

Specification for Display Command Set (DCSSM)

Version 1.3
5 October 2015
MIPI Board Adopted 11 February 2016

This document is a MIPI Specification. MIPI member companies' rights and obligations apply to this MIPI Specification as defined in the MIPI Membership Agreement and MIPI Bylaws.

Further technical changes to this document are expected as work continues in the Display Working Group.

NOTICE OF DISCLAIMER

The material contained herein is not a license, either expressly or impliedly, to any IPR owned or controlled by any of the authors or developers of this material or MIPI[®]. The material contained herein is provided on an "AS IS" basis and to the maximum extent permitted by applicable law, this material is provided AS IS AND WITH ALL FAULTS, and the authors and developers of this material and MIPI hereby disclaim all other warranties and conditions, either express, implied or statutory, including, but not limited to, any (if any) implied warranties, duties or conditions of merchantability, of fitness for a particular purpose, of accuracy or completeness of responses, of results, of workmanlike effort, of lack of viruses, and of lack of negligence.

All materials contained herein are protected by copyright laws, and may not be reproduced, republished, distributed, transmitted, displayed, broadcast or otherwise exploited in any manner without the express prior written permission of MIPI Alliance. MIPI, MIPI Alliance and the dotted rainbow arch and all related trademarks, tradenames, and other intellectual property are the exclusive property of MIPI Alliance and cannot be used without its express prior written permission.

ALSO, THERE IS NO WARRANTY OF CONDITION OF TITLE, QUIET ENJOYMENT, QUIET POSSESSION, CORRESPONDENCE TO DESCRIPTION OR NON-INFRINGEMENT WITH REGARD TO THIS MATERIAL OR THE CONTENTS OF THIS DOCUMENT. IN NO EVENT WILL ANY AUTHOR OR DEVELOPER OF THIS MATERIAL OR THE CONTENTS OF THIS DOCUMENT OR MIPI BE LIABLE TO ANY OTHER PARTY FOR THE COST OF PROCURING SUBSTITUTE GOODS OR SERVICES, LOST PROFITS, LOSS OF USE, LOSS OF DATA, OR ANY INCIDENTAL, CONSEQUENTIAL, DIRECT, INDIRECT, OR SPECIAL DAMAGES WHETHER UNDER CONTRACT, TORT, WARRANTY, OR OTHERWISE, ARISING IN ANY WAY OUT OF THIS OR ANY OTHER AGREEMENT, SPECIFICATION OR DOCUMENT RELATING TO THIS MATERIAL, WHETHER OR NOT SUCH PARTY HAD ADVANCE NOTICE OF THE POSSIBILITY OF SUCH DAMAGES.

Without limiting the generality of this Disclaimer stated above, the user of the contents of this Document is further notified that MIPI: (a) does not evaluate, test or verify the accuracy, soundness or credibility of the contents of this Document; (b) does not monitor or enforce compliance with the contents of this Document; and (c) does not certify, test, or in any manner investigate products or services or any claims of compliance with the contents of this Document. The use or implementation of the contents of this Document may involve or require the use of intellectual property rights ("IPR") including (but not limited to) patents, patent applications, or copyrights owned by one or more parties, whether or not Members of MIPI. MIPI does not make any search or investigation for IPR, nor does MIPI require or request the disclosure of any IPR or claims of IPR as respects the contents of this Document or otherwise.

Questions pertaining to this document, or the terms or conditions of its provision, should be addressed to:

MIPI Alliance, Inc. c/o IEEE-ISTO 445 Hoes Lane Piscataway, NJ 08854 Attn: Board Secretary

Contents

C	ontent	S	111
F	igures.		vi
T	ables		ix
R	elease	History	X
1	Intr	roduction	1
	1.1	Scope	1
	1.2	Purpose	1
2	Ter	minology	2
	2.1	Glossary	2
	2.2	Abbreviations	3
	2.3	Acronyms	3
3	Ref	erences	5
4	Disp	play Architectures	6
5	Disj	play Functional Description	9
	5.1	Power Level Definition	9
	5.2	Gamma Curves	12
	5.2.	1 Gamma Curve 1 (GC0)	12
	5.2.	2 Gamma Curve 2 (GC1)	12
	5.2.	3 Gamma Curve 3 (GC2)	13
	5.2.	4 Gamma Curve 4 (GC3)	13
	5.3	Self-diagnostic Functions	14
	5.3.	1 Register Loading Detection	14
	5.3.	2 Functionality Detection	15
	5.3.	3 Chip Attachment Detection (optional)	16
	5.3.	4 Display Glass Break Detection (optional)	17
	5.4	Display Command Set	18
	5.5	Command Lists	19
	5.6	Command Accessibility	24
	5.7	Default Modes and Values	26
	5.8	Image Data Compression	30
	5.8.	1 Display Stream Compression Transport in Command Mode	30
6	Cor	mmand Description	32
	6.1	enter_idle_mode	33
	6.2	enter_invert_mode	35
	6.3	enter normal mode	36

6.4	enter_partial_mode	37
6.5	enter_sleep_mode	38
6.6	exit_idle_mode	39
6.7	exit_invert_mode	40
6.8	exit_sleep_mode	41
6.9	get_3D_control	43
6.10	get_address_mode	45
6.11	get_blue_channel	47
6.12	get_CABC_min_brightness	48
6.13	get_compression_mode	49
6.14	get_control_display	51
6.15	get_diagnostic_result	52
6.16	get_display_brightness	53
6.17	get_display_mode	54
6.18	get_error_count_on_DSI	56
6.19	get_green_channel	57
6.20	get_image_checksum_ct	58
6.21	get_image_checksum_rgb	59
6.22	get_pixel_format	60
6.23	get_power_mode	62
6.24	get_power_save	64
6.25	get_red_channel	65
6.26	get_scanline	66
6.27	get_signal_mode	67
6.28	nop	68
6.29	read_DDB_continue	69
6.30	read_DDB_start	70
6.31	read_memory_continue	72
6.32	read_memory_start	74
6.33	read_PPS_continue	76
6.34	read_PPS_start	77
6.35	set_3D_control	79
6.36	set_address_mode	82
6.37	set_CABC_min_brightness	87
6.38	set_column_address	89
6.39	set_display_brightness	91
6.40	set display off	92

6.41	set_display_on	93
6.42	set_gamma_curve	94
6.43	set_page_address	95
6.44	set_partial_columns	97
6.45	set_partial_rows	101
6.46	set_pixel_format	103
6.47	set_scroll_area	104
6.48	set_scroll_start	107
6.49	set_tear_off	109
6.50	set_tear_on	110
6.51	set_tear_scanline	112
6.52	set_vsync_timing	114
6.53	soft_reset	116
6.54	write_control_display	117
6.55	write_LUT	119
6.56	write_power_save	121
6.57	write_memory_continue	123
6.58	write_memory_start	126
Annex A	Pixel-to-Byte Mapping	129
A.1	Three Bits per Pixel Format	129
A.2	Eight Bits per Pixel Format	130
A.3	Twelve Bits per Pixel Format	130
A.4	Sixteen Bits per Pixel Format	131
A.5	Eighteen Bits per Pixel Format	131
A.6	Twenty-Four Bits per Pixel Format	132
A.7	Thirty Bits per Pixel Format	133
A.8	Thirty-Six Bits per Pixel Format	134
Annex B	Color Depth Conversion Look-up Tables (informative)	135
B.1	Color Depth Conversion LUT – 12-bit Color to 16-bit Color	135
B.2	Color Depth Conversion LUT – 12-bit and 16-bit Colors to 18-bit Color	138
B.3	Color Depth Conversion LUT – 12-bit, 16-bit and 18-bit Colors to 24-bit Color	142

Figures

Figure 1 Type 1 Display Architecture Block Diagram	6
Figure 2 Type 2 Display Architecture Block Diagram	7
Figure 3 Type 3 Display Architecture Block Diagram	8
Figure 4 Type 1 Display Architecture Power Change Sequences	10
Figure 5 Type 2 Display Architecture Power Change Sequence	11
Figure 6 Type 3 Display Architecture Power Change Sequence	11
Figure 7 Gamma curve 1 (GC0)	12
Figure 8 Gamma Curve 2 (GC1)	12
Figure 9 Gamma Curve 3 (GC2)	13
Figure 10 Gamma Curve 4 (GC3)	13
Figure 11 Register Loading Detection Flow Chart	14
Figure 12 Functionality Detection Flow Chart	15
Figure 13 Chip Attachment Detection Reference	16
Figure 14 Chip Attachment Detection Flow Chart	16
Figure 15 Display Glass Break Detection Reference	17
Figure 16 Display Glass Break Detection Flow Chart	17
Figure 17 Compressed Data Flow	30
Figure 18 Compressed Data Transportation in Command Mode	31
Figure 19 Flowchart Legend	32
Figure 20 enter_idle_mode Example	33
Figure 21 enter_idle_mode Flow Chart	34
Figure 22 enter_invert_mode Example	35
Figure 23 enter_invert_mode Flow Chart	35
Figure 24 enter_sleep_mode Flow Chart	38
Figure 25 exit_idle_mode Flow Chart	39
Figure 26 exit_invert_mode Example	40
Figure 27 exit_invert_mode Flow Chart	40
Figure 28 exit_sleep_mode Flow Chart	42
Figure 29 get_3D_control Flow Chart	44
Figure 30 get_address_mode Flow Chart	46
Figure 31 get_blue_channel Flow Chart	47
Figure 32 get_CABC_min_brightness Flow Chart	48
Figure 33 get_compression_mode Flow Chart	50
Figure 34 get_control_display Flow Chart	51
Figure 35 get_diagnostic_result Flow Chart	52

Figure 36 get_display_brightness Flow Chart	53
Figure 37 get_display_mode Flow Chart	55
Figure 38 get_error_count_on_DSI Flow Chart	56
Figure 39 get_green_channel Flow Chart	57
Figure 40 get_image_checksum_ct Flow Chart	58
Figure 41 get_image_checksum_rgb Flow Chart	59
Figure 42 get_pixel_format Flow Chart	61
Figure 43 get_power_mode Flow Chart	63
Figure 44 get_power_save Flow Chart	64
Figure 45 get_red_channel Flow Chart	65
Figure 46 get_scanline Flow Chart	66
Figure 47 get_signal_mode Flow Chart	67
Figure 48 read_DDB_continue Flow Chart	69
Figure 49 read_DDB_start Flow Chart	71
Figure 50 read_memory_continue Flow Chart	73
Figure 51 read_memory_start Flow Chart	75
Figure 52 read_PPS_continue Flow Chart	76
Figure 53 read_PPS_start Flow Chart	78
Figure 54 set_3D_control Flow Chart	81
Figure 55 B7 Page Address Order	83
Figure 56 B6 Column Address Order	83
Figure 57 B5 Page/Column Addressing Order	84
Figure 58 B3 RGB Order	84
Figure 59 B1 Flip Horizontal	85
Figure 60 B0 Flip Vertical	85
Figure 61 set_address_mode Flow Chart	86
Figure 62 set_CABC_min_brightness Flow Chart	88
Figure 63 set_column_address Example	89
Figure 64 set_column_address Flow Chart	90
Figure 65 set_display_brightness Flow Chart	91
Figure 66 set_display_off Example	92
Figure 67 set_display_off Flow Chart	92
Figure 68 set_display_on Example	93
Figure 69 set_display_on Flow Chart	93
Figure 70 set_gamma_curve Flow Chart	94
Figure 71 set_page_address Example	95
Figure 72 set page address Flow Chart	96

Figure 73 set_partial_columns with set_address_mode B2 = 0	
Figure 74 set_partial_columns with set_address_mode B2=1	
Figure 75 set_partial_columns with set_address_mode B2 = 0	
Figure 76 set_partial_columns with set_address_mode B2 = 1	
Figure 77 Entering Partial Display Mode Flow Chart	99
Figure 78 Exiting Partial Display Mode Flow Chart	
Figure 79 set_partial_rows with set_address_mode B4 = 0	
Figure 80 set_partial_rows with set_address_mode B4=1	
Figure 81 set_partial_rows with set_address_mode B4 = 0	
Figure 82 set_partial_rows with set_address_mode B4 = 1	
Figure 83 set_pixel_format Flow Chart	103
Figure 84 set_scroll_area set_address_mode B4 = 1 Example	105
Figure 85 set_scroll_area set_address_mode B4 = 1 Example	105
Figure 86 set_scroll_area Flow Chart	106
Figure 87 set_scroll_start set_address_mode B4 = 0.	107
Figure 88 set_scroll_start set_address_mode B4 = 1	108
Figure 89 set_tear_off Flow Chart	109
Figure 90 set_tear_on $M = 0$	110
Figure 91 set_tear_on M = 1	110
Figure 92 set_tear_on Flow Chart	111
Figure 93 set_tear_scanline	112
Figure 94 set_tear_scanline Flow Chart	113
Figure 95 set_vsync_timing Flow Chart	115
Figure 96 soft_reset Flow Chart	116
Figure 97 write_control_display Flow Chart	118
Figure 98 write_LUT Flow Chart	120
Figure 99 write_power_save Flow Chart	122
Figure 100 write_memory_continue Flow Chart	125
Figure 101 write_memory_start Flow Chart	128
Figure 102 Three Bits per Pixel Format to Byte Mapping	129
Figure 103 Eight Bits per Pixel Format to Byte Mapping	130
Figure 104 Twelve Bits per Pixel Format to Byte Mapping	130
Figure 105 Sixteen Bits per Pixel Format to Byte Mapping	131
Figure 106 Eighteen Bits per Pixel Format to Byte Mapping	131
Figure 107 Twenty-Four Bits per Pixel Format to Byte Mapping	132
Figure 108 Thirty Bits per Pixel Format to Byte Mapping	133
Figure 109 Thirty-Six Bits per Pixel Format to Byte Mapping	134

Tables

Table 1 Command List – Alphabetical	19
Table 2 Command List – By Hex Code	23
Table 3 Command Accessibility	24
Table 4 Default Display Mode, Power Mode and Register Values	26
Table 5 enter_idle_mode Memory Content vs. Display Color	33
Table 6 Gamma Curve Selection	54
Table 7 Interface Pixel Formats	60
Table 8 Power Saving Modes	64
Table 9 DCS 3D Commands	80
Table 10 Gamma Curves	94
Table 11 LUT Color Depth Conversions.	120
Table 12 Power Saving Modes	121
Table 13 Common Color Encoding	124
Table 14 Common Color Encoding	127
Table 15 12-bit to 16-bit LUT Red Component Values	135
Table 16 12-bit to 16-bit LUT Green Component Values	136
Table 17 12-bit to 16-bit LUT Blue Component Values	137
Table 18 12-bit, 16-bit to 18-bit LUT Red Component Values	138
Table 19 12-bit, 16-bit to 18-bit LUT Green Component Values	139
Table 20 12-bit, 16-bit to 18-bit LUT Blue Component Values	141
Table 21 12-bit, 16-bit and 18-bit Colors to 24-bit Color LUT Red Component Values	142
Table 22 12-bit, 16-bit and 18-bit Colors to 24-bit Color LUT Green Component Values	144
Table 23 12-bit 16-bit and 18-bit Colors to 24-bit Color LUT Blue Component Values	146

Release History

Date	Release	Description
2005-02-15	v1.00a	Initial MIPI Alliance Board-approved release.
2006-06-22	v1.01.00	Minor update with editorial corrections, reference updates and several bit definitions added to commands for image manipulation.
2010-10-20	v1.02.00	Minor updates containing technical clarifications and editorial updates.
2012-04-06	v1.1	Board-approved release. Added support for Stereoscopic Display Formats.
2014-06-16	v1.2	Board-approved release. Added support for command mode and display stream compression.
2016-02-11	v1.3	Board-adopted release. Added commands to access and display backlight, advanced power management, error status, and compressed image testability functions.

1 Introduction

1

9

13

- This document defines display module behavior for devices that adhere to MIPI Specifications for mobile
- device host processor, and display interfaces in an abstract, device independent way. All commands in this
- 4 Specification, except those indicated as optional, shall be supported by display modules that adhere to MIPI
- Alliance Standard for Display Pixel Interface [MIPI01], MIPI Alliance Standard for Display Bus Interface
- [MIPI02], and MIPI Alliance Specification for Display Serial Interface [MIPI03] except as provided for in
- the individual Specifications. Stereoscopic image support is defined in MIPI Alliance Specification for
- 8 Stereoscopic Display Formats [MIPI05].

1.1 Scope

- Display commands and logical flow are within the scope of this document. In addition, to support device
- abstraction, several display architectures are also specified.
- Electrical specifications and interface protocols are out of scope for this document.

1.2 Purpose

- This document is used by manufacturers to design products that adhere to MIPI Specifications for mobile
- device host processor and display interfaces.
- Implementing the DCS Specification reduces the time-to-market and design cost of mobile devices by
- simplifying the interconnection of products from different manufacturers. In addition, adding new features
- such as larger or additional displays to mobile devices is simplified due to the extensible nature of MIPI
- 19 Specifications.

2 Terminology

20

21

22 23

2.4

25

2.6

27

2.8

29

30

31

32

33

35

36

37

38

39

The MIPI Alliance has adopted Section 13.1 of the *IEEE Standards Style Manual*, which dictates use of the words "shall", "should", "may", and "can" in the development of documentation, as follows:

The word *shall* is used to indicate mandatory requirements strictly to be followed in order to conform to the standard and from which no deviation is permitted (*shall* equals *is required to*).

The use of the word *must* is deprecated and shall not be used when stating mandatory requirements; must is used only to describe unavoidable situations.

The use of the word will is deprecated and shall not be used when stating mandatory requirements; will is only used in statements of fact.

The word *should* is used to indicate that among several possibilities one is recommended as particularly suitable, without mentioning or excluding others; or that a certain course of action is preferred but not necessarily required; or that (in the negative form) a certain course of action is deprecated but not prohibited (*should* equals *is recommended that*).

The word *may* is used to indicate a course of action permissible within the limits of the standard (*may* equals *is permitted*).

The word *can* is used for statements of possibility and capability, whether material, physical, or causal (*can* equals *is able to*).

All sections are normative, unless they are explicitly indicated to be informative.

2.1 Glossary

- **2D Mode:** An operating state in which a stereoscopic-capable display is rendering one image per frame to both eyes and does not create a stereoscopic effect.
- **3D Mode:** An operating state in which a stereoscopic-capable display renders a stereoscopic image with a unique view for each eye.
- **Bitstream**: The sequence of data bytes resulting from the coding of image data. The bit stream does not contain a header or syntax markers.
- Codestream: A sequence of data bytes composed of a bitstream and any header and syntax markers necessary for decoding. The codestream boundary usually coincides with a frame boundary, but does not
- need to do so.
- Compressed Data: A sequence of data bytes composed of a bitstream and any header and syntax markers necessary for decoding.
- Display Area: The portion of a display device used to show image data.
- Display Controller: A separate silicon chip, or integrated functional block in a host device, used to control a display module. May include full-frame or partial-frame memory.
- Display Device: A functional device that shows images such as a Liquid Crystal Display.
- Display Driver: An integrated circuit inside a display module used to control the display device. May or may not integrate full or partial frame-memory.
- Display Glass: Same as Display Device. Derived from the display material's name.
- Display Module: A functional module used to show an image. Can consist of a display device, display
- driver, additional peripheral components or circuits and a display interface.
- **Display Panel:** Same as Display Device.

Frame Memory: Memory integrated in a display driver or display controller in order to provide storage for

- display device refreshment. Full-frame memory provides enough storage for the full display area of a
- display device. Partial-frame memory provides only enough storage for a portion of the display area.
- **Frame-based:** The data transfer mode that sends an entire left or right view followed by the corresponding
- right or left view, respectively.
- Frame-sequential: Same as Temporal Mode.
- Landscape: The horizontal dimension exceeds the vertical dimension. If square, defined by the
- 68 manufacturer.
- Landscape Scanning: The pixel writing direction from the display driver to the display in which the
- number of pixels written per line exceeds the number of lines.
- 71 **Landscape/Portrait Orientation:** The orientation the display is viewed by a user.
- 72 Landscape/Portrait Switchable: A display where the stereoscopic effect can be switched between
- 13 landscape and portrait orientation.
- 74 **Left View:** Part of the stereoscopic image intended to be viewed by the user's left eye.
- Left-Right Order: This value defines whether the first pixel, line, or frame of 3D Mode content sent
- across the physical link is intended for viewing by the left eye or the right eye. The order may apply with
- respect to pixel-based, line-based or frame-based modes of transmission
- Line-based: The data transfer mode that sends an entire left or right line followed by the corresponding
- right or left line, respectively.
- **Portrait:** The vertical dimension exceeds the horizontal dimension. If square, defined by the manufacturer.
- Portrait Scanning: The pixel writing direction from the display driver to the display in which the number
- of lines written exceeds the number of pixels per line.
- **Right View:** Part of the stereoscopic image intended to be viewed by the user's right eye.
- **Spatial:** The left and right views are shown simultaneously to the viewer.
- 85 **Stereoscopic Image:** A pair of offset images of a scene (views) that renders content to both the left eye and
- right eye to produce the perception of depth.
- 87 Temporal Mode: A time-sequential stereoscopic image in which the left view and right view are
- alternately presented to the user and directed to the appropriate eye.
- 89 **Type 1 Display Architecture:** A display module architecture in which the display module includes a
- 90 display device, display driver, full-frame memory, interface registers, timing controller, non-volatile
- 91 memory and a control interface.
- Type 2 Display Architecture: A display module architecture in which the display module includes a
- display device, display driver, partial-frame memory, interface registers, timing controller, non-volatile
- memory, a control interface and a video stream interface.
- Type 3 Display Architecture: Similar to the Type 2 Display Architecture except no frame memory is
- 96 present.

97

2.2 Abbreviations

- 98 e.g. For example (Latin: exempli gratia)
- 99 i.e. That is (Latin: id est)
- 100 2.3 Acronyms
- 101 DBI Display Bus Interface

Version 1.3 5	5-Oct-2015
---------------	------------

Specification for DCS

102	DCS	Display Command Set
103	DPI	Display Pixel Interface
104	DSI	Display Serial Interface

105	3 Referen	ices
106 107	[MIPI01]	MIPI Alliance Standard for Display Pixel Interface (DPI-2), version 2.00, MIPI Alliance, Inc., 15 September 2005.
108 109	[MIPI02]	MIPI Alliance Standard for Display Bus Interface (DBI-2), version 2.00, MIPI Alliance, Inc., 29 November 2005.
110 111	[MIPI03]	MIPI Alliance Specification for Display Serial Interface (DSI), version 1.3, MIPI Alliance, Inc., 10 March 2015.
112 113	[MIPI04]	MIPI Alliance Specification for Device Descriptor Block (DDB), version 1.0, MIPI Alliance, Inc., 29 October 2008.
114 115	[MIPI05]	MIPI Alliance Specification for Stereoscopic Display Formats (SDF), version 1.0, MIPI Alliance, Inc., 14 March 2012.
116 117	[VESA01]	Display Stream Compression Standard, version 1.1, VESA, www.vesa.org , 1 August 2014.

4 Display Architectures

118

119

121

122

123

124

125

126

128

129

131

133

135

136

137

139

140

141

The display module shall be based on Type 1, Type 2 or Type 3 display architecture.

The Type 1 Display Architecture should consist of the following functional blocks:

Display Device. The Display Device is used to show image data.

Display Driver. The Display Driver may be one or more devices used to drive the display device.

Frame memory. Frame Memory holds compressed or uncompressed image data depending upon whether compression is required for the display or not. Frame memory can be integrated in the display driver.

Registers. Registers are used to configure display behavior and identification information. Registers can be integrated in the display driver.

Timing Controller. The Timing Controller provides timing signals to control the display and display driver based on configuration information. The Timing Controller can be integrated in the display driver.

Non-volatile Memory. Non-volatile Memory is used to store default register and configuration values. Non-volatile memory can be integrated in the display driver.

Control Interface. The Control Interface is the interface between the host processor and the display driver. The Control Interface can be integrated in the display driver.

Display Driving Circuit. The Display Driving Circuit converts timing signals and voltages to signals appropriate to drive the display device.

Decoder (optional). The Decoder decodes compressed data from the host processor and generates pixel data to pass to the display device. The decoder block is optional as compression is dependent upon system requirements. The Decoder can be integrated in the display driver.

Power Supply. The Power Supply converts system voltages to levels usable by the display device and display driver. The Power Supply can be integrated in the display driver.

Figure 1 Type 1 Display Architecture Block Diagram

The Type 2 Display Architecture should consist of the following functional blocks:

144

145 146

147

148

149

151

153

154

155

156

157

158

159

160

161

162

163

164

165

166

168

170

171

Display Device. The Display Device is used to show image data.

Display Driver. The Display Driver may be one or more devices used to drive the display device.

Partial-frame Memory. Partial-frame Memory holds compressed or uncompressed image data depending upon whether compression is required for the display or not. Partial-frame memory can be integrated in the display driver.

Registers. Registers are used to configure display behavior and identification information. Registers can be integrated in the display driver.

Timing Controller. The Timing Controller provides timing signals to control the display and display driver based on configuration information. The Timing Controller can be integrated in the display driver.

Non-volatile memory. Non-volatile Memory is used to store default register and configuration values. Can be integrated in the display driver.

Control Interface. The Control Interface is the interface between the host processor and the display driver. The Control Interface can be integrated in the display driver.

Display Driving Circuit. The Display Driving Circuit converts timing signals and voltages to signals appropriate to drive the display device.

Decoder (optional). The Decoder decodes compressed data from the host processor and generates pixel data to pass to the display device. The decoder block is optional as compression is dependent upon system requirements. The Decoder can be integrated in the display driver.

Power Supply. The Power Supply converts system voltages to levels usable by the display device and display driver. The Power Supply can be integrated in the display driver.

Video Stream Interface. The Video Stream Interface receives video image data and timing signals from the host processor.

Figure 2 Type 2 Display Architecture Block Diagram

The Type 3 Display Architecture should consist of the following functional blocks:

Display Device. The Display Device is used to show image data.

Copyright © 2005-2016 MIPI Alliance, Inc. All rights reserved. Confidential

Display Driver. The Display Driver may be one or more devices used to drive the display device.

Registers. Registers are used to configure display behavior and identification information.

Registers can be integrated in the display driver.

172

173

174

175

176

177

178

179

180

181

182 183

184

185

186

187

188

190

191

192

193

194

Timing Controller. The Timing Controller provides timing signals to control the display and display driver based on configuration information. The Timing Controller can be integrated in the display driver.

Non-volatile memory. Non-volatile Memory is used to store default register and configuration values. Can be integrated in the display driver.

Control Interface. The Control Interface is the interface between the host processor and the display driver. The Control Interface can be integrated in the display driver.

Display Driving Circuit. The Display Driving Circuit converts timing signals and voltages to signals appropriate to drive the display device.

Decoder (optional). The Decoder decodes compressed data from the host processor and generates pixel data to pass to the display device. The decoder block is optional as compression is dependent upon system requirements. The Decoder can be integrated in the display driver.

Power Supply. The Power Supply converts system voltages to levels usable by the display device and display driver. The Power Supply can be integrated in the display driver.

Video Stream Interface. The Video Stream Interface receives video image data and timing signals from the host processor.

Figure 3 Type 3 Display Architecture Block Diagram

In all architecture types, it is assumed the power supply is under the control of the display driver.

The Display Command Set is used through the mentioned control interface.

5 Display Functional Description

5.1 Power Level Definition

- A display module designed using the Type 1 display architecture shall implement the power sequence
- shown in Figure 4.

