```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA
from sklearn.model_selection import train_test_split
from sklearn.cluster import KMeans
from scipy.cluster.hierarchy import dendrogram, linkage
country_data= pd.read_csv('Country-data.csv')
print(country_data.info())
   <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 167 entries, 0 to 166
    Data columns (total 10 columns):
     # Column
                     Non-Null Count Dtype
         -----
                     -----
                     167 non-null
                                    obiect
     0
         country
         child mort 167 non-null
     1
                                    float64
     2
         exports
                     167 non-null
                                    float64
     3
         health
                     167 non-null
                                    float64
         imports
                     167 non-null
                                    float64
                     167 non-null
                                     int64
         income
         inflation 167 non-null
                                     float64
         life_expec 167 non-null
                                     float64
     8 total_fer 167 non-null
                                    float64
                     167 non-null
                                    int64
     dtypes: float64(7), int64(2), object(1)
     memory usage: 13.2+ KB
    None
print(country_data.isnull().sum()) ##Since there are no null alues we dont have any NAN values to remove
→ country
                  0
```

```
child_mort
exports
health
              0
imports
              0
income
              0
inflation
              a
life expec
              0
total_fer
              a
              0
gdpp
dtype: int64
```

country_data.head()

<u>-</u>	country	child_mort	exports	health	imports	income	inflation	life_expec	tc
0	Afghanistan	90.2	10.0	7.58	44.9	1610	9.44	56.2	
1	Albania	16.6	28.0	6.55	48.6	9930	4.49	76.3	
2	Algeria	27.3	38.4	4.17	31.4	12900	16.10	76.5	
3	Angola	119.0	62.3	2.85	42.9	5900	22.40	60.1	
	Antique and							ı	

We will check if there are any duplicates on the basis of country to check if there are any double entries of any country; From the result it is clear that we dont have any duplicate entries

```
duplicates_in_one_column = len(country_data['country']) - len(country_data['country'].drop_duplicates())
print(f"Number of duplicates on the basis of country column: {duplicates_in_one_column}")
Number of duplicates on the basis of country column: 0
Now we will Stadardise the data
columns_to_normalize = country_data.select_dtypes(include=['float64', 'int64']).columns
train_X, test_X=train_test_split(country_data[columns_to_normalize],test_size=0.3, random_state=1)
scaler=StandardScaler()
scaler.fit(train_X)
```

```
train_X=scaler.transform(train_X)

test_X=scaler.transform(test_X)

train_X = pd.DataFrame(train_X, columns=columns_to_normalize)

test_X= pd.DataFrame(test_X, columns=columns_to_normalize)
```

Now, PCA(Principle Companant Analysis Technique) is applied to reduce the dimensionality of the data while retaining 90% of the varianceas it will help to simplify the complexity of the data and aided in visualization.

```
# Initialize PCA, retaining 90% of variance
pca = PCA(n_components=0.9)

# Fit and transform the normalized data
X_train_pca = pca.fit_transform(train_X)
X_test_pca = pca.transform(test_X)

# Plot the explained variance to understand the components
plt.figure(figsize=(10, 5))
plt.plot(range(1, len(pca.explained_variance_ratio_) + 1), pca.explained_variance_ratio_.cumsum(), marker='o')
plt.xlabel('Number of Components')
plt.ylabel('Cumulative Explained Variance')
plt.show()
```


I used K-mean Clustrering Elbow method to get most optimal number of clusters, according to which country will be labelled. I assumed the most optimal clusted as 4.

```
wcss = []
for i in range(1, 11):
    kmeans = KMeans(n_clusters=i, random_state=42)
    kmeans.fit(X_train_pca)
    wcss.append(kmeans.inertia_)

plt.figure(figsize=(10, 5))
plt.plot(range(1, 11), wcss, marker='o')
plt.xlabel('Number of Clusters')
plt.ylabel('WCSS')
plt.title('Elbow Method For Optimal Clusters')
plt.show()
```

C:\Users\257380\anaconda3\lib\site-packages\sklearn\cluster_kmeans.py:1036: UserWarn
 warnings.warn(

Assuming the elbow method suggests 4 clusters

```
kmeans = KMeans(n_clusters=4, random_state=42)
train_clusters = kmeans.fit_predict(X_train_pca)
test_clusters = kmeans.predict(X_test_pca)

# Add the cluster labels to the original data
country_data.loc[train_X.index, 'Cluster'] = train_clusters
country_data.loc[test_X.index, 'Cluster'] = test_clusters
```

