Solution of differential Equations with Constant Coefficient

Parvin Akter

Assistant Professor

Department of Mathematics, CUET.

S.	Corresponding part of C.F.	Nature of roots of auxiliary equation (A.E)
No.		
1.	(i) One real root m ₁	$c_1e^m 1^x$
	(ii) Two real and different roots m₁, m₂	$c_1 e^{m_1 x} + c_2 e^{m_2 x}$
	(iii) Three real and different roots m_1 , m_2 , m_3	$c_1 e^{m_1 x} + c_2 e^{m_2 x} + c_3 e^{m_3 x}$
2.	(i) Two real and equal roots m₁, m₁	$(c_1 + c_2 x) e^{m_1 x}$
	(ii) Three real and equal roots m_1 , m_1 , m_1	$(c_1 + c_2 x + c_3 x^2) e^{m_1 x}$
3.	(i) One pair of complex roots $\alpha \pm i\beta$	$e^{\alpha x} (c_1 \cos \beta x + c_2 \sin \beta x)$ or
		$c_1 e^{\alpha x} \cos(\beta x + c_2)$ or $c_1 e^{\alpha x} \sin(\beta x + c_2)$
	(ii) Two pairs of complex and equal roots	
	$\alpha \pm i\beta$, $\alpha \pm i\beta$	$e^{\alpha x} [(c_1 + c_2 x) \cos \beta x + (c_3 + c_4 x) \sin \beta x]$
4.	(i) One pair of surd roots $\alpha \pm \sqrt{\beta}$	$e^{\alpha x} \left(c_1 \cosh x \sqrt{\beta} + c_2 \sinh x \sqrt{\beta} \right)$ or
		$c_1 e^{\alpha x} \cosh(x\sqrt{\beta} + c_2)$ or $c_1 e^{\alpha x} \sinh(x\sqrt{\beta} + c_2)$
	(ii) Two pairs of surd and equal roots	$e^{\alpha x} \left[(c_1 + c_2 x) \cosh x \sqrt{\beta} + (c_3 + c_4 x) \sinh x \sqrt{\beta} \right]$
	$\alpha \pm \sqrt{\beta}$, $\alpha \pm \sqrt{\beta}$	

Ex. 2. Solve $(D^3 + 3D^2 + 3D + 1)$ v = 0

[Delhi Maths. (G) 1994]

Sol. The auxiliary equation is $D^3 + 3D^2 + 3D + 1 = 0$ or $(D+1)^3 = 0 \Rightarrow -1, -1, -1$.

 $\therefore \text{ The required solution is } y = (c_1 + c_2 x + c_3 x^2) e^{-x}, c_1, c_2, c_3 \text{ being arbitrary constants.}$

Ex. 3 Solve $(d^4y/dx^4) - (d^3y/dx^3) - 9(d^2y/dx^2) - 11(dy/dx) - 4y = 0$. [Delhi Maths. (G) 1997]

Sol. Let D = d/dx. Then the given equation can be written as

$$(D^4 - D^3 - 9D^2 - 11D - 4)y = 0$$
 or $(D+1)^3(D-4) = 0$ so that $D = 4, -1, -1, -1$.

... The required solution is $y = c_1 e^{4x} + (c_2 + c_3 x + c_4 x^2) e^{-x}$, c_1 , c_2 , c_3 , c_4 being arbitrary constants.

Ex. 4. Solve (a)
$$(D^4 - 5D^2 + 4)y = 0$$

(b)
$$(D^4 + 2D^3 - 3D^2 - 4D + 4) y = 0$$

(c)
$$(D^3 - 3D^2 + 2D) y = 0$$

Sol. (a) Here auxiliary equation is

$$D^4 - 5D^2 + 4 = 0$$

or
$$(D^2-4)(D^2-1)=0$$
 or $D^2=4$ or 1 so that $D=2,-2,1,-1$.

 $\therefore \quad \text{The required general solution is} \qquad \qquad y = c_1 e^{2x} + c_2 e^{-2x} + c_3 e^x + c_4 e^{-x},$

 c_1, c_2, c_3, c_4 being arbitrary constants

(b) Here auxiliary equation is
$$D^4 + 2D^3 - 3D^2 - 4D + 4 = 0$$
 or $(D-1)(D^3 + 3D^2 - 4) = 0$

or
$$(D-1)\{(D-1)(D^2+4D+4)\}$$
 or $(D-1)^2(D+2)^2=0$ so that $D=1,1,-2,-2$.

