Computer Architecture and Design Methodologies

Series Editors

Anupam Chattopadhyay, Nanyang Technological University, Singapore, Singapore Soumitra Kumar Nandy, Indian Institute of Science, Bangalore, India Jürgen Teich, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany

Debdeep Mukhopadhyay, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India

Twilight zone of Moore's law is affecting computer architecture design like never before. The strongest impact on computer architecture is perhaps the move from unicore to multicore architectures, represented by commodity architectures like general purpose graphics processing units (gpgpus). Besides that, deep impact of application-specific constraints from emerging embedded applications is presenting designers with new, energy-efficient architectures like heterogeneous multi-core, accelerator-rich System-on-Chip (SoC). These effects together with the security, reliability, thermal and manufacturability challenges of nanoscale technologies are forcing computing platforms to move towards innovative solutions. Finally, the emergence of technologies beyond conventional charge-based computing has led to a series of radical new architectures and design methodologies.

The aim of this book series is to capture these diverse, emerging architectural innovations as well as the corresponding design methodologies. The scope covers the following.

- Heterogeneous multi-core SoC and their design methodology
- Domain-specific architectures and their design methodology
- Novel technology constraints, such as security, fault-tolerance and their impact on architecture design
- Novel technologies, such as resistive memory, and their impact on architecture design
- Extremely parallel architectures

More information about this series at https://link.springer.com/bookseries/15213

Anubhab Baksi

Classical and Physical Security of Symmetric Key Cryptographic Algorithms

Anubhab Baksi Temasek Laboratories Nanyang Technological University Singapore, Singapore

ISSN 2367-3486 (electronic)
Computer Architecture and Design Methodologies
ISBN 978-981-16-6521-9 ISBN 978-981-16-6522-6 (eBook)
https://doi.org/10.1007/978-981-16-6522-6

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd. The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721, Singapore

About This Book

Symmetric key cryptography is one of the cornerstones of security in the modern era of electronic communication. The symmetric key algorithms, known as the ciphers, are to satisfy certain requirements in order to be considered secure, which are broadly classified as classical attack and physical attack. We show new results in context of both the classical and physical attacks to advance the state of the art.

In classical attack, we first show an issue related to a common modelling using Mixed Integer Linear Programming (MILP). We provide a new MILP modelling that overcomes this issue and explores heuristic options to reduce the solution time taken by the MILP solver. Our analysis shows that the solution time can be improved nearly ten-folds by using a proper heuristic. Second, we show how Machine Learning (ML) can be used as a generic tool in the analysis of the symmetric key ciphers. In the process, we demonstrate how the existing security notions (that do not use ML) underestimate the vulnerability of the ciphers. To the best of our knowledge, this is the first generic application of ML in this field.

In physical attack, we start with new mathematical results related to the Differential Fault Attack (DFA) from the point of view of the cipher designer. Next, we make use of these results to propose a cipher named DeFault, which has an inbuilt resistance against DFA. While all other methods to thwart DFA rely on some form of duplication, DeFault has an inherent protection against DFA that does not use duplication and hence is the first of its kind. Third, we analyse the so-called infective countermeasure that is used as a duplication-based DFA countermeasure in more depth. We construct new schemes, show weakness of an existing scheme, and propose a simple patch to another scheme to fix its weakness, among other results. Last, we propose a low-cost countermeasure to a newly proposed fault model, named Statistical Ineffective Fault analysis (SIFA). In contrast to the existing SIFA countermeasures that rely on some form of triplication at its core, our countermeasure uses duplication and thus is the most cost-effective.

Contents

1	Intro	duction		1	
	1.1	1.1 Context and Motivation			
	1.2	Resear	ch Directions	3	
		1.2.1	Cipher Design and Classical Cryptanalysis	3	
		1.2.2	Realization/Mapping	5	
		1.2.3	Physical Attack and Countermeasure	5	
	1.3	Standa	rdization of Ciphers	6	
	1.4	Organi	zation	7	
	Refe	rences .		10	
2	Fund	lamenta	ls of Symmetric Key Cryptography	13	
	2.1		ng Blocks	13	
		2.1.1	Boolean Function	13	
		2.1.2	Substitution Box (SBox)	14	
		2.1.3	Linear Layer	19	
	2.2	Primiti	ves	19	
		2.2.1	(Un-keyed) Permutation	19	
		2.2.2	Block Cipher	20	
		2.2.3	Stream Cipher	21	
		2.2.4	Hash Function	22	
		2.2.5	Message Authentication Code (MAC)	24	
		2.2.6	Authenticated Encryption with Associated Data		
			(AEAD)	25	
	2.3	Cipher	Families	26	
		2.3.1	Substitution Permutation Network (SPN)	26	
		2.3.2	Feistel Network	27	
		2.3.3	Add–Rotation–XOR (ARX) Construction	29	
	2.4	Descri	ption of Exemplary Ciphers	30	
		2.4.1	ADVANCED ENCRYPTION STANDARD (AES)	30	
		2.4.2	PRESENT-80	33	
		2.4.3	GIFT-128	35	