195

- A display module designed using the Type 2 display architecture shall implement the power sequence
- shown in Figure 5.
- A display module designed using the Type 3 display architecture shall implement the power sequence
- shown in Figure 6.
- Each power sequence consists of a combination of different display and power modes as follows.
- In Normal mode, the display module shows image data using the full display area of the display device. See
- Section 6.3 for a description of Normal mode.
- In Partial mode, the display module shows image data in only a portion of the full display area of the
- display device. See Section 6.44 for a description of Partial mode.
- In Idle mode, the display module shows image data using a limited number of colors. Turning off Idle
- mode displays the image data using the full number of colors supported by the display device. See Section
- 6.1 for a description of Idle mode.
- In Sleep mode, the display module does not show any image data. In addition, the display interface shall
- remain powered and along with those functional blocks necessary to maintain the data in the frame memory
- and registers. The remaining functional blocks are placed in their low power modes. See Section 6.5 for a
- description of Sleep mode.
- When Sleep mode is off, the display module shows image data on the display device and all functional
- blocks operate normally. See Section 6.8 for a description of operation when Sleep mode is off.

Figure 4 Type 1 Display Architecture Power Change Sequences

Note 1: There shall be no abnormal visual effect when changing between power modes.

Note 2: The display module can change between any power modes without restriction.

221222

218

219

Figure 5 Type 2 Display Architecture Power Change Sequence

Figure 6 Type 3 Display Architecture Power Change Sequence

Note 1: There shall be no abnormal visual effect when changing between power modes.

Note 2: The display module can change between any power modes without restriction.

228229

225

226

227

223

2.2.4

5.2 Gamma Curves

230231

232233

234

235

236

237

238

239

240

241

242

243

The display module can implement a gamma adjustment. If gamma adjustment is implemented then the display module shall support at a minimum Gamma Curve 1 as described in Section 5.2.1. The display module can also implement up to three additional gamma curves as described in Section 5.2.2 through Section 5.2.4. The gamma curve is selected by the set_gamma_curve command, as described in Section 6.42.

In the gamma curve figures, \mathbf{x} is the normalized image data supplied by the host processor to the display module and \mathbf{y} is the normalized response of the display device.

5.2.1 Gamma Curve 1 (GC0)

Gamma Curve 1 (GC0) is 2.2, i.e. $y=x^{2.2}$

Figure 7 Gamma curve 1 (GC0)

5.2.2 Gamma Curve 2 (GC1)

Gamma Curve 2 (GC1) is 1.8, i.e. $y=x^{1.8}$

Figure 8 Gamma Curve 2 (GC1)

245246

5.2.3 Gamma Curve 3 (GC2)

Gamma Curve 3 (GC2) is 2.5, i.e. $y=x^{2.5}$

249250

251

252

247

248

Figure 9 Gamma Curve 3 (GC2)

5.2.4 Gamma Curve 4 (GC3)

Gamma Curve 4 (GC3) is linear, i.e. $y=x^1$

253254

Figure 10 Gamma Curve 4 (GC3)

5.3 Self-diagnostic Functions

256

257

259

260

261

263

264

265

The display module shall support all the self-diagnostic functions in this section except those functions indicated as optional. Optional functions can be implemented in the display module at the manufacturer's discretion.

5.3.1 Register Loading Detection

The exit_sleep_mode command (see Section 6.8) is a trigger for the Register Loading Detection function. This function indicates if the display module correctly loaded the factory default values from Non-volatile memory to the registers. If the registers were loaded properly then bit D7 of the SDR register is inverted, otherwise the value is unchanged. See Section 6.15 for a description of the SDR register.

The flow chart for the Register Loading Detection function is shown in Figure 11.

Figure 11 Register Loading Detection Flow Chart

268 **Note:**

Registers modified by the display module after loading are not verified.

270

266

5.3.2 Functionality Detection

The exit_sleep_mode command (see Section 6.8) is a trigger for the Functionality Detection function. This function indicates if the display module functional blocks, e.g. power supply, clock generator, etc. are operating correctly. If the functional blocks are operating properly then bit D6 of the SDR register is inverted, otherwise the value is unchanged. See Section 6.15 for a description of the SDR register.

The flow chart for the Functionality Detection function is shown in Figure 12.

Figure 12 Functionality Detection Flow Chart

The host processor shall wait before sending a get_power_mode command so the display module can exit Sleep mode and finish the Functionality Detection function.

280 281

277

278

279

271272

273

274

5.3.3 **Chip Attachment Detection (optional)**

The exit_sleep_mode command (see Section 6.8) is a trigger for the Chip Attachment Detection function. 283 This function indicates if certain chips, e.g. display driver IC, are attached to the display module. If the 284

chips are properly attached to the display module then bit D5 of the SDR register is inverted, otherwise the

value is unchanged. See Section 6.15 for a description of the SDR register.

The flow chart for the Chip Attachment Detection function is shown in Figure 14.

Figure 13 is a reference implementation for the Chip Attachment Detection function. Two bumps are connected together via a conductor on the flex foil or the display glass substrate in all four corners of the

290

282

285

286

287

288

289

291 292

Figure 13 Chip Attachment Detection Reference

293 294

Figure 14 Chip Attachment Detection Flow Chart

5.3.4 Display Glass Break Detection (optional)

The exit_sleep_mode command (see Section 6.8) is a trigger for the Display Glass Break Detection function. This function indicates if display glass is broken. If the display glass is broken then bit D4 of the SDR register is inverted, otherwise the value is unchanged. See Section 6.15 for a description of the SDR register.

The flow chart for the Display Glass Break Detection function is shown in Figure 16.

Figure 15 is a reference implementation for the Display Glass Break Detection function. Two bumps are connected together via a conductor routed on the outside edge of the display glass substrate.

Figure 15 Display Glass Break Detection Reference

Figure 16 Display Glass Break Detection Flow Chart

306 307

296

301

304

305

Copyright © 2005-2016 MIPI Alliance, Inc. All rights reserved.

5.4 Display Command Set

- The Display Command Set is used to store image data, configure the display module behavior and retrieve
- display module data including identification information by accessing the frame memory and the display
- module registers.
- The DCS is separated into two functional areas: the User Command Set and the Manufacturer Command
- Set. Each command is an eight-bit code with 00h to AFh assigned to the User Command Set and all other
- codes assigned to the Manufacturer Command Set.
- The Manufacturer Command Set (MCS) is a device dependent interface intended for factory programming
- of the display module default parameters. Once the display module is configured, the MCS shall be
- disabled by the manufacturer. Once disabled, all MCS commands are ignored by the display interface. The
- 318 MCS is out of scope for this document.
- The User Command Set provides a display device independent interface targeted at the operating system's
- hardware abstraction layer. All commands listed in this section shall be implemented except write_LUT,
- get_3D_control, set_3D_control and get_compression_mode, which are optional.
- Any unused command codes shall be ignored by the display module.
- The remainder of this section is divided into three sections. Section 5.5 is an alphabetical list of the
- supported commands. Section 5.6 and Section 5.7 describe command functionality in different display
- architectures and operating modes.

326

5.5 Command Lists

327

328

329

Table 1 lists all DCS Commands in alphabetical order, and Table 2 lists them in Hex Code order.

Table 1 Command List – Alphabetical

Command	Hex Code	Description	Number of Parameters	Display Architecture Implementation Requirement		
				Type 1	Type 2	Type 3
enter_idle_mode	39h	Reduced color depth is used on the display panel.	0	Yes	No	No
enter_invert_mode	21h	Displayed image colors are inverted.	0	Yes	Yes	Yes
enter_normal_mode	13h	The whole display area is used for image display.	0	Yes	Yes	No
enter_partial_mode	12h	Part of the display area is used for image display.	0	Yes	Yes	No
enter_sleep_mode	10h	Power for the display panel is off.	0	Yes	Yes	Yes
exit_idle_mode	38h	Full color depth is used on the display panel.	0	Yes	No	No
exit_invert_mode	20h	Displayed image colors are not inverted.	0	Yes	Yes	Yes
exit_sleep_mode	11h	Power for the display panel is on.	0	Yes	Yes	Yes
get_3D_control	3Fh	Get display module 3D Mode.	2	No	No	No
get_address_mode	0Bh	Get the data order for transfers from the Host to the display module and from the frame memory to the display device.	1	Yes	Yes	Yes
get_blue_channel	08h	Get the blue component of the pixel at (0, 0).	1	No	Yes	Yes
get_CABC_min_brightness	5Fh	Get current minimum brightness level of the active CABC mode	1 or 2	Yes	Yes	Yes
get_compression_mode	03h	Get the current compression mode	1	No	No	No
get_control_display	54h	Get control display mode	1	Yes	Yes	Yes
get_diagnostic_result	0Fh	Get Peripheral Self- Diagnostic Result	1	Yes	Yes	Yes
get_display_brightness	52h	Get current display brightness level	1 or 2	Yes	Yes	Yes
get_display_mode	0Dh	Get the current display mode from the peripheral.	1	Yes	Yes	Yes
get_error_count_on_DSI	05h	Get number of corrupted packets on DSI	1	Yes	Yes	Yes

Command	Hex Code	Description	Number of Parameters	Display Architecture Implementation Requirement		
				Type 1	Type 2	Type 3
get_green_channel	07h	Get the green component of the pixel at (0, 0).		No	Yes	Yes
get_image_checksum_ct	15h	Returns the checksum of a frame of color-transformed pixel data	2	Yes*	Yes*	Yes*
get_image_checksum_rgb	14h	Returns the checksum of a frame of RGB pixel data	2	Yes*	Yes*	Yes*
get_pixel_format	0Ch	Get the current pixel format.	1	Yes	Yes	Yes
get_power_mode	0Ah	Get the current power mode.	1	Yes	Yes	Yes
get_power_save	56h	Get power save mode	1	Yes	Yes	Yes
get_red_channel	06h	Get the red component of the pixel at (0, 0).	1	No	Yes	Yes
get_scanline	45h	Get the current scanline.	2	Yes	Yes	No
get_signal_mode	0Eh	Get display module signaling mode.	1	Yes	Yes	Yes
nop	00h	No Operation	0	Yes	Yes	Yes
read_DDB_continue	A8h	Continue reading the DDB from the last read location.	variable	Yes	Yes	Yes
read_DDB_start	A1h	Read the DDB from the provided location.		Yes	Yes	Yes
read_memory_continue	3Eh	Read image data from the peripheral continuing after the last read_memory_continue or read_memory_start.		Yes	Yes	No
read_memory_start	2Eh	Transfer image data from the peripheral to the Host Processor interface starting at the location provided by set_column_address and set_page_address.		Yes	Yes	No
read_PPS_continue	A9h	Continue reading the specified length of PPS data immediately following the last read location.		Yes	Yes	Yes
read_PPS_start	A2h	Transfer the specified length of PPS data starting at the beginning of the PPS register.		Yes	Yes	Yes
set_3D_control	3Dh	3D is used on the display panel.		No	No	No
set_address_mode	36h	Set the data order for transfers from the Host to the display module and from the frame memory to the display device.	1	Yes	Yes	Yes

Command	Hex Code	Description	Number of Parameters	Display Architecture Implementation Requirement		
				Type 1	Type 2	Type 3
set_CABC_min_brightness	5Eh	Writes minimum brightness 1 or 2 level for the active CABC mode.		Yes	Yes	Yes
set_column_address	2Ah	Set the column extent.	4	Yes	Yes	No
set_display_brightness	51h	Selects display brightness level	1 or 2	Yes	Yes	Yes
set_display_off	28h	Blanks the display device.	0	Yes	Yes	Yes
set_display_on	29h	Show the image on the display device.	0	Yes	Yes	Yes
set_gamma_curve	26h	Selects the gamma curve used by the display device.	1	Yes	Yes	Yes
set_page_address	2Bh	Set the page extent.	4	Yes	Yes	No
set_partial_columns	31h	Defines the number of columns in the partial display area on the display device.	4	Yes	Yes	No
set_partial_rows	30h	Defines the number of rows in the partial display area on the display device.		Yes	Yes	No
set_pixel_format	3Ah	Defines how many bits per pixel are used in the interface.		Yes	Yes	Yes
set_scroll_area	33h	Defines the vertical scrolling and fixed area on display 6 device.		Yes	No	No
set_scroll_start	37h	Defines the vertical scrolling starting point.	2	Yes	No	No
set_tear_off	34h	Synchronization information is not sent from the display module to the host processor.	0	Yes	No	No
set_tear_on	35h	Synchronization information is sent from the display module to the host 1 processor at the start of VFP.		Yes	No	No
set_tear_scanline	44h	Synchronization information is sent from the display module to the host processor when the display device refresh reaches the provided scanline.		Yes	No	No
set_vsync_timing	40h	Set VSYNC timing 1		No	No	No
soft_reset	01h	Software Reset	0	Yes	Yes	Yes
write_control_display	53h	Writes control mode of display brightness	1	Yes	Yes	Yes

Command	Hex Code	Description	Number of Parameters	Display Architecture Implementation Requirement		
				Type 1	Type 2	Type 3
write_LUT	2Dh	Fills the peripheral look-up table with the provided data.	variable	option al	No	No
write_memory_continue	3Ch	Transfer image information from the Host Processor interface to the peripheral from the last written location.		Yes	Yes	No
write_memory_start	2Ch	Transfer image data from the Host Processor to the peripheral starting at the location provided by set_column_address and set_page_address.	variable	Yes	Yes	No
write_power_save	55h	Writes power save mode	1	Yes	Yes	Yes

^{*} Required only when the display module contains an optional bitstream decoder

Table 2 Command List – By Hex Code

332

Hex Code	Command
00h	nop
01h	soft_reset
03h	get_compression_mode
05h	get_error_count_on_DSI
06h	get_red_channel
07h	get_green_channel
08h	get_blue_channel
0Ah	get_power_mode
0Bh	get_address_mode
0Ch	get_pixel_format
0Dh	get_display_mode
0Eh	get_signal_mode
0Fh	get_diagnostic_result
10h	enter_sleep_mode
11h	exit_sleep_mode
12h	enter_partial_mode
13h	enter_normal_mode
14h	get_image_checksum_rgb
15h	get_image_checksum_ct
20h	exit_invert_mode
21h	enter_invert_mode
26h	set_gamma_curve
28h	set_display_off
29h	set_display_on
2Ah	set_column_address
2Bh	set_page_address
2Ch	write_memory_start
2Dh	write_LUT
2Eh	read_memory_start

Hex Code	Command				
30h	set_partial_rows				
31h	set_partial_columns				
33h	set_scroll_area				
34h	set_tear_off				
35h	set_tear_on				
36h	set_address_mode				
37h	set_scroll_start				
38h	exit_idle_mode				
39h	enter_idle_mode				
3Ah	set_pixel_format				
3Ch	write_memory_continue				
3Dh	set_3D_control				
3Eh	read_memory_continue				
3Fh	get_3D_control				
40h	set_vsync_timing				
44h	set_tear_scanline				
45h	get_scanline				
51h	set_display_brightness				
52h	get_display_brightness				
53h	write_control_display				
54h	get_control_display				
55h	write_power_save				
56h	get_power_save				
5Eh	set_CABC_min_brightness				
5Fh	get_CABC_min_brightness				
A1h	read_DDB_start				
A2h	read_PPS_start				
A8h	read_DDB_continue				
A9h	read_PPS_continue				

5.6 Command Accessibility

334

335

336

Table 3 provides command accessibility of several combinations of display and power modes.

Table 3 Command Accessibility

	Command Accessibility						
Command	Hex Code	Normal Mode On, Idle Mode Off, Sleep Mode Off	Normal Mode On, Idle Mode On, Sleep Mode Off	Partial Mode On, Idle Mode Off, Sleep Mode Off	Partial Mode On, Idle Mode On, Sleep Mode Off	Sleep Mode On	
enter_idle_mode	39h	Yes	Yes	Yes	Yes	Yes	
enter_invert_mode	21h	Yes	Yes	Yes	Yes	Yes	
enter_normal_mode	13h	Yes	Yes	Yes	Yes	Yes	
enter_partial_mode	12h	Yes	Yes	Yes	Yes	Yes	
enter_sleep_mode	10h	Yes	Yes	Yes	Yes	Yes	
exit_idle_mode	38h	Yes	Yes	Yes	Yes	Yes	
exit_invert_mode	20h	Yes	Yes	Yes	Yes	Yes	
exit_sleep_mode	11h	Yes	Yes	Yes	Yes	Yes	
get_3D_control	3Fh	Yes	Yes	No	No	Yes	
get_address_mode	0Bh	Yes	Yes	Yes	Yes	Yes	
get_blue_channel	08h	Yes	Yes	N/A	N/A	Yes	
get_CABC_min_brightness	5Fh	Yes	Yes	Yes	Yes	Yes	
get_compression_mode	03h	Yes	Yes	Yes	Yes	Yes	
get_control_display	54h	Yes	Yes	Yes	Yes	Yes	
get_diagnostic_result	0Fh	Yes	Yes	Yes	Yes	Yes	
get_display_brightness	52h	Yes	Yes	Yes	Yes	Yes	
get_display_mode	0Dh	Yes	Yes	Yes	Yes	Yes	
get_error_count_on_DSI	05h	Yes	Yes	Yes	Yes	Yes	
get_green_channel	07h	Yes	Yes	N/A	N/A	Yes	
get_image_checksum_ct	15h	Yes	Yes	No	No	No	
get_image_checksum_rgb	14h	Yes	Yes	No	No	No	
get_pixel_format	0Ch	Yes	Yes	Yes	Yes	Yes	
get_power_mode	0Ah	Yes	Yes	Yes	Yes	Yes	
get_power_save	56h	Yes	Yes	Yes	Yes	Yes	
get_red_channel	06h	Yes	Yes	N/A	N/A	Yes	
get_scanline	45h	Yes	Yes	Yes	Yes	Yes	
get_signal_mode	0Eh	Yes	Yes	Yes	Yes	Yes	
nop	00h	Yes	Yes	Yes	Yes	Yes	
read_DDB_continue	A8h	Yes	Yes	Yes	Yes	Yes	
read_DDB_start	A1h	Yes	Yes	Yes	Yes	Yes	

		Command Accessibility					
Command	Hex Code	Normal Mode On, Idle Mode Off, Sleep Mode Off	Normal Mode On, Idle Mode On, Sleep Mode Off	Partial Mode On, Idle Mode Off, Sleep Mode Off	Partial Mode On, Idle Mode On, Sleep Mode Off	Sleep Mode On	
read_memory_continue	3Eh	Yes	Yes	Yes	Yes	Yes	
read_memory_start	2Eh	Yes	Yes	Yes	Yes	Yes	
read_PPS_continue	A9h	Yes	Yes	Yes	Yes	Yes	
read_PPS_start	A2h	Yes	Yes	Yes	Yes	Yes	
set_3D_control	3Dh	Yes	Yes	No	No	Yes	
set_address_mode	36h	Yes	Yes	Yes	Yes	Yes	
set_CABC_min_brightness	5Eh	Yes	Yes	Yes	Yes	Yes	
set_column_address	2Ah	Yes	Yes	Yes	Yes	Yes	
set_display_brightness	51h	Yes	Yes	Yes	Yes	Yes	
set_display_off	28h	Yes	Yes	Yes	Yes	Yes	
set_display_on	29h	Yes	Yes	Yes	Yes	Yes	
set_gamma_curve	26h	Yes	Yes	Yes	Yes	Yes	
set_page_address	2Bh	Yes	Yes	Yes	Yes	Yes	
set_partial_columns	31h	Yes	Yes	Yes	Yes	Yes	
set_partial_rows	30h	Yes	Yes	Yes	Yes	Yes	
set_pixel_format	3Ah	Yes	Yes	Yes	Yes	Yes	
set_scroll_area	33h	Yes	Yes	Yes	Yes	Yes	
set_scroll_start	37h	Yes	Yes	Yes	Yes	Yes	
set_tear_off	34h	Yes	Yes	Yes	Yes	Yes	
set_tear_on	35h	Yes	Yes	Yes	Yes	Yes	
set_tear_scanline	44h	Yes	Yes	Yes	Yes	Yes	
set_vsync_timing	40h	Yes	Yes	Yes	Yes	Yes	
soft_reset	01h	Yes	Yes	Yes	Yes	Yes	
write_control_display	53h	Yes	Yes	Yes	Yes	Yes	
write_LUT	2Dh	Yes	Yes	Yes	Yes	Yes	
write_memory_continue	3Ch	Yes	Yes	Yes	Yes	Yes	
write_memory_start	2Ch	Yes	Yes	Yes	Yes	Yes	
write_power_save	55h	Yes	Yes	Yes	Yes	Yes	

5.7 Default Modes and Values

337

338

339

Table 4 provides default display modes, power modes and register values.

Table 4 Default Display Mode, Power Mode and Register Values

	Default N				Modes and Values, Hex			
Command	Hex Code	Parameters	Power-on Sequence	SW Reset	HW Reset			
enter_idle_mode	39h	None	Idle Mode Off	Idle Mode Off	Idle Mode Off			
enter_invert_mode	21h	None	Display Inversion Off	Display Inversion Off	Display Inversion Off			
enter_normal_mode	13h	None	Normal Display mode On	Normal Display mode On	Normal Display mode On			
enter_partial_mode	12h	None	Normal Display Mode On	Normal Display Mode On	Normal Display Mode On			
enter_sleep_mode	10h	None	Sleep Mode On	Sleep Mode On	Sleep Mode On			
exit_idle_mode	38h	None	Idle Mode Off	Idle Mode Off	Idle Mode Off			
exit_invert_mode	20h	None	Display Inversion Off	Display Inversion Off	Display Inversion Off			
exit_sleep_mode	11h	None	Sleep Mode On	Sleep Mode On	Sleep Mode On			
get_3D_control	3Fh	1 st and 2 nd	00h	00h	00h			
get_address_mode	0Bh	1 st	Refer to corresponding command parameters	Refer to corresponding command parameters	Refer to corresponding command parameters			
get_blue_channel	08h	1 st	00h	00h	00h			
get_CABC_min_brightness	5Fh	1 st and 2 nd	00h	00h	00h			
get_compression_mode	03h	1 st	Refer to corresponding command parameters	Refer to corresponding command parameters	Refer to corresponding command parameters			
get_control_display	54h	1 st	00h	00h	00h			
get_diagnostic_result	0Fh	1 st	00h	00h	00h			
get_display_brightness	52h	1 st and 2 nd	00h	00h	00h			
get_display_mode	0Dh	1 st	Refer to corresponding command parameters	Refer to corresponding command parameters	Refer to corresponding command parameters			
get_error_count_on_DSI	05h	1 st	00h	00h	00h			
get_green_channel	07h	1 st	00h	00h	00h			
get_image_checksum_ct	15h	2	Normal Display mode On	FFFFh	FFFFh			
get_image_checksum_rgb	14h	2	Normal Display mode On	FFFFh	FFFFh			

	Hex		Defaul	t Modes and Value	es, Hex
Command	Code	Parameters	Power-on Sequence	SW Reset	HW Reset
get_pixel_format	0Ch	1 st	Refer to corresponding command parameters	Refer to corresponding command parameters	Refer to corresponding command parameters
get_power_mode	0Ah	1 st	08h	08h	08h
get_power_save	56h	1 st	00h	00h	00h
get_red_channel	06h	1 st	00h	00h	00h
get_scanline	45h	1 st and 2 nd	Refer to corresponding command parameters	Refer to corresponding command parameters	Refer to corresponding command parameters
get_signal_mode	0Eh	1 st	Refer to corresponding command parameters	Refer to corresponding command parameters	Refer to corresponding command parameters
nop	00h	None	N/A	N/A	N/A
read_DDB_continue	A8h	all	See [MIPI04]		
read_DDB_start	A1h	all	See [MIPI04]		
read_memory_continue	3Eh	all	Random values	Not cleared	Not cleared
read_memory_start	2Eh	all	Random values	Not cleared	Not cleared
read_PPS_continue	A9h	all	PPS Table 1 values, if present. If no table is present, FFh.	PPS Table 1 values, if present. If no table is present, FFh.	PPS Table 1 values, if present. If no table is present, FFh.
read_PPS_start	A2h	all	PPS Table 1 values, if present. If no table is present, FFh.	PPS Table 1 values, if present. If no table is present, FFh.	PPS Table 1 values, if present. If no table is present, FFh.
set_3D_control	3Dh	1 st and 2 nd	00h	00h	00h
set_address_mode	36h	1 st	00000000ь	No change from the value before SW reset	00000000Ь
set_CABC_min_brightness	5Eh	1 st and 2 nd	00h	00h	00h
		1 st	00h	00h	00h
		2 nd	00h	00h	00h
set_column_address	2Ah	3 rd	The frame memory column address corresponding to the last vertical line.	If set_address_mo de's B5 = 0;The frame memory column address corresponding to the last vertical	The frame memory column address corresponding to the last vertical line.

Version 1.3 5-Oct-2015 Specification for DCS

	Hex		Defau	t Modes and Value	es, Hex
Command	Code	Parameters	Power-on Sequence	SW Reset	HW Reset
		4 th		line. If set_address_mo de's B5 = 1; The frame memory column address corresponding to the last horizontal line.	
set_display_brightness	51h	1 st and 2 nd	00h	00h	00h
set_display_off	28h	None	Display Off	Display Off	Display Off
set_display_on	29h	None	Display Off	Display Off	Display Off
set_gamma_curve	26h	1 st	01h	01h	01h
		1 st 2 nd	00h	00h	00h
set_page_address	2Bh	3 rd	The frame memory page	If set_address_mo de's B5 = 0; The frame memory page address corresponding to the last horizontal line.	The frame memory page
		4 th	address corresponding to the last horizontal line.	If set_address_mo de's B5 = 1; The frame memory page address corresponding to the last vertical line.	address corresponding to the last horizontal line.
		1 st	00h	00h	00h
		2 nd	0011	OOH	0011
set_partial_columns	31h	3 rd	The frame memory column address corresponding to the last vertical line.	The frame memory column address corresponding to the last vertical line.	The frame memory column address corresponding to the last vertical line.
		1 st	00h	00h	00h
		2 nd	OOH	OOH	OOH
et_partial_rows 30h		3 rd	The frame	The frame	The frame
oct_partial_rows	3011	4th	memory page address corresponding to the last horizontal line.	memory page address corresponding to the last horizontal line.	memory page address corresponding to the last horizontal line.
set_pixel_format	3Ah	1 st	07h	07h	07h

	Цох		Defau	It Modes and Value	es, Hex	
Command	$ \begin{array}{c} $	Parameters	Power-on Sequence	SW Reset	HW Reset	
		1 st	00h	00h	00h	
		2 nd	00h	00h	00h	
		3 rd	The frame	The frame	The frame	
set_scroll_area	33h	4 th	memory page address corresponding to the last horizontal line.	memory page address corresponding to the last horizontal line.	memory page address corresponding to the last horizontal line.	
		5 th	00h	00h	00h	
		6 th	00h	00h	00h	
ant annull atom	27h	1 st	00h	00h	00h	
set_scroll_start	3/11	2 nd	00h	00h	00h	
set_tear_off	34h	None	TE line output	TE line output	TE line output	
set_tear_on	35h	1 st	OFF	OFF	OFF	
	4.41-	1 st	00h	00h	00h	
set_tear_scanline	44n	2 nd	00h	00h	00h	
set_vsync_timing	40h	1 st	00h	00h	00h	
soft_reset	01h	None	N/A	N/A	N/A	
write_control_display	53h	1 st	00h	00h	00h	
write_LUT	2Dh	all	Random values	Contents of LUT protected	Random values	
write_memory_continue	3Ch	all	Random values	Not cleared	Not cleared	
write_memory_start	2Ch	all	Random values	Not cleared	Not cleared	
write_power_save	55h	1st	00h	00h	00h	

5.8 Image Data Compression

This section, including Section 5.8.1, shall apply for displays using Architecture Type 1, Type 2, or Type 3, when DSI interface [MIPI03] forms the link between the host processor and display device.

