제 4 장 반복이 있는 이원배치 분산분석

에제 4-1. 어느 공장에서 4대의 기계(A)와 3명의 작업자(B)에 따라서 제품의 생산량에 차이가 있는지 파악하기 위하여 총 3번의 반복실험을 한 결과 아래와 같다. 기계와 작업자에 따라서 제품의 생산량에 차이가 있는지를 검정하여라.

기계 작업자	A_1	A_2	A_3	A_4
B_1	32 35 34	30 32 36	37 33 34	31 32 39
B_{2}	36 35 35	40 39 39	35 37 38	35 40 31
B_3	29 30 35	36 30 26	38 32 39	33 30 27

(1) 제곱합

$$(\ Y_{ijk}-\overline{Y}_{\dots})=(\overline{Y}_{i\cdot\cdot}-\overline{Y}_{\dots})+(\overline{Y}_{\cdot j\cdot}-\overline{Y}_{\dots})+(\overline{Y}_{ij\cdot}-\overline{Y}_{i\cdot\cdot}-\overline{Y}_{j\cdot\cdot}+\overline{Y}_{\dots})+(\ Y_{ijk}-\overline{Y}_{jj})$$

$$\begin{bmatrix} -2.17 - 4.17 & 2.83 & -3.17 \\ 0.83 & -2.17 - 1.17 - 2.17 \\ -0.17 & 1.83 & -0.17 & 4.83 \\ 1.83 & 5.83 & 0.83 & 0.83 \\ 0.83 & 4.83 & 2.83 & 5.83 \\ 0.83 & 4.83 & 3.83 & -3.17 \\ -5.17 & 1.83 & 3.83 & -1.17 \\ -4.17 - 4.17 - 2.17 - 4.17 \\ 0.83 & -8.17 & 4.83 & -7.17 \end{bmatrix} = \begin{bmatrix} -0.72 & 0.06 & 1.72 & -1.06 \\ -0.72$$

$$\begin{pmatrix} 0.64 & -1.14 & -0.81 & 1.31 \\ 0.64 & -1.14 & -0.81 & 1.31 \\ 0.64 & -1.14 & -0.81 & 1.31 \\ -0.61 & 2.61 & -1.72 & -0.28 \\ -0.61 & 2.61 & -1.72 & -0.28 \\ -0.61 & 2.61 & -1.72 & -0.28 \\ -0.03 & -1.47 & 2.53 & -1.03 \\ -0.03 & -1.47 & 2.53 & -1.03 \\ -0.03 & -1.47 & 2.53 & -1.03 \\ -0.03 & -1.47 & 2.53 & -1.03 \\ \end{pmatrix} = \begin{pmatrix} -1.67 - 2.67 & 2.33 & -3.00 \\ 1.33 & -0.67 - 1.67 - 2.00 \\ 0.67 & 0.67 & -1.67 - 0.33 \\ -0.33 - 0.33 & 0.33 & 4.67 \\ -0.33 - 0.33 & 0.33 & 4.67 \\ -0.33 - 0.33 & 1.33 & -4.33 \\ -2.33 & 5.33 & 1.67 & 3.00 \\ -1.33 - 0.67 - 4.33 & 0.00 \\ 3.67 & -4.67 & 2.67 & -3.00 \\ -1.67 & -2.67 & -2.67 & 2.33 & -3.00 \\ 0.67 & 0.67 & -1.67 - 0.33 \\ -0.33 - 0.33 & 1.33 & -4.33 \\ -2.33 & 5.33 & 1.67 & 3.00 \\ -1.33 - 0.67 - 4.33 & 0.00 \\ 3.67 & -4.67 & 2.67 & -3.00 \\ -1.67 & -2.67 & -2.67 & -2.00 \\ 0.67 & 0.67 & -1.67 - 0.33 \\ -0.33 & -0.33 & 1.33 & -4.33 \\ -2.33 & 5.33 & 1.67 & 3.00 \\ -1.33 - 0.67 - 4.33 & 0.00 \\ 3.67 & -4.67 & 2.67 & -3.00 \\ -1.67 & -2.67 & -2.00 \\ -1.67 & -2.67 & -2.00 \\ -1.67 & -2.67 & -2.00 \\ -1.67 & -2.67 & -2.00 \\ -1.67 & -2.67 & -2.00 \\ -1.67 & -2.67 & -2.00 \\ -1.67 & -2.67 & -2.00 \\ -1.67 & -2.67 & -2.00 \\ -1.67 & -2.67 & -2.00 \\ -1.67 & -2.67 & -2.00 \\ -1.67 & -2.67 & -2.00 \\ -1.67 & -2.67 & -2.00 \\ -1.67 & -2.67 & -2.00 \\ -1.67 & -2.67 & -2.00 \\ -1.67 & -2.67 & -2.00 \\ -1.67 & -2.67 & -2.00 \\ -1.67 & -2.67 & -2.00 \\ -1.67 & -2.67 & -2.00 \\ -1.67 & -2.67 & -2.00 \\ -2.37 & -2.07 & -2.00 \\ -2.37 & -2.07 & -2.07 \\ -2.37 & -2.07 & -2$$

$$\begin{split} &\sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{r}(Y_{ijk}-\overline{Y}_{...})^{2} = \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{r}(\overline{Y}_{i..}-\overline{Y}_{...})^{2} + \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{r}(\overline{Y}_{.j.}-\overline{Y}_{...})^{2} \\ &+ \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{r}(\overline{Y}_{ij.}-\overline{Y}_{i..}-\overline{Y}_{.j.}+\overline{Y}_{...})^{2} + \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{r}(Y_{ijk}-\overline{Y}_{ij.})^{2} \end{split}$$

$$\therefore SS_T = SS_A + SS_B + SS_{A \times B} + SS_E$$

$$SS_T = (-2.17)^2 + 0.83^2 + \cdots + (-7.17)^2 = 477$$

$$SS_A = (-0.72)^2 + 0.06^2 + \cdots + (-1.06)^2 = 41.44$$

$$SS_B = (-0.42)^2 + (-0.42)^2 + \cdots + (-2.08)^2 = 129.17$$

$$SS_{A \times B} = 0.64^2 + (-1.14)^2 + \cdots + (-1.03)^2 = 71.72$$

$$SS_E = (-1.67)^2 + (-2.67)^2 + \cdots + (-3.00)^2 = 234.67$$

(2) 간단식

기계 작업자	A_1	A_2	A_3	A_4
B_1	32 35 34	30 32 36	37 33 34	31 32 39
B_2	36 35 35	40 39 39	35 37 38	35 40 31
B_3	29 30 35	36 30 26	38 32 39	33 30 27

기계 작업자	A_1	A_2	A_3	A_4	합 계
B_1	101	98	104	102	405
B_2	106	118	110	106	440
B_3	94	92	109	90	385
합 계	301	308	323	298	1230

$$\begin{split} &\sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{r}(\overline{Y}_{ij}-\overline{Y}_{i\cdot\cdot}-\overline{Y}_{\cdot\cdot j}+\overline{Y}_{\cdot\cdot\cdot})^{2}\\ &=\sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{r}\left((\overline{Y}_{ij\cdot}-\overline{Y}_{\cdot\cdot\cdot})-(\overline{Y}_{\cdot\cdot}-\overline{Y}_{\cdot\cdot\cdot})-(\overline{Y}_{\cdot\cdot j}-\overline{Y}_{\cdot\cdot\cdot})\right)^{2}\\ &=\sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{r}(\overline{Y}_{ij\cdot}-\overline{Y}_{\cdot\cdot\cdot})^{2}-\sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{r}(\overline{Y}_{i\cdot\cdot}-\overline{Y}_{\cdot\cdot\cdot})^{2}-\sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{r}(\overline{Y}_{\cdot\cdot j}-\overline{Y}_{\cdot\cdot\cdot})^{2}\\ &\div SS_{A\times B}=SS_{AB}-SS_{A}-SS_{B} \end{split}$$

$$CT = \frac{T^2}{lmn} = \frac{1230^2}{4 \times 3 \times 3} = 42025$$

$$SS_T = \sum_{i=1}^{l} \sum_{j=1}^{m} \sum_{k=1}^{r} Y_{ijk}^2 - CT$$

$$= 32^2 + 35^2 + \dots + 27^2 - 42025$$

$$= 42502 - 42025$$

$$= 477$$

$$\begin{split} SS_A &= \sum_{i=1}^l \frac{Y_{i\cdot\cdot}^2}{mr} - CT \\ &= \sum_{i=1}^4 \frac{Y_{i\cdot\cdot}^2}{3\times 3} - CT \\ &= \frac{1}{9}(301^2 + 308^2 + 323^2 + 298^2) - 42025 \\ &= 41.44 \end{split}$$

$$\begin{split} SS_B &= \sum_{j=1}^m \frac{Y_{\cdot j \cdot}^2}{lr} - CT \\ &= \sum_{j=1}^3 \frac{Y_{\cdot j \cdot}^2}{4 \times 3} - CT \\ &= \frac{1}{12} (405^2 + 440^2 + 385^2) - 42025 \\ &= 129.17 \end{split}$$

$$SS_{AB} = \sum_{i=1}^{l} \sum_{j=1}^{m} \frac{Y_{ij}^{2}}{r} - CT$$

$$= \sum_{i=1}^{4} \sum_{j=1}^{3} \frac{Y_{ij}^{2}}{3} - CT$$

$$= \frac{1}{3} (101^{2} + 98^{2} + \dots + 90^{2}) - 42025$$

$$= 242.33$$

$$\begin{split} SS_{A\times B} &= SS_{AB} - SS_A - SS_B \\ &= 242.33 - 41.44 - 129.17 \\ &= 71.72 \end{split}$$

