Timer-Counters

PM 6670...72

Service Manual

9499 465 00411 87 04 15 Third Edition

Industrial & Electro-acoustic Systems

PHILIPS

Important

As the instrument is an electrical apparatus, it may be operated only by trained personnel. Maintenance and repairs may also be carried out only by qualified personnel.

Please note

In correspondence concerning this instrument, please quote the type number and serial number as given on the type plate.

Timer-Counters PM 6670...72

Service Manual

PHILIPS

CONTENTS

	Cha	pter
Safety regulations	••	1
Circuit description	••	2
Adjustments		3
Self-test	••	4
Trouble-shooting	•••	5
Replacing parta	• • •	6
Circuit diagrams	••	7
Spare parta list	•••	8
Optional oscillators	•••	9

1. SAFETY REGULATIONS

-	General information	1-2
-	Grounding	1-2
_	Opening the cabinet	1-2
_	Line voltage setting	1-2
_	Fuses	1-2

1. SAFETY REGULATIONS

General information

This counter has been designed and tested in accordance with IEC Publication 348, Safety Requirements For Electronic Measuring Apparstus For Class 1 Instruments, and has been supplied in a safe condition. The present manual contains information and warnings that shall be followed by the user, to ensure safe operation and to retain the counter in a safe condition.

Before connecting the counter to the line (msins), visually check the csbinet, controls, connectors, etc, to sscertain whether any damsge has occurred in trsnsit. If any defects are apparent, do not connect the counter to the line. All components on the primary side of the line transformer are CSA approved and should only be replaced with original parts.

In the event of obvious damage, missing parts or if the safety of the counter is suspected, a claim should be made to the carrier immediately. A PHILIPS Sales or Service organisation should also be notified in order to facilitate the repair of the counter.

Grounding

The counter is connected to ground via a three-core line cable, which must be plugged into a socket outlet with a protective ground contact. No other method of safety grounding is permitted for this counter. When the counter is brought from a cold to a warm environment, condensation may cause a hazardous condition. Therefore, ensure that the grounding requirements are strictly met.

Any interruption of the protective ground, inside or outside the counter is dangerous. Line extension cables must slways have a protective ground conductor.

Opening of the csbinet

The counter shall be disconnected from all voltage sources before it is opened. If adjustment or maintenance of the counter with the covers removed is inevitable, it shall be carried out only by a qualified person, who is sware of the hazard involved. Bear in mind that capacitors inside the counter may still retain their charge, even if the counter is disconnected from all voltage sources.

Opening of the cabinet or removing of parts, except those to which access can be gained by hand, is likely to expose live parts and accessible terminals that can be dangerous to life.

Line voltage setting

Before connecting the counter to the line, ensure that it is set to the local line voltage. On delivery, the counter is set to either 115V or 220V, as indicated on the line voltage selector on the rear panel. If the voltage setting is incorrect, set the line voltage selector in accordance with the local voltage, before connecting the counter to the line.

Fuses

The counter is protected by a thermal fuse, located in the line transformer and a secondary fuse, 1.6A fast-blow (not PM 6670) on PCB U1. Remove the line plug before fitting a fuse. Ensure that only fuses of the specified type are used. If the counter is set for operation on 115V line voltage, but is connected to a 220V supply, the thermal fuse will blow immediately to protect the counter.

2. CIRCUIT DESCRIPTION

- Introduction	2-2
- The Microcomputer	2-2
- 0Q0040 Counter-on-a-chip	
- Meaauring functions and their input signals	2-4
- 120MHz Input Amplifier	2-5
- Trigger Indicator	2-6
- Input D Amplifier	2-6
- The Oscillator	2-7
- Measuring Time	2-7
- Hold-off	2-7
- Microcomputer - 0Q0040 Communication	2-7
- Microcomputer - Display - Function Selector Communication	2-9
- The Power Supply	2-10
- 1GHz Prescaler	2-12

2. CIRCUIT DESCRIPTION

Introduction

The PM 6670-series of counters are equipped with a microcomputer and a LSI counter-on-a-chip. The microcomputer reads the setting of the panel controls, calculates the result of the measurement and sends the value to the display. The LSI (0Q0040) doea the actual counting, but before the signal to be measured reaches the logic circuits it is pulse shaped in the input amplifier. A simplified block diagram of PM 6670...72 is shown in Fig. 2.1. More detailed block diagrama can be found in Section 7 (Circuit diagrams).

Fig. 2.1 Simplified block diagram.

The Microcomputer

The microcomputer (IC162) used in PM 6670...72 is an 8049 single-chip microcomputer with an 8-bit bi-directional data-bua and 16 atatic input/output porta. The internal memory consists of 128 byte RAM (read/write memory) and 2K byte ROM (Read-Only-Memory) for the program.

The microcomputer performs the following functions:

- reads the aetting of the controls on the front panel;
- senda control information to OQOO40 and other logic circuits;
- reads the decade counting registers in 0Q0040 after the measurement;
- calculatea and aenda the result to the display with correct resolution.

The program flow-chart ia shown in Fig. 2.3.

000040 Counter-on-a-chip

The OQO040 (IC161) is an in-house developed LSI counter-on-a-chip. It contains two 9-decade counting registers and an input synchronizing and timing control block. Its purpose is to:

- connect input A, input B, CARRY and CLK to the correct decade counting register;
- synchronize the atart/atop of a measurement after receiving start/stop requeata from the microcomputer;
- act aa a main gate;
- inform the microcomputer when a measurement has atarted and stopped.

Fig. 2.2 Block diagram of 000040.

Fig. 2.3 The program flow-chart.

Measuring functions and their input signals

	Signals	use	d in	0Q0040	
Function	Carry	Α	В	CLK	Comment
COUNT A start/atop by 8		x ¹	х		The main gate opens and cloaes after two eventa at input B. Single measurement *.
COUNT A gated by B		x1	х		The main gate is opened while input 8 ia high. Single measurement *.
COUNT A manual		х1			The main gate is controlled by the DISPL HOLD pushbutton. ST/ST/DATA high meana closed main gate.
FREQ A	χ2			х1	The preacaling factor ia 10.
FREQ C (PM 6672)	χ2			х1	The prescaling factor is 256.
PERIOD A		x ²		х1	
PHASE A/B		x	x	x1	See Note 1 on the next page
PULSE WIDTH A		x		х1	The main gate is opened while input A is high. Single measurement *.
RATIO A/B		х1	χ2		
RPM A		χ2		χ1	-
TIME INT single A-B		x	х	χ1	An event at input A opens the main gate and an event at input B closes the main gate. Single measurement *.
TIME INT average A-B		x	х	х1	See Note 2 on the next page

- 1) This signal is counted in OQ0040.
- The main gate is synchronized with this signal.
 The signal is also counted in OQ0040.
- *) A single measurement means that the set measuring time does not influence the real measuring time. The synchronization conditions for open main gate set the real measuring time. If the set measuring time is longer than the real one, the set measuring time functions as display time. Reading of the registers in OQOO4O and calculation of the result do not start until the sat measuring time has terminated.

Note 1 (Phase A/B):

The counting is controlled by two Main Gates in OQO040. One makes a Time Interval Average measurement. The main gate is opened by A and closed by B. The other main gate performs a period measurement, synchronized by signal B. The clock reference pulses are counted in both registers.

Fig. 2.4 Phase A/B measurement.

Note 2 (Time interval average A-B):

Two decade counting registers are used. One counts clock reference pulses while the main gate ia open. The aums are accumulated. The other counts the number of timea the main gate has been opened.

Fig. 2.5 Time Interval Average measurement.

The real measuring time depends on the aet measuring time, synchronization time and internal delay in OQOO40. The following table gives approx. total measuring times for different measuring functions.

Measuring function Total measuring time

COUNT A start/stop by B	MT+40ma
COUNT A gated by B	MT+40ms
FREQ A	MT+45ms
FREQ C	MT+140ms
PERIOD A	MT+45ms
PHASE A-B	MT+75ms
PULSE WIDTH A	MT+40ma
RATIO A/B	MT+45ms
RPM A	MT+50:ns
TIME INT average A-B	MT+50ms
TIME INT single A-B	MT+40ms

MT = set measuring time + synchronization time

120MHz Input Amplifier

The 120MHz input amplifier is identical for all models PM 6670...72. Split band circuitry, with overlapping range 5...150kHz, is used to achieve high performance from DC to high frequencies. Channel A and B are identical for accurate time interval measurements. The following circuit description applies to both channels, but only components for channel A are mentioned.

By pulling switch SK113, capacitor C1001 is connected in series with the input signal, i.e. ACcoupling. Attenuation by 10 is accomplished by R1001, R1002, R1027, C1018 and C1003. The frequency response is adjuated by capacitor C1002, see Section 3 (Adjustments). When pushbutton SK107 is released, the signal ia unattenuated and the 1 Mohm input impedance is set by resiator R1026.

Resistor R1004 limits the current. At high frequencies, R1004 is bypasaed by R1003 and C1004, to prevent any degradation of the high frequency responae. The maximum voltage allowed at input A and B is $260V_{\rm rms}$ up to 440Hz, falling to $12V_{\rm rms}$ for frequencies above 1MHz. The zenerdiodes GR101 and GR104 limit the voltage to \pm 2.7V to protect the impedance converter.

Transistors TS101 and TS102 form an HF impedance converter. This stage is optimized for high frequencies, as aignals below approx 150kHz run through IC101. The HF stage gain is 0.95. IC101, the LF stage, forms a voltage follower with high

input impedance and low output impedance. This stage is preceded by a voltage divider (R1007 and R1008) with an attenuation to match the HF stage, i.e. 0.95. Resistor R1029 ia necessary to prevent DC shift. Resistor R1028 and capacitor C1019 compensate for frequency attenuation due to R1029 together with the input capacitance at IC101:3. Resistor R1012 preventa aignals from the HF stage entering the output of IC101.

When SK109 ia pushed, IC101:6 is connected to ground via R1012 and C1010, forming a low-pass filter with a cut-off frequency of 50kHz. At the aame time, the HF atage ia grounded to prevent croastalk.

At IC102:7, the HF and LF signals are summed. IC102 is a fast amplifier/comparator with Schmitt trigger and hystereais control. In AC-mode, normally used for frequency measurementa, potentiometer R1018 adjusts the hystereais band (sensitivity) via IC102:4. In DC-mode, normally used for time interval measurementa, R101B adjusts the trigger level. In this case, the hystereais band is set to a minimum. The minimum hysteresis band is set via R1061 to approx 15mV; see Section 3 (Adjustments).

Transistora TS103 and TS104 convert the signal levels from negative to positive ECL levels, i.e. from -1.8...-0.8V to +3.2...+4.2V.

When switch SK110 is pushed, i.e. COM mode, the input B comparator is connected to channel A. The advantages of having this switch after the input circuit are less crosatalk, no increase of input capacitance, no decrease of input resistance and possibilities to use the low-pass filter.

Trigger Indicator (PM 6671...72)

The output from the 120MHz input amplifier, ia connected to a LED on the front panel via a trigger indicator circuit. The line receiver IC401 is configured as a comparator. Pin 11 of IC401 sets the reference voltage, V_{bb} =-1.3V. When the voltage at IC401:5 is lower than the voltage at IC401:4, transistor IS401 is turned

off, i.e. the trigger indicator LED is turned on, indicating that the trigger level is aet too high and vice versa. When the input amplifier triggers correctly, transistor IS401 is turned on and off, i.e. the LED blinks. The LED is lit during a time set by resistor R401 and capacitor C404.

