

19 BUNDESREPUBLIK

© Offenlegungsschrift
DE 41 32 021 A 1

(5) int, Cl.⁵: A 61 B 17/58

DEUTSCHLAND

DEUTSCHES

(21) Aktenzeichen: P 41 32 021.2 (22) Anmeldetag: 26. 9. 91 (33) Offenlegungstag: 1. 4. 93 DE 41 32 021 A

71) Anmelder:

Clasbrummel, Bernhard, 4837 Verl, DE

(74) Vertreter:

Haft, U., Dipl.-Phys., 8000 München; Berngruber, O., Dipl.-Chem. Dr.rer.nat., 8232 Bayerisch Gmain; Czybulka, U., Dipl.-Phys., Pat.-Anwälte, 8000 München ② Erfinder:

gleich Anmelder

(54) Platte zur Osteosynthese

Die Erfindung betrifft eine Platte zur Osteosynthese frakturierter Röhrenknochen, die mit einer Vielzahl von Schrauben versehen ist zur Verenkerung in den miteinander zu verbindenden Fragmenten; die Platte besteht aus zwei in Längsrichtung hintereinander angeordneten Plattenteilen, die über einen Teleskopmechanismus miteinander verbunden sind, welcher axiale Relattivbewegungen der beiden Plattenteile zueinander zur Einleitung kontrollierter Mikrobewegungen in physiologischer Belastungsrichtung ermöglicht.

Beschreibung

Die vorliegende Erfindung betrifft eine Platte zur Osteosynthese frakturierter Röhrenknochen, die mit einer Vielzahl von Schrauben versehen ist zur Verankerung in den miteinander zu verbindenden Fragmenten.

Schwerverletzte Personen mit Knochenbrüchen werden in der Unfallchirurgie häufig osteosynthetisch behandelt. Als Osteosyntheseform kann eine Platte mit Schrauben, ein Marknagel oder ein Fixateur Externe 10 urteilung der Frakturzonenfestigkeit mittels Röntgen-

verwendet werden.

Ein Fixateur Externe wird dazu verwendet, um nach einer Fraktur oder Osteotomie eines Knochens, insbesondere des in einem Bein oder Arm eines Patienten vorhandenen Knochens, die Knochenfragmente mit 15 Stiften zu fixieren, die von der Außenseite des Körpers her durch die Haut hindurch in die Knochenstücke eingesetzt und dort verschraubt werden. Die Stifte sind mit außerhalb des Körpers gelegenen Haltern verbunden, die wiederum in einem Stellelement aufgenommen sind. 20 Am Fixateur kann ein Antrieb vorgesehen sein, der dafür sorgt, daß sich die beidseits der Frakturstelle angeordneten Stifte relativ zueinander hin- und herbewegen, wodurch auch die Knochenfragmente, in denen die Stifte eingebracht sind, hin- und herbewegt werden. Die 25 biologischen Plattenosteosynthese bisher nicht kontrol-Amplituden liegen dabei im Millimeterbereich.

Es konnte festgestellt werden, daß durch eine derartige kontrollierte mechanische Stimulation eine Verkürzung der Knochenheilungszeit erreicht werden kann, die besonders ausgeprägt ist, wenn die Stimulationsam- 30 plitude und die Stimulationskraft während des Heilungsvorganges in Abhängigkeit von der Festigkeitsentwicklung der zusammenwachsenden Knochen geregelt wird, wie es bereits in der früheren Patentanmeldung P 40 09 722 des Anmelders vorgeschlagen worden ist.

Zu Beginn eines Heilungsvorganges einer Knochenfraktur bildet sich nämlich an den gegenüberliegenden Knochenbruchstellen zunächst relativ weiches, nach und nach verknorpelndes und später verknöcherndes Regenerationsgewebe, dessen Wachstum durch die Ein- 40 leitung von Mikrobewegungen, wie insbesondere Untersuchungen an Tibiafrakturen zeigten, beschleunigt werden kann. So wurde festgestellt, daß derartig behandelte Patienten ihre gebrochenen Unterschenkel im Mittel sechs Wochen früher belasten können als dies bei 45 Patienten der Fall war ohne die Einleitung von Mikrobewegungen über einen Fixateur Externe in den Läsionsbereich.

