

Informed Route Planning Algorithms

Jonas Blocher

Fig. 1 https://goo.gl/maps/he7dryepb1nauwYZ6

Agenda

- 1. Shortest Path Problem
- 2. Best-first Search
- 3. Dijkstra's Algorithm
- 4. A* Algorithm
- 5. Speedup Techniques
- 6. Efficiency Comparison
- 7. Conclusion

Fig. 2 https://uncrate.com/exploride-heads-up-car-display/

Shortest Path Problem

Definition

- \rightarrow Graph G = (N, E)
- Nodes $N = \{A, B, C, D, E, F\}$
- Edges $E = \{\{A, B\}, \{B, C\}, \{B, D\}, ...\}$
- Each edge $\{u, v\}$ has weight value w(u, v)
- For each path (s, ..., t) total cost c(s, t) can be calculated
- "Shortest Path" is path with minimal cost

Shortest Path Problem

Practical Applications

Fig. 3 https://goo.gl/maps/X3dcQ5f7YqhbkP17A

Fig. 6 https://3dswiss.net/luftaufnahmen/

Fig. 4 https://www.viro-group.com/de/specials/cable-routing/

Fig. 5 https://library.amd.com/media/?mediald=DE133045-FEF1-4B57-A4741EC209817C03

Fig. 7 https://www.supplychainbrain.com/blogs/1-think-tank/post/28906-the-robotic-future-of-manufacturing

Fig. 8 https://de.wikipedia.org/wiki/Zauberw%C3%BCrfel#/media/Datei:Rubik's cube v3.svg

Best-first Search

- > Superimpose search tree over graph
- > Start node is root
- Leaf nodes are expanded
 - New neighbors added to the tree as child nodes

Best-first Search

- > Superimpose search tree over graph
- > Start node is root
- Leaf nodes are expanded
 - > New neighbors added to the graph as child nodes
- \rightarrow **Interior** region with already expanded nodes $\{B\}$
- \rightarrow **Exterior** region with unreached nodes $\{E, F\}$
- > **Frontier** with unexpanded leave nodes $\{A, C, D\}$

Which node to expand first?

Best-first Search

- Superimpose search tree over graph
- > Start node is root
- Leaf nodes are expanded
 - > New neighbors added to the graph as child nodes
- > **Interior** region with already expanded nodes $\{B\}$
- \rightarrow **Exterior** region with unreached nodes $\{E, F\}$
- Frontier with unexpanded leave nodes {A, C, D}

Which node to expand first?

- \rightarrow Evaluation function f(n)
- Expand "Best" Node with minimal f(n) first

Uniform cost search

> Path cost from root s to node n is evaluation function

$$f(n) = c(s, n)$$

Edsger W. Dijkstra, 2002

Fig. 9 https://de.wikipedia.org/wiki/Edsger_W._Dijkstra#/media/Datei:Edsger_Wybe_Dijkstra.jpg

Example

After expanding B:

Frontier $\{A, C, D\}$

$$f(A) = c(B, A) = 3$$

 $f(C) = c(B, C) = 5$
 $f(D) = c(B, D) = 2$

$$f(D) < f(A) < f(C)$$

 \rightarrow Expand D

Example

After expanding D:

Frontier {*A*, *C*, *E*, *F*}

$$f(A) = c(B, A) = 3$$

 $f(C) = c(B, C) = 5$
 $f(E) = c(B, E) = 2 + 10 = 12$
 $f(F) = c(B, F) = 2 + 6 = 8$

$$f(A) < f(C) < f(F) < f(E)$$

 \rightarrow Expand A

Example

After expanding A:

Frontier $\{C, E, F\}$

$$f(C) = c(B, C) = 5$$

 $f(E) = c(B, E) = 2 + 10 = 12$
 $f(F) = c(B, F) = 2 + 6 = 8$

$$f(C) < f(F) < f(E)$$

> Expand *C*

Example

After expanding C:

Frontier $\{E, F\}$

$$f(E) = c(B, E) = 5 + 4 = 9$$

 $f(F) = c(B, F) = 2 + 6 = 8$

 \rightarrow Expand F

Example

After expanding F:

Frontier $\{E\}$

$$f(E) = c(B, E) = 5 + 4 = 9$$

 \rightarrow Expand E

Example

After expanding F:

Frontier $\{E\}$

$$f(E) = c(B, E) = 5 + 4 = 9$$

- \rightarrow Expand E
 - Goal reached
 - \rightarrow Shorthest path is (B, C, E)

Evaluation

> Is **complete**

Guaranteed to find solution if there is one & guaranteed to report failure

> Is **cost-optimal**

Solution is guaranteed to be shortest path

High time complexity

- Nodes are expanded with uniform cost
- > Circular expansion outwards from root
- Not directed towards target

