Neutrinos via Charm Decays in Astrophysical Sources

by

Fritz Ali Agildere

fritz.agildere@udo.edu

Abstract

Acknowledgements

Abbreviations

AGN Active Galactic Nucleus

CKM Cabibbo, Kobayashi & Maskawa

DSA Diffusive Shock Acceleration

EWT Electroweak Theory

GR General Relativity

GZK Greisen, Sazepin & Kusmin

PMNS Pontecorvo, Maki, Nakagawa & Sakata

QCD Quantum Chromodynamics

QED Quantum Electrodynamics

QFT Quantum Field Theory

QM Quantum Mechanics

SM Standard Model

SR Special Relativity

Contents

1	Intro	roduction					
2	Back	ground	2				
	2.1	Particle Physics	2				
	2.2	Multimessenger Astronomy	3				
	2.3	Astrophysical Sources	3				
3	Meth	thods					
4	Resu	ults					
5	Disc	cussion					
6	Cond	nclusion & Outlook					
Αŗ	pendi	ix	8				
-	A	Reference Frames	8				
	В	Cross Sections	8				
	C	Spectral Distributions	1				
	D	High Energy Cutoff	1				
	E	Expansive Magnetic Fields	1				
	F	Stochastic Acceleration	1				
	G	Pulsar Spindown	1				
	Н	Luminosity Limit	1				
	I	Implementation	1				
Bil	oliogra	aphy	1				

1 Introduction

2 Background

While traversing space, messenger particles are subjected to many different influences, both in terms of type and magnitude, before being detected at earth. Understanding this propagation requires a thorough comprehension of physical processes at all scales of application, from production in astrophysical sources, through interactions with the vast radiation and matter fields that fill the cosmos, to entering the solar system and finally the terrestial atmosphere.

The following sections provide an incomplete overview of aspects relevant to the treatment of this complex topic, as well as references for further study on the various related subjects.

2.1 Particle Physics

In the modern view, interactions and categories of elementary particles are most accurately described by a construct called the *Standard Model* (SM) of particle physics. Underlying this formalism is the mathematical framework known as *Quantum Field Theory* (QFT) that combines and generalizes properties of *Quantum Mechanics* (QM) and *Special Relativity* (SR) to produce an extremely precise description of microscopic reality. Excitations in the associated fields are referred to as quanta and manifest as observable particles.

Since this work is mostly concerned with the statistical behaviour of large quantities instead of individual particle probabilistics, a more detailed explanation is omitted except for certain phenomena important to the justification of some later assumptions.

Fundamental Interactions

Electromagnetism is described by *Quantum Electrodynamics* (QED) and mediated by photons γ with Abelian U(1) symmetry, whereas the weak force is carried by Z and W^{\pm} bosons related to the SU(2) group. In terms of *Electroweak Theory* (EWT) all these particles actually result from symmetry breaking of virtual isospin and hypercharge fields, unifying U(1) × SU(2) under a single coherent structure. The previously massless gauge bosons then gain their masses via the Higgs mechanism, where only the γ is excluded and remains without mass.

Notably, the weak interaction exclusively couples to left handed fermions, violating parity.

Chirality, Helicity, Decay, Mixing, Quarks, Color Charge

Carriers of the strong force are named gluons and arise from the SU(3) symmetry group.

Weak, Electromagnetic, Electroweak, Higgs

Parity Violation, Mixing

Limits, Dark Matter, Dark Energy, Neutrino Oscillation, Quantum Gravity

Vector Bosons, Scalar Boson, Boson Spins, Fermion Spins

General Relativity

Leptons

Neutrinos, Decays

Hadrons

Confinement, Asymptotic Freedom, Residual Nuclear Force, Decays

2.2 Multimessenger Astronomy

Gravitational Waves

Cosmic Rays

Photons

Neutrinos

2.3 Astrophysical Sources

Magnetars

Active Galactic Nuclei

3 Methods

4 Results

5 Discussion

6 Conclusion & Outlook

Appendix

A Reference Frames

Depending on the application, energies in particle physics are either given as viewed from a suitable rest frame or independent from the choice of coordinate system altogether. One widely adopted formulation uses the Mandelstam variables

$$s = (p_1 + p_2)^2$$
 $t = (p_1 - p_3)^2$ $u = (p_1 - p_4)^2$

to assign different channels in scattering processes via the squared momentum carried by the exchanged mediating particle. Implied in this context is the Minkowski inner product, making the above quantities manifestly Lorentz invariant.

