

الجمهورية الجزائرية الديمقراطية الشعبية وزارة التربية الوطنية

دورة: 2022

الديوان الوطني للامتحانات والمسابقات امتحان بكالوريا التعليم الثانوي

الشعبة: تسيير واقتصاد

اختبار في مادة: الرياضيات المدة: 03 سا و30 د

على المترشح أن يختار أحد الموضوعين الآتيين: الموضوع الأول

التمرين الأول: (04 نقاط)

عين الاقتراح الصحيح الوحيد من بين الاقتراحات الثلاثة في كلّ حالة من الحالات التالية مع التبرير:

 $u_n = -3n+1$ حيث u_n بحدها العام المعرّفة على المعرّفة على المتتالية الحسابية المعرّفة على (u_n

 $u_{1954} + u_{1955} + \dots + u_{2022}$ هي:

272356 (ب −411447 (ب −11926 (أ

المتتالية $v_n = \frac{1}{2^{n-1}}$: بالمعرّفة من أجل كلّ عدد طبيعي $v_n = \frac{1}{2^{n-1}}$ المتتالية (v_n) المعرّفة من أجل كلّ عدد طبيعي

أ) هندسية ب) حسابية ولا هندسية

:هي $\int_{1}^{2} (1 + \frac{1}{x^{2}}) dx$ هي قيمة العدد الحقيقي (3

 $\frac{2}{3}$ (\Rightarrow $\frac{3}{2}$ (\Rightarrow $\frac{1}{2}$ (\dagger

الدالة العددية المعرّفة على \mathbb{R} بـ: $f(x)=x^2+6x+4$ بالدالة العددية المعرّفة على الجالي المعرّفة على الدالة العددية ا

: محور تناظر المنحني (C) هو المستقيم ذو المعادلة

$$x+3=0$$
 (\Rightarrow $x-3=0$ (\Rightarrow $x=4$ (\uparrow

التمرين الثاني: (04 نقاط)

المستوي منسوب إلى معلم (C_g) . (C_g) و (C_g) و (C_g) التمثيلان البيانيان للدالتين العدديتين g و المعرّفتين g على g كما يلي $g(x) = (x+1)^2(x-1)$ و $g(x) = ax^2 + bx - 1$ و $g(x) = ax^2 + bx - 1$ على $g(x) = ax^2 + bx - 1$

 $g(x) = x^3 + x^2 - x - 1$ ، x عدد حقیقی عدد کلّ عدد (1

 \mathbb{R} عين العددين a و b حتى تكون g دالة أصلية لـ d على

f(x) = (x+1)(3x-1) ، x عدد حقیقی عدد کلّ عدد (2

g(x)-f(x) قبارة (3

ب- استنتج أنّ $(C_{_{g}})$ و $(C_{_{g}})$ يتقاطعان في ثلاث نقط يُطلب تعيينها.

التمربن الثالث: (04 نقاط)

$$\begin{cases} u_2+u_3+u_4=21 \\ u_4+u_5=20 \end{cases}$$
 حيث r وأساسها r وأساسها v وأساسها المتتالية المعرّفة على المعرّفة على v

$$u_0$$
 أ- بيّن أنّ $r=2$ و $u_3=7$ ثم استنتج قيمة u_0 (1 u_n بدلالة u_n بدلالة u_n

$$S_n = u_0 + u_1 + \dots + u_{n-1}$$
 حيث S_n المجموع S_n المجموع S_n

$$v_n = 3 \times 2^{2n}$$
 :ب \mathbb{N} بالمتتالية العددية المعرّفة على المتالية العددية المعرّفة على المتتالية العددية المعرّفة على المتتالية العددية المعرّفة على المتتالية العددية المعرّفة على المتتالية المعرّفة المعرّفة على المتتالية المتتالية المعرّفة على المتتالية المتالية المتالية المعرّفة على المتتالية المعرّفة على المتتالية المعرّفة على المتتالية المعرّفة على المتتالية المتالية المعرّفة على المتتالية المتالية ا

$$S_n' = v_0 + v_1 + \dots + v_{n-1}$$
 حيث S_n' المجموع $S_n' = v_0 + v_1 + \dots + v_{n-1}$ حيث $w_n = \frac{2}{3}v_n$: n عدد طبيعي $w_n = 2^{u_n}$ ، n عدد طبيعي

$$p_n = w_0 \times w_1 \times \cdots \times w_{n-1}$$
 حيث، $p_n = w_0 \times w_1 \times \cdots \times w_{n-1}$

