

Applications

- High Frequency Switching and Synchronous Rectification.
- DC/DC Converter.
- Motor Drivers.

N-Ch 80V Fast Switching MOSFETs

Product Summary

V _{DS}	80	V
R _{DS(ON),MAX}	8.7	mΩ
I _D	70	Α

Features

- 100% EAS Guaranteed
- Green Device Available
- Super Low Gate Charge
- Excellent CdV/dt effect decline
- Advanced high cell density Trench technology

TO-252 Pin Configuration

Absolute Maximum Ratings

Symbol	Parameter	Rating	Units
V _{DS}	Drain-Source Voltage	80	V
V _{GS}	Gate-Source Voltage	± 20	V
I _D @T _C =25°C	Continuous Drain Current, V _{GS} @ 10V ^{1,6}	70	Α
I _D @T _C =100°C	Continuous Drain Current, V _{GS} @ 10V ^{1,6}	38	Α
I _{DM}	Pulsed Drain Current ²	200	Α
EAS	Single Pulse Avalanche Energy ³	45	mJ
I _{AS}	Avalanche Current	30	A
P _D @T _C =25°C	Total Power Dissipation ⁴	55	W
T _{STG}	Storage Temperature Range	-55 to 150	°C
TJ	Operating Junction Temperature Range	-55 to 150	°C

Thermal Data

Symbol	Parameter	Тур.	Max.	Unit
R _{θJA}	Thermal Resistance Junction-Ambient ¹		62	°C/W
Rejc	Thermal Resistance Junction-Case ¹		2.4	°C/W

Electrical Characteristics (T_J=25 °C, unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
BV_{DSS}	Drain-Source Breakdown Voltage	V_{GS} =0 V , I_D =250 u A	80			٧
R _{DS(ON)}	Static Drain-Source On-Resistance ²	V_{GS} =10V , I_D =10A			8.7	$\mathbf{m}\Omega$
R _{DS(ON)}	Static Drain-Source On-Resistance ²	V _{GS} =4.5V , I _D =10A			13	mΩ
$V_{\text{GS(th)}}$	Gate Threshold Voltage	V_{GS} = V_{DS} , I_D =250uA	1.2		2.3	V
1	Drain-Source Leakage Current	V_{DS} =64V , V_{GS} =0V , T_J =25°C			1	^
I_{DSS}	Diain-Source Leakage Current	V _{DS} =64V , V _{GS} =0V , T _J =55°C			5	uA
I_{GSS}	Gate-Source Leakage Current	V_{GS} = ± 20V , V_{DS} =0V			± 100	nA
gfs	Forward Transconductance	V _{DS} =5V , I _D =20A		70		S
R _g Gate Resistance		V_{DS} =0 V , V_{GS} =0 V , f=1 MHz		1.5		Ω
Qg	Total Gate Charge (10V)			29		
Qgs	Gate-Source Charge	VDS=40V , VGS=10V , ID=10A		7.7		nC
Qgd	Gate-Drain Charge			5.3		
Td(on)	Turn-On Delay Time			6.3		
Tr	Rise Time	VDD=40V , VGS=10V , RG= 3.3Ω ,		19		no
Td(off)	Turn-Off Delay Time	ID=10A		9.4		ns
Tf	Fall Time			36		
Ciss	Input Capacitance			1738		
Coss	Output Capacitance	VDS=40V , VGS=0V , f=1MHz		317		pF
Crss	Reverse Transfer Capacitance			12		

Diode Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Is	Continuous Source Current ^{1,5}	V _G =V _D =0V , Force Current			70	Α
V _{SD}	Diode Forward Voltage ²	V _{GS} =0V , I _S =A , T _J =25°C			1.2	V
t _{rr}	Reverse Recovery Time			35		nS
Qrr	Reverse Recovery Charge	I _F =10A , dl/dt=100A/μs , T _J =25°C		62		nC

Note

- 1. The data tested by surface mounted on a 1 inch² FR-4 board with 2OZ copper.
- 2.The data tested by pulsed , pulse width $\,\leq\,\,300\text{us}$, duty cycle $\,\leq\,\,2\%$
- 3. The EAS data shows Max. rating . The test condition is V_{DD} =25V, V_{GS} =10V,L=0.1mH, I_{AS} =30A
- 4.The power dissipation is limited by 150°C junction temperature
- 5. The data is theoretically the same as I_D and I_{DM} , in real applications , should be limited by total power dissipation.
- 6. The maximum current rating is package limited.

Typical Characteristics

Fig.1 Typical Output Characteristics

Fig.3 Source Drain Forward Characteristics

Fig.5 Normalized $V_{\text{GS(th)}}$ vs. T_{J}

Fig.2 On-Resistance vs G-S Voltage

Fig.4 Gate-Charge Characteristics

Fig.6 Normalized RDSON vs. TJ

Fig.7 Capacitance

Fig.8 Safe Operating Area

Fig.9 Normalized Maximum Transient Thermal Impedance

EAS= $\frac{1}{2}$ L x I_{AS}^2 x

Fig.10 Switching Time Waveform

Fig.11 Unclamped Inductive Switching Waveform

TO252-2L Package Outline

CVMDCIC	MILLIMETERS		INCHES		
SYMBOLS	MIN	MAX	MIN	MAX	
Α	2.18	2.40	0.086	0.095	
A1	N 5 8	0.2	1.5	0.008	
b	0.68	0.9	0.026	0.036	
b3	4.95	5.46	0.194	0.215	
С	0.43	0.89	0.017	0.035	
D	5.97	6.22	0.235	0.245	
D1	5.300REF		0.209REF		
E	6.35	6.73	0.250	0.265	
E1	4.32		0.170	-	
е	2.286BSC		0.09BSC		
Н	9.4	10.5	0.370	0.413	
L	1.38	1.78	0.054	0.070	
L1	2.90REF		0.114REF		
L2	0.51BSC		0.020BSC		
L3	0.88	1.28	0.034	0.050	
L4	0.5	1	0.019	0.039	
Θ	0°	8°	0°	8°	