GraphTiles: A Visual Interface for Supporting Imprecise Mobile Search

Figure 1. Comparing *GraphTiles* with IMDb's mobile website. (a) and (b): The MPM(Movie-person-movie) *QueryType*; (c) and (d): the PMP(Person-movie-person) *QueryType*.

ABSTRACT

Mobiles are generating a rapidly increasing proportion of search queries, ranging from specific fact-finding to unstructured exploration. Yet, search interfaces have not changed significantly to accommodate mobile constraints. Mobile search can be particularly challenging when traversing and learning about data relationships, such as those described in IMDb [2] and LinkedIn [3]. We examined the prevalence of these mobile search use cases in a two-week diary study. We hypothesized that the ability to view a link neighborhood around the search result could be quite helpful, particularly for more imprecise, open queries. For example, one user reported searching for the location where 'The sisterhood of the traveling pants' was filmed. Although their search was successful, it was difficult. A visual overview of such relationships could have been very helpful. To provide such overviews, we designed GraphTiles, a visual interface supporting mobile search. In an experimental evaluation, users found information more quickly with *GraphTiles* than with a standard mobile site.

Author Keywords

Mobile search, connected data, imprecise queries.

ACM Classification Keywords

H.5.m. Information Interfaces and Presentation (e.g. HCI): Miscellaneous

INTRODUCTION

According to recent reports, mobile search will soon surpass desktop search as measured by both queries and ad revenue [23][6]. Despite this growing importance, Cui and Roto [12] and Church and Oliver [11] find that current mobile search interfaces lead users to seek only information that is fairly specific (e.g. fact-finding) or quite general (e.g. browsing). Both types of information are easy to retrieve with queries, and easy to find in search results.

Ideally mobile users should not have to limit themselves in this way, and indeed often they do not, either because they try and fail to do so, or because of their pressing need for the information. Then their lack of knowledge about the information they seek and the limited query capability of the mobile interface [16] can force them to repeatedly reformulate their queries, and explore results extensively. For example, a user may seek a specific actor. If she cannot remember the name of

the actor (in which case she would directly search by name) or she might instead search for an actor who worked with the actor they seek.

As Lee *et al.* [19] point out, this "no man's land" of *imprecise* search (neither very general nor very specific) is more common than we might think, and some search engines have begun offering partial solutions. Search suggestions offer to complete keyword sets automatically in real time, helping users form better queries. Google's Knowledge Graph displays related facts from databases, making results easier to navigate. Yet neither solution is complete.

We believe that we can improve imprecise mobile search further by exploiting the entity-relationship structure in many online information sources to give mobile users a better overview of their results. Such sources might include movies and crew in IMDb [2], songs and artists in Pandora [4], and friends in Facebook [1]. These overviews reduce cognitive load through recognition, allow navigation of search results by attributes rather than only keyword [15], and guide users in reformulating queries that are typical of imprecise search.

In this paper, we present *GraphTiles*, a visual search interface designed help mobile users perform imprecise searches. The interface displays an incomplete portion of the local entity-relationship neighborhood: a thumbnail of the current page alone in the left column, some pages one link away in the middle column, and other pages two links away in the right column. To see the complete neighborhood, users can scroll the central and right columns vertically. While this layout implies many links, it does not indicate exactly where the links are between the second and third columns. Users can reveal these locations by selecting a page thumbnail from these columns, triggering an *interactive reordering* that highlights pages linked to the selection and places them onscreen or nearly so. Users can restore the original (better known) order by deselecting the page.

CONTRIBUTIONS

The main contributions of this paper are:

- Examining the prevalence of mobile search use cases in a two-week diary study. By categorizing the different facets of the search behavior in the study, we identify problems that the participants encountered, particularly around imprecise, open queries.
- Implementing a system called 'GraphTiles' specifically designed to support open, imprecise and near miss mobile searches for both bipartite and non-bipartite information neighborhoods.
- Performed two experiments one to evaluate how well mobile users find information using GraphTiles vs. a standard mobile website, and the other to evaluate various explicit link representations in non-bipartite information graphs.

