

### Modulação Angular

### Definição

Modulação na qual o ângulo da portadora varia de acordo com o sinal em banda base.

$$s(t) = A_c \cos[\theta_i(t)]$$

Onda modulada angular

Neste tipo de modulação temos:

- Modulação em frequência (FM);
- Modulação em fase (PM);

### Modulação Angular

$$s(t) = A_c \cos[\theta_i(t)]$$

### Onda modulada angular

ullet Se  $\theta_i(t)$  cresce monotonicamente com o tempo, a frequência média em Hz ao longo de um intervalo  $t+\Delta t$ , será:

$$f_{\Delta t}(t) = \frac{\theta_i(t + \Delta t) - \theta_i(t)}{2\pi \Delta t}$$

Desta forma podemos definir frequência instantânea do sinal com modulação angular como:

$$f_i(t) = \lim_{\Delta t \to 0} f_{\Delta t}(t) = \lim_{\Delta t \to 0} \left[ \frac{\theta_i(t + \Delta t) - \theta_i(t)}{2\pi \Delta t} \right] = \frac{1}{2\pi} \frac{d\theta_i(t)}{dt}$$
 Definição da derivada do ângulo em relação ao tempo

Em uma portadora não modulada

$$\theta_i(t) = 2\pi f_C t + \phi_C$$

### Frequência instantânea



$$f_i(t) = \frac{1}{2\pi} \frac{d\theta_i(t)}{dt}$$
$$W_i(t) = \frac{d\theta_i(t)}{dt}$$

- $\triangleright$  É a variação de  $\theta i(t)$  com o tempo.
- > Em uma portadora não modulada, temos:

$$\theta_i(t) = 2\pi f_C t + \phi_C$$

### Modulação em Fase (PM)

Modulação em fase: O ângulo da portadora varia linearmente com o sinal de mensagem m(t).

$$\theta_i(t) = 2\pi f_c t + k_p m(t)$$

$$W_i(t) = \frac{d\theta_i(t)}{dt} = 2\pi f_C + k_P \frac{dm(t)}{dt}$$

O sinal modulado será:

$$s(t) = A_c \cos[2\pi f_c t + k_p m(t)]$$

- fc é a freqüência da portadora não modulada;
- kp é a sensibilidade à fase do modulador em rad/V;

Modulação em frequência: A frequência instantânea varia linearmente com a portadora.

$$f_i(t) = f_c + k_f m(t)$$

- $\Box$   $f_c$  é a frequência da portadora não modulada;
- $\square$   $k_f$  é a sensibilidade à frequência do modulador Hz/v;

☐ A frequência instantânea de um sinal é dada por:

$$f_i(t) = \frac{1}{2\pi} \frac{d\theta_i(t)}{dt}$$

□ Assim, se a partir da frequência, quisermos obter a fase tem-se que:

$$\theta_i(t) = 2\pi \int f_i . dt$$

☐ Assim, se quisermos obter um sinal FM, tem-se que:

$$s(t) = A_c \cos[\theta_i(t)]$$
 (1) 
$$f_i(t) = f_c + k_f m(t)$$
 (2) 
$$\theta_i = 2\pi \int f_i dt$$
 (3)

□ Substituindo (2) em (3), tem-se que:

POR COVENIÊNCIA ASSUMAMOS QUE O ÂNGULO DA ONDA PORTADORA NÃO MODULADA SEJA ZERO EM t=0.

$$\theta_i = 2\pi f_c t + 2\pi k_f \int_0^t m(\tau) d\tau$$

☐ Finalmente, tem-se o sinal FM, dado por:

$$s(t) = A_c \cos[2\pi f_c t + 2\pi k_f \int_0^t m(\tau) d\tau]$$





**Figura 4.1** Ilustração de sinais AM, PM e FM produzidos por um tom único. (a) Onda portadora, (b) onda modulante senoidal, (c) sinal modulado em amplitude, (d) sinal modulado em fase, (e) sinal modulado em frequência.





### Propriedades das ondas com modulação angular

❖ PM

$$s(t) = A_c \cos[2\pi f_c t + k_p m(t)]$$

$$FM s(t) = A_c \cos[2\pi f_c t + 2\pi k_f \int m(\tau) d\tau]$$

Constância da potência transmitida — A amplitude da onda FM e PM se mantêm em um valor constante igual a amplitude da portadora Ac.

