

LM137/LM337

3-Terminal Adjustable Negative Regulators

General Description

The LM137/LM337 are adjustable 3-terminal negative voltage regulators capable of supplying in excess of -1.5A over an output voltage range of -1.2V to -37V. These regulators are exceptionally easy to apply, requiring only 2 external resistors to set the output voltage and 1 output capacitor for frequency compensation. The circuit design has been optimized for excellent regulation and low thermal transients. Further, the LM137 series features internal current limiting, thermal shutdown and safe-area compensation, making them virtually blowout-proof against overloads.

The LM137/LM337 serve a wide variety of applications including local on-card regulation, programmable-output voltage regulation or precision current regulation. The LM137/LM337 are ideal complements to the LM117/LM317 adjustable positive regulators.

Features

- Output voltage adjustable from -1.2V to -37V
- 1.5A output current guaranteed, -55°C to +150°C
- Line regulation typically 0.01%/V
- Load regulation typically 0.3%

- Excellent thermal regulation, 0.002%/W
- 77 dB ripple rejection
- Excellent rejection of thermal transients
- 50 ppm/°C temperature coefficient
- Temperature-independent current limit
- Internal thermal overload protection
- P⁺ Product Enhancement tested
- Standard 3-lead transistor package
- Output is short circuit protected

LM137 Series Packages and Power Capability

		Rated	Design		
Device	Package	Power	Load Current		
		Dissipation			
LM137/337	TO-3 (K)	20W	1.5A		
	TO-39 (H)	2W	0.5A		
LM337	TO-220 (T)	15W	1.5A		
LM337	SOT-223	2W	1A		
	(MP)				

Typical Applications

Adjustable Negative Voltage Regulator

Full output current not available at high input-output voltages

$$-V_{OUT} = -1.25V \left(1 + \frac{R2}{120}\right) + \left(-I_{ADJ} \times R2\right)$$

 $\dagger C1 = 1~\mu F$ solid tantalum or 10 μF aluminum electrolytic required for stability

 $^{\star}\text{C2} = 1~\mu\text{F}$ solid tantalum is required only if regulator is more than 4" from power-supply filter capacitor

Output capacitors in the range of 1 μF to 1000 μF of aluminum or tantalum electrolytic are commonly used to provide improved output impedance and rejection of transients

Comparison between SOT-223 and D-Pak (TO-252) Packages

Absolute Maximum Ratings (Notes 1,

4)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Power Dissipation Internally Limited Input-Output Voltage Differential 40V

Input-Output Voltage Differential
Operating Junction Temperature

Range

LM137 –55°C to +150°C

LM337 0°C to +125°C

LM337I -40°C to +125°C

Storage Temperature -65°C to +150°C

Lead Temperature (Soldering, 10 sec.) 300°C

Plastic Package (Soldering, 4 sec.) 260°C

ESD Rating 2k Volts

Electrical Characteristics (Note 1)

Parameter	Conditions	LM137			LM337			Units
		Min	Тур	Max	Min	Тур	Max	1
Line Regulation	$T_j = 25^{\circ}C, 3V \le V_{IN} - V_{OUT} \le 40V$		0.01	0.02		0.01	0.04	%/V
	(Note 2) $I_L = 10 \text{ mA}$							
Load Regulation	$T_j = 25$ °C, 10 mA $\leq I_{OUT} \leq I_{MAX}$		0.3	0.5		0.3	1.0	%
Thermal Regulation	T _j = 25°C, 10 ms Pulse		0.002	0.02		0.003	0.04	%/W
Adjustment Pin Current			65	100		65	100	μA
Adjustment Pin Current Charge	$10 \text{ mA} \le I_L \le I_{MAX}$		2	5		2	5	μA
	$3.0V \le V_{IN} - V_{OUT} \le 40V$,							1
	$T_A = 25^{\circ}C$							1
Reference Voltage	$T_j = 25^{\circ}C \text{ (Note 3)}$	-1.225	-1.250	-1.275	-1.213	-1.250	-1.287	V
	$3V \le V_{IN} - V_{OUT} \le 40V$, (Note 3)	-1.200	-1.250	-1.300	-1.200	-1.250	-1.300	V
	10 mA \leq I _{OUT} \leq I _{MAX} , P \leq P _{MAX}							
Line Regulation	$3V \le V_{IN} - V_{OUT} \le 40V$, (Note 2)		0.02	0.05		0.02	0.07	%/V
Load Regulation	10 mA \leq I _{OUT} \leq I _{MAX} , (Note 2)		0.3	1		0.3	1.5	%
Temperature Stability	$T_{MIN} \le T_j \le T_{MAX}$		0.6			0.6		%
Minimum Load Current	$ V_{IN} - V_{OUT} \le 40V$		2.5	5		2.5	10	mA
	$ V_{IN} - V_{OUT} \le 10V$		1.2	3		1.5	6	mA
Current Limit	$ V_{IN} - V_{OUT} \le 15V$							
	K, MP and T Package	1.5	2.2	3.5	1.5	2.2	3.7	Α
	H Package	0.5	0.8	1.8	0.5	0.8	1.9	Α
	$ V_{IN} - V_{OUT} = 40V, T_j = 25^{\circ}C$							1
	K, MP and T Package	0.24	0.4		0.15	0.4		Α
	H Package	0.15	0.17		0.10	0.17		Α
RMS Output Noise, % of V _{OUT}	$T_j = 25^{\circ}C, 10 \text{ Hz} \le f \le 10 \text{ kHz}$		0.003			0.003		%
Ripple Rejection Ratio	$V_{OUT} = -10V, f = 120 \text{ Hz}$		60			60		dB
	$C_{ADJ} = 10 \mu F$	66	77		66	77		dB
Long-Term Stability	T _j = 125°C, 1000 Hours		0.3	1		0.3	1	%
Thermal Resistance, Junction to	H Package		12	15		12	15	°C/W
Case	K Package		2.3	3		2.3	3	°C/W
	T Package					4		°C/W
Thermal Resistance, Junction to	H Package		140			140		°C/W
Ambient (No Heat Sink)	K Package		35			35		°C/W
	T Package					50		°C/W
	MP Package					170		°C/W

