# Probabilistic Modeling and Statistical Computing Fall 2015

November 9, 2015

# Comparing two Means

Question (= null hypothesis): **are two population means the same?** Recall the permutation test approach:

- Given two samples from two populations,
- combine the samples
- use random permutations to redistribute the combined sample to the two samples
- compute the difference of sample means for each random permutation.

This is the simulated null distribution. Use it to compute the p-value of the observed difference.



# Properties of this Approach

- No additional assumptions about the distribution
- Obtain a credible distribution under the null hypothesis
- Obtain a credible p-value
- Only the null distribution is simulated, so we cannot obtain information about the actual difference

#### **Titanic Data**



# Bootstrap Approach

More general question: What can we say about the two population means? Are they the same? Estimate of the difference? Accuracy of that estimate?

- Make many bootstrap samples from each of the two samples
- Use these to make many bootstrap versions of the difference of sample means
- Examine the bootstrap distribution of differences: median, mean, shape, spread, quantiles, confidence interval, . . .

# Properties of this Approach

- No additional assumptions about the distribution
- Obtain a credible distribution of the actual test statistic
- Can obtain estimates for center and spread, confidence intervals, etc.

#### **Titanic Data**

## Joint probability density function

Given a random variable X with probability mass / density function  $f(x|\theta)$ , where  $\theta$  is some parameter. Distribution of n independent observations  $X_1, \ldots, X_n$ :

#### Joint pdf / pmf

$$f_{joint}(x_1,\ldots,x_n|\theta)=f(x_1|\theta)\cdot\cdot\cdot\cdot f(x_n|\theta)$$

Probability Theory: Assume that  $\theta$  is given and the  $x_i$  are variables.

## Likelihood function

Given a random variable X with probability mass / density function  $f(x|\theta)$ , where  $\theta$  is some parameter. Assume a sample of n independent observations  $X = x_1, \ldots, X = x_n$  is given.

#### Likelihood function

$$L(\theta|x_1,\ldots,x_n)=f(x_1|\theta)\cdot\cdots\cdot f(x_n|\theta)$$

This is the same as the joint probability density/mass function. Assume now that the  $x_i$  are given and  $\theta$  is unknown.

## Example: Poisson distribution

Discrete distribution on  $\{0, 1, 2, \dots\}$ , parameter  $\lambda = intensity$ 

The pmf is 
$$f(x|\lambda) = e^{-\lambda} \frac{\lambda^x}{x!}$$
 for  $x = 0, 1, 2, ...$ 

The joint pmf of *n* independent observations is

$$f_{joint}(x_1, \dots, x_n | \lambda) = e^{-n\lambda} \frac{\lambda^{x_1}}{x_1!} \dots \frac{\lambda^{x_n}}{x_n!}$$

$$= e^{-n\lambda} \frac{\lambda^{x_1+x_2+\dots+x_n}}{x_1!x_2!\dots x_n!}$$

$$= L(\lambda | x_1, \dots, x_n)$$



# Example: Exponential distribution

Continuous distribution on  $[0, \infty)$ , parameter  $\lambda =$  intensity

The pmf is 
$$f(x|\lambda) = \lambda e^{-\lambda x}$$
 for  $x \ge 0$ 

The joint pmf of *n* independent observations is

$$f_{joint}(x_1, ..., x_n | \lambda) = \lambda e^{-\lambda x_1} ... \lambda e^{-\lambda x_n}$$
  
=  $\lambda^n e^{-\lambda x_1 - \lambda x_2 - ... \lambda x_n}$   
=  $L(\lambda | x_1, ..., x_n)$ 

This is also the likelihood function.



## **Example: Bernoulli distribution**

Discrete distribution on  $\{0, 1\}$ , parameter p = success probability

The pmf is  $f(x|p) = p^x(1-p)^{1-x}$  for x = 0, 1The joint pmf of n independent observations is

$$f_{joint}(x_1, ..., x_n | p) = \prod_{i=1}^n p^{x_i} (1-p)^{1-x_i}$$
  
 $= p^{\sum_{i=1}^n x_i} (1-p)^{\sum_{i=1}^n (1-x_i)}$   
 $= p^{\sum_i x_i} (1-p)^{n-\sum_i x_i}$   
 $= L(p|x_1, ..., x_n)$ 

## Likelihood function and data reduction

The likelihood function sometimes depends only on a sample statistic.