Consequentemente, assumindo a resistência de carga de 1Ω, a potência transmitida média de ondas com modulação angular é uma constante igual a:  $P_{av} = \frac{1}{2}Ac^2$ 

### II. Não linearidade do processo de modulação –

Exemplo: Sinal de mensagem composto de duas diferentes componentes.

$$m(t) = m_1(t) + m_2(t)$$

### Ondas PM produzidas:

$$s(t) = A_c \cos[2\pi f_c t + k_p (m_1(t) + m_2(t))]$$

$$s_1(t) = A_c \cos[2\pi f_c t + k_p m_1(t)]$$

$$s_2(t) = A_c \cos[2\pi f_c t + k_p m_2(t)]$$

$$s(t) \neq s_1(t) + s_2(t)$$

Viola o principio da superposição

### Propriedades das ondas com modulação angular



- III. Irregularidade de cruzamento em zero Os cruzamentos em zero de uma onda FM e PM não tem a mais perfeita regularidade em seu espaçamento ao longo da escala de tempo.
- IV. Dificuldade de visualização da forma de onda da mensagem Característica da não linearidade das ondas com modulação angular.
- V. Relação de compromisso entre o aumento da largura de banda de transmissão e a melhora no desempenho em relação a ruído O ângulo de uma onda portadora é menos sensível à presença de ruído do que a AM. Em contrapartida, na modulação angular uma largura de banda maior é requerida.

Assim, existe a possibilidade de se trocar um aumento na largura de banda de transmissão por um melhoramento no desempenho em relação a ruído.





### Cruzamento em zero

 $m(t) = \begin{cases} at, & t \ge 0 \\ 0 & t < 0 \end{cases}$ Consideremos uma onda modulante:

$$f_C = \frac{1}{4} Hz$$
  $a = 1 \text{ volt/s}$ 

Modulação em fase:

$$s(t) = A_c \cos[2\pi f_c t + k_p m(t)]$$

$$s(t) = \begin{cases} A_c \cos(2\pi f_c t + k_p a t), & t \ge 0\\ A_c \cos(2\pi f_c t), & t < 0 \end{cases}$$

Modulação em frequência:

$$s(t) = A_c \cos[2\pi f_c t + 2\pi k_f \int m(\tau) d\tau]$$

$$s(t) = A_c \cos[2\pi f_c t + 2\pi k_f \int m(\tau) d\tau] \qquad s(t) = \begin{cases} A_c \cos(2\pi f_c t + \pi k_f a t^2), & t \ge 0 \\ A_c \cos(2\pi f_c t), & t < 0 \end{cases}$$















$$m(t) = \begin{cases} at, & t \ge 0 \\ 0, & t < 0 \end{cases}$$

### Modulação em fase:

$$s(t) = \begin{cases} A_c \cos(2\pi f_c t + k_p a t), & t \ge 0\\ A_c \cos(2\pi f_c t), & t < 0 \end{cases}$$

### Modulação em frequência:

$$s(t) = \begin{cases} A_c \cos(2\pi f_c t + \pi k_f a t^2), & t \ge 0\\ A_c \cos(2\pi f_c t), & t < 0 \end{cases}$$





### Relação entre modulação FM e PM



- (a) Esquema de geração de FM usando um modulador de fase.
- (b) Esquema de geração de PM usando um modulador de freqüência.



**Figura 4.3** Ilustração da relação entre a modulação em frequência e a modulação em ângulo. (a) Esquema para a geração de uma onda FM utilizando um modulador em fase, (b) esquema para a geração de uma onda PM utilizando um modulador em frequência.

Modulação em frequência:

Modulação em fase:

$$s(t) = A_c \cos[2\pi f_c t + 2\pi k_f \int m(t) dt]$$

$$s(t) = A_c \cos[2\pi f_c t + k_p m(t)]$$





Observa-se que o processo de modulação FM é um processo não linear, pois o sinal s(t) é uma função não linear do sinal de mensagem m(t).

$$s(t) = A_c \cos[2\pi f_c t + 2\pi k_f \int m(t)dt]$$

Isto dificulta sobremaneira a análise espectral do sinal, ao contrário do sistema de modulação em amplitude.

