# Applying Reinforcement Learning to the game of Wizard

Callum Waters Jonas Dippel Kai Jeggle Til Jasper Ullrich

# **About the game**

- A game consists of 15 rounds.
- The number of dealt cards and hence the number of tricks increases by one every round.
- $\begin{aligned} \mathsf{Game}, r &= 1, \dots, 15 \\ \mathsf{Round}\, r, t &= 1, \dots, r \\ \mathsf{Trick}\, t \end{aligned}$
- In each trick, every player plays one card.
- The strongest card wins the trick.
- In each round, every player makes a prediction on how many tricks they will win.
- Points are gained for predicting correctly and lost for predicting wrongly.
- Fulfilling a higher prediction gains more points whilst a higher difference away from the prediction loses more points.

## Architecture

- During the *Playing Phase*, the agent tries to reach the amount of tricks specified beforehand in the *Prediction Phase*.
- The amount of tricks that the agent actually achieved at the end of the round is then passed back to the prediction model as a feedback signal.



# **Prediction phase**



Figure 1. Prediction pipeline to calculate the expected score, if the agent predicts p tricks.

- The *Predictor* computes a round prediction based on the agent's initial cards.
- For every possible prediction p, the expected score  $\mathbb{E}_p[score]$  is computed as shown in Figure 1. The prediction that yields the highest expected score  $p_{max} = \arg\max \mathbb{E}_p[score]$  is then chosen.

## Playing phase

- Our agent uses Proximal Policy Optimization (PPO) [2].
- Both actor and value network consist of 5 fully connected layers.
- We filter invalid actions at the output of the actor network.
- The reward is equal to the number points achieved in the round.

## **Features**



# **Training**



## **Evaluation**

#### Agent #1

- our trained RL agent
- fixed parameters

## Agent #3

- rule based prediction
- rule based play

#### Agent #2

- plays cards at random
- predicts average amount

#### Agent #4

- prediction: NN, play: rule based
- still learning

# Rule based agent

The rule based agent used in evaluation is designed around the following probabilistic based algorithm.

- For each card in the agents hand, calculate the probability of winning the trick against the pool of remaining cards that could be played.
- Calculate the desirability of the agent to win the trick based on factors such as the agents prediction and the tricks left to be played.
- Play the card with the winning probability that most closely matches the desirability to win the trick.

## Results

# **Training**



Figure 2. Performance of RL Agent during training in self play



Figure 3. Accuracy of Predictor during training in self play

### **Evaluation**



Figure 4. Evaluation of trained RL agent

## Problems we encountered

- Invalid actions
- LSTMs not feasible
- Features didn't improve results
- Implementation issues

## **Future work**

- Find Features that improve performance
- Try RNNs (LSTMs) again
- Model the hidden information and use it as features
- Try other algorithms (e.g. SAC)

## References

- [1] mvelax. Wizard game simulator to use with reinforcement learning. https://github.com/mvelax/wizard-python. 2017.
- [2] John Schulman et al. "Proximal Policy Optimization Algorithms". In: CoRR abs/1707.06347 (2017). arXiv: 1707.06347. URL: http://arxiv.org/abs/1707.06347.