

Claims

We claim:

- 1 1. An electronic structure, comprising:
 - 2 an internally circuitized substrate having a metallic plane on a first surface of the
 - 3 substrate; and
 - 4 a redistribution structure having N dielectric layers, N metal planes, and a microvia
 - 5 structure through the N dielectric layers, wherein N is at least 2, wherein dielectric layer 1 is on
 - 6 the first surface of the substrate and on the metallic plane, wherein metal plane J is on dielectric
 - 7 layer J for J = 1, 2, ..., N, wherein dielectric layer I is on dielectric layer I-1 and on metal layer I-1
 - 8 for I = 2, ..., N, and wherein the microvia structure electrically couples metal plane N to the
 - 9 metallic plane.
- 1 2. The electronic structure of claim 1, wherein the microvia structure includes N microvias,
- 2 wherein the microvia K passes through dielectric layer K for K = 1, 2, ..., N, wherein metal plane
- 3 N is electrically coupled to microvia N, wherein metal plane J-1 electrically couples microvia J
- 4 to microvia J-1 for J = 2, 3, ..., N, and wherein microvia 1 is electrically coupled to the metallic
- 5 plane.

1 3. The electronic structure of claim 1, wherein the microvia structure includes a microvia that
2 passes through the N dielectric layers, wherein the microvia electrically couples metal plane N to
3 the metallic plane.

1 4. The electronic structure of claim 1, wherein the microvia structure includes a first microvia,
2 wherein the first microvia passes through dielectric layers M through N, wherein M is at least 2,
3 wherein N is at least 3, wherein M is less than N, and wherein metal plane N is electrically
4 coupled to the first microvia.

1 5. The electronic structure of claim 4, wherein the microvia structure further includes a second
2 microvia that passes through dielectric layers 1 through M-1, wherein metal plane M-1
3 electrically couples the first microvia to the second microvia, and wherein the second microvia is
4 electrically coupled to the metallic plane.

1 6. The electronic structure of claim 4, wherein the microvia structure further includes M-1
2 second microvias, and wherein the second microvia K passes through dielectric layer K for K =
3 1, 2, ..., M-1, wherein the metal plane M-1 electrically couples the first microvia to second
4 microvia M-1, wherein if M > 2 then metal plane J-1 electrically couples second microvia J to
5 second microvia J-1 for J = 2, 3, ..., M-1, and wherein second microvia 1 is electrically coupled
6 to the metallic plane.

- 1 7. The electronic structure of claim 1, wherein N = 2 or N = 3.
- 1 8. The electronic structure of claim 1, wherein the N dielectric layers each include a dielectric
2 material having a stiffness of at least about 700,000 psi.
- 1 9. The electronic structure of claim 1, wherein the N dielectric layers each include a dielectric
2 material having a glass transition temperature of at least about 150 °C.
- 1 10. The electronic structure of claim 1, wherein the N dielectric layers each include a dielectric
2 material having a coefficient of thermal expansion of no more than about 50 ppm/°C.
- 1 11. The electronic structure of claim 1, wherein at least one of the metallic plane and the N metal
2 planes includes a signal plane.
- 1 12. The electronic structure of claim 1, wherein at least one of the N metal planes includes a
2 power plane.
- 1 13. The electronic structure of claim 1, wherein at least one of the N metal planes includes a
2 ground plane.

1 14. The electronic structure of claim 1, wherein the substrate includes a dielectric material
2 comprising a polytetrafluoroethylene (PTFE) having silicon particles therein.

1 15. The electronic structure of claim 14, wherein the substrate further includes a ground plane, a
2 power plane, and a signal plane, wherein the ground plane, the power plane, and the signal plane
3 are each embedded within the dielectric material, and wherein the signal plane is disposed
4 between the ground plane and the power plane.

1 16. The electronic structure of claim 14, wherein the substrate further includes a ground plane,
2 first and second power planes, and first and second signal planes, wherein the ground plane, the
3 first and second power planes, and the first and second signal planes are each embedded within
4 the dielectric material, wherein the first signal plane is disposed between the ground plane and
5 the first power plane, and wherein the second signal plane is disposed between the ground plane
6 and the second power plane.

