An examination of the high-order dynamic interactions underlying multi-dimensional timeseries data

Lucy L. W. Owen¹, Thomas Hao Chang^{1,2}, and Jeremy R. Manning^{1,†}

¹Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH ³Amazon.com, Seattle, WA [†]Address correspondence to jeremy.r.manning@dartmouth.edu

October 16, 2018

5 Abstract

Most complex systems reflect dynamic interactions between myriad evolving components (e.g., interacting molecules, interacting brain systems, interacting individuals within a social network or ecological system, coordinated components within a mechanical or digital device, etc.). Despite that these interactions are central to the full system's behavior (e.g., removing a component from the full system can change the entire system's behavior), dynamic interactions cannot typically be directly measured. Rather, the interactions must be inferred through their hypothesized role in guiding the dynamics of system components. Here we use a model-based approach to inferring dynamic interactions from timeseries data. In addition to examining first-order interactions (e.g., between pairs of components) we also examine higher-order interactions (e.g., that characterize mirrored structure in the patterns of interaction dynamics displayed by different subsets of components). We apply our approach to two datasets. First, we use a synthetic dataset, for which the underlying dynamic interactions are known, to show that our model recovers those ground-truth dynamic interactions. We also apply our model to a neuroimaging dataset and show that the high-order dynamic interactions exhibited by brain data vary meaningfully as a function of the cognitive "richness" of the stimulus people are experiencing.

Introduction

10

11

12

13

14

15

16

17

18

19

- 21 The dynamics of the observable universe are meaningful in three respects. First, the behaviors of the atomic
- 22 units that exhibit those dynamics are highly interrelated. The actions of one unit typically have implications
- 23 for one or more other units. In other words, there is non-trivial correlational structure defining how different
- units interact with and relate to each other. Second, that correlational structure is hierarchical in the sense
- that it exists on many spatiotemporal scales. The way one group of units interacts may relate to how another
- 26 group of units interact, and the interactions between those groups may exhibit some rich structure. Third,
- 27 the structure at each level of this correlational hierarchy changes from moment to moment, reflecting the
- "behavior" of the full system.
- These three properties (rich correlations, hierarchical organization, and dynamics) are major hallmarks
- of many complex systems. For example, within a single cell, the cellular components interact at many

spatiotemporal scales, and those interactions change according to what that single cell is doing. Within a single human brain, the individual neurons interact within each brain structure, and the structures interact to form complex networks. The interactions at each scale vary according to the functions our brains are carrying out. And within social groups, interactions at different scales (e.g., between individuals, family units, communities, etc.) vary over time according to changing goals and external constraints.

Although many systems exhibit rich dynamic correlations at many scales, a major challenge to studying such patterns is that typically neither the correlations nor the hierarchical organizations of those correlations may be directly observed. Rather, these fundamental properties must be inferred indirectly by examining the observable parts of the system- e.g., the behaviors of the individual atomic units of that system. In the Methods section, we propose a series of mathematical operations that may be used to recover dynamic 40 correlations at a range of scales (i.e., orders of interaction). In the Results section, we demonstrate how our approach may be applied to multi-dimensional timeseries data: a synthetic dataset where the underlying dynamic correlations are known (we use this dataset to validate our approach), and a neuroimaging dataset comprising data collected as participants listened to a story (Simony et al., 2016). In different experimental conditions in the neuroimaging study, participants listened to altered versions of the story that varied in cognitive richness: the intact story (fully engaging), a scrambled version of the story where the paragraphs were presented in a randomized order (moderately engaging), a second scrambled condition where the words were presented in a random order (minimally engaging), and a "rest" condition where the participants did not listen to any version of the story (control condition). We use the neuroimaging dataset to examine how higher-order structure in brain data varies as a function of the cognitive richness of the stimulus.

