CS 511 Formal Methods for High-Assurance Software Engineering Homework Assignment 04 - Selected Solution

Jiawen Liu

Problem 1.

1.

$$\Phi = (\phi \lor \psi_1) \land (\phi \lor \psi_2) \land (\phi \lor \psi_3), \quad \Psi = \exists y (y \leftrightarrow \phi) \land (y \lor \psi_1) \land (y \lor \psi_2) \land (y \lor \psi_3)$$

In order to show Φ and Ψ are logically equivalent, it is equivalent to show: $\Phi \dashv \vdash \Psi$.

Φ⊢Ψ

By assigning $\phi = true$ in Φ , i.e., $\Phi[\phi \to true]$, we have:

$$(true \lor \psi_1) \land (true \lor \psi_2) \land (true \lor \psi_3) = true.$$

By applying the \exists introduction rule on ϕ , we have Φ' as:

$$\Phi' = \exists \phi \ (\phi \lor \psi_1) \land (\phi \lor \psi_2) \land (\phi \lor \psi_3)$$

Then, we introduce $(y \leftrightarrow \phi)$ by substitute ϕ with y in Φ' , i.e., $(y \leftrightarrow \phi) \land \Phi'[\phi \to y]$ we can have:

$$(y \leftrightarrow \phi) \land \exists y \ (y \lor \psi_1) \land (y \lor \psi_2) \land (y \lor \psi_3),$$

which can be wrote as:

$$\exists y \ (y \leftrightarrow \phi) \land (y \lor \psi_1) \land (y \lor \psi_2) \land (y \lor \psi_3) = \Psi.$$

Ψ ⊢ Φ

Since we know $\forall \phi, \phi \leftrightarrow \phi$, we can pick $\gamma = \phi$ in Ψ as $\Psi[\gamma \rightarrow \phi]$:

$$\exists \phi \ (\phi \leftrightarrow \phi) \land (\phi \lor \psi_1) \land (\phi \lor \psi_2) \land (\phi \lor \psi_3).$$

Since $\phi \leftrightarrow \phi$ is always true, we ca have:

$$\exists \phi \ (\phi \lor \psi_1) \land (\phi \lor \psi_2) \land (\phi \lor \psi_3).$$

Then, we can have the predicate $\Phi = (\phi \lor \psi_1) \land (\phi \lor \psi_2) \land (\phi \lor \psi_3)$.

2.

$$\Phi = \theta(\phi_1, \psi_1) \land \theta(\phi_2, \psi_2) \land \theta(\phi_3, \psi_3), \quad \Psi = \forall x \forall y (\lor_{i=1,2,3} (x \leftrightarrow \phi_1) \land (y \leftrightarrow \psi_i)) \rightarrow \theta(x, y)$$

In order to show Φ and Ψ are logically equivalent, it is equivalent to show: $\Phi \dashv \vdash \Psi$.

Φ ⊢ Ψ

By what we proved in 1, we can introduce x, y into Φ as:

$$\exists x \exists y \ (x \leftrightarrow \phi_1) \land (y \leftrightarrow \psi_1) \land \theta(x, y) \land \theta(\phi_2, \psi_2) \land \theta(\phi_3, \psi_3).$$

By the \wedge e rule, we can get:

$$\exists x \exists y \ (x \leftrightarrow \phi_1) \land (y \leftrightarrow \psi_1) \land \theta(x, y).$$

We can prove following equation by natural deduction:

$$\exists x (P(x) \land Q(x)) \vdash \forall x (P(x) \rightarrow Q(x))$$

 $\exists x(P(x) \land Q(x))$ premise

x_0	2		fresh
	3	$P(x_0) \wedge Q(x_0)$	assumption
	4	$P(x_0)$	assumption
	5	$Q(x_0)$	∧ ₂ e 3
	6	$P(x_0) \to Q(x_0)$	\rightarrow i 4-5

 $7 \quad \forall x (P(x) \to Q(x))$

Then, we can get:

$$\forall x \forall y (x \leftrightarrow \phi_1) \land (y \leftrightarrow \psi_1) \rightarrow \theta(x, y).$$

In the same way we can have

$$\forall x \forall y (x \leftrightarrow \phi_2) \land (y \leftrightarrow \psi_2) \rightarrow \theta(x,y).$$

$$\forall x \forall y (x \leftrightarrow \phi_3) \land (y \leftrightarrow \psi_3) \rightarrow \theta(x, y).$$

