Can entropy-based image alignment metrics offer improved image aggregation of tissue density for mammographic risk assessment?

Final Report for CS39440 Major Project

Author: Laura Collins (lac32@aber.ac.uk)

Supervisor: Dr. Neil Mac Parthalin (ncm@aber.ac.uk)

4th March 2016 Version: 1.0 (Draft)

This report was submitted as partial fulfilment of a BSc degree in Artificial Intelligence and Robotics (inc Integrated Industrial and Professional Training) (GH7P)

Department of Computer Science Aberystwyth University Aberystwyth Ceredigion SY23 3DB Wales, UK

Declaration of originality

In signing below, I confirm that:

Date

- This submission is my own work, except where clearly indicated.
- I understand that there are severe penalties for Unacceptable Academic Practice, which can lead to loss of marks or even the withholding of a degree.
- I have read the regulations on Unacceptable Academic Practice from the University's Academic Quality and Records Office (AQRO) and the relevant sections of the current Student Handbook of the Department of Computer Science.

 In submitting this work I understand and agree to abide by the University's regulations governing these issues.
Name
Date
Consent to share this work
In signing below, I hereby agree to this dissertation being made available to other students and academic staff of the Aberystwyth Computer Science Department.
Name

Acknowledgements

I am grateful to...

I'd like to thank...

Abstract

Include an abstract for your project. This should be no more than 300 words.

CONTENTS

1	Background & Objectives	1
	1.1 Background	1
	1.2 Analysis	
	1.3 Research Method	2
2	Experiment Methods	3
3	Results and Conclusions	4
4	Critical Evaluation	5
Αŗ	ppendices	6
A	Third-Party Code and Libraries	7
В	Ethics Submission	8
C	Code Examples	9
	3.1 Random Number Generator	9
Aı	nnotated Bibliography	12

LIST OF FIGURES

LIST OF TABLES

Chapter 1

Background & Objectives

The Project is concerned with the alignment of multiple images using an image-alignment technique called Congealing [?]. The paper describes a method which utilises the Congealing algorithm to align both MNIST handwriting data and MRI Scans by reducing the pixel-wise uncertainty across a collection of images. This project aims to go further, aligning mammography scans and reducing the pixel-wise uncertainty using a number of different fuzzy entropy methods.

1.1 Background

In preparation for my Major Project extensive research was undertaken into the Fuzzy Entropy alignment metrics that would be chosen and implemented in the Congealing algorithm to align mammography scans. S. Al-sharhan's paper 'Fuzzy Entropy: a Brief Survey' [?] was instrumental in a brief comparison between Fuzzy Entropy metrics - allowing a simple way to compare and contrast mathematical differences and implementations.

Researchers have implemented many variations of the Congealing algorithm, with success in varying areas - however very little to no work has been done implementing the algorithm to assess mammography scans. Cox's 'Least Squares Congealing' [?] was quickly disregarded given the project preference to select entropy-based alignment techniques, however did alert to the issue of performance for the project.

1.2 Analysis

- Does the use of Fuzzy Entropy alignment metrics improve the alignment of mammograms?
- Do clinicians / radiographers / mammographers find the output at all useful?

1.3 Research Method

You need to describe briefly the life cycle model or research method that you used. You do not need to write about all of the different process models that you are aware of. Focus on the process model or research method that you have used. It is possible that you needed to adapt an existing

Chapter 2

Experiment Methods

This section should discuss the overall hypothesis being tested and justify the approach selected in the context of the research area. Describe the experiment design that has been selected and how measurements and comparisons of results are to be made.

You should concentrate on the more important aspects of the method. Present an overview before going into detail. As well as describing the methods adopted, discuss other approaches that were considered. You might also discuss areas that you had to revise after some investigation.

You should also identify any support tools that you used. You should discuss your choice of implementation tools or simulation tools. For any code that you have written, you can talk about languages and related tools. For any simulation and analysis tools, identify the tools and how they are used on the project.

If your project includes some engineering (hardware, software, firmware, or a mixture) to support the experiments, include details in your report about your design and implementation.

Chapter 3

Results and Conclusions

This section should discuss issues you encountered as you tried to implement your experiments. What were the results of running the experiments? What conclusions can you draw from these results?