viii Contents

		2.4.4	CHASKEY 3	6	
	2.5	Formic	dability of the Attacker	9	
		2.5.1		9	
		2.5.2	Power of the Attacker 3	9	
		2.5.3		0	
	2.6	Major		2	
		2.6.1	Differential Attack 4	2	
		2.6.2		4	
		2.6.3	Algebraic Attack 4	4	
		2.6.4	Integral/Cube Attack 4	6	
		2.6.5	Impossible Differential Attack 4	7	
	2.7	Device		7	
	2.8	Additional Topics			
		2.8.1	Black Box–Grey Box–White Box Models 4	9	
		2.8.2	Mixed Integer Linear Programming (MILP) 5	0	
		2.8.3	Machine Learning (ML)	1	
		2.8.4	Competitions	4	
	Refer	ences .	5	5	
3	Foult	Attack	5	9	
3	3.1			9	
	3.2			0	
	3.2	3.2.1		0	
		3.2.1	1	0	
		3.2.3	5	1	
		3.2.3		1	
		3.2.5		1	
	3.3		*	2	
	3.3	3.3.1		2	
		3.3.2		2	
		3.3.3	±	3	
	3.4			5	
	3.5		J	8	
		3.5.1		9	
		3.5.2		6	
		3.5.3	· · · · · · · · · · · · · · · · · · ·	7	
		3.5.4	· · · · · · · · · · · · · · · · · · ·	0	
	3.6	Genera		1	
		3.6.1		1	
		3.6.2		2	
	3.7	Counte		2	
		3.7.1		4	
		3.7.2	Infection	5	
		3.7.3		6	

Contents ix

		3.7.4	Re-keying, Tweak and Tweak-in-Plaintext,			
			Masking Plaintext	86		
		3.7.5	Attacks on Countermeasures	87		
		3.7.6	Specialized Countermeasures Against Statistical			
			Ineffective Fault Attack	88		
	Refe	rences .		89		
4	Side	Channe	l Attack	99		
	4.1	Introdu	uction and Background	99		
	4.2	Power	Analysis	101		
		4.2.1	Simple Power Analysis	102		
		4.2.2	Differential Power Analysis (DPA)	102		
		4.2.3	Template Attack	103		
		4.2.4	Correlation Power Analysis (CPA)	103		
		4.2.5	Countermeasures	103		
	4.3	Case S	Study: Side Channel Analysis of CHASKEY	104		
		4.3.1	Practical Attack Setups	104		
		4.3.2	Experimental Results	105		
	Refe	rences .	-	107		
5	New Insights on Differential and Linear Bounds Using Mixed					
			ar Programming	109		
	5.1	_	uction	110		
	5.2		round	111		
		5.2.1	Branch Number to Model SBox (Inscrypt'11)	112		
		5.2.2	Convex Hull to Model SBox—Active SBox Count			
			(Eprint'13)	113		
		5.2.3	Convex Hull to Model SBox—Exact Bound			
			(Eprint'14)	115		
		5.2.4	Redundant Constraints to Reduce Solution Time			
			(Eprint'19)	116		
	5.3	Proble	m with Convex Hull Modelling	116		
	5.4		nated Bounds with MILP: Our Proposal	121		
		5.4.1	Modelling	122		
		5.4.2	Optimizations	123		
		5.4.3	Results	126		
	5.5	Conclu	ision	131		
	5.6		ementary Discussion	132		
		5.6.1	Detailed Description on MILP Modelling of XOR	132		
		5.6.2	Illustration with MILP Model for 1-Round			
			Differential Bound for GIFT-128	133		
		5.6.3	Illustration with MILP Model of Previous	100		
		2.0.2	Constraints for 4-Round Differential Bound			
			for GIFT-128	133		
	Dofo	rancas	101 GH 1 120	130		

