

MICRO CREDIT PROJECT

Submitted by:

PROMISE AZOM

ACKNOWLEDGMENT

I would like to express my appreciation to Datatrained Education and Fliprobo technologies for their support in bringing me this far in my Data Science Journey. Your lectures and videos made the difference.

I also want to thank my wife and children for their patience.

INTRODUCTION

Business Problem Framing

A Microfinance Institution (MFI) is an organization that offers financial services to low income populations. MFS becomes very useful when targeting especially the unbanked poor families living in remote areas with not much sources of income. The Microfinance services (MFS) provided by MFI are Group Loans, Agricultural Loans, Individual Business Loans and so on.

Many microfinance institutions (MFI), experts and donors are supporting the idea of using mobile financial services (MFS) which they feel are more convenient and efficient, and cost saving, than the traditional high-touch model used since long for the purpose of delivering microfinance services. Though, the MFI industry is primarily focusing on low income families and are very useful in such areas, the implementation of MFS has been uneven with both significant challenges and successes.

Today, microfinance is widely accepted as a poverty-reduction tool, representing \$70 billion in outstanding loans and a global outreach of 200 million clients.

We are working with one such client that is in Telecom Industry. They are a fixed wireless telecommunications network provider. They have launched various products and have developed its business and organization based on the budget operator model, offering better products at Lower Prices to all value conscious customers through a strategy of disruptive innovation that focuses on the subscriber.

They understand the importance of communication and how it affects a person's life, thus, focusing on providing their services and products to low income families and poor customers that can help them in the need of hour.

They are collaborating with an MFI to provide micro-credit on mobile balances to be paid back in 5 days. The Consumer is believed to be defaulter if he deviates from the path of paying back the loaned amount within the time duration of 5 days. For the loan amount of 5 (in Indonesian Rupiah), payback

amount should be 6 (in Indonesian Rupiah), while, for the loan amount of 10 (in Indonesian Rupiah), the payback amount should be 12 (in Indonesian Rupiah).

The sample data is provided to us from our client database. It is hereby given to you for this exercise. In order to improve the selection of customers for the credit, the client wants some predictions that could help them in further investment and improvement in selection of customers.

Exercise:

Build a model which can be used to predict in terms of a probability for each loan transaction, whether the customer will be paying back the loaned amount within 5 days of insurance of loan. In this case, Label '1' indicates that the loan has been payed i.e. Non- defaulter, while, Label '0' indicates that the loan has not been payed i.e. defaulter.

Points to Remember:

- There are no null values in the dataset.
- There may be some customers with no loan history.
- The dataset is imbalanced. Label '1' has approximately 87.5% records, while, label '0' has approximately 12.5% records.
- For some features, there may be values which might not be realistic. You may have to observe them and treat them with a suitable explanation.
- You might come across outliers in some features which you need to handle as per your understanding. Keep in mind that data is expensive and we cannot lose more than 7-8% of the data.

Find Enclosed the Data Description File and The Sample Data for the Modeling Exercise.

Conceptual Background of the Domain Problem

This is critical stage in any machine learning process. It involves brainstorming and coming up with as many hypotheses as possible about what could affect the target variable. It facilitates in exploring the data at hand more efficiently and effectively. Domain Knowledge should be done before seeing the data or else we will end up with biased hypotheses. Below are some anticipated assertions on the problem statement.

Lenders don't want to make loans to people who can't pay them back. Hence, there are certain factors that can affect micro credit Loan:.

- Inflation
- Market condition
- Demand and supply
- Business Environment
- consumer behaviour

Review of Literature

The below key operations will be adopted:

- Exploratory Data Analysis (EDA)
- Data Preprocessing (Univariate, Bivariate, Multivariate)
- Feature Selection
- Metrics Measurement
- Model Execution
- Hyperparameter Tunning
- Model Saving

Motivation for the Problem Undertaken

Our objective is build a model which can be used to predict in terms of a probability for each loan transaction, whether the customer will be paying back the loaned amount within 5 days of insurance of loan. In this case, Label '1' indicates that the loan has been payed i.e. Non- defaulter, while, Label '0' indicates that the loan has not been payed i.e. defaulter. yield high returns. Further, the model will be a good way for the management to understand the pricing dynamics of a new market.

Analytical Problem Framing

- Mathematical/ Analytical Modeling of the Problem Mathematical Modelling:
 - Update of null values
 - Encoding

Statistical Modelling:

- Variance Inflation factor

- SelectKBest: fscore, ANOVA

Analytical Modelling:

Visualization Techniques: Density Plot, Scatter Plot,
 Count Plot, Boxplot

Data Sources and their formats

- One dataset was provided.
- Train Data contains 209,593 entries each having 37 variables (Target variable inclusive).
- Data contains no Null values.
- Data contains numerical as well as categorical variable.

