45 nm CMOS Fabrication Process Flow

Big picture of fabrication process flow

- 1. Si substrate preparation
- Shallow Trench Isolation (STI) Formation
- 3. Well · Channel Formation
- 4. Dummy Gate Formation
- 5. Halo Extension Formation
- 6. SiGe S/D Formation
- 7. Formation of a high-concentration diffusion layer
- 8. Silicide Formation
- 9. ILD Deposition
- 10. Dummy Gate Replacement
- 11. Gate Stack Formation
- 12. Contact Plug Formation
- 13. Wire · Via Formation

Si Substrate Preparation – Quality Check

Explanation

Check the quality of the substrates received from the supplier.

Why important?

If the substrate preparation is flawed, the entire downstream process may be wasted. Therefore, it is essential to carefully verify

What, Why, How do we do in this process?

What	Why	How
Dopant concentration check	Affect built-in potential of PN junction, leading to fluctuate V _{th}	Sheet ResistanceSIMS
Crystallographic Orientation defect check	Affect carrier mobility	XRDPhotoluminescence
Bow and Wrap	Focus misalignment during exposure, leading CD variation	• Stylus profiler

Si

Si Substrate Preparation - Cleaning

Explanation

Native, oxide, organic contaminants, and metal impurities are removed prior to starting the fabrication process

Why important?

If there is contamination on the silicon substrate, it may become trapped beneath the gate, leading to defects. It can also alter etching and deposition characteristics, ultimately affecting yield.

Shallow Trench Isolation – Thermal Oxidation

 SiO_2

Purpose: Sacrificial layer for ion implantation

protecting product area against CMP

Method: Thermal Oxidation

Deposited material: Silicon Dioxide

Thickness: 10 nm

Metrology: Spectroscopy Ellipsometry

Shallow Trench Isolation – Stopping layer deposition

 SiO_2

 Si_3N_4

Purpose: Stopping layer against CMP

Method: Low Pressure CVD

Deposited material: Silicon Nitride

Thickness: 20~50 nm?

Metrology: Spectroscopy Ellipsometry

Shallow Trench Isolation – STI Patterning

 SiO_2

 Si_3N_4

Purpose: Form pattern on wafer

Method: Coating, Exposure, Development

Deposited material: Photoresist

Thickness: 300~800 nm

Metrology: Spectroscopy Interferometry

Shallow Trench Isolation – RIE Etching

SiO₂

 Si_3N_4

Purpose: Form Shallow Trench

Method: RIE

Etched material: SiN/SiO2/Si

Thickness: 700 nm \sim 2 μ m

Metrology: Stylus Profiler

Shallow Trench Isolation – Resist Stripping

Method: 02 ashing

Etched material: Photoresist

Thickness: 300 ~ 800 nm

Metrology: Surface Particle Inspection System

Si SiO₂ Si₃N₄ Resist

Shallow Trench Isolation – Shallow Trench Oxidation

Purpose:

- Eliminate any etch damage to a trench sidewall
- · Rounds the upper corners of the trench.
 - →Minimizing the fringing field
- Form a high-quality interface between the Si trench sidewall

Method: Thermal Oxidation

Etched material: SiO2

Thickness: $5 \sim 10 \text{ nm}$

Metrology: Surface Particle Inspection System

Si
SiO₂
Si₃N₄
Resist

Shallow Trench Isolation – SiO2 Deposition

 SiO_2

 Si_3N_4

Purpose: Overfill Trench

Method: TEOS CVD (TEOS is good coverage)

Deposited material: Silicon Dioxide

Thickness: $1.5 \sim 2.5 \mu m$

Metrology: Spectroscopic Interferometry

Shallow Trench Isolation – Annealing

 SiO_2

 Si_3N_4

Purpose: To make it more resistant to be etched, since it will be exposed to HF-based etchants in later steps such as sacrificial layer removal

Method: Furnace annealing (Vertical furnace annealing)

Temperature: Over 1000°C

Shallow Trench Isolation – Planarization

Purpose: Planarize surface for embedding Silicon dioxide into STI

Method: Chemical Mechanical Polishing (CMP) (Colloidal silica, Alumina slurry)

Polished material: Silicon Dioxide

Thickness: 500 ~ 700 nm

Metrology: In-situ end point detection (Reflectivity, Torque)

Shallow Trench Isolation – Remove Stopping layer

Purpose: To remove Stopping layer

Method: Wet Etching (Hot Phosphorous acid)

