

Memory

Computer Engineering 2

Motivation

Agenda

3

- Memory Technologies
 - PROM, EEPROM and flash, SRAM, SDRAM
- On-CHIP Memories STM32F429ZISRAM
 - SRAM and Flash
- External Memory (Off-Chip)
 - Flexible Memory Controller
- Appendix: Trends and Figures

Learning Objectives

At the end of this lesson you will be able

- to classify widely used memory technologies
- to discuss the structure and function of an SRAM (static RAM)
- to discuss the structure and function of flash memory
- to outline the structure and function of an asynchronous SRAM device
- to outline how an external asynchronous SRAM device can be connected through the flexible memory controller (FMC)
- to explain how an internal 32-bit access is partitioned into several external half-word or byte accesses
- to interpret timing diagrams for read and write accesses to external, asynchronous SRAMs
- to summarize the differences between a NOR and a NAND flash
- to summarize the differences between a static RAM (SRAM) and a dynamic RAM (SDRAM)

Semiconductor Fundamentals

MEMORY TECHNOLOGIES

Memory Technologies

Semiconductor Memories Non-volatile **Volatile** Looses data when power is turned off. Holds data even if power is turned off. Flash **EEPROM** NV - RAM **PROM SRAM SDRAM** Block-wise EEPROM non-volatile RAM Programmable Read Only Electrically Erasable Static Random Access Synchronous Dynamic PROM Memory Random Access Memory Memory Mask NOR SDR nvSRAM Random read access programmed Single Data Rate Block-wise erase (factory) NAND Fusible FRAM DDR One-time programmable Block-wise read Ferroelectric RAM **Double Data Rate** (OTP) Block-wise erase

Units

Unit Symbols

$$B = Byte$$

Memory Chips

Binary prefixes according to JEDEC¹⁾ and IEC²⁾

- Kilo K = 1024

- Mega M = 1024 x 1024 = 1'048'510

- Giga G = $1024 \times 1024 \times 1024$ = 1'073'741'824

Hard Disks

Often use SI (or metric) prefixes

- Kilo k = 1000

- Mega M = 1000×1000

- Giga G = $1000 \times 1000 \times 1000$

²⁾ International Electrotechnical Commission

Memories Are Arrays of Bit Cells

■ Memory Architecture → n x m array

■ Bit cell → stores '1' or '0'

n words with m data bits

PROM – Programmable Read Only Memory

n x m array

n = number of word lines

→ n addresses with m data bits

Example 512 x 4 bit

Fusible Transistors

Programming applies higher voltage to destroy transistors (blow fuses) Process is **not** reversible

EEPROM and Flash

Making PROMs Reprogrammable

- "Floating Gate" transistor
 - Replace fusing by reprogrammable "Floating Gate"
- Write cell to '0' → ON
 - High voltage Up deposits charge on floating gate (isolated by SiO2)
 - Transistor ON (conducting) if control gate equal '1'
- Erase cell to '1' → OFF
 - Discharge floating gate with negative Up
 - Transistor is OFF, i.e. blocking independent of value on control gate
- EEPROM
 - High cell area → low density, high cost per bit
- Flash
 - Erasing can only be done for whole sectors
 → small cell area, high density, low cost per bit

EEPROM and Flash

Use 'Floating Gates' instead of 'Fusible Transistors'

word line connected to control gate

Flash

Write Operations (Programming)

- Can only change bits from '1' to '0'
 - Otherwise an erase operation is required
- Word, half-word or byte access possible
- Writing a double word ~16 us
 - I.e. around 1000 times slower than SRAM

Erase Operations

- Change all bits from '0' to '1'
 - Only possible by sector or by bank, not on a word
 - Typical sector sizes of 16
- Erase of a 128 Kbytes sector takes between 1 and 2 seconds ¹⁾
- Endurance: 10'000 erase cycles ²⁾
- Sector may not be accessed (write or read) during erase
 - I.e. execute program from another sector or from SRAM during erase
- 1) Depending on supply voltage and configuration parameters
- 2) Value from STM32F429ZI datasheet

Flash – NOR vs NAND Topology

n x m SRAM Architecture

→ flip-flop (latch) based cells

Structure of SRAM cell in NMOS¹⁾

Flip-flop (latch) based structure, change from '1' to '0'

Read and write

- All accesses take roughly the same time
- Access time independent of location of data item in memory
- Access time independent of previous access¹⁾

Volatile

Memory content retained only as long as device is powered

Static

- Storage elements similar to flip-flops / latches
- No refresh required
 - refresh: periodic reading and rewriting of memory cell to maintain the content

