Week 1: Introduction to Python

Day 1: Overview of Python and Setting Up the Environment

- Introduction to Python:
 - History of Python
- Features of Python
- Applications of Python
- Setting Up Python Environment:
- Installing Python (Anaconda, Visual Studio Code, Jupyter Lab, Text editor, Pycharm)
- Introduction to Jupyter Notebook
- Basic Jupyter Notebook functionalities
- Writing and running your first Python program

Day 2: Basic Syntax and Data Types

- Basic Syntax:
 - Python script vs. Python interactive mode
 - Comments and Documentation
 - Python identifiers and keywords
 - Indentation and code blocks
- Data Types:
 - Numbers (integers, floats, complex numbers)
 - Strings
 - Booleans
 - Type conversion
 - Variables and constant

Day 3: Control Structures (if, for, while loops)

- Control Structures:
 - Conditional statements (if, else, elif)
 - Looping statements
 - for loop
 - while loop
 - Loop control statements (break, continue, pass)
- Practice and Q&A:
 - Hands-on exercises on control structures
 - Q&A session to clear doubts
 - Small projects to reinforce learning
- Feedback
- LinkedIn setup
- GitHub setup

Week 2: Python for Data Analysis

Day 1: Introduction to NumPy and Arrays

- Introduction to NumPy:
 - Overview of NumPy
 - Installing and importing NumPy
- NumPy arrays vs. Python lists
- Arrays and Array Operations:
- Creating arrays (1D, 2D, and beyond)
- Basic array operations (arithmetic, statistical functions)
- Indexing, slicing, and iterating through arrays

Day 2: Advanced Array Operations with NumPy

- Advanced Array Operations:
- Array reshaping
- Stacking and splitting arrays
- Broadcasting in NumPy
- Working with random numbers in NumPy

Day 3: Introduction to Pandas and DataFrames

- Introduction to Pandas:
 - Overview of Pandas
 - Installing and importing Pandas
- DataFrames, Series, and Basic Operations:
 - Creating and manipulating Series
 - Creating and manipulating DataFrames
 - Basic operations on DataFrames (selection, filtering, and sorting)
 - Handling missing data in Pandas
- Practice and Q&A:
 - Hands-on exercises on DataFrames and Series
 - Q&A session to clear doubts
 - Small projects to reinforce learning
 - Start with Capstone project
 - Quiz
 - Drafting article
- Push to GitHub
- Publish on LinkedIn

Week 3: Data Cleaning and Preparation

Day 1: Handling Missing Data

- Introduction to Missing Data:
 - Understanding missing data
 - Diverse types of missing data
- Techniques to Handle Missing Data:
 - Identifying missing data
 - Removing missing data
 - Imputing missing data (mean, median, mode, etc.)
 - Using advanced imputation techniques
- Practice and Q&A:
 - Hands-on exercises on handling missing data
 - Q&A session to clear doubts

Day 2: Data Transformation Techniques

- Data Transformation:
 - Introduction to data transformation
 - Scaling and normalization
 - Encoding categorical data (one-hot encoding, label encoding)
 - Binning and discretization
- Practice and Q&A:
 - Practical exercises on data transformation techniques
 - Q&A session to clear doubts

Day 3: Data Merging and Concatenation, Working with Dates and Times

- Data Merging and Concatenation:
 - Combining data from various sources
 - Merging dataframes (inner, outer, left, right joins)
 - Concatenating dataframes (adding rows and columns)
- Working with Dates and Times:
- Introduction to datetime in Pandas
- Parsing dates
- Date arithmetic
- Extracting and manipulating date/time components
- Practice and Q&A:
 - Hands-on exercises on data merging, concatenation, and date/time manipulation
 - Q&A session to clear doubts
 - Small projects to reinforce learning
 - Real world exercise

Week 4: Data Visualization with Python

Day 1: Introduction to Matplotlib and Plotting Basic Graphs

- Introduction to Matplotlib:
 - Overview of Matplotlib
 - Installing and importing Matplotlib
 - Understanding the Matplotlib architecture
- Plotting Basic Graphs:
 - Line plots
 - Bar plots
 - Histograms
- Practice and Q&A:
 - Hands-on exercises on plotting basic graphs
 - Q&A session to clear doubts

