SEQUENCE LISTING

<110> Regents of the University of California, The Leonard, Rome H. Valerie, Kickhoefer A. Sujna, Raval-Fernandes Phoebe, Stewart L.

- <120> Vault and Vault-like Carrier Molecules
- <130> 14399-1PCT
- <140> to be assigned
- <141> 2004-03-10
- <150> 60/453,800
- <151> 2003-03-10
- <160> 143
- <170> PatentIn version 3.2
- <210> 1
- <211> 893
- <212> PRT
- <213> Homo sapiens
- <400> 1
- Met Ala Thr Glu Glu Phe Ile Ile Arg Ile Pro Pro Tyr His Tyr Ile 1 5 10 15
- His Val Leu Asp Gln Asn Ser Asn Val Ser Arg Val Glu Val Gly Pro 20 25 30
- Lys Thr Tyr Ile Arg Gln Asp Asn Glu Arg Val Leu Phe Ala Pro Met 35 40 45
- Arg Met Val Thr Val Pro Pro Arg His Tyr Cys Thr Val Ala Asn Pro 50 55 60
- Val Ser Arg Asp Ala Gln Gly Leu Val Leu Phe Asp Val Thr Gly Gln 65 70 75 80
- Val Arg Leu Arg His Ala Asp Leu Glu Ile Arg Leu Ala Gln Asp Pro 85 90 95
- Phe Pro Leu Tyr Pro Gly Glu Val Leu Glu Lys Asp Ile Thr Pro Leu 100 105 110
- Gln Val Val Leu Pro Asn Thr Ala Leu His Leu Lys Ala Leu Leu Asp

115 120 125

Phe Glu Asp Lys Asp Gly Asp Lys Val Val Ala Gly Asp Glu Trp Leu 130 135 140

Phe Glu Gly Pro Gly Thr Tyr Ile Pro Arg Lys Glu Val Glu Val Val 145 150 155 160

Glu Ile Ile Gln Ala Thr Ile Ile Arg Gln Asn Gln Ala Leu Arg Leu 165 170 175

Arg Ala Arg Lys Glu Cys Trp Asp Arg Asp Gly Lys Glu Arg Val Thr 180 185 190

Gly Glu Glu Trp Leu Val Thr Thr Val Gly Ala Tyr Leu Pro Ala Val 195 200 205

Phe Glu Glu Val Leu Asp Leu Val Asp Ala Val Ile Leu Thr Glu Lys 210 215 220

Thr Ala Leu His Leu Arg Ala Arg Arg Asn Phe Arg Asp Phe Arg Gly 225 230 235 240

Val Ser Arg Arg Thr Gly Glu Glu Trp Leu Val Thr Val Gln Asp Thr 245 250 255

Glu Ala His Val Pro Asp Val His Glu Glu Val Leu Gly Val Val Pro 260 265 270

Ile Thr Thr Leu Gly Pro His Asn Tyr Cys Val Ile Leu Asp Pro Val 275 280 285

Gly Pro Asp Gly Lys Asn Gln Leu Gly Gln Lys Arg Val Val Lys Gly 290 295 300

Glu Lys Ser Phe Phe Leu Gln Pro Gly Glu Gln Leu Glu Gln Gly Ile 305 310 315 320

Gln Asp Val Tyr Val Leu Ser Glu Gln Gln Gly Leu Leu Leu Arg Ala 325 330 335

Leu Gln Pro Leu Glu Glu Gly Glu Asp Glu Glu Lys Val Ser His Gln 340 345 350

Ala Gly Asp His Trp Leu Ile Arg Gly Pro Leu Glu Tyr Val Pro Ser 355 360 365

- Ala Lys Val Glu Val Val Glu Glu Arg Gln Ala Ile Pro Leu Asp Glu 370 375 380
- Asn Glu Gly Ile Tyr Val Gln Asp Val Lys Thr Gly Lys Val Arg Ala 385 390 395 400
- Val Ile Gly Ser Thr Tyr Met Leu Thr Gln Asp Glu Val Leu Trp Glu 405 410 415
- Lys Glu Leu Pro Pro Gly Val Glu Glu Leu Leu Asn Lys Gly Gln Asp 420 425 430
- Pro Leu Ala Asp Arg Gly Glu Lys Asp Thr Ala Lys Ser Leu Gln Pro 435 440 445
- Leu Ala Pro Arg Asn Lys Thr Arg Val Val Ser Tyr Arg Val Pro His 450 455 460
- Asn Ala Ala Val Gln Val Tyr Asp Tyr Arg Glu Lys Arg Ala Arg Val 465 470 475 480
- Val Phe Gly Pro Glu Leu Val Ser Leu Gly Pro Glu Glu Gln Phe Thr 485 490 495
- Val Leu Ser Leu Ser Ala Gly Arg Pro Lys Arg Pro His Ala Arg Arg 500 505 510
- Ala Leu Cys Leu Leu Cly Pro Asp Phe Phe Thr Asp Val Ile Thr 515 520 525
- Ile Glu Thr Ala Asp His Ala Arg Leu Gln Leu Gln Leu Ala Tyr Asn 530 535 540
- Trp His Phe Glu Val Asn Asp Arg Lys Asp Pro Gln Glu Thr Ala Lys 545 550 555 560
- Leu Phe Ser Val Pro Asp Phe Val Gly Asp Ala Cys Lys Ala Ile Ala 565 570 575
- Ser Arg Val Arg Gly Ala Val Ala Ser Val Thr Phe Asp Asp Phe His 580 585 590

Lys Asn Ser Ala Arg Ile Ile Arg Thr Ala Val Phe Gly Phe Glu Thr 595 600 605

- Ser Glu Ala Lys Gly Pro Asp Gly Met Ala Leu Pro Arg Pro Arg Asp 610 615 620
- Gln Ala Val Phe Pro Gln Asn Gly Leu Val Val Ser Ser Val Asp Val 625 630 635 640
- Gln Ser Val Glu Pro Val Asp Gln Arg Thr Arg Asp Ala Leu Gln Arg 645 650 655
- Ser Val Gln Leu Ala Ile Glu Ile Thr Thr Asn Ser Gln Glu Ala Ala 660 665 670
- Ala Lys His Glu Ala Gln Arg Leu Glu Glu Glu Ala Arg Gly Arg Leu 675 680 685
- Glu Arg Gln Lys Ile Leu Asp Gln Ser Glu Ala Glu Lys Ala Arg Lys 690 695 700
- Glu Leu Leu Glu Leu Glu Ala Leu Ser Met Ala Val Glu Ser Thr Gly 705 710 715 720
- Thr Ala Lys Ala Glu Ala Glu Ser Arg Ala Glu Ala Ala Arg Ile Glu
 725 730 735
- Gly Glu Gly Ser Val Leu Gln Ala Lys Leu Lys Ala Gln Ala Leu Ala 740 745 750
- Ile Glu Thr Glu Ala Glu Leu Gln Arg Val Gln Lys Val Arg Glu Leu 755 760 765
- Glu Leu Val Tyr Ala Arg Ala Gln Leu Glu Leu Glu Val Ser Lys Ala 770 775 780
- Gln Gln Leu Ala Glu Val Glu Val Lys Lys Phe Lys Gln Met Thr Glu 785 790 795 800
- Ala Ile Gly Pro Ser Thr Ile Arg Asp Leu Ala Val Ala Gly Pro Glu 805 810 815
- Met Gln Val Lys Leu Leu Gln Ser Leu Gly Leu Lys Ser Thr Leu Ile

820 825 830

Thr Asp Gly Ser Thr Pro Ile Asn Leu Phe Asn Thr Ala Phe Gly Leu 835 840 845

Leu Gly Met Gly Pro Glu Gly Gln Pro Leu Gly Arg Arg Val Ala Ser 850 855 860

Gly Pro Ser Pro Gly Glu Gly Ile Ser Pro Gln Ser Ala Gln Ala Pro 865 870 875 880

Gln Ala Pro Gly Asp Asn His Val Val Pro Val Leu Arg 885 890

<210> 2

<211> 2682

<212> DNA

<213> Homo sapiens

<400> atggcaactg aagagttcat catccgcatc cccccatacc actatatcca tgtgctggac 60 cagaacagca acgtgtcccg tgtggaggtc gggccaaaga cctacatccg gcaggacaat 120 gagagggtac tgtttgcccc catgcgcatg gtgaccgtcc ccccacgtca ctactgcaca 180 gtggccaacc ctgtgtctcg ggatgcccag ggcttggtgc tgtttgatgt cacagggcaa 240 gttcggcttc gccacgctga cctcgagatc cggctggccc aggacccctt ccccctgtac 300 ccaggggagg tgctggaaaa ggacatcaca ccctgcagg tggttctgcc caacactgcc 360 ctccatctaa aggcgctgct tgattttgag gataaagatg gagacaaggt ggtggcagga 420 gatgagtggc ttttcgaggg acctggcacg tacatccccc ggaaggaagt ggaggtcgtg 480 gagatcattc aggccaccat catcaggcag aaccaggctc tgcggctcag ggcccgcaag 540 600 gagtgctggg accgggacgg caaggagagg gtgacagggg aagaatggct ggtcaccaca 660 gtagggggt acctcccagc ggtgtttgag gaggttctgg atttggtgga cgccgtcatc 720 cttacggaaa agacagccct gcacctccgg gctcggcgga acttccggga cttcagggga gtgtcccgcc gcactgggga ggagtggctg gtaacagtgc aggacacaga ggcccacgtg 780 840 ccagatgtcc acgaggaggt gctgggggtt gtgcccatca ccaccctggg cccccacaac tactgcgtga ttctcgaccc tgtcggaccg gatggcaaga atcagctggg gcagaagcgc 900 gtggtcaagg gagagaagtc ttttttcctc cagccaggag agcagctgga acaaggcatc 960 caggatgtgt atgtgctgtc ggagcagcag gggctgctgc tgagggccct gcagcccctg 1020

gaggagggg	aggatgagga	gaaggtetea	caccaggctg	gggaccactg	gctcatccgc	1080
ggacccctgg	agtatgtgcc	atctgccaaa	gtggaggtgg	tggaggagcg	ccaggccatc	1140
cctctagacg	agaacgaggg	catctatgtg	caggatgtca	agaccggaaa	ggtgcgcgct	1200
gtgattggaa	gcacctacat	gctgacccag	gacgaagtcc	tgtgggagaa	agagctgcct	1260
cccggggtgg	aggagctgct	gaacaagggg	caggaccctc	tggcagacag	gggtgagaag	1320
gacacagcta	agagcctcca	gcccttggcg	ccccggaaca	agacccgtgt	ggtcagctac	1380
cgcgtgcccc	acaacgctgc	ggtgcaggtg	tacgactacc	gagagaagcg	agcccgcgtg	1440
gtcttcgggc	ctgagctggt	gtcgctgggt	cctgaggagc	agttcacagt	gttgtccctc	1500
tcagctgggc	ggcccaagcg	tccccatgcc	cgccgtgcgc	tctgcctgct	gctggggcct	1560
gacttcttca	cagacgtcat	caccatcgaa	acggcggatc	atgccaggct	gcaactgcag	1620
ctggcctaca	actggcactt	tgaggtgaat	gaccggaagg	acccccaaga	gacggccaag	1680
ctcttttcag	tgccagactt	tgtaggtgat	gcctgcaaag	ccatcgcatc	ccgggtgcgg	1740
ggggccgtgg	cctctgtcac	tttcgatgac	ttccataaga	actcagcccg	catcattcgc	1800
actgctgtct	ttggctttga	gacctcggaa	gcgaagggcc	ccgatggcat	ggccctgccc	1860
aggccccggg	accaggctgt	cttcccccaa	aacgggctgg	tggtca.gcag	tgtggacgtg	1920
cagtcagtgg	agcctgtgga	tcagaggacc	cgggacgccc	tgcaacgcag	cgtccagctg	1980
gccatcgaga	tcaccaccaa	ctcccaggaa	gcggcggcca	agcatgaggc	tcagagactg	2040
gagcaggaag	cccgcggccg	gcttgagcgg	cagaagatcc	tggaccagtc	agaagccgag	2100
aaagctcgca	aggaactttt	ggagctggag	gctctgagca	tggccgtgga	gagcaccggg	2160
actgccaagg	cggaggccga	gtcccgtgcg	gaggcagccc	ggattgaggg	agaagggtcc	2220
gtgctgcagg	ccaagctaaa	agcacaggcc	ttggccattg	aaacggaggc	tgagctccag	2280
agggtccaga	aggtccgaga	gctggaactg	gtctatgccc	gggcccagct	ggagctggag	2340
gtgagcaagg	ctcagcagct	ggctgaggtg	gaggtgaaga	agttcaagca	gatgacagag	2400
gccataggcc	ccagcaccat	cagggacctt	gctgtggctg	ggcctgagat	gcaggtaaaa	2460
ctgctccagt	ccctgggcct	gaaatcaacc	ctcatcaccg	atggctccac	tcccatcaac	2520
ctcttcaaca	cagcctttgg	gctgctgggg	atggggcccg	agggtcagco	: cctgggcaga	2580
agggtggcca	gtgggcccag	ccctggggag	gggatatccc	cccagtctgo	tcaggcccct	2640
caagctcctg	gagacaacca	cgtggtgcct	gtactgcgct	aa		2682

<211> 1724

.

<212> PRT

<213> Homo sapiens

<400> 3

Met Val Met Gly Ile Phe Ala Asn Cys Ile Phe Cys Leu Lys Val Lys

1 10 15

Tyr Leu Pro Gln Gln Gln Lys Lys Leu Gln Thr Asp Ile Lys Glu 20 25 30

Asn Gly Gly Lys Phe Ser Phe Ser Leu Asn Pro Gln Cys Thr His Ile 35 40 45

Ile Leu Asp Asn Ala Asp Val Leu Ser Gln Tyr Gln Leu Asn Ser Ile 50 55 60

Gln Lys Asn His Val His Ile Ala Asn Pro Asp Phe Ile Trp Lys Ser 65 70 75 80

Ile Arg Glu Lys Arg Leu Leu Asp Val Lys Asn Tyr Asp Pro Tyr Lys 85 90 95

Pro Leu Asp Ile Thr Pro Pro Pro Asp Gln Lys Ala Ser Ser Glu 100 105 110

Val Lys Thr Glu Gly Leu Cys Pro Asp Ser Ala Thr Glu Glu Glu Asp 115 120 125

Thr Val Glu Leu Thr Glu Phe Gly Met Gln Asn Val Glu Ile Pro His 130 135 140

Leu Pro Gln Asp Phe Glu Val Ala Lys Tyr Asn Thr Leu Glu Lys Val 145 150 155 160

Gly Met Glu Gly Gln Glu Ala Val Val Glu Leu Gln Cys Ser 165 170 175

Arg Asp Ser Arg Asp Cys Pro Phe Leu Ile Ser Ser His Phe Leu Leu 180 185 190

Asp Asp Gly Met Glu Thr Arg Arg Gln Phe Ala Ile Lys Lys Thr Ser 195 200 205

Glu Asp Ala Ser Glu Tyr Phe Glu Asn Tyr Ile Glu Glu Leu Lys Lys Gln Gly Phe Leu Leu Arg Glu His Phe Thr Pro Glu Ala Thr Gln Leu Ala Ser Glu Gln Leu Gln Ala Leu Leu Glu Glu Val Met Asn Ser Ser Thr Leu Ser Gln Glu Val Ser Asp Leu Val Glu Met Ile Trp Ala Glu Ala Leu Gly His Leu Glu His Met Leu Leu Lys Pro Val Asn Arg Ile Ser Leu Asn Asp Val Ser Lys Ala Glu Gly Ile Leu Leu Val Lys Ala Ala Leu Lys Asn Gly Glu Thr Ala Glu Gln Leu Gln Lys Met Met Thr Glu Phe Tyr Arg Leu Ile Pro His Lys Gly Thr Met Pro Lys Glu Val Asn Leu Gly Leu Leu Ala Lys Lys Ala Asp Leu Cys Gln Leu Ile Arg Asp Met Val Asn Val Cys Glu Thr Asn Leu Ser Lys Pro Asn Pro Pro Ser Leu Ala Lys Tyr Arg Ala Leu Arg Cys Lys Ile Glu His Val Glu Gln Asn Thr Glu Glu Phe Leu Arg Val Arg Lys Glu Val Leu Gln Asn His His Ser Lys Ser Pro Val Asp Val Leu Gln Ile Phe Arq Val Gly Arg Val Asn Glu Thr Thr Glu Phe Leu Ser Lys Leu Gly Asn Val Arg Pro Leu Leu His Gly Ser Pro Val Gln Asn Ile Val Gly Ile

Leu Cys Arg Gly Leu Leu Pro Lys Val Val Glu Asp Arg Gly Val 450 455 460

.

Gln Arg Thr Asp Val Gly Asn Leu Gly Ser Gly Ile Tyr Phe Ser Asp 465 470 475 480

Ser Leu Ser Thr Ser Ile Lys Tyr Ser His Pro Gly Glu Thr Asp Gly 485 490 495

Thr Arg Leu Leu Leu Ile Cys Asp Val Ala Leu Gly Lys Cys Met Asp 500 505 510

Leu His Glu Lys Asp Phe Pro Leu Thr Glu Ala Pro Pro Gly Tyr Asp 515 520 525

Ser Val His Gly Val Ser Gln Thr Ala Ser Val Thr Thr Asp Phe Glu 530 535 540

Asp Asp Glu Phe Val Val Tyr Lys Thr Asn Gln Val Lys Met Lys Tyr 545 550 555 560

Ile Ile Lys Phe Ser Met Pro Gly Asp Gln Ile Lys Asp Phe His Pro 565 570 575

Ser Asp His Thr Glu Leu Glu Glu Tyr Arg Pro Glu Phe Ser Asn Phe 580 585 590

Ser Lys Val Glu Asp Tyr Gln Leu Pro Asp Ala Lys Thr Ser Ser Ser 595 600 605

Thr Lys Ala Gly Leu Gln Asp Ala Ser Gly Asn Leu Val Pro Leu Glu 610 620

Asp Val His Ile Lys Gly Arg Ile Ile Asp Thr Val Ala Gln Val Ile 625 630 635 640

Val Phe Gln Thr Tyr Thr Asn Lys Ser His Val Pro Ile Glu Ala Lys 645 650 655

Tyr Ile Phe Pro Leu Asp Asp Lys Ala Ala Val Cys Gly Phe Glu Ala 660 665 670

Phe Ile Asn Gly Lys His Ile Val Gly Glu Ile Lys Glu Lys Glu Glu

675 680 685

Ala Gln Gln Glu Tyr Leu Glu Ala Val Thr Gln Gly His Gly Ala Tyr 690 695 700

Leu Met Ser Gln Asp Ala Pro Asp Val Phe Thr Val Ser Val Gly Asn 705 710 715 720

Leu Pro Pro Lys Ala Lys Val Leu Ile Lys Ile Thr Tyr Ile Thr Glu
725 730 735

Leu Ser Ile Leu Gly Thr Val Gly Val Phe Phe Met Pro Ala Thr Val
740 745 750

Ala Pro Trp Gln Gln Asp Lys Ala Leu Asn Glu Asn Leu Gln Asp Thr 755 760 765

Val Glu Lys Ile Cys Ile Lys Glu Ile Gly Thr Lys Gln Ser Phe Ser 770 775 780

Leu Thr Met Ser Ile Glu Met Pro Tyr Val Ile Glu Phe Ile Phe Ser 785 790 795 800

Asp Thr His Glu Leu Lys Gln Lys Arg Thr Asp Cys Lys Ala Val Ile 805 810 815

Ser Thr Met Glu Gly Ser Ser Leu Asp Ser Ser Gly Phe Ser Leu His 820 825 830

Ile Gly Leu Ser Ala Ala Tyr Leu Pro Arg Met Trp Val Glu Lys His 835 840 845

Pro Glu Lys Glu Ser Glu Ala Cys Met Leu Val Phe Gln Pro Asp Leu 850 855 860

Asp Val Asp Leu Pro Asp Leu Ala Ser Glu Ser Glu Val Ile Ile Cys 865 870 875 880

Leu Asp Cys Ser Ser Ser Met Glu Gly Val Thr Phe Leu Gln Ala Lys 885 890 895

Gln Ile Thr Leu His Ala Leu Ser Leu Val Gly Glu Lys Gln Lys Val 900 905 910 Asn Ile Ile Gln Phe Gly Thr Gly Tyr Lys Glu Leu Phe Ser Tyr Pro 915 920 925

- Lys His Ile Thr Ser Asn Thr Thr Ala Ala Glu Phe Ile Met Ser Ala 930 935 940
- Thr Pro Thr Met Gly Asn Thr Asp Phe Trp Lys Thr Leu Arg Tyr Leu 945 950 955 960
- Ser Leu Leu Tyr Pro Ala Arg Gly Ser Arg Asn Ile Leu Leu Val Ser 965 970 975
- Asp Gly His Leu Gln Asp Glu Ser Leu Thr Leu Gln Leu Val Lys Arg 980 985 990
- Ser Arg Pro His Thr Arg Leu Phe Ala Cys Gly Ile Gly Ser Thr Ala 995 1000 1005
- Asn Arg His Val Leu Arg Ile Leu Ser Gln Cys Gly Ala Gly Val 1010 1015 1020
- Phe Glu Tyr Phe Asn Ala Lys Ser Lys His Ser Trp Arg Lys Gln 1025 1030 1035
- Ile Glu Asp Gln Met Thr Arg Leu Cys Ser Pro Ser Cys His Ser 1040 1045 1050
- Val Ser Val Lys Trp Gln Gln Leu Asn Pro Asp Ala Pro Glu Ala 1055 1060 1065
- Leu Gln Ala Pro Ala Gln Val Pro Ser Leu Phe Arg Asn Asp Arg 1070 1075 1080
- Leu Leu Val Tyr Gly Phe Ile Pro His Cys Thr Gln Ala Thr Leu 1085 1090 1095
- Cys Ala Leu Ile Gln Glu Lys Glu Phe Cys Thr Met Val Ser Thr 1100 1105 1110
- Thr Glu Leu Gln Lys Thr Thr Gly Thr Met Ile His Lys Leu Ala 1115 1120 1125
- Ala Arg Ala Leu Ile Arg Asp Tyr Glu Asp Gly Ile Leu His Glu 1130 1135 1140

Asn Glu Thr Ser His Glu Met Lys Lys Gln Thr Leu Lys Ser Leu 1145 1150 1155

M +Person --

- Ile Ile Lys Leu Ser Lys Glu Asn Ser Leu Ile Thr Gln Phe Thr 1160 1165 1170
- Ser Phe Val Ala Val Glu Lys Arg Asp Glu Asn Glu Ser Pro Phe 1175 1180 1185
- Pro Asp Ile Pro Lys Val Ser Glu Leu Ile Ala Lys Glu Asp Val 1190 1195 1200
- Asp Phe Leu Pro Tyr Met Ser Trp Gln Gly Glu Pro Gln Glu Ala 1205 1210 1215
- Val Arg Asn Gln Ser Leu Leu Ala Ser Ser Glu Trp Pro Glu Leu 1220 1225 1230
- Arg Leu Ser Lys Arg Lys His Arg Lys Ile Pro Phe Ser Lys Arg 1235 1240 1245
- Lys Met Glu Leu Ser Gln Pro Glu Val Ser Glu Asp Phe Glu Glu 1250 1255 1260
- Asp Gly Leu Gly Val Leu Pro Ala Phe Thr Ser Asn Leu Glu Arg 1265 1270 1275
- Gly Gly Val Glu Lys Leu Leu Asp Leu Ser Trp Thr Glu Ser Cys 1280 1285 1290
- Lys Pro Thr Ala Thr Glu Pro Leu Phe Lys Lys Val Ser Pro Trp 1295 1300 1305
- Glu Thr Ser Thr Ser Ser Phe Phe Pro Ile Leu Ala Pro Ala Val 1310 1315 1320
- Gly Ser Tyr Leu Thr Pro Thr Thr Arg Ala His Ser Pro Ala Ser 1325 1330 1335
- Leu Ser Phe Ala Ser Tyr Arg Gln Val Ala Ser Phe Gly Ser Ala 1340 1345 1350
- Ala Pro Pro Arg Gln Phe Asp Ala Ser Gln Phe Ser Gln Gly Pro

1355 1360 1365

Val Pro Gly Thr Cys Ala Asp Trp Ile Pro Gln Ser Ala Ser Cys 1370 1375 1380

- Pro Thr Gly Pro Pro Gln Asn Pro Pro Ser Ala Pro Tyr Cys Gly 1385 1390 1395
- Ile Val Phe Ser Gly Ser Ser Leu Ser Ser Ala Gln Ser Ala Pro 1400 1405 1410
- Leu Gln His Pro Gly Gly Phe Thr Thr Arg Pro Ser Ala Gly Thr 1415 1420 1425
- Phe Pro Glu Leu Asp Ser Pro Gln Leu His Phe Ser Leu Pro Thr 1430 1435 1440
- Asp Pro Asp Pro Ile Arg Gly Phe Gly Ser Tyr His Pro Ser Ala 1445 1450 1455
- Tyr Ser Pro Phe His Phe Gln Pro Ser Ala Ala Ser Leu Thr Ala 1460 1465 1470
- Asn Leu Arg Leu Pro Met Ala Ser Ala Leu Pro Glu Ala Leu Cys 1475 1480 1485
- Ser Gln Ser Arg Thr Thr Pro Val Asp Leu Cys Leu Leu Glu Glu 1490 1495 1500
- Ser Val Gly Ser Leu Glu Gly Ser Arg Cys Pro Val Phe Ala Phe 1505 1510 1515
- Gln Ser Ser Asp Thr Glu Ser Asp Glu Leu Ser Glu Val Leu Gln 1520 1525 1530
- Asp Ser Cys Phe Leu Gln Ile Lys Cys Asp Thr Lys Asp Asp Ser 1535 1540 1545
- Ile Pro Cys Phe Leu Glu Leu Lys Glu Glu Asp Glu Ile Val Cys 1550 1560
- Thr Gln His Trp Gln Asp Ala Val Pro Trp Thr Glu Leu Leu Ser 1565 1570 1575

Leu	Gln 1580	Thr	Glu	Asp	Gly	Phe 1585		Lys	Leu	Thr	Pro 1590		Leu	Gly	
Leu	Ile 1595	Leu	Asn	Leu	Asn	Thr 1600	Asn	Gly	Leu	His	Ser 1605	Phe	Leu	Lys	
Gln	Lys 1610	Gly	Ile	Gln	Ser	Leu 1615	Gly	Val	Lys	Gly	Arg 1620	Glu	Сув	Leu	
Leu	Asp 1625		Ile	Ala	Thr	Met 1630		Val	Leu	Gln	Phe 1635		Arg	Thr	
Arg	Leu 1640		Lys	Glu	Gly	Ile 1645		Phe	ГХв	Ser	Leu 1650		Lys	Met	
Asp	Asp 1655		Ser	Ile	Ser	Arg 1660		Ile	Pro	Trp	Ala 1665		Glu	Ala	
Ile	Lys 1670		Ala	Ser	Glu	Trp 1675		Arg	Arg	Thr	Glu 1680		Gln	Tyr	
Pro	Ser 1685		Сув	Pro	Arg	Leu 1690		Leu	Gly	Asn	Asp 1695		Asp	Ser	
Ala	Thr 1700	-	Gln	Leu	Leu	Gly 1705		Gln	Pro	Ile	Ser 1710		Val	Ser	
Pro	Leu 1715		Arg	Val	Leu	His 1720	_	Ser	Gln	Gly					
	1> 5	175 NA	sapi	ens											
<40 atg			aatc	tttg	c aa	attgt	atc	ttct	gttt	ga a	agtga	agta	ctt	acctcag	60
														cttttcg	120
tta	aatcc	tc a	gtgc	acac	a ta	taato	tta	gata	atgo	tg a	tgttc	tgag	tca	gtaccaa	180
ctg	aatto	ta t	.ccaa	aaga	a cc	acgtt	cat	attg	caaa	.cc c	agatt	ttat	atg	gaaatct	240
atc	agaga	aa a	gaga	ctct	t gg	atgta	aag	aatt	atga	tc c	ttata	agco	cct	ggacatc	300
aca	ccaco	tc c	tgat	caga	a gg	cgago	agt	tctg	gaagt	ga a	aacaç	gaagg	tct	atgcccg	36

gacagtgcca	cagaggagga	agacactgtg	gaactcactg	agtttggtat	gcagaatgtt	420
	atcttcctca					480
ggaatggagg	gaggccagga	agctgtggtg	gtggagcttc	agtgttcgcg	ggactccagg	540
	tcctgatatc					600
-	taaagaaaac					660
_						
gaactgaaga	aacaaggatt	tctactaaga	gaacatttca	cacctgaage	aacccaatta	720
gcatctgaac	aattgcaagc	attgcttttg	gaggaagtca	tgaattcaag	cactctgagc	780
caagaggtga	gcgatttagt	agagatgatt	tgggcagagg	ccctgggcca	cctggaacac	840
atgettetca	agccagtgaa	caggattagc	ctcaacgatg	tgagcaaggc	agaggggatt	900
ctccttctag	taaaggcagc	actgaaaaat	ggagaaacag	cagagcaatt	gcaaaagatg	960
atgacagagt	tttacagact	gatacctcac	aaaggcacaa	tgcccaaaga	agtgaacctg	1020
ggactattgg	ctaagaaagc	agacctctgc	cagctaataa	gagacatggt	taatgtctgt	1080
gaaactaatt	tgtccaaacc	caacccacca	tccctggcca	aataccgagc	tttgaggtgc	1140
aaaattgagc	atgttgaaca	gaatactgaa	gaatttctca	gggttagaaa	agaggttttg	1200
cagaatcatc	acagtaagag	cccagtggat	gtcttgcaga	tatttagagt	tggcagagtg	1260
aatgaaacca	cagagttttt	gagcaaactt	ggtaatgtga	ggcccttgtt	gcatggttct	1320
cctgtacaaa	acatcgtggg	aatcttgtgt	cgagggttgc	ttttacccaa	agtagtggaa	1380
gatcgtggtg	tgcaaagaac	agacgtcgga	aaccttggaa	gtgggattta	tttcagtgat	1440
tcgctcagta	caagtatcaa	gtactcacac	ccgggagaga	cagatggcac	cagactcctg	1500
ctcatttgtg	acgtagccct	cggaaagtgt	atggacttac	atgagaagga	ctttccctta	1560
actgaagcac	caccaggeta	cgacagtgtg	catggagttt	cacaaacagc	ctctgtcacc	1620
acagactttg	aggatgatga	atttgttgtc	tataaaacca	atcaggttaa	aatgaaatat	1680
attattaaat	tttccatgcc	tggagatcag	ataaaggact	ttcatcctag	tgatcatact	1740
gaattagagg	aatacagacc	tgagttttca	aatttttcaa	aggttgaaga	ttaccagtta	1800
ccagatgcca	aaacttccag	cagcaccaag	gccggcctcc	aggatgcctc	tgggaacttg	1860
gttcctctgg	aggatgtcca	catcaaaggg	agaatcatag	acactgtagc	ccaggtcatt	1920
gtttttcaga	catacacaaa	taaaagtcac	gtgcccattg	aggcaaaata	tatctttcct	1980
ttggatgaca	aggccgctgt	gtgtggcttc	gaagccttca	tcaatgggaa	gcacatagtt	2040
ggagagatta	aagagaagga	agaagcccag	caagagtacc	tagaagccgt	gacccagggc	2100

2160 catggcgctt acctgatgag tcaggatgct ccggacgttt ttactgtaag tgttggaaac 2220 ttacccccta aggctaaggt tcttataaaa attacctaca tcacagaact cagcatcctg ggcactgttg gtgtcttttt catgcccgcc accgtagcac cctggcaaca ggacaaggct 2280 ttgaatgaaa accttcagga tacagtagag aagatttgta taaaagaaat aggaacaaag 2340 caaagcttct ctttgactat gtctattgag atgccgtatg tgattgaatt cattttcagt 2400 gatacacatg aactgaaaca aaagcgcaca gactgcaaag ctgtcattag caccatggaa 2460 ggcagctcct tagacagcag tggattttct ctccacatcg gtttgtctgc tgcctatctc 2520 ccaagaatgt gggttgaaaa acatccagaa aaagaaagcg aggcttgcat gcttgtcttt 2580 caacccgatc tcgatgtcga cctccctgac ctagccagtg agagcgaagt gattatttgt 2640 cttgactgct ccagttccat ggagggtgtg acattcttgc aagccaagca aatcaccttg 2700 catgcgctgt ccttggtggg tgagaagcag aaagtaaata ttatccagtt cggcacaggt 2760 2820 tacaaggagc tattttcgta tcctaagcat atcacaagca ataccacggc agcagagttc 2880 atcatgtctg ccacacctac catggggaac acagacttct ggaaaacact ccgatatctt agettattgt accetgeteg agggteaegg aacateetee tggtgtetga tgggeaeete 2940 3000 caggatgaga gcctgacatt acagctcgtg aagaggagcc gcccgcacac caggttattc 3060 gcctgcggta tcggttctac agcaaatcgt cacgtcttaa ggattttgtc ccagtgtggt 3120 gccggagtat ttgaatattt taatgcaaaa tccaagcata gttggagaaa acagatagaa gaccaaatga ccaggctatg ttctccgagt tgccactctg tctccgtcaa atggcagcaa 3180 3240 ctcaatccag atgcgcccga ggccctgcag gccccagccc aggtgccatc cttgtttcgc 3300 aatgatcgac teettgteta tggatteatt eetcactgea cacaagcaac tetgtgtgea ctaattcaag agaaagaatt ttgtacaatg gtgtcgacta ctgagcttca gaagacaact 3360 ggaactatga tccacaagct ggcagcccga gctctaatca gagattatga agatggcatt 3420 cttcacgaaa atgaaaccag tcatgagatg aaaaaacaaa ccttgaaatc tctgattatt 3480 aaactcagta aagaaaactc tctcataaca caatttacaa gctttgtggc agttgagaaa 3540 agggatgaga atgagtcgcc ttttcctgat attccaaaag tttctgaact tattgccaaa 3600 3660 gaagatgtag acttcctgcc ctacatgagc tggcaggggg agccccaaga agccgtcagg aaccagtete ttttageate etetgagtgg ecagaattae gtttateeaa acgaaaacat 3720 aggaaaattc cattttccaa aagaaaaatg gaattatctc agccagaagt ttctgaagat 3780 tttgaagagg atggcttagg tgtactacca gctttcacat caaatttgga acgtggaggt 3840

PCT/US2004/007434 WO 2004/081533

gtggaaaagc	tattggattt	aagttggaca	gagtcatgta	aaccaacagc	aactgaacca	3900
ctatttaaga	aagtcagtcc	atgggaaaca	tctacttcta	gctttttcc	tattttggct	3960
ccggccgttg	gttcctatct	taccccgact	acccgcgctc	acagtcctgc	ttccttgtct	4020
tttgcctcat	atcgtcaggt	agctagtttc	ggttcagctg	ctcctcccag	acagtttgat	4080
gcatctcaat	tcagccaagg	ccctgtgcct	ggcacttgtg	ctgactggat	cccacagtcg	4140
gegtettgte	ccacaggacc	tccccagaac	ccaccttctg	caccctattg	tggcattgtt	4200
ttttcaggga	gctcattaag	ctctgcacag	tctgctccac	tgcaacatcc	tggaggcttt	4260
actaccaggo	cttctgctgg	caccttccct	gagctggatt	ctccccagct	tcatttctct	4320
cttcctacag	accctgatcc	catcagaggt	tttgggtctt	atcatccctc	tgcttactct	4380
ccttttcatt	ttcaaccttc	cgcagcctct	ttgactgcca	accttaggct	gccaatggcc	4440
tctgctttac	ctgaggctct	ttgcagtcag	tcccggacta	ccccagtaga	tetetgtett	4500
ctagaagaat	cagtaggcag	tctcgaagga	agtcgatgtc	ctgtctttgc	ttttcaaagt	4560
tctgacacag	aaagtgatga	gctatcagaa	gtacttcaag	acagctgctt	tttacaaata	4620
aagtgtgata	caaaagatga	cagtateceg	tgctttctgg	aattaaaaga	agaggatgaa	4680
atagtgtgca	cacaacactg	gcaggatgct	gtgccttgga	cagaactcct	cagtctacag	4740
acagaggatg	gcttctggaa	acttacacca	gaactgggac	ttatattaaa	tcttaataca	4800
aatggtttgc	acagctttct	taaacaaaaa	ggcattcaat	ctctaggtgt	aaaaggaaga	4860
gaatgtctcc	tggacctaat	tgccacaatg	ctggtactac	agtttattcg	caccaggttg	4920
gaaaaagagg	gaatagtgtt	caaatcactg	atgaaaatgg	atgacccttc	tatttccagg	4980
aatattccct	gggcttttga	ggcaataaag	caagcaagtg	aatgggtaag	aagaactgaa	5040
ggacagtacc	catctatctg	cccacggctt	gaactgggga	acgactggga	ctctgccacc	5100
aagcagttgc	tgggactcca	gcccataagc	actgtgtccc	ctcttcatag	agtcctccat	5160
tacagtcaag	gctaa					5175

Met Glu Lys Leu His Gly His Val Ser Ala His Pro Asp Ile Leu Ser 1 5 10

<210> 5
<211> 2627
<212> PRT
<213> Homo sapiens

<400> 5

Leu Glu Asn Arg Cys Leu Ala Met Leu Pro Asp Leu Gln Pro Leu Glu 20 25 30

U 11.000

Lys Leu His Gln His Val Ser Thr His Ser Asp Ile Leu Ser Leu Lys 35 40 45

Asn Gln Cys Leu Ala Thr Leu Pro Asp Leu Lys Thr Met Glu Lys Pro 50 55 60

His Gly Tyr Val Ser Ala His Pro Asp Ile Leu Ser Leu Glu Asn Gln 65 70 75 80

Cys Leu Ala Thr Leu Ser Asp Leu Lys Thr Met Glu Lys Pro His Gly 85 90 95

His Val Ser Ala His Pro Asp Ile Leu Ser Leu Glu Asn Arg Cys Leu 100 105 110

Ala Thr Leu Pro Ser Leu Lys Ser Thr Val Ser Ala Ser Pro Leu Phe 115 120 125

Gln Ser Leu Gln Ile Ser His Met Thr Gln Ala Asp Leu Tyr Arg Val 130 135 140

Asn Asn Ser Asn Cys Leu Leu Ser Glu Pro Pro Ser Trp Arg Ala Gln 145 150 155 160

His Phe Ser Lys Gly Leu Asp Leu Ser Thr Cys Pro Ile Ala Leu Lys 165 170 175

Ser Ile Ser Ala Thr Glu Thr Ala Gln Glu Ala Thr Leu Gly Arg Trp 180 185 190

Phe Asp Ser Glu Glu Lys Lys Gly Ala Glu Thr Gln Met Pro Ser Tyr 195 200 205

Ser Leu Ser Leu Gly Glu Glu Glu Val Glu Asp Leu Ala Val Lys 210 215 220

Leu Thr Ser Gly Asp Ser Glu Ser His Pro Glu Pro Thr Asp His Val 225 230 235 240

Leu Gln Glu Lys Lys Met Ala Leu Leu Ser Leu Leu Cys Ser Thr Leu 245 250 255

Val Ser Glu Val Asn Met Asn Asn Thr Ser Asp Pro Thr Leu Ala Ala Ile Phe Glu Ile Cys Arg Glu Leu Ala Leu Leu Glu Pro Glu Phe Ile Leu Lys Ala Ser Leu Tyr Ala Arg Gln Gln Leu Asn Val Arg Asn Val Ala Asn Asn Ile Leu Ala Ile Ala Ala Phe Leu Pro Ala Cys Arg Pro His Leu Arg Arg Tyr Phe Cys Ala Ile Val Gln Leu Pro Ser Asp Trp Ile Gln Val Ala Glu Leu Tyr Gln Ser Leu Ala Glu Gly Asp Lys Asn Lys Leu Val Pro Leu Pro Ala Cys Leu Arg Thr Ala Met Thr Asp Lys Phe Ala Gln Phe Asp Glu Tyr Gln Leu Ala Lys Tyr Asn Pro Arg Lys His Arg Ala Lys Arg His Pro Arg Arg Pro Pro Arg Ser Pro Gly Met Glu Pro Pro Phe Ser His Arg Cys Phe Pro Arg Tyr Ile Gly Phe Leu Arg Glu Glu Gln Arg Lys Phe Glu Lys Ala Gly Asp Thr Val Ser Glu Lys Lys Asn Pro Pro Arg Phe Thr Leu Lys Lys Leu Val Gln Arg Leu His Ile His Lys Pro Ala Gln His Val Gln Ala Leu Leu Gly Tyr Arg

Trp Asp Ser Ser Arg Ala Gly Lys Arg Met Lys Leu Ser Arg Pro Glu

Tyr Pro Ser Asn Leu Gln Leu Phe Ser Arg Ser Arg Leu Pro Gly Pro

Han Hamile O & . Index

485 490 495

Thr Trp Glu Arg Glu Leu Ser Leu Arg Gly Asn Lys Ala Ser Val Trp 500 505 510

Glu Glu Leu Ile Glu Asn Gly Lys Leu Pro Phe Met Ala Met Leu Arg 515 520 525

Asn Leu Cys Asn Leu Leu Arg Val Gly Ile Ser Ser Arg His His Glu 530 535 540

Leu Ile Leu Gln Arg Leu Gln His Gly Lys Ser Val Ile His Ser Arg 545 550 555 560

Gln Phe Pro Phe Arg Phe Leu Asn Ala His Asp Ala Ile Asp Ala Leu 565 570 575

Glu Ala Gln Leu Arg Asn Gln Ala Leu Pro Phe Pro Ser Asn Ile Thr 580 585 590

Leu Met Arg Arg Ile Leu Thr Arg Asn Glu Lys Asn Arg Pro Arg Arg 595 600 605

Arg Phe Leu Cys His Leu Ser Arg Gln Gln Leu Arg Met Ala Met Arg 610 615 620

Ile Pro Val Leu Tyr Glu Gln Leu Lys Arg Glu Lys Leu Arg Val His 625 630 635 640

Lys Ala Arg Gln Trp Lys Tyr Asp Gly Glu Met Leu Asn Arg Tyr Arg 645 650 655

Gln Ala Leu Glu Thr Ala Val Asn Leu Ser Val Lys His Ser Leu Pro 660 665 670

Leu Leu Pro Gly Arg Thr Val Leu Val Tyr Leu Thr Asp Ala Asn Ala 675 680 685

Asp Arg Leu Cys Pro Lys Ser Asn Pro Gln Gly Pro Pro Leu Asn Tyr 690 695 700

Ala Leu Leu Leu Ile Gly Met Met Ile Thr Arg Ala Glu Gln Val Asp 705 710 715 720 Val Val Leu Cys Gly Gly Asp Thr Leu Lys Thr Ala Val Leu Lys Ala 725 730 735

.

- Glu Glu Gly Ile Leu Lys Thr Ala Ile Lys Leu Gln Ala Gln Val Gln
 740 745 750
- Glu Phe Asp Glu Asn Asp Gly Trp Ser Leu Asn Thr Phe Gly Lys Tyr
 755 760 765
- Leu Leu Ser Leu Ala Gly Gln Arg Val Pro Val Asp Arg Val Ile Leu 770 775 780
- Leu Gly Gln Ser Met Asp Asp Gly Met Ile Asn Val Ala Lys Gln Leu 785 790 795 800
- Tyr Trp Gln Arg Val Asn Ser Lys Cys Leu Phe Val Gly Ile Leu Leu 805 810 815
- Arg Arg Val Gln Tyr Leu Ser Thr Asp Leu Asn Pro Asn Asp Val Thr 820 825 830
- Leu Ser Gly Cys Thr Asp Ala Ile Leu Lys Phe Ile Ala Glu His Gly 835 840 845
- Ala Ser His Leu Leu Glu His Val Gly Gln Met Asp Lys Ile Phe Lys 850 855 860
- Ile Pro Pro Pro Pro Gly Lys Thr Gly Val Gln Ser Leu Arg Pro Leu 865 870 875 880
- Glu Glu Asp Thr Pro Ser Pro Leu Ala Pro Val Ser Gln Gln Gly Trp 885 890 895
- Arg Ser Ile Arg Leu Phe Ile Ser Ser Thr Phe Arg Asp Met His Gly 900 905 910
- Glu Arg Asp Leu Leu Leu Arg Ser Val Leu Pro Ala Leu Gln Ala Arg 915 920 925
- Ala Ala Pro His Arg Ile Ser Leu His Gly Ile Asp Leu Arg Trp Gly 930 935 940
- Val Thr Glu Glu Glu Thr Arg Arg Asn Arg Gln Leu Glu Val Cys Leu 945 950 955 960

Gly Glu Val Glu Asn Ala Gln Leu Phe Val Gly Ile Leu Gly Ser Arg
965 970 975

- Tyr Gly Tyr Ile Pro Pro Ser Tyr Asn Leu Pro Asp His Pro His Phe 980 985 990
- His Trp Ala Gln Gln Tyr Pro Ser Gly Arg Ser Val Thr Glu Met Glu 995 1000 1005
- Val Met Gln Phe Leu Asn Arg Asn Gln Arg Leu Gln Pro Ser Ala 1010 1015 1020
- Gln Ala Leu Ile Tyr Phe Arg Asp Ser Ser Phe Leu Ser Ser Val 1025 1030 1035
- Pro Asp Ala Trp Lys Ser Asp Phe Val Ser Glu Ser Glu Glu Ala 1040 1045 1050
- Ala Cys Arg Ile Ser Glu Leu Lys Ser Tyr Leu Ser Arg Gln Lys 1055 1060 1065
- Gly Ile Thr Cys Arg Arg Tyr Pro Cys Glu Trp Gly Gly Val Ala 1070 1075 1080
- Ala Gly Arg Pro Tyr Val Gly Gly Leu Glu Glu Phe Gly Gln Leu 1085 1090 1095
- Val Leu Gln Asp Val Trp Asn Met Ile Gln Lys Leu Tyr Leu Gln 1100 1105 1110
- Pro Gly Ala Leu Leu Glu Gln Pro Val Ser Ile Pro Asp Asp Asp 1115 1120 1125
- Leu Val Gln Ala Thr Phe Gln Gln Leu Gln Lys Pro Pro Ser Pro 1130 1135 1140
- Ala Arg Pro Arg Leu Leu Gln Asp Thr Val Gln Gln Leu Met Leu 1145 1150 1155
- Pro His Gly Arg Leu Ser Leu Val Thr Gly Gln Ser Gly Gln Gly 1160 1165 1170
- Lys Thr Ala Phe Leu Ala Ser Leu Val Ser Ala Leu Gln Ala Pro

1175 1180 1185

Asp	Gly	Ala	Lys	Val	Ala	Pro	Leu	Va1	Phe	Phe	His	Phe	Ser	Gly
	1190					1195					1200			

- Ala Arg Pro Asp Gln Gly Leu Ala Leu Thr Leu Leu Arg Arg Leu 1205 1210 1215
- Cys Thr Tyr Leu Arg Gly Gln Leu Lys Glu Pro Gly Ala Leu Pro 1220 1225 1230
- Ser Thr Tyr Arg Ser Leu Val Trp Glu Leu Gln Gln Arg Leu Leu 1235 1240 1245
- Pro Lys Ser Ala Glu Ser Leu His Pro Gly Gln Thr Gln Val Leu 1250 1255 1260
- Ile Ile Asp Gly Ala Asp Arg Leu Val Asp Gln Asn Gly Gln Leu 1265 1270 1275
- Ile Ser Asp Trp Ile Pro Lys Leu Pro Arg Cys Val His Leu 1280 1285 1290
- Val Leu Ser Val Ser Ser Asp Ala Gly Leu Gly Glu Thr Leu Glu 1295 1300 1305
- Gln Ser Gln Gly Ala His Val Leu Ala Leu Gly Pro Leu Glu Ala 1310 1315 1320
- Ser Ala Arg Ala Arg Leu Val Arg Glu Glu Leu Ala Leu Tyr Gly 1325 1330 1335
- Lys Arg Leu Glu Glu Ser Pro Phe Asn Asn Gln Met Arg Leu Leu 1340 1345 1350
- Leu Val Lys Arg Glu Ser Gly Arg Pro Leu Tyr Leu Arg Leu Val 1355 1360 1365
- Thr Asp His Leu Arg Leu Phe Thr Leu Tyr Glu Gln Val Ser Glu 1370 1375 1380
- Arg Leu Arg Thr Leu Pro Ala Thr Val Pro Leu Leu Gln His 1385 1390 1395

D. Host is a

Ile Leu Ser Thr Leu Glu Lys Glu His Gly Pro Asp Val Leu Pro Gln Ala Leu Thr Ala Leu Glu Val Thr Arg Ser Gly Leu Thr Val Asp Gln Leu His Gly Val Leu Ser Val Trp Arg Thr Leu Pro Lys Gly Thr Lys Ser Trp Glu Glu Ala Val Ala Ala Gly Asn Ser Gly Asp Pro Tyr Pro Met Gly Pro Phe Ala Cys Leu Val Gln Ser Leu Arg Ser Leu Leu Gly Glu Gly Pro Leu Glu Arg Pro Gly Ala Arg Leu Cys Leu Pro Asp Gly Pro Leu Arg Thr Ala Ala Lys Arg Cys Tyr Gly Lys Arg Pro Gly Leu Glu Asp Thr Ala His Ile Leu Ile Ala Ala Gln Leu Trp Lys Thr Cys Asp Ala Asp Ala Ser Gly Thr Phe Arg Ser Cys Pro Pro Glu Ala Leu Gly Asp Leu Pro Tyr His Leu Leu Gln Ser Gly Asn Arg Gly Leu Leu Ser Lys Phe Leu Thr Asn Leu His Val Val Ala Ala His Leu Glu Leu Gly Leu Val Ser Arg Leu Leu Glu Ala His Ala Leu Tyr Ala Ser Ser Val Pro Lys Glu Glu Gln Lys Leu Pro Glu Ala Asp Val Ala Val Phe Arg Thr Phe Leu Arg Gln Gln Ala Ser Ile Leu Ser Gln Tyr Pro Arg Leu

Leu	Pro 1625	Gln	Gln	Ala	Ala	Asn 1630		Pro	Leu	Asp	Ser 1635		Leu	Сув
His	Gln 1640	Ala	Ser	Leu	Leu	Ser 1645		Arg	Trp		Leu 1650	Gln	His	Thr
Leu	Arg 1655	_	Leu	Asn	ГÀЗ	Pro 1660	_	Thr	Met	Lys	Asn 1665		Gln	Ser
Ser	Ser 1670	Leu	Ser	Leu	Ala	Val 1675	Ser	Ser	Ser	Pro	Thr 1680	Ala	Val	Ala
Phe	Ser 1685		Asn	Gly	Gln	Arg 1690		Ala	Val	Gly	Thr 1695	Ala	Asn	Gly
Thr	Val 1700	Tyr	Leu	Leu	Asp	Leu 1705	_	Thr	Trp	Gln	Glu 1710	Glu	Lys	Ser
Val	Val 1715		Gly	Cys	_	Gly 1720		Ser	Ala	Сув	Leu 1725		Leu	Ser
Asp	Asp 1730	Thr	Leu	Phe	Leu	Thr 1735	Ala	Phe	qaA	Gly	Leu 1740	Leu	Glu	Leu
Trp	Asp 1745		Gln	His	Gly	Сув 1750	-	Val	Leu	Gln	Thr 1755	_	Ala	His
Gln	Tyr 1760	Gln	Ile	Thr	Gly	Сув 1765	-	Leu	Ser	Pro	Asp 1770	Сув	Arg	Leu
Leu	Ala 1775	Thr	Val	Сув	Leu	Gly 1780	_	Сув	Leu	Lys	Leu 1785	_	Asp	Thr
Val	Arg 1790	Gly	Gln	Leu	Ala	Phe 1795		His	Thr	Tyr	Pro 1800	Lys	Ser	Leu
Asn	Cys 1805		Ala	Phe	His	Pro 1810		Gly	Gln	Val	Ile 1815		Thr	Gly
Ser	Trp 1820	Ala	Gly	Ser	Ile	Ser 1825	Phe	Phe	Gln	Val	Asp 1830	Gly	Leu	Lys
Val	Thr	Lys	Asp	Leu	Gly	Ala	Pro	Gly	Ala	Ser	Ile	Arg	Thr	Leu

1835 1840 1845

	1033					1840					1845			
Ala	Phe 1850	Asn	Val	Pro	Gly	Gly 1855	Val	Val	Ala	Val	Gly 1860	Arg	Leu	Asp
Ser	Met 1865	Val	Glu	Leu	Trp	Ala 1870	Trp	Arg	Glu	Gly	Ala 1875	Arg	Leu	Ala
Ala	Phe 1880	Pro	Ala	His	His	Gly 1885	Phe	Val	Ala	Ala	Ala 1890	Leu	Phe	Leu
His	Ala 1895	Gly	Сув	Gln	Leu	Leu 1900	Thr	Ala	Gly	Glu	Asp 1905	Gly	Lys	Val
Gln	Val 1910	Trp	Ser	Gly	Ser	Leu 1915	Gly	Arg	Pro	Arg	Gly 1920	His	Leu	Gly
Ser	Leu 1925	Ser	Leu	Ser	Pro	Ala 1930	Leu	Ser	Val	Ala	Leu 1935		Pro	Asp
Gly	Asp 1940	Arg	Val	Ala	Val	Gly 1945	Tyr	Arg	Ala	Asp	Gly 1950	Ile	Arg	Ile
Tyr	Lys 1955	Ile	Ser	Ser	Gly	Ser 1960	Gln	Gly	Ala	Gln	Gly 1965	Gln	Ala	Leu
Asp	Val 1970	Ala	Val	Ser	Ala	Leu 1975	Ala	Trp	Leu	Ser	Pro 1980	Lys	Val	Leu
	Ser 1985	Gly	Ala	Glu	Asp	Gly 1990	Ser	Leu	Gln	Gly	Trp 1995	Ala	Leu	Lys
Glu	Cys 2000	Ser	Leu	Gln	Ser	Leu 2005	Trp	Leu	Leu	Ser	Arg 2010	Phe	Gln	Lys
Pro	Val 2015	Leu	Gly	Leu	Ala	Thr 2020	Ser	Gln	Glu	Leu	Leu 2025	Ala	Ser	Ala
Ser	Glu 2030	Asp	Phe	Thr	Val	Gln 2035	Leu	Trp	Pro	Arg	Gln 2040	Leu	Leu	Thr
Arg	Pro		Lys	Ala	Glu	Asp		Pro	Cys	Gly	Thr		Leu	Arg

2055

2050

2045

Gly His Glu Gly Pro Val Ser Cys Cys Ser Phe Ser Thr Asp Gly Gly Ser Leu Ala Thr Gly Gly Arg Asp Arg Ser Leu Leu Cys Trp Asp Val Arg Thr Pro Lys Thr Pro Val Leu Ile His Ser Phe Pro Ala Cys His Arg Asp Trp Val Thr Gly Cys Ala Trp Thr Lys Asp Asn Leu Leu Ile Ser Cys Ser Ser Asp Gly Ser Val Gly Leu Trp Asp Pro Glu Ser Gly Gln Arg Leu Gly Gln Phe Leu Gly His Gln Ser Ala Val Ser Ala Val Ala Val Glu Glu His Val Val Ser Val Ser Arg Asp Gly Thr Leu Lys Val Trp Asp His Gln Gly Val Glu Leu Thr Ser Ile Pro Ala His Ser Gly Pro Ile Ser His Cys Ala Ala Ala Met Glu Pro Arg Ala Ala Gly Gln Pro Gly Ser Glu Leu Leu Val Val Thr Val Gly Leu Asp Gly Ala Thr Arg Leu Trp His Pro Leu Leu Val Cys Gln Thr His Thr Leu Leu Gly His Ser Gly Pro Val Arg Ala Ala Ala Val Ser Glu Thr Ser Gly Leu Met Leu Thr Ala Ser Glu Asp Gly Ser Val Arg Leu Trp Gln Val Pro

Lys Glu Ala Asp Asp Thr Cys Ile Pro Arg Ser Ser Ala Ala Val

Thr	Ala 2285	Val	Ala	Trp	Ala	Pro 2290	_	Gly	Ser		Ala 2295	Val	Ser	Gly
Asn	Gln 2300	Ala	Gly	Glu	Leu	Ile 2305	Leu	Trp	Gln	Glu	Ala 2310	Lys	Ala	Val
Ala	Thr 2315	Ala	Gln	Ala	Pro	Gly 2320	His	Ile	Gly	Ala	Leu 2325	Ile	Trp	Ser
Ser	Ala 2330	His	Thr	Phe	Phe	Val 2335	Leu	Ser	Ala	Asp	Glu 2340	Гуз	Ile	Ser
Glu	Trp 2345	Gln	Val	Lys	Leu	Arg 2350	Lys	Gly	Ser	Ala	Pro 2355	Gly	Asn	Leu
Ser	Leu 2360		Leu	Asn	Arg	Ile 2365	Leu	Gln	Glu	qaA	Leu 2370	Gly	Val	Leu
Thr	Ser 2375	Leu	Asp	Trp	Ala	Pro 2380	Asp	Gly	His	Phe	Leu 2385	Ile	Leu	Ala
Lys	Ala 2390	_	Leu	ГÀЗ	Leu	Leu 2395	_	Met	Lув	Pro	Gly 2400	Asp	Ala	Pro
Ser	Glu 2405		Trp	Ser	Ser	Tyr 2410		Glu	Asn	Pro	Met 2415	Ile	Leu	Ser
Thr	His 2420	Lys	Glu	Tyr	Gly	Ile 2425	Phe	Val	Leu	Gln	Pro 2430	_	Asp	Pro
Gly	Val 2435		Ser	Phe	Leu	Arg 2440		Lys	Glu	Ser	Gly 2445		Phe	Glu
Glu	Arg 2450	Leu	Asn	Phe	Asp	Ile 2455	Asn	Leu	Glu	Asn	Pro 2460		Arg	Thr
Leu	Ile 2465		Ile	Thr	Gln	Ala 2470	Lys	Pro	Glu	Ser	Glu 2475		Ser	Phe
Leu	Cys 2480		Ser	Ser	Asp	Gly 2485		Leu	Trp	Asn	Leu 2490		Lys	Cys
Ser	Pro	Glu	Gly	Glu	Trp	Thr	Thr	Gly	Asn	Met	Trp	Gln	Ьуs	Lys

	2495					2500					2505				
Ala	Asn 2510		Pro	Glu	Thr	Gln 2515	Thr	Pro	Gly	Thr	Asp 2520	Pro	Ser	Thr	
Cys	Arg 2525		Ser	Asp	Ala	Ser 2530	Met	Asp	Ser	Asp	Ala 2535	Ser	Met	Asp	٠
Ser	Glu 2540		Thr	Pro	His	Leu 2545		Thr	Arg	Gln	Arg 2550	Arg	Lys	Ile	
His	Ser 2555	_	Ser	Val	Thr	Ala 2560		His	Val	Leu	Pro 2565	Glu	Leu	Leu	
Va]	Thr 2570		Ser	ГÀв	Asp	Arg 2575		Val	Lys	Leu	Trp 2580		Arg	Pro	
Sei	Met 2585		Leu	Leu	Gly	Leu 2590		Arg	Cys	Glu	Gly 2595		Val	Ser	
Суя	Leu 2600		Pro	Trp	Leu	Gly 2605		Asn	Ser	Thr	Leu 2610		Leu	Ala	
Va:	l Gly 2615		Val	Gln	Gly	Asn 2620		Tyr	Phe	Leu	Asn 2625		Glu		
<2: <2:	10> 6 11> 7 12> E 13> H	884 NA	sapi	ens											
	00> 6 ggaaaa		ccat	gggc	a tg	tgtct	gcc	cato	caga	.ca t	cctct	cctt	gga	gaaccgg	60
tg	cctggc	ta t	gctc	cctg	a ct	tacag	ccc	ttgg	agaa	ac t	acato	agca	tgt	atctacc	120
ca	ctcaga	ata t	cctc	tcct	t ga	agaac	cag	tgcc	tago	ca c	gcttc	ctga	. cct	gaagacc	180
at	ggaaaa	ac c	cacat	ggat	a tg	tgtct	gcc	cacc	caga	ca t	cctct	cctt	gga	gaaccag	240
tg	cctggo	cca c	cactt	tctg	a co	tgaag	gacc	atgg	gagaa	ac c	acato	gaca	tgt	ttctgcc	300
ca	cccaga	aca t	cctc	tect	t gg	agaac	cgg	tgcc	tggc	ca c	ectco	ctag	tct	aaagagc	360
ac	tgtgto	ctg o	ccago	ccct	t gt	tccag	gagt	ctac	agat	at c	ctcaca	tgac	gca	agctgat	420
tt	gtacco	gtg t	gaac	aaca	ıg ca	attgo	ctg	ctct	ctga	igc c	ctccaa	gttg	gag	ggctcag	480

catttctcta agggactaga cctttcaacc tgccctatag ccctgaaatc catctctgcc 540

acagagacag	ctcaggaagc	aactttgggt	cgttggtttg	attcagaaga	gaagaaaggg	600
gcagagaccc	aaatgccttc	ttatagtctg	agcttgggag	aggaggagga	ggtggaggat	660
ctggccgtga	agctcacctc	tggagactct	gaatctcatc	cagagcctac	tgaccatgtc	720
cttcaggaaa	agaagatggc	tctactgagc	ttgctgtgct	ctactctggt	ctcagaagta	780
aacatgaaca	atacatctga	ccccaccctg	gctgccattt	ttgaaatctg	tcgtgaactt	840
geceteetgg	agcctgagtt	tatcctcaag	gcatctttgt	atgccaggca	gcagctgaac	900
gtccggaatg	tggccaataa	catcttggcc	attgctgctt	tcttgccggc	gtgtcgcccc	960
cacctgcgac	gatatttctg	tgccattgtc	cagctgcctt	ctgactggat	ccaggtggct	1020
gagctttacc	agagcctggc	tgagggagat	aagaataagc	tggtgcccct	gcccgcctgt	1080
ctccgtactg	ccatgacgga	caaatttgcc	cagtttgacg	agtaccagct	ggctaagtac	1140
aaccctcgga	agcaccgggc	caagagacac	ccccgccggc	caccccgctc	tccagggatg	1200
gagcctccat	tttctcacag	atgttttcca	aggtacatag	ggtttctcag	agaagagcag	1260
agaaagtttg	agaaggccgg	tgatacagtg	tcagagaaaa	agaatcctcc	aaggttcacc	1320
ctgaagaagc	tggttcagcg	actgcacatc	cacaagcctg	cccagcacgt	tcaagccctg	1380
ctgggttaca	gatacccctc	caacctacag	ctcttttctc	gaagtcgcct	tectgggeet	1440
tgggattcta	gcagagctgg	gaagaggatg	aagctgtcta	ggccagagac	ctgggagcgg	1500
gagctgagcc	tacgggggaa	caaagcgtcg	gtctgggagg	aactcattga	aaatgggaag	1560
cttcccttca	tggccatgct	tcggaacctg	tgcaacctgc	tgcgggttgg	aatcagttcc	1620
cgccaccatg	agctcattct	ccagagactc	cagcatggga	agtcggtgat	ccacagtcgg	1680
cagtttccat	tcagatttct	taacgcccat	gatgccattg	atgccctcga	ggctcaactc	1740
agaaatcaag	cattgccctt	tccttcgaat	ataacactga	tgaggcggat	actaactaga	1800
aatgaaaaga	accgtcccag	geggaggttt	ctttgccacc	taagccgtca	gcagcttcgt	1860
atggcaatga	ggatacctgt	gttgtatgag	cagctcaaga	gggagaagct	gagagtacac	1920
aaggccagac	agtggaaata	tgatggtgag	atgctgaaca	ggtaccgaca	ggccctagag	1980
acagctgtga	acctctctgt	gaagcacagc	ctgcccctgc	tgccaggccg	cactgtcttg	2040
gtctatctga	cagatgctaa	tgcagacagg	ctctgtccaa	agagcaaccc	acaagggccc	2100
ccgctgaact	atgcactgct	gttgattggg	atgatgatca	cgagggcgga	gcaggtggac	2160
gtcgtgctgt	gtggaggtga	cactctgaag	actgcagtgc	ttaaggcaga	agaaggcatc	2220
ctgaagactg	ccatcaagct	ccaggctcaa	gtccaggagt	ttgatgaaaa	tgatggatgg	2280

tocotgaata ottttgggaa atacotgotg tototggotg gooaaagggt tootgtggao	2340
agggtcatcc tccttggcca aagcatggat gatggaatga taaatgtggc caaacagctt	2400
tactggcagc gtgtgaattc caagtgcctc tttgttggta tcctcctaag aagggtacaa	2460
tacctgtcaa cagatttgaa tcccaatgat gtgacactct caggctgtac tgatgcgata	2520
ctgaagttca ttgcagagca tggggcctcc catcttctgg aacatgtggg ccaaatggac	2580
aaaatattca agattccacc acccccagga aagacagggg tccagtctct ccggccactg	2640
gaagaggaca ctccaagccc cttggctcct gtttcccagc aaggatggcg cagcatccgg	2700
cttttcattt catccacttt ccgagacatg cacggggagc gggacctgct gctgaggtct	2760
gtgctgccag cactgcaggc ccgagcggcc cctcaccgta tcagccttca cggaatcgac	2820
ctccgctggg gcgtcactga ggaggagacc cgtaggaaca gacaactgga agtgtgcctt	2880
ggggaggtgg agaacgcaca gctgtttgtg gggattctgg gctcccgtta tggatacatt	2940
cccccagct acaaccttcc tgaccatcca cacttccact gggcccagca gtacccttca	3000
gggcgctctg tgacagagat ggaggtgatg cagttcctga accggaacca acgtctgcag	3060
ccctctgccc aagctctcat ctacttccgg gattccagct tcctcagctc tgtgccagat	3120
gcctggaaat ctgactttgt ttctgagtct gaagaggccg catgtcggat ctcagaactg	3180
aagagctacc taagcagaca gaaagggata acctgeegea gataeeeetg tgagtggggg	3240
ggtgtggcag ctggccggcc ctatgttggc gggctggagg agtttgggca gttggttctg	3300
caggatgtat ggaatatgat ccagaagctc tacctgcagc ctggggccct gctggagcag	3360
ccagtgtcca tcccagacga tgacttggtc caggccacct tccagcagct gcagaagcca	3420
ccgagtcctg cccggccacg ccttcttcag gacacagtgc aacagctgat gctgcccac	3480
ggaaggctga gcctggtgac ggggcagtca ggacagggca agacagcctt cctggcatct	3540
cttgtgtcag ccctgcaggc tcctgatggg gccaaggtgg caccattagt cttcttccac	3600
ttttctgggg ctcgtcctga ccagggtctt gccctcactc tgctcagacg cctctgtacc	3660
tatctgcgtg gccaactaaa agagccaggt gccctcccca gcacctaccg aagcctggtg	3720
tgggagctgc agcagaggct gctgcccaag tctgctgagt ccctgcatcc tggccagacc	3780
caggtcctga tcatcgatgg ggctgatagg ttagtggacc agaatgggca gctgatttca	3840
gactggatcc caaagaagct tccccggtgt gtacacctgg tgctgagtgt gtctagtgat	3900
gcaggcctag gggagaccct tgagcagagc cagggtgccc acgtgctggc cttggggcct	3960
ctggaggcct ctgctcgggc ccggctggtg agagaggagc tggccctgta cgggaagcgg	4020

4080 ctggaggagt caccatttaa caaccagatg cgactgctgc tggtgaagcg ggaatcaggc cggccgctct acctgcgctt ggtcaccgat cacctgaggc tcttcacgct gtatgagcag 4140 4200 gtgtctgaga gactccggac cctgcctgcc actgtccccc tgctgctgca gcacatcctg agcacactgg agaaggagca cgggcctgat gtccttcccc aggccttgac tgccctagaa 4260 gtcacacgga gtggtttgac tgtggaccag ctgcacggag tgctgagtgt gtggcggaca 4320 ctaccgaagg ggactaagag ctgggaagaa gcagtggctg ctggtaacag tggagacccc 4380 taccccatgg gcccgtttgc ctgcctcgtc cagagtctgc gcagtttgct aggggagggc 4440 cctctggagc gccctggtgc ccggctgtgc ctccctgatg ggcccctgag aacagcagct 4500 aaacgttgct atgggaagag gccagggcta gaggacacgg cacacatcct cattgcagct 4560 cagetetgga agacatgtga egetgatgee teaggeacet teegaagttg eeeteetgag 4620 gctctgggag acctgcctta ccacctgctc cagagcggga accgtggact tctttcgaag 4680 ttccttacca acctccatgt ggtggctgca cacttggaat tgggtctggt ctctcggctc 4740 ttggaggccc atgccctcta tgcttcttca gtccccaaag aggaacaaaa gctccccgag 4800 gctgacgttg cagtgtttcg caccttcctg aggcagcagg cttcaatcct cagccagtac 4860 ccccggctcc tgccccagca ggcagccaac cagcccctgg actcacctct ttgccaccaa 4920 gcctcgctgc tctcccggag atggcacctc caacacacac tacgatggct taataaaccc 4980 cggaccatga aaaatcagca aagctccagc ctgtctctgg cagtttcctc atcccctact 5040 gctgtggcct tctccaccaa tgggcaaaga gcagctgtgg gcactgccaa tgggacagtt 5100 tacctgttgg acctgagaac ttggcaggag gagaagtctg tggtgagtgg ctgtgatgga 5160 atctctgctt gtttgttcct ctccgatgat acactctttc ttactgcctt cgacgggctc 5220 ctggagctct gggacctgca gcatggttgt cgggtgctgc agactaaggc tcaccagtac 5280 caaatcactg gctgctgcct gagcccagac tgccggctgc tagccaccgt gtgcttggga 5340 ggatgcctaa agctgtggga cacagtccgt gggcagctgg ccttccagca cacctacccc 5400 aagtccctga actgtgttgc cttccaccca gaggggcagg taatagccac aggcagctgg 5460 gctggcagca tcagcttctt ccaggtggat gggctcaaag tcaccaagga cctgggggca 5520 cccggagcct ctatccgtac cttggccttc aatgtgcctg ggggggttgt ggctgtgggc 5580 cggctggaca gtatggtgga gctgtgggcc tggcgagaag gggcacggct ggctgccttc 5640 cctgcccacc atggctttgt tgctgctgcg cttttcctgc atgcgggttg ccagttactg 5700 acggctggag aggatggcaa ggttcaggtg tggtcagggt ctctgggtcg gccccgtggg 5760

cacctgggtt	ccctttctct	ctctcctgcc	ctctctgtgg	cactcagccc	agatggtgat	5820
cgggtggctg	ttggatatcg	agcggatggc	attaggatct	acaaaatctc	ttcaggttcc	5880
cagggggctc	agggtcaggc	actggatgtg	gcagtgtccg	ccctggcctg	gctaagcccc	5940
aaggtattgg	tgagtggtgc	agaagatggg	tccttgcagg	gctgggcact	caaggaatgc	6000
tcccttcagt	ccctctggct	cctgtccaga	ttccagaagc	ctgtgctagg	actggccact	6060
tcccaggagc	tettggette	tgcctcagag	gatttcacag	tgcagctgtg	gccaaggcag	6120
ctgctgacgc	ggccacacaa	ggcagaagac	tttccctgtg	gcactgagct	gcggggacat	6180
gagggccctg	tgagctgctg	tagtttcagc	actgatggag	gcagcctggc	caccgggggc	6240
cgggatcgga	gtctcctctg	ctgggacgtg	aggacaccca	aaacccctgt	tttgatccac	6300
teetteeetg	cctgtcaccg	tgactgggtc	actggctgtg	cctggaccaa	agataaccta	6360
ctgatatcct	gctccagtga	tggctctgtg	gggctctggg	acccagagtc	aggacagcgg	6420
cttggtcagt	tcctgggtca	tcagagtgct	gtgagcgctg	tggcagctgt	ggaggagcac	6480
gtggtgtctg	tgagccggga	tgggaccttg	aaagtgtggg	accatcaagg	cgtggagctg	6540
accagcatcc	ctgctcactc	aggacccatt	agccactgtg.	cagctgccat	ggagccccgt	6600
gcagctggac	agcctgggtc	agagcttctg	gtggtaaccg	tegggetaga	tggggccaca	6660
cggttatggc	atccactctt	ggtgtgccaa	acccacaccc	tcctgggaca	cageggeeca	6720
gtccgtgctg	ctgctgtttc	agaaacctca	ggcctcatgc	tgaccgcctc	tgaggatggt	6780
tetgtacgge	tctggcaggt	tcctaaggaa	gcagatgaca	catgtatacc	aaggagttct	6840
gcagccgtca	ctgctgtggc	ttgggcacca	gatggttcca	tggcagtato	tggaaatcaa	6900
gctggggaac	taatcttgtg	gcaggaagct	aaggctgtgg	ccacagcaca	ggctccaggc	6960
cacattggtg	ctctgatctg	gtcctcggca	cacacctttt	ttgtcctcag	tgctgatgag	7020
aaaatcagcg	agtggcaagt	gaaactgcgg	aagggttcgg	cacccggaaa	tttgagtctt	7080
cacctgaacc	gaattctaca	ggaggactta	ggggtgctga	caagtctgga	ttgggctcct	7140
gatggtcact	ttctcatctt	ggccaaagca	gatttgaagt	tactttgcat	gaagccaggg	7200
gatgctccat	ctgaaatctg	gagcagctat	: acagaaaatc	ctatgatatt	gtccacccac	7260
aaggagtatg	gcatatttgt	cctgcagcco	aaggatcctg	gagttcttt	tttcttgagg	7320
caaaaggaat	caggagagtt	tgaagagagg	g ctgaactttg	, atataaacti	agagaatcct	7380
agtaggaccc	taatatcgat	aactcaagco	aaacctgaat	ctgagtcct	atttttgtgt	7440
gccagctctg	atgggatcct	atggaacct	g gccaaatgca	gcccagaag	g agaatggacc	7500

acaggtaa	aca tgtggcagaa	aaaagcaaac	actccagaaa	cccaaactcc	agggacagac	7560
ccatctac	cct gcagggaatc	tgatgccagc	atggatagtg	atgccagcat	ggatagtgag	7620
ccaacac	cac atctaaagac	acggcagcgt	agaaagattc	actcgggctc	tgtcacagcc	7680
ctccatg	tgc tacctgagtt	gctggtgaca	gcttcgaagg	acagagatgt	taagctatgg	7740
gagagac	cca gtatgcagct	gctgggcctg	ttccgatgcg	aagggtcagt	gagctgcctg	7800
gaacctt	ggc tgggcgctaa	ctccaccctg	cagettgeeg	tgggagacgt	gcagggcaat	7860
gtgtact	ttc tgaattggga	atga				7884
<211><212><213>	7 98 RNA Homo sapiens					
	7 uuu agcucagcgg	uuacuucgac	aguucuuuaa	uugaaacaag	caaccugucu	60
ggguugu	ucg agacccgcgg	gcgcucucca	guccuuuu			98
<213>	8 88 RNA Homo sapiens					
<400> ggcuggc	8 cuuu agcucagcgg	g uuacuucgag	y uacauuguaa	ccaccucucu	gggugguucg	60
agacccgcgg gugcuuucca gcucuuuu						88
<210> <211> <212> <213>	9 88 RNA Homo sapiens					
<400>	9 cuuu agcucagcg	g uuacuucgc	g ugucaucaaa	a ccaccucuci	ı ggguuguucg	60
agacccgcgg gcgcucucca gcccucuu						88
<210> <211> <212> <213> <400>			Arg Ile Pr	o Pro Tyr H	is Tyr Ile	
Met Ar	5		10	· •	15	

His Val Leu Asp Gln Asn Ser Asn Val Ser Arg Val Glu Val Gly Pro 20 25 30

- Lys Thr Tyr Ile Arg Gln Asp Asn Glu Arg Val Leu Phe Ala Pro Val 35 40 45
- Arg Met Val Thr Val Pro Pro Arg His Tyr Cys Ile Val Ala Asn Pro 50 55 60
- Val Ser Arg Asp Thr Gln Ser Ser Val Leu Phe Asp Ile Thr Gly Gln 65 70 75 80
- Val Arg Leu Arg His Ala Asp Gln Glu Ile Arg Leu Ala Gln Asp Pro 85 90 95
- Phe Pro Leu Tyr Pro Gly Glu Val Leu Glu Lys Asp Ile Thr Pro Leu 100 105 110
- Gln Val Val Leu Pro Asn Thr Ala Leu His Leu Lys Ala Leu Leu Asp 115 120 125
- Phe Glu Asp Lys Asn Gly Asp Lys Val Met Ala Gly Asp Glu Trp Leu 130 135 140
- Phe Glu Gly Pro Gly Thr Tyr Ile Pro Gln Lys Glu Val Glu Val Val 145 150 155 160
- Glu Ile Ile Gln Ala Thr Val Ile Lys Gln Asn Gln Ala Leu Arg Leu 165 170 175
- Arg Ala Arg Lys Glu Cys Phe Asp Arg Glu Gly Lys Gly Arg Val Thr 180 185 190
- Gly Glu Glu Trp Leu Val Arg Ser Val Gly Ala Tyr Leu Pro Ala Val 195 200 205
- Phe Glu Glu Val Leu Asp Leu Val Asp Ala Val Ile Leu Thr Glu Lys 210 215 220
- Thr Ala Leu His Leu Arg Ala Leu Gln Asn Phe Arg Asp Leu Arg Gly 225 230 235 240
- Val Leu His Arg Thr Gly Glu Glu Trp Leu Val Thr Val Gln Asp Thr 245 250 255

Glu Ala His Val Pro Asp Val Tyr Glu Glu Val Leu Gly Val Val Pro 260 265 270

- Ile Thr Thr Leu Gly Pro Arg His Tyr Cys Val Ile Leu Asp Pro Met 275 280 285
- Gly Pro Asp Gly Lys Asn Gln Leu Gly Gln Lys Arg Val Val Lys Gly 290 295 300
- Glu Lys Ser Phe Phe Leu Gln Pro Gly Glu Arg Leu Glu Arg Gly Ile 305 310 315 320
- Gln Asp Val Tyr Val Leu Ser Glu Gln Gln Gly Leu Leu Lys Ala 325 330 335
- Leu Gln Pro Leu Glu Glu Gly Glu Ser Glu Glu Lys Val Ser His Gln 340 345 350
- Ala Gly Asp Cys Trp Leu Ile Arg Gly Pro Leu Glu Tyr Val Pro Ser 355 360 365
- Ala Lys Val Glu Val Val Glu Glu Arg Gln Ala Ile Pro Leu Asp Gln 370 375 380
- Asn Glu Gly Ile Tyr Val Gln Asp Val Lys Thr Gly Lys Val Arg Ala 385 390 395 400
- Val Ile Gly Ser Thr Tyr Met Leu Thr Gln Asp Glu Val Leu Trp Glu 405 410 415
- Lys Glu Leu Pro Ser Gly Val Glu Glu Leu Leu Asn Leu Gly His Asp 420 425 430
- Pro Leu Ala Asp Arg Gly Gln Lys Gly Thr Ala Lys Pro Leu Gln Pro 435 440 445
- Ser Ala Pro Arg Asn Lys Thr Arg Val Val Ser Tyr Arg Val Pro His 450 455 460
- Asn Ala Ala Val Gln Val Tyr Asp Tyr Arg Ala Lys Arg Ala Arg Val 465 470 475 480
- Val Phe Gly Pro Glu Leu Val Thr Leu Asp Pro Glu Glu Gln Phe Thr

485 490 495

Val Leu Ser Leu Ser Ala Gly Arg Pro Lys Arg Pro His Ala Arg Arg 500 505 510

Ala Leu Cys Leu Leu Leu Gly Pro Asp Phe Phe Thr Asp Val Ile Thr 515 520 525

Ile Glu Thr Ala Asp His Ala Arg Leu Gln Leu Gln Leu Ala Tyr Asn 530 535 540

Trp His Phe Glu Leu Lys Asn Arg Asn Asp Pro Ala Glu Ala Ala Lys 545 550 555 560

Leu Phe Ser Val Pro Asp Phe Val Gly Asp Ala Cys Lys Ala Ile Ala 565 570 575

Ser Arg Val Arg Gly Ala Val Ala Ser Val Thr Phe Asp Asp Phe His 580 585 590

Lys Asn Ser Ala Arg Ile Ile Arg Met Ala Val Phe Gly Phe Glu Met 595 600 605

Ser Glu Asp Thr Gly Pro Asp Gly Thr Leu Leu Pro Lys Ala Arg Asp 610 615 620

Gln Ala Val Phe Pro Gln Asn Gly Leu Val Val Ser Ser Val Asp Val 625 630 635 640

Gln Ser Val Glu Pro Val Asp Gln Arg Thr Arg Asp Ala Leu Gln Arg
645 650 655

Ser Val Gln Leu Ala Ile Glu Ile Thr Thr Asn Ser Gln Glu Ala Ala 660 665 670

Ala Lys His Glu Ala Gln Arg Leu Glu Gln Glu Ala Arg Gly Arg Leu 675 680 685

Glu Arg Gln Lys Ile Leu Asp Gln Ser Glu Ala Glu Lys Ala Arg Lys 690 695 700

Glu Leu Leu Glu Leu Glu Ala Met Ser Met Ala Val Glu Ser Thr Gly 705 710 715 720

Asn Ala Lys Ala Glu Ala Glu Ser Arg Ala Glu Ala Ala Arg Ile Glu 730 Gly Glu Gly Ser Val Leu Gln Ala Lys Leu Lys Ala Gln Ala Leu Ala Ile Glu Thr Glu Ala Glu Leu Glu Arg Val Lys Lys Val Arg Glu Met Glu Leu Ile Tyr Ala Arg Ala Gln Leu Glu Leu Glu Val Ser Lys Ala 775 770 Gln Gln Leu Ala Asn Val Glu Ala Lys Lys Phe Lys Glu Met Thr Glu 795 790 Ala Leu Gly Pro Gly Thr Ile Arg Asp Leu Ala Val Ala Gly Pro Glu 810 805 Met Gln Val Lys Leu Leu Gln Ser Leu Gly Leu Lys Ser Thr Leu Ile 825 820 Thr Asp Gly Ser Ser Pro Ile Asn Leu Phe Ser Thr Ala Phe Gly Leu 835 840 Leu Gly Leu Gly Ser Asp Gly Gln Pro Pro Ala Gln Lys 855 850 <210> 11 <211> 2586 <212> DNA <213> Rattus norvegicus atggcaactg aagaggccat catccgcatc cccccatacc actacatcca tgtgctggac 60 cagaacagta atgtgtcccg tgtggaggtt ggaccaaaga cctacatccg gcaggacaat 120 gagagggtac tgtttgcccc agttcgcatg gtgaccgtcc ccccacgcca ctactgcata 180 gtggccaacc ctgtgtcccg ggacacccag agttctgtgt tatttgacat cacaggacaa 240 gtccgactcc ggcacgctga ccaggagatc cgactagccc aggacccctt ccccctgtat 300 ccaggggagg tgctggaaaa ggacatcacc ccactgcagg tggttctgcc caacacagca 360 ctgcatctta aggcgttgct ggactttgag gataagaatg gagacaaggt catggcagga 420 gacgagtggc tatttgaggg acctggcacc tacatcccac agaaggaagt ggaagtcgtg 480

gagatcattc	aggccacagt	catcaaacag	aaccaagcac	tgcggctaag	ggcccgaaag	540
gagtgctttg	accgggaggg	caaggggcgc	gtgacaggtg	aggagtggct	ggtccgatcc	600
gtgggggctt	acctcccagc	tgtctttgaa	gaggtgctgg	atctggtgga	tgctgtgatc	660
cttacagaaa	agactgccct	gcacctccgg	gctctgcaga	acttcaggga	ccttcgggga	720
gtgctccacc	gcaccgggga	ggaatggtta	gtgacagtgc	aggacacaga	agcccatgtt	780
ccagatgtct	atgaggaggt	gcttggggta	gtacccatca	ccaccctggg	acctcgacac	840
tactgtgtca	ttcttgaccc	aatgggacca	gacggcaaga	accagctggg	acaaaagcgt	900
gttgtcaagg	gagagaagtc	ctttttcctc	cagccaggag	agaggctgga	gcgaggcatc	960
caggatgtgt	atgtgctgtc	agagcagcag	gggctgctac	tgaaggcact	gcagcccctg	1020
gaggagggag	agagcgagga	gaaggtetee	catcaggccg	gagactgctg	gctcatccgt	1080
gggcccctgg	agtatgtgcc	atctgcaaaa	gtggaggtgg	tggaggagcg	tcaggctatc	1140
cctctggacc	aaaatgaggg	catctatgtg	caggatgtca	agacggggaa	ggtgcgggct	1200
gtgattggaa	gcacctacat	gctgactcag	gatgaagtcc	tgtgggaaaa	ggagctgcct	1260
tctggggtgg	aggagctgct	gaacttgggg	catgaccctc	tggcagacag	gggtcagaag	1320
ggcacagcca	agccccttca	gccctcagct	ccaaggaaca	agacccgagt	ggtcagctac	1380
cgtgtcccgc	acaatgcagc	ggtgcaggtc	tatgactaca	gagccaagag	agcccgtgtg	1440
gtctttgggc	ccgagctagt	gacactggat	cctgaggagc	agttcacagt	attgtccctt	1500
tetgeeggge	gacccaagcg	tcctcatgcc	cgccgtgcac	tctgcctact	gctgggacct	1560
gatttcttta	ctgatgtcat	caccatcgaa	actgcagatc	atgccaggtt	gcagctgcag	1620
cttgcctaca	actggcactt	tgaactgaag	aaccggaatg	accetgcaga	ggcagccaag	1680
cttttctccg	tgcctgactt	cgtgggtgac	gcctgcaagg	ccattgcatc	ccgagtccgg	1740
ggggctgtag	cctctgtcac	ctttgatgac	ttccataaaa	actcagcccg	gatcattcga	1800
atggctgttt	ttggctttga	gatgtctgaa	gacacaggtc	ctgatggcac	actectgeec	1860
aaggctcgag	accaggcagt	ctttccccaa	aacgggctgg	tagtcagcag	tgtggatgtg	1920
cagtcagtgg	agcccgtgga	ccagaggacc	cgggatgccc	ttcagcgcag	cgttcagctg	1980
gccatcgaaa	ttaccaccaa	ctcccaggag	gcagcagcca	agcacgaggc	tcagagactg	2040
gaacaggaag	cccgtggtcg	gcttgagagg	cagaagatct	tggaccagtc	agaagctgaa	2100
aaagcccgca	aggaactctt	ggagcttgag	gctatgagca	tggctgtgga	gagcacgggt	2160
aatgccaaag	cagaggetga	gtcccgtgca	gaggcagcga	ggatcgaagg	agaaggctct	2220

gtgctgcagg ccaagctcaa ggcacaggcg ctagccattg agacggaggc tgagttggag 2280
cgagtaaaga aagtacgaga gatggaactg atctatgccc gggcccagtt ggagctggag 2340
gtgagcaagg cgcagcagct tgccaatgtg gaggcaaaga agttcaagga gatgacagag 2400
gcactgggcc ccggcaccat cagggacctg gctgtggccg ggccagagat gcaggtgaaa 2460
cttctccagt ccctgggcct gaaatccact ctcatcaccg atggctcgtc tcccatcaac 2520
ctcttcagca cagccttcgg gttgctgggg ctggggtctg atggtcagcc gccagcacag 2580
aagtga

<210> 12

<211> 2629

<212> PRT

<213> Rattus norvegicus

<400> 12

Met Glu Lys Leu Cys Gly Tyr Val Pro Val His Pro Asp Ile Leu Ser 1 5 10 15

Leu Lys Asn Arg Cys Leu Thr Met Leu Ser Asp Ile Gln Pro Leu Glu 20 25 30

Lys Ile His Gly Gln Arg Ser Val Asn Pro Asp Ile Leu Ser Leu Glu 35 40 45

Asn Arg Cys Leu Thr Leu Leu Pro Asp Leu Gln Pro Met Glu Lys Ile 50 55 60

His Gly Gln Arg Ser Val His Pro Asp Ile Leu Ser Ser Glu Asn Arg 65 70 75 80

Cys Leu Thr Leu Leu Pro Asp Leu Gln Ser Leu Glu Lys Leu Cys Gly 85 90 95

His Met Ser Ser His Pro Asp Val Leu Ser Leu Glu Asn Arg Cys Leu
100 105 110

Ala Thr Leu Pro Thr Val Lys Arg Thr Val Ser Ser Gly Pro Leu Leu 115 120 125

Gln Cys Leu His Arg Ser His Thr Ala Gln Ala Asp Leu Arg Asp Pro 130 135 140

Asn Phe Arg Asn Cys Leu Phe Pro Glu Pro Pro Thr Ile Glu Ala Pro 145 150 155 160

- Cys Phe Leu Lys Glu Leu Asp Leu Pro Thr Gly Pro Arg Ala Leu Lys 165 170 175
- Ser Met Ser Ala Thr Ala Arg Val Gln Glu Val Ala Leu Gly Gln Arg 180 185 190
- Cys Val Ser Glu Gly Lys Glu Leu Gln Glu Glu Lys Glu Ser Ala Glu 195 200 205
- Val Pro Met Pro Leu Tyr Ser Leu Ser Leu Gly Gly Glu Glu Glu 210 215 220
- Val Val Gly Ala Pro Val Leu Lys Leu Thr Ser Gly Asp Ser Asp Ser 225 230 235 240
- His Pro Glu Thr Thr Asp Gln Ile Leu Gln Glu Lys Lys Met Ala Leu 245 250 255
- Leu Thr Leu Leu Cys Ser Ala Met Ala Ser Ser Val Asn Val Lys Asp 260 265 270
- Ala Ser Asp Pro Thr Arg Ala Ser Ile His Glu Val Cys Ser Ala Leu 275 280 285
- Ala Pro Leu Glu Pro Glu Phe Ile Leu Lys Ala Ser Leu Tyr Ala Arg 290 295 300
- Gln Gln Leu Asn Leu Arg Asp Ile Ala Asn Ile Val Leu Ala Val Ala 305 310 315 320
- Ala Leu Leu Pro Ala Cys Arg Pro His Val Arg Arg Tyr Tyr Ser Ala 325 330 335
- Ile Val His Leu Pro Ser Asp Trp Ile Gln Val Ala Glu Phe Tyr Gln 340 345 350
- Ser Leu Ala Glu Gly Asp Glu Lys Lys Leu Val Pro Leu Pro Ala Cys 355 360 365
- Leu Arg Ala Ala Met Thr Asp Lys Phe Ala Gln Phe Asp Glu Tyr Gln 370 375 380

Leu 385	Ala	Lys	Tyr	Asn	Pro 390	Arg	Lys	His	Arg	Ser 395	Lys	Thr	Arg	Ser	Arg 400
Gln	Pro	Pro	Arg	Pro 405	Gln	Arg	Thr	Lys	Pro 410	Pro	Phe	Ser	Glu	Ser 415	Gly
ГÀЗ	Cys	Phe	Pro 420	Lys	Ser	Val	Trp	Pro 425	Leu	Lys	Asn	Glu	Gln 430	Ile	Ser
Phe	Glu	Ala 435	Ala	Tyr	Asn	Ala	Val 440	Ser	Glu	ГÀЗ	Lys	Arg 445	Leu	Pro	Arg
Phe	Thr 450	Leu	Lys	Lys		Val 455	Glu	Gln	Leu	His	Ile 460	His	Glu	Pro	Ala
Gln 465	His	Val	Gln	Ala	Leu 470	Leu	Gly	Tyr	Arg	Tyr 475	Pro	Ser	Thr	Leu	Glu 480
Leu	Phe	Ser	Arg	Ser 485	His	Leu	Pro	Gly	Pro 490	Trp	Asp	Ser	Ser	Arg 495	Ala
Gly	Gln	Arg	Met 500	Lys	Leu	Gln	Arg	Pro 505	Glu	Thr	Trp	Glu	Arg 510	Glu	Leu
Ser	Leu	Arg 515	Gly	Asn	Arg	Ala	Ser 520	Val	Trp	Glu	Glu	Leu 525	Ile	Asp	Asn
Gly	Lys 530	Leu	Pro	Phe	Met	Ala 535	Met	Leu	Arg	Asn	Leu 540	Сув	Asn	Leu	Leu
Arg 545	Thr	Gly	Ile	Ser	Ala 550	His	His	His	Glu	Leu 555	Val	Leu	Gln	Arg	Leu 560
Gln	His	Glu	ГÀв	Ser 565	Val	Ile	His	Ser	Arg 570	Gln	Phe	Pro	Phe	Arg 575	Phe
Leu	Asn	Ala	His 580	Asp	Ser	Leu	Asp	Arg 585	Leu	Glu	Ala	Gln	Leu 590	Arg	Ser
ГÀЗ	Ala	Ser 595	Pro	Phe	Pro	Ser	Asn 600	Thr	Thr	Leu	Met	Lys 605	Arg	Ile	Met
Ile	Ara	Asn	Ser	Lys	Lys	Ile	Lys	Ara	Pro	Ala	Asn	Pro	Arg	Tyr	Leu

610 620

Cys Thr Leu Thr Gln Arg Gln Leu Arg Ala Ala Met Ala Ile Pro Val 625 630 635 640

Met Tyr Glu His Leu Lys Arg Glu Lys Leu Arg Leu His Lys Ala Arg 645 650 655

Gln Trp Thr Cys Asp Leu Glu Leu Leu Glu Arg Tyr Arg Gln Ala Leu 660 665 670

Glu Thr Ala Val Asn Ile Ser Val Lys His Asn Leu Pro Pro Leu Pro 675 680 685

Gly Arg Thr Leu Leu Val Tyr Leu Thr Asp Ala Asn Ala Asn Arg Leu 690 695 700

Cys Pro Lys Ser His Leu Gln Gly Pro Pro Leu Asn Tyr Val Leu Leu 705 710 715 720

Leu Ile Gly Met Met Met Ala Arg Ala Glu Gln Thr Thr Val Trp Leu 725 730 735

Cys Gly Thr Gly Thr Val Lys Thr Pro Val Leu Thr Ala Asp Glu Gly 740 745 750

Ile Leu Lys Thr Ala Ile Lys Leu Gln Ala Gln Val Gln Glu Leu Glu 755 760 765

Glu Asn Asp Glu Trp Pro Leu Glu Thr Phe Glu Lys Tyr Leu Leu Ser 770 775 780

Leu Ala Val Arg Arg Thr Pro Ile Asp Arg Val Ile Leu Phe Gly Gln 785 790 795 800

Arg Met Asp Thr Glu Leu Leu Asn Val Ala Lys Gln Ile Ile Trp Gln 805 810 815

His Val Asn Ser Lys Cys Leu Phe Val Ser Val Leu Leu Arg Lys Met 820 825 830

Gln Tyr Met Ser Pro Asn Leu Asn Pro Asn Asp Val Thr Leu Ser Gly 835 840 845

Cys Thr Asp Gly Ile Leu Lys Phe Ile Ala Glu His Gly Ala Ser Arg 850 855 860

- Leu Leu Glu His Val Gly Gln Leu Asp Lys Ile Phe Lys Ile Pro Pro 865 870 875 880
- Pro Pro Gly Lys Thr Lys Val Ser Pro Leu Arg Pro Leu Glu Glu Asn 885 890 895
- Asn Pro Gly Pro Phe Val Pro Ile Ser Gln His Gly Trp Arg Asn Ile
 900 905 910
- Arg Leu Phe Ile Ser Ser Thr Phe Arg Asp Met His Gly Glu Arg Asp 915 920 925
- Leu Leu Met Arg Ser Val Leu Pro Ala Leu Gln Ala Arg Ala Phe Pro 930 935 940
- His Arg Ile Ser Leu His Ala Ile Asp Leu Arg Trp Gly Ile Thr Glu 945 950 955 960
- Glu Glu Thr Arg Arg Asn Arg Gln Leu Glu Val Cys Leu Gly Glu Val
 965 970 975
- Glu Asn Ser Gln Leu Phe Val Gly Ile Leu Gly Ser Arg Tyr Gly Tyr 980 985 990
- Thr Pro Pro Ser Tyr Asp Leu Pro Asp His Pro His Phe His Trp Thr 995 1000 1005
- Gln Arg Tyr Pro Ser Gly Arg Ser Val Thr Glu Met Glu Val Met 1010 1015 1020
- Gln Phe Leu Asn Arg Gly Gln Arg Ser Glu Pro Ser Asp Gln Ala 1025 1030 1035
- Leu Ile Tyr Phe Arg Asp Pro Gly Phe Leu Ser Ser Val Pro Asp 1040 1045 1050
- Val Trp Lys Pro Asp Phe Ile Ser Glu Ser Glu Glu Ala Ala His 1055 1060 1065
- Arg Val Ser Glu Leu Lys Arg Phe Leu Gln Glu Gln Lys Glu Val 1070 1075 1080

Thr	Cys 1085	Arg	Arg	Tyr	Ser	Cys 1090	Glu	Trp	Gly	Gly	Val 1095	Ala	Ala	Gly
Arg	Pro 1100	Tyr	Thr	Gly	Gly	Leu 1105	Glu	Glu	Phe	Gly	Gln 1110	Leu	Val	Leu
Gln	Asp 1115		Trp	Ser	Val	Ile 1120	Gln	Lys	Arg	Tyr	Leu 1125	Gln	Pro	Gly
Ala	Gln 1130	Leu	Glu	Gln	Pro	Gly 1135	Ser	Ile	Ser	Glu	Glu 1140	Asp	Leu	Ile
Gln	Ala 1145		Phe	Gln	Gln	Leu 1150		Ser	Pro	Pro	Ser 1155	Pro	Ala	Arg
Pro	Arg 1160		Leu	Gln	Asp	Thr 1165		Gln	Gln	Leu	Met 1170	Leu	Pro	His
Gly	Arg 1175		Ser	Leu	Val	Ile 1180		Gln	Ala	Gly	Gln 1185	Gly	Lys	Thr
Ala	Phe 1190		Ala	Ser	Leu	Val 1195	Ser	Ala	Leu	Lys	Val 1200	Pro	Asp	Gln
Pro	Asn 1205		Ala	Pro	Phe	Val 1210		Phe	His	Phe	Ser 1215	Ala	Ala	Arg
Pro	Asp 1220		Cys	Leu	Ala	Phe 1225		Leu	Leu	Arg	Arg 1230	Leu	Cys	Thr
His	Leu 1235		Gln	Lys	Leu	Gly 1240		Pro	Ser	Ala	Leu 1245		Ser	Thr
Tyr	Arg 1250	-	Leu	Val	Trp	Glu 1255		Gln	Gln	Lys	Leu 1260		Leu	Lys
Ser	Ala 1265		Trp	Leu	Gln	Pro 1270	_	Gln	Thr	Leu	Val 1275		Ile	Ile
Asp	Gly 1280		Asp	Lys	Leu	Val 1285		His	Asn	Gly	Gln 1290		Ile	Ser
Asp	Trp	Ile	Pro	Lys	Ser	Leu	Pro	Arg	Arg	Val	His	Leu	Val	Leu

1295	1300	1305
1470		

Ser Val		Ser	Asp	Ser	Gly 1315	Leu	Gly	Glu	Thr	Leu 1320	Gln	Gln	Ser
---------	--	-----	-----	-----	-------------	-----	-----	-----	-----	-------------	-----	-----	-----

- Gln Ser Ala Tyr Val Val Ala Leu Gly Ser Leu Val Pro Ser Ser 1325 1330 1335
- Arg Ala Gln Leu Val Arg Glu Glu Leu Ala Leu Tyr Gly Lys Arg 1340 1345 1350
- Leu Glu Glu Ser Pro Phe Asn Asn Gln Met Arg Leu Leu Leu Ala 1355 1360 1365
- Lys Gln Gly Ser Ser Leu Pro Leu Tyr Leu His Leu Val Thr Asp 1370 1375 1380
- Tyr Leu Arg Leu Phe Thr Leu Tyr Glu Gln Val Ser Glu Arg Leu 1385 1390 1395
- Arg Thr Leu Pro Ala Thr Leu Pro Leu Leu Gln His Ile Leu 1400 1405 1410
- Ser Thr Leu Glu Gln Glu His Gly His Asn Val Leu Pro Gln Ala 1415 1420 1425
- Leu Thr Ala Leu Glu Val Thr His Ser Gly Leu Thr Val Asp Gln 1430 1435 1440
- Leu His Ala Val Leu Ser Thr Trp Leu Thr Leu Pro Lys Glu Thr 1445 1450 1455
- Lys Ser Trp Glu Glu Ala Val Ala Ala Ser His Ser Gly Asn Leu 1460 1465 1470
- Tyr Pro Leu Ala Pro Phe Ala Tyr Leu Val Gln Ser Leu Arg Ser 1475 1480 1485
- Leu Leu Gly Glu Gly Pro Val Glu Arg Pro Gly Ala Arg Leu Cys 1490 1495 1500
- Leu Ser Asp Gly Pro Leu Arg Thr Ala Val Lys Arg Arg Tyr Gly 1505 1510 1515

Lys	Arg 1520	Leu	Gly	Leu	Glu	Lys 1525	Thr	Ala	His	Val	Leu 1530	Ile	Ala	Ala
His	Leu 1535	Trp	Lys	Met	Сув	Asp 1540	Pro	Asp	Ala	Ser	Gly 1545	Thr	Phe	Arg
Ser	Cys 1550		Pro	Glu	Ala	Leu 1555	Lys	Asp	Leu	Pro	Tyr 1560	His	Leu	Leu
Gln	Ser 1565	Gly	Asn	His	Gly	Leu 1570	Leu	Ala	Lys	Phe	Leu 1575	Thr	Asn	Leu
His	Val 1580		Ala	Ala	Tyr	Leu 1585	Glu	Val	Gly	Leu	Val 1590	Pro	Asp	Leu
Leu	Glu 1595		Tyr	Glu	Leu	Tyr 1600	Ala	Ser	Ser	Lys	Pro 1605	Glu	Val	Asn
Gln	Lys 1610		Pro	Glu	Ala	Asp 1615		Ala	Val	Phe	His 1620	Asn	Phe	Leu
Lys	Gln 1625		Ala	Ser	Leu	Leu 1630	Thr	Gln	Tyr	Pro	Leu 1635	Leu	Leu	Leu
Gln	Gln 1640		Ala	Ser	Gln	Pro 1645		Glu	Ser	Pro	Val 1650		Сув	Gln
Ala	Pro 1655		Leu	Thr	Gln	Arg 1660		His	Asn	Gln	Cys 1665		Leu	Lys
Trp	Ile 1670		Lys	Pro	Gln	Thr 1675		Lys	Gly	Gln	Gln 1680		Leu	Ser
Leu	Pro 1685		Ser	Ser	Ser	Pro 1690		Ala	Val	Ala	Phe 1695		Pro	Asn
Gly	Gln 1700	_	Ala	Ala	Val	Gly 1705		Ala	Gly	· Gly	Thr 1710		Tyr	Leu
Leu	Asn 1715		Arg	Thr	Trp	Gln 1720		. Glu	. Lys	Ala	Leu 1725		. Ser	Gly
Cys	Asp 1730	_	·Ile	: Ser	Ser	Phe 1735		Phe	. Lev	. Ser	Asp 1740		Ala	. Leu

Phe	Leu 1745	Thr	Thr	Phe	Asp	Gly 1750	Leu	Leu	Glu	Leu	Trp 1755	Asp	Leu	Gln
His	Gly 1760		Trp	Val	Phe	Gln 1765	Thr	Lys	Ala	His	Gln 1770	Tyr	Gln	Ile
Thr	Gly 1775		Сув	Leu	Ser	Pro 1780		Arg	Arg	Leu	Leu 1785	Ala	Thr	Val
Cys	Leu 1790		Gly	Tyr	Val	Lys 1795		Trp	Asp	Thr	Val 1800	Gln	Gly	Gln
Leu	Ala 1805		Gln	Tyr	Thr	His 1810		Lys	Ser	Leu	Asn 1815	Суз	Ile	Thr
Phe	His 1820		Glu	Gly	Gln	Val 1825		Ala	Thr	Gly	Asn 1830	Trp	Ser	Gly
Ile	Val 1835		Phe	Phe	Gln	Ala 1840		Gly	Leu	Lys	Val 1845	Thr	Lys	Glu
Leu	Gly 1850		Pro	Gly	Pro	Ser 1855	Val	Arg	, Thr	: Leu	Ala 1860	Phe	Ser	Ala
Pro	Gly 186		s Val	. Val	. Ala	Leu 1870		Arg	; Ile	e Asp	Gly 1875	Thr	· Val	Glu
Leı	188		a Trp	Glr	ı Glu	ı Gly 1885	Thr	: Arg	g Le	ı Ala	1890	Phe	e Pro) Ala
Glı	n Cys 189		y Gly	y Val	l Se	r Thr 1900		l Lei	ı Ph	e Lei	1 His 190	Ala 5	a Gly	y Gly
Ar	g Phe 191		u Th	r Ala	a Gl	y Glu 191		o Gl	у Ьу	s Ala	a Gln 192	Le 0	u Trj	p Ser
G1;	y Phe 192		u Gl	y Ar	g Pr	o Arg 193		у Су	s Le	u Gl	y Ser 193	Le [.]	и Ту	r Leu
Se	r Pro 194		a Le	u Se	r Va	l Ala 194		u As	n Pr	o As	p Gly 195	As 0	p Gl	n Val
Al	a Va]	. Gl	.у Ту	r Ar	g Gl	y Asp	Gl	y Il	.е Ьу	rs Il	e Tyr	Ar	g Il	e Ser

1955	1960	1965
1900	1300	100

	•													
Ser	Gly 1970	Pro	Gln	Glu	Ala	Gln 1975	Cys _,	Gln	Glu	Leu	Asn 1980	Val	Ala	Val
Ser	Ala 1985	Leu	Val	Trp	Leu	Ser 1990	Pro	Ser	Val	Leu	Val 1995	Ser	Gly	Ala
Glu	Asp 2000	Gly	Ser	Leu	His	Gly 2005	Trp	Met	Leu	Arg	Arg 2010	Asn	Ser	Leu
Gln	Ser 2015		Trp			Ser 2020	Val	Сув	Gln	Lys	Pro 2025	Val	Leu	Gly
Leu	Ala 2030	Ala	Ser	Gln		Phe 2035	Leu	Ala	Ser	Ala	Ser 2040	Glu	Asp	Phe
Thr	Val 2045	_	Leu	Trp	Pro	Arg 2050	Gln	Leu	Leu	Thr	Gln 2055	Pro	His	Ala
Val	Glu 2060	Glu	Leu	Pro	Сув	Ala 2065	Ala	Glu	Leu	Arg	Gly 2070	His	Glu	Gly
Pro	Val 2075	_	Сув	Сув	Ser	Phe 2080		Pro	Asp	Gly	Arg 2085	Ile	Leu	Ala
Thr	Ala 2090	_	Arg	Asp	Arg	Asn 2095		Leu	Сув	Trp	Asp 2100		Lys	Val
Ala	Gln 2105	Ala	Pro	Leu	Leu	Ile 2110		Thr	Phe	Ser	Ser 2115		His	Arg
Asp	Trp 2120		Thr	Gly	Cys	Thr 2125		Thr	Lys	Asp	Asn 2130		Leu	Ile
Ser	Cys 2135		Ser	Asp	Gly	Ser 2140		Gly	Leu	Trp	Asn 2145		Glu	Ala
Gly	Gln 2150		Leu	Gly	Gln	Phe 2155		Gly	His	Gln	Ser 2160		Val	Ser
Ala	Val 2165		Ala	Val	Glu	Glu 2170		Ile	Val	Ser	Val 2175		Arg	Asp

Gly	Thr 2180		Lys	Val	Trp	Asp 2185	Arg	Gln	Gly	Val	Glu 2190	Leu	Thr	Ser
Ile	Pro 2195	Ala	His	Ser	Gly	Pro 2200	Ile	Ser	Gln	Cys	Ala 2205	Ala	Ala	Leu
Glu	Pro 2210	_	Pro	Ala	Gly	Gln 2215		Gly	Ser	Glu	Leu 2220		Val	Val
Thr	Val 2225	Gly	Leu	Asp	Gly	Ala 2230	Thr	Гув	Leu	Trp	His 2235	Pro	Leu	Leu
Val	Cys 2240	Gln	Ile	His	Thr	Leu 2245	Gln	Gly	Hìs	Ser	Gly 2250	Pro	Val	Thr
Ala	Ala 2255	Ala	Ala	Ser	Glu	Ala 2260	Ser	Gly	Leu	Leu	Leu 2265	Thr	Ser	Asp
Asn	Ser 2270		Val	Arg	Leu	Trp 2275		Ile	Pro	Lys	Glu 2280	Ala	Asp	Asp
Thr	Cys 2285	Lys	Pro	Arg	Ser	Ser 2290	Ala	Val	Ile	Thr	Ala 2295	Val	Ala	Trp
Ala	Pro 2300	_	gly	Ser	Leu	Val 2305	Val	Ser	Gly	Asn	Glu 2310	Ala	Gly	Glu
Leu	Thr 2315	Leu	Trp	Gln	Lys	Ala 2320	Gln	Ala	Val	Ala	Thr 2325	Ala	Arg	Ala
Pro	Gly 2330	_	Val	Ser	Asp	Leu 2335		Trp	Cys	Ser	Ala 2340		Ala	Phe
Phe	Val 2345	Leu	Ser	Ala	Asn	Glu 2350	Asn	Val	Ser	Glu	Trp 2355	Gln	Val	Glu
Leu	Arg 2360	-	Gly	Ser	Thr	Cys 2365		Asn	Phe	Arg	Leu 2370	•	Leu	Lys
Arg	Val 2375	Leu	Gln	Glu	Asp	Leu 2380	Gly	Val	Leu	Thr	Gly 2385	Met	Ala	Leu
Ala	Pro 2390	-	Gly	Gln	Ser	Leu 2395	Ile	Leu	Met	Lys	Glu 2400	_	Val	Glu

Leu	Leu 2405	Gln	Met	Lys	Pro	Gly 2410	Ser	Thr	Pro	Ser	Ser 2415	Ile	Сув	Arg
Arg	Tyr 2420		Val	His	Ser	Ser 2425	Ile	Leu	Cys	Thr	Ser 2430	Lys	Asp	Tyr
Gly	Leu 2435	Phe	Tyr	Leu	Gln	Gln 2440	Gly	Asn	Ser	Gly	Ser 2445	Leu	Ser	Ile
Leu	Glu 2450		Glu	Glu	Ser	Gly 2455		Phe	Glu		Thr 2460	Leu	Asp	Phe
Asn	Leu 2465		Leu	Asn	Asn	Pro 2470	Asn	Gly	Ser	Pro	Val 2475	Ser	Ile	Thr
Gln	Ala 2480		Pro	Glu	Ser	Gly 2485	Ser	Ser	Leu	Leu	Cys 2490	Ala	Thr	Ser
Asp	Gly 2495		Leu	Trp	Asn	Leu 2500	Ser	Glu	Сув	Thr	Pro 2505	Glu	Gly	Glu
Trp	Val 2510		Asp	Asn	Ile	Trp 2515		Lys	Lys	Ser	Arg 2520	Asn	Pro	Lys
Ser	Arg 2525		Pro	Gly	Thr	Asp 2530		Ser	Pro	Gly	Leu 2535	Phe	Cys	Met
Asp	Ser 2540		Val	Glu	Pro	Thr 2545		Leu	Lys	Ala	Arg 2550		Cys	ГÀЗ
Lys	Ile 2555		Leu	Gly	Ser	Val 2560		Ala	Leu	His	Val 2565		Pro	Gly
Leu	Leu 2570		Thr	Ala	Ser	Glu 2575		Arg	Asp	Val	Lys 2580		Trp	Glu
Arg	Pro 2585		Met	Gln	Leu	Leu 2590	_	Leu	Phe	Arg	Cys 2595		Gly	Pro
Val	Ser 2600	_	Leu	Glu	Pro	Trp 2605		Glu	Pro	Ser	Ser 2610		Leu	Gln
Leu	Ala	Val	Gly	Asp	Ala	Gln	Gly	Asn	Leu	Tyr	Phe	Leu	Ser	Trp

