Maximum and Minimum Sums of Subsequences of At Most Size K

1 Problem Description

You are given an integer array nums and a positive integer k. Your task is to find the sum of the maximum and minimum elements of all subsequences of nums that contain at most k elements.

Since the sum may be very large, return the result modulo $10^9 + 7$.

1.1 Definitions

- A **subsequence** is a sequence derived from **nums** by deleting some or no elements **without changing the order** of the remaining elements.
- The **minimum and maximum** elements of each subsequence are considered, and their sum is added to the final total.

2 Examples

2.1 Example 1

Input:

$$nums = [1, 2, 3], k = 2$$

Subsequences with at most 2 elements:

Subsequence	Min	Max	Sum (Min + Max)
[1]	1	1	2
	2	2	4
	3	3	6
	1	2	3
	1	3	4
	2	3	5

Total Sum:

$$2+4+6+3+4+5=24$$

Output:

2.2 Example 2

Input:

$$nums = [5, 0, 6], k = 1$$

Subsequences with at most 1 element:

Subsequence	Min	Max	Sum (Min + Max)
[5]	5	5	10
	0	0	0
	6	6	12

Total Sum:

$$10+0+12=22$$

Output:

22

2.3 Example 3

Input:

$$nums = [1, 1, 1], k = 2$$

Since all numbers are 1, every subsequence has:

$$min = 1, \quad max = 1$$

Output:

12

3 Constraints

- $1 \le \text{nums.length} \le 10^50 \le \text{nums[i]} \le 10^9$
- $1 \le k \le \min(100, \text{nums.length})$