Московский Государственный Университет им. М.В. Ломоносова Факультет Вычислительной Математики и Кибернетики Кафедра Суперкомпьютеров и Квантовой Информатики			
Параллельное программирование для высокопроизводительных вычислительных систем			
Анализ влияния кэша на операцию матричного умножения			

Работу выполнил

М.А.Осипов

Постановка задачи и формат данных

Задача: реализовать последовательный алгоритм матричного умножения и оценить влияние кэша на время выполнения программы.

Формат командной строки: <имя файла матрицы A><имя файла матрицы B><имя файла матрицы C><режим, порядок индексов>.

Режимы: 0 -ijk, 1- ikj, 2 – kij, 3 -jik, 4 -jki, 5 -kji.

Формат файла матрицы: Матрица представляется в виде бинарного файла следующего формата:

Тип	Значение	Описание
Число типа char	T-f(float) или d (double)	Тип элементов
Число типа size_t	N- натуральное число	Число строк матрицы
Число типа size_t	М – натуральное число	Число столбцов матриц
Массив чисел типа Т	N*M элементов	Массив элементов матрицы

Элементы матрицы хранятся построчно.

Описание алгоритма

Математическая постановка: алгоритм матричного умножения $(A \times B = C)$ можно представить в следующем виде: $C_{ij} = \sum_k (a_{ik} + b_{kj})$ для каждого элемента матрицы С. Оценка влияния кэша на время выполнения программы осуществляется за счет перестановки индексов суммирования.

Анализ времени выполнения: для оценки времени выполнения перемножения матриц использовалась функция time(). Для повышения надежности экспериментов опыты проводились несколько раз.

Верификация: для проверки корректности работы программы использовались тестовые данные.

Основные функции:

- 1. Разбор командной строки. В рамках этой функции осуществляется анализ и разбор командной строки.
- 2. Чтение файлов матриц. В рамках этой функции осуществляется чтение и обработка входных матриц.
- 3. Перемножение матриц. В рамках этой функции осуществляется перемножение матриц в соответствии с выбранным порядком индексов суммирования.
- 4. Генерация матриц. В рамках этой функции производилась генерация и запись матриц для последующих тестов.
- 5. Вывод матриц на экран. В рамках этой функции проводился вывод матриц на экран.

Результаты выполнения

Проводилось перемножение двух пар матриц размерами 1000x1000 и 3000x3000. Зависимость времени выполнения от порядка индексов суммирования представлена на следующих графиках. Время представлено в секундах.

Выводы

Исследование показало, что изменение порядка индексов суммирования оказывает влияние на время выполнения программы. Наименьшее время выполнения наблюдается при следующем порядке индексов – ikj, немного выше при – kij (в случае с матрицами 1000х1000 эти показатели одинаковы). При таком порядке доступа к элементам обеспечивается минимальное количество cash missies. Наихудшее время показал порядок индексов – kji, немногим лучше обстоит ситуация с порядком – jki. При таком порядке доступа к элементам cash missies принимает максимальное значение (до 2 за одну операцию).