Estimating Ethereum Gas Prices

Brandon Butler
DSI Capstone October 2017

Blockchain technology

Ethereum gas

Computational effort required to process transaction

Gas price:

A set price to pay per unit of gas spent

Total Fee = Gas Price X Gas Used

- Set gas price too low
 Transaction fails
- Set gas price too high
 Overpaid

Transactions

- Monetary transfers: tx
- Smart contracts: calls, create, suicide

Free transactions

- All suicides are free
- Calls are free ~20% of the time
- Create/tx always use gas

Label design

Estimated price with hindsight

Given information about previous blocks in time, what is our estimate of what the price should be

Upon finding μ

Construct a mathematical model for our new label, *L*

$$L = \mu \frac{P_{GB}}{G_{UB} + G_{UT} (1 - \mu)}$$

Feature engineering

Hindsight features:

Averaged values over two time horizons

- 6 previous blocks (~ 1min): current state
- 60 previous blocks (~10min): long-term view

6 block window

Block time

Price

Gas used

Tx count

Difficulty

60 block window

Block time

Price

Gas used

Tx count

Difficulty

Modeling

Linear regression

Decision trees

Boosting

Random forest

- Feature pruning
- Model tuning
- Optimized with grid searching / cross validation
- Model validation

Future

- Utilize entire ethereum blockchain data while also taking in real-time data as it comes in
- Employ neural network model
- Provide real-time gas recommendations

Thank you

Acknowledgements

Sweetbridge

- Hui Huang
- Michael Zargham