Etched material: Silicon Nitride

Thickness: 20 ~ 50 nm

Metrology: Surface analysis (FT-IR, XPS)

Well Channel Formation – N-MOS Well Patterning

Purpose: Being able to protect from Ion

implantation

Method: Coating, Exposure, Development

Deposited material: Photoresist

Thickness: 300 ~ 800 nm

Metrology: Spectroscopy Interferometry

Well Channel Formation – N-MOS Well Ion Implantation

Si

 SiO_2

 Si_3N_4

Purpose: Implant Dopant for forming N-MOS Well

Method: Ion Implantation

Implanted material: Boron

Concentration : $10^{16} \sim 10^{17} \, \text{cm}^{-3}$

Thickness: Few hundred nm $\sim \mu m$

Metrology: Secondary Ion Mass Spectroscopy

(SIMS)

Well Channel Formation – N-MOS Well Pattern Stripping

 SiO_2

 Si_3N_4

Purpose: Strip resist

Method: 02 ashing

Etched material: Photoresist

Thickness: 300 ~ 800 nm

Metrology: Surface Particle Inspection System

Well Channel Formation – P-MOS Well Patterning

Si SiO₂ Si₃N₄

P-Dopant

Purpose: Being able to protect from Ion

implantation

Method: Coating, Exposure, Development

Deposited material: Photoresist

Thickness: 300 ~ 800 nm

Metrology: Spectroscopy Interferometry

Well Channel Formation – P-MOS Well Ion Implantation

Si

 SiO_2

 Si_3N_4

Purpose: Implant Dopant for forming P-MOS Well

Method: Ion Implantation

Implanted material: Phosphorous

Concentration : $10^{16} \sim 10^{17} \, \text{cm}^{-3}$

Thickness: Few hundred nm $\sim \mu m$

Metrology: Secondary Ion Mass Spectroscopy

(SIMS)

Well Channel Formation – P-MOS Well Resist Stripping

 SiO_2

 Si_3N_4

Purpose: Strip resist

Method: 02 ashing

Etched material : Photoresist

Thickness: 300 ~ 800 nm

Metrology: Surface Particle Inspection System

Well Channel Formation – Remove Sacrificial layer

Purpose: To Remove the sacrificial layer (Because damaged by ion implantation)

Method: Wet Etching (BHF)

Etched material: Silicon dioxide

Thickness: 10 nm

Metrology: Surface analysis (FT-IR, XPS)

Si

SiO₂

 Si_3N_4

Resist

P-Dopant

N-Dopant

Dummy Gate Formation – Deposition of SiO2

Purpose:

To suppress interface trap density at the Si/HfO₂ boundary and to preserve high carrier mobility for strong drive current and low ON-resistance.

Method: Thermal Oxidation

Deposited material : Silicon Dioxide (SiO₂)

Thickness: 0.5 nm

Metrology: Spectroscopic Ellipsometry(On line)

X-ray Refractometry (Off line)

Si

SiO₂

 Si_3N_4

Resist

P-Dopant

N-Dopant

HfO₂

Dummy Gate Formation – Deposition of a high-k dielectric layer

Purpose:

High-k dielectrics improve C_{OX} , which leads to

- Lower ON-resistance, reduced power consumption
- Higher drive current.
 etc.

Method : Atomic Layer Deposition (ALD)

Deposited material : Hafnium Oxide (HfO₂)

Thickness: few nm

Metrology: Spectroscopic Ellipsometry(On line)

X-ray Refractometry (Off line)

Si

SiO₂

 Si_3N_4

Resis

P-Dopant

N-Dopant

 HfO_2

Dummy Gate Formation – Deposit Dummy Gate

P-Dopant

-Dopant

 HfO_2

Purpose: To form Dummy Gate

(Dummy Gate is removed and replaced

with a metal gate.)

Method: LP-CVD

Deposited material: Poly-Si, a-Si

Thickness: 5 ~ 30 nm

Metrology: Spectroscopic Ellipsometry

Dummy Gate Formation – Deposit Cap Layer

Poly-Si

 SiO_2

 Si_3N_4

-Dopant

 HfO_2

Purpose:

Since it is a dummy silicon gate and will be removed later, a protective layer is deposited to prevent silicidation.