Fig. 2.6 Trigger indicator timing diagram.

Input D Amplifier

This Schmitt trigger/amplifier is an AC-coupled input for external reference (or for ratio measurement). The output is a positive ECL signal, as shown in Fig. 2.7.

Fig. 2.7 A 100kHz sine-wave with $2V_{\mbox{\footnotesize pp}}$ amplitude, connected to Input D.

The Oacillator

The crystal KT151 ia connected in the feedback loop of IC1518. The circuit oscillates with a frequency of 10MHz. The resistor R1157 increases the output impedance of IC151B and makes the oscillator more atable. Internal or external reference (clock signal) can be selected with switch SK114 on the rear panel. Even if an external reference is used, the internal reference is still used as a clock aignal to the microcomputer. When an optional oscillator is installed in the counter, the crystal KT151 muat be removed. IC151B will then be used as an amplifier. IC151C is a buffer amplifier between the oscillator and the logic circuits. Output pins 14 and 15 of IC151C give two complementary ECL signals, which are converted to ITL signals in the differential amplifier TS151 and TS152. The TTL signal is available at INT STD OUT on the rear panel. This output can be used as an external input signal to another counter. The 10MHz clock signal is divided by two in IC152A to provide a 5MHz clock signal for the microcomputer. The 5MHz signal is also divided by two in IC1528 to provide a 2.5MHz clock signal for the optional Bus Interface PM 9696 via BU101:9.

Meaauring Time

IC153 ia used as an astable multivibrator, with the MEASURING TIME potentiometer controlling the frequency. The output from IC153 pin 3, see Fig. 2.8, is connected to the microcomputer input I1. The pulae duration is measured and converted to a measuring time, which can be varied in 33 steps per decade between 10ma...96s.

Fig. 2.8 The pulse duration is converted to a measuring time in the microcomputer.

The space between pulses is set by R1167 and C1156. The pulse duration is set by R1166, R1167, C1156 and the MEASURING TIME potentiometer R1 on the front panel. Potentiometer R1164 is used for adjusting the max pulse duration to 1.8ms.

If the jumper DV101 (TEST) is removed, the counter is set to the self-test mode; aee Section 4 (Self-test).

Hold-off (PM 6671 only)

During the set hold-off time, the counter ignorea re-triggering (channel A) or stop triggering (channel B). IC153 is configured as a monostable flip-flop. It is triggered by a pulae from 0Q0040 pin 7. The hold-off time, i.e. the time until the flip-flop ia reset, is set by R2, R1138 and C1130. The minimum hold-off time is adjusted by R1148; see Section 3 (Adjustments).

Microcomputer - 0Q0040 Communication

The signala from the input amplifiers are connected to an ECL network (IC130 and IC131), controlled by the SLOPE pushbuttons. The channel A signal ia connected to 0Q0040 input A (pin 1) and, after diviaion by 10 in IC160, to the CARRY input of 0Q0040 (pin 28). The channel B signal ia connected to 0Q0040 input B (pin 27) and the clock reference signal is connected to the CLK input of 0Q0040 (pin 2). For time and ratio measurements, the signal ia connected to pin 1 (A) and pin 27 (B). If the CHECK pushbutton is pushed, the signals from the input amplifiers are disconnected from 0Q0040. Instead, the 10MHz clock reference is connected to both input A and B of 0Q0040.

When IC162:30 is at logic low, the C channel (PM 6672 only) is connected to the CARRY input of OQ0040 via IC132. When IC162:30 is at logic high, the input C signal is disconnected. If the CHECK pushbutton is pushed while input C is selected, the 10MHz clock reference signsl is connected to the CARRY input of OQ0040 via IC160.

Before s mesaurement, the microcomputer resets the registers in 0Q0040 by aetting pin 23 (RESET) high snd makes 0Q0040 resdy by aending 39 information bits. The information is sent in aerial format to ST/ST/DATA, one bit for each positive-going slope of DATA CLK; see Fig. 2.9.

Fig. 2.9 The microcomputer senda information needed to make 000040 ready for a measurement.

When pin 28 of the microcomputer goes low again, the measurement starts as soon as the synchronization conditions are met. With EXT CONTROL it is possible to delay the start until a positive pulse is received at EXT CONTROL. OQOO40 pin 24 (READY) goes low and the microcomputer acknowledges by setting ST/ST/DATA high. The microcomputer then starts to count down the aet measuring time. During the actual measurement the microcomputer and OQOO40 do not communicate.

When the aet measuring time has elapaed, the microcomputer sets SCAN CLK/STOP low. 0Q0040 terminates the measurement when the synchronization conditions are met and aets READY high. The contents in the 1B decade counting registers in 0Q0040, are then aent in BCD format to the

microcomputer from A_{out}...D_{out}. The microcomputer reads one decade at a time and steps to the next decade by sending clock pulses to SCAN CLK/STOP. To read a digit, TBD CONTR is set high. To find out which decade is read, the microcomputer senda clock pulses to SCAN CLK/STOP until DECADE 9 (pin 8) goes high. This indicatea that the position is decade 9. The starts reading; see Fig. 2.10. microcomputer When all 18 decade counting registers have been read, the microcomputer calculates the result snd senda it to the display. It reseta 000040 and a new measurement can start.

The function COUNT A Manual ia initiated by releasing DISPL HOLD and terminsted by pushing DISPL HOLD. The pushbutton DISPL HOLD controls the signal ST/ST/DATA, which controls the main gate in OQOO40. ST/ST/DATA is low for an open main gate, i.e. pulses are counted.

Fig. 2.10 A new digit is read after each pulse to SCAN CLK/STOP when TBD CONTR is high.

Example:

Function aelector setting:

- select PERIOD A and push CHECK
- set measuring time to 10ms
- aet the input E switch to EXT RESET
- do not use hold-off (PM 6671)

A auitable trigger signal for an oscilloscope ia available on OQOO4O pin 23 (RESET).

Archief RadioDatabase.nl

Fig. 2.11 Timing disgrams for microcomputer and 000040 communication.

<u>Microcomputer - Display - Function Selector</u> <u>Communication</u>

The display, decimal points, unit indicator and function aelector are scanned by the microcomputer. During each scanning cycle the microcomputer senda out the measured result and reads the aetting of the function selector. Each digit is sequentially turned on for 0.5ms. The measurement can be sent both to the display and an installed option via connector BU101. The microcomputer pin 38 (P27) controls the information flow.

P27 low: the display and function selector is addreased

P27 high: the installed option is addressed

The bidirections data bus DBO...DB7 on the microcomputer is used for sending information to the display and receiving information from the function selector. The microcomputer pin 8 (RD) and pin 10 (WR) control this information flow.

WR poa flank: information is aent to the display RD poa flank: information is received from the function aelector

Four bita, DB4...DB7, are used for sending (in BCD format) the digits to be diaplayed. Each digit in the display shows its apecific value for a period of 0.5ms. The digit's value is 1stched and decoded to a seven-aegment format in aegment decoder/driver (IC201). remaining four bits, DBO...DB3, are used for addressing the digit to be displayed. This addresa ia sent in BCD format. The address is latched in the address latch (IC164) and decoded in the digit decoder (IC165). Only one of the outputs in the digit decoder ia high at a time. Thia high signal, opens the corresponding digit driver for 0.5ms. At the same time, the digit's value is aent from the segment decoder/driver. During the following 0.5ma, the next digit is turned on, and so on.

The current through a LED display flows from the +5V supply through the digit driver translator, the lighted aegments and then to earth via the aegment decoder/driver. All digits have s decimal point. Digit drivers 1...6 also have a unit indicator LED connected. Signal lines P24 (pin 35) and P25 (pin 36) of the microcomputer control them.

P24 low: a decimal point ia lit P25 low: a unit indicator LED is lit

The microcomputer blanks leading zeros by setting P26 (pin 37) low. This blanking signal is also used for the fail safe circuit. If the microcomputer stops, one digit might remain lit and could be degraded after a couple of minutes. If P26 (pin 37) stays high, C1160 will be charged to +5V. This results in a reset signal to the address latch. All outputs go low. The digit decoder sets output pin 3 high. Pin 3 is not connected to any digit driver so all digits will be turned off.

The output from the digit decoder is also used for reading the setting of the function selector. When a digit is lit, the microcomputer reads the setting. This is achieved by the RD output (IC162:23) going low, which opens the tri-state buffer IC163. The function selector setting information is now available on the bidirectional data-bus (DBO... DB3) to the microcomputer.

The logic statea are as follows:

Closed switch: logic high level Open switch: logic low level

Example:

Function selector setting:

- select PERIOD A
- push CHECK and DISPL HOLD
- set measuring time to 10ms
- set input E awitch to EXT RESET

The display will ahow:

A suitable trigger signal for an oscilloscope is available on IC165 pin 9. Timing diagrams are shown in Fig. 2.12 and 2.13.

Fig. 2.12 Details of the P27 aignal together with the Read and Write aignal from the microcomputer.

The Power Supply

PM 6671 and PM 6672 can be connected to

- 115V_{AC} or 230V_{AC} ±10%, 45...440Hz
- 11.8...28V_{DC}
- The optional battery pack PM 9693 (12VDC)

Note: PM 6670 is equipped with a power supply where the regulation is provided by two integrated circuits. It is not possible to connect PM 6670 to an external DC supply or an internal battery pack.

The output from all power aupplies is regulated +5V and -5V.

All three counters are protected by a thermal fuae VL101 located in the line transformer. PM 6671 and PM 6672 also have a secondary fuse VL102 (1.6A fast-blow) on PCB U1. At VL102 the voltage is approx. $25V_{DC}$ in a PM 6671/01 connected to $220V_{AC}$.

The POWER ON/OFF switch SK101 on the front panel is a secondary switch, which has no effect on the voltage supply to the optional oven atabilized oscillator.

The following description applies to PM 6671 and PM 6672.

In position POWER ON, the voltage is supplied to IC180 via the transistor IS184 and diode GR186, which form a voltage limiter. The voltage is limited to approx. 15V_{DC}. IC180 is specially designed for applications in switched-mode power supplies. The output control signal (pin 14) is connected to the awitch transistor IS182. This pulse train has constant amplitude and frequency, but a pulse duration that is dependent on the load. The frequency (40kHz approx.) is set by resistor R1197 and capacitor C1192. The control loop senses the +5V output via R1187...1189, as shown in Fig. 2.13. The +5V output is adjustable with potentiometer R1188.

Fig. 2.13 Timing diagrama for Microcomputer - Diaplay - Function Selector communication.

Applicable to the example on the previous page.

Fig. 2.14 IC180 and the control loop.

The amplifier output (IC180:4) is 4V for 12V input and 2V for 30V input. The output is B.5V when the power aupply is not regulating. This 8.5V is used to reset the microcomputer at POWER ON and at line (maina) failurea of ahort duration.

The output from the OP amplifier controls the pulse duration to the switch transistor TS182. When TS182 is conducting, magnetic energy is stored in the transformer T102. When TS182 atops conducting, the magnetic energy is discharged via the diode GR183. Some of the magnetic energy is discharged via the secondary winding of T102. The unregulated voltage is rectified by the diode GR184 and regulated by IC181 to -5V.

