- im reellen unitären VR $\varphi:=<(v,w)>=arcos(\frac{< v,w>}{||v||||w||})$ $-1\leq \frac{< v,w>}{||v||||w||}\leq 1$
 - - * wegen Schwarzsche Ungleichung
 - * $0 \le \varphi \le \pi$
 - kein Winkel für v = 0 oder w = 0
- Eigenschaften
 - < (v, w) = < (w, v)
 - $v,w \neq 0$ und < v,w> = 0 ==> $< (v,w) = \frac{\pi}{2}$ ==> v orthogonal zu w
 - $-<(v,-v)=\pi$
- WInkelmessung hängt von der Definition des Skalarprodukt ab
- im $V = \mathbb{R}^n$
 - Winkel bzgl. kanonischem Skalarprodukt ist der "geometrische" Winkel

Orthogonalität und orthonormiert

- im unitären VR sind v und w orthogonal, wenn
 - $-\langle v,w\rangle = 0$ bzgl. gewähltem Skalarprodukt
- $\{\} \neq A$ V ist orthonormiert, wenn
 - alle v A normiert
 - alle v A die Länge 1 haben $\leq = > ||v|| = 1$
 - paarweise orthogonal sind
- Jede endlich orthonormierte Teilmenge eines unitären VR mit <,> ist linear
 - Beweis VO#18 1:43

Orthonormierungsverfahren von GRAM-SCHMIDT

• Orthogonale Projektion des v_2 auf den von v_1 aufgespannten Unterraum

- $-v_2^* = < v_2, v_1' > v_1'$
 - * v' normierter Vektor von v
- · Verfahren um Orthonormalbasis zu bilden

- unitärer VR V mit <,> und induzierter Norm $||.||=\sqrt{<,>}$
- linear unabhängige Menge des Raumes $v_1,...,v_n$
- Unterraum $\boldsymbol{W}=\boldsymbol{w}_1,...,\boldsymbol{w}_n$ mit

$$\begin{array}{ccc} * & w_1 = \frac{1}{||v_1||} v_1 \\ * & w_i = \frac{1}{||u_i||} u_i \\ & \bullet & \mathrm{i} = 2,..., \mathrm{n} \end{array}$$

*
$$w_i = \frac{1}{||u_i||} u_i$$

$$\bullet \ u_i = v_i - v_i^*$$

$$\begin{array}{c} \bullet \ u_i = v_i - v_i^* \\ & \blacksquare \ v_i = \sum_{k=1}^{i-1} < v_i, w_k > w_k \end{array}$$

Beispiel

[[Unitäre Räume]] [[Schwarzsche Ungleichung]]