Day 2: Advanced Plotting with Seaborn

- Introduction to Seaborn:
 - Overview of Seaborn
- Installing and importing Seaborn
- Differences between Matplotlib and Seaborn
- Advanced Plotting:
- Creating statistical plots (box plot, violin plot, etc.)
- Plotting categorical data
- Pair plots and heatmaps
- Practice and Q&A:
 - Practical exercises on advanced plotting techniques
 - Q&A session to clear doubts

Day 3: Customizing and Styling Plots

- Customizing Plots:
 - Adding titles, labels, and legends
- Customizing line styles and colours
- Adding annotations
- Styling Plots:
 - Using themes in Seaborn
 - Customizing the layout with subplots
 - Saving plots to files
- Practice and Q&A:
- Hands-on exercises on customizing and styling plots
- Q&A session to clear doubts small projects to reinforce learning

Week 5: Introduction to Machine Learning

Day 1: Overview of Machine Learning and Supervised vs Unsupervised Learning

- Overview of Machine Learning:
 - Definition and importance of Machine Learning
 - Applications of Machine Learning in various industries
 - Types of Machine Learning
- Supervised vs Unsupervised Learning:
 - Definition and key differences
 - Examples of supervised learning (classification, regression)
 - Examples of unsupervised learning (clustering, dimensionality reduction)
- Practice and Q&A:
 - Discussion and examples of several types of learning
 - Q&A session to clear doubts

Day 2: Introduction to Scikit-Learn

- Introduction to Scikit-Learn:
 - Overview of Scikit-Learn library
 - Installing and importing Scikit-Learn
 - Key features and benefits of using Scikit-Learn
- Basic Usage of Scikit-Learn:
 - Loading datasets (e.g., Iris dataset)
 - Splitting data into training and testing sets
- Overview of key modules and classes in Scikit-Learn
- Practice and Q&A:
- Hands-on exercises on using Scikit-Learn
- Q&A session to clear doubts

Day 3: Data Preprocessing Techniques

- Data Preprocessing:
 - Importance of data preprocessing in Machine Learning
 - Handling missing values
 - Feature scaling (standardization, normalization)
 - Encoding categorical variables (one-hot encoding, label encoding)
- Data Transformation with Scikit-Learn:
 - Using Pipeline and ColumnTransformer
 - Overview of fit, transform, and fit transform methods
- Practice and Q&A:
- Hands-on exercises on data preprocessing techniques
- Q&A session to clear doubts small projects to reinforce learning

Week 6: Supervised Learning - Regression

Day 1: Linear Regression

- Introduction to Linear Regression:
 - Overview of linear regression
 - Understanding the relationship between dependent and independent variables
 - The equation of a linear model (y = mx + c)
- Implementing Linear Regression:
 - Using Scikit-Learn to implement linear regression
 - Visualizing linear regression with Matplotlib
- Hands-on Practice:
- Practical exercises on implementing linear regression
- Q&A session to clear doubts

Day 2: Polynomial Regression

- Introduction to Polynomial Regression:
- Overview of polynomial regression
- Difference between linear and polynomial regression
- The equation of a polynomial model
- Implementing Polynomial Regression:
- Using Scikit-Learn to implement polynomial regression
- Visualizing polynomial regression with Matplotlib
- Hands-on Practice:
 - Practical exercises on implementing polynomial regression
- Q&A session to clear doubts

Day 3: Evaluation Metrics for Regression and Model Validation

- Evaluation Metrics for Regression:
 - Introduction to evaluation metrics
 - Mean Absolute Error (MAE)
 - Mean Squared Error (MSE)
 - Root Mean Squared Error (RMSE)
 - R-squared (Coefficient of Determination)
- Model Validation and Cross-Validation:
 - Importance of model validation
- Overview of cross-validation techniques
- Implementing cross-validation with Scikit-Learn
- Hands-on Practice:
- Practical exercises on evaluating and validating regression models
- Q&A session to clear doubts
- Small projects to reinforce learning

Week 7: Supervised Learning - Classification

Day 1: Logistic Regression

- Introduction to Logistic Regression:
 - Overview of logistic regression
 - Differences between linear and logistic regression
 - The logistic function and the concept of odds
- Implementing Logistic Regression:
 - Using Scikit-Learn to implement logistic regression
 - Visualizing the decision boundary
- Hands-on Practice:
 - Practical exercises on implementing logistic regression
 - Q&A session to clear doubts