2615 2620 2625

Glu

<210> 13 <211> 7890 <212> DNA

<213> Rattus norvegicus

<400> 13

atggagaaac tetgtggtta tgtgeetgte caeccagaca teeteteett gaagaategg 60 tgcctgacca tgctctctga catccaaccc ctggagaaaa tacatggaca gagatctgtc 120 aacccagaca teetgteett ggagaacegg tgeetgaeet tgeteeetga teteeageee 180 atggagaaaa tacatggaca gagatetgte cacccagaca tecteteete agagaacegg 240 tgtctgacct tgctccctga cctccagtcc ctggagaagc tatgtggaca tatgtctagt 300 cacccagacg tectetett ggagaacega tgtettgeta ceeteeegae tgtaaagaga 360 actgtttcga gtggcccctt gctccagtgt cttcacagat ctcatacggc acaagctgat 420 ctgcgtgacc cgaactttcg caactgcctg ttccctgagc ctcctaccat agaggctcca 480 tgtttcttga aggaactaga ccttccaact ggacccaggg ccctgaaatc catgtctgct 540 acagetegag tteaggaagt agetttgggt cageggtgeg teteagaagg aaaggaattg 600 caggaagaaa aagaaagcgc agaagtcccg atgcctttgt acagtctaag cttgqqqqa 660 gaagaagaag aagtggtggg ggcaccggtc ctaaaactca catctggaga ctctgactct 720 caccetgaaa ccactgacca gateetgeag gagaagaaga tggetetett gacettgetg 780 tgctcagcta tggcctcaag tgtgaatgtg aaagatgcct ccgatcctac ccgggcatct 840 atccatgaag totgcagtgc gotggccccc ttggaacctg agttcatcct taaggcatct 900 ttgtatgcta ggcagcagct taacctccgg gacatagcca atatagtgtt ggccgtggct 960 gccctcttgc cagcctgccg cccccatgta cgacggtatt actctgccat tgttcacctg 1020 ccttcagact ggatccaggt agccgagttc taccagagcc tggcagaagg ggatgagaag 1080 aagttggtgc ccctgcctgc ctgcctccgt gctgccatga ctgacaaatt tgcccagttt 1140 gatgagtacc agctagcgaa gtacaaccca cggaaacacc gatccaagac acgttcccgc 1200 cagccacccc gccctcaaag gacaaaacct ccattttcag agagtgggaa atgttttcca 1260 aagagcgttt ggccccttaa aaacgaacag atttcgttcg aagcagctta taatgcagtg 1320 tcagagaaga aaaggctacc aaggttcact ctgaagaagt tggtagagca actgcatatc 1380

catgagcctg	cgcagcatgt	ccaggccctg	ctgggctaca	ggtacccatc	caccctagag	1440
ctcttttctc	ggagtcatct	ccctgggcca	tgggactcta	gcagggctgg	gcaacggatg	1500
aagctccaaa	ggccagagac	ctgggagcgg	gagctgagct	tacgtggaaa	cagagettet	1560
gtgtgggagg	aactcataga	caatgggaaa	ctccccttca	tggccatgct	ccggaacctg	1620
tgtaacctgc	tgcggactgg	gatcagtgcc	caccaccatg	aactcgttct	ccagagactc	1680
cagcatgaga	aatctgtgat	tcacagtcgg	cagtttccat	tcagattcct	taatgctcac	1740
gactctctcg	atagactcga	ggctcagctc	agaagtaaag	catcgccctt	cccttccaat	1800
acaacattga	tgaagcggat	aatgattaga	aactcaaaaa	aaatcaagag	acctgccaac	1860
ccgaggtacc	tgtgcaccct	gacgcagcgg	cagcttcggg	cggcaatggc	tatcccggtg	1920
atgtatgagc	atctcaagcg	ggagaaactg	aggctgcaca	aggccagaca	gtggacctgt	1980
gaccttgagt	tgctggagcg	gtatcgccag	gccctggaaa	cggccgtgaa	catctctgta	2040
aagcacaacc	tacccccgct	gccaggccga	accctcttgg	tctatctcac	agatgcaaat	2100
gccaacagac	tttgtcccaa	gagtcacttg	caagggcctc	ccctgaacta	tgtgctgctg	2160
ttgatcggga	tgatgatggc	tcgggcggag	cagacgacag	tttggctgtg	tgggacagga	2220
actgtgaaga	caccagtact	tacagccgac	gaaggtatcc	tgaagactgc	catcaaactt	2280
caggctcaag	tccaggagtt	agaagaaaat	gatgagtggc	ccctggaaac	ttttgagaag	2340
tacctgctat	ctctggctgt	gcgaaggacc	cctattgaca	gggtcatcct	gttcggccaa	2400
aggatggata	cggagctgct	gaatgtagcc	aaacagatta	tctggcagca	tgtgaattcc	2460
aagtgcctct	tcgtcagtgt	cctcctacgg	aaaatgcagt	acatgtcacc	aaatttgaat	2520
cccaatgatg	tgacgctctc	gggctgcact	gacgggatcc	tgaagttcat	tgcggagcat	2580
ggagcctctc	gtcttctgga	acatgtgggc	caactagata	agatattcaa	gatccctcca	2640
ccccaggaa	agacaaaggt	ctcacctctc	cggccgctgg	aggagaacaa	ccctggtccc	2700
ttcgttccta	tttcccagca	tggatggcgc	aacatccggc	ttttcatttc	gtccactttc	2760
cgagacatgc	atggggaacg	agacttgctg	atgcgatctg	ttctgccagc	gctgcaggcc	2820
cgagcgttcc	cccaccgcat	cagccttcac	gccattgacc	tgcgctgggg	aatcacggag	2880
gaagagaccc	gcaggaacag	acaactggaa	gtgtgccttg	gggaggtgga	gaactctcag	2940
ctgttcgtgg	ggatcctggg	ctcccgctat	ggctatactc	ccccagcta	tgatctgcct	3000
gaccaccccc	actttcactg	gacccagcga	tacccttcgg	ggcgctctgt	aacagagatg	3060
gaggtgatgc	agttcctgaa	ccgtggccaa	cgctcggaac	cctctgacca	agctctcatc	3120

tacttccgag	atcctggttt	ccttagctct	gtgccagatg	tctggaaacc	tgactttatt	3180
tccgagtcag	aagaggctgc	acatcgggtc	tcagaactga	agagattcct	acaggaacag	3240
aaagaggtta	cctgccgcag	gtactcctgt	gaatggggag	gcgtagcagc	cggccggccc	3300
tatactgggg	gcctggagga	gtttggacag	ttggttctcc	aagatgtgtg	gagcgtgatc	3360
cagaagcgtt	acctgcagcc	tggggcccag	ttggagcagc	caggatccat	ctcagaagag	3420
gatttgatcc	aggccagctt	tcagcagctg	aagagcccac	cgagtcccgc	acggccacgc	3480
cttcttcagg	ataccgtgca	acagctgatg	ctgccccacg	ggaggctgag	cctagtgatt	3540
gggcaggcag	gacagggaaa	gactgccttc	ctggcatccc	ttgtgtcggc	cctgaaggtt	3600
cccgaccagc	ccaatgtggc	cccgttcgtt	ttcttccact	tttcagcagc	ccgccctgac	3660
cagtgtcttg	ctttcaacct	cctcagacgc	ctctgtaccc	atctgcatca	aaaactggga	3720
gagccgagcg	ctctccccag	cacttacaga	ggcctggtgt	gggaactgca	gcagaagetg	3780
ctcctcaaat	ctgcccagtg	gctgcaacca	ggccagactt	tggtccttat	tatcgacggg	3840
gcagataagt	tggtggacca	taatggacag	ctgatttcag	actggatccc	caagtctctt	3900
ccgcggcgag	tacacctggt	gctgagtgtg	tctagtgact	caggcctggg	agagaccctt	3960
cagcaaagtc	agagtgctta	tgtggtggcc	ttggggtctt	tggtcccgtc	ttcaagggct	4020
cagcttgtga	gagaagagct	agcactgtat	gggaaacggc	tggaggagtc	accttttaac	4080
aaccagatgc	ggctgctgct	ggcaaagcag	gggtcaagcc	tgccactgta	cctgcacctc	4140
gtcactgact	acctgaggct	tttcacactg	tacgaacagg	tgtctgagag	acttcgaacc	4200
ctgcccgcca	ctctcccact	gctgctgcag	cacatcctga	gcaccttgga	gcaagagcat	4260
ggccataacg	tccttcctca	agctttgact	gcccttgagg	tcacgcacag	tggtctgact	4320
gtggaccago	tgcatgcagt	cctgagcacg	tggttgactt	tgcccaagga	gactaagagc	4380
tgggaagagg	cagtggctgc	cagtcacagt	ggaaacctct	accccttggc	tccatttgcc	4440
taccttgtcc	agagtctacg	cagtttacta	ggcgagggcc	ccgtggagcg	ccctggcgcc	4500
cgtctctgcc	: tctctgatgg	gcctctgagg	g acagcagtta	aacgtcgcta	tgggaaaagg	4560
ctggggctag	agaagactgo	gcatgtccto	attgcagctc	acctctggaa	gatgtgtgac	4620
cctgatgcct	: caggcacctt	ccgaagttg	cctcccgagg	ctctgaaaga	tttaccttac	4680
cacctgctcc	agagcgggaa	ccatggtcto	cttgcaaagt	tecttaccaa	cctccatgtg	4740
gtggctgcat	atctggaagt	gggtctagto	c ccggacctct	: tggaggctta	cgagctctat	4800
gcttcttcaa	agcctgaagt	gaaccagaag	g ctcccggagg	g cagatgttgc	tgtattccac	4860

aacttcctga	aacaacaggc	ttcactcctt	acccagtatc	ctttgctcct	gctccagcag	4920
gcagctagcc	agcetgaaga	gtcacctgtt	tgctgccagg	ccccctgct	cacccagcgg	4980
tggcacaacc	agtgcatact	gaaatggatt	aataaacccc	agaccttgaa	gggtcagcaa	5040
agcttgtctc	tgccaatttc	ctcatcccca	actgctgtgg	ccttctctcc	taatgggcaa	5100
agagcagctg	tggggaetge	tggtgggaca	atttacctgt	tgaacttgag	aacctggcag	5160
gaggagaagg	ctctggtgag	tggctgtgat	gggatttcct	ctttcgcgtt	cctgtcagac	5220
actgctcttt	tecttaccac	cttcgatggg	ctcctggagc	tttgggacct	gcaacatggt	5280
tgttgggtgt	tccagaccaa	ggcccaccag	taccaaatca	ctggctgctg	cctgagccca	5340
gaccgccgcc	tgctggccac	cgtgtgtttg	ggaggatacg	taaagctgtg	ggacacagtc	5400
cagggccagc	tggctttcca	gtacacccat	cccaagtctc	taaactgcat	caccttccac	5460
ccagaggggc	aggtggtagc	cacaggcaac	tggtctggca	tcgtgacctt	cttccaggca	5520
gatggactca	aagtcaccaa	ggaactaggg	ggcccaggac	cctctgttcg	tacgctggca	5580
ttcagtgcac	ccgggaaggt	tgtggctcta	ggccggatag	atgggacagt	ggagctgtgg	5640
gcctggcaag	agggcacacg	gctggcagcc	ttccctgcac	agtgtggcgg	tgtctccacc	5700
gttcttttct	tgcatgctgg	aggccggttc	ctgacggctg	gggaagatgg	caaggctcag	5760
ttatggtcag	gatttcttgg	ccggcccagg	ggttgcctgg	gctctcttta	tcttctcct	5820
gcgctctctg	tggctctcaa	cccagacggt	gaccaggtgg	ctgttgggta	ccgaggagat	5880
ggcattaaaa	tctacagaat	ttcttcaggt	ccccaggagg	ctcaatgcca	agagctaaat	5940
gtggcggtgt	ctgcactggt	ctggctgagt	cccagcgtct	tggtgagtgg	tgcagaagat	6000
ggctccctgc	atggctggat	gctcaggaga	aactcccttc	agtccctgtg	gctgtcatcc	6060
gtgtgccaga	agcctgtgct	ggggctggct	gcctcccagg	agttcttggc	ttctgcctca	6120
gaggacttca	cggtgcgact	gtggccaaga	cagctgctga	cacagccaca	tgcagtagaa	6180
gagttgccct	gtgcggctga	actccgggga	cacgaggggc	cggtgtgctg	ctgtagcttc	6240
agcccggatg	gacgcatctt	ggccacagcg	ggcagggatc	ggaatctcct	ctgctgggac	6300
gtcaaggtag	cccaagcccc	tctcctgatt	cacacgttct	cgtcctgtca	tcgagactgg	6360
atcactggct	gtacgtggac	caaagacaac	atcctgatct	cctgctctag	tgatggctct	6420
gtgggactct	ggaacccaga	ggcaggacag	caacttggcc	agttcccagg	tcaccagagt	6480
gccgtgagcg	ctgtggttgc	tgtggaggaa	cacattgtat	ctgtgagtcg	ggatgggacc	6540
ttgaaagtgt	gggaccgtca	gggtgtggag	ctgaccagca	tccctgccca	ttccggaccc	6600

attagccagt	gtgcggctgc	tctggaaccc	cgtccagctg	gacagcctgg	atcagagctt	6660
atggtggtga	ctgttggact	ggatggggcc	acaaagctgt	ggcatcccct	gttggtgtgc	6720
caaatacata	ccctgcaggg	acacagtggt	ccagtcacag	ctgctgctgc	ttcagaggcc	6780
tcaggcctcc	tgctgacctc	agacaatagc	tctgtacgac	tctggcagat	ccctaaggaa	6840
gcagatgata	cctgcaaacc	taggagttct	gcggtcatca	ccgctgtggc	gtgggcacca	6900
gatggttctc	tggtggtgtc	tggaaatgaa	gctggggaac	taacgctgtg	gcagaaagcg	6960
caggctgtgg	ctacggcacg	ggctccaggc	cgcgtcagtg	acctgatctg	gtgctccgca	7020
aatgcattct	ttgttctcag	tgctaatgaa	aatgtcagtg	agtggcaagt	ggaactgagg	7080
aaaggttcaa	catgcaccaa	tttcagactt	tatctgaaga	gagttctgca	ggaggacttg	7140
ggagtcttga	caggtatggc	cctggcgcct	gacggccagt	ctctcatttt	gatgaaagag	7200
gatgtagaat	tgctacagat	gaagcccggg	tctactccat	cttcgatctg	caggaggtat	7260
gcagtgcatt	cttctatact	gtgcaccagc	aaagactatg	gcctgtttta	cctgcagcag	7320
ggaaactctg	gatctctttc	tatcttggag	caggaggagt	cagggaagtt	tgaaaagacc	7380
ctggacttca	atctgaactt	aaataatcct	aatgggtccc	cagtatcaat	cactcaggct	7440
gaacctgagt	ctgggtcctc	gcttttgtgt	gctacctctg	atgggatgct	gtggaactta	7500
tctgagtgta	ccccagaagg	agagtgggtc	gtagataaca	tctggcagaa	aaaatcaaga	7560
aaccctaaaa	gtcgaactcc	ggggacagat	tcgtccccag	gcttattctg	catggatagc	7620
tgggtagaac	ccacacattt	aaaggcacgg	cagtgtaaaa	agattcactt	gggctctgtc	7680
acggccctcc	atgtgctgcc	cggattgctg	gtgactgctt	cagaggacag	agatgttaag	7740
ctgtgggaga	gacccagtat	gcagetgctc	ggcttgttcc	gatgtgaagg	gccggtgagc	7800
tgtctggaac	cttggatgga	gcccagctct	cccctgcagc	ttgctgtggg	agatgcacaa	7860
ggaaacttgt	attttctatc	ttgggaatga				7890

<210> 14

<211> 143

<212> RNA

<213> Rattus norvegicus

<400> 14

ggccagcuuu agcucagcgg uuacuucgac gugcuccagu uugagcaggc uauguaacgu 60 ggucgguucg agcaacacaa ccagccgcuu gccuaucugg ugagugguug guucgagacc 120 cgcgggcgcu cucuggcccu uuu 143 PCT/US2004/007434

WO 2004/081533 <210> 15 <211> 12 <212> PRT <213> Artificial Sequence <220> <223> completely synthesized <400> 15 Met Ala Gly Cys Gly Cys Pro Cys Gly Cys Gly Ala <210> 16 <211> 905 <212> PRT <213> Artificial Sequence <220> <223> synthesized and Homo sapines <400> 16 5 25 20

Met Ala Gly Cys Gly Cys Pro Cys Gly Cys Gly Ala Met Ala Thr Glu 10

Glu Phe Ile Ile Arg Ile Pro Pro Tyr His Tyr Ile His Val Leu Asp

Gln Asn Ser Asn Val Ser Arg Val Glu Val Gly Pro Lys Thr Tyr Ile

Arg Gln Asp Asn Glu Arg Val Leu Phe Ala Pro Met Arg Met Val Thr

Val Pro Pro Arg His Tyr Cys Thr Val Ala Asn Pro Val Ser Arg Asp 75 70 65

Ala Gln Gly Leu Val Leu Phe Asp Val Thr Gly Gln Val Arg Leu Arg 85 90

His Ala Asp Leu Glu Ile Arg Leu Ala Gln Asp Pro Phe Pro Leu Tyr 100

Pro Gly Glu Val Leu Glu Lys Asp Ile Thr Pro Leu Gln Val Val Leu 120 125 115

Pro Asn Thr Ala Leu His Leu Lys Ala Leu Leu Asp Phe Glu Asp Lys 135 140 130

Asp 145	Gly	qaA	Lys	Val	Val 150	Ala	Gly	Asp	Glu	Trp 155	Leu	Phe	Glu	Gly	Pro 160
Gly	Thr	Tyr	Ile	Pro 165	Arg	Lys	Glu	Val	Glu 170	Val	Val	Glu	Ile	Ile 175	Gln
Ala	Thr	Ile	Ile 180	Arg	Gln	Asn	Gln	Ala 185	Leu	Arg	Leu	Arg	Ala 190	Arg	Lys
Glu	Cys	Trp 195	Asp	Arg	Asp	Gly	Lys 200	Glu	Arg	Val	Thr	Gly 205	Glu	Glu	Trp
Leu	Val 210	Thr	Thr	Val	Gly	Ala 215	Tyr	Leu	Pro	Ala	Val 220	Phe	Glu	Glu	Val
Leu 225	Asp	Leu	Val	Asp	Ala 230	Val	Ile	Leu	Thr	Glu 235	Lys	Thr	Ala	Leu	His 240
Leu	Arg	Ala	Arg	Arg 245	Asn	Phe	Arg	Asp	Phe 250	Arg	Gly	Val	Ser	Arg 255	Arg
Thr	Gly	Glu	Glu 260	Trp	Leu	Val	Thr	Val 265	Gln	qaA	Thr	Glu	Ala 270	His	Val
Pro	Asp	Val 275	His	Glu	Glu	Val	Leu 280	Gly	Val	Val	Pro	Ile 285	Thr	Thr	Leu
Gly	Pro 290	His	Asn	Tyr	Суз	Val 295	Ile	Leu	qaA	Pro	Val 300	Gly	Pro	Asp	Gly
L уз 305	Asn	Gln	Leu	Gly	Gln 310	ГÀВ	Arg	Val	Val	Lys 315	Gly	Glu	ГÀв	Ser	Phe 320
Phe	Leu	Gln	Pro	Gly 325	Glu	Gln	Leu	Glu	Gln 330	Gly	Ile	Gln	Asp	Val 335	Tyr
Val	Leu	Ser	Glu 340	Gln	Gln	Gly	Leu	Leu 345	Leu	Arg	Ala	Leu	Gln 350	Pro	Leu
Glu	Glu	Gly 355	Glu	Asp	Glu	Glu	Lys 360	Val	Ser	His	Gln	Ala 365	Gly	Asp	His
Trp	Leu	Ile	Arg	Gly	Pro	Leu	Glu	Tyr	Val	Pro	Ser	Ala	Lys	Val	Glu

370	375	380
J / U	- · -	

Val Val Glu Glu Arg Gln Ala Ile Pro Leu Asp Glu Asn Glu Gly Ile 385 390 395 400

Tyr Val Gln Asp Val Lys Thr Gly Lys Val Arg Ala Val Ile Gly Ser

Thr Tyr Met Leu Thr Gln Asp Glu Val Leu Trp Glu Lys Glu Leu Pro 420 425 430

Pro Gly Val Glu Leu Leu Asn Lys Gly Gln Asp Pro Leu Ala Asp 435 440 445

Arg Gly Glu Lys Asp Thr Ala Lys Ser Leu Gln Pro Leu Ala Pro Arg 450 455 460

Asn Lys Thr Arg Val Val Ser Tyr Arg Val Pro His Asn Ala Ala Val 465 470 475 480

Gln Val Tyr Asp Tyr Arg Glu Lys Arg Ala Arg Val Val Phe Gly Pro 485 490 495

Glu Leu Val Ser Leu Gly Pro Glu Glu Gln Phe Thr Val Leu Ser Leu 500 505 510

Ser Ala Gly Arg Pro Lys Arg Pro His Ala Arg Arg Ala Leu Cys Leu 515 520 525

Leu Leu Gly Pro Asp Phe Phe Thr Asp Val Ile Thr Ile Glu Thr Ala 530 535 540

Asp His Ala Arg Leu Gln Leu Gln Leu Ala Tyr Asn Trp His Phe Glu 545 550 555 560

Val Asn Asp Arg Lys Asp Pro Gln Glu Thr Ala Lys Leu Phe Ser Val 565 570 575

Pro Asp Phe Val Gly Asp Ala Cys Lys Ala Ile Ala Ser Arg Val Arg 580 585 590

Gly Ala Val Ala Ser Val Thr Phe Asp Asp Phe His Lys Asn Ser Ala 595 600 605

Arg Ile Ile Arg Thr Ala Val Phe Gly Phe Glu Thr Ser Glu Ala Lys 610 615 620

- Gly Pro Asp Gly Met Ala Leu Pro Arg Pro Arg Asp Gln Ala Val Phe 625 630 635 640
- Pro Gln Asn Gly Leu Val Val Ser Ser Val Asp Val Gln Ser Val Glu 645 650 655
- Pro Val Asp Gln Arg Thr Arg Asp Ala Leu Gln Arg Ser Val Gln Leu 660 665 670
- Ala Ile Glu Ile Thr Thr Asn Ser Gln Glu Ala Ala Ala Lys His Glu 675 680 685
- Ala Gln Arg Leu Glu Gln Glu Ala Arg Gly Arg Leu Glu Arg Gln Lys 690 695 700
- Ile Leu Asp Gln Ser Glu Ala Glu Lys Ala Arg Lys Glu Leu Leu Glu 705 710 715 720
- Leu Glu Ala Leu Ser Met Ala Val Glu Ser Thr Gly Thr Ala Lys Ala 725 730 735
- Glu Ala Glu Ser Arg Ala Glu Ala Ala Arg Ile Glu Gly Glu Gly Ser
 740 745 750
- Val Leu Gln Ala Lys Leu Lys Ala Gln Ala Leu Ala Ile Glu Thr Glu 755 760 765
- Ala Glu Leu Gln Arg Val Gln Lys Val Arg Glu Leu Glu Leu Val Tyr 770 775 780
- Ala Arg Ala Gln Leu Glu Leu Glu Val Ser Lys Ala Gln Gln Leu Ala 785 790 795 800
- Glu Val Glu Val Lys Lys Phe Lys Gln Met Thr Glu Ala Ile Gly Pro 805 810 815
- Ser Thr Ile Arg Asp Leu Ala Val Ala Gly Pro Glu Met Gln Val Lys 820 825 830
- Leu Leu Gln Ser Leu Gly Leu Lys Ser Thr Leu Ile Thr Asp Gly Ser 835 840 845

Thr Pro Ile Asn Leu Phe Asn Thr Ala Phe Gly Leu Leu Gly Met Gly 850 855 860

Pro Glu Gly Gln Pro Leu Gly Arg Arg Val Ala Ser Gly Pro Ser Pro 865 870 875 880

Gly Glu Gly Ile Ser Pro Gln Ser Ala Gln Ala Pro Gln Ala Pro Gly 885 890 895

Asp Asn His Val Val Pro Val Leu Arg 900 905

<210> 17

<211> 2718

<212> DNA

<213> Artificial Sequence

<220>

<223> synthesized and Homo sapines

<400> 17 atggcaggct gcggttgtcc atgcggttgt ggcgccatgg caactgaaga gttcatcatc 60 cgcatcccc cataccacta tatccatgtg ctggaccaga acagcaacgt gtcccgtgtg 120 gaggtcgggc caaagaccta catccggcag gacaatgaga gggtactgtt tgcccccatg 180 cgcatggtga ccgtcccccc acgtcactac tgcacagtgg ccaaccctgt gtctcgggat 240 gcccagggct tggtgctgtt tgatgtcaca gggcaagttc ggcttcgcca cgctgacctc 300 360 gagatccggc tggcccagga ccccttcccc ctgtacccag gggaggtgct ggaaaaggac atcacacccc tgcaggtggt tctgcccaac actgccctcc atctaaaggc gctgcttgat 420 480 tttgaggata aagatggaga caaggtggtg gcaggagatg agtggctttt cgagggacct ggcacgtaca tececeggaa ggaagtggag gtegtggaga teatteagge caccateate 540 aggcagaacc aggctctgcg gctcagggcc cgcaaggagt gctgggaccg ggacggcaag 600 gagagggtga caggggaaga atggctggtc accacagtag gggcgtacct cccagcggtg 660 720 tttgaggagg ttctggattt ggtggacgcc gtcatcctta cggaaaagac agccctgcac ctccgggctc ggcggaactt ccgggacttc aggggagtgt cccgccgcac tggggaggag 780 tggctggtaa cagtgcagga cacagaggcc cacgtgccag atgtccacga ggaggtgctg 840 900 ggggttgtgc ccatcaccac cctgggcccc cacaactact gcgtgattct cgaccctgtc

ggaccggatg gcaagaatca gctggggcag aagcgcgtgg tcaagggaga gaagtctttt

960

ttcctccagc	caggagagca	gctggaacaa	ggcatccagg	atgtgtatgt	gctgtcggag	1020
cagcaggggc	tgctgctgag	ggccctgcag	cccctggagg	agggggagga	tgaggagaag	1080
gtctcacacc	aggctgggga	ccactggctc	atccgcggac	ccctggagta	tgtgccatct	1140
gccaaagtgg	aggtggtgga	ggagcgccag	gccatccctc	tagacgagaa	cgagggcatc	1200
tatgtgcagg	atgtcaagac	cggaaaggtg	cgcgctgtga	ttggaagcac	ctacatgctg	1260
acccaggacg	aagtcctgtg	ggagaaagag	ctgcctcccg	gggtggagga	gctgctgaac	1320
aaggggcagg	accctctggc	agacaggggt	gagaaggaca	cagctaagag	cctccagccc	1380
ttggcgcccc	ggaacaagac	ccgtgtggtc	agctaccgcg	tgccccacaa	cgctgcggtg	1440
caggtgtacg	actaccgaga	gaagcgagcc	cgcgtggtct	tcgggcctga	gctggtgtcg	1500
ctgggtcctg	aggagcagtt	cacagtgttg	tccctctcag	ctgggcggcc	caagcgtccc	1560
catgcccgcc	gtgcgctctg	cctgctgctg	gggcctgact	tcttcacaga	cgtcatcacc	1620
atcgaaacgg	cggatcatgc	caggctgcaa	ctgcagctgg	cctacaactg	gcactttgag	1680
gtgaatgacc	ggaaggaccc	ccaagagacg	gccaagctct	tttcagtgcc	agactttgta	1740
ggtgatgcct	gcaaagccat	cgcatcccgg	gtgcgggggg	ccgtggcctc	tgtcactttc	1800
gatgacttcc	ataagaactc	agcccgcatc	attcgcactg	ctgtctttgg	ctttgagacc	1860
tcggaagcga	agggccccga	tggcatggcc	ctgcccaggc	cccgggacca	ggctgtcttc	1920
ccccaaaacg	ggctggtggt	cagcagtgtg	gacgtgcagt	cagtggagcc	tgtggatcag	1980
aggacccggg	acgccctgca	acgcagcgtc	cagctggcca	tcgagatcac	caccaactcc	2040
caggaagcgg	cggccaagca	tgaggctcag	agactggagc	aggaagcccg	cggccggctt	2100
gagcggcaga	agateetgga	ccagtcagaa	gccgagaaag	ctcgcaagga	acttttggag	2160
ctggaggctc	tgagcatggc	cgtggagagc	accgggactg	ccaaggcgga	ggccgagtcc	2220
cgtgcggagg	cagcccggat	tgagggagaa	gggtccgtgc	tgcaggccaa	gctaaaagca	2280
caggccttgg	ccattgaaac	ggaggctgag	ctccagaggg	tccagaaggt	ccgagagctg	2340
gaactggtct	atgcccgggc	ccagctggag	ctggaggtga	gcaaggctca	gcagctggct	2400
gaggtggagg	tgaagaagtt	caagcagatg	acagaggcca	taggccccag	caccatcagg	2460
gaccttgctg	tggctgggcc	tgagatgcag	gtaaaactgc	tccagtccct	gggcctgaaa	2520
tcaaccctca	tcaccgatgg	ctccactccc	atcaacctct	tcaacacagc	ctttgggctg	2580
ctggggatgg	ggcccgaggg	tcagcccctg	ggcagaaggg	tggccagtgg	gcccagccct	2640
ggggaggga	tatcccccca	gtctgctcag	gccctcaag	ctcctggaga	caaccacgtg	2700

2718

gtgcctgtac tgcgctaa

<210> 18

<211> 873 <212> PRT

<213> Artificial Sequence

<223> synthesized and Rattus norvegicus

<400> 18

Met Ala Gly Cys Gly Cys Pro Cys Gly Cys Gly Ala Met Ala Thr Glu 5 10

Glu Ala Ile Ile Arg Ile Pro Pro Tyr His Tyr Ile His Val Leu Asp 20 25

Gln Asn Ser Asn Val Ser Arg Val Glu Val Gly Pro Lys Thr Tyr Ile

Arg Gln Asp Asn Glu Arg Val Leu Phe Ala Pro Val Arg Met Val Thr 55

Val Pro Pro Arg His Tyr Cys Ile Val Ala Asn Pro Val Ser Arg Asp 70 75 65

Thr Gln Ser Ser Val Leu Phe Asp Ile Thr Gly Gln Val Arg Leu Arg 85 90

His Ala Asp Gln Glu Ile Arg Leu Ala Gln Asp Pro Phe Pro Leu Tyr 105 100

Pro Gly Glu Val Leu Glu Lys Asp Ile Thr Pro Leu Gln Val Val Leu 120 115

Pro Asn Thr Ala Leu His Leu Lys Ala Leu Leu Asp Phe Glu Asp Lys 135

Asn Gly Asp Lys Val Met Ala Gly Asp Glu Trp Leu Phe Glu Gly Pro 155

Gly Thr Tyr Ile Pro Gln Lys Glu Val Glu Val Val Glu Ile Ile Gln 170 165

Ala Thr Val Ile Lys Gln Asn Gln Ala Leu Arg Leu Arg Ala Arg Lys

180 185 190

Glu Cys Phe Asp Arg Glu Gly Lys Gly Arg Val Thr Gly Glu Glu Trp 195 200 205

Leu Val Arg Ser Val Gly Ala Tyr Leu Pro Ala Val Phe Glu Glu Val 210 215 220

Leu Asp Leu Val Asp Ala Val Ile Leu Thr Glu Lys Thr Ala Leu His 225 230 235 240

Leu Arg Ala Leu Gln Asn Phe Arg Asp Leu Arg Gly Val Leu His Arg 245 250 255

Thr Gly Glu Glu Trp Leu Val Thr Val Gln Asp Thr Glu Ala His Val 260 265 270

Pro Asp Val Tyr Glu Glu Val Leu Gly Val Val Pro Ile Thr Thr Leu 275 280 285

Gly Pro Arg His Tyr Cys Val Ile Leu Asp Pro Met Gly Pro Asp Gly 290 295 300

Lys Asn Gln Leu Gly Gln Lys Arg Val Val Lys Gly Glu Lys Ser Phe 305 310 315 320

Phe Leu Gln Pro Gly Glu Arg Leu Glu Arg Gly Ile Gln Asp Val Tyr 325 330 335

Val Leu Ser Glu Gln Gln Gly Leu Leu Leu Lys Ala Leu Gln Pro Leu 340 345 350

Glu Glu Gly Glu Ser Glu Glu Lys Val Ser His Gln Ala Gly Asp Cys 355 360 365

Trp Leu Ile Arg Gly Pro Leu Glu Tyr Val Pro Ser Ala Lys Val Glu 370 375 380

Val Val Glu Glu Arg Gln Ala Ile Pro Leu Asp Gln Asn Glu Gly Ile 385 390 395 400

Tyr Val Gln Asp Val Lys Thr Gly Lys Val Arg Ala Val Ile Gly Ser 405 410 415

(

Thr Tyr Met Leu Thr Gln Asp Glu Val Leu Trp Glu Lys Glu Leu Pro 420 425 430

Ser Gly Val Glu Leu Leu Asn Leu Gly His Asp Pro Leu Ala Asp 435 440 445

Arg Gly Gln Lys Gly Thr Ala Lys Pro Leu Gln Pro Ser Ala Pro Arg 450 455 460

Asn Lys Thr Arg Val Val Ser Tyr Arg Val Pro His Asn Ala Ala Val 465 470 475 480

Gln Val Tyr Asp Tyr Arg Ala Lys Arg Ala Arg Val Val Phe Gly Pro 485 490 495

Glu Leu Val Thr Leu Asp Pro Glu Glu Gln Phe Thr Val Leu Ser Leu 500 505 510

Ser Ala Gly Arg Pro Lys Arg Pro His Ala Arg Arg Ala Leu Cys Leu 515 520 525

Leu Leu Gly Pro Asp Phe Phe Thr Asp Val Ile Thr Ile Glu Thr Ala 530 535 540

Asp His Ala Arg Leu Gln Leu Gln Leu Ala Tyr Asn Trp His Phe Glu 545 550 555 560

Leu Lys Asn Arg Asn Asp Pro Ala Glu Ala Ala Lys Leu Phe Ser Val 565 570 575

Pro Asp Phe Val Gly Asp Ala Cys Lys Ala Ile Ala Ser Arg Val Arg 580 585 590

Gly Ala Val Ala Ser Val Thr Phe Asp Asp Phe His Lys Asn Ser Ala 595 600 605

Arg Ile Ile Arg Met Ala Val Phe Gly Phe Glu Met Ser Glu Asp Thr 610 615 620

Gly Pro Asp Gly Thr Leu Leu Pro Lys Ala Arg Asp Gln Ala Val Phe 625 630 635 640

Pro Gln Asn Gly Leu Val Val Ser Ser Val Asp Val Gln Ser Val Glu 645 650 655

Pro Val Asp Gln Arg Thr Arg Asp Ala Leu Gln Arg Ser Val Gln Leu 660 665 670

Ala Ile Glu Ile Thr Thr Asn Ser Gln Glu Ala Ala Ala Lys His Glu 675 680 685

Ala Gln Arg Leu Glu Gln Glu Ala Arg Gly Arg Leu Glu Arg Gln Lys
690 695 700

Ile Leu Asp Gln Ser Glu Ala Glu Lys Ala Arg Lys Glu Leu Leu Glu 705 710 715 720

Leu Glu Ala Met Ser Met Ala Val Glu Ser Thr Gly Asn Ala Lys Ala 725 730 735

Glu Ala Glu Ser Arg Ala Glu Ala Ala Arg Ile Glu Gly Glu Gly Ser 740 745 750

Val Leu Gln Ala Lys Leu Lys Ala Gln Ala Leu Ala Ile Glu Thr Glu
755 760 765

Ala Glu Leu Glu Arg Val Lys Lys Val Arg Glu Met Glu Leu Ile Tyr 770 780

Ala Arg Ala Gln Leu Glu Leu Glu Val Ser Lys Ala Gln Gln Leu Ala 785 790 795 800

Asn Val Glu Ala Lys Lys Phe Lys Glu Met Thr Glu Ala Leu Gly Pro 805 810 815

Gly Thr Ile Arg Asp Leu Ala Val Ala Gly Pro Glu Met Gln Val Lys 820 825 830

Leu Leu Gln Ser Leu Gly Leu Lys Ser Thr Leu Ile Thr Asp Gly Ser 835 840 845

Ser Pro Ile Asn Leu Phe Ser Thr Ala Phe Gly Leu Leu Gly Leu Gly 850 855 860

Ser Asp Gly Gln Pro Pro Ala Gln Lys 865 870 '

<210> 19

<211> 2622

<212> DNA

<213> Artificial Sequence

<220>

<223> synthesized and Rattus norvegicus

<400> 19

atggcaggct gcggttgtcc atgcggttgt ggcgccatgg caactgaaga ggccatcatc 60 cgcatccccc cataccacta catccatgtg ctggaccaga acagtaatgt gtcccgtgtg 120 gaggttggac caaagaccta catcoggcag gacaatgaga gggtactgtt tgccccagtt 180 cgcatggtga ccgtccccc acgccactac tgcatagtgg ccaaccctgt gtcccgggac 240 acccagagtt ctgtgttatt tgacatcaca ggacaagtcc gactccggca cgctgaccag 300 gagatccgac tagcccagga ccccttcccc ctgtatccag gggaggtgct ggaaaaggac 360 atcaccccac tgcaggtggt tctgcccaac acagcactgc atcttaaggc gttgctggac 420 480 tttgaggata agaatggaga caaggtcatg gcaggagacg agtggctatt tgagggacct 540 ggcacctaca tcccacagaa ggaagtggaa gtcgtggaga tcattcaggc cacagtcatc 600 aaacagaacc aagcactgog gctaagggcc cgaaaggagt gctttgaccg ggagggcaag gggcgcgtga caggtgagga gtggctggtc cgatccgtgg gggcttacct cccagctgtc 660 tttgaagagg tgctggatct ggtggatgct gtgatcctta cagaaaagac tgccctgcac 720 ctccgggctc tgcagaactt cagggacctt cggggagtgc tccaccgcac cggggaggaa 780 tggttagtga cagtgcagga cacagaagcc catgttccag atgtctatga ggaggtgctt 840 ggggtagtac ccatcaccac cctgggacct cgacactact gtgtcattct tgacccaatg 900 ggaccagacg gcaagaacca gctgggacaa aagcgtgttg tcaagggaga gaagtccttt 960 ttcctccagc caggagagag gctggagcga ggcatccagg atgtgtatgt gctgtcagag 1020 cagcaggggc tgctactgaa ggcactgcag cccctggagg agggagagag cgaggagaag 1080 gteteceate aggeoggaga etgetggete ateogtggge ecetggagta tgtgecatet 1140 gcaaaagtgg aggtggtgga ggagcgtcag gctatccctc tggaccaaaa tgagggcatc 1200 tatgtgcagg atgtcaagac ggggaaggtg cgggctgtga ttggaagcac ctacatgctg 1260 actcaggatg aagtcctgtg ggaaaaggag ctgccttctg gggtggagga gctgctgaac 1320 ttggggcatg accetetgge agacaggggt cagaagggca cagecaagee cetteageee 1380 tcagctccaa ggaacaagac ccgagtggtc agctaccgtg tcccgcacaa tgcagcggtg 1440 caggtctatg actacagagc caagagagcc cgtgtggtct ttgggcccga gctagtgaca 1500

ctggatectg aggageagtt caeagtattg teeetttetg eegggegaee caagegteet 1560 catgcccgcc gtgcactctg cctactgctg ggacctgatt tctttactga tgtcatcacc 1620 atcgaaactg cagatcatgc caggttgcag ctgcagcttg cctacaactg gcactttgaa 1680 ctgaagaacc ggaatgaccc tgcagaggca gccaagcttt tctccgtgcc tgacttcgtg 1740 ggtgacgcct gcaaggccat tgcatcccga gtccgggggg ctgtagcctc tgtcaccttt 1800 gatgacttcc ataaaaactc agcccggatc attcgaatgg ctgtttttgg ctttgagatg 1860 1920 totgaagaca caggtootga tggcacacto otgoccaagg otogagacca ggcagtottt ccccaaaacg ggctggtagt cagcagtgtg gatgtgcagt cagtggagcc cgtggaccag 1980 aggacccggg atgcccttca gcgcagcgtt cagctggcca tcgaaattac caccaactcc 2040 caggaggcag cagccaagca cgaggctcag agactggaac aggaagcccg tggtcggctt 2100 2160 gagaggcaga agatettgga ecagteagaa getgaaaaaag eeegcaagga actettggag cttgaggcta tgagcatggc tgtggagagc acgggtaatg ccaaagcaga ggctgagtcc 2220 cgtgcagagg cagcgaggat cgaaggagaa ggctctgtgc tgcaggccaa gctcaaggca 2280 caggogotag ccattgagac ggaggotgag ttggagogag taaagaaagt acgagagatg 2340 gaactgatct atgcccgggc ccagttggag ctggaggtga gcaaggcgca gcagcttgcc 2400 aatgtggagg caaagaagtt caaggagatg acagaggcac tgggccccgg caccatcagg 2460 gacctggctg tggccgggcc agagatgcag gtgaaacttc tccagtccct gggcctgaaa 2520 tccactctca tcaccgatgg ctcgtctccc atcaacctct tcagcacagc cttcgggttg 2580 2622 ctggggctgg ggtctgatgg tcagccgcca gcacagaagt ga

```
<210> 20
```

<220>

<223> completely synthesized

<400> 20.

Met Gly Ser Ser His His His His His Ser Ser Gly Leu Val Pro 1 5 10 15

Arg Gly Ser His Met Ala Ser Met Thr Gly Gly Gln Gln Pro Trp
20 25 30

<210> 21

<21,1> 31

<212> PRT

<213> Artificial Sequence

```
<211> 89
<212> DNA
<213> Artificial Sequence
<220>
<223> completely synthesized
<400> 21
atgggcagca gccatcatca tcatcatcac agcagcggcc tggtgccgcg cggcagccat
                                                        60
                                                         89
atggctagca tgactggtgg acagcaacc
<210> 22
<211> 17
<212> PRT
<213> Artificial Sequence
<220>
<223> completely synthesized
<400> 22
Pro
<210> 23
<211> 51
<212> DNA
<213> Artificial Sequence
<220>
<223> completely synthesized
<400> 23
51
<210> 24
<211> 923
<212> PRT
<213> Artificial Sequence
<220>
<223> synthesized and Homo sapiens
<400> 24
Met Gly Ser Ser His His His His His Ser Ser Gly Leu Val Pro
             5
```

Arg Gly Ser His Met Ala Ser Met Thr Gly Gly Gln Gln Pro Met Ala

20 25 30

Thr Glu Glu Phe Ile Ile Arg Ile Pro Pro Tyr His Tyr Ile His Val 35 40 45

Leu Asp Gln Asn Ser Asn Val Ser Arg Val Glu Val Gly Pro Lys Thr
50 55 60

Tyr Ile Arg Gln Asp Asn Glu Arg Val Leu Phe Ala Pro Met Arg Met 65 70 75 80

Val Thr Val Pro Pro Arg His Tyr Cys Thr Val Ala Asn Pro Val Ser 85 90 95

Arg Asp Ala Gln Gly Leu Val Leu Phe Asp Val Thr Gly Gln Val Arg
100 105 110

Leu Arg His Ala Asp Leu Glu Ile Arg Leu Ala Gln Asp Pro Phe Pro 115 120 125

Leu Tyr Pro Gly Glu Val Leu Glu Lys Asp Ile Thr Pro Leu Gln Val 130 135 140

Val Leu Pro Asn Thr Ala Leu His Leu Lys Ala Leu Leu Asp Phe Glu 145 150 155 160

Asp Lys Asp Gly Asp Lys Val Val Ala Gly Asp Glu Trp Leu Phe Glu 165 170 175

Gly Pro Gly Thr Tyr Ile Pro Arg Lys Glu Val Glu Val Glu Ile 180 185 190

Ile Gln Ala Thr Ile Ile Arg Gln Asn Gln Ala Leu Arg Leu Arg Ala 195 200 205

Arg Lys Glu Cys Trp Asp Arg Asp Gly Lys Glu Arg Val Thr Gly Glu 210 215 220

Glu Trp Leu Val Thr Thr Val Gly Ala Tyr Leu Pro Ala Val Phe Glu 225 230 235 240

Glu Val Leu Asp Leu Val Asp Ala Val Ile Leu Thr Glu Lys Thr Ala 245 250 255

Leu His Leu Arg Ala Arg Arg Asn Phe Arg Asp Phe Arg Gly Val Ser 260 265 270

- Arg Arg Thr Gly Glu Glu Trp Leu Val Thr Val Gln Asp Thr Glu Ala 275 280 285
- His Val Pro Asp Val His Glu Glu Val Leu Gly Val Val Pro Ile Thr 290 295 300
- Thr Leu Gly Pro His Asn Tyr Cys Val Ile Leu Asp Pro Val Gly Pro 305 310 315 320
- Asp Gly Lys Asn Gln Leu Gly Gln Lys Arg Val Val Lys Gly Glu Lys 325 330 335
- Ser Phe Phe Leu Gln Pro Gly Glu Gln Leu Glu Gln Gly Ile Gln Asp 340 345 350
- Val Tyr Val Leu Ser Glu Gln Gln Gly Leu Leu Leu Arg Ala Leu Gln 355 360 365
- Pro Leu Glu Glu Glu Glu Asp Glu Glu Lys Val Ser His Gln Ala Gly 370 375 380
- Asp His Trp Leu Ile Arg Gly Pro Leu Glu Tyr Val Pro Ser Ala Lys 385 390 395 400
- Val Glu Val Val Glu Glu Arg Gln Ala Ile Pro Leu Asp Glu Asn Glu 405 410 415
- Gly Ile Tyr Val Gln Asp Val Lys Thr Gly Lys Val Arg Ala Val Ile 420 425 430
- Gly Ser Thr Tyr Met Leu Thr Gln Asp Glu Val Leu Trp Glu Lys Glu 435 440 445
- Leu Pro Pro Gly Val Glu Glu Leu Leu Asn Lys Gly Gln Asp Pro Leu 450 455 460
- Ala Asp Arg Gly Glu Lys Asp Thr Ala Lys Ser Leu Gln Pro Leu Ala 465 470 475 480
- Pro Arg Asn Lys Thr Arg Val Val Ser Tyr Arg Val Pro His Asn Ala 485 490 495

Ala	Val	Gln	Val 500	Tyr	Asp	Tyr	Arg	Glu 505	ГÀв	Arg	Ala	Arg	Val 510	Val	Phe
Gly	Pro	Glu 515	Leu	Val	Ser	Leu	Gly 520	Pro	Glu	Glu	Gln	Phe 525	Thr	Val	Leu
Ser	Leu 530	Ser	Ala	Gly	Arg	Pro 535	Lys	Arg	Pro	His	Ala 540	Arg	Arg	Ala	Leu
Cys 545	Leu	Leu	Leu	Gly	Pro 550	Asp	Phe	Phe	Thr	Дар 555	Val	Ile	Thr	Ile	Glu 560
Thr	Ala	Asp	His	Ala 565	Arg	Leu	Gln	Leu	Gln 570		Ala	Tyr	Asn	Trp 575	His
Phe	Glu	Val	Asn 580	Asp	Arg	Lys	Asp	Pro 585	Gln	Glu	Thr	Ala	Ъу в 590	Leu	Phe
Ser	Val	Pro 595	Asp	Phe	Val	Gly	Asp 600	Ala	Сув	Lys	Ala	Ile 605	Ala	Ser	Arg
Val	Arg 610	Gly	Ala	Val	Ala	Ser 615	Val	Thr	Phe	Asp	Asp 620	Phe	His	Lys	Asn
Ser 625	Ala	Arg	Ile	Ile	Arg 630	Thr	Ala	Val	Phe	Gly 635	Phe	Glu	Thr	Ser	Glu 640
Ala	Lys	Gly	Pro	Asp 645	Gly	Met	Ala	Leu	Pro 650	Arg	Pro	Arg	Asp	Gln 655	Ala
Val	Phe	Pro	Gln 660	Asn	Gly	Leu	Val	Val 665	Ser	Ser	Val	Asp	Val 670	Gln	Ser
Val	Glu	Pro 675	Val	Asp	Gln	Arg	Thr 680	Arg	Asp	Ala	Leu	Gln 685	Arg	Ser	Val
Gln	Leu 690	Ala	Ile	Glu	Ile	Thr 695	Thr	Asn	Ser	Gln	Glu 700	Ala	Ala	Ala	Lys
His 705	Glu	Ala	Gln	Arg	Leu 710	Glu	Gln	Glu	Ala	Arg 715	Gly	Arg	Leu	Glu	Arg 720
Gln	Lys	Ile	Leu	Asp	Gln	Ser	Glu	Ala	Glu	Lys	Ala	Arg	Lys	Glu	Leu

725 730 735

Leu Glu Leu Glu Ala Leu Ser Met Ala Val Glu Ser Thr Gly Thr Ala 740 745 750

Lys Ala Glu Ala Glu Ser Arg Ala Glu Ala Ala Arg Ile Glu Gly Glu 755 760 765

Gly Ser Val Leu Gln Ala Lys Leu Lys Ala Gln Ala Leu Ala Ile Glu
770 775 780

Thr Glu Ala Glu Leu Gln Arg Val Gln Lys Val Arg Glu Leu Glu Leu 785 790 795 800

Val Tyr Ala Arg Ala Gln Leu Glu Leu Glu Val Ser Lys Ala Gln Gln 805 810 815

Leu Ala Glu Val Glu Val Lys Lys Phe Lys Gln Met Thr Glu Ala Ile 820 825 830

Gly Pro Ser Thr Ile Arg Asp Leu Ala Val Ala Gly Pro Glu Met Gln 835 840 845

Val Lys Leu Leu Gln Ser Leu Gly Leu Lys Ser Thr Leu Ile Thr Asp 850 855 860

Gly Ser Thr Pro Ile Asn Leu Phe Asn Thr Ala Phe Gly Leu Leu Gly 865 870 875 880

Met Gly Pro Glu Gly Gln Pro Leu Gly Arg Arg Val Ala Ser Gly Pro 885 890 895

Ser Pro Gly Glu Gly Ile Ser Pro Gln Ser Ala Gln Ala Pro Gln Ala 900 905 910

Pro Gly Asp Asn His Val Val Pro Val Leu Arg 915 920

<210> 25

<211> 2772

<212> DNA

<213> Artificial Sequence

220>

<223> synthesized and Homo sapiens

<400> 25 60 atgggcagca gccatcatca tcatcatcac agcagcggcc tggtgccgcg cggcagccat atggctagca tgactggtgg acagcaaccc atggcaactg aagagttcat catccgcatc 120 180 cccccatacc actatatcca tgtgctggac cagaacagca acgtgtcccg tgtggaggtc gggccaaaga cctacatccg gcaggacaat gagagggtac tgtttgcccc catgcgcatg 240 300 gtgaccgtcc ccccacgtca ctactgcaca gtggccaacc ctgtgtctcg ggatgcccag 360 ggcttggtgc tgtttgatgt cacagggcaa gttcggcttc gccacgctga cctcgagatc cggctggccc aggacccctt ccccctgtac ccaggggagg tgctggaaaa ggacatcaca 420 480 cccctgcagg tggttctgcc caacactgcc ctccatctaa aggcgctgct tgattttgag gataaagatg gagacaaggt ggtggcagga gatgagtggc ttttcgaggg acctggcacg 540 600 tacatccccc ggaaggaagt ggaggtcgtg gagatcattc aggccaccat catcaggcag aaccaggete tgeggeteag ggeeegeaag gagtgetggg accgggaegg caaggagagg 660 720 gtgacagggg aagaatggct ggtcaccaca gtaggggcgt acctcccagc ggtgtttgag gaggttctgg atttggtgga cgccgtcatc cttacggaaa agacagccct gcacctccgg 780 geteggegga aetteeggga etteagggga gtgteeegee geaetgggga ggagtggetg 840 gtaacagtgc aggacacaga ggcccacgtg ccagatgtcc acgaggaggt gctgggggtt 900 gtgcccatca ccaccctggg cccccacaac tactgcgtga ttctcgaccc tgtcggaccg 960 gatggcaaga atcagctggg gcagaagcgc gtggtcaagg gagagaagtc tttttcctc 1020 cagccaggag agcagctgga acaaggcatc caggatgtgt atgtgctgtc ggagcagcag 1080 1140 gggctgctgc tgagggccct gcagcccctg gaggaggggg aggatgagga gaaggtctca caccaggetg gggaccactg geteateege ggacceetgg agtatgtgee atetgeeaaa 1200 1260 gtggaggtgg tggaggagcg ccaggccatc cctctagacg agaacgaggg catctatgtg 1320 caggatgtca agaccggaaa ggtgcgcgct gtgattggaa gcacctacat gctgacccag 1380 gacgaagtcc tgtgggagaa agagctgcct cccggggtgg aggagctgct gaacaagggg caggaccete tggcagacag gggtgagaag gacacageta agageeteca geeettggeg 1440 ccccggaaca agacccgtgt ggtcagctac cgcgtgcccc acaacgctgc ggtgcaggtg 1500 tacgactacc gagagaagcg agcccgcgtg gtcttcgggc ctgagctggt gtcgctgggt 1560 cctgaggagc agttcacagt gttgtccctc tcagctgggc ggcccaagcg tccccatgcc 1620 cgccgtgcgc tctgcctgct gctggggcct gacttcttca cagacgtcat caccatcgaa 1680 acggcggatc atgccaggct gcaactgcag ctggcctaca actggcactt tgaggtgaat 1740

PCT/US2004/007434 WO 2004/081533

gaccggaagg	acccccaaga	gacggccaag	ctcttttcag	tgccagactt	tgtaggtgat	1800
gcctgcaaag	ccatcgcatc	ccgggtgcgg	ggggccgtgg	cctctgtcac	tttcgatgac	1860
ttccataaga	actcagcccg	catcattcgc	actgctgtct	ttggctttga	gacctcggaa	1920
gcgaagggcc	ccgatggcat	ggccctgccc	aggccccggg	accaggctgt	cttcccccaa	1980
aacgggctgg	tggtcagcag	tgtggacgtg	cagtcagtgg	agcctgtgga	tcagaggacc	2040
cgggacgccc	tgcaacgcag	cgtccagctg	gccatcgaga	tcaccaccaa	ctcccaggaa	2100
gcggcggcca	agcatgaggc	tcagagactg	gagcaggaag	cccgcggccg	gcttgagcgg	2160
cagaagatcc	tggaccagtc	agaagccgag	aaagctcgca	aggaactttt	ggagctggag	2220
gctctgagca	tggccgtgga	gagcaccggg	actgccaagg	cggaggccga	gtcccgtgcg	2280
gaggcagccc	ggattgaggg	agaagggtcc	gtgctgcagg	ccaagctaaa	agcacaggcc	2340
ttggccattg	aaacggaggc	tgagctccag	agggtccaga	aggtccgaga	gctggaactg	2400
gtctatgccc	gggcccagct	ggagctggag	gtgagcaagg	ctcagcagct	ggctgaggtg	2460
gaggtgaaga	agttcaagca	gatgacagag	gccataggcc	ccagcaccat	cagggacctt	2520
gctgtggctg	ggcctgagat	gcaggtaaaa	ctgctccagt	ccctgggcct	gaaatcaacc	2580
ctcatcaccg	atggctccac	t.cccatcaac	ctcttcaaca	. cagcctttgg	gctgctgggg	2640
atggggcccg	agggtcagcc	cctgggcaga	agggtggcca	gtgggcccag	ccctggggag	2700
gggatatccc	cccagtctgc	tcaggcccct	caageteetg	gagacaacca	cgtggtgcct	2760
gtactgcgct	aa					2772

<210> 26 <211> 910 <212> PRT

<213> Artificial Sequence

<220>

<223> synthesized and Homo sapiens

<400> 26

5

Pro Met Ala Thr Glu Glu Phe Ile Ile Arg Ile Pro Pro Tyr His Tyr 25 20

Ile His Val Leu Asp Gln Asn Ser Asn Val Ser Arg Val Glu Val Gly 40 45 35

Pro Lys Thr Tyr Ile Arg Gln Asp Asn Glu Arg Val Leu Phe Ala Pro 50 55 60

- Met Arg Met Val Thr Val Pro Pro Arg His Tyr Cys Thr Val Ala Asn 65 70 75 80
- Pro Val Ser Arg Asp Ala Gln Gly Leu Val Leu Phe Asp Val Thr Gly 85 90 95
- Gln Val Arg Leu Arg His Ala Asp Leu Glu Ile Arg Leu Ala Gln Asp 100 105 110
- Pro Phe Pro Leu Tyr Pro Gly Glu Val Leu Glu Lys Asp Ile Thr Pro 115 120 125
- Leu Gln Val Val Leu Pro Asn Thr Ala Leu His Leu Lys Ala Leu Leu 130 135 140
- Asp Phe Glu Asp Lys Asp Gly Asp Lys Val Val Ala Gly Asp Glu Trp 145 150 155 160
- Leu Phe Glu Gly Pro Gly Thr Tyr Ile Pro Arg Lys Glu Val Glu Val
 165 170 175
- Val Glu Ile Ile Gln Ala Thr Ile Ile Arg Gln Asn Gln Ala Leu Arg 180 185 190
- Leu Arg Ala Arg Lys Glu Cys Trp Asp Arg Asp Gly Lys Glu Arg Val 195 200 205
- Thr Gly Glu Glu Trp Leu Val Thr Thr Val Gly Ala Tyr Leu Pro Ala 210 215 220
- Val Phe Glu Glu Val Leu Asp Leu Val Asp Ala Val Ile Leu Thr Glu 225 230 235 240
- Lys Thr Ala Leu His Leu Arg Ala Arg Arg Asn Phe Arg Asp Phe Arg 245 250 255
- Gly Val Ser Arg Arg Thr Gly Glu Glu Trp Leu Val Thr Val Gln Asp 260 265 270
- Thr Glu Ala His Val Pro Asp Val His Glu Glu Val Leu Gly Val Val
 275 280 285

Pro Ile Thr Thr Leu Gly Pro His Asn Tyr Cys Val Ile Leu Asp Pro 290 295 300

- Val Gly Pro Asp Gly Lys Asn Gln Leu Gly Gln Lys Arg Val Val Lys 305 310 315 320
- Gly Glu Lys Ser Phe Phe Leu Gln Pro Gly Glu Gln Leu Glu Gln Gly 325 330 335
- Ile Gln Asp Val Tyr Val Leu Ser Glu Gln Gln Gly Leu Leu Arg 340 345 350
- Ala Leu Gln Pro Leu Glu Glu Gly Glu Asp Glu Glu Lys Val Ser His 355 360 365
- Gln Ala Gly Asp His Trp Leu Ile Arg Gly Pro Leu Glu Tyr Val Pro 370 375 380
- Ser Ala Lys Val Glu Val Val Glu Glu Arg Gln Ala Ile Pro Leu Asp 385 390 395 400
- Glu Asn Glu Gly Ile Tyr Val Gln Asp Val Lys Thr Gly Lys Val Arg 405 410 415
- Ala Val Ile Gly Ser Thr Tyr Met Leu Thr Gln Asp Glu Val Leu Trp 420 . 425 430
- Glu Lys Glu Leu Pro Pro Gly Val Glu Glu Leu Leu Asn Lys Gly Gln 435 440 445
- Asp Pro Leu Ala Asp Arg Gly Glu Lys Asp Thr Ala Lys Ser Leu Gln 450 455 460
- Pro Leu Ala Pro Arg Asn Lys Thr Arg Val Val Ser Tyr Arg Val Pro 465 470 475 480
- His Asn Ala Ala Val Gln Val Tyr Asp Tyr Arg Glu Lys Arg Ala Arg 485 490 495
- Val Val Phe Gly Pro Glu Leu Val Ser Leu Gly Pro Glu Glu Gln Phe 500 505 510
- Thr Val Leu Ser Leu Ser Ala Gly Arg Pro Lys Arg Pro His Ala Arg

515 520 525

Arg Ala Leu Cys Leu Leu Cly Pro Asp Phe Phe Thr Asp Val Ile 530 535 540

Thr Ile Glu Thr Ala Asp His Ala Arg Leu Gln Leu Gln Leu Ala Tyr 545 550 555 560

Asn Trp His Phe Glu Val Asn Asp Arg Lys Asp Pro Gln Glu Thr Ala 565 570 575

Lys Leu Phe Ser Val Pro Asp Phe Val Gly Asp Ala Cys Lys Ala Ile 580 585 590

Ala Ser Arg Val Arg Gly Ala Val Ala Ser Val Thr Phe Asp Asp Phe 595 600 605

His Lys Asn Ser Ala Arg Ile Ile Arg Thr Ala Val Phe Gly Phe Glu 610 615 620

Thr Ser Glu Ala Lys Gly Pro Asp Gly Met Ala Leu Pro Arg Pro Arg 625 630 635 640

Asp Gln Ala Val Phe Pro Gln Asn Gly Leu Val Val Ser Ser Val Asp 645 650 655

Val Gln Ser Val Glu Pro Val Asp Gln Arg Thr Arg Asp Ala Leu Gln 660 665 670

Arg Ser Val Gln Leu Ala Ile Glu Ile Thr Thr Asn Ser Gln Glu Ala 675 680 685

Ala Ala Lys His Glu Ala Gln Arg Leu Glu Gln Glu Ala Arg Gly Arg 690 695 700

Leu Glu Arg Gln Lys Ile Leu Asp Gln Ser Glu Ala Glu Lys Ala Arg 705 710 715 720

Lys Glu Leu Leu Glu Leu Glu Ala Leu Ser Met Ala Val Glu Ser Thr
725 730 735

Gly Thr Ala Lys Ala Glu Ala Glu Ser Arg Ala Glu Ala Ala Arg Ile 740 745 750

Glu	Gly	Glu 755	Gly	Ser	Val	Leu	Gln 760	Ala	ГÀВ	Leu	Lys	Ala 765	Gln	Ala	Leu	
Ala	Ile 770	Glu	Thr	Glu	Ala	Glu 775	Leu	Gln	Arg	Val	Gln 780	ГÀв	Val	Arg	Glu	
Leu 785	Glu	Leu	Val	Tyr	Ala 790	Arg	Ala	Gln	Leu	Glu 795	Leu	Glu	Val	Ser	Lys 800	
Ala	Gln	Gln	Leu	Ala 805	Glu	Val	Glu	Val	Lys 810	Lys	Phe	Lys	Gln	Met 815	Thr	
Glu	Ala	Ile	Gly 820	Pro	Ser	Thr	Ile	Arg 825	Asp	Leu	Ala	Val	Ala 830	Gly	Pro	
Glu	Met	Gln 835	Val	Гуs	Leu	Leu	Gln 840	Ser	Leu	Gly	Leu	Lув 845	Ser	Thr	Leu	
Ile	Thr 850	Asp	Gly	Ser	Thr	Pro 855	Ile	Asn	Leu	Phe	Asn 860	Thr	Ala	Phe	Gly	
Leu 865	Leu	Gly	Met	Gly	Pro 870	Glu	Gly	Gln	Pro	Leu 875	Gly	Arg	Arg	Val	Ala 880	
Ser	Gly	Pro	Ser	Pro 885	Gly	Glu	Gly	Ile	Ser 890	Pro	Gln	Ser	Ala	Gln 895	Ala	
Pro	Gln	Ala	Pro 900	Gly	qaA	Asn	His	Val 905	Val	Pro	Val	Leu	Arg 910			
<210 <210 <210 <210	L> 2 2> I	27 2733 DNA Artii	ficia	al Se	equer	ıce										
<220 <223		syntl	nesia	zed a	and I	Iomo	sap	iens								
<400 atga		27 aga a	agaaç	gaaga	aa ga	aagaa	agaaq	g aag	gaaga	aaga	agaa	agaa	gcc (catg	gcaact	60
gaag	gagtt	ca t	cato	ccgca	at co	cccc	catao	c ca	ctata	atcc	atg	tget	gga (ccaga	aacagc	120
aac	gtgto	cc g	gtgtg	ggagg	gt c	gggc	caaaq	gac	ctaca	atcc	ggca	agga	caa	tgaga	agggta	180
ctgi	ttg	ccc o	ccato	gegea	at go	gtgad	ccgt	2 22	cca	cgtc	acta	actg	cac	agtg	gccaac	240
cct	gtgto	ctc s	gggat	gee	ca gg	ggctt	ggt	g ct	gttt	gatg	tca	cagg	gca	agtt	cggctt	300

egecaegetg	acctcgagat	ccggctggcc	caggacccct	tcccctgta	cccaggggag	360
gtgctggaaa	aggacatcac	acccctgcag	gtggttctgc	ccaacactgc	cctccatcta	420
aaggcgctgc	ttgattttga	ggataaagat	ggagacaagg	tggtggcagg	agatgagtgg	480
cttttcgagg	gacctggcac	gtacatcccc	cggaaggaag	tggaggtcgt	ggagatcatt	540
caggccacca	tcatcaggca	gaaccaggct	ctgcggctca	gggcccgcaa	ggagtgctgg	600
gaccgggacg	gcaaggagag	ggtgacaggg	gaagaatggc	tggtcaccac	agtaggggcg	660
tacctcccag	cggtgtttga	ggaggttctg	gatttggtgg	acgccgtcat	ccttacggaa	720
aagacagccc	tgcacctccg	ggctcggcgg	aacttccggg	acttcagggg	agtgtcccgc	780
cgcactgggg	aggagtggct	ggtaacagtg	caggacacag	aggcccacgt	gccagatgtc	840
cacgaggagg	tgctgggggt	tgtgcccatc	accaccctgg	gcccccacaa	ctactgcgtg	900
attctcgacc	ctgtcggacc	ggatggcaag	aatcagctgg	ggcagaagcg	cgtggtcaag	960
ggagagaagt	ctttttcct	ccagccagga	gagcagctgg	aacaaggcat	ccaggatgtg	1020
tatgtgctgt	cggagcagca	ggggctgctg	ctgagggccc	tgcagcccct	ggaggagggg	1080
gaggatgagg	agaaggtctc	acaccagget	ggggaccact	ggctcatccg	cggacccctg	1140
gagtatgtgc	catctgccaa	agtggaggtg	gtggaggagc	gccaggccat	ccctctagac	1200
gagaacgagg	gcatctatgt	gcaggatgtc	aagaccggaa	aggtgcgcgc	tgtgattgga	1260
agcacctaca	tgctgaccca	ggacgaagtc	ctgtgggaga	aagagctgcc	tcccggggtg	1320
gaggagctgc	tgaacaaggg	gcaggaccct	ctggcagaca	ggggtgagaa	ggacacaget	1380
aagagcctcc	agcccttggc	gccccggaac	aagacccgtg	tggtcagcta	ccgcgtgccc	1440
cacaacgctg	cggtgcaggt	gtacgactac	cgagagaagc	gagcccgcgt	ggtcttcggg	1500
cctgagctgg	tgtcgctggg	tcctgaggag	cagttcacag	tgttgtccct	ctcagctggg	1560
cggcccaagc	gtccccatgc	ccgccgtgcg	ctctgcctgc	tgctggggcc	tgacttcttc	1620
acagacgtca	tcaccatcga	aacggcggat	catgccaggc	tgcaactgca	gctggcctac	1680
aactggcact	ttgaggtgaa	tgaccggaag	gacccccaag	agacggccaa	gctcttttca	1740
gtgccagact	ttgtaggtga	tgcctgcaaa	gccatcgcat	cccgggtgcg	gggggccgtg	1800
gcctctgtca	ctttcgatga	cttccataag	aactcagccc	gcatcattcg	cactgctgtc	1860
tttggctttg	agacctegga	agcgaagggc	cccgatggca	tggccctgcc	caggccccgg	1920
gaccaggctg	tcttccccca	aaacgggctg	gtggtcagca	gtgtggacgt	gcagtcagtg	1980
gagcctgtgg	atcagaggac	ccgggacgcc	ctgcaacgca	gcgtccagct	ggccatcgag	2040

atcaccacca	actcccagga	agcggcggcc	aagcatgagg	ctcagagact	ggagcaggaa	2100
gcccgcggcc	ggcttgagcg	gcagaagatc	ctggaccagt	cagaagccga	gaaagctcgc	2160
aaggaacttt	tggagctgga	ggctctgagc	atggccgtgg	agagcaccgg	gactgccaag	2220
gcggaggccg	agtcccgtgc	ggaggcagcc	cggattgagg	gagaagggtc	cgtgctgcag	2280
gccaagctaa	aagcacaggc	cttggccatt	gaaacggagg	ctgagctcca	gagggtccag	2340
aaggtccgag	agctggaact	ggtctatgcc	cgggcccagc	tggagctgga	ggtgagcaag	2400
gctcagcagc	tggctgaggt	ggaggtgaag	aagttcaagc	agatgacaga	ggccataggc	2460
cccagcacca	tcagggacct	tgctgtggct	gggcctgaga	tgcaggtaaa	actgctccag	2520
tecetgggee	tgaaatcaac	cctcatcacc	gatggctcca	ctcccatcaa	cctcttcaac	2580
acagcctttg	ggctgctggg	gatggggccc	gagggtcagc	ccctgggcag	aagggtggcc	2640
agtgggccca	gccctgggga	ggggatatcc	ccccagtctg	ctcaggcccc	tcaagctcct	2700
ggagacaacc	acgtggtgcc	tgtactgcgc	taa			2733

<210> 28

<211> 892

<212> PRT

<213> Artificial Sequence

<220>

<223> synthesized and Rattus norvegicus

<400> 28

Met Gly Ser Ser His His His His His Ser Ser Gly Leu Val Pro 1 5 10 15

Arg Gly Ser His Met Ala Ser Met Thr Gly Gly Gln Gln Pro Trp Met 20 25 30

Ala Thr Glu Glu Ala Ile Ile Arg Ile Pro Pro Tyr His Tyr Ile His 35 40 45

Val Leu Asp Gln Asn Ser Asn Val Ser Arg Val Glu Val Gly Pro Lys 50 55 60

Thr Tyr Ile Arg Gln Asp Asn Glu Arg Val Leu Phe Ala Pro Val Arg 65 70 75 80

Met Val Thr Val Pro Pro Arg His Tyr Cys Ile Val Ala Asn Pro Val 85 90 95

Ser Arg Asp Thr Gln Ser Ser Val Leu Phe Asp Ile Thr Gly Gln Val

- Arg Leu Arg His Ala Asp Gln Glu Ile Arg Leu Ala Gln Asp Pro Phe 115 120 125
- Pro Leu Tyr Pro Gly Glu Val Leu Glu Lys Asp Ile Thr Pro Leu Gln 130 135 140
- Val Val Leu Pro Asn Thr Ala Leu His Leu Lys Ala Leu Leu Asp Phe 145 150 155 160
- Glu Asp Lys Asn Gly Asp Lys Val Met Ala Gly Asp Glu Trp Leu Phe 165 170 175
- Glu Gly Pro Gly Thr Tyr Ile Pro Gln Lys Glu Val Glu Val Val Glu 180 · 185 190
- Ile Ile Gln Ala Thr Val Ile Lys Gln Asn Gln Ala Leu Arg Leu Arg 195 200 205
- Ala Arg Lys Glu Cys Phe Asp Arg Glu Gly Lys Gly Arg Val Thr Gly 210 215 220
- Glu Glu Trp Leu Val Arg Ser Val Gly Ala Tyr Leu Pro Ala Val Phe 225 230 235 240
- Glu Glu Val Leu Asp Leu Val Asp Ala Val Ile Leu Thr Glu Lys Thr 245 250 255
- Ala Leu His Leu Arg Ala Leu Gln Asn Phe Arg Asp Leu Arg Gly Val 260 265 270
- Leu His Arg Thr Gly Glu Glu Trp Leu Val Thr Val Gln Asp Thr Glu 275 280 285
- Ala His Val Pro Asp Val Tyr Glu Glu Val Leu Gly Val Val Pro Ile 290 295 300
- Thr Thr Leu Gly Pro Arg His Tyr Cys Val Ile Leu Asp Pro Met Gly 305 310 315 320
- Pro Asp Gly Lys Asn Gln Leu Gly Gln Lys Arg Val Val Lys Gly Glu 325 330 335

Lys Ser Phe Phe Leu Gln Pro Gly Glu Arg Leu Glu Arg Gly Ile Gln 340 345 350

- Asp Val Tyr Val Leu Ser Glu Gln Gln Gly Leu Leu Leu Lys Ala Leu 355 360 365
- Gln Pro Leu Glu Glu Gly Glu Ser Glu Glu Lys Val Ser His Gln Ala 370 375 380
- Gly Asp Cys Trp Leu Ile Arg Gly Pro Leu Glu Tyr Val Pro Ser Ala 385 390 395 400
- Lys Val Glu Val Val Glu Glu Arg Gln Ala Ile Pro Leu Asp Gln Asn 405 410 415
- Glu Gly Ile Tyr Val Gln Asp Val Lys Thr Gly Lys Val Arg Ala Val 420 425 430
- Ile Gly Ser Thr Tyr Met Leu Thr Gln Asp Glu Val Leu Trp Glu Lys 435 440 445
- Glu Leu Pro Ser Gly Val Glu Glu Leu Leu Asn Leu Gly His Asp Pro 450 455 460
- Leu Ala Asp Arg Gly Gln Lys Gly Thr Ala Lys Pro Leu Gln Pro Ser 465 470 475 480
- Ala Pro Arg Asn Lys Thr Arg Val Val Ser Tyr Arg Val Pro His Asn 485 490 495
- Ala Ala Val Gln Val Tyr Asp Tyr Arg Ala Lys Arg Ala Arg Val Val 500 505 510
- Phe Gly Pro Glu Leu Val Thr Leu Asp Pro Glu Glu Gln Phe Thr Val 515 520 525
- Leu Ser Leu Ser Ala Gly Arg Pro Lys Arg Pro His Ala Arg Arg Ala 530 535 540
- Leu Cys Leu Leu Gly Pro Asp Phe Phe Thr Asp Val Ile Thr Ile 545 550 555 560
- Glu Thr Ala Asp His Ala Arg Leu Gln Leu Gln Leu Ala Tyr Asn Trp

565 570 575

His Phe Glu Leu Lys Asn Arg Asn Asp Pro Ala Glu Ala Ala Lys Leu 580 585 590

Phe Ser Val Pro Asp Phe Val Gly Asp Ala Cys Lys Ala Ile Ala Ser 595 600 605

Arg Val Arg Gly Ala Val Ala Ser Val Thr Phe Asp Asp Phe His Lys 610 615 620

Asn Ser Ala Arg Ile Ile Arg Met Ala Val Phe Gly Phe Glu Met Ser 625 630 635 640

Glu Asp Thr Gly Pro Asp Gly Thr Leu Leu Pro Lys Ala Arg Asp Gln 645 650 655

Ala Val Phe Pro Gln Asn Gly Leu Val Val Ser Ser Val Asp Val Gln 660 665 670

Ser Val Glu Pro Val Asp Gln Arg Thr Arg Asp Ala Leu Gln Arg Ser 675 680 685

Val Gln Leu Ala Ile Glu Ile Thr Thr Asn Ser Gln Glu Ala Ala 690 695 700

Lys His Glu Ala Gln Arg Leu Glu Gln Glu Ala Arg Gly Arg Leu Glu 705 710 715 720

Arg Gln Lys Ile Leu Asp Gln Ser Glu Ala Glu Lys Ala Arg Lys Glu
725 730 735

Leu Leu Glu Leu Glu Ala Met Ser Met Ala Val Glu Ser Thr Gly Asn 740 745 750

Ala Lys Ala Glu Ala Glu Ser Arg Ala Glu Ala Ala Arg Ile Glu Gly
755 760 765

Glu Gly Ser Val Leu Gln Ala Lys Leu Lys Ala Gln Ala Leu Ala Ile 770 775 780

Glu Thr Glu Ala Glu Leu Glu Arg Val Lys Lys Val Arg Glu Met Glu 785 790 795 800

Leu Ile Tyr Ala Arg Ala Gln Leu Glu Leu Glu Val Ser Lys Ala Gln 805 810 815

Gln Leu Ala Asn Val Glu Ala Lys Lys Phe Lys Glu Met Thr Glu Ala 820 825 830

Leu Gly Pro Gly Thr Ile Arg Asp Leu Ala Val Ala Gly Pro Glu Met 835 840 845

Gln Val Lys Leu Leu Gln Ser Leu Gly Leu Lys Ser Thr Leu Ile Thr 850 855 860

Asp Gly Ser Ser Pro Ile Asn Leu Phe Ser Thr Ala Phe Gly Leu Leu 865 870 875 880

Gly Leu Gly Ser Asp Gly Gln Pro Pro Ala Gln Lys 885 890

<210> 29

<211> 2679

<212> DNA

<213> Artificial Sequence

<220>

<223> synthesized and Rattus norvegicus

<400> 29

atgggcagca gccatcatca tcatcatcac agcagcggcc tggtgccgcg cggcagccat 60 atggctagca tgactggtgg acagcaacca tggatggcaa ctgaagaggc catcatccgc 120 atcccccat accactacat ccatgtgctg gaccagaaca gtaatgtgtc ccgtgtggag 180 gttggaccaa agacctacat ccggcaggac aatgagaggg tactgtttgc cccagttcgc 240 atggtgaceg tecceccaeg ceactactge atagtggeea accetgtgte cegggacaee 300 cagagttctg tgttatttga catcacagga caagtccgac tccggcacgc tgaccaggag 360 atccqactag cccaggaccc cttccccctg tatccagggg aggtgctgga aaaggacatc 420 accocactgo aggtggttct goocaacaca gcactgcatc ttaaggcgtt gctggacttt 480 gaggataaga atggagacaa ggtcatggca ggagacgagt ggctatttga gggacctggc 540 600 acctacatcc cacagaagga agtggaagtc gtggagatca ttcaggccac agtcatcaaa cagaaccaag cactgcggct aagggcccga aaggagtgct ttgaccggga gggcaagggg 660 cgcgtgacag gtgaggagtg gctggtccga tccgtggggg cttacctccc agctgtcttt 720 qaagaggtgc tggatctggt ggatgctgtg atccttacag aaaagactgc cctgcacctc 780

cgggctctgc	agaacttcag	ggaccttcgg	ggagtgctcc	accgcaccgg	ggaggaatgg	840
ttagtgacag	tgcaggacac	agaagcccat	gttccagatg	tctatgagga	ggtgcttggg	900
gtagtaccca	tcaccaccct	gggacctcga	cactactgtg	tcattcttga	cccaatggga	960
ccagacggca	agaaccagct	gggacaaaag	cgtgttgtca	agggagagaa	gtcctttttc	1020
ctccagccag	gagagaggct	ggagcgaggc	atccaggatg	tgtatgtgct	gtcagagcag	1080
caggggctgc	tactgaaggc	actgcagccc	ctggaggagg	gagagagcga	ggagaaggtc	1140
tcccatcagg	ccggagactg	ctggctcatc	cgtgggcccc	tggagtatgt	gccatctgca	1200
aaagtggagg	tggtggagga	gcgtcaggct	atccctctgg	accaaaatga	gggcatctat	1260
gtgcaggatg	tcaagacggg	gaaggtgcgg	gctgtgattg	gaagcaccta	catgctgact	1320
caggatgaag	tcctgtggga	aaaggagctg	ccttctgggg	tggaggagct	gctgaacttg	1380
gggcatgacc	ctctggcaga	caggggtcag	aagggcacag	ccaagcccct	tcagccctca	1440
gctccaagga	acaagacccg	agtggtcagc	taccgtgtcc	cgcacaatgc	agcggtgcag	1500
gtctatgact	acagagccaa	gagagcccgt	gtggtctttg	ggcccgagct	agtgacactg	1560
gatcctgagg	agcagttcac	agtattgtcc	ctttctgccg	ggcgacccaa	gcgtcctcat	1620
geeegeegtg	cactctgcct	actgctggga	cctgatttct	ttactgatgt	catcaccatc	1680
gaaactgcag	atcatgccag	gttgcagctg	cagcttgcct	acaactggca	ctttgaactg	1740
aagaaccgga	atgaccctgo	agaggcagco	aagcttttct	ccgtgcctga	cttcgtgggt	1800
gacgcctgca	aggccattgc	atcccgagto	: cggggggctg	tagcctctgt	cacctttgat	1860
gacttccata	aaaactcago	ccggatcatt	: cgaatggctg	tttttggctt	tgagatgtct	1920
gaagacacag	gtcctgatgg	cacactcctg	cccaaggcto	gagaccaggo	agtctttccc	1980
caaaacggg	: tggtagtcag	g cagtgtggat	gtgcagtcag	tggagcccgt	ggaccagagg	2040
acccgggatg	g cccttcagcg	g cagcgttcag	g ctggccatcg	g aaattacca	c caactcccag	2100
gaggcagcag	g ccaagcacga	ggctcagaga	a ctggaacagg	g aageeegtg	g teggettgag	2160
aggcagaaga	a tcttggacca	a gtcagaagct	gaaaaagcc	gcaaggaac	t cttggagctt	2220
gaggctatga	a gcatggctg	ggagagcac	g ggtaatgcca	a aagcagagg	c tgagtcccgt	2280
gcagaggcag	g cgaggatcg	a aggagaagg	c tetgtgetge	c aggccaagc	t caaggcacag	2340
gcgctagcc	a ttgagacgg	a ggctgagtt	g gagcgagta:	a agaaagtac	g agagatggaa	2400
ctgatctat	g cccgggccc	a gttggagct	g gaggtgagca	a aggcgcagc	a gcttgccaat	2460
gtggaggca	a agaagttca	a ggagatgac	a gaggcactg	g geceeggea	c catcagggac	2520

ctggctgtgg ccgggccaga gatgcaggtg aaacttetec agtecetggg cctgaaatec 2580
acteteatea ccgatggete gteteceate aacetettea geacageett egggttgetg 2640
gggctggggt ctgatggtea geegeeagea cagaagtga 2679

<210> 30

<211> 878

<212> PRT

<213> Artificial Sequence

:220>

<223> synthesized and Rattus norvegicus

<400> 30

Pro Met Ala Thr Glu Glu Ala Ile Ile Arg Ile Pro Pro Tyr His Tyr 20 25 30

Ile His Val Leu Asp Gln Asn Ser Asn Val Ser Arg Val Glu Val Gly 35 40 45

Pro Lys Thr Tyr Ile Arg Gln Asp Asn Glu Arg Val Leu Phe Ala Pro 50 55 60

Val Arg Met Val Thr Val Pro Pro Arg His Tyr Cys Ile Val Ala Asn 65 70 75 80

Pro Val Ser Arg Asp Thr Gln Ser Ser Val Leu Phe Asp Ile Thr Gly 85 90 95

Gln Val Arg Leu Arg His Ala Asp Gln Glu Ile Arg Leu Ala Gln Asp 100 105 110

Pro Phe Pro Leu Tyr Pro Gly Glu Val Leu Glu Lys Asp Ile Thr Pro 115 120 125

Leu Gln Val Val Leu Pro Asn Thr Ala Leu His Leu Lys Ala Leu Leu 130 135 140

Asp Phe Glu Asp Lys Asn Gly Asp Lys Val Met Ala Gly Asp Glu Trp 145 150 155 160

Leu Phe Glu Gly Pro Gly Thr Tyr Ile Pro Gln Lys Glu Val Glu Val

165 170 175

Val Glu Ile Ile Gln Ala Thr Val Ile Lys Gln Asn Gln Ala Leu Arg 180 185 190

Leu Arg Ala Arg Lys Glu Cys Phe Asp Arg Glu Gly Lys Gly Arg Val 195 200 205

Thr Gly Glu Glu Trp Leu Val Arg Ser Val Gly Ala Tyr Leu Pro Ala 210 215 220

Val Phe Glu Glu Val Leu Asp Leu Val Asp Ala Val Ile Leu Thr Glu 225 230 235 240

Lys Thr Ala Leu His Leu Arg Ala Leu Gln Asn Phe Arg Asp Leu Arg 245 250 255

Gly Val Leu His Arg Thr Gly Glu Glu Trp Leu Val Thr Val Gln Asp 260 265 270

Thr Glu Ala His Val Pro Asp Val Tyr Glu Glu Val Leu Gly Val Val
275 280 285

Pro Ile Thr Thr Leu Gly Pro Arg His Tyr Cys Val Ile Leu Asp Pro 290 295 300

Met Gly Pro Asp Gly Lys Asn Gln Leu Gly Gln Lys Arg Val Val Lys 305 310 315 320

Gly Glu Lys Ser Phe Phe Leu Gln Pro Gly Glu Arg Leu Glu Arg Gly 325 330 335

Ile Gln Asp Val Tyr Val Leu Ser Glu Gln Gln Gly Leu Leu Lys 340 345 350

Ala Leu Gln Pro Leu Glu Glu Gly Glu Ser Glu Glu Lys Val Ser His 355 360 365

Gln Ala Gly Asp Cys Trp Leu Ile Arg Gly Pro Leu Glu Tyr Val Pro 370 375 380

Ser Ala Lys Val Glu Val Val Glu Glu Arg Gln Ala Ile Pro Leu Asp 385 390 395 400

Gln Asn Glu Gly Ile Tyr Val Gln Asp Val Lys Thr Gly Lys Val Arg 405 410 415

- Ala Val Ile Gly Ser Thr Tyr Met Leu Thr Gln Asp Glu Val Leu Trp 420 425 430
- Glu Lys Glu Leu Pro Ser Gly Val Glu Glu Leu Leu Asn Leu Gly His 435 440 445
- Asp Pro Leu Ala Asp Arg Gly Gln Lys Gly Thr Ala Lys Pro Leu Gln 450 455 460
- Pro Ser Ala Pro Arg Asn Lys Thr Arg Val Val Ser Tyr Arg Val Pro 465 470 475 480
- His Asn Ala Ala Val Gln Val Tyr Asp Tyr Arg Ala Lys Arg Ala Arg 485 490 495
- Val Val Phe Gly Pro Glu Leu Val Thr Leu Asp Pro Glu Glu Gln Phe 500 505 510
- Thr Val Leu Ser Leu Ser Ala Gly Arg Pro Lys Arg Pro His Ala Arg 515 520 525
- Arg Ala Leu Cys Leu Leu Leu Gly Pro Asp Phe Phe Thr Asp Val Ile 530 535 540
- Thr Ile Glu Thr Ala Asp His Ala Arg Leu Gln Leu Gln Leu Ala Tyr 545 550 555 560
- Asn Trp His Phe Glu Leu Lys Asn Arg Asn Asp Pro Ala Glu Ala Ala 565 570 575
- Lys Leu Phe Ser Val Pro Asp Phe Val Gly Asp Ala Cys Lys Ala Ile 580 585 590
- Ala Ser Arg Val Arg Gly Ala Val Ala Ser Val Thr Phe Asp Asp Phe 595 600 .605
- His Lys Asn Ser Ala Arg Ile Ile Arg Met Ala Val Phe Gly Phe Glu 610 615 620
- Met Ser Glu Asp Thr Gly Pro Asp Gly Thr Leu Leu Pro Lys Ala Arg 625 630 635 640

Asp Gln Ala Val Phe Pro Gln Asn Gly Leu Val Val Ser Ser Val Asp 645 650 655

- Val Gln Ser Val Glu Pro Val Asp Gln Arg Thr Arg Asp Ala Leu Gln 660 665 670
- Arg Ser Val Gln Leu Ala Ile Glu Ile Thr Thr Asn Ser Gln Glu Ala 675 680 685
- Ala Ala Lys His Glu Ala Gln Arg Leu Glu Gln Glu Ala Arg Gly Arg 690 695 700
- Leu Glu Arg Gln Lys Ile Leu Asp Gln Ser Glu Ala Glu Lys Ala Arg 705 710 715 720
- Lys Glu Leu Leu Glu Leu Glu Ala Met Ser Met Ala Val Glu Ser Thr 725 730 735
- Gly Asn Ala Lys Ala Glu Ala Glu Ser Arg Ala Glu Ala Arg Ile 740 745 750
- Glu Gly Glu Gly Ser Val Leu Gln Ala Lys Leu Lys Ala Gln Ala Leu
 755 760 765
- Ala Ile Glu Thr Glu Ala Glu Leu Glu Arg Val Lys Lys Val Arg Glu
 770 775 780
- Met Glu Leu Ile Tyr Ala Arg Ala Gln Leu Glu Leu Glu Val Ser Lys 785 790 795 800
- Ala Gln Gln Leu Ala Asn Val Glu Ala Lys Lys Phe Lys Glu Met Thr 805 810 815
- Glu Ala Leu Gly Pro Gly Thr Ile Arg Asp Leu Ala Val Ala Gly Pro 820 825 830
- Glu Met Gln Val Lys Leu Leu Gln Ser Leu Gly Leu Lys Ser Thr Leu 835 840 845
- Ile Thr Asp Gly Ser Ser Pro Ile Asn Leu Phe Ser Thr Ala Phe Gly 850 855 860
- Leu Leu Gly Leu Gly Ser Asp Gly Gln Pro Pro Ala Gln Lys

865 870 875

<210> 31

<211> 2637

<212> DNA

<213> Artificial Sequence

<220>

<223> synthesized and Rattus norvegicus

<400> 31

60 gaagaggcca teateegeat eeceecatae caetacatee atgtgetgga eeagaacagt 120 aatgtgtccc gtgtggaggt tggaccaaag acctacatcc ggcaggacaa tgagagggta 180 ctgtttgccc cagttcgcat ggtgaccgtc cccccacgcc actactgcat agtggccaac 240 cctgtgtccc gggacaccca gagttctgtg ttatttgaca tcacaggaca agtccgactc 300 cggcacgctg accaggagat ccgactagcc caggacccct tccccctgta tccaggggag 360 gtgctggaaa aggacatcac cccactgcag gtggttctgc ccaacacagc actgcatctt 420 aaggogttgo tggactttga ggataagaat ggagacaagg tcatggcagg agacgagtgg 480 ctatttgagg gacctggcac ctacatccca cagaaggaag tggaagtcgt ggagatcatt 540 caggccacag tcatcaaaca gaaccaagca ctgcggctaa gggcccgaaa ggagtgcttt 600 gaccgggagg gcaaggggcg cgtgacaggt gaggagtggc tggtccgatc cgtgggggct 660 tacctcccag ctgtctttga agaggtgctg gatctggtgg atgctgtgat ccttacagaa 720 aagactgccc tgcacctccg ggctctgcag aacttcaggg accttcgggg agtgctccac 780 cgcaccgggg aggaatggtt agtgacagtg caggacacag aagcccatgt tccagatgtc 840 tatgaggagg tgcttggggt agtacccatc accaccctgg gacctcgaca ctactgtgtc 900 attettgace caatgggace agaeggeaag aaccagetgg gacaaaageg tgttqtcaaq 960 ggagagaagt cctttttcct ccagccagga gagaggctgg agcgaggcat ccaggatgtg 1020 tatgtgctgt cagagcagca ggggctgcta ctgaaggcac tgcagcccct ggaggaggga 1080 gagagcgagg agaaggtete ceateaggee ggagaetget ggeteateeg tgggeeeetg 1140 gagtatgtgc catctgcaaa agtggaggtg gtggaggagc gtcaggctat ccctctggac 1200 caaaatgagg gcatctatgt gcaggatgtc aagacgggga aggtgcgggc tgtgattgga 1260 agcacctaca tgctgactca ggatgaagtc ctgtgggaaa aggagctgcc ttctggggtg 1320 gaggagetge tgaaettggg geatgaeeet etggeagaea ggggteagaa gggeaeagee 1380

aagccccttc agccctcagc tccaaggaac aagacccgag tggtcagcta ccgtgtcccg 1440 cacaatgcag cggtgcaggt ctatgactac agagccaaga gagcccgtgt ggtctttggg 1500 1560 cccgagctag tgacactgga tcctgaggag cagttcacag tattgtccct ttctgccggg 1620 cqacccaage gtcctcatge ccgccgtgca ctctgcctac tgctgggacc tgatttcttt actgatgtca tcaccatcga aactgcagat catgccaggt tgcagctgca gcttgcctac 1680 aactggcact ttgaactgaa gaaccggaat gaccctgcag aggcagccaa gcttttctcc 1740 gtgcctgact tcgtgggtga cgcctgcaag gccattgcat cccgagtccg gggggctgta 1800 1860 qcctctgtca cctttgatga cttccataaa aactcagccc ggatcattcg aatggctgtt 1920 tttggctttg agatgtctga agacacaggt cctgatggca cactcctgcc caaggctcga gaccaggcag tetttececa aaacgggetg gtagtcagca gtgtggatgt gcagtcagtg 1980 gagcccgtgg accagaggac ccgggatgcc cttcagcgca gcgttcagct ggccatcgaa 2040 2100 attaccacca acteccagga ggeageagee aageaegagg eteagagaet ggaacaggaa gcccgtggtc ggcttgagag gcagaagatc ttggaccagt cagaagctga aaaagcccgc 2160 aaggaactct tggagcttga ggctatgagc atggctgtgg agagcacggg taatgccaaa 2220 gcagaggctg agtcccgtgc agaggcagcg aggatcgaag gagaaggctc tgtgctgcag 2280 gccaagetea aggeacagge getageeatt gagaeggagg etgagttgga gegagtaaag 2340 2400 aaagtacgag agatggaact gatctatgcc cgggcccagt tggagctgga ggtgagcaag 2460 gcgcagcagc ttgccaatgt ggaggcaaag aagttcaagg agatgacaga ggcactgggc 2520 cccqqcacca tcagggacct ggctgtggcc gggccagaga tgcaggtgaa acttctccag tccctgggcc tgaaatccac tctcatcacc gatggctcgt ctcccatcaa cctcttcagc 2580 acagcetteg ggttgetggg getggggtet gatggteage egeeageaca gaagtga 2637

Met Lys Leu Leu Ser Ser Ile Glu Gln Ala Cys Asp Ile Cys Arg Leu 1 5 10 15

Lys Lys Leu Lys Cys Ser Lys Glu Lys Pro Lys Cys Ala Lys Cys Leu 20 25 30

<210> 32

<211> 96

<212> PRT

<213> Saccharomyces cerevisiae

<400> 32

Lys Asn Asn Trp Glu Cys Arg Tyr Ser Pro Lys Thr Lys Arg Ser Pro 35 40 45	
Leu Thr Arg Ala His Leu Thr Glu Val Glu Ser Arg Leu Glu Arg Leu 50 55 60	
Glu Gln Leu Phe Leu Leu Ile Phe Pro Arg Glu Asp Leu Asp Met Ile 70 75 80	
Leu Lys Met Asp Ser Leu Gln Asp Ile Lys Ala Leu Leu Thr Gly Leu 85 90 95	
<210> 33 <211> 288 <212> DNA <213> Saccharomyces cerevisiae	
<400> 33 atgaagctac tgtcttctat cgaacaagca tgcgatattt gccgacttaa aaagctcaag	60
tgctccaaag aaaaaccgaa gtgcgccaag tgtctgaaga acaactggga gtgtcgctac	120
tctcccaaaa ccaaaaggtc tccgctgact agggcacatc tgacagaagt ggaatcaagg	180
ctagaaagac tggaacagct atttctactg atttttcctc gagaagacct tgacatgatt	240
ttgaaaatgg attctttaca ggatataaaa gcattgttaa caggatta	288
<210> 34 <211> 989 <212> PRT <213> Artificial Sequence <220> <223> Saccharomyces cerevisiae and Homo sapiens	
<400> 34	
Met Lys Leu Leu Ser Ser Ile Glu Gln Ala Cys Asp Ile Cys Arg Leu 1 5 10 15	
Lys Lys Leu Lys Cys Ser Lys Glu Lys Pro Lys Cys Ala Lys Cys Leu 20 25 30	
Lys Asn Asn Trp Glu Cys Arg Tyr Ser Pro Lys Thr Lys Arg Ser Pro 35 40 45	
Leu Thr Arg Ala His Leu Thr Glu Val Glu Ser Arg Leu Glu Arg Leu 50 55 60	

Glu Gln Leu Phe Leu Leu Ile Phe Pro Arg Glu Asp Leu Asp Met Ile 65 70 75 80

- Leu Lys Met Asp Ser Leu Gln Asp Ile Lys Ala Leu Leu Thr Gly Leu 85 90 95
- Met Ala Thr Glu Glu Phe Ile Ile Arg Ile Pro Pro Tyr His Tyr Ile 100 105 110
- His Val Leu Asp Gln Asn Ser Asn Val Ser Arg Val Glu Val Gly Pro 115 120 125
- Lys Thr Tyr Ile Arg Gln Asp Asn Glu Arg Val Leu Phe Ala Pro Met 130 135 140
- Arg Met Val Thr Val Pro Pro Arg His Tyr Cys Thr Val Ala Asn Pro 145 150 155 160
- Val Ser Arg Asp Ala Gln Gly Leu Val Leu Phe Asp Val Thr Gly Gln
 165 170 175
- Val Arg Leu Arg His Ala Asp Leu Glu Ile Arg Leu Ala Gln Asp Pro 180 185 190
- Phe Pro Leu Tyr Pro Gly Glu Val Leu Glu Lys Asp Ile Thr Pro Leu 195 200 205
- Gln Val Val Leu Pro Asn Thr Ala Leu His Leu Lys Ala Leu Leu Asp 210 215 220
- Phe Glu Asp Lys Asp Gly Asp Lys Val Val Ala Gly Asp Glu Trp Leu 225 230 235 240
- Phe Glu Gly Pro Gly Thr Tyr Ile Pro Arg Lys Glu Val Glu Val Val 245 250 255
- Glu Ile Ile Gln Ala Thr Ile Ile Arg Gln Asn Gln Ala Leu Arg Leu 260 265 270
- Arg Ala Arg Lys Glu Cys Trp Asp Arg Asp Gly Lys Glu Arg Val Thr 275 280 285
- Gly Glu Glu Trp Leu Val Thr Thr Val Gly Ala Tyr Leu Pro Ala Val 290 295 300

330

Phe Glu Glu Val Leu Asp Leu Val Asp Ala Val Ile Leu Thr Glu Lys 305 310 315 320

Thr Ala Leu His Leu Arg Ala Arg Arg Asp Phe Arg Asp Phe Arg Gly

Val Ser Arg Arg Thr Gly Glu Glu Trp Leu Val Thr Val Gln Asp Thr 340 345 350

325

Glu Ala His Val Pro Asp Val His Glu Glu Val Leu Gly Val Val Pro 355 360 365

Ile Thr Thr Leu Gly Pro His Asn Tyr Cys Val Ile Leu Asp Pro Val 370 375 380

Gly Pro Asp Gly Lys Asn Gln Leu Gly Gln Lys Arg Val Val Lys Gly 385 390 395 400

Glu Lys Ser Phe Phe Leu Gln Pro Gly Glu Gln Leu Glu Gln Gly Ile 405 410 415

Gln Asp Val Tyr Val Leu Ser Glu Gln Gln Gly Leu Leu Leu Arg Ala 420 425 430

Leu Gln Pro Leu Glu Glu Glu Glu Asp Glu Glu Lys Val Ser His Gln 435 440 445

Ala Gly Asp His Trp Leu Ile Arg Gly Pro Leu Glu Tyr Val Pro Ser 450 455 460

Ala Lys Val Glu Val Val Glu Glu Arg Gln Ala Ile Pro Leu Asp Glu 465 470 475 480

Asn Glu Gly Ile Tyr Val Gln Asp Val Lys Thr Gly Lys Val Arg Ala 485 490 495

Val Ile Gly Ser Thr Tyr Met Leu Thr Gln Asp Glu Val Leu Trp Glu 500 505 510

Lys Glu Leu Pro Pro Gly Val Glu Glu Leu Leu Asn Lys Gly Gln Asp 515 520 525

Pro Leu Ala Asp Arg Gly Glu Lys Asp Thr Ala Lys Ser Leu Gln Pro

530 535 540

Leu Ala Pro Arg Asn Lys Thr Arg Val Val Ser Tyr Arg Val Pro His 545 550 555 560

Asn Ala Ala Val Gln Val Tyr Asp Tyr Arg Glu Lys Arg Ala Arg Val 565 570 575

Val Phe Gly Pro Glu Leu Val Ser Leu Gly Pro Glu Glu Gln Phe Thr 580 585 590

Val Leu Ser Leu Ser Ala Gly Arg Pro Lys Arg Pro His Ala Arg Arg 595 600 605

Ala Leu Cys Leu Leu Leu Gly Pro Asp Phe Phe Thr Asp Val Ile Thr 610 615 620

Ile Glu Thr Ala Asp His Ala Arg Leu Gln Leu Gln Leu Ala Tyr Asn 625 630 635 640

Trp His Phe Glu Val Asn Asp Arg Lys Asp Pro Gln Glu Thr Ala Lys 645 650 655

Leu Phe Ser Val Pro Asp Phe Val Gly Asp Ala Cys Lys Ala Ile Ala 660 665 670

Ser Arg Val Arg Gly Ala Val Ala Ser Val Thr Phe Asp Asp Phe His 675 680 685

Lys Asn Ser Ala Arg Ile Ile Arg Thr Ala Val Phe Gly Phe Glu Thr
690 695 700

Ser Glu Ala Lys Gly Pro Asp Gly Met Ala Leu Pro Arg Pro Arg Asp 705 710 715 720

Gln Ala Val Phe Pro Gln Asn Gly Leu Val Val Ser Ser Val Asp Val 725 730 735

Gln Ser Val Glu Pro Val Asp Gln Arg Thr Arg Asp Ala Leu Gln Arg
740 745 750

Ser Val Gln Leu Ala Ile Glu Ile Thr Thr Asn Ser Gln Glu Ala Ala 755 760 765

Ala Lys His Glu Ala Gln Arg Leu Glu Gln Glu Ala Arg Gly Arg Leu
770 775 780

Glu Arg Gln Lys Ile Leu Asp Gln Ser Glu Ala Glu Lys Ala Arg Lys 785 790 795 800

Glu Leu Glu Leu Glu Ala Leu Ser Met Ala Val Glu Ser Thr Gly 805 810 815

Thr Ala Lys Ala Glu Ala Glu Ser Arg Ala Glu Ala Ala Arg Ile Glu 820 825 830

Gly Glu Gly Ser Val Leu Gln Ala Lys Leu Lys Ala Gln Ala Leu Ala 835 840 845

Ile Glu Thr Glu Ala Glu Leu Gln Arg Val Gln Lys Val Arg Glu Leu 850 855 860

Glu Leu Val Tyr Ala Arg Ala Gln Leu Glu Leu Glu Val Ser Lys Ala 865 870 875 880

Gln Gln Leu Ala Glu Val Glu Val Lys Lys Phe Lys Gln Met Thr Glu 885 890 895

Ala Ile Gly Pro Ser Thr Ile Arg Asp Leu Ala Val Ala Gly Pro Glu 900 905 910

Met Gln Val Lys Leu Leu Gln Ser Leu Gly Leu Lys Ser Thr Leu Ile 915 920 925

Thr Asp Gly Ser Thr Pro Ile Asn Leu Phe Asn Thr Ala Phe Gly Leu 930 935 940

Leu Gly Met Gly Pro Glu Gly Gln Pro Leu Gly Arg Arg Val Ala Ser 945 950 955 960

Gly Pro Ser Pro Gly Glu Gly Ile Ser Pro Gln Ser Ala Gln Ala Pro 965 970 975

Gln Ala Pro Gly Asp Asn His Val Val Pro Val Leu Arg 980 985

<210> 35 <211> 2970

<212> DNA

<213> Artificial Sequence

<220>

<223> Saccharomyces cerevisiae and Homo sapiens

<400> 60 atgaagctac tgtcttctat cgaacaagca tgcgatattt gccgacttaa aaagctcaag tgctccaaag aaaaaccgaa gtgcgccaag tgtctgaaga acaactggga gtgtcgctac 120 tctcccaaaa ccaaaaggtc tccgctgact agggcacatc tgacagaagt ggaatcaagg 180 ctagaaagac tggaacagct atttctactg atttttcctc gagaagacct tgacatgatt 240 300 ttgaaaatgg attctttaca ggatataaaa gcattgttaa caggattaat ggcaactgaa gagttcatca tecgeatece eccataceae tatatecatg tgetggacea gaacageaae 360 gtgtcccgtg tggaggtcgg gccaaagacc tacatccggc aggacaatga gagggtactg 420 tttgccccca tgcgcatggt gaccgtcccc ccacgtcact actgcacagt ggccaaccct 480 gtgtctcggg atgcccaggg cttggtgctg tttgatgtca cagggcaagt tcggcttcgc 540 cacgctgacc tcgagatccg gctggcccag gaccccttcc ccctgtaccc aggggaggtg 600 ctggaaaagg acatcacacc cctgcaggtg gttctgccca acactgccct ccatctaaag 660 gcgctgcttg attttgagga taaagatgga gacaaggtgg tggcaggaga tgagtggctt 720 ttcgagggac ctggcacgta catcccccgg aaggaagtgg aggtcgtgga gatcattcag 780 gccaccatca tcaggcagaa ccaggctctg cggctcaggg cccgcaagga gtgctgggac 840 cgggacggca aggagaggt gacaggggaa gaatggctgg tcaccacagt aggggcgtac 900 ctcccagcgg tgtttgagga ggttctggat ttggtggacg ccgtcatcct tacggaaaag 960 acagecetge aceteeggge teggeggaac tteegggaet teaggggagt gteeegeege 1020 actggggagg agtggctggt aacagtgcag gacacagagg cccacgtgcc agatgtccac 1080 gaggaggtgc tgggggttgt gcccatcacc accctgggcc cccacaacta ctgcgtgatt 1140 ctcgaccctg tcggaccgga tggcaagaat cagctggggc agaagcgcgt ggtcaaggga 1200 gagaagtett tttteeteea geeaggagag cagetggaae aaggeateea ggatgtgtat 1260 gtgctgtcgg agcagcaggg gctgctgctg agggccctgc agcccctgga ggagggggag 1320 gatgaggaga aggtotoaca coaggotggg gaccactggo toatcogogg accootggag 1380 tatgtgccat ctgccaaagt ggaggtggtg gaggagcgcc aggccatccc tctagacgag 1440 aacgagggca tctatgtgca ggatgtcaag accggaaagg tgcgcgctgt gattggaagc 1500 acctacatgc tgacccagga cgaagtcctg tgggagaaag agctgcctcc cggggtggag 1560

gagetgetga acaaggggca ggaccetetg geagacaggg gtgagaagga caeagetaag 1620 agectecage cettggegee ceggaacaag accegtgtgg teagetaceg egtgeeceae 1680 aacgctgcgg tgcaggtgta cgactaccga gagaagcgag cccgcgtggt cttcgggcct 1740 gagctggtgt cgctgggtcc tgaggagcag ttcacagtgt tgtccctctc agctgggcgg 1800 1860 cccaagcgtc cccatgcccg ccgtgcgctc tgcctgctgc tggggcctga cttcttcaca 1920 qacqtcatca ccatcgaaac ggcggatcat gccaggctgc aactgcagct ggcctacaac tggcactttg aggtgaatga ccggaaggac ccccaagaga cggccaagct cttttcagtg 1980 ccagactttg taggtgatgc ctgcaaagcc atcgcatccc gggtgcgggg ggccgtggcc 2040 2100 tctgtcactt tcgatgactt ccataagaac tcagcccgca tcattcgcac tgctgtcttt ggctttgaga cctcggaagc gaagggcccc gatggcatgg ccctgcccag gccccgggac 2160 caggetgtet tececeaaaa egggetggtg gteageagtg tggaegtgea gteagtggag 2220 cctgtggatc agaggacccg ggacgccctg caacgcagcg tccagctggc catcgagatc 2280 accaccaact cccaggaagc ggcggccaag catgaggctc agagactgga gcaggaagcc 2340 cgcggccggc ttgagcggca gaagatcctg gaccagtcag aagccgagaa agctcgcaag 2400 gaacttttgg agctggaggc tctgagcatg gccgtggaga gcaccgggac tgccaaggcg 2460 gaggccgagt cccgtgcgga ggcagcccgg attgagggag aagggtccgt gctgcaggcc 2520 aagctaaaag cacaggcctt ggccattgaa acggaggctg agctccagag ggtccagaag 2580 2640 gtccgagagc tggaactggt ctatgcccgg gcccagctgg agctggaggt gagcaaggct 2700 cagcagctgg ctgaggtgga ggtgaagaag ttcaagcaga tgacagaggc cataggcccc 2760 agcaccatca gggaccttgc tgtggctggg cctgagatgc aggtaaaact gctccagtcc 2820 ctgggcctga aatcaaccct catcaccgat ggctccactc ccatcaacct cttcaacaca 2880 gcctttgggc tgctggggat ggggcccgag ggtcagccc tgggcagaag ggtggccagt gggcccagcc ctggggaggg gatatccccc cagtctgctc aggcccctca agctcctgga 2940 2970 gacaaccacg tggtgcctgt actgcgctaa

<210> 36

<211> 957

<212> PRT

<213> Artificial Sequence

<220>

<223> Saccharomyces cerevisiae and Rattus norvegicus

<400> 36

Met Lys Leu Leu Ser Ser Ile Glu Gln Ala Cys Asp Ile Cys Arg Leu 1 5 10 15

- Lys Lys Leu Lys Cys Ser Lys Glu Lys Pro Lys Cys Ala Lys Cys Leu 20 25 30
- Lys Asn Asn Trp Glu Cys Arg Tyr Ser Pro Lys Thr Lys Arg Ser Pro 35 40 45
- Leu Thr Arg Ala His Leu Thr Glu Val Glu Ser Arg Leu Glu Arg Leu 50 55 60
- Glu Gln Leu Phe Leu Leu Ile Phe Pro Arg Glu Asp Leu Asp Met Ile 65 70 75 80
- Leu Lys Met Asp Ser Leu Gln Asp Ile Lys Ala Leu Leu Thr Gly Leu 85 90 95
- Met Ala Thr Glu Glu Ala Ile Ile Arg Ile Pro Pro Tyr His Tyr Ile 100 105 110
- His Val Leu Asp Gln Asn Ser Asn Val Ser Arg Val Glu Val Gly Pro 115 120 125
- Lys Thr Tyr Ile Arg Gln Asp Asn Glu Arg Val Leu Phe Ala Pro Val 130 135 140
- Arg Met Val Thr Val Pro Pro Arg His Tyr Cys Ile Val Ala Asn Pro 145 150 155 160
- Val Ser Arg Asp Thr Gln Ser Ser Val Leu Phe Asp Ile Thr Gly Gln 165 170 175
- Val Arg Leu Arg His Ala Asp Gln Glu Ile Arg Leu Ala Gln Asp Pro 180 185 190
- Phe Pro Leu Tyr Pro Gly Glu Val Leu Glu Lys Asp Ile Thr Pro Leu 195 200 205
- Gln Val Val Leu Pro Asn Thr Ala Leu His Leu Lys Ala Leu Leu Asp 210 215 220
- Phe Glu Asp Lys Asn Gly Asp Lys Val Met Ala Gly Asp Glu Trp Leu 225 230 235 240

Phe Glu Gly Pro Gly Thr Tyr Ile Pro Gln Lys Glu Val Glu Val Val 245 250 255

- Glu Ile Ile Gln Ala Thr Val Ile Lys Gln Asn Gln Ala Leu Arg Leu 260 265 270
- Arg Ala Arg Lys Glu Cys Phe Asp Arg Glu Gly Lys Gly Arg Val Thr 275 280 285
- Gly Glu Glu Trp Leu Val Arg Ser Val Gly Ala Tyr Leu Pro Ala Val 290 295 300
- Phe Glu Glu Val Leu Asp Leu Val Asp Ala Val Ile Leu Thr Glu Lys 305 310 315 320
- Thr Ala Leu His Leu Arg Ala Leu Gln Asn Phe Arg Asp Leu Arg Gly 325 330 335
- Val Leu His Arg Thr Gly Glu Glu Trp Leu Val Thr Val Gln Asp Thr 340 345 350
- Glu Ala His Val Pro Asp Val Tyr Glu Glu Val Leu Gly Val Val Pro 355 360 365
- Ile Thr Thr Leu Gly Pro Arg His Tyr Cys Val Ile Leu Asp Pro Met 370 375 380
- Gly Pro Asp Gly Lys Asn Gln Leu Gly Gln Lys Arg Val Val Lys Gly 385 390 395 400
- Glu Lys Ser Phe Phe Leu Gln Pro Gly Glu Arg Leu Glu Arg Gly Ile 405 410 415
- Gln Asp Val Tyr Val Leu Ser Glu Gln Gln Gly Leu Leu Leu Lys Ala 420 425 430
- Leu Gln Pro Leu Glu Glu Gly Glu Ser Glu Glu Lys Val Ser His Gln 435 440 445
- Ala Gly Asp Cys Trp Leu Ile Arg Gly Pro Leu Glu Tyr Val Pro Ser 450 455 460
- Ala Lys Val Glu Val Val Glu Glu Arg Gln Ala Ile Pro Leu Asp Gln

465					470					475					480
Asn	Glu	Gly	Ile	Tyr 485	Val	Gln	Asp	Val	Lys 490	Thr	Gly	Lys	Val	Arg 495	Ala
Val	Ile	Gly	Ser 500	Thr	Tyr	Met	Leu	Thr 505	Gln	qaA	Glu	Val	Leu 510	Trp	Glu
Lys	Glu	Leu 515	Pro	Ser	Gly	Val	Glu 520	Glu	Leu	Leu	Asn	Leu 525	Gly	His	Asp
Pro	Leu 530	Ala	Asp	Arg	Gly	Gln 535	Lys	Gly	Thr	Ala	Lys 540	Pro	Leu	Gln	Pro
Ser 545	Ala	Pro	Arg	Asn	Lys 550	Thr	Arg	Val	Val	Ser 555	Tyr	Arg	Val	Pro	His 560
Asn	Ala	Ala	Val	Gln 565	Val	Tyr	Asp	Tyr	Arg 570	Ala	Lys	Arg	Ala	Arg 575	Val
Val	Phe	Gly	Pro 580	Glu	Leu	Val	Thr	Leu 585	Asp	Pro	Glu	Glu	Gln 590	Phe	Thr
Val	Leu	Ser 595	Leu	Ser	Ala	Gly	Arg 600	Pro	Lys	Arg	Pro	His 605	Ala	Arg	Arg
Ala	Leu 610	Сув	Leu	Leu	Leu	Gly 615	Pro	Asp	Phe	Phe	Thr 620	Asp	Val	Ile	Thr
Ile 625	Glu	Thr	Ala	Asp	His 630	Ala	Arg	Leu	Gln	Leu 635	Gln	Leu	Ala	Tyr	Asn 640
Trp	His	Phe	Glu	Leu 645	ГÀв	Asn	Arg	Asn	Asp 650	Pro	Ala	Glu	Ala	Ala 655	Lys
Leu	Phe	Ser	Val 660	Pro	Asp	Phe	Val	Gly 665	Asp	Ala	Cys	Lys	Ala 670	Ile	Ala
Ser	Arg	Val 675	Arg	Gly	Ala	Val	Ala 680	Ser	Val	Thr	Phe	Asp 68,5	qaA	Phe	His
Lys	Asn 690	Ser	Ala	Arg	Ile	Ile 695	Arg	Met	Ala	Val	Phe	_	Phe	Glu	Met

Ser Glu Asp Thr Gly Pro Asp Gly Thr Leu Leu Pro Lys Ala Arg Asp
705 710 715 720

- Gln Ala Val Phe Pro Gln Asn Gly Leu Val Val Ser Ser Val Asp Val
 725 730 735
- Gln Ser Val Glu Pro Val Asp Gln Arg Thr Arg Asp Ala Leu Gln Arg
 740 745 750
- Ser Val Gln Leu Ala Ile Glu Ile Thr Thr Asn Ser Gln Glu Ala Ala 755 760 765
- Ala Lys His Glu Ala Gln Arg Leu Glu Glu Glu Ala Arg Gly Arg Leu 770 775 780
- Glu Arg Gln Lys Ile Leu Asp Gln Ser Glu Ala Glu Lys Ala Arg Lys 785 790 795 800
- Glu Leu Leu Glu Leu Glu Ala Met Ser Met Ala Val Glu Ser Thr Gly 805 810 815
- Asn Ala Lys Ala Glu Ala Glu Ser Arg Ala Glu Ala Ala Arg Ile Glu 820 825 830
- Gly Glu Gly Ser Val Leu Gln Ala Lys Leu Lys Ala Gln Ala Leu Ala 835 840 845
- Ile Glu Thr Glu Ala Glu Leu Glu Arg Val Lys Lys Val Arg Glu Met 850 855 860
- Glu Leu Ile Tyr Ala Arg Ala Gln Leu Glu Leu Glu Val Ser Lys Ala 865 870 875 880
- Gln Gln Leu Ala Asn Val Glu Ala Lys Lys Phe Lys Glu Met Thr Glu 885 890 895
- Ala Leu Gly Pro Gly Thr Ile Arg Asp Leu Ala Val Ala Gly Pro Glu 900 905 910
- Met Gln Val Lys Leu Leu Gln Ser Leu Gly Leu Lys Ser Thr Leu Ile 915 920 925
- Thr Asp Gly Ser Ser Pro Ile Asn Leu Phe Ser Thr Ala Phe Gly Leu 930 935 940

Leu Gly Leu Gly Ser Asp Gly Gln Pro Pro Ala Gln Lys 945 950 955

<210> 37

<211> 2874 <212> DNA

<213> Artificial Sequence

<220>

<223> Saccharomyces cerevisiae and Rattus norvegicus

<400> 37

atgaagctac tgtcttctat cgaacaagca tgcgatattt gccgacttaa aaagctcaag 60 tgctccaaag aaaaaccgaa gtgcgccaag tgtctgaaga acaactggga gtgtcgctac 120 tctcccaaaa ccaaaaggtc tccgctgact agggcacatc tgacagaagt ggaatcaagg 180 240 ctagaaagac tggaacagct atttctactg atttttcctc gagaagacct tgacatgatt ttgaaaatgg attctttaca ggatataaaa gcattgttaa caggattaat ggcaactgaa 300 gaggecatea teegeateee eecataceae tacatecatg tgetggaeea gaacagtaat 360 gtgtcccgtg tggaggttgg accaaagacc tacatccggc aggacaatga gagggtactg 420 tttgccccag ttcgcatggt gaccgtcccc ccacgccact actgcatagt ggccaaccct 480 gtgtcccggg acacccagag ttctgtgtta tttgacatca caggacaagt ccgactccgg 540 cacgctgacc aggagatecg actageceag gacceettee ecetgtatee aggggaggtg 600 ctggaaaagg acatcacccc actgcaggtg gttctgccca acacagcact gcatcttaag 660 720 gcgttgctgg actttgagga taagaatgga gacaaggtca tggcaggaga cgagtggcta tttgagggac ctggcaccta catcccacag aaggaagtgg aagtcgtgga gatcattcag 780 840 gccacagtca tcaaacagaa ccaagcactg cggctaaggg cccgaaagga gtgctttgac cgggagggca aggggcgcgt gacaggtgag gagtggctgg tccgatccgt gggggcttac 900 ctcccagctg tctttgaaga ggtgctggat ctggtggatg ctgtgatcct tacagaaaag 960 actgccctgc acctccgggc tctgcagaac ttcagggacc ttcggggagt gctccaccgc 1020 1080 accggggagg aatggttagt gacagtgcag gacacagaag cccatgttcc agatgtctat gaggaggtgc ttggggtagt acccatcacc accctgggac ctcgacacta ctgtgtcatt 1140 cttgacccaa tgggaccaga cggcaagaac cagctgggac aaaagcgtgt tgtcaaggga 1200 gagaagteet tttteeteea geeaggagag aggetggage gaggeateea ggatgtgtat 1260 1320 gtgctgtcag agcagcaggg gctgctactg aaggcactgc agcccctgga ggagggagag

agcgaggaga	aggtctccca	tcaggccgga	gactgctggc	tcatccgtgg	gcccctggag	1380
tatgtgccat	ctgcaaaagt	ggaggtggtg	gaggagcgtc	aggctatccc	tctggaccaa	1440
aatgagggca	tctatgtgca	ggatgtcaag	acggggaagg	tgcgggctgt	gattggaagc	1500
acctacatgc	tgactcagga	tgaagtcctg	tgggaaaagg	agctgccttc	tggggtggag	1560
gagetgetga	acttggggca	tgaccctctg	gcagacaggg	gtcagaaggg	cacagccaag	1620
ccccttcagc	cctcagctcc	aaggaacaag	acccgagtgg	tcagctaccg	tgtcccgcac	1680
aatgcagcgg	tgcaggtcta	tgactacaga	gccaagagag	cccgtgtggt	ctttgggccc	1740
gagctagtga	cactggatcc	tgaggagcag	ttcacagtat	tgtccctttc	tgccgggcga	1800
cccaagcgtc	ctcatgcccg	ccgtgcactc	tgcctactgc	tgggacctga	tttctttact	1860
gatgtcatca	ccatcgaaac	tgcagatcat	gccaggttgc	agctgcagct	tgcctacaac	1920
tggcactttg	aactgaagaa	ccggaatgac	cctgcagagg	cagccaagct	tttctccgtg	1980
cctgacttcg	tgggtgacgc	ctgcaaggcc	attgcatccc	gagtccgggg	ggctgtagcc	2040
tctgtcacct	ttgatgactt	ccataaaaac	tcagcccgga	tcattcgaat	ggctgttttt	2100
ggctttgaga	tgtctgaaga	cacaggtcct	gatggcacac	tcctgcccaa	ggctcgagac	2160
caggcagtct	ttccccaaaa	cgggctggta	gtcagcagtg	tggatgtgca	gtcagtggag	2220
cccgtggacc	agaggacccg	ggatgccctt	cagcgcagcg	ttcagctggc	catcgaaatt	2280
accaccaact	cccaggaggc	agcagccaag	cacgaggctc	agagactgga	acaggaagcc	2340
cgtggtcggc	: ttgagaggca	gaagatettg	gaccagtcag	aagctgaaaa	agcccgcaag	2400
gaactcttgg	agcttgaggo	: tatgagcatg	gctgtggaga	gcacgggtaa	tgccaaagca	2460
gaggctgagt	: cccgtgcaga	ggcagcgagg	, atcgaaggag	aaggctctgt	gctgcaggcc	2520
aagctcaagg	g cacaggcgct	agccattgag	g acggaggctg	agttggagcg	g agtaaagaaa	2580
gtacgagaga	tggaactgat	ctatgcccgg	g gcccagttgg	agctggaggt	gagcaaggcg	2640
cagcagcttg	g ccaatgtgga	a ggcaaagaag	g ttcaaggaga	tgacagaggo	actgggcccc	2700
ggcaccatca	a gggacctggd	tgtggccggg	g ccagagatgo	aggtgaaact	tctccagtcc	2760
ctgggcctga	a aatccactct	catcaccgat	ggetegtete	c ccatcaacc	t cttcagcaca	2820
gccttcgggt	tgctggggct	ggggtetga	t ggtcagccg	cagcacaga:	a gtga	2874

