Ejercicios de Laboratorio PLIE

Grupo Aula E

(Elena Fernández)

Planificació de la producció:

		onsum unitari Consum unitari		Benefici	<i>x</i> *
	mà obra (h)	fusta (kg)	plastic (kg)	unitari (€)	(Kg)
Producte A	1	3	2	300	50
Producte B	2	2	-	250	50
Disponibilitat	150h/dia	300kg/dia	100kg/dia		

- Formuleu la modelització matemàtica parametritzada
- Implementeu i resoleu amb OPTMODEL
- Indiqueu els valors de la solució òptima: B^* , x_B^* , N^* , r^* i λ^*

Modelo Optimización (papel)

	Producte A	Producte B	Disponibilitat
Consum unitari mà obra (h)	1	2	150h/dia
Consum unitari fusta (kg)	3	2	300kg/dia
Consum plastic (kg)	2	-	100kg/dia
Benefici unitari (€)	300	250	
x* (Kg)			

Variables de decisión: x_i : cantidad fabricada de producto j (en Kg), $j \in \{A, B\}$

Restricciones:
$$x_A + 2 x_B \le 150$$
 (disp. mano obra)

$$3 x_A + 2 x_B \le 300$$
 (disp. madera)
 $2 x_A \le 100$ (disp. pástico)

$$\sum_{j \in Prod} a_{ij} x_j \le b_i \ i \in Recursos$$

Dominio de las variables: x_A , $x_B \ge 0$

Función Objetivo: Max $300 x_A + 250 x_B$ Max $\sum_{j \in Prod} p_j x_j$

Modelo Optimización: OPTMODEL

Variables de decisión: x_i : cantidad fabricada de producto j (en Kg), $j \in \{A, B\}$

Restricciones: $\sum_{i \in Prod} a_{ij} x_i \leq b_i$, $i \in Recursos$

Dominio de las variables: $x_A, x_B \ge 0$

Función Objetivo: Max $\sum_{j \in Prod} p_j x_j$

OPTMODEL

var Produc {PRODUCTE} >= 0;

max Total_benefici = sum {j in PRODUCTE} benefici[j]*Produc[j];

con Consum_recurs {i in RECURS}: sum {j in PRODUCTE} consum[i,j]*Produc[j] <= disp[i];

```
/* Parametres */
set<string> PRODUCTE = {'A','B'};
set<string> RECURS = {'ma', 'fusta', 'plastic'};
number consum{ RECURS, PRODUCTE} = [ 1 3 2 2 2 0 ];
number disp{RECURS} = [150 300 100];
number benefici{PRODUCTE} = [300 250];

/* Model d'optimització */
var Produc {PRODUCTE} >= 0;
max Total_benefici = sum {j in PRODUCTE} benefici[j]*Produc[j];
con Consum_recurs {i in RECURS}: sum {j in PRODUCTE} consum[i,j]*Produc[j] <= disp[i];
```

```
/* Model extens */
expand;
/* Optimització i resultats */
solve;
```

print Produc.lb Produc.sol Produc.ub Produc.rc Produc.status; print Consum_recurs.lb Consum_recurs.body Consum_recurs.ub Consum_recurs.dual Consum_recurs.status;

```
Var Produc[A] >= 0
Var Produc[B] >= 0
Maximize Total_benefici=300*Produc[A] + 250*Produc[B]
Restricción Consum_recurs[ma]: Produc[A] + 2*Produc[B] <= 150
Restricción Consum_recurs[fusta]: 3*Produc[A] + 2*Produc[B] <= 300
Restricción Consum_recurs[plastic]: 2*Produc[A] <= 100</pre>
```

Resumen del problema						
Objective Sense	Maximization					
Objective Function	Total_benefici					
Objective Type	Linear					
Number of Variables	2					
Bounded Above	0					
Bounded Below	2					
Bounded Below and Above	0					
Free	0					
Fixed	0					
Number of Constraints	3					
Linear LE (<=)	3					
Linear EQ (=)	0					
Linear GE (>=)	0					
Linear Range	0					
Coeficientes de restricción	5					

Información de rendimiento					
Execution Mode	On Client				
Number of Threads	1				

Resumen de la	solución
Solver	LP
Algorithm	Dual Simplex
Objective Function	Total_benefici
Solution Status	Optimal
Objective Value	27500
Iterations	4
Primal Infeasibility	0
Dual Infeasibility	0
Bound Infeasibility	0

[1]	Produc.LB	Produc. SOL	Produc.UB	Produc.RC	Produc.STATUS
Α	0	50	1.7977E+308	0	В
В	0	50	1.7977E+308	0	В

[1]	Consum_recurs.LB	Consum_recurs.BODY	Consum_recurs.UB	Consum_recurs.DUAL	Consum_recurs.STATUS
fusta	-1.7977E+308	250	300	0.0	В
ma	-1.7977E+308	150	150	125.0	L
plastic	-1.7977E+308	100	100	87.5	L

Problema de mezcla

	Disol	vents			
	1	2	3	4	Contingut mescla (ml/l)
Clor (ml/l)	180	120	90	60	≥ 90
Amoníac (ml/l)	3	2	6	5	≤ 4
Cost (€/I)	16	12	10	11	

- Formuleu la modelització matemàtica parametritzada
- Implementeu i resoleu amb OPTMODEL
- Indiqueu els valors de la solució òptima: B^* , xB^* , N^* , r^* i λ^*

Modelo Optimización (papel)

