseries	22
	WATCHcreateHourlyWFDEIobs	23
	WATCHcreateHourlyWFDobs	25
	WATCHcreateWFDEIobs	27
	WATCHcreateWFDobs	28
	WATCHdailyArealPrecip	29
	WATCHgetWFDarealPrecip	30
	WATCHgroupWFDEIobs	
	WATCHgroupWFDobs	33
	WATCHhourlyObs	34
	WRFbyloc2obs	35
	WRFnearest2obs	37
Index		39
Rean	alysis-package Contains functions to download and process reanalysis data	

Description

The package contains functions to download and process reanalysis data. Functions are provided for ERA (-Interim and -40), NARR and WATCH datasets. Because there are so many functions and all of the datasets are slightly different, each function name includes the dataset as a prefix.

References

To cite **Reanalysis** in publications, use the command citation('Reanalysis') to get the current version of the citation.

The CRHM program is described in:

Pomeroy, John W, D M Gray, T Brown, N Hedstrom, W L Quinton, R J Granger, and S K Carey. 2007. "The Cold Regions Hydrological Model: A Platform for Basing Process Representation and Model Structure on Physical Evidence". Hydrological Processes 21 (19): 2650-2567.

The CRHM model may be downloaded from http://www.usask.ca/hydrology/CRHM.php.

CanRCM4AdjustedCreateHourlyObs

Extracts all CRHM obs variables for a specified location and duration and constructs an obs file of hourly values.

Description

This function extracts the time series of 3-hourly values from a set of NetCDF files of CanRCM4 data, which has been bias-corrected using the WFDEI 3-hour reanalysis values. The values are stored at a spatial resolution of 0.125 degees, so the closest point to the specified location will be used. Note that because the reanalysis data omit February 29, the values returned by this function will hbe interplolate from February 28 and March 1 for leap days, except for precipitation values, which are set to zero. The variables are converted to values, and variable names, appropriate for CRHM when they are extracted. The three-hourly values of temeperature, wind speed

Usage

```
CanRCM4AdjustedCreateHourlyObs(startDate = "1979-01-01",
 endDate = "2100-12-01", longitude = 0, latitude = 0,
  sunTimeOffset = 2, locationName = "",
 fileStr = "_CanRCM4_hist+fut_1979_2100", inDir = "./", outDir = "./",
  timezone = "etc/GMT+7", write3hour = FALSE, quiet = FALSE)
```

Arguments

startDate	Optional. Beginning date of data to be extracted. A string formatted as "yyyymm-dd". The default value of '1979-01-01' is the beginning of the data.
endDate	Optional. Beginning date of data to be extracted. A string formatted as "yyyymm-dd". The default value of '2100-12-01' is the end of the data.
longitude	Required. The longitude of the point being sought. Valid values appear to be between -90 and -142, but the input value is <i>not</i> checked for validity, in case the model extent changes.
latitude	Required. The latitude of the point being sought. Valid values appear to be between 45 and 75, but the input value is <i>not</i> checked for validity, in case the model extent changes.
sunTimeOffset	Optional. The offset (in hours) is added to the solar time to convert it to local time. The default value 2 shifts the daily peak to occur at 2pm. This is required to downscale the Qsi values.
locationName	Optional. Name for the location. This value is used to construct the name of the output file.
fileStr	Optional. The name for the NetCDF .nc files containing the data, exclusive of their path and variable name.
inDir	Optional. The path to the NetCDF .nc files. Default is the current directory.
outDir	Optional. The path output file(s). Default is the current directory.

timezone Required. The name of the timezone of the data as a character string. This

should be the timezone of your data, but omitting daylight savings time. Note that the timezone code is specific to your OS. To avoid problems, you should use a timezone without daylight savings time. Under Linux, you can use 'CST' and 'MST' for Central Standard or Mountain Standard time, respectively. Under Windows or OSX, you can use 'etc/GMT+6' or 'etc/GMT+7' for Central Standard and Mountain Standard time. DO NOT use 'America/Regina' as the time zone, as it includes historical changes between standard and daylight savings

time.

write3hour Optional. Should the three-hour values be written to a .obs file? Default is

FALSE.

quiet Optional. If TRUE then comments will be written to the screen as the input data

is processed. Note that this function may take a long time to execute, so the

default is the opposite value used by most functions.

Value

If successful, writes **CRHMr** obs file(s) and returns TRUE. If unsuccessful, returns FALSE.

See Also

CanRCM4adjustedGetNearestTimeseries

Examples

```
## Not run: CanRCM4AdjustedCreateHourlyObs(startDate = "1980-01-01",
endDate = "1980-12-31", longitude = -101.704683, latitude = 50.845585,
locationName = "SmithCreek")
## End(Not run)
```

 ${\tt CanRCM4adjustedGetNearestTimeseries}$

Reads a time series for the nearest point from adjusted CanRCM4

Description

This function extracts a time series of 3-hourly values from a NetCDF file of CanRCM4 data, which has been bias-corrected using the WFDEI 3-hour reanalysis values. The values are stored at a spatial resolution of 0.125 degees, so the closest point to the specified location will be used. Note that because the reanalysis data omit February 29, the values returned by this function will have NA values for leap days. You will have to fill these values yourself.

Each NetCDF file contains a single variable. Typically the first letters of the file name designate the variable. The variables are converted to values, and variable names, appropriate for CRHM when they are extracted.

NetCDF parameter

netCDF units CRHM Variable CRHM units

pr - 3hr precip	mm/s	p	mm
tas - surface air temp.	K	t	°C
huss - specific humidity	dimensionless	qair	dimensionless
sfcWind - surface (10m) wind speed	m/s	u10	m/s
ps - surface pressure	Pa	ps	Pa
rsds - incoming SW radiation	$W/^2$	Qsi	W/ ²
rlds - incoming LW radiation	$W/^2$	Qli	W/ ²

Usage

```
CanRCM4adjustedGetNearestTimeseries(netCDFfile = "", longitude = 0,
  latitude = 0, startDate = "1979-01-01", endDate = "2100-12-01",
  timezone = "", logfile = "")
```

Arguments

netCDFfile	Required. The name of a NetCDF file containing a single variable.
longitude	Required. The longitude of the point being sought. Valid values appear to be between -90 and -142, but the input value is <i>not</i> checked for validity, in case the model extent changes.
latitude	Required. The latitude of the point being sought. Valid values appear to be between 45 and 75, but the input value is <i>not</i> checked for validity, in case the model extent changes.
startDate	Optional. Beginning date of data to be extracted. A string formatted as "yyyymm-dd". The default value of '1979-01-01' is the beginning of the data.
endDate	Optional. Ending date of data to be extracted. A string formatted as "yyyy-mm-dd". The default value of '2100-12-01' is the end of the data.
timezone	Required. The name of the timezone of the data as a character string. This should be the timezone of your data, but omitting daylight savings time. Note that the timezone code is specific to your OS. To avoid problems, you should use a timezone without daylight savings time. Under Linux, you can use 'CST' and 'MST' for Central Standard or Mountain Standard time, respectively. Under Windows or OSX, you can use 'etc/GMT+6' or 'etc/GMT+7' for Central Standard and Mountain Standard time. DO NOT use 'America/Regina' as the time zone, as it includes historical changes between standard and daylight savings time.
logfile	Optional. Name of the file to be used for logging the action. Normally not used.

Value

If successful, returns a standard **CRHMr** data frame containing the datetime and the variable. If unsuccessful, returns the value FALSE.

```
## Not run: f <- "ps_CanRCM4_hist+fut_1979_2100.nc4"</pre>
```

```
r <- RCM4adjustedGetNearestTimeseries(f, longitude=-115.27,
latitude=52.03, startDate = "1980-01-01", endDate="1980-12-31")
## End(Not run)</pre>
```

CanRCM4unadjustedGetNearestTimeseries

Reads a time series for the nearest point from undadjusted CanRCM4

Description

This function extracts a time series of hourly values from a NetCDF file of CanRCM4 data, which has not been bias-corrected. The values are stored at a spatial resolution of 0.125 degees, so the closest point to the specified location will be used. Each NetCDF file contains a single variable. Typically the first letters of the file name designate the variable. The variables are converted to values, and variable names, appropriate for CRHM when they are extracted.