When the current increasea, the voltage across resistor R1182 increases, and at a current through R1182 of approx 2A, transistor IS181 starta conducting. When the voltage at IC180:11 exceeda 0.5V, the pulse duration decreases to avoid current surge. The diode GR185 gives overvoltage protection.

When the optional internal battery pack PM 9693 is installed, the voltage on pin BU104:7 is used for charging the battery. BU104:7 is connected to BU104:6 via a jumper when PM 9693 is not installed.

1GHz Prescaler (PM 6672)

The 1GHz prescaler for PM 6672 ia AC-coupled and divides the frequency of the input C signal by 256.

Capacitor C301 blocks any DC component on the input aignal. To prevent latching of IC301, the diode GR306 clampa the negative half period of the input signsl to 2.7V.

The network R301...R303 and GR301...GR303 forms a PIN diode attenuator and providea the required input impedance. The PIN diodea GR302/303 and reaistor R302 form s variable attenuator. controlled by the amplitude of the input signal. The current through R301...R303 and the Schottky diode GR301 makes the PIN diode reversed biased with a bias voltage of approx 0.65V. The PIN diode attenuator is not activated for input signala with low amplitude. If the input amplitude increases to a level that makes GR301 rectify, the DC level of the input signal will decrease, as the positive voltage is then limited. The PIN diodes GR302/303 will start conducting when the DC level has decreased from +0.5V to -0.65V. A PIN diode has a current controlled variable impedance. An increased input amplitude increases the current through the PIN diode, thus giving it lower impedance, i.e. higher attenuation in the attenuator R302 and GR302/303. The result is an almost constant amplitude at IC301:3 when the PIN diode attenuator ia activated.

In IC302, the frequency is divided by 256. To prevent errors due to inaufficient amplitude, the amplitude of the input aignal to IC302 is monitored. The detector diode is GR304 and the bias current through this diode is provided by R314 and R315. In the Schmitt trigger (IC303 and R319), the detector voltage is compared with a reference voltage set by potentiometer R317. If the detector voltage is lower than the reference voltage, transistor TS302 is turned on, i.e. IC302:10 is connected to ground. This means that the aignal passes through IC302. If the detector voltage exceeds the reference voltage, IS302 is turned off and IC302 is disabled.

The RC network R308...R313 and C306...C312 is needed to achieve a flat frequency response. Diode GR307 ia used for temperature compensation of GR304. The output aignal from IC302 is buffered and converted to ECL levels by transistor TS303.

3. ADJUSTMENTS

-	Warninga	3-2
-	Required Test Equipment	3-2
-	Initial Set-up	3-2
-	DC Voltage	3-2
-	Measuring Time	3-3
-	Hold-off	3-3
_	DC Balance	3-3
-	Hystereais	3-4
-	Frequency Compensation	3-1
-	RF Enable	3-6
_	Frequency Adjustment of the Standard Oscillator	3-6

3. ADJUSTMENTS

Warnings

This section contains information which must be followed to ensure safe operation and to retain the counter in a safe condition. The instructions are for use by qualified personnel only. To reduce the riak of electric shock, do not perform any adjuatmenta other than those specified in the instructions unless you are fully qualified to do so.

Opening of the cabinet exposes live parts which can be dangeroua to life. Bear in mind that capacitora inside the counter can hold their charge even if the counter has been aeparated from all voltage sources.

Required Test Equipment

- DMM, e.g. Philips PM 2517
- Frequency counter, e.g. Philipa PM 6673/02
- Oscilloscope, e.g. Philips PM 3215
- Function generator, e.g. Philips PM 5131
- HF aignal generator, e.g. Wavetek 2002A
- Probe, 10 Mohm, 120MHz
- Termination, 50 ohm, BNC-type

Initial Set-up

All pushbuttons should be in a released position. Set MEASURING TIME to 10ms (fully anticlockwise) and HOLD OFF (PM 6671) to 0 (off). Pull both SENSITIVITY / TRIGGER LEVEL potentiometera and turn them fully clockwise. Select FREQ A. The slide switches on the rear panel should be set to INT STD and EXT RESET (not applicable to PM 6670). Set the line voltage slide awitch on the resr panel to the local line voltage. Connect the counter to the line and presa POWER ON.

DC Voltage

- Remove the jumper TEST.

- Press RESET. The display read-out ahould be: 00000071

- Connect a voltmeter between +5V TP and ground.

- Adjust the potentiometer +5V ADJ (R118B) to 5.00 ± 0.05 V. It is not possible to adjust the voltage in PM 6670. Just check that the voltage is 5.00 ± 0.25 V.

Meaauring Time

- Select COUNT A MANUAL and press RESET. The diaplay read-out should be 0.
- Push the MEASURING TIME knob and adjust the potentiometer MEASURING TIME ADJ (R1164) to 0.010 on the diaplay. The unit indicator LED s/GHz should light.
- Connect a frequency counter via a probe to IC153:3.
- Turn MEASURING TIME fully clockwise.
- Adjust R1164 so the testing counter measures 525...530Hz.

- Push MEASURING TIME and check that the display shows 96. The s/GHz LED should light. Turn MEASURING TIME alightly anti-clockwise. The diaplay read-out ahould be 88. Reaet MEASURING TIME to 10ms (fully anti-clockwise).

Hold-off (PM 6671 only)

- Select TIME INT SINGLE A-B and preas CHECK.
- Turn the HOLD OFF knob to the O.2ma position. The LED indicator should now light.
- Adjust the potentiometer HOLD OFF TIME ADJ (R1148) to 0.16ms on the display.
- Turn HOLD OFF fully clockwise (200ms).

- The display read-out should be at least 200ms. If not, adjust R1148 so the hold-off range 0.2...200ms is achieved.
- Reset HOLD OFF to O (off).

DC Balance

- Select FREQ A.
- Connect a 5kHz, 100mVpp aine-wave to input A. The counter should count correctly.
- Connect an oscilloscope to IC102:1 and adjust R1013 to 50% duty-factor.

- Decrease the amplitude of the input signal so the counter atarts to count incorrectly.
- Adjuat R1013 to a 50% duty-factor.
- Connect the aignal to input B and repeat the procedure. Connect the oscilloscope to IC102:6 and adjust R1042.

Hysteresis

- Connect a 5kHz, 15mVpp aine-wave to input A.
- Adjust R1061 until the counter just starts to count correctly.
- This adjustment is common to input A and B.

Frequency Compensation

- Push both SENSITIVITY/TRIGGER LEVEL potentiometers. Check that they are still set fully clockwise.
- Connect a 5kHz square-wave via a 50 ohm termination to input A of the counter and channel A of an oscilloscope (500mV/div and 20us/div).
- Adjust the amplitude of the input aignal and the time-base of the oscilloscope so that one period (4Vpp 0.2ms) fills the acreen of the oscilloscope.
- Connect channel B of the oscilloacope via a 10 Mohm probe to IC102:7. Set the oscilloscope to 50mV/div.
- Check that the amplitude at IC102:7 is at least 90% of the input signal amplitude (channel A).
- Press ATT x10 for input A and increase the sensitivity of the oacilloscope to 5mV/div.
- Adjust C1002 so the best pulse response is achieved. Check that the signal fills the screen.
- Connect the signal to input B and repeat the procedure. Connect the oacilloscope to IC102:10 and adjust C1021.
- Pull both SENSITIVITY/TRIGGER LEVEL and release the ATT x10 pushbuttons.

RF Enable (PM 6672 only)

- Press the input C puahbutton (1GHz).

- Connect a 70MHz, 15mV_{RMS} signal to input C.
 Check that the counter measures correctly. If not, adjust R317 on the prescaler PCB.
- Repeat the procedure with 500MHz (15mV), 800MHz (15mV) and 1000MHz (25mV).
- Release the input C pushbutton.

Frequency Adjustment of the Standard Oscillator (/01 version)

This adjustment shall be performed at an ambient temperature of approx 23°C after s warm-up period of one hour.

- Select FREQ A.
- Connect a 10MHz reference signal with a tolerance of 1x10⁻⁶ to Input A.
- Set MEASURING TIME to 1s.
- Adjuat trimmer C1154 with an isolated trimming screwdriver until the read-out on the display is 10000.000kHz ± 10Hz.

For /02.../05 veraiona, please refer to Section 9 (Optional Oscillators).

4. SELF-TEST

-	Introduction	4-2
-	Initial aet-up	4-2
_	Self-test aequence	4-2

4. SELF-TEST

Introduction

The counters of the PM 6670...72 series, each have a built-in self-test facility, which complements the CHECK function available on the front panel. This facility provides a test of the communication between the microcomputer and the function selector switches on the front and rear panels, and also the communication between the microcomputer and the display.

Initial Set-up

All pushbuttons should be in a released position. Set MEASURING TIME to 10ms (fully anticlockwise) and HOLD OFF (PM 6671) to 0 (off). Pull both SENSITIVITY /TRIGGER LEVEL potentiometers and turn them fully clockwise. Select FREQ A. The slide switches on the rear panel should be set to INT STD and EXT RESET (not applicable to PM 6670). Set the line voltage slide awitch on the rear panel to the local line voltage. Connect the counter to the line and press POWER ON.

- Remove the jumper TEST.
- Presa the RESET pushbutton. The diaplay readout ahould be:

00000071

Self-test Sequence

If the digita in the diaplay are labelled:

ABCDEFGH

the following read-out ahould be diaplayed for selected functions.

FREQ AVERAGE	B=1
ARMING or EXT RESET	B=0
DISPL HOLD pushed	C=1
pulled	C=0
MEASURING TIME pushed	D=1
pulled	D=0
HOLD OFF activated	F=1
not activated	F=0
COUNT A B	GH=40
COUNT A B	20
COUNT A MANUAL	11
PULSE WIDTH A	41
TIME INT SINGLE A-B	60
TIME INT AVERAGE A-B	31
PERIOD A	51
RPM A	61
FREQ A	71
RATIO A/B	7 0
PHASE A-B	30

Do not forget to inetall the jumper TEST.

5. TROUBLE-SHOOTING

-	The	input	amplifier	5-3
-	The	power	supply	5-3

5. TROUBLE-SHOOTING

The following points will help trouble-shooting the PM 6670...72 series of counters.

- First check that the procedures in the Operating Manusl (Section, Practical Measurements)
 have been followed. Take particulary notice
 of the alide switch settings on the rear
 panel.
- Check that +5V is present at the +5V test point and that -5V is present at BU110:1.
- Make the self-test as previously described.
 If the self-test gives an erroneous result for a particular function, check the corresponding circuit and switch for that function.
- If the self-test functions correct, the fsult is probably in the input circuits or in 0Q0040. IC160 and 0Q0040 can be tested by the CHECK function.

For trouble-shooting, the ratio mode is sometimes better than the frequency mode because it is possible to use a low frequency signal.

- If the displsy mskes no sense at sll, check the microcomputer signal ALE (IC162:11) with sn oscilloscope. The pulse width should be spprox. 0.7us and the pulse space spprox. 2.3us.
- If there is no ALE output, check that +5V is present at pin 26 and 40 of IC162. Messure to ground of the microcomputer (pin 20). Check that the oscillator signals at pin 2 and 3 of IC162 are correct, i.e. 5MHz. Replace the microcomputer if the oscillator signals are correct, but the ALE signal is not.
- If s correct ALE signal is present st pin 11 of the microcomputer, check the signals as illustrated in Fig. 5.1. It is difficult to get s steady display on an oscilloscope, so these figures are only s schematic illustration of the display.

