ISMP 2024. Montréal. QC

Zev Woodstock*, Gábor Braun, and Sebastian Pokutta

Zuse Institute Berlin (ZIB) & Technische Universität Berlin Interactive Optimization and Learning (IOL) Lab

July 2024

^{*-} also James Madison University starting Aug. 2024

Flexible Block-Coordinate Frank-Wolfe Algorithm

 $oldsymbol{1}$. Motivation

Motivation

- **2.** Our approach
- 3. Analysis
- **4.** Numerical experiments

Problem setting

Given m nonempty closed convex sets $C_i \subset \mathbb{R}^{n_i}$ with $i \in \{1, \ldots, m\} =: I$ and a smooth function $f : \mathbb{R}^N \to \mathbb{R}$ with $N = \sum_{i \in I} n_i$, solve

$$\underset{\mathbf{x} \in C_1 \times ... \times C_m}{\text{minimize}} f(\mathbf{x}). \tag{1}$$

Applications: matrix factorization, SVM training, sequence labeling, splitting, . . .

Problem setting

Given m nonempty closed convex sets $C_i \subset \mathbb{R}^{n_i}$ with $i \in \{1, \ldots, m\} =: I$ and a smooth function $f: \mathbb{R}^N \to \mathbb{R}$ with $N = \sum_{i \in I} n_i$, solve

$$\underset{\mathbf{x} \in C_1 \times \ldots \times C_m}{\text{minimize}} f(\mathbf{x}). \tag{1}$$

Applications: matrix factorization, SVM training, sequence labeling, splitting, . . .

Two families of first-order methods to solve (1): projection methods and Frank-Wolfe AKA "CG" methods, which use linear minimization oracles.

$$\operatorname{proj}_{C}(x) = \operatorname{Argmin}_{\mathbf{v} \in C} \|x - \mathbf{v}\|^{2} \qquad \operatorname{LMO}_{C}(x) \in \operatorname{Argmin}_{\mathbf{v} \in C} \langle x \mid \mathbf{v} \rangle \tag{2}$$

Motivation

Given m nonempty closed convex sets $C_i \subset \mathbb{R}^{n_i}$ with $i \in \{1, \ldots, m\} =: I$ and a smooth function $f : \mathbb{R}^N \to \mathbb{R}$ with $N = \sum_{i \in I} n_i$, solve

$$\underset{\mathbf{x} \in C_1 \times ... \times C_m}{\text{minimize}} f(\mathbf{x}). \tag{1}$$

Applications: matrix factorization, SVM training, sequence labeling, splitting, . . .

Two families of first-order methods to solve (1): projection methods and Frank-Wolfe AKA "CG" methods, which use linear minimization oracles.

$$\operatorname{proj}_{C}(\mathbf{x}) = \operatorname{Argmin}_{\mathbf{v} \in C} \|\mathbf{x} - \mathbf{v}\|^{2} \qquad \operatorname{LMO}_{C}(\mathbf{x}) \in \operatorname{Argmin}_{\mathbf{v} \in C} \langle \mathbf{x} \mid \mathbf{v} \rangle \tag{2}$$

[Combettes/Pokutta, '21]: For many constraints, C, proj_C is **more expensive** than LMO_C . (e.g., nuclear norm ball, ℓ_1 ball, probability simplex, Birkhoff polytope, general LP, . . .)

Problem setting

Given m nonempty closed convex sets $C_i \subset \mathbb{R}^{n_i}$ with $i \in \{1, \ldots, m\} =: I$ and a smooth function $f: \mathbb{R}^N \to \mathbb{R}$ with $N = \sum_{i \in I} n_i$, solve

$$\underset{\mathbf{x} \in C_1 \times \ldots \times C_m}{\text{minimize}} f(\mathbf{x}). \tag{1}$$

Applications: matrix factorization, SVM training, sequence labeling, splitting, . . .

For $\mathbf{x} \in \mathbb{R}^N$ with components $\mathbf{x} = (\mathbf{x}^1, \dots, \mathbf{x}^m)$ $(\mathbf{x}_i \in \mathbb{R}^{n_i})$,

$$\mathsf{LMO}_{C_1 \times \ldots \times C_m}(\mathbf{x}^1, \ldots, \mathbf{x}^m) = (\mathsf{LMO}_{C_1}\mathbf{x}^1, \ldots, \mathsf{LMO}_{C_m}\mathbf{x}^m) \tag{\$\$\$}$$

Problem setting

Motivation

Given m nonempty closed convex sets $C_i \subset \mathbb{R}^{n_i}$ with $i \in \{1, \ldots, m\} =: I$ and a smooth function $f : \mathbb{R}^N \to \mathbb{R}$ with $N = \sum_{i \in I} n_i$, solve

$$\underset{\mathbf{x} \in C_1 \times \ldots \times C_m}{\text{minimize}} f(\mathbf{x}). \tag{1}$$

Applications: matrix factorization, SVM training, sequence labeling, splitting, . . .

For $x \in \mathbb{R}^N$ with components $x = (x^1, \dots, x^m)$ $(x_i \in \mathbb{R}^{n_i})$,

$$\mathsf{LMO}_{C_1 \times \ldots \times C_m}(\boldsymbol{x}^1, \ldots, \boldsymbol{x}^m) = (\mathsf{LMO}_{C_1} \boldsymbol{x}^1, \ldots, \mathsf{LMO}_{C_m} \boldsymbol{x}^m) \tag{\$\$\$}$$

"Let's avoid computing so many LMOs per iteration!" (paraphrased)

- [Patriksson, '98], [Lacoste-Julien et al., 2013], [Beck et al., 2015], [Wang et al., 2016], [Osokin et al., 2016], [Bomze et al., 2024], ...

Motivation

(Generic) BCFW Algorithm

```
1: for t = 0, 1 to . . . do
           Select I_t \subset \{1, \ldots, m\}
           \mathbf{g}_t \leftarrow \nabla f(\mathbf{x}_t)
            for i = 1 to m do
 4.
 5:
             if i \in I_t then
                     \mathbf{v}_t^i \leftarrow \mathsf{LMO}_i(\mathbf{g}_t^i)
 6:
                    \gamma_t^i \leftarrow \mathsf{Step \, size}
 7:
                     \mathbf{x}_{t+1}^i \leftarrow \mathbf{x}_t^i + \gamma_t^i (\mathbf{v}_t^i - \mathbf{x}_t^i)
 8:
                else
 9:
                     \mathbf{x}_{t+1}^i \leftarrow \mathbf{x}_t^i
10:
                 end if
11:
            end for
12:
13: end for
```

