Demo of My LATEX Style

Hassium

1 Packages	7 Other Environments and Commands
2 Title Page Setup	8 Quiver
3 Page Geometry	9 Theorem Styles
4 More on Table of Contents	10 Invisible Proofs
5 Index Page	11 Simple Commands in Math Mode
6 Darkmode	12 Acknowledgement

Packages 1

This style contains the following packages:

```
\usepackage[T1]{fontenc}
    \usepackage[explicit]{titlesec}
    \usepackage[utf8]{inputenc}
    \usepackage{amsmath,amsthm,amssymb,amsfonts,mathrsfs,mathtools,nicematrix,chngcntr,
    centernot,ytableau,tikz-cd}
    \usepackage{imakeidx,textcomp,tocloft,environ,setspace,geometry,enumerate,
    enumitem, blindtext, multicol, xcolor, fancyhdr, calligra, graphicx, wrapfig, pgfplots,
    mdframed,tabularx,lipsum,comment,csquotes,verbatim,transparent,scalerel,halloweenmath}
    \usepackage[hidelinks]{hyperref}
    \usepackage{chemfig}
How to insert it?
    \documentclass{article}
    \input{hassium.tex} % Download and input it using its path
```

Title Page Setup

After inserting the package, you should define the title and author name. Here is an example, which is the code of this demo:

```
\documentclass{article}
\input{hassium.tex}
\begin{document}
    \def\htitle{Demo of Hassium Style}
    \def\hauthor{Hassium}
    \def\hfauthor{Hassium}
    \hsetup
    \htoc
    \hmain
\end{document}
```

Here the "hfauthor" is the left part of the header. Also, feel free to use "hstart" command to include all three setup.

```
\documentclass{article}
\input{hassium.tex}
\begin{document}
    \def\htitle{Demo of Hassium Style}
    \def\hauthor{Hassium}
    \def\hfauthor{Hassium}
    \hstart
\end{document}
```

3 Page Geometry

There are some commands that adjust the geometry of the document:

```
\geometry{letterpaper, top=54pt,bottom=46.8pt,marginparsep=5.67pt,marginparwidth=56.69pt, voffset=0pt,hoffset=0pt,left=54pt,right=54pt,headheight=24pt,headsep=10pt} \setstretch{1.25} % spacing
```

4 More on Table of Contents

You can add descriptions to each section and the description will appear in the table of contents, directly below the section name:

```
\section{This is a Sample Section}
\descr{This is a description to the section}
```

The table of contents only shows the section names, but no subsections and numberless sections. If you want a numberless section in the table of contents, use the "newsection" command:

```
\newsection{This is a numberless section}
```

Note that the section names in the table of contents are hyperlinks; click on any section name to navigate directly to that section. You can do the converse to navigate to the first page as well.

5 Index Page

This style has a customized index page. Check the code:

```
This is a \hdef{defintiion}. This is another \hdef{vocabulary}. \hindex
```

The command "hdef" mark the word and print it. The command "hindex" is a customized index page that print words in three columns. Each page number in the index page contains a hyperlink to that page.

6 Darkmode

Darkmode commands change the background color to black and the text to white.

```
\begin{document}
     \darkhsetup
     \darkhmain
\end{document}
```

7 Other Environments and Commands

The line-spacing in "enumerate" environment is changed:

```
\setlist[enumerate]{topsep=0pt,itemsep=-1ex,partopsep=1ex,parsep=1ex}
```

The "level" environment is used in "enumerate" environment, consider the following code:

```
\begin{enumerate}
  \item This is the first line.
  \begin{level}
    \item This is the second line.
  \begin{level}
    \item This is the third line.
  \end{level}
  \item This is another line.
  \end{level}
\end{enumerate}
```

This code gives:

- 1. This is the first line.
 - 2. This is the second line.
 - 3. This is the third line.
 - 4. This is another line.

The command "circled" draws a small circle and you can add something inside the circle:

```
\circled{1}
```

The output is ①. You can write any Romam numerals by:

```
\rom108
```

There are two simple commands for hand-written fonts:

```
\cfd{font 1}
\cfc{font 2}
```

The outputs are font 1 and font 2.

