Devoir de Mathématiques n°9

KÉVIN POLISANO MP*

Vendredi 11 novembre 2009

I.1) Soit $x \in \mathbb{R}$, la fonction f est \mathcal{C}_m° donc intégrable sur le <u>segment</u> [x - h, x + h].

Ainsi $f_h(x) = \frac{1}{2h} \int_{x-h}^{x+h} f(t)dt$ a un sens, ceci étant valable pour tout x, f_h est bien définie sur \mathbb{R} .

En outre f_h est bornée sur tout segment :

$$\forall x \in [a,b], \quad |f_h(x)| \le \frac{1}{2h} \int_{x-h}^{x+h} |f(t)| dt \le \frac{1}{2h} \int_{a-h}^{b+h} |f(t)| dt$$

2) Posons $F(x) = \int_0^x f(t)dt$, on réécrit alors :

$$f_h(x) = \frac{F(x+h) - F(x-h)}{2h}$$

Or la fonction F est continue sur \mathbb{R} , en effet :

$$\forall x \in \mathbb{R}, \quad |F(x+a) - F(x)| = \left| \int_{x}^{x+a} f(t)dt \right| \le \int_{x}^{x+a} |f(t)|dt \le a \sup_{t \in [x,x+a]} |f(t)| \xrightarrow{a \to 0} 0$$

La continuité de F entraine celle de f_h .

3) On écrit cette fois f_h sous la forme :

$$f_h(x) = \frac{F(x+h) - F(x)}{2h} + \frac{F(x-h) - F(x)}{2(-h)}$$

Puis on étudie la limite quand $h \to 0$ de chacun de ces taux d'accroissement :

$$\left| \frac{F(x+h) - F(x)}{h} - f(x^+) \right| = \frac{1}{h} \left| \int_x^{x+h} (f(t) - f(x^+)) dt \right| \le \frac{1}{h} \int_x^{x+h} |f(t) - f(x^+)| dt$$

f admet une limite (finie) $f(x^+)$ à droite de x, i.e $\forall \varepsilon > 0, \exists \eta > 0, 0 \le t - x \le \eta \Rightarrow |f(t) - f(x^+)| \le \varepsilon$.

La condition $0 \le t - x \le \eta$ est satisfaite pour $h \le \eta$. On choisit donc $h = \eta$ pour un $\varepsilon > 0$ fixé :

$$\left| \frac{F(x+h) - F(x)}{h} - f(x^+) \right| \leqslant \varepsilon$$

Ceci étant valable pour tout $\varepsilon > 0$ il vient $\lim_{h \to 0} \frac{F(x+h) - F(x)}{h} = f(x^+)$.

Devoir de Mathématiques n°9 Kévin Polisano

En procédant de manière similaire pour le second taux d'accroissement on aboutit à :

$$\lim_{h \to 0} f_h(x) = \frac{f(x^+) + f(x^-)}{2}$$

4) D'après la question précédente, si f est supposée régulière on a $f_h \to f$ quand $h \to 0$.

Mais la convergence n'est pas toujours uniforme, considérons l'exemple suivant :

$$f: \begin{cases} 0 \text{ si } x < 0\\ \frac{1}{2} \text{ si } x = 0\\ 1 \text{ si } x > 0 \end{cases}$$

qui est C_m° et régulière. Si les f_h convergeaient uniformément vers f, leur continuité entrainerait celle de f, ce qui n'est pas le cas puisque f est discontinue à l'origine.

II.1) Puisque φ est nulle en dehors de $[-\alpha, \alpha]$ on a :

$$(\varphi * f)(x) = \int_{-\alpha}^{\alpha} \varphi(t) f(x - t) dt$$

De même $\varphi(x-t)$ est éventuellement non nulle pour $-\alpha \leqslant x-t \leqslant \alpha \Leftrightarrow x-\alpha \leqslant t \leqslant x+\alpha$:

$$(f * \varphi)(x) = \int_{x-\alpha}^{x+\alpha} f(t)\varphi(x-t)dt$$

Ces deux intégrales ont bien un sens car les fonctions $t \mapsto \varphi(t) f(x-t)$ et $t \mapsto f(t) \varphi(x-t)$ sont \mathcal{C}_m° par produit de fonctions \mathcal{C}_m° et qu'on les intègre sur les <u>segments</u> $[-\alpha, \alpha]$ et $[x-\alpha, x+\alpha]$.

