Übungsaufgaben zur Vorlesung

Lineare Algebra und Analytische Geometrie I*

Prof. Dr. J. Kramer

Abgabetermin: 13.11.2018 in der Vorlesung

Bitte beachten:

JEDE Aufgabe auf einem neuen Blatt abgeben.

JEDES Blatt mit Namen, Matrikelnummer, Übungsgruppennummer versehen.

Serie 4 (30 Punkte)

Aufgabe 1 (10 Punkte)

- (a) Es seien K und L Körper und $f: K \longrightarrow L$ ein Ringhomomorphismus. Zeigen Sie, dass f entweder injektiv oder der Nullhomomorphismus ist.
- (b) Es sei $f:(\mathbb{Q},+) \longrightarrow (\mathbb{Z},+)$ ein Gruppenhomomorphismus. Zeigen Sie, dass f der Nullhomomorphismus ist.
- (c) Es seien m und n zwei positive natürliche Zahlen, wobei m ein Teiler von n ist. Wir betrachten die Gruppen (\mathcal{R}_m, \oplus) und (\mathcal{R}_n, \oplus) . Zeigen Sie, dass die Abbildung

$$f: (\mathcal{R}_m, \oplus) \longrightarrow (\mathcal{R}_n, \oplus),$$

gegeben durch die Zuordnung $a \mapsto \frac{n}{m} \cdot a \ (a \in \mathcal{R}_m)$, ein injektiver Gruppenhomomorphismus ist.

Definiert die Abbildungsvorschrift

$$a \mapsto \frac{n}{m} \cdot a$$

auch einem Ringhomomorphismus $g: (\mathcal{R}_m, \oplus, \odot) \longrightarrow (\mathcal{R}_n, \oplus, \odot)$?

Aufgabe 2 (10 Punkte)

Wir betrachten die Menge $\mathbb{R}[X]$ der Polynome in der Variablen X mit Koeffizienten aus \mathbb{R} . Zeigen Sie, dass $\mathbb{R}[X]$ mit der Addition

$$\left(\sum_{j\in\mathbb{N}}\alpha_j\cdot X^j\right) + \left(\sum_{j\in\mathbb{N}}\beta_j\cdot X^j\right) := \sum_{j\in\mathbb{N}}(\alpha_j + \beta_j)\cdot X^j$$

und der Skalarmultiplikation

$$\lambda \cdot \left(\sum_{j \in \mathbb{N}} \alpha_j \cdot X^j\right) := \sum_{j \in \mathbb{N}} (\lambda \cdot \alpha_j) \cdot X^j \qquad (\lambda \in \mathbb{R})$$

ein \mathbb{R} -Vektorraum ist.

Hinweis: Sie dürfen Aussagen der Aufgabe 2 von Serie 3 nutzen.

Aufgabe 3 (10 Punkte)

(a) Wir betrachten im Vektorraum \mathbb{R}^n die Menge U aller n-Tupel

$$x = \begin{pmatrix} \xi_1 \\ \xi_2 \\ \vdots \\ \xi_n \end{pmatrix},$$

welche die m Gleichungen

erfüllen $(\alpha_{j,k} \in \mathbb{R}, \beta_j \in \mathbb{R} \text{ mit } j = 1, \dots, m \text{ und } k = 1, \dots, n).$

Zeigen Sie, dass U genau dann ein Unterraum von \mathbb{R}^n ist, wenn $\beta_1 = \beta_2 = \ldots = \beta_m = 0$ gilt.

(b) Bilden die folgenden Mengen Unterräume des \mathbb{R}^3 ? Begründen Sie.

(i)
$$U_1 := \left\{ \begin{pmatrix} \xi_1 \\ \xi_2 \\ \xi_3 \end{pmatrix} \in \mathbb{R}^3 \mid \xi_2 \ge \xi_3 \right\};$$

(ii)
$$U_2 := \left\{ \begin{pmatrix} \xi_1 \\ \xi_2 \\ \xi_3 \end{pmatrix} \in \mathbb{R}^3 \mid \xi_2 = 2\xi_1, \xi_3 = 3\xi_1 \right\};$$

(iii)
$$U_3 := \left\{ \begin{pmatrix} \xi_1 \\ \xi_2 \\ \xi_3 \end{pmatrix} \in \mathbb{R}^3 \mid \xi_1 - \xi_2 + 2\xi_3 = 0 \text{ oder } \xi_1 = \xi_2 \right\}.$$