APÉNDICE DE TABLAS Y FIGURAS

A continuación, se muestran las figuras y tablas referenciadas en el documento de investigación "Optimización Minera de las leyes de corte basado en el Gradiente Reducido Generalizado", las cuales sirven de apoyo, guía y comprensión para el texto.

Apéndice de Tablas

Tabla A1: Simbología de cada variable técnica y económica empleada a lo largo de la investigación.

Simbología	Definición	Unidad
Qm	Material minado	Toneladas
Qc	Mineral procesado	Toneladas
Qr	Metal Producido	Toneladas
M	Capacidad de la mina	Ton/año
С	Capacidad de planta procesadora	Ton/año
R	Capacidad de la Refinería	Ton/año
m	Costo Mina	Usd/ton de material
С	Costo planta	Usd/ton de mineral
r	Costo Refinería	Usd/ton de metal fino
f	Costos fijos	Usd/año
T	Años de producción	Años
у	Recuperación de la concentradora	Porcentaje
d	Tasa de descuento	Porcentaje
h	Costo de rehabilitación del botadero	Usd/ton de estéril

Fuente: Elaboración Propia, 2021.

Tabla A2: Función Objetivo y tiempo según cada etapa limitante.

Etapa Limitante	Tiempo de Producción	Función de aporte del VAN
Mina	$t_m = \frac{Q_m}{M}$	$v_{mina} = \{(s-r) * y * \bar{g} + h - c\} * Qc - \{m+h+\frac{f+Vd}{M}\} * Qm$
Planta	$t_c = \frac{Q_c}{C}$	$v_{planta} = \left\{ (s-r) * y * \bar{g} + h - c - \frac{f + Vd}{C} \right\} * Qc - m * Qm$
Fundición & Refinería	$t_r = \frac{Q_r}{R}$	$v_{refineria} = \left[\left\{ s - r - \left(\frac{f + Vd}{R} \right) \right\} * y * \bar{g} - c + h \right] Qc - m * Qm$

Fuente: Ahmadi, 2018.

Tabla A3: Ley de Corte Optima según la etapa limitante.

rabia 113. Ecy de corte optima segun la étapa inintante.				
Etapa Limitante	Ecuación de ley de corte Optima			
Mina	$g_{mina} = \frac{c - h}{(s - r) \cdot y}$			
Planta	$g_{planta} = \frac{c + \frac{f + Vd}{C} - h}{(s - r) \cdot y}$			
Fundición & Refinería	$g_{refineria} = \frac{c - h}{\left\{s - r - \left(\frac{f + Vd}{R}\right)\right\} \cdot y}$			

Fuente: Ahmadi, 2018

Tabla A4: Leyes de corte del balance según la combinación de etapas limitantes.

Etapas	Ecuación de ley de corte del
Limitantes	balance
Mina-Planta	$g_{mc} = 1 - \frac{C}{M}$
Planta-	$g_{cr} = \frac{2R}{C} - 1$
Refinería	$g_{cr} = \frac{1}{C} - 1$
Mina-Refinería	$g_{rm} = \left(1 - \frac{2R}{M}\right)^{0.5}$

Fuente: Ahmadi, 2018.

Tabla A5: Distribución del Tonelaje - Ley de la base de datos ficticia "Esmeralda".

Ley Mínima %Cu	Ley Máxima %Cu	Tonelaje
0	0,2	60.000.000
0,2	0,4	52.000.000
0,4	0,6	23.000.000
0,6	0,8	17.000.000
0,8	1	12.000.000
1	1,2	9.700.000
1,2	1,4	6.700.000
1,4	1,6	8.900.000
1,6	1,8	4.000.000
1,8	3	5.600.000

Fuente: Elaboración Propia, 2021.

Tabla A6: Parámetros Económicos y Técnicos para el análisis de los tres programas computacionales.

