Normalformen

Eine kontextfreie Grammatik $G = (V, \Sigma, R, S)$ heißt in *Chomsky Normalform*, falls alle Produktionsregeln in R eine der beiden folgenden Formen haben:

$$A
ightarrow \sigma$$
 für ein σ aus Σ $A
ightarrow BC$ für $B,C \in V$

Syntaxbäume sind "bis auf die letzten Schritte" binär.

Beispiel einer Transformation in Chomsky Normalform:

$$\begin{array}{ccc} S & \rightarrow & aACa \\ A & \rightarrow & B \mid a \\ B & \rightarrow & C \mid c \\ C & \rightarrow & cC \mid \varepsilon \end{array}$$

Elimination von ε -Regeln $(U \rightarrow \varepsilon)$:

$$S \rightarrow aACa$$

$$A \rightarrow B \mid a$$

$$B \rightarrow C \mid c$$

$$C \rightarrow cC \mid \varepsilon$$

$$S \rightarrow aACa \mid aCa \mid aAa \mid aa$$

$$A \rightarrow B \mid a$$

$$B \rightarrow C \mid C$$

$$C \rightarrow cC \mid c$$

Elimination von Kettenregeln $(U \rightarrow W)$:

$$S \rightarrow aACa \mid aCa \mid aAa \mid aa$$

 $A \rightarrow B \mid a$
 $B \rightarrow C \mid c$
 $C \rightarrow cC \mid c$

$$S \rightarrow aACa \mid aCa \mid aAa \mid aa$$

 $A \rightarrow cC \mid c \mid a$
 $B \rightarrow cC \mid c$
 $C \rightarrow cC \mid c$

Elimination nichtisolierter Terminalsymbole

$$S \rightarrow aACa \mid aAa \mid aCa \mid aa$$
 $A \rightarrow a \mid c \mid cC$
 $B \rightarrow c \mid cC$
 $C \rightarrow c \mid cC$

$$S \rightarrow T_aACT_a \mid T_aAT_a \mid T_aCT_a \mid T_aT_a$$
 $A \rightarrow a \mid c \mid T_cC$
 $B \rightarrow c \mid T_cC$
 $C \rightarrow c \mid T_cC$
 $T_a \rightarrow a$
 $T_c \rightarrow c$

und langer rechter Seiten:

$$S \rightarrow T_a A C T_a \mid T_a A T_a \mid T_a C T_a \mid T_a T_a$$
 \vdots
 $T_c \rightarrow c$
 $S \rightarrow T_a S_1 \mid T_a S_3 \mid T_a S_4 \mid T_a T_a$
 $S_1 \rightarrow A S_2$
 $S_2 \rightarrow C T_a$
 $S_3 \rightarrow A T_a$
 $S_4 \rightarrow C T_a$
 $A \rightarrow a \mid c \mid T_c C$
 $B \rightarrow c \mid T_c C$

 $C \rightarrow c \mid T_c C$

Transformation allgemein:

Elimination von ε -Regeln:

Sei $G=(V,\Sigma,R,S)$ eine kontextfreie Grammatik mit $\mathcal{E}
ot\in L(G).$

Sei $V_{\mathcal{E}} = \{A \in V \mid A \Rightarrow_{\scriptscriptstyle G}^* \mathcal{E}\}$. Wir streichen alle Regeln der Form $T \to \mathcal{E}$ und fügen für jede Regel der Form $U \to vEw$ mit $E \in V_{\mathcal{E}}$ und $vw \neq \mathcal{E}$ eine Regel $U \to vw$ ein.

Falls es auf einer rechten Seite mehrere Vorkommen von Variablen aus V_{ε} gibt, so müssen wir für alle möglichen Kombinationen dieser Variablen neue Regeln einführen.

Elimination von Kettenregelzyklen:

Sei $G = (V, \Sigma, R, S)$ eine kontextfreie Grammatik ohne ε -Regeln.

Falls es eine Menge von Variablen T_1, \ldots, T_k mit $T_1 \to T_2, \ldots, T_{k-1} \to T_k$ und $T_k \to T_1$ gibt, ersetzen wir alle Vorkommen von T_1, \ldots, T_k durch eine einzige neue Variable T.

Elimination von Kettenregeln:

Sei $G=(V,\Sigma,R,S)$ eine kontextfreie Grammatik ohne ε -Regeln und Kettenregelzyklen.

Da es keine Kettenregelzyklen gibt, können wir die Variablen so bezeichnen, dass $V=\{A_1,\ldots,A_n\}$ und aus $A_i\to A_j$ folgt, dass i< j.

Wir gehen die Regeln für $k=n-1,\ldots,1$ durch: Falls es eine Regel $A_k\to A_{k'}$ mit k'>k gibt mit Regeln

$$A_{k'} \rightarrow \alpha_1 \mid \cdots \mid \alpha_m$$

streichen wir $A_k \rightarrow A_{k'}$ und fügen die Regeln

$$A_k \rightarrow \alpha_1 \mid \cdots \mid \alpha_m$$

hinzu.

Elimination von nichtisolierten Terminalsymbolen auf rechten Seiten:

Sei $G=(V,\Sigma,R,S)$ eine kontextfreie Grammatik ohne ε -Regeln und Kettenregeln.

Bei jeder Regel, die ein Terminalsymbol σ auf einer rechten Seite der Länge mindestens zwei enthält, ersetzen wir das Terminalsymbol durch eine neue Variable T_{σ} und fügen die Regel $T_{\sigma} \to \sigma$ hinzu.

Elimination von langen rechten Seiten:

Sei $G=(V,\Sigma,R,S)$ eine kontextfreie Grammatik, bei der alle Regel von der Form $A\to\sigma$ mit $\sigma\in\Sigma$ oder von der Form

$$A \longrightarrow B_1B_2 \cdots B_k$$

sind.

Falls bei einer Regel der zweiten Form $k \ge 3$ ist, führen wir neue Variablen C_2, \ldots, C_{k-1} ein und ersetzen die Regel durch

$$\begin{array}{cccc} A & \rightarrow & B_1C_2 \\ C_2 & \rightarrow & B_2C_3 \\ & \vdots & \\ C_{k-1} & \rightarrow & B_{k-1}B_k \end{array}$$

Zwei Grammatiken G und G' heißen äquivalent genau dann wenn L(G') = L(G).

Satz

Sei G eine kontextfreie Grammatik mit $\varepsilon \notin L(G)$. Dann gibt es eine äquivalente kontextfreie Grammatik G' in Chomsky Normalform.

Beweisskizze: Transformiere G wie oben beschrieben in eine kontextfreie Grammatik G' in Chomsky Normalform. Dann gilt L(G') = L(G).

Eine kontextfreie Grammatik $G=(V,\Sigma,R,S)$ heißt in (strenger) Greibach Normalform, falls $R\subseteq V\times \Sigma V^*$, d.h., alle Produktionsregeln haben die Form

$$A \rightarrow \sigma B_1 B_2 \dots B_k$$

für ein $\sigma \in \Sigma$, $k \ge 0$ und $B_1, B_2, \dots, B_k \in V$.

Satz:

Sei G eine kontextfreie Grammatik mit $\varepsilon \notin L(G)$. Dann gibt es eine äquivalente kontextfreie Grammatik G' in Greibach Normalform.