COL380

Introduction to Parallel & Distributed Programming

Shared-Memory Access Models

- EREW (Exclusive Read Exclusive Write)
 - Only one processors may read or write any given location in a step
- CREW (Concurrent Read Exclusive Write)
 - → Many processors can simultaneously read a location, but only one may write
- CRCW (Concurrent Read Concurrent Write)
 - → Many processors can read/write the same memory location
- ERCW (Exclusive Read Concurrent Write)
 - → Not commonly used

Concurrent Write (CW)

Priority CW

Higher priority processor (normally lower index) wins

Common CW

→ Succeeds only if all writes have the same value

Arbitrary/Random CW

One of the values is randomly chosen

Concurrent Write (CW)

Priority CW

Higher priority processor (normally lower index) wins

Common CW

Succeeds only if all writes have the same value

Arbitrary/Random CW

→ One of the values is randomly chosen

EREW ≤ CREW ≤ Common ≤ Arbitrary ≤ Priority

Parallel Addition

```
p = n; B[i] = A[i]
                      p1
                                       p3
p = p/2; if(i<p) B[i] = B[2i]+B[2i+1]
                                       p3
p = p/2; if(i<p) B[i] = B[2i]+B[2i+1]
              p0
                      p1
p = p/2; if(i<p) B[i] = B[2i]+B[2i+1]
```

```
p = n/2

forall i < n

B[i] = A[i]

while(p > 0) {

forall i < p

B[i] = B[2i]+B[2i+1]

p = p/2;

}
```

p6

p4

- processors: n
- time: O(log n)
- Speed-up: n/(log n)
- Efficiency: 1/log(n)
- Cost: n log n
- Work: n

Linear Search p<n

- n input integers in n memory cells
- Does x exist in the input?
 - → x is initially stored in shared memory

Algorithm		EREW	CREW	CRCW
step1: If p0, broadcas	st x	• log(p)	• 1	• 1
step2: Processor pi: search in ith [n/p] block and {set flag fi}		• n/p	• n/p	• n/p
step3: If p0, check if 'a	any' flag is 1 and print answer	• log(p)	• log(p)	• 1

Small Processor Count

Lemma

Any problem that can be solved on a p-processor PRAM in t steps can be solved on a p'-processor PRAM in t' = O(t*p/p') steps (assuming the same size of shared memory).

Proof

- \rightarrow Partition *p simulated* processors into *p'* groups of size *p/p'* each.
- → Allocate each group to one available processor
- → An available processor executes on behalf of its group, one step at a time
 - Execute all READ substeps
 - Execute all LOCAL computation substeps
 - Execute all WRITE substeps
- → Assumes local register space

Small Memory PRAM

• Lemma

Any problem that can be solved on a p-processor and m-cell PRAM in t steps can be solved on a max(p,m)-processor and m-cell PRAM in O(tm/m) steps.

• Proof:

- \rightarrow Partition m simulated cells into m' segments S_i , each of size m/m'
- \Rightarrow Each available processor P'_i simulates processor P_i, i = [1..p]
- ⇒ Each available processor P'_i , i = [1..m'], stores S_i in its local memory and uses M'[i] as a public cell to simulate accesses to cells of S_i
- → To simulate **READ**, P'_i, i=[1..max(p,m')], repeats, for k=[1..m/m']:
 - write the value of the k-th cell of S_i into M'[i], i=[1..m']
 - read the value if the original processor P_i, i=[1...p], would read that cell
- \rightarrow P'_i then simulates the computation substep of P_i, i=[1..p], in one step

PRAM Type

• Lemma

Any problem that can be solved on a p-processor and m-cell CREW PRAM in t steps can be solved on a p-processor and t-cell EREW PRAM in t0 steps.

• Proof:

- Complete each READ substep in *p* rounds
- → In round i, processor P_i executes its READ

Possible in fewer steps?

Performance Evaluation

- Two parameters
 - \rightarrow p(n), t(n)
- Generally, use work, W(n)
- If W(n) similar, use t(n)
- Speedup/Scalability

- → Work-optimal => work = O(serial complexity)
- → p(n) is hidden but important
 - \blacktriangleright W₁(n) = O(n); t₁(n) = O(n)
 - ▶ $W_2(n) = O(n \log n)$ and $t_2(n) = O(\log n)$
- → Absolute: over best sequential algorithm
- → Relative: over the 1-processor implementation of the same algorithm

Design algorithm in terms of

Work Time Scheduling Principle

- \rightarrow Total work done per 'time step': $W_i(n)$
- \rightarrow t(n) steps
- Total work done $W(n) = \sum W_i(n)$
- For each time step i:
 - \rightarrow divide the work $W_i(n)$ among p processors
 - ▶ Time $\langle = \sum \lceil (W_i(n)/p) \rceil \langle = \lfloor W(n)/p) \rfloor + t(n)$
- Cost = t(n,p) * p

Work <= Cost. Cost optimality is more stringent.

Brent's Theorem

· Time taken by p processors:

$$\rightarrow t(n,p) = O(W(n)/p + t(n))$$

• Cost =
$$p * t(n,p) = O(W(n) + p * t(n))$$

Work = Cost if:

$$\rightarrow W(n) + p * t(n) = O(W(n))$$

$$\rightarrow$$
 Or, $p = O(W(n)/t(n))$

Optimal Summation

- Using n processors for parallel sum
 - \rightarrow Work = O(n), Cost = O(n log n)
- · Suppose, we use n/log n processors
 - → forall: Compute sum of its share of log n local elements
 - → Compute sum of n/log n partial sums
 - Using previous parallel sum algorithm (with n/log n processors)
- Time = log n + log(n/log n) = log(n)

Favor long "sequential" sections

• Cost = $n/\log n * \log n = n$

- If sequentially optimal algorithm is O(t'(n))
 - → Work done by Work-optimal parallel algorithm:
 - ightharpoonup O(t'(n)) (with time t(n)).
 - → Work-scheduling on p processors takes time:
 - t(n,p) = O(t'(n)/p + t(n))
 - → Optimal speed-up: $t'(n)/t(n,p) = \theta(p)$, if
 - $[p^*t'(n)] / [t'(n)+p^*t(n)] = \theta(p)$
- Work-time optimal if:
 - \rightarrow t(n) cannot be improved

Notions of Optimality