Corrigé du DM n°22

Exercice 1

- $\boxed{\mathbf{1}}$ Montrons que f_1 et f_2 sont linéaires mais que f_3 ne l'est pas.
 - Soient $u_1=(x_1,y_1,z_1)$ et $u_2=(x_2,y_2,z_2)$ deux éléments de \mathbb{R}^3 et λ_1 et λ_2 deux réels.

$$f_1(\lambda_1 u_1 + \lambda_2 u_2) = f_1(\lambda_1 x_1 + \lambda_2 x_2, \lambda_1 y_1 + \lambda_2 y_2, \lambda_1 z_1 + \lambda_2 z_2)$$

$$= (3\lambda_1 z_1 + 3\lambda_2 z_2, \lambda_1 x_1 + \lambda_2 x_2 - 2\lambda_1 y_1 - 2\lambda_2 y_2, \lambda_1 x_1 + \lambda_2 x_2)$$

$$= \lambda_1 (3z_1, x_1 - 2y_1, x_1) + \lambda_2 (3z_2, x_2 - 2y_2, x_2)$$

$$f(\lambda_1 u_1 + \lambda_2 u_2) = \lambda_1 f(u_1) + \lambda_2 f(u_2)$$

• Il suffit de dire que f_2 est linéaire par linéarité de la dérivation, mais si on veut le redémontrer : soient φ_1 et φ_2 dans $\mathscr{C}^{\infty}(\mathbb{R},\mathbb{R})$ et λ_1 et λ_2 deux réels.

$$f_{2}(\lambda_{1}\varphi_{1} + \lambda_{2}\varphi_{2}) = e^{4} \times (\lambda_{1}\varphi_{1} + \lambda_{2}\varphi_{2})^{(3)}(2)$$

$$= e^{4} \times \lambda_{1}\varphi_{1}^{(3)} + e^{4} \times \lambda_{2}\varphi_{2}^{(3)}(2)$$

$$= \lambda_{1} \left(e^{4} \times \varphi_{1}^{(3)}(2) \right) + \lambda_{2} \left(e^{4} \times \varphi_{2}^{(3)}(2) \right)$$

$$f_2(\lambda_1\varphi_1 + \lambda_2\varphi_2) = \lambda_1 f_2(\varphi_1) + \lambda_2 f_2(\varphi_2)$$

• Enfin, $f_3(1,1,1) = (1,0,0)$ et $f_3(2,2,2) = (4,0,0) \neq 2f_3(1,1,1)$.

En conclusion

$$f_1$$
 et f_2 sont linéaires mais f_3 ne l'est pas.

De plus, toutes les fonctions affines (au moins) appartiennent au noyau de f_2 donc Ker $(f_2) \neq \{0\}$. En d'autres termes,

$$f_2$$
 n'est pas injective.

Le noyau de f_2 est même de dimension infinie. En effet, pour tout $n \in \mathbb{N}$, il contient la famille (libre car échelonnée en degré) à n éléments $((X-2)^k)_{0 \le k \le n, k \ne 3}$ (ainsi, bien sûr, que beaucoup d'autres fonctions non polynomiales).

- Soit $x \in E$. Montrons par analyse-synthèse que x peut s'écrire d'une façon unique comme somme d'un éléments $x_1 \in \text{Ker } u$ et d'un élément $x_2 \in \text{Im } u^2$.
 - Analyse: Si x_1 et x_2 conviennent. Composons par u. Par linéarité de u et puisque $x_1 \in \text{Ker } u$,

$$u(x) = u(x_1) + u(x_2) = u(x_2)$$

Or, $x_2 \in \text{Im } u^2$ donc il existe $y \in \text{E}$ tel que $x_2 = u^2(y)$. En d'autres termes, $u(x) = u\left(u^2(y)\right) = u^3(y) = u(y)$ par hypothèse sur u, d'où $u^2(x) = u^2(y) = x_2$ et donc $x_1 = x - x_2 = x - u^2(x)$.

