International TOR Rectifier

IRS2304(S)PbF HALF-BRIDGE DRIVER

Features

- Floating channel designed for bootstrap operation to +600 V
- Tolerant to negative transient voltage, dV/dt immune
- Gate drive supply range from 10 V to 20 V
- Undervoltage lockout for both channels
- 3.3 V, 5 V, and 15 V input logic input compatible
- Cross-conduction prevention logic
- Matched propagation delay for both channels
- Lower di/dt gate driver for better noise immunity
- Internal 100 ns deadtime
- Output in phase with input
- RoHS compliant

Description

The IRS2304 is a high voltage, high speed power MOSFET and IGBT driver with independent high-side and low-side referenced output channels. Proprietary HVIC and latch immune CMOS technologies enable

ruggedized monolithic construction. The logic input is compatible with standard CMOS or LSTTL output, down to 3.3 V logic. The output driver features a high pulse current buffer stage designed for minimum driver cross-conduction. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high-side configuration which operates up to 600 V.

Product Summary

VOFFSET	600 V max.
IO+/- (min)	60 mA/130 mA
Vout	10 V - 20 V
Delay Matching	50 ns
Internal deadtime	100 ns
ton/off (typ.)	150 ns/150 ns

Package

8-Lead PDIP

8 Lead SOIC

Feature Comparison

· outuro	· cataro companicon						
Part	Input logic	Cross- conduction prevention logic	Deadtime (ns)	Ground Pins	t _{on} /t _{off} (ns)		
2106/2301	HIN/LIN		2020	COM	220/200		
21064	HIIV/LIIV	no	none	Vss/COM	220/200		
2108	HIN/LIN	yes	Internal 540	COM	220/200		
21084	TIIIN/LIIN	yes	Programmable 540 - 5000	Vss/COM	220/200		
2109/2302	IN/SD	yes	Internal 540	COM	750/200		
21094	ווע/טט	yes	Programmable 540 - 5000	Vss/COM	730/200		
2304	HIN/LIN	yes	Internal 100	СОМ	160/140		

Absolute Maximum Ratings

Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM, all currents are defined positive into any lead. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions.

Symbol	Definition	Min.	Max.	Units	
٧s	High-side offset voltage		V _B - 25	V _B + 0.3	
V _B	High-side floating supply voltage	-0.3	625		
V _{HO}	High-side floating output voltage HO		V _S - 0.3	V _B + 0.3	
Vcc	Low-side and logic fixed supply voltage		-0.3	25	V
V _{LO}	Low-side output voltage LO		-0.3	V _{CC} + 0.3	
V _{IN}	Logic input voltage (HIN, LIN)		-0.3	V _{CC} + 0.3	
Com	Logic ground		V _{CC} -25	V _{CC} + 0.3	
dV _S /dt	Allowable offset supply voltage transient		_	50	V/ns
D.	Deckage power discipation @ TA < 125 °C	8-Lead SOIC	_	0.625	W
P _D	Package power dissipation @ TA ≤ +25 °C	8-Lead PDIP	_	1.0	VV
Dale	The arrest assistances in action to continue	8-Lead SOIC —	_	200	00.044
Rth _{JA}	Thermal resistance, junction to ambient 8-Lead PDIP		_	125	°C/W
TJ	Junction temperature		_	150	
TS	Storage temperature		-50	150	°C
TL	Lead temperature (soldering, 10 seconds)		_	300	

Recommended Operating Conditions

The input/output logic timing diagram is shown in Fig. 1. For proper operation the device should be used within the recommended conditions. The V_S offset rating is tested with all supplies biased at 15 V differential.

Symbol	Definition	Min.	Max.	Units
V _B	High-side floating supply voltage	V _S + 10	V _S + 20	
٧s	High-side floating supply offset voltage	Note 1	600	
Vно	High-side (HO) output voltage	Vs	VB	\ /
V _{LO}	Low-side (LO) output voltage	COM	Vcc	V
V _{IN}	Logic input voltage (HIN, LIN)	COM	V _{CC}	
Vcc	Low-side supply voltage	10	20	
TA	Ambient temperature	-40	125	°C

Note 1: Logic operational for V_S of COM -5 V to COM +600 V. Logic state held for V_S of COM -5 V to COM -V_{BS}.

Static Electrical Characteristics

 V_{BIAS} (V_{CC} , V_{BS}) = 15 V and T_A = 25 °C unless otherwise specified. The V_{IN} , V_{TH} , and I_{IN} parameters are referenced to COM. The V_O and I_O parameters are referenced to COM and V_S is applicable to HO and LO.

