30.09.03

日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日
Date of Application:

2003年 1月14日

REC'D 13 NOV 2003

WIPO

PCT

出 願 番 号 Application Number:

特願2003-006192

[ST. 10/C]:

[JP2003-006192]

出 願 人
Applicant(s):

三菱レイヨン・エンジニアリング株式会社

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

特許庁長官 Commissioner, Japan Patent Office 2003年10月31日

今井康

Best Available Copy

【書類名】

特許願

【整理番号】

N02194

【あて先】

特許庁長官殿

【国際特許分類】

D04H 1/46

【発明者】

【住所又は居所】

東京都港区港南一丁目6番41号 三菱レイヨン・エン

ジニアリング株式会社内

【氏名】

谷口 正博

【発明者】

【住所又は居所】

広島県大竹市御幸町20番1号 三菱レイヨン・エンジ

ニアリング株式会社大竹事業所内

【氏名】

鈴木 富夫

【発明者】

【住所又は居所】

愛知県豊橋市牛川通四丁目一番地の2 三菱レイヨン・

エンジニアリング株式会社豊橋事業所内

【氏名】

清水 伸一

【特許出願人】

【識別番号】

000176741

【氏名又は名称】

三菱レイヨン・エンジニアリング株式会社

【先の出願に基づく優先権主張】

【出願番号】

特願2002-295456

【出願日】

平成14年10月 8日

【代理人】

【識別番号】

100091948

【弁理士】

【氏名又は名称】 野口 武男

【選任した代理人】

【識別番号】 100119699

【弁理士】

【氏名又は名称】 塩澤 克利

【手数料の表示】

【予納台帳番号】 011095

【納付金額】

21,000円

【提出物件の目録】

【物件名】 明細書 1

【物件名】 図面 1

【物件名】 要約書 1

【包括委任状番号】 9811278

【プルーフの要否】 要

【発明の名称】 加圧蒸気噴出ノズルと同ノズルを用いた不織布の製造方法及び 製造装置

【特許請求の範囲】

【請求項1】 一端に加圧蒸気供給管に接続する蒸気導入口を、他端に外部の蒸気排出管に接続する蒸気排出口を有するとともに、下面の長さ方向に沿って延びる開口を有する中空筒状のノズルホルダーと、

前記ノズルホルダーの下面に脱着可能に配され、前記開口に対向して形成された多数のノズル孔を有するノズル部材と、

を備えてなることを特徴とする加圧蒸気噴出ノズル。

【請求項2】 前記中空筒状のノズルホルダーが円筒状のノズルホルダーである請求項1記載の加圧蒸気噴出ノズル。

【請求項3】 前記ノズルホルダーの内部に高メッシュの円筒状フィルターが同一軸線上に配されてなる請求項1又は2記載の加圧蒸気噴出ノズル。

【請求項4】 前記ノズルホルダーの下面に形成される開口が、同ホルダーの 長さ方向に連続して形成されるスリット状の開口である請求項1~3のいずれか に記載の加圧蒸気噴出ノズル。

【請求項5】 前記ノズルホルダーの下面に形成される開口が、同ホルダーの 長さ方向に千鳥状に形成された多数の小孔である請求項1~3のいずれかに記載 の加圧蒸気噴出ノズル。

【請求項6】 前記ノズル部材が多数のノズル孔を有するノズルプレートと同 ノズルプレートを支持するプレート支持部材とから構成され、前記ノズル孔が筒 孔を有してなる請求項1記載の加圧蒸気噴出ノズル。

【請求項7】 前記筒孔の形状が円筒状である請求項6記載の加圧蒸気噴出ノズル。

【請求項8】 前記ノズル孔の筒孔上端に前記ノズルプレートの長手方向に連続する逆台形断面の連続溝部を更に有してなる請求項6又は7記載の加圧蒸気噴出ノズル。

【請求項9】 前記円筒状の各筒孔上端に逆円錐台孔を更に有してなる請求項

【請求項10】 前記筒孔の高さと内径との比の値が $1\sim 2$ に設定されてなる 請求項 $7\sim 9$ のいずれかに記載の加圧蒸気噴出ノズル。

【請求項11】 前記ノズル孔が前記筒孔の下端周縁からその口啌内に向けて 同心上に延出するリング片を有してなる請求項6記載の加圧蒸気噴出ノズル。

【請求項12】 前記ノズルプレートの板厚が $0.5\sim1\,\mathrm{mm}$ である請求項 $6\sim1\,1$ のいずれかに記載の加圧蒸気噴出ノズル。

【請求項13】 前記ノズル孔の蒸気噴出口内径が0.05~1mm、同ノズル間のピッチが0.5~3mmである請求項12記載の加圧蒸気噴出ノズル。

【請求項14】 前記ノズル部材が、上記ノズルホルダーの下端開口に連通する船形の凹陥溝部と、同凹陥溝部の船底部に沿って形成された矩形断面溝部と、同矩形断面溝部の長さ方向に沿って所定ピッチをもって形成された多数の逆円錐台孔と、各逆円錐台孔の下端に連続して形成された円筒状の筒孔とを備えてなる単一部材からなる請求項1記載の加圧蒸気噴出ノズル。

【請求項15】 前記ノズル部材の幅方向の下端面形状が下方に突出する湾曲面形状を有してなる請求項14記載の加圧蒸気噴出ノズル。

【請求項16】 前記円筒状の筒孔の高さと内径との比の値が1~2に設定されてなる請求項14又は15記載の加圧蒸気噴出ノズル。

【請求項17】 前記ノズル孔の蒸気噴出口内径が0.05~1mm、同ノズル間のピッチが0.5~3mmである請求項15又は16記載の加圧蒸気噴出ノズル。

【請求項18】 一端に加圧蒸気供給管に接続する蒸気導入口を、他端に外部の蒸気排出管に接続する蒸気排出口を有するとともに、下面の長さ方向に沿って延びる開口を有する中空筒状のノズルホルダーと、前記ノズルホルダーの下面に脱着可能に配され、前記開口に対向して形成された多数のノズル孔を有するノズル部材とを備えてなる加圧蒸気噴出ノズルを用いて、多数のノズル孔から走行する繊維ウェブの幅方向に加圧蒸気を連続して噴射することにより構成繊維を交絡させる不織布の製造方法であって、

始めに前記蒸気導入口から加圧蒸気を導入するとともに、その蒸気排出口から

同加圧蒸気を外部に排出すること、

前記加圧蒸気噴出ノズル内の温度を測定すること、

同ノズル内の温度が所要の温度に達したとき、蒸気排出路をトラップを介する ドレン抜き通路に切り換えて、前記蒸気の排出を停止させること、

蒸気の排出停止後に、繊維ウェブを前記ノズルの噴射ノズル孔に対面させて連続的に走行させ、噴射ノズル孔から噴出する加圧蒸気により繊維ウェブの構成繊維を交絡させること、及び

繊維ウェブを貫通する蒸気を吸引して外部に排出すること、

を含んでなることを特徴とする不織布の製造方法。

【請求項19】 前記加圧蒸気噴出ノズルを、走行する繊維ウェブの上面に対向させて配し、加圧蒸気を繊維ウェブの上面に向けて噴出させることを含んでなる請求項18記載の不織布の製造方法。

【請求項20】 前記加圧蒸気噴出ノズルを、走行する繊維ウェブの下面に対向させて配し、加圧蒸気を繊維ウェブの下面に向けて噴出させることを含んでなる請求項18記載の不織布の製造方法。

【請求項21】 前記繊維ウェブを多孔の繊維ウェブ担持移送体と多孔の押圧 移送体との間で挟持移送することを含んでなる請求項18~20のいずれかに記載の不織布の製造方法。

【請求項22】 前記加圧蒸気噴出ノズルの蒸気噴出側端部と前記押圧移送体 との間隔を0~30mm以下に設定することを含んでなる請求項21記載の不織 布の製造方法。

【請求項23】 前記加圧蒸気を加圧蒸気供給管の途中に配された蒸気貯留部に一旦貯留し、前記蒸気貯留部にて貯留される蒸気中の塵芥等を凝縮液とともに外部に排出すること、及び

前記蒸気貯留部を通過する加圧蒸気を前記加圧蒸気噴出ノズルの一端に導入すること、

を含んでなる請求項18~22のいずれかに記載の不織布の製造方法。

【請求項24】 前記蒸気貯留部と前記加圧蒸気噴出ノズルとの間の前記加圧 蒸気供給管内にて、加圧供給蒸気を更に加熱して過熱蒸気を生成させることを含

【請求項25】 前記加圧蒸気噴出ノズルに導入される蒸気圧が0.1~2M Paであり、加圧蒸気噴出ノズルから噴出される蒸気が過熱蒸気である請求項2 4記載の不織布の製造方法。

【請求項26】 蒸気噴出による繊維の交絡に先立って、形態仮固定のための前処理を施すことを含んでなる請求項18~25のいずれかに記載の不織布の製造方法。

【請求項27】 前記前処理が水分の付与を含んでなる請求項26記載の不織 布の製造方法。

【請求項28】 前記前処理が繊維ウェブの構成繊維の少なくとも一部を熱溶着させることを含んでなる請求項26記載の不織布の製造方法。

【請求項29】 加圧蒸気噴出ノズルの長手方向に形成された多数のノズル孔から対向して走行する繊維ウェブに加圧蒸気を噴射することにより、その構成繊維を交絡させて不織布を製造する装置であって、

前記加圧蒸気噴出ノズルの一端に、加圧蒸気供給管を介して接続された加圧蒸 気供給源と、

前記加圧蒸気噴出ノズルの他端に開閉バルブを介して接続された蒸気排出管と

前記加圧蒸気噴出ノズルに形成された多数の蒸気噴出ノズル孔に所定の間隔を おいて対向し、同加圧蒸気噴出ノズルを横切って一方向に移動する多孔の繊維ウェブ担持移送手段と、

