Anéis - Subanéis

José Antônio O. Freitas

MAT-UnB

 $A \neq \emptyset$, \oplus

 $A \neq \emptyset$, \oplus e \otimes operações binárias.

i) para todos x,

i) para todos x, y,

$$(x \oplus y)$$

$$(x \oplus y) \oplus z$$

$$(x \oplus y) \oplus z = x \oplus$$

$$(x \oplus y) \oplus z = x \oplus (y \oplus z).$$

$$(x \oplus y) \oplus z = x \oplus (y \oplus z).$$

i) para todos x, y, $z \in A$ vale

$$(x \oplus y) \oplus z = x \oplus (y \oplus z).$$

ii) Para todos x,

i) para todos x, y, $z \in A$ vale

$$(x \oplus y) \oplus z = x \oplus (y \oplus z).$$

- $A \neq \emptyset$, \oplus e \otimes operações binárias. (A, \oplus, \otimes) é um **anel** se:
 - i) para todos x, y, $z \in A$ vale

$$(x \oplus y) \oplus z = x \oplus (y \oplus z).$$

- $A \neq \emptyset$, \oplus e \otimes operações binárias. (A, \oplus, \otimes) é um **anel** se:
 - i) para todos x, y, $z \in A$ vale

$$(x \oplus y) \oplus z = x \oplus (y \oplus z).$$

$$x \oplus y =$$

- $A \neq \emptyset$, \oplus e \otimes operações binárias. (A, \oplus, \otimes) é um **anel** se:
 - i) para todos x, y, $z \in A$ vale

$$(x \oplus y) \oplus z = x \oplus (y \oplus z).$$

$$x \oplus y = y \oplus x$$
.

- $A \neq \emptyset$, \oplus e \otimes operações binárias. (A, \oplus, \otimes) é um **anel** se:
 - i) para todos x, y, $z \in A$ vale

$$(x \oplus y) \oplus z = x \oplus (y \oplus z).$$

$$x \oplus y = y \oplus x$$
.

- $A \neq \emptyset$, \oplus e \otimes operações binárias. (A, \oplus, \otimes) é um **anel** se:
 - i) para todos x, y, $z \in A$ vale

$$(x \oplus y) \oplus z = x \oplus (y \oplus z).$$

$$x \oplus y = y \oplus x$$
.

iii) Existe $0_A \in A$

- $A \neq \emptyset$, \oplus e \otimes operações binárias. (A, \oplus, \otimes) é um **anel** se:
 - i) para todos x, y, $z \in A$ vale

$$(x \oplus y) \oplus z = x \oplus (y \oplus z).$$

$$x \oplus y = y \oplus x$$
.

- $A \neq \emptyset$, \oplus e \otimes operações binárias. (A, \oplus, \otimes) é um **anel** se:
 - i) para todos x, y, $z \in A$ vale

$$(x \oplus y) \oplus z = x \oplus (y \oplus z).$$

$$x \oplus y = y \oplus x$$
.

- $A \neq \emptyset$, \oplus e \otimes operações binárias. (A, \oplus, \otimes) é um **anel** se:
 - i) para todos x, y, $z \in A$ vale

$$(x \oplus y) \oplus z = x \oplus (y \oplus z).$$

$$x \oplus y = y \oplus x$$
.

$$x \oplus 0_A$$

- $A \neq \emptyset$, \oplus e \otimes operações binárias. (A, \oplus, \otimes) é um **anel** se:
 - i) para todos x, y, $z \in A$ vale

$$(x \oplus y) \oplus z = x \oplus (y \oplus z).$$

$$x \oplus y = y \oplus x$$
.

$$x \oplus 0_A = x$$

- $A \neq \emptyset$, \oplus e \otimes operações binárias. (A, \oplus, \otimes) é um **anel** se:
 - i) para todos x, y, $z \in A$ vale

$$(x \oplus y) \oplus z = x \oplus (y \oplus z).$$

$$x \oplus y = y \oplus x$$
.

$$x \oplus 0_A = x = 0_A \oplus x$$
.

- $A \neq \emptyset$, \oplus e \otimes operações binárias. (A, \oplus, \otimes) é um **anel** se:
 - i) para todos x, y, $z \in A$ vale

$$(x \oplus y) \oplus z = x \oplus (y \oplus z).$$

$$x \oplus y = y \oplus x$$
.

$$x \oplus 0_A = x = 0_A \oplus x$$
.