NetCDF parameter	netCDF units	CRHM Variable	CRHM units
pr - hourly precip	mm/s	p	mm
tas - surface air temp.	K	t	°C
huss - specific humidity	dimensionless	qair	dimensionless
sfcWind - surface (10m) wind speed	m/s	u10	m/s
ps - surface pressure	Pa	ps	Pa
rsds - incoming SW radiation	$\mathrm{W}/^2$	Qsi	$W/^2$
rlds - incoming LW radiation	$\mathrm{W}/^2$	Qli	$W/^2$

Usage

```
CanRCM4unadjustedGetNearestTimeseries(netCDFfile = "", longitude = 0,
  latitude = 0, startDate = "1979-01-01", endDate = "2100-12-01",
  timezone = "Etc/GMT+7", logfile = "")
```

netCDFfile	Required. The name of a NetCDF file containing a single variable.
longitude	Required. The longitude of the point being sought. Valid values appear to be between -90 and -142, but the input value is <i>not</i> checked for validity, in case the model extent changes.
latitude	Required. The latitude of the point being sought. Valid values appear to be between 45 and 75, but the input value is <i>not</i> checked for validity, in case the model extent changes.
startDate	Optional. Beginning date of data to be extracted. A string formatted as "yyyymm-dd". The default value of '1979-01-01' is the beginning of the data.
endDate	Optional. Beginning date of data to be extracted. A string formatted as "yyyymm-dd". The default value of '2100-12-01' is the end of the data.

ERAdailyArealPrecip

7

timezone Required. The name of the timezone of the data as a character string. This

should be the timezone of your data, but omitting daylight savings time. Note that the timezone code is specific to your OS. To avoid problems, you should use a timezone without daylight savings time. Under Linux, you can use 'CST' and 'MST' for Central Standard or Mountain Standard time, respectively. Under Windows or OSX, you can use 'etc/GMT+6' or 'etc/GMT+7' for Central Standard and Mountain Standard time. DO NOT use 'America/Regina' as the time zone, as it includes historical changes between standard and daylight savings

time.

logfile Optional. Name of the file to be used for logging the action. Normally not used.

Value

If successful, returns a standard **CRHMr** data frame containing the datetime and the variable. If unsuccessful, returns the value FALSE.

Examples

```
## Not run: f <- "CanRCM4_r8i2p1r1_hist+fut_1979_2100_huss.nc4"
r <- RCM4UnadjustedGetNearestTimeseries(f, longitude=-115.27,
latitude=52.03, startDate = "1980-01-01", endDate="1980-12-31")
## End(Not run)</pre>
```

ERAdailyArealPrecip

Calculates daily ERA areal precipitation

Description

Calculates the daily total ERA precipitation, for all locations.

Usage

ERAdailyArealPrecip(ERAarealPrecip)

Arguments

ERAarealPrecip Required. The three-hour ERA areal precipitation as returned by ERAgetArealPrecip.

Value

If unsuccessful, returns FALSE. If successful, returns a list containing the following:

Name	meaning
daily_precip	3d array (lon x lat x date) of precip (mm)
lonres	longitude resolution (°)
latres	latitude resolution (°)
minLon	mininum longitude of data(°W)

8 ERAdeaccum

maxLon	maximum longitude of data(°W)
minLat	minimum latitude of data(°)
minLat	maximum latitude of data(°)
date	the date of each layer

Author(s)

Kevin Shook

Examples

```
## Not run: daily_precip <- ERAdailyArealPrecip(threehour_precip)</pre>
```

ERAdeaccum	Deaccumulates ERA cumulative time series

Description

This function is used to deaccumulate variables stored as 12-hour cumulative values by ERA to 3-hour values. It is called by other functions, but may also be useful as a stand-alone functions. Note that this function only works for a single location, i.e. *NOT* areal values.

Usage

```
ERAdeaccum(ERAobs, colnum = 1, quiet = TRUE, logfile = "")
```

Arguments

ERAobs	Required. A CRHMr obs dataframe of ERA data, created by ERAgetnearestTimeSeries.
colnum	Optional. The column number containing the values to be deaccumulated, not including the datetime. Default is column 1.
quiet	Optional. Suppresses display of messages, except for errors. If you are calling this function in an R script, you will usually leave quiet=TRUE (i.e. the default). If you are working interactively, you will probably want to set quiet=FALSE.
logfile	Optional. Name of the file to be used for logging the action. Normally not used

Value

If successful, returns an obs dataframe containing the deaccumulated value. If unsuccessful, returns the value FALSE.

Author(s)

Kevin Shook

9 **ERAgetArealPrecip**

Examples

```
## Not run:
deaccum <- ERAdeaccum(ERAobs)</pre>
## End(Not run)
```

ERAgetArealPrecip

Get ERA areal precipitation

Description

Extracts the areal precipitation for all time intervals from the ERA NetCDF file for a region. If the data are 3-hour values accumulated over 12-hour periods, then they will be deaccumulated, and negative precipitation will be set to zero

Usage

```
ERAgetArealPrecip(ncdfFile, timezone = "", quiet = TRUE)
```

Arguments

ncdfFile

Required. Name of the NetCDF file containing ERA data.

timezone

Required. The name of the timezone of the data as a character string. This should be the timezone of your data, but omitting daylight savings time. Note that the timezone code is specific to your OS. To avoid problems, you should use a timezone without daylight savings time. Under Linux, you can use 'CST' and 'MST' for Central Standard or Mountain Standard time, respectively. Under Windows or OSX, you can use 'etc/GMT+6' or 'etc/GMT+7' for Central Standard and Mountain Standard time. DO NOT use 'America/Regina' as the time zone, as it includes historical changes between standard and daylight savings time.

quiet

Optional. Suppresses display of messages, except for errors. If you are calling this function in an R script, you will usually leave quiet=TRUE (i.e. the default). If you are working interactively, you will probably want to set quiet=FALSE

Value

If unsuccessful, returns FALSE. If successful, returns a list containing the following:

Name	meaning
precip	3d array (lon x lat x time) of precip (mm)
lonres	longitude resolution (°)
latres	latitude resolution (°)
minLon	mininum longitude of data(°W)
maxLon	maximum longitude of data(°W)
minLat	minimum latitude of data(°)
minLat	maximum latitude of data(°)
datetime	the datetime of each time layer

Examples

```
## Not run: threehour_precip <-
ERAgetArealPrecip('_grib2netcdf-atls17-95e2cf679cd58ee9b4db4dd119a05a8d-szSVRK.nc',
timezone='CST')
## End(Not run)</pre>
```

 ${\tt ERAgetMultipleLocationTimeseries}$

Extracts timeseries of ERA data nearest to multiple specified locations

Description

Reads a NetCDF file containing ERA reanalysis data and extracts the timeseries of the specified variable for each location. This is faster than calling the function ERAgetNearestTimseries for each location, as the reanalysis data are only read in once. Some of the the commonly-used variables are:

Parameter	Units	Variable
10 m eastward wind component	m/s	u10
10 m northward wind component	m/s	v10
2 metre temperature	K	t2m
2 metre dewpoint	K	d2m
Downward surface solar radiation*	J/m^2	ssrd
Downward surface thermal radiation*	J/m^2	strd
Surface net solar radiation*	J/m^2	ssr
Surface net thermal radiation*	J/m^2	str
Total precipitation*	m of water	tp

Parameters marked with an asterisk are *cumulative* values, and must be deaccumulated using the deaccumERA function.

Usage

```
ERAgetMultipleLocationTimeseries(ncdfFile, varName, siteNames, outDir = "",
pointLons, pointLats, projection = "+proj=utm +zone=13 +ellps=WGS84",
timezones = "", quiet = TRUE, logfile = "")
```

ncdfFile	Required. Name of the NetCDF file containing ERA data.
varName	Required. Name of the NetCDF variable to extract.
siteNames	Required. A vector containing the names of the sites. The names will be used for the output obs files.

outDir Optional. Directory to hold output files. If not specified, the current directory

will be used.

pointLons Required. A vector containing decimal longitudes of desired locations. Note

that the NetCDF longitude is 0-360°, so add 360 to negative longitudes.

pointLats Required. A vector containing decimal latitudes of desired location.

projection Optional. Projection to be used to convert latitudes and longitudes to locations.

