CCF 全国信息学奥林匹克联赛模拟赛 (NOIP2020) 复赛

普及组

(请选手务必仔细阅读本页内容)

一、题目概况

中文名称	氪金池	直播计划	2077
英文名与子文件夹名	genshin	live	cyberpunk
可执行文件名	genshin	live	cyberpunk
输入文件名	genshin.in	live.in	cyberpunk.in
输出文件名	genshin.out	live.out	cyberpunk.out
每个测试点时限	1s	1s	1s
测试点数目	10	10	10
每个测试点分值	10	10	10
附加样例文件	无	无	无
结果比较方式	全文比较	(忽略行末空格	各与回车)
题目类型	传统	传统	传统
运行内存上限	256M	256M	256M

二、提交源程序文件名

对于 C++语言	genshin.cpp	live.cpp	cyberpunk.cpp
对于 C 语言	genshin.c	live.c	cyberpunk.c
对于 pascal 语言	genshin.pas	live.pas	cyberpunk.pas

三、编译命令(不包含任何优化开关)

-	, , , , , =,,,=,,,,			
	对于 C++语言	g++ -o genshin	g++ -o live	g++ -o cyberpunk
		genshin.cpp -lm	live.cpp -lm	cyberpunk.cpp -lm
Ī	对于 C 语言	gcc -o genshin	gcc -o live	gcc -o cyberpunk
		genshin.c -lm	live.c -lm	cyberpunk.c -lm
	对于 pascal 语言	fpc genshin.pas	fpc live.pas	fpc cyberpunk.pas

注意事项:

- 1、文件名(程序名和输入输出文件名)必须使用英文小写。
- 2、C/C++中函数 main()的返回值类型必须是 int,程序正常结束时的返回值必须是 0。
- 3、全国统一评测时采用的机器配置为: Intel(R) Core(TM) i7-8700K CPU @ 3.70GHz,内存 32GB。上述时限以此配置为准。本次评测机为 i7-10875h,内存 16GB。
- 4、只提供Linux 格式附加样例文件。
- 5、特别提醒:评测在当前最新公布的 NOI Linux 下进行,各语言的编译器版本以其为准。

1. 氪金池

(genshin.cpp/c/pas)

【问题描述】

胡桃最近迷上了一款游戏,名为《Breath of the waifu》.这是一款类似塞尔达的开放世界游戏,一经上线便火爆全球。

游戏里有许多人物,每个人物都有不同的外貌技能等等。有一些人物是免费的,而有一些只能通过抽奖获得。最近才推出了许多花钱抽奖才能获得的角色,其中一个名为 Klee 的可爱的角色得到了胡桃的青睐。她发誓不管花多少钱也要得到 Klee。

这款游戏的角色获取机制是这样的:

玩家需要通过人民币购买游戏内的货币,再通过游戏内的货币购买若干次抽奖次数。 单次抽中想要的角色概率是很低的,所以想要抽出某个角色,必须要先准备大量的人民 币。这一行为也被称之为"氪金"。为了避免出现"**连续几百次都抽不出想要的角色**"这 样的运气爆棚情况,游戏引入了保底机制,即保证最多在 n 次连续抽取下,必定至少有一次出现想要的角色。

游戏商城提供三种优惠礼包。第 i 个礼包的价格是 yi 元人民币,礼包内容是 xi 次抽 奖机会。玩家只可以选择三种中的一种礼包进行购买,不过可以购买无限次。

胡桃想问请你计算一下,她最少花多少钱才能保证获得 Klee?

【输入输出】

输入文件为 genshin.in,输出文件为 genshin.out

输入第一行,一个整数 n,表示保底次数。

接下来的三行,每行两个整数 x, y, 分别表示这个礼包包含 xi 次抽奖机会,价格是 yi 元。

输出一行,一个整数,表示保底获得 Klee 时花费的最少钱数。

【样例文件】

genshin.in	genshin.out
57	54
2 2	
50 30	
30 27	

【样例说明】

保底 57 抽就能获得 Klee, 三种礼包分别是 2 抽/2 元,50 抽/30 元,30 抽/27 元。

选择第一个礼包,要买29次,获得58抽,花费58元。

选择第二个礼包,要买2次,获得100抽,花费60元。

选择第三个礼包,要买2次,获得60抽,花费54元。

综合来看,54元最少。输出54.

