CSC 226

Algorithms and Data Structures: II Rich Little rlittle@uvic.ca

Quicksort based on ADT Sequence

- Quick-sort is a sorting algorithm based on the divide-and-conquer paradigm:
 - ➤ Divide: pick an element *x* in *S* (called pivot) and partition *S* into
 - L elements less than x
 - E elements equal x
 - G elements greater than x
 - \triangleright Recur: sort L and G
 - \triangleright Conquer: join L, E and G

Quicksort Algorithm

Quick-Sort Tree

- An execution of quick-sort is depicted by a binary tree
 - Each node represents a recursive call of quick-sort and stores
 - Unsorted sequence before the execution and its pivot
 - Sorted sequence at the end of the execution
 - > The root is the initial call
 - The leaves are calls on subsequences of size 0 or 1

Execution Example

• Pivot selection

85 24 63 45 17 31 96 **50**

• Partition, recursive call, pivot selection

• Partition, recursive call, pivot selection

• Join, join

How long can a branch in the Quicksort tree be in the worst case?

The pivot p and the length of sequences L and G

The pivot element and the length of sequences L and G

The pivot element and the length of sequences L and G

What sequences require the longest branch?

How long can be a branch in the quicksort tree?

Algorithm quickSort(*S*)

```
if |S| > 1 then
 p \leftarrow \text{pickPivot}(S)
 partition (L, E, G, S, p)
 quickSort(L)
 quickSort(G)
 Concatenate (S, L, E, G)
end
```

What is the worst-case running time of Quicksort?

- To make life simple, assume n-1 units of time to partition, 1 unit of time to pick pivot and 0 time to concatenate (inline).
- Then, the total time T(n) is given by,

$$T(n) = \begin{cases} 1, & \text{if } n = 1\\ T(n-1) + n, & \text{otherwise} \end{cases}$$

• By repeated substitution this is equal to

$$T(n) = \sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$
 which is $\Theta(n^2)$

When is Quicksort fastest?

What is the best-case running time of Quicksort?

- To make life simple, assume n-1 units of time to partition, 1 unit of time to pick pivot and 0 time to concatenate (inline).
- Then, the total time T(n) is given by,

$$T(n) \le \begin{cases} 1, & \text{if } n = 1\\ 2T\left(\frac{n}{2}\right) + n, & \text{otherwise} \end{cases}$$

By repeated substitution this is equal to

$$T(n) \le n + n \log n$$
 which is $\Theta(n \log n)$

Order Statistics or Selection

Problem

Given a sequence of n objects satisfying the total order property and an integer $k \le n$, determine the k^{th} smallest object.

Selecting the kth Smallest Element

- Sort the objects and return the k^{th} from the left (i.e., k^{th} smallest element) $O(n \log n)$
- How to improve on $O(n \log n)$?
 - ➤ How much improvement is possible?
 - ➤ Best case and worst-case?
 - ➤ Modify a known sorting algorithm
 - ➤ Develop an algorithm from scratch

Modify Quicksort: quickSelect(S,k)

Input: Sequence S containing n elements, integer $k \le n$ Output: k^{th} smallest element in sorted sequence S

```
if n = 1 then
        return S
Let L, E, G be empty sequences
p \leftarrow \operatorname{pickPivot}(S)
Partition(L, E, G, S, p)
if k \leq |L| then
        return quickSelect(L, k)
else if k \leq |L| + |E| then
        return p
else
        return quickSelect(G, k - |L| - |E|)
```

Execution Example

• quickSelect([85,24,63,45,17,31,96,50],6)

85 24 63 45 17 31 96 **50**

• Here k = 6

• Call quickSelect(G,k-/L/-/E/=1)

• quickSelect([85,63,96],1)

• Call quickSelect(*L*,1)

• quickSelect([85,63],1)

return 63

What is the worst-case running time of Quickselect?

- To make life simple, assume n-1 units of time to partition, and 1 unit of time to pick pivot.
- Then, the total time T(n) is given by,

$$T(n) = \begin{cases} 1, & \text{if } n = 1\\ T(n-1) + n, & \text{otherwise} \end{cases}$$

• By repeated substitution this is equal to

$$T(n) = \sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$
 which is $\Theta(n^2)$

What is the best-case running time of Quicksort?

- To make life simple, assume n-1 units of time to partition and 1 unit of time to pick pivot.
- Then, the total time T(n) is given by,

$$T(n) \le \begin{cases} 1, & \text{if } n = 1\\ T\left(\frac{n}{2}\right) + n, & \text{otherwise} \end{cases}$$

By repeated substitution this is equal to

$$T(n) \le \sum_{i=0}^{\log_2 n} n \left(\frac{1}{2}\right)^i$$
 which is $\Theta(n)$!

