# Исследование операций ПМ-1701

Преподаватель:

Чернов Виктор Петрович viktor\_chernov@mail.ru

Санкт-Петербург 2020 г., 6 семестр

### Список литературы

- [1] Sulsky D., Chen Z., Schreyer H. L. A particle method for history-dependent materials // Computer Methods in Applied Mechanics and Engineering. 1994, V. 118. P. 179–196.
- [2] Liu G. R., Liu M. B. Smoothed particle hydrodynamics: a meshfree particle method. — Singapore: World Scientific Publishing. — 2003. — 449 p.

## Содержание

| 1 | Конспекты лекций |                               |                                                 | 2  |
|---|------------------|-------------------------------|-------------------------------------------------|----|
|   | 1.1              |                               |                                                 |    |
|   | 1.2              |                               |                                                 |    |
|   |                  | 1.2.1                         | Стратегии управления запасами и критерий опти-  |    |
|   |                  |                               | мальности                                       | 2  |
|   |                  | 1.2.2                         | Простейшие модели управления запасами. Формула  |    |
|   |                  |                               | Уилсона                                         | 3  |
|   |                  | 1.2.3                         | Простейшая модель с допущением незадолженного   |    |
|   |                  |                               | дефицита                                        | 6  |
|   |                  | 1.2.4                         | Простешная модель с задолженным дефицитом       | 6  |
|   |                  | 1.2.5                         | Модель с растянутой поставкой и задолженным де- |    |
|   |                  |                               | фицитом                                         | 7  |
|   | 1.3              | Теория массового обслуживания |                                                 | 9  |
|   |                  | 1.3.1                         | Структура систем массового обслуживания         | 9  |
|   |                  | 1.3.2                         | Три свойства потоков требования                 | 10 |
|   |                  | 1.3.3                         | Параметр и интенсивность потока                 | 11 |

### 1 Конспекты лекций

#### $1.1 \quad 13.02.2020$

**Отчет о результатах:** в каких пределах можно менять коэффициенты целевой функции чтобы оптимальный план не изменился.

Перейдем к листу отчета об устойчивости.

**Теневая цена** - предельная полезность ресурса, компонент оптимального плана двойственной задачи, частная производная целелвой функции по правой части ограничения - величина, показывает на сколько единиц изменится результат, если изменить правую часть на единицу.

Представим задачу, меняем коэффициенты правой части, получили оптимальное решение  $z^*$ :

$$CX \to max$$

$$\begin{cases} AX \le B \\ X \ge 0 \end{cases}$$

$$Z^* = Z(B) = Z(b_1, b_2, ..., b_n)$$

$$\frac{\partial Z}{\partial b_i} = y_i^*$$

где  $y_i^*$  - теневые цены, компоненты оптимального плана.

График предельной полезности является кусочно-линейным.

Отчет о пределах - сомнительная польза: если объем печенья будем равны 0, то остается один бисквит.

#### $1.2 \quad 20.02.2020$

# 1.2.1 Стратегии управления запасами и критерий оптимальности

Рисуем типичный график зависимости запасов от времени. В начальный момент времени есть какой-то запас и он изменяется с течением времени. Склад является аккумулятором запасов потребителя. На склад, в свою очередь постсупает продукция поставщиков.

В какой-то момент времени запас склада пополняется на некоторую величину  $V_1$ . Дефицит может отображаться двумя способами.

- Незадолженный дефицит спустя какое-то время на склад при нулевом запасе приходит товар
- Задолженный дефицит дефицит уходит в отрицательную область.

Последовательность пополнения запасов - результат принятия решений, она возникает тогда, когда потребительская система формирует заказ поставщикам.

$$\begin{cases} V_1 & V_2 & \dots \\ t_1 & t_2 & \dots \end{cases}$$

Данный график носит название *стратегии управления поставка-ми*. Она состоит из отдельных управленческих решений. Какой график поставок лучше, т.е какая стратегия оптимальна? В этом и состоит оптимизационная задача.

Сущестует три вида затрат:

- Затраты связаны с поставками
- Затраты связаны с хранением
- Затраты связаны с дефицитом

Каждая из затрат подразделяется на постоянные и переменные затраты Постоянные - не зависещее от объема. Затраты, связанные с поставкой, не зависят от объема: затраты на огранизацию.

Критерий оптмимальности: средние затраты в единицу времени были минимальными.

### 1.2.2 Простейшие модели управления запасами. Формула Уилсона.

Простешйая модель обладает тремя свойствами:

- 1. Дефицит не допускается.
- 2. Постоянный не меняющийся спрос,  $\alpha$  -сколько единиц товара уходит на единицу времени
- 3. Отсутствует неопределенность

На графике мы заменяем кривые прямыми, угол наклона будет одинаковым по второму свойству. Можно предположить, что поставка будет приходить точно в срок, и быть уверенным, что все так и будет.

