Metodologias Experimentais em Informática

Maximum Flow Problem

Mestrado em Engenharia Informática - 22/23

Meta 1 - Variáveis e Cenário Experimental

Variáveis Independentes	Descrição
numVertices (n)	Número de vértices
arcProbability (p)	Probabilidade de gerar um arco
maxCapacity (r)	Capacidade máxima de um arco

Variáveis Dependentes	Descrição
elapsed	Tempo usado pelo CPU
maxFlow	Valor do maximum flow (ou -1)

- Os testes foram realizados apenas num computador
- Obtiveram-se 1800 resultados de execução
- O tempo máximo de CPU foi limitado a 10 segundos

Meta 1 - Análise Exploratória de Dados

Gráficos boxplot representativos dos tempos de execução de cada um dos algoritmos:

Meta 1 - Análise Exploratória de Dados

Comparação dos algoritmos fixando cada uma das variáveis independentes:

Regressões lineares (sem e com transformações) aplicadas relativamente aos tempos de execução usando Dinic:

Regressões lineares (sem e com transformações) aplicadas relativamente aos tempos de execução usando EK:

Regressões lineares (sem e com transformações) aplicadas relativamente aos tempos de execução usando EK:

Regressões lineares (sem e com transformações) aplicadas relativamente aos tempos de execução usando EK:

Regressões lineares (sem e com transformações) aplicadas relativamente aos tempos de execução usando MPM:

Regressões lineares (sem e com transformações) aplicadas relativamente aos tempos de execução usando MPM:

Regressões lineares (sem e com transformações) aplicadas relativamente aos tempos de execução usando MPM:

Meta 2 - Pré-Registo de hipóteses

1. A capacidade máxima de cada arco não influencia os tempos de execução dos algoritmos, uma vez que, para todas as combinações de variáveis independentes testadas, o valor dos tempos médios permanece aproximadamente constante.

2. O algoritmo EK é consideravelmente mais lento que os outros para quaisquer que sejam os valores das variáveis independentes, sendo que é o único que atinge o tempo máximo de execução dos nossos testes.

Meta 2 - Pré-Registo de hipóteses

3. A probabilidade de gerar arco não influencia os tempos de execução do algoritmo Dinic, pois para qualquer valor de probabilidade o valor dos tempos médios permanece aproximadamente constante.

4. A probabilidade de gerar arco influencia o número de limites de tempo excedido usando o algoritmo EK, uma vez que à medida que a probabilidade aumenta, o limite de tempo excedido é atingido utilizando números de vértices cada vez menores,

Meta 3 - Hipótese 1 - Two-Way ANOVA (Pressupostos)

Teste de Shapiro-Wilk ($\alpha = 0.05$):

W = 0.64457, p-value < 2.2e-16

Meta 3 - Hipótese 1 - Two-Way ANOVA

 Uma vez que os pressupostos n\u00e3o se verificaram, foi o utilizado o teste n\u00e3o param\u00e9trico Kruskal-Wallis:

Como p-value > α, então não se rejeita a hipótese nula.

Meta 3 - Hipótese 2 - *t-test* (Pressupostos)

Theoretical Quantiles

Teste Shapiro-Wilk ($\alpha = 0.05$):

W = 0.7211, p-value < 2.2e-16

Teste Shapiro-Wilk ($\alpha = 0.05$):

W = 0.83333, p-value < 7.144e-14

Meta 3 - Hipótese 2 - *t-test* (Pressupostos)

Meta 3 - Hipótese 2 - t-test

- Visto que os pressupostos n\u00e3o se verificaram foi necess\u00e1rio recorrer a um teste n\u00e3o param\u00e9trico.
- O teste utilizado foi o teste Wilcoxon, tendo sido obtidos os seguintes resultados:
 - o Para o par **EK-Dinic**:
 - V = 20100, p-value < 2.2e-16</p>
 - o Para o par **EK-MPM**:
 - V = 20100, p-value < 2.2e-16
- Ao analisar os resultados podemos concluir que: p-value < α, então rejeita-se a hipótese nula, confirmando assim que o algoritmo EK é mais lento que os outros dois algoritmos (Dinic e MPM)

Meta 3 - Hipótese 3 - ANOVA (Pressupostos)

Teste Shapiro-Wilk ($\alpha = 0.05$):

W = 0.85374, p-value < 6.556e-13

Teste Bartlett ($\alpha = 0.05$):

K-squared = 5.0067, df=4, p-value = 0.2866

Meta 3 - Hipótese 3 - ANOVA

- Uma vez que um dos pressupostos n\u00e3o se verifica, foi necess\u00e1rio utilizar um teste n\u00e3o param\u00e9trico.
- O teste utilizado foi o Kruskal-Wallis:

chi-squared =
$$2.2627$$
, df = 4 , p-value = 0.6876

 Analisando os resultados vemos que p-value > α, então não se rejeita a hipótese nula.

Meta 3 - Hipótese 4 - ANOVA (Pressupostos)

Teste Shapiro-Wilk ($\alpha = 0.05$):

W = 0.6341, p-value < 2.2e-16

Teste Barlett ($\alpha = 0.05$):

K-squared = 5.2087, df = 4, p-value = 0.2665

 O pressuposto da esfericidade é também cumprido, devido à distribuição homogénea dos dados em torno da média zero.

Meta 3 - Hipótese 4 - ANOVA

 Com a confirmação dos três pressupostos é possível avançar com o teste ANOVA:

```
Df Sum Sq Mean Sq F value Pr(>F)
factor(prob) 4 9.08 2.2700 10.9 5.35e-08 ***
Residuals 195 40.60 0.2082
---
signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

 Analisando os resultados, vemos que p-value < α, então rejeita-se a hipótese nula e confirma-se que a probabilidade de gerar um arco influencia a quantidade de resultados com o tempo limite excedido.

FIM!