Seminar 5 Solutions

Giulio Rossetti*

giuliorossetti94.github.io

February 13, 2025

^{*} email: giulio.rossetti.1@wbs.ac.uk

Disclaimer

Full solutions are available on my.wbs. All exercises are examinable material, not just the ones we covered in the seminars.

Roadmap

Exercise 1

Exercise 3

Exercise 4

Q: The OLS estimator in a time-series setting is unbiased under the first three Gauss-Markov assumptions.

- 1. liverity in pavous
- 2. no multipoliveavity
- 3. ELuclx]=0 strict exogeneity

Q: The OLS estimator in a time-series setting is unbiased under the first three Gauss-Markov assumptions.

- 1. TS.1: Linearity in parameters
- 2. TS.2: No perfect collinearity
- 3. TS.3: Strict exogeneity/ Zero conditional mean

When we add the following two assumptions, the OLS estimator is also BLUE.

- 4. TS.4: Homoskedasticity ver (ue 1x) = 5
- 5. TS.5: No serial correlation cow (ue, us) = 0 t≠s

Q: A trending variable cannot be used as a dependent variable in the

multiple linear regression model.

Q: A trending variable cannot be used as a dependent variable in the multiple linear regression model.

- Trending variables can be used as dependent variables in a linear regression model.
- However, be cautious when interpreting the results:
 - **spurious relationship** between y_t and trending explanatory variables.
- Including a time trend in the regression is advisable when dependent and/or independent variables are trending.
- The usual \mathbb{R}^2 measure can be misleading when the dependent variable is trending.

Q: Seasonality is not an issue when using annual time-series observations. The

Q: Seasonality is not an issue when using annual time-series observations.

 Each period represents a year and this is not associated with any season.

Roadmap

Exercise 1

Exercise 3

Exercise 4

Weakly Stationary Process: Correlation

Let $\{x_t : t = 1, 2, \dots, T\}$ be a weakly stationary process.

Define $\gamma_h = \operatorname{Cov}(x_t, x_{t+h})$ for $h \geq 0$. Then $\gamma_0 = \operatorname{Var}(x_t)$. Show that

$$Corr(x_t, x_{t+h}) = \frac{\gamma_h}{\gamma_0}.$$

Weak (or covariance) Stationarity

A stochastic process $\{x_t : t = 1, 2, ...\}$ is said to be weakly stationary if:

$$\mathbb{E}(x_t) = \mu, \quad \mathrm{Var}(x_t) = \sigma^2, \quad \mathrm{Cov}(x_t, x_{t+h}) = f(h).$$
 $\in [\times \in] = \in [\times \in] = \mu$

A weakly stationary process is uniquely determined by its mean, variance, and autocovariance function.

Derivation: Q(X,Y) = Cov(X,Y)310(x) std (y) com(xe, xeth) = / cov(xe, xeth) Vvar(xe) V (xeth) = cov (xe, xe+0) = cov(xe, xe)

Roadmap

Exercise 1

Exercise 3

Exercise 4

Suppose that a time-series process $\{x_t: t=1,2,\ldots,T\}$ is given by

$$x_t = z + \epsilon_t$$

for all $t=1,2,\ldots,T$, where ϵ_t is an i.i.d. sequence with mean zero and variance σ^2_ϵ . The random variable z is constant over time, and it has mean zero and variance σ^2_z . Furthermore, assume that ϵ_t is uncorrelated with z.

Exercise 4
$$E[x+y] = E[x] + E[y]$$

 $Ver(x+y) = ver(x) + ver(y) + zeou(x,y)$

Q: Find the expected value and variance of x_t . Do your answers depend on t^2 . $E. \Gamma \times_t 1$.

on
$$t$$
? $E[x_{e}]$, $var(x_{e})$

$$x_{e} = z + \varepsilon_{e} \qquad \varepsilon_{e}iii(0,0_{e}^{2}) \qquad z_{e}i(0,0_{e}^{2})$$

$$cou(z,\varepsilon_{e})=0$$

$$e[x_{e}] = E[z + \varepsilon_{e}]$$

$$e[z] + E[\varepsilon_{e}]$$

$$e[z] + E[\varepsilon_$$

COV(X,Y)= E[XY] - E[X] E[Y] (=

Exercise 4

Q: Find $Cov(x_t, x_{t+h})$ for any t and h. Is x_t a weakly stationary process?

