[Review] One-way ANOVA

• 분산분석

- 비계량(non-metric) 독립변수와 계량(metric) 종속변수 사이의 관계나 영향을 분석하는 방법
- 독립변수 : 범주형이며, 변수의 수로 분산분석 결정
 - 변수형태 : 요인(factor), 처리(treatment), 집단(group)
 - 범주(수준) : 요인을 구분하는 분류 기준을 의미
- 종속변수의 수에 따라 분류
 - 일변량 분산분석(ANOVA): 종속변수가 하나인 경우
 - 다변량 분산분석(MANOVA): 종속변수가 둘 이상인 경우
- 가정: $Y_{ij} \sim iid N(\mu_i, \sigma^2) (i = 1, 2, \dots, a)$
 - 각 범주(수준)마다 동일한 분산을 갖는 정규모집단에서 추출 된 확률표본으로 가정
 - 각 범주(수준)의 모집단 분포은 서로 독립

- 자료구조: 1원배치 분산분석
 - a 개의 수준, 각 수준마다 $n_{_{i}}$ 개 표본(관측자료) 가정

수준	Factor A				
구正	1	2	•••	а	
자료 (표본)	$egin{pmatrix} Y_{11} & & & & & & & & & & & & & & & & & & $	$egin{pmatrix} Y_{21} \\ Y_{22} \\ \vdots \\ Y_{2,\mathrm{n}_{2}} \end{pmatrix}$	- - - -	$egin{pmatrix} Y_{a1} \\ Y_{a2} \\ \vdots \\ Y_{a,n_{a}} \end{pmatrix}$	
표본평균	Y_1	Y_2		$Y_{\rm a}$	
전체 평균		\overline{Y}			

모집단 : iid $N(\mu_i, \sigma^2)$

$$\overline{Y} = \frac{\sum_{i=1}^{a} n_i \overline{Y_i}}{N} = \frac{\sum_{i=1}^{a} \sum_{j=1}^{n_i} Y_{ij}}{\sum_{i=1}^{a} n_i}$$

• 분산분석 모형

- i 수준의 모평균을 μ_i 로 표현할 때,

$$Y_{ij} = \mu_i + \varepsilon_{ij} \ (i = 1, 2, \dots, a; j = 1, 2, \dots, n_i) \text{ where } \varepsilon_{ij} \sim N(0, \sigma^2)$$

$$= \mu + (\mu_i - \mu) + \varepsilon_{ij} \quad \text{where} \quad \mu = \frac{\sum_{i=1}^{a} n_i \mu_i}{N} = \frac{\sum_{i=1}^{a} \sum_{j=1}^{N_i} Y_{ij}}{\sum_{i=1}^{a} N_i}$$

$$= \mu + \alpha_i + \varepsilon_{ii}$$
 where $\alpha_i = \mu_i - \mu$

- 요인 A의 주효과(main effect)의 추정

$$\alpha_i = \mu_i - \mu \implies \hat{\alpha}_i = \hat{\mu}_i - \hat{\mu} = \overline{Y}_i - \overline{Y}$$

- 변동분해

$$\sum_{i=1}^{a} \sum_{j=1}^{n_i} (Y_{ij} - \overline{Y})^2 = \sum_{i=1}^{a} n_i (\overline{Y}_i - \overline{Y})^2 + \sum_{i=1}^{a} \sum_{j=1}^{n_i} (Y_{ij} - \overline{Y}_i)^2$$

$$\Leftrightarrow$$
 SST = SSA + SSE

$$\Rightarrow$$
 df_T = df_A + df_E \Leftrightarrow N - 1 = (a - 1) + (N - a)

