MU, Study of a Fundamental Spectrum in Homotopy Theory

Master thesis defence

Max DUPARC
Under the supervision of Pr. Kathryn HESS BELLWALD and Dr. Jens Jackob KJAER

05.02.2021

What is MU?

MU is simply the spectrum induced by the Thomification of the universal complex vector bundles.

Definition (MU spectrum)

Let $n \in \mathbb{Z}$. MU is given by:

$$\bullet \ (MU)_n = \left\{ \begin{array}{cc} * & n < 0 \\ MU(k) = T(\gamma_k^{\mathbb{C}}) & n = 2k \\ \Sigma MU(k) & n = 2k+1 \end{array} \right.$$

•
$$p_{2n} = id_{\Sigma MU(n)}$$

 $p_{2n+1} = T(j) : \Sigma^2 MU(n) = T(j^*(\gamma_{n+1})) \hookrightarrow MU(n+1).$

Why MU ?

Table of Contents

- Spectra
 - CW-complexes
 - General structure
 - Spectra and (co)homology
- 2 Vectors bundles
 - Generality
 - Universality
 - Thom space
- 3 Properties of MU

CW-complexes

Definition (CW category)

$$Ob(\mathbf{CW}) = \left\{ X|\ X \text{ is a CW-complex } \right\}$$

$$\mathbf{CW}(X,Y) = \{f : X \to Y \text{ continuous } \}$$

Definition (naive homotopy HCW category)

$$Ob(\mathbf{HCW}) = Ob(\mathbf{CW})$$

$$\mathbf{HCW}(X,Y) = [X,Y]$$

$$HCW = HoCW \cong HoTop_{\bullet}$$

Brown's Representability Theorem

Brown's Representability Theorem (1955)

For $F : \mathbf{HoCW} \to \mathbf{Set}$ or \mathbf{Gp} any contravariant functor satisfying \mathcal{W} and \mathcal{MV} .

- $\exists Y \in Ob(\mathbf{CW})$
- $\bullet \ \exists u \in F(Y)$
- $\forall X \in Ob(\mathbf{CW})$

$$T_u: [X,Y] \cong F(X)$$

with
$$T_u(f) = F(f)(u)$$
.

• $F=H^n(-)$ a reduced cohomology theory satisfying $\mathcal W$ yields $\{E_n\}_{n\in\mathbb Z}$ such that:

$$[X, \Omega E_{n+1}] \xrightarrow{A^{-1}} [\Sigma X, E_{n+1}] \xrightarrow{T_{n+1}} k^{n+1} (\Sigma X) \xrightarrow{\sigma} k^n (X) \xrightarrow{T_n^{-1}} [X, E_n]$$

$$E_n \sim_{Hom} \Omega E_{n+1}$$
.

Spectrum

$\widehat{1}$

Definition (spectrum)

• A spectrum E is a collection $\{E_n\}_{n\in\mathbb{Z}}$ of CW complexes with injective maps

$$p_n: \Sigma E_n \hookrightarrow E_{n+1}.$$

• A subspectrum $F \subset E$ is a subcollection $F_n \subset E_n$ such that $p_n(\Sigma F_n) \subset F_{n+1}$.

Examples

$$\mathbb{S} = \left\{ \begin{array}{cc} * & n < 0 \\ S^n & n \ge 0 \end{array} \right.$$

Spectral functions

Definition (spectral functions)

Let E, F be spectra. A **function** $f: E \to F$ is a collection of maps $\{f_n: E_n \to F_n\}_{n \in \mathbb{Z}}$ such that:

$$f_{n+1}|_{p_n(\Sigma E_n)} = p'_n \circ \Sigma f_n$$

Cofinal subspectra

Definition (cofinal subspectra)

Let E be any spectrum, $F\subset E$ a subspectrum is ${\bf cofinal}$ if $\forall e_n\in E_n, \exists m$ such that

$$p_{n+m} \circ \Sigma p_{n+m-1} \circ \cdots \circ \Sigma^{m-1} p_n(\Sigma^m e_n) \in F_{n+m}.$$

Spectral maps

Definition (spectral maps)

Let E, F be spectra.

$$S = \Big\{ (E',f') | \ E' \text{ is a cofinal subspectrum of E}, f': E' \to F \Big\}$$

 $\bullet \ (E',f') \sim (E'',f'') \iff \exists (\widetilde{E},\widetilde{f}) \in S \ \text{ s.t. }$

$$\widetilde{E} \subseteq E' \cap E''$$

$$\widetilde{f} = f'|_{\widetilde{E}} = f''|_{\widetilde{E}}$$

ullet The equivalence class [E',f'] is called a **map** from E into F

$$Hom(E, F) = S/_{\sim}$$

Spectra

Spectra category Sp

Definition Sp

$$Ob(\mathbf{Sp}) = \{E | E \text{ is a spectrum}\}$$

$$\mathbf{Sp}(E, F) = Hom(E, F)$$

Definition (∞ -suspension)

$$\Sigma^{\infty} : \mathbf{CW} \to \mathbf{Sp}$$

$$\Sigma^{\infty} X = \begin{cases} & * & n < 0 \\ & \Sigma^{n} X & n \ge 0 \end{cases}$$

$$\Sigma^{\infty} (f) = \begin{cases} & id_{*} & n < 0 \\ & \Sigma^{n} f & n > 0 \end{cases}$$

Definition (spectral suspension)

$$\Sigma : \mathbf{Sp} \to \mathbf{Sp}$$

$$(\Sigma E)_n = E_{n+1}$$

$$(\Sigma f)_n = f_{n+1}$$

Spectral Homotopy

Definition (homotopy)

Let $E, F \in Ob(\mathbf{Sp}), f, g \in \mathbf{Sp}(E, F).$

ullet f is homotopic to g $(f \sim_{Hom} g)$ if there exists a map $H: E \wedge I^+ \to F$ s.t.