RELATED WORK

One way of thinking about GraphTiles is that it exploits knowledge of information locality to improve search. Similarly, other mobile search tools often take advantage of user context such as location and time to provide a localized experience. Lymberopoulos et al. apply a data-driven approach where local search model at different levels of location granularity (e.g. city, state, country) are combined together to improve click prediction accuracy in the search results [20]. FindAll is a local mobile search engine that lets users search and retrieve web pages, even in the absence of connectivity. The premise for their work is that mobile users often search for web pages that they have previously visited, known as re-finding. FindAll estimates the benefits of local search, by learning the re-finding behavior of users [8]. *Hapori*, a local mobile search tool, not only takes into account location in the search query but richer context such as the time, weather and the activity of the user [18]. Amini et al. present Trajectory-Aware Search (TAS) that predicts the user's destination based on location data from the current trip and shows search results near the predicted location [7]. SocialSearchBrowser incorporates social networking capabilities with key mobile contexts to improve the search and information discovery experience of mobile users [10].

GraphTiles is essentially a visualization of and search interface for the local entity-relationship graph. There has been little work specifically addressing mobile visualization [9], and to our knowledge, no work on mobile visualization for search. Karstens [17] proposes node-link diagrams of hierarchies arranged around a rectangle to make efficient use of display space. He displayed nearly 1000 nodes, each represented with a very small circle. Hao and Zhang [14] propose a space-filling sunburst display of hierarchies. Their larger nodes are easier to interact with, but their graphs are much smaller. Pattath et al. [21] visualize general graphs numbering just a few dozen nodes using node-link diagrams. Finally, in work most closely related to our own, Da Lozzo et al. [13] use node-link diagrams centered around a specific node, again with very small nodes. To recognize mobile constraints, GraphTiles limits visualization to a graph neighborhood as do Da Lozzo et al., but like Hao and Zhang, it displays many links implicitly.

DIARY STUDY

We wanted to understand how often people perform *imprecise* queries, and how much of an influence those queries have on search difficulty. Imprecise queries can be characterized by at least one of two properties [19]:

- 1. Users iteratively refine multiple queries to find relevant information due to difficulty formulating an exact query.
- Users have difficulty navigating through their search results to find the answer they are looking for, leading to multiple link following.

Capturing typical mobile user behavior is particularly challenging because of the difficulty of following them through their daily lives. Diary studies let users "follow themselves". We ran a two-week diary study which collected individual search information [22]. We now describe the participant profile, web diary tool, and study procedure.

Category	Number of Searches	Percentage	Query Examples
			"lakes around raleigh"
Precise and Easy	425	49	"data mining companies in the US"
			"lenovo a580 review"
			"Where can I buy beautiful ruins at lowest price?"
Precise and Difficult	61	7	"home remedy for cat diarrhea"
			"how to transfer when taking a grey hound"
Imprecise and Easy			"labrador dog breeder"
Imprecise and Easy	174	20	"flights to west coast"
			"halloween costumes"
Imprecise and Difficult			"salmon recipes"
imprecise and Difficult	208	24	"name of movie with actors chang and bling"
			"bathroom vanity mirror, bathroom mirror"

Table 1. 4 categories of mobile searches in the diary study, their frequency of occurrence and examples.

Participants

We recruited 32 participants (21 college students, 8 software professionals, 2 office secretaries, and 1 school teacher) through online mailing lists and flyers. Their ages ranged between 18 and 62, with 17 being male and 15 female. All had normal or corrected-normal vision. They were required to have a mobile device capable of search, and to be regular users of that functionality. 14 participants had iOS, 11 had Android, and 7 had Windows phones.

Procedure

We provided each participant with a diary booklet to keep a history of their online searches. We asked them to record at least two searches per day in order to fill out a 25-page booklet over the two week period. We met each participant after a week in order to check their diaries and data, answer any questions, and help them improve their feedback. During the meeting, we audio-recorded the dialog to archive quotes and feedback. After the second week, we collected the booklets. Participants were either compensated \$9 or earned class credit. Each participant was assigned a unique ID to maintain their anonymity. If a participant completed a booklet before two weeks were over, we gave them a new one to fill out. We informed participants that they could terminate the experiment at any time, and that they should only divulge information that they were comfortable sharing. We also mentioned that we may publish anonymized quotes from their diaries.

The booklet contained 25 pages and each page included the questions listed below. If participants were not able to find an appropriate answer, they provided an explanation. We asked the participants to write down these details as soon as possible after they performed a search.

These were the questions on each page of the diary that participants answered as soon as they performed a search.