	Disol	vents			
	1	2	3	4	Contingut mescla (ml/l)
Clor (ml/l)	180	120	90	60	≥ 90
Amoníac (ml/l)	3	2	6	5	≤ 4
Cost (€/I)	16	12	10	11	

Variables de decisión: x_j : proporción de disolvente j en la mezcla, $j \in \{1, 2, 3, 4\}$ cantidad (en litros) disolvente j en un litro de mezcla

Dominio: $x_j \ge 0$, $j \in \{1, 2, 3, 4\}$

Restricciones: $180 x_1 + 120 x_2 + 90 x_3 + 60 x_4 \ge 90$ (Cloro) $3 x_1 + 2 x_2 + 6 x_3 + 5 x_4 \le 4$ (Amoniaco) $x_1 + x_2 + x_3 + x_4 = 1$ (CANTIDAD DE MEZCLA PRODUCIDA)

Función Objetivo: Min 16 $x_1 + 12 x_2 + 10 x_3 + 11 x_4$

	Disolvents				
	1	2	3	4	Contingut mescla (ml/l)
Clor (ml/l)	180	120	90	60	≥ 90
Amoníac (ml/l)	3	2	6	5	≤ 4
Cost (€/I)	16	12	10	11	

Parámetros: number nD=4;

set DISOLVENTS = 1..nD;

set COMPONENTS_MIN = {'Clor'};

set COMPONENTS_MAX = {'Amoniac'};

set COMPONENTS = COMPONENTS_MIN UNION COMPONENTS_MAX;

number contingut{ COMPONENTS, DISOLVENTS} =

[180 120 90 60 3 2 6 5];

number mescla{COMPONENTS} = [90 4];

number cost{DISOLVENTS} = [16 12 10 11];

	Disolvents				
	1	2	3	4	Contingut mescla (ml/l)
Clor (ml/l)	180	120	90	60	≥ 90
Amoníac (ml/l)	3	2	6	5	≤ 4
Cost (€/I)	16	12	10	11	

Variables: var Proporcio {DISOLVENTS} >= 0;

Restricciones:

Función Objetivo: min Total_cost = sum {j in DISOLVENTS} cost[j]*Proporcio[j];

```
proc optmodel;
/* Paràmetres */
number nD=4;
set<number> DISOLVENTS = 1..nD;
set<string> COMPONENTS_MIN = {'Clor'};
set<string> COMPONENTS_MAX = {'Amoniac'};
set<string> COMPONENTS = COMPONENTS_MIN UNION COMPONENTS_MAX;
number contingut{ COMPONENTS, DISOLVENTS} =
       180
               120
                       90
                               60
                               5];
number mescla{COMPONENTS} = [90 4];
number cost{DISOLVENTS} = [16 12 10 11];
```

```
/* Model d'optimització */
var Proporcio {DISOLVENTS} >= 0;
min Total_cost = sum {j in DISOLVENTS} cost[j]*Proporcio[j];
con Contingut_minim {i in COMPONENTS_MIN}:
        sum {j in DISOLVENTS} contingut[i,j]*Proporcio[j] >= mescla[i];
con Contingut_maxim {i in COMPONENTS_MAX}:
        sum {j in DISOLVENTS} contingut[i,j]*Proporcio[j] <= mescla[i];</pre>
con Cons_mescla: sum{j in DISOLVENTS} Proporcio[j] = 1;
/* Model extens */
expand;
/* Optimització i resultats */
solve;
print Proporcio.lb Proporcio.sol Proporcio.ub Proporcio.rc Proporcio.status;
print Contingut minim.lb Contingut minim.body Contingut minim.ub
Contingut minim.dual Contingut minim.status;
print Contingut maxim.lb Contingut maxim.body Contingut maxim.ub
Contingut maxim.dual Contingut maxim.status;
```

```
Var Proporcio[1] >= 0
Var Proporcio[2] >= 0
Var Proporcio[3] >= 0
Var Proporcio[4] >= 0
Minimize Total_cost=16*Proporcio[1] + 12*Proporcio[2] + 10*Proporcio[3] + 11*Proporcio[4]
Restricción Contingut_minim[Clor]: 180*Proporcio[1] + 120*Proporcio[2] + 90*Proporcio[3] + 60*Proporcio[4] >= 90
Restricción Contingut_maxim[Amoniac]: 3*Proporcio[1] + 2*Proporcio[2] + 6*Proporcio[3] + 5*Proporcio[4] <= 4
Restricción Cons_mescla: Proporcio[1] + Proporcio[2] + Proporcio[4] = 1</pre>
```

Resumen del problema					
Objective Sense	Minimization				
Objective Function	Total_cost				
Objective Type	Linear				
Number of Variables	4				
Bounded Above	0				
Bounded Below	4				
Bounded Below and Above	0				
Free	0				
Fixed	0				
Number of Constraints	3				
Linear LE (<=)	1				
Linear EQ (=)	1				
Linear GE (>=)	1				
Linear Range	0				
Coeficientes de restricción	12				

Información de rendimiento				
Execution Mode	On Client			
Number of Threads				

Resumen de la	solución
Solver	LP
Algorithm	Dual Simplex
Objective Function	Total_cost
Solution Status	Optimal
Objective Value	11
Iterations	6
Primal Infeasibility	0
Dual Infeasibility	0
Bound Infeasibility	0

[1]	Proporcio.LB	Proporcio.SOL	Proporcio.UB	Proporcio.RC	Proporcio.STATUS
1	0	0.0	1.7977E+308	4.5	L
2	0	0.5	1.7977E+308	0.0	В
3	0	0.5	1.7977E+308	0.0	В
4	0	0.0	1.7977E+308	0.5	L

