Notebook for Integrating ROS and Raspberry Pi

Authors:

John McLinden

Contact: john_mclinden@my.uri.edu

Andrew Sullivan

Contact: amsullivan2@wpi.edu

Setting Up Your Raspberry Pi:

This initial project is running on Ubuntu 20.04 on a Raspberry Pi (Model 3B/3B+) and ROS Noetic. Previous attempts at following the official ROS beginner tutorials (http://wiki.ros.org/ROS/Tutorials) using Raspbian Buster ran into issues when trying to get the beginner tutorial software (though it is almost certainly feasible, see the tutorials at http://wiki.ros.org/ROSberryPi). We followed both the tutorials for ROS Kinetic and ROS Melodic, but both versions seemed to be more compatible with Ubuntu than with Raspbian. Some benefits using Ubuntu include:

- ROS officially targets Ubuntu 20.04
- It allows us to use ROS Noetic, the most recent version of ROS (07/22/2020)

Installing and configuring Ubuntu on the raspberry pi was done by following the tutorial found at: https://ubuntu.com/tutorials/how-to-install-ubuntu-on-your-raspberry-pi#1-overview.

Information about setting up ROS Noetic for Ubuntu can be found at: http://wiki.ros.org/noetic/Installation/Ubuntu.

Below are the steps we took to configure ROS Noetic on a Raspberry Pi 3B/B+ running Ubuntu 20.04.

- 1. Using the Raspberry Pi imager (https://www.raspberrypi.org/downloads/), flash an Ubuntu 20.04 image to a microSD card (at least 8 GB).
- 2. Before attempting to boot the image on the pi, open the network-config file now found on the microSD card. There should be a section that looks like this:

```
#wifis:
# wlan0:
# dhcp4: true
# optional: false
# access-points:
# <wifi network name>:
# password: <"wifipassword">
```

Uncomment the section and replace <wifi network name> with the name of your wifi network (may need to be in quotes if there is a space in the name). Replace

</wifipassword"> with your wifi password. Save the file, safely remove the microSD
card, and insert it into the Pi to begin your first boot.

- 3. After booting, you will need to change the default password (default password is "ubuntu").
- 4. (Optional, but required to run the beginner tutorials on your pi): Install a desktop environment. The environment we are currently using is lubuntu, as it is relatively lightweight, though still fairly slow.

```
sudo apt install lubuntu-desktop
```

Afterwards, you should be able to set up your Pi as normal ()

5. Setup your sources list to accept packages from packages.ros.org:

```
sudo sh -c 'echo "deb http://packages.ros.org/ros/ubuntu $(lsb_release
-sc) main" > /etc/apt/sources.list.d/ros-latest.list'
```

6. Setup your keys:

```
sudo apt-key adv --keyserver 'hkp://keyserver.ubuntu.com:80' --recv-key C1CF6E31E6BADE8868B172B4F42ED6FBAB17C654
```

7. Ensure that everything is updated:

```
sudo apt update
```

8. Install ROS Noetic. The desktop version is sufficient to run all of the beginner tutorials (some include rgt/rviz).

```
sudo apt install ros-noetic-desktop
```

9. Edit ~./setup.bash file to allow for automatic sourcing of /opt/ros/noetic/setup.bash on every new shell:

```
echo "source /opt/ros/noetic/setup.bash" >> ~/.bashrc
source ~/.bashrc
```

From here, you should be able to follow the ROS beginner tutorials: http://wiki.ros.org/ROS/Tutorials. Be sure to configure the Pi for interfacing by following the steps in the next section.

Configuring Pi for Interfacing:

<u>I2C-</u> In order to properly access the I2C line on the Raspberry Pi with Ubuntu, here are a few steps that you need to take:

1. Install raspi-config. This is normally only intended for use in Raspbian, but appears to work in Ubuntu. This is also an older version of raspi-config. Details about this workaround to access the i2c bus are found here:

https://askubuntu.com/questions/1130052/enable-i2c-on-raspberry-pi-ubuntu

a. wget
 https://archive.raspberrypi.org/debian/pool/main/r/raspi-config/ras
 pi-config 20160527 all.deb -P /tmp

- b. sudo apt-get install libnewt0.52 whiptail parted triggerhappy lua5.1 alsa-utils -y
- C. sudo apt-get install -fy
- d. sudo dpkg -i /tmp/raspi-config 20160527 all.deb
- e. sudo mount /dev/mmcblk0p1 /boot
- 2. Run raspi-config:

```
sudo raspi-config
```

In the GUI, select "Advanced Interfacing Options", and enable the I2C bus.

