International Trade: Lecture 3

Classical Ricardian Trade in General Equilibrium - Part I

Carlos Góes¹

¹George Washington University

Fall 2025

Ricardian Model: Preliminaries

- 2 countries $i \in \{\textit{US}, \textit{COL}\}\$ and 2 products $\textit{p} \in \{\textit{C}, \textit{R}\}\$
- In country i, there are L_i units of labor (worker-hours) available
- In country i, to produce one unit of good p, firms use $a_{i,p}$ units of labor
- Producers: $\max_{Y_{i,p}} P_{i,p} Y_{i,p} w_i a_{i,p} Y_{i,p}$
- PPF: $a_{i,C}Y_{i,C} + a_{i,R}Y_{i,R} \leq L_i$
- Preferences: $Q_{i,C}^{\alpha_i}Q_{i,R}^{1-\alpha_i}$

- Trade models are general equilibrium models

- Trade models are general equilibrium models
- This means that prices will adjust to achieve an equilibrium

- Trade models are general equilibrium models
- This means that prices will adjust to achieve an equilibrium
- If supply exceeds demand for a given price, prices are "too high"

- Trade models are general equilibrium models
- This means that prices will adjust to achieve an equilibrium
- If supply exceeds demand for a given price, prices are "too high"
- If demand exceeds supply for a given price, prices are "too low"

- Trade models are general equilibrium models
- This means that prices will adjust to achieve an equilibrium
- If supply exceeds demand for a given price, prices are "too high"
- If demand exceeds supply for a given price, prices are "too low"
- It also means that we consider all markets together: the market for computers and roses affect each other...

- Trade models are general equilibrium models
- This means that prices will adjust to achieve an equilibrium
- If supply exceeds demand for a given price, prices are "too high"
- If demand exceeds supply for a given price, prices are "too low"
- It also means that we consider all markets together: the market for computers and roses affect each other...
- ... as does the market for factors of production (e.g., labor)

- In country *i*, firms producing good *p* maximize profits under perfect competition:

$$\max_{\mathsf{Y}_{i,p}} \pi_{i,p} = \max_{\mathsf{Y}_{i,p}} \mathsf{P}_{i,p} \mathsf{Y}_{i,p} - \mathsf{w}_i \mathsf{a}_{i,p} \mathsf{Y}_{i,p}$$

- Since labor only one type of labor (mobile across sectors), there is a single wage w_i

- In country *i*, firms producing good *p* maximize profits under perfect competition:

$$\max_{\mathsf{Y}_{i,p}} \pi_{i,p} = \max_{\mathsf{Y}_{i,p}} \mathsf{P}_{i,p} \mathsf{Y}_{i,p} - \mathsf{w}_i \mathsf{a}_{i,p} \mathsf{Y}_{i,p}$$

- Since labor only one type of labor (mobile across sectors), there is a single wage w_i

- In country *i*, firms producing good *p* maximize profits under perfect competition:

$$\max_{\mathsf{Y}_{i,p}} \pi_{i,p} = \max_{\mathsf{Y}_{i,p}} \mathsf{P}_{i,p} \mathsf{Y}_{i,p} - w_i a_{i,p} \mathsf{Y}_{i,p}$$

- Since labor only one type of labor (mobile across sectors), there is a single wage w_i
- Total labor endowment satisfies the PPF across sectors:

$$\underbrace{a_{i,C} \times Y_{i,C}}_{\substack{\text{labor used in production of } C}} + \underbrace{a_{i,R} \times Y_{i,R}}_{\substack{\text{labor used in production of } R}} \leq \underbrace{L_i}_{\substack{\text{total labor available in}}}$$

- In country *i*, firms producing good *p* maximize profits under perfect competition:

$$\max_{\mathsf{Y}_{i,p}} \pi_{i,p} = \max_{\mathsf{Y}_{i,p}} \mathsf{P}_{i,p} \mathsf{Y}_{i,p} - \mathsf{w}_i \mathsf{a}_{i,p} \mathsf{Y}_{i,p}$$

- Since labor only one type of labor (mobile across sectors), there is a single wage w_i
- Total labor endowment satisfies the PPF across sectors:

$$\underbrace{a_{i,C} \times Y_{i,C}}_{\substack{\text{labor used in production of } C}} + \underbrace{a_{i,R} \times Y_{i,R}}_{\substack{\text{labor used in production of } R}} \leq \underbrace{L_i}_{\substack{\text{total labor available in } i}}$$