Day 2: Decision Trees

- Introduction to Decision Trees:
 - Overview of decision tree algorithm
 - Understanding tree structure (nodes, branches, leaves)
 - Splitting criteria (Gini index, entropy)
- Implementing Decision Trees:
- Using Scikit-Learn to implement decision trees
- Visualizing decision trees with graphviz
- Hands-on Practice:
 - Practical exercises on implementing decision trees
 - Q&A session to clear doubts

Day 3: Evaluation Metrics for Classification and Overfitting/Regularization

- Evaluation Metrics for Classification:
- Introduction to evaluation metrics
- Confusion matrix, accuracy, precision, recall, F1-score
- ROC curve and AUC
- Overfitting and Regularization:
 - Understanding overfitting and underfitting
 - Techniques to prevent overfitting (pruning, cross-validation)
 - Regularization techniques (L1 and L2 regularization)
- Hands-on Practice:
 - Practical exercises on evaluating classification models and applying regularization
 - O&A session to clear doubts
 - Small projects to reinforce learning

Week 8: Web Scraping with Python

Day 1: Introduction to Web Scraping

- Introduction to Web Scraping:
 - Overview of web scraping
 - Ethical considerations and legal implications
 - Common uses of web scraping
- Basic Concepts:
 - Understanding HTML structure
 - Navigating through HTML elements and attributes
 - Inspecting web elements using browser developer tools

Day 2: Using Requests and BeautifulSoup

- Introduction to Requests Library:
 - Overview of the Requests library
 - Making HTTP requests (GET, POST)
 - Handling response objects
- Introduction to BeautifulSoup:
 - Overview of BeautifulSoup
 - Parsing HTML content
 - Navigating and searching the parse tree (tags, attributes, text)
- Combining Requests and BeautifulSoup:
- Extracting specific elements and data from web pages
- Handling complex web pages with nested elements
- Hands-on Practice:
 - Practical exercises on using Requests and BeautifulSoup to scrape data
 - Q&A session to clear doubts

Day 3: Storing Scraped Data

- Introduction to Data Storage:
 - Overview of different data storage options (CSV, JSON, databases)
 - Choosing the right storage format based on use case
- Storing Data in CSV and JSON:
 - Writing scraped data to CSV files
 - Writing scraped data to JSON files
- Hands-on Practice:
 - Practical exercises on storing scraped data in different formats
 - O&A session to clear doubts
 - Small projects to reinforce learning

Week 9: Introduction to Power BI

Day 1: Overview of Power BI & Connecting to Data Sources

- Introduction to Power BI
- Components of Power BI (Desktop, Service, Mobile)
- Power BI Use Cases and Benefits
- Power BI Interface Tour
- Connecting to Data Sources (Excel, SQL Server, etc.)
- Import vs. Direct Query Mode
- Hands-On: Connecting Power BI to Data Sources

Day 2: Data Transformation and Cleaning in Power BI

- Introduction to Power Query Editor
- Basic Data Transformation Techniques (Filtering, Sorting, Merging)
- Hands-On: Data Cleaning Exercises
- Creating Custom Columns and Measures
- Advanced Data Transformation (Pivot, Unpivot)

Day 3: Creating Basic Visualizations & Practical Application

- Introduction to Visualizations (Bar Charts, Line Charts, Pie Charts)
- Hands-On: Creating and Customizing Basic Visualizations
- Practice: Building a Simple Report with Various Visuals
- Case Study: Creating a Complete Power BI Report
- Review and Q&A

Week 10: Advanced Data Visualization in Power BI

Day 1: Advanced Chart Types and Custom Visuals

- Introduction to Advanced Chart Types (Waterfall, Funnel, Treemap, etc.)
- Using Custom Visuals from Power BI Marketplace
- Hands-On: Creating Advanced Visualizations
- Importing and Customizing Custom Visuals

Day 2: Creating Interactive Dashboards

- Overview of Dashboard Elements and Interactivity
- Adding Slicers, Filters, and Drill-Throughs
- Hands-On: Building an Interactive Dashboard
- Techniques for Enhancing User Experience and Interaction

Day 3: Data Modelling and DAX Basics

- Introduction to Data Modelling in Power BI
- Creating Relationships and Data Models
- Introduction to DAX (Data Analysis Expressions) Basics
- Hands-On: Creating Basic Measures and Calculated Columns
- Best Practices for Visualization Design

Week 11 and Week 12:

Capstone Project:

- Using the knowledge of python
- Machine Learning
- Visualization
- Dashboard making