$$COV(\times_{e_1} \times_{e+h}) = E[\times_{e} \times_{e+h}] - E[\times_{e}] E[\times_{e+h}]$$

$$= E[\times_{e} \times_{e+h}]$$

$$= E[\times_{e} \times_{e+h}]$$

$$= E[\times_{e} \times_{e+h}]$$

$$= E[\times_{e} \times_{e+h}] + E[\times_{e} \times_{e+h}]$$

$$= E[\times_{e} \times_{e+h}] + E[\times_{e} \times_{e+h}] + E[\times_{e} \times_{e+h}]$$

$$= E[\times_{e} \times_{e}] - E[\times_{e} \times_{e+h}] + E[\times_{e} \times_{e+h}]$$

$$= E[\times_{e} \times_{e}] - E[\times_{e} \times_{e}] = E[\times_{e} \times_{e+h}]$$

$$= E[\times_{e} \times_{e}] - E[\times_{e} \times_{e+h}] = E[\times_{e} \times_{e+h}]$$

$$= E[\times_{e} \times_{e+h}] - E[\times_{e} \times_{e+h}]$$

Xt is a weakly scationary process

Exercise 4
$$COV(X,Y) = E[XY] - E[X]E[Y]$$
 $OV(Z, Eegn) = E[ZEegn] - E[Z]E[Eegn]$ $OV(Z, Eegn) = E[ZEegn]$

Q: Show that $\operatorname{Corr}(x_t, x_{t+h}) = \frac{\sigma_z^2}{\sigma_z^2 + \sigma_\epsilon^2}$ for any t and h.

$$CONT(Xe, Xeth) = \frac{COV(Xe, Xeth)}{cdd(Xe) std(Xeth)} = \frac{COV(Xe, Xeth)}{vot completed}$$

$$= \frac{\sigma^2 z}{\sigma^2 z + \sigma^2 z} \qquad vot completed$$

$$= \frac{\sigma^2 z}{\sigma^2 z + \sigma^2 z} \qquad line \frac{\sigma z}{\sigma^2 z + \sigma^2 z} \qquad 0 \approx ymp totically$$

$$= \frac{\sigma^2 z}{\sigma^2 z + \sigma^2 z} \qquad line \frac{\sigma z}{\sigma^2 z + \sigma^2 z} \qquad 0 \approx yhh$$

