Formelsammlung

 $M\Delta\Delta$

Jan Caspar, Aktualisiert 21. April 2017

Algebraische Struktur

Man nennt $[(T_1, \ldots, T_m), f_1, \ldots, f_n]$ eine algebraische Struktur (mit den Trägermengen T_1, \ldots, T_m und Operationen f_1, \ldots, f_n).

Beispiele

Sehr oft haben wir es mit Strukturen mit einer Trägermenge und einer oder mehreren binären Operationen zu tun. z.B. $[Z,+][N,\cdot][N,+,\cdot][R,+,\cdot][Pot(M),\bigcup,\cap]$

Relationale Struktur

Man nennt $[(T_1,...,T_m),r_1,...,r_n]$ eine relationale Struktur (mit den Trägermengen $T_1,...,T_m$ und Relationen $r_1,...,r_n$).

Beispiele

e: $[N, \leq]$, $[N_0, |]$, Graph [G, E].

Halbgruppe

Eine binäre Operation \circ heißt assoziativ auf T, falls für alle $x, y, z \in T$ gilt:

$$(x \circ y) \circ z = x \circ (y \circ z).$$

Ist \circ assoziativ auf T, so nennt man $[T, \circ]$ eine **Halbgruppe**

Beispiele

 $[N,+][R,\cdot][Pot(M),\bigcup]$

Monoid

 $\varepsilon \in T$ heißt neutrales Element bzgl. \circ , falls für alle $x \in T$ gilt:

$$\varepsilon \circ x = x \circ \varepsilon = x$$

Besitzt T ein neutrales Element bzgl. \circ , so nennt man eine $\underline{\text{Halbgruppe}}\left[T,\circ\right]$ auch $\underline{\text{Monoid}}$.

 $[N_0,+][R,\cdot][Pot(M),\cup][f|f:A\rightarrow A,\circ]$

Gruppe

Ein Element $a \in T$ heißt invertierbar bzgl. \circ , falls es ein $b \in T$ gibt mit

$$a \circ b = b \circ a = \varepsilon$$
.

Man nennt b dann das zu a inverse Element bzgl. \circ

Falls jedes $a\in\mathcal{T}$ bzgl. \circ invertierbar ist, so nennt man ein Monoid $[\mathcal{T},\circ]$ auch **Gruppe.**

 $[Z,+][R\ 0,\cdot][f|f:Abij.\rightarrow A,\circ]$

kommutative Strukturen (abelsch)

Eine binäre Operation \circ heißt kommutativ auf T, falls für alle $x, y \in T$ gilt:

$$x \circ y = y \circ x$$
.

Ist die Operation o kommutativ, spricht man auch von

- · einer kommutativen Halbgruppe,
- · einem kommutativen Monoid,
- einer kommutativen Gruppe.

Statt kommutativ sagt man auch abelsch, z.B. abelsche Gruppe

Permutationen

Sei $M \neq \emptyset$ eine Menge. f ist Permutation von M genau dann wenn:

$$f: M \rightarrow M$$
 ist bijektiv

Seien f und g Permutationen von M, dann ist $f \circ g : M \to M, x \mapsto f(g(x))$ eine **Permutation**.

Hintereinanderausführung

- $f \circ g$ heißt **Hintereinanderausführung** (f nach g)
- ist assoziativ.
- Bzgl. \circ gibt es ein neutrales Element, die identische Funktion $\varepsilon: M \to M, x \mapsto x$
- Zu jeder Permutation f existiert die inverse Permutation f^{-1} mit: $\forall (f \circ f^{-1})(x) = f(f^{-1}(x)) = x \text{ und } \forall (f^{-1} \circ f)(x) = f^{-1}(f(x)) = x$ d.h.f $\circ f^{-1} = f^{-1} \circ f = \varepsilon$

Symmetrische Gruppe

Die Permutationen einer Menge M bilden mit der Hintereinanderausführung \circ eine Gruppe, genannt, die **symmetrische** Gruppe von M, in Zeichen S_M .

- Wir schreiben $S_n:=S_{1,2,\dots,n}$ für $n\in N$. Das sind die Permutationen der ersten n natürlichen Zahlen.
- Die S_n hat n! Elemente.

