Notation

WLOG: Without Loss Of Generality

 \mathbb{N} : The set of natural numbers.

 \mathbb{Z} : The set of integers.

 \mathbb{R} : The set of real numbers.

 $\lfloor x \rfloor$: The largest integer not bigger than x.

$$frac(x) = x - \lfloor x \rfloor$$

s.t.: such that

Preliminary

- Formula and property of Trigonometric Function
 - 1) $\sin 2\theta = 2\sin\theta\cos\theta$, $\cos 2\theta = 2\cos^2\theta 1 = 1 2\sin^2\theta$, $\sin 3\theta = 3\sin\theta 4\sin^3\theta$, $\cos 3\theta = 4\cos^3\theta 3\cos\theta$
 - 2) $\cos(x+y) = \cos x \cos y \sin x \sin y$, $\sin(x+y) = \sin x \cos y + \cos x \sin y$, $\cos x \cos y = \frac{\cos(x-y) + \cos(x+y)}{2}$, $\sin x \sin y = \frac{\cos(x-y) \cos(x+y)}{2}$, $\sin x \cos y = \frac{\sin(x+y) + \sin(x-y)}{2}$, $\cos x + \cos y = \frac{\cos\left(\frac{x+y}{2}\right)\cos\left(\frac{x-y}{2}\right)}{2}$, $\sin x + \sin y = \frac{\sin\left(\frac{x+y}{2}\right)\cos\left(\frac{x-y}{2}\right)}{2}$
 - 3) $\forall x \ge 0$, $\sin x \le x$.
 - 4) $\forall x \in \mathbb{R}$, $\sin(-x) = -\sin x$, $|\sin x| \le |x|$.
 - 5) $\forall x \in \mathbb{R}$, $\sin(k\pi + x) = \begin{cases} \sin x & (k \text{ is even}) \\ -\sin x & (k \text{ is odd}) \end{cases}$ for $k \in \mathbb{Z}$.
 - 6) $y = \sin x$ and $y = \cos x$ are continuous on real numbers.
 - 7) $\forall x \in \left[0, \frac{\pi}{2}\right], \sin x \ge \frac{2}{\pi}x.$
- π is irrational.
- Def1) Let non-empty set $X\subseteq Y\subseteq \mathbb{R}$. X is dense in Y if and only if $\forall\,y\!\in Y\,\,\forall\,\varepsilon\!>\!0,\,\,\exists\,x\!\in\!X$ s.t. $x\!\in\!B_{\varepsilon}(x).$
- prop1) Let non-empty set $X\subseteq Y\subseteq \mathbb{R}$. If X is dense in Y, then $\forall\,y\!\in Y$, \exists sequence $\{x_n\}_{n\in\mathbb{N}}\subseteq X$ s.t. $\lim_{n\to\infty}x_n=y$.

Thm1) $\{\sin n\}_{n\in\mathbb{N}}$ is divergent.

proof) Suppose $\{\sin n\}_{n\in\mathbb{N}}$ is convergent and let $\alpha = \lim_{n\to\infty} \sin n$.

Note that $\lim_{n\to\infty} \sin 2n = \lim_{n\to\infty} \sin 3n = \alpha$.

$$\lim_{n\to\infty}\sin^2\!2n = \lim_{n\to\infty} 4\sin^2\!n (1-\sin^2\!n) \ \Rightarrow \ \alpha^2 = 4\alpha^2(1-\alpha^2) \ \Rightarrow \ \alpha = 0 \ \text{or} \ \pm \frac{\sqrt{3}}{2}.$$

$$\lim_{n\to\infty}\sin 3n = \lim_{n\to\infty} \left(3\sin n - 4\sin^3 n\right) \implies \alpha = 3a - 4\alpha^3 \implies \alpha = 0 \text{ or } \pm \frac{1}{\sqrt{2}}.$$

Thus from above, we get $\alpha = 0$ and $\lim_{n \to \infty} \cos n = \pm 1$.

But $\alpha = \lim_{n \to \infty} \sin(n+1) = \lim_{n \to \infty} (\sin n \cos 1 + \cos n \sin 1) = \pm \sin 1 \neq 0.$

This is contradiction. Thus $\{\sin n\}_{n\in\mathbb{N}}$ is divergent.

Cor1) $\sum_{n=1}^{\infty} \sin n$ is divergent.

