

$$P(B) = P(A \cup (B \setminus A))$$
 (disjoint partition)

$$P(B) = P(A \cup (B \setminus A))$$
 (disjoint partition)
= $P(A) + P(B \setminus A)$ (additivity)

$$P(B) = P(A \cup (B \setminus A))$$
 (disjoint partition)
= $P(A) + P(B \setminus A)$ (additivity)
 $\geq P(A)$ (positivity)

If $A \subseteq B$, what can we say about the relative values of P(A) and P(B)?

$$P(B) = P(A \cup (B \setminus A))$$
 (disjoint partition)
= $P(A) + P(B \setminus A)$ (additivity)
 $\geq P(A)$ (positivity)

Every event A is a subset of the sample space Ω

If $A \subseteq B$, what can we say about the relative values of P(A) and P(B)?

$$P(B) = P(A \cup (B \setminus A))$$
 (disjoint partition)
= $P(A) + P(B \setminus A)$ (additivity)
 $\geq P(A)$ (positivity)

Every event A is a subset of the sample space Ω $0 \le P(A) \le P(\Omega) = 1$

If $A \subseteq B$, what can we say about the relative values of P(A) and P(B)?

$$P(B) = P(A \cup (B \setminus A))$$
 (disjoint partition)
= $P(A) + P(B \setminus A)$ (additivity)
 $\geq P(A)$ (positivity)

Every event A is a subset of the sample space Ω

$$0 \le \mathbf{P}(\mathbf{A}) \le \mathbf{P}(\Omega) = 1$$

Probability measure is bounded

What can we say about the relative value of $P(A \cup B)$ with respect to P(A) and P(B)?

What can we say about the relative value of $P(A \cup B)$ with respect to P(A) and P(B)?

What can we say about the relative value of $P(A \cup B)$ with respect to P(A) and P(B)?

$$A \cup B = A \cup (B \setminus A)$$

What can we say about the relative value of $P(A \cup B)$ with respect to P(A) and P(B)?

$$A \cup B = A \cup (B \setminus A)$$

Disjoint sets: $A \cap (B \setminus A) = \emptyset$

What can we say about the relative value of $P(A \cup B)$ with respect to P(A) and P(B)?

$$A \cup B = A \cup (B \setminus A)$$

Disjoint sets: $A \cap (B \setminus A) = \emptyset$

Subset: $(B \setminus A) \subseteq B$

What can we say about the relative value of $P(A \cup B)$ with respect to P(A) and P(B)?

$$A \cup B = A \cup (B \setminus A)$$

Disjoint sets: $A \cap (B \setminus A) = \emptyset$

Subset: $(B \setminus A) \subseteq B$

$$P(A \cup B) = P(A) + P(B \setminus A)$$
additivity

What can we say about the relative value of $P(A \cup B)$ with respect to P(A) and P(B)?

$$A \cup B = A \cup (B \setminus A)$$

Disjoint sets: $A \cap (B \setminus A) = \emptyset$

Subset: $(B \setminus A) \subseteq B$

$$P(A \cup B) = P(A) + P(B \setminus A) \le P(A) + P(B)$$
additivity monotonicity

$$P(A \cup B) \leq P(A) + P(B)$$

$$P(A \cup B) \leq P(A) + P(B)$$

$$\mathbf{P}(A \cup B \cup C) = \mathbf{P}((A \cup B) \cup C)$$

$$P(A \cup B) \leq P(A) + P(B)$$

$$\mathbf{P}(\mathbf{A} \cup \mathbf{B} \cup \mathbf{C}) = \mathbf{P}((\mathbf{A} \cup \mathbf{B}) \cup \mathbf{C}) \leq \mathbf{P}(\mathbf{A} \cup \mathbf{B}) + \mathbf{P}(\mathbf{C})$$

$$P(A \cup B) \leq P(A) + P(B)$$

$$P(A \cup B \cup C) = P((A \cup B) \cup C) \le P(A \cup B) + P(C) \le P(A) + P(B) + P(C)$$

$$P(A \cup B) \leq P(A) + P(B)$$

$$\mathbf{P}(A \cup B \cup C) = \mathbf{P}((A \cup B) \cup C) \leq \mathbf{P}(A \cup B) + \mathbf{P}(C) \leq \mathbf{P}(A) + \mathbf{P}(B) + \mathbf{P}(C)$$

$$\mathbf{P}(A \cup B \cup C \cup D) = \mathbf{P}((A \cup B \cup C) \cup D)$$

$$P(A \cup B) \leq P(A) + P(B)$$

$$P(A \cup B \cup C) = P((A \cup B) \cup C) \le P(A \cup B) + P(C) \le P(A) + P(B) + P(C)$$

$$\mathbf{P}(A \cup B \cup C \cup D) = \mathbf{P}((A \cup B \cup C) \cup D) \leq \mathbf{P}(A \cup B \cup C) + \mathbf{P}(D)$$

$$P(A \cup B) \leq P(A) + P(B)$$

$$P(A \cup B \cup C) = P((A \cup B) \cup C) \le P(A \cup B) + P(C) \le P(A) + P(B) + P(C)$$

$$P(A \cup B \cup C \cup D) = P((A \cup B \cup C) \cup D) \le P(A \cup B \cup C) + P(D) \le P(A) + P(B) + P(C) + P(D)$$

$$P(A \cup B) \leq P(A) + P(B)$$

$$\mathbf{P}(A \cup B \cup C) = \mathbf{P}((A \cup B) \cup C) \le \mathbf{P}(A \cup B) + \mathbf{P}(C) \le \mathbf{P}(A) + \mathbf{P}(B) + \mathbf{P}(C)$$

$$\mathbf{P}(A \cup B \cup C \cup D) = \mathbf{P}((A \cup B \cup C) \cup D) \le \mathbf{P}(A \cup B \cup C) + \mathbf{P}(D) \le \mathbf{P}(A) + \mathbf{P}(B) + \mathbf{P}(C) + \mathbf{P}(D)$$

$$\mathbf{P}(A_1 \cup A_2 \cup \cdots \cup A_n) \le \mathbf{P}(A_1) + \mathbf{P}(A_2) + \cdots + \mathbf{P}(A_n)$$

$$P(A \cup B) \leq P(A) + P(B)$$

$$\mathbf{P}(A \cup B \cup C) = \mathbf{P}((A \cup B) \cup C) \le \mathbf{P}(A \cup B) + \mathbf{P}(C) \le \mathbf{P}(A) + \mathbf{P}(B) + \mathbf{P}(C)$$

$$\mathbf{P}(A \cup B \cup C \cup D) = \mathbf{P}((A \cup B \cup C) \cup D) \le \mathbf{P}(A \cup B \cup C) + \mathbf{P}(D) \le \mathbf{P}(A) + \mathbf{P}(B) + \mathbf{P}(C) + \mathbf{P}(D)$$

$$\mathbf{P}(A_1 \cup A_2 \cup \cdots \cup A_n) \le \mathbf{P}(A_1) + \mathbf{P}(A_2) + \cdots + \mathbf{P}(A_n)$$

Slogan

The probability of a union of events is no larger than the sum of the event probabilities.