

UNIVERSIDAD NACIONAL DE SAN AGUSTIN DE AREQUIPA VICE RECTORADO ACADEMICO SILABO

CODIGO DEL CURSO: 1002116

1.1 DATOS GENERALES

FACULTAD: Ing. De Producción y Servicios

DEPARTAMENTO: Ingeniería de Sistemas e Informática ESCUELA: Ingeniería de Sistemas

ASIGNATURA: Objetos y Abstracción de Datos

PRE REQUISITO: 1001208
- Introducción a la Programación Orientada a Objetos

CREDITOS: 4 Año: 2012-I HORAS 6 (seis)

Semestre: III T: 2 TP: 2 P: 2 S:

PROFESOR: Ernesto Cuadros-Vargas							
TITULO:	ULO: GRADO ACADEMICO: Doctor						
HORARIO Total Semanal: 14 Hrs.	Lunes	Martes	Miércoles	Jueves	Viernes	Sábado	
	13:00-15:00	13:00-15:00	13:00-15:00, 18:00-20:00				
AULA:	101	101	Lab				

1.2 EXPOSICION DE MOTIVOS

Este es el tercer curso en la secuencia de los cursos introductorios a la informática. En este curso se pretende cubriros conceptos señalados por la *Computing Curricula* IEEE(c)-ACM 2001, bajo el enfogue *functional-first*.

El paradigma orientado a objetos nos permite combatir la complejidad haciendo modelos a partir de abstracciones de los elementos del problema y utilizando técnicas como encapsulamiento, modularidad, polimorfismo y herencia.

El dominio de estos temas permitirá que los participantes puedan dar soluciones computacionales a problemas de diseño sencillos del mundo real.

1.3 OBJETIVOS:

Introducir al alumno a los fundamentos del paradigma de orientación a objetos, permitiendo asimilar los conceptos necesarios para desarrollar un sistema de información.

1.4 CONTENIDO TEMATICO:

Capítulo 1: DS/Gráfos y Árboles. (7 horas)

Objetivos Específicos:	Contenidos:	Hrs	Fecha	Avance %
 Ilustrar con ejemplos la terminología básica de teoría de grafos y algunas de las propiedades y casos especiales de cada una. Mostrar diferentes métodos de recorrido en árboles y grafos. Modelar problemas en Ciencias de la Computación usando grafos y árboles. Relacionar grafos y árboles con estructura de datos, algoritmos y conteo. 	[1]	7	9-17Abr	11%

Capítulo 2: PF/Construcciones fundamentales. (5 horas)

Objetivos Específicos:	Contenidos:	Hrs	Fecha	Avance %
 Analizar y explicar el comportamiento de programas simples involucrando las estructuras de programación fundamental cubiertas por esta unidad. Modificar y extender programas cortos que usan condicionales estándar, estructuras de control iterativas y funciones. Diseñar, implementar, probar y depurar un programa que use cada una de las siguientes estructuras fundamentales de programación: cálculos básicos, entrada y salida simple, estructuras estándar condicionales e iterativas y definición de funciones. Escoger la estructura apropiada condicional e iterativa para una estructura de programación dada. 	 Sintaxis básica y semántica de un lenguaje de más alto nivel. Variables, tipos, expresiones y asignaciones. Entrada y salida simple. Estructuras de control condicionales e iterativas. Funciones y paso de parámetros. Descomposición estructurada. 	5	17-26Abr	20%

Aplicar técnicas de descomposición estructurada o funcional		
para dividir un progra- ma en pequeñas par-		
tes.		
 Describir los mecanis- mos de paso de pará- metros. 		

Capítulo 3: PF/Algoritmos y Resolución de Problemas. (5 horas)

Objetivos Específicos:	Contenidos:	Hrs	Fecha	Avance %
 Discutir la importancia de los algoritmos en el proceso de solución de problemas. Identificar las propiedades necesarias de un buen algoritmo. Crear algoritmos para resolver problemas simples. Usar pseudocódigo o un lenguaje de programación para implementar, probar y depurar algoritmos para resolver problemas simples. Describir estrategias útiles para depuración. 	 Estrategias para la solución de problemas. El rol de los algoritmos en el proceso de solución de problemas. Estrategias de implementación para algoritmos. Estrategias de depuración. El Concepto y propiedades de algoritmos. [3] 	5	30Abr- 3May	28%

Capítulo 4: PF/Estructuras de Datos. (9 horas)

Objetivos Específicos:	Contenidos:	Hrs	Fecha	Avance %
 Describir la representación de datos numéricos y de caracteres. Entender como la precisión y el redondeo puede afectar los cálculos numéricos. Discutir la representación y uso de tipos de datos primitivos y estructuras de datos incorporadas en el lenguaje. Describir aplicaciones comunes para cada estructura de datos e la lista de temas. Implementar estructuras de datos definidas por el usuario en un lenguaje de alto nivel. 	 Representación de datos numéricos. Rango, precisión y errores de redondeo. Arreglos y registros. Cadenas y procesamiento de cadenas. Representación de caracteres. Administración del almacenamiento en tiempo de ejecución. Punteros y referencias. Estructuras enlazadas. Estrategias de implementación para pilas, colas y tablas hash. Estrategias de implementación para grafos y árboles. Estrategias para escoger la es- 	9	7-15May	

 Comparar implementaciones alternativas de estructuras de datos considerando su desempeño. Escribir programas que usan cada una de las siguientes estructuras de datos: arreglos, registros, cadenas, listas enlazadas, pilas, colas y tablas de hash. Comparar y contrastar los costos y beneficios de las implementaciones dinámicas y estáticas de las estructuras de datos. Escoger la estructura de datos apropiada para modelar un problema dado. 	tructura de datos correcta.		