See below table showing summary of the Variables:

S/N	Variable	Variable Type	Data Type	Data Form	Null	Variable Attributes
1	Unnamed: 0	Continous	int64	Numerical	0	Unanmed
						Flag indicating whether
						the user paid back the
						credit amount within 5
						days of issuing the
2	label	Categorical	int64	Numerical	0	<pre>loan{1:success, 0:failure}</pre>
				Non-		
3	msisdn	Categorical	object	Numerical	0	mobile number of user
						age on cellular network in
4	aon	Continous	float64	Numerical	0	days
						Daily amount spent from
						main account, averaged
						over last 30 days (in
5	daily_decr30	Continous	float64	Numerical	0	Indonesian Rupiah)

1 1			1	1	1	Daily are a set forces
						Daily amount spent from
						main account, averaged
						over last 90 days (in
6	daily_decr90	Continous	float64	Numerical	0	Indonesian Rupiah)
						Average main account
7	rental30	Continous	float64	Numerical	0	balance over last 30 days
						Average main account
8	rental90	Continous	float64	Numerical	0	balance over last 90 days
						Number of days till last
9	last_rech_date_ma	Continous	float64	Numerical	0	recharge of main account
						Number of days till last
10	last_rech_date_da	Continous	float64	Numerical	0	recharge of data account
						Amount of last recharge
						of main account (in
11	last_rech_amt_ma	Continous	int64	Numerical	0	Indonesian Rupiah)
						Number of times main
						account got recharged in
12	cnt_ma_rech30	Continous	int64	Numerical	0	last 30 days
						Frequency of main
						account recharged in last
13	fr_ma_rech30	Continous	float64	Numerical	0	30 days
						Total amount of recharge
						in main account over last
						30 days (in Indonesian
14	sumamnt_ma_rech30	Continous	float64	Numerical	0	Rupiah)
						Median of amount of
						recharges done in main
						account over last 30 days
			G			at user level (in Indonesian
15	medianamnt_ma_rech30	Continous	float64	Numerical	0	Rupiah)
						Median of main account
						balance just before
						recharge in last 30 days at
			G . C 4			user level (in Indonesian
16	medianmarechprebal30	Continous	float64	Numerical	0	Rupiah) Number of times main
17	ent ma rock00	Continous	int64	Numerical	0	account got recharged in
17	cnt_ma_rech90	Continuus	11104	Numerical	0	last 90 days Frequency of main
						account recharged in last
18	fr_ma_rech90	Continous	int64	Numerical	0	90 days
		2011111003	11104	- Tanici icai	U	Total amount of recharge
						in main account over last
						90 days (in Indonasian
19	sumamnt_ma_rech90	Continous	int64	Numerical	0	Rupiah)
		20				Median of amount of
						recharges done in main
						account over last 90 days
						at user level (in Indonasian
20	medianamnt_ma_rech90	Continous	float64	Numerical	0	Rupiah)
			1		- 1	, ,

						Median of main account balance just before recharge in last 90 days at user level (in Indonasian
21	medianmarechprebal90	Continous	float64	Numerical	0	Rupiah)
22	cnt_da_rech30	Continous	float64	Numerical	0	Number of times data account got recharged in last 30 days
23	fr_da_rech30	Continous	float64	Numerical	0	Frequency of data account recharged in last 30 days
24	cnt_da_rech90	Continous	int64	Numerical	0	Number of times data account got recharged in last 90 days
25	fr_da_rech90	Continous	int64	Numerical	0	Frequency of data account recharged in last 90 days
26	cnt_loans30	Continous	int64	Numerical	0	Number of loans taken by user in last 30 days Total amount of loans
27	amnt_loans30	Continous	int64	Numerical	0	taken by user in last 30 days
28	maxamnt_loans30	Continous	float64	Numerical	0	maximum amount of loan taken by the user in last 30 days Median of amounts of
29	medianamnt_loans30	Continous	float64	Numerical	0	loan taken by the user in last 30 days
30	cnt_loans90	Continous	float64	Numerical	0	Number of loans taken by user in last 90 days
31	amnt_loans90	Continous	int64	Numerical	0	Total amount of loans taken by user in last 90 days
32	maxamnt_loans90	Continous	int64	Numerical	0	maximum amount of loan taken by the user in last 90 days
33	medianamnt_loans90	Continous	float64	Numerical	0	Median of amounts of loan taken by the user in last 90 days
34	payback30	Continous	float64	Numerical	0	Average payback time in days over last 30 days
35	payback90	Continous	float64	Numerical	0	Average payback time in days over last 90 days
36	pcircle	Categorical	object	Non- Numerical Non-	0	telecom circle
37	pdate	Categorical	object	Numerical		date

NB: The label is the Dependent Variable (Target/Label) while the rest are the independent variables (Features).

Also see snap shots of data...

Full view of Data

	Unnamed: 0	label	msisdn	aon	daily_decr30	daily_decr90	rental30	rental90	last_rech_date_ma	last_rech_date_da	 maxamnt_loans30	mec
0	1	0	21408170789	272.0	3055.050000	3065.150000	220.13	260.13	2.0	0.0	 6.0	
1	2	1	76462170374	712.0	12122.000000	12124.750000	3691.26	3691.26	20.0	0.0	 12.0	
2	3	1	17943170372	535.0	1398.000000	1398.000000	900.13	900.13	3.0	0.0	 6.0	
3	4	1	55773170781	241.0	21.228000	21.228000	159.42	159.42	41.0	0.0	 6.0	
4	5	1	03813182730	947.0	150.619333	150.619333	1098.90	1098.90	4.0	0.0	 6.0	
209588	209589	1	22758185348	404.0	151.872333	151.872333	1089.19	1089.19	1.0	0.0	 6.0	
209589	209590	1	95583184455	1075.0	36.936000	36.936000	1728.36	1728.36	4.0	0.0	 6.0	
209590	209591	1	28556185350	1013.0	11843.111670	11904.350000	5861.83	8893.20	3.0	0.0	 12.0	
209591	209592	1	59712182733	1732.0	12488.228330	12574.370000	411.83	984.58	2.0	38.0	 12.0	
209592	209593	1	65061185339	1581.0	4489.362000	4534.820000	483.92	631.20	13.0	0.0	 12.0	

