PROOFS OF SHORTEST-PATHS PROPERTIES

Lemma 1. Subpaths of shortest paths are shortest paths.

Theorem 2. Triangle inequality. Let G = (V, E) be a weighted, directed graph with weight function $w: E \to \mathbb{R}$ and source vertex s. Then for all edges $(u, v) \in E$, we have $\delta(s, v) \leq \delta(s, u) + w((u, v))$

Proof. Let $p = \langle s, \ldots, v \rangle$ be the shortest path from s to v. Then p has length $\delta(s,v)$ and since p is the shortes path $\delta(s,v)$ is less than or equal to the length of any other path from s to v. In particular the path that includes the shortest path from s to u plus the edge from u to v. If there is no path from s to v then define $\delta(s,v) \equiv -\infty$.

Lemma 3. Upper-bound property. Let G = (V, E) be a weighted, directed graph with weight function $w: E \to \mathbb{R}$ and source vertex s and initialize the graph with

Algorithm 1 Initialize-Single-Source

```
Initialize - Single - Source(G, s)
   for each v \in V
3
         v.d = \infty
         v.\pi = NIL
4
   s.d = 0
```

then $v.d \ge \delta(s, v)$ for all $v \in V$ and this invariant is maintained over any sequence of relaxation steps on the edges of G. Moreover, once v.d achieves its lower bound $\delta(s,v)$, it never changes.

Proof. Proof by induction on the number of relaxation steps:

Algorithm 2 Relaxation

```
Relax(u, v, w)
   if v.d > u.d + w((u, v))
3
         v.d = u.d + w((u, v))
4
         v.\pi = u
```

For the base case $v.d \geq \delta(s, v)$ for all $v \in V$ after the initialization step since $v.d = \infty$ for all $v \in V$ after the initialization step. The inductive hypothesis is $x.d \geq \delta(s,x)$ for $x \in V$ after the previous relaxation step. During the relaxation of (u, v) only v.d might change, and if it does then it's set to u.d + w((u, v)). But $u.d \geq \delta(s, u)$ so

$$v.d \ge \delta(s, u) + w((u, v)) \ge \delta(s, v)$$

by the triangle inequality.

Note that once $v.d = \delta(s, v)$ it cannot decrease further by the above inequality and it cannot increase because relaxation only decreases v.d.

Corollary 4. If there is not path from s to v then $\delta(s, v) = v.d = \infty$ always.

Lemma 5. Immediately after relaxing edge (u, v) by executing Relax(u, v, w), $v.d \leq u.d + w((u, v))$. Basically after at least one relaxation v.d will never be larger than the distance to u plus the distance from u to v.

Proof. If v.d > u.d + w((u, v)) before relaxation then v.d = u.d + w((u, v)) after relaxation. Otherwise if $v.d \le u.d + w((u, v))$ before relaxation then $\operatorname{Relax}(u, v, w)$ is nilpotent and so $v.d \le u.d + w((u, v))$ remains.

Theorem. Convergence property. Let G = (V, E) be a weighted, directed graph with weight function $w : E \to \mathbb{R}$ and source vertex s, and $s \leadsto u \to v$ be a shortest path for some vertices $u, v \in V$. Suppose G is initialized using Initialize-Single-Source(G, s) and then a sequence of relaxation steps is performed. If $u.d = \delta(s, u)$ at any time prior calling Relax(u, v, w) then $v.d = \delta(s, v)$ at all times afterwards.

Proof. By the upper-bound property if $u.d = \delta(s, u)$ prior to relaxing (u, v) then it continues to hold thereafter. Hence after relaxing (u, v) we have $v.d \le u.d + w((u, v))$ by Lemma 5 and

$$v.d \leq u.d + w((u,v))$$

$$= \delta(s,u) + w((u,v))$$

$$= \delta(s,v)$$

by subpaths of shortest paths are shortest paths¹. Again by Lemma 5 $v.d \ge \delta(s, v)$ and so $v.d = \delta(s, v)$, and the inequality persists thereafter.

Theorem. Path-relaxation property. Let G = (V, E) be a weighted, directed graph with weight function $w : E \to \mathbb{R}$ and source vertex s. Consider any shortest path $p = \langle v_0 = s, \dots, v_k = v \rangle$. Suppose G is initialized using Initialize-Single-Source(G, s) and then a sequence of relaxation steps is performed that includes relaxing $(v_0, v_1), \dots, (v_1, v_2), \dots, (v_{k-1}, v_k)$ (i.e. the edges (v_i, v_j) are relaxed in order). Then $v.d = \delta(s, v)$ after the relaxations and persists.

Proof. The proof is by induction on the *i*th edge in *p* to be relaxed. For the base case $v_0.d = s.d = 0 = \delta(s, s)$. By the upper-bound property s.d never changes.

For the inductive step, assume that $v_{i-1}.d = \delta(s, v_{i-1})$. By the convergence property, after relaxing (v_{i-1}, v_i) it's the case that $v_i.d = \delta(s, v_i)$.

Theorem 6. Shortest-paths trees. Let G = (V, E) be a weighted, directed graph with weight function $w : E \to \mathbb{R}$ and source vertex s and assume G contains no negative-weight cycles reachable from s. Then after initialization the predecessor subgraph G_{π} forms a rooted tree with root s, and any sequence of relaxation steps on edges of G maintain this property as an invariant.