Parámetros Económicos	Valor	Unidad
Costo mina	3,5	usd/ton
Costo planta	6,5	usd/ton
Costo venta	1.100	usd/ton de cobre fino
Precio de venta cobre fino	6.615	usd/ton de cobre fino
Costos fijos	20.000.000	usd/año
Tasa de descuento	10%	
Recuperación	88%	
Capacidad mina (M)		
Capacidad planta C	15.000.000	ton/año
Capacidad de Refinería R	100.000	ton/año
Precio de venta concentrado	1.708,611	usd/ton de concentrado
Ley del concentrado	30%	
Costos de rehabilitación	0,027306	usd/ton de estéril
Tonelaje total del recurso	198.900.000	toneladas

Tabla A7: Resultados de la modelación de los 24 botaderos en el software Vulcan Maptek.

Parámetro	Caso 1: Altura 40 m	Caso 2: Altura 50 m	Caso 3: Altura 60 m	Caso 4: Altura 80 m
Factor R botadero 1	2,213	1,852	1,730	1,646
Factor R botadero 2	2,044	1,698	1,601	1,487
Factor R botadero 3	1,961	1,585	1,491	1,354
Factor R botadero 4	1,868	1,506	1,413	1,232
Factor R botadero 5	1,786	1,445	1,350	1,186
Factor R botadero 6	1,690	1,385	1,288	1,093
Promedio	1,927	1,579	1,479	1,333
Varianza muestral	0,029	0,025	0,023	0,035
Desviación típica	0,171	0,158	0,150	0,188
CV %	8,889	10,000	10,163	14,075

Fuente: Elaboración Propia en base al programa Maptek Vulcan, 2021.

Tabla A8: Resultados de valores económicos y leyes usando el programa "Algoritmo de Lane".

Años	VAN usd	beneficio anual usd	Ley de Corte en %Cu	ley media en %Cu
1	1.917.379.460	423.761.851	0,425	0,905
2	1.493.617.609	391.445.308	0,384	0,851
3	1.137.758.238	365.967.018	0,349	0,805
4	835.306.157	337.302.425	0,312	0,756
5	581.885.853	317.073.886	0,277	0,718
6	365.320.122	298.451.188	0,242	0,684
7	180.005.415	278.106.675	0,205	0,648
8	23.021.447	44.862.288	0,167	0,612

Fuente: Elaboración Propia, 2021.

Tabla A9: Resultados del tonelaje de material extraído, mineral procesado y cobre vendido usando el programa "Algoritmo de Lane".

Años	Ton de Material	Ton de Mineral	Ton de Producto	Ton de concentrado
1	35.519.479	15.000.000	100.000	67.096
2	32.799.120	15.000.000	100.000	42.566
3	29.804.601	15.000.000	100.000	21.472
4	27.189.075	15.000.000	99.782	-
5	25.121.206	15.000.000	94.791	-
6	23.303.433	15.000.000	90.252	-
7	21.667.976	15.000.000	85.517	-
8	3.495.110	2.614.714	14.071	-

Tabla A10: Resultados del factor optimizante, valores económicos y leyes usando el programa "GRG Iterativo".

Años	σ óptimos	VAN usd	beneficio anual usd	Ley de Corte en %Cu	ley media en %Cu
1	2,9	1.969.161.097	486.192.784	0,500	1,003
2	2,9	1.482.968.313	442.226.781	0,447	0,933
3	2,9	1.080.943.967	399.452.344	0,396	0,866
4	2,9	750.818.063	371.672.609	0,357	0,815
5	2,9	471.574.931	339.232.877	0,315	0,759
6	2,9	239.874.311	315.073.788	0,274	0,714
7	2,9	44.238.278	78.370.808	0,231	0,674

Fuente: Elaboración Propia, 2021.

Tabla A11: Resultados del tonelaje de material extraído, mineral procesado y cobre vendido empleando el programa "GRG Iterativo".

Años	Ton de Material	Ton de Mineral	Ton de Producto	Ton de concentrado
1	39.577.855	15.000.000	100.000	112.013
2	36.610.228	15.000.000	100.000	80.154
3	33.935.985	15.000.000	100.000	49.599
4	30.408.067	15.000.000	100.000	26.057
5	27.352.978	15.000.000	100.000	764
6	24.907.471	15.000.000	94.292	-
7	6.107.416	4.014.672	23.799	-

Fuente: Elaboración Propia, 2021.