- 3. Create an I2C user group
 - a. sudo groupadd i2c
- 4. Change the group's ownership
 - a. sudo chown :i2c /dev/i2c-1
- 5. Change file permissions
 - a. sudo chmod g+rw /dev/i2c-1
- 6. Add your user to the I2C group
 - a. sudo usermod -aG i2c username
 - b. Replace username with your username
- 7. Reboot so the changes take effect
 - a. Logging off and logging on again also works
 - b. The goal is to get i2cdetect -y 1 to work
- 8. Make the changes permanent
 - a. sudo su
 - b. # echo 'KERNEL=="i2c-[0-9]*", GROUP="i2c"' >>
 /etc/udev/rules.d/10-local_i2c_group.rules

This information was adapted from a tutorial that can be found at: https://lexruee.ch/setting-i2c-permissions-for-non-root-users.html

GPIO- In order to use the GPIO pins on the Raspberry Pi with Ubuntu, here are a few steps that you need to take:

Python 3

- 1. sudo apt-get update
- 2. sudo apt-get upgrade
- 3. sudo apt-get install python3-pip python3-dev
- 4. sudo pip3 install RPi.GPIO

Python 2

- 1. sudo apt-get update
- 2. sudo apt-get upgrade
- 3. sudo apt-get install python-pip python-dev
- 4. sudo pip install RPi.GPIO

This information was adapted to from https://raspberrypi.stackexchange.com/questions/81570/installing-rpi-gpio-on-ubuntu-core, which just covers Python 2.

NOTE: It is important to note that any code that uses the GPIO pins will need to be run as the root user. For example:

Python 3
sudo python3 file.py
Python 2
sudo python file.py

However, with ROS, things are a bit more complicated. Using rosrun to run a script cannot be executed as a root user. As a workaround, we have used short scripts called with the subprocess library in our ROS node scripts when we need to access the GPIO library. An example of this can be found in the <code>led_receiver.py</code> script. Upon receiving a Boolean message on the topic <code>ledstuff</code>, the script calls another script, <code>led_blinker.py</code>, with the necessary root privileges to use the library and the received message as an argument (a cumbersome process that should be changed, if possible). Our current understanding of this issue is that the GPIO library is not intended for Ubuntu, so the permissions that are normally set automatically in Raspbian are not set during Ubuntu installation.

In Python, this work around can be accomplished using the subprocess library, including the subprocess.call() command. This command allows you to create and communicate with subprocesses. More information on the use of this command can be found at: https://pymotw.com/2/subprocess/ and https://pymotw.com/2/subprocess/ and https://queirozf.com/entries/python-3-subprocess-examples. Being able to spawn and communicate with other processes means that within one Python script, subprocess.call() can spawn another script, and, most notably, it can run it with root privileges using sudo. Running the script with root level privileges allows for the use of GPIO pins, which solves the

problem we were encountering. More information about subprocesses is available under the

Setting Up a Ubuntu Virtual Machine:

Subprocess Note section.

Using Ubuntu on a virtual machine provides a Linux environment to develop code and familiarity with Linux without the computing power limitations that a Raspberry Pi brings and without the potential damage that comes from dual-booting a PC for the first time. (Using a Linux machine or dual-booting Linux are best saved for more experienced users.) The Linux virtual machine also makes connecting to the Raspberry Pi easier.

The following instructions are adapted from the "Course Preparation Instructions" PDF available at https://rsl.ethz.ch/education-students/lectures/ros.html#course_material and the tutorial at https://medium.com/riow/how-to-open-a-vmdk-file-in-virtualbox-e1f711deacc4. The course materials that ETH Zurich provides include a YouTube series with accompanying presentations, exercises, and relevant material for learning ROS. These lessons are based in

C++, but, the very first lecture video and accompanying exercise are very educational introductions, regardless of programming language.

