Akshay Rangamani

Postdoctoral Associate, McGovern Institute for Brain Research, MIT

Personal Information	19 Central Street, Apt 9 Somerville, MA 02143 Website: https://akshay-r.github.io	Phone: (410) 220 2307 Email: arangam@mit.edu Citizenship: USA	
ACADEMIC POSITIONS	Massachusetts Institute of Technology Postdoctoral Associate at the Center for Brains, Minds and Mach Host: Prof. Tomaso A. Poggio	Feb 2020 - Present	
RESEARCH INTERESTS	Theory of Deep Learning, Representation Learning, Associative Memories, Neural Assemblies, Assembly Calculus, Working Memory, Compressed Sensing and Sparse Signal Processing,		
EDUCATION	Johns Hopkins University Ph.D. Candidate in Electrical and Computer Engineering Advisor: Prof. Trac D. Tran Thesis: Loss Landscapes and Generalization in Neural Networks: MSE in Electrical and Computer Engineering	Sept 2013 - Dec 2019 GPA: 3.95/4 Theory and Applications May 2015	
	Indian Institute of Technology Madras, Chennai B. Tech in Electrical Engineering, Minor: Biomedical Engineering Thesis: Low Cost Autofocus System for Optical Microscopes guide	•	
Talks and Invited Presentations	 To Interpolate or Not to Interpolate? Theory Day — Brains, Minds and Machines Summer School 	August 2022	
	 Tutorials on Deep Learning and Signal Processing Brains, Minds and Machines Summer School 	August 2022	
	 Supervised Learning with Assemblies of Neurons Neural Systems Analysis Lab, Johns Hopkins University 	Nov 2021	
	 Loss Landscapes of Neural Networks and Generalization Microsoft Applied Sciences, Redmond 	Apr 2021	
	 Stability of Kernel Ridgeless Regression TOPML Workshop 2021 	Apr 2021	
	 Towards Understanding Neural Networks Microsoft Research India, Bangalore 	May 2019	
	 Sparse Coding and Autoencoders ISIT 2018, Vail, CO, USA 	June 2018	
	 A Greedy Pursuit Algorithm for Separating Signals from Nonlinear Compressive Observations ICASSP 2018, Calgary, Canada 	Apr 2018	
	 Learning Maliciousness in Cybersecurity Graphs NeurIPS Workshop on Tensor Learning, Barcelona 	Dec 2016	
SELECTED PUBLICATIONS AND PREPRINTS	 Feature Learning in Deep Classifiers through Intermediate Neural Collapse, Rangamani, A., Lindegaard, M., Galanti, T., & Poggio, T. (2022) in preparation 		
	 Associative Memory Structure and Capacity in Assembly Calculus, Rangamani, A., Xie, Y., Li, Y., & Poggio, T. (2022) in preparation 		
	- Dynamics in Deep Classifiers trained with the Square Loss: normalization, low rank, neural		

Neural Collapse in Deep Homogeneous Classifiers and The Role of Weight Decay. Rangamani,
 A., & Banburski-Fahey, A. (2022) IEEE ICASSP.

T., (2022) Submitted to RESEARCH

collapse and generalization bounds, Xu, M., Rangamani, A., Liao, Q., Galanti, T., & Poggio,

- For Interpolating Kernel Machines, Minimizing the Norm of the ERM Solution Maximizes Stability, Rangamani, A., Rosasco, L., & Poggio, T., (2022) Submitted to Analysis and Applications
- A Scale Invariant Flatness Measure for Deep Network Minima, Rangamani, A., Nguyen,
 N.H., Kumar, A., Phan, D., Chin, S.H. & Tran, T.D., (2021) IEEE ICASSP