Method: LP-CVD

Deposited material: Silicon Nitride

Thickness: Few ten nm

Metrology: Spectroscopic Ellipsometry

Dummy Gate Formation – Gate patterning

Poly-Si

 SiO_2

 Si_3N_4

P-Dopant

-Dopant

HfO₂

Purpose: Gate patterning

Method: Coating, Exposure, Development

Deposited material : Photoresist

Thickness: Few hundred nm

Metrology: Spectroscopy Interferometry

(Thickness)

CD-SEM (Dimension)

Dummy Gate Formation – Gate Etching

Poly-Si

 SiO_2

 Si_3N_4

P-Dopant

 HfO_2

-Dopant

Purpose: Gate Etching (Isotropic etching)

Method: RIE

Etched material: Poly-Si, a-Si

Thickness: Few hundred nm

Metrology: Spectroscopy Interferometry

(Thickness)

CD-SEM (Dimension)

Dummy Gate Formation – Stripping resist

Poly-Si

SiO₂

 Si_3N_4

P-Dopant

N-Dopant

HfO₂

Purpose: Strip resist

Method: 02 ashing

Etched material : Photoresist

Thickness: 300 ~ 800 nm

Metrology: Surface Particle Inspection System

Halo • Extension Formation – NMOS Patterning

Poly-Si

 SiO_2

 Si_3N_4

P-Dopant

-Dopant

HfO₂

Purpose: Being able to protect from Ion

implantation

Method: Coating, Exposure, Development

Deposited material: Photoresist

Thickness: 300 ~ 800 nm

Metrology: Spectroscopy Interferometry

Halo • Extension Formation – Extension Implantation (NMOS)

Purpose: To reduce the electric field near the drain junction, thereby mitigating hot carrier effects and improving device reliability.

Method: Ion implantation

Implanted material: Phosphorous

Concentration: ??~?? cm⁻³

Metrology: Secondary Ion Mass Spectroscopy (SIMS)

Si
SiO₂
Si₃N₄
Resist
P-Dopant
N-Dopant
HfO₂

Halo • Extension Formation – Halo Implantation (NMOS)

Poly-Si

Extension

(NMOS)

 SiO_2

 Si_3N_4

P-Dopant

-Dopant

 HfO_2

Purpose: To suppress short-channel effects, particularly the threshold voltage roll-off in scaled MOSFETs.

Method: Ion implantation

Implanted material: Boron

Concentration:??~?? cm⁻³

Metrology: Secondary Ion Mass Spectroscopy (SIMS)

Halo • Extension Formation – PMOS Patterning

Poly-Si SiO₂ Extension (NMOS) Si_3N_4

P-Dopant

N-Dopant

 HfO_2

Purpose: Being able to protect from Ion implantation

Method: Coating, Exposure, Development

Deposited material : Photoresist

Thickness: 300 ~ 800 nm

Metrology: Spectroscopy Interferometry

Halo · Extension Formation — Extension Implantation(PMOS)

Poly-Si

Extension

(NMOS)

Extension

(PMOS)

 SiO_2

 Si_3N_4

P-Dopant

-Dopant

HfO₂

Purpose: To reduce the electric field near the drain junction, thereby mitigating hot carrier effects and improving device reliability.

Method: Ion implantation

Implanted material: Boron or BF₂

Concentration: ??~?? cm⁻³

Metrology: Secondary Ion Mass Spectroscopy (SIMS)

Halo • Extension Formation — Halo Implantation (PMOS)

Poly-Si

Extension

(NMOS)

Extension

Halo (PMOS)

 SiO_2

 Si_3N_4

P-Dopant

-Dopant

HfO₂

Purpose: To suppress short-channel effects, particularly the threshold voltage roll-off in scaled MOSFETs.

Method: Ion implantation

Implanted material: Phosphorous

Concentration: ??~?? cm⁻³

Metrology: Secondary Ion Mass Spectroscopy (SIMS)

Halo • Extension Formation – Halo Implantation (PMOS)

Poly-Si

Extension (NMOS)

Extension

Halo (PMOS)

SiO₂

 Si_3N_4

Resist

P-Dopant

N-Dopant

HfO₂

Purpose: Strip resist

Method: 02 ashing

Etched material : Photoresist

Thickness: 300 ~ 800 nm

Metrology: Surface Particle Inspection System

SiGe S/D Formation— Spacer formation

Purpose: To form sidewall film for determining the channel length

Method: TEOS CVD (is better)

Deposited material: Silicon Nitride

Thickness: Few hundred nm

Metrology: Spectroscopy interferometry

SiGe S/D Formation— Spacer Etching

Purpose: To form sidewall film for determining the channel length

Method: RIE (as anisotropic as possible)

Etched material: Silicon Nitride

Thickness: Few hundred nm

Metrology: Spectroscopy interferometry

SiGe S/D Formation— Hard mask formation

Poly-Si

Extension (NMOS)

Halo (PMOS)

 SiO_2

 Si_3N_4

P-Dopant

-Dopant

HfO₂

Purpose: A hard mask must be deposited before Ge-Si epitaxy, as the photoresist cannot withstand the high temperatures typically required during these processes.

