Metody Optymalizacji - Laboratorium 1

Wojciech Sęk

3 kwietnia 2023

1 Zadanie 1

1.1 Model

1.1.1 Zmienne decyzyjne

Jedyną zmienną decyzyjną jest wektor

$$\mathbf{x} = (x_1, x_2, \dots, x_n) \geqslant \mathbf{0}$$

1.1.2 Ograniczenia

Ograniczeniem jest równość

$$A\mathbf{x} = \mathbf{b}$$

gdzie

•

$$a_{ij} = \frac{1}{i+j-1}, i,j = 1,\dots,n$$

•

$$b_i = \sum_{j=1}^n \frac{1}{i+j-1}, i = 1, \dots, n$$

1.2 Funkcja celu

$$\min \mathbf{c}^T \mathbf{x}$$

gdzie

•

$$c_i = \sum_{j=1}^n \frac{1}{i+j-1}, i = 1, \dots, n$$

1.3 Wyniki

Prawidłowym rozwiązaniem jest $\mathbf{x} = \mathbf{1}$. Rozważmy błąd względny dla $n \in [10]$:

n	$rac{ \mathbf{x} - ilde{\mathbf{x}} _2}{ \mathbf{x} _2}$
1	0.0000000000000000000000000000000000000
2	0.00000000000000105325
3	0.00000000000000367158
4	0.00000000000032701639
5	0.00000000000335139917
6	0.00000000006833357907
7	0.00000001678685421923
8	0.51405897217726825854
9	0.68291133808772241931
10	0.99038757480308581282

Zadanie szukania zadanego wektora jest źle uwarunkowane, ponieważ do jego liczenia jest potrzebna macierz Hilberta.

Błąd względny rośnie wraz z n i już dla n=10 jest prawie równy 1. Z dokładnością do dwóch cyfr można liczyć dla $n\leqslant 7$.

2 Zadanie 2

2.1 Model

2.1.1 Zmienne decyzyjne

Dla n miast i t typów dźwigów mamy zmienne decyzyjne postaci $x_{a,b,u,v} \in \mathbb{N}$, które interpretujemy jako przenieś $x_{a,b,u,v}$ dźwigów typu u z miasta a do miasta b, żeby zastąpić dźwig typu v.

2.1.2 Ograniczenia

Oznaczmy przez M zbiór miast i przez T zbiór typów dźwigów.

• Niech $r_{u,v} = 1$ oznacza, że typ u jest zastępowalny przez typ v i $r_{u,v} = 0$, że nie jest. Jest to parametr naszego zadania. Dla $r_{u,v} = 0$ nie możemy przetransportować nigdy dźwigu typu v, by zastąpić dźwig typu u. Wtedy:

$$(\forall a, b \in M) (\forall u, v \in T) (r_{u,v} = 0 \Rightarrow x_{a,b,v,u} = 0)$$

• Z zadanego miasta a i typu u dźwigu musimy przetransportować dokładnie tyle dźwigów zastępowanych przez typ u, ile jest w nadmiarze w mieście a. Oznaczmy przez $\sigma_{a,u}$ nadmiar dźwigów typu u w mieście a. Wtedy:

$$(\forall a \in M) (\forall u \in T) \left(\sum_{b \in M, v \in T} x_{a,b,u,v} = \sigma_{a,u} \right)$$

• Do zadanego miasta a i typu u dźwigu musimy przetransportować dokładnie tyle dźwigów zastępujących typ u, ile brakuje w mieście a. Oznaczmy przez $s_{a,u}$ niedomiar dźwigów typu u w mieście a. Wtedy:

$$(\forall a \in M) (\forall u \in T) \left(\sum_{b \in M, v \in T} x_{b,a,v,u} = s_{a,u} \right)$$