[1]	Contingut_minim.LB	Contingut_minim.BODY	Contingut_minim.UB	Contingut_minim.DUAL	Contingut_minim.STATUS
Clor	90	105	1.7977E+308	0	В

[1]	Contingut_maxim.LB	Contingut_maxim.BODY	Contingut_maxim.UB	Contingut_maxim.DUAL Contingut_maxim.STATUS
Amoniac	-1.7977E+308	4	4	-0.5 L

Problema de la dieta

	Vitamines (ui)	Hidrats de Carboni (u.i.)	Oligoelements (u.i.)	Proteines (u.i.)	Preu (€/kg)	<i>x</i> * (kg)
Carn	25	20	10	150	8	
Peix	200	50	10	200	10	
Cereals	300	300	10	50	2	
Fruita	-	160	50	20	1.5	
Pa	-	120	100	20	0.5	
Aportació minima diaria	60u.i./dia	40u.i./dia	100u.i./dia	100 u.i./dia		

- Formuleu la modelització matemàtica parametritzada
- Implementeu i resoleu amb OPTMODEL
- Indiqueu els valors de la solució òptima: B^* , xB^* , N^* , r^* i λ^*

Modelo Optimización (papel)

		Contingut per kg de menjar							
	Vitamines	Hidrats de	Oligoelements	Proteines	Preu				
	(ui)	Carboni (u.i.)	(u.i.)	(u.i.)	(€/kg)				
Carn	25	20	10	150	8				
Peix	200	50	10	200	10				
Cereals	300	300	10	50	2				
Fruita	-	160	50	20	1.5				
Pa	-	120	100	20	0.5				
Aportació dia	60u.i./dia	40u.i./dia	100u.i./dia	100 u.i./dia					

Variables de decisión: x_i : Kg de alimento j consumida al día, $j \in \{1, 2, 3, 4, 5\}$

Dominio: $x_i \ge 0$, $j \in \{1, 2, 3, 4, 5\}$

Restricciones:
$$25 x_1 + 200 x_2 + 300 x_3$$
 ≥ 60 (Vitaminas)
 $20 x_1 + 50 x_2 + 300 x_3 + 160 x_4 + 120 x_5 \geq 40$ (Hidratos Carbono)

$$10 x_1 + 10 x_2 + 10 x_3 + 50 x_4 + 100 x_5 \ge 100$$
 (Oligoelementos)

$$150 x_1 + 200 x_2 + 50 x_3 + 20 x_4 + 20 x_5 \ge 100$$
 (Proteinas)

$$\sum_{j \in Alimentos} a_{ij} x_j \ge b_i i \in Nutrientes$$

Función Objetivo: Min 8 x₁ + 10 x₂ + 2 x₃ + 1. x₄ + 0.5 x₃ Min $\sum_{j \in Alimentos} c_j x_j$

		Carn	Peix	Cereals	Fruita	Pa	Aportació dia
	Vitamines (u.i.)	25	200	300	-	-	60u.i./dia
Contingut per kg de	Hidrats Carboni (u.i.)	20	50	300	160	120	40u.i./dia
menjar	Oligoelements (u.i.)	10	10	10	50	100	100u.i./dia
	Proteines (u.i.)	150	200	50	20	20	100 u.i./dia
	Preu (€/kg)	8	10	2	1.5	0.5	

```
Parámetros: set NUTRIENTS = {'V','HC', 'O', 'P'}; set MENJARS = {'carn', 'peix', 'cereals', 'fruita', 'pa'};
```

```
number contingut{NUTRIENTS, MENJARS} =
                  25
                                  300
                         200
                                            0
                                                    0
                  20
                          50
                                  300
                                          160
                                                   120
                  10
                          10
                                   10
                                           50
                                                   100
                 150
                         200
                                   50
                                           20
                                                    20
        ];
```

```
number apor{NUTRIENTS} = [60 40 100 100];
number preu{MENJARS} = [8 10 2 1.5 0.5];
```

		Carn	Peix	Cereals	Fruita	Pa	Aportació dia
	Vitamines (u.i.)	25	200	300	-	-	60u.i./dia
Contingut per kg de	Hidrats Carboni (u.i.)	20	50	300	160	120	40u.i./dia
menjar	Oligoelements (u.i.)	10	10	10	50	100	100u.i./dia
	Proteines (u.i.)	150	200	50	20	20	100 u.i./dia
	Preu (€/kg)	8	10	2	1.5	0.5	

Variables: var Quantitat {MENJARS} >= 0;

Restricciones:

