Feuille de TD 6 : Déterminants.

Exercice 1. Calculs de déterminants.

Calculer les déterminants suivants et factoriser quand c'est possible :

$$\begin{vmatrix} 2 & 5 \\ 3 & 6 \end{vmatrix}, \quad \begin{vmatrix} 1 & 3 & 1 \\ 0 & -1 & 4 \\ 0 & 0 & 5 \end{vmatrix}, \quad \begin{vmatrix} 1 & 0 & 0 \\ 3 & 2 & 0 \\ 1 & 0 & -2 \end{vmatrix}, \quad \begin{vmatrix} 1 & 0 & 3 \\ 2 & 0 & 4 \\ 3 & -1 & 1 \end{vmatrix}, \quad \begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{vmatrix}, \quad \begin{vmatrix} 0 & a & 0 \\ 0 & 0 & b \\ c & 0 & 0 \end{vmatrix}, \quad \begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ b + c & c + a & a + b \end{vmatrix}$$

Exercice 2. Développement du déterminant par rapport aux lignes et aux colonnes.

- 1. Calculer $\begin{vmatrix} 1 & 5 & 1 \\ 0 & 1 & 0 \\ 1 & 7 & 2 \end{vmatrix}$ en utilisant un développement par rapport à une ligne bien choisie.
- 2. Calculer $\begin{vmatrix} 1 & 5 & 0 \\ 7 & 1 & 1 \\ 1 & 7 & 0 \end{vmatrix}$ en utilisant un développement par rapport à une colonne bien choisie.

Exercice 3. Déterminant et produit de matrices.

- 1. Soit : $B = \begin{pmatrix} 1 & 2 \\ 2 & -1 \end{pmatrix}$ $C = \begin{pmatrix} 3 & -2 \\ 1 & 1 \end{pmatrix}$ Calculer det B, det C et det (BC). Que remarquez-vous? Cette formule est-elle générale?
- 2. Rappel: une matrice $A \in \mathcal{M}_n(\mathbb{C})$ est dite *nilpotente* s'il existe un entier naturel p tel que $A^p = 0$. Montrer que si A est nilpotente alors $\det(A) = 0$.

Exercice 4. Inverse de matrice et déterminants.

Soit:

$$A = \begin{pmatrix} 2 & 0 & 0 \\ -1 & 2 & 0 \\ 1 & 2 & 3 \end{pmatrix} \quad B = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 2 & 2 & 2 \end{pmatrix} \quad C = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 2 \end{pmatrix}$$

- 1. Quelle relation lie le déterminant d'une matrice inversible et celui de son inverse?
- 2. Montrer que les matrices précédentes sont inversibles et calculer le déterminant de leur inverse.

Exercice 5. Non linéarité du déterminant.

Soit:
$$A = \begin{pmatrix} 1 & 2 \\ 2 & -1 \end{pmatrix}$$
 $B = \begin{pmatrix} 3 & -2 \\ 1 & 1 \end{pmatrix}$

- 1. Calculer $\det A$, $\det B$ et $\det(A+B)$. Que remarquez-vous?
- 2. Soit $\lambda \in \mathbb{R}$. Calculer $\det(\lambda A)$ et $\lambda \det A$. Que remarquez-vous? Dans le cas général (en dimension n) quelle relation lie $\det(\lambda A)$ et $\det A$.

1

Exercice 6. Interpretation géomètrique du déterminant.

En dimension 2, deux vecteurs v_1 et v_2 déterminent un parallélogramme. Soit $v_1 = (1, 2)$ et $v_2 = (2, 1)$. Calculer l'aire du parallèlogramme associé, ainsi que $|\det(v_1, v_2)|$. Que remarquez-vous?

Exercice 7. Développement du déterminant par rapport aux lignes et aux colonnes.

Soit:

$$A_n = \begin{pmatrix} a & 1 & 0 & \cdots & 0 \\ 1 & a & 1 & \cdots & 0 \\ 0 & 1 & a & \ddots & 0 \\ \vdots & \ddots & \ddots & a & 1 \\ 0 & \cdots & 0 & 1 & a \end{pmatrix}$$

où A_n est une matrice de taille $n \times n$. On note $D_n = \det A_n$. Trouver une relation de récurrence vérifiée par D_n . En déduire D_n .

Exercice 8. Inversibilité des matrices à coefficients entiers (grand classique).

On considère une matrice A à coefficients entiers (on notera $A \in M_n(\mathbb{Z})$).

Montrer l'équivalence suivante :

A est inversible et $A^{-1} \in M_n(\mathbb{Z}) \Leftrightarrow det(A) = \pm 1$.

Exercice 9. Matrices réelles semblables dans $GL_n(\mathbb{C})$ (grand classique difficile).

Montrer que si deux matrices à coéfficients réels sont semblables dans $GL_n(\mathbb{C})$ alors elles sont également semblables dans $GL_n(\mathbb{R})$.