Consideremos um sinal senoidal como sinal modulador. Assim, tem-se que:

$$m(t) = A_m \cos(2\pi f_m t)$$

Assim, a frequência instantânea do sinal modulado pode ser escrita como:

$$f_i = f_c + k_f A_m \cos(2\pi f_m t) =$$

$$= f_c + \Delta f \cdot \cos(2\pi f_m t)$$

❖ Onde ∆f =kf.Am é chamado de desvio de frequência e representa o afastamento máximo da frequência instantânea da portadora fc.

☐ Assim sendo, o sinal FM pode ser escrito como:

$$s(t) = A_c \cos[\theta_i(t)] \qquad f_i = f_c + \Delta f \cdot \cos(2\pi f_m t)$$

$$\theta_i(t) = 2\pi \int_0^t f_i(t)dt = 2\pi f_c t + \frac{\Delta f}{f_m}.sen(2\pi f_m t) =$$

$$\theta_i(t) = 2\pi f_c t + \beta sen(2\pi f_m t)$$

 $\triangleright \beta = \Delta f/fm$  - é chamado de **índice de modulação do sinal** FM.

☐ O sinal FM pode então ser escrito como:

$$s(t) = A_c \cos[2\pi f_c t + \beta sen(2\pi f_m t)]$$

- ✓ Se β for pequeno comparado a 1 rad, tem-se a modulação FM faixa estreita (Narrowband FM);
- ✓ Se β for grande comparado a 1 rad, tem-se a modulação FM faixa larga (Wideband FM);

### Modulação FM Faixa Estreita

☐ Através da relação anterior tem-se que:

$$s(t) = A_c \cos[2\pi f_c t + \beta sen(2\pi f_m t)] =$$

$$A_c \cos(2\pi f_c t).\cos[\beta sen(2\pi f_m t)] - A_c sen(2\pi f_c t).sen[\beta sen(2\pi f_m t)]$$

 $\square$  Considerando  $\beta$ <<1rad, tem-se que:

$$\cos[\beta.sen(2\pi f_m t)] \approx 1$$
  $sen[\beta.sen(2\pi f_m t)] \approx \beta.sen(2\pi f_m t)$ 

■ Sinal FM fica assim:

$$s(t) \cong A_c \cos(2\pi f_c t) - \beta A_c sen(2\pi f_c t).sen(2\pi f_m t)$$

## Método de geração de FM faixa estreita - diagrama de blocos

$$s(t) \cong A_c \cos(2\pi f_c t) - \beta A_c sen(2\pi f_c t).sen(2\pi f_m t)$$



□ O sinal FM faixa estreita fica assim:

$$s(t) \cong A_c \cos(2\pi f_c t) - \beta A_c sen(2\pi f_c t).sen(2\pi f_m t)$$

☐ Comparemos com o sinal AM:

$$s(t) = A_c \cdot \cos(2\pi f_c t) + A_c k_a m(t) \cdot \cos(2\pi f_c t)$$

- ✓ Largura de faixa 2Wm;
- ✓ AM Amplitude constante e espectro da faixa lateral em fase com a portadora;
- ✓ Ruído de fase.

# Sistemas de Comunicação

### Ruído de fase:

- Uso não intencional da modulação em fase banda estreita;
- ✓ Introduzido por osciladores em comunicação passa faixa;
- Na modulação angular o ruído de fase tem um efeito multiplicativo.
- Supondo s(t) um sinal com modulação angular, e c(t) um oscilador receptor com ruído de fase de φn(t), então quando o sinal for transladado de fc para fb, a saída será:

$$s(t)c(t) = A_C \cos[2\pi f_C t + \emptyset(t)] * \cos[2\pi (f_C - f_b)t + \emptyset_n(t)]$$

$$s(t)c(t) = \frac{A_C}{2} [\cos(2\pi f_b t + \emptyset(t) - \emptyset_n(t)) + \cos(2\pi (2f_C - f_b)t + \emptyset(t) + \emptyset_n(t))]$$

$$s(t)c(t) \approx \frac{A_C}{2}\cos[2\pi f_b t + \emptyset(t) - \emptyset_n(t)]$$
 > Após Filtro Passa Faixa