By the Introduction rule of \wedge , we have:

$$\forall x \forall y (x \leftrightarrow \phi_1) \land (y \leftrightarrow \psi_1) \rightarrow \theta(x, y)$$
$$\land \forall x \forall y (x \leftrightarrow \phi_2) \land (y \leftrightarrow \psi_2) \rightarrow \theta(x, y)$$
$$\land \forall x \forall y (x \leftrightarrow \phi_3) \land (y \leftrightarrow \psi_3) \rightarrow \theta(x, y).$$

Then, it can be rewrite as:

$$\forall x \forall y (\forall_{i=1,2,3} (x \leftrightarrow \phi_1) \land (y \leftrightarrow \psi_i)) \rightarrow \theta(x,y) = \Psi.$$

Ψ ⊢ Φ

By rewrite Ψ , we have:

$$\forall x \forall y \Big(((x \leftrightarrow \phi_1) \land (y \leftrightarrow \psi_1))$$

$$\lor ((x \leftrightarrow \phi_2) \land (y \leftrightarrow \psi_2))$$

$$\lor ((x \leftrightarrow \phi_3) \land (y \leftrightarrow \psi_3)) \Big) \rightarrow \theta(x, y).$$

Then it can be equivalently rewrite as:

$$\forall x \forall y (x \leftrightarrow \phi_1) \land (y \leftrightarrow \psi_1) \rightarrow \theta(x, y)$$
$$\land \forall x \forall y (x \leftrightarrow \phi_2) \land (y \leftrightarrow \psi_2) \rightarrow \theta(x, y)$$
$$\land \forall x \forall y (x \leftrightarrow \phi_3) \land (y \leftrightarrow \psi_3) \rightarrow \theta(x, y).$$

By $\forall x \forall y (x \leftrightarrow \phi_1) \land (y \leftrightarrow \psi_1) \rightarrow \theta(x, y)$, we can get: $\theta(\phi_1, \psi_1)$. Then, we can have:

$$\theta(\phi_1, \psi_1) \wedge \theta(\phi_2, \psi_2) \wedge \theta(\phi_3, \psi_3)$$

Problem 2.

(a) Let θ_a be the transition relation where all the self loops are excluded defined as:

$$\theta_{a}(p_{1}, p_{2}, p_{3}, p_{4}) \stackrel{\text{def}}{=} ((\neg p_{1} \wedge \neg p_{2}) \rightarrow (\neg p_{3} \wedge p_{4})) \qquad (\text{from } s_{1})$$

$$\wedge ((\neg p_{1} \wedge p_{2}) \rightarrow (p_{3} \wedge \neg p_{4})) \qquad (\text{from } s_{2})$$

$$\wedge ((p_{1} \wedge \neg p_{2}) \rightarrow ((\neg p_{3} \wedge \neg p_{4}) \vee (p_{3} \wedge p_{4}))) \qquad (\text{from } s_{3})$$

$$((\neg p_{3} \wedge \neg p_{4}) \rightarrow (p_{1} \wedge \neg p_{2})) \qquad (\text{to } s_{1})$$

$$\wedge ((\neg p_{3} \wedge p_{4}) \rightarrow (\neg p_{1} \wedge \neg p_{2})) \qquad (\text{to } s_{2})$$

$$\wedge ((p_{3} \wedge \neg p_{4}) \rightarrow (\neg p_{1} \wedge p_{2})) \qquad (\text{to } s_{3})$$

$$\wedge ((p_{3} \wedge p_{4}) \rightarrow (p_{1} \wedge \neg p_{2})) \qquad (\text{to } s_{4})$$

Let ϕ_{a_0} be a path from $s_1 \rightarrow s_2 \rightarrow s_3$:

$$\phi_{a_0}(p_1,\dots,p_6) = \theta_a(p_1,p_2,p_3,p_4) \wedge \theta_a(p_3,p_4,p_5,p_6)$$

n=1: We have the path where all the s_1, s_2, s_3 are visited the once defined as ϕ_{a1} :

$$\phi_a(p_1, \dots, p_8) = \text{init}(p_1, p_2) \land \phi_{a_0}(p_1, \dots, p_6) \land \theta_a(p_5, p_6, p_7, p_8) \land \text{end}(p_7, p_8)$$

n > 1: We have the path where all the s_1, s_2, s_3 are visited the same times n > 1 defined as ϕ_a :

$$\phi_a(p_1, \cdots, p_{6n+2}) = \inf(p_1, p_2) \land \phi_{a_0}(p_1, \cdots, p_6) \land \theta_a(p_5, p_6, p_7, p_8) \\ \land \cdots \land \phi_{a_0}(p_{6n-6}, \cdots, p_{6n}) \land \theta_a(p_{6n-1}, p_{6n}, p_{6n+1}, p_{6n+2}) \land \operatorname{end}(p_{6n+1}, p_{6n+2})$$

