Linear Alebgra HW07

Aamod Varma

October 17, 2024

16

We consider the standard basis for both $F^{n,1}$ and $F^{m,1}$ such that for any $x \in F^{n,1}$ we have M(x) = x similarly, $Tx \in F^{m,1}$ so M(Tx) = Tx. We can say,

$$Tx = M(Tx)$$

$$= M(T)M(x)$$

$$= M(T)x$$

Let M(T) be a matrix A so we get,

$$Tx = Ax, \forall x \in F^{n,1}$$

20

Consider the map $T: P(R) \to P(R)$. Defined by $T(p(x)) = (x^2 + x)p''(x) + 2xp'(x) + p(3)$. Now T(p(x)) has the same degree as p(x). And we also see that if $p(x) \neq 0$ then $T(p(x)) \neq 0$ which means that T is injective which means that it is surjective as dim is same.

Now this shows that for any $q(x) \in P(R)$ we can find p(x) s.t. T(p(x)) = q(x)

21

We can rephrase the questino as,

- (a) Ax = 0
- (b) Ax = c

Where A is a matrix and x and c are vectors as follows, $x = (x_1, \ldots, x_n)^T$ and $c = (c_1, \ldots, c_n)^T$

Now in (a) we can see Ax as a linear map T from $F^{n,1}$ to itself. So we have Tx = 0 mean that x = 0. This means that T is injective. Similarly in (b) we nkow that for any $c \in F^{n,1} \exists x \in F^{n,1}$ s.t. Tx = c which means that T is surjective. We know that injective and surjective are equivalent as T maps from $F^{n,1}$ to itself.

5A

Problem 1

Proof. (a). $U \subseteq \text{null } T$ we need to show $\forall u \in U \ T(u) \in \text{null } T$. Consider any $u \in \text{null } T$ we know that T(u) = 0 by definition. We know that $0 \in \text{null } T$ because T(0) = 0 which means that $T(u) \in \text{null } T$. Hence we show that for any $u \in U \ T(u) \in U$. Which implies that U is an invariant under T.

(b). We have range $T\subseteq U$ this means that for any $u\in V$, $T(u)\in {\rm range}\ T\Rightarrow T(u)\in U$. So consider any $u\in U$ so we know that $T(u)\in {\rm range}\ T\Rightarrow T(u)\in U$. Which shows us that U is invariant under T.

Proof. We need to show that $V_1 + \cdots + V_m$ is invariant under T if V_1, \ldots, V_n are invariant under T.

So we need to show that if $v \in V_1 + \cdots + V_m$ then $T(v) \in V_1 + \cdots + V_m$. If $v \in V_1 + \cdots + V_m$ that means that we can write v as

$$v = v_1 + \cdots + v_m$$
, where $v_1 \in V_1, \ldots, v_m \in V_m$

Now $T(v) = T(v_1 + \cdots + v_m) = T(v_1) + \cdots + T(v_m)$. But we know that $v_1 \in V_1, \dots, v_m \in V_m$ which means that $T(v_1) \in V_1, \dots, T(v_m) \in V_m$ as we know that V_1, \dots, V_m are invariant subspaces. So now let us write

$$T(v_1) = v_1', \dots, T(v_m) = v_m'$$

such that $v_1' \in V_1, \ldots, v_m' \in V_m$ So we have,

$$T(v) = T(v_1) + \dots + T(v_m)$$

= $v'_1 + \dots + v'_m$

So we have writen any T(v) as $v'_1 + \cdots + v'_m$ such that $v'_1 \in V_1, \ldots, v'_m \in V_m$ which means that $T(v) \in V_1 + \cdots + V_m$. Hence by definition this makes our subspace $V_1 + \cdots + V_m$ invariant under T.

Problem 3

Proof. Let V_1, \ldots, V_m represent every collection of subspaces that are invariant under T. We need to show that $v \in V_1 \cap \cdots \cap V_m \Rightarrow T(v) \in V_1 \cap \cdots \cap V_m$.

Consider an arbitrary $v \in V_1 \cap \cdots \cap V_m$. Now this means that

$$v \in V_1, \dots, v \in V_m$$

But because V_1, \ldots, V_m are all invariant under T this means that

$$T(v) \in V_1, \ldots, T(v) \in V_m$$

Now by definition this means that $T(v) \in V_1 \cap \cdots \cap V_m$. Which makes the subspace $V_1 \cap \cdots \cap V_m$ invariant under T.

Problem 4

Proof. Let us assume the contrary that $U \neq \{0\}$ and $U \neq V$. We know that $0 < \dim U < \dim V$. Let $\dim U = k$ and $\dim V = n$. So consider a basis for U as,

$$u_1,\ldots,u_k$$

Now let us define an operator on U such that

$$T(u_1) = v, \ldots, T(u_k) = v$$

where $v \in V - U \neq \phi$ (for instance let $v = v_m$) So we constructed a map on U such that $T(U) = v \notin U$.