51 Methods

There are two basic steps to our approach. In the first step, we take a number-of-timepoints (T) by number-of-features (F) matrix of observations (X) and we return a T by $\frac{F^2-F}{2}$ matrix of dynamic correlations (Y). Here Y_0 describes, at each moment, how all of the features (columns of X) are inferred to be interacting. (Since the interactions are assumed to be non-recurrent and symmetric, only the upper triangle of the full correlation matrix is computed.) In the second step, we project Y_0 onto an F-dimensional space, resulting in a new T by F matrix Y_1 . Note that Y_1 contains information about the correlation dynamics present in X, but represented in a compressed number of dimensions. By repeatedly applying these two steps in sequence, we can examine and explore higher order dynamic correlations in X.

Figure 1: Examples of time-varying weights. Each panel displays per-timepoint weights at t=50, evaluated for 100 timepoints (1,...,100). a. Uniform weights. The weights are timepoint-invariant; observations at all timepoints are weighted equally, and do not change as a function of t. This is a special case of weight function that reduces dynamic correlations to static correlations. b. Dirac delta function. Only the observation at timepoint t is given weight (of 1), and weights for observations at all other timepoints are set to 0. c. Gaussian weights. Each observation's weights fall off in time according to a Gaussian probability density function centered on $\mu = t$. Weights derived using several different example variance parameters (σ^2 are displayed. d. Laplace weights. Each observation's weights fall off in time according to a Laplace probability density function centered on $\mu = t$. Weights derived using several different example scale parameters (b) are displayed. e. Mexican hat (Ricker wavelet) weights. Each observation's weights fall off in time according to a Ricker wavelet centered on t. Weights derived using several different example width parameters (σ) are displayed.

Dynamic correlations

Given a matrix of observations, we can compute the (static) correlations between any pair of observations, X_i and X_j using:

$$\operatorname{corr}(\mathbf{X}_{i}, \mathbf{X}_{j}) = \frac{\sum_{t=1}^{T} (\mathbf{X}_{i}(t) - \bar{\mathbf{X}}_{i}) (\mathbf{X}_{j}(t) - \bar{\mathbf{X}}_{j})}{\sqrt{\sum_{t=1}^{T} \sigma_{\mathbf{X}_{i}}^{2} \sigma_{\mathbf{X}_{j}}^{2}}}, \text{ where}$$
(1)

$$\bar{\mathbf{X}}_k = \sum_{t=1}^T \mathbf{X}_k(t), \text{ and}$$
 (2)

$$\sigma_{\mathbf{X}_k}^2 = \sum_{t=1}^T (\mathbf{X}_k - \bar{\mathbf{X}}_k)^2$$
(3)

- We can generalize this formula to compute time-varying correlations by incorporating a weight function
- that takes a time t as input, and returns how much the observed data every timepoint (including t) contribute
- to the correlations at time t (Fig. 1).

Given a weight function w(t) for timepoint t, evaluated at timepoints in the interval [1, ..., T], we can

extend the static correlation formula in Equation 2 to reflect an *instantaneous correlation* at timepoint t:

timecorr(
$$\mathbf{X}_{i}, \mathbf{X}_{j}, t$$
) =
$$\frac{\sum_{t=1}^{T} \left(\mathbf{X}_{i}(t) - \widetilde{\mathbf{X}}_{i}(t) \right) \left(\mathbf{X}_{j}(t) - \widetilde{\mathbf{X}}_{j}(t) \right)}{\sqrt{\sum_{t=1}^{T} \widetilde{\sigma}_{\mathbf{X}_{i}}^{2}(t) \widetilde{\sigma}_{\mathbf{X}_{j}}^{2}}}, \text{ where}$$
 (4)

$$\widetilde{\mathbf{X}}_{k}(t) = \sum_{i=1}^{T} w(t, i) \mathbf{X}_{k}(i),$$
(5)

$$\widetilde{\sigma}_{\mathbf{X}_{k}}^{2}(t) = \sum_{i=1}^{T} \left(\mathbf{X}_{k}(i) - \widetilde{\mathbf{X}}_{k}(t) \right)^{2}, \tag{6}$$

- and w(t,i) is shorthand for w(t) evaluated at timepoint i. Equation 5 may be used to estimate the instanta-
- neous correlations between every pair of observations, at each timepoint (i.e., Y).

