MSBA 7004 Operations Analytics

Class 10-1: Revenue Management 2023

Learning Objectives

- Explain the concept of revenue management.
- Understand customer segmentation and price discrimination.
- Apply tools for capacity reservation and overbooking management.

Operations Management Options +++

MANAGING SUPPLY

Capacity management

Process (bottleneck) analysis

Queueing analysis

Inventory and supply chain management

MANAGING DEMAND

Revenue management (a.k.a. yield management)

Matching Supply to Demand When Supply Is Fixed

Examples of fixed supply:

Travel industries (fixed number of seats, rooms, cars, etc.).

Advertising time (limited number of time slots).

Telecommunications bandwidth.

Size of the TPG program.

Doctor's appointments.

Revenue management is a solution:

- If adjusting supply is impossible – adjust the demand!
- Segment customers into high willingness to pay and low willingness to pay.
- Limit the number of tickets sold at a low price, that is, control the average price by changing the mix of customers.

Examples

Hotel Room Pricing

Airlines and Seat Pricing

Disneyland's Tiered Pricing

Uber Surge Pricing

eCommerce and Flash Sales

Cruise Line Cabin Upgrades

Streaming Services and Content Licensing

Online Advertising Auctions

Ride-Sharing Subscription Plans

"The process of allocating the right **type** of capacity, to the right kind of customer, at the right price and time, to maximize revenue or yield..."

The Art of Managing Yield, AmericanAirlines Annual Report, 1987

AmericanAirlines* VS **PEOPLExpress**

HOW SHOULD AA COMPETE?

Give up the low-end market?

Use price discrimination?

Increase routes or schedules?

Spin off a new budget airline?

Acquire People Express?

"Play dirty"?

THE DECISION

Ultimate Super Saver January 1985

70% of tickets with higher prices 30% of tickets with lower prices

Newsvendor Model?

RESULT - DOWNFALL OF PE

From US\$1 billion profit in 1985 to near-bankrupt in 1986

Acquired by Continental in 1987

- Price Control
 - Price customization
 - Dynamic pricing

- Capacity Control
 - Yield management
 - Service customization

Pricing

PRICING A PRODUCT/SERVICE

Intrinsic value

Classical economics: supply and demand

TRADITIONAL APPROACHES

Based on

Cost-plus

Costs

Market based

Competition

Value based

Customers

互动娱乐区 集发电 储电 充电于一 Model Y

China sales of electric vehicles by company

2022 🚘 2021

Sources: Company websites, Technode, Inside EVs, Electrek, Investor Insights, CNEV Post, CGTN, Moomoo, Auto China.

Some figures are company estimates.

Pricing: iPhone

- 2008: iPhone 3G only
- 2023: iPhone 15 Pro and many more..

Pricing: iPhone

IPHONES ON SALE IN 2008

iPhone 3G HK\$5,400 / HK\$6,200

IPHONES ON SALE IN 2023

- iPhone 15 series HK\$6,899 – HK\$13,599
- iPhone 14 (Plus) From HK\$5,999
- iPhone 13 From HK\$5,099
- iPhone SE From HK\$3,699

Pricing: An Important Tool

ONE PRICE DOES NOT FIT ALL

How much will you pay for an iPhone 15 Pro Max 256GB?

iPhone 15 Pro 6.1-inch display¹ iPhone 15 Pro Max 6.7-inch display¹ Need help choosing a model? Explore the differences in screen size and battery life.

Pricing: An Important Tool

ONE PRICE DOES NOT FIT ALL

Price Discrimination – Example

demand = 1000 – 100 * *price*

revenue = *price* * (1000 – 100 * *price*)

Demand for seats

Price Discrimination and Customization

- Other examples
 - Demographics: Age, gender
 - Brand, distribution channel
 - Order volume
 - Location
 - Service (warranty)
 - Look/color
- Ethic considerations
 - Privacy, anti-discrimination, fairness

Dynamic Pricing

For a single product, set price dynamically *over time*, and set one price for all the customers.