A command mode display with frame memory may optionally support display stream compression if the decoder is implemented on the display. When the compression scheme is enabled with the Compression Mode Command short packet, defined in [MIPI03], the display shall treat all incoming pixel data as a compressed bitstream. The Compression Mode Command is specified in more detail in [MIPI03].

Figure 1 shows possible data flow paths for when compression mode is set as "enabled" [MIPI03] (Section 6.13). It is an implementation choice if Data Path 1 or Data Path 2 is used by a particular display driver. If no frame memory is present, Data Path 2 is the only choice.

Figure 17 Compressed Data Flow

In Figure 17, displays designed to use Architecture Type 1 or Type 2, with decoder implemented, can receive compressed image data using Path 1 and store it to frame memory. The decoder can then decompress the compressed image data from frame memory to update the panel. A display with frame memory might be able to support switching between Path 1 and Path 2 if video stream is also supported.

In Figure 17, displays designed to use Architecture Type 3, with decoder implemented, can receive compressed image data using Path 2. See [MIPI03] for Compression Mode definition and details about compressed data transport in video mode using Path 2. Switching between modes shall not cause any abnormal behavior or visual defects on the panel.

5.8.1 Display Stream Compression Transport in Command Mode

When compression mode status is set as "enabled" in Command Mode, the compression scheme shall become active and the compressed pixel data shall be transmitted to the display using Long Packet format. See Long Packet and Command mode definition from [MIPI03]. In this case, the first byte of the payload shall be a write_memory_start or a write_memory_continue command and the display shall treat all following image data as compressed data. Data bytes following any other commands in Long Packet type shall not be treated as compressed data.

Figure 18 shows compressed data transportation in protocol level for Architecture Type 1 or Type 2 displays using Command Mode.

369 370

371

372

Figure 18 Compressed Data Transportation in Command Mode

In Figure 18, Long Packet data type 0x39 is used to carry compressed image data over DSI system [MIPI03].

6 Command Description

This section defines the commands supported by a display module implementing MIPI Alliance Specifications for display interfaces.

All commands consist of a single 8-bit byte, in some cases accompanied by parameters that supply necessary information for the correct execution of the command. Generally, the command and accompanying parameter bytes are transferred using serial or parallel bits 0 through 7 of the display interface, regardless of the physical interface width and architecture. The only exceptions are the read_memory_continue, read_memory_start, write_memory_continue, and write_memory_start commands in a DBI system (see [MIPI02]). The full width of the display interface may be used by these commands. See Section 6.31, Section 6.32, Section 6.57, and Section 6.58 for the command descriptions.

Command flow charts in this section use the symbols defined in Figure 19.

Figure 19 Flowchart Legend

373

376

377

378379

380

381

382

6.1 enter_idle_mode

387 **Interface** All

388 **Command** 39h

389 **Parameters** None

390 Command

386

391

393 394

Direction	D7	D6	D5	D4	D3	D2	D1	D0	Code
H→D	0	0	1	1	1	0	0	1	39h

Description

This command causes the display module to enter Idle Mode.

In Idle Mode, color expression is reduced. Colors are shown on the display device using the MSB of each of the R, G and B color components in the frame memory.

Figure 20 enter_idle_mode Example

396397398

399

395

Table 5 enter_idle_mode Memory Content vs. Display Color

Color	R ₇ R ₆ R ₅ R ₄ R ₃ R ₂ R ₁ R ₀	G ₇ G ₆ G ₅ G ₄ G ₃ G ₂ G ₁ G ₀	B ₇ B ₆ B ₅ B ₄ B ₃ B ₂ B ₁ B ₀
Black	0XXXXXXX	0XXXXXX	0XXXXXXX
Blue	0XXXXXX	0XXXXXX	1XXXXXXX
Red	1XXXXXXX	0XXXXXX	0XXXXXXX
Magenta	1XXXXXXX	0XXXXXX	1XXXXXXX
Green	0XXXXXX	1XXXXXXX	0XXXXXXX
Cyan	0XXXXXX	1XXXXXXX	1XXXXXXX
Yellow	1XXXXXXX	1XXXXXXX	0XXXXXXX
White	1XXXXXXX	1XXXXXXX	1XXXXXXX

Restrictions

This command has no effect when the display module is already in Idle Mode.

401 Flow Chart

402 403

Figure 21 enter_idle_mode Flow Chart

6.2 enter_invert_mode

405 **Interface** All

406 **Command** 21h

407 **Parameters** None

408 Command

404

409

412

413

414

416

Direction	D7	D6	D5	D4	D3	D2	D1	D0	Hex Code
H→D	0	0	1	0	0	0	0	1	21h

Description

This command causes the display module to invert the image data only on the display device. The frame memory contents remain unchanged. No status bits are changed.

Figure 22 enter_invert_mode Example

Restrictions

This command has no effect when the display module is already inverting the display image.

Flow Chart

Figure 23 enter_invert_mode Flow Chart

Version 1.3 5-Oct-2015 Specification for DCS

419 **6.3 enter_normal_mode**

- 420 **Interface** All
- 421 **Command** 13h
- 422 **Parameters** None
- 423 Command

Direction	D7	D6	D5	D4	D3	D2	D1	D0	Hex Code
$H{ ightarrow}D$	0	0	0	1	0	0	1	1	13h

424 **Description**

- This command causes the display module to enter the Normal mode.
- Normal Mode is defined as Partial Display mode and Scroll mode are off.
- The host processor sends PCLK, HS and VS information to Type 2 display modules two frames before this
- command is sent when the display module is in Partial Display Mode.

429 **Restrictions**

This command has no effect when Normal Display mode is already active.

431 Flow Chart

See Section 6.44 and Section 6.47 for details of when to use this command.

Version 1.3 5-Oct-2015 Specification for DCS

433 6.4 enter_partial_mode

- 434 **Interface** All
- 435 **Command** 12h
- 436 **Parameters** None
- 437 Command

Direction	D7	D6	D5	D4	D3	D2	D1	D0	Hex Code
$H{ ightarrow} D$	0	0	0	1	0	0	1	0	12h

438 **Description**

- This command causes the display module to enter the Partial Display Mode. The Partial Display Mode
- window is described by the set_partial_columns and set_partial_rows commands. See Section 6.44 and
- Section 6.45, respectively, for details. A display module should not implement enter_partial_mode in 3D
- Mode. If the display module implements this command in 3D Mode, the manufacturer shall specify the
- operation in the product datasheet.
- To leave Partial Display Mode, the enter_normal_mode command should be written.
- The host processor continues to send PCLK, HS and VS information to a Type 2 display module for two
- frames after this command is sent when the display module is in Normal Display Mode.

447 **Restrictions**

449

This command has no effect when Partial Display Mode is already active.

Flow Chart

See Section 6.44.

6.5 enter_sleep_mode

- 452 **Interface** All
- 453 **Command** 10h
- 454 **Parameters** None

455 Command

451

456

463

Direction	D7	D6	D5	D4	D3	D2	D1	D0	Hex Code
$H{ ightarrow} D$	0	0	0	1	0	0	0	0	10h

Description

- This command causes the display module to enter the Sleep mode.
- In this mode, all unnecessary blocks inside the display module are disabled except interface
- communication. This is the lowest power mode the display module supports.
- DBI or DSI Command Mode remains operational and the frame memory maintains its contents. The host
- processor continues to send PCLK, HS and VS information to Type 2 and Type 3 display modules for two
- frames after this command is sent when the display module is in Normal mode.

Restrictions

- This command has no effect when the display module is already in Sleep mode.
- The host processor must wait five milliseconds before sending any new commands to a display module
- following this command to allow time for the supply voltages and clock circuits to stabilize.
- The host processor must wait 120 milliseconds after sending an exit_sleep_mode command before sending
- an enter_sleep_mode command.

469 Flow Chart

Figure 24 enter_sleep_mode Flow Chart

- 472 **6.6 exit_idle_mode**
- 473 **Interface** All
- 474 **Command** 38h
- 475 **Parameters** None
- 476 **Command**

Direction	D7	D6	D5	D4	D3	D2	D1	D0	Code
H→D	0	0	1	1	1	0	0	0	38h

- 477 **Description**
- This command causes the display module to exit Idle mode.
- 479 **Restrictions**
- This command has no effect when the display module is not in Idle mode.
- 481 Flow Chart

482 483

Figure 25 exit_idle_mode Flow Chart

6.7 exit_invert_mode

485 **Interface** All

486 **Command** 20h

487 **Parameters** None

488 Command

484

489

492

493

494 495

496

Direction	D7	D6	D5	D4	D3	D2	D1	D0	Hex Code
H→D	0	0	1	0	0	0	0	0	20h

Description

This command causes the display module to stop inverting the image data on the display device. The frame memory contents remain unchanged. No status bits are changed.

Figure 26 exit_invert_mode Example

Restrictions

This command has no effect when the display module is not inverting the display image.

Flow Chart

Figure 27 exit_invert_mode Flow Chart

Version 1.3 5-Oct-2015 Specification for DCS

6.8 exit_sleep_mode

500 **Interface** All

501 **Command** 11h

502 **Parameters** None

503 Command

499

504

509

Direction	D7	D6	D5	D4	D3	D2	D1	D0	Hex Code
$H{ ightarrow} D$	0	0	0	1	0	0	0	1	11h

Description

- This command causes the display module to exit Sleep mode. All blocks inside the display module are enabled.
- The host processor sends PCLK, HS and VS information to Type 2 and Type 3 display modules two frames before this command is sent when the display module is in Normal Mode.

Restrictions

- This command shall not cause any visible effect on the display device when the display module is not in Sleep mode.
- The host processor must wait five milliseconds after sending this command before sending another command. This delay allows the supply voltages and clock circuits to stabilize.
- The host processor must wait 120 milliseconds after sending an exit_sleep_mode command before sending an enter_sleep_mode command.
- The display module loads the display module's default values to the registers when exiting the Sleep mode.
- There shall not be any abnormal visual effect on the display device when loading the registers if the factory
- default and register values are the same or when the display module is not in Sleep mode.
- The display module runs the self-diagnostic functions after this command is received. See Section 5.3 for a
- description of the self-diagnostic functions.

521 Flow Chart

522

Figure 28 exit_sleep_mode Flow Chart

Version 1.3 5-Oct-2015 Specification for DCS

524	6.9 ge	t_3D_c	ontrol							
525	Interface	All								
526	Command	3Fh								
527	Parameters	See	the follow	ing descrip	ption.					
528	Command									
	Direction	D7	D6	D5	D4	D3	D2	D1	D0	Hex Code
	H→D	0	0	1	1	1	1	1	1	3Fh
	<u>-</u>		-	-	·	·	-	·	·	
529	Parameter 1	L								Hex
	Direction	D7	D6	D5	D4	D3	D2	D1	D0	Code
	$D {\rightarrow} H$	0	0	3DL/R	3DVSYNC	3DFN	MT[1:0]	3DMO	DE[1:0]	XXh
530	Parameter 2	2								
	.						D .	5.4		Hex
	Direction D→H	D7 0	D6 0	D5 0	D4 0	D3 0	D2 0	D1 0	D0	Code
	υ→п	U	U	U	U	U	U	U	0	00h
531	Description									
532 533	Support for as described			ptional. H	lowever, if ge	t_3D_con	trol is supp	orted, it sl	nall be imp	plemented
534	The display	module re	eturns the	values of tl	he 3D Control	Function	(see [MIP]	[05]).		
535	In 3D Mode	, certain c	ommands	operate di	fferently (see	Гable 9).				
536	D7 – Reserv	ed, set to	' 0'.							
537	D6 – Reserv	ed, set to	'0'.							
538	3DL/R – Let	ft / Right	Order							
539	'0' = Data	a sent left	eye first, 1	right eye no	ext.					
540	'1' = Data	a sent righ	nt eye first	left eye ne	ext.					
541	3DVSYNC -	- Second	VSYNC E	Enabled bet	tween Left and	d Right in	nages			
542	0' = No s	sync pulse	es between	left and ri	ight data.					
543	'1' = Syno	c pulse (F	ISYNC, V	SYNC, bla	anking) betwe	en left and	d right data			
544	3DFMT[1:0]		•	•						
545			•		right data).					
546			•		and right data).				
547			ating pixel	ls of left ar	nd right data).					
548	'11' = Re									
549				•	lay Orientation	n				
550			off (2D Mo	,	_					
551	$01^{\circ} = 3D$	iviode O	n, Portrait	Orientation	n.					

- '10' = 3D Mode On, Landscape Orientation.
- 553 '11' = Reserved.
- **Restrictions**
- 555 None
- 556 Flow Chart

Specification for DCS

557558

Figure 29 get_3D_control Flow Chart

559 **6.10 get_address_mode**

- 560 **Interface** All
- Command OBh
- Parameters See the following description.
- 563 Command

564

Direction	D7	D6	D5	D4	D3	D2	D1	D0	Hex Code
$H{ ightarrow}D$	0	0	0	0	1	0	1	1	0Bh
Parameter									
Direction	D7	D6	D5	D4	D3	D2	D1	D0	Hex Code
$D{\rightarrow}H$	D7	D6	D5	D4	D3	D2	D1	D0	XXh

565 **Description**

- The display module returns the current status.
- In 2D mode, a device shall use the parameter bit definitions for D7 through D0 as provided.
- In 3D Mode, a device shall set inapplicable bits to '0'. Which bits are relevant in 3D Mode is
- implementation-specific. The manufacturer of a device shall describe any such implementation-specific
- behavior in the product datasheet.
- If the device supports compression and [VESA01] is selected as the active compression mode algorithm,
- functionality of some bits cannot be guaranteed. Thus, all inapplicable bits are set to '0'. If the device
- supports a vendor specific algorithm, the manufacturer of the device shall define which bits shall be
- supported when compression mode status is 'enabled'.
- 575 D7 Page Address Order
- If [VESA01] is selected for active compression algorithm, this bit is set as '0'
- 577 '0' = Top to Bottom
- 578 **'1'** = **Bottom to Top**
- 579 D6 Column Address Order
- If [VESA01] is selected for active compression algorithm, this bit is set as '0'
- 581 '0' = Left to Right
- 582 '1' = Right to Left
- 583 D5 Page/Column Order
- If [VESA01] is selected for active compression algorithm, this bit is set as '0'
- 585 '0' = Normal Mode
- 586 '1' = Reverse Mode
- 587 D4 Line Address Order
- 588 '0' = LCD Refresh Top to Bottom
- '1' = LCD Refresh Bottom to Top
- 590 D3 RGB/BGR Order

610

611

0' = RGB591 1' = BGR592 D2 – Display Data Latch Data Order 593 594 '0' = LCD Refresh Left to Right '1' = LCD Refresh Right to Left 595 Not applicable for display modules scanned line by line 596 D1 - Flip Horizontal 597 This bit flips the image shown on the display device left to right. No change is made to the frame 598 memory. 599 '0' = Normal'1' = Flipped 601 D0 - Flip Vertical 602 This bit flips the image shown on the display device top to bottom. No change is made to the frame 603 memory. 604 '0' = Normal'1' = Flipped 606 Restrictions 607 None 608 **Flow Chart** 609

Host Processor

Parameter 1 Display Module

Figure 30 get_address_mode Flow Chart

6.11 get_blue_channel

- 613 Interface All
- 614 **Command** 08h
- Parameters See the following description.
- 616 Command

612

617

Direction H→D	D7	D6 0	D5 0	D4 0	D3	D2 0	D1 0	D0 0	Hex Code 08h
Parameter									
Direction	D7	D6	D5	D4	D3	D2	D1	D0	Hex Code
D→H	B7	В6	B5	B4	В3	B2	B1	B0	XXh

619 **Description**

- The display module returns the blue component value of the first pixel in the active frame. This command
- is only valid for Type 2 and Type 3 display modules.
- In 2D mode, a device shall use the bit definitions for D7 through D0 as provided. B7 is the MSB and B0 is
- the LSB.
- Only the relevant bits are used according to the pixel format; unused bits are set to '0'
- 625 Examples:

626627

- 12-bit format: B3 is MSB and B0 is LSB. B[7:4] are set to '0'.
- 16-bit format: B5 is MSB, B1 is LSB and B7, B6 and B0 are set to '0'.
- 18-bit format: B5 is MSB and B0 is LSB. B7 and B6 are set to '0'.
- 24-bit format: B7 is MSB and B0 is LSB. All bits are used.
- In 3D Mode, get_blue_channel shall return the blue component of the first pixel of the active frame in memory. See Section 6.35 for bit order dependency.
- If Compression Mode bit CMODE = 1:
- This command returns the first of three eight-bit values.
- 634 **Restrictions**
- None None
- 636 Flow Chart

Figure 31 get_blue_channel Flow Chart

638639

6.12 get_CABC_min_brightness 640

- All 641 **Interface**
- 642 Command 5Fh
- **Parameters** See the following description. 643
- **Command** 644

Direction	D7	D6	D5	D4	D3	D2	D1	D0	Hex Code
$H{ ightarrow}D$	0	1	0	1	1	1	1	1	5Fh
Parameter	1								

645

Direction	D7	D6	D5	D4	D3	D2	D1	D0	Hex Code
D→H	CMB15	CMB14	CMB13	CMB12	CMB11	CMB10	CMB9	CMB8	xxh

Parameter 2 646

Direction	D7	D6	D5	D4	D3	D2	D1	D0	Hex Code
D→H	CMB7	CMB6	CMB5	CMB4	CMB3	CMB2	CMB1	CMB0	xxh

Description 647

- This command returns the minimum brightness value for the CABC function. 648
- Value 0000h means the lowest brightness level, and value FFFFh means the highest brightness level. 649
- Note: It is up to display manufacturer to determine the implementation of this register and background 650
- 651 logic.

656

657

658

Restrictions 652

- This command is only for use with LCDs with CABC implementations. Only one parameter is returned for 653
- devices that support 8-bit brightness levels. Two parameters are returned for devices that support between 654
- 9-bit and 16-bit brightness levels. 655

Flow Chart

Figure 32 get_CABC_min_brightness Flow Chart

6.13 get_compression_mode

- 660 **Interface** All
- 661 **Command** 03h
- Parameters See the following description.
- 663 Command

659

Direction	D7	D6	D5	D4	D3	D2	D1	D0	Hex Code
$H{ ightarrow}D$	0	0	0	0	0	0	1	1	03h

Parameter 1

Direction	D7	D6	D5	D4	D3	D2	D1	D0	Hex Code
D→H	0	0	PPSS	EL[1:0]	0	ALGII	D[1:0]	CMODE	xxh

665 **Description**

- Support for get_compression_mode is optional. If compression support is implemented the display module
- returns the current status of compression mode.
- Display shall use parameter bit definitions as provided.
- 669 D7 Reserved, set as '0'
- 670 D6 Reserved, set as '0'
- 671 PPSSEL[1:0] PPS Table selector
- 672 '00' = PPS Table 1 (default)
- 673 '01' = PPS Table 2
- 674 '10' = PPS Table 3
- 675 '11' = PPS Table 4
- 676 D3 Reserved, set as '0'
- 677 ALGID[1:0] Algorithm identifier
- 678 '00' = VESA DSC Standard 1.1
- 679 '01' = Reserved
- 680 '10' = Reserved
- '11' = Vendor specific algorithm
- 682 CMODE Compression mode enable/disable
- 683 '0' = Compression mode is disabled (default)
- '1' = Compression mode is enabled
 - Restrictions
- 686 None

Flow Chart

688

689

Figure 33 get_compression_mode Flow Chart

690	6.14 get	_contro	l_displ	ay						
691	Interface	All								
692	Command	54h								
693	Parameters	See b	elow							
694	Command									
	Direction	D7	D6	D5	D4	D3	D2	D1	D0	Hex Code
	$H{ ightarrow}D$	0	1	0	1	0	1	0	0	54h
695	Parameter 1									
	Direction	D7	D6	D5	D4	D3	D2	D1	D0	Hex Code
			Ъ					D1	D0	
	D→H	X	Х	BCTRL	Х	DD	BL	Х	X	xxh
	TDI:		.1	. 1 . 1 .		1 6.1	1. 1			

- This command returns the current brightness control mode of the display.
- 697 BCTRL Brightness Control Block On/Off
 - '0' = Off (Brightness register is 0000h)
- 699 '1' = On (Brightness registers are active)
- 700 DD Display Dimming
 - '0' = Display Dimming Off
- 702 '1' = Display Dimming On
- 703 BL Backlight On/Off (For LCD)
- '0' = Off (completely turn off backlight circuit)
- 705 '1' = **O**n
- Bit marked as 'x' are reserved for display manufacturer's own usage.
- Note: It is up to display manufacturer to determine about the implementation of this register and
- background logic.
- 709 **Restrictions**
- 710 None

712

713

698

701

711 Flow Chart

Figure 34 get_control_display Flow Chart

6.15 get_diagnostic_result

- 715 **Interface** All
- 716 **Command** 0Fh
- 717 **Parameters** See the following description.
- 718 Command

714

719 720

Direction	D7	D6	D5	D4	D3	D2	D1	D0	Hex Code
H→D	0	0	0	0	1	1	1	1	0Fh
Parameter									
Direction	D7	D6	D5	D4	D3	D2	D1	D0	Hex Code

721 **Description**

 $D \rightarrow H$

The display module returns the self-diagnostic results following a Sleep Out command. See Section 5.3 for

D4

0

0

0

0

XXh

a description of the status results.

D7

D6

D5

- 724 D7 Register Loading Detection
- 725 D6 Functionality Detection
- 726 D5 Chip Attachment Detection
- Set to '0' if feature unimplemented.
- 728 D4 Display Glass Break Detection
- Set to '0' if feature unimplemented.
- 730 D[3:0] Reserved
- 731 Set to '0'.
- 732 **Restrictions**
- 733 None
- 734 Flow Chart

Figure 35 get_diagnostic_result Flow Chart

Version 1.3 5-Oct-2015 Specification for DCS

6.16 get_display_brightness

- 738 Interface All
- 739 **Command** 52h
- 740 **Parameters** See the following description.
- 741 Command

737

Direction	D7	D6	D5	D4	D3	D2	D1	D0	Hex Code
$H{ ightarrow} D$	0	1	0	1	0	0	1	0	52h

742 Parameter 1

Direction	D7	D6	D5	D4	D3	D2	D1	D0	Hex Code
D→H	DBV15	DBV14	DBV13	DBV12	DBV11	DBV10	DBV9	DBV8	xxh

743 Parameter 2

Direction	D7	D6	D5	D4	D3	D2	D1	D0	Hex Code
D→H	DBV7	DBV6	DBV5	DBV4	DBV3	DBV2	DBV1	DBV0	xxh

744 **Description**

This command returns the current brightness value of the display, set by the set_display_brightness (51h) command.

747 In addition:

748

749

755

759

760

- DBV[15:0] = 0000h when the display is in Sleep In mode.
- DBV[15:0] = 0000h when bit 'BCTRL' of write_control_display (53h) is '0'.
- DBV[15:0] = the manual set brightness specified with the set_display_brightness (51h) when bit BCTRL of write_control_display (53h) is 1.
- Value 0000h means the lowest brightness level, and value FFFFh means the highest brightness level.
- Note: It is up to display manufacturer to determine the implementation of this register and background
- 754 logic.

Restrictions

Only one parameter is returned for devices that support 8-bit brightness levels. Two parameters are returned for devices that support between 9-bit and 16-bit brightness levels.

758 Flow Chart

Figure 36 get_display_brightness Flow Chart

Copyright © 2005-2016 MIPI Alliance, Inc. All rights reserved.

Version 1.3 5-Oct-2015 Specification for DCS

761 6.17 get_display_mode

762 **Interface** All

763 **Command** 0Dh

Parameters See the following description.

765 **Command**

Direction	D7	D6	D5	D4	D3	D2	D1	D0	Code
$H{ ightarrow} D$	0	0	0	0	1	1	0	1	0Dh

766

767 **Parameter**

Direction	D7	D6	D5	D4	D3	D2	D1	D0	Hex Code
$D{\rightarrow}H$	D7	0	D5	0	0	D2	D1	D0	XXh

768 **Description**

The display module returns the Display Image Mode status.

770 D7 – Vertical Scrolling Status

'0' = Vertical Scrolling is Off.

'1' = Vertical Scrolling is On.

773 D6 – Reserved

774 Set to '0'.

775 D5 – Inversion On/Off

'0' = Inversion is Off.

'1' = Inversion is On.

778 D4 – Reserved

779 Set to '0'.

780 D3 – Reserved

781 Set to '0'.

783

782 D[2:0] – Gamma Curve Selection

Table 6 Gamma Curve Selection

Gamma Curve Selection	D2	D1	D0	Gamma Set (26h) Parameter
Gamma Curve 1	0	0	0	GC0
Gamma Curve 2	0	0	1	GC1
Gamma Curve 3	0	1	0	GC2
Gamma Curve 4	0	1	1	GC3
Reserved	1	0	0	Reserved
Reserved	1	0	1	Reserved
Reserved	1	1	0	Reserved

Copyright © 2005-2016 MIPI Alliance, Inc.

Gamma Curve Selection	D2	D1	D0	Gamma Set (26h) Parameter
Reserved	1	1	1	Reserved

- 784 **Restrictions**
- 785 None

787

788

786 Flow Chart

Figure 37 get_display_mode Flow Chart

789 6.18 get_error_count_on_DSI

P7

- 790 **Interface** DSI
- 791 **Command** 05h
- 792 **Parameters** See below
- 793 Command

794

805

806

Direction	D7	D6	D5	D4	D3	D2	D1	D0	Hex Code
$H{ ightarrow}D$	0	0	0	0	0	1	0	1	05h
Parameter	1								Uav
Direction	D7	D6	D5	D4	D3	D2	D1	D0	Hex Code

P3

P2

Р1

P0

xxh

This command returns the number of corrupted packets previously received on the DSI link. When multiple

P4

- 796 DSI links are connected to one Display Driver or Display Controller, this command returns one parameter
- for each DSI link, where parameter 1 contains the error count for DSI link 0, parameter 2 contains the error
- count for DSI link 1, etc.

 $D \rightarrow H$

For each parameter, P[7] is set to '1' if there is overflow with P[6..0] bits.

P5

P6

- For each parameter, P[7..0] bits are set to '0's (as well as get_signal_mode (0Eh)'s D0 is set to '0' at the
- same time) after the parameter information is sent, indicating that the read function is completed.

802 **Restrictions**

Only ECC single-bit errors, ECC multi-bit errors and Checksum errors [MIPI03] are included in the error

804 counter functionality.

Flow Chart

Figure 38 get_error_count_on_DSI Flow Chart

6.19 get_green_channel

- 809 Interface All 810 Command 07h
- Parameters See the following description.
- 812 Command

808

813

Direction	D7	D6	D5	D4	D3	D2	D1	D0	Hex Code
$H{ ightarrow}D$	0	0	0	0	0	1	1	1	07h
Parameter									
Direction	D7	D6	D5	D4	D3	D2	D1	D0	Hex Code
$D{ o}H$	G7	G6	G5	G4	G3	G2	G1	G0	XXh

814 **Description**

- The display module returns the green component value of the first pixel in the active frame. This command
- is only valid for Type 2 and Type 3 display modules.
- In 2D mode, a device shall use the bit definitions for D7 through D0 as provided. G7 is the MSB and G0 is
- 818 the LSB.
- Only the relevant bits are used according to the pixel format; unused bits are set to '0'
- 820 Examples:
- 12-bit format: G3 is MSB and G0 is LSB. G[7:4] are set to '0'.
- 16-bit format: G5 is MSB, G0 is LSB and G7 and G6 are set to '0'.
- 18-bit format: G5 is MSB and G0 is LSB. G7 and G6 are set to '0'.
- 24-bit format: G7 is MSB and G0 is LSB. All bits are used.
- In 3D Mode, get_green_channel shall return the green component of the first pixel of the active frame in memory. See Section 6.35 for bit order dependency.
- If Compression Mode bit CMODE = 1:
 - This command returns the second of three eight-bit values.
- 829 **Restrictions**
- None None

828

832

833

831 Flow Chart

Figure 39 get_green_channel Flow Chart

834	6.20 ge	t_image	e_checks	sum_ct						
835	Interface	All								
836	Command	15h								
837	Parameters	See	the followi	ng descript	tion.					
838	Command									
	Direction	D7	D6	D5	D4	D3	D2	D1	D0	Hex Code
	$H{ ightarrow}D$	0	0	0	1	0	1	0	1	15h
839	Parameter 1	1								
	Direction	D7	D6	D5	D4	D3	D2	D1	D0	Hex Code
	$D {\rightarrow} H$	N15	N14	N13	N12	N11	N10	N9	N8	XXh
840	Parameter 2	2								
	Direction	D7	D6	D5	D4	D3	D2	D1	D0	Hex Code
	$D{\rightarrow}H$	N7	N6	N5	N4	N3	N2	N1	N0	XXh

841 **Description**

6 20

got imaga abaaksum at

The display module returns, N, the current value of a checksum register containing the output of a checksum calculation located in a display driver IC and specified in [MIPI03].

