Unidades, estimativas e análise dimensional

Ricardo Mendes Ribeiro

Sumário

Unidades do SI

Estimativas

Análise dimensional

• A importância de escrever sempre e bem as unidades

- A importância de escrever sempre e bem as unidades
- As unidades dividem-se em Unidades Base e Unidades Derivadas
- Unidades base: 7

Quantidade base	Nome	Símbolo
Comprimento	metro	m
Massa	kilograma	kg
Tempo	segundo	S
Corrente eléctrica	ampere	Α
Temperatura termodinâmica	kelvin	K
Quantidade de substância	mole	mol
Intensidade luminosa	candela	cd

Unidade de comprimento: metro (m) O metro é o comprimento do percurso que a luz executa no vácuo no intervalo de tempo de 1/299 792 458 do segundo.

Unidade de massa: kilograma (kg) É igual à massa do protótipo internacional do kilograma.

Unidade de tempo: segundo (s) O segundo é a duração de 9 192 631 770 períodos da radiação correspondente à transição entre os dois níveis hiperfinos do estado fundamental do átomo de césio 133.

Unidade de corrente eléctrica: ampere (A) O ampere é a corrente que, se mantida em dois condutores rectos e paralelos de comprimento infinito, de secção transversal negligível e colocados a um metro de distância um do outro no vácuo, produz uma força entre esses condutores igual a 2×10^{-7} newton por metro de comprimento.

Unidade de temperatura termodinâmica: kelvin (K) O kelvin é a fracção 1/273.16 da temperatura termodinâmica do ponto triplo da água.

Unidade de quantidade de substância: mole (mol) A mole é a quantidade de substância de um sistema que contém tantas entidades elementares quantos átomos há em 0.012 kilogramas de carbono 12.

Quando se utiliza a mole, as entidades elementares têm de ser especificadas, e podem ser átomos, moléculas, iões, outras partículas ou grupos de partículas.

Unidade de intensidade luminosa: candela (cd) A candela é a intensidade luminosa, numa dada direcção, de uma fonte que emite radiação monocromática com 540×10¹² hertz de frequência e que tem uma intensidade radiante nessa direcção de 1/683 watt por steradiano.

Unidades derivadas

Unidades derivadas são aquelas que se podem obter a partir das unidades base através dos símbolos matemáticos de divisão e multiplicação.

Algumas unidades derivadas têm nomes e símbolos próprios, que podem ser usados em combinações com outras unidades base e derivadas.

Quantidade derivada	Nome	Símbolo	Expresso em termos de outras SI	Expresso em termos das Unidades base SI
ângulo plano	radian	rad		$\mathbf{m} \cdot \mathbf{m^{-1}} = 1$
ângulo sólido	steradian	sr		$m^2 \cdot m^{-2} = 1$
frequência	hertz	Hz		s-1
força	newton	N		m ⋅ kg ⋅ s ⁻²
pressão, tensão energia, trabalho,	pascal	Pa	N/m ²	m ⁻¹ · kg · s ⁻²
quantidade de calor	joule	J	N·m	m ² ·kg·s ⁻²
potência, fluxo radiante carga elétrica,	watt	w	J/s	$m^2 \cdot kg \cdot s^{-3}$
quantidade de electricidade difrença de potencial electrico,	coulomb	c		A · s
força electromotiva	volt	V	W/A	m ² · kg · s ⁻³ ·A ⁻¹
capacidade	farad	F	C/V	m ⁻² · kg ⁻¹ · s ⁴ ·A ²
resistência eléctrica	ohm	Ω	V/A	m ² · kg · s ⁻³ ·A ⁻²
condutância eléctrica	siemens	s	A/V	m ⁻² · kg ⁻¹ · s ³ ·A ²
fluxo magnético	weber	Wb	V ⋅s	m ² · kg · s ⁻² ·A ⁻¹
densidade de fluxo magnético	tesla	т	Wb/m ²	kg · s ⁻² ·A ⁻¹
indutância	henry	Н	Wb/A	m ² · kg·s ⁻² ·A ⁻²
temperatura Celsius	degree Celsius	°c		K
fluxo luminoso	lumen	lm	cd·sr_	$m^2 \cdot m^{-2} \cdot cd = cd$
illuminância actividade	lux	lx	lm/m ²	$m^2 \cdot m^{-4} \cdot cd = m^{-2} \cdot cd$
(referido aos radionuclidos) dose absorbed, energia especifica (fornecida),	becquerel	Bq		_s 1
kerma dose equivalente, dose ambiente equivalente, dose directional equivalente, dose pessoal equivalente,	gray	Gy	J/kg	m ² ·s ⁻²
dose orgânica equivalente	sievert	Sv	J/kg	m ² ·s ²
actividade catalitica	katal	kat		s ⁻¹ · mol

Prefixos SI

Factor	Nome	Símbolo	Factor	Nome	Símbolo
10 ²⁴	yotta	Y	10^{-1}	deci	d
10^{21}	zetta	Z	10^{-2}	centi	С
10^{18}	exa	Ε	10^{-3}	mili	m
10^{15}	peta	Р	10^{-6}	micro	μ
10^{12}	tera	Τ	10^{-9}	nano	n
10 ⁹	giga	G	10^{-12}	pico	р
10^{6}	mega	М	10^{-15}	femto	f
10^{3}	kilo	k	10^{-18}	atto	а
10^{2}	hecto	h	10^{-21}	zepto	Z
10 ¹	deka	da	10^{-24}	yocto	У

A azul estão assinalados os que é necessário saber bem.

