FIZIKAS FORMULAS

					1
Mehānika	$v_{\rm vid} = \frac{l}{\Delta t}$	$a_{x} = \frac{v_{x} - v_{0x}}{\Delta t}$	$x = x_0 + v_0$	$\frac{1}{2}xt + \frac{a_xt^2}{2}$	Apzīmēju Absolūtā temperati Apgaismojums - E
$v^2 - v_0^2 = 2as$	$\omega = \frac{\varphi}{\Delta t}$	$f = \frac{1}{T}$	$\upsilon = \frac{2\pi R}{T}$	$v = \omega R$	
$a = \frac{v^2}{R} = \omega^2 R$	$a = \frac{F}{m}$	$F = G \frac{m_1 m_2}{R^2}$	F = mg	$F_{\rm e} = -kx$	Darbs - A Dielektriskā caurlai Difrakcijas režģa p Elastības modulis
$F_{\rm b} = \mu F_{\rm R}$	$F_{\rm A} = \rho_{\rm sk} g V_{\rm k}$	$p = \rho g h$	M = Fl	p = mv	Elektriskā kapacitā Elektriskā lauka int Elektriskais lādiņš
$A = Fs \cos \alpha$	$P = \frac{A}{\Delta t}$	$\eta = rac{A_{ m l}}{A_{ m p}}$	$W_{\rm k} = \frac{mv^2}{2}$	$W_{\rm p} = mgh$	Elektriskās pretesti termiskais koeficie Elektrodzinējspēks Elektroķīmiskais ek
$W_{\rm p} = \frac{kx^2}{2}$	$x = x_{\rm m} \cos \omega t$	$T = 2\pi \sqrt{\frac{l}{g}}$	$T = 2\pi \sqrt{\frac{m}{k}}$	$\lambda = vT$	Elementa kārtas sk Enerģija - W, E Fokusa attālums - Frekvence - f
Molekulārfizika Termodinamika	$M = m_0 N_A$	$n = \frac{N}{N_{\rm A}} = \frac{m}{M}$	$\rho = \frac{m}{V}$	$p = \frac{1}{3} \frac{N}{V} m_0 \overline{v^2}$	Gaisa relatīvais mi Gaismas plūsma - Gaismas stiprums Iekšējā enerģija - <i>l</i>
$p = \frac{N}{V}kT$	$\overline{W}_{k} = \frac{3}{2}kT$	$\frac{pV}{T} = const$	$pV = \frac{m}{M}RT$	$R = kN_{\rm A}$	lekšējā pretestība - Impulss - <i>p</i> Induktīvā pretestīb. Induktivitāte - <i>L</i>
$U = \frac{3}{2} \frac{m}{M} RT$	T = t + 273	$A = p\Delta V$	$Q = \Delta U + A_{\rm g}$	$\eta_{\text{max}} = \frac{T_1 - T_2}{T_1}$	Īpatnējā pretestība Īpatnējā siltumietilņ Īpatnējais iztvaikoš
$ \eta = \frac{A}{Q} $	$Q = cm\Delta t$	$Q = \lambda m$	Q = Lm	Q = qm	siltums - <i>L</i> Īpatnējais kušanas Īpatnējais sadegša siltums - <i>q</i>
$\sigma = \frac{F}{l}$	$l = l_0 (1 + \alpha t)$	$arepsilon = rac{\Delta l}{l_0}$	$\sigma = \frac{F}{S}$	$r = \frac{p}{p_0} = \frac{\rho}{\rho_0}$	Jauda - P Jaudas koeficients Kapacitīvā pretestī Kinētiskā enerģija
Elektromagnētisms	$F = k \frac{q_1 q_2}{\varepsilon R^2}$	$E = \frac{F}{q}$	A = qEd	$\frac{p_0 \rho_0}{\varphi = \frac{W_p}{q}}$	Koordināta - x Leņķiskā frekvence Leņķiskais ātrums