• 분산분석표

Source	SS	df	MS	F
Model	SSA	a – 1	MSA	MSA
Error	SSE	N – a	MSE	$\frac{\text{MSA}}{\text{MSE}}$
Total	SST	N – 1		MISE

where MSA =
$$\frac{SSA}{a-1}$$
 and MSE = $\frac{SSE}{N-a}$

- 검정 과정/F-검정
 - ① 가설설정 : 요인 수준간 평균 차이(=효과 차이) 비교
 H₀ : All μ₁ are equal (or All α₁ = 0) vs H₁ : Not H₂
 - ② 검정통계량과 분포 $F_o = \frac{ \hat{r} + \hat{r} + \hat{r} + \hat{r}}{\hat{r} + \hat{r} + \hat{r} + \hat{r}} = \frac{MSA}{MSE} \sim F(a-1, N-a) \text{ under } H_o$
 - $p H\lambda$ ਸਿੱਧਾ ਹੈ। $p value = Pr\{F(a 1, N a) > F_a \mid H_a\} \Rightarrow if p value < \alpha, H_a is rejected$
 - ④ 사후분석(=다중비교)
 - 귀무가설이 기각되면, 구체적으로 어느 수준에서 차이가 있는 지를 분석하는 과정으로 평균이 동일한 수준(그룹)을 판단
 - 방법 : LSD, Tukey, Scheffe, SNK, Duncan/Bonffernoi etc

MANOVA: 일원배치 다변량 분산분석

- 다변량분산분석의 목적
 - [Review] 일변량 분산분석 : 요인수준에 대한 종속변수의 모평균 차이 검정
 - 둘 이상의 종속변수에 대한 요인수준간 모평균벡터의 차이를 검 정하는 것이 목적
- 자료 구조 : p-차원 벡터 $\mathbf{Y}'_{ij} = [Y_{ij1} \ Y_{ij2} \ \cdots \ Y_{ijp}]$ 로 가정

수준	Factor A				
난	1	2	•••	a	
	Y' ₁₁	Y' ₂₁		Y' _{a1}	
자료 벡터	Y' ₁₂	Y '22		Y' _{a2}	
백년 (표본)	:	:	•••	:	
	Y' _{1, n₁}	Y' _{2, n₂}		Y ' _{a, n a}	

- 가정 : 일변량 분산분석과 거의 동일
 - 요인의 각 수준별 자료는 동일한 공분산행렬을 따르는 다변량 정규모집단에서 랜덤하게 추출된 자료로 가정
 - 인자의 각 수준에 대한 정규모집단은 서로 독립으로 가정

$$\mathbf{Y}_{ij} \sim iid \ N_p(\mathbf{\mu}_i, \mathbf{\Sigma}) \text{ where } i = 1,2, \dots, a$$

- 모형 설정 :
 - 일변량분산분석의 형식과 동일하나 변수를 벡터로 표현하는 차이가 존재

$$\mathbf{Y}_{ij} = \mathbf{\mu} + \mathbf{\alpha}_{i} + \mathbf{\epsilon}_{ij}$$
 where $\mathbf{\epsilon}_{ij} \sim N_{p}(\mathbf{0}, \mathbf{\Sigma}), \ \mathbf{\alpha}_{i} = \mathbf{\mu}_{i} - \mathbf{\mu}_{i}$

$$\mathbf{Y_{ij}} = egin{bmatrix} \mathbf{Y_{ij1}} \ \mathbf{Y_{ij2}} \ \vdots \ \mathbf{Y_{ij}_p} \end{bmatrix} = egin{bmatrix} \boldsymbol{\mu_1} \ \boldsymbol{\mu_2} \ \vdots \ \mathbf{\mu_p} \end{bmatrix} + egin{bmatrix} \boldsymbol{lpha_2} \ \vdots \ \mathbf{X_{ij}_p} \end{bmatrix} + egin{bmatrix} \boldsymbol{\epsilon_{ij1}} \ \boldsymbol{\epsilon_{ij2}} \ \vdots \ \mathbf{X_{ij}_p} \end{bmatrix}$$

