Методы оптимизации. Лабораторная работа №1

Дубровин Антон, Кулешов Егор, Белицкий Андрей М3236 Команда "Аппроксимирующий многочлен"

1. Задача оптимизации. Вариант № 1

1.1. Постановка задачи

Реализовать алгоритмы одномерной минимизации функции:

- метод дихотомии
- метод золотого сечения
- метод Фибоначчи
- метод парабол
- комбинированный метод Брента

Протестировать реализованные алгоритмы на функции:

$$f(x) = x^2 + e^{-0.35x} \rightarrow min \text{ Ha } [-2; 3]$$

1.2. Аналитическое решение

Найдём критические точки. Для этого сначала посчитаем f'(x):

$$\frac{d}{dx}(e^{-0.35x} + x^2) = 2x - 0.35e^{0.35x}$$

Единственное решение при x = 0.16517

Область определения $f(x) = \mathbb{R}$.

Границы области определения $\pm \infty$, значит они не могут быть глобальными экстремумами.

Следовательно, глобальный минимум достигается только в критической точке x = 0.16517.

2. Таблицы с результатами исследований

2.1. Метод дихотомии

Левая граница	Правая граница	x1	f(x1)	x2	f(x2)	Соотношение
-2.0	0.500005	0.499995	1.0894534898452792	0.500005	1.0894605517457063	3
-0.7500025	0.500005	-0.7500025	1.8626813558296484	-0.7499925	1.8626618052659916	0.5000019999960001
-0.12500375	0.500005	-0.12500375	1.0603484506641603	-0.12499374999999999	1.060342294166763	0.5000039999760001
-0.12500375	0.18750562500000004	0.18749562500000003	0.9716380225789272	0.18750562500000004	0.971638494905217	0.5000079998880016
0.03124593750000002	0.18750562500000004	0.03124593750000002	0.9900998119938261	0.03125593750000002	0.9900969750863726	0.5000159995200144
0.10937078125000002	0.18750562500000004	0.10937078125000002	0.9744056048474224	0.10938078125000003	0.9744044238162127	0.5000319980161231
0.14843320312500002	0.18750562500000004	0.14843320312500002	0.9714072112360653	0.14844320312500003	0.9714068571941586	0.500063991937016
0.14843320312500002	0.16797441406250005	0.16796441406250004	0.9711191176658089	0.16797441406250005	0.9711191768851091	0.5001279674962564
0.15819880859375005	0.16797441406250005	0.15819880859375005	0.9711622707991329	0.15820880859375006	0.9711621234071726	0.5002558695065512
0.16308161132812504	0.16797441406250005	0.16308161132812504	0.9711154731797247	0.16309161132812505	0.9711154290982221	0.5005114772702304
0.16308161132812504	0.16553301269531254	0.16552301269531253	0.9711109904541649	0.16553301269531254	0.9711109980242695	0.5010219091738285
0.16430231201171877	0.16553301269531254	0.16430231201171877	0.971111655537991	0.16431231201171878	0.9711116372825935	0.5020396496742414
0.16491266235351565	0.16553301269531254	0.16491266235351565	0.9711109289309411	0.16492266235351566	0.9711109235883701	0.5040627262718377
0.16491266235351565	0.16522783752441408	0.16521783752441407	0.9711108611768439	0.16522783752441408	0.9711108622906296	0.5080599617072964
0.16506524993896485	0.16522783752441408	0.16506524993896485	0.9711108704248933	0.16507524993896486	0.9711108683105053	0.5158641938251859
0.16514154373168946	0.16522783752441408	0.16514154373168946	0.9711108596436278	0.16515154373168947	0.9711108591433278	0.530752655476061
0.16514154373168946	0.16518969062805178	0.16517969062805177	0.9711108588709267	0.16518969062805178	0.9711108591776699	0.5579415951267871
0.1651606171798706	0.16518969062805178	0.1651606171798706	0.9711108588724499	0.1651706171798706	0.9711108587756715	0.6038488537743474

