National Water **Conditions**

UNITED STATES Department of the Interior Geological Survey

CANADA Department of the Environment Water Resources Branch

APRIL 1992

Drought is affecting Hawaii, California, parts of the East, including Quebec and Nova Scotia, and other areas. By contrast, much of the Southwest had above-normal range streamflow for the month (including floods in Texas) and heavy rains along the Blue Ridge Mountains caused moderate flooding, generally on the east side of the mountains.

April streamflow was in normal to above-normal range streamflow at 62 percent of the reporting index stations in the United States, southern Canada, and Puerto Rico during the month, compared with 71 percent of stations in those ranges during March, and 77 percent of stations in those ranges during April 1991. Below-normal range streamflow occurred in 33 percent of the area of the conterminous United States and southern Canada during April, compared with 20 percent during March, and 24 percent during April 1991. Total flow during April for the 174 reporting index stations in the conterminous United States and southern Canada was 11 percent below median, after a 12 percent increase from

last month, and 21 percent less than flow during April 1991.

Five new extremes—one new minimum in Kansas and two in Hawaii, and two new maximums, one in British Columbia and one in Puerto Rico—occurred during April, compared with eleven new extremes last month.

The combined flow of the 3 largest rivers in the lower 48 States—Mississippi, St. Lawrence, and Columbia—averaged 24 percent below median and in the below-normal range, after a 6 percent decrease in flow from March to April.

Month-end index reservoir contents were in the below-average range at 27 of 100 reporting sites, compared with 29 of 100 at the end of March, and 37 of 100 at the end of April 1991. Contents were in the above-average range at 38 reservoirs, compared with 39 last month, and 39

Mean April elevations at four master gages on the Great Lakes (provisional National Ocean Service data) were in the normal range but below median on all 4 lakes. Levels fell from those for March on Lake Superior, and rose from those for March on the other three lakes.

Utah's Great Salt Lake fell 0.20 foot, ending the month at 4,202.10 feet above National Geodetic Vertical Datum. Lake level was 0.70 foot

lower than at the end of April 1991.

Streamflow decreased from that for March in the Florida and Gulf of Mexico, Upper Mississippi River, and the Southern Great Plains and Rio Grande basins, and increased in the other 9 basins. Streamflow was above median in 5 basins, and below median in the other 7 basins.

Ground-water levels were generally above last month's only in the Glaciated Central and Northeast and Superior Uplands regions and generally mixed or below long-term averages in all regions. New extremes occurred at 33 ground-water index stations during April,—29 lows (including 8 all-time) and 4 highs (including 1 all-time)—compared with 32 new extremes last month.

SURFACE-WATER CONDITIONS DURING APRIL 1992

Drought is still affecting several large areas. In Hawaii (see page 7) drought related to El Niño is occurring. In California, total streamflow, reservoir contents, and ground-water levels remained well-below average. Total flow for April at the six index stations in California was 41 percent below median after a 33 percent decrease from that for March. The persistence and severity of the drought in California is shown by the following: (1) since the end of August 1990 (the most recent month of above-median streamflow), the cumulative streamflow deficit at the six index stations has gone from about 73 percent of a median year of runoff to about 145 percent of a median year of runoff—about 72 percent of a median year of runoff was "lost" in the last 19 months; (2) the seasonal lows in combined storage for 6 large index reservoirs have generally declined steadily since 1986, bottoming out at 69, 53, 43, 45, 33, and 31 percent of capacity. The current month's storage in these 6 large reservoirs rose by about 6 percent of total capacity from that for March and is now at 53 percent of normal maximum, higher than at any time last year. More data on California hydrologic conditions are given on pages 7-9. In the East, the contents of the New York City Reservoir System were 16 percent below the long-term average for the end of April, despite increasing from 70 percent of capacity at the end of March to 84 percent of capacity at the end of April, and about 15 percent less than contents at the end of April 1991, Reservoir storage in Quebec and Nova Scotia is also well below long-term averages.

By contrast, much of the Southwest, including parts of California, Arizona, New Mexico, and Texas (where moderate to severe, but less-than record flooding occurred) had above-normal range streamflow for the month. Heavy rains along the Blue Ridge Mountains caused moderate flooding in some areas, mostly on the east side of the mountains, but much of the Southeast remained dry.

April streamflow decreased from that for March at 91 index stations, remained unchanged at 1 index station, and increased at 101 index stations, resulting innormal to above-normal range streamflow at 62 percent of the 192 reporting index stations in the United States, southern Canada, and Puerto Rico during the month, compared with 71 percent of stations in those ranges during March, and 77 percent of stations in those ranges during April 1991. Below-normal range streamflow occurred in 33 percent of the area of the conterminous United States and southern Canada during April, compared with 20 percent during March, and 24 percent (revised) during April 1991. Total flow of 943,400 cubic feet per second (ft³/s) during April for the 174 reporting index stations in the conterminous United States and southern Canada was 11 percent below median, after a 12 percent increase from last month, and 21 percent less than flow during April 1991.

Five new extremes—one new minimum in Kansas and two in Hawaii, and two new maximums, one in British Columbia and one in Puerto Rico—occurred during April (see table on page 4), compared with six new minimums and five new maximums during March. Hydrographs for the stations at which new extremes occurred are on page 5. Also on page 5 are the hydrographs for the (Continued on page 4)

CONTENTS

	Page
Streamflow (map)	
Surface-water conditions	. 2
New extremess at streamflow index stations	. 4
Monthly mean discharge of selected streams (graphs)	. 5
April weather summary	. 6
El Niño and Hawaiian drought (with map and graphs)	. 7
California water conditions	. 7
California streamflow (1984-92 water years), reservoir contents (1984-92 water years), and streamflow (1944-92 water years) (graphs)	. 8
California reservoir index stations (graphs)	. 9
Hydrographs for the "Big Three" rivers - combined and individual flows (graphs)	. 10
Dissolved solids and water temperatures at downstream sites on five large rivers	. 10
Flow of large rivers	. 11
Usable contents of selected reservoirs and reservoir systems (graphs)	. 12
Usable contents of selected reservoirs and reservoir systems	
Great Lakes elevations (graphs)	
Fluctuations of the Great Salt Lake, October 1986 through April 1992 (graph)	. 14
Streamflow conditions during April 1992 and reservoir storage near the end of April 1992 and	
Streamflow conditions during April 1991 and reservoir storage near the end of April 1991 (maps)	15
Monthly departure of actual streamflow (October 1986-April 1992) from median streamflow, 1951-80 (graphs)	16
Actual monthly streamflow, 1991 and 1992 water years, compared with median streamflow, 1951-80 (graphs)	17
Ground-water conditions (and map)	18
Water levels in key observation wells in some representative aquifers in the conterminous United States	19
New extremes at ground-water index stations	20
Monthend ground-water levels in selected wells (graphs)	21
Bureau of Reclamation reservoir storage in selected river basins (with map)	22
Total precipitation and Percentage of normal precipitation (maps)	24
United States precipitation in historical perspective (with graphs)	25
pH of precipitation for March 23-April 26, 1992 (map)	26
Distribution of precipitation-weighted mean pH for all NADP/NTN sites having one or more weekly samples for	
March 23-April 26, 1992 (graph)	26
Temperature and precipitation outlooks for May-July 1992 (maps)	27
Explanation of data	27

SUMMARY OF APRIL 1992 STREAMFLOW RANGES

MONTHLY AND CUMULATIVE DEPARTURE OF TOTAL MONTHLY MEANS FROM TOTAL MONTHLY MEDIANS (1951-80)

NEW EXTREMES DURING APRIL 1992 AT STREAMFLOW INDEX STATION

				Previous Apr extremes (period of reco			April 199	02	
Station number	Stream and place of determination	Drainage area (square miles)	Years of record	Monthly mean in cfs (year)	Daily mean in cfs (year)	Monthly mean in cfs	Percent of median	Daily mean in cfs	Day
		I	OW FLO	ws					
06867000	Saline River near Russell, Kansas	1,502	40	6.00 (1991)	4.38 (1991)	2.70	6	2.60	31
16587000	Honopou Stream near Huelo, Maui, Hawaii	.64	80	.84 (1953)	.38 (1983)	.57	10	.35	*
16700000	Waiakea Stream near Mountain View, Hawaii, Hawaii	17.4	61	.66 (1931)	.00 (1931)	.11	1	.02	27
		H	IGH FLO	WS					
08960100	Skeene River at USK, British Columbia	16,293	58	28,530 (1941)	92,865 (1977)	39,194	334	61,086	28
50112500	Rio Inabon at Real Abaio, Puerto Rico	9.7	25	16.2 (1978)	126 (1983)	19.19	376	87.0	20

^{*}Occurred more than once.

Susquehanna River at Harrisburg, Pennsylvania, and the Willamette River (adjusted) at Salem, Oregon.

