- 1 · Uma bateria de automóvel com uma fem de 12 volts possui uma carga inicial de 120 A.h. Supondo que o potencial entre os terminais permaneça constante até que a bateria esteja completamente descarregada, durante quanto tempo ela pode fornecer energia à taxa de 100W?
- 2 Na figura ao lado, $\varepsilon_1 = 12 \text{ V e } \varepsilon_2 = 8 \text{ V}.$

Determine: (a) a corrente no circuito, (b) a potência dissipada em cada resistor e (c) a potência de cada bateria, indicando se a energia é fornecida

ou absorvida por cada bateria.

- 3 Uma célula solar gera uma diferença de potencial de 0,10 V quando um resistor de 500 Ω está ligado a ela e uma diferença de potencial de 0,15 V quando o resistor anterior é substituído por um resistor de 1000 Ω . Qual (a) a resistência interna e (b) a *fem* da célula solar? (c) A área da célula é de 5,0 cm², e a taxa por unidade de área com que ela recebe energia da luz é de 2,0 mW/cm². Qual a eficiência da célula para converter energia luminosa em energia térmica no resistor externo de 1000 Ω ?
- 4 Determine na figura ao lado a corrente em cada resistor e a diferença de potencial entre os pontos a e b. Considere $ε_I = 6,0$ V, $ε_2 = 5,0$ V , $ε_3 = 4,0$ V, $R_1 = 100$ Ω e $R_2 = 10,0$ Ω. Suponha que a bateria não possui resistência.

- 5 Na figura , ϵ_1 = 3,00 V, ϵ_2 = 1,00 V, R_1 = 5,00 Ω , R_2 = 2,00 Ω , R_3 = 4,00 Ω e as duas baterias são ideais. Qual a taxa com que se dissipa energia em (a) R_1 , (b) R_2 e (c) R_3 ? Qual a potência (d) da bateria 1 e (e) da bateria 2?
- 6 (a) Calcule a corrente que atravessa cada bateria ideal representada na figura ao lado. Suponha que $\varepsilon_1=2,0~{\rm V},~\varepsilon_2=\varepsilon_3=4,0~{\rm V},~R_1=1,0~\Omega$, $R_2=2,0~\Omega$. (b) Calcule V_a V_b

- 7 Um capacitor com carga inicial q_0 é descarregado através de um resistor. Em termos da constante de tempo τ qual o tempo necessário para que o capacitor perca (a) a primeira terça parte de sua carga e (b) dois terços de sua carga?
- $.8\,$ Um resistor de $15.0\,\mathrm{k}\Omega$ e um capacitor estão ligados em série, e então uma diferença de potencial de $12.0\,\mathrm{V}$ é repentinamente aplicada entre as extremidades deles. A diferença de potencial entre as extremidades do capacitor aumenta para $5.00\,\mathrm{V}$ em $1.30\,\mu\mathrm{s}$. (a) Calcule a constante de tempo do circuito. (b) Determine a capacitância do capacitor.
- 9 Um capacitor, com uma diferença de potencial inicial de 100 V, é descarregado através de um resistor quando uma chave entre eles é fechada em t=0 s. Em t=10,0 s, a diferença de potencial entre as placas do capacitor é de 1,00 V. (a) Qual a constante de tempo do circuito? (b) Qual a diferença de potencial entre as placas do capacitor em t=17,0 s?
- 10 No circuito ao lado , ε = 1,2 kV, C = 6,5 μF, $R_1 = R_2 = R_3 = 0,73$ MΩ. Com C completamente descarregado, a chave S é repentinamente fechada em (em t = 0). (a) Determine a corrente que atravessa cada resistor em t = 0 e quando $t \to \infty$. (b) Desenhe qüalitativamentre um gráfico da diferença de potencial V_2 entre as extremidades de R_2 de t = 0 até $t \to \infty$. (c) Quais os valores numéricos de V_2 em t = 0 e quando $t \to \infty$? (d) Qual o significado físico de " $t \to \infty$ " neste caso?