 $\divideontimes \sum_{k=1}^n \sin k \text{ is bounded. Since } \sin k \sin 1 = \frac{1}{2} \left\{ \cos \left(k - \frac{1}{2} \right) - \cos \left(k + \frac{1}{2} \right) \right\},$

$$\sum_{k=1}^{n} \sin k = \frac{1}{\sin 1} \sum_{k=1}^{n} \sin k \sin 1 = \frac{1}{2\sin 1} \sum_{k=1}^{n} \left\{ \cos \left(k - \frac{1}{2} \right) - \cos \left(k + \frac{1}{2} \right) \right\}$$
$$= \frac{\cos \frac{1}{2} - \cos \left(n + \frac{1}{2} \right)}{2\sin 1}.$$

Since cosine function is bounded, we get the fact that $\sum_{k=1}^{n} \sin k$ is bounded.

- * Using Dirichlet Test, we get the fact that $\sum_{n=1}^{\infty} \frac{\sin n}{n}$ is bounded.
- * Using contour integral for complex analysis.

we can calculate the value
$$\sum_{n=1}^{\infty} \frac{\sin n}{n} = \frac{\pi - 1}{2}$$
.

* In the same way as above, we can also know about $\sum_{n=1}^{\infty} \cos n$, $\sum_{n=1}^{\infty} \frac{\cos n}{n}$.

Thm2) (Pigeon-Hall Principle)

: If n pigeons are put into m halls, with n > m, then at least one hall must contain more than one pigeon.

proof) Trivial..

ex1) (Putnam 1958)

- : Let X be the set $\{1,2,3,\ldots,2n\}$, take $Y\subseteq X$ with |Y|=n+1. Show that we can find $a,b\subseteq Y$ with a dividing b.
- sol) Let all elements in X be the form of $2^{a_i}b_i$ with $a_i \in \mathbb{N} \cup \{0\}$ and b_i is odd. Since X has n odd integers, possible different number $b_i{'}s$ are at most n. So by Pigeon-Hall Principle, Y has two elements $2^{a_i}b_i, 2^{a_j}b_j$ satisfying $b_i = b_j$. WLOG, $a_i > a_j$. Then $\frac{2^{a_i}b_i}{2^{a_j}b_i} = 2^{a_i a_j} \in \mathbb{N}$. Thus the proof is completed.

ex2)

 $\forall \varepsilon > 0, \exists n \in \mathbb{N} \text{ such that } |\sin n| < \varepsilon.$

sol) By Archimedean Principle, we can choose $m\!\in\!\mathbb{N}$ such that $\frac{1}{m}\!<\!\varepsilon$. Let a_n be the fractional part of $n\pi$, that is, $a_n=n\pi-\lfloor n\pi\rfloor$. By irrationality of π , $n\neq m \Rightarrow a_n\neq a_m$. ($\because a_n-a_m=(n-m)\pi+$ some integer) Partition the interval [0,1) m's piece such that $[0,\frac{1}{m}), [\frac{1}{m},\frac{2}{m}),...,[\frac{m-1}{m},1)$. Then by Pigeon-Hall Principle, there exist two a_i,a_j with $1\leq j < i \leq m+1$ such that they are contained above some an interval.

So $0 < a_i - a_j \le \frac{1}{m}$ and we get $\sin(a_i - a_j) \le \frac{1}{m}$. Let $K = \lfloor i\pi \rfloor - \lfloor j\pi \rfloor \in \mathbb{N}$.

Then $|\sin K| = |\sin\{(i-j)\pi - (a_i - a_j)\}| = |\sin(a_i - a_j)| \le \frac{1}{m}$.

Therefore choosing n = K completes the proof.

Cor1) There exists an subsequence of $\{\sin n\}_{n\in\mathbb{N}}$ that converse 0.

proof) It is directive by 'Preliminary-prop1' (by ex2), $\{\sin n\}_{n\in\mathbb{N}}$ is dense in $\{0\}$).

Lemma)

: Let $\alpha > 0$ be an irrational number. Then $\{a_n := frac(\alpha n)\}_{n \in \mathbb{N}}$ is dense in [0,1].

proof) Obviously $0 < a_n$. We claim that a_n can be enough to small.

Since a_1 is irrational lower than 1, $\exists n_1 \in \mathbb{N}$ s.t. $n_1 a_1 < 1 < (n_1 + 1)a_1$.

