ECS 253 / MAE 253, Lecture 13 May 10, 2016

- I. "Games on networks"
- II. "Diffusion, Cascades and Influence"

Summary of spatial flows and games

- Optimal location of facilities to maximize access for all.
- Designing "optimal" spatial networks
 (collection/distribution networks subways, power lines, road networks, airline networks).
- Details of flows on actual networks make all the difference!
 - Users act according to Nash
 - Braess paradox(removing edges may improve a network's performance!)
 - The "Price of Anarchy"(cost of worst Nash eqm / cost of system optimal)

"The price of anarchy"

E. Koutsoupias, C. H. Papadimitriou "Worst-case equilibria," STACS 99.

Cost of worst case Nash equilibrium / cost of system optimal solution.

The Price of Anarchy

Nash Equilibrium:

$$cost = 14+14 = 28$$

- Assume two units of flow from s to t.
- Both follow the user optimal path.

4

The Price of Anarchy

Nash Equilibrium:

To Minimize Cost:

$$cost = 14+14 = 28$$

$$cost = 14+10 = 24$$

Price of anarchy = 28/24 = 7/6.

· if multiple equilibria exist, look at the worst one

Selfish routing and the POA on the Internet

- T. Roughgarden and E. Tardos, How Bad is Selfish Routing?, FOCS '00/JACM '02
- Routing in the Internet is decentralized: Each router makes a decision, so path dynamically decided as packet passed on.
- ullet Cost of an edge c(e), may be constant (infinite capacity) or depend on the load.
- "Shortest path" routing (really lowest $\sum c(e)$ routing) typically implemented.
- This is equivalent to "selfish routing" (each router chooses best option available to it).
- Resulting POA = 2!

Braess and the POA for Internet traffic

Greg Valiant, Tim Roughgarden, Eva Tardos "Braess's paradox in large random graphs", Proceedings of the 7th ACM conference on Electronic commerce, 2006.

- Removing edges from a network with "selfish routing" can decrease the latency incurred by traffic in an equilibrium flow.
- With high probability, (as the number of vertices goes to infinity), there is a traffic rate and a set of edges whose removal improves the latency of traffic in an equilibrium flow by a constant factor.
- Braess paradox found in random networks often (not just "classic" 4-node construction).

The Nash Inequality ratio

Sam Johnson and R.D., *Internet Mathematics*, 2015.

- How unfair is a particular Nash equilibrium to the individual players?
- NIR = the maximal ratio between the highest and lowest costs incurred to individual agents in a Nash equilibrium strategy
- Contrary to common expectations, efficiency (system optimal) does not necessarily come at the expense of increased inequality.

Algorithmic game theory

- Since we know users act according to Nash, can we design algorithms (mechanisms) that bring Nash and System Optimal as close together as possible?
- Typically we think of players who interact via a network, or who's connectivity is described by a network of interactions.
 - Multiplayer games for users connected in a network or interacting via a network.
 - Designing algorithms with desirable Nash equilibrium.
 - Computing equilibrium when agents connected in a network.

mechanism design (or *inverse* game theory)

- agents have utilities but these utilities are known *only to them*
- game designer prefers certain outcomes depending on players' utilities
- designed game (mechanism) has designer's goals as dominating strategies

Some traditional games:

(Papadimitriou, "Algorithms, Games, and the Internet" presented at STOC/ICALP 2001.)

Mechanism design example:

e.g., Vickrey auction

- sealed-highest-bid auction encourages gaming and speculation
- Vickrey auction: Highest bidder wins, pays second-highest bid

Theorem: Vickrey auction is a truthful mechanism.

Theorem: It maximizes social benefit *and* auctioneer expected revenue.

focs 2001 25

(Modified) Vickrey auctions in real life – Google AdWords, and Yahoo's ad sales

- Bidding on a "keyword" so that your advertisement is displayed when a search user enters in this keyword
- You can safely bid the maximum price you think is fair, and if you win, you actually pay less!
- Mechanism design
 - Incentivizes users to bid what they think is fair (reveal their true utilities)
 - Keeps more people bidding

Summary of spatial flows and games

- Optimal location of facilities to maximize access for all.
- Designing "optimal" spatial networks (collection/distribution networks – subways, power lines, road networks, airline networks).
- Details of flows on actual networks make all the difference!
 - Users act according to Nash
 - Braess paradox (removing edges may improve a network's performance!)
 - The "Price of Anarchy" (cost of worst Nash eqm / cost of system optimal)
- Mechanism design / algorithmic game theory

II. Diffusion and cascades in networks (Nodes in one of two states)

- Viruses (human and computer)
 - contact processes
 - epidemic thresholds
- Adoption of new technologies
 - Winner take all
 - Benefit of first to market
 - Benefit of second to market
- Political or social beliefs and societal norms

A long history of study, now trying to add impact of underlying network structure.

