

CURSO DE

MATEMÁTICAS DISCRETAS

PARTE 1

LOGICA

Introducción a la lógica

Estudio del *razonamiento*

Lógica proposicional, simbólica o matemática

PROPOSICIONES O AFIRMACIONES

Proposiciones o afirmaciones

RELACIÓN

Pablo es ingeniero

Los ingenieros son aburridos

PABLO ES ABURRIDO

Proposiciones simples

p, *q*, *r*, *s*, *t*

p Juan es arquitecto

q Mi zapato es rojo

r el día esta soleado

Proposiciones compuestas

```
p Sergio es deportista q Javier es ingeniero r Sergio es deportista y Javier es Ingeniero p ?
```

Conectores Lógicos

Sergio es deportista O Javier es ingeniero Si entonces

Conectores lógicos

r Sergio es deportista
$$y$$
 Javier es Ingeniero p

Conector lógico	Símbolo	Nombre
у		Conjunción
0		Disyunción debíl
00		Disyunción fuerte
Si entonces		Implicación
Si y solo si		Equivalencia
No es verdad		Negación

Valor de verdad

p	\boldsymbol{q}	r
V	V	V
V	V	F
V	F	V
V	F	F
F	V	V
F	V	F
F	F	V
F	F	F

 2^n

TABLAS DE VERDAD Conjunción

Esta lloviendo y Hace frío p

p	\boldsymbol{q}	$p \land q$
V	V	V
V	F	F
F	V	F
F	F	F

Disyunción débil

Esta lloviendo O Hace frío P

\boldsymbol{p}	\boldsymbol{q}	$p \lor q$
V	V	V
V	F	V
F	V	V
F	F	F

Disyunción fuerte

O Esta lloviendo O Hace frío P

p	\boldsymbol{q}	$p \triangle q$
V	V	F
V	F	V
F	V	V
F	F	F

Condicional

Si Esta lloviendo Entonces Hace frío

P

Antecedente Consecuente

\boldsymbol{p}	\boldsymbol{q}	$p \rightarrow$	9
V	V	V	
V	F	F	
F	V	V	
F	F	V	

Bicondicional

Esta lloviendo Si y solo si Hace frío q

\boldsymbol{p}	\boldsymbol{q}	$p \leftrightarrow$	9
V	V	V	
V	F	F	
F	V	F	
F	F	V	

Negación

Esta lloviendo

p

No esta lloviendo

$$\sim p$$

Esta lloviendo y hace frio

$$(p \land q)$$

No es verdad que Esta lloviendo y hace frio

$$\sim (p \land q)$$

Tablas de verdad

	٦	Γautolo	gía	Con	itrad	icci	ón	Cont	ingenci	а
7)	\boldsymbol{q}	Fórmula	p	C	7	Fórmula	p	\boldsymbol{q}	Fórmula
,	V	V	V	V	V	′	F	V	V	V
,	V	F	V	V	F		F	V	F	F
	F	V	V	F	\	′	F	F	V	V
	F	F	V	F	F		F	F	F	F

