Loan Approval Prediction

Submitted by:

HRISAV BHOWMICK

PGPDS PRAXIS BUSINESS SCHOOL KOLKATA, INDIA

FEBRUARY 2021

Understanding Problem

- Dream Housing Finance Company deals in all home loans.
- They have presence across all urban, semi urban and rural areas.
- Initially the customers apply for a home loan and then the company validates the customer if he/she is eligible for loan.
- Company wants to automate the loan eligibility process.
- To automate this process, they have given a problem to identify the customer segments that are eligible for loan, so that they can specifically target these customers.

Setting up Spark environment

- Google Colab is being used for the project.
- Install all the dependencies in Colab environment such as Apache Spark 3.0.1 with Hadoop 3.2, Java 8
- Use Findspark in order to locate Spark in the system.
- Set the environment path that enables us to run PySpark in our Colab environment.
- Run a local spark session to test our installation.
- Colab is ready to run PySpark.

Understanding Data

- Gender, Married, Dependents, Education, Self Employed, Property Area, Loan Status are categorical data.
- Applicant Income, Co-applicant Income, Loan Amount, Loan Amount Term, Credit History are numerical data.
- We have 12 independent variables and 1 target variable.
- In total, we have 614 rows and 13 columns in the dataset.

Variable	Description
Loan_ID	Unique Loan ID
Gender	Male/ Female
Married	Applicant married (Y/N)
Dependents	Number of dependents
Education	Applicant Education (Graduate/ Under Graduate
Self_Employed	Self employed (Y/N)
ApplicantIncome	Applicant income
CoapplicantIncome	Coapplicant income
LoanAmount	Loan amount in thousands
Loan_Amount_Term	Term of loan in months
Credit_History	credit history meets guidelines
Property_Area	Urban/ Semi Urban/ Rural
Loan_Status	Loan approved (Y/N)

Understanding Data

- Loan Status is the target variable (Y = loan approved, N = loan not approved).
- Showing the top 5 rows of the dataset.
- Loan_ID is a unique identifier, it can be dropped off.

f.show(5)												
loan ID 6	+ iender Ma	rried Depen	ndents	 Fducation Self	Fmploved Appli	cantIncome Coapp	licantIncome Loa	+ anAmount Loan Ar	nount_Term Credit	History Prop	t	Stat
+-	+	+	+			+			· -			
P001002 P001003	Male Male	No Yes	1000	Graduate Graduate	No	5849 4583	0.0 1508.0	null 128	360 360	1	Urban Rural	
	Male	Yes		Graduate	No Yes	3000	0.0	66	360	1	Urban	
2001005	Hatel	50	-		No	2583	2358.0	120	360	1	Urban	
.P001005 .P001006	Male	Yes	DINOT	Graduate	NO							

```
from pyspark.sql.functions import col,sum

df.select(*(sum(col(c).isNull().cast("int")).alias(c) for c in df.columns)).show()

| Gender|Married|Dependents|Education|Self_Employed|ApplicantIncome|CoapplicantIncome|LoanAmount|Loan_Amount_Term|Credit_History|Property_Area|Loan_Status|

| 13| 3| 15| 0| 32| 0| 0| 22| 14| 50| 0| 0|
```

- Missing values are present in both categorical and numerical columns.
- No missing value is present in Target variable, else we could have dropped those rows.
- We will be using mean or median (for numerical) and mode (for categorical) to impute the missing values.

- Here we are imputing missing values in Loan Amount Term with its median = 360.
- There were 14 records with missing Loan Amount Term. After imputing number of missing records became 0.

```
from pyspark.sql.functions import isnan, when, count, col
df.select([count(when(col('Loan Amount Term').isNull(),True)).alias('Loan Amount Term')]).show()
+----+
Loan Amount Term
median loan term = df.approxQuantile("Loan Amount Term", [0.5], 0.25)
median_loan_term = int(median_loan_term[0])
print('Median value of Loan_Amount_Term', median_loan_term)
Median value of Loan Amount Term 360
# using median loan term value to fill the nulls in Loan Amount Term column
df = df.na.fill(median loan term, subset=['Loan Amount Term'])
df.select([count(when(col('Loan_Amount_Term').isNull(),True)).alias('Loan_Amount_Term')]).show()
Loan Amount Term
```

```
from pyspark.sql.functions import mean
mean_val = df.select(mean(df.LoanAmount)).collect()
print('Mean value of Loan Amount', mean_val[0][0])
Mean value of Loan Amount 146.41216216216216
```



```
mean_loan_amount = mean_val[0][0]

# using mean_loan_amount value to fill the nulls in LoanAmount column

df = df.na.fill(mean_loan_amount, subset=['LoanAmount'])

mean_val = df.select(mean(df.LoanAmount)).collect()
print('New Mean value of Loan Amount', mean_val[0][0])

New Mean value of Loan Amount 146.3973941368078
```

