Gradient Based Learning

:≡ Week	THURS. Week 5
	HW2 Due — (Multi-Class Classification)
Assignment Done	✓
■ Due Date	@February 10, 2023 11:59 PM
✓ Notes Done	✓

Announcements

Homework 3 has been released as of today.

• It involves implementing LDA and logistic regression.

Class Notes

Logistic Regression Review

With logistic regression, we ask whether we can take the sum of the features, with some weight, and get a value that gives us a probability of class 1 in binary classification.

- Goal: Learn weights that gives us the best classification
- We want to set up an *objective function*
 - We begin with the **likelihood** function, which depends on what y is.
 - Want to **maximize** this value as much as possible
 - To make calculus easier, we take the log of this likelihood, giving us the <u>log</u> likelihood.
 - Since many objective functions are called loss functions, we can negate this log likelihood function to minimize as much as possible.

Gradient Based Learning 1

- Essentially, we want weights and bias that will minimize this function as much as possible.
- To calc these weights, we can attempt:
 - A direct solution
 - Take derivate with respect to our weight, set it equal to 0, and solve for those weights.
 - Pros: Global solution
 - Cons: May not be feasible or even possible to solve
 - NOT possible with log likelihood function
 - A iterative solution
 - Start with an init guess and use derivatives wrt our weights to update the weights iteratively
 - Pros: Flexible
 - <u>Cons:</u> May take a while to get to a good solution (which may not be a global one)
 - This iterative approach is often called **gradient ascent** or **hill climbing**.

Notes continued on Logistic Regression notes from previous class

Gradient Based Learning 2