Fig. 5.1 If ALE is correct, check these signsls.

Notes to Fig. 5.1:

- Trigg on IC165:1, negative slope, pulse duration = 0.5ms and pulse space = 3.8ms.
- At IC162:37, every 9:th pulse has longer durstion.
- At IC162:38, every 9:th pulse has 90us durstion.
- At IC162:8 and 10, every 9:th group of pulses consists of 3 pulses. The pulse duration is approx. 1us.

If the microcomputer signals are correct ss illustrated in Fig 5.1, continue with checking IC164; see Fig. 5.2.

Fig. 5.2 Signals to check on IC164.

The Input Amplifier

Check the HF stage by first disconnecting this stage (push the 50kHz FILTER pushbutton) and connect a 10...15kHz square-wave signal to input A (or B). The aignal at IC102:7 should look almost like a triangular-wave. By connecting the HF stage (release the 50kHz FILTER pushbutton) the signal at IC102:7 should be a square-wave again. The DC level at the emitter of TS102 should be approx. zero when the 50kHz FILTER pushbutton is pushed. DC drift due to temperature changes, might be caused by too high current leakage in diodes GR101...104. Distortion of the signal at IC102:7 might be caused by leakage in transistor TS101.

The power supply

A fault in the power supply can be isolated easier if the counter circuits are disconnected by removing the two jumpers on BU110. However, to simulate the load, a dummy load has to be used.

- Connect s 10 ohm, > 2.5W resistor between BU110:1 and BU110:3.
- Connect s 47 ohm, > 1.5W resistor between BU110:4 and BU110:6.
- The dummy load can be assembled by using a female connector, ordering number 5322 267 54102. Cut the connector to a suitable length.

6. REPLACING PARTS

-	Molex contacts	6-2
_	Text plate and front rim	6-2
_	Handle	6-2
_	Power supply	6-2
_	Replacing input smplifiers IC101 and IC103	6-2

6. REPLACING PARTS

Molex contacts

In the spare parts list, only a 13 pins contact is listed. However, the contact is easy to cut into required length.

Text plste and front rim

- Remove the knobs for measuring time and sensitivity.
- Put s screw driver between the front rim and the front frame at points A ss shown below.

- Pry gently until the front rim comes off.
- Remove the text plate.

<u>Handle</u>

- Remove the two plastic knobs using a tiny screwdriver or a pair of pliers.
- Unscrew the two screws and pull out the handle.
- 8efore assembling, grease the lock washer, screw hole and teeth of the handle very slightly with vaselin.

Power supply

 When replacing parts in the power supply, in particular IC180, check the +5V voltage. Refer to Section 3 (Adjustments).

Replacing input amplifiers IC101 and IC103

The low frequency stage of the input smplifier is built around specially selected units of the CMOS operational amplifier CA3140E. This circuit has been replaced by the TLC271CP.

Modification

When replacing a CA3140E with a TLC271CP, one connection must be made between pins four and eight of each IC (IC101 and IC103). These connections are illustrated on the diagram below. To avoid short circuits, use insulated wire e.g. AWG 30 (0.25 mm).

7. CIRCUIT DIAGRAMS

Block disgram	7 2
-	
Functional block diagram	1-3
PM 6670	
- Input amplifier, logic and power supply board	7-4
- Logic and display	
- Display board	
- Components not fitted on PC-bosrd	
- Power supply	
PM 6671	
	7 40
- Input amplifier, logic and power supply board	
- Logic and display	/-11
PM 6672	
- Input smplifier, logic and power supply bosrd	7-12
- Logic and display	7-13
- Prescaler	
PM 6671, 72	
- Displsy board	7-16
- Components not fittes on PC-bosrd	
- Power supply	
- Trigger indicator	
- irrager murcacur	,-20
PM 667072	
- Input smplifier	7-21

Block diagram

7-2

Functional block diagram

Input amplifier, logic and power supply

Item	Туре	Pins	+51	Ground
IC130	10102	16	1, 16	8
IC131	10102	16	1, 16	8
IC151	GXB 10116	16	1, 16	8
IC160	MC 10138	16	1, 16	8
IC163	HEF 40097B	16	16	8
IC164	HEF 4076B	16	16	8
IC165	HEF 4028B	16	16	8, via R1174
IC201	NE 587	18	18	9, 10

Logic and display

PM 6670

7-7

PM 6670

BAMA KOPIE

PM 6670

PM 6670 7-8

BAMA KOPIE

Archief RadioDatabase.nl

PM 6671 7-10

Input amplifier, logic and power supply

Item	Туре	Pins	+5V	Ground
IC130	10102	16	1, 16	8
IC131	10102	16	1, 16	8
IC151	GXB 10116	16	1, 16	8
IC160	MC 10138	16	1, 16	8
IC163	HEF 400978	16	16	8
IC164	HEF 4076B	16	16	8
IC165	HEF 4028B	16	16	8, vis R1174
IC201	NE 587	18	18	9, 10

Logic and display (PM 6671)

Archief RadioDatabase.nl

PM 6672 7-12

Item	Туре	Pins	+51	Ground
IC130	10102	16	1, 16	8
IC131	10102	16	1, 16	8
IC151	GXB 10116	16	1, 16	8
IC160	MC 10138	16	1, 16	8
IC163	HEF 40097B	16	16	8
IC164	HEF 4076B	16	16	8
IC165	HEF 4028B	16	16	B, via R1174
IC201	NE 587	18	18	9, 10

Logic and display

PM 6672 7-14

 Item
 Type
 Pins
 +5V
 Ground

 IC303
 CA 3140
 8
 7
 4

PM 6671

PM 6672

<u>Item Type Pins +5V Ground</u>

IC401 10216 16 1, 16 8

Camponents omitted in PM 6670-BURO1, BURO2, GREO7, GREOB, RIOES, RIOS4, BUIIG

Input amplifier (all counters)

8. SPARE PARTS LIST

Contents

Basic unit	8-2
Display unit	8-8
Prescaler unit	8-9
Trigger indicator unit	8-10
Panel mounted components	8-10
Mechanical parts	8-11

BASIC UNIT (input amplifier, logic and power supply)

Pos. No.	Order No.	Description	·	
BU101	5322 265 51067	Connector	261	
BU103	5322 265 64028	Socket, male	26 pole 10 pole	
BU104	5322 265 40178	Connector	10 pole	
BU105	5322 265 44057	Connector	4 pole	
BU106	5322 265 64028	Socket, male	10 pole	
20100	3322 203 04020	Socket, male	10 pore	
BU107	5322 265 30336	Connector	5 pole	
BU108110	5322 265 44057	Connector	6 pole	
BU110/DV101	5322 253 64007	Jumper connector		
BU111, 112	5322 267 30501	Socket, female		
BU114	5322 265 64028	Socket, male	3 pole	
BU116	5322 265 40179	Connector	10 pole	
BU117	5322 265 44057	Connector	6 pole	
C1001	4822 121 41677	Cap. foil	10 nF ±10%	220 V
C1002	5322 125 50049	Cap. trimmer	10 pF	220 1
C1003	4822 122 31072	Cap. ceramic	47 pF ±2%	100 V
C1007	4022 122 31072	cap. ceramic	47 pr =2%	100 1
C1004	5322 122 32419	Cap. ceramic	680 pF ±10%	500 V
C10051009	4822 122 31414	Cap. ceramic	10 nF	100 V
C1010	4822 122 30027	Cap. ceramic	1 nF ±10%	100 V
C1011	4822 122 30034	Cap. ceramic	470 pF ±2%	100 V
C10121015	4822 122 31414	Cap. ceramic	10 nF	100 V
C1016, 1017	4822 124 14066	Cap. solid alu.	10 µF	16 V
C1019	4822 122 30113	Cap. ceramic	1B0 pF ±10%	100 V
C1020	4822 121 41677	Cap. foil	10 pr ±10%	220 V
C1021	5322 125 50049	Cap. trimmer	10 pF	
C1022	4822 122 31072	Cap. ceramic	47 pF ±2%	100 V
C1023	5322 122 32419	Cap. ceramic	680 pF ±10%	500 V
C10241028	4822 122 31414	Cap. ceramic	10 nF	100 V
C1029	4822 122 30034	Cap. ceramic	470 pF ±2%	100 V
C1030, 1031	4822 122 31414	Cap. ceramic	10 nF	100 V
C1033	4822 122 31414	Cap. ceramic	10 nF	100 V
C1034, 1035	5322 124 14066	Cap. aolid alu.	10 µF	16 V
C1037	4822 122 30113	Cap. ceramic	180 pF ±10%	100 V
C1040	4822 122 31414	Cap. ceramic	10 nF	100 V
C1041	5322 124 10455	Cap. tantal	68 µF	6.3 V
C1042	4822 122 31414	Cap. ceramic	10 nF	100 V
C1043	5322 124 10455	Cap. tantal	68 µF	6.3 V
C1044, 1045	4822 122 31414	Cap. ceramic	10 nF	100 V
C1130	5322 121 42347	Cap. foil	220 nF	63 V
C1131	4822 122 31414	Cap. ceramic	10 nF	100 V
C1132	4822 122 31125	Cap. ceramic	4.7 nF	63 V
C1142	5322 124 10455	Cap. tantal	68 µF	6.3 V

BASIC UNIT (input amplifier, logic and power aupply)

Pos. No.	Order No.	Description		
C1145	5322 124 10455	Cap. tental	68 µF	6.3 V
C1146, 1147	4822 122 31414	Cap. ceramic	10 nF	100 V
C1148, 1149	4822 121 50538	Cap. foil	6.8 nF ±1%	63 V
C1150	4822 121 41672	Cap. foil	100 nF ±10%	63 V
C1151	4822 122 31414	Cap. ceramic	10 nF	100 V
C1152	5322 124 10455	Cap. tantal	68 µF	6.3 V
C1153	4822 122 30045	Cap. ceramic	27 pF ±2%	100 V
C1154	5322 125 50049	Cap. trimmer	10 pF	
C1156	5322 121 42348	Cap. foil	10 nF	63 V
C1157	4822 122 31414	Cap. ceramic	10 nF	100 V
C1158	4822 124 21457	Cap. solid alu.	1 µF ±10%	25 V
C1160	4822 122 30027	Cap. ceramic	1 nF ±10%	100 V
C1162	5322 124 10455	Cap. tantal	68 µF	6.3 V
C1164	5322 124 10455	Cap. tantal	68 µF	6.3 V
C1170, 1171	4822 122 31237	Cap. ceramic	82 pF ±2%	100 V
,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		52 p	
C11721177	4822 122 31414	Cap. ceramic	10 nF	100 V
C11B1	4822 121 41672	Cap. foil	100 nF	63 V
C1182, 1183	5322 124 21165	Cap. electrolyt.	100 µF	40 V
C1184	5322 124 14066	Cap. solid alu.	10 µF	16 V
C11851187	5322 124 21349	Cap. electrolyt.	470 µF	10 V
C1188	5322 124 14066	Con colid alu	10E	16 V
C1189	4822 122 31414	Cap. aolid alu. Cap. ceramic	10 µF 10 nF	100 V
C1190	4B22 122 30114	Cap. ceramic	2.2 nF ±10%	100 V
C1191	4822 124 20945	Cap. solid alu.	33 µF	10 V
C1192	5322 121 54071	Cap. foil	2.2 nF ±1%	250 V
		•	,	
C1193	4822 121 40232	Cap. foil	220 nF ±10%	100 V
C1194	4B22 121 41672	Cap. foil	100 nF ±10%	63 V
C1195, 1196	4822 124 21214	Cap. electrolyt.	2200 µF	16 V
C1197, 119B	5322 124 14066	Cap. solid alu.	10 µF	16 V
C1199	5322 124 70405	Cap. electrolyt.	Fµ	10 V
C1200	5322 124 14066	Cap. solid alu.	10 µF	16 V
DV101	5322 265 44074	Connector	2-pin	10 4
DV101/BU110	5322 253 64007	Jumper connector	2-ріп	
DV102106	5322 116 52929	Res. metal film	0 ohm (wire link)	
GR101	5322 130 34563	Diode, reference	BZX79/C2V7	
		,		
GR102, 103	4822 130 32656	Diode	BA483	
GR104	5322 130 34563	Diode, reference	BZX79/C2V7	
GR105	5322 130 30613	Diode	BAW62	
GR110	5322 130 34563	Diode, reference	BZX79/C2V7	
GR111, 112	4822 130 32656	Diode	BA483	
GR113	5322 130 34563	Diode, reference	BZX79/C2V7	

