

Fins - Flux 3

Calculate the rate of heat transfer for a fin with its head temperature equal to the ambient.

Given the fin temperature profile:

$$\Theta(x) = \Theta_{\rm B} \left(\cosh(mx) - \frac{1}{\tanh(mL)} \sinh(mx) \right)$$

Where
$$\Theta(x) = T(x) - T_{\infty}$$
 and $m = \sqrt{\frac{4\alpha}{\lambda a}}$.

The rate of heat transfer through the fin can be expressed as:

$$\dot{Q} = -\lambda A_{\rm c} \frac{\partial T}{\partial x}|_{x=0} = -\lambda \frac{\pi a^2}{4} \frac{\partial \Theta}{\partial x}|_{x=0}$$

Differentiation of $\Theta(x)$ with respect to x yields:

$$\frac{\partial \Theta}{\partial x} = \Theta_{\rm B} m \left(\sinh{(mx)} - \frac{1}{\tanh{(mL)}} \cosh{(mx)} \right)$$

There for at x = 0 gives:

$$\frac{\partial \Theta}{\partial x}|_{x=0} = -\frac{\Theta_{\rm B} m}{\tanh\left(mL\right)}$$

Substitution into the expression for the rate of heat transfer yields:

$$\dot{Q} = \lambda \frac{\pi a^2}{4} \frac{\Theta_{\rm B} m}{\tanh\left(mL\right)}$$