Used for finding the nearest ERA gridpoint. The default, '+proj=utm +zone=13 +ellps=WGS84',

is *only* valid for Western Canada. If you are processing data for the whole world,

you can use the August Epicycloidal Projection which is '+proj=august +lon_0=90w'

timezones

Required. A vector containing the name of the timezone of the data as a character string. This should be the timezone of your data, but omitting daylight savings time. Note that the timezone code is specific to your OS. To avoid problems, you should use a timezone without daylight savings time. Under Linux, you can use 'CST' and 'MST' for Central Standard or Mountain Standard time, respectively. Under Windows or OSX, you can use 'etc/GMT+6' or 'etc/GMT+7' for Central Standard and Mountain Standard time. DO NOT use 'America/Regina' as the time zone, as it includes historical changes between standard and daylight savings time. If there are fewer timezone values than variable names, the time-

zone will be recycled.

quiet Optional. Suppresses display of messages, except for errors. If you are calling

this function in an R script, you will usually leave quiet=TRUE (i.e. the default). If you are working interactively, you will probably want to set quiet=FALSE, as

it will list the actual latitude and longitude of the ERA tile.

logfile Optional. Name of the file to be used for logging the action. Normally not used.

Value

If unsuccessful, returns FALSE. If successful, returns TRUE and all variables for all locations are written to obs files in the specified directory.

Author(s)

Kevin Shook

See Also

ERAgetNearestTimeseries ERAdeaccum

```
## Not run:
ERAgetMultipleLocationTimeseries('ssrd.nc', 'ssrd', s$`Station Names`,
pointLons = s$Longitude, pointLats = s$Latitude, projection='+proj=august +lon_0=90w',
timezones=s$timezone, quiet=FALSE)
## End(Not run)
```

 ${\tt ERAgetNearestTimeseries}$

Finds timeseries of ERA data nearest to specified location

Description

Reads a NetCDF file containing ERA reanalysis data and extracts the timeseries of the specified variable. Some of the the commonly-used variables are:

Parameter	Units	Variable
10 m eastward wind component	m/s	u10
10 m northward wind component	m/s	v10
2 metre temperature	K	t2m
2 metre dewpoint	K	d2m
Downward surface solar radiation*	J/m^2	ssrd
Downward surface thermal radiation*	J/m^2	strd
Surface net solar radiation*	J/m^2	ssr
Surface net thermal radiation*	J/m^2	str
Total precipitation*	m of water	tp

Parameters marked with an asterisk are *cumulative* values, and must be deaccumulated using the deaccumERA function.

Usage

```
ERAgetNearestTimeseries(ncdfFile, varName, pointLon, pointLat,
  projection = "+proj=utm +zone=13 +ellps=WGS84", timezone = "",
  quiet = TRUE, logfile = "")
```

ncdfFile	Required. Name of the NetCDF file containing ERA data.
varName	Required. Name of the NetCDF variable to extract.
pointLon	Required. Decimal longitude of desired location. Note that the NetCDF longitude is 0-360°, so add 360 to negative longitudes.
pointLat	Required. Decimal latitude of desired location.
projection	Optional. Projection to be used to convert latitudes and longitudes to locations. Used for finding the nearest ERA gridpoint. The default, '+proj=utm +zone=13 +ellps=WGS84', is <i>only</i> valid for Western Canada. If you are processing data for the whole world, you can use the August Epicycloidal Projection which is '+proj=august +lon_0=90w'.
timezone	Required. The name of the timezone of the data as a character string. This should be the timezone of your data, but omitting daylight savings time. Note that the timezone code is specific to your OS. To avoid problems, you should

ERAhourlyAirtemp 13

use a timezone without daylight savings time. Under Linux, you can use 'CST' and 'MST' for Central Standard or Mountain Standard time, respectively. Under Windows or OSX, you can use 'etc/GMT+6' or 'etc/GMT+7' for Central Standard and Mountain Standard time. DO NOT use 'America/Regina' as the time zone, as it includes historical changes between standard and daylight savings time.

quiet

Optional. Suppresses display of messages, except for errors. If you are calling this function in an R script, you will usually leave quiet=TRUE (i.e. the default). If you are working interactively, you will probably want to set quiet=FALSE, as it will list the actual latitude and longitude of the ERA tile.

logfile

Optional. Name of the file to be used for logging the action. Normally not used.

Value

If unsuccessful, returns FALSE. If successful, returns a standard **CRHMr** dataframe containing the datetime and the extracted data, which are unpacked (i.e. the NetCDF multiplier and offset have been applied).

Author(s)

Kevin Shook

See Also

ERAdeaccum

Examples

```
## Not run:
ssrd <- ERAgetNearestTimeseries('ssrd.nc', 'ssrd', 243.5, 51.69, timezone='Etc/GMT+7')
t2m <- ERAgetNearestTimeseries('t2m.nc', 't2m', 243.5, 51.69, timezone='Etc/GMT+7')
tp <- ERAgetNearestTimeseries('tp.nc', 'tp', 243.5, 51.69, timezone='Etc/GMT+7')
strd <- ERAgetNearestTimeseries('strd.nc', 'strd', 243.5, 51.69, timezone='Etc/GMT+7')
u10 <- ERAgetNearestTimeseries('u10v10.nc', 'u10', 243.5, 51.69, timezone='Etc/GMT+7')
v10 <- ERAgetNearestTimeseries('u10v10.nc', 'v10', 243.5, 51.69, timezone='Etc/GMT+7')
d2m <- ERAgetNearestTimeseries('d2m.nc', 'd2m', 243.5, 51.69, timezone='Etc/GMT+7')
## End(Not run)</pre>
```

ERAhourlyAirtemp

Estimates hourly air temperatures from ERA-Interim 3 -hourly or ERA-40 6-hourly values

Description

Interpolates ERA instantaneous air temperatures to hourly values. The ERA air temperatures are first converted from K to °C, if required.

Usage

```
ERAhourlyAirtemp(ERAt2m, t2mColnum = 1, method = "linear", quiet = TRUE,
    logfile = "")
```

Arguments

ERAt2m	Required. The CRHMr obs dataframe of ERA t2m values. The values must not be deaccumulated, as the deaccumERA function is called by this function.
t2mColnum	Optional. The column number containing the t2m values, not including the datetime. Default is column 1.
method	Optional. The methods to be used for interpolation of the air temperature. Currently supported methods are 'linear' and 'spline'. The default is to use linear interpolation.
quiet	Optional. Suppresses display of messages, except for errors. If you are calling this function in an R script, you will usually leave quiet=TRUE (i.e. the default). If you are working interactively, you will probably want to set quiet=FALSE.
logfile	Optional. Name of the file to be used for logging the action. Normally not used.

Value

If successful, returns an obs dataframe containing the interpolated hourly 2m air temperatures. If unsuccessful, returns the value FALSE.

Author(s)

Kevin Shook

See Also

ERAgetNearestTimeseries interpolate

Examples

```
## Not run:
hourlyTemps <- ERAhourlyAirtemp(t2m)
## End(Not run)</pre>
```

ERAhourlyLongwave

Estimates hourly incoming longwave radiation from ERA-Interim 3-hourly values or ERA-40 6-hourly values

Description

This function is called *after* using the function getNearestERAtimeseries. This function deaccumulates the ERA-Interim 12-hour cumulative values, using the function ERAdeaccum and interpolates the 3-hour values to hourly values, based on the extra-terrestrial hourly radiation. ERA-40 6-hourly instantaneous values are interpolated directly to hourly values.

ERAhourlyLongwave 15

Usage

```
ERAhourlyLongwave(ERAstrd, strdColnum = 1, ERAt2m, t2mColnum = 1,
  method = "linear", quiet = TRUE, logfile = "")
```

Arguments

ERAstrd	Required. The CRHMr obs dataframe of ERA strd values. The values must not be deaccumulated, as the ERAdeaccum function is called by this function.
strdColnum	Optional. The column number containing the strd values, not including the date-time. Default is column 1.
ERAt2m	Required. The CRHMr obs dataframe of ERA t2m values. The values must not be deaccumulated, as the deaccumERA function is called by this function.
t2mColnum	Optional. The column number containing the $t2m$ values, not including the datetime. Default is column 1.
method	Optional. The methods to be used for interpolation of the air temperature. Currently supported methods are 'linear' and 'spline'. The default is to use linear interpolation.
quiet	Optional. Suppresses display of messages, except for errors. If you are calling this function in an R script, you will usually leave quiet=TRUE (i.e. the default). If you are working interactively, you will probably want to set quiet=FALSE.
logfile	Optional. Name of the file to be used for logging the action. Normally not used

Value

If successful, returns an obs dataframe containing the interpolated hourly ERA incoming longwave radiation (Qli) in W/m², and the hourly 2m air temperatures (t) in °C. If unsuccessful, returns the value FALSE.

