Inverse Probleme in der Geophysik Vorlesung (Vertretung K. Spitzer) TU Bergakademie Freiberg, SS 2020

Teil 7: Abschluss Lineare Probleme mit Strahlentomographie

Thomas Günther (LIAG Hannover) (Thomas.Guenther@extern.tu-freiberg.de)

8. Juni 2020

Abschluss Lineare Probleme

Inhalt der heutigen Veranstaltung

- Termindiskussion
- Zusammenfassung Lineare Probleme
- Fortsetzung Strahlentomographie, Fragensammlung?
 - Vorstellung meines Notebooks
 - einige Umstellungen und Vereinfachungen
 - An-Lösung der Aufgaben Teile A bis C
 - Fragestunde?
 - individuelles Üben in Breakout Rooms
 - Erreichung Kenntnisstand für eigenständige Lösungen
- Ausblick Belegaufgaben Teil 1: Strahlentomographie mit JNB
 - Skizzierung der zugrunde liegenden Gleichungen
 - Inversion synthetischer Daten mit realistischen Größen
 - Parameter-Studien mit verschiedenen Verfahren

Lineare Inversionsprobleme

Haupt-Werkzeug: SVD

- Analyse des Problemtyps und Verständnis für Aufgabe
 - ⇒ Unterteilung in Modell- bzw. Daten-Raum und Nullräume
- verallgemeinerte Inverse für alle Probleme (LS und MN-Lösung Spezialfälle)
- Modell-Konstruktion aus Modellvektoren (Wichtung Projektion auf Datenraum)
- kleine Singulärwerte haben großen Einfluss (Verstärkung Rauschen)

Regularisierung

- TSVD-Regularisierung durch Reduktion des Rangs (pinv, svd)
- Explizite Regularisierung (gewichtete Minimierung von Residuum und Modellnorm)
 - Einheitsmatrix: Gedämpfte Normalgleichungen (im Modellraum!)
 - Ableitungsmatritzen: Smoothness constraints (im Null-Raum!)
- Auswahl des Regularisierungsparameters (L-Kurve, Diskrepanzprinzip)

Lektionen Lineare Inversionsprobleme

Was sollten wir gelernt haben (oder heute zu Ende lernen)

- Überbestimmte und unterbestimmte Probleme weniger Parameter einfach
- L2-Norm-Minimierung ist Verbunden mit Gauss-schem Rauschen
- Inversions-Ergebnisse stehen und fallen mit Stärke des Rauschens
- Wichtung mit Datenfehlern hilft, Robuste Inversion durch Re-Wichtung
- Diskrepanzprinzip bei synthetischen Rechnungen, Fehleranalyse sonst
- mehrdimensionale Probleme sind oft gemischt (und schlecht) gestellt
- kleine Singulärwerte machen Probleme ⇒ Regularisierung nötig (Abschneiden oder Dämpfung von Modellvektoren, Nebenbedingungen)
- Auflösungsmatritzen zeigen Grenzen des Machbaren und Wichtung der Daten

Regularisierung

Minimierung einer gewichteten Summe (Residuum + Constraints):

$$\|\mathbf{Gm} - \mathbf{d}\|^2 + \lambda^2 \|\mathbf{Wm}\|^2 \rightarrow \min$$

 λ ist ein Wichtungsfaktor mit Einheit [λ]=[Daten]/[Modell], führt zu

$$(\mathbf{G}^T\mathbf{G} + \lambda^2 \mathbf{W}^T\mathbf{W})\mathbf{m} = \mathbf{G}^T\mathbf{d}$$

Ist identisch zum inversen Problem

$$\begin{bmatrix} \mathbf{G} \\ \lambda \mathbf{W} \end{bmatrix} \mathbf{m} - \begin{bmatrix} \mathbf{d} \\ \mathbf{0} \end{bmatrix} \to \mathsf{min}$$

Regularisierung

Minimierung einer gewichteten Summe (Residuum + Constraints):

$$\|\mathbf{Gm} - \mathbf{d}\|^2 + \lambda^2 \|\mathbf{Wm}\|^2 \rightarrow \min$$

 λ ist ein Wichtungsfaktor mit Einheit [λ]=[Daten]/[Modell], führt zu

$$(\mathbf{G}^T\mathbf{G} + \lambda^2\mathbf{W}^T\mathbf{W})\mathbf{m} = \mathbf{G}^T\mathbf{d}$$

- Einfachster Fall: W ist Einheitsmatrix I: gedämpfte Normalengleichungen ⇒ kleinstes Modell
- Weiterer häufiger Fall: W ist diskrete Ableitungsmatrix: smoothness constraints ⇒ glattestes Modell:

Glattheits-Nebenbedingungen (Smoothness Constraints)