The combined flow of the 3 largest rivers in the lower 48 States—Mississippi, St. Lawrence, and Columbia—averaged 1,076,000 ft³/s, 24 percent below median and in the below-normal range, after a 6 percent decrease in flow from March to April. Flow of the St. Lawrence River was in the normal range for the 11th consecutive month. Flow of the Mississippi River was in the below-normal range after a normal range March. Flow of the Columbia River was in the normal range for the third consecutive month after five consecutive months in the below-normal range. Hydrographs for both the combined and individual flows of the "Big 3" are on page 10. Dissolved solids and water temperatures at four large river stations are also given on page 10. Flow data for the "Big 3" and 42 other large rivers are given in the Flow of Large Rivers table on page 11.

Month-end index reservoir contents were in the below-average range (below the month-end average for the period of record by more than 5 percent of normal maximum contents) at 27 of 100 reporting sites, compared with 29 of 100 at the end of March, and 37 of 100 at the end of April 1991, including most reservoirs in Quebec, Nova Scotia, Maryland, Nebraska, the Dakotas, Idaho, Utah, Nevada, California and the Colorado River Storage Project. Contents were in the above-average range at 38 reservoirs (compared with 39 last month, and 39 a year ago), including most reservoirs in Maine, New Hampshire, Massachusetts, New York, the Carolinas, the Tennessee Valley, Wisconsin, Texas, New Mexico, Arizona, and Washington. Reservoirs with contents in the below-average range and significantly lower than last year (with normal maximum contents of at least 1,000,000 acre-feet) are: Gouin, Quebec; the New York City Reservoir System, New York; Boise River, Idaho; and Lake Berryessa, California. Only one reservoir had less than 10 percent of normal maximum contents: Lake Tahoe, California-Nevada, which had no usable storage for the 19th consecutive month. Graphs of contents for seven reservoirs are shown on page 12 with contents for the 100 reporting reservoirs given on page 13. Reservoir storage conditions near the end of April 1992 and April 1991 are shown on streamflow maps on page 15.

Mean April elevations at four master gages on the Great Lakes (provisional National Ocean Service data) were in the normal range and below median on all four lakes. Levels fell from those for March on Lake Superior, and rose from those for March on the other three lakes. April levels ranged from 0.13 foot lower (Lake Superior) to 0.92 foot higher (Lake Ontario) than those for March. Monthly means have now been in the normal range for 7 months on Lake Superior, 23 months on Lake Huron, 13 months on Lake Erie, and 2 months on Lake Ontario. April 1992 levels ranged from 1.33 feet lower (Lake Ontario) to 0.01 foot higher (Lake Superior) than those for April 1991. Stage hydrographs for the master gages on Lake Superior, Lake Huron, Lake Erie, and Lake Ontario are on page 14.

Utah's Great Salt Lake (graph on page 14) fell 0.20 foot, ending the month at 4,202.10 feet above National Geodetic Vertical Datum. Lake level was 0.70 foot lower than at the end of April 1991, and 9.75 feet lower than the maximum of record which occurred in June 1986 and March-April 1987.

Maps on page 15 show streamflow conditions for April 1992 and April 1991. April 1992 has about 32 percent less area in the above-normal range, about 38 percent more area in the below-normal range, and about 5 percent less area in the normal range than April 1991. Below-normal range streamflow occurred during both months in parts of Hawaii, California, Oregon, Nevada, Utah, Idaho, Montana, Wyoming, Colorado, Kansas, Nebraska, the Dakotas, Saskatchewan, Manitoba, Ontario, Maine, New Hampshire, Vermont, Massachusetts, Rhode Island, Connecticut, New York, New Jersey, and Alabama. Above-normal range streamflow occurred during both months in parts of British Columbia, Arizona, New Mexico, Colorado, and North Carolina. Both maps also show reservoir storage near the end of the month at all reporting index reservoir stations for comparison with streamflow.

Graphs for 12 hydrologic areas show monthly percent departure of streamflow from median for the 1987-92 water years (page 16) and also compare monthly streamflow for the 1991 and 1992 water years with median monthly streamflow for 1951-80 (page 17). Streamflow decreased from that for March in the Florida and Gulf of Mexico, Upper Mississippi River, and the Southern Great Plains and Rio Grande basins, and increased in the other 9 basins. Streamflow was above median in the Upper Mississippi River, Missouri River, Southern Great Plains and Rio Grande, Colorado River, and Pacific Slope basins, and below median in the other 7 basins.

MONTHLY MEAN DISCHARGE OF SELECTED STREAMS

Area between light-weight solid lines indicates range between highest and lowest record for the month. Dashed line indicates median of monthly values for reference period, 1951-80. Heavy line indicates mean for current period.

APRIL WEATHER SUMMARY

(From Weekly Weather and Crop Bulletin, USDA/NOAA Joint Agricultural Weather Facility)

The month of April commenced with wintry conditions in the East while abnormally warm weather covered the Pacific Northwest and northern Rockies. A blast of Arctic air produced more than a dozen record lows from the Deep South to the mid-Atlantic as freezing temperatures engulfed the Deep South and south Atlantic. Wintry conditions also prevailed from the extreme northern Plains eastward to New England. More than six inches of snow blanketed parts of the upper Midwest and Great Lakes and eventually spread into western New England. In sharp contrast, highs soared above 80°F as far north as Oregon and South Dakota, and several daily record highs were established. Strong thunderstorms generated heavy rain, hail, damaging winds, and numerous tornadoes across the southern Plains, Midwest, and Southeast. Farther west, up to six inches of rain drenched parts of Oregon and northern California while blizzard conditions buffeted portions of Alaska's Arctic Coast.

During the middle of the month, Arctic air settled across the northern tier of states from the Dakotas eastward. Nearly a dozen daily record lows were observed from the northern Plains to the Ohio Valley, with readings plummeting below zero in the upper peninsula of Michigan. A wintry mixture of precipitation fell across the upper Midwest, making driving hazardous on portions of I-90 in Minnesota. Along the boundary between the Arctic air and more spring-like weather farther south, severe thunderstorms, packing heavy rain, large hail, and damaging winds, tore through portions of the Great Plains and Ohio Valley. More than a dozen tornadoes touched down in the Plains and Midwest while over eight inches of rain inundated parts of southeastern Texas and central Oklahoma, causing flash floods. Unseasonably warm weather dominated from the central High Plains eastward to the central Appalachians. At least two dozen daily record highs were established from Wyoming to West Virginia as readings soared above 80 °F. Farther west, heavy snow buried the Colorado Rockies, with up to ten inches falling at Vail. Bitterly cold conditions gripped interior sections of Alaska early in the week. The mercury sank to -23 °F at Fairbanks, AK, setting a record for the lowest reading so late in the season.

A major spring storm brought wintry conditions to a large portion of the nation's midsection and severe weather across much of the eastern half of the U.S. during the third week of April. More than a foot of snow buried the Black Hills and lower Missouri Valley. Wind gusts of up to 60 mph accompanied the storm, producing blizzard-like conditions in the Black Hills and drifts over three feet in eastern Nebraska. International Falls, MN received enough snow to push their seasonal total to a record 105.7 inches. The system funneled cold air out of Canada in its wake, yielding record daily lows in the central Plains as readings dipped into the twenties. Snow associated with this system continued over the upper Midwest, where a few inches fell from northeastern Minnesota into northwestern Wisconsin. Ahead of the system, severe weather exploded from the Deep South northeastward into the Ohio Valley as strong thunderstorms unleashed heavy rains, hail, and several tornadoes. Heavy rain again drenched southern Texas, where some locations have received almost twice their normal precipitation since the beginning of the year. Nearly eight inches of rain inundated southwestern Virginia while nearly half a foot soaked western North Carolina. Flooding and a weakened earthen dam forced the evacuation of nearly 300 people in the mountains of North Carolina. Elsewhere, dense fog contributed to two multi-vehicle accidents involving up to 60 cars and trucks on I-64 in the Virginia Blue Ridge Mountains. Farther west, cold weather replaced the persistent warmth in the Pacific Northwest, setting several record daily lows as readings dropped into the twenties.

The last week of April began with daily record highs baking central and southern sections of the western United States and High Plains while a large high pressure system over the mid-Mississippi Valley pulled unseasonably cool air southward into the East. The boundary between the contrasting air masses again served as a focal point for severe weather, which brought a barrage of torrential rain, large hail, high winds, and tornadoes to the southeastern Plains and lower Mississippi Valley as the month drew to a close.

Heavy rain inundated the West Coast with monthly totals approaching 14 inches at some higher elevations. Torrential downpours also soaked the Gulf Coasts of Texas and western Louisiana with up to a foot of rain during April while the central Appalachians, parts of Florida and adjacent Georgia, much of central Oklahoma, and portions of Iowa, Minnesota, Wisconsin, and Michigan recorded over four inches.

