

目 录

引入	\	1
一、	对象的创建	2
	1.1 一维对象的创建	2
	1.2 一维对象的属性	3
	1.3 二维对象的创建	4
	1.4 二维对象的属性	6
_,	对象的索引	7
	2.1 一维对象的索引	7
	2.2 二维对象的索引	9
三、	对象的变形	11
	3.1 对象的转置	11
	3.2 对象的翻转	11
	3.3 对象的重塑	12
	3.4 对象的拼接	13
四、	对象的运算	16
	4.1 对象与系数之间的运算	16
	4.2 对象与对象之间的运算	17
五、	对象的缺失值	19
	5.1 发现缺失值	19
	5.2 剔除缺失值	20
	5.3 填补缺失值	21
六、	导入 Excel 文件	23
	6.1 创建 Excel 文件	23
	6.2 放入项目文件夹	24
	6.3 导入 Excel 信息	25
七、	数据分析	26
	7.1 导入信息	26
	7.2 聚合方法	27
	7.3 描述方法	28
	7.4 数据透视	29

引入

0.1 版本需求

本视频中,使用的 Python 解释器与第三方库的版本如下。

- Python 为 3.9 版本, 自 3.4 以来改动的语法可忽略不计, 除非更新到 4.0;
- NumPv 为 1.21 版本, 自发行以来改动的语法可忽略不计, 除非更新到 2.0;
- Pandas 为 1.2.4 版本,不同版本的发行日志: http://pandas.pydata.org/。

0.2 视频特点

- 清晰度: 本视频分辨率为 1080P, 请调高分辨率;
- 交流群: 微信搜索 "Boolart003"的小火柴, 备注 "杰哥", 即可拉入群聊;
- 讲义链接: NumPy 之后的讲义链接,放在上一行的微信交流群中。

0.3 视频 UP 主

- UP 的本科为三峡大学 (原电力部 6 所直属高校之一, 超强电气型), 硕士 是中南大学(计算机、自动化、临床、护理等热门专业均属 A 类学科)。
- 如果课件中有纰漏,请在视频评论区反馈。

0.4 深度学习的相关库

- ① NumPy 包为 Python 加上了关键的数组变量类型,弥补了 Python 的不足;
- ② Pandas 包在 NumPv 数组的基础上添加了与 Excel 类似的行列标签;
- ③ Matplotlib 库借鉴 Matlab,帮 Python 具备了绘图能力,使其如虎添翼;
- ④ Scikit-learn 库是机器学习库,内含分类、回归、聚类、降维等多种算法;
- ⑤ TensorFlow 库是 Google 公司开发的深度学习框架,于 2015 年问世;
- ⑥ PyTorch 库是 Facebook 公司开发的深度学习框架,于 2017 年问世。

0.5 深度学习的基本常识

- 人工智能是一个很大的概念,其中一个最重要的分支就是机器学习;
- 机器学习的算法多种多样,其中最核心的就是神经网络;
- 神经网络的隐藏层若足够深,就被称为深层神经网络,也即深度学习;
- 深度学习包含深度神经网络、卷积神经网络、循环神经网络等。

· Dandas 坛体床

一、对象的创建

- 导入 Pandas 时,通常给其一个别名 "pd",即 **import** pandas **as** pd。
- 作为标签库, Pandas 对象在 NumPy 数组基础上给予其行列标签。可以说, 列表之于字典, 就如 NumPy 之于 Pandas。
- Pandas 中,所有数组特性仍在,Pandas 的数据以 NumPy 数组的方式存储。

1.1 一维对象的创建

(1) 字典创建法

NumPy 中,可以通过 np.array()函数,将 Python 列表转化为 NumPy 数组;同样,Pandas 中,可以通过 pd.Series()函数,将 Python 字典转化为 Series 对象。

```
In [1]: import pandas as pd
```

```
In [2]: # 创建字典 dict_v={'a':0, 'b':0.25, 'c':0.5, 'd':0.75, 'e':1}
```

```
In [3]: # 用字典创建对象

sr = pd.Series(dict_v)

sr
```

```
Out [3]: a 0.00
b 0.25
c 0.50
d 0.75
e 1.00
dtype: float64
```

(2) 数组创建法

最直接的创建方法即直接给 pd.Series()函数参数,其需要两个参数。第一个参数是值 values (列表、数组、张量均可),第二个参数是键 index (索引)。

```
In [1]: import pandas as pd
```

```
In [2]: # 先定义键与值
v = [0, 0.25, 0.5, 0.75, 1]
k = ['a', 'b', 'c', 'd', 'e']
```

```
In [3]: # 用列表创建对象
sr = pd.Series(v, index=k)
sr
```

```
Out [3]: a 0.00
b 0.25
c 0.50
d 0.75
e 1.00
dtype: float64
```

其中,参数 index 可以省略,省略后索引即从 0 开始的顺序数字。

1.2 一维对象的属性

Series 对象有两个属性: values 与 index。

In [1]: **import** numpy **as** np **import** pandas **as** pd

In [2]: # 用数组创建 sr v = np.array([53,64,72,82]) k = ['1 号', '2 号', '3 号', '4 号'] sr = pd.Series(v,index=k)

sr

Out [2]: 1号 53 2号 64 3号 72 4号 82 dtype: int32

In [3]: # 查看 values 属性

sr.values

Out [3]: array([53, 64, 72, 82])

In [4]: # 查看 index 属性

sr.index

Out [4]: Index(['1 号', '2 号', '3 号', '4 号'], dtype='object')

事实上,无论是用列表、数组还是张量来创建对象,最终 values 均为数组。

In [1]: import pandas as pd

import torch

In [2]: # 用张量创建 sr

v = torch.tensor([53, 64, 72, 82])

k = ['1 号', '2 号', '3 号', '4 号']

sr = pd.Series(v, index=k)

sr

Out [2]: 1号 53

2号 64

3号 72

4号 82

dtype: int64

In [3]: # 查看 values 的属性

sr.values

Out [3]: array([53, 64, 72, 82], dtype=int64)

可见,虽然 Pandas 对象的第一个参数 values 可以传入列表、数组与张量,但传进去后默认的存储方式是 NumPy 数组。这一点更加提醒我们,Pandas 是建立在 NumPy 基础上的库,没有 NumPy 数组库就没有 Pandas 数据处理库。

