Automatic Control 1 **Observability analysis**

Prof. Alberto Bemporad

University of Trento

Academic year 2010-2011

- Implementing a state feedback controller u(k) = Kx(k) requires the entire state vector x(k)
- **Problem:** often sensors only provide the measurements of output y(k)
- IDEA: is it possible to estimate the state *x* by measuring only the output *y* and knowing the applied input *u*?
- Observability analysis addresses this problem, telling us when and how the state estimation problem can be solved

Consider

$$\begin{cases} x(k+1) = Ax(k) + Bu(k) \\ y(k) = Cx(k) + Du(k) \end{cases}$$

with $x \in \mathbb{R}^n$, $u \in \mathbb{R}$, $y \in \mathbb{R}$ and initial condition $x(0) = x_0 \in \mathbb{R}^n$ (1)

• The solution for the output is

$$y(k, x_0, u(\cdot)) = CA^k x_0 + \sum_{j=0}^{k-1} CA^j Bu(k-1-j) + Du(k)$$

Definition

The pair of states $x_1 \neq x_2 \in \mathbb{R}^n$ is called *indistinguishable* from the output $y(\cdot)$ if for any input sequence $u(\cdot)$

$$y(k, x_1, u(\cdot)) = y(k, x_2, u(\cdot)), \forall k \ge 0$$

A linear system is called *(completely) observable* if no pair of states are indistinguishable from the output

¹Everything here can be easily generalized to multivariable systems $u \in \mathbb{R}^m$, $y \in \mathbb{R}^p$

• Consider the problem of reconstructing the initial condition x_0 from n output measurements, applying a known input sequence

$$y(0) = Cx_0 + Du(0)$$

$$y(1) = CAx_0 + CBu(0) + Du(1)$$

$$\vdots$$

$$y(n-1) = CA^{n-1}x_0 + \sum_{j=1}^{n-2} CA^j Bu(n-2-j) + Du(n-1)$$

Define

$$\Theta = \begin{bmatrix} C \\ CA \\ \vdots \\ CA^{n-1} \end{bmatrix} \qquad Y = \begin{bmatrix} y(0) - Du(0) \\ y(1) - CBu(0) - Du(1) \\ \vdots \\ y(n-1) - \sum_{j=1}^{n-2} CA^{j}Bu(n-2-j) - Du(n-1) \end{bmatrix}$$

This is a $n \times n$ matrix

This is an n-th dimensional vector

• The initial state x_0 is determined by solving the linear system

$$Y = \Theta x_0$$

The matrix $\Theta \in \mathbb{R}^{n \times n}$ is called the *observability matrix* of the system

- If we assume perfect knowledge of the output (i.e., no noise on output measurements), we can always solve the system $Y = \Theta x_0$. In particular:
 - There is only one solution if rank(Θ) = n
 - There exist infinite solutions if $\operatorname{rank}(\Theta) < n$. In this case, all solutions are given by $x_0 + \ker(\Theta)$, where x_0 is any particular solution of the system
- Knowing x_0 , one knows the state $x(k) = A^k x_0 + \sum_{i=0}^{k-1} A^i B u(k-1-i)$ for any k

• The system of equations $\Theta x_0 = Y$ has a solution if and only if

$$rank(\Theta) = rank([\Theta Y])$$
 (Rouché-Capelli Theorem)

- Because we have $\Theta \in \mathbb{R}^{n \times n}$, if $rank(\Theta) = n \Rightarrow rank([\Theta Y]) = n$ for each Y
- The solution is unique if and only if $rank(\Theta) = n$
- Since the input u(k) influences only the known vector Y, the solvability of the system $\Theta x_0 = Y$ is independent from u(k)
- Then, for linear systems the observability property does not depend on the input signal $u(\cdot)$, it only depends on matrix Θ (i.e., on A and C)
- We can study the observability properties of the system for $u(k) \equiv 0$

Theorem

A linear system is observable if and only if $rank(\Theta) = n$

Proof:

• (\Rightarrow) Assume that the system is observable, and suppose (by contradiction) that rank(Θ)<n. Then $\exists x \neq 0$ such that $\Theta x = 0$, and then

$$Cx = 0$$
, $CAx = 0$, ..., $CA^{n-1}x = 0$

By Cayley-Hamilton Theorem we have that $CA^k x = 0$, $\forall k \ge 0$, and then x is indistinguishable from the origin, which is a contradiction

• (\Leftarrow) Assume rank(Θ) = n, and suppose (by contradiction) that $\exists x_1 \neq x_2$ that are indistinguishable from the output. Then, $CA^kx_1 = CA^kx_2$, $\forall k \geq 0$. Let $x = x_1 - x_2$. It follows that

$$Cx = 0$$
, $CAx = 0$, ..., $CA^{n-1}x = 0$

i.e., $\Theta x = 0$, with $x \neq 0$, which is a contradiction

Comments on the observability property

 As the observability property of a system depends only on matrices A and C, we call a pair (A, C) observable if

$$\operatorname{rank}\left(\left[\begin{array}{c} C \\ CA \\ \vdots \\ CA^{n-1} \end{array}\right]\right) = n$$

• It can be proved that $ker(\Theta)$ is the set of states $x \in \mathbb{R}^n$ that are indistinguishable from the origin

$$y(k, x, u(\cdot)) = y(k, 0, u(\cdot)), \forall k \ge 0$$

for any input sequence $u(\cdot)$

• Since $\ker(\Theta) = \{0\}$ if and only if $\operatorname{rank}(\Theta) = n$, a system is observable if and only if there are no states that are indistinguishable from the origin x = 0

Canonical observability decomposition

Goal: make a change of coordinates that separate observable and unobservable states

• Let $\dim(\ker(\Theta)) = n - n_0 \ge 1$ and consider the change of coordinates

$$T = \left[\begin{array}{ccccc} v_{n_o+1} & \dots & v_n & w_1 & \dots & w_{n_o} \end{array} \right]$$

where $\{v_{n_0+1}, \dots, v_n\}$ is a basis of $\ker(\Theta)$, and $\{w_1, \dots, w_{n_0}\}$ is a completion to obtain a basis of \mathbb{R}^n

- By Cayley-Hamilton theorem, $\ker(\Theta)$ is A-invariant $(Ax \in \ker(\Theta), \forall x \in \Theta)$, and hence Av_i has no components along the basis vector w_1, \ldots, w_{n_o} , $\forall i = n_0 + 1, \dots, n$
- Note also that $Cv_i = 0$, because $\Theta v_i = 0$, $\forall i = n_0 + 1, ..., n$
- In the new coordinates the system has matrices $\tilde{A} = T^{-1}AT$, $\tilde{B} = T^{-1}B$ and $\tilde{C} = CT$ in the canonical observability form

$$\tilde{A} = \left[\begin{array}{cc} A_{uo} & A_{12} \\ 0 & A_o \end{array} \right] \quad \tilde{B} = \left[\begin{array}{c} B_{uo} \\ B_o \end{array} \right] \quad \tilde{C} = \left[\begin{array}{cc} 0 & C_o \end{array} \right]$$

MATLAB [At, Bt, Ct, Tinv] = obsvf(A,B,C)

Observability and transfer function

Proposition

The eigenvalues of A_{uo} are not poles of the transfer function $C(zI - A)^{-1}B + D$

Proof:

- Consider a matrix T changing the state coordinates to canonical observability decomposition of (A, C)
- The transfer function is

$$G(z) = C(zI - A)^{-1}B + D = \tilde{C}(zI - \tilde{A})^{-1}\tilde{B} + D =$$

$$\begin{bmatrix} 0 & C_o \end{bmatrix} \left(zI - \begin{bmatrix} A_{uo} & A_{12} \\ 0 & A_o \end{bmatrix} \right)^{-1} \begin{bmatrix} B_{uo} \\ B_o \end{bmatrix} + D$$

$$= \begin{bmatrix} 0 & C_o \end{bmatrix} \begin{bmatrix} (zI - A_{uo})^{-1} & \star \\ 0 & (zI - A_o)^{-1} \end{bmatrix} \begin{bmatrix} B_{no} \\ B_o \end{bmatrix} + D$$

$$= C_o (zI - A_o)^{-1} B_o + D$$

• G(z) does not depend on the eigenvalues of A_{uo}

Lack of observability \rightarrow zero/pole cancellations!

