

Introduction to post-quantum cryptography

Simona Samardjiska Digital Security Group – Radboud University

Better solution: Post Quantum (PQ) Cryptography

Classical cryptosystems believed to be secure against quantum computer attacks

Post Quantum (PQ) Cryptography

(only secure hash function needed)

Lattice-based cryptosystems – signatures/encryption/KEMs

(many different hard problems – SIS, SVP, LWE)

Some fun history facts

- McEliece is as old as RSA!
- As (almost) are hash-based signatures!
- The term "Post-quantum cryptography" coined
- in 2003 by Dan Bernstein

- Key sizes, signature sizes and speed
 - Huge public keys, or signatures Or slow
 - ex. ECC 256b key vs McElliece 500KB key

The NIST call

Initial Timeline:

- Fall 2016 call for proposals
- November 2017 deadline for submissions
- January 2019 second round candidates
- July 2020 Finalists!
- In a few months— results
- 2 years later Draft standard ready
- Deployment?

Call for Proposals Announcement

Call for Proposals
Submission Requirements

Minimum Acceptability Requirements

CSRC HOME > GROUPS > CT > POST-QUANTUM CRYPTOGRAPHY PROJECT

POST-QUANTUM CRYPTO STANDARDIZATION

- "NOT a competition"
- "more complicated than AES or SHA-3"
- "Ideally, several algorithms will emerge as good choices"
- 82 submissions, 69 "complete and proper"
- 20 signatures
- 49 Key encapsulation mechanisms

advent of quantum computers.

Digital Security Group – Radboud University involved in 8 candidates

KEMs

- Classic McEliece
 - Code-based

Lattice based

- CRYSTALS-KYBER
- NTRU-HRSS-KEM
- New Hope
 - Implemented and tested by Google
- SIKE
 - Isogeny-based

Signatures

- CRYSTALS-DILITHIUM
 - Lattice based
- SPHINCS+
 - Hash based
- MQDSS
 - Multivariate

Chosen standards and what next

Information Technology Laboratory

COMPUTER SECURITY RESOURCE CENTER

COMPUTER SECURITY RESOURCE CENTER CSRC

PQC Standardization Process: Announcing Four Candidates to be Standardized, Plus Fourth Round Candidates

July 05, 2022

Algorithms to be Standardized

Public-Key Encryption/KEMs Digital Signatures

CRYSTALS-KYBER

CRYSTALS-Dilithium

FALCON

SPHINCS+

PQC Fourth Round Candidate Key-Establishment Mechanisms (KEMs)

Public-Key Encryption/KEMs

BIKE Classic McEliece HQC SIKE

New Call for Proposals: Digital Signature Algorithms with Short Signatures and Fast Verification

Submissions due by June 1, 2023.

	Parameter set	Public key (bytes)	Secret key (bytes)	iphertext (bytes)	Keygen (Kcycles)	Encaps (Kcycles)	Decaps (Kcycles)
	Classic- McEliece- 348864	261120	6452	128	346550.8	44.4	134.6
ſ	Kyber512	800	1632	768	37	40.3	26.5
	BIKE-L1	1541	5223	1573	586.4	79	1282.8
	HQC-128	2249	2289	4481	151	252.6	443.2

		Size (bytes)		Relative time	
		Public key	Signature	Verification	Signing
Non PQ	NIST P-256	64	64	1 (baseline)	1 (baseline)
	RSA-2048	256	256	0.2	25
NIST finalists	Dilithium2	1,320	2,420	0.3	2.5
	Falcon512	897	666	0.3	5 *
NIST alternates*	SPHINCS*-128ss har.	32	7,856	1.7	3,000
	SPHINCS*-128fs har.	32	17,088	4	200
Others	XMSS-SHAKE_20_128 *	32	900	2	10 *

Post Quantum for embedded devices

- Arm® Cortex®-M4 recommended by NIST,
- Other smaller embedded devices (Arm® Cortex®-M0, RISC-V)
 - Low clock speed (8-24MHz), ROM (16-32 KB) RAM (4-16KB),
 - floating point support?
 - multipliers?
- Long lived up to 30 years!
 - automotive and aviation industry
 - critical infrastructure
- Not addressed by the NIST process
 - But critically needed now!
- We organized (twice) a Lorentz workshop
 - Already > 6-7 highly influential publications
- Still a lot of work needed, but PQ crypto can be squeezed in embedded devices

Physical security

- Devices running cryptography are not physically isolated
 - Attacker may detect timing variations, power consumption, electromagnetic radiation – Side channels
 - Attacker may use side channels to obtain secret data
- Currently one of the biggest challenges for PQ cryptography
 - Understanding side channel attacks on PQ schemes
 - Providing cheap/reasonable countermeasures
 - In past 2 years abundance of attacks on official implementations/finalists
 - Lattice based schemes particularly vulnerable

Drop-in-replacement ... is this realistic?

