演算法 PA1 Report

電機二 李冠儀 b10901091

1. 編譯地點: EDA UNION Lab 的 edaU6

2. 四種排序方法之時間與記憶體

Input size	IS		MS		QS		HS	
	CPU	Memory	CPU	Memory	CPU	Memory	CPU	Memory
	time(ms)	(KB)	time(ms)	(KB)	time(ms)	(KB)	time(ms)	(KB)
4000.case2	0.133	5904	17.149	5968	2.833	6040	0.242	5904
4000.case3	9.546	5904	15.984	5904	2.321	6040	0.831	5904
4000.case1	5.942	5904	0.665	5904	2.389	6040	0.982	5904
16000.case2	0.114	6056	161.827	6684	4.703	6056	2.407	6056
16000.case3	70.199	6056	146.243	6300	4.375	6056	1.388	6056
16000.case1	37.17	6056	1.908	6056	7.356	6056	1.67	6056
32000.case2	0.082	6188	611.333	7504	7.186	6316	3.475	6188
32000.case3	263.793	6188	557.531	6740	6.292	6316	3.04	6188
32000.case1	128.706	6188	2.595	6188	8.378	6316	3.806	6188
1000000.case2	1.16	12144	593807	56844	204.215	16236	91.182	12144
1000000.case3	256475	12144	375897	27252	202.358	16236	85.946	12144
1000000.case1	129042	12144	87.093	12144	275.945	16236	145.968	12144

3. 趨勢圖表

(1) Average case

在此圖表中,IS 花費時間最久,其他則差不多。四個排序演算法排序時間大致符合理論。亦即 IS 為 $\theta(n^2)$ 、其他為 $\theta(nlogn)$ 。

(2) Best case

在最佳案例中,IS 的排序速度最快,QS 最慢。大致符合理論。亦即 QS 為 $\theta(n^2)$ 、IS 為 $\theta(n)$,其他為 $\theta(n\log n)$ 。

(3) Worst case

此圖表中,IS 與 QS 有相同的排序時間趨勢。由於我的 QS 並未使用 ramdom,因此四個排序 演算法排序時間大致符合理論,即 IS 與 QS 為 $\theta(n^2)$ 、MS 為 $\theta(nlogn)$ 、HS 為 O(nlogn)。