Author(s)

Kevin Shook

References

The value of the Stefan-Boltzmann constant was obtained from http://physics.nist.gov/cgi-bin/cuu/Value?sigma

See Also

ERAgetNearestTimeseries ERAdeaccum ERAhourlyShortwave

```
## Not run:
hourlyQli <- ERAhourlyLongwave(ERAstrd=strd, ERAt2m=t2m)
## End(Not run)</pre>
```

16 ERAhourlyPrecip

ERAhourlyPrecip	Etimates hourly precipitation from ERA cumulatve 3 hourly values

Description

This function is called *after* using the function getNearestERAtimeseries. This function removes negative values, deaccumulates the 12-hour cumulative values to 3-hour values, using the function deaccumERA, and divides the results by 3 to give to hourly values.

Usage

```
ERAhourlyPrecip(ERAtp, tpColnum = 1, quiet = TRUE, logfile = "")
```

Arguments

ERAtp	Required. The CRHMr obs dataframe of ERA tp values. The values must not be deaccumulated, as the deaccumERA function is called by this function.
tpColnum	Optional. The column number containing the tp values, not including the date-time. Default is column 1.
quiet	Optional. Suppresses display of messages, except for errors. If you are calling this function in an R script, you will usually leave quiet=TRUE (i.e. the default). If you are working interactively, you will probably want to set quiet=FALSE.
logfile	Optional. Name of the file to be used for logging the action. Normally not used

Value

If successful, returns an obs dataframe containing the interpolated hourly precipitation (p). If unsuccessful, returns the value FALSE.

Author(s)

Kevin Shook

See Also

 ${\tt ERAgetNearestTimeseries}$

```
## Not run:
hourlyP <- ERAhourlyPrecip(tp)
## End(Not run)
```

ERAhourlyShortwave	Estimates hourly incoming shortwave radiation from ERA-Interim 3-hourly values or ERA-40 6-hourly values

Description

This function is called *after* using the function getNearestERAtimeseries. This function removes negative values, deaccumulates the ERA-Interim 12-hour cumulative values, using the function ERAdeaccum and interpolates the 3-hour values to hourly values, based on the extra-terrestrial hourly radiation. ERA-40 6-hourly instantaneous values are interpolated directly to hourly values.

Usage

```
ERAhourlyShortwave(ERAssrd, ssrdColnum = 1, latitude, sunTimeOffset = 2,
  solarMethod = "simpleMaxSolar", interpolationMethod = "linear",
  quiet = TRUE, logfile = "")
```

Arguments

ERAssrd	Required. The CRHMr obs dataframe of ERA ssrd values. The values must not be deaccumulated, as the deaccumERA function is called by this function.	
ssrdColnum	Optional. The column number containing the ssrd values, not including the datetime. Default is column 1.	
latitude	Required. The latitude of the point at which the ssrd data is extracted. This value is used to calculate the extra-terrestrial incoming solar radiation. Not used for ERA-40 data.	
sunTimeOffset	Optional. Number of hours that local noon is offset from solar noon. The default is 2 hours. Not used for ERA-40 data.	
solarMethod	Optional. The method to be used for calculating the extra-terrestrial radiation for 3-hourly ERA-Interim data. The default is 'simpleMaxSolar'. The other supported method is 'PotSolarInst', which requires the package EcoHydRology to be installed.	
interpolationMethod		
	Optional. This is the method to be usied for interpolating instantaneous values from ERA-40. The default is 'linear', but 'spline' can also be specified.	
quiet	Optional. Suppresses display of messages, except for errors. If you are calling this function in an R script, you will usually leave quiet=TRUE (i.e. the default). If you are working interactively, you will probably want to set quiet=FALSE.	
logfile	Optional. Name of the file to be used for logging the action. Normally not used	

Value

If successful, returns an obs dataframe containing the interpolated hourly ERA incoming shortwave radiation (Qsi). If unsuccessful, returns the value FALSE.

18 ERAhourlyVP

Author(s)

Kevin Shook

See Also

ERAgetNearestTimeseries ERAhourlyLongwave distributeQsi

Examples

```
## Not run:
hourlyQsi <- ERAhourlyShortwave(ssrd, latitude = 51.69)
## End(Not run)
```

ERAhourlyVP

Calculates the hourly vapour pressure from the 3-hour ERA-Interim or 6 hour ERA-40 dew point temperature

Description

Interpolates ERA instantaneous dew point temperatures to hourly values. The ERA dew point temperatures are first converted from K to $^{\circ}$ C, if required.

Usage

```
ERAhourlyVP(ERAd2m, d2mColnum = 1, method = "linear", quiet = TRUE,
    logfile = "")
```

Arguments

ERAd2m	Required. The CRHMr obs dataframe of ERA d2m values. The values must not be deaccumulated, as the deaccumERA function is called by this function.
d2mColnum	Optional. The column number containing the d2m values, not including the datetime. Default is column 1.
method	Optional. The methods to be used for interpolation of the dew point temperature. Currently supported methods are 'linear' and 'spline'. The default is to use linear interpolation.
quiet	Optional. Suppresses display of messages, except for errors. If you are calling this function in an R script, you will usually leave quiet=TRUE (i.e. the default). If you are working interactively, you will probably want to set quiet=FALSE.
logfile	Optional. Name of the file to be used for logging the action. Normally not used.

Value

If successful, returns an obs dataframe containing the interpolated hourly 2m vapour pressures (ea) in kPA. If unsuccessful, returns the value FALSE.

Author(s)

Kevin Shook

See Also

 ${\tt ERAgetNearestTimeseries\ interpolate\ ERAhourlyAirtemp}$

Examples

```
## Not run:
hourlyVP <- ERAhourlyVP(d2m)
## End(Not run)
```

ERAhourlyWindspeed

Estimates hourly wind speeds from ERA-Interim 3-hourly or ERA-40 6-hourly wind vectors

Description

Estimates hourly wind speeds from ERA-Interim 3-hourly or ERA-40 6-hourly wind vectors

Usage

```
ERAhourlyWindspeed(ERAu10, u10Colnum = 1, ERAv10, v10Colnum = 1,
  method = "linear", quiet = TRUE, logfile = "")
```

ERAu10	Required. The CRHMr obs dataframe of ERA u10 wind vector values. The values must not be deaccumulated, as the deaccumERA function is called by this function.
u10Colnum	Optional. The column number containing the u10 values, not including the date-time. Default is column 1.
ERAv10	Required. The CRHMr obs dataframe of ERA v10 wind vector values. The values must not be deaccumulated, as the deaccumERA function is vealled by this function.
v10Colnum	Optional. The column number containing the $v10$ values, not including the date-time. Default is column 1.
method	Optional. The methods to be used for interpolation of the wind speeds. Currently supported methods are 'linear' and 'spline'. The default is to use linear interpolation.
quiet	Optional. Suppresses display of messages, except for errors. If you are calling this function in an R script, you will usually leave quiet=TRUE (i.e. the default). If you are working interactively, you will probably want to set quiet=FALSE.
logfile	Optional. Name of the file to be used for logging the action. Normally not used.

20 land

Value

If successful, returns an obs dataframe containing the interpolated hourly 10m wind speeds (u10) in m/s and directions in degrees. If unsuccessful, returns the value FALSE.

Author(s)

Kevin Shook

See Also

ERAgetNearestTimeseries interpolate

Examples

```
## Not run:
hourlyU <- ERAhourlyWindspeed(ERAu10=u10, ERAv10=v10)
## End(Not run)</pre>
```

land

Land locations

Description

A dataframe containing the information about the locations inside the WFD netCDF files. This data is used by the function WATCHcreateHourlyWFDobs.

Usage

land

Format

A dataframe with 67420 rows and 6 variables:

Land number of the grid location
Longitude longitude of the centre grid square
Latitude latitude of the centre grid square
Ht.m elevation of the centre grid squar
glon x-location of the grid square

glat y-location of the grid square

Source

This data was extracted from a file distributed with the WFD data, which can be downlaoded from from http://www.eu-watch.org/.

NARRdownloadNetCDF 21

Description

Downloads NARR NetCDF files for a specified variable for a specified time step and range of years.

