UPLB Eliens ICPC Notebook (C++)

Contents

1	Data	Structures
	1.1	Union Find
	1.2	BIT
	1.3	Segment Tree
	1.4	Policy Tree
	1.5	Trie
2	Geon	netry
	2.1	Convex Hull
	2.2	Point inside polygon
	2.3	Welzian algo
	2.4	Orientation
	2.5	Line intersection
3	Grap	hs
	3.1	Dijkstra
	3.2	LCA
	3.3	Floyd Warshall
	3.4	Bellman Ford
	3.5	Prim's Algorithm for MST
	3.6	Topological Sort using DFS
	3.7	Cyclic Graph
	3.8	Strongly Connected components
	3.9	Articulation Points
	3.10	Bridges
	3.11	Euler's Circuit
	3.12	Ford-Fulkerson Max Flow
	3.13	Maximum Bipartite Matching
4	Flow	s 1
	4.1	MCMF
5	Math	1
•	5.1	CRT
	5.2	DigitDP
	5.3	DP DNC
	5.4	Euclidean
	5.5	Factors in n-1-3
	5.6	Fibo logn
	5.7	EGaussian Algorithm
	5.8	Lucas theorem
	5.9	Matrix expo
	5.10	Miller-Rabin
	5.11	Mobius
	5.12	SQRT CBRT tourist
	5.13	Euler totient
	5.14	FFT
	5.15	FFT-DNC
6	Num	ber Theory 1
•	6.1	Euler's Totient
	6.2	Modulo Inverse
	6.3	Binary Modular Exponentiation
	6.4	Prime Sieve
	6.5	Prime Factors
7	Strin	gs 1
1	Strin	6
	7.1 7.2	Knuth-Morris-Pratt Algorithm
	7.2	Suffix array
	1.3	z-function
8	EZP	\mathbf{Z}

1 Data Structures

1.1 Union Find

```
ll find(struct subset subsets[], ll i)
    if (subsets[i].parent != i)
        subsets[i].parent = find(subsets, subsets[i].
           parent);
    return subsets[i].parent;
void Union(struct subset subsets[], ll x, ll y)
    11 x_root = find(subsets, x);
    11 y_root = find(subsets, y);
    if (subsets[x_root].rank < subsets[y_root].rank)</pre>
        subsets[x_root].parent = y_root;
    else if (subsets[x_root].rank > subsets[y_root].rank
        subsets[y_root].parent = x_root;
    else
        subsets[y_root].parent = x_root;
        subsets[x root].rank++;
```

1.2 BIT

```
int bit[N];

void update(int idx, int val)
{
    while(idx<=n)</pre>
```

```
bit[idx]+=val;
                 idx+=idx&-idx;
int pref(int idx)
        int ans=0;
        while(idx>0)
                 ans+=bit[idx];
                 idx-=idx&-idx:
        return ans;
int rsum(int 1, int r)
        return pref(r) - pref(l-1);
Multiple BIT:
int bit[2][N];
void update(int i, int idx, int k)
        while(idx<=n)</pre>
                bit[i][idx]+=k;
                idx+=idx&-idx;
int pref(int i, int idx)
        int ans=0;
        while (idx>0)
                 ans+=bit[i][idx];
                idx-=idx&-idx;
        return ans;
int rsum(int i, int l, int r)
        return pref(i, r) - pref(i, l-1);
```

1.3 Segment Tree

```
void build(ll node, ll a, ll b) \{//1, 0, n-1\}
    if(a>b)
        return;
    if(a==b){
        tree[node] = arr[a]; //something
        return;
    build(node*2, a, (a+b)/2);
    build (node * 2 + 1, 1 + (a + b) / 2, b);
    tree[node] = tree[node*2]+tree[node*2+1]//something
ll query (ll node, ll a, ll b, ll i, ll j) \{\frac{1}{a=0}, b=n-1, i=1\}
   1, j=r
    if(a > b | | a > j | | b < i)
        return 0;
    if(a >= i \&\& b <= j) {
        return 0;//something
    11 q1 = query(node*2, a, (a+b)/2, i, j);
    11 q2 = query(1+node*2, 1+(a+b)/2, b, i, j);
    return 0;//something
ll update(ll node, ll a, ll b, ll i, ll val){
    if(a==b){
        arr[i]=val;
        tree[node];//something
    else{
        11 \text{ mid} = (a+b)/2;
        if (a<=i&&i<=mid) {
             update(2*node,a,mid,i,val);
        else{
             update(2*node+1, mid+1, b, i, val);
        tree[node] = (tree[2*node] + tree[2*node+1]) % mod; //
            something
```

1.4 Policy Tree

```
// policy tree (for o(1) dist in set)
#include <ext/pb_ds/assoc_container.hpp>
```

1.5 Trie

```
struct TrieNode
    struct TrieNode *children[ALPHABET SIZE];
    // isEndOfWord is true if the node represents
    // end of a word
    bool isEndOfWord;
} ;
// Returns new trie node (initialized to NULLs)
struct TrieNode *getNode(void)
    struct TrieNode *pNode = new TrieNode;
    pNode->isEndOfWord = false;
    for (int i = 0; i < ALPHABET SIZE; i++)</pre>
        pNode->children[i] = NULL;
    return pNode;
// If not present, inserts key into trie
// If the key is prefix of trie node, just
// marks leaf node
void insert(struct TrieNode *root, string key)
    struct TrieNode *pCrawl = root;
    for (int i = 0; i < key.length(); i++)</pre>
        int index = kev[i] - 'a';
        if (!pCrawl->children[index])
            pCrawl->children[index] = getNode();
        pCrawl = pCrawl->children[index];
    // mark last node as leaf
    pCrawl->isEndOfWord = true;
// Returns true if key presents in trie, else
// false
bool search(struct TrieNode *root, string key)
    struct TrieNode *pCrawl = root;
    for (int i = 0; i < key.length(); i++)</pre>
```

2 Geometry

2.1 Convex Hull

```
typedef pair<11, 11> point;
11 cross(point a, point b, point c) { return (b.x - a.x)
    * (c.y - a.y) - (b.y - a.y) * (c.x - a.x); }
vector<point> ConvexHull(vector<point> &p, ll n)
    11 sz = 0;
    vector<point> hull(n + n);
    sort(p.begin(), p.end());
    for (11 i = 0; i < n; ++i)
        while (sz > 1 and cross(hull[sz - 2], hull[sz -
           1], p[i]) <= 0)
           --sz;
        hull[sz++] = p[i];
    for (11 i = n - 2, j = sz + 1; i >= 0; --i)
        while (sz >= j and cross(hull[sz - 2], hull[sz -
            1], p[i]) <= 0)
            --sz;
        hull[sz++] = p[i];
    hull.resize(sz - 1);
    return hull;
```

2.2 Point inside polygon

```
const 11 N = 100009;
struct point
   11 x, y;
} a[N];
double cross (const point &p1, const point &p2, const
   point &org)
{
    return ((p1.x - org.x) * 1.0) * (p2.y - org.y) - ((
       p2.x - org.x) * 1.0) * (p1.y - org.y);
inline bool comp(const point &x, const point &y)
    return cross(x, y, a[0]) >= 0;
bool inside(point &p)
    if (cross(a[0], a[n-1], p) >= 0)
        return false;
    if (cross(a[0], a[1], p) <= 0)</pre>
        return false;
    11 1 = 1, r = n - 1;
    while (1 < r)
        11 m = 1 + (r - 1) / 2;
        if (cross(a[m], p, a[0]) >= 0)
           1 = m + 1;
        else
            r = m;
    if (1 == 0)
        return false;
    return cross(a[1 - 1], a[1], p) > 0;
sort(a + 1, a + n, comp);
```

