1 Definitions and Notations

1.1 Quaternions

- Reference(s)
 - \diamond [1]
- Definition(s)
 - $\diamond \ \mathcal{A} = [\![a, \vec{A}]\!]$
 - \diamond a: a real scalar number
 - $\diamond \vec{A}$: a vector in \mathbb{R}^3
 - Quaternion algebra obeys to all the usual arithmetical laws except that the multiplication is noncommutative
- Notation(s)
 - \diamond \mathcal{A} : a quaternion
 - $\diamond [a, \vec{A}]$: a quaternion composed of a scalar a and a vector \vec{A}
 - $\diamond \vec{A} = (A_x, A_y, A_z)$
 - $\diamond [a, (A_x, A_y, A_z)]$: other representation of the scalar/vector components of the quaternion
 - $\diamond \|A\|$: norm of the quaternion
 - \diamond \mathcal{A}^* : conjugate of the quaternion
 - $\diamond \mathcal{A}^{-1}$: inverse of the quaternion
- Advantage(s)
 - \diamond Easy to determine geometrically as $R(\phi \vec{n})$
 - ♦ They are the only parameters for which the group multiplication rule can be given in closed form
 - \diamond They behave correctly near the identity whereas the euler angles become undetermined for $\beta=0$ and $\beta=\pi$
 - ♦ They uniquely determine rotation poles with the convention of the positive hemi-sphere
 - * z > 0
 - * if z = 0, x > 0
 - * if z = 0 and x = 0, y > 0
 - \diamond Keep track of 2π turns introduced on multiplying rotations

1.2 Euler Angles

- Reference(s)
 - ♦ [3]
- Definition(s)
 - \diamond From Bunge
 - \diamond Rotation performed from $\theta_1 \to \theta_2 \to \theta_3$ where:
 - 1. θ_1 is a counter-clockwise rotation around the \vec{z} axis [001]: $R(\theta_1 \vec{z})$
 - 2. θ_2 is a counter-clockwise rotation around the \vec{x} axis [100]: $R(\theta_2\vec{x})$
 - 3. θ_3 is a counter-clockwise rotation around the \vec{z} axis [001]: $R(\theta_3 \vec{z})$
 - ♦ Limits
 - * $-\pi < \theta_1 \le \pi$
 - $* 0 \le \theta_2 \le \pi$
 - $* -\pi < \theta_3 < \pi$

2 Algebra

2.1 Product

- Reference(s)
 - ♦ [1]
- Properties
 - ♦ Non-commutative

*
$$\mathcal{AB} \neq \mathcal{BA}$$

 \diamond Associative

$$* (\mathcal{AB}) \mathcal{C} = \mathcal{A} (\mathcal{BC})$$

 \diamond Scalar product

$$* \ a \llbracket b, \vec{B} \rrbracket = \llbracket a, \vec{0} \rrbracket \llbracket b, \vec{B} \rrbracket = \llbracket ab, a\vec{B} \rrbracket$$

♦ Quaternion product

*
$$\mathcal{C} = \mathcal{A}\mathcal{B} = [a, \vec{A}][b, \vec{B}] = [ab - \vec{A} \bullet \vec{B}, a\vec{B} + b\vec{A} + \vec{A} \times \vec{B}]$$

· $c = ab - \vec{A} \bullet \vec{B}$
· $C_x = aB_x + bA_x + (\vec{A} \times \vec{B})_x$
· $C_y = aB_y + bA_y + (\vec{A} \times \vec{B})_y$
· $C_z = aB_z + bA_z + (\vec{A} \times \vec{B})_z$

- Derivation(s)
 - ♦ [1] or http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/arithmetic/index.htm

2.2 Division

- Reference(s)
 - ♦ [1]
- Properties
 - ♦ Scalar division

$$* \ \tfrac{[\![a,\vec{A}]\!]}{a} = \tfrac{1}{a}[\![a,\vec{A}]\!]$$

♦ Quaternion division

$$* \ \ {\textstyle \frac{[\![a,\vec{A}]\!]}{[\![b,\vec{B}]\!]}} \equiv [\![a,\vec{A}]\!][\![b,\vec{B}]\!]^{-1}$$

* We defined this relationship, since $\frac{A}{B}$ could be equal to AB^{-1} or $B^{-1}A$ which doesn't respect the non-commutative rule

$$* \ \llbracket a, \vec{A} \rrbracket \llbracket b, \vec{B} \rrbracket^{-1} = \llbracket ab + \vec{A} \bullet \vec{B}, b\vec{A} - a\vec{B} - \vec{A} \times \vec{B} \rrbracket$$

- Derivation(s)
 - ♦ [1] or http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/arithmetic/ index htm