Spectral Homotopy

- $\bullet [E, F] = \mathbf{Sp}(E, F) /_{\sim_{Hom}}$
- $\pi_n(E) = [\Sigma^n \mathbb{S}, E]$ for $n \in \mathbb{Z}$
- $f \in \mathbf{Sp}(E, F)$ induces:
 - pushforwards

$$f_*: [G, E] \to [G, F]$$

 $f_*([h]) = [f \circ h]$

pullbacks

$$f^*: [F, G] \to [E, G]$$

 $f^*([h]) = [h \circ f]$

Spectral Homotopy

• $\pi_n(E) \cong \operatorname{colim}_k \pi_{n+k}(E_k)$

Whitehead's Spectral Theorem

Let
$$E, F \in Ob(\mathbf{Sp})$$
, $f \in \mathbf{Sp}(E, F)$.

f is an homotopy equivalence \iff f is a weak homotopy equivalence.

Definition $(\mathbf{HoSp} = \mathbf{HSp})$

$$Ob(\mathbf{HoSp}) = Ob(\mathbf{Sp})$$

$$\mathbf{HoSp}(E,F) = [E,F]$$

Reduced (co)homology induced by spectra

Definition (reduced homology induced by $E \in Ob(\mathbf{Sp})$)

$$E_*: \mathbf{HoCW} \to \mathbf{Ab}$$

$$E_n(X) = \pi_n(E \wedge X) = [\Sigma^n S, E \wedge X]$$
$$E_n(f) = (id_E \wedge f)_*$$

Definition (reduced cohomology induced by $E \in Ob(\mathbf{Sp})$)

$$E^*: \mathbf{HoCW} \to \mathbf{Ab}$$

$$E^n(X) = [\Sigma^{\infty} X, \Sigma^n E]$$

$$E^n(f) = (\Sigma^{\infty} f)^*$$

Back to Brown

Brown's Representability Theorem on cohomology

Let $k^* : \mathbf{HoCW} \to \mathbf{Ab}$ be any reduced cohomology satisfying \mathcal{W} .

There exist

- $E \in Ob(\mathbf{Sp})$
- A natural equivalence

$$T: E^*(-) \cong k^*(-)$$

Corollary

$$\mathbf{HoSp} \cong \mathbf{cohom}_S$$

1)

3

(2)

MU is simply the spectrum induced by the Thomification of the universal complex vector bundles.

Definition (MU spectrum)

Let $n \in \mathbb{Z}$. MU is given by:

$$\bullet (MU)_n = \left\{ \begin{array}{cc} * & n < 0 \\ MU(k) = T(\gamma_k^{\mathbb{C}}) & n = 2k \\ \Sigma MU(k) & n = 2k + 1 \end{array} \right.$$

•
$$p_{2n} = id_{\Sigma MU(n)}$$

 $p_{2n+1} = T(j) : \Sigma^2 MU(n) = T(j^*(\gamma_{n+1})) \hookrightarrow MU(n+1).$

Table of Contents

- Spectra
 - CW-complexes
 - General structure
 - Spectra and (co)homology
- Vectors bundles
 - Generality
 - Universality
 - Thom space
- 3 Properties of MU

Definition (Vector bundle)

An \mathbb{F} -vector bundle of dimension n over B is $\xi = (E, B, p)$ with p a continuous mapping

$$p: E \to B$$

- s.t. for all $b \in B$, there exist
 - \bullet U an open neighbourhood of b,
 - $h_U: p^{-1}(U) \cong U \times \mathbb{F}^n$ an homeomorphism,

s.t.

Examples

- lacksquare TM with M a manifold.
- (2) N(M,W) with M embedded submanifold of W.
- $\begin{cases} \begin{cases} \begin{cases}$

EPFL

Definition (Sum of vector bundles)

Let $\xi_1 = (E_1, X_1, p_1)$, $\xi_2 = (E_2, X_2, p_2)$ be vector bundles.

• The **external sum** $\xi_1 \times \xi_2$ is the vector bundle

$$(E_1 \times E_2, X_1 \times X_2, p_1 \times p_2).$$

Definition (pullback of vector bundle)

Let $\xi = (E, Y, p)$ be any vector bundle and $f: X \xrightarrow{cont.} Y$.

- The **pullback of** ξ **by** f, $f^*(\xi)$ is the vector bundle (E_f, X, p_f) with:
 - $E_f = \{(x, e) \in X \times E | f(x) = p(e) \}$
 - $p_f(x,e) = x$

Lemma

Let $X,Y\in Ob(\mathbf{CW}),\ f,g:\mathbf{CW}(X,Y)$ and ξ be any vector bundle on Y.

$$f \sim_{Hom} g \implies f^*(\xi) \cong g^*(\xi).$$

The following functor satisfies $\mathcal W$ and $\mathcal M\mathcal V$. Hence, Brown's representability theorem applies.