- 1. Date
- 2. Time
- 3. Duration of search task
- 4. What app or website did you access
- 5. What were you searching for?
- 6. Did you find what you were searching for at all? YES/NO
- 7. If you did find your information, please continue by filling in the blanks with numbers: I performed _ searches to find

- my information. I followed _ links after leaving the search results page.
- 8. Rate the difficulty of finding your information from 1–5 with 5 being very difficult. Add text to explain if you like.

Results

During the course of the diary study, we collected 868 search entries with an average of 27 entries per person. 9% of searches (33 out of 868) failed, not providing users with the information they sought. About a third (279 out of 868 search entries) were difficult (opposed to 'easy' described below). 41.2% used Google app, 49.4% used a specific url, and the rest used other apps (i.e Amazon app). Participants performed an average of 1.2 searches (median = 1, min = 1, max = 5) and followed 2.5 links (median = 2, min = 0, max = 39) to find their information. Participants evaluated the task difficulty at an average of 1.9 ($median = 2, \sigma = 1, min = 1, max = 5$) based on a Likert scale with 1 being very easy and 5 being very difficult.

The search queries were analyzed from 2 different perspectives. First, whether the queries were imprecise or precise. We define imprecise queries to consist of 2 or more intermediate queries or 3 or more links clicked. Otherwise, the queries were classified to be precise. Second, whether the queries were difficult or easy. Too hard indicates failed, with a difficulty rating of 4 or 5, or more than 2 minutes of work. Otherwise, the queries were classified to be easy.

Using these two classifiers, were were able to bin the queries into 4 categories: We found that 49 % of the queries were precise and easy, 7 % were precise and difficult, 20 % were imprecise and easy, and 24 % were imprecise and difficult. Table 1 shows various examples for these 4 categories.

From the results, we distill a number of key findings: Although search was usually successful, it was difficult about a third of the time (31%), especially when search was more imprecise. Mobile search using imprecise queries is a real problem, and most difficulty users have is with these queries. Further, most of these imprecise and difficult searches involve refinements to querying relationships between entities in search such as movies to cast on www.imdb.com or recipe ingredients to dishes on allrecipes.com.

In sum, we believe the large majority of searches could have benefited from a tool that helped users navigate through the information neighborhoods typical of imprecise search.

THE GRAPHTILES INTERFACE

(vidya: Isn't this too broad a claim for GraphTiles, and concerned that this does not flow well from the diary study?) We designed *GraphTiles* to help mobile search users handle three challenging search types: open, exploratory search, where information foraging behavior is opportunistic and direction is weak at best; ill-formed search, where direction is known but difficult to articulate; and near miss searches, where the direction can be articulated, but the search engine leaves users some distance away from desired information. All of these search types would benefit from an interface that displays some of the local information neighborhood, allowing users to approach their information more directly. We designed *GraphTiles* to be such an interface.

With *GraphTiles* (Figure 1 (a),(c)), we assume that users will employ search to find a locality of concern around a central node (e.g. for IMDb, "near John Wayne"). As discussed above, position in the layout reflects link distance from the center. When necessary, users can drag a non-central node to the left to change the central node. We display links largely implicitly: every node in the middle column has an implied link to the central node, and every node in the right column is reachable from the middle column. To represent links between the middle and right columns we support both explicit link display and interactive reordering around a selected link. Explicit links appear only when both linked nodes are currently displayed. Reordering has the added benefit of accelerating access to off-screen nodes.

We considered a circular (or rectangular) layout to make better use of the blank space in the left column, with a scroll around the central node rather than along it, but discarded it so that we could provide a glimpse of a larger two-link neighborhood. A circular layout with a two-link neighborhood would require much smaller nodes (difficult to touch with a finger tip), and would fit poorly in rectangular mobile displays.

IMDb is largely a bipartite graph, with movies linking to crew members and vice versa. *GraphTiles* quite appropriately exploits this in its interface, putting movies in one column, crew in the next, and assuming that there are no links between nodes in the same column. When graphs are not bipartite, representing within-column links explicitly is awkward at best. We generalize *GraphTiles* to all graphs by relying on interactive reordering alone, and demonstrate this with a second database, the Seattle Band Map.

