Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»

Факультет программной инженерии и компьютерной техники Направление подготовки: 09.03.04 — Программная инженерия, Системное и прикладное программное обеспечение. Дисциплина «Основы профессиональной деятельности»

Отчет

По лабораторной работе №4 Выполнение комплекса программ

Вариант № 41004

Выполнил:

Молчанов Фёдор Денисович

Группа: Р3113

Преподаватель:

Блохина Елена Николаевна

Г. Санкт-Петербург, 2024 г.

Оглавление

Задание	3
текст исходной программы	
Подпрограмма	
Описание программы	
 Описание и назначение исходных данных:	
Область представления	
ОДЗ переменных и результата	
Расположение в памяти БЭВМ программы, исходных данных и результатов:	
Адреса первой и последней исполняемых команд программы:	
Выводы	
• •	

Задание

Лабораторная работа №4

По выданному преподавателем варианту восстановить текст заданного варианта программы и подпрограммы (программного комплекса), определить предназначение и составить его описание, определить область представления и область допустимых значений исходных данных и результата, выполнить трассировку программного комплекса.

Введи	ге номе	рЕ	вариант	7a 41004					
5A4: +	F 0200	1	5B2:	0800	50	0:	XXXX	6C6:	AE02
5A5:	EE1B	İ	5B3:	4E0D	5C	1:	F78E	6C7:	EC01
5A6:	AE18	Ĺ	5B4:	EE0C	i			6C8:	0A00
5A7:	0740	İ	5B5:	AE08	6B	B:	AC01	6C9:	F73C
5A8:	0000	İ	5B6:	0700	6B	C:	F001	6CA:	0025
5A9:	D6BB	i	5B7:	0000	6B	D:	F304	i	
5AA:	0800	İ	5B8:	D6BB	6B	E:	6E0A	İ	
5AB:	0700	İ	5B9:	0800	6B	F:	F201	i	
5AC:	4E14	İ	5BA:	0700	6C	0:	CE05	i	
5AD:	EE13	İ	5BB:	4E05	6C	1:	4E07	i	
5AE:	AE11	İ	5BC:	EE04	6C	2:	0500	İ	
5AF:	0700	Ì	5BD:	0100	6C	3:	4C01	İ	
5B0:	0C00	İ	5BE:	ZZZZ	6C	4:	4E05	İ	
5B1:	D6BB	ĺ	5BF:	YYYY	6C	5:	CE01	Ì	

Текст исходной программы

Адрес	Код команды	Мнемоника	Комментарий
0x5A4	+ 0200	CLA	Начало программы. Очистить АС
0x5A5	EE1B	ST (IP+1B)	Прямая относительная адресация. AC -> (IP+1B =5C1)
0x5A6	AE18	LD (IP + 18)	Прямая относительная адресация. (IP+18 = 5BF) ->
		` ,	АС. Загрузили Ү в АС.
0x5A7	0740	DEC	AC – 1
0x5A8	0C00	PUSH	AC -> -(SP)
0x5A9	D6BB	CALL 0x6BB	SP – 1; IP -> SP; 6BB -> IP. Вызов подпрограммы
0x5AA	0800	POP	SP -> AC; SP + 1. Снимаем элемент с верхушки стека
			(там находится операнд после вычислений в
			подпрограмме)
0x5AB	0700	INC	AC + 1
0x5AC	4E14	ADD (IP + 14)	Прямая относительная адресация. AC + (IP+14 = 5C1)
0x5AD	EE13	ST (IP + 13)	Прямая относительная адресация. AC -> (IP+13 = 5C1)
0x5AE	AE11	LD (IP + 11)	Прямая относительная адресация. (IP+11 = 5C0) -> AC
			Загрузили Х в АС
0x5AF	0700	INC	AC + 1
0x5B0	0C00	PUSH	AC -> -(SP)
0x5B1	D6BB	CALL 0x6BB	SP − 1; IP -> SP; 6BB -> IP
0x5B2	0800	POP	(SP)+ -> AC
0x5B3	4E0D	ADD (IP + 0D)	Прямая относительная адресация. AC + (IP+0D = 5C1)
0x5B4	EE0C	ST (IP + 0C)	Прямая относительная адресация. AC -> (IP+0C= 5C1)
0x5B5	AE08	LD (IP + 8)	Прямая относительная адресация. (IP + 8= 5BE) -> AC
			Загрузили Z в AC
0x5B6	0700	INC	AC + 1
0x5B7	0C00	PUSH	AC -> -(SP)
0x5B8	D6BB	CALL 0x6BB	SP − 1; IP -> SP; 6BB -> IP
0x5B9	0800	POP	(SP)+ -> AC
0x5BA	0700	INC	AC + 1
0x5BB	4E05	ADD (IP + 5)	Прямая относительная адресация. $AC + (IP + 5 = 5C1)$
0x5BC	EE04	ST (IP + 4)	Прямая относительная адресация. AC -> (IP + 4 = 5C1)
0x5BD	0100	HLT	END