- Here we are imputing missing values in Loan Amount with its mean.
- There were 22 missing values in Loan Amount. After imputing them, the mean for that column turned out to be 146.39.

```
df.groupBy("Gender").count().show()

+----+
|Gender|count|
+----+
| null| 13|
|Female| 112|
| Male| 489|
+----+
```



```
df = df.na.fill('Male',subset=['Gender'])
df.groupBy("Gender").count().show()

+----+
|Gender|count|
+----+
|Female| 112|
| Male| 502|
+----+
```

- Here we are imputing missing values in Gender with its mode.
- We will do the same imputation for rest of the categorical columns.

- Both applicant and co-applicant income is right/positively skewed.
- That is mean of each of them is greater than their median values.
- Majority of the Applicant Income falls below 15,000.

- Majority of the Loan Amount is between 100,000 to 200,000.
- Most of the loan term is applied for 360 months (ie. 30 years) followed by 180 months (ie. 15 years).

- Chances for getting Loan approved for Male or Female is almost equal.
- Married people have higher chance of getting loan approved.
- When the number of dependents is 2 there is more chance of getting loan approval compared to when the number of dependents is 1, even though both has similar data count.

- Graduates have more chances of getting their loan approved.
- There is very rare chance of getting loan if the person has no credit history.
- Most of the person is from Semi-urban area, and highest Loan acceptance is from that area.

Feature Engineering

```
from pyspark.sql.functions import col

df = df.withColumn("TotalIncome", col("ApplicantIncome")+col("CoapplicantIncome"))
df = df.withColumn("EMI", col("LoanAmount")/col("Loan_Amount_Term"))
df.show(5)
```

calIncome EM	Status Tot	erty_Area Loan_	_History Prop	nount_Term Credit	nAmount Loan_Am	licantIncome Loa	cantIncome Coappi	Employed Appli	Education Self_	ndents	arried Depe	Gender Ma
5849.0 0.4055555555555555	Υ	Urban	1	360	146	0.0	5849	No	Graduate	0	No	Male
6091.0 0.3555555555555555	N [Rural	1	360	128	1508.0	4583	No	Graduate	1	Yes	Male
3000.0 0.18333333333333333	Y	Urban	1	360	66	0.0	3000	Yes	Graduate	0	Yes	Male
4941.0 0.3333333333333333	Y	Urban	1	360	120	2358.0	2583	No	t Graduate	0 Not	Yes	Male
6000.0 0.3916666666666666	Y	Urban	1	360	141	0.0	6000	No	Graduate	0	Nol	Male

- Adding two more features to our data.
- Total Income is the collective income of Applicant and Co-Applicant.
- **EMI** is the equated monthly installment. It is calculated by dividing Loan Amount by number of months required to repay the loan.

```
from pyspark.ml.feature import StringIndexer, OneHotEncoder
# create object of StringIndexer class and specify input and output column
SI gender = StringIndexer(inputCol='Gender',outputCol='gender Index')
SI married = StringIndexer(inputCol='Married',outputCol='married Index')
SI dependents = StringIndexer(inputCol='Dependents',outputCol='dependents Index')
SI education = StringIndexer(inputCol='Education',outputCol='education Index')
SI selfemp = StringIndexer(inputCol='Self Employed',outputCol='selfemp Index')
SI credit = StringIndexer(inputCol='Credit History',outputCol='credit Index')
SI property = StringIndexer(inputCol='Property Area',outputCol='property Index')
SI loanstatus = StringIndexer(inputCol='Loan Status',outputCol='loanstatus Index')
# transform the data
df = SI gender.fit(df).transform(df)
df = SI married.fit(df).transform(df)
df = SI dependents.fit(df).transform(df)
df = SI education.fit(df).transform(df)
df = SI selfemp.fit(df).transform(df)
df = SI credit.fit(df).transform(df)
df = SI property.fit(df).transform(df)
df = SI loanstatus.fit(df).transform(df)
```