• Synthèse: Soient $x_2 = u^2(x)$ et $x_1 = x - u^2(x)$. On a bien $x \in \text{Im } u^2, x_1 \in \text{Ker } u$ puisque $u(x_1) = u(x) - u^3(x) = 0$ par linéarité de u et hypothèse sur u, et enfin on a évidemment $x = x_1 + x_2$.

Puisqu'il y a existence et unicité de l'écriture,

$$E = \operatorname{Ker} u \bigoplus \operatorname{Im} u^2$$

Exercice 2:

1 Soit $n \ge 1$, soit $x \in \text{Ker } u^n$. Alors $u^n(x) = 0$. Comme u est linéaire

$$u^{n+1}(x) = u(u^n(x))$$

= $u(0)$
 $u^{n+1}(x) = 0$

Ainsi, $u^{n+1}(x) = 0$: $x \in \text{Ker } u^{n+1}$, ce qui est le résultat voulu.

$$\forall n \geqslant 1$$
 Ker $u^n \subset \text{Ker } u^{n+1}$

L'inclusion réciproque est fausse en général. Un contre-exemple peut être donné par la fonction f de \mathbb{R}^2 dans \mathbb{R}^2 définie par

$$f(x,y) = (0,x)$$

Son noyau est Vect $(0,1) = \{(0,y) \mid y \in \mathbb{R}\}$ tandis que le noyau de f^2 est \mathbb{R}^2 tout entier (on dit que f est une application linéaire nilpotente, cf TD). Il y a bien sûr d'autres contre-exemples, par exemple si u est la dérivation sur $E = \mathbb{R}[X]$: Ker $u^n = \mathbb{R}_{n-1}[X]$ et Ker $u^{n+1} = \mathbb{R}_n[X]$.

2 Montrons que pour tout $n \ge 1$, Im $u^{n+1} \subset \text{Im } u^n$. Soit $n \ge 1$ et soit $y \in \text{Im } u^{n+1}$. Par définition, il existe $x \in E$ tel que

$$y = u^{n+1}(x) = u^n \left(u(x) \right)$$

Si on pose $z = u(x), z \in E$ et $y = u^n(z)$. En d'autres termes, $y \in Im u^n$.

$$\forall n \geqslant 1$$
 Im $u^{n+1} \subset \text{Im } u^n$

Là aussi l'inclusion réciproque est fausse en général. En prenant le premier exemple donné pour les noyaux, son image est Vect $(0,1) = \{(0,x), x \in \mathbb{R}\}$ tandis que l'image de f^2 est tout simplement $\{0\}$.

- 3 Montrons le résultat par double inclusion.
 - L'inclusion Ker $u^{n_0+1} \subset \text{Ker } u^{n_0+2}$ a été démontrée à la question 1.
 - Soit $x \in \text{Ker } u^{n_0+2}$. Par définition

$$u^{n_0+2}(x) = 0 = u^{n_0+1+1}(x) = u^{n_0+1}(u(x))$$

On en déduit que $u(x) \in \text{Ker } u^{n_0+1} = \text{Ker } u^{n_0}$, c'est-à-dire que

$$u^{n_0}(u(x)) = u^{n_0+1}(x) = 0$$

et pour finir $x \in \text{Ker } u^{n_0+1} : \text{Ker } u^{n_0+2} \subset \text{Ker } u^{n_0+1}$.

$$Ker u^{n_0+1} = Ker u^{n_0+2}$$

Démontrons le résultat par récurrence. C'est exactement la même chose que ce qu'on vient de faire, en remplaçant n_0 par p dans l'hérédité (personnellement j'ai fait un copier-coller).

