Theory of Computation: CS-202 Finite Automata

Content

Finite Automata

Deterministic Finite Accepters

Examples

Non Deterministic Finite Accepters

Examples

Deterministic Finite Accepters

Definition

A deterministic finite accepter or dfa is defined by the quintuple

$$M = (Q, \Sigma, \delta, q_0, F)$$

where Q is a finite set of internal states,

 Σ is a finite set of symbols called the input alphabet,

 δ : Q×Σ \rightarrow Q is a total function called the transition function,

 $q_0 \in Q$ is the initial state,

 $F \subseteq Q$ is a set of final states.

• Draw a DFA which accepts all the strings on $\Sigma = \{0,1\}$ which must start & end with '0'.

• Draw a DFA which accepts all the strings on $\Sigma = \{a,b\}$ which starts and ends with same symbol.

• Draw a DFA which accepts all the strings on $\Sigma = \{a,b\}$ which starts and ends with different symbol.

• Draw a DFA which accepts all the strings on $\Sigma = \{0,1\}$ which starts with '00' or '11'.

Practice Problems

1. Draw a DFA which accepts all the strings on $\Sigma = \{0,1\}$ which never ends with '100'.

2. Draw a DFA which accepts all the strings on $\Sigma = \{0,1\}$ which contains sub-string '00'.

1. Draw a DFA over $\Sigma = \{a,b\}$ which accepts all the strings of length 2.

Input strings

not accepted by given DFA.

2. Draw a DFA over $\Sigma = \{a,b\}$ which accepts all the strings of length less or equal to '2'.

3. Draw a DFA over $\Sigma = \{a,b\}$ which accepts all the strings of length greater or equal to '2'.

Input string b a a b b b

4. Draw a DFA over $\Sigma = \{a,b\}$ which accepts all the strings 'w' in which $n_a(w)=2$.

5. Draw a DFA over $\Sigma = \{a,b\}$ which accepts all the strings 'w' in which $n_a(w) \le 2$.

6. Draw a DFA over $\Sigma = \{a,b\}$ which accepts all the strings 'w' in which $|w| \mod 3 = 2$.

Nondeterministic Finite Accepters

A nondeterministic finite accepter or nfa is defined by the quintuple $M = (Q, \Sigma, \delta, q_0, F)$

where Q is a finite set of internal states,

 Σ is a finite set of symbols called the input alphabet,

 $q_0 \in Q$ is the initial state,

 $F \subseteq Q$ is a set of final states.

$$\delta: \mathbb{Q} \times (\Sigma \cup \{\lambda\}) \to 2^{\mathbb{Q}}$$

∀ NFA ∃ a DFA

 \Rightarrow DFA \subseteq NFA

$$\delta(q_0,a) = \{q_0,q_1\}$$

$$\delta(q_2,b) = \{\lambda\}$$

Transition graph

Transition Graph of an nfa $M = (Q, \Sigma, \delta, q_0, F)$ Vertex labeled with q_i : state $q_i \in Q$, Edge from q_i to q_j labeled with a: $q_j \in \delta(q_i, a)$

Example An nfa is shown as below

1. Draw NFA which accepts all the strings on $\Sigma = \{0,1\}$ which starts with '01'.

NFA - 200 - 0 - 1 (92) 0,1

2. Design NFA which accepts all the strings on $\Sigma = \{0,1\}$ starting with '101'.

3. Design NFA which accepts all the strings on $\Sigma = \{0,1\}$ ending with '10'.

4. Design NFA which accepts all the strings on $\Sigma = \{0,1\}$ which contains substring '00'.

Suggested readings

- 1. An introduction to FORMAL LANGUAGES and AUTOMATA by PETER LINZ.
- 2. Introduction to Automata Theory, Languages, And Computation by JOHN E. HOPCROFT, RAJEEV MOTWANI, JEFFREY D. ULLMAN
- 3. Theory of computer science: automata, languages and computation by K.L.P MISHRA