Approvised Learning Binary Classification

* Logistic regression is an algorithm for binary classification.

* Let's assume we have a image in our computer. That image always stored in three separated metrices. each metrices represent by one color (Red, Green, Blue)

- * if you store image 64x64 pixels image, then you will have three 64x64 pixels metrices.
- * Now we have to convert those pinel insensity values into a feature vector. There for we have to assign those values to out input feature vector n.

$$n = \begin{bmatrix} 255 \\ 231 \end{bmatrix}$$

finkl x pinel x no. of metrics
$$64 \times 64 \times 3 = 12288$$

$$134$$
 $n_n = 12288$

* In binary classification, our goal is larn a classifier that can input an Image represented by feature vector n and predict whether given label is 1 or 0. (In my case cator not cat)

+ A single training enample is represented by (n, y) (n,y) xER", yE 20,13 n is an dimentional feature y is the label either Dorl, * Your training set comprice : m training enamples * first tarining enample: (n(1), y(1)) A Second training enample : (20), y(2))

* In training enample : (20), y(2)) in training enample: { (x", y"), (xa, y"), ..., (xm, y")} * To define those training set create metrics using X 201 2(22 ... 2001) Macheight) XERNXM * In Python we use command X. shape = (n,m) E MColoumi) -★ In output (Y) → Y=[y(1) y(2)-...y(m)]
Y € IR'xm

Y. shape = (1, m)

Logistic Regression

Given n, want \(\bar{y} = P(y=1|n)

- * Let's assume n is a picture and you want of to tell you ! what is is the chance that this is a cat picture
- * Given that parameter of logistic regression will be w which also an n dimensional vector the mand together with b which is just a real number

Parameters: WERnx, bER

- * Then, given x, w and b how can we generate output y
- * What if we use Output $\bar{y} = w^T n + b$
- Above fomula represent linear regression. but it is not good algorithm for binary classification because we wat y hat to be (y=1).

.. g should be in between I an o (0< g<1)

- * win can give more than I or negative value.
- * Therefor, In Logistic regression we use of Coigmoid function) to put g in between I and O.

Logistic Regression Cost function

algorithm is doing. it define you the loss when your algorithm outputs of and the true label as 4 to be the squre error or one half a square error.

Loss (error) function: $L(\bar{y}, \bar{y}) = \frac{1}{2}(\bar{y} - \bar{y})^2$

L(\(\frac{1}{2}, \text{y}) = - (\text{y} \log(\frac{1}{2}) + (1-\text{y}) \log((1-\frac{1}{2})) \) 0 \leq \(\frac{1}{2}\)

y = 1

 $L(\bar{y}, y) = -\log \bar{y}$ y=1. because we want $-\log \bar{y}$ to be Small as partible

L(g,y) = -loy(1-g) y=1. becare we want $-log(1-\overline{y})$ to be large as possible

* Cost function tells you mersure of how well our entire training set doing. Cost function denote by J.

Cost function: Jan, 62 = + Et (y(1) y(i))

 $J(\omega,b) = \frac{1}{m} \sum_{i=1}^{m} L(\bar{g}^{(i)}, y^{(i)}) = \frac{1}{m} \sum_{i=1}^{m} [y^{(i)} \log \bar{g}^{(i)} + (1-y^{(i)}) \log (1-\bar{g}^{(i)})]$

Gradient Descent

w-i single real number b-! single real number T(w,b)-: height of the surface

WAS THE MAN NOW

non convex

conven -: have multiple optimat

Let's remove "b" for a moment

Repeat &

w: w - a dJ(w)

3

J(w, b) w: w-a d J(w, b)

b; b-a dJw,b)

Derivatives

assume a=2 then f(a)=6 assume a=2.001 then f(a)=6.003

slope of far at a=2 15

slope= height = 0.003 = 3 width 0.001

for anothe example assum a = 5 then f(a) = 15 assum a = 5.001 then f(a) = 15.003

Then slope of fen at a=5 is slope= 0.003 =3

$$\frac{d f(\alpha)}{d \alpha} = 3 = \frac{d}{d \alpha} f(\alpha)$$

if you increase value of "a" stope by 0.001, the value of fa)
goes up by three times as much. Therefor, we can tell this
function has same slope everywhere.