• Si $p \ge n_0$, soit l'hypothèse de récurrence

$$H_p$$
: « Ker $u^p = \text{Ker } u^{p+1}$ »

- H_{n_0} est vraie par hypothèse, et on vient de montrer que H_{n_0+1} est vraie.
- Soit $p \ge n_0$ quelconque tel que H_p soit vraie et montrons que H_{p+1} est vraie. L'inclusion Ker $u^{p+1} \subset \text{Ker } u^{p+2}$ a été démontrée à la question 1. Montrons à présent l'inclusion réciproque. Soit $x \in \text{Ker } u^{p+2}$. Par définition

$$u^{p+2}(x) = 0 = u^{p+1+1}(x) = u^{p+1}(u(x))$$

On en déduit que $u(x) \in \text{Ker } u^{p+1} = \text{Ker } u^p$ par hypothèse de récurrence, c'est-à-dire que

$$u^p(u(x)) = u^{p+1}(x) = 0$$

et pour finir $x \in \text{Ker } u^{p+1} : \text{Ker } u^{p+2} \subset \text{Ker } u^{p+1}$, l'inclusion réciproque est vérifiée et H_{p+1} est vraie.

• D'après le principe de principe de récurrence, H_p est vraie pour tout $p \geqslant n_0$:

$$\forall p \geqslant n_0$$
 Ker $u^p = \text{Ker } u^{p+1}$

4 Montrons directement le résultat analogue par récurrence, sans passer par le cas $n_1 + 1$ et $n_1 + 2$.

• Si $p \ge n_1$, soit l'hypothèse de récurrence

$$H_p$$
: « Im u^p = Im u^{p+1} »

- H_{n_1} est vraie par hypothèse.
- Soit $p \ge n_1$ quelconque tel que H_p soit vraie et montrons que H_{p+1} est vraie. L'inclusion Im $u^{p+2} \subset \text{Im } u^{p+1}$ a été démontrée à la question 2. Montrons à présent l'inclusion réciproque. Soit $y \in \text{Im } u^{p+1}$. Par définition, il existe $x \in E$ tel que

$$y = u^{p+1}(x) = u(u^p(x))$$

Posons $z=u^p(x):z\in {\rm Im}\; u^p={\rm Im}\; u^{p+1}$ par hypothèse de récurrence, donc il existe $t\in {\rm E}$ tel que $z=u^{p+1}(t)$ c'est-à-dire tel que

$$y = u(z) = u(u^{p+1}(t)) = u^{p+2}(t)$$

et pour finir $y \in \text{Im } u^{p+2} : \text{Im } u^{p+1} \subset \text{Im } u^{p+2}$, l'inclusion réciproque est vérifiée et H_{p+1} est vraie.

• D'après le principe de principe de récurrence, H_p est vraie pour tout $p \ge n_0$:

$$\forall p \geqslant n_1 \qquad \text{Im } u^p = \text{Im } u^{p+1}$$

 $\boxed{\mathbf{5}}$ Il suffit de prendre n_2 le maximum entre n_0 et n_1 , le résultat découle des deux questions précédentes.

Il existe
$$n_2$$
 tel que pour tout $p \ge n_2$, Ker $u^p = \text{Ker } u^{n_2}$ et $\text{Im} u^p = \text{Im} u^{n_2}$

6 Montrons que l'intersection est nulle. Soit $x \in \text{Ker } u^{n_2} \cap \text{Im } u^{n_2}$. Par hypothèse, $u^{n_2}(x) = 0$ et il existe $t \in \text{E tel que } x = u^{n_2}(t)$. Ainsi

$$u^{n_2}(x) = u^{n_2}(u^{n_2}(t)) = u^{2n_2}(t) = 0$$

donc $t \in \text{Ker } u^{2n_2} = \text{Ker } u^{n_2}$ ce qui implique que $x = u^{n_2}(t) = 0$.

$$\boxed{\text{Ker } u^{n_2} \cap \text{Im } u^{n_2} = \{0\}}$$

Si on suppose de plus que E est de dimension finie, alors d'après le théorème du rang nous, $\dim(E) = \dim \operatorname{Ker} u^{n_2} + \dim \operatorname{Im} u^{n_2}$ ce qui, ajouté au résultat de la question précédente, assure que $E = \operatorname{Ker} u^{n_2} \oplus \operatorname{Im} u^{n_2}$.

