

LD14 LiDAR

Principle of triangulation

Low cost, high reliability

目录

1	原理.	与系统简介	3
2.	规格	参数	.4
	2.1.	电气与机械参数	. 4
	2.2.	光学参数	. 4
	2.3.	性能参数	. 4
3.	数据	接口	5
	3.1.	通讯与接口	. 5
	3.2.	坐标系定义	. 6
4.	光学'	窗口与机械尺寸	6
5.	安全	与适用范围	8
6.	修订·	记录	. 0

1. 原理与系统简介

LD14 主要由激光测距核心,无线传电单元,无线通讯单元,角度测量单元、电机驱动单元和机械外壳组成。

LD14 测距核心采用三角测量法技术,可进行每秒 2300 次的测距。每次测距时,LD14 从一个固定的角度发射出红外激光,激光遇到目标物体后被反射到接收单元。通过激光、目标物体、接收单元形成的三角关系,从而解算出距离。

获取到距离数据后,LD14 会融合角度测量单元测量到的角度值组成点云数据,然后通过无线通讯将点云数据发送到外部接口。同时电机驱动单元会驱动电机,通过PID 算法闭环控制到指定的转速。

LD14 点云数据形成的环境扫描图意图如下:

2. 规格参数

2.1. 电气与机械参数

参数名称	单位	最小值	典型值	最大值	备注
输入电压	V	4.5V	5V	5.5V	
启动电流	mA	-	400	-	
工作电流	mA	-	240	-	
整机尺寸	mm	96.3*59.8*38.8	8 (长宽高) 公差	±0.3	
整机重量	g	-	131	-	不含连接线
通讯接口	_	UART @ 1152	200		
UART 高电平	V	2.9	3.3	3.5	
UART 低电平	V	-0.3	0	0.4	
驱动电机	_	直流有刷电机	,		
工作温度	°C	-10	25	40	
存储温度	℃	-30	25	70	

2.2. 光学参数

参数名称	单位	最小值	典型值	最大值	备注
激光波长	nm	775	793	800	红外波段
激光功率	mW	-	10	-	
激光安全等级	-	IEC-60825 CI	ass 1		
俯仰角	0	0	0.75	2	

2.3. 性能参数

参数名称	单位	最小值	典型值	最大值	备注
测距范围	m	0.15	-	8	80%目标反射率
扫描频率	Hz	-	6	-	内部固定转速
测距频率	Hz	-	2300	-	固定频率
	mm	-	5	10	测距小于 1m 时
测距精度	-	-	1.5%	3%	测距 1m ~ 6m 时
			2%	5%	测距 6m ~ 8m 时

角度误差	0	-	1	2	
角度分辨率	0	-	1	-	
抗环境光 🗎 1	KLux	-	-	30	
整机寿命	h	1500	-	-	

注 1: 抗阳光性能是在内部测试场景下测试得到的数据, 详细情况请参见强光干扰测试方案和测试报告。

3. 数据接口

3.1. 通讯与接口

LD14 使用 1.25mm 4PIN 连接器与外部系统连接,实现供电和数据接收,具体接口定义和参数要求见下图/表:

序号	信号名	类型	描述	最小值	典型值	最大值
1	NC /PWM	控速	可选择是否外 部控速	参考开发手册	参考开发手册	参考开发手册
2	GND	供电	电源负极	-	0V	-
3	Tx	输出	雷达数据输出	0V	3.3V	3.5V
4	P5V	供电	电源正极	4.5V	5V	5.5V

LD14 的数据通讯采用标准异步串口(UART)单向发送,其传输参数如下表所示:

波特率	数据长度	停止位	奇偶校验位	流控制
115200	8 Bits	1	无	无

LD14 采用单向通讯, 上电稳定后, 即开始发送测量数据, 不需要发送任何指令。

3.2. 坐标系定义

LD14 使用左手坐标系,旋转中心为坐标原点,旋转中心与主动轮中心连线方向为零度方向,旋转角度沿着顺时针方向增大。具体如下图所示:

4. 光学窗口与机械尺寸

LD14 的测距单元中的激光发射与接收,需要一个光学窗口,在结构上需要露出。外部系统对该窗口的部分遮挡,将在一定程度上影响 LD14 的测距性能。下图为光学窗口尺寸(单位:mm)。外形尺寸公差是+0.3/-0.3mm。

其他安装尺寸见下图 (单位: mm):

5. 安全与适用范围

LD14 采用低功率的红外激光器作为发射光源,因而可以确保对人类及宠物的安全,目前本产品已测试通过 Class I 级别的激光器安全标准。

LD14 符合 21 CFR 1040.10 和 1040.11, 但 2007 年 6 月 24 日激光通告第 50 号的偏差除外。

注意:自行调整或改装本产品可能会导致危险的辐射暴露。

6. 修订记录

版本	修订日期	修订内容
1.0	2020-09-18	初始创建
1.1	2020-12-31	完善通讯接口、补充 PWM 控速接口
1.2	2021-5-14	更新激光图片尺寸
1.3	2021-06-09	更新了测距精度以及外形尺寸
1.4	2021-06-12	增加了关键外形尺寸
1.5	2021-10-19	更新了抗阳光性能测试标准