209593 rows × 37 columns

First Five rows

	Unnamed: 0	label	msisdn	aon	daily_decr30	daily_decr90	rental30	rental90	last_rech_date_ma	last_rech_date_da	 maxamnt_loans30	medianamı
0	1	0	21408170789	272.0	3055.050000	3065.150000	220.13	260.13	2.0	0.0	 6.0	
1	2	1	76462170374	712.0	12122.000000	12124.750000	3691.26	3691.26	20.0	0.0	 12.0	
2	3	1	17943170372	535.0	1398.000000	1398.000000	900.13	900.13	3.0	0.0	 6.0	
3	4	1	55773170781	241.0	21.228000	21.228000	159.42	159.42	41.0	0.0	 6.0	
4	5	1	03813182730	947.0	150.619333	150.619333	1098.90	1098.90	4.0	0.0	 6.0	
5 ro	ws × 37 co	olumns	3									

Last Five rows

	Unnamed: 0	label	msisdn	aon	daily_decr30	daily_decr90	rental30	rental90	last_rech_date_ma	last_rech_date_da	 maxamnt_loans30	med
209588	209589	1	22758185348	404.0	151.872333	151.872333	1089.19	1089.19	1.0	0.0	 6.0	
209589	209590	1	95583184455	1075.0	36.936000	36.936000	1728.36	1728.36	4.0	0.0	 6.0	
209590	209591	1	28556185350	1013.0	11843.111670	11904.350000	5861.83	8893.20	3.0	0.0	 12.0	
209591	209592	1	59712182733	1732.0	12488.228330	12574.370000	411.83	984.58	2.0	38.0	 12.0	
209592	209593	1	65061185339	1581.0	4489.362000	4534.820000	483.92	631.20	13.0	0.0	 12.0	
5 rows ×	37 column	S										

Random Four samples

	Unnamed: 0	label	msisdn	aon	daily_decr30	daily_decr90	rental30	rental90	last_rech_date_ma	last_rech_date_da	 maxamnt_loans30	media
104141	104142	1	04235184459	1836.0	4.560000	4.56	1583.46	1583.46	4.0	0.0	 6.0	
200167	200168	1	07747188648	322.0	6197.256667	6211.77	7049.75	7483.19	11.0	10.0	 6.0	
148069	148070	1	52059188688	964.0	8693.000000	13904.31	599.40	1438.80	16.0	0.0	 6.0	
100591	100592	1	95714I90584	591.0	6274.519000	6317.17	2227.26	3096.03	1.0	0.0	 6.0	
4 rows ×	37 column	S										

Data Description(Continous Data)

	Unnamed: 0	label	aon	daily_decr30	daily_decr90	rental30	rental90	last_rech_date_ma	last_rech_date_da	last_re
count	209593.000000	209593.000000	209593.000000	209593.000000	209593.000000	209593.000000	209593.000000	209593.00000	209593.000000	20
mean	104797.000000	0.875177	8112.343445	5381.402289	6082.515068	2692.581910	3483.406534	3755.84780	3712.202921	
std	60504.431823	0.330519	75696.082531	9220.623400	10918.812767	4308.586781	5770.461279	53905.89223	53374.833430	
min	1.000000	0.000000	-48.000000	-93.012667	-93.012667	-23737.140000	-24720.580000	-29.00000	-29.000000	
25%	52399.000000	1.000000	246.000000	42.440000	42.692000	280.420000	300.260000	1.00000	0.000000	
50%	104797.000000	1.000000	527.000000	1469.175667	1500.000000	1083.570000	1334.000000	3.00000	0.000000	
75%	157195.000000	1.000000	982.000000	7244.000000	7802.790000	3356.940000	4201.790000	7.00000	0.000000	
max	209593.000000	1.000000	999860.755200	265926.000000	320630.000000	198926.110000	200148.110000	998650.37770	999171.809400	5

8 rows × 34 columns

Data Description(Categorical Data)

	msisdn	pcircle	pdate
count	209593	209593	209593
unique	186243	1	82
top	04581185330	UPW	7/4/2016
freq	7	209593	3150

Data Pre-processing Done Observations and Assumptions on Data Cleaning Observations

- There are no null values
- There is an unwanted column named 'Unnamed: 0'
- There is no mismatched datatype
- There will be need for datatype conversion

Assumptions

- 1. We shall drop the unwanted columns named 'Unnamed: 0'
- 2. The fillna method will not be adopted since there are null values

