

Geometry

From 3D to 2D and From 2D to 3D

Geometry

- The projection of 3D scenes into 2D images
- Recovering the 3D scene from 2D images
- Calibration
- Structure from motion
- Mathematical tools:
 - Algebra
 - Projective geometry

3D Reconstruction

- 3D shape of a scene:
 - Object recognition
 - Navigation
 - Graphics applications,...

Image Formation

- Radiometric:The point color
- Geometric:The point location

Geometry:

What determines the location of the projection of an object point in the image?

- The point location with respect to the camera
- The camera optics

Ambiguity: 3D Shape from a Single Image:

3D Shape from a Single Image

Two Images

Left image

Right image

Left image

The Pinhole Camera

Infinitesimally small aperture.

 Straight rays of lights travel through the aperture to the image plane

Each scene point projects to a single image point

Pinhole Camera Images with Variable Aperture

Camera Obscura

מצלמות

The Camera and the Eye

First photograph: 1829 J. Nicéphore Niépce

The Image Plane

Pinhole Camera Geometry

Perspective Projection

$$\frac{z_{object}}{x_{object}} = \frac{f}{x_{image}}$$

$$x_{image} = \frac{f}{z_{object}} x_{object}$$

f: the focal length

Perspective Projection

$$egin{aligned} & Z_{object} = rac{f}{x_{image}} \ & X_{object} = rac{f}{y_{object}} = rac{f}{y_{image}} \end{aligned}$$

Perspective Projection

No information about the distance

$$x_{image} = \frac{f}{z_{object}} x_{object}$$

$$y_{image} = \frac{f}{z_{object}} y_{object}$$

X_{object}

Pinhole Camera: Algebra

- Setting coordinate systems:
 - The camera coordinates system
 - The image coordinate system

• Euclidean projection:

$$x_{image} = \frac{f}{z_{object}} x_{object}$$
; $y_{image} = \frac{f}{z_{object}} y_{object}$

 In world coordinate system (using projective algebra):

$$\widetilde{p} = M\widetilde{P}$$
Next class

where M is a 3x4 matrix, \tilde{p} and \tilde{p}

Orthographic:

Orthographic:

When the object is far relative to its local depth

Orthographic:

When the object is far relative to its local depth

Paraperspective

Orthographic + scaling s

$$X_{object} = SX_{image}$$

s is fixed for the whole image

Stereo Vision

- Output: the 3D shape of the scene
- Input: two images from two viewpoints
- The human visual system uses stereo vision
- Many industrial applications

A Single Image Stereo Pair

Red/Green Image:

The images of the two eyes are separated by colors

Magic Eye:

Using frequencies to separate the two eyes' images.

Stereo: Main Issues

- Determine the point correspondence between the two images
- Based on point correspondence and the calibrated cameras: reconstruct the 3D geometry of the shape

Camera calibration

Ambiguous correspondence occurs often

Triangulation

A Simple Stereo System

- The two camera planes are coplanar
- The two optical axes are parallel
- The two focal lengths are identical
- The fixation point lies at infinity
 - The correspondence is given

Computing the Depth from *...* Computing the Depth from Disparity

$$\frac{T + x_r - x_l}{z - f} = \frac{T}{z}$$

The disparity:

$$d = x_l - x_r$$

$$z = f \, \frac{T}{d}$$

Different focal length

The disparity:

$$d = x'_1 - x_r$$

$$z = f \frac{T}{d}$$

General Case Triangulation

Possible to use trigonometry but next class we will use projective geometry

A Stereo Pair

Left image

Right image

Left image

Disparity:

change of location between left and right images.

The Parameters of a Stereo System

Intrinsic parameters:

- Focal length
- Principal point
- Scaling

Extrinsic parameters

 The relative position and orientation of the two cameras

Back to Correspondence

Epipolar Lines

Epipolar Geometry

A pair of corresponding points must lay on corresponding epipolar lines

The epipole points are e_1 and e_r

Epipole

- The Epipole is the projection of the cop of the other camera
- Except for the epipole, only one epipolar line goes through any image point
- All the epipolar lines go through the epipole

Epipole

• What happens when the two camera planes are parallel?

Next

- Formulation using projective geometry:
 - Stereo, triangulation, and calibration
- Other applications of Epipolar Geometry
- Homography
- More than 2 images