Лекция 7

Мультивибратор

Цель лекции:

Изучение принципа работы мультивибратора.

План лекции:

- 1. Симметричный мультивибратор на ОУ.
- 2. Временные диаграммы симметричного мультивибратора.
- 3. Одновибратор.

Мультивибратором называется электронное устройство, которое предназначено генерирования периодически повторяющихся для прямоугольных импульсов напряжения и может быть использовано в Мультивибратор задающего генератора. качестве относится К релаксационным генераторам, работающим в режиме автоколебаний.

Мультивибраторы могут быть построены на дискретных элементах - транзисторах, туннельных диодах и на интегральных микросхемах - операционных усилителях, компараторах. Мультивибраторы делятся на симметричные и несимметричные. В симметричных мультивибраторах длительность импульса $t_{\rm u}$ и паузы между ними $t_{\rm n}$ совпадают, а в несимметричных $t_{\rm u}$ и $t_{\rm n}$ различны.

Рассмотрим схему симметричного мультивибратора на операционном усилителе (рис. 1). ОУ выполняет в схеме роль компаратора. Для переключения мультивибратора из одного состояния квазировновесия в другое с выхода ОУ на его неинвертирующий вход подается ПОС с помощью цепи R_2R_3 . Для нормальной работы устройства необходимо выполнение условия $K_{\rm II}\cdot\chi>1$, где — χ коэффициент передачи цепи ПОС.

Автоколебательный режим задается интегрирующей цепью C_1R_1 , подключенной к инвертирующему входу. Рассмотрим процессы в схеме при возникновении колебаний (рис. 2).

Рис. 1. Схема симметричного мультивибратора на ОУ

Предположим, что конденсатор C_1 был разряжен $(U_C=0)$, а при включении напряжения питания по цепи выхода ОС выходное напряжения стало положительным. В таком случае вследствие действия ПОС инвертирующий вход будет находиться под положительным потенциалом. ПОС не дает возможность иметь выходное напряжение, отличное от максимальных значений. При промежуточных значениях $U_{\rm Bыx}$ за счет ПОС сразу увеличивается до $U_{\rm Bыx.\it max}^+$ или $U_{\rm Bыx.\it max}^-$. За счет напряжения $U_{\rm Bыx.\it max}^+$ начинает происходить заряд конденсатора током, протекающим через резистор R_1 . При этом на входе $U_{\rm Bx2}$ напряжение будет равно

$$U_{\rm BX2} = U_{\rm Bbix.max}^+ \cdot \chi, \tag{1}$$

где
$$\chi = R_2/(R_2 + R_3)$$

Напряжение U_C увеличивается и при достижении напряжения $U_{\rm Bx2}=U_C$ произойдет обратный скачок. Тогда за счет ПОС на выходе установится напряжение $U_{\rm Bыx.\,max}^-$. На неинвертирующем входе будет напряжение $U_{\rm Bx2}=U_{\rm Bыx.\,max}^-\cdot\chi$ конденсатор начинает перезаряжаться и напряжение на нем будет стремиться к напряжению $U_{\rm Bыx.\,max}^-$.

Рис. 2. Временные диаграммы симметричного мультивибратора

При достижении нового значения $U_{\rm rx2}$ происходит очередной переброс схемы. Таким образом, в схеме устанавливаются колебания. Рассмотрим временные диаграммы мультивибратора. В момент времени t_1 напряжение $U_{\rm on}$ = $U_{\rm bx1}$ достигает величины опорного напряжения ОУ срабатывает как компаратор и выходное $U_{\scriptscriptstyle \mathrm{BMX}}$ и опорное $U_{\scriptscriptstyle \mathrm{OII}}$ = $U_{\scriptscriptstyle \mathrm{BX}\,2}$ напряжения изменяются на противоположные. С момента времени t_1 устанавливается одно из двух возможных квазиустойчивых состояний мультивибратора, и начинается перезарядка конденсатора C от источника питания $+E_{\Pi}$, через резистор обратной связи R_1 . Напряжение $U_{\mathbb{C}}$ на конденсаторе стремится к напряжению $U_{\text{вых},max}^-$ При $t=t_2$ напряжение на конденсаторе станет равным $U_C = -U_{\text{on}}$, произойдет очередной переброс схемы, после которого напряжение $U_{\rm C}$ начинает стремиться к $U_{\rm вых.\,max}^+$. Выходное напряжение мультивибратора представляет собой разнополярные прямоугольные импульсы с амплитудой, равной выходным напряжениям насыщения $U_{\text{вых }max}^+$ и $U_{\text{вых }max}^-$, и с периодом следования T. Емкость C, входящая в цепь отрицательной обратной связи, перезаряжается с постоянной времени $\tau = R_1 C_1$.

