lunge features

- Low-level features (wivers, edges, textures patches) are needed for many tasus:
 - large metaling and registration
 - Structure from motion and image based 30 medelling
 - brage segmentation
 - Object recognition
 - lunge retrieval

HMBREUNGAAN Neaghingu

Edge detection

- Goal: Identify sudden charges (discontinuities) in an impe
 - Intuitively, most sementic and shape information from the image can be emoded in the edges
 - More compact then pixels
- Ideal: antist's line drawing

Why do we care about edges?

- Extract information, rewaite objects of nobust against illumination changes
- Rewer secretary and view point

Origin of edges

Caused by:

- surface normal discontinuity
- depth discontinuity
- surface whom discontinuity
- illumination discontinuity

Edge detection

- An edge is a place of rapid charge in the image intensity function

edges correspond to extrem of derivative

For 20
$$d(x,y)$$
: $\frac{\partial d(x,y)}{\partial x} = \lim_{\epsilon \to 0} \frac{d(x+\epsilon,y) - d(x,y)}{\epsilon}$

For discrete data, infenite differences:
$$\frac{\partial J(x,y)}{\partial x} \approx \frac{J(x+1,y)-J(x,y)}{1}$$

To implement this as convolution, this is the associated Julter:

Finite difference filters

Sobel:
$$M_{x} = -2 \circ 2 \qquad M_{y} = 0 \circ 0$$

$$M_{y} = 0 0 0$$

The gudient of an image:
$$\nabla l = \left[\frac{\partial l}{\partial x}, \frac{\partial l}{\partial y} \right]$$

$$\nabla S = \begin{bmatrix} \frac{\partial J}{\partial x} & 0 \end{bmatrix} \quad \nabla S = \begin{bmatrix} \frac{\partial J}{\partial x} & \frac{\partial J}{\partial x} \end{bmatrix} \quad \nabla S = \begin{bmatrix} \frac{\partial J}{\partial x} & \frac{\partial J}{\partial x} \end{bmatrix} \quad \text{fundant direction}$$

The gradient points in the direction of most repid increase in intensity

$$\|\nabla f\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$
: Gradient strength

Application: Gradient - domain image editing

· God: solve for pixel values in the target region to match quadients of the source region while keeping background pixels the same

Ellerts of mise

Dementive theorem of convolution

- Differentiation is convolution, and convolution is associative:

$$\frac{2}{2x}(f^*s) = f^* \frac{2}{2x} s$$

- This saves us an operation:

Solution: Smooth first

g: Kernel

1 + 9 : convolution

2 (8*8): differentiation

Separability of the fourcion filter

$$G_6(x,y) = \frac{1}{2\pi6^2} \exp{-\frac{x^2+y^2}{26^2}}$$

$$= \left| \frac{1}{\sqrt{2\pi} \epsilon} \exp \left(-\frac{x^2}{z_{\delta^2}} \right) \right| \frac{1}{\sqrt{2\pi} \epsilon} \exp \left(-\frac{y^2}{z_{\delta^2}} \right)$$

96 9 smoothing you apply Smoothed derivative removes noise, but bluss elges. Also firds edges at different scales

Smoothing us derivative filters

- Somo thing filters
 - Coussian: remove high frequency components: low-pass filter
 - Theigh Makes can be regative, but usually all values are positive
 - All values should sum 1, so that constant regions are not affected
- Derivative filters
 - Derivatives of Garssian
 - They are be regative
 - The values should sur O No response in constant regions

Building edge detector

- 10 Filters in X and & direction and then take the responses into the guidient vector magnitude and orientation to prom of the guidient
- 2° Thresholded norm of the gradient o to discard weak edges How to turn thick curves into actual lines?
- 30 Non maximum suppression

theshol

Some edges then dissuppear to be too weak despite being relevant. How to solve, lowering threshold ? No

Check if pixel is boll naxional along gradient direction, select single max accross width of the edge - requires checking interpolated pixels pands

4° Hysteresis thresholding

You do not apply the some threshold everywhere Use a high threshold to start edge wives and low threshold to continue than

All of this is wripped up in Carmy edge detector MATLAB [edge (image, 'carm')]

Data - driven edge detection

ML classifier Edge detection can work as sound truth for feeding a current instead of labelling manually every edge in every imale.

The output should like the edge detection output but not like a binarry ontput. Real value between 0 and 1.

Keypoint extraction: Corners

Why extruct verpoints?

