WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

REATY (PCT)

	***************************************	B1101121 2010112
INTERNATIONAL APPLICATION PUBLIS	HED I	UNDER THE PATENT COOPERATION TREATY (PCT)
(51) International Patent Classification 7:		(11) International Publication Number: WO 00/61084
A61K 7/06	A1	(43) International Publication Date: 19 October 2000 (19.10.00)
(21) International Application Number: PCT/EP (22) International Filing Date: 17 March 2000 (Patent Department, Colworth House, Shambrook, Bedford,
(30) Priority Data: 9907954.3 7 April 1999 (07.04.99)	C	(81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA,
(71) Applicant (for AE AU BB CA CY GB GD GH GM IE LK LS MN MW NZ SD SG SL SZ TT TZ UG ZA Z UNILEVER PLC [GB/GB]; Unilever House, BI London EC4P 4BQ (GB).	ZW only	y): SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE,
(71) Applicant (for all designated States except AE AU B GB GD GH GM IE IL IN KE LC LK LS MN M SG SL SZ TT TZ UG ZA ZW): UNILEVER NV Weena 455. NL-3013 AL Rotterdam (NL).	w nz s	CY CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA,

Published

With international search report. Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: HAIR STYLING COMPOSITION

CH63 3JW (GB).

(71) Applicant (for IN only): HINDUSTAN LEVER LIMITED

(72) Inventor: PRATLEY, Stuart, Keith; Unilever Research Port

mation, Maharashtra, 400 020 Mumbai (IN).

[IN/IN]; Hindustan Lever House, 165/166 Backbay Recla-

Sunlight, Quarry Road East, Bebington, Wirral, Merseyside

(57) Abstract

The invention provides hair styling compositions, for example creams, gels and especially aerosol hair styling mousses. The compositions contain a cross-linked silicone, such as an emulsion of cross-linked dimethiconol gum, and a cationic hair styling polymer having a cationic charge density of at least 1 meq/g. The compositions provide excellent styling as well as sensory feel.

EOK THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

		Singapor.	2C	Liberia	ГB	Estonia	EE
•		Sweden	2E	Sri Lanka	ГK	Denmark	DK
		nabu2	as	Licchtenstein	n	Остивлу	DE
		Russian Federation	เห	Saint Lucia	ΓC	Czech Republic	ZO
		Romania Romania	ВО	Kazakstan	ZХ	Cuba	ດຄ
•		Fortugal	74	Republic of Korea	KB	China	CA
		Poland Pormed	14 14	Republic of Korea		Сатлетооп	СМ
•		Mew Zealand	ZN	Democratic People's	КЪ	Côte d'Ivoire	CI
A CTA !!!!		VEWTON TOTAL	ON	Kyrgyzsian	KC	Switzerland	СН
Simbabwe	MZ	Metherlands	IN	Кспув	KE	Congo	90
Yugoslavia	UX	Niger	NE NE	Japan	٩ſ	Central African Republic	CF
mski tsiV	NA TO	Mexico	XW	lialy	71	Canada	CV
Uzbekistan	zn	iwalaM coireM	MM	lceland	SI	Belans	BA
United States of America	sa		MK	(Serial	71	[i xn 8	ВВ
sbragU	ອດ	silognoM sinstrusM	NW	bosimi	31	Benin	BJ
ənismU	ΥŪ		TW.	Hungary	UH.	singlud	BC
ogsdoT bus babininT	11	ileM	IN.	Some	СR	Burking Faso	BŁ
Turkey	AT	Republic of Macedonia	2011	Guinea	СИ	Belgium	BE
Turkmenistan	WL	Madagascar The former Yugoslav	WK	Ghana	СН	Barbados	88
Tajikistan	LΤ		WC WD	Georgia	CE	Bosnia and Herzegovina	BV
0801	9T	Republic of Moldova		United Kingdom	CB	naţiadı≥x∧	ZY
Chad	at.	Monaco	ЭW	Gabon Kingdom	V 9	sil#titu∧	UV
brislisew	ZS	Latvia	ΓΛ	eonsii.	FR	&rti≥u^A	TA
Senegal	NS	Luxembourg	กา	brasiaiii	ᄖ	Amenia	MY
Slovakia	ZK	Lithushia	TJ	ning2 hoofiniii	SA	sinsdlA	TY
Slovenia	IS	Lesotho	81	aim2	34	,	

- 1 -

HAIR STYLING COMPOSITION

Field of the Invention

5

The present invention relates to hair styling compositions, for example creams, gels and especially aerosol hair styling mousse compositions, which contain cross-linked silicone and which deliver excellent styling as well as sensory feel.

