Quiz 2

Name_

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Solve the equation.

1)
$$\begin{vmatrix} x + 5 \\ -3 = 13 \end{vmatrix}$$

A) $\{-11, 11\}$

1x+51=16

X+5=16 or X+5=-16

Solve the inequality. Express your answer using interval notation. Graph the solution set.

2) |6x| < 54

C)
$$(-\infty, -9)$$
 or $(9, \infty)$

Find the zero of the linear function.

3)
$$G(x) = -\frac{1}{2}x - 4$$

Solve the equation.

$$4) \left| \frac{1}{4}x - 6 \right| = 2$$

B-1

Math 166 Quiz

Solve the problem.

- 5) Suppose that f(x) = -x 3 and g(x) = x 13.
 - (a) Solve f(x) = 0.
 - (b) Solve g(x) = 0.
 - (c) Solve f(x) = g(x).
 - (A) (a) x = -3; (b) x = 13; (c) x = 5
 - (a) x = -3; (b) x = -13; (c) x = 5

$$f(x)=0:-X-3=0$$
 $X=-3$ 5) A $f(x)=0:X-13=0$ $X=13$ $f(x)=8(x)$ B) (a) $x=3$: (b) $x=13$; (c) $x=5$

- B) (a) x = 3; (b) x = 13; (c) x = 5
- D) (a) x = -3; (b) x = 13; (c) x = -8

Use factoring to find the zeros of the quadratic function. List the x-intercepts of the graph of the function.

6)
$$f(x) = x^2 + 2x - 24$$

A)
$$x = 6$$
, $x = 4$

B)
$$x = -6$$
, $x = 1$

C)
$$x = 6$$
, $x = -4$

C)
$$x = 6$$
, $x = -4$ D) $x = -6$, $x = 4$

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

Solve the problem. Write in the form a +bi

$$35+211-15i-9i^2$$

 $35+9+6i=44+6i$

$$\frac{3+4i}{3+5i} \cdot \frac{3-5i}{3-5i} = \frac{9-15i+12i-20i^{2}}{9+25} = \frac{29-3i}{34}$$

Solve the equation.

9) **Bonus**
$$|6x| = 3x^2$$

$$6x = 3x^{2}$$
 or $6x = -3x^{2}$
 $6x - 3x^{2} = 0$ $6x + 3x^{2} = 0$
 $3x(2-x) = 0$ $3x(2+x) = 0$
 $x = 0, 2$ $x = 0, -2$

Quiz 2

Name

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Solve the equation.

1)
$$|x+7| - 3 = 11$$

A) $\{-7, 7\}$

B)
$$\{-1, 7\}$$

$$|X+7|=14$$
 $X+7=14$ or $X+7=-14$ $X=-21$

Solve the inequality. Express your answer using interval notation. Graph the solution set.

2) |9x| < 36

2)
$$|9x| < 36$$

D)
$$(-\infty, 4)$$

Find the zero of the linear function.

3)
$$G(x) = -\frac{1}{8}x - 2$$

B)
$$\frac{1}{4}$$

$$-\frac{1}{8}X-\lambda=0$$
 ... $-\frac{1}{8}X=\lambda$
C) 16 $X=-16$ D) $-\frac{1}{4}$

Solve the equation.

4)
$$\left| \frac{1}{3}x - 7 \right| = 3$$

A) $\{12, 30, 0\}$

Math 166 Quiz

Solve the problem.

- 5) Suppose that f(x) = -x 7 and g(x) = x 12.
 - (a) Solve f(x) = 0.
 - (b) Solve g(x) = 0.
 - (c) Solve f(x) = g(x).
 - A) (a) x = -7; (b) x = 12; (c) x = 2.5
 - C) (a) x = -7; (b) x = 12; (c) x = -9.5

- B) (a) x = -7; (b) x = -12; (c) x = 2.5
- D) (a) x = 7; (b) x = 12; (c) x = 2.5

$$f(x) = g(x)$$
. $x = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2}$

Use factoring to find the zeros of the quadratic function. List the x-intercepts of the graph of the function.

6)
$$f(x) = x^2 + 5x - 50$$

A) $x = 10, x = -5$

B)
$$x = 10, x = 5$$

C)
$$x = -10$$
, $x = 1$

D)
$$x = -10, x = 5$$

$$(x+10)(x-5)=0$$

 $(x-10.5)$

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

Solve the problem. Write in the form a +bi

8)
$$(4+7i)/(3+5i)$$

 $(4+7i)/(3+5i)$
 $(3-5i)/(3+2i)/(3+5i$

Solve the equation.

9) **Bonus**
$$|8x| = 4x^2$$

$$8x = 4x^{2}$$
 or $8x = -4x^{2}$
 $8x - 4x^{2} = 0$ $8x + 4x^{2} = 0$
 $4x[2 - x] = 0$ $4x[2 + x] = 0$
 $x = 0, 2$ $x = 0, -2$