2.3 Welzian algo

```
//welzian algo
struct point {
    long double x;
    long double y;
};
struct circle {
    long double x;
    long double y;
```

```
long double r;
    circle() {}
    circle(long double x, long double y, long double r):
        x(x), y(y), r(r) {}
};
circle b_md(vector<point> R) {
    if (R.size() == 0) {
        return circle(0, 0, -1);
    } else if (R.size() == 1) {
        return circle(R[0].x, R[0].y, 0);
    } else if (R.size() == 2) {
        return circle((R[0].x+R[1].x)/2.0, (R[0].y+R[1].
           y)/2.0, hypot (R[0].x-R[1].x, R[0].y-R[1].y)
           /2.0);
    } else {
        long double D = (R[0].x - R[2].x) * (R[1].y - R
           [2].y) - (R[1].x - R[2].x) * (R[0].y - R[2].y)
        long double p0 = (((R[0].x - R[2].x) * (R[0].x + R
           [2].x) + (R[0].y - R[2].y) * (R[0].y + R[2].y)
           ) /2 * (R[1].y - R[2].y) - ((R[1].x - R[2].
           x) * (R[1].x + R[2].x) + (R[1].y - R[2].y) * (R[1].y)
           [1].y + R[2].y)) / 2 * (R[0].y - R[2].y))/D;
        long double p1 = (((R[1].x - R[2].x)*(R[1].x + R
           [2].x) + (R[1].y - R[2].y) * (R[1].y + R[2].y)
           ) /2 * (R[0].x - R[2].x) - ((R[0].x - R[2].
           x) * (R[0].x + R[2].x) + (R[0].y - R[2].y) * (R
           [0].y + R[2].y)) / 2 * (R[1].x - R[2].x))/D;
        return circle(p0, p1, hypot(R[0].x - p0, R[0].y
           - p1));
    }
circle b_minidisk(vector<point>& P, int i, vector<point>
    R) {
    if (i == P.size() || R.size() == 3) {
        return b_md(R);
    } else {
        circle D = b_{minidisk}(P, i+1, R);
        if (hypot(P[i].x-D.x, P[i].y-D.y) > D.r) {
            R.push_back(P[i]);
            D = b \min idisk(P, i+1, R);
        return D;
// Call this function.
circle minidisk(vector<point> P) {
    random_shuffle(P.begin(), P.end());
    return b minidisk(P, 0, vector<point>());
```

2.4 Orientation

2.5 Line intersection

```
bool on_segment(poll p, poll q, poll r)
    if (q.x \le max(p.x, r.x) \& \& q.x \ge min(p.x, r.x) \& \&
        q.y \le max(p.y, r.y) \&\& q.y >= min(p.q, r.y)
        return true;
    return false;
bool do_intersect(poll p1, poll q1, poll p2, poll q2)
    11 \text{ o1} = \text{orientation}(p1, q1, p2);
    11 	ext{ o2} = orientation(p1, q1, q2);
    11 \text{ o3} = \text{orientation}(p2, q2, p1);
    11 \text{ o4} = \text{orientation}(p2, q2, q1);
    if (01 != 02 && 03 != 04)
         return true;
    if (o1 == 0 && on_segment(p1, p2, q1))
        return true;
    else if (o2 == 0 && on_segment(p1, q2, q1))
        return true;
    else if (o3 == 0 && on_segment(p2, p1, q2))
         return true;
    else if (o4 == 0 && on_segment(p2, q1, q2))
```

```
return true;
}
return false;
```

3 Graphs

3.1 Dijkstra

```
void dijkstra(vector<vector<pair<ll, int>>> &adj, int n,
    int src, vector<ll> &dis)
    priority_queue<pair<11, int>, vector<pair<11, int>>,
        greater<pair<ll, int>>> pq;
    for (int i = 0; i < n; i++)
        dis[i] = INF;
    dis[src] = 0;
    pq.push({0, src});
    while (!pq.empty())
        auto p = pq.top();
        pq.pop();
        int u = p.second;
        if (dis[u] != p.first)
            continue;
        for (auto v : adj[u])
            if (dis[v.first] > dis[u] + v.second)
                dis[v.first] = dis[u] + v.second;
                pg.push({dis[v.first], v.first});
```

3.2 LCA

```
int parent[MAXN], depth[MAXN], f[MAXN][LOGN + 1];
vector <int> adj[MAXN];
void dfs(int u) {
   if (u != 1) {
      f[u][0] = parent[u];
      for (int i = 1; i <= LOGN; i++)</pre>
```

```
f[u][i] = f[f[u][i - 1]][i - 1];

for (int i = 0; i < (int) adj[u].size(); i++) {
    int v = adj[u][i];
    if (parent[v] == 0) {
        parent[v] = u;
        depth[v] = depth[u] + 1;dfs(v);
    }
}

int lca(int u, int v) {
    if (depth[u] < depth[v]) swap(u, v);
    for (int i = LOGN; i >= 0; i--)
        if (depth[f[u][i]] >= depth[v]) u = f[u][i];
    if (u == v) return v;
    for (int i = LOGN; i >= 0; i--)
        if (f[u][i] != f[v][i])
    u = f[u][i], v = f[v][i];
    return f[u][0];
}
```

3.3 Floyd Warshall

3.4 Bellman Ford

```
void bellman_ford(vector<vector<int>> &edges, int n, int
    m, int src, vector<int> &dis)
    for (int i = 0; i < n; i++)
        dis[i] = INF;
    for (int i = 0; i < n - 1; i++)
        for (int j = 0; j < m; j++)
            int u = edges[j][0], v = edges[j][1], w =
                edges[j][2];
            if (dis[u] < INF)</pre>
                dis[v] = min(dis[v], dis[u] + w);
    for (int i = 0; i < m; i++)
        int u = edges[i][0], v = edges[i][1], w = edges[
           i][2];
        if (dis[u] < INF && dis[u] + w < dis[v])
            cout << "The graph contains a negative cycle</pre>
                ." << '\n';
```

3.5 Prim's Algorithm for MST

```
vector<int> prim_mst(int n, vector<vector<pair<int, 11
>>> &adj) {
```

```
priority_queue<pair<ll, int>, vector<pair<ll, int>>,
   greater<pair<ll, int>>> pq;
int src = 0;
vector<ll> key(n, INF);
vector<int> parent(n, -1);
vector<bool> in_mst(n, false);
pq.push(make_pair(0, src));
kev[src] = 0;
while (!pq.empty()) {
  int u = pq.top().second;
  pq.pop();
  if(in_mst[u] == true) {
    continue;
  in mst[u] = true;
  for (auto p : adj[u]) {
    int v = p.first;
   11 w = p.second;
    if (in_mst[v] == false \&\& w < key[v]) {
     kev[v] = w;
     pq.push(make_pair(key[v], v));
     parent[v] = u;
return parent;
```

3.6 Topological Sort using DFS

```
void dfs(int v) {
  visited[v] = true;
  for (int u : adj[v]) {
    if (!visited[u])
        dfs(u);
  }
  ans.push_back(v);
}

void topological_sort() {
  visited.assign(n, false);
  ans.clear();
  for (int i = 0; i < n; ++i) {
    if (!visited[i])
        dfs(i);
  }
  reverse(ans.begin(), ans.end());
}</pre>
```

3.7 Cyclic Graph

```
bool is_cyclic_util(int u, vector<vector<int>> &adj,
    vector<bool> &vis, vector<bool> &rec)
{
    vis[u] = true;
    rec[u] = true;
    for (auto v : adj[u])
    {
        if (!vis[v] && is_cyclic_util(v, adj, vis, rec))
        {
            return true;
        }
        else if (rec[v])
        {
            return true;
        }
    }
    rec[u] = false;
    return false;
}
```

3.8 Strongly Connected components

```
void fill_order(int u, vector<vector<int>> &adj, vector<
    bool> &visited, stack<int> &stk)
{
    visited[u] = true;
    for (auto v : adj[u])
    {
        if (!visited[v])
        {
            fill_order(v, adj, visited, stk);
        }
        stk.push(u);
}

void get_scc(int n, vector<vector<int>> &adj)
{
    stack<int> stk;
    vector<bool> visited(n, false);
    for (int i = 0; i < n; i++)
        {
        if (!visited[i])
           {
                  fill_order(i, adj, visited, stk);
            }
        }
}</pre>
```

```
vector<vector<int>> transpose = get_transpose(n, adj
    ); // reverse graph
for (int i = 0; i < n; i++)
{
    visited[i] = false;
}
while (!stk.empty())
{
    int u = stk.top();
    stk.pop();
    if (!visited[u])
    {
        dfs(u, transpose, visited); // normal dfs
    }
}</pre>
```