10

Background and Prior Art

Style creation products such as hair styling mousses provide
human hair with a temporary set which can be removed by
water or by shampooing, and function by applying a thin film
of a resin or gum onto the hair to adhere adjacent hairs
together so that they retain the particular shape or
configuration at the time of application.

20

25

30

number was recepted to

EP 818 190 describes how an emulsion polymerised silicone material having a particular, defined level of crosslinking, and which is cross-linked in emulsion form can be incorporated into a hair styling composition, such as a mousse, gel or cream, to give a formulation which delivers excellent style creation and longevity, whilst leaving the hair soft and natural. An important feature of these systems is the phase behaviour of the silicone, which is said to form a separate high viscosity aggregated phase in the composition. This phase behaviour is considered to be key to effective style creation.

- 2 -

A problem with "aggregating" systems as described in EP 818 190 is that they can tend to gel and form lumps under conditions of prolonged, high temperature storage.

5 One solution to this problem is to use a nonionic surfactant having an HLB value of at least 14.5, such as those nonionic surfactants of general formula R(EO)x H, where R represents a straight or branched chain alkyl group having an average carbon chain length of 12-18 carbon atoms and x ranges from 10 30 to 50.

However, some of the above-described nonionic surfactants form particularly stable foams. In the case of hair styling mousse product forms, consumers generally prefer that the foam generated collapses after less than five minutes after discharge, for ease of spreading on the hair. In such instances, this necessitates the use of anti-foaming ingredients in the composition to reduce foaming to a consumer-acceptable level.

20

25

30

15

Surprisingly, it has now been found that by the use of certain cationic polymers of specified cationic charge density, the silicone materials as described in EP 818 190 may be formulated into systems which do not form a separate high viscosity aggregated phase and yet nevertheless deliver effective style creation. Advantageously, it is not necessary to use high HLB nonionic surfactants with these systems, which allows the formulator greater freedom to formulate the a composition with the desired foam properties.

- 3 -

SUMMARY OF THE INVENTION

The present invention provides a hair styling composition comprising:

5

(i) from 0.1% to 10% by weight, based on total weight, of a cross-linked silicone polymer, in which the percentage of branched monomer units in the silicone polymer is from 0.05% to 10%;

10

- (ii) from 0.1% to 10% by weight, based on total weight, of a cationic hair styling polymer having a cationic charge density of at least 1 meq/g;
- 15 (iii) from 0.01% to 5% by weight, based on total weight, f a surfactant;
 - (iv) water; and
- 20 (v) from 0% to 30% by weight, based on total weight, of an aerosol propellant.

DETAILED DESCRIPTION

25

Cross-linked Silicone Polymer

The hair styling composition of the invention comprises a cross-linked silicone polymer (i). The silicone polymer will generally be insoluble in the aqueous medium of the hair

- 4 -

styling composition and so be present in an emulsified form, with the silicone polymer present as dispersed particles.

Suitable cross-linked silicone polymers include cross-linked polydiorganosiloxanes, in particular cross-linked polydimethylsiloxanes (also termed cross-linked dimethicone). Also suitable for use in hair treatment compositions of the invention are cross-linked polydimethyl siloxanes having hydroxyl end groups (also termed cross-linked dimethiconol).

10

15

The cross-linked silicone polymer is present in compositions of the invention in an amount from 0.1% to 10% by weight based on the total weight of the composition, more preferably from 0.2% to 6% by weight, most preferably from 0.5 to 5% by weight.

The degree of cross-linking of the cross-linked silicone polymer can be measured as the percentage of branched monomer units in the silicone polymer. This value may suitably range from about 0.001% to about 35%, preferably 0.002 to 10%, more preferably 0.003 to 10%, optimally 0.004% to 2%. Increasing cross-linking is found to improve hair styling benefits but also to reduce conditioning performance somewhat, so compromise levels must be selected with properties optimised to suit consumer preferences in different cases. Good overall performance has been obtained with about 0.6% degree of cross-linking (i.e., percentage of branched monomer units).

Cross linking of the silicone polymer may for example be introduced in situ during the polymerisation process which forms the silicone polymer from its constituent monomer units, through the inclusion of the required amount of trifunctional and tetrafunctional silane monomer units, for

- 5 -

example, those of formula R Si (OH); wherein R represents an alkyl, alkenyl (e.g. vinyl), alkaryl, aralkyl or aryl (e.g. phenyl) group, preferably methyl.