Exercice 3:

1.(a)

- La fonction nulle appartient à E₁. Dès lors, E₁ n'est pas vide.
- Soient f et g deux éléments de E_1 , et λ et μ deux réels. Alors, pour tout $x \in \mathbb{R}$

$$(\lambda f + \mu g)(x+1) = \lambda f(x+1) + \mu g(x+1)$$
$$= \lambda f(x) + \mu g(x)$$
$$(\lambda f + \mu g)(x+1) = (\lambda f + \mu g)(x)$$

puisque f et g sont deux éléments de E_1 . En d'autres termes, $\lambda f + \mu g \in E_1$: E_1 est stable par combinaison linéaire.

• Enfin, E₁ est inclus dans E qui est un espace vectoriel de référence.

En conclusion

$$E_1$$
 est espace vectoriel.

D'après le théorème de dérivation des bornes variables (cf chapitre d'intégration sur un segment), qu'on peut appliquer car f est continue, g est dérivable de dérivée $x \mapsto f(x+1) - f(x)$, qui est continue car f l'est.

$$\forall f \in \mathcal{E}$$
 $T(f)$ est de classe \mathcal{C}^1 sur \mathbb{R} de dérivée $x \mapsto f(x+1) - f(x)$

 $\overline{\mathbf{1.(c)}}$ Soit $f \in E$. T(f) est dérivable sur \mathbb{R} , donc continue, c'est-à-dire que $T(f) \in E$.

T est à valeurs dans E.

Cependant, T(f) est dérivable sur \mathbb{R} . Si g est une fonction qui n'est pas dérivable sur \mathbb{R} tout entier (comme la valeur absolue, mais il y a beaucoup d'autres exemples), alors g n'a aucun antécédent par T:

1.(d) On a déjà montré que T est à valeurs dans E. Il ne reste à montrer que la linéarité de T, et cela a été fait en exemple en classe.

T est linéaire, ainsi c'est un endomorphisme de E.

 $\boxed{\mathbf{1.(e)}}$ g étant dérivable sur \mathbb{R} , elle est constante si et seulement si sa dérivée est nulle. D'après la question 1.(b), g est constante si et seulement si pour tout $x \in \mathbb{R}$

$$f(x+1) - f(x) = 0$$

D'où

g est constante si et seulement si $f \in E_1$.

1.(f) Puisque pour tout $x \in \mathbb{R}$, $\sin(\pi x + \pi) = -\sin(\pi x)$, la fonction f est périodique de période 1. Il en découle, d'après la question précédente, que g est constante. Pour trouver sa valeur, il suffit de calculer sa valeur en 0.

$$g(0) = \int_0^1 |\sin(\pi t)| dt$$

$$= \int_0^1 \sin(\pi t) dt \qquad \text{(le sinus est positif sur } [0; \pi])$$

$$= \frac{1}{\pi} [-\cos(\pi t)]_0^1$$

$$g(0) = \frac{2}{\pi}$$

Dès lors

g est la fonction constante égale à $\frac{2}{\pi}$.

2.(a) g est la fonction nulle si et seulement si g est constante et g(0) = 0 ce qui permet de conclure en appliquant la question 1.(e).

$$f \in \text{Ker T} \iff f \in \mathcal{E}_1 \quad \text{et} \quad \int_0^1 f(t) \, \mathrm{d}t = 0$$

La question $t \mapsto \cos(2\pi t)$ vérifie ces conditions, elle appartient par conséquent au noyau de T. Puisque ce n'est pas la fonction nulle, le noyau de T n'est pas réduit à $\{0\}$ donc

L'application T n'est pas injective.

2.(b) Explicitons la fonction g_a associée à la fonction h_a . Soit $x \in \mathbb{R}$

$$g_a(x) = \int_x^{x+1} e^{at} \, \mathrm{d}t$$

Deux cas se présentent.

• Premier cas: a=0. h_a est alors la fonction constante égale à 1 et

$$g_a(x) = \int_x^{x+1} 1 \, \mathrm{d}t$$

$$g_a(x) = h_a(x)$$

Par suite

 h_a est vecteur propre pour la valeur propre 1.

• Deuxième cas: $a \neq 0$. Il vient:

$$g_a(x) = \left[\frac{e^{at}}{a}\right]_x^{x+1}$$
$$= \frac{e^{ax+a} - e^{ax}}{a}$$
$$g_a(x) = \left(\frac{e^a - 1}{a}\right) h_a(x)$$

Ainsi

 h_a est vecteur propre pour la valeur propre $\frac{e^a-1}{a}$.