#### **Exponential distribution:**

$$L(\lambda|x_1,\ldots,x_n)=\lambda^n e^{-\lambda x_1-\lambda x_2\cdots-\lambda x_n}$$

depends only on  $x_1 + \cdots + x_n = n\bar{x}$ .

#### Bernoulli distribution:

$$L(\lambda|x_1,\ldots,x_n)=p^{\sum_i x_i}(1-p)^{n-\sum_i x_i}$$

depends only on  $x_1 + \cdots + x_n$ .



## Log Likelihood

Take the logarithm of the likelihood function.

#### **Poisson distribution**

$$\log L = -n\lambda + (\sum_{i} x_{i}) \log \lambda - \sum_{i} \log x_{i}!$$

#### **Exponential distribution**

$$\log L = n \log \lambda - \lambda(\sum_{i} x_{i})$$

#### Bernoulli distribution

$$\log L = \log p(\sum_{i} x_{i}) + \log(1-p)(n-\sum_{i} x_{i})$$

## Maximum Likelihood

Observe the graphs of the likelihood functions.

#### Where are the maxima?

#### Maximum Likelihood Estimation

Estimate the unknown parameter  $\theta$  by using the maximum of the likelihood function,

$$\hat{\theta}_{MLE} = \operatorname{argmax}_{\theta} L(\theta | x_1, \dots, x_n)$$

Use **Optimization Theory** to work out the maximum or to compute it numerically.

## Examples

**Poisson distribution:**  $\hat{\lambda}_{MLE} = \bar{x}$ 

Exponential distribution:  $\hat{\lambda}_{MLE} = \frac{1}{\bar{x}}$ 

Bernoulli distribution:  $\hat{p}_{\mathit{MLE}} = ar{x}$ 

- Theoretical justification of intuitive choices
- Shows how to reduce data
- General method

# **Cauchy Distribution**

Continuous distribution on  $\mathbb{R}$ , parameter  $\theta$  = center

The pmf is 
$$f(x|\theta) = \frac{1}{\pi(1+(x-\theta)^2)}$$
 for  $x \in \mathbb{R}$ 

The joint pmf of *n* independent observations is

$$f_{joint}(x_1,...,x_n|\theta) = \frac{1}{\pi^n(1+(x_1-\theta)^2)...(1+(x_n-\theta)^2)}$$
  
=  $L(\theta|x_1...,x_n)$ 

#### Difficult to minimize

## Normal Distribution

Consider normal distribution  $N(\mu, \sigma^2)$ .

The likelihood function depends on two parameters,  $\mu$  and  $\sigma^2$ .

Need **calculus of several variables** to minimize.

Maximum likelihood estimates:

$$\hat{\mu}_{MLE} = \bar{x}, \quad \hat{\sigma^2}_{MLE} = \frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^2$$

The estimator for  $\mu$  is unbiased, the estimator for  $\sigma^2$  has a non-zero bias!

## Method of Moments Estimation

Given a random variable X whose distribution depends on a parameter  $\theta$ . To estimate  $\theta$ ,

- Express a moment  $\mathcal{E}(X)$  or  $\mathcal{E}(X^2)$  or . . . in terms of  $\theta$ , e.g.  $\mathcal{E}(X) = H(\theta)$
- Estimate this moment from the sample
- Solve the equation relating the moment and the parameter, e.g. solve  $\bar{x} = H(\hat{\theta})$  for  $\hat{\theta}$ .

Similar to a plug-in estimation

Avoids calculus, only algebra is needed



## **Example: Beta Distribution**

Continuous distribution on (0, 1), parameters  $\alpha$ ,  $\beta > 0$ 

The pdf is

$$f(x|\alpha,\beta) = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha-1} (1-x)^{\beta-1}$$

for 0 < x < 1

Likelihood function is complicated. Calculus minimization is challenging, due to  $\Gamma$  function.