Alternatively, other types of silicone cross-linking
chemistry may be used to produce suitable cross-linked
silicone polymers for use in the invention. The crosslinking agents employed in such methods may be organosilicon
cross-linking agents, for example as listed in EP 0 473 039,
or non-silicone cross-linking agents, for which a
representative example is the cross-linked silicone polymer
described in US 5,654,362. The cross linker used here is an
alpha, omega aliphatic diene of the following structure:
CH2=CH(CH2)xCH=CH2, where X ranges from 1-20. A gel is
formed by cross-linking and addition of Is-H across double
bonds in the alpha, omega -diene.

Further examples of suitable cross-linked silicone polymers for use in the invention include the materials DC 3-2365, ex Dow Corning, and the silicone-urethane copolymer Polyderm PPI-SI-100, ex Akzo Incorporated, Matawan, New Jersey.

20

25

30

The especially preferred cross-linked silicone polymers for use in compositions of the invention are silicone gums having a slight degree of cross-linking as described in WO 96/31188. These materials can impart fullness, body and volume to hair, as well as good wet and dry conditioning.

Various methods of making emulsions of particles of crosslinked silicone polymers for use in the invention are available and are well known and documented in the art. For example, emulsions may be prepared by high shear mechanical mixing of the silicone polymer and water, or by emulsifying the silicone polymer with water and an emulsifier (mixing the silicone polymer into a heated solution of the emulsifier for instance), or by a combination of mechanical

- 6 -

and chemical emulsification. For certain materials such as the cross-linked silicone polymer described in US 5,654,362, it may be advisable to mix them first with a hydrophilic or hydrophobic diluent such as PPG-2 myristyl ether propionate or cyclomethicone, in order to facilitate the subsequent emulsification step.

A particularly suitable technique for preparation of emulsions of particles of silicone polymers is emulsion polymerisation. Emulsion polymerised silicone polymers as such are described in US 2 891 820 (Hyde), US 3 294 725 (Findlay) and US 3 360 491 (Axon).

10

30

Suitable emulsion polymerised cross-linked silicone polymers are commercially available or can be readily made using conventional techniques well known to those skilled in the art.

Suitable cross-linked silicone polymer emulsions for use in the invention are commercially available in a pre-emulsified form. This is particularly preferred since the pre-formed emulsion can be incorporated into the hair treatment composition by simple mixing. Pre-formed emulsions are available from suppliers of silicone oils such as Dow Corning, General Electric, Union Carbide, Wacker Chemie, Shin Etsu, Toshiba, Toyo Beauty Co, and Toray Silicone Co.

The preferred cross-linked silicone gums for use in compositions of the invention are also available in a preemulsified form, which is advantageous for ease of formulation. An especially preferred example is the material available from Dow Corning as DC X2-1787, which is an emulsion of cross-linked dimethiconol gum in which the

- 7 -

viscosity of the silicone polymer itself is about 2 x 10^7 cst.

When the cross-linked silicone polymer is incorporated as a pre-formed emulsion as described above, the exact quantity of emulsion will of course depend on the concentration of the emulsion, and should be selected to give the desired quantity of silicone polymer in the final composition.

10 Cationic Hair Styling Polymer

The cationic hair styling polymer (ii) employed in compositions of the present invention should be capable of forming a film and holding the hair of the user in place. It is present in compositions of the invention in an amount from 0.1% to 10% by weight based on the total weight of the composition, more preferably from 0.1% to 5% by weight, most preferably from 0.2 to 4% by weight.

- 20 Hair styling polymers are well known articles of commerce and many such polymers are available commercially which contain functional groups which render the polymers cationic, anionic, amphoteric or nonionic in character.
- As used herein the "charge density" of the cationic hair styling polymer is defined as the number of cationic sites per polymer gram atomic weight (molecular weight), and is expressed in terms of meq/gram of cationic charge (meq/g). The charge density can be controlled and adjusted in accordance with techniques well known in the art. Those skilled in the art will recognise that the charge density of amino-containing polymers may vary depending upon pH and the

- 8 -

isoelectric point of the amino groups. In general, adjustment of the proportions of amine or quaternary ammonium moieties in the polymer, as well as pH of the composition in the case of the amines, will affect the charge density. Cationic charge density of the polymer can be determined according to the Kjeldahl Method.

