Categorical Semantics of Type Theories

Harley D. Eades III Computer Science The University of Iowa

April 30, 2013

Abstract

Category theory and its applications to type theory are well known and have been explored extensively. In this manuscript we present basic category theory and give a categorical semantics to a large class of type theories. In this document we emphasize rigor and give as much detail as possible with respect to the abilities of the authors. This document will also be self contained.

Contents

	0.1	Introdu	ction	. 2
1	Cate	egory T	eory	3
		1.0.1	Initial Algebras	. 3
			Final Coalgebras	
2	Sim	ple Typ	Theories	4
	2.1	A Met	framework	. 4
	2.2	The Tl	eory of Constants	. 4

List of Figures

2.1	Syntax of the theory of constants	4
2.2	Type assignment for the theory of constants	5
2 3	Definitional equality for the theory of constants	5

0.1 Introduction

We give an amazingly rich and engaging introduction.

Chapter 1

Category Theory

1.0.1 Initial Algebras

1.0.2 Final Coalgebras

Lets consider the infinite stream of ones.

1::1::1::1...

Now what can be said about such an object? We definitely can make observations about it. That is, we can observe that, say, the first element is a 1. In addition to that we can observe that the second element is also a 1. Furthermore, we can make the observation that what follows the second element is still an infinite streams of ones. We can define this stream using a few morphisms. That is head : $\mathcal{A} \to \{1\}$ and next : $\mathcal{A} \to \mathcal{A}$ are the morphisms, where \mathcal{A} is some fixed set. Now notice that for any $a \in \mathcal{A}$ we have head(a) = 1, and head $(a) = a' \in \mathcal{A}$. Now if we compose these two we obtain head $(\operatorname{next}(a)) = \operatorname{head}(a') = 1$. Thus, using these morphisms we can completely define our stream above by taking for each position $n \in \mathbb{N}$ in the stream head $(\operatorname{next}^n(a))$ to be the value at that position for any $a \in \mathcal{A}$. These two morphisms head and next are the observations we can make about the element a. It just happens, in this simple example, that the observations are the same for all elements of \mathcal{A} .

At this point we can take the product of the two morphisms head and next to obtain the morphism $\langle \mathsf{head}, \mathsf{next} \rangle : \mathcal{A} \to \{1\} \times \mathcal{A}$. If we define the functor $\mathcal{F}(X) := \{1\} \times X$ then we can redefine the product as $\langle \mathsf{head}, \mathsf{next} \rangle : \mathcal{A} \to \mathcal{F}(\mathcal{A})$. Furthermore, if we make $\{1\}$ arbitrary and call it say \mathcal{B} then we obtain the functor $\mathcal{F}(X) := \mathcal{B} \times X$. Using this new definition of the functor \mathcal{F} and $\langle \mathsf{head}, \mathsf{next} \rangle : \mathcal{A} \to \mathcal{F}(\mathcal{A})$ we can define any infinite stream of elements of \mathcal{B} . Taking the functor \mathcal{F} and the pair $(\mathcal{B}, \langle \mathsf{head}, \mathsf{next} \rangle)$ we obtain what is called a coalgebra.

Chapter 2

Simple Type Theories

2.1 A Metaframework

We will use Martin-Löf's Type Theory for our metaframework throughout this chapter. This will allow use to give precise types to all of the structures in our object languages. In fact all of the type theories discussed in this chapter can be rigorously defined within this framework where binding can be encoded using either de Bruijn indecies or using the locally nameless representation ¹ [?].

2.2 The Theory of Constants

We begin our journey into the world of categorical semantics of type theories by first showing how to interpret a simple algebraic theory consisting of a countably infinite set of variables, a finite set of constant types, a finite set of *i*-ary function symbols, a typing judgment, and a definitional equality judgment. This theory is called the theory of constants. We first give a formal definition of this theory in the presentation we will adopt for the reminder of this document. The syntax for the theory of constants is defined in Figure 2.1.

The free variables of the theory can be defined at the metalevel as de Bruijn indices, but we will use mathematical notation to simplify the presentation. They have type Term and are classified by constant types of type Type. The i-ary function symbols have type $\mathbf{Term}^i \Rightarrow \mathbf{Term}$. The constant types of the theory of constants have meta-type Type. Judgments are metastatements describing what type a term can be assigned. All of the judgments we will define can be defined at the metalevel as an inductive datatype where each rule of the judgment is defined as a constructor. If we call the typing judgment has_type at the type level then its type is $(\Gamma : [\mathbf{Term} \times \mathbf{Type}]) \Rightarrow (t : \mathbf{Term}) \Rightarrow (U : \mathbf{Type}) \Rightarrow \mathbf{Type}$. We denote this judgment by $\Gamma \vdash t : U$. The type of the definitional equality judgment is similar. We define the type assignment judgment in Figure 2.2 and the definitional equality judgment in Figure 2.3.

$$\begin{array}{ccc} (Types) & T & ::= & S \mid U \\ (Terms) & t & ::= & x \mid c \mid f \ x_1 \dots x_i \\ (Contexts) & \Gamma & ::= & x : T \mid \Gamma_1, \Gamma_2 \end{array}$$

Figure 2.1: Syntax of the theory of constants

¹We prefer the latter.

$$\frac{1}{\Gamma,x:S,\Gamma'\vdash x:S} \quad \text{Var} \quad \frac{1}{x_1:S_1,\,\dots,x_i:S_i\vdash f\,x_1\dots x_i:U} \quad \text{Fun}$$

$$\frac{1}{\Gamma\vdash c:U} \quad \text{Const}$$

Figure 2.2: Type assignment for the theory of constants

$$\frac{\Gamma \vdash t_1 = t_2 : T}{\Gamma \vdash t_1 = t_2 : T} \quad \text{Sym}$$

$$\frac{\Gamma \vdash t_1 = t_2 : T}{\Gamma \vdash t_2 = t_3 : T} \quad \text{Sym}$$

$$\frac{\Gamma \vdash t_1 = t_2 : T}{\Gamma \vdash t_2 = t_3 : T} \quad \text{Trans} \quad \frac{\Gamma \vdash t_1 = t_2 : T_1}{\Gamma, x : T_1 \vdash t = t' : T_2} \quad \text{Subst}$$

$$\frac{\Gamma \vdash t_1 = t_2 : T_1}{\Gamma \vdash [t_1/x]t = [t_2/x]t' : T_2} \quad \text{Subst}$$

Figure 2.3: Definitional equality for the theory of constants