- In equilibrium, prices equal marginal cost:

$$P_{i,p} = w_i a_{i,p} \iff \frac{P_{i,p}}{a_{i,p}} = w_i \quad \text{for } p \in \{C, R\}$$

- In country i, consumers preferences over products p, represented by a utility function.

$$U_i(Q_C, Q_R) \equiv Q_C^{\alpha_i} Q_R^{1-\alpha_i}, \quad \text{for } 0 < \alpha_i < 1$$

- In country i, consumers preferences over products p, represented by a utility function.

$$U_i(Q_C, Q_R) \equiv Q_C^{\alpha_i} Q_R^{1-\alpha_i}, \quad \text{for } 0 < \alpha_i < 1$$

- Consumers take prices $P_{i,R}$, $P_{i,C}$ as given and maximize:

$$\max_{\{Q_{i,C},Q_{i,R}\}} U_i(Q_{i,C},Q_{i,R}) \equiv Q_{i,C}^{\alpha_i} Q_{i,R}^{1-\alpha_i} \qquad s.t. \qquad P_{i,C} Q_{i,C} + P_{i,R} Q_{i,R} = w_i L_i$$

- In country i, consumers preferences over products p, represented by a utility function.

$$U_i(Q_C, Q_R) \equiv Q_C^{\alpha_i} Q_R^{1-\alpha_i}, \qquad \text{for } 0 < \alpha_i < 1$$

- Consumers take prices $P_{i,R}$, $P_{i,C}$ as given and maximize:

$$\max_{\{Q_{i,C},Q_{i,R}\}} U_i(Q_{i,C},Q_{i,R}) \equiv Q_{i,C}^{\alpha_i} Q_{i,R}^{1-\alpha_i} \qquad s.t. \qquad P_{i,C} Q_{i,C} + P_{i,R} Q_{i,R} = w_i L_i$$

- How to solve this?

- Replace in objective function and solve unconstrained max problem:

$$\max_{\{Q_{i,C}\}} Q_C^{\alpha_i} \left(\frac{w_i L_i}{P_{i,R}} - \frac{P_{i,C}}{P_{i,R}} Q_{i,C} \right)^{1-\alpha_i}$$

- Replace in objective function and solve unconstrained max problem:

$$\max_{\{Q_{i,C}\}} Q_C^{\alpha_i} \left(\frac{w_i L_i}{P_{i,R}} - \frac{P_{i,C}}{P_{i,R}} Q_{i,C} \right)^{1-\alpha_i}$$

- First order condition:

$$\alpha_{i}Q_{i,C}^{\alpha_{i}-1}\left(\underbrace{\frac{\boldsymbol{w}_{i}L_{i}}{P_{i,R}}-\frac{P_{i,C}}{P_{i,R}}Q_{i,C}}_{=Q_{i,R}}Q_{i,C}\right)^{1-\alpha_{i}}+Q_{i,C}^{\alpha_{i}}(1-\alpha_{i})\left(\underbrace{\frac{\boldsymbol{w}_{i}L_{i}}{P_{i,R}}-\frac{P_{i,C}}{P_{i,R}}Q_{i,C}}_{=Q_{i,R}}\right)^{1-\alpha_{i}-1}\left(-\frac{P_{i,C}}{P_{i,R}}\right)=0$$

$$Q_{i,R} = rac{1-lpha_i}{lpha_i} \left(rac{P_{i,C}}{P_{i,R}}
ight) Q_{i,C}$$

- Rewrite budget constraint: $Q_{i,R} = \frac{w_i L_i}{P_{i,R}} \frac{P_{i,C}}{P_{i,R}} Q_{i,C}$
- Replace in objective function and solve unconstrained max problem:

$$\max_{\{Q_{i,C}\}} Q_C^{\alpha_i} \left(\frac{w_i L_i}{P_{i,R}} - \frac{P_{i,C}}{P_{i,R}} Q_{i,C} \right)^{1-\alpha_i}$$