The cationic hair styling polymers used herein have a cationic charge density of 1.0 meq/g and higher. Preferably the polymer has a charge density of at least 2.0 meq/g. More preferably the polymer has a charge density of at least 2.5 meq/g, such as from 2.8 to 7.5 meq/g, ideally from 2.8 to 7.0 meq/g. The charge density should be within the above limits at the pH of intended use, which will in general be from about pH 3 to about pH 9, usually from about pH 4 to about pH 8.

Examples of suitable cationic hair styling polymers are copolymers of amino-functional acrylate monomers (such as lower alkylaminoalkyl acrylate) or methacrylate monomers (such as dimethylaminoethyl methacrylate) with compatible monomers such as N-vinylpyrrolidone, vinyl caprolactam, or alkyl methacrylates (such as methyl methacrylate and ethyl methacrylate) and alkyl acrylates (such as ethyl acrylate and n-butyl acrylate).

20

25

30

Other suitable cationic hair styling polymers include those cationic polymers containing or derived from quaternary ammonium monomers having cyclic cationic nitrogen-containing rings (such as alkyl vinyl imidazolium). The alkyl portions

of these monomers are preferably lower alkyls such as the C_1 to C_3 alkyls, more preferably C_1 and C_2 alkyls.

Preferred cationic hair styling polymers include

methylvinylimidazolium chloride/vinylpyrrolidone copolymers
(having the CTFA designation Polyquaternium-16), provided
such copolymers have a cationic charge density of 1.0 meq/g
and higher, as described above. Examples include copolymers
of this type in which the weight percentage of
methylvinylimidazolium chloride monomer in the copolymer is
at least 10%, preferably at least 25%, most preferably at
least 35% by weight based on total weight of the copolymer.
These materials are commercially available from BASF AG
under the LUVIQUAT tradename, as LUVIQUAT FC 370, LUVIQUAT

FC 550, LUVIQUAT HM 552 and LUVIQUAT FC 905.

Also suitable are vinylcaprolactam/vinylpyrrolidone/vinylimidazolium copolymers (having the CTFA designation Polyquaternium 46) provided such copolymers have a cationic charge density of 20 1.0 meq/g and higher, as described above. Examples include copolymers of this type which have a vinylimidazolium monomer content of at least 25% by weight based on total weight of the copolymer. An example copolymer would have weight percentages of vinylcaprolactam monomers and 25 vinylpyrrolidone monomers and vinylimidazolium monomers of 40%, 30% and 30% respectively, by weight based on total weight of the copolymer. Preferably, the vinylimidazolium monomer content is at least 50%, ideally around 65% by weight based on total weight of the copolymer. 30

Copolymers of methoimidazolinium and vinylpyrrolidone would be also be suitable (having the CTFA designation Polyquaternium 11) provided such copolymers have a cationic charge density of 1.0 meq/g and higher, as described above. Examples are copolymers of this type in which the weight percentage of methoimidazolinium monomer is at least 10%, preferably at least 33%, most preferably at least 50% by weight based on total weight of the copolymer.

10 Surfactant

15

In addition to the cross-linked silicone polymer and the hair styling polymer, the hair styling composition of the invention also includes a surfactant (iii) in an amount ranging from 0.01% to 5%, preferably from 0.01% to 1%, most preferably from 0.02% to 0.8% by weight based on total weight.

Surfactants are generally classified as nonionic, anionic, cationic, amphoteric or zwitterionic according to their ionic behaviour in aqueous solution.

Examples of nonionic surfactants are condensation products of aliphatic (C₈-C₁₈) primary or secondary linear or branched chain alcohols or phenols with alkylene oxides, usually ethylene oxide and generally having from 6 to 30 ethylene oxide groups. Other suitable nonionics include esters of sorbitol, esters of sorbitan anhydrides, esters of propylene glycol, fatty acid esters of polyethylene glycol, fatty acid esters of polyethylene glycol, fatty acid polyoxyethylene fatty ether phosphates.

Examples of anionic surfactants are the alkyl sulphates, alkyl ether sulphates, alkaryl sulphonates, alkanoyl isethionates, alkyl succinates, alkyl sulphosuccinates, N-alkoyl sarcosinates, alkyl phosphates, alkyl ether phosphates, alkyl ether carboxylates, and alpha-olefin sulphonates, especially their sodium, magnesium ammonium and mono-, di- and triethanolamine salts. The alkyl and acyl groups generally contain from 8 to 18 carbon atoms and may be unsaturated. The alkyl ether sulphates, alkyl ether phosphates and alkyl ether carboxylates may contain from one to 10 ethylene oxide or propylene oxide units per molecule, and preferably contain 2 to 3 ethylene oxide units per molecule.

