ERE103 Reglerteknik D Repetition

Bo Egardt

Institutionen för Elektroteknik Chalmers Tekniska Högskola

December, 2019

Varför reglerteknik?

Reglerteknik: styrning av dynamiska system genom återkoppling.

Reglertekniken är ofta anonym ("den gömda teknologin"), men...

- styrning med återkoppling används "överallt"
- styrningen med mikro-controllers eller datorer kräver reglertekniska algoritmer
- reglerteknikens metoder ger systemförståelse

Med återkoppling kan vi...

- Minska effekten av osäkerhet (modellfel, komponentvariationer, störningar)
- Forma systemets dynamik (t ex snabba upp, stabilisera)

Reglerdesign – arbetsflöde

Dynamiska system

Skilj mellan:

- Statiskt system: insignal → utsignal momentant
- ightharpoonup Dynamiskt system: insignal ightarrow utsignal med "minne" (tröghet)
- Dynamik beskrivs med differentialekvationer

▶ Modellering

Det finns två huvudmetoder att ta fram en modell för ett tekniskt system:

- 1. Fysikalisk modellering
 - använd kunskap om systemet!
 - uttryck fysikaliska samband
 - ex: differentialekvation, tillståndsmodell
- 2. Experimentell modellering
 - gör experiment med systemet!
 - dra slutsatser från insamlade data
 - ex: stegsvar, impulssvar, frekvenssvar
 - mer avancerat: spektralanalys, parametrisk systemidentifiering

Vad är tankesättet när man ställer upp en modell?

► Fysikaliskt modellbygge – arbetsgång

- 1. Analysera systemets funktion, strukturera
 - Nedbrytning i delsystem
 - Vilka variabler?
 - Vilka kvalitativa samband?
 - → Graf eller blockschema
- 2. Ställ upp basekvationer
 - Balansekvationer
 - Konstitutiva samband
 - Dimensionskontroll
 - → Differentialekvationer och algebraiska samband
- 3. Formulera modell
 - Linjärisera?
 - Laplace-transformera, bilda överföringsfunktioner, eller...
 - ► Välj tillståndsvariabler och formulera tillståndsmodell
 - → Differentialekvation, överföringsfunktion eller tillståndsmodell

Kom ihåg: tillståndsvariabler ofta *upplagrade storheter*!

LTI-modeller

Det finns ett antal olika modeller för tidskontinuerliga *linjära*, *tidsinvarianta system*:

- Differentialekvation
- Överföringsfunktion
- Viktfunktion
- ▶ Tillståndsmodell

Motsvarande modeller finns även för tidsdiskreta system

▶ LTI-modell 1: Differentialekvation

$$y^{(n)}(t) + a_1 y^{(n-1)}(t) + \ldots + a_n y(t) = b_0 u^{(n)}(t) + b_1 u^{(n-1)}(t) + \ldots + b_n u(t)$$

Varje lösning kan skrivas

$$y(t) = y_p(t) + y_h(t),$$

där $y_p(t)$ är partikulärlösningen, $y_h(t)$ är en lösning till den homogena ekv.

Karakteristiska polynomet:

$$a(\lambda) = \lambda^{n} + a_{1}\lambda^{n-1} + \ldots + a_{n-1}\lambda + a_{n}$$

Strukturen på lösningen till den homogena ekvationen ges av

$$y_h(t) = \sum_{k=1}^m p_k(t)e^{\lambda_k t},$$

där $\lambda_1,\ldots,\lambda_m$ är de skilda nollställena till det karakteristiska polynomet

Systemet stabilt om alla λ_k ligger i VHP (Re $\lambda_k < 0$).

► LTI-modell 2: Överföringsfunktion

Överföringsfunktionen G(s) kan användas för att uttrycka systemets svar på en godtycklig insignal. Definiera Laplace-transformen av tidsfunktionen f(t):

$$F(s) = \mathcal{L}\{f(t)\} = \int_{0}^{\infty} f(t)e^{-st}dt$$

$$\Rightarrow \mathcal{L}\{\frac{df(t)}{dt}\} = sF(s) - f(0)$$

Om systemet är i vila vid t = 0 (alla tidsderivator lika med 0) så gäller:

$$Y(s) = \frac{b_0 s^n + b_1 s^{n-1} + \ldots + b_n}{s^n + a_1 s^{n-1} + \ldots + a_n} U(s) = \frac{b(s)}{a(s)} U(s) = G(s) U(s)$$

Systemet kan representeras med överföringsfunktionen G(s) i ett blockelement:

Systemtyper

- Integral process (typ 1) med överföringsfunktionen G(s) = K/s. Exempel på detta är en tank med styrt in/utlopp och en hydraulkolv.
- ▶ Dubbelintegralprocess (typ 2) med överföringsfunktion $G(s) = K/s^2$. Ett exempel är en massa (tröghetsmoment), som drivs av en kraft (moment) utan friktion.
- ▶ *Tidskonstant* med överföringsfunktion G(s) = K/(1 + sT).
- ▶ Integrator + tidskonstant med G(s) = K/(s(1+sT)). Exempel på detta är en DC-motor.
- ▶ Dubbla tidskonstanter med $G(s) = K/((1+sT_1)(1+sT_2))$. Exempel är dubbeltank (labben!) och farthållarexemplet.
- ▶ Dämpad resonans med överföringsfunktionen $G(s) = K\omega_n^2/(s^2 + 2\zeta\omega_n s + \omega_n^2)$.
- Instabila processer, t ex den inverterade pendeln.
- ▶ Dödtid eller tidsfördröjning med $G(s) = e^{-s\tau}$. Exempel är transportfördröjning.

