AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions and listings of claims in the application:

LISTING OF CLAIMS:

1. (Currently Amended): A method of inhibiting human chymase activity, comprising administering to a subject an effective amount of An inhibitor against human chymase activity containing a benzimidazole derivative expressed by the following formula (1) or its pharmaceutically permissible salt-as an active ingredient,

$$X^1$$
 A
 N
 $M-B-E$
 X^2
 G
 G

[in the formula (1), the ring marked with A expresses a pyridine ring or a benzene ring;

 X^1 and X^2 are each at the same time or independently a hydrogen atom, a halogen atom, a trihalomethyl group, a hydroxyl group, a nitro group, a cyano group, -CH₂NH₂, -CH=NR¹, -CH=NOR¹ or -CONR¹R² (here, R¹ and R² are each a hydrogen atom or a C₁₋₄ alkyl group), -COOR³ (here, R³ is a hydrogen atom or a C₁₋₄ alkyl group), a substituted or unsubstituted C₁₋₆ normal, cyclic or branched alkyl group, a substituted or unsubstituted C₃₋₇ cycloalkyl group, a

substituted or unsubstituted C₁₋₆ normal or branched alkoxyl group, a substituted or unsubstituted

 C_{1-6} normal or branched alkylthio group, a substituted or unsubstituted C_{1-6} normal or branched alkylsulfonyl group or a substituted or unsubstituted C_{1-6} normal or branched alkylsulfinyl group {the substituent permissible to the groups is a halogen atom, a hydroxyl group, a nitro group, a cyano group, an acyl group, a trihalomethyl group, a trihalomethoxy group, a phenyl group, an oxo group or a phenoxy group optionally substituted with one or more halogen atoms, and the substituent may substitute singly or plurally independently at arbitrary position(s)};

B is a substituted or unsubstituted C_{1-6} normal, cyclic or branched alkylene group or a substituted or unsubstituted C_{2-6} normal or branched alkenylene group {the substituent permissible to the groups is a halogen atom, a hydroxyl group, a nitro group, a cyano group, a C_{1-6} normal or branched alkoxyl group (including the case where adjacent two groups form an acetal bonding), a C_{1-6} normal or branched alkylthio group, a C_{1-6} normal or branched alkylsulfonyl group, a C_{1-6} normal or branched acyl group, a C_{1-6} normal or branched acylamino group, a trihalomethyl group, a trihalomethoxy group, a phenyl group, an oxo group or a phenoxy group optionally substituted with one or more halogen atoms, and the substituent may substitute singly or plurally independently at arbitrary position(s) of the alkylene group or an alkenylene group; between atoms, the alkylene group or alkenylene group optionally contains one or more of -O-, -S-, -SO₂- or -NR⁴-, but this atom or atomic group does not bond directly to the M, and here R^4 is a hydrogen atom or a C_{1-6} normal or branched alkyl group};

E expresses -COOR⁴, SO₃R⁴, CONHR⁵, SO₂NHR⁴, PO(OR⁶)₂, a tetrazol 5 yl group, a 5 oxo 1,2,4 oxadiazol 3 yl group or

A2 cov+

a 5-oxo 1,2,4 thiadiazol 3 yl group (here, R^4 is similarly defined as above; R^5 is a hydrogen atom, a cyano group, or a $C_{1.6}$ normal or branched alkyl group; R^6 is a hydrogen atom, a $C_{1.6}$ normal or branched alkyl group, or trifluoromethylsulfonyl group, or its pharmaceutically permissible salt);

G is a substituted or unsubstituted C_{1-6} normal or branched alkylene group {between atoms, the alkylene group optionally contains one or more of -O-, -S-, -SO₂- or -NR⁴-, but this atom or atomic group does not bond directly to the nitrogen atom of the imidazole ring (R⁴ is similarly defined as above), and the substituent is a halogen atom, a hydroxyl group, a nitro group, a cyano group, a C_{1-6} normal or branched alkoxyl group (including the case where adjacent two groups form an acetal bonding), a trihalomethyl group, a trihalomethoxy group, a phenyl group or an oxo group};