- The StringIndexer encodes a string column of labels to a column of label indices.
- One Hot Encoding is used for converting categorical attributes into a numeric vector that machine learning models can understand.
- Each of the categorical features are converted to its Index and OHE columns.

```
df.select('Married', 'married Index', 'married OHE',
         'Property Area', 'property Index', 'property OHE').show(10)
|Married|married_Index| married_OHE|Property_Area|property_Index| property_OHE|
                1.0 (1,[],[]) Urban 1.0(2,[1],[1.0])
    No
                                     Rural
                                                        2.0 (2,[],[])
                0.0 (1, [0], [1.0])
    Yes
    Yes
                0.0 (1, [0], [1.0])
                                       Urban
                                                        1.0 (2,[1],[1.0])
                0.0 (1, [0], [1.0])
                                       Urban
                                                        1.0 (2,[1],[1.0])
    Yes
    No
                1.0 (1,[],[])
                                       Urban
                                                        1.0 (2,[1],[1.0])
                0.0 (1, [0], [1.0])
                                    Urban
                                                        1.0 (2, [1], [1.0])
    Yes
    Yes
                0.0 (1, [0], [1.0])
                                       Urban
                                                       1.0 (2,[1],[1.0])
                                                0.0|(2,[0],[1.0])|
    Yes
                0.0 (1, [0], [1.0])
                                     Semiurban
                0.0 (1, [0], [1.0])
    Yes
                                       Urban
                                                       1.0 (2,[1],[1.0])
    Yes
                0.0 (1, [0], [1.0])
                                     Semiurban
                                                        0.0 (2, [0], [1.0])
```

- Showing results for Married and Property_Area only.
- For Married = No, Index has 1.0 and OHE has (1,[],[]).
- For Property_Area = Rural, Index has 2.0 and OHE has (2,[],[]).

	ApplicantInc	ome CoapplicantIn	come LoanAmo	unt Loan_Amour	nt_Term Credit_Hist	ory Totaline	ome EMI gender_In	dex married_I	Index dependents	_Index education_	Index selfemp_l	ndex credit_Ir	dex property_Ind
ApplicantIncome	1.00	-0.12	0.57	-0.05	-0.02	0.89	0.32 -0.06	-0.05	0.12	-0.14	0.13	0.02	0.02
CoapplicantIncome	-0.12	1.00	0.19	-0.06	0.01	0.34	0.14 -0.08	-0.08	0.03	-0.06	-0.02	-0.01	0.02
LoanAmount	0.57	0.19	1.00	0.04	-0.00	0.62	0.49 -0.11	-0.15	0.16	-0.17	0.12	0.00	0.03
Loan_Amount_Term	-0.05	-0.06	0.04	1.00	-0.00	-0.07	-0.50 0.07	0.10	-0.10	-0.07	-0.03	0.00	-0.02
Credit_History	-0.02	0.01	-0.00	-0.00	1.00	-0.01	0.02 -0.01	-0.01	-0.04	-0.07	-0.00	-1.00	-0.03
TotalIncome	0.89	0.34	0.62	-0.07	-0.01	1.00	0.36 -0.09	-0.08	0.13	-0.16	0.11	0.01	0.03
EMI	0.32	0.14	0.49	-0.50	0.02	0.36	1.00 -0.06	-0.09	0.10	-0.08	0.05	-0.02	0.01
gender_Index	-0.06	-0.08	-0.11	0.07	-0.01	-0.09	-0.06 1.00	0.36	-0.17	-0.05	0.00	0.01	-0.11
married_Index	-0.05	-0.08	-0.15	0.10	-0.01	-0.08	-0.09 0.36	1.00	-0.33	-0.01	-0.00	0.01	0.01
dependents_Index	0.12	0.03	0.16	-0.10	-0.04	0.13	0.10 -0.17	-0.33	1.00	0.06	0.06	0.04	-0.00
education_Index	-0.14	-0.06	-0.17	-0.07	-0.07	-0.16	-0.08 -0.05	-0.01	0.06	1.00	-0.01	0.07	0.07
selfemp_Index	0.13	-0.02	0.12	-0.03	-0.00	0.11	0.05 0.00	-0.00	0.06	-0.01	1.00	0.00	0.01
credit_Index	0.02	-0.01	0.00	0.00	-1.00	0.01	-0.02 0.01	0.01	0.04	0.07	0.00	1.00	0.03
property_Index	0.02	0.02	0.03	-0.02	-0.03	0.03	0.01 -0.11	0.01	-0.00	0.07	0.01	0.03	1.00
loanstatus_Index	0.00	0.06	0.04	0.02	-0.54	0.03	0.01 0.02	0.09	-0.01	0.09	0.00	0.54	0.14