▶ LTI-modell 3: Viktfunktion

Laplace-transformen uppfyller faltningssatsen

$$\mathcal{L}\left\{\int_0^t g(t-\tau)f(\tau)d\tau\right\} = \mathcal{L}\left\{g(t)\right\}\mathcal{L}\left\{f(t)\right\} = G(s)F(s)$$

vilket tillsammans med relationen Y(s) = G(s)U(s) ger (byt f mot u):

$$y(t) = \int_0^t g(t-\tau)u(\tau)d\tau$$
 $g(t) = \mathcal{L}^{-1}\{G(s)\} = \frac{1}{2\pi} \int_{\sigma-i\infty}^{\sigma+i\infty} G(s)e^{st}ds$

- ightharpoonup g(t) är systems *viktfunktion* utsignalen ges av en "viktad summa" av gamla insignalvärden.
- ▶ Om $u(t) = \delta(t)$ (en Dirac-funktion eller impuls), så följer att y(t) = g(t). Viktfunktionen kallas därför också *impulssvaret*.

LTI-system: egenskaper

Faltningsintegralen:

$$y(t) = \int_0^t g(t-\tau)u(\tau)d\tau$$

Av detta följer några viktiga egenskaper för ett *linjärt, tidsinvariant (LTI) system*:

- Dynamik: utsignalen beror i princip av alla gamla värden på insignalen.
- **Kausalitet**: utsignalen y(t) beror inte på framtida insignaler, $u(\tau)$, $\tau > t$.
- Superpositionsprincipen: $u_1(\cdot) \to y_1(\cdot), \ u_2(\cdot) \to y_2(\cdot) \Rightarrow \alpha_1 u_1(\cdot) + \alpha_2 u_2(\cdot) \to \alpha_1 y_1(\cdot) + \alpha_2 y_2(\cdot)$ Användning: studera respons på börvärdesändringar resp störningar var för sig!

Externa modeller

Sammanfattning av *externa* eller *insignal/utsignal-modeller* för linjära, tidsinvarianta (LTI) system:

$$a(\frac{d}{dt})y(t) = b(\frac{d}{dt})u(t) \qquad \xrightarrow{\mathcal{L}} \qquad a(s)Y(s) = b(s)U(s)$$

$$\downarrow G(s) = \frac{b(s)}{a(s)}$$

$$y(t) = \int_{0}^{t} g(t-\tau)u(\tau)d\tau \xleftarrow{\mathcal{L}^{-1}} \qquad Y(s) = G(s)U(s)$$

- Differentialekvationen och faltningsintegralen är modellbeskrivningar i tidsdomänen.
- Överföringsfunktionen är en modellbeskrivning i Laplace-domänen.
- Nollställena till b(s) kallas systemets nollställen.
- Nollställena till karakteristiska polynomet a(s) kallas systemets poler (som alltså bestämmer systemets stabilitet).

Tidsdiskreta, externa modeller

Sammanfattning av externa modeller för tidsdiskreta LTI-system:

$$a(q)y(k) = b(q)u(k) \xrightarrow{\mathcal{Z}} a(z)Y(z) = b(z)U(z)$$

$$\downarrow H(z) = \frac{b(z)}{a(z)}$$

$$y(k) = \sum_{i=0}^{k} h(k-i)u(i) \xleftarrow{\mathcal{Z}^{-1}} Y(z) = H(z)U(z)$$

där vi definierat *pulssvaret* $h(k) = \mathbb{Z}^{-1}\{H(z)\}.$

- Nollställena till b(z) kallas systemets nollställen.
- Nollställena till karakteristiska polynomet *a*(*z*) kallas systemets *poler* (som alltså bestämmer systemets stabilitet).

▶ LTI-modell 4: Tillståndsmodell

En olinjär tillståndsmodell ges av:

$$\dot{x}(t) = f(x(t), u(t))$$
$$y(t) = g(x(t), u(t))$$

En linjär tillståndsmodell ges av:

$$\dot{x}(t) = Ax(t) + Bu(t)$$
$$y(t) = Cx(t) + Du(t)$$

I båda fallen gäller att:

- \blacktriangleright $x(t) = [x_1(t), \dots, x_n(t)]$ är tillståndsvektorn och n modellens ordningstal
- $\triangleright u(t)$ är insignalen (som kan vara en vektor)
- ightharpoonup y(t) är utsignalen (som kan vara en vektor)

Tillståndsmodeller kallas också interna modeller

Olinjära \rightarrow linjära tillståndsmodeller?

▶ Linjärisering

Den olinjära tillståndsmodellen

$$\dot{x}(t) = f(x(t), u(t))$$
$$y(t) = g(x(t), u(t))$$

kan linjäriseras kring en *stationär lösning* eller *jämviktslösning* (eng. *steady state, equilibrium*) $(x(t), u(t)) \equiv (x_0, u_0)$ som uppfyller $f(x_0, u_0) = 0$. Den linjäriserade tillståndsmodellen beskriver systemet i en omgivning till jämviktslösningen $(\Delta x(t) = x(t) - x_0, \Delta u(t) = u(t) - u_0, \Delta y(t) = y(t) - y_0, y_0 = g(x_0, u_0))$:

$$\Delta \dot{x}(t) = A\Delta x(t) + B\Delta u(t)$$

$$\Delta y(t) = C\Delta x(t) + D\Delta u(t)$$

där

$$A = \frac{\partial f}{\partial x}|_{(x_0, u_0)}$$

$$B = \frac{\partial f}{\partial u}|_{(x_0, u_0)}$$

$$D = \frac{\partial g}{\partial u}|_{(x_0, u_0)}$$

$$D = \frac{\partial g}{\partial u}|_{(x_0, u_0)}$$

► Lösning av tillståndsekvationen

$$\dot{x}(t) = Ax(t) + Bu(t)$$

$$y(t) = Cx(t) + Du(t)$$
(1)

