GZJ KDKV'7"

Uwe. Klinge

Wissenschaftliche Grundlagen und klinische Evidenz von Netz-Implantaten

•Chirurgische Klinik der RWTH Aachen

Suvretta 1994, in "Inguinal hernia repair", page 182 – 194

Meshes:

Experimental results and review of literature

(U.Klinge)

1994

1997

DEMANDS

surgery, anatomy

polymer, surface DWI, ITMC, IKV

wound healing genetic, IZKF, IM

mesh biology Molecular and cellular reaction *Surgery*, pathology IZKF, microbiology, Dermatology

Clinical situation -Surgeon

Tissue response -Pathologist

Cellular response Internist

"...daß eine Faszienreparation, die der zusätzlichen alloplastischen Verstärkung bedarf, unsachgemäß ausgeführt und besser mit festeren Nahtlagern wiederholt werden sollte."

Schumpelick et al., Chirurg (1991) 62: 641-648

Heute Mesh-Verfahren als Standard zur Hernienreparation anerkannt!

Es ist egal, wie ein Loch verschlossen wird

So ganz egal ist es nicht, wie ein Loch verschlossen wird Inadequates Material für die Hernienreparation, weil

- Zu steif
- Paßt nicht durch einen Trokar
- Zu fest
- Wird nicht im Gewebe integriert
- Dürfte eine intensive Fremdkörperreaktion induzieren
- Gibt es nichts Besseres?

Case 2:12-md-02327 Document 2960-21 Filed 10/12/16 Page 7 of 49 PageID #: 115246 Textile Charakteristika von Meshes

Produktname	Mersilene	Parietex	Prolene	Marlex	
Flächengewicht	39,5	129,6	108,5	95,09	
Biegesteifigkeit	0,38	9,98	6,71	34,66	längs
	0,06	24,21	12,89	134,39	quer
Nahtausreißtest	15,2	68,5	57,0	57,2	längs
	15,5	55,4	74,6	55,8	quer
Weiterreißkraft	0,64	3,36	0,05	0,66	längs
	0,68	2,78	4,41	4,03	quer
Spannung r_kontakt	19,54	90,38	90,93	58,8	
				ATRIUM 20.8× 9.80 kV Imm IEA/M	

Subsequent tearing force result from type of weaves

resistance to splitting!

Weiterreißkraft

Gewicht

Mersilene® ist das erste leicht-gewichtige Mesh!

Haltekraft

Haltekraft vermutlich < 10-20 N/cm

Prolene

Parietex

Marlex

0

Mersilene

Biegefestigkeit

Variation der Biegesteifigkeit und Dehnbarkeit

Verschiedene Wesh-Waterialien und ihre Veränderung im Gewebe

Textile Meshes

Meshes in vivo

Manchmal gab es Probleme mit Meshes

Wenn wir Netze nutzen, wollen wir nicht:

- Geschrumpfte Prothesen
- "Stiff Abdomen", PP Onlay
- Schmerzen (Einmauerung von Nerven vornehmlich bei "schwergewichtigen" Netzen
- Starre geschrumpfte Prothesen mit Narbenplatte, die ein Rezidiv nicht verhindern können
- Prothesen-Infekt
- Adhäsionen im Bauch und Fisteln zum Darm durch PP-Meshes
- Persistierende chronische Fremdkörperentzündung (klin. Relevanz?)

Geschrumpfter Kugel-Patch

C. R. Costello, S. L. Bachman, B. J. Ramshaw, S. A. Grant:

Materials Characterization of explanted polypropylene hernia meshes

Journal of Biomedical Materials Research Part B: Applied Biomaterials,

Published Online: 6 Feb 2007 (Kugel patch)

"The SEM micrographs displayed images of materials that were vastly different in topology than the pristine materials. The micrographs of explanted **polypropylene** materials exhibited cracks, surface roughness, and peeling indicative of **surface degradation**, while the pristine materials appeared smooth."