2.3 Addition / Substraction

- Reference(s)
 - ♦ [1]
- Properties
 - \diamond Addition

$$* \ \llbracket a, \vec{A} \rrbracket + \llbracket b, \vec{B} \rrbracket = \llbracket a+b, \vec{A} + \vec{B} \rrbracket$$

 \diamond Subtraction

$$\begin{array}{l} * \\ * \ \llbracket a, \vec{A} \rrbracket - \llbracket b, \vec{B} \rrbracket = \llbracket a - b, \vec{A} - \vec{B} \rrbracket \end{array}$$

- Derivation(s)
 - ♦ [1] or http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/arithmetic/index.htm

2.4 Conjugate

- \bullet Reference(s)
 - ♦ [1]
- Definition(s)

$$\diamond \mathcal{A}^* = \llbracket a, \vec{A} \rrbracket^* = \llbracket a, -\vec{A} \rrbracket$$

- Derivation(s)
 - ♦ [1] or http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/functions/index.htm

2.5 Norm

- Reference(s)
 - \diamond [1] and [2]
- Definition(s)

$$\diamond \|\mathcal{A}\| = \mathcal{A}\mathcal{A}^*$$

$$\diamond \ \left\| \llbracket a, \vec{A} \rrbracket \right\| = \llbracket a, \vec{A} \rrbracket \llbracket a, \vec{A} \rrbracket^*$$

$$\diamond \ \left\| \llbracket a, \vec{A} \rrbracket \right\| = \sqrt{a^2 + A_x^2 + A_y^2 + A_z^2}$$

- Properties
 - $\diamond \ \mathcal{A} = [\![\cos \alpha, \sin \alpha \vec{n}]\!] = \cos \alpha + \sin \alpha \mathcal{N}, \ |\![\vec{n}]\!] = 1$
 - \diamond or $\mathcal{A} = [\cos \frac{\phi}{2}, \sin \frac{\phi}{2} \vec{n}]$ (as in Euler-Rodrigues)
 - $\diamond\,$ The product of 2 normalized quaternions is itself a normalized quaternion
- Derivation(s)
 - ♦ [1] or http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/functions/index.htm

2.6 Inverse

- Reference(s)
 - ♦ [1]
- Definition(s)

$$\diamond \ \mathcal{A}^{-1} = \mathcal{A}^* \left\| \mathcal{A} \right\|^{-2}$$

$$\diamond \ \mathcal{C} = \mathcal{A}\mathcal{B}^{-1} = \mathcal{A}\mathcal{B}^* \left\| \mathcal{B} \right\|^{-2} \text{ if } \mathcal{B} \neq \llbracket 0, \vec{0} \rrbracket$$

- \diamond For normalized quaternion, $\mathcal{A}^{-1} = \mathcal{A}^*$
- Derivation(s)
 - ♦ [1] or http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/functions/index.htm

2.7 Equality

- Definition(s)
 - \diamond Two quaternions $(\mathcal{A} \text{ and } \mathcal{B})$ are equal if and only if

$$* a = b$$

$$* A_x = B_x$$

$$* A_y = B_y$$

$$* A_z = B_z$$

3 Conversion

3.1 Axis Angle to Quaternion

- Reference(s)
 - \diamond [2]
- Definition(s)
 - $\diamond \phi$: Rotation angle
 - \diamond \vec{n} : Rotation axis
- Equation(s)

$$\diamond \ (\phi, \vec{n}) \rightarrow \llbracket \cos \frac{1}{2} \phi, \frac{\sin \frac{1}{2} \phi}{\lVert \vec{n} \rVert} \vec{n} \rrbracket$$

- Derivation(s)
 - http://www.euclideanspace.com/maths/geometry/rotations/conversions/angleToQuaternion/index.htm

3.2 Matrix to Quaternion

- \bullet Reference(s)
 - \diamond [2]
- Definition(s)
 - \diamond m: a 3 × 3 orthogonal matrix (i.e. SO3)
 - * Det(m) = 1
 - * Tr(m) > 0
 - \diamond m_{ij} : element of matrix m in row i and column j
- Equation(s)

$$\diamond \ a = \frac{1}{2}\sqrt{1 + m_{00} + m_{11} + m_{22}} = \frac{1}{2}\sqrt{1 + \text{Tr}(m)}$$

- $\diamond A_x = \frac{m_{21} m_{12}}{4a}$
- $\diamond A_y = \frac{m_{02} m_{20}}{4a}$
- $\diamond A_z = \frac{m_{10} m_{01}}{4a}$
- Derivation(s)
 - http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToQuaternion/index.htm

