AERO 422: Active Controls for Aerospace VehiclesIntroduction

Raktim Bhattacharya

Laboratory For Uncertainty Quantification Aerospace Engineering, Texas A&M University.

Preliminaries

- Signals & Systems
- Laplace transforms
- Transfer functions from ordinary linear differential equations
- System interconnections
- Block diagram algebra simplification of interconnections
- General feedback control system interconnection.

Signals & Systems

Signals & Systems

- Actuator applies u(t)
- \blacksquare Sensor provides y(t)
- lacktriangle Feedback controller takes y(t) and determines u(t) to achieve desired behavior
- The controller is typically implemented as software, running in a micro controller
- Imperfections exist in real world
 - sensors have noise
 - ► actuators have irregularities
 - ► plant P is not fully known

Given plant P and input u(t), what is y(t)?

- P is defined in terms of ordinary differential equations
- $\mathbf{v}(t)$ is the forced + initial condition response.

Linear Dynamics

Signals & Systems

Nonlinear Dynamics

$$m\ddot{x}+c\dot{x}+kx=u(t)$$
 dynamics $y(t)=x(t)$ measurement

$$m\ddot{x}+c\dot{x}+kx=u(t)$$
 dynamics $\ddot{x}-\mu(1-x^2)\dot{x}+x=u(t)$ dynamics $y(t)=x(t)$ measurement $y(t)=x(t)$ measurement

In this class we focus on linear systems

Signals & Systems

- Dynamics is defined by linear ordinary differential equation
- Super position principle applies

$$\begin{array}{c} u_1(t) \mapsto y_1(t) \\ u_2(t) \mapsto y_2(t) \end{array} \Longrightarrow (u_1(t) + u_2(t)) \mapsto (y_1(t) + y_2(t))$$

Laplace Transforms

Given signal u(t), Laplace transform is defined as

$$\mathcal{L}\left\{u(t)\right\} := \int_0^\infty u(t)e^{-st}dt$$

Exists when

$$\lim_{t\to\infty}|u(t)e^{-\sigma t}|=0, \text{ for some }\sigma>0$$

Very useful in studying linear dynamical systems and designing controllers

Linear operator

Additive

$$\mathcal{L}\{u_1(t) + u_2(t)\} = \int_0^\infty (u_1(t) + u_2(t)) e^{-st} dt$$

$$= \int_0^\infty u_1(t) e^{-st} dt + \int_0^\infty u_2(t) e^{-st} dt$$

$$= \mathcal{L}\{u_1(t)\} + \mathcal{L}\{u_2(t)\}$$

Superposition

$$\mathcal{L}\left\{au(t)\right\} = a\mathcal{L}\left\{u(t)\right\}, \ a \text{ is a constant}$$

Properties (contd.)

- **1.** $U(s) := \mathcal{L}\{u(t)\}$
- **2.** $\mathcal{L}\{au_1(t)+bu_2(t)\}=a\mathcal{L}\{u_1(t)\}+b\mathcal{L}\{u_2(t)\}=aU_1(s)+bU_2(s)$
- 3. $\frac{1}{s}U(s) \iff \int_{0}^{t} u(\tau)d\tau$
- **4.** $U_1(s)U_2(s) \iff u_1(t) * u_2(t)$ Convolution
- **5.** $\lim_{s\to 0} sU(s) \iff \lim_{t\to\infty} u(t)$ Final value theorem
- **6.** $\lim_{s \to \infty} sU(s) \Longleftrightarrow u(0^+)$ Initial value theorem
- 7. $-\frac{dU(s)}{ds} \iff tu(t)$
- **8.** $\mathcal{L}\left\{\frac{du}{dt}\right\} \iff sU(s) u(0)$
- **9.** $\mathcal{L}\{\ddot{u}\} \iff s^2U(s) su(0) \dot{u}(0)$

- **1.** $\mathcal{L}\left\{\delta(t)\right\} = 1 \ \delta(t)$ is impulse function
- **2.** $\mathcal{L}\left\{1(t)\right\} = \frac{1}{s} \; \mathbf{1}(t)$ is unit step function at t=0
- **3.** $\mathcal{L}\{t\} = \frac{1}{e^2}$
- 4. $\mathcal{L}\left\{\sin(\omega t)\right\} = \frac{\omega}{s^2 + \omega^2}$ 5. $\mathcal{L}\left\{\cos(\omega t)\right\} = \frac{s}{s^2 + \omega^2}$

Transfer Functions

Spring Mass Damper System

Equation of Motion

$$m\ddot{x} + c\dot{x} + kx = u(t)$$

Take $\mathcal{L}\left\{\cdot\right\}$ on both sides

$$\mathcal{L}\left\{m\ddot{x}+c\dot{x}+kx\right\} = \mathcal{L}\left\{u(t)\right\}$$

$$m\mathcal{L}\left\{\ddot{x}\right\}+c\mathcal{L}\left\{\dot{x}\right\}+k\mathcal{L}\left\{x\right\} = \mathcal{L}\left\{u(t)\right\}$$

$$m\left(s^2X(s)-sx(0)-\dot{x}(0)\right)+c\left(sX(s)-x(0)\right)+kX(s)=U(s)$$

$$\left(ms^2+cs+k\right)X(s)=U(s)\ \dot{x}(0)\ \text{and}\ x(0)\ \text{are assumed to be zero}$$

Transfer Function

$$(ms^2 + cs + k)X(s) = U(s) \implies \frac{X(s)}{U(s)} = \frac{1}{ms^2 + cs + k}$$

Choose output $y(t) = x(t) \implies Y(s) = X(s)$.

Therefore

$$P(s) := rac{Y(s)}{U(s)} = rac{1}{ms^2 + cs + k}$$
 Transfer function

Transfer Function (contd.)

In general

$$P(s) = \frac{N(s)}{D(s)}$$

Transfer Functions 00000

where N(s) and D(s) are polynomials in s

- \blacksquare Roots of N(s) are the zeros
- \blacksquare Roots of D(s) are the poles determine stability

Response to u(t)

Given

– input signal u(t) and transfer function P(s).

Determine

- output response y(t)

1. Laplace transform

$$U(s) := \mathcal{L}\left\{u(t)\right\}$$

$$\xrightarrow{u(t)} P \xrightarrow{y(t)}$$

- 2. Determine Y(s) := P(s)U(s)
- 3. Laplace inverse

$$y(t) := \mathcal{L}^{-1} \{Y(s)\} = \mathcal{L}^{-1} \{P(s)U(s)\}$$

Transfer Functions

System Interconnection

Block Diagram

Representation of System Interconnections

- Series
- Parallel
- Feedback
- A simple example
- A complex example

Parallel Connection

Feedback Connection

Simple Example

Complex Example

