Teoría de funciones de una variable real

Pablo Pallàs

17 de enero de 2024

Índice

1.	Introducción	1
2.	Conceptos previos	1
3.	Sucesiones	1
4.	Continuidad 4.1. Límites de funciones	1 1
1.	Introducción	
2 .	. Conceptos previos	

3. Sucesiones

4. Continuidad

4.1. Límites de funciones

Definición 4.1. Dado un $a \in \mathbb{R}$, un conjunto $V \subseteq \mathbb{R}$ es un **entorno** de a si contiene un intervalo de la forma $(a - \varepsilon, a + \varepsilon)$ para algún $\varepsilon > 0$. Si V es un entorno de a, diremos que $V \setminus \{a\}$ es un **entorno reducido** de a.

Notar que todo conjunto que contenga un entorno de un punto también será a su vez entorno de ese punto.

Definición 4.2. Sea $D \subseteq \mathbb{R}$ $y \ a \in \mathbb{R}$, entonces diremos que a es un **punto de** acumulación de D si todo entorno reducido de a contiene puntos de D. Dicho de otra forma, si para cada $\varepsilon > 0$ existe algún $y \in D$ tal que $y \neq a$, con $|y - a| < \varepsilon$, es decir, $0 < |y - a| < \varepsilon$.

Definición 4.3. El conjunto de puntos de acumulación de un conjunto D suele denominarse **conjunto derivado** y se denota por D'.

Así, podemos decir de forma intuitiva que $a \in D'$ si y sólo si hay puntos de D, distintos de a, arbitrariamente próximos al punto a.

Ejemplo 4.3.1. Veamos algunos ejemplos:

- 1. Si D es finito, entonces $D' = \emptyset$.
- 2. $\mathbb{N}' = \mathbb{Z}' = \emptyset$, $y \mathbb{Q}' = \mathbb{R}$.
- 3. (a,b)' = [a,b]' = [a,b].
- 4. Si $D = \{1/n : n \in \mathbb{N}\}$, entonces $0 \in D'$ a pesar de que $0 \notin D$ y $1 \notin D'$ a pesar de que $1 \in D$.

Podemos probar que $a \in D'$ si y sólo si existe una sucesión (x_n) de puntos de D distintos de a que converge al punto a.

Definición 4.4 (*Límite de una función en un punto*). Sea $D \subseteq \mathbb{R}$, $f: D \longrightarrow \mathbb{R}$, $a \in D'$, $b \in \mathbb{R}$. Escribiremos

$$\lim_{x \to a} f(x) = b$$

cuando se cumpla que para cada $\varepsilon > 0$ existe algún $\delta > 0$ tal que $\forall x \in D$ con $0 < |x - a| < \delta$ se tiene $|f(x) - b| < \varepsilon$.

Entonces diremos que b es el **límite** de f(x) cuando x tiende al punto a.

La condición de que $|f(x) - b| < \varepsilon$ para todo $x \in D$ con $0 < |x - a| < \delta$ se puede escribir de otra forma:

$$f(U) \subset (b-\varepsilon, b+\varepsilon), \quad U = [D \cap (a-\delta, a+\delta)] \setminus \{a\}.$$

Podemos decir de forma resumida que b será el límite de f(x) cuando x tiende a a si f(x) se acerca a b cuando x se acerca al punto a, aunque sin tomar su valor, dentro del dominio de f. Esto último es muy importante.

Proposición 4.5 (*Unicidad del límite*). Sea $D \subseteq \mathbb{R}$, $f: D \longrightarrow \mathbb{R}$, $a \in D'$, $b_1, b_2 \in \mathbb{R}$. Si

$$\lim_{x \to a} f(x) = b_1, \quad \lim_{x \to a} f(x) = b_2,$$

entonces $b_1 = b_2$.

Demostración. Supongamos, por ejemplo, que $b_1 < b_2$. Elijamos $\varepsilon = \frac{b_2 - b_1}{2}$. Deben existir entonces $\delta_1 > 0$ tal que para todo $x \in D$ con $0 < |x - a| < \delta_1$ tenemos $f(x) < b_1 + \varepsilon = \frac{b_1 + b_2}{2}$ y un $\delta_2 > 0$ tal que para todo $x \in D$ con $0 < |x - a| < \delta_2$ se tiene que $\frac{b_1 + b_2}{2} = b_2 - \varepsilon < f(x)$. Definiendo $\delta = \min \delta_1, \delta_2$, resulta que para todo $x \in D$ con $0 < |x - a| < \delta$ tenemos $\frac{b_1 + b_2}{2} < f(x) < \frac{b_1 + b_2}{2}$, esto es absurdo. Análogo si $b_2 < b_1$.