التمرين الرابع: (08 نقاط)

$$f(x) = \frac{x^2 + 3x + 3}{x + 2}$$
 :ب $D = \mathbb{R} - \{-2\}$ جيث $D = \mathbb{R}$ بنا الدالة العددية المعرّفة على D

$$\left(O;\overrightarrow{i},\overrightarrow{j}
ight)$$
 سنجاني في المستوي المنسوب إلى المعلم المتعامد المتجانس (C)

ا أ- احسب
$$\lim_{x \to -2} f(x)$$
 و $\lim_{x \to -2} f(x)$ ثم فسّر النتيجتين بيانيا. $\lim_{x \to -2} f(x)$

$$\lim_{x \to +\infty} f(x)$$
 و $\lim_{x \to +\infty} f(x)$ ب- اُحسب

(
$$\Delta$$
) بيّن أنّ المستقيم (C) ذا المعادلة $y=x+1$ مقارب مائل لـ (C) ثم ادرس وضعية (Δ) بالنسبة إلى (Δ

$$(C)$$
 بيّن أنّ النقطة $A(-2;-1)$ مركز تناظر (3

$$f'(x) = \frac{(x+3)(x+1)}{(x+2)^2}$$
 ، p من x عدد حقیقي عدد عقیقي (4

- ادرس اتجاه تغیّر الدالة f ثم شکّل جدول تغیراتها.

$$0$$
 أكتب معادلة لـ T مماس (T) في النقطة ذات الفاصلة (T

(C)
$$(\Delta)$$
 (T) (Δ) (6

. الدالة العددية المعرّفة على
$$\mathbb{R} - \{-2; 2\}$$
ب: $\mathbb{R} - \{-2; 2\}$ تمثيلها البياني في المعلم السابق. g

$$g(x) = f(x)$$
 ، $]-\infty; -2[\cup]-2;0]$ من أجل كلّ x من أجل كلّ من أجل كلّ g دالة زوجية ثم تحقّق أنّه من أجل كلّ g من g الأول بين أنّ g دالة زوجية ثم تحقّق أنّه من أجل كلّ g من g الطلاقا من g انتهى الموضوع الأول بين أنّ أنشئه.

الموضوع الثانى

التمرين الأول: (04 نقاط)

 $P(x)=x^3-2x^2-2x-3$ ، x عدد حقیقی عدد حقیقی (1) خون عدد P(x)=0 عدد حقیقی عدد حقیقی P(x)=0 ثم حل فی $P(x)=(x-3)(x^2+x+1)$ ، P(x)=0 ثم حل فی P(x)=0 ثم حل فی عدد حقیقی P(x)=0 ثم حل فی المعادلة P(x)=0

 $u_3-2u_2-2u_1-3u_0=0$ و $u_0=2$ حيث q وأساسها q وأساسها u_0 وأساسه الأول u_0 وأساسه الأول u_0 وأساسه الأول u_0 وأساسه الأول $q^3-2q^2-2q-3=0$ أ- بيّن أنّ $u_n=2\times 3^n$ ، $u_n=2\times 3^n$.

 $w_n = \frac{u_n}{3^n}$ ، n نضع من أجل كلّ عدد طبيعي (3

 $S_n = W_0 + W_1 + ... + W_n$: حيث $S_n = S_n$

التمرين الثاني: (04 نقاط)

 $u_{n+1}=5u_n+20$ و $u_0=-2$ بنا المتتالية العددية المعرّفة على $\mathbb N$ بنا المتتالية العددية المعرّفة على الم

 u_2 u_1 u_2 u_1 (1)

 $u_{n+1}+5=5(u_n+5)$ ، n عدد طبیعي عدد أبّ من أجل كلّ عدد عدد عدد عدد الله عدد ا

 $u_n > -5$ ، n عدد طبیعی أنه من أجل كل عدد طبیعی –أ (2 - ادرس اتجاه تغیّر المتتالیة - ادرس اتجاه تغیّر المتتالیة -

 $v_n=u_n+5$: بعتبر المتتالية العددية (v_n) المعرّفة على (v_n) بعتبر المتتالية العددية (v_n) هندسية أساسها v_n عبارة v_n بدلالة v_n

