Diagramme de Bode des filtres du premier et second ordre

Table des matières

1	Fon	ction de transfert d'un circuit linéaire	2
	1.1	Ordre d'un circuit	2
	1.2	Fonction de transfert harmonique H	2
	1.3	Stabilité d'un circuit linéaire	3
		1.3.1 Définition	•
		1.3.2 Critère de stabilité en régime sinusoidal forcé	3
		1.3.3 Critère de stabilité en régime libre	•
2	Dia	gramme de Bode d'un filtre	4
	2.1	Gain en décibel	4
	2.2	Diagramme de Bode	4
		2.2.1 Définition	4
		2.2.2 Pulsation de coupure ω_c - bande passante à $-3dB$	4
		2.2.3 Diagramme asymptotique-diagramme réel	1
3		re d'ordre un	
	3.1	Filtre passe bas	
	3.2	Filtre passe haut	(
	3.3	Déphaseur ou filtre passe tout	7
4	Filt	res d'ordre 2	8
	4.1	Filtre passe bas	8
		4.1.1 Définition	8
		4.1.2 Aspect graphique	Ć
	4.2	Filtre passe haut	[]
		4.2.1 Fonction de transfert	1
		1 0 1 1	2
	4.3	1	2
		4.3.1 Fonction de transfert	2
			[
	4.4	Filtre coupe bande	4
	4.5	Déphaseur	Ę
5	Filt	res actifs 1	. 5
	5.1	Problème des filtres passifs	Ę
	5.2	Exemple	16

Le filtrage est une forme de traitement de signal qui consiste :

- ➤ Sélectionner une partie de l'information utile dans un signal et le transmettre (transmission de quelques fréquences du signal et atténuation des autres)
- ▶ Eliminer les fréquences parasites dans un signal
- ▶ Un filtre est tout circuit linéaire réalisant l'opération filtrage

1 Fonction de transfert d'un circuit linéaire

1.1 Ordre d'un circuit

Du fait de la linéarité du système les signaux e(t) et s(t) sont reliées par une équation différentielle de type :

$$a_0s + a_1\frac{ds}{dt} + \dots + a_n\frac{d^ns}{dt^n} = b_0e + b_1\frac{de}{dt} + \dots + b_m\frac{d^me}{dt^m}$$

- Définition : On appelle ordre du circuit linéaire, l'ordre de l'équation différentielle linéaire associée c'est-à-dire l'ordre de la dérivation le plus élevé (n si n > m)
- Exemples

$$e(t) = u_s + Rc\frac{du_s}{dt} + Lc\frac{d^2u_s}{dt^2}$$
 circuit d'ordre 2

1.2 Fonction de transfert harmonique H

Le signal d'entrée est supposé sinusoidal, du fait de la linéarité du système le signal de sortie est aussi sinusoidal .

On définit la fonction de transfert harmonique par :

$$\boxed{\underline{H}(j\omega) = \underline{\underline{u}_s}{\underline{u}_e}}$$

cette fonction permet de déterminer l'amplitude et le déphasage du signal de sortie $u_s(t)$ par rapport à $u_e(t)$.

$$\underline{\underline{H}(j\omega) = H(\omega) \exp j\varphi} \text{ avec } \varphi = \varphi_s - \varphi_e$$

$$\underline{U_s = H(\omega)U_e}$$

$$\varphi_s = \varphi_e + \arg(\underline{H}(j\omega))$$

À partir de l'équation différentielle :
$$a_0s + a_1\frac{ds}{dt} + \ldots + a_n\frac{d^ns}{dt^n} = b_0e + b_1\frac{de}{dt} + \ldots + b_m\frac{d^me}{dt^m}$$
 En régime harmonique $\frac{d}{dt} \to j\omega$

$$\underline{\underline{H}}(j\omega) = \frac{b_0 + b_1 j\omega + \dots + b_m (j\omega)^m}{a_0 + a_1 j\omega + \dots + a_n (j\omega)^n}$$

1.3 Stabilité d'un circuit linéaire

Définition 1.3.1

un circuit est dit stable lorsque sa réponse s(t), à un signal d'entrée e(t) restant borné, ne diverge pas quelque soient les pramètres du signal d'entrée et les conditions initiales du système.