Par ailleurs en effectuant le changement de variable u = x - t on a clairement :

$$f * \varphi = \varphi * f$$

Le produit de convolution est ainsi commutatif.

2) Si on choisit $\varphi_h(y) = \frac{1}{2h}$ pour tout $y \in [-h, h]$ et nulle en dehors on a :

$$\forall x \in \mathbb{R}, \quad (f * \varphi_h)(x) = f_h(x)$$

3) La fonction ρ_n est continue positive car ρ l'est et nulle en dehors de $\left[-\frac{\alpha}{n}, \frac{\alpha}{n}\right]$.

D'autre part en effectuant le changement de variable u = nt on a :

$$\int_{-\frac{\alpha}{n}}^{\frac{\alpha}{n}} \rho_n(t)dt = \int_{-\frac{\alpha}{n}}^{\frac{\alpha}{n}} n\rho(nt)dt = \int_{-\alpha}^{\alpha} \rho(u)du = 1$$

Donc pour tout n, la fonction ρ_n vérifie (H).

4) Remarquons que:

$$|(\rho_n * f)(x_0) - f(x_0)| = \left| \int_{-\frac{\alpha}{n}}^{\frac{\alpha}{n}} g_n(t) (f(x_0 - t) - f(x_0)) dt \right| \le \sup_{t \in [-\frac{\alpha}{n}, \frac{\alpha}{n}]} |f(x_0 - t) - f(x_0)|$$

Devoir de Mathématiques n°9

Kévin Polisan

Et comme f est continue en x_0 , soit $\varepsilon > 0$, $\exists \beta > 0$ tel que $\sup_{t \in [-\beta,\beta]} |f(x_0 - t) - f(x_0)| \le \varepsilon$.

Puis il existe $N \in \mathbb{N}$ tel que pour n > N on ait $\left[-\frac{\alpha}{n}, \frac{\alpha}{n}\right] \subset \left[-\beta, \beta\right]$.

Ainsi $\forall n > N$ on a

$$|(\rho_n * f)(x_0) - f(x_0)| \leqslant \varepsilon$$

Ceci étant valable pour tout $\varepsilon > 0$ on en conclut que :

$$\lim_{n \to +\infty} (\rho_n * f)(x_0) = f(x_0)$$

remarque: En fait on « fabrique » un Dirac limite des fonctions ρ_n .

 ρ (donc ρ_n) est paire et x est un point de discontinuité.

$$(\rho_n * f)(x) = \int_{-\frac{\alpha}{n}}^{0} \rho_n(t) f(x-t) dt + \int_{0}^{\frac{\alpha}{n}} \rho_n(t) f(x-t) dt$$

On effectue le changement de variable u = -t et compte tenu de la parité :

$$(\rho_n * f)(x) = \int_0^{\frac{\alpha}{n}} \rho_n(t) (f(x-t) + f(x+t)) dt$$

Et toujours par parité : $\int_0^{\frac{\alpha}{n}} \rho_n(t) (f(x^+) + f(x^-)) dt = \frac{f(x^+) + f(x^-)}{2}$ d'où :

$$\left| (\rho_n * f)(x) - \frac{f(x^+) + f(x^-)}{2} \right| \le \int_0^{\frac{\alpha}{n}} \rho_n(t) |f(x - t) - f(x^-)| dt + \int_0^{\frac{\alpha}{n}} \rho_n(t) |f(x + t) - f(x^+)| dt$$