Symbol	Definition	Min.	Тур.	Max.	Units	Test Conditions
V _{CCUV+} V _{BSUV+}	V _{CC} and V _{BS} supply undervoltage positive going threshold	8	8.9	9.8		
V _{CCUV} - V _{BSUV} -	$\ensuremath{\text{V}_{\text{CC}}}$ and $\ensuremath{\text{V}_{\text{BS}}}$ supply undervoltage negative going threshold	7.4	8.2	9	٧	
V _{CCUVH} V _{BSUVH}	V _{CC} supply undervoltage lockout hysteresis	0.3	0.7	_		
I _{LK}	Offset supply leakage current	_	_	50		$V_{B} = V_{S} = 600 \text{ V}$
I _{QBS}	Quiescent V _{BS} supply current 20 60 150		μΑ	V _{IN} = 0 V or 5 V		
IQCC	Quiescent V _{CC} supply current	50	120	240		VIN = 0 V 01 3 V
V _{IH}	Logic "1" input voltage	2.3	_	_		
V _{IL}	Logic "0" input voltage		_	0.7		
V _{OH}	High level output voltage, V _{BIAS} - V _O		0.05	0.2	V	In - 2 m/
V _{OL}	Low level output voltage, VO		0.02	0.1		$I_O = 2 \text{ mA}$
I _{IN+}	Logic "1" input bias current	_	5	40		V _{IN} = 5 V
I _{IN-}	Logic "0" input bias current	_	1.0	5.0	μΑ	V _{IN} = 0 V
IO+	Output high short circuit pulse current	60	290	_	A	V _O = 0 V
I _{O-}	Output low short circuit pulsed current	130	600	_	mA	PW ≤ 10 µs

Dynamic Electrical Characteristics

 V_{BIAS} (V_{CC} , V_{BS}) = 15 V, V_{S} = COM, C_{L} = 1000 pF and T_{A} = 25 °C unless otherwise specified.

Symbol	Definition	Min.	Тур.	Max.	Units	Test Conditions
ton	Turn-on propagation delay	90	150	210		V _S = 0 V
toff	Turn-off propagation delay	90	150	210		V _S = 0 V or 600 V
tr	Turn-on rise time	_	70	120		
tf	Turn-off fall time	_	35	60	ns	
DT	Deadtime	80	100	190		
MT	Delay matching, HS & LS turn-on/off	_	_	50		

Functional Block Diagram

Lead Definitions

Symbol	Description
Vcc	Low-side supply voltage
СОМ	Logic ground and low-side driver return
HIN	Logic input for high-side gate driver output
LIN	Logic input for low-side gate driver output
V _B	High-side floating supply
НО	High-side driver output
Vs	High voltage floating supply return
LO	Low-side driver output

Lead Assignments

Figure 1. Input/Output Functionality Diagram

Figure 2. Switching Time Waveforms

Figure 3. Internal Deadtime Timing

V_{cc} U VLO Threshold (-) (V) 10 9 Тур. 8 Min. 7 6 -50 -25 0 25 50 75 100 125 Temperature (°C)

Figure 4. V_{cc} and V_{BS} Undervoltage Threshold (+) vs. Temperature

Figure 5. V_{CC} / V_{DD} Undervoltage Threshold (-) vs. Temperature

Figure 6A. Offset Supply Leakage Current vs. Temperature

Figure 6B. Offset Supply Leakage Current vs. Supply Voltage

Figure 7A. V_{BS} Supply Current vs. Temperature

Figure 7B. V_{BS} Supply Current vs. Supply Voltage

Figure 8A. Quiescent V_{CC} Supply Current vs. Temperature

Figure 8B. Quiescent V_{CC} Supply Current vs. Supply Voltage

6 5 4 Min. Min. 15 20 Supply Voltage (V)

Figure 9A. Logic "1" Input Voltage vs. Temperature

Figure 9B. Logic "1" In put Voltage vs. Supply Voltage

Figure 10A. Logic "0" Input Voltage vs.
Temperature

Figure 10 B. Logic "0" In put Voltage vs. Supply Voltage

0.5 0.5 0.4 0.0 0.3 Max 0.0 0.1 0.0 10 12 14 16 18 20 V_{BIAS} Supply Voltage (V)

Figure 11A. High Level Output Voltage vs. Temperature (I_O = 2 mA)

Figure 11B. High Level Output Voltage vs. Supply Voltage (I_O = 2 mA)

Figure 12A. Low Level Output Voltage vs.Temperature (I_O = 2 mA)

Figure 12B. Low Level Output vs. Supply Voltage $(I_0 = 2 \text{ mA})$

Figure 13A. Logic "1" Input Current vs.
Temperature

Figure 13B. Logic "1" Input Current vs. Supply Voltage

Figure 14A. Logic "0" Input Bias Current vs. Temperature

Figure 14B. Logic "0" Input Bias Current vs. Voltage

Figure 15A. Output Source Current vs.