- First order condition:

$$\alpha_{i}Q_{i,C}^{\alpha_{i}-1}\left(\underbrace{\frac{w_{i}L_{i}}{P_{i,R}} - \frac{P_{i,C}}{P_{i,R}}Q_{i,C}}_{=Q_{i,R}}\right)^{1-\alpha_{i}} + Q_{i,C}^{\alpha_{i}}(1-\alpha_{i})\left(\underbrace{\frac{w_{i}L_{i}}{P_{i,R}} - \frac{P_{i,C}}{P_{i,R}}Q_{i,C}}_{=Q_{i,R}}\right)^{1-\alpha_{i}-1}\left(-\frac{P_{i,C}}{P_{i,R}}\right) = 0$$

$$Q_{i,R} = rac{1-lpha_i}{lpha_i} \left(rac{P_{i,C}}{P_{i,R}}
ight) Q_{i,C}$$

- Replace result in budget constraint:

$$Q_{i,R} = \frac{1 - \alpha_i}{\alpha_i} \left(\frac{P_{i,C}}{P_{i,R}} \right) Q_{i,C} = \frac{w_i L_i}{P_{i,R}} - \frac{P_{i,C}}{P_{i,R}} Q_{i,C}$$

$$Q_{i,C} = \alpha_i \frac{w_i L_i}{P_{i,C}}$$

- Replace result in budget constraint:

$$Q_{i,R} = \frac{1 - \alpha_i}{\alpha_i} \left(\frac{P_{i,C}}{P_{i,R}} \right) Q_{i,C} = \frac{w_i L_i}{P_{i,R}} - \frac{P_{i,C}}{P_{i,R}} Q_{i,C}$$

$$Q_{i,C} = \alpha_i \frac{w_i L_i}{P_{i,C}}$$

- Finally:

$$Q_{i,R} = \frac{1 - \alpha_i}{\alpha_i} \left(\frac{P_{i,C}}{P_{i,R}}\right) Q_{i,C} = \frac{1 - \alpha_i}{\alpha_i} \left(\frac{P_{i,C}}{P_{i,R}}\right) \alpha_i \frac{w_i L_i}{P_{i,C}}$$

$$Q_{i,R} = (1 - \alpha_i) \frac{w_i L_i}{P_{i,R}}$$

- Replace result in budget constraint:

$$Q_{i,R} = \frac{1 - \alpha_i}{\alpha_i} \left(\frac{P_{i,C}}{P_{i,R}} \right) Q_{i,C} = \frac{w_i L_i}{P_{i,R}} - \frac{P_{i,C}}{P_{i,R}} Q_{i,C}$$

$$Q_{i,C} = \alpha_i \frac{w_i L_i}{P_{i,C}}$$

- Finally:

$$Q_{i,R} = \frac{1 - \alpha_i}{\alpha_i} \left(\frac{P_{i,C}}{P_{i,R}}\right) Q_{i,C} = \frac{1 - \alpha_i}{\alpha_i} \left(\frac{P_{i,C}}{P_{i,R}}\right) \alpha_i \frac{w_i L_i}{P_{i,C}}$$

$$Q_{i,R} = (1 - \alpha_i) \frac{w_i L_i}{P_{i,R}}$$

- Cobb-Douglas preferences: demand is a fixed share of their income $(\alpha_i, 1 - \alpha_i)$; demand inversely proportional to the price of that good.

- Replace result in budget constraint:

$$Q_{i,R} = \frac{1 - \alpha_i}{\alpha_i} \left(\frac{P_{i,C}}{P_{i,R}} \right) Q_{i,C} = \frac{w_i L_i}{P_{i,R}} - \frac{P_{i,C}}{P_{i,R}} Q_{i,C}$$

$$Q_{i,C} = \alpha_i \frac{w_i L_i}{P_{i,C}}$$

- Finally:

$$Q_{i,R} = \frac{1 - \alpha_i}{\alpha_i} \left(\frac{P_{i,C}}{P_{i,R}} \right) Q_{i,C} = \frac{1 - \alpha_i}{\alpha_i} \left(\frac{P_{i,C}}{P_{i,R}} \right) \alpha_i \frac{w_i L_i}{P_{i,C}}$$

$$Q_{i,R} = (1 - \alpha_i) \frac{w_i L_i}{P_{i,R}}$$

- Cobb-Douglas preferences: demand is a fixed share of their income $(\alpha_i, 1 \alpha_i)$; demand inversely proportional to the price of that good.
- Holds regardless of whether consumers are in autarky or trade.