Observability and transfer function

- Why are the eigenvalues of A_{uo} not appearing in the transfer function G(z)?
- Expressed in canonical decomposition, the system evolution is

$$\begin{cases} x_{uo}(k+1) &= A_{uo}x_{uo}(k) + A_{12}x_o(k) + B_{uo}u(k) \\ x_o(k+1) &= A_ox_o(k) + B_ou(k) \\ y(k) &= C_ox_o(k) + Du(k) \end{cases}$$

• The evolution of $x_o(k)$ is not affected by the unobservable states $x_{uo}(k)$

$$x_o(k) = A_o^k x_o(0) + \sum_{i=0}^{k-1} A_o^i B_o u(k-1-i)$$

so the output $y(k) = C_0 x_0(k) + Du(k)$ does not depend at all on A_{uo} !

Canonical observability decomposition

Proposition

 $A_o \in \mathbb{R}^{n_o \times n_o}$ and $C_o \in \mathbb{R}^{p \times n_o}$ are a completely observable pair

Proof:

Consider the observability matrix

$$\tilde{\Theta} = \begin{bmatrix} \tilde{C} \\ \tilde{C}\tilde{A} \\ \vdots \\ \tilde{C}\tilde{A}^{n-1} \end{bmatrix} = \begin{bmatrix} 0 & C_o \\ 0 & C_o A_o \\ \vdots & \vdots \\ 0 & C_o A_o^{n-1} \end{bmatrix} \text{ and } \tilde{\Theta} = \begin{bmatrix} CT \\ CTT^{-1}AT \\ \vdots \\ CTT^{-1} \dots A^{n-1}T \end{bmatrix} = \Theta T$$

• Since *T* is nonsingular, $n - n_0 = \dim \ker(\tilde{\Theta}) = \dim \ker(\Theta)$, so

$$\operatorname{rank} \begin{bmatrix} C_o \\ C_o A_o \\ \vdots \\ C_o A_o^{n_o - 1} \end{bmatrix} = n_o$$

• Under observability assumptions, we just saw that it is possible to determine the initial condition x_0 from n input/output measurements

$$x(0) = \Theta^{-1}Y$$

- To close the control loop at time k it is enough to know the current x(k)
- If the initial condition x(0) is known, it is possible to calculate x(k) as

$$x(k) = A^{k}\Theta^{-1}Y + \sum_{i=0}^{k-1} A^{i}Bu(k-1-i)$$

• **Question:** Can we determine the current state x(k) even if the system is not completely observable?

Definition

A linear system x(k+1) = Ax(k) + Bu(k) is called reconstructable in k steps if, for each initial condition x_0 , x(k) is uniquely determined by $\{u(j), y(j)\}_{i=0}^{k-1}$

The solutions of the system

$$Y_{k} \triangleq \begin{bmatrix} y(0) - Du(0) \\ y(1) - CBu(0) - Du(1) \\ \vdots \\ y(k-1) - \sum_{j=1}^{k-2} CA^{j}Bu(k-2-j) + Du(k-1) \end{bmatrix} = \underbrace{\begin{bmatrix} C \\ CA \\ \vdots \\ CA^{k-1} \end{bmatrix}}_{\Theta} x$$

are given by $x = x_0 + \ker(\Theta_k)$, where x_0 is the "true" (unknown) initial state

• Let x_0 be the initial (unknown) "true" state, and $x = x_0 + \bar{x}$ be a generic initial state, where $\bar{x} \in \ker(\Theta_k)$. An estimation $\hat{x}(k)$ of the current state x(k) is

$$\hat{x}(k) = A^k x_0 + A^k \bar{x} + \sum_{j=1}^{k-1} A^j B u(k-1-j)$$

• $\hat{x}(k)$ coincides with x(k) if and only if $\bar{x} \in \ker(A^k)$. Because this must hold for any $\bar{x} \in \ker(\Theta_k)$, we can say that