Note 1: Unless otherwise specified, these specifications apply $-55^{\circ}\text{C} \le \text{T}_j \le +150^{\circ}\text{C}$ for the LM137, $0^{\circ}\text{C} \le \text{T}_j \le +125^{\circ}\text{C}$ for the LM337; $V_{\text{IN}} - V_{\text{OUT}} = 5V$; and $I_{\text{OUT}} = 0.1\text{A}$ for the TO-39 package and $I_{\text{OUT}} = 0.5\text{A}$ for the TO-3, SOT-223 and TO-220 packages. Although power dissipation is internally limited, these specifications are applicable for power dissipations of 2W for the TO-39 and SOT-223 (see Application Hints), and 20W for the TO-3, and TO-220. I_{MAX} is 1.5A for the TO-3, SOT-223 and TO-220 packages, and 0.2A for the TO-39 package.

Note 2: Regulation is measured at constant junction temperature, using pulse testing with a low duty cycle. Changes in output voltage due to heating effects are covered under the specification for thermal regulation. Load regulation is measured on the output pin at a point 1/8" below the base of the TO-3 and TO-39 packages.

Electrical Characteristics (Note 1) (Continued)

- Note 3: Selected devices with tightened tolerance reference voltage available.
- Note 4: Refer to RETS137H drawing for LM137H or RETS137K drawing for LM137K military specifications.

Schematic Diagram

Thermal Regulation

When power is dissipated in an IC, a temperature gradient occurs across the IC chip affecting the individual IC circuit components. With an IC regulator, this gradient can be especially severe since power dissipation is large. Thermal regulation is the effect of these temperature gradients on output voltage (in percentage output change) per Watt of power change in a specified time. Thermal regulation error is independent of electrical regulation or temperature coefficient, and occurs within 5 ms to 50 ms after a change in power dissipation. Thermal regulation depends on IC layout as well as electrical design. The thermal regulation of a voltage regulator is defined as the percentage change of $V_{\rm OUT}$, per Watt, within the first 10 ms after a step of power is applied. The LM137's specification is 0.02%/W, max.

 I_{IL} = 0A \rightarrow 0.25A \rightarrow 0A

LM137, $V_{OUT} = -10V$

 $V_{IN} - V_{OUT} = -40V$

Vertical sensitivity, 5 mV/div

FIGURE 1.

Thermal Regulation (Continued)

In Figure 1, a typical LM137's output drifts only 3 mV (or 0.03% of $V_{OUT} = -10V$) when a 10W pulse is applied for 10 ms. This performance is thus well inside the specification limit of $0.02\%/W \times 10W = 0.2\%$ max. When the 10W pulse is ended, the thermal regulation again shows a 3 mV step at the LM137 chip cools off. Note that the load regulation error of about 8 mV (0.08%) is additional to the thermal regulation error. In Figure 2, when the 10W pulse is applied for 100 ms, the output drifts only slightly beyond the drift in the first 10 ms, and the thermal error stays well within 0.1% (10 mV).

00906704

LM137, $V_{OUT} = -10V$ $V_{IN} - V_{OUT} = -40V$ $I_L = 0A \rightarrow 0.25A \rightarrow 0A$ Horizontal sensitivity, 20 ms/div

FIGURE 2.

Connection Diagrams

TO-3 Metal Can Package

Bottom View
Order Number LM137K/883
LM137KPQML and LM137KPQMLV(Note 5)
See NS Package Number K02C
Order Number LM337K STEEL
See NS Package Number K02A

Case is Input

TO-39 Metal Can Package

00906706

Bottom View
Order Number LM137H, LM137H/883 or LM337H
LM137HPQML and LM137HPQMLV(Note 5)
See NS Package Number H03A

Case Is Input

Note 5: See STD Mil DWG 5962P99517 for Radiation Tolerant Devices

Front View Order Number LM337T See NS Package Number T03B

Front View
Order Number LM337IMP
Package Marked N02ASee NS Package Number MA04A

Application Hints

When a value for $\theta_{(H-A)}$ is found using the equation shown, a heatsink must be selected that has a value that is less than or equal to this number.