2.(c) Soit φ la fonction définie sur \mathbb{R} par

$$\varphi(x) = \begin{cases} 1 & \text{si } x = 0 \\ \frac{e^x - 1}{x} & \text{sinon} \end{cases}$$

Alors φ est continue sur \mathbb{R} . En effet, elle est continue sur \mathbb{R}^* et, au voisinage de 0

$$\varphi(x) = \frac{1+x+o(x)-1}{x} = 1+o(1) \xrightarrow[x\to 0]{} 1 = f(0)$$

Elle est par conséquent également continue en 0. De plus

$$\varphi(x) \xrightarrow[x \to -\infty]{} 0$$
 et $\varphi(x) \xrightarrow[x \to +\infty]{} +\infty$

par croissances comparées. φ étant continue, d'après le théorème des valeurs intermédiaires, pour tout $\lambda \in \mathbb{R}_+^*$, il existe $x \in \mathbb{R}$ tel que $\varphi(x) = \lambda$, c'est-à-dire que λ est une valeur propre. D'après la question 2.(a), 0 est également une valeur propre. Finalement

L'ensemble des valeurs propres contient \mathbb{R}_+ .

3 C'est l'exercice 19 du chapitre d'intégration sur un segment. Par définition d'une limite

$$\forall \varepsilon > 0, \exists A > 0, \forall t \geqslant A$$
 $L - \varepsilon \leqslant f(x) \leqslant L + \varepsilon$

Ainsi, par croissance de l'intégrale, pour tout $x \ge A$,

$$\int_{x}^{x+1} \mathbf{L} - \varepsilon \, \mathrm{d}t = \mathbf{L} - \varepsilon \leqslant \int_{x}^{x+1} f(t) \, \mathrm{d}t = g(x) \leqslant \int_{x}^{x+1} \mathbf{L} + \varepsilon \, \mathrm{d}t = \mathbf{L} + \varepsilon$$

En conclusion

$$g(x) \xrightarrow[x \to +\infty]{} L$$

Cependant, d'après la question 2.(a), si on prend f la fonction définie sur \mathbb{R} par $f(x) = \cos(\pi x)$, la fonction g associée est nulle, donc tend vers 0 en $+\infty$, mais f n'a pas de limite en $+\infty$.

La réciproque est fausse.

Problème

Partie A. FORMES LINÉAIRES POSITIVES.

 $\boxed{\mathbf{1.(a)}}$ Montrons tout d'abord que ce sont des applications linéaires. Soient f et g deux éléments de E et soient λ et μ deux réels. On a

$$\mu_1(\lambda f + \mu g) = (\lambda f + \mu g)(a) = \lambda f(a) + \mu g(a) = \lambda \mu_1(f) + \lambda \mu_1(g)$$

ce qui implique que μ_1 est linéaire. De même, par linéarité de l'intégrale,

$$\mu_2(\lambda f + \mu g) = \int_a^b (\lambda f + \mu g)(t) dt = \lambda \int_a^b f(t) dt + \mu \int_a^b g(t) dt = \lambda \mu_2(f) + \lambda \mu_2(g)$$

et μ_2 est également linéaire. De plus, si f est une fonction positive sur [a;b], en particulier $\mu_1(f) = f(a) \ge 0$ et par positivité de l'intégrale,

$$\mu_2(f) = \int_a^b f(t) \, \mathrm{d}t \geqslant 0.$$

D'où

 μ_1 et μ_2 sont des formes linéaires positives.

1.(b) Si f est la fonction $x \mapsto x - a$ alors $\mu_1(f) = 0$. En d'autres termes, $f \in \text{Ker } \mu_1$ et μ_1 n'est pas injective. Elle est cependant surjective car, pour tout $\lambda \in \mathbb{R}$, λ est l'image... de la fonction constante égale à λ . Tous les réels admettant au moins un antécédent par μ_1 ,

 μ_1 est surjective non injective.