Synchronous Dynamic Random Access Memory

- Information stored as charge in capacitor
- High integration
 - Large memories at low cost
 - Allows to store large amounts of data
- Leakage current → Loss of charge
 - Capacitor holds charge only for a few milliseconds
 - Charge has to be refreshed periodically → dynamic
 - Refresh logic usually located on SDRAM device

Trench Cell

https://www.youtube.com/watch?v=3s7zsLU83bY

512 x 8-bit

64 x 64 bit

 $A_5 ... A_0$

Organization e.g.

storage matrix

column address

row address

buffer: stores content of a complete row

acts as a cache

SDRAM Structure

Row and column addresses multiplexed

RAS row address strobe

CAS column address strobe

 $A_2 ... A_0$ $D_7 ... D_0$ word lines data row address buffer decoders address 64 bit per row (8 x 8 bit) address storage matrix . 0 0 Alternating between row address A₅ .. A₀ row and column selects one out of 64 rows bit lines RAS column address A₂ .. A₀ selects one CAS sense amplifiers, write logic control out of eight 8-bit groups in a row column WE address CLK column decoders data buffer

22.12.2020 ZHAW, Computer Engineering 19

data

Synchronous Interface

- Multiplexed row and column addresses
- Clocks up to 1200 MHz

 \overline{RAS} low \rightarrow The master places the 6-bit row address on lines A[5:0].

 $\overline{\text{CAS}}$ low \rightarrow The master places the 3-bit column address on lines A[2:0]. Lines A[5:3] are unused.

Static RAM (SRAM)	Synchronous Dynamic RAM (SDRAM)	
Flip-flop/latch → 4 Transistors / 2 resistors	Transistor and capacitor	
word line !b	word line	
Large cell Low density, high cost Up to 64 Mb per device	Small cell High density, low cost Up to 4 Gb per device	
Almost no static power consumption • Static i.e. no accesses taking place	Leakage currents Requires periodic refresh	
Asynchronous interface (no clock) Simple connection to bus	Synchronous interface (clocked) Requires dedicated SDRAM Controller	
All accesses take roughly the same time • ~5ns per access → 200 MHz • Suitable for distributed accesses	Long latency for first access of a block • Fast access for blocks of data (bursts) • Large overhead for single byte	

Memory Technologies

Our System

ON-CHIP MEMORIES STM32F429ZI

CT System Overview

Simplified Model STM32F429ZI

On-chip system bus

32 data lines, 32 address lines and control signals

On-chip Memory: SRAM

Address Regions

SRAM1 112K bytes

SRAM2 16K bytes

SRAM3 64K bytes

• CCM 64K bytes

CCM: Core Coupled Memory – Fast memory exclusively addressable by the CPU.

On-chip Memory: Flash

alias

reserved

flash

0x0000'0000

0x001F'FFFF

0x0800'0000

0x081F'FFFF

0x1FFF'FFFF

Flash

- Non-volatile memory
 - Memory content retained after power off
- Store code and persistent data
- NOR topology
 - Like most on-chip flash memories

Persistent Data denotes information that is infrequently accessed and not likely to be modified.

Source: Wikipedia

On-chip Memory: Flash

Flash Is Partitioned into Sectors

- Sectors can only be erased as a whole
- Writing through control registers no direct memory write accesses

Sector 0						
Sector 2 0x0800'8000 - 0x0800'BFFF 16 Kbytes	STM32F429ZI	Bank 1 Sector 1 Sector 2 Sector 3 Sector 4 Sector 5	Sector 0	0x0800'0000 - 0x0800'3FFF	16 Kbytes	
Sector 3 0x0800'C000 - 0x0800'FFFF 16 Kbytes			Sector 1	0x0800'4000 – 0x0800'7FFF	16 Kbytes	
Sector 4 0x0801'0000 - 0x0801'FFFF 64 Kbytes			Sector 2	0x0800'8000 - 0x0800'BFFF	16 Kbytes	
Sector 4			Sector 3	0x0800'C000 - 0x0800'FFFF	16 Kbytes	
Sector 12			Sector 4	0x0801'0000 – 0x0801'FFFF	64 Kbytes	
Sector 12			Sector 5	0x0802'0000 - 0x0803'FFFF	128 Kbytes	es
Sector 12					Ĭ.	
Sector 12			0x080E'0000 - 0x080F'FFFF	128 Kbytes	Q	
Sector 13			Sector 12	0x0810'0000 - 0x0810'3FFF	16 Kbytes	
2 + 44 0 004010000 0 0040105555 40 1/1 +			Sector 13	0x0810'4000 - 0x0810'7FFF	16 Kbytes	a
⊢ Sector 14 0x0810'8000 – 0x0810'BFFF 16 Kbytes ♀			Sector 14	0x0810'8000 - 0x0810'BFFF	16 Kbytes	tot
Sector 15 0x0810'C000 – 0x0810'FFFF 16 Kbytes			0x0810'C000 - 0x0810'FFFF	16 Kbytes		
Sector 16 0x0811'0000 – 0x0811'FFFF 64 Kbytes			0x0811'0000 - 0x0811'FFFF	64 Kbytes		
Sector 17 0x0812'0000 – 0x0813'FFFF 128 Kbytes			0x0812'0000 - 0x0813'FFFF	128 Kbytes		
Sector 23 0x081E'0000 – 0x081F'FFFF 128 Kbytes			Sector 23	0x081E'0000 - 0x081F'FFFF	128 Kbytes	