... The required solution is $y = (c_1 + c_2 x) e^x + (c_3 + c_4 x)^{-2x}$, c_1 , c_2 , c_3 being arbitrary constants.

(c) Here the auxiliary equation is
$$D^3 - 3D^2 + 2D = 0$$
 or $D(D^2 - 3D + 2) = 0$ or $D(D - 1)(D - 2) = 0$ so that $D = 0, 1, 2$. Hence the required solution is $y = c_1 e^{0x} + c_2 e^x + c_3 e^{2x}$ or $y = c_1 + c_2 e^x + c_3 e^{2x}$, c_1 , c_2 , c_3 being arbitrary constants **Ex. 5.** Solve $(D^3 - 8) y = 0$. **Sol.** (a) Here auxiliary equation is $D^3 - 8 = 0$ or $(D - 2)(D^2 + 2D + 4) = 0$ so that $D = 2$ or $D = \{-2 \pm (4 - 16)^{1/2}\}/2$ or $D = 2, -1 \pm i\sqrt{3}$. \therefore The required solution is $y = c_1 e^{2x} + e^{-x} \{c_2 \cos(x\sqrt{3}) + c_3 \sin(x\sqrt{3})\}, c_1, c_2, c_3$ being arbitrary constants **Ex. 6.** Solve (i) $d^4y/dx^4 + w^4y = 0$ (ii) $d^4y/dx^4 + v = 0$ (iii) $d^4y/dx^4 + v = 0$ (iii) $d^4y/dx^4 + v = 0$

Ex. 6. Solve (i)
$$d^4y/dx^4 + m^4y = 0$$

(ii) $d^4y/dx^4 + y = 0$ [(I.A.S.Prel 2001; Agra 2006]

Sol. (i) Let $D \equiv d/dx$. Then, the given equation can be rewritten as $(D^4 + m^4) y = 0$ Its auxiliary equation is $D^4 + m^4 = 0$ or $(D^2 + m^2)^2 - (\sqrt{2}Dm)^2 = 0$

or
$$(D^2 + m^2 + \sqrt{2}Dm)(D^2 + m^2 - \sqrt{2}Dm) = 0 \Rightarrow D^2 + m^2 + \sqrt{2}Dm = 0 \text{ or } D^2 + m^2 - \sqrt{2}Dm = 0$$

$$\therefore D = \{-\sqrt{2}m \pm (2m^2 - 4m^2)^{1/2}\}/2 = -(m/\sqrt{2}) \pm i(m/\sqrt{2}),$$
and $D = \{\sqrt{2}m \pm (2m^2 - 4m^2)^{1/2}\}/2 = m/\sqrt{2} \pm i(m/\sqrt{2})$

Hence the required general solution is $y = e^{-(mx/\sqrt{2})} \{c_1 \cos(mx/\sqrt{2}) + c_2 \sin(mx/\sqrt{2})\}$

 $+e^{mx/\sqrt{2}}\left\{c_3\cos(mx/\sqrt{2})+c_4\sin(mx/\sqrt{2})\right\}$, c_1,c_2,c_3,c_4 being arbitrary constants.

(ii) This is a particular case of part (i). Here m = 1. Solution is

$$y = e^{-(x/\sqrt{2})} \{c_1 \cos(x/\sqrt{2}) + c_2 \sin(x/\sqrt{2})\} + e^{x/\sqrt{2}} \{c_3 \cos(x/\sqrt{2}) + c_4 \sin(x/\sqrt{2})\}.$$

• • •

Ex. 15_(b). Find the solution of $(d^2i/dt^2) + (R/L)(di/dt) + (1/LC)i = 0$, where $R^2C = 4L$ and R, C, L are constants.

Sol. Let D = d/dt. Then the given equation can be written as $[(D^2 + (R/L)D + (1/LC)]i = 0$. Here the auxiliary equation is $D^2 + (R/L)D + (1/LC) = 0$

so that
$$D = [-(R/L) \pm \{(R^2/L^2) - (4/LC)\}^{1/2}]/2 = -(R/2L)$$
, as $R^2C = 4L$

Thus, D = -(R/2L) (twice). Hence the required general solution is $y = (c_1 + c_2 t) e^{-t (R/2L)}$, c_1 , c_2 being arbitrary constants.

