Chapter 2

Combinational Logic Design

Figure 2.1 Circuit as a black box with inputs, outputs, and specifications

Figure 2.2 Elements and nodes

$$A = \bigcirc P$$

$$Y = F(A, B) = A + B$$

Figure 2.3 Combinational logic circuit

Figure 2.4 Two OR implementations

$$\begin{array}{c}
A \\
B \\
C_{\text{in}}
\end{array} \qquad \begin{array}{c}
C \\
C_{\text{out}}
\end{array} \qquad \begin{array}{c}
C \\
C_{\text{out}}
\end{array}$$

$$\begin{array}{c}
C \\
C_{\text{out}}
\end{array} \qquad \begin{array}{c}
C \\
C_{\text{out}}
\end{array}$$

$$\begin{array}{c}
C \\
C_{\text{out}}
\end{array} \qquad \begin{array}{c}
C \\
C_{\text{out}}
\end{array}$$

Figure 2.5 Multiple-output combinational circuit

Figure 2.6 Slash notation for multiple signals

Figure 2.7 Example circuits

Α	В	Y	minterm	minterm name
0	0	0	$\overline{A} \overline{B}$	m_{O}
0	1	1	ĀB	m_1
1	0	0	ΑB	m_2
1	1	0	АВ	m_3

Figure 2.8 Truth table and minterms

Α	В	Y	minterm	minterm name
0	0	0	$\overline{A} \overline{B}$	$m_{\rm O}$
0	1	1	ĀB	m_1
1	0	0	ΑB	m_2
1	1	1	АВ	m_3

Figure 2.9 Truth table with multiple TRUE minterms

Figure 2.10 Ben's truth table

Figure 2.11 Ben's circuit

Α	В	С	Y
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1 1		0

Figure 2.12 Random three-input truth table

Α	В	Y	maxterm	maxterm name
0	0	0	A + B	M_{0}
0	1	1	$A + \overline{B}$	M_1
1	0	0	Ā + B	M_2
1	1	1	$\overline{A} + \overline{B}$	M_3

Figure 2.13 Truth table with multiple FALSE maxterms

Figure 2.14 Identity theorem in hardware: (a) T1, (b) T1'

Figure 2.15 Null element theorem in hardware: (a) T2, (b) T2'

Figure 2.16 Idempotency theorem in hardware: (a) T3, (b) T3'

Figure 2.17 Involution theorem in hardware: T4

Figure 2.18 Complement theorem in hardware: (a) T5, (b) T5'

Figure 2.19 De Morgan equivalent gates

Α	В	Y	Y
0	0	0	1
0	1	0	1
1	0	1	0
1	1	1	0

Figure 2.20 Truth table showing Y and \overline{Y}

Figure 2.21 Truth table showing minterms for \overline{Y}

В	С	D	BC + BD + CD	BC+BD
0	0	0	0	0
0	0	1	1	1
0	1	0	0	0
0	1	1	1	1
1	0	0	0	0
1	0	1	0	0
1	1	0	1	1
1	1	1	1	1

Figure 2.22 Truth table proving T11

Figure 2.23 Schematic of $Y = \overline{A} \overline{B} \overline{C} + A \overline{B} \overline{C} + A \overline{B} C$

Figure 2.24 Wire connections

Figure 2.25 Schematic of $Y = \overline{B} \ \overline{C} + A \overline{B}$

Figure 2.26 Schematic using fewer gates

Figure 2.27 Priority circuit

Figure 2.28 Priority circuit schematic

A_3	A_2	<i>A</i> ₁	A_0	<i>Y</i> ₃	Y_2	<i>Y</i> ₁	Y_0
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1
0	0	1	X	0	0	1	0
O	1	X	X	0	1	0	0
1	X	X	X	0 0 0 0	0	0	0

Figure 2.29 Priority circuit truth table with don't cares (X's)

Figure 2.30 Three-input XOR: (a) functional specification and (b) two-level logic implementation

