Admitere * Universitatea Politehnica din București 2001 Disciplina: Algebră și Elemente de Analiză Matematică

- 1. Să se rezolve în R ecuația $1 + \frac{3}{x-1} + \frac{2}{x+1} = 0$.
 - a) {3, 0}; b) {5, 0}; c) {-5, 0}; d) {-3, 0}; e) {-5, 5}; f) {3, 5}.
- 2. Să se calculeze A^3 dacă $A = \begin{pmatrix} 2 & 1 \\ 0 & 3 \end{pmatrix}$.

a)
$$\begin{pmatrix} 4 & 19 \\ 1 & 27 \end{pmatrix}$$
; b) $\begin{pmatrix} 8 & 1 \\ 1 & 27 \end{pmatrix}$; c) $\begin{pmatrix} 8 & 17 \\ 0 & 9 \end{pmatrix}$;
d) $\begin{pmatrix} 8 & 19 \\ 0 & 27 \end{pmatrix}$; e) $\begin{pmatrix} 4 & 19 \\ 0 & 27 \end{pmatrix}$; f) $\begin{pmatrix} 4 & 9 \\ 0 & 7 \end{pmatrix}$.

d)
$$\begin{pmatrix} 8 & 19 \\ 0 & 27 \end{pmatrix}$$
; e) $\begin{pmatrix} 4 & 19 \\ 0 & 27 \end{pmatrix}$; f) $\begin{pmatrix} 4 & 9 \\ 0 & 7 \end{pmatrix}$

- 3. Să se afle $m \in \mathbb{R}$ astfel ca sistemul liniar $\begin{cases} mx + 2y = 1 \\ 2x + my = 1 \end{cases}$ să aibă soluție unică.
 - a) $m \in \emptyset$; b) $m \neq 4$; c) $m \in \mathbb{R}$; d) $m \neq 1$; e) $m \neq 3$; f) $m \neq -2$ şi $m \neq 2$.
- 4. Să se determine parametrul real m stiind că funcția

$$f(x) = \begin{cases} 2x + m, & x \le 1\\ m^2 x + 2, & x > 1 \end{cases}$$

este continuă pe R.

- a) m = 2; b) $m \in \emptyset$; c) m = -2; d) $m \in \{0, 1\}$; e) $m \in \{-2, -1\}$; f) m = -1.
- 5. Multimea valorilor $x \in \mathbb{R}$ care verifică inecuația $\ln(x^2 3) < \ln(x + 3)$ este
 - a) $(-2,\sqrt{3})$; b) $(-2,-\sqrt{3}) \cup (\sqrt{3},3)$; c) [-2,3]; d) $(-\sqrt{3},\sqrt{3}] \cup [3,\infty)$; e) (2,3]; f) $[\sqrt{3},3)$.
- 6. Să se afle valoarea numerică a integralei $\int_{0}^{1} \frac{x^2-1}{x^2+1} dx$.
 - a) $\frac{\pi}{2}$; b) $\frac{\pi}{2} + 1$; c) $2 + \frac{\pi}{2}$; d) 1; e) $1 \frac{\pi}{2}$; f) $\frac{\pi}{2} 1$.
- 7. Să se afle soluțiile întregi ale sistemului $\begin{cases} x + 2y = 5 \\ x^2 + y = 3 \end{cases}$

a)
$$\begin{cases} x = -1 \\ y = 3 \end{cases}$$
; b) $\begin{cases} x = 1 \\ y = 2 \end{cases}$; c) $\begin{cases} x = -5 \\ y = 5 \end{cases}$;
d) $\begin{cases} x = 11 \\ y = 9 \end{cases}$; e) $\begin{cases} x = -3 \\ y = 4 \end{cases}$; f) $\begin{cases} x = \frac{1}{2} \\ y = 2 \end{cases}$.

d)
$$\begin{cases} x = 11 \\ y = 9 \end{cases}$$
; e) $\begin{cases} x = -3 \\ y = 4 \end{cases}$; f) $\begin{cases} x = \frac{1}{2} \\ y = 2 \end{cases}$

- depinde de din dezvoltarea xbinomului $\left(\sqrt{x} + \frac{1}{\sqrt{x}}\right)^4$.
 - a) T_3 ; b) T_1 ; c) T_5 ; d) T_2 ; e) T_4 ; f) nu există un asemenea termen.
- 9. Să se determine $\alpha, \beta \in \mathbb{R}$ astfel ca ecuația $\alpha x^2 6x + \beta = 0$ să admită x = 1 ca rădăcină dublă.
 - a) $\alpha = 3, \beta = 1$; b) $\alpha = 2, \beta = 1$; c) $\alpha = \beta = 3$;
 - d) $\alpha = 1, \beta = 2$; e) $\alpha = \beta = 1$; f) $\alpha = 1, \beta = 3$.
- 10. Să se determine soluțiile ecuației $C_{x+2}^2 = 36$.
 - a) 8; b) 6; c) 7; d) 9; e) 5; f) 4.
- 11. Ordonați crescător numerele $A = \sqrt{2}, B = \sqrt{3}, C = \sqrt[4]{6}$.
 - a) A < C < B; b) C < B < A; c) B < A < C; d) A < B < C; e) B < C < A; f) C < A < B.

12. Să se determine abscisele punctelor de extrem ale funcției

$$f(x) = \frac{2x}{x^2 + 1}, \quad x \in \mathbf{R}.$$

$$a) \ \ -\sqrt{2} \ \text{\emptyset} \ 1; \ b) \ \ -1 \ \text{\emptyset} \ 1; \ c) \ \ -1 \ \text{\emptyset} \ \sqrt{2}; \ d) \ \ -\sqrt{2} \ \text{\emptyset} \ \sqrt{2}; \ e) \ \ 1 \ \text{\emptyset} \ \sqrt{2}; \ f) \ \ -1 \ \text{\emptyset} \ -\sqrt{2}.$$

- 13. Termenul al n-lea al unei progresii aritmetice este $a_n = \frac{3n-1}{6}, \ n \ge 1$. Să se afle suma primilor trei termeni ai progresiei.
 - a) $\frac{4}{3}$; b) $\frac{15}{4}$; c) $\frac{5}{2}$; d) $\frac{15}{2}$; e) $\frac{5}{3}$; f) $\frac{5}{4}$.
- 14. Să se calculeze derivata de ordin doi în punctul $x_0=1$ pentru funcția

$$f(x) = \ln(x+1), \quad x > -1.$$

- a) $-\frac{1}{4}$; b) $\frac{3}{4}$; c) $\frac{2}{3}$; d) $\frac{1}{3}$; e) $\frac{1}{4}$; f) 2.
- 15. Să se calculeze $\lim_{x \to 1} \frac{x^3 + x^2 2}{x 1}.$
 - a) 0; b) 4; c) 2; d) 1; e) 5; f) 3.