Motivation 0000

(Generic) BCFW Algorithm

```
1: for t = 0.1 to . . . do
            Select I_t \subset \{1, \ldots, m\}
           \mathbf{g}_t \leftarrow \nabla f(\mathbf{x}_t)
            for i = 1 to m do
  4.
  5:
              if i \in I_t then
                      \mathbf{v}_t^i \leftarrow \mathsf{LMO}_i(\mathbf{g}_t^i)
  6:
                     \gamma_{\star}^{i} \leftarrow \mathsf{Step size}
  7:
                      \mathbf{x}_{t+1}^i \leftarrow \mathbf{x}_t^i + \gamma_t^i (\mathbf{v}_t^i - \mathbf{x}_t^i)
  8:
  9:
                 else
                      \mathbf{x}_{t\perp 1}^i \leftarrow \mathbf{x}_t^i
10:
                 end if
11:
            end for
12.
13: end for
```

```
[Patriksson, 1998]:
```

- Asymptotic convergence if f convex
- Exact and Armijo linesearches fixed across all components $\gamma_t^i = \gamma_t$
- Full update $(I_t = \{1, ..., m\})$
- Deterministic essentially cyclic ($\exists K > 0$):

$$I_t = \{i_t\}$$
, with $\{i_t, \dots, i_{t+K}\} = \{1, \dots, m\}$

(Generic) BCFW Algorithm

```
1: for t = 0.1 to . . . do
           Select I_t \subset \{1, \ldots, m\}
           \mathbf{g}_t \leftarrow \nabla f(\mathbf{x}_t)
            for i = 1 to m do
  4.
              if i \in I_t then
  5:
                      \mathbf{v}_t^i \leftarrow \mathsf{LMO}_i(\mathbf{g}_t^i)
  6:
                     \gamma_{\star}^{i} \leftarrow \mathsf{Step size}
  7:
                      \mathbf{x}_{t+1}^i \leftarrow \mathbf{x}_t^i + \gamma_t^i (\mathbf{v}_t^i - \mathbf{x}_t^i)
  8:
  9:
                 else
                      \mathbf{x}_{t\perp 1}^i \leftarrow \mathbf{x}_t^i
10:
                 end if
11:
            end for
12.
13: end for
```

```
• [Patriksson, 1998]:
```

- Asymptotic convergence if f convex
- Exact and Armijo linesearches fixed across all components $\gamma_t^i = \gamma_t$
- Full update $(I_t = \{1, \ldots, m\})$
- Deterministic essentially cyclic ($\exists K > 0$):

$$I_t = \{\mathfrak{i}_t\},$$
 with $\{\mathfrak{i}_t, \ldots, \mathfrak{i}_{t+\mathcal{K}}\} = \{1, \ldots, m\}$

- [Beck et al., 2015]:
 - $\mathcal{O}(1/t)$ convergence (f convex)
 - open-loop, short-step, and backtracking γ_t^i
 - Deterministic cyclic updates

$$I_t = \{i_t\}$$
, with $\{i_t, \dots, i_{t+m}\} = \{1, \dots, m\}$

Motivation

(Generic) BCFW Algorithm

```
1: for t = 0, 1 to . . . do
            Select I_t \subset \{1, \ldots, m\}
           \mathbf{g}_t \leftarrow \nabla f(\mathbf{x}_t)
            for i = 1 to m do
  4.
              if i \in I_t then
  5:
                      \mathbf{v}_t^i \leftarrow \mathsf{LMO}_i(\mathbf{g}_t^i)
  6:
                     \gamma_t^i \leftarrow \mathsf{Step \ size}
  7:
                     \mathbf{x}_{t+1}^i \leftarrow \mathbf{x}_t^i + \gamma_t^i (\mathbf{v}_t^i - \mathbf{x}_t^i)
  8:
  9:
                 else
                     \mathbf{x}_{t\perp 1}^i \leftarrow \mathbf{x}_t^i
10:
                 end if
11:
            end for
12.
13: end for
```

- Stochastic variants:
 - $\mathcal{O}(1/t)$ primal convergence rate (f convex)
 - Uniform singleton selection [Lacoste-Julien et al., 2013]
 - Non-uniform singleton selection (based on suboptimality criterion) [Osokin et al., 2016]
 - Uniform parallel selection with fixed block-sizes $|I_t| = p$ [Wang et al., 2016]

0000

(Generic) BCFW Algorithm

Known modes of convergence:

```
1: for t = 0, 1 to . . . do
            Select I_t \subset \{1, \ldots, m\}
           \mathbf{g}_t \leftarrow \nabla f(\mathbf{x}_t)
            for i = 1 to m do
  4.
                 if i \in I_t then
  5:
                      \mathbf{v}_t^i \leftarrow \mathsf{LMO}_i(\mathbf{g}_t^i)
  6:
                     \gamma_t^i \leftarrow \mathsf{Step \ size}
  7:
                      \mathbf{x}_{t+1}^i \leftarrow \mathbf{x}_t^i + \gamma_t^i (\mathbf{v}_t^i - \mathbf{x}_t^i)
  8:
  9:
                 else
                      \mathbf{x}_{t\perp 1}^i \leftarrow \mathbf{x}_t^i
10:
                 end if
11:
            end for
12.
13: end for
```

```
Stochastic variants:
```

- $\mathcal{O}(1/t)$ primal convergence rate (f convex)
- Uniform singleton selection [Lacoste-Julien et al., 2013]
- Non-uniform singleton selection (based on suboptimality criterion) [Osokin et al., 2016]
- Uniform parallel selection with fixed block-sizes $|I_t| = p$ [Wang et al., 2016]

• [Bomze et al., 2024]:

- Linear convergence (KL condition $+ \cdots$)
- Short-Step Chain (SSC) procedure: γ_{+}^{i} . \mathbf{v}_{+}^{i}
- Full updates $(I_t = \{1, \ldots, m\})$
- Uniform singleton selection ($I_t = \{i_t\}$)
- Gauss-Southwell "greedy" singleton updates (based on suboptimality criterion).

Singleton updates:

Motivation 0000

- → cyclic, essentially cyclic, Gauss-Southwell, (uniform or non-uniform) random
- Parallel updates:
 - \rightarrow Full $(I_t = \{1, \dots, m\})$, or uniformly-random blocks of fixed size $|I_t| = p$

What if my LMOs have very different costs? What if I only have 4 processor cores?

- Singleton updates:
 - → cyclic, essentially cyclic, Gauss-Southwell, (uniform or non-uniform) random
- Parallel updates:
 - \rightarrow Full $(I_t = \{1, \dots, m\})$, or uniformly-random blocks of fixed size $|I_t| = p$

What if my LMOs have very different costs? What if I only have 4 processor cores?

What about...

Motivation 0000

deterministic parallel updates?

- Singleton updates:
 - → cyclic, essentially cyclic, Gauss-Southwell, (uniform or non-uniform) random
- Parallel updates:
 - \rightarrow Full $(I_t = \{1, \dots, m\})$, or uniformly-random blocks of fixed size $|I_t| = p$

What if my LMOs have very different costs? What if I only have 4 processor cores?