Problem 5

We have the matrix as, $\begin{bmatrix} 0 & -3 \\ 1 & 0 \end{bmatrix}$. So eigen values are $\pm i\sqrt{3}$.

However this exist outside R hence within our vector space we don't have an eigenvalue.

Problem 6

We have the matrix as, $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$. So eigen values are ± 1 .

If eigenvector is (1,1) and if its -1 then eignvector is (1,-1)

Problem 7

We have the matrix as, $\begin{bmatrix} 0 & 2 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 5 \end{bmatrix}$. So eigenvalues are 0 and 5. Eigenvector for 0 is (1,0,0) and for 5 is (0,0,1)

Problem 8

We have $P^2 = P$. So consider an arbitrary v which is an eigenvector of λ . So we have,

$$Pv = \lambda v$$

But we know P(P(v)) = P(v). So $P(\lambda v) = P(v)$

$$\lambda P(v) = P(v)$$

Now this is ture if either $\lambda = 1$ or P(v) = 0. If P(v) = 0 that means $v \in T$ or that $\lambda = 0$ is an eigenvalue of T.

Problem 9

We have our basis of P(R) as 1+x. Which can be written as (1,0),(0,1)x. So the matrix of our linear map is $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$. So $\lambda=0$ which gives us the eigenvector as (1,0)

 $P_4(R)$ is spanned by $1+x+x^2+x^3+x^4$. Which can be written as $(1,0,0,0,0),\ldots,(0,0,0,0,1)$. Now to define our linear map we need to see where our standard basis will map to. We have,

$$T(1) = 0$$

$$T(x) = x$$

$$T(x^2) = 2x^2$$

$$T(x^3) = 3x^3$$

$$T(x^4) = 4x^4$$

So the matrix of our linear map will be,

$$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 0 & 4 \end{bmatrix}$$

It is clear that our eigenvalues are 0, 1, 2, 3, 4. And its eigenvector are $(1, 0, 0, 0), \dots, (0, 0, 0, 1)$

Problem 12

Proof. We know that $V = U \oplus W$. So any $v \in V$ can be written as

$$v = u + w, u \in U, w \in W$$

Consider a basis for U as u_1, \ldots, u_n and a basis for W as w_1, \ldots, w_m . So we have all v can be written as $a_1u_1 + \cdots + a_nu_n + b_1w_1 + \cdots + b_mv_m$. Because $U \cap W = \{0\}$ we know that no $w_k \in U$ or inother words our list of vectors $u_1, \ldots, u_n, w_1, \ldots, w_m$ is linearly independent and is a basis for V.

Now given a basis of V we can define a linear map $P: V \to V$ as follows,

$$P(u_1) = u_1, \dots, P(u_n) = u_n$$

 $P(w_1) = 0, \dots, P(w_m) = 0$

Hence we have defined a linear map as we have assigned vectors in V for

Now for any P(u+w) let $u = a_1u_1 + \cdots + a_nu_n$ and $w = b_1w_1 + \cdots + b_mw_m$

$$P(u+w) = P(u) + P(w)$$

$$= P(a_1u_1 + \dots + a_nu_n) + P(b_1w_1 + \dots + b_mw_m)$$

$$= a_1P(u_1) + \dots + a_nP(u_n) + b_1P(w_1) + \dots + b_mP(w_m)$$

$$= a_1u_1 + \dots + a_nu_n + 0$$

$$= u$$

Proof. (1). We need to show that if $Tv = \lambda v$ then $S^{-1}TSv = \lambda v$ givne that S is invertible.

Consider that $S^{-1}TSv = v'$. Because S is invertibel we can apply S on both sides and get,

$$T(S(v)) = S(v')$$

.

But we assume that T has an eigenvalue λ . Now because S is invertible in V there exists some v such that S(v) is an eigenvector of T. For that v we have $T(S(v)) = \lambda S(v)$. So we get,

$$T(S(v)) = S(v')$$
$$\lambda S(v) = S(v')$$
$$S(v') = S(\lambda v)$$
$$v' = \lambda v$$

So for some v such that S(v) is an eigen vector of T we have v is an eigenvector of $S^{-1}TS$ such that λ is the eigenvalue associated with the vector. Hence we show that both T and $S^{-1}TS$ have the same eigenvalues.

(b). If v is an eigenvector of T then $v' = S^{-1}v$ is an eigenvector of $S^{-1}TS$.