Proposición 4.6. Sea $D \subseteq \mathbb{R}$, $f: D \longrightarrow \mathbb{R}$, $a \in D'$, $b \in \mathbb{R}$. Son equivalentes:

- 1. $\lim_{x\to a} f(x) = b$.
- 2. Para cada sucesión (s_n) de puntos de $D \setminus \{a\}$ tal que $\lim_n s_n = a$ se verifica $\lim_n f(s_n) = b$.

Demostración. Supongamos que $\lim_{x\to a} f(x) = b$. Para cualquier $\varepsilon > 0$ se puede encontrar un $\delta > 0$ de modo que para todo $x \in D$ con $0 < |x - a| < \delta$ se cumple $|f(x) - b| < \varepsilon$. Sea (s_n) una sucesión de puntos de $D \setminus \{a\}$ tal que $\lim_n s_n = a$. Dado $\delta > 0$, existirá un $N \in \mathbb{N}$ tal que para todo n > N se verifica $|s_n - a| < \delta$, y como $s_n \neq a$, deducimos que $|f(s_n) - b| < \varepsilon$, es decir, $\lim_n f(s_n) = b$.

Recíprocamente, probaremos que si 1. no se cumple entonces 2. tampoco. Que no se cumpla 1. quiere decir que existe algún $\varepsilon > 0$ tal que para todo $\delta > 0$ hay al menos un $x_{\delta} \in D$ que cumple $0 < |x_{\delta} - a| < \delta$ y, sin embargo, $|f(x_{\delta}) - b| \ge \varepsilon$. Para cada $n \in \mathbb{N}$, elegimos $\delta = 1/n$. Hay algún punto $s_n \in D$ que cumple $0 < |s_n - a| < 1/n$ y, sin embargo, $|f(s_n) - b| \ge \varepsilon$. La sucesión (s_n) así obtenida tiene las siguientes propiedades:

- 1. Está contenida en $D \setminus \{a\}$, porque $s_n \in D$, pero $0 < |s_n a|$.
- 2. lím $_n s_n = a$ porque $0 < |s_n a| < 1/n$ (basta aplicar la definición de límite).
- 3. La sucesión $f(s_n)$ no tiende a b porque para todos los $n \in \mathbb{N}$, $|f(s_n) b| \ge \varepsilon$.

Por lo tanto, no se cumple 2.

Igualmente, diremos que un conjunto $V \subseteq \mathbb{R}$ es un **entorno reducido** de $+\infty$ ó de $-\infty$ si existe un $r \in \mathbb{R}$ tal que $(r, +\infty) \subseteq V$ ó respectivamente $(-\infty, r) \subseteq V$.

Definición 4.7. Se dice que $+\infty$ es un punto de acumulación de un conjunto $D \subseteq \mathbb{R}$ si D no está acotado superiormente, y escribiremos $+\infty \in D'$. Igualmente, diremos que $-\infty$ es un punto de acumulación de un conjunto $D \subseteq \mathbb{R}$ si D no está acotado inferiormente, y escribiremos $-\infty \in D'$.

Definición 4.8. Sea $D \subseteq \mathbb{R}$, $f: D \longrightarrow \mathbb{R}$, $a, b \in \mathbb{R} \cup \{\pm \infty\}$, $a \in D'$. Escribiremos

$$\lim_{x \to a} f(x) = b$$

si para cada entorno V de b existe un entorno reducido U de a tal que $f(U) \subseteq V$.

Pueden darse definiciones en términos de desigualdades, desglosando los diferentes casos posibles. Concretamente, sean $D \subseteq \mathbb{R}$, $f: D \longrightarrow \mathbb{R}$, $a, b \in \mathbb{R}$. Entonces

- 1. $\lim_{x\to a} f(x) = +\infty$ si para cada $M \in \mathbb{R}$ existe algún $\delta > 0$ tal que todos los $x \in D$ con $0 < |x-a| < \delta$ cumplen f(x) > M.
- 2. $\lim_{x\to a} f(x) = -\infty$ si para cada $M \in \mathbb{R}$ existe algún $\delta > 0$ tal que todos los $x \in D$ con $0 < |x-a| < \delta$ cumplen f(x) < M.
- 3. $\lim_{x\to +\infty} f(x) = b$ si para cada $\varepsilon > 0$ existe algún $K \in \mathbb{R}$ tal que todos los $x \in D$ con x > K cumplen $|f(x) b| < \varepsilon$.