- Using the correlation matrix we can understand which features are highly correlated and which are not.
- Applicant Income and Total Income is highly correlated, so we will not consider Total Income for further analysis.

- The Vector Assembler is used to concatenate all the features into a single vector which can be further passed to the estimator or ML algorithm.
- Here it merges all the columns into a single feature vector, named 'features'.
- In the bottom part, the features are drawn against loanstatus_Index.

Model Building

- ROC curve is an evaluation metric for binary classification problems.
 AUC is the measure of the ability of a classifier to distinguish between classes and is used as a summary of the ROC curve.
- The higher the AUC, the better the performance of the model at distinguishing between the positive and negative classes.
- For **Decision Tree**, area under ROC for test set is **0.31**.
- Decision tree performed poorly because it is too weak given the range of different features.

Model Building

```
from pyspark.ml.classification import RandomForestClassifier

rf = RandomForestClassifier(featuresCol = 'features', labelCol = 'label')
rfModel = rf.fit(train_data)
predictions = rfModel.transform(test_data)
predictions.show(10)
```

- The prediction accuracy of decision trees has been improved by Ensemble method - Random Forest.
- Here certain number of weak learners (decision trees) are combined to make a powerful prediction model.
- For Random Forest, area under ROC for test set is 0.72.
- When 0.5<AUC<1, there is a high chance that the classifier will be able to distinguish the positive class values from the negative class values.

Model Building

```
from pyspark.ml.classification import LogisticRegression

lr = LogisticRegression(featuresCol = 'features', labelCol = 'label', maxIter=10)

lrModel = lr.fit(train_data)

trainingSummary = lrModel.summary
print('Training set Area Under ROC: ' + str(trainingSummary.areaUnderROC))
print('Training set Accuracy: ' + str(trainingSummary.accuracy))
print('Training set Precision by label: ' + str(trainingSummary.precisionByLabel))
print('Training set Recall by label: ' + str(trainingSummary.recallByLabel))

Training set Area Under ROC: 0.7926975858960232
Training set Accuracy: 0.80787037037037
Training set Precision by label: [0.7945205479452054, 0.8805970149253731]
Training set Recall by label: [0.9731543624161074, 0.44029850746268656]
```

```
from pyspark.ml.evaluation import BinaryClassificationEvaluator
evaluator = BinaryClassificationEvaluator()
print('Logistic Regression - Test set AUC: ', evaluator.evaluate(predictions))
Logistic Regression - Test set AUC: 0.762931034482759
```

- In the third case, a **Logistic Regression** model was built on the training set. Logistic regression is an estimation of Logit function. The logit function is simply a log of odds in favor of the event.
- Training set accuracy is 0.81 and area under ROC is 0.79.
- For Logistic Regression, area under ROC for test set is 0.76.
- This model gives us the highest value of area under the curve.

Conclusion

- From the Exploratory Data Analysis, we could generate insight from the data - how each of the features are related to the target.
- Also, it can be seen from the evaluation of three models that Logistic Regression performed better than others, and Random Forest did better than Decision Tree.
- Logistic Regression gives us the highest value of AUC. Thus we will consider this for model building.

Conclusion

- So we have built a robust model which can predict whether to provide loan or not to an applicant.
- In future, this module of prediction can be integrated with the module of automated processing system.
- Once loan is approved, analysis can be done to predict interest rates based on applicant's profile.
- Time series analysis can be also be done using loan data of several years, for prediction of time when the applicant can default.