Method: Thermal Oxidation

Deposited material: Silicon Dioxide

Thickness: 10 nm

Metrology: Spectroscopy interferometry

SiGe S/D Formation— Hard mask patterning

Poly-Si

Extension (NMOS)

Extension

(PMOS)

Halo (PMOS)

SiO₂

 Si_3N_4

P-Dopant

N-Dopant

 HfO_2

Purpose: Being able to protect from etching

Method: Coating, Exposure, Development

Deposited material: Photoresist

Thickness: 300 ~ 800 nm

Metrology: Spectroscopy Interferometry

Poly-Si

Extension (NMOS)

Extension

(PMOS)

Halo (PMOS)

SiO₂

 Si_3N_4

P-Dopant

N-Dopant

 HfO_2

Purpose: Being able to protect from etching

Method: Coating, Exposure, Development

Deposited material: Photoresist

Thickness: 300 ~ 800 nm

Metrology: Spectroscopy Interferometry

SiGe S/D Formation— Resist Stripping

Poly-Si

Extension (NMOS)

Extension

(PMOS)

Halo (PMOS)

SiO₂

 Si_3N_4

Resist

P-Dopant

N-Dopant

HfO₂

Purpose: Strip resist

Method: 02 ashing

Etched material : Photoresist

Thickness: 300 ~ 800 nm

Metrology: Surface Particle Inspection System

Poly-Si

Extension (NMOS)

Extension

(PMOS)

Halo (PMOS)

SiO₂

 Si_3N_4

Resist

P-Dopant

N-Dopant

HfO₂

Purpose: For making trench to embed the SiGe epitaxy growth

Method: Wet etching (TMAH, KOH?)

Etched material: Si on PMOS side

Thickness: Few ten nm (60nm?)

Metrology: TEM

Purpose: Embedding SiGe in the source/drain regions introduces uniaxial compressive strain, which boosts hole mobility in PMOS transistor.

Method: Epitaxial Growth

Deposited material : SiGe

SiGe S/D Formation— Remove hard mask

Purpose: To remove hard

Method: Wet Etching (BHF)

Etched material: 10nm

Poly-Si

Extension (NMOS)

Extension

(PMOS)

Halo (PMOS)

SiO₂

 Si_3N_4

Resist

P-Dopant

N-Dopant

HfO₂

Purpose: Being able to protect from Ion implantation

Method: Coating, Exposure, Development

Deposited material : Photoresist

Thickness: 300 ~ 800 nm

Metrology: Spectroscopy Interferometry

SiGe S/D Formation—Source and Drain ion implantation

Poly-Si

Extension (NMOS)

Halo (PMOS)

 SiO_2

 Si_3N_4

P-Dopant

-Dopant

HfO₂

Purpose: To form Source and Drain ion implantation.

Method: Ion implantation

Implanted material: Arsenic, Boron difluoride

Concentration: 10²⁰ cm⁻³

Metrology: Secondary Ion Mass Spectroscopy (SIMS)

XN-MOS ion implantation is omitted

Poly-Si

Extension (NMOS)

Extension

(PMOS)

Halo (PMOS)

SiO₂

 Si_3N_4

Resist

P-Dopant

N-Dopant

 HfO_2

Purpose: Strip resist

Method: 02 ashing

Etched material : Photoresist

Thickness: 300 ~ 800 nm

Metrology: Surface Particle Inspection System

Purpose: Annealing activates the dopants by using heat, allowing them to move into the silicon lattice and become electrically active.