• 변동분해

$$\begin{split} &\sum\nolimits_{i=1}^{a}\sum\nolimits_{j=1}^{n_{i}}\left(Y_{ij}-\overline{Y}\right)\!\!\left(Y_{ij}-\overline{Y}\right)'=\sum\nolimits_{i=1}^{a}n_{i}\!\left(\overline{Y}_{i}-\overline{Y}\right)\!\!\left(\overline{Y}_{i}-\overline{Y}\right)'+\sum\nolimits_{i=1}^{a}\sum\nolimits_{j=1}^{n_{i}}\!\left(Y_{ij}-\overline{Y}_{i}\right)\!\!\left(Y_{ij}-\overline{Y}_{i}\right)'\\ &\Leftrightarrow T_{\scriptscriptstyle p\times p}=B_{\scriptscriptstyle p\times p}+W_{\scriptscriptstyle p\times p}=\div \text{순간}\;\left(\textit{Between}\;\;\right)\;\text{변동}\;+\div \text{순내}\;\left(\textit{Within}\;\;\right)\;\text{변동} \end{split}$$

- 수준내 변동 $\mathbf{W}_{p \times p}$ 의 의미

$$\begin{split} \mathbf{W}_{p\times p} &= \sum\nolimits_{i=1}^{a} \sum\nolimits_{j=1}^{n_{i}} \left(\mathbf{Y}_{ij} - \overline{\mathbf{Y}_{i}}\right) \! \left(\mathbf{Y}_{ij} - \overline{\mathbf{Y}_{i}}\right)' = \sum\nolimits_{i=1}^{a} \left(\mathbf{n}_{i} - \mathbf{1}\right) \mathbf{S}_{i} \\ & - \frac{\texttt{각}}{-} \frac{\texttt{수준의}}{-} \frac{\texttt{ヌ분산행렬이}}{-} - \frac{\texttt{동일하다는}}{-} \frac{\texttt{가정에서의}}{-} - \frac{\texttt{추정된}}{-} \frac{\text{합동}}{-} \frac{\texttt{표본공분산행렬}}{-} \longrightarrow \mathbf{S}_{p} = \frac{\mathbf{W}_{p\times p}}{\mathbf{N} - \mathbf{a}} \end{split}$$

• 분산분석표

Source	제곱합과 교차곱 행렬(SS)	df
Between	$\mathbf{B}_{p \times p} = \sum_{i=1}^{a} \mathbf{n}_{i} (\overline{\mathbf{Y}}_{i} - \overline{\mathbf{Y}}) (\overline{\mathbf{Y}}_{i} - \overline{\mathbf{Y}})' [= \mathbf{H} \text{ in SAS }]$	a – 1
Within	$\mathbf{W}_{p \times p} = \sum_{i=1}^{a} \sum_{j=1}^{n_i} (\mathbf{Y}_{ij} - \overline{\mathbf{Y}}_i) (\mathbf{Y}_{ij} - \overline{\mathbf{Y}}_i)' [= \mathbf{E} \text{ in SAS }]$	N – a
Total	$\mathbf{T}_{p \times p} = \sum_{i=1}^{a} \sum_{j=1}^{n_{i}} (\mathbf{Y}_{ij} - \overline{\mathbf{Y}}) (\mathbf{Y}_{ij} - \overline{\mathbf{Y}})'$	N – 1

- 다변량 분산분석의 검정 과정
 - ① 가설검정 : 각 수준에 대한 모평균벡터가 모두 동일함을 검정

$$H_{\circ}: All \ \mu_{i} \ are \ equal \ (or \ All \ \alpha_{i} = 0) \ vs \ H_{1}: Not \ H_{\circ} \ \begin{bmatrix} \mu_{11} \\ \mu_{12} \\ \vdots \\ \mu_{1p} \end{bmatrix} \begin{bmatrix} \mu_{21} \\ \mu_{22} \\ \vdots \\ \mu_{4p} \end{bmatrix} = \cdots = \begin{bmatrix} \mu_{a1} \\ \mu_{a2} \\ \vdots \\ \mu_{ap} \end{bmatrix}$$
② 검정통계량과 분포 $\Lambda^{*} = \frac{|\mathbf{W}|}{|\mathbf{B} + \mathbf{W}|} = \text{Wilk' s } \lambda \sim F - dist . \ (작을수록 기각)$
• Wilk's Lambda의 분포