BASIC UNIT (input amplifier, logic and power supply)

Pos. No.	Order No.	Description		
00446	6000 470 70447	D: 4	DANICO	
GR114 GR133137	4822 130 30613 4822 130 30613	Diode Diode	BAW62 BAW62	
GR140	4822 130 30613	Diode		
		Diode	BAW62	
GR150155	4822 130 30613		BAW62	
GR180, 181	5322 130 32031	Bridge rect.	SK82/08L5A	
GR182	4822 130 31174	Diode	1N4003	
GR183	4822 130 32119	Diode	BY229-600	
CR184	4822 130 41487	Diode	BYV95C	
GR185	5322 130 32667	Diode	BZW70-5V6	
GR186	4822 130 34281	Diode, reference	BZX79/B15	
IC101	5322 209 83069	IC	TLC 271 CP *	See NOTE below.
IC101	5322 209 82866	IC	AM687DL	See Hole Below.
IC102 IC103	5322 209 83069	IC	TLC 271 CP *	See NOTE below.
IC130132	5322 209 84643	IC	10102L	See Hole Below
			ICM75551PA	
IC135	5322 209 82831	IC	ICH/JJJIFA	
IC151	5322 209 86441	IC	10116N	
IC152	4822 209 80782	IC	74LS74AN	
IC153	5322 209 82831	IC	ICM7555IPA	
IC160	5322 209 86203	IC	10138P	
IC161	5322 209 10988	IC	0Q0040	
IC162	5322 209 82857	IC, Microcomputer		
IC163	4822 209 10317	IC	400978D	
IC164	4822 209 10051	IC	4076BP	
IC165	4822 209 10301	IC	4028BD	
IC180	5322 209 85662	IC	TDA1060	
IC181	5322 130 44843	IC	7905	
IC185	5322 209 84454	IC	7805	
IC191194	5322 111 90742	Combination, RC	Res. network	470 ohm
IC195	5322 111 94015	Compositionres.,	Res. network	1 kohm
IC196, 197	5322 111 90079	Res. carbon,	Res. network	10 kohm
IC198	5322 111 90081	Pec corber	Res. network	100 kohm
KT151	5322 242 74372	Res. carbon, Crystal	Nes. Hetwork	TOO KOTIIII
L101, 102	5322 158 10052	COIL		
L1001, 1002	5322 158 10052	COIL		
•			vellow	
L1003, 1004	4822 526 10025	Core, ferroxcube	yellow	
L1181	5322 158 10052	COIL		
R1/SK1	5322 462 30207	Potentiometer	220 kohm lin.	with switch
R1001	5322 116 55535	Res. metal film	1 Mohm 1%	0.4 W
		•		

^{*} NOTE The circuit board must be modified when changing from CA3140 to TLC 271 CP, see chapter 6.

BASIC UNIT (input amplifier, logic and power supply)

Pos. No.	Order No.	Description		
R1002	5322 116 54701	Res. metal film	110 kohm 1%	0.4 W
R1003	5322 116 51098	Res. metal film	100 ohm 5%	1.6 W
R1004	5322 116 54728	Res. metal film	215 kohm 1%	0.4 W
R1005	5322 116 50536	Res. metal film	464 ohm 1%	0.4 W
R1006	5322 116 50536	Res. metal film	464 ohm 1%	0.4 W
111000	JJ22 110 J0JJ0	West metal 111m	404 011111 170	0.4 #
R1007	4822 116 51169	Res. metal film	620 kohm 1%	0.4 W
R1008	4822 110 72214	Res. HI-tension	10 Mohm 5%	0.25 W
R1009	5322 116 54511	Res. metal film	316 ohm 1%	0.4 W
R1010	4822 116 51231	Res. metal film	562 ohm 0.5%	0.4 W
R1011	4822 116 51268	Res. metal film	100 kohm 0.5%	0.4 W
R1012	5322 116 50579	Res. metal film	3.16 kohm 1%	1/8 W
R1013	5322 101 14194	Potm. trimmer cerm	10 kohm lin.	0.5 W
R1014	5322 116 55549	Res. metal film	100 ohm 1%	0.4 W
R1015	5322 116 50766	Res. metal film	147 ohm 1%	1/8 W
R1016	5322 116 50766	Res. metal film	147 ohm 1%	1/8 W
R1017	5322 116 55549	Res. metal film	100 ohm 1%	0.4 W
R1018/SK113	5322 101 20803	Potm. carb. track	10 kohm lin	with switch
R1019, 1020	4822 116 51235	Res. metal film	1 kohm 0.5%	0.4 W
R1021	5322 116 50767	Res. metal film	2.15 kohm 1%	0.4 W
R1022	5322 116 54558	Res. metal film	8.25 kohm 1%	0.4 W
R1023	5322 116 54661	Res. metal film	34.8 kohm 1%	0.4 W
R1024	5322 116 55368	Res. metal film	383 ohm 0.5%	0.4 W
R1025	4822 116 51235	Res. metal film	1 kohm 0.5%	0.4 W
R1026, 1027	5322 116 55535	Res. metal film	1 Mohm 1%	0.4 W
R1027	5322 116 55535	Res. metal film	1 Mohm 1%	0.4 W
R1028	4822 101 51281	Res. metal film	5.62 kohm 0.5%	0.4 W
R1029	4822 116 51268	Res. metal film	100 kohm 0.5%	0.4 W
R1030	5322 116 55535	Res. metal film	1 Mohm 1%	0.4 W
R1031	5322 116 54701	Res. metal film	110 kohm 1%	0.4 W
R1032	4822 116 51098	Res. metal film	100 ohm 5%	1.6 W
R1033	5322 116 54728	Res. metal film	215 kohm 1%	0.4 W
R1034, 1035	5322 116 50536	Res. metal film	464 ohm 1%	0.4 W
R1036	4822 116 51169	Res. metal film	620 kohm 1%	0.4 W
R1037	5322 116 72214	Res. HI-tension	10 Mohm 5%	0.25 W
R1038	5322 116 54511	Res. metal film	316 ohm 1%	0.4 W
R1039	4822 116 51231	Res. metsl film	562 ohm 0.5%	0.4 W
R1040	4822 116 51268	Res. metal film	100 kohm 0.5%	0.4 W
R1041	5322 116 50579	Res. metal film	3.16 kohm 1%	1/8 W
R1042	5322 101 14194	Potm. trimmer cerm.	10 kohm lin	0.5 W
R1043	5322 116 55549	Res. metsl film	100 ohm 1%	0.4 W

BASIC UNIT (input amplifier, logic and power supply)

Poe. No.	Order No.	Description		
R1044, 1045	5322 116 50766	Ree. metal film	147 ohm 1%	1/8 W
R1046	5322 116 55549	Res. metal film	100 ohm 1%	0.4 W
R1047/SK116	5322 101 20803	Potm. carb. track	10 kohm lin	with switch
R1048, 1049	4822 116 51235	Res. metal film	1 kohm 0.5%	0.4 W
R1050	5322 116 50767	Res. metal film	2.15 kohm 1%	0.4 W
11000	7,722 110 70.0.		2012 112 111	
R1051	5322 116 54558	Res. metal film	8.25 kohm 1%	0.4 W
R1052	5322 116 54661	Res. metal film	34.8 kohm 1%	0.4 W
R1053	5322 116 55368	Res. metal film	383 ohm 0.5%	0.4 W
R1054	4822 116 51235	Res. metal film	1 kohm 0.5%	0.4 W
R1055, 1056	5322 116 55535	Ree. metal film	1 Mohm 1%	0.4 W
•				
R1057	4822 116 51281	Res. metal film	5.62 kohm 0.5%	0.4 W
R1058	4822 116 51268	Res. metal film	100 kohm 0.5%	0.4 W
R1060	5322 116 54637	Res. metal film	17.8 kohm 1%	0.4 W
R1061	5322 101 10542	Potm. trimmer cerm.	100 ohm 10%	0.5 W
R1131, 1132	5322 116 50767	Res. metal film	2.15 kohm 1%	0.4 W
R1135	5322 116 50635	Res. metal film	1.47 kohm 1%	0.4 W
R1136	5322 116 50635	Res. metal film	1.47 kohm 1%	0.4 W
R1137	5322 116 50579	Ree. metal film	3.16 kohm 1%	1/8 W
R1138	5322 116 50536	Res. metal film	464 ohm 1%	0.4 W
R1139, 1140	4822 116 51253	Res. metal film	10 kohm 0.5%	0.4 W
D4464 4460	5700 447 50777	Pag matal film	2.15 kohm 1%	0.4 W
R1141, 1142	5322 116 50767	Res. metal film Res. metal film	1 kohm 0.5%	0.4 W
R1143 R1145, 1146	4822 116 51235 4822 116 51235	Res. metal film	10 kohm 0.5%	0.4 W
R1147	5322 116 50572	Res. metal film	12.1 kohm 1%	0.4 W
R1148	5322 101 14194	Potm. trimmer cerm.	10 kohm	0.5 W
11140	222 101 14124	100		
R1150	5322 116 54909	Res. metal film	1 kohm 5%	1.6 W
R1151	4822 116 51235	Res. metal film	1 kohm 0.5%	0.4 W
R1152, 1153	5322 116 50536	Res. metal film	464 ohm 1%	0.4 W
R1154, 1155	4822 116 51235	Res. metal film	1 kohm 0.5%	0.4 W
R1156	5322 116 54608	Res. metal film	7.5 kohm 1%	0.4 W
R1157	5322 116 54515	Res. metal film	384 ohm 1%	0.4 W
R1159	4822 116 51235	Res. metal film	1 kohm 0.5%	0.4 W
R1160, 1161	5322 116 55368	Res. metal film	383 ohm 0.5%	0.4 W
R1162	4822 116 51253	Res. metal film	10 kohm 0.5%	0.4 W
R1163	5322 116 50484	Res. metal film	4.64 kohm 1%	0.4 W
Danes	F700 404 44404	Data tainman soom	10 kohm	0.5 W
R1164	5322 101 14194	Potm. trimmer cerm.	10 kohm 12.1 kohm 1%	0.4 W
R1165	5322 116 50572	Res. metal film Res. metal film	12.1 KOIIII 12	0.4 W
R1166	4822 116 51235	Res. metal film	3.16 kohm 1%	1/8 W
R1167	5322 116 50579 5322 116 55549	Res. metal film	100 ohm 1%	0.4 W
R1168	JJZZ 110 JJJ47	NCS. IIICLAT 111III	,00 dim 1/0	3.4