(2) 자유도

$$A$$
 자유도= $l-1=4-1=3$
 B 자유도= $m-1=3-1=2$
 $A\times B$ 의 자유도= $(l-1)(m-1)=(4-1)(3-1)=6$
오차 자유도= $lm(r-1)=4\times 3\times (3-1)=24$
총 자유도= $lmr-1=4\times 3\times 3-1=35$

(3) 분산분석표

source	SS	df	MS	F
요인 (A)	SS_A	l-1	MS_A	MS_A/MS_E
요인(<i>B</i>)	SS_B	m-1	MS_B	MS_B/MS_E
교호작용 $(A imes B)$	$S\!S_{\!A imes B}$	(l-1)(m-1)	$MS_{A imes B}$	$MS_{A \times B}/MS_E$
오차(<i>E</i>)	$S\!S_E$	lm(r-1)	$M\!S_{\!E}$	
합계(Total)	SS_T	lmr-1		

source	SS	df	MS	F
요인 (A)	41.44	3	13.813	1.413
요인(<i>B</i>)	129.17	2	64.585	6.605^*
교호작용($A imes B$)	71.72	6	11.953	1.223
오차(<i>E</i>)	234.67	24	9.778	
합계(Total)	477	35		

(4) 기각역

$$F_0 \geq F(3,\ 24\,;\,0.05)$$
, $1.413 \leq 3.01$, H_0 not reject

$$F_0 \geq \mathit{F}(2,\ 24\,;\, 0.05)\text{, } 6.605 \geq 3.40\text{, } H_0 \text{ reject}$$

$$F_0 \geq F(6,\ 24\,;\,0.05)$$
, $1.223 \leq 2.51$, H_0 not reject

(5) 분산분석 후의 추정

① 기계(A)의 모평균의 추정

$$\overline{Y}_{i\cdot\cdot} \pm t_{lm(r-1),\ \alpha/2} \times \sqrt{\frac{\mathit{MS}_E}{\mathit{mr}}}$$

$$\overline{Y}_{i-} \pm t_{24,\,0.025} \times \sqrt{\frac{9.778}{3 \times 3}}$$

$$33.444 \pm 2.064 \times \sqrt{\frac{9.778}{3 \times 3}} = (31.293, 35.595)$$

$$34.222 \pm 2.064 \times \sqrt{\frac{9.778}{3 \times 3}} = (32.071, 36.373)$$

$$35.889 \pm 2.064 \times \sqrt{\frac{9.778}{3 \times 3}} = (33.738, 38.040)$$

$$33.111 \pm 2.064 \times \sqrt{\frac{9.778}{3 \times 3}} = (30.960, 35.262)$$

② 작업자(B)의 모평균의 추정

$$\overline{Y}_{.j} \pm t_{lm(r-1), \alpha/2} \times \sqrt{\frac{MS_E}{lr}}$$

$$33.750 \pm 2.064 \times \sqrt{\frac{9.778}{4 \times 3}} = (31.887, 35.613)$$

$$36.667 \pm 2.064 \times \sqrt{\frac{9.778}{4 \times 3}} = (34.516, 38.818)$$

$$62.083 \pm 2.064 \times \sqrt{\frac{9.778}{4 \times 3}} = (59.932, 64.234)$$

③ 교호작용에 대한 모평균의 추정(교호작용이 있는 경우)

$$\overline{Y}_{ij} \pm t_{lm(r-1),~\alpha/2} \times \sqrt{\frac{\mathit{MS}_{\!E}}{r}}$$

$$A_1B_1$$
: 33.667 ± 2.064 × $\sqrt{\frac{9.778}{3}}$ = (29.941, 37.939)

$$A_1B_2$$
: $35.333 \pm 2.064 \times \sqrt{\frac{9.778}{3}} = (31.607, 39.059)$

$$A_1B_3$$
: $31.333 \pm 2.064 \times \sqrt{\frac{9.778}{3}} = (27.607, 35.059)$

$$A_2B_1$$
: 32.667 ± 2.064 × $\sqrt{\frac{9.778}{3}}$ = (28.941, 36.393)

$$A_2B_2$$
: 39.333 $\pm 2.064 \times \sqrt{\frac{9.778}{3}} = (35.607, 43.059)$

$$A_2B_3$$
: $30.667 \pm 2.064 \times \sqrt{\frac{9.778}{3}} = (26.941, 34.393)$

$$A_3B_1$$
: 34.667 ± 2.064 × $\sqrt{\frac{9.778}{3}}$ = (30.941, 38.393)

$$A_3B_2$$
: $36.667 \pm 2.064 \times \sqrt{\frac{9.778}{3}} = (32.941, 40.393)$

$$A_3 B_3$$
: $36.333 \pm 2.064 \times \sqrt{\frac{9.778}{3}} = (32.607, 40.059)$

$$A_4B_1$$
: 34.000 ± 2.064 × $\sqrt{\frac{9.778}{3}}$ = (30.274, 37.726)

$$A_4B_2$$
: $35.333 \pm 2.064 \times \sqrt{\frac{9.778}{3}} = (31.607, 39.059)$

$$A_4B_3$$
: 30.000 $\pm 2.064 \times \sqrt{\frac{9.778}{3}} = (26.274, 33.726)$

④ 교호작용에 대한 모평균의 추정(교호작용이 없는 경우)

$$\overline{Y}_{i\cdot\cdot} + \overline{Y}_{\cdot\cdot j\cdot} - \overline{Y}_{\cdot\cdot\cdot} \pm t_{lm(r-1),\ \alpha/2} \times \sqrt{\frac{MS_E}{n_e}} \text{ , } n_e = \frac{lmr}{l+m-1}$$

$$n_e = \frac{4 \times 3 \times 3}{4 + 3 - 1} = 6$$

평균이 제일 큰 경우:

$$A_2B_2 \ : \ (34.222 + 36.667 - 34.167) \pm 2.064 \times \sqrt{\frac{9.778}{6}} = (34.087, \ 39.357)$$

평균이 제일 작은 경우

$$A_4B_3\ :\ (33.111+32.083-34.167)\pm 2.064\times \sqrt{\frac{9.778}{6}}=(28.393,\ 33.663)$$

⑤ 기계(A)간의 모평균 추정

$$\overline{Y}_{i\cdot\cdot} - \overline{Y}_{i\cdot\cdot}^* \pm t_{lm(r-1), \alpha/2} \times \sqrt{\frac{2MS_E}{mr}}$$

기계1과 기계2 :
$$(33.444 - 34.222) \pm 2.064 \times \sqrt{\frac{2 \times 9.778}{3 \times 3}} = (-3.820, \ 2.264)$$

생산량 LSD

(1) 기계	(J) 기계				95% 신	뢰구간
		평균차(I-J)	표준오차	유의확률	하한값	상한값
기계1	기계2	78	1.474	.603	-3.82	2.26
	기계3	-2.44	1.474	.110	-5.49	.60
	기계4	.33	1.474	.823	-2.71	3.38
기계2	기계1	.78	1.474	.603	-2.26	3.82
	기계3	-1.67	1.474	.269	-4.71	1.38
	기계4	1.11	1.474	.458	-1.93	4.15
기계3	기계1	2.44	1.474	.110	60	5.49
	기계2	1.67	1.474	.269	-1.38	4.71
	기계4	2.78	1.474	.072	26	5.82
기계4	기계1	33	1.474	.823	-3.38	2.71
	기계2	-1.11	1.474	.458	-4.15	1.93
	기계3	-2.78	1.474	.072	-5.82	.26

⑥ 작업자(B)간의 모평균 추정

$$\overline{Y}_{\cdot j \cdot} - \overline{Y}_{\cdot j \cdot}^* \pm t_{lm(r-1), \alpha/2} imes \sqrt{rac{2MS_E}{lr}}$$

생산탕 LSD

(I) 작업자	(J) 작업자				95% 신	뢰구간
		평균차(I-J)	표준오차	유의확률	하한값	삼한값
작업자1	작업자2	-2.92*	1.277	.031	-5.55	28
	작업자3	1.67	1.277	.204	97	4.30
작업자2	작업자1	2.92 [*]	1.277	.031	.28	5.55
	작업자3	4.58*	1.277	.001	1.95	7.22
작업자3	작업자1	-1.67	1.277	.204	-4.30	.97
	작업자2	-4.58 [*]	1.277	.001	-7.22	-1.95

직접 계산해보기 바랍니다.

(6) SPSS 분석결과

① 분산분석

기술통계량

종속 변수 생산량

기계	작업자	평균	표준편차	N
기계1	작업자1	33.67	1.528	3
	작업자2	35.33	.577	3
	작업자3	31.33	3.215	3
	합계	33.44	2.506	9
기계2	작업자1	32.67	3.055	3
	작업자2	39.33	.577	3
	작업자3	30.67	5.033	3
	합계	34.22	4.919	9
기계3	작업자1	34.67	2.082	3
	작업자2	36.67	1.528	3
	작업자3	36.33	3.786	3
	합계	35.89	2.472	9
기계4	작업자1	34.00	4.359	3
	작업자2	35.33	4.509	3
	작업자3	30.00	3.000	3
	합계	33.11	4.226	9
합계	작업자1	33.75	2.633	12
	작업자2	36.67	2.674	12
	작업자3	32.08	4.188	12
	합계	34.17	3.692	36

오차 분산의 동일성에 대한 Levene의 검정^a

종속 변수:생산량

F	df1	df2	유의확률
1.757	11	24	.120

여러 집단에서 종속변수의 오차 분산이 동일한 영가설을 검정합니다.

a. Design: 절편 + 기계 + 작업자 + 기계 * 작업자

개체-간 효과 검정

종속 변수:생산량

소스	제 III 유형 제곱합	자유도	평균 제곱	F	유의확률
수정 모형	242.3334	11	22.030	2.253	.047
절편	42025.000	1	42025.000	4298.011	.000
기계	41.444	3	13.815	1.413	.263
작업자	129.167	2	64.583	6.605	.005
기계 * 작업자	71.722	6	11.954	1.223	.329
오차	234.667	24	9,778		
합계	42502.000	36	3000 10 00000		
수정 합계	477.000	35			

a. R 제곱 = .508 (수정된 R 제곱 = .283)

①기계와 작업자간의 교호작용 효과는 유의수준 5%에서 없었으며 ②기계는 유의수준 5%에서 유의한 차이가 없었고 ③작업자는 유의수준 5%에서 차이가 나타났다. 교호 작용 효과가 없으므로 ④교호작용을 오차항으로 풀링하여 다시 분산분석을 실시한다.

