Classification

chapter 4 of An Introduction to Statistical Learning (ISL)

Henrique Laureano

http://leg.ufpr.br/~henrique

Laboratory of Statistics and Geoinformation (LEG) ${\sf UFPR/DEST/LEG}$

What we read (long description)

Springer Toxts in Statistics

Gareth James
Daniela Witten
Trevor Hastie
Robert Tibshirani

An Introduction to Statistical Learning

with Applications in R

Clas	ssification	127
4.1	An Overview of Classification	128
4.2	Why Not Linear Regression?	129
4.3	Logistic Regression	130
	4.3.1 The Logistic Model	131
	4.3.2 Estimating the Regression Coefficients	133
	4.3.3 Making Predictions	134
	4.3.4 Multiple Logistic Regression	135
	4.3.5 Logistic Regression for >2 Response Classes	137
4.4	Linear Discriminant Analysis	138
	4.4.1 Using Bayes' Theorem for Classification	138
	4.4.2 Linear Discriminant Analysis for $p=1$	139
	4.4.3 Linear Discriminant Analysis for $p > 1$	142
	4.4.4 Quadratic Discriminant Analysis	149
4.5	A Comparison of Classification Methods	151

What we read (short description)

At chapter 4 are discussed three of the most widely-used classifiers.

- Logistic Regression
- Linear Discriminant Analysis (LDA)
- K-Nearest Neighbors (KNN)

What we didn't read

More computer-intensive methods are discussed in later chapters, such as

- Generalized Additive Models (GAM)
- Trees
- Random Forests
- Boosting
- Support Vector Machines (SVM)

- 1 Why Not Linear Regression?
- 2 A typical dataset
- 3 Logistic Regression
- 4 Linear Discriminant Analysis (LDA)
- 5 K-Nearest Neighbors (KNN)

We could consider encoding the response, Y, as a quantitative variable, e.g.,

Predict the medical condition of a patient on the basis of her symptoms.

$$Y = \begin{cases} 1 & \text{if stroke;} \\ 2 & \text{if drug overdose;} \\ 3 & \text{if epileptic seizure.} \end{cases}$$

We could consider encoding the response, Y, as a quantitative variable, e.g.,

Predict the medical condition of a patient on the basis of her symptoms.

$$Y = \begin{cases} 1 & \text{if stroke;} \\ 2 & \text{if drug overdose;} \\ 3 & \text{if epileptic seizure.} \end{cases}$$

Unfortunately, this coding implies an ordering on the outcomes.

Each possible coding would produce a fundamentally different linear model that would ultimately lead to different sets of predictions.

That leads us to other questions,

- What if the response variable values did take on a natural ordering, such as mild, moderate, and severe?
- For a binary (two level) qualitative response, the situation is better.
 - However, if we use linear regression, some of our estimates might be outside the [0, 1] interval.
 - However, the dummy variable approach cannot be easily extended to accommodate qualitative responses with more than two levels.

That leads us to other questions,

- What if the response variable values did take on a natural ordering, such as mild, moderate, and severe?
- For a binary (two level) qualitative response, the situation is better.
 - However, if we use linear regression, some of our estimates might be outside the [0, 1] interval.
 - However, the dummy variable approach cannot be easily extended to accommodate qualitative responses with more than two levels.

For these reasons, it is preferable to use a classification method that is truly suited for qualitative response values, such as the ones presented next.

Curiously,

it turns out that the classifications that we get if we use linear regression to predict a binary response will be the same as for the linear discriminant analysis (LDA) procedure we discuss later.

- Why Not Linear Regression?
- 2 A typical dataset
- 3 Logistic Regression
- 4 Linear Discriminant Analysis (LDA)
- 5 K-Nearest Neighbors (KNN)

A classic 'book example dataset relationship'

FIGURE 4.1. The Default data set. Left: The annual incomes and monthly credit card balances of a number of individuals. The individuals who defaulted on their credit card payments are shown in orange, and those who did not are shown in blue. Center: Boxplots of balance as a function of default status. Right: Boxplots of income as a function of default status.

.. a very pronounced relationship between balance and default.

- Why Not Linear Regression?
- 2 A typical dataset
- 3 Logistic Regression
- 4 Linear Discriminant Analysis (LDA)
- 5 K-Nearest Neighbors (KNN)

- Why Not Linear Regression?
- 2 A typical dataset
- 3 Logistic Regression
- 4 Linear Discriminant Analysis (LDA)
- 5 K-Nearest Neighbors (KNN)

- Why Not Linear Regression?
- 2 A typical dataset
- 3 Logistic Regression
- 4 Linear Discriminant Analysis (LDA)
- **5** K-Nearest Neighbors (KNN)

and...

laureano@ufpr.br