programming

หนอน (worm)

1 second, 128 megabytes

หลังจากคุณหยุดระบบรักษาความปลอดภัยที่ทำงานกะทันหันจากความผิดพลาดของตัวคุณเองได้สำเร็จ ถึงเวลาแล้วที่ จะต้องหาแผนการใหม่ หลังจากครุ่นคิดอยู่ชั่วครู่ แผนการอันแยบยลก็ผุดขึ้นมาในสมองคุณ นั่นคือการถล่มด้วยหนอน เ

แต่แล้วปัญหาก็เกิดขึ้นอีกแล้ว เมื่อคุณพบว่าในการยิงหนอนแต่ละตัวนั้น ต้องใช้ค่าไฟมากยิ่งขึ้นไปอีก เหล่สายตาไป มองตัวเลขบนบิลค่าไฟที่อยู่ข้าง ๆตัว นั่นทำให้คุณตกที่นั่งลำบากอีกเสียแล้ว

คุณมีหนอนอยู่ทั้งหมด N ตัว แต่ละตัวมีค่าไฟในการยิงและจำนวนข้อมูลที่สามารถทำลายได้แตกต่างกันไป การคิดค่า ไฟในการยิงหนึ่งครั้งจะคิดโดยคิดตามค่าไฟของหนอนตัวที่มีมูลค่ามากที่สุด ตัวอย่างเช่น ถ้ามีหนอน 5 ตัว มีจำนวน ข้อมูลที่ทำลายได้และค่าไฟ ดังนี้

หนอนตัวที่	จำนวนข้อมูลที่ทำลายได้	ค่าไฟ
1	3	30
2	6	10
3	10	20
4	7	50
5	18	70

ถ้าเลือกยิงหนอนตัวที่ 1,3,5 ซึ่งใช้ค่าไฟ 30,20,70 ตามลำดับ จะต้องเสียค่าไฟในการยิงทั้งหมด 70 หน่วย แต่ถ้า เลือกยิงหนอนตัวที่ 3,4 ซึ่งใช้ค่าไฟ 20,50 ตามลำดับ จะต้องเสียค่าไฟในการยิงทั้งหมด 50 หน่วย

คุณสามารถนิยามอัตราส่วนความคุ้มค่าของการยิงหนอนให้มีค่าเท่ากับ **จำนวนข้อมูลที่ทำลายได้ทั้งหมด หารด้วย** ค่าไฟที่ใช้ในการยิง ซึ่งแน่นอนว่าคุณไม่ต้องการจะเสียค่าไฟให้เยอะกว่าเดิมโดยเปล่าประโยชน์

โจทย์ เขียนโปรแกรมที่รับข้อมูลของหนอนทั้งหมด N ตัว และคำนวณหาอัตราส่วนความคุ้มค่าที่มากที่สุดที่เป็นไปได้

ข้อมูลนำเข้า

บรรทัดแรก รับจำนวนเต็ม $N~(1 \leq N \leq 100\,000)$ แทนจำนวนของหนอน

บรรทัดที่ 2 **ถึง** N+1 ในบรรทัดที่ i+1 จะรับข้อมูลที่ประกอบด้วยจำนวนเต็ม D_i และ C_i $(0 \le D_i \le 50\,000; 1 \le C_i \le 800\,000\,000)$ แทนจำนวนข้อมูลที่ทำลายได้ และค่าไฟที่ใช้ในการยิงของหนอนตัวที่ i ตามลำดับ

programming in th

ข้อมูลส่งออก

มีบรรทัดเดียว แสดงจำนวนข้อมูลที่คุณสามารถทำลายได้ทั้งหมด และค่าไฟที่ใช้ในการยิง คั่นด้วยช่องว่าง 1 ช่อง ใน วิธีที่มีอัตราส่วนความคุ้มค่าที่มากที่สุด

หมายเหตุ หากมีวิธีค่าส่งหลายวิธีให้ตอบวิธีที่ใช้ค่าไฟน้อยที่สุด

ตัวอย่างข้อมูลนำเข้าและข้อมูลส่งออก

ตัวอย่างข้อมูลนำเข้า	ตัวอย่างข้อมูลส่งออก	
5	16 20	
3 30		
6 10		
10 20		
7 50		
18 70		

คำอธิบาย

อธิบายตัวอย่างข้อมูลนำเข้าและส่งออกที่ 1

ถ้าเลือกยิงหนอนตัวที่ 2 และ 3 จะสามารถทำลายข้อมูลได้รวมเท่ากับ 16 และเสียค่าไฟ 20 หน่วย ซึ่งมีอัตราส่วน ความคุ้มค่า =0.80 ซึ่งเป็นค่าที่มากที่สุดในการยิงหนอนครั้งนี้

การให้คะแนน

30% ของชุดข้อมูลทดสอบ: $N \leq 20\,000$ 100%ของข้อมูลทดสอบ: $N \leq 100\,000$

แหล่งที่มา

ศรัณย์ ไพศาลศรีสมสุข

TOI.C:01-2009