3.9 Articulation Points

```
void APUtil(vector<vector<int>> &adj, int u, vector<bool</pre>
   > &visited.
            vector<int> &disc, vector<int> &low, int &
                time, int parent, vector<bool> &isAP)
    int children = 0;
    visited[u] = true;
    disc[u] = low[u] = ++time;
    for (auto v : adj[u])
        if (!visited[v])
            children++;
            APUtil(adj, v, visited, disc, low, time, u,
                isAP);
            low[u] = min(low[u], low[v]);
            if (parent != -1 \&\& low[v] >= disc[u])
                 isAP[u] = true;
        else if (v != parent)
            low[u] = min(low[u], disc[v]);
    if (parent == -1 \&\& \text{ children} > 1)
        isAP[u] = true;
```

```
void AP(vector<vector<int>> &adj, int n)
{
    vector<int> disc(n), low(n);
    vector<bool> visited(n), isAP(n);
    int time = 0, par = -1;
    for (int u = 0; u < n; u++)
    {
        if (!visited[u])
        {
            APUtil(adj, u, visited, disc, low, time, par , isAP);
        }
    for (int u = 0; u < n; u++)
    {
        if (isAP[u])
        {
            cout << u << " ";
        }
    }
}</pre>
```

3.10 Bridges

```
void bridge_util(vector<vector<int>> &adj, int u, vector
   <bool> &visited,
                 vector<int> &disc, vector<int> &low,
                    vector<int> &parent)
    static int time = 0;
    visited[u] = true;
    disc[u] = low[u] = ++time;
    list<int>::iterator i;
    for (auto v : adj[u])
        if (!visited[v])
            parent[v] = u;
            bridge_util(adj, v, visited, disc, low,
               parent);
            low[u] = min(low[u], low[v]);
            if (low[v] > disc[u])
                cout << u << " " << v << endl;
        else if (v != parent[u])
            low[u] = min(low[u], disc[v]);
```

```
}

void bridge(vector<vector<int>> &adj, int n)

vector<bool> visited(n, false);
vector<int> disc(n), low(n), parent(n, -1);
for (int i = 0; i < n; i++)

{
    if (!visited[i])
    {
        bridge_util(adj, i, visited, disc, low, parent);
    }
}
</pre>
```

3.11 Euler's Circuit

```
void print circuit (vector<vector<int>> &adj)
    map<int, int> edge count;
    for (int i = 0; i < adj.size(); i++)</pre>
        edge_count[i] = adj[i].size();
    if (!adj.size())
        return;
    stack<int> curr_path;
    vector<int> circuit;
    curr_path.push(0);
    int curr_v = 0;
    while (!curr_path.empty())
        if (edge_count[curr_v])
            curr_path.push(curr_v);
            int next_v = adj[curr_v].back();
            edge_count[curr_v]--;
            adj[curr_v].pop_back();
            curr_v = next_v;
        else
            circuit.push_back(curr_v);
            curr_v = curr_path.top();
            curr_path.pop();
```

```
}
for (int i = circuit.size() - 1; i >= 0; i--)
{
    cout << circuit[i] << ' ';
}
</pre>
```

3.12 Ford-Fulkerson Max Flow

```
bool bfs(int n, vector<vector<int>> &r_graph, int s, int
    t, vector<int> &parent)
    vector<bool> visited(n, false);
    queue<int> q;
    q.push(s);
    visited[s] = true;
    parent[s] = -1;
    while (!q.empty())
        int u = q.front();
        q.pop();
        for (int v = 0; v < n; v++)
            if (!visited[v] && r_graph[u][v] > 0)
                if (v == t)
                    parent[v] = u;
                    return true;
                q.push(v);
                parent[v] = u;
                visited[v] = true;
    return false;
int fordFulkerson(int n, vector<vector<int>> graph, int
   s, int t)
    int u, v;
    vector<vector<int>> r_graph;
    for (u = 0; u < n; u++)
        for (v = 0; v < n; v++)
            r_{graph}[u][v] = graph[u][v];
```

```
}
vector<int> parent;
int max_flow = 0;
while (bfs(n, r_graph, s, t, parent))
{
    int path_flow = INT_MAX;
    for (v = t; v != s; v = parent[v])
    {
        u = parent[v];
        path_flow = min(path_flow, r_graph[u][v]);
    }
    for (v = t; v != s; v = parent[v])
    {
        u = parent[v];
        r_graph[u][v] -= path_flow;
        r_graph[v][u] += path_flow;
    }
    max_flow += path_flow;
}
return max_flow;
```

3.13 Maximum Bipartite Matching

```
vector<bool> seen(m, false);
  if (bpm(n, m, bpGraph, u, seen, matchR))
  {
      result++;
    }
}
return result;
}
```

4 Flows

4.1 MCMF

```
//Works for negative costs, but does not work for
   negative cycles
//Complexity: O(min(E^2 *V log V, E logV * flow))
struct edge
        int to, flow, cap, cost, rev;
};
struct MinCostMaxFlow
int nodes;
vector<int> prio, curflow, prevedge, prevnode, q, pot;
vector<bool> inqueue;
vector<vector<edge> > graph;
MinCostMaxFlow() {}
MinCostMaxFlow(int n): nodes(n), prio(n, 0), curflow(n,
prevedge (n, 0), prevnode (n, 0), q(n, 0), pot (n, 0),
   inqueue(n, 0), graph(n) {}
void addEdge(int source, int to, int capacity, int cost)
        edge a = {to, 0, capacity, cost, (int)graph[to].
           size() };
        edge b = {source, 0, 0, -cost, (int)graph[source
           ].size()};
        graph[source].push_back(a);
        graph[to].push_back(b);
void bellman ford(int source, vector<int> &dist)
        fill(dist.begin(), dist.end(), INT_MAX);
        dist[source] = 0;
        int qt=0;
```

```
q[qt++] = source;
        for(int qh=0; (qh-qt)%nodes!=0;qh++)
        int u = q[qh%nodes];
        inqueue[u] = false;
        for(auto &e : graph[u])
                if(e.flow >= e.cap)
                         continue;
                 int v = e.to;
                 int newDist = dist[u] + e.cost;
                 if(dist[v] > newDist)
                         dist[v] = newDist;
                         if(!inqueue[v])
                                 inqueue[v] = true;
                                 q[qt++ % nodes] = v;
                 }
pair<int, int> minCostFlow(int source, int dest, int
   maxflow)
bellman_ford(source, pot);
int flow = 0;
int flow cost = 0;
while(flow < maxflow)</pre>
        priority_queue<pair<int, int>, vector<pair<int,</pre>
            int> >, greater<pair<int, int> > q;
        q.push({0, source});
        fill(prio.begin(), prio.end(), INT_MAX);
        prio[source] = 0;
        curflow[source] = INT_MAX;
        while(!q.empty())
                int d = q.top().first;
                int u = q.top().second;
                q.pop();
                if(d != prio[u])
                         continue;
                for(int i=0;i<graph[u].size();i++)</pre>
                edge &e=graph[u][i];
                int v = e.to;
                 if(e.flow >= e.cap)
```

```
continue;
                int newPrio = prio[u] + e.cost + pot[u]
                    - pot[v];
                if(prio[v] > newPrio)
                         prio[v] = newPrio;
                         q.push({newPrio, v});
                         prevnode[v] = u;
                         prevedge[v] = i;
                         curflow[v] = min(curflow[u], e.
                            cap - e.flow);
        if(prio[dest] == INT MAX)
                break;
        for(int i=0;i<nodes;i++)</pre>
                pot[i]+=prio[i];
        int df = min(curflow[dest], maxflow - flow);
        flow += df;
        for(int v=dest; v!=source; v=prevnode[v])
                edge &e = graph[prevnode[v]][prevedge[v
                    11;
                e.flow += df;
                graph[v][e.rev].flow -= df;
                flow_cost += df * e.cost;
return {flow, flow_cost};
};
```

5 Math

5.1 CRT

```
return ans;
}
```

5.2 DigitDP

```
vector<int> dig; // contains digits of number
11 dp [24] [204] [2];
11 get(int pos,int sum,int flag){ //flag checking length
    of prefix
        if(pos==dig.size()){
                 if(!pr[sum]){ // end condition
                         return 1;
                 else return 0;
        if(dp[pos][sum][flaq]!=-1){
                 return dp[pos][sum][flag];
        int lmt;
        11 ans=0;
        if(!flag){
                 lmt=dig[pos];
        }else{
                 lmt=9:
        for(int i=0;i<=lmt;i++) {</pre>
                 int nf=flag;
                 if(!flag&&i<lmt){</pre>
                         nf=1;
                 ans+=get(pos+1,sum+i,nf);
        return (dp[pos][sum][flaq]=ans);
```

