

SEQUENCE LISTING

<110> Arslanian, Robert
 Ashley, Gary
 Frykman, Scott
 Julien, Bryan
 Katz, Leonard
 Khosla, Chaitan
 Lau, Janice
 Licari, Peter
 Regentin, Rika
 Santi, Daniel
 Tang, Li

<120> PRODUCTION OF POLYKETIDES

<130> 30062-20078.00

<140> US 09/957,483

<141> 2001-09-19

<150> PCT/US 01/13793

<151> 2001-04-26

<150> US 09/560,367

<151> 2000-04-28

<150> US 09/825,856

<151> 2001-04-03

<150> US 60/232,696

<151> 2000-09-14

<150> US 60/257,517

<151> 2000-12-21

<150> US 60/269,020

<151> 2001-02-13

<160> 62

<170> FastSEQ for Windows Version 4.0

<210> 1

<211> 30

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer Seq1

<400> 1

agcggataac aatttcacac aggaaacagc

<210> 2

```
<211> 29
  <212> DNA
  <213> Artificial Sequence
  <220>
  <223> Primer Mxpill
  <400> 2
  ttaattaaga gaaggttgca acggggggc
                                                                          29
 <210> 3
 <211> 848
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Sequence of the pilA promoter
 <400> 3
 cgacgcaggt gaagctgctt cgtgtgctcc aggagcggaa ggtgaagccg gtcggcagcg
                                                                         60
 ccgcggagat tcccttccag gcgcgtgtca tcgcggcaac gaaccggcgg ctcgaagccg
                                                                         120
 aagtaaaggc cggacgcttt cgtgaggacc tcttctaccg gctcaacgtc atcacgttgg
                                                                         180
 agetgeetee actgegegag egtteeggeg aegtgtegtt getggegaac tactteetgt
                                                                         240
 ccagactgtc ggaggagttg gggcgacccg gtctgcgttt ctcccccgag acactggggc
                                                                         300
 tattggagcg ctatcccttc ccaggcaacg tgcggcagct gcagaacatg gtggagcggg
                                                                         360
 ccgcgaccct gtcggattca gacctcctgg ggccctccac gcttccaccc gcagtgcggg
                                                                         420
 gcgatacaga ccccgccgtg cgtcccgtgg agggcagtga gccagggctg gtggcgggct
                                                                         480
 tcaacctgga gcggcatctc gacgacagcg agcggcgcta tctcgtcgcg gcgatgaagc
                                                                         540
 aggccggggg cgtgaagacc cgtgctgcgg agttgctggg cctttcgttc cgttcattcc
                                                                         600
 gctaccggtt ggccaagcat gggctgacgg atgacttgga gcccgggagc gcttcggatg
                                                                         660
 cgtaggctga tcgacagtta tcgtcagcgt cactgccgaa ttttgtcagc cctggaccca
                                                                         720
 tectegeega ggggattgtt ceaageettg agaattgggg ggettggagt gegeacetgg
                                                                         780
 gttggcatgc gtagtgctaa tcccatccgc gggcgcagtg ccccccgttg caaccttctc
                                                                         840
 ttaàttaa
                                                                         848
 <210> 4
 <211> 31
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Primer 111-44.1
 <400> 4
 aaaagcttcg gggcacctcc tggctgtcgg c
                                                                         31
 <210> 5
 <211> 34
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Primer 111-44.4
 <400> 5
ggttaattaa tcaccctcct cccaccccgg gcat
                                                                         34
```

```
<210> 6
<211> 33
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer 90-66.1
gcgggaagct ttcacggcgc aggccctcgt ggg
                                                                          33
<211> 31
<212> DNA
<213> Artificial Sequence
<220>
<223> Insert 90-67
<400> 7
gcggtacctt caacaggcag gccgtctcat g
                                                                          31
<210> 8
<211> 32
<212> DNA
<213> Artificial Sequence
<220>
<223> Insert 111-44.3
<400> 8
aaaagcttag gcggtattgc tttcgttgca ct
                                                                          32
<210> 9
<211> 34
<212> DNA
<213> Artificial Sequence
<220>
<223> Insert 111-44.5
ggttaattaa ggtcagcaca cggtccgtgt gcat
                                                                          34
<210> 10
<211> 26
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer 111-44.8
<400> 10
aaagatctct cccgatgcgg gaaggc
                                                                          26
<210> 11
<211> 31
```

```
<212> DNA
 <213> Artificial Sequence
<220>
 <223> Primer 111-44.9
<400> 11
ggggatccaa tggaagggga tgtccgcgga a
                                                                          31
<210> 12
<211> 34
<212> DNA
<213> Artificial Sequence
<220>
<223> Insert 111-44.6
<400> 12
ggttaattaa catcgcgcta tcagcagcgc tgag
                                                                          34
<210> 13
<211> 34
<212> DNA
<213> Artificial Sequence
<220>
<223> Insert 111-44.7
<400> 13
ggttaattaa tcctcagcgg ctgacccgct cgcq
                                                                          34
<210> 14
<211> 31
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer 90-103
<400> 14
aaaaaatgca tctacctcgc tcgtggcggt t
                                                                          31
<210> 15
<211> 32
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer 90-107.1
cccctctag aataggtcgg cagcggtacc cg
                                                                          32
<210> 16
<211> 34
<212> DNA
<213> Artificial Sequence
```