1 17. The electronic structure of claim 1, further comprising an electronic device electrically
2 coupled to the metal plane N by a solder member.

1 18. The electronic structure of claim 17, wherein the electronic device includes a semiconductor
2 chip.

1 19. The electronic structure of claim 17, wherein the electronic structure includes at least one
2 power plane, and wherein a thickness of the redistribution layer is large enough that a nearest
3 distance between the solder member and any power plane of the at least one power plane is not
4 less than a predetermined minimum distance value.

1 20. The electronic structure of claim 19, wherein the predetermined minimum distance value is
2 predetermined by requirements of a given radio frequency application.

1 21. The electronic structure of claim 1, wherein a plated through hole (PTH) passes through the
2 substrate from the first surface to a second surface of the substrate, and wherein the metallic
3 plane is electrically coupled to the PTH.

1 22. The electronic structure of claim 21, further comprising a second metallic plane on the
2 second surface of the substrate and a second redistribution structure having P second dielectric
3 layers, P second metal planes, and a second microvia structure through the P second dielectric
4 layers, wherein P is at least 1, wherein second dielectric layer 1 is on the second surface of the
5 substrate and on the second metallic plane, wherein second metal plane J is on second dielectric
6 layer J for $J = 1, 2, \dots, P$, wherein if $I > 1$ then second dielectric layer I is on second dielectric
7 layer I-1 and on second metal layer I-1 for $I = 2, \dots, P$, wherein the microvia structure electrically
8 couples the second metal plane P to the second metallic plane, and wherein the second metallic
9 plane is electrically coupled to the PTH.

- 1 23. The electronic structure of claim 22, wherein P = N.
- 1 24. The electronic structure of claim 22, further comprising an electronic board electrically
2 coupled to the second metal plane N by a solder member.
- 1 25. The electronic structure of claim 24, wherein the electronic board includes a circuit card.

1 26. A method for forming an electronic structure, comprising:

2 providing an internally circuitized substrate having a metallic plane on a first surface of

3 the substrate; and

4 forming a redistribution structure including forming N dielectric layers, forming N metal

5 planes, and forming a microvia structure through the N dielectric layers such that the microvia

6 structure electrically couples metal plane N to the metallic plane, wherein N is at least 2, and

7 wherein forming the N dielectric layers and the N metal layers includes setting a dummy index

8 J=0 and looping over J as follows:

9 adding 1 to J;

10 if J = 1 then forming dielectric layer 1 on the first surface of the substrate and on

11 the metallic plane, else forming dielectric layer J on dielectric layer J-1 and on metal

12 plane J-1;

13 forming metal plane J on dielectric layer J; and

14 if J < N then returning to adding 1 to J and continuing the looping, else ending the

15 looping.

1 27. The electronic structure of claim 26, wherein forming the microvia structure includes

2 forming N microvias, wherein the microvia K passes through dielectric layer K for K = 1, 2, ...,

3 N, wherein metal plane N is electrically coupled to microvia N, wherein metal plane J-1

4 electrically couples microvia J to microvia J-1 for J = 2, 3, ..., N, and wherein microvia 1 is

5 electrically coupled to the metallic plane.

1 28. The method of claim 26, wherein forming the microvia structure includes forming a microvia
2 that passes through the N dielectric layers, wherein the microvia electrically couples metal plane
3 N to the metallic plane.

1 29. The method of claim 26, wherein forming the microvia structure includes forming a first
2 microvia, wherein the first microvia passes through dielectric layers M through N, wherein M is
3 at least 2, wherein N is at least 3, and wherein M is less than N, wherein metal plane N is
4 electrically coupled to the first microvia.

1 30. The method of claim 29, wherein forming the microvia structure further includes forming a
2 second microvia that passes through dielectric layers 1 through M-1, wherein metal plane M-1
3 electrically couples the first microvia to the second microvia, and wherein the second microvia is
4 electrically coupled to the metallic plane.