Capítulo 5: PF/Recursividad. (2 horas)

Objetivos Específicos:	Contenidos:	Hrs	Fecha	Avance %
 Describir el concepto de recursividad y dar ejen plos de su uso. Identificar el caso base y el caso general de un problema definido recursivamente. Comparar soluciones iterativas y recursivas para problemas elementales tal como factorial. Describir la técnica dividir y conquistar. Implementar, probar y depurar funciones y procedimientos recursivos simples. Describir como la recursividad puede ser implementada usando una pila. Discutir problemas para los cuales el backtracking es una solución apropiada. Determinar cuándo una solución recursiva es apropiada para un problema. 	 El concepto de recursividad. Funciones matemáticas recursivas. Funciones recursivas simples. Estrategias de dividir y conquistar. Backtracking recursivo. 	2	21May	46%

Capítulo 6: PF/Programación Orientada a Eventos. (2 horas)

Objetivos Específicos:	Contenidos:	Hrs	Fecha	Avance %
 Explicar la diferencia entre programación orientada a eventos y programación por línea de comandos. Diseñar, codificar, probar y depurar programas de manejo de eventos simples que respondan a eventos del usuario. Desarrollar código que responda a las condiciones de excepción lanzadas durante la ejecución. 	 Métodos para la manipulación de eventos. Propagación de eventos. Manejo de excepciones. [3] 	2	22May	49%

Capítulo 7: AL/Análisis Básico de Algoritmos. (3 horas)

Objetivos Específicos:	Contenidos:	Hrs	Fecha	Avance %
 Determinar la comple- jidad de tiempo y es- pacio de algoritmos simples. 	 Análisis asintótico de límites en los casos promedio y superior. Identificar las diferencias entre el comportamiento entre el mejor, mediano y peor caso. 	3	28-29May	54%

Capítulo 8: AL/Algoritmos Fundamentales. (3 horas)

Objetivos Específicos:	Contenidos:	Hrs	Fecha	Avance %
 Implementar los algoritmos cuadráticos más comunes y los algoritmos de ordenamiento O(NlogN). Diseñar e implementar una función de (hash) apropiada para una aplicación. Diseñar e implementar un algoritmo de resolución de colisiones para tablas de hash. Discutir la eficiencia computacional de los principales algoritmos de ordenamiento, búsqueda y (hashing). Discutir otros factores, además de la eficiencia computacional, que influyen en la 	 Algoritmos numéricos simples. Búsqueda secuencial y binaria. Algoritmos cuadráticos de ordenamiento (Selección, inserción). Algoritmos de tipo O(NlogN) (Quicksort, heapsort, mergesort). Tabla de (hash) incluyendo estrategias de solución para las colisiones. Arboles de búsqueda binaria. Representación de grafos (Listas y Matrices de adyacencia). Recorridos por amplitud y profundidad. El algoritmo del camino más corto (algoritmos de Dijkstra y Floyd). Cerradura transitiva (algoritmo de Floyd). Árbol de expansión mínima 	3	29May- 4Jun	59%

Capítulo 9: PL/Máquinas Virtuales. (2 horas)

Objetivos Específicos:	Contenidos:	Hrs	Fecha	Avance %
 Describir la importancia y poder de la abstracción en el contexto de máquinas virtuales. Explicar los beneficios de los lenguajes intermedios en el proceso de compilación. Evaluar las ventajas y desventajas entre desempeño vs. Portabilidad. Explicar cómo los programas ejecutables pueden violar la seguridad de sistema computacional accediendo a archivos de disco y memoria. 	 El concepto de máquina virtual. Jerarquías de las máquinas virtuales. Lenguajes intermedios. Temas de seguridad relacionados a ejecutar código sobre una máquina externa. [2] [3] 	2	5Jun	62%

Capítulo 10: PL/Declaración y Tipos (2 horas)

1	Objetivos Específicos:	Contenidos:	Hrs	Fecha	Avance %	
	 Explicar el valor de los 	 La concepción de tipos como 	2	11Jun		

modelos de declaración, especialmente con respecto a la programación en mayor escala. Identificar y describir las propiedades de una variable, tales como su: dirección asociada, valor, ámbito, persistencia y tamaño. Discutir la incompatibilidad de tipos. Demostrar las diferentes formas de enlace, visibilidad, ámbito y manejo del tiempo de vida. Defender la importancia de los tipos y el chequeo de tipos para brindar abstracción y seguridad. Evaluar las ventajas y	un conjunto de valores unidos a un conjunto de operaciones. • Declaración de modelos (enlace, visibilidad, alcance y tiempo de vida). • Vista general del chequeo de tipos. • Vista general del chequeo de tipos. • Recolección de basura.	74%%
cia de los tipos y el chequeo de tipos para brindar abstracción y seguridad.	 Vista general del chequeo de tipos. Recolección de basura. 	