<220> <223> Primer 90-105	
<400> 16 tttttatgca tgcggcagtt tgaacggaga tgct	34
<210> 17 <211> 32	
<212> DNA	
<220> <223> Primer 90-106	
<400> 17 ccccgaatt ctcccggaag gcacacggag ac	32
<210> 18 <211> 26	
<212> DNA <213> Artificial Sequence	
<220> <223> Primer TL3	
<400> 18 atgaattcat gatggcccga gcagcg	26
<210> 19 <211> 29	
<212> DNA <213> Artificial Sequence	
<220> <223> Primer TL4	
<400> 19 atctgcagcc agtaccgctg ccgctgcca	29
<210> 20 <211> 30	
<212> DNA <213> Artificial Sequence	
<220> <223> Primer TL5	
<400> 20 gctctagaac ccggaactgg cgtggcctgt	30
<210> 21 <211> 29 <212> DNA	
<213> Artificial Sequence	
<220>	

```
<223> Primer TL6
<400> 21
gcagatctac cgcgtgagga cacggcctt
                                                                   29
<210> 22
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer TL23
<400> 22
ggcgccggcc aagagcgccg cgccggtcgg cgggccagcc ggggacgggt
                                                                   50
<210> 23
<211> 58
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer TL24
<400> 23
58
<210> 24
<211> 29
<212> DNA
<213> Artificial Sequence
<220> ·
<223> Primer TL33
<400> 24
ggatgcatgc gccggccgaa gggctcgga
                                                                   29
<210> 25
<211> 30
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer TL34
<400> 25
tcactagtca gcgacaccgg cgctgcgttt
                                                                   30
<210> 26
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer TL7
```

<400>		24
<210>	27	
<211>	26	
<212> 1		
<213>	Artificial Sequence	
<220>		
<223>]	Primer TL8	
<400> 2		
gagatg	catc caatggeget caeget	26
<210> 2	28	
<211> 2	28	
<212> I		
<213> 1	Artificial Sequence	
<220>		
<223> I	Primer TL9	
<400> 2		
gctctag	gage egegegeett ggggeget	28
<210> 2		
<211> 2		
<212> I		
<213> A	Artificial Sequence	
<220>		
<223> F	Primer TL10	
<400> 2	29	
gcagato	ettg gggcgctgcc tgtggaa	27
<210> 3	30	
<211> 2	28	
<212> D		
<213> A	artificial Sequence	
<220>		
<223> P	Primer TL31	
<400> 3		
ggctgca	gac ccagaccgcg ggcgacgc	28
<210> 3		
<211> 2		
<212> D		
<213> A	rtificial Sequence	
<220>		
<223> P	rimer TL32	
<400> 3		
gctctag	agg tggcgccggc cgcccggcq	29

