Inhaltsverzeichnis

Αl	lgeme	ine Inform	atio	n	en	ι (I	let	zte	es	U	po	da	te	: 2	2.	D	ez	eı	mt)ei	r 2	20	15	0	U:	29) :1	.2	Cl	ĽΊ	.)								2
	Blatt 1.1 1.2 1.3 1.4 Blatt 2.1 2.2 2.3 2.4	Aufgabe 1 Aufgabe 2 Aufgabe 3 Aufgabe 4																														 		 	 	 	 	 	3 3 4 5 6 8 8 8 8 8
3	3.1 3.2 3.3 3.4	Aufgabe 1 Aufgabe 2 Aufgabe 3 Aufgabe 4																																					9 9 9 9
	4.1 4.2 4.3 4.4	Aufgabe 1 Aufgabe 2 Aufgabe 3 Aufgabe 4		 																																			10 10 10 11 11
5	5.1 5.2 5.3 5.4	Aufgabe 1 Aufgabe 2 Aufgabe 3 Aufgabe 4																																					12 12 12 12 12
6	6.1 6.2 6.3 6.4	Aufgabe 1 Aufgabe 2 Aufgabe 3 Aufgabe 4																																					13 13 13 14 14
7	7.1 7.2 7.3 7.4	Aufgabe 1 Aufgabe 2 Aufgabe 3 Aufgabe 4		 																																			15 15 15 15 15

Allgemeine Informationen

Dies ist eine Mitschrift des Übungsbetriebs der Vorlesung Analysis I für Informatiker und Statistiker im Wintersemester 2015/16 bei Prof. Dr. Peter Pickl. Ohne Anspruch auf Richtigkeit oder Vollständigkeit.

Die Mitschrift wird auf http://andreasellw.github.io/ana-lsg verwaltet und aktualisiert. Dort sind auch die .tex-Files zu finden.

1.1 Aufgabe 1

a)

$$\prod_{i=1}^{2} \left(\sum_{j=1}^{3} (ij)\right) = \left(\sum_{j=1}^{3} (1j)\right) \cdot \left(\sum_{j=1}^{3} (2j)\right) \tag{1.1.1}$$

$$= ((1 \cdot 1) + (1 \cdot 2) + (1 \cdot 3)) \cdot ((2 \cdot 1) + (2 \cdot 2) + (3 \cdot 2)) \tag{1.1.2}$$

$$= (1+2+3) \cdot (2+4+6) \tag{1.1.3}$$

$$=6\cdot12\tag{1.1.4}$$

$$=72 \tag{1.1.5}$$

b) Die Umbennung der Variablen *i*, *j* aus a) zu *k*, *m* ändert nichts am Rechenweg und somit auch nicht das Ergebnis. Das Ergebnis ist wieder 72.

c)

$$\sum_{m=1}^{3} \left(\prod_{k=1}^{2} (km) \right) = \left(\prod_{k=1}^{2} (k1) \right) + \left(\prod_{k=1}^{2} (k2) \right) + \left(\prod_{k=1}^{2} (k3) \right)$$
(1.1.6)

$$= (1 \cdot 1) \cdot (2 \cdot 1) + (1 \cdot 2) \cdot (2 \cdot 2) + (1 \cdot 3) \cdot (2 \cdot 3) \tag{1.1.7}$$

$$= (2+8+18) \tag{1.1.8}$$

$$=28$$
 (1.1.9)

d)

$$\prod_{k=1}^{2} (k \sum_{m=1}^{3} (m)) = (1 \sum_{m=1}^{3} (m)) \cdot (2 \sum_{m=1}^{3} (m))$$
(1.1.10)

$$= (1 \cdot (1+2+3)) \cdot (2 \cdot (1+2+3)) \tag{1.1.11}$$

$$= (1 \cdot 6) \cdot (2 \cdot 6) \tag{1.1.12}$$

$$=72$$
 (1.1.13)

e)

$$\sum_{m=1}^{3} \left(m \prod_{k=1}^{2} (k) \right) = \left(1 \prod_{k=1}^{2} (k) \right) + \left(2 \prod_{k=1}^{2} (k) \right) + \left(3 \prod_{k=1}^{2} (k) \right)$$
 (1.1.14)

$$= (1 \cdot (1 \cdot 2)) + (2 \cdot (1 \cdot 2)) + (3 \cdot (1 \cdot 2)) \tag{1.1.15}$$

$$= 2 + 4 + 6 \tag{1.1.16}$$

$$=12$$
 (1.1.17)