- Examples of cationic surfactants are cetyltrimethylammonium chloride, behenyltrimethylammonium chloride, cetylpyridinium chloride, tetramethylammonium chloride, tetraethylammonium chloride, octyltrimethylammonium chloride, dodecyltrimethylammonium chloride,
- 20 hexadecyltrimethylammonium chloride, octyldimethylbenzylammonium chloride, decyldimethylbenzylammonium chloride, stearyldimethylbenzylammonium chloride, didodecyldimethylammonium chloride,
- dioctadecyldimethylammonium chloride,
 tallowtrimethylammonium chloride, cocotrimethylammonium
 chloride, (and the corresponding hydroxides thereof), and
 those materials having the CTFA designations Quaternium-5,
 Ouaternium-31 and Ouaternium-18.

Examples of amphoteric and zwitterionic surfactants include alkyl amine oxides, alkyl betaines, alkyl amidopropyl betaines, alkyl sulphobetaines (sultaines), alkyl glycinates, alkyl carboxyglycinates, alkyl amphopropionates, alkylamphoglycinates alkyl amidopropyl hydroxysultaines, acyl taurates and acyl glutamates, wherein the alkyl and acyl groups have from 8 to 19 carbon atoms.

The surfactant in compositions of the invention is most

10 preferably a nonionic surfactant. Such a nonionic surfactant will generally have an HLB (hydrophilic-lipophilic balance) value of about 3 to about 20. The HLB value per se and how it is calculated is described in

J.Soc.cosmet.Chem., 1949, 1, 311. For a given nonionic surfactant, the HLB value represents the weight per cent of the hydrophilic content of the molecule divided by a factor of five.

Exemplary nonionic surfactants having an HLB value of less
than 10 include laureth-2, laureth-3, laureth-4, PEG-3
castor oil, an ethoxylated nonylphenol, ethoxylated
octylphenol, ethoxylated dodecylphenol or ethoxylated fatty
(C₆ to C₂₂) alcohol having less than 9 ethylene oxide
moieties, PEG 600 dioleate, PEG 400 dioleate, and mixtures
thereof.

Exemplary nonionic surfactants having an HLB value of 10 or greater include methyl gluceth-20, methyl gluceth-10, PEG-20 methyl glucose distearate, PEG-20 methyl glucose sesquistearate, PEG-200 castor oil, C₁₁₋₁₅ pareth-20, ceteth-8, ceteth-12, dodoxynol-12, laureth-15, PEG-20 castor oil,

30

...

polysorbate 20, steareth-20, polyoxyethylene-10 cetyl ether, polyoxyethylene-10 stearyl ether, polyoxyethylene-20 cetyl ether, polyoxyethylene-21 stearyl ether, polyoxyethylene-10 oleyl ether, polyoxyethylene-20 oleyl ether, an ethoxylated nonylphenol, ethoxylated octylphenol, ethoxylated dodecylphenol or ethoxylated fatty (C₆ to C₂₂) alcohol including at least 9 ethylene oxide moieties, polyoxyethylene-20 isohexadecyl ether, dimethicone copolyol, polyoxyethylene-23 glycerol laurate,

polyoxyethylene-20 glyceryl stearate, PPG-10 methyl glucose ether, PPG-20 methyl glucose ether, polyoxyethylene-80 castor oil, polyoxyethylene-15 tridecyl ether, polyoxyethylene-6 tridecyl ether, and mixtures thereof.

Preferred nonionic surfactants for use in compositions of the invention are polysorbate 20, polysorbate 80, ethoxylated nonylphenol, steareth-20, cetosteareth-20, steareth-30, cetosteareth-30, steareth-50, and cetosteareth-50.

20

Surfactants selected from anionic, cationic, amphoteric and zwitterionic surfactants may suitably be used in conjunction with any of the above nonionic surfactants, to improve, for example, foaming power and/or foam stability.

25

Water

Compositions of the present invention will also include water, preferably distilled or deionised, as a solvent or carrier for the polymers and other components. Water will

PCT/EP00/02392 WO 00/61084

- 14 -

typically be present in amounts ranging from 30% to 98%, preferably from 60% to 95% by weight based on total weight.

