Estadística Inferencial

Capítulo X - Ejercicio 57

Aaric Llerena Medina

Los salarios mensuales de los empleados de dos grandes empresas manufactureras A y B se distribuyen aproximadamente normal con medias iguales. Sin embargo los empleados de la empresa B creen tener los mejores salarios. Dos muestras aleatorias independientes de 8 empleados de A y de 9 empleados de B dieron los siguientes salarios en nuevos soles:

Muestra A: 3,400 3,500 3,100 3,200 3,000 3,300 3,100 3,200

Muestra B: 3,800 3,700 3,900 3,500 3,700 3,600 3,200 3,300 4,000

Al nivel de significación del 5%,

- a) ¿Se puede concluir que las varianzas de los salarios son iguales?
- b) ¿Es razonable concluir que los empleados de la empresa B están mejor pagados?. Realice una prueba unilateral.

Solución:

Calculando los datos necesarios:

				_		
	Muestra A	$(x_i - \bar{x}_A)^2$		_	Muestra B	$(x_i - \bar{x}_B)^2$
	3,400	30,625			3,800	27,777.78
	3,500	75,625			3,700	4,444.44
	3,100	15,625			3,900	71,111.11
	3,200	625			3,500	17,777.78
	3,000	50,625			3,700	4,444.44
	3,300	5,625			3,600	1,111.11
	3,100	15,625			3,200	187,777.78
	3,200	625			3,300	111,111.11
					4,000	134,444.44
Cantidad	8		Canti	dad	9	
Suma	25,800	195,000	Sun	ıa	32,700	560,000.00
Promedio	3,225		Prome	edio	3,633.33	
Varianza		27,857.14	Varia	nza		70,000

a) Se plantea las hipótesis:

$$H_0: \sigma_A^2 = \sigma_B^2 \quad \leadsto \quad \text{(Las varianzas de los salarios son iguales)}$$

$$H_1: \sigma_A^2 \neq \sigma_B^2 \quad \leadsto \quad \text{(Las varianzas de los salarios no son iguales)}$$

Para determinar si las varianzas son iguales, se determina el estadístico F:

$$F = \frac{s_B^2}{s_A^2} = \frac{70,000}{27,857.14} \approx 2.5128$$

Para un nivel de significación de 0.05 y con 7 grados de libertad para el numerador y 8 grados de libertad para el denominador, el valor crítico de $F_{0.05/2,7.8} \approx 4.5286$.

Como $F_{\rm cal} = 2.5128 < 4.5286$ no se rechaza la hipótesis nula. Por lo tanto, no hay evidencia suficiente para concluir que las varianzas de los salarios no son iguales al nivel de significación de 0.05.

b) Se plantea las hipótesis:

$$H_0: \mu_B \leq \mu_A \quad \leadsto \quad \text{(No hay diferencia en los salarios medios)}$$

$$H_1: \mu_B > \mu_A$$
 (Los empleados de B están mejor pagados)

Dado que no se rechaza la hipótesis de igualdad de varianzas, se asume varianzas iguales. La varianza combinada s_p^2 es:

$$s_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2} = \frac{(7 \cdot 27, 857.14) + (8 \cdot 70, 000)}{8 + 9 - 2} = \frac{755,000}{15} \approx 50,333.33$$

El estadístico t se calcula como:

$$t = \frac{\bar{x}_B - \bar{x}_A}{\sqrt{s_p^2 \left(\frac{1}{n_A} + \frac{1}{n_B}\right)}} = \frac{3,633.33 - 3,225}{\sqrt{50,333.33 \left(\frac{1}{8} + \frac{1}{9}\right)}} \approx \frac{408.33}{\sqrt{11,884.2585}} \approx 3.7456$$

Para un nivel de significación de 0.05 y con 15 grados de libertad, el valor crítico de $t_{1-0.05,15}$ es aproximadamente 1.7531.

La regla de decisión es:

- Si $t_{\text{calc}} > t_{\alpha,n-1}$, se rechaza H_0 .
- Si $t_{\text{calc}} \leq t_{\alpha,n-1}$, no se rechaza H_0 .

En este caso, $t_{\rm calc} = 3.7456 > 1.7531$, por lo que se rechaza la hipótesis nula. Por lo tanto, hay evidencia estadística significativa ($\alpha = 0.05$) para concluir que los empleados de la empresa B tienen salarios medios más altos que los de la empresa A.