- Download the "Ubuntu_18_04_ROS_COURSE.zip" file from https://polybox.ethz.ch/index.php/s/iSwkLBhRJNKuv8a
 - a. This file is about 5.6GB, so make sure you have room
- 2. Download VirtualBox from https://www.virtualbox.org/wiki/Downloads and install it
- 3. Open VirtualBox and click the button to create a new machine
- 4. Name your machine
 - a. Take note of the destination listed after "Machine Folder:"
 - b. If it does not do so automatically, change the "Type:" field to "Linux" and change the "Version:" field to "Ubuntu (64-bit)"
 - c. Hit "Next" to continue
- 5. Stepping away from VirtualBox for a moment, unzip the "Ubuntu_18_04_ROS_COURSE.zip" folder to the destination that you noted in the previous step, and then pull VirtualBox back up to continue configuring your machine
- 6. Choose however much memory (RAM) you would like to be allocated to the virtual machine, and click "Next"
 - a. The virtual machine runs fine with 1024 MB of memory (RAM), but the machine does tend to lag when you have multiple terminals and an internet browser open, so going higher is helpful depending on how you will use the machine
- 7. For a "Hard disk," choose the "Use an existing virtual hard disk file" option, and use the file shaped button on the right.
- 8. From here, choose the "Add" button from the top left. This will open up your file explorer, where you can navigate to the destination the "Ubuntu_18_04_ROS_COURSE.zip" was extracted to in Step 5.
- 9. Choose the file named "Ubuntu 18 04 ROS Course-cl1.vmdk" and press open
- 10. Click through any prompts that show up, and finally click the "Create" button to create the virtual machine
- 11. To run the virtual machine, select it from the menu on the left, and click the green "Start" arrow on the top menu bar.
 - a. The default password for this image is "student"

Alternatively, you can download Ubuntu 20.04, which supports ROS Noetic, however you will have to install ROS on that machine manually.

- Download the file from https://sourceforge.net/projects/linuxvmimages/files/VirtualBox/U/20.04/Ubuntu_20.04_V

 B.zip/download
- 2. Unzip the file and open VIrtualBox
- 3. Select "Tools" and then "Import"
- 4. Where it asks for the file location, navigate to wherever the file was unzipped to in Step 2 and select the file
- 5. Continue clicking through the prompts to create the machine, and then boot it
 - a. Default username and password are both "ubuntu"

- 6. Follow the steps at http://wiki.ros.org/noetic/Installation/Ubuntu to install ROS Noetic. The commands from these steps are listed in order below.
 - a. sudo sh -c 'echo "deb http://packages.ros.org/ros/ubuntu \$(lsb_release -sc)
 main" > /etc/apt/sources.list.d/ros-latest.list'
 - b. sudo apt-key adv --keyserver 'hkp://keyserver.ubuntu.com:80' --recv-key C1CF6E31E6BADE8868B172B4F42ED6FBAB17C654
 - C. sudo apt update
 - d. sudo apt install ros-noetic-desktop-full
 - e. source /opt/ros/noetic/setup.bash
 - f. echo "source /opt/ros/noetic/setup.bash" >> ~/.bashrc
 - g. source ~/.bashrc
- From there, follow the steps at http://wiki.ros.org/ROS/Tutorials/InstallingandConfiguringROSEnvironment to set up and configure your workspace environment.

ROS Tutorials:

The ROS tutorials, available at http://wiki.ros.org/ROS/Tutorials, are a great resource for getting started, and cover the use of both C++ and Python. (We opted for the Python route to allow for faster prototyping and ease of programming.) The tutorials walk you through configuring the environment, and introduce you to ROS's Nodes, Topics, Messages, Publishers, Subscribers, and other fundamental core concepts of ROS. The scripts (specifically talker.py and listener.py) for these sections of the tutorials are actually the basis for what we used to create the LED Blinker.

Later on in the tutorial, .bag files are introduced. These files can be used to log and store data, whether it be commands, sensor data, or robot behavior. We found that this particular type of file could potentially be used to record behaviors and play them back to your robot later on, or even just extract the data. This information is covered in here and here.

LED Blinker:

Here is an example of a ROS talker and listener that takes a raw input from the user in the form of either 0 or 1, and then turns the LED off or on respectively. To accomplish this, a string called <code>command_input</code> is defined as whatever the user puts in. (In the case of the current state of the code, only input values of 0 and 1 are valid.) Then, due to the nature of the <code>input()</code> command, the string is then converted to a <code>float</code>, which is then converted to a <code>bool</code>. This allows <code>led_reciever.py</code> to publish the user's input to the <code>led_command</code> topic, which is then read by the subscriber, <code>led_reciever.py</code>. The subscriber reads the message, and then, using <code>subprocess.call()</code> as outlined in the <code>Configuring Pi for Interfacing</code> section's note, calls a Python script, <code>led_blinker.py</code> using the Boolean message as an argument. This argument takes the form of <code>data.data</code> in this line of code:

```
subprocess.call(['sudo','python3','led blinker.py','%s' % data.data])
```

The (led_test) talker.py/listener.py Scripts

The talker.py/listener.py scripts are meant to be run in conjunction, similar to those found on the ROS tutorial site. To run these, in three separate shells, run

```
roscore
rosrun led_test talker.py
rosrun led test listener.py
```

Assuming the bme280 is wired in accordance with the tutorial that the talker.py script is largely based on:

https://www.raspberrypi-spy.co.uk/2016/07/using-bme280-i2c-temperature-pressure-sensor-in-python/

The talker.py script should begin outputting the temperature as a string to the ledstuff topic, while the listener.py script should blink the LED (connected to pin 8 of the GPIO header) and print the topics read on the ledstuff topic. This script demonstrates an interface with an external sensor that is capable of sending/receiving sensor data in the ROS framework.

