M62. 1. THÉORÈME DE CAUCHY-LIPSCHITZ

O. GOUBET

1. Equations différentielles ordinaires

On appelle EDO une équation différentielle ordinaire. Comme on va le voir tout de suite il faut distinguer EDP et problème de Cauchy.

1.1. **Problème de Cauchy.** Soit I intervalle de \mathbb{R} contenant 0. Soit f: $\mathbb{R} \times \mathbb{R}^d \to \mathbb{R}^d$ une application continue. Soit y_0 dans \mathbb{R}^d , dite "donnée de Cauchy".

Définition 1.1 (Problème de Cauchy). On appelle problème de Cauchy la recherche d'une fonction y(t) de classe C^1 définie sur I (i.e. au voisinage de 0) telle que

(1.1)
$$\dot{y} = f(t, y), y(0) = y_0.$$

La solution du problème de Cauchy est alors un intervalle I contenant 0 et une fonction de classe C^1 notée $y:I\to\mathbb{R}^d$ qui vérifie $y(0)=y_0$ et $\dot{y}=f(t,y)$ où $\dot{y}=y'=\frac{dy}{dt}$. On dit que y est solution alors que l'on devrait dire que c'est le couple (y,I) qui est solution.

Exemple: soit l'EDO $\ddot{x} + x = 0$. En posant $Y = \begin{pmatrix} x \\ \dot{x} \end{pmatrix}$ on a le système .

 $\dot{Y} = F(Y)$ avec $F(Y) = \begin{pmatrix} \dot{x} \\ -x \end{pmatrix}$. Si on ajoute la donnée $(x(0), \dot{x}(0))$ on a un problème de Cauchy.

Remarque 1.2. Le problème suivant est aussi un problème de Cauchy.

(1.2)
$$\dot{y} = f(t, y), y(t_0) = y_0; \ t_0 \neq 0$$

Il suffit de chercher $z(t) = y(t+t_0)$ pour se ramener au problème de Cauchy avec donnée initiale en 0.

1.2. **Généralisations.** Plus généralement si on note $y^{(p)} = \frac{d^p y}{dt^p}$ le système différentiel **d'ordre** m, où ici y est une fonction à valeurs dans \mathbb{R} ,

$$y^{(m)} = f(t, y, \dot{y}, \dots, y^{(m-1)}),$$

s'écrit aussi comme un système différentiel d'ordre 1 sur \mathbb{R}^m

$$\dot{Y} = \begin{pmatrix} \dot{y} \\ \dots \\ f(t, y, \dot{y}, \dots, y^{(m-1)} \end{pmatrix}$$

en posant
$$Y = \begin{pmatrix} y \\ \dot{y} \\ \dots \\ y^{(m-1)} \end{pmatrix}$$

Soit Ω un ouvert de \mathbb{R}^d et $y_0 \in \Omega$. Soit f une fonction continue de $\mathbb{R} \times \Omega$ dans \mathbb{R}^d .

Définition 1.3 (Problème de Cauchy, revisité). On appelle problème de Cauchy la recherche d'une fonction y(t) de classe C^1 au voisinage de 0 à valeurs dans Ω telle que

(1.3)
$$\dot{y} = f(t, y), y(0) = y_0.$$

Définition 1.4 (Equation autonome). Une EDO est dite autonome si le second membre f(y) ne dépend pas de t.

Remarque 1.5. Toute équation de type $\dot{y} = f(t, y)$ sur \mathbb{R}^m se définit aussi comme une équation autonome sur \mathbb{R}^{m+1} en posant

$$Y = \begin{pmatrix} y \\ t \end{pmatrix}$$
 et $\dot{Y} = \begin{pmatrix} f(t,y) \\ 1 \end{pmatrix}$.