<210> 38

ID Name of the rest to the state of the stat

<211> 130 <212> PRT <213> Levivirus

<400> 38

Met Ala Ser Asn Phe Thr Gln Phe Val Leu Val Asp Asn Gly Gly Thr
1 5 10 15

Gly Asp Val Thr Val Ala Pro Ser Asn Phe Ala Asn Gly Val Ala Glu 20 25 30

Trp Ile Ser Ser Asn Ser Arg Ser Gln Ala Tyr Lys Val Thr Cys Ser 35 40 45

Val Arg Gln Ser Ser Ala Gln Asn Arg Lys Tyr Thr Ile Lys Val Glu 50 55 60

Val Pro Lys Val Ala Thr Gln Thr Val Gly Gly Val Glu Leu Pro Val 65 70 75 80

Ala Ala Trp Arg Ser Tyr Leu Asn Met Glu Leu Thr Ile Pro Ile Phe 85 90 95

Ala Thr Asn Ser Asp Cys Glu Leu Ile Val Lys Ala Met Gln Gly Leu 100 105 110

Leu Lys Asp Gly Asn Pro Ile Pro Ser Ala Ile Ala Ala Asn Ser Gly
115 120 125

Ile Tyr 130

<210> 39

<211> 393

<212> DNA

<213> Levivirus

<400> 39

atggetteta actitactea gitegitete giegacaatg geggaactgg egacgigact 60 giegececaa geaactiege taacggggte getgaatgga teagetetaa etegegitea 120 caggettaca aagtaacetg tagegitegi eagageteti egeagaateg caaatacace 180 ateaaagteg aggigeetaa agiggeaace eagactgitig giegitgiaga getteetgia 240 geegeatgge gitegiacti aaatatggaa etaaceatte eaatitiege taegaattee 300 gaetgegage tiatigitaa ggeaatgeaa ggieteetaa aagatggaaa eeegateee 360 teageaateg eageaacte eggeatetae eee 393

<210> 40

<211> 1024

<212> PRT

<213> Artificial Sequence

<220>

<223> Levivirus and Homo sapiens

<400> 40

Met Ala Ser Asn Phe Thr Gln Phe Val Leu Val Asp Asn Gly Gly Thr 1 5 10 15

Gly Asp Val Thr Val Ala Pro Ser Asn Phe Ala Asn Gly Val Ala Glu 20 25 30

Trp Ile Ser Ser Asn Ser Arg Ser Gln Ala Tyr Lys Val Thr Cys Ser 35 40 45

Val Arg Gln Ser Ser Ala Gln Asn Arg Lys Tyr Thr Ile Lys Val Glu 50 55 60

Val Pro Lys Val Ala Thr Gln Thr Val Gly Gly Val Glu Leu Pro Val 65 70 75 80

Ala Ala Trp Arg Ser Tyr Leu Asn Met Glu Leu Thr Ile Pro Ile Phe 85 90 95

Ala Thr Asn Ser Asp Cys Glu Leu Ile Val Lys Ala Met Gln Gly Leu 100 105 110

Leu Lys Asp Gly Asn Pro Ile Pro Ser Ala Ile Ala Ala Asn Ser Gly 115 120 125

Ile Tyr Pro Met Ala Thr Glu Glu Phe Ile Ile Arg Ile Pro Pro Tyr 130 135 140

His Tyr Ile His Val Leu Asp Gln Asn Ser Asn Val Ser Arg Val Glu 145 150 155 160

Val Gly Pro Lys Thr Tyr Ile Arg Gln Asp Asn Glu Arg Val Leu Phe 165 170 175

Ala Pro Met Arg Met Val Thr Val Pro Pro Arg His Tyr Cys Thr Val 180 185 190

Ala Asn Pro Val Ser Arg Asp Ala Gln Gly Leu Val Leu Phe Asp Val 195 200 205

- Thr Gly Gln Val Arg Leu Arg His Ala Asp Leu Glu Ile Arg Leu Ala 210 215 220
- Gln Asp Pro Phe Pro Leu Tyr Pro Gly Glu Val Leu Glu Lys Asp Ile 225 230 235 240
- Thr Pro Leu Gln Val Val Leu Pro Asn Thr Ala Leu His Leu Lys Ala 245 250 255
- Leu Leu Asp Phe Glu Asp Lys Asp Gly Asp Lys Val Val Ala Gly Asp 260 265 270
- Glu Trp Leu Phe Glu Gly Pro Gly Thr Tyr Ile Pro Arg Lys Glu Val 275 280 285
- Glu Val Val Glu Ile Ile Gln Ala Thr Ile Ile Arg Gln Asn Gln Ala 290 295 300
- Leu Arg Leu Arg Ala Arg Lys Glu Cys Trp Asp Arg Asp Gly Lys Glu 305 310 315 320
- Arg Val Thr Gly Glu Glu Trp Leu Val Thr Thr Val Gly Ala Tyr Leu 325 330 335
- Pro Ala Val Phe Glu Glu Val Leu Asp Leu Val Asp Ala Val Ile Leu 340 345 350
- Thr Glu Lys Thr Ala Leu His Leu Arg Ala Arg Arg Asn Phe Arg Asp 355 360 365
- Phe Arg Gly Val Ser Arg Arg Thr Gly Glu Glu Trp Leu Val Thr Val 370 375 380
- Gln Asp Thr Glu Ala His Val Pro Asp Val His Glu Glu Val Leu Gly 385 390 395 400
- Val Val Pro Ile Thr Thr Leu Gly Pro His Asn Tyr Cys Val Ile Leu 405 410 415
- Asp Pro Val Gly Pro Asp Gly Lys Asn Gln Leu Gly Gln Lys Arg Val 420 425 430

Val Lys Gly Glu Lys Ser Phe Phe Leu Gln Pro Gly Glu Gln Leu Glu 435 440 445

- Gln Gly Ile Gln Asp Val Tyr Val Leu Ser Glu Gln Gln Gly Leu Leu 450 455 460
- Leu Arg Ala Leu Gln Pro Leu Glu Glu Glu Glu Asp Glu Glu Lys Val 465 470 475 480
- Ser His Gln Ala Gly Asp His Trp Leu Ile Arg Gly Pro Leu Glu Tyr 485 490 495
- Val Pro Ser Ala Lys Val Glu Val Val Glu Glu Arg Gln Ala Ile Pro 500 505 510
- Leu Asp Glu Asn Glu Gly Ile Tyr Val Gln Asp Val Lys Thr Gly Lys 515 520 525
- Val Arg Ala Val Ile Gly Ser Thr Tyr Met Leu Thr Gln Asp Glu Val 530 535 540
- Leu Trp Glu Lys Glu Leu Pro Pro Gly Val Glu Glu Leu Leu Asn Lys 545 550 555 560
- Gly Gln Asp Pro Leu Ala Asp Arg Gly Glu Lys Asp Thr Ala Lys Ser 565 570 575
- Leu Gln Pro Leu Ala Pro Arg Asn Lys Thr Arg Val Val Ser Tyr Arg 580 585 590
- Val Pro His Asn Ala Ala Val Gln Val Tyr Asp Tyr Arg Glu Lys Arg 595 600 605
- Ala Arg Val Val Phe Gly Pro Glu Leu Val Ser Leu Gly Pro Glu Glu 610 615 620
- Gln Phe Thr Val Leu Ser Leu Ser Ala Gly Arg Pro Lys Arg Pro His 625 630 635 640
- Ala Arg Arg Ala Leu Cys Leu Leu Leu Gly Pro Asp Phe Phe Thr Asp 645 650 655
- Val Ile Thr Ile Glu Thr Ala Asp His Ala Arg Leu Gln Leu Gln Leu

660 665 670

Ala Tyr Asn Trp His Phe Glu Val Asn Asp Arg Lys Asp Pro Gln Glu 675 680 685

Thr Ala Lys Leu Phe Ser Val Pro Asp Phe Val Gly Asp Ala Cys Lys 690 695 700

Ala Ile Ala Ser Arg Val Arg Gly Ala Val Ala Ser Val Thr Phe Asp 705 710 715 720

Asp Phe His Lys Asn Ser Ala Arg Ile Ile Arg Thr Ala Val Phe Gly 725 730 735

Phe Glu Thr Ser Glu Ala Lys Gly Pro Asp Gly Met Ala Leu Pro Arg 740 745 750

Pro Arg Asp Gln Ala Val Phe Pro Gln Asn Gly Leu Val Val Ser Ser 755 760 765

Val Asp Val Gln Ser Val Glu Pro Val Asp Gln Arg Thr Arg Asp Ala 770 775 780

Leu Gln Arg Ser Val Gln Leu Ala Ile Glu Ile Thr Thr Asn Ser Gln 785 790 795 800

Glu Ala Ala Ala Lys His Glu Ala Gln Arg Leu Glu Gln Glu Ala Arg 805 810 815

Gly Arg Leu Glu Arg Gln Lys Ile Leu Asp Gln Ser Glu Ala Glu Lys 820 825 830

Ala Arg Lys Glu Leu Leu Glu Leu Glu Ala Leu Ser Met Ala Val Glu 835 840 845

Ser Thr Gly Thr Ala Lys Ala Glu Ala Glu Ser Arg Ala Glu Ala Ala 850 855 860

Arg Ile Glu Gly Glu Gly Ser Val Leu Gln Ala Lys Leu Lys Ala Gln 865 870 875 880

Ala Leu Ala Ile Glu Thr Glu Ala Glu Leu Gln Arg Val Gln Lys Val 885 890 895

Arg Glu Leu Glu Leu Val Tyr Ala Arg Ala Gln Leu Glu Leu Glu Val 900 905 Ser Lys Ala Gln Gln Leu Ala Glu Val Glu Val Lys Lys Phe Lys Gln 915 Met Thr Glu Ala Ile Gly Pro Ser Thr Ile Arg Asp Leu Ala Val Ala 935 Gly Pro Glu Met Gln Val Lys Leu Leu Gln Ser Leu Gly Leu Lys Ser 950 Thr Leu Ile Thr Asp Gly Ser Thr Pro Ile Asn Leu Phe Asn Thr Ala 965 970 Phe Gly Leu Leu Gly Met Gly Pro Glu Gly Gln Pro Leu Gly Arg Arg 980 Val Ala Ser Gly Pro Ser Pro Gly Glu Gly Ile Ser Pro Gln Ser Ala 995 1000 1005 Gln Ala Pro Gln Ala Pro Gly Asp Asn His Val Val Pro Val Leu 1010 1015 1020 Arg <210> 41 <211> 3075 <212> DNA <213> Artificial Sequence <220> <223> Levivirus and Homo sapiens <400> 41 atggcttcta actttactca gttcgttctc gtcgacaatg gcggaactgg cgacgtgact 60 gtcgccccaa gcaacttcgc taacggggtc gctgaatgga tcagctctaa ctcgcgttca 120 caggettaca aagtaacetg tagegttegt cagagetetg egcagaateg caaatacace 180 atcaaagtcg aggtgcctaa agtggcaacc cagactgttg gtggtgtaga gcttcctgta 240 gccgcatggc gttcgtactt aaatatggaa ctaaccattc caattttcgc tacgaattcc 300 gactgcgagc ttattgttaa ggcaatgcaa ggtctcctaa aagatggaaa cccgattccc 360 teageaateg cageaaacte eggeatetae eccatggeaa etgaagagtt cateateege 420

atccccccat	accactatat	ccatgtgctg	gaccagaaca	gcaacgtgtc	ccgtgtggag	480
gtcgggccaa	agacctacat	ccggcaggac	aatgagaggg	tactgtttgc	ccccatgcgc	540
atggtgaccg	tcccccacg	tcactactgc	acagtggcca	accctgtgtc	tcgggatgcc	600
cagggcttgg	tgctgtttga	tgtcacaggg	caagttcggc	ttcgccacgc	tgacctcgag	660
atccggctgg	cccaggaccc	cttccccctg	tacccagggg	aggtgctgga	aaaggacatc	720
acacccctgc	aggtggttct	gcccaacact	gccctccatc	taaaggcgct	gcttgatttt	780
gaggataaag	atggagacaa	ggtggtggca	ggagatgagt	ggcttttcga	gggacctggc	840
acgtacatcc	cccggaagga	agtggaggtc	gtggagatca	ttcaggccac	catcatcagg	900
cagaaccagg	ctctgcggct	cagggcccgc	aaggagtgct	gggaccggga	cggcaaggag	960
agggtgacag	gggaagaatg	gctggtcacc	acagtagggg	cgtacctccc	agcggtgttt	1020
gaggaggttc	tggatttggt	ggacgccgtc	atccttacgg	aaaagacagc	cctgcacctc	1080
cgggctcggc	ggaacttccg	ggacttcagg	ggagtgtccc	gccgcactgg	ggaggagtgg	1140
ctggtaacag	tgcaggacac	agaggcccac	gtgccagatg	tccacgagga	ggtgctgggg	1200
gttgtgccca	tcaccaccct	gggcccccac	aactactgcg	tgattctcga	ccctgtcgga	1260
ccggatggca	agaatcagct	ggggcagaag	cgcgtggtca	agggagagaa	gtctttttc	1320
ctccagccag	gagagcagct	ggaacaaggc	atccaggatg	tgtatgtgct	gtcggagcag	1380
caggggctgc	tgctgagggc	cctgcagccc	ctggaggagg	gggaggatga	ggagaaggtc	1440
tcacaccagg	ctggggacca	ctggctcatc	cgcggacccc	tggagtatgt	gccatctgcc	1500
aaagtggagg	tggtggagga	gcgccaggcc	atccctctag	acgagaacga	gggcatctat	1560
gtgcaggatg	tcaagaccgg	aaaggtgcgc	gctgtgattg	gaagcaccta	catgctgacc	1620
caggacgaag	tcctgtggga	gaaagagctg	cctcccgggg	tggaggagct	gctgaacaag	1680
gggcaggacc	ctctggcaga	caggggtgag	aaggacacag	ctaagagcct	ccagcccttg	1740
gegeeeegga	acaagacccg	tgtggtcagc	taccgcgtgc	cccacaacgc	tgcggtgcag	1800
gtgtacgact	accgagagaa	gcgagcccgc	gtggtcttcg	ggcctgagct	ggtgtcgctg	1860
ggtcctgagg	agcagttcac	agtgttgtcc	ctctcagctg	ggcggcccaa	gcgtccccat	1920
gcccgccgtg	cgctctgcct	gctgctgggg	cctgacttct	tcacagacgt	catcaccatc	1980
gaaacggcgg	atcatgccag	gctgcaactg	cagctggcct	acaactggca	ctttgaggtg	2040
aatgaccgga	aggaccccca	agagacggcc	aagctctttt	cagtgccaga	ctttgtaggt	2100
gatgcctgca	aagccatcgc	atcccgggtg	cggggggccg	tggcctctgt	cactttcgat	2160

gacttccata	agaactcagc	ccgcatcatt	cgcactgctg	tetttggett	tgagacctcg	2220
gaagcgaagg	gccccgatgg	catggccctg	cccaggcccc	gggaccaggc	tgtcttcccc	2280
caaaacgggc	tggtggtcag	cagtgtggac	gtgcagtcag	tggagcctgt	ggatcagagg	2340
accegggacg	ccctgcaacg	cagcgtccag	ctggccatcg	agatcaccac	caactcccag	2400
gaagcggcgg	ccaagcatga	ggctcagaga	ctggagcagg	aagcccgcgg	ccggcttgag	2460
cggcagaaga	tcctggacca	gtcagaagcc	gagaaagctc	gcaaggaact	tttggagctg	2520
gaggctctga	gcatggccgt	ggagagcacc	gggactgcca	aggcggaggc	cgagtcccgt	2580
gcggaggcag	cccggattga	gggagaaggg	tccgtgctgc	aggccaagct	aaaagcacag	2640
gccttggcca	ttgaaacgga	ggctgagctc	cagagggtcc	agaaggtccg	agagctggaa	2700
ctggtctatg	ceegggeeea	gctggagctg	gaggtgagca	aggeteagea	gctggctgag	2760
gtggaggtga	agaagttcaa	gcagatgaca	gaggccatag	gccccagcac	catcagggac	2820
cttgctgtgg	ctgggcctga	gatgcaggta	aaactgctcc	agtccctggg	cctgaaatca	2880
acceteatea	ccgatggctc	cactcccatc	aacctcttca	acacagcett	tgggctgctg	2940
gggatggggc	ccgagggtca	geecetggge	agaagggtgg	ccagtgggcc	cagecetggg	3000
gaggggatat	cccccagtc	tgctcaggcc	cctcaagctc	ctggagacaa	ccacgtggtg	3060
cctgtactgc	gctaa					3075

<210> 42

<211> 992

<212> PRT

<213> Artificial Sequence

<220>

<223> Levivirus and Rattus norvegicus

<400> 42

Met Ala Ser Asn Phe Thr Gln Phe Val Leu Val Asp Asn Gly Gly Thr 1 5 10 15

Gly Asp Val Thr Val Ala Pro Ser Asn Phe Ala Asn Gly Val Ala Glu 20 25 30

Trp Ile Ser Ser Asn Ser Arg Ser Gln Ala Tyr Lys Val Thr Cys Ser 35 40 45

Val Arg Gln Ser Ser Ala Gln Asn Arg Lys Tyr Thr Ile Lys Val Glu 50 55 60

Val Pro Lys Val Ala Thr Gln Thr Val Gly Gly Val Glu Leu Pro Val 65 70 75 80

- Ala Ala Trp Arg Ser Tyr Leu Asn Met Glu Leu Thr Ile Pro Ile Phe 85 90 95
- Ala Thr Asn Ser Asp Cys Glu Leu Ile Val Lys Ala Met Gln Gly Leu 100 105 110
- Leu Lys Asp Gly Asn Pro Ile Pro Ser Ala Ile Ala Ala Asn Ser Gly 115 120 125
- Ile Tyr Pro Met Ala Thr Glu Glu Ala Ile Ile Arg Ile Pro Pro Tyr 130 135 140
- His Tyr Ile His Val Leu Asp Gln Asn Ser Asn Val Ser Arg Val Glu 145 150 155 160
- Val Gly Pro Lys Thr Tyr Ile Arg Gln Asp Asn Glu Arg Val Leu Phe 165 170 175
- Ala Pro Val Arg Met Val Thr Val Pro Pro Arg His Tyr Cys Ile Val 180 185 190
- Ala Asn Pro Val Ser Arg Asp Thr Gln Ser Ser Val Leu Phe Asp Ile 195 200 205
- Thr Gly Gln Val Arg Leu Arg His Ala Asp Gln Glu Ile Arg Leu Ala 210 215 220
- Gln Asp Pro Phe Pro Leu Tyr Pro Gly Glu Val Leu Glu Lys Asp Ile 225 230 235 240
- Thr Pro Leu Gln Val Val Leu Pro Asn Thr Ala Leu His Leu Lys Ala 245 250 255
- Leu Leu Asp Phe Glu Asp Lys Asn Gly Asp Lys Val Met Ala Gly Asp 260 265 270
- Glu Trp Leu Phe Glu Gly Pro Gly Thr Tyr Ile Pro Gln Lys Glu Val 275 280 285
- Glu Val Val Glu Ile Ile Gln Ala Thr Val Ile Lys Gln Asn Gln Ala 290 295 300

Leu Arg Leu Arg Ala Arg Lys Glu Cys Phe Asp Arg Glu Gly Lys Gly 305 310 315 320

Arg Val Thr Gly Glu Glu Trp Leu Val Arg Ser Val Gly Ala Tyr Leu 325 330 335

Pro Ala Val Phe Glu Glu Val Leu Asp Leu Val Asp Ala Val Ile Leu 340 345 350

Thr Glu Lys Thr Ala Leu His Leu Arg Ala Leu Gln Asn Phe Arg Asp 355 360 365

Leu Arg Gly Val Leu His Arg Thr Gly Glu Glu Trp Leu Val Thr Val 370 375 380

Gln Asp Thr Glu Ala His Val Pro Asp Val Tyr Glu Glu Val Leu Gly 385 390 395 400

Val Val Pro Ile Thr Thr Leu Gly Pro Arg His Tyr Cys Val Ile Leu 405 410 415

Asp Pro Met Gly Pro Asp Gly Lys Asn Gln Leu Gly Gln Lys Arg Val 420 425 430

Val Lys Gly Glu Lys Ser Phe Phe Leu Gln Pro Gly Glu Arg Leu Glu
435 440 445

Arg Gly Ile Gln Asp Val Tyr Val Leu Ser Glu Gln Gln Gly Leu Leu 450 455 460

Leu Lys Ala Leu Gln Pro Leu Glu Glu Glu Glu Ser Glu Glu Lys Val 465 470 475 480

Ser His Gln Ala Gly Asp Cys Trp Leu Ile Arg Gly Pro Leu Glu Tyr 485 490 495

Val Pro Ser Ala Lys Val Glu Val Val Glu Glu Arg Gln Ala Ile Pro 500 505 510

Leu Asp Gln Asn Glu Gly Ile Tyr Val Gln Asp Val Lys Thr Gly Lys 515 520 525

Val Arg Ala Val Ile Gly Ser Thr Tyr Met Leu Thr Gln Asp Glu Val

530	535	540

Leu	Trp	Glu	Lys	Glu	Leu	Pro	Ser	Gly	Val	Glu	Glu	Leu	Leu	Asn	Leu
545					550					555					560

- Gly His Asp Pro Leu Ala Asp Arg Gly Gln Lys Gly Thr Ala Lys Pro 565 570 575
- Leu Gln Pro Ser Ala Pro Arg Asn Lys Thr Arg Val Val Ser Tyr Arg
 580 585 590
- Val Pro His Asn Ala Ala Val Gln Val Tyr Asp Tyr Arg Ala Lys Arg 595 600 605
- Ala Arg Val Val Phe Gly Pro Glu Leu Val Thr Leu Asp Pro Glu Glu 610 615 620
- Gln Phe Thr Val Leu Ser Leu Ser Ala Gly Arg Pro Lys Arg Pro His 625 630 635 640
- Ala Arg Arg Ala Leu Cys Leu Leu Gly Pro Asp Phe Phe Thr Asp 645 650 655
- Val Ile Thr Ile Glu Thr Ala Asp His Ala Arg Leu Gln Leu Gln Leu 660 665 670
- Ala Tyr Asn Trp His Phe Glu Leu Lys Asn Arg Asn Asp Pro Ala Glu 675 680 . 685
- Ala Ala Lys Leu Phe Ser Val Pro Asp Phe Val Gly Asp Ala Cys Lys 690 695 700
- Ala Ile Ala Ser Arg Val Arg Gly Ala Val Ala Ser Val Thr Phe Asp 705 710 715 720
- Asp Phe His Lys Asn Ser Ala Arg Ile Ile Arg Met Ala Val Phe Gly
 725 730 735
- Phe Glu Met Ser Glu Asp Thr Gly Pro Asp Gly Thr Leu Leu Pro Lys
 740 745 750
- Ala Arg Asp Gln Ala Val Phe Pro Gln Asn Gly Leu Val Val Ser Ser 755 760 765

Val Asp Val Gln Ser Val Glu Pro Val Asp Gln Arg Thr Arg Asp Ala 770 775 780

Leu Gln Arg Ser Val Gln Leu Ala Ile Glu Ile Thr Thr Asn Ser Gln 785 790 795 800

Glu Ala Ala Ala Lys His Glu Ala Gln Arg Leu Glu Gln Glu Ala Arg 805 810 815

Gly Arg Leu Glu Arg Gln Lys Ile Leu Asp Gln Ser Glu Ala Glu Lys 820 825 830

Ala Arg Lys Glu Leu Leu Glu Leu Glu Ala Met Ser Met Ala Val Glu 835 840 845

Ser Thr Gly Asn Ala Lys Ala Glu Ala Glu Ser Arg Ala Glu Ala Ala 850 855 860

Arg Ile Glu Gly Glu Gly Ser Val Leu Gln Ala Lys Leu Lys Ala Gln 865 870 875 880

Ala Leu Ala Ile Glu Thr Glu Ala Glu Leu Glu Arg Val Lys Lys Val 885 890 895

Arg Glu Met Glu Leu Ile Tyr Ala Arg Ala Gln Leu Glu Leu Glu Val 900 905 910

Ser Lys Ala Gln Gln Leu Ala Asn Val Glu Ala Lys Lys Phe Lys Glu 915 920 925

Met Thr Glu Ala Leu Gly Pro Gly Thr Ile Arg Asp Leu Ala Val Ala 930 935 940

Gly Pro Glu Met Gln Val Lys Leu Leu Gln Ser Leu Gly Leu Lys Ser 945 950 955 960

Thr Leu Ile Thr Asp Gly Ser Ser Pro Ile Asn Leu Phe Ser Thr Ala 965 970 975

Phe Gly Leu Gly Leu Gly Ser Asp Gly Gln Pro Pro Ala Gln Lys 980 985 990

<210> 43 <211> 2979

117/429

<212> DNA

<213> Artificial Sequence

<220>

<223> Levivirus and Rattus norvegicus

<400> 43

atggetteta aetttaetea gttegttete gtegaeaatg geggaaetgg egaegtgaet 60 gtcgccccaa gcaacttcgc taacggggtc gctgaatgga tcagctctaa ctcgcgttca 120 caggettaca aagtaacetg tagegttegt cagagetetg egcagaateg caaatacace 180 atcaaagtcg aggtgcctaa agtggcaacc cagactgttg gtggtgtaga gcttcctgta 240 geogratggc gttcgtactt aaatatggaa ctaaccattc caattttcgc tacgaattcc 300 gactgcgagc ttattgttaa ggcaatgcaa ggtctcctaa aagatggaaa cccgattccc 360 teageaateg cageaacte eggeatetae eccatggeaa etgaagagge cateateege 420 atcccccat accactacat ccatgtgctg gaccagaaca gtaatgtgtc ccgtgtggag 480 gttggaccaa agacctacat ccggcaggac aatgagaggg tactgtttgc cccagttcgc 540 atggtgaccg tececeacg ceactactge atagtggeea accetgtgte eegggacace 600 cagagttctg tgttatttga catcacagga caagtccgac tccggcacgc tgaccaggag 660 atccgactag cccaggaccc cttccccctg tatccagggg aggtgctgga aaaggacatc 720 accccactgc aggtggttct gcccaacaca gcactgcatc ttaaggcgtt gctggacttt 780 gaggataaga atggagacaa ggtcatggca ggagacgagt ggctatttga gggacctggc 840 acctacatcc cacagaagga agtggaagtc gtggagatca ttcaggccac agtcatcaaa 900 cagaaccaag cactgegget aagggeeega aaggagtget ttgaceggga gggeaagggg 960 cgcgtgacag gtgaggagtg gctggtccga tccgtggggg cttacctccc agctgtcttt 1020 gaagaggtgc tggatctggt ggatgctgtg atccttacag aaaagactgc cctgcacctc 1080 cgggctctgc agaacttcag ggaccttcgg ggagtgctcc accgcaccgg ggaggaatgg 1140 ttagtgacag tgcaggacac agaagcccat gttccagatg tctatgagga ggtgcttggg 1200 gtagtaccca tcaccaccct gggacctcga cactactgtg tcattcttga cccaatggga 1260 ccagacggca agaaccagct gggacaaaag cgtgttgtca agggagagaa gtcctttttc 1320 ctccagccag gagagagct ggagcgaggc atccaggatg tgtatgtgct gtcagagcag 1380 caggggctgc tactgaaggc actgcagccc ctggaggagg gagagagcga ggagaaggtc 1440 teccatcagg ceggagactg etggeteate egtgggeece tggagtatgt gecatetgea 1500 aaagtggagg tggtggagga gcgtcaggct atccctctgg accaaaatga gggcatctat 1560

PCT/US2004/007434 WO 2004/081533

gtgcaggatg	tcaagacggg	gaaggtgcgg	gctgtgattg	gaagcaccta	catgctgact	1620
caggatgaag	tcctgtggga	aaaggagctg	ccttctgggg	tggaggagct	gctgaacttg	1680
gggcatgacc	ctctggcaga	caggggtcag	aagggcacag	ccaagcccct	tcagccctca	1740
gctccaagga	acaagacccg	agtggtcagc	taccgtgtcc	cgcacaatgc	agcggtgcag	1800
gtctatgact	acagagccaa	gagagcccgt	gtggtctttg	ggcccgagct	agtgacactg	1860
gatcctgagg	agcagttcac	agtattgtcc	ctttctgccg	ggcgacccaa	gcgtcctcat	1920
gcccgccgtg	cactctgcct	actgctggga	cctgatttct	ttactgatgt	catcaccatc	1980
gaaactgcag	atcatgccag	gttgcagctg	cagcttgcct	acaactggca	ctttgaactg	2040
aagaaccgga	atgaccctgc	agaggcagcc	aagcttttct	ccgtgcctga	cttcgtgggt	2100
gacgcctgca	aggccattgc	atcccgagtc	cggggggctg	tagcctctgt	cacctttgat	2160
gacttccata	aaaactcagc	ccggatcatt	cgaatggctg	tttttggctt	tgagatgtct	2220
gaagacacag	gtcctgatgg	cacactcctg	cccaaggctc	gagaccaggc	agtctttccc	2280
caaaacgggc	tggtagtcag	cagtgtggat	gtgcagtcag	tggagcccgt	ggaccagagg	2340
acccgggatg	cccttcagcg	cagcgttcag	ctggccatcg	aaattaccac	caactcccag	2400
gaggcagcag	ccaagcacga	ggctcagaga	ctggaacagg	aagcccgtgg	tcggcttgag	2460
aggcagaaga	tcttggacca	gtcagaagct	gaaaaagccc	gcaaggaact	cttggagctt	2520
gaggctatga	gcatggctgt	ggagagcacg	ggtaatgcca	aagcagaggc	tgagtcccgt	2580
gcagaggcag	cgaggatcga	aggagaaggc	tctgtgctgc	aggccaagct	caaggcacag	2640
gcgctagcca	ttgagacgga	ggctgagttg	gagcgagtaa	agaaagtacg	agagatggaa	2700
ctgatctatg	cccgggccca	gttggagctg	gaggtgagca	aggcgcagca	gcttgccaat	2760
gtggaggcaa	agaagttcaa	ggagatgaca	gaggcactgg	gccccggcac	catcagggac	2820
ctggctgtgg	ccgggccaga	gatgcaggtg	aaacttctcc	agtccctggg	cctgaaatcc	2880
actctcatca	ccgatggctc	gtctcccatc	aacctcttca	gcacagcctt	cgggttgctg	2940
gggctggggt	ctgatggtca	gccgccagca	cagaagtga			2979

```
<210> 44
<211> 239
<212> PRT
```

<213> Artificial Sequence

<220>

<223> completely synthesized

<400> 44

Met Ser Lys Gly Glu Glu Leu Phe Thr Gly Val Val Pro Ile Leu Val 1 5 10 15

- Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe Ser Val Ser Gly Glu 20 25 30
- Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr Leu Lys Phe Ile Cys 35 40 45
- Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr Leu Val Thr Thr Phe 50 55 60
- Thr Tyr Gly Val Gln Cys Phe Ser Arg Tyr Pro Asp His Met Lys Gln 65 70 75 80
- His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly Tyr Val Gln Glu Arg 85 90 95
- Thr Ile Phe Phe Lys Asp Asp Gly Asn Tyr Lys Thr Arg Ala Glu Val
- Lys Phe Glu Gly Asp Thr Leu Val Asn Arg Ile Glu Leu Lys Gly Ile 115 120 125
- Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly His Lys Leu Glu Tyr Asn 130 135 140
- Tyr Asn Ser His Asn Val Tyr Ile Met Ala Asp Lys Gln Lys Asn Gly
 145 150 155 160
- Ile Lys Val Asn Phe Lys Ile Arg His Asn Ile Glu Asp Gly Ser Val 165 170 175
- Gln Leu Ala Asp His Tyr Gln Gln Asn Thr Pro Ile Gly Asp Gly Pro 180 185 190
- Val Leu Leu Pro Asp Asn His Tyr Leu Ser Thr Gln Ser Ala Leu Ser 195 200 205
- Lys Asp Pro Asn Glu Lys Arg Asp His Met Val Leu Leu Glu Phe Val 210 215 220
- Thr Ala Ala Gly Ile Thr His Gly Met Asp Glu Leu Tyr Lys Pro 225 230 235

60

120

180

240

300

360

420

480

540

600

660

720

```
<210> 45
<211> 720
<212>
      DNA
<213> Artificial Sequence
<220>
<223> completely synthesized
<400> 45
atgagcaagg gcgaggaact gttcactggc gtggtcccaa ttctcgtgga actggatggc
gatgtgaatg ggcacaaatt ttctgtcagc ggagagggtg aaggtgatgc cacatacgga
aageteacce tgaaatteat etgeaceact ggaaagetee etgtgeeatg gecaacactg
gtcactacct tcacctatgg cgtgcagtgc ttttccagat acccagacca tatgaagcag
catgactttt tcaagagcgc catgcccgag ggctatgtgc aggagagaac catctttttc
aaagatgacg ggaactacaa gacccgcgct gaagtcaagt tcgaaggtga caccctggtg
aatagaatcg agctgaaggg cattgacttt aaggaggatg gaaacattct cggccacaag
ctggaataca actataactc ccacaatgtg tacatcatgg ccgacaagca aaagaatggc
atcaaggtca acttcaagat cagacacaac attgaggatg gatccgtgca gctggccgac
cattatcaac agaacactcc aatcggcgac ggccctgtgc tcctcccaga caaccattac
ctgtccaccc agtctgccct gtctaaagat cccaacgaaa agagagacca catggtcctg
<210> 46
<211> 1132
<212> PRT
<213> Artificial Sequence
<220>
<223> synthesized and Homo spiens
<400> 46
Met Ser Lys Gly Glu Glu Leu Phe Thr Gly Val Val Pro Ile Leu Val
               5
                                  10
                                                     15
Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe Ser Val Ser Gly Glu
           20
Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr Leu Lys Phe Ile Cys
       35
                          40
```

Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr Leu Val Thr Thr Phe

WO 2004/081533

50 55 60

Thr Tyr Gly Val Gln Cys Phe Ser Arg Tyr Pro Asp His Met Lys Gln 65 70 75 80

His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly Tyr Val Gln Glu Arg 85 90 95

Thr Ile Phe Phe Lys Asp Asp Gly Asn Tyr Lys Thr Arg Ala Glu Val 100 105 110

Lys Phe Glu Gly Asp Thr Leu Val Asn Arg Ile Glu Leu Lys Gly Ile 115 120 125

Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly His Lys Leu Glu Tyr Asn 130 135 140

Tyr Asn Ser His Asn Val Tyr Ile Met Ala Asp Lys Gln Lys Asn Gly
145 150 155 160

Ile Lys Val Asn Phe Lys Ile Arg His Asn Ile Glu Asp Gly Ser Val 165 170 175

Gln Leu Ala Asp His Tyr Gln Gln Asn Thr Pro Ile Gly Asp Gly Pro 180 185 190

Val Leu Leu Pro Asp Asn His Tyr Leu Ser Thr Gln Ser Ala Leu Ser 195 200 205

Lys Asp Pro Asn Glu Lys Arg Asp His Met Val Leu Leu Glu Phe Val 210 215 220

Thr Ala Ala Gly Ile Thr His Gly Met Asp Glu Leu Tyr Lys Pro Met 225 230 235 240

Ala Thr Glu Glu Phe Ile Ile Arg Ile Pro Pro Tyr His Tyr Ile His 245 250 255

Val Leu Asp Gln Asn Ser Asn Val Ser Arg Val Glu Val Gly Pro Lys 260 265 270

Thr Tyr Ile Arg Gln Asp Asn Glu Arg Val Leu Phe Ala Pro Met Arg 275 280 285

Met Val Thr Val Pro Pro Arg His Tyr Cys Thr Val Ala Asn Pro Val 290 295 300

- Ser Arg Asp Ala Gln Gly Leu Val Leu Phe Asp Val Thr Gly Gln Val 305 310 315 320
- Arg Leu Arg His Ala Asp Leu Glu Ile Arg Leu Ala Gln Asp Pro Phe 325 330 335
- Pro Leu Tyr Pro Gly Glu Val Leu Glu Lys Asp Ile Thr Pro Leu Gln 340 345 350
- Val Val Leu Pro Asn Thr Ala Leu His Leu Lys Ala Leu Leu Asp Phe 355 360 365
- Glu Asp Lys Asp Gly Asp Lys Val Val Ala Gly Asp Glu Trp Leu Phe 370 375 380
- Glu Gly Pro Gly Thr Tyr Ile Pro Arg Lys Glu Val Glu Val Val Glu 385 390 395 400
- Ile Ile Gln Ala Thr Ile Ile Arg Gln Asn Gln Ala Leu Arg Leu Arg
 405 410 415
- Ala Arg Lys Glu Cys Trp Asp Arg Asp Gly Lys Glu Arg Val Thr Gly
 420 425 430
- Glu Glu Trp Leu Val Thr Thr Val Gly Ala Tyr Leu Pro Ala Val Phe 435 440 445
- Glu Glu Val Leu Asp Leu Val Asp Ala Val Ile Leu Thr Glu Lys Thr 450 455 460
- Ala Leu His Leu Arg Ala Arg Arg Asn Phe Arg Asp Phe Arg Gly Val 465 470 475 480
- Ser Arg Arg Thr Gly Glu Glu Trp Leu Val Thr Val Gln Asp Thr Glu 485 490 495
- Ala His Val Pro Asp Val His Glu Glu Val Leu Gly Val Val Pro Ile 500 505 510
- Thr Thr Leu Gly Pro His Asn Tyr Cys Val Ile Leu Asp Pro Val Gly 515 520 525

Pro Asp Gly Lys Asn Gln Leu Gly Gln Lys Arg Val Val Lys Gly Glu 530 535 540

- Lys Ser Phe Phe Leu Gln Pro Gly Glu Gln Leu Glu Gln Gly Ile Gln 545 550 550
- Asp Val Tyr Val Leu Ser Glu Gln Gln Gly Leu Leu Leu Arg Ala Leu 565 570 575
- Gln Pro Leu Glu Glu Gly Glu Asp Glu Glu Lys Val Ser His Gln Ala 580 585 590
- Gly Asp His Trp Leu Ile Arg Gly Pro Leu Glu Tyr Val Pro Ser Ala 595 600 605
- Lys Val Glu Val Val Glu Glu Arg Gln Ala Ile Pro Leu Asp Glu Asn 610 615 620
- Glu Gly Ile Tyr Val Gln Asp Val Lys Thr Gly Lys Val Arg Ala Val 625 630 635 640
- Ile Gly Ser Thr Tyr Met Leu Thr Gln Asp Glu Val Leu Trp Glu Lys 645 650 655
- Glu Leu Pro Pro Gly Val Glu Glu Leu Leu Asn Lys Gly Gln Asp Pro 660 665 670
- Leu Ala Asp Arg Gly Glu Lys Asp Thr Ala Lys Ser Leu Gln Pro Leu 675 680 685
- Ala Pro Arg Asn Lys Thr Arg Val Val Ser Tyr Arg Val Pro His Asn 690 695 700
- Ala Ala Val Gln Val Tyr Asp Tyr Arg Glu Lys Arg Ala Arg Val Val 705 710 715 720
- Phe Gly Pro Glu Leu Val Ser Leu Gly Pro Glu Glu Gln Phe Thr Val 725 730 735
- Leu Ser Leu Ser Ala Gly Arg Pro Lys Arg Pro His Ala Arg Arg Ala 740 745 750
- Leu Cys Leu Leu Gly Pro Asp Phe Phe Thr Asp Val Ile Thr Ile

755 760 . 765

Glu Thr Ala Asp His Ala Arg Leu Gln Leu Gln Leu Ala Tyr Asn Trp
770 775 780

His Phe Glu Val Asn Asp Arg Lys Asp Pro Gln Glu Thr Ala Lys Leu 785 790 795 800

Phe Ser Val Pro Asp Phe Val Gly Asp Ala Cys Lys Ala Ile Ala Ser 805 810 815

Arg Val Arg Gly Ala Val Ala Ser Val Thr Phe Asp Asp Phe His Lys 820 825 830

Asn Ser Ala Arg Ile Ile Arg Thr Ala Val Phe Gly Phe Glu Thr Ser 835 840 845

Glu Ala Lys Gly Pro Asp Gly Met Ala Leu Pro Arg Pro Arg Asp Gln 850 855 860

Ala Val Phe Pro Gln Asn Gly Leu Val Val Ser Ser Val Asp Val Gln 865 870 875 880

Ser Val Glu Pro Val Asp Gln Arg Thr Arg Asp Ala Leu Gln Arg Ser 885 890 895

Val Gln Leu Ala Ile Glu Ile Thr Thr Asn Ser Gln Glu Ala Ala 900 905 910

Lys His Glu Ala Gln Arg Leu Glu Gln Glu Ala Arg Gly Arg Leu Glu 915 920 925

Arg Gln Lys Ile Leu Asp Gln Ser Glu Ala Glu Lys Ala Arg Lys Glu 930 935 940

Leu Leu Glu Leu Glu Ala Leu Ser Met Ala Val Glu Ser Thr Gly Thr 945 950 955 960

Ala Lys Ala Glu Ala Glu Ser Arg Ala Glu Ala Ala Arg Ile Glu Gly 965 970 975

Glu Gly Ser Val Leu Gln Ala Lys Leu Lys Ala Gln Ala Leu Ala Ile 980 985 990

Glu Thr Glu Ala Glu Leu Gln Arg Val Gln Lys Val Arg Glu Leu Glu 995 1000 1005

Leu Val Tyr Ala Arg Ala Gln Leu Glu Leu Glu Val Ser Lys Ala 1010 1015 1020

Gln Gln Leu Ala Glu Val Glu Val Lys Lys Phe Lys Gln Met Thr 1025 1030 1035

Glu Ala Ile Gly Pro Ser Thr Ile Arg Asp Leu Ala Val Ala Gly 1040 1045 1050

Pro Glu Met Gln Val Lys Leu Leu Gln Ser Leu Gly Leu Lys Ser 1055 1060 1065

Thr Leu Ile Thr Asp Gly Ser Thr Pro Ile Asn Leu Phe Asn Thr 1070 1075 1080

Ala Phe Gly Leu Leu Gly Met Gly Pro Glu Gly Gln Pro Leu Gly 1085 1090 1095 .

Arg Arg Val Ala Ser Gly Pro Ser Pro Gly Glu Gly Ile Ser Pro 1100 1105 1110

Gln Ser Ala Gln Ala Pro Gln Ala Pro Gly Asp Asn His Val Val 1115 1120 1125

Pro Val Leu Arg 1130

<210> 47

<211> 3399

<212> PRT

<213> Artificial Sequence

<220>

<223> synthesized and Homo sapiens

<400> 47

Ala Thr Gly Ala Gly Cys Ala Ala Gly Gly Gly Cys Gly Ala Gly Gly
1 5 10 15

Ala Ala Cys Thr Gly Thr Thr Cys Ala Cys Thr Gly Gly Cys Gly Thr 20 25 30

Gly Gly Thr Cys Cys Cys Ala Ala Thr Thr Cys Thr Cys Gly Thr Gly 35 40 45

Gly Ala Ala Cys Thr Gly Gly Ala Thr Gly Gly Cys Gly Ala Thr Gly 50 55 60

Thr Gly Ala Ala Thr Gly Gly Gly Cys Ala Cys Ala Ala Ala Thr Thr 65 70 75 80

Thr Thr Cys Thr Gly Thr Cys Ala Gly Cys Gly Gly Ala Gly Ala Gly 85 90 95

Gly Gly Thr Gly Ala Ala Gly Gly Thr Gly Ala Thr Gly Cys Cys Ala 100 105 110

Cys Ala Thr Ala Cys Gly Gly Ala Ala Ala Gly Cys Thr Cys Ala Cys 115 120 125

Cys Cys Thr Gly Ala Ala Ala Thr Thr Cys Ala Thr Cys Thr Gly Cys 130 135 140

Ala Cys Cys Ala Cys Thr Gly Gly Ala Ala Ala Gly Cys Thr Cys Cys 145 150 155 160

Cys Thr Gly Thr Gly Cys Cys Ala Thr Gly Gly Cys Cys Ala Ala Cys 165 170 175

Ala Cys Thr Gly Gly Thr Cys Ala Cys Thr Ala Cys Cys Thr Thr Cys 180 185 190

Ala Cys Cys Thr Ala Thr Gly Gly Cys Gly Thr Gly Cys Ala Gly Thr 195 200 205

Gly Cys Thr Thr Thr Cys Cys Ala Gly Ala Thr Ala Cys Cys Cys 210 215 220

Ala Gly Ala Cys Cys Ala Thr Ala Thr Gly Ala Ala Gly Cys Ala Gly 225 230 235 240

Cys Ala Thr Gly Ala Cys Thr Thr Thr Thr Thr Cys Ala Ala Gly Ala 245 250 255

Gly Cys Gly Cys Cys Ala Thr Gly Cys Cys Cys Gly Ala Gly Gly Gly 260 265 270

Cys Thr Ala Thr Gly Thr Gly Cys Ala Gly Gly Ala Gly Ala Gly Ala 275 280 285

Ala Cys Cys Ala Thr Cys Thr Thr Thr Thr Thr Cys Ala Ala Ala Gly 290 295 300

Ala Thr Gly Ala Cys Gly Gly Gly Ala Ala Cys Thr Ala Cys Ala Ala 305 310 315 320

Gly Ala Cys Cys Cys Gly Cys Gly Cys Thr Gly Ala Ala Gly Thr Cys 325 330 335

Ala Ala Gly Thr Thr Cys Gly Ala Ala Gly Gly Thr Gly Ala Cys Ala 340 345 350

Cys Cys Cys Thr Gly Gly Thr Gly Ala Ala Thr Ala Gly Ala Ala Thr 355 360 365

Cys Gly Ala Gly Cys Thr Gly Ala Ala Gly Gly Cys Ala Thr Thr 370 375 380

Gly Ala Cys Thr Thr Thr Ala Ala Gly Gly Ala Gly Gly Ala Thr Gly 385 390 395 400

Gly Ala Ala Ala Cys Ala Thr Thr Cys Thr Cys Gly Gly Cys Cys Ala 405 410 415

Cys Ala Ala Gly Cys Thr Gly Gly Ala Ala Thr Ala Cys Ala Ala Cys 420 425 430

Thr Ala Thr Ala Ala Cys Thr Cys Cys Cys Ala Cys Ala Ala Thr Gly
435 440 445

Thr Gly Thr Ala Cys Ala Thr Cys Ala Thr Gly Gly Cys Cys Gly Ala 450 455 460

Cys Ala Ala Gly Cys Ala Ala Ala Ala Gly Ala Ala Thr Gly Gly Cys 465 470 475 480

Ala Thr Cys Ala Ala Gly Gly Thr Cys Ala Ala Cys Thr Thr Cys Ala 485 490 495

Ala Gly Ala Thr Cys Ala Gly Ala Cys Ala Cys Ala Cys Ala Thr

500 505 510

Thr Gly Ala Gly Gly Ala Thr Gly Gly Ala Thr Cys Cys Gly Thr Gly 515 520 525

Cys Ala Gly Cys Thr Gly Gly Cys Cys Gly Ala Cys Cys Ala Thr Thr 530 535 540

Ala Thr Cys Ala Ala Cys Ala Gly Ala Ala Cys Ala Cys Thr Cys Cys 545 550 555 560

Ala Ala Thr Cys Gly Gly Cys Gly Ala Cys Gly Gly Cys Cys Thr 565 570 575

Gly Thr Gly Cys Thr Cys Cys Thr Cys Cys Cys Ala Gly Ala Cys Ala 580 585 590

Ala Cys Cys Ala Thr Thr Ala Cys Cys Thr Gly Thr Cys Cys Ala Cys 595 600 605

Cys Cys Ala Gly Thr Cys Thr Gly Cys Cys Cys Thr Gly Thr Cys Thr 610 615 620

Ala Ala Ala Gly Ala Thr Cys Cys Cys Ala Ala Cys Gly Ala Ala Ala 625 630 635 640

Ala Gly Ala Gly Ala Cys Cys Ala Cys Ala Thr Gly Gly Thr 645 650 655

Cys Cys Thr Gly Cys Thr Gly Gly Ala Gly Thr Thr Thr Gly Thr Gly 660 665 670

Ala Cys Cys Gly Cys Thr Gly Cys Thr Gly Gly Gly Ala Thr Cys Ala 675 680 685

Cys Ala Cys Ala Thr Gly Gly Cys Ala Thr Gly Gly Ala Cys Gly Ala 690 695 700

Gly Cys Thr Gly Thr Ala Cys Ala Ala Gly Cys Cys Cys Ala Thr Gly 705 710 715 720

Gly Cys Ala Ala Cys Thr Gly Ala Ala Gly Ala Gly Thr Thr Cys Ala 725 730 735

Thr Cys Ala Thr Cys Cys Gly Cys Ala Thr Cys Cys Cys Cys Cys T40 745 750

- Ala Thr Ala Cys Cys Ala Cys Thr Ala Thr Ala Thr Cys Cys Ala Thr
 755 760 765
- Gly Thr Gly Cys Thr Gly Gly Ala Cys Cys Ala Gly Ala Ala Cys Ala 770 780
- Gly Cys Ala Ala Cys Gly Thr Gly Thr Cys Cys Cys Gly Thr Gly Thr 785 790 795 800
- Gly Gly Ala Gly Gly Thr Cys Gly Gly Gly Cys Cys Ala Ala Ala Gly 805 810 815
- Ala Cys Cys Thr Ala Cys Ala Thr Cys Cys Gly Gly Cys Ala Gly Gly 820 825 830
- Ala Cys Ala Ala Thr Gly Ala Gly Ala Gly Gly Gly Thr Ala Cys Thr 835 840 845
- Gly Thr Thr Thr Gly Cys Cys Cys Cys Cys Ala Thr Gly Cys Gly Cys 850 855 860
- Ala Thr Gly Gly Thr Gly Ala Cys Cys Gly Thr Cys Cys Cys Cys 865 870 875 886
- Cys Ala Cys Gly Thr Cys Ala Cys Thr Ala Cys Thr Gly Cys Ala Cys 885 890 895
- Ala Gly Thr Gly Gly Cys Cys Ala Ala Cys Cys Cys Thr Gly Thr Gly 900 905 910
- Thr Cys Thr Cys Gly Gly Gly Ala Thr Gly Cys Cys Cys Ala Gly Gly 915 920 925
- Gly Cys Thr Thr Gly Gly Thr Gly Cys Thr Gly Thr Thr Thr Gly Ala 930 935 940
- Thr Gly Thr Cys Ala Cys Ala Gly Gly Gly Cys Ala Ala Gly Thr Thr 945 950 955 960
- Cys Gly Gly Cys Thr Thr Cys Gly Cys Cys Ala Cys Gly Cys Thr Gly 965 970 975

Ala Cys Cys Thr Cys Gly Ala Gly Ala Thr Cys Cys Gly Gly Cys Thr 980 985 990

- Gly Gly Cys Cys Cys Ala Gly Gly Ala Cys Cys Cys Cys Thr Thr Cys 995 1000 1005
- Cys Cys Cys Cys Thr Gly Thr Ala Cys Cys Cys Ala Gly Gly Gly 1010 1015 1020
- Gly Ala Gly Gly Thr Gly Cys Thr Gly Gly Ala Ala Ala Gly 1025 1030 1035
- Gly Ala Cys Ala Thr Cys Ala Cys Ala Cys Cys Cys Cys Thr Gly 1040 1045 1050
- Cys Ala Gly Gly Thr Gly Gly Thr Thr Cys Thr Gly Cys Cys 1055 1060 1065
- Ala Ala Cys Ala Cys Thr Gly Cys Cys Cys Thr Cys Cys Ala Thr 1070 1075 1080
- Cys Thr Ala Ala Gly Gly Cys Gly Cys Thr Gly Cys Thr Thr 1085 1090 1095
- Gly Ala Thr Thr Thr Gly Ala Gly Gly Ala Thr Ala Ala Ala 1100 1105 1110
- Gly Ala Thr Gly Gly Ala Gly Ala Cys Ala Ala Gly Gly Thr Gly 1115 1120 1125
- Gly Thr Gly Gly Cys Ala Gly Gly Ala Gly Ala Thr Gly Ala Gly 1130 1135 1140
- Thr Gly Gly Cys Thr Thr Thr Cys Gly Ala Gly Gly Gly Ala 1145 1150 1155
- Cys Cys Thr Gly Gly Cys Ala Cys Gly Thr Ala Cys Ala Thr Cys 1160 1165 1170
- Cys Cys Cys Gly Gly Ala Ala Gly Gly Ala Ala Gly Thr Gly 1175 1180 1185
- Gly Ala Gly Gly Thr Cys Gly Thr Gly Gly Ala Gly Ala Thr Cys

1190 1195 1200	1190	•	1195	1200
----------------	------	---	------	------

Ala	Thr	Thr	Сув	Ala	Gly	Gly	Cys	Cys	Ala	Cys	Cys	Ala	Thr	Сув
•	1205					1210		•			1215			

- Ala Thr Cys Ala Gly Gly Cys Ala Gly Ala Ala Cys Cys Ala Gly 1220 1225 1230
- Gly Cys Thr Cys Thr Gly Cys Gly Gly Cys Thr Cys Ala Gly Gly 1235 1240 1245
- Gly Cys Cys Cys Gly Cys Ala Ala Gly Gly Ala Gly Thr Gly Cys 1250 1255 1260
- Thr Gly Gly Gly Ala Cys Cys Gly Gly Gly Ala Cys Gly Gly Cys 1265 1270 1275
- Ala Ala Gly Gly Ala Gly Ala Gly Gly Gly Thr Gly Ala Cys Ala 1280 1285 1290
- Gly Gly Gly Ala Ala Gly Ala Ala Thr Gly Gly Cys Thr Gly 1295 1300 1305
- Gly Thr Cys Ala Cys Cys Ala Cys Ala Gly Thr Ala Gly Gly Gly
 1310 1315 1320
- Gly Cys Gly Thr Ala Cys Cys Thr Cys Cys Cys Ala Gly Cys Gly 1325 1330 1335
- Gly Thr Gly Thr Thr Gly Ala Gly Gly Ala Gly Gly Thr Thr 1340 1345 1350
- Cys Thr Gly Gly Ala Thr Thr Gly Gly Thr Gly Gly Ala Cys 1355 1360 1365
- Gly Cys Cys Gly Thr Cys Ala Thr Cys Cys Thr Thr Ala Cys Gly 1370 1375 1380
- Gly Ala Ala Ala Gly Ala Cys Ala Gly Cys Cys Cys Thr Gly 1385 1390 1395
- Cys Ala Cys Cys Thr Cys Cys Gly Gly Gly Cys Thr Cys Gly Gly 1400 1405 1410

Cys Gly Gly Ala Ala Cys Thr Thr Cys Cys Gly Gly Gly Ala Cys 1415 1420 1425

- Thr Thr Cys Ala Gly Gly Gly Ala Gly Thr Gly Thr Cys Cys 1430 1435 1440
- Cys Gly Cys Cys Gly Cys Ala Cys Thr Gly Gly Gly Ala Gly 1445 1450 1455
- Gly Ala Gly Thr Gly Gly Cys Thr Gly Gly Thr Ala Ala Cys Ala 1460 1465 1470
- Gly Thr Gly Cys Ala Gly Gly Ala Cys Ala Cys Ala Gly Ala Gly 1475 1480 1485
- Gly Cys Cys Cys Ala Cys Gly Thr Gly Cys Cys Ala Gly Ala Thr 1490 1495 1500
- Gly Thr Cys Cys Ala Cys Gly Ala Gly Gly Ala Gly Gly Thr Gly 1505 1510 1515
- Cys Thr Gly Gly Gly Gly Gly Thr Thr Gly Thr Gly Cys Cys 1520 1525 1530
- Ala Thr Cys Ala Cys Cys Ala Cys Cys Cys Thr Gly Gly Cys 1535 1540 1545
- Cys Cys Cys Cys Ala Cys Ala Cys Thr Ala Cys Thr Gly Cys 1550 1560
- Gly Thr Gly Ala Thr Thr Cys Thr Cys Gly Ala Cys Cys Cys Thr 1565 1570 1575
- Gly Thr Cys Gly Gly Ala Cys Cys Gly Gly Ala Thr Gly Gly Cys 1580 1585 1590
- Ala Ala Gly Ala Ala Thr Cys Ala Gly Cys Thr Gly Gly Gly 1595 1600 1605
- Cys Ala Gly Ala Ala Gly Cys Gly Cys Gly Thr Gly Gly Thr Cys 1610 1615 1620
- Ala Ala Gly Gly Gly Ala Gly Ala Gly Ala Ala Gly Thr Cys Thr 1625 1630 1635

Thr	Thr 1640	Thr	Thr	Thr	Сув	Cys 1645	Thr	Сув	Сув	Ala	Gly 1650	Сув	Cys	Ala
Gly	Gly 1655	Ala	Gly	Ala	Gly	Cys 1660	Ala	Gly	Cys	Thr	Gly 1665	Gly	Ala	Ala
Сув	Ala 1670	Ala	Gly	Gly	Cys	Ala 1675	Thr	Сув	Сув	Ala	Gly 1680	Gly	Ala	Thr
Gly	Thr 1685	Gly	Thr	Ala	Thr	Gly 1690	Thr	Gly	Сув	Thr	Gly 1695	Thr	Сув	Gly
Gly	Ala 1700	Gly	Cys	Ala	Gly	Cys 1705		Gly	Gly	Gly	Gly 1710		Thr	Gly
Cys	Thr 1715		Cys	Thr	Gly	Ala 1720	Gly	Gly	Gly	Cys	Cys 1725		Thr	Gly
Cys	Ala 1730		Сув	Сув	Cys	Cys 1735		Gly	Gly	Ala	Gly 1740		Ala	Gly
Gly	Gly 1745		Gly	Ala	Gly	Gly 1750		Thr	Gly	Ala	Gly 1755		Ala	Gly
Ala	Ala 1760	_	Gly	Thr	Cys	Thr 1765		Ala	Cys	Ala	Cys 1770		Ala	Gly
Gly	Cys 1775		Gly	Gly	Gly	Gly 1780		Сув	Cys	Ala	Cys 1785		Gly	gly
Сув	Thr 1790	_	Ala	Thr	Cys	Cys 1795		Сув	Gly	· Gly	Ala 1800		Cys	сув Сув
Cys	Thr 1805	_	Gly	Ala	Gly	Thr 1810		Thr	Gly	Thr	Gly 181		су Су	s Ala
Thr	Cys 1820		Gly	Cys	Сув	Ala 1825		. Ala	Gly	/ Thr	Gly 1830		/ Ala	a Gly
Gly	Thr 1835		gly	Thr	Gly	Gly 1840		. Gly	gly	/ Ala	Gly 184!		s Gly	y Cys
Cys	a Ala	Gly	r Gly	/ Cys	з Сув	. Ala	Thr	Cys	з Сув	в Сув	Thr	Суя	3 Thi	r Ala

1850	1855	1860
7920	1022	7000

Gly Ala	Cys	Gly	Ala	Gly	Ala	Ala	Cys	Gly	Ala	Gly	Gly	Gly	Cys
1865					1870					1875			

- Ala Thr Cys Thr Ala Thr Gly Thr Gly Cys Ala Gly Gly Ala Thr 1880 1895 1890
- Gly Thr Cys Ala Ala Gly Ala Cys Cys Gly Gly Ala Ala Ala Gly 1895 1900 1905
- Gly Thr Gly Cys Gly Cys Gly Cys Thr Gly Thr Gly Ala Thr Thr 1910 1915 1920
- Gly Gly Ala Ala Gly Cys Ala Cys Cys Thr Ala Cys Ala Thr Gly 1925 1930 1935
- Cys Thr Gly Ala Cys Cys Cys Ala Gly Gly Ala Cys Gly Ala Ala 1940 1945 1950
- Gly Thr Cys Cys Thr Gly Thr Gly Gly Gly Ala Gly Ala Ala Ala 1955 1960 , 1965
- Gly Ala Gly Cys Thr Gly Cys Cys Thr Cys Cys Cys Gly Gly Gly 1970 1975 1980
- Gly Thr Gly Gly Ala Gly Gly Ala Gly Cys Thr Gly Cys Thr Gly 1985 1990 1995
- Ala Ala Cys Ala Ala Gly Gly Gly Gly Cys Ala Gly Gly Ala Cys 2000 2005 2010
- Cys Cys Thr Cys Thr Gly Gly Cys Ala Gly Ala Cys Ala Gly Gly 2015 2020 2025
- Gly Gly Thr Gly Ala Gly Ala Gly Gly Ala Cys Ala Cys Ala 2030 2040
- Gly Cys Thr Ala Ala Gly Ala Gly Cys Cys Thr Cys Cys Ala Gly 2045 2050 2055
- Cys Cys Cys Thr Thr Gly Gly Cys Gly Cys Cys Cys Gly Gly 2060 2065 2070

- Ala Ala Cys Ala Ala Gly Ala Cys Cys Cys Gly Thr Gly 2075 2080 2085
- Gly Thr Cys Ala Gly Cys Thr Ala Cys Cys Gly Cys Gly Thr Gly 2090 2095 2100
- Cys Cys Cys Cys Ala Cys Ala Cys Gly Cys Thr Gly Cys Gly 2105 2110 2115
- Gly Thr Gly Cys Ala Gly Gly Thr Gly Thr Ala Cys Gly Ala Cys 2120 2125 2130
- Thr Ala Cys Cys Gly Ala Gly Ala Gly Ala Ala Gly Cys Gly Ala 2135 2140 2145
- Gly Cys Cys Cys Gly Cys Gly Thr Gly Gly Thr Cys Thr Thr Cys 2150 2155 2160
- Gly Gly Cys Cys Thr Gly Ala Gly Cys Thr Gly Gly Thr Gly 2165 2170 2175
- Thr Cys Gly Cys Thr Gly Gly Gly Thr Cys Cys Thr Gly Ala Gly 2180 2185 2190
- Gly Ala Gly Cys Ala Gly Thr Thr Cys Ala Cys Ala Gly Thr Gly 2195 2200 2205
- Thr Thr Gly Thr Cys Cys Cys Thr Cys Thr Cys Ala Gly Cys Thr 2210 2215 2220
- Gly Gly Cys Gly Gly Cys Cys Cys Ala Ala Gly Cys Gly Thr 2225 2230 2235
- Cys Cys Cys Cys Ala Thr Gly Cys Cys Cys Gly Cys Cys Gly Thr 2240 2245 2250
- Gly Cys Gly Cys Thr Cys Thr Gly Cys Cys Thr Gly Cys Thr Gly 2255 2260 2265
- Cys Thr Gly Gly Gly Gly Cys Cys Thr Gly Ala Cys Thr Thr Cys 2270 2275 2280
- Thr Thr Cys Ala Cys Ala Gly Ala Cys Gly Thr Cys Ala Thr Cys 2285 2290 2295

Ala	Cys 2300	Сув	Ala	Thr	Сув	Gly 2305	Ala	Ala	Ala	Сув	Gly 2310	Gly	Сув	Gly
Gly	Ala 2315	Thr	Суз	Ala	Thr	Gly 2320	Сув	Сув	Ala	Gly	Gly 2325	Суз	Thr	Gly
Сув	Ala 2330	Ala	Сув	Thr	_	Сув 2335	Ala	Gly	Cys	Thr	Gly 2340	Gly	Cys	Cys
Thr	Ala 2345	Сув	Ala	Ala	Сув	Thr 2350	Gly	Gly	Сув	Ala	Cys 2355	Thr	Thr	Thr
Gly	Ala 2360	Gly	Gly	Thr	Gly	Ala 2365	Ala	Thr	Gly	Ala	Cys 2370	Cys	Gly	Gly
Ala	Ala 2375	Gly	Gly	Ala	Сув	Cys 2380	Сув	Сув	Сув	Ala	Ala 2385	Gly	Ala	Gly
Ala	Сув 2390	_	Gly	Сув	Cys	Ala 2395	Ala	Gly	Сув	Thr	Cys 2400	Thr	Thr	Thr
Thr	Cys 2405	Ala	Gly	Thr	Gly	Cys 2410	Сув	Ala	Gly	Ala	Cys 2415	Thr	Thr	Thr
Gly	Thr 2420	Ala	Gly	Gly	Thr	Gly 2425	Ala	Thr	Gly	Сув	Cys 2430		Gly	Сув
Ala	Ala 2435	Ala	Gly	Cys	Суз	Ala 2440	Thr	Cys	Gly	Cys	Ala 2445	Thr	Сув	Сув
Суз	Gly 2450	Gly	Gly	Thr	Gly	Cys 2455	Gly	Gly	Gly	Gly	Gly 2460	Gly	Cys	Сув
Gly	Thr 2465	Gly	Gly	Cys	Сув	Thr 2470	Суз	Thr	Gly	Thr	Cys 2475	Ala	Cys	Thr
Thr	Thr 2480	Сув	Gly	Ala	Thr	Gly 2485	Ala	Сув	Thr	Thr	Cys 2490	Сув	Ala	Thr
Ala	Ala 2495	Gly	Ala	Ala	Сув	Thr 2500	Cys	Ala	Gly	Cys	Cys 2505	Сув	Gly	Cys
Ala	Thr	Сув	Ala	Thr	Thr	Сув	Gly	Cys	Ala	Cys	Thr	Gly	Cys	Thr

2510 2515 2520

- Gly Thr Cys Thr Thr Thr Gly Gly Cys Thr Thr Thr Gly Ala Gly 2525 2530 2535
- Ala Cys Cys Thr Cys Gly Gly Ala Ala Gly Cys Gly Ala Ala Gly 2540 2545 2550
- Gly Gly Cys Cys Cys Gly Ala Thr Gly Gly Cys Ala Thr Gly 2555 2560 2565
- Gly Cys Cys Cys Thr Gly Cys Cys Cys Ala Gly Gly Cys Cys Cys 2570 2580
- Cys Gly Gly Gly Ala Cys Cys Ala Gly Gly Cys Thr Gly Thr Cys 2585 2590 2595
- Thr Thr Cys Cys Cys Cys Cys Ala Ala Ala Ala Cys Gly Gly Gly 2600 2605 2610
- Cys Thr Gly Gly Thr Gly Gly Thr Cys Ala Gly Cys Ala Gly Thr 2615 2620 2625
- Gly Thr Gly Gly Ala Cys Gly Thr Gly Cys Ala Gly Thr Cys Ala 2630 2635 2640
- Gly Thr Gly Gly Ala Gly Cys Cys Thr Gly Thr Gly Gly Ala Thr 2645 2650 2655
- Cys Ala Gly Ala Gly Gly Ala Cys Cys Cys Gly Gly Gly Ala Cys 2660 2665 2670
- Gly Cys Cys Cys Thr Gly Cys Ala Ala Cys Gly Cys Ala Gly Cys 2675 2680 2685
- Gly Thr Cys Cys Ala Gly Cys Thr Gly Gly Cys Cys Ala Thr Cys 2690 2695 2700
- Gly Ala Gly Ala Thr Cys Ala Cys Cys Ala Cys Cys Ala Ala Cys 2705 2710 2715
- Thr Cys Cys Cys Ala Gly Gly Ala Ala Gly Cys Gly Gly Cys Gly 2720 2725 2730

Gly Cys Cys Ala Ala Gly Cys Ala Thr Gly Ala Gly Cys Thr 2735 2740 2745

- Cys Ala Gly Ala Gly Ala Cys Thr Gly Gly Ala Gly Cys Ala Gly 2750 2760
- Gly Ala Ala Gly Cys Cys Cys Gly Cys Gly Gly Cys Cys Gly Gly 2765 2770 2775
- Cys Thr Thr Gly Ala Gly Cys Gly Gly Cys Ala Gly Ala Ala Gly 2780 2785 2790
- Ala Thr Cys Cys Thr Gly Gly Ala Cys Cys Ala Gly Thr Cys Ala 2795 2800 2805
- Gly Ala Ala Gly Cys Cys Gly Ala Gly Ala Ala Ala Gly Cys Thr 2810 2815 2820
- Cys Gly Cys Ala Ala Gly Gly Ala Ala Cys Thr Thr Thr Gly 2825 2830 2835
- Gly Ala Gly Cys Thr Gly Gly Ala Gly Gly Cys Thr Cys Thr Gly 2840 2845 2850
- Ala Gly Cys Ala Thr Gly Gly Cys Cys Gly Thr Gly Gly Ala Gly 2855 2860 2865
- Ala Gly Cys Ala Cys Cys Gly Gly Gly Ala Cys Thr Gly Cys Cys 2870 2875 2880
- Ala Ala Gly Gly Cys Gly Gly Ala Gly Gly Cys Cys Gly Ala Gly 2885 2890 2895
- Thr Cys Cys Cys Gly Thr Gly Cys Gly Gly Ala Gly Gly Cys Ala 2900 2905 2910
- Gly Cys Cys Cys Gly Gly Ala Thr Thr Gly Ala Gly Gly Gly Ala 2915 2920 2925
- Gly Ala Ala Gly Gly Gly Thr Cys Cys Gly Thr Gly Cys Thr Gly 2930 2935 2940
- Cys Ala Gly Gly Cys Cys Ala Ala Gly Cys Thr Ala Ala Ala Ala 2945 2950 2955

Gly Cys Ala Cys Ala Gly Gly Cys Cys Thr Thr Gly Gly Cys Cys 2960 2965 2970

- Ala Thr Thr Gly Ala Ala Ala Cys Gly Gly Ala Gly Gly Cys Thr 2975 2980 2985
- Gly Ala Gly Cys Thr Cys Cys Ala Gly Ala Gly Gly Gly Thr Cys 2990 2995 3000
- Cys Ala Gly Ala Ala Gly Gly Thr Cys Cys Gly Ala Gly Ala Gly 3005 3010 3015
- Cys Thr Gly Gly Ala Ala Cys Thr Gly Gly Thr Cys Thr Ala Thr 3020 3025 3030
- Gly Cys Cys Cys Gly Gly Gly Cys Cys Cys Ala Gly Cys Thr Gly 3035 3040 3045
- Gly Ala Gly Cys Thr Gly Gly Ala Gly Gly Thr Gly Ala Gly Cys 3050 3055 3060
- Ala Ala Gly Gly Cys Thr Cys Ala Gly Cys Ala Gly Cys Thr Gly 3065 3070 3075
- Gly Cys Thr Gly Ala Gly Gly Thr Gly Gly Ala Gly Gly Thr Gly 3080 3085 3090
- Ala Ala Gly Ala Ala Gly Thr Thr Cys Ala Ala Gly Cys Ala Gly 3095 3100 3105
- Ala Thr Gly Ala Cys Ala Gly Ala Gly Gly Cys Cys Ala Thr Ala 3110 3115 3120
- Gly Gly Cys Cys Cys Cys Ala Gly Cys Ala Cys Cys Ala Thr Cys 3125 3130 3135
- Ala Gly Gly Gly Ala Cys Cys Thr Thr Gly Cys Thr Gly Thr Gly 3140 3145 3150
- Gly Cys Thr Gly Gly Gly Cys Cys Thr Gly Ala Gly Ala Thr Gly 3155 3160 3165
- Cys Ala Gly Gly Thr Ala Ala Ala Cys Thr Gly Cys Thr Cys

3170 3175 3180

Cys Ala Gly Thr Cys Cys Cys Thr Gly Gly Gly Cys Cys Thr Gly 3185 3190 3195

Ala Ala Thr Cys Ala Ala Cys Cys Cys Thr Cys Ala Thr Cys 3200 3205 3210

Ala Cys Cys Gly Ala Thr Gly Gly Cys Thr Cys Cys Ala Cys Thr 3215 3220 3225

Cys Cys Cys Ala Thr Cys Ala Ala Cys Cys Thr Cys Thr Thr Cys 3230 3235 3240

Ala Ala Cys Ala Cys Ala Gly Cys Cys Thr Thr Thr Gly Gly Gly 3245 3250 3255

Cys Thr Gly Cys Thr Gly Gly Gly Gly Ala Thr Gly Gly Gly Gly 3260 3265 3270

Cys Cys Cys Gly Ala Gly Gly Gly Thr Cys Ala Gly Cys Cys 3275 3280 3285

Cys Thr Gly Gly Gly Cys Ala Gly Ala Ala Gly Gly Gly Thr Gly 3290 3295 3300

Gly Cys Cys Ala Gly Thr Gly Gly Gly Cys Cys Cys Ala Gly Cys 3305 3310 3315

Cys Cys Thr Gly Gly Gly Gly Ala Gly Gly Gly Gly Ala Thr Ala 3320 3325 3330

Thr Cys Cys Cys Cys Cys Cys Ala Gly Thr Cys Thr Gly Cys Thr 3335 3340 3345

Cys Ala Gly Gly Cys Cys Cys Cys Thr Cys Ala Ala Gly Cys Thr 3350 3355 3360

Cys Cys Thr Gly Gly Ala Gly Ala Cys Ala Ala Cys Cys Ala Cys 3365 3370 3375

Gly Thr Gly Gly Thr Gly Cys Cys Thr Gly Thr Ala Cys Thr Gly 3380 3385 3390

Cys Gly Cys Thr Ala Ala 3395

<210> 48

<211> 1100

<212> PRT

<213> Artificial Sequence

<220>

<223> synthesized and Rattus norvegicus

<400> 48

Met Ser Lys Gly Glu Glu Leu Phe Thr Gly Val Val Pro Ile Leu Val

Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe Ser Val Ser Gly Glu 20 25 30

Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr Leu Lys Phe Ile Cys 35 40 45

Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr Leu Val Thr Thr Phe 50 55 60

Thr Tyr Gly Val Gln Cys Phe Ser Arg Tyr Pro Asp His Met Lys Gln 65 70 75 80

His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly Tyr Val Gln Glu Arg 85 90 95

Thr Ile Phe Phe Lys Asp Asp Gly Asn Tyr Lys Thr Arg Ala Glu Val

Lys Phe Glu Gly Asp Thr Leu Val Asn Arg Ile Glu Leu Lys Gly Ile 115 120 125

Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly His Lys Leu Glu Tyr Asn 130 135 140

Tyr Asn Ser His Asn Val Tyr Ile Met Ala Asp Lys Gln Lys Asn Gly 145 150 155 160

Ile Lys Val Asn Phe Lys Ile Arg His Asn Ile Glu Asp Gly Ser Val 165 170 175

Gln Leu Ala Asp His Tyr Gln Gln Asn Thr Pro Ile Gly Asp Gly Pro 180 185 190

- Val Leu Leu Pro Asp Asn His Tyr Leu Ser Thr Gln Ser Ala Leu Ser 195 200 205
- Lys Asp Pro Asn Glu Lys Arg Asp His Met Val Leu Leu Glu Phe Val 210 215 220
- Thr Ala Ala Gly Ile Thr His Gly Met Asp Glu Leu Tyr Lys Pro Met 225 230 235 240
- Ala Thr Glu Glu Ala Ile Ile Arg Ile Pro Pro Tyr His Tyr Ile His 245 250 255
- Val Leu Asp Gln Asn Ser Asn Val Ser Arg Val Glu Val Gly Pro Lys 260 265 270
- Thr Tyr Ile Arg Gln Asp Asn Glu Arg Val Leu Phe Ala Pro Val Arg 275 280 285
- Met Val Thr Val Pro Pro Arg His Tyr Cys Ile Val Ala Asn Pro Val 290 295 300
- Ser Arg Asp Thr Gln Ser Ser Val Leu Phe Asp Ile Thr Gly Gln Val 305 310 315 320
- Arg Leu Arg His Ala Asp Gln Glu Ile Arg Leu Ala Gln Asp Pro Phe 325 330 335
- Pro Leu Tyr Pro Gly Glu Val Leu Glu Lys Asp Ile Thr Pro Leu Gln 340 345 350
- Val Val Leu Pro Asn Thr Ala Leu His Leu Lys Ala Leu Leu Asp Phe 355 360 365
- Glu Asp Lys Asn Gly Asp Lys Val Met Ala Gly Asp Glu Trp Leu Phe 370 375 380
- Glu Gly Pro Gly Thr Tyr Ile Pro Gln Lys Glu Val Glu Val Val Glu 385 390 395 400
- Ile Ile Gln Ala Thr Val Ile Lys Gln Asn Gln Ala Leu Arg Leu Arg 405 410 415

Ala Arg Lys Glu Cys Phe Asp Arg Glu Gly Lys Gly Arg Val Thr Gly 420 425 430

- Glu Glu Trp Leu Val Arg Ser Val Gly Ala Tyr Leu Pro Ala Val Phe 435 440 445
- Glu Glu Val Leu Asp Leu Val Asp Ala Val Ile Leu Thr Glu Lys Thr 450 455 460
- Ala Leu His Leu Arg Ala Leu Gln Asn Phe Arg Asp Leu Arg Gly Val 465 470 475 480
- Leu His Arg Thr Gly Glu Glu Trp Leu Val Thr Val Gln Asp Thr Glu 485 490 495
- Ala His Val Pro Asp Val Tyr Glu Glu Val Leu Gly Val Val Pro Ile 500 505 510
- Thr Thr Leu Gly Pro Arg His Tyr Cys Val Ile Leu Asp Pro Met Gly 515 520 525
- Pro Asp Gly Lys Asn Gln Leu Gly Gln Lys Arg Val Val Lys Gly Glu 530 535 540
- Lys Ser Phe Phe Leu Gln Pro Gly Glu Arg Leu Glu Arg Gly Ile Gln 545 550 550
- Asp Val Tyr Val Leu Ser Glu Gln Gln Gly Leu Leu Leu Lys Ala Leu 565 570 575
- Gln Pro Leu Glu Glu Gly Glu Ser Glu Glu Lys Val Ser His Gln Ala 580 585 590
- Gly Asp Cys Trp Leu Ile Arg Gly Pro Leu Glu Tyr Val Pro Ser Ala 595 600 605
- Lys Val Glu Val Val Glu Glu Arg Gln Ala Ile Pro Leu Asp Gln Asn 610 615 620
- Glu Gly Ile Tyr Val Gln Asp Val Lys Thr Gly Lys Val Arg Ala Val 625 630 635 640
- Ile Gly Ser Thr Tyr Met Leu Thr Gln Asp Glu Val Leu Trp Glu Lys

645 650 655

Glu Leu Pro Ser Gly Val Glu Glu Leu Leu Asn Leu Gly His Asp Pro 660 665 670

Leu Ala Asp Arg Gly Gln Lys Gly Thr Ala Lys Pro Leu Gln Pro Ser 675 680 685

Ala Pro Arg Asn Lys Thr Arg Val Val Ser Tyr Arg Val Pro His Asn 690 695 700

Ala Ala Val Gln Val Tyr Asp Tyr Arg Ala Lys Arg Ala Arg Val Val 705 710 715 720

Phe Gly Pro Glu Leu Val Thr Leu Asp Pro Glu Glu Gln Phe Thr Val 725 730 735

Leu Ser Leu Ser Ala Gly Arg Pro Lys Arg Pro His Ala Arg Arg Ala 740 745 750

Leu Cys Leu Leu Gly Pro Asp Phe Phe Thr Asp Val Ile Thr Ile 755 760 765

Glu Thr Ala Asp His Ala Arg Leu Gln Leu Gln Leu Ala Tyr Asn Trp
770 775 780

His Phe Glu Leu Lys Asn Arg Asn Asp Pro Ala Glu Ala Ala Lys Leu 785 790 795 800

Phe Ser Val Pro Asp Phe Val Gly Asp Ala Cys Lys Ala Ile Ala Ser 805 810 815

Arg Val Arg Gly Ala Val Ala Ser Val Thr Phe Asp Asp Phe His Lys 820 825 830

Asn Ser Ala Arg Ile Ile Arg Met Ala Val Phe Gly Phe Glu Met Ser 835 840 845

Glu Asp Thr Gly Pro Asp Gly Thr Leu Leu Pro Lys Ala Arg Asp Gln 850 855 860

Ala Val Phe Pro Gln Asn Gly Leu Val Val Ser Ser Val Asp Val Gln 865 870 875 880

Ser Val Glu Pro Val Asp Gln Arg Thr Arg Asp Ala Leu Gln Arg Ser 885 890 895

- Val Gln Leu Ala Ile Glu Ile Thr Thr Asn Ser Gln Glu Ala Ala Ala 900 905 910
- Lys His Glu Ala Gln Arg Leu Glu Gln Glu Ala Arg Gly Arg Leu Glu 915 920 925
- Arg Gln Lys Ile Leu Asp Gln Ser Glu Ala Glu Lys Ala Arg Lys Glu 930 935 940
- Leu Leu Glu Leu Glu Ala Met Ser Met Ala Val Glu Ser Thr Gly Asn 945 950 955 960
- Ala Lys Ala Glu Ala Glu Ser Arg Ala Glu Ala Ala Arg Ile Glu Gly 965 970 975
- Glu Gly Ser Val Leu Gln Ala Lys Leu Lys Ala Gln Ala Leu Ala Ile 980 985 990
- Glu Thr Glu Ala Glu Leu Glu Arg Val Lys Lys Val Arg Glu Met Glu
 995 1000 1005
- Leu Ile Tyr Ala Arg Ala Gln Leu Glu Leu Glu Val Ser Lys Ala 1010 1015 1020
- Gln Gln Leu Ala Asn Val Glu Ala Lys Lys Phe Lys Glu Met Thr 1025 1030 1035
- Glu Ala Leu Gly Pro Gly Thr Ile Arg Asp Leu Ala Val Ala Gly 1040 1045 1050
- Pro Glu Met Gln Val Lys Leu Leu Gln Ser Leu Gly Leu Lys Ser 1055 1060 1065
- Thr Leu Ile Thr Asp Gly Ser Ser Pro Ile Asn Leu Phe Ser Thr 1070 1075 1080
- Ala Phe Gly Leu Leu Gly Leu Gly Ser Asp Gly Gln Pro Pro Ala 1085 1090 1095

Gln Lys 1100

<210> 49

<211> 3303

<212> PRT

<213> Artificial Sequence

<220>

<223> synthesized and Rattus norvegicus

<400> 49

Ala Thr Gly Ala Gly Cys Ala Ala Gly Gly Gly Cys Gly Ala Gly Gly

1 10 15

Ala Ala Cys Thr Gly Thr Thr Cys Ala Cys Thr Gly Gly Cys Gly Thr 20 25 30

Gly Gly Thr Cys Cys Cys Ala Ala Thr Thr Cys Thr Cys Gly Thr Gly 35 40 45

Gly Ala Ala Cys Thr Gly Gly Ala Thr Gly Gly Cys Gly Ala Thr Gly 50 55 60

Thr Gly Ala Ala Thr Gly Gly Gly Cys Ala Cys Ala Ala Ala Thr Thr 65 70 75 80

Thr Thr Cys Thr Gly Thr Cys Ala Gly Cys Gly Gly Ala Gly Ala Gly 85 90 95

Gly Gly Thr Gly Ala Ala Gly Gly Thr Gly Ala Thr Gly Cys Cys Ala 100 105 110

Cys Ala Thr Ala Cys Gly Gly Ala Ala Gly Cys Thr Cys Ala Cys 115 120 125

Cys Cys Thr Gly Ala Ala Ala Thr Thr Cys Ala Thr Cys Thr Gly Cys 130 135 140

Ala Cys Cys Ala Cys Thr Gly Gly Ala Ala Ala Gly Cys Thr Cys Cys 145 150 155 160

Cys Thr Gly Thr Gly Cys Cys Ala Thr Gly Gly Cys Cys Ala Ala Cys 165 170 175

Ala Cys Thr Gly Gly Thr Cys Ala Cys Thr Ala Cys Cys Thr Thr Cys 180 185 190

Ala Cys Cys Thr Ala Thr Gly Gly Cys Gly Thr Gly Cys Ala Gly Thr 195 200 205

- Gly Cys Thr Thr Thr Cys Cys Ala Gly Ala Thr Ala Cys Cys Cys 210 215 220
- Ala Gly Ala Cys Cys Ala Thr Ala Thr Gly Ala Ala Gly Cys Ala Gly 225 230 235 240
- Cys Ala Thr Gly Ala Cys Thr Thr Thr Thr Thr Cys Ala Ala Gly Ala 245 250 255
- Gly Cys Gly Cys Cys Ala Thr Gly Cys Cys Cys Gly Ala Gly Gly Gly 260 265 270
- Cys Thr Ala Thr Gly Thr Gly Cys Ala Gly Gly Ala Gly Ala Gly Ala 275 280 285
- Ala Cys Cys Ala Thr Cys Thr Thr Thr Thr Thr Cys Ala Ala Ala Gly 290 295 300
- Ala Thr Gly Ala Cys Gly Gly Gly Ala Ala Cys Thr Ala Cys Ala Ala 305 310 315 320
 - Gly Ala Cys Cys Cys Gly Cys Gly Cys Thr Gly Ala Ala Gly Thr Cys 325 330 335
 - Ala Ala Gly Thr Thr Cys Gly Ala Ala Gly Gly Thr Gly Ala Cys Ala 340 345 350
 - Cys Cys Cys Thr Gly Gly Thr Gly Ala Ala Thr Ala Gly Ala Ala Thr 355 360 365
 - Cys Gly Ala Gly Cys Thr Gly Ala Ala Gly Gly Gly Cys Ala Thr Thr 370 375 380
 - Gly Ala Cys Thr Thr Thr Ala Ala Gly Gly Ala Gly Gly Ala Thr Gly 385 390 395 400
 - Gly Ala Ala Ala Cys Ala Thr Thr Cys Thr Cys Gly Gly Cys Cys Ala 405 410 415
 - Cys Ala Ala Gly Cys Thr Gly Gly Ala Ala Thr Ala Cys Ala Ala Cys 420 425 430

Thr Ala Thr Ala Ala Cys Thr Cys Cys Cys Ala Cys Ala Ala Thr Gly
435 440 445

Thr Gly Thr Ala Cys Ala Thr Cys Ala Thr Gly Gly Cys Cys Gly Ala 450 455 460

Cys Ala Ala Gly Cys Ala Ala Ala Ala Gly Ala Ala Thr Gly Gly Cys 465 470 475 480

Ala Thr Cys Ala Ala Gly Gly Thr Cys Ala Ala Cys Thr Thr Cys Ala 485 490 495

Ala Gly Ala Thr Cys Ala Gly Ala Cys Ala Cys Ala Ala Cys Ala Thr 500 505 510

Thr Gly Ala Gly Gly Ala Thr Gly Gly Ala Thr Cys Cys Gly Thr Gly 515 520 525

Cys Ala Gly Cys Thr Gly Gly Cys Cys Gly Ala Cys Cys Ala Thr Thr 530 535 540

Ala Thr Cys Ala Ala Cys Ala Gly Ala Ala Cys Ala Cys Thr Cys Cys 545 550 555 560

Ala Ala Thr Cys Gly Gly Cys Gly Ala Cys Gly Gly Cys Cys Cys Thr
565 570 575

Gly Thr Gly Cys Thr Cys Cys Thr Cys Cys Cys Ala Gly Ala Cys Ala 580 585 590

Ala Cys Cys Ala Thr Thr Ala Cys Cys Thr Gly Thr Cys Cys Ala Cys 595 600 605

Cys Cys Ala Gly Thr Cys Thr Gly Cys Cys Cys Thr Gly Thr Cys Thr 610 615 620

Ala Ala Ala Gly Ala Thr Cys Cys Cys Ala Ala Cys Gly Ala Ala Ala 625 630 635 640

Ala Gly Ala Gly Ala Cys Cys Ala Cys Ala Thr Gly Gly Thr 645 650 655

Cys Cys Thr Gly Cys Thr Gly Gly Ala Gly Thr Thr Thr Gly Thr Gly

660 665 670

Ala Cys Cys Gly Cys Thr Gly Cys Thr Gly Gly Gly Ala Thr Cys Ala 675 680 685

Cys Ala Cys Ala Thr Gly Gly Cys Ala Thr Gly Gly Ala Cys Gly Ala 690 695 700

Gly Cys Thr Gly Thr Ala Cys Ala Ala Gly Cys Cys Cys Ala Thr Gly
705 710 715 720

Gly Cys Ala Ala Cys Thr Gly Ala Ala Gly Ala Gly Gly Cys Cys Ala
725 730 735

Thr Cys Ala Thr Cys Cys Gly Cys Ala Thr Cys Cys Cys Cys Cys Cys 740 745 750

Ala Thr Ala Cys Cys Ala Cys Thr Ala Cys Ala Thr Cys Cys Ala Thr 755 760 765

Gly Thr Gly Cys Thr Gly Gly Ala Cys Cys Ala Gly Ala Ala Cys Ala
770 775 780

Gly Thr Ala Ala Thr Gly Thr Gly Thr Cys Cys Cys Gly Thr Gly Thr 785 790 795 800

Gly Gly Ala Gly Gly Thr Thr Gly Gly Ala Cys Cys Ala Ala Ala Gly 805 810 815

Ala Cys Cys Thr Ala Cys Ala Thr Cys Cys Gly Gly Cys Ala Gly Gly 820 825 830

Ala Cys Ala Ala Thr Gly Ala Gly Ala Gly Gly Gly Thr Ala Cys Thr 835 840 845

Gly Thr Thr Gly Cys Cys Cys Cys Ala Gly Thr Thr Cys Gly Cys 850 855 860

Ala Thr Gly Gly Thr Gly Ala Cys Cys Gly Thr Cys Cys Cys Cys Cys 865 870 875 880

Cys Ala Cys Gly Cys Cys Ala Cys Thr Ala Cys Thr Gly Cys Ala Thr 885 890 895

Ala Gly Thr Gly Gly Cys Cys Ala Ala Cys Cys Cys Thr Gly Thr Gly 900 905 910

- Thr Cys Cys Cys Gly Gly Gly Ala Cys Ala Cys Cys Cys Ala Gly Ala 915 920 925
- Gly Thr Thr Cys Thr Gly Thr Gly Thr Thr Ala Thr Thr Thr Gly Ala 930 935 940
- Cys Ala Thr Cys Ala Cys Ala Gly Gly Ala Cys Ala Ala Gly Thr Cys 945 950 955 960
- Cys Gly Ala Cys Thr Cys Cys Gly Gly Cys Ala Cys Gly Cys Thr Gly 965 970 975
- Ala Cys Cys Ala Gly Gly Ala Gly Ala Thr Cys Cys Gly Ala Cys Thr 980 985 990
- Ala Gly Cys Cys Cys Ala Gly Gly Ala Cys Cys Cys Cys Thr Thr Cys 995 1000 1005
- Cys Cys Cys Cys Thr Gly Thr Ala Thr Cys Cys Ala Gly Gly Gly 1010 1015 1020
- Gly Ala Gly Gly Thr Gly Cys Thr Gly Gly Ala Ala Ala Gly 1025 1030 1035
- Gly Ala Cys Ala Thr Cys Ala Cys Cys Cys Cys Ala Cys Thr Gly 1040 1045 1050
- Cys Ala Gly Gly Thr Gly Gly Thr Thr Cys Thr Gly Cys Cys 1055 1060 1065
- Ala Ala Cys Ala Cys Ala Gly Cys Ala Cys Thr Gly Cys Ala Thr 1070 1075 1080
- Cys Thr Thr Ala Ala Gly Gly Cys Gly Thr Thr Gly Cys Thr Gly 1085 1090 1095
- Gly Ala Cys Thr Thr Thr Gly Ala Gly Gly Ala Thr Ala Ala Gly 1100 1105 1110
- Ala Ala Thr Gly Gly Ala Gly Ala Cys Ala Ala Gly Gly Thr Cys 1115 1120 1125

Ala Thr Gly Gly Cys Ala Gly Gly Ala Gly Ala Cys Gly Ala Gly 1130 1135 1140

- Thr Gly Gly Cys Thr Ala Thr Thr Thr Gly Ala Gly Gly Gly Ala 1145 1150 1155
- Cys Cys Thr Gly Gly Cys Ala Cys Cys Thr Ala Cys Ala Thr Cys 1160 1165 1170
- Cys Cys Ala Cys Ala Gly Ala Ala Gly Gly Ala Ala Gly Thr Gly 1175 1180 1185
- Gly Ala Ala Gly Thr Cys Gly Thr Gly Gly Ala Gly Ala Thr Cys 1190 1195 1200
- Ala Thr Thr Cys Ala Gly Gly Cys Cys Ala Cys Ala Gly Thr Cys 1205 1210 1215
- Ala Thr Cys Ala Ala Cys Ala Gly Ala Ala Cys Cys Ala Ala 1220 1225 1230
- Gly Cys Ala Cys Thr Gly Cys Gly Gly Cys Thr Ala Ala Gly Gly 1235 1240 1245
- Gly Cys Cys Cys Gly Ala Ala Ala Gly Gly Ala Gly Thr Gly Cys 1250 1255 1260
- Thr Thr Gly Ala Cys Cys Gly Gly Gly Ala Gly Gly Cys 1265 1270 1275
- Ala Ala Gly Gly Gly Cys Gly Cys Gly Thr Gly Ala Cys Ala 1280 1285 1290
- Gly Gly Thr Gly Ala Gly Gly Ala Gly Thr Gly Gly Cys Thr Gly 1295 1300 1305
- Gly Thr Cys Cys Gly Ala Thr Cys Cys Gly Thr Gly Gly Gly 1310 1315 1320
- Gly Cys Thr Thr Ala Cys Cys Thr Cys Cys Cys Ala Gly Cys Thr 1325 1330 1335
- Gly Thr Cys Thr Thr Thr Gly Ala Gly Ala Gly Gly Thr Gly

1340	1345	1350

Cys	Thr 1355	Gly	Gly	Ala	Thr	Cys 1360	Thr	Gly	Gly	Thr	Gly 1365	Gly	Ala	Thr
Gly	Сув 1370	Thr	Gly	Thr	Gly	Ala 1375	Thr	Сув	Cys	Thr	Thr 1380	Ala	Сув	Ala

- Gly Ala Ala Ala Gly Ala Cys Thr Gly Cys Cys Cys Thr Gly 1385 1390 1395
- Cys Ala Cys Cys Thr Cys Cys Gly Gly Gly Cys Thr Cys Thr Gly 1400 1405 1410
- Cys Ala Gly Ala Ala Cys Thr Thr Cys Ala Gly Gly Gly Ala Cys 1415 1420 1425
- Cys Thr Thr Cys Gly Gly Gly Gly Ala Gly Thr Gly Cys Thr Cys 1430 1435 1440
- Cys Ala Cys Cys Gly Cys Ala Cys Cys Gly Gly Gly Ala Gly 1445 1450 1455
- Gly Ala Ala Thr Gly Gly Thr Thr Ala Gly Thr Gly Ala Cys Ala 1460 1465 1470
- Gly Thr Gly Cys Ala Gly Gly Ala Cys Ala Cys Ala Gly Ala Ala 1475 1480 1485
- Gly Cys Cys Ala Thr Gly Thr Thr Cys Cys Ala Gly Ala Thr 1490 1495 1500
- Gly Thr Cys Thr Ala Thr Gly Ala Gly Gly Ala Gly Gly Thr Gly 1505 1510 1515
- Cys Thr Thr Gly Gly Gly Gly Thr Ala Gly Thr Ala Cys Cys 1520 1525 1530
- Ala Thr Cys Ala Cys Cys Ala Cys Cys Cys Thr Gly Gly Ala 1535 1540 1545
- Cys Cys Thr Cys Gly Ala Cys Ala Cys Thr Ala Cys Thr Gly Thr 1550 1560

Gly Thr Cys Ala Thr Thr Cys Thr Thr Gly Ala Cys Cys Cys Ala Ala Thr Gly Gly Gly Ala Cys Cys Ala Gly Ala Cys Gly Gly Cys Ala Ala Gly Ala Ala Cys Cys Ala Gly Cys Thr Gly Gly Ala Cys Ala Ala Ala Gly Cys Gly Thr Gly Thr Thr Gly Thr Cys Ala Ala Gly Gly Gly Ala Gly Ala Gly Ala Gly Thr Cys Cys Thr Thr Thr Thr Cys Cys Thr Cys Cys Ala Gly Cys Cys Ala Gly Gly Ala Gly Ala Gly Gly Cys Thr Gly Gly Ala Gly Cys Gly Ala Gly Gly Cys Ala Thr Cys Cys Ala Gly Gly Ala Thr Gly Thr Gly Thr Ala Thr Gly Thr Gly Cys Thr Gly Thr Cys Ala Gly Ala Gly Cys Ala Gly Cys Ala Gly Gly Gly Cys Thr Gly Cys Thr Ala Cys Thr Gly Ala Ala Gly Gly Cys Ala Cys Thr Gly Cys Ala Gly Cys Cys Cys Thr Gly Gly Ala Gly Gly Ala Gly Gly Gly Ala Gly Ala Gly Cys Gly Ala Gly Gly Ala Gly

Ala Ala Gly Gly Thr Cys Thr Cys Cys Cys Ala Thr Cys Ala Gly

Gly Cys Cys Gly Gly Ala Gly Ala Cys Thr Gly Cys Thr Gly Gly

Cys Thr Cys Ala Thr Cys Cys Gly Thr Gly Gly Gly Cys Cys 1790 1795 1800

- Cys Thr Gly Gly Ala Gly Thr Ala Thr Gly Thr Gly Cys Cys Ala 1805 1810 1815
- Thr Cys Thr Gly Cys Ala Ala Ala Ala Gly Thr Gly Gly Ala Gly 1820 1825 1830
- Gly Thr Gly Gly Thr Gly Gly Ala Gly Gly Ala Gly Cys Gly Thr 1835 1840 1845
- Cys Ala Gly Gly Cys Thr Ala Thr Cys Cys Cys Thr Cys Thr Gly 1850 1860
- Gly Ala Cys Cys Ala Ala Ala Ala Thr Gly Ala Gly Gly Cys 1865 1870 1875
- Ala Thr Cys Thr Ala Thr Gly Thr Gly Cys Ala Gly Gly Ala Thr 1880 1885 1890
- Gly Thr Cys Ala Ala Gly Ala Cys Gly Gly Gly Gly Ala Ala Gly 1895 1900 1905
- Gly Thr Gly Cys Gly Gly Gly Cys Thr Gly Thr Gly Ala Thr Thr 1910 1915 1920
- Gly Gly Ala Ala Gly Cys Ala Cys Cys Thr Ala Cys Ala Thr Gly 1925 1930 1935
- Cys Thr Gly Ala Cys Thr Cys Ala Gly Gly Ala Thr Gly Ala Ala 1940 1945 1950
- Gly Thr Cys Cys Thr Gly Thr Gly Gly Gly Ala Ala Ala Gly 1955 1960 1965
- Gly Ala Gly Cys Thr Gly Cys Cys Thr Thr Cys Thr Gly Gly Gly 1970 1975 1980
- Gly Thr Gly Gly Ala Gly Gly Ala Gly Cys Thr Gly Cys Thr Gly 1985 1990 1995
- Ala Ala Cys Thr Thr Gly Gly Gly Cys Ala Thr Gly Ala Cys

2000	2005	2010

Cys	Cys	Thr	Сув	Thr	Gly	Gly	Cys	Ala	Gly	Ala	Cys	Ala	Gly	Gly
•	2015		-			2020					2025			

- Gly Gly Thr Cys Ala Gly Ala Ala Gly Gly Gly Cys Ala Cys Ala 2030 2035 2040
- Gly Cys Cys Ala Ala Gly Cys Cys Cys Cys Thr Thr Cys Ala Gly 2045 2050 2055
- Cys Cys Cys Thr Cys Ala Gly Cys Thr Cys Cys Ala Ala Gly Gly 2060 2065 2070
- Ala Ala Cys Ala Ala Gly Ala Cys Cys Cys Gly Ala Gly Thr Gly 2075 2080 2085
- Gly Thr Cys Ala Gly Cys Thr Ala Cys Cys Gly Thr Gly Thr Cys 2090 2095 2100
- Cys Cys Gly Cys Ala Cys Ala Ala Thr Gly Cys Ala Gly Cys Gly 2105 2110 2115
- Gly Thr Gly Cys Ala Gly Gly Thr Cys Thr Ala Thr Gly Ala Cys 2120 2125 2130
- Thr Ala Cys Ala Gly Ala Gly Cys Cys Ala Ala Gly Ala Gly Ala 2135 2140 2145
- Gly Cys Cys Cys Gly Thr Gly Thr Gly Gly Thr Cys Thr Thr Thr 2150 2155 2160
- Gly Gly Cys Cys Cys Gly Ala Gly Cys Thr Ala Gly Thr Gly 2165 2170 2175
- Ala Cys Ala Cys Thr Gly Gly Ala Thr Cys Cys Thr Gly Ala Gly 2180 2185 2190
- Gly Ala Gly Cys Ala Gly Thr Thr Cys Ala Cys Ala Gly Thr Ala 2195 2200 2205
- Thr Thr Gly Thr Cys Cys Cys Thr Thr Thr Cys Thr Gly Cys Cys 2210 2215 2220

- Gly Gly Cys Gly Ala Cys Cys Cys Ala Ala Gly Cys Gly Thr 2225 2230 2235
- Cys Cys Thr Cys Ala Thr Gly Cys Cys Cys Gly Cys Cys Gly Thr 2240 2245 2250
- Gly Cys Ala Cys Thr Cys Thr Gly Cys Cys Thr Ala Cys Thr Gly 2255 2260 2265
- Cys Thr Gly Gly Gly Ala Cys Cys Thr Gly Ala Thr Thr Thr Cys 2270 2275 2280
- Thr Thr Thr Ala Cys Thr Gly Ala Thr Gly Thr Cys Ala Thr Cys 2285 2290 2295
- Ala Cys Cys Ala Thr Cys Gly Ala Ala Ala Cys Thr Gly Cys Ala 2300 2305 2310
- Gly Ala Thr Cys Ala Thr Gly Cys Cys Ala Gly Gly Thr Thr Gly 2315 2320 2325
- Cys Ala Gly Cys Thr Gly Cys Ala Gly Cys Thr Thr Gly Cys Cys 2330 2335 2340
- Thr Ala Cys Ala Ala Cys Thr Gly Gly Cys Ala Cys Thr Thr Thr 2345 2350 2355
- Gly Ala Ala Cys Thr Gly Ala Ala Gly Ala Ala Cys Cys Gly Gly 2360 2365 2370
- Ala Ala Thr Gly Ala Cys Cys Cys Thr Gly Cys Ala Gly Ala Gly 2375 2380 2385
- Gly Cys Ala Gly Cys Cys Ala Ala Gly Cys Thr Thr Thr Cys 2390 2395 2400
- Thr Cys Cys Gly Thr Gly Cys Cys Thr Gly Ala Cys Thr Thr Cys 2405 2410 2415
- Gly Thr Gly Gly Gly Thr Gly Ala Cys Gly Cys Cys Thr Gly Cys 2420 2425 2430
- Ala Ala Gly Gly Cys Cys Ala Thr Thr Gly Cys Ala Thr Cys Cys 2435 2440 2445

Cys	Gly 2450		Gly	Thr	Сув	Cys 2455	Gly	Gly	Gly	Gly	Gly 2460	Gly	Сув	Thr
Gly	Thr 2465	Ala	Gly	Суз	Cys	Thr 2470	Сув	Thr	Gly	Thr	Cys 2475	Ala	Cys	Cys
Thr	Thr 2480		Gly	Ala	Thr	Gly 2485	Ala	Cys	Thr	Thr	Сув 2490	Сув	Ala	Thr
Ala	Ala 2495	Ala	Ala	Ala	Сув	Thr 2500	Сув	Ala	Gly	Сув	Cys 2505	Cys	Gly	Gly
Ala	Thr 2510	Сув	Ala	Thr	Thr	Cys 2515		Ala	Ala	Thr	Gly 2520	Gly	Сув	Thr
Gly	Thr 2525	Thr	Thr	Thr		Gly 2530	Gly	Сув	Thr	Thr	Thr 2535	Gly	Ala	Gly
Ala	Thr 2540	_	Thr	Сув	Thr	Gly 2545	Ala	Ala	Gly	Ala	Сув 2550	Ala	Cys	Ala
Gly	Gly 2555	Thr	Сув	Сув	Thr	Gly 2560	Ala	Thr	Gly	Gly	Сув 2565	Ala	Сув	Ala
Cys	Thr 2570	Сув	Сув	Thr	Gly	Суз 2575	Cys	Cys	Ala	Ala	Gly 2580	Gly	Cys	Thr
Сув	Gly 2585	Ala	Gly	Ala	Сув	Сув 2590	Ala	Gly	Gly	Сув	Ala 2595	Gly	Thr	Cys
Thr	Thr 2600	Thr	Cys	Cys	Сув	Cys 2605	Ala	Ala	Ala	Ala	Cys 2610	Gly	Gly	Gly
Cys	Thr 2615	Gly	Gly	Thr	Ala	Gly 2620	Thr	Сув	Ala	Gly	Cys 2625	Ala	Gly	Thr
Gly	Thr 2630	Gly	Gly	Ala	Thr	Gly 2635	Thr	Gly	Сув	Ala	Gly 2640	Thr	Cys	Ala
Gly	Thr 2645	Gly	Gly	Ala	Gly	Сув 2650	Сув	Сув	Gly	Thr	Gly 2655	Gly	Ala	Сув
Сув	Ala	Gly	Ala	Gly	Gly	Ala	Сув	Cys	Сув	Gly	Gly	Gly	Ala	Thr

2660	2665	2670

Gly Cys 2675	Сув	Cys	Thr	Thr	Cys 2680	Ala	Gly	Cys	Gly	Cys 2685	Ala	Gly	cys
Gly Thr 2690		Сув	Ala	Gly	Сув 2695	Thr	Gly	Gly	Сув	Cys 2700	Ala	Thr	Cys
Gly Ala 2705		Ala	Thr	Thr	Ala 2710	Сув	Cys	Ala	Cys	Cys 2715	Ala	Ala	Cys
Thr Cys 2720	_	Сув	Ala	Gly	Gly 2725	Ala	Gly	Gly	Cys	Ala 2730	Gly	Сув	Ala
Gly Cys 2735		Ala	Ala	Gly	Cys 2740	Ala	Cys	Gly	Ala	Gly 2745	Gly	Сув	Thr
Cys Ala 2750	-	Ala	Gly	Ala	Cys 2755	Thr	Gly	Gly	Ala	Ala 2760	Cys	Ala	Gly
Gly Ala 2765		Gly	Сув	Cys	Cys 2770	Gly	Thr	Gly	Gly	Thr 2775	Сув	Gly	Gly
Cys Thr 2780		Gly	Ala	Gly	Ala 2785	Gly	Gly	Cys	Ala	Gly 2790	Ala	Ala	Gly
Ala Thr 2795	_	Thr	Thr	Gly	Gly 2800	Ala	Сув	Сув	Ala	Gly 2805	Thr	Сув	Ala
Gly Ala 2810		Gly	Cys	Thr	Gly 2815	Ala	Ala	Ala	Ala	Ala 2820	Gly	Сув	Сув
Cys Gly 2825	_	Ala	Ala	Gly	Gly 2830	Ala	Ala	Сув	Thr	Cys 2835	Thr	Thr	Gly
Gly Ala 2840	_	Cys	Thr	Thr	Gly 2845	Ala	Gly	Gly	Суз	Thr 2850	Ala	Thr	Gly
Ala Gly 2855	-	Ala	Thr	Gly	Gly 2860	Cys	Thr	Gly	Thr	Gly 2865	Gly	Ala	Gly
Ala Gly 2870		Ala	Cys	Gly	Gly 2875	Gly	Thr	Ala	Ala	Thr 2880	Gly	Cys	Сув

Ala	Ala 2885	Ala	Gly	Сув		Gly 2890	Ala	Gly	Gly	Cys	Thr 2895	Gly	Ala	Gly
Thr	Сув 2900	Cys	Сув	Gly	Thr	Gly 2905	Сув	Ala	Gly	Ala	Gly 2910	Gly	Сув	Ala
Gly	Сув 2915	Gly	Ala	Gly	Gly	Ala 2920	Thr	Сув	Gly	Ala	Ala 2925	Gly	Gly	Ala
Gly	Ala 2930		Gly	Gly	Сув	Thr 2935		Thr	Gly	Thr	Gly 2940	Сув	Thr	Gly
Cys	Ala 2945	_	Gly	Cys	Сув	Ala 2950		Gly	Сув	Thr	Cys 2955	Ala	Ala	Gly
Gly	Сув 2960		Cys	Ala	Gly	Gly 2965		Gly	Cys	Thr	Ala 2970	Gly	Сув	Cys
Ala	Thr 2975		Gly	Ala	Gly	Ala 2980		Gly	Gly	Ala	Gly 2985		Cys	Thr
Gly	Ala 2990		Thr	Thr	Gly	Gly 2995		Gly	Сув	Gly	Ala 3000		Thr	Ala
Ala	Ala 3005	-	Ala	Ąla	Ala	Gly 3010		Ala	. Cys	Gly	Ala 3015		Ala	Gly
Ala	Thr 3020		· Gly	Ala	Ala	Cys 3025		Gly	Ala	Thr	Сув 3030		Ala	Thr
Gly	7 Cys 3035		Cys	Gly	Gly	Gly 3040		сув	cys	Ala	Gly 3045		Thr	Gly
Gly	7 Ala 3050		, Cys	: Thr	Gly	Gly 3055		Gly	/ Gly	Thr	Gly 3060	Ala	. Gly	у Сув
Ala	a Ala 306!		/ Gly	y Cys	: Gly	7 Cys 3070		a Gly	у Сув	: Ala	a Gly 3075	Cys 5	Thr	Thr
Gly	7 Cys 308		s Ala	a Ala	a Thi	Gly 308		r Gly	y Gly	/ Ala	a Gly 3090	Gly	, Cys	s Ala

3105

Ala Ala Gly Ala Ala Gly Thr Thr Cys Ala Ala Gly Gly Ala Gly

3100

3095

Ala	Thr	GIA	Ala	Сув	Ala	GTA	Ala	GTĀ	GIY	Cys	Ala	Cys	Thr	GIĀ	
	3110					3115					3120				

- Gly Gly Cys Cys Cys Cys Gly Gly Cys Ala Cys Cys Ala Thr Cys 3125 3130 3135
- Ala Gly Gly Gly Ala Cys Cys Thr Gly Gly Cys Thr Gly 3140 3145 3150
- Gly Cys Cys Gly Gly Gly Cys Cys Ala Gly Ala Gly Ala Thr Gly 3155 3160 3165
- Cys Ala Gly Gly Thr Gly Ala Ala Ala Cys Thr Thr Cys Thr Cys 3170 3175 3180
- Cys Ala Gly Thr Cys Cys Cys Thr Gly Gly Gly Cys Cys Thr Gly 3185 3190 3195
- Ala Ala Ala Thr Cys Cys Ala Cys Thr Cys Thr Cys Ala Thr Cys 3200 3205 3210
- Ala Cys Cys Gly Ala Thr Gly Gly Cys Thr Cys Gly Thr Cys Thr 3215 3220 3225
- Cys Cys Cys Ala Thr Cys Ala Ala Cys Cys Thr Cys Thr Thr Cys 3230 3235 3240
- Ala Gly Cys Ala Cys Ala Gly Cys Cys Thr Thr Cys Gly Gly Gly 3245 3250 3255
- Thr Thr Gly Cys Thr Gly Gly Gly Gly Cys Thr Gly Gly Gly 3260 3265 3270
- Thr Cys Thr Gly Ala Thr Gly Gly Thr Cys Ala Gly Cys Cys Gly 3275 3280 3285
- Cys Cys Ala Gly Cys Ala Cys Ala Gly Ala Ala Gly Thr Gly Ala 3290 3295 3300

<210> 50

<211> 267

<212> PRT

<213> Artificial Sequence

<220>

<223> synthesized and Homo sapiens

<400> 50

Met Ala Gly Cys Gly Cys Pro Cys Gly Cys Gly Ala Gly Ile Pro Ala 1 5 10 15

Asn Leu Arg Leu Pro Met Ala Ser Ala Leu Pro Glu Ala Leu Cys Ser 20 25 30

Gln Ser Arg Thr Thr Pro Val Asp Leu Cys Leu Leu Glu Glu Ser Val 35 40 45

Gly Ser Leu Glu Gly Ser Arg Cys Pro Val Phe Ala Phe Gln Ser Ser 50 55 60

Asp Thr Glu Ser Asp Glu Leu Ser Glu Val Leu Gln Asp Ser Cys Phe 65 70 75 80

Leu Gln Ile Lys Cys Asp Thr Lys Asp Asp Ser Ile Pro Cys Phe Leu 85 90 95

Glu Leu Lys Glu Glu Asp Glu Ile Val Cys Thr Gln His Trp Gln Asp 100 105 110

Ala Val Pro Trp Thr Glu Leu Leu Ser Leu Gln Thr Glu Asp Gly Phe
115 120 125

Trp Lys Leu Thr Pro Glu Leu Gly Leu Ile Leu Asn Leu Asn Thr Asn 130 135 140

Gly Leu His Ser Phe Leu Lys Gln Lys Gly Ile Gln Ser Leu Gly Val 145 150 155 160

Lys Gly Arg Glu Cys Leu Leu Asp Leu Ile Ala Thr Met Leu Val Leu 165 170 175

Gln Phe Ile Arg Thr Arg Leu Glu Lys Glu Gly Ile Val Phe Lys Ser 180 185 190

Leu Met Lys Met Asp Asp Pro Ser Ile Ser Arg Asn Ile Pro Trp Ala 195 200 205

Phe Glu Ala Ile Lys Gln Ala Ser Glu Trp Val Arg Arg Thr Glu Gly

210 215 220

Gln Tyr Pro Ser Ile Cys Pro Arg Leu Glu Leu Gly Asn Asp Trp Asp 225 230 235 240

Ser Ala Thr Lys Gln Leu Leu Gly Leu Gln Pro Ile Ser Thr Val Ser 245 250 255

Pro Leu His Arg Val Leu His Tyr Ser Gln Gly 260 265

<210> 51

<211> 804

<212> DNA

<213> Artificial Sequence

<220>

<223> synthesized and Homo sapiens

<400> 51

atggcaggct gcggttgtcc atgcggttgt ggcgccggaa ttcctgccaa ccttaggctg 60 ccaatggcct ctgctttacc tgaggctctt tgcagtcagt cccggactac cccagtagat 120 ctctgtcttc tagaagaatc agtaggcagt ctcgaaggaa gtcgatgtcc tgtctttgct 180 tttcaaagtt ctgacacaga aagtgatgag ctatcagaag tacttcaaga cagctgcttt 240 ttacaaataa agtgtgatac aaaagatgac agtatcccgt gctttctqqa attaaaagaa 300 gaggatgaaa tagtgtgcac acaacactgg caggatgctg tgccttggac agaactcctc 360 agtctacaga cagaggatgg cttctggaaa cttacaccag aactgggact tatattaaat 420 cttaatacaa atggtttgca cagctttctt aaacaaaaag gcattcaatc tctaggtgta 480 aaaggaagag aatgtctcct ggacctaatt gccacaatgc tggtactaca gtttattcgc 540 accaggttgg aaaaagaggg aatagtgttc aaatcactga tgaaaatgga tgacccttct 600 atttccagga atattccctg ggcttttgag gcaataaagc aagcaagtga atgggtaaga 660 agaactgaag gacagtaccc atctatctgc ccacggcttg aactggggaa cgactgggac 720 tetgecacca ageagttget gggaetecag eccataagea etgtgteece tetteataga 780 gtcctccatt acagtcaagg ctaa 804

