Exercício - 01

Lembre-se:

- 1) Fazer análise em CC.
- 2) Substituir o BJT pelo seu modelo equivalente
- 3) Fazer análise em CA.
- 4) Fazer a análise considerando os capacitores individualmente.
- 5) Considere -> $R_o = \infty$

Determinar:

- a) f_{C1}
- b) f_{C2}
- c) f_{C3}
- d) f_{Ctotal}

Exercício - 02

Lembre-se:

- 1) Fazer análise em CC.
- 2) Substituir o BJT pelo seu modelo equivalente
- 3) Fazer análise em CA.
- 4) Fazer a análise considerando os capacitores individualmente.
- 5) Considere -> $R_o = 40 \text{ k}\Omega$

Determinar:

- a) $f_{\mathcal{C}1}$
- b) f_{C2}
- c) f_{Ctotal}

Exercício - 03

Lembre-se:

- 1) Fazer análise em CC.
- 2) Substituir o BJT pelo seu modelo equivalente
- 3) Fazer análise em CA.
- 4) Fazer a análise considerando os capacitores individualmente.

a) I_E

b) R_e

c) Z_i

d) Z_o

e) Δ_V

 $f)\Delta_I$

g) freq. superior

h) freq. inferior

$$C_{wi} = 6 pF$$

 $C_{wo} = 8 pF$
 $C_{be} = 36 pF$
 $C_{bc} = 4 pF$
 $C_{ce} = 1 pF$