5.3 DP DNC

```
#include<bits/stdc++.h>
using namespace std;
typedef long long l1;
l1 dp[809][8009],ind[809][8009],c[8009],a[8009];
l1 cost(int i,int j){
        if(i>j)return 0;
        l1 sum=(c[j]-c[i-1])*(j-i+1);
        return sum;
}
void go(int g,int l,int r,int start_ind,int end_ind){
```

```
if(l>r)return ;
         int mid=(1+r)/2;
         dp[q][mid]=LLONG MAX;
         for(int i=start_ind;i<=end_ind;i++) {</pre>
                  11 cur=dp[g-1][i]+cost(i+1, mid);
                  if(cur<dp[q][mid]){
                           dp[q][mid]=cur;
                           ind[q][mid]=i;
         go(q,l,mid-1,start_ind,ind[g][mid]);
         go(g, mid+1, r, ind[g] [mid], end_ind);
int main(){
        int n,G;cin>>n>>G;
         for (int i=1; i<=n; i++) {</pre>
                  cin>>a[i];
                  c[i]=a[i]+c[i-1];
         for(ll i=1;i<=n;i++) {</pre>
                 dp[1][i]=c[i]*i;
         for (int i=2; i<=G; i++) {</pre>
                 go(i,0,n,0,n);
         cout << dp[G][n];
```

5.4 Euclidean

```
11 mod(l1 a, l1 b)
// return a % b (positive value)
    while (a<0) a += b;
    return (a%b); }
11 gcd(ll a, ll b) {ll r; while (b)
    {r = a % b; a = b; b = r;} return a;} // computes
       qcd(a,b)
11 lcm(ll a, ll b) {return a / gcd(a, b) * b;} //
   computes lcm(a,b)
// returns d = gcd(a,b); finds x,y such that d = ax + by
ll extended_euclid(ll a, ll b, ll x, ll y) {
    11 xx = y = 0; 11 yy = x = 1;
    while (b) {
        11 q = a/b, t = b; b = a%b; a = t;
       t = xx; xx = x-q*xx; x = t;
        t = yy; yy = y-q*yy; y = t;
    return a;
```

```
// finds all solutions to ax = b \pmod{n}
vector<1l> modular_linear_equation_solver(11 a, 11 b, 11
    n) {
    11 x, y;
    vector<ll>solutions;
    11 d = extended_euclid(a, n, x, y);
    if (!(b%d)) {
        x = mod (x*(b/d), n);
        for (11 i = 0; i < d; i++)
            solutions.push back (mod(x + i*(n/d), n));
    return solutions;
// computes x and y such that ax + by = c; on failure, x
// Note that solution exists iff c is a mulltiple of gcd
void linear_diophantine(ll a, ll b, ll c, ll &x, ll &y)
    11 d = gcd(a,b);
    if (c%d)
        x = y = -1;
    else {
        extended_euclid(a,b,x,y);
        x = x*(c/d); y = y*(c/d);
    }
// Function to find modulo inverse of a number in log(m)
11 modInverse(ll a, ll m) {
    11 x, y;
    11 g = extended_euclid(a, m, x, y);
    if (g != 1) return -1; // Inverse mod doesnt
       exist
    11 \text{ res} = (x\%m + m) \% m;
    return res;
```

5.5 Factors in n-1-3

```
if(b\&1) res = (res + a) % n;
    a = (a + a) % n;
    b >>= 111;
  return res;
long long power(long long x, long long p, long long mod) {
    long long s=1, m=x;
    while(p) {
        if(p&1) s=mult(s,m,mod);
        >>=1;
        m=mult (m, m, mod);
    return s;
bool witness(long long a, long long n, long long u, int t) {
    long long x=power(a,u,n);
    for (int i=0;i<t;i++) {</pre>
        long long nx=mult(x,x,n);
        if (nx==1&&x!=1&&x!=n-1) return 1;
        x=nx;
    return x!=1;
bool millerRabin(long long n, int s=100) {
    if(n<2) return 0;</pre>
    if(!(n&1)) return n==2;
    long long u=n-1;
    int t=0;
    while(u&1) {
        u >> = 1;
        t++;
    while(s--) {
        long long a=randll()%(n-1)+1;
        if (witness(a,n,u,t)) return 0;
    return 1;
inline bool isPr(ll n) {
  return millerRabin( n , 1000 );
#define K 1000010
ll ans=1;
ll count_div_in_cube_root_n(ll n) {
  for( ll i=2;i<K&&i<=n;i++)if(!pr[ i ])</pre>
    if(n%i==0){
        11 \text{ tcnt} = 0;
        while (n \% i == 0)
                 tcnt++, n/=i;
```

```
ans*=(tcnt+111);
}
if(n!=1) {
    ll tmp=sqrt( n );
    if( isPr( n ) ) ans*=211;
    else if( tmp * tmp == n ) ans*=311;
    else ans*=411;
    }
    return ans;
}
```

5.6 Fibo logn

5.7 EGaussian Algorithm

```
//Gaussian elimination
const double EPS = 1e-9;
vector<double> GaussianElimination(const vector<vector<
   double> >& A, const vector<double>& b) {
    int i, j, k, pivot, n = A.size();
    vector<vector<double> > B(n, vector<double>(n+1));
    vector<double> x(n);
    for (i = 0; i < n; i++) {
        for (j = 0; j < n; j++) B[i][j] = A[i][j];
        B[i][n] = b[i];
    for(i = 0; i < n; i++) {
        for (pivot = j = i; j < n; ++j) if (fabs (B[j][i])
            > fabs(B[pivot][i])) pivot = j;
        swap(B[i], B[pivot]);
        if (fabs(B[i][i]) < EPS) return vector<double>();
        for (j = n; j \ge i; --j) B[i][j] /= B[i][i];
        for (j = 0; j < n; j++) if (i != j) for (k = i+1; k)
             <= n; ++k) B[\dot{j}][k] -= B[\dot{j}][\dot{i}] * B[\dot{i}][k];
    for (i = 0; i < n; i++) \times [i] = B[i][n];
```

```
return x;
```

5.8 Lucas theorem

```
//lucas thm
ll fact[14258+2];
11 ncr(ll n, ll r, ll MOD) {
        if(r>n)return 0;
        11 num=fact[n]%MOD;
        11 den=fact[r]%MOD*fact[n-r]%MOD;
        den=den%MOD;
        return (num*inv(den,MOD))%MOD;
11 lucas(ll n, ll r, ll MOD) {
        if (r>n) return 0;
        precompute in main
        ms(fact, 0, sz fact);
        fact[0]=fact[1]=1;
        for(int i=2;i<=MOD;i++){
                 fact[i]=i*fact[i-1];
                 fact[i]%=MOD;
        ] */
        vector<ll> nn,rr;
        11 tn=n, tr=r, rem=0;
        while(tn){
                 rem=tn%MOD;
                 nn.pb(rem);
                 tn=tn/MOD;
        rem=0:
        while(tr){
                 rem=tr%MOD;
                 rr.pb(rem);
                 tr=tr/MOD;
        11 ans=1;
        for (int i=0;i<rr.size();i++) {</pre>
                 ans=ans*ncr(nn[i],rr[i],MOD)%MOD;
                 ans=ans%MOD;
        return ans;
```