Construcción tabla de verdad

$$p \to (p \land \sim p)$$

Contingencia

\boldsymbol{p}	\boldsymbol{q}	$p \land q$
V	V	V
V	F	F
F	V	F
F	F	F

\boldsymbol{p}	\boldsymbol{q}	$p \rightarrow$	9
V	V	V	
V	F	F	
F	V	V	
F	F	V	

$(p \lor q) \lor \sim q$

 2^n

\boldsymbol{p}	\boldsymbol{q}
V	V
V	F
F	V
F	F

Tautología

Ejemplo

$$\sim (r \land p) \lor \sim (q \lor p)$$

Ejemplo

Si se conoce que $(q \lor \sim r) \lor p$ Es falsa

Determinar el valor de verdad de

$$(\sim r \lor \sim p) \longrightarrow (p \longrightarrow \sim p)$$

Circuitos lógicos

Lógica y circuitos eléctricos

Lógica y circuitos

Conjunción

\boldsymbol{p}	\boldsymbol{q}	$p \land q$
1	1	1
1	0	0
0	1	0
0	0	0

Circuito en serie

Lógica y circuitos

Disyunción

p	\boldsymbol{q}	$p \land q$
1	1	1
1	0	1
0	1	1
0	0	0

Lógica y circuitos

Ejemplo

Representar

$$(\sim r \lor \sim p) \land p$$

PARTE 1

TEORIA DE CONJUNTOS

Introducción a los conjuntos

Grupo de objetos o elementos

Números pares

Vocales

$$A, B, C, D, E$$

$$A = \{1,2,3,4\} \qquad A = \{1,3,4,2\}$$

$$A = \{1,2,2,3,4\}$$

Relación de pertenencia

 $1 \in \mathbf{A}$ $3 \in \mathbf{A}$

7 ∉ A 4.5 ∉ A

 $2 \in \mathbf{A} \quad 4 \in \mathbf{A}$

Determinación de un conjunto y cardinalidad

Por extensión

Por compresión

$$A = \{2,4,6,8\} \qquad A = \{x | x \text{ es un entero par, positivo } \land 1 < x < 9\}$$

$$B = \{a, e, i, o, u\}$$
 $B = \{x | x \text{ es una vocal}\}$

$$C = \{perro, gato, pajaro, pez\}$$
 $D = \{x | x \text{ es un animal doméstico}\}$

Finitos

Infinitos

$$#A = 4$$
 cardinalidad

Subconjuntos

Suponga que A y B son conjuntos. si todo elemento de B esta contenido en A se dice que B es un subconjunto de A y se representa como

$$\subseteq$$

$$B = \{vocales\} \quad A = \{abecedario\}$$

$$B \subseteq A$$

$$C = \{1,2,3,4,5\} \quad D = \{1,4\}$$

$$D \subseteq C$$

Conjuntos especiales

Conjunto nulo

$$A = \{Numeros \ pares \ 1 < x < 1.5\}$$
 $A = \phi$
 $\phi = \{x | x \neq x\}A$

$$\phi \neq \{\phi\}$$

Conjunto unitario

$$A = \{2\}$$

$$A = \{azul\}$$

$$A = \{ballena\}$$

Conjunto Universal

$$A = \{1,3\}$$
 $B = \{5,6,7\}$ $C = \{1,3,5,7,9\}$

$$C = \{1,3,5,7,9\}$$

 $U = \{x | x \text{ es un numero natural } < 10\}$

Operaciones entre conjuntos

$$A = \{5,6,7,8,9,10\}$$

$$B = \{2,4,6,8,10\}$$

$$U = \{1,2,3,4,5,6,7,8,9,10\}$$

Unión

U

Intersección

 \cap

Resta

$$A \cup B = \{2,4,5,6,7,8,9,10\}$$

$$A \cup B = \{6,8,10\}$$

$$A - B = \{5,7,9\}$$

 $B - A = \{2,4\}$

Complemento N^c, N'

$$A^c = A' = \{1,2,3,4\}$$

$$B' = \{1,3,5,7,9\}$$

Representación gráfica de conjuntos

$$A = \{5,6,7,8,9,10\}$$

$$B = \{2,4,6,8,10\}$$

$$B = \{2,4,6,8,10\}$$
 $U = \{1,2,3,4,5,6,7,8,9,10,11\}$

Unión

$$A = \{5,6,7,8,9,10\} \qquad B = \{2,4,6,8,10\} \qquad U = \{1,2,3,4,5,6,7,8,9,10,11\}$$