Anstelle eines Fixateur Externe kann auch zur Frakturheilung die sogenannte biologische Plattenosteosyn- 50 these verwendet werden, die sich insbesondere zur Heilung von Mehrfragmentfrakturen durchgesetzt hat; die Bezeichnung biologische Plattenosteosynthese wird dabei üblicherweise im Zusammenhang mit Verplattungen langstreckiger oder mehrsegmentaler Schaftfrakturen 55 großer Röhrenknochen verwendet. Dabei sollen die Abläufe der Frakturheilung so wenig wie möglich irritiert werden, d. h. daß die Platte nach Korrektur von Achsabweichung und Drehfehlern die Hauptfragmente längengerecht miteinander verbinden muß, wobei die Fraktur- 60 zone nur so weit freigelegt werden darf, daß die Platte ohne weitere Schädigung der Weichteile und der Vascularität der Frakturfragmente angebracht werden kann.

Die Nachbehandlung von Tibiafrakturen ist unter anderem abhängig vom Schweregrad der Verletzung und 65 von der gewählten Osteosyntheseform. Wird z. B. bei einer Tibiafraktur mit Biegungskeil in Schaftmitte eine Platte mit Schrauben gewählt und eine übungsstabile

biologische Plattenosteosynthese erreicht, so kann eine Nachbehandlung unter physiotherapeutischer Anleitung nach etwa sechs bis acht Wochen erfolgen (Sohlenkontakt bei Entlastung an Stöcken). Durch Röntgenbilder kann zwar der Frakturdurchbau respektive die Frakturzonenfestigkeit annähernd erfaßt werden, wodurch die Festlegung des Belastungsbeginns (etwa 10 Kilogramm Teilbelastung ab der sechsten bis achten Woche) abgeschätzt werden kann, wobei jedoch die Bebild selbst für den Spezialisten schwierig und ungenau ist. Genauere Aussagen über die Frakturzonenfestigkeit können im Fall der Verwendung eines Fixateurs Externe zur Osteosynthese dann gemacht werden, wenn über

die Verwindungssteifigkeit des Fixateurs auf die Frakturzonenfestigkeit rückgeschlossen wird.

Bis zum Belastungsbeginn sechs bis acht Wochen nach einer Operation treten Mikrobewegungen im Frakturbereich bei Verwendung einer Platte nur unkontrolliert und zufällig auf, z. B. bei der physio-therapeutischen Übungsbehandlung oder bei einer unbewußten oder ungewollten, die Extremität belastenden Bewegung des Patienten. Mikrobewegungen bestimmter Amplituden und/oder bestimmter Kraft können bei der liert in das Läsionsareal eingeleitet werden.

Aufgabe der vorliegenden Erfindung ist es, eine Platte zur Osteosynthese zu schaffen, mit der es ermöglicht wird, kontrollierte Mikrobewegungen in das Läsionsareal frakturierter Knochen in annähernd axialer und physiologischer Belastungsrichtung einzuleiten, um so die Kallogenese und damit den Heilungsprozeß zu för-

Zur Lösung dieser Aufgabe wird vorgeschlagen, daß 35 die Platte aus zwei in Längsrichtung hintereinander angeordneten Plattenteilen besteht, die über einen Teleskopmechanismus miteinander verbunden sind, welcher axiale Relativbewegungen der beiden Plattenteile zueinander in physiologischer Belastungsrichtung ermög-

Der Teleskopmechanismus weist vorteilhafterweise ein elastisches Bauteil auf, das derart angeordnet ist, daß es bei Annäherung der beiden Plattenteile aneinander komprimiert wird.

Bei einem bevorzugten Ausführungsbeispiel ist der Teleskopmechanismus als Flachteleskop ausgebildet und besteht aus je einer Verlängerung der beiden Plattenteile, wobei die eine Verlängerung als Hohlteil mit polygonalem Querschnitt ausgebildet ist und die andere Verlängerung als darin eingreifender Zapfen mit angepaßtem Querschnitt ausgebildet ist, so daß eine Relativverdrehung der beiden Plattenteile zueinander verhin-

Bei einem anderen bevorzugten Ausführungsbeispiel ist der Teleskopmechanismus als Rundteleskop ausgestaltet, wobei jeweils zwei nebeneinander angeordnete Verlängerungen der beiden Plattenteile vorhanden sind und zwar zwei Hohlteile mit rundem Querschnitt des einen Plattenteils und zwei darin eingreifende (bzw. diese übergreifende) Zapfen mit rundem Querschnitt des anderen Plattenteils, so daß auch hier eine Relativverdrehung der beiden Plattenteile zueinander verhindert wird.

