1. Fondamenti della Trasmissione Dati

La trasmissione dei dati è il processo mediante il quale le informazioni digitali vengono convertite in segnali compatibili con il mezzo fisico, garantendo la comunicazione tra dispositivi.

1.1 Basi Teoriche della Comunicazione

Larghezza di Banda:

Indica l'intervallo di frequenze disponibili per la trasmissione, misurato in Hertz (Hz). Una maggiore larghezza di banda permette di trasmettere più informazioni, ma il suo utilizzo dipende anche dalle tecnologie e dai metodi di codifica impiegati.

Throughput:

È la quantità di dati che riesce effettivamente a transitare su un canale in un determinato intervallo di tempo. A causa di limitazioni tecniche ed inefficienze, il throughput reale è sempre inferiore al bit rate teorico.

Bit Rate:

Indica la velocità di trasmissione dei bit, espressa in bit per secondo (bps). Rappresenta la capacità del canale di inviare dati e costituisce il parametro base per la progettazione dei sistemi di comunicazione.

1.3 II Livello Fisico

Il livello fisico è responsabile della codifica, modulazione e trasmissione dei segnali sul mezzo. In questa fase, i dati digitali vengono convertiti in segnali elettrici, ottici o radio, a seconda della tecnologia utilizzata. Tecniche di codifica, modulazione e conversione (ad esempio, dalla rappresentazione decimale a quella esadecimale per l'indirizzamento hardware) sono essenziali per garantire la corretta trasmissione e la minimizzazione degli errori.

(Approfondimenti nel materiale "Tutto Livello Fisico")

2. Tecniche di Trasmissione

Le tecniche di trasmissione definiscono come i dati vengono inviati attraverso il mezzo fisico, ottimizzando l'uso delle risorse e garantendo affidabilità e efficienza.

2.1 Multiplexing

Il multiplexing consente a più flussi di dati di condividere lo stesso canale:

FDM (Frequency Division Multiplexing):

Il canale viene suddiviso in sotto-bande di frequenza. Ogni utente dispone di una banda fissa, garantendo l'assenza di interferenze, ma in presenza di traffico variabile può risultare uno spreco di risorse.

TDM (Time Division Multiplexing):

Il canale viene diviso in intervalli temporali (slot) assegnati a ciascun utente. Questa tecnica richiede una sincronizzazione precisa, poiché ogni dispositivo trasmette solo nel proprio intervallo, migliorando l'efficienza in ambienti con traffico uniforme.

WDM (Wavelength Division Multiplexing):

Utilizzato soprattutto nelle reti in fibra ottica, sfrutta diverse lunghezze d'onda per trasmettere simultaneamente più flussi di dati. Esistono varianti come CWDM e DWDM, che differiscono per densità e capacità trasmissiva.

2.2 Tecniche di Commutazione

Le tecniche di commutazione determinano come i dati vengono instradati attraverso la rete:

Commutazione di Circuito:

Prevede la creazione di un percorso fisso e dedicato tra mittente e destinatario per l'intera durata della comunicazione. Questo metodo garantisce una banda costante, ma utilizza in modo inefficiente le risorse, poiché il canale resta riservato anche se non attivamente usato.

Commutazione di Pacchetto:

I dati vengono suddivisi in pacchetti indipendenti che possono seguire percorsi differenti nella rete. I pacchetti vengono riordinati a destinazione per ricostruire il messaggio originario. Questa tecnica sfrutta al meglio la banda disponibile e aumenta la resilienza a guasti e congestioni.

(Approfondimenti nel documento "ISO/OSI e Tipi di Trasmissione")

3. Algoritmi di Accesso al Mezzo

In una rete condivisa, è necessario gestire l'accesso al mezzo trasmissivo in modo da evitare collisioni e massimizzare l'efficienza.

