Summary of symmetry calculations

October 21, 2021

Contents

1	DBH_model	5
2	hydons_model	7
3	linear_model	9

4 CONTENTS

Chapter 1

$DBH_{-}model$

$Run~08_08PM_21_October-2021$

Degree in tangential ansätze: 1. The system of ODEs is given by:

$$\frac{\mathrm{d}w_1}{\mathrm{d}t} = -w_1w_2 - w_1w_3 + w_2w_3,$$

$$\frac{\mathrm{d}w_2}{\mathrm{d}t} = -w_1w_2 + w_1w_3 - w_2w_3,$$

$$\frac{\mathrm{d}w_3}{\mathrm{d}t} = w_1w_2 - w_1w_3 - w_2w_3.$$

The calculated generators are:

$$X_1 = (1) \partial t$$
,

$$X_2 = (-1+t) \partial t + (w_1) \partial w_1 + (w_2) \partial w_2 + (w_3) \partial w_3.$$

The execution time of the script was:

0 hours 0 minutes 26 seconds.

Run 08_11PM_21_October-2021

Degree in tangential ansätze: 2. The system of ODEs is given by:

$$\frac{\mathrm{d}w_1}{\mathrm{d}t} = -w_1w_2 - w_1w_3 + w_2w_3,$$

$$\frac{\mathrm{d}w_2}{\mathrm{d}t} = -w_1w_2 + w_1w_3 - w_2w_3,$$

$$\frac{\mathrm{d}w_3}{\mathrm{d}t} = w_1w_2 - w_1w_3 - w_2w_3.$$

The calculated generators are:

$$X_1 = (-1) \, \partial t,$$

$$X_2 = (1) \partial t$$
,

$$X_3 = (-1+t) \partial t + (w_1) \partial w_1 + (w_2) \partial w_2 + (w_3) \partial w_3,$$

$$X_{4} = (t) \partial t + (w_{2}w_{3} f_{1}(t) - w_{1}w_{2} f_{1}(t) - w_{1}w_{3} f_{1}(t)) \partial w_{1} + (w_{1}w_{3} f_{1}(t) - w_{1}w_{2} f_{1}(t) + -w_{2}w_{3} f_{1}(t)) \partial w_{2} + (w_{1}w_{2} f_{1}(t) - w_{1}w_{3} f_{1}(t) - w_{2}w_{3} f_{1}(t)) \partial w_{3}$$

Some of the generators might contain the following arbitrary functions:

 f_1

The execution time of the script was:

0 hours 3 minutes 27 seconds.

Chapter 2

hydons_model

$Run~08_03PM_21_October-2021$

Degree in tangential ansätze: 1. The system of ODEs is given by:

$$\frac{\mathrm{d}y_1}{\mathrm{d}t} = \frac{ty_1 + y_2^2}{-t^2 + y_1 y_2},$$
$$\frac{\mathrm{d}y_2}{\mathrm{d}t} = \frac{ty_2 + y_1^2}{-t^2 + y_1 y_2}.$$

The calculated generators are:

$$X_1 = (t) \partial t + (y_1) \partial y_1 + (y_2) \partial y_2.$$

The execution time of the script was:

0 hours 0 minutes 5 seconds.

Run 08_04PM_21_October-2021

Degree in tangential ansätze: 2. The system of ODEs is given by:

$$\frac{\mathrm{d}y_1}{\mathrm{d}t} = \frac{ty_1 + y_2^2}{-t^2 + y_1 y_2},$$
$$\frac{\mathrm{d}y_2}{\mathrm{d}t} = \frac{ty_2 + y_1^2}{-t^2 + y_1 y_2}.$$

The calculated generators are:

$$X_1 = (t) \partial t + (y_1) \partial y_1 + (y_2) \partial y_2,$$

$$X_{2}=\left(-t^{2} \operatorname{f}_{1}\left(t\right)+y_{1} y_{2} \operatorname{f}_{1}\left(t\right)\right) \partial t+\left(y_{2}^{2} \operatorname{f}_{1}\left(t\right)+t y_{1} \operatorname{f}_{1}\left(t\right)\right) \partial y_{1}+\left(y_{1}^{2} \operatorname{f}_{1}\left(t\right)+t y_{2} \operatorname{f}_{1}\left(t\right)\right) \partial y_{2}$$

Some of the generators might contain the following arbitrary functions:

 f_1

The execution time of the script was:

0 hours 0 minutes 27 seconds.