Null und Eins

- · Das neutrale Element einer Gruppe wird auch Einselement genannt.
- In additiver Schreibweise bezeichnet man das Operationssymbol in einer Struktur manchmal mit +. Das neutrale Element nennt man dann das Nullelement. Es gilt:

$$0 + a = a + 0 = a$$

• In einer Gruppe $[T, \circ]$ bezeichnet man das inverse Element von **a** mit a^{-1} , in additiver Schreibweise mit -a.

Ring

Eine Algebra [T, +, ∘] heißt **Ring**, wenn

- 1. [T, +] eine **abelsche** Gruppe und
- 2. $[T, \circ]$ eine Halbgruppe ist, und
- 3. wenn für alle $a, b, c \in T$ gilt: $a \circ (b + c) = a \circ b + a \circ c$ $(b + c) \circ a = b \circ a + c \circ a$. ("Distributivgesetz")

Ist $[T, +, \circ]$ ein Ring und \circ kommutativ, so ist $[T, +, \circ]$ ein **kommutativer Ring**. Gibt es ein Einselement bzgl. \circ , dann ist es ein **Ring mit Einselement**.

Beispiel

 $[Z,+,\cdot]$

Polynomringe

Polynome mit Addition und Multiplikation (aus der Schule bekannt) bilden einen **kommutativen Ring mit Einselement**.

Körper

Ein kommutativer Ring $[T, +, \circ]$ heißt **Körper**, falls $[T, 0, \circ]$ eine Gruppe ist.

Unterstruktur

Sei $[T,f_1,...,f_n]$ algebraische Struktur einer gewissen Klasse und $U\subseteq T,U\neq\emptyset$. Ist $[U,f_1,...,f_n]$ eine Struktur derselben Klasse, so nennt man $[U,f_1,...,f_n]$ eine **Unterstruktur** von $[T,f_1,...,f_n]$.

Wichti

Die Operationen f_j müssen **abgeschlossen** auf U sein, d.h. falls f_j eine k-stellige Funktion ist, dann muss für alle $x_1,...,x_k \in U$ gelten: $f(x_1,...,x_k) \in U$.

Beispiele

- [Z, +] Untergruppe von [R, +]
- [Z, +, ·] Unterring von [R, +, ·] (Kein Unterkörper!)
- [Q, +, ·] Unterkörper von [R, +, ·]
- [G, +, ·] Unterring von [Z, +, ·], wobei G = {..., -4, -2, 0, 2, 4, 6, ...} = 2Z

Isomorphismus

Isomorph bedeutet:

- · gleich "bis auf die Bezeichnung der Objekte"
- · nicht unterscheidbar aus der Sicht der Algebra
- · alle "algebraischen Eigenschaften" bleiben erhalten (z.B. Ordnung eines Elements)
- · Verknüpfungstabellen sind identisch (bis auf Umbenennung und Umstellung der Objekte)

Graphisomorphismus

Um zu beweisen, dass zwei Graphen isomorph sind, ist es notwendig, dass folgende Bedingungen erfüllt sind:

- · Beide Graphen haben dieselbe Anzahl Knoten und Kanten.
- Knoten mit denselben Eingangs- und Ausgangsgraden lassen sich einander zuordnen. Diese Bedinungen sind nicht hinreichend.

Tabelle mit Knoten aufstellen

- 1. OutDeg und InDeg für Knoten von ersten Graph aufstellen
- Knoten von zweiten Graphen zuordnen anhand von erster Tabelle (gleiche In und Out Degrees)

Sei G = $[V, \rightarrow]$ ein Graph.

$$InDeg(v) := |\{w \in V | w \rightarrow v\}| \text{ (Eingangsgrad)}$$

 $OutDeg(v) := |w \in V | v \rightarrow w | \text{ (Ausgangsgrad)}$

pq Formel

$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Rechnen mit Restklassen

 \sim_n ist "verträglich" mit + und · und damit eine Kongruenzrelation.

$$[x]_n + [y]_n := [x + y]_n$$

 $[x]_n * [y]_n := [x \cdot y]_n$

Eigenschaften der Restklassenoperationen

- $[Z_n, +, \cdot]$ ist kommutativer Ring mit Einselement
- $a \in Z_n$ ist invertierbar $\iff ggT(a, n) = 1$ (a und n teilerfremd)
- Falls p Primzahl, dann $[Z_n, +, \cdot]$ ist (endlicher) Körper.