$$= \frac{\sigma^2 z}{\sigma^2 z + \sigma^2 z} \qquad vot completed$$

$$= \frac{\sigma^2 z}{\sigma^2 z + \sigma^2 z} \qquad vot completed$$

$$= \frac{\sigma^2 z}{\sigma^2 z + \sigma^2 z} \qquad vot completed$$

$$= \frac{\sigma^2 z}{\sigma^2 z + \sigma^2 z} \qquad vot completed$$

$$= \frac{\sigma^2 z}{\sigma^2 z + \sigma^2 z} \qquad vot completed$$

$$= \frac{\sigma^2 z}{\sigma^2 z + \sigma^2 z} \qquad vot completed$$

$$= \frac{\sigma^2 z}{\sigma^2 z + \sigma^2 z} \qquad vot completed$$

$$= \frac{\sigma^2 z}{\sigma^2 z + \sigma^2 z} \qquad vot completed$$

$$= \frac{\sigma^2 z}{\sigma^2 z + \sigma^2 z} \qquad vot completed$$

$$= \frac{\sigma^2 z}{\sigma^2 z + \sigma^2 z} \qquad vot completed$$

$$= \frac{\sigma^2 z}{\sigma^2 z + \sigma^2 z} \qquad vot completed$$

$$= \frac{\sigma^2 z}{\sigma^2 z + \sigma^2 z} \qquad vot completed$$

$$= \frac{\sigma^2 z}{\sigma^2 z + \sigma^2 z} \qquad vot completed$$

$$= \frac{\sigma^2 z}{\sigma^2 z + \sigma^2 z} \qquad vot completed$$

$$= \frac{\sigma^2 z}{\sigma^2 z + \sigma^2 z} \qquad vot completed$$

$$= \frac{\sigma^2 z}{\sigma^2 z + \sigma^2 z} \qquad vot completed$$

$$= \frac{\sigma^2 z}{\sigma^2 z + \sigma^2 z} \qquad vot completed$$

$$= \frac{\sigma^2 z}{\sigma^2 z + \sigma^2 z} \qquad vot completed$$

$$= \frac{\sigma^2 z}{\sigma^2 z + \sigma^2 z} \qquad vot completed$$

$$= \frac{\sigma^2 z}{\sigma^2 z + \sigma^2 z} \qquad vot completed$$

$$= \frac{\sigma^2 z}{\sigma^2 z + \sigma^2 z} \qquad vot completed$$

$$= \frac{\sigma^2 z}{\sigma^2 z + \sigma^2 z} \qquad vot completed$$

$$= \frac{\sigma^2 z}{\sigma^2 z + \sigma^2 z} \qquad vot completed$$

$$= \frac{\sigma^2 z}{\sigma^2 z + \sigma^2 z} \qquad vot completed$$

$$= \frac{\sigma^2 z}{\sigma^2 z + \sigma^2 z} \qquad vot completed$$

$$= \frac{\sigma^2 z}{\sigma^2 z + \sigma^2 z} \qquad vot completed$$

$$= \frac{\sigma^2 z}{\sigma^2 z + \sigma^2 z} \qquad vot completed$$

$$= \frac{\sigma^2 z}{\sigma^2 z + \sigma^2 z} \qquad vot completed$$

$$= \frac{\sigma^2 z}{\sigma^2 z + \sigma^2 z} \qquad vot completed$$

$$= \frac{\sigma^2 z}{\sigma^2 z + \sigma^2 z} \qquad vot completed$$

$$= \frac{\sigma^2 z}{\sigma^2 z + \sigma^2 z} \qquad vot completed$$

$$= \frac{\sigma^2 z}{\sigma^2 z + \sigma^2 z} \qquad vot completed$$

$$= \frac{\sigma^2 z}{\sigma^2 z + \sigma^2 z} \qquad vot completed$$

$$= \frac{\sigma^2 z}{\sigma^2 z + \sigma^2 z} \qquad vot completed$$

$$= \frac{\sigma^2 z}{\sigma^2 z + \sigma^2 z} \qquad vot completed$$

$$= \frac{\sigma^2 z}{\sigma^2 z + \sigma^2 z} \qquad vot completed$$

$$= \frac{\sigma^2 z}{\sigma^2 z + \sigma^2 z} \qquad vot completed$$

corr(xe, xeth) =
$$\frac{0^2}{0^2+0^2} \times \frac{1}{h}$$
.

Roadmap

Exercise 1

Exercise 3

Exercise 4

model
$$\chi_t = \beta_0 + \beta_1 \times_{t-1} + u_t$$
 $\beta_1 < 1 = \infty$ β_1

Source	33	df	MS		Number of obs	
Model Residual	10.6866231	1 10.6 687 4.45	866231		F(1, 687) Prob > F R-squared	= 2.4 = 0.121 = 0.003
Total	3070.42479	688 4.46	282673		Adj R-squared Root MSE	= 0.002 = 2.110
return	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval
return_1 _cons	.0588984 .179634	.0380231	1.55	0.122	0157569 .0211034	.133553

Figure: Predictive Model for Stock Returns

Q: Compute the uncoditional mean and variance of the returns.

- AR(1) model: $\operatorname{Return}_t = \beta_0 + \beta_1 \operatorname{Return}_{t-1} + u_t$.
- uncoditional mean: $\mathbb{E}(\operatorname{Return}_t) = \frac{\beta_0}{1-\beta_1}$.
- uncoditional variance: $Var(Return_t) = \frac{\sigma^2}{1-\beta_1^2}$.
- use $\hat{\sigma}^2$ as an estimator of σ^2

$$\hat{\sigma}^2 = \frac{\hat{u}'\hat{u}}{T - k - 1}$$

$$\times \epsilon = \beta_0 + \beta_1 \times \epsilon_1 + 4\epsilon \qquad \text{ue in } (0, \sigma^2)$$

$$= \left[\left[\left[\beta_0 + \beta_1 \times \epsilon_{-1} + 4\epsilon \right] \right] \right] \beta_0$$

$$= \left[\left[\left[\beta_0 \right] + \beta_1 \mathcal{E} \left[\times \epsilon_{-1} \right] + \mathcal{E} \left[\left[4\epsilon_1 \right] \right] \right]$$

$$= \left[\left[\left[\times \epsilon_{-1} \right] + \beta_1 \mathcal{E} \left[\times \epsilon_{-1} \right] \right]$$

$$= \left[\left[\times \epsilon_{-1} \right] = \beta_0 + \beta_1 \mathcal{E} \left[\times \epsilon_{-1} \right]$$

$$E[Xe] = 30 = 0.17 = 0.19 = E[tetume]$$
 $1 - 31 = 1 - 0.058$