What about...

Motivation ○○○●

- deterministic parallel updates?
- blocks with different sizes?

- Singleton updates:
 - → cyclic, essentially cyclic, Gauss-Southwell, (uniform or non-uniform) random
- Parallel updates:
 - \rightarrow Full $(I_t = \{1, \dots, m\})$, or uniformly-random blocks of fixed size $|I_t| = p$

What if my LMOs have very different costs? What if I only have 4 processor cores?

What about...

Motivation 0000

- **deterministic** parallel updates?
- blocks with different sizes?
- cost-aware methodologies? (e.g., if some LMOs are numerically expensive, and others are cheap)

Flexible Block-Coordinate Frank-Wolfe Algorithm

- **1.** Motivation
- **2.** Our approach
- **3.** Analysis
- **4.** Numerical experiments

Assumption

There exists a positive integer K such that, for every iteration t,

$$(\forall 1 \leqslant i \leqslant m) \quad i \in \bigcup_{n=t}^{t+K-1} I_n.$$
 (*)

Assumption

There exists a positive integer K such that, for every iteration t,

$$(\forall 1 \leqslant i \leqslant m) \quad i \in \bigcup_{n=t}^{t+K-1} I_n.$$
 (*)

Allows for:

• Deterministic, variable-size, parallel updates

Assumption

There exists a positive integer K such that, for every iteration t,

$$(\forall 1 \leqslant i \leqslant m) \quad i \in \bigcup_{n=t}^{t+K-1} I_n. \tag{*}$$

Allows for:

- Deterministic, variable-size, parallel updates
- Already known to converge: Full, cyclic, essentially cyclic, . . .

Assumption

There exists a positive integer K such that, for every iteration t,

$$(\forall 1 \leqslant i \leqslant m) \quad i \in \bigcup_{n=t}^{t+K-1} I_n. \tag{*}$$

Allows for:

- Deterministic, variable-size, parallel updates
- Already known to converge: Full, cyclic, essentially cyclic, ...
- "Lazy" updates: Over K iterations, update expensive LMO(s) once, and update cheap LMOs multiple times.

Assumption

There exists a positive integer K such that, for every iteration t,

$$(\forall 1 \leqslant i \leqslant m) \quad i \in \bigcup_{n=t}^{t+K-1} I_n.$$
 (*)

Allows for:

- Deterministic, variable-size, parallel updates
- Already known to converge: Full, cyclic, essentially cyclic, . . .
- "Lazy" updates: Over K iterations, update expensive LMO(s) once, and update cheap LMOs multiple times.
 - \rightarrow We can set the ratio of $\frac{\text{(expensive LMO evals)}}{\text{(cheap LMO evals)}} = \frac{1}{K}$ arbitrarily small.

Assumption

There exists a positive integer K such that, for every iteration t,

$$(\forall 1 \leqslant i \leqslant m) \quad i \in \bigcup_{n=t}^{t+K-1} I_n.$$
 (*)

To my knowledge, first appears in [Ottavy, 1988].

Assumption

There exists a positive integer K such that, for every iteration t,

$$(\forall 1 \leqslant i \leqslant m) \quad i \in \bigcup_{n=t}^{t+K-1} I_n.$$
 (*)

To my knowledge, first appears in [Ottavy, 1988].

Related to lazily updating Hessians in Newton's method [Shamanskii, 1967]

1967:

Canada turns 100!

Assumption

There exists a positive integer K such that, for every iteration t,

$$(\forall 1 \leqslant i \leqslant m) \quad i \in \bigcup_{n=t}^{t+K-1} I_n.$$
 (*)

To my knowledge, first appears in [Ottavy, 1988].

Related to lazily updating Hessians in Newton's method [Shamanskii, 1967]

Apparently never considered for F-W algorithms before!?

1967:

Canada

Goals

Under Assumption (\star) , establish competitive convergence rates.

What we did:

- f convex: $\mathcal{O}(K/t)$ rate (for primal gap) using:
 - Short-step γ_t^i
 - An adaptive stepsize scheme γ_t^i
- f nonconvex: $\mathcal{O}(K/\sqrt{t})$ rate (for F-W optimality gap) using short-step γ_t^i
- Some conjectures and interesting analysis along the way...

Flexible Block-Coordinate Frank-Wolfe Algorithm

- **1.** Motivation
- 2. Our approach
- 3. Analysis
- **4.** Numerical experiments

Frank Wolfe gaps

Recall
$$I = \{1, \dots, m\}$$
. The **Frank-Wolfe gap** at $x \in \mathbb{R}^N$ is

$$G_I(\mathbf{x}) = \langle \nabla f(\mathbf{x}) \mid \mathbf{x} - \mathsf{LMO}_{\times_{i \in I} C_i}(\nabla f(\mathbf{x})) \rangle$$

Frank Wolfe gaps

Recall $I = \{1, ..., m\}$. The **Frank-Wolfe gap** at $\mathbf{x} \in \mathbb{R}^N$ is

$$G_I(\mathbf{x}) = \langle \nabla f(\mathbf{x}) \mid \mathbf{x} - \mathsf{LMO}_{\times_{i \in I} C_i}(\nabla f(\mathbf{x})) \rangle = \sum_{i \in I} \langle \nabla^i f(\mathbf{x}) \mid \mathbf{x}^i - \mathsf{LMO}_{C_i}(\nabla^i f(\mathbf{x})) \rangle.$$

Frank Wolfe gaps

Recall $I = \{1, ..., m\}$. The **Frank-Wolfe gap** at $\mathbf{x} \in \mathbb{R}^N$ is

$$G_I(\mathbf{x}) = \langle \nabla f(\mathbf{x}) \mid \mathbf{x} - \mathsf{LMO}_{\times_{i \in I} C_i}(\nabla f(\mathbf{x})) \rangle = \sum_{i \in I} \langle \nabla^i f(\mathbf{x}) \mid \mathbf{x}^i - \mathsf{LMO}_{C_i}(\nabla^i f(\mathbf{x})) \rangle.$$

A partial Frank-Wolfe gap is given by

$$(\forall J \subset I)$$
 $G_J(\mathbf{x}) = \sum_{i \in J} \langle \nabla^i f(\mathbf{x}) \mid \mathbf{x}^i - \mathsf{LMO}_{C_i}(\nabla^i f(\mathbf{x})) \rangle$

Frank Wolfe gaps

Recall $I = \{1, ..., m\}$. The **Frank-Wolfe gap** at $\mathbf{x} \in \mathbb{R}^N$ is

$$G_I(\mathbf{x}) = \langle \nabla f(\mathbf{x}) \mid \mathbf{x} - \mathsf{LMO}_{\times_{i \in I} C_i}(\nabla f(\mathbf{x})) \rangle = \sum_{i \in I} \langle \nabla^i f(\mathbf{x}) \mid \mathbf{x}^i - \mathsf{LMO}_{C_i}(\nabla^i f(\mathbf{x})) \rangle.$$

A partial Frank-Wolfe gap is given by

$$(\forall J \subset I)$$
 $G_J(\mathbf{x}) = \sum_{i \in J} \langle \nabla^i f(\mathbf{x}) \mid \mathbf{x}^i - \mathsf{LMO}_{C_i}(\nabla^i f(\mathbf{x})) \rangle$

Fact

- (A) If $\mathbf{x} \in \mathbf{x}_{i \in I} C_i$, then $(\forall J \subset I) \quad G_J(\mathbf{x}) \geqslant 0$.
- (B) \mathbf{x} is a stationary point of (1) if and only if $\mathbf{x} \in X_{i \in I} C_i$ and $G_I(x) = 0$.