Note that at this time, $a_{(n_1+1)}=(n_1+1)a_1-1$ with $a_1>a_{(n_1+1)}$. Similarly,

$$\exists \; n_2 \in \mathbb{N} \; \text{ s.t. } \; n_2 a_{(n_1+1)} < 1 < (n_2+1) a_{(n_1+1)} \; \text{ and } \; a_{(n_2+1)(n_1+1)} = (n_2+1) a_{(n_1+1)} - 1.$$

Inductively, for all $m\!\in\!\mathbb{N}$ we get $a_{k_m}\!=\!\frac{k_m}{k_{(m-1)}}a_{k_{m-1}}\!-\!1$

where
$$k_m=(n_m+1)\cdots(n_1+1)$$
 and $\frac{k_{m+1}}{k_m}a_{k_m}>1>(\frac{k_{m+1}}{k_m}-1)a_{k_m}.$

Note that
$$\forall i = 1, 2, \dots$$
, $\frac{1}{(n_{i+1})+1} < a_{k_i} < \frac{1}{n_{i+1}}$ and $\frac{1}{k_1 - 1} > a_1 > \frac{1}{k_1} \cdots (a)$.

Suppose that $\forall\,i\!\in\!\mathbb{N}$, All n_i 's are same, that is, $n_1=n_2=\dots=n_m$ \cdots (b).

Substituting
$$\frac{a_{k_i}}{k_i} = b_i$$
 for $i=1,...,m$, we get $b_1 = a_1 - \frac{1}{k_1}$,

$$b_2 = b_1 - \frac{1}{k_2},$$

:

$$b_m = b_{m-1} - \frac{1}{k_m}.$$

Then adding left and right side, we get $b_m = a_1 - \sum_{i=1}^m \frac{1}{k_i} = a_1 - \sum_{i=1}^m \frac{1}{(k_1)^i}$. (\because (b))

Since last term is geometric series, $b_m = a_1 - \frac{1}{k_1 - 1} \left(1 - \left(\frac{1}{k_1} \right)^m \right)$ for all $m \in \mathbb{N}$.

But by (a) this is contradiction that $b_m \geq 0$. (considering $m \rightarrow \infty$)

Thus (b) isn't hold and we can choose $n_1 < n_{m_1} < \cdots$ (1 < $m_1 < \cdots$).

With (a) this implies that claim is true. So fix any $x \in (0,1)$ and $\varepsilon > 0$.

By claim, $\exists\, m,n\!\in\!\mathbb{N}$ s.t. $0< a_m<\varepsilon$ and $a_m+x<1.$ Then $\exists\, k\!\in\!\mathbb{N}$ s.t.

 $(k-1)a_m < x < ka_m < 1 \implies 0 < ka_m - x < a_m < \varepsilon$. This completes the proof. \blacksquare

Thm3) (Density of Sin n) The sequence $\{sin n\}_{n \in \mathbb{N}}$ is dense in [-1, 1].

proof) Fix any $\alpha\in[-1,1]$. By surjectivity of sine function, $\exists\ \beta\geq 0$ s.t. $\alpha=\sin\beta$. Let $\varepsilon>0$ and $b=\beta-\lfloor\beta\rfloor$. By 'Lemma)' $\exists\ a_{n_k}$ of $\left\{a_n=frac(2n\pi)\right\}_{n\in\mathbb{N}}$ $(1\leq n_1< n_2<\cdots)$ s.t. $\lim_{k\to\infty}a_{n_k}=b$. Thus $\exists\ k_0\in\mathbb{N}$ such that $\left|b-a_{n_{k_0}}\right|<\varepsilon$. So $\left|\sin\beta-\sin\left(\lfloor\ 2k_0\pi\ \rfloor-\lfloor\ \beta\rfloor\right)\right|=\left|2\cos\frac{\lfloor\ 2k_0\pi\ \rfloor}{2}\sin\left(\frac{b-\lfloor\ 2k_0\pi\ \rfloor}{2}\right)\right|$ $=\left|2\cos\frac{\lfloor\ 2k_0\pi\ \rfloor}{2}\sin\left(\frac{b-a_{n_{k_0}}}{2}\right)\right|$ $\leq 2 \cdot \left|\frac{b-a_{k_0}}{2}\right|<\varepsilon$.

Thus choosing $m = \lfloor 2k_0\pi \rfloor - \lfloor \beta \rfloor$ implies $|\sin \beta - \sin m| < \varepsilon$.

At this time, WLOG we can set m > 0 and this complete the proof.

Thm4) (Diophantine's Approximation Theorem)

: Given any irrational number α , there exist infinitely many integers p,q such that $\left|\alpha-\frac{p}{q}\right|<\frac{1}{q^2}\left(\Leftrightarrow |q\alpha-p|<\frac{1}{q}\right)\,\cdots\,(a).$

(For convenience sake, we will call this 'DAT')

proof) Substituting $p=\lfloor \alpha \rfloor$, q=1, check there exists at least one pair p,q. Suppose there exists finitely many integers satisfying above.