3.3 Euler Angles to Quaternion

- Reference(s)
 - ♦ Adaptation from [2], [3] and [4]
- Definition(s)
 - ϕ $\theta_1, \theta_2, \theta_3$: see 1.2
 - $\diamond c_i \equiv \cos\left(\frac{1}{2}\theta_i\right) \text{ and } s_i \equiv \sin\left(\frac{1}{2}\theta_i\right)$
- Equation(s)

$$\diamond \ a = c_1c_2c_3 - s_1c_2s_3$$

$$\diamond A_x = c_1 s_2 c_3 + s_1 s_2 s_3$$

$$\diamond A_y = c_1 s_2 s_3 - s_1 s_2 c_3$$

$$\diamond A_z = c_1 c_2 s_3 + s_1 c_2 c_3$$

- Derivation(s)
 - ♦ Three rotations

1.
$$Q_1 = [[c_1, (0, 0, s_1)]]$$

2.
$$Q_2 = [c_2, (s_2, 0, 0)]$$

3.
$$Q_3 = [[c_3, (0, 0, s_3)]]$$

 \diamond Overall rotation

$$* Q_T = Q_3Q_2Q_1 = (Q_3Q_2)Q_1 = Q_3(Q_2Q_1)$$

3.4 Quaternion to Axis Angle

- Reference(s)
 - ♦ [2]
- Equation(s)
 - $\diamond \ \|[\![a,A]\!]\| = 1 \ (\text{the quaternion has to be normalized})$

$$\diamond d = \sqrt{1 - a^2}$$

$$\phi = 2 \arccos a$$

$$\diamond$$
 If $d \neq 0$: $\vec{n} = \frac{1}{d}\vec{A}$

$$\diamond$$
 If $d \neq 0$: $\vec{n} = \vec{A}$

- Derivation(s)
 - http://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToAngle/index.htm

3.5 Quaternion to Matrix

- Reference(s)
 - ♦ [2]
- Equation(s)
 - \lozenge || || || a A || || = 1 (the quaternion has to be normalized)

$$\diamond m = \begin{pmatrix} 1 - 2A_y^2 - 2A_z^2 & 2A_xA_y - 2A_za & 2A_xA_z + 2A_ya \\ 2A_xA_y + 2A_za & 1 - 2A_x^2 - 2A_z^2 & 2A_yA_z - 2A_xa \\ 2A_xA_z - 2A_ya & 2A_yA_z + 2A_xa & 1 - 2A_x^2 - 2A_y^2 \end{pmatrix}$$

- Derivation(s)
 - http://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToMatrix/index.htm

3.6 Quaternion to Euler Angles

- Reference(s)
 - ♦ Adaptation from [2], [3] and [4]
- Definition(s)
 - ϕ $\theta_1, \theta_2, \theta_3$: see 1.2
 - $\diamond c_i \equiv \cos\left(\frac{1}{2}\theta_i\right) \text{ and } s_i \equiv \sin\left(\frac{1}{2}\theta_i\right)$
- Equation(s)
 - $\diamond \|\|a, A\|\| = 1$ (the quaternion has to be normalized)
 - \diamond Three cases

1.
$$\theta_2 = 0$$
 $(A_x = A_y = 0)$
* $\theta_1 = 2 \arctan\left(\frac{A_z}{a}\right)$
* $\theta_2 = 0$
* $\theta_3 = 0$
2. $\theta_2 = \pi (A_x^2 + A_y^2 = 1)$
* $\theta_1 = 2 \arctan\left(\frac{A_y}{A_x}\right)$
* $\theta_2 = \pi$
* $\theta_3 = 0$
3. $0 < \theta_2 < \pi$
* $\theta_1 = \arctan\left(\frac{A_x A_z - A_y a}{A_y A_z + A_x a}\right)$
* $\theta_2 = \arccos\left(1 - 2A_x^2 - A_y^2\right)$
* $\theta_3 = \arctan\left(\frac{A_x A_z + A_y a}{A_x a - A_y A_z}\right)$

- Derivation(s)
 - ♦ From the Euler to Matrix we get

$$* \ m_{\text{euler}} = \left(\begin{array}{ccc} c_1c_3 - s_1c_2s_3 & -s_1c_3 - c_1c_2s_3 & s_2s_3 \\ s_1c_2c_3 + c_1s_3 & c_1c_2c_3 - s_1s_3 & -s_2c_3 \\ s_1s_2 & c_1s_2 & c_2 \end{array} \right)$$

 $\ast\,$ We can get the euler angles from these relationships

$$\cdot \tan \theta_1 = \frac{m_{20}}{m_{21}} = \frac{s_1}{c_1} = \frac{s_1 s_2}{c_1 s_2}$$

$$\cdot \cos \theta_2 = m_{22}$$

$$\cdot \tan \theta_3 = -\frac{m_{02}}{m_{12}} = -\frac{s_3}{c_3} = -\frac{s_2 s_3}{s_2 c_3}$$

