3/17

Section I. (Amendments of the Claims)

Please cancel claim 34, and amend claims 1, 2, 7, 9, 29 and 33, as set out in the listing of claims below.

- 1. (Currently amended) A process for manufacturing an ammunition article, comprising:
 - (a) providing a cartridge including a projectile disposed in a casing and presenting a joint between the projectile and the casing;
 - (b) applying to the joint a sealingly effective amount of a light-curable sealant composition; and
 - (c) exposing the applied sealant composition to curingly effective light,

wherein the applied sealant composition is non-capillarily active at the joint.

- 2. (Currently amended) A process for manufacturing an ammunition article, comprising:
 - (a) providing a cartridge including a projectile disposed in a casing and presenting a joint between the projectile and the casing;
 - (b) applying to the joint a sealingly effective amount of a light-curable sealant composition; and
 - (c) exposing the applied sealant composition to curingly effective light,

wherein the light-curable sealant composition is devoid of anaerobic sealing component(s), and wherein the applied sealant composition is non-capillarily active at the joint...

9194199354

- 3. (Original) The process of claim 1, wherein the light-curable sealant composition is light-cured by exposure to said curingly effective light for an exposure time in a range of from about of 0.01 to 0.5 second.
- 4. (Previously presented) The process of claim 1, wherein applying to the joint the sealingly effective amount of the light-curable sealant composition involves relative motion of the cartridge and an applicator dispensing the light-curable sealant composition to the joint.
- 5. (Original) The process of claim 4, wherein the cartridge is motively translated in relation to the applicator.
- 6. (Original) The process of claim 4, wherein the applicator is motively translated in relation to the cartridge.
- 7. (Currently amended) The process of claim 4, wherein the applicator comprises an application device selected from the group consisting of syringe pump dispensers, roller coaters, doctor blades, hypodermic-type needle dispensers, and liquid-fed transfer devices.
- 8. (Previously presented) The process of claim 4, wherein the light-curable sealant composition comprises a liquid sealant and the applicator comprises a liquid-fed transfer device selected from the group consisting of liquid-fed brushes, sponges, swabs, pads, and cuffs, coupled in dispensing relationship with a reservoir for supply of the liquid sealant.
- 9. (Currently amended) A process for manufacturing an ammunition article, comprising:
 - (a) providing a cartridge including a projectile disposed in a casing and presenting a joint between the projectile and the casing;

- (b) applying to the joint a sealingly effective amount of a light-curable sealant composition; and
- (c) exposing the applied sealant composition to curingly effective light,

wherein applying to the joint the sealingly effective amount of the light-curable sealant composition involves relative motion of the cartridge and an applicator dispensing the light-curable sealant composition to the joint, and

wherein the applicator comprises a hypodermic-type needle dispenser, in combination with a wiper element as a follower behind the hypodermic-type needle dispenser, arranged to exert a squeegee action on sealant dispensed from the hypodermic-type needle dispenser and to remove excess applied sealant, and

wherein the applied sealant composition is non-capillarily active at the joint.

- 10. (Original) The process of claim 1, wherein the curingly effective light comprises light selected from the group consisting of visible light, ultraviolet light, uv-visible light, infrared light and microwave radiation.
- 11. (Original) The process of claim 1, wherein the curingly effective light comprises ultraviolet light.
- 12. (Original) The process of claim 11, wherein the ultraviolet light has a wavelength in a range of from about 220 to about 375 nanometers.
- 13. (Original) The process of claim 1, wherein the curingly effective light is supplied by a source including a light-generating component selected from the group consisting of lamps, LEDs, photoluminescent media, down-converting and up-converting materials that respond to incident radiation

in one electromagnetic spectral regime and responsively emit radiation of a longer or shorter wavelength, respectively, electrooptical generators, and lasers.