Besonders vorteilhaft ist es, wenn der Teleskopmechanismus eine Vorrichtung zur Begrenzung des Verschiebeweges der beiden Plattenteile aufweist, wobei diese Vorrichtung ebenfalls eine Vorabeinstellung des Verschiebeweges ermöglicht sowie eine Anordnung zur Einstellung der Druckvorspannung des elastischen Bauteils aufweist; die Vorrichtung kann dabei einen Abstandshalter aufweisen, der mit derjenigen Verlängerung des einen Plattenteils über eine Schraube fest verbunden ist, die in die Verlängerung des anderen Plattenteils eingreift; die aufnehmende Verlängerung des einen Plattenteils kann dabei mit einer Nut versehen sein, deren Länge in Verbindung mit der Länge des Abstandshalters den maximalen Verschiebeweg der beiden Plattenteile in Richtung zueinander bzw. voneinander weg 10 begrenzt.

Weitere vorteilhafte Ausgestaltungen einer erfindungsgemäßen Platte gehen aus der nachfolgenden Beschreibung eines vorteilhaften Ausführungsbeispiels hervor. Es zeigen:

Fig. 1 eine Seitenansicht einer erfindungsgemäßen Platte;

Fig. 2 eine Draufsicht auf die erfindungsgemäße Platte:

Fig. 3 eine vergrößerte Seitenansicht des Teleskop- 20 mechanismus;

Fig. 4 einen Schnitt durch diesen Mechanismus entlang der Linie A/B;

Fig. 5 eine Draufsicht auf den vergrößerten Teleskopmechanismus und

Fig. 6 einen Schnitt entlang der Linie C/D von Fig. 5.
Die erfindungsgemäße Platte in Form einer Teleskopbrückenplatte dient zum Fixieren frakturierter Knochen und besteht aus zwei Plattenteilen 4, 6, die über einen Teleskopmechanismus 2, der sich vorzugsweise im Bereich der Frakturzone befindet, miteinander verbunden sind. Im Teleskopmechanismus ist ein Elastikelement 8 angeordnet, welches einer Annäherung der Plattenteile 4,6 zueinander elastisch entgegenwirkt.

Bei einem ersten bevorzugten Ausführungsbeispiel besteht der Teleskopmechanismus 2 aus jeweils einem Ende der beiden Plattenteile 4 und 6 und ist als Flachtelskop 10 ausgebildet, wobei die eine Verlängerung eines der beiden Plattenteile als Hohlteil mit polygonalem Querschnitt ausgebildet sein kann, in das die Verlängerung des anderen Plattenteils, z. B. in Form eines eingreifenden Zapfens mit angepaßtem Querschnitt eingreift, so daß eine Relativverdrehung der beiden Plattenteile zueinander um ihre Verbindungsachse verhindert wird.

Bei einem anderen vorteilhaften Ausführungsbeispiel kann der Teleskopmechanismus als Rundteleskop ausgebildet sein, wobei je zwei nebeneinander angeordnete (nicht zeichnerisch dargestellte) Verlängerungen der beiden Plattenteile vorgesehen sind und zwar je zwei Hohlteile mit rundem Querschnitt des einen Plattenteils und zwei darin eingreifende Zapfen mit rundem Querschnitt des anderen Plattenteils, so daß auch hier eine Relativerdrehung der beiden Plattenteile zueinander um ihre Verbindungsachse verhindert wird.

Der Teleskopmechanismus 2 weist vorzugsweise eine Vorrichtung auf, um zum einen die Maximalbewegung der Plattenteile 4, 6 sowohl zueinander hin als auch voneinander weg vorab festzulegen, zum anderen die Maximalstrecke einer Bewegung der Plattenteile relativ so zueinander vorab einzustellen und schließlich die Druckvorspannung des Elastikelementes einzustellen.