On-chip Memory: Flash

Flash Has Higher Latency

- Read requires up to 8 Wait States¹⁾ on on-chip bus
- ST uses 128-bit buffer with pre-fetch queue
 - Reduces performance penalty when executing sequential instructions

Extending Our System

EXTERNAL MEMORY (OFF-CHIP)

CT System Overview

Simplified Model STM32F429ZI

On-chip system bus
 32 data lines, 32 address lines and control signals

External bus
 16 data lines, 26 address lines and control signals

External Memory

FMC – Configurable Bus Bridge

- Bridge between system bus and external bus
 - Slave on system bus
 - Master on external bus
- System bus accesses
 - In address range 0x6000'0000 to 0xDFFF'FFFF
 - Bridged to external bus
 - I.e. FMC initiates a bus cycle on external bus

Number of data lines is a design decision and depends on the external memory device

ZHAW, Computer Engineering 22.12.2020

Different Number of Data Lines Causes Bottleneck

- E.g. 32-bit (word) access to 8-bit external memory 1)
 - Single access on system bus
 - Results in 4 accesses on external bus
 - → increases access time by factor 4

Implementation FMC

- CPU write to memory
 - Address and data stored in FMC FIFO buffer
 - Avoids wait for slow memory
 - Free system bus for other accesses
- CPU read from memory
 - System bus has to wait until external memory device provides data

- Writing a 32-bit Word from System Bus (32 Data Lines)
 - to a 32-bit wide external memory (32 data lines)

to a 16-bit wide external memory (16 data lines)

to an 8-bit wide external memory (8 data lines)

- Word stored in FMC-FIFO
- System bus is released for other accesses
- FMC-FIFO content is transferred to external memory using 1 to 4 bus cycles

ZHAW, Computer Engineering 22.12.2020

Reading a 32-bit Word from

a 32-bit wide external memory (32 data lines)

a 16-bit wide external memory (16 data lines)

an 8-bit wide external memory (8 data lines)

external bus

read word

read byte 1 read byte 2 read byte 3 read byte 4

t

system bus has to wait until all data is available

■ FMC – Memory Banks¹⁾

- ST defined address ranges for each type of memory
- Organized in 6 banks
- Each bank allows connection of 4 devices
- Pins are multiplexed
 - Not possible to fully use all the banks simultaneously

0x6000'0000 Bank 1 SRAM / NOR / **PSRAM** 4 x 64 MB 0x6FFF'FFFF 0x7000'0000 Bank 2 4 x 64 MB 0x7FFF'FFFF NAND flash 0x8000'0000 Bank 3 4 x 64 MB 0x8FFF'FFFF 0x9000'0000 Bank 4 PC card 4 x 64 MB 0x9FFF'FFFF unused 0xC000'0000 SDRAM Bank 1 4 x 64 MB 0xCFFF'FFFF **SDRAM** 0xD000'0000 SDRAM Bank 2 4 x 64 MB 0xDFFF'FFFF

Memory banks and their location in memory

¹⁾ An organizational unit of memory. Bank size is architecture dependent

Asynchronous SRAM Device

Asynchronous SRAM Device

I.e. the device does not have a clock signal.

Alternatively the control logic can be represented with a truth table

CS	ŌE	WE	I/O	Function
L	L	Н	DATA OUT	Read Data
L	Χ	L	DATA IN	Write Data
L	Н	Н	HIGH-Z	Outputs Disabled
Н	Χ	X	HIGH-Z	Deselected

Some memory vendors call the signal $\overline{\text{CE}}$ (chip enable) instead of $\overline{\text{CS}}$

Exercise: Example Asynchronous SRAM Device

- Use the Data Sheet IDT 71V124SA15TYG
 - Type of memory?
 - Memory size in bit?
 - Organization ___K x _ bit ?
 - Number of pins?
 - Operating voltage?
 - Which inputs and outputs does the device have ?
 - Truth Table of the control logic?
 - Access time (read und write) in ns?
 - Number of accesses per second (in MHz)?
 - Maximum power [mW] in operating and in full standby ?