$U = \frac{A}{q}$	$E = \frac{U}{\Delta d}$	$C = \frac{q}{U}$	$C = \frac{\varepsilon \varepsilon_0 S}{d}$	$W = \frac{CU^2}{2}$	Lietderības koeficie Lineārais palielināj Lineārās izplešanā koeficients - α
$R = \rho \frac{l}{S}$	$R = R_0(1 + \alpha t)$	$I = \frac{q}{\Delta t}$	$I = \frac{U}{R}$	$R = R_1 + R_2$	Magnētiskā indukc Magnētiskā plūsma Masas skaitlis - A Mehāniskais sprieg
$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}$	$\mathcal{E} = \frac{A_{\bar{\mathbf{a}}\mathbf{r}}}{q}$	$I = \frac{\mathcal{E}}{R + r}$	$A = IU\Delta t$	P = IU	Masa - <i>m</i> Molmasa - <i>M</i> Neitronu skaits - <i>N</i>
$Q = I^2 R \Delta t$	$m = kI\Delta t$	$B = \frac{M_{\rm m}}{IS}$	$F_{\rm A} = BIl \sin \alpha$	$F_{\rm L} = Bqv \sin \alpha$	Optiskais stiprums Paātrinājums - a Pagrieziena leņķis Pārvietojums - s
$\Phi = BS\cos\alpha$	$\mathcal{E} = Blv \sin \alpha$	$\mathcal{E} = -\frac{\Delta \Phi}{\Delta t}$	$L = \frac{\Phi}{I}$ $I = \frac{I_{\rm m}}{\sqrt{2}}$	$\mathcal{E}_{p} = -L \frac{\Delta I}{\Delta t}$ $U = \frac{U_{m}}{\sqrt{2}}$	Periods - T Potenciālā enerģija Potenciāls - φ Pretestība - R
$W = \frac{LI^2}{2}$	$T = 2\pi\sqrt{LC}$	$i = I_{\rm m} \sin \omega t$	$I = \frac{I_{\rm m}}{\sqrt{2}}$	$U = \frac{U_{\rm m}}{\sqrt{2}}$	Relatīvais pagarinā Siltuma daudzums Spēka moments - A
$X_{\rm L} = \omega L$	$X_{\rm C} = \frac{1}{\omega C}$	$\cos \varphi = \frac{R}{Z}$	$P = IU\cos\varphi$	$k = \frac{N_1}{N_2} = \frac{U_1}{U_2}$	Spēka plecs - <i>l</i> Spēks - <i>F</i> Spiediens - <i>p</i> Spriegums - <i>U</i>
Optika Atomfizika	$\frac{\sin\alpha}{\sin\gamma} = n$	$\frac{v_1}{v_2} = \frac{n_2}{n_1} = n$	$D = \frac{1}{F} = \frac{1}{d} + \frac{1}{f}$	$\Gamma = \frac{f}{d} = \frac{H}{h}$	Stinguma koeficier Strāvas stiprums - Telpas leņķis - Ω Tilpums - V
$I = \frac{\Phi}{\Omega}$	$E = \frac{\Phi}{S}$	$U_2 n_1$ $E = \frac{I}{R^2} \cos \alpha$	$d\sin\varphi = k\lambda$	E = hf	Transformācijas ko Vielas daudzums - Viļņa garums - λ
$hf = A_{\rm i} + E_{\rm k}$	$hf = E_{\rm m} - E_{\rm n}$	$E = mc^2$	A = Z + N	$N = N_0 2^{-\frac{t}{T}}$	Virsmas spraiguma koeficients - σ

