72.27 SISTEMAS DE INTELIGENCIA ARTIFICIAL - PRIMER CUATRIMESTRE 2022

Metodos de aprendizaje no supervisado

Alumnos:

60041 – Agustín Tormakh

60212 – Valentino Riera Torraca

60390 - Igal Leonel Revich

APRENDIZAJE NO SUPERVISADO

DESARROLLO

Implementar los distintos metodos de aprendizaje no supervisado vistos en clase

O EXPERIMENTACION

Realizar diversos analisis a partir de la aplicación de los mismos

Unsupervised Learning

99

Metodos de aprendizaje utilizados

METODOS DE APRENDIZAJE UTILIZADOS

99

Redes de Kohonen

RED DE KOHONEN

DATASET

Europe.csv: Características económicas, sociales y geográficas de 28 países de Europa

PARAMETROS

- maxEpochs: Maxima cantidad de epocas que se entrenara la red
- k: Numero que indica la dimension de la matriz de neuronas de salida (k x k)
- r0: Radio inicial
- initialLearningRate: Taza de aprendizaje inicial

RED DE KOHONEN: FUNCIONES DE DECRECIMIENTO

$$R(t) = r0 * e^{-t*\frac{ln(r0)}{maxEpochs}}$$

$$\eta(t) = \frac{1}{t}$$

Funcion de decrecimiento del radio

Funcion de decrecimiento del learning rate

RED DE KOHONEN: PARAMETROS PARA LAS PRUEBAS

Los párametros utilizados fueron los siguientes a menos que se indique lo contrario

- maxEpochs: 350
- k: 5
- r0: 4
- initialLearningRate: 0.1

KOHONEN: MATRIZ U

Distancia entre atributos de neuronas

- 0.30

Distancia entre neuronas por característica

Distancia entre neuronas por característica

PRUEBA CON DISTINTOS LEARNING RATE:

PRUEBA CON DISTINTOS LEARNING RATE:

- 1.8

- 1.6

- 1.2

- 1.0

- 0.6

PRUEBA CON DISTINTOS LEARNING RATE:

DISTINTOS VALORES DE K:

k=3

k=5

DISTINTOS VALORES DE K:

k=7

k=10

PAÍSES SIMILARES:

- 0.7

- 0.6

- 0.5

- 0.4

- 0.3

RED DE KOHONEN: COMPARACIÓN

Heatmap(k=5) vs Biplot(PC1 x PC2)

RED DE KOHONEN: COMPARACIÓN

Heatmap(k=5) vs Biplot(PC1 x PC2)

RED DE KOHONEN: COMPARACIÓN

Heatmap(k=5) vs Biplot(PC1 x PC2)

99

Regla de Oja

REGLA DE OJA: DESCRIPCION

DATASET

Europe.csv: Características económicas, sociales y geográficas de 28 países de Europa

PARAMETROS

- epochs: Cantidad de epocas a iterar en el algoritmo
- learningRate: Tasa de aprendizaje

LIBRERIAS (PC)

• sklearn

REGLA DE OJA: DATASET

Caracteristicas de los paises estandarizadas

REGLA DE OJA: PARAMETROS PARA LAS PRUEBAS

Los párametros utilizados fueron los siguientes a menos que se indique lo contrario

o epochs: 5000

o learningRate: 0.0001

REGLA DE OJA: VECTOR DE PESOS (INICIALES Y FINALES)

	Initial weights
0	0.542641
1	-0.958496
2	0.267296
3	0.497608
4	-0.002986
5	-0.550407
6	-0.603874

	Final weights (Oja)	PC1 eigenvector (Library)
0	0.125589	0.124874
1	-0.500443	-0.500506
2	0.407222	0.406518
3	-0.483021	-0.482873
4	0.187514	0.188112
5	-0.475552	-0.475704
6	0.271308	0.271656

Pesos iniciales (calculados al azar)

Vector de pesos final (Oja) vs Autovector asociado al autovalor dominante (Libreria)

REGLA DE OJA: PC1 DE LOS PAISES

PC1 de los paises (Oja)

PC1 de los paises (Libreria)

REGLA DE OJA: COEFICIENTES DE LA PC1

Coeficientes de PC1 (Oja)

Coeficientes de PC1 (Libreria)