Soit $\varepsilon > 0$, on a:

$$\exists \beta_1 > 0, 0 \leqslant t \leqslant \beta_1 \Rightarrow |f(x-t) - f(x^-)| \leqslant \varepsilon$$

$$\exists \beta_2 > 0, 0 \leqslant t \leqslant \beta_2 \Rightarrow |f(x+t) - f(x^+)| \leqslant \varepsilon$$

Posons $\beta = \min(\beta_1, \beta_2)$, pour $n \ge N = E\left(\frac{\alpha}{\beta}\right)$ on a alors :

$$\left| (\rho_n * f)(x) - \frac{f(x^+) + f(x^-)}{2} \right| \le 2\varepsilon \int_0^{\frac{\alpha}{n}} \rho_n(t) = \varepsilon$$

On a donc montré que $\lim_{n\to+\infty} (\rho_n * f)(x) = \frac{f(x^+) + f(x^-)}{2}$.

- **4)a)** Pour tout n on choisit simplement $a_n = \int_{-1}^1 (1-x^2)^n dx$ de sorte que $\int_{-1}^1 h_n(x) = 1$.
- **b)** Sur chacun des segments $[-1, -\delta]$ et $[\delta, 1]$ on a $\forall x, 0 \leq g_n(x) \leq (1 \delta^2)^n$.

$$|h_n(x) - 0| \le \frac{(1 - \delta^2)^n}{\int_{-1}^1 (1 - x^2)^n dx} \xrightarrow[n \to +\infty]{} 0$$

car $0 \le 1 - \delta^2 < 1$. Ce qui prouve que h_n converge uniformément vers 0 sur ces segments.

5)a) Prouvons que $(h_n * f)$ converge uniformément vers f. Soit $\varepsilon > 0$, on a :

$$|(h_n * f)(x) - f(x)| = \left| \int_{-1}^{1} (f(x-t) - f(x)) h_n(t) dt \right|$$

Devoir de Mathématiques n°9

Kévin Polisano

Fixons nous un $\beta \in]0,1]$ (qu'on définira plus tard) et découpons l'intégrale comme suit :

$$|(h_n * f)(x) - f(x)| \le \int_{-1}^{-\beta} |f(x-t) - f(x)| h_n(t) dt + \int_{-\beta}^{\beta} |f(x-t) - f(x)| h_n(t) dt + \int_{\beta}^{1} |f(x-t) - f(x)| dt$$

Traitons tout d'abord les intégrales extrêmes :

* Comme f est \mathcal{C}° sur $\left[-\frac{1}{2},\frac{1}{2}\right]$ et nulle en dehors, elle est bornée |f| < M.

$$\int_{-1}^{-\beta} |f(x-t) - f(x)| h_n(t) dt + \int_{\beta}^{1} |f(x-t) - f(x)| h_n(t) dt \le 2M \int_{-1}^{-\beta} h_n(t) dt + 2M \int_{\beta}^{1} h_n(t) dt$$

Et comme d'après 4.b h_n converge uniformément vers 0 sur $[-1, -\beta]$ et $[\beta, 1]$ on a :

$$2M \int_{-1}^{-\beta} h_n(t)dt + 2M \int_{\beta}^{1} h_n(t)dt \longrightarrow 0$$

Il existe donc $N \in \mathbb{N}$ tel que pour tout $n \ge N$:

$$\int_{-1}^{-\beta} |f(x-t) - f(x)| h_n(t) dt + \int_{\beta}^{1} |f(x-t) - f(x)| h_n(t) dt \le \varepsilon$$

* On traite l'intégrale centrale d'une autre façon :

f est \mathcal{C}° sur $\left[-\frac{1}{2},\frac{1}{2}\right]$ donc uniformément continue d'après le théorème de Heine.