## **Estimation using Method of Moments**

Known for the beta distribution:

$$\mathcal{E}(X) = \frac{\alpha}{\alpha + \beta}, \quad var(X) = \frac{\alpha\beta}{(\alpha + \beta)^2(\alpha + \beta + 1)}$$

**MoM approach:** Use sample mean  $\bar{x}$  and sample variance  $\bar{v}$ . Solve the equations

$$\bar{\mathbf{x}} = \frac{\alpha}{\alpha + \beta}, \quad \bar{\mathbf{v}} = \frac{\alpha\beta}{(\alpha + \beta)^2(\alpha + \beta + 1)}$$

## **Resulting Estimators**

After some algebra ...

$$\hat{\alpha} = \bar{x} \left( \frac{\bar{x}(1-\bar{x})}{\bar{v}} - 1 \right), \quad \hat{\beta} = (1-\bar{x})\hat{\alpha}$$

What if  $\bar{v} > \bar{x}(1-\bar{x})$ ? The estimates then are negative!

R package uses a numerical method to maximize the likelihood.

## Bias

Bias = systematic error

#### **Formal Definition**

Suppose  $\hat{\theta}$  is an estimator (based on a random sample) for  $\theta$ . The bias is defined as

$$bias(\hat{\theta}) = \mathcal{E}(\hat{\theta}) - \theta$$
.

This suggests a theoretical evaluation. It also permits a simulation approach.

## **Example: Poisson Distribution**

The maximum likelihood estimator for  $\lambda$  is the sample mean,  $\hat{\lambda} = \bar{X}$ . We know that

$$\mathcal{E}(X_i) = \lambda \implies \mathcal{E}(\bar{X}) = \lambda.$$

Therefore,

$$\boxed{\mathcal{E}(\hat{\lambda}) - \lambda = \mathbf{0}}$$

This estimator is unbiased.

# **Exponential Distribution**

The maximum likelihood estimator for  $\lambda$  is  $\hat{\lambda} = \frac{1}{\bar{\chi}}$ . We know that

$$\mathcal{E}(X_i) = \frac{1}{\lambda} \implies \mathcal{E}(\bar{X}) = \frac{1}{\lambda}.$$

But in general

$$\mathcal{E}(\hat{\lambda}) = \mathcal{E}\left(\frac{1}{ar{X}}\right) 
eq \lambda$$

Can assess and correct the bias with a simulation (bootstrap).

## Efficiency

Given two estimators  $\hat{\theta}_1$ ,  $\hat{\theta}_2$  for the same parameter. If both are unbiased, the one with smaller variance is better ("more efficient").

## Relative Efficiency of $\hat{\theta}_1$ wrt. $\hat{\theta}_2$

Assuming  $\mathcal{E}(\hat{\theta}_1) = \mathcal{E}(\hat{\theta}_2) = \theta$ , this is defined as

$$E = var(\hat{\theta}_2)/var(\hat{\theta}_1)$$

If  $\hat{\theta}_2$  is used instead of  $\hat{\theta}_1$ , the sample size must be increased by a factor E to get the same accuracy.

## Example: Mean and Median

Consider data from a normal distribution,  $N(\mu, 1)$ . Can estimate  $\mu$  in two ways from a sample  $x = (x_1, \dots, x_n)$ :

$$\hat{\mu}_1 = \bar{x}, \quad \hat{\mu}_2 = median(x)$$

What is the relative efficiency?

# Mean Square Error

Combine variance and bias to assess quality of an estimator:

#### **MSE**

For an estimator  $\hat{\theta}$ ,

$$MSE(\hat{\theta}) = \mathcal{E}\left((\hat{\theta} - \theta)^2\right) = var(\hat{\theta}) + bias(\hat{\theta})^2$$

### Bias and Variance



## **Example: Uniform Distribution**

Consider data from a uniform distribution  $U(0, \beta)$  with unknown  $\beta$ . Given a sample  $x = x(x_1, \dots, x_n)$ ,

the ML estimator is  $\hat{\beta}_1 = \max_i x_i$ 

the MoM estimator is  $\hat{\beta}_2 = 2\bar{x}$ .

- Which one is biased?
- Which one has smaller MSE?
- How does this depend on the sample size?

