

FIRST Results from Cerro Toco, Chile

Jeffrey C. Mast – SSAI
Marty Mlynczak, Dave Kratz, Rich
Cageao, Dave Johnson – NASA
Harri - SDL

Outline

- Review of FIRST project to date
 - Instrument specs
 - Timeline
 - Summary of results (mostly TMF)
- Field deployments
 - Table Mountain, CA
 - Cerro Toco, Chile
- Results from Cerro Toco
 - Comparing measurements, model calculations, and their uncertainties

FIRST Instrument

Instrument Characteristics

- **100 – 1000 cm⁻¹**
- **0.643 cm⁻¹ resolution**
- **Calib. BB @ 46 C & 17 C**
- **10 LHe bolometers**
- **Ge on polypropylene beamsplitter**
- **Plane mirror FTS**
- **11 sec scan**

Review of FIRST Project

Review of Table Mountain Campaign Results

- FIRST measurements at Table Mountain have been compared with LBLRTM calculations
- Conducted assessment of measurement and model uncertainties
 - FIRST and LBLRTM agree to within their combined uncertainties
 - The need to measure Far-IR shown as model uncertainty > measurement uncertainty
- Results from Table Mountain to be submitted to JQRST
- Moving forward with Cerro Toco analysis

Comparing the Campaigns

Table Mountain, CA

- Surface at 7500 ft
- Surface pressure approximately 775 hPa
- IPW approximately 3 mm
- Approximately 17.75 cm hot path
- Water vapor vertical profiles from radiosondes with flights of ~2 hrs

Cerro Toco, Chile

- Surface at 17,500 ft
- Surface pressure approximately 550 hPa
- Approximately 166 cm hot path
- A chimney on the FIRST trailer complicates correcting spectra for hot paths.
- Water vapor vertical profiles every ~5 minutes from GVRP
 - What exactly?

Comparing the Campaigns, cont.

Plot both on one figure

FIRST Downwelling Radiance Spectrum

FIRST Downwelling Temperature Spectrum

Methods for Analysis of Cerro Toco

- Acquire spectra
 - Measurements from FIRST averaged in the 30 minute measurement block to reduce noise
 - Atmosphere vertical profiles placed on 71 atmospheric layers and processed through LBLRTM
 - An estimate for the hot path (hot air prior to the instrument) is included in the results subsequent to LBLRMT
- Compare modeled and measured spectra
 - Difference = LBLRTM – FIRST
- Calculate uncertainties in model radiance
 - Line strength uncertainties for water and CO₂
 - From AER v3.2 line parameter database
 - Half width uncertainties for water and CO₂
 - From AER v3.2 line parameter database
 - Water vapor and temperature measured profile uncertainty used at input to LBLRTM
 - Uncertainty in the water vapor continuum as calculated by the continuum model in LBLRTM
 - From correspondence with Eli Mlawer
- Include measurement uncertainty
 - Sky uncertainty
 - Standard deviation of the approximate 155 spectra recorded in 30 minutes
 - Uncertainty from laboratory calibration
 - From Applied Optics publication by Harri Latvikoski
- Calculated combined uncertainty
 - RSS of measurement uncertainty and model uncertainty
 - Compare measurement uncertainty and model uncertainty

Estimating the Hot Path Effect

- To estimate the effect of the hot path on entering radiation

$$LBL \times (1 - \varepsilon_p) + \varepsilon_p \times B(T_p)$$

- LBL = Intensity of radiation entering the hot path
- ε_p = Emissivity of the hot path
- $(1 - \varepsilon_p)$ = Transmittance of the hot path
- T_p = Estimated temperature of the hot path
- $B(T_p)$ = Intensity of radiation emitted in the hot path

Results from 9/24/2009

Measured

**Modeled – 13K (above atmospheric surface
temperture) hot path estimate included**

LBLRTM - FIRST

Uncertainties of Measured Spectra

RSS of Measurement Uncertainties

Model Uncertainties from measured atmosphere

Model uncertainties from h₂o line strength and half-width

Model Uncertainties from co2 line strength and half-width

Water vapor continuum uncertainty

RSS of Model Uncertainties

RSS of Model and Measurement = Combined Uncertainty

Results from 9/13/2009

Measured

Modeled

LBLRTM - FIRST

Uncertainties in Measured Spectrum

RSS of Measurement Uncertainties

Model Uncertainties from measured atmosphere

Model uncertainties from h₂o line strength and half-width

Model Uncertainties from co2 line strength and half-width

Water vapor continuum uncertainty

RSS of Model Uncertainties

Combined Uncertainty