Оптимальную стратегию следует искать среди графиков следующего вида:



Обозначим за a - постоянные затраты поставок. Постоянные затраты связанные с хранением мы устраняем из рассмотрения. Переменная составляющая по поставкам - тоже исключается, так как мы на нее не можем влиять - она изменяется от нас не зависяще. b - коэффициент затрат по хранению - затраты по хранению товара на единицу времени. Размерность - количество единиц товара на единицу времени. Дефицитные поставки все исключаем.

Коэффициент b на графике - единичный квадрат.

Допустим у нас есть два треугольника. Общие затраты равны суммы двух затрат  $T=T_1+T_2,\ Q=\alpha\cdot T$  Тогда средние затраты равны площади этих двух треугольников, то есть:

$$mse = \frac{2a + b(\frac{1}{2}Q_1T_1 + \frac{1}{2}Q_2T_2)}{T}$$

Так как  $Q = \alpha \cdot T$ , то:

$$mse = \frac{2a + b(\frac{1}{2}\alpha T_1^2 + \frac{1}{2}\alpha T_2^2)}{T}$$

Необходимо минимизировать следующее выражение:

$$2a + \frac{1}{2}b\alpha(T_1^2 + (T - T_1)^2) \to \min$$

Возьмем производную:

$$f'(T_1) = b\alpha(T_1 - (T - T_1)) = b\alpha(-T + 2T_1) = 0$$
$$T_1 = \frac{1}{2}T, T_2 = \frac{1}{2}T$$

Следовательно, оптимальные решения нужно искать среди перио-

дической модели с одинаковыми треугольниками. Теперь задача состоит в том, чтобы найти длину партии Q и T - пероид.

Затраты на одном цикле управления запасами:

$$L_{sum} = a + \frac{1}{2}bQT = a + b\frac{1}{2}\alpha T^2$$

Такие формулы не позволятют сравнивать стратегии, следовательно нужно сравнить средни затраты, поэтому поделим на длину цикла:

$$L = \frac{a + b\frac{1}{2}\alpha T^2}{T} = \frac{a}{T} + \frac{1}{2} \cdot b \cdot \alpha \cdot T \to \min$$

$$L'(T) = -\frac{a}{T^2} + \frac{1}{2}b\alpha = 0$$

$$T^* = \sqrt{\frac{2a}{b\alpha}} - \min$$

$$Q^* = \sqrt{\frac{2a\alpha}{b}} - \min$$

$$L = \frac{a}{\sqrt{\frac{2a}{b\alpha}}} + \frac{1}{2}b\alpha\sqrt{\frac{2a}{b\alpha}} = \sqrt{\frac{ab\alpha}{2}} + \sqrt{\frac{ab\alpha}{2}} = \sqrt{2ab\alpha}$$

Данные формулы называются  $\Phi$ ормулами Yилсона. Если рассмотреть зависимость двух величин L от T, то графически мы ищем минимум зеленой прямой на графике:



Необходимо выбрать прямоугольник заданной площади с минимальным периодом и данный прямоугольник является квадратом.

Философское правило: лучше перебрать, чем недобрать.

# 1.2.3 Простейшая модель с допущением незадолженного дефицита.

Незадолженный дефицит



Обозначим за  $T_1$  недефицитный период  $(0;4):T_1$  и  $(4,8):T_2$  - период дефицтного периода. g - штраф за отсутствие товара.

$$\alpha, a, b, g, Q = \alpha \cdot T_1$$

$$L = \frac{a + b\frac{1}{2}Q \cdot T_1 + g \cdot T_2}{T_1 + T_2} \to \min$$

Лемма о неправильной суммы дробей:

Лемма 1.  $\frac{A_1}{B_1} \leq \frac{A_2}{B_2}$ 

Доказательство:

$$\frac{A_1}{B_1} \le \frac{A_1 + A_2}{B_1 + B_2} \le \frac{A_2}{B_2}$$

$$A_1B_1 + A_2B_2 \le A_1B_1 + A_2B_1$$

$$\frac{A_1}{B_1} \le \frac{A_2}{B_2}$$

 $\sqrt{2a\alpha b} < g$  - дефифит не выгоден,  $\sqrt{2a\alpha b} > g$  - выгоден дефицит.

