Espaces vectoriels normés

Propriété : (Inégalité triangulaire inversée)

Soit $(E, \|\cdot\|)$ un espace vectoriel normé. Alors pour tous $x, y \in E$, on a

$$|||x|| - ||y||| \le ||x - y||$$

Démonstration : 🖈

Soit $x, y \in E$,

$$||x|| = ||x - y + y|| \le ||x - y|| + ||y||$$

Ainsi $||x|| - ||y|| \le ||x - y||$.

Par symétrie, on a aussi $||y|| - ||x|| \le ||y - x|| = ||x - y||$

Donc $||x|| - ||y|| \le ||x - y||$

<u>Propriété</u>: (Exemples de normes sur \mathbb{K}^n)

Pour $x = (x_1, ..., x_n) \in \mathbb{K}^n$, on pose

$$||x||_{1} = \sum_{k=1}^{n} |x_{k}|, \qquad ||x||_{2} = \sqrt{\sum_{k=1}^{n} |x_{k}|^{2}}, \qquad ||x||_{\infty} = \max_{k \in [1, n]} |x_{k}|.$$

Ces trois applications sont des normes sur \mathbb{K}^n

Démonstration : 🖈

- Soit $x \in \mathbb{K}^n$, alors $\sum_{k=1}^n |x_k|^2 \ge 0$ donc $\sqrt{\sum_{k=1}^n |x_k|^2}$ existe et est à valeurs positives Ainsi $\|\cdot\|_2 : \mathbb{K}^n \to \mathbb{R}_+$
- Soit $x = (x_1, \dots, x_n) \in \mathbb{K}^n$.

$$||x||_2 = 0 \Leftrightarrow \sum_{k=1}^n |x_k|^2 = 0 \Leftrightarrow \forall k \in [1, n], |x_k|^2 = 0 \Leftrightarrow \forall k \in [1, n], |x_k| = 0 \Leftrightarrow x = 0_{\mathbb{K}^n}$$

- Soient $x = (x_1, ..., x_n) \in \mathbb{K}^n, \lambda \in \mathbb{K}$,

$$\lambda x = (\lambda x_1, \dots, \lambda x_n) \Longrightarrow \|\lambda x\|_2 = \sqrt{\sum_{k=1}^n |\lambda x_k|^2} = \lambda \sqrt{\sum_{k=1}^n |x_k|^2} = \lambda \|x\|_2$$

- Soient $x=(x_1,...x_n), y=(y_1,...y_n)\in \mathbb{K}^n$ On veut montrer que $\|x+y\|_2 \leq \|x\|_2 + \|y\|_2$ On a : $\|x+y\|_2^2 = \sum_{k=1}^n |x_k+y_k|^2 \leq \sum_{k=1}^n (|x_k|^2 + |y_k|^2)$ Donc $\|x+y\|_2^2 \leq \sum_{k=1}^n |x_k|^2 + 2\sum_{k=1}^n |x_k||y_k| + \sum_{k=1}^n |y_k|^2$

Or par Cauchy-Schwarz,

$$\left| \sum_{k=1}^{n} |x_k| |y_k| \right| \le \sqrt{\sum_{k=1}^{n} |x_k|^2} \sqrt{\sum_{k=1}^{n} |y_k|^2}$$

Donc
$$||x + y||_2^2 \le (||x_k||_2 + ||y_k||_2)^2$$

On obtient le résultat demandé par croissance de $t\mapsto \sqrt{t}$ sur \mathbb{R}_+

Tracé des boules unitaires :

<u>Démonstration</u>: ★

- Notons $\overline{B_{\|\cdot\|_2}}\big((0,0),1\big) = \big\{(x,y) \in \mathbb{R}^2 \mid \sqrt{x^2 + y^2} \le 1\big\}$

Soit
$$(x, y) \in \mathbb{R}^2$$
, $||(x, y) - (0, 0)||_2 \le 1 \Leftrightarrow x^2 + y^2 \le 1$

Donc $\overline{B_{\|\cdot\|_2}}((0,0),1)$ est le disque de centre 0 et de rayon 1