In sharp contrast, precipitation amounts were less than half of normal from the northern and central Plains westward to parts of Nevada and California. Abnormally dry weather was widespread across the central Mississippi and lower Ohio Valleys, through much of the Deep South, and along the Atlantic Coast from North Carolina to Maine. Hawaii and most of Alaska also reported drier than normal conditions.

Temperatures averaged 4 °F to 10 °F above normal over much of the western half of the country, causing many areas to record average temperatures among the warmest ten percent of the 1951-1980 April climatological distribution. The High Plains also reported departures of +3 °F to +7 °F while lesser positive departures were reported in the northern Rockies. In Alaska, readings averaged 2 °F to 4 °F above normal across the Panhandle and along most of the northern, western, and southern coasts.

Unseasonably cool weather generated departures of -2 °F to -5 °F across much of the Southeast. Temperatures averaged as much as 3 °F below normal in the upper Great Lakes, upstate New York, and New England as a result of repeated surges of Arctic air. Some sections of the middle Missouri Valley and southern Texas also experienced subnormal temperatures. In eastern Alaska, departures dipped as low as 4 °F. Near normal temperatures dominated Hawaii. Since the beginning of the year, most of the country has been quite warm, with only scattered southeastern and northeastern states experiencing submedian January - April temperatures.

EL NINO AND HAWAIIAN DROUGHT

(From Weekly Weather and Crop Bulletin, NOAA/USDA Joint Agricultural Weather Facility)

Atmospheric changes associated with the present El Niño event have contributed to unusual dryness in Hawaii. Statistical studies have shown that, during an El Niño event, Hawaii is prone to drier-than-normal conditions between November of the onset year (for example, 1991) and May of the following year (for example 1992). Hawaii lies at the northeasternmost fringe (map below) of an expansive zone that is typically affected by abnormal dryness during all, or part, of an El Niño event.

Potential Hawaiian Rainfall Impacts from El Niño

(based on statistical correlations)

Prepared by the Joint Agricultural Weather Facility. Source: Ropelwald and Halpert, 1987. Monthly Weather Review, (115) p. 1606-1626.

WET

DRY

(0) = Year of El Niño onset (that is, 1991) (+) = Year following onset (that is, 1992)

Since November 1, 1991, most Hawaiian locations have received less than half of the normal rainfall: Lihue, Kauai, 68 percent; Honolulu, Oahu, 30 percent; Kahului, Maui, 41 percent; and Hilo, Hawaii, 45 percent. Normals for the 6-month period vary greatly across the State. For example, Honolulu, on southern Oahu, typically receives about 500 mm (just under 20 inches), whereas Hilo, on the northeastern (windward) side of Hawaii Island, normally garners almost 2,000 mm (more than 75 inches). The current drought has adversely affected agriculture, forcing Hawaii and Maui Islands into irrigation water

restrictions, and altering or restricting planting schedules. Many rain-fed pastures and grazing areas are critically dry, according to the State's agricultural summaries.

Historical November to April rainfall data show an excellent correlation between El Niño events and Hawaiian drought. In Lihue, 20 of the past 21 El Niño events dating to 1905, have been accompanied by normal to below-normal rainfall. On 10 of those occasions (see first graph below), rainfall has been more than 200 mm below normal. Data for Hilo (not shown) and Honolulu (see second graph below) are similar, although El Niño events in 1957-58 and 1965-66 were marked by very wet conditions in Honolulu.

DEPARTURE FROM NORMAL RAINFALL, NOVEMBER-APRIL

DEPARTURE FROM NORMAL RAINFALL, NOVEMBER-APRIL

CALIFORNIA WATER CONDITIONS

(From California Water Supply Outlook, California Department of Water Resources)

Drought Extends Into Sixth Year

In keeping with the pattern of many El Niño years, April precipitation was well below average in California. The exceptions were a swath across the northern tier of counties which had been extremely dry so far and the southeastern desert where some early April showers boosted average area precipitation over the very low monthly average of only 0.2 inche. Statewide precipitation in April was about 65 percent of normal. Seasonal precipitation since October 1 is about 85 percent of average, but amounts in major Sierra watersheds are generally close to 70 percent.

This is the 6th consecutive year of much below average runoff. Water year runoff in 1992 is forecast to be about half average, not much different than last year. Coast Range runoff is better this year south of San Jose which has eased drought problems temporarily for those dependent on local streams. Central Valley basin water year runoff forecasts range from slightly more than 1991 in the north to somewhat less in the south, particularly the southern Sierra. As of this writing, State Water Project deliveries will be 45 percent of requests and Central Valley Project deliveries will range from 25 to 75 percent, depending on

the type of contract. The SWP amounts compare to 30 percent last year to urban users and none to agricultural contractors; the CVP deliveries are quite similar to last year.

Total in-state reservoir storage on the first of May was 20.2 million acre-feet (maf), 72 percent of average. This is about 2 maf more than last year. However, because of the warm spring much of the snowpack has already melted with mountain stream runoff expected to recede rapidly compared to last year. May 1 snowpack water content this year was only 25 percent of average, whereas, the pack last year, with cooler weather, was 65 percent of average. This means that the current reservoir storage advantage is likely to fade during the next two months and late summer levels overall probably will be similar to those of last year.

The driest six year period in Sacramento basin history is still 1929-34, with average unimpaired runoff of about 9.8 MAF per year or 53 percent of average. The 1987-92 average, based on the May 1 forecast, will be about 10 MAF. For Central California, including the central and southern Sierra, the current 6 year period is the driest such period in history by a wide margin.

CALIFORNIA STREAMFLOW (1984-92), RESERVOIR CONTENTS, AND STREAMFLOW (1944-92)

CALIFORNIA RESERVOIR INDEX STATIONS

PERCENT OF NORMAL CAPACITY

HYDROGRAPHS FOR THE "BIG THREE" RIVERS

Area between light-weight solid lines indicates range between highest and lowest record for the month. Dashed line indicates median of monthly values for reference period, 1951-80. Heavy line indicates mean for current period.

Provisional data; subject to revision

DISSOLVED SOLIDS AND WATER TEMPERATURES, FOR APRIL 1992, AT DOWNSTREAM SITES ON FIVE LARGE RIVERS

Station number	Station name	April data of following	Stream discharge during	Dissolve		Dissolve	d-solids dis	charge 1	Water	r tempera	ature 2
		calendar years	month Mean (cfs)	Mini- mum (mg/L)	Maxi- mum (mg/L)	Mean (t	Mini- mum ons per day	Maxi- mum	Mean in °C	Mini- mum in °C	Maxi- mum in °C
01463500	Delaware River at Trenton, New Jersey, (Morrisville, Pennsylvania)	1992 1945-91 (Extreme yr)	13,830 21,380 422,320	74.5 46 (1962)	97.8 124 (1981)	3,190 33,991	2,370 1,200 (1985)	4,585 21,500 (1983)	10.5 311.0	6.5 3.0	14.5 22.5
07289000	Mississippi River at Vicksburg, Mississippi	1992 1976-91 (Extreme yr)	652,300 991,500 4930,400	199 150 (1985)	261 288 (1986)	406,200 511,500	312,000 180,000 (1981)	497,000 1,030,000 (1979)	19.5 13.5	10.0 7.0	14.0 22.5
03612500	Ohio River at lock and dam 53, near Grand Chain, Illinois, (streamflow station at Metropolis, Illinois)	1992 1955-91 (Extreme yr)	255,800 426,600 4480,500	199 117 (1957)	235 282 (1969)	•••	77,900 22,400 (1976)	240,000 462,000 (1975)	•••	10.5 5.0	14.5 19.0
06934500	Missouri River at Hermann, Missouri. (60 miles west of St. Louis, Missouri)	1992 1976-91 (Extreme yr)	102,000 122,275 488,120	245 157 (1979)	437 504 (1981)	83,300 109,070	54,100 41,400 (1977)	131,400 270,000 (1984)	16.5 14.0	10.0 6.0	22.0 22.5
14128910	Columbia River at Warrendale, Oregon (streamflow station at The Dalles, Oregon)	1992 1976-91 (Extreme yr)	143,000 199,600 4220,700	92 85 (1976)	106 128 (1985, 1989)	38,800 56,400	23,500 22,300 (1977)	52,500 96,100 (1984)	11.0 9.0	10.0 6.5	12.0 12.5

¹Dissolved-solids concentrations, when not analyzed directly, are calculated on basis of measurements of specific conductance.

 $^{{}^{2}}$ To convert ${}^{\circ}$ C to ${}^{\circ}$ F: $[(1.8 \times {}^{\circ}\text{C}) + 32] = {}^{\circ}\text{F}.$

³Mean for 8-year period (1983-91).

⁴Median of monthly values for 30-year reference period, water years 1951-80, for comparison with data for current month.

