Useful formulae:

- Delay for distributing copies of a file with F bits to N clients, with u_s upload server bandwidth, d_{min} minimum download bandwidth, and u_i upload bandwidth for client i:
 - for "client-server" (CS) model: $D_{CS} \ge max \left\{ \frac{NF}{u_s}, \frac{F}{d_{min}} \right\}$
 - for "peer-to-peer" (P2P) model: $D_{P2P} \ge max \left\{ \frac{F}{u_s}, \frac{F}{d_{min}}, \frac{NF}{u_s + \sum_{i=1}^{N} u_i} \right\}$
- transmissionDelay (Ttrans) = $\frac{L (bits)}{R (bps)}$
- $propagationDelay (Tprop) = \frac{Distance}{S}$, S $\approx 2x10^8 m/s$ (electromagnetic speed in copper)
- $a = \frac{Tprop}{Ttrans} = \frac{propagationDelay}{transmissionDelay}$
- Utilization for stop-and-wait: $u = \frac{1-p}{1+2a}$, where p is the error probability in a frame/segment
- Utilization (u) for sliding-window mechanisms with window of w:
 - Selective repeat: u = (1 p), if w fills the pipe, otherwise $u = \frac{w(1-p)}{1+2a}$
 - Go-back-N: $u = \frac{1-p}{1+2ap}$, if w fills the pipe, otherwise $u = \frac{w(1-p)}{(1+2a)(1-p+wp)}$
- Network Power = $\frac{Throughput}{Delay}$
- TCP congestion window management equations:
 - slow start: *cwnd*+=1 per Ack
 - congestion avoidance: cwnd+=1 per RTT
 - fast recovery: cwnd+=1 per duplicate Ack
- TCP RTT and RTO estimates:
 - EstimatedRTT(k)= $(1-\alpha)$ *EstimatedRTT(k-1) + α *SampleRTT(k), $0 < \alpha < 1$
 - DevRTT= $(1-\beta)$ *DevRTT+ β *|SampleRTT EstimatedRTT|, $0 < \beta < 1$
 - Retransmission timeout (RTO) = EstimatedRTT + 4*DevRTT
- TCP average throughput (Tput), for a long-lived connection with window size W bytes:
 - $average\ Tput \approx \frac{0.75\ .W}{RTT}$, at steady-state where W causing loss is roughly constant
 - for high speed long pipes (with high *W*):
 - $average\ Tput = \frac{1.22\ MSS}{RTT\ \sqrt{L}}$, where L is the segment (or packet) loss rate