J is a substituted or unsubstituted C₁₋₆ normal, cyclic or branched alkyl group, a substituted or unsubstituted C₄₋₁₀ aryl group {the substituent permissible to the groups is a halogen atom, a hydroxyl group, a nitro group, a cyano group, -COOR⁷ (here, R⁷ is a hydrogen atom or a C₁₋₄ alkyl group), a C₁₋₆ normal, cyclic or branched alkyl group, a C₁₋₆ normal or branched alkoxyl group (including the case where adjacent two groups form an acetal bonding), a C₁₋₆ normal or branched alkylthio group, a C₁₋₆ normal or branched alkylsulfinyl group, a C₁₋₆ acyl group, a C₁₋₆ normal or branched acylamino group, a trihalomethyl group, a trihalomethoxy group, a phenyl group, an oxo group, or a phenoxy group optionally substituted with one or more halogen atoms; the substituent may substitute singly or plurally independently at arbitrary position(s) of the alkyl group or

Ha

group; and the substituent is further optionally substituted with a halogen atom, a hydroxyl group, a nitro group, a cyano group, an acyl group, a trihalomethyl group, a phenyl group, an oxo group or a phenoxy group optionally substituted with a halogen atom}; and

M is a sulfur atom, a sulfinyl group, or a sulfonyl group, a single bond or $-CR^8R^9$ —(here, R^8 and R^9 are each at the same time or independently a hydrogen atom or a C_{1-4} -alkyl group)].

- 2. (Cancelled)
- 3. (Cancelled)
- 4. (Currently Amended): The method An inhibitor against human chymase activity set forth in-one out of Claims 1-to-3 wherein X^1 and X^2 in the above formula (1) are each at the same time or independently a hydrogen atom, a halogen atom, a trihalomethyl group, a cyano group, a substituted or unsubstituted C_{1-3} normal or branched alkyl group, a substituted or unsubstituted C_{1-3} normal or branched alkylthio group.
- 5. (Currently Amended): The method An inhibitor against human chymase activity set forth in one out of Claims 1 to 4-wherein J in the above formula (1) is a group described in the following formula (2) or (3),

$$X_3$$
 (2) X_4 (3)

A2 COULT

[here, X^3 , X^4 and X^5 are each at the same time or independently a hydrogen atom, a halogen atom, a hydroxyl group, a nitro group, a cyano group, a trihalomethyl group, a trihalomethoxy group, -COOR⁷ (here, R^7 is a hydrogen atom or a C_{1-4} alkyl group), a substituted or unsubstituted C_{1-3} normal or branched alkyl group, a substituted or unsubstituted C_{1-3} normal or branched alkoxyl group, a substituted or unsubstituted C_{1-3} normal or branched alkylthio group, a substituted or unsubstituted C_{1-3} normal or branched alkylsulfonyl group, or a substituted or unsubstituted C_{1-3} normal or branched alkylsulfinyl group; there is no limitation regarding the substitution positions of X^3 , X^4 and X^5 on the benzene ring or the naphthalene ring].

- Ad cout
- 6. (Currently Amended): The methodAn inhibitor against human chymase activity set forth in one out of Claims 1 to 5 wherein M-in the above mentioned formula (1) is a sulfur atom.
- 7. (Currently Amended): The method An inhibitor against human chymase activity set forth in one out of Claims 1 to 6 wherein B in the above mentioned formula (1) is a substituted or unsubstituted C_{1-6} normal, cyclic or branched alkylene group.
- 8. (Currently Amended): The methodAn inhibitor against human chymase activity set forth in-one out of Claims 1 to 7-wherein G in the above mentioned formula (1) is -CH₂., -CH₂CH₂-, -CH₂CO-, -CH₂CH₂O-, -CH₂CONH-, -CO-, -SO₂-, -CH₂SO₂-, -CH₂S- or -CH₂CH₂S- (J bonds to the right side of said group).
- 9. (Currently Amended): The method An inhibitor against human chymase activity set forth in-one out of Claims 1 to 8 wherein E in the above mentioned formula (1) is -COOH.

10. (Currently Amended): A benzimidazole derivative expressed by the following formula (4) or its pharmaceutically permissible salt,

[in the formula (4), the definitions of the ring marked with Λ , and X^1 , X^2 , B, E, G, J and M are same as those in the above formula (1); however, excepting the case where

[in the formula (4), the ring marked with A expresses a benzene ring;

