Demostración las distancias no disminuyen

Nicolás Cagliero

9 de julio de 2024

Theorem 1.

1. Dados vértices x, z se define, dado un flujo f en el network

$$d_f(x,z) = \begin{cases} 0, & \text{si } x = z \\ \infty, & \text{si no existe } f - CA \text{ desde } x \text{ a } z \end{cases}$$

$$m \text{ minima longitud de un } f - CA \text{ desde } x \text{ a } z, & \text{si existe}$$

2. Sean $f_0, f_1, f_2, ...$ los flujos que se van obteniendo en E-K:

$$d_k(x) = d_{f_k}(s, x)$$

Entonces $d_k(x) \leq d_{k+1}(x)$

Demostración. Esta será una idea de la demostración y sus partes, los detalles y ciertas cuentas no serán escritas.

Sea $A = \{x : d_{k+1}(x) < d_k(x)\}$, vamos a querer que $A = \emptyset$. Supongamos que no, es decir, tomemos un $x \in A$ y además le vamos a pedir que sea tal que $d_{k+1}(x) = min\{d_{k+1}(y) : y \in A\}$

Acá ya podemos ver que $d_{k+1}(x) < d_k(x) \le \infty \Rightarrow$ existe un $f_{k+1} - CA$ entre s y x. Y además es obvio ver que $x \ne s$.

De esta forma, sabemos que existe un z inmediatamente anterior a x tal que el $f_{k+1} - CA$ es de la forma $P_{k+1} = s...zx$. Y como estamos corriendo E-K, P_{k+1} es de longitud mínima.

$$\Rightarrow d_{k+1}(x) = d_{k+1}(z) + 1$$

De esta forma, sabemos que \overrightarrow{zx} o \overrightarrow{xz} .

1. Caso \overrightarrow{zx}

Notar ahora que $d_{k+1}(z) < d_{k+1}(x) \Rightarrow z \notin A \Rightarrow d_k(z) \leq d_{k+1}(z) < d_{k+1}(x) < \infty$. Luego, exite un $f_k - CA$ entre s y z. Acá nos preguntamos, puedo agregar a x al final de ese $f_k - CA$ dado que \overrightarrow{zx} es un lado. Si lo hacemos, dado que estamos corriendo E-K y los caminos aumentantes son de longitud mínima $\Rightarrow d_k(x) = d_k(z) + 1 \leq d_{k+1}(z) + 1 = d_{k+1}(x)$. De esta forma llegamos al absurdo pues $x \in A$.

Entonces si no lo podemos agregar forward al x, significa que \overrightarrow{zx} está saturado en el flujo k, pero ya vimos que P_{k+1} es un $f_{k+1} - CA \Rightarrow$ para pasar de f_k a f_{k+1} , el lado se usó y se usó backward $\Rightarrow P'_k = s...\overleftarrow{xz}$

1

Como es de longitud mínima,

$$\begin{aligned} d_k(z) &= d_k(x) + 1 \\ &> d_{k+1}(x) + 1 = d_{k+1}(z) + 1 + 1 \ge d_k(z) + 2 \\ &> d_k(z) + 2 \end{aligned}$$

 $\Rightarrow 0 > 2$. ABSURDO.

2. Caso \overrightarrow{xz}

Muy parecido al caso anterior, vamos a llegar que existe un $f_k - CA$ entre s y z y al querer agregar a x backward llegaríamos a una contradicción, lo que nos dice que $f_k(\overrightarrow{xz}) = 0$ y como sabemos que P_{k+1} es un $f_{k+1} - CA$ vamos a tener que haber usado ese lado forward de forma tal que el lado se sature un poco. De esta forma terminamos obteniendo las mismas ecuaciones que en el caso anterior y llegando al absurdo de 0 > 2.

$$d_k(z) = d_k(x) + 1$$

$$> d_{k+1}(x) + 1 = d_{k+1}(z) + 1 + 1 \ge d_k(z) + 2$$

$$> d_k(z) + 2$$

De esta forma se llega a un absurdo de suponer que $A \neq \emptyset \Rightarrow A = \emptyset$ y el teorema queda demostrado.