Dynamic Pricing

Rue La La

LOUIS VUITTON

just for NEW MEMBERS

Rue La La

- Price Optimization for first time offerings
 - Result: Overall 10% increase in total revenue

- Price Control
 - Price customization
 - Dynamic pricing

- Capacity Control
 - Yield management
 - Service customization

Reserving Capacity

 You manage a hotel with 200 rooms in Indianapolis, IN. The NCAA Championship Game is coming up. Sports fans either book a room in advance or wait until the last minute.

Advance booking: Bargain rate

Late booking: Premium rate

- Suppose you can easily get 200 advance reservations and fill up your hotel.
 - Should you fill up rooms with advance customers? Why?
 - How many rooms should be set aside for last-minute customers? What information do you need?

The Classic Newsvendor Model

- A newsvendor stocks newspapers to sell that day
- Trade-offs:
 - If stocks too few newspapers sales.
 - If stocks too many newspape wasted on unsold newspapers.

How many newspapers should be stocked?

The Classic Newsvendor Model

Newsvendor Model

- A decision-making framework for Single period inventory decision.
- Uncertain Demand: Demand is random and follows a probability distribution.
- Perishable Inventory: Products are perishable or have a limited shelf life.
- Overage cost c_o (cost of ordering too much) versus Underage cost c_u (cost of ordering too little).
- Objective: Determine the optimal order quantity to minimize expected cost.

Solution

- Critical Ratio (CR): $C_u/(C_o + C_u)$
- Optimal order quantity Q* satisfies $P(Demand \leq Q^*) = CR$

Reserving Capacity and Newsvendor

Room Reservation	Newsvendor Problem
Hotel rooms are "perishable"	Newspapers are "perishable"
Random last-minute demand	Random newspaper demand
Decide how many rooms to reserve for last-minute customers	Decide how many newspapers to purchase
If reserve too few rooms, miss potential premium customers	If stock too few newspapers, miss potential sales
If reserve too many rooms, revenue lost on empty rooms	If stock too many newspapers, money wasted on unsold newspapers

Reserving Capacity

- Assume
 - Number of last-minute customers is normally distributed with mean 75 and st dev 25
 - Advance booking: \$200/night
 - Late booking: \$500/night
- How many rooms should be set aside for last-minute customers?

$$C_u = \frac{$500 - $200}{200} = $300$$
 $C_o = \frac{$200}{200 + 300} = 0.6$
Critical ratio = 300 / (200+300) = 0.6 z = 0.25

Should reserve 82 rooms for last-minute customers (75+0.25*25 = 81.25, round up)

Overbooking

- Suppose you cannot charge latecomers a different rate because of a city ordinance that prohibits "price gouging" during the Final Four weekend
- You can easily get 200 reservations and fill up your hotel
- But you are afraid that some people with reservations may not show up
- How many reservations should you take?
 - More than 200?
 - How many more?
 - What information do you need?

Overbooking and Newsvendor

Overbooking	Newsvendor Problem
Overbooks are "perishable"	Newspapers are "perishable"
Random no-shows	Random newspaper demand
Decide how many overbooks	Decide how many newspapers to purchase
If too few overbooks, miss potential sales	If stock too few newspapers, miss potential sales
If too many overbooks, incur loss of good-will	If stock too many newspapers, money wasted on unsold newspapers

Overbooking

- Assume
 - The number of no-shows is distributed as follows:

- Room rate is \$200 per night
- It costs the hotel \$500 per night to book a room in a nearby hotel for an overbooked customer
- How many overbooks should you take?

$$C_u =$$
\$200 $C_o =$ 500-\$200=\$300

Critical ratio = 200 / (200+300) = 0.4 Should overbook 4 rooms

Overbooking

Leave your seats

Involuntary denials of boarding per 10,000 passengers for select airlines

When Overbooking Goes Wrong...

Travel » Aviation | Business Traveller | Destinations | Features | Food/Drink | Hotels | Partner Hotels

International Edition + $\wp \equiv$

Passenger dragged off overbooked United flight

By Christina Zdanowicz and Emanuella Grinberg, CNN (*) Updated 0658 GMT (1458 HKT) April 11, 2017

EXAMPLE - FLIGHT UA3411

- April 9, 2017, UA3411 from Chicago O'Hare to Louisville
- The plane was full, and everyone had boarded
- 4 crew members needed to fly to Louisville to work on a flight departing later from Louisville
- United asked for 4 volunteers
- Not enough volunteered despite increased perks, so UA subsequently randomly picked a passenger to deboard
- The passenger refused and....
- Can this incident change how airlines approach overbooking?