More Derivative Enampler

a=2 : fa)=4 d=2.001 : fa)=4.004 (4.004001)

slope of far at a= 2 in

slope = 0.004 = 4 = dfai

for anothe enample a = 5 : f(a) = 25a = 5.001 : f(a) = 25.010

 $d_{\alpha} = 0.01 = 10$, when a=5

* slope will change time to time in these functions.

Computation Graph

Enample

$$J(a,b,c) = 3(a+bc)$$

u= bc

V= atu

J= 3V

Left to right computation

- * In here I is our cost function because we are trying to minimize it.
- * we can in here is left to right computation. Cforward propagation

Derivatives with a Computation Fraph

$$d = 3$$

$$d = 3$$

$$d = 3$$

$$d = 3$$

$$d = 6$$

$$d = 3$$

$$d =$$

we saw in here is right to left computation.

(backward propagation)

ProMate

Logistic Regression Gradiant Descent

$$z = w^{T}x + b$$

$$g = \alpha = \sigma(z)$$

$$L(\alpha, y) = -Ly \log \alpha x + (1-y) \log (1-\alpha)$$

- * Let's write computational graph for above example.
- · We assume we have only two features called 2, and no
- * To compute 2 we have to input w, and we and b.
- + Those n, n2, w1, w2 and b use to compute 2.

$$\begin{array}{c}
\chi_1 \\
\chi_2 \\
\chi_2 \\
\chi_3 \\
\chi_4 \\
\chi_5 \\
\chi_6 \\
\chi_6 \\
\chi_7 \\
\chi_7 \\
\chi_8 \\$$

- * In logistic regression, what we want to do is to modify
 the parameters "w"s and b", in order to reduce loss [Land
- * To reduce loss, first thing to do is going backwards to compute the derivative of this loss with respect to days

$$da = \frac{dL(a,y)}{da}$$

$$= \left[-\frac{y \log(a)}{dL(a,y)} + \frac{(1-y) \log(1-a)}{da} \right] \frac{dL(a,y)}{da}$$

$$= -\frac{y}{a} + \frac{1-y}{1-a}$$

$$dz = dL$$

$$dz$$

$$= \frac{du}{dz} = \sigma(2) \times (1 - \sigma(2))$$

$$= \frac{dL}{d\alpha} \cdot \frac{d\alpha}{dz}$$

$$= \alpha(1 - \alpha)$$

$$= \alpha(1 - \alpha)$$

$$dz = \alpha - y$$

$$dz = \alpha - y$$

* next we assume how much we have to change wis and

$$\frac{dL}{dw_1} = dw_1 = \alpha_1 dz \qquad dw_2 = d\alpha_2 dz \qquad db = dz$$

$$w_2 = w_2 - ddw_2$$

$$b = b - ddb$$

Gradient Descent on m Enamples

$$J(w,b) = \frac{1}{m} \sum_{i=1}^{m} L(a^{(i)}, y^{(i)})$$

$$\Rightarrow a^{(i)} = \overline{y^{(i)}} = \sigma(z^{(0)}) = \sigma(w^{T}x^{(i)} + b)$$

$$\frac{d}{d}J(w,b) = \frac{1}{m} \sum_{i=1}^{m} \frac{d}{dw_{i}} L(a^{(i)}, y^{(i)})$$

$$dw_{i} = \frac{1}{m} \sum_{i=1}^{m} \frac{d}{dw_{i}} L(a^{(i)}, y^{(i)})$$

Enample

For i=1 to m

$$z^{(i)} = \omega^{T} \chi^{(i)} + b$$
 $d^{(i)} = \sigma(z^{(i)})$
 $J + = -[y^{(i)} \log \alpha^{(i)} + (1-y^{(i)}) \log (1-\alpha^{(i)})]$
 $dz^{(i)} = \alpha^{(i)} - y^{(i)}$
 $d\omega_{1} + = \chi_{1}^{(i)} dz^{(i)}$
 $d\omega_{2} + = \chi_{2}^{(i)} dz^{(i)}$
 $db + = dz^{(i)}$

weaknesses above code

- to implement logistic regression this way, we have to write two for loops. first leap for for loop is given for loop, above which is use to iterate untill me m training examples. The second for lopp use for over all the features over here.
- # those for loops make your algorithm slow. As a colution deep learning proposed "vectorization". It can use to get rid of from for loops.

Vectorization

* This is we to get rid of from enplicit for loop from colo

* In deep learning we have to work with large datests. Therefor it is must to run our codes efficiently. Vectorization help up to reduce run time those codes.