"Stiff abdomen" nach PP-onlay

Mesh und Schmerzen

Schwergewichtiges PP-Mesh, explantiert wegen Schmerzen (S 100)

Mesh und Schmerz

326 human explanted meshes (100 for pain)

Mesh mit dicker Narbenplatte bei Rezidiv

Prothesen-Infekt

Major mesh-related complications following hernia repair Events reported to the Food and Drug Administration

T. N. Robinson¹, J. H. Clarke¹, J. Schoen¹ and M. D. Walsh¹

Surg Endosc. 2005 Dec;19(12):1556-60

Table 1. Major complications related to mesh material types

	All mesh (%)	PP (%)	COMP (%)	Sepra (%)	PTFE (%)	BIO (%)
Infection	42 (107)	43	42	13	75 [†]	29
Mechanical failure	18 (46)	17	12	80*		0
Pain	9 (23)	10	11		13	0
Reaction	8 (20)	10	U	0	0	57
Intestinal	7 (18)	4	14*	7	13	0

All mesh, combination of all mesh types reported; PP, polypropylene; COMP, composix mesh, SEPRA, Seprafilm/polypropylene mesh; PTFE, expanded polytetrafluoroethylene; BIO, combination of all mesh created from human or animal collagens; Reaction, foreign body reaction; Intestinal, intestinal complications including fistula and bowel obstruction

^{*}p < 0.05

p = 0.07

Chronisch fistelndes Onlay-PP-Mesh

Was sind die Probleme mit schwergewichtigen Netzen?

- Vielfach werden auch schwergewichtige Netze ohne Probleme toleriert
- Bei einigen Patienten gibt es jedoch Komplikationen wie Schmerz, Mesh-Schrumpfung, Infektion oder Adhäsionen
- Ein Lösungsansatz zur Optimierung ist die Reduktion des Materials und die Vergrößerung der Poren

Reduktion der Komplikationen durch Optimierung von Meshes im Hinblick auf

- Dehnbarkeit
- Reißfestigkeit
- Flächengewicht (Materialreduktion)
- Porengröße
- Filament
- Polymer
- Beschichtung (Zellulose, Kollagen, Titan)

Biologische Reaktion auf Implantate

= "chronische Wunde"

Textile Strukturen mit Poren: Gewebeintegration statt Fixation

1 Tag 1 Jahr

Große Poren verhindern ein "bridging"

Pore < 600 µm: konfluente Narbenplatte ("Bridging")

Pore > 3 mm: perifilamentäre Fibrose ("Narbennetz")

<u>040809:</u>

Thomas, Henry , 10.12.1970

Netz: Prolene

Implantatzeit: 24 Monate

Infekt: nein

Schmerz: ja

Rezidiv: mehrfach

Einrollen des Bandes

Intensität der Entzundung und Fibrose wird durch Mesh-Struktur bestimmt (porosity)

Dehnbarkeit

Dehnbarkeit von integrierten leichtgewichtigen Netzen (Ratte)

Reißfestigkeit von Meshes

• Tensile strength of suture repair in the groin

1,3 N/cm

- Lipton 1994:
- Read 1982: 0,5 2 N/cm
- Wantz 1985: 0,1 0,3 N/cm
- Peiper 1998: 0,5 N/cm

Histogram der Porengröße

Effektive Porosität nur Poren ≥1000 µm

Porengröße

 $< 200 \mu m rot$

< 1000 µm gelb,

≥ 1000 µm grün

Rechte Achse kumulative relative Porosität

Effektive Porosität von Meshes

Hernien-Rezidive sind Folge einer defekten Wundheilung mit Ausbildung mechanisch unzureichenden Narbengewebes

- Qualität der Narbe ist wichtiger als Quantittät
- Die Narbe von Rezidiv-Patienten ist von schlechter Qualität

\bigcirc

Die gestörte Wundheilung ist auch auf DNA-Ebene nachweisbar

Case 2: Pathogenese 1 der 10 Rezidivhernie 115276

- Die (Rezidiv-)Hernie ist ein biologisches Problem
- Nahtververfahren sind nicht ausreichend
- Defekte Wundheilung braucht großflächige Netze!
- Die biologische Antwort des Gewebes ist die entzündliche Fremdkörperreaktion FKR
- Weniger Entzündung und weniger Fibrose erscheinen vorteilhaft

Implantate als Medizinprodukt

Wie viel Testung darf es sein oder muss es sein? Veränderung nur auf der Basis von RCT's?

Case 2:12-md-02327 Document 2960-21 Filed 10/12/16 Page 40 of 49 PageID #: 115279

Klasse I	Klasse IIa	Klasse IIb	Klasse III
 ärztliche Instrumente Gehhilfen Rollstühle Spitalbetten Stützstrümpfe Verbandmittel wiederverwendbare chirurgische Instrumente 	 Dentalmaterialien Desinfektionsmittel (für Instrumente und Geräte) diagnostische Ultraschallgeräte Einmalspritzen Hörgeräte Kontaktlinsen Trachealtuben Zahnkronen 	•Anästhesiegeräte •Beatmungsgeräte •Bestrahlungsgeräte •Blutbeutel •Defibrillatoren •Dialysegeräte •Kondome •Kontaktlinsenreiniger Mesh, sling etc.	•Herzkatheter •künstliche Gelenke •Dentalimplantate •Koronarstents •resorbierbares chirurgisches Nahtmaterial •Spirale •Brustimplantat

Bei Produkten der Klassen IIa, IIb und III muss zusätzlich zur Bewertung durch den Hersteller eine Benannte Stelle in das Konformitätsbewertungsverfahren einbezogen werden; die Verantwortung für das Produkt verbleibt jedoch beim Hersteller.