p (차원)	a (수준수)	다변량 정규자료에 대한 근사 분포
1	>=2	$\Lambda_{o} = \left(\frac{\mathbf{N} - \mathbf{a}}{\mathbf{a} - 1}\right) \left(\frac{1 - \boldsymbol{\Lambda}^{*}}{\boldsymbol{\Lambda}^{*}}\right) \sim F(\mathbf{a} - 1, \mathbf{N} - \mathbf{a})$
2	>=2	$\Lambda_o = \left(\frac{\mathbf{N} - \mathbf{a} - 1}{\mathbf{a} - 1}\right) \left(\frac{1 - \sqrt{\Lambda^*}}{\sqrt{\Lambda^*}}\right) \sim F\left(2(\mathbf{a} - 1), 2(\mathbf{N} - \mathbf{a} - 1)\right)$
>=1	2	$\Lambda_{o} = \left(\frac{\mathbf{N} - p - 1}{p}\right) \left(\frac{1 - \boldsymbol{\Lambda}^{*}}{\boldsymbol{\Lambda}^{*}}\right) \sim F(p, \mathbf{N} - p - 1)$
>=1	3	$\Lambda_o = \left(\frac{\mathbf{N} - p - 2}{p}\right) \left(\frac{1 - \sqrt{\Lambda^*}}{\sqrt{\Lambda^*}}\right) \sim F\left(2p, 2(\mathbf{N} - p - 2)\right)$

• Bartlett의 검정통계량 : N이 충분히 크고, 귀무가설이 참인 조건하에서의 검 정통계량에 대한 근사분포 제안 $\Lambda_0 = -\left(\mathbf{N} - \mathbf{1} - \frac{p + \mathbf{a}}{2}\right) \ln \Lambda^* \sim \chi^2(p(\mathbf{a} - \mathbf{1}))$

• [참고] 다변량 분산분석의 검정통계량 유도

- 분산분석표에서 $SSB_{p \times p} = H$, $SSW_{p \times p} = E$ 라고 정의할 때, 다변 량 분산분석의 검정통계량은 다음의 식을 만족하는 λ 의 함수로 표현

 $|H - \lambda E| = 0 \iff |E^{-1}H - \lambda I| = 0$

- λ 는 $E^{-1}H$ 의 고유값이 되며, 종속(반응)변수가 p개 이면 p개의 고유값이 존재하는 데, '0'가 아닌 고유값을 $\lambda_1 > \lambda_2 > \cdots > \lambda_t$ (t < p) 로 표현할 때, 다변량 분산분석의 검정통계량은 고유값의 함수로 표현
- p=1인 일변량 분산분석의 경우 $\lambda_1 = \frac{H}{E} = \frac{SSB}{SSW}$
- 다변량 분산분석의 검정통계량
 - \rightarrow 검정 통계량을 근사 F-분포를 따르는 Λ_{0} 로 변환하여 검정

• Wilk's Lambda
$$\Lambda^* = \frac{|\mathbf{W}|}{|\mathbf{B} + \mathbf{W}|} = \frac{|E|}{|H + E|} = \prod_{i=1}^t \frac{1}{1 + \lambda_i}$$

• Pillai's Trace
$$\mathbf{V}^* = trace\left(\frac{\mathbf{W}}{\mathbf{B} + \mathbf{W}}\right) = trace\left(\frac{E}{H + E}\right) = \sum_{i=1}^{t} \frac{\lambda_i}{1 + \lambda_i}$$

- Hotelling-Lawley Trace $\mathbf{T}^* = trace \left(HE^{-1}\right) = \sum_{i=1}^t \lambda_i$
- Roy's Greatest Root $\mathbf{R}^* = \max \{\lambda_i\} = \lambda_1$