<210> 32 <211> 552 <212> DNA <213> Artificial sequence <223> KR domain of extender module 6 of the epothilone PKS <221> CDS <222> (1)...(552) <400> 32 gac ggc acc tac ctc gtg acc ggc ggt ctg ggt ggg ctc ggt ctg agc 48 Asp Gly Thr Tyr Leu Val Thr Gly Gly Leu Gly Leu Gly Leu Ser gtg gct gga tgg ctg gcc gag cag ggg gct ggg cat ctg gtg ctg gtg 96 Val Ala Gly Trp Leu Ala Glu Gln Gly Ala Gly His Leu Val Leu Val ggc ege tee ggt geg gtg age geg gag eag eag aeg get gte gee geg 144 Gly Arg Ser Gly Ala Val Ser Ala Glu Gln Gln Thr Ala Val Ala Ala 40 ctc gag gcg cac ggc gcg cgt gtc acg gta gcg agg gca gac gtc gcc 192 Leu Glu Ala His Gly Ala Arg Val Thr Val Ala Arg Ala Asp Val Ala 55 gat cgg gcg cag atc gag cgg atc ctc cgc gag gtt acc gcg tcg ggg 240 Asp Arg Ala Gln Ile Glu Arg Ile Leu Arg Glu Val Thr Ala Ser Gly 65 70 atg ccg ctc cgc ggc gtc gtt cat gcg gcc ggt atc ctg gac gac ggg 288 Met Pro Leu Arg Gly Val Val His Ala Ala Gly Ile Leu Asp Asp Gly 85 95 ctg ctg atg cag caa acc ccc gcg cgg ttc cgc gcg gtc atg gcg ccc 336 Leu Leu Met Gln Gln Thr Pro Ala Arg Phe Arg Ala Val Met Ala Pro 100 aag gtc cga ggg gcc ttg cac ctg cat gcg ttg aca cgc gaa gcg ccg 384 Lys Val Arg Gly Ala Leu His Leu His Ala Leu Thr Arg Glu Ala Pro 120 ctc tcc ttc ttc gtg ctg tac gct tcg gga gca ggg ctc ttg ggc tcg 432 Leu Ser Phe Phe Val Leu Tyr Ala Ser Gly Ala Gly Leu Leu Gly Ser 130 135 ccg ggc cag ggc aac tac gcc gcg gcc aac acg ttc ctc gac gct ctg 480 Pro Gly Gln Gly Asn Tyr Ala Ala Ala Asn Thr Phe Leu Asp Ala Leu 145 150 155 gca cac cac cgg agg gcg cag ggg ctg cca gca ttg agc atc gac tgg 528 Ala His His Arg Arg Ala Gln Gly Leu Pro Ala Leu Ser Ile Asp Trp 165 170 175

```
ggc ctg ttc gcg gac gtg ggt ttg
                                                                       552
Gly Leu Phe Ala Asp Val Gly Leu
             180
 <210> 33
 <211> 184
 <212> PRT
 <213> Artificial Sequence
<220>
<223> KR domain of extender module 6 of the epothilone
<400> 33
Asp Gly Thr Tyr Leu Val Thr Gly Gly Leu Gly Leu Gly Leu Ser
Val Ala Gly Trp Leu Ala Glu Gln Gly Ala Gly His Leu Val Leu Val
Gly Arg Ser Gly Ala Val Ser Ala Glu Gln Gln Thr Ala Val Ala Ala
                             40
Leu Glu Ala His Gly Ala Arg Val Thr Val Ala Arg Ala Asp Val Ala
                         55
Asp Arg Ala Gln Ile Glu Arg Ile Leu Arg Glu Val Thr Ala Ser Gly
                    70
Met Pro Leu Arg Gly Val Val His Ala Ala Gly Ile Leu Asp Asp Gly
Leu Leu Met Gln Gln Thr Pro Ala Arg Phe Arg Ala Val Met Ala Pro
                                 105
Lys Val Arg Gly Ala Leu His Leu His Ala Leu Thr Arg Glu Ala Pro
                            120
Leu Ser Phe Phe Val Leu Tyr Ala Ser Gly Ala Gly Leu Leu Gly Ser
                                             140
Pro Gly Gln Gly Asn Tyr Ala Ala Ala Asn Thr Phe Leu Asp Ala Leu
                    150
                                         155
Ala His His Arg Arg Ala Gln Gly Leu Pro Ala Leu Ser Ile Asp Trp
                                     170
Gly Leu Phe Ala Asp Val Gly Leu
            180
<210> 34
<211> 552
<212> DNA
<213> Artificial Sequence
<220>
<223> Mutated and inactive KR domain of extender module
      6 of the novel 9-keto- epothilone PKS
<221> CDS
<222> (1)...(552)
<400> 34
gac ggc acc tac ctc gtg acc ggc gct ctg ggt ggg ctc ggt ctg agc
                                                                       48
Asp Gly Thr Tyr Leu Val Thr Gly Ala Leu Gly Gly Leu Gly Leu Ser
 1
                                                          15
```