1 31. The method of claim 29, wherein forming the microvia structure further includes forming M-
2 1 second microvias, and wherein the second microvia K passes through dielectric layer K for K =
3 1, 2, ..., M-1, wherein the metal plane M-1 electrically couples the first microvia to second
4 microvia M-1, wherein if M > 2 then metal plane J-1 electrically couples second microvia J to
5 second microvia J-1 for J = 2, 3, ..., M-1, and wherein second microvia 1 is electrically coupled
6 to the metallic plane.

- 1 32. The method of claim 26, wherein N = 2 or N = 3.
- 1 33. The method of claim 26, wherein the N dielectric layers each include a dielectric material
2 having a stiffness of at least about 700,000 psi.
- 1 34. The method of claim 26, wherein the N dielectric layers each include a dielectric material
2 having a glass transition temperature of at least about 150 °C.
- 1 35. The method of claim 26, wherein the N dielectric layers each include a dielectric material
2 having a coefficient of thermal expansion of no more than about 50 ppm/°C.
- 1 36. The method of claim 26, wherein at least one of the metallic plane and the N metal planes
2 includes a signal plane.
- 1 37. The method of claim 26, wherein at least one of the N metal planes includes a power plane.
- 1 38. The method of claim 26, wherein at least one of the N metal planes includes a ground plane.
- 1 39. The method of claim 26, wherein the substrate includes a dielectric material comprising a
2 polytetrafluoroethylene (PTFE) having silicon particles therein.

1 40. The method of claim 39, wherein the substrate further includes a ground plane, a power
2 plane, and a signal plane, wherein the ground plane, the power plane, and the signal plane are
3 each embedded within the dielectric material, and wherein the signal plane is disposed between
4 the ground plane and the power plane.

1 41. The method of claim 39, wherein the substrate further includes a ground plane, first and
2 second power planes, and first and second signal planes, wherein the ground plane, the first and
3 second power planes, and the first and second signal planes are each embedded within the
4 dielectric material, wherein the first signal plane is disposed between the ground plane and the
5 first power plane, and wherein the second signal plane is disposed between the ground plane and
6 the second power plane.

1 42. The method of claim 26, further comprising electrically coupling an electronic device to the
2 metal plane N by a solder member.

1 43. The method of claim 42, wherein the electronic device includes a semiconductor chip.

1 44. The method of claim 42, wherein the electronic structure includes at least one power plane,
2 and further comprising predetermining a minimum distance value, wherein forming the
3 redistribution layer includes making a thickness of the redistribution layer large enough that a
4 nearest distance between the solder member and any power plane of the at least one power plane

5 is not less than the predetermined minimum distance value.

1 45. The method of claim 44, wherein predetermining a minimum distance value includes
2 utilizing requirements of a given radio frequency application.

1 46. The method of claim 26, further comprising forming a plated through hole (PTH) through the
2 substrate from the first surface to a second surface of the substrate, and electrically coupling the
3 metallic plane to the PTH.

1 47. The method of claim 46, further comprising forming a second metallic plane on a second
2 surface of the substrate, electrically coupling the second metallic plane to the PTH, and forming
3 a second redistribution structure including forming P second dielectric layers, forming P second
4 metal planes, and forming a second microvia structure through the P second dielectric layers
5 such that the second microvia structure electrically couples the second metal plane P to the
6 second metallic plane, wherein P is at least 1, and wherein forming the P second dielectric layers
7 and the P second metal layers includes setting a dummy index L=0 and looping over L as
8 follows:

9 adding 1 to L;

10 if L = 1 then forming second dielectric layer 1 on the second surface of the
11 substrate and on the second metallic plane, else if P > 1 then forming second dielectric
12 layer L on second dielectric layer L-1 and on second metal plane L-1;

13 forming second metal plane L on second dielectric layer L; and
14 if $L < P$ then returning to adding 1 to L and continuing the looping, else ending
15 the looping.

1 48. The method of claim 47, wherein $P = N$.

1 49. The method of claim 47, further comprising electrically coupling an electronic board to the
2 second metal plane N by a solder member.

1 50. The method of claim 49, wherein the electronic board includes a circuit card.