FMC Signals for SRAMs

Prefix 'N' → active-low signal

FMC signal name	I/O	Function
A[25:0]	OUT	Address bus
D[31:0]	INOUT	Data bidirectional bus
NE[4:1]	OUT	Four enable lines 1)
NOE	OUT	Output enable
NWE	OUT	Write enable
NBL[3:0]	OUT	Byte enable

see "Synchronous Bus" in slide set "Microcontroller Basics"

- Write accesses: NBL[3:0] indicate which bytes shall be updated (see lab)
 - Example 32-bit data bus D[31:0]

•	Word	access
	VVOIG	access

$$\rightarrow$$
 all four bytes NBL[3:0] = 0000b

→ two out of four bytes e.g.
$$NBL[3:0] = 0011b$$

→ one out of four bytes e.g. $NBL[3:0] = 1011b$

Example 32K x 8 bit SRAM

Connecting an external 8-bit asynchronous SRAM device

FMC – SRAM (Bank 1)

- Select one out of four SRAM devices
 - Address bits 27:26 → Encoded in signals NE[4:1]

A[27:26]	Enable	Memory Device
00	NE[1]	SRAM 1
01	NE[2]	SRAM 2
10	NE[3]	SRAM 3
11	NE[4]	SRAM 4

Data bus configured in control registers

SRAM4 as 32-bit

- Example

•	SRAM1 as 32-bit	→ D[31:0]
>	SRAM2 as 8-bit	\rightarrow D[7:0] only
>	SRAM3 as 16-bit	→ D[15:0] only

 \rightarrow D[31:0]

0x6000'0000 SRAM 1 64 MBytes 0x63FF'FFFF 0x6400'0000 Bank 1 NOR/PSRAM/SRAM SRAM 2 64 MBytes 0x67FF'FFFF 0x6800'0000 SRAM 3 64 MBytes 0x6BFF'FFFF 0x6C00'0000 SRAM 4 64 MBytes 0x6FFF'FFFF Often the blocks are only

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

used partially

Memory Banks and their Locations in Memory

CT System Overview

Example (revisited)

Memory map of our previous 32K x 8 bit SRAM

Timing on External Bus

Figures from STM32F4xxx reference manual p. 1591, chapter 37, Flexible Memory Controller

As seen from the microcontroller

Read Access

Write Access

Configuration of FMC

- Location of FMC control registers
 - 0xA000'0000 0xA000'0FFF
- Configure FMC according to SRAM datasheet
 - Data bus size → 8-bit, 16-bit, 32-bit
 - Access times
 - and others

The FMC Registers allow configuration for many different memory types. However we only cover a few selected parameters for asynchronous SRAM.

Configuring the FMC for SRAM

ADDSET and DATAST

→ Adapt STM32F4 to the speed of the memory

- Configuring length of access cycles
- HCLK programmed to 84 MHz during start-up of CT-Board
 - HCLK = Frequency of CPU and internal bus

NBL[1:0] NEX NOE High D[31:0] ADDSET HCLK cycles Memory transaction Memory transaction data driven by memory DATAST HCLK cycles

Write Access

Conclusions

Semiconductor Memories

NV - RAM

non-volatile RAM

Non-volatile

Holds data even if power is turned off.

PROM

Programmable Read Only Memory

- Programmed through fuses/masks
- Factory or one time user programmed
- Irreversible programming

EEPROM

Electrically Erasable PROM

- Floating gate technology
- Random read and write
- Low density→ expensive

Flash

Block-wise EEPROM

- High density
- Medium read latency
- Sectors for erasing
- NOR: random read access → allows direct code execution
- NAND: High density, block-wise access SD-cards, SSD

Looses data whe

VolatileLooses data when power is turned off.

SRAM

Static Random Access Memory

- Flip-flop based structure
- Static: No refresh required
- Each access requires the same amount of time

SDRAM

Synchronous Dynamic Random Access Memory

- Capacitor-based
- Refresh
- High density
- Synchronous interface
- Latency
- Block-wise transfers

Flexible Memory Controller STM32

Configurable bridge to connect external memories → e.g. asynchronous SRAM, NOR flashes, etc.

For Information Only

TRENDS AND FIGURES

SDRAM – Synchronous Dynamic RAM

Voltage and Speed

Different generations of SDRAM

SDR Single Data Rate

DDR Dual Data Rate

uses rising and falling clock edge

SDRAM – Synchronous Dynamic RAM

Densities

DRAM Density & Power Supply for Consumer Applications in 2009~2010

SAMSUNG supports 1.5V, thus meeting customer demand in a wide range of applications.

SDRAM – Synchronous Dynamic RAM

Peak Bandwidth

Source: HP: Memory technology evolution: an overview of system memory technologies

Non-volatile Memory – Flash

Flash Densities

Source: Micron Technology, Inc., 2014

Managed NAND includes a controller for tasks like error correction.