2. Théorème de Cauchy-Lipschitz

2.1. **Première version.** Soit $f: \mathbb{R} \times \mathbb{R}^d \to \mathbb{R}^d$ une application continue. Soit y_0 dans \mathbb{R}^d , dite "donnée de Cauchy". On dit que f est **globalement lipschitzienne** par rapport à la variable y si il existe une constante L telle que pour tous t, y, z, si ||y|| est la norme euclidienne sur \mathbb{R}^d

$$(2.1) ||f(t,y) - f(t,z)|| \le L||y - z||.$$

Théorème 2.1 (Cauchy-Lipschitz). Supposons de plus la fonction f globalement lipschitzienne par rapport à la variable y. Alors il existe une unique solution y(t) au problème de Cauchy définie de $I = \mathbb{R}$ dans \mathbb{R}^d . Cette solution définie sur \mathbb{R} tout entier est appelée solution globale.

Démonstration. Etape 1. Résoudre le problème de Cauchy est équivalent à résoudre l'équation intégrale dans $C(\mathbb{R}; \mathbb{R}^d)$

(2.2)
$$y(t) = y_0 + \int_0^t f(s, y(s)) ds.$$

Etape 2. On pose $\Phi(y)$ le membre de droite de (2.2). On va chercher à faire un point fixe dans $C(-T,T;\mathbb{R}^d)$ pour Φ .

Il vient pour y, z dans $C(-T, T; \mathbb{R}^d)$

$$\Phi(y(t)) - \Phi(z(t)) = \int_0^t (f(s, y(s)) - f(s, z(s))) ds,$$

et par conséquent

$$||\Phi(y(t)) - \Phi(z(t))|| \le |\int_0^t ||f(s, y(s)) - f(s, z(s))||ds|.$$

En introduisant la norme $N_T(f) = \sup_{|t| < T} ||y(t)||$, on a alors

$$N_T(\Phi(y) - \Phi(z)) \le LTN_T(y - z).$$

On va montrer par récurrence sur k que pour tout t plus petit que T

$$N_t(\Phi^k(y) - \Phi^k(z)) \le \frac{L^k t^k}{k!} N_t(y - z).$$

Le résultat est vrai au rang 1. Itérons

$$||\Phi^{k+1}(y(t)) - \Phi^{k+1}(z(t))|| \le |\int_0^t ||f(s, \Phi^k(y)(s)) - f(s, \Phi^k(z)(s))||ds| \le |\int_0^t L \frac{L^k s^k}{k!} N_t(y-z) ds| \le \frac{L^{k+1} t^{k+1}}{k!} N_t(y-z).$$

Donc si k est assez grand Φ^k est une stricte contraction de $C(-T,T;\mathbb{R}^d)$ dans lui même. On applique alors

Théorème 2.2 (Point fixe de Banach). Soit E, d un espace métrique complet et X un espace métrique. Si $F: E \times X \to E, (x, \lambda) \mapsto F_{\lambda}(x)$ est une application continue en la variable λ qui vérifie qu'il existe q < 1 tel que $d(F_{\lambda}(x), F_{\lambda}(y)) \leq qd(x, y)$ alors il existe un unique x_{λ} tel que $F_{\lambda}(x_{\lambda}) = x_{\lambda}$ et de plus $\lambda \mapsto x_{\lambda}$ est continue.

Ici on en déduit que l'application Φ^k admet un unique point fixe y et que $y_0 \mapsto y$ est continue. On utilise alors l'astuce suivante: $\Phi^k(\Phi(y)) = \Phi(\Phi^k(y)) = \Phi(y)$. Donc $\Phi(y)$ est aussi point fixe pour Φ^k d'où $\Phi(y) = y$. Etape 3. Conclusion. Pour chaque T on a construit une solution

$$([-T,T],y_T) \in C(-T,T;\mathbb{R}^d),$$

unique, du problème de Cauchy. On définit alors y comme suit. Si $|t| \leq T$ alors $y(t) = y_T(t)$. Cette définition n'est pas ambivalente car on a la propriété suivante, par unicité $y_T(t) = y_S(t)$ pour $|t| \leq \min(S, T)$. On a alors construit notre solution unique.