同移送手段を挟んで前記加圧蒸気噴出ノズルと反対側に配された吸引手段と、 を備えてなることを特徴とする不織布の製造装置。

【請求項30】 前記加圧蒸気噴出ノズルが請求項1~17のいずれかに記載の加圧蒸気噴出ノズルである請求項29記載の不織布の製造装置。

【請求項31】 前記加圧蒸気噴出ノズルが走行する繊維ウェブの上方に配されてなる請求項29又は30記載の不織布の製造装置。

【請求項32】 前記加圧蒸気噴出ノズルが走行する繊維ウェブの下方に配されてなる請求項29又は30の不織布の製造装置。

【請求項33】 前記加圧蒸気噴出ノズルのノズル孔と前記繊維ウェブ担持移送手段との間に配され、同繊維ウェブ担持移送手段と協働して走行し、同繊維ウェブ担持移送手段との間で繊維ウェブを挟持して移送させる多孔の繊維ウェブ押圧移送手段を更に有してなる請求項29~32のいずれかに記載の不織布の製造装置。

【請求項34】 前記繊維ウェブ担持移送手段及び前記押圧移送手段が互いに 同期して駆動回転する多孔のエンドレスベルトからなり、

そのいずれかのエンドレスベルトの内側であって、上記加圧蒸気噴出ノズルの ノズル孔に対向する部位にスリット状の吸引開口を有する吸引手段を有してなる 請求項33記載の不織布の製造装置。

【請求項35】 前記繊維ウェブ押圧移送手段及び前記繊維ウェブ担持移送手段のいずれか一方が駆動回転するエンドレスベルトからなり、その他方が同エンドレスベルトと同期して駆動回転する多孔の回転ドラムからなり、

同前記エンドレスベルトと前記回転ドラムとが最も接近する部位であって、同 エンドレスベルト又は回転ドラムの内側にスリット状の吸引開口を有する吸引手 段を有してなる請求項33記載の不織布の製造装置。

【請求項36】 前記加圧蒸気噴出ノズルのノズル孔と繊維ウェブ押圧移送手段との間の間隙を調整する手段を有してなる請求項29記載の不織布の製造装置。

【請求項37】 前記繊維ウェブ押圧移送手段と前記繊維ウェブ担持移送手段の間の間隙を調整する第2の間隙調整手段を有してなる請求項29又は36記載の不織布の製造装置。

【請求項38】 前記加圧蒸気供給管の管路に蒸気貯留ポットが配されてなる 請求項29記載の不織布の製造装置。

【請求項39】 前記蒸気貯留ポットと前記加圧蒸気噴出ノズルの一端との間の加圧蒸気供給管の管路に加熱手段が配されてなる請求項38記載の不織布の製造装置。

【請求項40】 上記開閉バルブと前記加圧蒸気噴出ノズルの他端との間の蒸 気排出管の管路に、そこから分岐するトラップ管路を有してなる請求項29記載 の不織布の製造装置。

【請求項41】 上記繊維ウェブの移送方向の前記加圧蒸気噴出ノズルよりも 上流側に形態仮固定のための前処理手段を有してなる請求項29~40のいずれ かに記載の不織布の製造装置。

【請求項42】 前記前処理手段が水分付与装置である請求項41記載の不織布の製造装置。

【請求項43】 前記前処理手段が繊維ウェブの構成繊維の少なくとも一部を加熱溶着させる加熱装置である請求項41記載の不織布の製造装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、加圧蒸気流を噴射させる流体噴射ノズルとそれを用いた交絡不織布の製造方法及び製造装置に関する。

[0002]

【従来の技術】

従来から、高圧流体流を繊維ウェブに噴射して構成繊維同士を交絡させることにより交絡不織布を製造する技術は、例えば特開昭51-133579号公報、特開平9-256254号公報、特開2000-144564号公報などに開示されているように公知である。しかるに、これらの公報に開示された高圧流体には主として高圧液体が使われている。こうした高圧液体流の噴出による交絡不織布の製造では、液体使用量が多く液体の飛散防止設備に加えて、処理後の液体の排出にあたり大量の液体の清浄化処理設備が必要となるばかりでなく、得られる不織布の乾燥設備やそれに費やされる莫大な熱エネルギーを必要とする。また、液体の噴射に基づく騒音も激しく作業環境を悪化させている。

[0003]

一方、例えば上記特開昭 5 1 - 1 3 3 5 7 9 号公報及び特開 2 0 0 0 - 1 4 4 5 6 4 号公報では、高圧の液体に代えて高圧蒸気を使うこともある旨の記載がなされてはいるものの、繊維を積極的に交絡させるためのものでなかったり、或いは液体流と蒸気流の相違点を認識しないままに採用しているものであった。その

結果、これらの公報では液体流と蒸気流とを格別に区別せずに同一構造をもつ噴射ノズルが使われ、噴射蒸気に特有の挙動を考慮したノズル構造、或いは蒸気の供給機構や排出機構などに関しては具体的な開示が一切なされていない。

[0004]

しかして、上述のごとき高圧液体流による繊維交絡不織布の製造時の課題を解消すべく、例えば国際公開第95/06769号パンフレットや特開平7-310267号公報、特開平9-256254号公報には、高圧流体流による不織布の製造にあたり、高圧流体として積極的に蒸気を使うことを提案している。このように蒸気を使うと、液体使用量を大幅に減少させることができると同時にその排出処理設備も小型化でき、騒音の発生も低減されて作業環境の改善を図ることができるだけでなく、乾燥装置を排除又は小型化できて省エネルギーが実現でき、しかも液体流による繊維交絡不織布に特有な不織布表面に表出する交絡部分の模様の発生をほとんど消すことができる。

[0005]

前記国際公開第95/06769号パンフレットの不織布の製造方法によれば、繊維ウェブの構成繊維の全て又は一部に蒸気或いは過熱蒸気の温度よりも低い融点を有する繊維を配合し、液体流によりウェブの構成繊維を交絡させて予め布帛(不織布)を作成しておき、次いで同布帛表面から蒸気或いは過熱蒸気を布帛内部に向けて噴出して、ウェブの構成繊維のうち低融点の繊維を溶融させながら溶着させて最終製品(不織布)を製造するものである。また、前記特開平7-310267号公報に記載のウェブの交絡方法は高圧流体として水蒸気を用いることによってウェブ繊維を相互に交絡させるものである。一方の上記特開平9-256254号公報に開示された不織布の製造方法によれば、従来の高圧噴射水に代えて繊維ウェブに直接水蒸気を噴射して、そのときの温度低下により生じる霧状の水とともに作用させウェブの構成繊維を交絡させて不織布を製造している。

[0006]

【特許文献1】

特開昭 5 1 - 1 3 3 5 7 9 号公報

【特許文献2】

特開平7-310267号公報

【特許文献3】

特開平9-256254号公報

【特許文献4】

特開2000-144564号公報

【特許文献5】

国際公開第95/06769号パンフレット

[0007]

【発明が解決しようとする課題】

しかるに、上記特許文献5の内容を分析するかぎり、そこには高温の蒸気を使う点について言及はされているものの、その噴射時の蒸気圧やノズル孔の大きさ、形状など、蒸気による繊維交絡に特有の各種条件に関する格別の記載はない。このことから、同文献5に開示された高温の例えば過熱蒸気流による不織布の製造は、その蒸気流による繊維交絡が主目的ではなく、いわゆる蒸気熱をもって熱溶融性材料からなる繊維ウェブの構成繊維を溶融させることを主な目的としていることが理解できる。通常、高圧水流の噴射により製造される交絡不織布には、例えば上記特許文献4にも記載されているように、繊維ウェブ面に噴射流体による打撃痕や開孔痕が残る。

[0008]

前記特許文献5の不織布の製造方法では、繊維ウェブに対して蒸気を噴射する 前工程として、噴射水流による繊維交絡を行っている。従って、この噴射水流に より繊維交絡がなされた布帛にも、当然に上記打撃痕や開孔痕が残っており、そ こに噴射される高温蒸気は布帛全面にわたってその厚さ方向に貫通するものでは なく、主に前記打撃痕や開孔痕を通過するものと考えられる。勿論、このとき前 記打撃痕や開孔痕が形成されていない他のウェブ表面に存在する低融点の繊維も 同時に溶融する。このことは、同文献5の図4~図5にも前記打撃痕や開孔痕が 形成されていない領域においても繊維同士が融着している部分が存在することか らも認識できるところである。その結果、同図に示された不織布も柔軟性では従 来のポイント接着による不織布と変わるところがなく、特にその表面は多くの溶 着材料による硬化部分が存在することになる。

[0009]

また、上記特許文献 2 には、水蒸気の噴出ノズルの一形態の構造が図示されてはいるもの、同噴出ノズルの構造やサイズ並びに使用態様等について具体的に記載が一切なされていない。

[0010]

一方、上記特許文献3には、水蒸気の噴出ノズルの具体的構造が記載されてはいるが、同噴出ノズルに如何にして水蒸気を送り込み、そのノズルから如何なる条件下で高圧の水蒸気を均一に且つ連続して噴出させるかについては格別に記載されていない。この噴出に使われる水蒸気は、通常、僅かに添加剤を加えた工業用水が使われており、しかも各種の配管などを通過するため、同水蒸気には極く微細な異物が混合することがあり、噴出ノズル孔を閉塞させやすい。或いは、ノズルに導入された水蒸気の一部は凝縮してドレンとなってノズル孔の近くに溜まってノズル孔が閉塞されやすく、水蒸気が連続して噴出されずに間欠的に噴出されやすい。しかも、同文献3に開示されたノズルの構造も、液体流の噴射ノズルであれば好適に採用が可能ではあっても、蒸気の噴出ノズルとしては部品点数が多過ぎ複雑に過ぎる。