- $A \neq \emptyset$, \oplus e \otimes operações binárias. (A, \oplus, \otimes) é um **anel** se:
 - i) para todos x, y, $z \in A$ vale

$$(x \oplus y) \oplus z = x \oplus (y \oplus z).$$

$$x \oplus y = y \oplus x$$
.

iii) Existe $0_A \in A$ tal que para todo elemento $x \in A$ vale

$$x \oplus 0_A = x = 0_A \oplus x$$
.

iv) Para cada elemento $x \in A$,

- $A \neq \emptyset$, \oplus e \otimes operações binárias. (A, \oplus, \otimes) é um **anel** se:
 - i) para todos x, y, $z \in A$ vale

$$(x \oplus y) \oplus z = x \oplus (y \oplus z).$$

$$x \oplus y = y \oplus x$$
.

iii) Existe $0_A \in A$ tal que para todo elemento $x \in A$ vale

$$x \oplus 0_A = x = 0_A \oplus x$$
.

- $A \neq \emptyset$, \oplus e \otimes operações binárias. (A, \oplus, \otimes) é um **anel** se:
 - i) para todos x, y, $z \in A$ vale

$$(x \oplus y) \oplus z = x \oplus (y \oplus z).$$

$$x \oplus y = y \oplus x$$
.

iii) Existe $0_A \in A$ tal que para todo elemento $x \in A$ vale

$$x \oplus 0_A = x = 0_A \oplus x$$
.

- $A \neq \emptyset$, \oplus e \otimes operações binárias. (A, \oplus, \otimes) é um **anel** se:
 - i) para todos x, y, $z \in A$ vale

$$(x \oplus y) \oplus z = x \oplus (y \oplus z).$$

$$x \oplus y = y \oplus x$$
.

iii) Existe $0_A \in A$ tal que para todo elemento $x \in A$ vale

$$x \oplus 0_A = x = 0_A \oplus x$$
.

$$x \oplus y$$

- $A \neq \emptyset$, \oplus e \otimes operações binárias. (A, \oplus, \otimes) é um **anel** se:
 - i) para todos x, y, $z \in A$ vale

$$(x \oplus y) \oplus z = x \oplus (y \oplus z).$$

$$x \oplus y = y \oplus x$$
.

iii) Existe $0_A \in A$ tal que para todo elemento $x \in A$ vale

$$x \oplus 0_A = x = 0_A \oplus x$$
.

$$x \oplus y = 0_A$$

- $A \neq \emptyset$, \oplus e \otimes operações binárias. (A, \oplus, \otimes) é um **anel** se:
 - i) para todos x, y, $z \in A$ vale

$$(x \oplus y) \oplus z = x \oplus (y \oplus z).$$

$$x \oplus y = y \oplus x$$
.

iii) Existe $0_A \in A$ tal que para todo elemento $x \in A$ vale

$$x \oplus 0_A = x = 0_A \oplus x$$
.

$$x \oplus y = 0_A = y \oplus x$$
.

- $A \neq \emptyset$, \oplus e \otimes operações binárias. (A, \oplus, \otimes) é um **anel** se:
 - i) para todos x, y, $z \in A$ vale

$$(x \oplus y) \oplus z = x \oplus (y \oplus z).$$

$$x \oplus y = y \oplus x$$
.

iii) Existe $0_A \in A$ tal que para todo elemento $x \in A$ vale

$$x \oplus 0_A = x = 0_A \oplus x$$
.

$$x \oplus y = 0_A = y \oplus x$$
.