This mode is intended for test purposes to verify if a bitstream has been decompressed and reconstructed to a value defined by the display stream coding system. However a panel module shall return a value that is unspecified in normal display operation in a system device.

- In Sleep Mode, the value returned by get_image_checksum_ct is undefined.
- In 2D mode, the checksum is a result of the calculation on one frame of data.

In 3D mode, the checksum can support any pixel ordering or frame-sequential data ordering. For all non-frame sequential stereoscopic formats (for example, 3DFMT not equal to 01h) the checksum of the frame includes pixel data from the left eye and the right eye. For 3D operation with Frame-sequential pixel formats, the checksum includes pixel data from only the left eye or the right eye. Refer to [MIPI05] for non-temporal mode pixel ordering and for temporal mode frame ordering between the left eye and right eye.

Restrictions

None None

856 857

847

849

850

851

852

853

854

Flow Chart

Figure 40 get_image_checksum_ct Flow Chart

859

Copyright © 2005-2016 MIPI Alliance, Inc. All rights reserved.

860	6.21 get	_image	_checks	um_rgb						
861	Interface	All								
862	Command	14h								
863	Parameters	See	the followi	ng descript	tion.					
864	Command									
	Direction	D7	D6	D5	D4	D3	D2	D1	D0	Hex Code
	$H{ ightarrow}D$	0	0	0	1	0	1	0	0	14h
865	Parameter 1	L								
	Direction	D7	D6	D5	D4	D3	D2	D1	D0	Hex Code
	$D{\rightarrow} H$	N15	N14	N13	N12	N11	N10	N9	N8	XXh
866	Parameter 2	2								
	Direction	D7	D6	D5	D4	D3	D2	D1	D0	Hex Code
	$D{\rightarrow} H$	N7	N6	N5	N4	N3	N2	N1	N0	XXh

Description 867

- 868 The display module returns, N, the current value of a checksum register containing the output of a 869 checksum calculation located in a display driver IC and specified in [MIPI03]
- This mode is intended for test purposes to verify if a bitstream has been decompressed and reconstructed to 870 a value defined by the display stream coding system. However a panel module shall return a value that is 871 unspecified in normal display operation in a system device. 872
- In Sleep Mode, the value returned by get image checksum rgb is undefined. 873
- In 2D mode, the checksum is a result of the calculation on one frame of data. 874
- In 3D mode, the checksum can support any pixel ordering or frame-sequential data ordering. For all non-875 temporal stereoscopic formats the checksum of the frame includes pixel data from the left eye and the right 876 eye. For 3D operation with Frame-sequential pixel formats, the checksum includes pixel data from only the 877 left eye or the right eye. Refer to [MIPI05] for non-temporal mode pixel ordering and for temporal mode 878 879 frame ordering between the left eye and right eye.

Restrictions

None 881

880

882

Flow Chart 883

Figure 41 get_image_checksum_rgb Flow Chart

6.22 get_pixel_format

Interface 887 All

Command 0Ch

Parameters See the following description. 889

Command 890

886

Direction	D7	D6	D5	D4	D3	D2	D1	D0	Hex Code
$H{ ightarrow}D$	0	0	0	0	1	1	0	0	0Ch
Parameter									

891

Direction	D7	D6	D5	D4	D3	D2		D0	
D→H	0	D6	D5	D4	0	D2	D1	D0	XXh

Description 892

898

899 900

901

902

903

893 This command gets the pixel format for the RGB image data used by the interface.

D[6:4] – DPI Pixel Format Definition 894

D[2:0] – DBI Pixel Format Definition 895

D7 and D3 are not used. 896

The pixel formats are shown in Table 7. 897

Table 7 Interface Pixel Formats

Pixel Format	D6/D2	D5/D1	D4/D0
Reserved	0	0	0
3 bits/pixel	0	0	1
8 bits/pixel	0	1	0
12 bits/pixel	0	1	1
Reserved	1	0	0
16 bits/pixel	1	0	1
18 bits/pixel	1	1	0
24 bits/pixel	1	1	1

If a particular interface, either DBI or DPI, is not used then the corresponding bits in the parameter returned from the display module are undefined. Therefore, for a DBI display module, the Host shall ignore D[6:4] and for a DPI display module, the Host shall ignore D[2:0].

If Compression Mode bit CMODE = 1:

This feature is not supported, return Reserved.

Restrictions 904

None

906 Flow Chart

907

908

Figure 42 get_pixel_format Flow Chart

909 **6.23 get_power_mode** 910 **Interface** All

911 **Command** 0Ah

Parameters See the following description.

913 Command

Direction	D7	D6	D5	D4	D3	D2	D1	D0	Hex Code
H→D	0	0	0	0	1	0	1	0	0Ah

914 Parameter

Direction	D7	D6	D5	D4	D3	D2	D1	D0	Hex Code
$D{ o}H$	D7	D6	D5	D4	D3	D2	0	0	XXh

915 **Description**

- The display module returns the current power mode.
- 917 D7 Reserved
- 918 Set to '0'
- 919 D6 Idle Mode On/Off
- 920 0' = Idle Mode Off.
- 921 '1' = Idle Mode On.
- 922 D5 Partial Mode On/Off
- 923 '0' = Partial Mode Off.
- 924 '1' = Partial Mode On.
- 925 D4 Sleep Mode
- 926 '0' = Sleep Mode On.
- 927 '1' = Sleep Mode Off.
- 928 D3 Display Normal Mode On/Off
- 929 '0' = Display Normal Mode Off.
- 930 '1' = Display Normal Mode On.
- 931 D2 Display On/Off
- 932 **'0'** = **Display is Off.**
- 933 '1' = Display is On.
- 934 D1 Reserved
- 935 Set to '0'
- 936 D0 Reserved
- 937 Set to '0'
- 938 **Restrictions**
- 939 None

940 Flow Chart

941

942

Figure 43 get_power_mode Flow Chart

6.24 get_power_save

944 **Interface** All

945 **Command** 56h

946 **Parameters** See below

947 Command

943

951

952

953

954

955

Direction	D7	D6	D5	D4	D3	D2		D0	
$H{\rightarrow}D$	0	1	0	1	0	1	1	0	56h

948 Parameter 1

Direction	D7	D6	D5	D4	D3	D2	D1	D0	Hex Code
D⊸H	v	v	v	v	v	PS2	PS1	PSO	vvh

This command returns the current power save mode of the display. These power saving modes are described in Table 8.

Table 8 Power Saving Modes

PS[2]	PS[1]	PS[0]	Function
0	0	0	Power Save Off
0	0	1	Power Save level: Low
0	1	0	Power Save level: Medium
0	1	1	Power Save: High
1	0	0	Outdoor mode

Bits marked as 'x' are reserved for display manufacturer's own usage.

Note:

It is up to the display manufacturer to determine the implementation of this register and background logic.

956 **Restrictions**

957 None

958 Flow Chart

Figure 44 get_power_save Flow Chart

6.25 get_red_channel

962 **Interface** All

963 **Command** 06h

964 **Parameters** See the following description.

965 Command

961

966

Direction	D7	D6	D5	D4	D3	D2	D1	D0	Hex Code
$H{ ightarrow}D$	0	0	0	0	0	1	1	0	06h
Parameter									
Direction	D7	D6	D5	D4	D3	D2	D1	D0	Hex Code
$D{\rightarrow}H$	R7	R6	R5	R4	R3	R2	R1	R0	XXh

967 **Description**

The display module returns the red component value of the first pixel in the active frame. This command is only valid for Type 2 and Type 3 display modules.

In 2D mode, a device shall use the bit definitions for D7 through D0 as provided. R7 is the MSB and R0 is the LSB.

Only the relevant bits are used according to the pixel format; unused bits are set to '0'

973 Examples:

974

981

985

986

- 12-bit format: R3 is MSB and R0 is LSB. R[7:4] are set to '0'.
- 16-bit format: R5 is MSB, R1 is LSB and R7, R6 and R0 are set to '0'.
- 18-bit format: R5 is MSB and R0 is LSB. R7 and R6 are set to '0'.
- 24-bit format: R7 is MSB and R0 is LSB. All bits are used.

In 3D Mode, get_red_channel shall return the red component of the first pixel of the active frame in memory. See Section 6.35 for bit order dependency.

980 If Compression Mode bit CMODE = 1:

This command returns the third of three eight-bit values.

982 **Restrictions**

983 None

984 Flow Chart

Figure 45 get_red_channel Flow Chart

987	6.26 get	_scanli	ne							
988	Interface	All								
989	Command	45h								
990	Parameters	See	the followi	ng descript	ion.					
991	Command									
	Direction	D7	D6	D5	D4	D3	D2	D1	D0	Hex Code
	$H{ ightarrow}D$	0	1	0	0	0	1	0	1	45h
992	Parameter 1									
	Direction	D7	D6	D5	D4	D3	D2	D1	D0	Hex Code
	$D {\rightarrow} H$	N15	N14	N13	N12	N11	N10	N9	N8	XXh
993	Parameter 2	;								
	Direction	D7	D6	D5	D4	D3	D2	D1	D0	Hex Code
	$D{\rightarrow}H$	N7	N6	N5	N4	N3	N2	N1	N0	XXh

994 **Description**

- The display module returns the current scanline, N, used to update the display device. The total number of scanlines on a display device is defined as VSYNC + VBP + VACT + VFP. The first scanline is defined as the first line of V Sync and is denoted as Line 0.
- In Sleep Mode, the value returned by get_scanline is undefined.
- See [MIPI01] for definitions of VSYNC, VBP, VACT, and VFP.
- In 2D mode, the scanline value of the display memory and the display panel is the same.
- In 3D Mode, the scanline value of the display memory and the display panel can be different; get_scanline shall return the current scanline of the display panel.

1003 **Restrictions**

1004 None

1005 Flow Chart

Figure 46 get_scanline Flow Chart

1006 1007

Copyright © 2005-2016 MIPI Alliance, Inc. All rights reserved.

1008	6.27 get	t_signa	l_mode								
1009	Interface	All									
1010	Command	0Eh									
1011	Parameters	See	the followi	ng descrip	tion.						
1012	Command										
	Direction	D7	D6	D5	D4	D3	D2	D1	D0	Hex Code	
	$H{ ightarrow}D$	0	0	0	0	1	1	1	0	0Eh	
1013	Parameter										
	Discotion	D.7	D.C	D.F.	D.4	Do	D 0	D4	Do	Hex	
	Direction	D7	D6	D5	D4	D3	D2	D1	D0	Code X0h	
	D→H	D7	D6	0	0	0	0	0	0	AUII	
1014	Description										
1015	The display	module re	eturns the I	Display Sig	nal Mode.						
1016	D7 – Tearing Effect Line										
1017	'0' = Tearing Effect Line Off.										
1018	'1' = Tear	ing Effec	t On.								
1019	D6 – Tearing	g Effect L	ine Output	Mode.							
1020	See [MIP]	[02] and S	Section 6.50) for mode	definitions						
1021	'0' = Mod	le 0.									
1022	'1' = Mod	le 1.									
1023	D[5:1] – Res	served									
1024	Set to '0'.										
1025	D0 – Error o	n DSI.									
1026	See [MIP]	[02] and S	Section 6.50) for mode	definitions						
1027	'0' = No e	error.									
1028	'1' = Erro	r.									
1029	Restrictions	;									
1030	None										
1031	Flow Chart										

Figure 47 get_signal_mode Flow Chart

1032

1034	6.28 nop)								
1035	Interface	All								
1036	Command	00h								
1037	Parameters	None								
1038	Command									
	Direction	D7	D6	D5	D4	D3	D2	D1	D0	Hex Code
	$H{ ightarrow}D$	0	0	0	0	0	0	0	0	00h
1039	Description									
1040 1041	This commaterminate a F			•				•	•	

1043 **Restrictions**

respectively.

1044 None

- 1045 Flow Chart
- 1046 None

1047	6.29 rea	d_DDB	_continu	ie						
1048	Interface	All								
1049	Command	A8ł	1							
1050	Parameters	See	the followi	ng descript	tion.					
1051	Command									
	Direction	D7	D6	D5	D4	D3	D2	D1	D0	Hex Code
	$H{ ightarrow}D$	1	0	1	0	1	0	0	0	A8h
1052	Parameter 1	l								
	Direction	D7	D6	D5	D4	D3	D2	D1	D0	Hex Code
	$D {\rightarrow} H$	D7	D6	D5	D4	D3	D2	D1	D0	XXh
1053					•					
1054					•					
1055					•					
1056	Parameter N	N								
	Direction	D7	D6	D5	D4	D3	D2	D1	D0	Hex Code
	D→H	D7	D6	D5	D4	D3	D2	D1	D0	XXh

1057 **Description**

1058 See Section 6.30.

1059 **Restrictions**

A read_DDB_start command should be executed at least once before a read_DDB_continue command to define the read location. Otherwise, data read with a read_DDB_continue command is undefined.

1062 Flow Chart

Figure 48 read_DDB_continue Flow Chart

1063 1064

Copyright © 2005-2016 MIPI Alliance, Inc. All rights reserved.

1065	6.30 rea	d_DDB_	_start							
1066	Interface	All								
1067	Command	A1h								
1068	Parameters	See t	he followi	ng descript	ion.					
1069	Command									
	Direction	D7	D6	D5	D4	D3	D2	D1	D0	Hex Code
	H→D	1	0	1	0	0	0	0	1	A1h
1070	Parameter 1									
	Direction	D7	D6	D5	D4	D3	D2	D1	D0	Hex Code
	$D{\rightarrow}H$	D15	D14	D13	D12	D11	D10	D9	D8	XXh
1071	Parameter 2									
	Direction	D7	D6	D5	D4	D3	D2	D1	D0	Hex Code
	$D {\rightarrow} H$	D7	D6	D5	D4	D3	D2	D1	D0	XXh
1072	Parameter 3									
	Direction	D7	D6	D5	D4	D3	D2	D1	D0	Hex Code
	$D{\to}H$	D15	D14	D13	D12	D11	D10	D9	D8	XXh
1073	Parameter 4									
	Direction	D7	D6	D5	D4	D3	D2	D1	D0	Hex Code
	$D {\rightarrow} H$	D7	D6	D5	D4	D3	D2	D1	D0	XXh
1074	Parameter 5									
	Direction	D7	D6	D5	D4	D3	D2	D1	D0	Hex Code
	$D{\rightarrow}H$	D7	D6	D5	D4	D3	D2	D1	D0	XXh
1075	Description									
1076	This comman									
1077 1078 1079	organized in returns a sequence bytes does no	uence of	bytes that	may be ar	ny length u	p to 64K 1	bytes. Note	that the re	eturned se	quence of
1080	The format of	f returned	data is as	follows:			-			
1081 1082	Parameter 1:				f Supplier PI Alliance		er ID is a	unique val	ue assigne	ed to each
1083	Parameter 2:			•						
1084 1085 1086	Parameter 3:		ned by the				ata. This is del numbe			

- Parameter 4: LS (least significant) byte of Supplier Elective Data
- Parameter 5: single-byte *Escape or Exit Code* (EEC). The code is interpreted as follows:
 - FFh Exit code there is no more data in the Descriptor Block
- 00h Escape code there is supplier-proprietary data in the Descriptor Block (does not conform to any MIPI Alliance specification)
 - Any other value there is DDB data in the Descriptor Block.
- DDBs may contain many more data fields providing information about the peripheral.
- In a DSI system, read activity takes the form of two separate transactions across the bus: first the read command read_DDB_start from host processor to peripheral, which includes the bus turn-around token.
- The peripheral then takes control of the bus and returns the requested data. The peripheral response to
- read_DDB_start is a Long Packet type, so its length may be up to 64K bytes unless limited by a previous
- set_max_return_size command.
- The response to a read_DDB_start command always starts at the beginning of the Device Descriptor Block.
- After receiving the first packet and processing the returned DDB data, the host processor may initiate a
- read_DDB_continue command to access the next portion of the DDB. A read_DDB_continue command
- begins the next read at the location following the last byte of the previous data read from the DDB.
- Subsequent read_DDB_continue commands can be used to read a DDB or supplier-proprietary block of
- arbitrary size. There is, however, no obligation to read the entire block. The host processor may choose to
- stop reading after completion of any read_DDB_xxx command.
- 1106 **Restrictions**
- 1107 None

1089

1092

1108 Flow Chart

1109 1110

Figure 49 read_DDB_start Flow Chart

1111	6.31 rea	ad_men	nory_cor	ntinue						
1112	Interface	All								
1113	Command	3Eh								
1114	Parameters	See	the follow	ing descrip	tion.					
1115	Command									
	Direction	D7	D6	D5	D4	D3	D2	D1	D0	Hex Code
	$H{ ightarrow}D$	0	0	1	1	1	1	1	0	3Eh
1116	Pixel Data 1	l								Hex
	Direction	D15	D14	D13	D12	D11	D10	D9	D8	Code
	$D{\rightarrow} H$	P15	P14	P13	P12	P11	P10	P9	P8	XXh
1117										
	Direction	D7	D6	D5	D4	D3	D2	D1	D0	Hex Code
	D→H	P7	P6	P5	P4	P3	P2	P1	P0	XXh
1118	<i>D</i> ///	. ,	. 0	10		. 0			10	7001
1119										
1120										
1121	Pixel Data N	N								
										Hex
	Direction	D15	D14	D13	D12	D11	D10	D9	D8	Code
4400	D→H	P15	P14	P13	P12	P11	P10	P9	P8	XXh
1122										Hex
	Direction	D7	D6	D5	D4	D3	D2	D1	D0	Code
	$D {\rightarrow} H$	P7	P6	P5	P4	P3	P2	P1	P0	XXh
1123	Description									
1124 1125 1126	This comma continuing command.									
1127	If set_addres	ss_mode I	35 = 0:							
1128	Pixels are rea									
1129 1130	read_memor memory unti									
1131	SC and the	page regi	ster is inci	remented. 1	Pixels are 1	read from	the frame r	nemory ur	til the pag	ge register
1132 1133	equals the E another com	_	(EP) value	and the co	lumn regis	ter equals	the EC value	ue, or the l	nost proce	ssor sends
1134	If set_addres		B5 = 1:							
1135	Pixels are rea			he pixel lo	cation after	the read ra	ange of the	previous re	ad_memo	ry_start or
1136	read_memor	y_continu	ie. The pag	ge register i	is then incr	emented ar	nd pixels ar	e read from	n the fram	e memory

until the page register equals the End Page (EP) value. The page register is then reset to SP and the column register is incremented. Pixels are read from the frame memory until the column register equals the End Column (EC) value and the page register equals the EP value, or the host processor sends another command.

If Compression Mode bit CMODE = 1:

Pixel format of the returned data format might not follow color encoding (defined in Annex A) since image data stored in frame memory is compressed.

See Section 6.38 for descriptions of the Start Column and End Column values.

See Section 6.43 for descriptions of the Start Page and End Page values.

See [MIPI01] and [MIPI02] for color encoding for 8 or 9 bit image data.

Note:

1141

1143

1144

1145

1147

1148

1149

1150

1151

11521153

1160

The command description shows 16-bit pixel data transferred over a 16-bit bus. Other possibilities not illustrated here would show 9-bit pixel data transferred over a 9-bit bus, and 8-bit pixel data transferred over an 8-bit bus. See Annex A for details on pixel to byte mapping.

In 3D Mode, read_memory_continue shall return data in the same format that is set by set_3D_control, defining pixel order, and transmission format.

Restrictions

Regardless of the interface format chosen with the set_pixel_format command, the pixel format of the returned data is always the maximum pixel depth supported by the display module. The display module documentation shall describe the maximum pixel depth as well as the format of the data returned by the display module when using this command.

A read_memory_start should follow a set_column_address, set_page_address or set_address_mode to define the read location. Otherwise, data read with read_memory_continue is undefined.

Flow Chart

Figure 50 read_memory_continue Flow Chart

1163	6.32 rea	ad_mem	ory_star	rt							
1164	Interface	All									
1165	Command	2Eh									
1166	Parameters	See	the followi	ng descript	ion.						
1167	Command										
	Direction	D7	D6	D5	D4	D3	D2	D1	D0	Hex Code	
	$H{ ightarrow}D$	0	0	1	0	1	1	1	0	2Eh	
1168	Pixel Data 1	L									
	Direction	D15	D14	D13	D12	D11	D10	D9	D8	Hex Code	
	$D{\rightarrow}H$	P15	P14	P13	P12	P11	P10	P9	P8	XXh	
1169											
	Direction	D7	D6	D5	D4	D3	D2	D1	D0	Hex Code	
	$D{\rightarrow} H$	P7	P6	P5	P4	P3	P2	P1	P0	XXh	
1170											
1171											
1172					•						
1173	Pixel Data N	N									
	Direction	D15	D14	D13	D12	D11	D10	D9	D8	Hex Code	
	D→H	P15	P14	P13	P12	P11	P10	P9	P8	XXh	
1174											
	Direction	D7	D6	D5	D4	D3	D2	D1	D0	Hex Code	
	$D{\rightarrow} H$	P7	P6	P5	P4	P3	P2	P1	P0	XXh	
1175	Description										
1176 1177	This comma										
1178	If set_addres	s_mode I	35 = 0:								
1179	The column	and page	registers ar	e reset to tl	he Start Co	lumn (SC)	and Start P	age (SP), r	espectivel	y.	
1180 1181	Pixels are read from frame memory at (SC, SP). The column register is then incremented and pixels read										
1182	is then reset	to SC an	d the page	register is	incremente	ed. Pixels a	are read fro	m the fran	ne memor	y until the	
1183 1184	page register processor ser				ilue and th	e column	register eqt	iais the E0	value, o	r tne nost	

Copyright © 2005-2016 MIPI Alliance, Inc. All rights reserved.

The column and page registers are reset to the Start Column (SC) and Start Page (SP), respectively.

If set_address_mode B5 = 1:

1185

Pixels are read from frame memory at (SC, SP). The page register is then incremented and pixels read from the frame memory until the page register equals the End Page (EP) value. The page register is then reset to SP and the column register is incremented. Pixels are read from the frame memory until the column register equals the End Column (EC) value and the page register equals the EP value, or the host processor sends another command.

If Compression Mode bit CMODE = 1:

Pixel format of the returned data format might not follow color encoding (defined in Annex A) since image data stored in frame memory is compressed.

See Section 6.38 for descriptions of the Start Column and End Column values.

See Section 6.43 for descriptions of the Start Page and End Page values.

See [MIPI01] and [MIPI02] for color encoding for 8 or 9 bit image data.

Note:

1187

1188

1189

1190

1191

1192

1193

1194

1195 1196

1197

1198

1199

1200

1201

1203

1204 1205

1206

1207

1208

1209

1210

The command description shows 16-bit pixel data transferred over a 16-bit bus. Other possibilities not illustrated here would show 9-bit pixel data transferred over a 9-bit bus, and 8-bit pixel data transferred over an 8-bit bus. See Annex A for details on pixel to byte mapping.

In 3D Mode, read_memory_start shall return data in the same format that is set by set_3D_control, defining pixel order, and transmission format.

Restrictions

Regardless of the interface format chosen with the set_pixel_format command, the pixel format of the returned data is always the maximum pixel depth supported by the display module. The display module documentation shall describe the maximum pixel depth as well as the format of the data returned by the display module when using this command.

Flow Chart

Figure 51 read_memory_start Flow Chart

1212	6.33 rea	d_PPS	_continu	е						
1213	Interface	All								
1214	Command	A9h	1							
1215	Parameters	See	the followi	ng descript	tion.					
1216	Command									
	Direction	D7	D6	D5	D4	D3	D2	D1	D0	Hex Code
	H→D	1	0	1	0	1	0	0	1	A8h
1217	Parameter 1	[
	Direction	D7	D6	D5	D4	D3	D2	D1	D0	Hex Code
	$D{\rightarrow} H$	D7	D6	D5	D4	D3	D2	D1	D0	XXh
1218					•					
1219					•					
1220					•					
1221	Parameter N	N								
	Direction	D7	D6	D5	D4	D3	D2	D1	D0	Hex Code
	$D {\rightarrow} H$	D7	D6	D5	D4	D3	D2	D1	D0	XXh

1222 **Description**

1223 See Section 6.34.

1224 **Restrictions**

A read_PPS_start command should be executed at least once before a read_PPS_continue command, in order to define the read location. Otherwise, the behavior of data read with a read_PPS_continue command is undefined.

1228 Flow Chart

Figure 52 read_PPS_continue Flow Chart

1229 1230

Copyright © 2005-2016 MIPI Alliance, Inc. All rights reserved.

1231		d_PPS	_start							
1232	Interface	All								
1233	Command	A2h	ı							
1234	Parameters	See	the following	ng descript	tion.					
1235	Command									
	Direction	D7	D6	D5	D4	D3	D2	D1	D0	Hex Code
	$H{ ightarrow}D$	1	0	1	0	0	0	1	0	A2h
1236	Parameter 1									
	Direction	D7	D6	D5	D4	D3	D2	D1	D0	Hex Code
									-	
	D→H	D15	D14	D13	D12	D11	D10	D9	D8	XXh
1237	Parameter 2									
	Direction	D7	D6	D5	D4	D3	D2	D1	D0	Hex Code
	$D{\rightarrow}H$	D7	D6	D5	D4	D3	D2	D1	D0	XXh
1238										
1239	Parameter N	1								
										Hex
	Direction	D7	D6	D5	D4	D3	D2	D1	D0	Code
	D→H	D7	D6	D5	D4	D3	D2	D1	D0	XXh

Description 1240

- This command initiates the reading of a Picture Parameter Set (PPS) from the peripheral. The response to 1241 this command returns a sequence of bytes that may be any length, up to 128 bytes. Note that the returned 1242 1243 sequence of bytes does not necessarily correspond to the entire PPS; it may be a portion of a larger block of 1244 data.
- The format of returned data is as follows: 1245
- Parameter 1 through N: the first N bytes of the peripheral's PPS 1246
- Parameter N: single-byte Escape or Exit Code (EEC). The code is interpreted as follows: 1247
- FFh: Exit Code There is no more data in the PPS 1248
 - Any other value There is PPS data in the PPS.
- Parameters 2 through N: The first N-1 bytes of the peripheral's PPS 1250
- A PPS contains parameter values that configure the peripheral's decompression block. 1251
- In a DSI system, read activity takes the form of two separate transactions across the bus. First is the read 1252
- command read_PPS_start from host processor to peripheral, which includes the bus turn-around token. The 1253
- peripheral then takes control of the bus and returns the requested data. The peripheral response to 1254
- read_PPS_start is a Long Packet type, so its length may be up to 128 bytes (unless limited by a previous 1255
- set_max_return_size command). 1256

The response to a read_PPS_start command always starts at the beginning of the PPS. After receiving the first packet and processing the returned PPS data, the host processor may initiate a read_PPS_continue command to access the next portion of the PPS. A read_PPS_continue command begins the next read at the location following the last byte of the previous data read from the PPS.