Capítulo 11: PL/Programación Orientada a Objetos. (7 horas)

Objetivos Específicos:	Contenidos:	Hrs	Fecha	Avance %
 Justificar la filosofía de diseño orientado a objetos y los conceptos de encapsulación, abstracción, herencia y polimorfismo. Diseñar, implementar, probar y depurar programas simples en un lenguaje de programación orientado a objetos. Describir como los mecanismos de clases soportan encapsulación y ocultamiento de la información. Diseñar, implementar y probar la implementación de la relación esun <i>IsKindOf</i> entre objetos usando jerarquía de clases y herencia. Comparar y contrastar 	 Diseño orientado a objetos. Encapsulación y ocultamiento de la información. Separación de comportamiento e implementación. Clases y subclases. Herencia (sobreescritura, despacho dinámico). Polimorfismo (polimorfismo de subtipo vs. herencia). Jerarquías de clases. Clases de tipo colección y protocolos de iteración. Representaciones internas de objetos y tablas de métodos. [2] [3] 	7	12-25Jun	85%

las nociones de sobre- carga y sobreescritura de métodos en un len-		
guaje de programa- ción.		
 Explicar la relación entre la estructura es- 		
tática de una clase y la estructura dinámica		
de las instancias de dicha clases.		
Describir como los ite- radores acceden a los		
elementos de un con- tenedor.		

Capitulo 12: SE/Diseño de Software.(5 horas)

Objetivos Específicos:	Contenidos:	Hrs	Fecha	Avance %
 Discutir las propiedades del buen diseño de softwarem incluyendo la naturaleza y el rol de la documentación asociada. Conducir una revisión de diseño de software con material de código abierto utilizando lineamientos apropia- 	 Conceptos y principios fundamentales de diseño. El rol y uso de contratos. Patrones de diseño 	5	26Jun-3Jul	93%
dos.	[3]			

Capitulo 13: Programación con APIs (5 horas)

Objetivos Específicos:	Contenidos:	Hrs	Fecha	Avance %
 Explicar el valor de las interfaces para programación de aplicaciones (APIs) en el desarrollo de software. Usar navegadores de clases y herramientas relacionadas durante el desarrollo de aplicaciones usando APIs. Diseñar, implementar, probar y depurar programas que usan paquetes API de larga escala. 	 Programación usando API. Diseño de API. Navegadores de clases (Class browsers) y herramientas relacionadas. Depuración en el entorno API. Introducción a la computación basada en componentes. [3] 	5	9-16Jul	95%

SE/Usando APIs. (1 horas)

Objetivos Específicos:	Contenidos:	Hrs	Fecha	Avance %
 Discutir los retos de mantener software heredado. 	 Técnicas de modelamiento del análisis de requerimientos. Prototipeo. 	1	17Jul	97%

 Usar un método común, no formal para modelar y especificar (en la forma de un documento de especificación de requerimientos) los requerimientos para un sistema de software de tamaño medio. Traducir en lenguaje natural una especificación de requerimientos de software escrita en un lenguaje de especificación formal comúnmente usado. 	Conceptos básicos de técnicas de especificación formal. [3]		

SE/Validación y verificación de software. (2 horas)

Objetivos Específicos:	Contenidos:	Hrs	Fecha	Avance %
 Distinguir entre validación de programas y verificación. Describir el rol que las herramientas pueden jugar en la validación de software. Discutir los temas concernientes a la prueba de software orientado a objetos. 	 Fundamentos del <i>Testing</i> incluyendo la creación de planes de prueba y la generación de casos de prueba. Prueba orientado a objetos, pruebas de sistema. [3] 	2	23-24Jul	100%

1.5 ACTIVIDADES

- Asignaciones
- Controles de Lectura
- Exposiciones

1.6 RECURSOS MATERIALES:

Los recursos materiales a usar son:

- Apuntes del curso.
- Libro(s) de la bibliografía

1.7 RECURSOS BIBLIOGRÁFICOS:

OBLIGATORIA:

- [1] R. Johnsonbaugh. Matemáticas Discretas. Pearson, 1999.
- [3] Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley., 1997.

RECOMENDADA:

[2] Bertran Meyer. Construcción de Software Orientado a Objetos. Prentice Hall, 1998.

1.8 METODOLOGIA:

- Clase Magistral.
- Taller didáctico.
- Prácticas personales y en grupo

1.9 EVALUACION.-

La nota final (NF) se obtiene de la siguiente manera:

NE Nota de Exámenes 50 %, esta nota se divide en

- Examen Parcial 15%
- Examen Final 25%

NT Nota de Trabajos e Intervención en clase 50%

NF = (NE + NT)/2

Arequipa, Abril del 2012

Ernesto Cuadros-Vargas Docente DAISI – FIPS – UNSA