v) Para todos x,

v) Para todos x, y,

 $(x \otimes y)$

$$(x \otimes y) \otimes z$$

$$(x \otimes y) \otimes z = x \otimes$$

$$(x \otimes y) \otimes z = x \otimes (y \otimes z).$$

$$(x \otimes y) \otimes z = x \otimes (y \otimes z).$$

vi) Para todos x,

$$(x \otimes y) \otimes z = x \otimes (y \otimes z).$$

vi) Para todos x, y,

$$(x \otimes y) \otimes z = x \otimes (y \otimes z).$$

$$(x \otimes y) \otimes z = x \otimes (y \otimes z).$$

$$(x \otimes y) \otimes z = x \otimes (y \otimes z).$$

$$(x \oplus y)$$

$$(x \otimes y) \otimes z = x \otimes (y \otimes z).$$

$$(x \oplus y) \otimes z$$

$$(x \otimes y) \otimes z = x \otimes (y \otimes z).$$

$$(x \oplus y) \otimes z = x \otimes z$$

$$(x \otimes y) \otimes z = x \otimes (y \otimes z).$$

$$(x \oplus y) \otimes z = x \otimes z \oplus$$

$$(x \otimes y) \otimes z = x \otimes (y \otimes z).$$

$$(x \oplus y) \otimes z = x \otimes z \oplus y \otimes z.$$

$$(x \otimes y) \otimes z = x \otimes (y \otimes z).$$

vi) Para todos x, y, $z \in A$ vale

$$(x \oplus y) \otimes z = x \otimes z \oplus y \otimes z.$$

vii) Para todos x,

$$(x \otimes y) \otimes z = x \otimes (y \otimes z).$$

vi) Para todos x, y, $z \in A$ vale

$$(x \oplus y) \otimes z = x \otimes z \oplus y \otimes z.$$

vii) Para todos x, y,

$$(x \otimes y) \otimes z = x \otimes (y \otimes z).$$

vi) Para todos x, y, $z \in A$ vale

$$(x \oplus y) \otimes z = x \otimes z \oplus y \otimes z.$$

$$(x \otimes y) \otimes z = x \otimes (y \otimes z).$$

vi) Para todos x, y, $z \in A$ vale

$$(x \oplus y) \otimes z = x \otimes z \oplus y \otimes z.$$

$$(x \otimes y) \otimes z = x \otimes (y \otimes z).$$

vi) Para todos x, y, $z \in A$ vale

$$(x \oplus y) \otimes z = x \otimes z \oplus y \otimes z.$$

$$x \otimes$$

$$(x \otimes y) \otimes z = x \otimes (y \otimes z).$$

vi) Para todos x, y, $z \in A$ vale

$$(x \oplus y) \otimes z = x \otimes z \oplus y \otimes z.$$

$$x \otimes (y \oplus z)$$

$$(x \otimes y) \otimes z = x \otimes (y \otimes z).$$

vi) Para todos x, y, $z \in A$ vale

$$(x \oplus y) \otimes z = x \otimes z \oplus y \otimes z.$$

$$x \otimes (y \oplus z) = x \otimes y$$

$$(x \otimes y) \otimes z = x \otimes (y \otimes z).$$

vi) Para todos x, y, $z \in A$ vale

$$(x \oplus y) \otimes z = x \otimes z \oplus y \otimes z.$$

$$x \otimes (y \oplus z) = x \otimes y \oplus$$

$$(x \otimes y) \otimes z = x \otimes (y \otimes z).$$

vi) Para todos x, y, $z \in A$ vale

$$(x \oplus y) \otimes z = x \otimes z \oplus y \otimes z.$$

$$x \otimes (y \oplus z) = x \otimes y \oplus x \otimes z$$
.

$$(x \otimes y) \otimes z = x \otimes (y \otimes z).$$

vi) Para todos x, y, $z \in A$ vale

$$(x \oplus y) \otimes z = x \otimes z \oplus y \otimes z.$$

$$x \otimes (y \oplus z) = x \otimes y \oplus x \otimes z$$
.

Seja (A, \oplus, \otimes)

Seja (A, \oplus, \otimes) um anel.

Seja (A,\oplus,\otimes) um anel. Para simplificar a notação

Seja (A, \oplus, \otimes) um anel. Para simplificar a notação vamos denotar a operação \oplus

Seja (A, \oplus, \otimes) um anel. Para simplificar a notação vamos denotar a operação \oplus por +

Seja (A, \oplus, \otimes) um anel. Para simplificar a notação vamos denotar a operação \oplus por + e a operação \otimes

Seja (A, \oplus, \otimes) um anel. Para simplificar a notação vamos denotar a operação \oplus por + e a operação \otimes por \cdot

Seja (A, \oplus, \otimes) um anel. Para simplificar a notação vamos denotar a operação \oplus por + e a operação \otimes por \cdot e assim escrever simplesmente

Seja (A,\oplus,\otimes) um anel. Para simplificar a notação vamos denotar a operação \oplus por + e a operação \otimes por \cdot e assim escrever simplesmente que $(A,+,\cdot)$

Observação:

Seja (A, \oplus, \otimes) um anel. Para simplificar a notação vamos denotar a operação \oplus por + e a operação \otimes por \cdot e assim escrever simplesmente que $(A, +, \cdot)$ é um anel.