EXPERIMENT: COMPARISON TO IMDB'S MOBILE SITE

Our experiment focused on evaluating how our system helps users answer imprecise queries. In the context of IMDb, users often want to recommend a movie to a friend, but cannot remember the name of that movie, nor the name of any actors in that movie. They do however know that one of the actors in the movie was also in a movie they know. They navigate from movie to actor to movie. We focused on answering imprecise queries of that nature. (We assumed that IMDb's mobile web

app is a better solution for more precise queries such as "The movies that John Wayne has acted in").

Figure 1 shows a comparison of the visuals used in *Graph-Tiles* and IMDb's mobile website (http://m.imdb.com) to answer the movie-person-movie(MPM) and person-movie-person(PMP) *QueryTypes*. We expected that *GraphTiles* would allow users to find answers to imprecise queries more quickly than IMDb's web app.

Method

We compared *GraphTiles* to IMDb's mobile site in an experiment with twenty participants, all of them employees at a large corporate research center. Each participant performed 120 information seeking tasks, using the same graph neighborhoods we used in our first experiment.

We used a fully crossed within subjects 2×2 design. As participants performed the tasks, we systematically altered two variables. Interface, or the tool used to access the IMDb information, had two levels: GraphTiles and the IMDb web app. QueryType had two levels: a movie-person-movie (MPM) query or a person-movie-person (PMP) query. If QueryType was MPM, we asked participants to find the person who worked in two given movies. In this case, the central node at the left of the visualization was always a movie. If QueryType was PMP, we asked participants to find the movie on which two given people collaborated. In this case, the central node at the left of the visualization was always a person. To answer the question, participants used a phone to scroll in the right column to find the second person's node, and then scroll in the middle column to find the movie connecting the two people, and select it.

In addition to displaying link lines, GraphTiles here implemented interactive reordering, which highlights nodes' links to a selected node and moves them onscreen. Every participant performed 30 trials with each of the $2 \times 2 = 4$ experimental treatments. We grouped trials by Interface into two blocks of 60 trials each. Thus participants performed all trials with the current Interface before moving on to the next. To combat the effects of fatigue and learning, we used complete counterbalancing across participants: half of them performed the GraphTiles block first, the other half the web app block first. Within each of these blocks, we randomly ordered the levels of QueryType. We randomized the order of graph neighborhoods without replacement, so that each participant saw each neighborhood exactly once.

Apparatus

We implemented *GraphTiles* on three Samsung SGH-i917 phones running Windows Phone 7.5, with an AMOLED display and a full capacitive touch screen. The monitor used to display questions was a 1920×1200 pixel Dell 24". Participants interacted with the visualization on a phone by scrolling with a swipe gesture or selecting nodes with a long tap.

We obtained our IMDb graph neighborhoods using the official IMDb API (http://www.imdb.com/interfaces), obtaining a large cross section of its database (approximately 3GB in size). We then randomly selected 60 nodes within the IMDb graph describing well known actors (supporting

- (a) Band and artist relationship
- (b) Band relationship
- (c) Interactive reordering with dimmed image when not related.

Figure 2. Applying GraphTiles to Seattle's music band data.

PMP queries), and 60 nodes describing well known movies (supporting MPM queries). We then sampled the two-link neighborhood around each actor (PMP) node by adding the top movies linked to it as indicated by IMDb's own API call; and then for each of those top movies, adding its top actors, again as indicated by IMDb's API call. We created two-link neighborhoods around movie (MPM) nodes similarly. The number of top movies returned by IMDb's API was generally much lower than the number of top actors.

Results and Discussion

All participants performed all trials correctly, so we report only completion times here. We tested significance using a two-factor repeated measures ANOVA. Only the two single variable effects were significant; they did not interact.

When using *GraphTiles*, participants were significantly $(F(1,19)=2291.833,\ p<0.001)$ faster than when using the IMDb web app. Average completion time with *GraphTiles* was 18.2s ($\sigma=5.27$), while with IMDb web app, it was 31.5s (SD 5.26).

Although its effect was significant (F(1,19) = 11.27, p < 0.005), QueryType's effect was not meaningful. The difference in completion times when participants looked for movies rather than persons was 0.6s: (25.0s for movies, 24.4s for persons).

Results in fact exceeded our expectations, with *GraphTiles* users almost twice as fast as IMDb web app users. *GraphTiles* was designed for imprecise queries; IMDb probably was not. What remains to be seen is whether or not a single interface can support both precise and imprecise queries well.

