CPM-Netzplantechnik

Weiterführende Literatur:

- Wikipedia-Artikel "Netzplantechnik"
- Wikipedia-Artikel "Methode des kritischen Pfades"

Die Methode des kritischen Pfades wird auch Tätigkeits-Pfeil-Darstellung oder Tätigkeits-Pfeil-Darstellung CPM-Netzplantechnik (von englisch critical path method, CPM) genannt. ¹

critical path method

Netzplantechnik, DIN 69900-1

"Netzplantechnik umfasst alle Verfahren zur Analyse, Beschreibung, Planung, alle Verfahren Steuerung und Überwachung von Abläufen auf der Grundlage der Graphentheo- Abläufen rie, wobei Zeit, Kosten, Einsatzmittel bzw. Ressourcen berücksichtigt werden Grundlage der Graphentheorie können. Ein Netzplan ist die graphische oder tabellarische Darstellung von Abläufen und deren Abhängigkeiten".²

Zentrale Begriffe

Ein Vorgang ist eine abgegrenzte Arbeitseinheit mit Anfangs- und Endzeit (vgl. vorgang Arbeitspaket im Projektmanagement). Er besitzt eine Dauer. Unter Berücksich- Anfangs- und Endzeit tigung der Dauer der einzelnen Vorgänge und unter Berücksichtigung ihrer Dauer Abhängigkeiten wird ermittelt, wann die Vorgänge stattfinden. In CPM Netzen werden Vorgänge als Pfeile zwischen Ereignissen dargestellt.³

Pfeile zwischen Ereignissen

Zweck

- Darstellen logischer Zusammenhänge
- Zeitplan für alle Vorgänge entwickeln
- Kritischer Pfad und Ressourcen-Engpässe identifizieren
- Terminüberwachung, laufende Kontrolle

Vier Teilaufgaben

- Kapazitätsplanung
- Kostenplanung

¹Wikipedia-Artikel "Methode des kritischen Pfades".

²Softwaresysteme: Präsenztag 3: Foliensatz: Projektplanung (Petri-Netze, CPM-Netzplan, Gantt-Diagramm), Design Pattern, Seite 14.

³Softwaresysteme: Präsenztag 3: Foliensatz: Projektplanung (Petri-Netze, CPM-Netzplan, Gantt-Diagramm), Design Pattern, Seite 15.

- Strukturplanung
- Zeitplanung / Zeitfenster

Konstruktion eines Netzes

Dem Vorgang A_k wird ein Pfeil e_k zugeordnet und mit dessen Dauer bewertet. i_k und j_k sind Anfangs- und Endereignis. Die Anordnung erfolgt nach der Ende-Start-Beziehung.

Regel 1: Folgen die Vorgänge A_3 und A_4 unmittelbar A_1 und A_2 so gilt:⁵

Regel 2: Gibt es zwei Vorgänge (parallele Arbeitspakete) mit demselben Anfangsund Endereignis, so wird das Endereignis gesplittet und ein Scheinvorgang eingeführt:6

Regel 3: Folgt der Vorgange A_4 unmittelbar A_1 und A_2 und folgt A_5 unmittelbar A_1 , A_2 und A_3 so wird ein Scheinvorgang eingeführt:

⁴Softwaresysteme: Präsenztag 3: Foliensatz: Projektplanung (Petri-Netze, CPM-Netzplan, Gantt-Diagramm), Design Pattern, Seite 22.

⁵Softwaresysteme: Präsenztag 3: Foliensatz: Projektplanung (Petri-Netze, CPM-Netzplan, Gantt-

Diagramm), Design Pattern, Seite 24.

⁶Softwaresysteme: Präsenztag 3: Foliensatz: Projektplanung (Petri-Netze, CPM-Netzplan, Gantt-Diagramm), Design Pattern, Seite 25.

⁷Softwaresysteme: Präsenztag 3: Foliensatz: Projektplanung (Petri-Netze, CPM-Netzplan, Gantt-Diagramm), Design Pattern, Seite 26.

Es gibt nur eine Quelle (Projektstart) und eine Senke (Projektende). Ggf. müssen Scheinvorgänge eingeführt werden, um dies zu erreichen. Kann ein Vorgang A_2 bereits begonnen werden, wenn ein Teil des Vorgangs A_1 erledigt ist, so wird A_1 gesplittet.⁸

Beispiel⁹

Vorwärtsterminierung: +, bei Auswahl Maximum

 FZ_i Frühester Zeitpunkt, zu dem Ereignis i eintreten kann

FAZ = Frühester AnfangsZeitpunkt für Vorgang

FEZ = Frühester EndeZeitpunkt für Vorgang

i	Nebenrechnung	FZ_i
1		0
2		5
3		18
4		7
5		19
6		26
7	max(19,22)	22
8	max(30,30,28)	30

 $^{^8}Softwaresysteme:$ Präsenztag 3: Foliensatz: Projektplanung (Petri-Netze, CPM-Netzplan, Gantt-Diagramm), Design Pattern, Seite 27.

⁹Softwaresysteme: Präsenztag 3: Foliensatz: Projektplanung (Petri-Netze, CPM-Netzplan, Gantt-Diagramm), Design Pattern, Seite 16 - 21.

Rückwärtsterminierung: –, bei Auswahl Minimum

 SZ_i Spätester Zeitpunkt, zu dem Ereignis i eintreten kann

SAZ = Spätester AnfangsZeitpunkt für Vorgang

SEZ = Spätester EndeZeitpunkt für Vorgang

Puffer: GP: gesamter Pufferzeit (GP = SZ - FZ)

Kritische Pfade: Pfad(e) mit minimaler Pufferzeit, meist 0

i	1	2	3	4	5	6	7	8
FZ_i	0	5	18	7	19	26	22	30
SZ_i	0	5	18	9	19	26	24	30
GP	0	0	0	2	0	0	2	0

i	Nebenrechnung	SZ_i
1	$30 - 11_{(5\to 8)} - 14_{(2\to 5)} - 5_{(1\to 2)} = 0$	
	$30 - 4_{(6\to 8)} - 8_{(3\to 6)} - 18_{(1\to 3)} = 0$	
	$30 - 6_{(7 \to 8)} - 15_{(4 \to 7)} - 7_{(1 \to 4)} = 2$	
	min(0,0,2)	0
2	$30 - 11_{(5\to 8)} - 14_{(2\to 5)} = 5$	5
3	$30 - 4_{(6\to 8)} - 8_{(3\to 6)} = 18$	
	$30 - 6_{(7 \to 8)} - 1_{(3 \to 7)} = 23$	
	min(18,23)	18
4	$30 - 6_{(7 \to 8)} - 15_{(4 \to 7)}$	9
5	$30 - 11_{(5 \to 8)}$	19
6	$30 - 4_{(6 o 8)}$	26
7	$30 - 6_{(7 \to 8)}$	24
8	siehe FZ ₈	30

Literatur

- [1] Softwaresysteme: Präsenztag 3: Foliensatz: Projektplanung (Petri-Netze, CPM-Netzplan, Gantt-Diagramm), Design Pattern. https://www.studon.fau.de/file2762383_download.html.
- [2] Wikipedia-Artikel "Methode des kritischen Pfades". https://de.wikipedia.org/wiki/Methode_des_kritischen_Pfades.
- [3] Wikipedia-Artikel "Netzplantechnik". https://de.wikipedia.org/wiki/ Netzplantechnik.