- ③ p-값 계산과 기각역
 - p-값은 종속변수(차원)의 수(p)와 수준의 수(a)에 의해 결정된 근사 F-분포로부터 계산

$$\begin{array}{ll} \mathrm{p-value} &= \mathrm{Pr}\left(F\left(df_{1},df_{2}\right) > \Lambda_{o} \mid H_{o}\right) \\ & \frac{\mathrm{Rejection}}{-} \frac{\mathrm{region}}{-} \longrightarrow & \mathrm{if} \quad \mathrm{p-value} < \alpha \,, \; \mathrm{Rejection} \quad H_{o} \\ \\ \mathrm{p-value} &= \mathrm{Pr}\left(\chi^{\,2}\left(p\left(\mathbf{a}-\mathbf{1}\right)\right) > \Lambda_{o} \mid H_{o}\right) \\ & \frac{\mathrm{Rejection}}{-} \frac{\mathrm{region}}{-} \longrightarrow & \mathrm{if} \quad \mathrm{p-value} < \alpha \,, \; \mathrm{Rejection} \quad H_{o} \end{array}$$

- ④ 사후분석(다중비교)
 - 일변량 분산분석과 동일

[참고] SAS program

Proc ANOVA; or Proc GLM;

Class var1 ; /*범주형 변수 선언*/

Model dependent var's = independent var's ; /* 모형 선언*/MANOVA H=factors/PrintH PrintE ; /*효과 차이 분석 변수*/Means factors/Alpha=0.05 post_method; /*다중비교 선언*/

Run;

예제를 활용한 이해

- 일변량 분산분석 독립변수가 종속변수에 미치는 영향을 분석
 (예1) 일변량 분산분석 : 고3 학생들의 영어실력이 지역별 (A시, B시, C시)로 차이가 있는지를 검정
- 다변량분산분석 두 개 이상의 종속변수(반응값)의 조합과 독립변수 들 사이의 관계를 분석
 - 여러 종속변수의 조합에 대한 효과의 동시검정을 중요시 함 (예2) 다변량 분산분석 : 고3 학생들의 어학실력(국어, 영어)이 지역 별(A시, B시, C시)로 차이가 있는지를 검정

- MANOVA 기본가정

- 1.관측값이 서로 독립이다.
- 2.각 집단의 분산-공분산 행렬이 동일하다
- 3.모든 종속변수는 다변량 정규분포를 따른다
- 4.종속변수들 간의 관계가 선형적이다
- 5.종속변수들 간의 상관의 정도가 너무 낮거나 높지 않아야 함
- 분석목적 :
- 모집단의 중심, 즉 평균벡터 사이에 차이가 있는지의 여부
- 모집단들의 전부 혹은 어떤 것들이 종속벡터변수에 의해 구성된 공 간에서 중심이 같은지 혹은 다른지 여부를 조사

<예> 세 가지 교수법에 따라 어휘발달에 차이가 있는지를 검정

P개의 변수가 있고 n개의 집단에 대하여 평균벡터가 같은지 여부 검정시 귀무가설

$$H_{0}: \begin{bmatrix} \mu_{11} \\ \mu_{12} \\ \vdots \\ \mu_{1p} \end{bmatrix} = \begin{bmatrix} \mu_{21} \\ \mu_{22} \\ \vdots \\ \mu_{2p} \end{bmatrix} = \cdots = \begin{bmatrix} \mu_{g1} \\ \mu_{g2} \\ \vdots \\ \mu_{gp} \end{bmatrix}$$

g=2, n=3인 경우
$$H_0: \begin{bmatrix} \mu_{11} \\ \mu_{12} \end{bmatrix} = \begin{bmatrix} \mu_{21} \\ \mu_{22} \end{bmatrix} = \begin{bmatrix} \mu_{31} \\ \mu_{32} \end{bmatrix}$$

 H_1 :세 평균 벡터는 모두 반드시 같지는 않다.

<예> 어학실력의 차이: 고등학교 3학년 학생들의 어학실력을 테스트하기 위하여 서울, 부산, 광주의 세 지역의 학생들을 대상으로 국어와 경어시험을 치르게 하였다. 각 지역에서 10의 학생을 임의로 표본추출하여 시험을 치룬 후에 그 결과를 다음과 같이 정리하였다.