$$A \cup B = \{2,4,5,6,7,8,9,10\}$$

Intersección

$$A = \{5,6,7,8,9,10\}$$

$$B = \{2,4,6,8,10\}$$

$$B = \{2,4,6,8,10\}$$
 $U = \{1,2,3,4,5,6,7,8,9,10,11\}$

$$A \cap B = \{6,8,10\}$$

Resta

$$A = \{5,6,7,8,9,10\}$$

$$B = \{2.4.6.8.10\}$$

$$A = \{5,6,7,8,9,10\}$$
 $B = \{2,4,6,8,10\}$ $U = \{1,2,3,4,5,6,7,8,9,10,11\}$

$$A - B = \{5,7,9\}$$

$$B - A = \{2,4\}$$

Complemento

$$A = \{5,6,7,8,9,10\}$$

$$B = \{2,4,6,8,10\}$$

$$B = \{2,4,6,8,10\}$$
 $U = \{1,2,3,4,5,6,7,8,9,10,11\}$

$$A' = \{1,2,3,4,11\}$$

$$B' = \{1,3,5,7,9,11\}$$

$$A' = U - A$$

$$B' = U - B$$

Algunas propiedades

$$(A \cup B)' = A' \cup B'?????$$

$$(A \cup B)' = A' \cap B'$$
?????

$$(A \cap B)' = A' \cup B'????$$

PARTE 3

TEORÍA DE GRÁFICAS

Grafos

Módelos matemáticos que sirven para representar las relaciones entre objetos de un

conjunto

Vertices, V

Grafo

Aristas, E

Tipos de grafos

Grado

Grado de un vértice

$$\delta(v) = n$$
úmero de aristas que inciden

$$\delta(a) = 3$$

$$\delta(b) = 2$$

$$\delta(c) = 2$$

$$\delta(d) = 3$$

$$\sum_{i} \delta(v) = 2|E| \qquad 3 + 2 + 2 + 3 = 2|5| = 10$$

Caminos, cadenas y ciclos

Caminos Eulerianos y ciclos eulerianos

Caminos y ciclos hamiltoniano

Ejemplos de grafos no hamiltonianos

Camino Hamiltoniano
No hay ciclo hamiltoniano
No es un grafo hamiltoniano

Matriz de Adyacencia

	a	b	С	d	Grado
а	1	1	1	0	3
b	1	0	1	2	4
С	1	1	0	1	3
d	0	2	1	0	3

	а	b	С	d	Grado
а	1	0	1	1	3
b	0	2	0	1	3
С	1	0	1	2	4
d	1	1	2	0	4

Matriz de Incidencia

	e1	e2	e3	e4	e5	e6
а	1	1	0	0	0	0
b	0	1	0	0	1	1
С	1	0	1	0	0	1
d	0	0	0	1	1	1
е	0	0	1	1	0	0

Matriz de Incidencia

	e1	e2	e3	e4	e5	e6
a	1	0	1	0	0	0
b	1	1	1	1	0	0
С	0	0	0	0	1	0
d	0	1	0	0	1	1
е	0	0	0	1	0	1

Ejercicio matriz de adyacencia e incidencia

PARTE 4

ARBOLES

Introducción a los arboles

Tipos de arboles

Determina el nivel y la altura del siguiente árbol considerando como raíz el vértice d

Subarboles, vertices terminales e internos

Árbol de expansión mínimo

Arbol binario

Árbol binario, estructura recursiva

Recorrido arboles

Expresiones aritméticas

Los vértices terminales son operandos (números)

Los vértices internos son operadores

La raíz siempre debe ser un operador

Prioridad de operadores

$$(x)[x]|x|$$

$$\sqrt{x}x^{y}$$

$$*/$$

$$\pm$$

Pre fijo

Entre fijo

Pos fijo

Raiz Izquierda Derecha

Izquierda Raiz Derecha Izquierda Derecha Raiz PARTE 5

ALGORITMOS

Algoritmo de prim

Inicio

Fin

Algoritmo de flujo máximo

Algoritmo de Dijkstra

Algoritmo de Kruskal

Algoritmo de Fleury

Verificar Grado de mi gráfico

Realizar un circuito cerrado

En cada iteración construye un nuevo camino cerrado visitando aristas incidetes que no han sido visitados

Reemplaza cada nuevo circuito en el inicial hasta visitor todas las aristas