#### 1.2.4 Простешная модель с задолженным дефицитом

$$X = \alpha T_1, S = \alpha T_2, \alpha, a, b, g$$

$$Q = \alpha T$$

S - задолженный дефицит.

$$L = \frac{a + bT_1 X_{\frac{1}{2}} + gT_2 S_{\frac{1}{2}}}{T_1 + T_2} \to \min$$

$$L = \frac{a + bT_1^2 \alpha_{\frac{1}{2}}^1 + gT_2^2 \alpha_{\frac{1}{2}}^1}{T_1 + T_2} \to \min$$

Приравниваем к нулю производные уравнений и решаем систему.

$$T_2 = \frac{b}{g}T_1$$

$$T_1^* = \sqrt{\frac{2a}{b\alpha \cdot (1 + \frac{b}{g})}}$$

$$T_2^* = \frac{b}{g}\sqrt{\frac{2a}{b\alpha \cdot (1 + \frac{b}{g})}} = \sqrt{\frac{2agb^2}{b\alpha \cdot (g + b)g^2}} = \sqrt{\frac{2ab}{\alpha \cdot (g + b)g}}$$

В пределе:

$$T_1^* \to \sqrt{\frac{2a}{b\alpha}}$$

$$T_2^* \to 0$$

$$X^* = \alpha T_1 = \alpha \sqrt{\frac{2a}{b\alpha \cdot (1 + \frac{b}{g})}}$$

Размер дефицита:

$$S^* = \alpha T_2 = \alpha \sqrt{\frac{2ab}{\alpha \cdot (g+b)g}}$$

То есть при оптимальном случае, размер дефицита стремится к нулю, а  $X \to Q$ .

# 1.2.5 Модель с растянутой поставкой и задолженным дефицитом.

В тот момент, когда приходит поставка, запас увеличивается по какой-то линейной функции с каким-то угловым коффициентом. Разгрузка товара проходит с какой-то скоростью  $\beta$ .  $\alpha$  - скорость уменьшения запаса (интенсивность спроса - объем разгружаемого товара в единицу

времени).  $\beta - \alpha$  - угол наклона прямой разгрузки поставки.

 $\alpha$  - угловой коэффициент (tg  $\alpha$ ) В модели с дефицитом запасы уходят в минус и со скоростью  $\beta-\alpha$  повышаются.

 $T_1'$  - поставка есть.  $T_1''$  - поставки нет.  $T_1$  - запас есть.  $T_2$  - дефицит. Максимальный размер запаса X, максимальный размер дефицита S.

$$X = (\beta - \alpha) \cdot T_1' = \alpha T_1''$$
$$S = (\beta - \alpha) \cdot T_2' = \alpha T_2''$$

а - постоянные затраты не зависящие от объема.
 Определим средние затраты.

$$L = \frac{a + b\frac{1}{2}T_1X + g\frac{1}{2}T_2S}{T} = \frac{a + b\frac{1}{2}T_1X + g\frac{1}{2}T_2S}{T_1 + T_2} \to \min$$

Должны минимизировать относительно  $T_1, T_2, X, S$ .

$$T_1' = \frac{x}{\beta - \alpha}, \quad T_1 = \frac{X}{\alpha} \Rightarrow T_1 = \frac{(\alpha + \beta - \alpha)X}{\alpha(\beta - \alpha)}$$

$$X = \frac{\alpha(\beta - \alpha)}{\beta} T_1 = \lambda T_1$$

$$S = \frac{\alpha(\beta - \alpha)}{\beta} T_2 = \lambda T_2$$

Подставим:

$$L = \frac{a + b\frac{1}{2}\lambda T_1^2 + g\frac{1}{2}T_2^2\lambda}{T_1 + T_2} \to \min$$

Возьмем частные производные:

$$\frac{\partial L}{\partial T_1} = \frac{b\lambda T_1(T_1 + T_2) - (a + \frac{1}{2}b\lambda T_1^2 + \frac{1}{2}g\lambda T_2^2)}{(T_1 + T_2)^2} = 0$$

$$\frac{\partial L}{\partial T_1} = \frac{g\lambda T_1(T_1 + T_2) - (a + \frac{1}{2}b\lambda T_1^2 + \frac{1}{2}g\lambda T_2^2)}{(T_1 + T_2)^2} = 0$$

$$(T_1 + T_2)\lambda(bT_1 - gT_2) = 0 \Rightarrow T_2 = \frac{b}{g}T_1$$

$$b\lambda T_1(T_1 + \frac{b}{g}T_1) - (a + \frac{1}{2}b\lambda T_1^2 + \frac{1}{2}g\lambda(\frac{b}{g}T_1)^2) = 0$$

$$\frac{1}{2}b\lambda T_1^2(1+\frac{b}{q}) = a$$

Найдем оптимальные значения:

$$T_1^* = \sqrt{\frac{2a}{b\lambda(1+\frac{b}{g})}}, \quad \lambda = \frac{\alpha(\beta-\alpha)}{\beta}$$

$$T_2^* = \frac{b}{g}\sqrt{\frac{2a}{b\lambda(1+\frac{b}{g})}}, \quad \lambda = \frac{\alpha(\beta-\alpha)}{\beta}$$

$$X^* = \sqrt{\frac{2a\lambda}{b(1+\frac{b}{g})}}, \quad \lambda = \frac{\alpha(\beta-\alpha)}{\beta}$$

$$S^* = \frac{b}{g}\sqrt{\frac{2a\lambda}{b(1+\frac{b}{g})}}, \quad \lambda = \frac{\alpha(\beta-\alpha)}{\beta}$$

