

Quantum Computing Introduction

Fundamentals: A One-Qubit World

Bernardo Villalba Frías, PhD

b.r.villalba.frias@hva.nl

Qubit

- Quantum Bit
- System with 2 distinguishable states: $|0\rangle$ and $|1\rangle$
- ullet Represented as a vector $|\psi
 angle$ in a 2–D space
 - → over the complex numbers
 - Basis: $|0\rangle$ and $|1\rangle$
- Indeterminate state (before measurement)
- A qubit can be in superposition:
 - 2 states at the same time
 - Linear combination of 2 states

Qubit

• Arbitrary quantum state $|\psi\rangle$:

$$|\psi\rangle = \alpha |0\rangle + \beta |1\rangle \rightarrow$$
Superposition

- α and β are complex numbers $(\alpha, \beta \in \mathbb{C})$
- α and β are called probability amplitudes
- A "ket" represents a column vector:

$$|0\rangle = \begin{bmatrix} 1\\0 \end{bmatrix} \qquad |1\rangle = \begin{bmatrix} 0\\1 \end{bmatrix}$$

Quantum state now rewritten as a state vector:

$$|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$$

$$= \alpha \begin{bmatrix} 1 \\ 0 \end{bmatrix} + \beta \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$= \begin{bmatrix} \alpha \\ \beta \end{bmatrix}$$

The Born rule

 The modulus squared of the amplitude of a state is the probability of that state resulting after measurement

•
$$\mathbf{Pr} \{ M(|\psi\rangle) = |0\rangle \} = \overline{\alpha}\alpha = |\alpha|^2$$

- $\mathbf{Pr}\left\{M(|\psi\rangle) = |1\rangle\right\} = \overline{\beta}\beta = |\beta|^2$
- Furthermore, $|\psi\rangle$ have to be normalized:

$$\langle \psi | \psi \rangle = 1$$
$$|\alpha|^2 + |\beta|^2 = 1$$
$$\overline{\alpha}\alpha + \overline{\beta}\beta = 1$$

Question #1

Question 1 Given the quantum state $|\psi\rangle=\sqrt{\frac{1}{3}}\,|0\rangle+\sqrt{\frac{2}{3}}\,|1\rangle$. Is $|\psi\rangle$ a valid quantum state? Explain why.

Write down your solution here:

Superposition

- Linear combination of computational basis
- For instance:

$$|\psi_1\rangle = \frac{3}{5}|0\rangle + \frac{4}{5}|1\rangle$$
$$|\psi_2\rangle = \frac{3}{5}|0\rangle - \frac{4}{5}|1\rangle$$

- Negative sign on $|1\rangle$ state \rightarrow *relative phase*
- Relative phase:
 - Constructive and destructive interference

$$|\psi\rangle = |\psi_1\rangle + |\psi_2\rangle$$

$$= \frac{3}{5}|0\rangle + \frac{4}{5}|1\rangle + \frac{3}{5}|0\rangle - \frac{4}{5}|1\rangle$$

$$= \frac{5}{6}\left(\frac{3}{5}|0\rangle + \frac{3}{5}|0\rangle\right)$$

$$= \frac{5}{6}\left(\frac{6}{5}|0\rangle\right)$$

$$= |0\rangle$$

Global phase

- Negative sign applied to the entire state
 - Not only to one term in the superposition
- Negative sign on $|\psi\rangle \rightarrow global\ phase$
- Global phase:
 - No physical meaning
 - No impact on quantum measurement
 - Do not affect the amplitude of a complex number

Uniform superposition

- Special state
- Equal probability of collapsing to any basis vector
- All the basis vectors have the same probability amplitude

$$|+\rangle = \frac{1}{\sqrt{2}} \left(|0\rangle + |1\rangle \right)$$

• 50% probability of collapsing to either state $|0\rangle$ or $|1\rangle$

Measurement

- ullet Classical physics o No effect on the system
- Quantum mechanics → Significant effect
- Every measurable quantity is described by a corresponding Hermitian operator O (observable) acting on the state $|\psi\rangle$
 - Each possible outcome of the measurement is an eigenvalue λ_i of the observable
 - The state after measurement is the eigenvector associated with λ_i