GRAPHTILES IN NON-BIPARTITE GRAPHS

While real and practical, the IMDb graph is bipartite: nodes contain two disjoint sets of either people (e.g. actors) or movies. *GraphTiles* quite appropriately exploits this structure, placing people and movies in different columns. However if *GraphTiles* is to find use with more general applications, it must be tested with non-bipartite graphs.

With this goal in mind, we used *GraphTiles* to the Seattle Band Map [5]. In this database, music bands from the Pacific Northwest are linked if they share band members or have collaborated with one another. By preprocessing the database, we could create a bipartite graph of musicians and bands where musicians and bands (Figure 2(a)), but that is not our purpose here.

Figure 2(b) shows a non-bipartite band-band layout using lines to represent links. The challenge here is representing links that start and end within the same *GraphTiles* column, which do not exist in bipartite graphs. Lines and most of the other explicit link representations we discussed perform poorly in such cases, since they are only displayed when both endpoints are onscreen, which will happen only rarely within the same column.

We believe interactive reordering is the best solution to this problem. In Figure 2(c), the user selects the band 'The Fartz', bringing all related bands onscreen or nearly so. Unrelated bands are dimmed out in the interface to further accentuate band connections.

EXPERIMENT: COMPARISON OF EXPLICIT LINK REPRESENTATIONS

We considered how to display links explicitly on the mobile screen. It might be tempting simply to draw lines between linked nodes (Figure 3c), but *GraphTiles* has unique characteristics that could make this solution untenable. As users scroll, nodes appear and disappear, meaning that linking lines do as well. Scrolling also causes the lines to move when they are onscreen, occluding a variety of other nodes and dynam-

ically relocating link crossings (making a well-known draw-back of link lines still worse). All of this dynamic behavior does not exist in most graph visualizations and could be quite disorienting during mobile search.

In creating alternative designs for displaying explicit links, we were (loosely) inspired by the grouping principles of Gestalt psychology [24]. The proximity principle places nearby items in the same group. Because we could not use proximity alone to display complex many-to-many relationships, we approximated proximity with an iconic representation of the neighboring column (Figure 3(d)). Rectangles in the representation indicate the presence of links to the node in the same position in the neighboring column. Similarity groups items that have similar properties such as color or texture (Figure 3(b) and 3(e)). Here, nodes containing the outline color or a thumbnail of a neighboring node are linked to that node. Like link lines (which use the Gestalt principle of connectedness), all of these representations must dynamically change as the user scrolls and nodes move, but the changes are much more restrained.

Method

Using IMDb as a testbed, we compared connectedness-inspired lines to our alternative designs in a controlled experiment, and included a text-based link display (Figure 3(a)) as a control condition. In this condition, nodes with the same text were linked. Note that because we were testing only explicit link representations, we did not enable interactive reordering in this experiment.

We expected that connectedness-, color- and texture-inspired links would perform better than text-based or proximity-inspired links. Because of the unique dynamic qualities of the *GraphTiles* visualization, we did not attempt to predict which link representation would be best.

Design

We used a fully crossed within subjects $5 \times 2 \times 2$ design. Link *Depiction* had five levels: text-based as well as proximity-, color-, texture-, and connectedness-inspired representations. *QueryType*, or the type of question asked, had two levels: a movie-person-movie (MPM) query or a person-movie-person (PMP) query. *Size*, or the rough size of the surrounding graph neighborhood, had two levels: small or below median, and large or above median.

Participants and Procedure

We had ten participants, all university students with normal or corrected-to-normal vision. We obtained informed consent from the participants, and asked them to read the instructions for the experiment. We then familiarized them with the task and link depictions using 10 training datasets, one for each combination of link *Depiction* and *QueryType*. Participants were free to ask verbal questions during training.

Participants then each performed 120 information seeking tasks, each using a different graph neighborhood in the IMDb database, with median size of 115 nodes. On average, they

completed all their tasks in one hour. Every participant performed six trials with each of the $5 \times 2 \times 2 = 20$ experimental treatments. We formed five blocks of 24 trials each, each block corresponding to one Depiction. Thus participants performed all trials with the current *Depiction* before moving on to the next. To combat the effects of fatigue and learning, we sampled all the orderings of *Depiction* using a 5×5 Latin Square. Within each of these *Depiction* blocks, we formed two 12-trial QueryType blocks. Half of the participants performed MPM questions first, half performed PMP questions first. Within each QueryType block, participants performed 6 trials with small neighborhoods and 6 with large neighborhoods. We randomized the order of these trials. To avoid any confound between treatments and graph neighborhoods, we randomized the match of graph to treatment. Each participant saw each neighborhood only once.