A escrita das unidades e dos símbolos

- Escrevem-se em caracteres romanos (n\u00e3o it\u00e1lico, nem negrito)
- Os símbolos escrevem-se em letras minúsculas, mas quando deriva do nome de uma pessoa, a primeira letra é maiúscula (metro=m; newton=N)
- Quando se escreve por extenso é sempre em minúscula
- Os símbolos não são alterados no plural
- Os símbolos não terminam com ponto final, a não ser no fim de uma frase

Álgebra dos símbolos SI

- Para multiplicar unidades: ponto a meia altura ou um espaço: N·m ou N m
- Para dividir: m/s ou $\frac{m}{s}$ ou m·s⁻¹
- Deve-se evitar qualquer tipo de ambiguidade: m/s² ou m·s⁻², mas não m/s/s m·kg/(s³·A) ou m·kg·s⁻³·A⁻¹, mas não m·kg/s³·A

Uso dos prefixos

- Escrevem-se sempre em caracteres normais, sem nenhum espaço entre eles e o símbolo
- Constitui um símbolo inseparável do símbolo a que está ligado: $1 \text{ cm}^3 = (10^{-2} \text{ m})^3$
- Não se podem formar prefixos compostos

Importância das estimativas

Quando não sabemos com precisão um determinado valor, é útil ser capaz de *estimar* um valor razoável para ele.

Porquê?

Para tomar decisões.

Problemas mais complicados

- Dividir o problema em pequenas partes
- Estimativa dentro de um factor de 10
- Vamos recolher apenas a primeira casa decimal de cada número: $7.2 \times 10^3 = 7 \times 10^3$.
- É mais fácil colocar limites inferior e superior do que estimar directamente
- Usar a média geométrica

Média geométrica

Definição:

$$\sqrt[n]{\prod_{i=1}^n a_i}$$

Mais simples: média geométrica aproximada, calculamos a média dos coeficientes e dos expoentes.

Exemplo: média geométrica de 2×10^{15} e 6×10^3 é:

$$[(2+6)/2] \times 10^{(15+3)/2} = 4 \times 10^9$$

Se a soma dos expoentes é ímpar, subtrai-se 1 e multiplica-se por 3 o factor.

Exemplo: $10 = 10^1$ e $100 = 10^2$

$$(1+1)/2 \times 10^{(1+2)/2}$$
$$3 \times (1+1)/2 \times 10^{(1+2-1)/2} = 3 \times 10^{1} = 30$$

Para estimar é preciso saber alguma coisa

Danulasão Dantural

População Portugal	10,
População mundial	6×10^9
1 ano	$\pi imes 10^7$ s
Electões-volt/joule	$6 imes 10^{18}$
Tamanho do átomo	$10^{-10}~\mathrm{m}$
Raio da Terra	$6 imes 10^6$ m
Distância Terra-Sol	$1.5 imes 10^{11}$ m
1 caloria	$4 \times 10^3 \text{ J}$
Energia de recção química	1.5 eV
Massa de uma mole de carbono	12 g
N° itens por mole	6×10^{23}
Aceleração da gravidade	10 m/s

Estes são valores aproximados para usar em estimativas, apenas.

107

Actividade: Fazer estimativas

número de bolas de ping-pong que cabem nesta sala

Análise dimensional

Em geral usamos apenas três grandezas, que representamos pelos símbolos:

 $\begin{array}{l} comprimento-L\\ tempo-T\\ massa-M \end{array}$

Análise dimensional

Em geral usamos apenas três grandezas, que representamos pelos símbolos:

comprimento – L tempo – T massa – M

Se tivermos uma grandeza física qualquer G, podemos representar a sua dimensão pela expressão geral:

$$[\mathsf{G}] = \mathsf{L}^a\mathsf{T}^b\mathsf{M}^c$$

Análise dimensional

Em geral usamos apenas três grandezas, que representamos pelos símbolos:

comprimento – L tempo – T massa – M

Se tivermos uma grandeza física qualquer G, podemos representar a sua dimensão pela expressão geral:

$$[G] = L^a T^b M^c$$

Por exemplo, para uma força F, que se mede em newton (ou kg·m·s $^{-2}$) tem-se:

$$a = 1$$

 $b = -2$
 $c = 1$

$$[F] = LT^{-2}M$$