FLOW OF LARGE RIVERS DURING APRIL 1992

			discharge	April 1992						
Station		Drainage area (square	through September 1985 (cubic	Monthly mean discharge (cubic feet per	Percent of median monthly discharge	Change in discharge from previous month		scharge near ad of month Million gallons		
number	Stream and place of determination	miles)	feet per second)	second)	1951-80	(percent)	second	per day	Date	
1014000	St. John River below Fish River at Fort Kent, Maine	5,665	9,758	28,170	134	621	46,400	30,000	30	
1318500	Hudson River at Hadley, New York	1,664	2,908	7,700	86	96	7,500	4,850	30	
01357500	Mohawk River at Cohoes, New York	3,456	5,683	† 10,200	71	53	7,000	4,500	30	
01463500	Delaware River at Trenton, New Jersey	6,780	11,670	† 13,830	59	4	13,400	8,660	30	
01570500	Susquehanna River at Harrisburg, Pennsylvania	24,100	34,340	57,100	79	5	65,400	42,300	26	
01646500	Potomac River near Washington, District of Columbia	11,560	111,500	118,900	101	-4	***	***	***	
2105500	Cape Fear River at William O. Huske Lock, near Tarheel, North Carolina.	4,852	5,002	† 4,831	78	-13	***	***	***	
02131000	Pee Dee River at Peedee, South Carolina	8,830	9,871	11,800	88	-16	35,400	22,900	30	
02226000	Altamaha River at Doctortown, Georgia	13,600	13,730	17,010	71	-44	12,000	7,800	30	
02320500	Suwannee River at Branford, Florida	7,880	6,986	10,090	100	-24	8,060	5,210	30	
02358000	Apalachicola River at Chattahoochee, Florida	17,200	22,420	† 23,870	72	-34	21,500	13,900	30	
2467000	Tombigbee River at Demopolis lock and dam, near Coatopa, Alabama.	15,385	23,520	† 16,470	34	-43	6,600	4,270	30	
2489500	Pearl River near Bogalusa, Louisiana	6,573	9,880	† 6,760	39	-53	5,170	3,340	30	
03049500	Allegheny River at Natrona, Pennsylvania	11,410	119,580	135,230	97	32	39,700	25,700	2	
03085000	Monongahela River at Braddock, Pennsylvania	7,337	112,480	† 113,360	69	-43	12,500	8,080	2	
03193000	Kanawha River at Kanawha Falls, West Virginia	8,367	12,550	19,920	119	-13	18,200	11,800	29	
3234500	Scioto River at Higby, Ohio	5,131	4,583	5,442	73	11	4,330	2,800	30	
3294500	Ohio River at Louisville, Kentucky ² #	91,170	115,800	175,800	84	-22	174,000	112,000	29	
3377500	Wabash River at Mount Carmel, Illinois	28,635	27,660	41,410	82	117	45,900	29,700	30	
3469000	French Broad River below Douglas Dam, Tennessee3 #.	4,543	16,739	† 17,548	67	-23				
04084500	Fox River at Rapide Croche Dam, near Wrightstown, Wisconsin. ²	6,010	4,238	6,675	96	14	10,300	6,640	30	
04264331	St. Lawrence River at Cornwall, Ontario, near Massena, New York. 4 #	298,800	243,900	245,000	92	6	250,000	162,000	30	
2NG001	St. Maurice River at Grand Mere, Quebec	16,300	24,910	† 24,400	55	155	67,700	43,800	2	
05082500	Red River of the North at Grand Forks, North Dakota	30,100	2,593	† 2,698	30	-37	3,690	2,380	30	
05133500	Rainy River at Manitou Rapids, Minnesota	19,400	12,920	16,000	95	70	23,000	14,900	30	
05330000	Minnesota River near Jordan, Minnesota	16,200	3,680	10,240	145	-48	16,500	10,700	31	
05331000	Mississippi River at St. Paul, Minnesota#	36,800	111.020	23,890	97	-31	36,800	23,800	3	
05365500	Chippewa River at Chippewa Falls, Wisconsin	5,650	5,149	12,700	123	39	9,600	6,200	30	
05407000	Wisconsin River at Muscoda, Wisconsin	10,400	8,710	18,100	115	59	13,700	8,850	3	
05446500	Rock River near Joslin, Illinois	9,549	6,080	9,180	91	3	10,200	6,590	3	
05474500	Mississippi River at Keokuk, Iowa#	119,000	63,790	126,900	98	1	183,000	118,000	30	
06214500	Yellowstone River at Billings, Montana	11,795	7,056	4,780	120	114	10,400	6,720	30	
06934500	Missouri River at Hermann, Missouri#	524,200	80,880	102,000	116	64	114,000	73,700	3	
07289000	Mississippi River at Vicksburg, Mississippi ⁵ #	1,140,500	584,000	† 652,300	70	-17	646,000	418,000	2	
07331000	Washita River near Dickson, Oklahoma	7,202	1.402	* 2,577	275	-12	1,870	1,210	2	
08276500	Rio Grande below Taos Junction Bridge, near Taos, New Mexico.	9,730	742	* 1,740	336	86	1,790	1,160	30	
9315000	Green River at Green River, Utah	44,850	6,391	† 3,775	71	8	***	***		
11425500	Sacramento River at Verona, California	21,251	19,430	† 9,205	47	-54	***			
13269000	Snake River at Weiser, Idaho	69,200	18,520	† 8,770	40	-19	8,050	5,200	3	
13317000	Salmon River at White Bird, Idaho	13,550	11,390	11,100	108	99	20,300	13,100	3	
13342500	Clearwater River at Spalding, Idaho	9,570	15,510	21,700	75	58	38,000	24,600	3	
14105700	Columbia River at The Dalles, Oregon ⁶ #	237,000	1193,500	1179,200	81	51	185,000	120,000	3	
14191000	Willamette River at Salem, Oregon	7,280	123,690	127,640	95	113	12,600	8,140	3	
15515500	Tanana River at Nenana, Alaska	25,600	23,810	7,457	93	4	8,400	5,430	3	
08MF005	Fraser River at Hope, British Columbia	83,800	96,250	* 104,500	174	66	175,000	113,000	31	

[#]Indicates stations excluded from the combination bar/line graph. See Explanation of Data.

† Below-normal range

¹Adjusted.

Adjusted.
 PRecords furnished by Corps of Engineers.
 Records furnished by Tennessee Valley Authority.
 Records furnished by Buffalo District, Corps of Engineers, through International St. Lawrence River Board of Control. Discharges shown are considered to be the same as discharge at Ogdensburg, N.Y., when adjusted for storage in Lake St. Lawrence.
 Records of daily discharge computed jointly by Corps of Engineers and Geological Survey.
 Discharge determined from information furnished by Bureau of Reclamation, Corps of Engineers, and Geological Survey.

USABLE CONTENTS OF SELECTED RESERVOIRS AND RESERVOIR SYSTEMS

120

80

Elephant Butte and Caballo, New Mexico Normal Maximum 2,394,000 Acre-Feet

USABLE CONTENTS OF SELECTED RESERVOIRS AND RESERVOIR SYSTEMS NEAR END OF APRIL 1992

[Contents are expressed in percent of reservoir or reservoir system capacity. The usable capacity of reservoir or reservoir system is shown in the column headed "Normal maximum"]