Frank Wolfe gaps

Recall $I = \{1, ..., m\}$. The **Frank-Wolfe gap** at $\mathbf{x} \in \mathbb{R}^N$ is

$$G_I(\mathbf{x}) = \langle \nabla f(\mathbf{x}) \mid \mathbf{x} - \mathsf{LMO}_{\times_{i \in I} C_i}(\nabla f(\mathbf{x})) \rangle = \sum_{i \in I} \langle \nabla^i f(\mathbf{x}) \mid \mathbf{x}^i - \mathsf{LMO}_{C_i}(\nabla^i f(\mathbf{x})) \rangle.$$

A partial Frank-Wolfe gap is given by

$$(\forall J \subset I)$$
 $G_J(\mathbf{x}) = \sum_{i \in J} \langle \nabla^i f(\mathbf{x}) \mid \mathbf{x}^i - \mathsf{LMO}_{C_i}(\nabla^i f(\mathbf{x})) \rangle$

Fact

- (A) If $\mathbf{x} \in X_{i \in I} C_i$, then $(\forall J \subset I) G_I(\mathbf{x}) \geqslant 0$.
- (B) \mathbf{x} is a stationary point of (1) if and only if $\mathbf{x} \in X_{i \in I} C_i$ and $G_I(x) = 0$.
- \Rightarrow nonconvex convergence results typically show **first order criticality**: $G_l(x_t) \to 0$.

Smoothness and short-steps

For $L_f > 0$, the function f is L_f -smooth on a convex set C if

$$(\forall x, y \in C)$$
 $f(y) - f(x) \leq \langle \nabla f(x) \mid y - x \rangle + \frac{L_f}{2} ||y - x||^2.$

Smoothness and short-steps

For $L_f > 0$, the function f is L_f -smooth on a convex set C if

$$(\forall x, y \in C)$$
 $f(y) - f(x) \leq \langle \nabla f(x) \mid y - x \rangle + \frac{L_f}{2} ||y - x||^2.$

For BCFW, this means

$$f(\mathbf{x}_{t+1}) - f(\mathbf{x}_t) \leqslant \sum_{i \in I_t} \gamma_t^i \underbrace{\langle \nabla^i f(\mathbf{x}_t) \mid \mathbf{v}_t^i - \mathbf{x}_t^i \rangle}_{-G_i(\mathbf{x}_t)} + \frac{L_f}{2} (\gamma_t^i)^2 ||\mathbf{v}_t^i - \mathbf{x}_t^i||^2.$$

For $L_f > 0$, the function f is L_f -smooth on a convex set C if

Smoothness and short-steps

$$(\forall \mathbf{x}, \mathbf{y} \in C) \quad f(\mathbf{y}) - f(\mathbf{x}) \leqslant \langle \nabla f(\mathbf{x}) \mid \mathbf{y} - \mathbf{x} \rangle + \frac{L_f}{2} ||\mathbf{y} - \mathbf{x}||^2.$$

For BCFW, this means

$$f(\boldsymbol{x}_{t+1}) - f(\boldsymbol{x}_t) \leqslant \sum_{i \in I_t} \gamma_t^i \underbrace{\langle \nabla^i f(\boldsymbol{x}_t) \mid \boldsymbol{v}_t^i - \boldsymbol{x}_t^i \rangle}_{=G_t(\boldsymbol{x}_t)} + \frac{L_f}{2} (\gamma_t^i)^2 \|\boldsymbol{v}_t^i - \boldsymbol{x}_t^i\|^2.$$

To tighten the inequality, the stepsize

$$\gamma_t^i = \underset{\gamma \in [0,1]}{\operatorname{Argmin}} \left(-\gamma G_i(\boldsymbol{x}_t) + \gamma^2 \frac{L_f}{2} \|\boldsymbol{v}_t^i - \boldsymbol{x}_t^i\|^2 \right) = \min \left\{ \frac{G_i(\boldsymbol{x}_t)}{L_f \|\boldsymbol{v}_t^i - \boldsymbol{x}_t^i\|^2}, 1 \right\}, \quad \text{(short)}$$

is known as the componentwise **short step**.

Smoothness and short-steps

For
$$L_f > 0$$
, the function f is L_f -smooth on a convex set C if

For BCFW, this means

$$f(\mathbf{x}_{t+1}) - f(\mathbf{x}_t) \leqslant \sum_{i \in I_t} \gamma_t^i \underbrace{\langle \nabla^i f(\mathbf{x}_t) \mid \mathbf{v}_t^i - \mathbf{x}_t^i \rangle}_{=G(\mathbf{x}_t)} + \frac{L_f}{2} (\gamma_t^i)^2 \|\mathbf{v}_t^i - \mathbf{x}_t^i\|^2.$$

 $(\forall x, y \in C)$ $f(y) - f(x) \leq \langle \nabla f(x) \mid y - x \rangle + \frac{L_f}{2} ||y - x||^2.$

To tighten the inequality, the stepsize

$$\gamma_t^i = \underset{\gamma \in [0,1]}{\operatorname{Argmin}} \left(-\gamma G_i(\boldsymbol{x}_t) + \gamma^2 \frac{L_f}{2} \|\boldsymbol{v}_t^i - \boldsymbol{x}_t^i\|^2 \right) = \min \left\{ \frac{G_i(\boldsymbol{x}_t)}{L_f \|\boldsymbol{v}_t^i - \boldsymbol{x}_t^i\|^2}, 1 \right\}, \quad \text{(short)}$$

is known as the componentwise **short step**. Downside: requires upper-estimate of L_f .

Typical adaptive setup [Pedregosa et al., 2020], [Pokutta, 2023]:

Typical adaptive setup [Pedregosa et al., 2020], [Pokutta, 2023]:

1. Update γ_t^i based on an estimated the smoothness constant \widetilde{M} .

Typical adaptive setup [Pedregosa et al., 2020], [Pokutta, 2023]:

- 1. Update γ_t^i based on an estimated the smoothness constant \widetilde{M} .
- 2. If a desired inequality holds between x_t and x_{t+1} : done.