当想要 Pandas 退化为 NumPy 时,查看其 values 属性即可。

ac 仁俠庄

1.3 二维对象的创建

二维对象将面向矩阵,其不仅有行标签 index,还有列标签 columns。

(1) 字典创建法

用字典法创建二维对象时,必须基于多个 Series 对象,每一个 Series 就是一列数据,相当于对一列一列的数据作拼接。

- 创建 Series 对象时,字典的键是 index,其延展方向是竖直方向;
- 创建 DataFrame 对象时,字典的键是 columns,其延展方向是水平方向。

```
In [1]: import pandas as pd
```

```
In [2]: # 创建 sr1: 各个病人的年龄
v1 = [53,64,72,82]
i = ['1 号','2 号','3 号','4 号']
sr1 = pd.Series(v1,index=i)
sr1
```

Out [2]: 1号 53 2号 64 3号 72 4号 82 dtype: int64

```
In [3]: # 创建 sr2: 各个病人的性别 v2 = ['女', '男', '男', '女'] i = ['1 号', '2 号', '3 号', '4 号'] sr2 = pd.Series(v2, index=i) sr2
```

Out [3]: 1号 女 2号 男 3号 男 4号 女 dtype: object

In [4]: # 创建 df 对象
 df = pd.DataFrame({'年龄':sr1,'性别':sr2})
 df

 Out [4]:
 年龄性别

 1号 53 女

 2号 64 男

 3号 72 男

 4号 82 女

如果 sr1 和 sr2 的 index 不完全一致,那么二维对象的 index 会取 sr1 与 sr2 的所有 index,相应的,该对象就会产生一定数量的缺失值(NaN)。

(2) 数组创建法

最直接的创建方法即直接给 pd.DataFrame 函数参数,其需要三个参数。第 一个参数是值 values (数组),第二个参数是行标签 index,第三个参数是列标签 columns。其中, index 和 columns 参数可以省略, 省略后即从 0 开始的顺序数字。

In [1]: import numpy as np import pandas as pd

In [2]: # 设定键值 v = np.array([[53,'女'],[64,'男'],[72,'男'],[82,'女']]) i=['1 号','2 号','3 号','4 号'] c=['年龄','性别']

In [3]: # 数组创建法 df = pd.DataFrame(v, index=i, columns=c) df

Out [3]: 年龄 性别 1号 53 女 2号 64 男 3 묵 72 男 4号 82 女

细心的同学可能会发现端倪, In [2]第二行的 NumPy 数组居然又含数字又含 字符串,上次课中明明讲过数组只能容纳一种变量类型。这里的原理是,数组默 默把数字转为了字符串, 于是 v 就是一个字符串型数组。

1.4 二维对象的属性

DataFrame 对象有三个属性: values、index 与 columns。

In [1]: import pandas as pd

In [2]: # 设定键值

v=[[53,'女'],[64,'男'],[72,'男'],[82,'女']]

i=['1 号','2 号','3 号','4 号']

c=['年龄','性别']

In [3]: # 数组创建法

df = pd.DataFrame(v, index=i, columns=c)

df

Out [3]:

	年龄	性别
1号	53	女

2号 64 男

3号 72 男

4号 82 女

In [4]: # 查看 values 属性

df.values

Out [4]: array([[53, '女'],

[64, '男'],

[72, '男'],

[82, '女']], dtype=object)

In [5]: # 查看 index 属性

df.index

Out [5]: Index(['1 号', '2 号', '3 号', '4 号'], dtype='object')

In [6]: # 查看 columns 属性

df.columns

Out [6]: Index(['年龄', '性别'], dtype='object')

当想要 Pandas 退化为 NumPy 时,查看其 values 属性即可。

In [7]: #提取完整的数组

arr = df.values

print(arr)

Out [7]: [['53' '女']

['64' '男']

['72' '男']

['82' '女']]

In [8]: #提取第[0]列,并转化为一个整数型数组

arr = arr[:,0].astype(int)

print(arr)

Out [8]: [53 64 72 82]

由于数组只能容纳一种变量类型,因此需要 .astype(int) 的操作。但对象不用,对象每一列的存储方式是单独的,这就很好的兼容了大数据的特性。

二、对象的索引

在学习 Pandas 的索引之前,需要知道

- Pandas 的索引分为显式索引与隐式索引。显式索引是使用 Pandas 对象提 供的索引,而隐式索引是使用数组本身自带的从0开始的索引。
- 现假设某演示代码中的索引是整数,这个时候显式索引和隐式索引可能 会出乱子。于是, Pandas 作者发明了索引器 loc (显式) 与 iloc (隐式), 手动告诉程序自己这句话是显式索引还是隐式索引。
- 本章示例中, 若代码块出现两栏, 则**左侧为显式索引, 右侧为隐式索引**, 左右两列属于平行关系, 任选其一均可。

2.1 一维对象的索引

(1) 访问元素

```
In [1]: import pandas as pd
 In [2]: # 创建 sr
         v = [53, 64, 72, 82]
         k=['1 号', '2 号', '3 号', '4 号']
         sr = pd.Series( v, index=k )
         sr
Out [2]: 1号
                 53
         2号
                 64
         3 号
                 72
         4号
                 82
         dtype: int64
 In [3]: # 访问元素
                                      In [3]: # 访问元素
         sr.loc[ '3 号']
                                             sr.iloc[2]
Out [3]: 72
                                    Out [3]:
                                             72
 In [4]: # 花式索引
                                      In [4]: # 花式索引
         sr.loc[['1号','3号']]
                                             sr.iloc[[0, 2]]
Out [4]: 1号
                 53
                                    Out [4]: 1号
                                                      53
         3号
                                              3 号
                 72
                                                     72
         dtype: int64
                                             dtype: int64
 In [5]: # 修改元素
                                      In [5]: # 修改元素
         sr.loc['3 号']=100
                                             sr.iloc[2] = 100
         sr
                                             sr
Out [5]: 1号
                                    Out [5]: 1号
                  53
                                                      53
         2号
                                             2号
                  64
                                                      64
         3号
                                              3号
                 100
                                                      100
         4 号
                                             4 号
                  82
                                                      82
         dtype: int64
                                              dtype: int64
```