Denote those $(p_1,q_1),...,(p_n,q_n)$. Let $M:=\min\{q_k\alpha-p_k\}_{1\leq k\leq n},\ K:=\left\lfloor\frac{1}{M}\right\rfloor+1$.

Partition the interval [0,1) K's piece s.t. $[0,\frac{1}{K}),...,[\frac{K-1}{K},1).$

Let $a_n = frac(n\alpha)$. Then By Pigeon-Hall Principal, $\exists i, j (1 \le j < i \le K+1)$

such that $a_i-a_j<\frac{1}{K}.$ Since $a_i-a_j=(i-j)\alpha-(\ \lfloor\ i\alpha\ \rfloor-\ \lfloor\ i\beta\ \rfloor\)$,

 $\text{choosing } p_0 = \ \lfloor \ i\alpha \ \rfloor \ - \ \lfloor \ i\beta \ \rfloor \ , \ q_0 = i - j \ \text{implies that } \ \left| \ q_0\alpha - p_0 \ \right| < \frac{1}{K} \leq \frac{1}{q_0} \, .$

Note that (p_0,q_0) satisfies (a), but since $\left|q_0\alpha-p_0\right| < M, \ \forall \ k(1 \leq k \leq n)$

 $(p_0,q_0) \neq (p_k,q_k)$. This is contradiction. And this complete the proof.

Thm5) $\left\{\frac{1}{n\sin n}\right\}_{n\in\mathbb{N}}$ is divergent.

proof) Suppose the given sequence is convergent. Then by Thm3), $\exists \left\{n_k\right\}_{k\in\mathbb{N}}\subseteq\mathbb{N}$ s.t. $1\leq n_1< n_2<\cdots$ and $\lim_{k\to\infty}\left|\sin n_k\right|=1$. So $\lim_{n\to\infty}\frac{1}{n\sin n}=0$. \cdots (a)

By Diophantine's Approximation Thm, there exists infinitely many integers such that $|q\pi-p|<\frac{1}{q}$ and WLOG p,q>0. Those rearrange same below

$$\left|\,q_k\pi-p_k\,\right|<\frac{1}{\,q_k}\ \, \text{with}\ \, 1\leq q_1\leq q_2\leq\cdots,\ \, 1\leq p_1\leq p_2\leq\cdots.$$

Then
$$\left|q_k\pi-p_k\right|<\frac{1}{q_k} \implies \left|\sin\left(q_k\pi-p_k\right)\right|<\frac{1}{q_k}$$

$$\Rightarrow q_k < \frac{1}{\sin p_k}$$

$$\Rightarrow \frac{q_k}{p_k} < \frac{1}{p_k \sin p_k} \, .$$

Take $k \to \infty$. Since $\left| \pi - \frac{p_k}{q_k} \right| < \frac{1}{q_k^2}$, from above we get $\frac{1}{\pi} < \lim_{k \to \infty} \frac{1}{p_k \sin p_k}$.

This is contradiction of (a). Thus the given sequence is divergent.

Def1) (Irrationality Measure)

- : Fix $x \in \mathbb{R}$. Let $M(x) \subseteq \mathbb{R}$ be the set defining $r \in M(x)$ if and only if there exist infinitely many integer pairs satisfying $0 < \left| x \frac{p}{q} \right| < \frac{1}{q^r}$ with q > 0. At this time, $\sup M(x)$ is called 'irrationality measure of x' denote it $\mu(x)$.
- ** Note that if $\alpha > \mu(x)$, there exists at most finitely many integers (p,q) (q>0) satisfying $0 < \left|x \frac{p}{q}\right| < \frac{1}{q^r}$. That is, for having large absolute values integers every (n,m), this inequality is holds $\left|x \frac{n}{m}\right| \ge \frac{1}{m^{\alpha}}$.

ex1)

: Let α be a rational number. Then irrationality measure of α is 1.

sol) Denote $\alpha = \frac{b}{a}$ where $a,b \in \mathbb{Z}$, a > 0 and $\gcd(a,b) = 1$.

$$i) \ r > 1, \ |q\alpha - p| < \frac{1}{q^{r-1}} < 1 \implies |qb - pa| < a.$$

Choosing q = ka, p = kb - 1, we get |qx - p| = 1. So $r < 1 \implies r \in M(x)$.

$$ii) \ r<1, \ \left| \, q\alpha-p \, \right|<\frac{1}{q^{r\,-\,1}} \ \Rightarrow \ \left| \, qb-pa \, \right|<\frac{a}{q^{r\,-\,1}} \ \cdots \ (a)\,.$$

If there exists many integers pair (p,q), both p and q exist infinitely many because if only one side holds, $\left|\alpha-\frac{p}{q}\right|$ converge zero or diverge infinity.