Critère de stabilité en régime sinusoidal forcé

Notons $p = j\omega$, la fonction de transfert s'écrit sous la forme :

$$\underline{H}(j\omega) = \frac{N(j\omega)}{D(j\omega)} = \frac{b_0 + j\omega b_1 + \dots + (j\omega)^m b_m}{a_0 + j\omega a_1 + \dots + (j\omega)^n a_n} = \frac{b_0 + b_1 p + \dots + b_m p^m}{a_0 + a_1 p + \dots + a_n p^n}$$

• Définition : On appelle pôles de fonction $\underline{H}(p)$ les racines de l'équation D(p) = 0. Afin que $\underline{H}(p)$ ne diverge pas , il faut que les pôles p_k ne soient pas des imaginaires purs (si non pour ω_k telle que $p_k=j\omega_k$, \underline{H} devient infini).

D'autre part : lorsque
$$\omega \to \infty$$
 $\underline{H}(p) \approx \frac{b_m}{a_n} p^{(m-n)}$ $\underline{H}(p)$ reste fini si $m \leqslant n$

Critère de stabilité en régime libre

➤ Système du premier ordre

En régime libre :
$$a_0s + a_1\frac{ds}{dt} = 0 \Rightarrow s(t) = k \exp(-\frac{a_0}{a_1}t)$$

Lorsque $t \to \infty$ le signal diverge si a_0 et a_1 ont des signes contraires .

Résultat: Un système du premier ordre est stable si les coefficients a_0 et a_1 de l'équation différentielle ont le même signe .

➤ Système du sécond ordre

 $a_0s + a_1\frac{ds}{dt} + a_2\frac{d^2s}{dt^2} = 0$ on montre le système est stable si les coefficients a_0, a_1, a_2 ont le même signe

2 Diagramme de Bode d'un filtre

2.1 Gain en décibel

 $\underline{u}_e = U_{em} \exp j\omega t$ et $\underline{u}_s = U_{sm} \exp j\varphi \exp j\omega t$ On appelle gain du filtre $G(\omega)$ tq

$$G(\omega) = |\underline{H}(j\omega)|$$

$$\varphi(\omega) = \arg \underline{H}(j\omega)$$

• Définition : On appelle gain en décibels (dB)(grandeurs électriques)

$$G(dB) = 20 \log G(\omega)$$

• Remarque : Pour des grandeurs énergétiques (ou de puissance) le gain en décibels est défini par :

$$X(dB) = 10\log(\frac{p_1}{p_2})$$

2.2 Diagramme de Bode

2.2.1 Définition

On appelle diagramme de Bode d'un filtre l'ensemble de deux graphes :

- ► $G(dB) = f(\log \omega)$: courbe de réponse en gain
- $ightharpoonup \varphi = f(\log \omega)$: courbe de réponse en phase

On appelle décade un intervalle de $\log \omega$ égale à 1 $(\omega_2=10\omega_1)$

2.2.2 Pulsation de coupure ω_c - bande passante à -3dB

ullet La pulsation de coupure ω_c d'un filtre est définie par :

$$G(\omega_c) = \frac{G_{max}}{\sqrt{2}}$$

- $G_{dB}(\omega_c) = G_{dB}(max) 3$
- La bande passante d'un filtre est l'intervalle de pulsation qui satisfait à :

$$\boxed{\frac{G_{max}}{\sqrt{2}} \leqslant G(\omega) \leqslant G_{max}}$$

2.2.3 Diagramme asymptotique-diagramme réel

Il s'agit de représenter les asymptôtes, associées à $\omega \to 0$ et $\omega \to \infty$, des graphes $G_{dB} = f(\log \omega)$

On déduit ensuite le diagramme réel en faisant intervenir la pulsation de coupure .