3. There will be need for datatype conversion

<u>Dropping of unwanted column – Unnamed: 0</u>

	label	msisdn	aon	daily_decr30	daily_decr90	rental30	rental90	last_rech_date_ma	last_rech_date_da	last_rech_amt_ma	 maxamnt_loans
0	0	21408170789	272.0	3055.050000	3065.150000	220.13	260.13	2.0	0.0	1539	 6
1	1	76462170374	712.0	12122.000000	12124.750000	3691.26	3691.26	20.0	0.0	5787	 12
2	1	17943170372	535.0	1398.000000	1398.000000	900.13	900.13	3.0	0.0	1539	 6
3	1	55773170781	241.0	21.228000	21.228000	159.42	159.42	41.0	0.0	947	 6
4	1	03813182730	947.0	150.619333	150.619333	1098.90	1098.90	4.0	0.0	2309	 6
209588	1	22758185348	404.0	151.872333	151.872333	1089.19	1089.19	1.0	0.0	4048	 6
209589	1	95583184455	1075.0	36.936000	36.936000	1728.36	1728.36	4.0	0.0	773	 6
209590	1	28556185350	1013.0	11843.111670	11904.350000	5861.83	8893.20	3.0	0.0	1539	 12
209591	1	59712182733	1732.0	12488.228330	12574.370000	411.83	984.58	2.0	38.0	773	 12
209592	1	65061185339	1581.0	4489.362000	4534.820000	483.92	631.20	13.0	0.0	7526	 12

209593 rows × 36 columns

4. Encoding

- We are fully aware we cannot run an exhaustive EDA on non-numerical data.
- This makes it necessary for us to convert all non-numerical data into numerical ones.
- Hence Label encoding was used on all the object columns.

Encoded data

	label	msisdn	aon	daily_decr30	daily_decr90	rental30	rental90	last_rech_date_ma	last_rech_date_da	last_rech_amt_ma	 maxamnt_loans30 r
0	0	40191	272.0	3055.050000	3065.150000	220.13	260.13	2.0	0.0	1539	 6.0
1	1	142291	712.0	12122.000000	12124.750000	3691.26	3691.26	20.0	0.0	5787	 12.0
2	1	33594	535.0	1398.000000	1398.000000	900.13	900.13	3.0	0.0	1539	 6.0
3	1	104157	241.0	21.228000	21.228000	159.42	159.42	41.0	0.0	947	 6.0
4	1	6910	947.0	150.619333	150.619333	1098.90	1098.90	4.0	0.0	2309	 6.0
209588	1	42866	404.0	151.872333	151.872333	1089.19	1089.19	1.0	0.0	4048	 6.0
209589	1	178248	1075.0	36.936000	36.936000	1728.36	1728.36	4.0	0.0	773	 6.0
209590	1	53995	1013.0	11843.111670	11904.350000	5861.83	8893.20	3.0	0.0	1539	 12.0
209591	1	111388	1732.0	12488.228330	12574.370000	411.83	984.58	2.0	38.0	773	 12.0
209592	1	121263	1581.0	4489.362000	4534.820000	483.92	631.20	13.0	0.0	7526	 12.0

209593 rows × 36 columns

Data Inputs- Logic- Output Relationships Normal Distribution Chask/University Ana

Normal Distribution Check(Univariate Analysis)

From a density plot standpoint:

- All the features does not obey a normal distribution, the building blocks is not in tandem with a normalized curve.
- The normal distribution of the sales columns also has no contribution to our Model Building since its the Target variable

Scatter Plot Check(Bivariate Analysis)

From a Scatter plot standpoint:

From the above scatter plot we can see a strong relationship between some of the features and the Target (label):

<u>Correlation Check (Collinearity and Multicollinearity)-</u> <u>Multivariate Analysis;</u>

	label	msisdn	aon	daily_decr30	daily_decr90	rental30	rental90	last_rech_date_ma	last_rech_date_da	last_rech_amt_m
label	1.000000	0.001976	-0.003785	0.168298	0.166150	0.058085	0.075521	0.003728	0.001711	0.13180
msisdn	0.001976	1.000000	0.000566	0.000717	0.000950	-0.001404	-0.000691	-0.000928	0.001400	-0.0023€
aon	-0.003785	0.000566	1.000000	0.001104	0.000374	-0.000960	-0.000790	0.001692	-0.001693	0.00425
daily_decr30	0.168298	0.000717	0.001104	1.000000	0.977704	0.442066	0.458977	0.000487	-0.001636	0.27583
daily_decr90	0.166150	0.000950	0.000374	0.977704	1.000000	0.434685	0.471730	0.000908	-0.001886	0.26413
rental30	0.058085	-0.001404	-0.000960	0.442066	0.434685	1.000000	0.955237	-0.001095	0.003261	0.12727
rental90	0.075521	-0.000691	-0.000790	0.458977	0.471730	0.955237	1.000000	-0.001688	0.002794	0.12141
last_rech_date_ma	0.003728	-0.000928	0.001692	0.000487	0.000908	-0.001095	-0.001688	1.000000	0.001790	-0.00014
last_rech_date_da	0.001711	0.001400	-0.001693	-0.001636	-0.001886	0.003261	0.002794	0.001790	1.000000	-0.00014
last_rech_amt_ma	0.131804	-0.002368	0.004256	0.275837	0.264131	0.127271	0.121416	-0.000147	-0.000149	1.00000
cnt_ma_rech30	0.237331	0.000617	-0.003148	0.451385	0.426707	0.233343	0.230260	0.004311	0.001549	-0.00266
fr_ma_rech30	0.001330	-0.001804	-0.001163	-0.000577	-0.000343	-0.001219	-0.000503	-0.001629	0.001158	0.00287
sumamnt_ma_rech30	0.202828	0.001094	0.000707	0.636536	0.603886	0.272649	0.259709	0.002105	0.000046	0.44082
medianamnt_ma_rech30	0.141490	0.000668	0.004306	0.295356	0.282960	0.129853	0.120242	-0.001358	0.001037	0.79464
medianmarechprebal30	-0.004829	-0.000238	0.003930	-0.001153	-0.000746	-0.001415	-0.001237	0.004071	0.002849	-0.00234
cnt_ma_rech90	0.236392	-0.001859	-0.002725	0.587338	0.593069	0.312118	0.345293	0.004263	0.001272	0.01670
fr_ma_rech90	0.084385	-0.004413	0.004401	-0.078299	-0.079530	-0.033530	-0.036524	0.001414	0.000798	0.10626
sumamnt_ma_rech90	0.205793	-0.000936	0.001011	0.762981	0.768817	0.342306	0.360601	0.002243	-0.000414	0.41873
medianamnt_ma_rech90	0.120855	-0.000625	0.004909	0.257847	0.250518	0.110356	0.103151	-0.000726	0.000219	0.81873
medianmarechprebal90	0.039300	-0.000615	-0.000859	0.037495	0.036382	0.027170	0.029547	-0.001086	0.004158	0.12464
cnt_da_rech30	0.003827	-0.001720	0.001564	0.000700	0.000661	-0.001105	-0.000548	-0.003467	-0.003628	-0.00183
fr_da_rech30	-0.000027	-0.000241	0.000892	-0.001499	-0.001570	-0.002558	-0.002345	-0.003626	-0.000074	-0.00323