8 Quiver

Quiver is done by varkor and AndréC, check their github for more information. I include quiver to draw curve arrows in a commutative diagram. To draw a diagram with quiver, check this website. An example is given below:

```
% chktex-file 15 % the three lines enables useless warnings
% chktex-file 17
% chktex-file 18
\begin{center}
  \begin{tikzcd}
    Hello &&&& World \\
    \\
    \\
    && Hassium
    \arrow["\shortmid"{marking}, curve={height=-6pt}, tail reversed, from=1-1, to=1-5]
    \arrow[curve={height=6pt}, squiggly, from=1-1, to=4-3]
    \arrow[curve={height=-6pt}, dashed, hook', from=1-5, to=4-3]
  \end{tikzcd}
\end{center}
```

The diagram looks like:

9 Theorem Styles

Several theorem styles are offered:

```
\theoremstyle{definition}
\newtheorem{definition}{Definition}[section]
\newtheorem{theorem}{Theorem}[section]
\newtheorem*{proposition}{Proposition}
\newtheorem*{lemma}{Lemma}
\newtheorem*{corollary}{Corollary}
\newtheorem*{example}{Example}
\newtheorem*{remark}{Remark}
\newtheorem*{notation}{Notation}
```

There is a "hdefinition" environment, which works exactly the same as "definition" if you write:

```
\begin{hdefinition}

This is a definition of Hassium.
\end{hdefinition}
```

If you include a name variable, it gives an index to the name.

```
\begin{hdefinition} [Hassium]
    This is a definition of Hassium
\end{hdefinition}
\hindex % This will print Hassium
```

The environment name can be customized by using:

```
\customtheorem{This is a custom theorem}
\begin{This is a custom theorem}
    The proof is trivial.
\end{This is a custom theorem}
```

The output environment is:

This is a custom theorem. The proof is trivial.

You can put any number or label in "exercise" environment:

```
\begin{exercise}[8.6]
   The proof is trivial.
\end{exercise}
```

The environment looks like:

Exercise 8.6. The proof is trivial.

10 Invisible Proofs

The environment "reviewmode" is originally done by my friend ETwilight. It replaces your "proof" environment by three empty lines:

```
\begin{reviewmode}
   \begin{proof}
     The proof is trivial.
   \end{proof}
\end{reviewmode}
```

11 Simple Commands in Math Mode

I will give a table of all commands in math mode.

\bs	\	\Sym	Sym
\N	N	\GL	GL
$\setminus Z$	$\mathbb Z$	\SL	SL
\Q	$\mathbb Q$	$\backslash \mathrm{Mod}$	Mod
\R	\mathbb{R}	\Sg	$\mathfrak S$
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	\mathbb{C}	$\setminus \mathrm{Ag}$	\mathfrak{A}
\bb{H}	H	\Cay	Cay
$\operatorname{Ca}\{H\}$	${\cal H}$	\uni	∃!
$fr\{H\}$	\mathfrak{H}	\al	α
\T	\mathcal{T}	\be	eta
\Ps{n}	\mathbb{P}^n	\ga	γ
$\CP\{n\}$	\mathbb{CP}^n	\de	δ
$\mathbb{R}P\{n\}$	\mathbb{RP}^n	\ep	ϵ

Hassium	Demo of My	MTEX Style	р.
\si	σ	\cp	1
\la	λ	\Cp	I
\ka	κ	\ot	Ć
\om	ω	\setminus op	(
\Ga	Γ	\acts	
\De	Δ	\sgn	sg
\Si	Σ	\nsg	-
$^{\setminus} \mathrm{LA}$	Λ	\defa	:
$^{ m Om}$	Ω	\sdp	
\vp	arphi	$\inf\{f\}$	f^{-}
\vt	ϑ	x\mod y	$x \mod$
\ve	arepsilon	\Cl	(
\ua	↑	\Hol	H_{0}
$^{\prime}$ da	↓	\comp	
Ra	\Rightarrow	\Gal	G
La	⇐	$\backslash \operatorname{card}\{S\}$	ļ.
\Ua	\uparrow	\im	i
Da		$\operatorname{\widehat{M}}$	M
\nRa	≠>	\po	"
nLa	#	\poe	
hra	\hookrightarrow	\cyc{g}	<
hla	\leftarrow	\Spec	Sp
\lt	~→	\Syl	S
mt	\mapsto	\iso	~
rat	\rightarrowtail	\niso	
lat	\leftarrow	\Mor	M
thra	→ >	\Aut	A
thla	«-	\End	Eı
bij	$\xrightarrow{\sim}$	\Hom	Но
$\operatorname{wb}\{\mathrm{A}\}$	$\stackrel{'}{\overline{A}}$	\Inn	Ir
id	id	\Out	O
sub	\subset	\Iso	I
sube		\Ob	(
supe	⊆	\tri	
nsub	$\stackrel{ ext{ iny }}{ ext{ iny }}$	\pa	
nsup	<i>≠ ⊅</i>	\Ann	Aı
\nsube		\dom	do
nsupe	\ 	\ran	r
\subn	# _	\cod	CO
\supn	⊈ ⊉ ⊊ ⊋		A
	Ø Ø	$A\{n\}$	F
es		\sq \CAT	CA
\sm ns	\	\CAT	
\ps 	${\mathscr P}$	$f\{A\}$	
Un T	U	\can	CS
\In	\bigcap	\Can	Ca
\Du		$\setminus \operatorname{cat}\{A\}$	

12 Acknowledgement

Special thanks to \mathcal{FSG} . His advice on this style has been invaluable.