 O ruído de fase devido a osciladores afeta diretamente a componente de informação do sinal com modulação angular.





$$FM s(t) = A_c \cos[2\pi f_c t + \beta sen(2\pi f_m t)]$$

O sinal FM pode ser escrito como:

$$s(t) = \text{Re}[A_c e^{j2\pi f_c t}.e^{j\beta sen(2\pi f_m t)}]$$

$$s(t) = \operatorname{Re}[\tilde{s}(t)e^{j2\pi f_c t}]$$

$$\tilde{s}(t) = A_c e^{j\beta sen(2\pi f_m t)}$$

- s(t) é chamado de envoltória complexa do sinal FM.
- s(t) é uma função periódica do tempo com uma frequência fundamental igual a frequência de modulação fm.
- Observe que a envoltória complexa é um sinal periódico, portanto é possível determinar a sua série de Fourier Complexa.

☐ Série de Fourier complexa:

$$\tilde{s}(t) = \sum_{n=-\infty}^{\infty} c_n e^{jn2\pi f_m t}$$

complexos são:

Onde os coeficientes de Fourier 
$$c_n = f_m \int\limits_{-T/2}^{T/2} \tilde{s}(t) e^{-jn2\pi f_m t} dt$$

☐ Envoltória complexa do sinal FM

$$\tilde{s}(t) = A_c e^{j\beta sen(2\pi f_m t)}$$

$$c_n = f_m A_c^{1/2 \, fm} \int_{-1/2 \, fm}^{1/2 \, fm} e^{[jeta sen(2\pi f_m t) - jn2\pi f_m t]} dt$$

$$c_n = f_m A_c \int_{-1/2 \, fm}^{1/2 \, fm} e^{[jeta sen(2\pi f_m t) - jn2\pi f_m t]} dt$$

Seja: 
$$x = 2\pi f_m t$$
 
$$\frac{dx}{dt} = 2\pi f_m$$

$$c_n = \frac{A_c}{2\pi} \int_{-\pi}^{\pi} e^{[j\beta sen(x) - jnx]} dx$$

Funções de Bessel de primeira espécie e n-ésima ordem e argumento β:

$$Jn(\beta) = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{[j(\beta sen(x) - nx)]} dx$$

Então: 
$$c_n = A_C Jn(\beta)$$

$$c_n = A_C Jn(\beta)$$

 Substituindo-se na representação inicial do sinal, tem-se que:

$$\tilde{s}(t) = \sum_{n=-\infty}^{\infty} c_n e^{jn2\pi f_m t}$$
 Série de Fourier complexa

$$s(t) = \text{Re}[\tilde{s}(t)e^{j2\pi f_c t}]$$
 Representação do sinal FM

Representação da série de Fourier do sinal de FM, s(t), para uma valor arbitrário de β

$$s(t) = A_c \sum_{-\infty}^{\infty} J_n(\beta) \cos[2\pi (f_c + nf_m)t]$$

O espectro discreto de s(t) é obtido tomando-se as Transformadas de Fourier de ambos os lados da equação:

$$S(f) = \frac{A_c}{2} \sum_{-\infty}^{\infty} J_n(\beta) [\delta(f - f_c - nf_m) + \delta(f + f_c + nf_m)]$$



- O espectro do sinal FM contém uma componente portadora e um conjunto infinito de frequências laterais localizadas simetricamente em qualquer um dos lados e em separações de fm, 2fm, 3fm ...
- $\beta <<<1$  Apenas os coeficientes de Bessel  $J_0(\beta)$  e  $J_1(\beta)$  têm valores significativos. Então o sinal FM será composto de uma portadora e um par de frequências laterais em fc+/-fm (caso especial de FM banda estreita).
- A amplitude da componente portadora varia com o índice de modulação (β) de acordo com Jo(β), pois a envoltória de um sinal FM é constante. A potência média desse sinal, desenvolvida através de um resistor de 1Ω, será:

$$P = \frac{1}{2}A_c^2 \qquad P = \frac{1}{2}A_c^2 \sum_{n=-\infty}^{\infty} J_n^2(\beta) \qquad \sum_{-\infty}^{\infty} J_n^2(\beta) = 1$$

### Largura de Faixa para transmissão FM

✓ UM SINAL FM CONTÉM UM NÚMERO INFINITO DE FREQUENCIAS LATERAIS, LOGO SUA LARGURA DE BANDA É INFINITA.