From the above correlation statistics;

Collinearity:

 From the above we can see that most of the features have correlation with the target

Multicollinearity:

- From the heatmap we can see that the some pairs of features have noticeable correlation between them

Skewness Check

We assumed a Skewness threshold is taken as +/-0.50. Meaning any value outside +/-0.50 contains skewness. Hence all features are having skewness except:

- pcircle 0.000000
- pdate 0.138073
- msisdn 0.000719

State the set of assumptions (if any) related to the problem under consideration

Assumption on Feature Selection

The selectKBest feature was used to pick out 30 features considering their fscores in descending order

	Feature_Name	Score
9	cnt ma rech30	12509.987949
14	cnt ma rech90	12405.449295
16	sumamnt_ma_rech90	9268.915730
11	sumamnt ma rech30	8992.305501
28	amnt loans90	8713.675655
24	amnt loans30	8486.686219
23	cnt loans30	8398.407875
2	daily decr30	6109.551285
3	daily decr90	5950.205909
34	_ pdate	5118.593612
12	medianamnt ma rech30	4281.620838
8	last rech amt ma	3705.466816
17	medianamnt ma rech90	3106.655486
15	fr ma rech90	1503.180717
29	maxamnt loans90	1494.540036
5	rental90	1202.226259

```
rental30 709.505994
payback90 508.116565
payback30 490.705161
4
32
31
26 medianamnt_loans30 417.544932
18 medianmarechprebal90 324.207470
30 medianamnt_loans90 268.169218
fr_da_rech90
fr_da_rech90
medianmarechprebal30
cnt_loans90
cnt_da_rech30
                                    6.152145
                                    4.887167
                                    4.695777
                                     3.070296
                          aon
1
                                     3.002461
6
      last_rech_date_ma
                                    2.913453
21
                                   1.884903
           cnt_da_rech90
                      msisdn
0
                                   0.816760
7
       last_rech_date_da
                                    0.613697
              fr_ma_rech30
                                    0.370925
10
         maxamnt_loans30
fr_da_rech30
pcircle
                                    0.012877
25
20
                                    0.000146
33
                                           NaN
```

Assumption on Variance Inflation Factor

We used a variance inflation Factor of 7. Meaning any feature with Variance Inflation Factor greater than 7 is assumed to have a multicollinearity problem. It is not standard. The dataset demands.

In lieu of the above assumption, we will further drop the following:

- a. cnt_loans30
- b. amnt_loans30
- c. amnt loans90
- d. sumamnt_ma_rech90
- e. cnt_ma_rech90
- f. sumamnt_ma_rech30
- g. cnt_ma_rech30
- h. rental90
- i. rental30
- j. daily_decr90
- k. daily_decr30

Hardware and Software Requirements and Tools Used Hardware Requirments

- Device name: DESKTOP
- ProcessorIntel(R) Core(TM) i7-7500U CPU @ 2.70GHz,2.90GHz
- Installed RAM: 8.00 GB
- System type: 64-bit operating system, x64-based processor

Software Requirments

- Jupyter Notebook
- Python Programming Language
- Libraries
 - i. Pandas: Used loading the dataset
 - ii. Numpy: Used for rounding up numbers
 - iii. sklearn.linear_model: Used for initializing the Logistic Regression Model
 - iv. sklearn.neighbors: Used for initializing the KNeighbours Classification Model
 - v. sklearn.tree: Used for initializing the DecisionTree Classification Model
 - vi. sklearn.ensemble: Used for initializing the ensemble Techniques/Models - RandomForest Classifier,AdaBoost Classifier, GradientBoosting Classifier, ExtraTrees Classifier
 - vii. sklearn.preprocessing: Used Scaling, Power Transformation and Encoding of data
 - viii. sklearn.feature_selection: Used for feature selection using SelectKBest
 - ix. sklearn.model_selection: Used Data split into test and train. Also used for Initializing GridsearchCV during hyperparameter tunning