Measurement

- Possible to observe a qubit in superposition? NO!
- Upon measurement, it has to pick one state
- "Collapses", not arbitrarily, to $|0\rangle$ or $|1\rangle$
 - Probability amplitudes
- ullet Reason for normalizing the state vector $|\psi
 angle$
 - Sum of probabilities must be 1
- Observation changes state!
- Measurement is irreversible

Bloch sphere

- Visual representation of a qubit:
- State vector $|\psi\rangle$ is represented by θ and ϕ :

$$|\psi\rangle = \cos\frac{\theta}{2}|0\rangle + e^{i\phi}\sin\frac{\theta}{2}|1\rangle$$

- Spherical coordinate system
- θ and ϕ can describe every point on the sphere's surface

Bloch sphere

• Why $z = |0\rangle$? $\theta = 0$, $\phi = 0$

$$|\psi\rangle = \cos\frac{\theta}{2}|0\rangle + e^{i\phi}\sin\frac{\theta}{2}|1\rangle$$
$$= \cos(0)|0\rangle + e^{0}\sin(0)|1\rangle$$
$$= |0\rangle$$

• Why $-z=|1\rangle$? $\theta=\pi$, $\phi=0$

$$\begin{aligned} |\psi\rangle &= \cos\frac{\theta}{2} |0\rangle + e^{i\phi} \sin\frac{\theta}{2} |1\rangle \\ &= \cos\frac{\pi}{2} |0\rangle + e^{0} \sin\frac{\pi}{2} |1\rangle \\ &= |1\rangle \end{aligned}$$

Bloch sphere

$$|0\rangle = \begin{bmatrix} 1\\0 \end{bmatrix}$$

$$|1\rangle = \begin{bmatrix} 0\\1 \end{bmatrix}$$

$$|+\rangle = \frac{1}{\sqrt{2}} (|0\rangle + |1\rangle) = \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\1 \end{bmatrix}$$

$$|-\rangle = \frac{1}{\sqrt{2}} (|0\rangle - |1\rangle) = \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\-1 \end{bmatrix}$$

$$|+i\rangle = \frac{1}{\sqrt{2}} (|0\rangle + i|1\rangle) = \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\i \end{bmatrix}$$

$$|-i\rangle = \frac{1}{\sqrt{2}} (|0\rangle - i|1\rangle) = \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\-i \end{bmatrix}$$

Quantum Circuit Model

- Well-defined initial state (usually $|0\rangle$)
- State changes when passing through a "quantum gate"
 - Acts over one or two qubits
 - In a controlled manner
- Final state after the computation:
 - Trace what every quantum gate does to the qubit

Measurement

Quantum gates

- Allow to perform operations on qubits
- Modeled by linear transformations:
 - Unitary transformations (reversible)
 - Its conjugate transpose (U^{\dagger}) is also its inverse: $UU^{\dagger}=U^{\dagger}U=I$
 - Preserve state normalization
- Counter-clockwise rotation around an axis of the Bloch sphere

Quantum gates

Represented by circuit notation:

$$|\psi_{ ext{in}}
angle --- |U| ---- |\psi_{ ext{out}}
angle$$

Or by unitary matrices:

$$U = \begin{bmatrix} u_{1,1} & u_{1,2} & \dots & u_{1,n} \\ u_{2,1} & u_{2,2} & \dots & u_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ u_{n,1} & u_{n,2} & \dots & u_{n,n} \end{bmatrix}$$

• The action of the gate on a quantum state is obtained by multiplying: $U | \psi \rangle$

NOT gate

- Acts on a single qubit:
 - $\bullet \quad |0\rangle \to |1\rangle$
 - $|1\rangle \rightarrow |0\rangle$
- Represented by the matrix $X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$
- Circuit notation:

NOT gate

- Example:
 - Matrix notation:

$$|\psi_{out}\rangle = X |0\rangle$$

$$= \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$= \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

Circuit notation:

$$\begin{array}{c|c} & \text{Pr}\{|0\rangle\}=0 \\ & \text{Pr}\{|1\rangle\}=1 \\ & |1\rangle \end{array}$$

Pauli gates

- The most simple quantum gates
- Rotation of π radians around the X, Y, or Z axis of the Bloch sphere
- Hence, they are called: Pauli–X, Pauli–Y and Pauli–Z
- The Pauli matrices are involutory:
 - Matrix that is its own inverse
 - $X^2 = Y^2 = Z^2 = I$

Pauli gates

Pauli–X	Pauli $-Y$	Pauli– Z
X	Y	Z
$X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$	$Y = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$	$Z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$

Hadamard gate

- Creates superpositions from $|0\rangle$ and $|1\rangle$
- A measurement will have equal probabilities to return states $|1\rangle$ or $|0\rangle$
 - $|0\rangle \rightarrow |+\rangle = \frac{1}{\sqrt{2}} (|0\rangle + |1\rangle)$
 - $|1\rangle \rightarrow |-\rangle = \frac{\sqrt{1}}{\sqrt{2}} (|0\rangle |1\rangle)$
- Represented by the matrix $H = \frac{1}{\sqrt{2}} \begin{vmatrix} 1 & 1 \\ 1 & -1 \end{vmatrix}$
- H is also an unitary matrix
- Circuit notation:

Question #3

Question 3 Assume that you can only use the quantum gates from the set $\mathcal{Q} = \{I, X, Y, Z, H\}$. Is it possible to create the quantum state $|\psi_{out}\rangle = \frac{i}{\sqrt{2}}\,|0\rangle - \frac{i}{\sqrt{2}}\,|1\rangle$ starting from the qubit $|\psi_{in}\rangle = |0\rangle$. Explain how?

Write down your solution here:

Phase shift gate (R_{ϕ})

- Family of single—qubit gates
- Modifies the phase of the quantum state

 - $\begin{array}{ccc} \bullet & |0\rangle \rightarrow |0\rangle \\ \bullet & |1\rangle \rightarrow e^{i\phi} |1\rangle \end{array}$
- Represented by the matrix: $R_{\phi} = \begin{vmatrix} 1 & 0 \\ 0 & e^{i\phi} \end{vmatrix}$
- Circuit notation:

Pauli–Z is a special case $\rightarrow \phi = \pi$

S gate

• Another special case of the R_{ϕ} gate:

- Represented by the matrix: $S = \begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix}$
- Circuit notation:

• The inverse of $S = S^{\dagger}$

T gate

• Another special case of the R_{ϕ} gate:

- Represented by the matrix: $T=\begin{bmatrix} 1 & 0 \\ 0 & e^{i\frac{\pi}{4}} \end{bmatrix}$
- Circuit notation:

• Note: $S = T^2$

A simple circuit

$$Pr\{|0\rangle\}=0.5$$

 $Pr\{|1\rangle\}=0.5$
 $\frac{1}{\sqrt{2}}(|0\rangle-|1\rangle)$

Question #9

Figure 2: An arbitrary quantum circuit.

Question 9 Consider the quantum circuit presented in Figure 2 and assume $|q_0\rangle = |1\rangle$. Determine, by using the Dirac notation, what is the state vector $|\psi_{out}\rangle$?

Write down your solution here:

 $\rightarrow |1\rangle$

What is next?

- Assignment is already available (check DLO)
- Bring your laptop for the next class
 - Please, with the software already installed
- ESK Wiskunde lectures and workshops
- Q & A, Discussion
 - Questions about the assignments or the material
 - Feel free to propose any discussion
 - You can always write me an email

