Jecture 8: Jet Mass with Grooming

In this lecture, we still focus on QCD jets. We want to see how different grooming algorithms clean up the jets.

1. Soft Drop Mass

In the soft drop, one uses the soft drop condition:

min $(P_{T,i}, P_{S,j}) > 8aut(P_{T,i} + P_{T,j}) \left(\frac{\theta}{R}\right)^{lS}$ Here, as fefore, we only calculate the 22 result. (1)

1.1 20 SD mass

At lowestorder, we only need to consider collinear & soft Zadiation:

The SD condition becomes

condition becomes
$$\delta P_T = k_T - \delta \cot \left(P_T + k_T\right) \left(\frac{Q}{R}\right)^{\beta} = \delta \cot \left(\frac{k_L}{\delta P_T R}\right)^{\beta} P_T$$
 (2)

Using the variables & & &, one has

$$m^2 = 2En \cdot k = \frac{kr^2}{3}$$
 (3)

and the phase-space for is

Recall that the in-cone condition is

$$\frac{R_1}{3R_T} < R$$
 (4)

we only need to consider the in-cone radiation.

The SD condition (2) can be written in the form

8 7 8 cut p 2+18, (5)

where we have used the relation between m and ke, 8 m (3). Recall the calculation for the jet mass, and we have

$$\frac{1}{\int_{(0)}^{1} \frac{d}{dm^{2}}} \int_{(0)}^{(1)} = \frac{d_{3}G_{7}}{\pi} \frac{1}{m^{2}} \int_{0}^{1} \frac{d}{3} \theta(3-\beta) \theta(3-3\frac{2}{2+\beta}) \theta(3-3\frac{2}{2+\beta}) \theta(3-3\frac{2}{2+\beta})$$

$$= \int_{(0)}^{1} \frac{d}{dm^{2}} \int_{(0)}^{(1)} \frac{d}{3} \frac{d}{3} \theta(3-\beta) \theta(3-\beta) \theta(3-3\frac{2}{2+\beta}) \theta(3-\beta) \theta(3-\beta) \theta(3-3\frac{2}{2+\beta}) \theta(3-\beta) \theta(3-\beta$$

otherwise

The effect of B:

2 do (1)
(0) do 1)

-2 (6 0)

-2 (6 0)

10-3 3 102 0.1 1

Now, let us calculate the cumulative distribution. For this task, it is more convenient to use the Lund diagrams in which one uses $\frac{k_1}{E}$ and δ in the logarithmic scale. In terms of these two variables, one has $3 = \frac{k_1}{E} \frac{1}{4}$.

Recall that in jet mass calculation, we have sho phase space of k as follows by

EK EK M

with the shaded region given by

In terms of the and to, one accordingly has

Here, one can easily get the crossing points of each boundaries $-\log \dot{\phi} = \log \dot{\phi} + 2\log \frac{m}{E} = 7 \log \dot{\phi} = -\log \frac{m}{E}$

= log # (10)

Accordingly, we have

$$\frac{R_1}{E}$$
 out whele m come

 $\frac{R_1}{E}$ log $\frac{h_1}{E}$ = $-\log \frac{1}{2}$ (3)

 $\frac{R_1}{E}$ log $\frac{h_2}{E}$ = $-\log \frac{1}{2}$ (3)

Now let us define

$$l = log \frac{k_1}{E}, \quad l = log \frac{1}{Q} \qquad (11)$$

$$In lower of these variables, we have
$$I_{ungyroom}^{(1)} = -\frac{2ds}{\pi} \frac{CT}{A} \int d\eta \qquad d\ell$$

$$I_{ungyroom}^{(1)} = -\frac{2ds}{\pi} \frac{CT}{A} \int d\eta \qquad d\ell$$

$$I_{ungyroom}^{(1)} = -\frac{2ds}{\pi} \frac{CT}{A} \int d\eta \qquad (-2\eta - 2\log\frac{m}{E})$$

$$I_{ungyroom}^{(1)} = -\frac{2ds}{\pi} \frac{CT}{A} \int -\left(log^{\frac{1}{2}E} - log^{\frac{1}{2}E}\right) - 2 \frac{log \frac{RE}{M}}{log \frac{E}{M}} \log \frac{m}{E}$$

$$I_{ungyroom}^{(1)} = -\frac{2ds}{\pi} \frac{CT}{A} \int -\left(log^{\frac{1}{2}E} - log^{\frac{1}{2}E}\right) - 2 \frac{log \frac{RE}{M}}{log \frac{E}{M}} \log \frac{m}{E}$$

$$I_{ungyroom}^{(1)} = -\frac{2ds}{\pi} \frac{CT}{A} \int -\left(log^{\frac{1}{2}E} - log^{\frac{1}{2}E}\right) - 2 \frac{log \frac{RE}{M}}{log \frac{E}{M}} \log \frac{m}{E}$$

$$I_{ungyroom}^{(1)} = -\frac{2ds}{\pi} \frac{CT}{A} \int -\left(log^{\frac{1}{2}E} - log^{\frac{1}{2}E}\right) \log \frac{m}{M} \log \frac{m}{E}$$