Usage

```
NARRdownloadNetCDF(interval = "daily", startYear = 1979, endYear = 1979,
  destination = ".", variable = "precip", quiet = FALSE)
```

Arguments

interval	Optional. Time interval of NARR data. Can be '3h' or 'daily', which is the default.
startYear	Optional. The first year to download. Default is 1979.
endYear	Optional. The last year to download. Default is 1979.
destination	Optional. The destination directory for the downloaded files. The default is the current directory.
variable	Optional. The variable to be downloaded. Acceptable values are 'precip' (the default), 'temp', 'rh', 'wind', 'qli' and 'qli'.
quiet	Optional. Suppresses display of messages, except for errors. Because this function can be very slow to execute, the default value is FALSE, to provide information on the downloading.

Value

Writes the specified files to the destination directory. If successful, returns TRUE. If unsuccessful, returns FALSE.

```
## Not run:
NARRdownloadNetCDF('3h', 1979, 2015)
## End(Not run)
```

 ${\tt NARRgetNearestTimeseries}$

Finds timeseries of NARR data nearest to specified location

Description

Reads a NARR NetCDF file, which contains all of the 3-hour values of a single variable for a single year, and extracts the values for a single location. Note that the values are *NOT* quality controlled - negative precipitation values are possible.

Usage

```
NARRgetNearestTimeseries(ncdfFile, varName, pointLon, pointLat, timezone = "",
quiet = TRUE, logfile = "")
```

Arguments

8	
ncdfFile	Name of the NetCDF file containing ERA data.
varName	Required. Name of the NetCDF variable to extract.
pointLon	Required. Decimal longitude of desired location. Note that the NetCDF longitude is <i>East</i> , your value should be negative.
pointLat	Required. Decimal latitude of desired location.
timezone	Required. The name of the timezone of the data as a character string. This should be the timezone of your data, but omitting daylight savings time. Note that the timezone code is specific to your OS. To avoid problems, you should use a timezone without daylight savings time. Under Linux, you can use 'CST' and 'MST' for Central Standard or Mountain Standard time, respectively. Under Windows or OSX, you can use 'etc/GMT+6' or 'etc/GMT+7' for Central Standard and Mountain Standard time. DO NOT use 'America/Regina' as the time zone, as it includes historical changes between standard and daylight savings time.
quiet	Optional. Suppresses display of messages, except for errors. If you are calling this function in an R script, you will usually leave quiet=TRUE (i.e. the default). If you are working interactively, you will probably want to set quiet=FALSE, as it will list the actual latitude and longitude of the ERA tile.

Value

logfile

If unsuccessful, returns FALSE. If successful, returns a standard **CRHMr** dataframe containing the datetime and the extracted data, which are unpacked (i.e. the NetCDF multiplier and offset have been applied). If quiet=FALSE, then the NARR location used and its distance to the specified location will be displayed.

Optional. Name of the file to be used for logging the action. Normally not used.

If unsuccessful, returns FALSE. If successful, returns a **CRHMr** data frame of the specified variable. Note that no unit conversions are done, so the variable will be in the NARR units.

Examples

```
## Not run:
p1979 <- NARRgetNearestTimeseries('acpcp.1979.nc', varName='acpcp', pointLon = -113,
pointLat = 52, timezone = 'CST', quiet=FALSE)
## End(Not run)</pre>
```

WATCHcreateHourlyWFDEIobs

Creates a CRHM .obs file of hourly values from WATCH reanalysis data WFDEI files

Description

Extracts data from WATCH WDFEI netCDF files and builds a CRHM .obs file of hourly values containing t, ea, u10, p Qsi and Qli. All values are interpolated from 3 and 6 hur data. The windspeeds are at 10m, hence they are denoted as u10. Air temperatures are at 2m. The values for ea are computed from the atmospheric pressure (at 10m) and the absolute humidity (at 2m). Because the original NetCDF files are very large, this function typically runs very slowly. Also, because this function assembles and processes all of the data in memory, it can require a lot of RAM to execute.

Usage

```
WATCHcreateHourlyWFDEIobs(nc.location = "", startyear = 1979,
  endyear = 2012, lon = 0, lat = 0, precipType = "CRU",
  sunTimeOffset = 2, solarMethod = "simpleMaxSolar",
  interpolationMethod = "linear", obsFileName = "", timezone = "",
  quiet = TRUE, logfile = "")
```

nc.location	Required. A character string of the directory holding the WATCH WFDEI netCDf files. This is a file path WITHOUT a terminal slash, e.g. 'z:\WATCH\WFDEI'
startyear	Optional. Year to begin. Must be in the range 1979-2012. Default is 1979.
endyear	Optional. Year to end. Must be in the range 1979-2012. Default is 2012.
lon	Required. Decimal longitude to extract for.
lat	Required. Decimal latitude to extract for.
precipType	Optional. The precipitation type used; can be 'CRU' (the default) or 'GPCC'.
sunTimeOffset	Optional. Number of hours that local noon is offset from solar noon. The default is 2 hours. This may be incorrect. It seems that WATCH data may not incorporate the temporal offset correctly - zero may work better.
solarMethod	The method to be used for calculating the extra-terrestrial radiation. The default method is 'simpleMaxSolar'. Note that this method is only valid for latitudes between 49 and 55°N. The other supported method is 'PotSolarInst', which requires the package EcoHydRology to be installed

interpolationMethod

Optional. A vector containing the methods to be used for interpolation for each of the variables. Currently supported methods are 'linear' and 'spline'. The default is to use linear interpolation. If fewer methods than columns are specified the methods are recorded.

fied, the methods are recycled.

obsFileName Required. Name of the .obs file to be created.

timezone Required. The name of the timezone of the data as a character string. This

should be the timezone of your data, but omitting daylight savings time. Note that the timezone code is specific to your OS. To avoid problems, you should use a timezone without daylight savings time. You can use 'Etc/GMT+6' or 'Etc/GMT+7' for Central Standard and Mountain Standard time. DO NOT use 'America/Regina' as the time zone, as it includes historical changes between

standard and daylight savings time.

quiet Optional. Suppresses display of messages, except for errors. If you are calling

this function in an R script, you will usually leave quiet=TRUE (i.e. the default). If you are working interactively, you will probably want to set quiet=FALSE.

logfile Optional. Name of the file to be used for logging the action. Normally not used.

Value

If successful, returns the value TRUE and writes the specified .obs file. If unsuccessful, returns the value FALSE.

Note

Because this function can be slow, and uses a lot of memory, you may wish to run it repeatedly for short intervals. You can then use the function append0bs in **CRHMr** to join the files together. The time shifting results in obs files which do not begin and end on day boundaries, so you should use the function trim0bs in **CRHMr** to trim the obs file - *after* the final file has been assembled.

Author(s)

Kevin Shook.

References

R code for conversion of air pressure and absolute humidity was taken from project PEcAn The Predictive Ecosystem Analyzer http://pecanproject.github.io. The source code is available at https://github.com/PecanProject/pecan/blob/master/modules/data.atmosphere/R/metutils.R.

See Also

WATCHcreateHourlyWFDobs trimObs appendObs

Examples

```
## Not run:
location <- 'z:\data\WATCH\WFDEI'
obsName <- 'VermilionWATCH_WFDEI.obs'
WATCHcreateHourlyWFDEIobs(nc.location=location,
startyear=1979, endyear=2001, lon=-111.9, lat=53.2, timezone='Etc/GMT+7', obsFileName=obsName)
# read in file and trim it
obs <- CRHMr::readObsFile(obsFile=obsName, timezone='Etc/GMT+7')
trimmedObs <- CRHMr::trimObs(obs)
CRHMr::writeObsFile(trimmedObs, obsFileName)
## End(Not run)</pre>
```

WATCHcreateHourlyWFDobs

Creates a CRHM .obs file of hourly values from WATCH reanalysis data WFD files

Description

Extracts data from WATCH WFD netCDF files and builds a CRHM .obs file of hourly values containing t, ea, u10, p Qsi and Qli. All values are interpolated from 3 and 6 hur data. The windspeeds are at 10m, hence they are denoted as u10. Air temperatures are at 2m. The values for ea are computed from the atmospheric pressure (at 10m) and the absolute humidity (at 2m). Because the original NetCDF files are very large, this function typically runs very slowly. Also, because this function assembles and processes all of the data in memory, it can require a lot of RAM to execute.

