

Outlier test significant

Residual vs. predicted No signficiant problems detected

Residual vs. predicted No signficiant problems detected

Hist of DHARMa residuals

Hist of DHARMa residuals

Simulated values, red line = fitted model. p-value (two.sided) = 0.04

Simulated values, red line = fitted model. p-value (less) = 0.98

Simulated values, red line = fitted model. p-value (greater) = 0.02

Simulated values, red line = fitted model. p-value (two.sided) = 0.04

DHARMa zero-inflation test via comparison to expected zeros with simulation under H0 = fitted model

Simulated values, red line = fitted model. p-value (two.sided) = 0.52

DHARMa zero-inflation test via comparison to expected zeros with simulation under H0 = fitted model

Simulated values, red line = fitted model. p-value (less) = 0.808

DHARMa generic simulation test

Simulated values, red line = fitted model. p-value (two.sided) = 0.768

DHARMa generic simulation test

Simulated values, red line = fitted model. p-value (two.sided) = 0.848

Simulated values, red line = fitted model. p-value (two.sided) = 0.056

Simulated values, red line = fitted model. p-value (two.sided) = 0.312

Simulated values, red line = fitted model. p-value (less) = 0.844

Simulated values, red line = fitted model. p-value (greater) = 0.156

Simulated values, red line = fitted model. p-value (two.sided) = 0.312

Simulated values, red line = fitted model. p-value (two.sided) = 0.312

Simulated values, red line = fitted model. p-value (two.sided) = 1

Simulated values, red line = fitted model. p-value (two.sided) = 1

Simulated values, red line = fitted model. p-value (two.sided) = 0.848

Simulated values, red line = fitted model. p-value (two.sided) = 0.384

Dispersion test significant

Simulated values, red line = fitted model. p-value (two.sided) = 0.016

Dispersion test significant

Simulated values, red line = fitted model. p-value (two.sided) = 0.016

Outlier test n.s.

Outlier test significant

Outlier test significant

Outlier test n.s.

