

Overcrowding Detection in Buses Using Sensors

Presented by Harsh Nagra

ID - 2410994798

Subject: Data Capture Technologies

Date: 26-04-2025

Introduction to Overcrowding Issues

Rush hour crowding

Buses in Indian cities are regularly overcrowded.

Consequences

Pushing, discomfort, and passenger injuries happen frequently.

Need for solution

An intelligent detection solution is required to manage and mitigate overcrowding.

Problem Statement

Passenger safety is compromised

When passengers crowd near doors, injuries happen

Current systems is stuck

No affordable or reliable realtime monitoring system available.

Requirement

A system for real-time overcrowding detection and alerts.

Bus overscroudling pattlesation

Existing Counting Methods

Cameras

Expensive and privacy concerns.

Infrared Sensors

Limited detection distance and everything has to be aligned accurately.

Manual Counting

Results are never consistent and not reliable.

Mobile Apps

Not always accurate or time.

Literature Review Insights

Sensor types used

Infrared, ultrasonic, weight sensors are being used in this research.

Issues

High cost and low accuracy are common barriers.

Gap Identified

The need for simple, affordable, realtime sensor system is required.

Proposed Sensor-Based System

Use ultrasonic/infrared sensors

Connect to microcontroller (Arduino)

Send crowd indication to cloud monitoring platform.

Sending alerts when crowd limit is exceeded

Data Flow and Dashboard Visualization

1 Distance Detection using

2 Transmit data via MQTT protocol

3 Live crowd monitoring on dashboard

4 Alerts sent to drivers and passengers

Project Budget Breakdown

Arduino Uno	\$35
Ultrasonic Sensors (2x)	\$20
Buzzer and Door Module	\$20
Cloud Setup	Free or low-cost
Total Estimated Cost	\$100

Project Timeline (Gantt Chart)

- 1. Week 1: Analyze problem
- 1. Week 2: Plan and research
- 1. Week 3: Literature review
- 1. Week 4: Design and setup
- 1. Week 5: Report writing and review

Conclusion and Future Steps

Benefits of system

Enhances safety by monitoring crowd behavior and status in real-time.

Impact

Reduction in overcrowding risks for

Future work

AI/ML for passenger load selling