추정된 주변평균

1. 기계

종속 변수:생산량

기계			95% 신뢰구간	
	평균	표준오차	하한값	상한값
기계1	33.444	1.042	31.293	35.596
기계2	34.222	1.042	32.071	36.373
기계3	35.889	1.042	33.738	38.040
기계4	33.111	1.042	30.960	35.262

2. 작업자

종속 변수:생산량

작업자			95% 신뢰구간	
	평균	표준오차	하한값	상한값
작업자1	33.750	.903	31.887	35.613
작업자2	36.667	.903	34.804	38.530
작업자3	32.083	.903	30.220	33.946

3. 기계 * 작업자

종속 변수:생산량

기계	작업자			95% 신	뢰구간
		평균	표준오차	하한값	상한값
기계1	작업자1	33.667	1.805	29.941	37.393
	작업자2	35.333	1.805	31.607	39.059
	작업자3	31.333	1.805	27.607	35.059
기계2	작업자1	32.667	1.805	28.941	36.393
	작업자2	39.333	1.805	35.607	43.059
	작업자3	30.667	1.805	26.941	34.393
기계3	작업자1	34.667	1.805	30.941	38.393
	작업자2	36.667	1.805	32.941	40.393
	작업자3	36.333	1.805	32.607	40.059
기계4	작업자1	34.000	1.805	30.274	37.726
	작업자2	35.333	1.805	31.607	39.059
	작업자3	30.000	1.805	26.274	33.726

추정된 주변 평균에서 각각의 신뢰구간을 찾을 수 있어야 한다.

② 기계 다중비교

다중 비교

종속 변수:생산량

	(1) 기계	(J) 기계				95% 신	뢰구간
			평균차(I-J)	표준오차	유의확률	하한값	상한값
Tukey HSD	기계1	기계2	78	1.474	.952	-4.84	3.29
		기계3	-2.44	1.474	.367	-6.51	1.62
		기계4	.33	1.474	.996	-3.73	4.40
	기계2	기계1	.78	1.474	.952	-3.29	4.84
		기계3	-1.67	1.474	.675	-5.73	2.40
		기계4	1.11	1.474	.874	-2.96	5.18
	기계3	기계1	2.44	1.474	.367	-1.62	6.51
		기계2	1.67	1.474	.675	-2.40	5.73
		기계4	2.78	1.474	.261	-1.29	6.84
	기계4	기계1	33	1.474	.996	-4.40	3.73
		기계2	-1.11	1.474	.874	-5.18	2.96
		기계3	-2.78	1.474	.261	-6.84	1.29
Scheffe	기계1	기계2	78	1.474	.963	-5.21	3.65
		기계3	-2.44	1.474	.448	-6.87	1.98
		기계4	.33	1.474	.997	-4.10	4.76
	기계2	기계1	.78	1.474	.963	-3.65	5.21
		기계3	-1.67	1.474	.736	-6.10	2.76
		기계4	1.11	1.474	.903	-3.32	5.54
	기계3	기계1	2.44	1.474	.448	-1.98	6.87
		기계2	1.67	1.474	.736	-2.76	6.10
		기계4	2.78	1.474	.337	-1.65	7.21
	기계4	기계1	33	1.474	.997	-4.76	4.10
		기계2	-1.11	1.474	.903	-5.54	3.32
		기계3	-2.78	1.474	.337	-7.21	1.65
LSD	기계1	기계2	78	1.474	.603	-3.82	2.26
		기계3	-2.44	1.474	.110	-5.49	.60
		기계4	.33	1.474	.823	-2.71	3.38
	기계2	기계1	.78	1.474	.603	-2.26	3.82
		기계3	-1.67	1.474	.269	-4.71	1.38
		기계4	1.11	1.474	.458	-1.93	4.15
	기계3	기계1	2.44	1.474	.110	60	5.49
		기계2	1.67	1.474	.269	-1.38	4.71
		기계4	2.78	1.474	.072	26	5.82
	기계4	기계1	33	1.474	.823	-3.38	2.71
		기계2	-1.11	1.474	.458	-4.15	1.93
		기계3	-2.78	1.474	.072	-5.82	.26

동일집단군

생산량

	기계		집단군
		N	1
Tukey HSD ^{a,b}	기계4	9	33.11
	기계1	9	33.44
	기계2	9	34.22
	기계3	9	35.89
	유의확률		.261
Scheffe ^{a,b}	기계4	9	33.11
	기계1	9	33.44
	기계2	9	34.22
	기계3	9	35.89
	유의확률		.337

③ 작업자 다중비교

다중 비교

종속 변수:생산량

	(I) 작업자	(J) 작업자				95% 신	리그가
	()) 먹답자	(기) 그 다시					
			평균차(I-J)	표준오차	유의확률	하한값	삼한값
Tukey HSD	작업자1	작업자2	-2.92	1.277	.077	-6.10	.27
		작업자3	1.67	1.277	.406	-1.52	4.85
	작업자2	작업자1	2.92	1.277	.077	27	6.10
		작업자3	4.58*	1.277	.004	1.40	7.77
	작업자3	작업자1	-1.67	1.277	.406	-4.85	1.52
		작업자2	-4.58 [*]	1.277	.004	-7.77	-1.40
Scheffe	작업자1	작업자2	-2.92	1.277	.094	-6.25	.41
		작업자3	1.67	1.277	.439	-1.66	5.00
	작업자2	작업자1	2.92	1.277	.094	41	6.25
		작업자3	4.58*	1.277	.006	1.25	7.91
	작업자3	작업자1	-1.67	1.277	.439	-5.00	1.66
		작업자2	-4.58 [*]	1.277	.006	-7.91	-1.25
LSD	작업자1	작업자2	-2.92 [*]	1.277	.031	-5.55	28
		작업자3	1.67	1.277	.204	97	4.30
	작업자2	작업자1	2.92 [*]	1.277	.031	.28	5.55
		작업자3	4.58*	1.277	.001	1.95	7.22
	작업자3	작업자1	-1.67	1.277	.204	-4.30	.97
		작업자2	-4.58 [*]	1.277	.001	-7.22	-1.95

생산량

	작업자		집단군		
		N	1	2	
Tukey HSD ^{a,b}	작업자3	12	32.08		
	작업자1	12	33.75	33.75	
	작업자2	12		36.67	
	유의확률		.406	.077	
Scheffe ^{a,b}	작업자3	12	32.08		
	작업자1	12	33.75	33.75	
	작업자2	12		36.67	
	유의확률		.439	.094	

사후검정 결과는 일원배치 분산분석과 일치

(7) 오차항의 풀링

source	SS	df	MS	F
요인 (A)	41.44	3	13.813	1.413
요인(<i>B</i>)	129.17	2	64.585	6.605^*
교호작용($A imes B$)	71.72	6	11.953	1.223
오차(<i>E</i>)	234.67	24	9.778	
합계(Total)	477	35		

source	SS	df	MS	F
요인 (A) 기계	41.44	3	13.813	1.352
요인(<i>B</i>) 작업자	129.17	2	64.585	6.324^{\star}
오차(<i>E</i>)	306.39	30	10.213	
합계(Total)	477	35		

①교호작용 효과가 나타나지 않아 오차항에 풀링하여 다시 분산분석을 한 결과 ②작업자가 유의수준 5%에서 유의한 차이가 있었다. ③작업자에 대한 사후검정이 필요하다.

예제 4-2. 1979년 모 시멘트공장에서는 시멘트 분쇄공정에서 시멘트 강도에 영향을 주는 여러 가지 인자 중 석고의 종류(A)와 석고첨가량으로 사용되는 SO_3 의 함량(B)이 어떤 영향을 주고, 각 인자의 어떤 수준조합에서 높은 강도를 주는가를 실험한 결과는 아래와 같다.

