SC201 Lecture 1

Machine Learning

data(i)	area(x)	\$(y)
data(1)	1	1
data(2)	2	2
data(3)	3	4

	y					
4	†			•		
3	-					
2	-		•			
1	ŀ	•				
-0-					→	X
		1	2	3		

How do we know < model 1> y=x is better?

Loss Function

- How does your model perform on _______
 - 1. 假設 loss(data(i)) = **y**i- **y**i' < **Model 1> y** = **x**

<Model 2> y = 2

2. L1 loss function $|\mathbf{y_{i}} - \mathbf{y_{i}}'|$ <Model 1> $\mathbf{y} = \mathbf{x}$

<Model 2> y = 2

3. L2 loss function $(y_i-y_i')^2$

<Model 1> y = x

<Model 2> y = 2

To evaluate a model, we cannot do it on 1 data point (1 loss)!

Instead, we need _____

Cost Function

J =

(Note: where m is number of data)

cost-function.ipynb → Jupyter notebook

- 1. Web-based IDE
- 2. _____(not def main())
- 3. _____
- 4. 執行cell: _____+ ____

How do we find the <u>best line</u> by learning?

假設最好的model為 $h(\theta) = \theta x$

→ y = mx 必過原點

哪個model最好?

$$J(\theta 1) =$$

$$J(\theta 2) =$$

 $J(\theta 3) =$ $J(\theta)$ 2

0.3 0.6 0.9 1.2 1.5 1.8 2.1

0

What is this? \rightarrow

每個斜率都有一個cost

是 θ 的函數

• 當θ從2→ 1/2: Cost從 ___→ ___→ $(\theta 1)$ $(\theta 3)$

Linear Regression

A way of finding the _____ of a function.

 $\begin{cases}
\bullet & \text{If } \frac{dJ(\theta i)}{d\theta} > 0 \to \text{the min is at the } \\
\bullet & \text{If } \frac{dJ(\theta i)}{d\theta} < 0 \to \text{the min is at the }
\end{cases}$

Training

4

② if $\frac{dJ(\theta i)}{d\theta} < 0$, ______ θi ;

elif $\frac{dJ(\theta i)}{d\theta} > 0$, ______ θi ;

elif $\frac{dJ(\theta i)}{d\theta} == 0$, Congrats! You've found the min!

(3) $\theta i = \theta i - \frac{dJ(\theta i)}{d\theta}$ (______)

Gradiant Descent (絕對要做不只一次)

$$\mathbf{\theta i} = \mathbf{\theta i} - \alpha \frac{dJ}{d\theta}(\mathbf{\theta i})$$

$$\int$$
 • 當 θi 離 min 愈 ____, $\left| \frac{dJ(\theta i)}{d\theta} \right|$ 愈 ____, α $\left| \frac{dJ}{d\theta} (\theta i) \right|$ 愈 ____ ➡ 更新愈 ____

• 當
$$\theta$$
i 離 min 愈 _____, $\left| \frac{dJ(\theta i)}{d\theta} \right|$ 愈 _____, $\alpha \left| \frac{dJ}{d\theta} (\theta i) \right|$ 愈 _____ ➡ 更新愈 ____

2

3

J上升(只有α太 ____的可能)

適中的α電腦無法跟你說,α稱為_____

Derivatives

$f(x) = x^2$	$f(x) = 3x^2$	g(x) = 2x	k(x) = 2
$\frac{df(x)}{dx} = f'(x) =$	$\frac{df(x)}{dx} = f'(x) =$	$\frac{dg(x)}{dx} = g'(x) =$	$\frac{dg(x)}{dx} = k'(x) =$

$$\bullet \ \frac{dlogx}{dx} =$$

Chain Rule

$$f(x) = (1-x)^2$$

$$\frac{df(x)}{dx} = ?$$

$$\frac{dJ(\theta)}{d\theta}$$