 $S_n = u_0 + u_1 + \dots + u_n$: حيث: S_n المجموع S_n المجموع (4

التمرين الثالث: (04 نقاط)

أجب بصحيح أو خاطئ مع التعليل في كلّ حالة من الحالات التالية:

 $u_4 = 3$ و $u_0 = 1$ حيث \mathbb{N} و $u_0 = 1$ و $u_0 = 1$ المتتالية الحسابية المعرّفة على $u_0 = 1$ حدّ من حدود $u_0 = 1$

 $g(x)=(x+1)(x^2-x-2)$ و g(x)=(x+1)(3x-3) ب : \mathbb{R} ب : \mathbb{R} و $g(x)=(x+1)(x^2-x-2)$ و $g(x)=(x+1)(x^2-x-2)$

 $c=7\alpha+1$ ، $b=5\alpha+3$ ، $a=3\alpha+5$: عدد حقيقي. نضع α (3 . الأعداد α ، بهذا الترتيب هي حدود متتابعة من متتالية حسابية α .

 $f(x) = x - 1 + \frac{3x^2 + 1}{x^2 + 1}$ بن \mathbb{R} بن f (4

 $+\infty$ عند f المستقيم ذو المعادلة y=x-1 مقارب مائل لمنحني الدالة

اختبار في مادة: الرياضيات. الشعبة: تسيير واقتصاد. بكالوريا 2022

التمرين الرابع: (08 نقاط)

$$f(x)=-x+1+rac{x}{ig(x-1ig)^2}$$
 بالدالة العددية المعرّفة على $\mathbb{R}-\left\{1
ight\}$ بالدالة العددية المعرّفة على f

 $.\left(O; \overrightarrow{i}, \overrightarrow{j}
ight)$ تمثيلها البياني في المعلم المتعامد المتجانس $\left(C_{f}
ight)$

$$\lim_{x \to +\infty} f(x) \quad \text{o} \quad \lim_{x \to -\infty} f(x) \quad \text{otherwise} \quad \mathbf{1}$$

بانیا. ا $\lim_{x\to 1} f(x)$ النتیجة بیانیا.

[0;1] و [0;0] و [0;0] و متزایدة تماما علی کلّ من [0;0] و متناقصة تماما علی کلّ من $[0;\infty-1]$ و [0;0] جـ شکّل جدول تغیّرات الدالة [0;0]

. يقبل مستقيما مقاربا مائلا $\left(\Delta
ight)$ يطلب تعيين معادلة له. $\left(C_{f}
ight)$

 $\cdot(\Delta)$ بالنسية إلى وضعية $\left(C_{f}
ight)$ بالنسية الى

2.3 < lpha < 2.4 جين أنّ (C_f) يقطع حامل محور الفواصل في نقطة وحيدة فاصلتها α حيث α

-1 أ- أكتب معادلة لـ T مماس ماس في النقطة ذات الفاصلة (4

 $\left(C_{f}
ight)$ و $\left(\Delta
ight)$ و أنشئ

و الدالة العددية المعرّفة على $[C_g]$ بين كيف يمكن إنشاء $[C_g]$ بين كيف يمكن إنشاء $[C_g]$ بين كيف يمكن إنشاء $[C_g]$ بنطلاقا من $[C_g]$ ثم أنشى $[C_g]$ ثم أنشى $[C_g]$