2= W7x+b

Non-vectorized

vectorized

for i in range(n-n) 2 += w[i] * x[i]

2 = np. dot (w,x) + 6

More Vectorization Examples

* If you want to compute a vector "" as the product of matrix "A" and another vector "v"

U = AV

* Then definition of our matrin is

U; = E Aij V

If we use non vectorized method u = np.zero (n,1) iderfor i . -for j [COV * [DEDA =+ CON a If we use rectorized method u= np. dot (A, V)

Vectorizing Logistic Regression

* Let's assume you have M training examples

first training example

$$2^{(1)} = w^{T} n^{(1)} + b$$
 $a^{(1)} = \sigma Z^{(1)}$

second training example

$$z^{(2)} = w^{\dagger} x^{(2)} + b$$
 $a^{(2)} = \sigma^{\dagger} z^{(2)}$

Third training enample

$$z^{(3)} = w^{T} x^{(3)} + b$$
 $d^{(3)} = \sigma z^{(3)}$

A Likewise you have to done for in training onamples.

$$X = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$Z = \left(z^{(1)} z^{(2)} \dots z^{(m)} \right) = \omega^{\dagger} X + \left[b b \dots b \right] = \left[\omega^{\dagger} x^{(1)} + b \right] \omega^{\dagger} x^{(2)} + b \dots \omega^{\dagger} x^{(m)} + b$$

$$Z = np. dot \left(w.T, X \right) + b$$

Python automatically take real number b and enpands it out to \$ 1xm row vector. This operation is called as cibroadcasting"

& Likwise

Vectorizing Logistic Regression's Gradient Output

for have remembered in previous lessons we use de de de a-y. Let's try apply it to vectorization. Let's assume again you have m training examples.

$$d_{2}^{(1)} = a^{(1)} - y^{(1)}$$
 $d_{2}^{(2)} = a^{(2)} - y^{(2)} \cdot \cdot \cdot \cdot d_{2}^{(m)} = a^{(m)} - y^{(m)}$

· We can vectorized the into lik this.

RNOW we have get rid of from one for loop which calculate dz. Now we have second for lay loop which contains below

$$dw = 0$$

$$dw + = n^{(1)} dz^{(1)}$$

$$dw + = n^{(2)} dz^{(2)}$$

$$dw + = dz^{(2)}$$

Now we have to vectorize above for loop contains.

$$db = \int_{m}^{\infty} dz^{(i)}$$

$$= \int_{m}^{\infty} np.sum(dZ)$$

$$dW = \frac{1}{m} \times dZ^{T}$$

$$= \frac{1}{m} \left[\begin{array}{c} 1 & 1 & 1 \\ 1 & 1 & 1 \end{array} \right] \left[\begin{array}{c} dz^{(1)} \\ dz^{(m)} \end{array} \right]_{n \times 1}$$

$$= \frac{1}{m} \left[\begin{array}{c} n^{(1)} dz^{(1)} + \cdots + n^{(m)} dz^{(m)} \end{array} \right]_{n \times 1}$$

* Now Let's compare for 'loop version and vectorized version

J=0, $dw_1 = 0$, $dw_2 = 0$, db = 0for i = 1 to m: $2^{(i)} = w^T x^{(i)} + b$ $C^{(i)} = \sigma(z^{(i)})$ $J = -[y^{(i)} \log_a x^{(i)} + (1 - y^{(i)})] \log_a (1 - x^{(i)})]$ $dz^{(i)} = x^{(i)} dz^{(i)}$ $dw_1 = x^{(i)} dz^{(i)}$ $dw_2 = x^{(i)} dz^{(i)}$ $db + dz^{(i)}$

J = J/m $dw_1 = dw_1/m$ $dw_2 = dw_2/m$ db = db/m

and vectorized version

for item in range(1000) {

Z = WTX+b

= np · dot(W.T.X)+b

A = O(Z)

dZ = A-Y

dw = 1 x d2T

db = 1 np. sum (d2)

w := w - ddw

b := b - ddb

the vectorized model

Broadcasting in Python

* Broadcasting technique uses to make our Python code run facter.

	Apples	Beef	Eggs	Potatoes	
Carb	56	0	4.4	68	= A (3,4)
Protein	1.2	104	. 52	8	(3,4)
Fat	1.8	135	વવ	0.9	

$$(m,n)$$

$$(m,n)$$