Observação:

Seja (A, \oplus, \otimes) um anel. Para simplificar a notação vamos denotar a operação \oplus por + e a operação \otimes por \cdot e assim escrever simplesmente que $(A, +, \cdot)$ é um anel.

Seja $(A, +, \cdot)$ um anel.

Seja $(A, +, \cdot)$ um anel. Então:

i) O elemento neutro é único.

- i) O elemento neutro é único.
- ii) Para cada $x \in A$

- i) O elemento neutro é único.
- ii) Para cada $x \in A$ existe um único oposto.

- i) O elemento neutro é único.
- ii) Para cada $x \in A$ existe um único oposto. Neste caso o **oposto** de $x \in A$

- i) O elemento neutro é único.
- ii) Para cada $x \in A$ existe um único oposto. Neste caso o **oposto** de $x \in A$ será denotado por -x.

- i) O elemento neutro é único.
- ii) Para cada $x \in A$ existe um único oposto. Neste caso o **oposto** de $x \in A$ será denotado por -x.
- iii) Para todo $x \in A$,

- Seja $(A, +, \cdot)$ um anel. Então:
 - i) O elemento neutro é único.
 - ii) Para cada $x \in A$ existe um único oposto. Neste caso o **oposto** de $x \in A$ será denotado por -x.
 - iii) Para todo $x \in A$,

$$-(-x)=x.$$

- Seja $(A, +, \cdot)$ um anel. Então:
 - i) O elemento neutro é único.
 - ii) Para cada $x \in A$ existe um único oposto. Neste caso o **oposto** de $x \in A$ será denotado por -x.
 - iii) Para todo $x \in A$,

$$-(-x)=x.$$

iv) Dados x_1 ,

Seja $(A, +, \cdot)$ um anel. Então:

- i) O elemento neutro é único.
- ii) Para cada $x \in A$ existe um único oposto. Neste caso o **oposto** de $x \in A$ será denotado por -x.
- iii) Para todo $x \in A$,

$$-(-x)=x.$$

iv) Dados x_1 , x_2 ,

Seja $(A, +, \cdot)$ um anel. Então:

- i) O elemento neutro é único.
- ii) Para cada $x \in A$ existe um único oposto. Neste caso o **oposto** de $x \in A$ será denotado por -x.
- iii) Para todo $x \in A$,

$$-(-x)=x.$$

iv) Dados x_1 , x_2 , ..., $x_n \in A$,

- Seja $(A, +, \cdot)$ um anel. Então:
 - i) O elemento neutro é único.
 - ii) Para cada $x \in A$ existe um único oposto. Neste caso o **oposto** de $x \in A$ será denotado por -x.
 - iii) Para todo $x \in A$,

$$-(-x)=x.$$

iv) Dados $x_1, x_2, ..., x_n \in A, n \ge 2$,

- Seja $(A, +, \cdot)$ um anel. Então:
 - i) O elemento neutro é único.
 - ii) Para cada $x \in A$ existe um único oposto. Neste caso o **oposto** de $x \in A$ será denotado por -x.
 - iii) Para todo $x \in A$,

$$-(-x)=x.$$

- Seja $(A, +, \cdot)$ um anel. Então:
 - i) O elemento neutro é único.
 - ii) Para cada $x \in A$ existe um único oposto. Neste caso o **oposto** de $x \in A$ será denotado por -x.
 - iii) Para todo $x \in A$,

$$-(-x)=x.$$

$$-(x_1 + x_2 + \cdots + x_n)$$

- Seja $(A, +, \cdot)$ um anel. Então:
 - i) O elemento neutro é único.
 - ii) Para cada $x \in A$ existe um único oposto. Neste caso o **oposto** de $x \in A$ será denotado por -x.
 - iii) Para todo $x \in A$,

$$-(-x)=x.$$

$$-(x_1 + x_2 + \cdots + x_n) = (-x_1)$$

- Seja $(A, +, \cdot)$ um anel. Então:
 - i) O elemento neutro é único.
 - ii) Para cada $x \in A$ existe um único oposto. Neste caso o **oposto** de $x \in A$ será denotado por -x.
 - iii) Para todo $x \in A$,