- x. sklearn.metrics: Used for metrics measurment
- xi. xgboost: Used for initializing the XGBoost Model
- xii. statsmodels: Used to solve for multicollinearity via Variance inflation Factor
- xiii. Scipy.stats: Used to remove outliers via zscore
- xiv. Seaborn: Used for visualization during variate analysis
- xv. Matplotlib: Also used for visualization during variate analysis

Model/s Development and Evaluation

- Testing of Identified Approaches (Algorithms)
 The algorithm used were:
 - Standard Scaler
 - train_test_split
 - fit(x_train,y_train)

Run and evaluate selected models Eight Models were used:

Logistic Regression

```
lr=LogisticRegression()
lr.fit(x_train,y_train)
pred_test=lr.predict(x_test)
pred_train=lr.predict(x_train)
real predict(x_train)
rest_Accuracy_lr= (accuracy_score(y_test,pred_test))
Train_Accuracy_lr= (accuracy_score(y_train,pred_train))
print("Test_Accuracy ",round(accuracy_score(y_test,pred_test)*100,2))#testing score
print("Confusion Matrix ", confusion_matrix(y_test,pred_test))
print("Classification Report ", classification_report(y_test,pred_test))
Test_Accuracy 87.96
Confusion Matrix [[
                                    1 5048]
         1 36869]]
Classification Report
                                                           precision
                                                                              recall f1-score support
                  0
                              0.50
                                              0.00
                                                               0.00
                                                                              5049
                              0.88
                                             1.00
                                                              0.94
                                                                             36870
       accuracy
                              0.69
     macro avg
                                                              0.47
                                                                             41919
weighted avg
                              0.83
                                              0.88
                                                                             41919
```

LogisticRegression is producing good accuracy 88%. Now we will check Cross Validation score as well for overfitting(if exists).

KNeighbors Classifier

```
knn=KNeighborsClassifier()
knn.fit(x_train,y_train)
pred_test=knn.predict(x_test)
pred_train=knn.predict(x_train)
Test_Accuracy_knn= (accuracy_score(y_test,pred_test))
Train_Accuracy_knn= (accuracy_score(y_train,pred_train))
print("Test_Accuracy ",round(accuracy_score(y_test,pred_test)*100,2))#testing score
print("Confusion Matrix ", confusion_matrix(y_test,pred_test))
print("Classification Report ", classification_report(y_test,pred_test))
Test_Accuracy 88.35
Confusion Matrix [[ 1780 3269]
 [ 1615 35255]]
                                                                  recall f1-score support
Classification Report
                                                   precision
                          0.52 0.35
                                                                    5049
                          0.92 0.96
                                                     0.94
                                                                  36870
               1
                                                      0.88
                                                                  41919
     accuracy
                          0.72
                                        0.65
                                                                  41919
    macro avg
weighted avg
                          0.87
                                        0.88
                                                      0.87
                                                                  41919
```

KNeighbors is producing good accuracy 88%. Now we will check Cross Validation score as well for overfitting(if exists).

Decision Tree Classifier

```
dt=DecisionTreeClassifier()
dt.fit(x_train,y_train)
pred_test=dt.predict(x_test)
pred_test=at.predict(x_test)
pred_train=dt.predict(x_train)
Test_Accuracy_dt= (accuracy_score(y_test,pred_test))
Train_Accuracy_dt= (accuracy_score(y_train,pred_train))
print("Test_Accuracy ",round(accuracy_score(y_test,pred_test)*100,2))#testing score
print("Confusion Matrix ", confusion_matrix(y_test,pred_test))
print("Classification Report ", classification_report(y_test,pred_test))
Test_Accuracy 84.6
Confusion Matrix [[ 2149 2955]
    [ 3499 33316]]
Classification Report
                                                                                                      recall f1-score support
                                                                              precision
                                        0.38
                                                             0.42
                                                                                  0.40
                                                                                                       5104
                                        0.92
                                                            0.90
                                                                                  0.91
                                                                                                     36815
                       1
                                                                                  0.85
                                                                                                     41919
         accuracy
                                        0.65
                                                             0.66
                                                                                   0.66
                                                                                                     41919
weighted avg
                                        0.85
                                                             0.85
                                                                                  0.85
                                                                                                     41919
```

Decision Tree Model is producing good accuracy; 85%!. Now we will check Cross Validation score as well for overfitting(if exists).

RandomForest Classifier

```
rf=RandomForestClassifier()
rf.fit(x_train,y_train)
pred_test=rf.predict(x_test)
pred_train=rf.predict(x_train)
Test_Accuracy_rf= (accuracy_score(y_test,pred_test))
Train_Accuracy_rf= (accuracy_score(y_train,pred_train))
print("Test_Accuracy ",round(accuracy_score(y_test,pred_test)*100,2))#testing score
print("Confusion Matrix ", confusion_matrix(y_test,pred_test))
print("Classification Report ", classification_report(y_test,pred_test))
Test_Accuracy 88.89
Confusion Matrix [[ 1628 3421]
  [ 1238 35632]]
Classification Report
                                                                     recall f1-score support
                                                     precision
                0
                           0.57
                                         0.32
                                                                       5049
                                                        0.41
                                                       0.94
                                                                     36870
                1
                           0.91
                                          0.97
                                                        0.89
                                                                     41919
      accuracy
    macro avg
                                                        0.68
                                                                     41919
weighted avg
                                          0.89
                                                        0.88
                                                                     41919
                           0.87
```

RandomForest Classifier is producing very good accuracy = 89%!. Now we will check Cross Validation score as well for overfitting(if exists).

