Segundo Control Análisis Matemático de 2^{ϱ} de Matemáticas 2018-2019

Apellidos: Nombre: DNI:

Observaciones: El problema 1.) es obligatorio, y se harán un máximo de 3 entre los 4 problemas siguientes. Todos los apartados de los problemas cuentan 1 punto.

Problema 1.- (4 puntos) Sea, para $n \ge 1$ un entero, la función f_n definida en $E = M_k(\mathbb{R})$ (matrices $k \times k$ reales) por $f_n(A) = A^n$.

1. Observar que al desarrollar $(A + B)^n$, aparece una expresión con 2^n sumandos que son cada uno un producto de n factores tales que cada uno es A ó B (comprobarlo, si es necesario, para n = 2, 3). Entonces, probar que

$$f_n(A+B) = A^n + \sum_{j=0}^{n-1} A^j B A^{n-1-j} + r_n(A,B),$$

dónde $r_n(A, B)$ es una suma finita de productos de n matrices, dónde al menos dos de los factores son B (y el resto son A).

2. Si en \mathbb{R}^k se ha fijado una cierta norma $\|\cdot\|$, y en $M_k(\mathbb{R})$ se considera la norma de operador inducida, entonces probar la estimación (para $n \geq 2$)

$$||r_n(A,B)|| \le 2^n \max\{||A||, ||B||\}^{n-2} ||B||^2.$$

- 3. Usar los apartados anteriores para justificar, que f_n es diferenciable $\forall A \in M_k(\mathbb{R})$ y calcular $(Df_n)_A(B)$, $A, B \in M_k(\mathbb{R})$; probar que se cumple la estimación $\|(Df_n)_A(B)\| \leq n\|A\|^{n-1}\|B\|$ y explicar brevemente porqué las funciones f_n son C^{∞} .
- **4.** Calcular $(Df_n)_I$, siendo I la matriz identidad y $(Df_n)_0$, siendo 0 la matriz nula. Probar entonces que f_n es un difeomorfismo local cerca de A = I; explicar porqué nunca puede ser un difeomorfismo global si n > 1.

Soluciones:

1. Si $X_1 = A$, $X_2 = B$,

$$(X_1 + X_2)^n = \sum_{i_1, \dots, i_n \in \{1, 2\}} \prod_{j=1}^n X_{i_j},$$

dónde para probar ésta expresión basta usar que el producto de matrices tiene la propiedad distributiva respecto de la suma. A su vez, podemos escribir

$$\sum_{i_1,\dots,i_n\in\{1,\,2\}} \prod_{j=1}^n X_{i_j} = \sum_{k=1}^n C_k,$$

siendo

$$C_k = \sum_{i_1, \dots, i_n \in T_j} \prod_{j=1}^n X_{i_j}; \ T_j = \{i_1, \dots, i_n \in \{1, \, 2\} : \text{ exactamente } k-1 \text{ entre los } i_1, \dots, i_n \text{ son } 2\}.$$

Entonces $C_1 = A^n$, $C_2 = \sum_{j=0}^{n-1} A^j B A^{n-1-j}$; $r_n(A, B)$ es la suma del resto de términos. Por último, en el desarrollo de $(A+B)^n$ aparecen 2^n sumandos porque $(i_1, \ldots, i_n) \in \{0, 1\}^n$, que tiene 2^n elementos.

2. Si $\prod_{j=1}^{n} X_{i_j}$ es uno de los sumandos que aparecen en $r_n(A, B)$ y en $M_k(\mathbb{R})$ se dá una norma de operador $\|\cdot\|$ inducida por una norma $\|\cdot\|$ en \mathbb{R}^k , como tal norma tiene la propiedad multiplicativa,

$$\|\prod_{j=1}^{n} X_{i_j}\| \le \prod_{j=1}^{n} \|X_{i_j}\| \le \max\{\|A\|, \|B\|\}^{n-2} \|B\|^2,$$

pues al menos 2 entre los X_{i_1}, \ldots, X_{i_n} son B y el resto son A; como la cantidad de tales sumandos en $r_n(A, B)$ no supera 2^n , usando la desigualdad de Minkowsky para la norma de una suma, se sigue el resultado.