[0011]

本発明は、以上の課題を解決すべくなされたものであり、その目的は構造が簡単で、しかも加圧蒸気を均一に且つ連続して噴出させることができ、繊維ウェブの構成繊維の一部もしくは殆どを確実に交絡させて所要の強度が得られ、得られる不織布の表面の柔軟性が確保でき且つその内部形態の改善をも図ることを可能にする加圧蒸気噴出ノズルと、同ノズルを使って加圧蒸気を噴射させることにより繊維ウェブの構成繊維を確実に交絡させる効率的な不織布の製造方法、及び同ノズルを使った蒸気による高品質の繊維交絡不織布の連続製造装置を提供することにある。

[0012]

【課題を解決するための手段及び作用効果】

本発明に係る上記加圧蒸気噴出ノズルの基本構成は、一端に加圧蒸気供給管に

接続する蒸気導入口を、他端に外部の蒸気排出管に接続する蒸気排出口を有するとともに、下面の長さ方向に沿って延びる開口を有する中空筒状のノズルホルダーと、前記ノズルホルダーの下面に脱着可能に配され、前記開口に対向して形成された多数のノズル孔を有するノズル部材とを備えていることを特徴としている

[0013]

ここで最も特徴とする点は、ノズルホルダーの一端に蒸気導入口を、他端に蒸気排出口を有する点にある。蒸気噴出ノズルから、常に蒸気を噴出させていることはない。例えば、定期点検時や機械の停止時には蒸気の供給も停止させる。このように蒸気の噴出を停止させると、当然にノズル内の温度も急激に低下する。蒸気の噴出を再開させて不織布の製造を開始するには、蒸気噴出ノズルの内部を所定の温度まで昇温させる必要がある。この昇温時に、従来の噴出ノズルのごとく蒸気導入口以外を密閉状態に構成する場合には、ノズルホルダー内に導入される蒸気量はノズル孔から噴出する量に止まり、熱量の交換量が少なくノズル自体を昇温させるために長い時間がかかることになる。

[0014]

そのため、本発明にあっては、上述のごとくノズルホルダーの他端に蒸気排出口を設けて、同蒸気排出口に接続された蒸気排出管に、例えば後述するように開閉バルブなどを取り付けて蒸気排出口を開閉可能にする。いま、不織布製造装置を始動させる前に、ノズルホルダーに蒸気を導入する。このとき、蒸気排出口は開口しており、蒸気導入口から導入される蒸気を蒸気排出口を通して連続して外部に排出する。ノズルホルダーの温度を測定し、その温度が所定の高温に達すると、前記蒸気排出口を閉鎖する。この閉鎖と同時に蒸気導入口における蒸気圧を測定し、その蒸気圧が所定の圧力に達したとき不織布製造装置を始動させる。このときの始動までの時間は、ノズルホルダー内を通過する新たな高温蒸気によりノズルホルダーが速やかに昇温されるため、従来のごとく蒸気排出口が存在しない場合と較べると大幅に短縮される。

[0015]

本発明にあっては、中空筒状のノズルホルダーの形状としては、具体的には円

筒状のノズルホルダーや矩形状のノズルホルダーが挙げられ、特に円筒状のノズルホルダーが加圧蒸気の均一な流れや製作上の点から好ましく用いられる。また、実際の作業時には、かかるノズルホルダーの内部に高メッシュの筒状フイルター、例えば円筒状のノズルホルダーにおいては円筒状のフィルターを、また矩形状のノズルホルダーにおいては矩形状のフィルターを同一軸線上に配することが望ましいが、必ずしもこれらに限定されない。

[0016]

本発明にあっては、上述のように円筒状のノズルホルダーを用いる場合には、前記ノズルホルダーの内部に高メッシュの円筒状フィルターを同一軸線上に配することが望ましい。この場合、ノズルホルダーの一端に設けられた蒸気導入口から導入される蒸気は円筒状フィルターの内部へと導入され、同フィルターを通過してノズルプレートに形成されたノズル孔に達し、同ノズル孔から外部に噴出する。このとき、ノズルホルダーの内壁面における長手方向の圧力分布は円筒状フィルターにより均一化されるとともに、蒸気導入時に含まれる微細な異物が円筒状フィルターによって蒸気中から除去されるため、ノズルホルダーの長手方向に沿って形成されたノズル部材の多数のノズル孔を閉塞させることなく、同ノズル孔から均等な噴出圧をもって高圧蒸気が安定して噴出されるようになる。

[0017]

また、前記ノズルホルダーの下面に形成される上記開口は、ノズルホルダーの 長さ方向に連続して形成されるスリット状の開口であっても、或いはノズルホル ダーの長さ方向に千鳥状に形成された多数の小孔であってもよい。これらの開口 を介してノズル部材に形成されたノズル孔に達する蒸気の圧力は均圧化されノズ ル長手方向に対する蒸気の均一な噴射が可能となる。

[0018]

前記ノズル部材を多数のノズル孔を有するノズルプレートと同ノズルプレートを支持するプレート支持部材とから構成することができる。前記ノズル孔は筒孔を有していることが好ましい。前記筒孔の形状は単なる円筒状であってもよいが、前記ノズル孔の筒孔上端に連続する逆台形部を更に有するようにしても、或いは前記ノズル孔が前記筒孔の下端周縁からその口啐内に向けて同心上、好ましく

は同心円上に延出するリング片を有するようにしてもよい。更には、前記ノズル 孔の筒孔上端に前記ノズルプレートの長手方向に連続する逆台形断面の連続溝部 を有するようにしてもよいし、或いは前記円筒状の各筒孔上端に逆円錐台孔を有 するようにしてもよい。

[0019]

なお、前記筒孔、好ましくは円筒状の筒孔の高さと内径との比の値は1~2とすることが好ましい。その値が1より小さいと、蒸気流が柱状流となりにくく、2よりも大きいと、ノズル孔の径が微小であることとノズルプレートの板厚との関係で高精度の加工が難しい。また、ノズル孔を上述のように円筒状の筒孔の下端周縁からその口啌内に向けて同心円上に延出するリング片を有する構成とすると、ノズル孔から噴出する蒸気流がある点で集束するようになり、例えば繊維ウェブに対する噴出力が増して、同ウェブの表裏を貫通しやすくなる。前記集束点はノズル孔の径と蒸気圧とから決まる。

[0020]

前記ノズルプレートの板厚を 0.5~1 mm、前記ノズル孔の蒸気噴出口内径を 0.05~1 mm、同ノズル間のピッチを 0.5~3 mmとすることが好ましい。ノズルプレートの板厚が 0.5 mmより小さいと蒸気圧に耐え得るに十分な強度が得にくく、1 mmを越えると微細なノズル孔の高精度な加工が難しい。このノズル孔の形成加工には、放電加工やレーザ加工を採用できる。また、ノズル孔の蒸気噴出口内径が 0.05 mmより小さいとその加工が難しいばかりでなく、目詰まりを起こしやすくなり、1 mmを越えると蒸気噴出時に所要の噴出力が得にくくなる。ノズル間のピッチは 0.5~3 mmであれば、隣接するノズル孔から噴出する蒸気流との干渉がなく、同時に繊維ウェブの構成繊維間で充分な交絡が得られる。なお、ノズル間のピッチは、各ノズル孔の中心点間距離をいう。

[0021]

更に本発明にあっては、上記ノズル部材が、上記ノズルホルダーの下端開口に 連通する船形の凹陥溝部と、同凹陥溝部の船底部に沿って形成された矩形断面溝 部と、同矩形断面溝部の長さ方向に沿って所定ピッチをもって形成された多数の 逆円錐台孔と、各逆円錐台孔の下端に連続して形成された円筒状の筒孔とを備え てなる単一部材から構成することもできる。このようにノズル部材を単一部材で構成することにより部品点数が大幅に削減されるばかりでなく、ノズル孔の上記噴射開口端を繊維ウェブの噴射表面に直接接近させることが可能となって、加圧蒸気の断熱膨張による圧力損失が軽減され、よりウェブ内の貫通力が得られる。更には、前記ノズル部材の幅方向の下端面形状を下方に突出する湾曲面形状とすると、繊維ウェブの導入が容易になる。この発明にあっても、前記筒孔の高さと内径との比の値は1~2とすることが好ましく、また前記ノズル孔の蒸気噴出口内径を0.05~1mm、同ノズル間のピッチを0.5~3mmとすることが好ましい。この場合のノズル間のピッチも上記同様、各ノズル孔の中心点間距離をいう。

[0022]

以上の構成を備えた本発明の加圧蒸気噴出ノズルは、例えば次のような本発明 の不織布の製造方法に好適に適用される。

すなわち、不織布の製造方法に係る発明の基本構成は、一端に加圧蒸気供給管に接続する蒸気導入口を、他端に外部の蒸気排出管に接続する蒸気排出口を有するとともに、下面の長さ方向に沿って延びる開口を有する中空筒状のノズルホルダーと、前記ノズルホルダーの下面に脱着可能に配され、前記開口に対向して形成された多数のノズル孔を有するノズル部材とを備えてなる加圧蒸気噴出ノズルを用いて、多数のノズル孔から走行する繊維ウエブの幅方向に加圧蒸気を連続して噴射することにより構成繊維を交絡させる不織布の製造方法であって、始めに前記蒸気導入口から加圧蒸気を導入するとともに、その蒸気排出口から同加圧蒸気を外部に排出すること、前記加圧蒸気噴出ノズル内の温度を測定すること、同ノズル内の温度が所要の温度に達したとき、蒸気排出路をトラップを介するドレン抜き通路に切り換えて、前記蒸気の排出を停止させること、蒸気の排出停止後に、繊維ウェブを前記ノズルの噴射ノズル孔に対面させて連続的に走行させ、噴射ノズル孔から噴出する加圧蒸気により繊維ウェブの構成繊維を交絡させること、及び繊維ウェブを貫通する蒸気を吸引して外部に排出することを含んでなることを特徴とする不織布の製造方法にある。

