Package 'hapsim'

October 13, 2022

Title Haplotype Data Simulation

Version 0.31

Date 2017-06-05				
Author Giovanni Montana				
Maintainer Apostolos Dimitromanolakis <apostolis@live.ca></apostolis@live.ca>				
Description Package for haplotype-based genotype simulations. Haplotypes are generated such that their allele frequencies and linkage disequilibrium coefficients match those estimated from an input data set.				
Depends MASS				
License GPL (>= 2)				
Repository CRAN				
Date/Publication 2017-06-07 21:40:03 UTC				
NeedsCompilation yes				
R topics documented: ACEdata				
allelefreqs				
divlocus				
haplodata				
haplofreqs				
haplosim				
mergemats				
Index 10				

2 allelefreqs

ACEdata

ACE data set

Description

ACE (angiotensin I converting enzyme) data set

Usage

```
data(ACEdata)
```

Format

A data set with 22 haplotypes and 52 SNPs.

References

Montana, G. HapSim: a simulation tool for generating haplotype data with pre-specified allele frequencies and LD coefficients. 2005.

allelefreqs

Estimates allele frequencies

Description

Estimates allele frequencies from a binary matrix

Usage

```
allelefreqs(dat)
```

Arguments

dat

A binary matrix, rows are haplotypes and columns are binary markers

Value

A list containing:

freqs Vector of allele "0" frequencies
all.polym If TRUE, all loci are polymorphic
non.polym Vector of non-polymorphic loci, if any

Author(s)

Giovanni Montana

divlocus 3

References

Montana, G. HapSim: a simulation tool for generating haplotype data with pre-specified allele frequencies and LD coefficients. 2005.

Examples

```
data(ACEdata)
x <- allelefreqs(ACEdata)
hist(x$freqs)</pre>
```

divlocus

Diversity score

Description

Compute a measure of genetic diversity at each locus

Usage

divlocus(dat)

Arguments

dat

A binary matrix, rows are haplotypes and columns are binary markers

Details

This function implements a measure of diversity for a locus j as in Clayton (2002). If $z_i j$ represents the allele j of haplotype i, for i=1,...,N and assuming that alleles are coded as 0 and 1, the diversity measure can be written as

$$D_j = 2 * N(\sum_{i=1}^{N} z_{ij}^2 - (\sum_{i=1}^{N} z_{ij})^2)$$

Value

A vector containing the diversity measure for all markers

Author(s)

Giovanni Montana

References

D. Clayton. Choosing a set of haplotype tagging SNPs from a larger set of diallelic loci. 2002. www-gene.cimr.cam.ac.uk/clayton/software/stata/htSNP/htsnp.pdf

4 haplodata

Examples

data(ACEdata)
divlocus(ACEdata)

haplodata

Haplotype object creator

Description

Creates an haplotype data object needed for simulating haplotypes with haplosim. This object also contains some summary statistics about the real data.

Usage

haplodata(dat)

Arguments

dat

A binary matrix, rows are haplotypes and columns are binary markers

Value

A list containing:

freqs Allele frequencies

cor Correlation matrix (LD coefficients)
div Locus-specific diversity measure

cov Covariance matrix for the normal distribution

Author(s)

Giovanni Montana

References

Montana, G. HapSim: a simulation tool for generating haplotype data with pre-specified allele frequencies and LD coefficients. 2005.

See Also

See also haplosim

haplofreqs 5

Examples

```
data(ACEdata)
# creates the haplotype object
x <- haplodata(ACEdata)
# simulates 100 random haplotypes
y <- haplosim(100, x)</pre>
```

haplofreqs

Haplotype frequencies

Description

Compute haplotype frequencies

Usage

```
haplofreqs(dat, firstl, lastl)
```

Arguments

dat A binary matrix, rows are haplotypes and columns are binary markers

firstl Position of the first locus
lastl Position of the last locus

Value

A vector of haplotype frequencies

Author(s)

Giovanni Montana

References

Montana, G. HapSim: a simulation tool for generating haplotype data with pre-specified allele frequencies and LD coefficients. 2005.

Examples

```
data(ACEdata)
freqs <- haplofreqs(ACEdata, 17, 22)</pre>
```

6 haplosim

haplosim	Haplotype data simulator	

Description

Generates a random sample of haplotypes, given an haplotype object created from a data set

Usage

```
haplosim(n, hap, which.snp = NULL, seed = NULL, force.polym = TRUE, summary = TRUE)
```

Arguments

n Number of haplotypes to generate

hap Haplotype object created with haplodata
which.snp A vector specifying which SNPs to include
seed Seed for the random number generator

force.polym if TRUE, all loci are polymorphic

summary if TRUE, additional summary statistics are returned

Value

A list containing:

data Simulated sample
freqs Allele frequency vector

cor Correlation matrix

div Locus-specific diversity scores
mse.freqs MSE of allele frequencies
mse.cor MSE of correlations

Author(s)

Giovanni Montana

References

Montana, G. HapSim: a simulation tool for generating haplotype data with pre-specified allele frequencies and LD coefficients. 2005.

