NOM:

INTERRO DE COURS – SEMAINE 6

Exercice 1 – Un sac contient quatre boules numérotées de 1 à 4. On effectue deux tirages successifs d'une boule, **sans remise**. On note X_1 le numéro de la première boule, X_2 le numéro de la deuxième boule et Y le plus petit des deux numéros obtenus.

1. Justifier le tableau suivant, donnant la loi du couple (X_1, Y) .

	Y = 1	Y = 2	Y = 3	Y = 4
$X_1 = 1$	$\frac{3}{12} = \frac{1}{4}$	0	0	0
$X_1 = 2$	$\frac{1}{12}$	$\frac{2}{12} = \frac{1}{6}$	0	0
$X_1 = 3$	$\frac{1}{12}$	$\frac{1}{12}$	$\frac{1}{12}$	0
$X_1 = 4$	$\frac{1}{12}$	$\frac{1}{12}$	$\frac{1}{12}$	0

Solution : Puisque le tirage s'effectue sans remise, je ne peux pas obtenir deux fois le même numéro. Ainsi pour tout $i \neq j$,

$$P(X_1 = i, X_2 = j) = \frac{1}{4} \times \frac{1}{3} = \frac{1}{12}.$$

Comme Y désigne le plus petit des deux numéros, alors

$$\forall 1 \le i < j \le 4$$
, $P(X_1 = i, Y = j) = 0$.

Aussi,

$$\forall 1 \leqslant j < i \leqslant 4, \quad P(X_1 = i, Y = j) = P(X_1 = i, X_2 = j) = \frac{1}{12}.$$

Enfin

Einin,
$$P(X_1 = 3, Y = 3) = P(X_1 = 3, X_2 = 4) = \frac{1}{12}$$

$$P(X_1 = 2, Y = 2) = P(X_1 = 2, X_2 = 3) + P(X_1 = 2, X_2 = 4) = 2 \times \frac{1}{12} = \frac{1}{6}$$

$$P(X_1 = 1, Y = 1) = P(X_1 = 1, X_2 = 2) + P(X_1 = 1, X_2 = 3) + P(X_1 = 1, X_2 = 4) = 3 \times \frac{1}{12} = \frac{1}{4}$$
 Cela suffit à justifir le tableau de l'énoncé.

2. Calculer $E(X_1Y)$.

Solution: À l'aide du tableau de la loi conjointe, j'obtiens que

$$E(X_1Y) = \frac{3}{12} + \frac{2}{12} + \frac{8}{12} + \frac{3}{12} + \frac{6}{12} + \frac{9}{12} + \frac{4}{12} + \frac{8}{12} + \frac{12}{12} = \frac{55}{12}.$$

3. a) Déterminer les lois marginales de X_1 et Y.

Solution : Pour déterminer la loi marginale de X_1 (resp. Y), il me suffit de faire la somme des probabilités des lignes (resp. des colonnes) du tableau de la question $\mathbf{1}$. J'obtiens alors

x	1	2	3	4
$P(X_1 = x)$	1	1	1	1
	$\frac{-}{4}$	$\frac{-}{4}$	$\frac{-}{4}$	$\frac{-}{4}$

У	1	2	3	4
D/I/	1	1	1	0
P(Y = y)	2	2	6	
		J	U	

b) En déduire les valeurs de $E(X_1)$ et E(Y).

Solution: Grâce aux lois exprimées à la question précédente, j'obtiens que

$$E(X_1) = \frac{1}{4} + \frac{2}{4} + \frac{3}{4} + \frac{4}{4} = \frac{10}{4} = \frac{5}{2}.$$

De même,

$$E(Y) = \frac{1}{2} + \frac{2}{3} + \frac{3}{6} + 0 = \frac{5}{3}.$$

c) Les variables aléatoires X_1 et Y sont-elles indépendantes?

Solution : Je sais que $E(X_1)E(Y) = \frac{5}{2} \times \frac{5}{3} = \frac{25}{6}$ et que $E(X_1Y) = \frac{55}{12}$.

Comme l'égalité $E(X_1Y) = E(X_1)E(Y)$ n'est pas vérifiée, alors j'en conclus que les variables aléatoires X_1 et Y ne sont pas indépendantes.

4. Calculer $Cov(X_1, Y)$.

Solution: D'après la formule de König-Huygens,

$$Cov(X_1, Y) = E(X_1Y) - E(X_1)E(Y) = \frac{55}{12} - \frac{25}{6} = \frac{55 - 50}{12} = \frac{5}{12}.$$