(b) (Either one of the possible path is correct)

Let θ_{b1} defined as the transition relation for the loop between s_2 , s_3 :

$$\theta_{b_1}(p_1, p_2, p_3, p_4) \stackrel{\text{def}}{=} \wedge ((\neg p_1 \wedge p_2) \rightarrow (p_3 \wedge \neg p_4)) \qquad (\text{from } s_2)$$

$$\wedge ((p_1 \wedge \neg p_2) \rightarrow ((p_3 \wedge p_4) \vee (\neg p_3 \wedge p_4))) \qquad (\text{from } s_3)$$

$$\wedge ((\neg p_3 \wedge p_4) \rightarrow (p_1 \wedge \neg p_2)) \qquad (\text{to } s_2)$$

$$\wedge ((p_3 \wedge \neg p_4) \rightarrow (\neg p_1 \wedge p_2)) \qquad (\text{to } s_3)$$

$$\wedge ((p_3 \wedge p_4) \rightarrow (p_1 \wedge \neg p_2)) \qquad (\text{to } s_4)$$

Let ϕ_{b_0} be the path representing the loop between s_2 and s_3 :

$$\phi_{b_0}(p_1,\dots,p_6) = \theta_{b_1}(p_1,p_2,p_3,p_4) \wedge \theta_{b_1}(p_3,p_4,p_5,p_6)$$

Then one of the valid execution paths where the s_1 is visited just once and the s_2 , s_3 are visited twice is:

$$\phi_{b1}(p_1, \cdots, p_{12}) = \operatorname{init}(p_1, p_2) \wedge \phi_{a_0}(p_1, \cdots, p_6) \wedge \phi_{b_0}(p_5, \cdots, p_{10}) \wedge \theta_{b_1}(p_9, p_{10}, p_{11}, p_{12}) \wedge \operatorname{end}(p_{11}, p_{12})$$

Let θ_{b2} defined as the transition relation where the s_1 is visited twice by self loop:

$$\theta_{b_2}(p_1, p_2, p_3, p_4) \stackrel{\text{def}}{=} ((\neg p_1 \land \neg p_2) \rightarrow (\neg p_3 \land \neg p_4)) \quad (\text{from } s_1)$$

$$((\neg p_3 \land \neg p_4) \rightarrow (\neg p_1 \land \neg p_2)) \quad (\text{to } s_1)$$

Then one of the valid execution paths where the s_1 is visited twice by self loop and the s_2 , s_3 are visited forth is:

$$\begin{split} \phi_{b2}(p_1,\cdots,p_{18}) = & \text{ init}(p_1,p_2) \wedge \theta_{b2}(p_1,p_2,p_3,p_4) \wedge \phi_{a_0}(p_3,\cdots,p_8) \wedge \phi_{b_0}(p_7,\cdots,p_{12}) \\ & \wedge \phi_{b_0}(p_{11},\cdots,p_{16}) \wedge \phi_{b_0}(p_{15},\cdots,p_{20}) \wedge \theta_{b_1}(p_{19},p_{20},p_{21},p_{22}) \wedge \text{end}(p_{21},p_{22}) \end{split}$$

Since θ_a from problem (a) can represent the transition relation where s_1 can be visited second time from s_3 , then we have the last possible path as:

$$\begin{split} \phi_{b2}(p_1,\cdots,p_{18}) = & \text{ init}(p_1,p_2) \wedge \phi_{a_0}(p_1,\cdots,p_6) \wedge \theta_a(p_5,p_6,p_7,p_8) \wedge \phi_{a_0}(p_7,\cdots,p_{12}) \\ & \wedge \phi_{b_0}(p_{11},\cdots,p_{16}) \wedge \phi_{b_0}(p_{15},\cdots,p_{20}) \wedge \theta_{b_1}(p_{19},p_{20},p_{21},p_{22}) \wedge \text{end}(p_{21},p_{22}) \end{split}$$

This path represent s_1 is re-visited after the first time of visiting s_3 . s_1 can also be visited after looping once, twice or third times on $s_2 \rightarrow s_3$ by just adjust the order or ϕ_{a_0} and θ_a .

