第1章 群

群について述べる。

1.1 群

定義 1.1.1 (モノイド). M を集合、 $e \in M$ 、 \cdot : $M \times M \to M$ を写像とし、各 $x,y \in M$ に対し $\cdot (x,y)$ を $x \cdot y$ や xy と書くことにする。組 (M,\cdot,e) がモノイド (monoid) であるとは、次が成り立つことをいう:

(M1) 結合律 各 $x, y, z \in M$ に対して $(x \cdot y) \cdot z = x \cdot (y \cdot z)$ が成り立つ。

(M2) 単位元 各 $x \in M$ に対して $x \cdot e = x = e \cdot x$ が成り立つ。

 $組(M,\cdot,e)$ のことを記号の濫用で単に (M,\cdot) やMと書くことがある。さらに

• *e* を *M* の単位元 (unit) という。

定義 1.1.2 (群). モノイド (G,\cdot,e) が群 (group) であるとは、次が成り立つことをいう:

(G1) 逆元 各 $x \in G$ に対してある $y \in G$ が存在して $x \cdot y = e = y \cdot x$ が成り立つ。

さらに

• y & x & o逆元 (inverse) といい、 $x^{-1} & e$ 書く。

定義 1.1.3 (アーベル群). 群 (G, +, 0) が**アーベル群 (abelian group)** であるとは、次が成り立つことをいう:

(A1) 可換性 各 $x, y \in G$ に対して x + y = y + x が成り立つ。

定義 1.1.4 (群準同型). [TODO]

1.2 部分群

命題 1.2.1 (部分群の特徴付け). [TODO]

証明 [TODO]

定義 1.2.2 (生成された部分群). G を群、 $S \subset G$ とする。このとき、集合

$$\langle S \rangle := \{ g_1^{\varepsilon_1} \cdots g_n^{\varepsilon_n} \mid n \in \mathbb{Z}_{\geq 1}, \ g_i \in S, \ \varepsilon_i \in \{\pm 1\} \}$$
 (1.2.1)

は定義から明らかに G の部分群となる。 $\langle S \rangle$ を S により生成された G の部分群 (subgroup of G generated by S) といい、S を $\langle S \rangle$ の生成系 (generating set) という。

G が有限集合 S により生成されるとき、 $G = \langle S \rangle$ は**有限生成 (finitely generated)** であるといい、さらに S が 1 点集合 $S = \{x\}$ のとき波括弧を省略して $\langle x \rangle$ と書き、 $G = \langle x \rangle$ は a **巡回群 (cyclic group)** であるという。

命題 1.2.3 (生成された部分群の特徴付け). G を群、 $S \subset G$ とする。このとき

$$\langle S \rangle = \bigcap_{\substack{G' \subset G: \text{ if } \beta \neq \emptyset \\ G' \supset S}} G' \tag{1.2.2}$$

が成り立つ。

証明 [TODO]

1.3 群作用

群の作用について述べる。

定義 1.3.1 (作用). G を群、X を集合とする。写像

$$G \times X \to X, \quad (g, x) \mapsto gx$$
 (1.3.1)

が与えられていて

- (1) 各 $g_1, g_2 \in G$, $x \in X$ に対して $(g_1g_2)x = g_1(g_2x)$ が成り立つ。
- (2) 各 $x \in X$ に対して $e_G x = x$ が成り立つ。

をみたすとき、G は X に左から作用 (act) するという。G が左から作用している集合をE G-集合 (left G-set) という。右からの作用も同様に定まる。

定義 1.3.2 (軌道). G を群、X を左 G-集合とする。X 上の同値関係を

$$x \ge y$$
 が同値 : $\Leftrightarrow \exists g \in G \text{ s.t. } gx = y$ (1.3.2)