H.W. 7-12

Ex. 1. Solve the following differential equations:

(a)
$$(D^2 - 3D + 2) y = e^{3x}$$
.

[I.A.S. (Preliminary) 1993, Meerut 1994]

(b)
$$(4D^2 + 12D + 9) y = 144 e^{-3x}$$
.

[Rohilkhand 1992, 93]

(c)
$$[D^2 + 2pD + (p^2 + q^2)]y = e^{ax}$$
.

(d)
$$D^2 (D+1)^2 (D^2+D+1)^2 y = e^x$$

Sol. (a) Here the auxiliary equation is $D^2 - 3D + 2 = 0$ so that D = 1, 2

 \therefore C.F. = $c_1e^x + c_2e^{2x}$, c_1 , c_2 being arbitrary constants.

and P.I. =
$$\frac{1}{D^2 - 3D + 2}e^{3x} = \frac{1}{3^3 - (3 \times 3) + 2}e^{3x} = \frac{1}{2}e^{3x}$$

... The required general solution is $y = c_1 e^x + c_2 e^{2x} + (1/2) e^{3x}$.

(b) Here the A.E. is
$$(2D+3)^2=0$$
 so that $D=-3/2,-3/2$

$$D = -3/2, -3/2$$

 \therefore C.F. = $(c_1 + c_2 x) e^{-3x/2}$, c_1 , c_2 being arbitrary constants.

and P.I. =
$$\frac{1}{4D^2 + 12D + 9} 144e^{-3x} = 144 \frac{1}{(2D+3)^2} e^{-3x} = \frac{144}{(-6+3)^2} e^{-3x} = 16e^{-3x}$$

Hence the required solution is $y = (c_1 + c_2 x) e^{-3x/2} + 16 e^{-3x}$.

$$y = (c_1 + c_2 x) e^{-3x/2} + 16 e^{-3x}$$
.

(c) Here the auxiliary equation is

$$D^2 + 2pD + (p^2 + q^2) = 0$$

Solving
$$D = \frac{-2p \pm \sqrt{4p^2 - 4(p^2 + q^2)}}{2} = -p \neq iq \text{ (complex roots)}$$

 \therefore C.F. = e^{-px} ($c_1 \cos qx + c_2 \sin qx$), c_1 , c_2 being arbitrary constants

and P.I. =
$$\frac{1}{D^2 + 2pD + (p^2 + q^2)} e^{ax} = \frac{1}{a^2 + 2pa + p^2 + q^2} e^{ax} = \frac{e^{ax}}{(p+a)^2 + q^2}$$

- $\therefore \text{ Required solution is } y = e^{-p} \left(c_1 \cos qx + c_2 \sin qx \right) + e^{ax/\{(p+a)^2 + q^2\}}$
- (d) Here the auxiliary equation is $D^2 (D+1)^2 (D^2+D+1)^2 = 0$ Solving, we get D=0, 0, -1, -1, $-(1/2) \pm i (\sqrt{3}/2)$, $-(1/2) \pm i (\sqrt{3}/2)$.

Ex. 2. Solve the following differential equations:

(a)
$$(4D^2 - 12D + 9)$$
 $y = 144 e^{3x/2}$.

(b)
$$(D^2 + 4D + 4) y = e^{2x} - e^{-2x}$$
 or $(D^2 + 4D + 4) y = 2 \sinh 2x$.

Sol. (a) Here the auxiliary equation is $4D^2 - 12D + 9 = 0$.

$$4D^2 - 12D + 9 = 0$$

OF

$$(2D-3)^2=0$$

so that

$$D = 3/2, 3/2.$$

 \therefore C.F. = $(c_1 + c_2 x) e^{3x/2}$, c_1 , c_2 being arbitrary constants.

and

P.I. =
$$\frac{1}{(4D^2 - 12D + 9)} 144e^{3x/2} = 144\frac{1}{(2D - 3)}e^{3x/2} = \frac{144}{4} \frac{1}{\{D - (3/2)\}^2}e^{3x/2}$$

= $36 \cdot \frac{x^2}{2!}e^{3x/2}$, as $\frac{1}{(D - a)^n}e^{ax} = \frac{x^n}{n!}e^{ax}$

 \therefore Solution is $y = (c_1 + c_2 x) e^{3x/2} + 18x^2 e^{3x/2}$. c_1 , c_2 , being arbitrary constants.