Typical adaptive setup [Pedregosa et al., 2020], [Pokutta, 2023]:

- 1. Update γ_t^i based on an estimated the smoothness constant \widetilde{M} .
- 2. If a desired inequality holds between x_t and x_{t+1} : done.
- 3. Else, increase $M \leftarrow \tau M$ by $\tau > 1$ and recompute \mathbf{x}_{t+1} until the desired inequality holds.

Typical adaptive setup [Pedregosa et al., 2020], [Pokutta, 2023]:

- 1. Update γ_t^i based on an estimated the smoothness constant \widetilde{M} .
- 2. If a desired inequality holds between x_t and x_{t+1} : done.
- 3. Else, increase $M \leftarrow \tau M$ by $\tau > 1$ and recompute \mathbf{x}_{t+1} until the desired inequality holds.

Pros: No a-priori knowledge of L_f ; sometimes we get larger steps.

Cons: Extra function and/or gradient evaluations.

Typical adaptive setup [Pedregosa et al., 2020], [Pokutta, 2023]:

- 1. Update γ_t^i based on an estimated the smoothness constant \widetilde{M} .
- 2. If a desired inequality holds between x_t and x_{t+1} : done.
- 3. Else, increase $M \leftarrow \tau M$ by $\tau > 1$ and recompute x_{t+1} until the desired inequality holds.

Pros: No a-priori knowledge of L_f ; sometimes we get larger steps.

Cons: Extra function and/or gradient evaluations.

Fact (Hazan & Luo, 2016)

Let f be convex and L_f -smooth. Then.

$$(\forall x, y \in \mathbb{R}^N)$$
 $f(x) - f(y) - \langle \nabla f(y) \mid x - y \rangle \geqslant \frac{\|\nabla f(x) - \nabla f(y)\|^2}{2L_f}.$

Typical adaptive setup [Pedregosa et al., 2020], [Pokutta, 2023]:

- 1. Update γ_t^i based on an estimated the smoothness constant \widetilde{M} .
- 2. If (2^*) holds between x_t and x_{t+1} : done.
- 3. Else, increase $M \leftarrow \tau M$ by $\tau > 1$ and recompute \mathbf{x}_{t+1} until (2*) holds.

Pros: No a-priori knowledge of L_f ; sometimes we get larger steps.

Cons: Extra function and/or gradient evaluations.

Fact (Hazan & Luo, 2016)

Let f be convex and L_f -smooth. Then, for M sufficiently large,

$$f(\mathbf{x}_t) - f(\mathbf{x}_{t+1}) - \langle \nabla f(\mathbf{x}_{t+1}) \mid \mathbf{x}_t - \mathbf{x}_{t+1} \rangle \geqslant \frac{\|\nabla f(\mathbf{x}_t) - \nabla f(\mathbf{x}_{t+1})\|^2}{2\widetilde{M}}.$$
 (2*)

Lemma (Progress bound via smoothness and convexity, short-step)

Let $\times_{i \in I} C_i \subset \mathcal{H}$ be a product of m nonempty compact convex sets, let f be convex and L_f -smooth, let D be the diameter of $\times_{i \in I} C_i$, and assume (\star) . Let x^* solve (1), and set $H_t = f(\mathbf{x}_t) - f(\mathbf{x}^*)$. Then

$$H_t - H_{t+K} \geqslant \begin{cases} H_t + A_t - \frac{KL_fD^2}{2}, & \text{if } H_t + A_t \geqslant KL_fD^2; \\ \frac{(H_t + A_t)^2}{2KL_fD^2}, & \text{if } H_t + A_t \leqslant KL_fD^2, \text{ where} \end{cases}$$

$$A_t = \sum_{k=1}^{K-1} G_{\underbrace{I_{t+k-1} \cap (I_{t+k} \cup \cdots \cup I_{t+K-1})}}_{I_k}(x_{t+k}) \geqslant 0$$

 A_t describes partial F-W gaps for all re-activated components.

Lemma (Progress bound via smoothness and convexity, short-step)

Let $\times_{i \in I} C_i \subset \mathcal{H}$ be a product of m nonempty compact convex sets, let f be convex and L_f -smooth, let D be the diameter of $\times_{i \in I} C_i$, and assume (\star) . Let x^* solve (1), and set $H_t = f(\mathbf{x}_t) - f(\mathbf{x}^*)$. Then

$$H_t - H_{t+K} \geqslant \begin{cases} H_t + A_t - \frac{KL_fD^2}{2}, & \text{if } H_t + A_t \geqslant KL_fD^2; \\ \frac{(H_t + A_t)^2}{2KL_fD^2}, & \text{if } H_t + A_t \leqslant KL_fD^2, \text{ where} \end{cases}$$

$$A_{t} = \sum_{k=1}^{K-1} G_{\underbrace{I_{t+k-1} \cap (I_{t+k} \cup \cdots \cup I_{t+K-1})}_{J_{k}}}(x_{t+k}) \geqslant \sum_{k=1}^{K-1} f(x_{t+k}) - \min_{\substack{x \in X_{i \in I} C_{i} \\ x^{I \setminus J_{k}} = x_{t+k}^{I \setminus J_{k}}}} f(x) \geqslant 0.$$

At describes partial F-W gaps for all re-activated components.

Lemma (Progress bound via smoothness and convexity, short-step)

Let $\times_{i \in I} C_i \subset \mathcal{H}$ be a product of m nonempty compact convex sets, let f be convex and L_f -smooth, let D be the diameter of $\times_{i \in I} C_i$, and assume (\star) . Let x^* solve (1), and set $H_t = f(\mathbf{x}_t) - f(\mathbf{x}^*)$. Then

$$H_t - H_{t+K} \geqslant \begin{cases} H_t + A_t - \frac{KL_fD^2}{2}, & \text{if } H_t + A_t \geqslant KL_fD^2; \\ \frac{(H_t + A_t)^2}{2KL_fD^2}, & \text{if } H_t + A_t \leqslant KL_fD^2, \end{cases}$$
 where

$$A_{t} = \sum_{k=1}^{K-1} G_{\underbrace{I_{t+k-1} \cap (I_{t+k} \cup \cdots \cup I_{t+K-1})}_{J_{k}}}(x_{t+k}) \geqslant \sum_{k=1}^{K-1} f(x_{t+k}) - \min_{\substack{x \in X_{i \in I} C_{i} \\ x^{I \setminus J_{k}} = x_{t+k}^{I \setminus J_{k}}}} f(x) \geqslant 0.$$

 A_t may explain good behavior in experiments.

