Metody Obliczeniowe w Nauce i Technice

Laboratorium 2

Rozwiązywanie układów równań liniowych metodami iteracyjnymi

Wstęp

Cel ćwiczenia

- 1. Przeanalizowanie sposobu rozwiązywania układów równań liniowych metodami iteracyjnymi przy pomocy metody Jacobiego.
- 2. Porównanie dwóch kryteriów stopu, badanie dokładności obliczeń.
- 3. Zapoznanie się ze sposobem badania zbieżności układu przy pomocy wyliczenia promienia spektralnego macierzy iteracji.
- 4. Badanie metody nadrelaksacji SOR.

Dane techniczne

Wszystkie zaprezentowane poniżej wyniki otrzymałem w eksperymentach przeprowadzonych na sprzęcie Lenovo y50-70 z procesorem Intel Core i7-4720HQ 2.6 GHz. Rozwiązania zadań oparłem o znajomość algorytmu Jacobiego, pojęcia wartości własnych macierzy, promienia spektralnego oraz metody nadrelaksacji SOR.

Programy napisałem w Python w wersji 3 wykorzystując biblioteki: numpy, matplotlib, scipy. Wykresy wygenerowałem przy pomocy biblioteki matplotlib.

Zadanie indywidualne

Zadaniem indywidualnym było rozwiązanie układu **a)** dla parametrów **k=10**, **m=1**

Lista pojęć

1. **Norma wyniku** - norma z różnicy wektora wynikowego obliczonego metodą Jacobiego (y), a wektorem szukanym (x) będącym permutacją ze zbioru {-1, 1}. Norma ta jest obliczana według wzoru:

$$\sqrt{\sum_{i=1}^{n} (y_i - x_i)^2}$$

- 2. Rozmiar macierzy ilość wierszy/kolumn macierzy kwadratowej
- 3. Promień spektralny największa co do modułu wartość własna macierzy
- 4. **Wektor początkowy** x_o początkowe przybliżenie rozwiązania układu w algorytmie Jacobiego oraz SOR
- 5. Pierwsze kryterium stopu $||x^{i+1} x^i|| < \rho$
- 6. **Drugie kryterium stopu** $||Ax^i b|| < \rho$

Promień spektralny i zbieżność macierzy.

Promień spektralny wyznaczam wyznaczając maksimum z modułu wartości własnych macierzy iteracji. Wartości własne macierzy obliczam korzystając z funkcji eigvals z biblioteki scipy.linalg. Wartości własne macierzy obliczane są tam w następujący sposób:

Liczba w jest wartością własną macierzy A jeżeli istnieje taki wektor v, że A * v = w * v.

Zatem A, w, v spełniają równiania $A^* \vee [:,i]) = w[i] * v[:,i]$

 $\forall i \in \{0, ... M-1\}$, gdzie M jest rozmiarem macierzy.

Dla macierzy A = D + R, gdzie D to macierz diagonalna macierzy A, a R = A - D. macierzą iteracji Jacobiego to $M = R * D^{-1}$ czyli iloczyn macierzy R oraz odwrotności macierzy D. Metoda jest zbieżna gdy wartość promienia spektralnego jest mniejsza od 1.

Metoda sukcesywnych nadrelaksacji.

Rozważam układ równań liniowych zapisany w postaci macierzowej Ax = B. Macierze L, D, U oznaczają rozkład współczynników A na macierze kolejno: poddiagonalną , diagonalną , naddiagonalną , tak, że zachodzi równość: A = L + D + U. Istnieje modyfikacja metody Gaussa-Seidla, która może znacznie przyśpieszyć jej zbieżność. Podstawowy wzór iteracyjny metody Gaussa-Seidla to:

$$D * x^{i+1} = -L * x^{i+1} - U * x^i + b$$

Wzór ten po modyfikacji wygląda następująco:

$$D * x^{i+1} = -L * \omega * x^{i+1} - [\omega * U - (1 - \omega) * D] * x^i + \omega * b$$
.

Dokonując przekształceń otrzymuje:

$$x^{i+1} = (D + \omega * L)^{-1} (-\omega * U + (1 - \omega) * D) * x^{i} + (D + \omega * L)^{-1} * b * \omega$$

w tym wzorze ω nazywamy współczynnikiem(parametrem) relaksacji. Zmieniając go można wpływać na zbieżność metody iteracji. Gdy ω =1, to metoda upraszcza się do Gaussa-Seidla. Aby zagwarantować zbieżność tak zmodyfikowanej metody - metody relaksacji - do rozwiązania, współczynnik ω może przyjmować jedynie wartości (0,2). Gdy ponadto współczynnik ω >1, to mówimy o metodzie kolejnych(sukcesywnych) nadrelaksacji(ang. Successive Over-Relaxation : SOR). Takie wartości współczynnika relaksacji przyśpieszają metodę Gaussa-Seidla. Dobór parametru ω jest wysoce zależny od problemu.

Zadanie 1

Zależność liczby iteracji od wartości ρ dla stałego rozmiaru macierzy dla pierwszego kryterium stopu(kolor czerwony) i drugiego kryterium stopu(kolor niebieski) x_0 - wektor zerowy, rozmiaru macierzy n=100.

