join2vec: towards efficient and semantic-rich string similarity joins Join models

Manos Chatzakis (emmanouil.chatzakis@epfl.ch)

Supervised by Viktor Sanca and Anastasia Ailamaki

Optional Semester Project Presentation

String Similarity Joins

...given a collection of strings, find the most similar pairs.

- Dataset Merging
- Duplicate Elimination
- Query Expansion
- Clustering

String similarity joins are indispensable in real-world analytics

Similarity in Practice

Define similarity rules (Syntactic, Synonym, Taxonomy)

Refine [XuL19-PVLDB]

Defining similarity rules for strings is a difficult task

join2vec

automobile

Model-Driven, automated rules that capture the semantic context

Join2vec Algorithm

Tight join-model integration for efficient execution

Join2vec Algorithm

Tight join-model integration for efficient execution

Join2vec Algorithm

Tight join-model integration for efficient execution

Exact Joins

- Find all similar string pairs
- Nested Loop
 - Online iteration (validate all pairs)
 - No data structure
 - Parallelization, SIMD, Prefetching
- Index-Based Join (FAISS)
 - Hash-Based index
 - Big data collections
 - Fast lookup (knn) and filtering
 - Parallelization, SIMD

Exact joins can be supported by both nested loop and hash-based joins

Approximate Joins

- Tradeoffs between speed and retrieval quality
- Approximate Hash-Based Index
 - Index on one relation
 - Hash every query
 - Retrieve and validate entries
- Approaches
 - Bloom Filters
 - Locality Sensitive Hashing

Locality Sensitive Hashing

- Regions using hyperplanes
- Dense to binary vectors
- Quality of hashing related to the number of hyperplanes

Region	Bucket
[0,0]	t
[0,1]	I
[1,0]	b, m
[1,1]	r

Cost Model Evaluation

Specifications

- R: Outer relation size
- S: Inner relation size
- M: Model access cost
- P: Similarity calculation cost
- Sel: Selectivity rate (%)

Cost Model Evaluation

- Nested Loop Joins
 - Simple (NLJ)
 - $costNLJ = R + (R \times S) + (sel \times R \times S \times P) + (M \times R \times S)$
 - Prefetching (NLJ-P)
 - $costNLJ-P = R + (R \times S) + (sel \times R \times S \times P) + (M \times (R + S))$

- Hash-Based Joins, HASHJ
 - $costHASHJ = R + S + (sel \times R \times S \times P) + M \times (R + S)$

Model Accesses

Processing of pairs

Dataset Iterations

Cost differs in the way of accessing the model and iterating over the relations

Selectivity Rates

- Assume filtering technique for nested loops (NLJ, NLJ-P)
- Selectivity can be tuned based on attributes and hyperplanes

Execution time grows linearly with selectivity, better performance with hashing

Dataset Size

- Selectivity rate can be tuned (e.g. hyperplanes)
- Selectivity of NLJ algorithms is 1.0

Relation Size

Strict selectivity and hash-based structures lead to better performance than NLJ

Concluding Remarks

- Different models applicable for exact and approximate string similarity joins
- Hash-Based joins lead to better performance for big vector collections
- Approximate LSH-based join has important tradeoffs between performance and quality of retrieval

Future Work

- Extensively evaluate all join methods
- Provide insight between the tradeoffs of approximate join quality
- Explore FAISS exact-knn indices and capabilities even further
- Explore FAISS approximate-knn indices
- Compare FAISS approximate results with LSH method

Thank you!