

Mestrado Integrado em Engenharia Física

UC de Análise de Circuitos

Departamento de Eletrónica Industrial e Computadores

Paulo Carvalhal pcarvalhal@dei.uminho.pt

■ Potência em Corrente Contínua

$$\rightarrow P = VI$$
 (= cte)

■ Potência em Corrente Alternada

Valor instantâneo da potência dissipada numa resistência

$$p(t) = v(t)(i(t)) = R(i(t))^{2} = \frac{(v(t))^{2}}{R}$$

 Valor médio da potência dissipada numa resistência (para qualquer forma de onda de período T)

$$P = \frac{1}{T} \int_{t_1}^{t_1+T} p(t) dt = \frac{1}{T} \int_{t_1}^{t_1+T} R(i(t))^2 dt = R\left(\frac{1}{T} \int_{t_1}^{t_1+T} i(t)^2 dt\right)$$

$$\to P = RI_{ef}^2 = \frac{V_{ef}^2}{R}$$

o valor médio da potência dissipada numa resistência por uma corrente de qualquer forma de onda, é o mesmo que seria dissipado se a resistência fosse percorrida por uma corrente de intensidade constante igual ao valor eficaz da corrente variável

Potência em Corrente Alternada

Para uma corrente sinusoidal da forma $i(t) = I \operatorname{sen}(\omega t)$,

$$P = RI_{ef}^2 = R\left(\frac{I}{\sqrt{2}}\right)^2 = \frac{RI^2}{2}$$
 Ou $P = \frac{V_{ef}^2}{R} = \frac{\left(\frac{V_m}{\sqrt{2}}\right)^2}{R} = \frac{V_m^2}{2R}$

■ Potência em Corrente Alternada (sinusoidal)

Caso Geral

$$P = \frac{1}{T} \int_{t_1}^{t_1+T} p(t) dt = \frac{1}{T} \int_{t_1}^{t_1+T} v(t) i(t) dt =$$

$$= \frac{1}{T} \int_{t_1}^{t_1+T} V \operatorname{sen}(\omega t) I \operatorname{sen}(\omega t - \varphi) dt$$

$$\rightarrow P = V_{ef}I_{ef}\cos(\varphi)$$
 (W)

■ Potência em Corrente Alternada

Potência activa – P [W]

(aka True Power)

Potência que efetivamente dá lugar à produção de Trabalho.

Dissipada sob a forma de calor nos componentes resistivos do circuito ou convertida noutra forma de potência.

 $P \ge 0$

■ Potência em Corrente Alternada

Potência reactiva – Q [Var]

Medida da energia armazenada no circuito que é trocada com a rede a cada ciclo.

Quando se introduz potência reactiva num circuito, A corrente total aumenta, mas o trabalho realizado mantém-se constante.

Para recetores indutivos Q > 0

Para recetores resistivos Q = 0

Para recetores capacitivos Q < 0

■ Potência em Corrente Alternada

Potência aparente S [VA]

Dá-nos uma medida da potência do receptor, independentemente do facto de a energia em jogo ser dissipada nos componentes resistivos ou armazenada nos componentes reactivos.

 $S \ge 0$

■ Potência em Corrente Alternada

Potência activa

$$P = V_{ef} \times I_{ef} \times \cos(\varphi) \text{ (W)}$$

Potência reactiva

$$Q = V_{ef}I_{ef} \operatorname{sen}(\varphi) \qquad (VAR)$$

Potência aparente

$$S = V_{ef}I_{ef}$$
 (VA)

Diagrama de potências

$$(P = S\cos(\varphi), Q = S\sin(\varphi), S = \sqrt{P^2 + Q^2})$$

■ Potência em Corrente Alternada

Fator de Potência

$$P = V_{ef} \times I_{ef} \times \cos(\varphi)$$
 (W)
 $\cos(\varphi) \rightarrow \text{factor de potência}$
(aka Power Factor)

Diagrama de potências

- É uma medida da percentagem de potência convertida em calor.
- Em circuitos puramente resistivos, cos (φ) = 1
- Quando se introduz potência reactiva, I_{total} aumenta e o cos(φ) diminui

Diagrama de impedância

Diagrama de potências

Figura de João Sena Esteves, (DEI)

Circuitos de Corrente Alternada (CA)

Figura de João Sena Esteves, (DEI)

Circuitos de Corrente Alternada (CA)

Potência em Corrente Alternada

Energia absorvida por um receptor num determinado intervalo de tempo

$$\mathbf{W}_{\mathbf{a}} = \mathbf{P} \cdot \Delta \mathbf{t}$$

kWh - energia activa

$$\mathbf{W_r} = \mathbf{Q} \cdot \Delta \mathbf{t}$$

kVArh – energia reactiva

Wr > 0 se receptor indutivo

Wr = 0 se receptor resistivo

Wr < 0 se receptor capacitivo

P [kWh]

Q [kVArh]

∆t [horas]

■ Potência em Corrente Alternada

Potência em jogo num conjunto de receptores a funcionar em simultâneo

$$P_{conj} = \sum_{i=1}^{n} P_i$$

$$P_{conj} \ge 0 \text{ [W]}$$

$$Q_{conj} = \sum_{i=1}^{n} Q_i$$

- > 0 se indutivo
- < 0 se capacitivo
- = 0 se resistivo

$$S_{conj} = \sqrt{P_{conj}^2 + Q_{conj}^2}$$

S_{conj} [VA]

■ Potência em Corrente Alternada

Energia absorvida por um conjunto de receptores a funcionar em simultâneo

$$\mathbf{W}_{\mathbf{a} \ \mathbf{conj}} = \mathbf{P}_{\mathbf{conj}} \cdot \Delta \mathbf{t}$$

$$\mathbf{W}_{r \text{ conj}} = \mathbf{Q}_{conj} \cdot \Delta t$$

 Wr_{conj} [kVArh]

- > 0 se indutivo
- < 0 se capacitivo
- = 0 se resistivo

■ Potência em Corrente Alternada

Fator de Potência de um conjunto de receptores a funcionar em simultâneo

$$fp_{conj} = \frac{P_{conj}}{S_{conj}}$$

Potência em Corrente Alternada

Exemplo – No seguinte circuito pretende-se determinar:
 a) a potência activa total:
 b) a potência reactiva total;
 c) a potência aparente total;
 d) o factor de potência do conjunto

A potência activa total é igual à potência dissipada no componente resistivo:

$$P_T = P_R = R I_R^2 = (23 \text{ A})^2 (10 \Omega) = 5290 \text{ W}$$

Potência em Corrente Alternada

Exemplo

A potência reactiva pode ser calculada do seguinte modo:

$$Q_C = X_C I_C^2 = (5 \text{ A})^2 (46 \Omega) = 1150 \text{ VAR (cap.)}$$

 $Q_L = X_L I_L^2 = (10 \text{ A})^2 (23 \Omega) = 2300 \text{ VAR (ind.)}$
 $Q_T = Q_L - Q_C = 1150 \text{ VAR (ind.)}$

Potência em Corrente Alternada

Exemplo

A potência aparente é dada por:

$$S_T = \sqrt{P_T^2 + Q_T^2} = \sqrt{5290^2 + 1150^2} = 5414 \text{ VA}$$

O factor de potência pode ser obtido do seguinte modo:

$$\cos(\theta) = \frac{P_T}{S_T} = \frac{5290 \text{ W}}{5414 \text{ VA}} = 0.98 \text{ (ind.)}$$