D.S. d'Analyse Numérique

ISIMA 1ère Année - Session du 02-12-2004

V. Barra, J. Koko et Ph. Mahey

Exercice 1 Le but de l'exercice est de proposer un algorithme de calcul itératif de l'inverse de $A^T A$, pour A une matrice $m \times n$ avec rang(A) = n.

- 1. Soit Q $(m \times n)$ de colonnes orthonormées et R $(n \times n)$ triangulaire supérieure telles que A = QR. Montrer que $C = (A^T A)^{-1}$ s'écrit en fonction de R.
- 2. Mettons R sous la forme

$$R = \left[\begin{array}{c|c} \alpha & v^T \\ \hline 0 & S \end{array} \right]$$

où $\alpha = r_{11} \in \mathbb{R} \setminus \{0\}$ et $S((n-1) \times (n-1))$ triangulaire supérieure. Soit $C_1 = (S^T S)^{-1}$. Montrer que

$$C = \begin{bmatrix} \frac{1}{\alpha^2} (1 + v^T C_1 v) & -\frac{1}{\alpha} v^T C_1 \\ \\ -\frac{1}{\alpha} C_1 v & C_1 \end{bmatrix}$$

3. En déduire un algorithme de calcul de C en $O(\frac{n^3}{3})$ flops. Comparer avec l'algorithme classique de calcul de C sous la forme trouvée en 1.

Exercice 2 Soit A une matrice $(m \times n)$ avec $m \ge n$ pour laquelle on suppose connue une factorisation QR **complète** (c.a.d. telle que Q est orthogonale $(m \times m)$ et R triangulaire supérieure $(m \times n)$). On rajoute une colonne $u \in \mathbb{R}^m$ à la matrice A pour obtenir $\bar{A} = [A \mid u]$. On veut calculer une nouvelle factorisation $\bar{A} = \bar{Q}\bar{R}$ en utilisant uniquement Q et R.

- 1. Montrer que $Q^T \bar{A} = [R \mid v]$ où v est un vecteur que l'on déterminera.
- 2. Déterminer une matrice orthogonale H telle que $HQ^T\bar{A}$ soit triangulaire supérieure. En déduire la factorisation $\bar{Q}\bar{R}$ de \bar{A} . Indication : On s'appuiera sur la partition $Q = [Q_1 \mid Q_2]$ des colonnes de Q telle que $\mathrm{Im}(Q_1) = \mathrm{Im}(A)$ et $\mathrm{Im}(Q_2) = \mathrm{Ker}(A^T)$ et on montrera que $\bar{Q} = [Q_1 \mid \bar{Q}_2]$.
- 3. Application numérique.

$$A = \begin{bmatrix} 1 & 2 \\ 1 & 2 \\ -1 & -1 \\ -1 & -1 \end{bmatrix}, \quad u = \begin{bmatrix} \sqrt{2} \\ 0 \\ -1 \\ -1 \end{bmatrix}.$$

En utilisant la procédure de Gram-Schmidt (et en complétant par des vecteurs de la base canonique de \mathbb{R}^4), calculer la matrice Q. Calculer R puis \bar{Q} et \bar{R} .

1