Definition (vector bundle contravariant functor)

$$Vb_n^{\mathbb{F}}: \mathbf{HoCW} \to \mathbf{Set}$$

- **2** $Vb_n^{\mathbb{F}}([f])(\xi) = f^*(\xi).$

Universal bundles

Corollary

Let $n \in \mathbb{N}$.

- $\exists BU(n) \in Ob(\mathbf{CW}), \exists u_n \text{ an } n\text{-complex vector bundle on } BU(n),$
- $\forall X \in Ob(\mathbf{CW}), \ \forall \xi \text{ any } n\text{-complex vector bundle on } X,$
- $\bullet \exists f: X \to BU(n) \text{ s.t.}$

$$\xi \cong f^*(u_n)$$

BU(n) is called the classifying space and u_n the n-th universal bundle.

Universal bundles

Corollary

Let $n \in \mathbb{N}$.

- $\exists BO(n) \in Ob(\mathbf{CW})$, $\exists o_n$ an n-real vector bundle on BO(n),
- $\forall X \in Ob(\mathbf{CW})$, $\forall \xi$ any n-real vector bundle on X,
- $\exists f: X \to BO(n)$ s.t.

$$\xi \cong f^*(o_n)$$

Universal bundles

- We have proved that BU(n) and u_n exist.
- We can in fact construct them.

Infinite Grassmannians

Definition (infinite Grassmannians)

$$G_n^{\mathbb{F}} = \{K \subset \mathbb{F}^{\infty} | K \text{ any linear subspace of dimension } n \}$$

Definition (tautological bundle γ_n)

$$\gamma_n^{\mathbb{F}} = (E, G_n^{\mathbb{F}}, p)$$

$$E = \{(K, v) \in G_n^{\mathbb{F}} \times \mathbb{F}^{\infty} | v \in K\}$$

$$p(K, v) = K$$

Universal Representation Theorem

$$BU(n) = G_n^{\mathbb{C}}$$

$$BO(n) = G_n^{\mathbb{R}}$$

$$o_n \cong \gamma_n^{\mathbb{R}}$$

EPFL

1

2

MU is simply the spectrum induced by the Thomification of the universal complex vector bundles.

Definition (MU spectrum)

Let $n \in \mathbb{Z}$. MU is given by:

$$\bullet \ (MU)_n = \left\{ \begin{array}{cc} * & n < 0 \\ MU(k) = T(\gamma_k^{\mathbb{C}}) & n = 2k \\ \Sigma MU(k) & n = 2k + 1 \end{array} \right.$$

•
$$p_{2n} = id_{\Sigma MU(n)}$$

 $p_{2n+1} = T(j) : \Sigma^2 MU(n) = T(j^*(\gamma_{n+1})) \hookrightarrow MU(n+1).$

Disks/Sphere Bundles

• A Riemannian/Hermitian metric on the total space derives from any given $X \in Ob(\mathbf{CW})$ and vector bundle ξ on X.

Definition (disks/sphere bundles)

Let ξ be a complex vector bundle on B equipped with an Hermitian metric.

• The disk bundle $D(\xi)$ on B is

$$E_D = \left\{ (x, v) \in E | |v| \leqslant 1 \right\}$$

• The sphere bundle $S(\xi)$ on B is

$$E_S = \{(x, v) \in E | |v| = 1\}$$

Thom Space

Definition (Thom space)

Let ξ be a complex vector bundle over $B \in Ob(\mathbf{CW})$ equipped with an Hermitian metric.

• The **Thom space** of ξ is $T(\xi) \in Ob(\mathbf{CW})$:

$$T(\xi) = D(\xi)/S(\xi)$$

• For $f \in \mathbf{CW}(X,B)$, we define the **Thomification map**:

$$T(f): T(f^*\xi) \to T(\xi)$$

Properties of Thom Space

 $T(\xi_1 \times \xi_2) \cong T(\xi_1) \wedge T(\xi_2)$

Properties of Thom Space

- $T(\xi_1 \times \xi_2) \cong T(\xi_1) \wedge T(\xi_2)$
- $T(\xi_1 \oplus \epsilon_{\mathbb{C}}^n(X)) \cong T(\xi_1) \wedge S_{\mathbb{R}}^{2n}$

Properties of Thom Space

- $T(\xi_1 \times \xi_2) \cong T(\xi_1) \wedge T(\xi_2)$
- $T(\xi_1 \oplus \epsilon_{\mathbb{C}}^n(X)) \cong T(\xi_1) \wedge S_{\mathbb{R}}^{2n}$
- ullet Let X is any compact Hausdorff space, ξ any vector bundle on X.

$$T(\xi) \cong E^{\dagger}$$

with E^{\dagger} the one point compactification of E.

• γ_1 is the universal bundle on $G_1^{\mathbb{C}} = \mathbb{C}P^{\infty}$

$$T(\gamma_1) \cong \mathbb{C}P^{\infty}$$

MU spectrum

MU is simply the spectrum induced by the Thomification of the universal complex vector bundles.