- Paronema stitching: WR have 2 images, how do we combine them ?
- · Step 1; extract points
- · Step 2: notch very point features
- · Step 3: align images

Characteristics of good key points

- Repeteabilits: same very point can be found in several images despite geometric and photometric transformations
- Saliency: each key point is distinctive
- Compactness and efficiency: many fewer keypoints than image pixels
- butity: a respoint occupies a relatively small area of the image; robust to clutter and occlusion

Applications of key points

- lunge dignment
- 3D reconstruction
- Motion trucking
- Pulot muigation
- brokering and detabase retireval
- Object recognition

- We should easily recognize the proint by borning through a small window - Shifting a window in any direction should give a large change in intersety

" flat" region : no change in all directions

"edge" : no change along the edge detection

"corner". significant change in all directions

Corner detection: metheratics

- Change in appearance o) window W for the shift [u, v]:

- First-order Tuylor approximation for small motions [u, v]:

$$2 \left[\left[\left[\left(x, y \right) + \right]_{x} + \left[y - \left[\left(x, y \right) \right]^{2} \right] \right] = \left[\left[\left[x, y \right]_{x} + \left[y - \left[y \right]_{x} \right] \right] = \left[\left[\left[x, y \right]_{x} + \left[y - \left[y \right]_{x} \right] \right] \right] = \left[\left[\left[x, y \right]_{x} + \left[y - \left[y \right]_{x} \right] \right] = \left[\left[\left[x, y \right]_{x} + \left[y - \left[y \right]_{x} \right] \right] = \left[\left[\left[x, y \right]_{x} + \left[y - \left[y \right]_{x} \right] \right] = \left[\left[\left[x, y \right]_{x} + \left[y - \left[y \right]_{x} \right] \right] = \left[\left[\left[x, y \right]_{x} + \left[y - \left[y \right]_{x} \right] \right] = \left[\left[\left[x, y \right]_{x} + \left[y - \left[y \right]_{x} \right] \right] = \left[\left[\left[x, y \right]_{x} + \left[y - \left[y \right]_{x} \right] \right] = \left[\left[\left[x, y \right]_{x} + \left[y - \left[y \right]_{x} \right] \right] = \left[\left[\left[x, y \right]_{x} + \left[y - \left[y \right]_{x} \right] \right] = \left[\left[\left[x, y \right]_{x} + \left[y - \left[y \right]_{x} \right] \right] = \left[\left[\left[x, y \right]_{x} + \left[y - \left[y \right]_{x} \right] \right] = \left[\left[\left[x, y \right]_{x} + \left[y - \left[y \right]_{x} \right] \right] = \left[\left[\left[x, y \right]_{x} + \left[y - \left[y \right]_{x} \right] \right] = \left[\left[\left[x, y \right]_{x} + \left[y - \left[y \right]_{x} \right] \right] = \left[\left[\left[x, y \right]_{x} + \left[y - \left[y \right]_{x} \right] \right] = \left[\left[\left[x, y \right]_{x} + \left[y - \left[y \right]_{x} \right] \right] = \left[\left[\left[x, y \right]_{x} + \left[y - \left[y \right]_{x} \right] \right] = \left[\left[\left[x, y \right]_{x} + \left[y - \left[y \right]_{x} \right] \right] = \left[\left[\left[x, y \right]_{x} + \left[y - \left[y \right]_{x} \right] \right] = \left[\left[\left[x, y \right]_{x} + \left[\left[x, y \right]_{x} + \left[y - \left[y \right]_{x} \right] \right] = \left[\left[\left[x, y \right]_{x} + \left[\left[x, y \right]_{x} + \left[y - \left[y \right]_{x} \right] \right] = \left[\left[\left[x, y \right]_{x} + \left[\left[x, y \right]_{x} + \left[y - \left[y \right]_{x} \right] \right] \right] = \left[\left[\left[x, y \right]_{x} + \left[\left[x, y \right]_{x} + \left[y - \left[y \right]_{x} \right] \right] \right] = \left[\left[\left[x, y \right]_{x} + \left[\left[x, y \right]_{x} + \left[\left[x, y \right]_{x} + \left[x, y \right]_{x} \right] \right] \right] = \left[\left[\left[\left[x, y \right]_{x} + \left[x, y \right]_{x} + \left[\left[x, y \right]_{x} + \left[x, y \right]_{x} \right] \right] \right] = \left[\left[\left[\left[x, y \right]_{x} + \left[\left[x, y \right]_{x} + \left[x, y \right]_{x} + \left[\left[x, y \right]_{x} + \left[x, y \right]_{x} \right] \right] \right] \right]$$

$$= \sum_{(x,y)\in \omega} \int_{x}^{2} v^{2} + \int_{y}^{2} v^{2} + 2 \int_{x}^{2} \int_{y}^{2} v^{2}$$

E(u, v) = [u v] M[v] where M is a second moment matrix obtained from image derivatives

M =
$$\begin{bmatrix} \xi & I_x^2 & \xi & I_x J_y \end{bmatrix}$$
 the sures are over all the pixels in the mindow $M = \begin{bmatrix} \xi & I_x^2 & \xi & I_x J_y \end{bmatrix}$ the sures are over all the pixels in the mindow $M = \begin{bmatrix} \xi & I_x J_y & \xi & J_y \end{bmatrix}$