gtg Val	gct Ala	gga Gly	tgg Trp 20	ctg Leu	gcc Ala	gag Glu	cag Gln	999 Gly 25	gct Ala	ggg ggg	cat His	ctg Leu	gtg Val 30	ctg Leu	gtg Val	96
ggc Gly	cgc Arg	tcc Ser 35	ggt Gly	gcg Ala	gtg Val	agc Ser	gcg Ala 40	gag Glu	cag Gln	cag Gln	acg Thr	gct Ala 45	gtc Val	gcc Ala	gcg Ala	144
						cgt Arg 55										192
						cgg Arg										240
						gtt Val										288
						ccc Pro										336
						cac His										384
						tac Tyr 135										432
ccg Pro 145	ggc Gly	cag Gln	ggc Gly	aac Asn	ttc Phe 150	gcc Ala	acg Thr	gcc Ala	aac Asn	acg Thr 155	ttc Phe	ctc Leu	gac Asp	gct Ala	ctg Leu 160	480
					Ala	cag Gln	Gly	Leu		Ala						528
						ggt Gly										552
<210	> 35															
	> 18															

<212> PRT

<213> Artificial Sequence

<220>

<223> Mutated and inactive KR domain of extender module 6 of the novel 9-keto- epothilone PKS

<400> 35

Asp Gly Thr Tyr Leu Val Thr Gly Ala Leu Gly Gly Leu Gly Leu Ser

1				5					10					15		
	Ala	Gly	Trp 20		Ala	Glu	Gln	Gly 25		Gly	His	Leu	Val 30		Val	
Gly	Arg	Ser 35		Ala	Val	Ser	Ala 40		Gln	Gln	Thr	Ala 45		Ala	Ala	
Leu	Glu 50		His	Gly	Ala	Arg 55		Thr	Val	Ala	Arg 60		Asp	Val	Ala	
Asp 65	Arg	Ala	Gln	Ile	Glu 70		Ile	Leu	Arg	Glu 75		Thr	Ala	Ser	Gly 80	
	Pro	Leu	Arg	Gly 85	_	Val	His	Ala	Ala 90	-	Ile	Leu	Asp	Asp 95		
Leu	Leu	Met	Gln 100		Thr	Pro	Ala	Arg		Arg	Ala	Val	Met 110		Pro	
Lys	Val	Arg 115		Ala	Leu	His	Leu 120		Ala	Leu	Thr	Arg 125		Ala	Pro	
Leu	Ser 130		Phe	Val	Leu	Tyr 135		Ser	Gly	Ala	Gly 140		Leu	Gly	Ser	
Pro 145	Gly	Gln	Gly	Asn	Phe 150		Thr	Ala	Asn	Thr 155		Leu	Asp	Ala	Leu 160	
Ala	His	His	Arg	Arg 165		Gln	Gly	Leu	Pro 170		Leu	Ser	Ile	Asp 175		
Gly	Leu	Phe	Ala 180	Asp	Val	Gly	Leu									
<400 acaa <210 <211 <212	> Pr > 36 agctt > 37 > 30 > DN > Ar	gc g	jaaaa	agaa			:									26
<220				•	-											
<223	> Pr	imer	TLI	I-2												
<400 cgag	_		gggc	gagg	a ag	cggc	ccts	ı I								30
<210 <211 <212 <213	> 26 > DN	A	cial	Seq	uenc	e										
<220 <223		imer	TLI	I-3B											•	
<400 gcat	> 38					tgag	i									26

```
<210> 39
  <211> 30
  <212> DNA
  <213> Artificial Sequence
  <220>
  <223> Primer TLII-4
  <400> 39
  agactagtca ccggctggcc caccacaagg
                                                                           30
  <210> 40
  <211> 28
<212> DNA
  <213> Artificial Sequence
  <220>
  <223> Primer TLII-20
 <400> 40
 gcatgcatcc agtagcggtc acggcgga
                                                                           28
 <210> 41
 <211> 29
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Primer TLII-21
 <400> 41
 cgagatctgt gttcgcgttc cccgggcag
                                                                           29
 <210> 42
 <211> 30
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Primer TLII-13
 <400> 42
 gcatgcatcc agtagcgctg ccgctggaat
                                                                           30
 <210> 43
 <211> 28
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Primer TLII-14
 <400> 43
 gcagatctgt gttcgtgttc cccggcca
                                                                           28
 <210> 44
 <211> 26
```

