SÉRIE DE TD N° 2 DE PHYS. 3

Exercice 1 Equation du mouvement à partir de l'équation de conservation.

Deux ressorts de même raideur k ont une longueur à vide $l_0 < d_0$. Une masse m reliée à leurs extrémités peut coulisser sans frottement sur l'axe X'OX.

- 1. Trouver l'énergie potentielle U du système en fonction de x.
- **2.** Montrer que pour les petits mouvements $(x \ll d_0)$, U s'écrit: $U = k[(1-l_0/d_0)x^2 + (d_0-l_0)^2]$.
- 3. Trouver l'énergie cinétique T puis l'énergie totale E=T+U du système.
- 4. Trouver l'équation du mouvement à l'aide de l'équation de conservation.
- 5. Quelle est la pulsation propre ω_0 du système?

Exercice 2 Condition d'équilibre. Condition d'oscillation.

Un disque de rayon R et de masse M peut tourner sans frottement autour de son axe horizontal en O et porte à sa périphérie une masse 2m. Une tige de longueur L et de masse négligeable est soudée en O et porte une masse m. À l'équilibre la tige était verticale (représentée en pointillé) et le ressort était allongé d'une distance a.

- 1. Trouver l'énergie potentielle U du système en fonction de θ . ($\theta \ll 1$).
- ${f 2}$. Déduire à l'aide de la condition d'équilibre l'allongement a à l'équilibre.
- 3. Pour quelle condition le système aura un mouvement d'oscillation?

Exercice résolu* Équation de Conservation.

On considère les trois systèmes mécaniques de la figure ci-contre. La masse m peut coulisser sans frottement sur le plan horizontal.

- 1. Trouver le ressort équivalent pour chaque système.
- 2. Déduire l'énergie potentielle U pour chaque système.
- 3. Trouver l'énergie mécanique E pour chaque système.
- **4.** À l'aide de l'équation de conservation, trouver l'équation du mouvement et la pulsation propre de chaque système.

Exercice résolu ** Équilibre Stable et Instable.

Un disque de rayon R et de masse M est mobile sans frottement autour de son axe horizontal en O. La masse m_1 est fixée au disque, m_2 est suspendue à un fil inextensible et non glissant enroulé autour du disque.

- 1. Trouver l'énergie potentielle U du système en fonction de θ .
- 2. Déduire les positions d'équilibre éventuel du système.
- **3**. Quelles sont parmi ces positions celles qui sont stables.
- 4. Trouver l'énergie cinétique T du système.
- 5. À l'aide de l'équation de conservation, trouver l'équation du mouvement et la pulsation propre du système pour $\theta \ll 1$.

Rappels: Le moment d'inertie du disque autour de son axe est $I=\frac{1}{2}MR^2$.

 $(\cos\theta \approx 1 - \frac{\theta^2}{2})$

CORRIGÉS.

Pour plus d'exercices résolus, aller sur http://sites.google.com/site/exerev/

Exercice *:

Système (i):

1. Les deux ressorts étant en parallèle, le ressort équivalent est de raideur: $k=k_1+k_2$.

2.
$$U = \frac{1}{2}kx^2 = \frac{1}{2}(k_1 + k_2)x^2$$
.

2.
$$U = \frac{1}{2}kx^2 = \frac{1}{2}(k_1 + k_2)x^2$$
. **3.** $E = T + U = \frac{1}{2}m\dot{x}^2 + \frac{1}{2}(k_1 + k_2)x^2$.

4.
$$\frac{\mathrm{d}E}{\mathrm{d}t} = 0 \implies m\ddot{x}\ddot{x} + (k_1 + k_2)\dot{x}\dot{x} = 0 \implies \ddot{x} + \frac{k_1 + k_2}{m}x = 0. \quad (\omega_0 = \sqrt{\frac{k_1 + k_2}{m}}.)$$

Système (ii):

1. Les deux ressorts étant en série, le ressort équivalent est de raideur: $k = \frac{k_1 k_2}{k_1 + k_2}$.

2.
$$U = \frac{1}{2}kx^2 = \frac{1}{2}\frac{k_1k_2}{k_1+k_2}x^2$$
.