During the work, you might have found that elements of your experiments were unnecessary or overly complex; perhaps third party libraries were available that simplified some of the functions that you intended to implement. If things were easier in some areas, then how did you adapt your project to take account of your findings?

It is more likely that things were more complex than you first thought. In particular, were there any problems or difficulties that you found during implementation that you had to address? Did

Chapter 4 Critical Evaluation

Chapter 4

Critical Evaluation

Examiners expect to find in your dissertation a section addressing such questions as:

- Were the requirements correctly identified?
- Were the design decisions correct?
- Could a more suitable set of tools have been chosen?
- How well did the software meet the needs of those who were expecting to use it?
- How well were any other project aims achieved?
- If you were starting again, what would you do differently?

Such material is regarded as an important part of the dissertation; it should demonstrate that you are capable not only of carrying out a piece of work but also of thinking critically about how you did it and how you might have done it better. This is seen as an important part of an honours degree.

There will be good things and room for improvement with any project. As you write this section, identify and discuss the parts of the work that went well and also consider ways in which

Appendix C Code Examples

Appendix C

Code Examples

3.1 Random Number Generator

The Bayes Durham Shuffle ensures that the psuedo random numbers used in the simulation are further shuffled, ensuring minimal correlation between subsequent random outputs.

```
#define IM1 2147483563
#define IM2 2147483399
#define AM (1.0/IM1)
#define IMM1 (IM1-1)
#define IA1 40014
#define IA2 40692
#define IO1 53668
#define IQ2 52774
#define IR1 12211
#define IR2 3791
#define NTAB 32
#define NDIV (1+IMM1/NTAB)
#define EPS 1.2e-7
\#define RNMX (1.0 - EPS)
double ran2(long *idum)
 /*----*/
 /★ Minimum Standard Random Number Generator
                                                    */
 /* Taken from Numerical recipies in C
                                                    */
 /* Based on Park and Miller with Bays Durham Shuffle */
 /★ Coupled Schrage methods for extra periodicity
                                                    */
 /* Always call with negative number to initialise
                                                    */
 int j;
 long k;
 static long idum2=123456789;
```

Appendix C Code Examples

```
static long iy=0;
static long iv[NTAB];
double temp;
if (*idum <=0)
  if (-(*idum) < 1)
    *idum = 1;
  }else
    *idum = -(*idum);
  idum2 = (*idum);
  for (j=NTAB+7; j>=0; j--)
    k = (*idum)/IQ1;
    *idum = IA1 * (*idum-k*IQ1) - IR1*k;
    if (*idum < 0)
      *idum += IM1;
    if (j < NTAB)
      iv[j] = *idum;
  iy = iv[0];
k = (*idum)/IQ1;
*idum = IA1*(*idum-k*IQ1) - IR1*k;
if (*idum < 0)
  *idum += IM1;
}
k = (idum2)/IQ2;
idum2 = IA2*(idum2-k*IQ2) - IR2*k;
if (idum2 < 0)
  idum2 += IM2;
j = iy/NDIV;
iy=iv[j] - idum2;
iv[j] = *idum;
if (iy < 1)
 iy += IMM1;
}
```

Annotated Bibliography

[1] S. Al-Sharhan, F. Karray, W. Gueaieb, and O. Basir, "Fuzzy entropy: a brief survey," in *Fuzzy Systems*, 2001. The 10th IEEE International Conference on, vol. 3. IEEE, 2001, pp. 1135–1139. [Online]. Available: http://dx.doi.org/10.1109/fuzz.2001.1008855

Paper outlining the different implementations of Fuzzy Entropy, of which 3 will be selected and focused on during this Project.

[2] M. Cox, S. Sridharan, S. Lucey, and J. Cohn, *Least squares congealing for unsupervised alignment of images*, Jun 2008, p. 18.

A disregarded adaption of the Congealing algorithm - however was useful in high-lighting performance issues in the original algorithm. Something which was near continuously faced when implementing heavier fuzzy entropy alignment metrics.

[3] E. G. Learned-Miller, "Data driven image models through continuous joint alignment," *Pattern Analysis and Machine Intelligence, IEEE Transactions on*, vol. 28, no. 2, pp. 236–250, Feb. 2006. [Online]. Available: http://dx.doi.org/10.1109/tpami.2006.34

Learned-Miller's original Congealing method is the basis for this Project - however