[0023]

かかる製造方法は、次の基本構成を備えた本発明に係る不織布の製造装置により効率的に実施される。

すなわち、この製造装置の基本構成は加圧蒸気噴出ノズルの長手方向に形成された多数のノズル孔から、対向して走行する繊維ウェブに加圧蒸気を噴出することにより、その構成繊維を交絡させて不織布を製造する装置に関し、前記加圧蒸気噴出ノズルの一端に、加圧蒸気供給管を介して接続された加圧蒸気供給源と、前記加圧蒸気噴出ノズルの他端に開閉バルブを介して接続された蒸気排出管と、前記加圧蒸気噴出ノズルに形成された多数の加圧蒸気噴出ノズル孔に所定の間隔をおいて対向し、同加圧蒸気噴出ノズルを横切って一方向に移動する多孔の繊維ウェブ担持移送手段と、同移送手段を挟んで前記加圧蒸気噴出ノズルと反対側に配された吸引手段とを備えることを特徴としている。前記加圧蒸気噴出ノズルとしては上述の本発明に係る加圧蒸気噴出ノズルを採用することが望ましい。

[0024]

通常は、前記加圧蒸気噴出ノズルを走行する繊維ウェブの上方に配して、繊維ウェブの上面に向けて加圧蒸気噴出流を付与するが、前記加圧蒸気噴出ノズルを走行する繊維ウェブの下方に配して加圧蒸気の噴出流を繊維ウェブの下面から上方に向けて付与することもできる。このように加圧蒸気の噴出流を繊維ウェブの下方から上方に向けて噴出させるときは、ノズルホルダーの上面側に配されたノズル孔に蒸気の凝縮液が溜まりにくくなり、ノズル孔の目詰まりなどが発生せず、安定した蒸気の噴出が可能となるため好ましい。

[0025]

また、前記加圧蒸気噴出ノズルのノズル孔と前記繊維ウェブ担持移送手段との間に、同繊維ウェブ移送手段と協働して走行し、同繊維ウェブ担持移送手段との間で繊維ウェブを挟持して移送させる多孔の繊維ウェブ押圧移送手段を更に配することが好ましい。このとき、前記繊維ウェブ担持移送手段と前記押圧移送手段との双方が、駆動源により互いに同期して駆動回転する多孔のエンドレスベルトであってもよく、或いは前記繊維ウェブ押圧移送手段及び前記繊維ウェブ担持移送手段のいずれか一方が駆動回転するエンドレスベルトであって、その他方が同エンドレスベルトと同期して駆動回転する多孔の回転ドラムであってもよい。

前者の場合には、そのいずれかのエンドレスベルトの内側であって、上記加圧蒸気噴出ノズルのノズル孔に対向する部位にスリット状の吸引開口を有する吸引手段を有しているが、後者の場合には、前記エンドレスベルトと前記回転ドラムとが最も接近する部位であって、同エンドレスベルト又は回転ドラムの内側にスリット状の吸引開口を有する吸引手段を有していることが望ましい。これらの吸引手段はいずれも固設されており、エンドレスベルト又は回転ドラムが上記スリット状の吸引開口面に近接して回動する。

[0027]

前記繊維ウェブ押圧移送手段及び前記繊維ウェブ担持移送手段のいずれか一方に多孔の回転ドラムを採用すると、装置全体の小型化が達成できる。この回転ドラム及び吸引手段の構造と配置には丸網抄紙機に採用される回転ドラム及び吸引手段と実質的に同一の構造と配置を採用することができる。また、多孔のエンドレスベルト及び回転ドラムとして、例えば金網やパンチングメタルを使うことができる。このとき、繊維ウェブ押圧移送手段のメッシュ度は繊維ウェブ担持移送手段のそれを越えないことが望ましい。一般的に、これらの各移送手段のメッシュ度を20~40(個/2.54cm)とすることが望ましく、特に繊維ウェブ押圧移送手段のメッシュ度が20(個/2.54cm)より少ないと同押圧移送手段により押圧される表面側の構成繊維がメッシュを通り抜けて表面に飛び出し、横方向に拡がってしまう。また、特に繊維ウェブ押圧移送手段のメッシュ度が40(個/2.54cm)を越えると、目詰まりが発生しやすく、噴出蒸気が繊維ウェブ押圧移送手段の表面に沿って拡散し繊維ウェブに対する噴出蒸気の貫通を妨げる。繊維ウェブ担持移送手段のメッシュ度についても、上記数値範囲を外れると高品質の不織布の製造が難しくなる。

[0028]

ところで、前記加圧蒸気噴出ノズルのノズル孔と繊維ウェブ押圧移送手段との間の間隙は出来るかぎり小さい方が好ましく、可能であれば直接摺接させることが最も好ましい。しかし、加圧蒸気噴出ノズルのノズル孔と繊維ウェブ押圧移送手段とを摺接させると、両者の摩耗による損傷が激しく、所要の耐久性が得られ

ない。そこで、加圧蒸気噴出ノズルのノズル孔と繊維ウェブ押圧移送手段との間に、その間隙を調整する手段を有していることが望ましい。この間隙調整手段により、加圧蒸気噴出ノズルのノズル孔と繊維ウェブ押圧移送手段との間の間隙を最適に調整することができ、同時に装置の耐久性が確保される。また、前記繊維ウェブ押圧移送手段と前記繊維ウェブ担持移送手段の間の間隙を調整する第2の間隙調整手段を設けることもできる。これは、繊維ウェブの構成繊維材料やウェブ厚に対応して、その挟持力を調整するのに好適である。

[0029]

また、本発明に係る不織布の製造装置にあっては、上記加圧蒸気供給管の管路に蒸気貯留ポットを配して、同蒸気貯留ポットに一旦蒸気を貯留し、そこに溜まる蒸気中の塵芥等を凝縮液とともに、例えばトラップを介して外部に排出することが好ましい。更に、前記蒸気貯留ポットと前記加圧蒸気噴出ノズルの一端との間の加圧蒸気供給管の管路に加熱手段を配し、前記貯留ポットと前記蒸気噴出ノズルとの間にて、加圧蒸気の前記加熱蒸気供給管内を通過する蒸気を加熱して過熱蒸気を生成させることにより、繊維ウェブに所望の高圧下における高温の蒸気を噴出させることができるため好ましい。このとき、前記蒸気噴出ノズルに導入される蒸気圧を0.1~2MPaとすると、蒸気を繊維ウェブの表裏に確実に貫通させることができるため好ましい。

[0030]

蒸気噴出ノズルから噴出する加圧蒸気は、ノズル孔から外部に噴出すると同時に断熱膨張により急激に温度が低下する。この温度の低下により蒸気が凝縮して霧状の液体となりやすく、周辺に吹き上がり高圧流体ではなくなるため、繊維ウェブの内部にまで到達しにくくなる。過熱蒸気は飽和蒸気圧の下で飽和温度以上の温度にまで高温化された蒸気であり、飽和温度と過熱温度との中間では凝縮液化しににくなる。そのため、蒸気噴出ノズルから噴出する過熱蒸気は繊維ウェブに当たっても凝縮することなく、その内部まで浸入して貫通し、周辺の繊維を加熱しながら交絡させる。従って、この加熱蒸気の通過により繊維の交絡と熱セットとが同時に行われるようになる。

[0031]

本発明の不織布の製造装置にあっても、繊維ウェブの移送方向にあって、前記 加圧蒸気噴出ノズルよりも上流側に蒸気噴出ノズルによるウェブ内の繊維相互の 交絡を容易化するための前処理手段を配しておくことが望ましい。

上述のように蒸気の噴出により繊維を交絡させる前段で、繊維ウェブを構成する繊維相互の距離を短くするような前処理を行うことにより高圧蒸気の噴射によっても繊維ウェブ内の繊維相互の交絡を斑なく効率的に行うことが出来る。

本発明にあって、前記交絡の容易化手段としては、繊維ウェブの表面に単に液体を噴霧する程度でも十分であるが、例えば従来の液体流やニードルパンチによる繊維交絡を採用することもできる。例えば、水にぬらした場合、ウェブが見かけ上薄くなり繊維間相互の距離が短くなることにより交絡が容易に出来る。この前処理は噴出蒸気によるウェブ表面からの繊維の毛羽立ちや飛散防止にも有効である。更には、前記前処理として繊維ウェブの構成繊維の少なくとも一部に低融点の繊維を混在させておき、これをを熱溶着させるべく加熱装置を配しておくこともできる。

[0032]

また、本発明に係る不織布の製造装置にあって、上記開閉バルブと前記加圧蒸気噴出ノズルの他端との間の蒸気排出管の管路から分岐するトラップ管路を配することもできる。上述のごとく装置の稼働開始に先立って、蒸気噴出ノズルの蒸気排出口に接続された蒸気排出管に設けられた開閉バルブを開き、蒸気噴出ノズルの一端から加圧蒸気を導入して、その他端の蒸気排出口から蒸気を排出し、蒸気噴出ノズルの内部温度が所定の温度まで上がったとき、前記開閉バルブを閉じる。