5.9 Matrix expo

```
// rec relation: Ai = c1 * Ai - 1 + c2 * Ai - 2 + ... ck * Ai - k
```

```
//A0=a0 A1=a1 ... Ak-1=ak-1
void multiply(11 F[2][2], 11 M[2][2]);
void power(11 F[2][2], 11 n);
ll ini[2];
ll fib(ll n) {
  11 F[2][2] = \{\{0, -1\}, \{1, (2*f) \text{ $MOD}\}\};
  // F = (0 \ 0 \ 0 \ \dots \ ck)
  // (1 0 0 ...ck-1)
       (0\ 1\ 0\ \dots ck-2)
       (....)
  // (0 0 0 ...1 c1)
  ..., ak 1
  power (F, n-1);
             //n-1 => n-k+1
  ll ans=(ini[1]%MOD*F[1][1]%MOD)%MOD+(ini[0]%MOD*F
     [0][1]%MOD)%MOD;
  if (ans<0) ans=(ans+MOD) %MOD;</pre>
  ans=(ans*I)%MOD;
  return ans;
void power(ll F[2][2], ll n){
  if(n == 0 | | n == 1)
      return:
  11 M[2][2] = \{\{0, -1\}, \{1, (2*f) \% MOD\}\};
  power (F, n/2);
  multiply(F, F);
  if (n%2 != 0) multiply(F, M);
void multiply(11 F[2][2], 11 M[2][2]){
  11 x = (F[0][0]%MOD*M[0][0]%MOD + F[0][1]%MOD*M
     [1][0]%MOD)%MOD;
  11 y = (F[0][0] MOD M[0][1] MOD + F[0][1] MOD M
     [1][1]%MOD)%MOD;
  11 z = (F[1][0] MOD M[0][0] MOD + F[1][1] MOD M
     [1][0]%MOD)%MOD;
  11 \text{ w} = (F[1][0] \text{ MOD} *M[0][1] \text{ MOD} + F[1][1] \text{ MOD} *M
      [1][1]%MOD)%MOD;
  if(x<0)x=(x+MOD)%MOD;
  if (y<0) y=(y+MOD) %MOD;
  if(z<0)z=(z+MOD)%MOD;
  if(w<0)w=(w+MOD)%MOD;
 F[0][0] = x;
 F[0][1] = y;
 F[1][0] = z;
 F[1][1] = w;
```

```
bool miller_rabin_primality(ll N) {
         static const int p
             [12] = \{2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37\};
         if (N<=1) return false;</pre>
         for(int i=0;i<12;++i){
                  if(p[i]==N)return true;
                   if(N%p[i]==0)return false;
         11 c = N-1, q=0;
         while (!(c&1))c>>=1, ++q;
         for (int i=0; i<12; ++i) {</pre>
                  ll k=fpow(p[i],c,N);
                   for (int j=0; j<g; ++j) {</pre>
                            11 \text{ kk=mult}(k,k,N);
                            if (kk==1\&\&k!=1\&\&k!=N-1)
                                      return false;
                            k=kk;
                   if (k!=1)
                            return false;
         return true;
```

5.11 Mobius

5.12 SQRT CBRT tourist

5.13 Euler totient

5.14 FFT

```
const double PI = 4*atan(1);
const int N=2e5+5;
const int MOD=13313;
int FFT_N=0;
vector<base> omega;
void init_fft(int n)
```

```
FFT_N = n;
        omega.resize(n);
        double angle = 2*PI/n;
        for (int i=0;i<n;i++)</pre>
                 omega[i]=base(cos(i*angle), sin(i*angle)
                    );
void fft(vector<base> &a)
        int n=a.size();
        if(n==1)
                 return;
        int half=n>>1;
        vector<base> even(half), odd(half);
        for (int i=0, j=0; i< n; i+=2, j++)
                 even[j]=a[i];
                 odd[j] = a[i+1];
        fft (even);
        fft (odd);
        int denominator=FFT_N/n;
        for(int i=0;i<half;i++)</pre>
                 base cur=odd[i] * omega[i*denominator];
                 a[i]=even[i] + cur;
                 a[i+half]=even[i] - cur;
void multiply(vector<int> &a, vector<int> &b, vector<int</pre>
   > &res)
        vector<base> fa(a.begin(), a.end());
        vector<base> fb(b.begin(), b.end());
        int n=1;
        while (n<2*max(a.size(), b.size()))</pre>
                 n < < =1:
        fa.resize(n);
        fb.resize(n);
        init fft(n);
        fft(fa);
        fft(fb);
        for (int i=0;i<n;i++)</pre>
                 fa[i] = conj(fa[i] * fb[i]);
        fft(fa);
```

```
res.resize(n);
for(int i=0;i<n;i++)
{
    res[i]=(long long)(fa[i].real()/n + 0.5)
    ;
    res[i]%=MOD;
}</pre>
```

5.15 FFT-DNC

```
#include <bits/stdc++.h>
using namespace std;
#define IOS ios::sync with stdio(0); cin.tie(0); cout.
   tie(0):
#define endl "\n"
#define int long long
typedef complex<double> base;
const double PI = 4*atan(1);
const int N=2e5+5;
const int MOD=13313;
int FFT N=0;
vector<base> omega;
void init fft(int n)
        FFT N = n;
        omega.resize(n);
        double angle = 2*PI/n;
        for(int i=0;i<n;i++)</pre>
                omega[i]=base(cos(i*angle), sin(i*angle)
                    );
void fft(vector<base> &a)
        int n=a.size();
        if(n==1)
                return;
        int half=n>>1;
        vector<base> even(half), odd(half);
        for (int i=0, j=0; i< n; i+=2, j++)
                even[j]=a[i];
```

```
odd[j] = a[i+1];
        fft (even);
        fft (odd);
        int denominator=FFT N/n;
        for(int i=0;i<half;i++)</pre>
                 base cur=odd[i] * omega[i*denominator];
                 a[i]=even[i] + cur;
                 a[i+half]=even[i] - cur;
void multiply(vector<int> &a, vector<int> &b, vector<int</pre>
   > &res)
        vector<base> fa(a.begin(), a.end());
        vector<base> fb(b.begin(), b.end());
        int n=1;
        while(n<2*max(a.size(), b.size()))</pre>
                 n < < =1;
        fa.resize(n);
        fb.resize(n);
        init fft(n);
        fft(fa);
        fft(fb);
        for (int i=0; i<n; i++)</pre>
                 fa[i] = conj(fa[i] * fb[i]);
        fft(fa);
        res.resize(n);
        for (int i=0; i < n; i++)</pre>
                 res[i]=(long long) (fa[i].real()/n + 0.5)
                 res[i]%=MOD;
int n, k, q, curlen, idx=0;
int a[N], f[N];
vector<int> res;
vector<vector<int> > ans[40];
vector<int> divide(int lo, int hi)
        vector<int> ret;
        if(lo==hi)
                 ret.resize(f[lo]+1);
                 for (int i=0; i<=f[lo]; i++)</pre>
```

```
ret[i]=1;
                 return ret;
        int mid=(lo+hi)>>1;
        vector<int> v1=divide(lo, mid);
        vector<int> v2=divide(mid+1, hi);
        multiply(v1, v2, ret);
        ret.resize((int)v1.size()+(int)v2.size()-1);
        return ret;
int32_t main()
        IOS;
        cin>>n>>k;
        for (int i=1; i<=n; i++)</pre>
                 cin>>a[i];
                 f[a[i]]++;
        vector<int> ans=divide(1, 2e5);
        cout << ans[k] << endl;</pre>
        return 0;
```

6 Number Theory

6.1 Euler's Totient

6.2 Modulo Inverse

```
11 mod_inv(11 a, 11 m)
{
    11 m0 = m;
    11 y = 0, x = 1;
    if (m == 1)
    {
        return 0;
    }
    while (a > 1)
    {
        11 q = a / m;
        11 t = m;
        m = a % m, a = t;
        t = y;
        y = x - q * y;
        x = t;
    }
    if (x < 0)
    {
        x += m0;
    }
    return x;
}</pre>
```

6.3 Binary Modular Exponentiation

6.4 Prime Sieve

```
void sieve(vector<bool> &is_prime, vector<int> &prime)
```

```
for (int i = 2; i < N; i++)
{
    if (!is_prime[i])
    {
        continue;
    }
    for (int j = i * i; j < N; j += i)
    {
        is_prime[j] = 0;
    }
}
for (int i = 2; i < N; i++)
{
    if (is_prime[i])
    {
        prime.push_back(i);
    }
}</pre>
```

6.5 Prime Factors

```
vector<int> prime_factors(int n)
{
    vector<int> res;
    for (int i = 2; i * i <= n; i++)
    {
        while (n % i == 0)
        {
            res.push_back(i);
            n /= i;
        }
    }
    if (n > 2)
    {
        res.push_back(n);
    }
    return res;
}
```

7 Strings

7.1 Knuth-Morris-Pratt Algorithm

```
void compute(string pat, int lps[])
{
    int len = 0, m = pat.length();
```

```
lps[0] = 0;
        int i = 1;
        while (i < m)
                 if (pat[i] == pat[len])
                          len++;
                          lps[i] = len;
                          <u>i</u>++;
                 else
                          if (len != 0)
                                   len = lps[len - 1];
                          else
                                   lps[i] = 0;
                                   <u>i</u>++;
void kmp(string text, string pat, int lps[])
        compute(pat, lps);
        int i = 0, j = 0;
        while (i < text.length())</pre>
                 if (pat[j] == text[i])
                          <u>i</u>++;
                           j++;
                 if (j == pat.length())
                          cout << "Found at " << i - j <<
                              "\n";
                          j = lps[j - 1];
                 else if (pat[j] != text[i] && i < text.</pre>
                     length())
                          if (j != 0)
                                   j = lps[j - 1];
                          else
```

