

Machine Learning to Analyze SCED Data

Marc J. Lanovaz, Ph.D., BCBA-D Université de Montréal April 26th, 2023

Objectives

- 1. Describe the basic methodology underpinning machine learning research
- 2. Train simple machine learning models using Python
- 3. Apply machine learning to single-case datate

What to Expect

- Brief lecture
- Modeling
- ▶ Practice, more practice and even more practice
- Remote prompting
- Feedback

Artificial Intelligence

"... the study of how to make computers do things at which, at the moment, people are better." (Rich, 1991)

Machine Learning

- Subfield of artificial intelligence
- Detect patterns
- Predictions and support decision-making
- Three main types:
 - Supervised learning
 - Unsupervised learning
 - Reinforcement learning

Dataset

- Samples: Exemplars
- ► Features: Discriminative stimuli/Salient characteristics
- ► Class label: Correct response

Dataset - AB Graphs

- **▶** 8,000 samples
- **Eight features:**
 - Mean and standard deviation
 - Intercept and slope
- One class label: Change vs no change

Transforming Data

- Transform continuous feature values to z scores
- (value mean) / SD

Step 1 – Extract graph data

Α	Α	Α	В	В	В	В	В
7.0	3.2	10.1	1.1	0.2	2.1	2.1	2.1

Expected direction of change: -1 (decrease)

Label: 1 (clear change)

Step 2 – Multiply by -1 (as expected direction of change is to decrease)

Α	Α	Α	В	В	В	В	В
-7.0	-3.2	-10.1	-1.1	-0.2	-2.1	-2.1	-2.1

If the expected direction of change is to increase, skip this step (or multiply by 1).

Step 3 – Normalize the data by subtracting the mean (-3.49) and then dividing the difference by the standard deviation (3.13)

Α	А	Α	В	В	В	В	В
-1.12	0.09	-2.11	0.76	1.05	0.44	0.44	0.44

Now, the graph data has a mean of 0 and a standard deviation of 1.

Step 4 – Extract eight features from the normalized data

Mean A	Mean B	SD - A	<i>SD</i> - B	Intercept A	Slope A	Intercept B	Slope B
-1.05	0.63	.90	0.24	-0.55	-0.50	1.25	-0.12

Practice

Manipulating data

Algorithms

- Algorithm: Teaching method
- ► Model: Learner
- Predictions: Learner's response
- Hyperparameters: Teaching parameters

Testing Models

- ► Training set
- ► Testing set

Holdout Cross-Validation

Holdout Cross-Validation

Complete dataset (n = 501)					
Training set (n = 400)	Test set (n = 101)				
Training set (n = 320)	Validation set (n = 80)	Test set (n = 101)			

Note. This process runs only once with each set being sampled randomly without replacement.

Leave-One Out Cross-Validation

Leave-One Out Cross-Validation

Note. This process runs 26 times so that each sample is in the test set once.

K-Fold Cross-Validation

Source: https://en.wikipedia.org/wiki/Cross-validation_(statistics)

Practice

Splitting the data

Support Vector Classifier

Z

Random Forest

Random Forest

K-NEAREST NEIGHBORS

Source: https://www.datacamp.com/community/tutorials/k-nearest-neighbor-classification-scikit-learn

X-Axis

Dense Neural Network

Backpropagation of the Errors

Source: https://towardsdatascience.com/https-medium-com-reina-wang-tw-stochastic-gradient-descent-with-restarts-5f511975163

Practice

Training a model

Measures

- Outcomes
 - Accuracy
 - ► Type I error rate
 - Power
- Comparisons
 - ▶ Human observers
 - Best practice

Practice

Computing outcome measures

Hyperparameter Tuning

- Number of trees
- Function parameters
- Learning rate
- Epochs
- Number of neighbors
- Loss function

Hyperparameter Tuning

- **Epochs**
- Number of neurons
- Number of layers
- Activation function
- Loss function
- Dropout

Practice

Hyperparameter tuning

Selecting an Algorithm

- Number of samples
- ► Type of data
- Need to explain
- Stability
- ► Tuning requirements

Benefits

- Reliable decision-making
- ► Non linear relationships
- Unaffected by common MOs
- ► Improvements in accuracy

Drawbacks

- Black box problem
- "Stupid" decisions
- Number of samples required
- Overtraining and overfitting

Other Considerations

Feature Selection

- Filter-based methods
- Wrapper-based methods
- Embedded methods

Review Objectives

- 1. Describe the basic methodology underpinning machine learning research
- 2. Train simple machine learning models using Python
- 3. Apply machine learning to single-case datate

Questions/Comments?

marc.lanovaz@umontreal.ca