Chapter 3

linear_model

$Run~08_04PM_21_October-2021$

Degree in tangential ansätze: 1. The system of ODEs is given by:

$$\frac{\mathrm{d}u}{\mathrm{d}t} = u + v,$$
$$\frac{\mathrm{d}v}{\mathrm{d}t} = u + v.$$

The calculated generators are:

$$\begin{split} X_1 &= \left(-\frac{e^{-2t}}{4} + \frac{e^{2t}}{4} \right) \partial t + \left(\frac{u}{2} + \frac{ve^{2t}}{2} - \frac{ue^{-2t}}{2} - \frac{ve^{-2t}}{2} \right) \partial u \\ &+ \left(\frac{v}{2} + \frac{ve^{2t}}{2} \right) \partial v \\ \\ X_2 &= \left(-\frac{1}{2} + \frac{e^{-2t}}{4} + \frac{e^{2t}}{4} \right) \partial t + \left(-\frac{u}{2} + \frac{ue^{-2t}}{2} + \frac{ve^{-2t}}{2} \right) \\ &+ \frac{ve^{2t}}{2} \right) \partial u + \left(-\frac{v}{2} + \frac{ve^{2t}}{2} \right) \partial v \\ \\ X_3 &= \left(-\frac{1}{2} + \frac{e^{2t}}{2} \right) \partial u + \left(\frac{1}{2} + \frac{e^{2t}}{2} \right) \partial v \\ \\ X_4 &= \left(-\frac{1}{2} - \frac{e^{-2t}}{4} - \frac{e^{2t}}{4} \right) \partial t + \left(-\frac{u}{2} - \frac{ue^{-2t}}{2} - \frac{ve^{-2t}}{2} \right) \\ &+ -\frac{ve^{2t}}{2} \right) \partial u + \left(-\frac{v}{2} - \frac{ve^{2t}}{2} \right) \partial v \\ \\ X_5 &= \left(-\frac{e^{2t}}{4} + \frac{e^{-2t}}{4} \right) \partial t + \left(\frac{u}{2} + \frac{ue^{-2t}}{2} + \frac{ve^{-2t}}{2} - \frac{ve^{2t}}{2} \right) \partial u \\ &+ \left(\frac{v}{2} - \frac{ve^{2t}}{2} \right) \partial v \end{split}$$

$$X_6 = \left(\frac{v}{2} - \frac{u}{2} + \frac{ue^{-2t}}{2} + \frac{ve^{-2t}}{2}\right)\partial t$$

$$X_7 = \left(\frac{1}{2} + \frac{e^{2t}}{2}\right)\partial u + \left(-\frac{1}{2} + \frac{e^{2t}}{2}\right)\partial v$$

$$X_8 = \left(\frac{u}{2} - \frac{v}{2} + \frac{ue^{-2t}}{2} + \frac{ve^{-2t}}{2}\right)\partial t$$

$$X_9 = (1)\partial t,$$

$$X_{10} = (t) \partial t + (u f_1 (t) + v f_1 (t)) \partial u + (u f_1 (t) + v f_1 (t)) \partial v$$

Some of the generators might contain the following arbitrary functions:

 f_1

The execution time of the script was:

0 hours 0 minutes 13 seconds.

Run 08_08PM_21_October-2021

Degree in tangential ansätze: 2. The system of ODEs is given by:

$$\frac{\mathrm{d}u}{\mathrm{d}t} = u + v,$$
$$\frac{\mathrm{d}v}{\mathrm{d}t} = u + v.$$