Figure 2.31 Three-input XOR using two-input XORs

Figure 2.32 Eight-input XOR using seven two-input XORs

Figure 2.33 Multilevel circuit using NANDs and NORs

Figure 2.34 Bubble-pushed circuit

Figure 2.35 Logically equivalent bubble-pushed circuit

Figure 2.36 Circuit using ANDs and ORs

Figure 2.37 Poor circuit using NANDs and NORs

Figure 2.38 Better circuit using NANDs and NORs

Figure 2.39 Circuit with contention

Tristate Buffer

E	Α	Y
0	0	Z
0	1	Z
1	0	0
1	1	1

Figure 2.40 Tristate buffer

Figure 2.41 Tristate buffer with active low enable

Figure 2.42 Tristate bus connecting multiple chips

Figure 2.43 Three-input function: (a) truth table, (b) K-map, (c) K-map showing minterms

Figure 2.44 K-map minimization

Figure 2.45 K-map for Example 2.9

Figure 2.46 Solution for Example 2.9

Figure 2.47 Seven-segment display decoder icon

Figure 2.48 Seven-segment display digits

S _a D _{3:2} 00 01 11 10 00 1 0 0 1					
$D_{1:0}$	^{3:2} 00	01	11	10	
00	1	0	0	1	
01	0	1	0	1	
11	1	1	0	0	
10	1	1	0	0	

S_b					
$D_{1:0}$	3:2 00	01	11	10	
S_b $D_{1:0}$ 00	1	1	0	1	
01	1	0	0	1	
11	1	1	0	0	
10	1	0	0	0	

Figure 2.49 Karnaugh maps for S_a and S_b

Figure 2.50 K-map solution for Example 2.10

Figure 2.51 Alternative K-map for S_a showing different set of prime implicants

Figure 2.52 Alternative K-map for S_a showing incorrect nonprime implicant

Figure 2.53 K-map solution with don't cares

Figure 2.54 2:1 multiplexer symbol and truth table

Figure 2.55 2:1 multiplexer implementation using two-level logic

Figure 2.56 Multiplexer using tristate buffers

Figure 2.57 4:1 multiplexer

Figure 2.58 4:1 multiplexer implementations: (a) two-level logic, (b) tristates, (c) hierarchical

Figure 2.59 4:1 multiplexer implementation of two-input AND function

Figure 2.60 Multiplexer logic using variable inputs

Figure 2.61 Alyssa's circuit: (a) truth table, (b) 8:1 multiplexer implementation

Figure 2.62 Alyssa's new circuit

A_1	A_0	<i>Y</i> ₃	Y_2	Y_1	Y_0
0	0	0	0	0	1
0	1	0	0	1	0
1	0	0	1	0	0
1	1	1	0	0	0

Figure 2.63 2:4 decoder

Figure 2.64 2:4 decoder implementation

Figure 2.65 Logic function using decoder

Figure 2.66 Circuit delay

Figure 2.67 Propagation and contamination delay

Figure 2.68 Short path and critical path

Figure 2.69 Critical and short path waveforms

Figure 2.70 Ben's circuit

Figure 2.71 Ben's critical path

Figure 2.72 Ben's shortest path

Figure 2.73 4:1 multiplexer propagation delays: (a) two-level logic, (b) tristate

Figure 2.74 4:1 multiplexer propagation delays: hierarchical using 2:1 multiplexers