7.2 Suffix array

```
struct suffix
    int index;
    int rank[2];
} ;
int cmp(struct suffix a, struct suffix b)
    return (a.rank[0] == b.rank[0]) ? (a.rank[1] < b.
       rank[1] ? 1 : 0) : (a.rank[0] < b.rank[0] ? 1 :</pre>
       0);
vector<int> buildSuffixArray(string txt)
    int n = txt.length();
    struct suffix suffixes[n];
    for (int i = 0; i < n; i++)
        suffixes[i].index = i;
        suffixes[i].rank[0] = txt[i] - 'a';
        suffixes[i].rank[1] = ((i + 1) < n) ? (txt[i +
           1 - 'a' : -1;
    sort(suffixes, suffixes + n, cmp);
    int ind[n];
    for (int k = 4; k < 2 * n; k = k * 2)
        int rank = 0;
        int prev_rank = suffixes[0].rank[0];
        suffixes[0].rank[0] = rank;
        ind[suffixes[0].index] = 0;
        for (int i = 1; i < n; i++)</pre>
            if (suffixes[i].rank[0] == prev_rank &&
                suffixes[i].rank[1] == suffixes[i - 1].
                rank[1])
                prev rank = suffixes[i].rank[0];
                suffixes[i].rank[0] = rank;
            else
```

7.3 z-function

8 EZPZ

8.1 fast io

```
void scanint(int &x)
{
   register int c = gc();
```

8.2 LIS nlogn

```
//lis NLOGN
int lis(int a[],int n){
        11 dp[n+3];
        //int lis[n+3];
        //ms(lis,0,sz lis);
        dp[0] = -LLONG MAX;
        for (int i=1; i<=n; i++) {</pre>
                 dp[i]=LLONG MAX;
        int anss=-1;
        for(int i=1;i<=n;i++) {</pre>
                 int l=1, r=n, ans;
                 while (1 \le r)
                          int mid=(1+r)/2;
                          if(a[i] <=dp[mid]) {
                                   ans=mid;
                                   r=mid-1;
                          }else{
                                   1=mid+1;
                 dp[ans]=a[i];
                 lis[i]=max(lis[i],ans);
         //
                 anss=max(anss,ans);
        return anss;
```

8.3 MOs

```
int N, Q;
long long current_answer;
long long cnt[100];
long long answers[100500];
int BLOCK_SIZE;
int arr[100500];
pair< pair<int, int>, int> queries[100500];
```

```
inline bool mo_cmp(const pair< pair<int, int>, int> &x,
        const pair< pair<int, int>, int> &v)
    int block_x = x.first.first / BLOCK_SIZE;
    int block_y = y.first.first / BLOCK_SIZE;
    if(block_x != block_y)
        return block x < block v;</pre>
    return x.first.second < y.first.second;</pre>
inline void add(int x)
    current_answer -= cnt[x] * cnt[x] * x;
    cnt[x]++;
    current_answer += cnt[x] * cnt[x] * x;
inline void remove(int x)
    current answer -= cnt[x] * cnt[x] * x;
    cnt[x]--;
    current_answer += cnt[x] * cnt[x] * x;
int main()
    cin.sync_with_stdio(false);
    cin >> N >> Q;
    BLOCK_SIZE = static_cast<int>(sqrt(N));
    for (int i = 0; i < N; i++)
        cin >> arr[i];
    for (int i = 0; i < Q; i++) {
        cin >> queries[i].first.first >> queries[i].
            first.second:
        queries[i].second = i;
    sort(queries, queries + Q, mo_cmp);
    int mo left = 0, mo right = -1;
    for (int i = 0; i < Q; i++) {
        int left = queries[i].first.first;
        int right = queries[i].first.second;
        while (mo_right < right) {</pre>
            mo right++;
            add(arr[mo right]);
        while (mo_right > right) {
            remove(arr[mo_right]);
            mo right--;
        while(mo left < left) {</pre>
            remove(arr[mo_left]);
```

```
mo_left++;
}
while(mo_left > left) {
    mo_left--;
    add(arr[mo_left]);
}
answers[queries[i].second] = current_answer;
}
for(int i = 0; i < Q; i++)
    cout << answers[i] << "\n";
return 0;
}</pre>
```

9 DYNAMIC

9.1 Longest Common Subsequence

```
else
             dp[i][j] = max(dp[i - 1][j], dp[i][j -
                1]);
vector<vector<int>> index(n + 1, vector<int>(m + 1))
vector<char> lcs(index + 1);
lcs[index] = ' \setminus 0';
int i = n, j = m;
while (i > 0 \&\& j > 0)
    if (x[i - 1] == y[i - 1])
        lcs[index - 1] = x[i - 1];
        j--;
        index--;
    else if (dp[i - 1][j] > dp[i][j - 1])
        i--;
    else
        j--;
cout << lcs << '\n';</pre>
```