~

Problem 19

Proof. Assume λ is an eigenvalue, this means that

$$\lambda z_1 = 0, \lambda z_2 = z_2, \dots$$

But if $\lambda z_1 = 0$ then $z_1 = 0 \Rightarrow z_2 = 0 \Rightarrow z_3 = 0 \dots$

Hence the only possiblblity is (0, ...) however this isn't a valid consideratino for an eigenvector. So $\not\exists \lambda$ such that it is an eivenvalue. Or in other words for any lambda there doesn't exist a eigenvector.

Problem 20

Proof. (a). Consider an artbiary λ we need,

$$\lambda z_1 = z_2, \lambda z_2 = z_3, \dots$$

For any arbitrary z_1 and λ we can define $z_n = \lambda z_{n-1}$.

(b). For an arbitary λ every eigenvector is of form,

$$(z_1, \lambda z_1, \lambda^2 z_1, \lambda^3 z_1, \dots)$$

Proof. (a). \Leftarrow We have T is invertible and λ is an eigenvalue of T. So $\exists v$ such that,

$$T(v) = \lambda v$$

Now because T is invertbile we can apply T^{-1} and we get,

$$T^{-1}Tv = T^{-1}(\lambda v)$$

$$v = T^{-1}(\lambda v)$$

$$v = \lambda T^{-1}(v)$$

$$\frac{v}{\lambda} = T^{-1}(v)$$

So we've shown that $\frac{1}{\lambda}$ is an eigenvalue of T^{-1}

 \Rightarrow The argument is exactly the same as (a) because $T^{-1} = T'$ is also an invertible linear map and just consider $\lambda' = \frac{1}{\lambda}$ as the eigenvalue of this map.

(b). Let $v \in V$ such that $T(v) = \lambda v$. Then we have

$$T^{-1}Tv = T^{-1}\lambda v$$

$$v = \lambda T^{-1}v$$

$$\frac{v}{\lambda} = T^{-1}v$$

So we've shown that for any arbitary eigenvector v with eigenvalue λ v is also an eigenvector of T^{-1} with eigenvalue of $\frac{1}{\lambda}$

Problem 21

Proof. Consider two cases either w = -u or $w \neq -u$.

If w = -u then we have T(u) = -3u and T(w) = -3w which makes -3 a eigenvalue with eigenvector u.

Now if $w \neq -u$ then we have,

$$T(u) = 3w, T(w) = 3u$$

$$T(u) + T(w) = 3(u+w)$$
$$T(u+w) = 3(u+w)$$

And because $u \neq w$ we know that $u + w \neq 0$ which is required for an

eigenvector. So here we show that u+w is an eigenvector and the associated eigenvalue for this is 3.

Problem 25

Proof. Let u be an eigenvector such that $T(u) = \lambda_1 u$ and $T(w) = \lambda_2 w$ We are told that $T(u+w) = \lambda_3 (u+w)$. So we have,

$$T(u) + T(w) = \lambda_3(u+w)$$

$$\lambda_1 u + \lambda_2 w = \lambda_3 (u + w)$$

$$\lambda_1 u + \lambda_2 w = \lambda_3 u + \lambda_3 w$$

Now if u, w are linearly dependent (one is in the span of the other) then it is trivial to show that $\lambda_1 = \lambda_2$ and that $\lambda_3 = \lambda_1 = \lambda_2$.

Now if u, w are linearly independent this means that neither are in the span of each other, $\not\exists k$ s.t. u = kw.

Hence the only solution to the equation $(\lambda_1 - \lambda_3)u + (\lambda_2 - \lambda_3)v = 0$ is if the coefficients are equal to 0. Or

$$\lambda_1 = \lambda_3$$

$$\lambda_2 = \lambda_3$$

But this then means that $\lambda_1 = \lambda_2$. So we show that in both cases $\lambda_1 = \lambda_2$

Problem 28

Proof. First within the range of T we can construct T such that we have at most dim range T eigenvector curresponding to each subspace spanned by the basis of range T. That is, we can construct dim range T invariant subspace from V to itself such that $T(v) \in \text{range } T$.

Now consider the case when range T doesn't span V then $\exists v$ such that T(v)=0. Hence we have another eigenvalue 0 such that T(v)=0v and $v\in T$

So we have shown that we have at most dim range T+1 eigenvalues. \Box

Problem 30

Proof. For (T-2I)(T-3I)(T-4I)=0 to be true we have either (T-2I)=0 or (T-3I)=0 or (T-4I)=0.

Let us consider each case, 1. (T-2I)=0 or

$$(T - 2I)v = 0v = 0$$

$$Tv-2v=0$$

$$Tv = 2v$$

Which means that 2 is an eigenvalue or that $\lambda=2$. We can use similar reasoning for (2) and (3) to conclude that either $\lambda=2$ or 3 or 4.