Principal uses: F-Flood control I-Irrigation			of normal			Reservoir or reservoir system Principal uses: F-Flood control			of normal		
M-Municipal	End	End	Average	End		I-Irrigation	P .		imum	-	
						M-Municipal	End	End	Average	End	
P-Power	of	of	for	of	Normal	P-Power	of	of	for	of	Normal
R-Recreation W-Industrial	April 1992	April 1991	end of April	March 1992	maximum (acre-feet) ¹	R-Recreation W-Industrial	April	April	end of	March	maximum
	2,7,2	2771	- April	1334	(acro-root)		1992	1991	April	1992	(acre-feet)1
NOVA SCOTIA Rossignol, Mulgrave, Falls						NEBRASKA Lake McConaughy (IP)	† 61	60	78	60	1.040.000
Lake, St. Margaret's Bay,						Lake McComingny (ir)	A OT	00	/8	00	1,948,000
Black, and Ponhook Reservoirs (P)	† 61	83	77	55	2226,300	OKLAHOMA					
QUEBEC						Eufaula (FPR)	99 † 82	98 90	97 102	95	2,378,000
Allard (P)	† 62	85	80	16	280,600	Keystone (FPR) Tenkiller Ferry (FPR)	103	105	101	83 102	661,000 628,200
Gouin (P)	† 43	65	51	43	6,954,000	Lake O'The Cherokees (FPR)	* 98	71	57	92	133,000
MAINE						Lake O'The Cherokees (PPR)	94	91	92	90	1,492,000
Seven Reservoir Systems (MP)	* 79	93	70	46	4,107,000	OKLAHOMA-TEXAS					
NEW HAMPSHIRE						Lake Texoma (FMPRW)	93	96	94	95	2,722,000
First Connecticut Lake (P)	* 63	82	52	34	76,450	TEXAS					
Lake Francis (FPR)	* 82	89 88	57 96	51 64	99,310 165,700	Bridgeport (IMW)	* 96	85	54	96	386,400
Lake w minipesitukee (FK)	1 00	00	90	04	103,700	Canyon (FMR)	* 98	94 63	82 81	146	385,600
VERMONT			-			International Falcon (FIMPW)	* 105	64	68	106	2,668,000
Harriman (P) Somerset (P)	76 78	69 85	78 75	50 61	116,200 57,390	Livingston (IMW)	* 99 92	101 86	92	99 93	1,788,000
	,,	05	,,,	01	31,390	Red Bluff (P)	* 39	21	93 27 91 36	41	570,200 307,000
MASSACHUSETTS						Toledo Bend (P) Twin Buttes (FIM) Lake Kemp (IMW)	94	101	91	101	4,472,000
Cobble Mountain and Borden Brook (MP)	* 96	93	88	89	77,920	Twin Buttes (FIM)	* 74	52 86	36 85	65 100	177,800 268,000
	,,,	,,,	00	03	11,320	Lake Meredith (FMW)	38	35	36	38	796,900
NEW YORK	*100	05	00	60	704 700	Lake Travis (FIMPRW)	• 99	100	81	103	1,144,000
Great Sacandaga Lake (FPR)	*107	95 91	90 91	59 65	786,700 103,300	MONTANA					
New York City Reservoir System (MW).	† 84	99	100	70	1,680,000	Canuon Ferry (FIMPR)	71	70	73	70	2,043,000
NEW JERSEY						Fort Peck (FPR)	† 60 60	55 47	81 56	61 56	18,910,000 3,451,000
Wanaque (M)	98	100	93	94	85,100		00	4/	30	30	3,431,000
PENNSYLVANIA						WASHINGTON					
Allegheny (FPR)	• 53	51	45	42	1,180,000	Ross (PR) Franklin D. Roosevelt Lake (IP)	* 42	20 13	27 46	34 78	1,052,000 5,022,000
Pymatuning (FMR)	96	96	101	86	188,000	Lake Chelan (PR)	38	58	39	23	676,100
Raystown Lake (FR)	* 68	67	61	68	761,900	Lake Cushman (PK)	* 95	95	86	82	359,500
Lake Wallenpaupack (PR)	19	70	78	64	157,800	Lake Merwin (P)	104	103	100	96	245,600
MARYLAND						IDAHO					
Baltimore Municipal System (M)	† 78	100	93	76	261,900	Boise River (4 Reservoirs) (FIP)	† 38	46	70	37 48	1,235,000
NORTH CAROLINA						Coeur d'Alene Lake (P) Pend Oreille Lake (FP)	† 72 54	91 52	122 56	40	238,500 1,561,000
Bridgewater (Lake James) (P)	• 99	96	92	86	288,800				-	40	********
Narrows (Badin Lake) (P) High Rock Lake (P)	98 • 95	97 95	100	97 74	128,900 234,800	IDAHO-WYOMING Upper Snake River (8 Reservoirs) (MP)	77	70	73	79	4,401,000
	,,,	,,,	04	14	24,000		"	70	13	13	4,401,000
SOUTH CAROLINA	* 92	07	02	01	1 (14 000	WYOMING			-	-	
Lake Murray (P) Lakes Marion and Moultrie (P)	*87	93 89	83 81	91 85	1,614,000	Boysen (FIP)	* 69 60	75 44	60	70 62	802,000 421,300
	-	-			.,,,	Keynoic (F)	† 15	16	45	15	193,800
SOUTH CAROLINA-GEORGIA Strom Thurmond Lake (FP)	76	83	74	76	1,730,000	Pathfinder, Seminoe, Alcova, Kortes,	† 41	38	55	40	3.056.000
Stoll Hamiloid Lake (FF)	70	03	/4	70	1,730,000	Glendo, and Guernsey Reservoirs (1)	1 41	38	33	40	3,056,000
GEORGIA						COLORADO					
Burton (PR)	97 90	97 92	92 91	86 89	104,000 214,000	John Martin (FIR) Taylor Park (IR)	† 13 * 60	12 65	20 54	19 61	364,400 106,200
Lake Sidney Lanier (FMPR)	65	67	62	66	1,686,000	Colorado-Big Thompson Project (I)	54	48	58	53	730,300
ALABAMA						COLORADO RIVER STORAGE					
Lake Martin (P)	98	97	95	90	1,375,000	PROJECT					
						Lake Powell; Flaming Gorge,					
TENNESSEE VALLEY Clinch Projects: Norris and						Fontenelle, Navajo, and Blue Mesa Reservoirs (IFPR)	† 61	63	71	60	31,620,000
Melton Hill Lakes (FPR)	63	70	61	57	2,293,000		1 01	0.5	**	00	21,020,000
Douglas Lake (FPR) Hiwassee Projects: Chatuge,	* 69	74	61	42	1,395,000	UTAH-IDAHO	4.26	37	64	35	1.421.000
Nottely Hiwassee Analachia						Bear Lake (IPR)	7 30	3/	04	33	1,421,000
Blue Ridge, Ocoee 3, and						CALIFORNIA					
Blue Ridge, Ocoee 3, and Parksville Lakes (FPR)	81	89	77	65	1,012,000	Folsom (FIMPR)	68	55	73	59	1,000,000
Watauga, Boone, Fort Patrick Henry.						Hetch Hetchy (MP)	† 19	20 15	38 34	31 15	360,400 568,100
and Cherokee Lakes (FPR)	• 75	82	66	66	2,880,000	Pine Flat (FIR)	† 24	22	58 83	19	1,001,000
Little Tennessee Projects: Nantahala,						Clair Engle Lake (Lewiston) (FP)	† 42	45	83 62	32 75	2,438,000
Thorpe, Fontana, and Chilhowee Lakes (FPR)	73	88	76	63	1,478,000	Lake Almanor (P) Lake Berryessa (FIMRW)	* 80 † 39	76 47	86	39	1,600.000
	13	88	70	03	1,410,000	Millerton Lake (FI)	* 86	73	66	71	503,200
WISCONSIN	* 06	07	773	**	265 000	Shasta Lake (FIPR)	† 60	50	88	53	4,377,000
Chippewa and Flambeau (PR) Wisconsin River (21 Reservoirs) (PR)	* 96	97 90	73 70	58 53	365,000 399,000	CALIFORNIA-NEVADA					
					23,1000	Lake Tahoe (IMPRW)	+0	0	58	0	744,600
MINNESOTA Mississippi River Headwater						NEVADA					
System (FMR)	36	39	31	30	1,640,000	Rye Patch (I)	† 10	7	64	8	194,300
NORTH DAKOTA						ARIZONA-NEVADA					
Lake Sakakawea (Garrison) (FIPR)	† 60	53	79	60	22,700,000	Lake Mead and Lake Mohave (FIMP)	* 77	76	70	78	27,970,000
SOUTH DAKOTA Angostura (I)	79	48	80	79	130,770	ARIZONA San Carlos (IP)	* 75	54	31	75	935,100
Belle Fourche (I)	† 43	44	70	38	185,200	San Carlos (IP)	* 88	96	57	85	2,019,100
Lake Francis Case (FIP)	† 79	77	85 74	78	4,589,000	NEW MEXICO					
Lake Oahe (FIP)	101	60 102	101	102	22,240,000 1,697,000	Conchas (FIR)	* 96	56	80	97	315,700
Lewis and Clark Lake (FIP)	90	82	88	89	432,000	Elephant Butte and Caballo (FIPR)		65	42	80	2,394,000

¹¹ acre-foot = 0.04356 million cubic feet = 0.326 million gallons = 0.504 cubic feet per second per day.

2Thousands of kilowatt-hours (the potential electric power that could be generated by the volume of water in storage).

^{*} Above-average range † Below-average range

GREAT LAKES ELEVATIONS

Area between light-weight solid lines indicates range between highest and lowest record for the month. Dashed line indicates median of monthly values for reference period, 1951-80. Heavy line indicates mean for current period. Data from National Ocean Service.

14 National Water Conditions

April 1992

MONTHLY DEPARTURE OF ACTUAL STREAMFLOW (OCTOBER 1986-APRIL 1992) FROM MEDIAN STREAMFLOW (1951-80)

PERCENT DEPARTURE FROM 1951-80 MEDIAN STREAMFLOW

ACTUAL MONTHLY STREAMFLOW, 1991 AND 1992 WATER YEARS, **COMPARED WITH MEDIAN MONTHLY STREAMFLOW, 1951-80**

MONTHLY MEAN DISCHARGE, THOUSANDS OF CUBIC FEET PER SECOND

New extremes occurred at 33 ground-water index stations (see table on page 20) during April—29 lows (including 8 all-time) and 4 highs (including 1 all-time)—compared with 32 new extremes last month. Graphs showing water levels at seven stations—for wells in the Western Mountain Ranges region in Washington, the Alluvial Basins region in Utah, the High Plains region in New Mexico, the Glaciated Central region in Kansas and Ohio, the Piedmont and Blue Ridge region in New Jersey, and the Atlantic and Gulf Coastal Plain region in Alabama—for the past 26 months are on page 21.

