Análise estatística por aleatorização, *bootstrap* e Monte Carlo

Pavel Dodonov pdodonov@gmail.com

Laboratório de Ecologia Aplicada à Conservação (LEAC) Universidade Estadual de Santa Cruz (UESC) Ilhéus - BA

Aula teórica 2

Testes por permutação:
Comparando médias
Comparando variâncias
ANOVA
Regressão linear

Duas amostras independentes

Hipótese: duas populações

Hipótese: duas populações

Amostragem

Duas amostras independentes

H_o: Uma única população

Problema: Só temos as amostras!

Solução Monte Carlo: simula a população a partir das amostras

População simulada

Hipótese nula

Todos os indivíduos fazem parte da mesma população

Hipótese nula

Cada indivíduo tem a mesma probabilidade de entrar na amostra 1 ou na amostra 2

Solução Monte Carlo: simula a população a partir das amostras

Observado VS Esperado na H₀

Abordagem Monte Carlo

Realizar muitas (e.g. 5000) simulações da H₀ e comparar com o valor observado

Diferença nas médias

Para testar significância

Comparar a diferença real entre as médias com as simuladas

Diferentes variâncias

Razão de variâncias

Variância maior dividida pela variância menor

Mais um exemplo numérico

Diferenças nas médias e nas variâncias

Mais um exemplo numérico

Mais complicado, mas não impossível de analizar

Mais um exemplo numérico

Para comparar variância: usar resíduos

Amostras pareadas

- Valor médio difere?
 - H₀: não existe efeito do tratamento

Amostras pareadas

- Valor médio difere?
 - H₀: não existe efeito do tratamento
 - Diferenças positivas e negativas são igualmente prováveis
 - Trabalhamos com a soma (absoluta) das diferenças

Amostras pareadas

- Valor médio difere?
 - H₀: não existe efeito do tratamento
 - Diferenças positivas e negativas são igualmente prováveis
 - Trabalhamos com a soma (absoluta) das diferenças
 - Alocar cada amostra aleatoriamente a um tratamento

Regressão linear

- Relação entre duas variáveis
 - Coeficiente de correlação e inclinação da regressão são estatísticas equivalentes para permutações

- Hipótese nula
 - Não existe relação entre as duas variáveis

Como aleatorizar?

- Aleatorizando valores
 - Associamos
 aleatoriamente
 valores de X e de Y

- Aleatorizando resíduos
 - Resíduos e valores de X não são correlacionados
 - Aproximaria a
 distribuição de
 resíduos na hipótese
 nula

$$t = \frac{b}{SE(b)}$$

Duas regressões lineares

 Relação entre duas variáveis em dois grupos

Duas regressões

Como aleatoriezar?

Comparando três grupos ou mais

ANOVA

- Testes t repetidos:
 problema das
 comparações
 múltiplas
- Compara a
 variação que
 existe entre
 grupos e dentro
 de grupos

Análise de Variância

- Variação entre grupos
 - Efeito dos tratamentos
 - Quão longe a média de cada grupo está da média global

$$SS_{entre} = \sum_{i=1}^{k} n_i (\bar{X}_i - \bar{X})^2$$

$$DF_{entre} = k - 1$$

$$SS$$

Análise de Variância

- Variação intra grupos
 - Variação residual
 - O que o tratamento não explica
 - Distância entre cada ponto e a média do grupo

$$SS_{intra} = \sum_{i=1}^{k} \left[\sum_{j=1}^{n_i} (X_{ij} - \bar{X} + i)^2 \right]$$

$$MS_{intra} = \frac{SS_{intra}}{DF_{intra}}$$

k grupos

Variância

Análise de Variância

- Estatística F
 - Variação entre grupos pela variação residual

$$F = \frac{MS_{entre}}{MS_{intra}}$$

Exemplo – efeitos de borda

Borda do fragmento

Interior do fragmento

Exemplo – efeitos de borda

ECOSPHERE

Quantifying distance of edge influence: a comparison of methods and a new randomization method

K. A. Harper¹,† and S. E. Macdonald²

The role of edge contrast and forest structure in edge influence: vegetation and microclimate at edges in the Brazilian cerrado

Pavel Dodonov · Karen A. Harper · Dalva M. Silva-Matos