Im dargestellten Ausführungsbeispiel besteht diese Vorrichtung aus einem Abstandshalter 12, der mit der Verlängerung des einen Plattenteils 6 über eine Schrau-65 be 16 fest verbunden ist. Diese Verlängerung ist als inneres Flachteleskopteil ausgebildet. Die Verlängerung des anderen Plattenteils 4, welche als äußeres Teil des

Flachteleskops 10 ausgebildet ist, bestimmt in Verbindung mit der Länge des Abstandshalters 12 die mögliche Maximalbewegung g der Plattenteile zueinander. Die Anordnung der Bohrung in der Verlängerung des Plattenteils 6 zur Aufnahme der Schraube 16 im Abstandshalter 12 bestimmt zwei Teilstrecken e und f. Dabei wird durch die Teilstrecke f das maximale Auseinanderweichen der Plattenteile 4 und 6 festgelegt und bei bestimmter Länge des Elastikelementes 8 eine bestimmte Vorspannung dieses Elastikelementes erzielt. Die Teilstrecken e und f bestimmen auch die Länge des Abstandshalters 12 und legen somit eine mögliche Maximalbewegung g der Plattenteile 4, 6 zueinander fest. Durch Variation der Länge des Abstandshalters 12 und durch Variation der Lokalisation der Bohrung im Abstandshalter kann sowohl die Maximalbewegung der Plattenteile 4 und 6 zueinander hin und voneinander weg festgelegt werden, als auch die Maximalstrecke einer Bewegung der Plattenteile relativ zueinander eingestellt werden und schließlich die Druckvorspannung des Elastikelementes 8 festgelegt werden.

Das Elastikelement 8 kann aus einem Kunststoff oder aber einer Feder oder aber einer Kombination aus diesen beiden bestehen. Vorzugsweise weist das Elastikelezs ment 8 verschiedene Materialien unterschiedlicher Elastizitätsmodule auf, so daß bei einer bestimmten Längenänderung des Elastikelementes 8 eine vorgegebene Widerstandskraft gegen Verformung auftritt.

Bei dem in den Figuren dargestellten Ausführungsbeispiel ist ferner mit 18 ein Wegaufnehmer bezeichnet, der mit einem Sender 20 zusammenwirkt, um kontinuierlich oder auch in kleinsten Zeitabständen z. B. Mikrosekunden oder Millisekunden Wegänderungen bzw. Relativbewegungen der Plattenteile 4 und 6 sowohl in Richtung zueinander hin als auch voneinander weg über Telemetrie oder Infrarottelemetrie an einen extrakorporalen Empfänger zu senden. Der Sender 20 kann passiv z. B. durch Stimulation von außen oder aktiv mit implantierter Energiequelle ausgebildet sein.

Ferner ist mit 22 ein Druckaufnehmer bezeichnet, der z. B. zwischen dem Elastikelement 8 und einem der Plattenteile 6 angebracht werden kann, um möglichst exakt die Kraft zu bestimmen, die bei einer Axialbewegung der Plattenteile relativ zueinander letztendlich auftritt.

45 Auch der Druckaufnehmer 22 sollte an den passiven oder aktiven Sender 20 angekoppelt werden, um seine Meßwerte z. B. mittels Telemetrie an einen Empfänger senden zu können. So ist es ohne weiteres mittels der bekannten Multiplextechnik möglich auch in kleinsten 20 Zeitabständen die Signale sowohl vom Wegaufnehmer als auch vom Druckaufnehmer über einen gemeinsamen Sender einem gemeinsamen Empfänger zuzuführen.

Mit 24 ist eine Längsbohrung in der Verlängerung des Plattenteils 6 bezeichnet, durch die z. B. eine Kabelverbindung zwischen Druckaufnehmer 22 und Wegaufnehmer 18 zum Sender 20 hergestellt werden kann.

mer 18 zum Senoer zu nergesteit werden kann.
Um ferner eine mögliche Verbiegung oder eine auftretende Verdrehung der Teleskopbrückenplatte unter Belastung messen zu können, ist mindestens ein nicht dargestellter Dehnungsmeßstreifen, z. B. ein kleiner Halbleiterdehnungsmeßstreifen im Bereich der Bohrung 24 angeordnet. Sollte der Teleskopmechanismus 2 bei Belastung durch Verkanten klemmen, könnte durch eine Messung der dabei auftretenden Verdrehung oder Verkantung zwischen den beiden Plattenteilen 4.6 eine akustische und/oder optische Warnanlage betätigt werden. Ferner könnte eine Beanspruchung der Platte bei Belastung auch zur Feststellung der Frakturzonenfe-

stigkeit verwendet werden. Wird nur eine geringe oder gar keine Verbiegung oder Verdrehung der Platte bei Belastung festgestellt, so kann dies auf eine gefestigte Frakturzone hinweisen, oder aber eine gelockerte oder gebrochene Platte signalisieren.

Auch der Dehnungsmeßstreifen sollte an einen passiven oder aktiven Sender, z. B. den Sender 20, gekoppelt werden, um seine Meßwerte mittels Telemetrie einem Empfänger zuzuführen; auch hierfür eignet sich die be-

kannte Multiplextechnik.