AdaBoost Classifier

```
ada=AdaBoostClassifier()
ada=AdaBoostClassifier()
ada.fit(x_train,y_train)
pred_test=ada.predict(x_test)
pred_train=ada.predict(x_train)
Test_Accuracy_ada= (accuracy_score(y_train,pred_train))
Train_Accuracy_ada= (accuracy_score(y_train,pred_train))
print("Test_Accuracy ",round(accuracy_score(y_test,pred_test)*100,2))#testing score
print("Confusion Matrix ", confusion_matrix(y_test,pred_test))
print("Classification Report ", classification_report(y_test,pred_test))
Test_Accuracy 89.32
Confusion Matrix [[ 1509 3614]
[ 861 35935]]
Classification Report
                                                                                                  precision
                                                                                                                               recall f1-score support
                                                                                                       0.40
                                                   0.64
                                                                                                                                  5123
                                                  0.91
                                                                                                      0.94
                                                                                                                               36796
                                                                                                       0.89
                                                                                                                               41919
           accuracy
 macro avg
weighted avg
                                                                             0.64
                                                                                                      0.88
                                                                                                                              41919
                                                                             0.89
```

AdaBoostClassifier is producing good accuracy = 89%1. Now we will check Cross Validation score as well for overfitting(if exists).

GradientBoosting Classifier

```
gb=GradientBoostingClassifier()
gb.fit(x_train,y_train)
pred_test=gb.predict(x_test)
pred_train=gb.predict(x_train)
Test_Accuracy_gb= (accuracy_score(y_test,pred_test))
Train_Accuracy_gb= (accuracy_score(y_train,pred_train))
print("Test_Accuracy ",round(accuracy_score(y_test,pred_test)*100,2))#testing score
print("Confusion Matrix ", confusion_matrix(y_test,pred_test))
print("Classification Report ", classification_report(y_test,pred_test))
Test_Accuracy 89.57
Confusion Matrix [[ 1568 3481]
 [ 892 35978]]
Classification Report
                                        precision
                                                      recall f1-score support
                    0.64
                                          0.42
                                                     5049
                    0.91
                               0.98
                                          0.94
                                                    36870
                                          0.90
                                                    41919
   macro avg
                    0.77
                                0.64
                                          0.68
                                                    41919
weighted avg
                    0.88
                                0.90
                                          0.88
                                                    41919
```

GradientBoosting Classifier is producing good accuracy = 90%. Now we will check Cross Validation score as well for overfitting(if exists).

XGBoost Classifier

```
xgb=XGBClassifier()
xgb.fit(x_train,y_train)
pred_test=xgb.predict(x_test)
pred_train=xgb.predict(x_train)
Test_Accuracy_xgb= (accuracy_score(y_test,pred_test))
Train_Accuracy_xgb= (accuracy_score(y_train,pred_train))
print("Test_Accuracy ",round(accuracy_score(y_test,pred_test)*100,2))#testing score
print("Confusion Matrix ", confusion_matrix(y_test,pred_test))
print("Classification Report ", classification_report(y_test,pred_test))
Test_Accuracy 89.73
Confusion Matrix [[ 2033 3022]
 [ 1283 35581]]
Classification Report
                                               precision
                                                              recall f1-score support
              0
                        0.61
                                    0.40
                                                 0.49
                                                              5055
              1
                        0.92
                                    0.97
                                                 0.94
                                                             36864
    accuracy
                                                 0.90
                                                             41919
                        0.77
                                     0.68
    macro avg
                                                 0.71
                                                             41919
weighted avg
                        0.88
                                    0.90
                                                 0.89
                                                             41919
```

XGBoost Classifier is producing good accuracy = 90%. Now we will check Cross Validation score as well for overfitting(if exists).

ExtraTrees Classifier

```
ex=XGBClassifier()
ex.fit(x_train,y_train)
pred_test=ex.predict(x_test)
pred_terian=ex.predict(x_train)
Test_Accuracy_ex= (accuracy_score(y_test,pred_test))
Train_Accuracy_ex= (accuracy_score(y_train,pred_train))
print("Test_Accuracy_", round(accuracy_score(y_test,pred_test))*100,2))#testing score
print("Confusion Matrix ", confusion_matrix(y_test,pred_test))
print("Classification Report ", classification_report(y_test,pred_test))
 Test_Accuracy 89.61
Confusion Matrix [[ 1954 3095]
[ 1259 35611]]
 Classification Report
                                                                                                 precision
                                                                                                                                  recall f1-score
                                                  0.61
                                                                            0.39
                                                                                                      0.47
                                                                                                                                5049
                                                                                                      0.94
                                                                                                                              36870
          accuracy
                                                                                                      0.90
                                                                                                                              41919
                                                                                                       0.71
 macro avg
weighted avg
                                                                                                                              41919
                                                  0.88
                                                                            0.90
                                                                                                      0.89
```

Extratrees Classifier is producing good accuracy = 90%. Now we will check Cross Validation score as well for overfitting(if exists).