(b) Given equation is

$$(D^2 + 4D + 4) v = 2 \sinh 2x$$
.

OF

$$(D+2)^2 y = e^{2x} - e^{-2x}$$

$$(D+2)^2 y = e^{2x} - e^{-2x}$$
, as $\sinh 2x = (e^{2x} - e^{-2x})/2$.

Here the auxiliary equation is $(D+2)^2=0$ so that D=-2,-2

$$(D+2)^2=0$$

$$D = -2, -2$$

 \therefore C.F. = $(c_1 + c_2 x) e^{-2x}$, c_1 , c_2 being arbitrary constants.

and

P.I. =
$$\frac{1}{(D+2)^2} (e^{2x} - e^{-2x}) = \frac{1}{(D+2)^2} e^{2x} - \frac{1}{(D+2)^2} e^{-2x}$$

= $\frac{1}{(2+2)^2} e^{2x} - \frac{x^2}{2!} e^{-2x} = \frac{1}{16} e^{2x} - \frac{x^2}{2!} e^{-2x}$.

Hence the required solution is $y = (c_1 + c_2 x) e^{-2x} + (1/16) \times e^{2x} - (x^2/2) \times e^{-2x}$

Ex. 1. Solve the following differential equations

(a)
$$(D^2 + 1) y = \cos 2x$$

(b)
$$(D^2 + 9) y = \cos 4x$$
.

Sol. (a) Here the auxiliary eqution is $D^2 + 1 = 0$ so that $D = \pm i$,

$$D^2 + 1 = 0$$

$$D = \pm i$$

∴ C.F. = c₁ cos x + c₂ sin x, c₁, c₂ being arbitrary constants.

Now, P.I. =
$$\frac{1}{D^2 + 1} \cos 2x = \frac{1}{-2^2 + 1} \cos 2x = -\frac{1}{3} \cos 2x$$
.

The required general solution is
$$y = c_1 \cos x + c_2 \sin x - (1/3) \cos 2x$$
.

(b) Try yourself.

Ans.
$$y = c_1 \cos 3x + c_2 \sin 3x - (1/7) \cos 4x$$
.

Ex. 2. (a) Solve $(D^2 - 3D + 2) y = \sin 3x$.

[Delhi Maths (G) 1996]

(b)
$$(D^2 - 4D + 4) y = \sin 2x$$
.

Sol. (a) Here auxiliary equation $D^2 - 3D + 2 = 0$ gives D = 1, 2.

$$D^2 - 3D + 2 = 0$$

$$D = 1, 2.$$

C.F. = $c_1e^x + c_2e^{2x}$, c_1 , c_2 being arbitrary constants.

and P.I. =
$$\frac{1}{D^2 - 3D + 2} \sin 3x = \frac{1}{-3^2 - 3D + 2} \sin 3x$$

= $-\frac{1}{3D + 7} \sin 3x = -(3D - 7) \frac{1}{(3D - 7)(3D + 7)} \sin 3x$

$$= -(3D-7)\frac{1}{9D^2-49}\sin 3x = -(3D-7)\frac{1}{9(-3^2)-49}\sin 3x$$

$$= (1/130)\times (3D-7)\sin 3x = (1/130)\times (9\cos 3x-7\sin 3x).$$

$$\therefore \text{ Solution is } y = c_1e^x + c_2e^{2x} + (1/130)\times (9\cos 3x-7\sin 3x).$$

Ex. 4. Solve the following differential equations:

(a)
$$(D^3 + a^2 D) y = \sin ax$$
 [I.A.S. Prel. 2006, Rajsthan 2010, Purvanchal 1999]

(b)
$$(D^3 + 9D) y = \sin 3x$$
.

(c) $(d^3x/dy^3) + b^2(dx/dy) = \sin by$.

Sol. (a) Here auxiliary equation is $D^3 + a^2 D = 0$ so that

 $D=0, 0 \pm ia$

 $\therefore \text{ C.F.} = c_1 e^{0x} + e^{0x} \left(c_2 \cos ax + c_3 \sin ax \right) = c_1 + c_2 \cos ax + c_3 \sin ax,$ where c_1 , c_2 and c_3 arbitrary constants.