Definition (MU spectrum)

Let $n \in \mathbb{Z}$. MU is given by:

$$\bullet (MU)_n = \left\{ \begin{array}{cc} * & n < 0 \\ MU(k) = T(\gamma_k^{\mathbb{C}}) & n = 2k \\ \Sigma MU(k) & n = 2k + 1 \end{array} \right.$$

- $p_{2n} = id_{\Sigma MU(n)}$ $p_{2n+1} = T(j) : \Sigma^2 MU(n) = T(j^*(\gamma_{n+1})) \hookrightarrow MU(n+1).$
- Using $j: G_{\mathbb{C}}^n \hookrightarrow G_{\mathbb{C}}^{n+1}$, we have that $j^*(\gamma_{n+1}^{\mathbb{C}}) \cong \gamma_n^{\mathbb{C}} \oplus \epsilon^{\mathbb{C}}$.

Table of Contents

- Spectra
 - CW-complexes
 - General structure
 - Spectra and (co)homology
- 2 Vectors bundles
 - Generality
 - Universality
 - Thom space

Example of bordism

Cobordism W between $M=S^2_{\mathbb{R}}$ and $N=(S^1_{\mathbb{R}}\times S^1_{\mathbb{R}})$

Thom-Pontrjagin Isomorphism

Thom-Pontrjagin Isomorphism (1959)

For $n \in \mathbb{Z}$, $X \in Ob(\mathbf{CW})$.

$$\Phi: \Omega_n^U(X) \cong \pi_n(MU \wedge X^+)$$

Cohomology of MU

Cohomology of ${\cal M}{\cal U}$

The cohomology of MU can be entirely computed. For $k \in \mathbb{N}$:

- \bullet $H^{2k+1}(MU) = 0$
- $H^{2k}(MU) = H^{2k}(BU(k)) = \mathbb{Z}^{\alpha_k(k)}$ with

$$\alpha_n(k) = \left\{ \begin{array}{l} \alpha_n(k-n) + \alpha_{n-1}(k) \\ 1 \text{ if } n=k=0 \\ 0, \text{ if } k<0 \text{ or } k\neq n=0 \end{array} \right.$$

	H^0	H^2	H^4	H^6	H^8	H^{10}	H^{12}	H^{14}	H^{16}	H^{18}	H^{20}
BU(0)	\mathbb{Z}	0	0	0	0	0	0	0	0	0	0
BU(1)	\mathbb{Z}	\mathbb{Z}	\mathbb{Z}	\mathbb{Z}	\mathbb{Z}	\mathbb{Z}	\mathbb{Z}	\mathbb{Z}	\mathbb{Z}	\mathbb{Z}	$\mathbb Z$
BU(2)	\mathbb{Z}	\mathbb{Z}	\mathbb{Z}^2	\mathbb{Z}^2	\mathbb{Z}^3	\mathbb{Z}^3	\mathbb{Z}^4	\mathbb{Z}^4	\mathbb{Z}^5	\mathbb{Z}^5	\mathbb{Z}^6
BU(3)	\mathbb{Z}	\mathbb{Z}	\mathbb{Z}^2	\mathbb{Z}^3	\mathbb{Z}^4	\mathbb{Z}^5	\mathbb{Z}^7	\mathbb{Z}^8	\mathbb{Z}^{10}	\mathbb{Z}^{12}	\mathbb{Z}^{14}
BU(4)	\mathbb{Z}	\mathbb{Z}	\mathbb{Z}^2	\mathbb{Z}^3	\mathbb{Z}^5	\mathbb{Z}^6	\mathbb{Z}^9	\mathbb{Z}^{11}	\mathbb{Z}^{15}	\mathbb{Z}^{18}	\mathbb{Z}^{23}
BU(5)	\mathbb{Z}	\mathbb{Z}	\mathbb{Z}^2	\mathbb{Z}^3	\mathbb{Z}^5	\mathbb{Z}^7	\mathbb{Z}^{10}	\mathbb{Z}^{13}	\mathbb{Z}^{18}	\mathbb{Z}^{23}	\mathbb{Z}^{30}
BU(6)	\mathbb{Z}	\mathbb{Z}	\mathbb{Z}^2	\mathbb{Z}^3	\mathbb{Z}^5	\mathbb{Z}^7	\mathbb{Z}^{11}	\mathbb{Z}^{14}	\mathbb{Z}^{20}	\mathbb{Z}^{26}	\mathbb{Z}^{35}
BU(7)	\mathbb{Z}	\mathbb{Z}	\mathbb{Z}^2	\mathbb{Z}^3	\mathbb{Z}^5	\mathbb{Z}^7	\mathbb{Z}^{11}	\mathbb{Z}^{15}	\mathbb{Z}^{21}	\mathbb{Z}^{28}	\mathbb{Z}^{38}
BU(8)	\mathbb{Z}	\mathbb{Z}	\mathbb{Z}^2	\mathbb{Z}^3	\mathbb{Z}^5	\mathbb{Z}^7	\mathbb{Z}^{11}	\mathbb{Z}^{15}	\mathbb{Z}^{22}	\mathbb{Z}^{29}	\mathbb{Z}^{40}

Nilpotence Theorem

Nilpotence Theorem (1980)

Let R be any ring spectrum. Consider the Hurewicz map

$$\pi_{\bullet}(R) \xrightarrow{h} MU_{\bullet}(R)$$

Then, $\alpha \in \pi_{\bullet}(R)$ is nilpotent to multiplication $\iff h(\alpha) = 0$.