- Protocols have constrains

- For ex. Data needs to fit into packets (not exceeding maximum transmission unit (MTU))
- In the case of DNSSEC only Falcon can fit

Prio	Requirement	Good	Accepted Conditionally
#1	Signature Size	≤ 1,232 bytes	_
#2	Validation Speed	≥ 1,000 sig/s	_
#3	Key Size	≤ 64 kilobytes	> 64 kilobytes
#4	Signing Speed	≥ 100 sig/s	-

- Still: only one key/signature can be shipped at a time
- In TLS?
 - TLS has a handshake part for
 - key agreement (Diffie-Hellman) and
 - Authentication (signatures)
 - A KEM can't be used as a drop-in-replacement
 - Protocol needs to be changed
 - Then why not use the KEM for authentication as well!
 - **KEMTLS** (large scale experiments ongoing in collaboration with
 - Cloudflare)

Post-Quantum TLS 1.3 Handshake

Image credit: Thom Wiggers

An overview of post-quantum families of cryptosystems

- Coding theory essentials
- Noisy channel communication:

- Coding theory essentials
- In cryptography:

- Hard underlying problem (NP hard): Decoding random linear codes
- No reduction to the hard problem instead, related problems believed to be hard
- Confidence in encryption schemes

- Hard underlying problem (NP hard): Decoding random linear codes
- No reduction to the hard problem instead, related problems believed to be hard
- Confidence in encryption schemes

- Hard underlying problem (NP hard): Polynomial system solving (PoSSo)
- (Mainstream) No reduction to the hard problem related problems believed to be hard
- Confidence in signatures

- Hard underlying problem (NP hard): Polynomial system solving (PoSSo)
- (Mainstream) No reduction to the hard problem related problems believed to be hard
- Confidence in signatures

- Hard underlying problem (NP hard): Polynomial system solving (PoSSo)
- (Mainstream) No reduction to the hard problem related problems believed to be hard
- Confidence in signatures

Public \mathcal{P} $p_1(x_1, \dots, x_n)$ $p_2(x_1, \dots, x_n)$ \dots $p_m(x_1, \dots, x_n)$

- Hard underlying problem (NP hard): Polynomial system solving (PoSSo)
- (Mainstream) No reduction to the hard problem related problems believed to be hard
- Confidence in signatures

PoSSo:

Input:

$$p_1, p_2, \dots, p_m \in \mathbb{F}_q[x_1, \dots, x_n]$$

Question:

Find - if any -
$$(u_1,\ldots,u_n)\in\mathbb{F}_q^n$$
 st.

$$\begin{cases} p_1(u_1, \dots, u_n) = 0 \\ p_2(u_1, \dots, u_n) = 0 \\ \dots \\ p_m(u_1, \dots, u_n) = 0 \end{cases}$$

MQDSS

IDS

FS signature

Signer

Verifier

$$\begin{aligned} &\mathsf{com} \leftarrow \mathcal{P}_0(\mathsf{sk}) \\ &\mathsf{ch}_1 \leftarrow H_1(m, \mathsf{com}) \\ &\mathsf{resp}_1 \leftarrow \mathcal{P}_1(\mathsf{sk}, \mathsf{com}, \mathsf{ch}_1) \\ &\mathsf{ch}_2 \leftarrow H_2(m, \mathsf{com}, \mathsf{ch}_1, \mathsf{resp}_1) \\ &\mathsf{resp}_2 \leftarrow \mathcal{P}_2(\mathsf{sk}, \mathsf{com}, \mathsf{ch}_1, \mathsf{resp}_1, \mathsf{ch}_2) \end{aligned}$$

$$&\mathsf{output} : \sigma = (\mathsf{com}, \mathsf{resp}_1, \mathsf{resp}_2)$$

$$\begin{aligned} \mathsf{ch}_1 &\leftarrow H_1(m,\mathsf{com}) \\ \mathsf{ch}_2 &\leftarrow H_2(m,\mathsf{com},\mathsf{ch}_1,\mathsf{resp}_1) \\ b &\leftarrow \mathsf{Vf}(\mathsf{pk},\mathsf{com},\mathsf{ch}_1,\mathsf{resp}_1,\mathsf{ch}_2,\mathsf{resp}_2) \end{aligned}$$

output: b

- Encryption, signatures, key exchange
- Many different hard problems

- Learning with errors (LWE)
- Variants R-LWE, Module-LWE, LPN, ...
 - Additional structure undermines security claims
 - Let $\mathcal{R}_q = \mathbb{Z}_q[X]/(X^n + 1)$
 - Let χ be an *error distribution* on \mathcal{R}_q
 - ullet Let $\mathbf{s} \in \mathcal{R}_q$ be secret
 - ullet Attacker is given pairs (a, as + e) with
 - a uniformly random from \mathcal{R}_q
 - e sampled from χ
 - Task for the attacker: find s
 - Common choice for χ : discrete Gaussian