SO ₃ 석고	화학석고 (A_1)	분말석고 (A_2)	혼합석고 (A_3)
$B_1(1.6\%)$	305, 302	322, 325	320, 322
$B_2(2.0\%)$	335, 337	350, 348	342, 344
$B_3(2.4\%)$	336, 364	326, 324	338, 336
$B_4(2.8\%)$	372, 374	330, 330	348, 348
$B_5(3.2\%)$	376, 373	327, 330	350, 350
$B_6(3.6\%)$	348, 350	310, 308	330, 328

(1) 데이터의 집계

<i>SO</i> ₃ 석고	화학석	고 (A_1)	분말석	$ $ 고 (A_2)	혼합석	고 (A_3)
$B_1(1.6\%)$	607	303.5	647	323.5	642	321
$B_2(2.0\%)$	672	336	698	349	686	343
$B_3(2.4\%)$	730	365	650	325	674	337
$B_4(2.8\%)$	746	373	660	330	696	348
$B_5(3.2\%)$	749	374.5	657	328.5	700	350
$B_6(3.6\%)$	698	349	618	309	658	329

(2) 원데이터의 그래프화

(3) 간단식
$$N = lmr = 3 \times 6 \times 2 = 36$$

$$CT = \frac{T^2}{lmn} = \frac{12888^2}{36} = 4126315.1$$

$$SS_T = \sum_{i=1}^l \sum_{j=1}^m \sum_{k=1}^r Y_{ijk}^2 - CT$$

$$= 13502.9$$

$$SS_A = \sum_{i=1}^l \frac{Y_{i\cdot}^2}{mr} - CT$$

$$= 3088.2$$

$$SS_B = \sum_{j=1}^m \frac{Y_{\cdot j\cdot}^2}{lr} - CT$$

$$= 5548.9$$

$$SS_{AB} = \sum_{i=1}^l \sum_{j=1}^m \frac{Y_{ij\cdot}^2}{r} - CT$$

$$= 13462.9$$

$$SS_{A \times B} = SS_{AB} - SS_A - SS_B$$

$$= 13462.9 - 3088.2 - 5548.9$$

$$= 4825.8$$

$$SS_E = SS_T - SS_{AB}$$

$$= 13502.9 - 13462.9$$

$$= 40.0$$

source	SS	df	MS	F	F(0.05)
요인 (A)	3088.2	2	1544.1	694.9	3.55
요인(B)	5548.9	5	1109.8	499.4	2.77
교호작용($A \times B$)	4825.9	10	482.6	217.2	2.41
오차(<i>E</i>)	40.0	18	2.2		
합계(Total)	13502.9	35			

(4) 분산분석 후의 추정

- 실험의 결과 교호작용이 유의미하므로 요인 A, B의 조합에 의해 특별한 효과가 있다. 따라서, A, B 각 요인에 대하여 모평균을 추정하는 것 보다는 A, B의 수준 조합 $A_i B_j$ 에서 모평균을 추정하는 것이 의미가 있다.
- A_1B_5 의 평균이 가장 크다. 따라서 이 부분의 신뢰구간을 추정

$$A_1B_5: \left(374.5 \pm 2.101 \times \sqrt{\frac{2.2}{2}}\right) = (372.3 \ 376.7)$$

(5) 분산분석 결과 해석

유의수준 5%에서 교호작용에 효과가 있는 것으로 조사되었다. 따라서 ①<u>최적을 조합은 10개 세부 집단 가운데 평균이 가장 큰 집단을 선택</u>하거나 ②<u>10개의 세부집단으로 구분후 일원배치 분산분석을 실시하고 사후 검정 결과를 바탕으로 최적의 조합을 선택</u> 할 수 있다.

에제 4-3. 4종류의 살충제가 3가지 품종의 오렌지 나무의 생산량에 미치는 영향을 알기 위하여 실험을 한다. 한 오렌지 농장에서 각 품종별로 8그루씩의 나무를 랜덤으로 선택하고, 각 살충제마다 2그루씩 랜덤으로 배정하였다. 규정된 사용법에 따라 살충제를 살포한 후 일정기간 후에 나무에 달린 오렌지의 개수를 헤아려서 다음과 같은 데이터를 얻었다. 적당한가설을 세우고 검정하여라.

살충제 품종	A	В	C	D
1	49 39	50 55	43 38	53 48
2	55 41	67 58	53 42	85 73
3	66 68	85 92	69 62	85 99

(1) 분산분석

source	SS	df	MS	F
요인 (A) 살충제	4447.792	3		
요인(B) 오렌지	248.583	2		
교호작용($A imes B$)				
오차 (E)	507.500			
합계(Total)	7187.958			

개체-간 효과 검정

종속 변수:오렌지개수

소스	제 III 유형 제곱합	자유도	평균 제곱	F	유의확률
수정 모형	6680,458ª	11	607.314	14.360	.000
절편	90651.042	1	90651.042	2143.473	.000
오렌지나무	248.583	2	124.292	2.939	.091
살총제	4447.792	3	1482.597	35.056	.000
오렌지나무 * 살충제	1984.083	[6]	330.681	7.819	.001
오차	507.500	12	42.292		
합계	97839.000	24			
수정 합계	7187.958	23			

a. R 제곱 = .929 (수정된 R 제곱 = .865)

①유의수준 5%에서 교호작용에 효과가 있는 것으로 조사되었다. 따라서 ②최적의 조합은 12개의 집단 가운데 평균이 가장 큰 집단을 선택하거나 ③12개의 세부집단으로 구분후 일 원배치 분산분석을 실시하고 ④사후 검정 결과를 바탕으로 최적의 조합을 선택 할 수 있다.

(2) 사후검정

오렌지개수

Student-Newman-Keulsa.b

오렌지나무		집단군
	N	1
1	8	57.62
2	8	61.25
2	8	65.50
유의확률		.077

사후검정 결과는 일원배치 분산분석과 일치

오렌지개수

Student-Newman-Keuls^{a,b}

살충제		집단군			
	N	1	2	3	
Α	6	45.67			
В	6	53.67			
С	6		64.50		
D	6			82.00	
유의확률		.054	1.000	1.000	

사후검정 결과는 일원배치 분산분석과 일치

(3) 분산분석 후의 추정

기술통계

오렌지개수

					평균에 대한 95% 신뢰구간			
	N	평균	표준편차	표준오차	하한값	상한값	최소값	최대값
(A, 1)	2	44.00	7.071	5.000	-19.53	107.53	39	49
(A, 2)	2	52.50	3.536	2.500	20.73	84.27	50	55
(A, 3)	2	40.50	3.536	2.500	8.73	72.27	38	43
(B, 1)	2	50.50	3.536	2.500	18.73	82.27	48	53
(B, 2)	2	48.00	9.899	7.000	-40.94	136.94	41	55
(B, 3)	2	62.50	6.364	4.500	5.32	119.68	58	67
(C, 1)	2	47.50	7.778	5.500	-22.38	117.38	42	53
(C, 2)	2	79.00	8.485	6.000	2.76	155.24	73	85
(C, 3)	2	67.00	1.414	1.000	54.29	79.71	66	68
(D, 1)	2	88.50	4.950	3.500	44.03	132.97	85	92
(D, 2)	2	65.50	4.950	3.500	21.03	109.97	62	69
(D, 3)	2	92.00	9.899	7.000	3.06	180.94	85	99
합계	24	61.46	17.678	3.609	53.99	68.92	38	99

분산분석

오렌지개수

	제곱합	df	평균 제곱	거짓	유믜확률
집단-간	6680.458	11	607.314	14.360	.000
집단-내	507.500	12	42.292		
합계	7187.958	23			

오렌지개수

Student-Newman-Keuls^a

집단		유덕	리수준 = 0.0 5	i에 대한 부집	단
	N	1	2	3	4
(A, 3)	2	40.50			
(A, 1)	2	44.00	44.00		
(C, 1)	2	47.50	47.50		
(B, 2)	2	48.00	48.00		
(B, 1)	2	50.50	50.50		
(A, 2)	2	52.50	52.50		
(B, 3)	2	62.50	62.50	62.50	
(D, 2)	2		65.50	65.50	
(C, 3)	2		67.00	67.00	
(C, 2)	2			79.00	79.00
(D, 1)	2				88.50
(D, 3)	2				92.00
유의확률		.061	.057	.104	.155

전체 집단을 12개의 세부집단으로 나누어 일원배치분산분석을 한 결과 통계적으로 유의한 차이가 있었으며 사후검정 결과 (D,1), (D,3)의 조합이 오렌지 개수가 가장 많은 것으로 나타났다. 에제 4-4. 화학 처리 속도에 대한 연구 결과 가장 중요한 변수 두 개는 압력과 온도였다. 각 요인에서 두 번 반복하여 다음의 데이터를 얻었다. 적당한 가설을 세우고 검정하여라.

압력 온도	$A_1(200\mathrm{psig})$	$A_2(215\mathrm{psig})$	$A_3(230\mathrm{psig})$
$B_1(150^{\circ}\mathbb{C})$	90.4 90.2	90.7 90.6	90.2 90.4
$B_2(160^{\circ}\text{C})$	90.1 90.3	90.5 90.6	89.9 90.1
$B_3(170^{\circ}\mathbb{C})$	90.5 90.7	90.8 90.9	90.4 90.1

(1) 분산분석

개체-간 효과 검정

종속 변수:처리속도

소스	제 III 유형 제곱합	자유도	평균 제곱	F	유의확률
수정 모형	1.138ª	8	.142	8.000	.003
절편	147135.042	1	147135.042	8276346.125	.000
압력	.768	2	.384	21.594	.000
온도	.301	2	.151	8.469	.009
압력 * 온도	.069	4	.017	.969	.470
오차	.160	9	.018		
합계	147136.340	18			
수정 합계	1.298	17			

a. R 제곱 = .877 (수정된 R 제곱 = .767)

유의수준 5%에서 교호작용에 효과가 나타나지 않았으므로 교호작용을 오차항에 풀링하여 다시 분산분석을 한다.

개체-간 효과 검정

종속 변수:처리속도

소스	제 III 유형 제곱합	자유도	평균 제곱	F	유의확률
수정 모형	1.069ª	4	.267	15.177	.000
절편	147135.042	1	147135.042	8356699.000	.000
압력	.768	2	.384	21.803	.000
온도	301	2	.151	8.551	.004
오차	.229	13	.018		
합계	147136.340	18			
수정 합계	1.298	17			

a. R 제곱 = .824 (수정된 R 제곱 = .769)

압력과 온도 모두 유의수준 5%에서 유의한 차이가 있었다. 압력과 온도에 대한 사후검정 필요.

(2) 사후검정

처리속도

Student-Newman-Keulsa.b

압력		집단군		
	N	1	2	3
230psig	6	90.183		
200psig	6		90.367	
215psig	6			90.683
유의확률		1.000	1.000	1.000

사후검정 결과는 일원배치 분산분석과 일치

처리속도

Student-Newman-Keuls^{a,b}

온도		집단군		
	N	1	2	
160℃	6	90.250		
150℃	6	90.417	90.417	
170℃	6		90.567	
유의확률		.059	.083	

사후검정 결과는 일원배치 분산분석과 일치

예제 4-5. 다음의 자료는 세 종류의 석탄에 각각 세 농도(0.404N, 0.626N, 0.786N)의 에 탄올성 수산화소듐을 사용하여, 석탄의 산도를 각각의 9개 처리조합에서 두 번 측정한 것이다.

