Chapitre 3

Dénombrement et Combinatoire

I. PARTIES D'UN ENSEMBLE

A. DÉFINITION

E étant un ensemble, la notation ⊂ signifie « inclus dans » :

 $A \subset E$

C'est-à-dire que tout élément de A appartient à E. On dit alors que A est une partie, ou sous-ensemble de E. L'Ensemble vide, noté \varnothing est une *partie* de tout ensemble. L'Ensemble des parties de E est noté $\mathscr{P}(E)$.

1. EXEMPLE

Si E = $\{x; y\}$ est un ensemble de deux éléments :

$$\mathscr{P}(E) = \{\varnothing, \{x\}, \{y\}, \{x;y\}\}$$

B. DÉFINITION

Un ensemble fini est un ensemble dont le nombre d'éléments est fini.

C. DÉFINITION

On appelle cardinal, noté « Card », le nombre d'éléments d'un ensemble fini d'une partie (ou sous-ensemble).

1. EXEMPLE

Si un ensemble E possède n éléments, alors on peut noter Card (E) = n. Pour toute partie A \subset E, Card (A) \leq Card (E).

D. PROPRIÉTÉ (PRINCIPE ADDITIF)

Si A et B sont deux parties quelconques d'un ensemble fini E, alors :

$$Card(A \cup B) = Card(A) + Card(B) - Card(A \cap B)$$

De plus, si A_1 , A_2 ,..., A_p sont p parties deux à deux disjointes d'un ensemble fini, alors :

$$Card(A_1 \cup A_2 \cup \cdots \cup A_p) = Card(A_1) + Card(A_2) + \cdots + Card(A_p)$$

E. Propriété

Soit $n \in \mathbb{N}$, et E un ensemble tel que Card (E) = n. Alors, E possède 2^n parties. Autrement dit :

$$\operatorname{Card}(\mathscr{P}(\mathbf{E})) = 2^n$$

1. DÉMONSTRATION PAR RÉCURRENCE

A. INITIALISATION

Pour n = 0, $E = \emptyset$, donc la seule partie de E est $\{\emptyset\}$ et $1 = 2^0$.

B. HÉRÉDITÉ

Supposons que tout ensemble à k éléments, où k est un certain entier naturel, admet 2^k parties.

Alors, soit E, un ensemble à k+1 éléments.

Soit *x*, un élément de E.

Alors, il y a deux familles de parties de E, celles qui contiennent x et celles qui ne le contiennent pas.

Or E \ $\{x\}$ est un ensemble à k éléments, il y a donc 2^k parties de E qui ne contiennent pas x.

En adjoignant x à toutes ces parties, on obtient toutes les parties qui contiennent x, donc il y en a également 2^k .

Ainsi, le nombre de parties de E est de $2^k + 2^k = 2^{k+1}$. \square

II. PRODUIT CARTÉSIEN D'ENSEMBLES

A. DÉFINITION

- E et F étant deux ensembles, le *produit cartésien* E × F est l'ensemble de couples (a;b), où $a \in E$ et $b \in F$.
- E, F et G étant trois ensembles, le *produit cartésien* E × F × G est l'ensemble des triplets (a;b;c) où $a \in E$, $b \in F$ et $c \in G$.

1. Cas Général

— Le *produit cartésien* $E_1 \times E_2 \times \cdots \times E_n$ des ensembles E_1, E_2, \dots, E_n est l'ensemble des n-uplets $(a_1; a_2; \dots; a_n)$ où $a_1 \in E_1, a_2 \in E_2, \dots, a_n \in E_n$.

B. NOTATIONS

 $E \times E$ se note E^2 , $E \times E \times \cdots \times E$ se note E^k .

C. EXEMPLES

Soit $E = \{a; b; c\}$ et $F = \{1; 2\}$.

- $E \times F = \{(a;1);(a;2);(b;1);(b;2);(c;1);(c;2)\}$
- $-- F \times F = \{(1;1); (1;2); (2;1); (2;2)\}$
- (a;b;b;a;c) est un 5-uplet d'élément de E, il appartient à E^5 .

D. Propriété

Si $E_1, E_2, ..., E_n$ sont n ensembles finis:

$$Card(E_1 \times E_2 \times \cdots \times E_n) = Card(E_1) \times Card(E_2) \times \cdots \times Card(E_n)$$

1. Cas Particulier

Si E est un ensemble fini, pour tout $k \in \mathbb{N}^*$:

$$\operatorname{Card}\left(\mathbf{E}^{k}\right) = \left(\operatorname{Card}\left(\mathbf{E}\right)\right)^{k}$$

2. EXEMPLES

Dans les exemples précédents:

—
$$Card(E \times F) = 6 = Card(E) \times Card(F)$$

— Card
$$(F^2) = 4 = 2^2 = (Card(F))^2$$

III. PERMUTATIONS

A. Définition

Soit E, un ensemble à n éléments, une permutation est un n-uplet d'éléments distincts de E.