Dividieren mit Restklassen

Multiplikation mit Inverse.

Erweiterter Euklidischer Algorithmus

Findet den größten gemeinsamen Teiler (GCD) von zwei positiven ganzen Zahlen. (Benötigt für Inverse, a^{-1} mit $a*a^{-1}=1 \mod n$ für a^{-1} existiert nur wenn ggT(a,n)=1)

ggT(a,b) d = s * a + t * b, wobei d der GGT ist.

Folglich wenn a und b teilerfremd sind 1 = s * a + t * b

1. Setze

$$m = a$$

$$n = b$$

$$s = 1$$

$$t = 0$$

$$u = 0$$

$$v = 1$$

- 2. Berechne q und r mit m = q * n + r (Division mit Rest)
- Setze

$$m = n$$
 $n = r$
 $u_{neu} = s - q * u$
 $v_{neu} = t - q * v$

4. Setze

$$s = u$$

$$t = v$$

$$u = u_{neu}$$

$$v = v_{neu}$$

5. Falls n > 0 gehe zu Schritt 2

Für a = 37 und b = 16

$$37 = 1*37 + 0$$

$$16 = 0*37 + 1*16 (q = 2)$$

$$5 = 1*37 - 2*16 (q = 3)$$

$$1 = (-3)*37 + 7*16 (q = 5)$$

$$0 = 16*37 - 37*16$$

Komplexe Zahlen

 $[\mathbb{C},+,\cdot]$ ist ein Körper.

$$i^2 = -1$$
, $i^3 = -i$, $i^4 = 1$, $i^5 = i$, $i^{-1} = \frac{1}{i} = -i$

Kartesische Koordinaten / Polarkoordinaten

- Kartesische Koordinaten: (x, y) $x = r \cos(\phi)$, $y = r \sin(\phi)$
- Polarkoordinaten $[r; \phi] r = \sqrt{x^2 + y^2} = |z|, \phi = \arctan(\frac{y}{x})$
- $x + yi = r(cos(\phi) + i sin(\phi))$

Rechenoperationen

 $z_1 = a + bi \ z_2 = c + di \ bzw. \ z_1 = [r_1; \phi_1] \ z_2 = [r_2; \phi_2]$

$z_1 \pm z_2$	$z_1 * z_2$	$\frac{z_1}{z_2}$	
$a \pm c + (b \pm d)i$	$a \pm c + (b \pm d)i$	Bruch erweitern mit z_2^*	karth.
ungünstig	$[r_1 * r_2; \phi_1 + \phi_2]$	$[\frac{r_1}{r_2}; \phi_1 - \phi_2]$	polar

konjugiert Komplex

$$z = a + i * b \rightarrow z^* = a - i * b$$

Potenzieren

$$z^n = [r^n; n\phi]$$
 d.h.
 $z^n = r^n(cos(n\phi) + i sin(n\phi))$

Betrag

$$|z| = \sqrt{x^2 + y^2}$$

Newton-Algorithmus

- 1. wähle Näherungsgrenze & Startwerte
- 2. Setze Startwert in Funktion und erste Ableitung ein
- 3. dividiere Funktionswert durch den Funktionswert der ersten Ableitung $\frac{f(x_n)}{f'(x_n)} = \overline{x}$
- 4. von Startwert das Ergebnis der Division von 3. abziehen ($x = x \overline{x}$), wieder Funktionswerte mit neuem Wert dividieren so lange bis Näherung ausreicht.

Sonstiges

- $a \circ b := (b-1)(a+1)$ ist nicht kommutativ auf R
- · Hintereinanderausführung von totalen Funktionen ist assoziativ.
- [N, ∗] ist keine abelsche Gruppe.
- In $[\mathbb{Z}_0, *]$ gilt 3 * 7 = 3
- In jeder Gruppe $[G, \circ]$ gilt **nicht**: $(a \circ b)^{-1} = a^{-1} \circ b^{-1}$
- In einem Monoid mit neutralen Element e gibt es ein a mit $a \circ a = e$
- Falls e das neutrale Element in einer Gruppe ist, dann ist $e^{-1} = e$
- Jede Algebra ist zu sich selbst isomorph
- Die Gleichung $|z^2|=1$ hat nicht genau 2 komplexe Lösungen