

Figure 1: Home-screen of the CIT android application

Figure 2: Drawer of the CIT android application

Figure 3: Experimental results screen (ERS) for first-order parameter identification

```
1: Initialize USB CDC to the boudrate = 115200 \, \mathrm{bit \, s^{-1}}
   while 1 do
 3:
       Receive from USB and store in A
       if A[0] == 0x34 then
 4:
          Set the value of A[2] as PWM out to the Analog
   output port # A[1] – 0x60
       end if
 6:
       if A[0] == 0x33 then
 7:
          Read analog value from the Analog input \# A[1]
   0x60 and send the value to USB
       end if
10: end while
```

Figure 4: Bridge device's firmware

Figure 5: First order low pass filter

Figure 6: Second order low pass filter.

Figure 7: Bridge circuit with a first order RC low pass filter

Figure 8: Step response of the first-order low pass filter.

Figure 9: Sinusoidal response of the fist-order low pass filter.

Figure 10: Magnitude of the frequency response of the first-order low pass filter.

Figure 11: Response of the second-order filter to a sawtooth wave input.

Figure 12: Response of the second-order filter to a square wave input.

Figure 13: Signals u(k), y(k), $\hat{y}(k)$ and parameters $\hat{\theta}_1$, $\hat{\theta}_2$, $\hat{\theta}_3$.

Figure 14: Estimates $\hat{\alpha}_1(t)$, $\hat{\alpha}_2(t)$, $\hat{\alpha}_3(t)$, and instantaneous values of signals and parameters.

Figure 15: Signals u(k), y(k), $\hat{y}(k)$ and parameters $\hat{\theta}_1$, $\hat{\theta}_2$, $\hat{\theta}_3$, $\hat{\theta}_4$ and $\hat{\theta}_5$.

Figure 16: Estimates $\hat{\beta}_1$, $\hat{\beta}_2$, $\hat{\beta}_3$, $\hat{\beta}_4$, $\hat{\beta}_5$, and instantaneous values of signals and parameters.

Figure 17: Closed loop system with a PID Controller

Figure 18: Signals r(k), y(k), e(k) and u(k) of the closed-loop system with $K_P = 10$, $K_I = 0$, and $K_D = 0$.

Figure 19: Signals r(k), y(k), e(k) and u(k) of the closed-loop system with $K_P = 10$, $K_I = 2$, and $K_D = 0$.

Figure 20: Signals r(k), y(k), e(k) and u(k) of the closed-loop system with $K_P=20$, $K_I=5$, and $K_D=0.1$.