Subsequent read_PPS_continue commands can be used to read a PPS or supplier-proprietary block of arbitrary size. There is, however, no obligation to read the entire block. The host processor may choose to stop reading after completion of any read_PPS_xxx command.

Restrictions

1265 None

1264

1266

Flow Chart

1267

Figure 53 read_PPS_start Flow Chart

1269	6.35 set	_3D_c	ontrol							
1270	Interface	All								
1271	Command	3Dł	ı							
1272	Parameters	See	the follow	ing descrip	otion.					
1273	Command									
	Direction	D7	D6	D5	D4	D3	D2	D1	D0	Hex Code
	H→D	0	0	1	1	1	1	0	1	3Dh
1274	Parameter 1	1								
12/4	1 at affecter 1	L								Hex
	Direction	D7	D6	D5	D4	D3	D2	D1	D0	Code
	H→D	0	0	3DL/R	3DVSYNC	3DFN	/IT[1:0]	3DMO	DE[1:0]	XXh
1275	Parameter 2	2								
	Direction	D7	D6	D5	D4	D3	D2	D1	D0	Hex Code
	H→D	0	0	0	0	0	0	0	0	00h
1276	Description									
1277	Support for set_3D_control is optional. However, if set_3D_control is supported, it shall be implemented as									
1278	described in this section.									
1279	The display module sets the values of the 3D Control Function (see [MIPI05]).									
1280	In 3D Mode,	certain c	commands	operate di	fferently (see	Γable 9).				
1281	D7 – Reserve	ed, set to	'0'.							
1282	D6 – Reserve	ed, set to	'0'.							
1283	3DL/R – Lef	_								
1284			eye first, r	•						
1285		Ū	nt eye first,	•						
1286					tween Left and	l Right in	nages			
1287		• •	es between		-					
1288	•	•			anking) betwee	en left and	l right data	•		
1289	3DFMT[1:0]			Ŭ						
1290			•		right data).					
1291			•		and right data).				
1292			ating pixel	s of left an	nd right data).					
1293	'11' = Res			000 5:						
1294	3DMODE[1:0] – 3D Mode On / Off, Display Orientation									
1295			ff (2D Mod	*						
1296	$^{\circ}01' = 3D$	Mode O	n, Portrait (Orientation	n.					

1297 '10' = 3D Mode On, Landscape Orientation.

1298 '11' = Reserved.

Table 9 summarizes the commands affected by set_3D_control.

1300

Table 9 DCS 3D Commands

Command	Description
get_address_mode	In 3D Mode, bits not applicable to 3D Mode are set to '0'.
get_blue_channel	In 3D Mode, returns the blue component of the first pixel of the active frame in memory.
get_green_channel	In 3D Mode, returns the green component of the first pixel of the active frame in memory.
enter_idle_mode	In 3D Mode, a checksum is available but the value is dependent on pixel ordering in all non-temporal stereoscopic formats, and left-eye or right-eye ordering when using the frame sequential format.
enter_idle_mode	In 3D Mode, a checksum is available but the value is dependent on pixel ordering in all non-temporal stereoscopic formats, and left-eye or right-eye ordering when using the frame sequential format.
get_red_channel	In 3D Mode, returns the red component of the first pixel of the active frame in memory.
get_scanline	In 3D Mode, returns the current scanline of the display panel.
read_memory_start	In 3D Mode, returns data in the same format configured by set_3D_control.
read_memory_continue	In 3D Mode, returns data in the same format configured by set_3D_control.
write_memory_start	In 3D Mode, the pixel order and transmission format are set by set_3D_control.
write_memory_continue	In 3D Mode, the pixel order and transmission format are set by set_3D_control.
set_column_address	In 3D Mode, bits not applicable to 3D Mode are set to '0'.
set_page_address	The behavior of this command in 3D Mode, if supported, is specified in the product datasheet.
set_partial_columns	The behavior of this command in 3D Mode, if supported, is specified in the product datasheet.
set_tear_scanline	The behavior of this command in 3D Mode, if supported, is specified in the product datasheet.
set_tear_on	In 3D Mode, this command is affected by 3DVSYNC in set_3D_control.

Restrictions

1302 None

1303 Flow Chart

1304

Figure 54 set_3D_control Flow Chart

1306	6.36 se	t addre	ss_mode	2						
1307	Interface	All								
1308	Command	36h								
	Parameters			na daganin	tion					
1309		s see	the followi	ng descrip	uon.					
1310	Command									
	Direction	D7	D6	D5	D4	D3	D2	D1	D0	Hex Code
	$H{ ightarrow}D$	0	0	1	1	0	1	1	0	36h
	T D 4									
1311	Parameter									
	Direction	D7	D6	D5	D4	D3	D2	D1	D0	Hex Code
	$H{ ightarrow}D$	В7	В6	B5	B4	В3	B2	B1	В0	XXh
	D									
1312	Description						_			
1313 1314	This command sets the data order for transfers from the host processor to display module's frame memory, bits B[7:5], and from the display module's frame memory to the display device, bits B[4:0].									
1315	In 2D mode,					•				
1316	In 3D Mod			•			•	•		Modo is
1316	implementat									
1318	behavior in						•	, F		
1319	If the device	e supports	compressi	on and [V	ESA01] is	selected as	s the active	compress	ion mode	algorithm,
1320	functionality									
1321	supports a						device sh	all define	which bit	s shall be
1322	supported w	-							_	
1323	All bits are									
1324 1325	for peripher peripherals l									
1326	the Type 3 d			display are	intecture o	perating in	VIGCO IVIC	de, or for	репристан	s based on
1327	No status bit	ts are char	nged.							
1328	B7 – Page A	ddress O	der							
1329	This bit con	itrols the	order that	Pages of d	lata are tra	nsferred fr	om the ho	st processo	r to the p	eripheral's
1330	frame memo									

- 1333 If [VESA01] is selected for active compression algorithm, this bit is set as '0'.
- 1334 '0' = Top to Bottom, Pages transferred from SP to EP

operating in Video Mode.

1331

1332

1335 '1' = Bottom to Top, Pages transferred from EP to SP

controls the Host processor to display device data latching order for a Type 2 or Type 3 display architecture

1336 1337

1338

1339 1340

1341

1342

1344

1345

Figure 55 B7 Page Address Order

B6 – Column Address Order

This bit controls the order that Columns of data are transferred from the host processor to the peripheral's frame memory for a Type 1 or Type 2 display architecture operating in Command Mode. This bit also controls the Host processor to display device data latching order for a Type 2 or Type 3 display architecture operating in Video Mode.

1343 If [VESA01] is selected for active compression algorithm, this bit is set as '0'

'0' = Left to Right, Columns transferred from SC to EC

'1' = Right to Left, Columns transferred from EC to SC

1346 1347

1348 1349

1350

1351

1352

1353

Figure 56 B6 Column Address Order

B5 – Page/Column Addressing Order

This bit controls the order that Columns of data are transferred from the host processor to the peripheral's frame memory.

If [VESA01] is selected for active compression algorithm, this bit is set as '0'

'0' = Normal Mode

See Section 6.58 (B5 = 0) for a description of Normal Mode operation.

1354 '1' = Reverse Mode

See Section 6.58 (B5 = 1) for a description of Reverse Mode operation.

1356 1357

1358

1359

1360

1361

1362

1369

Figure 57 B5 Page/Column Addressing Order

B4 – Display Device Line Refresh Order

This bit controls the display device's horizontal line refresh order. The image shown on the display device is unaffected, regardless of the bit setting.

'0' = Display device is refreshed from the top line to the bottom line

'1' = Display device is refreshed from the bottom line to the top line

1363 B3 – RGB/BGR Order

This bit controls the RGB data latching order transferred from the peripheral's frame memory to the display device for a Type 1 or a Type 2 display architecture operating in Command Mode. This bit also controls the RGB data latching order transfer from the Host processor to the display device for a Type 2 or a Type 3 display architecture operating in Video Mode.

1368 '0' = Pixels sent in RGB order

'1' = Pixels sent in BGR order

1370 1371

1372

1373

1374

13751376

1377

1378

Figure 58 B3 RGB Order

B2 – Display Data Latch Data Order

This bit controls the display device's vertical line data latch order. The image shown on the display device is unaffected, regardless of the bit setting.

'0' = Display device is refreshed from the left side to the right side

'1' = Display device is refreshed from the right side to the left side

Note:

This bit has no visual effect if the display device is refreshed line by line.

B1 - Flip Horizontal 1379

This bit flips the image shown on the display device left to right. No change is made to the frame memory. 1380

'0' = Normal1381

'1' = Flipped 1382

Figure 59 B1 Flip Horizontal

1383

1384

B0 - Flip Vertical 1385

This bit flips the image shown on the display device top to bottom by changing the gate scanning order. 1386

Neither the frame memory contents nor the order data is read from frame memory is changed. 1387

'0' = Normal1388

'1' = Flipped 1389

Figure 60 B0 Flip Vertical

1390

1391 1392

Restrictions

None 1393

1394 Flow Chart

1395

Figure 61 set_address_mode Flow Chart

1397	6.37 se	et_CABC	_min_br	ightness	5					
1398	Interface	All								
1399	Command	5Eh								
1400	Parameter	s See	below							
1401	Command									
	Direction	D7	D6	D5	D4	D3	D2	D1	D0	Hex Code
	$H{ ightarrow}D$	0	1	0	1	1	1	1	0	5Eh
1402	Parameter	1								
	Direction	D7	D6	D5	D4	D3	D2	D1	D0	Hex Code
	$H{\rightarrow}D$	CMB15	CMB14	CMB13	CMB12	CMB11	CMB10	CMB9	CMB8	xxh
1403	Parameter	2								
	Direction	D7	D6	D5	D4	D3	D2	D1	D0	Hex Code
	$H{ ightarrow}D$	CMB7	CMB6	CMB5	CMB4	СМВЗ	CMB2	CMB1	CMB0	xxh
1404 1405 1406	This comm level step a (set_display	amount sho	ould follow	_						-
1407	Value 0000	h means th	ne lowest b	rightness le	evel, and va	lue FFFFh	means the	highest bri	ghtness lev	el.
1408 1409	Note: It is u logic.	ıp to displa	y manufac	turer to det	ermine the	implement	ation of this	s register a	nd backgro	ound
1410	Restriction	ıs								
1411 1412 1413	This comm for devices between 9-1	that supp	ort 8-bit b	rightness 1						

1414 Flow Chart

Figure 62 set_CABC_min_brightness Flow Chart

1417	6.38 se	t_colum	n_addre	ess						
1418	Interface	All								
1419	Command	2Ah	ı							
1420	Parameters	s See	the followi	ng descript	ion.					
1421	Command									
	Direction	D7	D6	D5	D4	D3	D2	D1	D0	Hex Code
	$H \rightarrow D$	0	0	1	0	1	0	1	0	2Ah
1422	Parameter	1								
	Direction	D7	D6	D5	D4	D3	D2	D1	D0	Hex Code
	$H{\rightarrow}D$	SC15	SC14	SC13	SC12	SC11	SC10	SC9	SC8	XXh
1423	Parameter	2								
	Direction	D7	D6	D5	D4	D3	D2	D1	D0	Hex Code
	$H{ ightarrow}D$	SC7	SC6	SC5	SC4	SC3	SC2	SC1	SC0	XXh
1424	Parameter	3								
	Direction	D7	D6	D5	D4	D3	D2	D1	D0	Hex Code
	$H{\rightarrow}D$	EC15	EC14	EC13	EC12	EC11	EC10	EC9	EC8	XXh
1425	Parameter	4								
	Direction	D7	D6	D5	D4	D3	D2	D1	D0	Hex Code
	H→D	EC7	EC6	EC5	EC4	EC3	EC2	EC1	EC0	XXh

1426 **Description**

1427

1428

1429

1430

1431

1432 1433

1434

1435

This command defines the column extent of the frame memory accessed by the host processor with the read_memory_continue and write_memory_continue commands. No status bits are changed. A display module should not implement set_column_address in 3D Mode. If the display module implements this command in 3D Mode, the manufacturer shall specify the operation in the product datasheet.

Figure 63 set_column_address Example

Restrictions

SC[15:0] must always be equal to or less than EC[15:0].

If SC[15:0] or EC[15:0] is greater than the available frame memory then the parameter is not updated.

Copyright © 2005-2016 MIPI Alliance, Inc. All rights reserved.

1436 Flow Chart

1437

Figure 64 set_column_address Flow Chart

1439	6.39 se	et_displa	y_bright	tness						
1440	Interface	All								
1441	Command	51h								
1442	Parameter	s See	below							
1443	Command									
	Direction	D7	D6	D5	D4	D3	D2	D1	D0	Hex Code
	$H{ ightarrow}D$	0	1	0	1	0	0	0	1	51h
1444	Parameter	1								
	Direction	D7	D6	D5	D4	D3	D2	D1	D0	Hex Code
	$H{ ightarrow}D$	DBV15	DBV14	DBV13	DBV12	DBV11	DBV10	DBV9	DBV8	xxh
1445	Parameter	· 2								
	Direction	D7	D6	D5	D4	D3	D2	D1	D0	Hex Code
	$H{ ightarrow}D$	DBV7	DBV6	DBV5	DBV4	DBV3	DBV2	DBV1	DBV0	xxh

- This command is used to adjust the brightness value of the display. 1446
- Value 0000h means the lowest brightness level, and value FFFFh means the highest brightness level. 1447
- Note: It is up to display manufacturer to determine the implementation of this register and background 1448
- logic. Only one parameter shall be sent for devices that support 8-bit brightness levels. Two parameters 1449
- shall be sent for devices that support between 9-bit and 16-bit brightness levels. 1450
- **Restrictions** 1451

None 1452

Flow Chart 1453

1454 1455

Figure 65 set_display_brightness Flow Chart

6.40 set_display_off

1457 **Interface** All

1458 **Command** 28h

1459 **Parameters** None

1460 Command

1456

1461

1464

1465

1466

1467

1468

Direction	D7	D6	D5	D4	D3	D2	D1	D0	Code
H→D	0	0	1	0	1	0	0	0	28h

Description

This command causes the display module to stop displaying the image data on the display device. The frame memory contents remain unchanged. No status bits are changed.

Figure 66 set_display_off Example

Restrictions

This command has no effect when the display panel is already off.

Flow Chart

Figure 67 set_display_off Flow Chart

1469 1470

Copyright © 2005-2016 MIPI Alliance, Inc. All rights reserved.

6.41	set_disp	lay_on
------	----------	--------

1472 **Interface** All

1473 **Command** 29h

1474 **Parameters** None

1475 Command

1471

1476

1479

1480

1484

1485

Direction	D7	D6	D5	D4	D3	D2	D1	D0	Hex Code
H→D	0	0	1	0	1	0	0	1	29h

Description

This command causes the display module to start displaying the image data on the display device. The frame memory contents remain unchanged. No status bits are changed.

Figure 68 set_display_on Example

1481 **Restrictions**

This command has no effect when the display panel is already on.

1483 Flow Chart

Fig., CO and al

Figure 69 set_display_on Flow Chart

6.42 set_gamma_curve

1487 **Interface** All

1488 **Command** 26h

1489 **Parameters** See the following description.

GC7

GC6

GC5

1490 Command

1486

1491

1496

1497

1498

1499

Direction	D7	D6	D5	D4	D3	D2	D1	D0	Hex Code
$H{ ightarrow}D$	0	0	1	0	0	1	1	0	26h
Parameter									
Direction	D7	D6	D5	D4	D3	D2	D1	D0	Hex Code

GC3

GC2

GC1

GC₀

XXh

1492 **Description**

 $H{
ightarrow}D$

This command selects the desired gamma curve for the display device. Four fixed gamma curves are defined in Section 5.2. A curve is selected by setting the appropriate bit in the parameter as described in

GC4

1495 Table 10.

Table 10 Gamma Curves

GC[7:0]	Parameter	Curve Selected
00h	None	No curve selected
01h	GC0	Gamma Curve 1
02h	GC1	Gamma Curve 2
04h	GC2	Gamma Curve 3
08h	GC3	Gamma Curve 4

Note:

All other values are reserved.

Restrictions

Values of GC[7:0] not shown in Table 10 are reserved and shall not change the currently selected gamma curve.

1502 Flow Chart

Figure 70 set_gamma_curve Flow Chart

1503 1504

Copyright © 2005-2016 MIPI Alliance, Inc.

All rights reserved. **Confidential**

1505	6.43 set_page_address										
1506	Interface	All									
1507	Command	2Bh	ı								
1508	Parameters See the following description.										
1509	Command										
	Direction	D7	D6	D5	D4	D3	D2	D1	D0	Hex Code	
	H→D	0	0	1	0	1	0	1	1	2Bh	
1510	Parameter	1									
										Hex	
	Direction	D7	D6	D5	D4	D3	D2	D1	D0	Code	
	H→D	SP15	SP14	SP13	SP12	SP11	SP10	SP9	SP8	XXh	
1511	Parameter	2									
	Direction	D7	D6	D5	D4	Da	Da	D4	Do	Hex	
		D7	_			D3	D2	D1	D0	Code	
	H→D	SP 7	SP 6	SP 5	SP 4	SP 3	SP 2	SP 1	SP 0	XXh	
1512	Parameter	3									
										Hex	
	Direction	D7	D6	D5	D4	D3	D2	D1	D0	Code	
	H→D	EP15	EP14	EP13	EP12	EP11	EP10	EP9	EP8	XXh	
1513	Parameter	4									
	Direction	D7	D6	D5	D4	D3	D2	D1	D0	Hex Code	
			סט	טט	D4	DS	DΖ		DU		
	H→D	EP7	EP 6	EP 5	EP 4	EP 3	EP 2	EP 1	EP 0	XXh	

Description

1514

1515

1516

1517

1518

1519

1520

1522

This command defines the page extent of the frame memory accessed by the host processor with the write_memory_continue and read_memory_continue command. No status bits are changed. A display module should not implement set_page_address in 3D Mode. If the display module implements this command in 3D Mode, the manufacturer shall specify the operation in the product datasheet.

Figure 71 set_page_address Example

1521 **Restrictions**

SP[15:0] must always be equal to or less than EP[15:0]

1523 If SP[15:0] or EP[15:0] is greater than the available frame memory then the parameter is not updated.

1524 Flow Chart

1525

Figure 72 set_page_address Flow Chart

1527	6.44 se	et partia	l_columi	ns							
1528	Interface	All	_								
1529	Command										
1530	Parameters See the following description.										
1531	Command										
1531	Commanu									Hex	
	Direction	D7	D6	D5	D4	D3	D2	D1	D0	Code	
	$H{ ightarrow} D$	0	0	1	1	0	0	0	1	31h	
1532	Parameter	- 1									
1002		_								Hex	
	Direction	D7	D6	D5	D4	D3	D2	D1	D0	Code	
	$H{ ightarrow}D$	PSC15	PSC14	PSC13	PSC12	PSC11	PSC10	PSC9	PSC8	XXh	
1533	Parameter	. 2									
										Hex	
	Direction	D7	D6	D5	D4	D3	D2	D1	D0	Code	
	H→D	PSC7	PSC6	PSC5	PSC4	PSC3	PSC2	PSC1	PSC0	XXh	
1534	Parameter	3									
										Hex	
	Direction	D7	D6	D5	D4	D3	D2	D1	D0	Code	
	H→D	PEC15	PEC14	PEC13	PEC12	PEC11	PEC10	PEC9	PEC8	XXh	
1535	Parameter	4									
										Hex	
	Direction	D7	D6	D5	D4	D3	D2	D1	D0	Code	
	$H{ ightarrow}D$	PEC7	PEC6	PEC5	PEC4	PEC3	PEC2	PEC1	PEC0	XXh	

1536 **Description**

1537

1538

1539

1541

This command defines the Partial Display mode's display width. There are two parameters associated with this command, the first defines the Start Column (PSC) and the second the End Column (PEC), as illustrated in Figure 73 through Figure 76. PSC and PEC refer to the Frame Memory Column Pointer. A display module should not implement set_partial_columns in 3D Mode. If the display module implements this command in 3D Mode, the manufacturer shall specify the operation in the product datasheet.

1542 If End Column > Start Column

1543 1544

Figure 73 set_partial_columns with set_address_mode B2 = 0

1545 1546

1547

Figure 74 set_partial_columns with set_address_mode B2=1

If Start Column > End Column

Figure 75 set_partial_columns with set_address_mode B2 = 0

1550 1551

1552

1553

1554

Figure 76 set_partial_columns with set_address_mode B2 = 1

Restrictions

PSC[15:0] and PEC[15:0] cannot be 0000h nor exceed the last horizontal column number.

Flow Chart

1555 To enter Partial Display mode

15561557

Figure 77 Entering Partial Display Mode Flow Chart

Copyright © 2005-2016 MIPI Alliance, Inc. All rights reserved.

1558 To exit Partial Display mode

1559

Figure 78 Exiting Partial Display Mode Flow Chart

1561	6.45 se	t_partia	l_rows							
1562	Interface	All								
1563	Command	30h								
1564	Parameters	s See	the followi	ng descript	ion.					
1565	Command									
	Direction	D7	D6	D5	D4	D3	D2	D1	D0	Hex Code
	$H{ ightarrow}D$	0	0	1	1	0	0	0	0	30h
1566	Parameter	1								
	Discotion	D.7	D.C.	D.E.	D 4	Do	D0	D4	D 0	Hex
	Direction	D7	D6	D5	D4	D3	D2	D1	D0	Code
	H→D	SR15	SR14	SR13	SR12	SR11	SR10	SR9	SR8	XXh
1567	Parameter	2								
	Divertion	D7	DC	DE	D4	Da	Da	D4	Do	Hex
	Direction	D7	D6	D5	D4	D3	D2	D1	D0	Code
	H→D	SR7	SR6	SR5	SR4	SR3	SR2	SR1	SR0	XXh
1568	Parameter	3								
										Hex
	Direction	D7	D6	D5	D4	D3	D2	D1	D0	Code
	H→D	ER15	ER14	ER13	ER12	ER11	ER10	ER9	ER8	XXh
1569	Parameter	4								
	Division	D=	D 0	5.5	5.4	D 0	D 0	D 4	D 0	Hex
	Direction	D7	D6	D5	D4	D3	D2	D1	D0	Code
	H→D	ER7	ER6	ER5	ER4	ER3	ER2	ER1	ER0	XXh

Description

1570

1571

1572

1573

1574

1575

1576

1577

1578

This command defines the Partial Display mode's display height. There are two parameters associated with this command, the first defines the Start Row (SR) and the second the End Row (ER), as illustrated in Figure 79 through Figure 82. SR and ER refer to the Frame Memory Line Pointer. A display module should not implement set_partial_rows in 3D Mode. If the display module implements this command in 3D Mode, the manufacturer shall specify the operation in the product datasheet.

If End Row > Start Row

Figure 79 set_partial_rows with set_address_mode B4 = 0

1579 1580

Figure 80 set_partial_rows with set_address_mode B4=1

1581 If Start Row > End Row

1582 1583

Figure 81 set_partial_rows with set_address_mode B4 = 0

1584 1585

1587

Figure 82 set_partial_rows with set_address_mode B4 = 1

1586 **Restrictions**

SR[15:0] and ER[15:0] cannot be 0000h nor exceed the last vertical line number.

1588 Flow Chart

1589 See Section 6.44.

1590	6.46 set_	_pixel_	_format							
1591	Interface	All								
1592	Command	3A	h							
1593	Parameters	See	the following	ng descrip	tion.					
1594	Command									
	Direction	D7	D6	D5	D4	D3	D2	D1	D0	Hex Code
	$H{\rightarrow}D$	0	0	1	1	1	0	1	0	3Ah
1595	Parameter									
	Direction	D7	D6	D5	D4	D3	D2	D1	D0	Hex Code
	$H{ ightarrow}D$	Χ	D6	D5	D4	X	D2	D1	D0	XXh

1596 **Description**

This command sets the pixel format for the RGB image data used by the interface.

- D[6:4] DPI Pixel Format Definition
- D[2:0] DBI Pixel Format Definition
- D7 and D3 are not used.
- The pixel formats are shown in Table 7.
- If a particular interface, either DBI or DPI, is not used then the corresponding bits in the parameter are ignored.
- In 12, 16 and 18 bits/Pixel modes, the LUT is applied to transfer data into the frame memory.

1605 **Restrictions**

There is no visible effect until the frame memory is written.

1607 Flow Chart

Figure 83 set_pixel_format Flow Chart

1608

1610	6.47 se	et_scroll	_area							
1611	Interface	All								
1612	Command	33h								
1613	Parameter	s See	the followi	ng descript	tion.					
1614	Command									
	Direction	D7	D6	D5	D4	D3	D2	D1	D0	Hex Code
	$H{ ightarrow} D$	0	0	1	1	0	0	1	1	33h
1615	Parameter	1								
	Direction	D7	D6	D5	D4	D3	D2	D1	D0	Hex Code
	$H{ ightarrow}D$	TFA15	TFA14	TFA13	TFA12	TFA11	TFA10	TFA9	TFA8	XXh
1616	Parameter	2								
	Direction	D7	D6	D5	D4	D3	D2	D1	D0	Hex Code
	$H{ ightarrow}D$	TFA7	TFA6	TFA5	TFA4	TFA3	TFA2	TFA1	TFA0	XXh
1617	Parameter	3								
	Direction	D7	D6	D5	D4	D3	D2	D1	D0	Hex Code
	$H{ ightarrow} D$	VSA15	VSA14	VSA13	VSA12	VSA11	VSA10	VSA9	VSA8	XXh
1618	Parameter	4								
	Direction	D7	D6	D5	D4	D3	D2	D1	D0	Hex Code
	$H{ ightarrow}D$	VSA7	VSA6	VSA5	VSA4	VSA3	VSA2	VSA1	VSA0	XXh
1619	Parameter	5								
	Direction	D7	D6	D5	D4	D3	D2	D1	D0	Hex Code
	$H{ ightarrow}D$	BFA15	BFA14	BFA13	BFA12	BFA11	BFA10	BFA9	BFA8	XXh
1620	Parameter	6								
	Direction	D7	D6	D5	D4	D3	D2	D1	D0	Hex Code
	$H{ ightarrow}D$	BFA7	BFA6	BFA5	BFA4	BFA3	BFA2	BFA1	BFA0	XXh
1621	Description	n								
1622	This comm		es the dis	nlav modu	ile's Vertic	eal Scrolli	ng Area A	A display	module sk	nould not

This command defines the display module's Vertical Scrolling Area. A display module should not implement set_scroll_area in 3D Mode. If the display module implements this command in 3D Mode, the manufacturer shall specify the operation in the product datasheet.

1625 If set_address_mode B4 = 0:

The 1st and 2nd parameter, TFA[15:0], describes the Top Fixed Area in number of lines from the top of the frame memory. The top of the frame memory and top of the display device are aligned.

The 3rd and 4th parameter, VSA[15:0], describes the height of the Vertical Scrolling Area in number of lines of frame memory from the Vertical Scrolling Start Address. The first line of the Vertical Scrolling Area starts immediately after the bottom most line of the Top Fixed Area. The last line of the Vertical Scrolling Area ends immediately before the top most line of the Bottom Fixed Area.

The 5th and 6th parameter, BFA[15:0], describes the Bottom Fixed Area in number of lines from the bottom of the frame memory. The bottom of the frame memory and bottom of the display device are aligned.

TFA, VSA and BFA refer to the Frame Memory Line Pointer.