3.
$$E = \frac{1}{2}m\dot{x}^2 + \frac{1}{2}\frac{k_1k_2}{k_1+k_2}x^2$$

2.
$$U = \frac{1}{2}kx^2 = \frac{1}{2}\frac{k_1k_2}{k_1+k_2}x^2$$
. **3.** $E = \frac{1}{2}m\dot{x}^2 + \frac{1}{2}\frac{k_1k_2}{k_1+k_2}x^2$. **4.** $\ddot{x} + \frac{k_1k_2}{m(k_1+k_2)}x = 0$. $(\omega_0 = \sqrt{\frac{k_1k_2}{m(k_1+k_2)}})$.

Système (iii):

1. Lorsque l'un des ressorts s'allonge d'une distance x l'autre se comprime d'une distance xet lorsque l'un tire l'autre pousse dans le même sens: ils agissent comme s'ils étaient en parallèle.

Le ressort équivalent est donc: $k=k_1+k_2$.

2.
$$U = \frac{1}{2}kx^2 = \frac{1}{2}(k_1 + k_2)x^2$$
. **3.** $E = \frac{1}{2}m\dot{x}^2 + \frac{1}{2}(k_1 + k_2)x^2$. **4.** $\ddot{x} + \frac{k_1 + k_2}{m}x = 0$. $(\omega_0 = \sqrt{\frac{k_1 + k_2}{m}})$.

3.
$$E = \frac{1}{2}m\dot{x}^2 + \frac{1}{2}(k_1 + k_2)x^2$$
.

4.
$$\ddot{x} + \frac{k_1 + k_2}{m} x = 0$$
. $(\omega_0 = \sqrt{\frac{k_1 + k_2}{m}})$

Exercice **:

- 1. Comme le fil est inextensible et ne glisse pas sur le disque, lorsque le disque tourne d'un angle θ , m_2 descend d'une distance $h_2 = R\theta$ alors que m_1 monte d'une distance $h_1 = R - R\cos\theta$. L'énergie potentielle est donc: $U = U_{m1} + U_{m2} = m_1 g h_1 - m_2 g h_2 = m_1 g (R - R \cos \theta) - m_2 g R \theta$.
- **2.** Les positions d'équilibres sont données par : $\frac{\partial U}{\partial \theta} = 0 \Rightarrow m_1 g R \sin \theta m_2 g R = 0 \Rightarrow \sin \theta = \frac{m_2}{m_1}$. Comme $\sin\theta$ doit toujours être ≤ 1 , on déduit qu'aucun équilibre n'est possible si $m_2 > m_1$.
 - Si $m_2 = m_1$, on aura $\sin \theta = 1 \Longrightarrow \theta = \frac{\pi}{2}$.
- Si $m_2 < m_1$, on aura $\sin \theta < 1 \Longrightarrow 0 \leqslant \theta \leqslant \pi$.
- 3. Pour $0 \leqslant \theta < \frac{\pi}{2}$, nous avons $\frac{\partial^2 U}{\partial \theta^2} = m_1 g R \cos \theta > 0$: Entre 0 et $\frac{\pi}{2}$ l'équilibre est donc **stable**. Pour $\frac{\pi}{2} < \theta \leqslant \pi$, nous avons $\frac{\partial^2 U}{\partial \theta^2} = m_1 g R \cos \theta < 0$: Entre $\frac{\pi}{2}$ et π l'équilibre est donc **instable**.
- **4.** $T = T_{m_1} + T_{m_2} + T_M = \frac{1}{2}m_1v_1^2 + \frac{1}{2}m_2v_2^2 + \frac{1}{2}I \stackrel{?}{\theta}^2$ $= \frac{1}{2}m_1(R\dot{\theta})^2 + \frac{1}{2}m_2(R\dot{\theta})^2 + \frac{1}{2}\frac{1}{2}MR^2\dot{\theta}^2 = \frac{1}{2}(m_1 + m_2 + \frac{1}{2}M)R^2\dot{\theta}^2.$
- **5.** $E = T + U = \frac{1}{2}(m_1 + m_2 + \frac{1}{2}M)R^2 \theta^2 + m_1g(R R\cos\theta) m_2gR\theta$. Pour $\theta \ll 1$: $\cos \theta \approx 1 - \frac{\theta^2}{2}$. D'où: $E \approx \frac{1}{2}(m_1 + m_2 + \frac{1}{2}M)R^2 \theta^2 + m_1 gR \frac{\theta^2}{2} - m_2 gR \theta$. $\frac{\mathrm{d}E}{\mathrm{d}t} = 0 \Longrightarrow (m_1 + m_2 + \frac{1}{2}M)R^2\ddot{\theta} + m_1gR\theta - m_2gR = 0$ $\implies \theta + \frac{2m_1g}{(2m_1 + 2m_2 + M)R}\theta = m_2gR. \qquad (\omega_0 = \sqrt{\frac{2m_1g}{(2m_1 + 2m_2 + M)R}}.)$