[0033]

上述のように、蒸気排出管の管路から分岐するトラップ管路を設けておくと、 開閉バルブが閉じられたのちも、蒸気噴出ノズル内に発生する凝縮液や蒸気中に 含まれる微細な異物などが凝縮液とともに蒸気排出管を介してトラップ管路へと 流れ、適時に外部へと排出されるようになり、装置の稼働時にも凝縮液や微細な 異物によりノズル孔が詰まることがなく、全てのノズル孔から安定して蒸気を噴 出させることができるようになる。こうした本発明の製造方法及び製造装置に適

[0034]

【発明の実施の形態】

以下、本発明の代表的な実施形態を図面に基づいて具体的に説明する。

図1~図4は、本発明に係る加圧蒸気噴出ノズルの代表的な第1構造例を示している。この第1構造例による加圧蒸気噴出ノズル10は、ノズルホルダー11と、同ノズルホルダー11の両端部に溶接により固着された第1及び第2フランジ12,13と、前記ノズルホルダー11の内部に挿通されて両端部を第1及び第2フランジ12,13により支持された円筒状の高メッシュフィルター14と、前記ノズルホルダー11の下面に沿って溶接又はボルト等により固着される多数のノズル孔をもつノズル部材15とを備えている。図示例によるノズル部材15は、第1の及び第2のノズルプレート支持部材15a,15bと、第1及び第2のノズルプレート支持部材15a,15bの間に固定用ボルトによって締結されるノズルプレート16とを備えている。

[0035]

前記ノズルホルダー11の蒸気導入側端部に固着された第1フランジ12は中心線に沿って大径部12a及び小径部12bとからなる貫通孔12cが形成されており、図示せぬ加圧蒸気供給源に接続された図示せぬ加圧蒸気供給管にプラグ17を介して接続される。前記ノズルホルダー11の蒸気排出側端部に固着された第2フランジ13も、その中心線に沿って大径部13a及び小径部13bとからなる貫通孔13cが形成されており、図示せぬ排気ファンに接続された図示せぬ蒸気排出管と接続される。前記高メッシュフィルター14の両端部には、前記第1及び第2フランジ12,13の各大径部12a,13aに気密に固設されるリング状の固着部材18,19を固着してある。

[0036]

前記ノズルホルダー11の下面部には、その両端部を残して内部空間に達するまで平面的に切除されて切除面11aを形成している。その結果、ノズルホルダー11の下面中央には長手方向に延びるスリット状開口11bが形成される。上記ノズル部材15は、図1及び図2に示すように、角柱状の第1ノズルプレート支持部材15aと同第1支持部材15aと同じ長さと幅を有する板状の第2ノズルプレート支持部材15bとから構成される。第1ノズルプレート支持部材15aの下面中央部にはその長手方向の両端部を除いて長手方向に延びる凹陥部15aが形成されている。また、その上面中央部には、前記凹陥部15a、に通じる多数の貫通孔15a、が図4に拡大して示すように長手方向に千鳥状に配されて形成されている。

[0037]

一方、前記第2ノズルプレート支持部材15bには、図4に拡大して示すように、前記凹陥部15a'に対応する部位に長手方向に延びるスリット状の開口15b'が形成されている。このスリット状開口15b'の断面は、前記凹陥部15a'の対向側に縦長の矩形断面を呈し、その下端に連続して下方に拡開する台形断面を呈している。また、第2ノズルプレート支持部材15bの前記スリット状開口15b'が形成された部位は他の部分よりも所定の幅をもって薄肉部15b'に形成され、この薄肉部15b'に対向する第1ノズルプレート支持部材15aの下面は、前記薄肉部15b'に嵌合する突出部15cを有している。

[0038]

上記ノズルプレート16は前記薄肉部15b″に嵌め込まれる大きさと形状を有する細長い薄板片からなり、その幅方向の中央には所定のピッチをもって長手方向に一列又は多列に並んで形成された多数のノズル孔16aを有している。第1ノズルプレート支持部材15aは、図1及び図3に示すように、同第1ノズルプレート支持部材15aの上面をノズルホルダー11の上記切除面11aに密接させた状態で、溶接により固設一体化されている。前記ノズルプレート16は、上記第1ノズルプレート支持部材15aの突出部15cと第2ノズルプレート支持部材15bの薄肉部15b″との合わせ面の間にて挟持された状態で、第1ノズルプレート支持部材15bとがOリンズルプレート支持部材15bとがOリン

[0039]

上記ノズル孔16aは単なる円筒形のみならず、図5~図7に示すような形状とすることができる。図5に示すノズル孔16aの形状は、上部が逆円錐台形であり、その逆円錐台形に連続する下部を円筒形に形成している。この孔形状を採用するときは、同図に示すように、円筒形の高さをL、円筒形の口径をDとしたとき、L/Dの値を1~2とすることが、噴射流の良好な収束性の確保と高精度の孔加工を可能にする両面から望ましい。

[0040]

図6はノズルプレート16の上面に逆台形断面の溝を形成するとともに、その底面に長さ方向に所定のピッチをもって多数の円筒孔を形成しており、更にその円筒孔列に沿った左右両端を切除している。このとき突出する円筒孔の先端稜線部を円弧状に面加工すれば、上記噴出時に同ノズル孔16 aを繊維ウェブに接触又は接近させても、繊維ウェブの表面繊維を乱すことがない。図7に示すノズル孔16 aの形状は、円筒形の孔の下端周縁から内側に向けて同心円上に延出するリング片16 a'を形成している。かかる孔形状を採用することにより、同ノズル孔16 aから噴出される高圧蒸気は集束流となる。

[0041]

かかる構成を備えた加圧蒸気噴出ノズル10によれば、後述するように、例えば加圧蒸気噴出ノズル10から高温高圧の蒸気を噴出させるとき、始動時にはパイプ状ノズルホルダー11の一端から蒸気を導入して、その他端から放出させれば、高温高圧の新鮮な蒸気がノズルホルダー11の内部を何らの障害もなく通過するため、温度の低下したノズルホルダー11を短時間で所定の温度まで昇温させることができる。これが、従来のようにノズルホルダーに蒸気の導入開口のみが設けられているときは、ノズルホルダーに新鮮な高温高圧の蒸気を導入しても、蒸気はノズルホルダーの内部を流通せず、該ホルダー内に充満するだけであるため、熱量の交換が行われず蒸気の凝縮が起こりやすくなり、ノズルホルダーの

[0042]

前記ノズルプレート16の板厚は0.5~1mmが好ましい。0.5mmより小さいと蒸気圧に耐え得るに十分な強度が得にくく、1mmを越えると微細なノズル孔16aの高精度な加工が難しい。このノズル孔16aの形成加工には、放電加工やレーザ加工が採用される。また、ノズル孔16aの蒸気噴出口径が0.05mmより小さいとその加工が困難であるばかりでなく、目詰まりを起こしやすくなり、1mmを越えると蒸気噴出時に所要の噴出力が得にくくなる。ノズル間のピッチは0.5~3mmであれば、隣接するノズル孔16aから噴出する蒸気流との干渉がなく、同時に繊維ウェブの構成繊維間で十分な交絡が得られる。

[0043]

図8は、本発明に係る加圧蒸気噴出ノズルの第2構造例を示している。この第2構造例と上述の第1構造例との間で異なるところは、ノズルホルダー11の切除面11aに溶接により固着された第1ノズルプレート支持部材15aの構造にある。この第2構造例によれば、前記第1ノズルプレート支持部材15aから千鳥状に配列された貫通孔15a″が排除され、上記凹陥部15a′をそのままノズルホルダー11の切除面11aに形成されたスリット状開口11bに連通させている。これは、高温高圧の蒸気にあっては、ノズルホルダー11内の蒸気圧が安定状態にあると、その長さ方向で圧力分布に殆ど変動がないことと、前記貫通孔15a″の存在により反対に蒸気流が乱されることによる。また、第1ノズルプレート支持部材15aから多数の貫通孔15a″を排除するため、構造が簡略化され、その加工も簡単になる。

[0044]

図9は、本発明に係る加圧蒸気噴出ノズルの第3構造例を示している。この第3構造例と上述の第1構造例との間で異なるところは、上記ノズルホルダー11の周囲を下面を開口させた円筒状ジャケット22で被包し、その開口端部を上記第1ノズルプレート支持部材15aに溶接により固設している点にある。この円筒状ジャケット22内に蒸気や熱媒等の加熱媒体を供給し加熱することにより外気による冷却作用でノズルホルダー11内部で蒸気の部分的な凝縮が発生するこ

[0045]

図10は、本発明に係る加圧蒸気噴出ノズルの第4構造例を示している。この第4構造例と上記第3構造例との間で異なるところは、上記第1構造例と第2構造例との相違点と同様に、ノズルホルダー11の切除面11aに溶接により固着された第1ノズルプレート支持部材15aの構造にある。この第4構造例によれば、前記第3構造例における前記第1ノズルプレート支持部材15aから千鳥状に配列された貫通孔15a″を排除し、上記凹陥部15a′をそのままノズルホルダー11の切除面11aに形成されたスリット状開口11bに連通させている。その機能は、第2構造例における機能に加えて、更に第3構造例の上記機能を有している。

[0046]

図11~図15は、本発明の第2実施形態を示している。この実施形態において、上述の第1~第4構造例からなる実施形態と異なるところは、ノズル部材23が上記実施形態のごとく第1及び第2ノズルプレート支持部材15a,15bの分割片から構成されずに、単一の部材から構成されており、同ノズル部材23に直接ノズル孔26を形成している点にある。そのため、上述の実施形態のごとく別体としてのノズルプレート16をも不要としている。