When working with parametrizations defined for use in different subdisciplines it often becomes necessary to convert from center of mass energies \sqrt{s} to the energy E of a projectile in the target rest frame. With $E^2 = P^2c^2 + M^2c^4$ as well as momenta P = (E, Pc) and $p = (mc^2, 0)$ one finds

$$s = (P + p)^2 = (E + mc^2)^2 - P^2c^2 = 2Emc^2 + m^2c^4 + M^2c^4$$

for the invariant mass. This relation is typically approximated as $s = 2Emc^2$ at high energies.

B Cross Sections

Scattering

Production

$$x_F \frac{d\sigma}{dx_F}(x_F, E_p) = ax_F^b (1 - x_F^m)^n$$

[1]

$$a = a_1 - a_2 \ln(E_p)$$
 $b = b_1 - b_2 \ln(E_p)$ $n = n_1 - n_2 \ln(E_p)$

m = 1.2

Appendix B Cross Sections

Table 1: Parameters for the charm quark differential cross section. Coefficients in the given energy ranges are calculated from [1] to represent E_p in units of GeV without requiring unnecessary conversions.

E_p / GeV	<i>a</i> ₁ / μb	<i>a</i> ₂ / μb	b_1	b_2	n_1	n_2
	826					
$10^8 - 10^{11}$	403	2002	0.237	0.023	7.639	0.102

As in [2] it is assumed that the cross section scales linearly with the nucleon number, yielding

$$\frac{d\sigma}{dx_c}(x_c, E_p) = A^{-1} \frac{d\sigma}{dx_F}(x_c, E_p)$$

for the inclusive $pp \rightarrow cX$ production.

75 % nitrogen and 25 % oxygen A = 14.5

$$\frac{d\sigma}{dx_E}(x_E, E_p) = \int_{x_E}^{1} dz \, z^{-1} \frac{d\sigma}{dx_c}(x_c, E_p) D_c^h(z)$$

$$D_c^h(z) = \frac{N_h z (1 - z)^2}{\left((1 - z)^2 + \epsilon_h z\right)^2} \tag{1}$$

Decay

$$\tilde{F}_{h\to\nu} = D_h^{-1} \Big(6b_h a_h^2 - 4a_h^3 - 12\lambda_h^3 a_h + 12\lambda_h^2 y - 6b_h y^2 + 4y^3 + 12\lambda_h^2 \ln((1-y)/\lambda_h) \Big)$$

$$a_h = 1 - \lambda_h$$
 $b_h = 1 - 2\lambda_h$ $D_h = 1 - 8\lambda_h - 12\lambda_h^2 \ln(\lambda_h) + 8\lambda_h^3 - \lambda_h^4$

Appendix B Cross Sections

Table 2: Parameters for charm hadron production, cooling and decay to neutrinos. Coefficients ϵ_h are taken from fits to LO QCD results via the fragmentation function in [3] with normalizations N_h given by [4] to scale the integration of (1) over [0,1] to approximately match the fractions f_h provided in [5] from measurements. Effective masses $\sqrt{\tilde{s}_h}$ have been determined by [6] from fitting decay rates, except for D_s^+ which is copied from [4] because no original value could be found. Mean lifetimes τ_h and rest masses m_h are adopted from [7] in the particle listings. For mass type quantities, natural units c=1 are used.

h	N_h	ϵ_h	τ_h / fs	$\sqrt{\tilde{s}_h}$ / GeV	m_h / GeV
D^0	0.577	0.101	410	0.67	1.86
D^+	0.238	0.104	1033	0.63	1.87
D_s^+	0.0327	0.0322	501	0.84	1.97
Λ_c^+	0.0067	0.00418	203	1.27	2.29

C Spectral Distributions

Pions & Kaons

Charm

D High Energy Cutoff

E Expansive Magnetic Fields

F Stochastic Acceleration

Due to its wide applicability in different astrophysical scenarios, probabilistic collisions are often viewed as one of the more plausible mechanisms responsible for accelerating cosmic rays to high energies. The general case is described in [8] and supposes that for each collision, particles gain energy proportional to a constant factor η and remain in the region of acceleration with fixed probability ς on average. With initial conditions N_0 for the particle number and E_0 as the mean energy, this results in $N = N_0 \varsigma^k$ and $E = E_0 \eta^k$ after k collisions. Using $\ln x^k = k \ln x$ in

$$\frac{\ln(N/N_0)}{\ln(E/E_0)} = \frac{\ln(\varsigma)}{\ln(\eta)}$$

eliminates the exponent and by rearranging gives the relation

$$N = N_0 \left(\frac{E}{E_0}\right)^{\ln(\varsigma)/\ln(\eta)}$$

connecting energy and number of particles. This integrated spectrum incidentally follows a power law, which is an almost ubiquitous feature observed in cosmic ray physics. One obtains

$$\frac{dN}{dE} = \frac{N_0}{E_0} \left(\frac{E}{E_0}\right)^{\alpha}$$

for the differential spectrum where the spectral index

$$\alpha = \frac{\ln(\varsigma)}{\ln(\eta)} - 1$$

is constrained by $\ln(\varsigma)/\ln(\eta) < 0$ due to $\varsigma < 1$ and $\eta > 1$ as implied per the definition.