### Regra de Carson's (empírica)

$$B_T \cong 2\Delta_f + 2f_m = 2\Delta_f (1 + \frac{1}{\beta})$$

$$\Delta f = k_f \cdot A_m$$

 $\Delta f = k_f \cdot A_m$ ✓ Desvio de frequência - afastament da portadora fc.  $\beta = \frac{\Delta_f}{f_m}$ ✓ Índice de modulação do sinal FM. ✓ Desvio de frequência - afastamento máximo da frequência

$$\beta = \frac{\Delta_f}{f_m}$$

### Espectro de um sinal FM





Frequência fixa e amplitude variável

$$\beta = \frac{\Delta_f}{f_m}$$

$$\beta = 2.0$$

$$\Rightarrow | 2\Delta f | \leftarrow$$

$$(b)$$

 $\Delta f = k_f A_m$  Desvio de frequência - afastamento máximo da frequência da portadora fc.

$$\begin{array}{c|c}
1,0 \\
\hline
\beta = 5,0
\end{array}$$

$$\begin{array}{c|c}
f_c \\
\hline
2\Delta f
\end{array}$$

$$B_T \cong 2\Delta_f + 2f_m = 2\Delta_f (1 + \frac{1}{\beta})$$





### Espectro de um sinal FM









**Figura 4.8** Espectros de magnitude discretos para um sinal FM, normalizados em relação à amplitude da portadora, para o caso da modulante senoidal de frequência variável e amplitude fixa. Apenas os espectros correspondentes às frequências positivas são mostrados.

### Frequência variável e amplitude fixa

$$\beta = \frac{\Delta_f}{f_m} \qquad \Delta f = k_f \cdot A_m$$

$$B_T \cong 2\Delta_f + 2f_m = 2\Delta_f (1 + \frac{1}{\beta})$$

Quando β se aproxima do infinito, a largura de banda da onda FM se aproxima do valor limite de 2Δf.



### Largura de Faixa para transmissão FM

- ✓ UM SINAL FM CONTÉM UM NÚMERO INFINITO DE FREQUENCIAS LATERAIS, LOGO SUA LARGURA DE BANDA É INFINITA.
- Regra de Carson's (empírica)

$$B_T \cong 2\Delta_f + 2f_m = 2\Delta_f (1 + \frac{1}{\beta})$$

### Critério de 1%

Largura de Banda de transmissão de uma onda FM como a separação entre as duas frequências além das quais nenhuma das frequências laterais é maior que 1% da amplitude de portadora obtida quando a modulação é retirada.

## Modulação Faixa Larga





Figura 4.9 Curva universal para avaliar a largura de banda de 1% de uma onda FM.



Curva universal para avaliar a largura de banda pelo critério de 1% de uma onda FM.





### Exemplo

Nos Estados Unidos, o máximo valor do desvio de frequência ∆f é 75 kHz para FM comercial. Se a largura em banda base é de 15 kHz, que é tipicamente a máxima frequência de áudio de interesse, qual é largura de faixa requerida.

### Exemplo

O índice de modulação é dado pela razão entre o desvio máximo de freqüência e a máxima freqüência do sinal de modulação, ou seja:

$$\beta = \frac{\Delta_f}{f_m} = \frac{75 \text{ kHz}}{15 \text{ kHz}} = 5$$

De acordo com o critério da regra de Carson

$$B_T = 2\Delta_f (1 + \frac{1}{\beta}) = 2*75k(1 + \frac{15k}{75k}) = 180kHz$$
  $\beta = \frac{\Delta_f}{f_m}$ 

### **Exemplo**

De acordo com o critério de 1%, analisando-se o gráfico dado anteriormente, tem-se que:

$$B_T = 3.2\Delta f = 3.2(75) = 240 \text{ kHz}$$

Na prática é alocada para cada rádio FM uma largura de faixa de 200 kHz

## Sistemas de Comunicação

#### Modulação Faixa Larga



Figura 4.9 Curva universal para avaliar a largura de banda de 1% de uma onda FM.