[0047]

この第2実施形態による前記ノズル部材23の上面には、上記ノズルホルダー11の下面中央に形成された長手方向に延びるスリット状開口11bに連通する船形の凹陥溝部24と、同凹陥溝部24の船底部に沿って形成された矩形断面をもつ溝部25と、同矩形断面溝部25の長さ方向に沿って所定ピッチをもって形成された多数の逆円錐台孔26aと、各逆円錐台孔26aの下端に連続して形成された多数の逆円錐台孔26aと、各逆円錐台孔26a及び円筒孔26bが、たの実施形態におけるノズル孔26を構成する。更に、前記ノズル部材の外観形状は、正面視では細長い矩形状とされ、側面視では下面が下方に突出する湾曲形状を有している(図13参照)。

このように、本実施形態によるノズル部材23が単一部材により構成され、上記実施形態のごとくノズル部材15がノズルプレート16と別体に構成されるとともに、同ノズル部材15も第1及び第2のノズルプレート支持部材15a,15bに分割されていないため、部品点数が低減されるばかりでなく、その組付作業の煩雑性が排除される。特に、上記第1実施形態では、ノズル孔16aはノズルプレート16に形成されており、繊維ウェブとの対向面は直接ノズル孔16aの上記噴出側開口ではなく、第2ノズルプレート支持部材15bに形成されたスリット状開口15b'を介しているが、本実施形態ではノズル孔26を直接繊維ウェブに対向させることができるため、ノズル孔26の上記噴出開口端と繊維ウェブとの間隙を任意に設定でき、より効率的な繊維交絡を実現させることができる。

[0049]

また、本実施形態によれば、上記船形の凹陥溝部24と同凹陥溝部24の船底部に沿って形成された矩形断面をもつ溝部25とを同じノズル部材23に形成するため、蒸気の損失がなく、更にはノズル部材自体の側面視形態を下面が下方に突出する湾曲形状(図13参照)としているため、繊維ウェブの走行時に繊維ウェブとの接触が領域を少なくでき、繊維ウェブの走行がより円滑化される。また、この実施形態にあっても、上記第1実施形態と同様に、前記円筒孔26bの高さと内径との比の値を1~2に設定することが望ましく、同円筒孔26bの径は0.1~1mm、同ノズル孔26間のピッチを0.2~3mmに設定している。

[0050]

図16及び図17は、これらの加圧蒸気噴出ノズル10が好適に適用された本発明に係る不織布製造工程の第1実施形態を概要で示している。前記加圧蒸気噴出ノズル10の下方には、所定の間隔をおいてエンドレスベルト30が配されている。このエンドレスベルト30は前記加圧蒸気噴出ノズル10を横切るようにして一方向に回動する。そのため、同エンドレスベルト30の両端は、図示せぬ駆動モータにより駆動される駆動ロール31及び従動ロール32により駆動支持されるとともに、下方をテンションローラ33にて支持し、エンドレスベルト3

[0051]

そのメッシュ度は任意に設定される。また、前記加圧蒸気噴出ノズル10とエンドレスベルト30を移送される繊維ウェブとの間隔は、繊維ウェブの繊維密度や厚さにより0~30mm以下に設定する。30mmを越えるものでは噴出蒸気流の温度と勢いが低下する。前記加圧蒸気噴出ノズル10に導入される蒸気圧は、繊維ウェブの構成繊維の材質や繊維密度に基づいて、0.1~2MPaとすることが望ましく、蒸気噴出ノズルから噴出される蒸気を過熱蒸気とすれば、ノズル孔16aから噴出する過熱蒸気が断熱膨張による温度低下を起こしても、霧状の蒸気とはならず霧散することもなくなる。

[0052]

前記加圧蒸気噴出ノズル10の設置部位に対応する前記エンドレスベルト30を挟んだ下方にはサクション手段が配されている。本実施形態では、同サクション手段はサクションボックス40と、同サクションボックス40にセパレータタンク41を介して配管により連結された真空ポンプ42と、同真空ポンプ42の排出側に連結されたミストセパレータ43とから構成される。ここで、前記セパレータタンク41はサクションボックス40により吸引される蒸気を気液に分離するための気液分離タンクであり、前記ミストセパレータ43は真空ポンプ42から排出される蒸気中の異物や有害ガス或いは液体などを蒸気から除去して、清浄な蒸気(気体)を外部に放出するとともに、真空ポンプから発生する騒音を低減化するサイレンサーとしての機能も有する。

[0053]

上記加圧蒸気噴出ノズル10は既述した図1~図15に示すようなノズル構造を備えており、その蒸気導入側端部には加圧蒸気供給源Sから供給される高圧の蒸気が蒸気導入側主管路①を通して導入される。この蒸気導入側主管路①では、蒸気供給源Sから送られる蒸気を一旦ドレン貯留ポット51に導き、その底部に蒸気中に含まれるドレンを貯留して、これを第1のトラップ管路57を介して図示せぬ回収タンクに回収している。ドレン貯留ポット51に導入された蒸気は圧

[0054]

本実施形態にあっては、前記加熱ヒーター54と加圧蒸気噴出ノズル10の蒸気導入側端部との間に、温度検出器TIと圧力検出器PIとが配されている。前記蒸気導入側配管路①は加熱ヒーター54の設置部位から分岐する蒸気補充管路②を有しており、この蒸気補充管路②は加圧蒸気供給源Sと接続されている。この蒸気補充管路②の途中には、前記加熱ヒーター54からの温度検出信号を受けて作動する第1の開閉バルブ55が介装され、前記温度検出器TIにより検出される蒸気温度が下限の温度より低下すると前記開閉バルブ55を開き新たな蒸気を蒸気導入側主管路①に補給して過熱蒸気温度を所定の温度範囲まで上昇させる。蒸気温度が上限の温度を越えると前記開閉バルブ55を閉じ補給蒸気を遮断する。

上記のようなシステムにより対象とする蒸気の温度を所定の温度範囲に制御することが可能となる。また、前記圧力検出器PIは上記精密フィルター53の上流側に配された圧力制御バルブ52に接続されており、蒸気導入側主管路①の蒸気圧を一定に維持するように調整する。

[0055]

一方、加圧蒸気噴出ノズル10の蒸気排出側端部には第2の温度検出器TIが配され、蒸気排出側端部は蒸気排出管路③と接続されている。同蒸気排出管路③には、前記第2の温度検出器TIに接続されて、同温度検出器TIにより検出された蒸気温度が設定温度に達すると閉鎖する第2の開閉バルブ56が介装されている。また、前記第2の開閉バルブ56の下流側から第2のトラップ管路57が分岐しており、前記第2の開閉バルブ56が閉まって蒸気排出管路③が閉鎖されたときでも、加圧蒸気噴出ノズル10のノズルホルダー11内部に発生するドレンを常に図示せぬ回収タンクに排出するようにしている。

[0056]

また、本実施形態にあっては、上記加圧蒸気噴出ノズル10の繊維ウェブ走行 方向の上流側に、図示せぬ繊維ウェブの表面に向けて水を付与する水噴射パイプ 58が設置されている。この水噴射パイプ58と繊維ウェブとの間に、前記水噴射パイプ58から噴射する水を繊維ウェブ表面に案内する案内板59が配されており、水噴射パイプ58から噴射される水を直接ウェブ表面に付与せずに、前記案内板59を介して水流にして流下させるようにしている。この水噴射パイプ58は、本発明における交絡を容易化するための前処理手段に相当し、加圧蒸気噴出ノズル10からの加圧蒸気による打撃を受ける前に、水を付与して繊維ウェブの見かけ上の体積を収縮させそれによりウェブ内の繊維間相互の距離を短縮化し加圧蒸気噴出ノズル10によるウェブ内の繊維相互の交絡を容易化することが出来る。前記案内板59の設置部位に対応する前記エンドレスベルト30の下方にも第2のサクションボックス45が設置されており、このサクションボックス45も気液分離タンク46を介して上記真空ポンプ42に接続されている。

[0057]

上記セパレータタンク41の天板部の排気口が開閉バルブ47を介して前記気液分離タンク46と上記真空ポンプ42とを連結する吸引管路④に接続され、同セパレータタンク41の底部は流体ポンプ48を介して、上記水噴射パイプ58と水供給源Wとの接続管路⑤に合流させている。また、このセパレータタンク41の上限水位部と下限水位部との間に水位検出器49が配され、同セパレータタンク41の水位が上限を越え又は下限を下回ると、その信号を送って図示せぬ制御装置の指令により前記流体ポンプ48の作動を停止させるようにしている。

[0058]

また、本実施形態では前記加圧蒸気噴出ノズル10及び水噴射パイプ58の設置部を被包するようにして開閉蓋60が設置されている。この開閉蓋60の天板部は吸引ポンプ61が接続されており、同吸引ポンプ61により加圧蒸気噴出ノズル10及び水噴射パイプ58の設置部で発生する霧状の水蒸気を常時吸引して外部に放出するようにしている。なお、本実施形態にあって図示を省略したが、当然に加圧蒸気噴出ノズル10とその蒸気導入配管や蒸気排出管などは、蒸気噴出ノズル孔を除きアルミ箔付きのガラス繊維マットなどの断熱材で被覆している

[0059]

以上のごとく構成された本実施形態による不織布の製造装置によれば、稼働に 先立って、先ず上記加圧蒸気噴出ノズル10の蒸気排出管路③の第2開閉バルブ 56を開けて蒸気導入側主管路①から高圧の過熱蒸気を導入すると、新鮮な過熱 蒸気が加圧蒸気噴出ノズル10のノズルホルダー11の内部を、その導入側開口 から排出側開口へと流れ、ノズルホルダー11を所要の過熱温度まで速やかに昇 温させる。このとき、ノズルホルダー11の蒸気排出側端部に設置された温度検 出器TIによりその温度を検出しており、同検出温度が所要の温度に達すると上 記第2の開閉バルブ56を閉じる。この開閉バルブ56を閉じると同時に、エン ドレスベルト30を駆動して、その回動を開始する。