서 울		부	산	광	주
국 어	영 어	국 어	영 어	국 어	영 어
82	93	72	58	72	82
92	65	78	70	68	83
70	82	83	82	88	80
77	78	89	75	93	88
83	90	93	70	92	90
88	84	88	72	66	68
95	90	90	63	94	98
86	88	86	62	88	94
75	95	90	75	86	92
90	88	85	53	90	86

$$\overline{Y}_{1} = \begin{bmatrix} 83.8 \\ 85.3 \end{bmatrix} \overline{Y}_{2} = \begin{bmatrix} 85.4 \\ 68.0 \end{bmatrix} \overline{Y}_{3} = \begin{bmatrix} 83.7 \\ 86.1 \end{bmatrix}$$

$$\overline{Y} = \begin{bmatrix} 84.3 \\ 79.8 \end{bmatrix}$$

$$H_0: \overline{Y_1} = \overline{Y_2} = \overline{Y_3}$$

<예> 일원 다변량 분산분석표

원천	제곱합(SS)	자유도
그룹간	$SSPB = \sum_{i} n_{i} (\overline{\underline{Y}}_{i} - \overline{\underline{Y}}) (\overline{\underline{Y}}_{i} - \overline{\underline{Y}})'$	g-1
그룹내	$SSPW = \sum_{i=1}^{g} \sum_{j=1}^{ni} (\underline{Y}_{ij} - \overline{\underline{Y}}_{i}) (\underline{Y}_{ij} - \overline{\underline{Y}}_{i})'$	$\sum_{i=1}^{g} n_i - g$
합계	$SSPT = \sum_{i=1}^{g} \sum_{j=1}^{ni} (\underline{Y}_{ij} - \overline{\underline{Y}}) (\underline{Y}_{ij} - \overline{\underline{Y}})'$	$\sum_{i=1}^{g} n_i - 1$

H₀의 검정 - Wilks'Lambda[Λ]검정

$$\Lambda = \frac{\left| SSPW \right|}{\left| SSPB + SSPW \right|} = \frac{\left| SSPW \right|}{\left| SSPT \right|}$$
$$= \frac{\left| \sum \sum (Y_{ij} - \overline{Y_i})(Y_{ij} - \overline{Y_i}) \right|}{\left| \sum \sum (Y_{ij} - \overline{Y_i})(Y_{ij} - \overline{Y_i})' \right|}$$

→ Λ가 작으면 H₀ 기각

고유값(eigenvalue)

- 분산분석에서의 집단간 변동과 집단내 변동의 비율을 의미함
- 이 값이 클수록 판별함수의 판별력이 높다고 할 수 있음

Wilks'Lambda[Λ]

- 집단내 변동과 총변동(집단간 변동+집단내 변동)의 비율로서 판별 점수의 총변동 중에서 집단간 변동이 설명하지 못한 비율을 나타냄
- 이 값이 작을수록 판별함수의 판별력이 높다고 할 수 있음
- 카이제곱분포에 근접하므로 이를 이용하여 통계적 유의성을 검정할 수 있음
- 유의성 검정은 귀무가설은 "모집단에서의 각 판별함수의 집단중심 이 모두 같다"임

SAS 프로그램

```
data manova_1;
 do area='seoul', 'pusan', 'kwangju';
do k=1 to 10;
   input y1 y2 @@; output;
 end; end;
datalines;
82 93 92 65 70 82 77 78 83 90 88 84 95 90 86 88 75 95 90 88
72 58 78 70 83 82 89 75 90 70 88 72 90 63 86 62 90 75 85 53
72 82 68 83 88 80 93 88 92 90 66 68 94 98 88 94 86 92 90 86
proc GLM; /* proc ANOVA */
class area;
model y1 y2=area;
 manova H=area/printh printe;
means area/Alpha=0.05 lsd;
run;
```