3. Los apartados 1.) y 2.) implican que si f_n es diferenciable, su diferencial debe cumplir que, dadas matrices $A, B \in M_k(\mathbb{R})$,

$$(Df_n)_A(B) = \sum_{j=0}^{n-1} A^j B A^{n-1-j},$$

pues la aplicación así descrita es lineal en $B \in M_k(\mathbb{R})$ y $f_n(A+B) = f_n(A) + \sum_{j=0}^{n-1} A^j B A^{n-1-j} + r_n(A,B)$, dónde $r_n(A,B)$ tiene las propiedades exigidas al resto de ser $o(\|B\|)$, $B \to 0$. Una vez visto que ésa es la diferencial, la estimación se deduce inmediatamente aplicando de nuevo la desigualdad de Minkowsky para una suma y que la norma es multiplicativa.

4. Aplicando lo obtenido en 3.), obtenemos inmediatamente que (Df_n)_I = nI, siendo I la identidad (pero ahora I no es la identidad I ∈ M_k(ℝ), sino de L(M_k(ℝ)) y (Df_n)₀ = 0, siendo 0 la matriz nula (con la misma observación de antes). Las funciones f_n son C[∞] porque sus componentes son claramente polinomios (de grado n) en las componentes de la matriz A, que son funciones C[∞]. Por el cálculo de que (Df_n)_I = nI, y de que f_n es C[∞], se sigue por el Teorema de la Función Inversa que f_n es un difeomorfismo local en un entorno abierto V de la matriz identidad en M_k(ℝ). Tal difeomorfismo no puede ser global porque de serlo, su diferencial en todo punto debería ser inversible, siendo que tal diferencial en 0 es nula.

Problema 2.- (2 puntos) Sea X el subconjunto de \mathbb{R}^2 dado por

$$X = \{(1 - e^{-t})(\cos t, \, \sin t) : 0 \le t < \infty\}$$

- 1. Determinar \overline{X} , y probar que es conexo.
- 2. Probar que \overline{X} no es conexo por arcos y determinar sus componentes conexas por arcos.

Soluciones:

1. Dado r > 0, si

$$rX_r = \{(1 - e^{-t})(\cos t, \sin t) : 0 < t < r\} \subset X,$$

 X_r es compacto en \mathbb{R}^2 (por ser $\gamma([0,r])$, con $\gamma(t)=(1-e^{-t})(\cos t, \sin t)$, que es una función continua y [0,r] compacto en \mathbb{R} . Se sigue que X_r es cerrado, de dónde puntos límite de X (pero no en X) sólo pueden aparecer como $\lim_{n\to\infty}\gamma(t_n)$ con $t_n\to\infty$, $n\to\infty$. Puesto que $\|\gamma(t_n)\|=1-e^{-t_n}\to 1,\ n\to\infty$, se sigue que $\overline{X}\subset X\cup\{x\in\mathbb{R}^2:\|x\|=1\}$. Asimismo, dado x_0 con $\|x_0\|=1$, existe $t_0\in[0,2\pi]$ con $x_0=(\cos t_0,\,\sin t_0)$ y entonces $x_0=\lim_{n\to\infty}\gamma(t_0+2n\pi)$, de dónde $X\cup\{x\in\mathbb{R}^2:\|x\|=1\}\subset\overline{X}$ y por tanto,

$$\overline{X} = X \cup \{x \in \mathbb{R}^2 : ||x|| = 1\};$$

 \overline{X} es conexo por ser el cierre de X, que es conexo por ser imagen continua del conexo $[0,\infty)$.

Sin embargo, \overline{X} no es conexo por arcos, pues si pudiéramos unir $x_0 = \gamma(t_0) \in X$ con un x_1 con $\|x_1\| = 1$ por una curva $\sigma : [0,1] \mapsto \overline{X}$ continua (con $\sigma(0) = x_0, \, \sigma(1) = x_1$), tal curva debería recorrer todo el conjunto $\gamma([t_0, \infty))$ (pues $\|\gamma(t)\| < 1 \, \forall t \in [t_0, \infty)$ y éste último conjunto es conexo. En particular, como $\gamma([t_0, \infty)) = \gamma([t_0, \infty)) \cup \{x \in \mathbb{R}^2 : \|x\| = 1\}$, conforme $s \to 1-$, todo punto en $\{x \in \mathbb{R}^2 : \|x\| = 1\}$ debería aparecer como lím $_{s \to 1-} \sigma(t)$, luego la curva σ no puede ser continua.