Alcohol may optionally be employed as a co-solvent in 5 compositions of the invention as this can enhance the performance of the styling composition. A suitable alcohol is an aliphatic straight or branched chain monohydric alcohol having 2 to about 4 carbon atoms. Isopropanol and especially ethanol are preferred. A suitable level for the alcohol is up to 20%, preferably from 5% to 15%, by weight based on total weight.

Product Form

10

25

30

Compositions of the invention may suitably be in aerosol 15 form. A particularly preferred product form is an aerosol hair mousse. Aerosol hair mousse compositions are emitted from the aerosol container as a foam which is then typically worked through the hair with fingers or a hair styling tool and either left on the hair or rinsed out. 20

Aerosol-form compositions of the invention will include an aerosol propellant (v) which serves to expel the other materials from the container, and forms the mousse character in mousse compositions. The aerosol propellant included in styling compositions of the present invention can be any liquefiable gas conventionally used for aerosol containers. Examples of suitable propellants include dimethyl ether and hydrocarbon propellants such as propane, n-butane and isobutane. The propellants may be used singly or admixed. Water insoluble propellants, especially hydrocarbons, are

- 15 -

preferred because they form emulsion droplets on agitation and create suitable mousse foam densities.

The amount of the propellant used is governed by normal factors well known in the aerosol art. For mousses the level of propellant is generally up to 30%, preferably from 2% to 30%, most preferably from 3% to 15% by weight based on total weight of the composition. If a propellant such as dimethyl ether includes a vapour pressure suppressant (e.g. trichloroethane or dichloromethane), for weight percentage calculations, the amount of suppressant is included as part of the propellant.

The method of preparing aerosol hair styling mousse compositions according to the invention follows conventional aerosol filling procedures. The composition ingredients (not including the propellant) are charged into a suitable pressurisable container which is sealed and then charged with the propellant according to conventional techniques.

20

25

30

15

Compositions of the invention may also take a non-foaming product form, such as a hair styling cream or gel. Such a cream or gel will include a structurant or thickener, typically at a level of from 0.1% to 10%, preferably 0.5% to 3% by weight based on total weight.

Examples of suitable structurants or thickeners are polymeric thickeners such as carboxyvinyl polymers. A carboxyvinyl polymer is an interpolymer of a monomeric mixture comprising a monomeric olefinically unsaturated carboxylic acid, and from about 0.01% to about 10% by weight

of the total monomers of a polyether of a polyhydric alcohol. Carboxyvinyl polymers are substantially insoluble in liquid, volatile organic hydrocarbons and are dimensionally stable on exposure to air. Suitably the molecular weight of the carboxyvinyl polymer is at least 5 750,000, preferably at least 1,250,000, most preferably at least 3,000,000. Preferred carboxyvinyl polymers are copolymers of acrylic acid cross-linked with polyallylsucrose as described in US Patent 2,798,053. These polymers are provided by B.F.Goodrich Company as, for 10 example, CARBOPOL 934, 940, 941 and 980. Other materials that can also be used as structurants or thickeners include those that can impart a gel-like viscosity to the composition, such as water soluble or colloidally water soluble polymers like cellulose ethers (e.g. 15 methylcellulose, hydroxyethylcellulose, hydroxypropylmethylcellulose and carboxymethylcellulose), guar gum, sodium alginate, gum arabic, xanthan gum, polyvinyl alcohol, polyvinyl pyrrolidone, hydroxypropyl guar gum, starch and starch derivatives, and other thickeners, 20 viscosity modifiers, gelling agents, etc. It is also possible to use inorganic thickeners such as bentonite or laponite clays.

The hair styling compositions of the invention can contain a variety of nonessential, optional components suitable for rendering the compositions more aesthetically acceptable or to aid use, including discharge from the container, of the product. Such conventional optional ingredients are well known to those skilled in the art, e.g. preservatives such as benzyl alcohol, methyl paraben, propyl paraben and

PCT/EP00/02392

imidazolidinyl urea, fatty alcohols such as cetearyl alcohol, cetyl alcohol and stearyl alcohol, pH adjusting agents such as citric acid, succinic acid, sodium hydroxide and triethanolamine, colouring agents such as any of the FD&C or D&C dyes, perfume oils, chelating agents such as ethylenediamine tetraacetic acid, and polymer plasticising agents such as glycerin and propylene glycol.

The following Examples further illustrate the preferred

10 embodiments of the invention. All percentages referred to

are by weight unless otherwise indicated.

