Answers and Comments¹

- 1. a) No, since the dual system ((**) on page 135) has a solution $y = (2,1,3)^T$.
 - b) See the proof to Lemma 1, p. 43.
- **2. a)** Vector **a** is the Newton direction (it minimizes the quadratic form in one step.) Vector **b** is none (it is a tangent vector). Vector **c** is none (it could be the Steepest descent direction, but it has the wrong sign).
 - b) Vectors **a** and **b**, since $\mathbf{a} = -x_0$, $\mathbf{c} \parallel \nabla f(x_0) = 2Hx_0$ and $\mathbf{b}^T \mathbf{c} = 0 \Rightarrow \mathbf{b}^T H \mathbf{a} = 0$.
- **3. a)** Pick (s_1, x_1, x_2) as a BFS, min = 1 at $x_{opt} = (0, 1, 1)$.
 - **b)** The dual problem has the solution $y_{opt} = (0, 1, 0)$, max = 1.
- **4. a)** Not convex (e.g. draw the set profile for y = 0).
 - **b)** Convex, since $f = x^2 + y^2 z$ and $g = x^2 + y^2 + z$ are both convex $\Rightarrow h = \max\{f, g\}$ convex $\Rightarrow \{h \le 1\}$ is a convex set.
 - c) Only for $\alpha = 0$ (e.g. study the Hessian by (modified) Sylvester criterion for $\alpha \neq 0, 1$ and study cases $\alpha = 0$ and $\alpha = 1$ separately).
- **5.** The set is compact \Rightarrow min exists. No CQ points. KKT points: (0,0,0) with f=0, $\pm(1,-1,0)$ with f=-2 and $\pm(1,1,-4)$ with f=-14. The last two are the minimum points.
- **6. a)** The Lagrange function L is a quadratic function with the indefinite Hessian $\Rightarrow \Theta(u,v) = -\infty$ for all $u \geq 0$ and v. Maximization gives again $-\infty$. The obvious duality gap makes it impossible to use the dual problem in order to solve the primal one.
 - b) To minimize f is the same as to minimize $g = f^2$. The stationary point equation $\nabla g = 0$ is equivalent to the normal equation \Rightarrow the solution to the normal equation is the stationary point + g is convex \Rightarrow it is the global minimum.

¹For re-exams only answers are provided.