When Overbooking Goes Wrong...

Capacity segmentation and allocation

• n: number of fare classes (n>2)

• r_i : class-i fare $(r_1>r_2>...>r_n)$

total number of available aircraft seats

Protection level for n-1 and lower b_n

Protection for n-2 and lower b_{n-1}

nested

booking limits

These fares	do not include o	overnment fee	s and taxes.	More Fares 🛶	+	+	→ End
Flights	Departs	Arrives	Stops	Refundable Anytime \$146	Restricted Fares \$133	Advance Purchase \$118	Fun Fares \$104
2510	6:40am	8:45am	N/S	0	0	0	0
593	10:40am	12:45pm	N/S	0	0	0	0
1577/2126	12:55pm	4:00pm	RNO/1	0	0	Unavallable	Unavailable
1066	5:20pm	7:25pm	N/S	c	0	© .	0

These fares of	to not include o	overnment fee	s and taxes.	More Fares 🛶	-	→	-	→ End
Flights	Departs	Arrives	Stops	Refundable Anytime \$146	Restricted Fares \$133	Advance Purchase \$118	Fun Fares \$104	Internet One-way \$69
2510	6:40am	8:45am	N/S	0	0	0	0	0
593	10:40am	12:45pm	N/S	0	0	0	0	Unavailable
1577/2126	12:55pm	4:00pm	RNO/1	0	0	Unavallable	Unavailable	Unavailable
1066	5:20pm	7:25pm	N/S	0	0	Chavallable	Unavailable	Unavailable

6 days later

These fares	do not include q	overnment fee	s and taxes.	More Fares 🛶	+	+	+	→ End
Flights	Departs	Arrives	Stops	Refundable Anytime \$146	Restricted Fares \$133	Advance Purchase \$118	Fun Fares \$104	Internet One-way \$69
2510	6:40am	8:45am	N/S	0	0	0	0	0
593	10:40am	12:45pm	N/S	0	0	0	0	Unavailable
1577/2128	12:55pm	4:00pm	RNO/1	0	Unavailable	Unavallable	Unavallable	Unavailable
1066	5:20pm	7:25pm	N/S	0	0		Unavallable	Unavallable

9 days later

These fares	do not include o	overnment fee	s and taxes.	More Fares 👈	+	→	+	→ End
Flights	Departs	Arrives	Stops	Refundable Anytime \$146	Restricted Fares \$133	Advance Purchase \$118	Fun Fares \$104	Internet One-way \$69
2510	6:40am	8:45am	N/S	0	0	0	0	0
593	10:40am	12:45pm	N/S	0	0	0	0	Unavailable
1577/2128	12:55pm	4:00pm	RNO/1	0	Unavailable	Unavailable	Unavallable	Unavailable
1066	5:20pm	7:25pm	N/S	0	0	dnavallable	Unavailable	Unavailable

12 days later

Typical Pricing Curves

Three deciding factors:

- How many items are left, k
- How much time is left, t
- How demand will change
- As the number of remaining items decreases, price increases (price is higher if there are fewer items to sell)
- As time goes by, price decreases (price is higher if there is more time left to sell)
- As demand increases / decreases, so does the price

So, Revenue Management...

Challenges?

CHALLENGES

DATA

source of demand information

ANALYTICAL MODELS

Data collection

MSBA7012 Social Media & Digital Marketing Analytics

Forecasting

MSBA7013 Forecasting and Predictive Analytics

Real-time updates

MSBA7021 Prescriptive Analytics

Capable of deciding both pricing and capacity

Providing status updates

Dynamic programming required

Thank You

Huiyin Ouyang oyhy@hku.hku

MSBA 7004 Operations Analytics

Second-half course recap 2023

Management Options

- Managing supply
 - Capacity management
 - Process (bottleneck) analysis
 - Queueing analysis
 - Inventory and supply chain management
 - Project management

- Managing demand
 - Revenue management

Inventory management

Match the inventory model with the decision.

