

课程说明

课程信息

名称:模拟电子技术

学分: 3学分、48学时,

上课时间: 每周1, 下午8-10节 (15:50~18:15)

新模式: 线上 (4次) +线下 (12次)

成绩构成

期末 (60%) +平时 (40%)

✓ 期末: 闭卷

✓ 平时: 考勤 (10%) +作业 (20%) +半期考试 (10%)

>考勤:采用扣分制,一次缺勤扣一分,负分制,最多扣18分

➤平时作业分档: A(1),B(0.9),C(0.8),D(0).

按规定时间提交作业,按时来进行半期考试,

课程概述

前期知识:大学物理、电路分析、高等数学、复变函数、信号与系统

使用教材: 康华光《电子技术基础(模拟 部分)第**6**版》。

课程教学群: <u>435746799</u>

课程内容:本学期我们将介绍模拟信号、 电子固态器件基本物理及电学特性、基本 模拟电路的分析与应用。电子信息类低年 级工程入门课程!

注: 本课程考虑"线性时不变(LTI)"、 "集总(Lumped)参数"的模拟电路

在线平台: 超星用于作业提交、腾讯会议 /课堂用于在线教学

教学安排

日期	周次	讲次	学时 (分钟)	教学内容 (要点)	授课地点
2020/9/16	1	第4讲	135	模拟信号、模拟放大电路模型及 主要性能指标、运算放大器	X1313
2020/9/23	2	第4讲	135	二极管及其基本电路	X1313
2020/9/30	3	第4讲	135	场效应管及其放大电路(共源)、 图解法、小信号法	X1313
2020/10/7	4	第4讲	135	场效应管放大电路 (共漏、共栅)	在线
2020/10/14	5	第4讲	135	BJT管及其基本放大电路	X1313
2020/10/21	6	第4讲	135	模拟CMOS集成电路	X1313
2020/10/28	7	第4讲	135	功率放大	X1313
2020/11/4	8	第4讲	135	频率响应	在线
2020/11/11	9	第4讲	135	反馈类型判别及负反馈对放大电 路性能的影响	X1313
2020/11/18	10	第4讲	135	线上期中考试	X1313
2020/11/25	11	第4讲	135	深度负反馈放大电路的近似计算 及负反馈放大电路的稳定性	X1313
2020/12/2	12	第4讲	135	滤波电路	X1313
2020/12/9	13	第4讲	135	波形产生 (正弦波产生电路)	X1313
2020/12/16	14	第4讲	135	波形产生 (非正弦波产生电路)	X1313
2020/12/23	15	第4讲	135	直流稳压电源	在线
2020/12/30	16	第4讲	135	总复习	在线

关于模拟电路

你还能举出多少带 "电"的词汇?

电灯

电话

电脑

电动汽车

电池

- 电是人类目前掌握的信息、能量最为有效的载体!
- 在信息化发展下,ICT行业正不断改变其它产业,满足人们日益增长的物质文化需求,当前充满着发展机会!

• **电路是信息、能量**处理的实体! <u>模拟电路</u>是采集/处理物理 世界信息/能量的核心!

Radio signal

Power/Energy

Digital Camera

Radar

B-scan ultrasonography

Electrical Car

学习模拟电子技术的意义

- 学习本课程为同学们将来从事模拟信号/能量获取、处理、 生成奠定良好的工程基础;
- 为学习更复杂的信息采集系统、控制系统、通信系统、电力电子系统、智能硬件、医疗电子、集成电路设计等奠定 扎实的模拟电子线路分析与设计基础。

知识结构

- 1. 模拟电路与系统概述(包括第1、2章,行为级)
- ✓ 认识模拟电路与系统,了解基本模拟处理技术(放大、运算)。
- 2. 基本模拟电路(包括第3-7章,晶体管级)
- ✓ 二极管、三极管、场效应管三种基本半导体晶体管的电学特性,及其基本电路的直流及交流特性分析(单级放大器、差分放大、电流镜、模拟集成电路、、功率放大电路等)。
- 3. 高级模拟电路专题(包括8-11章,模拟子系统级)
- ✓ 反馈放大电路、振荡电路、滤波电路、直流稳压电源。