석탄 농도	1	2	3
0.404N	8.27 8.17	8.66 8.61	8.14 7.96
0.626N	8.03 8.21	8.42 8.58	8.02 7.89
0.786N	8.60 8.20	8.61 8.76	8.13 8.07

(1) 분산분석

개체-간 효과 검정

종속 변수:석탄산도

소스	제 III 유형 제곱합	자유도	평균 제곱	F	유의확률
수점 모형	1.141ª	8	.143	8.394	.002
절편	1238.858	1	1238.858	72897.839	.000
석탄종류	1.002	2	.501	29.492	.000
수산화소듐	.124	2	.062	3.657	.069
석탄종류 * 수산화소듐	.015	4	.004	.214	.924
오차	.153	9	.017		
합계	1240.153	18			
수정 합계	1.294	17			

a. R 제곱 = .882 (수정된 R 제곱 = .777)

유의수준 5%에서 교호작용에 효과가 나타나지 않았으므로 교호작용을 오차항에 풀링하여 다시 분산분석을 한다.

개체-간 효과 검정

종속 변수:석탄산도

소스	제 III 유형 제곱합	자유도	평균 제곱	F	유의확률
수정 모형	1.127ª	4	.282	21.861	.000
절편	1238.858	1	1238.858	96147.005	.000
석탄종류	1.002	2	.501	38.898	.000
수산화소듐	.124	2	.062	4.824	.027
오차	.168	13	.013	1	
합계	1240.153	18			
수정 합계	1.294	17			

a. R 제곱 = .871 (수정된 R 제곱 = .831)

석탄과 수산화소듐 모두 유의수준 5%에서 유의한 차이가 있었다. 석탄과 수산화소듐에 대한 사후검정 필요.

(2) 사후검정

석탄산도

Student-Newman-Keuls^{a,b}

석탄종류		집단군			
	N	1	2	3	
3	6	8.0350			
1	6		8.2467		
2	6			8.6067	
유의확률		1.000	1.000	1.000	

사후검정 결과는 일원배치 분산분석과 일치

석탄산도

Student-Newman-Keuls^{a,b}

수산화소듐		집단군
	N	1
0.626N	6	8.1917
0.404N	6	8.3017
0.786N	6	8.3950
유의확률		.058

사후검정 결과는 일원배치 분산분석과 일치

에제 4-6. 구리로 만든 접시의 비틀린 정도를 비교하기 위해 구리 함유량 40%, 60%, 80% 별로 랜덤하게 선택된 세 실험실에서 실험이 행해졌다. 그 결과는 다음과 같다. 적당한 가설을 세우고 검정하여라.

구리 실험실	40%	60%	80%
1	15 17	18, 18	22, 24
2	16 16	19, 21	25, 26
3	15, 16	17, 18	23, 22

- (1) 혼합모형 : 1요인(A)은 고정, 1요인(B)은 랜덤
 - H_0 : $\sigma_B^2 = 0$ 의 가설이 채택되면 모딥단인 모든 실험실들의 효과에 대한 변이가 적어서 실험실 간의 유의적인 차이는 인정되지 않는다.
 - 평균제곱

$$E(MS_A) = \sigma_E^2 + r\sigma_{A \times B}^2 + mr \sum_{i=1}^{l} (a_i - \overline{a})^2 / (l - 1)$$

$$E(MS_B) = \sigma_E^2 + lr\sigma_B^2 + r\sigma_{A\times B}^2$$

$$E(MS_{A\times B}) = \sigma_E^2 + r\sigma_{A\times B}^2$$

$$E(MS_E) = \sigma_E^2$$

- 귀무가설

$$H_0: a_1 = a_2 = \cdots = a_l$$

$$H_0: \sigma_B^2 = 0$$

$$H_0: \sigma_{A\times B}^2 = 0$$

- 주어진 귀무가설이 사실 일 때, F-통계량의 분자와 분모가 동일하도록 만들어서 검정을 시행한다.
- (2) 분산분석

source	SS	df	MS	F
요인(A)	SS_A	l-1	MS_A	$MS_A/MS_{A \times B}$
요인(B)	SS_B	m-1	MS_B	$MS_B/MS_{A \times B}$
교호작용 $(A imes B)$	$S\!S_{\!A imes B}$	(l-1)(m-1)	$MS_{A imes B}$	$MS_{A \times B}/MS_{E}$
오차(E)	$S\!S_{\!E}$	$lm(r\!-\!1)$	$M\!S_{\!E}$	
합계(Total)	SS_T	lmr-1		

개체-간 효과 검정

종속 변수:비틀림

소스		제 III 유형 제곱합	자유도	평균 제곱	F
절편	가설	6728.000	1	6728.000	1035.077
	오차	13.000	2	6.500ª	
구리함유량	가설	190.333	2	95.167	81.571
	오차	4.667	4	1.167 ^b	
실험실	가설	13.000	2	6.500	5.571
	오차	4.667	4	1.167 ^b	
구리함유량 * 실험실	가설	4.667	4	1.167	1.313
	오차	8.000	9	.889°	

구리함유량 고정, 실험실 램덤

$$H_0 \; : \; a_1 = a_2 = a_3 \text{, } \; F = \frac{95.167}{1.167} = 81.571$$

$$H_0: \sigma_B^2 = 0, F = \frac{6.500}{1.167} = 5.571$$

$$H_0: \sigma_{A \times B}^2 = 0, F = \frac{1.167}{0.889} = 1.312$$

유의수준 5%에서 ①구리함유량의 평균 차이가 있었으며, ②실험실의 변동 차이 존재하지 않았으며, ③교호작용의 변동 차이 역시 존재하지 않는다. ④구리함유량에 대해 사후검정이 필요하다.

혼합모형은 분산분석만 체크하면 됩니다.(오차항풀링, 세부집단으로 나눈후 검정 생략)

(3) 고정모형과 비교

개체-간 효과 검정

종속 변수:비틀림

소스	제 III 유형 제곱합	자유도	평균 제곱	F	유의확률
수정 모형	208.000ª	8	26.000	29.250	.000
절편	6728.000	1	6728.000	7569.000	.000
구리함유량	190.333	2	95.167	107.062	.000
실험실	13.000	2	6.500	7.313	.013
구리함유량 * 실험실	4.667	4	1.167	1.313	.336
오차	8.000	9	.889		
합계	6944.000	18			
수정 합계	216.000	17			

a. R 제곱 = .963 (수정된 R 제곱 = .930)

고정모형 결과표를 보고 랜덤모형에 대한 분산분석표 작성 가능해야 합니다.

에제 4-7. 이소니트로아세틸아민 유도체에 산을 가하고 가열하여 이사틴 유도체를 제조하는 공정에 있어서, 제조공정이 다른 3사의 중간원료에 관하여 반응온도(3수준)의 영향을 조사하였다. 반복을 2회로 하여 랜덤하게 실험하여 이사틴 생성률을 측정하였다. 분산분석표를 완성하고 검정하여라.

반응온도 납품회사	$A_1(60^{\circ}\mathbb{C})$	$A_2(70^{\circ}\mathbb{C})$	$A_1(80^{\circ}C)$
S λ \dagger	61.0 60.2	64.1 63.2	65.2 66.1
G λ $+$	63.3 62.7	66.2 65.4	66.6 67.2
T사	61.3 61.9	63.2 64.2	66.0 66.4

(1) 분산분석

아래 SPSS 결과(고정모형)를 보고 분산분석표를 완성하고 검정하여라.

개체-간 효과 검정

종속 변수:생성률

소스	제 III 유형 제곱합	자유도	평균 제곱	F	유의확률
수정 모형	75.221ª	8	9.403	32.928	.000
절편	74009.869	1	74009.869	259178.529	.000
반응온도	61.814	2	30.907	108.235	.000
납품회사	11.964	2	5.982	20.949	.000
반응온도 * 납품회사	1.442	4	.361	1.263	.353
오차	2.570	9	.286		
합계	74087.660	18			
수정 합계	77.791	17			

a. R 제곱 = .967 (수정된 R 제곱 = .938)

랜덤모형 분산분석

source	SS	df	MS	F
요인 (A) 온도	61.814	2	30.907	85.615**
요인(<i>B</i>) 회사	11.964	2	5.982	16.571*
교호작용($A imes B$)	1.442	4	0.361	1.262
오차(<i>E</i>)	2.570	9	0.286	
합계(Total)	77.791	17		

(2) 분산분석

개체-간 효과 검정

종속 변수:생성률

소스		제 III 유형 제곱합	자유도	평균 제곱	F	유의확률
절편	가설	74009.869	1	74009.869	12371.635	.000
	오차	11.964	2	5.982ª		
반응온도	가설	61.814	2	30.907	85.721	.001
	오차	1.442	4	.361 ^b		
납품회사	가설	11.964	2	5.982	16.592	.012
	오차	1.442	4	.361 ^b		
반응온도 * 납품회사	가설	1.442	4	.361	1.263	.353
	오차	2.570	9	.286°		

- a. MS(납품회사)
- b. MS(반응온도 * 납품회사)
- c. MS(오차)

반응온도 고정, 납품회사 랜덤

유의수준 5%에서 ①반응온도<u>의 평균 차이가 있었으며</u>, ②납품회사도 변동 차이가 있었으면, ③교호작용은 변동 차이가 존재하지 않았다. ④반응온도에 대해 사후검정이 필요하다.