$$I_{ungyroom}^{(1)} = -\frac{2ds}{A} \frac{CT}{A} \int -\left(log^{\frac{1}{2}E} - log^{\frac{1}{2}E}\right) \log \frac{m}{M} \log \frac{m}{E}$$

$$I_{ungyroom}^{(1)} = -\frac{2ds}{A} \frac{CT}{A} \int -\left(log^{\frac{1}{2}E} - log^{\frac{1}{2}E}\right) \log \frac{m}{A} \log \frac{m}{E}$$

$$I_{ungyroom}^{(1)} = -\frac{2ds}{A} \frac{CT}{A} \log \frac{m}{A} \log \frac{m}{E}$$

$$I_{ungyroom}^{(1)} = -\frac{2ds}{A} \frac{CT}{A} \log \frac{m}{A} \log \frac{m}{E}$$

$$I_{ungyroom}^{(1)} = -\frac{2ds}{A} \frac{CT}{A} \log \frac{m}{A} \log \frac{m}{A$$$$

We hence reproduced the ungroomed mass distribution.

The SD condition now takes the form

Let us firest take is 20 and have

$$\log \frac{k_L}{E} > -\log \frac{1}{\delta} - \log \frac{1}{\delta}$$
 (14)

In this case, only if & 7 to one Scat one [") is modified of In the Lund jet plane, one has

$$\frac{k_1}{E}$$

$$\frac{1}{3^2 \delta u t}$$

$$\frac{1}{R} = \frac{\log k_1}{E} = \log t + 2 \log \frac{m}{E}$$

$$\frac{1}{R} = \frac{1}{m} = \frac{1}{0}$$

Here we need the orossing point of z=rant and zor log he = log of +2 log in :

$$log \frac{ku}{E} = -log \frac{1}{0} - log \frac{1}{8}$$

$$= log \frac{1}{0} + 2 log \frac{m}{E}$$

$$= -log \frac{1}{0} - \frac{1}{2} log \frac{1}{8}$$

$$= -log \frac{m}{E} \frac{1}{8} \frac{1}{2} \frac{1}{2}$$

$$= -log \frac{m}{E} \frac{1}{8} \frac{1}{8} \frac{1}{2} \frac{1}{2}$$

$$\theta = \frac{m}{E \delta_{cut}}$$

Now for $\beta=0$, i.e., mMDT, one has $\frac{E8ax}{m}$ $\frac{-\eta-\log \frac{\pi}{3}ax}{dl}$ $\frac{-\eta-\log \frac{\pi}{3}ax}{2\pi}$ $\frac{dl}{\log \frac{\pi}{2}}$

$$= \frac{dsGi}{2\pi} log^2 \int_{\Gamma} - \frac{2dsGi}{\pi} d\Pi \left[-2\eta + log \frac{3car}{m^2} \right]$$

$$= \frac{dsGi}{2\pi} log^2 \int_{\Gamma} - \frac{2dsGi}{\pi} \left[-\left(log^2 \frac{E_{N}^2}{m^2} - log_{N}^2 \right) \right]$$

$$+ log \frac{E_{N}^2 3_{axt}^2}{m} log \frac{3car}{m^2}$$

$$= \frac{dsGi}{2\pi} log^2 \int_{\Gamma} - \frac{2dsGi}{\pi} \left[log \frac{E_{N}^2 3_{axt}^2}{m} \left(-log \frac{E_{N}^2 3_{axt}^2}{m} + log \frac{3car}{m} \frac{E^2}{m} \right]$$

$$= \frac{dsGi}{2\pi} log^2 \int_{\Gamma} - \frac{2dsGi}{\pi} \left[log \frac{E_{N}^2 3_{axt}^2}{m} log \frac{3car}{m} \frac{E_{N}^2}{m} \right]$$

$$= \frac{dsGi}{2\pi} log^2 \int_{\Gamma} - \frac{2dsGi}{\pi} \left[log \frac{E_{N}^2 3_{axt}^2}{m} log \frac{3car}{m} \frac{E_{N}^2}{m} \right]$$

$$= \frac{dsGi}{2\pi} log^2 \int_{\Gamma} - \frac{2dsGi}{\pi} \left[log \frac{E_{N}^2 3_{axt}^2}{m} log \frac{3car}{m} \frac{E_{N}^2}{m} \right]$$

$$= \frac{dsGi}{2\pi} log^2 \int_{\Gamma} - \frac{2dsGi}{\pi} \left[log \frac{E_{N}^2 3_{axt}^2}{m} log \frac{3car}{m} \frac{E_{N}^2}{m} \right]$$