EOQ model	Reorder point
Periodic review	Target stock level
Continuous review	Order quantity
Newsvendor	Lot size/order frequency

Economic Order Quantity (EOQ) Model

- How much to order each time?
- The Economic Order Quantity (EOQ) balances

Assumptions

- Known annual demand, constant demand rate
- No uncertainty (in demand)

True or False?

The motivation of the EOQ model is to match the demand with the right quantity of supply.

False.

EOQ model is to find the optimal order frequency, which makes a balance between minimizing holding cost and setup cost.

Economic Order Quantity

Total Cost =
$$TC(Q) = \frac{Q}{2}H + \frac{D}{Q}S$$

D	Annual Demand Rate
S	Order or Setup Cost
Н	Annual Holding Cost

$$Q_{OPT} = \sqrt{\frac{2SD}{H}}$$

$$TC_{OPT} = \sqrt{2SDH}$$

Demand During Lead Time: Uncertain

ROP and Normal Demand

Suppose weekly demand has a normal distribution: $N(m, \sigma^2)$ Suppose lead time is k weeks.

Then, DLT has normal distribution $N(m_{LT}, \sigma_{LT}^2)$ with mean $m_{LT} = k \cdot m$ and standard deviation $\sigma_{LT} = \sqrt{k} \cdot \sigma$

Given ROP, CSL is

$$P[DLT \le ROP] = P[N(0,1) \le z] = normsdist(z)$$

where
$$z = \frac{ROP - m_{LT}}{\sigma_{LT}}$$

Given CSL, *ROP* satisfying
$$CSL = P[DLT \le ROP]$$
 is $ROP = m_{LT} + z \cdot \sigma_{LT}$ where $z = normsinv(CSL)$

Safety Stock (SS)

ROP and SS

Average Inventory

If the firm pays for inventory "in stock"

Average Inventory = Q/2 + SS

↑ "Default" case in this course (when there is no other explanation)

If the firm pays for inventory "in stock" and "on route"

Average Inventory = $Q/2 + SS + m_{LT}$

Pipeline Inventory

Order Size for Fixed-Time-Period Model

Assume Normal demand uncertainty

Target Level or Target "Inventory Position"

 $= (LT + T) * D + z\sigma_{LT+T}$

Order Quantity = Target Level - I

I	Current inventory
Т	Review Period (time between reviews)
EP	Exposure Period (= LT+T)

Given Cycle service level (CSL), we can find z = normsinv(CSL)

σ_{LT+T} Standard deviation of demand during the **exposure period**

Practice problems

- 1. Kristen believes they are currently holding too much inventory for some ingredients, and she decides to optimize the inventory policy for whole wheat flour first using what she just learned from the Operations Analytics course. Kristen and her roommate bake cookies 7 days a week all year round. They get deliveries of flour from Flour Foods Co. each Friday and pay for the food upon delivery. They must place orders on Monday to ensure the Friday delivery (i.e., order lead time is 4 days). Kristen has observed that weekly demand for whole wheat flour is normally distributed with a mean of 66 lbs and a standard deviation of 6.6 lbs. Because she is a regular customer, Flour Foods Co. waives delivery charges. However, each package of flour is 10 lbs (i.e., order size must be multiples of 10 lbs).
 - Suppose that on Monday, Oct 18, Kristen checked her whole wheat flour inventory and found that she had 83 lbs in stock. How much whole wheat flour should she order to maintain a 99% service level?

D = 66 lbs. per week

 $\sigma = 6.6$ lbs. for weekly demand

SL = 99%

T=1 week

 $LT = \frac{4}{7}$ week

Iventory = 83 lbs.

Thus:

z = normsinv(SL) = 2.33

 $\sigma_{LT+T} = \sqrt{LT+T} \cdot \sigma = 8.27$

Target: $(LT + T) \cdot D + z\sigma_{LT+T} = 122.96$

Order Quantity: Target - Inventory = 39.96 lbs.

Therefore, Kristen should order 4 packages of flour to maintain a 99% service level.

