

Sieci Komputerowe 2018/19

Spis treści		
1	Warstwy	1
2	Ethernet	2
3	WiFi	3
4	IP	4
5	UDP	5
6	TCP	6
7	DNS	7
8	HTTP	8
9	SSL	9
10	Chord	10
11	TOR	11
12	Fizyczne zagadnienia komunikacji	12
13	Błędy transmisji	13
14	Współdzielenie kanału komunikacji	14
15	Czas	15
16	Mechanizmy bezpieczeństwa	16
17	Bufory	17
18	Adresowanie	18
19	Pośredniczenie w komunikacii	19

1 Warstwy

- Opisz jak jest fizycznie realizowana (np. w sieci 1000BASE-T) ramka Ethernet przesyłająca pakiet IPv4 zawierający fragment strumienia TCP podczas pobierania pliku z serwera HTTP.
- Opisz warstwy w modelu ISO-OSI i porównaj je z poprzednim przykładem.
- Jakie są konsekwencje warstwowej konstrukcji technologii sieciowych?
- Podaj przykłady problemów które rozwiązuje się na wielu warstwach.
- Jakie są interakcje pomiędzy nagłówkami różnych warstw w sieci TCP/IP?

2 Ethernet

- Opisz rozwój technologii Ethernet.
- Opisz format wiadomości przesyłanych w sieciach Ethernet.
- Opisz fizyczne metody przekazywania wiadomości w sieciach Ethernet.
- Opisz zasady działania Switched Ethernet.
- Skomentuj zmiany w algorytmach współdzielenia kanału komunikacji.
- Jaki wpływ na działanie sieci Ethernet mają cykle w grafie połączeń?
- Opisz zasadę działania systemu VLAN.

3 WiFi

- Opisz schemat działania sieci bezprzewodowych w technologii WiFi.
- Jaka jest rola punktu dostępowego w algorytmach współdzielenia kanału komunikacji?
- Dlaczego WIFI nie korzysta z algorytmów type Carrier Sense?
- Opisz mechanizm podłączania klienta do sieci WiFi z uwzględnieniem negocjacji zabezpieczeń.
- Opisz zagadnienia łączenia sieci WiFi i Ethernet.

Sieci Komputerowe 2018/19

$\overline{4}$ IP

- Opisz schemat działania tablic trasowania pakietów IP.
- Dlaczego tablice trasowania w ogóle mają szanse działać?
- Opisz algorytmy typu Distance-Vector i Link-State i skomentuj jak są wykorzystywane do wyznaczania trasowania IP.
- Czy każdy ruch IP ma porty?
- Jak system operacyjny przekazuje odebrane pakiety IP do aplikacji?
- Skomentuj mechanizmy bezpieczeństwa wprowadzone przez system IP-SEC.

$\overline{5}$ UDP

- Dlaczego protokół DHCP używa komunikacji UDP?
- Dlaczego protokół DNS używa komunikacji UDP?
- Skomentuj różnice pomiędzy protokołami TCP i UDP.
- Skomentuj zadanie zaprogramowania serwera UDP obsługującego wielu klientów jednocześnie.
- Opisz API do obsługi UDP w bibliotece standardowej (moduł socket) w języku Python.

$\overline{6}$ TCP

- Opisz etapy nawiązywania połączenia TCP.
- Opisz technikę Sliding Window.
- Opisz w jaki sposób algorytmy TCP sterują prędkością transmisji.
- Co oznaczają strategie TCP Tahoe, TCP Reno i TCP Vegas?
- Opisz API do obsługi połączeń TCP w bibliotece standardowej (moduł socket) w języku Python.

$\overline{7}$ DNS

- Opisz system DNS.
- Opisz zasady publikacji wpisów w DNS.
- Opisz algorytm odczytu wpisów w DNS.
- Skomentuj automatyczne i przeźroczyste dla programisty wykorzystywanie DNS.
- Skomentuj mechanizmy bezpieczeństwa wprowadzone przez DNSSEC.

8 HTTP

- Omów zawartość strumienia TCP podczas prostej komunikacji HTTP zwracając szczególną uwagę na sposób wykorzystania nagłówków.
- Skomentuj różnice w wykorzystaniu połączenia TCP w różnych wersjach protokołu HTTP.
- Jakie są powody i konsekwencje tych różnic?
- Skomentuj mechanizmy bezpieczeństwa wbudowane w HTTP.
- Opisz Jak można wykorzystać HTTP do kontynuowania pobierania częściowo pobranego pliku?
- Skomentuj mechanizmy wspierające dynamiczne generowanie treści przez serwery HTTP.

9 SSL

- Jakie gwarancje bezpieczeństwa daje system SSL.
- Skomentuj wymagania jakie musi spełniać aplikacja żeby mogła wykorzystać komunikację SSL.
- Opisz jak SSL używa kryptografii klucza publicznego i kryptografii klucza symetrycznego.
- Opisz etapy nawiązywania połączenia SSL.
- Opisz schemat certyfikacji kluczy stosowany w SSL.
- Opisz API do obsługi SSL w bibliotece standardowej (moduł ssl) w języku Python.

