Curso Propedéutico

Álgebra Lineal

Lista 2

15 de mayo de 2013

- 1).- Demuestre que en un espacio vectorial el neutro aditivo es único. También demuestre que cada elemento del espacio tiene un único inverso aditivo.
- 2).- Sea K un campo. Demuestre que K^4 con la suma y la multiplicación por escalares de K definidas en clase satisface todas las condiciones de espacio vectorial.
- 3).- Exprese al vector (1,1) de \mathbb{R}^2 como combinación lineal de (2,1) y (2,-1).
- 4).- Demuestre que el conjunto de vectores $\{(2,1),(2,3),(2,8)\}$ en \mathbb{R}^2 es linealmente dependiente.
- 5).- Determine en cada caso si los siguientes elementos de \mathbb{R}^3 son linealmente independientes.
 - (a) (1,2,3), (4,5,6), (7,8,9).
 - (b) (1,0,1), (0,1,2), (0,0,1).
 - (c) $(1,2,3), (0,4,5), (\frac{1}{2},3,\frac{21}{4}).$
- 6).- Demuestre que el conjunto de vectores $\{(1,3),(-2,3)\}$ es una base para \mathbb{R}^2 .

7).- Sea $V=\mathbb{R}[x]$, el conjunto de polinomios en una variable con coeficientes en \mathbb{R} . Considerando a V como un espacio vectorial sobre \mathbb{R} , pruebe que V no es de dimensión finita.

- 8).- Si V es un espacio vectorial de dimensión finita sobre K y W es un subespacio de V, pruebe que:
 - (a) W es de dimensión finita y $\dim(W) \leq \dim(V)$.
 - (b) $\dim(V) = \dim(W)$ si y solamente si V = W.
- 9).- Si V es espacio vectorial de dimensión finita y W es un subespacio de V, pruebe que existe un subespacio W' tal que $V = W \oplus W'$.
- 10).- Sea W un subespacio del espacio vectorial V. Supongamos que el conjunto de clases $\{v_1+W,\ldots,v_n+W\}$ en V/W es linealmente independiente. Muestre que el conjunto de vectores $\{v_1,\ldots,v_n\}$ también es linealmente independiente.

Curso Propedéutico

Álgebra Lineal

Lista 3

23 de mayo de 2013

1).- Resuelva el sistema de ecuaciones lineales:

$$\begin{array}{rcl}
2x_1 + x_2 - 3x_3 & = & 5 \\
3x_1 - 2x_2 + 2x_3 & = & 5 \\
5x_1 - 3x_2 - x_3 & = & 16
\end{array}$$

2).- Determine si cada sistema de ecuaciones lineales tiene una solución diferente de la trivial:

3).- Determine todas las matrices $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ tales que: $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix}$.

4).- Dada $A = \begin{pmatrix} 1 & 3 \\ 4 & -3 \end{pmatrix}$, encuentre un vector columna $u = \begin{pmatrix} x \\ y \end{pmatrix}$ distinto de cero tal que Au = 3u.

5).- Sea
$$A = \begin{pmatrix} 0 & 1 & 3 & -2 \\ 2 & 1 & -4 & 3 \\ 2 & 3 & 2 & -1 \end{pmatrix}$$
.

Lleve a la matriz A, a través de operaciones elementales de renglón, a una matriz reducida por renglones. Indique cada una de las operaciones realizadas.

6).- Sea
$$A = \begin{pmatrix} 1 & 2 & 0 \\ 3 & -1 & 4 \end{pmatrix}$$
. Determine (i) A^t , (ii) AA^t y (iii) A^tA .

7).- Sea
$$A = \begin{pmatrix} 1 & 0 & 2 \\ 2 & -1 & 3 \\ 4 & 1 & 8 \end{pmatrix}$$
.

Determine (i) A^t , (ii) A^{-1} , (iii) $(A^t)^{-1}$ y (iv) $(A^{-1})^t$.

- 8).- Sea $V = \mathbb{R}^3$. Considere la base canónica $\{e_1, e_2, e_3\}$ y la base $v_1 = (1, 1, 1), v_2 = (0, 1, 1), v_3 = (0, 0, 1)$. Sea v = (1, 5, 6).
 - a) Determine la matriz de cambio de base P de la base $\{e_1, e_2, e_3\}$ a la base $\{v_1, v_2, v_3\}$.
 - b) Determine la matriz de cambio de base Q de la base $\{v_1, v_2, v_3\}$ a la base $\{e_1, e_2, e_3\}$.
 - c) Calcule P^{-1} .
 - d) Verifique $Q = P^{-1}$.
 - e) Determine $[v]_{\{e_i\}}$, el vector coordenado de v relativo a la base $\{e_1, e_2, e_3\}$.
 - f) Determine $[v]_{\{v_i\}}$, el vector coordenado de v relativo a la base $\{v_1, v_2, v_3\}$.
 - g) ¿Qué relación hay entre $[v]_{\{e_i\}},\,P$ y $[v]_{\{v_i\}}?$