- \diamond By comparing with the quaternion matrix (see 3.5), we get replace the m_{ij} by the quaternion coefficients
- \diamond For the 2 special cases, where the c_2 is not defined
 - 1. $\theta_2 = 0$
 - * This condition happens when

$$\cdot \arccos 0 = 1 = 1 - 2A_x^2 - 2A_y^2$$

$$\cdot A_x^2 = -A_y^2$$

$$A_x = A_y = 0$$

- * $\theta_2 = 0$ implies that $\cos(\frac{1}{2}0) = c_2 = 1$ and $\sin(\frac{1}{2}0) = s_2 = 0$
- * From the Euler to quaternion conversion (see 3.3)

$$a = c_1c_2c_3 - s_1c_2s_3 = c_1c_3 - s_1s_3$$

$$A_x = 0$$

- $A_u = 0$
- $A_z = c_1 c_2 s_3 + s_1 c_2 c_3 = c_1 s_3 + s_1 c_3$
- * Using the trigonometry identities:
 - $\cdot \cos(A+B) = \cos A \cos B \sin A \sin B$
 - $\cdot \sin(A+B) = \sin A \cos B + \cos A \sin B$
- * We obtained
 - $a = \cos(1+3)$
 - $A_z = \sin\left(1+3\right)$
- * By dividing A_z by a:

$$\frac{A_z}{a} = \frac{\sin{(1+3)}}{\cos{(1+3)}} = \tan{(1+3)}$$

- $\cdot \frac{\theta_1}{2} + \frac{\theta_3}{2} = \arctan\left(\frac{A_z}{a}\right)$
- $\theta_1 + \theta_3 = 2 \arctan\left(\frac{A_z}{a}\right)$
- * Since "only $(\theta_1 + \theta_3)$ is uniquely defined (not the individual values)" [4] when $\theta_2 = 0$
 - $\theta_1 = 2 \arctan\left(\frac{A_z}{a}\right)$
 - $\theta_2 = 0$ (from the special case)
 - $\theta_3 = 0$
- 2. $\theta_2 = \pi$
 - * This condition happens when
 - · $\arccos \pi = -1 = 1 2A_x^2 2A_y^2$
 - $A_x^2 + A_y^2 = 1$
 - · Since the quaternion is normalized $(a^2 + A_x^2 + A_y^2 + A_z^2 = 1)$, $a = A_z = 0$
 - * $\theta_2 = \pi$ implies that $\cos\left(\frac{1}{2}\pi\right) = c_2 = 0$ and $\sin\left(\frac{1}{2}\pi\right) = s_2 = 1$
 - * From the Euler to quaternion conversion (see 3.3)
 - $\cdot a = 0$
 - $A_x = c_1 s_2 c_3 + s_1 s_2 s_3 = c_1 c_3 + s_1 s_3$
 - $A_y = c_1 s_2 s_3 s_1 s_2 c_3 = c_1 s_3 s_1 c_3$
 - $A_{\alpha} = 0$
 - * Using the trigonometry identities:
 - $\cdot \cos(A B) = \cos A \cos B + \sin A \sin B$
 - $\cdot \sin(A B) = \sin A \cos B \cos A \sin B$
 - * We obtained
 - $A_x = \cos(1-3)$
 - $A_y = -\sin\left(1 3\right)$
 - * By dividing A_y by A_x :
 - $\frac{A_y}{A_x} = \frac{-\sin{(1-3)}}{\cos{(1-3)}} = -\tan{(1-3)}$
 - $\cdot \frac{\theta_1}{2} \frac{\theta_3}{2} = \arctan\left(\frac{-A_y}{A_x}\right)$
 - $\theta_1 \theta_3 = 2 \arctan\left(\frac{-A_y}{A_x}\right)$
 - * Since "only $(\theta_1 \theta_3)$ is uniquely defined (not the individual values)" [4] when $\theta_2 = \pi$
 - $\theta_1 = 2 \arctan\left(\frac{-A_y}{A_x}\right)$
 - $\theta_2 = \pi$ (from the special case)
 - $\theta_3 = 0$

References

- [1] Simon L. Altmann. Rotations, Quaternions, and Double Groups. Oxford University Press, 1986.
- [2] Martin Baker. Euclidean space. http://www.euclideansplace.com, 2008.
- [3] Tony A.D. Rollett and Peter Kalu. Advanced characterization and microstructural analysis: Texture and its effect on anisotropic properties, 2008. Course notes.
- [4] Wikipedia. Euler angles wikipedia, the free encyclopedia. http://en.wikipedia.org/w/index.php?title=Euler_angles&oldid=238123918, 2008. [Online; accessed 13-September-2008].