(2) 访问切片

使用显式索引时,'1号':'3号'可以涵盖最后一个'3号',但隐式与之前一样。

```
In [1]:
         import pandas as pd
 In [2]:
         # 创建 sr
         v = [53, 64, 72, 82]
         k=['1 号', '2 号', '3 号', '4 号']
         sr = pd.Series( v, index=k )
Out [2]: 1号
                 53
         2号
                 64
         3号
                 72
         4号
                 82
         dtype: int64
 In [3]: # 访问切片
                                      In [3]: # 访问切片
         sr.loc['1号':'3号']
                                              sr.iloc[ 0:3 ]
Out [3]:
        1号
                 53
                                     Out [3]:
                                             1号
                                                      53
         2号
                                              2号
                 64
                                                      64
         3号
                                              3号
                 72
                                                      72
                                              dtype: int64
         dtype: int64
         # 切片仅是视图
                                              # 切片仅是视图
 In [4]:
                                      In [4]:
         cut = sr.loc[ '1 号':'3 号']
                                              cut = sr.iloc[ 0:3 ]
         cut.loc['1 号'] = 100
                                              cut.iloc[0] = 100
         sr
                                              sr
Out [4]: 1号
                                     Out [4]: 1号
                 100
                                                      100
         2号
                                              2号
                  64
                                                       64
         3号
                                              3号
                  72
                                                       72
         4号
                                              4号
                  82
                                                       82
         dtype: int64
                                              dtype: int64
 In [5]: # 对象赋值仅是绑定
                                             # 对象赋值仅是绑定
                                      In [5]:
         cut = sr
                                              cut = sr
         cut.loc['3 号'] = 200
                                              cut.iloc[2] = 200
                                              sr
         sr
Out [5]: 1号
                                    Out [5]: 1号
                 100
                                                      100
         2号
                                              2号
                  64
                                                       64
         3号
                                              3号
                 200
                                                      200
         4号
                  82
                                              4号
                                                       82
         dtype: int64
                                              dtype: int64
```

In [4]与 In [5]中,若想创建新变量,与 NumPy 一样,使用.copy()方法即可。 如果去掉 .loc 和 .iloc ,此时与 NumPy 中的索引语法完全一致。

2.2 二维对象的索引

在二维对象中,索引器不能去掉,否则会报错,因此必须适应索引器的存在。

(1) 访问元素

```
In [1]: import pandas as pd
 In [2]: # 字典创建法
        i=['1号','2号','3号','4号']
        v1 = [53, 64, 72, 82]
        v2=['女','男','男','女']
        sr1 = pd.Series(v1, index=i)
        sr2 = pd.Series(v2, index=i)
        df = pd.DataFrame({'年龄':sr1,'性别':sr2})
        df
Out [2]:
              年龄
                    性别
         1号
                     女
               53
         2号
               64
                     男
         3 号
               72
                     男
         4号
               82
                    女
 In [3]: # 访问元素
                                    In [3]: # 访问元素
        df.loc['1号','年龄']
                                           df.iloc[0, 0]
Out [3]: 53
                                   Out [3]:
                                           53
                                    In [4]:
 In [4]:
        # 花式索引
                                           # 花式索引
        df.loc[['1号','3号'],['性别','年龄']]
                                           df.iloc[[0,2],[1,0]]
Out [4]:
                                   Out [4]:
                                                  性別 年龄
              性別年龄
         1号
               女
                    53
                                             1号
                                                  女
                                                        53
         3 号
               男
                    72
                                            3 묵
                                                  男
                                                       72
                                    In [5]: # 修改元素
 In [5]: # 修改元素
        df.loc[ '3 号', '年龄' ] = 100
                                           df.iloc[2,0] = 100
        df
                                           df
Out [5]:
                                   Out [5]:
              年龄
                    性别
                                                  年龄
                                                       性别
         1号
               53
                     女
                                            1号
                                                  53
                                                        女
         2号
               64
                     男
                                            2号
                                                  64
                                                        男
         3号
              100
                     男
                                             3 号
                                                  100
                                                        男
         4号
               82
                     女
                                            4号
                                                  82
                                                        女
```

在 NumPy 数组中,花式索引输出的是一个向量。但在 Pandas 对象中,考虑到其行列标签的信息不能丢失,所以输出一个向量就不行了,所以这里的 In [4]的才输出一个二维对象。

(2) 访问切片

In [1]: import pandas as pd

In [2]: #数组创建法 v=[[53,'女'],[64,'男'],[72,'男'],[82,'女']] i=['1号','2号','3号','4号']

> c = ['年龄', '性别'] df = pd.DataFrame(v, index=i, columns=c)

df

 Out [2]:
 年龄性别

 1号 53 女

 2号 64 男

 3号 72 男

4号 82 女

 Out [3]: 1号 53
 Out [3]: 1号 53

 2号 64
 2号 64

 3号 72
 3号 72

Name: 年龄, dtype: int64 Name: 年龄, dtype: int64

 Out [4]: 年龄
 72
 Out [4]: 年龄
 72

 性别
 男
 性别
 男

Name: 3 号, dtype: object Name: 3 号, dtype: object

Out [5]: 1号 Out [5]: 1号 53 53 2号 2号 64 64 3号 3号 72 72 4号 82 4号 82

在显示索引中,提取矩阵的行或列还有一种简便写法,即

- 提取二维对象的行: df.loc['3 号'](原理是省略后面的冒号, 隐式也可以)
- 提取二维对象的列: df ['<mark>年龄'</mark>] (原理是列标签本身就是二维对象的键)

三、对象的变形

3.1 对象的转置

有时候提供的大数据很畸形,行是特征,列是个体,这必须要先进行转置。

In [1]: import pandas as pd

In [2]: # 创建畸形 df

v=[[53,64,72,82],['女','男','男','女']]

i=['年龄','性别']

c=['1 号','2 号','3 号','4 号']

df = pd.DataFrame(v, index=i, columns=c)

df

Out [2]:

1号2号3号4号年齢53647282性別女男男女

In[3]: # 转置

df = df.T

df

Out [3]:

年龄性别1号53女2号64男3号72男4号82女

3.2 对象的翻转

紧接上面的例子,对 Pandas 对象进行左右翻转与上下翻转。

In [4]: # 左右翻转

df = df.iloc[:,::-1]

df

Out [4]:

性别年龄1号女532号男643号男724号女82

In [5]: # 上下翻转

df = df.iloc[::-1,:]

df

Out [5]:

	性别	年龄
4号	女	82
3号	男	72
2号	男	64
1 무	+	53

有尔艺数 Book Act

3.3 对象的重塑

考虑到对象是含有行列标签的,.reshape()已不再适用,因此对象的重塑没有那么灵活。但可以做到将 sr 并入 df,也可以将 df 割出 sr。

```
In [1]: import pandas as pd
 In [2]: # 数组法创建 sr
         i=['1 号','2 号','3 号','4 号']
         v1 = [10, 20, 30, 40]
         v2=['女','男','男','女']
         v3 = [1, 2, 3, 4]
         sr1 = pd.Series(v1, index=i)
         sr2 = pd.Series(v2, index=i)
         sr3 = pd.Series(v3, index=i)
         sr1, sr2, sr3
Out [2]: (1号
                            1号
                                              1号
                 10
                                    女
                                                      1
                            2号
                                    男
                                              2号
          2号
                 20
                                                      2
                            3号
                                    男
          3号
                 30
                                              3号
                                                      3
          4号
                            4 号
                                    女
                                              4号
                 40
                                                      4
          dtype: int64,
                            dtype: object,
                                               dtype: int64)
 In [3]: # 字典法创建 df
         df = pd.DataFrame({ '年龄':sr1, '性别':sr2})
         df
Out [3]:
               年龄
                    性别
          1号
               10
                     女
          2号
               20
                     男
          3号
                30
                     男
          4号
               40
                     女
 In [4]: # 把 sr 并入 df 中
         df['牌照'] = sr3
         df
Out [4]:
               年龄
                    性别
                          牌照
          1号
               10
                     女
                            1
          2号
               20
                     男
                           2
          3号
                     男
                           3
                30
          4号
               40
                     女
                           4
 In [5]: # 把 df['年龄']分离成 sr4
         sr4 = df['年龄']
         sr4
Out [5]: 1号
                 10
         2号
                 20
```

3号

4号

30

40

Name: 年龄, dtype: int64

Pvthon 深度学习: Pandas 标签库

3.4 对象的拼接

Pandas 中有一个 pd.concat()函数,与 np.concatenate()函数语法相似。

(1) 一维对象的合并

dtype: int64

```
In [1]: import pandas as pd
 In [2]: # 创建 sr1 和 sr2
         v1 = [10, 20, 30, 40]
         v2 = [40, 50, 60]
         k1 = ['1 号','2 号','3 号','4 号']
         k2=['4号','5号','6号']
         sr1 = pd.Series(v1, index = k1)
         sr2 = pd.Series(v2, index = k2)
         sr1, sr2
                             4号
Out [2]: (1号
                  10
                                     40
          2号
                              5号
                  20
                                      50
          3号
                  30
                              6号
                                      60
          4号
                  40
                              dtype: int64)
          dtype: int64,
 In [3]: # 合并
         pd.concat([sr1, sr2])
Out [3]: 1号
                  10
         2号
                 20
         3号
                 30
         4号
                 40
         4号
                 40
         5号
                 50
         6号
                 60
```

值得注意的是, Out [3]的键中出现了两个"4号", 这是因为 Pandas 对象的 属性,放弃了集合与字典索引中"不可重复"的特性,实际中,这可以拓展大数 据分析与处理的应用场景。那么,如何保证索引是不重复的呢?对对象的属 性 .index 或 .columns 使用 .is unique 即可检查,返回 True 表示行或列不重复, False 表示有重复。

有尔艺数 Brod Act

(2) 一维对象与二维对象的合并

一维对象与二维对象的合并,即可理解为:给二维对象加上一列或者一行。 因此,不必使用 pd.concat()函数,只需要借助 2.2 小节"二维对象的索引"语法。

首先, 创建好二维对象。

```
In [1]: import pandas as pd
```

Out [2]: (1号 10 1号 女 2号 20 2号 男 3号 30 3号 男 dtype: int64, dtype: object)

In [3]: # 创建 df df = pd.DataFrame({'年龄':sr1,'性别':sr2}) df

 Out [3]:
 年龄性别

 1号 10 女

 2号 20 男

 3号 30 男

其次,为二维对象加上一列特征,可以是列表、数组、张量或一维对象。

In [4]: # 加上一列
df['<mark>牌照</mark>'] = [1, 2, 3]
df

 Out [4]:
 年龄
 性别
 牌照

 1号
 10
 女
 1

 2号
 20
 男
 2

 3号
 30
 男
 3

最后,为二维对象加上一行个体,可以是列表、数组、张量或一维对象。

In [5]: # 加上一行
df.loc['4号'] = [40, '女', 4]
df

Out [5]: 年龄 性别 牌照 1号 10 女 1 2号 20 男 2 3号 30 男 3 4号 40 女 4

(3) 二维对象的合并

二维对象合并仍然用 pd.concat()函数,不过其多了一个 axis 参数。

In [1]: import pandas as pd

In [2]: # 设定 df1、df2、df3

v1 = [[10, '女'], [20, '男'], [30, '男'], [40, '女']]

v2 = [[1, '是'], [2, '是'], [3, '是'], [4, '否']]

v3 = [[50, '男', 5, '是'], [60, '女', 6, '是']]

i1=['1 号','2 号','3 号','4 号']

i2 = ['1 号', '2 号', '3 号', '4 号']

i3 = ['5 号','6 号']

c1 = ['年龄', '性别']

c2 = ['牌照', 'ikun']

c3 = ['年龄', '性别', '牌照', 'ikun']

df1 = pd.DataFrame(v1, index=i1, columns=c1)

df2 = pd.DataFrame(v2, index=i2, columns=c2)

df3 = pd.DataFrame(v3, index=i3, columns=c3)

df1, df2, df3

Out [2]:

	年龄	性别		牌照	ikun		年龄	性别	牌照	ikun
1 号	10	女	1号	1	是	5号	50	男	5	是
2 号	20	男	2 号	2	是	6 号	60	女	6	是
3 号	30	男	3 号	3	是					
4 믁	40	abla	4 목	4	否					