(3) 사후검정

생성률

Student-Newman-Keuls^{a,b}

반응온도		집단군				
	N	1 2 3				
60°C	6	61.733				
70℃	6		64.383			
80℃	6			66.250		
유의확률		1.000	1.000	1.000		

에제 4-8. 윤활유의 탈색에 쓰이는 활성백토는, 천연적으로 산출되는 산성백토를 원료로 하여 여기에 유산처리를 행하고 수세한 후에 건조시켜서 분쇄하여 분말의 형태로 만들어진다. 이렇게 하여 만들어지는 활성백토는 윤활유 탈색도를 측정하여 제품의 품질을 판정한다. 탈색성에 미치는 인자로서 원료 1톤당 유산사용량 $(A_1=400{
m kg},\ A_2=500{
m kg},\ A_3=600{
m kg})$, 수세횟수 $(B_1=4{
m al},\ B_2=5{
m al})$ 및 건조시간 $(C_1=10{
m Al})$ 는, $C_2=12{
m Al}$ 간, $C_3=14{
m Al}$ 간)을 취하여 $3\times2\times3=18{
m al}$ 의 삼원배치실험을 행하여, 탈색도에 대한 여러 가지 요인의 영향을 조사하였다. 다음의 데이터는 탈색 후의 윤활유 색의 짙은 정도를 표준색깔과 비교했을 때비색계를 읽어서 적은 값이며, 값이 큰 쪽이 탈색력이 크다.

수세횟수	유산사용량 건조시간	$A_1(400\mathrm{kg})$	$A_2(500\mathrm{kg})$	$A_1(600 {\rm kg})$
	$C_{\!1}(10$ 시간)	95	102	86
$B_{\!1}(4$ হা)	$C_{\!\!2}(12$ 시간)	98	111	86
	$C_{\!3}(14시간)$	99	111	89
	$C_1(10$ 시간)	90	99	85
$B_{\!\scriptscriptstyle 2}(5$ 회)	$C_{\!2}(12$ 시간)	96	109	81
	$C_{\!3}(14시간)$	97	112	94

- (1) 분산분석을 하여라.
 - ① 제곱합

$$\begin{split} Y_{ijk} - \overline{Y}_{...} &= (\overline{Y}_{i..} - \overline{Y}_{...}) + (\overline{Y}_{\cdot j.} - \overline{Y}_{...}) + (\overline{Y}_{\cdot ..k} - \overline{Y}_{...}) \\ &+ (\overline{Y}_{ij.} - \overline{Y}_{i..} - \overline{Y}_{\cdot j.} + \overline{Y}_{...}) + (\overline{Y}_{i.k} - \overline{Y}_{i..} - \overline{Y}_{\cdot ..k} + \overline{Y}_{...}) + (\overline{Y}_{jk.} - \overline{Y}_{\cdot j.} - \overline{Y}_{\cdot ..k} + \overline{Y}_{...}) \\ &+ (Y_{ijk} - \overline{Y}_{ij.} - \overline{Y}_{i.k} - \overline{Y}_{\cdot jk} + \overline{Y}_{i..} + \overline{Y}_{.j.} + \overline{Y}_{...} - \overline{Y}_{...}) \end{split}$$

$$\begin{bmatrix} -1.67 & 5.33 & -10.67 \\ 1.33 & 14.33 & -10.67 \\ 2.33 & 14.33 & -7.67 \\ -6.67 & 2.33 & -11.67 \\ -0.67 & 12.33 & -15.67 \\ 0.33 & 15.33 & -2.67 \end{bmatrix}$$

$$=\begin{bmatrix} -0.83 & 10.67 & -9.83 \\ -0.83 & 10.67 & -9.83 \\ -0.83 & 10.67 & -9.83 \\ -0.83 & 10.67 & -9.83 \\ -0.83 & 10.67 & -9.83 \\ -0.83 & 10.67 & -9.83 \\ -0.83 & 10.67 & -9.83 \end{bmatrix} + \begin{bmatrix} 0.78 & 0.78 & 0.78 \\ 0.78 & 0.78 & 0.78 \\ -0.78 & -0.78 & -0.78 \\ -0.78 & -0.78 & -0.78 \end{bmatrix} + \begin{bmatrix} -3.83 - 3.83 - 3.83 - 3.83 \\ 0.17 & 0.17 & 0.17 \\ 3.67 & 3.67 & 3.67 \\ -3.83 - 3.83 - 3.83 \\ 0.17 & 0.17 & 0.17 \\ 3.67 & 3.67 & 3.67 \end{bmatrix}$$

$$+ \begin{cases} 0.72 - 0.11 - 0.61 \\ 0.72 - 0.11 - 0.61 \\ -0.72 - 0.11 - 0.61 \\ -0.72 - 0.11 - 0.61 \\ -0.72 - 0.11 - 0.61 \\ -0.72 - 0.11 - 0.61 \\ -0.72 - 0.11 - 0.61 \\ -0.72 - 0.11 - 0.61 \\ -0.72 - 0.11 - 0.61 \\ -0.72 - 0.11 - 0.61 \end{cases} + \begin{cases} 0.72 - 0.72 - 0.72 \\ -0.72 - 0.72 - 0.72 \\ -0.72 - 0.72 - 0.72 \\ -0.72 - 0.72 - 0.72 \\ -0.72 - 0.72 - 0.72 \\ -0.72 - 0.72 - 0.72 \\ -0.72 - 0.72 - 0.72 \\ -0.72 - 0.72 - 0.72 \\ -0.72 - 0.72 - 0.72 \\ -0.72 - 0.72 - 0.72 \\ -0.72 - 0.72 - 0.72 \\ -0.72 - 0.72 - 0.72 \\ -0.72 - 0.72 - 0.72 \\ -0.72 - 0.72 - 0.72 \\ -0.72 - 0.72 - 0.72 \\ -0.72 - 0.72 - 0.72 \\ -0.72 - 0.7$$

 $SS_E = 0.28^2 + 0.11^2 + \cdots + 1.22^2 = 13.89$

② 간단식

T_{ij} .	A_1	A_2	A_3	$T_{\cdot j \cdot}$
B_1	292	324	261	877
B_2	283	320	260	863
T	D	D	T	
$T_{\cdot jk}$	B_1	B_2	$T_{\cdot \cdot k}$	
C_1	283	274	557	
C_2	295	286	581	
C_3	299	303	602	
$T_{i\cdot k}$	C_1	C_2	C_3	$T_{i\cdots}$
A_1	185	194	196	575
A_2	201	201	223	644
A_3	171	171	183	521
$\overline{Y}_{ij\cdot}$	A_1	A_2	A_3	$\overline{Y}_{\cdot j \cdot}$
B_1	97.3	108.0	87.0	97.4
B_2	94.3	106.7	86.7	95.9
$\overline{Y}_{.ik}$	B_1	B_2	$\overline{Y}_{\cdot \cdot k}$	
$egin{array}{c} \overline{Y}_{\cdot jk} \ \hline C_1 \ \hline C_2 \end{array}$	94.3	91.3	92.8	
C_2	98.3	95.3	96.8	
C_3	99.7	101.0	100.3	
$\overline{Y}_{i\cdot k}$	C_1	C_2	C_3	$\overline{Y}_{i\cdots}$
$\frac{1}{A_1}$	92.5	97.0	98.0	95.8
A_2	100.5	110.0	111.5	107.3
A_3	85.5	83.5	91.5	86.8
	$=\frac{1740^2}{18}=168$	3200		
l m	n	_		

$$lmn = 18$$

$$SS_T = \sum_{i=1}^{l} \sum_{j=1}^{m} \sum_{k=1}^{n} (Y_{ijk} - \overline{Y}_{...})^2$$

$$= \sum_{i=1}^{l} \sum_{j=1}^{m} \sum_{k=1}^{n} Y_{ijk}^2 - CT$$

$$= 95^2 + 102^2 + \dots + 94^2 - 168200$$

$$= 1562$$

$$\begin{split} SS_A &= \sum_{i=1}^{l} \sum_{j=1}^{m} \sum_{k=1}^{n} (\overline{Y}_{i..} - \overline{Y}_{...})^2 \\ &= \sum_{i=1}^{l} \frac{T_{i..}^2}{mm} - CT \\ &= \frac{1}{6} (575^2 + 644^2 + 521^2) - 168200 \\ &= 1267 \\ SS_B &= \sum_{i=1}^{l} \sum_{j=1}^{m} \sum_{k=1}^{n} (\overline{Y}_{.j.} - \overline{Y}_{...})^2 \\ &= \sum_{j=1}^{m} \frac{T_{.j.}^2}{ln} - CT \\ &= \frac{1}{9} (877^2 + 863^2) - 168200 \\ &= 10.9 \\ SS_C &= \sum_{i=1}^{l} \sum_{j=1}^{m} \sum_{k=1}^{n} (\overline{Y}_{.k} - \overline{Y}_{...})^2 \\ &= \sum_{k=1}^{n} \frac{T_{.k}^2}{lm} - CT \\ &= \frac{1}{6} (557^2 + 581^2 + 602^2) - 168200 \\ &= 169 \\ SS_{AB} &= \sum_{i=1}^{l} \sum_{j=1}^{m} \sum_{k=1}^{n} (\overline{Y}_{ij.} - \overline{Y}_{...})^2 \\ &= \sum_{i=1}^{l} \sum_{j=1}^{m} \frac{T_{ij.}^2}{n} - CT \\ &= \frac{1}{3} (292^2 + 324^2 + \cdots + 260^2) - 168200 \\ &= 1283.3 \\ SS_{A \times B} &= S_{AB} - S_A - S_B \\ &= 1283.3 - 1267 - 10.9 \\ &= 5.4 \\ SS_{AC} &= \sum_{i=1}^{l} \sum_{j=1}^{m} \sum_{k=1}^{n} (\overline{Y}_{i.k} - \overline{Y}_{...})^2 \\ &= \sum_{i=1}^{l} \sum_{k=1}^{m} \sum_{m=1}^{n} (\overline{Y}_{i.k} - \overline{Y}_{...})^2 \\ &= \sum_{i=1}^{l} \sum_{k=1}^{n} \sum_{m=1}^{n} (\overline{Y}_{i.k} - \overline{Y}_{...})^2 \\ &= \sum_{i=1}^{l} \sum_{m=1}^{n} \sum_{m=1}^{n} (\overline{Y}_{i.k} - \overline{Y}_{...})^2 \\ &= \sum_{m=1}^{l} \sum_{m=1}^{n} \sum_{m=1}^{n} (\overline{Y}_{i.k} - \overline{Y}_{...})^2 \\ &= \sum_{m=1}^{l} \sum_{m=1}^{n} \sum_{m=1}^{n} (\overline{Y}_{i.k} - \overline{Y}_{...})^2 \\ &= \sum_{m=1}^{l} \sum_{m=1}^{n} \sum_{m=1}^{n$$