[0060]

エンドレスベルト30の回動により、同ベルト上を移送される図示せぬ繊維ウェブの表面には、先ず水噴射パイプ58から噴射される水を案内板59を介して水が付与される。このときの水量は、繊維ウェブ表面の繊維を濡らして、その形態を安定化させるだけで十分なため、少量で十分であり、またその水の付与手段としては水の流下によらず、霧状の水を噴霧するだけでもよい。なお、繊維ウェブの構成する繊維の材質によっては、容易に交絡する場合もありその場合には予め交絡を容易化するための手段を講じることはない。一方、繊維ウェブをの構成する繊維の材質によっては、水の付与だけでは交絡を容易化することが困難な場合もある。そんなときは、上記水付与に代えて既述した国際公開公報に開示されているように従来と同様の高圧水流を噴射してもよいが、この場合にもその水量は必ずしも多量でなく少量であってもよい。

[0061]

表面に水が付与された繊維ウェブの表面には、次いで上記加圧蒸気噴出ノズル10の各ノズル孔16aから噴出する均等な圧力と温度をもつ柱状又は収束流の過熱蒸気が付与され、その強力な過熱蒸気流がウェブ内へと浸入し、周辺繊維を交絡させながら同時に熱セットを行いながらウェブを貫通して蒸気による交絡繊維不織布が連続して製造される。このとき、蒸気排出管路③に設置された第2の開閉バルブ56は閉じられた状態にあり、加圧蒸気噴出ノズル10のノズルホルダー11の内部にはドレンが生じるが、このドレンは、前記第2の開閉バルブ5

[0062]

その結果、ノズル孔16aに目詰まりが発生することがなく、同ノズル孔16aから噴出される過熱蒸気は間欠的に噴出することなく安定して連続で噴出するようになる。このように、走行する繊維ウェブの表面に安定した過熱蒸気が連続して噴出されるため、ウェブ全体に均等な交絡がなされるようになり、所要の強度を備えた極めて高品質な不織布が製造される。

[0063]

図18は、本発明に係る不織布の製造工程の第2実施形態の概要を示している。この実施形態において、上記第1実施形態と異なるところは、加圧蒸気噴出ノズル10の上流側に配設された交絡を容易化する手段を排除するとともに、蒸気エンドレスベルト30のウェブ移送面に対向させて、同エンドレスベルト30と同一方向に回動する繊維ウェブ押圧移送手段である第2のエンドレスベルト34を配設し、第1及び第2のエンドレスベルト30,34をもって図示せぬ繊維ウェブを挟持した状態で移送させ、加圧蒸気噴出ノズル10から噴出する過熱蒸気を、前記第2のエンドレスベルト34を介して繊維ウェブの上面から下方のエンドレスベルト30に向けている点である。

[0064]

このように、2枚のエンドレスベルト30及び34をもって繊維ウェブを挟持しながら、ウェブ表面に過熱蒸気を付与するようにすると、上記第1実施形態のように加圧蒸気噴出ノズル10による過熱蒸気の付与に先立って交絡を容易化するための手段を講じる必要がなくなるばかりでなく、加圧蒸気噴出ノズル10からの過熱蒸気の噴出による打撃によってもウェブ形態の崩れがなく、その結果、加圧蒸気噴出ノズル10から噴出される過熱蒸気の圧力を更に高めることも可能となって、高圧で噴出する過熱蒸気流が繊維ウェブを確実に貫通させることができるようになる。この実施形態にあって、繊維ウェブの上面に対向する上記第2エンドレスベルト34の空隙率(メッシュ度)は下方のエンドレスベルト40のそれよりも粗く設定している。

図19は、本発明に係る不織布の製造工程の第3実施形態の概要を示している。この実施形態において、前述の第2実施形態と異なるところは、加圧蒸気噴出ノズル10とサクションボックス40との配設位置を逆転させている点にある。すなわち、サクションボックス40を、上方に配された第2エンドレスベルト34のウェブ走行側の裏面に向けて配設するとともに、加圧蒸気噴出ノズル10のノズル孔16aを、下方に配されたエンドレスベルト30のウェブ走行側の裏面に向けて配設して、エンドレスベルト30を通して同ベルト30と第2エンドレスベルト34との間で挟持しながら走行する図示せぬ繊維ウェブの下面に高圧の過熱蒸気を噴出させている。

[0066]

このように加圧蒸気噴出ノズル10をエンドレスベルト30の下面に配し、繊維ウェブに下方から高圧の過熱蒸気を噴出させると、同加圧蒸気噴出ノズル10のノズルホルダー11に発生するドレンがノズルホルダー11の下面側に集まり、上面に配されたノズル孔16aからは常に高圧の過熱蒸気のみが噴出されるため、蒸気第2実施形態の機能に加えて、ドレンによる目詰まりが発生せず、したがってノズル孔16aからは繊維ウェブに対して過熱蒸気を間欠的ではなく連続して噴出させることができ、更に高品質の蒸気による交絡繊維不織布が製造される。この実施形態では、当然に下方に配されるエンドレスベルト30のメッシュを粗くしている。

[0067]

図20は、本発明に係る不織布の製造工程における最も好適な第4実施形態の要部を概要で示している。図中の符号23は図11~15に示した高圧蒸気噴出ノズルのノズル部材を示し、同ノズル部材23の下面に接近させて繊維ウェブ押圧移送手段であるエンドレスベルト34を配し、繊維ウェブ担持移送手段である第1のエンドレスベルト30に担持されて移送されてくる繊維ウェブTを前記同エンドレスベルト34によって挟持しながら協働して移送し、その挟持移送の間に前記ノズル部材23のノズル孔26を介して高圧の過熱蒸気を繊維ウェブ表面に噴出させる。前記第1のエンドレスベルト30の内面に近接させて吸引手段で

[0068]

この実施形態では、前記サクションボックス40の吸引開口はノズル部材23のノズル孔26に対向する位置に配され、その形状は周辺の気体の吸引を可能な限り回避すべくスリット状とされている。このスリット開孔の開口幅は略10mm程度が好適であり、その吸引力も通常の工場内で使われる換気扇の排気能力、すなわち300Pa程度で十分であり、これより大きいと繊維ウェブの構成繊維に配向性を与えやすく、それより小さいと吸引力不足となる。勿論、この吸引力は繊維ウェブの厚さ、密度や、ノズル部材23から噴出するときの蒸気圧によっても所要の範囲で調整することが必要である。

[0069]

また、この実施形態ではノズル部材23と第2エンドレスベルト34との間隙、第1エンドレスベルト30とサクションボックス40との間の間隙を維持すべく、第1エンドレスベルト30の下面を支持して案内する複数の支持回転ロール35aと第2エンドレスベルト34の上面位置を規制して案内する複数の規制案内ロール35bとを設けている。これらの支持回転ロール35a及び規制案内ロール35bを設けることにより、第1及び第2エンドレスベルト30,34をもって適切な挟持力をもって繊維ウェブTを挟持移送することが可能となるばかりでなく、各エンドレスベルト30,34とノズル部材23及びサクションボックス40との摺接を回避すると同時に、その対向間隙を微小に維持することが可能となる。なお、これらの支持回転ロール35a及び規制案内ロール35bを公知の上下位置調整手段を使ってそれぞれ調整可能にすることもできる。

[0070]

図21は、本発明に係る不織布の製造装置の第5実施形態の概要を示している。この実施形態では繊維ウェブTの担持移送手段として多孔の回転ドラム36を採用している。繊維ウェブ押圧移送手段としては、上記実施形態と同様に多孔のエンドレスベルト34が使われる。

[0071]

前記エンドレスベルト34は、下方に配された回転ドラム36の所要の中心角

領域にある周面を掛け回されるようにして、回転ドラム36の上方に配される。 このとき、エンドレスベルト34と回転ドラム36は同期して逆方向に駆動回転 される。前記エンドレスベルト34と回転ドラム36との間には繊維ウェブTが エンドレスベルト37や図示せぬガイドプレート或いはガイドロールを介して導 入され、エンドレスベルト34と回転ドラム36との間にて繊維ウェブTが挟持 されて前記中心角に相当する回転ドラム36の周面を周回しながら排出側へと送 り出される。

[0072]

一方、上記エンドレスベルト34及び回転ドラム36の間にて挟持移送される 繊維ウェブTには、エンドレスベルト34の内側に設置された上記加圧蒸気噴出 ノズル10から噴出される高圧高温の蒸気が侵入して、同繊維ウェブTの構成繊 維を交絡させながら繊維ウェブTを貫通して、回転ドラム36の内部に設置され たサクションボックス38を介して外部へと放出される。このサクションボック ス38は、その吸引口38aを繊維ウェブTの幅寸法に等しく且つ幅方向に長い スリット状に形成され、効率的な吸引を行っている。前記吸引口38aの幅寸法 は、既述した第4実施形態と同様に、10mm程度であることが好ましいが、繊 維ウェブの厚さや密度あるいはその材質などによって、ある程度の変更が可能で ある。サクションボックス38の吸引口38aは加圧蒸気噴出ノズル10のノズ ル孔16a,26に対向する位置であって、回転ドラム36の内壁面に近接して 固設されており、吸引された蒸気は図示せぬスイベルジョイントを介して、回転 ドラム36の回転軸の中心部に形成された放出路を通って外部へと放出される。

