Last name				
First name			Grade	
Group				
	Almonithmia			1
	$egin{aligned} ext{Algorithmics} \ ext{Undergraduate } 2^{nd} ext{ ye} \end{aligned}$	oor (S 2)		2
				3
	Final Exam $\#3$ (18 December 2018 :			4
	5			
	Answer Sheets			6
	${ m arshall}$ - ${ m Union ext{-}Find}$ - 3 ${ m \it points}$)		
	components (vertex sets):			
$C_1:$		C_2 :		
:		:		
:		:		
2. Which vector	ors could correspond to the result?			
\square P_1	\square P_2 \square	P_3	$ ceil_{P_4}$	
			- 4	
Answers 2 (In	the depth of the spanning fore	-2 points		
Spanning fore.	st and extra-edges for the depth-firs	t search of the g	raph in figure	e 1:

Answers 3 (Components – 3 points)

Specifications:

The function components (G) returns the pair (k, cc) with k the number of connected components of the graph G and cc is the component vector.

Answers 4 (Diameter – 5 points)

Specifications:

The function diameter(G) computes the diameter of G (G is a tree).

Answers 5 (Euler - 6 points)

Specifications:

The function $\mathtt{Euler}(G)$ tests whether the simple G graph is Eulerian.

Answers 6 (What is this? - 3 points)

1. Result returned by $\operatorname{what}(G_4)$:

$$1c =$$

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	
d															

2.	d	represents:

3. la	c represents:			