Lösningen ges av

$$x(t) = \Phi(t)x(0) + \int_0^t \Phi(t-\tau)Bu(\tau)d\tau \tag{2}$$

där övergångsmatrisen $\Phi(t) = e^{At}$ definieras som lösningen till diff-ekvationen

$$\frac{d}{dt}\Phi(t) = A\Phi(t), \qquad \Phi(0) = I \tag{3}$$

Av (2) följer att viktfunktionen/impulssvaret ges av

$$g(t) = Ce^{At}B + D\delta(t)$$

och därmed utsignalen (då initialtillståndet är 0) av

$$y(t) = \int_0^\tau Ce^{A(t-\tau)}Bu(\tau)d\tau + Du(t)$$

▶ LTI-modeller — översikt

Vi kan nu komplettera vår "karta" över olika LTI-modeller, interna och externa:

$$a(\frac{d}{dt})y(t) = b(\frac{d}{dt})u(t) \xrightarrow{\mathcal{L}} a(s)Y(s) = b(s)U(s)$$

$$\downarrow G(s) = \frac{b(s)}{a(s)}$$

$$y(t) = \int_0^t g(t-\tau)u(\tau)d\tau \xleftarrow{\mathcal{L}^{-1}} Y(s) = G(s)U(s)$$

$$\uparrow g(t) = Ce^{At}B + D\delta(t) \qquad \qquad \uparrow G(s) = C(sI-A)^{-1}B + D$$

$$\dot{x}(t) = Ax(t) + Bu(t) \qquad \underline{\qquad} SX(s) - x(0) = AX(s) + BU(s)$$
$$y(t) = Cx(t) + Du(t) \qquad Y(s) = CX(s) + DU(s)$$

Φ-matrisen – vad är det, vad används den till?

► Diskretisering av tillståndsmodeller

Anta vi har en tillståndsmodell för vår process (anta D = 0):

$$\dot{x}(t) = Ax(t) + Bu(t)
y(t) = Cx(t)$$
(4)

Om processen styrs av en dator, så är styrsignalen styckvis konstant:

$$u(t) = u(kh), \quad kh \le t < (k+1)h$$

Om detta utnyttjas i den allmänna lösningen till (4), nämligen

$$x(t) = e^{A(t-t_0)}x(t_0) + \int_{t_0}^t e^{A(t-\tau)}Bu(\tau)d\tau,$$

så fås (sätt t = (k+1)h, $t_0 = kh$, utnyttja att styrsignalen är konstant över intervallet, samt välj till sist h = 1):

$$x(k+1) = e^{Ah}x(k) + \left(\int_0^h e^{A\tau} B d\tau\right)u(k)$$

▶ Tidsdiskret tillståndsmodell

Resultatet av diskretiseringen är en tidsdiskret tillståndsmodell, som är en *exakt* beskrivning av processen *vid samplingstidpunkterna*:

$$x(k+1) = Fx(k) + Gu(k)$$
$$y(k) = Cx(k)$$

där

$$F = e^{Ah}$$
 $G = \int_0^h e^{A\tau} B d\tau$

Systemets överföringsfunktion är

$$H(z) = C(zI - F)^{-1}G$$

- Polerna ges av egenvärdena till matrisen $F = e^{Ah}$
- Egenvärdena till F är $\{e^{\lambda_i h}\}$, där $\{\lambda_i\}$ är egenvärdena till A. Transformationen från s-planet till z-planet är alltså:

$$z = e^{sh}$$

Notera att stabila poler (Res < 0) avbildas på stabila poler (|z| < 1)!

▶ Diskretisering: egenskaper

Diskretisering av tillståndsmodell:

- Ger en tidsdiskret tillståndsmodell, som är en exakt beskrivning i samplingstidpunkterna
- ▶ Polerna avbildas enligt $z = e^{sh}$ (t ex VHP \rightarrow enhetscirkeln)
- Ett stabilt system förblir stabilt efter tidsdiskretiseringen

De enkla diskretiseringsmetoderna (Euler framåt, Euler bakåt, Tustin) kan ses som approximationer av relationen $z=e^{sh}$:

$$z = e^{sh} \approx 1 + sh \quad \Rightarrow \quad s = \frac{1}{h}(z - 1)$$

$$z = e^{sh} = \frac{1}{e^{-sh}} \approx \frac{1}{1 - sh} \quad \Rightarrow \quad s = \frac{1}{h}(1 - z^{-1})$$

$$z = e^{sh} = \frac{e^{sh/2}}{e^{-sh/2}} \approx \frac{1 + sh/2}{1 - sh/2} \quad \Rightarrow \quad s = \frac{2}{h}\frac{z - 1}{z + 1} = \frac{2}{h}\frac{1 - z^{-1}}{1 + z^{-1}}$$

Med Tustins approximation avbildas stabila poler på stabila, tidsdiskreta poler (och instabila på instabila).

Diskreta LTI-modeller — översikt

Vi kan nu komplettera vår "karta" över olika LTI-modeller i det tidsdiskreta fallet:

$$a(q)y(k) = b(q)u(k) \xrightarrow{\mathcal{Z}} a(z)Y(z) = b(z)U(z)$$

$$\downarrow H(z) = \frac{b(z)}{a(z)}$$

$$y(k) = \sum_{i=0}^{k} h(k-i)u(i) \xleftarrow{\mathcal{Z}^{-1}} Y(z) = H(z)U(z)$$

$$\uparrow h(k) = CF^{k-1}G \qquad \uparrow H(z) = C(zI-F)^{-1}G$$

$$x(k+1) = Fx(k) + Gu(k) \xrightarrow{\mathcal{Z}} z(X(z) - x(0)) = FX(z) + GU(z)$$

$$y(k) = Cx(k) \qquad Y(z) = CX(z)$$

$$F = e^{Ah} \uparrow G = \int_0^h e^{A\tau} B d\tau$$

 $\dot{x}(t) = Ax(t) + Bu(t)$

v(t) = Cx(t)

Tidsförlopp, stegsvar

Ett första ordningens system

$$G(s) = \frac{K}{1 + sT}$$

har stegsvaret $y(t) = K(1 - e^{-t/T})$. Utsignalen når c:a 2/3 av sitt slutvärde efter tiden T (*tidskonstanten*).