Autrement dit, une permutation est une façon d'ordonner les *n* éléments de E.

1. Exemple

On considère l'ensemble $G = \{a; b; c\}$. Ses permutations sont :

$$(a;b;c),(a;c;b),(b;a;c),(b;c;a),(c;a;b),(c;b;a)$$

G admet donc 6 permutations.

B. Propriété

Le nombre de permutations d'un ensemble à n éléments est n!.

1. Remarque

$$n! = n \times (n-1) \times \cdots \times 2 \times 1$$

n! est le produit de tous les entiers de 1 à n.

n! se lit « factorielle de n ».

2. EXPLICATION

On peut considérer que faire une permutation c'est faire un tirage sans remise des n éléments de E. Il y n choix pour le premier élément, n-1 pour le deuxième et ainsi de suite.

3. DÉMONSTRATION PAR RÉCURRENCE

A. INITIALISATION

Un ensemble à un élément admet une permutation, et 1! = 1.

B. HÉRÉDITÉ

Supposons que tout ensemble à n élément (n fixe) admette n! permutations.

Soit E, un ensemble à n + 1 éléments.

On choisit un élément x de E.

Dans chacune des permutations des n éléments restants, il y a n+1 positions où insérer x.

Ainsi, le nombre de permutations de E est $(n+1) \times n! = (n+1)!$. \square

IV. COMBINAISONS

Dans tout ce sous-chapitre, E est un ensemble à n éléments et p est un entier naturel tel que $p \le n$.

A. DÉFINITION

Une combinaison de *p* éléments de E est une partie de E possédant *p* éléments.

1. Remarque

L'ordre des éléments n'a pas d'importance, les éléments sont distincts.

B. Propriété

Le nombre de combinaisons à p éléments de E est égal à $\binom{n}{p}$, où :

$$\binom{n}{p} = \frac{n!}{p!(n-p)!}$$

$$\binom{n}{p} = \frac{n(n-1) \times \cdots \times (n-p+1)}{p!}$$

 $\binom{n}{p}$ est appelé *coefficient binomial* et il se lit « p parmi n ».

1. EXPLICATION

Lorsqu'on choisit p éléments dans un ensemble à n éléments, on a n choix pour le premier, n-1 choix pour le deuxième, etc. mais ainsi, les p éléments sont ordonnés.

On divise donc par le nombre de permutations de p éléments, c'est-à-dire p!.

2. Cas Particuliers

$$\binom{n}{0}$$
 = 1 La seule partie de E à 0 élément est \varnothing .

$$\binom{n}{n} = 1$$
 La seule partie de E à n éléments est E.

$$\binom{n}{1} = n$$
 Il y à *n* parties de E à 1 élément.

C. Propriété: Symétrie

Choisir p, c'est ne pas choisir n - p:

$$\binom{n}{n-p} = \binom{n}{p}$$

Démonstration Alternative :

$$\binom{n}{n-p} = \frac{n!}{(n-p)!(n-(n-p))!} = \frac{n!}{(n-p)!p!} = \binom{n}{p}$$

D. PROPRIÉTÉ: RELATION DE PASCAL

$$\binom{n+1}{p+1} = \binom{n}{p} + \binom{n}{p+1}$$

1. DÉMONSTRATION

Soit E, un ensemble à n+1 éléments (on va compter le nombre de parties de E à p+1 éléments).

Soit *x* un élément de E.

Alors il y a deux « familles » de parties : celles qui contiennent x et celles qui ne le contiennent pas.

Or $E \setminus \{x\}$ contient n éléments.

Donc il y a $\binom{n}{p}$ à p éléments de $E \setminus \{x\}$.

En leur adjoignant x, on obtient toutes les parties à p+1 éléments qui contiennent x.

Il y a $\binom{n}{p+1}$ parties de E qui ne contiennent pas x. (On choisit p+1 éléments dans E \ $\{x\}$ qui contient n éléments). \square

E. TRIANGLE DE PASCAL

p	0	1	2	3	4	5	6
0	1						
1	1	1					
2	1	2	1 3 6 10				
3	1	3	3	1			
4	1	4	6	4	1		
5	1	5	10	10	5	1	
6	1	6	15	20	15	6	1

FIGURE 3.1. – Représentation du Triangle de PASCAL

F. Propriété

$$\sum_{p=0}^{n} \binom{n}{p} = \binom{n}{0} + \binom{n}{1} + \dots + \binom{n}{n} = 2^{n}$$