【数据规模】

保证输入的所有数字不超过 10000.

2.直播计划

(live.cpp/c/pas)

【问题描述】

啤梨啤梨是一家新起的视频网站,最近的直播行业也是发展的如火如荼。为了吸引新观众,啤梨啤梨花8亿元买下了联合传说电竞赛事的直播权。由于这项赛事的观众非常多,瞬间涌入的流量直接冲垮了破站的服务器。为了避免这种事情再次发生,董事长决定开启如下的直播计划。

根据流量统计发现,在不同的时间段观众人数是有变化的。观众人数多时,可以多开几台服务器来分散观众流量,观众人数少时可以关闭几台服务器来减少花费。这样一来既能保证观众的流畅直播体验,也能最大程度节省开支。

但是,破站的服务器很破,**一旦关闭,就无法再次打开了**,所以多准备些服务器才是良策。根据流量报告显示,一天被分为 n 个时间段,第 i 个时间段需要至少 ai 台服务器开启才能保证不被冲垮。每台服务器每个时间段的花费是固定的,为 1,求**在花费最少的情况下**最少需要准备几台服务器?

【输入输出】

输入文件为 live.in,输出文件为 live.out

输入第一行,一个整数 n 表示有 n 个时间段。

输入第二行, n 个整数, 第 i 个整数 ai 表示这个时间段需要至少 ai 台服务器。

输出仅1行,一个整数,表示最少花销的前提下最少的服务器数。

【样例文件】

live.in	live.out
5	5
2 3 4 1 2	

【样例说明】

这一天被分为5个时间段,每个时间段分别要2、3、4、1、2台服务器。

最终答案为 5 台服务器,第一台开启时间[1,5],第二台开启时间[1,3],第三台开启时间[2,3],第四台开启时间[3,3],第五台开启时间[5,5],这种方案下总的花销为12,为最少的花销方案,在这个前提下服务器数量至少为 5 台。

【数据范围】

30%的数据 每天最多10个时间段。

70%的数据 每天最多 1000 个时间段。

100%的数据 每天最多 100000 个时间段,每个时间段的服务器数不超过 10000 台。

3.2077

(cyberpunk.cpp/c/pas)

【问题描述】

在 2077 年,夜之城被评为全球最差城市。离谱的犯罪率,高科技与低生活。无法否认,事实如此,但即使这样,来此居住的人还是络绎不绝——毕竟这个城市总会给人一些希望。谎言也好,幻觉也罢,皆近在咫尺,仿佛触手可及。这是座迷幻的城市,住满着逐梦之人。

在这里,义肢改造已经普及。每个人都可以随意更换身体的零部件。在这个弱肉强食的世界里,不会武装自己夜之城公民活不过三天。当然,改造加成也是有限制的。目前的技术下,人体一共有 n 个不同部位可供改造,第 i 个部位的可改造程度上限为 a_i 。若某个部位不改造则改造程度为 0 。

目前人类的改造承受极限为 m, 也即所有部位的改造程度之和应该不大于 m。改造策略很多, 你可以选择每个身体部位都改造一些, 也可以选择将某几个部位改造到上限, 而放弃另一些部位的改造机会。当然, 这全看您自己——优胜劣汰, 适者生存。

问题来了: 在极限情况下, 你有多少种不同的改造策略呢?

【输入输出】

输入文件为 cyberpunk.in,输出文件为 cyberpunk.out 输入第一行,两个整数, n,m 表示 n 个部位可供改造, m 个改造点。 第二行有 n 个整数,每两个整数之间用一个空格隔开,依次表示 a1,a2,...,an

【样例文件】

cyberpunk.in	cyberpunk.out
2 4	4
3 4	

【样例说明】

2个部位,不妨假设为手臂和眼睛,改造上限分别为3与4。极限承受为4。

共 4 种方案, 分别对应两个部位

(手臂升级 0 次+眼睛升级 4)

(手臂升级1次+眼睛升级3)

(手臂升级2次+眼睛升级2)

(手臂升级 3 次+眼睛升级 1)

【数据范围】

对于 20%数据, 有 0<n≤8,0<m≤8,0≤ai≤8

对于 50%数据, 有 0<n≤20,0<m≤20,0≤ai≤20

对于 100%数据, 有 0<n≤100,0<m≤100,0≤ai≤100