2() 2(())	T .m=	
f(n) = O(g(n))	iff \exists positive c, n_0 such that $0 \le f(n) \le cg(n) \ \forall n \ge n_0$.	$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}, \sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}, \sum_{i=1}^{n} i^3 = \frac{n^2(n+1)^2}{4}.$
$f(n) = \Omega(g(n))$	iff \exists positive c, n_0 such that $f(n) \ge cg(n) \ge 0 \ \forall n \ge n_0$.	In general:
$f(n) = \Theta(g(n))$	iff $f(n) = O(g(n))$ and $f(n) = \Omega(g(n))$.	$\sum_{i=1}^{n} i^{m} = \frac{1}{m+1} \left[(n+1)^{m+1} - 1 - \sum_{i=1}^{n} \left((i+1)^{m+1} - i^{m+1} - (m+1)i^{m} \right) \right]$
f(n) = o(g(n))	iff $\lim_{n\to\infty} f(n)/g(n) = 0$.	$\sum_{i=1}^{n-1} i^m = \frac{1}{m+1} \sum_{k=0}^m {m+1 \choose k} B_k n^{m+1-k}.$
$\lim_{n \to \infty} a_n = a$	iff $\forall \epsilon > 0$, $\exists n_0$ such that $ a_n - a < \epsilon$, $\forall n \ge n_0$.	Geometric series:
$\sup S$	least $b \in \mathbb{R}$ such that $b \ge s$, $\forall s \in S$.	$\sum_{i=0}^{n} c^{i} = \frac{c^{n+1} - 1}{c - 1}, c \neq 1, \sum_{i=0}^{\infty} c^{i} = \frac{1}{1 - c}, \sum_{i=1}^{\infty} c^{i} = \frac{c}{1 - c}, c < 1,$
$\inf S$	greatest $b \in \mathbb{R}$ such that $b \le s$, $\forall s \in S$.	$\sum_{i=0}^{n} ic^{i} = \frac{nc^{n+2} - (n+1)c^{n+1} + c}{(c-1)^{2}}, c \neq 1, \sum_{i=0}^{\infty} ic^{i} = \frac{c}{(1-c)^{2}}, c < 1.$
$ \liminf_{n \to \infty} a_n $	$\lim_{n\to\infty}\inf\{a_i\mid i\geq n, i\in\mathbb{N}\}.$	Harmonic series: $n + n + 1 = n + n + 1 = n +$
$\limsup_{n \to \infty} a_n$	$\lim_{n \to \infty} \sup \{ a_i \mid i \ge n, i \in \mathbb{N} \}.$	$H_n = \sum_{i=1}^n \frac{1}{i}, \qquad \sum_{i=1}^n iH_i = \frac{n(n+1)}{2}H_n - \frac{n(n-1)}{4}.$
$\binom{n}{k}$	Combinations: Size k subsets of a size n set.	$\sum_{i=1}^{n} H_i = (n+1)H_n - n, \sum_{i=1}^{n} {i \choose m} H_i = {n+1 \choose m+1} \left(H_{n+1} - \frac{1}{m+1} \right).$
$\begin{bmatrix} n \\ k \end{bmatrix}$	Stirling numbers (1st kind): Arrangements of an n element set into k cycles.	1. $\binom{n}{k} = \frac{n!}{(n-k)!k!}$, 2. $\sum_{k=0}^{n} \binom{n}{k} = 2^n$, 3. $\binom{n}{k} = \binom{n}{n-k}$,
$\left\{ egin{array}{c} n \\ k \end{array} \right\}$	Stirling numbers (2nd kind): Partitions of an n element set into k non-empty sets.	$4. \binom{n}{k} = \frac{n}{k} \binom{n-1}{k-1}, \qquad \qquad 5. \binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}, \\ 6. \binom{n}{m} \binom{m}{k} = \binom{n}{k} \binom{n-k}{m-k}, \qquad \qquad 7. \sum_{k=0}^{n} \binom{r+k}{k} = \binom{r+n+1}{n},$
$\langle {n \atop k} \rangle$	1st order Eulerian numbers:	$\kappa = 0$
	Permutations $\pi_1 \pi_2 \dots \pi_n$ on $\{1, 2, \dots, n\}$ with k ascents.	8. $\sum_{k=0}^{n} {k \choose m} = {n+1 \choose m+1},$ 9. $\sum_{k=0}^{n} {r \choose k} {s \choose n-k} = {r+s \choose n},$
$\langle\!\langle {n \atop k} \rangle\!\rangle$	2nd order Eulerian numbers.	10. $\binom{n}{k} = (-1)^k \binom{k-n-1}{k},$ 11. $\binom{n}{1} = \binom{n}{n} = 1,$
C_n	Catalan Numbers: Binary trees with $n+1$ vertices.	12. $\binom{n}{2} = 2^{n-1} - 1,$ 13. $\binom{n}{k} = k \binom{n-1}{k} + \binom{n-1}{k-1},$
		10. $\begin{bmatrix} n \\ n \end{bmatrix} = 1,$ 17. $\begin{bmatrix} n \\ k \end{bmatrix} \ge \begin{Bmatrix} n \\ k \end{Bmatrix},$
18. $\begin{bmatrix} n \\ k \end{bmatrix} = (n-1)^n$	(1) $\begin{bmatrix} n-1 \\ k \end{bmatrix} + \begin{bmatrix} n-1 \\ k-1 \end{bmatrix}$, 19. $\begin{cases} n-1 \\ n-1 \end{cases}$	$\begin{bmatrix} n \\ -1 \end{bmatrix} = \begin{bmatrix} n \\ n-1 \end{bmatrix} = \binom{n}{2}, 20. \ \sum_{k=0}^{n} \begin{bmatrix} n \\ k \end{bmatrix} = n!, 21. \ C_n = \frac{1}{n+1} \binom{2n}{n},$
22. $\binom{n}{0} = \binom{n}{n-1}$	$\binom{n}{-1} = 1,$ 23. $\binom{n}{k} = \binom{n}{k}$	$\binom{n}{n-1-k}$, $24. \left\langle \binom{n}{k} \right\rangle = (k+1) \left\langle \binom{n-1}{k} \right\rangle + (n-k) \left\langle \binom{n-1}{k-1} \right\rangle$,
25. $\binom{0}{k} = \binom{1}{0}$	if $k = 0$, otherwise 26. $\begin{cases} r \\ 1 \end{cases}$	$\binom{n}{2} = 2^n - n - 1,$ 27. $\binom{n}{2} = 3^n - (n+1)2^n + \binom{n+1}{2},$
28. $x^n = \sum_{k=0}^n \binom{n}{k}$	$\left. \left\langle {x+k \atop n} \right\rangle, \qquad $ 29. $\left\langle {n \atop m} \right\rangle = \sum_{k=1}^m$	
		32. $\left\langle \left\langle \begin{array}{c} n \\ 0 \end{array} \right\rangle = 1,$ 33. $\left\langle \left\langle \begin{array}{c} n \\ n \end{array} \right\rangle = 0$ for $n \neq 0$,
$34. \left\langle \!\! \left\langle n \right\rangle \!\! \right\rangle = (k + 1)^{n}$	$+1$ $\binom{n-1}{k}$ $+(2n-1-k)$ $\binom{n-1}{k}$	
$36. \left\{ \begin{array}{c} x \\ x-n \end{array} \right\} = \frac{1}{2}$	$\sum_{k=0}^{n} \left\langle \!\! \left\langle \!\! \left\langle n \right\rangle \!\! \right\rangle \!\! \left(\!\! \left(\!\! \begin{array}{c} x+n-1-k \\ 2n \end{array} \!\! \right) \!\! \right. ,$	37. ${n+1 \choose m+1} = \sum_{k} {n \choose k} {k \choose m} = \sum_{k=0}^{k-1} {k \choose m} (m+1)^{n-k},$

The Chinese remainder theorem: There exists a number C such that:

$$C \equiv r_1 \bmod m_1$$

: : :

$$C \equiv r_n \bmod m_n$$

if m_i and m_j are relatively prime for $i \neq j$. Euler's function: $\phi(x)$ is the number of positive integers less than x relatively prime to x. If $\prod_{i=1}^{n} p_i^{e_i}$ is the prime factorization of x then

$$\phi(x) = \prod_{i=1}^{n} p_i^{e_i - 1} (p_i - 1).$$

Euler's theorem: If a and b are relatively prime then

$$1 \equiv a^{\phi(b)} \bmod b$$
.

Fermat's theorem:

$$1 \equiv a^{p-1} \bmod p.$$

The Euclidean algorithm: if a > b are integers then

$$gcd(a, b) = gcd(a \mod b, b).$$

If $\prod_{i=1}^{n} p_i^{e_i}$ is the prime factorization of x

$$S(x) = \sum_{d|x} d = \prod_{i=1}^{n} \frac{p_i^{e_i+1} - 1}{p_i - 1}.$$

Perfect Numbers: x is an even perfect number iff $x = 2^{n-1}(2^n - 1)$ and $2^n - 1$ is prime. Wilson's theorem: n is a prime iff $(n-1)! \equiv -1 \mod n$.

$$\mu(i) = \begin{cases} (n-1)! = -1 \bmod n. \\ \text{M\"obius inversion:} \\ \mu(i) = \begin{cases} 1 & \text{if } i = 1. \\ 0 & \text{if } i \text{ is not square-free.} \\ (-1)^r & \text{if } i \text{ is the product of} \\ r & \text{distinct primes.} \end{cases}$$
 If

 If

$$G(a) = \sum_{d|a} F(d),$$

$$F(a) = \sum_{d|a} \mu(d) G\left(\frac{a}{d}\right).$$

Prime numbers:

$$p_n = n \ln n + n \ln \ln n - n + n \frac{\ln \ln n}{\ln n}$$

$$+O\left(\frac{n}{\ln n}\right),$$

$$\pi(n) = \frac{n}{\ln n} + \frac{n}{(\ln n)^2} + \frac{2!n}{(\ln n)^3} + O\left(\frac{n}{(\ln n)^4}\right).$$

-	0				
				ns	

Loop An edge connecting a vertex to itself. Directed Each edge has a direction.

SimpleGraph with no loops or multi-edges.

WalkA sequence $v_0e_1v_1\ldots e_\ell v_\ell$. TrailA walk with distinct edges. Pathtrail with distinct

vertices.

ConnectedA graph where there exists a path between any two

vertices.

connected ComponentA maximal subgraph.

TreeA connected acyclic graph. Free tree A tree with no root. DAGDirected acyclic graph. EulerianGraph with a trail visiting each edge exactly once.

Hamiltonian Graph with a cycle visiting each vertex exactly once.

CutA set of edges whose removal increases the number of components.

Cut-setA minimal cut. Cut edge A size 1 cut.

k-Connected A graph connected with the removal of any k-1vertices.

k-Tough $\forall S \subseteq V, S \neq \emptyset$ we have $k \cdot c(G - S) \le |S|$.

A graph where all vertices k-Regular have degree k.

k-Factor Α k-regular spanning subgraph.

Matching A set of edges, no two of which are adjacent.

CliqueA set of vertices, all of which are adjacent.

Ind. set A set of vertices, none of which are adjacent.

Vertex cover A set of vertices which cover all edges.

Planar graph A graph which can be embeded in the plane.

Plane graph An embedding of a planar

$$\sum_{v \in V} \deg(v) = 2m.$$

If G is planar then n - m + f = 2, so

$$f \le 2n - 4, \quad m \le 3n - 6.$$

Any planar graph has a vertex with degree ≤ 5 .