2.2 Funkcja celu

Minimalizujemy całkowite koszty transportu. Niech $\delta_{a,b}$ oznacza odległość między miastem a a miastem b (dane z Google Maps). Niech μ_u oznacza zadany w treści zadania mnożnik kosztu transportu dźwigu typu u. Wtedy całkowity koszt transportu wynosi:

$$f(\mathbf{x}) = \sum_{a,b \in M: u,v \in T} x_{a,b,u,v} \cdot \delta_{a,b} \cdot \mu_u$$

2.3 Wyniki

Dla zadanych w treści zadania parametrów otrzymujemy, że należy:

- Przenieść z Opola do Brzegu 4 dźwigów typu I w celu zastąpienia typu I.
- Przenieść z Opola do Koźla 3 dźwigów typu I w celu zastąpienia typu I.
- Przenieść z Brzegu do Brzegu 1 dźwigów typu II w celu zastąpienia typu I.
- Przenieść z Nysy do Opola 2 dźwigów typu II w celu zastąpienia typu II.

- Przenieść z Nysy do Brzegu 5 dźwigów typu I w celu zastąpienia typu I.
- Przenieść z Nysy do Prudnika 1 dźwigów typu I w celu zastąpienia typu I.
- Przenieść z Prudnika do Prudnika 3 dźwigów typu II w celu zastąpienia typu I.
- Przenieść z Prudnika do Strzelec 4 dźwigów typu II w celu zastąpienia typu II.
- Przenieść z Prudnika do Koźla 2 dźwigów typu II w celu zastąpienia typu II.
- Przenieść z Prudnika do Raciborza 1 dźwigów typu II w celu zastąpienia typu II.
- Przenieść z Strzelec do Koźla 5 dźwigów typu I w celu zastąpienia typu I.

Całkowity koszt wyniósł 1424.46 jednostek kosztu transportu dźwigu z mnożnikiem = 1 przez 1km. Pozbycie się warunku na całkowitoliczbowość zmiennej \mathbf{x} nie ma znaczenia na rozwiązanie problemu zwracane przez solver.

3 Zadanie 3

3.1 Model

3.1.1 Zmienne decyzyjne

Na całym etapie produkcji podejmujemy kilka decyzji:

- Przez x_c oznaczamy liczbę ton zakupionej ropy typu $c \in C$ (w treści zadania $C = \{B1, B2\}$).
- Przez $y_{o,c}$ oznaczamy liczbę ton oleju z ropy typu $c \in C$ wykorzystanej do celu $o \in O_U$ (w treści zadania $O_U = \{domowe, ciezkie\}$, bo olej trafia albo do paliw domowych albo do paliw ciężkich).
- Przez $z_{d,c}$ oznaczamy liczbę ton destylatu z ropy typu $c \in C$ wykorzystanego do celu $d \in D_U$ (w treści zadania $D_U = \{ciezkie, krak\}$, bo destylat albo trafia do paliw ciężkich albo do krakowania).

3.1.2 Ograniczenia

Wprowadźmy ogólne oznaczenia parametrów:

- $\varepsilon_{p,c}$ współczynnik uzyskiwania z ropy $c\in C$ produktu $p\in P_C$ (w treści zadania $P_C=\{benzyna,olej,destylat,resztki\}$)
- χ_d współczynnik uzyskiwania produktu $d \in D_P$ w procesie krakowania destylatu (w treści zadania $D_P = \{benzyna, olej, resztki\}$)
- σ_c udział siarki w oleju z ropy $c \in C$
- η_c udział siarki w oleju z krakowania destylatu z ropy $c \in C$

Ograniczenia właściwe:

 Suma oleju wyprodukowanego z danego typu ropy musi równać się sumie ton tego oleju wykorzystanych do różnych celów:

$$(\forall c \in C) \left(\varepsilon_{olej,c} \cdot x_c = \sum_{o \in O_U} y_{o,c} \right)$$

 Suma destylatu wyprodukowanego z danego typu ropy musi równać się sumie ton tego destylatu wykorzystanych do różnych celów:

$$(\forall c \in C) \left(\varepsilon_{destylat,c} \cdot x_c = \sum_{d \in D_U} z_{d,c} \right)$$