Practice Problems

- 2. Kristen also orders paper take-out bags with her logo printed on them. Daily demand for take-out bags is normally distributed with a mean of 50 bags and a standard deviation of 20 bags. Kristen places a new order for bags whenever she is running low. Kristen's printer (company) charges her \$15 per order for print setup independent of order size. Bags are printed in batches of 100, and priced at \$5 per batch (i.e., 5 cents each bag). It takes 5 days for an order to be printed and delivered. The only holding cost is the opportunity cost of capital, which is estimated to be 30% per year. Assume 360 days per year.
- a) What is the optimal order quantity per order for Kristen?
- b) On average, how often does Kristen need to order take-out bags? That is, if Kristen places an order once every X days, what is X?
- c) If Kristen wants to make sure the bags do not run out with 99% probability during the order lead time, what is her optimal reorder point?

$$D = 0.5 \times 360 \text{ batches per year}$$

$$S = \$15$$

$$C = \$5$$

$$I=30\%$$

Hence, $Q_{OPT} = \sqrt{\frac{2SD}{I \cdot C}} = 40$ batches.

b.

$$X = \frac{Q}{D} = 80 \text{ days}$$

C.

$$SL = 99\%$$

$$k = 5 \text{ days}$$

Average daily demand m = 0.5 batches

$$\sigma = 0.2$$
 batches for daily demand

$$m_{LT} = km = 2.5$$
 batches

$$\sigma_{LT} = \sqrt{k} \cdot \sigma = 0.45$$

$$z = normsinv(SL) = 2.33$$

Hence, to maintain a 99% service level, $ROP = m_{LT} + z\sigma_{LT} = 3.54$ batches.

How much inventory should you hold?

Trade-off #1: How much to order each time?

Inventory ordering costs (Economies of scale)

Inventory holding costs

Economic Order Quantity (EOQ) Model

Trade-off #2: How much to hold each time?

Cost of running out

Cost of having excess inventory

Newsvendor Model

What is the Best Service Level • Trade-off: (SL*)?

	Inventory Holding Cost (Overage Cost)	Loss of Revenue & Goodwill (Underage Cost)
High Service Level	High	Low
Low Service Level	Low	High

How to Interpret C_u and C_o ?

 C_u , C_o are the unit opportunity costs.

You should compute C_{μ} :

Suppose the actual demand D is larger than my current stock S. If I could return to the past and order one unit more, then it increases my profit (or reduces my cost) by C_u .

You should compute C_o :

Suppose the actual demand D is smaller than my current stock S. I could return to the past and order one unit less, then it increases my profit (or reduces my cost) by C_0 .

Newsvendor logic

With discrete demand,

 Q^* = smallest quantity such that $SL \ge C_u / (C_u + C_o)$

• With normal demand $N(\mu, \sigma)$

 Q^* = the quantity such that $SL = C_u / (C_u + C_o)$

Step 1: find z, z = NORMSINV($C_u / (C_u + C_o)$), or use z table

Step 2: compute Q^* , $Q^* = \mu + z \sigma$

In the newsvendor problem, suppose the demand distribution and the optimal stocking level Q^* are as shown. How do you think C_u and C_o compare?

Example 1: Newsvendor Model with Normal Demand

For the academic year 2020-2021, demand for HKU Tshirts is normally distributed with mean 1000 and standard deviation 200.

Cost of shirts is \$10.

Selling price is \$15.

Unsold shirts can be sold off at \$8 in the summer of 2021.

How many shirts should the HKU bookstore buy for the 2020-2021 academic year?

Mean demand	1000
STD of demand	200
C _o	
C _u	

Example 2: Newsvendor Model with Normal Demand

Impact of Demand Variability

Expected Cost Function

Supply chain management

- Bullwhip effect
 - causes and ways to reduce the effect
- Supply chain coordination via contracts
 - Profit-sharing contract
 - Buyback contract

Revenue management

Managing demand:

- Price-based RM
- Capacity-based RM

Applying newsvendor logic to:

- Reserving capacity
- Overbooking

Traditional OM

- Production planning and scheduling
- Inventory management
- Warehouse & transportation

Modern OM

- Today OM studies many kinds of business processes.
- OM concerns both manufacturing and service industries.

Final Exam

- Time: Nov 29 10 AM-1PM
- Office Hours:
 - Prof Tian: Monday office hour on syllabus
 - Prof Ouyang: Monday 4 5pm
 - By appointment
- A4 Formula sheet, one page, double sided, printed or handwritten.
- Good luck!