► Ett andra ordningens system

$$G(s) = \frac{K\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

har i fallet $0<\zeta<1$ komplexvärda, stabila poler och stegsvaret är

$$y(t) = K \left(1 - e^{-\zeta \omega_n t} \frac{1}{\sqrt{1 - \zeta^2}} \sin(\omega_n \sqrt{1 - \zeta^2} t + \arccos \zeta)\right)$$

Notera tolkningarna av den *relativa dämpningen* ζ och den *odämpade självsvängningsfrekvensen* $\omega_n!$

Stegsvar

Begrepp som är viktiga för att beskriva insvängningen av ett stegsvar:

- ightharpoonup Stigtiden t_r (eng. rise time)
- ► Insvängningstiden t_{5%} (settling time)
- Ekvivalent tidskonstant T_{63%}
- ► (Relativ) översläng M (overshoot)
- lacktriangle Dämpad självsvängningsfrekvens $\sqrt{1-\zeta^2}\omega_n$

Frekvenstrogenhet

För ett stabilt LTI-system gäller:

Om insignalen är en sinussignal, så är utsignalen stationärt en sinussignal med samma frekvens.

► Den stationära utsignalen karakteriseras av *förstärkningen* och *fasförskjutningen* relativt insignalen.

▶ Frekvensanalys

Frekvensanalysen bygger på användning av superpositionsprincipen:

1. Approximera insignalen som en viktad summa av "enkla" signaler: för en periodisk signal med perioden $T=2\pi/\omega_0$ kan vi använda en Fourier-serie:

$$u(t) = a_0 + \sum_{k=1}^{\infty} a_k \cos k\omega_0 t + \sum_{k=1}^{\infty} b_k \sin k\omega_0 t$$

- 2. Beräkna utsignalerna för de enkla insignalerna, dvs i detta fallet sinussignaler
- 3. Beräkna linjärkombinationen (den viktade summan) av dessa utsignaler
- För icke-periodiska signaler får vi använda Fourier-transformen.
- För steg 2 ovan räcker det för stabila system att bestämma förstärkning $|G(i\omega)|$ och fasförskjutning arg $G(i\omega)$:

$$u(t) = \sin \omega t$$
 $G(s)$ $y(t) = |G(i\omega)| \sin(\omega t + \arg G(i\omega))$

▶ Frekvenskurva

Frekvensanalysen bygger alltså på kunskap om frekvenskurvan $G(i\omega), \omega \in [0,\infty]$. Denna kan åskådliggöras som en kurva i det komplexa talplanet, ett *Nyquist-diagram*:

- Används vid stabilitetsundersökningar med Nyquistkriteriet.
- ightharpoonup En nackdel med Nyquistdiagrammet är att beroendet av ω inte framgår explicit.

Amplitud/fas i Nyquistdiagram?

▶ Bodediagram

Frekvenskurvan kan också visas i ett *Bode-diagram*, som i två grafer visar hur den komplexa funktionen $G(i\omega)$ beror av ω :

- **1.** Amplituddiagram: $20 \log |G(i\omega)|$ (dB) mot $\log \omega$
- **2.** Faskurva: $\arg G(i\omega) \mod \log \omega$

I Bodediagrammet adderas produkter av överföringsfunktioner i "y-led":

$$G(i\omega) = G_1(i\omega)G_2(i\omega) \Rightarrow$$

$$20 \log |G(i\omega)| = 20 \log |G_1(i\omega)| + 20 \log |G_2(i\omega)|$$

$$\arg G(i\omega) = \arg G_1(i\omega) + \arg G_2(i\omega)$$

▶ Bodediagram

Bodeform för G(s)? Y-axeln i Bodediagram – logaritmisk eller ej?

► Frekvenskurvor: några användbara fakta

- ► G(0) är den statiska förstärkningen
- $lackbox{ Om } G(s)$ innehåller en eller flera integratorer, så gäller $|G(i\omega)| o \infty, \; \omega o 0$
- ▶ G(s) är av typ n om den innehåller n rena integratorer (faktorn $\frac{1}{s^n}$) \Rightarrow arg $G(i\omega) \rightarrow -n \cdot \frac{\pi}{2}, \ \omega \rightarrow 0$
- ▶ $|G(i\omega)| \to 0$, $\omega \to \infty$ om nämnarens gradtal större än täljarens (G(s)) kallas då strikt proper
- ▶ arg $G(i\omega) \rightarrow -\frac{\pi}{2} \cdot \text{(antal poler antal nollställen)}, \ \omega \rightarrow \infty$
- Bodes amplitud-fas-relationer för minimumfas-system:

$$\arg G(i\omega_0) = \frac{\pi}{2} \int_0^\infty f(\omega) \frac{d \log |G(i\omega)|}{d \log \omega} d \log \omega \approx \frac{\pi}{2} \frac{d \log |G(i\omega)|}{d \log \omega}|_{\omega = \omega_0},$$

$$\operatorname{där} f(\omega) = \frac{2}{\pi^2} \log |\frac{\omega + \omega_0}{\omega - \omega_0}|_{\omega = \omega_0}$$

Återkoppling

Återkopplingens möjligheter...