Definition (MU spectrum)

Let $n \in \mathbb{Z}$. MU is given by:

$$\bullet (MU)_n = \begin{cases} * & n < 0 \\ MU(k) = T(\gamma_k^{\mathbb{C}}) & n = 2k \\ \Sigma MU(k) & n = 2k + 1 \end{cases}$$

- $p_{2n} = id_{\Sigma MU(n)}$ $p_{2n+1} = T(j) : \Sigma^2 MU(n) = T(j^*(\gamma_{n+1})) \hookrightarrow MU(n+1).$
- $\bullet \ \ \text{Using} \ j:G^n_{\mathbb C}\hookrightarrow G^{n+1}_{\mathbb C}, \ \text{we have that} \ j^*(\gamma^{\mathbb C}_{n+1})\cong \gamma^{\mathbb C}_n\oplus \epsilon^{\mathbb C}.$

APPENDIX

Top. category

Definition Top.

$$Ob(\mathbf{Top}_{\bullet}) = \Big\{ (X, x_0) | \ X \text{ is a topological space and } x_0 \in X \Big\}$$

$$\mathbf{Top}_{\bullet}\big((X,y_0),(Y,y_0)\big) = \Big\{f: X \to Y | \ f \ \text{continuous and} \ f(x_0) = y_0 \Big\}$$

Cones & Cofibrations

• Cone of (X, x_0)

$$CX = X \times [0,1]_{/\sim}$$
.

with $(x,0) \sim (x_0,t)$

• Mapping cone of $f \in \mathbf{Top}_{\bullet}\big((X,y_0),(Y,y_0)\big)$

$$Y \cup_f CX = Y \cup CX_{/\sim}$$

with $(x,1) \sim f(x)$.

Cofibration are sequence given by

$$X \xrightarrow{f} Y \xrightarrow{\iota} Y \cup_f CX$$

Cell-complexes

Definition cells complexes

A **cell-complex** K is construct by induction on the n-skeleton K^n :

•

$$K^{-1} = \{x_0\}$$

•

$$K^0 = \bigcup_{\alpha} K^{-1} \cup_{x_0} S^0_{\alpha}$$

• $\forall n \in \mathbb{N}^+$, we consider a collection of map $\{f_\alpha : S^{n-1} \to K^{n-1}\}$.

$$K^{n} = \bigcup_{\alpha} K^{n-1} \cup_{f_{\alpha}} CS^{n-1}$$
$$= \bigcup_{\alpha} K^{n-1} \cup_{f_{\alpha}} D^{n}$$

CW-complexes

Definition CW complexes

A **CW-complex** is a K cell-complex such that

• C) K is closure-finite. i.e:

$$(e^n_\alpha\cap e^m_\beta)\backslash x_0=\varnothing$$
 except on finitely many occasions .

• W) It has the **weak topology** induced by K^n . i.e:

$$S\subseteq K \text{ is closed } \iff \forall n\in\mathbb{N}, \alpha\in J_n, S\cap e^n_\alpha \text{ is closed in } e^n_\alpha.$$

Definition cellular maps

Let X,Y be CW-complexes, $f:X\to Y$ a continuous map is said **cellular** if $\forall n\in\mathbb{N}\ f(X^n)\subset Y^n.$

Definition Quillen homotopy category

$$Ob(\mathbf{HoCW}) = Ob(\mathbf{CW})$$

 $\mathbf{HoCW}(X, Y) = [X, Y][\mathcal{W}^{-1}]$

where $[X,Y][\mathcal{W}^{-1}]$ is the set [X,Y] localised on the class \mathcal{W} of all weak equivalences.

CW-Approximation theorem

$$\forall (X, x_0) \in \mathbf{Top}_{\bullet}$$

 $\exists Y \text{ a CW-complex and } f: Y \to X \text{ a weak homotopy equivalence.}$

EPFL

Example of WHE \Rightarrow HE in \mathbf{Top}_{\bullet}

$$W = \left\{ \{0\} \times [-1, 1] \right\} \cup \left\{ \left(x, \sin(\frac{1}{x}) \right) | \ x \in (0, t] \right\}_{/\sim}$$

with $(t,\sin(\frac{1}{t})) \sim (0,-1)$.

Homology

Definition reduced homology

A family $\{H_n: \mathbf{HCW} \to \mathbf{Ab}\}_{n \in \mathbb{Z}}$ of functors with $\{\sigma_n: H_n \to H_{n+1} \circ \Sigma\}_{n \in \mathbb{Z}}$ is called a **reduced homology theory** $H_*(-)$ if for all cofibration

$$X \xrightarrow{f} Y \xrightarrow{j} Y \cup_f CX$$
,

$$H_n(A) \xrightarrow{H_n(f)} H_n(Y) \xrightarrow{H_n(j)} H_n(Y \cup_f CX)$$

is exact.

$$Y \cup_f CX = Y \cup CX_{/\sim} \text{ with } (x,1) \sim f(x)$$

Cohomology

Definition reduced cohomology

A family $\{H^n: \mathbf{HCW} \to \mathbf{Ab}\}_{n \in \mathbb{Z}}$ of contravariant functors and natural equivalences $\{\sigma^n: H^{n+1} \circ \Sigma \to H^n\}_{n \in \mathbb{Z}}$ is called a **reduced cohomology theory** H^* if for all cofibration $X \xrightarrow{f} Y \xrightarrow{j} Y \cup_f CX$,

$$H^n(X) \stackrel{H^n(f)}{\longleftarrow} H^n(Y) \stackrel{H^n(j)}{\longleftarrow} H^n(Y \cup_f CX)$$

is exact.