This calculation can be easily generalized to any values of β . Note that at 0=R, the SD condition line cross $\frac{1}{6}=\frac{1}{R}$ at a point in dependent of β , that is, $\log\frac{kx}{E}=-\log\frac{1}{R}-\log\frac{1}{2}$ As $\log\frac{1}{R}$ long as $-\log\frac{1}{R} > -\log\frac{1}{R} - \log\frac{1}{2}$ and $\frac{1}{2}$ form has a different phase space. We have two cases

have some cage;

the property of the control of the

For (a), we need to know the crossing point a in the figure:

$$-(1+\beta)\log \frac{1}{0} - \log \frac{1}{2+\beta} \left[\beta \log \frac{1}{R} - \log \frac{1}{2} + 2\log \frac{10}{R}\right]$$

$$= \frac{1}{2+\beta} \left[\beta \log \frac{1}{R} + \log \frac{3}{2} + 2\log \frac{10}{R}\right]$$

$$= \frac{1}{2+\beta} \left[\beta \log \frac{1}{R} + \log \frac{3}{2} + \log \frac{3}{R}\right]$$

$$= \frac{1}{2+\beta} \left[\beta \log \frac{1}{R} + \log \frac{3}{R}\right]$$

$$= \frac{1}{2+\beta} \left[\beta \log \frac{1}{R} + \log \frac{3}{R}\right]$$

$$= \log \frac{1}{R} + \frac{1}{2+\beta} \log \frac{3}{R}$$

$$= \log \frac{1}{R} + \frac{1}{2+\beta} \log \frac{3}{R}$$

$$= \log \frac{1}{R} + \frac{1}{2+\beta} \log \frac{3}{R}$$

$$= 2 \log \frac{1}{R}$$

$$= 2 \log$$

$$= \frac{Z(1)}{Z \log poom} + \frac{d_{5}C_{1}}{Z} + \frac{1}{2+\beta} \log^{2} \frac{3\omega t}{\beta}$$

$$= -\frac{d_{5}C_{1}}{Z} \left[\frac{1}{2} \log^{2} \frac{1}{\beta} - \frac{1}{2+\beta} \log^{2} \frac{3\omega t}{\beta} \right]$$

At the end, let us go into the details about how one gets out one => 5(m2)

Due shaded area for (a):

= (a). 12

Note that in this lecture we still count log 3cut i log 3 as by logs. In principle, one can also get single log & terms correct , which we will not touch on in the betwee.

2. Signal v.s. background jet mass distribution.

At the end of this leether, lot us take a look at the effects of grooning for signal jets. Recall that for a particle x with Mx 77 P, we have

$$\frac{d}{dm^2} I_X = \frac{1}{22} \frac{2m_X \Gamma(X - 78E)}{(m^2 - m_X^2)^2 + m_X^2 \Gamma^2}.$$

Now, we are focusing on highly boosted case and chustering qq mits one fat jet with jet radius R. In this case, we have

$$AR_{q\bar{q}} = \frac{m}{P_1} \frac{1}{18(1-8)} \iff \left(\frac{AR_{q\bar{q}}}{R}\right)^2 = \frac{P}{3(1-8)}$$

For simplicity we assume $\Gamma(x \rightarrow q\bar{q})$ is independent of z, the fraction of the transverse momentum of X carried by q. The in-come condithon is hence given by: $1 > \frac{1}{8(-8)}$.

Accordingly, we have

$$\frac{d}{dm^{2}} \sum_{x \to J} = \frac{1}{2\pi} \frac{2m_{x} \Gamma(x - q\bar{q})}{(m^{2}m_{x}^{2})^{2} + m_{x}^{2}\bar{p}^{2}} \int_{0}^{d_{x}} \theta(1 - \frac{\bar{p}}{3(1 - \bar{g})})$$

Since 9 (< 1, we have

Near the threshold
$$m \sim m_X$$
, one has
$$\frac{d}{dm^2} \, \tilde{I}_{X-7} J = \frac{1}{\pi} \, \frac{m_X \Gamma}{m_X \Gamma} \left(\frac{\Gamma(X \to q\bar{\epsilon})}{\Gamma} \right) = \frac{1}{\pi} \, \frac{\Gamma(M \times g\bar{\epsilon})}{m_X^2} \frac{1}{m_X^2} \frac{m_X}{\Gamma} \left(\frac{m_X}{\Gamma} \right)$$

In comparison with QCD jets.

For mx ~ 100 GeV and Pr ~ 17eV, we have

This, however, well be, in most cases, compensated by the big 510, for a co jets than x-jets in the final cross-section. For example, we could have

Fig. ungroomed jet mass -> gromed jet mass

Now let us calculate the SD mass distribution of x-jets:

$$\frac{d}{dm^{2}} = \frac{1}{\pi} \frac{m_{x} \Gamma(x-q\bar{q})}{(m^{2}-m_{x}^{2})^{2} + m_{x}^{2} \Gamma^{2}} = \int_{0}^{\frac{1}{2}} ds \ O(3-9)$$

$$\times O(3-3cut(\frac{p}{3})^{\frac{p}{2}}) \ for \ p(c).$$

$$= \frac{1}{\pi} \frac{m_{x} P(x-q\bar{q})}{(m^{2}-m_{x}^{2})^{2} + m_{x}^{2} p^{2}} \left(1 - max(p, p(\frac{3aux}{p})^{\frac{2}{2+\beta}})\right]$$

we have p ~ 10-2. Now let us take mMDT ((520) as an example

For Scat = 0.1, it decreases by a factor of log tout = 0.5, which the cumulative distribution only decreases and placement 10% is