4

2.2. Le cas des équations différentielles linéaires. Soit A une matrice $d \times d$ à coefficients réels. On cherche un vecteur Y dans \mathbb{R}^d solution de

$$\dot{Y} = AY + b(t).$$

Proposition 2.3. L'ensemble des solutions de (2.3) est un espace affine de dimension d inclus dans l'ensemble des fonctions continues du \mathbb{R} à valeurs dans \mathbb{R}^d . Si b=0 l'ensemble des solutions de (2.3) est un espace vectoriel de dimension d.

Démonstration. Supposons b = 0. L'équation (2.3) à laquelle on ajoute une donnée initiale Y_0 rentre dans le cadre du Théorème 2.1. Par conséquent l'application linéaire $Y_0 \mapsto Y(t)$ est une application linéaire bijective. D'où le fait que l'ensemble des solutions est un espace de vectoriel de dimension d. On admet provisoirement l'existence d'une solution Y_* du problème (2.3). Comme la différence de deux solutions de (2.3) est solution de l'équation (2.3) avec b = 0. D'où le résultat.

2.3. Deuxième version.

Théorème 2.4 (Cauchy-Lipschitz). Supposons de plus la fonction f localement lipschitzienne par rapport à la variable y. Alors il existe une unique solution y(t) au problème de Cauchy définie $sur \,]-T_{min}, T_{max}[$ un intervalle de temps maximal. De plus on a l'alternative suivante.

- Soit $T_{max} = +\infty$.
- Soit $T_{max} < +\infty$ et dans le cas y(t) sort de tout compact de \mathbb{R}^n quand t tends vers T_{max} par valeurs négatives.

Définition 2.5 (Solution maximale). Une telle solution définie sur] – $T_{min}, T_{max}[$ est appelée solution maximale. Si $T_{min} = T_{max} = +\infty$ on dit que la solution est globale.

- Remarque 2.6. Comment vérifier en pratique que f est localement lipschitzienne. Si f est C^1 (au moins) alors f localement lipschitzienne par l'inégalité des accroissements finis.
 - Exemple: la solution de $\dot{y} = y^2$ et y(0) = 1 est $y(t) = \frac{1}{1-t}$. Cette solution maximale vérifie $-T_{min} = -\infty$ et $T_{max} = 1$, et $\lim_{t\to 1} y(t) = +\infty$.

Démonstration.

Etape 1. Résoudre le problème de Cauchy est équivalent à résoudre l'équation intégrale dans $C(I; \mathbb{R}^d)$ où I est intervalle de \mathbb{R} contenant 0 dans son intérieur.

(2.4)
$$y(t) = y_0 + \int_0^t f(s, y(s)) ds.$$

Etape 2. Construction d'un cylindre de sécurité.

Définition 2.7. On appelle cylindre de sécurité un sous ensemble $C = [-T, T] \times B_r$ où $B_r = \{y \in \mathbb{R}^d; ||y - y_0|| \le r\}$ tel que une solution de (2.4) ne puisse sortir de C que par les bords $\pm \{T\} \times B_r$.

On va maintenant construire un cylindre de sécurité. Soit $C_0 = [-T, T] \times B_r$ un premier cylindre et $M = \sup_{C_0} ||f(s, y)||$. Soit y une solution de (2.4). On a tant que cette solution demeure dans C_0

(2.5)
$$||y - y_0|| = ||\int_0^t f(s, y(s))ds|| \le TM.$$

Quitte à remplacer T par $T_1 = \min(T, \frac{r}{M})$ on a alors que $C = [-T_1, T_1] \times B_r$ est un cylindre de sécurité.

Etape 3. Mise en place d'une méthode de point fixe. On considére l'ensemble $E_T = C([-T, T]; C)$ qui est un sous-ensemble fermé de $C(-T, T; \mathbb{R}^d)$ donc un espace métrique complet pour la distance induite par la norme de $C(-T, T; \mathbb{R}^d)$. Soit l'application