Für eine CE-Zertifizierung zwingend erforderlich sind durch den Hersteller :

- 1. Risikoanalyse (Literatur, Erfahrung, Kompetenz)
- 2. Klinische Bewertung (Literatur, Erfahrung, Kompetenz)
- 3. Biokompatibilitätsbewertung (Literatur, Erfahrung, Kompetenz)

Angestrebtes Ziel der Prüfung durch einen unabhängigen Gutachter z.B. TÜV, ECM Aachen : kein erhöhtes Risiko, oder erwarteter Nutzen größer als neues Risiko (Bei diskreten Veränderungen des Medizinproduktes Darstellung der Analogie zu)

Implantate (konservative Sichtweise)

- Die bislang eingesetzten Methoden sind die "besten" (und die "allerbesten" sind diejenigen, die davon am billigsten sind)
- Komplikationen sind bekannt, aber so selten, daß sie keine weiteren Maßnahmen erfordern
- Eine Verbesserung dieser etablierten Implantate verlangt den Nachweis einer Überlegenheit in einer klinischen Studie (RCT),
- auch gegenüber konventionellen Alternativen wie Bruchband, Mieder, Einlagen, Gips oder Pflaster

Bruchband als Standard-Therapie der Hernie?

Beginn der Mesh-Techniken: Tierversuch!

Usher berichtet 1963 von 7 Hunden, bei dreien war ein *Mesh* für bis zu 1 Jahr implantiert worden.

Zusätzlich hatte er eine zweite Gruppe mit 6 Hunden mit jeweils 3 Paar Inzisionen auf dem Rücken mit menschlichen Sputum infiziert, 3 von 18 Mesh-Wunden heilten nicht bei Polyester-Marlex, während mit PP alle 18 Wunden heilten gut.

Usher F. Hernia repair with knitted polypropylene mesh. Surg Gyn Obstet 1963;116:239-240.

Publikationen zu Meshes und Hernie Medline 1960-1999

Literaturauswertung 1960-1999

Einführung der Mesh-Techniken:

- ohne RCT
- wenig Tier-Versuche
- wenig Publikationen
- aber in der Praxis überzeugend

Statt Bruchband heute Mesh-Op

- Es gibt einige Probleme mit Implantaten : Schmerz, Degradation, Migration, Infektion, Rezidiv (z.T. nach Jahren!)
- Daher weitere Optimierung der Implantate angezeigt: Meshes der 3. Generation (biologisch aktiv)
- Wie lange sollen/wollen/können wir warten, bis mögliche RCT's eine erfolgte Verbesserung beweisen (falls dies überhaupt möglich ist)?

\bigcirc

Veränderung der effektiven Porosität unter Belastung

Experimental²Comparison of Monofile Light and Heavy Polypropylene Meshes: Less Weight Does Not Mean Less Biological Response

Dirk Weyhe, MD,¹ Inge Schmitz, PhD,² Orlin Belyaev, MD,¹ Robert Grabs,¹ Klaus-Michael Müller, MD,² Waldemar Uhl, MD,¹ Volker Zumtobel, MD¹

World J Surg (2006) 30: 1586–1591 DOI: 10.1007/s00268-005-0601-0

Schlechtere
Biokompatibilität von
leichtgewichtig im Vergleich
zu schwergewichtig

Entscheidend für die Biokompatibilität ist die Porengröße: "effektive Porosität"

Figure 1. A Macroscopic view of a heavy polypropylene mesh (Marlex, BARD). **B** Electron microscopic image (×20) of a heavy polypropylene mesh (Marlex, BARD).

¹Department of Surgery, St. Josef Hospital, Ruhr University, Bochum, Germany ²Institute of Pathology, Bergmannsheil Hospital, Ruhr University, Bochum, Germany

Kollagen I/III Ratio

coll I/III ratio F8 mice, 21 days

Qualitative Verbesserung der Narbe durch Gentamicin

Meshes für die Bauchwandhernie:

- •"Flat mesh"
- •,,Tension free"

Meshes für den Beckenboden:

- Schmale Bänder
- Zug/Druckbelastung erwünscht

= unterschiedliches Anforderungsprofil!