Подпрограмма

Адрес	Код команды	Мнемоника	Комментарий				
0x6BB	AC01	LD &01	LD 1-й эл. стека -> AC				
0x6BC	F001	BEQ IP + 1	Если равенство ($Z == 1$), то $IP + 1 = 6BE$				
0x6BD	F304	BPL IP + 4	Если плюс (N== 0), то $IP + 4 = 6C2$				
0x6BE	6E0A	SUB (IP + A)	Прямая относительная адресация. $AC - (IP + A = 6C9)$				
0x6BF	F201	BMI IP + 1	2 \ //				
0x6C0	CE05	JUMP (IP + 5) Прямая относительная адресация. IP + $5 = 6C6 - 3$					
0x6C1	4E07	ADD (IP + 7) Прямая относительная адресация. ADD (IP + 7)					
0x6C2	0500	ASL	AC * 2. Положительный X, X*2				
0x6C3	4C01	ADD &1	AC + 1-й эл. Стека, X*2 + X				
0x6C4	4E05	ADD (IP + 5)	Прямая относительная адресация. ADD (IP $+ 5 = 6$ CA)				
0x6C5	CE01	JUMP(IP+1)	Прямая относительная адресация. $IP + 1 = 6C7 -> IP$				
0x6C6	AE02	LD (IP + 2)	Прямая относительная адресация. $IP + 2 = 6C9 -> AC$				
0x6C7	EC01	ST &1	AC -> 1-й эл. Стека				
0x6C8	0A00	RET	SP++ -> IP. Возврат				

Пусть операнд, над которыми произв. вычисления в ПП, называется Х.

1 случай. х != 0

1.1 Если
$$x > 0$$
, то $x = x*2 + x + 6CA(=25_{10}) = 3x + 37_{10}$ Загружаем это в первый элемент стека (перезаписываем x)

1.2 Если x < 0, то $x = x - 6C9(=F73C_{16})$

т.к. F73C отрицательный, то x = x - (-2244) = x + 2244

1.2.1 если
$$x < 0$$
, то $x += 6C9$ (возвращаем x) $\#x < F73C(-2244_{10})$ $x = x*2 + x + 6CA(=25_{10}) = 3x + 37_{10}$

Загружаем это в первый элемент стека (перезаписываем х)

1.2.2 если
$$x \ge 0$$
, то $x = 6C9(=F73C) \#x \ge F73C (-2244_{10})$

Загружаем это в первый элемент стека (перезаписываем х)

2 случай. Операнд == 0.

Тогда x = x - 6C9.

2.1 Если 6С9 — положительный, то
$$x += 6$$
С9 (Возвращаем $\kappa x = 0$) $x = 0*2 + 0 + 6$ СА = $25_{16} = 37_{10}$

Загружаем это в первый элемент стека (перезаписываем х)

Загружаем это в первый элемент стека (перезаписываем х)

2.2 никогда не случится, т.к. 6C9 - положительная константа, не изменяемая в ходе программы. То есть если <math>x = 0, то всегда 2.1.

Описание программы

1) Описание программы

Программа 3 раза выполняет вызывает подпрограмму передавая в неё Y, X, Z последовательно, между вызовами выполняет арифметические операции над R.