HEATSINKING SOT-223 PACKAGE PARTS

The SOT-223 ("MP") packages use a copper plane on the PCB and the PCB itself as a heatsink. To optimize the heat sinking ability of the plane and PCB, solder the tab of the package to the plane.

Figures 3, 4 show the information for the SOT-223 package. Figure 4 assumes a $\theta_{(J-A)}$ of 75°C/W for 1 ounce copper and 51°C/W for 2 ounce copper and a maximum junction temperature of 125°C.

FIGURE 3. $\theta_{\text{(J-A)}}$ vs Copper (2 ounce) Area for the SOT-223 Package

FIGURE 4. Maximum Power Dissipation vs. T_{AMB} for the SOT-223 Package

Please see AN1028 for power enhancement techniques to be used with the SOT-223 package.

Typical Applications

Adjustable Lab Voltage Regulator

00906709

Full output current not available

at high input-output voltages

*The 10 µF capacitors are optional to improve ripple rejection

Current Regulator

 $I_{OUT} = \frac{1.250V}{R1}$ $*0.8\Omega \le R1 \le 120\Omega$

Negative Regulator with Protection Diodes

00906713

*When C_L is larger than 20 $\mu\text{F},\,D1$ protects the LM137 in case the input supply is shorted

**When C2 is larger than 10 μ F and $-V_{OUT}$ is larger than -25V, D2 protects the LM137 in case the output is shorted

Typical Applications (Continued)

-5.2V Regulator with Electronic Shutdown*

*Minimum output \simeq -1.3V when control input is low

Adjustable Current Regulator

 $I_{OUT} = \left(\frac{1.5V}{R1}\right) \pm 15\%$ adjustable

Typical Performance Characteristics (K Steel and T Packages)

00906716

Adjustment Current

00906718

Temperature Stability

Current Limit

Dropout Voltage

00906719

Minimum Operating Current

Typical Performance Characteristics (K Steel and T Packages) (Continued)

Line Transient Response

Ripple Rejection

00906723

Output Impedance

Load Transient Response

00906727

Physical Dimensions inches (millimeters) unless otherwise noted

Metal Can Package (H) Order Number LM137H, LM137H/883 or LM337H **NS Package Number H03A**

Physical Dimensions inches (millimeters) unless otherwise noted (Continued) 0.256 ± 0.008 $[6.5 \pm 0.2]$ -A-0.129 [3.28] MAX 0.118 ± 0.004 [3 ± 0.1] SYMM 4 0.004 [0.1] M C AS B S 0.059 MAX[1.5] $0.140^{+0.006}_{-0.010}$ $[3.56^{+0.15}_{-0.25}]$ 0.248 [6.3] $0.274 \, ^{+0.013}_{-0.010}$ $[6.96^{+0.33}_{-0.25}]$ 0.059 MAX TYP --B-[1.5] 0.039 [0.99] MAX TYP 0.090 [2.29] TYP 0.0900 R 0.006 ± 0.002 TYP [2.286] $[0.15 \pm 0.05]$ LAND PATTERN RECOMMENDATION R 0.006 ± 0.002 TYP $[0.15 \pm 0.05]$ GAGE PLANE - $0.012^{\,+0.001}_{\,\,-0.003}\\ \left[0.3^{\,+0.02}_{\,\,-0.07}\,\right]$ 0.010 0.061 - 0.071 [1.55 - 1.80] [0.25] (0.063) TYP [1.6] Φ 0.003 [0.07] С SEATING PLANE -0.036 [0.91] MIN TYP 0°-10° 0.001 - 0.004 TYP [0.03 - 0.10] $\begin{array}{c} 0.029 \ ^{+0.002}_{-0.003} \ \text{TYP} \\ [0.74 \ ^{+0.05}_{-0.07}] \end{array}$ (0.067)TYP [1.7] C AS 0.004 [0.1] M B (S) MAO4A (REV A)

3-Lead SOT-223 Package Order Number LM337IMP NS Package Number M04A

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Email: support@nsc.com

www.national.com

National Semiconductor

Europe

Fax: +49 (0) 180-530 85 86 Email: europe.support@nsc.com Deutsch Tel: +49 (0) 69 9508 6208 English Tel: +44 (0) 870 24 0 2171

Français Tel: +33 (0) 1 41 91 8790

National Semiconductor Asia Pacific Customer Response Group

Tel: 65-2544466 Fax: 65-2504466 Email: ap.support@nsc.com **National Semiconductor** Tel: 81-3-5639-7560

Fax: 81-3-5639-7507