Examples

The following Examples 1 and 2 illustrate har styling compositions according to the inventa

5

Example 1

Trade Name	Chemical Name	Raw M	Active
	Cross linked silicone (1)	Dow (2.03
LUVIQUAT FC 550	Polyquaternium- 16 ⁽²⁾	BASF	2.0%
Tween 80	Polysorbate 80	ICI Surfactants	0.3%
внт	Butylated hydroxy toluene	K&K Greef	0.02%
Bronopol	2-bromo-2- nitropropane-1,3- diol	Boots	0.01%
EDTA	Ethylene diamine tetra acetic acid	BDH	0.02%
	Perfume		0.2%
Deionised water	Deionised water	Local Supply	to 100%
EtOH B Denatured	Ethanol	BP Chemicals	up to 8%
CAP40	Propane/butane	Calor	8%

10

⁽¹⁾ Emulsion polymerised dimethiconol containing 0.6% cross-linking,55% aqueous emulsion.

(2) Cationic charge density of copolymer is 3.3 meq/g. Example 2

Trade Name	Chemical Name	Raw Material Supplier	Active Ingredient
	Cross linked silicone ⁽¹⁾	Dow Corning	2.0%
	Polyquaternium-46		2.0%
Tween 80	Polysorbate 80	ICI Surfactants	0.3%
BHT	Butylated hydroxy toluene	K&K Greef	0.02%
Bronopol	2-bromo-2- nitropropane-1,3- diol	Boots	0.01%
EDTA	Ethylene diamine tetra acetic acid	BDH	0.02%
··	Perfume		0.2%
Deionise d water	Deionised water	Local Supply	to 100%
EtOH B Denature d	Ethanol	BP Chemicals	up to 8%
CAP40	Propane/butane	Calor	88

5 (3) Vinylcaprolactam/vinylpyrrolidone/vinylimidazolium copolymer in which the weight percentages of vinylcaprolactam monomers and vinylpyrrolidone monomers and vinylimidazolium monomers of 40%, 30% and 30% respectively, by weight based on total weight of the copolymer. Cationic charge density of copolymer is approx. 2.0 meq/g.

Comparative Example A

Trade Name	Chemical Name	Raw Material . Supplier	Active Ingredient
	Cross linked silicone (1)	Dow Corning	2.0%
Luviquat PQ 11	Polyquaternium- 11 ⁽⁴⁾	BASF	2.0%
Tween 80	Polysorbate 80	ICI Surfactants	0.3%
внт	Butylated hydroxy toluene	K&K Greef	0.02%
Bronopol	2-bromo-2- nitropropane-1,3- diol	Boots	0.01%
EDTA	Ethylene diamine tetra acetic acid	BDH	0.02%
	Perfume	·	0.2%
Deionise d water	Deionised water	Local Supply	to 100%
EtOH B Denature d	Ethanol	BP Chemicals	up to 8%
CAP40	Propane/butane	Calor	8%

⁽⁴⁾ Cationic charge density of copolymer is 0.8 meq/g.

The compositions of Examples 1 and 2 were stable upon storage, whereas the composition of Comparative Example A phase separated to form a gel with coalescence of the silicone particles.

5

PCT/EP00/02392

CLAIMS

- 1. A hair styling composition comprising:
- from 0.1% to 10% by weight, based on total weight; of a cross-linked silicone polymer, in which the percentage of branched monomer units in the silicone polymer is from 0.05% to 10%;
- 10 (ii) from 0.1% to 10% by weight, based on total weight, of a cationic hair styling polymer having a cationic charge density of at least 1 meq/g;
- (iii) from 0.01% to 5% by weight, based on total weight, of a
 surfactant;
 - (iv) water; and
- (v) from 0% to 30% by weight, based on total weight, of an
 20 aerosol propellant.
- A hair styling composition according to claim 1, in which the cross-linked silicone polymer (i) is a cross-linked dimethiconol, having a percentage of branched monomer units in the silicone polymer in the range 0.15% to 7%.
- A hair styling composition according to claim 1 or 2, in which the cationic hair styling polymer (ii) has a cationic charge density of at least 2 meg/g and is selected from Polyquaternium 16, and

: ...

vinylcaprolactam/vinylpyrrolidone/vinylimidazolium copolymers.