#### Oscilador

Circuitos eletrônicos que geram sinais de corrente alternada a partir de uma tensão continua de alimentação, sem a necessidade da aplicação de um sinal externo.

Os osciladores são construídos a partir de amplificadores realimentados de forma a tornar o circuito instável oscilando numa frequência fixa bem determinada.



#### Geração de sinais FM - direta

Frequência de oscilação do Oscilador de Hartley

$$f_i(t) = \frac{1}{2\pi\sqrt{(L_1 + L_2)C(t)}}$$



$$C(t) = C_0 + \Delta C \cos(2\pi f_m t)$$

**Figura 4.10** Oscilador de Hartley.

Capacitância total = capacitor fixo + capacitor de tensão variável

Após devidas considerações:

$$f_i(t) \cong f_0 + \Delta f \cos(2\pi f_m t)$$





#### Oscilador - Colpitts



R1 - saída do oscilador

Cc e Lc - realizam o casamento de impedâncias com R1

Cb - comporta-se como um curto-circuito na frequência de oscilação

Rb e Rc - fornecem o ponto ótimo de polarização do transistor a fim de obter o maior ganho de tensão possível a partir a fonte de tensão Vo

Lbc, Cbe e Cce - produzem três realimentações paralelas no transistor de forma a tornar o circuito instável oscilando numa frequência determinada pelos seus valores.

#### Oscilador



O <u>oscilador Colpitts</u> com frequência de oscilação:

$$\begin{cases} E_{c} & F = \frac{1}{2 \cdot \pi} \sqrt{\frac{C_{ce} + C_{be}}{L_{bc} \cdot C_{ce} \cdot C_{be}}} \end{cases}$$

Adicionado Cbc << (Cbe e Cce) em série com o indutor Lbc, tem-se o oscilador Clapp cuja frequência de oscilação vale:

Substituído Lbc for por um cristal ressonante, tem-se o <u>oscilador Pierce</u> (XCO - cristal controlled oscillator), cuja frequência de oscilação é a própria frequência F de ressonância do cristal. ( alta estabilidade em frequência )

#### **Modulador FM**

Um diodo varactor reversamente polarizado é utilizado para alterar a capacitância de um dos elementos que definem a frequência de oscilação do oscilador a transistor.



O circuito é um oscilador Colpitts no qual o valor de Cbe é alterado pela conexão em série do diodo varactor, cuja capacitância é controlada pelo sinal modulador aplicado através de R1.

 $F(t) = \frac{1}{2 \cdot \pi \cdot \sqrt{L_{bc}}} \cdot \sqrt{1 + \frac{g(t)}{A_0}} \cdot \frac{1}{C_0} + \frac{1}{C_{be}} + \frac{1}{C_{ce}} = F + \frac{(F_0)^2}{4 \cdot F \cdot A_0} \cdot g(t)$ 

F(t) é a frequência instantânea do VCO.

Se g(t) << Ao, a frequência instantânea varia linearmente com o sinal modulador.

## Sistemas de Comunicação

#### Geração de sinais FM banda larga – Método direto



**Figura 4.11** Diagrama de blocos de um modulador de frequência de banda larga que utiliza um oscilador controlado por tensão.

Desvantagem: a frequência da portadora não é obtida de um oscilador altamente estável;





## Sistemas de Comunicação

#### Geração de sinais FM banda larga – Método direto



**Figura 4.12** Um esquema de realimentação para estabilização de frequência de um modulador de frequências.

 Uma frequência bastante estável gerada por um cristal será capaz de controlar a frequência da portadora;





### Diagrama de blocos da geração indireta do sinal de FM – Método de Armstrong



#### Demodulação FM



#### Demodulação FM



Discriminador de frequência balanceado













**Figura 4.14** Discriminador de frequências balanceado. (*a*) Diagrama de blocos. (*b*) Diagrama do circuito. (*c*) Resposta em frequência.