MLP Classifier

```
mlp=MLPClassifier()
mlp.fit(x_train,y_train)
pred_test=mlp.predict(x_test)
pred_train=mlp.predict(x_train)
pred_train=mip.predict(x_train)
Test_Accuracy_mlp= (accuracy_score(y_test,pred_test))
Train_Accuracy_mlp= (accuracy_score(y_train,pred_train))
print("Test_Accuracy ",round(accuracy_score(y_test,pred_test)*100,2))#testing score
print("Confusion Matrix ", confusion_matrix(y_test,pred_test))
print("Classification Report ", classification_report(y_test,pred_test))
Test_Accuracy 89.12
Confusion Matrix [[ 1727 3322]
[ 1239 35631]]
Classification Report
                                                                            precision
                                                                                                     recall f1-score support
                                       0.58
                                                                                0.43
                                                                                                     5049
                                       0.91
                                                            0.97
                                                                                0.94
                                                                                                   36870
        accuracy
                                                                                0.89
                                                                                                   41919
                                       0.75
                                                            0.65
                                                                                0.69
                                                                                                   41919
       macro avg
weighted avg
                                       0.87
                                                            0.89
                                                                                0.88
                                                                                                   41919
```

MLP Classifier is producing good accuracy = 89%. Now we will check Cross Validation score as well for overfitting(if exists).

Guassian NB Classifier

```
nb=GaussianNB()
nb.fit(x_train,y_train)
pred_test=nb.predict(x_test)
pred_train=nb.predict(x_train)
Test_Accuracy_nb= (accuracy_score(y_test,pred_test))
Train_Accuracy_nb= (accuracy_score(y_train,pred_train))
print("Test_Accuracy ",round(accuracy_score(y_test,pred_test)*100,2))#testing score
print("Confusion Matrix ", confusion_matrix(y_test,pred_test))
print("Classification Report ", classification_report(y_test,pred_test))
Test_Accuracy 75.87
Confusion Matrix [[ 2668 2381]
 [ 7736 29134]]
Classification Report
                                         precision
                                                       recall f1-score support
                     0.26
                                0.53
                                           0.35
                                                      5049
                     0.92
                                                     36870
                                0.79
                                           0.85
                                           0.76
                                                     41919
    accuracy
   macro avg
                     0.59
                                0.66
                                           0.60
                                                     41919
weighted avg
                     0.84
                                0.76
                                           0.79
                                                     41919
```

GaussianNB is producing good accuracy 76%. Now we will check Cross Validation score as well for overfitting(if exists).

Key Metrics for success in solving problem under consideration

- Accuracy Score
- Cross validation
- Confusion Matrix
- ROC AUC Curve.

The above metrics were used since it's a Classification Problem

Visualizations Normal Distribution Check(Univariate Analysis)

Observations on Normal Distribution Check

From the above density plot

- We observed all the features does not obey a normal distribution, the building blocks is not in tandem with a normalized curve.
- The normal distribution of the sales columns also has no contribution to our Model Building since its the Target variable

Scatter Plot Check(Bivariate Analysis)

From the above scatter plot we can see a strong relationship between some of the features and the Target (label):

<u>Correlation Check(Collinearity and Multicollinearity)</u>-<u>Multivariate Analysis</u>

Observations

From the above correlation statistics;

Collinearity: From the above we can see that most of the features have correlation with the target

Multicollinearity: From the heatmap we can see that the some pairs of features have noticeable correlation between them

Outlier Check

Observations on Outlier Check

From the above visualization plot its evident the most features possess outliers,

Skewness Check

Observations on Skewness Check:

We assumed a Skewness threshold of +/-0.50. Meaning any value outside +/-0.50 contains skewness. Hence majority of the features are having a skewness.

CONCLUSION

Key Findings and Conclusions of the Study COMPARING ALL EIGHT MACHINE LEARNING MODELS

	Model	Accuracy_Score	Cross_Validation_Score	Accuracy_VS_CVScore
6	XgBoost	89.73	89.36	0.003680
5	Gradient Boosting Classifier	89.57	89.23	0.003384
4	Ada Boosting Classifier	89.32	88.85	0.004730
7	MLP Classifier	89.12	87.86	0.012636
3	Random Forest Classifier	88.89	88.49	0.003933
1	KNN Classifier	88.35	87.34	0.010112
0	Logistic Regression	87.96	87.51	0.004468
2	DecisionTree Classifier	84.60	84.22	0.003819
8	GaussianNB Classifier	75.87	85.52	0.096579

Now from the above diagram it seems that XGBOOST Classifier(89.73%) has the highest Accuracy, However, our aim is to find the BEST MODEL, so if we consider the

difference Between Accuracy_Score and Cross_Validation_Score....

Comparing Differences between Accuracy and Cross Validation Scores...

From the above we can see the Model with least difference is GRADIENT BOOSTING REGRESSOR!

Conclusion on Best Choice of Model

From the above we can see:

- The least difference is 0.003(very neglible)!

- The Model with least difference is Gradient Boosting Classifier!
- Accuracy is 89%
- We also went further to engage in **Hyperparamter Tunning** using GridSearchCV and arrived at a Final Accuracy of 90%
- Learning Outcomes of the Study in respect of Data Science
 - The SVM and MLP were not suitable models as they produced lower accuracy.
 - Dropping of features with VIF greater than 7 was very key in feature selection
 - SelectKBest was also instrumental in feature selection since we had a lot of features.
- Limitations of this work and Scope for Future Work
 The limitation was basically Time