Problem 3.

(a)
$$\exists x \; \exists y \; \exists z. \; \neg(x \leftrightarrow y) \land \neg(y \leftrightarrow z) \land \neg(z \leftrightarrow x) \land \forall w. \; ((w = x) \lor (w = y))$$

(b)
$$\forall w. \ \exists x \ \exists y \ \exists z. \ ((w=x) \lor (w=z) \lor (w=y))$$

(c)
$$n = 1$$
, $\theta_1 = \forall w$. $\exists x.(w \leftrightarrow x)$. $n = k$, $\theta_k = \forall w$. $\exists x_1, \dots, x_k \neg (x_1 \leftrightarrow x_2) \land \dots \land \neg (x_1 \leftrightarrow x_k) \land \dots \land \neg (x_{k-1} \leftrightarrow x_k) \land ((w = x_1) \lor \dots \lor (w = x_k))$

Then, we have infinite set of FO sentences which hold in a model iff the model has infinitely many distinct elements defined as θ_{∞} :

$$\theta_{\infty} = \bigwedge_{i > 1} \theta_i$$

Problem 4.

(a) $\exists x \; (S \to Q(x)) \vdash S \to \exists x \; Q(x)$ 1 $\exists x \ (S \to Q(x))$ premise fresh x_0 2 3 $S \rightarrow Q(x_0)$ assumption 4 S assumption →e 3,4 5 $Q(x_0)$ ∃*x* i 5 6 $\exists x \ Q(x)$ 7 $S \rightarrow \exists x \ Q(x)$ \rightarrow i 4 – 6 8 $S \rightarrow \exists x \ Q(x)$ $\exists x \ e \ 1, 2-7$ (b) $S \to \exists x \ Q(x) \vdash \exists x \ (S \to Q(x))$ 1 $S \rightarrow \exists x \ Q(x)$ premise 2 S assumption →e 1,2 Q(x)fresh x_0 assumption 5 $Q(x_0)$ $\exists x \ e \ 3, 4-5$ 6 $Q(x_0)$ $7 \quad S \to Q(x_0)$ \rightarrow i 2 – 6 8 $\exists x \ (S \rightarrow Q(x))$ ∃*x* i 7 (c) $\exists x \ P(x) \rightarrow S \vdash \forall x \ (P(x) \rightarrow S)$ 1 $\exists x \ P(x) \rightarrow S$ premise fresh x_0 3 $P(x_0)$ assumption 4 $\exists x P(x)$ $\exists x i 3$ →e 1,4 6 $P(x_0) \rightarrow S$ \rightarrow i 3,4-5 7 $\forall x (P(x) \rightarrow S)$ $\forall x i 2 - 6$ (d) $\forall x \ P(x) \rightarrow S \vdash \exists x \ (P(x) \rightarrow S)$

	1	$\forall x \ P(x) \to S$	premise
	2	$\neg(\exists x\ (P(x)\to S))$	assumption
x_0	3		fresh
	4	$\neg P(x_0)$	assumption
	5	$P(x_0)$	assumption
	6	T	¬e 4,5
	7	S	
	8	$P(x_0) \to S$	→i 5 – 7
	9	$\exists x \ (P(x) \to S)$	∃ <i>x</i> i 8
	10	1	¬e 2,9
	11	$\neg \neg P(x_0)$	¬i 4 – 10
	12	$P(x_0)$	¬¬e 11
	13	$\forall x \ P(x)$	∀ <i>x</i> i 12
	14	S	→e 1,13
	15	$P(x_0)$	assumption
	16	S	copy 14
	17	$P(x_0) \to S$	→i 15 – 16
	18	$\exists x \ (P(x) \to S)$	∀ <i>x</i> i 17
	19	Т	⊥i 2,17
	20	$\neg\neg\exists x\ (P(x)\to S)$	¬i 2 – 19
	21	$\exists x \ (P(x) \to S)$	¬¬e 20

Problem 5. https://github.com/jiawenliu/CS511/blob/master/homework/hw4/hw4-p5.py

Problem 6. https://github.com/jiawenliu/CS511/blob/master/homework/hw4/hw4-p6.in