P.I.
$$= \frac{1}{D^3 + a^2 D} \sin ax = \frac{1}{D^2 + a^2} \frac{1}{D} \sin ax = \frac{1}{D^2 + a^2} \left(-\frac{1}{a} \cos ax \right)$$

$$= -\frac{1}{a} \left[\text{Real part of } \frac{1}{D^2 + a^2} \left(\cos ax + i \sin ax \right) \right]$$

$$= -\frac{1}{a} \left[\text{Real part of } \frac{1}{D^2 + a^2} e^{iax} \right], \text{ by Euler's theorem}$$

$$= -\frac{1}{a} \left[\text{Real part of } \left(\frac{x}{2a} \sin ax - \frac{ix}{2a} \cos ax \right) \right]$$

$$[\text{As in Ex. 3. (a), prove that } \frac{1}{D^2 + a^2} e^{iax} = \frac{x}{2a} \sin ax - \frac{ix}{2a} \cos ax \right]$$

$$= -\left(\frac{1}{a} \right) (x/2a) \sin ax = -\left(\frac{x}{2a^2} \right) \sin ax.$$

Hence the general solution is $y = c_1 + c_2 \cos ax + c_3 \sin ax - (x/2a^2) \sin ax$.

(b) Do as in part (a) Ans.
$$y = c_1 + c_2 \cos 3x + c_3 \sin 3x - (x/18) \sin 3x$$
.

(c) Proceed as in part (a). Here y is independent and x is dependent variable

Ans.
$$x = c_1 + c_2 \cos by + c_3 \sin by - (y/2b^2) \sin by$$

H.W: 5,6,8,11

Ex. 1. Solve
$$(D^4 - D^2)y = 2$$
.

[Agra 2005]

Sol. Here auxiliary equation is $D^4 - D^2 = 0$ or $D^2 (D^2 - 1) = 0 \implies D = 0, 0, 1, -1$

$$\therefore \text{ C.F. } = (c_1 + c_2 x) e^{0x} + c_3 e^x + c_4 e^{-x} = c_1 + c_2 x + c_3 e^x + c_4 e^{-x},$$

where c_1 , c_2 , c_3 and c_4 are arbitrary constants.

P.I. =
$$\frac{1}{D^4 - D^2} 2 = -\frac{2}{D^2} \frac{1}{(1 - D^2)} 1 = -\frac{2}{D^2} (1 - D^2)^{-1} \cdot 1$$

= $-\frac{2}{D^2} (1 + D^2 + D^4 + ...) \cdot 1 = -\frac{2}{D^2} 1 = -\frac{2}{D} x = (-2) \times \frac{x^2}{2} = -x^2$

∴ Solution is

$$y = c_1 + c_2 x + c_3 e^x + c_4 e^{-x} - x^2$$

Ex. 2. Find the particular integral of $(D^2 + D)$ $y = x^2 + 2x + 4$.

[I.A.S. Prel. 1994]

Sol. The required particular integral

$$= \frac{1}{D^2 + D} (x^2 + 2x + 4) = \frac{1}{D(1+D)} (x^2 + 2x + 4) = \frac{1}{D} (1+D)^{-1} (x^2 + 2x + 4)$$

$$= (1/D) (1 - D + D^2 - D^3 + ...) (x^2 + 2x + 4)$$

$$= (1/D) [(x^2 + 2x + 4) - D (x^2 + 2x + 4) + D^2 (x^2 + 2x + 4)]$$

$$= (1/D) [x^2 + 2x + 4 - (2x + 2) + 2] = (1/D) (x^2 + 4) = x^3/3 + 4x.$$

Ex. 4. Solve
$$(D^3 + 8) v = x^4 + 2x + 1$$
.

[Delhi Maths Hons, 1998]

Sol. Here the auxiliary equation is $D^3 + 2^3 = 0$ or $(D+2)(D^2-2D+4) = 0$

$$D^3 + 2^3 = 0$$
 or $(D+2)(D^2 - 2D + 4) = 0$

so that

$$D = -2$$
, $\{2 \pm (4 - 16)^{1/2}\}/2 = -2$, $1 \pm i\sqrt{3}$.