3 Filtre d'ordre un

3.1 Filtre passe bas

La fonction de transfert d'un filtre passe bas s'écrit sous la forme :

$$\underline{\underline{H}(j\omega)} = \frac{1}{1 + j\frac{\omega}{\omega_c}}$$

avec ω_c : la pulsation de coupure

$$G(\omega) = \frac{1}{\sqrt{1 + (\frac{\omega}{\omega_c})^2}}$$

$$\varphi = -\arctan(\frac{\omega}{\omega_c})$$

• Exemples

$$\underline{H}(j\omega) = \frac{\underline{u}_s}{\underline{u}_e} = \frac{\underline{z}_c}{\underline{z}_R + \underline{z}_c}$$

$$\underline{H}(j\omega) = \frac{1}{1 + jRc\omega} = \frac{1}{1 + j\frac{\omega}{\omega_c}} \text{ donc } \omega_c = \frac{1}{Rc}$$

$$G(\omega) = \frac{1}{\sqrt{1 + R^2 c^2 \omega^2}}$$

$$G(0) = G_{max} = 1$$
 et $G(\omega_c) = \frac{1}{\sqrt{2}} = \frac{G_{max}}{\sqrt{2}}$

la bande passante du filtre passe bas tq : $\frac{G_{max}}{\sqrt{2}} \leqslant G(\omega) \leqslant G_{max}$ donc la bande passante est $[0, \omega_c]$

• Si
$$\omega >> \omega_c \Rightarrow \underline{H}(j\omega) = \frac{1}{1 + j\frac{\omega}{\omega_c}} \approx \frac{\omega_c}{j\omega} = \frac{\underline{u}_s}{\underline{u}_e} \Rightarrow \frac{d\underline{u}_s}{dt} = \omega_c \underline{u}_e$$

$$\underline{u_s = \omega_c \int \underline{u_e} dt}$$

Résultat : En haute fréquence le filtre passe bas du premier ordre se comporte comme un intégrateur

• Diagramme de Bode

$$G(dB) = 20 \log G = 20 \log \frac{1}{\sqrt{1 + (\frac{\omega}{\omega_c})^2}} = 20 \log \frac{1}{\sqrt{1 + x^2}} \text{ avec } x = \frac{\omega}{\omega_c}$$

- pour $x \to 0^+$, $G(dB) \to 0$ asymptôte horizontale.
- pour $x \to +\infty$, $G(dB) \to -20 \log x$ asymptôte oblique de pente -20dB par décade

$$\varphi = \arg \underline{H}(j\omega) = -\arctan x$$

- pour $x \to 0, \varphi \to 0$
- pour $x \to +\infty, \varphi \to -\frac{\pi}{2}$

3.2 Filtre passe haut

La fonction de transfert d'un filtre passe haut s'écrit sous la forme :

$$\underline{H}(j\omega) = \frac{j\frac{\omega}{\omega_c}}{1 + j\frac{\omega}{\omega_c}}$$

$$G = \frac{1}{\sqrt{1 + (\frac{\omega_c}{\omega})^2}}$$

$$G(\infty) = 1 = G_{max}$$
 et $G(\omega_c) = \frac{G_{max}}{\sqrt{2}} = \frac{1}{\sqrt{2}}$

la bande passante du filtre passe haut est :
$$[\omega_c, \infty]$$

• Pour $\omega << \omega_c \Rightarrow \underline{H}(j\omega) \approx j\frac{\omega}{\omega_c} = \frac{\underline{u}_s}{\underline{u}_e}$

$$\underline{u}_s = \frac{1}{\omega_c} \frac{d\underline{u}_e}{dt}$$

Résultat : En basse fréquence le filtre passe haut du premier ordre se comporte comme un dérivateur

• Exemple

$$\underline{H}(j\omega) = \frac{\underline{u}_s}{\underline{u}_e} = \frac{jc\omega R}{1 + jc\omega R} = \frac{j\frac{\omega}{\omega_c}}{1 + j\frac{\omega}{\omega_c}} \ \omega_c = \frac{1}{Rc}$$

- Diagramme de Bode
- $G(dB) = 20 \log \frac{1}{\sqrt{1 + (\frac{\omega_c}{\omega})^2}} = -10 \log(1 + \frac{1}{x^2})$
- $x \to \infty \Rightarrow G(dB) \to 0$ $x \to 0 \Rightarrow G(dB) \to 20 \log x$ $\varphi = \frac{\pi}{2} \arctan x$