Then, Hierarchical clustering is performed using ward linkage which provided a dendrogram that helped to visualize nested relationships between countries.

```
# Using 'ward' linkage to minimize variance within clusters
Z = linkage(X_train_pca, method='ward')

plt.figure(figsize=(35, 10))
dendrogram(Z, labels=train_X.index, leaf_rotation=90, leaf_font_size=10)
plt.title('Dendrogram')
plt.xlabel('Countries')
plt.ylabel('Euclidean Distances')
plt.show()
```



```
from sklearn.cluster import AgglomerativeClustering
```

```
# Fit Agglomerative Clustering
hc = AgglomerativeClustering(n_clusters=4, affinity='euclidean', linkage='ward')
train_hc_clusters = hc.fit_predict(X_train_pca)
```

Clusters have been summarized on the basis of mean values and accordingly cluster analysis can be done and through which indicators to be used for selection of countries is chosen.

```
# Summarize clusters
cluster_summary = country_data.groupby('Cluster').mean()
print(cluster_summary)

# Assuming lower GDP per capita, higher infant mortality, and lower life expectancy indicate higher need
priority_clusters = cluster_summary.sort_values(by=['gdpp', 'life_expec', 'child_mort'], ascending=[True, False, True])

# Extract countries in the highest priority cluster
priority_cluster_index = priority_clusters.index[0]
priority_countries = country_data[country_data['Cluster'] == priority_cluster_index]
```

print("Recommended Countries for Aid Allocation according to highest clusters that is Child Mortality(child_mort) ,GDP(gdpp) and\n Lower print(priority_countries[['country', 'gdpp', 'life_expec', 'child_mort', 'Cluster']])

		child_mort	exports	health	imports	incom	e inflation	\
	Cluster							
	0.0	45.458621	38.016897	5.793448	42.451724	14382.89655	2 10.979379	
	1.0	38.708333	42.750483	6.919167	47.247765	18897.05000	0 7.116533	
	2.0	40.450000	29.900000	7.660000	36.950000	17680.00000	0 10.165000	
	3.0	42.932000	40.175200	7.552800	54.508000	12959.44000	0 5.381160	
		1:6	+-+-1 C	_	daa 110 01			
	C1+	life_expec	total_ter	g	dpp HC_Clu	ister		
	Cluster							
	0.0	70.703448	3.217241	10571.827	586 0.86	2069		
	1.0	70.435000	2.851500	15242.150	000 1.75	0000		
	2.0	71.550000	3.220000	17505.000	000 3.00	0000		
	3.0	68.528000	3.032800	9500.680	000 0.76	0000		
	Recommended Countries for Aid Allocation according to highest clusters that is Child Mortality(child mort) ,GDP(gdpp) and							
	Lower Life Expectancy(life expec):							
			country	•	e expec ch	ild mort Cl	uster	
	0	Af	ghanistan	553	56.2	90.2	3.0	
	5		Argentina	10300	75.8	14.5	3.0	

0	Afghanistan	553	56.2	90.2	3.0
5	Argentina	10300	75.8	14.5	3.0
14	Belarus	6030	70.4	5.5	3.0
15	Belgium	44400	80.0	4.5	3.0
21	Botswana	6350	57.1	52.5	3.0
24	Bulgaria	6840	73.9	10.8	3.0
25	Burkina Faso	575	57.9	116.0	3.0
31	Central African Republic	446	47.5	149.0	3.0
33	Chile	12900	79.1	8.7	3.0
35	Colombia	6250	76.4	18.6	3.0
48	El Salvador	2990	74.1	19.2	3.0
56	Gambia	562	65.5	80.3	3.0
60	Greece	26900	80.4	3.9	3.0
64	Guinea-Bissau	547	55.6	114.0	3.0
65	Guyana	3040	65.5	37.6	3.0
67	Hungary	13100	74.5	6.0	3.0
73	Ireland	48700	80.4	4.2	3.0
81	Kiribati	1490	60.7	62.7	3.0
85	Latvia	11300	73.1	7.8	3.0
86	Lebanon	8860	79.8	10.3	3.0
93	Madagascar	413	60.8	62.2	3.0
98	Malta	21100	80.3	6.8	3.0
101	Micronesia, Fed. Sts.	2860	65.4	40.0	3.0
106	Mozambique	419	54.5	101.0	3.0
109	Nepal	592	68.3	47.0	3.0

Start coding or generate with AI.