[0073]

本実施形態にあっては、更にエンドレスベルト34の内部にあって上記加圧蒸気噴出ノズル10の上流側に、加圧高温空気の噴出装置39が設置されると共に、前記回転ドラム36の内部に配された上記サクションボックス38の吸引口38aの上流側にあって、前記加圧高温空気の噴出装置39に対応する部位に第2の吸引口38bが形成されている。この吸引口38bの形状及び寸法は上記吸引口38aと概略同一であるが、そこから噴出される高温の加圧空気の噴出圧力は加圧蒸気噴出ノズル10からの噴出圧力よりも小さく設定されてもよく、また図

[0074]

これは、繊維ウェブTに対する前記加圧空気の付与が、上記加圧蒸気の付与と 異なり、その蒸気付与に先立って加圧空気を付与して繊維ウェブTの表面近くの 構成繊維を交絡して、繊維ウェブTの表面形態を仮に確保することを目的として なされるがためである。なお、例えば繊維ウェブTの構成繊維の一部に低融点の 繊維を混在させておけば、前記加圧高温空気の噴出装置39を利用して、同低融 点の繊維を溶融させて周辺の繊維同士に融着して、繊維ウェブTの表面形態を安 定化させることもできる。なお、本実施形態に使われるノズル部材としては、図 1〜図10に示したノズル部材をも採用することができ、またこの実施形態にお ける加圧蒸気噴出ノズル10に対する蒸気回路に関しても図16及び図17に例 示した回路を採用できる。

[0075]

以上説明したとおり本発明方法及び装置によれば、簡単な構造を備えた加圧蒸気噴出ノズルにより確実に高圧高温の蒸気を繊維ウェブに貫通させることができるようになるばかりでなく、そのノズルホルダーの長手方向の両端を開口させ、特にその蒸気排出側の開口を開閉バルブにより開閉可能とするとともに、同開閉バルブの上流側にトラップ管路を分岐させる場合には、不織布の製造開始時には予め開閉バルブを開けておき、その加圧蒸気噴出ノズルに新鮮な加圧された蒸気を導入して前記蒸気排出側の開口から外部に排出すると、同加圧蒸気によりノズルホルダーの内部温度が急激に昇温するため、不織布の製造開始時の準備時間が大幅に短縮できるようになる。

[0076]

不織布の製造が開始されると前記開閉バルブが閉じられるが、ノズルホルダーの内部に発生するドレンは前記蒸気排出側の開口からトラップ管路を通って常時回収タンクに回収されるため、ノズル孔の目詰まりなどの弊害が発生せず、連続して且つ安定して高品質の不織布が製造できるようになる。なお、上記実施形態にあっては、蒸気として過熱蒸気を使っているが、繊維ウェブの構成繊維の材質により通常の蒸気を使うことも可能である。

【図面の簡単な説明】

【図1】

本発明に係る加圧蒸気噴出ノズルの第1構造例を示す縦断面図である。

【図2】

同ノズルの裏面図である。

【図3】

図2におけるII-II 線に沿った矢視断面図である。

【図4】

図3に矢印で示すA部の拡大図である。

【図5】

前記蒸気噴出ノズルのノズル孔形状の変形例を示す断面図である。

【図6】

同じく前記蒸気噴出ノズルのノズル孔形状の他の変形例を示す部分斜視図である。

【図7】

前記蒸気噴出ノズルのノズル孔形状の更に他の変形例を示す断面図である。

【図8】

本発明に係る加圧蒸気噴出ノズルの第2構造例を示す図3に相当する断面図である。

【図9】

本発明に係る加圧蒸気噴出ノズルの第3構造例を示す図3に相当する断面図である。

図10]

本発明に係る加圧蒸気噴出ノズルの第4構造例を示す図3に相当する断面図である。

【図11】

本発明に係る第2実施形態である加圧蒸気噴出ノズルのノズル部材の一例を示す上面図である。

【図12】

図11のXII-XII 線の矢視断面図である。

【図13】

図11のXIII-XIII 線の矢視断面図である。

【図14】

図13の矢印で示す領域Bの拡大図である。

【図15】

同ノズル部材の構造を示す要部の斜視図である。

【図16】

本発明による不織布の製造工程の第1実施形態を概略で示す管路説明図である

【図17】

同第1実施形態における加圧蒸気噴出ノズルに対する蒸気管路の概略説明図で ある。

【図18】

本発明による不織布の製造工程の第2実施形態を概略で示す構成説明図である

【図19】

本発明による不織布の製造工程の第3実施形態を概略で示す構成説明図である

【図20】

本発明による不織布の製造工程の第4実施形態を概略で示す構成説明図である

【図21】

本発明による不織布の製造工程の第5実施形態を概略で示す構成説明図である

【符号の説明】

10 (加圧) 蒸気噴出ノズル

11 ノズルホルダー

11a 切除面

1 1 b	スリット
12, 13	第1及び第2フランジ
12a, 13a	大径部
12b, 13b	小径部
12c, 13c	貫通孔
1 4	高メッシュフィルター
1 5	ノズル部材
15a, 15b	第1及び第2ノズルプレート支持部材
15 a'	凹陥部
1 5 a"	貫通孔
1 5 b'	スリット状の開口
1 5 b"	薄肉部
1 5 c	突出部
1 6	ノズルプレート
1 6 a	ノズル孔
16 a'	リング片
1 7	プラグ
18, 19	リング状の固着部材
2 0	Oリング
2 1	ボルト
2 2	ジャケット
2 3	ノズル部材
2 4	船形の凹陥溝部
2 5	矩形断面溝部
2 6	ノズル孔
2 6 a	逆円錐台孔
2 6 b	円筒孔
30,34	第1及び第2エンドレスベルト
3 1	駆動ローラ
*	

3	2	従動ローラ
3	3	テンションローラ
3	4	第2エンドレスベルト
3	5 5 a	支持回転ロール
3	5 b	規制案内ロール
3	3 6	多孔の回転ドラム
3	3 7	エンドレスベルト
3	3 8	サクションボックス
3	8 8 a	吸引口
3	8 8 b	第2の吸引口
3	3 9	高温高圧の空気噴出装置
4	. 0	サクションボックス
4	1	セパレータタンク
4	. 2	真空ポンプ
4	4 3	ミストセパレータ
4	1 5	第2のサクションボックス
4	1 6	気液分離タンク
4	1 7	開閉バルブ
4	1 8	吸引ポンプ
4	ł 9	水位検出器
5	5 1	ドレン貯留ポット
5	5 2	圧力制御バルブ
E	5 3	精密フィルター
Ę	5 4	加熱ヒーター
Ę	5 5	第1の開閉バルブ
Ę	5 6	第2の開閉バルブ
5	5 7	(第2の) トラップ管路
5	5 8	水噴射パイプ
5	5 9	案内板

60.	開閉蓋
6 1	吸引ポンプ
S	加圧蒸気供給源
W	水供給源
TI	温度検出器
PΙ	圧力検出器
т	繊維ウェブ

【書類名】

図面

【図1】

【図4】

【図5】

【図6】

【図7】

【図9】

【図13】

【図14】

【図15】

【図17】

[図18]

【図20】

【要約】

【課題】 高圧高温の蒸気噴出用に好適なノズルと、同ノズルを使った蒸気による交絡不織布の製造方法及び製造装置を提供する。

【解決手段】 複数のノズル孔(16a,26)を有するノズル部材(15,16,23)に一体化される管状のノズルホルダー(11)の長手方向の両端部に蒸気導入側主管路①と蒸気排出管路③とをそれぞれ接続する。前記蒸気排出管路②には開閉バルブ(55)が設けられ、その開閉バルブ(55)の上流側管路にトラップ管路(57)を分岐させている。前記開閉バルブ(55)を開くことにより、不織布製造開始時のノズルホルダー(11)に対する急速昇温が可能となり、しかも定常運転時には開閉バルブ(55)を閉じておいても、ノズルホルダー(11)の内部に発生するドレンを常時外部に排出でき、安定した蒸気の噴出が連続してなされるようになり、繊維ウェブから連続して高品質の蒸気による交絡繊維不織布が製造される。

【選択図】図17

認定・付加情報

特許出願の番号 特願2003-006192

受付番号 50300046879

書類名 特許願

担当官 兼崎 貞雄 6996

作成日 平成15年 1月20日

<認定情報・付加情報>

【提出日】 平成15年 1月14日

【特許出願人】

【識別番号】 000176741

【住所又は居所】 東京都港区港南一丁目6番41号

【氏名又は名称】 三菱レイヨン・エンジニアリング株式会社

【代理人】 申請人

【識別番号】 100091948

【住所又は居所】 東京都千代田区神田淡路町2丁目10番14号

ばんだいビル むつみ国際特許事務所

【氏名又は名称】 野口 武男

【選任した代理人】

【識別番号】 100119699

【住所又は居所】 東京都千代田区神田淡路町二丁目10番14号

ばんだいビル むつみ国際特許事務所

【氏名又は名称】 塩澤 克利

特願2003-006192

出願人履歷情報

識別番号

[000176741]

1. 変更年月日

1996年11月22日

[変更理由]

住所変更

住 所 東京都中央区京橋二丁目3番19号

氏 名 三菱レイヨン・エンジニアリング株式会社

2. 変更年月日

1998年 6月30日

[変更理由]

住所変更

住 所

東京都港区港南一丁目6番41号

氏 名

三菱レイヨン・エンジニアリング株式会社

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

₩ BLACK BORDERS
IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
GRAY SCALE DOCUMENTS
☑ LINES OR MARKS ON ORIGINAL DOCUMENT
REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
☐ OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.