Notation:

E(G)Edge set Vertex set V(G)

c(G)Number of components

G[S]Induced subgraph

deg(v)Degree of v

Maximum degree $\Delta(G)$ $\delta(G)$ Minimum degree

 $\chi(G)$ Chromatic number $\chi_E(G)$ Edge chromatic number

 G^c Complement graph K_n Complete graph

 K_{n_1,n_2} Complete bipartite graph

Ramsev number

Geometry

Projective coordinates: (x, y, z), not all x, y and z zero.

$$(x, y, z) = (cx, cy, cz) \quad \forall c \neq 0.$$

Cartesian Projective (x, y)(x, y, 1)

y = mx + b(m, -1, b)x = c(1,0,-c)

Distance formula, L_p and L_{∞}

$$\sqrt{(x_1 - x_0)^2 + (y_1 - y_0)^2},$$
$$[|x_1 - x_0|^p + |y_1 - y_0|^p]^{1/p},$$

$$\lim_{y \to 0} \left[|x_1 - x_0|^p + |y_1 - y_0|^p \right]^{1/p}.$$

Area of triangle $(x_0, y_0), (x_1, y_1)$ and (x_2, y_2) :

$$\frac{1}{2} \operatorname{abs} \begin{vmatrix} x_1 - x_0 & y_1 - y_0 \\ x_2 - x_0 & y_2 - y_0 \end{vmatrix}.$$

Angle formed by three points:

Line through two points (x_0, y_0) and (x_1, y_1) :

$$\begin{vmatrix} x & y & 1 \\ x_0 & y_0 & 1 \\ x_1 & y_1 & 1 \end{vmatrix} = 0.$$

Area of circle, volume of sphere:

$$A=\pi r^2, \qquad V=\tfrac{4}{3}\pi r^3.$$

If I have seen farther than others, it is because I have stood on the shoulders of giants.

- Issac Newton

Taylor's series:

$$f(x) = f(a) + (x - a)f'(a) + \frac{(x - a)^2}{2}f''(a) + \dots = \sum_{i=0}^{\infty} \frac{(x - a)^i}{i!}f^{(i)}(a).$$

Expansions:

Expansions:
$$\frac{1}{1-x} = 1 + x + x^2 + x^3 + x^4 + \cdots = \sum_{i=0}^{\infty} x^i,$$

$$\frac{1}{1-cx} = 1 + x + x^2 + x^3 + x^4 + \cdots = \sum_{i=0}^{\infty} c^i x^i,$$

$$\frac{1}{1-cx} = 1 + x + x^2 + x^3 + x^4 + \cdots = \sum_{i=0}^{\infty} c^i x^i,$$

$$\frac{1}{1-x^n} = 1 + x^n + x^{2n} + x^{3n} + \cdots = \sum_{i=0}^{\infty} x^{ni},$$

$$\frac{x}{(1-x)^2} = x + 2x^2 + 3x^3 + 4x^4 + \cdots = \sum_{i=0}^{\infty} i x^i,$$

$$x^k \frac{d^n}{dx^n} \left(\frac{1}{1-x}\right) = x + 2^n x^2 + 3^n x^3 + 4^n x^4 + \cdots = \sum_{i=0}^{\infty} i^n x^i,$$

$$e^x = 1 + x + \frac{1}{2}x^2 + \frac{1}{6}x^3 + \cdots = \sum_{i=0}^{\infty} (-1)^{i+1} \frac{x^i}{i},$$

$$\ln(1+x) = x - \frac{1}{2}x^2 + \frac{1}{3}x^3 - \frac{1}{4}x^4 - \cdots = \sum_{i=0}^{\infty} (-1)^{i+1} \frac{x^i}{i},$$

$$\sin x = x - \frac{1}{3}x^3 + \frac{1}{6}x^5 - \frac{1}{17}x^7 + \cdots = \sum_{i=0}^{\infty} (-1)^i \frac{x^{2i+1}}{(2i+1)!},$$

$$\cos x = 1 - \frac{1}{2}x^2 + \frac{1}{4}x^4 - \frac{1}{6!}x^6 + \cdots = \sum_{i=0}^{\infty} (-1)^i \frac{x^{2i+1}}{(2i+1)!},$$

$$(1+x)^n = 1 + nx + \frac{n(n-1)}{2}x^2 + \cdots = \sum_{i=0}^{\infty} (-1)^i \frac{x^{2i+1}}{(2i+1)!},$$

$$(1+x)^n = 1 + nx + \frac{n(n-1)}{2}x^2 + \cdots = \sum_{i=0}^{\infty} (-1)^i \frac{x^{2i+1}}{(2i+1)!},$$

$$\frac{1}{(1-x)^{n+1}} = 1 + (n+1)x + \binom{n+2}{2}x^2 + \cdots = \sum_{i=0}^{\infty} \binom{i}{i}x^i,$$

$$\frac{1}{x^i} = 1 + x + 2x^2 + 5x^3 + \cdots = \sum_{i=0}^{\infty} \binom{2i}{i}x^i,$$

$$\frac{1}{\sqrt{1-4x}} = 1 + x + 2x^2 + 6x^3 + \cdots = \sum_{i=0}^{\infty} \binom{2i}{i}x^i,$$

$$\frac{1}{\sqrt{1-4x}} = 1 + (2+n)x + \binom{4+n}{2}x^2 + \cdots = \sum_{i=0}^{\infty} \binom{2i}{i}x^i,$$

$$\frac{1}{1-x} \ln \frac{1}{1-x} = x + \frac{3}{2}x^2 + \frac{1}{16}x^3 + \frac{25}{212}x^4 + \cdots = \sum_{i=0}^{\infty} \frac{H_{i-1}x^i}{i},$$

$$\frac{1}{2}\left(\ln \frac{1}{1-x}\right)^2 = \frac{1}{2}x^2 + \frac{3}{4}x^3 + \frac{11}{24}x^4 + \cdots = \sum_{i=0}^{\infty} \frac{H_{i-1}x^i}{i},$$

$$\frac{x}{1-x} = x + \frac{3}{2}x^2 + \frac{1}{16}x^3 + \frac{25}{212}x^4 + \cdots = \sum_{i=0}^{\infty} \frac{H_{i-1}x^i}{i},$$

$$\frac{x}{1-x} = x^2 + x^2 + 2x^3 + 3x^4 + \cdots = \sum_{i=0}^{\infty} F_{i}x^i.$$

Ordinary power series:

$$A(x) = \sum_{i=0}^{\infty} a_i x^i.$$

Exponential power series:

$$A(x) = \sum_{i=0}^{\infty} a_i \frac{x^i}{i!}.$$

Dirichlet power series:

$$A(x) = \sum_{i=1}^{\infty} \frac{a_i}{i^x}.$$

Binomial theorem

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k.$$

$$x^{n} - y^{n} = (x - y) \sum_{k=0}^{n-1} x^{n-1-k} y^{k}.$$

For ordinary power se

$$\alpha A(x) + \beta B(x) = \sum_{i=0}^{\infty} (\alpha a_i + \beta b_i) x^i,$$

$$x^k A(x) = \sum_{i=k}^{\infty} a_{i-k} x^i,$$

$$\frac{A(x) - \sum_{i=0}^{k-1} a_i x^i}{x^k} = \sum_{i=0}^{\infty} a_{i+k} x^i,$$

$$A(cx) = \sum_{i=0}^{\infty} c^i a_i x^i,$$

$$A'(x) = \sum_{i=0}^{\infty} (i+1) a_{i+1} x^i,$$

$$xA'(x) = \sum_{i=1}^{\infty} i a_i x^i,$$

$$\int A(x) dx = \sum_{i=1}^{\infty} \frac{a_{i-1}}{i} x^i,$$

$$\frac{A(x) + A(-x)}{2} = \sum_{i=1}^{\infty} a_{2i} x^{2i},$$

$$\frac{A(x) - A(-x)}{2} = \sum_{i=0}^{\infty} a_{2i+1} x^{2i+1}.$$

Summation: If $b_i = \sum_{i=0}^i a_i$ then

$$B(x) = \frac{1}{1-x}A(x).$$

Convolution:

$$A(x)B(x) = \sum_{i=0}^{\infty} \left(\sum_{j=0}^{i} a_j b_{i-j}\right) x^i.$$

God made the natural numbers; all the rest is the work of man. Leopold Kronecker