

Problem Statement

A consumer finance company specializes in lending various types of loans to urban customers. When the company receives a loan application, the company has to make a decision for loan approval based on the applicant's profile.

Two types of risks are associated with the bank's decision:

- •If the applicant is likely to repay the loan, then not approving the loan results in a loss of business to the company
- •If the applicant is not likely to repay the loan, i.e. he/she is likely to default, then approving the loan may lead to a financial loss for the company

Analysis has to be conducted summarizing the risk assessment the bank could carry out to reduce the risk of loan default.

Approach

- 1. Understand the data using the dictionary
- 2. Identify data issues
- 3. Clean data and create derived fields, bins, etc.
- 4. Find outliers and take appropriate action
- 5. Perform correlation exercise if required
- 6. Analyze columns for its effect on bad loans

Preparation for Analysis

Categorical

- addr_state
- · dti make bins
- emp_length
- grade, sub_grade
- · home_ownership
- · open_acc, total_acc check correlation
- · pub_rec, pub_rec_bankruptcies check correlation
- delinq_2yrs
- purpose
- verification_status

Contiguous

- · annual_inc make bins
- · loan_amnt make bins
- PREP DERIVED METRICS
- loan_status_count (Based on loan_status) := 1 if charged-off, 0 otherwise
- annual_inc_bin = 0 to 25000, 25001 to 50000, 50001 to 75000 and > 75000
- 3. loan_amnt = 0 to 5000, 5001 to 8000, 8001 to 12000, 12001 to 23000 and >23000

- 1. Columns were categorized as 'categorical' or 'contiguous'
- 2. Bins were created for few columns
- 3. Columns that needed correlation check were identified

Few Observations from Data Analysis

Lot of columns were null

Many columns have lot of null values. There's one column with 2459 null values but that's about 6%. So let's delete columns with null values months that

Correlation was performed

```
1
2 pub_corr = df0_cf['pub_rec'].corr(df0_cf['pub_rec_bankruptcies'])
3 print(pub_corr)
4 # Seems strongly correlated. Will use 'pub_rec_bankruptcies'
```

0.8585914697282653

Column values were analyzed

```
1 df0['term'].value_counts()
 2 df0['int_rate'].value_counts()
 3 df@['grade'].value_counts()
 5 df0['sub_grade'].value_counts()
 6 | df0['emp_title'].value_counts()
 7 df0['emp length'].value counts()
 9 df0['home_ownership'].value_counts() # There are few entries that don't make sense. We delete such rows
10 df0.drop(df0[df0['home_ownership'].isin(['OTHER', 'NONE'])].index, inplace=True)
12 | df@['verification_status'].value_counts()
13 df@['issue d'].value counts()
14 df0['loan_status'].value_counts() # The analysis will focus on paid and charged-off. Hence delete others
15 | df0.drop(df0[df0['loan_status'].isin(['Current'])].index, inplace=True)
16
17 df@['pymnt_plan'].value_counts() # This has single value. Hence drop this column
18 df0.drop(['pynnt plan'], axis=1, inplace=True)
19
20 df0['purpose'].value_counts()
21 df0['title'].value counts()
22 df0['dti'].value_counts()
24 df0['earliest_cr_line'].value_counts()
25 df@['revol util'].value counts()
27 | df0['initial_list_status'].value_counts() # This has single value. Hence drop this column
28 df0.drop(['initial list status'], axis=1, inplace=True)
30 df0['last_pymnt_d'].value_counts()
31 df0['last_credit_pull_d'].value_counts()
33 df@['application_type'].value_counts() # This has single value. Hence drop this column
34 df0.drop(['application_type'], axis=1, inplace=True)
```

Few Observations from Data Analysis Ctd.

Outliers were identified

```
#Create a box plot for the installment column
plt.boxplot(df0['installment'])
plt.show()
#df0['installment'].describe()
```


Looks like there are lot of outliers. So we delete rows where installment > 1000

Few Observations of Analysis

People living in rented or mortgaged property tend to default more

Few Observations of Analysis Ctd.

Does purpose of loan offer important insight?

```
1 #Plot a bar chart for purpose
 2 | df0_cf['purpose'].value_counts()
debt consolidation
                      2353
other
                       528
                       442
credit_card
small_business
                       378
home_improvement
                       271
major_purchase
                       202
                       139
car
medical
                        94
moving
wedding
                        81
vacation
educational
                        45
house
renewable energy
Name: purpose, dtype: int64
```

debt_consolidation, other, credit_card, small_business, home_improvement, major_purchase and car are focus areas. Particularly - debt_consolidation, other, credit_card and small_business

Conclusion

- Grades B, C and D are more likely to default
- People who own home don't tend to default as mush as others do. But others should be analyzed
- Loans taken for 'debt_consolidation', 'other', 'credit_card' and 'small_business' are more likely to default
- People who have been working for about 5 years or more than 10 years tend to default more on loan. Especially 10+
- People who have 4 to 11 credit lines are more likely to default
- People living in state code CA are more likely to default