iumi itūra - T s - μ aidība - arepsilonperiods - d - E āte - C ntensitāte - Eś - *q* stības ients - α s - ε kvivalents - k skaitlis - Z F nitrums - r- Ф 5 - I U - r ba - X, a - *ρ* lpība - *c* šanas s siltums - λ anas s - cosφ tība - $\overset{'}{X_{\scriptscriptstyle C}}$ a - $\overset{'}{W_{\scriptscriptstyle k}}$ ce - ω **-** ω cients - η ājums - Γ ās termiskais сіја - *В* na - Ф egums - σ s - D s - φ ja – W_p nājums - ε s - Q · M ents - k - 1 coeficients - kna

Eksāmens fizikā 12. klasei Uzdevumu burtnīca 2020

FIZIKĀLĀS KONSTANTES APRĒĶINIEM

Atommasas vienība	1 u = 1,7·10 ⁻²⁷ kg		
Avogadro skaitlis	$N_A = 6.0 \cdot 10^{23} \text{ mol}^{-1}$		
Bolcmana konstante	$k = 1,4 \cdot 10^{-23} \text{ J/K}$		
Elektriskā konstante	$\varepsilon_0 = 8.9 \cdot 10^{-12} \text{ F/m}$		
Elektrona lādiņš	$e = 1,6 \cdot 10^{-19} \text{ C}$		
Elektrona miera masa	$m_e = 9,1.10^{-31} \text{ kg}$		
Elektronvolts	1 eV = 1,6·10 ⁻¹⁹ J		
Gaismas ātrums vakuumā	$c = 3.0 \cdot 10^8 \text{ m/s}$		
Gravitācijas konstante	$G = 6.7 \cdot 10^{-11} \text{ m}^3/(\text{kg} \cdot \text{s}^2)$		
Kulona likuma konstante (k)	$1/(4\pi\varepsilon_0) = 9.0 \cdot 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2$		
Magnētiskā konstante	μ_0 = 1,3·10 ⁻⁶ H/m		
Molārā gāzu konstante	R = 8,3 J/(mol·K)		
Neitrona miera masa	$m_n = 1,7 \cdot 10^{-27} \text{ kg}$		
Normāls atmosfēras spiediens	p = 1,0·10 ⁵ Pa		
Planka konstante	$h = 6.6 \cdot 10^{-34} \text{ J} \cdot \text{s}$		
Protona miera masa	$m_p = 1.7 \cdot 10^{-27} \text{ kg}$		

ASTRONOMISKĀS KONSTANTES APRĒĶINIEM

Vidējais brīvās krišanas paātrinājums Zemes virsmas tuvumā	9,8 m/s²	
Zemes rādiuss	6,4·10 ⁶ m	
Zemes masa	6,0·10 ²⁴ kg	
Zemes orbītas rādiuss	1,5·10 ¹¹ m	
Pirmais kosmiskais ātrums	7,9 km/s	
Otrais kosmiskais ātrums	11,2 km/s	
Trešais kosmiskais ātrums	16,7 km/s	
Saules rādiuss	7,0·10 ⁸ m	
Saules masa	2,0·10 ³⁰ kg	
Saules konstante	1,4 kW/m ²	
Mēness rādiuss	1,7·10 ⁶ m	
Mēness masa	7,4·10 ²² kg	
Mēness orbītas rādiuss	3,8·10 ⁸ m	
Parseks (pc)	3,1·10 ¹⁶ m	
Gaismas gads (ly)	9,5·10 ¹⁵ m	

PRIEDĒKĻI MĒRVIENĪBU DAUDZKĀRTŅU UN DAĻVIENĪBU NOSAUKUMU VEIDOŠANAI

Pakāpes rādītājs	Priedēklis	Simbols	Pakāpes rādītājs	Priedēklis	Simbols
10 ¹²	tera	Т	10-1	deci	d
10°	giga	G	10-2	centi	С
10 ⁶	mega	M	10-3	mili	m
10³	kilo	k	10-6	mikro	μ
10 ²	hekto	h	10-9	nano	n
10¹	deka	da	10-12	piko	р

Elektromagnētisko viļņu skala