العلامة		/ t \$tt = 10 7 1 8tt = 10 -	
مجموع	مجزأة	عناصر الإجابة (الموضوع الأول)	
		التمرين الأول (04 نقاط)	
01	0.50	الاجابة الصحيحة هي ب	(1
	0.50	$u_{1954} + \dots + u_{2022} = \frac{69}{2} (u_{1954} + u_{2022}) = -411447$: التبرير	
01	0.50	الاجابة الصحيحة هي أ	(2
	0.50	$v_{n+1} = \frac{1}{2}v_n$ التبرير $v_n = 2\left(\frac{1}{2}\right)^n$ التبرير	
	0.50	الاجابة الصحيحة هي ب	(3
01	0.50	$\int_{1}^{2} (1 + \frac{1}{x^{2}}) dx = \left[x - \frac{1}{x} \right]_{1}^{2} = \frac{3}{2}$: التبرير	
01	0.50	الاجابة الصحيحة هي ج	(4
01	0.50	$f(-6-x)=f(x)$ ، $(-6-x)\in\mathbb{R}$ ، $x\in\mathbb{R}$ کل	
		التمرين الثاني (04 نقاط)	
	0.25+0.50	$(x+1)^2(x-1) = x^3 + x^2 - x - 1$ أ- بالنشر والتبسيط أو التحليل نجد:	(1
1.75	0.50	$ax^2+bx-1=3x^2+2x-1$ یکافئ $g'(x)=f(x):x\in\mathbb{R}$ ب- من اجل کل	
	0.25×2	b=2 و منه $a=3$	
0.5	0.50	$(x+1)(3x-1) = 3x^2 + 2x - 1$ بالنشر والتبسيط أو التحليل نجد:	(2
1.75	0.50×2	g(x) - f(x) = x(x+1)(x-3) أ-تحليل العبارة	(3
1./3	0.25×3	(3;32) ب $-$ إحدثيا نقط التقاطع $(0;-1)$ و $(0;-1)$	
		التمرين الثالث (04 نقاط)	
	0.25×2	$u_3 = 7$ و منه $3u_3 = 21$ أ	(1
	0.25+0.25	$u_0=1$ و ومنه $r=2$ و يكافئ $u_3+3r=20$ و ومنه $u_4+u_5=20$	
2.50	0.25+0.50	$u_n = u_0 + r n = 2n + 1 - \varphi$	
	0.25+0.50	$S_n = \frac{n}{2}(u_0 + u_{n-1}) = n^2 -$	
01	0.25+0.25	أ- $\frac{v_{n+1}}{v_n} = \frac{3 \times 2^{2n+2}}{3 \times 2^{2n}} = 4$ ومنه $\frac{v_n}{v_n} = \frac{3 \times 2^{2n+2}}{3 \times 2^{2n}} = 4$	(2
	0.25+0.25	$S'_n = 4^n - 1$ ب	
	0.25	3 3 ()	(3
0.50	0.25	$p_n=2^{S_n}=2^{n^2}$ ب-	

التمرين الرابع (08 نقاط)			
	0.50+0.50	$\lim_{x \to -2} f(x) = +\infty \text{if} \lim_{x \to -2} f(x) = -\infty \text{if} \text{if} $	(1
1.75	0.25	$\left(C_f ight)$ التفسير البياني: $x\!=\!-2$ معادلة مستقيم مقارب ل	
	0.25+0.25	$\lim_{x \to +\infty} f(x) = +\infty \lim_{x \to -\infty} f(x) = -\infty \downarrow$	
	0.25	$f(x) - (x+1) = \frac{1}{x+2}$:مستقیم مقارب لأنّ (Δ): $y = x+1$	(2
1.25	0.25×2	$\lim_{x \to +\infty} (f(x) - (x+1)) = 0 \cdot \lim_{x \to -\infty} (f(x) - (x+1)) = 0$	
	0.25×2	$x o +\infty$ $-\infty; -2[$ في $]-2; +\infty[$ في $]-2; +\infty[$ في $]-2; +\infty[$ في $]-2; +\infty[$ أعلى $]-2; +\infty[$	
0.5	0.25×2	$-4-x\in D_f$ مركز التناظر لأن $x\in D_f$ و $A(-2;-1)$	(3
		f(-4-x)+f(x)=-2	
	0.50×2	$f'(x) = \frac{x^2 + 4x + 3}{(x+2)^2} = \frac{(x+3)(x+1)}{(x+2)^2} - 1$	(4
	0.25	$igl[-1;+\inftyigl[$ و $igl[-\infty;-3]$ ب $-$ متزایدة تماما علی کل من	
	0.25	$igl[-3;-2igl[\ igl.]-2;-1igr]$ متناقصة تماما على كل من	
2	0.5	f جدول تغیرات f	
0.50	0.50	$y = \frac{3}{4}x + \frac{3}{2}: (T)$ معادلة للمماس	(5
01	0.25	(C) و (Δ) ، (T) إنشاء Δ	(6
	0.25	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
	0.5	-3+ -4+ -5+	
01	0.25	أ-تبيان أن g دالة زوجية	(7