Il existe donc $\beta > 0$ (c'est ici qu'on le fixe) tel que $|t| \leq \beta \Rightarrow |f(x-t) - f(x)| \leq \varepsilon$ d'où :

$$\int_{-\beta}^{\beta} |f(x-t) - f(x)| h_n(t) dt \le \int_{-\beta}^{\beta} \varepsilon h_n(t) \le \varepsilon \int_{-1}^{1} h_n(t) = \varepsilon$$

Finalement:

$$|(h_n * f)(x) - f(x)| \leqslant \varepsilon$$

ce qui termine la preuve de convergence uniforme sur \mathbb{R} .

b) On remarque que:

$$\forall x \in \left[-\frac{1}{2}, \frac{1}{2} \right], \quad (f * h_n)(x) = (h_n * f)(x) = \int_{-\frac{1}{2}}^{\frac{1}{2}} h_n(x - t) f(t) dt$$

 $|x-t| \le 1$ donc $h_n(x-t) = \frac{1}{a_n}(1-(x-t)^2)^n$. On obtient en développant un polynôme en x de degré 2n dont on intègre les coefficients en t entre $-\frac{1}{2}$ et $\frac{1}{2}$, d'où le polynôme P_n recherché.

6) Posons $f(x) = g\left((b-a)t + \frac{a+b}{2}\right)$ de façon à se ramener au segment $\left[-\frac{1}{2}, \frac{1}{2}\right]$.

f est \mathcal{C}° nulle en dehors de $\left[-\frac{1}{2}, \frac{1}{2}\right]$ et on a vu qu'elle est limite uniforme de polynômes, donc g également car l'image d'un polynôme par un changement de variable affine est un polynôme.

On a donc démontrer le théorème de Stone-Weierstrass.

III.A) f est C_m° nulle en dehors de [a,b] telle que $\forall n \in \mathbb{N}, \int_a^b f(t)t^n = 0$.

Devoir de Mathématiques n°9

Kévin Polisano

Soit $\varepsilon > 0$, d'après la question 6. il existe $P \in \mathbb{R}[X]$ tel que :

$$||f - P||_{\infty} \le \frac{\varepsilon}{|b - a|||f||_{\infty}}$$

D'après l'hypothèse, par linéarité de l'intégrale on a $\int_a^b f(t)P(t)dt=0$, et on écrit :

$$0 \leqslant \int_a^b f(t)^2 dt \leqslant \int_a^b f(t) P(t) dt + \int_a^b f(t) (f(t) - P(t)) dt$$

$$0 \leqslant \int_a^b f(t)^2 dt \leqslant \int_a^b f(t)(f(t) - P(t)) dt \leqslant |b - a| ||f||_{\infty} ||f - P||_{\infty} \leqslant \varepsilon$$

Ceci étant valable pour tout $\varepsilon > 0$ il vient $\int_a^b f(t)^2 dt = 0$.

Et comme f^2 est \mathcal{C}_m° et positive, il est bien connu qu'elle est nulle sauf éventuellement aux points de discontinuité. Il en va alors de même pour f. (dois-je le redémontrer aux ENS?)

B.1.a)
$$B_n(f_m)(t) = \sum_{n=0}^n C_n^p \left(\frac{p}{n}\right)^m (1-t)^{n-p} t^p \text{ avec } n > m.$$

Fixons nous un $a \in [1, n]$. En développant le tout, on s'aperçoit que le coefficient de t^a est :

$$\sum_{p=0}^{a} (-1)^{a-p} \left(\frac{p}{n}\right)^m C_n^p C_{n-p}^{a-p}$$

On simplifie les (n-p)! et on sort de la somme ce qui ne dépend pas de p:

$$\frac{n!}{n^m(n-a)!} \sum_{p=0}^a \frac{(-1)^{a-p} p^m}{(a-p)! p!} = \frac{n! m!}{n^m(n-a)! a!} \left(\frac{1}{m!} \sum_{p=0}^a (-1)^{a-p} C_a^p p^m\right)$$

Coup de chance, je connais l'astuce pour calculer cette dernière somme (exo de colle de sup):

Prenons $a \ge m$. On considère la fonction $g: x \mapsto (e^x - 1)^a$, et on remarque que :

$$\forall m \in \mathbb{N}, \quad \frac{f^{(m)}(0)}{m!} = \frac{1}{m!} \sum_{p=0}^{a} (-1)^{a-p} C_a^p p^m$$

