

Autômatos Finitos

Compiladores

Judson Santos Santiago

Introdução

- · As expressões regulares formam a base de um reconhecedor
 - Permitem especificar padrões em textos
 - Podem ser transformadas em diagramas de transição
 - Diagramas de transição podem ser simulados em código

- Com expressões regulares é possível criar analisadores léxicos
 - Os diagramas de transição são autômatos finitos
 - Eles podem ser gerados automaticamente

Introdução

- O Flex transforma expressões regulares em um analisador léxico utilizando autômatos finitos
- Os autômatos finitos se classificam em:
 - Autômatos Finitos Não-deterministas (NFA)
 - Um símbolo pode rotular várias arestas saindo do mesmo estado
 - Aceita a cadeia vazia, ϵ , como o rótulo de uma aresta
 - Autômatos Finitos Deterministas (DFA)
 - Um estado não pode ter mais de uma aresta com o mesmo símbolo
 - Ambos reconhecem as mesmas linguagens regulares[†]

Autômatos Finitos

- Um NFA consiste em:
 - 1. Um conjunto finito de estados S
 - 2. Um conjunto de símbolos de entrada, o alfabeto 🔇
 - 3. Uma função de transição que dá, para cada estado e para cada símbolo em $\{ \in \{ \epsilon \} \}$, um conjunto de estados seguintes
 - 4. Um estado s_o de S é indicado como estado inicial
 - 5. Um conjunto de estados F, subconjunto de S, indicados como estados finais

NFA para a expressão regular (a|b)*abb

Autômatos Finitos

O NFA aceita transições com a cadeia vazia ε

NFA para a expressão regular aa*|bb*

• A cadéia an é aceita pelo câminho:

Autômatos Finitos

- Um DFA é um caso especial de um NFA, em que:
 - 1. Não existem arestas para a cadeia vazia ϵ
 - 2. Para cada estado *s* e símbolo **a**, existe exatamente uma aresta saindo de *s* rotulada com **a**

DFA para a expressão regular (a|b)*abb

- · Qualquer expressão regular pode ser convertida em um NFA
 - Algoritmo de McNaughton-Yamada-Thompson:
 - A expressão regular é desmembrada em expressões básicas
 - Existem regras para converter expressões básicas em NFAs

- Considerando que:
 - N(s) é o NFA para a expressão regular s e
 - N(t) é o NFA para a expressão regular t, então
 - N(r) é o NFA para a expressão regular r = s t

NFA para a união

- Considerando que:
 - N(s) é o NFA para a expressão regular s e
 - N(t) é o NFA para a expressão regular t, então
 - N(r) é o NFA para a expressão regular r = st

Ex.: *ab*

NFA para a concatenação

- Considerando que:
 - N(s) é o NFA para a expressão regular s então
 - N(r) é o NFA para a expressão regular r = s*

início 🦳 🧸

Ex.: **a***

NFA para o fechamento

Para utilizar as regras de conversão é preciso desmembrar a

expressão regular nas suas partes constituintes

 Isso é feito gerando sua árvore de sintaxe (o algoritmo é dirigido por sintaxe)

> Árvore de sintaxe para a expressão regular (a| b)*abb

Para as expressões r₁, r₂ e r₃, construímos:

Para a expressão r₄, temos:

 r_9 Para as expressões r₅, r₇ e r₉, temos: início NFA para a concatenação r₈ início 8 r₁₀ início 9 início NFA para expressão regular (a|b)*abb

 ϵ

Expressões Regulares e Autômatos

- As expressões regulares são usadas para descrever:
 - Analisadores léxicos
 - Softwares de casamento de padrão (ex.: grep)
- A implementação requer a simulação de um NFA ou DFA
 - A simulação de um NFA não é tão simples:
 - Possui múltiplas escolhas para um símbolo da entrada
 - Pode usar a transição vazia (ϵ)
 - A simulação de um NFA é usada em aplicações como o grep
 - Para o analisador léxico é mais eficiente converter o NFA em um DFA

- A técnica é chamada construção de subconjuntos
 - Cada estado do DFA corresponde a vários estados no NFA
 - Lidar com as transições-€ é um problema
 - Isso é feito com as funções da tabela abaixo

