Problema 826

Construïu el triangle $\stackrel{\Delta}{ABC}$ coneguts a, b+c, w_a , on w_a és la bisectriu interna. Petersen, J. (1901): Méthodes et théories pour la résolution des problémes de constructions géomètriques . Gauthier - Villars (116), p. 21

Solució de Ricard Peiró i Estruch :

$$\begin{split} S_{ADC} &= \frac{1}{2} w_a b \cdot sin \frac{A}{2} \, . \ \, S_{ADB} = \frac{1}{2} w_a c \cdot sin \frac{A}{2} \, . \\ S_{ABC} &= \frac{1}{2} w_a (b+c) sin \frac{A}{2} = r \cdot p = \frac{1}{2} (a+b+c) \frac{1}{2} (-a+b+c) tg \frac{A}{2} \, . \\ cos \frac{A}{2} &= \frac{(a+b+c)(-a+b+c)}{2(b+c)w_a} \, . \end{split}$$

Amb aquesta igualtat podem construir els angles $\frac{A}{2}$, A.

El problema es transformaria en construir el triangle coneguts $\,a,\, A,\, b+c\,$.

Passos de la construcció:

a		-		
wa	•			
b+c				•

a) Construir els angles $\frac{A}{2}$, A

b) Dibuixar el segment $\overline{BC} = a$.

- c) Dibuixar els arcs capaços de $\frac{A}{2}$, A sobre el segment \overline{BC} .
- d) Dibuixar la circumferència de centre B i radi b+c.
- e) La circumferència de centre B talla l'arc capaç de $\frac{A}{2}$ en el punt A_1 .

f) Dibuixar la recta que passa pels punts B, A_1 , que talla l'arc capaç de $\frac{A}{2}$ en el punt A.

Problema:

Siga el triangle $\stackrel{\Delta}{ABC}$ coneguts $a=7,b+c=13,w_a=5$.

$$cos\frac{A}{2} = \frac{(a+b+c)(-a+b+c)}{2(b+c)w_a} \ .$$

$$\cos \frac{A}{2} = \frac{20.5}{2.13.5} = \frac{12}{13}$$
.

$$\cos A = 2\cos^2\frac{A}{2} - 1 = \frac{119}{169}$$
.

Aplicant el teorema del cosinus al triangle $\stackrel{\Delta}{\mathsf{ABC}}$:

$$7^2 = b^2 + (13 - b)^2 - 2b \cdot (13 - b) \frac{119}{169}$$
. Resolent l'equació:

$$b = \frac{78 - 13\sqrt{6}}{12} \; , \; \; c = \frac{78 + 13\sqrt{6}}{12} \; .$$