To set up the circuit (pictured above) for this example, use the output from GPIO pin 8 (purple wire) on the Raspberry Pi to power the LED, and use any of the Pi's ground pins to ground it (yellow wire). Be sure to add a resistor between the power from the Pi and the LED. Refer to https://www.raspberrypi.org/documentation/usage/gpio/ for the pinout of the Raspberry Pi. The code for this example can be found on our GitHub: github.com/amichael1227/led_test

temp_read_publish.py and temp_listen_convert.py scripts:

temp_read_publish.py and temp_listen_convert.py are an extension of the concepts covered in the (led_test) talker.py and listener.py scripts. The latter pair of scripts communicates the temperature read by the sensor as a string and prints it in Celcius by using the standard message type String. While the standard message types are useful for sending simple messages, ROS messages are capable of greater complexity, sending multiple values of multiple data types at once. To this end, we have created the BME message type to handle the publishing of everything useful that we receive from the BME280 sensor. This was done by

adding the BME.msg file to the /msg directory in the led_test package. This is a very simple file consisting of three lines:

```
float64 temp
float64 pressure
float64 humidity
```

The lines above state that this message type consists of three 64-bit float values: temperature, pressure, and humidity. The BME.msg file was included in the add_message_files() section of CMakeLists.txt for the led_test package. The temp_read_publish.py script is analogous to the talker.py script; it reads the data from the BME280 sensor and publishes to a topic (this time bme280 instead of chatter). The difference here is that it now communicates temperature, pressure, and humidity instead of only temperature. Similarly, temp_listen_convert.py is analogous to listener.py in that it receives the data sent (this time listening on the bme280 topic) by the other script. temp_listen_convert.py receives the temperature, pressure, and humidity values and converts the temperature to Fahrenheit with a simple calculation before displaying the values in the log.

Making the Package:

To get this ROS package to work properly, you must first run the command <code>catkin_create_pkg led_test std_msgs rospy roscpp</code> from the <code>~/catkin_ws/src</code> directory created in the beginner tutorials. From there, you should clone the GitHub repository into a <code>different folder</code>, and then place the contents of that folder in the <code>~/catkin_ws/src/led_test</code> folder, overwriting any duplicates. From the command line, the easiest way to do this is remove the files individually, and then copy them over. Finally, change the directory back to <code>~/catkin_ws</code> and run the <code>catkin_make</code> command to build the package.

Subprocess Note:

The example below is a line of code within a listener that uses <code>subprocess.call()</code> to run a different Python script with root privileges, thus allowing for GPIO usage. (The <code>data.data</code> at the end sends an argument to the <code>led_blinker.py</code> program, and is talked about more under the <code>LED Blinker heading()</code>. <code>subprocess.call(['sudo', 'python3', 'led_blinker.py', '%s' % data.data])</code>

Another command in the subprocess library is <code>subprocess.Popen()</code>. Popen differs slightly from call, as it is a more general use function that does not wait for the process to finish to continue the original script. Call is useful in cases where the output of the called subprocess is required later on in the original script, while Popen allows the called script to run in the background without the original waiting for it to complete, which is useful in situations where a delay in listening could lead to missed messages. An example of Popen usage is available in the <code>led_receiver.py</code> script, where the <code>blink_test.py</code> script is called before calling the listener function. The led blinks 3 times while the listener initializes. If <code>subprocess.call()</code> were used, the listener would only initialize after the LEDs finished blinking. Aside from increased complexity, another drawback is that the ROS scripts that call these other scripts <code>MUST BE</code>

RUN FROM THE /scripts DIRECTORY in the package to be able to locate the scripts that interact with the GPIO interface (i.e. cannot "rosrun" from just anywhere).