• Niech $MIN_{silnikowe}$ oznacza minimalną liczbę ton paliw silnikowych do wyprodukowania. W całości procesu na paliwa silnikowe składa się benzyna ze wszystkich rodzajów ropy i z krakowania:

$$\sum_{c \in C} (\chi_{benzyna} \cdot z_{krak,c} + \varepsilon_{benzyna,c} \cdot x_c) \geqslant MIN_{silnikowe}$$

Niech MIN_{domowe} oznacza minimalną liczbę ton domowych paliw olejowych do wyprodukowania.
 W całości procesu na domowe paliwa olejowe składa się olej z destylacji każdego rodzaju ropy wykorzystany do paliw domowych oraz olej z procesu krakowania destylatu:

$$\sum_{c \in C} (\chi_{olej} \cdot z_{krak,c} + y_{domowe,c}) \geqslant MIN_{domowe}$$

Niech MIN_{ciezkie} oznacza minimalną liczbę ton ciężkich paliw olejowych do wyprodukowania.
 W całości procesu na ciężkie paliwa olejowe składa się olej oraz destylat z destylacji każdego rodzaju ropy wykorzystane do paliw ciężkich, resztki z każdego etapu produkcji:

$$\sum c \in C(y_{ciezkie,c} + z_{ciezkie,c} + \varepsilon_{resztki,c} \cdot x_c + \chi_{resztki} \cdot z_{krak,c}) \geqslant MIN_{ciezkie}$$

 \bullet Niech MAX_S oznacza maksymalny udział siarki w domowych paliwach olejowych. Zatem ten udział przemnożony przez całość domowych paliw olejowych musi być większy lub równy od prawdziwego udziału siarki w poszczególnych produktach składających się na domowe paliwa olejowe, czyli olejach z destylacji ropy oraz olejach z krakowania:

$$\sum_{c \in C} (\sigma_c \cdot y_{domowe,c} + (\eta_c \cdot \chi_{olej} \cdot z_{krak,c})) \leqslant MAX_S \cdot \sum_{c \in C} (\chi_{olej} \cdot z_{krak,c} + y_{domowe,c})$$

3.2 Funkcja celu

Chcemy minimalizować koszt wytworzenia wszystkich paliw. Niech γ_c oznacza koszt tony ropy typu c, δ oznacza koszt destylacji tony ropy a κ oznacza koszt krakowania tony destylatu. Wtedy całkowity koszt wynosi:

$$f(\mathbf{x}, \mathbf{z}) = \sum_{c \in C} ((\gamma_c + \delta) \cdot x_c + \kappa \cdot z_{krak, c})$$

3.3 Wyniki

Optymalnym rozwiązaniem będzie zakup wyłącznie tańszej ropy, czyli ropy typu B1. Ostatecznie:

- Kupujemy 1026030.36876356 ton ropy B1
- 381561.822125814 ton oleju z destylacji ropy dodajemy do domowych paliw olejowych
- 28850.3253796095 ton oleju z destylacji ropy dodajemy do ciężkich paliw olejowych
- 92190.8893709328 ton destylatu z destylacji ropy dajemy do krakowania
- 61713.6659436009 ton destylatu z destylacji ropy dajemy do ciężkich paliw olejowych

Całkowity koszt wynosi 1345943600.86768 \$.

4 Zadanie 4

4.1 Model

4.1.1 Zmienne decyzyjne

Podejmujemy decyzje o ćwiczeniach oraz o treningach:

- Przez $x_{g,c} = 1$ oznaczamy, że bierzemy zajęcia z kursu $c \in C$ w grupie $g \in G$. W przeciwnym przypadku $x_{g,c} = 0$. W treści zadania $C = \{algebra, analiza, fizyka, chemia_min, chemia_org\}$ i $G = \{I, II, III, IV\}$.
- Przez $y_p = 1$ oznaczamy, że trenujemy w grupie treningowej $p \in P$. W przeciwnym przypadku $y_p = 0$. W treści zadania nie oznaczono tego zbioru, ale można zdefiniować $P_G = \{I, II, II\}$, które oznaczają kolejno treningi w pon 11-13 oraz w środę 11-13 i 13-15.