- Deep learning-based target tracking and classification for low quality videos using coded aperture cameras., Kwan, C., Chou, B., Yang, J., Rangamani, A., Tran, T.D., Zhang, J., & Etienne-Cummings, R. (2019) Sensors
- Sparse Coding and Autoencoders, Rangamani, A., Mukherjee, A., Basu, A., Arora, A., Ganapathi, T., Chin, S.H. & Tran, T.D., (2018) IEEE ISIT, Oral Presentation
- A Greedy Pursuit Algorithm for Separating Signals from Nonlinear Compressive Observations,
 Tran, D. Rangamani, A., Chin, S.H., Tran, T.D., (2018) IEEE ICASSP Oral Presentation
- Reconstruction-free deep convolutional neural networks for partially observed images, Nair, A.,
 Liu, L., Rangamani, A., Chin, S.H., Bell, M.A.L., & Tran, T.D., (2018) IEEE GlobalSIP
- Chief: a change pattern based interpretable failure analyzer. Patel, D., Nguyen, L.M., Rangamani, A., Shrivastava, S., & Kalagnanam, J. IEEE Big Data 2018
- Predicting local field potentials with recurrent neural networks. Kim, L., Harer, J., Rangamani,
 A., Moran, J., Parks, P.D., Widge, A., Eskander, E., Dougherty, D. & Chin, S.P., IEEE EMBC 2016
- Targeted Dot Product Representation for Friend Recommendation in Online Social Networks,
 Dao, M.D., Rangamani, A., Chin, S.H., Nguyen, N.P., & Tran, T.D., ASONAM 2015,
 IEEE/ACM, Oral Presentation

SELECTED WORKSHOP PRESENTATIONS

- Feature Learning in Deep Classifiers through Intermediate Neural Collapse, DEEPMATH 2022
- Neural Collapse in Deep Homogeneous Classifiers with the Square Loss, DEEPMATH 2021
- For Interpolating Kernel Machines, Minimizing the Norm of the ERM Solution Optimizes Stability, Theory of Overparameterized Machine Learning (TOPML) Workshop 2021
- Supervised Learning with Brain Assemblies, NeurIPS 2020 Beyond Backpropagation Workshop
- A Scale Invariant Flatness for Deep Network Minima, Berlin Mathematical School, Summer School on Mathematics of Deep Learning, 2019
- A Scale Invariant Flatness for Deep Network Minima, MIT Institute for Foundations of Data Science, Workshop on Non-convex Optimization and Deep Learning 2019
- Sparse Coding and Autoencoders, NeurIPS 2017 Workshop on Bridging Theory and Practice of Deep Learning
- Landmark Detection and Tracking in Ultrasound using a CNN-RNN Framework, NeurIPS 2016
 Workshop on 3D Deep Learning
- Learning Maliciousness in Cybersecurity Graphs, NeurIPS 2016 Workshop on Tensor Learning
- Modeling local field potentials with recurrent neural networks, NeurIPS 2015 Workshop on Statistical Methods for Understanding Neural Systems
- Learning Program Attributes in Control Flow Graphs, Duke Workshop on Sensing and Analysis of High Dimensional Data, 2015

SCHOLASTIC ACHIEVEMENTS

- Johns Hopkins University Payback Fellowship, 2013
- IIT Madras Governor's Prize for the student with all round proficiency in Curricular and Extracurricular activities, 2013
- DAAD-WISE fellowship, 2012 for an internship at the University of Luebeck, Germany
- Finalist at the TI India Analog Design Contest 2011, among the top 25 projects out of 300
- IIT Madras Merit Certificate for placing 89th nationwide in IITJEE-2009
- Ranked 43rd in India in the 2009 All India Engineering Entrance Examination

Python, PyTorch, Tensorflow, MATLAB, LATEX

SKILLS

TEACHING, MENTORING, AND SERVICE

Courses:

- Co-instructor, Statistical Learning Theory, Fall 2020 22 (MIT)
- Teaching Assistant, Brains, Minds, and Machines Summer Course 2022
 Conducted tutorials on Deep Learning Theory and Signal Processing. Mentored a student on a project linking Assembly Calculus and Associative Memories
- Teaching Assistant, Machine Learning, Spring 2017, 2019 (JHU)
- Teaching Assistant, Compressed Sensing and Sparse Recovery, Spring 2015, 2017 (JHU)
- Teaching Assistant, Networked Dynamical Systems, Fall 2016 (JHU)
- Teaching Assistant, Medical Imaging Systems, Fall 2014 (JHU)
- Teaching Assistant, Introduction to Electrical and Computer Engineering, Fall 2015-2018 (JHU)