2.2. Метод золотого сечения

Левая граница	Правая граница	X	f(x)	Соотношение
-2.0	1.0901699437494745	-0.45491502812526274	1.3795438769077153	
-0.8196601125010516	1.0901699437494745	0.13525491562421144	0.972057698704371	0.6180339887498949
-0.09016994374947451	1.0901699437494745	0.5	1.0894570207692074	0.618033988749895
-0.09016994374947451	0.6393202250021032	0.27457514062631433	0.9837635018841171	0.6180339887498949
-0.09016994374947451	0.36067977499789716	0.13525491562421132	0.9720576987043709	0.6180339887498951
0.08203932499369077	0.36067977499789716	0.22135954999579396	0.9744494310457162	0.6180339887498949
0.08203932499369077	0.25424859373685615	0.16814395936527346	0.9711202131196137	0.618033988749895
0.08203932499369077	0.18847050625473166	0.1352549156242112	0.9720576987043709	0.6180339887498937
0.12269241877260749	0.18847050625473166	0.15558146251366958	0.9712081236799898	0.6180339887498949
0.14781741247581504	0.18847050625473166	0.16814395936527335	0.9711202131196137	0.6180339887498932
0.14781741247581504	0.1729424061790224	0.16037990932741872	0.9711351328667198	0.6180339887498946
0.15741430610331317	0.1729424061790224	0.16517835614116777	0.9711108588459925	0.6180339887498946
0.15741430610331317	0.1670111997308113	0.16221275291706222	0.9711201110219705	0.6180339887498955
0.16107999328260017	0.1670111997308113	0.16404559650670575	0.9711121966118901	0.618033988749896
0.1633455125515242	0.1670111997308113	0.16517835614116777	0.9711108588459925	0.6180339887499058
0.1633455125515242	0.16561103182044837	0.1644782721859863	0.9711113652067349	0.6180339887498963
0.16421086391008544	0.16561103182044837	0.1649109478652669	0.9711109298681642	0.6180339887498908
0.1647456804618872	0.16561103182044837	0.16517835614116777	0.9711108588459925	0.6180339887498658
0.1647456804618872	0.1652804970136889	0.16501308873778806	0.9711108848836476	0.6180339887499068
0.16494996220692942	0.1652804970136889	0.16511522961030917	0.9711108619709394	0.6180339887499156
0.16507621526864663	0.1652804970136889	0.16517835614116777	0.9711108588459925	0.6180339887500087
0.16507621526864663	0.1652024683303639	0.16513934179950526	0.9711108597822115	0.6180339887498685
0.16512443964703888	0.1652024683303639	0.1651634539887014	0.9711108588235003	0.618033988749964
0.16515424395197167	0.1652024683303639	0.16517835614116777	0.9711108588459925	0.6180339887493581
0.16515424395197167	0.16518404825690441	0.16516914610443806	0.9711108587766363	0.6180339887501489
0.1651656281834449	0.16518404825690441	0.16517483822017465	0.9711108587983187	0.618033988750161

2.3. Метод Фибоначчи

Левая граница	Правая граница	x	f(x)	Соотношение
-2.0	1.0901699437410182	0.5	1.0894570207692074	
-0.8196601125179637	1.0901699437410182	-0.4549150281294908	1.3795438769132975	0.6180339887543225
-0.09016994374101805	1.0901699437410182	0.1352549156115272	0.9720576987051739	0.6180339887383031
-0.09016994374101805	0.6393202250359278	0.50000000000000001	1.0894570207692076	0.6180339887802427
-0.09016994374101805	0.3606797749640726	0.2745751406474549	0.9837635018890053	0.6180339886704432
0.08203932489221738	0.3606797749640726	0.13525491561152728	0.9720576987051739	0.618033988957902
0.08203932489221738	0.2542485935254528	0.221359549928145	0.9744494310376788	0.6180339882053251
0.08203932489221738	0.18847050633083717	0.1681439592088351	0.9711202131186295	0.6180339901755971
0.12269241913622153	0.18847050633083717	0.13525491561152728	0.9720576987051739	0.6180339850173578
0.14781741208683302	0.18847050633083717	0.15558146273352935	0.9712081236755292	0.6180339985218036
0.14781741208683302	0.17294240503744454	0.1681439592088351	0.9711202131186295	0.6180339631667068
0.1574143037440519	0.17294240503744454	0.1603799085621388	0.9711351328744758	0.6180340557275537
0.1574143037440519	0.16701119540127077	0.16517835439074824	0.9711108588459622	0.6180338134001249
0.161079985765097	0.16701119540127077	0.16221274957266135	0.9711201110428963	0.6180344478216829
0.16334551338022565	0.16701119540127077	0.16404559058318388	0.9711121966259836	0.6180327868852478
0.16334551338022565	0.16561104099535434	0.1651783543907482	0.9711108588459622	0.6180371352785172
0.1642108865894379	0.16561104099535434	0.16447827718779	0.9711113651994131	0.6180257510729666
0.16474566778614208	0.16561104099535434	0.16491096379239611	0.9711109298594289	0.6180555555555616
0.16474566778614208	0.16528044898284627	0.1651783543907482	0.9711108588459622	0.6179775280898718
0.16494985697033823	0.16528044898284627	0.16501305838449418	0.9711108848937371	0.6181818181818078
0.16507625979865012	0.16528044898284627	0.16511515297659224	0.9711108619798564	0.6176470588235565
0.16507625979865012	0.16520266262696204	0.16517835439074818	0.9711108588459622	0.6190476190476838
0.16512487627107778	0.16520266262696204	0.1651394612128061	0.9711108597744329	0.615384615384666
0.16515404615453438	0.16520266262696204	0.1651637694490199	0.971110858819109	0.6249999999998662
0.16515404615453438	0.16518321603799097	0.1651783543907482	0.9711108588459622	0.599999999997716
0.16516376944901992	0.16518321603799097	0.16516863109626267	0.9711108587780561	0.666666666663495