Pushing Changes to the Git from the Raspberry Pi:

This section is using our led_test repository as an example and is based on the tutorial found here: https://uoftcoders.github.io/studyGroup/lessons/git/branches/lesson/

- 1. Fork the repository on github: https://github.com/amichael1227/led_test
- 2. Clone it to a directory you're comfortable working in:

```
git clone https://github.com/amichael1227/led test.git
```

3. Create a new branch (make sure you're in the directory you just cloned):

```
git checkout -b branchName
```

4. Make your edits, and add your changes:

```
git add yourfilename or git add -A to add all files.
```

5. Commit your changes

```
git commit -m "Your Message"
```

6. Push the new branch to your forked version:

```
git push origin branchName
```

7. Submit a pull request on GitHub. Assuming that it is accepted, merge with the main and delete the branch on GitHub and locally on the Pi:

```
git checkout master && git pull upstream master && git branch -d branchName
```

NOTE: If you have multi-factor authentication enabled on your account, simply inputting your username and password will not work. GitHub has a tutorial at https://docs.github.com/en/github/authenticating-to-github/creating-a-personal-access-token about creating a personal access token. Follow the tutorial to create one, and then use the token as your password when prompted in the command line.

Running ROS on Multiple Machines:

The documentation for ROS provides a tutorial on running it across multiple machines at http://wiki.ros.org/ROS/Tutorials/MultipleMachines. When executed on two Raspberry Pis, both running Ubuntu 20.04, this tutorial worked without any major issues. One important step that needs to be taken in order for the two machines to work is letting ROS know what your IP address is. To check if ROS knows which IP to subscribe and receive on, run the echo \$ROS_IP command. If this command prints out a blank block of text, you need to run export ROS_IP=machine_ip_addr, replacing machine_ip_addr with the IP address of your machine. Other than that, the tutorial provided in the ROS Documentation worked, as proven through our test of running the led_controller.py and led_reciever.py scripts on different Raspberry Pis, successfully blinking the LED.

To make following the tutorial easier, change the hostname of the Pi to allow you to use a name, just like hal and marvin in the tutorials, rather than typing in the typing in the IP addresses each time. To do this, run sudo nano /etc/hostname and replace the old name, likely ubuntu, with your desired hostname. From there, run sudo nano /etc/hosts and update

any reference to the old hostname, if any, to reflect the new one. Then, run sudo reboot. The final step is to let ROS know the hostname, just like giving it the IP address in the paragraph above. Run export ROS_HOSTNAME=your_hostname, replacing your_hostname with the hostname you just assigned your machine.

NEO 6M GPS Module:

GPIO Pin Setup: Please note that this setup requires the Raspberry Pi to be running Raspbian, and was successfully tested on Raspbian Buster. Here are some instructions on setting up the NEO 6M GPS Module to work with the Raspberry Pi, as well as some example programs where the GPS logs data to a .csv file and then maps it.

1. Wire the module to the Pi as shown in the image below, which was taken from the Sparklers the Makers GitHub page referenced at the end of this tutorial

- 2. Update the Pi.
 - a. sudo apt-get update
 - b. sudo apt-get upgrade
- 3. Edit the /boot/config.txt file to enable UART, the Serial Interface, and disable Bluetooth.
 - a. sudo nano /boot/config.txt
 - b. Add the following lines:

```
dtparam=spi=on
dtoverlay=pi3-disable-bt
core_freq=250
enable_uart=1
```

force turbo=1

- c. Now save and exit by pressing ctrl+x, type y, and then press enter.
- 4. Next, make a copy of the /boot/cmdline.txt file.
 - a. sudo cp /boot/cmdline.txt /boot/cmdline backup.txt
 - b. sudo nano /boot/cmdline.txt
- 5. Now edit it to disable the UART serial console.
 - a. dwc_otg.lpm_enable=0 console=tty1 root=/dev/mmcblk0p2 rootfstype=ext4 elevator=deadline fsck.repair=yes rootwait quiet splash plymouth.ignore-serial-consoles
 - b. Now save and exit by pressing ctrl+x, type y, and then press enter.
- 6. Now reboot the Pi
 - a. sudo reboot
- 7. After rebooting the Pi, make sure you are near a window, outside, or are in a location where the module can get a GPS signal.
 - a. There will be a blinking LED on the NEO Module when it receives a signal from GPS satellites. Depending on the specific chip, the light could flash green, blue, purple, or even red. The exact colour is not important, just as long as one flashes.
 - b. If the light does not blink within five minutes, move closer to a window or to a place under the open sky. Keep in mind that the module could take as long as 15 minutes to acquire its first satellite fix.
- 8. Once the LED is blinking, run the following command:
 - a. sudo cat /dev/ttyAMA0
 - b. This should print out streams of data, and can be stopped with ctrl+c. If there are error messages, this is likely due to a weak signal or a lack of signal. Essentially, this step verifies that the module is working.
- 9. Next, we need to make sure the Pi knows where the module is wired to.
 - a. Run the ls -1 /dev command.
 - b. If your output looks like the image below (from the Sparklers the Makers GitHub page), run the following commands:

```
crw-rw-r-- 1 root netdev 10, 58 Jul 10 16:07 rfkill
lrwxrwxrwx 1 root root 7 Jul 10 16:07 serial0 -> ttyAMA0
lrwxrwxrwx 1 root 5 Jul 10 16:07 serial1 -> ttyS0
drwxrwxrwt 2 root root 40 Nov 3 2016 shm
```