Direct Mentorship:

- Marius Lindegaard, CBMM Research Assistant

Jun 2022 - Present

- Yi (Eva) Xie, MIT UROP Student

Jan 2022 - Present

- Anshula Gandhi, CBMM Research Assistant

Feb 2020 - Apr 2021

Reviewer for NeurIPS (Outstanding Reviewer Top 8% 2021), ICML, ICLR, IEEE Transactions on Circuits and Systems for Video Technology, IEEE Transactions on Image Processing, IEEE Transactions on Pattern Analysis and Machine Intelligence

INTERNSHIPS AND VISITS

IBM T.J. Watson Research Center, Yorktown Heights, NY

Feb - Aug 2018

 Worked on Deep Learning techniques for Time Series Analysis, and contributed to an IBM framework for applying machine learning to data from manufacturing and other heavy industries

Uplevel Security, New York, NY

June - Aug 2016

- Uplevel Security is building an cybersecurity incident response platform to help automate investigation of suspicious events.
- In the duration of my internship we developed a new ontology for Uplevels cybersecurity graph and implemented an ingestor pipeline to process artifacts
- We also implemented a version of RESCAL, an algorithm to learn embeddings for nodes in relational graphs, and adapted it to handle missing data and attributes.

Draper Laboratories, Cambridge, MA

June - Jul 2015

- We performed scalable analysis of software programs to discover Common Vulnerabilities and Exposures by extracting a number of structural features from code, like Control Flow Graphs, Use-Def graphs, etc.
- We achieved good performance on the SATE-IV database of programs for testing CVEs

Past Research Projects

Low Cost Autofocus System for Optical Microscopes

August 2012 - June 2013

Work with: Dr. S. Mohanasankar, IIT Madras & Dr. Niranjan Joshi, Healthcare Technology Innovation Centre (HTIC)

- Designed and machined mechanical components for controlling coarse and fine adjustments
- Implemented an autofocus algorithm in MATLAB to focus on slides placed on the stage

Artifact Removal from EEG by Adaptive Information Filtering

May - July 2012

Work with: Dr. Ulrich Hofmann & Mehrnaz Hazrati, University of Luebeck

 Implemented an Adaptive Information Filter which uses Entropy as a cost function to remove ocular artifacts from EEG. Performance was found to be better than a Mean-Squared Error adaptive filter

Low Cost Pulse Oximeter that measures Respiratory Rate

Sept 2011 - Feb 2012

Work with: Dr. Nitin Chandrachoodan, IIT Madras

- Designed and constructed a pulse oximeter to measure respiratory rate for non-invasive screening of pneumonia
- Implemented time and frequency domain algorithms to measure respiratory rate in MATLAB
- Designed and constructed an embedded system to implement the algorithms on a TMS320 DSP

Screening Tool for Anterior Visual Pathway Diseases

Sept 2010 - July 2011

Work with: Dr. S. Mohanasankar, IIT Madras & Dr. Rashmin Gandhi, Sankara Nethralaya

- Designed, built and evaluated a test for screening optic nerve diseases based on red desaturation
- More sensitive than current diagnostic tests

Volunteer Positions

- Founding Vice-President of the Electrical and Computer Engineering Graduate Students Association, 2015-17
- President of the Indian Graduate Students Association at Johns Hopkins University, 2015
- Volunteer for the Association for India's Development, JHU Chapter 2014-15

References

- Tomaso A. Poggio, Professor, Brain and Cognitive Sciences, Massachusetts Institute of Technology
- Lorenzo Rosasco, Professor, DIBRIS, Universita' degli Studi di Genova
- Trac D. Tran, Professor, Electrical and Computer Engineering, Johns Hopkins University
- Sang (Peter) Chin, Research Professor, Computer Science, Boston University
- Nam H. Nguyen, Research Staff Member, IBM T.J. Watson Research Center
- Abhishek Kumar, Research Scientist, Google Brain