En cuanto a las componentes conexas por arcos de \overline{X} , son X y $C = \{x \in \mathbb{R}^2 : ||x|| = 1\}$, pues X es conexo por ser un arco continuo y C otro (pues $C = \phi([0,1]); \phi(t) = (\cos(2\pi t), \sin(2\pi t))$), mientras que ésos arcos no pueden conectarse continuamente entre ellos.

Problema 3.- (2 puntos) Sea

$$f(x) = e^{-\|x\|^2} P(x), \ x \in \mathbb{R}^n,$$

siendo P(x) un polinomio. Probar:

- **1.** f es Lipschitz en \mathbb{R}^n , esto es, existe una constante $\Lambda < \infty$ tal que para todos los x, y en \mathbb{R}^n , $|f(x) f(y)| \le \Lambda ||x y||$.
- **2.** Si $P(x) = ||x||^2$, determinar los puntos críticos de f, si son ó no degenerados, y su naturaleza cuando no sean degenerados. Obtener asimismo inf $\{f(x) : x \in \mathbb{R}^n\}$, sup $\{f(x) : x \in \mathbb{R}^n\}$ y determinar si se alcanzan.

Soluciones:

1. (Aquí entendemos que ||x|| es la estándar ó euclídea, para la cual $||x||^2 = \sum_{j=1}^n x_j^2$, $x = (x_1, \dots, x_n) \in \mathbb{R}^n$).

Para ver que f(x) es Lipschitz, dado que la función es claramente C^1 (de hecho, C^{∞}), basta ver que ∇f está acotado en \mathbb{R}^n (ésto es consecuencia del Teorema del Valor Medio), esto es, que existe $C<\infty$ tal que, dado $x\in\mathbb{R}^n$, $\|\nabla f(x)\|\leq C$, para lo cual a su vez basta ver que cualquier derivada parcial de f está acotada. Entonces, si ∂_j denota la derivada parcial respecto de x_j , tenemos que $\partial_j[e^{-\|x\|^2}P(x)]=e^{-\|x\|^2}Q(x);\ Q(x)=-2x_jP(x)+\partial_jP(x),$ que es otro polinomio en \mathbb{R}^n .

Así pues, el punto 1.) quedará probado si demostramos que toda función del tipo de f está acotada. Pero que P(x) es un polinomio en \mathbb{R}^n , es una combinación lineal de monomios $x^{\alpha} = \prod_{j=1}^n x^{\alpha_j}; \ \alpha \in \mathbb{N}^n$, para los cuales es válida la estimación $|x^{\alpha}| = |\prod_{j=1}^n x^{\alpha_j}| \leq ||x||^{|\alpha|}; \ |\alpha| := \sum_{j=1}^n \alpha_j$. Se sigue entonces que para un polinomio P(x) en \mathbb{R}^n se cumple la estimación $\exists A < \infty, \forall x \in \mathbb{R}^n, \ |P(x)| \leq A(1+||x||^d)$, siendo d el grado de tal polinomio.

Por último, para cualquier $r \geq 0$, $A < \infty$, $g(x) = Ae^{-\|x\|^2}(1 + \|x\|^r) = h(\rho)$; $\rho = \|x\| \geq 0$, siendo $h(\rho) = Ae^{-\rho^2}(1+\rho^r)$, que es continua en el intervalo $[0,\infty)$ y cumple $\lim_{\rho\to\infty} h(\rho) = 0$, luego $h(\rho)$ es acotada en $[0,\infty)$, y por tanto, g(x) es acotada (por la misma cota que para h) en \mathbb{R}^n ; como f(x) está controlada por g(x), se sigue la acotación para f.

2. Para la función del apartado, $\nabla f(x) = e^{-\|x\|^2} 2x(1 - \|x\|^2)$, luego sus puntos críticos (dónde se anule el gradiente) son, ó bien x = 0 o la esfera unidad $S^{n-1} = \{x \in \mathbb{R}^n : \|x\| = 1\}$. Entonces, si $n \geq 2$, los puntos en S^{n-1} no son aislados, por lo cual el Hessiano de f en ésos puntos ha de ser forzosamente degenerado; en el punto crítico x = 0 (que es aislado), usando que para $x \to 0$ (en \mathbb{R}^n), $e^{-\|x\|^2} = 1 + \mathcal{O}(\|x\|^2)$, $f(x) = \|x\|^2 + \mathcal{O}(\|x\|^4)$, luego $\frac{1}{2}x^tHf(0)x = \|x\|^2$, que es una forma cuadrática definida positiva (su matriz es 2I). Por tanto el punto x = 0 es un mínimo local, que a su vez es global, pues claramente $\forall x \in \mathbb{R}^n, f(x) \geq 0 = f(0)$, y deducimos también que el $\inf\{f(x) : x \in \mathbb{R}^n\}$ es 0 y se alcanza en x = 0.