Lemma (Progress bound via smoothness and convexity, short-step)

Let $\times_{i \in I} C_i \subset \mathcal{H}$ be a product of m nonempty compact convex sets, let f be convex and L_f -smooth, let D be the diameter of $\times_{i \in I} C_i$, and assume (\star) . Let x^* solve (1), and set $H_t = f(\mathbf{x}_t) - f(\mathbf{x}^*)$. Then

$$H_t - H_{t+K} \geqslant \begin{cases} H_t + A_t - \frac{KL_fD^2}{2}, & \text{if } H_t + A_t \geqslant KL_fD^2; \\ \frac{(H_t + A_t)^2}{2KL_fD^2}, & \text{if } H_t + A_t \leqslant KL_fD^2, \text{ where} \end{cases}$$

$$A_{t} = \sum_{k=1}^{K-1} G_{\underbrace{I_{t+k-1} \cap (I_{t+k} \cup \cdots \cup I_{t+K-1})}_{J_{k}}}(x_{t+k}) \geqslant \sum_{k=1}^{K-1} f(x_{t+k}) - \min_{\substack{x \in X_{i \in I} C_{i} \\ x^{l \setminus J_{k}} = x_{t+k}^{l \setminus J_{k}}}} f(x) \geqslant 0.$$

We don't know how to leverage A_t s for an improved rate!

Lemma (Progress bound via smoothness and convexity, adaptive step size strategy)

Let $\times_{i \in I} C_i \subset \mathcal{H}$ be a product of m nonempty compact convex sets, let f be convex and L_f -smooth, let D be the diameter of $\times_{i \in I} C_i$, let $0 < \eta \le 1 < \tau$ and $M_0 > 0$, and assume (*). Let \mathbf{x}^* solve (1), and set $H_t = f(\mathbf{x}_t) - f(\mathbf{x}^*)$. Then

$$H_{t} - H_{t+K} \geqslant \begin{cases} H_{t} + A_{t} - \frac{K \max\{\eta^{t} M_{0}, \tau L_{f}\}D^{2}}{2}, & \text{if } H_{t} + A_{t} \geqslant K \max\{\eta^{t} M_{0}, \tau L_{f}\}D^{2}; \\ \frac{(H_{t} + A_{t})^{2}}{2K \max\{\eta^{t} M_{0}, \tau L_{f}\}D^{2}}, & \text{if } H_{t} + A_{t} \leqslant K \max\{\eta^{t} M_{0}, \tau L_{f}\}D^{2}, \end{cases}$$

$$A_{t} = \sum_{k=1}^{K-1} G_{\underbrace{I_{t+k-1} \cap (I_{t+k} \cup \cdots \cup I_{t+K-1})}_{J_{k}}}(\mathbf{x}_{t+k}) \geqslant \sum_{k=1}^{K-1} f(\mathbf{x}_{t+k}) - \min_{\substack{\mathbf{x} \in \times_{i \in I} C_{i} \\ \mathbf{x}^{t \setminus J_{k}} = \mathbf{x}_{t+k}^{t \setminus J_{k}}}} f(\mathbf{x}) \geqslant 0.$$

At describes partial F-W gaps for all re-activated components.

Analysis 00000000

Theorem

Let $X_{i \in I}$ $C_i \subset \mathcal{H}$ be a product of m nonempty compact convex sets, let f be convex and L_f -smooth, let $\tau > 1 \ge \eta$ and $M_0 > 0$ be approximation parameters, let D be the diameter of $X_{i\in I}$ C_i , let $\mathbf{x}_0 \in \mathbb{R}^N$, let \mathbf{x}^* solve (1), and assume (*). Set $n_0 := \max\{\lceil \log(\tau L_f/(\eta M_0))/(K \log \eta)\rceil, 0\}$. Then,

$$f(\mathbf{x}_{nK}) - f(\mathbf{x}^*) \leq \begin{cases} \min_{0 \leq p \leq n-1} \left\{ \frac{K\eta^{pK} M_0 D^2}{2} - A_{pK} \right\} & \text{if } 1 \leq n \leq n_0 + 1 \\ \frac{2K\tau L_f D^2}{n - n_0 + \sum_{p=n_0}^{n} \frac{2A_{pK}}{f(\mathbf{x}_{n_0}) - f(\mathbf{x}^*)} + \left(\frac{A_{pK}}{f(\mathbf{x}_{n_0}) - f(\mathbf{x}^*)} \right)^2} & \text{if } n > n_0 + 1. \end{cases}$$

After t iterations, Adaptive-BCFW has evaluated f and ∇f at-most $2 + \lceil \log_{\tau}(L_f/\eta^t M_0) \rceil$ times.

Convex setting: flexible stepsizes

Theorem

Let $\times_{i \in I} C_i \subset \mathcal{H}$ be a product of m nonempty compact convex sets, let f be convex and L_f -smooth, let $\tau > 1 \ge \eta$ and $M_0 > 0$ be approximation parameters, let D be the diameter of $X_{i\in I}$ C_i , let $\mathbf{x}_0 \in \mathbb{R}^N$, let \mathbf{x}^* solve (1), and assume (*). Set $n_0 := \max\{\lceil \log(\tau L_f/(\eta M_0))/(K \log \eta) \rceil, 0\}.$ Then,

$$f(\mathbf{x}_{nK}) - f(\mathbf{x}^*) \leq \begin{cases} \min_{0 \leq p \leq n-1} \left\{ \frac{K\eta^{pK} M_0 D^2}{2} - A_{pK} \right\} & \text{if } 1 \leq n \leq n_0 + 1 \\ \frac{2K\tau L_f D^2}{n - n_0 + \sum_{p=n_0}^{n} \frac{2A_{pK}}{f(\mathbf{x}_{n_0}) - f(\mathbf{x}^*)} + \left(\frac{A_{pK}}{f(\mathbf{x}_{n_0}) - f(\mathbf{x}^*)} \right)^2} & \text{if } n > n_0 + 1. \end{cases}$$

After t iterations, Adaptive-BCFW has evaluated f and ∇f at-most $2 + \lceil \log_{\tau}(L_f/\eta^t M_0) \rceil$ times.

 \rightarrow After t iterations, matches $\mathcal{O}(K/t)$ rate for convex cyclic setting

Corollary: Parallelized short-step BCFW

Corollary

Let $\times_{i \in I} C_i \subset \mathcal{H}$ be a product of m nonempty compact convex sets, let f be convex and L_f -smooth, let D be the diameter of $\times_{i \in I} C_i$, let \mathbf{x}^* solve (1), and assume (\star) . Then.

$$(\forall n \in \mathbb{N}) \quad f(\mathbf{x}_{nK}) - f(\mathbf{x}^*) \leq \begin{cases} \frac{KL_f D^2}{2} - A_0 & \text{if } n = 1\\ \frac{2KL_f D^2}{n - 1 + \sum_{p=1}^{n} \frac{2A_{pK}}{f(\mathbf{x}_1) - f(\mathbf{x}^*)} + \left(\frac{A_{pK}}{f(\mathbf{x}_1) - f(\mathbf{x}^*)}\right)^2} & \text{if } n \geq 2. \end{cases}$$

Furthermore, Short-step BCFW requires one gradient evaluation per iteration.

