Nota: Como se trata de um amplificador de emissor à massa, vem

$$\beta = \frac{T_0}{T_h} = \frac{80}{0.4} = 200$$

Ver "Nota" da pergunta nº. 3.1.14.1

## 3.1.14.3

Uma corrente de 20 mA circula entre a base e o emissor de um transistor que apresenta um ganho de 40. Em consequência, entre colector e emissor circula uma corrente de:

| <b>a</b> ) | 0,5 | mA  | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |   |
|------------|-----|-----|-----------------------------------------|---|
| <b>b</b> ) | 2   | mA  | •••••••                                 |   |
| c)         | 40  | mΑ  | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | ŋ |
| a١         | o 8 | m Å |                                         |   |

Nota: 
$$\beta = \frac{I_c}{I_b}$$
 ou  $40 = \frac{I_c}{20}$ 
 $I_c = 40 \times 20 = 800 \text{ mA} = 0.8 \text{ A}$ 

Ver "Nota" da pergunta nº. 3.1.14.1

## 3.1.15.1

Um transistor na configuração de base comum apresenta:

| <b>a</b> ) | alta impedância de entrada    | Ц |
|------------|-------------------------------|---|
| b)         | alto ganho de tensão          | X |
| (ه         | baixa impedāncia de saída     |   |
| d)         | ganho de corrente maior que l |   |

Nota: esquema de um amplificador de base à massa (=base comum)



(Continua)