Wir minimieren die Rauhigkeit, d.h. Gradienten oder Krümmung im Modell. Beispiel Rauhigkeitsoperator 1. Ableitung für 1D-Modell

$$\begin{bmatrix} -1 & 1 & 0 & \dots \\ 0 & -1 & 1 & 0 & \dots \\ \vdots & \ddots & \ddots & \vdots \\ \dots & 0 & -1 & 1 \end{bmatrix}$$

Beispiel Rauhigkeitsoperator 2. Ableitung für 1D-Modell

$$\begin{bmatrix} -1 & 2 & -1 & 0 & \dots \\ 0 & -1 & 2 & -1 & 0 & \dots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ \dots & \dots & 0 & -1 & 2 & -1 \end{bmatrix}$$

Glattheits-Nebenbedingungen (Smoothness Constraints)

Wir minimieren die Rauhigkeit, d.h. Gradienten oder Krümmung im Modell. Beispiel Rauhigkeitsoperator 1. Ableitung für 2D-Modell

$$\begin{bmatrix} -1 & 1 & 0 & \dots & \dots \\ 0 & -1 & 1 & 0 & \dots \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ \dots & \dots & 0 & -1 & 1 \\ -1 & 0 & \dots & 1 & 0 & \vdots \\ \vdots & -1 & \dots & 0 & 1 \end{bmatrix} = \begin{bmatrix} \mathbf{W}_x \\ \mathbf{w}_y \end{bmatrix}$$

Alternativ: $\|\mathbf{Gm} - \mathbf{d}\|^2 + \lambda_x \|\mathbf{W}_x \mathbf{m}\| + \lambda_y \|\mathbf{W}_y \mathbf{m}\| \to \min$

Wahl des Regularisierungsparameters λ

Kompromiss zwischen Datenanpassung und Modellnorm

Wahl des Regularisierungsparameters λ

Wahl des Regularisierungsparameters λ

Das Diskrepanzprinzip

Wähle λ so, dass die Daten im Rahmen ihrer Fehler angepasst werden ($\chi^2 = 1$):

$$\min \|\mathbf{Wm}\|_2^2$$
 subject to $\|\mathbf{\hat{G}m} - \mathbf{\hat{d}}\|_2^2 = N$

z.B. Such das glatteste Modell (größte λ) das die Daten (gerade noch so) anpassen kann.

Beziehung zwischen gedämpften Normalgleichungen und SVD

$$\boldsymbol{m} = (\boldsymbol{G}^T \boldsymbol{G} + \lambda^2 \boldsymbol{I})^{-1} \boldsymbol{G}^T \boldsymbol{d}$$

$$\mathbf{m} = (\mathbf{V}\mathbf{S}\mathbf{U}^T\mathbf{U}\mathbf{S}\mathbf{V}^T + \lambda^2\mathbf{I})^{-1}\mathbf{V}\mathbf{S}\mathbf{U}^T\mathbf{d}$$

$$\mathbf{m} = (\mathbf{V} \cdot \operatorname{diag}(s_i^2 + \lambda^2)\mathbf{V}^T)^{-1}\mathbf{VSU}^T\mathbf{d}$$

$$\mathbf{m} = \sum_i rac{s_i}{s_i^2 + \lambda^2} \mathbf{U}_i^T \mathbf{dV}_i = \sum_i rac{s_i^2}{s_i^2 + \lambda^2} rac{\mathbf{U}_i^T \mathbf{d}}{s_i} \mathbf{V}_i$$

Die Filterfaktoren $f_i = \frac{s_i^2}{s_i^2 + \lambda^2}$ sorgen für ein geringeres Gewicht $g_i = \frac{s_i}{s_i^2 + \lambda^2}$ kleiner Singulärwerte.

Extremfälle: $\lambda_i \gg s_i \Rightarrow f_i/g_i \rightarrow 0$, $\lambda_i \ll s_i \Rightarrow f_i = 1$, $/g_i = 1/s_i$

Auflösung

Modellauflösungsmatrix und Informationsdichtematrix für SVD:

$$\mathbf{R}^{M} = \mathbf{V}_{r} \mathbf{V}_{r}^{T}$$
 und $\mathbf{R}^{D} = \mathbf{U}_{r} \mathbf{U}_{r}^{T}$

Beachte: $\mathbf{V}^T\mathbf{V} = \mathbf{I}$ und $\mathbf{V}_r^T\mathbf{V}_r = \mathbf{I}$ aber nicht anders herum! Mit wachsendem Rang r geht \mathbf{R}^M gegen \mathbf{I} .

$$\mathbf{R}^M - \mathbf{I} = \mathbf{V}_r \mathbf{V}_r^T - \mathbf{V} \mathbf{V}^T = -\mathbf{V}_0 \mathbf{V}_0^T$$