- C. sudo systemctl stop serial-getty@ttyAMAO.service
- d. sudo systemctl disable serial-getty@ttyAMA0.service
- e. However, if your output looks like the image below (from the Sparklers the Makers GitHub page), run the following commands:

```
      crw-rw-r-- 1 root root
      10, 58 May 28 12:14 rfkill

      lrwxrwxrwx 1 root root
      5 May 28 12:14 serial8 -> tty50

      lrwxrwxrwx 1 root root
      7 May 28 12:14 serial1 -> ttyAMA0

      drwxrwxrwt 2 root root
      40 May 28 12:15 shm
```

- f. sudo systemctl stop serial-getty@ttyS0.service
- **Q.** sudo systemctl disable serial-getty@ttyS0.service

- 10. Next, install some of the libraries that you'll need to run the scripts we're about to use:
 - a. sudo apt-get install python-pandas python3-pandas
 - b. sudo pip3 install folium
 - C. sudo pip install pynmea2
- 11. From there, download the code from GitHub.
 - a. cd
 - b. mkdir git
 - C. cd ~/git
 - d. git clone http://github.com/amichael1227/gps test.git
- 12. To make sure the module works properly, move the code to its own directory.
 - a. cd ~/git/gps test
 - b. mv ~/git/gps test/pi tests ~/
- 13. Before we use the GPS module at all, we need to update the GPS module so it knows what the date and time is
 - a. cd ~/pi tests
 - b. sudo python gps update.py
 - c. This program will continuously spit out values, but you can end it as soon as it starts spitting out the proper time. This can be done by pressing ctrl+c.
- 14. Now, run the first program to make sure we are getting a good GPS reading.
 - a. sudo python initial gps test.py
 - b. Running this program should continuously print you Latitude= xx.xxx and Longitude= xx.xxx.
- 15. Next, let's log the GPS data in a .csv file. This program should both print it to raw_gps_data.csv as well as print the Latitude= xx.xxx and Longitude= xx.xxx continuously on the screen.
 - a. sudo python initial data logger.py
- 16. You can verify this by opening the raw_gps_data.csv file with a spreadsheet editor, and you should see three columns of data that contain the latitude, longitude, and timestamp in that order. This data may be useful for you, but there need to be headers to map out the information. You can either add these yourself, +or you can let the program do it for you.
 - a. sudo python gps data logger.py
- 17. Now, when you open up the <code>gps_mapping_data.csv</code> file, you will find that the data columns are named <code>Latitude</code>, <code>Longitude</code>, and <code>Timestamp</code>. This means that the data can now be mapped out
 - a. One way to do this is to use a website that takes an uploaded .csv file and plots it out. An example of such a site is:
 - i. https://www.gpsvisualizer.com/map_input?form=data
 - b. Another way is using the folium library. An example of this is built into the gps mapper.py script.
 - i. First, edit the gps_mapper.py script to reflect your location
 - nano gps_mapper.py

- 2. Replace the [41.519917, -71.29445] part of the mappath definition with the coordinates you want your map to center on.
- 3. You can also edit the zoom of the map as well.
- ii. sudo python3 gps mapper.py
- 18. Open the RobotPath.html file in your preferred web browser and view your map! The information for this module tutorial was compiled from the following sources:

NOTE: There is also a library called <code>gps</code>, with commands such as <code>cgps</code> and <code>mgpsmon</code>. This particular library does not function properly when paired with this GPS module on Raspbian. It works every once in a while, but then spontaneously and continuously malfunctions, as such we are using the <code>pynmea2</code> library. The downside is the <code>gps</code> library can provide readings for longitude, latitude, speed, heading, altitude, time, as well as the error for all of those readings, whereas <code>pynmea2</code> only does latitude, longitude, and time. However, this seems to be a fair trade-off since we will not need all of those readings.

