

Corentin VAN DEN BROEK D'OBRENAN Sruthiranjani RAVIKULARAMAN

POTENTIAL ENERGY SURFACES

Fission barrier: activation energy required for a nucleus to undergo fission

2D PES: Nucleus energy as a function of elongation ε and left/right asymmetry α 3

 ε increase -> fission barrier falls α 3 tends to 0 -> fission barrier falls

REGRESSION WITH A NEURAL NETWORK - A NEURON

REGRESSION WITH A NEURAL NETWORK - NEURAL NETWORK

OPTIMIZATION OF HYPERPARAMETERS

- 1. The number of hidden layers
- 2. The number of neurons per layer
- 3. The batch size
- 4. The number of epochs
- 5. The activation function
- 6. The loss optimizer
- 7. The loss function

OPTIMIZATION OF HYPERPARAMÉTERS - NUMBER OF NEURONS

OPTIMIZATION OF HYPERPARAMETERS - BATCH SIZE

OPTIMIZATION OF HYPERPARAMÉTERS - OPTIMIZER

OPTIMIZATION OF HYPERPARAMÉTERS

- 1. The number of hidden layers
- 2. The number of neurons per layer
- 3. The batch size
- 4. The number of epochs
- 5. The activation function
- 6. The loss optimizer
- 7. The loss function

- 3 6
- *150*
- 10 60 < len(train_set)
- 2000
- 'relu'
- 'Adamax'
- 'mean_squared_error'

COMMITTEE - IDEA

A single neural network is initialized randomly and can converge to different minima of the loss function. These fluctuations can be removed when using a committee of models.

It also add a useful indicator: the variance.

COMMITTEE - SHARING THE TRAINING SET

Bootstrapping

Splitting

COMMITTEE - SHARING THE TRAINING SET

Splitting

More systematic errors (Less systematic errors

Need less data

Need more data

ACTIVE LEARNING - IDEA

Generating a PES without simulating a PES

The Committee of models gets a an initial set of training points, fits and uses the variance to tell where to add more training data.

Goal: maximize the reconstruction accuracy minimize the size of the training set.

Physical simulation

Generate

Training set (ε, α3, E)

Physical simulation

Committee of NN

Physical simulation

Generate

Training set $(\varepsilon, \alpha 3, E)$

Fit

Grid
(E,a3)

Predict

Committee of NN

ACTIVE LEARNING - RESULTS

Starting with 3% of the dataset

RUN 1: final rmse = 302 keV 10% of the dataset

Predicted PES (Barrier in MeV)

RUN 2: final rmse = 442 keV 9.9% of the dataset

RUN 3: final rmse = 154 keV 25% of the dataset

Difference between predicted and simulated PES (Barrier in MeV)

ACTIVE LEARNING - FINAL THOUGHTS

No optimal hyperparameters for the active learning yet:

- Number of epochs per loop
- Number of models
- Sample size of the train dataset for each model
- Size of the initial train dataset

And most likely many other optimizations could be made