#### Demodulação FM

Discriminador de frequência balanceado



#### Multiplexação Estereofônica de FM

É uma forma de FDM projetado para transmitir dois sinais distintos através da mesma portadora.



$$m(t) = [m_L(t) + m_R(t)] + [m_L(t) - m_R(t)]\cos(4\pi f_C t) + k\cos(2\pi f_C t)$$

#### Multiplexação Estereofônica de FM



$$m(t) = [m_L(t) + m_R(t)] + [m_L(t) - m_R(t)]\cos(4\pi f_C t) + k\cos(2\pi f_C t)$$



**Figura 4.15** (a) Multiplexador no transmissor de FM estéreo. (b) Demultiplexador no transmissor de FM estéreo.









**Figura 4.16** Malha de sincronismo de fase.

**Objetivo do PLL:** é gerar uma saída do VCO, r(t), que tenha o mesmo ângulo de fase que o sinal FM de entrada s(t).









Figura 4.16 Malha de sincronismo de fase.

Suposição para o ajuste inicial de VCO, quando a tensão de controle for zero:

- A frequência do VCO é definida de maneira precisa na frequência da portadora não modulada fc;
- A saída VCO tem um deslocamento de fase de 90º em relação a portadora não modulada;

No VCO é gerador senoide cuja a frequência é determinada por uma fonte externa.

c kv - É A SENSIBILIDADE À FREQUENCIA DO VCO MEDIDA EM HZ/V.







**Figura 4.16** Malha de sincronismo de fase.

O ângulo de fase φ₁ variante no tempo, que caracteriza s(t), pode ser devido:

- à modulação por um sinal de mensagem m(t);
- a um deslocamento de fase indesejável causado por flutuações no canal de comunicação;
  - Rastreia φ₁ de forma a produzir um sinal que tenha o mesmo ângulo de fase para servir na detecção coerente.







**Figura 4.16** Malha de sincronismo de fase.

Suponha a entrada aplicada ao PLL, seja um sinal FM definido por:

$$s(t) = A_c sen[2\pi f_c t + \phi_1(t)]$$

$$\phi_1(t) = 2\pi k_f \int_0^t m(\tau) d\tau$$

Seja a saída do VCO no PLL definida por:

$$r(t) = A_V \cos[2\pi f_c t + \phi_2(t)]$$

$$\phi_2(t) = 2\pi k_V \int_0^t v(t)dt$$









Figura 4.16 Malha de sincronismo de fase.

- $\gt$  s(t) e r(t) são aplicados ao multiplicador, produzindo:
- I. Uma componente em alta frequência:  $k_m A_c A_v sen[4\pi f_C t + \phi_1(t) + \phi_2(t)]$
- II. Uma componente em baixa frequência:  $k_m A_C A_v sen[\phi_1(t) \phi_2(t)]$

onde *km* é o ganho do multiplicador.

A componente em alta frequência é atenuada pelo VCO, resultando na entrada do filtro:  $e(t) = k_m A_c A_v sen[\phi_e(t)]$ 

C O erro de fase será:  $\phi_e(t) = \phi_1(t) - \phi_2(t) = \phi_1(t) - 2\pi k_V \int_0^t v(\tau) d\tau$ 



O filtro opera sobre o erro para produzir uma saída v(t) definida pela integral de convolução:

$$v(t) = \int_{-\infty}^{\infty} e(\tau)h(t-\tau) d\tau \qquad h(t) - \text{Resposta ao impulso do filtro}$$

Descrevendo o comportamento dinâmico do PLL por meio da eq. Diferencial não linear:

$$\frac{d\phi_{e}(t)}{dt} = \frac{d\phi_{1}(t)}{dt} - 2\pi k_{0} \int_{-\infty}^{\infty} sen[\phi_{e}(\tau)]h(t-\tau)d\tau$$

$$k_0 = k_m k_v A_c A_v$$
 Parâmetro de ganho de malha





## Sistemas de Comunicação

#### Modelo não linear do PLL







CFigura 4.16 Malha de sincronismo de fase.

### Quando o erro de fase é próximo de 0 (fase bloqueada) e a não linearidade pode ser desconsiderada.

#### Modelo linear do PLL



$$\phi_e(t) < 0.5 rad$$

$$sen[\phi_e(t)] \cong \phi_e(t)$$

Comportamento dinâmico do PLL por meio da eq. Diferencial linear:

$$\frac{d\phi_e(t)}{dt} + 2\pi k_0 \int_{-\infty}^{\infty} \phi_e(\tau) h(t-\tau) d\tau = \frac{d\phi_1(t)}{dt}$$

Domínio da frequência (T. F.):

$$\phi_e(f) = \frac{1}{1 + L(f)} \phi_1(f)$$



Sendo a função L(f) definida por:

$$L(f) = K_0 \frac{H(f)}{jf}$$

- Sistemas de Comunicação
- > L(f) função de transferência de malha aberta do PLL.
- ➤ H(f) função de transferência do filtro.