- 4. $\lim_{x\to+\infty} f(x) = +\infty$ si para cada $M \in \mathbb{R}$ existe algún $K \in \mathbb{R}$ tal que todos los $x \in D$ con x > K cumplen f(x) > M.
- 5. $\lim_{x \to +\infty} f(x) = -\infty$ si para cada $M \in \mathbb{R}$ existe algún $K \in \mathbb{R}$ tal que todos los $x \in D$ con x > K cumplen f(x) < M.
- 6. $\lim_{x \to -\infty} f(x) = b$ si para cada $\varepsilon > 0$ existe algún $K \in \mathbb{R}$ tal que todos los $x \in D$ con x < K cumplen $|f(x) b| < \varepsilon$.
- 7. $\lim_{x \to -\infty} f(x) = +\infty$ si para cada $M \in \mathbb{R}$ existe algún $K \in \mathbb{R}$ tal que todos los $x \in D$ con x < K cumplen f(x) > M.
- 8. $\lim_{x \to -\infty} f(x) = -\infty$ si para cada $M \in \mathbb{R}$ existe algún $K \in \mathbb{R}$ tal que todos los $x \in D$ con x < K cumplen f(x) > M.

Con todo esto, sigue habiendo unicidad de límite e igualmente se mantiene la caracterización mediante sucesiones:

Proposición 4.9. Sea $D \subseteq \mathbb{R}$, $f \colon D \longrightarrow \mathbb{R}$, $a,b \in \mathbb{R} \cup \{\pm \infty\}$, $a \in D'$. Son equivalentes:

- 1. $\lim_{x\to a} f(x) = b$.
- 2. Para cada sucesión (s_n) de puntos de $D \setminus \{a\}$ tal que $\lim_n s_n = a$ se verifica $\lim_n f(s_n) = b$.

Demostración. Basta adaptar a cada caso la demostración de 4.6.

Proposición 4.10 (Operaciones algebraicas con límites). Sean $D \subseteq \mathbb{R}$, $a \in \mathbb{R} \cup \{\pm \infty\}$ un punto de acumulación de D, $c \in \mathbb{R}$ y $f, g \colon D \longrightarrow \mathbb{R}$. Se tiene entonces:

- 1. $\lim_{x\to a} (f(x) + g(x)) = \lim_{x\to a} f(x) + \lim_{x\to a} g(x)$, si estos últimos límites existen y su suma está definida en $\mathbb{R} \cup \{\pm \infty\}$.
- 2. $\lim_{x\to a} cf(x) = c \lim_{x\to a} f(x)$, si este último límite existe y su producto por c está definido en $\mathbb{R} \cup \{\pm \infty\}$.
- 3. $\lim_{x\to a} f(x)g(x) = \lim_{x\to a} f(x) \lim_{x\to a} g(x)$, si estos últimos existen y su producto está definido en $\mathbb{R} \cup \{\pm \infty\}$.
- 4. $\lim_{x\to a} \frac{f(x)}{g(x)} = \frac{\lim_{x\to a} f(x)}{\lim_{x\to a} g(x)}$, si estos últimos límites existen y su cociente está definido en $\mathbb{R} \cup \{\pm \infty\}$.

Demostración. Basta aplicar el resultado anterior y el análogo para sucesiones.

Proposición 4.11 (Acotación y límite cero). Sean $D \subseteq \mathbb{R}$, $a \in \mathbb{R} \cup \{\pm \infty\}$ un punto de acumulación de D, y $f, g: D \longrightarrow \mathbb{R}$. Supongamos que

1. La función f está acotada, es decir, existe M>0 tal que $|f(x)|\leq M$ para todo $x\in D$.

4

2. $\lim_{x\to a} g(x) = 0$.

Entonces, $\lim_{x\to a} f(x)g(x) = 0$.

Demostración. Igual que antes, aplicar 4.9 y el resultado análogo para sucesiones.

Proposición 4.12 (*Cambios de variable*). Sean D, E subconjuntos de \mathbb{R} , a un punto de acumulación de D, b un punto de acumulación de E, $f: D \longrightarrow \mathbb{R}$, y $g: E \longrightarrow \mathbb{R}$ tales que $f(D) \subseteq E$ y supongamos que

$$\lim_{x \to a} f(x) = b, \lim_{y \to b} g(y) = c.$$

Si $b \notin f(D)$, entonces existe $\lim_{x\to a} g(f(x)) = c$.