- ▶ Minska effekten av osäkerhet (komponentvariationer, störningar)
- Forma systemets dynamik (t ex snabba upp, stabilisera)

... och faror:

- Destabilisering
- Givarbrus

Blockschema och kvarstående fel

Ett enkelt återkopplat system:

Reglerfelet ges av

$$E(s) = \frac{1}{1 + F(s)G(s)}R(s) = \frac{1}{1 + L(s)}R(s),$$

där L(s) = F(s)G(s) är kretsöverföringen (eng. open loop transfer function). Det kvarstående felet, dvs det stationära felet då börvärdet r är ett enhetssteg, kan beräknas med slutvärdessatsen:

$$\lim_{t \to \infty} e(t) = \lim_{s \to 0} sE(s) = \lim_{s \to 0} s \frac{1}{1 + L(s)} \frac{1}{s} = \lim_{s \to 0} \frac{1}{1 + L(s)}$$

Nyquists fullständiga stabilitetskriterium

Om L har poler i HHP måste fullständiga Nyquist-kriteriet användas. Kriteriet bygger på argumentvariationsprincipen som ger en relation mellan argumentet för en funktion längs en sluten kurva och antalet nollställen och singulariteter hos funktionen i området som omsluts av kurvan.

Låter man funktionen vara 1 + L och området hela HHP får man

$$Z = N + P$$

Z =antal nollställen i HHP hos 1 + L

= " instabila poler hos slutna systemet

P = " instabila poler hos L

N = " medurs omslingringar av -1 för L(s) då s genomlöper Nyquists kontur:

4 D > 4 A D > 4 B > B = 40 A

Nyquists förenklade stabilitetskriterium

Låt L(s) = F(s)G(s) vara kretsöverföringen i ett enkelt återkopplat system (dvs återkopplat med -1).

Om L(s) inte har poler i HHP, så är det återkopplade systemet stabilt om $L(i\omega)$ inte passerar till vänster om punkten -1 i komplexa talplanet.

▶ Stabilitetsmarginaler

Stabilitetsmarginaler i Bode och Nyquist?

Hur korrelerar Nyquistkurvan med systemets svängighet?

Ett annat mått är känslighetsfunktionens maximala värde:

$$M_S = \max_{\omega} |S(i\omega)| = \frac{1}{\min_{\omega} |1 + L(i\omega)|}$$

▶ Återkopplingens uppgifter

Vi vill åstadkomma följande med återkopplingen:

- 1. Följa börvärdets förändringar med tillräcklig snabbhet
- 2. Begränsa inverkan av störningar och processförändringar
- 3. Använda rimligt stora styrsignaler
- 4. Ge det återkopplade systemet tillräckliga stabilitetsmarginaler

► Specifikationer (exempel)

- Snabbhet:
 - ► Stigtid *T_s* (*r* till *y*)
 - ► Insvängningstid T_{5%} (r till y)
 - Skärfrekvens ω_c
 - ▶ Bandbredd ω_b för T(s) (r till y)
- Stabilitet:
 - Amplitudmarginal A_m (2-4 ggr)
 - Fasmarginal φ_m (30 60°)
 - ► Max översläng M (r till y)
 - Känslighetsfunktionens maximala värde $M_S = \max_{\omega} |S(j\omega)|$
 - ▶ Resonanstopp $M_p = \max_{\omega} |T(j\omega)|$ (påverkar robusthet)

Hur vet man om kraven som ställs är omöjliga att uppnå?

Varför ger högre ω_c ett snabbare system?

Känslighetsfunktioner

$$Y(s) = T(s)[R(s) - W(s)] + S(s)G_{v}(s)V(s) \qquad L(s) = F(s)G(s)$$

$$E(s) = S(s)[R(s) - W(s) - G_{v}(s)V(s)] \qquad S(s) = \frac{1}{1 + L(s)}$$

$$U(s) = \frac{T(s)}{G(s)}[R(s) - W(s) - G_{v}(s)V(s)] \qquad T(s) = \frac{L(s)}{1 + L(s)}$$

$$\frac{dT/T}{dL/L} = S(s) \qquad S(s) + T(s) = 1$$

▶ Återkopplingens uppgifter

Kraven på återkopplingen leder till krav på känslighetsfunktionerna:

- **1.** Följ börvärden: $E(s) = S(s)R(s) \Rightarrow \text{ gör } S \text{ litet!}$
- 2. Reducera inverkan av processtörningar: $Y(s) = S(s)V(s) \Rightarrow \text{ gör } S \text{ litet!}$ $(Y_{ol}(s) = V(s) \text{ och } Y_{cl}(s) = S(s)V(s) \text{ medför att } S \text{ anger förbättringen med återkoppling!})$
- 3. Reducera inverkan av parametervariationer: $\frac{dT/T}{dL/L} = S(s) \Rightarrow \text{ gör } S \text{ litet!}$
- 4. Begränsa inverkan av mätstörningar:

$$Y(s) = T(s)W(s), \ U(s) = \frac{T(s)}{G(s)}W(s) \Rightarrow \text{ g\"or } T \text{ litet!}$$

5. Använd rimligt stora styrsignaler:

$$U(s) = \frac{T(s)}{G(s)} [R(s) - W(s) - V(s)] \Rightarrow \text{g\"or } T/G \text{ litet!}$$

 $S + T = 1 \Rightarrow \text{det går inte att göra } S \text{ och } T \text{ små samtidigt!}$

▶ Designkompromisser

Designkraven 1–3 gäller framför allt lägre frekvenser, medan kraven 4–5 gäller främst högre frekvenser. Alltså: gör S litet för lägre frekvenser och T litet för högre!

Detta leder till följande principiella utseende för S, T och L:

Systemets stabilitetsegenskaper avgörs av utseendet i mellanfrekvensområdet, dvs runt ω_c .

Kompensering i frekvensplanet

Modifiering av kretsöverföringen i vissa frekvensintervall kan åstadkommas med t ex:

▶ En *fasretarderande* länk (lagfilter) ger hög förstärkning för låga frekvenser:

$$F(s) = a \frac{1 + sT}{1 + asT}, \quad a > 1$$

Uttrycket fasretarderande kommer av att en negativ fasförskjutning fås, framför allt inom frekvensintervallet [1/aT, 1/T]. Jfr. PI-regulator!