On cherche à présent une fonction dans le noyau de μ_2 , c'est-à-dire une fonction non nulle d'intégrale nulle. Avec un dessin, on pense à une fonction affine négative sur [a;c], positive sur [c;b] où c est le milieu de [a;b]. Si f est une telle fonction, $\mu_2(f) = 0$ et de même μ_2 n'est pas injective. Pour la surjectivité, on cherche de la même façon une fonction constante. Pour tout $\lambda \in \mathbb{R}$, la fonction constante égale à $\lambda/(b-a)$ a pour image λ . Dès lors,

 μ_2 est surjective non injective.

C'est cohérent avec le résultat vu en TD, selon lequel une forme linéaire non nulle est surjective.

Soit $x \in [a; b]$. On suppose que $\mu = \mu_1$.

$$\widetilde{\mu}(x) = \varphi_x(a) = e^{-x \times a}$$

D'où:

$$\widetilde{\mu}$$
 est la fonction définie sur $[a;b]$ par $x \mapsto e^{-ax}$.

Supposons à présent que $\mu = \mu_2$. x appartenant à [a;b], x est strictement positif.

$$\widetilde{\mu}(x) = \int_a^b \varphi_x(t) \, \mathrm{d}t = \int_a^b e^{-x \times t} \, \mathrm{d}t = \left[\frac{1}{-x} e^{-xt} \right]_a^b = \frac{e^{-ax} - e^{-bx}}{x}$$

Finalement

$$\widetilde{\mu}$$
 est la fonction définie sur $[a;b]$ par $\widetilde{\mu}(x) = \frac{e^{-ax} - e^{-bx}}{x}$

Cette question et la question 5 sont immédiates si on se souvient de la démonstration dans le chapitre sur l'intégration. μ étant positive, $\mu(g-f) \geqslant 0$ car $g \geqslant f$. μ étant linéaire, $\mu(g-f) = \mu(g) - \mu(f)$ ce qui donne le résultat.

Si
$$f \leqslant g$$
 alors $\mu(f) \leqslant \mu(g)$.

Pour tout $x \in I$, φ_x est une fonction positive (de t) car c'est une exponentielle. μ étant une forme linéaire positive, $\mu(\varphi_x)$ est positive, c'est-à-dire que $\widetilde{\mu}(x) \geqslant 0$. Pour montrer qu'elle est décroissante, attention, on ne peut a priori pas dériver $\widetilde{\mu}$! Il faut le faire à la main. Ainsi, soient $x \leqslant y$ deux éléments de I et comparons $\widetilde{\mu}(x)$ et $\widetilde{\mu}(y)$. Pour tout $t \in [a;b]$, $-tx \geqslant -ty$ (car $t \geqslant a > 0$). Par croissance de l'exponentielle, $\varphi_x(t) \geqslant \varphi_y(t)$. En particulier, $\varphi_x \geqslant \varphi_y$. La question précédente donne $\mu(\varphi_x) \geqslant \mu(\varphi_y)$ ce qui est le résultat voulu.

 $\widetilde{\mu}$ est positive et décroissante.

D'après la question 3 et l'énoncé, $\mu(f) \leq \mu(|f|)$ et $\mu(-f) \leq \mu(|f|)$. $\mu(|f|)$ étant linéaire, $\mu(-f) = -\mu(f)$. Ainsi, $-\mu(f) \leq \mu(|f|)$. Or, $|\mu(f)| = \pm \mu(f)$. Le résultat en découle.

$$|\mu(f)| \leqslant \mu(|f|)$$

 $\boxed{\mathbf{6}}$ f étant continue sur un segment, elle y est bornée et atteint des bornes, donc

Par définition de M, pour tout $x \in [a; b], |f(x)| \leq M = M \times 1 = M \times g(x)$ c'est-à-dire que $|f| \leq M \times g$. La question 3 nous permet de conclure.

$$\mu(|f|) \leqslant \mathcal{M} \times \mu(g)$$

Partie B. LIEN AVEC LES FONCTIONS CM.