Descrição
Conjunto de estados do NFA que podem ser alcançados a partir do estado s usando apenas transições-e
Conjunto de estados do NFA que podem ser alcançados a partir de algum estado do conjunto T usando apenas transições-e
Conjunto de estados do NFA para os quais existe uma transição sob o símbolo de entrada a, a partir de algum estado em T

s representa um único estado e T representa um conjunto de estados do NFA

 A construção de um conjunto de estados D_{states} e sua função de transição D_{tran} são feitas pelo algoritmo:

Algoritmo: construção de subconjuntos

```
inicialmente, fecho-\epsilon(s_0) é o único estado em D_{states} e não está marcado while (existe um estado não marcado T em D_{states}) {
    marcar T;
    for (cada símbolo de entrada a) {
        U = fecho-\epsilon(move(T,a));
        if (U não está em D_{states})
            inclua U como um estado não marcado em D_{states};
        D_{tran}[T,a] = U;
    }
}
```

Aplicando o algoritmo sobre o NFA:

inicialmente, fecho- ϵ (s_0) é o único estado em D_{states} e não está marcado

fecho-ε(s) Conjunto de estados do NFA que podem ser alcançados a partir do estado s usando apenas transições-ε

fecho-
$$\epsilon(0) = \{0, 1, 2, 4, 7\} = A$$

$$D_{\text{states}} = \{ A \}$$

NFA para a expressão regular (a| b)*abb

```
while (existe um estado não marcado T em D<sub>states</sub>) {
    marcar T;
    for (cada símbolo de entrada a) {
        U = fecho-ε(move(T,a));
```

```
D_{\text{states}} = \{A \\ A = \{0, 1, 2, 4, 7\}
```

move(T,a) Conjunto de estados do NFA para os quais existe uma transição

sob o símbolo de entrada a, a partir de algum

```
fecho-\epsilon(move(\P,\P)do=\Pe\Pho-\epsilon(\P,8\}) = \{1,2,3,4,6,7,8\} = B
fecho-\epsilon(move(\P,\P)) = fecho-\epsilon(\P) = \{1,2,4,5,6,7\} = C
```


NFA para a expressão regular (a| b)*abb

```
if (U não está em D_{states})
inclua U como um estado não marcado em D_{states};
D_{tran}[T, \boldsymbol{a}] = U;
```

```
fecho-\epsilon(move(A,a)) = fecho-\epsilon(\{3,8\}) = \{1,2,3,4,6,7,8\} = B
```

fecho-
$$\epsilon$$
(move(A,b)) = fecho- ϵ (\S) = {1,2,4,5,6,7} = C

$$D_{states} = \{A,B,C\}$$
 $A = \{0,1,2,4,7\}$
 $B = \{1,2,3,4,6,7,8\}$
 $C = \{1,2,4,5,6,7\}$

$\mathsf{D}_{\mathsf{tran}}$

Estad o	Símb.	Próx.
Α	a	В
Α	b	С

```
while (existe um estado não marcado T em D<sub>states</sub>) {
    marcar T;
    for (cada símbolo de entrada a) {
        U = fecho-ε(move(T,a));

move(T,a) Conjunto de estados do NFA para os quais existe
        uma transição
        sob o símbolo de entrada a, a partir de algum
    fecho-ε(move(Psta)do=emetho-ε(§,8}) = {1,2,3,4,6,7,8} = B
    fecho-ε(move(B,b)) = fecho-ε(§,9}) = {1,2,4,5,6,7,9} = D
```


$$D_{\text{states}} = \{A,B,C\}$$
 $A = \{0,1,2,4,7\}$
 $B = \{1,2,3,4,6,7,8\}$
 $C = \{1,2,4,5,6,7\}$

$\mathsf{D}_{\mathsf{tran}}$

Estad o	Símb.	Próx.
Α	а	В
Α	b	С

```
if (U não está em D_{states}) inclua U como um estado não marcado em D_{states}; D_{tran}[T, \boldsymbol{a}] = U; fecho-\epsilon(move(B, \boldsymbol{a})) = fecho-\epsilon(\S, S\}) = \{1, 2, 3, 4, 6, 7, S\} = B fecho-\epsilon(move(B, \boldsymbol{b})) = fecho-\epsilon(\S, S\}) = \{1, 2, 4, 5, 6, 7, S\} = D
```


