# Stacking Algorithm for Ensemble Modelling

Frederik Schreck

Course: Numerical Introductory Course Lecturer: Prof. Dr. Brenda López Cabrera

Humboldt–Universität zu Berlin



Motivation — 1-1

### Motivation - The wisdom of the crowd

- BUT: Only fulfilled under certain criteria
  - Variation of guesses
  - Independence of guesses
  - Decentralization
  - Algorithm



Outline — 2-1

#### **Outline**

- 1. Motivation ✓
- 2. Ensemble Learning
- 3. Decision Tree
- 4. Stacking algorithms
  - 4.1 Bagging and Random Forest
  - 4.2 Boosting and Gradient Boosting
  - 4.3 Bayes??
  - 4.4 Stacked Generalization
- 5. Potentials and Problems of Ensemble Learning
- 6. The German Credit Dataset
- 7. Sources



## **Ensemble Learning - Terminology**

#### Machine Learning

- Part of computer science that uses statistical techniques to train models on data
- Typically used for prediction purposes

#### Stacking and Ensemble Learning

- Idea is to combine hypotheses of multiple learning algorithms (base learners)
- Goal is to obtain a better predictive performance than with each of the single algorithms alone
- Mainly used in supervised learning
- Very flexible method



## **Ensemble Learning**

Which models to combine?

- Effective ensembling builds on diverse and little correlated models
- Best to use strong base learners

Similar criteria as mentioned in the Motivation!



Decision Tree — 4-1

#### **Decision Tree**

- Idea: use a set of splitting rules to recursively partition the dataset.
- Classification trees:
  - Minimize impurity within nodes
- Regression trees:
  - ▶ Minimize variance of the response variable within nodes



#### **Decision Tree for classification**

 □ Choice of splitting rule: maximizing information gain (IG) by decreasing node impurity (I)

$$IG_n = I_n - p_{n_1} * I(n_1) - p_{n_2} * I(n_2),$$
 (1)

5-1

for node n with branching nodes  $n_1$  and  $n_2$ , and  $p_{n_i}$  as the fraction of cases in branching node  $n_i$ 

How to measure impurity? Choices of splitting criteria:

Entropy: 
$$I(n) = -\sum_{i}^{3} p(c_j|n) * \log_2(p(c_j|n))$$
 (2)

Gini impurity:
$$I(n) = 1 - \sum_{j}^{J} p(c_j|n)^2$$
 (3)

Misclassification impurity:  $I(n) = 1 - \max_{j} p(c_j)$ , Stacking Algorithm for Ensemble Modelling

for classes 
$$c_i, i \in J = \{1, 2, ...\}$$

Decision Tree — 6-1

#### **Decision Tree for classification**

- Choice of stopping rule: A fully grown tree has pure leaf nodes and may overfit the data
  - Pre-pruning
  - Post-pruning



# **Bagging**



## Random Forest



Boosting and Gradient Boosting -

8-1

## **Boosting**



## **Gradient Boosting**



## Bayes??



### Stacked Generalization



# Potentials and Problems of Ensemble Learning



Sources

#### Sources



Kuncheva, L. I. and Whitaker, C. J. (2003). Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy.

Machine learning, 51(2):181-207.



Surowiecki, J. (2005). The Wisdom of Crowds.

Anchor.