Función Objetivo: min Total_cost = sum {j in MENJARS} preu[j]*Quantitat[j];

```
/* Paràmetres */
set NUTRIENTS = {'V','HC', 'O', 'P'};
set MENJARS = {'carn', 'peix', 'cereals', 'fruita', 'pa'};
number contingut{NUTRIENTS, MENJARS} =
                 25
                         200
                                 300
                                           0
                                                   0
                 20
                         50
                                 300
                                         160
                                                  120
                 10
                          10
                                  10
                                          50
                                                  100
                        200
                                  50
                                                   20
                150
                                          20
number apor{NUTRIENTS} = [60 40 100 100];
number preu\{MENJARS\} = [8\ 10\ 2\ 1.5\ 0.5];
/* Model d'optimització */
var Quantitat {MENJARS} >= 0;
min Total_cost = sum {j in MENJARS} preu[j]*Quantitat[j];
con Aportacio min {i in NUTRIENTS}:
        sum {j in MENJARS} contingut[i,j]*Quantitat[j] >= apor[i];
```

```
/* Model extens */
expand;

/* Optimització i resultats */
solve;

print Quantitat.lb Quantitat.sol Quantitat.ub Quantitat.rc Quantitat.status;
print Aportacio_min.lb Aportacio_min.body Aportacio_min.ub
Aportacio_min.dual Aportacio_min.status;
```

```
Var Quantitat[carn] >= 0
Var Quantitat[peix] >= 0
Var Quantitat[cereals] >= 0
Var Quantitat[fruita] >= 0
Var Quantitat[fruita] >= 0

Var Quantitat[pa] >= 0
Minimize Total_cost=8*Quantitat[carn] + 10*Quantitat[peix] + 2*Quantitat[cereals] + 1.5*Quantitat[fruita] + 0.5*Quantitat[pa]
Restricción Aportacio_min[V]: 25*Quantitat[carn] + 200*Quantitat[peix] + 300*Quantitat[cereals] >= 60
Restricción Aportacio_min[HC]: 20*Quantitat[carn] + 50*Quantitat[peix] + 300*Quantitat[cereals] + 160*Quantitat[fruita] + 120*Quantitat[pa] >= 40
Restricción Aportacio_min[0]: 10*Quantitat[carn] + 10*Quantitat[peix] + 10*Quantitat[cereals] + 50*Quantitat[fruita] + 100*Quantitat[pa] >= 100
Restricción Aportacio_min[P]: 150*Quantitat[carn] + 200*Quantitat[peix] + 50*Quantitat[cereals] + 20*Quantitat[fruita] + 20*Quantitat[pa] >= 100
```

Resumen del problema				
Objective Sense	Minimization			
Objective Function	Total_cost			
Objective Type	Linear			
Number of Variables	5			
Bounded Above	0			
Bounded Below	5			
Bounded Below and Above	0			
Free	0			
Fixed	0			
Number of Constraints	4			
Linear LE (<=)	0			
Linear EQ (=)	0			
Linear GE (>=)	4			
Linear Range	0			
Coeficientes de restricción	18			

Información de rendimiento				
Execution Mode	On Client			
Number of Threads	1			

Resumen de la	solución
Solver	LP
Algorithm	Dual Simplex
Objective Function	Total_cost
Solution Status	Optimal
Objective Value	2.65
Iterations	6
Primal Infeasibility	0
Dual Infeasibility	0
Bound Infeasibility	0

[1]	Quantitat.LB	Quantitat. SOL	Quantitat.UB	Quantitat.RC	Quantitat. STATUS
carn	0	0.0	1.7977E+308	4.1875	L
cereals	0	0.2	1.7977E+308	0.0000	В
fruita	0	0.0	1.7977E+308	1.0000	L
pa	0	4.5	1.7977E+308	-0.0000	В
peix	0	0.0	1.7977E+308	4.5000	L

[1]	Aportacio_min.LB	Aportacio_min.BODY	Aportacio_min.UB	Aportacio_min.DUAL Aportacio_min.STATUS	5
HC	40	600	1.7977E+308	0.0000 B	
0	100	452	1.7977E+308	0.0000 B	
P	100	100	1.7977E+308	0.0250 U	
٧	60	60	1.7977E+308	0.0025 U	

Problema de transport

c_{ij} ($10^6 \in /Hm^3$)		Merc	ats		
Refineries	1	2	3	4	Producció refineria (<i>Hm</i> ³)
1	4	7	9	10	6
2	6	4	3	6	10
3	9	6	4	8	4
Demanda (Hm^3)	5	3	8	4	

- Formuleu la modelització matemàtica parametritzada
- Implementeu i resoleu amb OPTMODEL
- Indiqueu els valors de la solució òptima: B^* , xB^* , N^* , r^* i λ^*

Modelo Optimización (papel)

c_{ij} ($10^6 \in /Hm^3$)		Me	rcats		
Refineries	1	2	3	4	Producció refineria ($m{Hm}^3$)
1	4	7	9	10	6
2	6	4	3	6	10
3	9	6	4	8	4
Demanda (Hm^3)	5	3	8	4	

Variables de decisión: x_{ij} : cantidad de producto (Hm³) enviado desde refinería i a mercado j, $i \in \{1, 2, 3\}, j \in \{1, 2, 3, 4\}$

Dominio: $x_{ij} \ge 0$, $i \in \{1, 2, 3\}$, $j \in \{1, 2, 3, 4\}$

Restricciones: $x_{i1} + x_{i2} + x_{i3} + x_{i4} \le b_i$ (Refinería *i*) $\sum_{j=1}^n x_{ij} \le b_i$

 $x_{1j} + x_{2j} + x_{3j} \ge d_j$ (Mercado j) $\sum_{i=1}^m x_{ij} \ge d_j$

Función Objetivo: Min $\sum_{i \in Refinerias} \sum_{j \in Mercados} c_{ij} x_{ij}$

c_{ij} ($10^6 \in /Hm^3$)		Me	rcats		
Refineries	1	2	3	4	Producció refineria ($m{Hm}^3$)
1	4	7	9	10	6
2	6	4	3	6	10
3	9	6	4	8	4
Demanda (Hm^3)	5	3	8	4	

Parámetros:

c_{ij} ($10^6 \in /Hm^3$)		Me	rcats		
Refineries	1	2	3	4	Producció refineria ($m{Hm}^3$)
1	4	7	9	10	6
2	6	4	3	6	10
3	9	6	4	8	4
Demanda (Hm^3)	5	3	8	4	