So in (a) if q is enough to big, right hand enough to closely zero.

But since left hand not smaller than 1, this is contradiction.

Therefore, from i), ii) irrationality measure of α is 1.

Thm1)

: Any irrational number has irrationality measure not smaller than 2.

proof) This is directive by 'Diophantine's Approximation Thm'.

Thm2) (Roth)

: Any irrational algebraic number has irrationality measure 2.

ex2)
$$\mu(\sqrt{2}) = 2, \, \mu(e) = 2$$

Thm3) (Sondow)

: Let $x=\left[a_0,a_1,a_2,\ldots\right]$ be a simple continued fraction of x and (p_n/q_n) be n-th convergent. Then,

$$\mu(x) = 1 + \lim_{n \to \infty} \sup \frac{\ln q_{n+1}}{\ln q_n} = 2 + \lim_{n \to \infty} \sup \frac{\ln a_{n+1}}{\ln q_n}.$$

Thm4) (Note that this is generalization for page6-Thm5.)

: For positive real numbers u and v,

1) If
$$\mu(\pi) < 1 + \frac{u}{v}$$
, the sequence $\frac{1}{n^u |\sin n|^v}$ converges to zero,

2) If
$$\mu(\pi) > 1 + \frac{u}{v}$$
, the sequence $\frac{1}{n^u |\sin n|^v}$ diverges.

proof)

: 1) Let n be natural number and $m = \left\lfloor \frac{n}{\pi} \right\rfloor$. And $\exists \, \varepsilon > 0$ s.t. $\mu(\pi) < 1 + \frac{u}{v} - \varepsilon$.

Then since $|n - m\pi| \in \left[0, \frac{\pi}{2}\right]$, $|\sin n| = |\sin(n - m\pi)| \ge \frac{2|n - m\pi|}{\pi} = \frac{2m}{\pi} \left|\pi - \frac{n}{m}\right|$.

Since $\mu(\pi) < 1 + \frac{u}{v} - \varepsilon$, $\left| \pi - \frac{n}{m} \right| \ge \frac{1}{1 + \frac{u}{v} - \varepsilon}$ for large $n \in \mathbb{N}$.

So for large n, $|\sin n| \ge \frac{2}{\pi} \frac{1}{m^{\frac{u}{v} - \varepsilon}} \iff m^{-\varepsilon} |\sin n| \ge \frac{2}{\pi} \left(\frac{n}{m}\right)^{\frac{u}{v}} \frac{1}{n^{\frac{u}{v}}}$

$$\Leftrightarrow m^{-\frac{\varepsilon}{v}} \ge \frac{2}{\pi} \left(\frac{n}{m}\right)^u \frac{1}{n^u |\sin n|^v}.$$

Because $\lim_{n \to \infty} \frac{n}{m} = \frac{1}{\pi}$, for large $n \ni \text{constant } K \text{ s.t. } m^{-\frac{\varepsilon}{v}} \geq \frac{K}{n^u |\sin n|^v}$.

Therefore taking $n \to \infty$, we get the result $\lim_{n \to \infty} \frac{1}{n^u |\sin n|^v} = 0$.

2) There exists some $\varepsilon > 0$ such that $\mu(\pi) > 1 + \frac{u}{v} + \varepsilon$.

Thus there exists infinitely many integers satisfying $\left|\pi-\frac{p_k}{q_k}\right| \leq \frac{1}{\frac{1+\frac{u}{v}+\varepsilon}{q_k}}$.

WLOG, we can assume $1 \leq q_1 < q_2 < \cdots$, $1 \leq p_1 < p_2 \leq \cdots$.

Since
$$\left|\pi - \frac{p_k}{q_k}\right| \le \frac{1}{\frac{1+\frac{u}{v}+\varepsilon}{q_k}} \iff \left|q_k\pi - p_k\right| \le \frac{1}{\frac{u}{v}+\varepsilon} \text{ for all } k \in \mathbb{N},$$

 $\text{we get } |\sin p_k| \leq \frac{1}{\frac{u}{q_k^u} + \varepsilon} \iff \frac{q_k^{u^+ v \varepsilon}}{p_k^u} \leq \frac{1}{p_k^u |\sin p_k|^v}. \text{ Note that } \lim_{k \to \infty} \frac{q_k}{p_k} = \frac{1}{\pi}.$

Therefore taking $k \to \infty$, right hand is divergent to infinity.