- Learning with errors (LWE)
- Variants R-LWE, Module-LWE, LPN, ...
 - Additional structure undermines security claims
 - Let $\mathcal{R}_q = \mathbb{Z}_q[X]/(X^n + 1)$
 - Let χ be an error distribution on \mathcal{R}_q
 - ullet Let $\mathbf{s} \in \mathcal{R}_q$ be secret
 - ullet Attacker is given pairs (a, as + e) with
 - a uniformly random from \mathcal{R}_q
 - e sampled from χ
 - Task for the attacker: find s
 - Common choice for χ : discrete Gaussian

Alice (server)		Bob (client)
$\mathbf{s},\mathbf{e} \xleftarrow{\$} \chi$		$\mathbf{s'},\mathbf{e'} \xleftarrow{\$} \chi$
b←as + e	$\xrightarrow{ \mathbf{b} }$	$\mathbf{u} {\leftarrow} \mathbf{a} \mathbf{s}' + \mathbf{e}'$
	- u	

Alice has
$$\mathbf{v} = \mathbf{u}\mathbf{s} = \mathbf{a}\mathbf{s}\mathbf{s}' + \mathbf{e}'\mathbf{s}$$

Bob has $\mathbf{v}' = \mathbf{b}\mathbf{s}' = \mathbf{a}\mathbf{s}\mathbf{s}' + \mathbf{e}\mathbf{s}'$

- Learning with errors (LWE)
- Variants R-LWE, Module-LWE, LPN, ...
 - Additional structure undermines security claims
 - Let $\mathcal{R}_q = \mathbb{Z}_q[X]/(X^n + 1)$
 - Let χ be an error distribution on \mathcal{R}_q
 - Let $\mathbf{s} \in \mathcal{R}_q$ be secret
 - ullet Attacker is given pairs (a, as + e) with
 - a uniformly random from \mathcal{R}_q
 - e sampled from χ
 - Task for the attacker: find s
 - Common choice for χ : discrete Gaussian

Alice (server)		Bob (client)
$\mathbf{s},\mathbf{e} \xleftarrow{\$} \chi$		$\mathbf{s}',\mathbf{e}' \xleftarrow{\$} \chi$
b←as + e	$\xrightarrow{\hspace*{1cm} b}$	$\mathbf{u} {\leftarrow} \mathbf{a} \mathbf{s}' + \mathbf{e}'$
	← <u>u</u> <u></u>	

Alice has
$$\begin{pmatrix} \mathbf{v} \\ \mathbf{e's} \end{pmatrix} = \mathbf{us} = \mathbf{ass'} + \mathbf{e's}$$
Bob has $\begin{pmatrix} \mathbf{v}' \\ \mathbf{v}' \end{pmatrix} = \mathbf{bs'} = \mathbf{ass'} + \mathbf{es'}$
approximately same small

Isogeny-based cryptography (slides credit Krijn Reijnders)

How to compute an isogeny?

A small isogeny

Use Vélu's formulas (degree N)

- 1. Find torsion point P of order N on E
- 2. Calculate *P*, 2*P*, 3*P*, ...
- 3. Use these points to compute E'

A large isogeny

Chain together small isogenies

CSIDH

Post quantum key exchange

Alice and Bob perform **long** walks in isogeny graphs

A long walk is composed of **a lot** of small isogenies (≈400)

CSIDH

Post quantum key exchange

Alice and Bob perform **long** walks in isogeny graphs

A long walk is composed of **a lot** of small isogenies (≈400)

CSIDH

Post quantum key exchange

Alice and Bob perform **long** walks in isogeny graphs

A long walk is composed of **a lot** of small isogenies (≈400)

CSIDH

Post quantum key exchange

Alice and Bob perform **long** walks in isogeny graphs

A long walk is composed of **a lot** of small isogenies (≈400)

CSIDH

Post quantum key exchange

Alice and Bob perform **long** walks in isogeny graphs

A long walk is composed of **a lot** of small isogenies (≈400)

Thank you for listening!