Variables: var Trans { REFINERIES, MERCATS } >= 0;

Restricciones:

Función Objetivo: min Total_cost = sum {i in REFINERIES, j in MERCATS} cost[i,j] * Trans[i,j];

```
proc optmodel;
/* Parametres */
set<number> REFINERIES = 1..3;
set<number> MERCATS = 1..4;
number produccio{ REFINERIES } = [ 6 10 4 ];
number demanda { MERCATS } = [5 3 8 4 ];
number cost { REFINERIES, MERCATS } =
[4
                          10
6
                          6
9
                          8];
/* Optimization model */
var Trans { REFINERIES, MERCATS } >= 0;
min Total_cost = sum {i in REFINERIES, j in MERCATS} cost[i,j] * Trans[i,j];
con Produccio_cons {i in REFINERIES}:
        sum {j in MERCATS} Trans[i,j] <= produccio[i];</pre>
con Demanda_cons {i in MERCATS} :
        sum {j in REFINERIES} Trans[i,j] >= demanda[i];
```

```
/* Model extens */
expand;
/* Optimització i resultats */
solve;
print Trans.lb Trans.sol Trans.ub Trans.rc Trans.status;
print Produccio_cons.lb Produccio_cons.body Produccio_cons.ub
Produccio_cons.dual Produccio_cons.status;
print Demanda_cons.lb Demanda_cons.body Demanda_cons.ub
Demanda_cons.dual Demanda_cons.status;
```

Hospital del mar

- 5 tipus diferents de mostres fluids.
- Cada màquina pot ser usada per a analitzar qualsevol tipus de mostra
- el temps (minuts) que triga cadascuna depèn del tipus de mostra
- Cada màquina es pot usar un màxim de 8h al dia

	Màqu	ıina			
Temps de processat (minuts/ml)	Α	В	С	Volu	m (ml)
Mostra 1	3	5	2	80	
Mostra 2	4	3	5	75	
Mostra 3	4	5	3	80	
Mostra 4	5	4	3	12	
Mostra 5	3	5	4	60	

Formuleu el problema de PL que permet trobar com distribuir de forma òptima les mostres entre les màquines i resoleu-lo amb OPTMODEL.

Hospital del mar:

Modelo Optimización (papel)

	Màq	uina			
Temps de processat	Α	В	С	Volu	ım
(minuts/ml)				(ml)	
Mostra 1	3	5	2	80	
Mostra 2	4	3	5	75	
Mostra 3	4	5	3	80	
Mostra 4	5	4	3	12	
Mostra 5	3	5	4	60	

Variables de decisión:

ón: x_{ij} : cantidad (volumen en m/) de muestra i asignada a máquina j, i∈ {1, 2, 3, 4, 5}, j∈ {A, B, C} $x_{ij} \ge 0$, i∈ \mathcal{M} ={1, 2, 3, 4, 5}, j∈ \mathcal{Q} ={A, B, C}

$$i \in \{1, 2, 3, 4, 5\}, j \in \{A, B, C\}$$

Dominio:

$$x_{ij} \ge 0$$
, i ∈ \mathcal{M} ={1, 2, 3, 4, 5}, j ∈ \mathcal{Q} ={A, B, C}

Restricciones:

$$\sum_{j\in\mathcal{Q}} t_{ij} x_{ij} \ge v_i$$
, $i \in \mathcal{M}$ (Muestra *i*)

$$\sum_{i\in\mathcal{M}}t_{ij}x_{ij}\leq d_j,\ \ \mathrm{j}\in\mathcal{Q}\qquad \text{(Máquina}\ j)$$

$$d_j\text{: tiempo disponible máquina}\ j\text{ (8 horas)}$$

Función Objetivo:

$$\operatorname{Min} \Sigma_{j \in \mathcal{M}} \Sigma_{j \in \mathcal{Q}} t_{ij} x_{ij}$$

proc optmodel; /* Parametres */ set<string> MOSTRES= {'1', '2', '3', '4', '5'}; set<string> MAQUINES= {'A','B','C'}; number temps proc{ MOSTRES, MAQUINES } = [3 5 2 435 453 543 3 5 4]; number volum mostra{ MOSTRES } = [80 75 80 12 60]; number temps{ MAQUINES }= [480 480 480]; /* Variables*/ var Volum {MOSTRES,MAQUINES} >= 0;