► En *fasavancerande* länk (leadfilter) ger ett positivt fastillskott inom frekvensintervallet [1/T, b/T]:

$$F(s) = \frac{1 + sT}{1 + sT/b}, \quad b > 1$$

Jfr. PD-regulator!

► Val av regulatortyp

Ska vi använda en P, PI, PD eller PID regulator?

Använd enklast möjliga regulatorstruktur!

Använd enklaste regulatortyp som löser problemet.

- Krav på att bli av med kvarstående fel medför ofta krav på integralverkan i regulatorn.
- Krav på snabbhet eller stor fasmarginal medför ofta krav på derivataverkan i regulatorn.

▶ PI-reglering

Ökad I-verkan innebär bättre kompensering av lågfrekventa processtörningar samt minskade stabilitetsmarginaler

$$F_{PI}(s) = K_p(1 + \frac{1}{sT_i}) = K_i \frac{(1 + T_i s)}{s}$$

PI-regulator eller lagfilter? När räcker inte lagfilter till?

▶ PD-reglering

Ökad D-verkan innebär ökade stabilitetsmarginaler och snabbhet samt ökad styrsignalaktivitet

$$F_{PD}(s) = K_p(1 + rac{T_d s}{1 + T_f s}) = K_prac{(1 + s au)}{(1 + s au/b)}$$
 lead-filter

Varför behövs ett filter på D-delen hos en PD-regulator?

PID-regulatorn

Används för att kompensera lågfrekventa processtörningar samt förbättra stabilitetsmarginalerna och prestanda.

Parallellkoppling

$$F_{PID}(s) = K_p(1 + \frac{1}{T_i s} + \frac{T_d s}{1 + T_f s})$$

Seriekoppling PI- och PD-regulatorer

$$F_{PIPD}(s) = K_p \frac{1 + s\tau_i}{s\tau_i} \frac{1 + s\tau_d}{1 + s\tau_d/b} = \frac{K_p}{\tau_i} \frac{1 + s(\tau_i + \tau_d) + s^2\tau_i\tau_d}{s(1 + s\tau_d/b)}$$

PID-design

Det finns flera alternativa metoder att dimensionera t ex PID-regulatorer:

- ► Kompensering eller modifiering av kretsöverföringen
- Flytta en punkt i Nyquistdiagrammet
- ► Ziegler-Nichols svängningsmetod
- Lambda-metoden (vanlig i processindustrin)
- Optimering enligt olika kriterier, som uttrycker designkompromisserna i frekvensplanet

PID-design?

► Flytta en punkt i Nyquistdiagrammet

En vanlig teknik att dimensionera PID-regulatorer är att specificera en punkt på kretsöverföringens frekvenskurva. På detta sätt kan 2 parametrar bestämmas i regulatorn:

- 1. Specificera en punkt för kretsöverföringen, $L(i\omega_0)$
- 2. Bestäm parametrarna i regulatorn genom villkoren

$$|F(i\omega_0)| = |L(i\omega_0)|/|G(i\omega_0)|$$

arg $F(i\omega_0) = \arg L(i\omega_0) - \arg G(i\omega_0)$

Ett exempel på detta är att specificera fasmarginal φ_m och skärfrekvens ω_c . OBS! Det finns flera olika varianter av detta, men "grundreceptet" är detsamma enl ovan!

PI-design

PI-regulatorn ges av

$$F(s) = K_p \frac{1 + T_i s}{T_i s}$$

▶ Specifikation av ω_c och φ_m (Ruta 8.1 i boken):

$$\begin{split} |L(i\omega_c)| &= |G(i\omega_c)| K_p \frac{\sqrt{1+\omega_c^2 T_i^2}}{\omega_c T_i} = 1 \\ \arg L(i\omega_c) &= \arg G(i\omega_c) - 90^o + \arctan(\omega_c T_i) = -180^o + \varphi_m \end{split}$$

• Specifikation av ω_{π} och A_m ger i princip samma som ovan:

$$|L(j\omega_\pi) = |G(i\omega_\pi)| K_\rho \frac{\sqrt{1+\omega_\pi^2 T_i^2}}{\omega_\pi T_i} = 1/A_m$$
 arg $L(j\omega_\pi) = \arg G(j\omega_\pi) - 90^o + \arctan(\omega_\pi T_i) = -180^o$

PD-design

En PD-regulator ges av

$$F(s) = K_p(1 + \frac{sT_d}{1 + sT_f}) = K_p \frac{1 + s(T_d + T_f)}{1 + sT_f} = K_p \frac{1 + \tau_d s}{1 + \tau_d s/b}, \quad b > 1$$

Anta att ω_c och φ_m är specificerade (Ruta 8.3 i boken):

1. Bestäm behovet av faslyft vid skärfrekvensen:

$$\varphi_{\text{max}} = \varphi_{\text{m}} - (\arg G(i\omega_{c}) + 180^{\circ}); \qquad b = \frac{1 + \sin \varphi_{\text{max}}}{1 - \sin \varphi_{\text{max}}}$$

2. Placera maximalt faslyft vid $\omega=\omega_c$: $\sqrt{b}/\tau_d=\omega_c$

$$\sqrt{b}/\tau_d = \omega_c$$

3. Bestäm K_p så att ω_c blir det önskade: $|L(j\omega_c)| = K_p \sqrt{b} |G(j\omega_c)| = 1$

$$|L(j\omega_c)| = K_p \sqrt{b} |G(j\omega_c)| = 1$$

PID - summering

P-regulator

- + Enkel
- Dålig statisk nogrannhet, d v s om r konstant så blir i regel $y \neq r$ (kan förbättras med börvärdesfaktor $e = k_r r y$)

PI-regulator

- + God statisk nogrannhet, d v s om r konstant blir i regel y = r
- + Långsamma processtörningar regleras bort väl
- Försämrade stabilitetsmarginaler (I-verkan medför ökad negativ fasvridning)

D-verkan

- + Förbättrad stabilitet
- + Snabbare reglering möjlig
- Ökad känslighet för mätstörningar

Integralverkan i regulatorn vs. i processen?