	0.25	$g(x)=f(x)$ ، $\left]-\infty;-2\right[\cup\left]-2;0\right]$ من أجل كلّ x من أجل كل	
	0.25	(C_g) و (C_g) ينطبق على (C_g) و (C_g) متناظر بالنسبة الى حامل محور التراتيب	
		(C_g) - إنشاء	
	0.25	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
عناصر الإجابة (الموضوع الثاني)			
		التمرين الأول (04 نقاط)	
1.50	0.75	$(x-3)(x^2+x+1) = x^3 - 2x^2 - 2x - 3$	(1
1.50	0.25+0.50	x = 3 تكافئ $P(x) = 0$ تكافئ $P(x) = 0$	
1.75	0.25+0.50	$u_0q^3-2u_0q^2-2u_0q-3u_0=0$ تکافئ $u_3-2u_2-2u_1-3u_0=0$ ر منه $q=3$ اذن $q^3-2q^2-2q-3=0$	(2
	0.50+0.50	$u_n = u_0 \times q^n = 2 \times 3^n -\varphi$	
0.75	0.25+0.50	$S_n=2(n+1)$ ومنه $w_n=rac{u_n}{3^n}=2$	(3
		التمرين الثاني (04 نقاط)	
1.50	0.50+0.50	$u_2 = 70$ $u_1 = 10$ -1	(1
	0.50	$u_{n+1} + 5 = (5u_n + 20) + 5 = 5(u_n + 5) - \varphi$	
1.25	0.50+0.25	$u_n > -5$ أ- البرهان بالتراجع على أنّ: $u_n > -5$	(2
	0.25+0.25	ب- $u_n = u_n = u_n = u_n = u_n = 0$ ومنه $u_{n+1} - u_n = 4(u_n + 5) > 0$	/2
0.75	0.50	$v_{n+1} = 5v_n$ لدينا $v_{n+1} = 5v_n$ و منه $v_{n+1} = 5v_n$ لدينا $v_{n+1} = 5v_n$	(3
	0.25	$v_n = 3 \times 5^n$	

0.50	0.25+0.25	$S_n = \frac{3}{4} (5^{n+1} - 1) - 5(n+1)$ ومنه $u_n = v_n - 5$	(4
التمرين الثالث (04 نقاط)			
01	0.50+0.50	$u_{2022} = 1012 : u_n = 1 + \frac{1}{2}n$ و $u_{n+1} = 1 + \frac{1}{2}$	(1
01	0.50+0.50	g(-1)=0 و $g'(x)=f(x)$ صحیح لأن:	(2
01	0.50+0.50	2b=a+c : صحیح لأنّ	(3
01	0.50+0.50	$\lim_{x \to +\infty} (f(x) - x + 1) \neq 0$ خاطئ لأن : $0 \neq 0$	(4
		التمرين الرابع (08 نقاط)	
2	0.50+0.50	$\lim_{x \to +\infty} f(x) = -\infty$, $\lim_{x \to -\infty} f(x) = +\infty$ -1	(1
	0.50	$\lim_{x \to 1} f(x) = +\infty - \varphi$	
	0.50	(C_f) التقسير البياني $x\!=\!1$ معادلة مستقيم مقارب للمنحني	
	0.75	$f'(x) = \frac{-x(x^2 - 3x + 4)}{(x - 1)^3} - 1$	(2
	0.25	f'(x) ب $-$ إشارة	
	0.25	[0;1[متزایدة تماما علی f	
2	0.25	$[1;+\infty[$ و $]-\infty;0]$ متناقصة تماما على كلّ من من f	
2	0.5	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	0.5	(C_f) ادو المعادلة $y=-x+1$ مستقيم مقارب مائل لـ $\left(\Delta ight)$	(3
1.75	0.25×3	$f(x)-(-x+1)=rac{x}{ig(x-1ig)^2}$ -ب $(x-1)^2$ $(x-1)^2$ اسفل (C_f) علی (C_f) علی (C_f) علی (C_f) اسفل (C_f) علی (C_f) علی (C_f)	
	0.5	ج- مبرهنة القيم المتوسطة	
1.75	0.75	$y = -x + \frac{3}{4}$: (T) معادلة ل	(4

	0.5+0.5	(C_f) (C_f) (Δ) similar (C_f) (C_f) (Δ) similar (C_f)	
	0.25	$ig(C_fig)$ يناظر $ig(C_gig)$ على $ig[-\infty;1[\cup]1;lpha]$ على $ig(C_fig)$ على $ig[lpha;+\infty[$ بالنسبة إلى محور الفواصل على $ig[lpha;+\infty[$	(5
0.5	0.25	$\begin{pmatrix} C_g \end{pmatrix} \text{ simil}$	