Modellauflösungsmatrix und Informationsdichtematrix für SVD:

$$\mathbf{R}^{M} = \mathbf{V} \cdot \operatorname{diag}(f_{i}) \cdot \mathbf{V}^{T}$$
 und $\mathbf{R}^{D} = \mathbf{U} \cdot \operatorname{diag}(f_{i}) \cdot \mathbf{U}^{T}$

Auflösung für regularisierte Inversion

generalisierte Inverse:

$$\mathbf{G}^{\dagger} = (\mathbf{G}^{T}\mathbf{G} + \lambda^{2}\mathbf{W}^{T}\mathbf{W})^{-1}\mathbf{G}^{T}$$

Modell-Auflösung:

$$\mathbf{R}^{M} = \mathbf{G}^{\dagger} \mathbf{G} = (\mathbf{G}^{T} \mathbf{G} + \lambda^{2} \mathbf{W}^{T} \mathbf{W})^{-1} \mathbf{G}^{T} \mathbf{G} = \mathbf{V} \cdot \operatorname{diag}(f_{i}) \cdot \mathbf{V}^{T}$$

nähert sich Einheitsmatrix I für $\lambda \to 0$

Daten-Auflösung:

$$\mathbf{R}^D = \mathbf{G}\mathbf{G}^{\dagger} = \mathbf{G}(\mathbf{G}^T\mathbf{G} + \lambda^2\mathbf{W}^T\mathbf{W})^{-1}\mathbf{G}^T = \mathbf{U} \cdot \operatorname{diag}(f_i) \cdot \mathbf{U}^T$$

Auflösungsradius

Die Hauptdiagonalen-Elemente definieren die Rekonstruierbarkeit der Parameterzellen

Beispiel

Ein Wert von 0.25 bedeutet, dass nur der Mittelwert über 2x2 Zellen bestimmt werden kann. (umgekehrt proportional zur Zellgröße des auflösbaren Bereichs)

Ableitung eines äquivalenten Radius

$$R_{ii}^{M} = rac{A_{Zelle}}{A_{Bereich}} = rac{A}{\pi r_{res}^{2}} \qquad \Rightarrow \qquad r_{res} = \sqrt{rac{A}{\pi R^{M} i i}}$$

Damit erhalten wir ein geometrisches Maß für die Auflösbarkeit kleiner Anomalien oder Grenzen

Parameter-Kovarianz

Theorem

Sei \mathbf{x} ein multivariabler, normalverteilter Zufallsvektor mit dem Erwartungswert μ und der Kovarianz \mathbf{C} und sei $\mathbf{y} = \mathbf{A}\mathbf{x}$. Dann ist y ebenfalls ein multivariabler, normalverteilter Zufallsvektor mit dem Erwartungswert $E(y) = \mathbf{A}\mu$ und der Kovarianz $\operatorname{cov}(\mathbf{y}) = \mathbf{A}\mathbf{C}\mathbf{A}^T$

Inverse Probleme

$$\begin{split} E(\mathbf{m}) &= E(\mathbf{G}^{\dagger}\mathbf{d}) = \mathbf{G}^{\dagger}E(\mathbf{d}) = \mathbf{R}^{M}\mathbf{m}^{true} \\ &\operatorname{cov}(\mathbf{m}) = \mathbf{G}^{\dagger} \cdot \operatorname{cov}(\mathbf{d})(\mathbf{G}^{\dagger})^{T} \end{split}$$

Beispiel Least-Squares mit einheitlicher Datenvarianz σ

$$\mathsf{cov}(\mathbf{m}) = \sigma^2 (\mathbf{G}^T \mathbf{G})^{-1} \mathbf{G}^T \mathbf{G} (\mathbf{G}^T \mathbf{G})^{-1} = \sigma^2 (\mathbf{G}^T \mathbf{G})^{-1}$$

Trade-off zwischen Kovarianz und Bias

Kovarianz

Bei Verwendung fehlergewichteter Daten (cov=I) ergibt sich

$$\mathsf{cov}(\mathbf{m}) = \mathbf{G}^\dagger (\mathbf{G}^\dagger)^T$$

$$\operatorname{\mathsf{cov}}(\mathbf{m}) = \mathbf{V}_r \mathbf{S}^{-2} \mathbf{V}_r^T = \sum_i rac{V_i V_i^T}{s_i^2}$$

Bias = systematische Abweichung

$$E(\mathbf{m}^{true}) - \mathbf{m}^{true} = \mathbf{R}^{M} \mathbf{m}^{true} - \mathbf{m}^{true} = (\mathbf{R}^{M} - \mathbf{I}) \mathbf{m}^{true}$$

kleiner Bias ⇒ Modellbestimmtheit steigt, aber Kovarianz (Unsicherheit) auch