<210> 52

<211> 1736

<212> PRT

<213> Artificial Sequence

<220>

<223> synthesized and Homo sapiens

<400> 52

Met Ala Gly Cys Gly Cys Pro Cys Gly Cys Gly Ala Met Val Met Gly
1 10 15

Ile Phe Ala Asn Cys Ile Phe Cys Leu Lys Val Lys Tyr Leu Pro Gln 20 25 30

Gln Gln Lys Lys Leu Gln Thr Asp Ile Lys Glu Asn Gly Gly Lys
35 40 45

Phe Ser Phe Ser Leu Asn Pro Gln Cys Thr His Ile Ile Leu Asp Asn 50 55 60

Ala Asp Val Leu Ser Gln Tyr Gln Leu Asn Ser Ile Gln Lys Asn His 65 70 75 80

Val His Ile Ala Asn Pro Asp Phe Ile Trp Lys Ser Ile Arg Glu Lys 85 90 95

Arg Leu Leu Asp Val Lys Asn Tyr Asp Pro Tyr Lys Pro Leu Asp Ile 100 105 , 110

Thr Pro Pro Pro Asp Gln Lys Ala Ser Ser Ser Glu Val Lys Thr Glu
115 120 125

Gly Leu Cys Pro Asp Ser Ala Thr Glu Glu Glu Asp Thr Val Glu Leu 130 135 140

Thr Glu Phe Gly Met Gln Asn Val Glu Ile Pro His Leu Pro Gln Asp 145 150 155 160

Phe Glu Val Ala Lys Tyr Asn Thr Leu Glu Lys Val Gly Met Glu Gly 165 170 175

Gly Gln Glu Ala Val Val Glu Leu Gln Cys Ser Arg Asp Ser Arg 180 185 190

Asp Cys Pro Phe Leu Ile Ser Ser His Phe Leu Leu Asp Asp Gly Met 195 200 205

Glu Thr Arg Arg Gln Phe Ala Ile Lys Lys Thr Ser Glu Asp Ala Ser

210 215 23	20
------------	----

Glu Tyr Phe Glu Asn Tyr Ile Glu Glu Leu Lys Lys Gln Gly Phe Leu 225 230 235 240

Leu Arg Glu His Phe Thr Pro Glu Ala Thr Gln Leu Ala Ser Glu Gln 245 250 255

Leu Gln Ala Leu Leu Glu Glu Val Met Asn Ser Ser Thr Leu Ser 260 265 270

Gln Glu Val Ser Asp Leu Val Glu Met Ile Trp Ala Glu Ala Leu Gly 275 280 285

His Leu Glu His Met Leu Leu Lys Pro Val Asn Arg Ile Ser Leu Asn 290 295 300

Asp Val Ser Lys Ala Glu Gly Ile Leu Leu Leu Val Lys Ala Ala Leu 305 310 315 320

Lys Asn Gly Glu Thr Ala Glu Gln Leu Gln Lys Met Met Thr Glu Phe 325 330 335

Tyr Arg Leu Ile Pro His Lys Gly Thr Met Pro Lys Glu Val Asn Leu 340 345 350

Gly Leu Leu Ala Lys Lys Ala Asp Leu Cys Gln Leu Ile Arg Asp Met 355 360 365

Val Asn Val Cys Glu Thr Asn Leu Ser Lys Pro Asn Pro Pro Ser Leu 370 375 380

Ala Lys Tyr Arg Ala Leu Arg Cys Lys Ile Glu His Val Glu Gln Asn 385 390 395 400

Thr Glu Glu Phe Leu Arg Val Arg Lys Glu Val Leu Gln Asn His His 405 410 415

Ser Lys Ser Pro Val Asp Val Leu Gln Ile Phe Arg Val Gly Arg Val 420 425 430

Asn Glu Thr Thr Glu Phe Leu Ser Lys Leu Gly Asn Val Arg Pro Leu 435 440 445

Leu His Gly Ser Pro Val Gln Asn Ile Val Gly Ile Leu Cys Arg Gly 450 455 460

Leu Leu Leu Pro Lys Val Val Glu Asp Arg Gly Val Gln Arg Thr Asp 465 470 475 480

Val Gly Asn Leu Gly Ser Gly Ile Tyr Phe Ser Asp Ser Leu Ser Thr 485 490 495

Ser Ile Lys Tyr Ser His Pro Gly Glu Thr Asp Gly Thr Arg Leu Leu 500 505 510

Leu Ile Cys Asp Val Ala Leu Gly Lys Cys Met Asp Leu His Glu Lys 515 520 525

Asp Phe Pro Leu Thr Glu Ala Pro Pro Gly Tyr Asp Ser Val His Gly 530 535 540

Val Ser Gln Thr Ala Ser Val Thr Thr Asp Phe Glu Asp Asp Glu Phe 545 550 555 560

Val Val Tyr Lys Thr Asn Gln Val Lys Met Lys Tyr Ile Ile Lys Phe 565 570 575

Ser Met Pro Gly Asp Gln Ile Lys Asp Phe His Pro Ser Asp His Thr 580 585 590

Glu Leu Glu Glu Tyr Arg Pro Glu Phe Ser Asn Phe Ser Lys Val Glu
595 600 605

Asp Tyr Gln Leu Pro Asp Ala Lys Thr Ser Ser Ser Thr Lys Ala Gly 610 615 620

Leu Gln Asp Ala Ser Gly Asn Leu Val Pro Leu Glu Asp Val His Ile 625 630 635 640

Lys Gly Arg Ile Ile Asp Thr Val Ala Gln Val Ile Val Phe Gln Thr 645 650 655

Tyr Thr Asn Lys Ser His Val Pro Ile Glu Ala Lys Tyr Ile Phe Pro 660 665 670

Leu Asp Asp Lys Ala Ala Val Cys Gly Phe Glu Ala Phe Ile Asn Gly 675 680 685

Lys His Ile Val Gly Glu Ile Lys Glu Lys Glu Glu Ala Gln Glu 690 695 700

Tyr Leu Glu Ala Val Thr Gln Gly His Gly Ala Tyr Leu Met Ser Gln 705 710 715 720

Asp Ala Pro Asp Val Phe Thr Val Ser Val Gly Asn Leu Pro Pro Lys
725 730 735

Ala Lys Val Leu Ile Lys Ile Thr Tyr Ile Thr Glu Leu Ser Ile Leu 740 745 750

Gly Thr Val Gly Val Phe Phe Met Pro Ala Thr Val Ala Pro Trp Gln
755 760 765

Gln Asp Lys Ala Leu Asn Glu Asn Leu Gln Asp Thr Val Glu Lys Ile 770 775 780

Cys Ile Lys Glu Ile Gly Thr Lys Gln Ser Phe Ser Leu Thr Met Ser 785 790 795 800

Ile Glu Met Pro Tyr Val Ile Glu Phe Ile Phe Ser Asp Thr His Glu 805 810 815

Leu Lys Gln Lys Arg Thr Asp Cys Lys Ala Val Ile Ser Thr Met Glu 820 825 830

Gly Ser Ser Leu Asp Ser Ser Gly Phe Ser Leu His Ile Gly Leu Ser 835 840 845

Ala Ala Tyr Leu Pro Arg Met Trp Val Glu Lys His Pro Glu Lys Glu 850 855 860

Ser Glu Ala Cys Met Leu Val Phe Gln Pro Asp Leu Asp Val Asp Leu 865 870 875 880

Pro Asp Leu Ala Ser Glu Ser Glu Val Ile Ile Cys Leu Asp Cys Ser 885 890 895

Ser Ser Met Glu Gly Val Thr Phe Leu Gln Ala Lys Gln Ile Thr Leu 900 905 910

His Ala Leu Ser Leu Val Gly Glu Lys Gln Lys Val Asn Ile Ile Gln

915	920	925
<i>313</i>	2-4	

Phe Gly Thr Gly Tyr Lys Glu Leu Phe Ser Tyr Pro Lys His Ile Thr 930 935 940

Ser Asn Thr Thr Ala Ala Glu Phe Ile Met Ser Ala Thr Pro Thr Met 945 950 955 960

Gly Asn Thr Asp Phe Trp Lys Thr Leu Arg Tyr Leu Ser Leu Leu Tyr 965 970 975

Pro Ala Arg Gly Ser Arg Asn Ile Leu Leu Val Ser Asp Gly His Leu 980 985 990

Gln Asp Glu Ser Leu Thr Leu Gln Leu Val Lys Arg Ser Arg Pro His 995 1000 1005

Thr Arg Leu Phe Ala Cys Gly Ile Gly Ser Thr Ala Asn Arg His 1010 1015 1020

Val Leu Arg Ile Leu Ser Gln Cys Gly Ala Gly Val Phe Glu Tyr 1025 1030 1035

Phe Asn Ala Lys Ser Lys His Ser Trp Arg Lys Gln Ile Glu Asp 1040 1045 1050

Gln Met Thr Arg Leu Cys Ser Pro Ser Cys His Ser Val Ser Val 1055 1060 1065

Lys Trp Gln Gln Leu Asn Pro Asp Ala Pro Glu Ala Leu Gln Ala 1070 1075 1080

Pro Ala Gln Val Pro Ser Leu Phe Arg Asn Asp Arg Leu Leu Val 1085 1090 1095

Tyr Gly Phe Ile Pro His Cys Thr Gln Ala Thr Leu Cys Ala Leu 1100 1105 1110

Ile Gln Glu Lys Glu Phe Cys Thr Met Val Ser Thr Thr Glu Leu 1115 1120 1125

Gln Lys Thr Thr Gly Thr Met Ile His Lys Leu Ala Ala Arg Ala 1130 1135 1140

Leu Ile Arg Asp Tyr Glu Asp Gly Ile Leu His Glu Asn Glu Thr 1145 1150 1155

- Ser His Glu Met Lys Lys Gln Thr Leu Lys Ser Leu Ile Ile Lys 1160 1165 1170
- Leu Ser Lys Glu Asn Ser Leu Ile Thr Gln Phe Thr Ser Phe Val 1175 1180 1185
- Ala Val Glu Lys Arg Asp Glu Asn Glu Ser Pro Phe Pro Asp Ile 1190 1195 1200
- Pro Lys Val Ser Glu Leu Ile Ala Lys Glu Asp Val Asp Phe Leu 1205 1210 1215
- Pro Tyr Met Ser Trp Gln Gly Glu Pro Gln Glu Ala Val Arg Asn 1220 1225 1230
- Gln Ser Leu Leu Ala Ser Ser Glu Trp Pro Glu Leu Arg Leu Ser 1235 1240 1245
- Lys Arg Lys His Arg Lys Ile Pro Phe Ser Lys Arg Lys Met Glu 1250 1255 1260
- Leu Ser Gln Pro Glu Val Ser Glu Asp Phe Glu Glu Asp Gly Leu
 1265 1270 1275
- Gly Val Leu Pro Ala Phe Thr Ser Asn Leu Glu Arg Gly Gly Val 1280 1285 1290
- Glu Lys Leu Leu Asp Leu Ser Trp Thr Glu Ser Cys Lys Pro Thr 1295 1300 1305
- Ala Thr Glu Pro Leu Phe Lys Lys Val Ser Pro Trp Glu Thr Ser 1310 1315 1320
- Thr Ser Ser Phe Phe Pro Ile Leu Ala Pro Ala Val Gly Ser Tyr 1325 1330 1335
- Leu Thr Pro Thr Thr Arg Ala His Ser Pro Ala Ser Leu Ser Phe 1340 1345 1350
- Ala Ser Tyr Arg Gln Val Ala Ser Phe Gly Ser Ala Ala Pro Pro 1355 1360 1365

Arg	Gln 1370		Asp	Ala	Ser	Gln 1375		Ser	Gln	Gly	Pro 1380	Val	Pro	Gly
Thr	Cys 1385	Ala	Asp	Trp	Ile	Pro 1390		Ser	Ala	Ser	Cys 1395		Thr	Gly
Pro	Pro 1400	Gln	Asn	Pro	Pro	Ser 1405	Ala	Pro	Tyr	Сув	Gly 1410	Ile	Val	Phe
Ser	Gly 1415		Ser	Leu	Ser	Ser 1420		Gln	Ser	Ala	Pro 1425	Leu	Gln	His
Pro	Gly 1430	Gly	Phe	Thr	Thr	Arg 1435		Ser	Ala	Gly	Thr 1440	Phe	Pro	Glu
Leu	Asp 1445	Ser	Pro	Gln	Leu	His 1450		Ser	Leu	Pro	Thr 1455		Pro	Asp
Pro	Ile 1460	Arg	Gly	Phe	Gly	Ser 1465	Tyr	His	Pro	Ser	Ala 1470	Tyr	Ser	Pro
Phe	His 1475	Phe	Gln	Pro	Ser	Ala 1480		Ser	Leu		Ala 1485	Asn	Leu	Arg
Leu	Pro 1490		Ala	Ser		Leu 1495		Glu	Ala	Leu	Cys 1500	Ser	Gln	Ser
Arg	Thr 1505	Thr	Pro	Val	Asp	Leu 1510	Сув	Leu	Leu	Glu	Glu 1515	Ser	Val	Gly
Ser	Leu 1520	Glu	Gly	Ser	Arg	Cys 1525	Pro	Val	Phe	Ala	Phe 1530	Gln	Ser	Ser
Ąsp	Thr 1535	Glu	Ser	Asp	Glu	Leu 1540	Ser	Glu	Val	Leu	Gln 1545	Asp	Ser	Сув
Phe	Leu 1550	Gln	Ile	ГÀЗ	Cys	Asp 1555	Thr	Lys	Asp	Asp	Ser 1560	Ile	Pro	Cys
Phe	Leu 1565	Glu	Leu	Lys	Glu	Glu 1570	Asp	Glu	Ile	Val	Cys 1575	Thr	Gln	His
Trp	Gln	Asp	Ala	Val	Pro	Trp	Thr	Glu	Leu	Leu	Ser	Leu	Gln	Thr

	1580					1585					1590				
Glu	Asp 1595	Gly	Phe	Trp	Lys	Leu 1600	Thr	Pro	Glu	Leu	Gly 1605		Ile	Leu	
Asn	Leu 1610	Asn	Thr	Asn	Gly	Leu 1615	His	Ser	Phe	Leu	Lys 1620	Gln	Lys	Gly	
Ile	Gln 1625		Leu	Gly	Val	Lys 1630	Gly	Arg	Glu	Cys	Leu 1635	Leu	Asp	Leu	
Ile	Ala 1640		Met	Leu	Val ·	Leu 1645		Phe	Ile	Arg	Thr 1650	Arg	Leu	Glu	
Lys	Glu 1655	Gly	Ile	Val	Phe	Lys 1660	Ser	Leu	Met	Lys	Met 1665	Asp	Asp	Pro	
Ser	Ile 1670	Ser	Arg	Asn	Ile	Pro 1675	Trp	Ala	Phe	Glu	Ala 1680	Ile	Lys	Gln	
Ala	Ser 1685	Glu	Trp	Val	Arg	Arg 1690	Thr	Glu	Gly	Gln	Tyr 1695	Pro	Ser	Ile	
Сув	Pro 1700	Arg	Leu	Glu	Leu	Gly 1705	Asn	Asp	Trp	Asp	Ser 1710	Ala	Thr	ГЛЯ	
Gln	Leu 1715	Leu	Gly	Leu	Gln	Pro 1720	Ile	Ser	Thr	Val	Ser 1725	Pro	Leu	His	
Arg	Val 1730	Leu	His	Tyr	Ser	Gln 1735	Gly								
<210															
	> DN	ΙA													
	> Ar	ClII	.c1a1	. Seq	uenc	:e									
<220 <223		nthe	size	ed an	d Ho	omo sa	pien	ıs							
)> 53 Jcaggo		ggtt	gtcc	atg	cggtt	gt g	gege	cato	ıg tg	atggg	jaat	cttt	gcaaat	60
														caaact	120
gaca	ttaag	ıg aa	aatg	igcgg	aaa	gttt	cc t	tttc	gtta	ıa at	cctca	ıgtg	caca	ıcatata	180

atcttagata	atgctgatgt	tctgagtcag	taccaactga	attctatcca	aaagaaccac	240
gttcatattg	caaacccaga	ttttatatgg	aaatctatca	gagaaaagag	actcttggat	300
gtaaagaatt	atgatcctta	taagcccctg	gacatcacac	cacctcctga	tcagaaggcg	360
agcagttctg	aagtgaaaac	agaaggtcta	tgcccggaca	gtgccacaga	ggaggaagac	420
actgtggaac	tcactgagtt	tggtatgcag	aatgttgaaa	ttcctcatct	tcctcaagat	480
tttgaagttg	caaaatataa	caccttggag	aaagtgggaa	tggagggagg	ccaggaagct	540
gtggtggtgg	agcttcagtg	ttcgcgggac	tccagggact	gteettteet	gatatcctca	600
cacttcctcc	tggatgatgg	catggagact	agaagacagt	ttgctataaa	gaaaacctct	660
gaagatgcaa	gtgaatactt	tgaaaattac	attgaagaac	tgaagaaaca	aggatttcta	720
ctaagagaac	atttcacacc	tgaagcaacc	caattagcat	ctgaacaatt	gcaagcattg	780
cttttggagg	aagtcatgaa	ttcaagcact	ctgagccaag	aggtgagcga	tttagtagag	840
atgatttggg	cagaggccct	gggccacctg	gaacacatgc	ttctcaagcc	agtgaacagg	900
attageetea	acgatgtgag	caaggcagag	gggattctcc	ttctagtaaa	ggcagcactg	960
aaaaatggag	aaacagcaga	gcaattgcaa	aagatgatga	cagagtttta	cagactgata	1020
cctcacaaag	gcacaatgcc	caaagaagtg	aacctgggac	tattggctaa	gaaagcagac	1080
ctctgccagc	taataagaga	catggttaat	gtctgtgaaa	ctaatttgtc	caaacccaac	1140
ccaccatccc	tggccaaata	ccgagctttg	aggtgcaaaa	ttgagcatgt	tgaacagaat	1200
actgaagaat	ttctcagggt	tagaaaagag	gttttgcaga	atcatcacag	taagagccca	1260
gtggatgtct	tgcagatatt	tagagttggc	agagtgaatg	aaaccacaga	gtttttgagc	1320
aaacttggta	atgtgaggcc	cttgttgcat	ggttctcctg	tacaaaacat	cgtgggaatc	1380
ttgtgtcgag	ggttgctttt	acccaaagta	gtggaagatc	gtggtgtgca	aagaacagac	1440
gtcggaaacc	ttggaagtgg	gatttatttc	agtgattcgc	tcagtacaag	tatcaagtac	1500
tcacacccgg	gagagacaga	tggcaccaga	ctcctgctca	tttgtgacgt	agccctcgga	1560
aagtgtatgg	acttacatga	gaaggacttt	cccttaactg	aagcaccacc	aggctacgac	1620
agtgtgcatg	gagtttcaca	aacagcctct	gtcaccacag	actttgagga	tgatgaattt	1680
gttgtctata	aaaccaatca	ggttaaaatg	aaatatatta	ttaaattttc	catgcctgga	1740
gatcagataa	aggactttca	tcctagtgat	catactgaat	tagaggaata	cagacctgag	1800
ttttcaaatt	tttcaaaggt	tgaagattac	cagttaccag	atgccaaaac	ttccagcagc	1860
accaaggccg	gcctccagga	tgcctctggg	aacttggttc	ctctggagga	tgtccacatc	1920

aaagggagaa tcatagacac tgtagcccag gtcattgttt ttcagacata cacaaataaa	a 1980
agtcacgtgc ccattgaggc aaaatatatc tttcctttgg atgacaaggc cgctgtgtgt	2040
ggcttcgaag ccttcatcaa tgggaagcac atagttggag agattaaaga gaaggaaga	a 2100
gcccagcaag agtacctaga agccgtgacc cagggccatg gcgcttacct gatgagtca	g 2160
gatgctccgg acgtttttac tgtaagtgtt ggaaacttac cccctaaggc taaggttct	t 2220
ataaaaatta cctacatcac agaactcagc atcctgggca ctgttggtgt ctttttcat	g 2280
cccgccaccg tagcaccctg gcaacaggac aaggctttga atgaaaacct tcaggatac	a 2340
gtagagaaga tttgtataaa agaaatagga acaaagcaaa gcttctcttt gactatgtc	t 2400
attgagatgc cgtatgtgat tgaattcatt ttcagtgata cacatgaact gaaacaaaa	g 2460
cgcacagact gcaaagctgt cattagcacc atggaaggca gctccttaga cagcagtgg	a 2520
ttttctctcc acatcggttt gtctgctgcc tatctcccaa gaatgtgggt tgaaaaaca	t 2580
ccagaaaaag aaagcgaggc ttgcatgctt gtctttcaac ccgatctcga tgtcgacct	c 2640
cctgacctag ccagtgagag cgaagtgatt atttgtcttg actgctccag ttccatgga	ag 2700
ggtgtgacat tcttgcaagc caagcaaatc accttgcatg cgctgtcctt ggtgggtga	ag 2760
aagcagaaag taaatattat ccagttcggc acaggttaca aggagctatt ttcgtatcc	et 2820
aagcatatca caagcaatac cacggcagca gagttcatca tgtctgccac acctaccat	g 2880
gggaacacag acttctggaa aacactccga tatcttagct tattgtaccc tgctcgagg	gg 2940
tcacggaaca tcctcctggt gtctgatggg cacctccagg atgagagcct gacattaca	ag 3000
ctcgtgaaga ggagccgccc gcacaccagg ttattcgcct gcggtatcgg ttctacago	ca 3060
aatcgtcacg tcttaaggat tttgtcccag tgtggtgccg gagtatttga atattttaa	at 3120
gcaaaatcca agcatagttg gagaaaacag atagaagacc aaatgaccag gctatgtto	ct 3180
ccgagttgcc actctgtctc cgtcaaatgg cagcaactca atccagatgc gcccgagg	cc 3240
ctgcaggccc cagcccaggt gccatccttg tttcgcaatg atcgactcct tgtctatg	ga 3300
ttcattcctc actgcacaca agcaactctg tgtgcactaa ttcaagagaa agaatttt	gt 3360
acaatggtgt cgactactga gcttcagaag acaactggaa ctatgatcca caagctgg	ca 3420
gcccgagctc taatcagaga ttatgaagat ggcattcttc acgaaaatga aaccagtc	at 3480
gagatgaaaa aacaaacctt gaaatctctg attattaaac tcagtaaaga aaactctc	tc 3540
ataacacaat ttacaagctt tgtggcagtt gagaaaaggg atgagaatga gtcgcctt	tt 3600
cctgatattc caaaagtttc tgaacttatt gccaaagaag atgtagactt cctgccct	ac 3660

PCT/US2004/007434 WO 2004/081533

atgagctggc	agggggagcc	ccaagaagcc	gtcaggaacc	agtctctttt	agcatcctct	3720
gagtggccag	aattacgttt	atccaaacga	aaacatagga	aaattccatt	ttccaaaaga	3780
aaaatggaat	tatctcagcc	agaagtttct	gaagattttg	aagaggatgg	cttaggtgta	3840
ctaccagctt	tcacatcaaa	tttggaacgt	ggaggtgtgg	aaaagctatt	ggatttaagt	3900
tggacagagt	catgtaaacc	aacagcaact	gaaccactat	ttaagaaagt	cagtccatgg	3960
gaaacatcta	cttctagctt	ttttcctatt	ttggctccgg	ccgttggttc	ctatcttacc	4020
ccgactaccc	gcgctcacag	tectgettee	ttgtcttttg	cctcatatcg	tcaggtagct	4080
agtttcggtt	cagctgctcc	tcccagacag	tttgatgcat	ctcaattcag	ccaaggccct	4140
gtgcctggca	cttgtgctga	ctggatccca	cagtcggcgt	cttgtcccac	aggacctccc	4200
cagaacccac	cttctgcacc	ctattgtggc	attgttttt	cagggagctc	attaagctct	4260
gcacagtctg	ctccactgca	acatcctgga	ggctttacta	ccaggccttc	tgctggcacc	4320
ttccctgagc	tggattctcc	ccagcttcat	ttctctcttc	ctacagaccc	tgatcccatc	4380
agaggttttg	ggtcttatca	tecetetget	tactctcctt	ttcattttca	accttccgca	4440
gcctctttga	ctgccaacct	taggctgcca	atggcctctg	ctttacctga	ggctctttgc	4500
agtcagtccc	ggactacccc	agtagatctc	tgtcttctag	aagaatcagt	aggcagtctc	4560
gaaggaagto	gatgtcctgt	ctttgctttt	caaagttctg	acacagaaag	tgatgagcta	4620
tcagaagtac	ttcaagacag	ctgcttttta	caaataaagt	gtgatacaaa	agatgacagt	4680
atcccgtgct	ttctggaatt	aaaagaagag	gatgaaatag	tgtgcacaca	acactggcag	4740
gatgctgtgc	: cttggacaga	actectcagt	ctacagacag	aggatggctt	ctggaaactt	4800
acaccagaac	: tgggacttat	attaaatctt	: aatacaaatg	gtttgcacag	ctttcttaaa	4860
caaaaaggca	ttcaatctct	aggtgtaaaa	ggaagagaat	gtctcctgga	cctaattgcc	4920
acaatgctgg	, tactacagtt	: tattcgcaco	aggttggaaa	aagagggaat	agtgttcaaa	4980
tcactgatga	aaatggatga	cccttctatt	tccaggaata	ttccctggg	ttttgaggca	5040
ataaagcaag	g caagtgaatg	g ggtaagaaga	a actgaaggac	agtacccato	tatetgecca	5100
cggcttgaac	tggggaacga	a ctgggactct	gccaccaago	agttgctggg	g actccagccc	5160
ataagcacto	g tgtcccctct	tcatagagto	c ctccattaca	gtcaaggcta	a a	5211

<210> 54 <211> 351 <212> PRT <213> Artificial Sequence

<220>

<223> Saccaromyces cerevisiae and Homo sapiens

<400> 54

Met Lys Leu Leu Ser Ser Ile Glu Gln Ala Cys Asp Ile Cys Arg Leu 1 5 10 15

Lys Lys Leu Lys Cys Ser Lys Glu Lys Pro Lys Cys Ala Lys Cys Leu 20 25 30

Lys Asn Asn Trp Glu Cys Arg Tyr Ser Pro Lys Thr Lys Arg Ser Pro 35 40 45

Leu Thr Arg Ala His Leu Thr Glu Val Glu Ser Arg Leu Glu Arg Leu 50 55 60

Glu Gln Leu Phe Leu Leu Ile Phe Pro Arg Glu Asp Leu Asp Met Ile 65 70 75 80

Leu Lys Met Asp Ser Leu Gln Asp Ile Lys Ala Leu Leu Thr Gly Leu 85 90 95

Gly Ile Pro Ala Asn Leu Arg Leu Pro Met Ala Ser Ala Leu Pro Glu 100 105 110

Ala Leu Cys Ser Gln Ser Arg Thr Thr Pro Val Asp Leu Cys Leu Leu 115 120 125

Glu Glu Ser Val Gly Ser Leu Glu Gly Ser Arg Cys Pro Val Phe Ala 130 135 140

Phe Gln Ser Ser Asp Thr Glu Ser Asp Glu Leu Ser Glu Val Leu Gln 145 150 155 160

Asp Ser Cys Phe Leu Gln Ile Lys Cys Asp Thr Lys Asp Asp Ser Ile 165 170 175

Pro Cys Phe Leu Glu Leu Lys Glu Glu Asp Glu Ile Val Cys Thr Gln 180 185 190

His Trp Gln Asp Ala Val Pro Trp Thr Glu Leu Leu Ser Leu Gln Thr
195 200 205

Glu Asp Gly Phe Trp Lys Leu Thr Pro Glu Leu Gly Leu Ile Leu Asn

210	215	220	

Leu Asn Thr Asn Gly Leu His Ser Phe Leu Lys Gln Lys Gly Ile Gln 235 230 225

Ser Leu Gly Val Lys Gly Arg Glu Cys Leu Leu Asp Leu Ile Ala Thr 250 245

Met Leu Val Leu Gln Phe Ile Arg Thr Arg Leu Glu Lys Glu Gly Ile 265 260

Val Phe Lys Ser Leu Met Lys Met Asp Asp Pro Ser Ile Ser Arg Asn 280 275

Ile Pro Trp Ala Phe Glu Ala Ile Lys Gln Ala Ser Glu Trp Val Arg

Arg Thr Glu Gly Gln Tyr Pro Ser Ile Cys Pro Arg Leu Glu Leu Gly 310

Asn Asp Trp Asp Ser Ala Thr Lys Gln Leu Leu Gly Leu Gln Pro Ile 325

Ser Thr Val Ser Pro Leu His Arg Val Leu His Tyr Ser Gln Gly 345 340

<210> 55

<211> 1056

<212> DNA

<213> Artificial Sequence

<220>

<223> Saccaromyces cerevisiae and Homo sapiens

atgaagctac tgtcttctat cgaacaagca tgcgatattt gccgacttaa aaagctcaag 60 tgctccaaag aaaaaccgaa gtgcgccaag tgtctgaaga acaactggga gtgtcgctac teteccaaaa ecaaaaggte teegetgaet agggeacate tgacagaagt ggaatcaagg 180 ctagaaagac tggaacagct atttctactg atttttcctc gagaagacct tgacatgatt ttgaaaatgg attctttaca ggatataaaa gcattgttaa caggattagg aattcctgcc 300 aaccttaggc tgccaatggc ctctgcttta cctgaggctc tttgcagtca gtcccggact 360 accccagtag atctctgtct tctagaagaa tcagtaggca gtctcgaagg aagtcgatgt 420

PCT/US2004/007434 WO 2004/081533

cctgtctttg	cttttcaaag	ttctgacaca	gaaagtgatg	agctatcaga	agtacttcaa	480
gacagetget	ttttacaaat	àaagtgtgat	acaaaagatg	acagtatccc	gtgctttctg	540
gaattaaaag	aagaggatga	aatagtgtgc	acacaacact	ggcaggatgc	tgtgccttgg	600
acagaactcc	tcagtctaca	gacagaggat	ggcttctgga	aacttacacc	agaactggga	660
cttatattaa	atcttaatac	aaatggtttg	cacagctttc	ttaaacaaaa	aggcattcaa	720
tctctaggtg	taaaaggaag	agaatgtctc	ctggacctaa	ttgccacaat	gctggtacta	780
cagtttattc	gcaccaggtt	ggaaaaagag	ggaatagtgt	tcaaatcact	gatgaaaatg	840
gatgaccctt	ctatttccag	gaatattccc	tgggcttttg	aggcaataaa	gcaagcaagt	900
gaatgggtaa	gaagaactga	aggacagtac	ccatctatct	gcccacggct	tgaactgggg	960
aacgactggg	actctgccac	caagcagttg	ctgggactcc	agcccataag	cactgtgtcc	1020
cctcttcata	gagtcctcca	ttacagtcaa	ggctaa	,		1056

<210> 56

<211> 1820

<212> PRT ·
<213> Artificial Sequence

<220>

<223> Saccaromyces cerevisiae and Homo sapiens

<400> .56

Met Lys Leu Leu Ser Ser Ile Glu Gln Ala Cys Asp Ile Cys Arg Leu 10 5

Lys Lys Leu Lys Cys Ser Lys Glu Lys Pro Lys Cys Ala Lys Cys Leu 25 20

Lys Asn Asn Trp Glu Cys Arg Tyr Ser Pro Lys Thr Lys Arg Ser Pro 40

Leu Thr Arg Ala His Leu Thr Glu Val Glu Ser Arg Leu Glu Arg Leu

Glu Gln Leu Phe Leu Leu Ile Phe Pro Arg Glu Asp Leu Asp Met Ile 75 70

Leu Lys Met Asp Ser Leu Gln Asp Ile Lys Ala Leu Leu Thr Gly Leu 90

Met Val Met Gly Ile Phe Ala Asn Cys Ile Phe Cys Leu Lys Val Lys

100 105 110

Tyr Leu Pro Gln Gln Gln Lys Lys Leu Gln Thr Asp Ile Lys Glu 115 120 125

Asn Gly Gly Lys Phe Ser Phe Ser Leu Asn Pro Gln Cys Thr His Ile 130 135 140

Ile Leu Asp Asn Ala Asp Val Leu Ser Gln Tyr Gln Leu Asn Ser Ile 145 150 155 160

Gln Lys Asn His Val His Ile Ala Asn Pro Asp Phe Ile Trp Lys Ser 165 170 175

Ile Arg Glu Lys Arg Leu Leu Asp Val Lys Asn Tyr Asp Pro Tyr Lys 180 185 190

Pro Leu Asp Ile Thr Pro Pro Pro Asp Gln Lys Ala Ser Ser Ser Glu 195 200 205

Val Lys Thr Glu Gly Leu Cys Pro Asp Ser Ala Thr Glu Glu Glu Asp 210 215 220

Thr Val Glu Leu Thr Glu Phe Gly Met Gln Asn Val Glu Ile Pro His 225 230 235 240

Leu Pro Gln Asp Phe Glu Val Ala Lys Tyr Asn Thr Leu Glu Lys Val 245 250 255

Gly Met Glu Gly Gly Gln Glu Ala Val Val Glu Leu Gln Cys Ser 260 265 270

Arg Asp Ser Arg Asp Cys Pro Phe Leu Ile Ser Ser His Phe Leu Leu 275 280 285

Asp Asp Gly Met Glu Thr Arg Arg Gln Phe Ala Ile Lys Lys Thr Ser 290 295 300

Glu Asp Ala Ser Glu Tyr Phe Glu Asn Tyr Ile Glu Glu Leu Lys Lys 305 310 315 320

Gln Gly Phe Leu Leu Arg Glu His Phe Thr Pro Glu Ala Thr Gln Leu 325 330 335

Ala Ser Glu Gln Leu Gln Ala Leu Leu Leu Glu Glu Val Met Asn Ser 340 345 350

- Ser Thr Leu Ser Gln Glu Val Ser Asp Leu Val Glu Met Ile Trp Ala 355 360 365
- Glu Ala Leu Gly His Leu Glu His Met Leu Lys Pro Val Asn Arg 370 375 380
- Ile Ser Leu Asn Asp Val Ser Lys Ala Glu Gly Ile Leu Leu Leu Val
 385 390 395 400
- Lys Ala Ala Leu Lys Asn Gly Glu Thr Ala Glu Gln Leu Gln Lys Met 405 410 415
- Met Thr Glu Phe Tyr Arg Leu Ile Pro His Lys Gly Thr Met Pro Lys 420 425 430
- Glu Val Asn Leu Gly Leu Leu Ala Lys Lys Ala Asp Leu Cys Gln Leu 435 440 445
- Ile Arg Asp Met Val Asn Val Cys Glu Thr Asn Leu Ser Lys Pro Asn 450 455 460
- Pro Pro Ser Leu Ala Lys Tyr Arg Ala Leu Arg Cys Lys Ile Glu His 465 470 475 480
- Val Glu Gln Asn Thr Glu Glu Phe Leu Arg Val Arg Lys Glu Val Leu 485 490 495
- Gln Asn His His Ser Lys Ser Pro Val Asp Val Leu Gln Ile Phe Arg 500 505 510
- Val Gly Arg Val Asn Glu Thr Thr Glu Phe Leu Ser Lys Leu Gly Asn 515 520 525
- Val Arg Pro Leu Leu His Gly Ser Pro Val Gln Asn Ile Val Gly Ile 530 535 540
- Leu Cys Arg Gly Leu Leu Pro Lys Val Val Glu Asp Arg Gly Val 545 550 555 560
- Gln Arg Thr Asp Val Gly Asn Leu Gly Ser Gly Ile Tyr Phe Ser Asp 565 570 575

Ser Leu Ser Thr Ser Ile Lys Tyr Ser His Pro Gly Glu Thr Asp Gly 580 585 590

- Thr Arg Leu Leu Ile Cys Asp Val Ala Leu Gly Lys Cys Met Asp 595 600 605
- Leu His Glu Lys Asp Phe Pro Leu Thr Glu Ala Pro Pro Gly Tyr Asp 610 615 620
- Ser Val His Gly Val Ser Gln Thr Ala Ser Val Thr Thr Asp Phe Glu 625 630 635 640
- Asp Asp Glu Phe Val Val Tyr Lys Thr Asn Gln Val Lys Met Lys Tyr 645 650 655
- Ile Ile Lys Phe Ser Met Pro Gly Asp Gln Ile Lys Asp Phe His Pro 660 665 670
- Ser Asp His Thr Glu Leu Glu Glu Tyr Arg Pro Glu Phe Ser Asn Phe 675 680 685
- Ser Lys Val Glu Asp Tyr Gln Leu Pro Asp Ala Lys Thr Ser Ser Ser 690 695 700
- Thr Lys Ala Gly Leu Gln Asp Ala Ser Gly Asn Leu Val Pro Leu Glu
 705 710 715 720
- Asp Val His Ile Lys Gly Arg Ile Ile Asp Thr Val Ala Gln Val Ile.
 725 730 735
- Val Phe Gln Thr Tyr Thr Asn Lys Ser His Val Pro Ile Glu Ala Lys 740 745 750
- Tyr Ile Phe Pro Leu Asp Asp Lys Ala Ala Val Cys Gly Phe Glu Ala 755 760 765
- Phe Ile Asn Gly Lys His Ile Val Gly Glu Ile Lys Glu Lys Glu Glu 770 775 780
- Ala Gln Gln Glu Tyr Leu Glu Ala Val Thr Gln Gly His Gly Ala Tyr 785 790 795 800
- Leu Met Ser Gln Asp Ala Pro Asp Val Phe Thr Val Ser Val Gly Asn

805 810 815

Leu Pro Pro Lys Ala Lys Val Leu Ile Lys Ile Thr Tyr Ile Thr Glu 820 825 830

Leu Ser Ile Leu Gly Thr Val Gly Val Phe Phe Met Pro Ala Thr Val 835 840 845

Ala Pro Trp Gln Gln Asp Lys Ala Leu Asn Glu Asn Leu Gln Asp Thr 850 855 860

Val Glu Lys Ile Cys Ile Lys Glu Ile Gly Thr Lys Gln Ser Phe Ser 865 870 875 880

Leu Thr Met Ser Ile Glu Met Pro Tyr Val Ile Glu Phe Ile Phe Ser 885 890 895

Asp Thr His Glu Leu Lys Gln Lys Arg Thr Asp Cys Lys Ala Val Ile 900 905 910

Ser Thr Met Glu Gly Ser Ser Leu Asp Ser Ser Gly Phe Ser Leu His 925 920 925

Ile Gly Leu Ser Ala Ala Tyr Leu Pro Arg Met Trp Val Glu Lys His 930 935 940

Pro Glu Lys Glu Ser Glu Ala Cys Met Leu Val Phe Gln Pro Asp Leu 945 950 955 960

Asp Val Asp Leu Pro Asp Leu Ala Ser Glu Ser Glu Val Ile Ile Cys 965 970 975

Leu Asp Cys Ser Ser Ser Met Glu Gly Val Thr Phe Leu Gln Ala Lys 980 985 990

Gln Ile Thr Leu His Ala Leu Ser Leu Val Gly Glu Lys Gln Lys Val 995 1000 1005

Asn Ile Ile Gln Phe Gly Thr Gly Tyr Lys Glu Leu Phe Ser Tyr 1010 1015 1020

Pro Lys His Ile Thr Ser Asn Thr Thr Ala Ala Glu Phe Ile Met 1025 1030 1035

Ser	Ala 1040	Thr	Pro	Thr	Met	Gly 1045	Asn	Thr	Asp	Phe	Trp 1050	ГХз	Thr	Leu
Arg	Туг 1055		Ser	Leu	Leu	Tyr 1060		Ala	Arg	Gly	Ser 1065	Arg	Asn	Ile
Leu	Leu 1070	Val	Ser	Asp	Gly	His 1075	Leu	Gln	Asp	Glu	Ser 1080	Leu	Thr	Leu
Gln	Leu 1085	Val	ГÀв	Arg	Ser	Arg 1090		His	Thr	Arg	Leu 1095	Phe	Ala	Cys
Gly	Ile 1100	Gly	Ser	Thr	Ala	Asn 1105	_	His	Val	Leu	Arg 1110	Ile	Leu	Ser
Gln	Cys 1115	_	Ala	Gly	Val	Phe 1120		Tyr	Phe	Asn	Ala 1125	_	Ser	Lys
His	Ser 1130	Trp	Arg	Гув	Gln	Ile 1135		Asp	Gln	Met	Thr 1140	Arg	Leu	Cys
Ser	Pro 1145		Сув	His	Ser	Val 1150		Val	Lys	Trp	Gln 1155	Gln	Leu	Asn
Pro	Asp 1160		Pro	Glu	Ala	Leu 1165		Ala	Pro	Ala	Gln 1170	Val	Pro	Ser
Leu	Phe 1175	Arg	Asn	Asp	Arg	Leu 1180		Val	Tyr	Gly	Phe 1185	Ile	Pro	His
Cys	Thr 1190		Ala	Thr	Leu	Cys 1195		Leu	Ile	Gln	Glu 1200	-	Glu	Phe
Cys	Thr 1205		Val	Ser	Thr	Thr 1210		Leu	Gln	Гув	Thr 1215		Gly	Thr
Met	Ile 1220		Lys	Leu	Ala	Ala 1225	_	Ala	Leu	Ile	Arg 1230	-	Tyr	Glu
Asp	Gly 1235		Leu	His	Glu	Asn 1240		Thr	Ser	His	Glu 1245	Met	Гув	Lys
Gln	Thr 1250		Lys	Ser	Leu	Ile 1255		Lys	Leu	Ser	Lys 1260		Asn	ser

Leu	Ile 1265	Thr	Gln	Phe	Thr	Ser 1270	Phe	Val	Ala	Val	Glu 1275	ГÀЗ	Arg	Asp
Glu	Asn 1280		Ser	Pro	Phe	Pro 1285	Asp	Ile	Pro	Lys	Val 1290	Ser	Glu	Leu
Ile	Ala 1295	Lys	Glu	Asp	Val	Asp 1300	Phe	Leu	Pro	Tyr	Met 1305	Ser	Trp	Gln
Gly	Glu 1310		Gln	Glu	Ala	Val 1315		Asn	Gln	Ser	Leu 1320	Leu	Ala	Ser
Ser	Glu 1325		Pro	Glu	Leu	Arg 1330	Leu	Ser	Lys	Arg	Lys 1335		Arg	ГÀв
Ile	Pro 1340		Ser	Lys	Arg	Lys 1345		Glu	Leu	Ser	Gln 1350		Glu	Val
Ser	Glu 1355	_	Phe	Glu	Glu	Asp 1360		Leu	Gly	Val	Leu 1365		Ala	Phe
Thr	Ser 1370		Leu	Glu	Arg	Gly 1375		Val	Glu	Lys	Leu 1380		Asp	Leu
Ser	Trp 1385		Glu	Ser	Cys	Lys 1390		Thr	Ala	Thr	Glu 1395		Leu	Phe
Lys	Lys 1400		Ser	Pro	Trp	Glu 1405		Ser	Thr	Ser	Ser 1410		Phe	Pro
Ile	Leu 1415		Pro	Ala	Val	Gly 1420		Tyr	Leu	Thr	Pro 1425		Thr	Arg
Ala	His 1430		Pro	Ala	Ser	Leu 1435		Phe	Ala	Ser	Tyr 1440		Gln	Val
Ala	Ser 1445		Gly	Ser	Ala	Ala 1450		Pro	Arg	Gln	Phe 1455		Ala	Ser
Gln	Phe 1460		Gln	Gly	Pro	Val 1465		Gly	Thr	Cys	Ala 1470		Trp	Ile
Pro	Gln	Ser	: Ala	. Ser	. Cys	Pro	Thr	Gly	Pro	Pro	Gln	Asr	n Pro	Pro

•	200	4/001												
	1475					1480					1485			
Ser	Ala 1490	Pro	Tyr	Cys	_	Ile 1495	Val	Phe	Ser	Gly	Ser 1500	Ser	Leu	Ser
Ser	Ala 1505	Gln	Ser	Ala	Pro	Leu 1510	Gln	His	Pro	Gly	Gly 1515	Phe	Thr	Thr
Arg	Pro 1520		Ala	Gly	Thr	Phe 1525		Glu	Leu	Asp	Ser 1530	Pro	Gln	Leu
His	Phe 1535	Ser	Leu	Pro	Thr	Asp 1540	Pro	Asp	Pro	Ile	Arg 1545	Gly	Phe	Gly
Ser	Tyr 1550		Pro	Ser	Ala	Tyr 1555	Ser	Pro	Phe	His	Phe 1560	Gln	Pro	Ser
Ala	Ala 1565	Ser	Leu	Thr	Ala	Asn 1570	Leu	Arg	Leu	Pro	Met 1575	Ala	Ser	Ala
Leu	Pro 1580		Ala	Leu	Сув	Ser 1585		Ser	Arg	Thr	Thr 1590	Pro	Val	Asp
Leu	Cys 1595	Leu	Leu	Glu	Glu	Ser 1600	Val	Gly	Ser	Leu	Glu 1605	Gly	Ser	Arg
Сув	Pro 1610	Val	Phe	Ala	Phe	Gln 1615	Ser	Ser	Asp	Thr	Glu 1620	Ser	Asp	Glu
Leu	Ser 1625	Glu	Val	Leu	Gln	Asp 1630	Ser	Cys	Phe	Leu	Gln 1635	Ile	ГЛа	Сув
Asp	Thr 1640	ГÀЗ	Asp	Asp	Ser	Ile 1645	Pro	Сув	Phe	Leu	Glu 1650	Leu	Lys	Glu
Glu	Asp 1655	Glu	Ile	Val	Cys	Thr 1660	Gln	His	Trp	Gln	Asp 1665	Ala	Val	Pro
Trp	Thr 1670	Glu	Leu	Leu	Ser	Leu 1675	Gln	Thr	Glu	Asp	Gly 1680	Phe	Trp	Lys

1695

Leu Thr Pro Glu Leu Gly Leu Ile Leu Asn Leu Asn Thr Asn Gly

1690

1685

Leu	His 1700	Ser	Phe	Leu	Lys	Gln 1705	Ьys	Gly	Ile	Gln	Ser 1710	Leu	Gly	Val	
Lys	Gly 1715	Arg	Glu	Cys	Leu	Leu 1720	Asp	Leu	Ile	Ala	Thr 1725	Met	Leu	Val	
Leu	Gln 1730	Phe	Ile	Arg	Thr	Arg 1735	Leu	Glu	Lys	Glu	Gly 1740	Ile	Val	Phe	
Lys	Ser 1745	Leu	Met	Lys	Met	Asp 1750	_	Pro	Ser	Ile	Ser 1755	Arg	Asn	Ile	
Pro	Trp 1760	Ala	Phe	Glu	Ala	Ile 1765	Lys	Gln	Ala	Ser	Glu 1770	Trp	Val	Arg	
Arg	Thr 1775	Glu	Gly	Gln	Tyr	Pro 1780	Ser	Ile	Сув	Pro	Arg 1785	Leu	Glu	Leu	
Gly	Asn 1790	Asp _,	Trp	Asp	Ser	Ala 1795	Thr	Lys	Gln	Leu	Leu 1800	Gly	Leu	Gln	
Pro	Ile 1805	Ser	Thr	Val	Ser	Pro 1810		His	Arg	Val	Leu 1815	His	Tyr	Ser	
Gln	Gly 1820										•				
<210 <210 <210 <210	1> 54 2> Di	163 NA	icia	l Sed	quen	ce									
<220 <223	0> 3> Sa	acca:	romy	ces (cere	visia	e and	d Hor	mo sa	apie	ns				
<400 atga			gtctl	tctat	cga	aacaa	gca 1	tgcga	atatt	tt g	ccgac	ttaa	aaa	gctcaag	60
tgci	ccaa	ag a	aaaa	ccgaa	a gt	gegee	aag	tgtci	tgaag	ga a	caact	ggga	gtg	tcgctac	120
tct	cccaa	aa c	caaaa	aggto	tc	cgctg	act a	aggg	cacat	tc t	gacag	aagt	gga	atcaagg	180
cta	gaaaga	ac t	ggaa	cagct	at!	ttcta	ctg :	attti	ttcct	tc g	agaag	acct	tga	catgatt	240
ttg	aaaat	gg a	ttcti	ttaca	a gga	atata	aaa 🤉	gcati	tgtta	aa c	aggat	taat	ggt	gatggga	300
atc	ttgc	aa a	ttgta	atcti	t ct	gtttg	aaa 🤉	gtgaa	agtad	ct ta	acctc	agca	gca	gaagaaa	360
220	rtaces	a	taac:	stte:	- aa		ממכי	7722	24++	++ c	~++++.	actt	222	tectear	426

tgcacacata taatcttaga	taatgctgat	gttctgagtc	agtaccaact	gaattctatc	480
caaaagaacc acgttcatat	tgcaaaccca	gattttatat	ggaaatctat	cagagaaaag	540
agactcttgg atgtaaagaa	ttatgatcct	tataagcccc	tggacatcac	accacctcct	600
gatcagaagg cgagcagttc	tgaagtgaaa	acagaaggtc	tatgcccgga	cagtgccaca	660
gaggaggaag acactgtgga	actcactgag	tttggtatgc	agaatgttga	aattcctcat	720
cttcctcaag attttgaagt	tgcaaaatat	aacaccttgg	agaaagtggg	aatggaggga	780
ggccaggaag ctgtggtggt	ggagcttcag	tgttcgcggg	actccaggga	ctgtcctttc	840
ctgatatcct cacacttcct	cctggatgat	ggcatggaga	ctagaagaca	gtttgctata	900
aagaaaacct ctgaagatgc	aagtgaatac	tttgaaaatt	acattgaaga	actgaagaaa	960
caaggatttc tactaagaga	acatttcaca	cctgaagcaa	cccaattagc	atctgaacaa	1020
ttgcaagcat tgcttttgga	ggaagtcatg	aattcaagca	ctctgagcca	agaggtgagc	1080
gatttagtag agatgatttg	ggcagaggcc	ctgggccacc	tggaacacat	gcttctcaag	1140
ccagtgaaca ggattagcct	caacgatgtg	agcaaggcag	aggggattct	ccttctagta	1200
aaggcagcac tgaaaaatgg	agaaacagca	gagcaattgc	aaaagatgat	gacagagttt	1260
tacagactga tacctcacaa	aggcacaatg	cccaaagaag	tgaacctggg	actattggct	1320
aagaaagcag acctctgcca	gctaataaga	gacatggtta	atgtctgtga	aactaatttg	1380
tccaaaccca acccaccatc	cctggccaaa	taccgagctt	tgaggtgcaa	aattgagcat	1440
gttgaacaga atactgaaga	atttctcagg	gttagaaaag	aggttttgca	gaatcatcac	1500
agtaagagcc cagtggatgt	cttgcagata	tttagagttg	gcagagtgaa	tgaaaccaca	1560
gagtttttga gcaaacttgg	taatgtgagg	cccttgttgc	atggttctcc	tgtacaaaac	1620
atcgtgggaa tcttgtgtcg	agggttgctt	ttacccaaag	tagtggaaga	tcgtggtgtg	1680
caaagaacag acgtcggaaa	ccttggaagt	gggatttatt	tcagtgattc	gctcagtaca	1740
agtatcaagt actcacacco	gggagagaca	gatggcacca	gactcctgct	catttgtgac	1800
gtagccctcg gaaagtgtat	ggacttacat	gagaaggact	ttcccttaac	tgaagcacca	1860
ccaggctacg acagtgtgca	tggagtttca	caaacagcct	ctgtcaccac	agactttgag	1920
gatgatgaat ttgttgtcta	taaaaccaat	caggttaaaa	tgaaatatat	tattaaattt	1980
tccatgcctg gagatcagat	aaaggacttt	catectagtg	atcatactga	attagaggaa	2040
tacagacctg agttttcaaa	tttttcaaag	gttgaagatt	accagttacc	agatgccaaa	2100
acttccagca gcaccaaggo	: cggcctccag	gatgcctctg	ggaacttggt	tcctctggag	2160

gatgtccaca tcaaagggag aatcatagac actgtagccc aggtcattgt ttttcagaca 2220 tacacaaata aaagtcacgt gcccattgag gcaaaatata tctttccttt ggatgacaag 2280 gccgctgtgt gtggcttcga agccttcatc aatgggaagc acatagttgg agagattaaa 2340 gagaaggaag aagcccagca agagtaccta gaagccgtga cccagggcca tggcgcttac 2400 ctgatgagtc aggatgctcc ggacgttttt actgtaagtg ttggaaactt accccctaag 2460 gctaaggttc ttataaaaat tacctacatc acagaactca gcatcctggg cactgttggt 2520 gtctttttca tgcccgccac cgtagcaccc tggcaacagg acaaggcttt gaatgaaaac 2580 cttcaggata cagtagagaa gatttgtata aaagaaatag gaacaaagca aagcttctct 2640 2700 ttgactatgt ctattgagat gccgtatgtg attgaattca ttttcagtga tacacatgaa ctgaaacaaa agcgcacaga ctgcaaagct gtcattagca ccatggaagg cagctcctta 2760 2820 gacagcagtg gattttctct ccacatcggt ttgtctgctg cctatctccc aagaatgtgg gttgaaaaac atccagaaaa agaaagcgag gcttgcatgc ttgtctttca acccgatctc 2880 2940 gatgtcgacc tccctgacct agccagtgag agcgaagtga ttatttgtct tgactgctcc agttccatgg agggtgtgac attcttgcaa gccaagcaaa tcaccttgca tgcgctgtcc 3000 ttggtgggtg agaagcagaa agtaaatatt atccagttcg gcacaggtta caaggagcta 3060 ttttcgtatc ctaagcatat cacaagcaat accacggcag cagagttcat catgtctgcc 3120 3180 acacctacca tggggaacac agacttctgg aaaacactcc gatatcttag cttattgtac 3240 cctgctcgag ggtcacggaa catcctcctg gtgtctgatg ggcacctcca ggatgagagc ctgacattac agctcgtgaa gaggagccgc ccgcacacca ggttattcgc ctgcggtatc 3300 3360 ggttctacag caaatcgtca cgtcttaagg attttgtccc agtgtggtgc cggagtattt 3420 gaatatttta atgcaaaatc caagcatagt tggagaaaac agatagaaga ccaaatgacc aggetatgtt eteegagttg ceaetetgte teegteaaat ggeageaact eaateeagat 3480 3540 gcgcccgagg ccctgcaggc cccagcccag gtgccatcct tgtttcgcaa tgatcgactc cttgtctatg gattcattcc tcactgcaca caagcaactc tgtgtgcact aattcaagag 3600 3660 aaagaatttt gtacaatggt gtcgactact gagcttcaga agacaactgg aactatgatc 3720 cacaagctgg cagcccgagc tctaatcaga gattatgaag atggcattct tcacgaaaat gaaaccagtc atgagatgaa aaaacaaacc ttgaaatctc tgattattaa actcagtaaa 3780 3840 gaaaactctc tcataacaca atttacaagc tttgtggcag ttgagaaaag ggatgagaat 3900 gagtegeett tteetgatat teeaaaagtt tetgaaetta ttgeeaaaga agatgtagae

ttcctgccct	acatgagctg	gcagggggag	ccccaagaag	ccgtcaggaa	ccagtctctt	3960
ttagcatcct	ctgagtggcc	agaattacgt	ttatccaaac	gaaaacatag	gaaaattcca	4020
ttttccaaaa	gaaaaatgga	attatctcag	ccagaagttt	ctgaagattt	tgaagaggat	4080
ggcttaggtg	tactaccagc	tttcacatca	aatttggaac	gtggaggtgt	ggaaaagcta	4140
ttggatttaa	gttggacaga	gtcatgtaaa	ccaacagcaa	ctgaaccact	atttaagaaa	4200
gtcagtccat	gggaaacatc	tacttctagc	ttttttccta	ttttggctcc	ggccgttggt	4260
tcctatctta	ccccgactac	ccgcgctcac	agtcctgctt	ccttgtcttt	tgcctcatat	4320
cgtcaggtag	ctagtttcgg	ttcagctgct	cctcccagac	agtttgatgc	atctcaattc	4380
agccaaggcc	ctgtgcctgg	cacttgtgct	gactggatcc	cacagtcggc	gtcttgtccc	4440
acaggacctc	cccagaaccc	accttctgca	ccctattgtg	gcattgtttt	ttcagggagc	4500
tcattaagct	ctgcacagtc	tgctccactg	caacatcctg	gaggctttac	taccaggcct	4560
tctgctggca	ccttccctga	gctggattct	ccccagcttc	atttctctct	tcctacagac	4620
cctgatccca	tcagaggttt	tgggtcttat	catccctctg	cttactctcc	ttttcatttt	4680
caaccttccg	cagcctcttt	gactgccaac	cttaggctgc	caatggcctc	tgctttacct	4740
gaggctcttt	gcagtcagtc	ccggactacc	ccagtagatc	tctgtcttct	agaagaatca	4800
gtaggcagtc	tcgaaggaag	tcgatgtcct	gtctttgctt	ttcaaagttc	tgacacagaa	4860
agtgatgagc	tatcagaagt	acttcaagac	agctgctttt	tacaaataaa	gtgtgataca	4920
aaagatgaca	gtatcccgtg	ctttctggaa	ttaaaagaag	aggatgaaat	agtgtgcaca	4980
caacactggc	aggatgctgt	gccttggaca	gaactcctca	gtctacagac	agaggatggc	5040
ttctggaaac	ttacaccaga	actgggactt	atattaaatc	ttaatacaaa	tggtttgcac	5100
agctttctta	aacaaaaagg	cattcaatct	ctaggtgtaa	aaggaagaga	atgtctcctg	5160
gacctaattg	ccacaatgct	ggtactacag	tttattcgca	ccaggttgga	aaaagaggga	5220
atagtgttca	aatcactgat	gaaaatggat	gacccttcta	tttccaggaa	tattccctgg	5280
gcttttgagg	caataaagca	agcaagtgaa	tgggtaagaa	gaactgaagg	acagtaccca	5340
tctatctgcc	cacggcttga	actggggaac	gactgggact	ctgccaccaa	gcagttgctg	5400
ggactccagc	ccataagcac	tgtgtcccct	cttcatagag	tcctccatta	cagtcaaggc	5460
taa						5463

<210> 58

<211> 491

<212> PRT

<213> Artificial Sequence

<220>

<223> synthesized and Homo sapiens

<400> 58

Met Ser Lys Gly Glu Glu Leu Phe Thr Gly Val Val Pro Ile Leu Val 1 5 10 15

Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe Ser Val Ser Gly Glu 20 25 30

Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr Leu Lys Phe Ile Cys 35 40 45

Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr Leu Val Thr Thr Phe 50 55 60

Thr Tyr Gly Val Gln Cys Phe Ser Arg Tyr Pro Asp His Met Lys Gln 65 70 75 80

His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly Tyr Val Gln Glu Arg 85 90 95

Thr Ile Phe Phe Lys Asp Asp Gly Asn Tyr Lys Thr Arg Ala Glu Val

Lys Phe Glu Gly Asp Thr Leu Val Asn Arg Ile Glu Leu Lys Gly Ile 115 120 125

Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly His Lys Leu Glu Tyr Asn 130 135 140

Tyr Asn Ser His Asn Val Tyr Ile Met Ala Asp Lys Gln Lys Asn Gly
145 150 155 160

Ile Lys Val Asn Phe Lys Ile Arg His Asn Ile Glu Asp Gly Ser Val 165 170 175

Gln Leu Ala Asp His Tyr Gln Gln Asn Thr Pro Ile Gly Asp Gly Pro 180 185 190

Val Leu Pro Asp Asn His Tyr Leu Ser Thr Gln Ser Ala Leu Ser 195 200 205

Lys Asp Pro Asn Glu Lys Arg Asp His Met Val Leu Leu Glu Phe Val 210 215 220

- Thr Ala Ala Gly Ile Thr His Gly Met Asp Glu Leu Tyr Lys Pro Ala 225 230 235 240
- Asn Leu Arg Leu Pro Met Ala Ser Ala Leu Pro Glu Ala Leu Cys Ser 245 250 255
- Gln Ser Arg Thr Thr Pro Val Asp Leu Cys Leu Leu Glu Glu Ser Val 260 265 270
- Gly Ser Leu Glu Gly Ser Arg Cys Pro Val Phe Ala Phe Gln Ser Ser 275 280 285
- Asp Thr Glu Ser Asp Glu Leu Ser Glu Val Leu Gln Asp Ser Cys Phe 290 295 300
- Leu Gln Ile Lys Cys Asp Thr Lys Asp Asp Ser Ile Pro Cys Phe Leu 305 310 315 320
- Glu Leu Lys Glu Glu Asp Glu Ile Val Cys Thr Gln His Trp Gln Asp 325 330 335
- Ala Val Pro Trp Thr Glu Leu Leu Ser Leu Gln Thr Glu Asp Gly Phe 340 345 350
- Trp Lys Leu Thr Pro Glu Leu Gly Leu Ile Leu Asn Leu Asn Thr Asn 355 360 365
- Gly Leu His Ser Phe Leu Lys Gln Lys Gly Ile Gln Ser Leu Gly Val 370 375 380
- Lys Gly Arg Glu Cys Leu Leu Asp Leu Ile Ala Thr Met Leu Val Leu 385 390 395 400
- Gln Phe Ile Arg Thr Arg Leu Glu Lys Glu Gly Ile Val Phe Lys Ser 405 410 415
- Leu Met Lys Met Asp Asp Pro Ser Ile Ser Arg Asn Ile Pro Trp Ala 420 425 430
- Phe Glu Ala Ile Lys Gln Ala Ser Glu Trp Val Arg Arg Thr Glu Gly 435 440 445

Gln Tyr Pro Ser Ile Cys Pro Arg Leu Glu Leu Gly Asn Asp Trp Asp 450 455 460

Ser Ala Thr Lys Gln Leu Leu Gly Leu Gln Pro Ile Ser Thr Val Ser 465 470 475 480

Pro Leu His Arg Val Leu His Tyr Ser Gln Gly
485 490

<210> 59

<211> 1476

<212> DNA

<213> Artificial Sequence

<220>

<223> synthesized and Homo sapiens

<400> 59 atgagcaagg gcgaggaact gttcactggc gtggtcccaa ttctcgtgga actggatggc 60 gatgtgaatg ggcacaaatt ttctgtcagc ggagagggtg aaggtgatgc cacatacgga 1.20 180 aagctcaccc tgaaattcat ctgcaccact ggaaagctcc ctgtgccatg gccaacactg gtcactacct tcacctatgg cgtgcagtgc ttttccagat acccagacca tatgaagcag 240 300 catgactttt tcaagagcgc catgcccgag ggctatgtgc aggagagaac catcttttc aaagatgacg ggaactacaa gacccgcgct gaagtcaagt tcgaaggtga caccctggtg 360 420 aatagaatcg agctgaaggg cattgacttt aaggaggatg gaaacattct cggccacaag ctggaataca actataactc ccacaatgtg tacatcatgg ccgacaagca aaagaatggc 480 atcaaggtca acttcaagat cagacacaac attgaggatg gatccgtgca gctggccgac 540 600 cattatcaac agaacactcc aatcggcgac ggccctgtgc tcctcccaga caaccattac ctgtccaccc agtctgccct gtctaaagat cccaacgaaa agagagacca catggtcctg 660 720 aaccttaggc tgccaatggc ctctgcttta cctgaggctc tttgcagtca gtcccggact 780 accccagtag atctctgtct tctagaagaa tcagtaggca gtctcgaagg aagtcgatgt 840 cctgtctttg cttttcaaag ttctgacaca gaaagtgatg agctatcaga agtacttcaa 900

960

1020

1080

gacagetget ttttacaaat aaagtgtgat acaaaagatg acagtateee gtgetttetg

gaattaaaag aagaggatga aatagtgtgc acacaacact ggcaggatgc tgtgccttgg

acagaactcc tcagtctaca gacagaggat ggcttctgga aacttacacc agaactggga

cttatattaa	atcttaatac	aaatggtttg	cacagettte	ttaaacaaaa	aggcattcaa	1140
tctctaggtg	taaaaggaag	agaatgtctc	ctggacctaa	ttgccacaat	gctggtacta	1200
cagtttattc	gcaccaggtt	ggaaaaagag	ggaatagtgt	tcaaatcact	gatgaaaatg	1260
gatgaccctt	ctatttccag	gaatattccc	tgggcttttg	aggcaataaa	gcaagcaagt	1320
gaatgggtaa	gaagaactga	aggacagtac	ccatctatct	gcccacggct	tgaactgggg	1380
aacgactggg	actctgccac	caagcagttg	ctgggactcc	agcccataag	cactgtgtcc	1440
cctcttcata	gagtcctcca	ttacagtcaa	ggctaa			1476

<210> 60

<211> 1961

<212> PRT

<213> Artificial Sequence

<220>

<223> synthesized and Homo sapiens

<400> 60

Met Ser Lys Gly Glu Glu Leu Phe Thr Gly Val Val Pro Ile Leu Val 1 5 10 15

Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe Ser Val Ser Gly Glu 20 25 30

Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr Leu Lys Phe Ile Cys 35 40 45

Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr Leu Val Thr Thr Phe 50 55 60

Thr Tyr Gly Val Gln Cys Phe Ser Arg Tyr Pro Asp His Met Lys Gln 65 70 75 80

His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly Tyr Val Gln Glu Arg 85 90 95

Thr Ile Phe Phe Lys Asp Asp Gly Asn Tyr Lys Thr Arg Ala Glu Val 100 105 110

Lys Phe Glu Gly Asp Thr Leu Val Asn Arg Ile Glu Leu Lys Gly Ile 115 120 125

Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly His Lys Leu Glu Tyr Asn

	150														
Tyr 145	Asn	Ser	His	Asn	Val 150	Tyr	Ile	Met	Ala	Asp 155	Lys	Gln	Lys	Asn	Gly 160
Ile	Lys	Val	Asn	Phe 165	Lys	Ile	Arg	His	Asn 170	Ile	Glu	Asp	Gly	Ser 175	Val
Gln	Leu	Ala	Asp 180	His	Tyr	Gln	Gln	Asn 185	Thr	Pro	Ile	Gly	Asp 190	Gly	Pro
Val	Leu	Leu 195	Pro	Asp	Asn	His	Tyr 200	Leu	Ser	Thr	Gln	Ser 205	Ala	Leu	Ser
Lys	Asp 210	Pro	Asn	Glu	Lys	Arg 215	Asp	His	Met	Val	Leu 220	Leu	Glu	Phe	Val
Thr 225	Ala	Ala	Gly	Ile	Thr 230	His	Gly	Met	Asp	Glu 235	Leu	Tyr	Lys	Met	Val 240
Met	Gly	Ile	Phe	Ala 245	Asn	Сув	Ile	Phe	Cys 250	Leu	Lys	Val	ГÀЗ	Tyr 255	Leu
Pro	Gln	Gln	Gln 260	Lys	ГÀв	Lys	Leu	Gln 265	Thr	Asp	Ile	Lys	Glu 270	Asn	Gly
Gly	Lys	Phe 275	Ser	Phe	Ser	Leu	Asn 280	Pro	Gln	Cys	Thr	His 285	Ile	Ile	Leu
Asp	Asn 290	Ala	Asp	Val	Leu	Ser 295		Tyr	Gln	Leu	Asn 300		Ile	Gln	Lys
Asn 305	His	Val	His	Ile	Ala 310	Asn	Pro	Asp	Phe	Ile 315	Trp	Lys	Ser	Ile	Arg 320
Glu	Lys	Arg	Leu	Leu 325	Asp	Val	Lys	Asn	Tyr 330	Asp	Pro	Tyr	ГÀЗ	Pro 335	Leu
Asp	Ile	Thr	Pro 340	Pro	Pro	Asp	Gln	Lys 345	Ala	Ser	Ser	Ser	Glu 350	Val	Lys

365

Thr Glu Gly Leu Cys Pro Asp Ser Ala Thr Glu Glu Glu Asp Thr Val

360

355

Glu Leu Thr Glu Phe Gly Met Gln Asn Val Glu Ile Pro His Leu Pro 370 375 380

- Gln Asp Phe Glu Val Ala Lys Tyr Asn Thr Leu Glu Lys Val Gly Met 385 390 395 400
- Glu Gly Gly Gln Glu Ala Val Val Glu Leu Gln Cys Ser Arg Asp 405 410 415
- Ser Arg Asp Cys Pro Phe Leu Ile Ser Ser His Phe Leu Leu Asp Asp 420 425 430
- Gly Met Glu Thr Arg Arg Gln Phe Ala Ile Lys Lys Thr Ser Glu Asp 435 440 445
- Ala Ser Glu Tyr Phe Glu Asn Tyr Ile Glu Glu Leu Lys Lys Gln Gly
 450
 460
- Phe Leu Leu Arg Glu His Phe Thr Pro Glu Ala Thr Gln Leu Ala Ser 465 470 475 480
- Glu Gln Leu Gln Ala Leu Leu Leu Glu Glu Val Met Asn Ser Ser Thr 485 490 495
- Leu Ser Gln Glu Val Ser Asp Leu Val Glu Met Ile Trp Ala Glu Ala 500 505 510
- Leu Gly His Leu Glu His Met Leu Leu Lys Pro Val Asn Arg Ile Ser 515 520 525
- Leu Asn Asp Val Ser Lys Ala Glu Gly Ile Leu Leu Val Lys Ala 530 535 540
- Ala Leu Lys Asn Gly Glu Thr Ala Glu Gln Leu Gln Lys Met Met Thr 545 550 555 560
- Glu Phe Tyr Arg Leu Ile Pro His Lys Gly Thr Met Pro Lys Glu Val 565 570 575
- Asn Leu Gly Leu Leu Ala Lys Lys Ala Asp Leu Cys Gln Leu Ile Arg 580 585 590
- Asp Met Val Asn Val Cys Glu Thr Asn Leu Ser Lys Pro Asn Pro Pro 595 600 605

Ser Leu Ala Lys Tyr Arg Ala Leu Arg Cys Lys Ile Glu His Val Glu 610 620

Gln Asn Thr Glu Glu Phe Leu Arg Val Arg Lys Glu Val Leu Gln Asn 625 630 635 640

His His Ser Lys Ser Pro Val Asp Val Leu Gln Ile Phe Arg Val Gly 645 650 655

Arg Val Asn Glu Thr Thr Glu Phe Leu Ser Lys Leu Gly Asn Val Arg 660 665 670

Pro Leu Leu His Gly Ser Pro Val Gln Asn Ile Val Gly Ile Leu Cys 675 680 685

Arg Gly Leu Leu Pro Lys Val Val Glu Asp Arg Gly Val Gln Arg 690 695 700

Thr Asp Val Gly Asn Leu Gly Ser Gly Ile Tyr Phe Ser Asp Ser Leu 705 710 715 720

Ser Thr Ser Ile Lys Tyr Ser His Pro Gly Glu Thr Asp Gly Thr Arg
725 730 735

Leu Leu Leu Ile Cys Asp Val Ala Leu Gly Lys Cys Met Asp Leu His 740 745 750

Glu Lys Asp Phe Pro Leu Thr Glu Ala Pro Pro Gly Tyr Asp Ser Val 755 760 765

His Gly Val Ser Gln Thr Ala Ser Val Thr Thr Asp Phe Glu Asp Asp 770 775 780

Glu Phe Val Val Tyr Lys Thr Asn Gln Val Lys Met Lys Tyr Ile Ile 785 790 795 800

Lys Phe Ser Met Pro Gly Asp Gln Ile Lys Asp Phe His Pro Ser Asp 805 810 815

His Thr Glu Leu Glu Glu Tyr Arg Pro Glu Phe Ser Asn Phe Ser Lys 820 825 830

Val Glu Asp Tyr Gln Leu Pro Asp Ala Lys Thr Ser Ser Ser Thr Lys

. 835 840 845

Ala Gly Leu Gln Asp Ala Ser Gly Asn Leu Val Pro Leu Glu Asp Val 850 855 860

His Ile Lys Gly Arg Ile Ile Asp Thr Val Ala Gln Val Ile Val Phe 865 870 875 880

Gln Thr Tyr Thr Asn Lys Ser His Val Pro Ile Glu Ala Lys Tyr Ile 885 890 895

Phe Pro Leu Asp Asp Lys Ala Ala Val Cys Gly Phe Glu Ala Phe Ile 900 905 910

Asn Gly Lys His Ile Val Gly Glu Ile Lys Glu Lys Glu Glu Ala Gln 915 920 925

Gln Glu Tyr Leu Glu Ala Val Thr Gln Gly His Gly Ala Tyr Leu Met 930 935 940

Ser Gln Asp Ala Pro Asp Val Phe Thr Val Ser Val Gly Asn Leu Pro 945 950 955 960

Pro Lys Ala Lys Val Leu Ile Lys Ile Thr Tyr Ile Thr Glu Leu Ser 965 970 975

Ile Leu Gly Thr Val Gly Val Phe Phe Met Pro Ala Thr Val Ala Pro 980 985 990

Trp Gln Gln Asp Lys Ala Leu Asn Glu Asn Leu Gln Asp Thr Val Glu 995 1000 1005

Lys Ile Cys Ile Lys Glu Ile Gly Thr Lys Gln Ser Phe Ser Leu 1010 1015 1020

Thr Met Ser Ile Glu Met Pro Tyr Val Ile Glu Phe Ile Phe Ser 1025 1030 · 1035

Asp Thr His Glu Leu Lys Gln Lys Arg Thr Asp Cys Lys Ala Val 1040 1045 1050

Ile Ser Thr Met Glu Gly Ser Ser Leu Asp Ser Ser Gly Phe Ser 1055 1060 1065

Leu	His 1070	Ile	Gly	Leu	Ser	Ala 1075		Tyr	Leu	Pro	Arg 1080	Met	Trp	Val	
Glu	Lys 1085	His	Pro	Glu	Lys	Glu 1090	Ser	Glu	Ala	Cys	Met 1095	Leu	Val	Phe	
Gln	Pro 1100		Leu	Asp	Val	Asp 1105		Pro	Asp	Leu	Ala 1110	Ser	Glu	Ser	
Glu	Val 1115		Ile	Сув	Leu	Asp 1120		Ser	Ser	Ser	Met 1125		Gly	Val	
Thr	Phe 1130		Gln	Ala	Lys	Gln 1135		Thr	Leu	His	Ala 1140	Leu	Ser	Leu	
Val	Gly 1145		ГÀв	Gln	Lys	Val 1150		Ile	Ile	Gln	Phe 1155		Thr	Gly	
Tyr	Lys 1160		Leu	Phe	Ser	Tyr 1165		ГÀв	His	Ile	Thr 1170	Ser	Asn	Thr	
Thr	Ala 1175		Glu	Phe	Ile	Met 1180		Ala	Thr	Pro	Thr 1185		Gly	Asn	
Thr	Asp 1190		Trp	Lys	Thr	Leu 1195		Tyr	Leu	Ser	Leu 1200	Leu	Tyr	Pro	

- Ala Arg Gly Ser Arg Asn Ile Leu Leu Val Ser Asp Gly His Leu 1205 1210 1215
- Gln Asp Glu Ser Leu Thr Leu Gln Leu Val Lys Arg Ser Arg Pro 1220 1225 1230
- His Thr Arg Leu Phe Ala Cys Gly Ile Gly Ser Thr Ala Asn Arg 1235 1240 1245
- His Val Leu Arg Ile Leu Ser Gln Cys Gly Ala Gly Val Phe Glu 1250 1260
- Tyr Phe Asn Ala Lys Ser Lys His Ser Trp Arg Lys Gln Ile Glu 1265 1270 1275
- Asp Gln Met Thr Arg Leu Cys Ser Pro Ser Cys His Ser Val Ser 1280 1285 1290

Val Lys Trp Gln Gln Leu Asn Pro Asp Ala Pro Glu Ala Leu Gln 1295 Ala Pro Ala Gln Val Pro Ser Leu Phe Arg Asn Asp Arg Leu Leu 1315 1320 1310 Val Tyr Gly Phe Ile Pro His Cys Thr Gln Ala Thr Leu Cys Ala 1330 1335 1325 Leu Ile Gln Glu Lys Glu Phe Cys Thr Met Val Ser Thr Thr Glu 1350 1345 1340 Leu Gln Lys Thr Thr Gly Thr Met Ile His Lys Leu Ala Ala Arg 1360 1355 Ala Leu Ile Arg Asp Tyr Glu Asp Gly Ile Leu His Glu Asn Glu 1375 1380 1370 Thr Ser His Glu Met Lys Lys Gln Thr Leu Lys Ser Leu Ile Ile 1390 1385 Lys Leu Ser Lys Glu Asn Ser Leu Ile Thr Gln Phe Thr Ser Phe 1405 1400 Val Ala Val Glu Lys Arg Asp Glu Asn Glu Ser Pro Phe Pro Asp 1420 1415 Ile Pro Lys Val Ser Glu Leu Ile Ala Lys Glu Asp Val Asp Phe 1435 1430 Leu Pro Tyr Met Ser Trp Gln Gly Glu Pro Gln Glu Ala Val Arg 1450 1445 Asn Gln Ser Leu Leu Ala Ser Ser Glu Trp Pro Glu Leu Arg Leu 1460 1465 1470 Ser Lys Arg Lys His Arg Lys Ile Pro Phe Ser Lys Arg Lys Met 1480 Glu Leu Ser Gln Pro Glu Val Ser Glu Asp Phe Glu Glu Asp Gly 1495 1490 Leu Gly Val Leu Pro Ala Phe Thr Ser Asn Leu Glu Arg Gly Val

1505	1510	1515

Glu Lys Leu Leu Asp Leu Ser Trp Thr Glu Ser Cys Lys Pro Thr 1520 1525 1530

Ala Thr Glu Pro Leu Phe Lys Lys Val Ser Pro Trp Glu Thr Ser 1535 1540 1545

Thr Ser Ser Phe Phe Pro Ile Leu Ala Pro Ala Val Gly Ser Tyr 1550 1560

Leu Thr Pro Thr Thr Arg Ala His Ser Pro Ala Ser Leu Ser Phe 1565 1570 1575

Ala Ser Tyr Arg Gln Val Ala Ser Phe Gly Ser Ala Ala Pro Pro 1580 1585 1590

Arg Gln Phe Asp Ala Ser Gln Phe Ser Gln Gly Pro Val Pro Gly 1595 1600 1605

Thr Cys Ala Asp Trp Ile Pro Gln Ser Ala Ser Cys Pro Thr Gly 1610 1615 1620

Pro Pro Gln Asn Pro Pro Ser Ala Pro Tyr Cys Gly Ile Val Phe 1625 1630 1635

Ser Gly Ser Ser Leu Ser Ser Ala Gln Ser Ala Pro Leu Gln His 1640 1645 1650

Pro Gly Gly Phe Thr Thr Arg Pro Ser Ala Gly Thr Phe Pro Glu 1655 1660 1665

Leu Asp Ser Pro Gln Leu His Phe Ser Leu Pro Thr Asp Pro Asp 1670 1675 1680

Pro Ile Arg Gly Phe Gly Ser Tyr His Pro Ser Ala Tyr Ser Pro 1685 1690 1695

Phe His Phe Gln Pro Ser Ala Ala Ser Leu Thr Ala Asn Leu Arg 1700 1705 1710

Leu Pro Met Ala Ser Ala Leu Pro Glu Ala Leu Cys Ser Gln Ser 1715 1720 1725

Arg	Thr 1730	Thr	Pro	Val	Asp	Leu 1735	Cys	Leu	Leu	Glu	Glu 1740	Ser	Val	Gly
Ser	Leu 1745	Glu	Gly	Ser	Arg	Cys 1750	Prọ	Val	Phe	Ala	Phe 1755	Gln	Ser	Ser
Asp	Thr 1760	Glu	Ser	Asp	Glu	Leu 1765	Ser	Glu	Val	Leu	Gln 1770	Asp	Ser	Сув
Phe	Leu 1775	Gln	Ile	Lys	Cys	Asp 1780	Thr	Lys	Asp	qaA	Ser 1785		Pro	Cys
Phe	Leu 1790	Glu	Leu	Гув	Glu	Glu 1795	Asp	Glu	Ile	Val	Cys 1800	Thr	Gln	His
Trp	Gln 1805	Asp	Ala	Val	Pro	Trp 1810	Thr	Glu	Leu	Leu	Ser 1815	Leu	Gln	Thr
Glu	Asp 1820	Gly	Phe	Trp	Lys	Leu 1825	Thr	Pro	Glu	Leu	Gly 1830	Leu	Ile	Leu
Asn	Leu 1835	Asn	Thr	Asn	Gly	Leu 1840	His	Ser	Phe	Leu	Lys 1845	Gln	Lys	Gly
Ile	Gln 1850	Ser	Leu	Gly	Val	Lys 1855	Gly	Arg	Glu	Сув	Leu 1860	Leu	Asp	Leu
Ile	Ala 1865	Thr	Met	Leu	Val	Leu 1870	Gln	Phe	Ile	Arg	Thr 1875	Arg	Leu	Glu
ГÀЗ	Glu 1880	Gly	Ile	Val	Phe	Lys 1885	Ser	Leu	Met	_	Met 1890	Asp	Asp	Pro
Ser	Ile 1895	Ser	Arg	Asn	Ile	Pro 1900	Trp	Ala	Phe	Glu	Ala 1905	Ile	ГЛЗ	Gln
Ala	Ser 1910	Glu	Trp	Val	Arg	Arg 1915	Thr	Glu	Gly	Gln	Tyr 1920	Pro	Ser	Ile
Сув	Pro 1925	Arg	Leu	Glu	Leu	Gly 1930	Asn	Ąsp	Trp	Asp	Ser 1935	Ala	Thr	Lys
Gln	Leu 1940	Leu	Gly	Leu	Gln	Pro 1945	Ile	ser	Thr	Val	Ser 1950	Pro	Leu	His

Arg Val Leu His Tyr Ser Gln Gly 1955 1960

<210> 61 <211> 5889

<212> DNA

<213> Artificial Sequence

<220>

<223> synthesized and Homo sapiens

<400> 61 atgagcaagg gcgaggaact gttcactggc gtggtcccaa ttctcgtgga actggatggc 60 gatgtgaatg ggcacaaatt ttctgtcagc ggagagggtg aaggtgatgc cacatacgga 120 aagctcaccc tgaaattcat ctgcaccact ggaaagctcc ctgtgccatg gccaacactg 180 gtcactacct tcacctatgg cgtgcagtgc ttttccagat acccagacca tatgaagcag 240 catgactttt tcaagagcgc catgcccgag ggctatgtgc aggagagaac catcttttc 300 aaagatgacg ggaactacaa gacccgcgct gaagtcaagt tcgaaggtga caccctggtg 360 aatagaatcg agctgaaggg cattgacttt aaggaggatg gaaacattct cggccacaag 420 ctggaataca actataactc ccacaatgtg tacatcatgg ccgacaagca aaagaatggc 480 atcaaggtca acttcaagat cagacacaac attgaggatg gatccgtgca gctggccgac 540 600 cattatcaac agaacactcc aatcggcgac ggccctgtgc tcctcccaga caaccattac ctgtccaccc agtctgccct gtctaaagat cccaacgaaa agagagacca catggtcctg 660 720 atgggaatct ttgcaaattg tatcttctgt ttgaaagtga agtacttacc tcagcagcag 780 aagaaaaagc tacaaactga cattaaggaa aatggcggaa agttttcctt ttcgttaaat 840 cctcagtgca cacatataat cttagataat gctgatgttc tgagtcagta ccaactgaat 900 tctatccaaa agaaccacgt tcatattgca aacccagatt ttatatggaa atctatcaga 960 gaaaagagac tottggatgt aaagaattat gatcottata agcccctgga catcacca 1020 cctcctgatc agaaggcgag cagttctgaa gtgaaaacag aaggtctatg cccggacagt 1080 gccacagagg aggaagacac tgtggaactc actgagtttg gtatgcagaa tgttgaaatt 1140 cctcatcttc ctcaagattt tgaagttgca aaatataaca ccttggagaa agtgggaatg 1200 gagggaggcc aggaagctgt ggtggtggag cttcagtgtt cgcgggactc cagggactgt 1260 cettteetga tateeteaca etteeteetg gatgatggea tggagactag aagacagttt 1320

gctataaaga	aaacctctga	agatgcaagt	gaatactttg	aaaattacat	tgaagaactg .	1380
aagaaacaag	gatttctact	aagagaacat	ttcacacctg	aagcaaccca	attagcatct	1440
gaacaattgc	aagcattgct	tttggaggaa	gtcatgaatt	caagcactct	gagccaagag	1500
gtgagcgatt	tagtagagat	gatttgggca	gaggccctgg	gccacctgga	acacatgctt	1560
ctcaagccag	tgaacaggat	tagcctcaac	gatgtgagca	aggcagaggg	gattctcctt	1620
ctagtaaagg	cagcactgaa	aaatggagaa	acagcagagc	aattgcaaaa	gatgatgaca	1680
gagttttaca	gactgatacc	tcacaaaggc	acaatgccca	aagaagtgaa	cctgggacta	1740
ttggctaaga	aagcagacct	ctgccagcta	ataagagaca	tggttaatgt	ctgtgaaact	1800
aatttgtcca	aacccaaccc	accatccctg	gccaaatacc	gagctttgag	gtgcaaaatt	1860
gagcatgttg	aacagaatac	tgaagaattt	ctcagggtta	gaaaagaggt	tttgcagaat	1920
catcacagta	agagcccagt	ggatgtcttg	cagatattta	gagttggcag	agtgaatgaa	1980
accacagagt	ttttgagcaa	acttggtaat	gtgaggccct	tgttgcatgg	ttctcctgta	2040
caaaacatcg	tgggaatctt	gtgtcgaggg	ttgcttttac	ccaaagtagt	ggaagatcgt	2100
ggtgtgcaaa	gaacagacgt	cggaaacctt	ggaagtggga	tttatttcag	tgattcgctc	2160
agtacaagta	tcaagtactc	acacccggga	gagacagatg	gcaccagact	cctgctcatt	2220
tgtgacgtag	ccctcggaaa	gtgtatggac	ttacatgaga	aggactttcc	cttaactgaa	2280
gcaccaccag	gctacgacag	tgtgcatgga	gtttcacaaa	cagcctctgt	caccacagac	2340
tttgaggatg	atgaatttgt	tgtctataaa	accaatcagg	ttaaaatgaa	atatattatt	2400
aaattttcca	tgcctggaga	tcagataaag	gactttcatc	ctagtgatca	tactgaatta	2460
gaggaataca	gacctgagtt	ttcaaatttt	tcaaaggttg	aagattacca	gttaccagat	2520
gccaaaactt	ccagcagcac	caaggccggc	ctccaggatg	cctctgggaa	cttggttcct	2580
ctggaggatg	tccacatcaa	agggagaatc	atagacactg	tagcccaggt	cattgttttt	2640
cagacataca	caaataaaag	tcacgtgccc	attgaggcaa	aatatatctt	tcctttggat	2700
gacaaggccg	ctgtgtgtgg	cttcgaagcc	ttcatcaatg	ggaagcacat	agttggagag	2760
attaaagaga	aggaagaagc	ccagcaagag	tacctagaag	ccgtgaccca	gggccatggc	2820
gcttacctga	tgagtcagga	tgctccggac	gtttttactg	taagtgttgg	aaacttaccc	2880
cctaaggcta	aggttcttat	aaaaattacc	tacatcacag	aactcagcat	cctgggcact	2940
gttggtgtct	ttttcatgcc	cgccaccgta	gcaccctggc	aacaggacaa	ggctttgaat	3000
gaaaaccttc	aggatacagt	agagaagatt	tgtataaaag	aaataggaac	aaagcaaagc	3060

ttctctttga ctatgtctat tgagatgccg tatgtgattg aattcatttt cagtgataca 3120 catgaactga aacaaaagcg cacagactgc aaagctgtca ttagcaccat ggaaggcagc 3180 teettagaca geagtggatt tteteteeac ateggtttgt etgetgeeta teteecaaga 3240 atgtgggttg aaaaacatcc agaaaaagaa agcgaggctt gcatgcttgt ctttcaaccc 3300 gatctcgatg tcgacctccc tgacctagcc agtgagagcg aagtgattat ttgtcttgac 3360 tgctccagtt ccatggaggg tgtgacattc ttgcaagcca agcaaatcac cttgcatgcg 3420 ctgtccttgg tgggtgagaa gcagaaagta aatattatcc agttcggcac aggttacaag 3480 gagctatttt cgtatcctaa gcatatcaca agcaatacca cggcagcaga gttcatcatg 3540 tctgccacac ctaccatggg gaacacagac ttctggaaaa cactccgata tcttagctta 3600 ttgtaccctg ctcgagggtc acggaacatc ctcctggtgt ctgatgggca cctccaggat 3660 gagageetga cattacaget egtgaagagg ageegeeege acaccaggtt attegeetge 3720 ggtatcggtt ctacagcaaa tcgtcacgtc ttaaggattt tgtcccagtg tggtgccgga 3780 gtatttgaat attttaatgc aaaatccaag catagttgga gaaaacagat agaagaccaa 3840 3900 atgaccaggc tatgttctcc gagttgccac tctgtctccg tcaaatggca gcaactcaat ccagatgcgc ccgaggccct gcaggcccca gcccaggtgc catccttgtt tcgcaatgat 3960 4020 cgactccttg tctatggatt cattcctcac tgcacacaag caactctgtg tgcactaatt caagagaaag aattttgtac aatggtgtcg actactgagc ttcagaagac aactggaact 4080 atgatccaca agctggcagc ccgagctcta atcagagatt atgaagatgg cattcttcac 4140 gaaaatgaaa ccagtcatga gatgaaaaaa caaaccttga aatctctgat tattaaactc 4200 agtaaagaaa actctctcat aacacaattt acaagctttg tggcagttga gaaaagggat 4260 4320 gagaatgagt cgccttttcc tgatattcca aaagtttctg aacttattgc caaagaagat gtagacttcc tgccctacat gagctggcag ggggagcccc aagaagccgt caggaaccag 4380 4440 tctcttttag catcctctga gtggccagaa ttacgtttat ccaaacgaaa acataggaaa attccatttt ccaaaagaaa aatggaatta tctcagccag aagtttctga agattttgaa 4500 gaggatggct taggtgtact accagctttc acatcaaatt tggaacgtgg aggtgtggaa 4560 4620 aagctattgg atttaagttg gacagagtca tgtaaaccaa cagcaactga accactattt aagaaagtca gtccatggga aacatctact tctagctttt ttcctatttt ggctccggcc 4680 gttggttcct atcttacccc gactacccgc gctcacagtc ctgcttcctt gtcttttgcc 4740 4800 tcatatcgtc aggtagctag tttcggttca gctgctcctc ccagacagtt tgatgcatct

PCT/US2004/007434 WO 2004/081533

caattcagcc	aaggccctgt	gcctggcact	tgtgctgact	ggatcccaca	gtcggcgtct	4860
tgtcccacag	gacctcccca	gaacccacct	tctgcaccct	attgtggcat	tgtttttca	4920
gggagctcat	taagctctgc	acagtctgct	ccactgcaac	atcctggagg	ctttactacc	4980
aggccttctg	ctggcacctt	ccctgagctg	gattctcccc	agcttcattt	ctctcttcct	5040
acagaccctg	atcccatcag	aggttttggg	tcttatcatc	cctctgctta	ctctcctttt	5100
cattttcaac	cttccgcagc	ctctttgact	gccaacctta	ggctgccaat	ggcctctgct	5160
ttacctgagg	ctctttgcag	tcagtcccgg	actaccccag	tagatctctg	tcttctagaa	5220
gaatcagtag	gcagtctcga	aggaagtcga	tgtcctgtct	ttgcttttca	aagttctgac	5280
acagaaagtg	atgagctatc	agaagtactt	caagacagct	gctttttaca	aataaagtgt	5340
gatacaaaag	atgacagtat	cccgtgcttt	ctggaattaa	aagaagagga	tgaaatagtg	5400
tgcacacaac	actggcagga	tgctgtgcct	tggacagaac	tcctcagtct	acagacagag	5460
gatggcttct	ggaaacttac	accagaactg	ggacttatat	taaatcttaa	tacaaatggt	5520
ttgcacagct	ttcttaaaca	aaaaggcatt	caatctctag	gtgtaaaagg	aagagaatgt	5580
ctcctggacc	taattgccac	aatgctggta	ctacagttta	ttcgcaccag	gttggaaaaa	5640
gagggaatag	tgttcaaatc	actgatgaaa	atggatgacc	cttctatttc	caggaatatt	5700
ccctgggctt	ttgaggcaat	aaagcaagca	agtgaatggg	taagaagaac	tgaaggacag	5760
tacccatcta	tctgcccacg	gcttgaactg	gggaacgact	gggactctgc	caccaagcag	5820
ttgctgggac	tccagcccat	aagcactgtg	teceetette	atagagteet	ccattacagt	5880
caaggctaa						5889

<210> 62

<211> 385

<212> PRT <213> Artificial Sequence

<220>

<223> Levivirus and Homo sapiens

<400> 62

Met Ala Ser Asn Phe Thr Gln Phe Val Leu Val Asp Asn Gly Gly Thr

Gly Asp Val Thr Val Ala Pro Ser Asn Phe Ala Asn Gly Val Ala Glu

Trp Ile Ser Ser Asn Ser Arg Ser Gln Ala Tyr Lys Val Thr Cys Ser

35 40 45

Val Arg Gln Ser Ser Ala Gln Asn Arg Lys Tyr Thr Ile Lys Val Glu 50 55 60

Val Pro Lys Val Ala Thr Gln Thr Val Gly Gly Val Glu Leu Pro Val 65 70 75 80

Ala Ala Trp Arg Ser Tyr Leu Asn Met Glu Leu Thr Ile Pro Ile Phe 85 90 95

Ala Thr Asn Ser Asp Cys Glu Leu Ile Val Lys Ala Met Gln Gly Leu 100 105 110

Leu Lys Asp Gly Asn Pro Ile Pro Ser Ala Ile Ala Ala Asn Ser Gly
115 120 125

Ile Tyr Gly Ile Pro Ala Asn Leu Arg Leu Pro Met Ala Ser Ala Leu 130 135 140

Pro Glu Ala Leu Cys Ser Gln Ser Arg Thr Thr Pro Val Asp Leu Cys 145 150 155 160

Leu Leu Glu Glu Ser Val Gly Ser Leu Glu Gly Ser Arg Cys Pro Val

Phe Ala Phe Gln Ser Ser Asp Thr Glu Ser Asp Glu Leu Ser Glu Val 180 185 190

Leu Gln Asp Ser Cys Phe Leu Gln Ile Lys Cys Asp Thr Lys Asp Asp 195 200 205

Ser Ile Pro Cys Phe Leu Glu Leu Lys Glu Glu Asp Glu Ile Val Cys 210 215 220

Thr Gln His Trp Gln Asp Ala Val Pro Trp Thr Glu Leu Leu Ser Leu 225 230 235 240

Gln Thr Glu Asp Gly Phe Trp Lys Leu Thr Pro Glu Leu Gly Leu Ile 245 250 255

Leu Asn Leu Asn Thr Asn Gly Leu His Ser Phe Leu Lys Gln Lys Gly 260 265 270

Ile Gln Ser Leu Gly Val Lys Gly Arg Glu Cys Leu Leu Asp Leu Ile 280 275 Ala Thr Met Leu Val Leu Gln Phe Ile Arg Thr Arg Leu Glu Lys Glu 300 290 Gly Ile Val Phe Lys Ser Leu Met Lys Met Asp Asp Pro Ser Ile Ser 305 Arg Asn Ile Pro Trp Ala Phe Glu Ala Ile Lys Gln Ala Ser Glu Trp 325 Val Arg Arg Thr Glu Gly Gln Tyr Pro Ser Ile Cys Pro Arg Leu Glu 340 Leu Gly Asn Asp Trp Asp Ser Ala Thr Lys Gln Leu Leu Gly Leu Gln 360 355 Pro Ile Ser Thr Val Ser Pro Leu His Arg Val Leu His Tyr Ser Gln 380 375 370 Gly 385 <210> 63 <211> 1158 DNA <212> <213> Artificial Sequence ^ <220> <223> Levivirus and Homo sapiens <400> 63 atggetteta aetttaetea gttegttete gtegacaatg geggaactgg egacgtgaet 60 gtcgccccaa gcaacttcgc taacggggtc gctgaatgga tcagctctaa ctcgcgttca 120 caggettaca aagtaacetg tagegttegt cagagetetg egeagaateg caaatacace 180 atcaaagtcg aggtgcctaa agtggcaacc cagactgttg gtggtgtaga gcttcctgta 240 gccgcatggc gttcgtactt aaatatggaa ctaaccattc caattttcgc tacgaattcc 300 gactgcgagc ttattgttaa ggcaatgcaa ggtctcctaa aagatggaaa cccgattccc 360 tragraatry ragraartr regratetar graatterty reascriting grigoraaty 420 480 gestetgett tacctgagge tetttgeagt cagtecegga ctaccecagt agatetetgt

540

cttctagaag aatcagtagg cagtctcgaa ggaagtcgat gtcctgtctt tgcttttcaa

agttctgaca	cagaaagtga	tgagctatca	gaagtacttc	aagacagctg	ctttttacaa	600
ataaagtgtg	atacaaaaga	tgacagtatc	ccgtgctttc	tggaattaaa	agaagaggat	660
gaaatagtgt	gcacacaaca	ctggcaggat	gctgtgcctt	ggacagaact	cctcagtcta	720
cagacagagg	atggcttctg	gaaacttaca	ccagaactgg	gacttatatt	aaatcttaat	780
acaaatggtt	tgcacagctt	tcttaaacaa	aaaggcattc	aatctctagg	tgtaaaagga	840
agagaatgtc	tcctggacct	aattgccaca	atgctggtac	tacagtttat	tcgcaccagg	900
ttggaaaaag	agggaatagt	gttcaaatca	ctgatgaaaa	tggatgaccc	ttctatttcc	960
aggaatattc	cctgggcttt	tgaggcaata	aagcaagcaa	gtgaatgggt	aagaagaact	1020
gaaggacagt	acccatctat	ctgcccacgg	cttgaactgg	ggaacgactg	ggactctgcc	1080
accaagcagt	tgctgggact	ccagcccata	agcactgtgt	cccctcttca	tagagtcctc	1140
cattacagtc	aaggctaa					1158

<210> 64

<211> 1854

<212> PRT

<213> Artificial Sequence

<220>

<223> Levivirus and Homo sapiens

<400> 64

Met Ala Ser Asn Phe Thr Gln Phe Val Leu Val Asp Asn Gly Gly Thr 1 5 10 15

Gly Asp Val Thr Val Ala Pro Ser Asn Phe Ala Asn Gly Val Ala Glu 20 25 30

Trp Ile Ser Ser Asn Ser Arg Ser Gln Ala Tyr Lys Val Thr Cys Ser 35 40 45

Val Arg Gln Ser Ser Ala Gln Asn Arg Lys Tyr Thr Ile Lys Val Glu 50 55 60

Val Pro Lys Val Ala Thr Gln Thr Val Gly Gly Val Glu Leu Pro Val 65 70 75 80

Ala Ala Trp Arg Ser Tyr Leu Asn Met Glu Leu Thr Ile Pro Ile Phe 85 90 95

Ala Thr Asn Ser Asp Cys Glu Leu Ile Val Lys Ala Met Gln Gly Leu

100 105 110

Leu Lys Asp Gly Asn Pro Ile Pro Ser Ala Ile Ala Ala Asn Ser Gly
115 120 125

Ile Tyr Met Val Met Gly Ile Phe Ala Asn Cys Ile Phe Cys Leu Lys 130 135 140

Val Lys Tyr Leu Pro Gln Gln Gln Lys Lys Leu Gln Thr Asp Ile 145 150 155 160

Lys Glu Asn Gly Gly Lys Phe Ser Phe Ser Leu Asn Pro Gln Cys Thr 165 170 175

His Ile Ile Leu Asp Asn Ala Asp Val Leu Ser Gln Tyr Gln Leu Asn 180 185 190

Ser Ile Gln Lys Asn His Val His Ile Ala Asn Pro Asp Phe Ile Trp 195 200 205

Lys Ser Ile Arg Glu Lys Arg Leu Leu Asp Val Lys Asn Tyr Asp Pro 210 215 220

Tyr Lys Pro Leu Asp Ile Thr Pro Pro Pro Asp Gln Lys Ala Ser Ser 225 230 235 240

Ser Glu Val Lys Thr Glu Gly Leu Cys Pro Asp Ser Ala Thr Glu Glu 245 250 255

Glu Asp Thr Val Glu Leu Thr Glu Phe Gly Met Gln Asn Val Glu Ile 260 265 270

Pro His Leu Pro Gln Asp Phe Glu Val Ala Lys Tyr Asn Thr Leu Glu 275 280 285

Lys Val Gly Met Glu Gly Gly Gln Glu Ala Val Val Glu Leu Gln 290 295 300

Cys Ser Arg Asp Ser Arg Asp Cys Pro Phe Leu Ile Ser Ser His Phe 305 310 315 320

Leu Leu Asp Asp Gly Met Glu Thr Arg Arg Gln Phe Ala Ile Lys Lys 325 330 335

Thr Ser Glu Asp Ala Ser Glu Tyr Phe Glu Asn Tyr Ile Glu Glu Leu 340 345 350

- Lys Lys Gln Gly Phe Leu Leu Arg Glu His Phe Thr Pro Glu Ala Thr 355 360 365
- Gln Leu Ala Ser Glu Gln Leu Gln Ala Leu Leu Glu Glu Val Met 370 375 380
- Asn Ser Ser Thr Leu Ser Gln Glu Val Ser Asp Leu Val Glu Met Ile 385 390 395 400
- Trp Ala Glu Ala Leu Gly His Leu Glu His Met Leu Leu Lys Pro Val 405 410 415
- Asn Arg Ile Ser Leu Asn Asp Val Ser Lys Ala Glu Gly Ile Leu Leu 420 425 430
- Leu Val Lys Ala Ala Leu Lys Asn Gly Glu Thr Ala Glu Gln Leu Gln 435 440 445
- Lys Met Met Thr Glu Phe Tyr Arg Leu Ile Pro His Lys Gly Thr Met 450 455 460
- Pro Lys Glu Val Asn Leu Gly Leu Leu Ala Lys Lys Ala Asp Leu Cys 465 470 475 480
- Gln Leu Ile Arg Asp Met Val Asn Val Cys Glu Thr Asn Leu Ser Lys 485 490 495
- Pro Asn Pro Pro Ser Leu Ala Lys Tyr Arg Ala Leu Arg Cys Lys Ile 500 505 510
- Glu His Val Glu Gln Asn Thr Glu Glu Phe Leu Arg Val Arg Lys Glu 515 520 525
- Val Leu Gln Asn His His Ser Lys Ser Pro Val Asp Val Leu Gln Ile 530 535 540
- Phe Arg Val Gly Arg Val Asn Glu Thr Thr Glu Phe Leu Ser Lys Leu 545 550 555 560
- Gly Asn Val Arg Pro Leu Leu His Gly Ser Pro Val Gln Asn Ile Val 565 570 575

Gly Ile Leu Cys Arg Gly Leu Leu Leu Pro Lys Val Val Glu Asp Arg
580 585 590

Gly Val Gln Arg Thr Asp Val Gly Asn Leu Gly Ser Gly Ile Tyr Phe 595 600 605

Ser Asp Ser Leu Ser Thr Ser Ile Lys Tyr Ser His Pro Gly Glu Thr 610 615 620

Asp Gly Thr Arg Leu Leu Leu Ile Cys Asp Val Ala Leu Gly Lys Cys 625 630 635 640

Met Asp Leu His Glu Lys Asp Phe Pro Leu Thr Glu Ala Pro Pro Gly 645 650 655

Tyr Asp Ser Val His Gly Val Ser Gln Thr Ala Ser Val Thr Thr Asp
660 665 670

Phe Glu Asp Asp Glu Phe Val Val Tyr Lys Thr Asn Gln Val Lys Met 675 680 685

Lys Tyr Ile Ile Lys Phe Ser Met Pro Gly Asp Gln Ile Lys Asp Phe 690 695 700

His Pro Ser Asp His Thr Glu Leu Glu Glu Tyr Arg Pro Glu Phe Ser 705 710 715 720

Asn Phe Ser Lys Val Glu Asp Tyr Gln Leu Pro Asp Ala Lys Thr Ser 725 730 735

Ser Ser Thr Lys Ala Gly Leu Gln Asp Ala Ser Gly Asn Leu Val Pro
740 745 750

Leu Glu Asp Val His Ile Lys Gly Arg Ile Ile Asp Thr Val Ala Gln 755 760 765

Val Ile Val Phe Gln Thr Tyr Thr Asn Lys Ser His Val Pro Ile Glu 770 775 780

Ala Lys Tyr Ile Phe Pro Leu Asp Asp Lys Ala Ala Val Cys Gly Phe 785 790 795 800

Glu Ala Phe Ile Asn Gly Lys His Ile Val Gly Glu Ile Lys Glu Lys

805 810 815

Glu Glu Ala Gln Gln Glu Tyr Leu Glu Ala Val Thr Gln Gly His Gly 820 825 830

Ala Tyr Leu Met Ser Gln Asp Ala Pro Asp Val Phe Thr Val Ser Val 835 840 845

Gly Asn Leu Pro Pro Lys Ala Lys Val Leu Ile Lys Ile Thr Tyr Ile 850 855 860

Thr Glu Leu Ser Ile Leu Gly Thr Val Gly Val Phe Phe Met Pro Ala 865 870 875 880

Thr Val Ala Pro Trp Gln Gln Asp Lys Ala Leu Asn Glu Asn Leu Gln 885 890 895

Asp Thr Val Glu Lys Ile Cys Ile Lys Glu Ile Gly Thr Lys Gln Ser 900 905 910

Phe Ser Leu Thr Met Ser Ile Glu Met Pro Tyr Val Ile Glu Phe Ile 915 920 925

Phe Ser Asp Thr His Glu Leu Lys Gln Lys Arg Thr Asp Cys Lys Ala 930 935 940

Val Ile Ser Thr Met Glu Gly Ser Ser Leu Asp Ser Ser Gly Phe Ser 945 950 955 960

Leu His Ile Gly Leu Ser Ala Ala Tyr Leu Pro Arg Met Trp Val Glu 965 970 975

Lys His Pro Glu Lys Glu Ser Glu Ala Cys Met Leu Val Phe Gln Pro 980 985 990

Asp Leu Asp Val Asp Leu Pro Asp Leu Ala Ser Glu Ser Glu Val Ile 995 1000 1005

Ile Cys Leu Asp Cys Ser Ser Ser Met Glu Gly Val Thr Phe Leu 1010 1015 1020

Gln Ala Lys Gln Ile Thr Leu His Ala Leu Ser Leu Val Gly Glu 1025 1030 1035

Lys	Gln 1040	_	Val	Asn	Ile	Ile 1045	Gln	Phe	Gly	Thr	Gly 1050	Tyr	Lys	Glu
Leu	Phe 1055		Tyr	Pro	Lys	His 1060	Ile	Thr	Ser	Asn	Thr 1065	Thr	Ala	Ala
Glu	Phe 1070	Ile	Met	Ser	Ala	Thr 1075	Pro	Thr	Met	Gly	Asn 1080	Thr	Asp	Phe
Trp	Lys 1085	Thr	Leu	Arg	Tyr	Leu 1090	Ser	Leu	Leu	Tyr	Pro 1095	Ala	Arg	Gly
Ser	Arg 1100		Ile	Leu	Leu	Val 1105	Ser	Asp	Gly	His	Leu 1110	Gln	Asp	Glu
Ser	Leu 1115		Leu	Gln	Leu	Val 1120		Arg	Ser	Arg	Pro 1125	His	Thr	Arg
Leu	Phe 1130		Сув	Gly	Iļe	Gly 1135	Ser	Thr	Ala	Asn	Arg 1140	His	Val	Leu
_. Arg	Ile 1145		Ser	Gln	Сув	Gly 1150	Ala	Gly	Val	Phe	Ġlu 1155	Tyr	Phe	Asn
Ala	Lys 1160		Lys	His	Ser	Trp 1165		Lys	Gln	Ile	Glu 1170	Asp	Gln	Met
Thr	Arg 1175		Cys	Ser	Pro	Ser 1180		His	Ser	Val	Ser 1185	Val	ГÀв	Trp
Gln	Gln 1190		Asn	Pro	Asp	Ala 1195		Glu	Ala	Leu	Gln 1200		Pro	Ala
Gln	Val 1205		Ser	Leu	Phe	Arg 1210		Asp	Arg	Leu	Leu 1215		Tyr	Ġly
Phe	Ile 1220		His	Cys	Thr	Gln 1225		Thr	Leu	Cys	Ala 1230		Ile	Gln
Glu	Lys 1235		Phe	Сув	Thr	Met 1240		Ser	Thr	Thr	Glu 1245		Gln	Lys
Thr	Thr 1250	_	Thr	Met	Ile	His 1255	-	Leu	Ala	Ala	Arg 1260		Leu	Ile

Arg	Asp 1265	Tyr	Glu	Asp	Gly	Ile 1270	Leu	His	Glu	Asn	Glu 1275	Thr	Ser	His
Glu	Met 1280		rys.	Gln	Thr	Leu 1285	Lys	Ser	Leu	Ile	Ile 1290	ГÀЗ	Leu	Ser
ГÀв	Glu 1295	Asn	Ser	Leu	Ile	Thr 1300	Gln	Phe	Thr	Ser	Phe 1305	Val	Ala	Val
Glu	Lys 1310	_	Asp	Glu	Asn	Glu 1315		Pro	Phe	Pro	Asp 1320	Ile	Pro	Lys
Val	Ser 1325		Leu	Ile	Ala	Lys 1330		Asp	Val	Asp	Phe 1335		Pro	Tyr
Met	Ser 1340	_	Gln	Gly	Glu	Pro 1345		Glu	Ala	Val	Arg 1350		Gln	Ser
Leu	Leu 1355		Ser	Ser	Glu	Trp 1360		Glu	Leu	Arg	Leu 1365		Lys	Arg
Lys	His 1370	_	Lys	Ile	Pro	Phe 1375		Lys	Arg	Lys	Met 1380		Leu	Ser
Gln	Pro 1385		Val	Ser	Glu	Asp 1390		Glu	Glu	Asp	Gly 1395		Gly	Val
Leu	Pro 1400		Phe	Thr	Ser	Asn 1405		Glu	Arg	Gly	Gly 1410		Glu	Lys
Leu	Leu 1415	_	Leu	Ser	Trp	Thr 1420		Ser	Сув	Lys	Pro 1425		Ala	Thr
Glu	Pro 1430		Phe	Lys	Lys	Val 1435		Pro	Trp	Glu	Thr 1440		Thr	Ser
Ser	Phe 1445		Pro	Ile	Leu	Ala 1450		Ala	. Val	Gly	Ser 1455		Leu	Thr
Pro	Thr 1460		Arg	, Ala	His	Ser 1465		Ala	Ser	Leu	Ser 1470		Ala	Ser
Tyr	Arg	Gln	ı Val	Ala	Ser	Phe	Gly	Ser	Ala	Ala	Pro	Pro	Arg	Gln

1475	1480	1485

			,								_	 3	 1.	
Phe	Asp 1490	Ala	Ser	Gln	Phe	Ser 1495	Gln	Gly	Pro	Val	Pro 1500	GTA	Tnr	Cys
Ala	Asp 1505	Trp	Ile	Pro	Gln	Ser 1510	Ala	Ser	Сув	Pro	Thr 1515		Pro	Pro
Gln	Asn 1520	Pro	Pro	Ser	Ala	Pro 1525		Сув	Gly	Ile	Val 1530	Phe	Ser	Gly
Ser	Ser 1535		Ser	Ser	Ala	Gln 1540		Ala	Pro	Leu	Gln 1545		Pro	Gly
Gly	Phe 1550	Thr	Thr	Arg	Pro	Ser 1555	Ala	Gly	Thr	Phe	Pro 1560	Glu	Leu	Asp
Ser	Pro 1565		Leu	His	Phe	Ser 1570		Pro	Thr	Asp	Pro 1575		Pro	Ile
Arg	Gly 1580		Gly	Ser	Tyr	His 1585		Ser	Ala	Tyr	Ser 1590		Phe	His
Phe	Gln 1595		Ser	Ala	Ala	Ser 1600		Thr	Ala	Asn	Leu 1605		Leu	Pro
Met	Ala 1610		Ala	Leu	Pro	Glu 1615		Leu	Cys	Ser	Gln 1620		Arg	Thr
Thr	Pro 1625					Leu 1630		Glu	Glu	Ser	Val 1635		Ser	Leu
Glu	Gly 1640		Arg	Сув	Pro	Val 1645		Ala	Phe	Gln	Ser 1650		Asp	Thr
Glu	Ser 1655	-	Glu	Leu	Ser	Glu 1660		_. Leu	Gln	Asp	Ser 1665		Phe	Leu
Gln	Ile 1670	_	Cys	Asp	Thr	Lys 1675		Asp	Ser	Ile	Pro 1680		Phe	Leu

1695

Glu Leu Lys Glu Glu Asp Glu Ile Val Cys Thr Gln His Trp Gln

1690

1685

Asp	Ala 1700		Pro	Trp	Thr	Glu 1705	Leu	Leu	Ser	Leu	Gln 1710	Thr	Glu	Asp	
Gly	Phe 1715	Trp	Lys	Leu	Thr	Pro 1720	Glu	Leu	Gly	Leu	Ile 1725	Leu	Asn	Leu	
Asn	Thr 1730	Asn	Gly	Leu	His	Ser 1735	Phe	Leu	Гуs	Gln	Lys 1740	Gly	Ile	Gln	
Ser	Leu 1745	Gly	Val	Lys	Glý	Arg 1750	Glu	Сув	Leu	Leu	Asp 1755	Leu	Ile	Ala	
Thr	Met 1760		Val	Leu	Gln	Phe 1765	Ile	Arg	Thr	Arg	Leu 1770	Glu	Lys	Glu	
Gly	Ile 1775	Val	Phe	Lys	Ser	Leu 1780	Met	Lys	Met	Asp	Asp 1785	Pro	Ser	Ile	
Ser	Arg 1790	Asn	Ile	Pro	Trp	Ala 1795	Phe	Glu	Ala	Ile	Lys 1800	Gln	Ala	Ser	
Glu	Trp 1805	Val	Arg	Arg	Thr	Glu 1810	Gly	Gln	Tyr	Pro	Ser 1815	Ile	Cys	Pro	
Arg	Leu 1820		Leu	Gly	Asn	Asp 1825	_	Asp	Ser	Ala	Thr 1830	Гув	Gln	Leu	
Leu	Gly 1835	Leu	Gln	Pro	Ile	Ser 1840	Thr	Val	Ser	Pro	Leu 1845	His	Arg	Val	
Leu	His 1850	Tyr	Ser	Gln	Gly										
		565 NA	icial	l Sec	quenc	ce									
<220 <223	0> 3> Le	eviv	irus	and	Homo	sap:	iens								
	0> 65 gcttct		ettta	actca	a gtt	cgtt	ete g	gtcga	acaat	g go	eggaad	ctgg	cgad	egtgact	60
gtc	gcccca	aa go	caact	tcg	c taa	cggg	gtc g	gctga	aatg	ga to	cagcto	ctaa	ctc	gcgttca	120
cago	gcttac	ca aa	agtaa	accto	g tag	gegtte	egt o	caga	getet	g cg	gcagaa	atcg	caaa	atacacc	180