A system is *reconstructable* in k steps if and only if $ker(\Theta_k) \subseteq ker(A^k)$

Definition

A system reconstructable in *n* steps is called *(completely)* reconstructable

Theorem

A system is reconstructable if and only if all the eigenvalues of the nonobservable part are zero

Proof:

- Let $x = x_0 + \bar{x}$, where x_0 is the "true" (unknown) initial condition, while $\bar{x} \in \ker(\Theta)$. Then, x represents a possible generic initial condition such that $\Theta x = Y$
- Transform the system into canonical observability decomposition

$$\tilde{A} = T^{-1}AT = \left[\begin{array}{cc} A_{uo} & A_{12} \\ 0 & A_o \end{array} \right]$$

• Since \bar{x} has only components along $v_{n,+1}, \ldots, v_n$, its new coordinates

$$\bar{z} = T^{-1}\bar{x} = \left[\begin{array}{c} z_{uo} \\ 0 \end{array} \right]$$

• Since $A = T\tilde{A}T^{-1}$ we get

$$A^k\bar{x} = T \begin{bmatrix} A^k_{uo} & \star \\ 0 & A^k_o \end{bmatrix} \begin{bmatrix} z_{no} \\ 0 \end{bmatrix} = T \begin{bmatrix} A^k_{uo}z_{uo} \\ 0 \end{bmatrix}$$

• Then $x(k) = A^k x_0 + A^k \bar{x} + \sum_{i=1}^{k-1} A^i B u(k-1-j)$ is uniquely determined for all $\bar{x} \in \ker(\Theta)$ (i.e., for all $z_{uo} \in \mathbb{R}^{n-n_o}$) if and only if A_{uo} is nilpotent

Note that although x(0) is not uniquely determined, if the system is reconstructable the state x(k) is uniquely determined

Detectability

Definition

A system is called *detectable* if it is reconstructable asymptotically for $t \to +\infty$

Theorem

A system is detectable if and only if A_{uo} is asymptotically stable

Proof:

• See previous slide: $A^k \bar{x} = T \begin{bmatrix} A^k_{uo} z_{uo} \\ 0 \end{bmatrix}$ converges to zero for all $\bar{x} \in \ker(\Theta)$ if and only if $\lim_{k \to \infty} A^k_{uo} = 0$. In this case

$$x(k) = A^{k}x_{0} + A^{k}\bar{x} + \sum_{i=1}^{k-1} A^{i}Bu(k-1-j)$$

tends to be uniquely defined for any $\bar{x} \in \ker(\Theta)$

Note: observability implies reconstructability, that implies detectability

Duality

• Given a linear system (A, B, C, D), with $x \in \mathbb{R}^n$, $u \in \mathbb{R}^m$ and $y \in \mathbb{R}^p$, we call dual system the system

$$\begin{cases} \tilde{x}(k+1) &= A'\tilde{x}(k) + C'\tilde{u}(k) \\ \tilde{y}(k) &= B'\tilde{x}(k) + D'\tilde{u}(k) \end{cases}$$

where $\tilde{x} \in \mathbb{R}^n$, $\tilde{u} \in \mathbb{R}^p$ and $\tilde{y} \in \mathbb{R}^m$

• The reachability [observability] matrix of the dual system is equal to the transpose of the observability [reachability] matrix of the original system

$$\tilde{R} = \begin{bmatrix} C' & A'C' & \dots & (A')^{n-1}C' \end{bmatrix} = \Theta'$$

$$\tilde{\Theta} = \begin{bmatrix} B' \\ B'A' \\ \vdots \\ B'(A')^{n-1} \end{bmatrix} = R'$$

• The system (A, B, C, D) is reachable [observable] if and only if its dual system (A', C', B', D') is observable [reachable]

English-Italian Vocabulary

Translation is obvious otherwise.