https://sparklers-the-makers.github.io/blog/robotics/use-neo-6m-module-with-raspberry-pi/https://stackoverflow.com/questions/42879408/writing-variables-to-a-csv-row-python/https://ozzmaker.com/how-to-save-gps-data-to-a-file-using-python/http://comet.lehman.cuny.edu/owen/teaching/datasci/foliumLab.htmlhttps://projects.raspberrypi.org/en/projects/mapping-the-weather/https://www.raspberrypi.org/forums/viewtopic.php?t=168440https://github.com/FranzTscharf/Python-NEO-6M-GPS-Raspberry-Pi/blob/master/Neo6mGPS.p

<u>Launcher File Setup:</u> We can set the Pi up so that the <code>gps_data_logger.py</code> will run at boot, regardless of whether or not you are connected to your Pi. The file that does this, <code>launcher.sh</code>, is already written and included in the GitHub Repository that was cloned earlier on in this section. That being said, the Pi still needs to know to start the program at boot.

- 1. Edit the launcher.sh file and uncomment the execute command.
 - a. cd ~/pi_tests
 - b. nano launcher.sh
 - c. Remove the # in front of the #sudo python initial_data_logger.py, so that it reads sudo python initial data logger.py.
 - d. Now save and exit by pressing ctrl+x, type y, and then press enter.
- 2. Make the launcher.sh file executable
 - a. chmod 755 launcher.sh
- 3. Test the file, it should run the Python script, you can exit out with ctrl+c.
 - a. sh launcher.sh
- 4. Make a logs directory for error logs.
 - a. cd
 - b. mkdir logs
- 5. Have the launcher.sh file run at boot.
 - a. sudo crontab -e

- i. This command opens the crontab and may prompt you to choose an editor, choose whichever one you are most comfortable with.
- b. Add this line at the bottom:
 - i. @reboot sh /home/pi/pi_tests/launcher.sh
 >/home/pi/logs/cronlog 2>&1
- c. Now save and exit by pressing ctrl+x, type y, and then press enter.
- Reboot.
 - a. sudo reboot
- 7. If the code doesn't start running, you can check the error logs for troubleshooting.
 - a. cd ~/logs
 - b. cat cronlog

The information for this tutorial was compiled from the following source: https://www.instructables.com/id/Raspberry-Pi-Launch-Python-script-on-startup/

Adafruit Mini GPS PA1010D:

This GPS module allows for communication over UART, like the NEO 6M, and over I2C. This helps to solve the problem of the Pi not booting if the NEO 6M was attached to the UART GPIO pins and the Pi was running Ubuntu. This issue was likely due to a boot configuration issue that essentially led to the Ubuntu OS not knowing the GPS Module was supposed to be plugged in there, and thus assuming that it was a potential attack, hence the Pi not booting up. This could be solved with a USB to UART cable, as done in the **gps_comm Package**, but it can also be solved by using a different, I2C capable, module, as done with this Adafruit one.

There are only three sets of steps to get this module working on Ubuntu, and then you should be all set to integrate it into programs.

- 1. Wire the module to the Raspberry Pi's I2C line, following the diagram at the end of this section, which was taken from Adafruit's tutorial at
 - a. learn.adafruit.com/adafruit-mini-gps-pa1010d-module/
- 2. Follow the steps under the I2C section of the **Configuring Pi for Interfacing** header
- Follow Adafruit's tutorial (link below) to make sure your sensor is working properly and install the necessary library. Make sure to change the code so it is configured to use I2C and not UART.
 - a. https://learn.adafruit.com/adafruit-mini-gps-pa1010d-module/circuitpython-python-i2c-usage
 - b. sudo pip3 install adafruit-circuitpython-gps

Adafruit's Mini GPS Module I2C Wiring Guide

You can also download and run the <code>simple_test_gps.py</code> from the master branch of our repository at https://github.com/amichael1227/gps_test to have the Pi read data from the module, and then log it to a .csv file.

gps_comm Package:

The gps_comm package contains two Python scripts: <code>gps_talker.py</code> and <code>gps_listener.py</code>. <code>gps_talker.py</code> uses the <code>pynmea2</code> and <code>pyserial</code> libraries to read the serial port the GPS module is attached to and convert the nmea "sentences" to a usable format. A serial object is created to read from the port (<code>default /dev/ttyUSBO</code>) and <code>pynmea2</code> is used to parse the serial data read from the device. The latitude and longitude are extracted from the resulting object and converted to float64 before being passed in the previously created GPS message type to the <code>gps_listener.py</code> script.