Ground-water levels in the Western Mountain Ranges region were below last month's levels and below long-term average throughout the Region. An April low occurred in the well in Montana.

In the Alluvial Basins region, levels were mixed in Nevada and at or below last month's levels elsewhere. Levels were above long-term average in Oregon, mixed in Nevada and New Mexico, and below average elsewhere in the Region. April lows occurred in wells in California, Utah, and New Mexico. An April high occurred in a well in New Mexico.

In the Columbia Lava Plateau region, water levels were below last month's except at one well in Idaho, and below long-term averages throughout the Region. April lows

occurred in all index wells in the Region; four of which were all-time lows. All-time lows occurred in the Snake River Plain aquifer wells at Gooding and Atomic City, Idaho; in the shallow alluvium aquifer well near Meridian, Idaho; and in the Columbia River basalts aquifer at Pendleton, Oregon.

Ground-water levels were below last month's levels throughout the Colorado Plateau and Wyoming Basin region. Levels were below long-term average in Utah and mixed with respect to average in New Mexico. An April low occurred in the well in New Mexico.

In the High Plains region, ground-water levels were at or below last month's levels and below long-term average throughout the Region. An April low occurred in the well in Kansas and an all-time low level occurred in the Ogallala aquifer near Lubbock, Texas.

Ground-water levels in the Nonglaciated Central region were generally at or below last month's levels in North Dakota, Texas, Kentucky, Maryland, and Georgia; mixed in Pennsylvania; and generally above last month's levels elsewhere. Water levels were above long-term averages in Texas, Kentucky, West Virginia, and Georgia; mixed in Pennsylvania; and below average elsewhere. April lows occurred in wells in North Dakota, Kansas, and Missouri. April highs occurred in Texas and West Virginia.

WATER LEVELS IN KEY OBSERVATION WELLS IN SOME REPRESENTATIVE AQUIFERS IN THE CONTERMINOUS UNITED STATES-APRIL 1992

	Aquifer type and local	Depth of well	Water level in feet	Departure	Net change	in water	Year	
GROUND-WATER REGION	aquifer	in		average	level in fe		records	
Aquifer and Location	pumpage	feet	surface datum	in feet	Last month	Last year	began	Remarks
WESTERN MOUNTAIN RANGES (1)								
Rathdrum Prairie aquifer near Athol, northern Idaho ALLUVIAL BASINS (2)	•	485	462.6	-0.9	-0.3	-1.8	1929	
Alluvial valley fill aquifer in Steptoe Valley, Nevada		122	7.77	3.93	02	36	1949	
Valley fill aquifer, Elfrida area near Douglas, Arizona	•	124	101.21	-18.37	.05	-2.09	1947	
Hueco bolson aquifer at El Paso, Texas	~	640	270.40	-18.51	.07	1.24	1964	
COLUMBIA LAVA PLATEAU (3)	-							
Snake River Plain aquifer near Eden, Idaho	•	208	132.9	-10.3	1.2	-3.3	1962	April low
Columbia River basalt aquifer, Pendleton, Oregon COLORADO PLATEAU AND WYOMING BASIN (4)		1,501	224.40	-38.78	-2.88	-4.72	1965	All-time lov
Dakota aquifer near Blanding, Utah		140	50.62	-3.65	27	-2.53	1960	
HIGH PLAINS (5)							.,,,	
Ogallala aquifer near Colby, Kansas		175	130.93	-12.23	55	89	1947	April low
Southern High Plains aquifer, Lovington, New Mexico		212	59.01	-5.01	01	.77	1971	
NONGLACIATED CENTRAL REGION (6)	-							
Sentinel Butte aquifer near Dickinson, North Dakota	0	160	21.78	-4.16	.01	65	1968	April low
Sand and gravel Pleistocene aquifer near	•	54	21.00	-3.59	.06	59	1937	April low
Valley Center, Kansas								
Glacial outwash sand and gravel aquifer near Louisville, Kentucky		94	18.14	6.10	07	-1.23	1945	
Upper Pennsylvanian aquifer in the Central	0	25	12.03	4.06	.14	2.30	1953	April high
Appalachians Plateau near Glenville, West Virginia GLACIATED CENTRAL REGION (7)								
Fluvial sand and gravel aquifer, Platte River Valley, near Ashland, Nebraska	•	12	5.80	-1.92	.01	04	1933	
Sheyenne Delta aquifer near Wyndmere, North Dakota	0	40	7.05	-3.56	.27	.67	1963	
Pleistocene (glacial drift) aquifer at Princeton in northern Illinois	•	29	5.90	1.39	.10	10	1942	
Shallow drift aquifer near Roscommon in north-centra	0	14	2.83	.98	.92	.45	1934	
part of Lower Peninsula, Michigan		E1	6 27	21	70	12	1954	
Silurian-Devonian carbonate aquifer near Dola, Ohio PIEDMONT AND BLUE RIDGE (8)		51	6.37	.21	.78	12	1954	
Water-table aquifer in Petersburg Granite, southeaster Piedmont, Colonial Heights, Virginia	n O	100	14.28	.22	42	63	1939	
Weathered granite aquifer, western Piedmont,	0	31	15.70	1.01	21	-2.45	1981	
Mocksville area, North Carolina	_							
Surficial aquifer at Griffin, Georgia	0	30	15.13	-2.00	26	.31	1943	
NORTHEAST AND SUPERIOR UPLANDS (9)								
Pleistocene glacial outwash aquifer, at		59	15.16	-2.33	.29	.36	1949	
Camp Ripley, near Little Falls, Minnesota								
Glacial outwash sand aquifer at Oxford, Maine	0	39	7.42	.20	.16	.25	1980	
Shallow sand aquifer (glacial deposits), Acton, Massachusetts	•	34	18.37	61	.33	40	1965	
Pleistocene sand aquifer near Morrisville, Vermont	0	50	16.59	.76	2.38	.84	1966	
ATLANTIC AND GULF COASTAL PLAIN (10)	_							
Columbia deposits aquifer near Camden, Delaware	0	11	7.64	-1.95	.52	-1.09	1950	
Memphis sand aquifer near Memphis, Tennessee	Ĭ	384	106.39	-15.68	19	32	1940	April low
Eutaw aquifer in the City of		270	16.0	3.6	2.8	8.5	1952	
Montgomery, Alabama								
Evangeline aquifer at Houston, Texas		1,152	282.94	13.72	4.80	20.57	1978	
SOUTHEAST COASTAL PLAIN (11)								
Upper Floridan aquifer on Cockspur Island, Savannah area, Georgia	-	348	33.13	-6.04	.33	2.97	1956	
Upper Floridan aquifer, Jacksonville, Florida	-	905	-22.8	-5.7	6	.8	1930	
Biscayne aquifer near Homestead, Florida	ō	20	7.15	81	26	.90	1932	

Ground-water levels in the Glaciated Central region were at or above last month's except in Iowa where they were mixed and Pennsylvania where they were below last months levels. Levels were above long-term averages in Minnesota, Illinois, and Michigan; mixed in Iowa, Ohio, and Pennsylvania; and below average in North Dakota, Nebraska, and Kansas. April lows occurred in wells in Iowa and Ohio. An all-time high level occurred in the

Devonian aquifer well near Morse, Iowa.

In the Piedmont and Blue Ridge region, ground-water levels were below last month's in Pennsylvania and New Jersey, above last month's in Maryland, and mixed elsewhere in the Region. Levels were below long-term averages in New Jersey, Maryland, and Georgia; at or above long-term averages in Virginia and North Carolina; and mixed in Pennsylvania.