Usage

```
WATCHcreateHourlyWFDobs(nc.location = "", startyear = 1901,
  endyear = 2001, lon = 0, lat = 0, sunTimeOffset = 2,
  solarMethod = "simpleMaxSolar", interpolationMethod = "linear",
  obsFileName = "", timezone = "", quiet = TRUE, logfile = "")
```

nc.location	Required. A character string of the directory holding the WATCH WFD netCDf files. This is a file path WITHOUT a terminal slash, e.g. 'z:\WATCH\WFD'.
startyear	Optional. Year to begin. Must be in the range 1901-2001. Default is 1901.
endyear	Optional. Year to end. Must be in the range 1901-2001. Default is 2001.
lon	Required. Decimal longitude to extract for.
lat	Required. Decimal latitude to extract for.
sunTimeOffset	Optional. Number of hours that local noon is offset from solar noon. The default is 2 hours.

solarMethod The method to be used for calculating the extra-terrestrial radiation. The default

method is 'simpleMaxSolar'. Note that this method is only valid for latitudes between 49 and $55^\circ N$. The other supported method is 'PotSolarInst', which

requires the package EcoHydRology to be installed

interpolationMethod

Optional. A vector containing the methods to be used for interpolation for each of the variables. Currently supported methods are 'linear' and 'spline'. The default is to use linear interpolation. If fewer methods than columns are specified at the linear interpolation.

fied, the methods are recycled.

obsFileName Required. Name of the .obs file to be created.

timezone Required. The name of the timezone of the data as a character string. This

should be the timezone of your data, but omitting daylight savings time. Note that the timezone code is specific to your OS. To avoid problems, you should use a timezone without daylight savings time. You can use 'Etc/GMT+6' or 'Etc/GMT+7' for Central Standard and Mountain Standard time. DO NOT use 'America/Regina' as the time zone, as it includes historical changes between

standard and daylight savings

quiet Optional. Suppresses display of messages, except for errors. If you are calling

this function in an R script, you will usually leave quiet=TRUE (i.e. the default). If you are working interactively, you will probably want to set quiet=FALSE.

logfile Optional. Name of the file to be used for logging the action. Normally not used.

Value

If successful, returns the value TRUE and writes the specified .obs file. Each month's data is written as it is created. If unsuccessful, returns the value FALSE.

Author(s)

Kevin Shook

References

R code for conversion of air pressure and absolute humidity was taken from project PEcAn The Predictive Ecosystem Analyzer http://pecanproject.github.io. The source code is available at https://github.com/PecanProject/pecan/blob/master/modules/data.atmosphere/R/metutils. R.

```
## Not run:
location <- 'z:\data\WATCH\WFD'
obsFileName <- 'VermilionWATCH_WFD.obs'
WATCHcreateWFDobs(location, 1979, 2001, -111.9, 53.2, timezone='Etc/GMT+7', obsFileName=obsFileName)
## End(Not run)</pre>
```

WATCHcreateWFDEIobs 27

WATCHcreateWFDEIobs	Creates a CRHM .obs file of 3-hourly values from WATCH reanalysis
	data WFDEI files

Description

Extracts data from WATCH WDFEI netCDF files and builds a CRHM .obs file of 3-hour data containing t, ea, u10, and p values. The output values can be interpolated to hourly using the function HourlyWATCHobs. The windspeeds are at 10m, hence they are denoted as u10. Air temperatures are at 2m. The values for ea are computed from the atmospheric pressure (at 10m) and the absolute humidity (at 2m).

Usage

```
WATCHcreateWFDEIobs(nc.location = "", startyear = 1979, endyear = 2012,
lon = 0, lat = 0, houroffset = 0, obsFileName = "", quiet = TRUE,
logfile = "")
```

Arguments

nc.location	Required. A character string of the directory holding the WATCH WFDEI netCDf files. This is a file path WITHOUT a terminal slash, e.g. 'z:\WATCH\WFDEI'
startyear	Optional. Year to begin. Must be in the range 1979-2012. Default is 1979.
endyear	Optional. Year to end. Must be in the range 1979-2012. Default is 2012.
lon	Required. Decimal longitude to extract for.
lat	Required. Decimal latitude to extract for.
houroffset	Required. Number of hours that the local location is offset from UTC (GMT). Must be negative in the western hemisphere. For Mountain Standard Time, the offset is -7 hours.
obsFileName	Required. Name of the .obs file to be created.
quiet	Optional. Suppresses display of messages, except for errors. If you are calling this function in an R script, you will usually leave quiet=TRUE (i.e. the default). If you are working interactively, you will probably want to set quiet=FALSE.
logfile	Optional. Name of the file to be used for logging the action. Normally not used.

Value

If successful, returns the value TRUE and writes the specified .obs file. Each month's data is written as it is created. If unsuccessful, returns the value FALSE.

Author(s)

Kevin Shook.

28 WATCHcreateWFDobs

References

R code for conversion of air pressure and absolute humidity was taken from project PEcAn The Predictive Ecosystem Analyzer http://pecanproject.github.io. The source code is available at https://github.com/PecanProject/pecan/blob/master/modules/data.atmosphere/R/metutils.

Examples

```
## Not run:
location <- 'z:\data\WATCH\WFDEI'
obsFileName <- 'VermilionWATCH_WFDEI.obs'
WATCHcreateWFDEIobs(location, 1979, 2001, -111.9, 53.2, -7, obsFileName)
## End(Not run)</pre>
```

WATCHcreateWFDobs

Creates a CRHM .obs file of 3-hourly and 6-hourly values from WATCH reanalysis data WFD files

Description

Extracts data from WATCH WFD netCDF files and builds a CRHM .obs file of 3-hour data containing t, ea, u10, and p values. The values of t, ea and u are 6-hourly, with NA values inserted. The data are output at MST. The output values can be interpolated to hourly values using the function HourlyWATCHObs. The windspeeds are at 10m, so they are denoted as u10. Air temperatures are at 2m. The values for ea are computed from the atmospheric pressure (at 10m) and the absolute humidity (at 2m).

Usage

```
WATCHcreateWFDobs(nc.location = "", startyear = 1901, endyear = 2001,
  lon = 0, lat = 0, houroffset = 0, obsFileName = "", quiet = TRUE,
  logfile = "")
```

nc.location	Required. A character string of the directory holding the WATCH WFD netCDf files. This is a file path WITHOUT a terminal slash, e.g. 'z:\WATCH\WFD'.
startyear	Optional. Year to begin. Must be in the range 1901-2001. Default is 1901.
endyear	Optional. Year to end. Must be in the range 1901-2001. Default is 2001.
lon	Required. Decimal longitude to extract for.
lat	Required. Decimal latitude to extract for.
houroffset	Required. Number of hours that the local location is offset from UTC (GMT). Must be negative in the western hemisphere. For Mountain Standard Time, the offset is -7 hours.
obsFileName	Required. Name of the .obs file to be created.

quiet Optional. Suppresses display of messages, except for errors. If you are calling

this function in an R script, you will usually leave quiet=TRUE (i.e. the default). If you are working interactively, you will probably want to set quiet=FALSE.

logfile Optional. Name of the file to be used for logging the action. Normally not used.

Value

If successful, returns the value TRUE and writes the specified .obs file. Each month's data is written as it is created. If unsuccessful, returns the value FALSE.

Author(s)

Kevin Shook

References

R code for conversion of air pressure and absolute humidity was taken from project PEcAn The Predictive Ecosystem Analyzer http://pecanproject.github.io. The source code is available at https://github.com/PecanProject/pecan/blob/master/modules/data.atmosphere/R/metutils.R.

Examples

```
## Not run:
location <- 'z:\data\WATCH\WFD'
obsFileName <- 'VermilionWATCH_WFD.obs'
WATCHcreateWFDobs(location, 1979, 2001, -111.9, 53.2, -7, obsFileName)
## End(Not run)</pre>
```

WATCHdailyArealPrecip Calculates daily WATCH areal precipitation

Description

Calculates daily WATCH areal precipitation

Usage

```
WATCHdailyArealPrecip(monthlyPrecip, timezone)
```

Arguments

monthlyPrecip

All WATCH precipitation for a month, as returned by WATCHgetWFDarealPrecip.

timezone

Required. The name of the timezone of the data as a character string. This should be the timezone of your data, but omitting daylight savings time. Note that the timezone code is specific to your OS. To avoid problems, you should use a timezone without daylight savings time. Under Linux, you can use 'CST' and 'MST' for Central Standard or Mountain Standard time, respectively. Under

Windows or OSX, you can use 'etc/GMT+6' or 'etc/GMT+7' for Central Standard and Mountain Standard time. DO NOT use 'America/Regina' as the time zone, as it includes historical changes between standard and daylight savings time.

