

NATIONAL OPEN UNIVERSITY OF NIGERIA 14/16 AHMADU BELLO WAY, VICTORIA ISLAND, LAGOS SCHOOL OF SCIENCE AND TECHNOLOGY MARCH/APRIL 2014 EXAMINATION

COURSE CODE: PHY 308

COURSE TITLE: ELECTRONICS I EXAMINATION

TIME ALLOWED: 2HOURS

INSTRUCTION: ANSWER QUESTION ANY FIVE QUESTIONS

QUESTION ONE

a.

i. Name the factors that h-parameters depends on.

ii. Determine the voltage gain for the circuit shown in Fig. 1, with $R_{\text{F}}=100\text{K}\Omega$ and $R_{\text{1}}{=}10\text{ K}\Omega$

Define the following: Mark-to-Space Ratio (MSR), Pulse Repetition Time (PRT), and Pulse Repetition Frequency (PRF).

QUESTION TWO

a.

- i. What is common-mode rejection ratio (CMRR)?
- ii. The value of CMRR can also be expressed in logarithm term as?
- **b.** Calculate the input power, output power, and the efficiency of the amplifier circuit in Figure 2 for an input voltage that results in a base current of 10mA peak.

Fig 2

QUESTION THREE

a.

- i. Draw a diagram to represent a complete solid state power supply.
- ii. In the half-wave rectifier circuit of Fig. 3, determine
 - 1. Maximum and values of load voltage
 - 2. Peak values of load current
 - 3. Power absorbed by the load,
 - 4. Peak Inverse Voltage (PIV) of the diode
 - 5. RMSvalue of ripple voltage

Neglect the resistance of transformer secondary winding and that of the diode.

Fig. 3

QUESTION FOUR

a.

- i. State three uses of multivibrator.
- ii. List the difference(s) between fixed negative voltage regulator and adjustable voltage regulator. Give one example of each.

b.

- i. The output voltage of a three-terminal voltage regulator is $5 \text{ V} \otimes 5 \text{ mA}$ load, and 4.96 V at 1.5 A load. What is the regulator's load regulation?
- ii. For the circuit below in fig 4, what is the numerical value for the two-port *y*-parameter

$$y_{12}.y_{12} = \frac{i_1}{v_2} | v_1 = 0$$

Fig 4.

QUESTION FIVE

a.

- i. What is an op-amp?
- ii. State three uses of op-amp

b.

- i. With the help of a neat diagram, explain the operation of a Bridge Rectifier.
- ii. What is Peak Inverse Volatge?

Classify the following filter as active/passive and low pass/high-pass as appropriate

Fig. 5

Fig. 6

Fig. 7

QUESTION SIX

a. The Zener diode of Fig.8 has the following ratings: $V_{Z=} 6.8 \text{ V}$, $I_{Z} = 50 \text{ mA}$ @ $r_{z} = 2\Omega$. $I_{Z(min)} = 5\text{mA}$, $I_{Z(max)} = 150\text{mA}$

Fig.8

What would be the load voltage when load current I_L varies from 10 mA to 120 mA? Also, calculate voltage regulation of the regulator.

b.State advantages and disadvantage of class A amplifier.

QUESTION SEVEN

- **a.** List the main characteristics of an ideal Op-amp.
- **b.** What is an Integrated Circuit ? What are its special features? Why is it so commonly used in electronic circuits ?
- **c.** Sketch the CE-configuration transistor output characteristics of a transistor and indicate the active, cut-off and saturation regions.