66 Higher-order correlations

- Given a timeseries of dynamic correlations (e.g., obtained using Eqn. 5), higher-order correlations reflect the
- dynamic correlations between columns of Y. Given unlimited computing resources, one could use repeated
- applications of Equation 5 to estimate these higher-order correlations (i.e., substituting in the previous
- output, Y, for the input, X in the equation). However, because each output Y has $O(F^2)$ columns relative
- $_{71}$ to F columns in the input X, the output of Equation 5 grows with the square of the number of repeated
- applications (total cost of computing n^{th} order correlations is $O(F^{2(n-1)})$ for $n \in \mathcal{J}, n > 0$). When F or n is
- large, this approach quickly becomes intractable.
- To make progress in computing Y_{n+1} , we can approximate Y_n by computing an O(F)-dimensional
 - embedding of Y_n , termed \hat{Y}_n , and then we can apply Equation 5 to \hat{Y}_n rather than directly to Y_n . This enables
- us to maintain O(n) scaling with respect to n, rather than exponential scaling via the direct approach.
- There are many possible methods for computing $\hat{\mathbf{Y}}_n$ from \mathbf{Y}_n , including traditional dimensionality
- reduction approaches and graph theory based approaches as described next. In the Discussion section we
- ⁷⁹ elaborate on other potential approaches.

Dimensionality reduction-based approaches to computing $\hat{\mathbf{Y}}_n$

- 81 Commonly used dimensionality reduction algorithms include Principal Components Analysis (PCA; Pear-
- son, 1901), Probabilistic PCA (PPCA; Tipping & Bishop, 1999), Exploratory Factor Analysis (EFA; Spearman,
- 1904), Independent Components Analysis (ICA; Jutten & Herault, 1991; Comon et al., 1991), t-Stochastic
- 84 Neighbor Embedding (t-SNE; van der Maaten & Hinton, 2008), Uniform Manifold Approximation and
- 85 Projection (UMAP; McInnes & Healy, 2018), non-negative matrix factorization (NMF; Lee & Seung,

- 86 1999), Topographic Factor Analysis (TFA) Manning et al. (2014), Hierarchical Topographic Factor analysis
- 87 (HTFA) Manning et al. (2018), Topographic Latent Source Analysis (TLSA) Gershman et al. (2011), Dictio-
- nary learning (J. B. Mairal et al., 2009; J. Mairal et al., 2009), deep autoencoders (Hinton & Salakhutdinov,
- ⁸⁹ 2006), among others. While complete characterizations of each of these algorithms is beyond the scope of
- the present manuscript, the general intuition driving these approaches is to compute the $\hat{\mathbf{Y}}$ with i columns
- that is closest to the original Y with j columns, and where (typically) $i \ll j$. The different approaches place
- $_{92}$ different constraints on what properties \hat{Y} must satisfy and which aspects of the data are compared (and
- how) to characterize the match between $\hat{\mathbf{Y}}$ and \mathbf{Y} .
- Graph theory-based approaches to computing $\hat{\mathbf{Y}}_n$
- 95 JRM TODO: Need references for each of the below, plus citation of bctpy toolbox (source of measures
- 96 listed below)
- Betweenness centrality: Wei; Node Betweenness; edge betweenness centrality; edge betweeness wei;
- Shannon-entropy based diversity coefficient
- Eigenvector centrality, pagerank centrality
- flow coefficient (Honey et al. 2007, PNAS)
- k-coreness centrality (directed, undirected)
- within-module degree
- participation coefficient (signed, unsigned)
- subgraph centrality
- Idea: for each timepoint, compute relevant measure for node. Result: a T by F matrix characterizing how the given measure for each node over time. We can use this as $\hat{\mathbf{Y}}_n$ and then apply Equation 5 to compute $\hat{\mathbf{Y}}_{n+1}$.
 - JRM STOPPED HERE

109 Timepoint decoding

110 Cite HTFA paper, summarize relevant methods.

111 Prediction

Use Eqn. 12 from SuperEEG paper, extend notation to treat $\hat{\mathbf{Y}}_{1...n}(1...(t-1))$ as "observed" and use this to predict $\mathbf{X}(t)$. Key question: what is the predictive power added by each new level.