1.2 Aufgabe 2

a) Bemerkung: Bernoulli Induktionsanfang: n = 1

$$(1+x)^{1} = (1+x) \ge 1 + 1x \tag{1.2.1}$$

Induktionsvoraussetzung:

$$(1+x)^n \ge 1 + nx \qquad \forall n \in \mathbb{N} \tag{1.2.2}$$

Induktionsschritt: $n \rightarrow n+1$

Zu Zeigen ist

$$(1+x)^{(n+1)} \ge 1 + (n+1)x \tag{1.2.3}$$

Es gilt:

$$(1+x)^{(n+1)} = (1+x)^n \cdot \underbrace{(1+x)}_{\geq 0}$$

$$\stackrel{IV}{\geq} (1+nx)(1+x)$$
(1.2.4)

$$\stackrel{IV}{\ge} (1 + nx)(1 + x) \tag{1.2.5}$$

$$= 1 + x + nx + nx^2 ag{1.2.6}$$

$$= 1 + (n+1)x + \underbrace{(nx^2)}_{\geq 0}$$
 (1.2.7)

$$\geq 1 + (n+1)x \quad \Box \tag{1.2.8}$$

b) Bemerkung: Dies ist eine Erweiterung der gaußschem Summenformel. Induktionsanfang: n = 1

$$\sum_{k=1}^{1} k^2 = 1^2 = \frac{1 \cdot (1+1)(2 \cdot 1 + 2)}{6} = \frac{6}{6} = 1$$
 (1.2.9)

Induktionsvoraussetzung:

$$\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+2)}{6}$$
 (1.2.10)

Induktionsschritt: $n \rightarrow n+1$

Zu Zeigen ist

$$\sum_{k=1}^{n+1} k^2 = \frac{(n+1)(n+2)(2n+3)}{6}$$
 (1.2.11)

Es gilt:

$$\sum_{k=1}^{n+1} k^2 = (n+1)^2 + \sum_{k=1}^{n} k^2$$
 (1.2.12)

$$\stackrel{IV}{=} (n+1)^2 + \frac{n(n+1)(2n+1)}{6}$$
 (1.2.13)

$$= \frac{6(n+1)^2 + n(n+1)(2n+1)}{6}$$

$$= \frac{(n+1)(n+2)(2n+3)}{6} \qquad (1.2.14)$$

$$=\frac{(n+1)(n+2)(2n+3)}{6} \quad \Box \tag{1.2.15}$$

1.3 Aufgabe 3

Bemerkung: Einfach immer: Laut Vorlesung sieht man leicht, dass ... gilt.

- i) $1 \cdot n = n \cdot 1$
- ii) $n \cdot m = m \cdot n$

Laut Vorlesung gilt:

- a) $1 \cdot n = n$ $\forall n \in \mathbb{N}$
- b) $m \cdot n' = m \cdot n + m \quad \forall m, n \in \mathbb{N}$
- c) $m' \cdot n = m \cdot n + n \quad \forall m, n \in \mathbb{N}$

Zeige i)

$$n \cdot 1 = 1 \cdot n \stackrel{a)}{=} n \tag{1.3.1}$$

Induktionsanfang: n = 1

$$1 \cdot 1 = 1 \tag{1.3.2}$$

Induktionsvoraussetzung:

$$n \cdot 1 = 1 \cdot n = n \tag{1.3.3}$$

Induktionsschritt: $n \rightarrow n+1$

Zu Zeigen ist

$$(n+1) \cdot 1 = 1 \cdot (n+1) = n+1 \tag{1.3.4}$$

Es gilt:

$$(n+1)\cdot 1 = n'\cdot 1\tag{1.3.5}$$

$$\stackrel{c)}{=} n \cdot 1 + 1 \tag{1.3.6}$$

$$\stackrel{IV}{=} n+1 \quad \Box \tag{1.3.7}$$

Zeige nun ii)

$$n \cdot m = m \cdot n \qquad \forall m, n \in \mathbb{N} \tag{1.3.8}$$

Induktion über m.