► Tillståndsåterkoppling

Då tillstånden är mätbara kan vi använda tillståndsåterkoppling:

Processen :
$$\begin{cases} \dot{x} = Ax + Bu \\ y = Cx \end{cases}$$
Regulatorn :
$$u = -L_ux + K_rr(t),$$

Där $L = [I_1 \ I_2 \ \dots \ I_n]$ och K_r är en skalär.

Det återkopplade systemet ges nu av

$$\begin{cases} \dot{x} = (A - BL_u)x + BK_r r(t) \\ y = Cx \end{cases}$$

Bestäm $l_1, \ldots l_n$ så att det återkopplade systemet får önskade poler, polerna ges av egenvärdena till matrisen $A-BL_u$.

Tillståndsåterkoppling

Laplacetransformering av återkopplade systemets tillståndsekvation ger

$$sX(s) = (A - BL_u)X(s) + BK_rR(s)$$

 $Y(s) = CX(s)$ \Rightarrow $G_{ry}(s) = C[sI - A + BL_u]^{-1}BK_r$

Korrekt stationär förstärkning, d.v.s. $G_{ry}(0) = I$, ger $K_r = 1/(C(BL_u - A)^{-1}B)$.

Tillståndsåterkoppling med integralverkan

Inför integraltillstånd

$$x_l(t) = \int_0^t (r(\tau) - y(\tau)) d\tau$$

och skapa en utökad tillståndsmodell

$$\frac{d}{dt} \begin{bmatrix} x(t) \\ x_I(t) \end{bmatrix} = \begin{bmatrix} A & 0 \\ -C & 0 \end{bmatrix} \begin{bmatrix} x(t) \\ x_I(t) \end{bmatrix} + \begin{bmatrix} B \\ 0 \end{bmatrix} u(t) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} r(t)$$

för vilken återkopplingsmatrisen $\begin{bmatrix} L_u & K_I \end{bmatrix}$ beräknas.

► Alternativa regulatorstrukturer

Det finns många sätt att "bygga" ett reglersystem, förutom den enkla, återkopplade kretsen som vi studerat hittills. Här är några exempel:

- ► Inre återföring:
 - ► En intern mätsignal är tillgänglig och kan användas för en "inre" återkoppling
 - ► Ett typiskt exempel på detta är hastighetssignalen i en motordrift
- Kaskadreglering:
 - Används ofta då man har tillgång till en extra mätning, som ligger "närmare" styrsignalen än den slutliga utsignalen
 - Genom att sluta en inre reglerloop, som är snabbare än den yttre, kan man förbättra prestanda
 - Ett exempel är reglering av Balanduino-roboten!
- Framkoppling:
 - Återkoppling bygger på att observerade (mätta) felaktigheter korrigeras
 - Om en störning mäts, så finns möjlighet att kompensera denna "i förväg"
 - ▶ Denna s.k. framkoppling används oftast tillsammans med återkoppling

Kaskadreglering

Om en process består av delsystem i serie (kaskad) med möjlighet att mäta mellan delsystemen använder man dessa mätningar för en intern återkoppling.

 \Rightarrow Snabbare system totalt.

Om man kan ha en hög förstärkning i den inre loopen så kan man vid designen av den yttre bortse från den inre återkopplingen.

Framkoppling (av störsignaler)

Mätning av en störning utnyttjas för att bättre kompensera bort effekterna av störningen, t ex mätning av utomhustemperatur vid reglering av inomhustemperatur.

Vi ser att störningen v kompenseras bort fullständigt om

$$F_{FF}G_1 + G_v = 0 \quad \Leftrightarrow \quad F_{FF} = -\frac{G_v}{G_1}$$

Problem:

1. Ej för stora modellfel.

ERE103 Reglerteknik D, Repetition

- **2.** F_{FF} stabil \Rightarrow nollställena till $G_1 \in VHP$.
- 3. F_{FF} kausal \Leftrightarrow dödtid hos $G_v \ge$ dödtid hos G_1 .
- **4.** F_{FF} proper \Leftrightarrow grad(nämnare) \geq grad(täljare).
- (1) Gör en försiktig kompensering. (2-4) Sträva efter att minimera påverkan i det frekvensområde där de huvudsakliga störningarna är. Är störningarna lågfrekventa ger ofta $F_{FF} = -G_V(0)/G_1(0)$ ändå en markant förbättring.

56 (71)

Datorimplementering av reglersystem

Ett reglersystem implementeras oftast med dator/mikrocontroller:

Samplad reglering

Implementering med dator innebär:

- Sampling av processvariabler (A/D-omvandling)
- Hållning av styrvariabler (D/A-omvandling)

▶ Samplad reglering

Konsekvens 1: Vikningseffekten (aliasing)

► Endast frekvenskomponenter upp till *Nyquist-frekvensen* $\omega_N = \frac{\pi}{h}$ kan urskiljas entydigt efter sampling. Viktigt att lågpassfiltrera före sampling!