3.3 Déphaseur ou filtre passe tout

La fonction de transfert d'un déphaseur s'écrit :

$$\underline{\underline{H}(j\omega)} = \frac{1 - j\frac{\omega}{\omega_c}}{1 + j\frac{\omega}{\omega_c}}$$

$$G(\omega) = |\underline{H}(j\omega)| = 1$$

donc le déphaseur n'affecte pas l'amplitude quelque soit la fréquence f .

$$\varphi = \arg \underline{H}(j\omega) = -2 \arctan \frac{\omega}{\omega_c} = -2 \arctan x$$

- $x \to 0 \Rightarrow \varphi \to 0$
- $x \to \infty \Rightarrow \varphi \to -\pi$

4 Filtres d'ordre 2

4.1 Filtre passe bas

4.1.1 Définition

La fonction de transfert d'un filtre passe bas d'ordre 2 s'écrit sous la forme :

$$\underline{\underline{H}(j\omega) = \frac{\omega_0^2}{(j\omega)^2 + \frac{\omega_0}{Q}(j\omega) + \omega_0^2}}$$

 ${\cal Q}$: facteur de qualité du circuit

 ω_0 : pulsation propre du circuit

On pose $p = j\omega$

$$\underline{H}(p) = \frac{\omega_0^2}{p^2 + \frac{\omega_0}{Q}p + \omega_0^2} = \frac{1}{1 + j\frac{x}{Q} + (jx)^2}$$

avec
$$x = \frac{\omega}{\omega_0}$$

• Exemple

$$\underline{\underline{H}}(j\omega) = \frac{\underline{u}_s}{\underline{\underline{u}}_e} = \frac{\frac{1}{jc\omega}}{\frac{1}{jc\omega} + jL\omega + R} = \frac{1}{1 + jRc\omega - Lc\omega^2} = \frac{1}{1 + j\frac{x}{Q} + (jx)^2}$$

$$\omega_0 = \frac{1}{\sqrt{Lc}} \text{ et } Q = \frac{L\omega_0}{R} = \frac{1}{Rc\omega_0}$$

4.1.2 Aspect graphique

Considèrons l'équation $p^2 + \frac{\omega_0}{Q}p + \omega_0^2 = 0$ avec $p = j\omega$

$$\Delta = \frac{\omega_0^2}{Q^2} - 4\omega_0^2 = \omega_0^2(\frac{1}{Q^2} - 4)$$

$$p_1 = -\frac{\omega_0}{2Q} + \frac{\omega_0}{2} \sqrt{\frac{1}{Q^2} - 4}$$

$$p_2 = -\frac{\omega_0}{2Q} - \frac{\omega_0}{2}\sqrt{\frac{1}{Q^2} - 4}$$

On pose

$$p_1 = -\omega_1; p_2 = -\omega_2$$

On vérifie que

$$\omega_1.\omega_2 = \omega_0^2$$

$$\underline{H}(j\omega) = \frac{\omega_0^2}{(j\omega + \omega_1)(j\omega + \omega_2)} = \frac{1}{(1 + j\frac{\omega}{\omega_1})(1 + j\frac{\omega}{\omega_2})}$$

$$G(dB) = 20 \log \frac{1}{\sqrt{1 + (\frac{\omega}{\omega_1})^2}} + 20 \log \frac{1}{\sqrt{1 + (\frac{\omega}{\omega_2})^2}} = G_1 + G_2$$

$$\varphi(\omega) = \arctan(\underline{H}(j\omega)) = \varphi_1 + \varphi_2$$

▶ Deuxième cas : $\Delta = 0 \Rightarrow Q = \frac{1}{2}$

$$\underline{\underline{H}(j\omega)} = \frac{1}{(1+j\frac{\omega}{\omega_0})^2}$$

$$G(dB) = 20 \log \frac{1}{1 + (\frac{\omega}{\omega_0})^2} = 2G(\text{filtre passe bas})$$