Goal directed search

- Shorthest Path leads towards the target
- Use heuristic for guidance

$$f(n) = g(n) + h(n)$$

Shakey-the-robot

 $Fig.\ 10\ \underline{https://www.researchgate.net/figure/Shakey-the-robot-Probably-the-first-mobile-robot-lt-was-developed-at-the-Artificial\ \underline{fig2}\ \underline{259503287}$

Heuristics

- > Estimated cost of shortest path from node to target
- > Admissible heuristics never overestimate cost to reach the goal
- > Inadmissible heuristics can return bigger values than the actual cost
 - Only admissible heuristics are cost-optimal
- > Common in routing: **Euclidean distance**

$$h(n) = \sqrt{(x_n - x_t)^2 + (y_n - y_t)^2}$$

- $h(n) = 0 \rightarrow f(n) = g(n)$ is Dijkstra's Algorithm
- > Adding weight to the heuristic (inadmissible but faster):

$$f(n) = g(n) + W \times h(n) \qquad W > 0$$

Example

After expanding B:

Frontier $\{A, C, D\}$

$$f(A) = c(B, A) + h(A) = 3 + 8 = 11$$

 $f(C) = c(B, C) + h(C) = 5 + 2 = 7$
 $f(D) = c(B, D) + h(D) = 2 + 6 = 8$

$$f(C) < f(D) < f(A)$$

> Expand *C*

Example

After expanding C:

Frontier $\{A, D, E\}$

$$f(A) = c(B,A) + h(A) = 3 + 8 = 11$$

 $f(D) = c(B,D) + h(D) = 2 + 6 = 8$
 $f(E) = c(B,E) + h(E) = 9 + 0 = 9$

$$f(D) < f(E) < f(A)$$

 \rightarrow Expand D

Example

After expanding D:

Frontier $\{A, E, F\}$

$$f(A) = c(B,A) + h(A) = 3 + 8 = 11$$

 $f(E) = c(B,E) + h(E) = 9 + 0 = 9$
 $f(F) = c(B,F) + h(F) = 8 + 4 = 12$

$$f(E) < f(A) < f(F)$$

 \rightarrow Expand E

Example

After expanding D:

Frontier $\{A, E, F\}$

$$f(A) = c(B,A) + h(A) = 3 + 8 = 11$$

 $f(E) = c(B,E) + h(E) = 9 + 0 = 9$
 $f(F) = c(B,F) + h(F) = 8 + 4 = 12$

$$f(E) < f(A) < f(F)$$

- \rightarrow Expand E
 - Goal reached
 - \rightarrow Shorthest path is (B, C, E)

Evaluation

- > Is **complete**
- > Is **cost-optimal** if an **admissible heuristic** was used
- Lower time complexity than Dijkstra's alg.
 - Nodes are expanded towards target
 - Less Nodes to expand
 - Dependent on accuracy of heuristic
 - Weighted A* is even faster, while not cost-optimal

Comparison of A* and weighted A* with W=2

Speedup Techniques

Landmarks

- A* still million times slower than modern navigation systems
- Landmarks spread around perimeter of network
- Precomputation of shortest paths to landmarks
- \rightarrow Heuristic based on cost from node to landmark $C^*(n, L)$

$$h_{DH}(n) = \max_{L \in Landmarks} |C^*(n, L) - C^*(t, L)|$$

Fig. 11 http://algo2.iti.kit.edu/documents/routeplanning/hhStarSubmit.pdf

Speedup Techniques

Highway Hierarchies

- Utilizing hierarchical structure of road networks
- Defining neighbourhoods & highway network interconnecting the neighbourhoods
- Outside of neighbourhood, only important nodes are considered, bypassable nodes are contracted
- Multiple levels of highway networks in hierarchical order
- Greatly reduces number of nodes
- Distance tables can hold precomputed cost for all nodes in highway network

Fig. 12 http://algo2.iti.kit.edu/documents/routeplanning/hhStarSubmit.pdf

Efficiency Comparison

method	pub. date	space	preproc.	<u>speedup</u>
	mm/yy	[B/n]	[min]	
Dijkstra's Algorithm	08/59	21	0	1
A* + Landmarks	07/04	89	13	28
Highway Hierarchies	04/05	49	161	2 645
A* + Highway Hierarchies + Distance Tables	08/06	92	14	12 902
Transit Nodes + Edge Flags	01/08	341	229	3 327 327

Conclusion

- > Information about the network can be used to create optimized algorithms
- → A* is able to reduce time-complexity compared to Dijkstra's Algorithm
- → If an admissible heuristic is used, A* is cost-optimal and complete
- Modern techniques such as landmarks or highway hierarchies and distance tables can further speed up search queries up to 12 000 times

QUESTIONS TIME

Let's start the discussion!