Konsekvens 2:

- ► Processen är (oftast) tidskontinuerlig
- Regulatorn är tidsdiskret

Filter-tillämpningar

- Reducera brus i signaler
- Spektral omformning i kommunikationssystem
- ► Signaldetektering i radar, telekommunikation mm
- Spektralanalys för exempelvis talsignaler
- Komponenter i reglersystem

Ett filters utsignal vid tidpunkten t, y(t), beror i allmänhet av insignalens $(x(\cdot))$ värden fram till och med tidpunkten τ :

$$y(t) = y(x(s), s \le \tau)$$

Man brukar skilja mellan följande fall:

 $\tau = t$: filtrering

au < t: prediktion

 $\tau > t$: glättning (smoothing)

Design av lågpassfilter

Lågpassfiltret specificeras genom krav i passbandet $0 \le \omega \le \omega_p$ respektive spärrbandet $\omega \ge \omega_s$:

Med toleransparametrarna ϵ (ripplet i passbandet) och δ (dämpningen) kan kraven sammanfattas enligt följande:

$$1 - \epsilon \le |H(i\omega)| \le 1, \quad 0 \le |\omega| \le \omega_p$$

 $|H(i\omega)| \le \delta, \quad |\omega| \ge \omega_s$

Butterworthfiltret

Butterworthfiltret av ordning n och brytfrekvens (cut-off frequency) ω_c :

$$|H(i\omega)|^2 = \frac{1}{1 + (\frac{\omega}{\omega_c})^{2n}}$$

Filtrets poler:

$$p_k = \omega_c \cdot e^{i(\pi/2 + \pi/(2n) + \pi(k-1)/n)}, \quad k = 1, 2, \dots, n$$

Transformation av LP-filtret

Från LP-filtret kan andra typer av filter fås genom enkla transformationer:

$$\begin{split} \mathsf{LP} &\to \mathsf{LP}: \quad s \to s/\omega_c \\ \mathsf{LP} &\to \mathsf{HP}: \quad s \to \omega_c/s \\ \mathsf{LP} &\to \mathsf{BP}: \quad s \to \frac{s^2 + \omega_L \omega_H}{s(\omega_H - \omega_L)} = \frac{s^2 + \omega_M^2}{Bs} \\ \mathsf{LP} &\to \mathsf{BS}: \quad s \to \frac{s(\omega_H - \omega_L)}{s^2 + \omega_L \omega_H} = \frac{Bs}{s^2 + \omega_L^2} \end{split}$$

Digitala filter

▶ Utgå från det analoga filtret med överföringsfunktionen $H_c(s)$. Transformera till motsvarande tidsdiskreta filter H(z) på något av följande sätt (h är samplingsintervallet):

$$s o rac{1-z^{-1}}{h}$$
 bakåtdifferens ("Euler bakåt")
$$s o rac{z-1}{h}$$
 framåtdifferens ("Euler framåt")
$$s o rac{2}{h} rac{1-z^{-1}}{1+z^{-1}}$$
 bilinjär eller Tustins transformation

Designa ett tidsdiskret filter, t ex:

$$y(t) = \frac{1}{n}(x(t) + x(t-1) + \dots + x(t-n+1))$$
 (glidande medelvärde)
 $y(t) = \alpha y(t-1) + (1-\alpha)x(t)$ (exponentialfilter)

▶ Diskretisering av regulator

De approximativa diskretiseringsmetoderna används ofta när man skall "översätta" en tidskontinerlig regulator till motsvarande tidsdiskreta form.

Exempel: Diskretisering av PID-regulator

$$U(s) = \underbrace{K_P(R(s) - Y(s))}_{U_P} + \underbrace{\frac{K_I}{s}(R(s) - Y(s))}_{U_I} - \underbrace{K_D s Y(s)}_{U_D}$$

Notera att man ofta skippar D-verkan på r(t)!

$$U_{P}: u_{P} = K_{P}(r(k) - y(k))$$

$$U_{I}: s = \frac{q-1}{h} \Rightarrow u_{I}(k) = \frac{K_{I}h}{q-1}(r(k) - y(k))$$

$$\Rightarrow u_{I}(k+1) = u_{I}(k) + K_{I}(r(k) - y(k))$$

$$U_{D}: s = \frac{1-q^{-1}}{h}$$

$$\Rightarrow u_{D}(k) = K_{D}\frac{1-q^{-1}}{h}y(k) = K_{D}\frac{y(k) - y(k-1)}{h}$$

Implementering

Förutom själva regleralgoritmen behöver man tänka på bl.a. följande saker vid implementeringen:

- ▶ Val av samplingsintervall (tumregel: $\omega_s = (10 20) \cdot \omega_B$)
- ► Anti-windup
- ► Ryckfri övergång (eng. bumpless transfer)

Var används reglertekniken?

Robotics and autonomous systems

Environmental systems

Automotive systems

Electronic and optical systems

Molecular and chemical processes

Information systems

Process and pulp & paper industry

Aerospace

Reglerteknik inom D-området

- Realisering av styrsystem med datorer
- Styrning av informations/data/kommunikationssystem

Några trender

- ► Reglersystem i nätverk (networked control systems)
- Komplexa beräkningar (t ex optimering) i reglerloopen
- Styrning av stora, komplexa system (t ex elkraftnätet, smart grid, transportnätet)
- Distribuerad styrning, autonomi + koordinering
- Adaptiva och lärande system
- Icke-tekniska tillämpningar (biologi, medicin)

Vad finns det mer att lära?

- ESS101 Modelling and simulation (fysikaliskt och experimentellt modellbygge)
- SSY165 Discrete event systems (DES, händelsediskreta system)
- SSY285 Linear control system design (tillståndsmetodik, flera in- och utsignaler)
- ► SSY281 *Model predictive control* ("optimering i reglerloopen")
- ► SSY191 *Model based development of cyber-physical systems* (modellbaserad utveckling och implementering av styrsystem, realtidsaspekter)
- ► ESS076 Robust and nonlinear control (olinjära system, robust reglering)

Masterprogrammet *Systems, Control & Mechatronics* (MPSYS) ackrediterat av D-programmet.

Exjobb: fler och fler arbeten innehåller stora delar av algoritmer, beräkningar och optimering — lämpligt för D:are!

LYCKA TILL!