240 atcaaagtcg aggtgcctaa agtggcaacc cagactgttg gtggtgtaga gcttcctgta 300 gccgcatggc gttcgtactt aaatatggaa ctaaccattc caattttcgc tacgaattcc 360 gactgcgagc ttattgttaa ggcaatgcaa ggtctcctaa aagatggaaa cccgattccc 420 tcagcaatcg cagcaaactc cggcatctac atggtgatgg gaatctttgc aaattgtatc 480 ttctgtttga aagtgaagta cttacctcag cagcagaaga aaaagctaca aactgacatt aaggaaaatg geggaaagtt tteetttteg ttaaateete agtgeacaca tataatetta 540. gataatgctg atgttctgag tcagtaccaa ctgaattcta tccaaaagaa ccacgttcat 600 attgcaaacc cagattttat atggaaatct atcagagaaa agagactctt ggatgtaaag 660 aattatgatc cttataagcc cctggacatc acaccacctc ctgatcagaa ggcgagcagt 720 tctgaagtga aaacagaagg tctatgcccg gacagtgcca cagaggagga agacactgtg 780 840 gaactcactg agtttggtat gcagaatgtt gaaattcctc atcttcctca agattttgaa gttgcaaaat ataacacctt ggagaaagtg ggaatggagg gaggccagga agctgtggtg 900 960 gtggagette agtgttegeg ggaeteeagg gaetgteett teetgatate eteacaette 1020 ctcctggatg atggcatgga gactagaaga cagtttgcta taaagaaaac ctctgaagat 1080 gcaagtgaat actttgaaaa ttacattgaa gaactgaaga aacaaggatt tctactaaga 1140 gaacatttca cacctgaagc aacccaatta gcatctgaac aattgcaagc attgcttttg 1200 gaggaagtca tgaattcaag cactctgagc caagaggtga gcgatttagt agagatgatt 1260 tgggcagagg ccctgggcca cctggaacac atgcttctca agccagtgaa caggattagc ctcaacgatg tgagcaaggc agaggggatt ctccttctag taaaggcagc actgaaaaat 1320 ggagaaacag cagagcaatt gcaaaagatg atgacagagt tttacagact gatacctcac 1380 1440 aaaggcacaa tgcccaaaga agtgaacctg ggactattgg ctaagaaagc agacctctgc 1500 cagctaataa gagacatggt taatgtctgt gaaactaatt tgtccaaacc caacccacca 1560 tccctggcca aataccgagc tttgaggtgc aaaattgagc atgttgaaca gaatactgaa 1620 gaatttctca gggttagaaa agaggttttg cagaatcatc acagtaagag cccagtggat 1680 gtcttgcaga tatttagagt tggcagagtg aatgaaacca cagagttttt gagcaaactt 1740 ggtaatgtga ggcccttgtt gcatggttct cctgtacaaa acatcgtggg aatcttgtgt 1800 cgagggttgc ttttacccaa agtagtggaa gatcgtggtg tgcaaagaac agacgtcgga aaccttggaa gtgggattta tttcagtgat tcgctcagta caagtatcaa gtactcacac 1860 ccgggagaga cagatggcac cagactcctg ctcatttgtg acgtagccct cggaaagtgt 1920

atggacttac	atgagaagga	ctttccctta	actgaagcac	caccaggeta	cgacagtgtg	1980
catggagttt	cacaaacagc	ctctgtcacc	acagactttg	aggatgatga	atttgttgtc	2040
tataaaacca	atcaggttaa	aatgaaatat	attattaaat	tttccatgcc	tggagatcag	2100
ataaaggact	ttcatcctag	tgatcatact	gaattagagg	aatacagacc	tgagttttca	2160
aatttttcaa	aggttgaaga	ttaccagtta	ccagatgcca	aaacttccag	cagcaccaag	2220
gccggcctcc	aggatgcctc	tgggaacttg	gttcctctgg	aggatgtcca	catcaaaggg	2280
agaatcatag	acactgtagc	ccaggtcatt	gtttttcaga	catacacaaa	taaaagtcac	2340
gtgcccattg	aggcaaaata	tatctttcct	ttggatgaca	aggccgctgt	gtgtggcttc	2400
gaagccttca	tcaatgggaa	gcacatagtt	ggagagatta	aagagaagga	agaagcccag	2460
caagagtacc	tagaagccgt	gacccagggc	catggcgctt	acctgatgag	tcaggatgct	2520
ccggacgttt	ttactgtaag	tgttggaaac	ttacccccta	aggctaaggt	tcttataaaa	2580
attacctaca	tcacagaact	cagcatcctg	ggcactgttg	gtgtctttt	catgcccgcc	2640
accgtagcac	cctggcaaca	ggacaaggct	ttgaatgaaa	accttcagga	tacagtagag	2700
aagatttgta	taaaagaaat	aggaacaaag	caaagcttct	ctttgactat	gtctattgag	2760
atgccgtatg	tgattgaatt	cattttcagt	gatacacatg	aactgaaaca	aaagcgcaca	2820
gactgcaaag	ctgtcattag	caccatggaa	ggcagctcct	tagacagcag	tggattttct	2880
ctccacatcg	gtttgtctgc	tgcctatctc	ccaagaatgt	gggttgaaaa	acatccagaa	2940
aaagaaagcg	aggcttgcat	gcttgtcttt	caacccgatc	tcgatgtcga	cctccctgac	3000
ctagccagtg	agagcgaagt	gattatttgt	cttgactgct	ccagttccat	ggagggtgtg	3060
acattcttgc	aagccaagca	aatcaccttg	catgcgctgt	ccttggtggg	tgagaagcag	3120
aaagtaaata	ttatccagtt	cggcacaggt	tacaaggagc	tattttcgta	tcctaagcat	3180
atcacaagca	ataccacggc	agcagagtto	atcatgtctg	ccacacctac	catggggaac	3240
acagacttct	ggaaaacact	ccgatatctt	agcttattgt	accctgctcg	agggtcacgg	3300
aacatcctcc	: tggtgtctga	tgggcaccto	caggatgaga	gcctgacatt	acagctcgtg	3360
aagaggagco	gcccgcacac	caggttatto	geetgeggta	teggttetae	agcaaatcgt	3420
cacgtcttaa	ggattttgtc	ccagtgtggt	gccggagtat	ttgaatattt	taatgcaaaa	3480
tccaagcata	gttggagaaa	acagatagaa	gaccaaatga	ccaggctatg	ttctccgagt	3540
tgccactctg	g teteegteaa	atggcagcaa	ctcaatccag	atgegeeega	ggccctgcag	3600
gececagee	aggtgccatc	: cttgtttcgc	aatgatcgac	: tccttgtcta	tggattcatt	3660

cctcactgca	cacaagcaac	tctgtgtgca	ctaattcaag	agaaagaatt	ttgtacaatg	3720
gtgtcgacta	ctgagcttca	gaagacaact	ggaactatga	tccacaagct	ggcagcccga	3780
gctctaatca	gagattatga	agatggcatt	cttcacgaaa	atgaaaccag	tcatgagatg	3840
aaaaaacaaa	ccttgaaatc	tctgattatt	aaactcagta	aagaaaactc	tctcataaca	3900
caatttacaa	gctttgtggc	agttgagaaa	agggatgaga	atgagtcgcc	ttttcctgat	3960
attccaaaag	tttctgaact	tattgccaaa	gaagatgtag	acttcctgcc	ctacatgagc	4020
tggcaggggg	agccccaaga	agccgtcagg	aaccagtctc	ttttagcatc	ctctgagtgg	4080
ccagaattac	gtttatccaa	acgaaaacat	aggaaaattc	cattttccaa	aagaaaaatg	4140
gaattatctc	agccagaagt	ttctgaagat	tttgaagagg	atggcttagg	tgtactacca	4200
gctttcacat	caaatttgga	acgtggaggt	gtggaaaagc	tattggattt	aagttggaca	4260
gagtcatgta	aaccaacagc	aactgaacca	ctatttaaga	aagtcagtcc	atgggaaaca	4320
tctacttcta	gctttttcc	tattttggct	ccggccgttg	gttcctatct	taccccgact	4380
acccgcgctc	acagtcctgc	ttccttgtct	tttgcctcat	atcgtcaggt	agctagtttc	4440
ggttcagctg	ctcctcccag	acagtttgat	gcatctcaat	tcagccaagg	ccctgtgcct	4500
ggcacttgtg	ctgactggat	cccacagtcg	gcgtcttgtc	ccacaggacc	tccccagaac	4560
ccaccttctg	caccctattg	tggcattgtt	ttttcaggga	gctcattaag	ctctgcacag	4620
tctgctccac	tgcaacatcc	tggaggcttt	actaccaggc	cttctgctgg	caccttccct	4680
gagctggatt	ctccccagct	tcatttctct	cttcctacag	accctgatcc	catcagaggt	4740
tttgggtctt	atcatccctc	tgcttactct	ccttttcatt	ttcaaccttc	cgcagcctct	4800
ttgactgcca	accttaggct	gccaatggcc	tctgctttac	ctgaggctct	ttgcagtcag	4860
tcccggacta	ccccagtaga	tetetgtett	ctagaagaat	cagtaggcag	tctcgaagga	4920
agtcgatgtc	ctgtctttgc	ttttcaaagt	tctgacacag	aaagtgatga	gctatcagaa	4980
gtacttcaag	acagctgctt	tttacaaata	aagtgtgata	caaaagatga	cagtatcccg	5040
tgctttctgg	aattaaaaga	agaggatgaa	atagtgtgca	cacaacactg	gcaggatgct	5100
gtgccttgga	cagaactcct	cagtctacag	acagaggatg	gcttctggaa	acttacacca	5160
gaactgggac	ttatattaaa	tcttaataca	aatggtttgc	acagctttct	taaacaaaaa	5220
ggcattcaat	ctctaggtgt	aaaaggaaga	gaatgtctcc	tggacctaat	tgccacaatg	5280
ctggtactac	agtttattcg	caccaggttg	gaaaaagagg	gaatagtgtt	caaatcactg	5340
atgaaaatgg	atgacccttc	tatttccagg	aatattccct	gggcttttga	ggcaataaag	5400

caagcaagtg aatgggtaag aagaactgaa ggacagtacc catctatctg cccacggctt 5460 gaactgggga acgactggga ctctgccacc aagcagttgc tgggactcca gcccataagc 5520 actgtgtccc ctcttcatag agtcctccat tacagtcaag gctaa 5565

<210> 66

<211> 550

<212> PRT

<213> Photinus pyralis

<400> 66

Met Glu Asp Ala Lys Asn Ile Lys Lys Gly Pro Ala Pro Phe Tyr Pro 1 5 10 15

Leu Glu Asp Gly Thr Ala Gly Glu Gln Leu His Lys Ala Met Lys Arg 20 25 30

Tyr Ala Leu Val Pro Gly Thr Ile Ala Phe Thr Asp Ala His Ile Glu 35 40 45

Val Asp Ile Thr Tyr Ala Glu Tyr Phe Glu Met Ser Val Arg Leu Ala 50 55 60

Glu Ala Met Lys Arg Tyr Gly Leu Asn Thr Asn His Arg Ile Val Val 65 70 75 80

Cys Ser Glu Asn Ser Leu Gln Phe Phe Met Pro Val Leu Gly Ala Leu 85 90 95

Phe Ile Gly Val Ala Val Ala Pro Ala Asn Asp Ile Tyr Asn Glu Arg
100 105 110

Glu Leu Leu Asn Ser Met Gly Ile Ser Gln Pro Thr Val Val Phe Val 115 120 125

Ser Lys Lys Gly Leu Gln Lys Ile Leu Asn Val Gln Lys Lys Leu Pro 130 135 140

Ile Ile Gln Lys Ile Ile Ile Met Asp Ser Lys Thr Asp Tyr Gln Gly
145 150 155 160

Phe Gln Ser Met Tyr Thr Phe Val Thr Ser His Leu Pro Pro Gly Phe 165 170 175

219/429

Asn Glu Tyr Asp Phe Val Pro Glu Ser Phe Asp Arg Asp Lys Thr Ile 180 185 190

- Ala Leu Ile Met Asn Ser Ser Gly Ser Thr Gly Leu Pro Lys Gly Val 195 200 205
- Ala Leu Pro His Arg Thr Ala Cys Val Arg Phe Ser His Ala Arg Asp 210 215 220
- Pro Ile Phe Gly Asn Gln Ile Ile Pro Asp Thr Ala Ile Leu Ser Val 225 230 235 240
- Val Pro Phe His His Gly Phe Gly Met Phe Thr Thr Leu Gly Tyr Leu 245 250 255
- Ile Cys Gly Phe Arg Val Val Leu Met Tyr Arg Phe Glu Glu Leu 260 265 270
- Phe Leu Arg Ser Leu Gln Asp Tyr Lys Ile Gln Ser Ala Leu Leu Val 275 280 285
- Pro Thr Leu Phe Ser Phe Phe Ala Lys Ser Thr Leu Ile Asp Lys Tyr 290 295 300
- Asp Leu Ser Asn Leu His Glu Ile Ala Ser Gly Gly Ala Pro Leu Ser 305 310 315 320
- Lys Glu Val Gly Glu Ala Val Ala Lys Arg Phe His Leu Pro Gly Ile 325 330 335
- Arg Gln Gly Tyr Gly Leu Thr Glu Thr Thr Ser Ala Ile Leu Ile Thr 340 345 350
- Pro Glu Gly Asp Asp Lys Pro Gly Ala Val Gly Lys Val Val Pro Phe 355 360 365
- Phe Glu Ala Lys Val Val Asp Leu Asp Thr Gly Lys Thr Leu Gly Val 370 375 380
- Asn Gln Arg Gly Glu Leu Cys Val Arg Gly Pro Met Ile Met Ser Gly 385 390 395 400
- Tyr Val Asn Asn Pro Glu Ala Thr Asn Ala Leu Ile Asp Lys Asp Gly
 405 410 415

Trp Leu His Ser Gly Asp Ile Ala Tyr Trp Asp Glu Asp Glu His Phe 425 420 Phe Ile Val Asp Arg Leu Lys Ser Leu Ile Lys Tyr Lys Gly Tyr Gln 440 Val Ala Pro Ala Glu Leu Glu Ser Ile Leu Leu Gln His Pro Asn Ile 455 450 Phe Asp Ala Gly Val Ala Gly Leu Pro Asp Asp Asp Ala Gly Glu Leu 470 480 475 465 Pro Ala Ala Val Val Leu Glu His Gly Lys Thr Met Thr Glu Lys 490 485 Glu Ile Val Asp Tyr Val Ala Ser Gln Val Thr Thr Ala Lys Lys Leu 505 Arg Gly Gly Val Val Phe Val Asp Glu Val Pro Lys Gly Leu Thr Gly 520 Lys Leu Asp Ala Arg Lys Ile Arg Glu Ile Leu Ile Lys Ala Lys Lys 535 Gly Gly Lys Ile Ala Val 545 <210> 67 <211> 1654 <212> DNA <213> Photinus pyralis <400> 67 atggaagacg ccaaaaacat aaagaaaggc ccggcgccat tctatccgct ggaagatgga 60 accgctggag agcaactgca taaggctatg aagagatacg ccctggttcc tggaacaatt 120 gcttttacag atgcacatat cgaggtggac atcacttacg ctgagtactt cgaaatgtcc 180 gttcggttgg cagaagctat gaaacgatat gggctgaata caaatcacag aatcgtcgta 240 tgcagtgaaa actctcttca attctttatg ccggtgttgg gcgcgttatt tatcggagtt 300 gcagttgcgc ccgcgaacga catttataat gaacgtgaat tgctcaacag tatgggcatt 360 togcagocta cogtogtott cotttocaaa aaggoottoc aaaaaatttt gaacotocaa 420

aaaaagctcc caatcatcca aaaaattatt atcatggatt ctaaaacgga ttaccaggga

480

tttcagtcga	tgtacacgtt	cgtcacatct	catctacctc	ccggttttaa	tgaatacgat	540
tttgtgccag	agtccttcga	tagggacaag	acaattgcac	tgatcatgaa	ctcctctgga	600
tctactggtc	tgcctaaagg	tgtcgctctg	cctcatagaa	ctgcctgcgt	gagattctcg	660
catgccagag	atcctatttt	tggcaatcaa	atcattccgg	atactgcgat	tttaagtgtt	720
gttccattcc	atcacggttt	tggaatgttt	actacactcg	gatatttgat	atgtggattt	780
cgagtcgtct	taatgtatag	atttgaagaa	gagctgtttc	tgaggagcct	tcaggattac	840
aagattcaaa	gtgcgctgct	ggtgccaacc	ctattctcct	tcttcgccaa	aagcactctg	900
attgacaaat	acgatttatc	taatttacac	gaaattgctt	ctggtggcgc	teceetetet	960
aaggaagtcg	gggaagcggt	tgccaagagg	ttccatctgc	caggtatcag	gcaaggatat	1020
gggctcactg	agactacatc	agctattctg	attacacccg	agggggatga	taaaccgggc	1080
gcggtcggta	aagttgttcc	attttttgaa	gcgaaggttg	tggatctgga	taccgggaaa	1140
acgctgggcg	ttaatcaaag	aggegaaetg	tgtgtgagag	gtcctatgat	tatgtccggt	1200
tatgtaaaca	atccggaagc	gaccaacgcc	ttgattgaca	aggatggatg	gctacattct	1260
ggagacatag	g cttactggga	cgaagacgaa	cacttcttca	tcgttgaccg	cctgaagtct	1320
ctgattaagt	: acaaaggcta	tcaggtggct	cccgctgaat	tggaatccat	cttgctccaa	1380
caccccaaca	tcttcgacgc	aggtgtegea	ggtetteeeg	acgatgacgo	: cggtgaactt	1440
cccgccgccg	g ttgttgttt	: ggagcacgga	aagacgatga	. cggaaaaaga	gatcgtggat	1500
tacgtcgcca	a gtcaagtaac	aaccgcgaaa	aagttgcgcg	gaggagttgt	gtttgtggac	1560
gaagtaccga	a aaggtcttad	cggaaaacto	gacgcaagaa	aaatcagaga	a gatcctcata	1620
aaggccaaga	a agggcggaaa	a gategeegte	g gtaa			1654

```
<210> 68
```

<220>

<223> Photinus pyralis and Homo sapiens

<400> 68

Met Glu Asp Ala Lys Asn Ile Lys Lys Gly Pro Ala Pro Phe Tyr Pro 1 5 10 15

Leu Glu Asp Gly Thr Ala Gly Glu Gln Leu His Lys Ala Met Lys Arg 20 25 30

<211> 805

<212> PRT

<213> Artificial Sequence

Tyr Ala Leu Val Pro Gly Thr Ile Ala Phe Thr Asp Ala His Ile Glu 35 40 45

- Val Asp Ile Thr Tyr Ala Glu Tyr Phe Glu Met Ser Val Arg Leu Ala 50 55 60
- Glu Ala Met Lys Arg Tyr Gly Leu Asn Thr Asn His Arg Ile Val Val 65 70 75 80
- Cys Ser Glu Asn Ser Leu Gln Phe Phe Met Pro Val Leu Gly Ala Leu 85 90 95
- Phe Ile Gly Val Ala Val Ala Pro Ala Asn Asp Ile Tyr Asn Glu Arg 100 105 110
- Glu Leu Leu Asn Ser Met Gly Ile Ser Gln Pro Thr Val Val Phe Val
 115 120 125
- Ser Lys Lys Gly Leu Gln Lys Ile Leu Asn Val Gln Lys Lys Leu Pro 130 135 140
- Ile Ile Gln Lys Ile Ile Ile Met Asp Ser Lys Thr Asp Tyr Gln Gly
 145 150 155 160
- Phe Gln Ser Met Tyr Thr Phe Val Thr Ser His Leu Pro Pro Gly Phe 165 170 175
- Asn Glu Tyr Asp Phe Val Pro Glu Ser Phe Asp Arg Asp Lys Thr Ile 180 185 190
- Ala Leu Ile Met Asn Ser Ser Gly Ser Thr Gly Leu Pro Lys Gly Val
- Ala Leu Pro His Arg Thr Ala Cys Val Arg Phe Ser His Ala Arg Asp 210 215 220
- Pro Ile Phe Gly Asn Gln Ile Ile Pro Asp Thr Ala Ile Leu Ser Val 225 230 235 240
- Val Pro Phe His His Gly Phe Gly Met Phe Thr Thr Leu Gly Tyr Leu 245 250 255
- Ile Cys Gly Phe Arg Val Val Leu Met Tyr Arg Phe Glu Glu Glu Leu 260 265 270

Phe Leu Arg Ser Leu Gln Asp Tyr Lys Ile Gln Ser Ala Leu Leu Val 275 280 285

- Pro Thr Leu Phe Ser Phe Phe Ala Lys Ser Thr Leu Ile Asp Lys Tyr 290 295 300
- Asp Leu Ser Asn Leu His Glu Ile Ala Ser Gly Gly Ala Pro Leu Ser 305 310 315 320
- Lys Glu Val Gly Glu Ala Val Ala Lys Arg Phe His Leu Pro Gly Ile 325 330 335
- Arg Gln Gly Tyr Gly Leu Thr Glu Thr Thr Ser Ala Ile Leu Ile Thr 340 345 350
- Pro Glu Gly Asp Asp Lys Pro Gly Ala Val Gly Lys Val Val Pro Phe 355 360 365
- Phe Glu Ala Lys Val Val Asp Leu Asp Thr Gly Lys Thr Leu Gly Val 370 380
- Asn Gln Arg Gly Glu Leu Cys Val Arg Gly Pro Met Ile Met Ser Gly 385 390 395
- Tyr Val Asn Asn Pro Glu Ala Thr Asn Ala Leu Ile Asp Lys Asp Gly
 405 410 415
- Trp Leu His Ser Gly Asp Ile Ala Tyr Trp Asp Glu Asp Glu His Phe 420 425 430
- Phe Ile Val Asp Arg Leu Lys Ser Leu Ile Lys Tyr Lys Gly Tyr Gln 435 440 445
- Val Ala Pro Ala Glu Leu Glu Ser Ile Leu Leu Gln His Pro Asn Ile 450 455 460
- Phe Asp Ala Gly Val Ala Gly Leu Pro Asp Asp Asp Ala Gly Glu Leu 465 470 475 480
- Pro Ala Ala Val Val Leu Glu His Gly Lys Thr Met Thr Glu Lys 485 490 495
- Glu Ile Val Asp Tyr Val Ala Ser Gln Val Thr Thr Ala Lys Lys Leu

500	505	510
300	5.05	

Arg	Gly	Gly	Val	Val	Phe	Val	Asp	Glu	۷al	Pro	Lys	Gly	Leu	Thr	Gly
		515					520					525			

- Lys Leu Asp Ala Arg Lys Ile Arg Glu Ile Leu Ile Lys Ala Lys Lys 530 535 540
- Gly Gly Lys Ile Ala Val Gly Ile Pro Ala Asn Leu Arg Leu Pro Met 545 550 555 560
- Ala Ser Ala Leu Pro Glu Ala Leu Cys Ser Gln Ser Arg Thr Thr Pro 565 570 575
- Val Asp Leu Cys Leu Leu Glu Glu Ser Val Gly Ser Leu Glu Gly Ser 580 585 590
- Arg Cys Pro Val Phe Ala Phe Gln Ser Ser Asp Thr Glu Ser Asp Glu 595 600 605
- Leu Ser Glu Val Leu Gln Asp Ser Cys Phe Leu Gln Ile Lys Cys Asp 610 615 620
- Thr Lys Asp Asp Ser Ile Pro Cys Phe Leu Glu Leu Lys Glu Glu Asp 625 630 635 640
- Glu Ile Val Cys Thr Gln His Trp Gln Asp Ala Val Pro Trp Thr Glu 645 650 655
- Leu Leu Ser Leu Gln Thr Glu Asp Gly Phe Trp Lys Leu Thr Pro Glu 660 665 670
- Leu Gly Leu Ile Leu Asn Leu Asn Thr Asn Gly Leu His Ser Phe Leu 675 680 685
- Lys Gln Lys Gly Ile Gln Ser Leu Gly Val Lys Gly Arg Glu Cys Leu 690 695 700
- Leu Asp Leu Ile Ala Thr Met Leu Val Leu Gln Phe Ile Arg Thr Arg 705 710 715 720
- Leu Glu Lys Glu Gly Ile Val Phe Lys Ser Leu Met Lys Met Asp Asp 725 730 735

Pro Ser Ile Ser Arg Asn Ile Pro Trp Ala Phe Glu Ala Ile Lys Gln 740 745 750

Ala Ser Glu Trp Val Arg Arg Thr Glu Gly Gln Tyr Pro Ser Ile Cys
755 760 765

Pro Arg Leu Glu Leu Gly Asn Asp Trp Asp Ser Ala Thr Lys Gln Leu 770 775 780

Leu Gly Leu Gln Pro Ile Ser Thr Val Ser Pro Leu His Arg Val Leu 785 790 795 800

His Tyr Ser Gln Gly 805

<210> 69

<211> 2418

<212> DNA

<213> Artificial Sequence

<220>

<223> Photinus pyralis and Homo sapiens

<400> 69

atggaagacg ccaaaaacat aaagaaaggc ccggcgccat tctatccgct ggaagatgga 60 accyctggag agcaactyca taagyctaty aagagatacy ccctgyttcc tygaacaatt 120 gcttttacag atgcacatat cgaggtggac atcacttacg ctgagtactt cgaaatgtcc 180 gttcggttgg cagaagctat gaaacgatat gggctgaata caaatcacag aatcgtcgta 240 tgcagtgaaa actctcttca attctttatg ccggtgttgg gcgcgttatt tatcggagtt 300 gcagttgcgc ccgcgaacga catttataat gaacgtgaat tgctcaacag tatgggcatt 360 togoagocta cogtggtgtt ogtttocaaa aaggggttgo aaaaaatttt gaacgtgcaa 420 aaaaagctcc caatcatcca aaaaattatt atcatggatt ctaaaacgga ttaccaggga 480 tttcagtcga tgtacacgtt cgtcacatct catctacctc ccggttttaa tgaatacgat 540 tttgtgccag agtccttcga tagggacaag acaattgcac tgatcatgaa ctcctctgga 600 tctactggtc tgcctaaagg tgtcgctctg cctcatagaa ctgcctgcgt gagattctcg 660 catgccagag atcctatttt tggcaatcaa atcattccgg atactgcgat tttaagtgtt 720 gttccattcc atcacggttt tggaatgttt actacactcg gatatttgat atgtggattt 780 cqaqtcgtct taatgtatag atttgaagaa gagctgtttc tgaggagcct tcaggattac 840 aagattcaaa gtgcgctgct ggtgccaacc ctattctcct tcttcgccaa aagcactctg 900

PCT/US2004/007434 WO 2004/081533

attgacaaat acgatttatc taatttacac gaaattgctt ctggtggcgc tcccctctct	960
aaggaagtcg gggaagcggt tgccaagagg ttccatctgc caggtatcag gcaaggatat	1020
gggctcactg agactacatc agctattctg attacacccg agggggatga taaaccgggc	1080
gcggtcggta aagttgttcc attttttgaa gcgaaggttg tggatctgga taccgggaaa	1140
acgctgggcg ttaatcaaag aggcgaactg tgtgtgagag gtcctatgat tatgtccggt	1200
tatgtaaaca atccggaagc gaccaacgcc ttgattgaca aggatggatg gctacattct	1260
ggagacatag cttactggga cgaagacgaa cacttettea tegttgaeeg eetgaagtet	1320
ctgattaagt acaaaggcta tcaggtggct cccgctgaat tggaatccat cttgctccaa	1380
caccccaaca tottogacgo aggtgtogoa ggtottocog acgatgacgo oggtgaactt	1440
cccgccgccg ttgttgtttt ggagcacgga aagacgatga cggaaaaaga gatcgtggat	1500
tacgtcgcca gtcaagtaac aaccgcgaaa aagttgcgcg gaggagttgt gtttgtggac	1560
gaagtaccga aaggtettae eggaaaaete gaegeaagaa aaateagaga gateeteata	1620
aaggccaaga agggcggaaa gatcgccgtg ggaattcctg ccaaccttag gctgccaatg	1680
gcctctgctt tacctgaggc tctttgcagt cagtcccgga ctaccccagt agatctctgt	1740
cttctagaag aatcagtagg cagtctcgaa ggaagtcgat gtcctgtctt tgcttttcaa	1800
agttctgaca cagaaagtga tgagctatca gaagtacttc aagacagctg ctttttacaa	1860
ataaagtgtg atacaaaaga tgacagtatc ccgtgctttc tggaattaaa agaagaggat	1920
gaaatagtgt gcacacaaca ctggcaggat gctgtgcctt ggacagaact cctcagtcta	1980
cagacagagg atggcttctg gaaacttaca ccagaactgg gacttatatt aaatcttaat	2040
acaaatggtt tgcacagctt tcttaaacaa aaaggcattc aatctctagg tgtaaaagga	2100
agagaatgtc tcctggacct aattgccaca atgctggtac tacagtttat tcgcaccagg	2160
ttggaaaaag agggaatagt gttcaaatca ctgatgaaaa tggatgaccc ttctatttcc	2220
aggaatattc cctgggcttt tgaggcaata aagcaagcaa gtgaatgggt aagaagaact	2280
gaaggacagt acccatctat ctgcccacgg cttgaactgg ggaacgactg ggactctgcc	2340
accaagcagt tgctgggact ccagcccata agcactgtgt cccctcttca tagagtcctc	2400
cattacagtc aaggctaa	2418

<210> 70

<211> 2274

<212> PRT <213> Artificial Sequence

<220>

<223> Photinus pyralis and Homo sapiens

<400> 70

Met Glu Asp Ala Lys Asn Ile Lys Lys Gly Pro Ala Pro Phe Tyr Pro 1 5 10 15

Leu Glu Asp Gly Thr Ala Gly Glu Gln Leu His Lys Ala Met Lys Arg
20 25 30

Tyr Ala Leu Val Pro Gly Thr Ile Ala Phe Thr Asp Ala His Ile Glu 35 40 45

Val Asp Ile Thr Tyr Ala Glu Tyr Phe Glu Met Ser Val Arg Leu Ala 50 55 60

Glu Ala Met Lys Arg Tyr Gly Leu Asn Thr Asn His Arg Ile Val Val 65 70 75 80

Cys Ser Glu Asn Ser Leu Gln Phe Phe Met Pro Val Leu Gly Ala Leu 85 90 95

Phe Ile Gly Val Ala Val Ala Pro Ala Asn Asp Ile Tyr Asn Glu Arg 100 105 110

Glu Leu Leu Asn Ser Met Gly Ile Ser Gln Pro Thr Val Val Phe Val
115 120 125

Ser Lys Lys Gly Leu Gln Lys Ile Leu Asn Val Gln Lys Lys Leu Pro 130 135 140

Ile Ile Gln Lys Ile Ile Ile Met Asp Ser Lys Thr Asp Tyr Gln Gly
145 150 155 160

Phe Gln Ser Met Tyr Thr Phe Val Thr Ser His Leu Pro Pro Gly Phe 165 170 175

Asn Glu Tyr Asp Phe Val Pro Glu Ser Phe Asp Arg Asp Lys Thr Ile 180 185 190

Ala Leu Ile Met Asn Ser Ser Gly Ser Thr Gly Leu Pro Lys Gly Val 195 200 205

Ala Leu Pro His Arg Thr Ala Cys Val Arg Phe Ser His Ala Arg Asp

210	215	220

Pro Ile Phe Gly Asn Gln Ile Ile Pro Asp Thr Ala Ile Leu Ser Val 225 230 235 240

Val Pro Phe His His Gly Phe Gly Met Phe Thr Thr Leu Gly Tyr Leu 245 250 255

Ile Cys Gly Phe Arg Val Val Leu Met Tyr Arg Phe Glu Glu Glu Leu 260 265 270

Phe Leu Arg Ser Leu Gln Asp Tyr Lys Ile Gln Ser Ala Leu Leu Val 275 280 285

Pro Thr Leu Phe Ser Phe Phe Ala Lys Ser Thr Leu Ile Asp Lys Tyr 290 295 300

Asp Leu Ser Asn Leu His Glu Ile Ala Ser Gly Gly Ala Pro Leu Ser 305 310 315 320

Lys Glu Val Gly Glu Ala Val Ala Lys Arg Phe His Leu Pro Gly Ile 325 330 335

Arg Gln Gly Tyr Gly Leu Thr Glu Thr Thr Ser Ala Ile Leu Ile Thr 340 345 350

Pro Glu Gly Asp Asp Lys Pro Gly Ala Val Gly Lys Val Val Pro Phe 355 360 365

Phe Glu Ala Lys Val Val Asp Leu Asp Thr Gly Lys Thr Leu Gly Val 370 375 380

Asn Gln Arg Gly Glu Leu Cys Val Arg Gly Pro Met Ile Met Ser Gly 385 390 395 400

Tyr Val Asn Asn Pro Glu Ala Thr Asn Ala Leu Ile Asp Lys Asp Gly
405 410 415

Trp Leu His Ser Gly Asp Ile Ala Tyr Trp Asp Glu Asp Glu His Phe 420 425 430

Phe Ile Val Asp Arg Leu Lys Ser Leu Ile Lys Tyr Lys Gly Tyr Gln 435 440 445

Val Ala Pro Ala Glu Leu Glu Ser Ile Leu Leu Gln His Pro Asn Ile 450 455 460

Phe Asp Ala Gly Val Ala Gly Leu Pro Asp Asp Asp Ala Gly Glu Leu 465 470 475 480

Pro Ala Ala Val Val Leu Glu His Gly Lys Thr Met Thr Glu Lys 485 490 495

Glu Ile Val Asp Tyr Val Ala Ser Gln Val Thr Thr Ala Lys Lys Leu
500 505 510

Arg Gly Gly Val Val Phe Val Asp Glu Val Pro Lys Gly Leu Thr Gly 515 520 525

Lys Leu Asp Ala Arg Lys Ile Arg Glu Ile Leu Ile Lys Ala Lys Lys 530 535 540

Gly Gly Lys Ile Ala Val Met Val Met Gly Ile Phe Ala Asn Cys Ile 545 550 555 560

Phe Cys Leu Lys Val Lys Tyr Leu Pro Gln Gln Gln Lys Lys Lys Leu 565 570 575

Gln Thr Asp Ile Lys Glu Asn Gly Gly Lys Phe Ser Phe Ser Leu Asn 580 585 590

Pro Gln Cys Thr His Ile Ile Leu Asp Asn Ala Asp Val Leu Ser Gln 595 600 605

Tyr Gln Leu Asn Ser Ile Gln Lys Asn His Val His Ile Ala Asn Pro 610 615 620

Asp Phe Ile Trp Lys Ser Ile Arg Glu Lys Arg Leu Leu Asp Val Lys 625 630 635 640

Asn Tyr Asp Pro Tyr Lys Pro Leu Asp Ile Thr Pro Pro Pro Asp Gln 645 650 655

Lys Ala Ser Ser Ser Glu Val Lys Thr Glu Gly Leu Cys Pro Asp Ser 660 665 670

Ala Thr Glu Glu Glu Asp Thr Val Glu Leu Thr Glu Phe Gly Met Gln 675 680 685

Asn Val Glu Ile Pro His Leu Pro Gln Asp Phe Glu Val Ala Lys Tyr 690 695 700

- Asn Thr Leu Glu Lys Val Gly Met Glu Gly Gly Gln Glu Ala Val 705 710 715 720
- Val Glu Leu Gln Cys Ser Arg Asp Ser Arg Asp Cys Pro Phe Leu Ile 725 730 735
- Ser Ser His Phe Leu Leu Asp Asp Gly Met Glu Thr Arg Arg Gln Phe 740 745 750
- Ala Ile Lys Lys Thr Ser Glu Asp Ala Ser Glu Tyr Phe Glu Asn Tyr 755 760 765
- Ile Glu Glu Leu Lys Lys Gln Gly Phe Leu Leu Arg Glu His Phe Thr 770 775 780
- Pro Glu Ala Thr Gln Leu Ala Ser Glu Gln Leu Gln Ala Leu Leu Leu 785 790 795 800
- Glu Glu Val Met Asn Ser Ser Thr Leu Ser Gln Glu Val Ser Asp Leu 805 810 815
- Val Glu Met Ile Trp Ala Glu Ala Leu Gly His Leu Glu His Met Leu 820 825 830
- Leu Lys Pro Val Asn Arg Ile Ser Leu Asn Asp Val Ser Lys Ala Glu 835 840 845
- Gly Ile Leu Leu Leu Val Lys Ala Ala Leu Lys Asn Gly Glu Thr Ala 850 855 860
- Glu Gln Leu Gln Lys Met Met Thr Glu Phe Tyr Arg Leu Ile Pro His 865 870 875 880
- Lys Gly Thr Met Pro Lys Glu Val Asn Leu Gly Leu Leu Ala Lys Lys 885 890 895
- Ala Asp Leu Cys Gln Leu Ile Arg Asp Met Val Asn Val Cys Glu Thr 900 905 910
- Asn Leu Ser Lys Pro Asn Pro Pro Ser Leu Ala Lys Tyr Arg Ala Leu

915 920 925

Arg Cys Lys Ile Glu His Val Glu Gln Asn Thr Glu Glu Phe Leu Arg 930 935 940

Val Arg Lys Glu Val Leu Gln Asn His His Ser Lys Ser Pro Val Asp 945 950 955 960

Val Leu Gln Ile Phe Arg Val Gly Arg Val Asn Glu Thr Thr Glu Phe 965 970 975

Leu Ser Lys Leu Gly Asn Val Arg Pro Leu Leu His Gly Ser Pro Val 980 985 990

Gln Asn Ile Val Gly Ile Leu Cys Arg Gly Leu Leu Leu Pro Lys Val 995 1000 1005

Val Glu Asp Arg Gly Val Gln Arg Thr Asp Val Gly Asn Leu Gly 1010 1015 1020

Ser Gly Ile Tyr Phe Ser Asp Ser Leu Ser Thr Ser Ile Lys Tyr 1025 1030 1035

Ser His Pro Gly Glu Thr Asp Gly Thr Arg Leu Leu Leu Ile Cys 1040 1045 1050

Asp Val Ala Leu Gly Lys Cys Met Asp Leu His Glu Lys Asp Phe 1055 1060 1065

Pro Leu Thr Glu Ala Pro Pro Gly Tyr Asp Ser Val His Gly Val 1070 1075 1080

Ser Gln Thr Ala Ser Val Thr Thr Asp Phe Glu Asp Asp Glu Phe 1085 1090 1095

Val Val Tyr Lys Thr Asn Gln Val Lys Met Lys Tyr Ile Ile Lys 1100 1105 1110

Phe Ser Met Pro Gly Asp Gln Ile Lys Asp Phe His Pro Ser Asp 1115 1120 1125

His Thr Glu Leu Glu Glu Tyr Arg Pro Glu Phe Ser Asn Phe Ser 1130 1135 1140

	Lys	Val 1145	Glu	Asp	Tyr	Gln	Leu 1150	Pro	Asp	Ala	Lys	Thr 1155	Ser	Ser	Ser
	Thr	Lys 1160		Gly	Leu	Gln	Asp 1165	Ala	Ser	Gly	Asn	Leu 1170	Val	Pro	Leu
	Glu	Asp 1175	Val	His	Ile	Lys	Gly 1180	Arg	Ile	Ile	qaA	Thr 1185	Val	Ala	Gln
	Val	Ile 1190		Phe	Gln	Thr	Tyr 1195	Thr	Asn	Lys	Ser	His 1200	Val	Pro	Ile
	Glu	Ala 1205	-	Tyr	Ile	Phe	Pro 1210	Leu	Asp	Asp	Lys	Ala 1215	Ala	Val	Сув
	Gly	Phe 1220		Ala	Phe		Asn 1225		Lys	His	Ile	Val 1230	Gly	Glu	Ile
	Lys	Glu 1235	_	Glu	Glu	Ala	Gln 1240		Glu	Tyr	Leu	Glu 1245		Val	Thr
	Gln	Gly 1250		Gly	Ala	Tyr	Leu 1255	Met	Ser	Gln	Asp	Ala 1260	Pro	Asp	Val
	Phe	Thr 1265		Ser	Val	Gly	Asn 1270		Pro	Pro	Lys	Ala 1275		Val	Leu
	Ile	Lys 1280		Thr	Tyr	Ile	Thr 1285		Leu	Ser	Ile	Leu 1290		Thr	Val
	Gly	Val 1295		Phe	Met	Pro	Ala 1300		Val	Ala	Pro	Trp 1305		Gln	Asp
•	ГÀЗ	Ala 1310		Asn	Glu	Asn	Leu 1315		Asp	Thr	Val	Glu 1320		Ile	Cys
	Ile	Lys 1325		Ile	Gly	Thr	Lys 1330		Ser	Phe	Ser	Leu 1335		Met	Ser
	Ile	Glu 1340		Pro	Tyr	· Val	Ile 1345		Phe	lle	Phe	Ser 1350		Thr	His
	Glu	Leu 1355	_	Gln	. Lys	Arg	Thr 1360		Cys	. Lys	Ala	Val 1365		Ser	Thr

Met	Glu 1370		Ser	Ser	Leu	Asp 1375		Ser	Gly	Phe	Ser 1380		His	Ile
Gly	Leu 1385	Ser	Ala	Ala	Tyr	Leu 1390	Pro	Arg	Met	Trp	Val 1395	Glu	Lys	His
Pro	Glu 1400	Lys	Glu	Ser	Glu	Ala 1405		Met	Leu	Val	Phe 1410	Gln	Pro	Asp
Leu	Asp 1415	Val	Asp	Leu	Pro	Asp 1420		Ala	Ser	Glu	Ser 1425	Glu	Val	Ile
Ile	Cys 1430	Leu	Asp	Сув	Ser	Ser 1435		Met	Glu	Gly	Val 1440	Thr	Phe	Leu
Gln	Ala 1445	Lys	Gln	Ile	Thr	Leu 1450	His	Ala	Leu	Ser	Leu 1455	Val	Gly	Glu
Lys	Gln 1460	Lys	Val	Asn	Ile	Ile 1465	Gln	Phe	Gly	Thr	Gly 1470	Tyr	Lys	Glu
Leu	Phe 1475	Ser	Tyr	Pro	Lys	His 1480	Ile	Thr	Ser	Asn	Thr 1485	Thr	Ala	Ala
Glu	Phe 1490	Ile	Met	Ser	Ala	Thr 1495		Thr	Met	Gly	Asn 1500	Thr	Asp	Phe
Trp	Lys 1505	Thr	Leu	Arg	Tyr	Leu 1510	Ser	Leu	Leu	Tyr	Pro 1515	Ala	Arg	Gly
Ser	Arg 1520	Asn	Ile	Leu	Leu	Val 1525	Ser	Ąsp	Gly	His	Leu 1530	Gln	Asp	Glu
Ser	Leu 1535	Thr	Leu	Gln	Leu	Val 1540	Lys	Arg	Ser	Arg	Pro 1545	His	Thr	Arg
Leu	Phe 1550	Ala	Cys	Gly	Ile	Gly 1555	Ser	Thr	Ala	Asn	Arg 1560	His	Val	Leu
Arg	Ile 1565	Leu	Ser	Gln	Cys	Gly 1570	Ala	Gly	Val	Phe	Glu 1575	Tyr	Phe	Asn
Ala	Lys	Ser	Lys	His	Ser	Trp	Arg	Lys	Gln	Ile	Glu	Asp	Gln	Met

1580 1585 1590

Thr	Arg	Leu	Cys	Ser	Pro	Ser	Cys	His	Ser	Val	Ser	Val	ГЛS	\mathtt{Trp}
	1595					1600					1605			

- Gln Gln Leu Asn Pro Asp Ala Pro Glu Ala Leu Gln Ala Pro Ala 1610 1615 1620
- Gln Val Pro Ser Leu Phe Arg Asn Asp Arg Leu Leu Val Tyr Gly 1625 1630 1635
- Phe Ile Pro His Cys Thr Gln Ala Thr Leu Cys Ala Leu Ile Gln 1640 1650
- Glu Lys Glu Phe Cys Thr Met Val Ser Thr Thr Glu Leu Gln Lys 1655 1660 1665
- Thr Thr Gly Thr Met Ile His Lys Leu Ala Ala Arg Ala Leu Ile 1670 1680
- Arg Asp Tyr Glu Asp Gly Ile Leu His Glu Asn Glu Thr Ser His 1685 1690 1695
- Glu Met Lys Lys Gln Thr Leu Lys Ser Leu Ile Ile Lys Leu Ser 1700 1705 1710
- Lys Glu Asn Ser Leu Ile Thr Gln Phe Thr Ser Phe Val Ala Val ' 1715 1720 1725
- Glu Lys Arg Asp Glu Asn Glu Ser Pro Phe Pro Asp Ile Pro Lys 1730 1735 1740
- Val Ser Glu Leu Ile Ala Lys Glu Asp Val Asp Phe Leu Pro Tyr 1745 1750 1755
- Met Ser Trp Gln Gly Glu Pro Gln Glu Ala Val Arg Asn Gln Ser 1760 1765 1770
- Leu Leu Ala Ser Ser Glu Trp Pro Glu Leu Arg Leu Ser Lys Arg 1775 1780 1785
- Lys His Arg Lys Ile Pro Phe Ser Lys Arg Lys Met Glu Leu Ser 1790 1795 1800

Gln	Pro 1805	Glu	Val	Ser	Glu	Asp 1810	Phe	Glu	Glu		Gly 1815	Leu	Gly	Val
Leu	Pro 1820	Ala	Phe	Thr	Ser	Asn 1825	Leu	Glu	Arg		Gly 1830	Val	Glu	Lys
Leu	Leu 1835		Leu	Ser	Trp	Thr 1840	Glu	Ser	Сув	Lys	Pro 1845	Thr	Ala	Thr
Glu	Pro 1850	Leu	Phe	Lys	Lys	Val 1855		Pro	Trp	Glu	Thr 1860	Ser	Thr	Ser
Ser	Phe 1865		Pro	Ile	Leu	Ala 1870		Ala	Val	Gly	Ser 1875	Tyr	Leu	Thr
Pro	Thr 1880		Arg	Ala	His	Ser 1885		Ala	Ser	Leu	Ser 1890		Ala	Ser
Tyr	Arg 1895		Val	Ala	Ser	Phe 1900		Ser	Ala	Ala	Pro 1905		Arg	Gln
Phe	Asp 1910		Ser	Gln	Phe	Ser 1915		Gly	Pro	Val	Pro 1920		Thr	Сув
Ala	Asp 1925		Ile	Pro	Gln	Ser 1930		Ser	Сув	Pro	Thr 1935		Pro	Pro
Gln	Asn 1940		Pro	Ser	· Ala	Pro 1945		Сув	Gly	Ile	Val 1950		Ser	Gly
Ser	Ser 1955		. Ser	: Ser	Ala	Gln 1960		Ala	Pro	Leu	Gln 1965		Pro	Gly
G1y	Phe 1970		Thr	: Arg	p Pro	Ser 1975		Gly	Thr	Phe	Pro 1980		Leu	Asp
Ser	Pro 1985		ı Leı	ı His	s Phe	e Ser 1990		Pro	Thr	. Asp	Pro 1995		Pro	Ile
Arç	g Gly 2000		e Gly	y Sei	с Ту	r His 2005		Se1	c Ala	а Туг	Ser 2010		Phe	His
Phe	e Gln 201		o Sei	r Ala	a Ala	a Ser 2020		ı Thi	c Ala	a Ası	1 Leu 2029		Lev	Pro

Met Ala Ser Ala Leu Pro Glu Ala Leu Cys Ser Gln Ser Arg Thr 2035 2030 Thr Pro Val Asp Leu Cys Leu Leu Glu Glu Ser Val Gly Ser Leu 2050 2055 Glu Gly Ser Arg Cys Pro Val Phe Ala Phe Gln Ser Ser Asp Thr 2065 2070 2060 Glu Ser Asp Glu Leu Ser Glu Val Leu Gln Asp Ser Cys Phe Leu 2085 2080 2075 Gln Ile Lys Cys Asp Thr Lys Asp Asp Ser Ile Pro Cys Phe Leu 2090 2095 Glu Leu Lys Glu Glu Asp Glu Ile Val Cys Thr Gln His Trp Gln 2110 2105 Asp Ala Val Pro Trp Thr Glu Leu Leu Ser Leu Gln Thr Glu Asp 2125 .2120 Gly Phe Trp Lys Leu Thr Pro Glu Leu Gly Leu Ile Leu Asn Leu 2140 Asn Thr Asn Gly Leu His Ser Phe Leu Lys Gln Lys Gly Ile Gln 2155 2150 Ser Leu Gly Val Lys Gly Arg Glu Cys Leu Leu Asp Leu Ile Ala 2170 2165 Thr Met Leu Val Leu Gln Phe Ile Arg Thr Arg Leu Glu Lys Glu 2190 2185 2180 Gly Ile Val Phe Lys Ser Leu Met Lys Met Asp Asp Pro Ser Ile 2195 2200 2205 Ser Arg Asn Ile Pro Trp Ala Phe Glu Ala Ile Lys Gln Ala Ser 2210 2215 2220

Arg Leu Glu Leu Gly Asn Asp Trp Asp Ser Ala Thr Lys Gln Leu

Glu Trp Val Arg Arg Thr Glu Gly Gln Tyr Pro Ser Ile Cys Pro

2230

2240 2245 2250

Leu Gly Leu Gln Pro Ile Ser Thr Val Ser Pro Leu His Arg Val 2255 2260 2265

Leu His Tyr Ser Gln Gly 2270

<210> 71

<211> 6825

<212> DNA

<213> Artificial Sequence

<220>

<223> Photinus pyralis and Homo sapiens

<400> 71 atggaagacg ccaaaaacat aaagaaaggc ccggcgccat tctatccgct ggaagatgga 60 accgctggag agcaactgca taaggctatg aagagatacg ccctggttcc tggaacaatt 120 gcttttacag atgcacatat cgaggtggac atcacttacg ctgagtactt cgaaatgtcc 180 240 gttcggttgg cagaagctat gaaacgatat gggctgaata caaatcacag aatcgtcgta tqcaqtqaaa actctcttca attctttatg ccggtgttgg gcgcgttatt tatcggagtt 300 gcagttgcgc ccgcgaacga catttataat gaacgtgaat tgctcaacag tatgggcatt 360 toqcaqcota cogtggtgtt cgtttccaaa aaggggttgc aaaaaatttt gaacgtgcaa 420 aaaaaqctcc caatcatcca aaaaattatt atcatggatt ctaaaacgga ttaccaggga 480 tttcaqtcqa tgtacacgtt cgtcacatct catctacctc ccggttttaa tgaatacgat 540 600 tttgtgccag agtccttcga tagggacaag acaattgcac tgatcatgaa ctcctctgga tctactggtc tgcctaaagg tgtcgctctg cctcatagaa ctgcctgcgt gagattctcg 660 catgccagag atcctatttt tggcaatcaa atcattccgg atactgcgat tttaagtgtt 720 gttccattcc atcacggttt tggaatgttt actacactcg gatatttgat atgtggattt 780 cqaqtcqtct taatgtatag atttgaagaa gagctgtttc tgaggagcct tcaggattac 840 900 aagattcaaa gtgcgctgct ggtgccaacc ctattctcct tcttcgccaa aagcactctg attgacaaat acgatttatc taatttacac gaaattgctt ctggtggcgc tcccctctct 960 aaggaagtcg gggaagcggt tgccaagagg ttccatctgc caggtatcag gcaaggatat 1020 qqqctcactg agactacatc agctattctg attacacccg agggggatga taaaccgggc 1080

qcqqtcggta aagttgttcc attttttgaa gcgaaggttg tggatctgga taccgggaaa

1140

acgctgggcg ttaatcaaag aggcgaactg tgtgtgagag gtcctatgat tatgtccggt 1200 tatgtaaaca atccggaagc gaccaacgcc ttgattgaca aggatggatg gctacattct 1260 ggagacatag cttactggga cgaagacgaa cacttcttca tcgttgaccg cctgaagtct 1320 ctgattaagt acaaaggcta tcaggtggct cccgctgaat tggaatccat cttgctccaa 1380 caccccaaca tettegacge aggtgtegea ggtetteeeg acgatgacge eggtgaactt 1440 cccgccgccg ttgttgtttt ggagcacgga aagacgatga cggaaaaaga gatcgtggat 1500 tacgtcgcca gtcaagtaac aaccgcgaaa aagttgcgcg gaggagttgt gtttgtggac 1560 gaagtaccga aaggtettae eggaaaaete gaegeaagaa aaateagaga gateeteata 1620 aaggccaaga agggcggaaa gatcgccgtg atggtgatgg gaatctttgc aaattgtatc 1680 ttctgtttga aagtgaagta cttacctcag cagcagaaga aaaagctaca aactgacatt 1740 aaggaaaatg gcggaaagtt ttccttttcg ttaaatcctc agtgcacaca tataatctta 1800 gataatgctg atgttctgag tcagtaccaa ctgaattcta tccaaaagaa ccacgttcat 1860 attgcaaacc cagattttat atggaaatct atcagagaaa agagactctt ggatgtaaag 1920 aattatgatc cttataagcc cctggacatc acaccacctc ctgatcagaa ggcgagcagt 1980 tctgaagtga aaacagaagg tctatgcccg gacagtgcca cagaggagga agacactgtg 2040 gaactcactg agtttggtat gcagaatgtt gaaattcctc atcttcctca agattttgaa 2100 2160 gttgcaaaat ataacacctt ggagaaagtg ggaatggagg gaggccagga agctgtggtg gtggagcttc agtgttcgcg ggactccagg gactgtcctt tcctgatatc ctcacacttc 2220 2280 ctcctggatg atggcatgga gactagaaga cagtttgcta taaagaaaac ctctgaagat gcaagtgaat actttgaaaa ttacattgaa gaactgaaga aacaaggatt tctactaaga 2340 2400 gaacatttca cacctgaagc aacccaatta gcatctgaac aattgcaagc attgcttttg gaggaagtca tgaattcaag cactctgagc caagaggtga gcgatttagt agagatgatt 2460 tgggcagagg ccctgggcca cctggaacac atgcttctca agccagtgaa caggattagc 2520 ctcaacgatg tgagcaaggc agaggggatt ctccttctag taaaggcagc actgaaaaat 2580 ggagaaacag cagagcaatt gcaaaagatg atgacagagt tttacagact gatacctcac 2640 aaaggcacaa tgcccaaaga agtgaacctg ggactattgg ctaagaaagc agacctctgc 2700 cagctaataa gagacatggt taatgtctgt gaaactaatt tgtccaaacc caacccacca 2760 tccctggcca aataccgagc tttgaggtgc aaaattgagc atgttgaaca gaatactgaa 2820 2880 gaatttctca gggttagaaa agaggttttg cagaatcatc acagtaagag cccagtggat

gtcttgcaga tatttagagt tggcagagtg aatgaaacca cagagttttt gagcaaactt 2940 3000 ggtaatgtga ggcccttgtt gcatggttct cctgtacaaa acatcgtggg aatcttgtgt cgagggttgc ttttacccaa agtagtggaa gatcgtggtg tgcaaagaac agacgtcgga 3060 aaccttggaa gtgggattta tttcagtgat tcgctcagta caagtatcaa gtactcacac 3120 ccgggagaga cagatggcac cagactcctg ctcatttgtg acgtagccct cggaaagtgt 3180 atggacttac atgagaagga ctttccctta actgaagcac caccaggcta cgacagtgtg 3240 catggagttt cacaaacagc ctctgtcacc acagactttg aggatgatga atttgttgtc 3300 tataaaacca atcaggttaa aatgaaatat attattaaat tttccatgcc tggagatcag 3360 ataaaggact ttcatcctag tgatcatact gaattagagg aatacagacc tgagttttca 3420 3480 aatttttcaa aggttgaaga ttaccagtta ccagatgcca aaacttccag cagcaccaag gccggcctcc aggatgcctc tgggaacttg gttcctctgg aggatgtcca catcaaaggg 3540 agaatcatag acactgtagc ccaggtcatt gtttttcaga catacacaaa taaaagtcac 3600 gtgcccattg aggcaaaata tatctttcct ttggatgaca aggccgctgt gtgtggcttc 3660 gaagccttca tcaatgggaa gcacatagtt ggagagatta aagagaagga agaagcccag 3720 caagagtacc tagaagccgt gacccagggc catggcgctt acctgatgag tcaggatgct 3780 ccggacgttt ttactgtaag tgttggaaac ttacccccta aggctaaggt tcttataaaa 3840 attacctaca tcacagaact cagcatcctg ggcactgttg gtgtcttttt catgcccgcc 3900 accgtagcac cctggcaaca ggacaaggct ttgaatgaaa accttcagga tacagtagag 3960 aagatttgta taaaagaaat aggaacaaag caaagcttct ctttgactat gtctattgag 4020 atgccgtatg tgattgaatt cattttcagt gatacacatg aactgaaaca aaagcgcaca 4080 gactgcaaag ctgtcattag caccatggaa ggcagctcct tagacagcag tggatttct 4140 ctccacatcg gtttgtctgc tgcctatctc ccaagaatgt gggttgaaaa acatccagaa 4200 aaagaaagcg aggettgeat gettgtettt caaccegate tegatgtega eeteeetgae 4260 ctagccagtg agagcgaagt gattatttgt cttgactgct ccagttccat ggagggtgtg 4320 acattcttgc aagccaagca aatcaccttg catgcgctgt ccttggtggg tgagaagcag 4380 aaagtaaata ttatccagtt cggcacaggt tacaaggagc tattttcgta tcctaagcat 4440 atcacaagca ataccacggc agcagagttc atcatgtctg ccacacctac catggggaac 4500 acagacttct ggaaaacact ccgatatctt agcttattgt accctgctcg agggtcacgg 4560 aacatcctcc tggtgtctga tgggcacctc caggatgaga gcctgacatt acagctcgtg 4620

aagaggagec geeegeacae caggttatte geetgeggta teggttetae ageaaategt 4680 cacgtcttaa ggattttgtc ccagtgtggt gccggagtat ttgaatattt taatgcaaaa 4740 tccaagcata gttggagaaa acagatagaa gaccaaatga ccaggctatg ttctccgagt 4800 tgccactctg tctccgtcaa atggcagcaa ctcaatccag atgcgcccga ggccctgcag 4860 gecceagece aggtgecate ettgtttege aatgategae teettgteta tggatteatt 4920 cctcactgca cacaagcaac tctgtgtgca ctaattcaag agaaagaatt ttgtacaatg 4980 5040 gtgtcgacta ctgagcttca gaagacaact ggaactatga tccacaagct ggcagcccga 5100 gctctaatca gagattatga agatggcatt cttcacgaaa atgaaaccag tcatgagatg aaaaaacaaa ccttgaaatc tctgattatt aaactcagta aagaaaactc tctcataaca 5160 caatttacaa gctttgtggc agttgagaaa agggatgaga atgagtcgcc ttttcctgat 5220 attccaaaag tttctgaact tattgccaaa gaagatgtag acttcctgcc ctacatgagc 5280 tggcaggggg agccccaaga agccgtcagg aaccagtctc ttttagcatc ctctgagtgg 5340 ccagaattac gtttatccaa acgaaaacat aggaaaattc cattttccaa aagaaaaatg 5400 5460 gaattatete agecagaagt ttetgaagat tttgaagagg atggettagg tgtaetacea gctttcacat caaatttgga acgtggaggt gtggaaaagc tattggattt aagttggaca 5520 5580 gagtcatgta aaccaacagc aactgaacca ctatttaaga aagtcagtcc atgggaaaca 5640 totacttota gottttttcc tattttggct coggoogttg gttcctatct tacccogact 5700 accogagete acagtectge tteettgtet tttgeeteat ategteaggt agetagttte ggttcagctg ctcctcccag acagtttgat gcatctcaat tcagccaagg ccctgtgcct 5760 5820 qqcacttgtg ctgactggat cccacagteg gegtettgte ccacaggace tecceagaac 5880 ccaccttctg caccctattg tggcattgtt ttttcaggga gctcattaag ctctgcacag tetgetecae tgeaacatee tggaggettt actaecagge ettetgetgg caeetteeet 5940 6000 gagetggatt etecceaget teatttetet ettectaeag accetgatee cateagaggt 6060 tttgggtctt atcatecete tgettaetet cetttteatt tteaacette egeageetet 6120 ttgactgcca accttaggct gccaatggcc tctgctttac ctgaggctct ttgcagtcag tcccggacta ccccagtaga tctctgtctt ctagaagaat cagtaggcag tctcgaagga 6180 6240 agtcgatgtc ctgtctttgc ttttcaaagt tctgacacag aaagtgatga gctatcagaa gtacttcaag acagctgctt tttacaaata aagtgtgata caaaagatga cagtatcccg 6300 6360 tgctttctgg aattaaaaga agaggatgaa atagtgtgca cacaacactg gcaggatgct

gtgccttgga cagaactcct cagtctacag acagaggatg gcttctggaa acttacacca 6420 gaactgggac ttatattaaa tcttaataca aatggtttgc acagctttct taaacaaaaa 6480 ggcattcaat ctctaggtgt aaaaggaaga gaatgtctcc tggacctaat tgccacaatg 6540 ctggtactac agtttattcg caccaggttg gaaaaagagg gaatagtgtt caaatcactg 6600 atgaaaatgg atgaccette tatttecagg aatatteeet gggettttga ggeaataaag 6660 caagcaagtg aatgggtaag aagaactgaa ggacagtacc catctatctg cccacggctt 6720 gaactgggga acgactggga ctctgccacc aagcagttgc tgggactcca gcccataagc 6780 actgtgtccc ctcttcatag agtcctccat tacagtcaag gctaa 6825 <210> 72 <211> 16 <212> PRT <213> Drosophila melanogaster <400> 72 Arg Gln Ile Lys Ile Trp Phe Gln Asn Ala Arg Met Lys Trp Lys Lys 10 <210> 73 <211> 51 <212> DNA <213> Drosophila melanogaster <400> 73 cgacagatca agatctggtt tcagaacgca cggatgaagt ggaagaagtg a 51 <210> 74 <211> 909 <212> PRT <213> Artificial Sequence <220> <223> Homo sapiens and Drosophila melanogaster <400> 74 Met Ala Thr Glu Glu Phe Ile Ile Arg Ile Pro Pro Tyr His Tyr Ile 15 10 5

His Val Leu Asp Gln Asn Ser Asn Val Ser Arg Val Glu Val Gly Pro 20 25 30

Lys Thr Tyr Ile Arg Gln Asp Asn Glu Arg Val Leu Phe Ala Pro Met 35 40 45

Arg Met Val Thr Val Pro Pro Arg His Tyr Cys Thr Val Ala Asn Pro 50 55 60

- Val Ser Arg Asp Ala Gln Gly Leu Val Leu Phe Asp Val Thr Gly Gln 65 70 75 80
- Val Arg Leu Arg His Ala Asp Leu Glu Ile Arg Leu Ala Gln Asp Pro 85 90 95
- Phe Pro Leu Tyr Pro Gly Glu Val Leu Glu Lys Asp Ile Thr Pro Leu 100 105 110
- Gln Val Val Leu Pro Asn Thr Ala Leu His Leu Lys Ala Leu Leu Asp 115 120 125
- Phe Glu Asp Lys Asp Gly Asp Lys Val Val Ala Gly Asp Glu Trp Leu 130 135 140
- Phe Glu Gly Pro Gly Thr Tyr Ile Pro Arg Lys Glu Val Glu Val 145 150 155 160
- Glu Ile Ile Gln Ala Thr Ile Ile Arg Gln Asn Gln Ala Leu Arg Leu 165 170 175
- Arg Ala Arg Lys Glu Cys Trp Asp Arg Asp Gly Lys Glu Arg Val Thr 180 185 190
- Gly Glu Glu Trp Leu Val Thr Thr Val Gly Ala Tyr Leu Pro Ala Val 195 200 205
- Phe Glu Glu Val Leu Asp Leu Val Asp Ala Val Ile Leu Thr Glu Lys 210 215 220
- Thr Ala Leu His Leu Arg Ala Arg Arg Asn Phe Arg Asp Phe Arg Gly 225 230 235 240
- Val Ser Arg Arg Thr Gly Glu Glu Trp Leu Val Thr Val Gln Asp Thr 245 250 255
- Glu Ala His Val Pro Asp Val His Glu Glu Val Leu Gly Val Val Pro 260 265 270
- Ile Thr Thr Leu Gly Pro His Asn Tyr Cys Val Ile Leu Asp Pro Val 275 280 285

Gly Pro Asp Gly Lys Asn Gln Leu Gly Gln Lys Arg Val Val Lys Gly 290 295 300

Glu Lys Ser Phe Phe Leu Gln Pro Gly Glu Gln Leu Glu Gln Gly Ile 305 310 315 320

Gln Asp Val Tyr Val Leu Ser Glu Gln Gln Gly Leu Leu Leu Arg Ala 325 330 335

Leu Gln Pro Leu Glu Glu Gly Glu Asp Glu Glu Lys Val Ser His Gln 340 345 350

Ala Gly Asp His Trp Leu Ile Arg Gly Pro Leu Glu Tyr Val Pro Ser 355 360 365

Ala Lys Val Glu Val Val Glu Glu Arg Gln Ala Ile Pro Leu Asp Glu 370 375 380

Asn Glu Gly Ile Tyr Val Gln Asp Val Lys Thr Gly Lys Val Arg Ala 385 390 395 400

Val Ile Gly Ser Thr Tyr Met Leu Thr Gln Asp Glu Val Leu Trp Glu 405 410 415

Lys Glu Leu Pro Pro Gly Val Glu Glu Leu Leu Asn Lys Gly Gln Asp 420 425 430

Pro Leu Ala Asp Arg Gly Glu Lys Asp Thr Ala Lys Ser Leu Gln Pro 435 440 445

Leu Ala Pro Arg Asn Lys Thr Arg Val Val Ser Tyr Arg Val Pro His 450 455 460

Asn Ala Ala Val Gln Val Tyr Asp Tyr Arg Glu Lys Arg Ala Arg Val 465 470 475 480

Val Phe Gly Pro Glu Leu Val Ser Leu Gly Pro Glu Glu Gln Phe Thr 485 490 495

Val Leu Ser Leu Ser Ala Gly Arg Pro Lys Arg Pro His Ala Arg Arg 500 505 510

Ala Leu Cys Leu Leu Gly Pro Asp Phe Phe Thr Asp Val Ile Thr

515 520 525

Ile Glu Thr Ala Asp His Ala Arg Leu Gln Leu Gln Leu Ala Tyr Asn 530 535 540

Trp His Phe Glu Val Asn Asp Arg Lys Asp Pro Gln Glu Thr Ala Lys 545 550 555 560

Leu Phe Ser Val Pro Asp Phe Val Gly Asp Ala Cys Lys Ala Ile Ala 565 570 575

Ser Arg Val Arg Gly Ala Val Ala Ser Val Thr Phe Asp Asp Phe His 580 585 590

Lys Asn Ser Ala Arg Ile Ile Arg Thr Ala Val Phe Gly Phe Glu Thr 595 600 605

Ser Glu Ala Lys Gly Pro Asp Gly Met Ala Leu Pro Arg Pro Arg Asp 610 615 620

Gln Ala Val Phe Pro Gln Asn Gly Leu Val Val Ser Ser Val Asp Val 625 630 635 640

Gln Ser Val Glu Pro Val Asp Gln Arg Thr Arg Asp Ala Leu Gln Arg 645 650 655

Ser Val Gln Leu Ala Ile Glu Ile Thr Thr Asn Ser Gln Glu Ala Ala 660 665 670

Ala Lys His Glu Ala Gln Arg Leu Glu Glu Glu Ala Arg Gly Arg Leu 675 680 685

Glu Arg Gln Lys Ile Leu Asp Gln Ser Glu Ala Glu Lys Ala Arg Lys 690 695 700

Glu Leu Leu Glu Leu Glu Ala Leu Ser Met Ala Val Glu Ser Thr Gly 705 710 715 720

Thr Ala Lys Ala Glu Ala Glu Ser Arg Ala Glu Ala Ala Arg Ile Glu 725 . 730 735

Gly Glu Gly Ser Val Leu Gln Ala Lys Leu Lys Ala Gln Ala Leu Ala 740 745 750

PCT/US2004/007434 WO 2004/081533

765

Ile Glu Thr Glu Ala Glu Leu Gln Arg Val Gln Lys Val Arg Glu Leu 760

755

Glu	Leu 770	Val	Tyr	Ala	Arg	Ala 775	Gln	Leu	Glu	Leu	Glu 780	Val	Ser	Lys	Ala		
Gln 785	Gln	Leu	Ala	Glu	Val 790	Glu	Val	ГЛЗ	Lys	Phe 795	Lys	Gln	Met	Thr	Glu 800		
Ala	Ile	Gly	Pro	Ser 805	Thr	Ile	Arg	Asp	Leu 810	Ala	Val	Ala	Gly	Pro 815	Glu		
Met	Gln	Val	Ъув 820	Leu	Leu	Gln	Ser	Leu 825	Gly	Leu	Lys	Ser	Thr 830	Leu	Ile		
Thr	Asp	Gly 835	Ser	Thr	Pro	Ile	Asn 840	Leu	Phe	Asn	Thr	Ala 845	Phe	Gly	Leu		
Leu	Gly 850	Met	Gly	Pro	Glu	Gly 855	Gln	Pro	Leu	Gly	Arg 860	Arg	Val	Ala	Ser		
Gly 865	Pro	Ser	Pro	Gly	Glu 870	Gly	Ile	Ser	Pro	Gln 875	Ser	Ala	Gln	Ala	Pro 880		
Gln	Ala	Pro	Gly	Asp 885	Asn	His	Val	Val	Pro 890	Val	Leu	Arg	Arg	Gln 895	Ile		
Lys	Ile	Trp	Phe 900	Gln	Asn	Ala	Arg	Met 905	Lys	Trp	Lys	Lys					
<210 <211 <212 <213	L> : 2> 1	75 2730 ONA Arti:	ficia	al Se	equer	nce											
<220 <223		Homo	sapi	Lens	and	Dros	sophi	ila n	nelar	ogas	ster			٠			
<400 atgg		75 ctg a	aagag	gttca	at ca	atccg	gcato	ccc	ccat	acc	acta	atato	cca t	gtgo	ctggac		60
caga	acag	gca a	acgto	gtcc	g to	gtgga	aggto	ggg	gccaa	aga	ccta	cato	ccg g	gcagg	gacaat	1	20
gaga	ıgggt	cac t	tgttt	gcc	ec ca	tgcg	gcato	ggtg	gacco	gtcc	ccc	acgt	ca d	ctact	gcaca	1	80
gtgg	gccaa	acc o	ctgtg	gtete	g gg	gatgo	ccac	g ggd	ettgg	jtgc	tgtt	tgat	gt d	cacag	ggcaa	2	40
gtto	ggct	tc q	gccad	gctg	ga co	etcga	agato	c cgc	gctgg	gece	agga	ccc	ett d	cccc	tgtac	3	00

						360
ccaggggagg	tgctggaaaa	ggacatcaca	cccctgcagg	tggttctgcc	caacactgcc	360
ctccatctaa	aggcgctgct	tgattttgag	gataaagatg	gagacaaggt	ggtggcagga	420
gatgagtggc	ttttcgaggg	acctggcacg	tacatccccc	ggaaggaagt	ggaggtcgtg	480
gagatcattc	aggccaccat	catcaggcag	aaccaggctc	tgcggctcag	ggcccgcaag	540
gagtgctggg	accgggacgg	caaggagagg	gtgacagggg	aagaatggct	ggtcaccaca	600
gtaggggcgt	acctcccagc	ggtgtttgag	gaggttctgg	atttggtgga	cgccgtcatc	660
cttacggaaa	agacagccct	gcacctccgg	gctcggcgga	acttccggga	cttcagggga	720
gtgtcccgcc	gcactgggga	ggagtggctg	gtaacagtgc	aggacacaga	ggcccacgtg	780
ccagatgtcc	acgaggaggt	gctgggggtt	gtgcccatca	ccaccctggg	ccccacaac	840
tactgcgtga	ttctcgaccc	tgtcggaccg	gatggcaaga	atcagctggg	gcagaagcgc	900
gtggtcaagg	gagagaagtc	ttttttcctc	cagccaggag	agcagctgga	acaaggcatc	960
caggatgtgt	atgtgctgtc	ggagcagcag	gggctgctgc	tgagggccct	gcagcccctg	1020
gaggagggg	aggatgagga	gaaggtctca	caccaggctg	gggaccactg	gctcatccgc	1080
ggacccctgg	agtatgtgcc	atctgccaaa	gtggaggtgg	tggaggagcg	ccaggccatc	1140
cctctagacg	agaacgaggg	catctatgtg	caggatgtca	agaccggaaa	ggtgcgcgct	,1200
gtgattggaa	gcacctacat	gctgacccag	gacgaagtcc	tgtgggagaa	agagctgcct	1260
cccggggtgg	aggagctgct	gaacaagggg	caggaccctc	tggcagacag	gggtgagaag	1320
gacacagcta	. agagceteca	gcccttggcg	ccccggaaca	agacccgtgt	ggtcagctac	1380
cgcgtgcccc	acaacgctgo	ggtgcaggtg	tacgactacc	gagagaagcg	agcccgcgtg	1440
gtcttcgggc	ctgagctggt	gtcgctgggt	cctgaggagc	agttcacagt	gttgtccctc	1500
tcagctgggc	ggcccaagcg	tecceatgee	cgccgtgcgc	tetgeetget	gctggggcct	1560
gacttcttca	cagacgtcat	caccatcgaa	acggcggato	atgccaggct	gcaactgcag	1620
ctggcctaca	actggcactt	: tgaggtgaat	gaccggaagg	acccccaaga	gacggccaag	1680
ctcttttcag	g tgccagactt	: tgtaggtgat	gcctgcaaag	ccatcgcatc	ccgggtgcgg	1740
ggggccgtgg	g cctctgtcac	tttcgatgac	ttccataaga	actcageceg	catcattcgc	1800
actgctgtct	ttggctttg	a gacctcggaa	gcgaagggco	ccgatggcat	ggccctgccc	1860
aggccccggg	g accaggetgi	cttccccca	a aacgggctgg	g tggtcagcag	, tgtggacgtg	1920
cagtcagtgg	g agcctgtgga	a tcagaggaco	cgggacgcc	tgcaacgcag	g cgtccagctg	1980
gccatcgaga	a tcaccacca	a ctcccaggaa	a geggeggeea	a agcatgaggo	tcagagactg	2040

gagcaggaag	cccgcggccg	gcttgagcgg	cagaagatcc	tggaccagtc	agaagccgag	2100
aaagctcgca	aggaactttt	ggagctggag	gctctgagca	tggccgtgga	gagcaccggg	2160
actgccaagg	cggaggccga	gtcccgtgcg	gaggcagccc	ggattgaggg	agaagggtcc	2220
gtgctgcagg	ccaagctaaa	agcacaggcc	ttggccattg	aaacggaggc	tgagctccag	2280
agggtccaga	aggtccgaga	gctggaactg	gtctatgccc	gggcccagct	ggagctggag	2340
gtgagcaagg	ctcagcagct	ggctgaggtg	gaggtgaaga	agttcaagca	gatgacagag	2400
gccataggcc	ccagcaccat	cagggacctt	gctgtggctg	ggcctgagat	gcaggtaaaa	2460
ctgctccagt	ccctgggcct	gaaatcaacc	ctcatcaccg	atggctccac	tcccatcaac	2520
ctcttcaaca	cagcctttgg	gctgctgggg	atggggcccg	agggtcagcc	cctgggcaga	2580
agggtggcca	gtgggcccag	ccctggggag	gggatatccc	cccagtctgc	tcaggcccct	2640
caagctcctg	gagacaacca	cgtggtgcct	gtactgcgcc	gacagatcaa	gatctggttt	2700
cagaacgcac	ggatgaagtg	gaagaagtga				2730

<210> 76

<211> 877

<212> PRT

<213> Artificial Sequence

<220>

<223> Rattus norvegicus and Drosophila melanogaster

<400> 76

Met Ala Thr Glu Glu Ala Ile Ile Arg Ile Pro Pro Tyr His Tyr Ile 1 5 10 15

His Val Leu Asp Gln Asn Ser Asn Val Ser Arg Val Glu Val Gly Pro 20 25 30

Lys Thr Tyr Ile Arg Gln Asp Asn Glu Arg Val Leu Phe Ala Pro Val 35 40 45

Arg Met Val Thr Val Pro Pro Arg His Tyr Cys Ile Val Ala Asn Pro 50 55 60

Val Ser Arg Asp Thr Gln Ser Ser Val Leu Phe Asp Ile Thr Gly Gln 65 70 75 80

Val Arg Leu Arg His Ala Asp Gln Glu Ile Arg Leu Ala Gln Asp Pro 85 90 95

Phe Pro Leu Tyr Pro Gly Glu Val Leu Glu Lys Asp Ile Thr Pro Leu 100 105 110

- Gln Val Val Leu Pro Asn Thr Ala Leu His Leu Lys Ala Leu Leu Asp 115 120 125
- Phe Glu Asp Lys Asn Gly Asp Lys Val Met Ala Gly Asp Glu Trp Leu 130 135 140
- Phe Glu Gly Pro Gly Thr Tyr Ile Pro Gln Lys Glu Val Glu Val Val 145 150 155 160
- Glu Ile Ile Gln Ala Thr Val Ile Lys Gln Asn Gln Ala Leu Arg Leu 165 170 175
- Arg Ala Arg Lys Glu Cys Phe Asp Arg Glu Gly Lys Gly Arg Val Thr 180 185 190
- Gly Glu Glu Trp Leu Val Arg Ser Val Gly Ala Tyr Leu Pro Ala Val 195 200 205
- Phe Glu Glu Val Leu Asp Leu Val Asp Ala Val Ile Leu Thr Glu Lys 210 215 220
- Thr Ala Leu His Leu Arg Ala Leu Gln Asn Phe Arg Asp Leu Arg Gly 225 230 235 240
- Val Leu His Arg Thr Gly Glu Glu Trp Leu Val Thr Val Gln Asp Thr 245 250 255
- Glu Ala His Val Pro Asp Val Tyr Glu Glu Val Leu Gly Val Val Pro 260 265 270
- Ile Thr Thr Leu Gly Pro Arg His Tyr Cys Val Ile Leu Asp Pro Met 275 280 285
- Gly Pro Asp Gly Lys Asn Gln Leu Gly Gln Lys Arg Val Val Lys Gly 290 295 300
- Glu Lys Ser Phe Phe Leu Gln Pro Gly Glu Arg Leu Glu Arg Gly Ile 305 310 315 320
- Gln Asp Val Tyr Val Leu Ser Glu Gln Gln Gly Leu Leu Lys Ala 325 330 335

Leu Gln Pro Leu Glu Glu Gly Glu Ser Glu Glu Lys Val Ser His Gln 340 345 350

Ala Gly Asp Cys Trp Leu Ile Arg Gly Pro Leu Glu Tyr Val Pro Ser 355 360 365

Ala Lys Val Glu Val Val Glu Glu Arg Gln Ala Ile Pro Leu Asp Gln 370 375 380

Asn Glu Gly Ile Tyr Val Gln Asp Val Lys Thr Gly Lys Val Arg Ala 385 390 395 400

Val Ile Gly Ser Thr Tyr Met Leu Thr Gln Asp Glu Val Leu Trp Glu
405 410 415

Lys Glu Leu Pro Ser Gly Val Glu Glu Leu Leu Asn Leu Gly His Asp 420 425 430

Pro Leu Ala Asp Arg Gly Gln Lys Gly Thr Ala Lys Pro Leu Gln Pro
435 440 445

Ser Ala Pro Arg Asn Lys Thr Arg Val Val Ser Tyr Arg Val Pro His 450 455 460

Asn Ala Ala Val Gln Val Tyr Asp Tyr Arg Ala Lys Arg Ala Arg Val 465 470 475 480

Val Phe Gly Pro Glu Leu Val Thr Leu Asp Pro Glu Glu Gln Phe Thr 485 490 495

Val Leu Ser Leu Ser Ala Gly Arg Pro Lys Arg Pro His Ala Arg Arg 500 505 510

Ala Leu Cys Leu Leu Leu Gly Pro Asp Phe Phe Thr Asp Val Ile Thr 515 520 525

Ile Glu Thr Ala Asp His Ala Arg Leu Gln Leu Gln Leu Ala Tyr Asn 530 535 540

Trp His Phe Glu Leu Lys Asn Arg Asn Asp Pro Ala Glu Ala Ala Lys 545 550 555 560

Leu Phe Ser Val Pro Asp Phe Val Gly Asp Ala Cys Lys Ala Ile Ala

	565	570	575
Ser Arg Val Arg 580	Gly Ala Val Ala	Ser Val Thr Phe 2	Asp Asp Phe His 590
Lys Asn Ser Ala 595	Arg Ile Ile Arg	Met Ala Val Phe	Gly Phe Glu Met 605
Ser Glu Asp Thr 610	Gly Pro Asp Gly 615	Thr Leu Leu Pro 620	Lys Ala Arg Asp
Gln Ala Val Phe 625	Pro Gln Asn Gly	Leu Val Val Ser 635	Ser Val Asp Val 640

Gln Ser Val Glu Pro Val Asp Gln Arg Thr Arg Asp Ala Leu Gln Arg 645 650 655

Ser Val Gln Leu Ala Ile Glu Ile Thr Thr Asn Ser Gln Glu Ala Ala 660 665 670

Ala Lys His Glu Ala Gln Arg Leu Glu Gln Glu Ala Arg Gly Arg Leu 675 680 685

Glu Arg Gln Lys Ile Leu Asp Gln Ser Glu Ala Glu Lys Ala Arg Lys 690 695 700

Glu Leu Glu Leu Glu Ala Met Ser Met Ala Val Glu Ser Thr Gly
705 710 715 720

Asn Ala Lys Ala Glu Ala Glu Ser Arg Ala Glu Ala Ala Arg Ile Glu 725 730 735

Gly Glu Gly Ser Val Leu Gln Ala Lys Leu Lys Ala Gln Ala Leu Ala 740 745 750

Ile Glu Thr Glu Ala Glu Leu Glu Arg Val Lys Lys Val Arg Glu Met 755 760 765

Glu Leu Ile Tyr Ala Arg Ala Gln Leu Glu Leu Glu Val Ser Lys Ala 770 775 780

Gln Gln Leu Ala Asn Val Glu Ala Lys Lys Phe Lys Glu Met Thr Glu 785 790 795 800

Ala Leu Gly Pro Gly Thr Ile Arg Asp Leu Ala Val Ala Gly Pro Glu 805 810 815

Met Gln Val Lys Leu Leu Gln Ser Leu Gly Leu Lys Ser Thr Leu Ile 820 825 830

Thr Asp Gly Ser Ser Pro Ile Asn Leu Phe Ser Thr Ala Phe Gly Leu 835 840 845

Leu Gly Leu Gly Ser Asp Gly Gln Pro Pro Ala Gln Lys Arg Gln Ile 850 855 860

Lys Ile Trp Phe Gln Asn Ala Arg Met Lys Trp Lys Lys 865 870 875

<210> 77

<211> 2634

<212> DNA

<213> Artificial Sequence

<220>

<223> Rattus norvegicus and Drosophila melanogaster

<400> 77 atggcaactg aagaggccat catccgcatc cccccatacc actacatcca tgtgctggac 60 cagaacagta atgtgtcccg tgtggaggtt ggaccaaaga cctacatccg gcaggacaat 120 gagagggtac tgtttgcccc agttcgcatg gtgaccgtcc ccccacgcca ctactgcata 180 gtggccaacc ctgtgtcccg ggacacccag agttctgtgt tatttgacat cacaggacaa 240 gtccgactcc ggcacgctga ccaggagatc cgactagccc aggacccctt ccccctgtat 300 ccaggggagg tgctggaaaa ggacatcacc ccactgcagg tggttctgcc caacacagca 360 ctgcatctta aggcgttgct ggactttgag gataagaatg gagacaaggt catggcagga 420 480 . gacgagtggc tatttgaggg acctggcacc tacatcccac agaaggaagt ggaagtcgtg gagatcattc aggccacagt catcaaacag aaccaagcac tgcggctaag ggcccgaaag 540 gagtgctttg accgggaggg caaggggcgc gtgacaggtg aggagtggct ggtccgatcc 600 gtgggggctt acctcccagc tgtctttgaa gaggtgctgg atctggtgga tgctgtgatc 660 cttacagaaa agactgccct gcacctccgg gctctgcaga acttcaggga ccttcgggga 720 gtgctccacc gcaccgggga ggaatggtta gtgacagtgc aggacacaga agcccatgtt 780 840 ccagatgtct atgaggaggt gcttggggta gtacccatca ccaccctggg acctcgacac

900

tactgtgtca ttcttgaccc aatgggacca gacggcaaga accagctggg acaaaagcgt

gttgtcaagg	gagagaagtc	ctttttcctc	cagccaggag	agaggctgga	gcgaggcatc	960
caggatgtgt	atgtgctgtc	agagcagcag	gggctgctac	tgaaggcact	gcagcccctg	1020
gaggaggag	agagcgagga	gaaggtctcc	catcaggccg	gagactgctg	gctcatccgt	1080
gggcccctgg	agtatgtgcc	atctgcaaaa	gtggaggtgg	tggaggagcg	tcaggctatc	1140
cctctggacc	aaaatgaggg	catctatgtg	caggatgtca	agacggggaa	ggtgcgggct	1200
gtgattggaa	gcacctacat	gctgactcag	gatgaagtcc	tgtgggaaaa	ggagctgcct	1260
tctggggtgg	aggagctgct	gaacttgggg	catgaccctc	tggcagacag	gggtcagaag	1320
ggcacagcca	agccccttca	gccctcagct	ccaaggaaca	agacccgagt	ggtcagctac	1380
cgtgtcccgc	acaatgcagc	ggtgcaggtc	tatgactaca	gagccaagag	agcccgtgtg	1440
gtctttgggc	ccgagctagt	gacactggat	cctgaggagc	agttcacagt	attgtccctt	1500
tctgccgggc	gacccaagcg	tcctcatgcc	cgccgtgcac	tetgeetaet	gctgggacct	1560
gatttcttta	ctgatgtcat	caccatcgaa	actgcagatc	atgccaggtt	gcagctgcag	1620
cttgcctaca	actggcactt	tgaactgaag	aaccggaatg	accctgcaga	ggcagccaag	1680
cttttctccg	tgcctgactt	cgtgggtgac	gcctgcaagg	ccattgcatc	ccgagtccgg	1740
ggggctgtag	cctctgtcac	ctttgatgac	ttccataaaa	actcagcccg	gatcattcga	1800
atggctgttt	ttggctttga	gatgtctgaa	gacacaggtc	ctgatggcac	actcctgccc	1860
aaggctcgag	accaggcagt	ctttccccaa	aacgggctgg	tagtcagcag	tgtggatgtg	1920
cagtcagtgg	agcccgtgga	ccagaggacc	cgggatgccc	ttcagcgcag	cgttcagctg	1980
gccatcgaaa	ttaccaccaa	ctcccaggag	gcagcagcca	agcacgaggc	tcagagactg	2040
gaacaggaag	cccgtggtcg	gcttgagagg	cagaagatct	tggaccagtc	agaagctgaa	2100
aaagcccgca	aggaactctt	ggagcttgag	gctatgagca	tggctgtgga	gagcacgggt	2160
aatgccaaag	cagaggctga	gtcccgtgca	gaggcagcga	ggatcgaagg	agaaggctct	2220
gtgctgcagg	ccaagctcaa	ggcacaggcg	ctagccattg	agacggaggc	tgagttggag	2280
cgagtaaaga	aagtacgaga	gatggaactg	atctatgccc	gggcccagtt	ggagctggag	2340
gtgagcaagg	cgcagcagct	tgccaatgtg	gaggcaaaga	agttcaagga	gatgacagag	2400
gcactgggcc	ccggcaccat	cagggacctg	gctgtggccg	ggccagagat	gcaggtgaaa	2460
cttctccagt	ccctgggcct	gaaatccact	ctcatcaccg	atggctcgtc	tcccatcaac	2520
ctcttcagca	cagccttcgg	gttgctgggg	ctggggtctg	atggtcagcc	gccagcacag	2580
aagcgacaga	tcaagatctg	gtttcagaac	gcacggatga	agtggaagaa	gtga	2634

```
<210> 78
<211> 11
<212> PRT
<213> Human immunodeficiency virus type 1
<400> 78
Tyr Gly Arg Lys Lys Arg Arg Gln Arg Arg Arg
<210> 79
<211> 33
<212> DNA
<213> Human immunodeficiency virus type 1
<400> 79
tacgggcgga agaagcggcg acagaggcga cgg
                                                                      33
<210> 80
<211> 904
<212> PRT
<213> Artificial Sequence
<223> Homo sapiens and Human immunodeficiency virus type 1
<400> 80
Met Ala Thr Glu Glu Phe Ile Ile Arg Ile Pro Pro Tyr His Tyr Ile
                5
                                                        15
His Val Leu Asp Gln Asn Ser Asn Val Ser Arg Val Glu Val Gly Pro
            20
                                25
Lys Thr Tyr Ile Arg Gln Asp Asn Glu Arg Val Leu Phe Ala Pro Met
Arg Met Val Thr Val Pro Pro Arg His Tyr Cys Thr Val Ala Asn Pro
Val Ser Arg Asp Ala Gln Gly Leu Val Leu Phe Asp Val Thr Gly Gln
                                                            80
Val Arg Leu Arg His Ala Asp Leu Glu Ile Arg Leu Ala Gln Asp Pro
                85
                                   90
```

110

Phe Pro Leu Tyr Pro Gly Glu Val Leu Glu Lys Asp Ile Thr Pro Leu

105

100

Gln Val Val Leu Pro Asn Thr Ala Leu His Leu Lys Ala Leu Leu Asp 115 120 125

Phe Glu Asp Lys Asp Gly Asp Lys Val Val Ala Gly Asp Glu Trp Leu 130 135 140

Phe Glu Gly Pro Gly Thr Tyr Ile Pro Arg Lys Glu Val Glu Val Val 145 150 155 160

Glu Ile Ile Gln Ala Thr Ile Ile Arg Gln Asn Gln Ala Leu Arg Leu 165 170 175

Arg Ala Arg Lys Glu Cys Trp Asp Arg Asp Gly Lys Glu Arg Val Thr 180 185 190

Gly Glu Glu Trp Leu Val Thr Thr Val Gly Ala Tyr Leu Pro Ala Val 195 200 205

Phe Glu Glu Val Leu Asp Leu Val Asp Ala Val Ile Leu Thr Glu Lys 210 215 220

Thr Ala Leu His Leu Arg Ala Arg Arg Asn Phe Arg Asp Phe Arg Gly 225 230 235 240

Val Ser Arg Arg Thr Gly Glu Glu Trp Leu Val Thr Val Gln Asp Thr 245 250 255

Glu Ala His Val Pro Asp Val His Glu Glu Val Leu Gly Val Val Pro 260 265 270

Ile Thr Thr Leu Gly Pro His Asn Tyr Cys Val Ile Leu Asp Pro Val 275 280 285

Gly Pro Asp Gly Lys Asn Gln Leu Gly Gln Lys Arg Val Val Lys Gly 290 295 300

Glu Lys Ser Phe Phe Leu Gln Pro Gly Glu Gln Leu Glu Gln Gly Ile 305 310 315 320

Gln Asp Val Tyr Val Leu Ser Glu Gln Gln Gly Leu Leu Leu Arg Ala 325 330 335

Leu Gln Pro Leu Glu Glu Gly Glu Asp Glu Glu Lys Val Ser His Gln 340 345 350

Ala Gly Asp His Trp Leu Ile Arg Gly Pro Leu Glu Tyr Val Pro Ser 355 360 365

- Ala Lys Val Glu Val Val Glu Glu Arg Gln Ala Ile Pro Leu Asp Glu 370 375 380
- Asn Glu Gly Ile Tyr Val Gln Asp Val Lys Thr Gly Lys Val Arg Ala 385 390 395 400
- Val Ile Gly Ser Thr Tyr Met Leu Thr Gln Asp Glu Val Leu Trp Glu 405 410 415
- Lys Glu Leu Pro Pro Gly Val Glu Glu Leu Leu Asn Lys Gly Gln Asp 420 425 430
- Pro Leu Ala Asp Arg Gly Glu Lys Asp Thr Ala Lys Ser Leu Gln Pro 435 440 445
- Leu Ala Pro Arg Asn Lys Thr Arg Val Val Ser Tyr Arg Val Pro His 450 455 460
- Asn Ala Ala Val Gln Val Tyr Asp Tyr Arg Glu Lys Arg Ala Arg Val 465 470 475 480
- Val Phe Gly Pro Glu Leu Val Ser Leu Gly Pro Glu Glu Gln Phe Thr 485 490 495
- Val Leu Ser Leu Ser Ala Gly Arg Pro Lys Arg Pro His Ala Arg Arg 500 505 510
- Ala Leu Cys Leu Leu Leu Gly Pro Asp Phe Phe Thr Asp Val Ile Thr 515 520 525
- Ile Glu Thr Ala Asp His Ala Arg Leu Gln Leu Gln Leu Ala Tyr Asn 530 535 540
- Trp His Phe Glu Val Asn Asp Arg Lys Asp Pro Gln Glu Thr Ala Lys 545 550 555 560
- Leu Phe Ser Val Pro Asp Phe Val Gly Asp Ala Cys Lys Ala Ile Ala 565 570 575
- Ser Arg Val Arg Gly Ala Val Ala Ser Val Thr Phe Asp Asp Phe His

580 585 590

Lys Asn Ser Ala Arg Ile Ile Arg Thr Ala Val Phe Gly Phe Glu Thr 595 600 605

Ser Glu Ala Lys Gly Pro Asp Gly Met Ala Leu Pro Arg Pro Arg Asp 610 615 620

Gln Ala Val Phe Pro Gln Asn Gly Leu Val Val Ser Ser Val Asp Val 625 630 635 640

Gln Ser Val Glu Pro Val Asp Gln Arg Thr Arg Asp Ala Leu Gln Arg 645 650 655

Ser Val Gln Leu Ala Ile Glu Ile Thr Thr Asn Ser Gln Glu Ala Ala 660 665 670

Ala Lys His Glu Ala Gln Arg Leu Glu Gln Glu Ala Arg Gly Arg Leu 675 680 685

Glu Arg Gln Lys Ile Leu Asp Gln Ser Glu Ala Glu Lys Ala Arg Lys 690 695 700

Glu Leu Leu Glu Leu Glu Ala Leu Ser Met Ala Val Glu Ser Thr Gly 705 710 715 720

Thr Ala Lys Ala Glu Ala Glu Ser Arg Ala Glu Ala Ala Arg Ile Glu
725 730 735

Gly Glu Gly Ser Val Leu Gln Ala Lys Leu Lys Ala Gln Ala Leu Ala 740 745 750

Ile Glu Thr Glu Ala Glu Leu Gln Arg Val Gln Lys Val Arg Glu Leu 755 760 765

Glu Leu Val Tyr Ala Arg Ala Gln Leu Glu Leu Glu Val Ser Lys Ala 770 775 780

Gln Gln Leu Ala Glu Val Glu Val Lys Lys Phe Lys Gln Met Thr Glu
785 790 795 800

Ala Ile Gly Pro Ser Thr Ile Arg Asp Leu Ala Val Ala Gly Pro Glu 805 810 815

Met Gln Val Lys Leu Leu Gln Ser Leu Gly Leu Lys Ser Thr Leu Ile 820 825 830

Thr Asp Gly Ser Thr Pro Ile Asn Leu Phe Asn Thr Ala Phe Gly Leu 835 840 845

Leu Gly Met Gly Pro Glu Gly Gln Pro Leu Gly Arg Arg Val Ala Ser 850 855 860

Gly Pro Ser Pro Gly Glu Gly Ile Ser Pro Gln Ser Ala Gln Ala Pro 865 870 875 880

Gln Ala Pro Gly Asp Asn His Val Val Pro Val Leu Arg Tyr Gly Arg 885 890 895

Lys Lys Arg Arg Gln Arg Arg Arg 900

<210> 81

<211> 2715

<212> DNA

<213> Artificial Sequence

<220>

<223> Homo sapiens and Human immunodeficiency virus type 1

<400> 81

atggcaactg aagagttcat catccgcatc cccccatacc actatatcca tgtgctgqac 60 cagaacagca acgtgtcccg tgtggaggtc gggccaaaga cctacatccg gcaqqacaat 120 gagagggtac tgtttgcccc catgcgcatg gtgaccgtcc ccccacgtca ctactgcaca 180 gtggccaacc ctgtgtctcg ggatgcccag ggcttggtgc tgtttgatgt cacaqqqcaa 240 gtteggette gecaegetga cetegagate eggetggeee aggacecett ecceetgtae 300 ccaggggagg tgctggaaaa ggacatcaca cccctgcagg tggttctgcc caacactgcc 360 ctccatctaa aggcgctgct tgattttgag gataaagatg gagacaaggt ggtggcagga 420 gatgagtggc ttttcgaggg acctggcacg tacatccccc ggaaggaagt ggaggtcgtg 480 gagatcattc aggccaccat catcaggcag aaccaggctc tgcggctcag ggcccgcaag 540 gagtgctggg accgggacgg caaggagagg gtgacagggg aagaatggct ggtcaccaca 600 gtagggggt acctcccagc ggtgtttgag gaggttctgg atttggtgga cgccgtcatc 660 cttacggaaa agacagccct gcacctccgg gctcggcgga acttccggga cttcagggga 720 gtgtcccgcc gcactgggga ggagtggctg gtaacagtgc aggacacaga ggcccacgtg 780

ccagatgtcc acgaggaggt	gctgggggtt	gtgcccatca	ccaccctggg	ccccacaac	840
tactgcgtga ttctcgaccc	tgtcggaccg	gatggcaaga	atcagctggg	gcagaagcgc	900
gtggtcaagg gagagaagtc	ttttttcctc	cagccaggag	agcagctgga	acaaggcatc	960
caggatgtgt atgtgctgtc	ggagcagcag	gggctgctgc	tgagggccct	gcagcccctg	1020
gaggaggggg aggatgagga	gaaggtctca	caccaggctg	gggaccactg	gctcatccgc	1080
ggacccctgg agtatgtgcc	atctgccaaa	gtggaggtgg	tggaggagcg	ccaggccatc	1140
cctctagacg agaacgaggg	catctatgtg	caggatgtca	agaccggaaa	ggtgcgcgct	1200
gtgattggaa gcacctacat	gctgacccag	gacgaagtcc	tgtgggagaa	agagetgeet	1260
cccggggtgg aggagctgct	gaacaagggg	caggaccctc	tggcagacag	gggtgagaag	1320
gacacagcta agagcctcca	gecettggeg	ccccggaaca	agacccgtgt	ggtcagctac	1380
cgcgtgcccc acaacgctgc	ggtgcaggtg	tacgactacc	gagagaagcg	agcccgcgtg	1440
gtcttcgggc ctgagctggt	gtcgctgggt	cctgaggagc	agttcacagt	gttgtccctc	1500
tcagctgggc ggcccaagcg	tececatgee	cgccgtgcgc	tctgcctgct	gctggggcct	1560
gacttcttca cagacgtcat	caccatcgaa	acggcggatc	atgccaggct	gcaactgcag	1620
ctggcctaca actggcactt	: tgaggtgaat	gaccggaagg	acccccaaga	gacggccaag	1680
ctcttttcag tgccagactt	: tgtaggtgat	gcctgcaaag	ccatcgcatc	ccgggtgcgg	1740
ggggccgtgg cctctgtcac	tttcgatgac	ttccataaga	actcagcccg	catcattcgc	1800
actgctgtct ttggctttga	a gacctcggaa	gcgaagggcc	ccgatggcat	ggccctgccc	1860
aggccccggg accaggctgt	cttcccccaa	aacgggctgg	tggtcagcag	tgtggacgtg	1920
cagtcagtgg agcctgtgga	a tcagaggacc	cgggacgccc	tgcaacgcag	cgtccagctg	1980
gccatcgaga tcaccaccaa	a ctcccaggaa	gcggcggcca	agcatgaggc	tcagagactg	2040
gagcaggaag cccgcggcc	g gcttgagcgg	cagaagatcc	tggaccagto	agaagccgag	2100
aaagctcgca aggaacttt	ggagctggag	gctctgagca	tggccgtgga	gagcaccggg	2160
actgccaagg cggaggccg	a gtcccgtgcg	gaggcagccc	ggattgaggg	agaagggtcc	2220
gtgctgcagg ccaagctaa	a agcacaggco	ttggccattg	aaacggaggc	tgagctccag	2280
agggtccaga aggtccgag	a gctggaactg	gtctatgccc	gggcccagct	ggagetggag	2340
gtgagcaagg ctcagcagc	t ggctgaggtg	gaggtgaaga	agttcaagca	gatgacagag	2400
gccataggcc ccagcacca	t cagggacctt	gctgtggctg	ggcctgagat	gcaggtaaaa	2460
ctgctccagt ccctgggcc	t gaaatcaacc	ctcatcaccg	atggctccac	tcccatcaac	2520

ctcttcaaca cagcetttgg getgetgggg atggggeceg agggteagee cetgggeaga 2580
agggtggeca gtgggeceag ceetggggag gggatatece eccagtetge teaggeceet 2640
caageteetg gagacaacca egtggtgeet gtactgeget aegggeggaa gaageggega 2700
cagaggegae ggtga 2715

<210> 82

<211> 872

<212> PRT

<213> Artificial Sequence

<220>

<223> Rattus norvegicus and Human immunodeficiency virus type 1

<400> 82

Met Ala Thr Glu Glu Ala Ile Ile Arg Ile Pro Pro Tyr His Tyr Ile 1 5 10 15

His Val Leu Asp Gln Asn Ser Asn Val Ser Arg Val Glu Val Gly Pro 20 25 30

Lys Thr Tyr Ile Arg Gln Asp Asn Glu Arg Val Leu Phe Ala Pro Val 35 40 45

Arg Met Val Thr Val Pro Pro Arg His Tyr Cys Ile Val Ala Asn Pro 50 55 60

Val Ser Arg Asp Thr Gln Ser Ser Val Leu Phe Asp Ile Thr Gly Gln 65 70 75 80

Val Arg Leu Arg His Ala Asp Gln Glu Ile Arg Leu Ala Gln Asp Pro 85 90 95

Phe Pro Leu Tyr Pro Gly Glu Val Leu Glu Lys Asp Ile Thr Pro Leu 100 105 110

Gln Val Val Leu Pro Asn Thr Ala Leu His Leu Lys Ala Leu Leu Asp 115 120 125

Phe Glu Asp Lys Asn Gly Asp Lys Val Met Ala Gly Asp Glu Trp Leu 130 135 140

Phe Glu Gly Pro Gly Thr Tyr Ile Pro Gln Lys Glu Val Glu Val Val 145 150 155 160

Glu Ile Ile Gln Ala Thr Val Ile Lys Gln Asn Gln Ala Leu Arg Leu 165 170 175

- Arg Ala Arg Lys Glu Cys Phe Asp Arg Glu Gly Lys Gly Arg Val Thr 180 185 . 190
- Gly Glu Glu Trp Leu Val Arg Ser Val Gly Ala Tyr Leu Pro Ala Val 195 200 205
- Phe Glu Glu Val Leu Asp Leu Val Asp Ala Val Ile Leu Thr Glu Lys 210 215 220
- Thr Ala Leu His Leu Arg Ala Leu Gln Asn Phe Arg Asp Leu Arg Gly 225 230 235 240
- Val Leu His Arg Thr Gly Glu Glu Trp Leu Val Thr Val Gln Asp Thr 245 250 255
- Glu Ala His Val Pro Asp Val Tyr Glu Glu Val Leu Gly Val Val Pro 260 265 270
- Ile Thr Thr Leu Gly Pro Arg His Tyr Cys Val Ile Leu Asp Pro Met 275 280 285
- Gly Pro Asp Gly Lys Asn Gln Leu Gly Gln Lys Arg Val Val Lys Gly
- Glu Lys Ser Phe Phe Leu Gln Pro Gly Glu Arg Leu Glu Arg Gly Ile 305 310 315 320
- Gln Asp Val Tyr Val Leu Ser Glu Gln Gln Gly Leu Leu Leu Lys Ala 325 330 335
- Leu Gln Pro Leu Glu Glu Gly Glu Ser Glu Glu Lys Val Ser His Gln 340 345 350
- Ala Gly Asp Cys Trp Leu Ile Arg Gly Pro Leu Glu Tyr Val Pro Ser 355 360 365
- Ala Lys Val Glu Val Val Glu Glu Arg Gln Ala Ile Pro Leu Asp Gln 370 375 380
- Asn Glu Gly Ile Tyr Val Gln Asp Val Lys Thr Gly Lys Val Arg Ala 385 390 395 400

Val Ile Gly Ser Thr Tyr Met Leu Thr Gln Asp Glu Val Leu Trp Glu 405 410 415

- Lys Glu Leu Pro Ser Gly Val Glu Glu Leu Leu Asn Leu Gly His Asp 420 425 430
- Pro Leu Ala Asp Arg Gly Gln Lys Gly Thr Ala Lys Pro Leu Gln Pro
 435 440 445
- Ser Ala Pro Arg Asn Lys Thr Arg Val Val Ser Tyr Arg Val Pro His 450 455 460
- Asn Ala Ala Val Gln Val Tyr Asp Tyr Arg Ala Lys Arg Ala Arg Val 465 470 475 480
- Val Phe Gly Pro Glu Leu Val Thr Leu Asp Pro Glu Glu Gln Phe Thr 485 490 495
- Val Leu Ser Leu Ser Ala Gly Arg Pro Lys Arg Pro His Ala Arg Arg 500 505 510
- Ala Leu Cys Leu Leu Gly Pro Asp Phe Phe Thr Asp Val Ile Thr 515 520 525
- Ile Glu Thr Ala Asp His Ala Arg Leu Gln Leu Gln Leu Ala Tyr Asn 530 535 540
- Trp His Phe Glu Leu Lys Asn Arg Asn Asp Pro Ala Glu Ala Ala Lys 545 550 555 560
- Leu Phe Ser Val Pro Asp Phe Val Gly Asp Ala Cys Lys Ala Ile Ala 565 570 575
- Ser Arg Val Arg Gly Ala Val Ala Ser Val Thr Phe Asp Asp Phe His 580 585 590
- Lys Asn Ser Ala Arg Ile Ile Arg Met Ala Val Phe Gly Phe Glu Met 595 600 605
- Ser Glu Asp Thr Gly Pro Asp Gly Thr Leu Leu Pro Lys Ala Arg Asp 610 615 620
- Gln Ala Val Phe Pro Gln Asn Gly Leu Val Val Ser Ser Val Asp Val

625					630					635					640
Gln	Ser	Val	Glu	Pro 645	Val	Asp	Gln	Arg	Thr 650	Arg	Asp	Ala	Leu	Gln 655	Arg
ser	Val	Gln	Leu 660	Ala	Ile	Glu	Ile	Thr 665	Thr	Asn	Ser	Gln	Glu 670	Ala	Ala
Ala	ŗys	675	Glu	Ala	Gln	Arg	Leu 680	Glu	Gln	Glu	Ala	Arg 685	Gly	Arg	Leu
Glu	Arg 690	Gln	Lys	Ile	Leu	Asp 695	Gln	Ser	Glu	Ala	Glu 700	Lys	Ala	Arg	Lys
Glu 705	Leu	Leu	Glu	Leu	Glu 710	Ala	Met	Ser	Met	Ala 715	Val	Glu	Ser	Thr	Gly 720
Asn	Ala	ГЛя	Ala	Glu 725	Ala	Glu	Ser	Arg	Ala 730	Glu	Ala	Ala	Arg	Ile 735	Glu
Gly	Glu	Gly	Ser 740	Val	Leu	Gln	Ala	Lys 745	Leu	Lys	Ala	Gln	Ala 750	Leu	Ala
Ile	Glu	Thr 755	Glu	Ala	Glu	Leu	Glu 760	Arg	Val	Lys	Lys	Val 765	Arg	Glu	Met
Glu	Leu 770	Ile	Tyr	Ala	Arg	Ala 775	Gln	Leu	Glu	Leu	Glu 780	Val	Ser	Lys	Ala
Gln 785		Leu	Ala	Asn	Val 790	Glu	Ala	Lys	Lys	Phe 795	Lys	Glu	Met	Thr	Glu 800
Ala	Leu	Gly	Pro	Gly 805		Ile	Arg	Asp	Leu 810		Val	Ala	Gly	Pro 815	Glu
Met	Gln	Val	Lys 820		Leu	Gln	Ser	Leu 825		Leu	Lys	Ser	Thr 830		Ile
Thr	Asp	Gly 835		Ser	Pro	Ile	Asn 840		Phe	s Ser	Thr	Ala 845		Gly	Leu
Leu	Gly 850		Gly	Ser	· Asp	Gly 855		. Pro	Pro) Ala	Gln 860		Tyr	Gly	Arg

Lys Lys Arg Arg Gln Arg Arg Arg 865 870

<210> 83 <211> 2619 <212> DNA

<213> Artificial Sequence

<220>

<223> Rattus norvegicus and Human immunodeficiency virus type 1

<400> 83 atggcaactg aagaggccat catccgcatc cccccatacc actacatcca tgtgctggac 60 cagaacagta atgtgtcccg tgtggaggtt ggaccaaaga cctacatccg gcaggacaat 120 gagagggtac tgtttgcccc agttcgcatg gtgaccgtcc ccccacgcca ctactgcata 180 gtggccaacc ctgtgtccog ggacacccag agttctgtgt tatttgacat cacaggacaa 240 gtccgactcc ggcacgctga ccaggagatc cgactagccc aggacccctt ccccctgtat 300 ccaggggagg tgctggaaaa ggacatcacc ccactgcagg tggttctgcc caacacagca 360 ctgcatctta aggcgttgct ggactttgag gataagaatg gagacaaggt catggcagga 420 gacgagtggc tatttgaggg acctggcacc tacatcccac agaaggaagt ggaagtcgtg 480 gagatcattc aggccacagt catcaaacag aaccaagcac tgcggctaag ggcccgaaag 540 gagtgctttg accgggaggg caaggggcgc gtgacaggtg aggagtggct ggtccgatcc 600 gtgggggctt acctcccagc tgtctttgaa gaggtgctgg atctggtgga tgctgtgatc 660 cttacagaaa agactgccct gcacctccgg gctctgcaga acttcaggga ccttcgggga 720 gtgctccacc gcaccgggga ggaatggtta gtgacagtgc aggacacaga agcccatgtt 780 ccagatgtct atgaggaggt gcttggggta gtacccatca ccaccctggg acctcgacac 840 tactgtgtca ttcttgaccc aatgggacca gacggcaaga accagctggg acaaaagcgt 900 gttgtcaagg gagagaagtc ctttttcctc cagccaggag agaggctgga gcgaggcatc 960 caggatgtgt atgtgctgtc agagcagcag gggctgctac tgaaggcact gcagcccctg 1020 gaggagggag agagcgagga gaaggtctcc catcaggccg gagactgctg gctcatccgt 1080 gggcccctgg agtatgtgcc atctgcaaaa gtggaggtgg tggaggagcg tcaggctatc 1140 cctctggacc aaaatgaggg catctatgtg caggatgtca agacggggaa ggtgcgggct 1200 gtgattggaa gcacctacat gctgactcag gatgaagtcc tgtgggaaaa ggagctgcct 1260 tetggggtgg aggagetget gaacttgggg catgaceete tggcagacag gggtcagaag 1320 ggcacagcca agccccttca gccctcagct ccaaggaaca agacccgagt ggtcagctac 1380

PCT/US2004/007434 WO 2004/081533

cgtgtcccgc	acaatgcagc	ggtgcaggtc	tatgactaca	gagccaagag	agcccgtgtg	1440
gtctttgggc	ccgagctagt	gacactggat	cctgaggagc	agttcacagt	attgtccctt	1500
tetgeeggge	gacccaagcg	tcctcatgcc	cgccgtgcac	tctgcctact	gctgggacct	1560
gatttcttta	ctgatgtcat	caccatcgaa	actgcagatc	atgccaggtt	gcagctgcag	1620
cttgcctaca	actggcactt	tgaactgaag	aaccggaatg	accctgcaga	ggcagccaag	1680
cttttctccg	tgcctgactt	cgtgggtgac	gcctgcaagg	ccattgcatc	ccgagtccgg	1740
ggggctgtag	cetetgtcae	ctttgatgac	ttccataaaa	actcagcccg	gatcattcga	1800
atggctgttt	ttggctttga	gatgtctgaa	gacacaggtc	ctgatggcac	actcctgccc	1860
aaggctcgag	accaggcagt	ctttccccaa	aacgggctgg	tagtcagcag	tgtggatgtg	1920
cagtcagtgg	agcccgtgga	ccagaggacc	cgggatgccc	ttcagcgcag	cgttcagctg	1980
gccatcgaaa	ttaccaccaa	ctcccaggag	gcagcagcca	agcacgaggc	tcagagactg	2040
gaacaggaag	cccgtggtcg	gcttgagagg	cagaagatct	tggaccagtc	agaagctgaa	2100
aaagcccgca	aggaactctt	ggagcttgag	gctatgagca	tggctgtgga	gagcacgggt	2160
aatgccaaag	cagaggctga	gtcccgtgca	gaggcagcga	ggatcgaagg	agaaggctct	2220
gtgctgcagg	ccaagctcaa	ggcacaggcg	ctagccattg	agacggaggc	tgagttggag	2280
cgagtaaaga	aagtacgaga	gatggaactg	atctatgccc	gggcccagtt	ggagctggag	2340
gtgagcaagg	cgcagcagct	tgccaatgtg	gaggcaaaga	agttcaagga	gatgacagag	2400
gcactgggcc	ccggcaccat	cagggacctg	gctgtggccg	ggccagagat	gcaggtgaaa	2460
cttctccagt	ceetgggeet	gaaatccact	ctcatcaccg	atggctcgtc	tcccatcaac	2520
ctcttcagca	cageettegg	gttgctgggg	ctggggtctg	atggtcagcc	gccagcacag	2580
aagtacgggc	ggaagaagcg	gcgacagagg	cgacggtga			2619

```
<210> 84
```

Asp Ile Val Leu Thr Gln Ser Pro Ala Ser Leu Ala Val Ser Leu Gly 10 5

Gln Arg Ala Thr Met Ser Cys Arg Ala Gly Glu Ser Val Asp Ile Phe

<211> 179 <212> PRT

<213> Artificial Sequence

<220>

<223> completely synthesized

<400> 84

20 25 30

Gly Val Gly Phe Leu His Trp Tyr Gln Gln Lys Pro Gly Gln Pro Pro 35 40 45

Lys Leu Leu Ile Tyr Arg Ala Ser Asn Leu Glu Ser Gly Ile Pro Val 50 55 60

Arg Phe Ser Gly Thr Gly Ser Arg Thr Asp Phe Thr Leu Ile Ile Asp 65 70 75 80

Pro Val Glu Ala Asp Asp Val Ala Thr Tyr Tyr Cys Gln Gln Thr Asn 85 90 95

Glu Asp Pro Tyr Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys Gly 100 105 110

Ser Thr Ser Gly Gly Gly Ser Gly Gly Gly Gly Gly Gly Ser 115 120 125

Ser Glu Val Gln Leu Gln Gln Ser Gly Ala Glu Leu Val Glu Pro Gly 130 135 140

Ala Ser Val Lys Leu Ser Cys Thr Ala Ser Gly Phe Asn Ile Lys Asp 145 150 155 160

Thr Tyr Met His Trp Val Lys Gln Arg Pro Glu Gln Gly Leu Glu Trp 165 170 175

Ile Gly Arg

<210> 85

<211> 747

<212> DNA

<213> Artificial Sequence

<220>

<223> completely synthesized

<400> 85

gacattgtgc tgacccaatc tccagcttct ttggctgtgt ctcttgggca gagggccacc 60
atgtcctgca gagccggtga aagtgttgat atttttggcg ttgggttttt gcactggtac 120
cagcagaaac caggacagcc acccaaactc ctcatctatc gtgcatccaa cctagaatct 180

gggatecetg teaggtteag tggcaetggg tetaggaeag aetteaceet cateattgat 240 cctgtggagg ctgatgatgt tgccacctat tactgtcagc aaactaatga ggatccgtac 300 acgttcggag gggggaccaa gctggaaata aaaggcagta ctagcggcgg tggctccggg 360 ggcggttccg gtgggggcgg cagcagcgag gttcagctac aacagtctgg ggcagagctt 420 gtggagccag gggcctcagt caagttgtcc tgcacagctt ctggcttcaa cattaaagac 480 acctatatgc actgggtgaa gcagaggcct gaacagggcc tggaatggat tggaaggatt 540 gatectgega atggtaatag taaatatgte eegaagttee agggeaagge caetataaca 600 gcagacacat cttccaacac agcctacctg cagctcacca gcctgacatc tgaggacact 660 gccgtctatt attgtgctcc gtttggttac tacgtgtctg actatgctat ggcctactgg 720 747 ggtcaaggaa cctcagtcac cgtctcg

<210> 86

<211> 1072

<212> PRT

<213> Artificial Sequence

<220>

<223> synthesized and Homo sapiens

<400> 86

Met Ala Thr Glu Glu Phe Ile Ile Arg Ile Pro Pro Tyr His Tyr Ile 1 5 10 15

His Val Leu Asp Gln Asn Ser Asn Val Ser Arg Val Glu Val Gly Pro 20 25 30

Lys Thr Tyr Ile Arg Gln Asp Asn Glu Arg Val Leu Phe Ala Pro Met 35 40 45

Arg Met Val Thr Val Pro Pro Arg His Tyr Cys Thr Val Ala Asn Pro 50 55 60

Val Ser Arg Asp Ala Gln Gly Leu Val Leu Phe Asp Val Thr Gly Gln 65 70 75 80

Val Arg Leu Arg His Ala Asp Leu Glu Ile Arg Leu Ala Gln Asp Pro 85 90 95

Phe Pro Leu Tyr Pro Gly Glu Val Leu Glu Lys Asp Ile Thr Pro Leu 100 105 110

Gln Val Val Leu Pro Asn The Ala Leu His Leu Lys Ala Leu Leu Asp 115 120 125

Phe Glu Asp Lys Asp Gly Asp Lys Val Val Ala Gly Asp Glu Trp Leu 130 135 140

Phe Glu Gly Pro Gly Thr Tyr Ile Pro Arg Lys Glu Val Glu Val Val 145 150 155 160

Glu Ile Ile Gln Ala Thr Ile Ile Arg Gln Asn Gln Ala Leu Arg Leu 165 170 175

Arg Ala Arg Lys Glu Cys Trp Asp Arg Asp Gly Lys Glu Arg Val Thr 180 185 190

Gly Glu Glu Trp Leu Val Thr Thr Val Gly Ala Tyr Leu Pro Ala Val 195 200 205

Phe Glu Glu Val Leu Asp Leu Val Asp Ala Val Ile Leu Thr Glu Lys 210 215 220

Thr Ala Leu His Leu Arg Ala Arg Arg Asn Phe Arg Asp Phe Arg Gly 225 230 235 240

Val Ser Arg Arg Thr Gly Glu Glu Trp Leu Val Thr Val Gln Asp Thr 245 250 255

Glu Ala His Val Pro Asp Val His Glu Glu Val Leu Gly Val Val Pro 260 265 270

Ile Thr Thr Leu Gly Pro His Asn Tyr Cys Val Ile Leu Asp Pro Val 275 280 285

Gly Pro Asp Gly Lys Asn Gln Leu Gly Gln Lys Arg Val Val Lys Gly 290 295 300

Glu Lys Ser Phe Phe Leu Gln Pro Gly Glu Gln Leu Glu Gln Gly Ile 305 310 315 320

Gln Asp Val Tyr Val Leu Ser Glu Gln Gln Gly Leu Leu Leu Arg Ala 325 330 335

Leu Gln Pro Leu Glu Glu Gly Glu Asp Glu Glu Lys Val Ser His Gln 340 345 350

Ala Gly Asp His Trp Leu Ile Arg Gly Pro Leu Glu Tyr Val Pro Ser 355 360 365

- Ala Lys Val Glu Val Val Glu Glu Arg Gln Ala Ile Pro Leu Asp Glu 370 375 380
- Asn Glu Gly Ile Tyr Val Gln Asp Val Lys Thr Gly Lys Val Arg Ala 385 390 395 400
- Val Ile Gly Ser Thr Tyr Met Leu Thr Gln Asp Glu Val Leu Trp Glu 405 410 415
- Lys Glu Leu Pro Pro Gly Val Glu Glu Leu Leu Asn Lys Gly Gln Asp 420 425 430
- Pro Leu Ala Asp Arg Gly Glu Lys Asp Thr Ala Lys Ser Leu Gln Pro 435 440 445
- Leu Ala Pro Arg Asn Lys Thr Arg Val Val Ser Tyr Arg Val Pro His 450 455 460
- Asn Ala Ala Val Gln Val Tyr Asp Tyr Arg Glu Lys Arg Ala Arg Val 465 470 475 480
- Val Phe Gly Pro Glu Leu Val Ser Leu Gly Pro Glu Glu Gln Phe Thr 485 490 495
- Val Leu Ser Leu Ser Ala Gly Arg Pro Lys Arg Pro His Ala Arg Arg
 500 505 510
- Ala Leu Cys Leu Leu Gly Pro Asp Phe Phe Thr Asp Val Ile Thr 515 520 525
- Ile Glu Thr Ala Asp His Ala Arg Leu Gln Leu Gln Leu Ala Tyr Asn 530 535 540
- Trp His Phe Glu Val Asn Asp Arg Lys Asp Pro Gln Glu Thr Ala Lys 545 550 555 560
- Leu Phe Ser Val Pro Asp Phe Val Gly Asp Ala Cys Lys Ala Ile Ala 565 570 575
- Ser Arg Val Arg Gly Ala Val Ala Ser Val Thr Phe Asp Asp Phe His