Method : Furnace annealing (Vertical furnace annealing)

Temperature: Over 1000°C

Poly-Si

Extension (NMOS)

Extension

(PMOS)

Halo (PMOS)

SiO₂

 Si_3N_4

Resist

P-Dopant

N-Dopant

 HfO_2

Purpose: To form hard mask for silicide

Method : CVD (TEOS)

Deposited material: Silicon Dioxide

Thickness: 80 ~ 120 nm

Metrology: Spectroscopy interferometry

Poly-Si

Extension (NMOS)

Extension

(PMOS)

Halo (PMOS)

SiO₂

 Si_3N_4

Resist

P-Dopant

N-Dopant

 HfO_2

Purpose: Being able to protect from etching

Method: Coating, Exposure, Development

Deposited material: Photoresist

Thickness: 300 ~ 800 nm

Metrology: Spectroscopy Interferometry

Silicide Formation – Hard mask Etching

Poly-Si

Extension (NMOS)

Extension

(PMOS)

Halo (PMOS)

SiO₂

 Si_3N_4

Resist

P-Dopant

N-Dopant

 HfO_2

Purpose: Being able to protect from etching

Method: RIE

Deposited material: Silicon Dioxide

Thickness: 80 ~ 120 nm

Metrology: Spectroscopy Interferometry

Poly-Si

Extension (NMOS)

Extension

(PMOS)

Halo (PMOS)

SiO₂

 Si_3N_4

Resist

P-Dopant

N-Dopant

 HfO_2

Purpose: Strip resist

Method: 02 ashing

Etched material : Photoresist

Thickness: 300 ~ 800 nm

Metrology: Surface Particle Inspection System

Silicide Formation – Deposit silicide metal

Silicide (Before annealing)

Poly-Si

Extension (NMOS)

Extension

(PMOS)

Halo (PMOS)

 SiO_2

 Si_3N_4

Resist

P-Dopant

-Dopant

HfO₂

Purpose: Silicide materials are deposited by sputtering to react with silicon and form low-resistance metal silicide contacts during annealing.

Method: Sputtering

Deposited material : Ti, Co or Ni etc.

Thickness: 30 ~ 80 nm

Metrology: Ellipsometry, XRR, XRF

Silicide Formation – 1st Annealing

Silicide (Before annealing)

Silicide

Poly-Si

Extension (NMOS)

Extension

(PMOS)

Halo (PMOS)

SiO₂

 Si_3N_4

Resist

P-Dopant

-Dopant

HfO₂

Purpose: Initiate the reaction between the deposited metal and the underlying silicon to form a preliminary silicide phase (C49 phase which is high resistivity).

Method: Furnace annealing

Deposited material : Si + Silicide material (Ti, Co, Ni)

Temperature : 600 ~ 700°C

Purpose: To eliminate only the non-silicide area

Method : Wet etching $(HF + H_2O_2)$

Etched material: Silicide material

(PMOS)

 HfO_2

Silicide Formation – 2nd Annealing

Silicide

Poly-Si

Extension (NMOS)

Halo (PMOS)

 SiO_2

 Si_3N_4

P-Dopant

HfO₂

Dopant

Purpose: To convert the high-resistance C49 phase into the low-resistance C54 phase.

Method: Furnace annealing

Deposited material: Silicide material

Temperature : 700 ~ 900°C

Silicide (Before annealing) Note: Why this flow?

(1st anneal \rightarrow Wet etching \rightarrow 2nd anneal)

This sequence helps prevent unintended silicide formation and reduces the risk of electrical failure.

ILD Deposition – Linear SiN deposition

Purpose: Strain engineering for transistors Etch stop layer during contact formation

Method: CVD

Deposited material: Silicide Nitride

Thickness: 5 ~ 30 nm

Metrology: Spectroscopic Ellipsometry

Extension

(PMOS)

Halo (PMOS)

P-Dopant

N-Dopant

HfO₂

ILD Deposition – ILD Deposition

Purpose: Deposit ILD

Method: LPCVD, SOG

Deposited material: Silicon Dioxide

Thickness: Few hundred nm

Purpose: CMP is performed until the dummy gate is exposed in order to replace it.

Method: CMP

Planarized material: Silicon Dioxide/Silicon Nitride

Dummy Gate Replacement – Wet Etching

Purpose: Gate material is removed for replacement

Method: Wet Etching

Etched material: Poly-Si

Etchant: Alkaline TMAH solution

under ultrasonic treatment

Halo (PMOS)

N-Dopant

HfO₂

Gate Stack Formation— Deposit Work Function Metal for PMOS

Poly-Si

Extension (NMOS)

Extension

(PMOS)

Halo (PMOS)

 SiO_2

 Si_3N_4

Resist

P-Dopant

N-Dopant

HfO₂

Silicide (Before annealing)

Silicide

PMOS WF-M

Purpose: Work function metals are deposited to tune the threshold voltage of NMOS and PMOS transistors by aligning their work function with the semiconductor bands

Method: Sputtering, ALD

Deposited material: TiN

Thickness: Few nm

Metrology: XRR

HfO₂

Purpose: To cover PMOS area in order to remove the work function metal on the NMOS side.