 $\therefore \text{C.F.} = c_1 e^{-2x} + e^x (c_2 \cos x \sqrt{3} + c_3 \sin x \sqrt{3}), c_1, c_2, c_3 \text{ being arbitrary constans}$

$$\therefore P.I. = \frac{1}{D^3 + 8}(x^4 + 2x + 1) = \frac{1}{8(1 + D^3/8)}(x^4 + 2x + 1)$$

$$= \frac{1}{8} \left(1 + \frac{D^3}{8} \right)^{-1} (x^4 + 2x + 1) = \frac{1}{8} \left(1 - \frac{D^3}{8} + \dots \right) (x^4 + 2x + 1)$$

$$= (1/8) \times [(x^4 + 2x + 1) - (1/8) \times D^3(x^4 + 2x + 1)]$$

$$= (1/8) \times [(x^4 + 2x + 1) - (1/8)(24x)] = (1/8) \times (x^4 + 2x + 1 - 3x) = (x^4 - x + 1)/8.$$

... Required solution is $y = c_1 e^{-2x} + e^x (c_2 \cos x \sqrt{3} + c_3 \sin x \sqrt{3}) + (x^4 - x + 1)/8$.

Ex. 5. Solve (a) $(D^2 + 2D + 2) v = x^2$.

(b)
$$(D^2 - 4D + 4) y = x^2$$
.

Sol. (a) Here the auxiliary equation is $D^2 + 2D + 2 = 0$ so that $D = -1 \pm i$.

 \therefore C.F. = e^{-x} ($c_1 \cos x + c_2 \sin x$), c_1 , c_2 being arbitrary constants

and P.I. =
$$\frac{1}{D^2 + 2D + 2} x^2 = \frac{1}{2[1 + (D + D^2/2)]} x^2 = \frac{1}{2} \{1 + (D + D^2/2)\}^{-1}$$

= $(1/2) \{1 - (D + D^2/2) + (D + D^2/2)^2 - ...\} x^2 = (1/2) \{1 - (D + D^2/2) + D^2 + ...\} x^2$
= $(1/2) \{1 - D + D^2/2 + ...\} x^2 = (1/2) (x^2 - 2x + 1)$

 $\therefore \text{ The required solution is } y = e^{-x} (c_1 \cos x + c_2 \sin x) + (x^2 - 2x + 1)/2.$

Ans. $v = (c_1 + c_2 x) e^{2x} + (2x^2 + 4x + 3)/4$. (b) Try yourself.

H.W: 5,7,11

Ex. 1. Solve $(D^2 - 2D + 1) v = x^2 e^{3x}$.

[Purvanchal 2007, Delhi 1993, 2005, 08; Agra 2003]

Sol. The auxiliary equation of the given equation $D^2 - 2D + 1 = 0 \Rightarrow D = 1, 1.$

$$D^2 - 2D + 1 = 0 \Rightarrow D = 1, 1$$

 \therefore C.F. = $(c_1 + c_2 x) e^x$, c_1 , c_2 being arbitrary constants.

P.I. =
$$\frac{1}{D^2 - 2D + 1} x^2 e^{3x} = \frac{1}{(D-1)^2} x^2 e^{3x} = e^{3x} \frac{1}{(D+3-1)^2} x^2$$

$$= e^{3x} \frac{1}{(D+2)^2} x^2 = e^{3x} \frac{1}{4(1+D/2)^2} x^2 = \frac{1}{4} e^{3x} \left(1 + \frac{D}{2}\right)^{-2} x^2$$

$$= \frac{1}{4}e^{3x} \left[1 - \frac{D}{2} + \frac{(-2)(-3)}{2!} \frac{D^2}{4} + \dots \right] x^2 = \frac{1}{4}e^{3x} \left(1 - \frac{D}{2} + \frac{3}{4}D^2 + \dots \right) x^2$$

Ex. 2. Solve (a)
$$(D^2 - 2D + 1) v = x^2 e^x$$

(b)
$$(D^2 - 6D + 9) v = x^2 e^{3x}$$

[G.N.D.U. Amritsar 2010]

Sol. (a) Here the auxiliary equation

$$D^2 - 2D + 1 = 0 \Rightarrow D = 1, 1.$$

 \therefore C.F. = $(c_1 + c_2 x) e^x$, c_1 , c_2 being arbitrary constants.

and

P.I. =
$$\frac{1}{D^2 - 2D + 1} e^x x^2 = \frac{1}{(D - 1)^2} e^x x^2 = e^x \frac{1}{(D + 1 - 1)^2} x^2$$

$$= e^x \frac{1}{D^2} x^2 = e^x \frac{1}{D} \int x^2 dx = e^x \frac{1}{D} \frac{x^3}{3} = e^x \int \frac{x^3}{3} dx = \frac{e^x}{3} \cdot \frac{x^4}{4}$$

Hence the required solution is

$$y = (c_1 + c_2 x) e^x + (1/12) \times x^4 e^x$$
.