- 4. A hair styling composition according to any one claims 1 to 3, in which the cationic or one go polymer (ii) has a cationic charge der to 2.8 to 7.0 meg/g.
- 5. A hair styling composition according to of claims 1 to 4, which further comprises selected from straight or branched chair monohydra alcohols having 2 to about 4 carbon atoms.
- 6. A hair styling composition according to any of claims 1
 to 5 which is an aerosol hair mousse in which the level
 of propellant (v) is from 2% to 30% by weight, based on
 total weight.
- 7. A hair styling composition according to claim 6 in
 which the propellant (v) is a hydrocarbon propellant
 selected from propane, n-butane, isobutane and mixtures
 thereof.
- 8. A hair styling composition according to any one of claims 1 to 5, which is a hair styling cream or gel including from 0.1% to 10% by weight based on total weight of a structurant or thickener.

INTERNATIONAL SEARCH REPORT

Int - .tional Application No .

		P	CT/EP 00/02392
A CLASSI IPC 7	FICATION F SUBJECT MATTER A61K7/06	\	
According to	o International Patent Classification (IPC) or to both national classific	etion and IPC	
	SEARCHED		
IPC 7	commentation searched (classification system followed by classification A61K	,	
	tion searched other than minimum documentation to the extent that a		
	ata base consulted during the international search (name of data baternal, WPI Data, PAJ, CHEM ABS Data		
C. DOCUM	ENTS CONSIDERED TO BE RELEVANT		Relevant to claim No.
Category *	Citation of document, with indication, where appropriate, of the re-	evant passages	Holevant to claim No.
E	WO 00 33797 A (UNILEVER PLC ;LEVE HINDUSTAN LTD (IN); UNILEVER NV (15 June 2000 (2000-06-15) examples 2,3	ER (NL))	1-7
E	WO 00 21493 A (UNILEVER PLC ;LEVE HINDUSTAN LTD (IN); UNILEVER NV (20 April 2000 (2000-04-20) claims 1-12; examples 1-3	ER (NL))	1÷7
X	EP 0 818 190 A (UNILEVER PLC ;UNI (NL)) 14 January 1998 (1998-01-14 cited in the application claims 1-10	(LEVER NV	1,2,4-7
A	US 5 776 444 A (MURRAY ANDREW MAL AL) 7 July 1998 (1998-07-07) example 4	_COLM ET	
X Furt	her documents are listed in the continuation of box C.	X Patent family me	mbors are listed in annex.
*Special ca *A* docume consid *E* earlier of filing of *C* docume which citation *O* docume other of *P* docume	or which may throw doubts on priority claim(s) or	or priority date and in cited to understand the invention "X" document of particular cannot be considered involve an inventive the considered cannot be considered document of particular cannot be considered document is combined in the art. "&" document member of	
	actual completion of the international search August. 2000	Date of mailing of the 16/08/200	international search report
	August. Look	Authorized officer	

Stienon, P

INTERNATIONAL SEARCH REPORT

Int : .tional Application No PCT/EP 00/02392

C.(Continu	ation) DOCUMENTS CONSIDERED TO BE RELEVANT Relevant to claim No.		
Category *	Citation of document, with indication, where appropriate, of the relevant passages	I MOTOR IO MORE 1706	
A	EP O 445 982 A (DOW CORNING) 11 September 1991 (1991-09-11)		
	-		
	·		
	·		
	·		
	·		
		·	
1			
i i			
	·		

INTERNATIONAL SEARCH REPORT

Information on patent family members

Inb Jonal Application No PCT/EP 00/02392

Patent document cited in search repor	nt	Publication date	Patent family member(s)	Publication date
WO 0033797	A	15-06-2000	NONE	
WO 0021493	A	20-04-2000	AU 6090099 A	01-05-2000
EP 0818190	Α	14-01-1998	JP 10101535 A US 6001339 A	21-04-1998 14-12-1999
US 5776444	A	07-07-1998	AU 695227 B AU 5499896 A BR 9604872 A CA 2215751 A CN 1185728 A WO 9631188 A EP 0820266 A JP 3043816 B JP 10511099 T	06-08-1998 23-10-1996 26-05-1998 10-10-1996 24-06-1998 10-10-1996 28-01-1998 22-05-2000
EP 0445982	A	11-09-1991	US 5049377 A CA 2036444 A DE 69101069 D DE 69101069 T JP 3029053 B JP 5092912 A	17-09-1991 03-09-1991 10-03-1994 11-08-1994 04-04-2000 16-04-1993

THE THE THE THE THE TENTE TENTE