2) Описание подпрограммы

Подпрограмма выполняет вычисления по формуле:

3) Описание программного комплекса

Программный комплекс выполняет вычисления по формуле:

$$R = F(Y-1) + 1 + F(X+1) + F(Z+1) + 1$$

Описание и назначение исходных данных:

Адрес	Данные	Мнемоника	Комментарий		
0x5BE	ZZZZ	500 (10)	Z		
0x5BF	YYYY	-7000 (10)	y		
0x5C0	XXXX	6000 (10)	X		
0x5C1	F78E	R	Результат. В начале равен 0.		
		•••			
0x6C9	F73C	А константа			
0x6CA	0025	В	константа		

Область представления

R – знаковое 16-ти разрядное число: $-2^{15} \le R \le 2^{15} - 1$

$$X, Y, Z, A, B$$
 — константы — знаковые 16-ти разрядные числа, $-2^{15} \le X, Y, Z, A, B \le 2^{15} - 1$

ОДЗ переменных и результата

$$F(x)$$
: $-0x2AAA + 0x25 \le x \le 0x2AAA - (0x25 + 1)$

$$-2^{15} \le R \le 2^{15} - 1$$

1. Делим каждое значение на 3. А потом еще раз на 3, чтобы исключить случай переполнения при сумме трёх положительных чисел.

$$\begin{cases}
-5461 \le Z \le +5461 \\
-5461 \le Y \le +5461 \\
-5461 \le X \le +5461
\end{cases}$$

2. Рассмотрим случай, когда X < 0.

Тогда самое минимальное значение, которое он может принять, это -32768/3 - 37 = -10959. $-10959 \le X < 0$

Значит Y, Z смогут принимать значения, при которых сумма их значений от подпрограмм не будет переполнять разрядную сетку в следующем случае:

$$-10959 + F(Y) + F(Z) \le 32767$$

$$F(Y) + F(Z) \le 43726$$

$$\begin{cases} -10959 \le X < -2244 \\ -2244 < Y \le 7000 \\ -2244 < Z \le 7000 \end{cases}$$

Расположение в памяти БЭВМ программы, исходных данных и результатов:

0x5A4 - 0x5BC0 & 0x6BB - 0x6CA: Программа

0x5A4 - 0x5BD: Исходный код

0х6ВВ - 0х6С8: Подпрограмма

0х5ВЕ – 0х5С0: Константы для функции

0х5С1: Результат

0x6C9, 0x6CA: Константы для ПП

Адреса первой и последней исполняемых команд программы и подпрограммы??:

0х5А4 – первая команда

0x5BD – последняя команда

Трассировка

$$R = (F(Y-1) + 1) + F(X + 1) + (F(Z+1) + 1)$$

ZZZZ	$500(10) = 1F4_{16}$
YYYY	$-7000 (10) = E4A8_{16}$
XXXX	$6000(10) = 1770_{16}$

 $R = F(E4A7) + 1 + F(1771) + F(1F5) + 1 = AE1A + 1 + 4678 + 604 + 1 = FA98(-1384_{10})$

Выполняемая команда		C	одержи	Р	Ячейка, содержимое которой изменилось							
										после выполнения		
			1				1	1	T	ком	анды	
Адр	Код	IP	CR	AR	DR	SP	BR	AC	NZVC	Адр	Новый код	
5A4	0200	5A5	0200	5A4	0200	000	05A4	0000	0100			
5A5	EE1B	5A6	EE1B	5C1	0000	000	001B	0000	0100	5C1	0000	
5A6	AE18	5A7	AE18	5BF	E4A8	000	0018	E4A8	1000			
5A7	0740	5A8	0740	5A7	0740	000	05A7	E4A7	1001			
5A8	0C00	5A9	0C00	7FF	E4A7	7FF	05A8	E4A7	1001	7FF	E4A7	
5A9	D6BB	6BB	D6BB	7FE	05AA	7FE	D6BB	E4A7	1001	7FE	05AA	
6BB	AC01	6BC	AC01	7FF	E4A7	7FE	0001	E4A7	1001			
6BC	F001	6BD	F001	6BC	F001	7FE	06BC	E4A7	1001			
6BD	F304	6BE	F304	6BD	F304	7FE	06BD	E4A7	1001			
6BE	6E0A	6BF	6E0A	6C9	F73C	7FE	000A	ED6B	1000			
6BF	F201	6C1	F201	6BF	F201	7FE	0001	ED6B	1000			
6C1	4E07	6C2	4E07	6C9	F73C	7FE	0007	E4A7	1001			
6C2	0500	6C3	0500	6C2	E4A7	7FE	06C2	C94E	1001			
6C3	4C01	6C4	4C01	7FF	E4A7	7FE	0001	ADF5	1001			
6C4	4E05	6C5	4E05	6CA	0025	7FE	0005	AE1A	1000			
6C5	CE01	6C7	CE01	6C5	06C7	7FE	0001	AE1A	1000			
6C7	EC01	6C8	EC01	7FF	AE1A	7FE	0001	AE1A	1000	7FF	AE1A	
6C8	0A00	5AA	0A00	7FE	05AA	7FF	06C8	AE1A	1000			
5AA	0800	5AB	0800	7FF	AE1A	000	05AA	AE1A	1000			
5AB	0700	5AC	0700	5AB	0700	000	05AB	AE1B	1000			
5AC	4E14	5AD	4E14	5C1	0000	000	0014	AE1B	1000			
5AD	EE13	5AE	EE13	5C1	AE1B	000	0013	AE1B	1000	5C1	AE1B	
5AE	AE11	5AF	AE11	5C0	1770	000	0011	1770	0000	301	71220	
5AF	0700	5B0	0700	5AF	0700	000	05AF	1771	0000			
5B0	0C00	5B1	0C00	7FF	1771	7FF	05B0	1771	0000	7FF	1771	
5B1	D6BB	6BB	D6BB	7FE	05B2	7FE	D6BB	1771	0000	711 7FE	05B2	
6BB	AC01	6BC	AC01	7FF	1771	7FE	0001	1771	0000	,, <u> </u>	0002	
6BC	F001	6BD	F001	6BC	F001	7FE	06BC	1771	0000			
6BD	F304	6C2	F304	6BD	F304	7FE	0004	1771	0000			
6C2	0500	6C3	0500	6C2	1771	7FE	06C2	2EE2	0000			
6C3	4C01	6C4	4C01	7FF	1771	7FE	0001	4653	0000			
6C4	4E05	6C5	4E05	6CA	0025	7FE	0005	4678	0000			
6C5	CE01	6C7	CE01	6C5	06C7	7FE	0003	4678	0000			
6C7	EC01	6C8	EC01	7FF	4678	7FE	0001	4678	0000	7FF	4678	
007	LCOI	UCO	LCOI	/11	40/0	/ I L	1 0001	40/0	1 0000	/!!	40/0	

6C8	0A00	5B2	0A00	7FE	05B2	7FF	06C8	4678	0000		
5B2	0800	5B3	0800	7FF	4678	000	05B2	4678	0000		
5B3	4E0D	5B4	4E0D	5C1	AE1B	000	000D	F493	1000		
5B4	EE0C	5B5	EEOC	5C1	F493	000	000C	F493	1000	5C1	F493
5B5	AE08	5B6	AE08	5BE	01F4	000	8000	01F4	0000		
5B6	0700	5B7	0700	5B6	0700	000	05B6	01F5	0000		
5B7	0C00	5B8	0C00	7FF	01F5	7FF	05B7	01F5	0000	7FF	01F5
5B8	D6BB	6BB	D6BB	7FE	05B9	7FE	D6BB	01F5	0000	7FE	05B9
6BB	AC01	6BC	AC01	7FF	01F5	7FE	0001	01F5	0000		
6BC	F001	6BD	F001	6BC	F001	7FE	06BC	01F5	0000		
6BD	F304	6C2	F304	6BD	F304	7FE	0004	01F5	0000		
6C2	0500	6C3	0500	6C2	01F5	7FE	06C2	03EA	0000		
6C3	4C01	6C4	4C01	7FF	01F5	7FE	0001	05DF	0000		
6C4	4E05	6C5	4E05	6CA	0025	7FE	0005	0604	0000		
6C5	CE01	6C7	CE01	6C5	06C7	7FE	0001	0604	0000		
6C7	EC01	6C8	EC01	7FF	0604	7FE	0001	0604	0000	7FF	0604
6C8	0A00	5B9	0A00	7FE	05B9	7FF	06C8	0604	0000		
5B9	0800	5BA	0800	7FF	0604	000	05B9	0604	0000		
5BA	0700	5BB	0700	5BA	0700	000	05BA	0605	0000		
5BB	4E05	5BC	4E05	5C1	F493	000	0005	FA98	1000		
5BC	EE04	5BD	EE04	5C1	FA98	000	0004	FA98	1000	5C1	FA98
5BD	0100	5BE	0100	5BD	0100	000	05BD	FA98	1000		

Выводы

В ходе работы я узнал про такую структуру данных, как стек и разобрался в его действии в БЭВМ. Узнал про работу команд PUSH, POP и в комплексе программ, использующих стек при работе.