Axioms of contravariant functors

Let $F : \mathbf{HCW} \to \mathbf{Set}, \mathbf{Gp}, \cdots$

• Wedge W: Using $i_{\alpha}: X_{\alpha} \hookrightarrow \bigvee_{\alpha \in A} X_{\alpha}$,

$$(F(i_{\alpha}))_{\alpha \in A} : F(\bigvee_{\alpha \in A} X_{\alpha}) \cong \prod_{\alpha \in A} F(X_{\alpha})$$

Axioms of contravariant functors

Let $F : \mathbf{HCW} \to \mathbf{Set}, \mathbf{Gp}, \cdots$

• Wedge W: Using $i_{\alpha}: X_{\alpha} \hookrightarrow \bigvee_{\alpha \in A} X_{\alpha}$,

$$(F(i_{\alpha}))_{\alpha \in A} : F(\bigvee_{\alpha \in A} X_{\alpha}) \cong \prod_{\alpha \in A} F(X_{\alpha})$$

• Mayer-Vietoris \mathcal{MV} : For any CW-triad (X,A_1,A_2) with $x_1 \in F(A_1), x_2 \in F(A_2)$ such that

$$F(i_{A_1 \cap A_2})(x_1) = x_1|_{A_1 \cap A_2} = x_2|_{A_1 \cap A_2} = F(i_{A_1 \cap A_2})(x_2)$$

Then, $\exists y \in F(X)$ such that $y|_{A_1} = x_1, y|_{A_2} = x_2$.

Any reduced cohomology $H^*(-)$ follows \mathcal{MV} and sometimes \mathcal{W} .

Grassmannians

Definition (Grassmannians)

$$G_{n,k}^{\mathbb{F}} = \left\{ K \subset \mathbb{F}^{n+k} | \ K \text{ linear subspace of dimension } n \ \right\}$$

$$A \subset G_{n,k}^{\mathbb{F}} \text{ is open } \iff A = \left\{ K | \ K \subset U, U \text{ open in } \mathbb{F}^{n+k} \right\}$$

ullet $G_{n,k}^{\mathbb{F}}$ is a compact (2)nk smooth manifold.

Definition (tautological bundle $\gamma_{n,k}$)

$$\begin{split} E_{\gamma_{n,k}} &= \Big\{ (K,v) \in G_{n,k}^{\mathbb{F}} \times \mathbb{F}^{n+k} | \ v \in K \Big\} \\ p &: E_{\gamma_{n,k}} \twoheadrightarrow G_{n,k}^{\mathbb{F}} \\ p(K,v) &= K \end{split}$$

Unoriented Bordism

Definition unoriented bordism

Let $X \in Ob(\mathbf{CW})$. Let M, N be any compact smooth n-manifold. Let $f: M^+ \to X$, $g: N^+ \to X$. (M, f) is **cobordant** to (N, g) if $\exists W$ a compact smooth n+1-manifold wit boundary with $F: W^+ \to X$ such that:

- \bullet $\partial W = M \sqcup N$
- $F|_{M} = f$, $F|_{N} = g$

Definition unoriented bordism homology

$$\Omega_n^O(-): \mathbf{HoCW} \to \mathbf{Ab}$$

$$\Omega_n^O(X) = \Big\{ (M,f) | \ M \ \text{compact smooth n-manifold }, f: M^+ \to X \Big\} /_{\sim_{Cob}}$$

$$[M,f] + [N,g] = [M \sqcup N, f \sqcup g].$$

$$\Omega_n^O(f)[M,g] = [M,f \circ g]$$

Stably complex manifolds

Definition stably complex manifolds

Let M be a smooth k manifold. We say that M is **stably complex** if for some $n \in \mathbb{N}$, there exists an isomorphism such that

$$\mathbf{N}(M,\mathbb{R}^{2n+k}) \cong \xi$$

with ξ a n complex vector bundle. We usually note this (M, ξ) .

- \bullet Every complex manifolds of dimension n, seen as 2n real manifold, are stably complex.
- $\bullet \ \, \text{If } \mathbf{N}(M,\mathbb{R}^{2n+k}) \text{ is complex, then } \mathbf{N}(M,\mathbb{R}^{2(n+1)+k}) = \mathbf{N}(M,\mathbb{R}^{2n+k}) \oplus \epsilon_{\mathbb{R}}^2 \cong \xi \oplus \epsilon_{\mathbb{C}}.$

Max DUPARC

Unitary Cobordism

Definition (unitary bordism)

Let $X\in Ob(\mathbf{CW})$. Let $(M,\xi_M),(N,\xi_N)$ be any compact stably complex n-manifold. Let $f:M^+\to X,\ g:N^+\to X.\ (M,\xi_M,f)$ is **unitary cobordant** to (N,ξ_N,g) if $\exists (W,\xi_W)$ a compact stably complex n+1-manifold with boundary and $F:W^+\to X$ such that:

- \bullet $\partial W = M \sqcup N$
- $F|_{M} = f$, $F|_{N} = g$
- $\mathbf{N}(M, \mathbb{R}^{2w+n+1}) \cong \iota_M^*(\xi_W) \oplus \pm \epsilon_{\mathbb{R}} \cong \xi_M \oplus \epsilon_{\mathbb{C}}^u \oplus \pm \epsilon_{\mathbb{R}}$ with $\epsilon_{\mathbb{R}}$ given by the induced orientation on ∂W .
- $\mathbf{N}(N, \mathbb{R}^{2w+n+1}) \cong \iota_N^*(\xi_W) \oplus \mp \epsilon_{\mathbb{R}} \cong \xi_N \oplus \epsilon_{\mathbb{C}}^v \oplus \mp \epsilon_{\mathbb{R}}$ with $\epsilon_{\mathbb{R}}$ also given by the induced orientation on ∂W .

Isomorphism in 3. and 4. are such that $\forall x \in M$ or $N, \varphi|_{p^{-1}(x)} \in GL_{2w+1}^+(\mathbb{R})$.

Unitary cobordism group

Definition Unitary bordism group

Let $X \in Ob(\mathbf{CW})$. We define the n unitary bordism group on X as

$$\Omega_n^U(X) = \Big\{ (M,\xi_M,f) | M \text{ compact stably complex } n\text{-manifold }, f:M^+ \to X \Big\} /_{\sim_{Cob}}$$

$$[M,\xi_M,f] + [N,\xi_N,g] = [M \sqcup N,\xi_M \sqcup \xi_N,f \sqcup g].$$

$$\begin{split} 0 &= [\varnothing] \text{ and } [M, \xi_M, f]^{-1} = [M, \overline{\xi_M}, f] \\ \forall b \in M, \exists U \text{ } s.t. \text{ } \iota_U^*(\overline{\xi_M}) \cong U \times \mathbb{C}^{n-1} \times \overline{\mathbb{C}} \end{split}$$

Thom-Pontrjagin construction

Tubular neighborhood theorem

Let W be a m dimensional smooth manifold, M a n dimensional embedded compact submanifold. Then, $\exists T$ open neighbourhood of M such that

$$T \cong \mathbf{N}(M, W)$$

with ${\cal M}$ is the zero section of this diffeomorphism.

EPFL

Thom-Pontrjagin construction

Thom-Pontrjagin construction

Let M be a compact stable complex manifold embedded into \mathbb{R}^{2n+k} . We have tubular neighborhood T with $\varphi: T \cong N(M,\mathbb{R}^{2n+k}) \cong \xi$. Then, seeing ξ as $int(D(\xi))$, we get using Thom space,

$$\overline{\varphi}: S^{2n+k} \to T(\xi)$$

Using Thomification and universal representation theorem, we get what is called the ${f Thom-Pontrjagin\ construction}$:

$$\Phi_M: S^{2n+k} \xrightarrow{\overline{\varphi}} T(\xi) \xrightarrow{T(j)} MU(n)$$

Useful properties of Thom-Pontrjagin construction

lacksquare This map is unique up to homotopy for a given M.

Useful properties of Thom-Pontrjagin construction

- lacksquare This map is unique up to homotopy for a given M.
- ② If consider $\xi \cong \mathbf{N}(M,\mathbb{R}^{2n+k})$, then the Thom-Pontrjagin construction given by $\mathbf{N}(M,\mathbb{R}^{2(n+1)+k})$ is simply $\Sigma^2\Phi_M$.

Useful properties of Thom-Pontrjagin construction

- lacksquare This map is unique up to homotopy for a given M.
- ② If consider $\xi \cong \mathbf{N}(M,\mathbb{R}^{2n+k})$, then the Thom-Pontrjagin construction given by $\mathbf{N}(M,\mathbb{R}^{2(n+1)+k})$ is simply $\Sigma^2\Phi_M$.
- **3** If $(M, \xi_M, f) \sim_{Cob} (N, \xi_N, g)$, then $\Phi_M \sim_{Hom} \Phi_N$.

Thom-Pontrjagin morphism

$$\Omega_{n,k}^{U}(X) = \{(M,f) | M \subset \mathbb{R}^{2n+k}, f : M^+ \to X\}/_{\sim_{Cob}}$$

with $(M,f)\sim_{Cob}(N,g)$ if $\exists W$ a cobordism with $W\subset\mathbb{R}^{2n+k}\times[0,1]$

$$\Omega_n^U(X) = \operatorname{colim}_k \, \Omega_{n,k}^U(X)$$

Thom-Pontrjagin morphism

$$\Phi: \Omega_{n,k}^U(X) \to \pi_{2n+k}(X^+ \wedge MU(n))$$
$$[M, f] \to [\Phi_M]$$

Thom-Pontrjagin isomorphism

Thom-Pontrjagin isomorphism

$$\Phi: \Omega_{n,k}^U(*) \cong \pi_{2n+k}(MU(n))$$

Transversality

Transversality

Let $f:M\to N$, $g:V\to N$ be any smooth maps. We say that f is transversal to g if whenever f(p)=g(q)

$$Df(T_pM) + Dg(T_qV) = T_{f(p)}N$$

with Df the smooth pushforward. We note transversality as $f\pitchfork g$.

If $f \pitchfork g$, $f^{-1}(g(V))$ is a regular submanifold of M.