In[3]: # 合并列对象(添加列特征)

df = pd.concat([df1,df2], axis=1)

df

Out [3]:

	年龄	性别	牌照	ikun
1号	10	女	1	是
2 号	20	男	2	是
3 号	30	男	3	是
4号	40	女	4	否

In [4]: # 合并行对象(添加行个体)

df = pd.concat([df,df3])

df

Out [4]:

	年龄	性别	牌照	ikun
1号	10	女	1	是
2 号	20	男	2	是
3 号	30	男	3	是
4号	40	女	4	否
5号	50	男	5	是
6号	60	女	6	是

四、对象的运算

4.1 对象与系数之间的运算

下列演示代码中,左侧为一维对象,右侧为二维对象。 In [1]: import pandas as pd In [2]: # 创建 sr sr = pd.Series([53, 64, 72], index=['1 号', '2 号', '3 号']) Out [2]: 1号 53 2号 64 3号 72 dtype: int64 # 创建 df In [3]: v=[[53,'女'],[64,'男'],[72,'男']] df = pd.DataFrame(v, index=['1号','2号','3号'], columns=['年龄','性别']) df Out [3]: 年龄 性别 1 목 53 女 2号 男 64 3 号 72 男 In [4]: sr = sr + 10In [4]: df['年龄'] = df['年龄'] + 10 sr df Out [4]: Out [4]: 年龄 性别 1号 63 1号 63 2号 74 女 3号 82 2号 74 男 dtype: int64 3号 82 男 df['年龄'] = df['年龄'] * 10 In [5]: In [5]: sr = sr * 10df sr Out [5]: Out [5]: 年龄 性别 1号 630 1号 630 2号 740 女 2 목 740 男

3 号 820

dtype: int64

In [6]: sr = sr ** 2sr Out [6]:

1号 396900 2号 3号 672400 dtype: int64

547600

Out [6]:

In [6]:

年龄

3 号

df['年龄'] = df['年龄'] ** 2 df

男

性别 1号 396900 女 **2号** 547600 男 3号 672400 男

820

4.2 对象与对象之间的运算

对象做运算,必须保证其都是数字型对象,两个对象之间的维度可以不同。

(1) 一维对象之间的运算

```
In [1]: import pandas as pd
 In [2]: # 创建 sr1
         v1 = [10, 20, 30, 40]
         k1 = [ '1 号', '2 号', '3 号', '4 号' ]
         sr1 = pd.Series(v1, index = k1)
         sr1
Out [2]: 1号
                 10
         2号
                 20
         3号
                 30
         4号
                 40
         dtype: int64
 In [3]: # 创建 sr2
         v2 = [1, 2, 3]
         k2=['1号','2号','3号']
         sr2 = pd.Series(v2, index = k2)
         sr2
Out [3]: 1号
                 1
         2号
                 2
         3号
                 3
         dtype: int64
 In [4]:
         sr1 + sr2
                     # 加法
                                   In [5]:
                                           sr1 - sr2
                                                       # 减法
Out [4]: 1号
                                           1号
                                                     9.0
                 11.0
                                  Out [5]:
         2号
                                            2号
                 22.0
                                                    18.0
         3号
                                            3号
                 33.0
                                                    27.0
         4号
                 NaN
                                            4号
                                                    NaN
         dtype: float64
                                            dtype: float64
 In [6]: sr1 * sr2
                     # 乘法
                                   In [7]:
                                           sr1 / sr2
                                                       # 除法
                                  Out [7]: 1号
Out [6]: 1号
                 10.0
                                                    10.0
         2号
                                            2号
                 40.0
                                                    10.0
         3号
                                            3号
                 90.0
                                                    10.0
         4 号
                 NaN
                                            4号
                                                    NaN
         dtype: float64
                                            dtype: float64
 In [8]: sr1 ** sr2
                      # 幂方
Out [8]: 1号
                     10.0
         2号
                    400.0
         3号
                 27000.0
         4号
                     NaN
         dtype: float64
```


(2) 二维对象之间的运算

In [1]: import pandas as pd

In [2]: # 设定 df1 和 df2

v1 = [[10, '女'], [20, '男'], [30, '男'], [40, '女']]

v2 = [1, 2, 3, 6]

i1=['1号','2号','3号','4号']; c1=['年龄','性别']

i2=['1号','2号','3号','6号']; c2=['牌照']

df1 = pd.DataFrame(v1, index=i1, columns=c1)

df2 = pd.DataFrame(v2, index=i2, columns=c2)

df1, df2

Out [2]:

	年龄	性别		牌照
1号	10	女	1号	1
2 号	20	男	2 号	2
3 号	30	男	3 号	3
4号	40	女	6号	6

In [3]: # 加法

df1['加法'] = df1['年龄'] + df2['牌照']

df1

Out [3]:

	年龄	性别	加法
1 믖	10	女	11.0
2 号	20	男	22.0
3 号	30	男	33.0
4号	40	女	NaN

In [4]: # 减法、乘法、除法、幂方

df1['减法'] = df1['年龄'] - df2['牌照']

df1['乘法'] = df1['年龄'] * df2['牌照']

df1['除法'] = df1['年龄'] / df2['牌照']

df1['幂方'] = df1['年龄'] ** df2['牌照']

df1

Out [4]:

	年龄	性别	加法	减法	乘法	除法	幂方
1 5	号 10	女	11.0	9.0	10.0	10.0	10.0
2 =	를 20	男	22.0	18.0	40.0	10.0	400.0
3 =	를 30	男	33.0	27.0	90.0	10.0	27000.0
4 5	号 40	女	NaN	NaN	NaN	NaN	NaN

本章的最后,补充两点内容,读者可自行尝试。

- 使用 np.abs()、np.cos()、np.exp()、np.log() 等数学函数时,会保留索引;
- Pandas 中仍然存在布尔型对象,用法与 NumPy 无异,会保留索引。