4.1.2 Ograniczenia

Wprowadźmy ogólne oznaczenia parametrów:

- $\sigma_{g,c}$ oznacza godzinę rozpoczęcia zajęć z kursu $c \in C$ w grupie $g \in G$
- $\varepsilon_{g,c}$ oznacza godzinę zakończenia zajęć z kursu $c \in C$ w grupie $g \in G$
- $\delta_{g,c} \in [1,2,3,4,5]$ oznacza dzień zajęć z kursu $c \in C$ w grupie $g \in G$
- $\pi_{q,c}$ oznacza punkty preferencji danych zajęć cw grupie G
- σ_{p}^{PE} oznacza godzinę rozpoczęcia treningu p
- ε_{p}^{PE} oznacza godzinę zakończenia treningu p
- $\delta_n^{PE} \in [1, 2, 3, 4, 5]$ oznacza dzień treningu p

Ograniczenia właściwe:

• Każdego dnia suma trwania wszystkich zajęć jest mniejsza lub równa od czterech godzin:

$$(\forall d \in [5]) \left(\sum_{g \in G, c \in C: \delta_{g,c} = d} (\varepsilon_{g,c} - \sigma_{g,c}) \cdot x_{g,c} \leqslant 4 \right)$$

• Dla każdego kursu wybieramy dokładnie jedną grupę:

$$(\forall c \in C) \left(\sum_{g \in G} x_{g,c} = 1 \right)$$

Student nie może brać udziału w dwóch różnych ćwiczeniach jednocześnie. Zatem jeśli dla dwóch
zajęć danego dnia czas rozpoczęcia jednych z nich zawiera się między czasem rozpoczęcia i czasem
zakończenia tych drugich to bierzemy co najwyżej jedne z nich:

$$(\forall c_1, c_2 \in C) (\forall g_1, g_2 \in G) ((c_1, g_1) \neq (c_2, g_2) \land \delta_{g_1, c_1} = \delta_{g_2, c_2} \land \sigma_{g_2, c_2} \in [\sigma_{g_1, c_1}, \varepsilon_{g_1, c_1}] \Rightarrow x_{g_1, c_1} + x_{g_2, c_2} \leqslant 1)$$

• Podobnie ćwiczenia nie moga zaczynać się w trakcie treningu:

$$(\forall c \in C) (\forall g \in G) (\forall p \in P) \left(\delta_{g,c} = \delta_p^{PE} \land \sigma_{g,c} \in [\sigma_p^{PE}, \varepsilon_p^{PE}] \Rightarrow x_{g,c} + y_p \leqslant 1 \right)$$

• Ani trening w trakcie ćwiczeń:

$$(\forall c \in C) (\forall g \in G) (\forall p \in P) \left(\delta_{g,c} = \delta_p^{PE} \wedge \sigma_p^{PE} \in [\sigma_{g,c}, \varepsilon_{g,c}] \Rightarrow x_{g,c} + y_p \leqslant 1 \right)$$

• Każdego dnia student musi mieć godzinę wolnego czasu między 12:00 i 14:00. Zatem suma czasu spędzonego na treningach i ćwiczeniach w tym okienku musi być mniejszy lub równy od 1:

$$(\forall d \in [5])(\sum_{g \in G, c \in C: \delta_{g,c} = d \land \sigma_{g,c} < 12 \land \varepsilon_{g,c} \leq 14} (\varepsilon_{g,c} - 12) \cdot x_{g,c} + \sum_{g \in G, c \in C: \delta_{g,c} = d \land \sigma_{g,c} \geqslant 12 \land \varepsilon_{g,c} \leq 14} (\varepsilon_{g,c} - \sigma_{g,c}) \cdot x_{g,c} + \sum_{g \in G, c \in C: \delta_{g,c} = d \land \sigma_{g,c} \geqslant 12 \land \varepsilon_{g,c} > 14} (14 - \sigma_{g,c}) \cdot x_{g,c} + \sum_{g \in G, c \in C: \delta_{g,c} = d \land \sigma_{g,c} \geqslant 12 \land \varepsilon_{g,c} > 14} (\varepsilon_p^{PE} - 12) \cdot y_p + \sum_{p \in P: \delta^{PE} p = d \land \sigma_p^{PE} \geqslant 12 \land \varepsilon_p^{PE} \leqslant 14} (\varepsilon_p^{PE} - \sigma_p^{PE}) \cdot y_p + \sum_{p \in P: \delta^{PE} p = d \land \sigma_p^{PE} \geqslant 12 \land \varepsilon_p^{PE} \leqslant 14} (14 - \sigma_p^{PE}) \cdot y_p \leqslant 1)$$

• Student trenuje co najmniej raz w tygodniu:

$$\sum_{p \in P} y_p \geqslant 1$$

Dodatkowe warunki:

• Brak zajęć w środy i w piątki:

$$(\forall g \in G, c \in C) (\delta_{q,c} \in \{3, 5\} \Rightarrow x_{q,c} = 0)$$

• Brak ćwiczeń o preferencji mniejszej od 5:

$$(\forall g \in G, c \in C) (\pi_{g,c} < 5 \Rightarrow x_{g,c} = 0)$$

4.2 Funkcja celu

Chcemy maksymalizować punkty preferencji wobec ćwiczeń studenta. Suma wszystkich punktów to suma z $\pi_{g,c}$ po odbywanych zajęciach c w grupie g:

$$f(\mathbf{x}) = \sum_{g \in G, c \in C} \pi_{g,c} \cdot x_{g,c}$$

4.3 Wyniki

Bez ograniczenia na preferencję pojedynczych przedmiotów i na brak zajęć w środy i piątki otrzymujemy plan, którego wskaźnik preferencji wynosi 37 i wygląda następująco:

	Pn.	Wt.	Śr.	Cz.	Pt.
8:00	chemia min. (I)				
8:30	chemia min. (I)				
9:00	chemia min. (I)				
9:30	chemia min. (I)				
10:00		analiza (II)	algebra (III)		
10:30	chemia org. (II)	analiza (II)	algebra (III)		
11:00	chemia org. (II)	analiza (II)	algebra (III)		
11:30	chemia org. (II)	analiza (II)	algebra (III)		
12:00	lunch	lunch	lunch	lunch	lunch
12:30	lunch	lunch	lunch	lunch	lunch
13:00	trening				
13:30	trening				
14:00	trening				
14:30	trening				
15:00					
15:30					
16:00					
16:30					
17:00				fizyka (IV)	
17:30				fizyka (IV)	
18:00				fizyka (IV)	
18:30				fizyka (IV)	
19:00				fizyka (IV)	
19:30				fizyka (IV)	

Stosując dodatkowe ograniczenia wskaźnik preferencji wynosi 28 i plan wygląda jak następuje:

	Pn.	Wt.	Śr.	Cz.	Pt.
8:00				analiza (IV)	
8:30				analiza (IV)	
9:00				analiza (IV)	
9:30				analiza (IV)	
10:00		fizyka (II)			
10:30	chemia org. (II)	fizyka (II)			
11:00	chemia org. (II)	fizyka (II)	trening		
11:30	chemia org. (II)	fizyka (II)	trening		
12:00	lunch	fizyka (II)	trening	lunch	lunch
12:30	lunch	fizyka (II)	trening	lunch	lunch
13:00	algebra (I)	lunch	lunch	chemia min. (III)	
13:30	algebra (I)	lunch	lunch	chemia min. (III)	
14:00	algebra (I)			chemia min. (III)	
14:30	algebra (I)			chemia min. (III)	