1635 1636

1637

1640

1641 1642

1643

1644

1645 1646

1628

1629

1630

1631

1632

1633

1634

Figure 84 set_scroll_area set_address_mode B4 = 1 Example

If set address mode B4 = 1:

The 1st and 2nd parameter, TFA[15:0], describes the Top Fixed Area in number of lines from the bottom of the frame memory. The bottom of the frame memory and bottom of the display device are aligned.

The 3rd and 4th parameter, VSA[15:0], describes the height of the Vertical Scrolling Area in number of lines of frame memory from the Vertical Scrolling Start Address. The first line of the Vertical Scrolling Area starts immediately after the top most line of the Top Fixed Area. The last line of the Vertical Scrolling Area ends immediately before the bottom most line of the Bottom Fixed Area.

The 5th and 6th parameter, BFA[15:0], describes the Bottom Fixed Area in number of lines from the top of the frame memory. The top of the frame memory and top of the display device are aligned.

TFA, VSA and BFA refer to the Frame Memory Line Pointer.

1647 1648

1649

1650

1651

Figure 85 set_scroll_area set_address_mode B4 = 1 Example

Restrictions

The sum of TFA, VSA and BFA must equal the number of the display device's horizontal lines (pages), otherwise Scrolling mode is undefined.

In Vertical Scroll Mode, set_address_mode B5 should be set to '0' – this only affects the Frame Memory Write.

1654 Flow Chart

Figure 86 set_scroll_area Flow Chart

1657	6.48 se	t_scroll	_start									
1658	Interface	All										
1659	Command	37h										
1660	Parameter	s See	the followi	ng descript	ion.							
1661	Command											
	Direction	D7	D6	D5	D4	D3	D2	D1	D0	Hex Code		
	H→D	0	0	1	1	0	1	1	1	37h		
1662	Parameter 1											
	Direction	D7	D6	D5	D4	D3	D2	D1	D0	Hex Code		
	$H{ ightarrow} D$	VSP15	VSP14	VSP13	VSP12	VSP11	VSP10	VSP9	VSP8	XXh		
1663	Parameter	2										
	Direction	D7	D6	D5	D4	D3	D2	D1	D0	Hex Code		
	$H{ ightarrow}D$	VSP7	VSP6	VSP5	VSP4	VSP3	VSP2	VSP1	VSP0	XXh		

1664 **Description**

This command sets the start of the vertical scrolling area in the frame memory. The vertical scrolling area is fully defined when this command is used with the set_scroll_area command. A display module should not implement set_scroll_start in 3D Mode. If the display module implements this command in 3D Mode, the manufacturer shall specify the operation in the product datasheet.

The set_scroll_start command has one parameter, the Vertical Scroll Pointer. The VSP defines the line in the frame memory that is written to the display device as the first line of the vertical scroll area. See Section 6.47 for a description of the vertical scroll area.

The displayed image also depends on the setting of the Line Address Order bit, B4, in the set_address_mode register. See the following examples.

1674 If set_address_mode B4 = 0:

1675 Example:

1676

1677

1678

When Top Fixed Area = Bottom Fixed Area = 0, Vertical Scrolling Area = YY and VSP = 3.

Figure 87 set_scroll_start set_address_mode B4 = 0

1679 If $set_address_mode B4 = 1$:

1680 Example:

When Top Fixed Area = Bottom Fixed Area = 0, Vertical Scrolling Area = YY and VSP = 3.

Copyright © 2005-2016 MIPI Alliance, Inc. All rights reserved.

Figure 88 set_scroll_start set_address_mode B4 = 1

Restrictions

1682

1683

1684

1685

1686

1687

1691

- Since the value of the Vertical Scrolling Start Address is absolute with reference to the Frame Memory, it must not enter the fixed areas, see Section 6.47, otherwise an undesirable image may be shown on the Display Panel.
- The following conditions shall apply:
- If set_address_mode B4 = 0, TFA[15:0] 1 < VSP[15:0] < # of lines in frame memory BFA[15:0]
- If set_address_mode B4 = 1, BFA[15:0] 1 < VSP[15:0] < # of lines in frame memory TFA[15:0]

Flow Chart

See Section 6.47 description.

6.49 set_tear_off
 Interface All
 Command 34h
 Parameters None

1697 Command

Direction	D7	D6	D5	D4	D3	D2	D1	D0	Code
H→D	0	0	1	1	0	1	0	0	34h

1698 **Description**

This command turns off the display module's Tearing Effect output signal on the TE signal line.

1700 **Restrictions**

1701 This command has no effect when the Tearing Effect output is already off.

1702 Flow Chart

1703

Figure 89 set_tear_off Flow Chart

6.50 set_tear_on

- 1706 Interface All
- 1707 **Command** 35h
- 1708 **Parameters** See the following description.
- 1709 Command

1705

1710

1717

1721

1722

Direction	D7	D6	D5	D4	D3	D2	D1	D0	Hex Code
$H{ ightarrow}D$	0	0	1	1	0	1	0	1	35h
Parameter									
Direction	D7	D6	D5	D4	D3	D2	D1	D0	Hex Code
$H{ ightarrow}D$	Χ	Χ	Х	Χ	Х	Х	Х	М	XXh

1711 **Description**

This command turns on the display module's Tearing Effect output signal on the TE signal line. The TE signal is not affected by changing set_address_mode bit B4.

set_tear_on has one parameter that describes the Tearing Effect Output Line mode.

- 1715 If M = 0 (Mode 0):
- The Tearing Effect Output line consists of V-Blanking information only.

Figure 90 set_tear_on M = 0

- 1719 If M = 1 (Mode 1):
- The Tearing Effect Output Line consists of both V-Blanking and H-Blanking information.

- The Tearing Effect Output line shall be active low when the display module is in Sleep mode.
- See [MIPI02] for definitions of t_{vdl} , t_{vdh} , t_{hdl} and t_{hdh} .
- In 3D Mode, if 3DVSYNC in set_3D_control is set to '1', a vertical sync pulse occurs between left and right images. If 3DVSYNC is set to '0', a vertical sync pulse does not occur between left and right images.

 3DVSYNC shall also affect how TE pulse or TEE trigger events are issued between the left and right image data as they are scanned to the display panel.
- The functionality is described by the following example:
- 3DVSYNC = '0' implies a TE sync pulse, or TEE trigger, is issued only after both left and right image data have been scanned to the display panel, regardless of the order data was sent to the display module.

3DVSYNC = '1'implies a TE sync pulse, or TEE trigger, is issued only after both left data scan has been finished and after right eye data has been scanned to the display panel.

See [MIPI05] for additional information.

Restrictions

This command takes affect on the frame following the current frame. Therefore, if the Tear Effect (TE) output is already ON, the TE output shall continue to operate as programmed by the previous set_tear_on, or set_tear_scanline, command until the end of the frame.

Flow Chart

1741

17361737

1738

1739

1740

Figure 92 set_tear_on Flow Chart

1743	6.51 set	_tear_s	canline							
1744	Interface	All								
1745	Command	44h								
1746	Parameters	See	the followi	ng descript	tion.					
1747	Command									
	Direction	D7	D6	D5	D4	D3	D2	D1	D0	Hex Code
	$H{ ightarrow}D$	0	1	0	0	0	1	0	0	44h
1748	Parameter 1									
	Direction	D7	D6	D5	D4	D3	D2	D1	D0	Hex Code
	$H{ ightarrow}D$	N15	N14	N13	N12	N11	N10	N9	N8	XXh
1749	Parameter 2									
	Direction	D7	D6	D5	D4	D3	D2	D1	D0	Hex Code
	H→D	N7	N6	N5	N4	N3	N2	N1	N0	XXh

1750 **Description**

1756

1757

1766

- This command turns on the display module's Tearing Effect output signal on the TE signal line when the 1751 display module reaches line N. The TE signal is not affected by changing set_address_mode bit B4. 1752
- The Tearing Effect Line On has one parameter that describes the Tearing Effect Output Line mode. 1753
- After issuing a set tear scanline command to the display module, the Tearing Effect output signal, e.g. as 1754 in DBI-2 systems, shall be a delayed version of V-Blanking information as illustrated by Figure 93. 1755

Figure 93 set tear scanline

- Note that set tear scanline with N = 0 is equivalent to set tear on with M = 0. 1758
- 1759 The Tearing Effect Output line shall be active low when the display module is in Sleep mode.
- See [MIPI02] for definitions of t_{vdl} and t_{vdh} and [MIPI03] for definition of display module line numbers. 1760
- In 2D mode, the scanline value of the display memory and the display panel is the same. 1761
- In 3D Mode, the scanline value of the display memory and the display panel can be different; 1762 set tear scanline shall set the scanline of the display panel. 1763
- In 3D Temporal Mode, the image input format uses top to bottom ordering. The line number shall be reset 1764 1765 upon scanning of each frame. Thus, the host only writes the actual scan line.

Restrictions

- This command takes affect on the frame following the current frame. Therefore, if the Tear Effect (TE) 1767 output is already ON, the TE output shall continue to operate as programmed by the previous set_tear_on, 1768
- or set tear scanline, command until the end of the frame. 1769

Flow Chart 1770

1771

Figure 94 set_tear_scanline Flow Chart

6.52 set_vsync_timing

- 1774 Interface All
- 1775 **Command** 40h
- 1776 **Parameters** See the following description.
- 1777 Command

1773

Direction	D7	D6	D5	D4	D3	D2	D1	D0	Hex Code
$H{\rightarrow}D$	0	1	0	0	0	0	0	0	40h

1778 Parameter

Direction	D7	D6	D5	D4	D3	D2	D1	D0	Hex Code
H→D	RESET	DIR	LINES[4]	LINES[3]	LINES[2]	LINES[1]	LINES[0]	FRAME	XXh

- 1779 **Description**
- VSYNC is delayed or advanced by the number of scanlines in LINES, up to a maximum of thirty-two lines.
- 1781 RESET Restart display update
- This bit restarts the display update. If this bit is set to '1', the display module shall ignore all other bits in
- the parameter.
- 1784 '0' = No operation
- 1785 '1' = Restart display update
- 1786 DIR Line Direction
- This bit determines whether VSYNC is delayed, or advanced, by the number of lines in LINES.
- 1788 '0' = Later (Down)
- 1789 '1' = Earlier (Up)
- 1790 LINES[4:0] Number of Lines in Adjustment
- This field determines the number of lines to delay or advance VSYNC.
- 1792 FRAME Adjustment Frame
- This bit determines on which frame the VSYNC adjustment is applied..
- 1794 '0' = Next Frame
- 1795 '1' = Frame After Next Frame
- If DIR is set to '1' and LINES is less than, or equal to, the number of scanlines in the VFP, a display
- module shall advance the start of the VSYNC by LINES scanlines. If LINES is greater than the number of
- scanlines in the VFP, the display module shall advance the start of VSYNC by the number of scanlines in
- the VFP (effectively making the VFP = 0).
- 1800 If DIR is set to '0' and LINES is less than, or equal to, the number of scanlines in the VBP, a display
- module shall delay the start of the VSYNC by LINES scanlines. If LINES is greater than the number of
- scanlines in the VBP, the display module shall delay the VSYNC timing by the number of scanlines in the
- VBP (effectively making the VBP = 0).
- 1804 If FRAME is set to '0', the VSYNC adjustment shall be applied to the next VSYNC.
- 1805 If FRAME is set to '1', the VSYNC adjustment shall be applied to the VSYNC following the next
- 1806 VSYNC.

If RESET is '1', a display module shall restart its display panel update from pixel 1 of line 1. The display module shall also ignore all other bits in the parameter, i.e. the display module only resets the display update, it does not apply a new VSYNC adjustment when it is reset.

1810 **Restrictions**

1811 None

1807

1808

1809

1812 Flow Chart

1813

Figure 95 set_vsync_timing Flow Chart

1815	6.53 soft_	_reset
1816	Interface	All
1817	Command	01h
1818	Parameters	None

1819 Command

1820

Direction	D7	D6	D5	D4	D3	D2	D1	D0	Hex Code
$H{ ightarrow}D$	0	0	0	0	0	0	0	1	01h

Description

The display module performs a software reset. Registers are written with their SW Reset default values.

See Section 5.7 for a list of the reset values.

Frame Memory contents are unaffected by this command.

1824 **Restrictions**

The host processor must wait five milliseconds before sending any new commands to a display module following this command. The display module updates the registers during this time.

If a soft_reset is sent when the display module is in Sleep Mode, the host processor must wait 120 milliseconds before sending an exit_sleep_mode command.

soft_reset should not be sent when the display module is not in Sleep mode.

1830 Flow Chart

Figure 96 soft_reset Flow Chart

1833	6.54 wri	ite_con	trol_dis	play						
1834	Interface	All								
1835	Command	53h								
1836	Parameters	See	below							
1837	Command									
	Direction	D7	D6	D5	D4	D3	D2	D1	D0	Hex Code
	$H{ ightarrow}D$	0	1	0	1	0	0	1	1	53h
1838	Parameter 1	1								
	Direction	D7	D6	D5	D4	D3	D2	D1	D0	Hex Code
	$H{ ightarrow}D$	х	х	BCTRL	х	DD	BL	х	х	xxh
1839	This comma	nd is used	l for brigh	tness control	mode of t	he display.				
1840 1841 1842		= Off (Br	ightness re	lock On/Off egister is 000 gisters are a						
1843 1844 1845		= Display	ng Dimming Dimming							
1846 1847 1848				D) urn off back	light circui	it)				
1849	Bits marked	as 'x' are	reserved	for display n	nanufactur	er's own us	sage.			
1850 1851	Note: It is up logic.	to displa	y manufad	cturer to dete	ermine the	implement	ation of thi	s register a	nd backgro	ound
1852	Restrictions	;								
1853	None									
1854	Flow Chart									

1855 1856

Figure 97 write_control_display Flow Chart

1857	6.55 wri	te_LUT								
1858	Interface	All								
1859	Command	2Dh								
1860	Parameters	See t	he followi	ng descript	ion.					
1861	Command									
	Direction	D7	D6	D5	D4	D3	D2	D1	D0	Hex Code
	H→D	0	0	1	0	1	1	0	1	2Dh
1060	Parameter 1									
1862	Parameter 1	L								Hex
	Direction	D7	D6	D5	D4	D3	D2	D1	D0	Code
	$H{ ightarrow}D$	R7	R6	R5	R4	R3	R2	R1	R0	XXh
1863					•					
1864					•					
1865					•					
1866	Parameter N	N								
	Direction	D7	D6	D5	D4	D3	D2	D1	D0	Hex Code
	$H{ ightarrow}D$	R7	R6	R5	R4	R3	R2	R1	R0	XXh
1867	Parameter N	N + 1								
	Direction	D7	D6	D5	D4	D3	D2	D1	D0	Hex Code
	H→D	G7	G6	G 5	G4	G3	G2	G1	G0	XXh
1868	2	0.					<u> </u>	•		70
1869										
1870										
1871	Parameter N	N + M								
										Hex
	Direction	D7	D6	D5	D4	D3	D2	D1	D0	Code
	H→D	G7	G6	G5	G4	G3	G2	G1	G0	XXh
1872	Parameter N	N + M + 1								Han
	Direction	D7	D6	D5	D4	D3	D2	D1	D0	Hex Code
	$H{ ightarrow}D$	B7	B6	B5	B4	В3	B2	B1	В0	XXh
1873					•					
1874										
1875										
1876	Parameter 2	2*N + M								

Direction	D7	D6	D5	D4	D3	D2	D1	D0	Hex Code
$H{ ightarrow} D$	В7	B6	B5	B4	В3	B2	B1	В0	XXh

Description

1877

1878

1879

1880

1883

1885

1886 1887

1890

This command sets the LUT for pixel color depth conversions. Six conversions are supported as indicated in Table 11.

Table 11 LUT Color Depth Conversions

Convert from Color	Convert to Color Depth							
Depth	24	18	16					
18	Yes	N/A	N/A					
16	Yes	Yes	N/A					
12	Yes	Yes	Yes					

The LUT size depends on the pixel format of the display module. In the following list, N is the number of red or blue components and M is the number of green components in the LUT.

16-bit color display modules: N = M = 16; Total LUT Size = 2*N + M = 48 bytes.

18-bit color display modules: N = 32, M = 64; Total LUT Size = 2*N + M = 128 bytes.

24-bit color display modules: N = M = 64; Total LUT Size = 2*N + M = 192 bytes.

Regardless of host processor color depth, the defined size of the LUT shall be written according to the number of colors supported by the display module. See Annex A.

This command has no effect on other commands or the contents of frame memory. Visible changes take effect the next time the frame memory is written.

Restrictions

1891 None

1892 Flow Chart

Figure 98 write_LUT Flow Chart

6.56	write_	_power_	_save
------	--------	---------	-------

1896 **Interface** All

1897 **Command** 55h

1898 **Parameters** See below

1899 Command

1895

Direction	D7	D6	D5	D4	D3	D2		D0	
$H{ ightarrow} D$	0	1	0	1	0	1	0	1	55h

1900 Parameter 1

Direction	D7	D6	D5	D4	D3	D2	D1	D0	Hex Code
H→D	Y	Y	Y	Y	Y	PS2	PS1	PS0	yyh

This command is used for power saving control functions of the display. These power modes could be related to CABC implementation in a LCD display.

Power saving modes are described in Table 12.

1903 1904

Table 12 Power Saving Modes

PS[2]	PS[1]	PS[0]	Function
0	0	0	Power Save Off
0	0	1	Power Save level: Low
0	1	0	Power Save level: Medium
0	1	1	Power Save: High
1	0	0	Outdoor mode

Bits marked as 'x' are reserved for display manufacturer's own usage.

Note: It is up to display manufacturer to determine the implementation of this register and background logic.

1908 **Restrictions**

1909 None

1910 Flow Chart

Figure 99 write_power_save Flow Chart

1913	6.57 wr	ite_mer	nory_coi	ntinue						
1914	Interface	All								
1915	Command	3Ch	l							
1916	Parameters	See	the followi	ng descript	tion.					
1917	Command									
	Direction	D7	D6	D5	D4	D3	D2	D1	D0	Hex Code
	H→D	0	0	1	1	1	1	0	0	3Ch
			ŭ		·	·	·	ŭ	· ·	00
1918	Pixel Data 1	Ĺ								
	Direction	D15	D14	D13	D12	D11	D10	D9	D8	Hex Code
	$H{ ightarrow}D$	P15	P14	P13	P12	P11	P10	P9	P8	XXh
1919										
	Dissettes	D7	D.C.	D.C.	D.4	Do	Do	D4	D 0	Hex
	Direction	D7	D6	D5 P5	D4 P4	D3 P3	D2	D1	D0	Code XXh
1920	H→D	P7	P6	PO	P4	Po	P2	P1	P0	AAII
1920					•					
1921					•					
1923	Pixel Data I	N			•					
	Direction	D15	D14	D13	D12	D11	D10	D9	D8	Hex Code
	H→D	P7	P6	P5	P4	P3	P2	P1	P0	XXh
1924										
			_			_				Hex
	Direction	D7	D6	D5	D4	D3	D2	D1	D0	Code
	H→D	P7	P6	P5	P4	P3	P2	P1	P0	XXh
1925	Description									
1926	This comma									
1927 1928	continuing f command.	rom the p	nxei iocano	on tollowin	ig the previ	ious write_	_memory_c	ontinue or	write_mei	nory_start
1929	If set_addres	ss_mode I	35 = 0:							
1930	Data is writt									
1931 1932	or write_me memory unt									
1933	SC and the	page regi	ster is incr	remented. I	Pixels are	written to	the frame r	nemory un	til the pag	ge register
1934	equals the E									
1935 1936	ignored.	iiiaiid. II	ane mumbe	i or pixels	caccus (_ 5C -	1) (EF	51 + 1)	aic caua	pineis aic
1937	If set_addres	ss_mode I	B5 = 1:							

Data is written continuing from the pixel location after the write range of the previous write_memory_start or write_memory_continue. The page register is then incremented and pixels are written to the frame memory until the page register equals the End Page (EP) value. The page register is then reset to SP and the column register is incremented. Pixels are written to the frame memory until the column register equals the End column (EC) value and the page register equals the EP value, or the host processor sends another command. If the number of pixels exceeds (EC - SC + 1) * (EP - SP + 1) the extra pixels are ignored.

In a DSI system, if Compression Mode bit CMODE = 1 [MIPI03] (See section 6.13):

The Display shall treat all received pixel data as compressed image data. (See section 5.8)

See Section 6.38 for descriptions of the Start Column and End Column values.

See Section 6.43 for descriptions of the Start Page and End Page values.

See [MIPI01] and [MIPI02] for color encoding for 8 or 9 data bit image data.

Note:

1938

1939

1940

1941

1942

1943 1944

1945

1946 1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

The command description shows 16-bit pixel data transferred over a 16-bit bus. Other possibilities not illustrated here would show 9-bit pixel data transferred over a 9-bit bus, and 8-bit pixel data transferred over an 8-bit bus. See Annex A for details on pixel to byte mapping.

The relationship between some common colors and the corresponding image data are shown in Table 13.

Table 13 Common Color Encoding

Color	Red Component	Green Component	Blue Component
Black	All bits = 0	All bits = 0	All bits = 0
Red	All bits = 1	All bits = 0	All bits = 0
Green	All bits = 0	All bits = 1	All bits = 0
Blue	All bits = 0	All bits = 0	All bits = 1
Cyan	All bits = 0	All bits = 1	All bits = 1
Yellow	All bits = 1	All bits = 1	All bits = 0
Magenta	All bits = 1	All bits = 0	All bits = 1
White	All bits = 1	All bits = 1	All bits = 1

In 3D Mode, the transmission format is defined by the set_3D_control command. The data is written into memory in the order it is received.

Restrictions

A write_memory_start should follow a set_column_address, set_page_address or set_address_mode to define the write address. Otherwise, data written with write_memory_continue is written to undefined addresses.

1961 Flow Chart

1962

1963

Figure 100 write_memory_continue Flow Chart

1964	6.58 wr	ite_mer	nory_sta	rt						
1965	Interface	All								
1966	Command	2Ch	ı							
1967	Parameters	See	the followi	ng descript	tion.					
1968	Command									
	Direction	D7	D6	D5	D4	D3	D2	D1	D0	Hex Code
	$H{ ightarrow} D$	0	0	1	0	1	1	0	0	2Ch
1969	Pixel Data 1	I								
	Direction	D15	D14	D13	D12	D11	D10	D9	D8	Hex Code
	H→D	P15	P14	P13	P12	P11	P10	P9	P8	XXh
1970										
	Direction	D7	D6	D5	D4	D3	D2	D1	D0	Hex Code
	$H{ ightarrow} D$	P7	P6	P5	P4	P3	P2	P1	P0	XXh
1971					•					
1972										
1973					•					
1974	Pixel Data I	N								
	Direction	D15	D14	D13	D12	D11	D10	D9	D8	Hex Code
	$H{ ightarrow}D$	P15	P14	P13	P12	P11	P10	P9	P8	XXh
1975										
	Direction	D7	D6	D5	D4	D3	D2	D1	D0	Hex Code
	$H{ ightarrow}D$	P7	P6	P5	P4	P3	P2	P1	P0	XXh
1976	Description									
1977 1978 1979	This comma at the pixel Section 6.38	location	specified 1							
1980	If set_addres	ss_mode I	35 = 0:							
1981	The column	and page	registers ar	re reset to t	he Start Co	lumn (SC)	and Start P	age (SP), r	espectivel	y.
1982 1983	Pixel Data 1 written to the register is the	ne frame	memory ur	ntil the col	umn regist	er equals t	he End Co	lumn (EC)	value. Th	ne column
1984 1985 1986	until the pag	ge register	equals the	End Page	(EP) value	and the co	olumn regis	ter equals	the EC va	lue, or the

If set_address_mode B5 = 1:

extra pixels are ignored.

1987

1988 1989

The column and page registers are reset to the Start Column (SC) and Start Page (SP), respectively.

Pixel Data 1 is stored in frame memory at (SC, SP). The page register is then incremented and pixels are written to the frame memory until the page register equals the End Page (EP) value. The page register is then reset to SP and the column register is incremented. Pixels are written to the frame memory until the column register equals the End column (EC) value and the page register equals the EP value, or the host processor sends another command. If the number of pixels exceeds (EC - SC + 1) * (EP - SP + 1) the extra pixels are ignored.

In a DSI system, if Compression Mode bit CMODE = 1 [MIPI03] (See section 6.13):

The Display shall treat all received pixel data as compressed image data. (See section 5.8)

See Section 6.38 for descriptions of the Start Column and End Column values.

See Section 6.43 for descriptions of the Start Page and End Page values.

See [MIPI01] and [MIPI02] for color encoding for 8 or 9 data bit image data.

Note:

1990

1991

1992

1993

1994

1995 1996

1997

1998 1999

2000

2002

2003

2004

2005

2007

2008

2009

2010

2011

2012

The command description shows 16-bit pixel data transferred over a 16-bit bus. Other possibilities not illustrated here would show 9-bit pixel data transferred over a 9-bit bus, and 8-bit pixel data transferred over an 8-bit bus. See Annex A for details on pixel to byte mapping.

The relationship between some common colors and the corresponding image data are shown in Table 14.

Table 14 Common Color Encoding

Color	Red Component	Green Component	Blue Component
Black	All bits = 0	All bits = 0	All bits = 0
Red	All bits = 1	All bits = 0	All bits = 0
Green	All bits = 0	All bits = 1	All bits = 0
Blue	All bits = 0	All bits = 0	All bits = 1
Cyan	All bits = 0	All bits = 1	All bits = 1
Yellow	All bits = 1	All bits = 1	All bits = 0
Magenta	All bits = 1	All bits = 0	All bits = 1
White	All bits = 1	All bits = 1	All bits = 1

In 3D Mode, the transmission format is defined by the set_3D_control command. The data is written into memory in the order it is received.

Restrictions

A write_memory_start should follow a set_column_address, set_page_address or set_address_mode to define the write location. Otherwise, data written with write_memory_start and any following write_memory_continue commands is written to undefined locations.

2013 Flow Chart

2014

Figure 101 write_memory_start Flow Chart

Annex A Pixel-to-Byte Mapping

Many of the commands in this specification utilize display panel properties and therefore refer to pixels and scan lines. However, numerous components of a display system are inherently byte oriented. Therefore, a consistent method should be used to convert pixel formats to bytes to ensure interoperability among all components. This Section defines the pixel-to-byte mapping used by this specification.

Note:

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026 2027

2028

2029

2030

The set_address_mode command (Section 6.35) affects the bit ordering within a pixel, red and blue components may be swapped, and the order pixels are transferred across the interface. The figures in this section are shown with set_address_mode B4=B5=B6=B7=0.

A.1 Three Bits per Pixel Format

Three bits per pixel formats do not map directly to byte boundaries and therefore require special handling. In this pixel format, each byte holds two pixels. Two bits in each byte convey no color information. The organization of bits is shown in Figure 102.

Figure 102 Three Bits per Pixel Format to Byte Mapping

A.2 Eight Bits per Pixel Format

2031 2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

Eight bits per pixel formats map directly to byte boundaries and therefore require no special handling. Figure 103 shows the mapping of pixels to bytes.

Figure 103 Eight Bits per Pixel Format to Byte Mapping

A.3 Twelve Bits per Pixel Format

Twelve bits per pixel formats do not map directly to byte boundaries and therefore require special handling. In this pixel format, three bytes hold two pixels. Figure 104 shows the mapping of pixels to bytes.

Figure 104 Twelve Bits per Pixel Format to Byte Mapping

With this format, pixel boundaries align with byte boundaries every two pixels (three bytes). For pixel data, the total line width should be a multiple of three bytes. However, the value in WC (size of payload in bytes) shall not be restricted to non-zero values divisible by three.

A.4 Sixteen Bits per Pixel Format

2044 2045

2046

2047

2048

2049

2050

2051

2052

2053

2054

2055

Sixteen bits per pixel formats do not map directly to byte boundaries and therefore require special handling. However, this format is simpler than twelve bit formats since one pixel occupies two bytes. Figure 105 shows the mapping of pixels to bytes.