 X^1 and X^2 are each at the same time or independently a hydrogen atom, a halogen atom, a trihalomethyl group, a hydroxyl group, a nitro group, a cyano group, $-CH_2NH_2$, $-CH=NR^1$, $-CH=NOR^1$ or $-CONR^1R^2$ (here, R^1 and R^2 are each a hydrogen atom or a C_{1-4} alkyl group), $-COOR^3$ (here, R^3 is a hydrogen atom or a C_{1-4} alkyl group), a substituted or unsubstituted C_{1-6} normal, cyclic or branched alkyl group, a substituted or unsubstituted C_{3-7} cycloalkyl group, a substituted or unsubstituted or unsubstituted or unsubstituted C_{1-6} normal or branched alkylthio group, a substituted or unsubstituted C_{1-6} normal or branched alkylsulfonyl group or a substituted or unsubstituted C_{1-6} normal or branched alkylsulfinyl group (the substituent permissible to the groups is a halogen atom, a hydroxyl group, a nitro group, a cyano group, an acyl group, a trihalomethyl group, a trihalomethoxy group, a phenyl group, an

AD:t

oxo group or a phenoxy group optionally substituted with one or more halogen atoms, and the substituent may substitute singly or plurally independently at arbitrary position(s)};

B is a substituted or unsubstituted C_{1-6} normal, cyclic or branched alkylene group or a substituted or unsubstituted C_{2-6} normal or branched alkenylene group {the substituent} permissible to the groups is a halogen atom, a hydroxyl group, a nitro group, a cyano group, a C_{1-6} normal or branched alkoxyl group (including the case where adjacent two groups form an acetal bonding), a C_{1-6} normal or branched alkylthio group, a C_{1-6} normal or branched alkylsulfonyl group, a C_{1-6} normal or branched acyl group, a C_{1-6} normal or branched acylamino group, a trihalomethyl group, a trihalomethoxy group, a phenyl group, an oxo group or a phenoxy group optionally substituted with one or more halogen atoms, and the substituent may substitute singly or plurally independently at arbitrary position(s) of the alkylene group or an alkenylene group; between atoms, the alkylene group or alkenylene group optionally contains one or more of $-O_{-}$, $-S_{-}$, $-SO_{2-}$ or $-NR^4$ -, but this atom or atomic group does not bond directly to the M, and here R^4 is a hydrogen atom or a C_{1-6} normal or branched alkyl group}:

E expresses -COOR⁴;

G is a substituted or unsubstituted C_{1-6} normal or branched alkylene group {between atoms, the alkylene group optionally contains one or more of -O-, -S-, -SO₂- or -NR⁴-, but this atom or atomic group does not bond directly to the nitrogen atom of the imidazole ring (R⁴ is similarly defined as above), and the substituent is a halogen atom, a hydroxyl group, a nitro group, a cyano group, a C_{1-6} normal or branched alkoxyl group (including the case where

AB CODIT

adjacent two groups form an acetal bonding), a trihalomethyl group, a trihalomethoxy group, a phenyl group or an oxo group};

J is a substituted or unsubstituted C_{4-10} aryl group {the substituent permissible to the groups is a halogen atom, a hydroxyl group, a nitro group, a cyano group, -COOR⁷ (here, R⁷ is a hydrogen atom or a C_{1-4} alkyl group), a C_{1-6} normal, cyclic or branched alkyl group, a C_{1-6} normal or branched alkoxyl group (including the case where adjacent two groups form an acetal bonding), a C_{1-6} normal or branched alkylthio group, a C_{1-6} normal or branched alkylsulfonyl group, a C_{1-6} normal or branched alkylsulfinyl group, a C_{1-6} acyl group, a C_{1-6} normal or branched acylamino group, a trihalomethyl group, a trihalomethoxy group, a phenyl group, an oxo group, or a phenoxy group optionally substituted with one or more halogen atoms; the substituent may substitute singly or plurally independently at arbitrary position(s) of the aryl group; and the substituent is further optionally substituted with a halogen atom, a hydroxyl group, a nitro group, a cyano group, an acyl group, a trihalomethyl group, a phenyl group, an oxo group or a phenoxy group optionally substituted with a halogen atom); and

M is a sulfur atom, a sulfinyl group, or sulfonyl group provided that when at least one of X^1 and X^2 is a cyano group, $-CH_2NH_2$, $-CH=NR^1$, $-CH=NOR^1$ or $-CONR^1R^2$ (here, R^1 and R^2 are each a hydrogen atom or a C_{1-4} alkyl group), J expresses only a substituted naphthalene ring].

11. (Currently Amended): A benzimidazole derivative or its pharmaceutically permissible salt set forth in Claim 10 wherein X^1 and X^2 -in the above formula (4) are each a hydrogen atom, a cyano group, -CH₂NH₂, -CH=NR¹, -CH=NOR¹ or -CONR¹R² (here, R¹ and R² are each a hydrogen atom or a C₁₋₄ alkyl group; X^1 and X^2 are not hydrogen at the same time).