Zależność liczby iteracji od różnych wektorów początkowych(x_0) dla stałego rozmiaru macierzy(n=100), przy stałej wartości ρ =0.00001 dla pierwszego kryterium stopu. x_0 - wektor składający się ze 100 takich samych liczb, przedstawiony na osi OX.

Zależność liczby iteracji od różnych wektorów początkowych (x_0) dla stałego rozmiaru macierzy(n=100), przy stałej wartości $\rho=0.00001$ dla drugiego kryterium stopu. x_0 - wektor składający się ze 100 takich samych liczb, przedstawiony na osi OX.

Zależność liczby iteracji od rozmiaru macierzy dla pierwszego(czerwony kolor) oraz drugiego kryterium stopu(niebieski kolor) przy stałej wartości ρ =0.00001.

Zależność normy wyniku od rozmiaru macierzy dla pierwszego kryterium stopu, wartość $\rho{=}0.00001,\,x_0{-}$ wektor zerowy

Zależność normy wyniku od rozmiaru macierzy dla drugiego kryterium stopu, wartość $\rho{=}0.00001,\,x_0{-}$ wektor zerowy

Zależność normy wyniku od wartości ρ (na osi zaznaczone jako "Stop") dla stałego rozmiaru macierzy(n=100), x_0 - wektor zerowy, dla pierwszego kryterium stopu.

Zależność normy wyniku od wartości ρ (na osi zaznaczone jako "Stop") dla stałego rozmiaru macierzy(n=100), x_0 - wektor zerowy, dla drugiego kryterium stopu.

Wnioski z zadania 1.

- 1. Drugie kryterium stopu wymaga nieco większej ilości iteracji niż kryterium pierwsze.
- 2. Ilość iteracji rośnie wprost proporcjonalnie do wektora początkowego oraz rozmiaru macierzy. Najoptymalniej wybrać wektor złożony z samych zer jako wektor początkowy.
- 3. Wzrost wartości ρ powoduje wzrost dokładności metody, ale również czas obliczeń.
- 4. Drugie kryterium stopu powoduje większą dokładność obliczeń(ok. 2,5 krotnie) niż pierwsze kryterium stopu dla macierzy o tym samym rozmiarze.
- 5. Metoda Jacobiego daje przewidywalne wyniki dopiero dla odpowiednio dużych macierzy(minimum 100 elementów).

Zadanie 2

Zależność promienia spektralnego od rozmiaru macierzy.

Wnioski z zadania 2.

1. Promień spektralny utrzymuje się na stałym poziomie ok. 0.33 < 1, co implikuje zbieżność metody

Zadanie 3

Zależność normy wyniku od rozmiaru macierzy, x_0 - wektor zerowy, parametr relaksacji $\omega=1.5$, wartość $\rho=0.00001$ dla pierwszego kryterium stopu(kolor czerwony) oraz drugiego(kolor niebieski.)

Zależność normy wyniku od parametru relaksacji, x_0 - wektor zerowy, stały rozmiar macierzy(n=100), wartość ρ =0.00001 dla pierwszego kryterium stopu(kolor czerwony) oraz drugiego kryterium (kolor niebieski).

Zależność liczby iteracji od parametru relaksacji, x_0 - wektor zerowy, stały rozmiar macierzy(n=100), wartość ρ =0.00001 dla pierwszego kryterium stopu(kolor czerwony) oraz drugiego kryterium (kolor niebieski).

Zależność liczby iteracji od wektora początkowego dla stałego rozmiaru macierzy(n=100), wartość ρ =0.00001, parametr relaksacji ω = 1.5 dla pierwszego kryterium stopu(czerwone kropki) i drugiego kryterium stopu(niebieski).

Zależność liczby iteracji od wartości ρ , dla stałego rozmiaru macierzy(n=100), x_0 - wektor zerowy, parametr relaksacji $\omega=1.5$. Pierwsze kryterium(czerwone), drugie(niebieskie)

Wnioski z zadania 3.

- 1. Im większy parametr relaksacji, tym więcej iteracji. Kryterium stopu nie ma wpływu na ilość iteracji.
- 2. Wzrost wartości ρ powoduje obniżenie ilości iteracji. Kryterium stopu praktycznie nie ma wpływu na ilość iteracji(różnica wynosi jeden).
- 3. Metoda SOR z odpowiednim parametrem relaksacji zmniejsza ilość potrzebnych iteracji(dla rozmiaru n=100, z ok. 16-17 do 10).
- 4. Metoda SOR powoduje zwiększenie dokładności obliczeń.
- 5. W zależności od parametru relaksacji norma wyniku utrzymuje się na stałym poziomie lub nieznacznie rośnie. Kryterium nr 1 jest bardziej wrażliwe na zaburzenia.
- 6. Wyznaczenie odpowiedniego parametru relaksacji dla problemu jest bardzo ważne. Tylko wtedy metoda SOR umożliwia obniżenie ilości iteracji w porównaniu do metody Jacobiego.

Podsumowanie.

Zarówno metoda Jacobiego jak i metoda SOR spisują się bardzo dobrze w rozwiązywaniu układów równań liniowych. Metoda SOR pozwala na szybsze uzyskanie dokładniejszych wyników pod warunkiem obliczenia współczynnika relaksacji dla odpowiedniego problemu numerycznego.