/* Restricciones*/

```
min Total_temps =
sum {i in MOSTRES, j in MAQUINES} temps_proc[i,j] * Volum[i,j];
con Temps_maq {j in MAQUINES}: sum {i in MOSTRES} temps_proc[i,j]*Volum[i,j] <= temps[j];
con Proces_mostra {i in MOSTRES}: sum {j in MAQUINES}Volum[i,j] >= volum_mostra[i];
```

```
/* Show the model */
              expand;
   /* Optimize and output */
               solve;
print Volum.lb Volum.sol Volum.ub Volum.rc Volum.status;
print Temps_maq.lb Temps_maq.body Temps_maq.ub Temps_maq.dual Temps_maq.status;
print Proces_mostra.lb Proces_mostra.body Proces_mostra.ub Proces_mostra.dual
Proces_mostra.status;
print Volum.lb Volum.sol Volum.ub Volum.rc Volum.status;
print Temps_maq.lb Temps_maq.body Temps_maq.ub Temps_maq.dual Temps_maq.status;
print Proces_mostra.lb Proces_mostra.body Proces_mostra.ub Proces_mostra.dual
Proces_mostra.status;
```

```
Var Volum['1',A] >= 0
Var Volum['2',A] >= 0
Var Volum['3',A] >= 0
Var Volum['4',A] >= 0
Var Volum['5',A] >= 0
Var Volum['1',B] >= 0
Var Volum['2',B] >= 0
Var Volum['3',B] >= 0
Var Volum['4',B] >= 0
Var Volum['5',B] >= 0
Var Volum['1',C] >= 0
Var Volum['2',C] >= 0
Var Volum['3',C] >= 0
Var Volum['4',C] >= 0
Var Volum['5',C] >= 0
Minimize Total temps=3*Volum['1',A] + 4*Volum['2',A] + 4*Volum['3',A] + 5*Volum['4',A] + 3*Volum['5',A] + 5*Volum['1',B] + 3*
Volum['2',B] + 5*Volum['3',B] + 4*Volum['4',B] + 5*Volum['5',B] + 2*Volum['1',C] + 5*Volum['2',C] + 3*Volum['3',C] + 3*Volum['4',C]
+ 4*Volum['5',C]
Restricción Temps_maq[A]: 3*Volum['1',A] + 4*Volum['2',A] + 4*Volum['3',A] + 5*Volum['4',A] + 3*Volum['5',A] <= 480
Restricción Temps_maq[B]: 5*Volum['1',B] + 3*Volum['2',B] + 5*Volum['3',B] + 4*Volum['4',B] + 5*Volum['5',B] <= 480
Restricción Temps_maq[C]: 2*Volum['1',C] + 5*Volum['2',C] + 3*Volum['3',C] + 3*Volum['4',C] + 4*Volum['5',C] <= 480
Restricción Proces_mostra['1']: Volum['1',A] + Volum['1',B] + Volum['1',C] >= 80
Restricción Proces_mostra['2']: Volum['2',A] + Volum['2',B] + Volum['2',C] >= 75
Restricción Proces_mostra['3']: Volum['3',A] + Volum['3',B] + Volum['3',C] >= 80
Restricción Proces_mostra['4']: Volum['4',A] + Volum['4',B] + Volum['4',C] >= 12
Restricción Proces mostra['5']: Volum['5',A] + Volum['5',B] + Volum['5',C] >= 60
```

The OPTMODEL Procedure

Resumen del problema						
Objective Sense	Minimization					
Objective Function	Total_temps					
Objective Type	Linea					
Number of Variables	15					
Bounded Above	(
Bounded Below	15					
Bounded Below and Above	(
Free	(
Fixed	(
Number of Constraints	8					
Linear LE (<=)	3					
Linear EQ (=)	(
Linear GE (>=)	5					
Linear Range	(
Coeficientes de restricción	30					

Información de rendimiento					
Execution Mode	On Client				
Number of Threads	1				

[1]	[2]	Volum.LB	Volum.SOL	Volum.UB	Volum.RC	Volum.STATUS
1	Α	0	0	1.7977E+308	1	L
1	В	0	0	1.7977E+308	3	L
1	С	0	80	1.7977E+308	0	В
2	Α	0	0	1.7977E+308	1	L
2	В	0	75	1.7977E+308	0	В
2	С	0	0	1.7977E+308	2	L
3	Α	0	0	1.7977E+308	1	L
3	В	0	0	1.7977E+308	2	L
3	C	0	80	1.7977E+308	0	В
4	Α	0	0	1.7977E+308	2	L
4	В	0	0	1.7977E+308	1	L
4	C	0	12	1.7977E+308	0	В
5	Α	0	60	1.7977E+308	0	В
5	В	0	0	1.7977E+308	2	L
5	C	0	0	1.7977E+308	1	L

[1]	Temps_maq.LB	Temps_maq.BODY	Temps_maq.UB	Temps_maq.DUAL	Temps_maq.STATUS
Α	-1.7977E+308	180	480	0	В
В	-1.7977E+308	225	480	0	В
C	-1.7977E+308	436	480	0	В

[1]	Proces_mostra.LB	Proces_mostra.BODY	Proces_mostra.UB	Proces_mostra.DUAL	Proces_mostra.STATUS
1	80	80	1.7977E+308	2	U
2	75	75	1.7977E+308	3	U
3	80	80	1.7977E+308	3	U
4	12	12	1.7977E+308	3	U
5	60	60	1.7977E+308	3	U

Hospital del mar: Limitacions addicionals

• Cap mostra pot ocupar més del 50% del temps total de funcionament d'una màquina.

en aquest exemple α = 0.5

Cap màquina pot realitzar més del 40% de volum total de les proves

en aquest exemple β = 0.4

OPTMODEL

Nuevos Parametros:

```
number alpha = 0.5;
number beta = 0.4;
```

Nuevas Restricciones:

[1]	[2]	Volum.LB	Volum.SOL	Volum.UB	Volum.RC	Volum.STATUS
1	Α	0	6.320	1.7977E+308	0.0000	В
1	В	0	0.000	1.7977E+308	0.9375	L
1	C	0	73.680	1.7977E+308	0.0000	В
2	Α	0	27.988	1.7977E+308	0.0000	В
2	В	0	47.012	1.7977E+308	0.0000	В
2	C	0	0.000	1.7977E+308	1.9750	L
3	Α	0	12.272	1.7977E+308	0.0000	В
3	В	0	18.608	1.7977E+308	0.0000	В
3	C	0	49.120	1.7977E+308	-0.0000	В
4	Α	0	0.000	1.7977E+308	1.6875	L
4	В	0	12.000	1.7977E+308	0.0000	В
4	С	0	0.000	1.7977E+308	0.7500	L
5	Α	0	60.000	1.7977E+308	0.0000	В
5	В	0	0.000	1.7977E+308	0.5625	L
5	C	0	0.000	1.7977E+308	1.5500	L