- 14. (Original) The process of claim 1, wherein the curingly effective light is supplied by an ultraviolet lamp.
- 15. (Previously presented) The process of claim 1, wherein the sealant composition after exposure to a curingly effective actinic radiation, does not fluoresce.
- 16. (Original) The process of claim 1, wherein the light-curable sealant composition comprises a photocurable resin selected from the group consisting of unsaturated polyesters, epoxies, (meth)acrylates, urethane (meth)acrylates, (meth)acrylic ester monomers, oligoester acrylate-based compounds, epoxy acrylate-based compounds, polyimide-based compounds, aminoalkyd-based compounds, and vinyl ether-based compounds.
- 17. (Original) The process of claim 1, wherein the light-curable sealant composition comprises a photocurable resin selected from the group consisting of bisphenol epichlorohydrin epoxy resins, acrylic resins, urethane acrylate resins, acrylated polyester resins, and cycloaliphatic epoxides.
- 18. (Original) The process of claim 1, wherein the light-curable sealant composition comprises a photocurable resin and a photoinitiator therefor.
- 19. (Original) The process of claim 1, wherein the light-curable sealant composition comprises a formulation selected from the group consisting of free-radical curable acrylate resin-based formulations, and cationically curable epoxy-based formulations.

20. (Original) The process of claim 1, wherein the light-curable sealant composition comprises a freeradical curable acrylate resin-based formulation.

- 21. (Original) The process of claim 1, wherein the light-curable sealant composition comprises a cationically curable epoxy-based formulation.
- 22. (Original) The process of claim 1, wherein the light-curable sealant composition comprises a monomeric diluent.
- 23. (Original) The process of claim 1, wherein the light-curable sealant composition comprises a neat formulation of resin and photoinitiator.
- 24. (Original) The process of claim 1, wherein the light-curable sealant composition comprises a dye.
- 25. (Previously presented) The process of claim 1, wherein the light-curable sealant composition comprises a photoinitiator in a concentration not exceeding 5% by weight, based on total weight of the composition.
- 26. (Original) The process of claim 1, wherein the light-curable sealant composition has a viscosity in a range of from about 75 to about 1000 centipoise (cps) at 25°C.
- 27. (Previously presented) The process of claim 1, wherein after exposure to the curingly effective light, the projectile is separable from the casing by a tensile force that is no more than 10% greater than a tensile force required to separate the projectile from the casing when the light-curable sealant composition is absent.

8/17

28. (Previously presented) The process of claim 1, wherein after exposure to the curingly effective light, the projectile is separable from the casing by a tensile force that is no more than 5% greater than a tensile force required to separate the projectile from the casing when the light-curable sealant composition is absent.

9194199354

- 29. (Currently amended) A process for manufacturing an ammunition article including a projectile in a casing presenting a projectile/casing interface, said process comprising forming a light-cured sealant coating at such interface by applying to the interface a light-curable sealant composition, and exposing the applied sealant composition to curingly effective light, wherein the applied sealant composition is non-capillarily active at the interface.
- 30. (Original) The process of claim 29, wherein the light-cured sealant coating is formed by curing a photocurable resin with ultraviolet light curingly effective therefor.
- 31. (Original) An ammunition article including a projectile mounted in a cartridge casing presenting a projectile/casing interface, with the interface sealed by a light-cured sealant composition.
- 32. (Previously presented) A process for manufacturing an ammunition article, comprising:
 - (a) providing a cartridge including a projectile disposed in a casing and presenting a joint between the projectile and the casing;
 - (b) applying to the joint a sealingly effective amount of a light-curable sealant composition, wherein the light-curable sealant composition (i) is not capillarily active at the joint, (ii) has a viscosity in a range from about 75 to 1000 centipoise at 25°C, and (iii) is UV-curable in exposure to ultraviolet radiation, curingly effective light therefor, within a time period of from

about 0.01 to about 0.5 second, wherein a force of between 45 and 200 pounds is required to be applied to separate said projectile from said casing after cure of the light-curable sealant composition, and wherein the lightcurable sealant composition is not anaerobically curing; and

- exposing the applied sealant composition to curingly effective light (c) comprising said UV radiation for a time period of from about 0.01 to about 0.5 second.
- 33. (Currently amended) An ammunition article manufactured by the method of claim 32 including a projectile disposed in a casing and presenting a circumferential joint between the projectile and the casing, the joint being sealed by a circumferential film of a light-cured sealant over the joint.
- 34. (Canceled)

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.