$$-(-x)=x.$$

$$-(x_1 + x_2 + \cdots + x_n) = (-x_1) + (-x_2)$$

- Seja $(A, +, \cdot)$ um anel. Então:
 - i) O elemento neutro é único.
 - ii) Para cada $x \in A$ existe um único oposto. Neste caso o **oposto** de $x \in A$ será denotado por -x.
 - iii) Para todo $x \in A$,

$$-(-x)=x.$$

$$-(x_1 + x_2 + \cdots + x_n) = (-x_1) + (-x_2) + \cdots + (-x_n).$$

- Seja $(A, +, \cdot)$ um anel. Então:
 - i) O elemento neutro é único.
 - ii) Para cada $x \in A$ existe um único oposto. Neste caso o **oposto** de $x \in A$ será denotado por -x.
 - iii) Para todo $x \in A$,

$$-(-x)=x.$$

$$-(x_1 + x_2 + \cdots + x_n) = (-x_1) + (-x_2) + \cdots + (-x_n).$$

v) Para todos α ,

v) Para todos α , x,

v) Para todos α , x, $y \in A$,

v) Para todos α , x, $y \in A$, se

$$\alpha + x$$

v) Para todos α , x, $y \in A$, se

$$\alpha + x = \alpha + y,$$

v) Para todos α , x, $y \in A$, se

$$\alpha + x = \alpha + y,$$

então x = y.

v) Para todos α , x, $y \in A$, se

$$\alpha + x = \alpha + y,$$

então
$$x = y$$
.

vi) Para todo
$$x \in A$$
,

v) Para todos α , x, $y \in A$, se

$$\alpha + x = \alpha + y$$

então x = y.

$$x \cdot 0_A$$

v) Para todos α , x, $y \in A$, se

$$\alpha + x = \alpha + y$$

então x = y.

$$x \cdot 0_A = 0_A$$

v) Para todos α , x, $y \in A$, se

$$\alpha + x = \alpha + y$$

então x = y.

$$x \cdot 0_A = 0_A = 0_A \cdot x$$
.

v) Para todos α , x, $y \in A$, se

$$\alpha + x = \alpha + y$$

então x = y.

$$x \cdot 0_A = 0_A = 0_A \cdot x.$$

vii) Para todos x,

vii) Para todos $x, y \in A$,

vii) Para todos $x, y \in A$, temos

vii) Para todos $x, y \in A$, temos

$$x \cdot (-y)$$

vii) Para todos $x, y \in A$, temos

$$x \cdot (-y) = (-x) \cdot y$$

vii) Para todos $x, y \in A$, temos

$$x \cdot (-y) = (-x) \cdot y = -(x \cdot y).$$

vii) Para todos $x, y \in A$, temos

$$x \cdot (-y) = (-x) \cdot y = -(x \cdot y).$$

viii) Para todos x,

vii) Para todos $x, y \in A$, temos

$$x \cdot (-y) = (-x) \cdot y = -(x \cdot y).$$

vii) Para todos $x, y \in A$, temos

$$x \cdot (-y) = (-x) \cdot y = -(x \cdot y).$$

$$x \cdot y$$

vii) Para todos $x, y \in A$, temos

$$x \cdot (-y) = (-x) \cdot y = -(x \cdot y).$$

$$x \cdot y = (-x) \cdot (-y).$$

vii) Para todos $x, y \in A$, temos

$$x \cdot (-y) = (-x) \cdot y = -(x \cdot y).$$

$$x \cdot y = (-x) \cdot (-y).$$

Seja $(A, +, \cdot)$ um anel.

Seja $(A,+,\cdot)$ um anel. Dizemos que um subconjunto não vazio

Definição de la constant de la const

Seja $(A,+,\cdot)$ um anel. Dizemos que um subconjunto não vazio $B\subseteq A$

Seja $(A, +, \cdot)$ um anel. Dizemos que um subconjunto não vazio $B \subseteq A$ é um **subanel** de A

Seja $(A, +, \cdot)$ um anel. Dizemos que um subconjunto não vazio $B \subseteq A$ é um **subanel** de A quando $(B, +, \cdot)$ é um anel.