3.1 Protocollo ALOHA

ALOHA Puro:

Le stazioni trasmettono i dati immediatamente quando sono pronte, senza controllare lo stato del canale. In caso di collisione, la stazione attende un intervallo casuale prima di ritrasmettere. L'efficienza teorica di questo approccio è intorno al 18%, a causa dell'elevato rischio di collisioni.

Slotted ALOHA:

Il tempo è suddiviso in slot di durata fissa. Le stazioni possono trasmettere solo all'inizio di uno slot, riducendo l'intervallo in cui le collisioni possono verificarsi e migliorando l'efficienza fino al 37%.

3.2 Protocolli CSMA

I protocolli CSMA (Carrier Sense Multiple Access) richiedono alle stazioni di "ascoltare" il canale prima di trasmettere:

CSMA 1-persistente:

Se il canale è libero, la stazione trasmette immediatamente; tuttavia, non essendo considerato il tempo di propagazione, possono verificarsi collisioni se le stazioni sono distanti.

CSMA non persistente:

Se il canale è occupato, la stazione attende un intervallo casuale prima di riprovare, riducendo il rischio di collisioni, anche se aumentando il ritardo.

CSMA p-persistente:

Adatto a canali suddivisi in slot, in questo schema la stazione trasmette con una probabilità p quando il canale è libero, altrimenti attende il successivo slot.

CSMA/CD (Collision Detection):

Utilizzato nelle reti Ethernet, questo protocollo permette alle stazioni di rilevare le collisioni durante la trasmissione. In caso di collisione, la trasmissione viene interrotta immediatamente e si attua un algoritmo di backoff esponenziale per ritentare l'invio. (Per ulteriori dettagli, consultare "Livello MAC e Algoritmi di Contesa")

Altri Algoritmi:

Esistono soluzioni che eliminano del tutto le collisioni, come il Basic Bitmap e il Binary Countdown, nonché protocolli a contesa limitata come l'Adaptive Tree Walk, che permettono di individuare in modo rapido la stazione che deve trasmettere, ottimizzando l'uso del canale.

4. Reti Wireless e Mobili

L'evoluzione delle reti wireless ha permesso la mobilità e una copertura sempre più ampia, trasformando il modo in cui comunichiamo.

4.1 Architettura Cellulare

Celle e Stazioni Base:

Un'area geografica viene divisa in celle, ciascuna coperta da una stazione base. La forma ideale della cella è esagonale, in modo da ottimizzare il riutilizzo delle frequenze e garantire una copertura omogenea.

Handoff:

Quando un utente si sposta da una cella all'altra, è necessario trasferire la connessione in modo da evitare interruzioni.

- Hard Handoff: Il collegamento viene interrotto prima di stabilire quello nuovo, causando una breve interruzione del servizio (tipico dei sistemi GSM).
- **Soft Handoff:** Permette di mantenere contemporaneamente più connessioni durante la transizione, garantendo una continuità maggiore (tipico dei sistemi CDMA).

4.2 Reti Satellitari

Le reti satellitari offrono la possibilità di una copertura globale sfruttando satelliti posizionati in orbite differenti:

GEO (Geostationary Earth Orbit):

I satelliti GEO orbitano a circa 35.786 km e rimangono fissi rispetto alla Terra, offrendo un'ampia copertura. Tuttavia, la latenza è elevata (circa 250 ms) e i costi sono alti.

MEO (Medium Earth Orbit):

Questi satelliti, utilizzati ad esempio per i sistemi di navigazione (GPS, Galileo), rappresentano un compromesso tra copertura e latenza.

LEO (Low Earth Orbit):

I satelliti in orbita LEO operano a quote molto inferiori (160–2000 km), garantendo una latenza ridotta. Richiedono però una costellazione numerosa e gestioni frequenti di handoff.