$$\begin{split} SS_{A \times C} &= S_{AC} - S_A - S_C \\ &= 1513 - 1267 - 169 \\ &= 77 \\ SS_{BC} &= \sum_{i=1}^{l} \sum_{j=1}^{m} \sum_{k=1}^{n} (\overline{Y}_{\cdot jk} - \overline{Y}_{...})^2 \\ &= \sum_{j=1}^{m} \sum_{k=1}^{n} \frac{T_{\cdot jk}^2}{l} - CT \\ &= \frac{1}{2} (283^2 + 274^2 + \cdots + 303^2) - 168200 \\ &= 198.7 \\ SS_{B \times C} &= S_{BC} - S_B - S_C \\ &= 198.7 - 10.9 - 169 \\ &= 18.8 \\ SS_E &= 1562 - (1267 - 10.9 - 169 - 5.4 - 77 - 18.8) \\ &= 13.9 \end{split}$$

③ 자유도

$$A$$
의 자유도= $l-1=3-1=2$
 B 의 자유도= $m-1=2-1=1$
 C 의 자유도= $n-1=3-1=2$
 $A \times B$ 의 자유도= $(l-1)(m-1)=2$
 $B \times C$ 의 자유도= $(m-1)(n-1)=2$
 $A \times C$ 의 자유도= $(l-1)(n-1)=4$
 E 의 자유도= $(l-1)(m-1)(n-1)=4$

③ 분산분석표

source	SS	df	MS	F
요인(A)	SS_A	l-1	MS_A	MS_A/MS_E
요인(<i>B</i>)	SS_B	m-1	MS_B	MS_B/MS_E
요인(<i>C</i>)	SS_C	n-1	$M\!S_C$	MS_C/MS_E
교호작용($A imes B$)	$SS_{A imes B}$	(l-1)(m-1)	$MS_{A \times B}$	$MS_{A \times B}/MS_E$
교호작용($\mathit{B} imes\mathit{C}$)	$SS_{B \times C}$	(m-1)(n-1)	$MS_{B \times C}$	$MS_{B \times C}/MS_{E}$
교호작용($C\!\! imes\!A$)	$SS_{C \times A}$	(l-1)(n-1)	$M\!S_{C\times A}$	$MS_{A \times B}/MS_E$
오차(E)	SS_E	(l-1)(m-1)(n-1)	MS_E	
합계(Total)	SS_T	lmn-1		

source	SS	df	MS	F
요인 (A)	1267	2	633.5	182.448
요인(<i>B</i>)	10.89	1	10.89	3.316
요인(<i>C</i>)	169	2	84.5	24.336
교호작용($A \times B$)	5.44	2	2.72	0.784
교호작용($B \times C$)	18.78	2	9.39	2.704
교호작용($C\!\! imes\!A$)	77	4	19.25	5.544
오차(<i>E</i>)	13.89	4	3.47	
합계(Total)	1562	17		

④ 기각역

$$F_0 \geq F(2,\ 4\,;\,0.05)$$
, $182.448 \geq 6.94$, H_0 reject

$$F_0 \geq F(1,\ 4\,;\,0.05)$$
, $3.316 \leq 7.71$, H_0 not reject

$$F_0 \geq \mathit{F}(2,\ 4\,;\,0.05)\text{, }24.336 \geq 6.94\text{, }H_0 \text{ reject}$$

$$F_0 \geq F(2,\ 4\,;\,0.05)\text{, }0.87 \leq 6.94\text{, }H_0 \ \text{not reject}$$

$$F_0 \geq \mathit{F}(2,\ 4\,;\,0.05)\text{, }9.39 \geq 6.94\text{, }H_0 \text{ reject}$$

$$F_0 \geq F(4,\ 4\,;\,0.05)\text{, }5.544 \leq 6.39\text{, }H_0 \text{ not reject}$$

⑤ SPSS 분석결과

(i) 분산분석

개체-간 효과 검정

|--|

소스	제 III 유형 제곱합	자유도	평균 제곱	F	유의확률
수정 모형	1548.111ª	13	119.085	34.297	.002
절편	168200.000	1	168200.000	48441.600	.000
A유산사용량	1267.000	2	633.500	182.448	.000
B수세횟수	10.889	1	10.889	3.136	.151
C건조시간	169.000	2	84.500	24.336	.006
A유산사용량 * B수세횟수	5.444	2	2.722	.784	.516
B수세횟수 * C건조시간	18.778	2	9.389	2.704	.181
A유산사용량 * C건조시간	77.000	- 4	19.250	5.544	.063
오차	13.889	- 4	3.472		
합계	169762.000	18			
수정 합계	1562.000	17			

a. R 제곱 = .991 (수정된 R 제곱 = .962)

추정된 주변평균

1. 유산사용량

종속 변수:탈색력

유산사용량			95% 신뢰구간				
	평균	표준오차	하한값	상한값			
400kg	95.833	.761	93.721	97.945			
500kg	107.333	.761	105.221	109.445			
600kg	86.833	.761	84.721	88.945			

2. 수세횟수

종속 변수:탈색력

수세횟수			95% 신뢰구간	
	평균	표준오차	하한값	상한값
4호	97.444	.621	95.720	99.169
5회	95.889	.621	94.164	97.613

3. 건조시간

종속 변수:탈색력

3 12 12 1							
건조시간			95% 신뢰구간				
	평균	표준오차	하한값	삼한값			
10시간	92.833	.761	90.721	94.945			
12시간	96.833	.761	94.721	98.945			
14시간	100.333	.761	98.221	102.445			

(ii) 유산사용량 다중비교

다중 비교

종속 변수:탈색력

	5 T E T .	277						
		(I) 유산사용량	(J) 유산사용량				95% 신	뢰구간
				평균차(I-J)	표준오차	유의확률	하한값	상한값
	Scheffe	400kg	500kg	-11.50 [*]	1.076	.001	-15.51	-7.49
			600kg	9.00*	1.076	.003	4.99	13.01
		500kg	400kg	11.50*	1.076	.001	7.49	15.51
			600kg	20.50*	1.076	.000	16.49	24.51
		600kg	400kg	-9.00*	1.076	.003	-13.01	-4.99
٠			500kg	-20.50*	1.076	.000	-24.51	-16.49
	LSD	400kg	500kg	-11.50 [*]	1.076	.000	-14.49	-8.51
			600kg	9.00*	1.076	.001	6.01	11.99
		500kg	400kg	11.50*	1.076	.000	8.51	14.49
			600kg	20.50*	1.076	.000	17.51	23.49
		600kg	400kg	-9.00 [*]	1.076	.001	-11.99	-6.01
			500kg	-20.50*	1.076	.000	-23.49	-17.51
과송편그의 기준이면 하니다.								

관측평균을 기준으로 합니다. 오류 조건은 평균 제곱(오류) = 3.472입니다.

동일집단군

탈색력

	유산사용량			집단군			
		N	1	2	3		
Scheffe ^{a,b}	600kg	6	86.83				
	400kg	6		95.83			
	500kg	6			107.33		
	유의확률		1.000	1.000	1.000		

동일 집단군에 있는 집단에 대한 평균이 표시됩니다. 환옥평균을 기준으로 합니다. 호류 조건은 평균 제곱(오류) = 3.472입니다. a. 조화평균 표본 크기 6.000을(를) 사용합니다.

^{*.} 평균차는 .05 수준에서 유의합니다.

b. 뮤의수준 = .05.

(iii) 건조시간 다중비교

다중 비교

종속 변수:탈색력

공속 변수.	= ' '						
	(I) 건조시간	(J) 건조시간				95% 신	뢰구간
			평균차(I-J)	표준오차	유의확률	하한값	삼한값
Scheffe	10시간	12시간	-4.00	1.076	.050	-8.01	.01
		14시간	-7.50*	1.076	.006	-11.51	-3.49
	12시간	10시간	4.00	1.076	.050	01	8.01
		14시간	-3.50	1.076	.075	-7.51	.51
	14시간	10시간	7.50*	1.076	.006	3.49	11.51
		12시간	3.50	1.076	.075	51	7.51
LSD	10시간	12시간	-4.00 [*]	1.076	.021	-6.99	-1.01
		14시간	-7.50*	1.076	.002	-10.49	-4.51
	12시간	10시간	4.00*	1.076	.021	1.01	6.99
		14시간	-3.50*	1.076	.031	-6.49	51
	14시간	10시간	7.50	1.076	.002	4.51	10.49
		12시간	3.50*	1.076	.031	.51	6.49

관측평균을 기준으로 합니다. 오류 조건은 평균 제곱(오류) = 3.472입니다. *. 평균차는 .05 수준에서 유의합니다.