10 Chord

- Opisz zagadnienie systemu Distributed Hash Table.
- Podaj przykłady zastosowania w systemach informatycznych.
- Przedstaw logikę działania systemu Chord.
- Przedstaw operacje dodawania i usuwania komputerów do systemu i skomentuj ich złożoność.
- Skomentuj podatność systemu na możliwość "wrogiego przejęcia" fragmentów bazy danych.

11 TOR

- Opisz schemat działania systemu TOR.
- Opisz interakcję systemu TOR z siecią Internet.
- Jak są adresowane komputery?
- Jakie są zasady trasowania?
- Jak następuje podłączenie do sieci?
- Przedstaw sposób nawiązywania połączenia z ukrytymn serwerem.

12 Fizyczne zagadnienia komunikacji

- Ile metrów zajmuje jeden bit?
 - czy to pytanie w ogóle ma sens?
 - nawet jeśli nie, to jaka jest odpowiedź?
- Ile sekund zajmuje jeden bit?
- Skomentuj twierdzenia Shannona i Nyquista?
- Fizyczne aspekty bezpieczeństwa komunikacji.
- Dlaczego dzielimy komunikacje na wiadomości o ograniczonym rozmiarze?
 - Skomentuj mechanizm fragmentacji IP.
 - Jakie znaczenie ma rozmiar wiadomości w kryptografii?
 - Skomentuj jak rozmiary wiadomości wpływają na protokół TCP.

13 Błędy transmisji

- Podaj przykłady technologii sieciowych wykrywających i korygujących błędy komunikacji.
- Z jakich algorytmów korzystają?
- W jaki sposób protokół TCP wykrywa błędy transmisji i jak na nie reaguje?
- Na jakie błędy transmisji UDP programista powinien być przygotowany?
- Ile bitów trzeba przesłać, żeby przekazać 32 bitów wiadomości z możliwością skorygowania do 4 bitów błędu.
- Jak błędy transmisji wpływają na mechanizmy bezpieczeństwa?

14 Współdzielenie kanału komunikacji

- Opisz różne metody stosowane w protokołach współdzielenia kanału komunikacji.
- Opisz metody współdzielenia kanału stosowane w:
 - ALOHA,
 - Ethernet,
 - WiFi.
- Skomentuj efekt współdzielenia łącza przez równoczesne połączenia TCP.
- Jak sieć BitTorrent dba o współdzielenie przepustowości dostępnej dla różnych partnerów?

15 Czas

- Opisz działanie protokołu NTP.
- Skomentuj algorytmy, które wykrywają zagubione pakiety. Jak dobierają czas po którym komunikacja powinna zostać uznana za utraconą?
- Podaj przykłady wykorzystania czasu w protokołach bezpieczeństwa.
- Jak czas jest wykorzystywany w technologiach sieciowych do łamania symetrii?
- Jak szybko kończą Zapętlanie identyfikatorów
- Jakie są narzuty czasowe związane z wykorzystaniem protokołów TCP, HTTP i SSL.
- Jak programista może sterować prędkością transmisji z protokołach opartych o komunikację UDP?

16 Mechanizmy bezpieczeństwa

- Opisz podstawowe narzędzia kryptograficzne i podaj przykłady wykorzystania:
 - funkcji haszujących,
 - kryptografii klucza symetrycznego,
 - kryptografii klucza publiczengo.
- Opisz schematy negocjacji wspólnego sekretu:
 - Diffie-Hellman,
 - Needham-Schroeder.

17 Bufory

- Opisz problemy związane z brakiem buforowania.
- Opisz problemy związane z za dużym buforowaniem.
- Skomentuj jak buforowanie wpływa na protokoły:
 - Ethernet i WiFi,
 - IP,
 - TCP i UDP.
- Opisz różne strategie zarządzania buforem.

18 Adresowanie

- Opisz jak komputery są adresowane w protokołach:
 - Ethernet i WiFi,
 - IP,
 - TCP i UDP,
 - Chord,
 - DNS.
- Opisz mechanizm maskarady adresów IP.
- Opisz działanie protokołów translacji adresów:
 - ARP,
 - DHCP,
 - DNS.

19 Pośredniczenie w komunikacji

- Skomentuj mechanizmy Proxy w protokole HTTP.
- Opisz zasadę działania mostów łączących technologię Ethernet i WiFi.
- Jak wykorzystać mechanizmy VPN do tunelowania i pośredniczenia w komunikacji?
- Jak wykorzystać protokół SOCKS Proxy do zbudowania prostej sieci cebulowej?
- Jak realizowane są tunele IPSEC i IPv6 w IPv4?