▶ troisième cas : $\Delta < 0 \Rightarrow Q > 0$: Résonance en tension

$$\underline{\underline{H}(j\omega)} = \frac{1}{1 - (\frac{\omega}{\omega_0})^2 + j\frac{1}{Q}\frac{\omega}{\omega_0}}$$

$$G(dB) = 20 \log \frac{1}{\sqrt{(1 - (\frac{\omega}{\omega_0})^2)^2 + \frac{1}{Q^2}(\frac{\omega}{\omega_0})^2}} = 20 \log \frac{1}{\sqrt{(1 - x^2)^2 + \frac{x^2}{Q^2}}}$$

- $\omega << \omega_0$; $G \to 0$ asymptôte horizontal $\omega >> \omega_0$; $G \to -40 \log \frac{\omega}{\omega_0}$ asymptôte de pente $-40 \mathrm{dB}$ /décade
- G présente un maximum si : $\frac{d}{dx}[(1-x^2)^2 + \frac{x^2}{Q^2}] = 0 \Rightarrow x_r^2 = 1 \frac{1}{2Q^2}$

$$\omega = \omega_0 \sqrt{1 - \frac{1}{2Q^2}}$$

$$\varphi = -\arctan\frac{\frac{1}{Q}\frac{\omega}{\omega_0}}{1 - (\frac{\omega}{\omega_0})^2}$$

- $\omega << \omega_0 \Rightarrow \varphi \to 0$ $\omega >> \omega_0 \Rightarrow \varphi \to -\pi$

Filtre passe haut 4.2

4.2.1 Fonction de transfert

$$\underline{H}(p) = \frac{p^2}{p^2 + \frac{\omega_0}{Q}p + \omega_0^2}$$

$$\underline{\underline{H}}(j\omega) = -\frac{\omega^2}{\omega_0^2 - \omega^2 + j\frac{\omega_0}{Q}\omega} = \frac{1}{1 - \frac{\omega_0^2}{\omega^2} - j\frac{1}{Q}\frac{\omega_0}{\omega}} = \frac{(jx)^2}{1 + j\frac{x}{Q} + (jx)^2}$$

$$G(dB) = 20 \log \frac{1}{1 - (\frac{\omega_0}{\omega})^2 + \frac{1}{Q^2} (\frac{\omega_0}{\omega})^2}$$

En remplaçant $\frac{\omega}{\omega_0}$ par $\frac{\omega_0}{\omega}$ on retrouve le G du filtre passe bas .

$$\varphi = \varphi(\text{filtre passe bas}) + \arg(-\omega^2) = \varphi(\text{filtre passe bas}) + \pi$$

4.2.2 Aspect graphique

Le filtre passe haut d'ordre deux présente en basse fréquence une atténuation de $-40dB/\mathrm{d\acute{e}cade}$

4.3 Filtre passe bande d'ordre deux : résonance en intensité

4.3.1 Fonction de transfert

$$\underline{\underline{H}}(p) = \frac{\frac{\omega_0}{Q}p}{p^2 + \frac{\omega_0}{Q}p + \omega_0^2}$$

 $p = j\omega$

$$\underline{H}(j\omega) = \frac{1}{1 + jQ \frac{\omega^2 - \omega_0^2}{\omega \omega_0}}$$

• Exemple

La fonction de transfert s'écrit sous la forme $\underline{H}(j\omega)=\frac{\underline{u}_s}{\underline{u}_e}=\frac{1}{1+j\frac{L\omega}{R}+\frac{1}{jRc\omega}}$

On introduit les paramètres :

- La pulsation réduite $x = \frac{\omega}{\omega_0}$
- La pulsation propre $\omega_0 = \frac{1}{\sqrt{Lc}}$
- Le facteur dr qualité $Q = \frac{L\omega_0}{R} = \frac{1}{Rc\omega_0}$

$$\underline{\underline{H}(jx)} = \frac{1}{1 + jQ(x - \frac{1}{x})}$$

$$G = \frac{1}{\sqrt{1 + Q^2(x - \frac{1}{x})^2}} = \frac{U_{sm}}{U_{em}} = \frac{RI_m}{U_{em}}$$

