

Goals and Methods

7

- Regression

 OLS and LASSO modeling to predict platelet levels, which are related to stroke events
- Classification
 Logistic LASSO and a
 decision tree to predict
 stroke events

Clustering
Hierarchical clustering to
uncover patterns underlying
stroke events

01

Platelets

- Age
- Creatinine Phosphokinase
- Ejection Fraction
- Platelets
- Serum Creatinine
- Serum Sodium

- Diabetes
- High Blood Pressure
- Sex
- Smoking
- Anaemia

Research Question

Which of the available biological factors are most accurate in **predicting platelet levels**, which are related to stroke events?

Model Type	RMSE	Ease of Interpretability
OLS	96307	Low
LASSO	95305	High
GAM	95478	Low

LASSO Takeaways

- Model shrinks all variables to zero except for biological sex
- All linear regression models **perform weakly**, but the LASSO is the most interpretable
- More biological predictors needed to determine platelet levels

Classification

Research Question

Can we predict whether or not a patient will have a stroke based on certain characteristics?

02

Stroke

- Age
- Average Glucose Level
- BMI

- Gender
- Hypertension
- Heart Disease
- Ever Married
- Work Type
- Residence Type
- Smoking Status
- Stroke

Logistic LASSO

Accuracy	0.70
Sensitivity	0.78
Specificity	0.70

Decision Tree

Classification Takeaways

- Logistic LASSO is a stronger model because it is more interpretable and gives clearer metrics of variable importance
- Preferred thresholds with higher specificity while maintaining a reasonable sensitivity and accuracy
- Biological women, age, hypertension, working a government job, and unemployment are the strongest predictors

Clustering

- Uncover underlying patterns determining whether a patient is at risk for a stroke
- Hierarchical clustering using complete linkage
- Created 6 clusters cutting at a height of ~12.5

Cluster	Total Cases	Number of Strokes	Proportion of Strokes
1	508	66	0.13
4	25	2	0.08
3	816	39	0.05
2	1929	73	0.04
5	146	0	0
6	2	0	0

Clustering Takeaways

- Hierarchical clustering primarily groups cases by average glucose level and BMI
- Clusters with higher average glucose levels tend to have higher instances of stroke, whereas BMI does not tend to be as important in the dataset