For each task, participants answered a question displayed on a nearby monitor. As for the *QueryType*, we used the same method as the previous summative experiment. We recorded the time to complete each trial, and whether or not the participant performed the trial correctly. Participants were paid \$10 for their effort.

Results

Figure 4. Average task completion times per depiction for the first experiment.

All participants completed all trials correctly, so we report only on completion time here. On completion times, we performed a single, three-factor repeated measures ANOVA. All single variable effects were significant.

The connectedness-inspired link Depiction indeed supported the fastest information seeking performance (F(4,36)=4.942,p<0.005). Average completion times in seconds for each Depiction were: connectedness 10.1s, texture 12.5s, color 13.0s, proximity 13.6s, and text 15.7s. We show the same times in Figure 4, along with standard error. Despite their drawbacks, link lines also have strengths: they are familiar to most viewers; and they are simple, introducing only one primitive per link, while other representations require changes at both linked nodes.

Figure 3. Different explicit link representations for *GraphTiles*. (a) *text:* nodes with the same name are linked. (b) *color:* nodes with the same color are linked. (c) *connectedness:* nodes with lines between them are linked. (d) *proximity:* nodes at/containing the same vertical position are linked. (e) *texture:* nodes with/containing the same image are linked.

Participants were much faster when asked to locate a person (the MPM QueryType) than when asked to locate a movie (PMP) (F(1,9)=43.869, p<0.001). Average completion times for person queries were 10.5s, and for movies 15.5s. This is likely an effect of graph size rather than some more subtle task difference. Recall that IMDb's API returned many more top actors working on a movie than top movies in which an actor worked. This meant that PMP neighborhoods contained many more nodes than MPM neighborhoods.

Participants were faster when working with small graph Sizes than with large graph Sizes (F(1,9)=83.911,p<0.001). Average completion times for small graphs were 11.7s, while for large graphs they were 14.2s.

The only significant interaction occurred between the *Query-Type* and *Size* variables (F(1,9) = 25.824, p = 0.001). When participants were asked to find movies in PMP neighborhoods, increasing graph Size had a large effect on completion times (13.4s vs. 17.6s). When they were asked to find persons in MPM neighborhoods, *Size*'s effect was minor (10.1s vs. 10.9s). In PMP neighborhoods, graphs were larger, so increasing *Size* had a larger effect.

Readers may wonder why average times in this experiment with *GraphTiles* were lesser than they were in our first experiment. One cause may be the increased practice with *GraphTiles* (10 training datasets) in this experiment.

Discussion

Results largely matched our expectations, with text-based and proximity-inspired links performing worst, texture-and color- inspired link *Depictions* performing better, and connectedness-inspired link lines performing best. However, users were only about 20% faster with link lines than with texture-inspired links containing thumbnails.

CONCLUSION AND FUTURE WORK

(vidya: again, are we supporting open, imprecise and near miss, or just imprecise?) As mobile devices become the dominant form of computing, mobile search will become increasingly important. In this paper we described *GraphTiles*, a new search interface specifically designed to support open, imprecise, and near miss mobile queries. In an experimental evaluation, accessing the IMDb graph with *GraphTiles* was nearly twice as fast as with the existing IMDb mobile web app.

GraphTiles could use design improvements to maintain visual continuity. When users change the central node, they can quickly become disoriented. Future experiments might study how well *GraphTiles* supports *both* precise and imprecise queries, open and near miss search, as well as non-bipartite graphs. Our current implementation is quite visual. *GraphTiles* will need improvement for largely textual search domains.

We also plan to evaluate *GraphTiles* on other devices such as tablets, where we might display larger neighborhoods. The comparative merits of each of our explicit link display techniques might be different when many more links must be displayed at the same time.