SAS output

- 분산분석
 - Y1(국어) 결과

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	2	12.2	6.1	0.09	0.9186
Error	27	1934.6	71.65		
Corrected Total	29	1946.8			

- Y2(영어) 결과

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	2	2091.8	1045.9	13.82	<.0001
Error	27	2043	75.67		
Corrected Total	29	4134.8			

• 다변량분산분석

- 종속변수의 상관관계

DF = 27	y 1	y2
v4	1	0.325895
y1		0.0906
v2	0.325895	1
y2	0.0906	

- 3종 제곱합

H = Type III SSCP Matrix for area

	y1	y2
y1	12.2	-159.7
y2	-159.7	2091.8

- 고유값:특성치

Characteristic Roots and Vectors of: E Inverse * H, where

H = Type III SSCP Matrix for area

E = Error SSCP Matrix

Characteristic Root	Percent Chara	1	
Characteristic Root	reiteilt	y1	y2
1.2111846	100	-0.0094569	0.0233407
3.71E-06	0	0.0221109	0.0016881

- 다변량분산분석

MANOVA Test Criteria and F Approximations for the Hypothesis of No Overall area Effect H = Type III SSCP Matrix for area E = Error SSCP Matrix

		S=2 M=-0.5	N=12		
Statistic	Value	F Value	Num DF	Den DF	Pr > F
Wilks' Lambda	0.4522446	6.33	4	52	0.0003
Pillai's Trace	0.5477574	5.09	4	54	0.0015
Hotelling-Lawl ey Trace	1.2111883	7.78	4	30.19	0.0002

NOTE: F Statistic for Roy's Greatest Root is an upper bound.

NOTE: F Statistic for Wilks' Lambda is exact.

2

<.0001

27

16.35

- 다중비교

Root

Roy's Greatest

1.2111846

Means with the same letter of Y1 are not significantly different.			Means with the same letter of Y2 are not significantly different.				
t Grouping	Mean	N	area	t Grouping	Mean	N	area
Α	85.1	10	pusan	Α	86.1	10	kwang
Α				Α			
Α	83.8	10	seoul	Α	85.3	10	seoul
Α							
Α	83.7	10	kwang	В	68	10	pusan

[예제 : SPSS 에서의 분석]

어떤 곤충을 품종별(3종)로 10마리씩 채집하여 부절, 세 부위(A,B,C)의 너비(microns)를 측정. 세 부위의 너비를 종합적으로 볼 때 곤충품종별로 차이가 있는지 검정

1) data 입력

	품종	Α	В	С	변수	변수
1	1	191	131	53		
2	1	185	134	50		
3	1	200	137	52		
4	1	173	127	50		
5	1	171	128	49		
6	1	160	118	47		
7	1	188	134	54		
- 8	1	186	129	51		
9	1	174	131	52		
10	1	163	115	47		
11	2	186	108	49		
12	2	211	122	49		
13	2	201	144	47		
14	2	141	131	54		
15	2	184	108	43		
16	2	211	118	51		

2) 분석방법 결정

3) 기본가정에 대한 가설검정

$$H_0: \; \mathbf{\Sigma}_1 = \mathbf{\Sigma}_2 = \mathbf{\Sigma}_3 \quad \left(\begin{bmatrix} \sigma_{1A} \\ \sigma_{1B} \\ \sigma_{1B} \end{bmatrix} = \begin{bmatrix} \sigma_{2A} \\ \sigma_{2B} \\ \sigma_{2C} \end{bmatrix} = \begin{bmatrix} \sigma_{3A} \\ \sigma_{3B} \\ \sigma_{3C} \end{bmatrix} \right)$$

공분산행렬에 대한 Box의 동일성 검정^a

Box의 M 21,286 F 1,483 자유도1 12 자유도2 3532,846 유의확률 ,123

여러 집단에서 종속변수의 관측 공분산 행렬이 동일한 영가설을 검정합니다.

a. 계획: Intercept+품종

귀무가설을 기각하지 못하므로 기본가정에 위배되지 않음

일변량 분산동일성 검정

오차 분산의 동일성에 대한 Levene의 검정^a.....