Die erfindungsgemäße Platte zur Osteosynthese mit dem Teleskopmechanismus und den zugehörigen Sensoren und Sendern eignet sich insbesondere dazu, im Zusammenhang mit einer an der Extremität angebrachten Stimulationsplatte verwendet zu werden, welche Signale von einer Regeleinheit erhält, der wiederum die Ausgangssignale der Druckaufnehmer, Wegaufnehmer, Dehnungsmesser zugeführt werden. Die Stimulationsplatte kann dann in Abhängigkeit der ihr zugeführten Signale Mikrobewegungen in den Läsionsbereich einlei- 2 ten, wobei die Bewegungen der Extremität durch den erfindungsgemäßen Teleskopmechanismus ermöglicht werden. Ein Zusammendrücken des im Teleskopmechanismus 2 vorhandenen Elastikelementes 8 sorgt bei nachlassender Krafteinleitung dafür, daß die Plattentei- 25 le wieder in ihre Ausgangsstellung zurückkehren.

Wird durch eine externe Kraft, z. B. durch eine (nicht dargestellte) Stimulationsplatte eine Axialbewegung der Plattenteile zueinander hin oder voneinander weg hervorgerufen, so kann über die Weg- und Kraftmessungen an der Platte bei bekanntem Elastizitätsmodul des Elastikelementes 8 auf die Frakturzonenfestigkeit geschlossen werden und so das Heilungsstadium angezeigt werden. Bei fortschreitender Festigkeitsentwicklung der Frakturzone kann demzufolge eine zunehmensde Belastung der Stimulationsamplitude erfolgen. Bei kleiner werdender Amplitude sollte eine größer werdende Stimulationskraft verwendet werden.

Die erfindungsgemäße Platte kann aus biokompatiblem Material hoher Biegesteifigkeit, z. B. aus Titan oder Titanlegierungen bestehen. Die dem Knochen zugewandte Auflageseite der beiden Plattenteile besteht dabei vorteilhafterweise aus mehreren, in diesem Ausführungsbeispiel pro Plattenteil achtzehn, hervorspringenden kleinen Pfeilern 26, damit die Vitalität des Knochens nicht durch große Auflageflächen beeinflußt wird. Der Teleskopmechanismus 2 sollte dabei nicht auf dem Knochen aufliegen, um seine freie Bewegung nicht zu zerstören. In den Plattenteilen selbst sind ferner,mindestens zwei Öffnungen 28 vorhanden, um die Plattenteile mittels versenkbarer und schwenkbarer Schrauben in den Knochenfragmenten zu befestigen.

Anstelle einer Stimulationsplatte zur Einleitung der Mikrobewegungen kann auch ein Muskelstimulations- 55

gerät eingesetzt werden.

Vom Patienten selbst ausgeführte Belastungen oder Muskelkontraktionen können ebenfalls über die erfindungsgemäße Platte erfaßt, an einen Rechner weitergeleitet und auf einem Bildschirm dargestellt werden. Eiwa eine Woche nach Beginn der Osteosynthese sollte mit Hilfe der erfindungsgemäßen Platte eine mechanische Stimulation im Läsionsareal beginnen, wonach bei Einsatz z. B. einer Stimulationsplatte in einem Regelkreis zusammen mit einem Rechner für das sich zum Knochen differenzierende Reparationsgewebe zu jedem Zeitpunkt der Frakturheilung eine optimale biomechanische Umgebung geschaffen werden kann. Eine

Verkürzung der Heilungszeit um mehrere Wochen ist mit dieser Methode zu erzielen.

Patentansprüche

1. Platte zur Osteosynthese frakturierter Röhrenknochen, die mit einer Vielzahl von Schrauben verschen ist zur Verankerung in den miteinander zu
verbindenden Fragmenten, dadurch gekennzeichnet, daß die Platte aus zwei in Längsrichtung hintereinander angeordneten Plattenteilen besteht, die
über einen Teleskopmechanismus miteinander verbunden sind, welcher axiale Relativbewegungen
der beiden Plattenteile zueinander zur Einleitung
kontrollierter Bewegungen in physiologischer Belastungsrichtung ermöglicht.

2. Platte nach Anspruch 1, dadurch gekennzeichnet, daß der Teleskopmechanismus ein elastisches Bauteil 8 aufweist, das derart angeordnet ist, daß es bei Annäherung der beiden Plattenteile 4,6 aneinander

komprimiert wird.