Demostración. Sea $\varepsilon > 0$. Como $\lim_{y \to b} g(y) = c$, existe algún r > 0 tal que para todo $y \in E$ con 0 < |y - b| < r, se tiene que $|g(y) - c| < \varepsilon$.

Ahora, como $\lim_{x\to a} f(x) = b$, existe algún $\delta > 0$ tal que para todo $x \in D$ con $0 < |x-a| < \delta$, se tiene |f(x) - b| < r.

Sea $x \in D$, con $0 < |x - a| < \delta$. No sólo es |f(x) - b| < r, sino que como $b \notin f(D)$ y $f(D) \subseteq E$, resulta

$$0 < |f(x) - b| < r, \quad f(x) \in E.$$

Por lo tanto, $|g(f(x)) - c| < \varepsilon$.

A veces es útil en el cálculo de límites tener en cuenta las siguientes consecuencias inmediatas de la definición de límite:

Proposición 4.13. Si $D \subseteq \mathbb{R}$, a es un punto de acumulación de D y $f: D \longrightarrow \mathbb{R}$,

- 1. $\lim_{x\to a} f(x) = b \in \mathbb{R} \iff \lim_{x\to a} |f(x) b| = 0.$
- 2. $\lim_{x\to a} f(x) = b \in \mathbb{R} \Longrightarrow \lim_{x\to a} |f(x)| = |b|$. El recíproco, en general, sólo es cierto cuando b = 0.
- 3. $\lim_{x\to a} f(x) = b \iff \lim_{t\to 0} f(a+t) = b$.

Si en las definiciones de límites añadimos una de las dos condiciones, x > a, x < a, entonces se habla de límites laterales (por la derecha y por la izquierda). Emplearemos la notación $\lim_{x\to a^+} f(x)$, $\lim_{x\to a^-} f(x)$.

Definición 4.14 (*Límites laterales: por la derecha y por la izquierda*). Sean $D \subseteq \mathbb{R}$, $f: D \longrightarrow \mathbb{R}$, $a \in \mathbb{R}$ un punto de acumulación de D y $b \in \mathbb{R}$.

- 1. Se dice que $\lim_{x\to a^+} f(x) = b$ si para cada $\varepsilon > 0$ existe algún $\delta > 0$ tal que todos los $x \in D$ con $0 < x a < \delta$ cumplen $|f(x) b| < \varepsilon$.
- 2. Se dice que $\lim_{x\to a^+} f(x) = +\infty$ si para cada $M \in \mathbb{R}$ existe algún $\delta > 0$ tal que todos los $x \in D$ con $0 < x a < \delta$ cumplen f(x) > M.

- 3. Se dice que $\lim_{x\to a^+} f(x) = -\infty$ si para cada $M \in \mathbb{R}$ existe algún $\delta > 0$ tal que todos los $x \in D$ con $0 < x a < \delta$ cumplen f(x) < M.
- 4. Se dice que $\lim_{x\to a^-} f(x) = b$ si para cada $\varepsilon > 0$ existe algún $\delta > 0$ tal que todos los $x \in D$ con $0 < a x < \delta$ cumplen $|f(x) b| < \varepsilon$.
- 5. Se dice que $\lim_{x\to a^-} f(x) = +\infty$ si para cada $M \in \mathbb{R}$ existe algún $\delta > 0$ tal que todos los $x \in D$ con $0 < a x < \delta$ cumplen f(x) > M.
- 6. Se dice que $\lim_{x\to a^-} f(x) = -\infty$ si para cada $M \in \mathbb{R}$ existe algún $\delta > 0$ tal que todos los $x \in D$ con $0 < a x < \delta$ cumplen f(x) < M.

Como consecuencia inmediata de las definiciones tenemos:

Proposición 4.15. Sean $D \subseteq \mathbb{R}$, $f: D \longrightarrow \mathbb{R}$ y $a \in \mathbb{R}$ de modo que $(a-\delta, a+\delta) \subseteq D$ para algún $\delta > 0$. Sea $b \in \mathbb{R} \cup \{\pm \infty\}$. Entonces,

$$\lim_{x \to a} f(x) = b \Longleftrightarrow \lim_{x \to a^{-}} f(x) = \lim_{x \to a^{+}} f(x) = b.$$

Proposición 4.16. Sean $D \subseteq \mathbb{R}$, $f: D \longrightarrow \mathbb{R}$ monótona no decreciente, $a \in \mathbb{R} \cup \{\pm \infty\}$.