2.4. Метод парабол

Левая граница	Правая граница	x	f(x)	a0	a1	a2	Соотношение
-2.0	0.5	0.18370860674642864	0.18370860674642864	6.013752707470477	-2.309043585579777	-2.309043585579777	
-2.0	0.18370860674642864	0.16800540278685794	0.16800540278685794	6.013752707470477	-2.325932093733126	-2.325932093733126	0.8734834426985714
-2.0	0.16800540278685794	0.16534706089388052	0.16534706089388052	6.013752707470477	-2.3287914933702134	-2.3287914933702134	0.9928089288511038
-2.0	0.16534706089388052	0.16519517354637558	0.16519517354637558	6.013752707470477	-2.3289548718952084	-2.3289548718952084	0.9987738305958278
-2.0	0.16519517354637558	0.16517186623124447	0.16517186623124447	6.013752707470477	-2.3289799425804416	-2.3289799425804416	0.9999298554258353

2.5. Комбинированный метод Брента

Левая граница	Правая граница	x	f(x)	Соотношение
-2.0	3.0	0.5	1.0894570207692074	
-2.0	1.0901699437494738	-0.4549150281252631	1.379543876907716	0.6180339887498947
-0.8196601125010515	1.0901699437494738	0.13525491562421116	0.972057698704371	0.6180339887498949
-0.09016994374947451	1.0901699437494738	0.499999999999967	1.0894570207692071	0.6180339887498949
-0.09016994374947451	0.6393202250021026	0.27457514062631405	0.9837635018841171	0.6180339887498948
-0.09016994374947451	0.3606797749978966	0.13525491562421105	0.972057698704371	0.6180339887498949
0.08203932499369063	0.3606797749978966	0.2213595499957936	0.9744494310457162	0.6180339887498948
0.08203932499369063	0.2542485937368557	0.16814395936527315	0.9711202131196137	0.6180339887498948
0.08203932499369063	0.18847050625473152	0.13525491562421108	0.972057698704371	0.6180339887498948
0.12269241877260736	0.18847050625473152	0.15558146251366944	0.9712081236799898	0.6180339887498948
0.1478174124758148	0.18847050625473152	0.16814395936527315	0.9711202131196137	0.6180339887498947
0.1478174124758148	0.17294240617902223	0.16037990932741852	0.9711351328667198	0.6180339887498946
0.15741430610331297	0.17294240617902223	0.1651783561411676	0.9711108588459924	0.6180339887498943
0.15741430610331297	0.1670111997308111	0.16221275291706205	0.9711201110219704	0.6180339887498943
0.1610799932826	0.1670111997308111	0.16404559650670555	0.9711121966118901	0.6180339887498931
0.1633455125515241	0.1670111997308111	0.1651783561411676	0.9711108588459924	0.6180339887498947
0.1633455125515241	0.1656110318204482	0.16447827218598615	0.9711113652067349	0.6180339887498952
0.1642108639100853	0.1656110318204482	0.16491094786526675	0.971110929868164	0.6180339887498937
0.164745680461887	0.1656110318204482	0.1651783561411676	0.9711108588459924	0.6180339887498979
0.164745680461887	0.16528049701368872	0.16501308873778786	0.9711108848836475	0.6180339887498869
0.16494996220692926	0.16528049701368872	0.165115229610309	0.9711108619709394	0.6180339887498636
0.1650762152686465	0.16528049701368872	0.1651783561411676	0.9711108588459924	0.6180339887498927
0.1650762152686465	0.16520246833036373	0.16513934179950512	0.9711108597822116	0.6180339887499006
0.16512443964703874	0.16520246833036373	0.16516345398870125	0.9711108588235003	0.61803398874988
0.16515424395197148	0.16520246833036373	0.1651783561411676	0.9711108588459924	0.6180339887499336
0.16515424395197148	0.16518404825690422	0.16516914610443784	0.9711108587766363	0.6180339887497932
0.1651656281834447	0.16518404825690422	0.16517483822017448	0.9711108587983187	0.618033988750161
0.1651656281834447	0.16517701241491797	0.16517132029918136	0.9711108587768275	0.6180339887507049
0.1651699765729317	0.16517701241491797	0.16517349449392482	0.9711108587870194	0.6180339887502121