114 Results

- 115 Synthetic data
- Neuroimaging dataset (Simony et al., 2016)

117 Discussion

118 Concluding remarks

119 Acknowledgements

- We acknowledge discussions with Luke Chang, Hany Farid, Paxton Fitzpatrick, Andrew Heusser, Eshin
- Jolly, Qiang Liu, Matthijs van der Meer, Judith Mildner, Gina Notaro, Stephen Satterthwaite, Emily Whitaker,
- Weizhen Xie, and Kirsten Ziman. Our work was supported in part by NSF EPSCoR Award Number 1632738
- to J.R.M. and by a sub-award of DARPA RAM Cooperative Agreement N66001-14-2-4-032 to J.R.M. The
- content is solely the responsibility of the authors and does not necessarily represent the official views of our
- supporting organizations.

Author contributions

127 Concept: J.R.M. Implementation: T.H.C., L.L.W.O., and J.R.M. Analyses: L.L.W.O and J.R.M.

28 References

- Comon, P., Jutten, C., & Herault, J. (1991). Blind separation of sources, part II: Problems statement. *Signal Processing*, 24(1), 11 20.
- Gershman, S., Blei, D., Pereira, F., & Norman, K. (2011). A topographic latent source model for fMRI data.
- 132 NeuroImage, 57, 89–100.

- Hinton, G. E., & Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with neural networks.
- science, 313(5786), 504-507.
- Jutten, C., & Herault, J. (1991). Blind separation of sources, part I: An adaptive algorithm based on
- neuromimetic architecture. Signal Processing, 24(1), 1–10.
- Lee, D. D., & Seung, H. S. (1999). Learning the parts of objects by non-negative matrix factorization. *Nature*,
- ¹³⁸ 401, 788–791.
- Mairal, J., Ponce, J., Sapiro, G., Zisserman, A., & Bach, F. R. (2009). Supervised dictionary learning. Advances
- in Neural Information Processing Systems, 1033–1040.
- Mairal, J. B., Bach, F., Ponce, J., & Sapiro, G. (2009). Online dictionary learning for sparse coding. *Proceedings*
- of the 26th annual international conference on machine learning, 689–696.
- ¹⁴³ Manning, J. R., Ranganath, R., Norman, K. A., & Blei, D. M. (2014). Topographic factor analysis: a Bayesian
- model for inferring brain networks from neural data. PLoS One, 9(5), e94914.
- Manning, J. R., Zhu, X., Willke, T. L., Ranganath, R., Stachenfeld, K., Hasson, U., ... Norman, K. A. (2018).
- A probabilistic approach to discovering dynamic full-brain functional connectivity patterns. *NeuroImage*,
- 147 180, 243–252.
- ¹⁴⁸ McInnes, L., & Healy, J. (2018). UMAP: Uniform manifold approximation and projection for dimension
- reduction. arXiv, 1802(03426).
- Pearson, K. (1901). On lines and planes of closest fit to systems of points in space. The London, Edinburgh,
- and Dublin Philosophical Magazine and Journal of Science, 2, 559-572.
- 152 Simony, E., Honey, C. J., Chen, J., & Hasson, U. (2016). Uncovering stimulus-locked network dynamics
- during narrative comprehension. *Nature Communications*, 7(12141), 1–13.
- Spearman, C. (1904). General intelligence, objectively determined and measured. Americal Journal of
- 155 Psychology, 15, 201–292.
- 156 Tipping, M. E., & Bishop, C. M. (1999). Probabilistic principal component analysis. Journal of Royal Statistical
- 157 Society, Series B, 61(3), 611–622.
- van der Maaten, L. J. P., & Hinton, G. E. (2008). Visualizing high-dimensional data using t-SNE. Journal of
- Machine Learning Research, 9, 2579-2605.