REGLA DE OJA: ERROR ABSOLUTO VS LEARNING RATE

Error absoluto acumulado de la PC1 en funcion del learning rate

99

Redes de Hopfield

DATASET

OBJETIVO

OBJETIVO

OBJETIVO

ORTOGONALIDAD

PRODUCTO INTERNO

Producto interno entre Letras																										
m -	25	13	7	9	9	13	9	15	-5	-3	3	-1	7	7	9	17	9	21	7	-5	-1	-5	7	-9	-13	-5
- م	13	25	15	17	17	13	13	7	3	5	-1	7	-1	-1	13	17	5	17	15	-1	7	-1	-1	-13	-9	3
U -	7	15	25	19	7	3	19	-3	1	3	-7	9	-3	-3	23	7	15	7	13	1	13	-3	-3	-15	-7	1
ъ-	9	17	19	25	9	5	17	3	3	5	-5	11	3	3	21	9	13	9	7	-1	15	-5	3	-13	-9	3
au -	9	17	7	9	25	17	9	7	11	9	7	11	-1	-1	5	13	5	13	11	3	3	-1	-1	-5	-5	11
4	13	13	3	5	17	25	5	11	3	9	11	3	3	3	1	21	1	17	7	7	-1	3	3	-1	-1	3
p -	9	13	19	17	9	5	25	-1	-1	1	-9	7	-5	-5	21	5	13	5	15	-1	11	-5	-5	-17	-9	-1
۔ ء	15	7	-3	3	7	11	-1	25	-7	-5	13	5	17	17	-1	11	-1	15	-3		9	5	17	1	-3	-7
	-5	3	1	3	11	3	-1	-7	25	19	-3	5	-7	-7	-1	-1	-1	-1	5	17	-3	-7	-7	1	5	17
	-3	5	3	5	9	9	1	-5	19	25	-1	3	-5	-5	1	5	1	1	3	19	-1	-5	-5	-1	7	11
∽ -	3	-1	-7	-5	7	11	-9	13	-3	-1	25	9	13	13	-9	7	-1	7	-7	-3	1	5	13	13	5	1
	-1	7	9	11	11	3	7	5	5	3	9	25	5	5	7	3	7	3	1	-3	13	1	5	1	1	5
Е -	7	-1	-3	3	-1	3	-5	17	-7	-5	13	5	25	21	-1	3	-1	7	-11	-7	9	-3	17	9	5	-3
c -	7	-1	-3	3	-1	3	-5	17	-7	-5	13	5	21	25	-1	3	3	7	-11	-7	9	1	21	9	1	-7
0 -	9	13	23	21	5	1	21	-1	-1	1	-9	7	-1	-1	25	5	17	5	11	-1	15	-5	-1	-17	-9	-1
۵-	17	17	7	9	13	21	5	11	-1	5	7	3	3	3	5	25	5	21	7	3	-1	3	3	-5	-5	-1
o -	9	5	15	13	5	1	13	-1	-1	1	-1	7	-1	3	17	5	25	5	3	-1	7	-1	3	-9	-9	-1
	21	17	7	9	13	17	5	15	-1	1	7	3	7	7	5	21	5	25	7	-1	-1	-1	7	-5	-9	-1
vı -		15	13	7	11	7	15	-3	5	3	-7	1	-11	-11	11	7	3	7	25	5	1	1	-11	-11	-3	5
٠ -	-5	-1	1	-1	3	7	-1	-7	17	19	-3	-3	-7	-7	-1	3	-1	-1	5	25	-3	1	-7	1	13	9
5 1	-T	7	13	15	3	-1	11	9	-3	-1	1	13	9	9	15	-1	7	-1	1	-3	25	5	9	-7	1	-3
				-5		3		5				1			-5		-1				5			5	5	-3
			_	3	-1			17							-1 17		3		-11	-7				9		-3
			_	_											-17				-11					25		9
				-9 3			-9					1			-9 1					13				13 9		5
7	-0]	I	1	11	Ī	-1	-/	1/	!	Ţ		-5		-1	T	T	T)	,	-5	-3 V	T	y X	T	25

RUIDO 0 - VTRQ

PATRON ORIGINAL

RUIDO 0.2 - VTRQ

PATRON ORIGINAL

PATRON C/ RUIDO

RUIDO 0.4 - VTRQ

PATRON ORIGINAL

PATRON C/ RUIDO

ITERACION 1

RUIDO 0 - ABCD

PATRON ORIGINAL

ITERACION 1

RUIDO 0.2 - ABCD

PATRON ORIGINAL
PATRON C/ RUIDO
ITERACION 1
ITERACION 2
ITERACION 3

RUIDO 0.4 - ABCD

PATRON ORIGINAL
PATRON C/ RUIDO
ITERACION 1

ITERACION 2
ITERACION 3

RUIDO 0 - OGCD

PATRON ORIGINAL

RUIDO 0.2 - OGCD

PATRON ORIGINAL

PATRON C/ RUIDO

RUIDO 0.4 - OGCD

PATRON ORIGINAL

PATRON C/ RUIDO

ITERACION 1

ITERACION 2

ANALISIS RUIDO

CALCULO DE ENERGIA

CONJUNTO ORTOGONAL

CONJUNTO NO ORTOGONAL

HOPFIELD: ENERGIA VS ITERACIONES

Conjunto ortogonal (v,t,r,q)

Conjunto no ortogonal (a,b,c,d)

Probabilidad de ruido: 0.2

99

Conclusiones

CONCLUSIONES

COHONEN

- No se justifica utilizar valores de k muy altos ya que superan la cantidad de paises, dando asi neuronas muertas
- Kohonen agrupa los paises segun cercania siendo el factor mas influyente la PC1

REGLA DE OJA

- A menor learning rate, el calculo de la PC1 se asemeja mas al de la libreria (en modulo)
- Interpretacion de la primera componente : "Prosperidad"

HOPFIELD

- Los combos de letras mas ortogonales disminuyen mas rapido su energia
- La ortogonalidad de los patrones no esta directamente relacionado con la cant de estados espureos que produce
- La ortogonalidad influye fuertemente en la capacidad de devolver el patron que corresponde

99

Muchas gracias!!!