Corollary: Parallelized short-step BCFW

Corollary

Let $\times_{i\in I} C_i \subset \mathcal{H}$ be a product of m nonempty compact convex sets, let f be convex and L_f -smooth, let D be the diameter of $\times_{i\in I} C_i$, let \mathbf{x}^* solve (1), and assume (\star). Then,

$$(\forall n \in \mathbb{N}) \quad f(\mathbf{x}_{nK}) - f(\mathbf{x}^*) \leq \begin{cases} \frac{KL_f D^2}{2} - A_0 & \text{if } n = 1\\ \frac{2KL_f D^2}{n - 1 + \sum_{p=1}^{n} \frac{2A_{pK}}{f(\mathbf{x}_1) - f(\mathbf{x}^*)} + \left(\frac{A_{pK}}{f(\mathbf{x}_1) - f(\mathbf{x}^*)}\right)^2} & \text{if } n \geq 2. \end{cases}$$

Furthermore, Short-step BCFW requires one gradient evaluation per iteration.

- → Matches rate **and** constant for non-block Short-step FW.
- \rightarrow Easier to parallelize than Adaptive BCFW.

Nonconvex convergence

Theorem (Nonconvex convergence)

Let $X_{i \in I}$ $C_i \subset \mathcal{H}$ be a product of m nonempty compact convex sets with diameter D. Let ∇f be L_f -Lipschitz continuous on $X_{i \in I}$ C_i , set $H_0 = f(\mathbf{x}_0) - \inf f(X_{i \in I})$. Suppose that (\star) holds. Then, for every $n \in \mathbb{N}$, Short-step BCFW guarantees

$$\min_{0 \leqslant p \leqslant n-1} G_I(\mathbf{x}_{pK}) \leqslant \frac{1}{n} \sum_{p=0}^{n-1} G_I(\mathbf{x}_{pK}) \leqslant \begin{cases} \frac{2H_0 - \sum_{p=0}^{n-1} A_{pK}}{n} + \frac{KL_f D^2}{2} & \text{if } n \leqslant \frac{2H_0}{KL_f D^2} \\ 2D\sqrt{\frac{H_0 KL_f}{n}} - \frac{\sum_{p=0}^{n-1} A_{pK}}{n} & \text{otherwise.} \end{cases}$$

In particular, there exists a subsequence $(n_k)_{k\in\mathbb{N}}$ such that $G_I(\mathbf{x}_{n_kK})\to 0$, and every accumulation point of $(\mathbf{x}_{n_kK})_{k\in\mathbb{N}}$ is a stationary point of (1).

 $[\]rightarrow$ Reactivated gap terms reappear!

Nonconvex convergence

Theorem (Nonconvex convergence)

Let $\times_{i \in I} C_i \subset \mathcal{H}$ be a product of m nonempty compact convex sets with diameter D. Let ∇f be L_f -Lipschitz continuous on $X_{i \in I} C_i$, set $H_0 = f(\mathbf{x}_0) - \inf f(X_{i \in I} C_i)$. Suppose that (\star) holds. Then, for every $n \in \mathbb{N}$, Short-step BCFW guarantees

$$\min_{0 \leqslant p \leqslant n-1} G_I(\mathbf{x}_{pK}) \leqslant \frac{1}{n} \sum_{p=0}^{n-1} G_I(\mathbf{x}_{pK}) \leqslant \begin{cases} \frac{2H_0 - \sum_{p=0}^{n-1} A_{pK}}{n} + \frac{KL_f D^2}{2} & \text{if } n \leqslant \frac{2H_0}{KL_f D^2} \\ 2D\sqrt{\frac{H_0 KL_f}{n}} - \frac{\sum_{p=0}^{n-1} A_{pK}}{n} & \text{otherwise.} \end{cases}$$

In particular, there exists a subsequence $(n_k)_{k\in\mathbb{N}}$ such that $G_I(\mathbf{x}_{n_kK})\to 0$, and every accumulation point of $(\mathbf{x}_{n_k K})_{k \in \mathbb{N}}$ is a stationary point of (1).

- → Reactivated gap terms reappear!
- \rightarrow After t iterations, minimal F-W gap converges like $\mathcal{O}(K/\sqrt{t})$.

Flexible Block-Coordinate Frank-Wolfe Algorithm

- **1.** Motivation
- 2. Our approach
- **3.** Analysis
- 4. Numerical experiments

Toy intersection problem (convex)

Find a matrix in the intersection of the spectrahedron $C_1 = \{X \in \mathbb{S}_+^{r \times r} \mid \operatorname{Trace}(X) = 1\}$ and the hypercube $C_2 = [-5, \mu]^{r \times r}$ $(\mu = 1/r)$.

$$\underset{\mathbf{x} \in C_1 \times C_2}{\text{minimize}} \ \frac{1}{2} \|\mathbf{x}^1 - \mathbf{x}^2\|^2$$

Toy intersection problem (convex)

Find a matrix in the intersection of the spectrahedron $C_1 = \{X \in \mathbb{S}_+^{r \times r} \mid \operatorname{Trace}(X) = 1\}$ and the hypercube $C_2 = [-5, \mu]^{r \times r}$ $(\mu = 1/r)$.

$$\underset{\boldsymbol{x} \in C_1 \times C_2}{\text{minimize}} \ \frac{1}{2} \| \boldsymbol{x}^1 - \boldsymbol{x}^2 \|^2$$

- $\rightarrow \mathsf{LMO}_{C_1}$ is far more expensive than LMO_{C_2} .
- \rightarrow We use Short-step BCFW to compare the following block activations: full, cyclic, permuted-cyclic, and "q-lazy":

$$(\forall t \in \mathbb{N})$$
 $I_t = \begin{cases} \{1,2\} & \text{if } t \equiv 0 \mod q; \\ \{2\} & \text{otherwise.} \end{cases}$ $(q ext{-Lazy})$

Tov intersection problem (convex)

comparing block-activations: full, cyclic, permuted-cyclic, and

$$\underset{\mathbf{x} \in C_1 \times C_2}{\text{minimize}} \ \frac{1}{2} \|\mathbf{x}^1 - \mathbf{x}^2\|^2$$

$$(\forall t \in \mathbb{N})$$
 $I_t = \begin{cases} \{1,2\} & \text{if } t \equiv 0 \mod q; \\ \{1\} & \text{otherwise.} \end{cases}$

if
$$t \equiv 0 \mod q$$
; otherwise. (q-lazy)

Tov intersection problem (convex)

comparing block-activations: full, cyclic, permuted-cyclic, and

$$\underset{\mathbf{x} \in C_1 \times C_2}{\text{minimize}} \ \frac{1}{2} \|\mathbf{x}^1 - \mathbf{x}^2\|^2$$

$$(\forall t \in \mathbb{N})$$
 $I_t =$

$$(\forall t \in \mathbb{N})$$
 $I_t = \begin{cases} \{1,2\} & \text{if } t \equiv 0 \mod q; \\ \{1\} & \text{otherwise.} \end{cases}$

