Big Models, Small Tweaks: Exploring the LoRA Way of Fine-Tuning

Into the talk..

- The concept
- Deep dive into fine tuning

- LoRA
- Set the toy stage

- Fine Tuning with LoRA
- Model sharing

Limitations of LoRA

The Concept

The Large Language Models

LLMs are huuuge..

- Large memory requirement
- Let's assume we are rich, then go ahead!

Memory required for LLaMa weights

# of parameters (B)	GB of RAM (float32s)	GB of RAM (float16s)	GB of RAM (int8s)	GB of RAM (int4s)
7	28	14	7	3.5
13	52	26	13	6.5
32.5	130	65	32.5	16.25
65.2	260.8	130.4	65.2	32.6

Do they always work?

- Prompts are not exhaustive!
- Fine tuning is not off the chart

Deep dive into fine tuning

What is the conventional way of fine tuning?

Layers == matrix of numbers

Train all/some layers

Conventional fine-tuning in the era of large models

- → Llama 3.1 8B
- 32 Layers
- Each layer has 218M params

Conventional way is Resource and Memory intensive!

Memory: 8B params = 8 x 10^9 x 4 Bytes/param

Resource: 218M
params = 218 x 10^6 x
4 Bytes/param x 3
(gradients, 2
moments)

Can fine tuning be made more efficient?

Can fine-tuning be made more efficient?

- Parameter Efficient Fine Tuning(PEFT)
- Adapter based PEFT!
- Learn a few extra parameters
- Less memory requirement

Fundamentals of PEFT

- Adapters vs Adoptees
- Small in size
- Initialization should not disrupt the training process

LoRA

Analysing LoRA

Low Rank Adaptation(LoRA) Fine tuning

16

Validating LoRA through its implementation

Understanding LoRA on large models

Understanding LoRA on MLP

Tee: https://imgflip.com/i/944607

Moving to the code

How to inject adaptors?

Sequential

GPUs memory won't be fully utilized.

Training and Inference time is longer.

How to inject adaptors?

LoRA proposed : Parallel

Adapters Before and After LoRA

Smaller matrix still full rank matrix

Idea behind LoRA?

Recap: SVD (Singular Value Decomposition)

SVD identifies B and C for a given A and r.

LoRA learns B and C, for a given specific downstream task.

How did LoRA design the fine tuning architecture?

How does the forward pass look like?

```
def forward(x):
                                                         Seq.0
                                                         20 x 2000
  seq.0_out = seq.0(x)
  lora_A_out = seq.0.lora_A(x)
  lora_B_out = seq.0.lora_B(lora_A_out)
                                                  Input
                                                      Lora_A Lora_B
                                                      20 x 3 3 x 2000
```

How does the forward pass look like?

```
Seq.0
                                                       20 x 2000
lora_B_out = lora_B_out * alpha
seq.0_lora_out = seq.0_out + lora_B_out
                                                Input
seq.0_lora_out = ReLU(seq.0_lora_out)
                                                    Lora A Lora B
                                                                 Lor
                                                    20 x 3 3 x 2000
```

Alpha decides how much influence should the fine-tuning have on the pretrained models.

How does the forward pass look like?

```
def forward(x):
  seq.0_out = seq.0(x)
  lora_A_out = seq.0.lora_A(x)
  lora_B_out = seq.0.lora_B(lora_A_out)
  lora_B_out = lora_B_out * alpha
  seq.0_lora_out = seq.0_out + lora_B_out
  seq.0_lora_out = ReLU(seq.0_lora_out)
  # Repeat for seq.2
  seq.2(seq.2.lora_out)
  . . .
```


Merging the adaptors

- Expanded network -Additional adapter matrices.
- LoRA adapters are strategically designed to merge with adoptee matrices.

Sharing the model through HF hub

Performance

- Storage efficient : Llama-8B; 5M LoRA params ; r = 2
- Compute efficient

Amplification factor (A)

 \bullet A (r == 2) > A(r == 64)

Limitations

- Multi tasking One adapter per task Cannot
- load multiple adapters for batch with multiple tasks

- Memory Requirement Need both base model
- (GBs) and adapter (MBs) for finetuning and inference.

Potential Solution

QLoRA (Quantized LoRA)

References