で定めることができ、この同値関係に関する同値類を軌道 (orbit) という。

定義 1.3.3 (固定部分群). G を群、X を左 G-集合とする。各 $x \in X$ に対し、G の部分群

$$Stab_G(x) := \{ g \in G \colon xg = x \} \tag{1.3.3}$$

を x の**固定部分群 (stabilizer)** という。

定義 1.3.4 (忠実作用). G を群、X を左 G-集合とする。G の X への作用が忠実 (faithful) あるいは効果的 (effective) であるとは、次が成り立つことをいう:

• すべての $x \in X$ を固定する $g \in G$ は単位元のみである。

定義から明らかに、作用が忠実であることは作用の定める表現 $G o \operatorname{Aut}(X)$ が単射であることと同値である。

定義 1.3.5 (自由作用). G を群、X を左 G-集合とする。G の X への作用が自由 (free) あるいは不動点なし (fixed-point-free) であるとは、単位元以外の $g \in G$ はすべての $x \in X$ を動かすように作用すること、すなわち

$$\forall g \in G \ (g \neq 1 \Rightarrow (\forall x \in X \ (xg \neq x))) \tag{1.3.4}$$

が成り立つことをいう。これはすべての $x \in X$ に対し $Stab_G(x)$ が自明群であることと同値である。

定義 1.3.6 (推移的作用). G を群、X を左 G-集合とする。各 $x \in X$ に対し $xG := \{xg \in X : g \in G\}$ と書く。G の X への作用が推移的 (transitive) であるとは、

$$X = xG \quad (\forall x \in X) \tag{1.3.5}$$

が成り立つことをいう。これは次と同値である:

• $\forall x_0 \in X$ を固定すると、 $\forall y \in X$ に対し $\exists g \in G$ がとれて $y = x_0 g$ が成り立つ。

A. *G*-torsor

定義 1.3.7 (G-torsor). G を群、X を非空な左 G-集合とする。shear map と呼ばれる写像

$$G \times X \to X \times X, \quad (g, x) \mapsto (gx, x)$$
 (1.3.6)

が全単射であるとき、X を G-torsor という。

命題 1.3.8 (*G*-torsor の特徴付け). *G* を群、*X* を左 *G*-集合とする。このとき、次は同値である:

- (1) *X* は *G*-torsor である。
- (2) Gの X への作用は推移的かつ自由である。
- (3) $G \cap X \cap C$ の作用は推移的であり、さらに固定部分群が自明群であるような $x \in X$ が存在する。
- (4) $X \ge G$ は左 G-集合として同型である。

証明 [TODO]

定理 1.3.9 (類等式). [TODO]

証明 [TODO]

定理 1.3.10 (Lagrange). [TODO]

証明 [TODO]

1.4 商群

1.5 準同型定理

定理 1.5.1 (準同型定理). [TODO]

証明 [TODO]

定理 1.5.2 (部分群の対応原理). [TODO]

証明 [TODO]

1.6 Sylow の定理

定理 1.6.1 (Sylow). [TODO]

証明 [TODO]

1.7 群の表現

[TODO] 群の作用とはどう違う?

定義 1.7.1 (群の表現). G を群、C を圏とする。G は、射を群の元とし単一の対象 * からなる圏とみなせる。C における G の表現 (representation) とは、圏 G から C への関手のことである。 $T:G\to C$ を表現とするとき、各射 T(g) は C の対象 X:=T(*) 上の自己同型射を与えるから、群準同型 $G\to \operatorname{Aut}(X)$ が定まる。この群準同型 も表現 (representation) と呼ぶ。

注意 1.7.2. 群の作用は集合の圏における群の表現 (これを**置換表現 (permutation representation)** という) に他ならない。

例 1.7.3.

- 有限群の表現
- 位相群の表現
- Lie 群の表現
- [TODO]

1.8 自由群

1.9 自由積と融合積

1.10 アーベル化

定理 1.10.1 (アーベル化の普遍性). [TODO]

証明 [TODO]

1.11 可解群

第2章 基本的な群

- 2.1 対称群
- 2.2 2面体群
- 2.3 4元数群
- 2.4 一般線型群