#### Modelo linear do PLL



$$\phi_e(f) = \frac{1}{1 + L(f)}\phi_1(f) \cong 0$$

O PLL é estabilizado pois a fase do VCO se torna assintoticamente igual à fase do sinal de entrada.



➤ L(f)>>1 para banda de frequência de interesse:

$$V(f) \cong \frac{jf}{k_{v}} \phi_{1}(f)$$

Sistemas de Comunicação

$$V(t) \cong \frac{1}{2\pi k_v} \frac{d\phi_1(t)}{dt}$$
 Domínio do tempo





#### Método indireto da utilização do PLL como demodulador de frequência



**Figura 4.18** Modelos do PLL. (a) Modelo linearizado. (b) Modelo simplificado quando o ganho de malha é muito grande em comparação com a unidade.

$$\phi_1(t) = 2\pi k_f \int_0^t m(\tau) d\tau \qquad V(t) \cong \frac{k_f}{k_v} m(t)$$





# Sistemas de Comunicação

### PLL de segunda ordem que utiliza um filtro com a função de transferência:

$$H(f) = 1 + \frac{a}{jf}$$



**Figura 4.19** Filtro para o PLL de segunda ordem.





#### Receptor super-heteródino

Supera a dificuldade de se construir um filtro altamente seletivo e variável. Ex. receptores de rádio e TV

- Sintonização de frequência;
- Filtragem;
- Amplificação;

**Heterodinização** – O sinal é convertido para uma frequência intermediaria fixa predeterminada, produzindo uma frequência definida por:

$$f_{\mathit{FI}} = f_{\mathit{OL}} - f_{\mathit{RF}}$$

Interferência de imagem

#### Receptor super-heteródino



Figura 4.21 Elementos básicos de um receptor AM do tipo super-heteródino.

|                                                  | Rádio AM        | Rádio FM   |
|--------------------------------------------------|-----------------|------------|
| Banda da portadora de RF                         | 0,535–1,605 MHz | 88–108 MHz |
| Freqüência de banda intermediária da seção de FI | 0,455 MHZ       | 10,7 MHz   |
| Largura de banda de FI                           | 10 kHz          | 200 kHz    |

#### Etapa de F.I.

Principal responsável pela seletividade e pelo ganho do receptor.

### Exemplo temático – Telefone celulares analogicos e digitais

O AMPS (Advanced Mobile Phone System) utiliza múltiplo acesso por divisão de frequência (FDMA).

Canal (Transmissão e Recepção) com 30 kHz de banda cada.

Os canais no AMPS utilizam **modulação FM** para transmissão de voz **e modulação FSK (chaveamento em frequência)** para transmissão de dados.

No AMPS, um canal de voz é alocado e permanece dedicado a uma chamada durante toda a sua duração.

Regra de Carson's (empírica) 
$$B_T \cong 2\Delta_f + 2f_m = 2\Delta_f (1 + \frac{1}{\beta})$$
$$= 2*(12+3) = 30kHz$$

#### GSM (Global System for Mobile Communications)

$$s(t) = A_c \cos[2\pi f_c t + 2\pi k_f \int_0^t m(\tau) d\tau]$$

$$m(t) = \sum_{k=0}^{K} b_k p(t - kT)$$

- → bk são os bits que representam uma fonte de áudio.
- $\Box$  p(t) forma de pulso com espectro:



#### Canais 200kHz

Figura 4.22 Espectro do pulso de banda base utilizado em GSM.

Modulação: 0,3GMSK (Gaussian Minimum Shift Keying)

0,3G descreve a Banda do filtro Gaussiano

**Quando MSK (Minimum Shift Keying)** tipo de modulação FSK onde a taxa de bits do sinal modulante é quatro vezes o deslocamento da portadora, para minimizar o espectro da portadora. (Taxa de dados: 273,33kbits/s e deslocamento de frequência de RF 67,708 kHZ





Figura 4.23 Espectro de um sinal GSM.