Details

Calculates the daily total WATCH precipitation for all locations in a region.

Value

If successful, returns a data frame consisting if the date,longitude, latitude, and total precipitation (in mm) for each point. If unsuccessful, returns FALSE.

Examples

```
## Not run:
daily_rain <- WATCHdailyArealPrecip(monthly_rain, 'CST')
## End(Not run)</pre>
```

WATCHgetWFDarealPrecip

Extracts the WATCH WFD precipitation for a specified domain

Description

Extacts the WATCH WFD precipitation (rainfall or snowfall) from a monthly netCDF file for a specified domain.

Usage

```
WATCHgetWFDarealPrecip(ncdfFile = "", minLon = 0, maxLon = 0,
  minLat = 0, maxLat = 0, logfile = "")
```

ncdfFile	Required. NetCDF file containing monthly WATCH WFD precipitation (rainfall or snowfall). The file name must begin with the precipitation type (i.e. 'Rainf' or 'Snowf' and must end with the year and month, as in '190101'.
minLon	Required. Minimum longitude for area to be extracted.
maxLon	Required. Maximum longitude for area to be extracted.
minLat	Required. Minimum latitude for area to be extracted.
maxLat	Required. Maximum latitude for area to be extracted.
logfile	Optional. Name of the file to be used for logging the action. Normally not used

Value

If successful, returns a data frame containing all of the precipitation values. The rows contain the values for each location for all time intervals. The first 2 columns contain the Longitude and Latitude, respectively for each location within the domain. The following columns contain the precipitation rate for each time interval. The names of these columns are the time intervals, e.g. '1901-01-01_00:00' (note the underscore) in GMT.

Author(s)

Kevin Shook

Examples

```
## Not run:
monthly_rain <- WATCHgetWFDarealPrecip('Rainf_WFD_CRU_190101.nc',
    minLon=-105, maxLon=-95, minLat = 49, maxLat = 56)
## End(Not run)</pre>
```

WATCHgroupWFDEIobs

Create obs files from WATCH WFDEI data for groups of sites

Description

Extracts all variables from WFDEI NetCDF files and builds obs files for all specified locations

Usage

```
WATCHgroupWFDEIobs(siteFile, ncLocation, outputLocation, startyear = 1979,
endyear = 2001, solarMethod = "PotSolarInst",
interpolationMethod = "linear", quiet = TRUE, logfile = "")
```

Arguments

siteFile

Required. A .csv file containing all of the variables required to describe the site locations. These are:

Name Name of site
Land Land ID number
Longitude Site longitude
Latitude Site latitude
glon Site glon value
glat Site glat value

timezone Time zone for site. Must be in Etc format, e.g. Etc/GMT+7

SolarOffset Local offset of solar noon in hours

ncLocation

Required. Location of all of the WATCH WFD files. Must have a trailing '\' symbol.

outputLocation Required. Location for all of the output files. Must have a trailing '\' symbol.

startyear Optional. Year to begin extraction. Default is 1901.

endyear Optional. Year to begin extraction. Default is 2001.

solarMethod The method to be used for calculating the extra-terrestrial radiation. The default

method is 'PotSolarInst', which requires the package **EcoHydRology** to be installed. The other supported method is 'simpleMaxSolar'. Note that this

method is only valid for latitudes between 49 and 55°N.

interpolationMethod

Optional. A vector containing the methods to be used for interpolation for each of the variables. Currently supported methods are 'linear' and 'spline'. The default is to use linear interpolation. If fewer methods than columns are speci-

fied, the methods are recycled.

quiet Optional. Suppresses display of messages, except for errors. If you are calling

this function in an R script, you will usually leave quiet=TRUE (i.e. the default). If you are working interactively, you will probably want to set quiet=FALSE.

logfile Optional. Name of the file to be used for logging the action. Normally not used.

Value

If successful, returns the value TRUE and writes the specified .obs file. Each month's data is written as it is created. If unsuccessful, returns the value FALSE.

Author(s)

Kevin Shook

References

R code for conversion of air pressure and absolute humidity was taken from project PEcAn The Predictive Ecosystem Analyzer http://pecanproject.github.io. The source code is available at https://github.com/PecanProject/pecan/blob/master/modules/data.atmosphere/R/metutils.R.

```
## Not run:
points <- './Reanalysis/testdata/WATCH_selected_points.csv'
outputLocation <- './Reanalysis/testdata/'
ncloc <- '//water.usask.ca/Centre/Reanalysis_data/WATCH/WFD'
WATCHgroupWFDEIobs(siteFile = points, ncLocation = ncloc, outputLocation=outputLocation,
startyear = 1962, endyear = 1962))
## End(Not run)</pre>
```

WATCHgroupWFDobs Create obs files from WATCH WFD data for groups of sites
with ones, out the season of t

Description

Extracts all variables from WFD NetCDF files and builds obs files for all specified locations

Usage

```
WATCHgroupWFDobs(siteFile, ncLocation, outputLocation, startyear = 1901,
endyear = 2001, solarMethod = "PotSolarInst",
interpolationMethod = "linear", quiet = TRUE, logfile = "")
```

Arguments

siteFile Required. A .csv file containing all of the variables required to describe the site

locations. These are:

Name Name of site
Land Land ID number
Longitude Site longitude
Latitude Site latitude
glon Site glon value
glat Site glat value

timezone Time zone for site. Must be in Etc format, e.g. Etc/GMT+7

SolarOffset Local offset of solar noon in hours

ncLocation Required. Location of all of the WATCH WFD files. Must have a trailing '\'

symbol.

outputLocation Required. Location for all of the output files. Must have a trailing '\' symbol.

startyear Optional. Year to begin extraction. Default is 1901. endyear Optional. Year to begin extraction. Default is 2001.

solarMethod The method to be used for calculating the extra-terrestrial radiation. The default

method is 'PotSolarInst', which requires the package $\bf EcoHydRology$ to be installed. The other supported method is 'simpleMaxSolar'. Note that this

method is only valid for latitudes between 49 and 55°N.

interpolationMethod

Optional. A vector containing the methods to be used for interpolation for each of the variables. Currently supported methods are 'linear' and 'spline'. The default is to use linear interpolation. If fewer methods than columns are specifically in the linear interpolation.

fied, the methods are recycled.

quiet Optional. Suppresses display of messages, except for errors. If you are calling

this function in an R script, you will usually leave quiet=TRUE (i.e. the default). If you are working interactively, you will probably want to set quiet=FALSE.

logfile Optional. Name of the file to be used for logging the action. Normally not used.

34 WATCHhourlyObs

Value

If successful, returns the value TRUE and writes the specified .obs file. Each month's data is written as it is created. If unsuccessful, returns the value FALSE.

Author(s)

Kevin Shook

References

R code for conversion of air pressure and absolute humidity was taken from project PEcAn The Predictive Ecosystem Analyzer http://pecanproject.github.io. The source code is available at https://github.com/PecanProject/pecan/blob/master/modules/data.atmosphere/R/metutils. R

Examples

```
## Not run:
points <- './Reanalysis/testdata/WATCH_selected_points.csv'
outputLocation <- './Reanalysis/testdata/'
ncloc <- '//water.usask.ca/Centre/Reanalysis_data/WATCH/WFD'
WATCHgroupWFDobs(siteFile = points, ncLocation = ncloc, outputLocation=outputLocation,
startyear = 1962, endyear = 1962))
## End(Not run)</pre>
```

WATCHhourlyObs

Interpolates 3 and 6 hour WATCH variables to hourly values

Description

Interpolates t, u10, ea, qsi, and qli values (6-hour in WFD, 3-hour in WFDEI) to hourly. The total p values are evenly divided over the hourly intervals. Outputs hourly t, u10, ea, qsi, qli, and p.

Usage

```
WATCHhourlyObs(infile = "", outfile = "", logfile = "")
```

Arguments

infile	Required. Name of file created by CreateWFDobs or CreateWFDobs.
outfile	Required. Hourly obs file to be created.
logfile	Optional. Name of the file to be used for logging the action. Normally not use

Value

If successful, returns the value TRUE and writes the specified .obs file of hourly values. If unsuccessful, returns the value FALSE.