(2001)

12. (Currently Amended): A benzimidazole derivative or its pharmaceutically permissible salt set forth in Claim 10 wherein X¹ and X² in the above formula (4) are each at the same time or independently a hydrogen atom, a halogen atom, a trihalomethyl group, a hydroxyl group, a nitro group, -CH=NR[‡] (here, R[‡] is a hydrogen atom or a C_{1.4} alkyl group), -COOR³ (here, R³ is a hydrogen atom or a C_{1.4} alkyl group), a substituted or unsubstituted C_{1.6} normal, cyclic or branched alkyl group, a substituted or unsubstituted C_{1.6} normal or branched alkyl group, a substituted or unsubstituted C_{1.6} normal or branched alkylthio group, a substituted or unsubstituted C_{1.6} normal or branched alkylsulfonyl group or a substituted or unsubstituted C_{1.6} normal or branched alkylsulfinyl group {the substituent permissible to the groups is a halogen atom, a hydroxyl group, a nitro group, a cyano group, an acyl group, a trihalomethyl group, a trihalomethoxy group, a phenyl group, an oxo group or a phenoxy group optionally substituted with one or more halogen atoms, and the substituent may substitute singly or plurally independently at arbitrary position(s)}.

- 13. (Currently Amended): A benzimidazole derivative or its pharmaceutically permissible salt set forth in Claim 10 wherein X^1 and X^2 in the above formula (4) are each a hydrogen atom or a cyano group (here, X^1 and X^2 can not be hydrogen atoms at the same time).
- 14. (Currently Amended): A benzimidazole derivative or its pharmaceutically permissible salt set forth in one out of Claims 10 to 13 wherein M in the above formula (4) is a sulfur atom.

(10) COO.J.

- 15. (Currently Amended): A benzimidazole derivative or its pharmaceutically permissible salt set forth in one out of Claims 10 to 14 wherein B in the above formula (4) is a substituted or unsubstituted C_{1-6} normal, cyclic or branched alkylene group.
- 16. (Currently Amended): A benzimidazole derivative or its pharmaceutically permissible salt set forth in one out of Claims 10 to 15 wherein J-in the above formula (4) is a group expressed by the following formula (2) or (3),

A3 005:4.

$$X_3$$
 (3)

[here, X^3 , X^4 and X^5 are each at the same time or independently a hydrogen atom, a halogen atom, a hydroxyl group, a nitro group, a cyano group, a trihalomethyl group, a trihalomethoxy group, -COOR⁷ (here, R^7 is a hydrogen atom or a C_{1-4} alkyl group), a substituted or unsubstituted C_{1-3} normal or branched alkyl group, a substituted or unsubstituted C_{1-3} normal or branched alkoxyl group, a substituted or unsubstituted C_{1-3} normal or branched alkylthio group, a substituted or unsubstituted C_{1-3} normal or branched alkylsulfonyl group, or a substituted or unsubstituted C_{1-3} normal or branched alkylsulfinyl group; there is no limitation regarding the substitution positions of X^3 , X^4 and X^5 on the benzene ring or the naphthalene ring].

17. (Currently Amended): A benzimidazole derivative or its pharmaceutically permissible salt set forth in one out of Claims 10 to 16 wherein G in the above formula (4) is

-CH₂-, -CH₂CH₂-, -CH₂CO-, -CH₂CH₂O-, -CH₂CONH-, -CO-, -SO₂-, -CH₂SO₂-, -CH₂S- or -CH₂CH₂S- (J bonds to the right side of said group).

- 18. (Currently Amended): A benzimidazole derivative or its pharmaceutically permissible salt set forth in-one out of Claims 10 to 17 wherein E-in the above formula (4) is -COOH.
- 19. (Currently Amended): A pharmaceutical composition consisting of a benzimidazole derivative and/or its pharmaceutically permissible salt set forth in any_one out-of Claims 10-18, and a pharmaceutically permissible carrier.
- 20. (Currently Amended): The method A chymase activity inhibitor set forth in any one-out of Claims 1 and 4 to 9 wherein the targeted whose targeting disease is an inflammatory disease, an allergy disease, a respiratory disease, a cardiovascular disease or a bone/cartridge metabolic disease.
- 21. (Currently Amended): The method A human chymase activity inhibitor set forth in Claim 20 wherein the method prevents or treats which is a preventing agent or a treating agent of a disease in human beings.