D			
U	+	ra	r

Símb.	Próx.
a	В
b	C B
b	D

```
while (existe um estado não marcado T em D<sub>states</sub>) {
    marcar T;
    for (cada símbolo de entrada a) {
        U = fecho-ϵ(move(T,a));

move(T,a) Conjunto de estados do NFA para os quais existe
        uma transição
        sob o símbolo de entrada a, a partir de algum
    fecho-ϵ(move(ᢏsta)do=erretho-ϵ(§,8}) = {1,2,3,4,6,7,8} = B

fecho-ϵ(move(C,b)) = fecho-ϵ(§}) = {1,2,4,5,6,7} = C
```


Ŋ			
ט	t١	ra	n

Estad o	Símb.	Próx.
Α	a	В
A B	b a	C B
В	b	D

```
if (U não está em D_{\text{states}})
   inclua U como um estado não marcado em D_{\text{states}};

D_{\text{tran}}[T, \boldsymbol{a}] = U;

fecho-\epsilon(move(C,\boldsymbol{a})) = fecho-\epsilon(\{3,8\}) = \{1,2,3,4,6,7,8\} = B

fecho-\epsilon(move(C,\boldsymbol{b})) = fecho-\epsilon(\{5,8\}) = \{1,2,4,5,6,7\} = C
```


ח				
ט	+	r	а	r

Estad o	Símb.	Próx.
Α	a	В
B	þ	ß
В	b	D
С	а	В
С	b	С

```
while (existe um estado não marcado T em D<sub>states</sub>) {
    marcar T;
    for (cada símbolo de entrada a) {
        U = fecho-ε(move(T,a));

move(T,a) Conjunto de estados do NFA para os quais existe
        uma transição
        sob o símbolo de entrada a, a partir de algum

fecho-ε(move(P;t)) = emecho-ε(§,8}) = {1,2,3,4,6,7,8} = B

fecho-ε(move(D,b)) = fecho-ε(§,10}) = {1,2,4,5,6,7,10} = E
```


$$D_{states} = \{ A, B, C, D \}$$

$$A = \{0,1,2,4,7\}$$

$$B = \{1,2,3,4,6,7,8\}$$

$$C = \{1,2,4,5,6,7\}$$

$$D = \{1,2,4,5,6,7,9\}$$

$\mathsf{D}_{\mathsf{tran}}$

Estad o	Símb.	Próx.
Α	a	В
B	þ	ß
В	b	D
С	а	В
С	b	С

```
if (U não está em D_{\text{states}}) inclua U como um estado não marcado em D_{\text{states}}; D_{\text{tran}}[T, \boldsymbol{a}] = U; \text{fecho-}\epsilon(\text{move}(D, \boldsymbol{a})) = \text{fecho-}\epsilon(\S, \$\}) = \{1, 2, 3, 4, 6, 7, \$\} = B \text{fecho-}\epsilon(\text{move}(D, \boldsymbol{b})) = \text{fecho-}\epsilon(\S, \$\}) = \{1, 2, 4, 5, 6, 7, \$\} = B
```



```
D<sub>states</sub> = { A,B,C,D,E }

A = {0,1,2,4,7}

B = {1,2,3,4,6,7,8}

C = {1,2,4,5,6,7}

D = {1,2,4,5,6,7,9}

E = {1,2,4,5,6,7,10}

D<sub>tran</sub>
```

Estad o	Símb.	Próx.
Α	а	В
B	þ	ß
В	b	D
С	а	В
С	b	С
D	а	В
D	b	Е

```
while (existe um estado não marcado T em D<sub>states</sub>) {
    marcar T;
    for (cada símbolo de entrada a) {
        U = fecho-ϵ(move(T,a));

move(T,a) Conjunto de estados do NFA para os quais existe
        uma transição
        sob o símbolo de entrada a, a partir de algum

fecho-ϵ(move(♠,ta) o=ene(ho-ϵ(3,8)) = {1,2,3,4,6,7,8} = B

fecho-ϵ(move(E,b)) = fecho-ϵ($}) = {1,2,4,5,6,7} = C
```