동일집단군

트네크

	건조시간		집단	·군
		N	1	2
Scheffe ^{a,b}	10시간	6	92.83	
	12시간	6	96.83	96.83
	14시간	6		100.33
	유의확률		.050	.075

동일 집단군에 있는 집단에 대한 평균이 표시됩니다. 관측평균을 기준으로 합니다. 오류 조건은 평균 제골(오류) = 3.472입니다. a. 조화평균 표본 크기 6.000을(를) 사용합니다.

(2) 유의수준 10%에서 유의하지 않은 교호작용을 오차항에 풀링시켜 다시 분산분석을 하여 라.

① 분산분석표

source	SS	df	MS	F
요인 (A)	1267	2	633.5	132.98
요인(<i>B</i>)	10.89	1	10.89	2.29
요인(<i>C</i>)	169	2	84.5	17.74
교호작용($C\!\! imes\!A$)	77	4	19.25	4.04
오차(<i>E</i>)	38.11	8	4.76	
합계(Total)	1562	17		

② 기각역

 $F_0 \ge F(2, 8; 0.05)$, $132.98 \ge 4.46$, H_0 reject

 $F_0 \ge F(1, 8; 0.05)$, $2.29 \le 5.32$, H_0 not reject

 $F_0 \ge F(2, 8; 0.05), 17.74 \ge 4.46, H_0$ reject

 $F_0 \geq F(4,\ 8\,;\,0.05)\text{, }4.76 \geq 3.84\text{, }H_0 \text{ reject}$

b. 유의수준 = .05.

③ SPSS 분석결과

(i) 분산분석

개체-간 효과 검정

종속 변수:탈색력

소스	제 III 유형 제곱합	자유도	평균 제곱	F	유의확률
수점 모형	1523.889ª	9	169.321	35.543	.000
절편	168200.000	1	168200.000	35307.289	.000
유산사용량	1267.000	2	633.500	132.980	.000
수세횟수	10.889	1	10.889	2.286	.169
건조시간	169.000	2	84.500	17.738	.001
유산사용량 * 건조시간	77.000	4	19.250	4.041	.044
오차	38.111	8	4.764		
합계	169762.000	18			
수정 합계	1562.000	17			

a. R 제곱 = .976 (수정된 R 제곱 = .948)

추정된 주변평균

1. 유산사용량

종속 변수:탈색력

		95% 신뢰구간	
평균	표준오차	하한값	삼한값
95.833	.891	93.779	97.888
107.333	.891	105.279	109.388
86.833	.891	84.779	88.888
	95.833 107.333	95.833 .891 107.333 .891	평균 표준오차 하한값 95.833 .891 93.779 107.333 .891 105.279

2. 수세횟수

종속 변수:탈색력

:=:=:=::							
수세횟수			95% 신뢰구간				
	평균	표준오차	하한값	삼한값			
4회	97.444	.728	95.767	99.122			
5회	95.889	.728	94.211	97.567			

3. 건조시간

종속 변수:탈색력

건조시간			95% 신뢰구간	
	평균	표준오차	하한값	상한값
10시간	92.833	.891	90.779	94.888
12시간	96.833	.891	94.779	98.888
14시간	100.333	.891	98.279	102.388

(ii) 유선사용량 다중비교

다중 비교

등록 변수:	들썩덕						
	(I) 유산사용량	(J) 유산사용량				95% 신	뢰구간
			평균차(I-J)	표준오차	유의확률	하한값	상한값
Scheffe	400kg	500kg	-11.50*	1.260	.000	-15.26	-7.74
		600kg	9.00"	1.260	.000	5.24	12.76
	500kg	400kg	11.50	1.260	.000	7.74	15.26
		600kg	20.50*	1.260	.000	16.74	24.26
	600kg	400kg	-9.00"	1.260	.000	-12.76	-5.24
		500kg	-20.50"	1.260	.000	-24.26	-16.74
LSD	400kg	500kg	-11.50°	1.260	.000	-14.41	-8.59
		600kg	9.00*	1.260	.000	6.09	11.91
	500kg	400kg	11.50*	1.260	.000	8.59	14.41
		600kg	20.50"	1.260	.000	17.59	23.41
	600kg	400kg	-9.00	1.260	.000	-11.91	-6.09
		500kg	-20.50°	1.260	.000	-23.41	-17.59

관측평균을 기준으로 합니다. 오류 조건은 평균 제곱(오류) = 4.764입니다.

*. 평균차는 .05 수준에서 유익합니다.

동일집단군

탈색력

	유산사용량		집단군		
		N	1	2	3
Scheffe ^{a,b}	600kg	6	86.83		
	400kg	6		95.83	
	500kg	6			107.33
	유의확률		1.000	1.000	1.000

등일 집단군에 있는 집단에 대한 평균이 표시됩니다. 관측평균을 기준으로 합니다. 오류 조건은 평균 제곱(오류) = 4.764입니다.

a. 조화평균 표본 크기 6.000을(를) 사용합니다.

b. 유의수준 = .05.

(iii) 건조시간 다중비교

건조시간

다중 비교

종속 변수:탈색력

공국 연구.	= -1 -1						
	(I) 건조시간	(J) 건조시간				95% 신	뢰구간
			평균차(I-J)	표준오차	유의확률	하한값	상한값
Scheffe	10시간	12시간	-4.00*	1.260	.038	-7.76	24
		14시간	-7.50 [*]	1.260	.001	-11.26	-3.74
	12시간	10시간	4.00*	1.260	.038	.24	7.76
		14시간	-3.50	1.260	.067	-7.26	.26
	14시간	10시간	7.50*	1.260	.001	3.74	11.26
		12시간	3.50	1.260	.067	26	7.26
LSD	10시간	12시간	-4.00*	1.260	.013	-6.91	-1.09
		14시간	-7.50*	1.260	.000	-10.41	-4.59
	12시간	10시간	4.00*	1.260	.013	1.09	6.91
		14시간	-3.50"	1.260	.024	-6.41	59
	14시간	10시간	7.50"	1.260	.000	4.59	10.41
		12시간	3.50*	1.260	.024	.59	6.41

관측평균을 기준으로 합니다. 오류 조건은 평균 제곱(오류) = 4.764입니다.

동일집단군

탈색력

	건조시간		집단군	
		N	1	2
Scheffe ^{a,b}	10시간	6	92.83	
	12시간	6		96.83
	14시간	6		100.33
	유의확률		1.000	.067

동일 집단군에 있는 집단에 대한 평균이 표시됩니다. 관측평균을 기준으로 합니다. 오류 조건은 평균 제곱(오류) = 4.764입니다. a. 조화평균 표본 크기 6.000을(를) 사용합니다.

b. 뮤믜수준 = .05.

^{*.} 평균차는 .05 수준에서 유익합니다.

에제 4-9. 케이크를 만드는 한 회사에서 케이크의 질을 높일 수 있는 요인들의 효과를 알기위하여 시험을 하려고 한다. 신 맛을 내는 산(A), 글리세롤(B), 달걀분말의 함유정도(C)가고려되어 실험이 이루어 졌다. 각 요인은 함유량이 적고(수준 0), 많고(수준 1)로 구분하여각 처리조합별로 3회씩 실험하였다. 각 케이크의 질을 100점 기준으로 평가한 결과는 아래와 같다. SPSS 결과를 보고 해석하여라.

산소(<i>A</i>) 분당	글리세롤(<i>B</i>) 말(<i>C</i>)	적음(0)	많음(1)
74.0 (0)	적음(0)	84 89 85 (86)	78 79 83 (80)
적음(0)	많음(1)	78 79 83 (80)	75 70 71 (72)
Π L O /1 \	적음(0)	75 75 72 (74)	76 69 71 (72)
많음(1)	많음(1)	75 80 73 (76)	70 74 76 (73.3)

종속 변수:케미크질

소스	제 III 유형 제곱합	자유도	평균 제곱	F	유의확률
수정 모형	514.667ª	7	73.524	9.287	.000
절편	141066.667	Ť	141066.667	17818.947	.000
산소	192.667	1	192.667	24.337	.000
클리세롱	130.667		130.667	16.505	.001
분말	42.667	1	42.667	5.389	.034
산소 * 클리세롤	32.667	1	32.667	4.126	.059
산소 * 분말	112.667	1	112.667	14.232	.002
클리세롱 * 분말	2.667	1	2.667	.337	.570
산소*클리세롤*분말	.667	1	.667	084	.775
오차	126.667	16	7.917		
합계	141708.000	24			
수정 합계	641.333	23			

a. R 제곱 = .802 (수정된 R 제곱 = .716)

유의수준 5%에서 유의하지 않은 교호작용을 오차항에 풀링시켜 다시 분산분석해 보면 아래와 같다.

종속 변수:케이크질

소스	제 III 유형 제곱합	자유도	평균 제곱	F	유의확률
수정 모형	478.6674	4	119.667	13.977	.000
절편	141066.667	1	141066.667	16477.049	,000
산소	192.667	1	192.667	22.504	.000
클리세롱	130.667	- 1	130.667	15.262	.001
분말	42.667	1	42.667	4.984	.038
산소 * 분말	112.667	1	112.667	13.160	.002
오차	162.667	19	8.561		
합계	141708.000	24			
수정 합계	641.333	23			

a. R 제곱 = .746 (수정된 R 제곱 = .693)

유의수준 5%에서 ①산소와 분말에 대한 교호작용에 효과가 있는 것으로 조사되었으며 또한 ②산소, 클리세롤, 분말 모든 부분에서 유의수준 5%에서 유의한 차이가 있는 것으로 나타났다. ③ 삼원배치법에서는 교호작용이 있다면 단순하게 세부 8개 집단의 평균이 높은 조합(산소:적음, 클레세롤:적음, 분말:적음)을 선택하도록 유도.