TBMI26 Neural Networks and Learning Systems Lecture 5 Convolutional Neural Networks

Michael Felsberg

Computer Vision Laboratory

Department of Electrical Engineering

Linköping University, Sweden

Introduction

The Deep Learning Revolution

Step 1: Convolutional (Neural) Networks

DAVE [LeCun et al. 2005]

http://www.cs.nyu.edu/~yann/research/dave/

Regression learning for driving

http://deepdriving.cs.princeton.edu/

qHebb driving [Öfjäll et al. 2014]

Feedforward networks

Linear separability

linearly separable

not linearly separable

New features to the rescue!

How do we get new features?

We want to apply the linear model not to x directly but to a representation $\phi(x)$ of x. How do we get this representation?

• Option 1. Manually engineer ϕ using expert knowledge.

feature engineering

• Option 2. Make the model sensitive to parameters such that learning these parameters identifies a good representation ϕ .

feature learning

Shapes of the parameter matrices

input layer

hidden layer

output layer

 $\bar{\theta}$: (2, 3) θ : (3, 1)

Convolutional networks

Apply networks to images

- What happens with θ for image-sized input?
- What happens with θ and $\bar{\theta}$ for about same order of magnitude hidden units?
- Computational effort
- Overfitting

$$z = \theta x =$$

$$\begin{bmatrix} \theta_{1,1} & \theta_{1,2} & \theta_{1,3} & \dots & \theta_{1,n} \\ \theta_{2,1} & \theta_{2,2} & \theta_{2,3} & \dots & \theta_{2,n} \\ \theta_{3,1} & \theta_{3,2} & \theta_{3,3} & \dots & \theta_{3,n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \theta_{m,1} & \theta_{m,2} & \theta_{m,3} & \dots & \theta_{m,n} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

Convolutional (neural) networks

- CNN [LeCun, 1989]
- suitable for data with known, grid-like topology
 - Time series
 - Images "tensors"
 - Medical data
- "Convolutional networks are simply neural networks that use convolution in place of general matrix multiplication in at least one of their layers."

Convolution

- Separate lesson
- CNNs use correlation
- flipping irrelevant for learned coefficients
- 1D convolution: Toeplitz matrix
- Circulant if periodic boundary conditions
- Often: sparse

http://bmia.bmt.tue.nl/education/courses/fev/course/notebooks/Convolution.html

Black: input Green: kernel

Red: output

Convolution

- Separate lesson
- CNNs use correlation
- flipping irrelevant for learned coefficients
- 1D convolution: Toeplitz matrix
- Circulant if periodic boundary conditions
- Often: sparse

 $z = \theta * x =$

2D Convolution - algorithmic

- images become feature maps
- local operation
- boundary conditions (valid, reflective, periodic, zeros)
- doubly block circulant doubly block Toeplitz
- sparse

Convolutional Neural Networks

Motivation CNNs

- 1. sparse (and local) interaction
- 2. parameter sharing
- 3. equivariant representations

Sparse (and local) interaction

• kernel smaller than the input (topology, s=z/y)

Sparse (and local) interaction

- kernel smaller than the input (topology, h/g=z/y)
 - fewer parameters
 - lower memory requirements
 - better statistical efficiency
 - fewer operations

http://www.deeplearningbook.org/

by increased depth indirectly connected to all input

Parameter sharing

- tied weights (topology, s=z/y)
- reduced storage requirements
- but same time complexity
- sometimes sharing should be limited, e.g. cropped images

Overview of options / convolution

local connections unshared

local connections tiled (topology, s=z/y)

local connections shared

full connections

Network Layers

Bias terms

- Locally connected unshared each unit own bias
- Tiled convolution share biases in tiling pattern
- Shared convolution
 - share bias
 - separate bias at each location
 compensate differences in the image statistics

Layers in CNNs

- each layer consists of three stages:
 - 1. convolutions to compute linear combination *z*
 - 2. detector stage to compute activation *y*
 - 3. pooling function

Pooling

- summary statistics of nearby outputs
 - max pooling [Zhou&Chellappa, 1988]
 maximum output in rectangular region
 - average in rectangular region
 - L2 norm of rectangular region
 - weighted average
 (based on distance from central position)
- approximately invariant to small translations

Invariance and Equivariance

- a function f is invariant (under operation g) if
 - applying g to the input of f does not change its output
 - different inputs (modulo *g*) have different outputs
- a function f is equivariant (under operation g) if
 - applying g to the input of f changes its output by \tilde{g}
 - different inputs have different outputs
- easy for discrete shift operations
- more tricky for rotation and scaling

Large

response

in detector

unit 3

Pooling and invariance

Striding and Activation Functions

Strides

pooling s pixels apart instead of every pixel (stride s)

- improved statistical efficiency
- reduced memory requirements
- handling inputs of varying size
- but: pooling & strides complicate top-down processing (e.g. autoencoders)

Strided Convolution

Stride vs. sequential convolution and downsampling (cf. filterbanks/ wavelets; topology, s=z/y)

Zero-padding

Logistic function

$$f(z) = \frac{1}{1 + e^{-z}}$$

$$\frac{\partial f}{\partial z} = f(z)(1 - f(z))$$

Softmax layer

$$\frac{\partial y_i}{\partial z_j} = \begin{cases} y_i(1-y_i) & i=j\\ -y_iy_j & i\neq j \end{cases}$$

Rectified linear units

$$f(z) = \begin{cases} 0 & z \le 0 \\ z & z > 0 \end{cases}$$

$$\frac{\partial f}{\partial z} = \begin{cases} 0 & z \le 0 \\ 1 & z > 0 \end{cases}$$

Loss functions

Machine learning = optimization?

- Objective $J(\theta)$ is minimized
- Expectation over some loss function L
- Ideal: expectation over data distribution
- Hope: empirical data (training set) gives the same parameters (empirical risk minimization)
- Hypothesis: test set drawn from the same distribution
- Models with high capacity memorize training set (overfitting)
- Optimization: direct minimization of objective

Likelihood

The expected loss over some distribution is given as

$$J(\boldsymbol{\theta}) = \int L(\phi(\mathbf{x}^T \boldsymbol{\theta}), y) p(\mathbf{x}) d\mathbf{x}$$

• If the training data is drawn from the distribution *p*

$$J(\boldsymbol{\theta}) \approx \sum L(\phi(\mathbf{x}^T \boldsymbol{\theta}), y)$$

• On the other hand, we want the parameter that maximizes the probability $P(\theta|\mathbf{x}) \propto P(\mathbf{x}|\theta)P(\theta)$ but the second (prior) term is often unknown and only the first (likelihood) term is maximized

Maximum likelihood estimation

- Family of probability distributions $P(X; \theta)$ that assign a probability to any sequence X of N examples.
- The maximum likelihood estimator for θ is defined as

$$\boldsymbol{\theta}_{\mathrm{ML}} = \arg \max_{\boldsymbol{\theta}} P(\boldsymbol{X}; \boldsymbol{\theta})$$

• Assume that the examples are mutually independent and identically distributed, this can be rewritten as

$$\theta_{\text{ML}} = \arg \max_{\theta} \prod_{i=1}^{N} P(\mathbf{x}^{(i)}; \theta) = \arg \max_{\theta} \sum_{i=1}^{N} \log P(\mathbf{x}^{(i)}; \theta)$$

• If assuming Gaussian noise in P(): sum of squares

Michael Felsberg michael.felsberg@liu.se

www.liu.se