Temperature

Figure 15B. Output Source Current vs. Supply Voltage

Figure 16A. Output Sink Current vs.Temperature

Figure 16B. Output Sink Current vs. Supply Voltage

Figure 17A. Turn-On Propagation Delay vs. Temperature

Figure 17B. Turn-On Propagation Delay vs. Supply Voltage

Figure 18A. Turn-Off Propagation Delay vs. Temperature

Figure 18B. Turn-Off Propagation Delay vs. Supply Voltage

500 © 400 E 300 SE 200 O 5 100 Typ

10 12 14 16 18 20 V_{BIAS} Supply Voltage (V)

Figure 19A. Turn-On Rise Time vs.Temperature

Figure 19 B. Turn-On Rise Time vs. Supply Voltage

Figure 20A. Turn-Off Fall Time vs. Temperature

Figure 20B. Turn-Off Fall Time vs. Supply voltage

300 250 Max. 150 Typ. 100 10 12 14 16 18 20 Supply Voltage (V)

Figure 21A. Deadtime vs. Temperature

Figure 21B. Deadtime vs. Supply Voltage

Figure 23. IRS2304 vs. Frequency (IRFBC20), $\rm R_{ga\,te}$ =33 Ω , $\rm V_{CC}$ =15 $\,\rm V$

International TOR Rectifier

IRS2304(S)PbF

Figure 24. IRS2304 vs. Frequency (IRFBC30) R $_{\rm gate}$ =22 Ω , V $_{\rm cc}$ =15 V

Figure 25. IRS2304 vs. Frequency (IRFBC40), R $_{\rm gate}$ =15 Ω , V $_{\rm CC}$ =15 V

Figure 26. IRS2304 vs. Frequency (IRFPE50), R $_{\rm gate}$ =10 Ω , V $_{\rm cc}$ =15 V

Figure 27. IRS2304S vs. Frequency (IRFBC20) R $_{\rm gate}$ =33 Ω , V $_{\rm cc}$ =15 V

Figure 28. IRS2304S vs. Frequency (IRFBC30), $\rm R_{gate}$ =22 $\Omega, \rm V_{CC}$ =15 V

Figure 29. IRS2304S vs. Frequency (IRFBC40), R $_{\rm gate}$ =15 $_{\rm \Omega}$, $_{\rm V_{CC}}$ =15 $_{\rm V}$

Figure 30. IR2304s vs . Frequency (IRFPB50), $R_{gate} = 10~\Omega\,,\, V_{cc} = 15~V$

Case outlines

Tape & Reel 8-lead SOIC

CARRIER TAPE DIMENSION FOR 8SOICN

	Ме	tric	lm p	erial
Code	Min	Max	Min	Max
Α	7.90	8.10	0.311	0.318
В	3.90	4.10	0.153	0.161
С	11.70	12.30	0.46	0.484
D	5.45	5.55	0.214	0.218
E	6.30	6.50	0.248	0.255
F	5.10	5.30	0.200	0.208
G	1.50	n/a	0.059	n/a
Н	1.50	1.60	0.059	0.062

REEL DIMENSIONS FOR 8SOICN

	M etric		lm p	erial
Code	Min	Max	Min	Max
Α	329.60	330.25	12.976	13.001
В	20.95	21.45	0.824	0.844
С	12.80	13.20	0.503	0.519
D	1.95	2.45	0.767	0.096
E	98.00	102.00	3.858	4.015
F	n/a	18.40	n/a	0.724
G	14.50	17.10	0.570	0.673
Н	12.40	14.40	0.488	0.566

LEADFREE PART MARKING INFORMATION

ORDER INFORMATION

8-Lead PDIP IRS2304PbF 8-Lead SOIC IRS2304SPbF 8-Lead SOIC Tape & Reel IRS2304STRPbF

The SOIC-8 is MSL2 qualified.

This product has been designed and qualified for the industrial level.

Qualification standards can be found at www.irf.com

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105

Data and specifications subject to change without notice. 12/4/2006