Figure 105 Sixteen Bits per Pixel Format to Byte Mapping

A.5 Eighteen Bits per Pixel Format

Eighteen bits per pixel formats do not map directly to byte boundaries and therefore require special handling. In this pixel format, each pixel occupies three bytes (24-bits), one for each color component. Two bits in each byte convey no color information. Figure 106 shows the mapping of pixels to bytes.

Figure 106 Eighteen Bits per Pixel Format to Byte Mapping

A.6 Twenty-Four Bits per Pixel Format

2056

2057

20582059

2060

2061

Twenty-four bits per pixel formats do not map directly to byte boundaries and therefore require special handling. This format is similar to the eighteen bits per pixel format since one pixel occupies three bytes. However, all bits in this format convey color information. Figure 107 shows the mapping of pixels to bytes.

Figure 107 Twenty-Four Bits per Pixel Format to Byte Mapping

A.7 Thirty Bits per Pixel Format

2062

2063

2064

2065

2066

2067

2068

Thirty bits per pixel formats do not map directly to byte boundaries and therefore require special handling. In this pixel format, fifteen bytes hold four pixels tightly packed. Figure 108 shows the mapping of pixels to bytes.

Figure 108 Thirty Bits per Pixel Format to Byte Mapping

With this format, pixel boundaries align with byte boundaries every four pixels (fifteen bytes). For pixel data, the total line width should be a multiple of fifteen bytes. However, the value in WC (size of payload in bytes) shall not be restricted to non-zero values divisible by fifteen.

A.8 Thirty-Six Bits per Pixel Format

2069

2070

2071

2072

2073

2074

2075

Thirty-six bits per pixel formats do not map directly to byte boundaries and therefore require special handling. In this pixel format, nine bytes hold two pixels tightly packed. Figure 109 shows the mapping of pixels to bytes.

Figure 109 Thirty-Six Bits per Pixel Format to Byte Mapping

With this format, pixel boundaries align with byte boundaries every two pixels (nine bytes). For pixel data, the total line width should be a multiple of nine bytes. However, the value in WC (size of payload in bytes) shall not be restricted to non-zero values divisible by nine.

Color Depth Conversion Look-up Tables (informative) Annex B

B.1 Color Depth Conversion LUT – 12-bit Color to 16-bit Color Table 15 12-bit to 16-bit LUT Red Component Values

R input (4-bit) 12-bits/pixel	R output (5-bit) 16-bits/pixel	
4,096 colors	65,536 colors	write_LUT Parameter
0000	R004 R003 R002 R001 R000	1
0001	R ₀₁₄ R ₀₁₃ R ₀₁₂ R ₀₁₁ R ₀₁₀	2
0010	R ₀₂₄ R ₀₂₃ R ₀₂₂ R ₀₂₁ R ₀₂₀	3
0011	R ₀₃₄ R ₀₃₃ R ₀₃₂ R ₀₃₁ R ₀₃₀	4
0100	R ₀₄₄ R ₀₄₃ R ₀₄₂ R ₀₄₁ R ₀₄₀	5
0101	R ₀₅₄ R ₀₅₃ R ₀₅₂ R ₀₅₁ R ₀₅₀	6
0110	R ₀₆₄ R ₀₆₃ R ₀₆₂ R ₀₆₁ R ₀₆₀	7
0111	R ₀₇₄ R ₀₇₃ R ₀₇₂ R ₀₇₁ R ₀₇₀	8
1000	R ₀₈₄ R ₀₈₃ R ₀₈₂ R ₀₈₁ R ₀₈₀	9
1001	R ₀₉₄ R ₀₉₃ R ₀₉₂ R ₀₉₁ R ₀₉₀	10
1010	R ₁₀₄ R ₁₀₃ R ₁₀₂ R ₁₀₁ R ₁₀₀	11
1011	R ₁₁₄ R ₁₁₃ R ₁₁₂ R ₁₁₁ R ₁₁₀	12
1100	R ₁₂₄ R ₁₂₃ R ₁₂₂ R ₁₂₁ R ₁₂₀	13
1101	R ₁₃₄ R ₁₃₃ R ₁₃₂ R ₁₃₁ R ₁₃₀	14
1110	R144 R143 R142 R141 R140	15
1111	R ₁₅₄ R ₁₅₃ R ₁₅₂ R ₁₅₁ R ₁₅₀	16

2076

2077

Table 16 12-bit to 16-bit LUT Green Component Values

G input (4bit) 12 bit/pixel -mode 4,096 colors	G output (6bit) 16 bit/pixel -mode 65,536 colors	write_LUT Parameter
0000	G005 G004 G003 G002 G001 G000	17
0001	G ₀₁₅ G ₀₁₄ G ₀₁₃ G ₀₁₂ G ₀₁₁ G ₀₁₀	18
0010	G ₀₂₅ G ₀₂₄ G ₀₂₃ G ₀₂₂ G ₀₂₁ G ₀₂₀	19
0011	G ₀₃₅ G ₀₃₄ G ₀₃₃ G ₀₃₂ G ₀₃₁ G ₀₃₀	20
0100	G ₀₄₅ G ₀₄₄ G ₀₄₃ G ₀₄₂ G ₀₄₁ G ₀₄₀	21
0101	G055 G054 G053 G052 G051 G050	22
0110	G065 G064 G063 G062 G061 G060	23
0111	G075 G074 G073 G072 G071 G070	24
1000	G085 G084 G083 G082 G081 G080	25
1001	G095 G094 G093 G092 G091 G090	26
1010	G105 G104 G103 G102 G101 G100	27
1011	G115 G114 G113 G112 G111 G110	28
1100	G125 G124 G123 G122 G121 G120	29
1101	G135 G134 G133 G132 G131 G130	30
1110	G145 G144 G143 G142 G141 G140	31
1111	G ₁₅₅ G ₁₅₄ G ₁₅₃ G ₁₅₂ G ₁₅₁ G ₁₅₀	32

Table 17 12-bit to 16-bit LUT Blue Component Values

B input (4bit) 12 bit/pixel -mode 4,096 colors	B output (5bit) 16 bit/pixel -mode 65,536 colors	write_LUT Parameter	
0000	B ₀₀₄ B ₀₀₃ B ₀₀₂ B ₀₀₁ B ₀₀₀	33	
0001	B ₀₁₄ B ₀₁₃ B ₀₁₂ B ₀₁₁ B ₀₁₀	34	
0010	B ₀₂₄ B ₀₂₃ B ₀₂₂ B ₀₂₁ B ₀₂₀	35	
0011	B ₀₃₄ B ₀₃₃ B ₀₃₂ B ₀₃₁ B ₀₃₀	36	
0100	B ₀₄₄ B ₀₄₃ B ₀₄₂ B ₀₄₁ B ₀₄₀	37	
0101	B ₀₅₄ B ₀₅₃ B ₀₅₂ B ₀₅₁ B ₀₅₀	38	
0110	B ₀₆₄ B ₀₆₃ B ₀₆₂ B ₀₆₁ B ₀₆₀	39	
0111	B ₀₇₄ B ₀₇₃ B ₀₇₂ B ₀₇₁ B ₀₇₀	40	
1000	B ₀₈₄ B ₀₈₃ B ₀₈₂ B ₀₈₁ B ₀₈₀	41	
1001	B ₀₉₄ B ₀₉₃ B ₀₉₂ B ₀₉₁ B ₀₉₀	42	
1010	B ₁₀₄ B ₁₀₃ B ₁₀₂ B ₁₀₁ B ₁₀₀	43	
1011	B ₁₁₄ B ₁₁₃ B ₁₁₂ B ₁₁₁ B ₁₁₀	44	
1100	B ₁₂₄ B ₁₂₃ B ₁₂₂ B ₁₂₁ B ₁₂₀	45	
1101	B ₁₃₄ B ₁₃₃ B ₁₃₂ B ₁₃₁ B ₁₃₀	46	
1110	B144 B143 B142 B141 B140	47	
1111	B ₁₅₄ B ₁₅₃ B ₁₅₂ B ₁₅₁ B ₁₅₀	48	

B.2 Color Depth Conversion LUT – 12-bit and 16-bit Colors to 18-bit Color Table 18 12-bit, 16-bit to 18-bit LUT Red Component Values

R input (4bit) 12 bit/pixel -mode 4,096 colors	R input (5 bit) 16 bit/pixel -mode 65,536 colors	R output (6bit) 18 bit/pixel -mode 262,144 colors	write_LUT Parameter
0000	00000	R005 R004 R003 R002 R001 R000	1
0001	00001	R ₀₁₅ R ₀₁₄ R ₀₁₃ R ₀₁₂ R ₀₁₁ R ₀₁₀	2
0010	00010	R025 R024 R023 R022 R021 R020	3
0011	00011	R035 R034 R033 R032 R031 R030	4
0100	00100	R045 R044 R043 R042 R041 R040	5
0101	00101	R055 R054 R053 R052 R051 R050	6
0110	00110	R065 R064 R063 R062 R061 R060	7
0111	00111	R075 R074 R073 R072 R071 R070	8
1000	01000	R085 R084 R083 R082 R081 R080	9
1001	01001	R095 R094 R093 R092 R091 R090	10
1010	01010	R ₁₀₅ R ₁₀₄ R ₁₀₃ R ₁₀₂ R ₁₀₁ R ₁₀₀	11
1011	01011	R115 R114 R113 R112 R111 R110	12
1100	01100	R ₁₂₅ R ₁₂₄ R ₁₂₃ R ₁₂₂ R ₁₂₁ R ₁₂₀	13
1101	01101	R ₁₃₅ R ₁₃₄ R ₁₃₃ R ₁₃₂ R ₁₃₁ R ₁₃₀	14
1110	01110	R ₁₄₅ R ₁₄₄ R ₁₄₃ R ₁₄₂ R ₁₄₁ R ₁₄₀	15
1111	01111	R155 R154 R153 R152 R151 R150	16
No Input	10000	R165 R164 R163 R162 R161 R160	17
No Input	10001	R175 R174 R173 R172 R171 R170	18
No Input	10010	R185 R184 R183 R182 R181 R180	19
No Input	10011	R195 R194 R193 R192 R191 R190	20
No Input	10100	R205 R204 R203 R202 R201 R200	21
No Input	10101	R215 R214 R213 R212 R211 R210	22
No Input	10110	R225 R224 R223 R222 R221 R220	23
No Input	10111	R235 R234 R233 R232 R231 R230	24
No Input	11000	R245 R244 R243 R242 R241 R240	25
No Input	11001	R ₂₅₅ R ₂₅₄ R ₂₅₃ R ₂₅₂ R ₂₅₁ R ₂₅₀	26
No Input	11010	R ₂₆₅ R ₂₆₄ R ₂₆₃ R ₂₆₂ R ₂₆₁ R ₂₆₀	27
No Input	11011	R ₂₇₅ R ₂₇₄ R ₂₇₃ R ₂₇₂ R ₂₇₁ R ₂₇₀	28
No Input	11100	R ₂₈₅ R ₂₈₄ R ₂₈₃ R ₂₈₂ R ₂₈₁ R ₂₈₀	29
No Input	11101	R295 R294 R293 R292 R291 R290	30
No Input	11110	R ₃₀₅ R ₃₀₄ R ₃₀₃ R ₃₀₂ R ₃₀₁ R ₃₀₀	31
No Input	11111	R315 R314 R313 R312 R311 R310	32

2084

Table 19 12-bit, 16-bit to 18-bit LUT Green Component Values

G input (4bit) 12 bit/pixel -mode 4,096 colors	G input (6 bit) 16 bit/pixel -mode 65,536 colors	G output (6bit) 18 bit/pixel -mode 262,144 colors	write_LUT Parameter
0000	000000	G005 G004 G003 G002 G001 G000	33
0001	000001	G ₀₁₅ G ₀₁₄ G ₀₁₃ G ₀₁₂ G ₀₁₁ G ₀₁₀	34
0010	000010	G ₀₂₅ G ₀₂₄ G ₀₂₃ G ₀₂₂ G ₀₂₁ G ₀₂₀	35
0011	000011	G ₀₃₅ G ₀₃₄ G ₀₃₃ G ₀₃₂ G ₀₃₁ G ₀₃₀	36
0100	000100	G ₀₄₅ G ₀₄₄ G ₀₄₃ G ₀₄₂ G ₀₄₁ G ₀₄₀	37
0101	000101	G055 G054 G053 G052 G051 G050	38
0110	000110	G065 G064 G063 G062 G061 G060	39
0111	000111	G075 G074 G073 G072 G071 G070	40
1000	001000	G085 G084 G083 G082 G081 G080	41
1001	001001	G095 G094 G093 G092 G091 G090	42
1010	001010	G105 G104 G103 G102 G101 G100	43
1011	001011	G115 G114 G113 G112 G111 G110	44
1100	001100	G125 G124 G123 G122 G121 G120	45
1101	001101	G135 G134 G133 G132 G131 G130	46
1110	001110	G145 G144 G143 G142 G141 G140	47
1111	001111	G ₁₅₅ G ₁₅₄ G ₁₅₃ G ₁₅₂ G ₁₅₁ G ₁₅₀	48
No Input	010000	G ₁₆₅ G ₁₆₄ G ₁₆₃ G ₁₆₂ G ₁₆₁ G ₁₆₀	49
No Input	010001	G ₁₇₅ G ₁₇₄ G ₁₇₃ G ₁₇₂ G ₁₇₁ G ₁₇₀	50
No Input	010010	G185 G184 G183 G182 G181 G180	51
No Input	010011	G ₁₉₅ G ₁₉₄ G ₁₉₃ G ₁₉₂ G ₁₉₁ G ₁₉₀	52
No Input	010100	G205 G204 G203 G202 G201 G200	53
No Input	010101	G215 G214 G213 G212 G211 G210	54
No Input	010110	G225 G224 G223 G222 G221 G220	55
No Input	010111	G235 G234 G233 G232 G231 G230	56
No Input	011000	G245 G244 G243 G242 G241 G240	57
No Input	011001	G255 G254 G253 G252 G251 G250	58
No Input	011010	G265 G264 G263 G262 G261 G260	59
No Input	011011	G275 G274 G273 G272 G271 G270	60
No Input	011100	G ₂₈₅ G ₂₈₄ G ₂₈₃ G ₂₈₂ G ₂₈₁ G ₂₈₀	61
No Input	011101	G295 G294 G293 G292 G291 G290	62
No Input	011110	G ₃₀₅ G ₃₀₄ G ₃₀₃ G ₃₀₂ G ₃₀₁ G ₃₀₀	63
No Input	011111	G315 G314 G313 G312 G311 G310	64
No Input	100000	G ₃₂₅ G ₃₂₄ G ₃₂₃ G ₃₂₂ G ₃₂₁ G ₃₂₀	65
No Input	100001	G335 G334 G333 G332 G331 G330	66

G input (4bit) 12 bit/pixel -mode 4,096 colors	G input (6 bit) 16 bit/pixel -mode 65,536 colors	G output (6bit) 18 bit/pixel -mode 262,144 colors	write_LUT Parameter
No Input	100010	G345 G344 G343 G342 G341 G340	67
No Input	100011	G355 G354 G353 G352 G351 G350	68
No Input	100100	G365 G364 G363 G362 G361 G360	69
No Input	100101	G375 G374 G373 G372 G371 G370	70
No Input	100110	G385 G384 G383 G382 G381 G380	71
No Input	100111	G ₃₉₅ G ₃₉₄ G ₃₉₃ G ₃₉₂ G ₃₉₁ G ₃₉₀	72
No Input	101000	G405 G404 G403 G402 G401 G400	73
No Input	101001	G ₄₁₅ G ₄₁₄ G ₄₁₃ G ₄₁₂ G ₄₁₁ G ₄₁₀	74
No Input	101010	G425 G424 G423 G422 G421 G420	75
No Input	101011	G ₄₃₅ G ₄₃₄ G ₄₃₃ G ₄₃₂ G ₄₃₁ G ₄₃₀	76
No Input	101100	G445 G444 G443 G442 G441 G440	77
No Input	101101	G ₄₅₅ G ₄₅₅ G ₄₅₃ G ₄₅₂ G ₄₅₁ G ₄₅₀	78
No Input	101110	G465 G464 G463 G462 G461 G460	79
No Input	101111	G475 G474 G473 G472 G471 G470	80
No Input	110000	G485 G484 G483 G482 G481 G480	81
No Input	110001	G495 G494 G493 G492 G491 G490	82
No Input	110010	G505 G504 G503 G502 G501 G500	83
No Input	110011	G515 G514 G513 G512 G511 G510	84
No Input	110100	G ₅₂₅ G ₅₂₄ G ₅₂₃ G ₅₂₂ G ₅₂₁ G ₅₂₀	85
No Input	110101	G535 G534 G533 G532 G531 G530	86
No Input	110110	G ₅₄₅ G ₅₄₄ G ₅₄₃ G ₅₄₂ G ₅₄₁ G ₅₄₀	87
No Input	110111	G555 G554 G553 G552 G551 G550	88
No Input	111000	G ₅₆₅ G ₅₆₄ G ₅₆₃ G ₅₆₂ G ₅₆₁ G ₅₆₀	89
No Input	111001	G575 G574 G573 G572 G571 G570	90
No Input	111010	G ₅₈₅ G ₅₈₄ G ₅₈₃ G ₅₈₂ G ₅₈₁ G ₅₈₀	91
No Input	111011	G595 G594 G593 G592 G591 G590	92
No Input	111100	G605 G604 G603 G602 G601 G600	93
No Input	111101	G ₆₁₅ G ₆₁₄ G ₆₁₃ G ₆₁₂ G ₆₁₁ G ₆₁₀	94
No Input	111110	G625 G624 G623 G622 G621 G620	95
No Input	111111	G635 G634 G633 G632 G631 G630	96

Table 20 12-bit, 16-bit to 18-bit LUT Blue Component Values

B input (4bit) 12 bit/pixel -mode 4,096 colors	B input (5 bit) 16 bit/pixel -mode 65,536 colors	B output (6bit) 18 bit/pixel -mode 262,144 colors	write_LUT Parameter
0000	00000	B005 B004 B003 B002 B001 B000	97
0001	00001	B ₀₁₅ B ₀₁₄ B ₀₁₃ B ₀₁₂ B ₀₁₁ B ₀₁₀	98
0010	00010	B ₀₂₅ B ₀₂₄ B ₀₂₃ B ₀₂₂ B ₀₂₁ B ₀₂₀	99
0011	00011	B ₀₃₅ B ₀₃₄ B ₀₃₃ B ₀₃₂ B ₀₃₁ B ₀₃₀	100
0100	00100	B ₀₄₅ B ₀₄₄ B ₀₄₃ B ₀₄₂ B ₀₄₁ B ₀₄₀	101
0101	00101	B ₀₅₅ B ₀₅₄ B ₀₅₃ B ₀₅₂ B ₀₅₁ B ₀₅₀	102
0110	00110	B065 B064 B063 B062 B061 B060	103
0111	00111	B075 B074 B073 B072 B071 B070	104
1000	01000	B ₀₈₅ B ₀₈₄ B ₀₈₃ B ₀₈₂ B ₀₈₁ B ₀₈₀	105
1001	01001	B ₀₉₅ B ₀₉₄ B ₀₉₃ B ₀₉₂ B ₀₉₁ B ₀₉₀	106
1010	01010	B ₁₀₅ B ₁₀₄ B ₁₀₃ B ₁₀₂ B ₁₀₁ B ₁₀₀	107
1011	01011	B ₁₁₅ B ₁₁₄ B ₁₁₃ B ₁₁₂ B ₁₁₁ B ₁₁₀	108
1100	01100	B ₁₂₅ B ₁₂₄ B ₁₂₃ B ₁₂₂ B ₁₂₁ B ₁₂₀	109
1101	01101	B ₁₃₅ B ₁₃₄ B ₁₃₃ B ₁₃₂ B ₁₃₁ B ₁₃₀	110
1110	01110	B ₁₄₅ B ₁₄₄ B ₁₄₃ B ₁₄₂ B ₁₄₁ B ₁₄₀	111
1111	01111	B ₁₅₅ B ₁₅₄ B ₁₅₃ B ₁₅₂ B ₁₅₁ B ₁₅₀	112
No Input	10000	B ₁₆₅ B ₁₆₄ B ₁₆₃ B ₁₆₂ B ₁₆₁ B ₁₆₀	113
No Input	10001	B ₁₇₅ B ₁₇₄ B ₁₇₃ B ₁₇₂ B ₁₇₁ B ₁₇₀	114
No Input	10010	B ₁₈₅ B ₁₈₄ B ₁₈₃ B ₁₈₂ B ₁₈₁ B ₁₈₀	115
No Input	10011	B ₁₉₅ B ₁₉₄ B ₁₉₃ B ₁₉₂ B ₁₉₁ B ₁₉₀	116
No Input	10100	B ₂₀₅ B ₂₀₄ B ₂₀₃ B ₂₀₂ B ₂₀₁ B ₂₀₀	117
No Input	10101	B ₂₁₅ B ₂₁₄ B ₂₁₃ B ₂₁₂ B ₂₁₁ B ₂₁₀	118
No Input	10110	B ₂₂₅ B ₂₂₄ B ₂₂₃ B ₂₂₂ B ₂₂₁ B ₂₂₀	119
No Input	10111	B ₂₃₅ B ₂₃₄ B ₂₃₃ B ₂₃₂ B ₂₃₁ B ₂₃₀	120
No Input	11000	B ₂₄₅ B ₂₄₄ B ₂₄₃ B ₂₄₂ B ₂₄₁ B ₂₄₀	121
No Input	11001	B ₂₅₅ B ₂₅₄ B ₂₅₃ B ₂₅₂ B ₂₅₁ B ₂₅₀	122
No Input	11010	B ₂₆₅ B ₂₆₄ B ₂₆₃ B ₂₆₂ B ₂₆₁ B ₂₆₀	123
No Input	11011	B ₂₇₅ B ₂₇₄ B ₂₇₃ B ₂₇₂ B ₂₇₁ B ₂₇₀	124
No Input	11100	B ₂₈₅ B ₂₈₄ B ₂₈₃ B ₂₈₂ B ₂₈₁ B ₂₈₀	125
No Input	11101	B ₂₉₅ B ₂₉₄ B ₂₉₃ B ₂₉₂ B ₂₉₁ B ₂₉₀	126
No Input	11110	B ₃₀₅ B ₃₀₄ B ₃₀₃ B ₃₀₂ B ₃₀₁ B ₃₀₀	127
No Input	11111	B ₃₁₅ B ₃₁₄ B ₃₁₃ B ₃₁₂ B ₃₁₁ B ₃₁₀	128

2093

B.3 Color Depth Conversion LUT – 12-bit, 16-bit and 18-bit Colors to 24-bit Color

Table 21 12-bit, 16-bit and 18-bit Colors to 24-bit Color LUT Red Component Values

	,		24 bit Goldt 201 Red Gomponent	
R input (4bit) 12 bit/pixel - mode 4,096 colors	R input (5 bit) 16 bit/pixel - mode 65,536 colors	R input (6 bit) 18 bit/pixel - mode 262,144 colors	R output (8bit) 24 bit/pixel -mode 16,777,216 colors	write_LUT Parameter
0000	00000	000000	R007 R006 R005 R004 R003 R002 R001 R000	1
0001	00001	000001	R ₀₁₇ R ₀₁₆ R ₀₁₅ R ₀₁₄ R ₀₁₃ R ₀₁₂ R ₀₁₁ R ₀₁₀	2
0010	00010	000010	R027 R026 R025 R024 R023 R022 R021 R020	3
0011	00011	000011	R ₀₃₇ R ₀₃₆ R ₀₃₅ R ₀₃₄ R ₀₃₃ R ₀₃₂ R ₀₃₁ R ₀₃₀	4
0100	00100	000100	R ₀₄₇ R ₀₄₆ R ₀₄₅ R ₀₄₄ R ₀₄₃ R ₀₄₂ R ₀₄₁ R ₀₄₀	5
0101	00101	000101	R ₀₅₇ R ₀₅₆ R ₀₅₅ R ₀₅₄ R ₀₅₃ R ₀₅₂ R ₀₅₁ R ₀₅₀	6
0110	00110	000110	R067 R066 R065 R064 R063 R062 R061 R060	7
0111	00111	000111	R077 R076 R075 R074 R073 R072 R071 R070	8
1000	01000	001000	R087 R086 R085 R084 R083 R082 R081 R080	9
1001	01001	001001	R097 R096 R095 R094 R093 R092 R091 R090	10
1010	01010	001010	R ₁₀₇ R ₁₀₆ R ₁₀₅ R ₁₀₄ R ₁₀₃ R ₁₀₂ R ₁₀₁ R ₁₀₀	11
1011	01011	001011	R117 R116 R115 R114 R113 R112 R111 R110	12
1100	01100	001100	R ₁₂₇ R ₁₂₆ R ₁₂₅ R ₁₂₄ R ₁₂₃ R ₁₂₂ R ₁₂₁ R ₁₂₀	13
1101	01101	001101	R ₁₃₇ R ₁₃₆ R ₁₃₅ R ₁₃₄ R ₁₃₃ R ₁₃₂ R ₁₃₁ R ₁₃₀	14
1110	01110	001110	R147 R146 R145 R144 R143 R142 R141 R140	15
1111	01111	001111	R ₁₅₇ R ₁₅₆ R ₁₅₅ R ₁₅₄ R ₁₅₃ R ₁₅₂ R ₁₅₁ R ₁₅₀	16
No Input	10000	010000	R ₁₆₇ R ₁₆₆ R ₁₆₅ R ₁₆₄ R ₁₆₃ R ₁₆₂ R ₁₆₁ R ₁₆₀	17
No Input	10001	010001	R ₁₇₇ R ₁₇₆ R ₁₇₅ R ₁₇₄ R ₁₇₃ R ₁₇₂ R ₁₇₁ R ₁₇₀	18
No Input	10010	010010	R ₁₈₇ R ₁₈₆ R ₁₈₅ R ₁₈₄ R ₁₈₃ R ₁₈₂ R ₁₈₁ R ₁₈₀	19
No Input	10011	010011	R ₁₉₇ R ₁₉₆ R ₁₉₅ R ₁₉₄ R ₁₉₃ R ₁₉₂ R ₁₉₁ R ₁₉₀	20
No Input	10100	010100	R ₂₀₇ R ₂₀₆ R ₂₀₅ R ₂₀₄ R ₂₀₃ R ₂₀₂ R ₂₀₁ R ₂₀₀	21
No Input	10101	010101	R ₂₁₇ R ₂₁₆ R ₂₁₅ R ₂₁₄ R ₂₁₃ R ₂₁₂ R ₂₁₁ R ₂₁₀	22
No Input	10110	010110	R ₂₂₇ R ₂₂₆ R ₂₂₅ R ₂₂₄ R ₂₂₃ R ₂₂₂ R ₂₂₁ R ₂₂₀	23
No Input	10111	010111	R ₂₃₇ R ₂₃₆ R ₂₃₅ R ₂₃₄ R ₂₃₃ R ₂₃₂ R ₂₃₁ R ₂₃₀	24
No Input	11000	011000	R ₂₄₇ R ₂₄₆ R ₂₄₅ R ₂₄₄ R ₂₄₃ R ₂₄₂ R ₂₄₁ R ₂₄₀	25
No Input	11001	011001	R ₂₅₇ R ₂₅₆ R ₂₅₅ R ₂₅₄ R ₂₅₃ R ₂₅₂ R ₂₅₁ R ₂₅₀	26
No Input	11010	011010	R ₂₆₇ R ₂₆₆ R ₂₆₅ R ₂₆₄ R ₂₆₃ R ₂₆₂ R ₂₆₁ R ₂₆₀	27
No Input	11011	011011	R ₂₇₇ R ₂₇₆ R ₂₇₅ R ₂₇₄ R ₂₇₃ R ₂₇₂ R ₂₇₁ R ₂₇₀	28
No Input	11100	011100	R ₂₈₇ R ₂₈₆ R ₂₈₅ R ₂₈₄ R ₂₈₃ R ₂₈₂ R ₂₈₁ R ₂₈₀	29
No Input	11101	011101	R ₂₉₇ R ₂₉₆ R ₂₉₅ R ₂₉₄ R ₂₉₃ R ₂₉₂ R ₂₉₁ R ₂₉₀	30
No Input	11110	011110	R ₃₀₇ R ₃₀₆ R ₃₀₅ R ₃₀₄ R ₃₀₃ R ₃₀₂ R ₃₀₁ R ₃₀₀	31

