MAT 3007 Optimization: Tutorial 4

Guxin DU

The Chinese University of Hong Kong, Shenzhen

June 17, 2025

Review: Fundamental LP Theorem

Consider a linear problem in standard form and assume that A has full row rank m.

- (1) existence of extreme points: If the feasible set is nonempty, there is a basic feasible solution. ⇔ Nonempty polyhedra in standard form have at least one extreme point. Remark: Standard form (especially $x \ge 0$) plays an important
- role in the existence here! (2) optimality of extreme points:
- If there is an optimal solution, there is an optimal solution that is also a basic feasible solution.
 - More generally, if feasible, then the optimal cost is either $-\infty$, or finite and can be attained by an extreme point as an optimal solution Remark: In LP, if optimal cost is **finite**, then it's **attainable**!

Review: Fundamental LP Theorem & Exercise

For each of the following statements, state whether it is true or false. If true, provide a proof, else, provide a counterexample.

Now consider the standard form polyhedron $P = \{x \in \mathbb{R}^n \mid Ax = b, x \geq 0\}$. Suppose $A \in \mathbb{R}^{m \times n}$ has m linearly independent rows.

- (a) if n = m + 1, then P has at most two basic feasible solutions.
- (b) The set of all optimal solutions is bounded.
- (c) At every optimal solution, no more than ${\bf m}$ variables can be positive.
- (d) If there is more than one optimal solution, then there are unaccountably many optimal solutions.
- (e) If there are several optimal solutions, then there exist at least two optimal basic feasible solutions.

Exercise 1

For the standard Lp polyhedron $\{x: Ax = b, x \ge 0\}$, the followings are equivalent:

- (1) x is an extreme point
- (2) x is a basic feasible solution

Exercise 2

Use the simplex method to solve the following problem (This trivial problem is an illustration of simplex method.)

min
$$3x_1 + 4x_2$$

 $s.t.$ $x_1 + x_2 \le 4$
 $x_2 \le 5$
 $x \ge 0$ (1)

Thanks!

Acknowledgements: Prof. Zizhuo WANG, Jiancong XIAO Wentao Ding, and Zhuo Li.