Edge Computing for Low-Latency Applications

Jenny Penaloza, Cynthia Chen, Peter Wang, Samatar Dalmar, Nadya Mohamed, Chance Tarver, and Joseph R. Cavallaro

Parallel Hardware Applications in Science and Technology (PHAST)
VIP Group

Smart Cities and the Challenges of Dense Connectivity in the Future

Background:

- Future applications in scenarios such as Smart
 Cities collect a huge amount of data from various
 entities such as personal devices, cameras,
 vehicles
- Big data processing problem for this large sensor network

Issue:

Cloud-based processing cannot meet the latency demands for many future applications that only require low-latency

- Vehicle-to-vehicle communication
- Industry 4.0 Smart Factories

Hypothesis:

We may reduce the latency by running smaller, localized applications at the edge.

Goal:

To design high performance algorithms such as neural network inference on lower cost hardware to improve latency.

Neural Networks on the Edge

Goal: Investigate tradeoffs between cloud and edge computing for low-latency applications

FPGA-based Edge Compute Testbed:

Example result on custom Android app:

Theoretical result showing edge/cloud tradeoff

Preprocessing for Sensor Networks

Goal: Use low-cost edge devices to perform computations on raw data before forwarding to cloud.

Example Application: Filtering noise sensor input.

- Low-cost sensors can be noisy
- Implement an FIR filter in FPGA to attach to sensor node to preprocess and smooth the data.

FIR Filter FPGA Design:

- Streamable, fully pipelined design
- Computing each of the multiplies in parallel.
- Can support high throughputs
- Targeting new PYNQ platform where FPGA design can be used in a python environment