580 585 590

Lys Asn Ser Ala Arg Ile Ile Arg Thr Ala Val Phe Gly Phe Glu Thr 595 600 605

Ser Glu Ala Lys Gly Pro Asp Gly Met Ala Leu Pro Arg Pro Arg Asp 610 615 620

Gln Ala Val Phe Pro Gln Asn Gly Leu Val Val Ser Ser Val Asp Val 625 630 635 640

Gln Ser Val Glu Pro Val Asp Gln Arg Thr Arg Asp Ala Leu Gln Arg 645 650 655

Ser Val Gln Leu Ala Ile Glu Ile Thr Thr Asn Ser Gln Glu Ala Ala 660 665 670

Ala Lys His Glu Ala Gln Arg Leu Glu Glu Glu Ala Arg Gly Arg Leu 675 680 685

Glu Arg Gln Lys Ile Leu Asp Gln Ser Glu Ala Glu Lys Ala Arg Lys 690 695 700

Glu Leu Leu Glu Leu Glu Ala Leu Ser Met Ala Val Glu Ser Thr Gly
705 710 715 720

Thr Ala Lys Ala Glu Ala Glu Ser Arg Ala Glu Ala Ala Arg Ile Glu
725 730 735

Gly Glu Gly Ser Val Leu Gln Ala Lys Leu Lys Ala Gln Ala Leu Ala 740 745 750

Ile Glu Thr Glu Ala Glu Leu Gln Arg Val Gln Lys Val Arg Glu Leu
755 760 765

Glu Leu Val Tyr Ala Arg Ala Gln Leu Glu Leu Glu Val Ser Lys Ala 770 775 780

Gln Gln Leu Ala Glu Val Glu Val Lys Lys Phe Lys Gln Met Thr Glu
785 790 795 800

Ala Ile Gly Pro Ser Thr Ile Arg Asp Leu Ala Val Ala Gly Pro Glu 805 810 815

Met Gln Val Lys Leu Leu Gln Ser Leu Gly Leu Lys Ser Thr Leu Ile 820 825 830

- Thr Asp Gly Ser Thr Pro Ile Asn Leu Phe Asn Thr Ala Phe Gly Leu 835 840 845
- Leu Gly Met Gly Pro Glu Gly Gln Pro Leu Gly Arg Arg Val Ala Ser 850 855 860
- Gly Pro Ser Pro Gly Glu Gly Ile Ser Pro Gln Ser Ala Gln Ala Pro 865 870 875 880
- Gln Ala Pro Gly Asp Asn His Val Val Pro Val Leu Arg Asp Ile Val 885 890 895
- Leu Thr Gln Ser Pro Ala Ser Leu Ala Val Ser Leu Gly Gln Arg Ala 900 905 910
- Thr Met Ser Cys Arg Ala Gly Glu Ser Val Asp Ile Phe Gly Val Gly 915 920 925
- Phe Leu His Trp Tyr Gln Gln Lys Pro Gly Gln Pro Pro Lys Leu Leu 930 935 940
- Ile Tyr Arg Ala Ser Asn Leu Glu Ser Gly Ile Pro Val Arg Phe Ser 945 950 955 960
- Gly Thr Gly Ser Arg Thr Asp Phe Thr Leu Ile Ile Asp Pro Val Glu 965 970 975
- Ala Asp Asp Val Ala Thr Tyr Tyr Cys Gln Gln Thr Asn Glu Asp Pro 980 985 990
- Tyr Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys Gly Ser Thr Ser 995 1000 1005
- Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly Gly Ser Ser Glu 1010 1015 1020
- Val Gln Leu Gln Gln Ser Gly Ala Glu Leu Val Glu Pro Gly Ala 1025 1030 1035
- Ser Val Lys Leu Ser Cys Thr Ala Ser Gly Phe Asn Ile Lys Asp 1040 1045 1050

Thr Tyr Met His Trp Val Lys Gln Arg Pro Glu Gln Gly Leu Glu 1055 1060 1065

Trp Ile Gly Arg 1070

<210> 87

<211> 3429

<212> DNA

<213> Artificial Sequence

<220>

<223> synthesized and Homo sapiens

<400> 87 atggcaactg aagagttcat catccgcatc cccccatacc actatatcca tgtgctggac 60 cagaacagca acgtgtcccg tgtggaggtc gggccaaaga cctacatccg gcaggacaat 120 gagagggtac tgtttgcccc catgcgcatg gtgaccgtcc ccccacgtca ctactgcaca 180 gtggccaacc ctgtgtctcg ggatgcccag ggcttggtgc tgtttgatgt cacagggcaa 240 gttcggcttc gccacgctga cctcgagatc cggctggccc aggacccctt ccccctgtac 300 ccaggggagg tgctggaaaa ggacatcaca cccctgcagg tggttctgcc caacactgcc 360 ctccatctaa aggcgctgct tgattttgag gataaagatg gagacaaggt ggtggcagga 420 gatgagtggc ttttcgaggg acctggcacg tacatccccc ggaaggaagt ggaggtcgtg 480 gagatcattc aggccaccat catcaggcag aaccaggctc tgcggctcag ggcccgcaag 540 gagtgctggg accgggacgg caaggagagg gtgacagggg aagaatggct ggtcaccaca 600 gtagggggt acctcccagc ggtgtttgag gaggttctgg atttggtgga cgccgtcatc 660 cttacggaaa agacagccct gcacctccgg gctcggcgga acttccgggga cttcagggga 720 gtgtcccgcc gcactgggga ggagtggctg gtaacagtgc aggacacaga ggcccacgtg 780 ccagatgtcc acgaggaggt gctgggggtt gtgcccatca ccaccctggg cccccacaac 840 tactgcgtga ttctcgaccc tgtcggaccg gatggcaaga atcagctggg gcagaagcgc 900 gtggtcaagg gagagaagtc tttttcctc cagccaggag agcagctgga acaaggcatc 960 caggatgtgt atgtgctgtc ggagcagcag gggctgctgc tgagggccct gcagcccttg 1020

1080

1140

1200

gaggaggggg aggatgagga gaaggtetea caccaggetg gggaccaetg geteateege

ggacccctgg agtatgtgcc atctgccaaa gtggaggtgg tggaggagcg ccaggccatc

cctctagacg agaacgaggg catctatgtg caggatgtca agaccggaaa ggtgcgcgct

gtgattggaa	gcacctacat	gctgacccag	gacgaagtcc	tgtgggagaa	agagctgcct	1260
cccggggtgg	aggagctgct	gaacaagggg	caggaccctc	tggcagacag	gggtgagaag	1320
gacacagcta	agagcctcca	gcccttggcg	ccccggaaca	agacccgtgt	ggtcagctac	1380
cgcgtgcccc	acaacgctgc	ggtgcaggtg	tacgactacc	gagagaagcg	agcccgcgtg	1440
gtcttcgggc	ctgagctggt	gtcgctgggt	cctgaggagc	agttcacagt	gttgtccctc	1500
tcagctgggc	ggcccaagcg	tccccatgcc	cgccgtgcgc	tctgcctgct	gctggggcct	1560
gacttcttca	cagacgtcat	caccatcgaa	acggcggatc	atgccaggct	gcaactgcag	1620
ctggcctaca	actggcactt	tgaggtgaat	gaccggaagg	acccccaaga	gacggccaag	1680
ctcttttcag	tgccagactt	tgtaggtgat	gcctgcaaag	ccatcgcatc	ccgggtgcgg	1740
ggggccgtgg	cctctgtcac	tttcgatgac	ttccataaga	actcagcccg	catcattcgc	1800
actgctgtct	ttggctttga	gacctcggaa	gcgaagggcc	ccgatggcat	ggccctgccc	1860
aggccccggg	accaggctgt	cttcccccaa	aacgggctgg	tggtcagcag	tgtggacgtg	1920
cagtcagtgg	agcctgtgga	tcagaggacc	cgggacgccc	tgcaacgcag	cgtccagctg	1980
gccatcgaga	tcaccaccaa	ctcccaggaa	gcggcggcca	agcatgaggc	tcagagactg	2040
gagcaggaag	cccgcggccg	gcttgagcgg	cagaagatcc	tggaccagtc	agaagccgag	2100
aaagctcgca	aggaactttt	ggagctggag	gctctgagca	tggccgtgga	gagcaccggg	2160
actgccaagg	cggaggccga	gtcccgtgcg	gaggcagccc	ggattgaggg	agaagggtcc	2220
gtgctgcagg	ccaagctaaa	agcacaggcc	ttggccattg	aaacggaggc	tgagctccag	2280
agggtccaga	aggtccgaga	gctggaactg	gtctatgccc	gggcccagct	ggagctggag	2340
gtgagcaagg	ctcagcagct	ggctgaggtg	gaggtgaaga	agttcaagca	gatgacagag	2400
gccataggcc	ccagcaccat	cagggacctt	gctgtggctg	ggcctgagat	gcaggtaaaa	2460
ctgctccagt	ccctgggcct	gaaatcaacc	ctcatcaccg	atggctccac	tcccatcaac	2520
ctcttcaaca	cagcctttgg	gctgctgggg	atggggcccg	agggtcagcc	cctgggcaga	2580
agggtggcca	gtgggcccag	ccctggggag	gggatatccc	cccagtctgc	tcaggcccct	2640
caagctcctg	gagacaacca	cgtggtgcct	gtactgcgcg	acattgtgct	gacccaatct	2700
ccagcttctt	tggctgtgtc	tcttgggcag	agggccacca	tgtcctgcag	agccggtgaa	2760
agtgttgata	tttttggcgt	tgggtttttg	cactggtacc	agcagaaacc	aggacagcca	2820
cccaaactcc	tcatctatcg	tgcatccaac	ctagaatctg	ggatccctgt	caggttcagt	2880
ggcactgggt	ctaggacaga	cttcaccctc	atcattgatc	ctgtggaggc	tgatgatgtt	2940

					-	<i>V</i> .4
gccacctatt	actgtcagca	aactaatgag	gatccgtaca	cgttcggagg	ggggaccaag	3000
ctggaaataa	aaggcagtac	tagcggcggt	ggctccgggg	gcggttccgg	tgggggcggc	3060
agcagcgagg	ttcagctaca	acagtctggg	gcagagcttg	tggagccagg	ggcctcagtc	3120
aagttgtcct	gcacagcttc	tggcttcaac	attaaagaca	cctatatgca	ctgggtgaag	3180
cagaggcctg	aacagggcct	ggaatggatt	ggaaggattg	atcctgcgaa	tggtaatagt	3240
aaatatgtcc	cgaagttcca	gggcaaggcc	actataacag	cagacacatc	ttccaacaca	3300
gcctacctgc	agctcaccag	cctgacatct	gaggacactg	ccgtctatta	ttgtgctccg	3360
tttggttact	acgtgtctga	ctatgctatg	gcctactggg	gtcaaggaac	ctcagtcacc	3420
gtctcgtga						3429

<210> 88

<211> 1040

<212> PRT

<213> Artificial Sequence

<220>

<223> synthesized and Rattus norvegicus

<400> 88

Met Ala Thr Glu Glu Ala Ile Ile Arg Ile Pro Pro Tyr His Tyr Ile 1 5 10 15

His Val Leu Asp Gln Asn Ser Asn Val Ser Arg Val Glu Val Gly Pro 20 25 30

Lys Thr Tyr Ile Arg Gln Asp Asn Glu Arg Val Leu Phe Ala Pro Val 35 40 45

Arg Met Val Thr Val Pro Pro Arg His Tyr Cys Ile Val Ala Asn Pro 50 55 60

Val Ser Arg Asp Thr Gln Ser Ser Val Leu Phe Asp Ile Thr Gly Gln 65 70 75 80

Val Arg Leu Arg His Ala Asp Gln Glu Ile Arg Leu Ala Gln Asp Pro 85 90 95

Phe Pro Leu Tyr Pro Gly Glu Val Leu Glu Lys Asp Ile Thr Pro Leu 100 105 110

Gln Val Val Leu Pro Asn Thr Ala Leu His Leu Lys Ala Leu Leu Asp

125
1

Phe	Glu	Asp	Lys	Asn	Gly	Asp	Lys	Val	Met	Ala	Gly	Asp	Glu	Trp	Leu
	130					135					140				

- Phe Glu Gly Pro Gly Thr Tyr Ile Pro Gln Lys Glu Val Glu Val Val 145 150 155 160
- Glu Ile Ile Gln Ala Thr Val Ile Lys Gln Asn Gln Ala Leu Arg Leu 165 170 175
- Arg Ala Arg Lys Glu Cys Phe Asp Arg Glu Gly Lys Gly Arg Val Thr 180 185 190
- Gly Glu Glu Trp Leu Val Arg Ser Val Gly Ala Tyr Leu Pro Ala Val 195 200 205
- Phe Glu Glu Val Leu Asp Leu Val Asp Ala Val Ile Leu Thr Glu Lys 210 215 220
- Thr Ala Leu His Leu Arg Ala Leu Gln Asn Phe Arg Asp Leu Arg Gly 225 230 235 240
- Val Leu His Arg Thr Gly Glu Glu Trp Leu Val Thr Val Gln Asp Thr 245 250 255
- Glu Ala His Val Pro Asp Val Tyr Glu Glu Val Leu Gly Val Val Pro
 260 265 270
- Ile Thr Thr Leu Gly Pro Arg His Tyr Cys Val Ile Leu Asp Pro Met 275 280 285
- Gly Pro Asp Gly Lys Asn Gln Leu Gly Gln Lys Arg Val Val Lys Gly 290 295 300
- Glu Lys Ser Phe Phe Leu Gln Pro Gly Glu Arg Leu Glu Arg Gly Ile 305 310 315 320
- Gln Asp Val Tyr Val Leu Ser Glu Gln Gln Gly Leu Leu Leu Lys Ala 325 330 335
- Leu Gln Pro Leu Glu Glu Glu Glu Ser Glu Glu Lys Val Ser His Gln 340 345 350

Ala Gly Asp Cys Trp Leu Ile Arg Gly Pro Leu Glu Tyr Val Pro Ser 355 360 365

- Ala Lys Val Glu Val Val Glu Glu Arg Gln Ala Ile Pro Leu Asp Gln 370 375 380
- Asn Glu Gly Ile Tyr Val Gln Asp Val Lys Thr Gly Lys Val Arg Ala 385 390 395 400
- Val Ile Gly Ser Thr Tyr Met Leu Thr Gln Asp Glu Val Leu Trp Glu 405 410 415
- Lys Glu Leu Pro Ser Gly Val Glu Glu Leu Leu Asn Leu Gly His Asp 420 425 430
- Pro Leu Ala Asp Arg Gly Gln Lys Gly Thr Ala Lys Pro Leu Gln Pro 435 440 445
- Ser Ala Pro Arg Asn Lys Thr Arg Val Val Ser Tyr Arg Val Pro His 450 455 460
- Asn Ala Ala Val Gln Val Tyr Asp Tyr Arg Ala Lys Arg Ala Arg Val 465 470 475 480
- Val Phe Gly Pro Glu Leu Val Thr Leu Asp Pro Glu Glu Gln Phe Thr 485 490 495
- Val Leu Ser Leu Ser Ala Gly Arg Pro Lys Arg Pro His Ala Arg Arg 500 505 510
- Ala Leu Cys Leu Leu Leu Gly Pro Asp Phe Phe Thr Asp Val Ile Thr 515 520 525
- Ile Glu Thr Ala Asp His Ala Arg Leu Gln Leu Gln Leu Ala Tyr Asn 530 535 540
- Trp His Phe Glu Leu Lys Asn Arg Asn Asp Pro Ala Glu Ala Ala Lys 545 550 555 560
- Leu Phe Ser Val Pro Asp Phe Val Gly Asp Ala Cys Lys Ala Ile Ala 565 570 575
- Ser Arg Val Arg Gly Ala Val Ala Ser Val Thr Phe Asp Asp Phe His 580 585 590

Lys Asn Ser Ala Arg Ile Ile Arg Met Ala Val Phe Gly Phe Glu Met 595 600 605

- Ser Glu Asp Thr Gly Pro Asp Gly Thr Leu Leu Pro Lys Ala Arg Asp 610 615 620
- Gln Ala Val Phe Pro Gln Asn Gly Leu Val Val Ser Ser Val Asp Val 625 630 635 640
- Gln Ser Val Glu Pro Val Asp Gln Arg Thr Arg Asp Ala Leu Gln Arg 645 650 655
- Ser Val Gln Leu Ala Ile Glu Ile Thr Thr Asn Ser Gln Glu Ala Ala 660 665 670
- Ala Lys His Glu Ala Gln Arg Leu Glu Gln Glu Ala Arg Gly Arg Leu 675 680 685
- Glu Arg Gln Lys Ile Leu Asp Gln Ser Glu Ala Glu Lys Ala Arg Lys 690 695 700
- Glu Leu Leu Glu Leu Glu Ala Met Ser Met Ala Val Glu Ser Thr Gly 705 710 715 720
- Asn Ala Lys Ala Glu Ala Glu Ser Arg Ala Glu Ala Ala Arg Ile Glu
 725 730 735
- Gly Glu Gly Ser Val Leu Gln Ala Lys Leu Lys Ala Gln Ala Leu Ala 740 745 750
- Ile Glu Thr Glu Ala Glu Leu Glu Arg Val Lys Lys Val Arg Glu Met 755 760 765
- Glu Leu Ile Tyr Ala Arg Ala Gln Leu Glu Leu Glu Val Ser Lys Ala 770 775 780
- Gln Gln Leu Ala Asn Val Glu Ala Lys Lys Phe Lys Glu Met Thr Glu 785 790 795 800
- Ala Leu Gly Pro Gly Thr Ile Arg Asp Leu Ala Val Ala Gly Pro Glu 805 810 815
- Met Gln Val Lys Leu Leu Gln Ser Leu Gly Leu Lys Ser Thr Leu Ile

820 825 830

Thr Asp Gly Ser Ser Pro Ile Asn Leu Phe Ser Thr Ala Phe Gly Leu 835 840 845

Leu Gly Leu Gly Ser Asp Gly Gln Pro Pro Ala Gln Lys Asp Ile Val 850 855 860

Leu Thr Gln Ser Pro Ala Ser Leu Ala Val Ser Leu Gly Gln Arg Ala 865 870 875 880

Thr Met Ser Cys Arg Ala Gly Glu Ser Val Asp Ile Phe Gly Val Gly 885 890 895

Phe Leu His Trp Tyr Gln Gln Lys Pro Gly Gln Pro Pro Lys Leu Leu 900 905 910

Ile Tyr Arg Ala Ser Asn Leu Glu Ser Gly Ile Pro Val Arg Phe Ser 915 920 925

Gly Thr Gly Ser Arg Thr Asp Phe Thr Leu Ile Ile Asp Pro Val Glu 930 935 940

Ala Asp Asp Val Ala Thr Tyr Tyr Cys Gln Gln Thr Asn Glu Asp Pro 945 950 955 960

Tyr Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys Gly Ser Thr Ser 965 970 975

Gly Gly Gly Ser Gly Gly Gly Gly Gly Gly Ser Ser Glu Val 980 985 990

Gln Leu Gln Gln Ser Gly Ala Glu Leu Val Glu Pro Gly Ala Ser Val 995 1000 1005

Lys Leu Ser Cys Thr Ala Ser Gly Phe Asn Ile Lys Asp Thr Tyr 1010 1015 1020

Met His Trp Val Lys Gln Arg Pro Glu Gln Gly Leu Glu Trp Ile 1025 1030 1035

Gly Arg 1040

<210> 89 <211> 3333

<212> DNA

<213> Artificial Sequence

<220>

<223> synthesized and Rattus norvegicus

<400> 89 atggcaactg aagaggccat catccgcatc cccccatacc actacatcca tgtgctggac 60 cagaacagta atgtgtcccg tgtggaggtt ggaccaaaga cctacatccg gcaggacaat 120 180 gagagggtac tgtttgcccc agttcgcatg gtgaccgtcc ccccacgcca ctactgcata gtggccaacc ctgtgtcccg ggacacccag agttctgtgt tatttgacat cacaggacaa 240 gtccgactcc ggcacgctga ccaggagatc cgactagecc aggacecett ecceetgtat 300 ccaggggagg tgctggaaaa ggacatcacc ccactgcagg tggttctgcc caacacagca 360 ctgcatctta aggcgttgct ggactttgag gataagaatg gagacaaggt catggcagga 420 gacgagtggc tatttgaggg acctggcacc tacatcccac agaaggaagt ggaagtcgtg 480 gagatcattc aggccacagt catcaaacag aaccaagcac tgcggctaag ggcccgaaag 540 gagtgetttg accgggaggg caaggggege gtgacaggtg aggagtgget ggteegatee 600 gtgggggctt acctcccagc tgtctttgaa gaggtgctgg atctggtgga tgctgtgatc 660 cttacagaaa agactgccct gcacctccgg gctctgcaga acttcaggga ccttcgggga 720 780 gtgctccacc gcaccgggga ggaatggtta gtgacagtgc aggacacaga agcccatgtt ccagatgtct atgaggaggt gcttggggta gtacccatca ccaccctggg acctcgacac 840 tactgtgtca ttcttgaccc aatgggacca gacggcaaga accagctggg acaaaagcgt 900 gttgtcaagg gagagaagtc ctttttcctc cagccaggag agaggctgga gcgaggcatc 960 caggatgtgt atgtgctgtc agagcagcag gggctgctac tgaaggcact gcagcccctg 1020 gaggaggag agagcgagga gaaggtctcc catcaggccg gagactgctg gctcatccgt 1080 gggcccctgg agtatgtgcc atctgcaaaa gtggaggtgg tggaggagcg tcaggctatc 1140 cctctggacc aaaatgaggg catctatgtg caggatgtca agacggggaa ggtgcgggct 1200 gtgattggaa gcacctacat gctgactcag gatgaagtcc tgtgggaaaa ggagctgcct 1260 tctggggtgg aggagctgct gaacttgggg catgaccctc tggcagacag gggtcagaag 1320 ggcacagcca agccccttca gccctcagct ccaaggaaca agacccgagt ggtcagctac 1380 cgtgtcccgc acaatgcagc ggtgcaggtc tatgactaca gagccaagag agcccgtgtg 1440 gtctttgggc ccgagctagt gacactggat cctgaggagc agttcacagt attgtccctt 1500

tetgeeggge g	gacccaagcg	tcctcatgcc	cgccgtgcac	tctgcctact	gctgggacct	1560
gatttcttta o	ctgatgtcat	caccatcgaa	actgcagatc	atgccaggtt	gcagctgcag	1620
cttgcctaca a	actggcactt	tgaactgaag	aaccggaatg	accctgcaga	ggcagccaag	1680
cttttctccg (tgcctgactt	cgtgggtgac	gcctgcaagg	ccattgcatc	ccgagtccgg	1740
ggggctgtag	cctctgtcac	ctttgatgac	ttccataaaa	actcagcccg	gatcattcga	1800
atggctgttt	ttggctttga	gatgtctgaa	gacacaggtc	ctgatggcac	actcctgccc	1860
aaggctcgag	accaggcagt	ctttccccaa	aacgggctgg	tagtcagcag	tgtggatgtg	1920
cagtcagtgg	agcccgtgga	ccagaggacc	cgggatgccc	ttcagcgcag	cgttcagctg	1980
gccatcgaaa	ttaccaccaa	ctcccaggag	gcagcagcca	agcacgaggc	tcagagactg	2040
gaacaggaag	cccgtggtcg	gcttgagagg	cagaagatct	tggaccagtc	agaagctgaa	2100
aaagcccgca	aggaactctt	ggagcttgag	gctatgagca	tggctgtgga	gagcacgggt	2160
aatgccaaag	cagaggctga	gtcccgtgca	gaggcagcga	ggatcgaagg	agaaggctct	2220
gtgctgcagg	ccaagctcaa	ggcacaggcg	ctagccattg	agacggaggc	tgagttggag	2280
cgagtaaaga	aagtacgaga	gatggaactg	atctatgccc	gggcccagtt	ggagctggag	2340
gtgagcaagg	cgcagcagct	tgccaatgtg	gaggcaaaga	agttcaagga	gatgacagag	2400
gcactgggcc	ccggcaccat	cagggacctg	gctgtggccg	ggccagagat	gcaggtgaaa	2460
cttctccagt	ccctgggcct	gaaatccact	ctcatcaccg	atggctcgtc	tcccatcaac	2520
ctcttcagca	cagccttcgg	gttgctgggg	ctggggtctg	atggtcagcc	gccagcacag	2580
aaggacattg	tgctgaccca	atctccagct	tetttggetg	tgtctcttgg	gcagagggcc	2640
accatgtcct	gcagagccgg	tgaaagtgtt	gatattttg	gcgttgggtt	tttgcactgg	2700
taccagcaga	aaccaggaca	gccacccaaa	ctcctcatct	atcgtgcato	caacctagaa	2760
tctgggatcc	ctgtcaggtt	cagtggcact	gggtctagga	cagacttcac	cctcatcatt	2820
gatcctgtgg	aggctgatga	tgttgccaco	tattactgtc	agcaaactaa	tgaggatccg	2880
tacacgttcg	gagggggac	: caagctggaa	a ataaaaggca	gtactagcgg	g cggtggctcc	2940
gggggcggtt	ccggtggggg	g cggcagcago	gaggttcago	: tacaacagto	tggggcagag	3000
cttgtggagc	caggggcctc	agtcaagtt	g teetgeacag	g cttctggctt	caacattaaa	3060
gacacctata	tgcactgggt	: gaagcagag	g cctgaacagg	g gcctggaat	g gattggaagg	3120
attgatcctg	cgaatggtaa	a tagtaaata	t gtcccgaagt	tccagggca	a ggccactata	3180
acagcagaca	catcttcca	a cacagoota	c ctgcagctca	a ccagcctga	c atctgaggac	3240

actgccgtct attattgtgc tccgtttggt tactacgtgt ctgactatgc tatggcctac	3300
tggggtcaag gaacctcagt caccgtctcg tga	3333
<210> 90 <211> 56 <212> PRT <213> Homo sapiens	
<400> 90	
Met Gly Asn Ser Asp Ser Glu Cys Pro Leu Ser His Asp Gly Tyr Cys 1 10 15	
Leu His Asp Gly Val Cys Met Tyr Ile Glu Ala Leu Asp Lys Tyr Ala 20 25 30	
Cys Asn Cys Val Val Gly Tyr Ile Gly Glu Arg Cys Gln Tyr Arg Asp 35 40 45	
Leu Lys Trp Trp Glu Leu Arg Ala 50 55	
<210> 91 <211> 171 <212> DNA <213> Homo sapiens	
<400> 91 atgggtaact ctgacteega atgecegetg teteaegaeg gttattgeet geatgatggt	60
gtttgtatgt atatcgaagc tctggacaaa tatgcttgca actgtgttgt tggttacatc	120
ggtgagcgtt gccagtatcg cgacctgaaa tggtgggaac tgcgtgcatg a	171
<210> 92 <211> 949 <212> PRT <213> Artificial Sequence	
<220> <223> Synthesized from two Homo sapiens sequences	
<400> 92	
Met Ala Thr Glu Glu Phe Ile Ile Arg Ile Pro Pro Tyr His Tyr Ile 1 5 10 15	
His Val Leu Asp Gln Asn Ser Asn Val Ser Arg Val Glu Val Gly Pro	

Lys Thr Tyr Ile Arg Gln Asp Asn Glu Arg Val Leu Phe Ala Pro Met 35 40 45

- Arg Met Val Thr Val Pro Pro Arg His Tyr Cys Thr Val Ala Asn Pro 50 55 60
- Val Ser Arg Asp Ala Gln Gly Leu Val Leu Phe Asp Val Thr Gly Gln 65 70 75 80
- Val Arg Leu Arg His Ala Asp Leu Glu Ile Arg Leu Ala Gln Asp Pro 85 90 95
- Phe Pro Leu Tyr Pro Gly Glu Val Leu Glu Lys Asp Ile Thr Pro Leu 100 105 110
- Gln Val Val Leu Pro Asn Thr Ala Leu His Leu Lys Ala Leu Leu Asp 115 120 125
- Phe Glu Asp Lys Asp Gly Asp Lys Val Val Ala Gly Asp Glu Trp Leu 130 135 140
- Phe Glu Gly Pro Gly Thr Tyr Ile Pro Arg Lys Glu Val Glu Val Val 145 150 155 160
- Glu Ile Ile Gln Ala Thr Ile Ile Arg Gln Asn Gln Ala Leu Arg Leu 165 170 175
- Arg Ala Arg Lys Glu Cys Trp Asp Arg Asp Gly Lys Glu Arg Val Thr 180 185 190
- Gly Glu Glu Trp Leu Val Thr Thr Val Gly Ala Tyr Leu Pro Ala Val 195 200 205
- Phe Glu Glu Val Leu Asp Leu Val Asp Ala Val Ile Leu Thr Glu Lys 210 215 220
- Thr Ala Leu His Leu Arg Ala Arg Arg Asn Phe Arg Asp Phe Arg Gly 225 230 235 240
- Val Ser Arg Arg Thr Gly Glu Glu Trp Leu Val Thr Val Gln Asp Thr
 245 250 255
- Glu Ala His Val Pro Asp Val His Glu Glu Val Leu Gly Val Val Pro 260 265 270

Ile Thr Thr Leu Gly Pro His Asn Tyr Cys Val Ile Leu Asp Pro Val 275 280 285

- Gly Pro Asp Gly Lys Asn Gln Leu Gly Gln Lys Arg Val Val Lys Gly 290 295 300
- Glu Lys Ser Phe Phe Leu Gln Pro Gly Glu Gln Leu Glu Gln Gly Ile 305 310 315 320
- Gln Asp Val Tyr Val Leu Ser Glu Gln Gln Gly Leu Leu Leu Arg Ala 325 330 335
- Leu Gln Pro Leu Glu Glu Gly Glu Asp Glu Glu Lys Val Ser His Gln 340 345 350
- Ala Gly Asp His Trp Leu Ile Arg Gly Pro Leu Glu Tyr Val Pro Ser 355 360 365
- Ala Lys Val Glu Val Val Glu Glu Arg Gln Ala Ile Pro Leu Asp Glu 370 375 380
- Asn Glu Gly Ile Tyr Val Gln Asp Val Lys Thr Gly Lys Val Arg Ala 385 390 395 400
- Val Ile Gly Ser Thr Tyr Met Leu Thr Gln Asp Glu Val Leu Trp Glu 405 410 415
- Lys Glu Leu Pro Pro Gly Val Glu Glu Leu Leu Asn Lys Gly Gln Asp 420 425 430
- Pro Leu Ala Asp Arg Gly Glu Lys Asp Thr Ala Lys Ser Leu Gln Pro 435 440 445
- Leu Ala Pro Arg Asn Lys Thr Arg Val Val Ser Tyr Arg Val Pro His 450 455 460
- Asn Ala Ala Val Gln Val Tyr Asp Tyr Arg Glu Lys Arg Ala Arg Val 465 470 475 480
- Val Phe Gly Pro Glu Leu Val Ser Leu Gly Pro Glu Glu Gln Phe Thr 485 490 495
- Val Leu Ser Leu Ser Ala Gly Arg Pro Lys Arg Pro His Ala Arg Arg

500 505 510

Ala Leu Cys Leu Leu Gly Pro Asp Phe Phe Thr Asp Val Ile Thr 515 520 525

Ile Glu Thr Ala Asp His Ala Arg Leu Gln Leu Gln Leu Ala Tyr Asn 530 535 540

Trp His Phe Glu Val Asn Asp Arg Lys Asp Pro Gln Glu Thr Ala Lys 545 550 555 560

Leu Phe Ser Val Pro Asp Phe Val Gly Asp Ala Cys Lys Ala Ile Ala 565 570 575

Ser Arg Val Arg Gly Ala Val Ala Ser Val Thr Phe Asp Asp Phe His 580 585 590

Lys Asn Ser Ala Arg Ile Ile Arg Thr Ala Val Phe Gly Phe Glu Thr 595 600 605

Ser Glu Ala Lys Gly Pro Asp Gly Met Ala Leu Pro Arg Pro Arg Asp 610 615 620

Gln Ala Val Phe Pro Gln Asn Gly Leu Val Val Ser Ser Val Asp Val 625 630 635 640

Gln Ser Val Glu Pro Val Asp Gln Arg Thr Arg Asp Ala Leu Gln Arg 645 650 655

Ser Val Gln Leu Ala Ile Glu Ile Thr Thr Asn Ser Gln Glu Ala Ala 660 665 670

Ala Lys His Glu Ala Gln Arg Leu Glu Gln Glu Ala Arg Gly Arg Leu 675 680 685

Glu Arg Gln Lys Ile Leu Asp Gln Ser Glu Ala Glu Lys Ala Arg Lys 690 695 700

Glu Leu Glu Leu Glu Ala Leu Ser Met Ala Val Glu Ser Thr Gly 705 710 715 720

Thr Ala Lys Ala Glu Ala Glu Ser Arg Ala Glu Ala Ala Arg Ile Glu 725 730 735

Gly Glu Gly Ser Val Leu Gln Ala Lys Leu Lys Ala Gln Ala Leu Ala
740 745 750

- Ile Glu Thr Glu Ala Glu Leu Gln Arg Val Gln Lys Val Arg Glu Leu 755 760 765
- Glu Leu Val Tyr Ala Arg Ala Gln Leu Glu Leu Glu Val Ser Lys Ala 770 775 780
- Gln Gln Leu Ala Glu Val Glu Val Lys Lys Phe Lys Gln Met Thr Glu 785 790 795 800
- Ala Ile Gly Pro Ser Thr Ile Arg Asp Leu Ala Val Ala Gly Pro Glu 805 810 815
- Met Gln Val Lys Leu Leu Gln Ser Leu Gly Leu Lys Ser Thr Leu Ile 820 825 830
- Thr Asp Gly Ser Thr Pro Ile Asn Leu Phe Asn Thr Ala Phe Gly Leu 835 840 845
- Leu Gly Met Gly Pro Glu Gly Gln Pro Leu Gly Arg Arg Val Ala Ser 850 860
- Gly Pro Ser Pro Gly Glu Gly Ile Ser Pro Gln Ser Ala Gln Ala Pro 865 870 875 880
- Gln Ala Pro Gly Asp Asn His Val Val Pro Val Leu Arg Met Gly Asn 885 890 895
- Ser Asp Ser Glu Cys Pro Leu Ser His Asp Gly Tyr Cys Leu His Asp 900 905 910
- Gly Val Cys Met Tyr Ile Glu Ala Leu Asp Lys Tyr Ala Cys Asn Cys 915 920 925
- Val Val Gly Tyr Ile Gly Glu Arg Cys Gln Tyr Arg Asp Leu Lys Trp 930 935 940

Trp Glu Leu Arg Ala 945

<210> 93 <211> 2850

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthesized from two Homo sapiens sequences

<400> 93

atggcaactg aagagttcat catccgcatc cccccatacc actatatcca tgtgctggac 60 cagaacagca acgtgtcccg tgtggaggtc gggccaaaga cctacatccg gcaggacaat 120 gagagggtac tgtttgcccc catgcgcatg gtgaccgtcc ccccacgtca ctactgcaca 180 gtggccaacc ctgtgtctcg ggatgcccag ggcttggtgc tgtttgatgt cacagggcaa 240 gttcggcttc gccacgctga cctcgagatc cggctggccc aggacccctt ccccctgtac 300 ccaggggagg tgctggaaaa ggacatcaca cccctgcagg tggttctgcc caacactgcc 360 ctccatctaa aggcgctgct tgattttgag gataaagatg gagacaaggt ggtggcagga 420 gatgagtggc ttttcgaggg acctggcacg tacatccccc ggaaggaagt ggaggtcgtg 480 gagatcattc aggccaccat catcaggcag aaccaggctc tgcggctcag ggcccgcaag 540 gagtgctggg accgggacgg caaggagagg gtgacagggg aagaatggct ggtcaccaca 600 gtaggggcgt acctcccagc ggtgtttgag gaggttctgg atttggtgga cgccgtcatc 660 cttacggaaa agacagccct gcacctccgg gctcggcgga acttccggga cttcagggga 720 gtgtcccgcc gcactgggga ggagtggctg gtaacagtgc aggacacaga ggcccacgtg 780 ccagatgtcc acgaggaggt gctgggggtt gtgcccatca ccaccctggg cccccacaac 840 tactgcgtga ttctcgaccc tgtcggaccg gatggcaaga atcagctggg gcagaagcgc 900 gtggtcaagg gagagaagtc ttttttcctc cagccaggag agcagctgga acaaggcatc 960 caggatgtgt atgtgctgtc ggagcagcag gggctgctgc tgagggccct gcagcccctg 1020 gaggaggggg aggatgagga gaaggtetea caccaggetg gggaccaetg geteateege 1080 ggacccctgg agtatgtgcc atctgccaaa gtggaggtgg tggaggagcg ccaggccatc 1140 cctctagacg agaacgaggg catctatgtg caggatgtca agaccggaaa ggtgcgcgct 1200 gtgattggaa gcacctacat gctgacccag gacgaagtcc tgtgggagaa agagctgcct 1260 cccggggtgg aggagctgct gaacaagggg caggaccttc tggcagacag gggtgagaag 1320 gacacagcta agagcctcca gcccttggcg ccccggaaca agacccgtgt ggtcagctac 1380 egegtgeece acaacgetge ggtgeaggtg taegaetace gagagaageg ageeegegtg 1440 gtcttcgggc ctgagctggt gtcgctgggt cctgaggagc agttcacagt gttgtccctc 1500 tcagctgggc ggcccaagcg tccccatgcc cgccgtgcgc tctgcctgct gctggggcct 1560

gacttettea cagaegteat caccategaa aeggeggate atgecagget geaactgeag 1620 1680 ctggcctaca actggcactt tgaggtgaat gaccggaagg acccccaaga gacggccaag ctcttttcag tgccagactt tgtaggtgat gcctgcaaag ccatcgcatc ccgggtgcgg 1740 ggggccgtgg cctctgtcac tttcgatgac ttccataaga actcagcccg catcattcgc 1800 actgctgtct ttggctttga gacctcggaa gcgaagggcc ccgatggcat ggccctgccc 1860 aggccccggg accaggctgt cttcccccaa aacgggctgg tggtcagcag tgtggacgtg 1920 cagtcagtgg agcctgtgga tcagaggacc cgggacgccc tgcaacgcag cgtccagctg 1980 gccatcgaga tcaccaccaa ctcccaggaa gcggcggcca agcatgaggc tcagagactg 2040 gagcaggaag cccgcggccg gcttgagcgg cagaagatcc tggaccagtc agaagccgag 2100 aaagctcgca aggaactttt ggagctggag gctctgagca tggccgtgga gagcaccggg 2160 actgccaagg cggaggccga gtcccgtgcg gaggcagccc ggattgaggg agaagggtcc 2220 gtgctgcagg ccaagctaaa agcacaggcc ttggccattg aaacggaggc tgagctccag 2280 agggtccaga aggtccgaga gctggaactg gtctatgccc gggcccagct ggagctggag 2340 gtgagcaagg ctcagcagct ggctgaggtg gaggtgaaga agttcaagca gatgacagag 2400 2460 gccataggcc ccagcaccat cagggacctt gctgtggctg ggcctgagat gcaggtaaaa 2520 ctgctccagt ccctgggcct gaaatcaacc ctcatcaccg atggctccac tcccatcaac ctcttcaaca cagcctttgg gctgctgggg atggggcccg agggtcagcc cctgggcaga 2580 agggtggcca gtgggcccag ccctggggag gggatatece cccagtetge tcaggcccet 2640 caageteetg gagacaacca egtggtgeet gtaetgegea tgggtaacte tgaeteegaa 2700 tgcccgctgt ctcacgacgg ttattgcctg catgatggtg tttgtatgta tatcgaagct 2760 ctggacaaat atgcttgcaa ctgtgttgtt ggttacatcg gtgagcgttg ccagtatcgc 2820 2850 qacctgaaat ggtgggaact gcgtgcatga

```
<210> 94
<211> 917
<212> PRT
<213> Artificial Sequence
<220>
```

<223> Rattus norvegicus and Homo sapiens

<400> 94

Met Ala Thr Glu Glu Ala Ile Ile Arg Ile Pro Pro Tyr His Tyr Ile 1 5 10 15

His Val Leu Asp Gln Asn Ser Asn Val Ser Arg Val Glu Val Gly Pro 20 25 30

- Lys Thr Tyr Ile Arg Gln Asp Asn Glu Arg Val Leu Phe Ala Pro Val 35 40 45
- Arg Met Val Thr Val Pro Pro Arg His Tyr Cys Ile Val Ala Asn Pro 50 55 60
- Val Ser Arg Asp Thr Gln Ser Ser Val Leu Phe Asp Ile Thr Gly Gln 65 70 75 80
- Val Arg Leu Arg His Ala Asp Gln Glu Ile Arg Leu Ala Gln Asp Pro 85 90 95
- Phe Pro Leu Tyr Pro Gly Glu Val Leu Glu Lys Asp Ile Thr Pro Leu 100 105 110
- Gln Val Val Leu Pro Asn Thr Ala Leu His Leu Lys Ala Leu Leu Asp 115 120 125
- Phe Glu Asp Lys Asn Gly Asp Lys Val Met Ala Gly Asp Glu Trp Leu 130 135 140
- Phe Glu Gly Pro Gly Thr Tyr Ile Pro Gln Lys Glu Val Glu Val Val 145 150 155 160
- Glu Ile Ile Gln Ala Thr Val Ile Lys Gln Asn Gln Ala Leu Arg Leu 165 170 175
- Arg Ala Arg Lys Glu Cys Phe Asp Arg Glu Gly Lys Gly Arg Val Thr 180 185 190
- Gly Glu Glu Trp Leu Val Arg Ser Val Gly Ala Tyr Leu Pro Ala Val 195 200 205
- Phe Glu Glu Val Leu Asp Leu Val Asp Ala Val Ile Leu Thr Glu Lys 210 215 220
- Thr Ala Leu His Leu Arg Ala Leu Gln Asn Phe Arg Asp Leu Arg Gly 225 230 235 240
- Val Leu His Arg Thr Gly Glu Glu Trp Leu Val Thr Val Gln Asp Thr 245 250 255

Glu Ala His Val Pro Asp Val Tyr Glu Glu Val Leu Gly Val Val Pro 260 265 270

.

- Ile Thr Thr Leu Gly Pro Arg His Tyr Cys Val Ile Leu Asp Pro Met 275 280 285
- Gly Pro Asp Gly Lys Asn Gln Leu Gly Gln Lys Arg Val Val Lys Gly 290 295 300
- Glu Lys Ser Phe Phe Leu Gln Pro Gly Glu Arg Leu Glu Arg Gly Ile 305 310 315 320
- Gln Asp Val Tyr Val Leu Ser Glu Gln Gln Gly Leu Leu Leu Lys Ala 325 330 335
- Leu Gln Pro Leu Glu Glu Gly Glu Ser Glu Glu Lys Val Ser His Gln 340 345 350
- Ala Gly Asp Cys Trp Leu Ile Arg Gly Pro Leu Glu Tyr Val Pro Ser 355 360 365
- Ala Lys Val Glu Val Val Glu Glu Arg Gln Ala Ile Pro Leu Asp Gln 370 375 380
- Asn Glu Gly Ile Tyr Val Gln Asp Val Lys Thr Gly Lys Val Arg Ala 385 390 395 400
- Val Ile Gly Ser Thr Tyr Met Leu Thr Gln Asp Glu Val Leu Trp Glu 405 410 415
- Lys Glu Leu Pro Ser Gly Val Glu Glu Leu Leu Asn Leu Gly His Asp 420 425 430
- Pro Leu Ala Asp Arg Gly Gln Lys Gly Thr Ala Lys Pro Leu Gln Pro 435 440 445
- Ser Ala Pro Arg Asn Lys Thr Arg Val Val Ser Tyr Arg Val Pro His 450 455 460
- Asn Ala Ala Val Gln Val Tyr Asp Tyr Arg Ala Lys Arg Ala Arg Val 465 470 475 480
- Val Phe Gly Pro Glu Leu Val Thr Leu Asp Pro Glu Glu Gln Phe Thr

485 490 495

Val Leu Ser Leu Ser Ala Gly Arg Pro Lys Arg Pro His Ala Arg Arg 500 505 510

Ala Leu Cys Leu Leu Gly Pro Asp Phe Phe Thr Asp Val Ile Thr 515 520 525

Ile Glu Thr Ala Asp His Ala Arg Leu Gln Leu Gln Leu Ala Tyr Asn 530 535 540

Trp His Phe Glu Leu Lys Asn Arg Asn Asp Pro Ala Glu Ala Ala Lys 545 550 555 560

Leu Phe Ser Val Pro Asp Phe Val Gly Asp Ala Cys Lys Ala Ile Ala 565 570 575

Ser Arg Val Arg Gly Ala Val Ala Ser Val Thr Phe Asp Asp Phe His 580 585 590

Lys Asn Ser Ala Arg Ile Ile Arg Met Ala Val Phe Gly Phe Glu Met 595 600 605

Ser Glu Asp Thr Gly Pro Asp Gly Thr Leu Leu Pro Lys Ala Arg Asp 610 615 620

Gln Ala Val Phe Pro Gln Asn Gly Leu Val Val Ser Ser Val Asp Val 625 630 635 640

Gln Ser Val Glu Pro Val Asp Gln Arg Thr Arg Asp Ala Leu Gln Arg 645 650 655

Ser Val Gln Leu Ala Ile Glu Ile Thr Thr Asn Ser Gln Glu Ala Ala 660 665 670

Ala Lys His Glu Ala Gln Arg Leu Glu Gln Glu Ala Arg Gly Arg Leu 675 680 685

Glu Arg Gln Lys Ile Leu Asp Gln Ser Glu Ala Glu Lys Ala Arg Lys
690 695 700

Glu Leu Leu Glu Leu Glu Ala Met Ser Met Ala Val Glu Ser Thr Gly 705 710 715 720

Asn Ala Lys Ala Glu Ala Glu Ser Arg Ala Glu Ala Ala Arg Ile Glu
725 730 735

Gly Glu Gly Ser Val Leu Gln Ala Lys Leu Lys Ala Gln Ala Leu Ala 740 745 750

Ile Glu Thr Glu Ala Glu Leu Glu Arg Val Lys Lys Val Arg Glu Met
755 760 765

Glu Leu Ile Tyr Ala Arg Ala Gln Leu Glu Leu Glu Val Ser Lys Ala 770 775 780

Gln Gln Leu Ala Asn Val Glu Ala Lys Lys Phe Lys Glu Met Thr Glu 785 790 795 800

Ala Leu Gly Pro Gly Thr Ile Arg Asp Leu Ala Val Ala Gly Pro Glu 805 810 815

Met Gln Val Lys Leu Leu Gln Ser Leu Gly Leu Lys Ser Thr Leu Ile 820 825 830

Thr Asp Gly Ser Ser Pro Ile Asn Leu Phe Ser Thr Ala Phe Gly Leu 835 840 845

Leu Gly Leu Gly Ser Asp Gly Gln Pro Pro Ala Gln Lys Met Gly Asn 850 855 860

Ser Asp Ser Glu Cys Pro Leu Ser His Asp Gly Tyr Cys Leu His Asp 865 870 875 880

Gly Val Cys Met Tyr Ile Glu Ala Leu Asp Lys Tyr Ala Cys Asn Cys 885 890 895

Val Val Gly Tyr Ile Gly Glu Arg Cys Gln Tyr Arg Asp Leu Lys Trp 900 905 910

Trp Glu Leu Arg Ala 915

<210> 95

<211> 2754

<212> DNA

<213> Artificial Sequence

<220>

<223> Rattus norvegicus and Homo sapiens

95 <400> 60 atggcaactg aagaggccat catccgcatc cccccatacc actacatcca tgtgctggac 120 cagaacagta atgtgtcccg tgtggaggtt ggaccaaaga cctacatccg gcaggacaat 180 gagagggtac tgtttgcccc agttcgcatg gtgaccgtcc ccccacgcca ctactgcata gtggccaacc ctgtgtcccg ggacacccag agttctgtgt tatttgacat cacaggacaa 240 gteegaetee ggeaegetga ceaggagate egaetageee aggaeeeett eeeeetgtat 300 ccaggggagg tgctggaaaa ggacatcacc ccactgcagg tggttctgcc caacacagca 360 ctgcatctta aggcgttgct ggactttgag gataagaatg gagacaaggt catggcagga 420 gacgagtggc tatttgaggg acctggcacc tacatcccac agaaggaagt ggaagtcgtg 480 540 gagatcattc aggccacagt catcaaacag aaccaagcac tgcggctaag ggcccgaaag 600 gagtgctttg accgggaggg caaggggcgc gtgacaggtg aggagtggct ggtccgatcc 660 gtgggggctt acctcccagc tgtctttgaa gaggtgctgg atctggtgga tgctgtgatc 720 cttacagaaa agactgccct gcacctccgg gctctgcaga acttcaggga ccttcgggga 780 gtgctccacc gcaccgggga ggaatggtta gtgacagtgc aggacacaga agcccatgtt 840 ccagatgtct atgaggaggt gcttggggta gtacccatca ccaccctggg acctcgacac 900 tactgtgtca ttcttgaccc aatgggacca gacggcaaga accagctggg acaaaagcgt gttgtcaagg gagagaagtc ctttttcctc cagccaggag agaggctgga gcgaggcatc 960 1020 caggatgtgt atgtgctgtc agagcagcag gggctgctac tgaaggcact gcagcccctg 1080 gaggaggag agagcgagga gaaggtctcc catcaggccg gagactgctg gctcatccgt gggcccctgg agtatgtgcc atctgcaaaa gtggaggtgg tggaggagcg tcaggctatc 1140 1200 cctctggacc aaaatgaggg catctatgtg caggatgtca agacggggaa ggtgcgggct 1260 gtgattggaa gcacctacat gctgactcag gatgaagtcc tgtgggaaaa ggagctgcct tctggggtgg aggagctgct gaacttgggg catgaccctc tggcagacag gggtcagaag 1320 ggcacagcca agccccttca gccctcagct ccaaggaaca agacccgagt ggtcagctac 1380 cgtgtcccgc acaatgcagc ggtgcaggtc tatgactaca gagccaagag agcccgtgtg 1440 1500 gtctttgggc ccgagctagt gacactggat cctgaggagc agttcacagt attgtccctt 1560 totgooggo gacccaagog tootcatgoo ogcogtgoac totgootact gotgggacot 1620 gatttcttta ctgatgtcat caccatcgaa actgcagatc atgccaggtt gcagctgcag 1680 cttgcctaca actggcactt tgaactgaag aaccggaatg accctgcaga ggcagccaag

cttttctccg tgcctgactt cgtgggtgac gcctgcaagg ccattgcatc ccgagtccgg 1740 ggggctgtag cctctgtcac ctttgatgac ttccataaaa actcagcccg gatcattcga 1800 1860 atggctqttt ttggctttga gatgtctgaa gacacaggtc ctgatggcac actcctgccc 1920 aaggetegag accaggeagt ettteeceaa aacggetegg tagteageag tgtggatgtg cagtcagtgg agcccgtgga ccagaggacc cgggatgccc ttcagcgcag cgttcagctg 1980 gccatcgaaa ttaccaccaa ctcccaggag gcagcagcca agcacgaggc tcagagactg 2040 gaacaggaag cecgtggtcg gettgagagg cagaagatet tggaccagte agaagetgaa 2100 2160 aaagcccgca aggaactctt ggagcttgag gctatgagca tggctgtgga gagcacgggt 2220 aatgccaaag cagaggctga gtcccgtgca gaggcagcga ggatcgaagg agaaggctct gtgctgcagg ccaagctcaa ggcacaggcg ctagccattg agacggaggc tgagttggag 2280 cgagtaaaga aagtacgaga gatggaactg atctatgccc gggcccagtt ggagctggag 2340 2400 gtgagcaagg cgcagcagct tgccaatgtg gaggcaaaga agttcaagga gatgacagag gcactgggcc ccggcaccat cagggacctg gctgtggccg ggccagagat gcaggtgaaa 2460 cttctccagt ccctgggcct gaaatccact ctcatcaccg atggctcgtc tcccatcaac 2520 2580 ctcttcagca cagccttcgg gttgctgggg ctggggtctg atggtcagcc gccagcacag aagatgggta actctgactc cgaatgcccg ctgtctcacg acggttattg cctgcatgat 2640 ggtgtttgta tgtatatcga agctctggac aaatatgctt gcaactgtgt tgttggttac 2700 atcggtgagc gttgccagta tcgcgacctg aaatggtggg aactgcgtgc atga 2754

<210> 96

<211> 1005

<212> PRT

<213> Artificial Sequence

<220>

<223> Saccaromyces cerevisiae and Homo sapiens and Drosophila melanogaster

<400> 96

Met Lys Leu Leu Ser Ser Ile Glu Gln Ala Cys Asp Ile Cys Arg Leu 1 10 15

Lys Lys Leu Lys Cys Ser Lys Glu Lys Pro Lys Cys Ala Lys Cys Leu 20 25 30

Lys Asn Asn Trp Glu Cys Arg Tyr Ser Pro Lys Thr Lys Arg Ser Pro 35 40 45

Leu Thr Arg Ala His Leu Thr Glu Val Glu Ser Arg Leu Glu Arg Leu 50 55 60

- Glu Gln Leu Phe Leu Leu Ile Phe Pro Arg Glu Asp Leu Asp Met Ile 65 70 75 80
- Leu Lys Met Asp Ser Leu Gln Asp Ile Lys Ala Leu Leu Thr Gly Leu 85 90 95
- Met Ala Thr Glu Glu Phe Ile Ile Arg Ile Pro Pro Tyr His Tyr Ile 100 105 110
- His Val Leu Asp Gln Asn Ser Asn Val Ser Arg Val Glu Val Gly Pro 115 120 125
- Lys Thr Tyr Ile Arg Gln Asp Asn Glu Arg Val Leu Phe Ala Pro Met 130 135 140
- Arg Met Val Thr Val Pro Pro Arg His Tyr Cys Thr Val Ala Asn Pro 145 150 155 160
- Val Ser Arg Asp Ala Gln Gly Leu Val Leu Phe Asp Val Thr Gly Gln 165 170 175
- Val Arg Leu Arg His Ala Asp Leu Glu Ile Arg Leu Ala Gln Asp Pro 180 185 190
- Phe Pro Leu Tyr Pro Gly Glu Val Leu Glu Lys Asp Ile Thr Pro Leu 195 200 205
- Gln Val Val Leu Pro Asn Thr Ala Leu His Leu Lys Ala Leu Leu Asp 210 215 220
- Phe Glu Asp Lys Asp Gly Asp Lys Val Val Ala Gly Asp Glu Trp Leu 225 230 235 240
- Phe Glu Gly Pro Gly Thr Tyr Ile Pro Arg Lys Glu Val Glu Val Val 245 250 255
- Glu Ile Ile Gln Ala Thr Ile Ile Arg Gln Asn Gln Ala Leu Arg Leu 260 265 270
- Arg Ala Arg Lys Glu Cys Trp Asp Arg Asp Gly Lys Glu Arg Val Thr

85
1

Gly Glu Glu Trp Leu Val Thr Thr Val Gly Ala Tyr Leu Pro Ala Val 290 295 300

Phe Glu Glu Val Leu Asp Leu Val Asp Ala Val Ile Leu Thr Glu Lys 305 310 315 320

Thr Ala Leu His Leu Arg Ala Arg Arg Asn Phe Arg Asp Phe Arg Gly 325 330 335

Val Ser Arg Arg Thr Gly Glu Glu Trp Leu Val Thr Val Gln Asp Thr 340 345 350

Glu Ala His Val Pro Asp Val His Glu Glu Val Leu Gly Val Val Pro 355 360 365

Ile Thr Thr Leu Gly Pro His Asn Tyr Cys Val Ile Leu Asp Pro Val 370 375 380

Gly Pro Asp Gly Lys Asn Gln Leu Gly Gln Lys Arg Val Val Lys Gly 385 390 395 400

Glu Lys Ser Phe Phe Leu Gln Pro Gly Glu Gln Leu Glu Gln Gly Ile 405 410 415

Gln Asp Val Tyr Val Leu Ser Glu Gln Gln Gly Leu Leu Leu Arg Ala 420 425 430

Leu Gln Pro Leu Glu Glu Gly Glu Asp Glu Glu Lys Val Ser His Gln 435 440 . 445

Ala Gly Asp His Trp Leu Ile Arg Gly Pro Leu Glu Tyr Val Pro Ser 450 455 460

Ala Lys Val Glu Val Val Glu Glu Arg Gln Ala Ile Pro Leu Asp Glu 465 470 475 480

Asn Glu Gly Ile Tyr Val Gln Asp Val Lys Thr Gly Lys Val Arg Ala 485 490 495

Val Ile Gly Ser Thr Tyr Met Leu Thr Gln Asp Glu Val Leu Trp Glu 500 505 510

Lys Glu Leu Pro Pro Gly Val Glu Glu Leu Leu Asn Lys Gly Gln Asp 515 520 525

- Pro Leu Ala Asp Arg Gly Glu Lys Asp Thr Ala Lys Ser Leu Gln Pro 530 535 540
- Leu Ala Pro Arg Asn Lys Thr Arg Val Val Ser Tyr Arg Val Pro His 545 550 550 560
- Asn Ala Ala Val Gln Val Tyr Asp Tyr Arg Glu Lys Arg Ala Arg Val
 565 570 575
- Val Phe Gly Pro Glu Leu Val Ser Leu Gly Pro Glu Glu Gln Phe Thr 580 585 590
- Val Leu Ser Leu Ser Ala Gly Arg Pro Lys Arg Pro His Ala Arg Arg 595 600 605
- Ala Leu Cys Leu Leu Leu Gly Pro Asp Phe Phe Thr Asp Val Ile Thr 610 615 620
- Ile Glu Thr Ala Asp His Ala Arg Leu Gln Leu Gln Leu Ala Tyr Asn 625 630 635 640
- Trp His Phe Glu Val Asn Asp Arg Lys Asp Pro Gln Glu Thr Ala Lys 645 650 655
- Leu Phe Ser Val Pro Asp Phe Val Gly Asp Ala Cys Lys Ala Ile Ala 660 665 670
- Ser Arg Val Arg Gly Ala Val Ala Ser Val Thr Phe Asp Asp Phe His 675 680 685
- Lys Asn Ser Ala Arg Ile Ile Arg Thr Ala Val Phe Gly Phe Glu Thr 690 695 700
- Ser Glu Ala Lys Gly Pro Asp Gly Met Ala Leu Pro Arg Pro Arg Asp 705 710 715 720
- Gln Ala Val Phe Pro Gln Asn Gly Leu Val Val Ser Ser Val Asp Val 725 730 735
- Gln Ser Val Glu Pro Val Asp Gln Arg Thr Arg Asp Ala Leu Gln Arg
 740 745 750

Ser Val Gln Leu Ala Ile Glu Ile Thr Thr Asn Ser Gln Glu Ala Ala 755 760 765

- Ala Lys His Glu Ala Gln Arg Leu Glu Gln Glu Ala Arg Gly Arg Leu 770 775 780
- Glu Arg Gln Lys Ile Leu Asp Gln Ser Glu Ala Glu Lys Ala Arg Lys 785 790 795 800
- Glu Leu Leu Glu Leu Glu Ala Leu Ser Met Ala Val Glu Ser Thr Gly 805 810 815
- Thr Ala Lys Ala Glu Ala Glu Ser Arg Ala Glu Ala Ala Arg Ile Glu 820 825 830
- Gly Glu Gly Ser Val Leu Gln Ala Lys Leu Lys Ala Gln Ala Leu Ala 835 840 845
- Ile Glu Thr Glu Ala Glu Leu Gln Arg Val Gln Lys Val Arg Glu Leu 850 855 860
- Glu Leu Val Tyr Ala Arg Ala Gln Leu Glu Leu Glu Val Ser Lys Ala 865 870 875 880
- Gln Gln Leu Ala Glu Val Glu Val Lys Lys Phe Lys Gln Met Thr Glu 885 890 895
- Ala Ile Gly Pro Ser Thr Ile Arg Asp Leu Ala Val Ala Gly Pro Glu 900 905 910
- Met Gln Val Lys Leu Leu Gln Ser Leu Gly Leu Lys Ser Thr Leu Ile 915 920 925
- Thr Asp Gly Ser Thr Pro Ile Asn Leu Phe Asn Thr Ala Phe Gly Leu 930 935 940
- Leu Gly Met Gly Pro Glu Gly Gln Pro Leu Gly Arg Arg Val Ala Ser 945 950 955 960
- Gly Pro Ser Pro Gly Glu Gly Ile Ser Pro Gln Ser Ala Gln Ala Pro 965 970 975
- Gln Ala Pro Gly Asp Asn His Val Val Pro Val Leu Arg Arg Gln Ile

980 985 990

Lys Ile Trp Phe Gln Asn Ala Arg Met Lys Trp Lys Lys 995 1000 1005

- <210> 97
- <211> 3018
- <212> DNA
- <213> Artificial Sequence

<220>

<223> Saccaromyces cerevisiae and Homo sapiens and Drosophila melanogaster

<400> 97 atgaagctac tgtcttctat cgaacaagca tgcgatattt gccgacttaa aaagctcaag 60 tgctccaaag aaaaaccgaa gtgcgccaag tgtctgaaga acaactggga gtgtcgctac 120 tctcccaaaa ccaaaaggtc tccgctgact agggcacatc tgacagaagt ggaatcaagg 180 ctagaaagac tggaacagct atttctactg atttttcctc gagaagacct tgacatgatt 240 ttgaaaatgg attctttaca ggatataaaa gcattgttaa caggattaat ggcaactgaa 300 gagttcatca teegeateee eccataceae tatateeatg tgetggacea gaacageaae 360 gtgtcccgtg tggaggtcgg gccaaagacc tacatccggc aggacaatga gagggtactg 420 tttgccccca tgcgcatggt gaccgtcccc ccacgtcact actgcacagt ggccaaccct 480 gtgtctcggg atgcccaggg cttggtgctg tttgatgtca cagggcaagt tcggcttcgc 540 cacgetgace tegagateeg getggeecag gacceettee ecetgtacee aggggaggtg 600 ctggaaaagg acatcacacc cctgcaggtg gttctgccca acactgccct ccatctaaag 660 gcgctgcttg attttgagga taaagatgga gacaaggtgg tggcaggaga tgagtggctt 720 ttcgagggac ctggcacgta catcccccgg aaggaagtgg aggtcgtgga gatcattcag 780 840 gccaccatca tcaggcagaa ccaggctctg cggctcaggg cccgcaagga gtgctgggac cgggacggca aggagagggt gacaggggaa gaatggctgg tcaccacagt aggggcgtac 900 ctcccagcgg tgtttgagga ggttctggat ttggtggacg ccgtcatcct tacggaaaag 960 acagecetge aceteeggge teggeggaac tteegggaet teaggggagt gteeegeege 1020 1080 actggggagg agtggctggt aacagtgcag gacacagagg cccacgtgcc agatgtccac gaggaggtgc tgggggttgt gcccatcacc accctgggcc cccacaacta ctgcgtgatt 1140 ctcgaccctg tcggaccgga tggcaagaat cagctggggc agaagcgcgt ggtcaaggga 1200 1260 gagaagtett tttteeteea geeaggagag cagetggaae aaggeateea ggatgtgtat

gtgctgtcgg	agcagcaggg	gctgctgctg	agggccctgc	agcccctgga	ggaggggag	1320
gatgaggaga	aggtctcaca	ccaggctggg	gaccactggc	tcatccgcgg	acccctggag	1380
tatgtgccat	ctgccaaagt	ggaggtggtg	gaggagcgcc	aggccatccc	tctagacgag	1440
aacgagggca	tctatgtgca	ggatgtcaag	accggaaagg	tgcgcgctgt	gattggaagc	1500
acctacatgc	tgacccagga	cgaagtcctg	tgggagaaag	agctgcctcc	cggggtggag	1560
gagetgetga	acaaggggca	ggaccctctg	gcagacaggg	gtgagaagga	cacagctaag	1620
agcctccagc	ccttggcgcc	ccggaacaag	acccgtgtgg	tcagctaccg	cgtgccccac	1680
aacgctgcgg	tgcaggtgta	cgactaccga	gagaagcgag	cccgcgtggt	cttcgggcct	1740
gagctggtgt	cgctgggtcc	tgaggagcag	ttcacagtgt	tgtccctctc	agctgggcgg	1800
cccaagcgtc	cccatgcccg	ccgtgcgctc	tgcctgctgc	tggggcctga	cttcttcaca	1860
gacgtcatca	ccatcgaaac	ggcggatcat	gccaggctgc	aactgcagct	ggcctacaac	1920
tggcactttg	aggtgaatga	ccggaaggac	ccccaagaga	cggccaagct	cttttcagtg	1980
ccagactttg	taggtgatgc	ctgcaaagcc	atcgcatccc	gggtgcgggg	ggccgtggcc	2040
tetgteactt	tcgatgactt	ccataagaac	tcagcccgca	tcattcgcac	tgctgtcttt	2100
ggctttgaga	cctcggaagc	gaagggccc	gatggcatgg	ccctgcccag	gccccgggac	2160
caggctgtct	tcccccaaaa	cgggctggtg	gtcagcagtg	tggacgtgca	gtcagtggag	2220
cctgtggatc	agaggacccg	ggacgccctg	caacgcagcg	tccagctggc	: catcgagatc	2280
accaccaact	cccaggaagc	ggcggccaag	catgaggete	agagactgga	gcaggaagcc	2340
cgcggccggc	: ttgagcggca	gaagateete	gaccagtcag	aagccgagaa	a agctcgcaag	2400
gaacttttgg	agctggaggc	tctgagcatg	gccgtggaga	gcaccgggad	tgccaaggcg	2460
gaggccgagt	: cccgtgcgga	ggcagcccgg	g attgagggag	g aagggtccgt	gctgcaggcc	2520
aagctaaaag	g cacaggeett	ggccattgaa	a acggaggctg	g agctccagag	g ggtccagaag	2580
gtccgagago	tggaactggt	ctatgcccg	g gcccagctgg	g agctggaggt	t gagcaaggct	2640
cagcagctgg	g ctgaggtgga	ggtgaagaag	g ttcaagcaga	a tgacagagg	c cataggcccc	2700
agcaccatca	a gggaccttgo	tgtggctgg	g cctgagatgo	c aggtaaaac	t gctccagtcc	2760
ctgggcctga	a aatcaaccct	catcaccga	t ggctccacto	c ccatcaacc	t cttcaacaca	2820
gcctttggg	c tgctggggat	ggggcccga	g ggtcagccc	c tgggcagaa	g ggtggccagt	2880
gggcccagc	ctggggagg	g gatatecee	c cagtctgct	c aggcccctc	a agctcctgga	2940
gacaaccac	g tggtgcctg	t actgcgccg	a cagatcaag	a tctggtttc	a gaacgcacgg	3000

atgaagtgga agaagtga 3018

<210> 98

<211> 973

<212> PRT

<213> Artificial Sequence

<220>

<223> Saccaromyces cerevisiae and Rattus norvegicus and Drosophila melanogaster

<400> 98

Met Lys Leu Leu Ser Ser Ile Glu Gln Ala Cys Asp Ile Cys Arg Leu 1 5 10 15

Lys Lys Leu Lys Cys Ser Lys Glu Lys Pro Lys Cys Ala Lys Cys Leu 20 25 30

Lys Asn Asn Trp Glu Cys Arg Tyr Ser Pro Lys Thr Lys Arg Ser Pro 35 40 45

Leu Thr Arg Ala His Leu Thr Glu Val Glu Ser Arg Leu Glu Arg Leu 50 55 60

Glu Gln Leu Phe Leu Leu Ile Phe Pro Arg Glu Asp Leu Asp Met Ile
65 70 75 80

Leu Lys Met Asp Ser Leu Gln Asp Ile Lys Ala Leu Leu Thr Gly Leu 85 90 95

Met Ala Thr Glu Glu Ala Ile Ile Arg Ile Pro Pro Tyr His Tyr Ile 100 105 110

His Val Leu Asp Gln Asn Ser Asn Val Ser Arg Val Glu Val Gly Pro 115 120 125

Lys Thr Tyr Ile Arg Gln Asp Asn Glu Arg Val Leu Phe Ala Pro Val 130 135 140

Arg Met Val Thr Val Pro Pro Arg His Tyr Cys Ile Val Ala Asn Pro 145 150 155 160

Val Ser Arg Asp Thr Gln Ser Ser Val Leu Phe Asp Ile Thr Gly Gln 165 170 175

Val Arg Leu Arg His Ala Asp Gln Glu Ile Arg Leu Ala Gln Asp Pro 180 185 190

- Phe Pro Leu Tyr Pro Gly Glu Val Leu Glu Lys Asp Ile Thr Pro Leu 195 200 205
- Gln Val Val Leu Pro Asn Thr Ala Leu His Leu Lys Ala Leu Leu Asp 210 215 220
- Phe Glu Asp Lys Asn Gly Asp Lys Val Met Ala Gly Asp Glu Trp Leu 225 230 235 240
- Phe Glu Gly Pro Gly Thr Tyr Ile Pro Gln Lys Glu Val Glu Val Val 245 250 255
- Glu Ile Ile Gln Ala Thr Val Ile Lys Gln Asn Gln Ala Leu Arg Leu 260 265 270
- Arg Ala Arg Lys Glu Cys Phe Asp Arg Glu Gly Lys Gly Arg Val Thr 275 280 285
- Gly Glu Glu Trp Leu Val Arg Ser Val Gly Ala Tyr Leu Pro Ala Val 290 295 300
- Phe Glu Glu Val Leu Asp Leu Val Asp Ala Val Ile Leu Thr Glu Lys 305 310 315 320
- Thr Ala Leu His Leu Arg Ala Leu Gln Asn Phe Arg Asp Leu Arg Gly 325 330 335
- Val Leu His Arg Thr Gly Glu Glu Trp Leu Val Thr Val Gln Asp Thr 340 345 350
- Glu Ala His Val Pro Asp Val Tyr Glu Glu Val Leu Gly Val Val Pro 355 360 365
- Ile Thr Thr Leu Gly Pro Arg His Tyr Cys Val Ile Leu Asp Pro Met 370 375 380
- Gly Pro Asp Gly Lys Asn Gln Leu Gly Gln Lys Arg Val Val Lys Gly 385 390 395 400
- Glu Lys Ser Phe Phe Leu Gln Pro Gly Glu Arg Leu Glu Arg Gly Ile 405 410 415

Gln Asp Val Tyr Val Leu Ser Glu Gln Gln Gly Leu Leu Leu Lys Ala 420 425 430

- Leu Gln Pro Leu Glu Glu Glu Glu Ser Glu Glu Lys Val Ser His Gln 435 440 445
- Ala Gly Asp Cys Trp Leu Ile Arg Gly Pro Leu Glu Tyr Val Pro Ser 450 455 460
- Ala Lys Val Glu Val Val Glu Glu Arg Gln Ala Ile Pro Leu Asp Gln 465 470 475 480
- Asn Glu Gly Ile Tyr Val Gln Asp Val Lys Thr Gly Lys Val Arg Ala 485 490 495
- Val Ile Gly Ser Thr Tyr Met Leu Thr Gln Asp Glu Val Leu Trp Glu 500 505 510
- Lys Glu Leu Pro Ser Gly Val Glu Glu Leu Leu Asn Leu Gly His Asp 515 520 525
- Pro Leu Ala Asp Arg Gly Gln Lys Gly Thr Ala Lys Pro Leu Gln Pro 530 535 540
- Ser Ala Pro Arg Asn Lys Thr Arg Val Val Ser Tyr Arg Val Pro His 545 550 550 560
- Asn Ala Ala Val Gln Val Tyr Asp Tyr Arg Ala Lys Arg Ala Arg Val 565 570 575
- Val Phe Gly Pro Glu Leu Val Thr Leu Asp Pro Glu Glu Gln Phe Thr 580 585 590
- Val Leu Ser Leu Ser Ala Gly Arg Pro Lys Arg Pro His Ala Arg Arg 595 600 605
- Ala Leu Cys Leu Leu Gly Pro Asp Phe Phe Thr Asp Val Ile Thr 610 615 620
- Ile Glu Thr Ala Asp His Ala Arg Leu Gln Leu Gln Leu Ala Tyr Asn 625 630 635 640
- Trp His Phe Glu Leu Lys Asn Arg Asn Asp Pro Ala Glu Ala Ala Lys

645 650 655

Leu Phe Ser Val Pro Asp Phe Val Gly Asp Ala Cys Lys Ala Ile Ala 660 665 670

Ser Arg Val Arg Gly Ala Val Ala Ser Val Thr Phe Asp Asp Phe His 675 680 685

Lys Asn Ser Ala Arg Ile Ile Arg Met Ala Val Phe Gly Phe Glu Met 690 695 700

Ser Glu Asp Thr Gly Pro Asp Gly Thr Leu Leu Pro Lys Ala Arg Asp 705 710 715 720

Gln Ala Val Phe Pro Gln Asn Gly Leu Val Val Ser Ser Val Asp Val 725 730 735

Gln Ser Val Glu Pro Val Asp Gln Arg Thr Arg Asp Ala Leu Gln Arg 740 745 750

Ser Val Gln Leu Ala Ile Glu Ile Thr Thr Asn Ser Gln Glu Ala Ala 755 760 765

Ala Lys His Glu Ala Gln Arg Leu Glu Glu Glu Ala Arg Gly Arg Leu 770 775 780

Glu Arg Gln Lys Ile Leu Asp Gln Ser Glu Ala Glu Lys Ala Arg Lys 785 790 795 800

Glu Leu Leu Glu Leu Glu Ala Met Ser Met Ala Val Glu Ser Thr Gly 805 810 815

Asn Ala Lys Ala Glu Ala Glu Ser Arg Ala Glu Ala Ala Arg Ile Glu 820 825 830

Gly Glu Gly Ser Val Leu Gln Ala Lys Leu Lys Ala Gln Ala Leu Ala 835 840 845

Ile Glu Thr Glu Ala Glu Leu Glu Arg Val Lys Lys Val Arg Glu Met 850 855 860

Glu Leu Ile Tyr Ala Arg Ala Gln Leu Glu Leu Glu Val Ser Lys Ala 865 870 875 880

Gln Gln Leu Ala Asn Val Glu Ala Lys Lys Phe Lys Glu Met Thr Glu 885 890 895

Ala Leu Gly Pro Gly Thr Ile Arg Asp Leu Ala Val Ala Gly Pro Glu 900 905 910

Met Gln Val Lys Leu Leu Gln Ser Leu Gly Leu Lys Ser Thr Leu Ile 915 920 925

Thr Asp Gly Ser Ser Pro Ile Asn Leu Phe Ser Thr Ala Phe Gly Leu 930 935 940

Leu Gly Leu Gly Ser Asp Gly Gln Pro Pro Ala Gln Lys Arg Gln Ile 945 950 955 960

Lys Ile Trp Phe Gln Asn Ala Arg Met Lys Trp Lys Lys 965 970

<210> 99

<211> 2922

<212> DNA

<213> Artificial Sequence

<220>

<223> Saccaromyces cerevisiae and Rattus norvegicus and Drosophila melanogaster

<400> 99

60 atgaaqctac tqtcttctat cgaacaagca tgcgatattt gccgacttaa aaagctcaag tgctccaaag aaaaaccgaa gtgcgccaag tgtctgaaga acaactggga gtgtcgctac 120 180 tctcccaaaa ccaaaaggtc tccgctgact agggcacatc tgacagaagt ggaatcaagg ctaqaaaqac tqqaacaqct atttctactg atttttcctc gagaagacct tgacatgatt 240 ttgaaaatgg attctttaca ggatataaaa gcattgttaa caggattaat ggcaactgaa 300 gaggccatca tecgeatece eccataceae tacatecatg tgetggacea gaacagtaat 360 gtgtcccgtg tggaggttgg accaaagacc tacatccggc aggacaatga gagggtactg 420 480 tttgccccag ttcgcatggt gaccgtcccc ccacgccact actgcatagt ggccaaccct gtgtcccggg acacccagag ttctgtgtta tttgacatca caggacaagt ccgactccgg 540 600 cacqctqacc aqqaqatccq actagcccag gaccccttcc ccctgtatcc aggggaggtg ctggaaaagg acatcacccc actgcaggtg gttctgccca acacagcact gcatcttaag 660 720 gcgttgctgg actttgagga taagaatgga gacaaggtca tggcaggaga cgagtggcta

tttgagggac	ctggcaccta	catcccacag	aaggaagtgg	aagtcgtgga	gatcattcag	780
gccacagtca	tcaaacagaa	ccaagcactg	cggctaaggg	cccgaaagga	gtgctttgac	840
cgggagggca	aggggcgcgt	gacaggtgag	gagtggctgg	tccgatccgt	gggggcttac	900
ctcccagctg	tctttgaaga	ggtgctggat	ctggtggatg	ctgtgatcct	tacagaaaag	960
actgccctgc	acctccgggc	tctgcagaac	ttcagggacc	ttcggggagt	gctccaccgc	1020
accggggagg	aatggttagt	gacagtgcag	gacacagaag	cccatgttcc	agatgtctat	1080
gaggaggtgc	ttggggtagt	acccatcacc	accctgggac	ctcgacacta	ctgtgtcatt	1140
cttgacccaa	tgggaccaga	cggcaagaac	cagctgggac	aaaagcgtgt	tgtcaaggga	1200
gagaagtcct	ttttcctcca	gccaggagag	aggctggagc	gaggcatcca	ggatgtgtat	1260
gtgctgtcag	agcagcaggg	gctgctactg	aaggcactgc	agcccctgga	ggagggagag	1320
agcgaggaga	aggtctccca	tcaggccgga	gactgctggc	tcatccgtgg	gcccctggag	1380
tatgtgccat	ctgcaaaagt	ggaggtggtg	gaggagcgtc	aggetatece	tctggaccaa	1440
aatgagggca	tctatgtgca	ggatgtcaag	acggggaagg	tgcgggctgt	gattggaagc	1500
acctacatgc	tgactcagga	tgaagtcctg	tgggaaaagg	agctgccttc	tggggtggag	1560
gagctgctga	acttggggca	tgaccctctg	gcagacaggg	gtcagaaggg	cacagccaag	1620
ccccttcagc	cctcagctcc	aaggaacaag	acccgagtgg	tcagctaccg	tgtcccgcac	1680
aatgcagcgg	tgcaggtcta	tgactacaga	gccaagagag	cccgtgtggt	ctttgggccc	1740
gagctagtga	cactggatcc	tgaggagcag	ttcacagtat	tgtccctttc	tgccgggcga	1800
cccaagcgtc	ctcatgcccg	ccgtgcactc	tgcctactgc	tgggacctga	tttctttact	1860
gatgtcatca	ccatcgaaac	tgcagatcat	gccaggttgc	agctgcagct	tgcctacaac	1920
tggcactttg	aactgaagaa	ccggaatgac	cctgcagagg	cagccaagct	tttctccgtg	1980
cctgacttcg	tgggtgacgc	ctgcaaggcc	attgcatccc	gagtccgggg	ggctgtagcc	2040
tctgtcacct	ttgatgactt	ccataaaaac	tcagcccgga	tcattcgaat	ggctgttttt	2100
ggctttgaga	tgtctgaaga	cacaggtcct	gatggcacac	teetgeecaa	ggctcgagac	2160
caggcagtct	ttccccaaaa	cgggctggta	gtcagcagtg	tggatgtgca	gtcagtggag	2220
cccgtggacc	agaggacccg	ggatgccctt	cagegeageg	ttcagctggc	catcgaaatt	2280
accaccaact	cccaggaggc	agcagccaag	cacgaggctc	agagactgga	acaggaagcc	2340
cgtggtcggc	ttgagaggca	. gaagatettg	gaccagtcag	aagctgaaaa	agcccgcaag	2400
gaactcttgg	agcttgaggc	tatgagcatg	gctgtggaga	. gcacgggtaa	tgccaaagca	2460

gaggctgagt	cccgtgcaga	ggcagcgagg	atcgaaggag	aaggctctgt	gctgcaggcc	2520
aagctcaagg	cacaggcgct	agccattgag	acggaggctg	agttggagcg	agtaaagaaa	2580
gtacgagaga	tggaactgat	ctatgcccgg	gcccagttgg	agctggaggt	gagcaaggcg	2640
cagcagettg	ccaatgtgga	ggcaaagaag	ttcaaggaga	tgacagaggc	actgggcccc	2700
ggcaccatca	gggacctggc	tgtggccggg	ccagagatgc	aggtgaaact	tctccagtcc	2760
ctgggcctga	aatccactct	catcaccgat	ggctcgtctc	ccatcaacct	cttcagcaca	2820
gccttcgggt	tgctggggct	ggggtctgat	ggtcagccgc	cagcacagaa	gcgacagatc	2880
aagatctggt	ttcagaacgc	acggatgaag	tggaagaagt	ga		2922

<210> 100

<211> 1238

<212> PRT

<213> Artificial Sequence

<220>

<223> synthesized and Saccaromyces cerevisiae and Homo sapiens

<400> 100

Met Lys Leu Leu Ser Ser Ile Glu Gln Ala Cys Asp Ile Cys Arg Leu 1 5 10 15

Lys Lys Leu Lys Cys Ser Lys Glu Lys Pro Lys Cys Ala Lys Cys Leu 20 25 30

Lys Asn Asn Trp Glu Cys Arg Tyr Ser Pro Lys Thr Lys Arg Ser Pro 35 40 45

Leu Thr Arg Ala His Leu Thr Glu Val Glu Ser Arg Leu Glu Arg Leu 50 55 60

Glu Gln Leu Phe Leu Leu Ile Phe Pro Arg Glu Asp Leu Asp Met Ile 65 70 75 80

Leu Lys Met Asp Ser Leu Gln Asp Ile Lys Ala Leu Leu Thr Gly Leu 85 90 95

Met Ala Thr Glu Glu Phe Ile Ile Arg Ile Pro Pro Tyr His Tyr Ile 100 105 110

His Val Leu Asp Gln Asn Ser Asn Val Ser Arg Val Glu Val Gly Pro 115 120 125

Lys Thr Tyr Ile Arg Gln Asp Asn Glu Arg Val Leu Phe Ala Pro Met 130 135 140

- Arg Met Val Thr Val Pro Pro Arg His Tyr Cys Thr Val Ala Asn Pro 145 150 155 160
- Val Ser Arg Asp Ala Gln Gly Leu Val Leu Phe Asp Val Thr Gly Gln 165 170 175
- Val Arg Leu Arg His Ala Asp Leu Glu Ile Arg Leu Ala Gln Asp Pro 180 185 190
- Phe Pro Leu Tyr Pro Gly Glu Val Leu Glu Lys Asp Ile Thr Pro Leu 195 200 205
- Gln Val Val Leu Pro Asn Thr Ala Leu His Leu Lys Ala Leu Leu Asp 210 215 220
- Phe Glu Asp Lys Asp Gly Asp Lys Val Val Ala Gly Asp Glu Trp Leu 225 230 235 240
- Phe Glu Gly Pro Gly Thr Tyr Ile Pro Arg Lys Glu Val Glu Val Val 245 250 255
- Glu Ile Ile Gln Ala Thr Ile Ile Arg Gln Asn Gln Ala Leu Arg Leu 260 265 270
- Arg Ala Arg Lys Glu Cys Trp Asp Arg Asp Gly Lys Glu Arg Val Thr 275 280 285
- Gly Glu Glu Trp Leu Val Thr Thr Val Gly Ala Tyr Leu Pro Ala Val 290 295 300
- Phe Glu Glu Val Leu Asp Leu Val Asp Ala Val Ile Leu Thr Glu Lys 305 310 315 320
- Thr Ala Leu His Leu Arg Ala Arg Arg Asn Phe Arg Asp Phe Arg Gly 325 330 335
- Val Ser Arg Arg Thr Gly Glu Glu Trp Leu Val Thr Val Gln Asp Thr 340 345 350
- Glu Ala His Val Pro Asp Val His Glu Glu Val Leu Gly Val Val Pro 355 360 365

Ile Thr Thr Leu Gly Pro His Asn Tyr Cys Val Ile Leu Asp Pro Val 370 375 380

Gly Pro Asp Gly Lys Asn Gln Leu Gly Gln Lys Arg Val Val Lys Gly 385 390 395 400

Glu Lys Ser Phe Phe Leu Gln Pro Gly Glu Gln Leu Glu Gln Gly Ile 405 410 415

Gln Asp Val Tyr Val Leu Ser Glu Gln Gln Gly Leu Leu Leu Arg Ala 420 425 430

Leu Gln Pro Leu Glu Glu Gly Glu Asp Glu Glu Lys Val Ser His Gln
435 440 445

Ala Gly Asp His Trp Leu Ile Arg Gly Pro Leu Glu Tyr Val Pro Ser 450 455 460

Ala Lys Val Glu Val Val Glu Glu Arg Gln Ala Ile Pro Leu Asp Glu 465 470 475 480

Asn Glu Gly Ile Tyr Val Gln Asp Val Lys Thr Gly Lys Val Arg Ala 485 490 495

Val Ile Gly Ser Thr Tyr Met Leu Thr Gln Asp Glu Val Leu Trp Glu 500 505 510

Lys Glu Leu Pro Pro Gly Val Glu Glu Leu Leu Asn Lys Gly Gln Asp 515 520 525

Pro Leu Ala Asp Arg Gly Glu Lys Asp Thr Ala Lys Ser Leu Gln Pro 530 535 540

Leu Ala Pro Arg Asn Lys Thr Arg Val Val Ser Tyr Arg Val Pro His 545 550 555 560

Asn Ala Ala Val Gln Val Tyr Asp Tyr Arg Glu Lys Arg Ala Arg Val
565 570 575

Val Phe Gly Pro Glu Leu Val Ser Leu Gly Pro Glu Glu Gln Phe Thr 580 585 590

Val Leu Ser Leu Ser Ala Gly Arg Pro Lys Arg Pro His Ala Arg Arg

595 600 605

Ala Leu Cys Leu Leu Leu Gly Pro Asp Phe Phe Thr Asp Val Ile Thr 610 615 620

Ile Glu Thr Ala Asp His Ala Arg Leu Gln Leu Gln Leu Ala Tyr Asn 625 630 635 640

Trp His Phe Glu Val Asn Asp Arg Lys Asp Pro Gln Glu Thr Ala Lys 645 650 655

Leu Phe Ser Val Pro Asp Phe Val Gly Asp Ala Cys Lys Ala Ile Ala 660 665 670

Ser Arg Val Arg Gly Ala Val Ala Ser Val Thr Phe Asp Asp Phe His 675 680 685

Lys Asn Ser Ala Arg Ile Ile Arg Thr Ala Val Phe Gly Phe Glu Thr 690 695 700

Ser Glu Ala Lys Gly Pro Asp Gly Met Ala Leu Pro Arg Pro Arg Asp 705 710 715 720

Gln Ala Val Phe Pro Gln Asn Gly Leu Val Val Ser Ser Val Asp Val 725 730 735

Gln Ser Val Glu Pro Val Asp Gln Arg Thr Arg Asp Ala Leu Gln Arg 740 745 750

Ser Val Gln Leu Ala Ile Glu Ile Thr Thr Asn Ser Gln Glu Ala Ala 755 760 765

Ala Lys His Glu Ala Gln Arg Leu Glu Glu Glu Ala Arg Gly Arg Leu 770 775 780

Glu Arg Gln Lys Ile Leu Asp Gln Ser Glu Ala Glu Lys Ala Arg Lys 785 790 795 800

Glu Leu Leu Glu Leu Glu Ala Leu Ser Met Ala Val Glu Ser Thr Gly 805 810 815

Thr Ala Lys Ala Glu Ala Glu Ser Arg Ala Glu Ala Ala Arg Ile Glu 820 825 830

Gly Glu Gly Ser Val Leu Gln Ala Lys Leu Lys Ala Gln Ala Leu Ala 835 840 845

- Ile Glu Thr Glu Ala Glu Leu Gln Arg Val Gln Lys Val Arg Glu Leu 850 855 860
- Glu Leu Val Tyr Ala Arg Ala Gln Leu Glu Leu Glu Val Ser Lys Ala 865 870 875 880
- Gln Gln Leu Ala Glu Val Glu Val Lys Lys Phe Lys Gln Met Thr Glu 885 890 895
- Ala Ile Gly Pro Ser Thr Ile Arg Asp Leu Ala Val Ala Gly Pro Glu 900 905 910
- Met Gln Val Lys Leu Leu Gln Ser Leu Gly Leu Lys Ser Thr Leu Ile 915 920 925
- Thr Asp Gly Ser Thr Pro Ile Asn Leu Phe Asn Thr Ala Phe Gly Leu 930 935 940
- Leu Gly Met Gly Pro Glu Gly Gln Pro Leu Gly Arg Arg Val Ala Ser 945 950 955 960
- Gly Pro Ser Pro Gly Glu Gly Ile Ser Pro Gln Ser Ala Gln Ala Pro 965 970 975
- Gln Ala Pro Gly Asp Asn His Val Val Pro Val Leu Arg Asp Ile Val 980 985 990
- Leu Thr Gln Ser Pro Ala Ser Leu Ala Val Ser Leu Gly Gln Arg Ala 995 1000 1005
- Thr Met Ser Cys Arg Ala Gly Glu Ser Val Asp Ile Phe Gly Val 1010 1015 1020
- Gly Phe Leu His Trp Tyr Gln Gln Lys Pro Gly Gln Pro Pro Lys 1025 1030 1035
- Leu Leu Ile Tyr Arg Ala Ser Asn Leu Glu Ser Gly Ile Pro Val 1040 1045 1050
- Arg Phe Ser Gly Thr Gly Ser Arg Thr Asp Phe Thr Leu Ile Ile 1055 1060 1065

Asp Pro Val Glu Ala Asp Asp Val Ala Thr Tyr Tyr Cys Gln Gln 1070 1075 1080 Thr Asn Glu Asp Pro Tyr Thr Phe Gly Gly Gly Thr Lys Leu Glu 1085 1090 1095 Ile Lys Gly Ser Thr Ser Gly Gly Gly Ser Gly Gly Ser Gly 1105 1100 1110 Gly Gly Ser Ser Glu Val Gln Leu Gln Gln Ser Gly Ala Glu 1120 1115 Leu Val Glu Pro Gly Ala Ser Val Lys Leu Ser Cys Thr Ala Ser 1130 1135 Gly Phe Asn Ile Lys Asp Thr Tyr Met His Trp Val Lys Gln Arg 1145 1150 Pro Glu Gln Gly Leu Glu Trp Ile Gly Arg Ile Asp Pro Ala Asn 1160 1165 Gly Asn Ser Lys Tyr Val Pro Lys Phe Gln Gly Lys Ala Thr Ile 1180 Thr Ala Asp Thr Ser Ser Asn Thr Ala Tyr Leu Gln Leu Thr Ser 1190 1195 Leu Thr Ser Glu Asp Thr Ala Val Tyr Tyr Cys Ala Pro Phe Gly 1205 1210 Tyr Tyr Val Ser Asp Tyr Ala Met Ala Tyr Trp Gly Gln Gly Thr 1220 1225 1230 Ser Val Thr Val Ser 1235 <210> 101 <211> 3717 <212> DNA <213> Artificial Sequence <220> <223> synthesized and Saccaromyces cerevisiae and Homo sapiens

<400> 101

atgaagctac	tgtcttctat	cgaacaagca	tgcgatattt	gccgacttaa	aaagctcaag	60
tgctccaaag	aaaaaccgaa	gtgcgccaag	tgtctgaaga	acaactggga	gtgtcgctac	120
tctcccaaaa	ccaaaaggtc	tccgctgact	agggcacatc	tgacagaagt	ggaatcaagg	180
ctagaaagac	tggaacagct	atttctactg	atttttcctc	gagaagacct	tgacatgatt	240
ttgaaaatgg	attetttaca	ggatataaaa	gcattgttaa	caggattaat	ggcaactgaa	300
gagttcatca	teegeateee	cccataccac	tatatccatg	tgctggacca	gaacagcaac	360
gtgtcccgtg	tggaggtcgg	gccaaagacc	tacatccggc	aggacaatga	gagggtactg	420
tttgccccca	tgcgcatggt	gaccgtcccc	ccacgtcact	actgcacagt	ggccaaccct	480
gtgtctcggg	atgcccaggg	cttggtgctg	tttgatgtca	cagggcaagt	tcggcttcgc	540
cacgctgacc	tegagateeg	gctggcccag	gaccccttcc	ccctgtaccc	aggggaggtg	600
ctggaaaagg	acatcacacc	cctgcaggtg	gttctgccca	acactgccct	ccatctaaag	660
gegetgettg	attttgagga	taaagatgga	gacaaggtgg	tggcaggaga	tgagtggctt	720
ttcgagggac	ctggcacgta	catcccccgg	aaggaagtgg	aggtcgtgga	gatcattcag	780
gccaccatca	tcaggcagaa	ccaggctctg	cggctcaggg	cccgcaagga	gtgctgggac	840
cgggacggca	aggagagggt	gacaggggaa	gaatggctgg	tcaccacagt	aggggcgtac	900
ctcccagcgg	tgtttgagga	ggttctggat	ttggtggacg	ccgtcatcct	tacggaaaag	960
acagccctgc	acctccgggc	tcggcggaac	ttccgggact	tcaggggagt	gtcccgccgc	1020
actggggagg	agtggctggt	aacagtgcag	gacacagagg	cccacgtgcc	agatgtccac	1080
gaggaggtgc	tgggggttgt	gcccatcacc	accctgggcc	cccacaacta	ctgcgtgatt	1140
ctcgaccctg	tcggaccgga	tggcaagaat	cagctggggc	agaagcgcgt	ggtcaaggga	1200
gagaagtctt	ttttcctcca	gccaggagag	cagctggaac	aaggcatcca	ggatgtgtat	1260
gtgctgtcgg	agcagcaggg	gctgctgctg	agggccctgc	agcccctgga	ggaggggag	1320
gatgaggaga	aggtctcaca	ccaggctggg	gaccactggc	tcatccgcgg	acccctggag	1380
tatgtgccat	ctgccaaagt	ggaggtggtg	gaggagcgcc	aggccatccc	tctagacgag	1440
aacgagggca	tctatgtgca	ggatgtcaag	accggaaagg	tgcgcgctgt	gattggaagc	1500
acctacatgc	tgacccagga	cgaagtcctg	tgggagaaag	agctgcctcc	cggggtggag	1560
gagctgctga	acaaggggca	ggaccctctg	gcagacaggg	gtgagaagga	cacagctaag	1620
agcctccagc	ccttggcgcc	ccggaacaag	acccgtgtgg	tcagctaccg	cgtgccccac	1680
aacgctgcgg	tgcaggtgta	cgactaccga	gagaagcgag	cccgcgtggt	cttcgggcct	1740

gagetggtgt egetgggtee tgaggageag tteacagtgt tgteeetete agetgggegg	1800
cccaagegte eccatgeeeg cegtgegete tgeetgetge tggggeetga ettetteaca	1860
gacgtcatca ccatcgaaac ggcggatcat gccaggctgc aactgcagct ggcctacaac	1920
tggcactttg aggtgaatga ccggaaggac ccccaagaga cggccaagct cttttcagtg	1980
ccagactttg taggtgatgc ctgcaaagcc atcgcatccc gggtgcgggg ggccgtggcc	2040
totgtoactt togatgactt coataagaac toageoogea toattogeac tgctgtottt	2100
ggctttgaga cctcggaagc gaagggcccc gatggcatgg ccctgcccag gccccgggac	2160
caggetgtet teccecaaaa egggetggtg gteageagtg tggaegtgea gteagtggag	2220
cctgtggatc agaggacccg ggacgccctg caacgcagcg tccagctggc catcgagatc	2280
accaccaact cccaggaagc ggcggccaag catgaggctc agagactgga gcaggaagcc	2340
cgcggccggc ttgagcggca gaagatcctg gaccagtcag aagccgagaa agctcgcaag	2400
gaacttttgg agctggaggc tctgagcatg gccgtggaga gcaccgggac tgccaaggcg	2460
gaggccgagt cccgtgcgga ggcagcccgg attgagggag aagggtccgt gctgcaggcc	2520
aagctaaaag cacaggcctt ggccattgaa acggaggctg agctccagag ggtccagaag	2580
gtccgagagc tggaactggt ctatgcccgg gcccagctgg agctggaggt gagcaaggct	2640
cagcagctgg ctgaggtgga ggtgaagaag ttcaagcaga tgacagaggc cataggcccc	2700
agcaccatca gggaccttgc tgtggctggg cctgagatgc aggtaaaact gctccagtcc	2760
ctgggcctga aatcaaccct catcaccgat ggctccactc ccatcaacct cttcaacaca	2820
gcctttgggc tgctggggat ggggcccgag ggtcagcccc tgggcagaag ggtggccagt	2880
gggcccagcc ctggggaggg gatatccccc cagtctgctc aggcccctca agctcctgga	2940
gacaaccacg tggtgcctgt actgcgcgac attgtgctga cccaatctcc agcttctttg	3000
gctgtgtctc ttgggcagag ggccaccatg tcctgcagag ccggtgaaag tgttgatatt	3060
tttggcgttg ggtttttgca ctggtaccag cagaaaccag gacagccacc caaactcctc	3120
atctatcgtg catccaacct agaatctggg atccctgtca ggttcagtgg cactgggtct	3180
aggacagact tcaccctcat cattgatcct gtggaggctg atgatgttgc cacctattac	3240
tgtcagcaaa ctaatgagga tccgtacacg ttcggagggg ggaccaagct ggaaataaaa	3300
ggcagtacta gcggcggtgg ctccgggggc ggttccggtg ggggcggcag cagcgaggtt	3360
cagctacaac agtctggggc agagcttgtg gagccagggg cctcagtcaa gttgtcctgc	3420
acagettetg getteaacat taaagacace tatatgeact gggtgaagea gaggeetgaa	3480

PCT/US2004/007434 WO 2004/081533

cagggcctgg aatggattgg aaggattgat cctgcgaatg gtaatagtaa atatgtcccg aagttccagg gcaaggccac tataacagca gacacatctt ccaacacagc ctacctgcag 3600 ctcaccagcc tgacatctga ggacactgcc gtctattatt gtgctccgtt tggttactac 3660 gtgtctgact atgctatggc ctactggggt caaggaacct cagtcaccgt ctcgtga 3717

<210> 102

<211> 1206

<212> PRT

<213> Artificial Sequence

<220>

<223> synthesized and Saccaromyces cerevisiae and Rattus norvegicus

<400> 102

Met Lys Leu Leu Ser Ser Ile Glu Gln Ala Cys Asp Ile Cys Arg Leu

Lys Lys Leu Lys Cys Ser Lys Glu Lys Pro Lys Cys Ala Lys Cys Leu

Lys Asn Asn Trp Glu Cys Arg Tyr Ser Pro Lys Thr Lys Arg Ser Pro 35

Leu Thr Arg Ala His Leu Thr Glu Val Glu Ser Arg Leu Glu Arg Leu 50 55

Glu Gln Leu Phe Leu Leu Ile Phe Pro Arg Glu Asp Leu Asp Met Ile 75 70 65

Leu Lys Met Asp Ser Leu Gln Asp Ile Lys Ala Leu Leu Thr Gly Leu 90 85

Met Ala Thr Glu Glu Ala Ile Ile Arg Ile Pro Pro Tyr His Tyr Ile 105 100

His Val Leu Asp Gln Asn Ser Asn Val Ser Arg Val Glu Val Gly Pro 125 115 120

Lys Thr Tyr Ile Arg Gln Asp Asn Glu Arg Val Leu Phe Ala Pro Val 130

Arg Met Val Thr Val Pro Pro Arg His Tyr Cys Ile Val Ala Asn Pro 155 150 145

Val Ser Arg Asp Thr Gln Ser Ser Val Leu Phe Asp Ile Thr Gly Gln 165 170 175

- Val Arg Leu Arg His Ala Asp Gln Glu Ile Arg Leu Ala Gln Asp Pro 180 185 190
- Phe Pro Leu Tyr Pro Gly Glu Val Leu Glu Lys Asp Ile Thr Pro Leu 195 200 205
- Gln Val Val Leu Pro Asn Thr Ala Leu His Leu Lys Ala Leu Leu Asp 210 215 220
- Phe Glu Asp Lys Asn Gly Asp Lys Val Met Ala Gly Asp Glu Trp Leu 225 230 235 240
- Phe Glu Gly Pro Gly Thr Tyr Ile Pro Gln Lys Glu Val Glu Val Val 245 250 255
- Glu Ile Ile Gln Ala Thr Val Ile Lys Gln Asn Gln Ala Leu Arg Leu 260 265 270
- Arg Ala Arg Lys Glu Cys Phe Asp Arg Glu Gly Lys Gly Arg Val Thr 275 280 285
- Gly Glu Glu Trp Leu Val Arg Ser Val Gly Ala Tyr Leu Pro Ala Val 290 295 300
- Phe Glu Glu Val Leu Asp Leu Val Asp Ala Val Ile Leu Thr Glu Lys 305 310 315 320
- Thr Ala Leu His Leu Arg Ala Leu Gln Asn Phe Arg Asp Leu Arg Gly 325 330 335
- Val Leu His Arg Thr Gly Glu Glu Trp Leu Val Thr Val Gln Asp Thr 340 345 350
- Glu Ala His Val Pro Asp Val Tyr Glu Glu Val Leu Gly Val Val Pro 355 360 365
- Ile Thr Thr Leu Gly Pro Arg His Tyr Cys Val Ile Leu Asp Pro Met 370 375 380
- Gly Pro Asp Gly Lys Asn Gln Leu Gly Gln Lys Arg Val Val Lys Gly 385 390 395

Glu Lys Ser Phe Phe Leu Gln Pro Gly Glu Arg Leu Glu Arg Gly Ile 405 410 415

- Gln Asp Val Tyr Val Leu Ser Glu Gln Gln Gly Leu Leu Lys Ala 420 425 430
- Leu Gln Pro Leu Glu Glu Glu Glu Ser Glu Glu Lys Val Ser His Gln
 435 440 445
- Ala Gly Asp Cys Trp Leu Ile Arg Gly Pro Leu Glu Tyr Val Pro Ser 450 455 460
- Ala Lys Val Glu Val Val Glu Glu Arg Gln Ala Ile Pro Leu Asp Gln 465 470 475 480
- Asn Glu Gly Ile Tyr Val Gln Asp Val Lys Thr Gly Lys Val Arg Ala 485 490 495
- Val Ile Gly Ser Thr Tyr Met Leu Thr Gln Asp Glu Val Leu Trp Glu 500 505 510
- Lys Glu Leu Pro Ser Gly Val Glu Glu Leu Leu Asn Leu Gly His Asp 515 520 525
- Pro Leu Ala Asp Arg Gly Gln Lys Gly Thr Ala Lys Pro Leu Gln Pro 530 535 540
- Ser Ala Pro Arg Asn Lys Thr Arg Val Val Ser Tyr Arg Val Pro His 545 550 555 560
- Asn Ala Ala Val Gln Val Tyr Asp Tyr Arg Ala Lys Arg Ala Arg Val 565 570 575
- Val Phe Gly Pro Glu Leu Val Thr Leu Asp Pro Glu Glu Gln Phe Thr 580 585 590
- Val Leu Ser Leu Ser Ala Gly Arg Pro Lys Arg Pro His Ala Arg Arg 595 600 605
- Ala Leu Cys Leu Leu Leu Gly Pro Asp Phe Phe Thr Asp Val Ile Thr 610 615 620
- Ile Glu Thr Ala Asp His Ala Arg Leu Gln Leu Gln Leu Ala Tyr Asn

625 630 635 640

Trp His Phe Glu Leu Lys Asn Arg Asn Asp Pro Ala Glu Ala Ala Lys 645 650 655

Leu Phe Ser Val Pro Asp Phe Val Gly Asp Ala Cys Lys Ala Ile Ala 660 665 670

Ser Arg Val Arg Gly Ala Val Ala Ser Val Thr Phe Asp Asp Phe His 675 680 685

Lys Asn Ser Ala Arg Ile Ile Arg Met Ala Val Phe Gly Phe Glu Met 690 695 700

Ser Glu Asp Thr Gly Pro Asp Gly Thr Leu Leu Pro Lys Ala Arg Asp 705 710 715 720

Gln Ala Val Phe Pro Gln Asn Gly Leu Val Val Ser Ser Val Asp Val 725 730 735

Gln Ser Val Glu Pro Val Asp Gln Arg Thr Arg Asp Ala Leu Gln Arg
740 745 750

Ser Val Gln Leu Ala Ile Glu Ile Thr Thr Asn Ser Gln Glu Ala Ala 755 760 765

Ala Lys His Glu Ala Gln Arg Leu Glu Gln Glu Ala Arg Gly Arg Leu 770 775 780

Glu Arg Gln Lys Ile Leu Asp Gln Ser Glu Ala Glu Lys Ala Arg Lys 785 790 795 800

Glu Leu Glu Leu Glu Ala Met Ser Met Ala Val Glu Ser Thr Gly 805 810 815

Asn Ala Lys Ala Glu Ala Glu Ser Arg Ala Glu Ala Ala Arg Ile Glu 820 825 830

Gly Glu Gly Ser Val Leu Gln Ala Lys Leu Lys Ala Gln Ala Leu Ala 835 840 845

Ile Glu Thr Glu Ala Glu Leu Glu Arg Val Lys Lys Val Arg Glu Met 850 855 860

Glu Leu Ile Tyr Ala Arg Ala Gln Leu Glu Leu Glu Val Ser Lys Ala 865 870 875 880

- Gln Gln Leu Ala Asn Val Glu Ala Lys Lys Phe Lys Glu Met Thr Glu 885 890 895
- Ala Leu Gly Pro Gly Thr Ile Arg Asp Leu Ala Val Ala Gly Pro Glu 900 905 910
- Met Gln Val Lys Leu Leu Gln Ser Leu Gly Leu Lys Ser Thr Leu Ile 915 920 925
- Thr Asp Gly Ser Ser Pro Ile Asn Leu Phe Ser Thr Ala Phe Gly Leu 930 935 940
- Leu Gly Leu Gly Ser Asp Gly Gln Pro Pro Ala Gln Lys Asp Ile Val 945 950 955 960
- Leu Thr Gln Ser Pro Ala Ser Leu Ala Val Ser Leu Gly Gln Arg Ala 965 970 975
- Thr Met Ser Cys Arg Ala Gly Glu Ser Val Asp Ile Phe Gly Val Gly 980 985 990
- Phe Leu His Trp Tyr Gln Gln Lys Pro Gly Gln Pro Pro Lys Leu Leu 995 1000 1005
- Ile Tyr Arg Ala Ser Asn Leu Glu Ser Gly Ile Pro Val Arg Phe 1010 1015 1020
- Ser Gly Thr Gly Ser Arg Thr Asp Phe Thr Leu Ile Ile Asp Pro 1025 1030 1035
- Val Glu Ala Asp Asp Val Ala Thr Tyr Tyr Cys Gln Gln Thr Asn 1040 1045 1050
- Glu Asp Pro Tyr Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys 1055 1060 1065
- Gly Ser Thr Ser Gly Gly Gly Ser Gly Gly Gly Gly Gly 1070 1075 1080
- Gly Ser Ser Glu Val Gln Leu Gln Gln Ser Gly Ala Glu Leu Val 1085 1090 1095

Glu	Pro 1100	Gly	Ala	Ser	Val	Lys 1105		Ser	Сув	Thr	Ala 1110	Ser	Gly	Phe	
Asn	Ile 1115	ГЛЗ	Asp	Thr	Tyr	Met 1120	His	Trp	Val	Lys	Gln 1125	Arg	Pro	Glu	
Gln	Gly 1130	Leu	Glu	Trp	Ile	Gly 1135	Arg	Ile	Asp	Pro	Ala 1140	Asn	Gly	Asn	
Ser	Lys 1145		Val	Pro	Lys	Phe 1150	Gln	Gly	Lys	Ala	Thr 1155	Ile	Thr	Ala	
Asp	Thr 1160		Ser	Asn	Thr	Ala 1165		Leu	Gln	Leu	Thr 1170	Ser	Leu	Thr	
Ser	Glu 1175		Thr	Ala	Val	Tyr 1180		Сув	Ala	Pro	Phe 1185	Gly	Tyr	Tyr	
Val	Ser 1190		Tyr	Ala	Met	Ala 1195		Trp	Gly	Gln	Gly 1200		Ser	Val	
Thr	Val 1205														
<21	0> 1 1> 3 2> D 3> A	NA	icia	l Se	quen	ce									
<22 <22		ynth	esiz	ed a	nd S	accar	omyc	es c	erev	isia	e and	Rat	tus	norvegicus	3
<40 atg		03 ac t	gtct	tcta	t cg	aacaa	gca	tgcg	atat	tt g	ccgac	ttaa	aaa	gctcaag	60
tgo	tccaa	ag a	aaaa	ccga	a gt	gcgcc	aag	tgtc	tgaa	.ga a	.caact	ggga	gtg	tcgctac	120
tct	cccaa	aa c	caaa	aggt	c tc	cgctg	act	aggg	caca	tc t	gacag	aagt	gga	atcaagg	180
cta	gaaag	ac t	ggaa	cago	t at	ttcta	ctg	attt	ttcc	tc g	agaag	acct	tga	catgatt	240
ttg	aaaat	gg a	ttct	ttac	a gg	atata	aaa	gcat	tgtt	aa c	aggat	taat	ggc	aactgaa	300
gag	gccat	ca t	ccgc	atco	c cc	catac	cac	taca	tcca	tg t	gctgg	acca	gaa	cagtaat	360
gtg	tcccg	ıtg t	ggag	gttg	g ac	caaag	acc	taca	tccg	ıgc a	ıggaca	atga	gag	ggtactg	420
ttt	acccc	ag t	tcac	atgq	t ga	ccgtc	ccc	ccac	gcca	ict a	ctgca	tagt	ggo	caaccct	480

,gtgtcccggg	acacccagag	ttctgtgtta	tttgacatca	caggacaagt	ccgactccgg	540
cacgctgacc	aggagatccg	actagcccag	gaccccttcc	ccctgtatcc	aggggaggtg	600
ctggaaaagg	acatcacccc	actgcaggtg	gttctgccca	acacagcact	gcatcttaag	660
gcgttgctgg	actttgagga	taagaatgga	gacaaggtca	tggcaggaga	cgagtggcta	720
tttgagggac	ctggcaccta	catcccacag	aaggaagtgg	aagtcgtgga	gatcattcag	780
gccacagtca	tcaaacagaa	ccaagcactg	cggctaaggg	cccgaaagga	gtgctttgac	840
cgggagggca	aggggcgcgt	gacaggtgag	gagtggctgg	tccgatccgt	gggggcttac	900
ctcccagctg	tctttgaaga	ggtgctggat	ctggtggatg	ctgtgatcct	tacagaaaag	960
actgccctgc	acctccgggc	tctgcagaac	ttcagggacc	ttcggggagt	gctccaccgc	1020
accggggagg	aatggttagt	gacagtgcag	gacacagaag	cccatgttcc	agatgtctat	1080
gaggaggtgc	ttggggtagt	acccatcacc	accctgggac	ctcgacacta	ctgtgtcatt	1140
cttgacccaa	tgggaccaga	cggcaagaac	cagctgggac	aaaagcgtgt	tgtcaaggga	1200
gagaagtcct	ttttcctcca	gccaggagag	aggctggagc	gaggcatcca	ggatgtgtat	1260
gtgctgtcag	agcagcaggg	gctgctactg	aaggcactgc	agcccctgga	ggagggagag	1320
agcgaggaga	aggtctccca	tcaggccgga	gactgctggc	tcatccgtgg	gcccctggag	1380
tatgtgccat	ctgcaaaagt	ggaggtggtg	gaggagcgtc	aggctatccc	tctggaccaa	1440
aatgagggca	tctatgtgca	ggatgtcaag	acggggaagg	tgcgggctgt	gattggaagc	1500
acctacatgc	tgactcagga	tgaagtcctg	tgggaaaagg	agctgccttc	tggggtggag	1560
gagetgetga	acttggggca	tgaccctctg	gcagacaggg	gtcagaaggg	cacagccaag	1620
ccccttcagc	cctcagctcc	aaggaacaag	acccgagtgg	tcagctaccg	tgtcccgcac	1680
aatgcagcgg	tgcaggtcta	tgactacaga	gccaagagag	cccgtgtggt	ctttgggccc	1740
gagctagtga	cactggatcc	tgaggagcag	ttcacagtat	tgtccctttc	tgccgggcga	1800
cccaagcgtc	ctcatgcccg	ccgtgcactc	tgcctactgc	tgggacctga	tttctttact	1860
gatgtcatca	ccatcgaaac	tgcagatcat	gccaggttgc	agctgcagct	tgcctacaac	1920
tggcactttg	aactgaagaa	ccggaatgac	cctgcagagg	cagccaagct	tttctccgtg	1980
cctgacttcg	tgggtgacgc	ctgcaaggcc	attgcatccc	gagtccgggg	ggctgtagcc	2040
tetgtcacct	ttgatgactt	ccataaaaac	tcagcccgga	tcattcgaat	ggctgttttt	2100
ggctttgaga	tgtctgaaga	cacaggtcct	gatggcacac	tcctgcccaa	ggctcgagac	2160
caggcagtct	ttccccaaaa	cgggctggta	gtcagcagtg	tggatgtgca	gtcagtggag	2220

PCT/US2004/007434 WO 2004/081533

cccgtggacc	agaggacccg	ggatgccctt	cagcgcagcg	ttcagctggc	catcgaaatt	2280
accaccaact	cccaggaggc	agcagccaag	cacgaggctc	agagactgga	acaggaagcc	2340
cgtggtcggc	ttgagaggca	gaagatcttg	gaccagtcag	aagctgaaaa	agcccgcaag	2400
gaactettgg	agcttgaggc	tatgagcatg	gctgtggaga	gcacgggtaa	tgccaaagca	2460
gaggctgagt	cccgtgcaga	ggcagcgagg	atcgaaggag	aaggctctgt	gctgcaggcc	2520
aagctcaagg	cacaggcgct	agccattgag	acggaggctg	agttggagcg	agtaaagaaa	2580
gtacgagaga	tggaactgat	ctatgcccgg	gcccagttgg	agctggaggt	gagcaaggcg	2640
cagcagcttg	ccaatgtgga	ggcaaagaag	ttcaaggaga	tgacagaggc	actgggcccc	2700
ggcaccatca	gggacctggc	tgtggccggg	ccagagatgc	aggtgaaact	tctccagtcc	2760
ctgggcctga	aatccactct	catcaccgat	ggetegtete	ccatcaacct	cttcagcaca	2820
gccttcgggt	tgctggggct	ggggtctgat	ggtcagccgc	cagcacagaa	ggacattgtg	2880
ctgacccaat	ctccagettc	tttggctgtg	tatattggga	agagggccac	catgtcctgc	2940
agagccggtg	aaagtgttga	tatttttggc	gttgggtttt	tgcactggta	ccagcagaaa	3000
ccaggacagc	cacccaaact	cctcatctat	cgtgcatcca	acctagaatc	tgggatccct	3060
gtcaggttca	gtggcactgg	gtctaggaca	gacttcaccc	tcatcattga	tcctgtggag	3120
gctgatgatg	ttgccaccta	ttactgtcag	caaactaatg	aggatccgta	cacgttcgga	3180
ggggggacca	agctggaaat	aaaaggcagt	actageggeg	gtggctccgg	gggcggttcc	3240
ggtgggggcg	gcagcagcga	ggttcagcta	caacagtctg	gggcagagct	tgtggagcca	3300
ggggcctcag	tcaagttgtc	ctgcacagct	tctggcttca	acattaaaga	cacctatatg	3360
cactgggtga	agcagaggcc	tgaacagggc	ctggaatgga	ttggaaggat	tgatcctgcg	3420
aatggtaata	gtaaatatgt	cccgaagttc	cagggcaagg	ccactataac	agcagacaca	3480
tettecaaca	cagcctacct	gcagetcace	agcctgacat	ctgaggacac	tgccgtctat	3540
tattgtgctc	cgtttggtta	ctacgtgtct	gactatgcta	tggcctactg	gggtcaagga	3600
acctcagtca	ccgtctcgtg	a				3621