Il se produit le phénomène de résonance en intensité lorsque I_m passe par un maximum quelque soit le facteur de qualité .

$$x_r - \frac{1}{x_r} = 0 \Rightarrow x_r = \frac{\omega_r}{\omega_0} = 1 \Rightarrow \omega_r = \omega_0$$

• Bande passante

La bande passante correspond à l'intervalle $[\omega_1, \omega_2]$ tq :

$$x - \frac{1}{x} = \pm \frac{1}{Q} \Rightarrow \frac{\omega}{\omega_0} - \frac{\omega_0}{\omega} = \pm \frac{1}{Q}$$

$$\Delta\omega = \frac{\omega_0}{Q} = \frac{R}{L}$$

4.3.2 Aspect graphique

$$G(dB) = 20 \log G = -10 \log[1 + Q^2(x - \frac{1}{x})^2]$$

- $x \to 0 \Rightarrow G(dB) \to 20 \log \frac{x}{Q}$ asymptote de pente 20dB/décade
- $x \to \infty \Rightarrow G(dB) \to -20 \log(xQ)$ asymptote de pente -20dB/décade les asymptotes se coupent en $x = 1 \Rightarrow G(dB) = -20 \log Q$
- Q < 1: La courbe se trouve au dessous des asymptotes
- \bullet Q>1 : La courbe se trouve au dessus des asymptotes

$$\varphi = -\arctan[Q(x - \frac{1}{x})] = \varphi(\text{filtre passe bas}) + \frac{\pi}{2}$$

 $Q_1 < 1$: courbe au dessous des asymptotes $Q_2 > 1$: courbe au dessus des asymptotes

Plus Q est grand plus le filtre est selectif

Filtre coupe bande 4.4

la fonction de transfert d'un coupe bande

$$\underline{\underline{H}(p)} = \frac{p^2 + \omega_0^2}{p^2 + \frac{\omega_0}{Q}p + \omega_0^2}$$

$$\underline{\underline{H}(j\omega)} = \frac{1}{1 + j\frac{1}{Q}\frac{\omega_0\omega}{\omega_0^2 - \omega^2}}$$

$$G(dB) = 20 \log \frac{1}{\sqrt{1 + \frac{1}{Q^2} (\frac{\omega \omega_0}{\omega_0^2 - \omega^2})^2}}$$

$$\varphi = \varphi(\text{passe bas}) + \arg(\omega_0^2 - \omega^2)$$

- $\omega_0 = \omega$; $G \to -\infty$
- ω << ω_0 ; $G \to 0 \Rightarrow \varphi \to \varphi(p.b)$ ω >> ω_0 ; $G \to 0 \Rightarrow \varphi \to \varphi(p.b) + \pi$

4.5 Déphaseur

$$\underline{\underline{H}}(p) = \frac{p^2 - \frac{\omega_0}{Q}p + \omega_0^2}{p^2 + \frac{\omega_0}{Q}p + \omega_0^2}$$

 $|\underline{H}| = 1$ pas d'atténuation

$$\varphi = 2\varphi(\text{passe bas})$$

5 Filtres actifs

5.1 Problème des filtres passifs

- Les impédances de sortie et d'entré ne sont pas adaptées
- Le gain en bande passante ne dépasse pas un

- ▶ Les filtres actifs utilisent les amplificateurs opérationnels
- \blacktriangleright Les filtres passifs sont utilisées en hautes fréquences et puissance elevée (limitation des $\mathrm{O.A})$

5.2 Exemple

Millman en A et B
$$_1 v_B = v_+ = v_- = \frac{1}{1+\alpha} v_s$$

$$\underline{H}(j\omega) = k \frac{j\frac{\omega_0}{Q}\omega}{(j\omega)^2 + j\frac{\omega_0\omega}{Q} + \omega_0^2}$$

$$\omega_0 = \frac{\sqrt{2}}{Rc}; Q = \frac{\sqrt{2}}{4 - \alpha}; k = \frac{1 + \alpha}{4 - \alpha}$$