Chapter 2:

Mathematical building blocks of neural networks

Outlines

- 1. Data representation of neural networks
- 2. Tensor operations
- 3. Gradient-based optimization

- Review the example:
 - The neural layer transforms its input data as follows:

```
output = relu(dot(input, W) + b)
```

- ✓ W and b are tensors that are attributes of the layer.
- W and b are tensors that are attributes of the layer.
 They're called the weights or trainable parameters of the layer
- These weights contain the information learned by the model from exposure to training data.
- These weight matrices are filled with small random values in the first start (random).

- Review the example:
 - The neural layer transforms its input data as follows (cont):

```
output = relu(dot(input, W) + b)
```

- The next is to gradually adjust these weights based on a feedback signal.
- This gradual adjustment, also called training, is the learning that machine learning is all about.
- The gradual adjustment is continuous and forms a training loop until the loss seems sufficiently low.

- The training loop:
 - Draw a batch of training samples, x, and corresponding targets, y_true.
 - Run the model on x to obtain predictions, y_pred.
 - 3. Compute the loss of the model on the batch, a measure of the mismatch between y_pred and y_true.
 - 4. Update all weights of the model in a way that slightly reduces the loss on this batch -> this is the significant problem.
- The last model that has a very low loss on its training data: a low mismatch between predictions, y_pred, and expected targets, y_true.

- Update all weights of the model in a manual way to find out the value that minimum the loss needs to maximum cost -> not able to.
- Automatic method for this problem: gradient descent
- Gradient descent is an optimization technique used in neural networks.
- Gradient descent bases on the fact that small changes in inputs lead to predictable changes in outputs -> loss function.
- By calculating the gradient, which describes how the loss changes with respect to the coefficients, we can update all coefficients simultaneously in a direction that reduces the loss.

1. What is derivative?

- Consider a continuous, y = f(x), mapping a number, x, to a new number, y.
- A small change in x can only result in a small change in y that's the intuition behind continuity

1. What is derivative? (cont)

- Let's say you increase x by a small factor, epsilon_x: this results in a small epsilon_y change to y.
- When epsilon_x is small enough, around a certain point p, it's possible to approximate f as a linear function of slope a, so that epsilon_y becomes a * epsilon_x.

$$f(x + epsilon_x) = y + a * epsilon_x$$

With a continuous function, a small change in x results in a small change in y.

- The slope a is called the derivative of f in p.
- If a is negative, it means a small increase in x around p will result in a decrease of f(x), and if a is positive, a small increase in x will result in an increase of f(x).
- The absolute value of a (the magnitude of the derivative) tells us how quickly this increase or decrease will happen.

- For every differentiable function f(x) there exists a derivative function f'(x), that maps values of x to the slope of the local linear approximation of f in those points.
- For instance, the derivative of cos(x) is -sin(x), the derivative of f(x) = a * x is f'(x) = a, and so on.
- Being able to derive functions is a very powerful tool when it comes to optimization, the task of finding values of x that minimize the value of f(x).
- If we want to reduce the value of f(x), we just need to move x a little in the opposite direction from the derivative.

- Derivative of a tensor operation: The gradient
 - The derivative of a tensor operation (or tensor function) is called a gradient.
 - The gradient of a tensor function represents the curvature of the multidimensional surface described by the function.
 - The gradient of a tensor function characterizes how the output of the function varies when its input parameters vary.
 - Give a function f(x), we can reduce the value of f(x) by moving x a little in the opposite direction from the derivative.

- Derivative of a tensor operation: The gradient (cont)
 - With a function f(W) of a tensor, we can reduce loss_value = f(W) by moving W in the opposite direction from the gradient.
 - For example, $W_1 = W_0$ step * grad(f(W_0), W_0) (where step is a small scaling factor).
 - That means going against the direction of steepest ascent of f, which intuitively should put we lower on the curve.
 - The scaling factor step is needed because grad(loss_value, W₀) only approximates the curvature when we're close to W₀, so we don't want to get too far from W₀.

2. Stochastic gradient descent

- Given a differentiable function, the minimum is a point where the derivative is 0.
- What we have to do is find all the points where the derivative goes to 0 and check for which of these points the function has the lowest value.
- With a neural network, the smallest possible loss function is found by finding analytically the combination of weight values.
- This can be done by solving the equation grad(f(W), W) = 0 for W. This is a polynomial equation of N variables, where N is the number of coefficients in the model.
- Solving the equation grad(f(W), W) = 0 for W will be difficult when N is a large number.

2. Stochastic gradient descent (cont)

- The term stochastic refers to the fact that each batch of data is drawn at random (stochastic is a scientific synonym of random).
- The image illustrates what happens in 1D, when the model has only one parameter and you have only one training sample.

2. Stochastic gradient descent (cont)

- It's important to pick a reasonable value for the learning rate factor.
- If it's too small, the descent down the curve will take many iterations, and it could get stuck in a local minimum.
- If learning rate is too large, the value updates may end up taking we to completely random locations on the curve.

curve (one learnable parameter)

2. Stochastic gradient descent (cont)

We can use gradient descent in highly dimensional spaces: every weight coefficient in a neural network is a free dimension in the space, and there may be tens of thousands or even millions of them.

2. Stochastic gradient descent (cont)

The optimization method or optimizers: taking into account previous weight updates when computing the next weight update, rather than just looking at the current value of the gradients.

A local minimum and a global minimum

Momentum: addresses two issues as convergence speed and local minima.

2. Stochastic gradient descent (cont)

In practice, this means updating the parameter w based not only on the current gradient value but also on the previous parameter update.

```
past_velocity = 0.
momentum = 0.1
while loss > 0.01:
    w, loss, gradient = get_current_parameters()
velocity = past_velocity * momentum - learning_rate * gradient
w = w + momentum * velocity - learning_rate * gradient
past_velocity = velocity
update_parameter(w)
```

3. Back-propagation algorithm

- The Backpropagation algorithm comes in to:
 - Compute the gradient of complex expressions in practice.
 - Compute the gradient of the loss with regard to the weights.

- Back-propagation algorithm (cont)
 - The chain rule:
 - Backpropagation is a method that uses the derivatives of basic operations (e.g., addition, ReLU, tensor product) to compute the gradient of complex combinations of these operations efficiently.
 - Neural networks, composed of chained tensor operations with simple derivatives, leverage this.
 - A model can be parameterized by weights and biases across layers, involving differentiable operations like dot products, ReLU, softmax, and loss functions.

- 3. Back-propagation algorithm (cont)
 - The chain rule (cont):
 - For example, give a model:

```
from tensorflow import keras
from tensorflow.keras import layers
model = keras.Sequential([
    layers.Dense(512, activation="relu"),
    layers.Dense(10, activation="softmax")
])
```

It can be expressed as a function parameterized by the variables W1, b1, W2, and b2 (belonging to the first and second Dense layers respectively), involving the atomic operations dot, relu, softmax, and +, as well as loss function => it called the chain rule.

- Back-propagation algorithm (cont)
 - The chain rule (cont):
 - Backpropagation is a method that uses the derivatives of basic operations (e.g., addition, ReLU, tensor product) to compute the gradient of complex combinations of these operations efficiently.
 - Neural networks, composed of chained tensor operations with simple derivatives, leverage this.
 - A model can be parameterized by weights and biases across layers, involving differentiable operations like dot products, ReLU, softmax, and loss functions.