五、对象的缺失值

5.1 发现缺失值

发现缺失值使用 .isnull() 方法。

```
In [1]: import pandas as pd
 In [2]: # 创建 sr
         v = [53, None, 72, 82]
         k = ['1 号', '2 号', '3 号', '4 号']
         sr = pd.Series( v, index=k )
         sr
Out [2]: 1号
                 53.0
         2号
                 NaN
         3 号
                 72.0
         4 号
                 82.0
         dtype: float64
 In [3]: # 创建 df
         v = [ [None, 1], [64, None], [72, 3], [82, 4] ]
         i = [ '1 号', '2 号', '3 号', '4 号' ]
         c=['年龄','牌照']
         df = pd.DataFrame( v, index=i, columns=c )
         df
Out [3]:
                年龄
                      牌照
          1号 NaN
                      1.0
          2号
               64.0
                      NaN
                      3.0
          3号
               72.0
          4号 82.0
                      4.0
                                    In [4]: # 发现 df 的缺失值
 In [4]: # 发现 sr 的缺失值
         sr.isnull()
                                            df.isnull()
Out [4]: 1号
                 False
                                  Out [4]:
                                                  年龄
                                                         牌照
         2号
                 True
                                             1号
                                                  True
                                                        False
         3号
                 False
                                                  False True
                                             2 号
         4号
                 False
                                             3号
                                                  False False
         dtype: bool
                                             4号 False False
```

除了.isnull() 方法,还有一个与之相反的 .notnull() 方法,但不如在开头加 一个非号 "~"即可。

5.2 剔除缺失值

剔除缺失值使用 .dropna() 方法,一维对象很好剔除;二维对象比较复杂, 要么单独剔除 df 中含有缺失值的行, 要么剔除 df 中含有缺失值的列。

```
In [1]: import pandas as pd
```

In [2]: # 创建 sr

v = [53, None, 72, 82]

k=['1 号', '2 号', '3 号', '4 号']

sr = pd.Series(v, index=k)

sr

Out [2]: 1号 53.0

> 2号 NaN

3号 72.0

4 号 82.0 dtype: float64

In [3]: # 创建 df

v = [[None, None], [64, None], [72, 3], [82, 4]]

i = ['1 号', '2 号', '3 号', '4 号']

c=['年龄','牌照']

df = pd.DataFrame(v, index=i, columns=c)

Out [3]: 年龄 牌照

> 1号 NaN NaN

2 号 64.0 NaN

3号 72.0 3.0

4 목 82.0 4.0

In [4]: # 剔除 sr 的缺失值

sr.dropna()

Out [4]: 1号 53.0 3号 72.0

> 4 号 82.0

dtype: float64

In [4]: # 剔除 df 含缺失值的行

df.dropna()

Out [4]: 年龄 牌照 3号 72.0 3.0

4号 82.0 4.0

In [4]中,把含有 NaN 的行剔除掉了,你也可以通过 df.dropna(axis='columns') 的方式剔除列。但请警惕,一般都是剔除行,只因大数据中行是个体,列是特征。

有些同学认为,只要某行含有一个 NaN 就剔除该个体太过残忍,我们可以 设定一个参数,只有当该行全部是 NaN,才剔除该列特征。

In [5]: # 剔除 df 全是 NaN 的个体

df.dropna(how='all')

Out [5]: 年龄 牌照 2 号 64.0 NaN

3号 72.0 3.0

4号 82.0 4.0

5.3 填补缺失值

填充缺失值使用 .fillna() 方法,实际的数据填充没有统一的方法,很灵活。

(1) 一维对象

```
In [1]: import pandas as pd
```

In [2]: # 创建 sr

v = [53, None, 72, 82]

sr = pd.Series(v, index=['1 号', '2 号', '3 号', '4 号'])

sr

Out [2]: 1号 53.0

> 2号 NaN

3号 72.0

4号 82.0

dtype: float64

In [3]: # 用常数(0)填充

sr.fillna(0)

Out [3]: 1号 53.0

> 2号 0.0

3号 72.0

4号 82.0

dtype: float64

In [4]: # 用常数(均值)填充

import numpy as np

sr.fillna(np.mean(sr))

Out [4]: 1号 53.0

> 2号 69.0

> 3号 72.0

4 号

82.0

dtype: float64

In [5]: # 用前值填充

sr.fillna(method='ffill')

Out [5]: 1号 53.0

> 2号 53.0

3号 72.0

4号 82.0

dtype: float64

In [6]: # 用后值填充

sr.fillna(method='bfill')

Out [6]: 1号 53.0

> 2号 72.0

3号 72.0

4号 82.0

dtype: float64

(2) 二维对象

```
In [1]: import pandas as pd
```

In [2]: # 设定 df
v = [[None, None], [64, None], [72, 3], [82, 4]]
i = ['1 号', '2 号', '3 号', '4 号']; c = ['年龄', '牌照']
df = pd.DataFrame(v, index=i, columns=c)

 年龄 牌照

 1号 NaN NaN

 2号 64.0 NaN

 3号 72.0 3.0

 4号 82.0 4.0

df

In [3]: # 用常数(0)填充 df.fillna(0)

 Out [3]:
 年龄 牌照

 1号 0.0 0.0

 2号 64.0 0.0

 3号 72.0 3.0

 4号 82.0 4.0

In [4]: # 用常数(均值)填充 import numpy as np df.fillna(np.mean(df))

 Out [4]:
 年龄 牌照

 1号 72.67 3.5

 2号 64.0 3.5

 3号 72.0 3.0

 4号 82.0 4.0

In [5]: # 用前值填充 df.fillna(method='ffill')

 Out [5]:
 年龄 牌照

 1号 NaN NaN

 2号 64.0 NaN

 3号 72.0 3.0

 4号 82.0 4.0

In [6]: # 用后值填充 df.fillna(method='bfill')

 Out [6]:
 年龄 牌照

 1号 64.0 3.0

 2号 64.0 3.0

 3号 72.0 3.0

 4号 82.0 4.0

六、导入 Excel 文件

6.1 创建 Excel 文件

首先, 创建 Excel 文件, 录入信息, 第一列为 index, 第一行为 columns。

	2	= =	Data.xl	lsx - Excel		
文件	开始 打	重入 页面布局	る 公式 数	据审阅	视图 帮助	团队
l12	¥	: × •	fx			
	Α	В	С	D	Е	
1		age	gender	num	kun	
2	1号	10.0000	女	1	是	
3	2号	20.0000	男	2	是	
4	3号	30.0000	男	3	是	
5	4号	40.0000	女	4	否	
6	5号	50.0000	男	5	是	
7	6号	60.0000	女	6	是	
8						