- Notons
$$\overline{B_{\|\cdot\|_{\infty}}}\big((0,0),1\big) = \{(x,y) \in \mathbb{R}^2 \mid \|(x,y) - (0,0)\|_{\infty} \le 1\}$$

$$= \{(x,y) \in \mathbb{R}^2 \mid \max\{|x|,|y|\} \le 1\}$$

$$= \left\{ \begin{aligned} |x| \le 1 \\ |y| \le 1 \end{aligned} \right.$$

$$= [-1;1] \times [-1;1]$$

Notons
$$\overline{B_{\|\cdot\|_1}}\big((0,0),1\big) = \{(x,y) \in \mathbb{R}^2 \mid \|(x,y) - (0,0)\|_1 \le 1\}$$

= $\{(x,y) \in \mathbb{R}^2 \mid |x| + |y| \le 1\}$

Si
$$y \ge 0, x \ge 0$$
, alors $y \le 1 - x$

Si
$$y \le 0$$
, $x \ge 0$, alors $y \le x - 1$

Si
$$y \ge 0$$
, $x \le 0$, alors $y \le 1 + x$

Si
$$y \le 0$$
, $x \le 0$, alors $y \le -1 - x$

(ça fait un genre de losange)

Prop 2.2 ★ (démonstration de la norme infinie)

- Soit $f \in \mathcal{B}(X, E)$, l'ensemble $\{\|f(x)\| \mid x \in X\}$ est non vide (car $X \neq 0$), inclus dans \mathbb{R}_+ et est majoré car f est bornée donc $\exists M \in \mathbb{R}_+, \forall x \in X, \|f(x)\| \leq M$. Ainsi $\{\|f(x)\|, x \in X\}$ admet une borne supérieure (≥ 0) donc $\|f\|_{\infty}$ est bien définie.

Aussi on a bien $\|\cdot\|_{\infty}: \mathcal{B}(X, E) \to \mathbb{R}_+$

- Séparation : Soit $f \in \mathcal{B}(X, E)$
 - \rightarrow Si f=0, alors $\forall x \in X$, $f(x)=0_E$ donc $||f||_{\infty}=0$
 - ightarrow Supposons $\|f\|_{\infty}=0$. Alors $\forall x\in X,\,0\leq \underbrace{\|f(x)\|}_{\in E}\leq \underbrace{\|f\|_{\infty}}_{\in \mathcal{B}(X,E)}=0$

Donc ||f(x)|| = 0, ie $f(x) = 0_E$ par séparation de $||\cdot||$, donc $f = 0_{\mathcal{B}(X,E)}$

Homogénéité : Soit $\lambda \in \mathbb{K}$, soit $f \in \mathcal{B}(X, E)$. On veut montrer $\|\lambda f\|_{\infty} = |\lambda| \|f\|_{\infty}$ $\forall x \in X, \|\lambda f(x)\| = |\lambda| \|f\| \le |\lambda| \|f\|_{\infty}$

Et comme le sup d'un ensemble est le plus petit majorant de cet ensemble,

$$\|\lambda f\|_{\infty} \le |\lambda| \|f\|_{\infty}$$

Si
$$\lambda \neq 0$$
, alors $\|f\|_{\infty} = \left\|\frac{1}{\lambda}\lambda f\right\|_{\infty} \leq \left|\frac{1}{\lambda}\right| \|\lambda f\|_{\infty}$

Donc comme $|\lambda| > 0$, $|\lambda| ||f||_{\infty} \le ||\lambda f||_{\infty}$

Ainsi, $|\lambda| ||f||_{\infty} = ||\lambda f||_{\infty}$

Et on vérifie que cette égalité est vraie même si $\lambda=0$:

$$\|\lambda f\|_{\infty} = 0 = |\lambda| \|f\|_{\infty}$$

Inégalité triangulaire : Soient $f,g\in\mathcal{B}(X,E)$, soit $x\in X$, $\|(f+g)(x)\|=\|f(x)+g(x)\|$

$$\leq ||f(x)|| + ||g(x)||$$

$$\leq \|f(x)\|_{\infty} + \|g(x)\|_{\infty}$$

On passe à la borne supérieure pour conclure : $\|f + g\|_{\infty} \le \|f\|_{\infty} + \|g\|_{\infty}$

Donc $\|\cdot\|_{\infty}$ est une norme sur $\mathcal{B}(X, E)$