Prices in Autarky Equilibrium

- In equilibrium, **prices equal marginal cost** in each productive sector:

$$P_{i,p} = w_i a_{i,p} \iff \frac{P_{i,p}}{a_{i,p}} = w_i \quad \text{for } p \in \{C, R\}$$

- We can pin down the relative price $P_{i,C}/P_{i,R}$:

$$\frac{P_{i,C}}{a_{i,C}} = w_i = \frac{P_{i,R}}{a_{i,R}} \iff \frac{P_{i,C}}{P_{i,R}} = \frac{a_{i,C}}{a_{i,R}}$$

Prices in Autarky Equilibrium

- In equilibrium, **prices equal marginal cost** in each productive sector:

$$P_{i,p} = w_i a_{i,p} \iff \frac{P_{i,p}}{a_{i,p}} = w_i \quad \text{for } p \in \{C, R\}$$

- In autarky equilibrium, there demand and production in both sectors
- We can pin down the relative price $P_{i,C}/P_{i,R}$:

$$\frac{P_{i,C}}{a_{i,C}} = w_i = \frac{P_{i,R}}{a_{i,R}} \iff \frac{P_{i,C}}{P_{i,R}} = \frac{a_{i,C}}{a_{i,R}}$$

Prices in Autarky Equilibrium

- In equilibrium, **prices equal marginal cost** in each productive sector:

$$P_{i,p} = w_i a_{i,p} \iff \frac{P_{i,p}}{a_{i,p}} = w_i \quad \text{for } p \in \{C, R\}$$

- In autarky equilibrium, there demand and production in both sectors
- We can pin down the relative price $P_{i,C}/P_{i,R}$:

$$\frac{P_{i,C}}{a_{i,C}} = w_i = \frac{P_{i,R}}{a_{i,R}} \iff \frac{P_{i,C}}{P_{i,R}} = \frac{a_{i,C}}{a_{i,R}}$$

- In autarky, relative prices will reflect the **opportunity cost** within country *i*

- Replacing $\frac{P_{i,p}}{a_{i,p}} = w_i \iff P_{i,C} = w_i a_{i,p}$ in demand functions solves in terms of parameters:

$$Q_{i,C} = \alpha_i \frac{w_i L_i}{P_{i,C}} = \alpha_i \frac{L_i}{a_{i,C}}, \qquad Q_{i,R} = (1 - \alpha_i) \frac{w_i L_i}{P_{i,R}} = (1 - \alpha_i) \frac{L_i}{a_{i,R}}$$

- Replacing $\frac{P_{i,p}}{a_{i,p}} = w_i \iff P_{i,C} = w_i a_{i,p}$ in demand functions solves in terms of parameters:

$$Q_{i,C} = \alpha_i \frac{w_i L_i}{P_{i,C}} = \alpha_i \frac{L_i}{a_{i,C}}, \qquad Q_{i,R} = (1 - \alpha_i) \frac{w_i L_i}{P_{i,R}} = (1 - \alpha_i) \frac{L_i}{a_{i,R}}$$

- In equilibrium, supply equals demand:

$$Y_{i,C} = Q_{i,C}, \qquad Y_{i,R} = Q_{i,R}$$

- Replacing $\frac{P_{i,p}}{a_{i,p}} = w_i \iff P_{i,C} = w_i a_{i,p}$ in demand functions solves in terms of parameters:

$$Q_{i,C} = \alpha_i \frac{w_i L_i}{P_{i,C}} = \alpha_i \frac{L_i}{a_{i,C}}, \qquad Q_{i,R} = (1 - \alpha_i) \frac{w_i L_i}{P_{i,R}} = (1 - \alpha_i) \frac{L_i}{a_{i,R}}$$

- In equilibrium, supply equals demand:

$$Y_{i,C} = Q_{i,C}, \qquad Y_{i,R} = Q_{i,R}$$

- Replacing $\frac{P_{i,p}}{a_{i,p}} = w_i \iff P_{i,C} = w_i a_{i,p}$ in demand functions solves in terms of parameters:

$$\boxed{\mathbf{Q}_{i,C} = \alpha_i \frac{\mathbf{w}_i \mathbf{L}_i}{P_{i,C}} = \alpha_i \frac{\mathbf{L}_i}{\mathbf{a}_{i,C}}, \qquad \mathbf{Q}_{i,R} = (1 - \alpha_i) \frac{\mathbf{w}_i \mathbf{L}_i}{P_{i,R}} = (1 - \alpha_i) \frac{\mathbf{L}_i}{\mathbf{a}_{i,R}}}$$