WRFbyloc2obs 35

Author(s)

Kevin Shook

Examples

```
## Not run:
WATCHhourlyObs('VermilionWATCH_WFD.obs', 'VermilionWFDhourly.obs')
WATCHhourlyObs('VermilionWATCH_WFDEI.obs', 'VermilionWFDEIhourly.obs')
## End(Not run)
```

WRFbyloc2obs

Extracts CRHM obs variables from a WRF NetCDF at a single specified location

Description

This function is intended to work with NetCDF created by the research group of Dr. Yanping Li of Global Water Futures gwf.usask.ca. This function creates a **CRHMr** data frame from a WRF NetCDF specified by their location within the file. This function will work even if there are only values for a single location inside the NetCDF.

Usage

```
WRFbyloc2obs(NetCDF = "", obsfile = "",
   startDatetime = "2000-10-01 00:00", endDatetime = "2100-12-01 23:00",
   west_east_loc = 1, south_north_loc = 1, airPressure = 0,
   timezone = "", trim = TRUE, quiet = TRUE, logfile = "")
```

Arguments

NetCDF Required. The name of the NetCDF containing the WRF data.

obsfile Optional. If specified the values are written to the obs file.

startDatetime Optional. Beginning datetime of data to be extracted. A string formatted as

"yyyy-mm-dd hh:mm". The default value is '2000-10-01 00:00'.

endDatetime Optional. Endning datetime of data to be extracted. A string formatted as "yyyy-

mm-dd hh:mm". The default value is '2100-12-01 23:00'.

west_east_loc Optional. The NetCDF west_east location as an integer. The default value of 1

specifies the westernmost location.

south_north_loc

Optional. The NetCDF south_north location as an integer. The default value of

1 specifies the southernernmost location.

airPressure Optional. The mean air pressure in Pa. If set to zero (the default) then the air

pressure within the NetCDF file will be used for converting the specific humidity to relative humidity. Because the air pressure may be incorrect or missing, you may wish to specify a mean air pressure to be used for the conversion. Note

36 WRFbyloc2obs

that if there is no air pressure within the NetCDF and you do not specify an air pressure value, this will trigger an error message, and the RH cannot be calculated.

timezone

Required. The name of the timezone of the data as a character string. This should be the timezone of your data, but omitting daylight savings time. Note that the timezone code is specific to your OS. To avoid problems, you should use a timezone without daylight savings time. Under Linux, you can use 'CST' and 'MST' for Central Standard or Mountain Standard time, respectively. Under Windows or OSX, you can use 'etc/GMT+6' or 'etc/GMT+7' for Central Standard and Mountain Standard time. DO NOT use 'America/Regina' as the time zone, as it includes historical changes between standard and daylight savings time.

trim Optional. If TRUE (the default) then the final output will be trimmed to CRHM

day boundaries.

quiet Optional. Suppresses display of messages, except for errors. If you are calling

this function in an R script, you will usually leave quiet=TRUE (i.e. the default). If you are working interactively, you will probably want to set quiet=FALSE.

logfile Optional. Name of the file to be used for logging the action. Normally not used.

Value

If successful, returns the valu TRUE and (optionaly) writes the specified .obs file. If unsuccessful, returns the value FALSE.

If successful, returns either TRUE (if an obs file is specified) or a **CRHMr** obs data frame (if no obs file is specified). The data frame will contain the standard CRHM variables: t, p, u, either rh or ea, qsi, and qli, depending on their presence in the NetCDF. If unsuccessful, returns FALSE.

Author(s)

Kevin Shook

See Also

WRFnearest2obs

```
## Not run: f <- "wrf2d_tquvr.nc"
r <- WRFbyloc2Obs(f, startDatetime = "1980-01-01 00:00", endDatetime = "1980-12-31 23:00")
## End(Not run)</pre>
```

WRFnearest2obs 37

WRFnearest2obs	Extracts CRHM obs variables from a WRF NetCDF closest to specified point
----------------	--

Description

This function is intended to work with NetCDF created by the research group of Dr. Yanping Li of Global Water Futures gwf.usask.ca. This function creates a **CRHMr** data frame from a WRF NetCDF specified by their longitude and latitude, extracting values from the nearest location.

Usage

```
WRFnearest2obs(NetCDF = "", obsfile = "", longitude = 0, latitude = 0,
airPressure = 0, startDatetime = "2000-10-01 00:00",
endDatetime = "2100-12-01 23:00", timezone = "", trim = TRUE,
quiet = TRUE, logfile = "")
```

Arguments

NetCDF	Required.	The name of the netCDF file containing the WRF data.
--------	-----------	--

obsfile Optional. If specified the values are written to the obs file.

longitude Required. The longitude of the point being sought. The input value is not

checked for validity, in case the model extent changes.

latitude Required. The latitude of the point being sought. The input value is *not* checked

for validity, in case the model extent changes.

airPressure Optional. The mean air pressure in Pa. If set to zero (the default) then the air

pressure within the NetCDf file will be used for converting the specific humidity to relative humidity. Because the air pressure may be incorrect or missing, you may wish to specify a mean air pressure to be used for the conversion. Note that if there is no air pressure within the NetCDF and you do not specify an air pressure value, this will trigger an error message, and the RH cannot be

calculated.

startDatetime Optional. Beginning date of data to be extracted. A string formatted as "yyyy-

mm-dd hh:mm". The default value is '2000-10-01 00:00'.

endDatetime Optional. Ending date of data to be extracted. A string formatted as "yyyy-mm-

dd hh:mm". The default value is '2100-12-01 23:00'.

timezone Required. The name of the timezone of the data as a character string. This

should be the timezone of your data, but omitting daylight savings time. Note that the timezone code is specific to your OS. To avoid problems, you should use a timezone without daylight savings time. Under Linux, you can use 'CST' and 'MST' for Central Standard or Mountain Standard time, respectively. Under Windows or OSX, you can use 'etc/GMT+6' or 'etc/GMT+7' for Central Standard and Mountain Standard time. DO NOT use 'America/Regina' as the time zone, as it includes historical changes between standard and daylight savings

time.

38 WRFnearest2obs

trim	Optional. If TRUE (the default) then the final output will be trimmed to CRHM day boundaries.
quiet	Optional. Suppresses display of messages, except for errors. If you are calling this function in an R script, you will usually leave quiet=TRUE (i.e. the default). If you are working interactively, you will probably want to set quiet=FALSE.
logfile	Optional. Name of the file to be used for logging the action. Normally not used.

Value

If successful, returns the value TRUE and (optionaly) writes the specified .obs file. If unsuccessful, returns the value FALSE.

Author(s)

Kevin Shook

See Also

WRFbyloc2obs

```
## Not run: f <- "wrf2d_tquvr.nc"
r <- WRFnearest2obs(f, longitude=-115.27,
latitude=52.03, startDatetime = "1980-01-01 00:00", endDatetime="1980-12-31 23:00")
## End(Not run)</pre>
```

Index

```
*Topic datasets
                                                WATCHdailyArealPrecip, 29
    1and, 20
                                                WATCHgetWFDarealPrecip, 30
                                                WATCHgroupWFDEIobs, 31
append0bs, 24
                                                WATCHgroupWFDobs, 33
                                                WATCHhourlyObs, 34
CanRCM4AdjustedCreateHourlyObs, 3
                                                WRFbyloc2obs, 35, 38
CanRCM4adjustedGetNearestTimeseries, 4,
                                                WRFnearest2obs, 36, 37
CanRCM4unadjustedGetNearestTimeseries,
distributeQsi, 18
ERAdailyArealPrecip, 7
ERAdeaccum, 8, 11, 13, 15
ERAgetArealPrecip, 9
ERAgetMultipleLocationTimeseries, 10
ERAgetNearestTimeseries, 11, 12, 14–16,
        18-20
ERAhourlyAirtemp, 13, 19
ERAhourlyLongwave, 14, 18
ERAhourlyPrecip, 16
ERAhourlyShortwave, 15, 17
ERAhourlyVP, 18
ERAhourlyWindspeed, 19
interpolate, 14, 19, 20
land, 20
NARRdownloadNetCDF, 21
NARRgetNearestTimeseries, 22
Reanalysis-package, 2
trimObs, 24
WATCHcreateHourlyWFDEIobs, 23
WATCHcreateHourlyWFDobs, 20, 24, 25
WATCHcreateWFDEIobs, 27
WATCHcreateWFDobs, 28
```