The calculated generators are:

$$X_{1} = \left(-\frac{u}{8} + \frac{3v}{8} - \frac{3ve^{2t}}{8} - \frac{ue^{-2t}}{8} - \frac{ve^{-2t}}{8} + \frac{ue^{-4t}}{8}\right) + \frac{ue^{2t}}{8} + \frac{ve^{-4t}}{8} + \frac{ve^{-4t}}{8} + \frac{ve^{-4t}}{8} + \frac{ve^{-4t}}{8} + \frac{ve^{-4t}}{4} + \frac{ve^{-4t}}{4} + \frac{ve^{-4t}}{2} + \frac{ve^{-4t}}{2} + \frac{ve^{-2t}}{2} + \frac{ve^$$

$$\begin{split} X_3 = \left(-\frac{1}{2} - \frac{e^{-2t}}{4} - \frac{e^{2t}}{4}\right) \partial t + \left(-\frac{u}{2} - \frac{ue^{-2t}}{2} - \frac{ve^{-2t}}{2}\right) \\ + \left(-\frac{ve^{2t}}{2}\right) \partial u + \left(-\frac{v}{2} - \frac{ve^{2t}}{2}\right) \partial v \end{split}$$

$$X_4 = \left(\frac{u^2}{4} + \frac{v^2}{4} + \frac{v^2 e^{-2t}}{2} - \frac{uv}{2} - \frac{u^2 e^{-2t}}{2} + \frac{u^2 e^{-4t}}{4} + \frac{v^2 e^{-4t}}{4} + \frac{uv e^{-4t}}{2}\right) \partial t$$

$$X_{5} = \left(-\frac{e^{2t}}{4} + \frac{e^{-2t}}{4}\right) \partial t + \left(\frac{u}{2} + \frac{ue^{-2t}}{2} + \frac{ve^{-2t}}{2} - \frac{ve^{2t}}{2}\right) \partial u + \left(\frac{v}{2} - \frac{ve^{2t}}{2}\right) \partial v$$

$$\begin{split} X_6 &= \left(-\frac{u}{8} - \frac{v}{8} - \frac{3ve^{-2t}}{8} - \frac{ue^{2t}}{8} + \frac{ue^{-4t}}{8} + \frac{ue^{-2t}}{8} \right. \\ &\quad + \frac{ve^{-4t}}{8} + \frac{3ve^{2t}}{8} \left.\right) \partial t + \left(-\frac{v^2}{4} + \frac{u^2}{4} + \frac{u^2e^{-2t}}{2} + \frac{v^2e^{2t}}{2} \right. \\ &\quad + -\frac{uv}{2} - \frac{v^2e^{-2t}}{2} + \frac{u^2e^{-4t}}{4} + \frac{v^2e^{-4t}}{4} + \frac{uve^{-4t}}{2} \left.\right) \partial u + \left(-\frac{v^2}{2} + \frac{v^2e^{2t}}{2} +$$

$$X_7 = (1) \partial t,$$

$$\begin{split} X_8 &= \left(\frac{u}{8} + \frac{v}{8} - \frac{3ve^{-2t}}{8} - \frac{ue^{-4t}}{8} - \frac{ue^{2t}}{8} - \frac{ve^{-4t}}{8} \right. \\ &\quad + \frac{ue^{-2t}}{8} + \frac{3ve^{2t}}{8} \right) \partial t + \left(-\frac{u^2}{4} + \frac{v^2}{4} + \frac{uv}{2} + \frac{u^2e^{-2t}}{2} \right. \\ &\quad + \frac{v^2e^{2t}}{2} - \frac{v^2e^{-2t}}{2} - \frac{u^2e^{-4t}}{4} - \frac{v^2e^{-4t}}{4} - \frac{uve^{-4t}}{2} \right) \partial u + \left(\frac{v^2}{2} + \frac{v^2e^{2t}}{2} \right) \partial v \end{split}$$

$$X_9 = \left(\frac{u}{2} - \frac{v}{2} + \frac{ue^{-2t}}{2} + \frac{ve^{-2t}}{2}\right)\partial t$$

$$\begin{split} X_{10} &= \left(-\frac{3v}{8} + \frac{u}{8} - \frac{3ve^{2t}}{8} - \frac{ue^{-4t}}{8} - \frac{ue^{-2t}}{8} - \frac{ve^{-4t}}{8} \right. \\ &+ \left. -\frac{ve^{-2t}}{8} + \frac{ue^{2t}}{8} \right) \partial t + \left(-\frac{v^2}{4} + \frac{u^2}{4} - \frac{uv}{2} - \frac{v^2e^{2t}}{2} \right. \\ &+ \left. -\frac{u^2e^{-4t}}{4} - \frac{v^2e^{-4t}}{4} - \frac{uve^{-4t}}{2} \right) \partial u + \left(-\frac{v^2}{2} - \frac{v^2e^{2t}}{2} \right) \partial v \end{split}$$