NEW EXTREMES DURING APRIL AT GROUND-WATER INDEX STATIONS

					i surface datum		
					Previous A	pril Record	
WRD Station Identification Number	GROUND-WATER REGION Aquifer and Location	Aquifer type and local aquifer pumpage	Depth of well	Years of record	Average	Extreme (year)	April 1992
. 14411041	•	TER LEVELS					-
		TER LEVEL	,				
	WESTERN MOUNTAIN RANGES		***	16	20.61	25 25 (1201)	27.50
163906112043901	Cretaceous aquifer near Helena, Montana ALLUVIAL BASINS		110	16	29.61	35.86 (1991)	37.58
324340104231701	Roswell Basin shallow aquifer at Dayton, New Mexico	•	250	40	92.22	122.86 (1991)	123.17
	Basin-fill aquifer at Albuquerque, New Mexico	X	980	8	32.27	36.40 (1991)	37.14
	Mehrten aquifer near Wilton, California		300	5	131.54	134.99 (1991)	136.67
	Basin-fill aquifer near Holladay, Utah		165	13	62.97	78.75 (1991)	81.72
	COLUMBIA LAVA PLATEAU	_					
23659114111601	Snake River Plain aquifer near Eden, Idaho	•	208	30	122.6	129.9 (1982)	132.9
	Snake River Plain aquifer near Rupert, Idaho	ě	194	41	151.2	159.6 (1991)	163.0
	Snake River Plain aquifer at Gooding, Idaho	Ŏ	165	19	139.4	149.6 (1962)	1149.9
	Snake River Plain aquifer near Atomic City, Idaho	•	636	42	585.0	587.5 (1980)	1588.3
	Shallow alluvium aquifer near Meridian, Idaho	•	32	56	10.4	11.7 (1962)	113.8
453934118491701	Columbia River basalts aquifer at Pendleton, Oregon		1,501	22	185.62	219.68 (1991)	1224.40
	COLORADO PLATEAU AND WYOMING BASIN						
352023107473201	Westwater Canyon aquifer near Grants-Bluewater, New Mexico HIGH PLAINS		155	36	76.12	79.85 (1991)	81.29
341010102240801	Ogallala aquifer near Lubbock, Texas	•	202	41	57.84	91.58 (1991)	193.67
	Ogallala aquifer near Colby, Kansas	•	175	45	118.70	130.04 (1991)	130.93
	NONGLACIATED CENTRAL REGION						
375039097234201	Sand and gravel Pleistocene aquifer near Valley Center, Kansas	•	54	54	17.41	20.41 (1991)	21.00
375749091475001	Ozark aquifer near Rolla, Missouri	0	450	4	347.80	349.69 (1989)	351.44
375810097324301	Equus aquifer near Halstead, Kansas		57	52	22.62	35.07 (1991)	39.17
465755102410701	Sentinel Butte aquifer near Dickinson, North Dakota GLACIATED CENTRAL REGION	0	160	23	17.62	21.13 (1991)	21.78
411401081025000	Pennsylvanian sandstone aquifer near Windham, Ohio		55	45	19.05	21.39 (1954)	22.71
415534091251502	Cambrian Ordovician aquifer at Mt. Vernon, Iowa NORTHEAST AND SUPERIOR UPLANDS		1,557	4	335.78	338.67 (1991)	341.35
430235071275501	Bedrock aquifer near Hookset, New Hampshire	0	103	27	45.17	48.26 (1991)	48.28
445227067520101	Glacial sand and gravel aquifer at Hadley Lakes, Maine ATLANTIC AND GULF COASTAL PLAIN	0	30	6	3.59	4.03 (1988)	4.62
	Sparta aquifer system at Jackson, Mississippi		852	47	253.55	307.09 (1991)	1313.01
	Sparta aquifer near Ruston, Louisiana		703	17	223.33	236.24 (1991)	237.42
	Sparta aquifer near El Dorado, Arkansas		540	36	326.48	348.07 (1991)	370.21
	Mississippi Valley alluvial aquifer near Lonoke, Arkansas		135	16	108.56	118.11 (1991)	121.70
	Memphis sand aquifer near Memphis, Tennessee		384	52	90.71	106.30 (1989)	106.39
	Middle Potomac aquifer at Franklin, Virginia	•	305	31	169.78	207.63 (1991)	1213.61
372506076511703	Upper Potomac aquifer near Toano, Virginia		401	7	158.94	162.05 (1991)	1163.73
		ATER LEVEL	S				
332615104303601	ALLUVIAL BASINS Roswell Basin artesian aquifer at Roswell, New Mexico		324	25	59.88	44.46 (1990)	38.70
	NONGLACIATED CENTRAL REGION	_					
	Twin Mountains (Trinity) aquifer near Hurst/Fort Worth, Texas		667	13	456.51	442.11 (1991)	440.45
385604080495901	Upper Pennsylvanian aquifer near Glenville, West Virginia	0	25	38	16.09	13.58 (1990)	12.03
	GLACIATED CENTRAL REGION Devonian aquifer near Morse, Iowa		82	50	14.93	8.15 (1952)	² 6.08

1 All-time month-end low.

²All-time month-end high.

In the Northeast and Superior Uplands region, groundwater levels were above last month's levels except at one well in Maine where an April low occurred. Water levels were mixed with respect to average in Maine, Vermont, and Connecticut; and below average elsewhere.

In the Atlantic and Gulf Coastal Plain region, water levels were at or below last month's in Virginia, Mississippi, Tennessee, Kentucky, and Louisiana; mixed in New Jersey and Arkansas; and above last month's levels elsewhere. Ground-water levels were above long-term aver-

ages in Alabama, Kentucky, and Texas; and at or below average elsewhere. April lows occurred in wells in Virginia, Mississippi, Tennessee, Arkansas, and Louisiana. All-time lows occurred in wells in the Middle Potomac aquifer at Franklin and the Upper Potomac aquifer near Toano, Virginia, and in the Sparta aquifer system well at Jackson, Mississippi.

In the Southeast Coastal Plain region, water levels were mixed with respect to last month's levels and mixed with respect to long-term average throughout the Region.

MONTHEND GROUND-WATER LEVELS IN SELECTED WELLS

Area between light-weight solid lines indicates range between highest and lowest record for the month. Dashed line indicates average of monthly levels in previous years. Heavy line indicates level for current period.

MAMJ JASON DJF MAMJ JASON DJF MAM

1992

WATER LEVEL, FEET BELOW LAND-SURFACE DATUM

MAMJJASONDJFMAMJJASONDJFMAM

BUREAU OF RECLAMATION RESERVOIR STORAGE IN SELECTED RIVER BASINS APRIL 30, 1992

River basin number	Basin	Storage, in 1,000 acre-feet	Percent of average
1	South Fork Flathead	1,628	102
2	Yakima	930	116
3	Columbia	4,177	224
4	Upper Snake	3,147	100
5	Boise	410	52
6	Payette	548	113
7	Owyhee	158	24
8	Malheur	64	28
9	Umatilla	55	3
10	Deschutes	308	63
11	Rogue	65	52
12	Tualatin	54	104
13	Sacramento	2,669	77
14	Trinity	1,066	58
15	Feather	2,020	74
16	American	697	96
17	San Joaquin	447	137
18	Stanislaus	363	27
19	Lower Colorado	22,286	79
21	Lower Rio Grande	2,372	90
22	Upper Missouri	2,301	102
23	Bighorn	1,750	111
24	North Platte	1,250	73
25	Cheyenne	291	73
26	South Platte	¹ 550	94
27	Arkansas	² 400	94
28	Upper Green	³ 3,338	⁴ 89
29	Gunnison	⁵ 555	⁴ 67
30	San Juan	⁶ 1,615	⁴ 95
36	Upper Colorado	⁷ 13,913	⁴ 56
37	Klamath	474	55
38	Humboldt	21	21

BUREAU OF RECLAMATION RESERVOIR STORAGE IN SELECTED RIVER BASINS APRIL 30, 1992—continued

River basin number	Basin	Storage, in 1,000 acre-feet	Percent of average
39	Truckee (excluding Lake Tahoe)	102	57
40	Carson	75	38
41	Santa Ynez	177	126
42	Ventura	201	95
43	Republican	427	71
44	Solomon	203	73
45	Niobrara	93	103
46	Lower Platte	180	110
47	Washita	252	132

[1 acre-foot = 0.04356 million cubic feet = 0.326 million gallons = 0.504 cubic feet per second per day. The percent of average storage refers to the average storage on that date over a historic period of record which varies by reservoir.]

¹Includes Colorado River storage water for the Colorado Big-Thompson Project.

²Includes Fryingpan-Arkansas Project storage water.

⁵Blue Mesa Dam storage water.

³Flaming Gorge Dam storage water.

⁶Navajo Reservoir storage water.

⁷Lake Powell storage only. ⁴Percent of storage capacity rather than percent of average.

BUREAU OF RECLAMATION RIVER BASIN LOCATION

(From Weekly Weather and Crop Bulletin, NOAA/USDA Joint Agricultural Weather Facility)

UNITED STATES APRIL CLIMATE IN HISTORICAL PERSPECTIVE

Preliminary data for April 1992 indicate that temperature averaged across the contiguous United States was much above the long-term mean, ranking April as the 20th warmest on record (the record begins in 1895). For April 1992, at least 173 new record high temperatures were set, mainly in the western half of the country while at least 177 new record lows were set of which most were concentrated in the eastern third of the country.

Areally-averaged precipitation for the Nation was below normal for April (first graph below on left), ranking April 1992 as the 12th driest on record. The preliminary value for precipitation is estimated to be accurate to within 0.15 inche and the confidence interval is plotted in the graph as a '+'. Only 2.8 percent of the country experienced much wetter than normal conditions and 24.8 percent was much drier than normal.

Historical precipitation is shown in a different way in the second graph below on the left. The April precipitation for each climate division in the contiguous U.S. was first standardized using the gamma distribution over the 1951-80 period. These gamma-standardized values were then weighted by area and averaged to determine a National standardized precipitation value. Negative values are dry, positive are wetter than the mean. This index gives a more accurate indication of how precipitation across the country compares to the local normal climate. The areally-weighted mean standardized National precipitation ranked 1992 as the 7th driest April on record.