Diagonalization of $M = \begin{bmatrix} J_y & J_y$

orde if perfectly simmetre otherwise, ellipse

Diagonalization of M | 13 1, and 12

Lo horizontal slike EU V] M[V] = const

Axis lengths determined by tisenvalues Orientation determined by R

Corner reponse function

 $R = \det(M) - \det(M)^2 = \lambda_1 \lambda_2 - \alpha (\lambda_1 + \lambda_2)^2$ { >0: When a writer 10: flet region

Hamis borner detector

- 1. Compute partial desirutives at each pixel
- 2. Compute second moment metrix M in a barssian window around each pixel
- 3. Compute winer response function R
- 4. Threshold R
- S. Find boul noxime of response function (nonmaximum suppression)

Robustness of wrong features

Partially invariant to affine intensity scale

- lunge translation: Corner boution is covariant with translation
- " rotation: " rotation
- Scaling: it is not investigant

SIFT Veypoint detection
- CNN are much better for seventic problems - Good enough for many applications
Very point detection with scale selection
- We want to extract neignoints with characteristic scale that is covariant with the image thansformation
Basic ilea
- Block detection litter
- Convolve the image with a "blob litter" at multiple scales and book for
extreme o) filter response in the resulting scale space
Blob filter Blob filter
Laplacian of Canssian: Circularly symmetric operator for blob detection
$\nabla^2 S = \frac{\partial^2 9}{\partial x^2} + \frac{\partial^2 9}{\partial y^2}$
J municipal solutions of the solutions o
$\frac{\partial}{\partial x}$ $\frac{\partial^2}{\partial x^2}$ $\frac{\partial}{\partial x^2}$
$\int_{-\infty}^{\infty} \frac{\partial^2}{\partial x^2} \int$ where $\int_{-\infty}^{\infty} \frac{\partial^2}{\partial x^2} dx$ where $\int_{-\infty}^{\infty} \frac{\partial^2}{\partial x^2} dx$

Scanned by CamScanner

- We want to find the characteristic scale of the blob by convolving it with Laplacians at several scales and looking for the maximum response
- However, Laplacian response decays as scale increases

Sale normalization

- The response of a derivative of banssian filter to a perfect step edge de creases as 6 increases

To veep response the same (scale-invention), must multiply Gaussian derivative by 6

- Laplacian 15 the second derivative of the Gaussian so it must be multiplied by 62

Blob detection 2D

- Scale-normalized Laplacian of Gaussian

$$\nabla_{\text{moun}}^2 g = 6^2 \left(\frac{\partial^2 S}{\partial x^2} + \frac{\partial^2 S}{\partial y^2} \right)$$

- At what scale does this ochieve the mainem response to a binney and or didius 1 7
 - The zeros of the Laplacian have to be aligned with the wick
 - The Liphuam is given by lup to sale): (x2+y2-262)e-(x2+y2)/262 -1/--0 Lynaximm 0 0 = 1 2

Scale-space blob detector

1 - Convolve image with scale - normalized Laplacian at several scales 2 - Find maxime of squered laplacian response in scale-space

Eliminating edge reposes

- laplacian has strong response along edge
- Solution: filter based on Harris reporse function over neighborhoods containing the blobs

Efficient implementation

- Approximating the Laplacian with a difference of Gaussians: L=62(6xx (x, 8, 6) + 6 ys (x, 8, 6)) a Leplacan

DoG = G(x, y, u6) - G(x, y, 6) = Difference of Gaussians

From feature detection to feature description

- Scaled and rotated versions of the same neighborhood will give use to blabs that are related by the came transformation
- What to do if we want to compare the appearance of these image regions?
 - Nountiention: trunsform these regions into came-size ardies
 - Problem: relational ambiguity

Climentia rotation ambiguity

- To assign a unique orientation to circular image windows
 - Create histogram of beat quedient directions in the patch
 - Assign commical orientation at peak of smoothed histogram

- use the normlized region about the very point
- compute guidient migritude and orientation at each point in the region
- weight them by a Gaussian window overled on the incle
- create an orientation histogram over 4x4 subregions of the window
- 4x4 descriptors over 16x16 sample may were used in practice 4x4 times 8 directions gives a vector of 128 values

Surnovery of SIFT feature detection and description

- 1-Scale-space extreme detection Search over multiple scales and image notations
- 2- Verpoint localization

 Fit a model to determine location and scale

 Select very points based on a measure of stability
-] Orientation assignment Compute best orientation(s) for each very point region
- 4- Key point des imprion

 Use bad impre prodients at selected scale and notation
 to describe each very point region

It is nobust to image condition chages

Properties of SIFT

Extraordinarily robust detection and description technique

- Can handle changes in view point
 - up to about 60 degree out of plane rotation
- Un hundle significant changes in illumination (day us night sometimes)
- Fast and efficient can sun in real time
- lots of code available