#### **ADVANCED COMMUNICATION SYSTEMS**

## **Chapter 1:**

Fundamentals of Analog and Digital Communications

October 2018
Lectured by
Prof. Dr. Thuong Le-Tien

## Communications



- This course is about communications based on signal concepts in electrical engineering
  - Limited to information in electrical forms
    - not be considered delivering newspapers
  - Primarily cover information transfer at signals and systems levels
    - little deal with circuits, chips, signal processing, microprocessors, protocols, and networks



# What exactly is information?

- Information is a word that is too generic for our purposes
  - use the word "message"
    - A physical manifestation of information
- What do communication systems have to do with messages?
  - Communication systems are responsible for producing an "acceptable" replica of message at the destination



# Classify signals

 Messages or signals can be classified in various ways: Periodic/non-periodic; Deterministic/random; Energy/power; the most common one in CS can deal with analog/digital groups

#### Analog

- A physical quantity that varies with "time", usually in a smooth or continuous fashion
- Fidelity describes how close is the received signal to the original signal. Fidelity defines acceptability

#### Digital

- An ordered sequence of symbols selected from a finite set of discrete elements
- When digital signals are sent through a communication system, <u>degree of accuracy</u> within a given <u>time</u> defines the acceptability



# Examples for basic definitions

- Analog Signals
  - Values are taken from an infinite set



- Values are taken from a discrete set
- Binary Signals
  - Digital signals with just two discrete values



### **Elements of Communication Systems**





## What does modulation do?

- Modulate messages (analog) or Encode bits (digital) into amplitude, frequency, or phase of a carrier signal.
- Also makes transmitted signal robust against channel impairments (Noise, Interferences, Fading, Distortions, etc.)
- Coding in digital communication systems
  - Source coding remove redundancy
  - Channel coding add redundancy, lower BER
  - Encryption Coding hide information



## **Example about Modulation**



- (a) Modulating Signal; (b) Sinusoidal carrier with amplitude modulation
- (c) Pulse-train carrier with amplitude modulation



# Channel introduces impairments

- Noise
  - Thermal noise is the most significant
  - Additive white Gaussian noise (AWGN)
- Distortion
  - Inter-symbol interference (ISI)
- Attenuation and fading
  - Constant attenuation
  - Variable attenuation
- Interference
  - Crosstalk

# Receiver

What does Demodulation/Detection do?

 Extracts messages (analog systems) or bits (digital systems) from the received signal

- Mitigates channel impairments by making use of equalizers
- Decodes the signal, especially if channel coding was performed at the transmitter



# **Fundamental Limitations**



#### Bandwidth

- Channel must be able to allow signal to pass through
- Channels usually have limited bandwidth
- Can we reduce signal bandwidth? Do "something" at source (reduce redundancy, compression, etc.)

#### Noise

- Can we reduce it? Filters
- Can we reduce its effects? Equalizers
- Do something at the transmitter and receiver
- Signal to Noise Ratio (SNR): Match Filters



# **Performance Criterion**

- How a "good" communication system can be differentiated from a "sloppy" one?
- For analog communications
  - How close is  $\widehat{m}(t)$  to m(t)? Fidelity!
  - SNR is typically used as a performance metric
- For digital communications
  - Data rate and probability of error (BER)
  - No channel impairments, no errors
  - With noise, error probability depends upon data rate, signal and noise powers, modulation scheme



# Limits on data rates

- Shannon obtained formulas that provide fundamental limits on data rates (1948)
- Without channel impairments, an infinite data rate is achievable with probability of error approaching zero
- For bandlimited AWGN channels, the "capacity" of a channel is:

 $C = B \log_2(1+SNR) = 3.32B \log_{10}(1+SNR)$  Bits/second

### **MODULATION FOR MULTIPLEXING**

- Multiplexing is the process of combining several signals for simultaneous transmission on a channel
  - •Frequency—Division Multiplexing, FDM, uses CW modulation to put each signal on a different carrier frequency.
  - •Time-Division Multiplexing, TDM, uses pulse modulation to put Samples of different signals in nonoverlapping time slots
  - Code-Division Multiple Access, CDMA, assigns a unique code to each Digital (cellular) user