Для данной схемы длительности выходных импульсов $t_{\rm u}^+$ и $t_{\rm u}^-$ (длительности нахождения мультивибратора в квазиустойчивых состояниях при $U_{\rm Bыx.}=U_{\rm Bыx.\,max}^+$ и $U_{\rm Bыx.}=U_{\rm Bыx.\,max}^-$) одинаковы и равны:

$$t_{\rm M} = R_1 C_1 \cdot \ln \left(1 + 2 \frac{R_3}{R_2} \right). \tag{2}$$

Такой мультивибратор называется симметричным. Период следования импульсов T определяется выражением:

$$T = 2\tau \cdot \ln\left(1 + 2\frac{R_3}{R_2}\right). \tag{3}$$

Таким образом, данный мультивибратор формирует прямоугольные импульсы напряжения.

Одновибратор

Одновибратор (ждущий мультивибратор) предназначен ДЛЯ формирования прямоугольного импульса напряжения длительности при воздействии на входе короткого запускающего импульса. Следовательно, одновибратор работает в ждущем режиме. Устойчивое состояние одновибратора характеризует исходный режим работы (режим ожидания). Неустойчивое состояние наступает с приходом входного запускающего импульса. Длительность нахождения в этом состоянии определяется времязадающей цепью Потом одновибратор схемы. возвращается в исходное устойчивое состояние. Выходной импульс формируется в результате следования одного за другим двух тактов переключения схемы.

Схема одновибратора, приведенная на рис. 3, отличается от схемы мультивибратора наличием прямого входа через конденсатор C_1 .

Рис. 3. Схема одновибратора

Для создания ждущего режима работы паралельно конденсатору C включен диод VD_1 . При показанном на рис. 3 направлении включения диода VD_1 схема запускается входным импульсом напряжения положительной полярности (рис. 4.a).

В исходном состоянии напряжение на выходе одновибратора равно $U^-_{\text{вых.}max}$, что определяет напряжение на неивертирующем входе ОУ $U_{(+).} = \chi \cdot U^-_{\text{вых.}max}$.

Напряжение на инвертирующем входе ОУ $U_{(-)}$, равное падению напряжения на диоде, при протекании тока по цепи с резистором R_1 , близко к нулю. Поступающий входной импульс в момент времени t_1 (рис. 4.21, a) переводит ОУ в состояние $U_{\text{вых.}} = U_{\text{вых.}}^+$ на неивертирующий вход ОУ передается напряжение $\chi \cdot U_{\text{вых.}}^+$ поддерживающее его изменившееся состояние. Воздействие напряжения положительной полярности на выходе

ОУ вызывает процесс заряда конденсатора C в цепи с резистором R_1 , в которой конденсатор стремится зарядиться до напряжения $U_{\text{вых.}max}^+$. Однако в процессе заряда емкости напряжение U_{C} не достигает $U_{\text{вых.}max}^+$, так как в момент времени t_2 (рис. 4. δ - ε) при $U_{(-)} = \chi \cdot U_{\text{вых.}max}^+$ происходит возврат ОУ в исходное состояние.

Рис. 4. Временные диаграммы одновибратора

После момента времени t_2 в схеме наступает процесс восстановления исходного напряжения на конденсаторе U_C =0 (рис. 4.21, ε), который обусловливается изменившейся полярностью напряжения на выходе ОУ.

Режим восстановления заканчивается тем, что напряжение на конденсаторе достигает напряжения отпирания диода VD_1 , которое можно принять равным нулю. Процесс восстановления исходного состояния схемы должен быть завершен к приходу очередного запускающего импульса.

Длительность импульса одновибратора равна $t_{\rm u} = R_1 C \cdot \ln(1 + R_2/R_3)$, она может регулироваться изменением величины резистора R_1 или соотношения R_2/R_3 . Регулирование $t_{\rm u}$ изменением величины C производится редко вследствие трудности создания на микросхемном уровне переменного конденсатора.