The basic case of DSA considers strong shock fronts moving with velocity $\beta = v/c$ in a fully ionized gas. Requiring momentum isotropization without significant energy losses on both sides of the discontinuity results in $\ln(\varsigma)/\ln(\eta) = -1$ for a $dN/dE \propto E^{-2}$ spectral dependence that [8] discusses as well. By including nonlinear effects and other interactions, a slightly steeper index $\alpha \sim -2.5$ can be retrieved to more closely match observations.

An energy gain increasing linearly with β leads this mechanism to be classified as Fermi type acceleration of first order, whereas the second order formulation scales like β^2 as is the case in the original proposition. Though shocks exceed the speed of sound in the local medium, relativistic velocities are typically not reached. Consequently, light speed ratios $\beta \ll 1$ mean that lower order processes are much more efficient in reaching high particle energies.

G Pulsar Spindown

H Luminosity Limit

I Implementation

In order to calculate neutrino spectra from hadronic distributions, several integrals have to be computed. Discretizing this task allows the general case

$$F(x, y) = \int dz G(x, z) H(z, y)$$

to be rewritten as a Riemann sum. Assuming *G* and *H* are integrable over a given interval,

$$F_{ij} = \sum_{k} D_{kk} G_{ik} H_{kj}$$

converges to the exact solution for sufficiently small steps. Transforming variables

$$x \to x_i$$
 $y \to y_j$ $z \to z_k$

Appendix I Implementation

and defining $D_{kk} = z_{k+1} - z_k$ leads to the above notation. It is easily shown how this expression in terms of indices translates to the product of corresponding matrices

$$F = GDH$$

as an equivalent formulation. Here the output $F \in \mathbb{R}^{m \times n}$ is obtained from the inputs $G \in \mathbb{R}^{m \times l}$ and $H \in \mathbb{R}^{l \times n}$ as well as the square matrix $D \in \mathbb{R}^{l \times l}$ that encodes all step sizes on its diagonal. These results enable a quick and efficient implementation of the required calculations as program code, where array arithmetic operations can greatly increase execution speed.

¹ In service of reproducability, all implementations can be viewed in this repository.

Bibliography

- [1] V. P. Gonçalves, M. V. Machado, *Journal of High Energy Physics* **2007**, 028–028, ISSN: 1029-8479, DOI: 10.1088/1126-6708/2007/04/028, arXiv: hep-ph/0607125 (2007).
- [2] A. Bhattacharya, R. Enberg, M. H. Reno, I. Sarcevic, A. Stasto, *Journal of High Energy Physics* **2015**, ISSN: 1029-8479, DOI: 10.1007/jhep06(2015)110, arXiv: 1502.01076 [hep-ph] (2015).
- [3] B. A. Kniehl, G. Kramer, *Physical Review D* **74**, ISSN: 1550-2368, DOI: 10.1103/physrevd.74.037502, arXiv: hep-ph/0607306 (2006).
- [4] J. A. Carpio, K. Murase, M. H. Reno, I. Sarcevic, A. Stasto, *Physical Review D* **102**, ISSN: 2470-0029, DOI: 10.1103/PhysRevD.102.103001, arXiv: 2007.07945 [astro-ph.HE] (2020).
- [5] M. Lisovyi, A. Verbytskyi, O. Zenaiev, *The European Physical Journal C* **76**, ISSN: 1434-6052, DOI: 10.1140/epjc/s10052-016-4246-y, arXiv: 1509.01061 [hep-ex] (2016).
- [6] E. V. Bugaev, A. Misaki, V. A. Naumov, T. S. Sinegovskaya, S. I. Sinegovsky, N. Takahashi, *Physical Review D* 58, ISSN: 1089-4918, DOI: 10.1103/physrevd.58.054001, arXiv: hep-ph/9803488 (1998).
- [7] P. D. Group et al., Progress of Theoretical and Experimental Physics 2022, 083C01, ISSN: 2050-3911, DOI: 10.1093/ptep/ptac097 (2022).
- [8] M. S. Longair, *High Energy Astrophysics* (Cambridge University Press, Cambridge, Third Edition, 2011), ISBN: 9780511778346, DOI: 10.1017/CB09780511778346.

Figures

Tables

1	Parameters for the charm quark differential cross section.	9
2	Parameters for charm hadron production, cooling and decay to neutrinos.	10