REFERENCES

- Facebook. http://wwwfacebook.com.
- 2. Internet movie database (imdb). http://www.imdb.com.
- 3. Linkedin. http://www.linkedin.com.
- 4. Pandora. http://www.pandora.com.
- The Seattle Band Map. http://www.seattlebandmap.com.
- 6. Mobile search will surpass desktop in 2015. *eMarketer* (2014).
- 7. Amini, S., Brush, A., Krumm, J., Teevan, J., and Karlson, A. Trajectory-aware mobile search. In

- Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI '12, ACM (New York, NY, USA, 2012), 2561–2564.
- Balasubramanian, A., Balasubramanian, N., Huston, S. J., Metzler, D., and Wetherall, D. J. Findall: A local search engine for mobile phones. In *Proceedings of the* 8th International Conference on Emerging Networking Experiments and Technologies, CoNEXT '12, ACM (New York, NY, USA, 2012), 277–288.
- 9. Chittaro, L. Visualizing information on mobile devices. *Computer 39*, 3 (2006), 40–45.
- Church, K., Neumann, J., Cherubini, M., and Oliver, N. Socialsearchbrowser: A novel mobile search and information discovery tool. In *Proceedings of the 15th International Conference on Intelligent User Interfaces*, IUI '10, ACM (New York, NY, USA, 2010), 101–110.
- 11. Church, K., and Oliver, N. Understanding mobile web and mobile search use in today's dynamic mobile landscape. In *Proceedings of the 13th International Conference on Human Computer Interaction with Mobile Devices and Services*, MobileHCI '11, ACM (New York, NY, USA, 2011), 67–76.
- 12. Cui, Y., and Roto, V. How people use the web on mobile devices. In *Proceedings of the 17th international conference on World Wide Web*, WWW '08, ACM (New York, NY, USA, 2008), 905–914.
- 13. Da Lozzo, G., Di Battista, G., and Ingrassia, F. Drawing graphs on a smartphone. 153–164. 10.1007/978-3-642-18469-7-14.
- 14. Hao, J., and Zhang, K. A mobile interface for hierarchical information visualization and navigation. In *Consumer Electronics*, 2007. ISCE 2007. IEEE International Symposium on, IEEE (2007), 1–7.
- 15. Hearst, M., Elliott, A., English, J., Sinha, R., Swearingen, K., and Yee, K.-P. Finding the flow in web site search. *Commun. ACM* 45, 9 (Sept. 2002), 42–49.
- 16. Kamvar, M., Kellar, M., Patel, R., and Xu, Y. Computers and iphones and mobile phones, oh my!: A logs-based comparison of search users on different devices. In Proceedings of the 18th International Conference on World Wide Web, WWW '09, ACM (New York, NY, USA, 2009), 801–810.
- 17. Karstens, B. Visualization of complex structures on mobile handhelds. In *In Proceedings of International Workshop on Mobile Computing* (2003), 17–18.
- Lane, N. D., Lymberopoulos, D., Zhao, F., and Campbell, A. T. Hapori: Context-based local search for mobile phones using community behavioral modeling and similarity. In *Proceedings of the 12th ACM International Conference on Ubiquitous Computing*, Ubicomp '10, ACM (New York, NY, USA, 2010), 109–118.

- 19. Lee, U., Kang, H., Yi, E., Yi, M., and Kantola, J. Understanding mobile q&a usage: an exploratory study. In *SIGCHI '12: ACM SIGCHI Conference on Human Factors in Computing Systems* (2012), 3215–3224.
- Lymberopoulos, D., Zhao, P., Konig, C., Berberich, K., and Liu, J. Location-aware click prediction in mobile local search. In *Proceedings of the 20th ACM International Conference on Information and Knowledge Management*, CIKM '11, ACM (New York, NY, USA, 2011), 413–422.
- Pattath, A., Ebert, D. S., May, R. A., Collins, T. F., and Pike, W. Real-time scalable visual analysis on mobile devices. R. Creutzburg and J. H. Takala, Eds., vol. 6821, SPIE (2008), 682102.
- 22. Sohn, T., Li, K. A., Griswold, W. G., and Hollan, J. D. A diary study of mobile information needs. In *Proceedings of the SIGCHI Conference on Human Factors in Computing Systems*, CHI '08, ACM (New York, NY, USA, 2008), 433–442.
- 23. Sterling, G. Matt cutts: Google mobile queries may surpass pc search this year. *Search Engine Land* (2014).
- 24. Wertheimer, M. Laws of organization in perceptual forms. *Psychologische Forschung 4* (1923), 301–350.