Induktionsanfang: m = 1

$$n \cdot 1 \stackrel{i)}{=} 1 \cdot n \tag{1.3.9}$$

Induktionsvoraussetzung:

$$n \cdot m = m \cdot n \tag{1.3.10}$$

Induktionsschritt: $m \rightarrow m+1$

Zu Zeigen ist

$$n \cdot (m+1) = (m+1) \cdot n \tag{1.3.11}$$

Es gilt:

$$(m+1) \cdot n = m' \cdot n \tag{1.3.12}$$

$$\stackrel{c)}{=} m \cdot n + n \tag{1.3.13}$$

$$\stackrel{IV}{=} n \cdot m + n \tag{1.3.14}$$

$$\stackrel{b)}{=} n \cdot m' \tag{1.3.15}$$

$$= n \cdot (m+1) \quad \Box \tag{1.3.16}$$

1.4 Aufgabe 4

Finde Tripel (M, e, S).

Bemerkung: $M \leftarrow$ Mengensystem, $e \leftarrow$ neutrales Element, $S \leftarrow$ Abbildungsvorschrift.

a) i), ii) und iv) werden erfüllt. Das heißt entweder $k \in M$ existieren, sodass S(k) = e gilt [iii) verletzt, da 1 kein Nachfolger einer \mathbb{N} -Zahl ist], oder $\exists X, e \in X$ und $k \in X \cap M$ gilt $S(k) \in X$ aber $M \not\subset X$ [v) verletzt].

Beispiel:

$$M = \{e, \star\} \tag{1.4.1}$$

$$S(e) = \star \tag{1.4.2}$$

$$S(\star) = e \tag{1.4.3}$$

- i) $e \in M$ per Defintion von M
- ii) S(k) existiert für alle $k \in M$ und ist eindeutig.

iv)
$$S(k) = S(\tilde{k}) \Longrightarrow k = \tilde{k}$$
 $\forall k, \tilde{k} \in M$

- iii) ist wegen $S(\star) = e$ verletzt.
- b) (M,e,S) soll i), ii), iii) und v) erfüllen. Beispiel:

$$M = \{e, \star\} \tag{1.4.4}$$

$$S(e) = \star \tag{1.4.5}$$

$$S(\star) = \star \tag{1.4.6}$$

- iv) wegen $S(e) = S(\star) = \star \text{ jedoch } e \neq \star \text{ verletzt.}$
- c) (M,e,S) verletzt iv) und v), erfüllt aber i), ii), iii). Beispiel:

$$M = \{e, \star <>\} \tag{1.4.7}$$

$$S(e) = \star \tag{1.4.8}$$

$$S(\star) = \star \tag{1.4.9}$$

$$S(<>) = \star \tag{1.4.10}$$

i), ii), iii) offensichtlich erfüllt. iv) nach b) verletzt.

Sei dazu $X = \{e, \star\}$. Dann ist $e \in X$, $S(e) = \star \in X$

Aber, weil $<> \notin X$ ist $M \not\subset X$. Also v) verletzt.

2.1 Aufgabe 1

- a) Bemerkung: $\Leftrightarrow \longleftarrow$ genau, wenn dann $a \sim_a b \Leftrightarrow r = \widetilde{r}$, wobei $a = m \cdot 7 + r$ und $b = \widetilde{m} \cdot 7 + \widetilde{r}$ $(m, \widetilde{m}, r, \widetilde{r} \in \mathbb{N}_0)$
 - Reflexivität: ist offensichtlich.
 - Symmetrie: ist offensichtlich.
 - Transitivität: Sei dazu $a \sim b \wedge b \sim c$. Dann gilt

$$a = m \cdot 7 + r \text{ und } b = k \cdot 7 + \widetilde{r}$$
 (2.1.1)

$$b = n \cdot 7 + r \text{ und } c = l \cdot 7 + \widetilde{r}$$
(2.1.2)

Zu Zeigen ist $r = \tilde{r}$.