3. Platte nach Ansprüchen 1 und 2, dadurch gekennzeichnet, daß der Teleskopmechanismus ein Flachteleskop ist, das je eine Verlängerung der beiden Plattenteile aufweist, und zwar ein Hohlteil mit polygonalem Querschnitt des einen Plattenteils und einen darin eingreifenden Zapfen mit angepaßtem Querschnitt des anderen Plattenteils, so daß eine Relativverdrehung der beiden Plattenteile zueinander verhindert wird.

4. Platte nach Ansprüchen 1 und 2, dadurch gekennzeichnet, daß der Teleskopmechanismus ein Rundteleskop ist, das je zwei nebeneinander angeordnete Verlängerungen der beiden Plattenteile aufweist, und zwar zwei Hohlteile mit rundem Querschnitt des einen Plattenteils und zwei darin eingreifende Zapfen mit rundem Querschnitt des anderen Platenteils, so daß eine Relativverdrehung der beiden Platten zueinander verhindert wird.

5. Platte nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Teleskopmechanismus eine Vorrichtung zur Begrenzung des Verschiebeweges der beiden Plattenteile aufweist.
6. Platte nach Anspruch 5, dadurch gekennzeichnet, daß die Vorrichtung eine Anordnung zur Vorabeinstellung des Verschiebeweges aufweist.

7. Platte nach Anspruch 5, dadurch gekennzeichnet, daß die Vorrichtung eine Anordnung zur Einstellung der Druckvorspannung des elastischen Bau-

teils aufweist.

8. Platte nach Ansprüchen 5 bis 7, dadurch gekennzeichnet, daß die Vorrichtung einen Abstandshalter (12) aufweist, der mit derjenigen Verlängerung des einen Plattenteils (6) über eine Schraube (16) fest verbunden ist, die in die Verlängerung des anderen Plattenteils (4) eingreift.

9. Platte nach Anspruch 8, dadurch gekennzeichnet, daß die die Verlängerung des Plattenteils (6) aufnehmende Verlängerung des Plattenteils (4) mit einer Nut (14) versehen ist, deren Länge in Verbindung mit der Länge des Abstandshalters (12) den maximalen Verschiebeweg (g) der Plattenteile (4, 6) relativ zueinander begrenzt.

Platte nach Anspruch 2, dadurch gekennzeichnet, daß das Elastikelement (8) aus verschiedenen Materialien unterschiedlicher Elastizitätsmodule zusammengesetzt ist.

11. Platte nach einem der vorhergehenden Ansprü-

8

7

che, dadurch gekennzeichnet, daß der Teleskopmechanismus mit einem Wegaufnehmer (18) versehen ist, der mit einem Sender (20) verbunden ist.

- 12. Platte nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Teleskopmechanismus mit einem Druckaufnehmer (22) versehen ist, der zwischen dem Elastikelement (8) und einem der beiden Plattenteile (6) angeordnet ist und der mit einem Sender (20) verbunden ist.
- 13. Platte nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Teleskopmechanismus mit einem Dehnungsmeßstreifen versehen ist, der über einen Sender mit einer Alarmanlage verbunden ist, um Relativverdrehungen der
 Plattenteile zueinander um die Teleskopachse anzuzeigen oder um ein Verbiegen oder Verdrehen
 der Plattenteile anzuzeigen.
- 14. Platte nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Teleskopmechanismus mit einer Regeleinheit verbunden ist, die 20 in Abhängigkeit von den Meßwerten des Druckaufnehmers und des Wegaufnehmers Steuersignale an eine Stimulationsplatte oder ein Muskelstimulationsgerät überträgt, welche mit der zu behandelnden Extremität verbunden sind und durch Krafteinleitung in die Extremität genau dosierte Mikrobewegungen im Frakturbereich zur Induktion der Osteosynthese erzeugt.
- 15. Platte nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Plattenteile 30 aus Titan oder einer Titanlegierung bestehen und daß die dem Knochen zugewandte Auflageseiten der Plattenteile mehrere hervorspringende Pfeiler (26) aufweisen.

Hierzu 1 Seite(n) Zeichnungen

65

35

40

45

50

55

60

Nummer: Int. Cl.⁵: Offenlegungstag: DE 41 32 021 A1 A 61 B 17/58 1, April 1993

Schnitt C/D 90 gedreht