Thom transversality theorem

Let $f:M\to N, g:V\to N$ be two smooth maps.

$$\exists \widetilde{f}: M \to N, \widetilde{f} \sim_{Hom} f, \ \widetilde{f} \pitchfork g$$

Useful Observations

0

$$MU(n) = \operatorname{colim}_k T(\gamma_{n,k})$$

- $m{Q}$ $E_{\gamma_{n,k}}$ is a k(n+1) complex manifold with $G_{n,k}^{\mathbb{C}}$ embedded in it.
- $T(\gamma_{n,k}) \cong E_{\gamma_{n,k}}^{\dagger}$

 $\bullet \ f: S^{2n+k} \to MU(n) \text{ is in fact } f: S^{2n+k} \to T(\gamma_{n,k}) \cong E_{\gamma_{n,k}}^\dagger.$

$$f|_{f^{-1}(E_{\gamma_{n,k}})}:U\to E_{\gamma_{n,k}}.$$

with $U \subset \mathbb{R}^{2n+k}$

 $\bullet \ f: S^{2n+k} \to MU(n) \text{ is in fact } f: S^{2n+k} \to T(\gamma_{n,k}) \cong E_{\gamma_{n,k}}^\dagger.$

$$f|_{f^{-1}(E_{\gamma_{n,k}})}:U\to E_{\gamma_{n,k}}.$$

with $U \subset \mathbb{R}^{2n+k}$

ullet Thus, by smooth approximation theorem $\exists \overline{f}: U \to E_{\gamma_{n,k}}$ with $f \sim_{Hom} \overline{f}$ and \overline{f} smooth.

 $\bullet \ f: S^{2n+k} \to MU(n) \text{ is in fact } f: S^{2n+k} \to T(\gamma_{n,k}) \cong E_{\gamma_{n,k}}^\dagger.$

$$f|_{f^{-1}(E_{\gamma_{n,k}})}:U\to E_{\gamma_{n,k}}.$$

with $U \subset \mathbb{R}^{2n+k}$

- ullet Thus, by smooth approximation theorem $\exists \overline{f}: U \to E_{\gamma_{n,k}}$ with $f \sim_{Hom} \overline{f}$ and \overline{f} smooth.
- ullet Using Thom transversality theorem, $\exists \tilde{f}: U \to E_{\gamma_{n,k}}$ s.t.

$$\tilde{f}\pitchfork G_{n,k}^{\mathbb{C}}$$

$$\tilde{f} \sim_{Hom} f$$

$$M = \tilde{f}^{-1}(G_{n,k}^{\mathbb{C}}) \subset U$$
 is a n compact manifold.

ullet M is stably complex.

$$\mathbf{N}(M, \mathbb{R}^{2n+k}) \cong \mathbf{N}(M, U) \cong \tilde{f}^* \Big(\mathbf{N}(G_{n,j}^{\mathbb{C}}, E_{\gamma_{n,j}}) \Big) \cong \tilde{f}^* (\gamma_{n,j}).$$

$$M = \tilde{f}^{-1}(G_{n,k}^{\mathbb{C}}) \subset U$$
 is a n compact manifold.

M is stably complex.

$$\mathbf{N}(M,\mathbb{R}^{2n+k}) \cong \mathbf{N}(M,U) \cong \tilde{f}^* \Big(\mathbf{N}(G_{n,j}^{\mathbb{C}}, E_{\gamma_{n,j}}) \Big) \cong \tilde{f}^*(\gamma_{n,j}).$$

ullet $U=f^{-1}(E_{\gamma_{n,j}})$ is a tubular neighbourhood for M.

 $M = \tilde{f}^{-1}(G_{n,k}^{\mathbb{C}}) \subset U$ is a n compact manifold.

ullet M is stably complex.

$$\mathbf{N}(M,\mathbb{R}^{2n+k}) \cong \mathbf{N}(M,U) \cong \tilde{f}^* \Big(\mathbf{N}(G_{n,j}^{\mathbb{C}}, E_{\gamma_{n,j}}) \Big) \cong \tilde{f}^*(\gamma_{n,j}).$$

ullet $U=f^{-1}(E_{\gamma_{n,j}})$ is a tubular neighbourhood for M.

0

Injectivity

Let $H: S^{2n+k} \wedge [0,1]^+ \to MU(n)$ be an homotopy between Φ_M and Φ_N .

•

$$\begin{split} \tilde{H}: U \times [0,1] \to E_{\gamma_{n,j}} \\ \tilde{H} \pitchfork G_{n,j}^{\mathbb{C}} \end{split}$$

Injectivity

Let $H: S^{2n+k} \wedge [0,1]^+ \to MU(n)$ be an homotopy between Φ_M and Φ_N .

•

$$\begin{split} \tilde{H} : U \times [0,1] \to E_{\gamma_{n,j}} \\ \tilde{H} \pitchfork G_{n,j}^{\mathbb{C}} \end{split}$$

 \bullet $W = \tilde{H}^{-1}(G_{n,k}^{\mathbb{C}})$ gives us a cobordism between M and N with

$$\mathbf{N}(W,\mathbb{R}^{2n+k+1}) \cong \widetilde{H}^*\mathbf{N}(G_{n,j}^{\mathbb{C}},E_{\gamma_{n,j}}) = \widetilde{H}^*(\gamma_{n,j}).$$