Wäre $r \neq \widetilde{r}$, dann wäre wegen k = n auch $b \neq b$. Fehler!

Also $r = \tilde{r}$.

Es handelt sich um eine Äquivalenzrelation, denn die Relation \sim_a ist reflexiv, symmetrisch und transitiv.

- b) $a \sim_b b \Leftrightarrow a^2 b^2 = k \cdot 7 \ (a, b, k \in \mathbb{Z})$
 - Reflexivität: $a^2 a^2 = 0.7 \checkmark$
 - Symmetrie: Sei dazu $a \sim b$. Dann $\exists k \in \mathbb{Z}$:

$$a^2 - b^2 = k \cdot 7 \Leftrightarrow b^2 - a^2 = -k \cdot 7$$
 (2.1.3)

Da $-k \in \mathbb{Z}$ folgt $b \sim a$.

• Transitivität: Sei $a \sim b$ und $b \sim c$. Dann $\exists k, l \in \mathbb{Z}$:

$$a^{2} - b^{2} = k \cdot 7 \, \wedge \, b^{2} - c^{2} = l \cdot 7 \, \checkmark \tag{2.1.4}$$

$$\Rightarrow a^2 - c^2 = k \cdot 7 + b^2 + l \cdot 7 - b^2 = \underbrace{(k+l)}_{\in \mathbb{Z}} \cdot 7 \checkmark$$
(2.1.5)

Es handelt sich um eine Äquivalenzrelation, denn die Relation \sim_b ist reflexiv, symmetrisch und transitiv.

2.2 Aufgabe 2

2.3 Aufgabe 3

2.4 Aufgabe 4

- 3.1 Aufgabe 1
- 3.2 Aufgabe 2
- 3.3 Aufgabe 3
- 3.4 Aufgabe 4

4.1 Aufgabe 1

Bemerkung: Archimedisches Axiom, Bernoulli Ungleichung

$$0 < q < 1 \tag{4.1.1}$$

zu Zeigen:

$$\forall \varepsilon > 0 : \exists N \in \mathbb{N} : q^n < \varepsilon \quad \forall n > N$$
 (4.1.2)

Archimedisches Axiom:

$$\forall \varepsilon > 0 : \exists N \in \mathbb{N} : 0 < \frac{1}{\varepsilon} < 1 + nx, \quad x > 0$$
 (4.1.3)

Bernoulli Ungleichung:

$$(1+x)^n \ge 1 + nx \qquad \forall x \ge -1, \quad \forall n \ge 0$$

$$(4.1.4)$$

$$\frac{1}{\varepsilon} \stackrel{Ar.}{<} 1 + nx \stackrel{Be.}{\le} (1+x)^n \tag{4.1.5}$$

Damit

$$\frac{1}{\varepsilon} < (1+x)^n \Leftrightarrow \frac{1}{(1+x)^n} < \varepsilon \tag{4.1.6}$$

Setze $x := \frac{1}{q} - 1$, dann folgt

$$\frac{1}{(\frac{1}{a})^n} < \varepsilon \Leftrightarrow q^n < \varepsilon \quad \Box \tag{4.1.7}$$

4.2 Aufgabe 2

Bemerkung: Cantor Diagonalargument

zu a)

Sei $M_j \ \forall j \in \mathbb{N}$ eine abzählbare Menge. Dann ist zu zeigen: $\bigcup_{j \in \mathbb{N}} M_j$ ist abzählbar. Da M_j abzählbar, existiert für jedes $j \in \mathbb{N}$ bijektive Abbildung $\rho_j : \mathbb{N} \to M_j$.