Figure 2.75 Circuit with a glitch

Figure 2.76 Timing of a glitch

Figure 2.77 Input change crosses implicant boundary

Figure 2.78 K-map without glitch

Figure 2.79 Circuit without glitch

(a)		r	(b)			r	(c)				(d)				p	(e)				r
Α	В	Y	Α	В	C	Y	Α	В	C	Y	Α	В	C	D	Y	Α	В	C	D	Y
0	0	1	0	0	0	1	0	0	0	1	0	0	0	0	1	0	0	0	0	1
0	1	0	0	0	1	0	0	0	1	0	0	0	0	1	1	0	0	0	1	0
1	0	1	0	1	0	0	0	1	0	1	0	0	1	0	1	0	0	1	0	0
1	1	1	0	1	1	0	0	1	1	0	0	0	1	1	1	0	0	1	1	1
		•	1	0	0	0	1	0	0	1	0	1	0	0	0	0	1	0	0	0
			1	0	1	0	1	0	1	1	0	1	0	1	0	0	1	0	1	1
			1	1	0	0	1	1	0	0	0	1	1	0	0	0	1	1	0	1
			1	1	1	1	1	1	1	1	0	1	1	1	0	0	1	1	1	0
											1	0	0	0	1	1	0	0	0	0
											1	0	0	1	0	1	0	0	1	1
											1	0	1	0	1	1	0	1	0	1
											1	0	1	1	0	1	0	1	1	0
											1	1	0	0	0	1	1	0	0	1
											1	1	0	1	0	1	1	0	1	0
											1	1	1	0	1	1	1	1	0	0
											1	1	1	1	0	1	1	1	1	1

Figure 2.80 Truth tables for Exercises 2.1 and 2.3

(a)		•11	(b)				(c)				(d)					(e)				
Α	В	Y	A	В	С	Y	Α	В	С	Y	Α	В	С	D	Y	Α	В	С	D	Y
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
0	1	1	0	0	1	1	0	0	1	1	0	0	0	1	0	0	0	0	1	0
1	0	1	0	1	0	1	0	1	0	0	0	0	1	0	1	0	0	1	0	0
1	1	1	0	1	1	1	0	1	1	0	0	0	1	1	1	0	0	1	1	1
			1	0	0	1	1	0	0	0	0	1	0	0	0	0	1	0	0	0
			1	0	1	0	1	0	1	0	0	1	0	1	0	0	1	0	1	0
			1	1	0	1	1	1	0	1	0	1	1	0	1	0	1	1	0	1
			1	1	1	0	1	1	1	1	0	1	1	1	1	0	1	1	1	1
											1	0	0	0	1	1	0	0	0	1
											1	0	0	1	0	1	0	0	1	1
											1	0	1	0	1	1	0	1	0	1
											1	0	1	1	0	1	0	1	1	1
											1	1	0	0	0	1	1	0	0	0
											1	1	0	1	0	1	1	0	1	0
											1	1	1	0	0	1	1	1	0	0
											1	1	1	1	0	1	1	1	1	0

Figure 2.81 Truth tables for Exercises 2.2 and 2.4

Figure 2.82 Circuit schematic

Figure 2.83 Circuit schematic

Figure 2.84 Circuit schematic

Α	В	C	D	Y
0	0	0	0	X
0	0	0	1	X
0	0	1	0	X
0	0	1	1	0
0	0 0 0 1 1 1 0 0	0	0	0
0	1	0	1	X
0	1	1	0	0
0	1	1	1	X
1	0	0	0	1
1	0	0	1	0
1	0	1	0	Х
1		1	1	1
1	1	0	0	1
1	1	0	1	1
0 0 0 0 0 0 0 1 1 1 1 1	1 1 1	0 0 1 0 0 1 1 0 0 1 1 0 0 1 1	0 1 0 1 0 1 0 1 0 1 0 1	X X X 0 0 X 0 X 1 0 X 1 1 1 X
1	1	1	1	1

Figure 2.85 Truth table for Exercise 2.28

A	В	С	D	Y
0			0	0
0	0	0	1	1
0	0	1	0	X
0	0	1	1	X
0	0 0 0 1 1 1 0 0	0	0	0
0	1	0	1	X
0	1	1	0	X
0	1	1	1	X
1	0	0	0	1
1	0	0	1	0
1	0	1	0	0
1	0	1	1	1
1	1	0	0	0
0 0 0 0 0 0 0 0 1 1 1 1 1	1 1 1	0 0 1 0 0 1 0 0 1 1 0 0 1 1	0 1 0 1 0 1 0 1 0 1 0 1	0 1 X X 0 X X 1 0 0 1 0 1 X
1	1	1	0	X
1	1	1	1	1

Figure 2.86 Truth table for Exercise 2.31

Figure 2.87 Multiplexer circuit

Figure 2.88 Multiplexer circuit

Figure M 01

Figure M 02

UNN Figure 1