Curso Propedéutico

Álgebra Lineal

Lista 4

30 de mayo de 2013

- 1).- Sean $T_1 : \mathbb{R}^2 \to \mathbb{R}^2$ y $T_2 : \mathbb{R}^2 \to \mathbb{R}^2$ definidos por $T_1(x, y) = (2y, 3x y)$ y $T_2(x, y) = (3x 4y, x + 5y)$.
 - (i) Demuestre que T_1 y T_2 son operadores lineales en \mathbb{R}^2 .
 - (ii) Encuentre la matriz A_1 asociada a T_1 respecto a la base canónica de \mathbb{R}^2 .
 - (iii) Encuentre la matriz A_2 asociada a T_2 respecto a la base canónica de \mathbb{R}^2 .
 - (iv) Sean $T = T_1 + T_2$ y $S = T_1 \circ T_2$. Determine T(x, y) y S(x, y) para $(x, y) \in \mathbb{R}^2$.
 - (v) Encuentre la matriz A asociada a T respecto a la base canónica de \mathbb{R}^2 .
 - (vi) Encuentre la matriz B asociada a S respecto a la base canónica de $\mathbb{R}^2.$
 - (vii) Verifique que $A = A_1 + A_2$ y $B = A_1A_2$.
- 2).- Sea $T: \mathbb{R}^3 \to \mathbb{R}^3$ definido por T(x, y, z) = (x + y, 2y, -z).
 - (i) Demuestre que T es un operador lineal en \mathbb{R}^3 .
 - (ii) Determine $\ker T$.
 - (iii) Demuestre que T es inyectivo.

- (iv) Demuestre que T es suprayectivo.
- (v) Demuestre que T es biyectivo.
- (vi) Encuentre la matriz A asociada a T respecto a la base canónica de \mathbb{R}^3 .
- (vii) Demuestre que A es invertible y determine su inversa A^{-1} .
- (viii) Determine $T^{-1}(x, y, z)$ para $(x, y, z) \in \mathbb{R}^3$.
- (ix) Encuentre la matriz B asociada a T^{-1} respecto a la base canónica de \mathbb{R}^3 .
- (x) Verifique que $B = A^{-1}$.

3).- Sea
$$A=\begin{pmatrix}0&1&0\\0&0&1\\6&-11&6\end{pmatrix}$$
 sobre $\mathbb R$. Demuestre que $A^3-6A^2+11A-6I=0.$

- 4).- Sea $T: \mathbb{R}^3 \to \mathbb{R}^3$ definido por T(x, y, z) = (2x + y, y z, 2y + 4z). Sean $v_1 = (1, 0, 0), v_2 = (1, 1, -2)$ y $v_3 = (0, 0, 1)$.
 - (i) Demuestre que $\{v_1, v_2, v_3\}$ es una base de \mathbb{R}^3 .
 - (ii) Encuentre la matriz A asociada a T respecto a la base canónica de \mathbb{R}^3 .
 - (iii) Encuentre la matriz de cambio de base P de la base canónica a la base $\{v_1,v_2,v_3\}$ de \mathbb{R}^3 .
 - (iv) Determine la inversa P^{-1} de P.
 - (v) Encuentre la matriz B asociada a T respecto a la base $\{v_1, v_2, v_3\}$ de \mathbb{R}^3 .
 - (vi) Verifique que $P^{-1}AP=B$ y concluya que A y B son semejantes.
- 5).- Sean $V = L(\{\operatorname{sen} x, \cos x\})$ el espacio vectorial generado por $\{\operatorname{sen} x, \cos x\}$ sobre $\mathbb R$ y D el operador derivada. Encuentre la matriz A asociada a D respecto a la base $\{\operatorname{sen} x, \cos x\}$.

6).- Sea $V = \mathbb{R}^3$ y supongamos que

$$A = \left(\begin{array}{rrr} 1 & 1 & 2 \\ -1 & 2 & 1 \\ 0 & 1 & 3 \end{array}\right)$$

es la matriz asociada a $T \in \mathcal{L}(V)$ con respecto a la base canónica $\{e_1, e_2, e_3\}$.

