Problem 5.1: A conical surface carries a uniform surface charge σ . The height of the cone is h, and the radius of the top is also h (see figure). Find the potential difference between the points \mathbf{a} and \mathbf{b} .

Problem 5.2: The electric potential of some configuration is given by the expression $V(\mathbf{r}) = A \frac{e^{-\lambda r}}{r}$, where A and λ are constants.

- (a) Find the electric field E(r).
- (b) What is the charge density $\rho(r)$?
- (c) What is the total charge *Q*?

Problem 5.3: The potential $V(\mathbf{r})$ at \mathbf{r} due to a localized charge distribution is given as $V(r) = \frac{1}{4\pi\varepsilon_0} \int \frac{\rho(\mathbf{r}')}{r} d\tau'$

where $\rho(\mathbf{r}')$ is the charge density at \mathbf{r}' and \mathbf{z} is the separation between \mathbf{r} and \mathbf{r}' . Verify that the above equation satisfies Poisson's equation.

Problem 5.4: Consider two concentric spherical shells of radii a and b. Suppose the inner one carries a charge q and the outer one charge -q (both of them uniformly distributed over the surface).

- (a) Calculate the energy of this configuration.
- (b) How much of this is the interaction energy between the two shells?

Problem 5.5: (a) A metal sphere of radius R carries a total charge Q. What is the force of repulsion between the northern and the southern hemispheres (see figure)?

(b) A uniformly charged sphere of radius R carries a total charge Q. What is the force of repulsion between the northern and the southern hemispheres (see figure)?

Problem 5.6: Find the capacitance per unit length of two coaxial metal cylindrical cylinders, of radii *a* and *b* (see figure).