- In equilibrium, supply equals demand:

$$Y_{i,C} = Q_{i,C}, \qquad Y_{i,R} = Q_{i,R}$$

- We have solved for optimal demands $(Q_{i,C}, Q_{i,R})$, get $(Y_{i,C}, Y_{i,R})$ "for free"

- Replacing $\frac{P_{i,p}}{a_{i,p}} = w_i \iff P_{i,C} = w_i a_{i,p}$ in demand functions solves in terms of parameters:

$$Q_{i,C} = \alpha_i \frac{w_i L_i}{P_{i,C}} = \alpha_i \frac{L_i}{a_{i,C}}, \qquad Q_{i,R} = (1 - \alpha_i) \frac{w_i L_i}{P_{i,R}} = (1 - \alpha_i) \frac{L_i}{a_{i,R}}$$

- In equilibrium, supply equals demand:

$$Y_{i,C} = Q_{i,C}, \qquad Y_{i,R} = Q_{i,R}$$

- We have solved for optimal demands $(Q_{i,C}, Q_{i,R})$, get $(Y_{i,C}, Y_{i,R})$ "for free"
- Can check choices satisfy the PPF:

$$\begin{array}{rcl} a_{i,C} \times Y_{i,C} + a_{i,R} \times Y_{i,R} & = & L_i \\ a_{i,C} \times Q_{i,C} + a_{i,R} \times Q_{i,R} & = & L_i & (\text{mkt clearing}) \\ a_{i,C} \times \alpha_i \frac{L_i}{a_{i,C}} + a_{i,R} \times (1-\alpha_i) \frac{L_i}{a_{i,R}} & = & L_i & (\text{optimal demand}) \\ & & & & & \\ \alpha_i L_i + (1-\alpha_i) L_i & = & L_i & (\text{checks out!}) \end{array}$$

Numerical example: Autarky

Variable	United States (US)	Colombia (COL)
Labor endowment L_i	300 million	54 million
Preference parameter α_i	1/2	3/4
Unit labor requirement for computers $a_{i,C}$	3,000	5,400
Unit labor requirement for roses $a_{i,R}$	30	6
Max computers: $L_i/a_{i,C}$		
Max roses: $L_i/a_{i,R}$		
Opportunity cost $a_{i,C}/a_{i,B}$		
Demand for computers: $\alpha_i L_i / a_{i,C}$		
Demand for roses: $(1-\alpha_i)L_i/a_{i,R}$		

Numerical example: Autarky

Demand for computers: $\alpha_i L_i / a_{i,C}$ Demand for roses: $(1-\alpha_i)L_i/a_{i,R}$

Variable	United States (US)	Colombia (COL)
Labor endowment L_i	300 million	54 million
Preference parameter α_i	1/2	3/4
Unit labor requirement for computers $a_{i,C}$	3,000	5,400
Unit labor requirement for roses $a_{i,R}$	30	6
Max computers: $L_i/a_{i,C}$	300m/3,000 = 100,000	54 m/5,400 = 10,000
Max roses: $L_i/a_{i,R}$	300 m/30 = 10 m	54m/6 = 9m
Opportunity cost $a_{i,C}/a_{i,B}$		

9/10

Numerical example: Autarky

Variable	United States (US)	Colombia (COL)
Labor endowment L_i	300 million	54 million
Preference parameter α_i	1/2	3/4
Unit labor requirement for computers $a_{i,C}$	3,000	5,400
Unit labor requirement for roses $a_{i,R}$	30	6
Max computers: $L_i/a_{i,C}$	300m/3,000 = 100,000	54m/5,400 = 10,000
Max roses: $L_i/a_{i,R}$	300 m/30 = 10 m	54m/6 = 9m
Opportunity cost $a_{i,C}/a_{i,B}$	3,000/30 = 100	5,400/6 = 900
Demand for computers: $\alpha_i L_i / a_{i,C}$	$0.5 \times 300 \text{m}/3,000 = 50,000$	$0.75 \times 54 \text{m} / 5,400 = 7,500$
Demand for roses: $(1-\alpha_i)L_i/a_{i,R}$	$0.5\times300\text{m}/30=5\text{m}$	$0.25\times54\text{m}/6=2.25\text{m}$

Figure: Autarky equilibrium