This code is based on the talker/listener scripts from the ROS beginner tutorials (referenced earlier) as well as sample code from the pynmea2 library's git page: https://github.com/Knio/pynmea2

References:

Here are websites and documents that were used as general references about ROS, Ubuntu, GitHub, and using the three together on a Raspberry Pi., as well as on some other project related topics.

https://learning.oreilly.com/library/view/robot-operating-system/9781484234051/

This book provides a brief introduction to Linux operating systems, with most of the focus on Ubuntu, as well as some basic commands. It also covers the absolute basics of ROS with both C++ and Python.

https://gist.github.com/drmaj/20b365ddd3c4d69e37c79b01ca17587a

Covers building ROS Melodic with Python 3 rather than Python 2.7, was used during testing different ROS distros.

https://rsl.ethz.ch/education-students/lectures/ros.html#course material

Course materials for a C++ centric ROS course from ETH Zurich, first lecture and exercise are very useful for general ROS intro, other lectures focus more on ROS with C++.

https://surfertas.github.io/ros/2017/03/06/ros-husky-robocup.html

Goes over building a .launch file for Exercise Session 1 of the above course website and provides an example solution.

https://answers.ros.org/question/253445/arduino-cmd_vel-and-odom-with-pololu-motors-w-encoder/

Example of using ROS with the motor drivers that are used on the UTAP daughterboard, only this example is run on and Arduino with C++ rather than a Raspberry Pi with Python, but still helpful for example integration

https://pythonprogramminglanguage.com/user-input-python/

Reviews commands to get raw inputs from users in Python 3 and gives example uses.

https://stackoverflow.com/questions/22990069/text-game-convert-input-text-to-lowercase-pytho n-3-0

Covers how to change a user's raw input into all lower-case to eliminate code errors stemming from differences in capitalization. Simply change <code>.lower()</code> to <code>.upper()</code> for upper-case.

https://www.digitalocean.com/community/tutorials/how-to-install-and-configure-vnc-on-ubuntu-1 8-04

Installing VNC on a Ubuntu system so it can be used when you do not have access to a monitor, mouse, and keyboard for the Raspberry Pi.

https://linuxize.com/post/how-to-enable-ssh-on-ubuntu-18-04/

Enabling SSH on a Ubuntu system so it can be used when you do not have access to a monitor, mouse, and keyboard for the Raspberry Pi.

https://www.liberiangeek.net/2013/09/copy-paste-virtualbox-host-guest-machines/

Setting up VirtualBox to allow for copy and paste between host and guest machines.

https://www.howtogeek.com/341944/how-to-clone-your-raspberry-pi-sd-card-for-foolproof-backup/

Making a copy of the image of Ubuntu that runs on the Raspberry Pi to allow for backups and cloning the SD card.

https://www.raspberrypi.org/forums/viewtopic.php?t=36856

https://unix.stackexchange.com/questions/118716/unable-to-write-to-a-gpio-pin-despite-file-permissions-on-sys-class-gpio-gpio18

https://stackoverflow.com/questions/30938991/access-gpio-sys-class-gpio-as-non-root

These three links cover the GPIO issue that we were having, and show other people having the same issues, and how they worked around the issue.

https://uoftcoders.github.io/studyGroup/lessons/git/branches/lesson/

Using GitHub on Linux within a terminal.

http://wiki.ros.org/ROS/NetworkSetup

Goes over different parts of configuring ROS to connect to a network, thus allowing you to communicate with ROS across multiple machines.

https://www.cyberciti.biz/fag/ubuntu-change-hostname-command/

Changing the hostname of a Ubuntu system, useful for the above configuration.

https://ieeexplore.ieee.org/document/6107001

IEEE paper on implementing ROS on the Yellowfin AUV.

https://ieeexplore.ieee.org/document/8729755

IEEE presentation report on using ROS on a REMUS 100 AUV, references the Python based libraries and packages that they built to interface with the AUV, however these packages and libraries do not seem to be publicly available.

http://wiki.ros.org/ROS/Tutorials/MultipleRemoteMachines

Information about connecting to machines/robots that are not on the same network, was not very practical to test in the current situation.

https://www.ionos.com/digitalguide/server/configuration/provide-raspberry-pi-with-a-static-ip-add ress/

Setting a static IP address for Raspberry Pi running Raspbian.

https://www.naval-technology.com/projects/remus-100-automatic-underwater-vehicle/ Article covering the sensors/navigation tools used by the REMUS AUV

https://www.instructables.com/id/ROS-Melodic-on-Raspberry-Pi-4-RPLIDAR/

Has an image file of Rasbian Buster (and Raspbian Buster Lite) with ROS Melodic installed. Using this image file helps speed up the installation of ROS on the Pi.

https://askubuntu.com/questions/891662/why-does-cgps-s-give-me-no-results Tip that helped setting up gpsd when using a USB adapter.