<210> 104 <211> 1045

<212> PRT

<213> Artificial Sequence

<220>

<223> Saccaromyces cerevisiae and two Homo sapiens sequences

<400> 104

Met Lys Leu Leu Ser Ser Ile Glu Gln Ala Cys Asp Ile Cys Arg Leu 1 5 10 15

- Lys Lys Leu Lys Cys Ser Lys Glu Lys Pro Lys Cys Ala Lys Cys Leu 20 25 30
- Lys Asn Asn Trp Glu Cys Arg Tyr Ser Pro Lys Thr Lys Arg Ser Pro 35 40 45
- Leu Thr Arg Ala His Leu Thr Glu Val Glu Ser Arg Leu Glu Arg Leu 50 55 60
- Glu Gln Leu Phe Leu Leu Ile Phe Pro Arg Glu Asp Leu Asp Met Ile 65 70 75 80
- Leu Lys Met Asp Ser Leu Gln Asp Ile Lys Ala Leu Leu Thr Gly Leu 85 90 95
- Met Ala Thr Glu Glu Phe Ile Ile Arg Ile Pro Pro Tyr His Tyr Ile 100 105 110
- His Val Leu Asp Gln Asn Ser Asn Val Ser Arg Val Glu Val Gly Pro 115 120 125
- Lys Thr Tyr Ile Arg Gln Asp Asn Glu Arg Val Leu Phe Ala Pro Met 130 135 140
- Arg Met Val Thr Val Pro Pro Arg His Tyr Cys Thr Val Ala Asn Pro 145 150 155 160
- Val Ser Arg Asp Ala Gln Gly Leu Val Leu Phe Asp Val Thr Gly Gln
 165 170 175
- Val Arg Leu Arg His Ala Asp Leu Glu Ile Arg Leu Ala Gln Asp Pro 180 185 190
- Phe Pro Leu Tyr Pro Gly Glu Val Leu Glu Lys Asp Ile Thr Pro Leu 195 200 205
- Gln Val Val Leu Pro Asn Thr Ala Leu His Leu Lys Ala Leu Leu Asp 210 215 220
- Phe Glu Asp Lys Asp Gly Asp Lys Val Val Ala Gly Asp Glu Trp Leu 225 230 235 240

Phe Glu Gly Pro Gly Thr Tyr Ile Pro Arg Lys Glu Val Glu Val Val 245 250 255

- Glu Ile Ile Gln Ala Thr Ile Ile Arg Gln Asn Gln Ala Leu Arg Leu 260 265 270
- Arg Ala Arg Lys Glu Cys Trp Asp Arg Asp Gly Lys Glu Arg Val Thr 275 280 285
- Gly Glu Glu Trp Leu Val Thr Thr Val Gly Ala Tyr Leu Pro Ala Val 290 295 300
- Phe Glu Glu Val Leu Asp Leu Val Asp Ala Val Ile Leu Thr Glu Lys 305 310 315 320
- Thr Ala Leu His Leu Arg Ala Arg Arg Asn Phe Arg Asp Phe Arg Gly 325 330 335
- Val Ser Arg Arg Thr Gly Glu Glu Trp Leu Val Thr Val Gln Asp Thr 340 345 350
- Glu Ala His Val Pro Asp Val His Glu Glu Val Leu Gly Val Val Pro 355 360 365
- Ile Thr Thr Leu Gly Pro His Asn Tyr Cys Val Ile Leu Asp Pro Val 370 375 380
- Gly Pro Asp Gly Lys Asn Gln Leu Gly Gln Lys Arg Val Val Lys Gly 385 390 395 400
- Glu Lys Ser Phe Phe Leu Gln Pro Gly Glu Gln Leu Glu Gln Gly Ile 405 410 415
- Gln Asp Val Tyr Val Leu Ser Glu Gln Gln Gly Leu Leu Leu Arg Ala 420 425 430
- Leu Gln Pro Leu Glu Glu Gly Glu Asp Glu Glu Lys Val Ser His Gln 435 440 445
- Ala Gly Asp His Trp Leu Ile Arg Gly Pro Leu Glu Tyr Val Pro Ser 450 455 460
- Ala Lys Val Glu Val Val Glu Glu Arg Gln Ala Ile Pro Leu Asp Glu

465 470 475 480

Asn Glu Gly Ile Tyr Val Gln Asp Val Lys Thr Gly Lys Val Arg Ala 485 490 495

Val Ile Gly Ser Thr Tyr Met Leu Thr Gln Asp Glu Val Leu Trp Glu 500 505 510

Lys Glu Leu Pro Pro Gly Val Glu Glu Leu Leu Asn Lys Gly Gln Asp 515 520 525

Pro Leu Ala Asp Arg Gly Glu Lys Asp Thr Ala Lys Ser Leu Gln Pro 530 535 540

Leu Ala Pro Arg Asn Lys Thr Arg Val Val Ser Tyr Arg Val Pro His 545 550 550

Asn Ala Ala Val Gln Val Tyr Asp Tyr Arg Glu Lys Arg Ala Arg Val 565 570 575

Val Phe Gly Pro Glu Leu Val Ser Leu Gly Pro Glu Glu Gln Phe Thr 580 585 590

Val Leu Ser Leu Ser Ala Gly Arg Pro Lys Arg Pro His Ala Arg Arg 595 600 605

Ala Leu Cys Leu Leu Leu Gly Pro Asp Phe Phe Thr Asp Val Ile Thr 610 615 620

Ile Glu Thr Ala Asp His Ala Arg Leu Gln Leu Gln Leu Ala Tyr Asn 625 630 635 640

Trp His Phe Glu Val Asn Asp Arg Lys Asp Pro Gln Glu Thr Ala Lys 645 650 655

Leu Phe Ser Val Pro Asp Phe Val Gly Asp Ala Cys Lys Ala Ile Ala 660 665 670

Ser Arg Val Arg Gly Ala Val Ala Ser Val Thr Phe Asp Asp Phe His 675 680 685

Lys Asn Ser Ala Arg Ile Ile Arg Thr Ala Val Phe Gly Phe Glu Thr 690 695 700

Ser Glu Ala Lys Gly Pro Asp Gly Met Ala Leu Pro Arg Pro Arg Asp 705 710 715 720

- Gln Ala Val Phe Pro Gln Asn Gly Leu Val Val Ser Ser Val Asp Val
 725 730 735
- Gln Ser Val Glu Pro Val Asp Gln Arg Thr Arg Asp Ala Leu Gln Arg
 740 745 750
- Ser Val Gln Leu Ala Ile Glu Ile Thr Thr Asn Ser Gln Glu Ala Ala 755 760 765
- Ala Lys His Glu Ala Gln Arg Leu Glu Gln Glu Ala Arg Gly Arg Leu 770 775 780
- Glu Arg Gln Lys Ile Leu Asp Gln Ser Glu Ala Glu Lys Ala Arg Lys 785 790 795 800
- Glu Leu Clu Leu Glu Ala Leu Ser Met Ala Val Glu Ser Thr Gly 805 810 815
- Thr Ala Lys Ala Glu Ala Glu Ser Arg Ala Glu Ala Ala Arg Ile Glu 820 825 830
- Gly Glu Gly Ser Val Leu Gln Ala Lys Leu Lys Ala Gln Ala Leu Ala 835 840 845
- Ile Glu Thr Glu Ala Glu Leu Gln Arg Val Gln Lys Val Arg Glu Leu 850 855 860
- Glu Leu Val Tyr Ala Arg Ala Gln Leu Glu Leu Glu Val Ser Lys Ala 865 870 875 880
- Gln Gln Leu Ala Glu Val Glu Val Lys Lys Phe Lys Gln Met Thr Glu 885 890 895
- Ala Ile Gly Pro Ser Thr Ile Arg Asp Leu Ala Val Ala Gly Pro Glu 900 905 910
- Met Gln Val Lys Leu Leu Gln Ser Leu Gly Leu Lys Ser Thr Leu Ile 915 920 925
- Thr Asp Gly Ser Thr Pro Ile Asn Leu Phe Asn Thr Ala Phe Gly Leu 930 935 940

Leu Gly Met Gly Pro Glu Gly Gln Pro Leu Gly Arg Arg Val Ala Ser 950 945 Gly Pro Ser Pro Gly Glu Gly Ile Ser Pro Gln Ser Ala Gln Ala Pro 970 965 Gln Ala Pro Gly Asp Asn His Val Val Pro Val Leu Arg Met Gly Asn 980 985 990 Ser Asp Ser Glu Cys Pro Leu Ser His Asp Gly Tyr Cys Leu His Asp 1000 1005 995 Gly Val Cys Met Tyr Ile Glu Ala Leu Asp Lys Tyr Ala Cys Asn 1020 1015 1010 Cys Val Val Gly Tyr Ile Gly Glu Arg Cys Gln Tyr Arg Asp Leu 1030 1025 Lys Trp Trp Glu Leu Arg Ala 1040 <210> 105 <211> 3138 <212> DNA <213> Artificial Sequence <220> Saccaromyces cerevisiae and two Homo sapiens sequences <223> <400> 105 atgaagctac tgtcttctat cgaacaagca tgcgatattt gccgacttaa aaagctcaag 60 tgctccaaag aaaaaccgaa gtgcgccaag tgtctgaaga acaactggga gtgtcgctac 120 tctcccaaaa ccaaaaggtc tccgctgact agggcacatc tgacagaagt ggaatcaagg 180 ctagaaagac tggaacagct atttctactg atttttcctc gagaagacct tgacatgatt 240 ttgaaaatgg attctttaca ggatataaaa gcattgttaa caggattaat ggcaactgaa 300 gagttcatca tecgeatece eccataceae tatatecatg tgetggacea gaacageaae 360 gtgtcccgtg tggaggtcgg gccaaagacc tacatccggc aggacaatga gagggtactg 420

480

540

600

tttgccccca tgcgcatggt gaccgtcccc ccacgtcact actgcacagt ggccaaccct

gtgtctcggg atgcccaggg cttggtgctg tttgatgtca cagggcaagt tcggcttcgc

cacgetgace tegagateeg getggeecag gacecettee ecetgtacee aggggaggtg

ctggaaaagg acatcacacc cctgcaggtg gttctgccca acactgccct ccatctaaag	660
gcgctgcttg attttgagga taaagatgga gacaaggtgg tggcaggaga tgagtggctt	720
ttcgagggac ctggcacgta catcccccgg aaggaagtgg aggtcgtgga gatcattcag	780
gccaccatca tcaggcagaa ccaggctctg cggctcaggg cccgcaagga gtgctgggac	840
cgggacggca aggagagggt gacaggggaa gaatggctgg tcaccacagt aggggcgtac	900
ctcccagcgg tgtttgagga ggttctggat ttggtggacg ccgtcatcct tacggaaaag	960
acagecetge aceteeggge teggeggaae tteegggaet teaggggagt gteeegeege	1020
actggggagg agtggctggt aacagtgcag gacacagagg cccacgtgcc agatgtccac	1080
gaggaggtgc tgggggttgt gcccatcacc accctgggcc cccacaacta ctgcgtgatt	1140
ctcgaccctg tcggaccgga tggcaagaat cagctggggc agaagcgcgt ggtcaaggga	1200
gagaagtett tttteeteea geeaggagag cagetggaae aaggeateea ggatgtgtat	1260
gtgctgtcgg agcagcaggg gctgctgctg agggccctgc agcccctgga ggaggggag	1320
gatgaggaga aggtctcaca ccaggctggg gaccactggc tcatccgcgg acccctggag	1380
tatgtgccat ctgccaaagt ggaggtggtg gaggagcgcc aggccatccc tctagacgag	1440
aacgagggca tctatgtgca ggatgtcaag accggaaagg tgcgcgctgt gattggaagc	1500
acctacatgc tgacccagga cgaagtcctg tgggagaaag agctgcctcc cggggtggag	1560
gagctgctga acaaggggca ggaccctctg gcagacaggg gtgagaagga cacagctaag	1620
agectecage cettggegee eeggaacaag accegtgtgg teagetaceg egtgeeceae	1680
aacgctgcgg tgcaggtgta cgactaccga gagaagcgag cccgcgtggt cttcgggcct	1740
gagetggtgt egetgggtee tgaggageag tteaeagtgt tgteeetete agetgggegg	1800
cccaagcgtc cccatgcccg ccgtgcgctc tgcctgctgc tggggcctga cttcttcaca	1860
gacgtcatca ccatcgaaac ggcggatcat gccaggctgc aactgcagct ggcctacaac	1920
tggcactttg aggtgaatga ccggaaggac ccccaagaga cggccaagct cttttcagtg	1980
ccagactttg taggtgatgc ctgcaaagcc atcgcatccc gggtgcgggg ggccgtggcc	2040
tetgteaett tegatgaett eeataagaae teageeegea teattegeae tgetgtettt	2100
ggctttgaga cctcggaagc gaagggcccc gatggcatgg ccctgcccag gccccgggac	2160
caggetgtet tececeaaaa egggetggtg gteageagtg tggaegtgea gteagtggag	2220
cetgtggate agaggaceeg ggacgeeetg caacgeageg tecagetgge categagate	2280
accaccaact cccaggaagc ggcggccaag catgaggctc agagactgga gcaggaagcc	2340

cgcggccggc	ttgagcggca	gaagatcctg	gaccagtcag	aagccgagaa	agctcgcaag	2400
gaacttttgg	agctggaggc	tctgagcatg	gccgtggaga	gcaccgggac	tgccaaggcg	2460
gaggccgagt	cccgtgcgga	ggcagcccgg	attgagggag	aagggtccgt	gctgcaggcc	2520
aagctaaaag	cacaggcctt	ggccattgaa	acggaggctg	agctccagag	ggtccagaag	2580
gtccgagagc	tggaactggt	ctatgcccgg	gcccagctgg	agctggaggt	gagcaaggct	2640
cagcagctgg	ctgaggtgga	ggtgaagaag	ttcaagcaga	tgacagaggc	cataggcccc	2700
agcaccatca	gggaccttgc	tgtggctggg	cctgagatgc	aggtaaaact	gctccagtcc	2760
ctgggcctga	aatcaaccct	catcaccgat	ggctccactc	ccatcaacct	cttcaacaca	2820
gcctttgggc	tgctggggat	ggggcccgag	ggtcagcccc	tgggcagaag	ggtggccagt	2880
gggcccagcc	ctggggaggg	gatatecece	cagtctgctc	aggcccctca	agctcctgga	2940
gacaaccacg	tggtgcctgt	actgcgcatg	ggtaactctg	actccgaatg	cccgctgtct	3000
cacgacggtt	attgcctgca	tgatggtgtt	tgtatgtata	tcgaagctct	ggacaaatat	3060
gctţgcaact	gtgttgttgg	ttacatcggt	gagcgttgcc	agtatcgcga	cctgaaatgg	3120
tgggaactgc	gtgcatga		•			3138

<210> 106

<211> 1013

<212> PRT

<213> Artificial Sequence

<220>

<223> Saccaromyces cerevisiae and Rattus norvegicus and Homo sapiens

<400> 106

Met Lys Leu Leu Ser Ser Ile Glu Gln Ala Cys Asp Ile Cys Arg Leu 1 5 10 15

Lys Lys Leu Lys Cys Ser Lys Glu Lys Pro Lys Cys Ala Lys Cys Leu 20 25 30

Lys Asn Asn Trp Glu Cys Arg Tyr Ser Pro Lys Thr Lys Arg Ser Pro 35 40 45

Leu Thr Arg Ala His Leu Thr Glu Val Glu Ser Arg Leu Glu Arg Leu 50 55 60

Glu Gln Leu Phe Leu Leu Ile Phe Pro Arg Glu Asp Leu Asp Met Ile 65 70 75 80

Leu Lys Met Asp Ser Leu Gln Asp Ile Lys Ala Leu Leu Thr Gly Leu 85 90 95

- Met Ala Thr Glu Glu Ala Ile Ile Arg Ile Pro Pro Tyr His Tyr Ile
 100 105 110
- His Val Leu Asp Gln Asn Ser Asn Val Ser Arg Val Glu Val Gly Pro 115 120 125
- Lys Thr Tyr Ile Arg Gln Asp Asn Glu Arg Val Leu Phe Ala Pro Val 130 135 140
- Arg Met Val Thr Val Pro Pro Arg His Tyr Cys Ile Val Ala Asn Pro 145 150 155 160
- Val Ser Arg Asp Thr Gln Ser Ser Val Leu Phe Asp Ile Thr Gly Gln
 165 170 175
- Val Arg Leu Arg His Ala Asp Gln Glu Ile Arg Leu Ala Gln Asp Pro 180 185 190
- Phe Pro Leu Tyr Pro Gly Glu Val Leu Glu Lys Asp Ile Thr Pro Leu 195 200 205
- Gln Val Val Leu Pro Asn Thr Ala Leu His Leu Lys Ala Leu Leu Asp 210 215 220
- Phe Glu Asp Lys Asn Gly Asp Lys Val Met Ala Gly Asp Glu Trp Leu 225 230 235 240
- Phe Glu Gly Pro Gly Thr Tyr Ile Pro Gln Lys Glu Val Glu Val Val 245 250 255
- Glu Ile Ile Gln Ala Thr Val Ile Lys Gln Asn Gln Ala Leu Arg Leu 260 265 270
- Arg Ala Arg Lys Glu Cys Phe Asp Arg Glu Gly Lys Gly Arg Val Thr 275 280 285
- Gly Glu Glu Trp Leu Val Arg Ser Val Gly Ala Tyr Leu Pro Ala Val 290 295 300
- Phe Glu Glu Val Leu Asp Leu Val Asp Ala Val Ile Leu Thr Glu Lys 305 310 315 320

Thr Ala Leu His Leu Arg Ala Leu Gln Asn Phe Arg Asp Leu Arg Gly 325 330 335

- Val Leu His Arg Thr Gly Glu Glu Trp Leu Val Thr Val Gln Asp Thr 340 345 350
- Glu Ala His Val Pro Asp Val Tyr Glu Glu Val Leu Gly Val Val Pro 355 360 365
- Ile Thr Thr Leu Gly Pro Arg His Tyr Cys Val Ile Leu Asp Pro Met 370 375 380
- Gly Pro Asp Gly Lys Asn Gln Leu Gly Gln Lys Arg Val Val Lys Gly 385 390 395
- Glu Lys Ser Phe Phe Leu Gln Pro Gly Glu Arg Leu Glu Arg Gly Ile 405 410 415
- Gln Asp Val Tyr Val Leu Ser Glu Gln Gln Gly Leu Leu Lys Ala 420 425 430
- Leu Gln Pro Leu Glu Glu Gly Glu Ser Glu Glu Lys Val Ser His Gln 435 440 445
- Ala Gly Asp Cys Trp Leu Ile Arg Gly Pro Leu Glu Tyr Val Pro Ser 450 455 460
- Ala Lys Val Glu Val Val Glu Glu Arg Gln Ala Ile Pro Leu Asp Gln 465 470 475 480
- Asn Glu Gly Ile Tyr Val Gln Asp Val Lys Thr Gly Lys Val Arg Ala 485 490 495
- Val Ile Gly Ser Thr Tyr Met Leu Thr Gln Asp Glu Val Leu Trp Glu 500 505 510
- Lys Glu Leu Pro Ser Gly Val Glu Glu Leu Leu Asn Leu Gly His Asp 515 520 525
- Pro Leu Ala Asp Arg Gly Gln Lys Gly Thr Ala Lys Pro Leu Gln Pro 530 535 540
- Ser Ala Pro Arg Asn Lys Thr Arg Val Val Ser Tyr Arg Val Pro His

v	V	JU4/U0	1333											-	C 17 O D 2
545					550					555					560
Asn	Ala	Ala	Val	Gln 565	Val	Tyr	Asp	Tyr	Arg 570	Ala	ГÀв	Arg	Ala	Arg 575	Val
Val	Phe	Gly	Pro 580	Glu	Leu	Val	Thr	Leu 585	Asp	Pro	Glu	Glu	Gln 590	Phe	Thr
Val	Leu	Ser 595	Leu	Ser	Ala	Gly	Arg 600	Pro	Lys	Arg	Pro	His 605	Ala	Arg	Arg
Ala	Leu 610	Сув	Leu	Leu	Leu	Gly 615	Pro	Asp	Phe	Phe	Thr 620	Asp	Val	Ile	Thr
Ile 625	Glu	Thr	Ala	Asp	His 630	Ala	Arg	Leu	Gln	Leu 635	Gln	Leu	Ala	Tyr	Asn 640
Trp	His	Phe	Glu	Leu 645	ГÀв	Asn	Arg	Asn	Asp 650	Pro	Ala	Glu	Ala	Ala 655	Lys
Leu	Phe	Ser	Val 660	Pro	Asp	Phe	Val	Gly 665		Ala	Cys	Гув	Ala 670	Ile	Ala
Ser	Arg	Val 675	Arg	Gly	Ala	Val	Ala 680	Ser	Val	Thr	Phe	Asp 685	Asp	Phe	His
Lys	Asn 690		· Ala	Arg	Ile	Ile 695		Met	Ala	. Val	Phe 700	Gly	Phe	Glu	. Met
Ser 705		Asp	Thr	Gly	Pro 710		Gly	Thr	Leu	1 Leu 715		Lys	Ala	. Arg	720
Gln	. Ala	ı Val	. Phe	Pro 725		Asn	Gly	Leu	730		Ser	Ser	Val	. Asp 735	val
Glr	ser	val	1 Glu 740		Val	. As <u>r</u>	Gln	745		Arg	Asp	Ala	1 Leu 750		n Arg
Sei	val	l Glr		Ala	ı Ile	e Glu	1 Ile		Thi	. Asr	ser	Gln 765		ı Ala	a Ala

Ala Lys His Glu Ala Gln Arg Leu Glu Gln Glu Ala Arg Gly Arg Leu 770 775 780

760

755

765

Glu Arg Gln Lys Ile Leu Asp Gln Ser Glu Ala Glu Lys Ala Arg Lys 785 790 795 800

Glu Leu Leu Glu Leu Glu Ala Met Ser Met Ala Val Glu Ser Thr Gly 805 810 815

Asn Ala Lys Ala Glu Ala Glu Ser Arg Ala Glu Ala Ala Arg Ile Glu 820 825 830

Gly Glu Gly Ser Val Leu Gln Ala Lys Leu Lys Ala Gln Ala Leu Ala 835 840 845

Ile Glu Thr Glu Ala Glu Leu Glu Arg Val Lys Lys Val Arg Glu Met 850 855 860

Glu Leu Ile Tyr Ala Arg Ala Gln Leu Glu Leu Glu Val Ser Lys Ala 865 870 875 880

Gln Gln Leu Ala Asn Val Glu Ala Lys Lys Phe Lys Glu Met Thr Glu 885 890 895

Ala Leu Gly Pro Gly Thr Ile Arg Asp Leu Ala Val Ala Gly Pro Glu 900 905 910

Met Gln Val Lys Leu Leu Gln Ser Leu Gly Leu Lys Ser Thr Leu Ile 915 920 925

Thr Asp Gly Ser Ser Pro Ile Asn Leu Phe Ser Thr Ala Phe Gly Leu 930 935 940

Leu Gly Leu Gly Ser Asp Gly Gln Pro Pro Ala Gln Lys Met Gly Asn 945 950 955 960

Ser Asp Ser Glu Cys Pro Leu Ser His Asp Gly Tyr Cys Leu His Asp 965 970 975

Gly Val Cys Met Tyr Ile Glu Ala Leu Asp Lys Tyr Ala Cys Asn Cys 980 985 990

Val Val Gly Tyr Ile Gly Glu Arg Cys Gln Tyr Arg Asp Leu Lys Trp 995 1000 1005

Trp Glu Leu Arg Ala 1010

332/429

<210> 107 3042 <211> DNA <212> Artificial Sequence <220> <223> Saccaromyces cerevisiae and Rattus norvegicus and Homo sapiens <400> 107 atgaagctac tgtcttctat cgaacaagca tgcgatattt gccgacttaa aaagctcaag 60 tgctccaaag aaaaaccgaa gtgcgccaag tgtctgaaga acaactggga gtgtcgctac 120 tctcccaaaa ccaaaaggtc tccgctgact agggcacatc tgacagaagt ggaatcaagg 180 ctagaaagac tggaacagct atttctactg atttttcctc gagaagacct tgacatgatt 240 ttgaaaatgg attctttaca ggatataaaa gcattgttaa caggattaat ggcaactgaa 300 gaggccatca teegeateee eecataceae tacateeatg tgetggacea gaacagtaat 360 gtgtcccgtg tggaggttgg accaaagacc tacatccggc aggacaatga gagggtactg 420 tttgccccag ttcgcatggt gaccgtcccc ccacgccact actgcatagt ggccaaccct 480 gtgtcccggg acacccagag ttctgtgtta tttgacatca caggacaagt ccgactccgg 540 cacgctgacc aggagatccg actagcccag gaccccttcc ccctgtatcc aggggaggtg 600 ctggaaaagg acatcacccc actgcaggtg gttctgccca acacagcact gcatcttaag 660 gcgttgctgg actttgagga taagaatgga gacaaggtca tggcaggaga cgagtggcta 720 tttgagggac ctggcaccta catcccacag aaggaagtgg aagtcgtgga gatcattcag 780 840 gccacagtca tcaaacagaa ccaagcactg cggctaaggg cccgaaagga gtgctttgac 900 cgggagggca aggggcgcgt gacaggtgag gagtggctgg tccgatccgt gggggcttac 960 ctcccagctg tctttgaaga ggtgctggat ctggtggatg ctgtgatcct tacagaaaag 1020 actgccctgc acctccgggc tctgcagaac ttcagggacc ttcggggagt gctccaccgc accggggagg aatggttagt gacagtgcag gacacagaag cccatgttcc agatgtctat 1080 gaggaggtgc ttggggtagt acccatcacc accctgggac ctcgacacta ctgtgtcatt 1140 cttgacccaa tgggaccaga cggcaagaac cagctgggac aaaagcgtgt tgtcaaggga 1200 gagaagteet tttteeteea geeaggagag aggetggage gaggeateea ggatgtgtat 1260 gtgctgtcag agcagcaggg gctgctactg aaggcactgc agcccctgga ggagggagag 1320 1380 agcgaggaga aggtctccca tcaggccgga gactgctggc tcatccgtgg gcccctggag 1440 tatgtgccat ctgcaaaagt ggaggtggtg gaggagcgtc aggctatccc tctggaccaa

aatgagggca	tctatgtgca	ggatgtcaag	acggggaagg	tgegggetgt	gattggaagc	1500
acctacatgc	tgactcagga	tgaagtcctg	tgggaaaagg	agctgccttc	tggggtggag	1560
gagetgetga	acttggggca	tgaccctctg	gcagacaggg	gtcagaaggg	cacagccaag	1620
ccccttcagc	cctcagctcc	aaggaacaag	acccgagtgg	tcagctaccg	tgtcccgcac	1680
aatgcagcgg	tgcaggtcta	tgactacaga	gccaagagag	cccgtgtggt	ctttgggccc	1740
gagctagtga	cactggatcc	tgaggagcag	ttcacagtat	tgtccctttc	tgccgggcga	1800
cccaagcgtc	ctcatgcccg	ccgtgcactc	tgcctactgc	tgggacctga	tttctttact	1860
gatgtcatca	ccatcgaaac	tgcagatcat	gccaggttgc	agctgcagct	tgcctacaac	1920
tggcactttg	aactgaagaa	ccggaatgac	cctgcagagg	cagccaagct	tttctccgtg	1980
cctgacttcg	tgggtgacgc	ctgcaaggcc	attgcatccc	gagtccgggg	ggctgtagcc	2040
tctgtcacct	ttgatgactt	ccataaaaac	tcagcccgga	tcattcgaat	ggctgttttt	2100
ggctttgaga	tgtctgaaga	cacaggtcct	gatggcacac	tcctgcccaa	ggctcgagac	2160
caggcagtct	ttccccaaaa	cgggctggta	gtcagcagtg	tggatgtgca	gtcagtggag	2220
cccgtggacc	agaggacccg	ggatgccctt	cagcgcagcg	ttcagctggc	catcgaaatt	2280
accaccaact	cccaggaggc	agcagccaag	cacgaggete	agagactgga	acaggaagcc	2340
cgtggtcggc	ttgagaggca	gaagatettg	gaccagtcag	aagctgaaaa	agcccgcaag	2400
gaactcttgg	agcttgaggc	tatgagcatg	gctgtggaga	gcacgggtaa	tgccaaagca	2460
gaggctgagt	cccgtgcaga	ggcagcgagg	atcgaaggag	aaggctctgt	gctgcaggcc	2520
aagctcaagg	cacaggcgct	agccattgag	acggaggctg	agttggagcg	agtaaagaaa	2580
gtacgagaga	tggaactgat	ctatgcccgg	gcccagttgg	agctggaggt	gagcaaggcg	2640
cagcagcttg	ccaatgtgga	ggcaaagaag	ttcaaggaga	tgacagaggc	actgggcccc	2700
ggcaccatca	gggacctggc	tgtggccggg	ccagagatgc	aggtgaaact	tctccagtcc	2760
ctgggcctga	aatccactct	catcaccgat	ggctcgtctc	ccatcaacct	cttcagcaca	2820
geettegggt	tgctggggct	ggggtctgat	ggtcagccgc	cagcacagaa	gatgggtaac	2880
tctgactccg	aatgcccgct	gtctcacgac	ggttattgcc	tgcatgatgg	tgtttgtatg	2940
tatatcgaag	ctctggacaa	atatgcttgc	aactgtgttg	ttggttacat	cggtgagcgt	3000
tgccagtatc	gcgacctgaa	atggtgggaa	ctgcgtgcat	ga		3042

<210> 108 <211> 1000 <212> PRT

PCT/US2004/007434 WO 2004/081533

- <213> Artificial Sequence
- <220>
- <223> Saccaromyces cerevisiae and Homo sapiens and Human immunodeficiency virus type 1
- <400> 108
- Met Lys Leu Leu Ser Ser Ile Glu Gln Ala Cys Asp Ile Cys Arg Leu
- Lys Lys Leu Lys Cys Ser Lys Glu Lys Pro Lys Cys Ala Lys Cys Leu 20
- Lys Asn Asn Trp Glu Cys Arg Tyr Ser Pro Lys Thr Lys Arg Ser Pro 40
- Leu Thr Arg Ala His Leu Thr Glu Val Glu Ser Arg Leu Glu Arg Leu 60 55 50
- Glu Gln Leu Phe Leu Leu Ile Phe Pro Arg Glu Asp Leu Asp Met Ile 75 70 65
- Leu Lys Met Asp Ser Leu Gln Asp Ile Lys Ala Leu Leu Thr Gly Leu 95 90 85
- Met Ala Thr Glu Glu Phe Ile Ile Arg Ile Pro Pro Tyr His Tyr Ile 105 110
- His Val Leu Asp Gln Asn Ser Asn Val Ser Arg Val Glu Val Gly Pro 120
- Lys Thr Tyr Ile Arg Gln Asp Asn Glu Arg Val Leu Phe Ala Pro Met 135 130
- Arg Met Val Thr Val Pro Pro Arg His Tyr Cys Thr Val Ala Asn Pro 155 150 145
- Val Ser Arg Asp Ala Gln Gly Leu Val Leu Phe Asp Val Thr Gly Gln 175 170 165
- Val Arg Leu Arg His Ala Asp Leu Glu Ile Arg Leu Ala Gln Asp Pro 185 180
- Phe Pro Leu Tyr Pro Gly Glu Val Leu Glu Lys Asp Ile Thr Pro Leu 205 200 195 ·

Gln Val Val Leu Pro Asn Thr Ala Leu His Leu Lys Ala Leu Leu Asp 210 215 220 Phe Glu Asp Lys Asp Gly Asp Lys Val Val Ala Gly Asp Glu Trp Leu 230 235 Phe Glu Gly Pro Gly Thr Tyr Ile Pro Arg Lys Glu Val Glu Val Val 250 245 Glu Ile Ile Gln Ala Thr Ile Ile Arg Gln Asn Gln Ala Leu Arg Leu 260 265 Arg Ala Arg Lys Glu Cys Trp Asp Arg Asp Gly Lys Glu Arg Val Thr 275 280 Gly Glu Glu Trp Leu Val Thr Thr Val Gly Ala Tyr Leu Pro Ala Val Phe Glu Glu Val Leu Asp Leu Val Asp Ala Val Ile Leu Thr Glu Lys 310 Thr Ala Leu His Leu Arg Ala Arg Arg Asn Phe Arg Asp Phe Arg Gly · 325 330 Val Ser Arg Arg Thr Gly Glu Glu Trp Leu Val Thr Val Gln Asp Thr 340 345 Glu Ala His Val Pro Asp Val His Glu Glu Val Leu Gly Val Val Pro 355 360 Ile Thr Thr Leu Gly Pro His Asn Tyr Cys Val Ile Leu Asp Pro Val 370 375 Gly Pro Asp Gly Lys Asn Gln Leu Gly Gln Lys Arg Val Val Lys Gly 385 390 395 Glu Lys Ser Phe Phe Leu Gln Pro Gly Glu Gln Leu Glu Gln Gly Ile 405 Gln Asp Val Tyr Val Leu Ser Glu Gln Gln Gly Leu Leu Leu Arg Ala 420 425 Leu Gln Pro Leu Glu Glu Gly Glu Asp Glu Glu Lys Val Ser His Gln 435 440 445

Ala Gly Asp His Trp Leu Ile Arg Gly Pro Leu Glu Tyr Val Pro Ser 450 460

Ala Lys Val Glu Val Val Glu Glu Arg Gln Ala Ile Pro Leu Asp Glu 465 470 475 480

Asn Glu Gly Ile Tyr Val Gln Asp Val Lys Thr Gly Lys Val Arg Ala 485 490 495

Val Ile Gly Ser Thr Tyr Met Leu Thr Gln Asp Glu Val Leu Trp Glu 500 505 510

Lys Glu Leu Pro Pro Gly Val Glu Glu Leu Leu Asn Lys Gly Gln Asp 515 520 525

Pro Leu Ala Asp Arg Gly Glu Lys Asp Thr Ala Lys Ser Leu Gln Pro 530 535 540

Leu Ala Pro Arg Asn Lys Thr Arg Val Val Ser Tyr Arg Val Pro His 545 550 550 560

Asn Ala Ala Val Gln Val Tyr Asp Tyr Arg Glu Lys Arg Ala Arg Val
565 570 575

Val Phe Gly Pro Glu Leu Val Ser Leu Gly Pro Glu Glu Gln Phe Thr 580 585 590

Val Leu Ser Leu Ser Ala Gly Arg Pro Lys Arg Pro His Ala Arg Arg 595 600 605

Ala Leu Cys Leu Leu Leu Gly Pro Asp Phe Phe Thr Asp Val Ile Thr 610 615 620

Ile Glu Thr Ala Asp His Ala Arg Leu Gln Leu Gln Leu Ala Tyr Asn 625 630 635 640

Trp His Phe Glu Val Asn Asp Arg Lys Asp Pro Gln Glu Thr Ala Lys
645 650 655

Leu Phe Ser Val Pro Asp Phe Val Gly Asp Ala Cys Lys Ala Ile Ala 660 665 670

Ser Arg Val Arg Gly Ala Val Ala Ser Val Thr Phe Asp Asp Phe His 675 680 685

- Lys Asn Ser Ala Arg Ile Ile Arg Thr Ala Val Phe Gly Phe Glu Thr 690 695 700
- Ser Glu Ala Lys Gly Pro Asp Gly Met Ala Leu Pro Arg Pro Arg Asp 705 710 715 720
- Gln Ala Val Phe Pro Gln Asn Gly Leu Val Val Ser Ser Val Asp Val
 725 730 735
- Gln Ser Val Glu Pro Val Asp Gln Arg Thr Arg Asp Ala Leu Gln Arg
 740 745 750
- Ser Val Gln Leu Ala Ile Glu Ile Thr Thr Asn Ser Gln Glu Ala Ala 755 760 765
- Ala Lys His Glu Ala Gln Arg Leu Glu Gln Glu Ala Arg Gly Arg Leu 770 775 780
- Glu Arg Gln Lys Ile Leu Asp Gln Ser Glu Ala Glu Lys Ala Arg Lys 785 790 795 800
- Glu Leu Glu Leu Glu Ala Leu Ser Met Ala Val Glu Ser Thr Gly 805 810 815
- Thr Ala Lys Ala Glu Ala Glu Ser Arg Ala Glu Ala Ala Arg Ile Glu 820 825 830
- Gly Glu Gly Ser Val Leu Gln Ala Lys Leu Lys Ala Gln Ala Leu Ala 835 840 845
- Ile Glu Thr Glu Ala Glu Leu Gln Arg Val Gln Lys Val Arg Glu Leu 850 855 860
- Glu Leu Val Tyr Ala Arg Ala Gln Leu Glu Leu Glu Val Ser Lys Ala 865 870 875 880
- Gln Gln Leu Ala Glu Val Glu Val Lys Lys Phe Lys Gln Met Thr Glu 885 890 895
- Ala Ile Gly Pro Ser Thr Ile Arg Asp Leu Ala Val Ala Gly Pro Glu 900 905 910

Met Gln Val Lys Leu Leu Gln Ser Leu Gly Leu Lys Ser Thr Leu Ile 915 920 925

Thr Asp Gly Ser Thr Pro Ile Asn Leu Phe Asn Thr Ala Phe Gly Leu 930 935 940

Leu Gly Met Gly Pro Glu Gly Gln Pro Leu Gly Arg Arg Val Ala Ser 945 950 955 960

Gly Pro Ser Pro Gly Glu Gly Ile Ser Pro Gln Ser Ala Gln Ala Pro 965 970 975

Gln Ala Pro Gly Asp Asn His Val Val Pro Val Leu Arg Tyr Gly Arg 980 985 990

Lys Lys Arg Arg Gln Arg Arg 995 1000

<210> 109

<211> 3003

<212> DNA

<213> Artificial Sequence

<220>

<223> Saccaromyces cerevisiae and Homo sapiens and Human immunodeficiency virus type 1

<400> 109

atgaagctac tgtcttctat cgaacaagca tgcgatattt gccgacttaa aaagctcaag 60 tgctccaaag aaaaaccgaa gtgcgccaag tgtctgaaga acaactggga gtgtcgctac 120 totoccaaaa ccaaaaggto toogotgact agggcacato tgacagaagt ggaatcaagg 180 ctagaaagac tggaacagct atttctactg atttttcctc gagaagacct tgacatgatt 240 ttgaaaatgg attctttaca ggatataaaa gcattgttaa caggattaat ggcaactgaa 300 gagttcatca tecgeatece eccataceae tatatecatg tgetggacea gaacageaae 360 gtgtcccgtg tggaggtcgg gccaaagacc tacatccggc aggacaatga gagggtactg 420 tttgccccca tgcgcatggt gaccgtcccc ccacgtcact actgcacaqt ggccaaccct 480 gtgtctcggg atgcccaggg cttggtgctg tttgatgtca cagggcaagt tcggcttcgc 540 cacgctgacc tegagateeg getggeceag gacceettee ecetgtacee aggggaggtg 600 ctggaaaagg acatcacacc cctgcaggtg gttctgccca acactgccct ccatctaaag 660 gcgctgcttg attttgagga taaagatgga gacaaggtgg tggcaggaga tgagtggctt 720

ttcgaggac	ctggcacgta	catcccccgg	aaggaagtgg	aggtcgtgga	gatcattcag	780
		ccaggctctg				840
		gacaggggaa				900
						960
		ggttctggat				
acagccctgc	acctccgggc	tcggcggaac	ttccgggact	tcaggggagt	gtcccgccgc	1020
actggggagg	agtggctggt	aacagtgcag	gacacagagg	cccacgtgcc	agatgtccac	1080
gaggaggtgc	tgggggttgt	gcccatcacc	accctgggcc	cccacaacta	ctgcgtgatt	1140
ctcgaccctg	tcggaccgga	tggcaagaat	cagctggggc	agaagcgcgt	ggtcaaggga	1200
gagaagtctt	ttttcctcca	gccaggagag	cagctggaac	aaggcatcca	ggatgtgtat	1260
gtgctgtcgg	agcagcaggg	gctgctgctg	agggccctgc	agcccctgga	ggaggggag	1320
gatgaggaga	aggtctcaca	ccaggctggg	gaccactggc	tcatccgcgg	acccctggag	1380
tatgtgccat	ctgccaaagt	ggaggtggtg	gaggagcgcc	aggccatccc	tctagacgag	1440
aacgagggca	tctatgtgca	ggatgtcaag	accggaaagg	tgcgcgctgt	gattggaagc	1500
acctacatgo	tgacccagga	cgaagtcctg	tgggagaaag	agctgcctcc	cggggtggag	1560
gagctgctga	acaaggggca	ggaccctctg	gcagacaggg	gtgagaagga	cacagctaag	1620
agcctccago	cettggegee	ccggaacaag	acccgtgtgg	tcagctaccg	cgtgccccac	1680
aacgctgcgg	tgcaggtgta	cgactaccga	gagaagcgag	cccgcgtggt	cttcgggcct	1740
gagctggtgt	cgctgggtcc	: tgaggagcag	ttcacagtgt	tgtccctctc	agctgggcgg	1800
cccaagcgto	cccatgcccg	g ccgtgcgctc	: tgcctgctgc	tggggcctga	cttcttcaca	1860
gacgtcatca	a ccatcgaaac	ggcggatcat	gccaggetge	aactgcagct	ggcctacaac	1920
tggcacttt	g aggtgaatga	a ccggaaggac	ccccaagaga	cggccaagct	cttttcagtg	1980
ccagacttt	g taggtgatgo	c ctgcaaagco	atcgcatccc	gggtgcgggg	g ggccgtggcc	2040
tctgtcact	t togatgact	t ccataagaad	c tcagcccgca	tcattcgcad	tgctgtcttt	2100
ggctttgag	a cctcggaag	c gaagggccc	gatggcatgg	g ccctgccca	g gccccgggac	2160
caggetgte	t tcccccaaa	a cgggctggt	g gtcagcagtc	g tggacgtgc	a gtcagtggag	2220
cctgtggat	c agaggaccc	g ggacgccct	g caacgcagc	g tccagctgg	c catcgagatc	2280
accaccaac	t cccaggaag	c ggcggccaa	g catgaggcto	agagactgg:	a gcaggaagcc	2340
cgcggccgg	c ttgagcggc	a gaagatcct	g gaccagtcag	g aagccgaga	a agctcgcaag	2400
gaacttttg	g agctggagg	c tctgagcat	g gccgtggaga	a gcaccggga	c tgccaaggcg	2460

gaggccgagt	cccgtgcgga	ggcagcccgg	attgagggag	aagggtccgt	gctgcaggcc	2520
aagctaaaag	cacaggcctt	ggccattgaa	acggaggctg	agctccagag	ggtccagaag	2580
gtccgagagc	tggaactggt	ctatgcccgg	gcccagctgg	agctggaggt	gagcaaggct	2640
cagcagctgg	ctgaggtgga	ggtgaagaag	ttcaagcaga	tgacagaggc	cataggcccc	2700
agcaccatca	gggaccttgc	tgtggctggg	cctgagatgc	aggtaaaact	gctccagtcc	2760
ctgggcctga	aatcaaccct	catcaccgat	ggctccactc	ccatcaacct	cttcaacaca	2820
gcctttgggc	tgctggggat	ggggcccgag	ggtcagcccc	tgggcagaag	ggtggccagt	2880
gggcccagcc	ctggggaggg	gatatccccc	cagtctgctc	aggcccctca	agctcctgga	2940
gacaaccacg	tggtgcctgt	actgcgctac	gggcggaaga	agcggcgaca	gaggcgacgg	3000
tga						3003

<210> 110

<211> 968

<212> PRT

<213> Artificial Sequence

<220>

<223> Saccaromyces cerevisiae and Rattus norvegicus and Human immunodeficiency virus type 1

<400> 110

Met Lys Leu Leu Ser Ser Ile Glu Gln Ala Cys Asp Ile Cys Arg Leu
1 10 15

Lys Lys Leu Lys Cys Ser Lys Glu Lys Pro Lys Cys Ala Lys Cys Leu 20 25 30

Lys Asn Asn Trp Glu Cys Arg Tyr Ser Pro Lys Thr Lys Arg Ser Pro 35 40 45

Leu Thr Arg Ala His Leu Thr Glu Val Glu Ser Arg Leu Glu Arg Leu 50 55 60

Glu Gln Leu Phe Leu Leu Ile Phe Pro Arg Glu Asp Leu Asp Met Ile 65 70 75 80

Leu Lys Met Asp Ser Leu Gln Asp Ile Lys Ala Leu Leu Thr Gly Leu 85 90 95

Met Ala Thr Glu Glu Ala Ile Ile Arg Ile Pro Pro Tyr His Tyr Ile 100 105 110

His Val Leu Asp Gln Asn Ser Asn Val Ser Arg Val Glu Val Gly Pro 115 120 125

- Lys Thr Tyr Ile Arg Gln Asp Asn Glu Arg Val Leu Phe Ala Pro Val 130 135 140
- Arg Met Val Thr Val Pro Pro Arg His Tyr Cys Ile Val Ala Asn Pro 145 150 155 160
- Val Ser Arg Asp Thr Gln Ser Ser Val Leu Phe Asp Ile Thr Gly Gln
 165 170 175
- Val Arg Leu Arg His Ala Asp Gln Glu Ile Arg Leu Ala Gln Asp Pro 180 185 190
- Phe Pro Leu Tyr Pro Gly Glu Val Leu Glu Lys Asp Ile Thr Pro Leu 195 200 205
- Gln Val Val Leu Pro Asn Thr Ala Leu His Leu Lys Ala Leu Leu Asp 210 215 220
- Phe Glu Asp Lys Asn Gly Asp Lys Val Met Ala Gly Asp Glu Trp Leu 225 230 235 240
- Phe Glu Gly Pro Gly Thr Tyr Ile Pro Gln Lys Glu Val Glu Val Val 245 250 255
- Glu Ile Ile Gln Ala Thr Val Ile Lys Gln Asn Gln Ala Leu Arg Leu 260 265 270
- Arg Ala Arg Lys Glu Cys Phe Asp Arg Glu Gly Lys Gly Arg Val Thr 275 280 285
- Gly Glu Glu Trp Leu Val Arg Ser Val Gly Ala Tyr Leu Pro Ala Val 290 295 300
- Phe Glu Glu Val Leu Asp Leu Val Asp Ala Val Ile Leu Thr Glu Lys 305 310 315 320
- Thr Ala Leu His Leu Arg Ala Leu Gln Asn Phe Arg Asp Leu Arg Gly
 325 330 335
- Val Leu His Arg Thr Gly Glu Glu Trp Leu Val Thr Val Gln Asp Thr

340 345 350

Glu Ala His Val Pro Asp Val Tyr Glu Glu Val Leu Gly Val Val Pro 355 360 365

Ile Thr Thr Leu Gly Pro Arg His Tyr Cys Val Ile Leu Asp Pro Met 370 375 380

Gly Pro Asp Gly Lys Asn Gln Leu Gly Gln Lys Arg Val Val Lys Gly 385 390 395 400

Glu Lys Ser Phe Phe Leu Gln Pro Gly Glu Arg Leu Glu Arg Gly Ile 405 410 415

Gln Asp Val Tyr Val Leu Ser Glu Gln Gln Gly Leu Leu Leu Lys Ala 420 425 430

Leu Gln Pro Leu Glu Glu Gly Glu Ser Glu Glu Lys Val Ser His Gln 435 440 445

Ala Gly Asp Cys Trp Leu Ile Arg Gly Pro Leu Glu Tyr Val Pro Ser 450 455 460

Ala Lys Val Glu Val Val Glu Glu Arg Gln Ala Ile Pro Leu Asp Gln 465 470 475 480

Asn Glu Gly Ile Tyr Val Gln Asp Val Lys Thr Gly Lys Val Arg Ala 485 490 495

Val Ile Gly Ser Thr Tyr Met Leu Thr Gln Asp Glu Val Leu Trp Glu 500 505 510

Lys Glu Leu Pro Ser Gly Val Glu Glu Leu Leu Asn Leu Gly His Asp 515 520 525

Pro Leu Ala Asp Arg Gly Gln Lys Gly Thr Ala Lys Pro Leu Gln Pro 530 535 540

Ser Ala Pro Arg Asn Lys Thr Arg Val Val Ser Tyr Arg Val Pro His 545 550 555 560

Asn Ala Ala Val Gln Val Tyr Asp Tyr Arg Ala Lys Arg Ala Arg Val 565 570 575

Val Phe Gly Pro Glu Leu Val Thr Leu Asp Pro Glu Glu Gln Phe Thr 580 585 590

- Val Leu Ser Leu Ser Ala Gly Arg Pro Lys Arg Pro His Ala Arg Arg 595 600 605
- Ala Leu Cys Leu Leu Gly Pro Asp Phe Phe Thr Asp Val Ile Thr 610 615 620
- Ile Glu Thr Ala Asp His Ala Arg Leu Gln Leu Gln Leu Ala Tyr Asn 625 630 635 640
- Trp His Phe Glu Leu Lys Asn Arg Asn Asp Pro Ala Glu Ala Ala Lys
 645 650 655
- Leu Phe Ser Val Pro Asp Phe Val Gly Asp Ala Cys Lys Ala Ile Ala 660 665 670
- Ser Arg Val Arg Gly Ala Val Ala Ser Val Thr Phe Asp Asp Phe His 675 680 685
- Lys Asn Ser Ala Arg Ile Ile Arg Met Ala Val Phe Gly Phe Glu Met 690 695 700
- Ser Glu Asp Thr Gly Pro Asp Gly Thr Leu Leu Pro Lys Ala Arg Asp 705 710 715 720
- Gin Ala Val Phe Pro Gin Asn Gly Leu Val Val Ser Ser Val Asp Val
 725 730 735
- Gln Ser Val Glu Pro Val Asp Gln Arg Thr Arg Asp Ala Leu Gln Arg
 740 745 750
- Ser Val Gln Leu Ala Ile Glu Ile Thr Thr Asn Ser Gln Glu Ala Ala 755 760 765
- Ala Lys His Glu Ala Gln Arg Leu Glu Glu Glu Ala Arg Gly Arg Leu 770 775 780
- Glu Arg Gln Lys Ile Leu Asp Gln Ser Glu Ala Glu Lys Ala Arg Lys 785 790 795 800
- Glu Leu Leu Glu Leu Glu Ala Met Ser Met Ala Val Glu Ser Thr Gly 805 810 815

Asn	Ala	Lys	Ala 820	Glu	Ala	Glu	Ser	Arg 825	Ala	Glu	Ala	Ala	Arg 830	Ile	Glu		
Gly	Glu	Gly 835	Ser	Val	Leu	Gln	Ala 840	Lys	Leu	Lys	Ala	Gln 845	Ala	Leu	Ala		
Ile	Glu 850	Thr	Glu	Ala	Glu	Leu 855	Glu	Arg	Val	Lys	L ув 860	Val	Arg	Glu	Met		
Glu 865	Leu	Ile	Tyr	Ala	Arg 870	Ala	Gln	Leu	Glu	Leu 875	Glu	Val	Ser	Lys	Ala 880		
Gln	Gln	Leu	Ala	Asn 885	Val	Glu	Ala	Lys	Lys 890	Phe	Lys	Glu	Met	Thr 895	Glu		
Ala	Leu	Gly	Pro 900	_	Thr	Ile	Arg	Asp 905		Ala	Val	Ala	Gly 910	Pro	Glu		
Met	Gln	Val 915		Leu	Leu	Gln	Ser 920		Gly	Leu	Lys	Ser 925		Leu	Ile		
Thr	Asp 930	_	Ser	Ser	Pro	Ile 935		Leu	Phe	Ser	Thr 940		Phe	Gly	Leu		
Leu 945	-	Leu	Gly	Ser	Asp 950		Gln	Pro	Pro	Ala 955		. Lys	Tyr	Gly	Arg 960		
Lys	ГÀв	Arg	Arg	Gln 965		Arg	Arg	Γ									
<21	.1> .2>		fici	al s	Segue	ence											
<22 <22	10> 13>		caron inode							us r	orve	egic	ıs ar	nd Hu	ıman	. •	
<40	00> gaago	111 tac	tgto	ettei	tat o	cgaac	caago	ca to	gcgat	atti	gc.	cgact	taa	aaag	gctcaag	60)
															tcgctac	120)
tct	ccca	aaaa	ccaa	aaag	gtc 1	ccg	ctgad	ct a	gggca	acat	c tg	acaga	aagt	ggaa	atcaagg	180)
cta	agaaa	agac	tgga	aca	qct a	attt	ctact	tg a	tttt	taat	c ga	gaag	acct	tga	catgatt	240)

ttgaaaatgg attetttaca ggatataaaa geattgttaa caggattaat ggeaactgaa	300
gaggccatca tccgcatccc cccataccac tacatccatg tgctggacca gaacagtaat	360
gtgtcccgtg tggaggttgg accaaagacc tacatccggc aggacaatga gagggtactg	420
tttgccccag ttcgcatggt gaccgtcccc ccacgccact actgcatagt ggccaaccct	480
gtgtcccggg acacccagag ttctgtgtta tttgacatca caggacaagt ccgactccgg	540
cacgctgacc aggagatecg actageceag gacceettee ecetgtatee aggggaggtg	600
ctggaaaagg acatcacccc actgcaggtg gttctgccca acacagcact gcatcttaag	660
gcgttgctgg actttgagga taagaatgga gacaaggtca tggcaggaga cgagtggcta	720
tttgagggac ctggcaccta catcccacag aaggaagtgg aagtcgtgga gatcattcag	780
gccacagtca tcaaacagaa ccaagcactg cggctaaggg cccgaaagga gtgctttgac	840
cgggagggca aggggcgcgt gacaggtgag gagtggctgg tccgatccgt gggggcttac	900
ctcccagctg tctttgaaga ggtgctggat ctggtggatg ctgtgatcct tacagaaaag	960
actgccctgc acctccgggc tctgcagaac ttcagggacc ttcggggagt gctccaccgc	1020
accggggagg aatggttagt gacagtgcag gacacagaag cccatgttcc agatgtctat	1080
gaggaggtgc ttggggtagt acccatcacc accctgggac ctcgacacta ctgtgtcatt	1140
cttgacccaa tgggaccaga cggcaagaac cagctgggac aaaagcgtgt tgtcaaggga	1200
gagaagteet tttteeteea geeaggagag aggetggage gaggeateea ggatgtgtat	1260
gtgctgtcag agcagcaggg gctgctactg aaggcactgc agcccctgga ggagggagag	1320
agcgaggaga aggtctccca tcaggccgga gactgctggc tcatccgtgg gcccctggag	1380
tatgtgccat ctgcaaaagt ggaggtggtg gaggagcgtc aggctatccc tctggaccaa	1440
aatgagggca tctatgtgca ggatgtcaag acggggaagg tgcgggctgt gattggaagc	1500
acctacatgc tgactcagga tgaagtcctg tgggaaaagg agctgccttc tggggtggag	1560
gagetgetga aettggggea tgaecetetg geagacaggg gteagaaggg cacagecaag	1620
ccccttcagc cctcagctcc aaggaacaag acccgagtgg tcagctaccg tgtcccgcac	1680
aatgcagcgg tgcaggtcta tgactacaga gccaagagag cccgtgtggt ctttgggccc	1740
gagctagtga cactggatcc tgaggagcag ttcacagtat tgtccctttc tgccgggcga	1800
cccaagcgtc ctcatgcccg ccgtgcactc tgcctactgc tgggacctga tttctttact	1860
gatgtcatca ccatcgaaac tgcagatcat gccaggttgc agctgcagct tgcctacaac	1920
tggcactttg aactgaagaa ccggaatgac cctgcagagg cagccaagct tttctccgtg	1980

	•					
cctgacttcg	tgggtgacgc	ctgcaaggcc	attgcatccc	gagtccgggg	ggctgtagcc	2040
tetgteacet	ttgatgactt	ccataaaaac,	tcagcccgga	tcattcgaat	ggctgttttt	2100
ggctttgaga	tgtctgaaga	cacaggtcct	gatggcacac	tcctgcccaa	ggctcgagac	2160
caggcagtct	ttccccaaaa	cgggctggta	gtcagcagtg	tggatgtgca	gtcagtggag	2220
cccgtggacc	agaggacccg	ggatgccctt	cagcgcagcg	ttcagctggc	catcgaaatt	2280
accaccaact	cccaggaggc	agcagccaag	cacgaggctc	agagactgga	acaggaagcc	2340
cgtggtcggc	ttgagaggca	gaagatcttg	gaccagtcag	aagctgaaaa	agcccgcaag	2400
gaactcttgg	agcttgaggc	tatgagcatg	gctgtggaga	gcacgggtaa	tgccaaagca	2460
gaggctgagt	cccgtgcaga	ggcagcgagg	atcgaaggag	aaggctctgt	gctgcaggcc	2520
aagctcaagg	cacaggcgct	agccattgag	acggaggctg	agttggagcg	agtaaagaaa	2580
gtacgagaga	tggaactgat	ctatgcccgg	gcccagttgg	agctggaggt	gagcaaggcg	2640
cagcagcttg	ccaatgtgga	ggcaaagaag	ttcaaggaga	tgacagaggc	actgggcccc	2700
ggcaccatca	gggacctggc	tgtggccggg	ccagagatgc	aggtgaaact	tctccagtcc	2760
ctgggcctga	aatccactct	catcaccgat	ggctcgtctc	ccatcaacct	cttcagcaca	2820
gccttcgggt	tgctggggct	ggggtctgat	ggtcagccgc	cagcacagaa	gtacgggcgg	2880
aagaagcggc	gacagaggcg	acggtga				2907

<210> 112

:220>

<223> Levivirus and Homo sapiens and Drosophila melanogaster

<400> 112

Met Ala Ser Asn Phe Thr Gln Phe Val Leu Val Asp Asn Gly Gly Thr 1 5 10 15

Gly Asp Val Thr Val Ala Pro Ser Asn Phe Ala Asn Gly Val Ala Glu 20 25 30

Trp Ile Ser Ser Asn Ser Arg Ser Gln Ala Tyr Lys Val Thr Cys Ser 35 40 45

Val Arg Gln Ser Ser Ala Gln Asn Arg Lys Tyr Thr Ile Lys Val Glu 50 55 60

<211> 1040

<212> PRT

<213> Artificial Sequence

Val Pro Lys Val Ala Thr Gln Thr Val Gly Gly Val Glu Leu Pro Val 65 70 75 80

- Ala Ala Trp Arg Ser Tyr Leu Asn Met Glu Leu Thr Ile Pro Ile Phe 85 90 95
- Ala Thr Asn Ser Asp Cys Glu Leu Ile Val Lys Ala Met Gln Gly Leu 100 105 110
- Leu Lys Asp Gly Asn Pro Ile Pro Ser Ala Ile Ala Ala Asn Ser Gly
 115 120 125
- Ile Tyr Pro Met Ala Thr Glu Glu Phe Ile Ile Arg Ile Pro Pro Tyr 130 135 140
- His Tyr Ile His Val Leu Asp Gln Asn Ser Asn Val Ser Arg Val Glu 145 150 155 160
- Val Gly Pro Lys Thr Tyr Ile Arg Gln Asp Asn Glu Arg Val Leu Phe 165 170 175
- Ala Pro Met Arg Met Val Thr Val Pro Pro Arg His Tyr Cys Thr Val 180 185 190
- Ala Asn Pro Val Ser Arg Asp Ala Gln Gly Leu Val Leu Phe Asp Val 195 200 205
- Thr Gly Gln Val Arg Leu Arg His Ala Asp Leu Glu Ile Arg Leu Ala 210 215 220
- Gln Asp Pro Phe Pro Leu Tyr Pro Gly Glu Val Leu Glu Lys Asp Ile 225 230 235 240
- Thr Pro Leu Gln Val Val Leu Pro Asn Thr Ala Leu His Leu Lys Ala 245 250 255
- Leu Leu Asp Phe Glu Asp Lys Asp Gly Asp Lys Val Val Ala Gly Asp 260 265 270
- Glu Trp Leu Phe Glu Gly Pro Gly Thr Tyr Ile Pro Arg Lys Glu Val 275 280 285
- Glu Val Val Glu Ile Ile Gln Ala Thr Ile Ile Arg Gln Asn Gln Ala 290 295 300

Leu Arg Leu Arg Ala Arg Lys Glu Cys Trp Asp Arg Asp Gly Lys Glu 305 310 315 320

Arg Val Thr Gly Glu Glu Trp Leu Val Thr Thr Val Gly Ala Tyr Leu 325 330 335

Pro Ala Val Phe Glu Glu Val Leu Asp Leu Val Asp Ala Val Ile Leu 340 345 350

Thr Glu Lys Thr Ala Leu His Leu Arg Ala Arg Arg Asn Phe Arg Asp 355 360 365

Phe Arg Gly Val Ser Arg Arg Thr Gly Glu Glu Trp Leu Val Thr Val 370 375 380

Gln Asp Thr Glu Ala His Val Pro Asp Val His Glu Glu Val Leu Gly 385 390 395 400

Val Val Pro Ile Thr Thr Leu Gly Pro His Asn Tyr Cys Val Ile Leu 405 410 415

Asp Pro Val Gly Pro Asp Gly Lys Asn Gln Leu Gly Gln Lys Arg Val 420 425 430

Val Lys Gly Glu Lys Ser Phe Phe Leu Gln Pro Gly Glu Gln Leu Glu 435 440 445

Gln Gly Ile Gln Asp Val Tyr Val Leu Ser Glu Gln Gln Gly Leu Leu 450 455 460

Leu Arg Ala Leu Gln Pro Leu Glu Glu Glu Glu Asp Glu Glu Lys Val 465 470 475 480

Ser His Gln Ala Gly Asp His Trp Leu Ile Arg Gly Pro Leu Glu Tyr 485 490 495

Val Pro Ser Ala Lys Val Glu Val Val Glu Glu Arg Gln Ala Ile Pro 500 505 510

Leu Asp Glu Asn Glu Gly Ile Tyr Val Gln Asp Val Lys Thr Gly Lys 515 520 525

Val Arg Ala Val Ile Gly Ser Thr Tyr Met Leu Thr Gln Asp Glu Val

530	535	540

Leu Trp Glu Lys Glu Leu Pro Pro Gly Val Glu Glu Leu Leu Asn Lys 545 550 555 560

Gly Gln Asp Pro Leu Ala Asp Arg Gly Glu Lys Asp Thr Ala Lys Ser 565 570 575

Leu Gln Pro Leu Ala Pro Arg Asn Lys Thr Arg Val Val Ser Tyr Arg 580 585 590

Val Pro His Asn Ala Ala Val Gln Val Tyr Asp Tyr Arg Glu Lys Arg 595 600 605

Ala Arg Val Val Phe Gly Pro Glu Leu Val Ser Leu Gly Pro Glu Glu 610 615 620

Gln Phe Thr Val Leu Ser Leu Ser Ala Gly Arg Pro Lys Arg Pro His 625 630 635 640

Ala Arg Arg Ala Leu Cys Leu Leu Leu Gly Pro Asp Phe Phe Thr Asp 645 650 655

Val Ile Thr Ile Glu Thr Ala Asp His Ala Arg Leu Gln Leu Gln Leu 660 665 670

Ala Tyr Asn Trp His Phe Glu Val Asn Asp Arg Lys Asp Pro Gln Glu 675 680 685

Thr Ala Lys Leu Phe Ser Val Pro Asp Phe Val Gly Asp Ala Cys Lys 690 695 700

Ala Ile Ala Ser Arg Val Arg Gly Ala Val Ala Ser Val Thr Phe Asp 705 710 715 720

Asp Phe His Lys Asn Ser Ala Arg Ile Ile Arg Thr Ala Val Phe Gly 725 730 735

Phe Glu Thr Ser Glu Ala Lys Gly Pro Asp Gly Met Ala Leu Pro Arg
740 745 750

Pro Arg Asp Gln Ala Val Phe Pro Gln Asn Gly Leu Val Val Ser Ser 755 760 765

Val Asp Val Glu Ser Val Glu Pro Val Asp Gln Arg Thr Arg Asp Ala
770 775 780

- Leu Gln Arg Ser Val Gln Leu Ala Ile Glu Ile Thr Thr Asn Ser Gln 785 790 795 800
 - Glu Ala Ala Ala Lys His Glu Ala Gln Arg Leu Glu Gln Glu Ala Arg 805 810 815
 - Gly Arg Leu Glu Arg Gln Lys Ile Leu Asp Gln Ser Glu Ala Glu Lys 820 825 830
 - Ala Arg Lys Glu Leu Glu Leu Glu Ala Leu Ser Met Ala Val Glu 835 840 845
 - Ser Thr Gly Thr Ala Lys Ala Glu Ala Glu Ser Arg Ala Glu Ala Ala 850 855 860
 - Arg Ile Glu Gly Glu Gly Ser Val Leu Gln Ala Lys Leu Lys Ala Gln 865 870 875 880
 - Ala Leu Ala Ile Glu Thr Glu Ala Glu Leu Gln Arg Val Gln Lys Val 885 890 895
 - Arg Glu Leu Glu Leu Val Tyr Ala Arg Ala Gln Leu Glu Leu Glu Val 900 905 910
 - Ser Lys Ala Gln Gln Leu Ala Glu Val Glu Val Lys Lys Phe Lys Gln 915 920 925
 - Met Thr Glu Ala Ile Gly Pro Ser Thr Ile Arg Asp Leu Ala Val Ala 930 935 940
 - Gly Pro Glu Met Gln Val Lys Leu Leu Gln Ser Leu Gly Leu Lys Ser 945 950 955 960
 - Thr Leu Ile Thr Asp Gly Ser Thr Pro Ile Asn Leu Phe Asn Thr Ala 965 970 975
 - Phe Gly Leu Leu Gly Met Gly Pro Glu Gly Gln Pro Leu Gly Arg Arg 980 985 990
- · Val Ala Ser Gly Pro Ser Pro Gly Glu Gly Ile Ser Pro Gln Ser Ala 995 1000 1005

Gln Ala Pro Gln Ala Pro Gly Asp Asn His Val Val Pro Val Leu 1010 1015 1020

Arg Arg Gln Ile Lys Ile Trp Phe Gln Asn Ala Arg Met Lys Trp 1025 1030 1035

Lys Lys 1040

<210> 113 <211> 3123 <212> DNA

<213> Artificial Sequence

<220>

<223> Levivirus and Homo sapiens and Drosophila melanogaster

<400> 113 atggetteta aetttaetea gttegttete gtegacaatg geggaactgg egaegtgaet 60 120 gtcgccccaa gcaacttcgc taacggggtc gctgaatgga tcagctctaa ctcgcgttca caggettaca aagtaacetg tagegttegt cagagetetg egeagaateg caaatacace 180 240 atcaaagtcg aggtgcctaa agtggcaacc cagactgttg gtggtgtaga gcttcctgta gccgcatggc gttcgtactt aaatatggaa ctaaccattc caattttcgc tacgaattcc 300 360 gactgcgagc ttattgttaa ggcaatgcaa ggtctcctaa aagatggaaa cccgattccc tcagcaatcg cagcaaactc cggcatctac cccatggcaa ctgaagagtt catcatccgc 420 atccccccat accactatat ccatgtgctg gaccagaaca gcaacgtgtc ccgtgtggag 480 gtcgggccaa agacctacat ccggcaggac aatgagaggg tactgtttgc ccccatgcgc 540 atggtgaccg tcccccacg tcactactgc acagtggcca accetgtgtc tcgggatgcc 600 cagggettgg tgetgtttga tgtcacaggg caagttegge ttegecaege tgacetegag 660 720 atccggctgg cccaggaccc cttccccctg tacccagggg aggtgctgga aaaggacatc acacccctgc aggtggttct gcccaacact gccctccatc taaaggcgct gcttgatttt 780 gaggataaag atggagacaa ggtggtggca ggagatgagt ggcttttcga gggacctggc 840 acgtacatcc cccggaagga agtggaggtc gtggagatca ttcaggccac catcatcagg 900 960 cagaaccagg ctctgcggct cagggcccgc aaggagtgct gggaccggga cggcaaggag agggtgacag gggaagaatg gctggtcacc acagtagggg cgtacctccc agcggtgttt 1020 gaggaggttc tggatttggt ggacgccgtc atccttacgg aaaagacagc cctgcacctc 1080

cgggctcggc ggaacttccg ggacttcagg ggagtgtccc gccgcactgg ggaggagtgg	1140
ctggtaacag tgcaggacac agaggcccac gtgccagatg tccacgagga ggtgctgggg	1200
gttgtgccca tcaccaccct gggcccccac aactactgcg tgattctcga ccctgtcgga	1260
ccggatggca agaatcagct ggggcagaag cgcgtggtca agggagagaa gtctttttc	1320
ctccagccag gagagcagct ggaacaaggc atccaggatg tgtatgtgct gtcggagcag	1380
caggggctgc tgctgagggc cctgcagccc ctggaggagg gggaggatga ggagaaggtc	1440
tcacaccagg ctggggacca ctggctcatc cgcggacccc tggagtatgt gccatctgcc	1500
aaagtggagg tggtggagga gcgccaggcc atccctctag acgagaacga gggcatctat	1560
gtgcaggatg tcaagaccgg aaaggtgcgc gctgtgattg gaagcaccta catgctgacc	1620
caggacgaag teetgtggga gaaagagetg eeteeegggg tggaggaget getgaacaag	1680
gggcaggacc ctctggcaga caggggtgag aaggacacag ctaagagcct ccagcccttg	1740
gcgccccgga acaagacccg tgtggtcagc taccgcgtgc cccacaacgc tgcggtgcag	1800
gtgtacgact accgagagaa gcgagcccgc gtggtcttcg ggcctgagct ggtgtcgctg	1860
ggtcctgagg agcagttcac agtgttgtcc ctctcagctg ggcggcccaa gcgtccccat	1920
gcccgccgtg cgctctgcct gctgctgggg cctgacttct tcacagacgt catcaccatc	1980
gaaacggcgg atcatgccag gctgcaactg cagctggcct acaactggca ctttgaggtg	2040
aatgaccgga aggaccccca agagacggcc aagctetttt cagtgecaga etttgtaggt	2100
gatgeetgea aageeatege atecegggtg eggggggeeg tggeetetgt caetttegat	2160
gacttccata agaactcagc ccgcatcatt cgcactgctg tctttggctt tgagacctcg	2220
gaagegaagg geeeegatgg catggeeetg eeeaggeeee gggaeeagge tgtetteeee	2280
caaaacgggc tggtggtcag cagtgtggac gtgcagtcag tggagcctgt ggatcagagg	2340
accegggacg ccetgcaacg cagegtecag etggecateg agateaceae caacteceag	2400
gaagcggcgg ccaagcatga ggctcagaga ctggagcagg aagcccgcgg ccggcttgag	2460
cggcagaaga tcctggacca gtcagaagcc gagaaagctc gcaaggaact tttggagctg	2520
gaggetetga geatggeegt ggagageace gggaetgeea aggeggagge egagteeegt	2580
gcggaggcag cccggattga gggagaaggg tccgtgctgc aggccaagct aaaagcacag	2640
gccttggcca ttgaaacgga ggctgagctc cagagggtcc agaaggtccg agagctggaa	2700
ctggtctatg cccgggccca gctggagctg gaggtgagca aggctcagca gctggctgag	2760
gtggaggtga agaagttcaa gcagatgaca gaggccatag gccccagcac catcagggac	2820

PCT/US2004/007434 WO 2004/081533

cttgctgtgg	ctgggcctga	gatgcaggta	aaactgctcc	agtccctggg	cctgaaatca	2880
accctcatca	ccgatggctc	cactcccatc	aacctcttca	acacagcctt	tgggctgctg	2940
gggatggggc	ccgagggtca	gcccctgggc	agaagggtgg	ccagtgggcc	cagccctggg	3000
gaggggatat	cccccagtc	tgctcaggcc	cctcaagctc	ctggagacaa	ccacgtggtg	3060
cctgtactgc	gccgacagat	caagatctgg	tttcagaacg	cacggatgaa	gtggaagaag	3120
tga						3123

- <210> 114
- <211> 1008 <212> PRT
- <213> Artificial Sequence

<220>

<223> Levivirus and Rattus norvegicus and Drosophila melanogaster

<400> 114

Met Ala Ser Asn Phe Thr Gln Phe Val Leu Val Asp Asn Gly Gly Thr 10

Gly Asp Val Thr Val Ala Pro Ser Asn Phe Ala Asn Gly Val Ala Glu 25 20

Trp Ile Ser Ser Asn Ser Arg Ser Gln Ala Tyr Lys Val Thr Cys Ser 35 40

Val Arg Gln Ser Ser Ala Gln Asn Arg Lys Tyr Thr Ile Lys Val Glu 50 55

Val Pro Lys Val Ala Thr Gln Thr Val Gly Gly Val Glu Leu Pro Val 75 70 65

Ala Ala Trp Arg Ser Tyr Leu Asn Met Glu Leu Thr Ile Pro Ile Phe 85 90

Ala Thr Asn Ser Asp Cys Glu Leu Ile Val Lys Ala Met Gln Gly Leu 105

Leu Lys Asp Gly Asn Pro Ile Pro Ser Ala Ile Ala Ala Asn Ser Gly 115

Ile Tyr Pro Met Ala Thr Glu Glu Ala Ile Ile Arg Ile Pro Pro Tyr 135 140 130

His Tyr Ile His Val Leu Asp Gln Asn Ser Asn Val Ser Arg Val Glu Val Gly Pro Lys Thr Tyr Ile Arg Gln Asp Asn Glu Arg Val Leu Phe Ala Pro Val Arg Met Val Thr Val Pro Pro Arg His Tyr Cys Ile Val Ala Asn Pro Val Ser Arg Asp Thr Gln Ser Ser Val Leu Phe Asp Ile Thr Gly Gln Val Arg Leu Arg His Ala Asp Gln Glu Ile Arg Leu Ala Gln Asp Pro Phe Pro Leu Tyr Pro Gly Glu Val Leu Glu Lys Asp Ile Thr Pro Leu Gln Val Val Leu Pro Asn Thr Ala Leu His Leu Lys Ala Leu Leu Asp Phe Glu Asp Lys Asn Gly Asp Lys Val Met Ala Gly Asp Glu Trp Leu Phe Glu Gly Pro Gly Thr Tyr Ile Pro Gln Lys Glu Val Glu Val Val Glu Ile Ile Gln Ala Thr Val Ile Lys Gln Asn Gln Ala Leu Arg Leu Arg Ala Arg Lys Glu Cys Phe Asp Arg Glu Gly Lys Gly Arg Val Thr Gly Glu Glu Trp Leu Val Arg Ser Val Gly Ala Tyr Leu Pro Ala Val Phe Glu Glu Val Leu Asp Leu Val Asp Ala Val Ile Leu Thr Glu Lys Thr Ala Leu His Leu Arg Ala Leu Gln Asn Phe Arg Asp Leu Arg Gly Val Leu His Arg Thr Gly Glu Glu Trp Leu Val Thr Val

Gln Asp Thr Glu Ala His Val Pro Asp Val Tyr Glu Glu Val Leu Gly 385 390 395 400

- Val Val Pro Ile Thr Thr Leu Gly Pro Arg His Tyr Cys Val Ile Leu 405 410 415
- Asp Pro Met Gly Pro Asp Gly Lys Asn Gln Leu Gly Gln Lys Arg Val 420 425 430
- Val Lys Gly Glu Lys Ser Phe Phe Leu Gln Pro Gly Glu Arg Leu Glu 435 440 445
- Arg Gly Ile Gln Asp Val Tyr Val Leu Ser Glu Gln Gln Gly Leu Leu 450 455 460
- Leu Lys Ala Leu Gln Pro Leu Glu Glu Glu Glu Ser Glu Glu Lys Val 465 470 475 480
- Ser His Gln Ala Gly Asp Cys Trp Leu Ile Arg Gly Pro Leu Glu Tyr 485 490 495
- Val Pro Ser Ala Lys Val Glu Val Val Glu Glu Arg Gln Ala Ile Pro 500 505 510
- Leu Asp Gln Asn Glu Gly Ile Tyr Val Gln Asp Val Lys Thr Gly Lys 515 520 525
- Val Arg Ala Val Ile Gly Ser Thr Tyr Met Leu Thr Gln Asp Glu Val 530 535 540
- Leu Trp Glu Lys Glu Leu Pro Ser Gly Val Glu Glu Leu Leu Asn Leu 545 550 555 560
- Gly His Asp Pro Leu Ala Asp Arg Gly Gln Lys Gly Thr Ala Lys Pro 565 570 575
- Leu Gln Pro Ser Ala Pro Arg Asn Lys Thr Arg Val Val Ser Tyr Arg 580 585 590
- Val Pro His Asn Ala Ala Val Gln Val Tyr Asp Tyr Arg Ala Lys Arg 595 600 605
- Ala Arg Val Val Phe Gly Pro Glu Leu Val Thr Leu Asp Pro Glu Glu

610 615 620

. Gln Phe Thr Val Leu Ser Leu Ser Ala Gly Arg Pro Lys Arg Pro His 625 630 635 640

Ala Arg Arg Ala Leu Cys Leu Leu Leu Gly Pro Asp Phe Phe Thr Asp 645 650 655

Val Ile Thr Ile Glu Thr Ala Asp His Ala Arg Leu Gln Leu Gln Leu 660 665 670

Ala Tyr Asn Trp His Phe Glu Leu Lys Asn Arg Asn Asp Pro Ala Glu 675 680 685

Ala Ala Lys Leu Phe Ser Val Pro Asp Phe Val Gly Asp Ala Cys Lys 690 695 700

Ala Ile Ala Ser Arg Val Arg Gly Ala Val Ala Ser Val Thr Phe Asp 705 710 715 720

Asp Phe His Lys Asn Ser Ala Arg Ile Ile Arg Met Ala Val Phe Gly 725 730 735

Phe Glu Met Ser Glu Asp Thr Gly Pro Asp Gly Thr Leu Leu Pro Lys
740 745 750

Ala Arg Asp Gln Ala Val Phe Pro Gln Asn Gly Leu Val Val Ser Ser 755 760 765

Val Asp Val Gln Ser Val Glu Pro Val Asp Gln Arg Thr Arg Asp Ala 770 775 780

Leu Gln Arg Ser Val Gln Leu Ala Ile Glu Ile Thr Thr Asn Ser Gln 785 790 795 800

Glu Ala Ala Ala Lys His Glu Ala Gln Arg Leu Glu Gln Glu Ala Arg 805 810 815

Gly Arg Leu Glu Arg Gln Lys Ile Leu Asp Gln Ser Glu Ala Glu Lys 820 825 830

Ala Arg Lys Glu Leu Leu Glu Leu Glu Ala Met Ser Met Ala Val Glu 835 840 845

261	850	GIY	Vett	AId	nys	855	GIU	ALG	GIU	ser	860	AIA	GIU	Ala	AIA	
Arg 865	Ile	Glu	Gly	Glu	Gly 870	Ser	Val	Leu	Gln	Ala 875	Lys	Leu	Lys	Ala	Gln 880	
Ala	Leu	Ala	Ile	Glu 885	Thr	Glu	Ala	Glu	Leu 890	Glu	Arg	Val	Lys	Lys 895	Val	
Arg	Glu	Met	Glu 900	Leu	Ile	Tyr	Ala	Arg 905	Ala	Gln	Leu	Glu	Leu 910	Glu	Val	
Ser	Lys	Ala 915		Gln	Leu	Ala	Asn 920	Val	Glu	Ala	Lys	Lys 925	Phe	Lys	Glu	
Met	Thr 930	Glu	Ala	Leu	Gly	Pro 935	Gly	Thr	Ile	Arg	Asp 940	Leu	Ala	Val	Ala	
Gly 945	Pro	Glu	Met	Gln	Val 950	Lys	Leu	Leu	Gln	Ser 955	Leu	Gly	Leu	Lys	Ser 960	
Thr	Leu	Ile	Thr	Asp 965	Gly	Ser	Ser	Pro	Ile 970	Asn	Leu	Phe	Ser	Thr 975	Ala	
Phe	Gly	Leu	Leu 980	Gly	Leu	Gly	Ser	Asp 985	Gly	Gln	Pro	Pro	Ala 990	Gln	Lys	
Arg	Gln	Ile 995	Lys	Ile	Trp	Phe	Gln 100		n Ala	a Arg	g Met	Ly:		rp Ly	ys Lys	
	1> : 2> !		Eicia	al Se	equei	nce										
<22 <22		Levi	viru	s and	i Rat	tus	nor	vegio	cus a	and l	Oroso	ophi:	la mo	eland	ogaster	
<400 atg		115 cta a	actt	tact	ca gt	tegl	ttet	c gto	cgaca	aatg	gcgg	gaact	tgg (cgac	gtgact	60
gtc	gccc	caa g	gcaa	cttc	gc ta	aacg	gggt	c gct	tgaat	tgga	tcag	gete	taa (ctcg	cgttca	120
cag	gctta	aca a	aagt	aacci	tg ta	agcgi	ttcg	t cag	gagct	tctg	cgca	agaat	tcg (caaat	tacacc	180
atca	aaagt	ccg a	aggt	gcct	aa ag	gtgg	caac	c cag	gact	gttg	gtgg	gtgta	aga 🤉	gctt	cctgta	240
qcc	gcate	ggc g	gttc	gtaci	tt aa	aatai	tggaa	a cta	aacca	attc	caat	ttt	ege 1	tacga	aattcc	300

					aaaaattaaa	360
gactgcgagc tta						
tcagcaatcg cag	gcaaactc (cggcatctac	cccatggcaa	ctgaagaggc	catcatccgc	420
atcccccat acc	cactacat (ccatgtgctg	gaccagaaca	gtaatgtgtc	ccgtgtggag	480
gttggaccaa aga	acctacat (ccggcaggac	aatgagaggg	tactgtttgc	cccagttcgc	540
atggtgaccg tco	ccccacg	ccactactgc	atagtggcca	accctgtgtc	ccgggacacc	600
cagagttctg tg	ttatttga (catcacagga	caagtccgac	tccggcacgc	tgaccaggag	660
atccgactag cc	caggaccc	cttccccctg	tatccagggg	aggtgctgga	aaaggacatc	. 720
accccactgc ag	gtggttct	gcccaacaca	gcactgcatc	ttaaggcgtt	gctggacttt	780
gaggataaga at	ggagacaa	ggtcatggca	ggagacgagt	ggctatttga	gggacctggc	840
acctacatcc ca	cagaagga	agtggaagtc	gtggagatca	ttcaggccac	agtcatcaaa	900
cagaaccaag ca	ctgcggct	aagggcccga	aaggagtgct	ttgaccggga	gggcaagggg	960
cgcgtgacag gt	gaggagtg	gctggtccga	tccgtggggg	cttacctccc	agctgtcttt	1020
gaagaggtgc tg	gatctggt	ggatgctgtg	atccttacag	aaaagactgc	cctgcacctc	1080
cgggctctgc ag	aacttcag	ggaccttcgg	ggagtgctcc	accgcaccgg	ggaggaatgg	1140
ttagtgacag tg	caggacac	agaagcccat	gttccagatg	tctatgagga	ggtgcttggg	1200
gtagtaccca to	accaccct	gggacctcga	cactactgtg	tcattcttga	cccaatggga	1260
ccagacggca ag	gaaccagct	gggacaaaag	cgtgttgtca	agggagagaa	gtcctttttc	1320
ctccagccag ga	gagaggct	ggagcgaggc	atccaggatg	tgtatgtgct	gtcagagcag	1380
caggggctgc ta	ıctgaaggc	actgcagccc	ctggaggagg	gagagagcga	ggagaaggtc	1440
teccateagg co	ggagactg	ctggctcatc	cgtgggcccc	tggagtatgt	gccatctgca	1500
aaagtggagg tg	gtggagga	gcgtcaggct	atccctctgg	accaaaatga	gggcatctat	1560
gtgcaggatg to	aagacggg	gaaggtgcgg	gctgtgattg	gaagcaccta	catgctgact	1620
caggatgaag to	ctgtggga	aaaggagctg	ccttctgggg	tggaggagct	gctgaacttg	1680
gggcatgacc ct	ctggcaga	caggggtcag	aagggcacag	ccaagcccct	tcagccctca	1740
gctccaagga ac	caagacccg	agtggtcagc	taccgtgtcc	cgcacaatgc	agcggtgcag	1800
gtctatgact ac	cagagccaa	gagagcccgt	gtggtctttg	ggcccgagct	agtgacactg	1860
gatcctgagg ag	gcagttcac	agtattgtcc	ctttctgccg	ggcgacccaa	gcgtcctcat	1920
gcccgccgtg ca	actctgcct	actgctggga	cctgatttct	ttactgatgt	catcaccatc	1980
gaaactgcag at	tcatgccag	gttgcagctg	cagettgeet	acaactggca	ctttgaactg	2040

aagaaccgga	atgaccctgc	agaggcagcc	aagcttttct	ccgtgcctga	cttcgtgggt	2100
gacgcctgca	aggccattgc	atcccgagtc	cggggggctg	tagcctctgt	cacctttgat	2160
gacttccata	aaaactcagc	ccggatcatt	cgaatggctg	tttttggctt	tgagatgtct	2220
gaagacacag	gtcctgatgg	cacactcctg	cccaaggctc	gagaccaggc	agtctttccc	2280
caaaacgggc	tggtagtcag	cagtgtggat	gtgcagtcag	tggagcccgt	ggaccagagg	2340
accegggatg	cccttcagcg	cagcgttcag	ctggccatcg	aaattaccac	caactcccag	2400
gaggcagcag	ccaagcacga	ggctcagaga	ctggaacagg	aagcccgtgg	teggettgag	2460
aggcagaaga	tcttggacca	gtcagaagct	gaaaaagccc	gcaaggaact	cttggagctt	2520
gaggctatga	gcatggctgt	ggagagcacg	ggtaatgcca	aagcagaggc	tgagtcccgt	2580
gcagaggcag	cgaggatcga	aggagaaggc	tctgtgctgc	aggccaagct	caaggcacag	2640
gcgctagcca	ttgagacgga	ggctgagttg	gagcgagtaa	agaaagtacg	agagatggaa	2700
ctgatctatg	cccgggccca	gttggagctg	gaggtgagca	aggcgcagca	gcttgccaat	2760
gtggaggcaa	agaagttcaa	ggagatgaca	gaggcactgg	gccccggcac	catcagggac	2820
ctggctgtgg	ccgggccaga	gatgcaggtg	aaacttctcc	agtccctggg	cctgaaatcc	2880
actctcatca	ccgatggctc	gtctcccatc	aacctcttca	gcacagcctt	cgggttgctg	2940
gggctggggt	ctgatggtca	gccgccagca	cagaagcgac	agatcaagat	ctggtttcag	3000
aacgcacgga	tgaagtggaa	gaagtga				3027

<210> 116

<211> 1273

<212> PRT

<213> Artificial Sequence

<220>

<223> Levivirus and Homo sapiens and synthesized

<400> 116

Met Ala Ser Asn Phe Thr Gln Phe Val Leu Val Asp Asn Gly Gly Thr
1 5 10 15

Gly Asp Val Thr Val Ala Pro Ser Asn Phe Ala Asn Gly Val Ala Glu 20 25 30

Trp Ile Ser Ser Asn Ser Arg Ser Gln Ala Tyr Lys Val Thr Cys Ser 35 40 45

Val Arg Gln Ser Ser Ala Gln Asn Arg Lys Tyr Thr Ile Lys Val Glu

50	55	60
J V		

Val Pro Lys Val Ala Thr Gln Thr Val Gly Gly Val Glu Leu Pro Val 65 70 75 80

Ala Ala Trp Arg Ser Tyr Leu Asn Met Glu Leu Thr Ile Pro Ile Phe 85 90 95

Ala Thr Asn Ser Asp Cys Glu Leu Ile Val Lys Ala Met Gln Gly Leu 100 105 110

Leu Lys Asp Gly Asn Pro Ile Pro Ser Ala Ile Ala Ala Asn Ser Gly
115 120 125

Ile Tyr Pro Met Ala Thr Glu Glu Phe Ile Ile Arg Ile Pro Pro Tyr 130 135 140

His Tyr Ile His Val Leu Asp Gln Asn Ser Asn Val Ser Arg Val Glu 145 150 155 160

Val Gly Pro Lys Thr Tyr Ile Arg Gln Asp Asn Glu Arg Val Leu Phe 165 170 175

Ala Pro Met Arg Met Val Thr Val Pro Pro Arg His Tyr Cys Thr Val 180 185 190

Ala Asn Pro Val Ser Arg Asp Ala Gln Gly Leu Val Leu Phe Asp Val 195 200 205

Thr Gly Gln Val Arg Leu Arg His Ala Asp Leu Glu Ile Arg Leu Ala 210 215 220

Gln Asp Pro Phe Pro Leu Tyr Pro Gly Glu Val Leu Glu Lys Asp Ile 225 230 235 240

Thr Pro Leu Gln Val Val Leu Pro Asn Thr Ala Leu His Leu Lys Ala
245 250 255

Leu Leu Asp Phe Glu Asp Lys Asp Gly Asp Lys Val Val Ala Gly Asp 260 265 270

Glu Trp Leu Phe Glu Gly Pro Gly Thr Tyr Ile Pro Arg Lys Glu Val 275 280 285

Glu Val Val Glu Ile Ile Gln Ala Thr Ile Ile Arg Gln Asn Gln Ala 290 295 300

Leu Arg Leu Arg Ala Arg Lys Glu Cys Trp Asp Arg Asp Gly Lys Glu 305 310 315 320

Arg Val Thr Gly Glu Glu Trp Leu Val Thr Thr Val Gly Ala Tyr Leu 325 330 335

Pro Ala Val Phe Glu Glu Val Leu Asp Leu Val Asp Ala Val Ile Leu 340 345 350

Thr Glu Lys Thr Ala Leu His Leu Arg Ala Arg Arg Asn Phe Arg Asp 355 360 365

Phe Arg Gly Val Ser Arg Arg Thr Gly Glu Glu Trp Leu Val Thr Val 370 375 380

Gln Asp Thr Glu Ala His Val Pro Asp Val His Glu Glu Val Leu Gly 385 390 395 400

Val Val Pro Ile Thr Thr Leu Gly Pro His Asn Tyr Cys Val Ile Leu 405 410 415

Asp Pro Val Gly Pro Asp Gly Lys Asn Gln Leu Gly Gln Lys Arg Val 420 425 430

Val Lys Gly Glu Lys Ser Phe Phe Leu Gln Pro Gly Glu Gln Leu Glu 435 440 445

Gln Gly Ile Gln Asp Val Tyr Val Leu Ser Glu Gln Gln Gly Leu Leu 450 455 460

Leu Arg Ala Leu Gln Pro Leu Glu Glu Glu Glu Asp Glu Glu Lys Val 465 470 475 480

Ser His Gln Ala Gly Asp His Trp Leu Ile Arg Gly Pro Leu Glu Tyr 485 490 495

Val Pro Ser Ala Lys Val Glu Val Val Glu Glu Arg Gln Ala Ile Pro 500 505 510

Leu Asp Glu Asn Glu Gly Ile Tyr Val Gln Asp Val Lys Thr Gly Lys 515 520 525

Val Arg Ala Val Ile Gly Ser Thr Tyr Met Leu Thr Gln Asp Glu Val 530 535 540

Leu Trp Glu Lys Glu Leu Pro Pro Gly Val Glu Glu Leu Leu Asn Lys 545 550 550 560

Gly Gln Asp Pro Leu Ala Asp Arg Gly Glu Lys Asp Thr Ala Lys Ser 565 570 575

Leu Gln Pro Leu Ala Pro Arg Asn Lys Thr Arg Val Val Ser Tyr Arg 580 585 590

Val Pro His Asn Ala Ala Val Gln Val Tyr Asp Tyr Arg Glu Lys Arg 595 600 605

Ala Arg Val Val Phe Gly Pro Glu Leu Val Ser Leu Gly Pro Glu Glu 610 615 620

Gln Phe Thr Val Leu Ser Leu Ser Ala Gly Arg Pro Lys Arg Pro His 625 630 635 640

Ala Arg Arg Ala Leu Cys Leu Leu Leu Gly Pro Asp Phe Phe Thr Asp 645 650 655

Val Ile Thr Ile Glu Thr Ala Asp His Ala Arg Leu Gln Leu Gln Leu 660 665 670

Ala Tyr Asn Trp His Phe Glu Val Asn Asp Arg Lys Asp Pro Gln Glu 675 680 685

Thr Ala Lys Leu Phe Ser Val Pro Asp Phe Val Gly Asp Ala Cys Lys 690 695 700

Ala Ile Ala Ser Arg Val Arg Gly Ala Val Ala Ser Val Thr Phe Asp 705 710 715 720

Asp Phe His Lys Asn Ser Ala Arg Ile Ile Arg Thr Ala Val Phe Gly 725 730 735

Phe Glu Thr Ser Glu Ala Lys Gly Pro Asp Gly Met Ala Leu Pro Arg
740 745 750

Pro Arg Asp Gln Ala Val Phe Pro Gln Asn Gly Leu Val Val Ser Ser

755 760 765

Val Asp Val Gln Ser Val Glu Pro Val Asp Gln Arg Thr Arg Asp Ala
770 775 780

Leu Gln Arg Ser Val Gln Leu Ala Ile Glu Ile Thr Thr Asn Ser Gln 785 790 795 800

Glu Ala Ala Ala Lys His Glu Ala Gln Arg Leu Glu Gln Glu Ala Arg 805 810 815

Gly Arg Leu Glu Arg Gln Lys Ile Leu Asp Gln Ser Glu Ala Glu Lys 820 825 830

Ala Arg Lys Glu Leu Leu Glu Leu Glu Ala Leu Ser Met Ala Val Glu 835 840 845

Ser Thr Gly Thr Ala Lys Ala Glu Ala Glu Ser Arg Ala Glu Ala Ala 850 855 860

Arg Ile Glu Gly Glu Gly Ser Val Leu Gln Ala Lys Leu Lys Ala Gln 865 870 875 880

Ala Leu Ala Ile Glu Thr Glu Ala Glu Leu Gln Arg Val Gln Lys Val 885 890 895

Arg Glu Leu Glu Leu Val Tyr Ala Arg Ala Gln Leu Glu Leu Glu Val 900 905 910

Ser Lys Ala Gln Gln Leu Ala Glu Val Glu Val Lys Lys Phe Lys Gln 915 920 925

Met Thr Glu Ala Ile Gly Pro Ser Thr Ile Arg Asp Leu Ala Val Ala 930 935 940

Gly Pro Glu Met Gln Val Lys Leu Leu Gln Ser Leu Gly Leu Lys Ser 945 950 955 960

Thr Leu Ile Thr Asp Gly Ser Thr Pro Ile Asn Leu Phe Asn Thr Ala 965 970 975

Phe Gly Leu Leu Gly Met Gly Pro Glu Gly Gln Pro Leu Gly Arg Arg 980 985 990

Val Ala Ser Gly Pro Ser Pro Gly Glu Gly Ile Ser Pro Gln Ser Ala 995 1000 1005

- Gln Ala Pro Gln Ala Pro Gly Asp Asn His Val Val Pro Val Leu 1010 1015 1020
- Arg Asp Ile Val Leu Thr Gln Ser Pro Ala Ser Leu Ala Val Ser 1025 1030 1035
- Leu Gly Gln Arg Ala Thr Met Ser Cys Arg Ala Gly Glu Ser Val 1040 1045 1050
- Asp Ile Phe Gly Val Gly Phe Leu His Trp Tyr Gln Gln Lys Pro 1055 1060 1065
- Gly Gln Pro Pro Lys Leu Leu Ile Tyr Arg Ala Ser Asn Leu Glu 1070 1075 1080
- Ser Gly Ile Pro Val Arg Phe Ser Gly Thr Gly Ser Arg Thr Asp 1085 1090 1095
- Phe Thr Leu Ile Ile Asp Pro Val Glu Ala Asp Asp Val Ala Thr
- Tyr Tyr Cys Gln Gln Thr Asn Glu Asp Pro Tyr Thr Phe Gly Gly 1115 1120 1125
- Gly Thr Lys Leu Glu Ile Lys Gly Ser Thr Ser Gly Gly Gly Ser 1130 1135 1140
- . Gly Gly Gly Ser Gly Gly Gly Ser Ser Glu Val Gln Leu Gln 1145 1150 1155
 - Gln Ser Gly Ala Glu Leu Val Glu Pro Gly Ala Ser Val Lys Leu 1160 1165 1170
 - Ser Cys Thr Ala Ser Gly Phe Asn Ile Lys Asp Thr Tyr Met His 1175 1180 1185
 - Trp Val Lys Gln Arg Pro Glu Gln Gly Leu Glu Trp Ile Gly Arg 1190 1195 1200
 - Ile Asp Pro Ala Asn Gly Asn Ser Lys Tyr Val Pro Lys Phe Gln 1205 1210 1215

Gly Lys Ala Thr Ile Thr Ala Asp Thr Ser Ser Asn Thr Ala Tyr 1220 1235 1230

Leu Gln Leu Thr Ser Leu Thr Ser Glu Asp Thr Ala Val Tyr Tyr 1235 1240 1245

Cys Ala Pro Phe Gly Tyr Tyr Val Ser Asp Tyr Ala Met Ala Tyr 1250 1255 1260

Trp Gly Gln Gly Thr Ser Val Thr Val Ser 1265 1270

<210> 117

<211> 3822

<212> DNA

<213> Artificial Sequence

<220>

<223> Levivirus and Homo sapiens and synthesized

<400> 117 atggcttcta actttactca gttcgttctc gtcgacaatg gcggaactgg cgacgtgact 60 120 gtcgcccaa gcaacttcgc taacggggtc gctgaatgga tcagctctaa ctcgcgttca 180 caggettaca aagtaacetg tagegttegt cagagetetg egcagaateg caaatacace atcaaagtcg aggtgcctaa agtggcaacc cagactgttg gtggtgtaga gcttcctgta 240 gccgcatggc gttcgtactt aaatatggaa ctaaccattc caattttcgc tacgaattcc 300 gactgcgagc ttattgttaa ggcaatgcaa ggtctcctaa aagatggaaa cccgattccc 360 tcagcaatcg cagcaaactc cggcatctac cccatggcaa ctgaagagtt catcatccgc 420 480 atcccccat accactatat ccatgtgctg gaccagaaca gcaacgtgtc ccgtgtggag 540 gtcgggccaa agacctacat ccggcaggac aatgagaggg tactgtttgc ccccatgcgc 600 atggtgaccg tcccccacg tcactactgc acagtggcca accctgtgtc tcgggatgcc 660 caqqqcttqq tqctqtttqa tgtcacaggg caagttcggc ttcgccacgc tgacctcgag 720 atcoggotgg cocaggacco ottoccootg taccoagggg aggtgctgga aaaggacato acacccctgc aggtggttct gcccaacact gccctccatc taaaggcgct gcttgatttt 780 gaggataaag atggagacaa ggtggtggca ggagatgagt ggcttttcga gggacctggc 840 acgtacatcc cccggaagga agtggaggtc gtggagatca ttcaggccac catcatcagg 900 960 caqaaccagg ctctgcggct cagggcccgc aaggagtgct gggaccggga cggcaaggag

agggtgacag	gggaagaatg	gctggtcacc	acagtagggg	cgtacctccc	agcggtgttt	1020
gaggaggttc	tggatttggt	ggacgccgtc	atccttacgg	aaaagacagc	cctgcacctc	1080
cgggctcggc	ggaacttccg	ggacttcagg	ggagtgtccc	gccgcactgg	ggaggagtgg	1140
ctggtaacag	tgcaggacac	agaggcccac	gtgccagatg	tccacgagga	ggtgctgggg	1200
gttgtgccca	tcaccaccct	gggcccccac	aactactgcg	tgattctcga	ccctgtcgga	1260
ccggatggca	agaatcagct	ggggcagaag	cgcgtggtca	agggagagaa	gtctttttc	1320
ctccagccag	gagagcagct	ggaacaaggc	atccaggatg	tgtatgtgct	gtcggagcag	1380
caggggctgc	tgctgagggc	cctgcagccc	ctggaggagg	gggaggatga	ggagaaggtc	1440
tcacaccagg	ctggggacca	ctggctcatc	cgcggacccc	tggagtatgt	gccatctgcc	1500
aaagtggagg	tggtggagga	gcgccaggcc	atccctctag	acgagaacga	gggcatctat	1560
gtgcaggatg	tcaagaccgg	aaaggtgcgc	gctgtgattg	gaagcaccta	catgctgacc	1620
caggacgaag	tcctgtggga	gaaagagctg	cctcccgggg	tggaggagct	gctgaacaag	1680
gggcaggacc	ctctggcaga	caggggtgag	aaggacacag	ctaagagcct	ccagcccttg	1740
gcgccccgga	acaagacccg	tgtggtcagc	taccgcgtgc	cccacaacgc	tgcggtgcag	1800
gtgtacgact	accgagagaa	gcgagcccgc	gtggtcttcg	ggcctgagct	ggtgtcgctg	1860
ggtcctgagg	agcagttcac	agtgttgtcc	ctctcagctg	ggcggcccaa	gcgtccccat	1920
gcccgccgtg	cgctctgcct	gctgctgggg	cctgacttct	tcacagacgt	catcaccatc	1980
gaaacggcgg	atcatgccag	gctgcaactg	cagctggcct	acaactggca	ctttgaggtg	2040
aatgaccgga	aggaccccca	agagacggcc	aagctctttt	cagtgccaga	ctttgtaggt	2100
gatgcctgca	aagccatcgc	atcccgggtg	cggggggccg	tggcctctgt	cactttcgat	2160
gacttccata	agaactcagc	ccgcatcatt	cgcactgctg	tctttggctt	tgagacctcg	2220
gaagcgaagg	gccccgatgg	catggccctg	cccaggcccc	gggaccaggc	tgtcttcccc	2280
caaaacgggc	tggtggtcag	cagtgtggac	gtgcagtcag	tggagcctgt	ggatcagagg	2340
acccgggacg	ccctgcaacg	cagcgtccag	ctggccatcg	agatcaccac	caactcccag	2400
gaagcggcgg	ccaagcatga	ggctcagaga	ctggagcagg	aagcccgcgg	ccggcttgag	2460
cggcagaaga	tcctggacca	gtcagaagcc	gagaaagctc	gcaaggaact	tttggagctg	2520
gaggctctga	gcatggccgt	ggagagcacc	gggactgcca	aggcggaggc	cgagtcccgt	2580
gcggaggcag	cccggattga	gggagaaggg	teegtgetge	aggccaagct	aaaagcacag	2640
gccttggcca	ttgaaacgga	ggctgagctc	cagagggtcc	agaaggtccg	agagctggaa	2700

ctggtctatg cccgggccca gctggagctg gaggtgagca aggctcagca gctggctgag 2760 gtggaggtga agaagttcaa gcagatgaca gaggccatag gccccagcac catcagggac 2820 cttgctgtgg ctgggcctga gatgcaggta aaactgctcc agtccctggg cctgaaatca 2880 acceteatea ecgatggete caeteceate aacetettea acaeageett tgggetgetg 2940 gggatggggc ccgagggtca gcccctgggc agaagggtgg ccagtgggcc cagccctggg 3000 gaggggatat cccccagtc tgctcaggcc cctcaagctc ctggagacaa ccacgtggtg 3060 cctgtactgc gcgacattgt gctgacccaa tctccagctt ctttggctgt gtctcttggg 3120 cagagggcca ccatgtcctg cagagccggt gaaagtgttg atatttttgg cgttgggttt 3180 ttgcactggt accagcagaa accaggacag ccacccaaac tcctcatcta tcgtgcatcc 3240 aacctagaat ctgggatccc tgtcaggttc agtggcactg ggtctaggac agacttcacc 3300 ctcatcattg atcctgtgga ggctgatgat gttgccacct attactgtca gcaaactaat 3360 gaggatccgt acacgttcgg aggggggacc aagctggaaa taaaaggcag tactagcggc 3420 3480 ggtggctccg ggggcggttc cggtggggc ggcagcagcg aggttcagct acaacagtct ggggcagagc ttgtggagcc aggggcctca gtcaagttgt cctgcacagc ttctggcttc 3540 3600 aacattaaaq acacctatat gcactgggtg aagcagaggc ctgaacaggg cctggaatgg 3660 attggaagga ttgatcctgc gaatggtaat agtaaatatg tcccgaagtt ccagggcaag gccactataa cagcagacac atcttccaac acagcctacc tgcagctcac cagcctgaca 3720 3780 tctgaggaca ctgccgtcta ttattgtgct ccgtttggtt actacgtgtc tgactatgct atggcctact ggggtcaagg aacctcagtc accgtctcgt ga 3822

Met Ala Ser Asn Phe Thr Gln Phe Val Leu Val Asp Asn Gly Gly Thr 1 5 10 15

Gly Asp Val Thr Val Ala Pro Ser Asn Phe Ala Asn Gly Val Ala Glu 20 25 30

Trp Ile Ser Ser Asn Ser Arg Ser Gln Ala Tyr Lys Val Thr Cys Ser

<210> 118

<211> 1241

<212> PRT

<213> Artificial Sequence

<220>

<223> Levivirus and Rattus norvegicus and synthesized

<400> 118

35 40 45

Val Arg Gln Ser Ser Ala Gln Asn Arg Lys Tyr Thr Ile Lys Val Glu 50 55 60

Val Pro Lys Val Ala Thr Gln Thr Val Gly Gly Val Glu Leu Pro Val 65 70 75 80

Ala Ala Trp Arg Ser Tyr Leu Asn Met Glu Leu Thr Ile Pro Ile Phe 85 90 95

Ala Thr Asn Ser Asp Cys Glu Leu Ile Val Lys Ala Met Gln Gly Leu 100 105 110

Leu Lys Asp Gly Asn Pro Ile Pro Ser Ala Ile Ala Ala Asn Ser Gly
115 120 125

Ile Tyr Pro Met Ala Thr Glu Glu Ala Ile Ile Arg Ile Pro Pro Tyr 130 135 140

His Tyr Ile His Val Leu Asp Gln Asn Ser Asn Val Ser Arg Val Glu
145 150 155 160

Val Gly Pro Lys Thr Tyr Ile Arg Gln Asp Asn Glu Arg Val Leu Phe 165 170 175

Ala Pro Val Arg Met Val Thr Val Pro Pro Arg His Tyr Cys Ile Val 180 185 190

Ala Asn Pro Val Ser Arg Asp Thr Gln Ser Ser Val Leu Phe Asp Ile 195 200 205

Thr Gly Gln Val Arg Leu Arg His Ala Asp Gln Glu Ile Arg Leu Ala 210 215 220

Gln Asp Pro Phe Pro Leu Tyr Pro Gly Glu Val Leu Glu Lys Asp Ile 225 230 235 240

Thr Pro Leu Gln Val Val Leu Pro Asn Thr Ala Leu His Leu Lys Ala 245 250 255

Leu Leu Asp Phe Glu Asp Lys Asn Gly Asp Lys Val Met Ala Gly Asp 260 265 270

Glu Trp Leu Phe Glu Gly Pro Gly Thr Tyr Ile Pro Gln Lys Glu Val 275 280 285

- Glu Val Val Glu Ile Ile Gln Ala Thr Val Ile Lys Gln Asn Gln Ala 290 295 300
- Leu Arg Leu Arg Ala Arg Lys Glu Cys Phe Asp Arg Glu Gly Lys Gly 305 310 315 320
- Arg Val Thr Gly Glu Glu Trp Leu Val Arg Ser Val Gly Ala Tyr Leu 325 330 335
- Pro Ala Val Phe Glu Glu Val Leu Asp Leu Val Asp Ala Val Ile Leu 340 345 350
- Thr Glu Lys Thr Ala Leu His Leu Arg Ala Leu Gln Asn Phe Arg Asp 355 360 365
- Leu Arg Gly Val Leu His Arg Thr Gly Glu Glu Trp Leu Val Thr Val 370 375 380
- Gln Asp Thr Glu Ala His Val Pro Asp Val Tyr Glu Glu Val Leu Gly 385 390 395 400
- Val Val Pro Ile Thr Thr Leu Gly Pro Arg His Tyr Cys Val Ile Leu 405 410 415
- Asp Pro Met Gly Pro Asp Gly Lys Asn Gln Leu Gly Gln Lys Arg Val 420 425 430
- Val Lys Gly Glu Lys Ser Phe Phe Leu Gln Pro Gly Glu Arg Leu Glu
 435 440 445
- Arg Gly Ile Gln Asp Val Tyr Val Leu Ser Glu Gln Gln Gly Leu Leu 450 455 460
- Leu Lys Ala Leu Gln Pro Leu Glu Glu Glu Glu Ser Glu Glu Lys Val 465 470 475 480
- Ser His Gln Ala Gly Asp Cys Trp Leu Ile Arg Gly Pro Leu Glu Tyr 485 490 495
- Val Pro Ser Ala Lys Val Glu Val Val Glu Glu Arg Gln Ala Ile Pro 500 505 510

	gttcgtactt	aaatatggaa	ctaadcattc	caattttccc	tacqaattcc	300
	•					
gactgcgagc	ttattgttaa	ggcaatgcaa	ggtctcctaa	aagatggaaa	cccgattccc	360
tcagcaatcg	cagcaaactc	cggcatctac	cccatggcaa	ctgaagagtt	catcatccgc	420
atccccccat	accactatat	ccatgtgctg	gaccagaaca	gcaacgtgtc	ccgtgtggag	480
gtcgggccaa	agacctacat	ccggcaggac	aatgagaggg	tactgtttgc	ccccatgcgc	540
atggtgaccg	tcccccacg	tcactactgc	acagtggcca	accctgtgtc	tcgggatgcc	600
cagggcttgg	tgctgtttga	tgtcacaggg	caagttcggc	ttcgccacgc	tgacctcgag	660
atccggctgg	cccaggaccc	cttccccctg	tacccagggg	aggtgctgga	aaaggacatc	720
acacccctgc	aggtggttct	gcccaacact	gccctccatc	taaaggcgct	gcttgatttt	780
gaggataaag	atggagacaa	ggtggtggca	ggagatgagt	ggcttttcga	gggacctggc	840
acgtacatcc	cccggaagga	agtggaggtc	gtggagatca	ttcaggccac	catcatcagg	900
cagaaccagg	ctctgcggct	cagggcccgc	aaggagtgct	gggaccggga	cggcaaggag	960
agggtgacag	gggaagaatg	gctggtcacc	acagtagggg	cgtacctccc	agcggtgttt	1020
gaggaggttc	tggatttggt	ggacgccgtc	atccttacgg	aaaagacagc	cctgcacctc	1080
cgggctcggc	ggaacttccg	ggacttcagg	ggagtgtccc	gccgcsctgg	ggaggagtgg	1140
ctggtaacag	tgcaggacac	agaggcccac	gtgccagatg	tccacgagga	ggtgctgggg	1200
gttgtgccca	tcaccaccct	gggccccac	aactactgcg	tgattctcga	ccctgtcgga	1260
ccggatggca	agaatcagct	ggggcagaag	cgcgtggtca	agggagagaa	gtctttttc	1320
ctccagccag	gagagcagct	ggaacaaggc	atccaggatg	tgtatgtgct	gtcggagcag	1380
caggggctgc	tgctgagggc	cctgcagccc	ctggaggagg	gggaggatga	ggagaaggtc	1440
tcacaccagg	ctggggacca	ctggctcatc	cgcggacccc	tggagtatgt	gccatctgcc	1500
aaagtggagg	tggtggagga	gegeeaggee	atccctctag	acgagaacga	gggcatctat	1560
gtgcaggatg	tcaagaccgg	aaaggtgcgc	gctgtgattg	gaagcaccta	catgctgacc	1620
caggacgaag	tcctgtggga	gaaagagctg	cetecegggg	tggaggagct	gctgaacaag	1680
gggcaggacc	: ctctggcaga	caggggtgag	aaggacacag	ctaagagcct	ccagcccttg	1740
gcgcccgga	acaagacccg	tgtggtcagc	taccgcgtgc	cccacaacgc	tgcggtgcag	1800
gtgtacgact	: accgagagaa	gcgagcccgc	gtggtcttcg	ggcctgagct	ggtgtcgctg	1860
ggtcctgagg	g agcagttcac	agtgttgtco	ctctcagctg	ggcggcccaa	gegteeceat	1920
gcccgccgtg	g cgctctgcct	gctgctgggg	cctgacttct	tcacagacgt	catcaccatc	1980

PCT/US2004/007434 WO 2004/081533

gaaacggcgg	atcatgccag	gctgcaactg	cagctggcct	acaactggca	ctttgaggtg	2040
aatgaccgga	aggaccccca	agagacggcc	aagctctttt	cagtgccaga	ctttgtaggt	2100
gatgcctgca	aagccatcgc	atcccgggtg	cggggggccg	tggcctctgt	cactttcgat	2160
gacttccata	agaactcagc	ccgcatcatt	cgcactgctg	tetttggett	tgagacctcg	2220
gaagcgaagg	gccccgatgg	catggccctg	cccaggcccc	gggaccaggc	tgtcttcccc	2280
caaaacgggc	tggtggtcag	cagtgtggac	gtgcagtcag	tggagcctgt	ggatcagagg	2340
acccgggacg	ccctgcaacg	cagcgtccag	ctggccatcg	agatcaccac	caactcccag	2400
gaagcggcgg	ccaagcatga	ggctcagaga	ctggagcagg	aagcccgcgg	ccggcttgag	2460
cggcagaaga	tectggacca	gtcagaagcc	gagaaagctc	gcaaggaact	tttggagctg	2520
gaggctctga	gcatggccgt	ggagagcacc	gggactgcca	aggcggaggc	cgagtcccgt	2580
gcggaggcag	cccggattga	gggagaaggg	teegtgetge	aggccaagct	aaaagcacag	2640
gccttggcca	ttgaaacgga	ggctgagctc	cagagggtcc	agaaggtccg	agagctggaa	2700
ctggtctatg	cccgggccca	gctggagctg	gaggtgagca	aggctcagca	gctggctgag	2760
gtggaggtga	agaagttcaa	gcagatgaca	gaggccatag	gccccagcac	catcagggac	2820
cttgctgtgg	ctgggcctga	gatgcaggta	aaactgctcc	agtccctggg	cctgaaatca	2880
accctcatca	ccgatggctc	cactcccatc	aacctcttca	acacagcctt	tgggctgctg	2940
gggatggggc	ccgagggtca	gcccctgggc	agaagggtgg	ccagtgggcc	cagccctggg	3000
gaggggatat	cccccagtc	tgctcaggcc	cctcaagctc	ctggagacaa	ccacgtggtg	3060
cctgtactgc	gctacgggcg	gaagaagcgg	cgacagaggc	gacggtga		3108

<210> 126

<211> 1003

<212> PRT <213> Artificial Sequence

<220>

<223> Levivirus and Rattus norvegicus and Human immunodeficiency virus type 1

<400> 126

Met Ala Ser Asn Phe Thr Gln Phe Val Leu Val Asp Asn Gly Gly Thr 5

Gly Asp Val Thr Val Ala Pro Ser Asn Phe Ala Asn Gly Val Ala Glu 20

Trp Ile Ser Ser Asn Ser Arg Ser Gln Ala Tyr Lys Val Thr Cys Ser 35 40 45

- Val Arg Gln Ser Ser Ala Gln Asn Arg Lys Tyr Thr Ile Lys Val Glu 50 55 60
- Val Pro Lys Val Ala Thr Gln Thr Val Gly Gly Val Glu Leu Pro Val 65 70 75 80
- Ala Ala Trp Arg Ser Tyr Leu Asn Met Glu Leu Thr Ile Pro Ile Phe 85 90 95
- Ala Thr Asn Ser Asp Cys Glu Leu Ile Val Lys Ala Met Gln Gly Leu 100 105 110
- Leu Lys Asp Gly Asn Pro Ile Pro Ser Ala Ile Ala Ala Asn Ser Gly
 115 120 125
- Ile Tyr Pro Met Ala Thr Glu Glu Ala Ile Ile Arg Ile Pro Pro Tyr 130 135 140
- His Tyr Ile His Val Leu Asp Gln Asn Ser Asn Val Ser Arg Val Glu
 145 150 155 160
- Val Gly Pro Lys Thr Tyr Ile Arg Gln Asp Asn Glu Arg Val Leu Phe 165 170 175
- Ala Pro Val Arg Met Val Thr Val Pro Pro Arg His Tyr Cys Ile Val 180 185 190
- Ala Asn Pro Val Ser Arg Asp Thr Gln Ser Ser Val Leu Phe Asp Ile 195 200 205
- Thr Gly Gln Val Arg Leu Arg His Ala Asp Gln Glu Ile Arg Leu Ala 210 215 220
- Gln Asp Pro Phe Pro Leu Tyr Pro Gly Glu Val Leu Glu Lys Asp Ile 225 230 235 240
- Thr Pro Leu Gln Val Val Leu Pro Asn Thr Ala Leu His Leu Lys Ala 245 250 255
- Leu Leu Asp Phe Glu Asp Lys Asn Gly Asp Lys Val Met Ala Gly Asp 260 265 270

٢.