Seja $(A, +, \cdot)$ um anel. Dizemos que um subconjunto não vazio $B \subseteq A$ é um **subanel** de A quando $(B, +, \cdot)$ é um anel.

Exemplos

1) Todo anel A sempre tem dois subanéis:

Seja $(A, +, \cdot)$ um anel. Dizemos que um subconjunto não vazio $B \subseteq A$ é um **subanel** de A quando $(B, +, \cdot)$ é um anel.

Exemplos

1) Todo anel A sempre tem dois subanéis: $\{0_A\}$

Seja $(A, +, \cdot)$ um anel. Dizemos que um subconjunto não vazio $B \subseteq A$ é um **subanel** de A quando $(B, +, \cdot)$ é um anel.

Exemplos

1) Todo anel A sempre tem dois subanéis: $\{0_A\}$ e A,

Seja $(A, +, \cdot)$ um anel. Dizemos que um subconjunto não vazio $B \subseteq A$ é um **subanel** de A quando $(B, +, \cdot)$ é um anel.

Exemplos

1) Todo anel A sempre tem dois subanéis: $\{0_A\}$ e A, que são chamados de **subanéis triviais**.

Seja $(A, +, \cdot)$ um anel. Dizemos que um subconjunto não vazio $B \subseteq A$ é um **subanel** de A quando $(B, +, \cdot)$ é um anel.

- 1) Todo anel A sempre tem dois subanéis: $\{0_A\}$ e A, que são chamados de **subanéis triviais**.
- 2) $Em(\mathbb{Z}_4, \oplus, \otimes)$

Seja $(A, +, \cdot)$ um anel. Dizemos que um subconjunto não vazio $B \subseteq A$ é um **subanel** de A quando $(B, +, \cdot)$ é um anel.

- 1) Todo anel A sempre tem dois subanéis: $\{0_A\}$ e A, que são chamados de **subanéis triviais**.
- 2) Em $(\mathbb{Z}_4, \oplus, \otimes)$ o conjunto $B = \{\overline{0}, \overline{2}\}$ é um subanel.

Seja $(A, +, \cdot)$ um anel. Dizemos que um subconjunto não vazio $B \subseteq A$ é um **subanel** de A quando $(B, +, \cdot)$ é um anel.

- 1) Todo anel A sempre tem dois subanéis: $\{0_A\}$ e A, que são chamados de **subanéis triviais**.
- 2) Em $(\mathbb{Z}_4, \oplus, \otimes)$ o conjunto $B = \{\overline{0}, \overline{2}\}$ é um subanel.
- 3) No anel \mathbb{Z} ,

Seja $(A, +, \cdot)$ um anel. Dizemos que um subconjunto não vazio $B \subseteq A$ é um **subanel** de A quando $(B, +, \cdot)$ é um anel.

- 1) Todo anel A sempre tem dois subanéis: $\{0_A\}$ e A, que são chamados de **subanéis triviais**.
- 2) Em $(\mathbb{Z}_4, \oplus, \otimes)$ o conjunto $B = \{\overline{0}, \overline{2}\}$ é um subanel.
- 3) No anel \mathbb{Z} , o conjunto m $\mathbb{Z} = \{ mk \mid k \in \mathbb{Z} \}$, m > 1

Seja $(A, +, \cdot)$ um anel. Dizemos que um subconjunto não vazio $B \subseteq A$ é um **subanel** de A quando $(B, +, \cdot)$ é um anel.

- 1) Todo anel A sempre tem dois subanéis: $\{0_A\}$ e A, que são chamados de **subanéis triviais**.
- 2) Em $(\mathbb{Z}_4, \oplus, \otimes)$ o conjunto $B = \{\overline{0}, \overline{2}\}$ é um subanel.
- 3) No anel \mathbb{Z} , o conjunto $m\mathbb{Z}=\{mk\mid k\in\mathbb{Z}\},\ m>1\ \acute{e}\ um\ subanel\ de\ \mathbb{Z}.$

Seja $(A, +, \cdot)$ um anel. Dizemos que um subconjunto não vazio $B \subseteq A$ é um **subanel** de A quando $(B, +, \cdot)$ é um anel.

