

Outline

- 1. Today's Data Center Networks
- 2. Router Structures
- 3. Crossbar Switch
- 4. Clos Network
- 5. Fat-Tree Network
- 6. Commercial Switches used in Data Centers
- 7. High-Speed Switch Chips

1. Today's Data Center Networks

Architecture of Data Center Networks (DCNs)

Two Important Issues in DCN

Bandwidth bottleneck

- Oversubscription: the ratio of the aggregated bandwidth of all end hosts to a smallest bisection bandwidth of a particular network topology (e.g., BW0/BW3)
- Oversubscription is a trade off between the cost and the bandwidth provisioning. For instance, a topology with an oversubscription of 8 has a lower cost than that of a topology with an oversubscription of 1
- With a large oversubscription, the aggregation and core layers may cause a bandwidth bottleneck for the communications among the servers
 - Solution 1: place VMs in a proximity so that communications among them can avoid a high oversubscription bottleneck _ lacking flexibility of using computing resources
 - Solution 2: redesign a better data center network that
 - is backwards compatible with existing equipment and infrastructure
 - has a low power consumption & heat emission
 - allows hosts to communicate at the line speed

Addressing and routing in a data center

- Layer 2: flat address space, location-independent, suitable for mobility
- Layer 3: structured address space, location-dependent, better routing scalability
- It is desired to have a flat address space for mobility and scalability in routing

Conventional DCN Problems

- Static network assignment
- Fragmentation of resources
- Poor server to server connectivity
- Traffics affects each other
- Poor reliability and utilization

Requirements for a Scalable DCN

- Any-to-any connectivity with non-blocking fabric
 - Scale to more than 100,000 physical nodes
 - Maximize bi-Sectional bandwidth, especially when the 80-20 rule, where 80% traffic remains in the cluster while 20% across the clusters, does not hold any longer
- High availability
 - Resilient control-plane
 - Fast convergence upon failure (quick failure detection and recovery)
 - Fault-domain isolation
- Load balancing routing
 - Efficiently use all available links
 - Multi-path/multi-topology
- Facilitate application deployment
 - Support for multi-tenancy
 - Share resources between different customers
 - Workload mobility, clustering, etc.
- Virtual machine mobility
 - Scalable layer 2 domain

Scale Up or Scale Out?

- Scale up: using high-end switches and routers to construct DCNs
- Scale out: using commodity switches and routers to construct DCNs
- Edge switch cost: \$7,000 for each 48-port GigE switch
- Aggregation and core switch cost: \$700,000 for 128port 10GigE switches
- As of today, many people favor the scale out approach.

Scale-Out DCN

FatTree

01/12/2022 BCube

complex wiring

difficult troubleshooting

power consumption

Possible Solution: A Huge L2 Switch!

Design Objectives for Mega Data Center Networks (DCNs)

- Huge bisection capacity
- Flat layer 2 address space
- High resilience
- Low latency
- Good manageability
- •

Related Solution Strategies

- Scalability:
 - Clos network / Fat-tree to scale out
- Alternative to STP (spanning tree protocol)
 - Link aggregation (Layer 2 trunking), Link Aggregation
 Control Protocol (LACP), providing a method to control
 the bundling of several physical ports together to form a single logical channel.
 - Routing protocols to layer 2 network
- Load balancing
 - Randomness or traffic engineering approach

2. Router Structures

Router's Functions

- Look up a forwarding table with many prefixes and masks for the destination IP address of each arriving packet
- Performance objective: Maximize the throughput, average number of bits transferred per second from an input to an output
- Quality of service guarantee to support different applications with packet loss and latency requirements

Low-End Router Structure

A CPU/Memory card with multiple Line Interfaces, or called Line Cards

Medium-Size Router Structure

High-End Router Structure

Fwding Table vs Fwding Cache

Packets Switched In A High-End Router

A High-End Router Structure

Components of a Line Card

- Transponder/transceiver
 - optical-to-electrical and electrical-to-optical conversions
 - Serial-to-parallel and parallel-to-serial conversions
- Framer
 - Receiver side Synchronization, frame overhead processing, and cell or packet delineation
 - Transmit side frame pattern insertion and/or scrambling
- Packet processor
 - Packet header processing
 - IP route lookup
 - Packet classification
- Traffic manager
 - Traffic access control, buffer management, and scheduling
- Central processing unit
 - Perform control plane functions
 - Routing table updates, buffer management, and exception handling

Cisco NRS 6008 Single-Chassis System

Software compatibility

Cisco IOS XR Software Release 5.0 or later

System capacity

- Total switching capacity, in+out line rate x no. of line cards
- 4 Tbit/s per line card capability (2 Tbps per slot ingress and 2 Tbit/s per slot egress) for a total switching capacity of 32 Tbit/s in a Single Chassis configuration
- Up to 1 Peta bit/sec total switching capacity in a multichassis configuration

Fabric Cards

- 6 Fabric Cards support 5+1 redundancy
- System can sustain more than one fabric card failure
- Universal Fabric card (2T & 1T) OR Single-chassis Fabric Card (1T)

Cisco NRS 6008 Single-Chassis System

Line cards

- 100-G line cards
 - 20 x 100 Gigabit Ethernet multiservice cards with combo optics (CPAK & QSFP)
 - 20 x 100 Gigabit Ethernet LSR (Label Switch Router) cards with combo optics (CPAK & QSFP)
 - 10 x 100 Gigabit Ethernet -multiservice cards with CPAK optics
 - 10 x 100 Gigabit Ethernet LSR cards with CPAK optics
- 10-G line cards
 - 60 x 10 Gigabit Ethernet multiservice cards with Enhanced Small Form-Factor Pluggable (SFP+) optics
 - 60 x 10 Gigabit Ethernet LSR cards with Enhanced Small Form-Factor Pluggable (SFP+) optics

Connectivity

 100 and 10 Gigabit Ethernet on 100-Gbps line cards using breakout or patch panel solutions

Juniper's PTX 5000 Spec

System Capacity	24 Tbit/s
Slot Capacity	3 Tbit/s
Chassis per rack	1
Dimensions (W x H x D)	17.5 x 62.5 x 33.1 in (44.5 x 158.8 x 84.1 cm)
Maximum Weight	1294 lbs (587.0 kg)
Mounting	Front or center rack mount
Power System Rating (Max)	217 A @ -48 VDC
Operating Temperature	32° to 104° F (0° to 40° C)
Humidity	Relative humidity operating: 5 to 90% (noncondensing)
Altitude	Up to 10,000 ft. (3,048 m)
Port density 10G/40G/100G	1536/384/240

