BECA / Dr. Huson / Geometry Unit 10: Trigonometry 12 April 2022

Name: Solution

10.7 Trigonometric identities

HSG.SRT.C.8

1. Given right $\triangle ABC$ with AC = 5, $BC = 5\sqrt{3}$, AB = 10, $m\angle C = 90^{\circ}$. Express each trig ratio as a fraction, then as a decimal to the nearest thousandth. (1a is an example)

(a)
$$\sin A = \frac{5\sqrt{3}}{10} = \frac{\sqrt{3}}{2}$$

(b)
$$\cos A = \frac{5}{10} = \frac{1}{2}$$

(c)
$$\sin B = \frac{5}{10} = \frac{1}{2}$$

(d)
$$m \angle A = \left(\cos^{-1} \left(\frac{1}{2} \right) - 6 \right)$$

2. Right triangle $\triangle ABC$ is shown with base AC = 6 and hypotenuse AB = 10 as marked.

(a) Write down
$$\cos A$$
. = $\frac{6}{10} = \frac{3}{5}$

(b) Find the length of side BC.

$$6^{2}+\chi^{2}=10^{4} \qquad \chi^{2}=64$$

$$36 + \chi^{2}=100 \qquad \chi=8$$

- (c) Write down $\tan A$. $=\frac{8}{4}=\frac{4}{3}$
- (d) Write down $\sin A$. $\frac{8}{5}$ = 0.8 = $\frac{7}{5}$
- 10 X
- (e) Find the angle measures of $\angle A$ and

$$mLA = Cos^{-1} \left(\frac{6}{10}\right) = 53.130...$$

- MLB = 90-53.13. = 36.87 ...
- 3. Are the lines parallel, perpendicular, or neither? Justify your answer. (you must use the values of the slopes in your justification)

$$y=4x+1$$
 $m=4$ $y=\frac{1}{4}x-4$ $m=\frac{1}{4}$
Not parallel $A_1 \neq M_2$
Not perpendicilor $(M_1)(M_2) \neq -1$

Neither

4. Given P(4,7) and Q(5,0), find the length of \overline{PQ} , expressed as a simplified radical.

Use:
$$l = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$= \sqrt{(5^2 - 4)^2 + (0 - 7)^2}$$

$$= \sqrt{l^2 + (-7)^2}$$

$$= \sqrt{50} = \sqrt{25} \sqrt{2} = 5\sqrt{2}$$

- 5. A translation $T_{x,y}$ maps $A(-1,12) \rightarrow A'(5,-2)$.
 - (a) Write down the translation.
 - (b) Apply the same translation to B(-3,8). $\longrightarrow B'(3,-6)$
- 6. In the diagram below, \overline{PQ} has endpoints with coordinates P(-2,5) and Q(4,-1). Find the equation of the perpendicular bisector of \overline{PQ} and plot it on the grid.

$$M = \left(\frac{-2+4}{2}, \frac{5+(-i)}{2}\right) = (1, 2)$$

$$M = \frac{-1-5}{4-(-2)} = -1 \qquad m_{\perp} = +1$$

$$\perp bsech : y - 2 = 1(\pi x - 1)$$