Opinion dynamics on networks

What drives social change?

Accelerating pace of social change

Speed of Change

Number of years from an issue's trigger point to federal action (all abortion years shown)

Bloomberg, April 26, 2015.

Collective phenomena: Phase transitions

a_{sustain} a_{break}

 χ^*

(b)

- **Cusp bifurcation/catastrophe**
- $\bullet \ \frac{dx}{dt} = -x^3 + x + a.$
- Abrupt shift as slow-time parameter varies
 - e.g., Vinyl records vs digital music

- Percolation
- Contact processes
- Epidemic spreading

Phase transitions depend on the underlying details

The network structure

- Degree distribution (variation in connectivity)
- Modular structure

The model of human behavior

- Simple contact process / percolation / epidemic spreading
 - * Thresholds (critical mass) versus diminishing returns
 - * Influential versus susceptible individuals
- Voter models
- Opinion dynamics / consensus
 - * The role of zealots
- Strategic interactions / Nash equilibrium (decentralized solutions)

Simplest model of human behavior: Binary opinion dynamics

Each individual can be in one of two states $\{-1, +1\}$

- "Infected" or "healthy" (relevant to both human and computer networks)
- Holding opinion "A" or "B"
- Adopting new product, or sticking with status quo
- Many other choices....

But what causes opinion to change?

Q1: Diminishing returns versus thresholds

Why would an individual person change their mind?

Kleinberg, Leskovec, Kempe e.g., *KDD* 2003.

"Hill climbing" / best response
Algorithms for influential seed nodes

Watts, Dodds e.g. *PNAS* 2002.

Percolation & generating functions Susceptibles vs influentials/mavens (Depends on active vs passive influence.)

Q2: The Voter model, "Tell me what to think"

V. Sood, S. Redner, *Phys. Rev. Lett.* 94, 2005.

- At each time step in the process, pick a node at random.
- That node picks a random neighbor, and adopts the opinion of the neighbor.
- Ultimately, only one opinion prevails. The high degree nodes (hubs) win.

(Invasion percolation process yields the opposite: leaf nodes propagate opinons.)

Q3: "The Naming Game" / open minded individuals

Steels, Art. Life 1995; Barrat et al., Chaos 2007; Baronchelli et al., Int. J. Mod. Phys. 2008.

- Originally introduced for linguistic convergence. Two opinions, A and B.
- And each individual can hold A, B, or $\{A, B\}$.
- At each time-step, choose a node at random and a neighbor at random and exchange opinions.
- If disagree, add the opinion to your set. If any overlap, reach consensus.

Diffusion, Cascade behaviors, and influential nodes Part I: Ensemble models

Generating functions / Master equations / giant components

- Contact processes / more similar to biological epidemic spreading
- Heterogeneity due to node degree (not due to different node preferences)
- Epidemic spreading
- Opinion dynamics
- Social nets: Watts PNAS (threshold model; no global cascade region)

Diffusion, Cascade behaviors, and influential nodes Part II: Contact processes with individual node preferences

- Long history of empirical / qualitative study in the social sciences (Peyton Young, Granovetter, Martin Nowak ...; diffusion of innovation; societal norms)
- Recent theorems: "network coordination games" (bigger payout if connected nodes in the same state) (Kleinberg, Kempe, Tardos, Dodds, Watts, Domingos)
- Finding the influential set of nodes, or the k most influential. Often NP-hard and not amenable to approximation algorithms
- Key distinction:
 - thresholds of activation (leads to unpredictable behaviors)
 - diminishing returns (submodular functions nicer)

Diffusion, Cascade behaviors, and influential nodes Part III: Markov chains and mixing times

- New game-theoretic approaches (general coordination games)
 - Results in an Ising model.
 - Montanari and Saberi PNAS 2010.
- Techniques from Parts I and II suggest:
 - Innovations spread quickly in highly connected networks.
 - Long-range links benefit spreading.
 - High-degree nodes quite influential (enhance spreading).
- Techniques from Part III suggest:
 - Innovations spread quickly in locally connected networks.
 - Local spatial coordination enhances spreading (having a spatial metric; graph embeddable in small dimension).
 - High-degree nodes slow down spreading.