CS-3331-1 计算机网络 第 4 章练习题

一、单项选择题

1.	将物理信道的总频带宽分割成若干子信道,每个子信道传输一路信号,这种信道复用技术是
	A. 码分复用 B. 频分复用 C. 时分复用 D. 空分复用
0	
2.	下列介质访问控制方法中,可能发生冲突的是。
	A. CDMA B. CSMA C. TDMA D. FDMA
3.	在 CSMA/CD 协议的定义中,「争议期」指的是。
	A. 信号在最远两个端点之间往返传输的时间 B. 信号从线路一端传输到另一端的时间 C. 从发送开始到收到应答的时间
	D. 从发送完毕到收到应答的时间
4.	下列关于以太网地址的描述,错误的是。
	A. 以太网地址就是通常所说的 MAC 地址 B. MAC 地址又称局域网硬件地址 C. MAC 地址是通过域名解析服务 (DNS) 获得的 D. 以太网地址通常存储在计算机的网卡中
5.	IEEE 802 局域网标准对应 OSI 参考模型的。
	A. 数据链路层和网络层 B. 物理层和数据链路层 C. 物理层 D. 数据链路层
6.	在 CSMA 的非坚持协议中,当媒体忙时,则直到媒体空闲。
	A. 延迟一个固定的时间单位再侦听 B. 继续侦听 C. 延迟一个随机的时间单位再侦听 D. 放弃侦听
7.	以太网中,当数据传输速率提高时,帧的发送时间会相应地缩短,这样可能会影响到冲突的检测。 为了能有效地检测冲突,可以使用的解决方案有。
	A. 减少电缆介质的长度或减少最短帧长
	B. 减少电缆介质的长度或增加最短帧长
	C. 增加电缆介质的长度或减少最短帧长
	D. 增加电缆介质的长度或增加最短帧长

- 8. 以太网的 MAC 协议提供的是_____
 - A. 无连接的不可靠服务 B. 无连接的可靠服务
 - C. 有连接的可靠服务 D. 有连接的不可靠服务

二、简答题

1. CSMA/CD 协议是经典以太网的 MAC 协议,为什么在无线局域网中却不使用 CSMA/CD (D 是 Detection) 协议而使用 CSMA/CA (A 是 Avoidance) 协议?

答: CSMA/CD 协议是一种冲突检测协议,而无线局域网的信道是无线的,信号强度随传播距离动态变化范围很大,不能根据信号强度来判断是否发生冲突,因此不适用有线局域网的的冲突检测协议 CSMA/CD。802.11 采用了 CSMA/CA 技术, CA 表示冲突避免。

2. 集线器、网桥和以太网交换机这三种互联设备分别工作在 OSI 七层参考模型的哪层? 其中哪种设备能够隔离冲突域?

答:集线器、网桥和以太网交换机分别工作在 OSI 七层参考模型的不同层次。集线器工作在物理层,网桥工作在数据链路层,以太网交换机工作在数据链路层和网络层。

其中, 网桥能够隔离冲突域, 而集线器和以太网交换机不能隔离冲突域。

3. 网络适配器的作用是什么? 网络适配器工作在哪一层?

答: 网络适配器是计算机与网络之间的接口,它的作用是将计算机中的数字信号转换为网络中的模拟信号,或将网络中的模拟信号转换为计算机中的数字信号。网络适配器工作在 OSI 七层 参考模型的物理层和数据链路层。

三、计算题

- 1. 通过 IEEE 802.3 以太网直接传送 ASCII 码信息「Good morning!」。若封装成 1 个以太网帧,问:
 - (1) 该帧数据字段的有效字节数是多少?
 - (2) 发送该帧是否需要进行填充? 若需要填充,填充多少字节?

提示: (1) ASCII 码中 1 个英文字母或标点占 1 个字节; (2) 以太网的最短帧长为 64 字节,以太网帧头部字段为 18 字节。

解:

(1) 有效字节数是 13。

$$\frac{\texttt{Good}}{4} \frac{\texttt{morning}}{1} \frac{!}{7}$$

- (2) 需要填充 64 18 13 = 33 字节。
- 2. 在以太网中的某一时隙,有两个站点同时开始发送,计算 3 次竞争内(包括第 3 次)能够将数据帧成功发送的概率(或者说 3 次竞争总可以解决冲突的概率)。

提示: 冲突发生后,时间被分成离散的等长时隙。站点第i次冲突后,发送站点等待的时隙数将从 $0,1,\ldots,2^i-1$ 中随机选择。

解:

$$P_3 = 1 - \prod_{i=1}^{3} \frac{1}{i} = \frac{5}{6}$$

3. 长度为 $10 \,\mathrm{km}$,数据发送速率为 $1 \times 10^7 \,\mathrm{bps}$ 的 CSMA/CD 以太网,信号在介质上的传播速度为 $200 \,\mathrm{m/\mu s}$ 。试计算该网络的最小帧长。

提示: CSMA/CD 协议要求数据帧的发送时间大于等于信号往返时间 (RTT)。

解:

$$RTT = \frac{10\,\mathrm{km}}{200\,\mathrm{m/\mu s}} = 50\,\mathrm{\mu s}$$

$$DFL \ge 1\times 10^7\,\mathrm{bps}\times 50\,\mathrm{\mu s} = 500\,\mathrm{bit}$$

- 4. 有 10 个站连接到以太网上。试计算以下三种情况下每一个站所能得到的带宽。
 - (1) 10 个站都连接到一个 10 Mbit/s 以太网集线器。
 - (2) 10 个站都连接到一个 100 Mbit/s 以太网集线器。
 - (3) 10 个站都连接到一个 10 Mbit/s 以太网交换机。

解:以下计算结果假设每个站都有均匀的负载。

- (1) $10 \,\text{Mbit/s} \div 10 = 1 \,\text{Mbit/s}$
- (2) $100 \,\mathrm{Mbit/s} \div 10 = 10 \,\mathrm{Mbit/s}$
- (3) 10 Mbit/s