(d)
$$r = 100$$

(e)
$$r = 300$$

(f)
$$r = 500$$

Tov intersection problem (convex)

comparing block-activations: full, cyclic, permuted-cyclic, and

$$\underset{\boldsymbol{x} \in C_1 \times C_2}{\text{minimize}} \ \frac{1}{2} \| \boldsymbol{x}^1 - \boldsymbol{x}^2 \|^2$$

$$(\forall t \in \mathbb{N})$$

$$(\forall t \in \mathbb{N})$$
 $I_t = \begin{cases} \{1,2\} & \text{if } t \equiv 0 \mod q; \\ \{1\} & \text{otherwise.} \end{cases}$

if
$$t \equiv 0 \mod q$$

18

(i) r = 500

Toy Difference-of-Convex quadratic problem

Find a $2r \times r$ matrix such that its first $r \times r$ submatrix satisfies $\|X\|_{\infty} \leqslant 1$, and its second submatrix satisfies $\|X\|_{\text{nuc}} \leqslant 1$. To investigate BCFW when the number of components is large, we set $C_1 = \ldots = C_r = \{x \in \mathbb{R}^r \mid \|x\|_{\infty} \leqslant 1\}$ and $C_{r+1} = \{X \in \mathbb{R}^{r \times r} \mid \|X\|_{\text{nuc}} \leqslant 1\}$. For PSD $2r \times r$ matrices A and B, we seek to solve

$$\underset{\substack{\mathbf{x} \in \underset{1 \leqslant i \leqslant r+1}{\times} C_i}}{\mathsf{minimize}} \left\langle [x] \mid [x]A \right\rangle - \left\langle [x] \mid [x]B \right\rangle$$

- \rightarrow For each instance, we verify A B is indefinite.
- \rightarrow Problem is nonseparable

Toy Difference-of-Convex quadratic problem

- $\rightarrow \mathsf{LMO}_{C_{r+1}}$ is far more expensive than $(\mathsf{LMO}_{C_i})_{1\leqslant i\leqslant r}$.
- \rightarrow We use Short-step BCFW to compare the following block activations: full, cyclic, permuted-cyclic, and "(p, q)-lazy":

$$(orall t \in \mathbb{N})$$
 $I_t = egin{cases} I & ext{if } t \equiv 0 \pmod{q} \ \{i_1, \dots, i_p\} \subset_R I \setminus \{r+1\} \end{cases}$ otherwise. $((p,q) ext{-Lazy})$

Full update every q iterations; otherwise, update a random subset of p "cheap" coordinates in parallel.

Toy Difference-of-Convex quadratic problem

comparing full, cyclic, perm.-cyclic, and "(p, q)-lazy":

$$\underset{x \in \underset{1 \leq i \leq r+1}{\times} C_i}{\text{minimize}} \langle [x] \mid [x]A \rangle - \langle [x] \mid [x]B \rangle$$

$$I_t = egin{cases} I & ext{if } t \equiv 0 \pmod q \ \{i_1,\dots,i_p\} \subset_R I \setminus \{r+1\} & ext{otherwise}. \end{cases}$$

(k)
$$r = 300$$

(I)
$$r = 500$$

Toy Difference-of-Convex quadratic problem

comparing full, cyclic, perm.-cyclic, and "(p, q)-lazy":

$$\underset{x \in \underset{1 \leq i \leq r+1}{\text{minimize}}}{\text{minimize}} \langle [x] \mid [x]A \rangle - \langle [x] \mid [x]B \rangle$$

$$I_t = egin{cases} I & ext{if } t \equiv 0 \pmod q \ \{i_1,\dots,i_p\} \subset_R I \setminus \{r+1\} & ext{otherwise}. \end{cases}$$

Tov Difference-of-Convex quadratic problem

comparing full, cyclic, perm.-cyclic, and "(p,q)-lazy":

$$\underset{x \in \underset{1 \leq i \leq r+1}{\times} C_i}{\text{minimize}} \langle [x] \mid [x]A \rangle - \langle [x] \mid [x]B \rangle$$

$$I_t = egin{cases} I & ext{if } t \equiv 0 \pmod q \ \{i_1,\dots,i_p\} \subset_R I \setminus \{r+1\} & ext{otherwise}. \end{cases}$$

(p)
$$r = 100$$

(q)
$$r = 300$$

(r)
$$r = 500$$

Conclusion

Draft can be found here:

https://zevwoodstock.github.io/media/publications/block.pdf

Thank you for your attention!

References

- C. Combettes and S. Pokutta, Complexity of linear minimization and projection on some sets *Oper. Res. Lett.*, vol. 49, no. 4, pp. 565–571, 2021
- P. L. Combettes and ZW, Signal recovery from inconsistent nonlinear observations Proc. IEEE Int. Conf. Acoust. Speech Signal Process., pp 5872—5876, 2022.
- P. L. Combettes and ZW, A variational inequality model for the construction of signals from inconsistent nonlinear equations

 SIAM J. Imaging Sci., vol. 15, no. 1, pp. 84–109, 2022
- M. Frank and P. Wolfe, An algorithm for quadratic programming Naval Res. Logist. Quart., vol. 3, iss. 1–2, pp. 95–110, 1956
- E. Hazan and H. Luo, Variance-Reduced and Projection-Free Stochastic Optimization *Proc. ICML*, vol. 48, pp. 1263–1271, 2016

References

- A. Osokin, J.-B. Alayrac, I. Lukasewitz, P. Dokania, S. Lacoste-Julien, Minding the Gaps for Block Frank-Wolfe Optimization of Structured SVMs

 Proc. ICML, vol. 48, pp. 593–602, 2016
- N. Ottavy, Strong convergence of projection-like methods in Hilbert spaces *J. Optim. Theory Appl.*, vol. 56, pp. 433–461, 1988
 - M. Patriksson, Decomposition methods for differentiable optimization problems over Cartesian product sets

 Comput. Optim. Appl., vol. 9, pp. 5–42, 1998

References

- S. Pokutta, The Frank-Wolfe Algorithm: a Short Introduction *Jahresber. Dtsch. Math.-Ver.*, vol. 126, pp. 3—35, 2024
- V. E. Shamanskii, A modification of Newton's method *Ukran. Mat. Zh.*, vol. 19, pp. 133–138, 1967 (in Russian)
- Y.-X. Wang, V. Sadhanala, W. Dai, W. Neiswanger, S. Sra, E. Xing, Parallel and Distributed Block-Coordinate Frank-Wolfe Algorithms

 Proc. ICML, vol. 48, pp. 1548–1557, 2016
- ZW and S. Pokutta, Splitting the conditional gradient algorithm arXiv:2311.05381, 2024