Method : Coating, Exposure, Development

Deposited material : Photoresist

Thickness: 200 ~ 300 nm

Metrology: Spectroscopy Interferometry

Gate Stack Formation— Remove NMOS Work function metal

Purpose: To cover PMOS area in order to remove the work function metal on the NMOS side.

Method: Wet etching

Etched material: PMOS work function metal

Method: 02 ashing

Etched material: Photoresist

Thickness: 200 ~ 300 nm

Metrology: Surface Particle Inspection System

Halo (PMOS)

N-Dopant

 HfO_2

Gate Stack Formation— Deposit NMOS work function metal

Poly-Si

Extension (NMOS)

Extension

(PMOS)

Halo (PMOS)

 SiO_2

 Si_3N_4

Resist

P-Dopant

N-Dopant

HfO₂

Silicide (Before annealing)

Silicide

PMOS WF-M

NMOS WF-M

Purpose: Work function metals are deposited to tune the threshold voltage of NMOS and PMOS transistors by aligning their work function with the semiconductor bands

Method: Sputtering, ALD

Deposited material : TiAI/TiAIN

Thickness: Few nm

Metrology: XRR

Purpose: To form gate metal

Method: CVD, ALD

Deposited material: Tungsten

Thickness: 120~200 nm

Purpose: To embed gate metal

Method: CMP

Planarized material : Tungsten(W)

Contact Plug Formation— Etch Stop Layer Deposition

Poly-Si

Extension (NMOS)

Extension

(PMOS)

Halo (PMOS)

 SiO_2

 Si_3N_4

Resist

P-Dopant

N-Dopant

HfO₂

Silicide (Before annealing)

Silicide

Tungsten

PMOS WF-M

NMOS WF-M

Purpose: To stabilize the process, an etch stop layer is introduced to ensure stable etching.

Method: CVD

Deposited material: Silicon Nitride

Thickness: 10~20 nm

Metrology: Spectroscopic Ellipsometry

Contact Plug Formation— ILD Deposition

Purpose: Deposit ILD

Method: LPCVD, SOG

Deposited material: Silicon Dioxide

Thickness: Few hundred nm

Contact Plug Formation— Contact Patterning

Purpose: Protect from RIE etching

Method: Coating, Exposure, Development

Deposited material: Photoresist

Thickness: Few µm

Metrology: Spectroscopy Interferometry

Contact Plug Formation— Contact Etching 1

Purpose: To stabilize the process, the etching is temporarily stopped at the etch stop layer.

Method: RIE (CHF₃ Gas)

Etched material: Silicon dioxide

Thickness: Few hundred nm

Metrology: Stylus profiler

HfO₂

Contact Plug Formation— Contact Etching 2

Purpose: To stabilize the process, the etching is temporarily stopped at the etch stop layer.

Method: RIE

Etched material: Silicon Nitride

Thickness: 10~20 nm

Metrology: Stylus profiler

HfO₂

Contact Plug Formation— Contact Etching 3

Purpose: To stabilize the process, the etching is temporarily stopped at the etch stop layer.

Method: RIE

Etched material: Silicon dioxide

Thickness: Few hundred nm

Metrology: Stylus profiler

(PMOS)

HfO₂

Contact Plug Formation— Contact Etching 4

Purpose: To stabilize the process, the etching is temporarily stopped at the etch stop layer.