图 6-1 创建 Excel 文件并录入信息

如果你的数据没有 index 和 columns, 也即你只是想导入一个数组, 那么也 请先补上行列标签,后续用 .values 属性就能将二维对象转换为数组。

图 6-1 创建 Excel 文件并录入信息

接着,将其另存为为 CSV 文件,如图 6-2 所示。

图 6-2 另存为 CSV 文件

无视之后弹出的"工作薄的部分功能丢失", csv 确实没有 Excel 功能多。这 个过程,表格的信息不会丢失,大可放心。

6.2 放入项目文件夹

将刚刚另存为的 CSV 文件放置 Jupyter 的当前文件夹(不一定是默认路径)。 如图 6-3 所示,目前的默认路径有两个工程项目文件夹(你可以根据自己的实际 工程数量创建更多的工程项目文件夹),点击《Panda 学习》文件夹以进入项目。

图 6-3 Jupyter 的默认路径

进入 Pandas 学习文件夹后,将 CSV 文件放置其中。

图 6-4 将 CSV 文件放置对应文件夹

6.3 导入 Excel 信息

导入信息的命令如示例所示。

In [1]: import pandas as pd

In [2]: # 导入 Pandas 对象

df = pd.read_csv('Data.csv', index_col=0)

df

Out [2]:

	年龄	性别	牌照	kun
1号	10	女	1	是
2号	20	男	2	是
3号	30	男	3	是
4号	40	女	4	否
5号	50	男	5	是
6号	60	女	6	是

In [3]: # 提取纯数组

arr = df.values

arr

Out [3]: array([[10, '女', 1, '是'],

[20, '男', 2, '是'],

[30, '男', 3, '是'],

[40, '女', 4, '否'],

[50, '男', 5, '是'],

[60, '女', 6, '是']], dtype=object)

七、数据分析

7.1 导入信息

首先,准备好 Excel 数据表格,如图 7-1 所示。

	G ちょう								
文件	开始 插入	页面布局	公式 数据 审阅 礼	观图 帮助 团队	↓ ♀ 操作说	明搜索			
J8	18 ·								
	Α	В	С	D	Е	F			
1	发现时间	发现数量	观测方法	行星质量	距地距离	轨道周期			
2	1989	1	径向速度	11.68	40.57	83.8880			
3	1992	3	脉冲星计时			25.2620			
4	1992	3	脉冲星计时			66.5419			
5	1994	3	脉冲星计时			98.2114			

图 7-1 准备 Excel 表格

发现没有行标签,因此需要在最左侧快速填充一列顺序数字,如图7-2所示。

1		发现时间	发现数量	观测方法	行星质量	距地距离	轨道周期
2	0	1989	1	径向速度	11.68	40.57	83.8880
3	1	1992	3	脉冲星计时			25.2620
4	2	1992	3	脉冲星计时			66.5419
5	3	1994	3	脉冲星计时			98.2114

图 7-2 整理 Excel 表格

接着,按照第六章的方法,将其另存为 CSV 文件,并放置项目文件夹中。

图 7-3 另存为 CSV 文件并放置项目文件夹

最后,导入该表格至 Jupyter 中。

In [1]: import pandas as pd

In [2]: # 导入 Pandas 对象

pd.read_csv('行星数据.csv', index_col=0)

Out [2]:

	发现时间	发现数量	观测方法	行星质量	距地距离	轨道周期
0	1989	1	径向速度	11.68	40.57	83.8880
1	1992	3	脉冲星计时	NaN	NaN	25.2620
2	1992	3	脉冲星计时	NaN	NaN	66.5419
3	1994	3	脉冲星计时	NaN	NaN	98.2114
4	1995	1	径向速度	0.472	15.36	4.2308
•••			•••			
1030	2014	1	凌日	NaN	NaN	2.4650
1031	2014	1	凌日	NaN	NaN	68.9584
1032	2014	1	凌日	NaN	1056	1.7209
1033	2014	1	凌日	NaN	NaN	66.2620
1034	2014	1	凌日	NaN	470	0.9255

1035 rows × 6 columns

有尔艺数 Bool Act

7.2 聚合方法

可在输出 df 时,对其使用 .head() 方法,使其仅输出前五行。

In [1]: **import** pandas **as** pd

In [2]: # 导入 Pandas 对象

1995

df = pd.read_csv('行星数据.csv', index_col=0)

1

df.head()

Out [2]:		发现时间	发现数量	观测方法	行星质量	距地距离	轨道周期
	0	1989	1	径向速度	11.68	40.57	83.8880
	1	1992	3	脉冲星计时	NaN	NaN	25.2620
	2	1992	3	脉冲星计时	NaN	NaN	66.5419
	3	1994	3	脉冲星计时	NaN	NaN	98.2114

NumPy 中所有的聚合函数对 Pandas 对象均适用。此外,Pandas 将这些函数 变为对象的方法,这样,不导入 NumPy 也可使用。

径向速度

0.472

15.36

4.2308

In [3]:	# 最大值函数	np.max()	In [4]:	# 最小值函数	(np.min()
	df.max()			df.min()	
Out [3]:	发现时间	2014	Out [4]:	发现时间	1989
	发现数量	7		发现数量	1
	行星质量	25.0		行星质量	0.0036
	距地距离	8500.0		距地距离	1.35
	轨道周期	730000.0		轨道周期	0.0907
	dtype: object			dtype: object	
In [5]:	# 均值函数	np.mean()	In [6]:	# 标准差函数	(np.std()
	df.mean()			df.std()	
Out [5]:	发现时间	2009.070531	Out [6]:	发现时间	3.972567
	发现数量	1.785507		发现数量	1.240976
	行星质量	2.638161		行星质量	3.818617
	距地距离	264.069282		距地距离	733.116493
	轨道周期	2002.917596		轨道周期	26014.728304
	dtype: float64			dtype: float64	
In [7]:	# 求和函数	np.sum()			
	df.sum()				
Out [7]:	发现时间	2079388			
	发现数量	1848			
	行星质量	1353.37638			
	距地距离	213367.98			
	轨道周期	1986894.2555			
	dtype: object				