BAMA KOPIE

BASIC UNIT (input amplifier, logic and power supply)

Pos. No.	Order No.	Description		
R1169	5322 116 50536	Res. metal film	464 ohm 1%	0.4 W
R1170	5322 116 55549	Res. metal film	100 ohm 1%	0.4 W
R1171	5322 116 50492	Res. metal film	46.4 ohm 1%	0.4 W
R1173	5322 116 50492	Res. metal film	46.4 ohm 1%	0.4 W
R1174	5322 116 55549	Res. metal film	100 ohm 1%	0.4 W
N1174	JJ22 116 JJJ49	Wes. Werdt ittm	100 01111 170	U.4 H
R1175	5322 116 55535	Res. metal film	1 Mohm 1%	0.4 W
R1176	4822 116 51233	Res. metal film	681 ohm 0.5%	0.4 W
R1177	4822 116 51235	Res. metal film	1 kohm 0.5%	0.4 W
R1180	4822 116 51235	Res. metal film	1 kohm 0.5%	0.4 W
R1181	4822 116 60084	Res. wirewound	1 ohm 5%	1 W
	5700 444 50000	0	0.77 109	0.7.14
R1182	5322 116 52928	Res. metal film	0.33 ohm 10%	0.7 W
R1183	5322 116 54589	Res. metal film	3.83 kohm 1%	0.4 W
R1184	5322 116 51233	Res. metal film	681 ohm 0.5%	0.4 W
R1185	5322 116 55549	Res. metal film	100 ohm 1%	0.4 W
R1186	5322 116 54446	Res. metal film	56.2 ohm 1%	0.4 W
R1187	5322 116 50515	Res. metal film	1.78 kohm 1%	0.4 W
R1188	5322 101 14272	Potm. trimmer cerm.	5 kohm	0.5 W
R1189	5322 116 54589	Res. metal film	3.83 kohm 1%	0.4 W
R1190	5322 116 50451	Res. metal film	21.5 kohm 1%	0.4 W
R1191, 1192	4822 116 51235	Res. metal film	1 kohm 0.5%	0.4 W
R1193, 1194	4822 116 51235	Res. metal film	10 kohm 0.5%	0.4 W
R1195	5322 116 50557	Res. metal film	46.4 kohm 1%	0.4 W
R1196	5322 116 54657	Res. metal film	31.6 kohm 1%	0.4 W
R1197	5322 116 50572	Res. metal film	12.1 kohm 1%	0.4 W
R1198	5322 116 50484	Res. metal film	4.64 kohm 1%	0.4 W
R1199	5322 116 50557	Res. metal film	46.4 kohm 1%	0.4 W
R1200	5322 116 50767	Res. metal film	2.15 kohm 1%	0.4 W
R1201	5322 116 50671	Res. metal film	2.61 kohm 1%	0.4 W
SK101	5322 116 11282	Switch,	pushbutton	
SK102104	5322 276 11282	Switch,	pushbutton	
SK105	5322 276 40337	Switch,	rotary	
SK106	5322 276 70085	Switch,	pushbutton	
SK107112	5322 276 60229	Switch,	pushbutton	
SK113	See R1018			
SK114	5322 276 10911	Switch,	slide	
SK115	5322 276 11445	Switch,	slide	
SK116	See R1047			
TS101	5322 130 44418	Transistor, FET	BF 25 6A	
TS102104	5322 130 44435	Transistor,	2N5770	
TS105	5322 130 44418	Transistor, FET	BF 256A	

 $\textbf{BASIC UNIT} \quad \text{(input amplifier, logic and power supply)}$

Pos. No.	Order No.	Description	
TS106108	5322 130 44435	Transistor,	2N5770
TS130	4822 130 40937	Transistor,	BC5488
TS151, 152	5322 130 44845	Transistor,	2N5771
T\$153	5322 130 44435	Transistor,	2N5770
TS160	4822 130 44197	Transistor,	BC558B
TS181	4822 130 44256	Transistor,	BC557
TS182	5322 130 40753	Transistor,	BD132
TS183	4822 130 40855	Transistor,	BC337
TS184	4822 130 40937	Transistor,	BC548B
TS186	5322 130 44197	Transistor,	BC558B
TS187	4822 130 40937	Transistor,	8C5488
T101	5322 146 10001	Transformer, Mains	
T102	5322 146 20982	Transformer, SMPS	
VL101	4822 252 20007	Thermal fuse	125 °C / 900 mA
VL102	5322 256 34104	Holder, fuse	
VL102	4822 253 20022	Fuse 1.6 A fast-blow	5x20 mm

DISPLAY UNIT

Pos.No.	Order No.	Description		
BU2	5322 267 10004	Plug, coax. female		
BU201	5322 290 30233	Testpoint on front panel	PM 6671, 72	
BU202	5322 290 30233	Testpoint on front panel	PM 6671, 72	
B201208	5322 130 90228	Display, kit of eleven	7651	
C201	4822 124 20673	Cap. electrolyt.	470 üF	6.3 V
C202	5322 121 42347	Cap. foil	220 nF	63 V
C203	4822 124 20673	Cap. electrolyt.	470 üF	6.3 V
GR201208	5322 130 31502	LED,	yellow	3 mm
IC201	5322 209 81435	IC	NE587N	
L 201	5322 158 10052	COIL		
R2/SK2	5322 101 20804	Potm. carb. track	1 Mohm log	with switch
R201	5322 116 50677	Res. metal film	21.5 ohm 1%	0.4 W
R202	5322 116 54557	Res. metal film	1.21 kohm 1%	0.4 W
TS201208	5322 130 41682	Transistor,	MPSA12	
TS210	4822 130 44197	Transistor,	BC558B	

PRESCALER UNIT

Pos. No.	Order No.	Description		
BU3	5322 267 10004	Plug, coax. female		
BU301	5322 265 40379	Connector	5 pole	
BU302	5322 267 30501	Socket,	female	
C301	5322 122 32127	Cap. ceramic	1 nF ±10%	500 V
C302	4822 122 31063	Cap. ceramic	22 pF ±2%	100 V
C3O3	4822 122 30027	Cap. ceramic	1 nF ±10%	100 V
C304, 305	5322 122 34098	Cap. chip	10 nF	50 V
C306	4822 122 30027	Cap. ceramic	1 nF ±10%	100 V
C307	4822 122 32185	Cap. ceramic	10 pF ±2%	100 V
C308	4822 122 31069	Cap. ceramic	39 pF ±2%	100 V
		-		400. 1/
C309	5322 122 32101	Cap. ceramic	1.5 ±0.25 pF	100 V
C310	4822 122 31821	Cap. chip	3.3 ±0.25 pF	100 V
C311	4822 122 30027	Cap. ceramic	1 nF ±10%	100 V 100 V
C312	5322 122 34098	Cap. chip	3.3 ±0.25 pF	100 V
C313	4822 122 30027	Cap. ceramic	1 nF ±10%	100 ¥
C314, 315	5322 122 34098	Cap. chip	10 nF	50 V
C317	5322 124 10455	Csp. tantal	68 µF	6,3 V
C318	4822 122 31414	Cap. ceramic	10 nF	100 V
C319	5322 122 34098	Cap. chip	10 nF	50 V
C320	4822 122 31414	Cap. ceramic	10 nF	100 V
0,20	1022 122 77777			
GR301	5322 130 34877	Diode	1N6263	
GR302, 303	5322 130 34364	Diode	BA379	
GR304	5322 130 34283	Diode	HP5082-2835	
GR306, 307	5322 130 34283	Diode	HP5082-2835	
IC301	5322 209 82858	IC	SAB1009BP	
10702	5322 209 86199	ıc	SAB1046	
IC302	5322 209 86201	IC	3140E	
IC303 L301	5322 158 10311	COIL)140L	
L303	5322 158 10052	COIL		
R301	5322 116 54392	Res. metal film	100 ohm 5%	2.5 W
R302	5322 116 54396	Res. metal film	468 ohm 5%	2.5 W
R303	5322 116 50767	Res. metal film	2.15 kohm 1%	0.4 W
R304, 305	4822 111 30605	Res. carbon	56 ohm 5%	0.2 W
R306	4822 111 30069	Res. carbon	39 ohm 5%	0.2 W
R307	4822 111 30324	Res. carbon	100 ohm 5%	0.2 W
R308	4822 111 30745	Res. carbon	33 ohm 5%	0.2 W
R309	4822 111 30352	Res. carbon	82 ohm 5%	0.2 W
R310	4822 111 30745	Res. carbon	33 ohm 5%	0.2 W
R311	4822 111 30327	Res. carbon	220 ohm 5%	0.2 W
R312314	4822 111 30324	Res. carbon	100 ohm 5%	0.2 W

8-10

PRESCALER UNIT

Pos. No.	Order No.	Description		
R315	4822 116 51268	Res. metal film	100 kohm 0.5%	0.4 W
R316	5322 116 50557	Res. metal film	46.4 kohm 1%	0.4 W
R317	5322 101 14254	Potm. trimmer cerm.	10 kohm lin	0.5 W
R318	4822 116 51252	Res. metal film	6.81 kohm 0.5%	0.4 W
R319	5322 116 55268	Res. metal film	316 kohm 1%	0.4 W
R320	5322 116 50484	Res. metal film	4.64 kohm 1%	0.4 W
R321	5322 116 50767	Res. metal film	2.15 kohm 1%	0.4 W
R322	4822 116 51235	Res. metal film	1 kohm 0.5%	0.4 W
TS301	5322 130 44909	Transistor,	BFR90/02	
TS302, 303	4822 130 40937	Transistor,	BC548B	

TRIGGER INDICATOR UNIT

Pos. No.	Order No.	Description		
BU401	5322 267 50334	Connector	10 pole	
C401	5322 124 10455	Cap. tantal	68 µF	6.3 V
C402, 403	4822 122 31414	Cap. ceramic	10 nF	100 V
C404, 405	5322 124 10455	Cap. tantal	68 µF	6.3 V
C406, 407	4822 122 31414	Cap. ceramic	10 nF	100 V
CR401, 402	5322 130 30613	Diode BAW62		
IC401	5322 209 84825	IC	10216P	
R401404	4822 116 51235	Res. metal film	1 kohm 0.5%	0.4 W
R405, 406	5322 116 50536	Res. metal film	464 ohm 1%	0.4 W
R407, 408	4822 116 51253	Res. metal film	10 kohm 0.5%	0.4 W
R409, 410	4822 116 51231	Res. metal film	562 ohm 0.5%	0.4 W
R410	4822 116 51231	Res. metal film	562 ohm 0.5%	0.4 W
TS401, 402	5322 130 44845	Transistor,	2N5771	