The temperature and precipitation rankings for April 1992 for the nine climatically homogeneous regions in the United States show that it was a rather warm and dry month for the country as a whole. Except for the Southeast and East North Central regions, which each had their 27th coolest April, temperatures were in the mid and upper thirds of the historical distribution for warmth. April 1992 was the third warmest April in the 98-year record for the West region as well as the Southwest and ninth warmest for the Northwest region. Precipitation rankings varied considerably. The Southwest region had the sixth driest April on record while, at the other extreme, the Northwest region recorded the twelfth wettest April and was the only region in the upper third of the historical distribution. The East North Central region was in the middle third of the historical distribution with a ranking of 33rd wettest while the remainder of the country was in the dry third of the historical distribution for precipitation. Utah experienced the warmest April on record while six other States ranked in the top ten warmest category.

For the year thus far, the Nation as a whole continued unusually warm, with January-April 1992 ranking as the second warmest such period on record. Over one half (53 percent) of the country has been very warm when compared to the normal while none of the country averaged very cold thus far this year. Four States (Montana, Oklahoma, South Dakota, and Wyoming) recorded the warmest such period on record while Idaho, Nebraska, North Dakota, Oregon, and Washington had the second warmest January-April on record. Kansas and Nevada had the third warmest April on record.

For the Nation, the year thus far shows areally-averaged precipitation near normal. (First graph on right below.) When the local normal climate is taken into account, the year to date ranks as the 37th driest such period on record. (Second graph on right below.)

Long-term drought conditions continued to increase on a National scale with April marking the fifth consecutive month of such increases. The percent area of the contiguous U.S. experiencing long-term drought (as defined by the Palmer Drought Index) rose to about 16 percent. At the same time, the percent area experiencing long-term wet conditions dropped slightly to around 17 percent.

Over 16 percent of the Nation suffered from below normal precipitation for the January-April period while only 10 percent experienced much above normal precipitation. Wyoming had the driest January through April period on record while New Jersey had the second driest such period. Delaware ranked third driest since records started in 1895. Five other States had their 10th driest or drier January-April period on record. Two States (Arizona and Texas) ranked in the top ten wettest category.

Six river basins were in the top third wettest of the historical distribution for the hydrologic year, now 7 months old. Topping the list was the Texas Gulf Coast Basin which had the wettest October-April period on record. The Rio Grande Basin had the eighth wettest such period and the Great Lakes Basin had the ninth wettest such period on record. On the other hand, the driest was the Pacific Northwest Basin with the 11th driest hydrologic year to date while five other river basins were in the lower third of the historical distribution. The California river basin had the 35th driest October-April period on record in 1992.

U.S. NATIONAL PRECIPITATION

JANUARY-APRIL, 1895-1992

U.S. NATIONAL WEIGHTED MEAN PRECIPITATION INDEX APRIL, 1895-1992

U.S. NATIONAL WEIGHTED MEAN PRECIPITATION INDEX JANUARY-APRIL, 1895-1992

(From Climate Variations Bulletin, National Climatic Data Center, NOAA)

pH of Precipitation for March 23-April 26, 1992

Current pH data shown on the map (• 4.9) are precipitation-weighted means calculated from preliminary laboratory results provided by the NADP/NTN Central Analytical Laboratory at the Illinois State Water Survey and are subject to change. The 128 points (•) shown on this map represent a subset of all sites chosen to provide relatively even geographic spacing. Absence of a pH value at a site indicates either that there was no precipitation or that data for the site did not meet preliminary screening criteria for this provisional report.

A list of the approximately 200 sites comprising the total Network and additional data for the sites are available from the NADP/NTN Coordination Office, Natural Resource Ecology Laboratory, Colorado State University, Fort Collins, CO 80523.

Distribution of precipitation-weighted mean pH for all NADP/NTN sites having one or more weekly samples for March 23-April 26, 1992. The East/West dividing line is at the western borders of Minnesota, Iowa, Missouri, Arkansas, and Louisiana.

Range of Precipitation-Weighted Mean pH

From Monthly and Seasonal Weather Outlook prepared and published by the National Weather Service

NATIONAL WATER CONDITIONS

APRIL 1992

Based on reports from the Canadian and U.S. Field offices; completed June 3, 1992

TECHNICAL

Thomas G. Ross, Editor

STAFF

Krishnaveni V. Sarma Judy D. Fretwell

COPY PREPARATION Thomas G. Ross Kristina L. Herzog

GRAPHICS

Thomas G. Ross Kristina L. Herzog Judy D. Fretwell Carol Harrison Brandon W. Bowers

The National Water Conditions is published monthly. Subscriptions are free on application to the U.S. Geological Survey, 419 National Center, Reston, VA 22092.

EXPLANATION OF DATA (Revised December 1990)

Cover map shows generalized pattern of streamflow for the month based on provisional data from 186 index gaging stations-18 in Canada, 166 in the United States, and 2 in the Commonwealth of Puerto Rico. Alaska, Hawaii, and Puerto Rico inset maps show streamflow only at the index gaging stations that are located near the point shown by the arrows. Classifications on map are based on comparison of streamflow for the current month at each index station with the flow for the same month in the 30-year reference period, 1951-80. Shorter reference periods are used for one Canadian index station, two Kansas index stations, and the Puerto Rico index stations because of the limited records available.

The streamflow ranges map shows where streamflow has persisted in the above- or below-normal range from last month to this month and also where streamflow is in the above- or below-normal range this month after being in a different range last month. Three pie charts show: the percent of stations reporting discharges in each flow range for both the conterminous United States and southern Canada, and also the percent of area in each flow range for the conterminous United States and southern Canada. The combination bar/line graph shows the percent departure of the total mean from the total median flow (1951-80) and the cumulative departure from median (in cfs) for all reporting stations (excluding eight large river stations indicated by # in the Flow of large rivers table) in the conterminous United States and southern Canada.

The comparative data are obtained by ranking the 30 flows for each month of the reference period in order of decreasing magnitude—the highest flow is given a ranking of 1 and the lowest flow is given a ranking of 30. Quartiles (25-percent points) are computed by averaging the 7th and 8th highest flows (upper quartile), 15th and 16th highest flows (middle quartile and median), and the 23rd and 24th highest flows (lower quartile). The upper and lower quartiles set off the highest and lowest 25 percent of flows, respectively, for the reference period. The median (middle quartile) is the middle value by definition. For the reference period, 50 percent of the flows are greater than the median, 50 percent are less than the median, 50 percent are between the upper and lower quartiles (in the normal range), 25 percent are greater than the upper quartile (above normal), and 25 percent are less than the lower quartile (below normal). Flow for the current month is then classified as: in the above-normal range if it is greater than the upper quartile, in the normal range if it is between the upper and lower quartiles, and in the below-normal range if it is less than the lower quartile. Change in flow from the previous month to the current month is classified as seasonal if the change is in the same direction as the change in the median. If the change is in the opposite direction of the change in the median, the change is classified as contraseasonal (opposite to the seasonal change). For example: at a particular index station, the January median is greater than the December median; if flow for the current January increased from December (the previous month), the increase is seasonal; if flow for the current January decreased from December, the decrease is contraseasonal.

Flood frequency analyses define the relation of flood peak magnitude to probability of occurrence or recurrence interval. Probability of occurrence is the chance that a given flood magnitude will be exceeded in any one year. Recurrence interval is the reciprocal of probability of occurrence and is the average number of years between occurrences. For example, a flood having a probability of occurrence of 0.01 (1 percent) has a recurrence interval of 100 years. Recurrence intervals imply no regularity of occurrence; a 100-year flood might be exceeded in consecutive years or it might not be exceeded in a 100year period.

Statements about ground-water levels refer to conditions near the end of the month. The water level in each observation well is compared with average level for the end of the month determined from the entire period of record for that well. Changes in ground-water levels, unless described otherwise, are from the end of the previous month to the end of the current month.

Dissolved solids and temperature data are given for five streamsampling sites that are part of the National Stream Quality Accounting Network (NASQAN). Dissolved solids are minerals dissolved in water and usually consist predominately of silica and ions of calcium, magnesium, sodium, potassium, carbonate, bicarbonate, sulfate, chloride, and nitrate. Dissolved-solids discharge represents the total daily amount of dissolved minerals carried by the stream. Dissolved-solids concentrations are generally higher during periods of low streamflow, but the highest dissolved-solids discharges occur during periods of high streamflow because the total quantities of water, and therefore total load of dissolved minerals, are so much greater than at times of low flow.

UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY 419 NATIONAL CENTER RESTON VA 22092

U.S. OFFICIAL MAIL

≅0.75 %

OFFICAL BUSINESS

Return this sheet to above address, if you do NOT wish to receive this material \square , or if change of address is needed \square (indicate change, including ZIP code).

00448