	F	자유도1	자유도2	유의확률
Α	,457	2	27	,638
В	,396	2	27	,677
С	,053	2	27	,949

여러 집단에서 종속변수의 오차 분산이 동일한 영가설을 검 정합니다.

a. 계획: Intercept+품종

4) 품종별 너비 차이에 대한 가설검정

$$H_0: \ \boldsymbol{\mu}_1 = \boldsymbol{\mu}_2 = \boldsymbol{\mu}_3 \quad \left(\begin{bmatrix} \boldsymbol{\mu}_{1A} \\ \boldsymbol{\mu}_{1B} \end{bmatrix} = \begin{bmatrix} \boldsymbol{\mu}_{2A} \\ \boldsymbol{\mu}_{2B} \end{bmatrix} = \begin{bmatrix} \boldsymbol{\mu}_{3A} \\ \boldsymbol{\mu}_{3B} \end{bmatrix} \right) \\ \left[\boldsymbol{\mu}_{1C} \end{bmatrix} \quad \left[\boldsymbol{\mu}_{2C} \end{bmatrix} \quad \left[\boldsymbol{\mu}_{3C} \end{bmatrix} \right)$$

		[J변량 검정¢				1
효과		값	F	가설 자유도	오차 자유도	유의확률	//
절편	Pillai의 트레이스	,997	3054,817ª	3,000	25,000	,000	
	Wilks의 람다	,003	3054,817ª	3,000	25,000	,000	
	Hotelling의 트레이스	366,578	3054,817ª	3,000	25,000	,,000	<u>'</u>
	Roy의 최대근	366,578	3054,817ª	3,000	25,000	,000	1
품종	Pillai의 트레이스	1,043	9,443	6,000	52,000	.000	
	Wilks의 람다	,049	29,391ª	6,000	50,000	,000	
	Hotelling의 트레이스	17,615	70,462	6,000	48,000	,000	
	Roy의 최대근	17,508	151,738 ^b	3,000	26,000	,000	.
		<u> </u>	·			•	.₫

- a. 정확한 통계량
- b. 해당 유익수준에서 하한값을 발생하는 통계량은 F에서 상한값입니다.
- c. 계획: Intercept+품종

귀무가설을 기각하므 로

세 종류의 곤충이 세 부위의 너비를 종합적으로 볼 때 현저한 차이가 존재

5) 개별 변수 대한 일변량 가설검정

	개체-간 효과 검정						
소스	종속변수	제 III 유형 제곱합	자유도	평균제곱	F	유의확률	
수정 모형	Α	25780, 200ª	2	12890, 100	64,882	,000	П
	В	209, 067 ^b	2	104,533	1,362	,273	П
	С	19,467°	2	9,733	1,116	,342	П
절편	Α	915602,700	1	915602,700	4608, 653	.000	П
	В	466253, 333	1	466253, 333	6076,868	000	
	С	75100,033	1	75100,033	8610, 195	,000	i i
품종	Α	25780, 200	2	12890, 100	64,882	.000	П
	В	209,067	2	104,533	1,362	,273	П
	С	19,467	2	9,733	1,116	,342	П
오차	Α	5364,100	27	198,670			$ \cdot $
	В	2071,600	27	76,726			П
	С	235,500	27	8,722			П
합계	Α	946747,000	30				П
	В	468534,000	30				П
	С	75355,000	30				
수정 합계	Α	31144,300	29				П
	В	2280,667	29				П
	С	254,967	29				

a. R 제곱 = ,828 (수정된 R 제곱 = ,815)

b. R 제곱 = .092 (수정된 R 제곱 = .024)

c. R 제곱 = .076 (수정된 R 제곱 = .008)

A부위는 곤충 품종별 차이가 존재하지만

B, C 부위는 곤충 품 종별 차이가 존재하지 않음

채집된 곤충의 품종을 구분하기 위해서는 A 부위의 너비를 측정 하여 판단

6) 추정된 주변평균

2018년 1학기