Estad o	Símb.	Próx.
А	a	В
A	a	ß
В	b	D
С	a	В
С	b	С
D	а	В
D	b	Е

```
if (U não está em D_{states})

inclua U como um estado não marcado em D_{states};

D_{tran}[T, a] = U;
```

```
fecho-\epsilon(move(E,a)) = fecho-\epsilon(3(,8}) = {1,2,3,4,6,7,8} = B
fecho-\epsilon(move(E,b)) = fecho-\epsilon($}) = {1,2,4,5,6,7} = C
```



```
D<sub>states</sub> = { A,B,C,D,E }

A = {0,1,2,4,7}

B = {1,2,3,4,6,7,8}

C = {1,2,4,5,6,7}

D = {1,2,4,5,6,7,9}

E = {1,2,4,5,6,7,10}

D<sub>tran</sub>
```

Estad o	Símb.	Próx.
Α	a	В
В	þ	ß
В	b	D
С	а	В
С	b	С
D	а	В
D	b	Е
Е	a	В
Е	b	С

DFA para a expressão regular (a| b)*abb

$$D_{states} = \{ A, B, C, D, E \}$$

$$A = \{0,1,2,4,7\}$$

$$B = \{1,2,3,4,6,7,8\}$$

$$C = \{1,2,4,5,6,7\}$$

$$D = \{1,2,4,5,6,7,9\}$$

$$E = \{1,2,4,5,6,7,10\}$$

$$D_{tran}$$

Estad o	Símb.	Próx.	9
Α	a	В (9
В	a	ß	9
В	b	D	9
С	a	В	9
С	b	C	9
D	a	В	0
D	b	E	9
Е	а	В	9
Е	b	C	9

- A conclusão do processo de conversão é garantida
 - O número de estados do DFA é aproximadamente o mesmo do NFA
 - O estado A é o estado inicial
 - O estado E, que contém o estado 10 do NFA, é o único estado final

Estados NFA	Estado DFA	а	b
{0,1,2,4,7}	А	В	С
{1,2,3,4,6,7,8 }	В	В	D
{1,2,4,5,6,7}	С	В	С
{1,2,4,5,6,7,9 }	D	В	Е
{1,2,4,5,6,7,1 0}	Е	В	С

- O DFA resultante possui um estado a mais que o ideal
 - Os estados A e C podem ser combinados
 - Processo de minimização será discutido mais tarde

DFA obtido da conversão

DFA para (a|b)*abb

Reconhecimento da Cadeia

 Um NFA é uma representação abstrata de um reconhecedor, enquanto que um DFA é um algoritmo concreto para reconhecer uma cadeia

Algoritmo: Simulando um DFA

```
s = s<sub>0</sub>
c = next_char()
while (c != EOF) {
    s = move(s,c);
    c = next_char();
}
if (s está em F) return "sim";
else return "não";
```


Exercício

1. Converta a expressão regular (ab)* em DFA

Exercício

fecho-
$$\epsilon(0) = \{0, 1, 4\} = A$$

fecho- $\epsilon(move(A, a)) = fecho- $\epsilon(\{2\}) = \{2\} = B$
fecho- $\epsilon(move(A, b)) = fecho- $\epsilon(\{3\}) = \{3\}$
fecho- $\epsilon(move(B, a)) = fecho- $\epsilon(\{3\}) = \{3\}$
fecho- $\epsilon(move(B, b)) = fecho- $\epsilon(\{3\}\}) = \{2\} = B$
fecho- $\epsilon(move(C, a)) = fecho- $\epsilon(\{2\}\}) = \{2\} = B$
fecho- $\epsilon(move(C, b)) = fecho- $\epsilon(\{3\}\}) = \{2\}$$$$$$$

$\mathsf{D}_{\mathsf{tran}}$

Estad o	Símb.	Próx.
Α	а	В
В	þ	-
В	b	С
С	а	В
С	b	-

Exercício

DFA para a expressão regular (ab)*

$$D_{states} = \{ A, , C \}$$
 $A = \{0,1,4\}$
 $B = \{2\}$
 $C = \{1,3,4\}$

 \mathbf{D}_{tran}

Estad o	Símb.	Próx.	0
Α	a	В (0
В	þ	- (Ø
В	b	C	0
С	a	В (0
С	b		0

Resumo

- A ferramenta Flex é um gerador de analisador léxico
 - Ela se baseia na simulação de Autômatos Finitos Determinísticos (DFA)
- Os geradores de analisadores léxicos utilizam:
 - Expressões regulares para descrever os padrões dos tokens
 - Expressões regulares são convertidas em NFAs
 - NFAs são convertidos em DFAs
 - DFAs são armazenados
 - O DFA é executado em cima de uma cadeia de entrada