(2.6)
$$\mathfrak{T}: y \mapsto z(t) = y_0 + \int_0^t f(s, y(s)) ds.$$

Montrons que si T est assez petit alors $\mathfrak T$ admet un unique point fixe dans E_T . D'une part

$$||z(t) - y_0|| = ||\int_0^t f(s, y(s))ds|| \le MT \le r,$$

si T assez petit. D'autre part soit L la constante de Lipschitz de f sur le cylindre de sécurité. Il vient

$$||\mathfrak{T}(y(t) - \mathfrak{T}(z(t))|| \leq |\int_0^t ||f(s,y(s)) - f(s,y(s))||ds| \leq LT \sup_{|s| < T} ||y(s) - z(s)||.$$

O. GOUBET

On peut alors appliquer le théorème du point fixe qui conduit à

Lemme 2.8 (Cauchy-Lipschitz, local). Supposons de plus la fonction f localement lipschitzienne par rapport à la variable y. Alors il existe une unique solution **locale** y(t) au problème de Cauchy, i.e. un couple ([-T,T],y) tel que y est solution du problème de Cauchy sur [-T,T].

Etape 4. Passage du local au global.

Dans cette étape on va construire la solution maximale. On définit l'ensemble

$$\mathcal{E} = \{(I, y_I); y_I : I \to \mathbb{R}^d \text{ solution de}(2.4)\}.$$

Par le Lemme 2.8 on montre que si (I, y_I) et (J, y_J) sont deux éléments de \mathcal{E} alors $y_I = y_J$ sur $I \cap J$. En effet considérons $K = \{t \in I \cap J; y_I(t) = y_J(t)\}$. K contient 0 donc est non vide et K est clairement fermé. Par le Lemme 2.8 on voit que K est ouvert. Donc par connexité $K = I \cap J$. On considère maintenant la réunion de tous les intervalle I tels que (I, y_I) soient dans \mathcal{E} . Il s'agit d'un intervalle contenant 0 appelé \tilde{I} . On définit y sur \tilde{I} en posant: pour t dans \tilde{I} alors il existe I tel que t est dans I et $y(t) = y_I(t)$. Cette définition est univoque d'après la propriété de coincidence sur $I \cap J$. Voici ainsi définie la solution maximale.

Etape 5. Alternative d'explosion.

Soit $I =]-T_{min}, T_{max}[$ l'intervalle maximal d'existence. Cet intervalle est ouvert. Si il contenait T_{max} il suffirait de résoudre le problème de Cauchy

$$\dot{z} = f(t, z), \ z(T_{max}) = y(T_{max}),$$

et de recoller les solutions y et z par unicité locale au delà de T_{max} .

Supposons (par l'absurde) qu'il existe une suite de temps t_k qui converge en croissant vers T_{max} et telle que la solution $y(t_k)$ reste borné par une constante \tilde{M} . On résout la suite de problèmes de Cauchy

$$\dot{z}_k = f(t, z_k), \ z_k(t_k) = y(t_k).$$

On peut établir que la solution de ce problème de Cauchy local est défini sur un intervalle de temps $[-\tau,\tau]$ avec τ indépendant de k (ne dépendant que de \tilde{M} à travers la taille d'un cylindre de sécurité contenant les y_k). En recollant par unicité locale y et z_k on montre que on a une nouvelle solution définie jusqu'à $t_k + \tau > T_{max}$ ce qui contredit la définition de T_{max} .

2.4. Troisième version.

Théorème 2.9 (Cauchy-Lipschitz). Supposons que f définie de $\mathbb{R} \times \Omega$ dans Ω où Ω est un ouvert de \mathbb{R}^d . Supposons de plus la fonction f localement lipschitzienne par rapport à la variable g. Alors il existe une unique solution g(t) au problème de Cauchy définie sur $g(t) = T_{min}$, $g(t) = T_{mi$

- Soit $T_{max} = +\infty$.
- Soit $T_{max} < +\infty$ et dans le cas y(t) sort de tout compact de Ω quand t tends vers T_{max} par valeurs négatives.

References

[1] J-P. Demaily Analyse numérique et équations différentielles

(Olivier Goubet) Laboratoire Paul Painlevé CNRS UMR 8524, et équipe projet INRIA PARADYSE, Université de Lille, 59 655 Villeneuve d'Ascq cedex.