(b) Try yourself.

Ans.
$$y = (c_1 + c_2 x) e^{3x} + (x^4/12) \times e^{3x}$$

Ex. 3. Find the particular solution of $(D-1)^2 y = e^x \sec^2 x \tan x$.

[Kuvempa 2005]

Sol. P.I. =
$$\frac{1}{(D-1)^2}e^x \sec^2 x \tan x = e^x \frac{1}{(D+1-1)^2} \tan x \sec^2 x$$

$$= e^x \frac{1}{D} \int \tan x \sec^2 x \, dx = e^x \frac{1}{D} \left(\frac{\tan^2 x}{2} \right) = \frac{e^x}{2} \int \tan^2 x \, dx$$

$$=\frac{e^x}{2}\int (\sec^2 x - 1) dx = \frac{e^x}{2}(\tan x - x)$$

Ex. 4. Solve $(D - a)^2 y = e^{ax} f'(x)$

[Agra 2006]

Sol. Here auxiliary equation of the given equation is $(D-a)^2 = 0$ so that D = a, a.

 \therefore C.F. = $(c_1 + c_2 x) e^{ax}$, c_1 and c_2 being arbitrary constants

P.I. =
$$\frac{1}{(D-a)^2} e^{ax} f'(x) = e^{ax} \frac{1}{(D+a-a)^2} f'(x) = e^{ax} \frac{1}{D} \frac{1}{D} f'(x) = e^{ax} \frac{1}{D} f(x) = e^{ax} \int f(x) dx$$

... The required solution is $y = (c_1 + c_2 x) e^{ax} + e^{ax} \int f(x) dx$

H.W: 5,6,8,12,16

Ex. 10. solve $(D^5 - D) y = 12 e^x + 8 \sin x - 2x$.

Sol. A.E.
$$D(D^4-1)=0 \implies D(D^2-1)(D^2+1)=0 \implies D=0, 1, -1, \pm i$$
.

 \therefore C.F. = $c_1 + c_2 e^x + c_3 e^{-x} + c_4 \cos x + c_5 \sin x$, c_1, \dots, c_5 being arbitrary constants Now P.I. corresponding to $12e^x$

$$=12\frac{1}{(D-1)D(D+1)(D^2+1)}e^x=12\frac{1}{(D-1)1\cdot(1+1)(1+1)}e^x=3\frac{1}{D-1}e^x=3\cdot\frac{x}{1!}e^x=3xe^x.$$

P.I. corresponding to $8 \sin x$ is

$$= 8 \frac{1}{(D^2 + 1)D(D^2 - 1)} \sin x = 8 \frac{1}{(D^2 + 1)D(-1^2 - 1)} \sin x = -4 \frac{1}{(D^2 + 1)} \left[\frac{1}{D} \sin x \right]$$

$$= 4\frac{1}{D^2 + 1}\cos x = 4\left(\frac{x}{2\times 1}\sin x\right) = 2x\sin x$$

$$\left[\because \frac{1}{D^2 + a^2}\cos ax = \frac{x}{2a}\sin x\right]$$

P.I. corresponding to (-2x) is

$$= -2\frac{1}{D(D^2 - 1)(D^2 + 1)}x = 2\frac{1}{D(1 - D^2)(1 + D^2)}x = 2\frac{1}{D}(1 - D^2)^{-1}(1 + D^2)^{-1}x$$

$$= 2\frac{1}{D}(1+D^2+...)(1-D^2+...)x = 2\frac{1}{D}(1+D^2-D^2+...)x = 2\frac{1}{D}x = 2\left(\frac{x^2}{2}\right) = x^2.$$

$$\therefore \text{ Solution is } y = c_1 + c_2 e^x + c_3 e^{-x} + c_4 \cos x + c_5 \sin x + 3 x e^x + 2x \sin x + x^2.$$