3. Зависимость количества вычислений от є

3.1. Метод дихотомии

3	Кол-во вычислений	X	f(x)
0,1	12	0.155468750000000002	0.9712104238281072
0,01	18	0.163759765625	0.9711129630966375
0,001	26	0.16528912353515623	0.9711108737379666
0,0001	32	0.1651907173156738	0.9711108592211382
0,00001	38	0.1651703855419159	0.9711108587755197
0,000001	46	0.16517484924119707	0.9711108587984272
0,0000001	52	0.16521744354572224	0.9711108611372948

3.2. Метод золотого сечения

3	Кол-во вычислений	X	f(x)
0,1	9	0.16814395936527346	0.9711108611372948
0,01	14	0.16517835614116777	0.9711108611372948
0,001	19	0.1649109478652669	0.9711108611372948
0,0001	24	0.16513934179950526	0.9711108611372948
0,00001	28	0.16517483822017465	0.9711108611372948
0,000001	33	0.16517349449392502	0.9711108611372948
0,0000001	38	0.1651742500791215	0.9711108611372948

3.3. Метод Фибоначчи

3	Кол-во вычислений	X	f(x)
0,1	14	0.22727272727272718	0.9711108611372948
0,01	24	0.15983606557377028	0.9711108611372948
0,001	34	0.16444937176644508	0.9711108611372948
0,0001	44	0.16517827390869733	0.9711108611372948
0,00001	52	0.16516863109626267	0.9711108611372948
0,000001	62	0.16516695841948106	0.9711108611372948
0,0000001	72	0.16516574664517084	0.9711108611372948

3.4. Метод парабол

3	Кол-во вычислений	X	f(x)
0,1	4	0.16800540278685794	0.9711193617417109
0,01	5	0.16534706089388052	0.9711108918666135
0,001	6	0.16519517354637558	0.9711108594356537
0,0001	7	0.16517186623124447	0.9711108587784464
0,00001	8	0.16517041277645217	0.9711108587755317
0,000001	9	0.16517020742253796	0.9711108587754802
0,0000001	10	0.1651701946593762	0.97111085877548

3.5. Комбинированный метод Брента

3	Кол-во вычислений	X	f(x)
0,1	36	0.15558146251366944	0.9711108611372948
0,01	56	0.16386162857840997	0.9711108611372948
0,001	76	0.16504348597290108	0.9711108611372948
0,0001	92	0.16516345398870125	0.9711108611372948
0,00001	112	0.16517349449392482	0.9711108611372948
0,000001	132	0.16517260056474528	0.9711108611372948
0,0000001	152	0.16517266844434636	0.9711108611372948

4. Выводы

Рассмотрев все данные методы оптимизации и проанализировав их, мы пришли к выводам:

- Наименее точный результат дал метод Фибоначчи
- Наибольшее количество шагов для достижения результата понадобилось методу Брента 29. Недалеко от него расположились методы Фибоначчи и золотого сечения по 26 шагов. Дальше идёт метод дихотомии 18 шагов. Наименьшее количество шагов понадобилось методу парабол 5.
- Метод парабол также обеспечивает наименьшее количество вычислений всего 8, в то время как метод Брента наибольшее 112.

5. Многомодальные функции

Возьмём многомодальную функцию:

$$x^4 - 2x^3 - 8x^2 + 4x$$

Как видно на графике, функция принимает минимум на x=2.801

Метод	x	f(x)
Дихотомии	-12.204425385165315	-1.53354354074955
Золотого сечения	-12.204425385036174	-1.5335422712768452
Фибоначчи	-12.204425385212218	-1.5335482669102447
Парабол	-11.434213372092886	-1.745875310264276
Брента	-12.204425384567498	-1.5335394261629358

Проанализировав функцию по нашим методам, мы увидели, что ответ получился не правильный. Это случилось потому, что эти методы рассчитаны только на унимодальные функции.

6. Программный код

Ссылка на гитхаб с кодом