1.(a) Soit $x \in I$. Par linéarité de μ

$$|\widetilde{\mu}(x) - \widetilde{\mu}(x_0)| = |\mu(\varphi_x) - \mu(\varphi_{x_0})| = |\mu(\varphi_x - \varphi_{x_0})|$$

Il suffit ensuite d'appliquer la question 5 de la partie C.

$$|\widetilde{\mu}(x) - \widetilde{\mu}(x_0)| \le \mu (|\varphi_x - \varphi_{x_0}|)$$

[1.(b)] À partir de là, les questions commencent à devenir difficiles. Cela sent l'inégalité des accroissements finis à plein nez... Remplaçons les fonctions φ par leur expression. On cherche donc à majorer $|e^{-xt} - e^{-x_0t}|$. Comme on veut majorer par une constante multipliée par $|x - x_0|$, il faut appliquer l'IAF à la fonction dépendant de x, c'est-à-dire la fonction $f: x \mapsto e^{-tx}$ (où t est fixé). f est dérivable et $f'(x) = -te^{-tx}$. Ainsi, pour tout $x \in I$ (on rappelle que I = [a; b] et a > 0):

$$|f'(x)| \le t \times e^{-xt} \le be^{-xa} \le be^{-a^2}$$

Ainsi, d'après l'inégalité des accroissements finis,

$$|\varphi_x(t) - \varphi_{x_0}(t)| \leqslant be^{-a^2}|x - x_0|$$

1.(c) D'après la question précédente, $be^{-a^2}|x-x_0|$ est un majorant (indépendant de t) de la fonction $|\varphi_x-\varphi_{x_0}|$. D'après la question 6 de la partie C,

$$\mu\left(|\varphi_x - \varphi_{x_0}|\right) \leqslant be^{-a^2}|x - x_0|\mu(g)$$

où l'on rappelle que g est la fonction constante égale à 1. D'après la question 1.(a)

$$0 \leqslant |\widetilde{\mu}(x) - \widetilde{\mu}(x_0)|| \leqslant be^{-a^2}\mu(g) \times |x - x_0|$$

Le terme de droite tend vers 0 quand $x \to x_0$. D'après le théorème d'encadrement, le terme du milieu également. En d'autres termes, $\widetilde{\mu}(x) \xrightarrow[x \to x_0]{} \widetilde{\mu}(x_0)$:

$$\widetilde{\mu}$$
 est continue en x_0 .

2.(a) C'est du cours, on utilise l'inégalité de Taylor-Lagrange.

2.(b) Notons pour plus de commodité A le membre de gauche. Suivons l'indication de l'énoncé et mettons au même dénominateur et mettons $t^n e^{-x_0 t}$ en facteur.

$$A = \left| \frac{t^n e^{-xt} - t^n e^{-x_0 t} + t^{n+1} e^{-x_0 t} (x - x_0)}{(x - x_0)} \right| = \left| \frac{t^n e^{-x_0 t} \left(e^{(x_0 - x)t} - 1 - t(x_0 - x) \right)}{(x - x_0)} \right|$$

Il suffit ensuite d'appliquer la question précédente avec $u=t(x_0-x)$:

$$A \le \left| \frac{t^n e^{-x_0 t}}{x - x_0} \right| \times \left(1 + e^{(x_0 - x)t} \right) \frac{t^2 (x_0 - x)^2}{2}$$

La première inégalité en découle en se souvenant que $\mathrm{K}^2/|\mathrm{K}| = |\mathrm{K}|$:

$$A \leqslant \frac{t^{n+2}e^{-x_0t}}{2} \times (1 + e^{(x_0 - x)t}) |x_0 - x|$$

On en déduit la deuxième inégalité en se souvenant que $0 < a \le t \le b$, que $x_0 > 0$ et que $(x_0 - x) \le |x_0 - x|$:

$$A \leqslant \frac{b^{n+2}e^{-x_0 \times a}}{2} \times (1 + e^{|x_0 - x|b}) |x_0 - x|$$