PANEL MOUNTED COMPONENTS

Poe. No.	Order No.	Description		
BU1	5322 267 10004	Plug, coax. female		
BU57	5322 267 10004	Plug, coax. female		
BU8	5322 268 10147	Connector for external battery		
BU9	5322 265 30066	Line inlet socket		
C6, 7	5322 122 40444	Cap. ceramic	1 nF	250 V
GR1	5322 130 31502	LED	yellow	3 mm
L5, 6	5322 121 44235	COIL	40 µH	
R1/SK1		See list for basic unit.	,	
R5	5322 101 54909	Res. metal film	1 kohm 5%	1.6 W
SK5	5322 272 10217	Mains voltage selector		

MECHANICAL PARTS

Pos. No.	Order No.	Description
	5322 414 34091	Knob 10 mm, grey.
	5322 414 30044	Knob 10 mm, brown.
	5322 414 74015	Cap for knob 10 mm, light grey.
	5322 414 70015	Cap for knob 10 mm, brown.
	5322 414 34076	Knob 18.7 mm, grey.
	5322 414 30038	Knob 18.7 mm, brown.
	5322 414 74019	Cap for knob 18.7 mm, light grey.
	5322 414 70016	Cap for knob 18.7 mm, brown.
	5322 414 20033	Button, push brown.
	5322 414 64053	Button, push grey.
	5322 414 25851	Button, push grey-green.
	5322 414 20034	Button, push brown-green.
	5322 414 26019	Button, push light grey (for POWER ON).
	5322 414 20035	Button, push dark brown (for POWER ON).
	5322 447 90499	Front panel.
	5322 447 90508	Text plste brown, front PM6670.
	5322 447 90509	Text plate brown, front PM6671.
	5322 447 90511	Text plate brown, front PM6672.
	5322 466 91587	Window.
	5322 447 90514	Rear panel, PM6670.
	5322 447 90515	Rear panel, PM6671, 72.
	5322 466 85335	Front rim.
	5322 459 24054	Rear rim.
	5322 498 50127	Handle.
	5322 528 34101	Lock washer for handle.
	5322 520 34164	Bushing, bearing for handle.
	5322 530 84075	Spring washer for handle.
	5322 414 64053	Knob for handle, grey.
	5322 414 30043	Knob for hendle, brown.
	5322 462 44179	Foot, bottom.
	5322 462 44431	Rubber-foot (for 5322 462 44179).
	5322 462 44181	Foot, rear panel.
	5322 447 90512	Top cover, brown.
	5322 447 90513	Bottom cover, brown.
	5322 447 84642	Protective front cover, grey.
	5322 447 90498	Protective front cover, brown.
	5322 466 60835	Side profile.
	5322 267 30501	Connector Mini coax for PCB mounting.

8-12

MECHANICAL PARTS

Pos. No.	Order No.	Description
	5322 321 20504	Cable assy for C-channel.
	5322 321 20505	Cable assy for A and B channels.
	5322 255 40428	IC socket, for 16-pin.
	5322 255 40429	IC socket, for 18-pin.
	5322 255 40431	IC socket, for 28-pin.
	5322 255 40422	IC socket, for 40-pin.
	5322 255 40274	Heatsink for GR183.
	5322 255 40427	Heatsink for IC181 (PM 6670 only).
	5322 467 34127	Guide rail for PCB.

9. OPTIONAL OSCILLATORS

Contents

Technical apecification	9-2
PM 9678B	
- Installation	9-3
- Frequency adjustment	9-3
- Spare parta list	9-3
PM 9679E, PM 9690 and PM 9691 - Inatallation	
PM 9679E	9-4
PM 9690 and PM 9691	9-4
- Pinning	9-5
- Repair	9-5

9. OPTIONAL OSCILLATORS

Technical specification

	02 version	03 version	04 veraion	05 veraion
	PM 9678B	PM 9679E	PM 9 690	PM 9691
Nominal frequency	10MHz	10MHz	10MHz	10MHz
Trimming range (1	>±20Hz	-100+40Hz	-7+3Hz	-7+3Hz
Output voltage into 1 kohm	>100mV _{RMS}	>1V _{RMS}	> 150mV _{RMS}	>150mV _{RMS}
Supply voltage, DC	+11.528V	+11.528V	+11.528V	+11.528V
Power consumption (+23°C) - Continuoua operation - Stand-by - Warm-up	< 15mA (2	< 100mA (3	< 125mA (2	<125mA (2
	none	< 100mA (3	< 125mA (2	<125mA (2
	none	< 400mA	< 400mA	<400mA
Stability against: - Ageing /24h	NA < 1x10 ⁻⁷ < 5x10 ⁻⁷ < 1x10 ⁻⁶ < 1x10 ⁻⁹ < 5x10 ⁻⁸	NA < 1x10 ⁻⁷ < 5x10 ⁻⁷ < 1x10 ⁻⁷ < 1x10 ⁻⁹ < 1x10 ⁻⁸	$< 1.5 \times 10^{-9} $ (4 $< 3 \times 10^{-8} $ $< 1.5 \times 10^{-7} $ $< 3 \times 10^{-8} $ $< 5 \times 10^{-10} $ $< 3 \times 10^{-9} $	<5x10 ⁻¹⁰ (4 <1x10 ⁻⁸ <7.5x10 ⁻⁸ <5x10 ⁻⁹ <5x10 ⁻¹⁰ <3x19 ⁻⁹
Warm-up time to reach 1x10 ⁻⁷	NA	<10 min	<15 min	<15 min
Dimenaions	93x50x15mm	100x52x 35 mm	100x52x35mm	100x52x35mm
Weight	25 g	100g	100g	100g
Environmental conditions	All oacillatora of countera.	meet the same spec	ifications as the P	M 6670 aeries

of countera.

- The trimming range will cover at least 10 years of operation since the ageing will decrease aubstantially after the first 6 months. For PM 9690 and PM 9691 the indicated values apply only to the fine trimming range. However, a coarse trimmer ia available.
- (2 At 11.5...28V
- (3 At 11.5V. Less than 60mA at 28V
- (4 After 48 hours of continuous operation.

Installation of PM 9678B

Remove the x-tal KT151 before inatalling the oscillator PM 9678B.

Frequency adjustment of PM 9678B

Thia adjustment requires a reference oscillator with an accuracy of $<1\times10^{-7}$. Philips oven enclosed oscillators PM 9680, PM 9681, PM 9690 and PM 9691 meet this requirement, if calibrated. The adjustment should preferably be made at an ambient temperature of $+23^{\circ}\text{C}$.

- Connect the reference aignal to Input A of the counter to be adjuated.
- Set the measuring time to 1a and press the $\begin{tabular}{l} \end{tabular}$ pushbutton.
- Adjust trimming capacitor C1 on the oscillator board until the display read-out is: 10000.000kHz ± 1Hz.
- Set the measuring time to 10s and check that the display read-out is the same as before. If not, adjust C1 slightly to obtain the correct read-out.

Spare parta liat

Order number		Deacription	Specification	Item
	5322 267 50336	Connector	10 polea	B U1
	4822 125 50017	Cap, Trim.	5.5-65pF 100V	C1
	4822 124 20977	Cap, Elec.	15uF 16V	C2
	5322 216 94047	Osc, TCXO	10MHz	KT1
	4822 110 63085	Res, Carbon	150E 5% 0.33W	R1
	4822 130 41065	Trana, FET	BF 245C	TS1

Installation of PM 9679E, PM 9690 and PM 9691

Remove the x-tal KT151 before installing the optional oscillator. Only the bracket with the rivst out should be mounted on the oscillator.

Note: Before installing an older version of theme oven enclosed oscillatora, measure if pole 1 and 2 of the oscillator are short circuit. If ao, cut pin 1 and 2 on BU103 in the counter.

Frequency adjustment of PM 9679E

This adjustment requires a reference oscillator with an accuracy of $<3\times10^{-8}$. Philips oven enclosed oscillators PM 9680, PM 9681, PM 9690 and PM 9691 meet this requirement, if calibrated. The adjustment should preferably be made at an ambient temperature of 23°C and the oscillator must have been operating continuously for 48 hours before any adjustment is made. An isolated trimming acrew driver is also neccessary.

- Connect the reference aignal to EXT TRIGG of a 50MHz oscilloscope, e.g. Philipa PM 3215.
- Connect the oscillator signal available at aocket INT STD OUT of the counter to be adjusted, to Input Y of the oscilloscope.
- Set the oscilloscope to 100ns/div and adjust the trimmer until the waveform moves with a velocity of max 1div/3s (0.3Hz).

Frequency adjuatment of PM 9690 and PM 9691

This adjustment requires a reference oscillator with an accuracy of $<1\times10^{-9}$. Hewlett-Packard quartz frequency standard HP105 meets this requirement, if calibrated. The adjuatment should preferably be made at an smbient temperature of 23°C and the oscillator must have been operating continuously for 48 hours before any adjustment is made. An isolated trimming screw driver is also neccessary.

- Connect any of the three reference signala available at socketa 5MHz, 1MHz and 100kHz of the HP105 to EXT TRIGG of a 50MHz oacilloacope, e.g. Philips PM 3215.
- Connect the oscillator aignal available at socket INT STD OUT of the counter to be adjusted, to Input Y of the oscilloacope.
- Set the oacilloacope to 100na/div and adjust the fine trimmer in the oacillator until the waveform moves with a velocity of max 1div/10s (0.1Hz).

If the adjustment range is too narrow, proceed as follows:

- Set the fine trimmer fully clockwise.
- Remove the two acrews fixing the oscillator's text plate to the unit.
- Remove the small plastic cylinder beneath the text plate using a pair of tweezers.
- Connect an external counter via a 10Mohm probe to socket INT STD OUT of the counter to be adjusted.
- Adjust the coarse trimmer until the display read-out of the external counter is: 10000003Hz.
- Refit the plastic cylinder and the text plate.
- Recheck that the waveform velocity is 1div/10s, see above.

Pinning of PM 9679E, PM 9690 and PM 9691

Note: Pin 6, 8, 9 and 10 are for factory use only

Repair of oacillator PM 9679E, PM 9690 and PM 9691

Repair of these oscillators may not be carried out by the local service organization. The complete sealed oscillator unit has to be sent to the factory for repair.

