LAPORAN TUGAS GRAFIKA KOMPUTER

"Cara Kerja Algoritma Bresenham"

DISUSUN OLEH:

Filza Hisana Hizbullah 20051397018

MATA KULIAH:

Grafika Komputer

DOSEN PENGAMPU:

I Gde Agung Sri Sidhimantra

KELAS:

D4 Manajemen Informatika 2020 B

UNIVERSITAS NEGERI SURABAYA

Jl. Ketintang, Ketintang, Kec. Gayungan, Kota SBY, Jawa Timur 60231. Telp (031) 8280009.

Pengertian Algoritma Bresenham

Algoritma bresenham merupakan suatu algoritma yang dikreasikan oleh bresenham yang tidak kalah akurat dan efisien dengan algoritma primitif lainnya, seperti DDA. Bagian pengkonversian (scan-konversi) garis akan melakukan kalkulasi untuk penambahan nilai-nilai integer yang dibutuhkan untuk membentuk garis, yang disesuaikan dengan tipe grafik yang digunakan oleh layar kompute. Untuk mengilustrasikan pendekatan bresenham, pertama kita harus memperhatikan proses scan- konvensi untuk garis dengan slope positif yang lebih kecil dari 1. Posisi pixel sepanjang line-path kemudian ditentukan dengan penyamplingan pada unit interval x, dimulai dari endpoint kiri (X0,Y0) dari garis yang diberikan, kita pindahkan beberapa kolom berturut-turut berdasarkan posisi x dan plot pixel-pixel yang mempunyai nilai scan-line y ke jarak yang paling dekat dengan line-path.

Aturan Algoritma Bresenham

- 1. Jika Pk bernilai positif (+), maka tambahkan hasilnya dengan B dan nilai x dan y ditambah 1.
- 2. Jika Pk bernilai negatif (-), maka tambahkan hasilnya dengan A dan nilai x ditambah 1, sedangkan y ditambah 0 (tetap).
- 3. Putaran dihentikan jika koordinat x dan y sudah mencapai batas akhir.

Prinsip Algoritma Bresenham

- 1. Sumbu vertikal memperlihatkan posisi scan line.
- 2. Sumbu horizontal memperlihatkan kolom pixel.
- 3. Pada tiap langkah, penentuan pixel selanjutnya didasari oleh parameter integer yang nilainya proporsional dengan pengurangan antara vertical separations dari dua posisi piksel dari nilai actual.

Cara Kerja

Algoritma bresenham ini memiliki 6 Langkah kerja:

- 1. Tentukan dua titik yang akan dihubungkan dalam pembentukan garis.
- 2. Tentukan salah satu sebagai titik awal (x0, y0) dan titik akhir (x1,y1).
- 3. Hitung dx, dy, 2dy dan 2dy 2dx
- 4. Hitung parameter : po = 2dy dx
- 5. Untuk setiap xk sepanjang jalur garis, dimulai dengan k=0 bila pk < 0 maka titik selanjutnya adalah: (xk+1, yk) dan pk+1 = pk + 2dy bila tidak, titik selanjutnya adalah: (xk+1, yk+1) dan pk+1 = pk + 2dy 2dx
- 6. Ulangi nomor 5 untuk menentukan posisi pixel berikutnya, sampai x = x1 atau y = y1.

Hasil Praktikum

Titik Awal : x0 = 18, y0 = 19

Titik Akhir : x1 = 500, y1 = 200