4.3 Evoluzione delle Reti Mobili

L'evoluzione tecnologica ha determinato una progressiva trasformazione delle reti mobili:

- 1G: Reti analogiche, limitate a trasmissioni vocali con scarse misure di sicurezza.
- 2G (GSM): Introduce la digitalizzazione, il supporto agli SMS e una crittografia basilare.
- **3G (UMTS):** Abilita trasmissioni dati ad alta velocità, permettendo videochiamate e applicazioni multimediali.
- **4G (LTE):** Reti completamente all-IP, capaci di offrire banda larga mobile, bassa latenza e velocità elevate.
- 5G: La generazione più avanzata, che prevede latenza ultra-bassa, massive connessioni loT, network slicing e tecnologie come il Massive MIMO, raggiungendo velocità fino a 20 Gbps.

5. Standard e Protocolli

La comunicazione tra dispositivi eterogenei è resa possibile grazie agli standard e protocolli, che definiscono le regole per l'interoperabilità.

5.1 Modello ISO/OSI

Il modello OSI (Open Systems Interconnection) divide la comunicazione in 7 livelli, ciascuno con funzioni specifiche:

1. Fisico:

Trasmette i bit sul mezzo e definisce le proprietà fisiche del canale.

2. Data Link:

Si occupa del framing, del controllo degli errori e dell'accesso al mezzo. È suddiviso in due sottolivelli:

LLC (Logical Link Control):

Gestisce l'interfaccia con il livello di rete, incapsulando i dati in frame e identificando il protocollo di livello superiore tramite i campi DSAP e SSAP.

MAC (Media Access Control):

Regola l'accesso concorrente al mezzo, assegna un indirizzo fisico univoco (MAC address) e gestisce la costruzione dei frame, includendo i campi per l'indirizzamento e il controllo degli errori.

3. Rete:

Responsabile dell'indirizzamento logico e dell'instradamento dei pacchetti (es. protocolli IP).

4. Trasporto:

Garantisce la corretta trasmissione dei dati, segmentando e riassemblando i messaggi, con protocolli orientati (TCP) o non orientati (UDP).

5. Sessione:

Gestisce la comunicazione e la sincronizzazione tra le applicazioni, stabilendo e terminando le sessioni.

6. Presentazione:

Cura la formattazione, la codifica e la crittografia dei dati per garantire che il messaggio sia interpretato correttamente da chi lo riceve.

7. Applicazione:

Fornisce l'interfaccia diretta con l'utente, permettendo l'utilizzo di applicazioni come browser, client di posta e altri software di comunicazione.

(Vedi i "Concetti sul Livello 2 OSI")

5.2 Protocollo TCP/IP

Il modello TCP/IP ha rivoluzionato le comunicazioni su Internet ed è composto da quattro livelli:

Application:

Copre le funzioni applicative, integrando i livelli Applicazione, Presentazione e Sessione

del modello OSI.

Transport:

Responsabile della segmentazione e della trasmissione affidabile (TCP) o non affidabile (UDP) dei dati.

• Internet:

Si occupa dell'instradamento dei pacchetti attraverso il protocollo IP, permettendo la comunicazione tra reti diverse.

Network/Physical:

Definisce le specifiche fisiche e il collegamento col mezzo trasmissivo.

Questo modello, grazie alla sua semplicità ed efficienza, ha permesso l'interconnessione di reti eterogenee e il consolidamento di Internet come infrastruttura globale.

(Approfondimenti in \(\subseteq \text{iten} \) turn0file1\(\subseteq \))

5.3 Enti di Standardizzazione

Diversi enti internazionali contribuiscono alla definizione degli standard:

• IEEE (Institute of Electrical and Electronics Engineers):

Responsabile dello sviluppo degli standard per le reti locali, come l'IEEE 802.3 (Ethernet) e l'IEEE 802.11 (Wi-Fi).

ITU (International Telecommunication Union):

Coordina la gestione delle frequenze radio e definisce standard per le telecomunicazioni a livello globale.

IETF (Internet Engineering Task Force):

Elabora le specifiche tecniche e i protocolli Internet, pubblicando le RFC (Request for Comments).

ISO (International Organization for Standardization):

Definisce standard internazionali per garantire l'interoperabilità e l'uniformità dei sistemi, come nel caso del modello OSI.