Если  $\frac{b}{g} \to \min, T_2^* = 0, S^* = 0,$  то получится бездефицитная модель. Выразим  $\lambda$ :

$$\lambda = \alpha (1 - \frac{\beta}{\alpha})$$

Если  $\alpha \to 0$ , то  $\lambda \to \alpha$ . И прямая становится все более вертикальной - разбираемся с растяжкой.

Домашнее задание - разобрать модель с растянутой поставкой и незадолженным дефицитом.

### 1.3 Теория массового обслуживания

#### 1.3.1 Структура систем массового обслуживания

Есть некоторый поток входящих требований. Детерменированные потоки - потоки, которые подчиняются некому расписанию. Регулярный поток - поток с постоянным интервалом между соседними элементами. Перед тем как попасть на очередь, используется накопитель. Накопитель может быть ограниченным или неограниченным.

После этого - парралельно работающие устройства - узлы обслуживания. Сам процесс обсулживания - случайный процесс. Длительность обслуживания может быть разной. Посе прохождения обсужливания получается выходящий поток требований.

#### 1.3.2 Три свойства потоков требования

Характеристика потока требования на промежутке

 $V_k(t_0,t)$  - вероятность возникновения k-требований на промежутке времени, начинающийся в  $t_0$  и имеет длину t.  $V_0(t_0,t)$  - вероятность отсутствует,  $V_{>1}(t_0,t)$  - возникновение хотя бы одного требования.

Свойства потока требования:

1. Стационарность потока. Поток называется стационарным, если его базовая характеристика  $V_k(t_0,t)$  не зависит от  $t_0$ , то есть не зависит от положения отрезка на оси времени (вероятность не зависит от положения на оси).

$$V_k(t_0, t) = V_k(t'_0, t)$$

#### 2. Ординарность потока.

Поток называется ординарным, если требования возникают по одному.

Рассмотрим вероятность возникновения на каком-то промежутке времени более двух требований.  $V_{\geq 2}(t_0,t)$ . Устремим конец к началу, тогда данная вероятность будет стремиться к нулю. Для того чтобы уловить ординарность необходимо, чтобы данная вероятность стремилась быстро к нулю.

Поток называется ординарным, если выполнено следующее условие.

$$\lim_{t \to 0} \frac{V_{\geq 2}(t_0, t)}{t} = 0$$

Еще одно определение:  $V_{\geq 2}(t_0,t)=o(t)$  - бесконечно малая величиная - величина, стремящаяся к нулю быстрее, чем t.

#### 3. Отсутсвует последействие

У потока отсутствует последействие, если его вероятностные характеристики, связанные с разными промежутками времени являются независимыми.

Возьмем на оси времени два промежутка t и  $\tau$ .

 $V_k(t_0,t+ au)=\sum_{m=0}^k V_m(t_0,t)\cdot V_{k-m}(t_0+t, au)$  - знание истории не дает уточнить что-то в будущем.  $\sum_{k=0}^\infty V_k(t_0,t)=1$ 

Если поток удовлетворяет всем трем свойствам, то такой поток является  $\Pi yaccohosckum$ .

#### 1.3.3 Параметр и интенсивность потока

Onp: Параметром потока называется предел вероятности возникновения хотя бы одного требования:

$$\lim_{t \to 0} \frac{V_{\geq 1}(t_0, t)}{t} = \lambda(t_0)$$

$$\lim_{t \to 0} \frac{V_{\geq 1}(t)}{t} = \lambda$$

 $\lambda$  - параметр потока.

Onp: рассмотрим математическое ожидание числа требования на промежутке времени  $\mathbb{E}(t_0,t)$ :

$$\mathbb{E}(t_0, t) = \sum_{k=0}^{\infty} k \cdot V_k(t_0, t) = \sum_{k=1}^{\infty} k \cdot V_k(t_0, t)$$

.

Будем рассматривать среднее число требования на коротких промежутках времени:

$$\lim_{t \to 0} \frac{\mathbb{E}(t_0, t)}{t} = \mu(t_0)$$

 $\mu(t_0)$  - мгновенная интенсивность потока.

$$\lim_{t \to 0} \frac{\mathbb{E}(t)}{t} = \mu$$

 $\mu$  - число, интенсивность потока