Glu Trp Leu Phe Glu Gly Pro Gly Thr Tyr Ile Pro Gln Lys Glu Val 275 280 285

- Glu Val Val Glu Ile Ile Gln Ala Thr Val Ile Lys Gln Asn Gln Ala 290 295 300
- Leu Arg Leu Arg Ala Arg Lys Glu Cys Phe Asp Arg Glu Gly Lys Gly 305 310 315 320
- Arg Val Thr Gly Glu Glu Trp Leu Val Arg Ser Val Gly Ala Tyr Leu 325 330 335
- Pro Ala Val Phe Glu Glu Val Leu Asp Leu Val Asp Ala Val Ile Leu 340 345 350
- Thr Glu Lys Thr Ala Leu His Leu Arg Ala Leu Gln Asn Phe Arg Asp 355 360 365
- Leu Arg Gly Val Leu His Arg Thr Gly Glu Glu Trp Leu Val Thr Val 370 375 380
- Gln Asp Thr Glu Ala His Val Pro Asp Val Tyr Glu Glu Val Leu Gly 385 390 395
- Val Val Pro Ile Thr Thr Leu Gly Pro Arg His Tyr Cys Val Ile Leu 405 410 415
- Asp Pro Met Gly Pro Asp Gly Lys Asn Gln Leu Gly Gln Lys Arg Val 420 425 430
- Val Lys Gly Glu Lys Ser Phe Phe Leu Gln Pro Gly Glu Arg Leu Glu
 435
 440
 445
- Arg Gly Ile Gln Asp Val Tyr Val Leu Ser Glu Gln Gln Gly Leu Leu 450 455 460
- Leu Lys Ala Leu Gln Pro Leu Glu Glu Glu Glu Ser Glu Glu Lys Val 465 470 475 480
- Ser His Gln Ala Gly Asp Cys Trp Leu Ile Arg Gly Pro Leu Glu Tyr 485 490 495
- Val Pro Ser Ala Lys Val Glu Val Val Glu Glu Arg Gln Ala Ile Pro

500

505

510

Leu I	Asp	Gln 515	Asn	Glu	Gly	Ile	Tyr 520	Val	Gln	Asp	Val	Lys 525	Thr	Gly	Lys
Val A	Arg 530	Ala	Val	Ile	Gly	Ser 535	Thr	Tyr	Met	Leu	Thr 540	Gln	Asp	Glu	Val
Leu 1 545	Trp	Glu	Lys	Glu	Leu 550	Pro	Ser	Gly	Val	Glu 555	Glu	Leu	Leu	Asn	Leu 560
Gly I	His	Asp	Pro	Leu 565	Ala	Asp	Arg	Gly	Gln 570	Lys	Gly	Thr	Ala	Lys 575	Pro
Leu (Gln	Pro	Ser 580	Ala	Pro	Arg	Asn	Lys 585	Thr	Arg	Val	Val	Ser 590	туг	Arg
Val 1	Pro	His 595	Asn	Ala	Ala	Val	Gln 600	Val	Tyr	Asp	Tyr	Arg 605	Ala	Lys	Arg
Ala i	Arg 610	Val	Val	Phe	Gly	Pro 615	Glu	Leu	Val	Thr	Leu 620	Asp	Pro	Glu	Glu
Gln 1 625	Phe	Thr	Val	Leu	Ser 630	Leu	Ser	Ala	Gly	Arg 635	Pro	Lys	Arg	Pro	His 640
Ala	Arg	Arg	Ala	Leu 645	Сув	Leu	Leu	Leu	Gly 650	Pro	Asp	Phe	Phe	Thr 655	Asp
Val :	Ile	Thr	Ile 660	Glu	Thr	Ala	Asp	His 665	Ala	Arg	Leu	Gln	Leu 670	Gln	Leu
Ala '	Tyr	Asn 675	Trp	His	Phe	Glu	Leu 680	Гув	Asn	Arg	Asn	Asp 685	Pro	Ala	Glu
Ala	Ala 690	Lys	Leu	Phe	Ser	Val 695	Pro	Asp	Phe	Val	Gly 700	Asp	Ala	Сув	Lys
Ala 705	Ile	Ala	Ser	Arg	Val 710	Arg	Gly	Ala	Val	Ala 715	Ser	Val	Thr	Phe	Asp 720
Asp	Phe	His	Lys	Asn 725	Ser	Ala	Arg	Ile	Ile 730	Arg	Met	Ala	Val	Phe 735	Gly

Phe Glu Met Ser Glu Asp Thr Gly Pro Asp Gly Thr Leu Leu Pro Lys
740 745 750

- Ala Arg Asp Gln Ala Val Phe Pro Gln Asn Gly Leu Val Val Ser Ser 755 760 765
- Val Asp Val Gln Ser Val Glu Pro Val Asp Gln Arg Thr Arg Asp Ala 770 775 780
- Leu Gln Arg Ser Val Gln Leu Ala Ile Glu Ile Thr Thr Asn Ser Gln 785 790 795 800
- Glu Ala Ala Ala Lys His Glu Ala Gln Arg Leu Glu Gln Glu Ala Arg 805 810 815
- Gly Arg Leu Glu Arg Gln Lys Ile Leu Asp Gln Ser Glu Ala Glu Lys 820 825 830
- Ala Arg Lys Glu Leu Leu Glu Leu Glu Ala Met Ser Met Ala Val Glu 835 840 845
- Ser Thr Gly Asn Ala Lys Ala Glu Ala Glu Ser Arg Ala Glu Ala Ala 850 855 860
- Arg Ile Glu Gly Glu Gly Ser Val Leu Gln Ala Lys Leu Lys Ala Gln 865 870 875 880
- Ala Leu Ala Ile Glu Thr Glu Ala Glu Leu Glu Arg Val Lys Lys Val 885 890 895
- Arg Glu Met Glu Leu Ile Tyr Ala Arg Ala Gln Leu Glu Leu Glu Val 900 905 910
- Ser Lys Ala Gln Gln Leu Ala Asn Val Glu Ala Lys Lys Phe Lys Glu 915 920 925
- Met Thr Glu Ala Leu Gly Pro Gly Thr Ile Arg Asp Leu Ala Val Ala 930 935 940
- Gly Pro Glu Met Gln Val Lys Leu Leu Gln Ser Leu Gly Leu Lys Ser 945 950 955 960
- Thr Leu Ile Thr Asp Gly Ser Ser Pro Ile Asn Leu Phe Ser Thr Ala 965 970 975

Phe Gly Leu Gly Leu Gly Ser Asp Gly Gln Pro Pro Ala Gln Lys 980 985 990

Tyr Gly Arg Lys Lys Arg Arg Gln Arg Arg Arg 995 1000

<210> 127

<211> 3012

<212> DNA

<213> Artificial Sequence

<220>

<223> Levivirus and Rattus norvegicus and Human immunodeficiency virus type 1

<400> 127 60 atggetteta aetttaetea gttegttete gtegacaatg geggaaetgg egaegtgaet 120 gtcgccccaa gcaacttcgc taacggggtc gctgaatgga tcagctctaa ctcgcgttca 180 caggettaca aagtaacetg tagegttegt cagagetetg egeagaateg caaatacace atcaaagtcq aggtgcctaa agtggcaacc cagactgttg gtggtgtaga gcttcctgta 240 300 qccqcatggc gttcgtactt aaatatggaa ctaaccattc caattttcgc tacgaattcc qactgcgagc ttattgttaa ggcaatgcaa ggtctcctaa aagatggaaa cccgattccc 360 420 tcaqcaatcq cagcaaactc cggcatctac cccatggcaa ctgaagaggc catcatccgc atcccccat accactacat ccatgtgctg gaccagaaca gtaatgtgtc ccgtgtggag 480 gttggaccaa agacctacat ccggcaggac aatgagaggg tactgtttgc cccagttcgc 540 atggtgaccg tececeacg ceactactge atagtggeea accetgtgte eegggacace 600 cagagttctg tgttatttga catcacagga caagtccgac tccggcacgc tgaccaggag 660 atccgactag cccaggaccc cttccccctg tatccagggg aggtgctgga aaaggacatc 720 780 accecactge aggtggttet geceaacaca geactgeate ttaaggegtt getggaettt 840 qaqqataaqa atggagacaa ggtcatggca ggagacgagt ggctatttga gggacctggc 900 acctacatco cacagaagga agtggaagto gtggagatca ttcaggccac agtcatcaaa cagaaccaag cactgcggct aagggcccga aaggagtgct ttgaccggga gggcaagggg 960 1020 cqcgtgacag gtgaggagtg gctggtccga tccgtggggg cttacctccc agctgtcttt 1080 gaagaggtgc tggatctggt ggatgctgtg atccttacag aaaagactgc cctgcacctc cgggctctgc agaacttcag ggaccttcgg ggagtgctcc accgcaccgg ggaggaatgg 1140 ttaqtgacag tgcaggacac agaagcccat gttccagatg tctatgagga ggtgcttggg 1200

gtagtaccca	tcaccaccct	gggacctcga	cactactgtg	tcattcttga	cccaatggga	1260
ccagacggca	agaaccagct	gggacaaaag	cgtgttgtca	agggagagaa	gtcctttttc	1320
ctccagccag	gagagaggct	ggagcgaggc	atccaggatg	tgtatgtgct	gtcagagcag	1380
caggggctgc	tactgaaggc	actgcagccc	ctggaggagg	gagagagcga	ggagaaggtc	1440
tcccatcagg	ccggagactg	ctggctcatc	cgtgggcccc	tggagtatgt	gccatctgca	1500
aaagtggagg	tggtggagga	gcgtcaggct	atccctctgg	accaaaatga	gggcatctat	1560
gtgcaggatg	tcaagacggg	gaaggtgcgg	gctgtgattg	gaagcaccta	catgctgact	1620
caggatgaag	tcctgtggga	aaaggagctg	ccttctgggg	tggaggagct	gctgaacttg	1680
gggcatgacc	ctctggcaga	caggggtcag	aagggcacag	ccaagcccct	tcagccctca	1740
gctccaagga	acaagacccg	agtggtcagc	taccgtgtcc	cgcacaatgc	agcggtgcag	1800
gtctatgact	acagagccaa	gagagcccgt	gtggtctttg	ggcccgagct	agtgacactg	1860
gatcctgagg	agcagttcac	agtattgtcc	ctttctgccg	ggcgacccaa	gcgtcctcat	1920
gcccgccgtg	cactctgcct	actgctggga	cctgatťtct	ttactgatgt	catcaccatc	1980
gaaactgcag	atcatgccag	gttgcagctg	cagcttgcct	acaactggca	ctttgaactg	2040
aagaaccgga	atgaccctgc	agaggcagcc	aagcttttct	ccgtgcctga	cttcgtgggt	2100
gacgcctgca	aggccattgc	atcccgagtc	cggggggctg	tagcctctgt	cacctttgat	2160
gacttccata	aaaactcagc	ccggatcatt	cgaatggctg	tttttggctt	tgagatgtct	2220
gaagacacag	gtcctgatgg	cacactcctg	cccaaggctc	gagaccaggc	agtctttccc	2280
caaaacgggc	tggtagtcag	cagtgtggat	gtgcagtcag	tggagcccgt	ggaccagagg	2340
acccgggatg	cccttcagcg	cagcgttcag	ctggccatcg	aaattaccac	caactcccag	2400
gaggcagcag	ccaagcacga	ggctcagaga	ctggaacagg	aagcccgtgg	teggettgag	2460
aggcagaaga	tcttggacca	gtcagaagct	gaaaaagccc	gcaaggaact	cttggagctt	2520
gaggctatga	gcatggctgt	ggagagcacg	ggtaatgcca	aagcagaggc	tgagtcccgt	2580
gcagaggcag	cgaggatcga	aggagaaggc	tetgtgetge	aggccaagct	caaggcacag	2640
gcgctagcca	ttgagacgga	ggctgagttg	gagcgagtaa	agaaagtacg	agagatggaa	2700
ctgatctatg	cccgggccca	gttggagctg	gaggtgagca	aggcgcagca	gcttgccaat	2760
gtggaggcaa	agaagttcaa	ggagatgaca	gaggcactgg	gccccggcac	catcagggac	2820
ctggctgtgg	ccgggccaga	gatgcaggtg	aaacttctcc	agtccctggg	cctgaaatcc	2880
actctcatca	ccgatggctc	gtctcccatc	aacctcttca	gcacagcctt	cgggttgctg	2940

gggctggggt	ctgatggtca	gccgccagca	cagaagtacg	ggcggaagaa	gcggcgacag	3000
aggcgacggt	ga					3012

- <210> 128
- <211> 926
- <212> PRT
- <213> Artificial Sequence
- <220>
- <223> synthesized and Homo sapiens and Drosophila melanogaster
- <400> 128
- Pro Met Ala Thr Glu Glu Phe Ile Ile Arg Ile Pro Pro Tyr His Tyr 20 25 30
- Ile His Val Leu Asp Gln Asn Ser Asn Val Ser Arg Val Glu Val Gly 35 40 45
- Pro Lys Thr Tyr Ile Arg Gln Asp Asn Glu Arg Val Leu Phe Ala Pro 50 55 60
- Met Arg Met Val Thr Val Pro Pro Arg His Tyr Cys Thr Val Ala Asn 65 70 75 80
- Pro Val Ser Arg Asp Ala Gln Gly Leu Val Leu Phe Asp Val Thr Gly 85 90 95
- Gln Val Arg Leu Arg His Ala Asp Leu Glu Ile Arg Leu Ala Gln Asp 100 105 110
- Pro Phe Pro Leu Tyr Pro Gly Glu Val Leu Glu Lys Asp Ile Thr Pro 115 120 125
- Leu Gln Val Val Leu Pro Asn Thr Ala Leu His Leu Lys Ala Leu Leu 130 135 140
- Asp Phe Glu Asp Lys Asp Gly Asp Lys Val Val Ala Gly Asp Glu Trp 145 150 155 160
- Leu Phe Glu Gly Pro Gly Thr Tyr Ile Pro Arg Lys Glu Val Glu Val

Val Glu Ile Ile Gln Ala Thr Ile Ile Arg Gln Asn Gln Ala Leu Arg 180 185 190

- Leu Arg Ala Arg Lys Glu Cys Trp Asp Arg Asp Gly Lys Glu Arg Val 195 200 205
- Thr Gly Glu Glu Trp Leu Val Thr Thr Val Gly Ala Tyr Leu Pro Ala 210 215 220
- Val Phe Glu Glu Val Leu Asp Leu Val Asp Ala Val Ile Leu Thr Glu 225 230 235 240
- Lys Thr Ala Leu His Leu Arg Ala Arg Arg Asn Phe Arg Asp Phe Arg 245 250 255
- Gly Val Ser Arg Arg Thr Gly Glu Glu Trp Leu Val Thr Val Gln Asp 260 265 270
- Thr Glu Ala His Val Pro Asp Val His Glu Glu Val Leu Gly Val Val 275 280 285
- Pro Ile Thr Thr Leu Gly Pro His Asn Tyr Cys Val Ile Leu Asp Pro 290 295 300
- Val Gly Pro Asp Gly Lys Asn Gln Leu Gly Gln Lys Arg Val Val Lys 305 310 315 320
- Gly Glu Lys Ser Phe Phe Leu Gln Pro Gly Glu Gln Leu Glu Gln Gly 325 330 335
- Ile Gln Asp Val Tyr Val Leu Ser Glu Gln Gln Gly Leu Leu Arg 340 345 350
- Ala Leu Gln Pro Leu Glu Glu Glu Glu Asp Glu Glu Lys Val Ser His 355 360 365
- Gln Ala Gly Asp His Trp Leu Ile Arg Gly Pro Leu Glu Tyr Val Pro 370 375 380
- Ser Ala Lys Val Glu Val Val Glu Glu Arg Gln Ala Ile Pro Leu Asp 385 390 395 400
- Glu Asn Glu Gly Ile Tyr Val Gln Asp Val Lys Thr Gly Lys Val Arg 405 410 415

Ala Val Ile Gly Ser Thr Tyr Met Leu Thr Gln Asp Glu Val Leu Trp 420 425 430

- Glu Lys Glu Leu Pro Pro Gly Val Glu Glu Leu Leu Asn Lys Gly Gln 435 440 445
- Asp Pro Leu Ala Asp Arg Gly Glu Lys Asp Thr Ala Lys Ser Leu Gln 450 455 460
- Pro Leu Ala Pro Arg Asn Lys Thr Arg Val Val Ser Tyr Arg Val Pro 465 470 475 480
- His Asn Ala Ala Val Gln Val Tyr Asp Tyr Arg Glu Lys Arg Ala Arg 485 490 495
- Val Val Phe Gly Pro Glu Leu Val Ser Leu Gly Pro Glu Glu Gln Phe 500 505 510
- Thr Val Leu Ser Leu Ser Ala Gly Arg Pro Lys Arg Pro His Ala Arg 515 520 525
- Arg Ala Leu Cys Leu Leu Gly Pro Asp Phe Phe Thr Asp Val Ile 530 535 540
- Thr Ile Glu Thr Ala Asp His Ala Arg Leu Gln Leu Gln Leu Ala Tyr 545 550 555 560
- Asn Trp His Phe Glu Val Asn Asp Arg Lys Asp Pro Gln Glu Thr Ala 565 570 575
- Lys Leu Phe Ser Val Pro Asp Phe Val Gly Asp Ala Cys Lys Ala Ile 580 585 590
- Ala Ser Arg Val Arg Gly Ala Val Ala Ser Val Thr Phe Asp Asp Phe 595 600 605
- His Lys Asn Ser Ala Arg Ile Ile Arg Thr Ala Val Phe Gly Phe Glu 610 620
- Thr Ser Glu Ala Lys Gly Pro Asp Gly Met Ala Leu Pro Arg Pro Arg 625 630 635 640
- Asp Gln Ala Val Phe Pro Gln Asn Gly Leu Val Val Ser Ser Val Asp

645 650 655

Val Gln Ser Val Glu Pro Val Asp Gln Arg Thr Arg Asp Ala Leu Gln 660 665 670

Arg Ser Val Gln Leu Ala Ile Glu Ile Thr Thr Asn Ser Gln Glu Ala 675 680 685

Ala Ala Lys His Glu Ala Gln Arg Leu Glu Glu Glu Ala Arg Gly Arg 690 695 700

Leu Glu Arg Gln Lys Ile Leu Asp Gln Ser Glu Ala Glu Lys Ala Arg 705 710 715 720

Lys Glu Leu Leu Glu Leu Glu Ala Leu Ser Met Ala Val Glu Ser Thr 725 730 735

Gly Thr Ala Lys Ala Glu Ala Glu Ser Arg Ala Glu Ala Ala Arg Ile 740 745 750

Glu Gly Glu Gly Ser Val Leu Gln Ala Lys Leu Lys Ala Gln Ala Leu 755 760 765

Ala Ile Glu Thr Glu Ala Glu Leu Gln Arg Val Gln Lys Val Arg Glu 770 775 780

Leu Glu Leu Val Tyr Ala Arg Ala Gln Leu Glu Leu Glu Val Ser Lys 785 790 795 800

Ala Gln Gln Leu Ala Glu Val Glu Val Lys Lys Phe Lys Gln Met Thr 805 810

Glu Ala Ile Gly Pro Ser Thr Ile Arg Asp Leu Ala Val Ala Gly Pro 820 825 830

Glu Met Gln Val Lys Leu Leu Gln Ser Leu Gly Leu Lys Ser Thr Leu 835 840 845

Ile Thr Asp Gly Ser Thr Pro Ile Asn Leu Phe Asn Thr Ala Phe Gly 850 860

Leu Leu Gly Met Gly Pro Glu Gly Gln Pro Leu Gly Arg Arg Val Ala 865 870 875 880

Ser Gly Pro Ser Pro Gly Glu Gly Ile Ser Pro Gln Ser Ala Gln Ala 885 890 895

Pro Gln Ala Pro Gly Asp Asn His Val Val Pro Val Leu Arg Arg Gln 900 905 910

Ile Lys Ile Trp Phe Gln Asn Ala Arg Met Lys Trp Lys Lys 915 920 925

<210> 129

<211> 2781

<212> DNA

<213> Artificial Sequence

<220>

<223> synthesized and Homo sapiens and Drosophila melanogaster

<400> 129

60 gaagagttca tcatccgcat cccccatac cactatatcc atgtgctgga ccagaacagc 120 aacgtgtccc gtgtggaggt cgggccaaag acctacatcc ggcaggacaa tgagagggta 180 etgtttgccc ccatgcgcat ggtgaccgtc cccccacgtc actactgcac agtggccaac 240 cctgtgtctc gggatgccca gggcttggtg ctgtttgatg tcacagggca aqttcgqctt 300 egecaegetg acctegagat ceggetggee caggacecet tececetgta eecaggggag 360 gtgetggaaa aggacatcac accectgeag gtggttetge ceaacactge cetecateta 420 aaggcgctgc ttgattttga ggataaagat ggagacaagg tggtggcagg agatgagtgg 480 cttttcgagg gacctggcac gtacatcccc cggaaggaag tggaggtcgt ggagatcatt 540 caggccacca tcatcaggca gaaccaggct ctgcggctca gggcccgcaa ggagtgctgg 600 gaccgggacg gcaaggagag ggtgacaggg gaagaatggc tggtcaccac agtaggggcg 660 tacctcccag cggtgtttga ggaggttctg gatttggtgg acgccgtcat ccttacggaa 720 aagacagccc tgcacctccg ggctcggcgg aacttccggg acttcagggg agtgtcccgc 780 cgcactgggg aggagtggct ggtaacagtg caggacacag aggcccacgt gccagatgtc 840 cacgaggagg tgctgggggt tgtgcccatc accaccctgg gcccccacaa ctactgcgtg 900 attetegace etgteggace ggatggeaag aateagetgg ggeagaageg egtggteaag 960 ggagagaagt ctttttcct ccagccagga gagcagctgg aacaaggcat ccaggatgtg 1020 tatgtgctgt cggagcagca ggggctgctg ctgagggccc tgcagcccct ggaggagggg 1080 gaggatgagg agaaggtete acaccagget ggggaccact ggeteateeg eggacceetg 1140

gagtatgtgc	catctgccaa	agtggaggtg	gtggaggagc	gccaggccat	ccctctagac	1200
gagaacgagg	gcatctatgt	gcaggatgtc	aagaccggaa	aggtgcgcgc	tgtgattgga	1260
agcacctaca	tgctgaccca	ggacgaagtc	ctgtgggaga	aagagctgcc	tcccggggtg	1320
gaggagctgc	tgaacaaggg	gcaggaccct	ctggcagaca	ggggtgagaa	ggacacagct	1380
aagagcctcc	agcccttggc	gccccggaac	aagacccgtg	tggtcagcta	ccgcgtgccc	1440
cacaacgctg	cggtgcaggt	gtacgactac	cgagagaagc	gagcccgcgt	ggtcttcggg	1500
cctgagctgg	tgtcgctggg	tcctgaggag	cagttcacag	tgttgtccct	ctcagctggg	1560
cggcccaagc	gtccccatgc	ccgccgtgcg	ctctgcctgc	tgctggggcc	tgacttcttc	1620
acagacgtca	tcaccatcga	aacggcggat	catgccaggc	tgcaactgca	gctggcctac	1680
aactggcact	ttgaggtgaa	tgaccggaag	gacccccaag	agacggccaa	gctcttttca	1740
gtgccagact	ttgtaggtga	tgcctgcaaa	gccatcgcat	cccgggtgcg	gggggccgtg	1800
gcctctgtca	ctttcgatga	cttccataag	aactcagccc	gcatcattcg	cactgctgtc	1860
tttggctttg	agacetegga	agcgaagggc	cccgatggca	tggccctgcc	caggccccgg	1920
gaccaggctg	tcttccccca	aaacgggctg	gtggtcagca	gtgtggacgt	gcagtcagtg	1980
gagcctgtgg	atcagaggac	ccgggacgcc	ctgcaacgca	gegtecaget	ggccatcgag	2040
atcaccacca	actcccagga	agcggcggcc	aagcatgagg	ctcagagact	ggagcaggaa	2100
gcccgcggcc	ggcttgagcg	gcagaagatc	ctggaccagt	cagaagccga	gaaagctcgc	2160
aaggaacttt	tggagetgga	ggctctgagc	atggccgtgg	agagcaccgg	gactgccaag	2220
gcggaggccg	agtcccgtgc	ggaggcagcc	cggattgagg	gagaagggtc	cgtgctgcag	2280
gccaagctaa	aagcacaggc	cttggccatt	gaaacggagg	ctgagctcca	gagggtccag	2340
aaggtccgag	agctggaact	ggtctatgcc	cgggcccagc	tggagctgga	ggtgagcaag	2400
gctcagcagc	tggctgaggt	ggaggtgaag	aagttcaagc	agatgacaga	ggccataggc	2460
cccagcacca	tcagggacct	tgctgtggct	gggcctgaga	tgcaggtaaa	actgctccag	2520
tecetgggee	tgaaatcaac	cctcatcacc	gatggctcca	ctcccatcaa	cctcttcaac	2580
acagcctttg	ggctgctggg	gatggggccc	gagggtcagc	ccctgggcag	aagggtggcc	2640
agtgggccca	gccctgggga	ggggatatcc	ccccagtctg	ctcaggcccc	tcaagctcct	2700
ggagacaacc	acgtggtgcc	tgtactgcgc	cgacagatca	agatctggtt	tcagaacgca	2760
cggatgaagt	ggaagaagtg	a				2781

<211> 894

<212> PRT

<213> Artificial Sequence

<220>

<223> synthesized and Rattus norvegicus and Drosophila melanogaster

<400> 130

Pro Met Ala Thr Glu Glu Ala Ile Ile Arg Ile Pro Pro Tyr His Tyr 20 25 30

Ile His Val Leu Asp Gln Asn Ser Asn Val Ser Arg Val Glu Val Gly
35 40 45

Pro Lys Thr Tyr Ile Arg Gln Asp Asn Glu Arg Val Leu Phe Ala Pro 50 55 60

Val Arg Met Val Thr Val Pro Pro Arg His Tyr Cys Ile Val Ala Asn 65 70 75 80

Pro Val Ser Arg Asp Thr Gln Ser Ser Val Leu Phe Asp Ile Thr Gly
85 90 95

Gln Val Arg Leu Arg His Ala Asp Gln Glu Ile Arg Leu Ala Gln Asp 100 105 110

Pro Phe Pro Leu Tyr Pro Gly Glu Val Leu Glu Lys Asp Ile Thr Pro 115 120 125

Leu Gln Val Val Leu Pro Asn Thr Ala Leu His Leu Lys Ala Leu Leu 130 135 140

Asp Phe Glu Asp Lys Asn Gly Asp Lys Val Met Ala Gly Asp Glu Trp 145 150 155 160

Leu Phe Glu Gly Pro Gly Thr Tyr Ile Pro Gln Lys Glu Val Glu Val
165 170 175

Val Glu Ile Ile Gln Ala Thr Val Ile Lys Gln Asn Gln Ala Leu Arg 180 185 190

Leu Arg Ala Arg Lys Glu Cys Phe Asp Arg Glu Gly Lys Gly Arg Val

195 20	205
--------	-----

Thr Gly Glu Glu Trp Leu Val Arg Ser Val Gly Ala Tyr Leu Pro Ala 210 215 220

Val Phe Glu Glu Val Leu Asp Leu Val Asp Ala Val Ile Leu Thr Glu 225 230 235 240

Lys Thr Ala Leu His Leu Arg Ala Leu Gln Asn Phe Arg Asp Leu Arg 245 250 255

Gly Val Leu His Arg Thr Gly Glu Glu Trp Leu Val Thr Val Gln Asp 260 265 270

Thr Glu Ala His Val Pro Asp Val Tyr Glu Glu Val Leu Gly Val Val 275 280 285

Pro Ile Thr Thr Leu Gly Pro Arg His Tyr Cys Val Ile Leu Asp Pro 290 295 300

Met Gly Pro Asp Gly Lys Asn Gln Leu Gly Gln Lys Arg Val Val Lys 305 310 315 320

Gly Glu Lys Ser Phe Phe Leu Gln Pro Gly Glu Arg Leu Glu Arg Gly 325 330 335

Ile Gln Asp Val Tyr Val Leu Ser Glu Gln Gln Gly Leu Leu Lys 340 345 350

Ala Leu Gln Pro Leu Glu Glu Glu Glu Ser Glu Glu Lys Val Ser His 355 360 365

Gln Ala Gly Asp Cys Trp Leu Ile Arg Gly Pro Leu Glu Tyr Val Pro 370 375 380

Ser Ala Lys Val Glu Val Val Glu Glu Arg Gln Ala Ile Pro Leu Asp 385 390 395 400

Gln Asn Glu Gly Ile Tyr Val Gln Asp Val Lys Thr Gly Lys Val Arg 405 410 415

Ala Val Ile Gly Ser Thr Tyr Met Leu Thr Gln Asp Glu Val Leu Trp 420 425 430

Glu Lys Glu Leu Pro Ser Gly Val Glu Glu Leu Leu Asn Leu Gly His
435
440
445

- Asp Pro Leu Ala Asp Arg Gly Gln Lys Gly Thr Ala Lys Pro Leu Gln 450 455 460
- Pro Ser Ala Pro Arg Asn Lys Thr Arg Val Val Ser Tyr Arg Val Pro 465 470 480
- His Asn Ala Ala Val Gln Val Tyr Asp Tyr Arg Ala Lys Arg Ala Arg 485 490 495
- Val Val Phe Gly Pro Glu Leu Val Thr Leu Asp Pro Glu Glu Gln Phe 500 505 510
- Thr Val Leu Ser Leu Ser Ala Gly Arg Pro Lys Arg Pro His Ala Arg 515 520 525
- Arg Ala Leu Cys Leu Leu Gly Pro Asp Phe Phe Thr Asp Val Ile 530 535
- Thr Ile Glu Thr Ala Asp His Ala Arg Leu Gln Leu Gln Leu Ala Tyr 545 550 555 560
- Asn Trp His Phe Glu Leu Lys Asn Arg Asn Asp Pro Ala Glu Ala Ala 565 570 575
- Lys Leu Phe Ser Val Pro Asp Phe Val Gly Asp Ala Cys Lys Ala Ile 580 585 590
- Ala Ser Arg Val Arg Gly Ala Val Ala Ser Val Thr Phe Asp Asp Phe 595 600 605
- His Lys Asn Ser Ala Arg Ile Ile Arg Met Ala Val Phe Gly Phe Glu 610 615 620
- Met Ser Glu Asp Thr Gly Pro Asp Gly Thr Leu Leu Pro Lys Ala Arg 625 630 635 640
- Asp Gln Ala Val Phe Pro Gln Asn Gly Leu Val Val Ser Ser Val Asp 645 650 655
- Val Gln Ser Val Glu Pro Val Asp Gln Arg Thr Arg Asp Ala Leu Gln 660 665 670

Arg Ser Val Gln Leu Ala Ile Glu Ile Thr Thr Asn Ser Gln Glu Ala 675 680 685

Ala Ala Lys His Glu Ala Gln Arg Leu Glu Gln Glu Ala Arg Gly Arg 690 695 700

Leu Glu Arg Gln Lys Ile Leu Asp Gln Ser Glu Ala Glu Lys Ala Arg
705 710 715 720

Lys Glu Leu Leu Glu Leu Glu Ala Met Ser Met Ala Val Glu Ser Thr 725 730 735

Gly Asn Ala Lys Ala Glu Ala Glu Ser Arg Ala Glu Ala Arg Ile 740 745 750

Glu Gly Glu Gly Ser Val Leu Gln Ala Lys Leu Lys Ala Gln Ala Leu 755 760 765

Ala Ile Glu Thr Glu Ala Glu Leu Glu Arg Val Lys Lys Val Arg Glu
770 775 780

Met Glu Leu Ile Tyr Ala Arg Ala Gln Leu Glu Leu Glu Val Ser Lys 785 790 795 800

Ala Gln Gln Leu Ala Asn Val Glu Ala Lys Lys Phe Lys Glu Met Thr 805 810 815

Glu Ala Leu Gly Pro Gly Thr Ile Arg Asp Leu Ala Val Ala Gly Pro 820 825 830

Glu Met Gln Val Lys Leu Leu Gln Ser Leu Gly Leu Lys Ser Thr Leu 835 840 845

Ile Thr Asp Gly Ser Ser Pro Ile Asn Leu Phe Ser Thr Ala Phe Gly 850 855 860

Leu Leu Gly Leu Gly Ser Asp Gly Gln Pro Pro Ala Gln Lys Arg Gln 865 870 875 880

Ile Lys Ile Trp Phe Gln Asn Ala Arg Met Lys Trp Lys Lys 885 890

<210> 131

<211> 2685

<212> DNA

<213> Artificial Sequence

<220>

<223> synthesized and Rattus norvegicus and Drosophila melanogaster

<400> 131 60 gaagaggcca tcatccgcat ccccccatac cactacatcc atgtgctgga ccagaacagt 120 aatgtgtccc gtgtggaggt tggaccaaag acctacatcc ggcaggacaa tgagagggta 180 ctgtttgccc cagttcgcat ggtgaccgtc ccccacgcc actactgcat agtggccaac 240 cctgtgtccc gggacaccca gagttctgtg ttatttgaca tcacaggaca agtccgactc 300 cggcacgctg accaggagat ccgactagcc caggacccct tccccctgta tccaggggag 360 gtgctggaaa aggacatcac cccactgcag gtggttctgc ccaacacagc actgcatctt 420 aaggegttge tggactttga ggataagaat ggagacaagg teatggeagg agacgagtgg 480 ctatttgagg gacctggcac ctacatccca cagaaggaag tggaagtcgt ggagatcatt 540 caggocacag toatcaaaca gaaccaagca ctgcggctaa gggcccgaaa ggagtgcttt 600 gaccgggagg gcaaggggcg cgtgacaggt gaggagtggc tggtccgatc cgtgggggct 660 tacctcccag ctgtctttga agaggtgctg gatctggtgg atgctgtgat ccttacagaa 720 780 aagactgccc tgcacctccg ggctctgcag aacttcaggg accttcgggg agtgctccac cgcaccgggg aggaatggtt agtgacagtg caggacacag aagcccatgt tccagatgtc 840 tatgaggagg tgcttggggt agtacccatc accaccctgg gacctcgaca ctactgtgtc 900 attcttgacc caatgggacc agacggcaag aaccagctgg gacaaaagcg tgttgtcaag 960 ggagagaagt cctttttcct ccagccagga gagaggctgg agcgaggcat ccaggatgtg 1020 tatgtgctgt cagagcagca ggggctgcta ctgaaggcac tgcagcccct ggaggaggga 1080 gagagcgagg agaaggtete ceatcaggee ggagactget ggeteateeg tgggeecetg 1140 gagtatgtgc catctgcaaa agtggaggtg gtggaggagc gtcaggctat ccctctggac 1200 caaaatgagg gcatctatgt gcaggatgtc aagacgggga aggtgcgggc tgtgattgga 1260 agcacctaca tgctgactca ggatgaagtc ctgtgggaaa aggagctgcc ttctggggtg 1320 1380 gaggagetge tgaacttggg geatgaeeet etggeagaea ggggteagaa gggeaeagee aagccccttc agccctcagc tccaaggaac aagacccgag tggtcagcta ccgtgtcccg 1440 cacaatgcag cggtgcaggt ctatgactac agagccaaga gagcccgtgt ggtctttggg 1500

cccgagctag tgacactgga tcctgaggag cagttcacag tattgtccct ttctgccggg 1560 egacecaage gteeteatge eegeegtgea etetgeetae tgetgggace tgatttettt 1620 actgatgtca tcaccatcga aactgcagat catgccaggt tgcagctgca gcttgcctac 1680 aactggcact ttgaactgaa gaaccggaat gacctgcag aggcagccaa gcttttctcc 1740 gtgcctgact tcgtgggtga cgcctgcaag gccattgcat cccgagtccg gggggctgta 1800 gcctctgtca cctttgatga cttccataaa aactcagccc ggatcattcg aatggctgtt 1860 tttggctttg agatgtctga agacacaggt cctgatggca cactcctgcc caaggctcga 1920 gaccaggcag tetttececa aaacgggctg gtagtcagca gtgtggatgt gcagtcagtg 1980 gagcccgtgg accagaggac ccgggatgcc cttcagcgca gcgttcagct ggccatcgaa 2040 attaccacca actcccagga ggcagcagcc aagcacgagg ctcagagact ggaacaggaa 2100 gcccgtggtc ggcttgagag gcagaagatc ttggaccagt cagaagctga aaaagcccgc 2160 aaggaactct tggagcttga ggctatgagc atggctgtgg agagcacggg taatgccaaa 2220 gcagaggctg agtcccgtgc agaggcagcg aggatcgaag gagaaggctc tgtgctgcag 2280 gccaagctca aggcacaggc gctagccatt gagacggagg ctgagttgga gcgagtaaag 2340 aaagtacgag agatggaact gatctatgcc cgggcccagt tggagctgga ggtgagcaag 2400 gcgcagcagc ttgccaatgt ggaggcaaag aagttcaagg agatgacaga ggcactgggc 2460 cccggcacca tcagggacct ggctgtggcc gggccagaga tgcaggtgaa acttctccag 2520 tccctgggcc tgaaatccac tctcatcacc gatggctcgt ctcccatcaa cctcttcagc 2580 acageetteg ggttgetggg getggggtet gatggteage egeeageaca gaagegaeag 2640 atcaagatct ggtttcagaa cgcacggatg aagtggaaga agtga 2685

```
<210> 132
```

<220>

<223> synthesized and Homo sapiens

<400> 132

Pro Met Ala Thr Glu Glu Phe Ile Ile Arg Ile Pro Pro Tyr His Tyr 20 25 30

<211> 1159

<212> PRT

<213> Artificial Sequence

Ile His Val Leu Asp Gln Asn Ser Asn Val Ser Arg Val Glu Val Gly 35 40 45

- Pro Lys Thr Tyr Ile Arg Gln Asp Asn Glu Arg Val Leu Phe Ala Pro 50 55 60
- Met Arg Met Val Thr Val Pro Pro Arg His Tyr Cys Thr Val Ala Asn 65 70 75 80
- Pro Val Ser Arg Asp Ala Gln Gly Leu Val Leu Phe Asp Val Thr Gly 85 90 95
- Gln Val Arg Leu Arg His Ala Asp Leu Glu Ile Arg Leu Ala Gln Asp 100 105 110
- Pro Phe Pro Leu Tyr Pro Gly Glu Val Leu Glu Lys Asp Ile Thr Pro 115 120 125
- Leu Gln Val Val Leu Pro Asn Thr Ala Leu His Leu Lys Ala Leu Leu 130 135 140
- Asp Phe Glu Asp Lys Asp Gly Asp Lys Val Val Ala Gly Asp Glu Trp 145 150 155 160
- Leu Phe Glu Gly Pro Gly Thr Tyr Ile Pro Arg Lys Glu Val Glu Val
 165 170 175
- Val Glu Ile Ile Gln Ala Thr Ile Ile Arg Gln Asn Gln Ala Leu Arg 180 185 190
- Leu Arg Ala Arg Lys Glu Cys Trp Asp Arg Asp Gly Lys Glu Arg Val 195 200 205
- Thr Gly Glu Glu Trp Leu Val Thr Thr Val Gly Ala Tyr Leu Pro Ala 210 215 220
- Val Phe Glu Glu Val Leu Asp Leu Val Asp Ala Val Ile Leu Thr Glu 225 230 235 240
- Lys Thr Ala Leu His Leu Arg Ala Arg Arg Asn Phe Arg Asp Phe Arg 245 250 255
- Gly Val Ser Arg Arg Thr Gly Glu Glu Trp Leu Val Thr Val Gln Asp 260 265 270

Thr Glu Ala His Val Pro Asp Val His Glu Glu Val Leu Gly Val Val 275 280 285

- Pro Ile Thr Thr Leu Gly Pro His Asn Tyr Cys Val Ile Leu Asp Pro 290 295 300
- Val Gly Pro Asp Gly Lys Asn Gln Leu Gly Gln Lys Arg Val Val Lys 305 310 315 320
- Gly Glu Lys Ser Phe Phe Leu Gln Pro Gly Glu Gln Leu Glu Gln Gly 325 330 335
- Ile Gln Asp Val Tyr Val Leu Ser Glu Gln Gln Gly Leu Leu Leu Arg 340 345 350
- Ala Leu Gln Pro Leu Glu Glu Gly Glu Asp Glu Glu Lys Val Ser His 355 360 365
- Gln Ala Gly Asp His Trp Leu Ile Arg Gly Pro Leu Glu Tyr Val Pro 370 375 380
- Ser Ala Lys Val Glu Val Val Glu Glu Arg Gln Ala Ile Pro Leu Asp 385 390 395 400
- Glu Asn Glu Gly Ile Tyr Val Gln Asp Val Lys Thr Gly Lys Val Arg 405 410 415
- Ala Val Ile Gly Ser Thr Tyr Met Leu Thr Gln Asp Glu Val Leu Trp 420 425 430
- Glu Lys Glu Leu Pro Pro Gly Val Glu Glu Leu Leu Asn Lys Gly Gln 435 440 445
- Asp Pro Leu Ala Asp Arg Gly Glu Lys Asp Thr Ala Lys Ser Leu Gln 450 455 460
- Pro Leu Ala Pro Arg Asn Lys Thr Arg Val Val Ser Tyr Arg Val Pro 465 470 475 480
- His Asn Ala Ala Val Gln Val Tyr Asp Tyr Arg Glu Lys Arg Ala Arg 485 490 495
- Val Val Phe Gly Pro Glu Leu Val Ser Leu Gly Pro Glu Glu Gln Phe

500 505 510

Thr Val Leu Ser Leu Ser Ala Gly Arg Pro Lys Arg Pro His Ala Arg 515 520 525

Arg Ala Leu Cys Leu Leu Gly Pro Asp Phe Phe Thr Asp Val Ile 530 535 540

Thr Ile Glu Thr Ala Asp His Ala Arg Leu Gln Leu Gln Leu Ala Tyr 545 550 555 560

Asn Trp His Phe Glu Val Asn Asp Arg Lys Asp Pro Gln Glu Thr Ala 565 570 575

Lys Leu Phe Ser Val Pro Asp Phe Val Gly Asp Ala Cys Lys Ala Ile 580 585 590

Ala Ser Arg Val Arg Gly Ala Val Ala Ser Val Thr Phe Asp Asp Phe 595 600 605

His Lys Asn Ser Ala Arg Ile Ile Arg Thr Ala Val Phe Gly Phe Glu 610 615 620

Thr Ser Glu Ala Lys Gly Pro Asp Gly Met Ala Leu Pro Arg Pro Arg 625 630 635 640

Asp Gln Ala Val Phe Pro Gln Asn Gly Leu Val Val Ser Ser Val Asp 645 650 655

Val Gln Ser Val Glu Pro Val Asp Gln Arg Thr Arg Asp Ala Leu Gln 660 665 670

Arg Ser Val Gln Leu Ala Ile Glu Ile Thr Thr Asn Ser Gln Glu Ala 675 680 685

Ala Ala Lys His Glu Ala Gln Arg Leu Glu Gln Glu Ala Arg Gly Arg 690 695 700

Leu Glu Arg Gln Lys Ile Leu Asp Gln Ser Glu Ala Glu Lys Ala Arg 705 710 715 720

Lys Glu Leu Leu Glu Leu Glu Ala Leu Ser Met Ala Val Glu Ser Thr
725 730 735

Gly Thr Ala Lys Ala Glu Ala Glu Ser Arg Ala Glu Ala Ala Arg Ile 740 745 750

- Glu Gly Glu Gly Ser Val Leu Gln Ala Lys Leu Lys Ala Gln Ala Leu 755 760 765
- Ala Ile Glu Thr Glu Ala Glu Leu Gln Arg Val Gln Lys Val Arg Glu
 770 775 780
- Leu Glu Leu Val Tyr Ala Arg Ala Gln Leu Glu Leu Glu Val Ser Lys 785 790 795 800
- Ala Gln Gln Leu Ala Glu Val Glu Val Lys Lys Phe Lys Gln Met Thr 805 810 815
- Glu Ala Ile Gly Pro Ser Thr Ile Arg Asp Leu Ala Val Ala Gly Pro 820 825 830
- Glu Met Gln Val Lys Leu Leu Gln Ser Leu Gly Leu Lys Ser Thr Leu 835 840 845
- Ile Thr Asp Gly Ser Thr Pro Ile Asn Leu Phe Asn Thr Ala Phe Gly 850 855 860
- Leu Leu Gly Met Gly Pro Glu Gly Gln Pro Leu Gly Arg Arg Val Ala 865 870 875 880
- Ser Gly Pro Ser Pro Gly Glu Gly Ile Ser Pro Gln Ser Ala Gln Ala 885 890 895
- Pro Gln Ala Pro Gly Asp Asn His Val Val Pro Val Leu Arg Asp Ile 900 905 910
- Val Leu Thr Gln Ser Pro Ala Ser Leu Ala Val Ser Leu Gly Gln Arg 915 920 925
- Ala Thr Met Ser Cys Arg Ala Gly Glu Ser Val Asp Ile Phe Gly Val 930 935 940
- Gly Phe Leu His Trp Tyr Gln Gln Lys Pro Gly Gln Pro Pro Lys Leu 945 950 955 960
- Leu Ile Tyr Arg Ala Ser Asn Leu Glu Ser Gly Ile Pro Val Arg Phe 965 970 975

Ser Gly Thr Gly Ser Arg Thr Asp Phe Thr Leu Ile Ile Asp Pro Val 980 985 990

- Glu Ala Asp Asp Val Ala Thr Tyr Tyr Cys Gln Gln Thr Asn Glu Asp 995 1000 1005
- Pro Tyr Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys Gly Ser 1010 1015 1020
- Thr Ser Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly Gly Ser 1025 1030 1035
- Ser Glu Val Gln Leu Gln Gln Ser Gly Ala Glu Leu Val Glu Pro 1040 1045 1050
- Gly Ala Ser Val Lys Leu Ser Cys Thr Ala Ser Gly Phe Asn Ile 1055 1060 1065
- Lys Asp Thr Tyr Met His Trp Val Lys Gln Arg Pro Glu Gln Gly 1070 1080
- Leu Glu Trp Ile Gly Arg Ile Asp Pro Ala Asn Gly Asn Ser Lys 1085 1090 1095
- Tyr Val Pro Lys Phe Gln Gly Lys Ala Thr Ile Thr Ala Asp Thr 1100 1105 1110
- Ser Ser Asn Thr Ala Tyr Leu Gln Leu Thr Ser Leu Thr Ser Glu 1115 1120 1125
- Asp Thr Ala Val Tyr Tyr Cys Ala Pro Phe Gly Tyr Tyr Val Ser 1130 1135 1140
- Asp Tyr Ala Met Ala Tyr Trp Gly Gln Gly Thr Ser Val Thr Val 1145 1150 1155

Ser

<210> 133

<211> 3480

<212> DNA

<213> Artificial Sequence

<220>
<223> synthesized and Homo sapiens

<400> 133 60 gaagagttca tcatccgcat ccccccatac cactatatcc atgtgctgga ccagaacagc 120 aacgtgtccc gtgtggaggt cgggccaaag acctacatcc ggcaggacaa tgagagggta 180 ctgtttgccc ccatgcgcat ggtgaccgtc cccccacgtc actactgcac agtggccaac 240 cctgtgtctc gggatgccca gggcttggtg ctgtttgatg tcacagggca agttcggctt 300 cgccacgctg acctcgagat ccggctggcc caggacccct tccccctgta cccaggggag 360 gtgctggaaa aggacatcac acccctgcag gtggttctgc ccaacactgc cctccatcta 420 aaggcgctgc ttgattttga ggataaagat ggagacaagg tggtggcagg agatgagtgg 480 cttttcgagg gacctggcac gtacatcccc cggaaggaag tggaggtcgt ggagatcatt 540 caggecacca teatcaggea gaaccagget etgeggetea gggeeegeaa ggagtgetgg 600 gaccgggacg gcaaggagag ggtgacaggg gaagaatggc tggtcaccac agtaggggcg 660 tacctcccag cggtgtttga ggaggttctg gatttggtgg acgccgtcat ccttacggaa 720 aagacagccc tgcacctccg ggctcggcgg aacttccggg acttcagggg agtgtcccgc 780 cgcactgggg aggagtggct ggtaacagtg caggacacag aggcccacgt gccagatgtc 840 cacgaggagg tgctgggggt tgtgcccatc accaccctgg gcccccacaa ctactgcgtg 900 attotogaco otgtoggaco ggatggcaag aatcagotgg ggcagaagog ogtggtcaag 960 ggagagaagt ctttttcct ccagccagga gagcagctgg aacaaggcat ccaggatgtg 1020 tatgtgctgt cggagcagca ggggctgctg ctgagggccc tgcagcccct ggaggagggg 1080 gaggatgagg agaaggtete acaccagget ggggaccaet ggeteateeg eggaceeetg 1140 gagtatgtgc catctgccaa agtggaggtg gtggaggagc gccaggccat ccctctagac 1200 gagaacgagg gcatctatgt gcaggatgtc aagaccggaa aggtgcgcgc tgtgattgga 1260 agcacctaca tgctgaccca ggacgaagtc ctgtgggaga aagagctgcc tcccggggtg 1320 gaggagctgc tgaacaaggg gcaggaccct ctggcagaca ggggtgagaa ggacacagct 1380 aagageetee ageeettgge geeceggaae aagaeeegtg tggteageta eegegtgeee 1440 cacaacgctg cggtgcaggt gtacgactac cgagagaagc gagcccgcgt ggtcttcggg 1500 cctgagctgg tgtcgctggg tcctgaggag cagttcacag tgttgtccct ctcagctggg 1560 1620 cggcccaagc gtccccatgc ccgccgtgcg ctctgcctgc tgctggggcc tgacttcttc

acagacgtca tcaccatcga aacggcggat catgccaggc tgcaactgca gctggcctac	1680
aactggcact ttgaggtgaa tgaccggaag gacccccaag agacggccaa gctcttttca	1740
gtgccagact ttgtaggtga tgcctgcaaa gccatcgcat cccgggtgcg gggggccgtg	1800
gcctctgtca ctttcgatga cttccataag aactcagccc gcatcattcg cactgctgtc	1860
tttggctttg agacctcgga agcgaagggc cccgatggca tggccctgcc caggccccgg	1920
gaccaggetg tettececca aaacgggetg gtggteagea gtgtggaegt geagteagtg	1980
gagectgtgg atcagaggac cegggaegee etgeaaegea gegteeaget ggeeategag	2040
atcaccacca actcccagga agcggcggcc aagcatgagg ctcagagact ggagcaggaa	2100
gcccgcggcc ggcttgagcg gcagaagatc ctggaccagt cagaagccga gaaagctcgc	2160
aaggaacttt tggagctgga ggctctgagc atggccgtgg agagcaccgg gactgccaag	2220
gcggaggccg agtcccgtgc ggaggcagcc cggattgagg gagaagggtc cgtgctgcag	2280
gccaagctaa aagcacaggc cttggccatt gaaacggagg ctgagctcca gagggtccag	2340
aaggtccgag agctggaact ggtctatgcc cgggcccagc tggagctgga ggtgagcaag	2400
gctcagcagc tggctgaggt ggaggtgaag aagttcaagc agatgacaga ggccataggc	2460
cccagcacca tcagggacct tgctgtggct gggcctgaga tgcaggtaaa actgctccag	2520
tccctgggcc tgaaatcaac cctcatcacc gatggctcca ctcccatcaa cctcttcaac	2580
acageetttg ggetgetggg gatggggeee gagggteage eeetgggeag aagggtggee	2640
agtgggccca gccctgggga ggggatatcc ccccagtctg ctcaggcccc tcaagctcct	2700
ggagacaacc acgtggtgcc tgtactgcgc gacattgtgc tgacccaatc tccagcttct	2760
ttggctgtgt ctcttgggca gagggccacc atgtcctgca gagccggtga aagtgttgat	2820
atttttggcg ttgggttttt gcactggtac cagcagaaac caggacagcc acccaaactc	2880
ctcatctatc gtgcatccaa cctagaatct gggatccctg tcaggttcag tggcactggg	2940
tctaggacag acttcaccct catcattgat cctgtggagg ctgatgatgt tgccacctat	3000
tactgtcagc aaactaatga ggatccgtac acgttcggag gggggaccaa gctggaaata	3060
aaaggcagta ctagcggcgg tggctccggg ggcggttccg gtgggggcgg cagcagcgag	3120
gttcagctac aacagtctgg ggcagagctt gtggagccag gggcctcagt caagttgtcc	3180
tgcacagett etggetteaa eattaaagae aeetatatge aetgggtgaa geagaggeet	3240
gaacagggcc tggaatggat tggaaggatt gatcctgcga atggtaatag taaatatgtc	3300
ccgaagttcc agggcaaggc cactataaca gcagacacat cttccaacac agcctacctg	3360

cageteacea geetgacate tgaggacaet geegtetatt attgtgetee gtttggttae 3420 taegtgtetg actatgetat ggeetaetgg ggteaaggaa eeteagteae egtetegtga 3480

<210> 134

<211> 1127

<212> PRT

<213> Artificial Sequence

<220>

<223> synthesized and Rattus norvegicus

<400> 134

Pro Met Ala Thr Glu Glu Ala Ile Ile Arg Ile Pro Pro Tyr His Tyr 20 25 30

Ile His Val Leu Asp Gln Asn Ser Asn Val Ser Arg Val Glu Val Gly
35 40 45

Pro Lys Thr Tyr Ile Arg Gln Asp Asn Glu Arg Val Leu Phe Ala Pro 50 55 60

Val Arg Met Val Thr Val Pro Pro Arg His Tyr Cys Ile Val Ala Asn 65 70 75 80

Pro Val Ser Arg Asp Thr Gln Ser Ser Val Leu Phe Asp Ile Thr Gly 85 90 95

Gln Val Arg Leu Arg His Ala Asp Gln Glu Ile Arg Leu Ala Gln Asp 100 105 110

Pro Phe Pro Leu Tyr Pro Gly Glu Val Leu Glu Lys Asp Ile Thr Pro 115 120 125

Leu Gln Val Val Leu Pro Asn Thr Ala Leu His Leu Lys Ala Leu Leu 130 135 140

Asp Phe Glu Asp Lys Asn Gly Asp Lys Val Met Ala Gly Asp Glu Trp 145 150 155 160

Leu Phe Glu Gly Pro Gly Thr Tyr Ile Pro Gln Lys Glu Val Glu Val
165 170 175

Val Glu Ile Ile Gln Ala Thr Val Ile Lys Gln Asn Gln Ala Leu Arg 180 185 190

- Leu Arg Ala Arg Lys Glu Cys Phe Asp Arg Glu Gly Lys Gly Arg Val 195 200 205
- Thr Gly Glu Glu Trp Leu Val Arg Ser Val Gly Ala Tyr Leu Pro Ala 210 215 220
- Val Phe Glu Glu Val Leu Asp Leu Val Asp Ala Val Ile Leu Thr Glu 225 230 235 240
- Lys Thr Ala Leu His Leu Arg Ala Leu Gln Asn Phe Arg Asp Leu Arg 245 250 255
- Gly Val Leu His Arg Thr Gly Glu Glu Trp Leu Val Thr Val Gln Asp 260 265 270
- Thr Glu Ala His Val Pro Asp Val Tyr Glu Glu Val Leu Gly Val Val 275 280 285
- Pro Ile Thr Thr Leu Gly Pro Arg His Tyr Cys Val Ile Leu Asp Pro 290 295 300
- Met Gly Pro Asp Gly Lys Asn Gln Leu Gly Gln Lys Arg Val Val Lys 305 310 315 320
- Gly Glu Lys Ser Phe Phe Leu Gln Pro Gly Glu Arg Leu Glu Arg Gly 325 330 335
- Ile Gln Asp Val Tyr Val Leu Ser Glu Gln Gln Gly Leu Leu Lys 340 345 350
- Ala Leu Gln Pro Leu Glu Glu Glu Ser Glu Glu Lys Val Ser His 355 360 365
- Gln Ala Gly Asp Cys Trp Leu Ile Arg Gly Pro Leu Glu Tyr Val Pro 370 375 380
- Ser Ala Lys Val Glu Val Val Glu Glu Arg Gln Ala Ile Pro Leu Asp 385 390 395 400
- Gln Asn Glu Gly Ile Tyr Val Gln Asp Val Lys Thr Gly Lys Val Arg 405 410 415

Ala Val Ile Gly Ser Thr Tyr Met Leu Thr Gln Asp Glu Val Leu Trp 420 425 430

- Glu Lys Glu Leu Pro Ser Gly Val Glu Glu Leu Leu Asn Leu Gly His 435 440 445
- Asp Pro Leu Ala Asp Arg Gly Gln Lys Gly Thr Ala Lys Pro Leu Gln 450 455 460
- Pro Ser Ala Pro Arg Asn Lys Thr Arg Val Val Ser Tyr Arg Val Pro 465 470 475 480
- His Asn Ala Ala Val Gln Val Tyr Asp Tyr Arg Ala Lys Arg Ala Arg 485 490 495
- Val Val Phe Gly Pro Glu Leu Val Thr Leu Asp Pro Glu Glu Gln Phe 500 505 510
- Thr Val Leu Ser Leu Ser Ala Gly Arg Pro Lys Arg Pro His Ala Arg 515 520 525
- Arg Ala Leu Cys Leu Leu Gly Pro Asp Phe Phe Thr Asp Val Ile 530 535 540
- Thr Ile Glu Thr Ala Asp His Ala Arg Leu Gln Leu Gln Leu Ala Tyr 545 550 555 560
- Asn Trp His Phe Glu Leu Lys Asn Arg Asn Asp Pro Ala Glu Ala Ala 565 570 575
- Lys Leu Phe Ser Val Pro Asp Phe Val Gly Asp Ala Cys Lys Ala Ile 580 585 590
- Ala Ser Arg Val Arg Gly Ala Val Ala Ser Val Thr Phe Asp Asp Phe 595 600 605
- His Lys Asn Ser Ala Arg Ile Ile Arg Met Ala Val Phe Gly Phe Glu 610 615 620
- Met Ser Glu Asp Thr Gly Pro Asp Gly Thr Leu Leu Pro Lys Ala Arg 625 630 635 640
- Asp Gln Ala Val Phe Pro Gln Asn Gly Leu Val Val Ser Ser Val Asp

645 . 650 655

Val Gln Ser Val Glu Pro Val Asp Gln Arg Thr Arg Asp Ala Leu Gln 660 665 670

Arg Ser Val Gln Leu Ala Ile Glu Ile Thr Thr Asn Ser Gln Glu Ala 675 680 685

Ala Ala Lys His Glu Ala Gln Arg Leu Glu Gln Glu Ala Arg Gly Arg 690 695 700

Leu Glu Arg Gln Lys Ile Leu Asp Gln Ser Glu Ala Glu Lys Ala Arg 705 710 715 720

Lys Glu Leu Leu Glu Leu Glu Ala Met Ser Met Ala Val Glu Ser Thr 725 730 735

Gly Asn Ala Lys Ala Glu Ala Glu Ser Arg Ala Glu Ala Ala Arg Ile 740 745 750

Glu Gly Glu Gly Ser Val Leu Gln Ala Lys Leu Lys Ala Gln Ala Leu 755 760 765

Ala Ile Glu Thr Glu Ala Glu Leu Glu Arg Val Lys Lys Val Arg Glu 770 775 780

Met Glu Leu Ile Tyr Ala Arg Ala Gln Leu Glu Leu Glu Val Ser Lys 785 790 795 800

Ala Gln Gln Leu Ala Asn Val Glu Ala Lys Lys Phe Lys Glu Met Thr 805 810 815

Glu Ala Leu Gly Pro Gly Thr Ile Arg Asp Leu Ala Val Ala Gly Pro 820 825 830

Glu Met Gln Val Lys Leu Leu Gln Ser Leu Gly Leu Lys Ser Thr Leu 835 840 845

Ile Thr Asp Gly Ser Ser Pro Ile Asn Leu Phe Ser Thr Ala Phe Gly 850 855 860

Leu Leu Gly Leu Gly Ser Asp Gly Gln Pro Pro Ala Gln Lys Asp Ile 865 870 875 880

Val Leu Thr Gln Ser Pro Ala Ser Leu Ala Val Ser Leu Gly Gln Arg 885 890 895

- Ala Thr Met Ser Cys Arg Ala Gly Glu Ser Val Asp Ile Phe Gly Val 900 905 910
- Gly Phe Leu His Trp Tyr Gln Gln Lys Pro Gly Gln Pro Pro Lys Leu 915 920 925
- Leu Ile Tyr Arg Ala Ser Asn Leu Glu Ser Gly Ile Pro Val Arg Phe 930 935 940
- Ser Gly Thr Gly Ser Arg Thr Asp Phe Thr Leu Ile Ile Asp Pro Val 945 950 955 960
- Glu Ala Asp Asp Val Ala Thr Tyr Tyr Cys Gln Gln Thr Asn Glu Asp 965 970 975
- Pro Tyr Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys Gly Ser Thr 980 985 990
- Ser Gly Gly Gly Ser Gly Gly Ser Gly Gly Gly Gly Ser Ser Glu 995 1000 1005
- Val Gln Leu Gln Gln Ser Gly Ala Glu Leu Val Glu Pro Gly Ala 1010 1015 1020
- Ser Val Lys Leu Ser Cys Thr Ala Ser Gly Phe Asn Ile Lys Asp 1025 1030 1035
- Thr Tyr Met His Trp Val Lys Gln Arg Pro Glu Gln Gly Leu Glu 1040 1045 1050
- Trp Ile Gly Arg Ile Asp Pro Ala Asn Gly Asn Ser Lys Tyr Val 1055 1060 1065
- Pro Lys Phe Gln Gly Lys Ala Thr Ile Thr Ala Asp Thr Ser Ser 1070 1075 1080
- Asn Thr Ala Tyr Leu Gln Leu Thr Ser Leu Thr Ser Glu Asp Thr 1085 1090 1095
- Ala Val Tyr Tyr Cys Ala Pro Phe Gly Tyr Tyr Val Ser Asp Tyr 1100 1105 1110

Ala Met Ala Tyr Trp Gly Gln Gly Thr Ser Val Thr Val Ser 1115 1120 1125

<210> 135

<211> 3384 <212> DNA

<213> Artificial Sequence

<220>

<223> synthesized and Rattus norvegicus

<400> 135

60 gaagaggcca tcatccgcat ccccccatac cactacatcc atgtgctgga ccagaacagt 120 aatgtgtccc gtgtggaggt tggaccaaag acctacatcc ggcaggacaa tgagagggta 180 etgtttgccc cagttcgcat ggtgaccgtc ccccacgcc actactgcat agtggccaac 240 cctgtgtccc gggacaccca gagttctgtg ttatttgaca tcacaggaca agtccgactc 300 eggeacgetg accaggagat cegactagee caggaceeet teeceetgta teeaggggag 360 gtgctggaaa aggacatcac cccactgcag gtggttctgc ccaacacagc actgcatctt 420 aaggegttge tggaetttga ggataagaat ggagaeaagg teatggeagg agaegagtgg 480 ctatttgagg gacctggcac ctacatccca cagaaggaag tggaagtcgt ggagatcatt 540 caggecacag teateaaaca gaaceaagea etgeggetaa gggeeegaaa ggagtgettt 600 gaccgggagg gcaagggggg cgtgacaggt gaggagtggc tggtccgatc cgtgggggct 660 tacctcccag ctgtctttga agaggtgctg gatctggtgg atgctgtgat ccttacagaa 720 aagactgccc tgcacctccg ggctctgcag aacttcaggg accttcgggg agtgctccac 780 cgcaccgggg aggaatggtt agtgacagtg caggacacag aagcccatgt tccagatgtc 840 tatgaggagg tgcttggggt agtacccatc accaccctgg gacctcgaca ctactgtgtc 900 attettgace caatgggace agacggcaag aaccagetgg gacaaaagcg tgttgtcaag 960 ggagagaagt cctttttcct ccagccagga gagaggctgg agcgaggcat ccaggatgtg 1020 tatgtgctgt cagagcagca ggggctgcta ctgaaggcac tgcagcccct ggaggaggga 1080 gagagcgagg agaaggtete ceateaggee ggagaetget ggeteateeg tgggeeeetg 1140 gagtatgtgc catctgcaaa agtggaggtg gtggaggagc gtcaggctat ccctctggac 1200 caaaatgagg gcatctatgt gcaggatgtc aagacgggga aggtgcgggc tgtgattgga 1260 agcacctaca tgctgactca ggatgaagtc ctgtgggaaa aggagctgcc ttctggggtg 1320

gaggagetge tgaacttggg geatgaeeet etggeagaea ggggteagaa gggeaeagee	1380
aagccccttc agccctcagc tccaaggaac aagacccgag tggtcagcta ccgtgtcccg	1440
cacaatgcag cggtgcaggt ctatgactac agagccaaga gagcccgtgt ggtctttggg	1500
cccgagctag tgacactgga tcctgaggag cagttcacag tattgtccct ttctgccggg	1560
cgacccaagc gtcctcatgc ccgccgtgca ctctgcctac tgctgggacc tgatttcttt	1620
actgatgtca tcaccatcga aactgcagat catgccaggt tgcagctgca gcttgcctac	1680
aactggcact ttgaactgaa gaaccggaat gaccctgcag aggcagccaa gcttttctcc	1740
gtgcctgact tcgtgggtga cgcctgcaag gccattgcat cccgagtccg gggggctgta	1800
gcctctgtca cctttgatga cttccataaa aactcagccc ggatcattcg aatggctgtt	1860
tttggctttg agatgtctga agacacaggt cctgatggca cactcctgcc caaggctcga	1920
gaccaggcag tetttececa aaacgggetg gtagtcagca gtgtggatgt gcagtcagtg	1980
gagcccgtgg accagaggac ccgggatgcc cttcagcgca gcgttcagct ggccatcgaa	2040
attaccacca actcccagga ggcagcagcc aagcacgagg ctcagagact ggaacaggaa	2100
gcccgtggtc ggcttgagag gcagaagatc ttggaccagt cagaagctga aaaagcccgc	2160
aaggaactct tggagcttga ggctatgagc atggctgtgg agagcacggg taatgccaaa	2220
gcagaggctg agtcccgtgc agaggcagcg aggatcgaag gagaaggctc tgtgctgcag	2280
gccaagctca aggcacaggc gctagccatt gagacggagg ctgagttgga gcgagtaaag	2340
aaagtacgag agatggaact gatctatgcc cgggcccagt tggagctgga ggtgagcaag	2400
gcgcagcagc ttgccaatgt ggaggcaaag aagttcaagg agatgacaga ggcactgggc	2460
cccggcacca tcagggacct ggctgtggcc gggccagaga tgcaggtgaa acttctccag	2520
tccctgggcc tgaaatccac tctcatcacc gatggctcgt ctcccatcaa cctcttcagc	2580
acagcetteg ggttgetggg getggggtet gatggteage egecageaca gaaggacatt	2640
gtgctgaccc aatctccagc ttctttggct gtgtctcttg ggcagagggc caccatgtcc	2700
tgcagagccg gtgaaagtgt tgatattttt ggcgttgggt ttttgcactg gtaccagcag	2760
aaaccaggac agccacccaa actcctcatc tatcgtgcat ccaacctaga atctgggatc	2820
cctgtcaggt tcagtggcac tgggtctagg acagacttca ccctcatcat tgatcctgtg	2880
gaggetgatg atgttgecae etattaetgt cageaaaeta atgaggatee gtacaegtte	2940
ggagggggga ccaagctgga aataaaaggc agtactagcg gcggtggctc cggggggcggt	3000
teeggtgggg geggeageag egaggtteag etacaacagt etggggeaga gettgtggag	3060

ccaggggct cagtcaagtt gtcctgcaca gcttctggct tcaacattaa agacacctat 3120
atgcactggg tgaagcagag gcctgaacag ggcctggaat ggattggaag gattgatcct 3180
gcgaatggta atagtaaata tgtcccgaag ttccagggca aggccactat aacagcagac 3240
acatcttcca acacagccta cctgcagctc accagcctga catctgagga cactgccgtc 3300
tattattgtg ctccgtttgg ttactacgtg tctgactatg ctatggccta ctggggtcaa 3360
ggaacctcag tcaccgtctc gtga 3384

<210> 136

<211> 966

<212> PRT

<213> Artificial Sequence

<220>

<223> synthesized and two Homo sapiens sequences

<400> 136

Pro Met Ala Thr Glu Glu Phe Ile Ile Arg Ile Pro Pro Tyr His Tyr 20 25 30

Ile His Val Leu Asp Gln Asn Ser Asn Val Ser Arg Val Glu Val Gly
35 40 45

Pro Lys Thr Tyr Ile Arg Gln Asp Asn Glu Arg Val Leu Phe Ala Pro 50 55 60

Met Arg Met Val Thr Val Pro Pro Arg His Tyr Cys Thr Val Ala Asn 65 70 75 80

Pro Val Ser Arg Asp Ala Gln Gly Leu Val Leu Phe Asp Val Thr Gly 85 90 95

Gln Val Arg Leu Arg His Ala Asp Leu Glu Ile Arg Leu Ala Gln Asp 100 105 110

Pro Phe Pro Leu Tyr Pro Gly Glu Val Leu Glu Lys Asp Ile Thr Pro 115 120 125

Leu Gln Val Val Leu Pro Asn Thr Ala Leu His Leu Lys Ala Leu Leu 130 135 140

Asp Phe Glu Asp Lys Asp Gly Asp Lys Val Val Ala Gly Asp Glu Trp 145 150 155 160

- Leu Phe Glu Gly Pro Gly Thr Tyr Ile Pro Arg Lys Glu Val Glu Val
 165 170 175
- Val Glu Ile Ile Gln Ala Thr Ile Ile Arg Gln Asn Gln Ala Leu Arg 180 185 190
- Leu Arg Ala Arg Lys Glu Cys Trp Asp Arg Asp Gly Lys Glu Arg Val 195 200 205
- Thr Gly Glu Glu Trp Leu Val Thr Thr Val Gly Ala Tyr Leu Pro Ala 210 215 220
- Val Phe Glu Glu Val Leu Asp Leu Val Asp Ala Val Ile Leu Thr Glu 225 230 235 240
- Lys Thr Ala Leu His Leu Arg Ala Arg Arg Asn Phe Arg Asp Phe Arg 245 250 255
- Gly Val Ser Arg Arg Thr Gly Glu Glu Trp Leu Val Thr Val Gln Asp 260 265 270
- Thr Glu Ala His Val Pro Asp Val His Glu Glu Val Leu Gly Val Val
 275 280 285
- Pro Ile Thr Thr Leu Gly Pro His Asn Tyr Cys Val Ile Leu Asp Pro 290 295 300
- Val Gly Pro Asp Gly Lys Asn Gln Leu Gly Gln Lys Arg Val Val Lys 305 310 315 . 320
- Gly Glu Lys Ser Phe Phe Leu Gln Pro Gly Glu Gln Leu Glu Gln Gly 325 330 335
- Ile Gln Asp Val Tyr Val Leu Ser Glu Gln Gln Gly Leu Leu Leu Arg 340 345 350
- Ala Leu Gln Pro Leu Glu Glu Gly Glu Asp Glu Glu Lys Val Ser His 355 360 365
- Gln Ala Gly Asp His Trp Leu Ile Arg Gly Pro Leu Glu Tyr Val Pro 370 375 380

Ser Ala Lys Val Glu Val Val Glu Glu Arg Gln Ala Ile Pro Leu Asp 385 390 395 400

- Glu Asn Glu Gly Ile Tyr Val Gln Asp Val Lys Thr Gly Lys Val Arg 405 410 415
- Ala Val Ile Gly Ser Thr Tyr Met Leu Thr Gln Asp Glu Val Leu Trp 420 425 430
- Glu Lys Glu Leu Pro Pro Gly Val Glu Glu Leu Leu Asn Lys Gly Gln 435 440 445
- Asp Pro Leu Ala Asp Arg Gly Glu Lys Asp Thr Ala Lys Ser Leu Gln 450 455 460
- Pro Leu Ala Pro Arg Asn Lys Thr Arg Val Val Ser Tyr Arg Val Pro 465 470 475 480
- His Asn Ala Ala Val Gln Val Tyr Asp Tyr Arg Glu Lys Arg Ala Arg 485 490 495
- Val Val Phe Gly Pro Glu Leu Val Ser Leu Gly Pro Glu Glu Gln Phe 500 505 510
- Thr Val Leu Ser Leu Ser Ala Gly Arg Pro Lys Arg Pro His Ala Arg 515 520 525
- Arg Ala Leu Cys Leu Leu Cly Pro Asp Phe Phe Thr Asp Val Ile 530 535 540
- Thr Ile Glu Thr Ala Asp His Ala Arg Leu Gln Leu Gln Leu Ala Tyr 545 550 555 560
- Asn Trp His Phe Glu Val Asn Asp Arg Lys Asp Pro Gln Glu Thr Ala 565 570 575
- Lys Leu Phe Ser Val Pro Asp Phe Val Gly Asp Ala Cys Lys Ala Ile 580 585 590
- Ala Ser Arg Val Arg Gly Ala Val Ala Ser Val Thr Phe Asp Asp Phe 595 600 605
- His Lys Asn Ser Ala Arg Ile Ile Arg Thr Ala Val Phe Gly Phe Glu

610 620

Thr Ser Glu Ala Lys Gly Pro Asp Gly Met Ala Leu Pro Arg Pro Arg 625 630 635 640

Asp Gln Ala Val Phe Pro Gln Asn Gly Leu Val Val Ser Ser Val Asp
645 650 655

Val Gln Ser Val Glu Pro Val Asp Gln Arg Thr Arg Asp Ala Leu Gln 660 665 670

Arg Ser Val Gln Leu Ala Ile Glu Ile Thr Thr Asn Ser Gln Glu Ala 675 680 685

Ala Ala Lys His Glu Ala Gln Arg Leu Glu Gln Glu Ala Arg Gly Arg 690 695 700

Leu Glu Arg Gln Lys Ile Leu Asp Gln Ser Glu Ala Glu Lys Ala Arg 705 710 715 720

Lys Glu Leu Leu Glu Leu Glu Ala Leu Ser Met Ala Val Glu Ser Thr 725 730 735

Gly Thr Ala Lys Ala Glu Ala Glu Ser Arg Ala Glu Ala Ala Arg Ile 740. 745 750

Glu Gly Glu Gly Ser Val Leu Gln Ala Lys Leu Lys Ala Gln Ala Leu 755 760 765

Ala Ile Glu Thr Glu Ala Glu Leu Gln Arg Val Gln Lys Val Arg Glu 770 775 780

Leu Glu Leu Val Tyr Ala Arg Ala Gln Leu Glu Leu Glu Val Ser Lys
785 790 795 800

Ala Gln Gln Leu Ala Glu Val Glu Val Lys Lys Phe Lys Gln Met Thr 805 810 815

Glu Ala Ile Gly Pro Ser Thr Ile Arg Asp Leu Ala Val Ala Gly Pro 820 825 830

Glu Met Gln Val Lys Leu Leu Gln Ser Leu Gly Leu Lys Ser Thr Leu 835 840 845

Ile Thr Asp Gly Ser Thr Pro Ile Asn Leu Phe Asn Thr Ala Phe Gly 855 860 850 Leu Leu Gly Met Gly Pro Glu Gly Gln Pro Leu Gly Arg Arg Val Ala 865 Ser Gly Pro Ser Pro Gly Glu Gly Ile Ser Pro Gln Ser Ala Gln Ala Pro Gln Ala Pro Gly Asp Asn His Val Val Pro Val Leu Arg Met Gly Asn Ser Asp Ser Glu Cys Pro Leu Ser His Asp Gly Tyr Cys Leu His 920 915 Asp Gly Val Cys Met Tyr Ile Glu Ala Leu Asp Lys Tyr Ala Cys Asn 935 930 Cys Val Val Gly Tyr Ile Gly Glu Arg Cys Gln Tyr Arg Asp Leu Lys 955 950 945 Trp Trp Glu Leu Arg Ala 965 <210> 137 <211> 2901 <212> DNA <213> Artificial Sequence <220> synthesized and two Homo sapiens sequences <223> <400> 137 60 gaagagttca tcatccgcat cccccatac cactatatcc atgtgctgga ccagaacagc 120 aacgtgtccc gtgtggaggt cgggccaaag acctacatcc ggcaggacaa tgagagggta 180 ctgtttgccc ccatgcgcat ggtgaccgtc ccccacgtc actactgcac agtggccaac 240 cctgtgtctc gggatgccca gggcttggtg ctgtttgatg tcacagggca agttcggctt 300 cgccacgctg acctcgagat ccggctggcc caggacccct tccccctgta cccaggggag 360 gtgctggaaa aggacatcac acccctgcag gtggttctgc ccaacactgc cctccatcta 420

480

540

aaggcgctgc ttgattttga ggataaagat ggagacaagg tggtggcagg agatgagtgg

cttttcgagg gacctggcac gtacatcccc cggaaggaag tggaggtcgt ggagatcatt

caggecacea teateaggea gaaceagget etgeggetea gggecegeaa ggagtgetgg	600
	660
gaccgggacg gcaaggagag ggtgacaggg gaagaatggc tggtcaccac agtaggggcg	
tacctcccag cggtgtttga ggaggttctg gatttggtgg acgccgtcat ccttacggaa	720
aagacageee tgeaceteeg ggeteggegg aaetteeggg aetteagggg agtgteeege	780
cgcactgggg aggagtggct ggtaacagtg caggacacag aggcccacgt gccagatgtc	840
cacgaggagg tgctgggggt tgtgcccatc accaccctgg gcccccacaa ctactgcgtg	900
attetegace etgteggace ggatggeaag aateagetgg ggeagaageg egtggteaag	960
ggagagaagt cttttttcct ccagccagga gagcagctgg aacaaggcat ccaggatgtg	1020
tatgtgctgt cggagcagca ggggctgctg ctgagggccc tgcagcccct ggaggagggg	1080
gaggatgagg agaaggtete acaccagget ggggaccaet ggeteateeg eggacceetg	1140
gagtatgtgc catctgccaa agtggaggtg gtggaggagc gccaggccat ccctctagac	1200
gagaacgagg gcatctatgt gcaggatgtc aagaccggaa aggtgcgcgc tgtgattgga	1260
agcacctaca tgctgaccca ggacgaagtc ctgtgggaga aagagctgcc tcccggggtg	1320
gaggagctgc tgaacaaggg gcaggaccct ctggcagaca ggggtgagaa ggacacagct	1380
aagageetee ageeettgge geeeeggaae aagaeeegtg tggteageta eegegtgeee	1440
cacaacgctg cggtgcaggt gtacgactac cgagagaagc gagcccgcgt ggtcttcggg	1500
cctgagctgg tgtcgctggg tcctgaggag cagttcacag tgttgtccct ctcagctggg	1560
cggcccaage gtccccatge ccgccgtgcg ctctgcctgc tgctggggcc tgacttcttc	1620
acagacgtca tcaccatcga aacggcggat catgccaggc tgcaactgca gctggcctac	1680
aactggcact ttgaggtgaa tgaccggaag gacccccaag agacggccaa gctcttttca	1740
gtgccagact ttgtaggtga tgcctgcaaa gccatcgcat cccgggtgcg gggggccgtg	1800
gestetgtea etttegatga ettesataag aasteagese geateatteg eastgetgte	1860
tttggctttg agacctcgga agcgaagggc cccgatggca tggccctgcc caggccccgg	1920
gaccaggetg tettececca aaacgggetg gtggteagea gtgtggaegt geagteagtg	1980
gagcctgtgg atcagaggac ccgggacgcc ctgcaacgca gcgtccagct ggccatcgag	2040
atcaccacca actcccagga agcggcggcc aagcatgagg ctcagagact ggagcaggaa	2100
gcccgcggcc ggcttgagcg gcagaagatc ctggaccagt cagaagccga gaaagctcgc	2160
aaggaacttt tggagctgga ggctctgagc atggccgtgg agagcaccgg gactgccaag	2220
gcggaggccg agtcccgtgc ggaggcagcc cggattgagg gagaagggtc cgtgctgcag	2280

PCT/US2004/007434 WO 2004/081533

gccaagctaa	aagcacaggc	cttggccatt	gaaacggagg	ctgagctcca	gagggtccag	2340
aaggtccgag	agctggaact	ggtctatgcc	cgggcccagc	tggagctgga	ggtgagcaag	2400
gctcagcagc	tggctgaggt	ggaggtgaag	aagttcaagc	agatgacaga	ggccataggc	2460
cccagcacca	tcagggacct	tgctgtggct	gggcctgaga	tgcaggtaaa	actgctccag	2520
tccctgggcc	tgaaatcaac	cctcatcacc	gatggctcca	ctcccatcaa	cctcttcaac	2580
acagcctttg	ggctgctggg	gatggggccc	gagggtcagc	ccctgggcag	aagggtggcc	2640
agtgggccca	gccctgggga	ggggatatcc	ccccagtctg	ctcaggcccc	tcaagctcct	2700
ggagacaacc	acgtggtgcc	tgtactgcgc	atgggtaact	ctgactccga	atgcccgctg	2760
tctcacgacg	gttattgcct	gcatgatggt	gtttgtatgt	atatcgaagc	tctggacaaa	2820
tatgcttgca	actgtgttgt	tggttacatc	ggtgagcgtt	gccagtatcg	cgacctgaaa	2880
tggtgggaac	tgcgtgcatg	a				2901

<210> 138 <211> 934 <212> PRT

<213> Artificial Sequence

<223> synthesized and Rattus norvegicus and Homo sapiens

<400> 138

5

Pro Met Ala Thr Glu Glu Ala Ile Ile Arg Ile Pro Pro Tyr His Tyr 20

Ile His Val Leu Asp Gln Asn Ser Asn Val Ser Arg Val Glu Val Gly 40 35

Pro Lys Thr Tyr Ile Arg Gln Asp Asn Glu Arg Val Leu Phe Ala Pro 50

Val Arg Met Val Thr Val Pro Pro Arg His Tyr Cys Ile Val Ala Asn 75

Pro Val Ser Arg Asp Thr Gln Ser Ser Val Leu Phe Asp Ile Thr Gly 85

Gln Val Arg Leu Arg His Ala Asp Gln Glu Ile Arg Leu Ala Gln Asp

100 105 110

Pro Phe Pro Leu Tyr Pro Gly Glu Val Leu Glu Lys Asp Ile Thr Pro 115 120 125

Leu Gln Val Val Leu Pro Asn Thr Ala Leu His Leu Lys Ala Leu Leu 130 135 140

Asp Phe Glu Asp Lys Asn Gly Asp Lys Val Met Ala Gly Asp Glu Trp 145 150 155 160

Leu Phe Glu Gly Pro Gly Thr Tyr Ile Pro Gln Lys Glu Val Glu Val 165 170 175

Val Glu Ile Ile Gln Ala Thr Val Ile Lys Gln Asn Gln Ala Leu Arg 180 185 190

Leu Arg Ala Arg Lys Glu Cys Phe Asp Arg Glu Gly Lys Gly Arg Val 195 200 205

Thr Gly Glu Glu Trp Leu Val Arg Ser Val Gly Ala Tyr Leu Pro Ala 210 215 220

Val Phe Glu Glu Val Leu Asp Leu Val Asp Ala Val Ile Leu Thr Glu 225 230 235 240

Lys Thr Ala Leu His Leu Arg Ala Leu Gln Asn Phe Arg Asp Leu Arg 245 250 255

Gly Val Leu His Arg Thr Gly Glu Glu Trp Leu Val Thr Val Gln Asp 260 265 270

Thr Glu Ala His Val Pro Asp Val Tyr Glu Glu Val Leu Gly Val Val 275 280 285

Pro Ile Thr Thr Leu Gly Pro Arg His Tyr Cys Val Ile Leu Asp Pro 290 295 300

Met Gly Pro Asp Gly Lys Asn Gln Leu Gly Gln Lys Arg Val Val Lys 305 310 315 320

Gly Glu Lys Ser Phe Phe Leu Gln Pro Gly Glu Arg Leu Glu Arg Gly 325 330 335

Ile Gln Asp Val Tyr Val Leu Ser Glu Gln Gln Gly Leu Leu Lys 340 345 350

- Ala Leu Gln Pro Leu Glu Glu Glu Glu Ser Glu Glu Lys Val Ser His 355 360 365
- Gln Ala Gly Asp Cys Trp Leu Ile Arg Gly Pro Leu Glu Tyr Val Pro 370 375 380
- Ser Ala Lys Val Glu Val Val Glu Glu Arg Gln Ala Ile Pro Leu Asp 385 390 395 400
- Gln Asn Glu Gly Ile Tyr Val Gln Asp Val Lys Thr Gly Lys Val Arg 405 410 415
- Ala Val Ile Gly Ser Thr Tyr Met Leu Thr Gln Asp Glu Val Leu Trp 420 425 430
- Glu Lys Glu Leu Pro Ser Gly Val Glu Glu Leu Leu Asn Leu Gly His
 435 440 445
- Asp Pro Leu Ala Asp Arg Gly Gln Lys Gly Thr Ala Lys Pro Leu Gln 450 455 460
- Pro Ser Ala Pro Arg Asn Lys Thr Arg Val Val Ser Tyr Arg Val Pro 465 470 475 480
- His Asn Ala Ala Val Gln Val Tyr Asp Tyr Arg Ala Lys Arg Ala Arg 485 490 495
- Val Val Phe Gly Pro Glu Leu Val Thr Leu Asp Pro Glu Glu Gln Phe 500 505 510
- Thr Val Leu Ser Leu Ser Ala Gly Arg Pro Lys Arg Pro His Ala Arg 515 520 525
- Arg Ala Leu Cys Leu Leu Gly Pro Asp Phe Phe Thr Asp Val Ile 530 535 540
- Thr Ile Glu Thr Ala Asp His Ala Arg Leu Gln Leu Gln Leu Ala Tyr 545 550 555 560
- Asn Trp His Phe Glu Leu Lys Asn Arg Asn Asp Pro Ala Glu Ala Ala 565 570 575

Lys Leu Phe Ser Val Pro Asp Phe Val Gly Asp Ala Cys Lys Ala Ile 580 585 590

- Ala Ser Arg Val Arg Gly Ala Val Ala Ser Val Thr Phe Asp Asp Phe 595 600 605
- His Lys Asn Ser Ala Arg Ile Ile Arg Met Ala Val Phe Glu 610 615 620
- Met Ser Glu Asp Thr Gly Pro Asp Gly Thr Leu Leu Pro Lys Ala Arg 625 630 635 640
- Asp Gln Ala Val Phe Pro Gln Asn Gly Leu Val Val Ser Ser Val Asp 645 650 655
- Val Gln Ser Val Glu Pro Val Asp Gln Arg Thr Arg Asp Ala Leu Gln 660 665 670
- Arg Ser Val Gln Leu Ala Ile Glu Ile Thr Thr Asn Ser Gln Glu Ala 675 680 685
- Ala Ala Lys His Glu Ala Gln Arg Leu Glu Gln Glu Ala Arg Gly Arg 690 695 700
- Leu Glu Arg Gln Lys Ile Leu Asp Gln Ser Glu Ala Glu Lys Ala Arg
 705 710 715 720
- Lys Glu Leu Leu Glu Leu Glu Ala Met Ser Met Ala Val Glu Ser Thr 725 730 735
- Gly Asn Ala Lys Ala Glu Ala Glu Ser Arg Ala Glu Ala Arg Ile 740 745 750
- Glu Gly Glu Gly Ser Val Leu Gln Ala Lys Leu Lys Ala Gln Ala Leu 755 760 765
- Ala Ile Glu Thr Glu Ala Glu Leu Glu Arg Val Lys Lys Val Arg Glu
 770 775 780
- Met Glu Leu Ile Tyr Ala Arg Ala Gln Leu Glu Leu Glu Val Ser Lys 785 790 795 800
- Ala Gln Gln Leu Ala Asn Val Glu Ala Lys Lys Phe Lys Glu Met Thr

805 810 815

Glu Ala Leu Gly Pro Gly Thr Ile Arg Asp Leu Ala Val Ala Gly Pro 820 825 830

Glu Met Gln Val Lys Leu Leu Gln Ser Leu Gly Leu Lys Ser Thr Leu 835 840 845

Ile Thr Asp Gly Ser Ser Pro Ile Asn Leu Phe Ser Thr Ala Phe Gly 850 855 860

Leu Leu Gly Leu Gly Ser Asp Gly Gln Pro Pro Ala Gln Lys Met Gly 865 870 875 880

Asn Ser Asp Ser Glu Cys Pro Leu Ser His Asp Gly Tyr Cys Leu His 885 890 895

Asp Gly Val Cys Met Tyr Ile Glu Ala Leu Asp Lys Tyr Ala Cys Asn 900 905 910

Cys Val Val Gly Tyr Ile Gly Glu Arg Cys Gln Tyr Arg Asp Leu Lys 915 920 925

Trp Trp Glu Leu Arg Ala 930

<210> 139

<211> 2805

<212> DNA

<213> Artificial Sequence

<220>

<223> synthesized and Rattus norvegicus and Homo sapiens

<400> 139

aaggcgttgc tggactttga ggataagaat ggagacaagg tcatggcagg agacgagtgg	480
ctatttgagg gacctggcac ctacatccca cagaaggaag tggaagtcgt ggagatcatt	540
caggccacag tcatcaaaca gaaccaagca ctgcggctaa gggcccgaaa ggagtgcttt	600
gaccgggagg gcaagggggg cgtgacaggt gaggagtggc tggtccgatc cgtgggggct	660
tacctcccag ctgtctttga agaggtgctg gatctggtgg atgctgtgat ccttacagaa	720
aagactgccc tgcacctccg ggctctgcag aacttcaggg accttcgggg agtgctccac	780
cgcaccgggg aggaatggtt agtgacagtg caggacacag aagcccatgt tccagatgtc	840
tatgaggagg tgcttggggt agtacccatc accaccctgg gacctcgaca ctactgtgtc	900
attettgace caatgggace agaeggeaag aaceagetgg gacaaaageg tgttgteaag	960
ggagagaagt cctttttcct ccagccagga gagaggctgg agcgaggcat ccaggatgtg	1020
tatgtgctgt cagagcagca ggggctgcta ctgaaggcac tgcagcccct ggaggaggga	1080
gagagcgagg agaaggtete ceateaggee ggagaetget ggeteateeg tgggeeeetg	1140
gagtatgtgc catctgcaaa agtggaggtg gtggaggagc gtcaggctat ccctctggac	1200
caaaatgagg gcatctatgt gcaggatgtc aagacgggga aggtgcgggc tgtgattgga	1260
agcacctaca tgctgactca ggatgaagtc ctgtgggaaa aggagctgcc ttctggggtg	1320
gaggagetge tgaaettggg geatgaeeet etggeagaea ggggteagaa gggeaeagee	1380
aagccccttc agccctcagc tccaaggaac aagacccgag tggtcagcta ccgtgtcccg	1440
cacaatgcag cggtgcaggt ctatgactac agagccaaga gagcccgtgt ggtctttggg	1500
cccgagctag tgacactgga tcctgaggag cagttcacag tattgtccct ttctgccggg	1560
cgacccaage gtecteatge cegeegtgea etetgeetae tgetgggace tgatttettt	1620
actgatgtca tcaccatcga aactgcagat catgccaggt tgcagctgca gcttgcctac	1680
aactggcact ttgaactgaa gaaccggaat gaccctgcag aggcagccaa gcttttctcc	1740
gtgcctgact tcgtgggtga cgcctgcaag gccattgcat cccgagtccg gggggctgta	1800
gcctctgtca cctttgatga cttccataaa aactcagccc ggatcattcg aatggctgtt	1860
tttggctttg agatgtctga agacacaggt cctgatggca cactcctgcc caaggctcga	1920
gaccaggcag tetttececa aaacgggetg gtagtcagca gtgtggatgt gcagtcagtg	1980
gagecegtgg accagaggae eegggatgee etteagegea gegtteaget ggeeategaa	2040
attaccacca actcccagga ggcagcagcc aagcacgagg ctcagagact ggaacaggaa	2100
gcccgtggtc ggcttgagag gcagaagatc ttggaccagt cagaagctga aaaagcccgc	2160

aaggaactct tggagcttga ggctatgagc atggctgtgg agagcacggg taatgccaaa 2220 gcagaggctg agtcccgtgc agaggcagcg aggatcgaag gagaaggctc tgtgctgcag 2280 gccaagctca aggcacaggc gctagccatt gagacggagg ctgagttgga gcgagtaaag 2340 aaagtacgag agatggaact gatctatgcc cgggcccagt tggagctgga ggtgagcaag 2400 gcgcagcagc ttgccaatgt ggaggcaaag aagttcaagg agatgacaga ggcactgggc 2460 cccggcacca tcagggacct ggctgtggcc gggccagaga tgcaggtgaa acttctccag 2520 tccctgggcc tgaaatccac tctcatcacc gatggctcgt ctcccatcaa cctcttcagc 2580 acagectteg ggttgetggg getggggtet gatggteage egecageaca gaagatgggt 2640 aactetgact ecgaatgeee getgteteae gaeggttatt geetgeatga tggtgtttgt 2700 atgtatatcg aagctctgga caaatatgct tgcaactgtg ttgttggtta catcggtgag 2760 cgttgccagt atcgcgacct gaaatggtgg gaactgcgtg catga 2805

<220>

<223> synthesized and Homo sapiens and Human immunodeficiency virus
type 1

<400> 140

Pro Met Ala Thr Glu Glu Phe Ile Ile Arg Ile Pro Pro Tyr His Tyr
20 25 30

Ile His Val Leu Asp Gln Asn Ser Asn Val Ser Arg Val Glu Val Gly 35 40 45

Pro Lys Thr Tyr Ile Arg Gln Asp Asn Glu Arg Val Leu Phe Ala Pro 50 55 60

Met Arg Met Val Thr Val Pro Pro Arg His Tyr Cys Thr Val Ala Asn 65 70 75 80

Pro Val Ser Arg Asp Ala Gln Gly Leu Val Leu Phe Asp Val Thr Gly 85 90 95

<210> 140

<211> 921

<212> PRT

<213> Artificial Sequence

Gln Val Arg Leu Arg His Ala Asp Leu Glu Ile Arg Leu Ala Gln Asp 100 105 110

Pro Phe Pro Leu Tyr Pro Gly Glu Val Leu Glu Lys Asp Ile Thr Pro 115 120 125

Leu Gln Val Val Leu Pro Asn Thr Ala Leu His Leu Lys Ala Leu Leu 130 135 140

Asp Phe Glu Asp Lys Asp Gly Asp Lys Val Val Ala Gly Asp Glu Trp 145 150 155 160

Leu Phe Glu Gly Pro Gly Thr Tyr Ile Pro Arg Lys Glu Val Glu Val
165 170 175

Val Glu Ile Ile Gln Ala Thr Ile Ile Arg Gln Asn Gln Ala Leu Arg 180 185 190

Leu Arg Ala Arg Lys Glu Cys Trp Asp Arg Asp Gly Lys Glu Arg Val 195 200 205

Thr Gly Glu Glu Trp Leu Val Thr Thr Val Gly Ala Tyr Leu Pro Ala 210 215 220

Val Phe Glu Glu Val Leu Asp Leu Val Asp Ala Val Ile Leu Thr Glu 225 230 235 240

Lys Thr Ala Leu His Leu Arg Ala Arg Arg Asn Phe Arg Asp Phe Arg 245 250 255

Gly Val Ser Arg Arg Thr Gly Glu Glu Trp Leu Val Thr Val Gln Asp 260 265 270

Thr Glu Ala His Val Pro Asp Val His Glu Glu Val Leu Gly Val Val 275 280 285

Pro Ile Thr Thr Leu Gly Pro His Asn Tyr Cys Val Ile Leu Asp Pro 290 295 300

Val Gly Pro Asp Gly Lys Asn Gln Leu Gly Gln Lys Arg Val Val Lys 305 310 315 320

Gly Glu Lys Ser Phe Phe Leu Gln Pro Gly Glu Gln Leu Glu Gln Gly 325 330 335

Ile Gln Asp Val Tyr Val Leu Ser Glu Gln Gln Gly Leu Leu Arg 340 345 350

- Ala Leu Gln Pro Leu Glu Glu Glu Glu Asp Glu Glu Lys Val Ser His 355 360 365
- Gln Ala Gly Asp His Trp Leu Ile Arg Gly Pro Leu Glu Tyr Val Pro 370 375 380
- Ser Ala Lys Val Glu Val Val Glu Glu Arg Gln Ala Ile Pro Leu Asp 385 390 395 400
- Glu Asn Glu Gly Ile Tyr Val Gln Asp Val Lys Thr Gly Lys Val Arg
 405 410 415
- Ala Val Ile Gly Ser Thr Tyr Met Leu Thr Gln Asp Glu Val Leu Trp
 420 425 430
- Glu Lys Glu Leu Pro Pro Gly Val Glu Glu Leu Leu Asn Lys Gly Gln 435 440 445
- Asp Pro Leu Ala Asp Arg Gly Glu Lys Asp Thr Ala Lys Ser Leu Gln 450 455 460
- Pro Leu Ala Pro Arg Asn Lys Thr Arg Val Val Ser Tyr Arg Val Pro 465 470 475 480
- His Asn Ala Ala Val Gln Val Tyr Asp Tyr Arg Glu Lys Arg Ala Arg 485 490 495
- Val Val Phe Gly Pro Glu Leu Val Ser Leu Gly Pro Glu Glu Gln Phe 500 505 510
- Thr Val Leu Ser Leu Ser Ala Gly Arg Pro Lys Arg Pro His Ala Arg 515 520 525
- Arg Ala Leu Cys Leu Leu Gly Pro Asp Phe Phe Thr Asp Val Ile 530 535 540
- Thr Ile Glu Thr Ala Asp His Ala Arg Leu Gln Leu Gln Leu Ala Tyr 545 550 555 560
- Asn Trp His Phe Glu Val Asn Asp Arg Lys Asp Pro Gln Glu Thr Ala

565 570 575

Lys Leu Phe Ser Val Pro Asp Phe Val Gly Asp Ala Cys Lys Ala Ile 580 585 590

Ala Ser Arg Val Arg Gly Ala Val Ala Ser Val Thr Phe Asp Asp Phe 595 600 605

His Lys Asn Ser Ala Arg Ile Ile Arg Thr Ala Val Phe Gly Phe Glu 610 615 620

Thr Ser Glu Ala Lys Gly Pro Asp Gly Met Ala Leu Pro Arg Pro Arg 625 630 635 640

Asp Gln Ala Val Phe Pro Gln Asn Gly Leu Val Val Ser Ser Val Asp 645 650 655

Val Gln Ser Val Glu Pro Val Asp Gln Arg Thr Arg Asp Ala Leu Gln 660 665 670

Arg Ser Val Gln Leu Ala Ile Glu Ile Thr Thr Asn Ser Gln Glu Ala 675 680 685

Ala Ala Lys His Glu Ala Gln Arg Leu Glu Gln Glu Ala Arg Gly Arg 690 695 700

Leu Glu Arg Gln Lys Ile Leu Asp Gln Ser Glu Ala Glu Lys Ala Arg
705 710 715 720

Lys Glu Leu Leu Glu Leu Glu Ala Leu Ser Met Ala Val Glu Ser Thr 725 730 735

Gly Thr Ala Lys Ala Glu Ala Glu Ser Arg Ala Glu Ala Ala Arg Ile 740 745 750

Glu Gly Glu Gly Ser Val Leu Gln Ala Lys Leu Lys Ala Gln Ala Leu
755 760 765

Ala Ile Glu Thr Glu Ala Glu Leu Gln Arg Val Gln Lys Val Arg Glu 770 775 780

Leu Glu Leu Val Tyr Ala Arg Ala Gln Leu Glu Leu Glu Val Ser Lys
785 790 795 800

Ala Gln Gln Leu Ala Glu Val Glu Val Lys Lys Phe Lys Gln Met Thr 805 810 815 Glu Ala Ile Gly Pro Ser Thr Ile Arg Asp Leu Ala Val Ala Gly Pro 820 825 Glu Met Gln Val Lys Leu Leu Gln Ser Leu Gly Leu Lys Ser Thr Leu Ile Thr Asp Gly Ser Thr Pro Ile Asn Leu Phe Asn Thr Ala Phe Gly 855 Leu Leu Gly Met Gly Pro Glu Gly Gln Pro Leu Gly Arg Arg Val Ala 865 870 875 Ser Gly Pro Ser Pro Gly Glu Gly Ile Ser Pro Gln Ser Ala Gln Ala 885 890 Pro Gln Ala Pro Gly Asp Asn His Val Val Pro Val Leu Arg Tyr Gly 900 905 910 Arg Lys Lys Arg Arg Gln Arg Arg Arg 915 920 <210> 141 <211> 2766 <212> DNA

<213> Artificial Sequence

<220>

<223> synthesized and Homo sapiens and Human immunodeficiency virus
type 1

<400> 141

60 gaagagttca tcatccgcat ccccccatac cactatatcc atgtgctgga ccagaacagc 120 aacgtgtccc gtgtggaggt cgggccaaag acctacatcc ggcaggacaa tgagagggta 180 etgtttgccc ccatgcgcat ggtgaccgtc ccccacgtc actactgcac agtggccaac 240 cctgtgtctc gggatgccca gggcttggtg ctgtttgatg tcacagggca agttcgqctt 300 egecaegetg acctegagat ceggetggec caggaccect tececetgta eccaqqqqaq 360 gtgctggaaa aggacatcac acccctgcag gtggttctgc ccaacactgc cctccatcta 420 aaggcgctgc ttgattttga ggataaagat ggagacaagg tggtggcagg agatgagtgg 480

cttttcgagg	gacctggcac	gtacatcccc	cggaaggaag	tggaggtcgt	ggagatcatt	540
caggccacca	tcatcaggca	gaaccaggct	ctgcggctca	gggcccgcaa	ggagtgctgg	600
gaccgggacg	gcaaggagag	ggtgacaggg	gaagaatggc	tggtcaccac	agtaggggcg	660
tacctcccag	cggtgtttga	ggaggttctg	gatttggtgg	acgccgtcat	ccttacggaa	720
aagacagccc	tgcacctccg	ggeteggegg	aacttccggg	acttcagggg	agtgtcccgc	780
cgcactgggg	aggagtggct	ggtaacagtg	caggacacag	aggcccacgt	gccagatgtc	840
cacgaggagg	tgctgggggt	tgtgcccatc	accaccctgg	gcccccacaa	ctactgcgtg	900
attctcgacc	ctgtcggacc	ggatggcaag	aatcagctgg	ggcagaagcg	cgtggtcaag	960
ggagagaagt	ctttttcct	ccagccagga	gagcagctgg	aacaaggcat	ccaggatgtg	1020
tatgtgctgt	cggagcagca	ggggctgctg	ctgagggccc	tgcagcccct	ggaggagggg	1080
gaggatgagg	agaaggtctc	acaccagget	ggggaccact	ggctcatccg	cggacccctg	1140
gagtatgtgc	catctgccaa	agtggaggtg	gtggaggagc	gccaggccat	ccctctagac	1200
gagaacgagg	gcatctatgt	gcaggatgtc	aagaccggaa	aggtgcgcgc	tgtgattgga	1260
agcacctaca	tgctgaccca	ggacgaagtc	ctgtgggaga	aagagctgcc	tcccggggtg	1320
gaggagctgc	tgaacaaggg	gcaggaccct	ctggcagaca	ggggtgagaa	ggacacagct	1380
aagagcctcc	agcccttggc	gccccggaac	aagacccgtg	tggtcagcta	ccgcgtgccc	1440
cacaacgctg	cggtgcaggt	gtacgactac	cgagagaagc	gagcccgcgt	ggtcttcggg	1500
cctgagctgg	tgtcgctggg	tcctgaggag	cagttcacag	tgttgtccct	ctcagctggg	1560
cggcccaagc	gtccccatgc	ccgccgtgcg	ctctgcctgc	tgctggggcc	tgacttcttc	1620
acagacgtca	tcaccatcga	aacggcggat	catgccaggc	tgcaactgca	gctggcctac	1680
aactggcact	ttgaggtgaa	tgaccggaag	gacccccaag	agacggccaa	gctcttttca	1740
gtgccagact	ttgtaggtga	tgcctgcaaa	gccatcgcat	cccgggtgcg	gggggccgtg	1800
gcctctgtca	ctttcgatga	cttccataag	aactcagccc	gcatcattcg	cactgctgtc	1860
tttggctttg	agacctcgga	agcgaagggc	cccgatggca	tggecetgee	caggccccgg	1920
gaccaggctg	tcttccccca	aaacgggctg	gtggtcagca	gtgtggacgt	gcagtcagtg	1980
gagcctgtgg	atcagaggac	ccgggacgcc	ctgcaacgca	gcgtccagct	ggccatcgag	2040
atcaccacca	actcccagga	ageggeggee	aagcatgagg	ctcagagact	ggagcaggaa	2100
gecegeggee	ggcttgagcg	gcagaagatc	ctggaccagt	cagaagccga	gaaagctcgc	2160
aaggaacttt	tggagctgga	ggctctgagc	atggccgtgg	agagcaccgg	gactgccaag	2220

gcggaggccg	agtcccgtgc	ggaggcagcc	cggattgagg	gagaagggtc	cgtgctgcag	2280
gccaagctaa	aagcacaggc	cttggccatt	gaaacggagg	ctgagctcca	gagggtccag	2340
aaggtccgag	agctggaact	ggtctatgcc	cgggcccagc	tggagctgga	ggtgagcaag	2400
gctcagcagc	tggctgaggt	ggaggtgaag	aagttcaagc	agatgacaga	ggccataggc	2460
cccagcacca	tcagggacct	tgctgtggct	gggcctgaga	tgcaggtaaa	actgctccag	2520
tccctgggcc	tgaaatcaac	cctcatcacc	gatggctcca	ctcccatcaa	cctcttcaac	2580
acagcctttg	ggctgctggg	gatggggccc	gagggtcagc	ccctgggcag	aagggtggcc	2640
agtgggccca	gccctgggga	ggggatatcc	ccccagtctg	ctcaggcccc	tcaagctcct	2700
ggagacaacc	acgtggtgcc	tgtactgcgc	tacgggcgga	agaagcggcg	acagaggcga	2760
cggtga						2766

<210> 142

<211> 889

<212> PRT

<213> Artificial Sequence

<220>

<223> synthesized and Rattus norvegicus and Human immunodeficiency
 virus type 1

<400> 142

Pro Met Ala Thr Glu Glu Ala Ile Ile Arg Ile Pro Pro Tyr His Tyr
20 25 30

Ile His Val Leu Asp Gln Asn Ser Asn Val Ser Arg Val Glu Val Gly 35 40 45

Pro Lys Thr Tyr Ile Arg Gln Asp Asn Glu Arg Val Leu Phe Ala Pro 50 55 60

Val Arg Met Val Thr Val Pro Pro Arg His Tyr Cys Ile Val Ala Asn 65 70 75 80

Pro Val Ser Arg Asp Thr Gln Ser Ser Val Leu Phe Asp Ile Thr Gly 85 90 95

Gln Val Arg Leu Arg His Ala Asp Gln Glu Ile Arg Leu Ala Gln Asp 100 105 110

Pro Phe Pro Leu Tyr Pro Gly Glu Val Leu Glu Lys Asp Ile Thr Pro 115 120 125

- Leu Gln Val Val Leu Pro Asn Thr Ala Leu His Leu Lys Ala Leu Leu 130 135 140
- Asp Phe Glu Asp Lys Asn Gly Asp Lys Val Met Ala Gly Asp Glu Trp 145 150 155 160
- Leu Phe Glu Gly Pro Gly Thr Tyr Ile Pro Gln Lys Glu Val Glu Val
 165 170 175
- Val Glu Ile Ile Gln Ala Thr Val Ile Lys Gln Asn Gln Ala Leu Arg 180 185 190
- Leu Arg Ala Arg Lys Glu Cys Phe Asp Arg Glu Gly Lys Gly Arg Val
- Thr Gly Glu Glu Trp Leu Val Arg Ser Val Gly Ala Tyr Leu Pro Ala 210 215 220
- Val Phe Glu Glu Val Leu Asp Leu Val Asp Ala Val Ile Leu Thr Glu 225 230 235 240
- Lys Thr Ala Leu His Leu Arg Ala Leu Gln Asn Phe Arg Asp Leu Arg 245 250 255
- Gly Val Leu His Arg Thr Gly Glu Glu Trp Leu Val Thr Val Gln Asp 260 265 270
- Thr Glu Ala His Val Pro Asp Val Tyr Glu Glu Val Leu Gly Val Val 275 280 285
- Pro Ile Thr Thr Leu Gly Pro Arg His Tyr Cys Val Ile Leu Asp Pro 290 295 300
- Met Gly Pro Asp Gly Lys Asn Gln Leu Gly Gln Lys Arg Val Val Lys 305 310 315 320
- Gly Glu Lys Ser Phe Phe Leu Gln Pro Gly Glu Arg Leu Glu Arg Gly 325 330 335
- Ile Gln Asp Val Tyr Val Leu Ser Glu Gln Gln Gly Leu Leu Lys

340 345 350

Ala Leu Gln Pro Leu Glu Glu Gly Glu Ser Glu Glu Lys Val Ser His 355 360 365

Gln Ala Gly Asp Cys Trp Leu Ile Arg Gly Pro Leu Glu Tyr Val Pro 370 375 380

Ser Ala Lys Val Glu Val Val Glu Glu Arg Gln Ala Ile Pro Leu Asp 385 390 395 400

Gln Asn Glu Gly Ile Tyr Val Gln Asp Val Lys Thr Gly Lys Val Arg 405 410 415

Ala Val Ile Gly Ser Thr Tyr Met Leu Thr Gln Asp Glu Val Leu Trp 420 425 430

Glu Lys Glu Leu Pro Ser Gly Val Glu Glu Leu Leu Asn Leu Gly His 435 440 445

Asp Pro Leu Ala Asp Arg Gly Gln Lys Gly Thr Ala Lys Pro Leu Gln 450 455 460

Pro Ser Ala Pro Arg Asn Lys Thr Arg Val Val Ser Tyr Arg Val Pro 465 470 475 480

His Asn Ala Ala Val Gln Val Tyr Asp Tyr Arg Ala Lys Arg Ala Arg 485 490 495

Val Val Phe Gly Pro Glu Leu Val Thr Leu Asp Pro Glu Glu Gln Phe 500 505 510

Thr Val Leu Ser Leu Ser Ala Gly Arg Pro Lys Arg Pro His Ala Arg 515 520 525

Arg Ala Leu Cys Leu Leu Leu Gly Pro Asp Phe Phe Thr Asp Val Ile 530 535 540

Thr Ile Glu Thr Ala Asp His Ala Arg Leu Gln Leu Gln Leu Ala Tyr 545 550 555 560

Asn Trp His Phe Glu Leu Lys Asn Arg Asn Asp Pro Ala Glu Ala Ala 565 570 575

Lys Leu Phe Ser Val Pro Asp Phe Val Gly Asp Ala Cys Lys Ala Ile 580 585 590

- Ala Ser Arg Val Arg Gly Ala Val Ala Ser Val Thr Phe Asp Asp Phe 595 600 605
- His Lys Asn Ser Ala Arg Ile Ile Arg Met Ala Val Phe Gly Phe Glu 610 615 620
- Met Ser Glu Asp Thr Gly Pro Asp Gly Thr Leu Leu Pro Lys Ala Arg 625 630 635 640
- Asp Gln Ala Val Phe Pro Gln Asn Gly Leu Val Val Ser Ser Val Asp 645 650 655
- Val Gln Ser Val Glu Pro Val Asp Gln Arg Thr Arg Asp Ala Leu Gln 660 665 670
- Arg Ser Val Gln Leu Ala Ile Glu Ile Thr Thr Asn Ser Gln Glu Ala 675 680 685
- Ala Ala Lys His Glu Ala Gln Arg Leu Glu Gln Glu Ala Arg Gly Arg 690 695 700
- Leu Glu Arg Gln Lys Ile Leu Asp Gln Ser Glu Ala Glu Lys Ala Arg 705 710 715 720
- Lys Glu Leu Glu Leu Glu Ala Met Ser Met Ala Val Glu Ser Thr
 725 730 735
- Gly Asn Ala Lys Ala Glu Ala Glu Ser Arg Ala Glu Ala Arg Ile 740 745 750
- Glu Gly Glu Gly Ser Val Leu Gln Ala Lys Leu Lys Ala Gln Ala Leu 755 760 765
- Ala Ile Glu Thr Glu Ala Glu Leu Glu Arg Val Lys Lys Val Arg Glu 770 775 780
- Met Glu Leu Ile Tyr Ala Arg Ala Gln Leu Glu Leu Glu Val Ser Lys 785 790 795 800
- Ala Gln Gln Leu Ala Asn Val Glu Ala Lys Lys Phe Lys Glu Met Thr 805 810 815

Glu Ala Leu Gly Pro Gly Thr Ile Arg Asp Leu Ala Val Ala Gly Pro 820 825 830

Glu Met Gln Val Lys Leu Leu Gln Ser Leu Gly Leu Lys Ser Thr Leu 835 840 845

Ile Thr Asp Gly Ser Ser Pro Ile Asn Leu Phe Ser Thr Ala Phe Gly 850 855 860

Leu Leu Gly Leu Gly Ser Asp Gly Gln Pro Pro Ala Gln Lys Tyr Gly 865 870 875 880

Arg Lys Lys Arg Arg Gln Arg Arg Arg 885

<210> 143

<211> 2670

<212> DNA

<213> Artificial Sequence

<220>

<223> synthesized and Rattus norvegicus and Human immunodeficiency virus type 1

<400> 143 60 gaagaggcca tcatccgcat ccccccatac cactacatcc atgtgctgga ccagaacagt 120 aatgtgtccc gtgtggaggt tggaccaaag acctacatcc ggcaqqacaa tqaqaqqqta 180 etgtttgece cagttegeat ggtgaeegte ceeccaegee actaetgeat agtggeeaac 240 cctgtgtccc gggacaccca gagttctgtg ttatttgaca tcacaggaca agtccgactc 300 cggcacgctg accaggagat ccgactagcc caggacccct tccccctgta tccaggggag 360 gtgctggaaa aggacatcac cccactgcag gtggttctgc ccaacacagc actgcatctt 420 aaggcgttgc tggactttga ggataagaat ggagacaagg tcatggcagg agacgagtgg 480 ctatttgagg gacctggcac ctacatccca cagaaggaag tggaagtcgt ggagatcatt 540 caggccacag tcatcaaaca gaaccaagca ctgcggctaa gggcccgaaa ggagtgcttt 600 gaccgggagg gcaagggggg cgtgacaggt gaggagtggc tggtccgatc cgtgggggct 660 tacctcccag ctgtctttga agaggtgctg gatctggtgg atgctgtgat ccttacagaa 720 aagactgccc tgcacctccg ggctctgcag aacttcaggg accttcgggg agtgctccac 780 cgcaccgggg aggaatggtt agtgacagtg caggacacag aagcccatgt tccagatgtc 840

tatgaggagg	tgcttggggt	agtacccatc	accaccctgg	gacctcgaca	ctactgtgtc	900
attcttgacc	caatgggacc	agacggcaag	aaccagctgg	gacaaaagcg	tgttgtcaag	960
ggagagaagt	cctttttcct	ccagccagga	gagaggctgg	agcgaggcat	ccaggatgtg	1020
tatgtgctgt	cagagcagca	ggggctgcta	ctgaaggcac	tgcagcccct	ggaggaggga	1080
gagagcgagg	agaaggtete	ccatcaggcc	ggagactgct	ggctcatccg	tgggcccctg	1140
gagtatgtgc	catctgcaaa	agtggaggtg	gtggaggagc	gtcaggctat	ccctctggac	1200
caaaatgagg	gcatctatgt	gcaggatgtc	aagacgggga	aggtgcgggc	tgtgattgga	1260
agcacctaca	tgctgactca	ggatgaagtc	ctgtgggaaa	aggagetgee	ttctggggtg	1320
gaggagetge	tgaacttggg	gcatgaccct	ctggcagaca	ggggtcagaa	gggcacagcc	1380
aagccccttc	agccctcagc	tccaaggaac	aagacccgag	tggtcagcta	ccgtgtcccg	1440
cacaatgcag	cggtgcaggt	ctatgactac	agagccaaga	gagcccgtgt	ggtctttggg	1500
cccgagctag	tgacactgga	tcctgaggag	cagttcacag	tattgtccct	ttctgccggg	1560
cgacccaagc	gtcctcatgc	ccgccgtgca	ctctgcctac	tgctgggacc	tgatttcttt	1620
actgatgtca	tcaccatcga	aactgcagat	catgccaggt	tgcagctgca	gcttgcctac	1680
aactggcact	ttgaactgaa	gaaccggaat	gaccctgcag	aggcagccaa	gcttttctcc	1740
gtgcctgact	tcgtgggtga	cgcctgcaag	gccattgcat	cccgagtccg	gggggctgta	1800
gcctctgtca	cctttgatga	cttccataaa	aactcagccc	ggatcattcg	aatggctgtt	1860
tttggctttg	agatgtctga	agacacaggt	cctgatggca	cactcctgcc	caaggctcga	1920
gaccaggcag	tctttcccca	aaacgggctg	gtagtcagca	gtgtggatgt	gcagtcagtg	1980
gagcccgtgg	accagaggac	ccgggatgcc	cttcagcgca	gcgttcagct	ggccatcgaa	2040
attaccacca	actcccagga	ggcagcagcc	aagcacgagg	ctcagagact	ggaacaggaa	2100
gcccgtggtc	ggcttgagag	gcagaagatc	ttggaccagt	cagaagctga	aaaagcccgc	2160
aaggaactct	tggagcttga	ggctatgagc	atggctgtgg	agagcacggg	taatgccaaa	2220
gcagaggctg	agtcccgtgc	agaggcagcg	aggatcgaag	gagaaggctc	tgtgctgcag	2280
gccaagctca	aggcacaggc	gctagccatt	gagacggagg	ctgagttgga	gcgagtaaag	2340
aaagtacgag	agatggaact	gatctatgcc	cgggcccagt	tggagctgga	ggtgagcaag	2400
gegeageage	ttgccaatgt	ggaggcaaag	aagttcaagg	agatgacaga	ggcactgggc	2460
cccggcacca	tcagggacct	ggctgtggcc	gggccagaga	tgcaggtgaa	acttctccag	2520
tccctgggcc	tgaaatccac	tctcatcacc	gatggctcgt	ctcccatcaa	cctcttcagc	2580

acagccttcg	ggttgctggg	gctggggtct	gatggtcagc	cgccagcaca	gaagtacggg	2640
cogaagaagc	ggcgacagag	gcgacggtga				2670

WO 2004/081533

PCT/US2004/007434