See Also

See also haplodata

haplosim 7

Examples

```
# Example 1
data(ACEdata)
# create the haplotype object
x <- haplodata(ACEdata)</pre>
# simulates a first sample of 100 haplotypes using all markers
y1 \leftarrow haplosim(100, x)
# compares allele frequencies in real and simulated samples
plot(x$freqs, y1$freqs, title=paste("MSE:",y1$mse.freqs)); abline(a=0, b=1)
# compares LD coefficients in real and simulated samples
ldplot(mergemats(x$cor, y1$cor), ld.type='r')
# simulates a second sample of 1000 haplotypes using the first 20 markers only
y2 \leftarrow haplosim(1000, which.snp=seq(20), x)
# Example 2
# simulate a sample of 500 haplotypes based on the ACE data set
set.seed(100)
data(ACEdata)
n <- 500
x <- haplodata(ACEdata)</pre>
y \leftarrow haplosim(n, x)
# compute the haplotype frequencies
# an haplotype starts at markers 17 and ends at marker 22
freq1 <- haplofreqs(ACEdata, 17, 22)</pre>
freq2 <- haplofreqs(y$data, 17, 22)</pre>
# extract the set of haplotypic configurations that are shared
# by real and simulated data and their frequencies
commonhapls <- intersect(names(freq1),names(freq2))</pre>
cfreq1 <- freq1[commonhapls]</pre>
cfreq2 <- freq2[commonhapls]</pre>
# compare real vs simulated haplotype frequencies
par(mar=c(10.1, 4.1, 4.1, 2.1), xpd=TRUE)
legend.text <- names(cfreq1)</pre>
bp <- barplot(cbind(cfreq1,cfreq2), main="Haplotype Frequencies",</pre>
       names.arg=c("Real", "Simulated"), col=heat.colors(length(legend.text)))
legend(mean(range(bp)), -0.3, legend.text, xjust = 0.5,
       fill=heat.colors(length(legend.text)), horiz = TRUE)
```

8 ldplot

```
chisq.test(x=n*cfreq2, p=cfreq1, simulate.p.value = TRUE, rescale.p = TRUE)
```

|--|

Description

Creates a linkage disequilibrium plot from a matrix of pair-wise LD coefficients

Usage

```
ldplot(ld.mat, ld.type, color = heat.colors(50), title = NULL)
```

Arguments

ld.mat	A square matrix of LD coefficients
ld.type	A character value specifying what coefficients are used as input: either 'r' for correlation coefficients or 'd' for D/Dprime scores
color	A range of colors to be used for drawing. Default is heat.colors
title	Character string for the title of the plot

Author(s)

Giovanni Montana

References

Montana, G. HapSim: a simulation tool for generating haplotype data with pre-specified allele frequencies and LD coefficients. 2005.

Examples

```
data(ACEdata)
# LD plot of ACEdata using r^2 coefficients
ldplot(cor(ACEdata), ld.type='r')
```

mergemats 9

mergemats	Merges two LD matrices
iliei gelliats	Merges ino LD mairices

Description

Merges two LD matrices. It can be used to compare the LD coefficients estimated in the real and simulated data sets

Usage

```
mergemats(mat1, mat2)
```

Arguments

mat1 First square matrix

mat2 Second square matrix of same dimensions

Value

The resulting matrix has upper triangular matrix from mat1 and lower triangular matrix from mat2

Author(s)

Giovanni Montana

References

Montana, G. HapSim: a simulation tool for generating haplotype data with pre-specified allele frequencies and LD coefficients. 2005.

Index

```
\ast datasets
      ACEdata, 2
* utilities
      allelefreqs, 2
      divlocus, 3
      haplodata, 4
      haplofreqs, 5
      haplosim, 6
      {\tt ldplot}, \textcolor{red}{8}
      {\tt mergemats}, {\color{red} 9}
ACEdata, 2
{\tt allelefreqs, 2}
{\rm divlocus}, {\color{red} 3}
haplodata, 4, 6
haplofreqs, 5
haplosim, 4, 6
ldplot, 8
{\tt mergemats}, {\color{red} 9}
```