- (i) Determine T(x, y, z) para $(x, y, z) \in \mathbb{R}^3$.
- (ii) Determine la matriz B asociada al operador T con respecto a la base $\{v_1 = (1, 1, 1), v_2 = (0, 1, 1), v_3 = (0, 0, 1)\}.$
- (iii) Determine la matriz de cambio de base P de la base $\{e_1, e_2, e_3\}$ a la base $\{v_1, v_2, v_3\}$.
- (iv) Calcule P^{-1} .
- (v) Determine la matriz de cambio de base Q de la base $\{v_1, v_2, v_3\}$ a la base $\{e_1, e_2, e_3\}$.
- (vi) Verifique que $Q = P^{-1}$.
- (vii) Verifique que $B=P^{-1}AP$ y concluya que A y B son semejantes.
- 7).- Sean $V = \mathbb{R}^4$ y $W = \mathbb{R}^2$. Sea $T: V \to W$ definido por T(x, y, s, t) = (3x 4y + 2s 5t, 5x + 7y s 2t).
 - (i) Determine la matriz A asociada a la transformación lineal T con respecto a las bases canónicas de V y W.
 - (ii) Encuentre la matriz de cambio de base P de la base canónica a la base $\{v_1=(1,1,1,1),v_2=(1,1,1,0),v_3=(1,1,0,0),v_4=(1,0,0,0)\}$ de V.
 - (iii) Encuentre la matriz de cambio de base Q de la base canónica a la base $\{w_1=(1,3),w_2=(0,4)\}$ de W.
 - (iv) Determine la inversa Q^{-1} de Q.
 - (v) Encuentre la matriz B asociada a T respecto a las bases $\{v_1, v_2, v_3, v_4\}$ de V y $\{w_1, w_2\}$ de W.
 - (vi) Verifique que $Q^{-1}AP = B$.

Curso Propedéutico

Álgebra Lineal

Lista 5

12 de junio de 2013

1).- Determine los productos de permutaciones:

(a)
$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 1 & 3 & 4 & 5 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 2 & 1 & 4 & 5 \end{pmatrix}$$
.

(b)
$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 1 & 3 & 2 & 5 \end{pmatrix}^{-1} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 1 & 3 & 4 & 5 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 1 & 3 & 2 & 5 \end{pmatrix}$$
.

2).- Obtenga todas las potencias (es decir, σ^k para todo $k\in\mathbb{Z})$ de la permutación

$$\sigma = \left(\begin{array}{cccccc} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 1 & 3 & 4 & 6 & 5 & 7 \end{array}\right).$$

3).- Exprese como producto de ciclos ajenos:

(b)
$$(1 \ 2) (1 \ 3) (1 \ 4)$$
.

4).- Determine la paridad de la permutación:

5).- Justifique

$$\begin{vmatrix} 1 & 3 & 5 & 2 \\ 0 & -1 & 3 & 4 \\ 2 & 1 & 9 & 6 \\ 3 & 2 & 4 & 8 \end{vmatrix} = \begin{vmatrix} 1 & 3 & 5 & 2 \\ 0 & -1 & 3 & 4 \\ 0 & -5 & -1 & 2 \\ 0 & -7 & -11 & 2 \end{vmatrix} = \begin{vmatrix} 1 & 3 & 5 & 2 \\ 0 & -1 & 3 & 4 \\ 0 & 0 & -16 & -18 \\ 0 & 0 & -32 & -26 \end{vmatrix}.$$

6).- Resuelva, usando determinantes, el sistema:

$$3y + 2x = z + 1$$

 $3x + 2z = 8 - 5y$
 $3z - 1 = x - 2y$.

- 7).- Sea $A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 2 & 1 \end{pmatrix}$. Encuentre:
 - (i) los cofactores de A,
 - (ii) la adjunta de A,
 - (iii) Aadj(A),
 - (iv) det(A),
 - (v) A^{-1} .
- 8).- Considere el espacio euclidiano \mathbb{R}^3 con el producto interno usual. Sea u=(-1,3,2). Encuentre:
 - (i) un vector $v \in \mathbb{R}^3$, $v \neq 0$ que sea ortogonal a u.
 - (ii) un vector unitario $w \in \mathbb{R}^3$ que sea ortogonal a u.
- 9).- Considere el espacio euclidiano $\mathcal{M}_{3\times 3}(\mathbb{R})$ con el producto interno dado por $\langle A, B \rangle = \operatorname{tr}(B^{t}A)$. Sean $A = \begin{pmatrix} 2 & 6 \\ 1 & -3 \end{pmatrix}$ y $B = \begin{pmatrix} 3 & 2 \\ 1 & 0 \end{pmatrix}$.
 - (i) Encuentre $\langle A, B \rangle$.
 - (ii) Encuentre ||A|| y ||B||.
 - (iii) Calcule $\cos(\theta) := \frac{\langle A, B \rangle}{||A|| ||B||}$.
- 10).- Considere \mathbb{R}^3 con el producto interno usual. Utilizando el proceso de ortogonalización de Gram-Schmidt, transforme la base $\{v_1 = (1, 1, 1), v_2 = (-1, 1, 0), v_3 = (1, 2, 1)\}$ en una base ortonormal.