Invertibility of CNNs

Based on:

Gilbert, Anna C., Yi Zhang, Kibok Lee, Yuting Zhang, and Honglak Lee. "Towards Understanding the Invertibility of Convolutional Neural Networks." *arXiv preprint arXiv:1705.08664* (2017).

Figure 1: One-dimensional CNN architecture where $W \in \mathbb{R}^{Kn \times MD}$ is the matrix instantiation of convolution over M channels with a filter bank consisting of K different filters. Note that a filter bank has K filters of size $l \times M$, such that there are lMK parameters in this architecture.

1-layer CNN

Step 1 : W x = h

Step 2 : $\hat{z} = maxpool(h, k)$ where $k \le K$ (this is said to be model-sparse)

Hypothesis/reconstruction strategy:

We should be able to invert by using strategy:

$$\hat{x} = W^T \hat{z}$$

As long as W is constructed in the "right way", we can show that $\hat{x} \cong x$

Theorem 3.3. We assume that \mathbf{W}^T satisfies the \mathcal{M}_k^2 -RIP with constant $\delta_k \leq \delta_{2k} < 1$. If we use \mathbf{W} in a single layer CNN both to compute the hidden units $\hat{\mathbf{z}}$ and to reconstruct the input \mathbf{x} from these hidden units as $\hat{\mathbf{x}}$ so that $\hat{\mathbf{x}} = \mathbf{W}^T \mathbb{M}(\mathbf{W}\mathbf{x}, k)$, the error in our reconstruction is

$$\|\hat{\boldsymbol{x}} - \boldsymbol{x}\|_2 \le \frac{5\delta_{2k}}{1 - \delta_k} \frac{\sqrt{1 + \delta_{2k}}}{\sqrt{1 - \delta_{2k}}} \|\boldsymbol{x}\|_2.$$

How to design W?

Theorem 3.1. Assume that we have MK vectors $\mathbf{w}_{i,m}$ of length ℓ in which each entry is a scaled i.i.d. (sub-)Gaussian random variable with zero mean and unit variance (the scaling factor is $1/\sqrt{M\ell}$). Let t be the stride length (where $n = (D - \ell)/t + 1$) and \mathbf{W} be a structured random matrix, which is the weight matrix of a single layer CNN with M channels and input length D. If

$$\frac{M\ell^2}{D} \ge \frac{C}{\delta_k^2} \Big(k(\log(K) + \log(n)) - \log(\epsilon) \Big)$$

for a positive constant C, then with probability $1 - \epsilon$, the $MD \times Kn$ matrix \mathbf{W}^T satisfies the model-RIP for model \mathcal{M}_k with parameter δ_k .

We also note that the same analysis can be applied to the sum of two model-k-sparse signals, with changes in the constants (that we do not track here).

Corollary 3.2. Random matrices with the CNN structure satisfy, with high probability, the model-RIP for \mathcal{M}_k^2 .