Build Model

Factor Chosen

关键评价指标: GDP per capita(人均GDP)、vehicle density(车流量密度)、population density(人流密度)

其他指标: customer psychology (消费者心理), economic level (经济级别), publicity needs (公众需求)

geographies, population density distributions and wealth distributions (GDP per capita, population density and Gini coefficient)

Goal

charger density

quantify the key factors

We redefine the concept of urban, suburban and rural areas. (重定义)

use model

- K-Means
- Markov method (马尔可夫模型)
- logistic model (逻辑回归)

2 Preparation of the Models

2.1 Assumptions

Shortest-path、Range-anxiety threshold、、、

3 Exploring Tesla Network in the United States

3.1 最优充电站数量(城市和郊区)

通过计算捕捉区域最大半径来计算充电站最优数量。

疑问:公式(1)分母为何是1/4次方?公式(3)分子为何选40?

捕捉区域最大半径计算公式

$$r_u = \frac{c_u}{(\rho v \bar{G})^{\frac{1}{4}}}$$
(1)

$$r_s = \frac{c_s}{(\rho v \bar{G})^{\frac{1}{4}}}$$
(2)

 $r_s, r_u \leq 15 \text{ miles}$

ru: 城市站点捕捉区域的最大半径

rs: 郊区站点捕捉区域的最大半径

v: 人均汽车数量

p: 人口密度

G: 人均GDP

已建成的充电网络 -->> Cu

Cu + 城市规模与郊区规模、城市居民与郊区居民的比例 -->> Cs

充电站最优数量计算公式

$$\frac{40^2}{r_2}e$$

$$r_2$$
(3)

n0:在一个40*40英里的广场上充电站的数量

3.2 最优充电站位置: Kmeans

公式(4)表明使用的距离度量是曼哈顿距离;

公式 (5) 表明点到中心的距离约束,即每辆车都可以找到充电站

Firstly, instead of commonly used Euclidean distance $dist_{Euclidean} = ||\vec{p} - \vec{q}||_2$, we choose Manhattan distance

$$dist_{Manhattan} = \|\vec{p} - \vec{q}\|_1$$
 (4)

Considering the real-world city planning, we usually can not go to the stations in direct roads, and it is obvious that Manhattan distance is a more realistics definition in this case.

Besides, the objective of traditional K-Means clustering is to minimize the distortion function[7] $J(c, \mu) = \sum_{i=1}^{n} \|x^{(i)} - \mu_{c^{(i)}}\|_{2}^{2}$, while our algorithm's distortion function is defined as

$$J(c, \mu) = max_i ||x^{(i)} - \mu_{c^{(i)}}||_{\infty}$$
 (5)

3.3 农村充电站分布

分成村庄和公共道路分别讨论。

村庄充电站数量nv:一个即可。(注:人口少于1万的城市视为村庄。)

公共道路: 每20公里+1

Therefore, we have

$$n_r = n_v + \lceil \frac{l}{20} \rceil \tag{6}$$

3.4 充电站分布

综合各个式子

Based on the above discussions, the number of charging stations needed can be calculated by

$$n = n_u + n_s + n_r = \left\lceil \frac{S_u}{r_u^2} \right\rceil + \left\lceil \frac{S_s}{r_s^2} \right\rceil + n_v + \left\lceil \frac{l}{20} \right\rceil \tag{7}$$

顺便提及高速公路上装超级充电站,城市、郊区等装普通的。

4 Exploring Charging Network in South Korea

4.1 韩国全部转为充电站情况

先确定城市、郊区、农村的分类标准(与美国不一样),再套用模型一计算半径与聚类,最后用最小 二乘法拟合,分析密度与半径的关系

对于超级充电站,设置两站间距离。

4.2 发展建议

结合消费心理、经济情况、公众需求分时期给出建议

4.3 时间预测

建立物流模型,对时间进行预计

$$\frac{dR}{dt} = kR \tag{11}$$

Since the ratio can't reach 1, we can change our model to

$$\frac{dR}{dt} = kR(1 R) \tag{12}$$

Then solve the equation

$$R = \frac{Ce^{kt}}{1 + Ce^{kt}}$$
 (13)

5 几类国家的扩展

5.1 国家分类

分类依据是人均Gdp、人口密度、基尼指数

5.2 可行性分析

先提出一些不可量化的因素如政策

5.3 综合指标

提出综合评价方程 f(x) = (x) g(x) = ax + b p + ce kx

6 新技术的影响

分点讨论

6.1 电池

电池影响汽车性能; 电池影响消费心理

6.2 充电站施工技术

影响安装成本

6.3 其他汽车类型

说要增加其他指标.....

7 优缺点

7.1 优点

可靠性: 数据典型可获取

可扩展性: 指标多样, 可因地区而已

普遍性:车辆密度与车站密度联系普遍;增长模式采用逻辑增长普遍;选址采用马尔可夫与SFCLM简

易与精确互补。

7.2 缺点

忽略建设费用;数据被限制,无法预测精准位置

7.3 未来工作

建议对这些因素进行分类, 为网络设计提供更实用的方法

8 Handout for International Energy Summit

.....