在这些方法中,像 NumPy 中一样,有默认值为 0 的参数 axis。一般不要将 其数值手动设定为 1,因为这种情况在数据分析中毫无意义。

此外,这些方法都忽略了缺失值,属于 NumPy 中聚合函数的安全版本。

Pvthon 深度学习: Pandas 标签库

7.3 描述方法

在数据分析中,用以上方法挨个查看未免太过麻烦,可以使用 .describe() 方 法直接查看所有聚合函数的信息。

In [1]: import pandas as pd

In [2]: # 导入 Pandas 对象

df = pd.read_csv('行星数据.csv', index_col=0)

df.head()

Out [2]:

	发现时间	发现数量	观测方法	行星质量	距地距离	轨道周期
0	1989	1	径向速度	11.68	40.57	83.8880
1	1992	3	脉冲星计时	NaN	NaN	25.2620
2	1992	3	脉冲星计时	NaN	NaN	66.5419
3	1994	3	脉冲星计时	NaN	NaN	98.2114
4	1995	1	径向速度	0.472	15.36	4.2308

df.describe()

Out [3]:

	发现时间	发现数量	行星质量	距地距离	轨道周期
count	1035	1035	513	808	992
mean	2009.070531	1.785507	2.638161	264.069282	2002.917596
std	3.972567	1.240976	3.818617	733.116493	26014.7283
min	1989	1	0.0036	1.35	0.0907
25%	2007	1	0.229	32.56	5.442575
50%	2010	1	1.26	55.25	39.9795
75%	2012	2	3.04	178.5	526.005
max	2014	7	25	8500	730000

第1行 count 是计数项,统计每个特征的有效数量(即排除缺失值),从 count 可以看出,行星质量的缺失值比较多,需要考虑一定的办法填充或舍弃。

第 2 行至第 3 行的 mean 与 std 统计每列特征的均值与标准差。

第 4 行至第 8 行的 min、25%、50%、75%、max 的意思是五个分位点,即 把数组从小到大排序后,0%、25%、50%、75%、100%五个位置上的数值的取值。 显然,50%分位点即中位数。

Pvthon 深度学习: Pandas 标签库

7.4 数据透视

(1) 两个特征内的数据透视

数据透视,对数据分析来讲十分重要。

现以泰坦尼克号的生还数据为例,以"是否生还"特征为考察的核心(或者 说是神经网络的输出),研究其它特征(输入)与之的关系,如示例所示。

In [1]: import pandas as pd

In [2]: # 导入 Pandas 对象

df = pd.read csv('泰坦尼克.csv', index col=0)

df.head()

Out [2]:

	性别	年龄	船舱等级	费用	是否生还
0	男	22.0	三等	7.2500	0
1	女	38.0	一等	71.2833	1
2	女	26.0	三等	7.9250	1
3	女	35.0	一等	53.1000	1
4	男	35.0	三等	8.0500	0

In [3]: # 一个特征: 性别

df.pivot table('是否生还', index='性别')

Out [3]: 是否生还

性别

女 0.742038

0.188908 男

In [4]: # 两个特征: 性别、船舱等级

df.pivot_table('是否生还', index='性别', columns='船舱等级')

Out [4]: 船舱等级 一等 三等 二等 性别

女 0.968085 0.500000 0.921053

男 0.368852 0.135447 0.157407

在上述示例中,数据透视表中的数值默认是输出特征"是否生还"的均值 (mean), 行标签和列标签变成了其它的输入特征。Out [3]可以看出, 女性整体 的生还概率是 74%, 男性整体的生还概率为 18%。而 Out [4]则区分的更细致, 按照船舱等级的下降, 生还率逐步下降。

值得注意的是, pivot table() 方法有一个很重要的参数: aggfunc, 其默认值 是'mean',除此以外,所有的聚合函数 'max'、'min'、'sum'、'count' 均可使用。 显然,对于这里的"是否生还"来说,'mean'就是最好的选择,其刚好为概率。

(2) 多个特征的数据透视

前面的示例只涉及到两个特征,有时需要考察更多特征与输出特征的关系。 这里,将年龄和费用都加进去。但是,这两个特征的数值很分散,之前的性 别和船舱等级都可以按照类别分,现在已经不能再按类别分了。因此,需要涉及 到数据透视表配套的两个重要函数: pd.cut()与 pd.gcut()。

In [1]: import pandas as pd

In [2]: # 导入 Pandas 对象

df = pd.read_csv('泰坦尼克.csv', index_col=0)

df.head()

Out [2]:

	性别	年龄	船舱等级	费用	是否生还
0	男	22.0	三等	7.2500	0
1	女	38.0	一等	71.2833	1
2	女	26.0	三等	7.9250	1
3	女	35.0	一等	53.1000	1
4	男	35.0	三等	8.0500	0

In [3]: # 三个特征: 性别、船舱等级、年龄

age = pd.cut(df['年龄'],[0,18,120]) # 以 18 岁为分水岭

df.pivot_table('是否生还', index=['性别', age], columns='船舱等级')

Out [3]:

		船舱等级	一等	三等	二等
1	生别	年龄			
			0.909091		
3	女	(18, 120]	0.972973	0.423729	0.900000
		(0, 18]	0.800000	0.215686	0.600000
男	五	(18, 120]	0.375000	0.133663	0.071429

In [4]: # 四个特征: 性别、船舱等级、年龄、费用

fare = pd.qcut(df['费用'], 2) # 将费用自动分为两部分

df.pivot_table('是否生还', index=['船舱等级',fare], columns=['性别', age])

Out [4]:

	性别		女		男	
		年龄	(0, 18]	(18, 120]	(0, 18]	(18, 120]
船	舱等级	费用				
	一等	(-0.001, 14.454]	NaN	NaN	NaN	0.000000
		(14.454, 512.329]	0.909091	0.972973	0.800000	0.391304
	三等	(-0.001, 14.454]	0.714286	0.444444	0.260870	0.125000
		(14.454, 512.329]	0.318182	0.391304	0.178571	0.192308
	二等	(-0.001, 14.454]	1.000000	0.880000	0.000000	0.098039
		(14.454, 512.329]	1.000000	0.914286	0.818182	0.030303

在 In [3]中, pd.cut()函数需要手动设置分割点,也可以设置为[0,18,60,120]。 在 In [4]中, pd.qcut()函数可自动分割,如果需要分割成3部分,可以设置为3。