Vivekananda College of Engineering & Technology, Puttur

[A Unit of Vivekananda Vidyavardhaka Sangha Puttur @] Affiliated to VTU, Belagavi & Approved by AICTE New Delhi

CRM08

Rev 1.10

12/06/2022

CONTINUOUS INTERNAL EVALUATION- 2

Dept:EC	Sem / Div: VI/A &B	Sub: Digital Communication	S Code: 18EC61	
Date:15/06/2022	Time: 9:30-11:00 am	Max Marks: 50	Elective:N	
NE 4 A service and	y 2 full questions also	sing one full question from each p	part.	

Marks RBT COs **Questions** Q N PARTA 1 a The waveforms of four signals $s_1(t)$, $s_2(t)$, $s_3(t)$ and $s_4(t)$ are displayed. 10 CO₂ a) Using the Gram-Schmidt orthogonalization procedure, find an orthonormal basis for this set of signals. b) Construct the corresponding signal-space diagram. Sa(1) 53(1) x1(1) \$2(1) CO₂ b Explain the geometric representation of signals and express energy of the signal in terms of the signal vector. c With a neat diagram, explain the generation and detection of QPSK CO3 L2signals. OR CO₂ 2 a The waveforms of four signals $s_1(t)$, $s_2(t)$ and $s_3(t)$ are displayed. 10 L3 a) Using the Gram-Schmidt orthogonalization procedure, find an orthonormal basis for this set of signals. b) Construct the corresponding signal-space diagram. 52(1) s1(t) 3 2 1 0 -2 -3 b Explain the BPSK signal with its signal space characterization. With a neat CO₃ 10 L2 block diagram, explain the generation and detection of BPSK signal. CO₂ c Derive the expression for mean and variance of correlator output. L2

Prepared by:Mrs. Nirupama K

HOD

Vivekananda College of Engineering & Technology, Puttur [A Unit of Vivekananda Vidyavardhaka Sangha Puttur ®]

Affiliated to VTU, Belagavi & Approved by AICTE New Delhi

Rev 1.10

EC

12/06/2022

CONTINUOUS INTERNAL EVALUATION- 2

9	L2	CO ₃
8	L2	CO3
8	L2	CO2
10	L2	CO3
9	L2	CO3
6	L3	CO2
	8 8 10 9	8 L2 8 L2 10 L2

Prepared by:Mrs. Nirupama K

& hunt