[1]	Temps_maq.LB	Temps_maq.BODY	Temps_maq.UB	Temps_maq.DUAL	Temps_maq.STATUS
Α	-1.7977E+308	360.00	480	0	В
В	-1.7977E+308	282.07	480	0	В
C	-1.7977E+308	294.72	480	0	В

1]	Proces_mostra.LB	Proces_mostra.BODY	Proces_mostra.UB	Proces_mostra.DUAL	Proces_mostra.STATUS
	80	80	1.7977E+308	2.8125	U
1	75	75	1.7977E+308	3.7500	U
	80	80	1.7977E+308	3.7500	U
ļ	12	12	1.7977E+308	3.0000	U
i	60	60	1.7977E+308	3.1875	U

[1]	[2]	Limit_b1.LB	Limit_b1.BODY	Limit_b1.UB	Limit_b1.DUAL	Limit_b1.STATUS
1	Α	-1.7977E+308	-161.040	0	0.000	В
1	В	-1.7977E+308	-141.038	0	0.000	В
1	C	-1.7977E+308	0.000	0	-0.025	L
2	Α	-1.7977E+308	-68.050	0	0.000	В
2	В	-1.7977E+308	0.000	0	-0.500	L
2	C	-1.7977E+308	-147.360	0	0.000	В
3	Α	-1.7977E+308	-130.910	0	0.000	В
3	В	-1.7977E+308	-48.000	0	0.000	В
3	C	-1.7977E+308	0.000	0	0.000	В
4	Α	-1.7977E+308	-180.000	0	0.000	В
4	В	-1.7977E+308	-93.037	0	0.000	В
4	C	-1.7977E+308	-147.360	0	0.000	В
5	Α	-1.7977E+308	0.000	0	-0.125	L
5	В	-1.7977E+308	-141.038	0	0.000	В
5	C	-1.7977E+308	-147.360	0	0.000	В

[1]	Limit_b2.LB	Limit_b2.BODY	Limit_b2.UB	Limit_b2.DUAL	Limit_b2.STATUS
Α	-1.7977E+308	106.58	122.8	0.0000	В
В	-1.7977E+308	77.62	122.8	0.0000	В
C	-1.7977E+308	122.80	122.8	-0.7875	L

Coalco

Cada client pot rebre carbó d'una única mina o de totes dues, mesclant, en aquest últim cas, els dos tipus de carbó rebut. En tot cas, la composició del carbó rebut, ja sigui d'una única mina o per mescla de totes dues, no pot contenir més d'un 8% de cendres i d'un 7% de sulfur.

Cost de	Client 1	Client 2	Cost de	Capacitat	Contingut	Contingut
transport			producció	(Tm)	en cendra	en sulfur
(€/Tm)			(€/Tm)		(Tm/Tm carbó)	(Tm/Tm carbó)
Mina 1	4	6	50	120	0.1	0.04
Mina 2	9	6	55	100	0.05	0.09
Demanda (Tm)	90	110				

Coalco: Modelo Optimización (papel)

Coalco: OPTMODEL

Cost de transport (€/Tm)		Client 2	Cost de producció (€/Tm)	Capacitat (Tm)	cendra	Contingut en sulfur (Tm/Tm carbó)
Mina 1	4	6	50	120	0.1	0.04
Mina 2	9	6	55	100	0.05	0.09
Demanda (Tm)	90	110				

Parámetros:

Nombre de mines	number nM = 2;			
Nombre de clients	number nC = 2;			
Components carbó	<pre>set <string> C ={'cendra', 'sulfur'};</string></pre>			
Cost transport mina $i \rightarrow \text{client } j \ (\text{\'e}/\text{Tm}): t_{ij}$	number t{ 1nM , 1nC } = [4 6 9 6];			
Per a cada mina $i = 1,, n^M$				
 Cost producció (€/Tm): p_i 	number p{ 1nM } = [50 55];			
• Capacitat mina i (Tm): b_i	number b{ 1nM } = [120 100];			
• Contingut component $k \in \mathcal{C}$ (Tm/Tm carbó): α_{ik}	number al{ 1nM , C } = [0.10 0.04 0.05 0.09];			
Contingut màxim component $k \in \mathcal{C}$ carbó mescla (Tm/Tm mescla): $\overline{\alpha}_k$	number almax{ C } = [0.08 0.07];			
Demanda client j (Tm): d_j	number d{ 1nC } = [90 110];			

Coalco: OPTMODEL

Cost de transport (€/Tm)		Client 2	Cost de producció (€/Tm)	Capacitat (Tm)	Contingut en cendra (Tm/Tm carbó)	Contingut en sulfur (Tm/Tm carbó)
Mina 1	4	6	50	120	0.1	0.04
Mina 2	9	6	55	100	0.05	0.09
Demanda (Tm)	90	110				

Variables:

Tones a transportar mina $i \rightarrow \text{client } j$:

var X { 1..nM, 1..nC } >= 0;

Restricciones:

Capacitat mines:	$\sum_{j=1}^{n^C} x_{ij} \le b_i$ $i = 1,, n^M$	<pre>con Capacitat { i in 1nM } : sum{ j in 1nC } X[i,j] <=b[i];</pre>
Demanda clients:	$\sum_{i=1}^{n^M} x_{ij} \ge d_j$ $j = 1,, n^C$	<pre>con Demanda { j in 1nC } : sum{ i in 1nM }X[i,j] >= d[j];</pre>
Continguts màxims:	$\sum_{i=1}^{n^M} \alpha_{ik} x_{ij} \leq \bar{\alpha}_k \sum_{i=1}^{n^M} x_{ij}$ $k \in \mathcal{C}, j = 1, \dots, n^C$	<pre>con Contingut { j in 1nC, k in C} : sum{ i in 1nM } al[i,k)*X[i,j] <= almax[k]*sum{ i in 1nM } X[i,j] ;</pre>

Coalco: OPTMODEL

Cost de transport (€/Tm)		Client 2	Cost de producció (€/Tm)	Capacitat (Tm)	cendra	Contingut en sulfur (Tm/Tm carbó)
Mina 1	4	6	50	120	0.1	0.04
Mina 2	9	6	55	100	0.05	0.09
Demanda (Tm)	90	110				

Función objetivo:

```
Cost total producción més transport: \min z = \sum_{i=1}^{n^M} \sum_{j=1}^{n^C} (p_i + t_{ij}) x_{ij} \quad \text{min Cost\_total =} \\ \text{sum}\{\text{ i in 1..nM , j in 1..nC }\} \quad (p[i]+t[i,j])^*X[i,j];
```

```
/* Model extens */ expand;

/* Optimització */ solve;

/* Sortida resultats */
    print X.lb X.sol X.rc X.status;
    print Capacitat.lb Capacitat.body Capacitat.ub Capacitat.dual Capacitat.status;
    print Demanda.lb Demanda.body Demanda.ub Demanda.dual Demanda.status;
    print Contingut.lb Contingut.body Contingut.ub Contingut.dual Contingut.status;
```

/* Model extens */

```
Var X[1,1] >= 0

Var X[2,1] >= 0

Var X[2,1] >= 0

Var X[2,2] >= 0

Minimize Cost_total=54*X[1,1] + 56*X[1,2] + 64*X[2,1] + 61*X[2,2]

Restricción Capacitat[1]: X[1,1] + X[1,2] <= 120

Restricción Capacitat[2]: X[2,1] + X[2,2] <= 100

Restricción Demanda[1]: X[1,1] + X[2,1] >= 90

Restricción Demanda[2]: X[1,2] + X[2,2] >= 110

Restricción Contingut[1,cendra]: 0.02*X[1,1] - 0.03*X[2,1] <= 0

Restricción Contingut[1,sulfur]: - 0.03*X[1,1] + 0.02*X[2,1] <= 0

Restricción Contingut[2,cendra]: 0.02*X[1,2] - 0.03*X[2,2] <= 0

Restricción Contingut[2,sulfur]: - 0.03*X[1,2] + 0.02*X[2,2] <= 0
```

Page Break
The OPTMODEL Procedure

Resumen del probl	and the same of th
Objective Sense	Minimization
Objective Function	Cost_total
Objective Type	Linear
Number of Variables	4
Bounded Above	0
Bounded Below	4
Bounded Below and Above	0
Free	0
Fixed	0
Number of Constraints	8
Linear LE (<=)	6
Linear EQ (=)	0
Linear GE (>=)	2
Linear Range	0
Coeficientes de restricción	16

Información de rendimiento				
Execution Mode	On Client			
Number of Threads	1			

Deer Deerle

The OPTMODEL Procedure

Resumen de la	solución		
Solver	LP		
Algorithm	Dual Simplex		
Objective Function	Cost_total		
Solution Status	Optimal		
Objective Value	11600		
Iterations	7		
Primal Infeasibility	0		
Dual Infeasibility	0		
Bound Infeasibility	0		

[1]	[2]	X.LB	X.SOL	X.RC	X.STATUS
1	1	0	54	7.7716E-16	В
1	2	0	66	3.8858E-16	В
2	1	0	36	2.2204E-16	В
2	2	0	44	1.1102E-16	В

[1]	Capacitat.LB	Capacitat.BODY	Capacitat.UB	Capacitat.DUAL	Capacitat.STATUS
1	-1.7977E+308	120	120	0	В
2	-1.7977E+308	80	100	0	В

[1]	Demanda.LB	Demanda.BODY	Demanda.UB	Demanda.DUAL	Demanda.STATUS
1	90	90	1.7977E+308	58	U
2	110	110	1.7977E+308	58	U

[1]	[2]	Contingut.LB	Contingut.BODY	Contingut.UB	Contingut.DUAL	Contingut. STATUS
1	cendra	-1.7977E+308	0.0	0	-200	L
1	sulfur	-1.7977E+308	-0.9	0	0	В
2	cendra	-1.7977E+308	-0.0	0	-100	L
2	sulfur	-1.7977E+308	-1.1	0	0	В

Page Break

Obs	name	fullname	prodcode	prodmod	installed	licensed
1	BASE	Base	prodnum0	sasmeans	9.03 TS1M2	1
2	STAT	SAS/STAT	stat	sasglm	9.03 TS1M2	1
3	GRAPH	SAS/GRAPH	graph	sasgchar	9.03 TS1M2	1
4	GIS	SAS/GIS	prodnum28	sasgis		0
5	ETS	SAS/ETS	ets	sasarima	9.03 TS1M2	1
6	QC	SAS/QC	qc	sascapab	9.03 TS1M2	1
7	CONNECT	SAS/CONNECT	prodnum15	saszrink	9.03 TS1M2	1
8	ACCPC	SAS/ACCESS PC Files	prodnum208	sasdbf	9.03 TS1M2	1