Reading & Writing Control of ROM to FIFO to RAM

Agenda

- Structure of Circuit
- Finite-State Machine
- Results of Simulation
- Timing Constraints
- Results of Synthesis

Structure of Circuit

Finite-State Machine (FSM)

if FIFO is not full

Rom to FIFO

if FIFO is full

```
fifo_wren = 0
rom_addr = rom_addr
```

if FIFO is not full but Rom has been read finished

IDLE

fifo_wren = 0 rom_addr = 0

if FIFO is not full

```
fifo_wren = 1
rom_addr = rom_addr
```

INCADR

```
fifo_wren = 0
rom_addr = rom_ addr + 1
```

if Rom has been read finished

DONE

```
fifo_wren = 0
rom_addr = rom_addr
```


Finite-State Machine (FSM)

FIFO to RAM

ram_addr = 8'hff

 $ram_wren = 0$

ram_ena = 0

 $ram_enb = 0$

fifo_rdeq = 0

IDLE

WRITE

```
ram_addr = ram_addr
ram_wren = 1
ram_ena = 1
ram_enb = 1
fifo_rdeq = 0
```

if FIFO is not empty

```
ram_addr = ram_addr + 1
ram_wren = 0
ram_ena = 0
ram_enb = 0
fifo_rdeq = 1
```

INCADR

if FIFO is full

```
ram_addr = 0
ram_wren = 0
ram_ena = 0
ram_enb = 0
fifo_rdeq = 0
```

if FIFO is empty

```
ram_addr = ram_addr
ram_wren = 0
ram_ena = 0
ram_enb = 0
fifo_rdeq = 0
```

ram_addr = ram_addr ram_wren = 0 ram_ena = 0 ram_enb = 0 fifo_rdeq = 0

if FIFO is full or if FIFO is not empty

Results of Simulation – Transmitting Domain

Results of Simulation – Receiving Domain

Results of Simulation – When FIFO is full

Results of Simulation – completion of ROM to FIFO

Results of Simulation – completion of FIFO to RAM

Timing Constraints

trclk is 200MHz, and rvclk is 50MHz

Results of Synthesis

fsm_extraction: auto

Results of Synthesis

fsm_extraction: gray

WNS = 0.364 ns

Thank you very much for your attention!

Appendix

Appendix – Finite-State Machine (FSM)

Appendix – Finite-State Machine (FSM)

FIFO to RAM

if FIFO is full or if FIFO is not empty

ram_wren = 0 ram_ena = 0

ram enb = 0

fifo rdeq = 1

WRITE

if FIFO is empty

```
ram_addr = ram_addr
ram_wren = 0
ram_ena = 0
ram_enb = 0
fifo_rdeq = 0
```

WAIT

```
ram_addr = ram_addr
ram_wren = 0
ram_ena = 0
ram_enb = 0
fifo_rdeq = 0
```

if FIFO is not empty

if FIFO is full ram_addr = ram_addr + 1 INCADR

```
ram_addr = ram_addr
ram_wren = 1
ram_ena = 1
ram_enb = 1
fifo_rdeq = 0
```


Appendix – Transmitting Domain

Appendix – Receiving Domain

Appendix – When FIFO is full

Appendix – completion of ROM to FIFO

Appendix – completion of FIFO to RAM

Results of Synthesis

fsm_extraction: auto

Results of Synthesis

fsm_extraction: gray