Como el Hessiano de f no aporta información del comportamiento de f cuando $x \in S^{n-1}$, no lo usaremos ahí. En cambio, como la función está acotada en \mathbb{R}^n y tiende a 0 si $\|x\| \to \infty$, ésta función debe alcanzar un máximo en $\overline{B}_R(0)$ (que es un compacto de \mathbb{R}^n), y además éste máximo será independiente de R si R es suficientemente grande. Como los puntos dónde se alcance un máximo serán forzosamente puntos críticos, la única alternativa es que todos los puntos de S^{n-1} han de dar el máximo global de f, luego $\sup\{f(x):x\in\mathbb{R}^n\}$ es e^{-1} y se alcanzará en esos puntos. Como modo alternativo, podría escribirse, para $x\in\mathbb{R}^n$, $f(x)=h(\rho)=e^{-\rho^2}\rho^2$; $\rho=\|x\|\geq 0$, y razonar con los máximos y mínimos de $h(\rho)$ en $[0,\infty)$, que se presentan para $\rho=1$ y $\rho=0$, respectivamente.

Problema 4.- (2 puntos) Sea f(x), $x \in \mathbb{R}^2$ una función para la cual existen dos vectores linealmente independientes a, b tales que $\forall x \in \mathbb{R}^2$, f(x+a) = f(x+b) = f(x) (tales funciones se denominan biperiódicas). Probar:

- **1.** Dado $x \in \mathbb{R}^2$, existen enteros k, l tales que x = ka + lb + x', con $x' \in P := \{x \in \mathbb{R}^2 : x = sa + tb, 0 \le s, t \le 1\}$; probar además que P es convexo y compacto en \mathbb{R}^2 . (sugerencia: escribir primero $x = y_1a + y_2b, y_1, y_2 \in \mathbb{R}$).
- 2. Probar que si f es continua en \mathbb{R}^2 , f es uniformemente continua y acotada.

Soluciones:

1. Como a,b son linealmente independientes en \mathbb{R}^2 , existen constantes reales $y_1,\ y_2$ tales que $x=y_1a+y_2b$. Usando la función [x] (parte entera de x), x=ka+lb+x', tomando $k=[y_1],\ l=[y_2]$ y $x'=y_1'a+y_2'b;\ y_1'=y_1-[y_1],\ y_2'=y_2-[y_2']$. Como $0\leq y_1',\ y_2'<1,\ x'\in P$.

El conjunto P es convexo, pues si $p,q\in P$, existen $s,t,s',t'\in [0,1]$ tales que $p=sa+tb,\ q=s'a+t'b,\ y$ si ahora $0\le r\le 1,\ (1-r)p+rq=[(1-r)s+rs']a+[(1-r)t+rt']b.$ Usando que $s,t,s',t',1-r,r\in [0,1],$ es inmediato que $(1-r)s+rs',\ (1-r)t+rt'\ge 0.$ Además $(1-r)s+rs'\le (1-r)+r=1$ (usando $s,s'\le 1$), y de igual modo, $(1-r)t+rt'\le 1$, luego $[p,q]\subset P$.

P es compacto, pues si (p_n) es una sucesión en P, existen sucesiones (s_n) , (t_n) en [0,1] tales que $p_n = s_n a + t_n b$. Usando la compacidad de [0,1] en \mathbb{R} , podemos tomar primero una subsucesión $(s'_j) = (s_{n_j})$ de (s_n) convergente a un $s_0 \in [0,1]$. Si $(t'_j) = (t_{n_j})$, tal sucesión no tiene porqué converger, pero sí una subsucesión suya $(t''_k) = (t'_{j_k})$ (convergente a $t_0 \in [0,1]$). Tomando ahora $(s''_k) = (s'_{j_k})$, $s''_k \to s_0$, $t''_k \to t_0$, y si $(p''_k) = (s''_k a + t''_k b)$, (p''_k) es una subsucesión de (p_n) convergente a $s_0 a + t_0 b \in P$; alternativamente, podría razonarse la compacidad probando primero que P es acotado (obvio) y que es cerrado, para lo cual habría que considerar que las funciones coordenadas $\{y_1, y_2\}$ respecto de la base $\{a, b\}$ de \mathbb{R}^2 son funciones continuas, y entonces $P = \{x \in \mathbb{R}^2 : 0 \le y_1, y_2 \le 1\}$, que es un cerrado.