CSC 226

Algorithms and Data Structures: II Rich Little rlittle@uvic.ca

Order Statistics or Selection

Problem

Given a sequence of n objects satisfying the total order property and an integer $k \le n$, determine the k^{th} smallest object.

quickSelect(S,k)

Input: Sequence S containing n elements, integer $k \le n$ Output: k^{th} smallest element in sorted sequence S

```
if n = 1 then
        return S
Let L, E, G be empty sequences
p \leftarrow \operatorname{pickPivot}(S)
Partition(L, E, G, S, p)
if k \leq |L| then
        return quickSelect(L, k)
else if k \leq |L| + |E| then
        return p
else
        return quickSelect(G, k - |L| - |E|)
```

linearSelect(S,k)

Input: Sequence S containing n elements, integer $k \le n$ Output: kth smallest element in sorted sequence S if n = 1 then return S Let *L*, *E*, *G* be empty sequences $p \leftarrow \operatorname{pickCleverPivot}(S)$ partition(L, E, G, S, p) if $k \leq |L|$ then **return** linearSelect(*L*, *k*) else if $k \leq |L| + |E|$ then return p else **return** linearSelect(G, k - |L| - |E|)

pickCleverPivot(S)

Input: Sequence *S* containing *n* elements

Output: The median of medians of subsets of size 7

Divide S into $g = \lfloor n/7 \rfloor$ subsequences, S_1, \dots, S_g of size 7 (one may be < 7)

for $i \leftarrow 1$ to g **do** $x_i \leftarrow \text{median of } S_i$

 $p \leftarrow \text{linearSelect}(\{x_1, ..., x_g\}, [g/2])$

return p

How to determine a good pivot?

- Divide S into equal-sized groups of 5 or 7 elements—we use groups of size 7
 - \triangleright Thus, [n/7] groups of size 7 (possibly one with less)
 - \triangleright Takes O(1) time (in-place)
- Sort each group of size 7 completely
 - ➤ Using 21 comparisons which is optimal for 7 elements
 - ightharpoonup Takes $\lceil n/7 \rceil * 21 \approx 3n$ time
- Determine the median of each group
 - \triangleright Pick the middle element of each group O(1)
 - Sather all medians in a sequence or at the beginning of the array takes $\approx n$ time
- Use linearSelect recursively to determine the *median of medians*
 - If the running time of LinearSelect is T(n), then to compute the median of $\lfloor n/7 \rfloor$ medians takes roughly T(n/7) time
 - ➤ The median of all the group medians is our clever new pivot
- Time complexity of clever pivot computation (give or take constant values)
 - \rightarrow 4n + T(n/7)

linearSelect(S,k)

Input: Sequence S containing n elements, integer $k \le n$

Output: kth smallest element in sorted sequence S

if
$$n = 1$$
 then

return S

Let L, E, G be empty sequences

 $p \leftarrow \text{pickCleverPivot}(S)$

partition (L, E, G, S, p)

if $k \leq |L|$ then

return linearSelect (L, k)

else if $k \leq |L| + |E|$ then

return p

what is the cost of the recursive call?

return linearSelect $(G, k - |L| - |E|)$

Clever Pivot Selection

Clever Pivot Selection

- By selecting the pivot this way, we guarantee that $4 \times \left\lceil \frac{n/7}{2} \right\rceil$ elements are smaller than the pivot. (Similarly, larger than the pivot)
- Thus, in the worst case 2n/7 elements at partitioning are in L and 5n/7 are in G (or vice versa)
- Thus, we continue searching for the k^{th} element in 5n/7 elements
- Thus, the conquer step takes T(5n/7) time

Time Complexity of LinearSelect

- Clever pivot selection 4n + T(n/7)
- Partition n
- Conquer recursive call T(5n/7)
- linearSelect T(n) = 5n + T(n/7) + T(5n/7)

Theorem

- \triangleright The worst-case T(n) of LinearSelect is O(n).
- ➤ Blum, Floyd, Pratt, Rivest, Tarjan 1972

Solving Recurrence Equation by Guessing

Proof.

Guess
$$T(n) \le cn$$

 $T(n) = 5n + T(n/7) + T(5n/7)$
 $\le 5n + cn/7 + 5cn/7$
 $35n + cn + 5cn \le 7cn$
 $35 \le c$

$$T(n) \le 35n \in O(n)$$

Example LinearSelect

12 17 13 1 4	21 3 29 5 7	14 8 22 18 6	2 15 84 13 12	103 19 71 8 17
1 4 12 13 17	3 5 7 21 29	6 8 14 18 22	2 12 13 15 84	8 17 19 71 103

Divide S into n/5 groups of size 5

Then sort each group

Determine the Median of each Group and the Median of the Medians

·		•	Median (of medians
1 4 12 13 17	3 5 7 21 29	6 8 14 18 22	2 12 13 15 84	8 17 19 71 103
12 17 13 1 4	21 3 29 5 7	14 8 22 18 6	2 15 84 13 12	103 19 71 8 17
1 4 12 13 17	3 5 7 21 29	6 8 14 18 22	2 12 13 15 84	8 17 19 71 103
12 17 13 1 4	21 3 29 5 7	14 8 22 18 6	2 15 84 13 12	103 19 71 8 17

Determine a lower bound on the size of L

12 17 13 1 4 21 3 29 5 7 14 8 22 18 6 2 15 84 13 12 103 19 71 8 17
1 4 12 13 17 3 5 7 21 29 6 8 14 18 22 2 12 13 15 84 8 17 19 71 103

Median of medians

n/5 elements are split up with each partition step

Running Time Analysis of LinearSelect with Groups of Size 5

$$T(n) = \begin{cases} b & \text{if } n \le 5\\ 5n + T(n/5) + T(7n/10) & \text{if } n > 5 \end{cases}$$

• We prove T(n) is O(n)

Solving Recurrence Equation by Guessing

Proof.

Guess
$$T(n) \le cn$$

 $T(n) = 5n + T(n/5) + T(7n/10)$
 $\le 5n + cn/5 + 7cn/10$
 $50n + 2cn + 7cn \le 10cn$
 $50 \le c$

$$T(n) \le 50n \in O(n)$$

Fundamental Result of Computer Science

Theorem.

Selecting the k^{th} smallest, largest or median element from a set of n elements takes $\Theta(n)$ time in the worst-case.