Factory addresa:

PHILIPS Elektronikinduatrier AB Industrial Operationa Supply Centre Service Department S-175 88 JÄRFÄLLA Sweden

Sales and service all over the world

Alger: Bureau de Liaison Philips, 24 bis, Rue Bougainville, El Mouradia, Alger; tel.: 213-585672

Argentina: Phillips Argentina S.A., Cassila de Correo 3479, (Central), 1430 Buenos Aires; tel. 54-1-5422411/5422512/5422613

Australia Philips Scientific & Industrial, 25 - 27 Paul Street, P.O. Box 119, North Ryde/NSW 2113; tel. 81-2-8888222 Service Centre: PCS Service. 2 Greenhills Aven 2 Greenhills Avenue, Moorebank, P.O. Box 259, Liverpool / NSW 2170:

Bangla Desh: Philips Bangla Desh Ltd., 16/17 Kawran Bazar, P.D. Box 82; Ramna, Dacca; tel. 325081/5, 411576

Belgii/Belgique: Phitips & MBLE associated S.A., Scientific and Industrial Equipment Division, 80 Rue des Deux Gares, 1070 Bruxelles; tel. 32-2-5256111

Bolivia: EPTA I&E Service, Cajon Postal 20942, La Paz

Brasil: Philips do Brasil Ltda, Av. Eng. Luiz Carlos Barrini, 3009, Caixa Postal 1900, CEP 04571: Sao Paulo (S.P.); Service Centre: Sistemas Profissions Rua Anton Philips 1, Caixa Postal 701B, 07000 Guarulhos -S.P. tel. 55-11-2090111

Canaua: Philips Electronics Ltd., Test and Measurement Dept., 1001 Ellesmere Road, Scarborough (Ontario) M1P-2W7 tei. 1-416-2928200

Chile: Philips Chiléne S.A., Division Professional, Avda. Senta Maria 0760, Casilla Postal 2687, Sentiago de Chile; tel. 770038

lombia: Industrias Philips de Columbia S.A., Caile 13 no. 51-39, Apartado Aereo 4282, Bogota, tel. 2600600

Danmark: Philips A/S Strandfodsvej 4, P.O. Box 1919, 2300 København S; tel. 45-1-572222

Deutschiand (Bundesrepublik): Philips GmbH. Unternehmensbereich Elektronik für Wissenshaft und Industrie, Miramstrasse 87, Postfach 310 320, 3500 Kassel-Bettenhausen; tel. 49-561-5010

Ecuador: Philips Ecuador C.Ā., Casilla 343, Quito, tel. 593-2-239080

Egypt: Philips Egypt Branch of Philips Midden Oosten N.V. 10, Abdel Rahman el Rafeistreet, P.O. Box 1687, Cairo; tel. 20-2-490822/490926/490928/492237

Eire: Philips Electricel (Ireland) Ltd., Newstead, Clonskeagh, Dublin 14; tel. 353-1-693355

España: Philips Ibérica S.A.E., Dpto Aparatos de Madida, Martinez Villergas 2, Apartado 2065, Madrid 26027; tel. 34-1-4042200/4043200/4044200 <u>Service Centre:</u> Dpto Tco, de Instrumentación Celle de Albasanz 75, Medrid 26017; tel. 34-1-2045940/2047025/2047105

Ethiopia: Philips Ethiopia (Priv. Ltd. Co.), Ras Abebe Areguay Avenua, P.D.B. 2565, Addis Ababa; tel. 448300

France: S.A. Philips Industrielle et Commerciale. Division Science et Industrielle et Commerciale, Division Science et Industrie, 105 Rue de Paris, B-P.62, 93 002 Bobigny Cedex tel. 33-1-8301111

Helles: Philips S.A. Hellénique, 54 Avenue Syngrou, P.O. Box 3153, Athens 10210 ; tel. 30-1-9215311

Hong Kong: Philips Hong Kong Ltd... 29/F Hopewell Centre, 17, Kennedy Road, G.P.D. Box 2108 Hong Kong, tel. 852-2-2B329B

India: Peico Electronics & Electricals Ltd... Ble Equipment, Shivsagar Estate, Block "A", Dr. Annie Besant Road, P.O.B. 8598, Worli, Bombay 400 018 (WBI; tel. 91-22-4921500/4921513

Iran: Philips Iran Ltd., P.O.B. 11365-3891, Teheran; tei. 98-21-674138/676168

Iraq: Philips Midden Oosten B.V., Baghdad Branch, Munir Abbas Building, 4th floor, South Gate, P.O. box 5749, Bashdad:

Island: Heimilisteaki SF, Saetún 8, Reykjavík;

Itelia: Philips S.p.A., Sezione I&E/T&M, Viale Elvezia 2, 20052 Monza (MI); tel. 39-39-36351

Kenya: Philips (Kenya) Ltd., 01 Kalou Road, Industrial Area, P.O.B. 30554, Nairobi; tel. 254-2-557999

Lebenon: Philips Middle East S.A.R.L., P.O. Box 11-870, Beyrouth; tel. 382300

Malaysia: Philips Malaysia Snd Bhd., Professional Division, Resource Plaza, No.4, Pesiaran Barat P.O. Box 12163, Petaling Jaya, Selangor Kuala Lumpur; tel. 60:3-554411 Service Centre: 76, Jalan University Petating Jaya Tel.: 60-3-562144

México: Telecommunicaciones Sistemas Professionales S.A. de C.V., Poniente 152, Nbr. 659 Col. industrial Valleio 02300 Mexico D.F.

Morocco: Philips Maroc S.A., 304-Boulevard Mohammed V, B.P. 10896, Bandoeng, Casablance 05; tel. 212-302992/303446/304764

Nederland: Philips Nederland, Hoofdgroep PPS, Boschdijk 525, Gebouw VB, 5600 PD Eindhoven; tel. 31-40-793333

Ned. Antillen: Philips Antillana N.V. Schottegatweg Oost 146, Postbus 3523, Willemstad, Curação; tel 599-9-815277/612799

New Zealand: Philips New Zealand Ltd., Scientific and Industrial Equipment Division, 68-86 Jervois Quay, G.P.O. Box 2097, Wellington; tel. 64-4-735735

Nigeria: Associated Electronic Products (Nigeria) Ltd., KM18, Ikorodu Road, Ojota, P.O.B. 1921, Lagos; tel.: 234-1-900160/69

Nippon: NF Trading Co. Ltd.. Kirimoto Bldg. 11-2, Tsuneshima Higashi 1 · Chome, Kohoku-ku,

Norge: Norsk A.S. Philips, Dept. Industry and Telecommunication, Sandstuveien 70, Postboks 1, Manglerud, N 0680 Oslo 6; tel. 47-2-680200

Oesterreich: Oesterreichische Philips Industrie GmbH. Abteilung Industrie Elektronik, Triesterstrasse 64, Postfach 217, A1100 Wien; tel. 43-222-645521/629141

Pakistan: Philips Electrical Co. of Pakistan Ltd. P.O.B. 7101, Karachi 3; tel. 92-21-725772

Paraguay: Philips del Paraguay S.A., Av. Artigas 1519, Cesilla de Correo 605, Asunción; tel. 595-21-291924/291934

Av. Alfonso Ugarte 1268, Lima 5, Apartado Aereo 1941, Lima 100; tel. 51-14-326070

Philippines: Philips Industries 2246 Pasong Tamo,
Mekati, Metro Manila, tel. 63-2-868951/868959

Portugal: Philips Portuguesa S.A.R.L., 1009 Lisboa Codex, Av. Eng. ^O Duarte Pacheco 6, 1000 Lisboa; tel. 351-1-683121/9 Service Centre:
Servicos Técnicos Profissionais, Duturela/Cernaxide, P.O.Box 55 2795 Linda-a-Velha; tel. 351-1-2180071

Saoudi Arabia: Delegate Office of Philips industries Sebreen Blgd., Airport Road, P.D. Box 9844, Riyadh; tel. 966-1-4777808/4778463/4778216/4776335

Schweiz-Suisse-Svizzere: Philips A.G., Allmendstrasse 140, Postfach 670, CH-8027 Zürich; tel. 41-1-4882211

Singapore: Philips Project Development(S) Pte. Ltd., Lorong 1, Tao Payoh, 1st floor, P.O. Box 340, Toa Payoh Central Post Office, Singapore 9131; tel. 65-2538811

South Africa: South African Philips (Pty) Ltd., 2 Herb Street, New Doornfontein, P.O.B. 7703, Johannesburg 2000; tel. 27-11-8179111

South-Korea: Philips Electronics (Korea) Ltd., 260-199, Itaewon-dong, Yongsan-ku, C.P.O. Box 3680, Seoul; tel. 794 501 1/5

Suomi: Oy Philips AB., Kaivokatu 8, P.O. Box 255, SF-00101 Helsinki 10; tel. 358-0-17271 Service Centre: Sinikalijontie 1-3, P.O. Box 11, SF-02630 Espoo; tel. 358-0-523122

Sverige: Philips Försäljning AB, Div. Industrietektronik, Tegeluddsvägen 1, Fack, S11584 Stockholm; tel. 46-8-7821000

B.P. 2442, Dames; tel. 221650/218605/228003/221025

Taiwan: Philips Taiwan Ltd., 150, Tun Hya North Road, P.O. Box 22978, Taipei; tel. 886-2-712-0500

Tanzania: Philips (Tanzania) Ltd., T.D.F.L. Building (1st floor), Ohio/Upanga Road P.O. Box. 20104, Dar es Salaam; tel. 29571/4

Thailand: Philips Electrical Co. of Thailand Ltd. 263 Silom Road, P.D. Box 961, Bangkok 10500; tel. 66-2-2336330.9/2355665.B

Tunisia: S.T.I.E.T., 32 bis, Rue Ben Ghedhahem, Tunis; tel. 216-1-348666

Türkiye: Türk Philips Ticaret A.S., Inönü Caddesi 76/60 Posta Kutusu 504, Beyoglu, Istanbul ; tel. 90-1-1435910

United Arab Emirates: Philips Middle East B.V., Dubai International Trade Centre, Level 11, P.O. Box 9259, Dubai; tel. 971-4-37700

United Kingdom: Pye Unicam Ltd., York Street, Cembridge CB1-2PX; tel. 44-223-358866 Service Centre: Pye Unicam Ltd., Service Division, Beddington Lane, Croydon CR9-4EN; Tel.: 44-1-6843670

Uruguay: Industrias Philips del Uruguay S.A., Avda Uruguay 1287, Casilia de Correo 294, Montevideo; tei. 915841/2/3/4-919009 Service 387777-387878-388484

Philips Test and Measurement Department Inc., California, Garden Grove 92645 12882 Valley View Street, Suite 9; tel.: (213) 594-8741/(714) 898-5000 California, Milpitas 95035 477 Valley Way; tel. (408) 946-5722 Florida, Winter Park 32789 1850 Lee Road, Suite 229; tel. (305) 528-1717 Illinois, Itasca 60143 ois, Itasca 60143 500 Park Blvd., Suite 1170, tel. (312) 773-0616 Massachusetts Water 21 Olympia Avenue: tel. (617) 935-3972 Minnesota, Minneapolis 55420 7851 Metro Parkway, Suite 302; tel. (612) 854-2426 New Jersey, Mahwah 07430 85 McKee Drive; tel. 1-201-5293800, Toll-free 800-6317172

Venezuela: Industrias Venezolanas Philips S.A., Av. Diego Cisneros, Edificio Centro Colo Apartado Aereo 1167, Caracas 1010-A; tel. 58-2-2393811/2392222/2393933

Zaire: S.A.M.E./s.a.r.l., 137, Boulevard du 30 juin, B.P. 16636, Kinshasa; tel. 31687-31888-31921

Zambia: Philips Etectrical Zambia Ltd., Mwenbeshi Road, P.O.B. 31876, Lusaka; tel. 218511/218701

Zimbabwe: Philips Electrical (Pvt) Ltd., 52 Mutare Road, P.D. Box 994, Harare; tel. 47211/48031

For information on change of address: Philips Export B.V., Scientific and Industrial Equipment Division Test and Measurement, Building TQ III-4, P.O. Box 218, 5600 MD Eindhoven - The Natherlands Tel. 31-40-764506

Philips Export B.V., I&E Export,
Test and Measurement, Building HBS, P.O. Box 218,
5600 MD Eindhoven - The Netherlands;
Tel. 31-40-755546