Donc la somme à calculer correspond au coefficient de x^m dans le développement de f en série de Taylor :

$$f(x) = \left(x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots\right)^a = x^a \left(1 + \frac{x}{2!} + \frac{x^2}{3!} + \cdots\right)^a$$

Ainsi la somme vaut 1 si a = m et 0 si a > m. Donc on a bien

$$B_n(f_m)(t) = u_{m,n}t^m + \frac{1}{n}Q_{m,n}(t)$$
, avec $u_{m,n} = \frac{n!}{n^m(n-m)!} = \frac{n(n-1)\cdots(n-(m-1))}{n^m}$

et les coefficients des t^a $(a \le m-1)$ dans $Q_{m,t}(t)$ sont :

$$\frac{n!}{n^{m-1}(n-a)!a!} \left(\sum_{p=0}^{a} (-1)^{a-p} C_a^p p^m \right)$$

Devoir de Mathématiques n°9

Kévin Polisano

b) On a alors clairement $\lim_{n\to+\infty} u_{n,m} = 1$ et comme dans $Q_{n,m}: a \leq m-1 \Rightarrow \frac{1}{(n-a)!} \leq \frac{1}{(n-(m-1))!}$

$$\frac{n!}{n^{m-1}(n-a)!} \left(\underbrace{\frac{1}{a!} \sum_{p=0}^{a} (-1)^{a-p} C_a^p p^m}_{A_{m,a}} \right) \leqslant \underbrace{\frac{n!}{n^{m-1}(n-(m-1))!}}_{\leqslant 1} A_{m,a} \leqslant A_{m,a}$$

2) D'après ce qui précède on a sur [0,1]:

$$||B_n(f_m) - f_m|| \le u_{m,n} - 1 + \frac{1}{n} \sum_{a=1}^{m-1} A_{m,a} \xrightarrow[n \to +\infty]{} 0$$

Ce qui prouve que $B_n(f_m)$ converge uniformément vers f_m .

Soit alors un polynôme $S: S(t) = \sum_{i=1}^{N} a_i t^i = \sum_{i=1}^{N} a_i f_i(t)$. Par linéarité de B_n :

$$||B_n(S) - S|| = ||\sum_{i=1}^N a_i(B_n(f_i) - f_i)|| \le \sum_{i=1}^N |a_i||B_n(f_i) - f_i|| \longrightarrow 0$$

Par conséquent $B_n(S)$ converge uniformément vers S.

3) En utilisant l'inégalité triangulaire on écrit :

$$|B_n(f) - f| \le |B_n(f) - B_n(P_m)| + |B_n(P_m) - P_m| + |P_m - f|$$

où la suite (P_m) converge uniformément vers f (cf. question 6).

Remarquons également que :

$$|B_n(f) - B_n(P_m)| = \left| \sum_{n=0}^n \left[f\left(\frac{p}{n}\right) - P_m\left(\frac{p}{n}\right) \right] C_n^p (1-t)^{n-p} t^p \right| \le ||f - P_m||_{\infty} \sum_{n=0}^n C_n^p (1-t)^{n-p} t^p$$

et par le binôme de Newton :

$$|B_n(f) - B_n(P_m)| \le ||f - P_m||_{\infty} (1 - t + t)^n = ||f - P_m||_{\infty}$$

Ainsi on a:

$$||B_n(f) - f||_{\infty} \le 2||f - P_m||_{\infty} + ||B_n(P_m) - P_m||_{\infty}$$

D'après la question 6. $||f - P_m||_{\infty} \to 0$ et d'après la question précédente $||B_n(P_m) - P_m||_{\infty} \to 0$:

$$||B_n(f) - f||_{\infty} \xrightarrow[n \to +\infty]{} 0$$

On en conclut que $B_n(f)$ converge uniformément vers f sur [0,1].

remarque : on fait les choses « à l'envers », habituellement on montre que $B_n(f)$ converge uniformément vers f pour apporter une preuve construtive du théorème de Stone-Weierstrass.