Nummeriere Elemente von M_i wie folgt:

$$m_1^j : \rho_j(1)...m_n^j := \rho_j(n)$$
 (4.2.1)

- 4.3 Aufgabe 3
- 4.4 Aufgabe 4

5.1 Aufgabe 1

 $(a_n)_{n\in\mathbb{N}},\,(b_n)_{n\in\mathbb{N}}$ konvergent. Zu zeigen

$$\lim_{n \to \infty} a_n \cdot b_n = a \cdot b \tag{5.1.1}$$

 $(a_n)_{n\in\mathbb{N}}$ konvergent, also insbesondere beschränkt. Das heißt $\exists K>0$ mit $|a_n|\leq K\ \forall n\in\mathbb{N}$. Durch eventuelle Vergrößerung von K gilt auch $|b_n|\leq K\ \forall n\in\mathbb{N}$.

- 5.2 Aufgabe 2
- 5.3 Aufgabe 3
- 5.4 Aufgabe 4

6.1 Aufgabe 1

6.2 Aufgabe 2

$$a_n = \frac{2n+1}{n+2}, \quad b_n = 1 + \frac{(-1)^n}{n} + \frac{1}{n^2} \qquad \forall n \in \mathbb{N}$$
 (6.2.1)

a)

$$a_1 = 1$$
, $a_2 = \frac{5}{4}$, $a_3 = \frac{7}{5}$, $a_4 = \frac{9}{6}$, $a_5 = \frac{11}{7}$
 $b_1 = 1$, $b_2 = \frac{7}{4}$, $b_3 = \frac{7}{9}$, $b_4 = \frac{21}{16}$, $b_5 = \frac{21}{25}$

b) Da $b_1 < b_2$ aber $b_2 > b_3$ kann b_n nicht monoton sein. a_n monoton steigend?

$$a_n < a_{n+1} \qquad \forall n \tag{6.2.2}$$

Es gilt:

$$a_n = \frac{2n+1}{n+2} = \frac{2(n+1)-3}{n+2} = 2 - \frac{3}{n+2} \Longrightarrow a_{n+1} = 2 - \frac{3}{n+3}$$

$$(6.2.3)$$

$$n+2 < n+3 \Longrightarrow \frac{1}{n+2} > \frac{1}{n+3} \Longrightarrow -\frac{1}{n+2} < -\frac{1}{n+3} \Longrightarrow 2 - \frac{3}{n+2} < 2 - \frac{3}{n+3}$$
 $\forall n$ (6.2.4)

c) Gibt es $c_a, C_a, c_b, C_b \in \mathbb{R}$: $c_a \le a_n \le C_a$

 $a_n \ge 0 \quad \forall n \in \mathbb{N}$, also $c_a = 0$.

Außerdem $a_n = 2 - \frac{3}{n+2}$ auch $a_n \le 2 \quad \forall n$

$$\Longrightarrow C_a = 2$$

Es gilt:

$$b_n = 1 + \frac{(-1)^n}{n} + \frac{1}{n^2} = \frac{n^2 + (-1)^n \cdot n + 1}{n^2}$$

$$\geq \frac{n^2 - n + 1}{n^2} \geq \frac{n^2 - 2n + 1}{n^2} = \frac{(n - 1)^2}{n^2} \geq 0 \qquad \forall n \in \mathbb{N}$$
(6.2.5)

$$\Longrightarrow c_b = 0$$

Außerdem $\frac{1}{n} \le 1$, $\frac{1}{n^2} \le 1$.

Also

$$b_n = 1 + \frac{(-1)^n}{n} + \frac{1}{n^2} \le 1 + \frac{1}{n} + \frac{1}{n^2} \le 3$$

$$\Longrightarrow C_b = 3$$

d) Konvergenz?

 a_n : monotone Folgen und beschränkt $\stackrel{VL}{\Longrightarrow}$ konvergent. b_n : $\frac{1}{n}$, $\frac{1}{n^2}$ sind Nullfolgen und wegen ...

6.3 Aufgabe 3

6.4 Aufgabe 4

- 7.1 Aufgabe 1
- 7.2 Aufgabe 2
- 7.3 Aufgabe 3
- 7.4 Aufgabe 4