CORRIGÉ DE LA SÉRIE $N^{\circ}2$ DE PHYS. 3

Exercice 1

1. L'énergie potentielle est:

$$U = U_{ressort1} + U_{ressort2} = 2U_{ressort1} = 2 \cdot \frac{1}{2} k (l - l_0)^2 = k (\sqrt{d_0^2 + x^2} - l_0)^2$$
.

- 2. Pour de faibles écartements $(\frac{x}{d_0} \ll 1)$, nous avons $U = k(d_0 \sqrt{1 + \frac{x^2}{d_0^2}} l_0)^2 \approx k(d_0(1 + \frac{x^2}{2d_0^2}) l_0)^2$ $U \approx k(d_0 - l_0 + \frac{x^2}{2d_0})^2 = k(d_0 - l_0)^2 \left[1 + \frac{x^2}{2d_0(d_0 - l_0)}\right]^2 \approx k(d_0 - l_0)^2 (1 + \frac{x^2}{d_0(d_0 - l_0)}) = k\left[(1 - \frac{l_0}{d_0})x^2 + (d_0 - l_0)^2\right].$
- **3.** L'énergie mécanique est $E = T + U = \frac{1}{2}m\dot{x}^2 + k[(1 \frac{l_0}{d_0})x^2 + (d_0 l_0)^2].$
- **4.** Cette énergie étant conservée: $\frac{dE}{dt} = 0 \Rightarrow m\ddot{x}\ddot{x} + 2k(1 \frac{l_0}{d_0})\dot{x}\dot{x} = 0 \Rightarrow \ddot{x} + \frac{2k}{m}(1 \frac{l_0}{d_0})x = 0.$
- 5. Cette équation est celle d'un oscillateur harmonique de pulsation propre $\omega_0 = \sqrt{\frac{2k}{m}(1 \frac{l_0}{d_0})}$.

Exercice 2.

1. Comme le fil est inextensible et ne glisse pas sur le disque, la hauteur de descente H de la boite lors d'une rotation θ du disque est $H=R\theta$. Nous allons appeler la hauteur de descente de la boule h. D'autre part pour des écartements faibles $\theta \ll 1$, on peut supposer que le ressort reste horizontal de

D'autre part pour des écartements faibles $\theta \ll 1$, on peut supposer que le ressort reste horizontal telle sorte que son allongement est $a+L\sin\theta$.

$$\begin{split} U &= U_{2m} + U_m + U_{ressort} = -2mgH - mgh + \frac{1}{2}k(d)^2 \\ &\approx -2mgR\theta - mg(L - L\cos\theta) + \frac{1}{2}k(a + L\sin\theta)^2 \\ &\approx -2mgR\theta - \frac{1}{2}mgL\theta^2 + \frac{1}{2}k(a + L\theta)^2. \end{split}$$

- 2. La déformation du ressort à l'équilibre est donnée par la condition d'équilibre en $\theta=0$: $\frac{\partial U}{\partial \theta}\Big|_{\theta=0}=0 \Longrightarrow -2mgR-mgL\theta+kL(a+L\theta)\Big|_{\theta=0}=0 \Longrightarrow a=\frac{2mgR}{kL}.$
- **3**. La condition d'oscillation est: $\frac{\partial^2 U}{\partial \theta^2}\Big|_{\theta=0} > 0 \Longrightarrow -mgL + kL^2\Big|_{\theta=0} > 0 \Longrightarrow kL > mg.$