Math 724 Homework 1

Theo Koss

September 2024

1 Chapter 1

1. If $r \neq 0$ is rational, and x is irrational, prove that r + x and rx are irrational.

Proof. Let $r \neq 0$ be rational and x be irrational.

(a) Assume, by way of contradiction, that r+x is rational. Then $r+x=\frac{p}{q}$ for $p,q\in\mathbb{Z}$ and $q\neq 0$. We have that r is rational, so $r=\frac{a}{b}$ for some $a,b\in\mathbb{Z}$ and $b\neq 0$. Then we have

$$x = \frac{p}{q} - \frac{a}{b} = \frac{bp - aq}{bq}$$

since the ring $(\mathbb{Z}, +, \cdot)$ is closed under addition and multiplication so numerator and denominator are integers, and since \mathbb{Z} is a domain, $b \neq 0$ and $q \neq 0 \implies bq \neq 0$. So then we have $x \in \mathbb{Q}$ which is a contradiction.

(b) Assume, by way of contradiction, that $rx = \frac{p}{q}$ for some $p, q \in \mathbb{Z}$ and $q \neq 0$. We have $r = \frac{a}{b}$ for $a, b \in \mathbb{Z}$ and $b \neq 0$. Then

$$x = \frac{rx}{r} = \frac{\frac{p}{q}}{\frac{a}{b}} = \frac{p}{q} \cdot \frac{b}{a} = \frac{pb}{qa}$$

Again since \mathbb{Z} is closed under multiplication and $r \neq 0$ by assumption, we have $a \neq 0$ and therefore $qa \neq 0$, so we are not dividing by 0 and $x \in \mathbb{Q}$ contradiction.

17. Prove that

$$|x + y|^2 + |x - y|^2 = 2|x|^2 + 2|y|^2$$

if $x \in \mathbb{R}^k$ and $y \in \mathbb{R}^k$.

Proof.

$$|x+y|^2 = |x|^2 + 2|xy| + |y|^2$$
, $|x-y|^2 = |x|^2 - 2|xy| + |y|^2$ (By FOIL)

So

$$|x + y|^2 + |x - y|^2 = 2|x|^2 + 2|y|^2$$

As required. Geometrically, the LHS is the sum of squares of the diagonals (x + y) is the long diag, x - y is the short). RHS is 2 times sum of squares of the side lengths. The parallelogram has corners 0, x, y, and x + y.

2 Chapter 2

2. Prove that the set of all algebraic numbers is countable.

Proof. For every positive $N \in \mathbb{Z}$, we have that the set of

$$n + |a_0| + |a_1| + \cdots + |a_n| = N$$

is finite. (compositions of N?) By theorem 2.12 in the text,

$$S = \bigcup_{n=1}^{\infty} E_n$$

is countable if E_n is a sequence of countable sets. For every positive integer N, we have a countable (in fact finite) set of terms which satisfy the above sum. Therefore, since the index set \mathbb{Z} is countable, the union of these sets is countable. Then we biject each set of terms to an algebraic number, so the set of algebraic numbers is at most countable.

12.