ECE 105 Quiz 2A

Individual (10 marks): Two identical heavy blocks $(M_2 = 1500 \text{ kg})$ are resting on a frictionless flat surface (see figure). A wedge $(\theta = 5^{\circ})$, see figure) is used to separate the 2 blocks. If the wedge has a mass $M_1 = 5$ kg, and a constant downward force F is applied at the top of the wedge (see figure), what should the magnitude of that force be in order for the 2 large blocks to move away from their original positions with acceleration $a = 0.5 \text{ m/s}^2$. There is no friction at the contact surfaces between the 3 blocks.

Group work:

- 6. As the 3 objects are moving, how many normal forces are acting on one of the objects of mass M₂?
 - a. None Normal forces do not act on frictionless surfaces.
 - b. 2 one from the floor and one from the contact surface with M_1 ; X
 - c. 1 from the floor;
 - d. 3 one from the floor, one from the contact surface with M₁ and one from the contact surface with the other object M₂;
- 7. What is the direction of the normal force exerted by object M_1 on one of objects M_2 ?
 - a. Parallel to the ground;
 - b. Perpendicular to the ground;
 - c. Inclined at angle θ with respect to the horizontal axis (parallel to ground) X
 - d. Inclined at angle θ with respect to the vertical axis (perpendicular to ground);
- 8. What is the magnitude of the normal force exerted by M₁ on M₂?
 - a. ½ M₁g
 - b. $\frac{1}{2}$ M₁g / cos(θ)
 - c. $M_1a_1/\cos(\theta)$
 - d. $M_2a_2/\cos(\theta)$ X
- 9. Is the displacement Δy of M_1 related to the displacement Δx of M_2 and how?
 - a. $\Delta x = \Delta y \tan(\theta) X$
 - b. $\Delta y = \Delta x \tan(\theta)$
 - c. $\Delta x = \Delta y$
 - d. They are not related the objects move independently of each other.
- 10. Is the acceleration a_1 related to the acceleration a_2 and how?
 - a. $a_2 = a_1 \tan(\theta) X$
 - b. $a_1 = a_2 \tan(\theta)$
 - c. $a_2 = 2a_1 \tan(\theta)$
 - d. $a_2 = \frac{1}{2} a_1 \tan(\theta)$