Tabla A12: Resultados del factor optimizante, valores económicos y leyes por año utilizando el programa "GRG Multi año".

Años	RO	VAN usd	beneficio anual usd	Ley de Corte en %Cu	ley media en %Cu
1	17,8	2.037.035.490	486.188.186	0,500	1,003
2	17,8	1.550.847.304	486.188.186	0,500	1,003
3	17,79	1.108.858.043	486.064.915	0,500	1,003
4	17,79	707.151.502	486.064.915	0,500	1,003
5	4,6	341.963.737	291.071.494	0,228	0,671
6	2,34	143.157.990	230.557.375	0,182	0,626

Tabla A13: Tonelaje de material extraído, mineral procesado y cobre vendido en cada año usando el programa "GRG Multi año"

Años	Ton de Material	Ton de Mineral	Ton de Producto	Ton de Concentrado
1	39.577.291	15.000.000	100.000	112.009
2	39.577.291	15.000.000	100.000	112.009
3	39.564.855	15.000.000	100.000	111.911
4	39.564.855	15.000.000	100.000	111.911
5	22.674.355	15.000.000	88.512	-
6	17.941.352	13.027.499	71.720	-

Fuente: Elaboración Propia, 2021.

Tabla A14: Valores económicos del costo de extracción del mineral y estéril insertados en el algoritmo de Lane.

Parámetro	Valor	Unidad	
Costo de extracción del mineral	3,5	Usd/ton de mineral	
Costo de extracción del estéril	2,5	Usd/ton de estéril	

Fuente: Elaboración Propia, 2021.

Tabla A15: Efecto de la variación del costo de extracción del estéril sobre el VAN, considerando cada uno de los tres algoritmos desarrollados.

Tipo de Escenario	Delta	VAN MUSD: Algoritmo de Lane	VAN MUSD: Algoritmo "GRG Iterativo"	VAN MUSD: Algoritmo "GRG Multi Año"
Sin economías de escalas m = 3,5	0	1.917,379	1.969,161	2.037,035
Con economías de escalas m = 3,5 y e = 2,5	1	2.026,916	2.054,424	2.138,124
Con economías de escalas m = 3,5 y e = 2	1,5	2.087,466	2.096,544	2.190,876
Con economías de escalas m = 3,5 y e = 1,5	2	2.144,893	2.144,893	2.242,517

Fuente: Elaboración Propia, 2021.

Tabla A16: Incremento porcentual del VAN tomando como caso base el escenario donde no existen economías de escalas.

	escaras.					
	Delta	Algoritmo de Lane	Algoritmo "GRG Iterativo"	Algoritmo "GRG Multi Año"	Incremento Porcentual Promedio	
ı	1	5,71%	4,33%	4,96%	5,00%	
	1,5	8,87%	6,47%	7,55%	7,63%	
	2	11,87%	8,92%	10,09%	10,29%	

Apéndice de Figuras

Figura A1: Flujo de procesos y etapas dentro del negocio minero contemplado para el desarrollo de los tres programas computacionales.

Figura A2: Representación gráfica del efecto de la inserción del factor optimizante en la mejora del VAN. Fuente: Elaboración Propia, 2021.

Figura A3: Diagrama de los dos programas computaciones basados en el algoritmo "GRG" con sus variantes. Fuente: Elaboración Propia, 2021.

Figura A4: Resultados del Factor "R" en función del área basal y de la altura del botadero. Fuente: Elaboración Propia, 2021.

Figura A5: Leyes de Corte Optimas obtenidas con los 3 programas desarrollados. Fuente: Elaboración Propia, 2021.

Figura A6: Efecto de la inclusión de las "economías de escalas" en cada algoritmo desarrollado. Fuente: Elaboración Propia, 2021.

Figura A7: Incremento Porcentual del VAN vs Costo de extracción del estéril. Fuente: Elaboración Propia, 2021.