Method: RIE

Etched material : Silicon Nitride

Thickness: 5 ~ 30 nm

Metrology: Stylus profiler

(PMOS)

HfO₂

Contact Plug Formation— Photoresist Stripping

Silicide (Before annealing)

Silicide

Tungsten

PMOS WF-M

NMOS WF-M

Poly-Si

Extension (NMOS)

Extension

(PMOS)

Halo (PMOS)

SiO₂

 Si_3N_4

Resist

P-Dopant

N-Dopant

 HfO_2

Purpose: Strip resist

Method: 02 ashing

Etched material : Photoresist

Thickness: Few µm

Metrology: Surface Particle Inspection System

Wire · Via Formation — Barrier layer deposition

Silicide (Before annealing)

Silicide

Tungsten

TiN/Ti

PMOS WF-M

NMOS WF-M

Poly-Si

Extension (NMOS)

Extension

(PMOS)

Halo (PMOS)

 SiO_2

 Si_3N_4

Resist

P-Dopant

N-Dopant

HfO₂

Purpose: Prevent Tungsten from diffuse with Silicon. Deposit Barrier layer

Method: CVD (is better because good coverage)

Deposited material : TiN/Ti

Thickness: Few ten nm

Metrology:

Thickness → Spectroscopy Ellipsometry, XRR,XRF Coverage → FIB, SEM, TEM

Wire · Via Formation – Tungsten layer Deposition

(PMOS)

HfO₂

Purpose: Deposit Wiring layer

Method: CVD (is better because good coverage)

Deposited material: Tungsten

Thickness: Few hundred nm ~ few μm

Metrology:

Thickness → Spectroscopy Ellipsometry, XRR,XRF Coverage → FIB, SEM, TEM

Silicide (Before annealing)

Silicide

Tungsten

TiN/Ti

PMOS WF-M

NMOS WF-M

Poly-Si

Extension (NMOS)

Extension

(PMOS)

Halo (PMOS)

SiO₂

 Si_3N_4

Resist

P-Dopant

N-Dopant

HfO₂

Purpose: To embed tungsten into contact hole

Method : CMP (Al_2O_3 , H_2O_2 slurry)

Planarized material: Tungsten

Thickness: Few hundred nm ~ few μm

Metrology:

Thickness → Spectroscopy Ellipsometry, XRR,XRF Coverage → FIB, SEM, TEM

Wire · Via Formation — ILD deposition

Purpose: To provide insulation between metal layers

Method: PE-CVD

Planarized material: FSG, SIOC, p-SIOC

Thickness: Few hundred nm ~ few μm

HfO₂

Metrology:

Thickness → Spectroscopy Ellipsometry, XRR,XRF Density → Spectroscopy Ellipsometry

Wire · Via Formation — ILD patterning

Purpose: Being able to protect from RIE

Method: Coating, Exposure, Development

Deposited material : Photoresist

Thickness: Few µm

Metrology: Spectroscopy Interferometry

Wire · Via Formation — Electrode Formation Etching

Si
Poly-Si
Silicide (Before annealing)
SiO₂
Si₃N₄
Resist
Silicide
NMOS
PMOS WF-M
NMOS WF-M

Extension

(PMOS)

Halo

(PMOS)

P-Dopant

-Dopant

HfO₂

Tungsten

TiN/Ti

Low-k

Purpose: To ensure that the semiconductor operates properly by allowing electrical signals and power to flow between components.

Method: RIE

Etched material: FSG, SIOC, p-SIOC

Thickness: Few hundred nm ~ few μm

Metrology: Sylus profiler

Wire · Via Formation — Photoresist Stripping

Purpose: Strip resist

Method: 02 ashing

Etched material : Photoresist

Thickness: Few hundred nm ~ few μm

Metrology: Surface Particle Inspection System

Wire · Via Formation — Deposit barrier layer for Via

Poly-Si

Extension (NMOS)

Extension

(PMOS)

Halo

(PMOS)

 SiO_2

 Si_3N_4

Resist

P-Dopant

N-Dopant

HfO₂

Silicide (Before annealing)

Silicide

Tungsten

TiN/Ti

Low-k

PMOS WF-M

NMOS WF-M

Purpose: Prevent copper from diffuse, erosion.

Method: Sputtering

Deposited material: TiN/Ti/Cu

TiN→ Barrier metal

Ti →Adhesion layer

Cu→ Copper underlayer

Thickness: Few ten nm

Metrology:

Coverage → FIB, SEM, TEM

Wire · Via Formation – Copper Electroplating

Purpose: Filling copper to form wire

Method: Electroplating (Copper sulfate plating)

Deposited material: Cu

Thickness: Few µm

Metrology:

Thickness → XRF

Wire · Via Formation — Copper Planarization

Purpose: To embed copper into contact wire

Method : CMP (Colloidal Silica, H₂O₂ slurry)

Planarized material: Copper

Thickness: Few µm

Metrology:

Thickness → XRF Coverage → FIB, SEM, TEM