- 1) Todo anel A sempre tem dois subanéis: $\{0_A\}$ e A, que são chamados de **subanéis triviais**.
- 2) Em $(\mathbb{Z}_4, \oplus, \otimes)$ o conjunto $B = \{\overline{0}, \overline{2}\}$ é um subanel.
- 3) No anel \mathbb{Z} , o conjunto $m\mathbb{Z}=\{mk\mid k\in\mathbb{Z}\},\ m>1\ \acute{e}\ um\ subanel\ de\ \mathbb{Z}.$

Seja $(A, +, \cdot)$ um anel.

Seja $(A,+,\cdot)$ um anel. Um subconjunto não vazio

Seja $(A,+,\cdot)$ um anel. Um subconjunto não vazio $B\subseteq A$

Seja $(A,+,\cdot)$ um anel. Um subconjunto não vazio $B\subseteq A$ é um subanel de Δ

Seja $(A, +, \cdot)$ um anel. Um subconjunto não vazio $B \subseteq A$ é um subanel de A se, e somente se,

Seja $(A, +, \cdot)$ um anel. Um subconjunto não vazio $B \subseteq A$ é um subanel de A se, e somente se, $x - y = x + (-y) \in B$

Seja $(A, +, \cdot)$ um anel. Um subconjunto não vazio $B \subseteq A$ é um subanel de A se, e somente se, $x - y = x + (-y) \in B$ e $x \cdot y \in B$

Seja $(A, +, \cdot)$ um anel. Um subconjunto não vazio $B \subseteq A$ é um subanel de A se, e somente se, $x - y = x + (-y) \in B$ e $x \cdot y \in B$ para todos $x, y \in B$.

Seja $(A, +, \cdot)$ um anel. Um subconjunto não vazio $B \subseteq A$ é um subanel de A se, e somente se, $x - y = x + (-y) \in B$ e $x \cdot y \in B$ para todos $x, y \in B$.

1) Em $(\mathbb{Z}_4, \oplus, \otimes)$

1) Em $(\mathbb{Z}_4, \oplus, \otimes)$ o conjunto $B = \{\overline{0}, \overline{2}\}$ é um subanel.

1) Em $(\mathbb{Z}_4, \oplus, \otimes)$ o conjunto $B = \{\overline{0}, \overline{2}\}$ é um subanel.

2) No anel \mathbb{Z} ,

2) No anel \mathbb{Z} , o conjunto $m\mathbb{Z}$, m>1

2) No anel \mathbb{Z} , o conjunto $m\mathbb{Z}$, m>1 é um subanel de \mathbb{Z} .

2) No anel \mathbb{Z} , o conjunto $m\mathbb{Z}$, m>1 é um subanel de \mathbb{Z} .

3) Considere o anel (\mathbb{Q},\star,\odot)

3) Considere o anel (\mathbb{Q},\star,\odot) onde as operações \star e \odot são definidas por

3) Considere o anel (\mathbb{Q},\star,\odot) onde as operações \star e \odot são definidas por $x\star y=x+y-8$

3) Considere o anel (\mathbb{Q},\star,\odot) onde as operações \star e \odot são definidas por

$$x \star y = x + y - 8$$

$$x \odot y = x + y - \frac{xy}{8}.$$

3) Considere o anel (\mathbb{Q},\star,\odot) onde as operações \star e \odot são definidas por

$$x \star y = x + y - 8$$

$$x \odot y = x + y - \frac{xy}{8}.$$

3) Considere o anel (\mathbb{Q},\star,\odot) onde as operações \star e \odot são definidas por

$$x \star y = x + y - 8$$

$$x \odot y = x + y - \frac{xy}{8}.$$

(a)
$$B = \{2k \mid k \in \mathbb{Z}\}$$

3) Considere o anel (\mathbb{Q},\star,\odot) onde as operações \star e \odot são definidas por

$$x \star y = x + y - 8$$

$$x \odot y = x + y - \frac{xy}{8}.$$

(a)
$$B = \{2k \mid k \in \mathbb{Z}\}$$

(b)
$$C = \{8k \mid k \in \mathbb{Z}\}$$

3) Considere o anel (\mathbb{Q},\star,\odot) onde as operações \star e \odot são definidas por

$$x \star y = x + y - 8$$

$$x \odot y = x + y - \frac{xy}{8}.$$

(a)
$$B = \{2k \mid k \in \mathbb{Z}\}$$

(b)
$$C = \{8k \mid k \in \mathbb{Z}\}$$