2.(c) Calculons pour cela le taux d'accroissements. Soient $x_0 \in I$ et $x \neq x_0$. Par linéarité de μ :

$$\left| \frac{\Delta(x) - \Delta(x_0)}{x - x_0} + \mu(h_{n+1,x_0}) \right| = \left| \mu \left(\frac{h_{n,x} - h_{n,x_0}}{x - x_0} - h_{n+1,x_0} \right) \right|$$

Et en appliquant la question 5 de la partie C:

$$\left| \frac{\Delta(x) - \Delta(x_0)}{x - x_0} + \mu(h_{n+1,x_0}) \right| \le \mu \left(\left| \frac{h_{n,x} - h_{n,x_0}}{x - x_0} - h_{n+1,x_0} \right| \right)$$

Or, d'après la question précédente, la fonction à l'intérieur de μ dans le membre de droite de l'égalité ci-dessus est majorée par

$$\frac{b^{n+2}e^{-x_0\times a}}{2}\times \left(1+e^{|x_0-x|b}\right)|x_0-x|$$

qui est bien indépendant de t. Ainsi, encore une fois d'après la question 6 de la partie C,

$$\left| \frac{\Delta(x) - \Delta(x_0)}{x - x_0} + \mu(h_{n+1,x_0}) \right| \leqslant \frac{b^{n+2} e^{-x_0 \times a}}{2} \times \left(1 + e^{|x_0 - x|b} \right) \times \mu(g) \times |x_0 - x|$$

où, encore une fois, g est la fonction constante égale à 1. De même qu'à la question 1.(c), le membre de droite tend vers 0 quand $x \to x_0$. Par conséquent

$$\frac{\Delta(x) - \Delta(x_0)}{x - x_0} \xrightarrow[x \to x_0]{} -\mu(h_{n+1,x_0})$$

ce qui est ce qu'on voulait montrer.

$$\Delta$$
 est dérivable en x_0 et $\Delta'(x_0) = -\mu(h_{n+1,x_0})$

- 2.(d) Raisonnons par récurrence.
 - $\bullet\,$ Si $n\geqslant 0,$ soit l'hypothèse de récurrence

$$H_n$$
: « μ est dérivable n fois et pour tout $x, \widetilde{\mu}^{(n)} = (-1)^n \mu(h_{n,x})$ »

En d'autres termes, H₀ est vraie.

Soit n quelconque tel que H, soit vraie et montrons que H, soit vraie Soit n \(\text{V} \) Ainsi, per hypothèse de récurrence.

Tout d'abord, d'après la question 3.(c), $\widetilde{\mu}$ est continue et puisque $h_{0,x} = \varphi_x$, par définition de $\widetilde{\mu}$, $\widetilde{\mu}(x) = \mu(\varphi_x) = (-1)^0 \mu(h_{0,x})$.

• Soit n quelconque tel que H_n soit vraie et montrons que H_{n+1} est vraie. Soit $x \in I$. Ainsi, par hypothèse de récurrence, $\widetilde{\mu}$ est dérivable n fois et on a $\widetilde{\mu}^{(n)}(x) = (-1)^n \mu(h_{n,x})$. D'après la question précédente, $\widetilde{\mu}^{(n)}$ est dérivable et

$$\left(\widetilde{\mu}^{(n)}\right)'(x) = \widetilde{\mu}^{(n+1)}(x) = (-1)^n \times (-\mu(h_{n+1,x})) = (-1)^{n+1}\mu(h_{n+1,x})$$

Dès lors, H_{n+1} est vraie.

• D'après le principe de récurrence, H_n est vraie pour tout $n \in \mathbb{N}$. Ainsi, $\widetilde{\mu}$ est dérivable n fois pour tout n et sa dérivée n^e a la forme voulue.

 $\boxed{\mathbf{3}}\ h_{n,x}$ est positive pour tout x (c'est une exponentielle multipliée par une puissance de t, et $t\geqslant a>0$). μ étant une forme linéaire positive, $\mu(h_{n,x})\geqslant 0$ pour tout n et pour tout x. En particulier, $\widetilde{\mu}^{(n)}$ est du signe de $(-1)^n$.

$$\widetilde{\mu}$$
 est CM.