$$\begin{split} X_{11} &= \left(-\frac{5v}{8} + \frac{3u}{8} - \frac{3ue^{-2t}}{8} - \frac{ue^{2t}}{8} + \frac{ue^{-4t}}{8} + \frac{ve^{-4t}}{8} \right. \\ &+ \left. \frac{ve^{-2t}}{8} + \frac{3ve^{2t}}{8} \right) \partial t + \left(-\frac{v^2}{4} + \frac{u^2}{4} + \frac{v^2e^{-2t}}{2} + \frac{v^2e^{2t}}{2} \right. \\ &+ \left. -\frac{uv}{2} - \frac{u^2e^{-2t}}{2} + \frac{u^2e^{-4t}}{4} + \frac{v^2e^{-4t}}{4} + \frac{uve^{-4t}}{2} \right) \partial u + \left(-\frac{v^2}{2} + \frac{v^2e^{2t}}{2} + \frac{v^2e^{2t}}{2}$$

$$X_{12} = \left(-\frac{3u}{8} + \frac{5v}{8} - \frac{3ue^{-2t}}{8} - \frac{ue^{-4t}}{8} - \frac{ue^{2t}}{8} - \frac{ve^{-4t}}{8}\right)$$

$$+ \frac{ve^{-2t}}{8} + \frac{3ve^{2t}}{8} \partial t + \left(-\frac{u^2}{4} + \frac{v^2}{4} + \frac{uv}{2} + \frac{v^2e^{-2t}}{2}\right)$$

$$+ \frac{v^2e^{2t}}{2} - \frac{u^2e^{-2t}}{2} - \frac{u^2e^{-4t}}{4} - \frac{v^2e^{-4t}}{4} - \frac{uve^{-4t}}{2} \partial u + \left(\frac{v^2}{2} + \frac{v^2e^{2t}}{2}\right)$$

$$+ \frac{v^2e^{2t}}{2} \partial v$$

$$X_{13} = \left(\frac{1}{2} + \frac{e^{2t}}{2}\right)\partial u + \left(-\frac{1}{2} + \frac{e^{2t}}{2}\right)\partial v$$

$$X_{14} = \left(-\frac{u^2}{4} - \frac{v^2}{4} + \frac{uv}{2} + \frac{u^2e^{-4t}}{4} + \frac{v^2e^{-4t}}{4} + \frac{uve^{-4t}}{2}\right)\partial t$$

$$X_{15} = \left(-\frac{e^{-2t}}{4} + \frac{e^{2t}}{4}\right) \partial t + \left(\frac{u}{2} + \frac{ve^{2t}}{2} - \frac{ue^{-2t}}{2} - \frac{ve^{-2t}}{2}\right) \partial u + \left(\frac{v}{2} + \frac{ve^{2t}}{2}\right) \partial v$$

$$X_{16} = \left(\frac{v}{2} - \frac{u}{2} + \frac{ue^{-2t}}{2} + \frac{ve^{-2t}}{2}\right)\partial t$$

$$X_{17} = \left(-\frac{1}{2} + \frac{e^{2t}}{2}\right)\partial u + \left(\frac{1}{2} + \frac{e^{2t}}{2}\right)\partial v$$

$$X_{18} = \left(\frac{u^2}{4} + \frac{v^2}{4} + \frac{u^2 e^{-2t}}{2} - \frac{uv}{2} - \frac{v^2 e^{-2t}}{2} + \frac{u^2 e^{-4t}}{4} + \frac{v^2 e^{-4t}}{4} + \frac{uv e^{-4t}}{2}\right) \partial t$$

$$X_{19} = (u f_2(t) + v f_1(t) - v f_2(t) + f_3(t)) \partial t + (u f_3(t) + v f_3(t) + u^2 f_2(t) + v^2 f_1(t) - v^2 f_2(t) + uv f_1(t)) \partial u + (u f_3(t) + v f_3(t) + u^2 f_2(t) + v^2 f_1(t) - v^2 f_2(t) + uv f_1(t)) \partial v$$

Some of the generators might contain the following arbitrary functions:

 f_1 f_2 f_3

The execution time of the script was:

0 hours 3 minutes 29 seconds.