1. Si $a \in [D \cap (-\infty, a)]'$, entonces f tiene **límite por la izquierda** en a (finito o infinito) y es

$$\lim_{x \to a^{-}} f(x) = \sup\{f(x) : x \in D \cap (-\infty, a)\}$$

(entendindo que, si el conjunto no está acotado superiormente, su supremo es $+\infty$).

2. Si $a \in [D \cap (-\infty, a)]'$, entonces f tiene **límite por la derecha** en a (finito o infinito) y es

$$\lim_{x \to a^+} f(x) = \inf\{f(x) : x \in D \cap (a, +\infty)\}\$$

(entendindo que, si el conjunto no está acotado inferiormente, su ínfimo es $-\infty$).

Pasemos ahora a estudiar algunos límites básicos de funciones elementales.

Si f(x) representa una función cualquiera de las siguientes: e^x , $\log x$, $\sin x$, $\cos x$, $\tan x$, $\arcsin x$, $\arccos x$, $\arctan x$, x^r , entonces tendremos que

$$\lim_{x \to a} f(x) = f(a)$$

par cualquier punto a del dominio de la función. Algunos límites importantes son:

- 1. $\lim_{x \to -\infty} e^x = 0$.
- 2. $\lim_{x\to+\infty} e^x = +\infty$.
- 3. $\lim_{x\to 0^+} \log x = -\infty$.
- 4. $\lim_{x\to +\infty} \log x = +\infty$.

- 5. $\lim_{x \to (\pi/2)^{-}} \tan x = +\infty$.
- 6. $\lim_{x \to (\pi/2)^+} \tan x = -\infty$.
- 7. $\lim_{x \to -\infty} \arctan x = -\frac{\pi}{2}$.
- 8. $\lim_{x\to+\infty} \arctan x = \frac{\pi}{2}$.
- 9. $\lim_{x\to 0^+} x^r = 0$, si r > 0.
- 10. $\lim_{x \to +\infty} x^r = +\infty$, si r > 0.
- 11. $\lim_{x\to 0^+} x^r = +\infty$, si r < 0.
- 12. $\lim_{x \to +\infty} x^r = 0$, si r < 0.
- 13. Si $f(x) = a_r x^r + a_{r-1} x^{r-1} + \ldots + a_0$ es un polinomio, con $r \in \mathbb{N}$ y $a_r \neq 0$, entonces

$$\lim_{x \to +\infty} f(x) = +\infty \quad si \ a_r > 0,$$

$$\lim_{x \to +\infty} f(x) = -\infty \quad \text{si } a_r < 0.$$

También tener en cuenta el conocido como orden de infinitud, con a > 0 y b > 1:

$$\log x \ll x^a \ll b^x \ll x^x \quad x \to +\infty.$$

Donde $f(x) \ll g(x)$ cuando $x \to +\infty$ significa que

$$\lim_{x \to +\infty} \frac{f(x)}{g(x)} = 0.$$

Definición 4.17. Sean $D \subseteq \mathbb{R}$, $a \in \mathbb{R} \cup \{\pm \infty\}$ un punto de acumulación de D y $f, g: D \to \mathbb{R}$. Diremos que f es equivalente a g cuando x tiende al punto a, y escribiremos

$$f(x) \sim g(x) \quad (x \to a)$$

si se cumple que

$$\lim_{x \to x} \frac{f(x)}{g(x)} = 1.$$

Se pueden trasladar las equivalencias clásicas de sucesiones a equivalencias entre funciones. Tenemos así:

1. Equivalencias de infinitésimos, es decir, cuando x se hace muy pequeño ($x \rightarrow 0$):

$$e^x - 1 \sim x$$

$$\log(1+x) \sim x$$

$$\sin x \sim x$$

$$1 - \cos x \sim x^2/2$$

$$\tan x \sim x$$
$$(1+x)^{\alpha} - 1 \sim \alpha x$$
$$\arcsin x \sim x$$

 $\arctan x \sim x$.

2. Equivalencias de infinitos, es decir, cuando x se hace muy grande $(x \to +\infty)$, sea $f(x) = a_r x^r + a_{r-1} x^{r-1} + \ldots + a_0$, con $a_r \neq 0$:

$$f(x) \sim a_r x^r$$

$$\log f(x) \sim r \log x \quad si \ a_r > 0.$$