CS663 HW1

CS663: Fundamentals of Digital Image Processing Homework I

Yash Salunkhe, Scaria Kochidanadu, Rishabh Shetty

Question 1)

Answer: Given the 1D convolution mask w and a 1D image f (say $[f_1, f_2, f_3....f_n]$), the convolution will take place as shown (Assuming sufficient zero padding):

Image - [
$$f_0$$
, f_1 , f_2 , f_3 , f_4 , f_5 , f_6]

[Notated by 180° [W6, W5, W4, W3, W2, W1, W6]]

First term in convolved image -

O Padding Fo f_1 f_2 f_3 f_4 f_5 f_6

We Ws W4 W3 W2 W1 W0 O Padding

= W0 fo

Second term in convolved image -

O fo f_1 f_2 f_3 f_4 f_5 f_6

We W3 W4 W3 W2 W1 W0

O Nord term in convolved image -

O fo f_1 f_2 f_3 f_4 f_5 f_6

We W3 W4 W3 W2 W1 W0

Third term in convolved image -

O fo f_1 f_2 f_3 f_4 f_5 f_6

= W2 f_0 + f_1 W1 f_0

(Learly, a pattern is formed on the term in convolved image = f_0 Wifinite where f_0 O otherwise and f_0 if f_0 of there is a finite of the following in the following image = f_0 Wifinite imag

Considering the image vector as a column vector F, let A be the appropriate matrix to convolve the image such that AF = F' where F' is the convolved image vector.

Since F and F' is a N x 1 matrix (Image has N pixels $f_0, f_1, f_2...f_{n-1}$), the required matrix A has to be a NxN matrix. To get the convolved image, A would be,

CS663 HW1 2

Properties of this matrix -

- 1) The matrix A is a lower triangular matrix with rank n (Assuming $w_0 \neq 0$). All it's eigenvalues are w_0 .
- 2) The matrix is also a Toeplitz matrix because each descending diagonal from left to right contains the same constant values

Potential application of such a matrix-based construction -

Multiple convolutions with different masks can be represented as a series of matrix multiplications with each mask having it's own matrix A. The effective matrix A' (say) which will be computed as a series of matrix multiplications will be the effective matrix to produce the net effect of all masks combined.

This effective multiplication will take lesser time for computation than multiplying each convolution by itself as generating a Toeplitz matrix is of the order O(nlogn).