2. Si restringimos f a P, $f|_P$ es uniformemente continua (por ser P compacto), así como acotada. Asimismo, es inmediato probar por inducción que si $k, l \in \mathbb{Z}$, dado $x \in \mathbb{R}^2$, f(x+ka) = f(x+lb) = f(x). Usando entonces la periodicidad de f, si x = ka + lb + x'; $k, l \in \mathbb{Z}$, $x' \in P$, f(x) = f(x'), la acotación de f en \mathbb{R}^2 se reducen a su comportamiento en P. Para la continuidad uniforme es más conveniente usar $Q = \{sa + tb : -1/2 \le s, t \le 1/2\} = \{x \in \mathbb{R}^2 : |y_1|, |y_2| \le 1/2\}$. De nuevo, si $x \in \mathbb{R}^2$, $\exists m, n \in \mathbb{Z}$, $\exists \tilde{x} \in Q$ con $x = ma + nb + \tilde{x}$. Este Q tiene la ventaja de que $0 \in \text{int } Q = \{x \in \mathbb{R}^2 : |y_1|, |y_2| < 1/2\}$. Si ahora $x, y \in \mathbb{R}^2$ están suficientemente próximos, podemos considerar $x - y \in \text{int } Q$. Si ahora escribimos $x = ma + nb + \tilde{x}$, $y = m'a + n'b + \tilde{y}$ con $m, m', n, n' \in \mathbb{Z}$, \tilde{x} , $\tilde{y} \in Q$ y por ser $x - y \in \text{int } Q$, $m = m' \land n = n'$, luego $x - y = \tilde{x} - \tilde{y}$ y $f(x) - f(y) = f(\tilde{x}) - f(\tilde{y})$ (usando la periodicidad de f); entonces la continuidad uniforme de f en todo \mathbb{R}^2 se reduce a que f es uniformemente continua en el compacto Q.

Problema 5.- (2 puntos) Fijemos $T: \mathbb{R}^n \to \mathbb{R}^n$ lineal, y sea $f: GL(n, \mathbb{R}) \subset M_n(\mathbb{R}) \to M_n(\mathbb{R})$ la aplicación que lleva T, a su matriz de $M_{\mathcal{B}}(T)$ en la base $\mathcal{B} = \{v_1, \dots, v_n\}$, siendo para $P \in GL(n, \mathbb{R}), P = (v_1, \dots, v_n); GL(n, \mathbb{R}) := \{P \in M_n(\mathbb{R}) : \exists P^{-1}\}$. Probar:

- 1. $GL(n,\mathbb{R})$ es un abierto del espacio de matrices cuadradas $M_n(\mathbb{R})$.
- 2. La aplicación f es C^{∞} . (<u>indicación</u>: recordar cómo se expresa $M_{\mathcal{B}}(T)$ en términos de P)

Soluciones:

- 1. $M_n(\mathbb{R}) \setminus GL(n,\mathbb{R})$ es la preimagen por la función determinante de $\{0\}$, que es un subconjunto cerrado de \mathbb{R} , mientras que la función determinante es continua (es un polinomio en las entradas de $A \in M_n(\mathbb{R})$), luego $M_n(\mathbb{R}) \setminus GL(n,\mathbb{R})$ es un cerrado en $M_n(\mathbb{R})$.
- **2.** Sabemos por el Álgebra Lineal que la función f descrita se escribe como $P^{-1}AP$, siendo A la matriz de T en la base canónica de \mathbb{R}^n . Tal función puede describirse como $g \circ h$, siendo

$$h: GL(n, \mathbb{R}) \subset M_n(\mathbb{R}) \mapsto M_n(\mathbb{R}) \times M_n(\mathbb{R}), \ h(P) = (P^{-1}, AP),$$

 $g: M_n(\mathbb{R}) \times M_n(\mathbb{R}) \mapsto M_n(\mathbb{R}), \ g(R, S) = RS.$

g, h son C^{∞} : la función h porque sus componentes P^{-1} y AP son funciones C^{∞} (la primera, porque lo probamos en clase, y la segunda, por ser lineal), mientras que g, por ser sus componentes polinomios en las componentes de R, S; se sigue que f es C^{∞} en su dominio de definición.