Conceptual Multiple Choice Questions: Roots of Unity and Polynomials (Exercise 4.4)

Class 11 Mathematics (Chapter 4)

Prepared by ExpertGuy

MCQs

- **1.** The cube roots of unity are:
 - (a) $1, \omega, \omega^2$
 - **(b)** 1, -1, i
 - (c) 1, i, -i
 - (d) $0, \omega, \omega^2$
- **2.** The sum of cube roots of unity is:
 - **(a)** 0
 - **(b)** 1
 - (c) -1
 - (d) ω
- **3.** The product of cube roots of unity is:
 - **(a)** 1
 - **(b)** -1
 - **(c)** 0
 - (d) ω
- **4.** If ω is a cube root of unity, then $\omega^4=$:
 - (a) ω
 - (b) ω^2
 - **(c)** 1
 - (d) -1
- **5.** The cube roots of 8 are:
 - (a) $2, 2\omega, 2\omega^2$
 - **(b)** 2, -2, 2i
 - (c) $1, \omega, \omega^2$
 - (d) 2, 2i, -2i
- **6.** The cube roots of -27 are:
 - (a) $-3, -3\omega, -3\omega^2$

- **(b)** $-3, 3\omega, 3\omega^2$
- (c) $-1, \omega, \omega^2$
- (d) -3, 3i, -3i
- 7. The value of $\omega^{28} + \omega^{29} + 1$ is:
 - **(a)** 0
 - **(b)** 1
 - (c) ω
 - (d) -1
- **8.** The value of $(1 + \omega \omega^2)^8$ is:
 - (a) 256ω
 - **(b)** 256
 - (c) -256
 - (d) $256\omega^2$
- **9.** The fourth roots of unity are:
 - (a) 1, -1, i, -i
 - **(b)** $1, \omega, \omega^2, \omega^3$
 - (c) $1, -1, \omega, \omega^2$
 - (d) 0, 1, i, -i
- **10.** The product of fourth roots of unity is:
 - (a) -1
 - **(b)** 1
 - **(c)** 0
 - (d) i
- **11.** The fourth roots of 16 are:
 - (a) 2, -2, 2i, -2i
 - **(b)** $2, -2, \omega, \omega^2$
 - (c) 1, -1, i, -i
 - (d) $2, 2\omega, 2\omega^2, 2\omega^3$
- **12.** The fourth roots of 81 are:
 - (a) 3, -3, 3i, -3i
 - **(b)** $3, -3, \omega, \omega^2$
 - (c) 1, -1, i, -1
 - (d) $3, 3\omega, 3\omega^2, 3\omega^3$

- **13.** The solution set of $2x^4 32 = 0$ is:
 - (a) $\{\pm 2, \pm 2i\}$
 - (b) $\{\pm 4, \pm 4i\}$
 - (c) $\{\pm 2, \pm i\}$
 - (d) $\{0, \pm 2\}$
- **14.** The solution set of $3y^5 243y = 0$ is:
 - (a) $\{0, \pm 3, \pm 3i\}$
 - **(b)** $\{0, \pm 3, \pm i\}$
 - (c) $\{\pm 3, \pm 3i\}$
 - (d) $\{0, \pm 9, \pm 9i\}$
- **15.** The solution set of $x^3 + x^2 + x + 1 = 0$ is:
 - (a) $\{-1, \pm i\}$
 - **(b)** $\{1, \pm i\}$
 - (c) $\{-1, \omega, \omega^2\}$
 - (d) $\{0, \pm i\}$
- **16.** If ω is a cube root of unity, the equation with roots 2ω , $2\omega^2$ is:
 - (a) $x^2 + 2x + 4 = 0$
 - **(b)** $x^2 2x + 4 = 0$
 - (c) $x^2 + x + 1 = 0$
 - (d) $x^2 x + 1 = 0$
- **17.** The complex cube roots of -1 are:
 - (a) $\frac{1 \pm i\sqrt{3}}{2}$
 - (b) $\frac{-1 \pm i\sqrt{3}}{2}$
 - (c) $\pm i$
 - (d) ω, ω^2
- **18.** The value of $\left(\frac{1+i\sqrt{3}}{2}\right)^9 + \left(\frac{1-i\sqrt{3}}{2}\right)^9$ is:
 - (a) -2
 - **(b)** -1
 - **(c)** 0
 - (d) 1
- **19.** According to the Remainder Theorem, the remainder when f(x) is divided by x-a is:
 - (a) f(a)

- **(b)** f(-a)
- **(c)** *a*
- **(d)** 0
- **20.** According to the Factor Theorem, x a is a factor of f(x) if:
 - (a) f(a) = 0
 - **(b)** f(-a) = 0
 - (c) f(a) = 1
 - (d) f(a) = a

Answers and Explanations

1. Answer: a

Cube roots of unity are $1, \omega, \omega^2$, where $\omega = \frac{-1+i\sqrt{3}}{2}$ (p.258).

2. Answer: a

Sum: $1 + \omega + \omega^2 = 0$ (p.258).

3. Answer: a

Product: $\omega^{3} = 1$ (p.258).

4. Answer: a

 $\omega^4 = \omega^3 \cdot \omega = 1 \cdot \omega = \omega$ (p.258).

5. Answer: a

Cube roots of 8: $2, 2\omega, 2\omega^2$ (p.259).

6. Answer: a

Cube roots of $-27: -3, -3\omega, -3\omega^2$ (p.261).

7. Answer: a

$$\omega^{28} + \omega^{29} + 1 = \omega + \omega^2 + 1 = 0$$
 (p.262).

8. Answer: a

$$(1 + \omega - \omega^2)^8 = 256\omega$$
 (p.262).

9. Answer: a

Fourth roots of unity: 1, -1, i, -i (p.259).

10. Answer: a

Product: $1 \cdot (-1) \cdot i \cdot (-i) = -1$ (p.259).

11. Answer: a

Fourth roots of 16: 2, -2, 2i, -2i (p.267).

12. Answer: a

Fourth roots of 81: 3, -3, 3i, -3i (p.267).

13. Answer: a

Solution set: $\{\pm 2, \pm 2i\}$ (p.268).

14. Answer: a

Solution set: $\{0, \pm 3, \pm 3i\}$ (p.268).

15. Answer: a

Solution set: $\{-1, \pm i\}$ (p.269).

16. Answer: a

Equation: $x^2 + 2x + 4 = 0$ (p.266).

17. Answer: a

Complex cube roots of -1: $\frac{1\pm i\sqrt{3}}{2}$ (p.265).

18. Answer: a

Value: -2 (p.266).

19. Answer: a

Remainder Theorem: Remainder is f(a) (p.269).

20. Answer: a

Factor Theorem: f(a) = 0 (p.269).