Version 1.3 5-Oct-2015 Specification for DCS

R input (4bit) 12 bit/pixel - mode 4,096 colors	R input (5 bit) 16 bit/pixel - mode 65,536 colors	R input (6 bit) 18 bit/pixel - mode 262,144 colors	R output (8bit) 24 bit/pixel -mode 16,777,216 colors	write_LUT Parameter
No Input	11111	011111	R ₃₁₇ R ₃₁₆ R ₃₁₅ R ₃₁₄ R ₃₁₃ R ₃₁₂ R ₃₁₁ R ₃₁₀	32
No Input	No Input	100000	R ₃₂₇ R ₃₂₆ R ₃₂₅ R ₃₂₄ R ₃₂₃ R ₃₂₂ R ₃₂₁ R ₃₂₀	33
No Input	No Input	100001	R ₃₃₇ R ₃₃₆ R ₃₃₅ R ₃₃₄ R ₃₃₃ R ₃₃₂ R ₃₃₁ R ₃₃₀	34
No Input	No Input	100010	R ₃₄₇ R ₃₄₆ R ₃₄₅ R ₃₄₄ R ₃₄₃ R ₃₄₂ R ₃₄₁ R ₃₄₀	35
No Input	No Input	100011	R357 R356 R355 R354 R353 R352 R351 R350	36
No Input	No Input	100100	R367 R366 R365 R364 R363 R362 R361 R360	37
No Input	No Input	100101	R377 R376 R375 R374 R373 R372 R371 R370	38
No Input	No Input	100110	R387 R386 R385 R384 R383 R382 R381 R380	39
No Input	No Input	100111	R397 R396 R395 R394 R393 R392 R391 R390	40
No Input	No Input	101000	R407 R406 R405 R404 R403 R402 R401 R400	41
No Input	No Input	101001	R417 R416 R415 R414 R413 R412 R411 R410	42
No Input	No Input	101010	R427 R426 R425 R424 R423 R422 R421 R420	43
No Input	No Input	101011	R437 R436 R435 R434 R433 R432 R431 R430	44
No Input	No Input	101100	R447 R446 R445 R444 R443 R442 R441 R440	45
No Input	No Input	101101	R ₄₅₇ R ₄₅₆ R ₄₅₅ R ₄₅₄ R ₄₅₃ R ₄₅₂ R ₄₅₁ R ₄₅₀	46
No Input	No Input	101110	R467 R466 R465 R464 R463 R462 R461 R460	47
No Input	No Input	101111	R ₄₇₇ R ₄₇₆ R ₄₇₅ R ₄₇₄ R ₄₇₃ R ₄₇₂ R ₄₇₁ R ₄₇₀	48
No Input	No Input	110000	R487 R486 R485 R484 R483 R482 R481 R480	49
No Input	No Input	110001	R497 R496 R495 R494 R493 R492 R491 R490	50
No Input	No Input	110010	R507 R506 R505 R504 R503 R502 R501 R500	51
No Input	No Input	110011	R517 R516 R515 R514 R513 R512 R511 R510	52
No Input	No Input	110100	R527 R526 R525 R524 R523 R522 R521 R520	53
No Input	No Input	110101	R537 R536 R535 R534 R533 R532 R531 R530	54
No Input	No Input	110110	R547 R546 R545 R544 R543 R542 R541 R540	55
No Input	No Input	110111	R557 R556 R555 R554 R553 R552 R551 R550	56
No Input	No Input	111000	R567 R566 R565 R564 R563 R562 R561 R560	57
No Input	No Input	111001	R577 R576 R575 R574 R573 R572 R571 R570	58
No Input	No Input	111010	R ₅₈₇ R ₅₈₆ R ₅₈₅ R ₅₈₄ R ₅₈₃ R ₅₈₂ R ₅₈₁ R ₅₈₀	59
No Input	No Input	111011	R ₅₉₇ R ₅₉₆ R ₅₉₅ R ₅₉₄ R ₅₉₃ R ₅₉₂ R ₅₉₁ R ₅₉₀	60
No Input	No Input	111100	R ₆₀₇ R ₆₀₆ R ₆₀₅ R ₆₀₄ R ₆₀₃ R ₆₀₂ R ₆₀₁ R ₆₀₀	61
No Input	No Input	111101	R617 R616 R615 R614 R613 R612 R611 R610	62
No Input	No Input	111110	R ₆₂₇ R ₆₂₆ R ₆₂₅ R ₆₂₄ R ₆₂₃ R ₆₂₂ R ₆₂₁ R ₆₂₀	63
No Input	No Input	111111	R637 R636 R635 R634 R633 R632 R631 R630	64

Table 22 12-bit, 16-bit and 18-bit Colors to 24-bit Color LUT Green Component Values

G input (4bit) 12 bit/pixel - mode 4,096 colors	G input (6 bit) 16 bit/pixel - mode 65,536 colors	G input (6 bit) 18 bit/pixel - mode 262,144 colors	G output (8bit) 24 bit/pixel -mode 16,777,216 colors	write_LUT Parameter
0000	000000	000000	G007 G006 G005 G004 G003 G002 G001 G000	65
0001	000001	000001	G017 G016 G015 G014 G013 G012 G011 G010	66
0010	000010	000010	G027 G026 G025 G024 G023 G022 G021 G020	67
0011	000011	000011	G037 G036 G035 G034 G033 G032 G031 G030	68
0100	000100	000100	G047 G046 G045 G044 G043 G042 G041 G040	69
0101	000101	000101	G057 G056 G055 G054 G053 G052 G051 G050	70
0110	000110	000110	G067 G066 G065 G064 G063 G062 G061 G060	71
0111	000111	000111	G077 G076 G075 G074 G073 G072 G071 G070	72
1000	001000	001000	G ₀₈₇ G ₀₈₆ G ₀₈₅ G ₀₈₄ G ₀₈₃ G ₀₈₂ G ₀₈₁ G ₀₈₀	73
1001	001001	001001	G097 G096 G095 G094 G093 G092 G091 G090	74
1010	001010	001010	G ₁₀₇ G ₁₀₆ G ₁₀₅ G ₁₀₄ G ₁₀₃ G ₁₀₂ G ₁₀₁ G ₁₀₀	75
1011	001011	001011	G ₁₁₇ G ₁₁₆ G ₁₁₅ G ₁₁₄ G ₁₁₃ G ₁₁₂ G ₁₁₁ G ₁₁₀	76
1100	001100	001100	G ₁₂₇ G ₁₂₆ G ₁₂₅ G ₁₂₄ G ₁₂₃ G ₁₂₂ G ₁₂₁ G ₁₂₀	77
1101	001101	001101	G137 G136 G135 G134 G133 G132 G131 G130	78
1110	001110	001110	G147 G146 G145 G144 G143 G142 G141 G140	79
1111	001111	001111	G157 G156 G155 G154 G153 G152 G151 G150	80
No Input	010000	010000	G167 G166 G165 G164 G163 G162 G161 G160	81
No Input	010001	010001	G177 G176 G175 G174 G173 G172 G171 G170	82
No Input	010010	010010	G187 G186 G185 G184 G183 G182 G181 G180	83
No Input	010011	010011	G197 G196 G195 G194 G193 G192 G191 G190	84
No Input	010100	010100	G207 G206 G205 G204 G203 G202 G201 G200	85
No Input	010101	010101	G217 G216 G215 G214 G213 G212 G211 G210	86
No Input	010110	010110	G227 G226 G225 G224 G223 G222 G221 G220	87
No Input	010111	010111	G237 G236 G235 G234 G233 G232 G231 G230	88
No Input	011000	011000	G ₂₄₇ G ₂₄₆ G ₂₄₅ G ₂₄₄ G ₂₄₃ G ₂₄₂ G ₂₄₁ G ₂₄₀	89
No Input	011001	011001	$G_{257} \ G_{256} \ G_{255} \ G_{254} \ G_{253} \ G_{252} \ G_{251} \ G_{250}$	90
No Input	011010	011010	G ₂₆₇ G ₂₆₆ G ₂₆₅ G ₂₆₄ G ₂₆₃ G ₂₆₂ G ₂₆₁ G ₂₆₀	91
No Input	011011	011011	G277 G276 G275 G274 G273 G272 G271 G270	92
No Input	011100	011100	G ₂₈₇ G ₂₈₆ G ₂₈₅ G ₂₈₄ G ₂₈₃ G ₂₈₂ G ₂₈₁ G ₂₈₀	93
No Input	011101	011101	G297 G296 G295 G294 G293 G292 G291 G290	94
No Input	011110	011110	G307 G306 G305 G304 G303 G302 G301 G300	95
No Input	011111	011111	G317 G316 G315 G314 G313 G312 G311 G310	96
No Input	100000	100000	G327 G326 G325 G324 G323 G322 G321 G320	97

G input (4bit) 12 bit/pixel - mode 4,096 colors	G input (6 bit) 16 bit/pixel - mode 65,536 colors	G input (6 bit) 18 bit/pixel - mode 262,144 colors	G output (8bit) 24 bit/pixel -mode 16,777,216 colors	write_LUT Parameter
No Input	100001	100001	G ₃₃₇ G ₃₃₆ G ₃₃₅ G ₃₃₄ G ₃₃₃ G ₃₃₂ G ₃₃₁ G ₃₃₀	98
No Input	100010	100010	G ₃₄₇ G ₃₄₆ G ₃₄₅ G ₃₄₄ G ₃₄₃ G ₃₄₂ G ₃₄₁ G ₃₄₀	99
No Input	100011	100011	G ₃₅₇ G ₃₅₆ G ₃₅₅ G ₃₅₄ G ₃₅₃ G ₃₅₂ G ₃₅₁ G ₃₅₀	100
No Input	100100	100100	G ₃₆₇ G ₃₆₆ G ₃₆₅ G ₃₆₄ G ₃₆₃ G ₃₆₂ G ₃₆₁ G ₃₆₀	101
No Input	100101	100101	G377 G376 G375 G374 G373 G372 G371 G370	102
No Input	100110	100110	G387 G386 G385 G384 G383 G382 G381 G380	103
No Input	100111	100111	G397 G396 G395 G394 G393 G392 G391 G390	104
No Input	101000	101000	G407 G406 G405 G404 G403 G402 G401 G400	105
No Input	101001	101001	G417 G416 G415 G414 G413 G412 G411 G410	106
No Input	101010	101010	G427 G426 G425 G424 G423 G422 G421 G420	107
No Input	101011	101011	G437 G436 G435 G434 G433 G432 G431 G430	108
No Input	101100	101100	G447 G446 G445 G444 G443 G442 G441 G440	109
No Input	101101	101101	G457 G456 G455 G454 G453 G452 G451 G450	110
No Input	101110	101110	G467 G466 G465 G464 G463 G462 G461 G460	111
No Input	101111	101111	G ₄₇₇ G ₄₇₆ G ₄₇₅ G ₄₇₄ G ₄₇₃ G ₄₇₂ G ₄₇₁ G ₄₇₀	112
No Input	110000	110000	G ₄₈₇ G ₄₈₆ G ₄₈₅ G ₄₈₄ G ₄₈₃ G ₄₈₂ G ₄₈₁ G ₄₈₀	113
No Input	110001	110001	G ₄₉₇ G ₄₉₆ G ₄₉₅ G ₄₉₄ G ₄₉₃ G ₄₉₂ G ₄₉₁ G ₄₉₀	114
No Input	110010	110010	G507 G506 G505 G504 G503 G502 G501 G500	115
No Input	110011	110011	$G_{517} \ G_{516} \ G_{515} \ G_{514} \ G_{513} \ G_{512} \ G_{511} \ G_{510}$	116
No Input	110100	110100	G ₅₂₇ G ₅₂₆ G ₅₂₅ G ₅₂₄ G ₅₂₃ G ₅₂₂ G ₅₂₁ G ₅₂₀	117
No Input	110101	110101	G ₅₃₇ G ₅₃₆ G ₅₃₅ G ₅₃₄ G ₅₃₃ G ₅₃₂ G ₅₃₁ G ₅₃₀	118
No Input	110110	110110	G547 G546 G545 G544 G543 G542 G541 G540	119
No Input	110111	110111	G557 G556 G555 G554 G553 G552 G551 G550	120
No Input	111000	111000	G567 G566 G565 G564 G563 G562 G561 G560	121
No Input	111001	111001	G577 G576 G575 G574 G573 G572 G571 G570	122
No Input	111010	111010	G587 G586 G585 G584 G583 G582 G581 G580	123
No Input	111011	111011	G597 G596 G595 G594 G593 G592 G591 G590	124
No Input	111100	111100	G ₆₀₇ G ₆₀₆ G ₆₀₅ G ₆₀₄ G ₆₀₃ G ₆₀₂ G ₆₀₁ G ₆₀₀	125
No Input	111101	111101	G617 G616 G615 G614 G613 G612 G611 G610	126
No Input	111110	111110	$G_{627} \ G_{626} \ G_{625} \ G_{624} \ G_{623} \ G_{622} \ G_{621} \ G_{620}$	127
No Input	111111	111111	G637 G636 G635 G634 G633 G632 G631 G630	128

Table 23 12-bit, 16-bit and 18-bit Colors to 24-bit Color LUT Blue Component Values

B input (4bit) 12 bit/pixel - mode 4,096 colors	B input (5 bit) 16 bit/pixel - mode 65,536 colors	B input (6 bit) 18 bit/pixel - mode 262,144 colors	B output (8bit) 24 bit/pixel -mode 16,777,216 colors	write_LUT Parameter
0000	00000	000000	B007 B006 B005 B004 B003 B002 B001 B000	129
0001	00001	000001	B ₀₁₇ B ₀₁₆ B ₀₁₅ B ₀₁₄ B ₀₁₃ B ₀₁₂ B ₀₁₁ B ₀₁₀	130
0010	00010	000010	B ₀₂₇ B ₀₂₆ B ₀₂₅ B ₀₂₄ B ₀₂₃ B ₀₂₂ B ₀₂₁ B ₀₂₀	131
0011	00011	000011	B ₀₃₇ B ₀₃₆ B ₀₃₅ B ₀₃₄ B ₀₃₃ B ₀₃₂ B ₀₃₁ B ₀₃₀	132
0100	00100	000100	B ₀₄₇ B ₀₄₆ B ₀₄₅ B ₀₄₄ B ₀₄₃ B ₀₄₂ B ₀₄₁ B ₀₄₀	133
0101	00101	000101	B ₀₅₇ B ₀₅₆ B ₀₅₅ B ₀₅₄ B ₀₅₃ B ₀₅₂ B ₀₅₁ B ₀₅₀	134
0110	00110	000110	B ₀₆₇ B ₀₆₆ B ₀₆₅ B ₀₆₄ B ₀₆₃ B ₀₆₂ B ₀₆₁ B ₀₆₀	135
0111	00111	000111	B ₀₇₇ B ₀₇₆ B ₀₇₅ B ₀₇₄ B ₀₇₃ B ₀₇₂ B ₀₇₁ B ₀₇₀	136
1000	01000	001000	B ₀₈₇ B ₀₈₆ B ₀₈₅ B ₀₈₄ B ₀₈₃ B ₀₈₂ B ₀₈₁ B ₀₈₀	137
1001	01001	001001	B ₀₉₇ B ₀₉₆ B ₀₉₅ B ₀₉₄ B ₀₉₃ B ₀₉₂ B ₀₉₁ B ₀₉₀	138
1010	01010	001010	B ₁₀₇ B ₁₀₆ B ₁₀₅ B ₁₀₄ B ₁₀₃ B ₁₀₂ B ₁₀₁ B ₁₀₀	139
1011	01011	001011	B ₁₁₇ B ₁₁₆ B ₁₁₅ B ₁₁₄ B ₁₁₃ B ₁₁₂ B ₁₁₁ B ₁₁₀	140
1100	01100	001100	B ₁₂₇ B ₁₂₆ B ₁₂₅ B ₁₂₄ B ₁₂₃ B ₁₂₂ B ₁₂₁ B ₁₂₀	141
1101	01101	001101	B ₁₃₇ B ₁₃₆ B ₁₃₅ B ₁₃₄ B ₁₃₃ B ₁₃₂ B ₁₃₁ B ₁₃₀	142
1110	01110	001110	B147 B146 B145 B144 B143 B142 B141 B140	143
1111	01111	001111	B ₁₅₇ B ₁₅₆ B ₁₅₅ B ₁₅₄ B ₁₅₃ B ₁₅₂ B ₁₅₁ B ₁₅₀	144
No Input	10000	010000	B ₁₆₇ B ₁₆₆ B ₁₆₅ B ₁₆₄ B ₁₆₃ B ₁₆₂ B ₁₆₁ B ₁₆₀	145
No Input	10001	010001	B ₁₇₇ B ₁₇₆ B ₁₇₅ B ₁₇₄ B ₁₇₃ B ₁₇₂ B ₁₇₁ B ₁₇₀	146
No Input	10010	010010	B ₁₈₇ B ₁₈₆ B ₁₈₅ B ₁₈₄ B ₁₈₃ B ₁₈₂ B ₁₈₁ B ₁₈₀	147
No Input	10011	010011	B ₁₉₇ B ₁₉₆ B ₁₉₅ B ₁₉₄ B ₁₉₃ B ₁₉₂ B ₁₉₁ B ₁₉₀	148
No Input	10100	010100	B ₂₀₇ B ₂₀₆ B ₂₀₅ B ₂₀₄ B ₂₀₃ B ₂₀₂ B ₂₀₁ B ₂₀₀	149
No Input	10101	010101	B ₂₁₇ B ₂₁₆ B ₂₁₅ B ₂₁₄ B ₂₁₃ B ₂₁₂ B ₂₁₁ B ₂₁₀	150
No Input	10110	010110	B ₂₂₇ B ₂₂₆ B ₂₂₅ B ₂₂₄ B ₂₂₃ B ₂₂₂ B ₂₂₁ B ₂₂₀	151
No Input	10111	010111	B ₂₃₇ B ₂₃₆ B ₂₃₅ B ₂₃₄ B ₂₃₃ B ₂₃₂ B ₂₃₁ B ₂₃₀	152
No Input	11000	011000	B ₂₄₇ B ₂₄₆ B ₂₄₅ B ₂₄₄ B ₂₄₃ B ₂₄₂ B ₂₄₁ B ₂₄₀	153
No Input	11001	011001	B ₂₅₇ B ₂₅₆ B ₂₅₅ B ₂₅₄ B ₂₅₃ B ₂₅₂ B ₂₅₁ B ₂₅₀	154
No Input	11010	011010	B ₂₆₇ B ₂₆₆ B ₂₆₅ B ₂₆₄ B ₂₆₃ B ₂₆₂ B ₂₆₁ B ₂₆₀	155
No Input	11011	011011	B277 B276 B275 B274 B273 B272 B271 B270	156
No Input	11100	011100	B ₂₈₇ B ₂₈₆ B ₂₈₅ B ₂₈₄ B ₂₈₃ B ₂₈₂ B ₂₈₁ B ₂₈₀	157
No Input	11101	011101	B ₂₉₇ B ₂₉₆ B ₂₉₅ B ₂₉₄ B ₂₉₃ B ₂₉₂ B ₂₉₁ B ₂₉₀	158
No Input	11110	011110	B ₃₀₇ B ₃₀₆ B ₃₀₅ B ₃₀₄ B ₃₀₃ B ₃₀₂ B ₃₀₁ B ₃₀₀	159
No Input	11111	011111	B317 B316 B315 B314 B313 B312 B311 B310	160
No Input	No Input	100000	B ₃₂₇ B ₃₂₆ B ₃₂₅ B ₃₂₄ B ₃₂₃ B ₃₂₂ B ₃₂₁ B ₃₂₀	161
			· · · · · · · · · · · · · · · · · · ·	

B input (4bit) 12 bit/pixel - mode 4,096 colors	B input (5 bit) 16 bit/pixel - mode 65,536 colors	B input (6 bit) 18 bit/pixel - mode 262,144 colors	B output (8bit) 24 bit/pixel -mode 16,777,216 colors	write_LUT Parameter
No Input	No Input	100001	B ₃₃₇ B ₃₃₆ B ₃₃₅ B ₃₃₄ B ₃₃₃ B ₃₃₂ B ₃₃₁ B ₃₃₀	162
No Input	No Input	100010	B ₃₄₇ B ₃₄₆ B ₃₄₅ B ₃₄₄ B ₃₄₃ B ₃₄₂ B ₃₄₁ B ₃₄₀	163
No Input	No Input	100011	B ₃₅₇ B ₃₅₆ B ₃₅₅ B ₃₅₄ B ₃₅₃ B ₃₅₂ B ₃₅₁ B ₃₅₀	164
No Input	No Input	100100	B ₃₆₇ B ₃₆₆ B ₃₆₅ B ₃₆₄ B ₃₆₃ B ₃₆₂ B ₃₆₁ B ₃₆₀	165
No Input	No Input	100101	B377 B376 B375 B374 B373 B372 B371 B370	166
No Input	No Input	100110	B ₃₈₇ B ₃₈₆ B ₃₈₅ B ₃₈₄ B ₃₈₃ B ₃₈₂ B ₃₈₁ B ₃₈₀	167
No Input	No Input	100111	B ₃₉₇ B ₃₉₆ B ₃₉₅ B ₃₉₄ B ₃₉₃ B ₃₉₂ B ₃₉₁ B ₃₉₀	168
No Input	No Input	101000	B407 B406 B405 B404 B403 B402 B401 B400	169
No Input	No Input	101001	B417 B416 B415 B414 B413 B412 B411 B410	170
No Input	No Input	101010	B427 B426 B425 B424 B423 B422 B421 B420	171
No Input	No Input	101011	B437 B436 B435 B434 B433 B432 B431 B430	172
No Input	No Input	101100	B447 B446 B445 B444 B443 B442 B441 B440	173
No Input	No Input	101101	B457 B456 B455 B454 B453 B452 B451 B450	174
No Input	No Input	101110	B467 B466 B465 B464 B463 B462 B461 B460	175
No Input	No Input	101111	B ₄₇₇ B ₄₇₆ B ₄₇₅ B ₄₇₄ B ₄₇₃ B ₄₇₂ B ₄₇₁ B ₄₇₀	176
No Input	No Input	110000	B ₄₈₇ B ₄₈₆ B ₄₈₅ B ₄₈₄ B ₄₈₃ B ₄₈₂ B ₄₈₁ B ₄₈₀	177
No Input	No Input	110001	B ₄₉₇ B ₄₉₆ B ₄₉₅ B ₄₉₄ B ₄₉₃ B ₄₉₂ B ₄₉₁ B ₄₉₀	178
No Input	No Input	110010	B ₅₀₇ B ₅₀₆ B ₅₀₅ B ₅₀₄ B ₅₀₃ B ₅₀₂ B ₅₀₁ B ₅₀₀	179
No Input	No Input	110011	$B_{517}\ B_{516}\ B_{515}\ B_{514}\ B_{513}\ B_{512}\ B_{511}\ B_{510}$	180
No Input	No Input	110100	B ₅₂₇ B ₅₂₆ B ₅₂₅ B ₅₂₄ B ₅₂₃ B ₅₂₂ B ₅₂₁ B ₅₂₀	181
No Input	No Input	110101	B ₅₃₇ B ₅₃₆ B ₅₃₅ B ₅₃₄ B ₅₃₃ B ₅₃₂ B ₅₃₁ B ₅₃₀	182
No Input	No Input	110110	B ₅₄₇ B ₅₄₆ B ₅₄₅ B ₅₄₄ B ₅₄₃ B ₅₄₂ B ₅₄₁ B ₅₄₀	183
No Input	No Input	110111	B ₅₅₇ B ₅₅₆ B ₅₅₅ B ₅₅₄ B ₅₅₃ B ₅₅₂ B ₅₅₁ B ₅₅₀	184
No Input	No Input	111000	B ₅₆₇ B ₅₆₆ B ₅₆₅ B ₅₆₄ B ₅₆₃ B ₅₆₂ B ₅₆₁ B ₅₆₀	185
No Input	No Input	111001	B ₅₇₇ B ₅₇₆ B ₅₇₅ B ₅₇₄ B ₅₇₃ B ₅₇₂ B ₅₇₁ B ₅₇₀	186
No Input	No Input	111010	B ₅₈₇ B ₅₈₆ B ₅₈₅ B ₅₈₄ B ₅₈₃ B ₅₈₂ B ₅₈₁ B ₅₈₀	187
No Input	No Input	111011	B ₅₉₇ B ₅₉₆ B ₅₉₅ B ₅₉₄ B ₅₉₃ B ₅₉₂ B ₅₉₁ B ₅₉₀	188
No Input	No Input	111100	B ₆₀₇ B ₆₀₆ B ₆₀₅ B ₆₀₄ B ₆₀₃ B ₆₀₂ B ₆₀₁ B ₆₀₀	189
No Input	No Input	111101	B617 B616 B615 B614 B613 B612 B611 B610	190
No Input	No Input	111110	B ₆₂₇ B ₆₂₆ B ₆₂₅ B ₆₂₄ B ₆₂₃ B ₆₂₂ B ₆₂₁ B ₆₂₀	191
No Input	No Input	111111	$B_{637} \ B_{636} \ B_{635} \ B_{634} \ B_{633} \ B_{632} \ B_{631} \ B_{630}$	192

Participants

The following list includes those persons who participated in the Working Group that developed this specification and who consented to appear on this list.

Nausheen Ansari, Intel Corporation

Quinn Carter, ARM Limited

Edo Cohen, Marvell

Stephen Creaney, Cadence Design Systems, Inc.

Amir Dafnai, Cadence Design Systems, Inc.

Rob Frizzell, Atmel Corporation

Karan Galhotra, Synopsys, Inc.

James Goel, Qualcomm Incorporated

Wei Han, Lattice Semiconductor Corp.

Jim Hunkins, Advanced Micro Devices, Inc.

Samson Kim, Qualcomm Incorporated

Tim SangKyu Lee, Samsung Electronics, Co.

George Letey, Microsoft Corporation

Ryan Liu, Advanced Micro Devices, Inc.

Thirumal Molagounder, GDA Technologies

Kit Fong Ng, Qualcomm Incorporated

Pablo Ortega, NVIDIA

Josh Pan, MediaTek Inc.

Juha Pankala, Microsoft Corporation

Sungjin Park, LG Electronics, Inc.

Alex Passi, Cadence Design Systems, Inc.

Richard Petrie, DisplayLink (UK) Ltd.

Jayavarapu Rao, ARM Limited

James Rippie, MIPI Alliance

Hugo Santos, Synopsys, Inc.

Neeraj Sharma, Synopsys, Inc.

Jeffrey Small, Synaptics

Dale Stolitzka, Samsung Electronics, Co.

Nobu Suzuki, Intel Corporation

Seshi Veerapally, NVIDIA

Rick Wietfeldt, Qualcomm Incorporated

George Wiley, Qualcomm Incorporated

Allen Sooyoung Woo, Samsung Electronics, Co.

Jie Zhou, Advanced Micro Devices, Inc.

Larkin Zhang, Advanced Micro Devices, Inc.