x Contents

	chine Learning-Assisted Differential Distinguishers
for l	Lightweight Ciphers
6.1	Introduction
6.2	Background
	6.2.1 Markov Ciphers
	6.2.2 Gohr's Work on SPECK (CRYPTO'19)
6.3	Basic Description of the Ciphers
	6.3.1 GIMLI
	6.3.2 ASCON
	6.3.3 KNOT
6.4	Machine Learning-Based Distinguishers
	6.4.1 Model 1: Multiple Input Differences
	6.4.2 Model 2: One Input Difference
	6.4.3 Comparison with Existing Models
6.5	Results on Round-Reduced Ciphers
	6.5.1 GIMLI (Model 1)
	6.5.2 ASCON and KNOT (Model 1)
	6.5.3 CHASKEY (Model 2)
6.6	Choice of Machine Learning Model
6.7	Conclusion and Follow-Up Problems
Refe	rences
7.1 7.2 7.3 7.4 Refe	Introduction Difference Distribution Table-Related Properties Characterizing SBoxes in View of DFA Implication of Our Analysis and Future Work erences
	AULT: Cipher-Level Resistance Against Differential
	It Attack
8.1	Introduction
8.2	Background
0.2	8.2.1 DFA Models
	8.2.2 DFA Protection
	8.2.3 Feasibility of Cipher-Level Protection Against
	Faults
	8.2.4 Working Principle for DFA
8.3	Construction of DFA-Resistant Layer/Cipher
	8.3.1 Ad-hoc DFA Protection to Any Cipher
	(DEFAULT-LAYER)
	8.3.2 Extension to a Full-Fledged Cipher (DEFAULT)
	8.3.3 Construction of DEFAULT-LAYER
	8.3.4 Construction of DEFAULT-CORE
	(and DEFAULT)
	(and Default)

Contents xi

	8.4	Design Rationale	191
		8.4.1 Design Philosophy	191
		8.4.2 Structure of the DEFAULT PermBits	193
		8.4.3 Selection of the DEFAULT SBoxes	194
		8.4.4 Unbiased Linear Structures	197
	8.5	Security Analysis	198
		8.5.1 Protection Against Differential Fault Attack	199
		8.5.2 Protection Against Classical Cryptanalysis	201
		8.5.3 Protection Against Side Channels Attacks	203
	8.6	Automated Bounds for Differential and Linear Attacks	204
	8.7	Performance	206
		8.7.1 Hardware Benchmark	206
		8.7.2 Software Benchmark	207
	8.8	Conclusion	208
	8.9	Supplementary Discussion	210
	Refer	rences	214
^			
9		fect or Not to Infect: A Critical Analysis of Infective	217
		ntermeasures in Fault Attacks	217
	9.1	Introduction	217
	9.2	Background	220
		9.2.1 Context of Differential Fault Analysis	220
		9.2.2 Early Countermeasures: Detection-Based	220
		9.2.3 Evolution of Infective Countermeasures	221
		9.2.4 Notations and Terminologies	222
		9.2.5 Necessity and Sufficiency of Randomness	226
		9.2.6 Scope and Applicability	226
	0.2	9.2.7 Connection with Side Channel Countermeasures	229
	9.3	Type I Constructions	230
		9.3.1 Multiplication-Based Constructions	230 231
			231
		9.3.3 New Type I Schemes9.3.4 Benchmarking Results for Type I Schemes	231
	9.4		237
	9.4	Type II/Cipher-Level Constructions	241
		9.4.2 Our Patch for LatinCrypt'12 Countermeasure	241
	9.5	Conclusion	243
		rences	250
	Kelei	ences	230
10		vel Duplication-Based Countermeasure to Statistical	
		ective Fault Analysis	255
	10.1	Introduction	255
	10.2	Fault Attack Preliminaries	258
		10.2.1 Differential Fault Attack (DFA)	258
		10.2.2 General Countermeasures Against Fault Attacks	258
	10.3	Statistical Ineffective Fault Attack (SIFA)	259

xii Contents

		10.3.1 Duplication-Based Countermeasures and Need	
		for Specialization	59
		10.3.2 Existing SIFA Countermeasures	61
	10.4	Our Proposed Solution	62
		10.4.1 Adopting Inverted Logic to Symmetric Key	
		Ciphers 20	65
		10.4.2 Benchmarks 20	68
		10.4.3 Evaluation	69
		10.4.4 Comparison with Existing Countermeasures 20	69
		10.4.5 Connection with Side Channel Countermeasures 2	72
	10.5	Conclusion	72
	Refer	rences	73
11	Conc	eluding Remarks	77
	11.1		77
	11.2	* *	7 9
	Refer		81
Ind	ex		83