Calculus_Appl_CSE_G1_2020_Tutorial_1

Total points 17/20

The respondent's email address (20z209@psgtech.ac.in) was recorded on submission of this form.

0/3

The volume of the solid cut from the first octant by the surface $z = 4 - x^2 - y$ is

- A) $\frac{108}{15}$ B) $\frac{18}{15}$ C) $\frac{118}{15}$ D) $\frac{128}{15}$

The point which does not belong to the domain of the function $f(x, y) = \frac{\sin(xy)}{x^2 + y^2 - 25}$ is

- A) (0, 0)
- B) $(\sqrt{11}, \sqrt{14})$ C) $(\sqrt{10}, \sqrt{14})$ D) (12, 13)

1/1

The value of $\lim_{(x, y)\to(0, \ln 2)} \frac{e^{x-y}}{y}$ is

- A) e^{-2}
- B) $\frac{2}{\ln 2}$
- C)

2ln 2

- D

✓ * 2/2

The possible value of C such that $\int_0^1 \int_0^C (2x + y) dx dy = 3$ is

A) -2

B) 4

- C)_2
- D) 1

- () B
- \bigcirc

The area of the following region in polar coordinate representation is

- A) $\int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \int_{0}^{\csc\theta} r \, dr \, d\theta \quad B) \quad \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \int_{0}^{\sec\theta} r \, dr \, d\theta \quad C) \quad \int_{\frac{\pi}{3}}^{\frac{2\pi}{3}} \int_{0}^{\csc\theta} r \, dr \, d\theta$

- D) $\int_{\frac{\pi}{3}}^{\frac{2\pi}{3}} \int_{0}^{\sec \theta} r \, dr \, d\theta$

	ppi_CSE_G1_2020_Tutorial_	_1		
*				
The area	represented by	the integra	ol $\int_0^{\sqrt{2}} \int_{-\sqrt{2}}^{\sqrt{2}}$	$\frac{x^2}{-x^2}$ dy dx is
A) 4π	B)	2π	C) π	D) 1/2
) A				
В				
С				
D				

1/1 Let f(x,y) be defined on a region R containing the point (a,b). If $f(a,b) \le f(x,y)$ for all domain points in an open disk centered at (a, b), then f(a, b) is a A) local maximum B) local minimum C) saddle point D) absolute maximum

*			

The third order mixed derivative f_{xyy} of $f(x, y) = e^{x^2 - y}$ at (1, 1) is

- A) e B) 1 C) 2 D) 2e
- A
- () B

✓ *

The level curves of the surface $f(x,y) = 9x^2 + 4y^2$ are the family of

- A) circles B) ellipses C) hyperbolas D) rectangular hyperbolas
- B
- \bigcirc

The linearization L(x, y) of the function $f(x, y) = x^3y^4$ at P(1, 1) is

- A) 4x + 3y 6 B) 3x + 4y + 1 C) 3x + 4y 6 D) 1 + 4x + 3y

-) A

1/1

Which of the following integral gives the area of the region R represented below?

- $\text{A)} \int_{0}^{1} \int_{x-1}^{-\sqrt{1-x^{2}}} dy dx \qquad \text{B)} \ \int_{0}^{1} \int_{1-x}^{\sqrt{1-x^{2}}} dy dx \qquad \text{C)} \ \int_{0}^{1} \int_{1-y}^{1-y^{2}} dx dy \qquad \text{D)} \int_{0}^{1} \int_{1}^{1-y^{2}} dx dy$

The area of the region bounded by the curves $y = x^2$ and y = x is

- A) $\frac{1}{3}$ B) $\frac{1}{6}$ C) $\frac{1}{2}$ D) 1

- D

1/1

The double integral representation of the volume of the solid in the first octant bounded by the coordinate planes, the plane x = 3 and the parabolic cylinder $z = 4 - y^2$ is

$$\text{A)} \int_0^3 \int_{-2}^2 (4-y^2) dy dx \quad \text{B)} \quad \int_0^3 \int_0^2 (4-y^2) dy dx \quad \text{C)} \quad \int_0^3 \int_0^4 (4-y^2) dy dx \quad \text{D)} \int_0^3 \int_{-4}^4 (4-y^2) dy dx$$

C)
$$\int_0^3 \int_0^4 (4 - y^2) dy dx$$

D)
$$\int_0^3 \int_{-4}^4 (4 - y^2) dy dx$$

This form was created inside of PSG College of Technology.

Google Forms