# Multipath interference caused by a signal being reflected off the terrain and a building







# FREQUENCY BANDS WITH DESIGNATIONS

| Frequency band | Name                           | Microwave band (GHz) | Letter designation |
|----------------|--------------------------------|----------------------|--------------------|
| 3-30 kHz       | Very low frequency (VLF)       |                      |                    |
| 30-300 kHz     | Low frequency (LF)             |                      |                    |
| 300-3000 kHz   | Medium frequency (MF)          |                      |                    |
| 3-30 MHz       | High frequency (HF)            |                      |                    |
| 30-300 MHz     | Very high frequency (VHF)      |                      |                    |
| 0.3-3 GHz      | Ultrahigh frequency (UHF)      | 1.0-2.0              | L                  |
|                |                                | 2.0-3.0              | S                  |
| 3-30 GHz       | Superhigh frequency (SHF)      | 3.0-4.0              | S                  |
|                |                                | 4.0-6.0              | C                  |
|                |                                | 6.0-8.0              | C                  |
|                |                                | 8.0-10.0             | X                  |
|                |                                | 10.0-12.4            | X                  |
|                |                                | 12.4-18.0            | Ku                 |
|                |                                | 18.0-20.0            | K                  |
|                |                                | 20.0-26.5            | K                  |
| 30-300 GHz     | Extremely high frequency (EHF) | 26.5-40.0            | Ka                 |
| 43-430 THz     | Infrared (0.7–7 μm)            |                      |                    |
| 430-750 THz    | Visible light (0.4–0.7 µm)     |                      |                    |
| 750-3000 THz   | Ultraviolet (0.1-0.4 µm)       |                      |                    |

| Use                       |                                                                                                             | Frequency             |  |
|---------------------------|-------------------------------------------------------------------------------------------------------------|-----------------------|--|
| Radio navigation          |                                                                                                             | 6-14 kHz; 90-110 kHz  |  |
| Loran C navigation        |                                                                                                             | 100 kHz               |  |
| Standard (AM) broadcast   |                                                                                                             | 540-1600 kHz          |  |
| ISM band                  | Industrial heaters; welders                                                                                 | 40.66-40.7 MHz        |  |
| Television:               | Channels 2-4                                                                                                | 54-72 MHz             |  |
|                           | Channels 5-6                                                                                                | 76-88 MHz             |  |
| FM broadcast              |                                                                                                             | 88-108 MHz            |  |
| Television                | Channels 7–13                                                                                               | 174-216 MHz           |  |
|                           | Channels 14-83                                                                                              | 420-890 MHz           |  |
|                           | (In the United States, channels 2–36 and 38–51 are used for digital TV broadcast; others were reallocated.) |                       |  |
| Cellular mobile radio     | AMPS, D-AMPS (1G, 2G)                                                                                       | 800 MHz bands         |  |
|                           | IS-95 (2G)                                                                                                  | 824-844 MHz/1.8-2 GHz |  |
|                           | GSM (2G)                                                                                                    | 850/900/1800/1900 MHz |  |
|                           | 3G (UMTS, cdma-2000)                                                                                        | 1.8/2.5 GHz bands     |  |
| Wi-Fi (IEEE 802.11)       |                                                                                                             | 2.4/5 GHz             |  |
| Wi-MAX (IEEE 802.16)      |                                                                                                             | 2-11 GHz              |  |
| ISM band                  | Microwave ovens; medical                                                                                    | 902-928 MHz           |  |
| Global Positioning System |                                                                                                             | 1227.6, 1575.4 MHz    |  |
| Point-to-point microwave  |                                                                                                             | 2.11-2.13 GHz         |  |
| Point-to-point microwave  | Interconnecting base stations                                                                               | 2.16-2.18 GHz         |  |
| ISM band                  | Microwave ovens; unlicensed                                                                                 | 2.4-2.4835 GHz        |  |
|                           | spread spectrum; medical                                                                                    | 23.6-24 GHz           |  |
|                           |                                                                                                             | 122-123 GHz           |  |
|                           |                                                                                                             | 244-246 GHz           |  |



### **COMMUNICATION EVOLUTION**

Data rate Comparison between different wireline Internet Accesses



### **Evolution of Wireless Communications**



Long Term Evolution

HSDPA High Speed Downlink Packet Access

NFC Near Field Communication

22