Summary:

- Triange inequality: $\delta(s, v) \leq \delta(s, u) + w((u, v))$
- Upper-bound property: $v.d \ge \delta(s, v)$

¹Recall that by assumption $s \leadsto u \to v$ is a shortest path from s to v.

- Convergence property: $s \rightsquigarrow u \rightarrow v$ a shortest path and $u.d = \delta(s, u)$ prior to relaxing (u, v) then $v.d = \delta(s, v)$ afterward
- Path-relaxation property: $p = \langle s = v_0, \dots, v_k = v \rangle$ a shortest path and edges are relaxing in order then $v.d = \delta(s, v)$.
- Predecessor-subgraph property: once $v.d = \delta(s, v)$ for all $v \in V$, the predecessor subgraph is a shortest-paths tree rooted at s.

Exercise 7 (24.4-9). This is a dumb problem but for completeness I'm writing it up². First of all max $\{x_i\} = 0$. Why? Let $p = \langle s, v_1, \ldots, v_k \rangle$ be the shortest path from the source to any vertex v_k returned by Bellman-Ford. By optimal substructure $p' = \langle s, v_1 \rangle$ is the shortest path from the source to v_1 . But by construction that edge has weight 0 and therefore $x_1 = 0$. Finally since the $x_i \leq 0$ it's the case that max $\{x_i\} = 0$. Now all that remains is to show that Bellman-Ford maximizes min $\{x_i\}$.

Let $x_k = \min\{x_i\}$ and consider $p = \langle s, v_1, \dots, v_k \rangle$. The weight of the path is just the sum of the constraints along the path

$$\begin{array}{rcccc} x_1 - x_0 & \leq & 0 \\ x_2 - x_1 & \leq & C_{1,2} \\ & & \vdots \\ x_k - x_{k-1} & \leq & C_{k-1,k} \end{array}$$

Summing we get $x_k \leq \sum_{i=1}^{k-1} C_{i,i+1} = w\left(p\right)$ the distance from source to x_k . Therefore any solution x_k that satisfies the constraints cannot be greater than $w\left(p\right)$, the shortest distance from source to v_k . Since Bellman-Ford sets $x_k = w\left(p\right)$ it does indeed maximize x_k . I'm guessing that this same reasoning can be applied to argue that Bellman-Ford maximizes $\sum x_k$.

Problem 8 (24-1). Yen's improvement to Bellman-Ford

(a) Towards a contradiction assume that G_f has a cycle. Then there exists a sequence of edges

$$\{(v_a, v_b), (v_c, v_d), \dots, (v_i, v_a)\} \subset E_f$$

but by definition $(v_j, v_a) \in E_b$ not in E_f . Similarly for G_b . Topological sort follows from definition too: only edges that "flow" in the corresponding direction exist in each of E_f, E_b .

(a) Stolen from³. In the first part of any iteration, any path in the shortest path tree that starts at a finished vertex and consists of edges only in E_f becomes correctly labeled (shortest path in DAG is easy - just relax in order of topological sort), i.e. all vertices become finished. In the second part of any iteration, any path in the shortest path tree that starts at a finished vertex and consists of edges only in E_b becomes correctly labeled. The number of iterations needed then is the maximum alternations between G_f and G_b , which is (|V|+1)/2, since G_f and G_b partition G in half. Another optimization is you don't need to relax edges coming out of a

 $^{^2} Answer stolen from https://dspace.mit.edu/bitstream/handle/1721.1/37150/6-046JFall-2004/NR/rdonlyres/Electrical-Engineering-and-Computer-Science/6-046JFall-2004/EC0B786D-A562-4952-B52A-7A4DCEB60908/0/ps6sol.pdf$

³http://11011110.livejournal.com/215330.html

vertex that wasn't updated in the previous iteration. A final optimization is randomizing the linear ordering to prevent shortest paths that alternate between E_f and E_b , bringing down the number of iterations to |V|/3 on average.

Problem 9 (24-2). Nesting boxes

- (a) Well duh. If box A can contain box B and box B can contain box C then obviously A can contain C.
- (b) Sort both sets of dimensions and if one set is entry-wise prior then it fits.
- (c) Do the n^2 comparisons to figure out all (B_i, B_j) , where B_i can contain B_j . Then do a topological sort on the graph because it's a DAG (because what would it mean for a cycle of box containments). Then find the longest path using DP:

Algorithm 3 Longest Path

```
\begin{array}{ll} 1 & \operatorname{Longest-Path}\left(\mathrm{G}\right) \\ 2 & \mathrm{T} = \operatorname{Top-Sort}\left(\mathrm{G}\right) \\ 3 & \textbf{for} & v \in T \\ 4 & v.d = \max_{(u,v) \in E} \left\{u.d+1\right\} \\ 5 & \textbf{return} & \max_{v \in V} \left\{v.d\right\} \end{array}
```

Problem 10 (24-3). Arbitrage

(a) Take log. Then Bellman-Ford will find negative cycles.

Problem 11 (24-6). Bitonic shortest paths. Sort the edges by weight. Then relax increasing order, decreasing order, then increasing again and you're done