. . . .

<212>	DNA	
<213>	Artificial Sequence	
<220>	Pulman MITT 10	
<223>	Primer TLII-17	
<400>	44	
	catec agtacegete gegetg	26
30003		20
<210>	45	
<211>	29	
<212>	DNA	
<213>	Artificial Sequence	
<220>	Dullana MYYY 44	
<223>	Primer TLII-18	
<400>	45	
	tetgt ettegtettt eeeggeeag	29
- 33		2 2
<210>	46	
<211>	28	
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Primer TLII-5	
<400>	AC	
	tatgt cgagcctgac gcccgccg	20
99469	acyc cyaycocyac ycccyccy	28
<210>	47	
<211>	35	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Primer TLII-6	
<400>	47	
	gtga tggcgatete gteateegee geeae	٦.
gcacca	greya regergatere greaterger great	35
<210>	48	
<211>	· ·	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Primer TL16	
.400:		
<400>	·	
acayat	ctcg gegegetgee geeggag	27
<210>	49	
<211>		
<212>		

<220> <223>	Primer TL15	
<400> ggtct	49 agact cgaacggctc gccaccgc	28
<210><211><211>	28	
<213>	Artificial Sequence	
<220> <223>	Primer TLII-11	
<400> gtatge		28
<210><211>		
<211>		
	Artificial Sequence	
<220>	•	
<223>	Primer TLII-12	
<400>		
gcagat	cetgt gtggetette teeggaca	28
<210>		
<211>		
<212> <213>	Artificial Sequence	
<220>		
<223>	Primer TLII-15	
<400>		
gcatgo	atcc agtagegetg eegetggaac	30
<210>		
<211><212>		
	Artificial Sequence	
<220>		
<223>	Primer TLII-16	
<400>		
ggagat	ctgc ggtgctgttc acggggca	28
<210>		
<211>		
<212>	DNA Artificial Sequence	
	weiligia sedneuce	
~22N~		

<223>	Primer TLII-19	
<400>	54	
gtagat	cctgc tttcctgttc accggaca	28
<210>	55	
<211>		
<212>		
	Artificial Sequence	
<220>		
<223>	Primer TL11	
<400>	55	
	catct cacceggga ageg	24
<210>	5.6	
<211>		
<212>		
	Artificial Sequence	
	•	
<220>	- 1	
<223>	Primer TL12	
<400>	56	
gtacta	gtca agggcgctgc ggagg	25
<210>	57	
<211>	29	
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Primer TLII-7	
<400>	57	
gcagat	ctgc cgcgcgagga gctcgcgat	29
<210>	58	
<211>		
<212>	- '	
	Artificial Sequence	
<220>		
<223>	Primer TLII-8	
<400>	5.8	
		27
	gage ogeocogeg gageouc	۷,
<210>		
<211>	•	
<212> 1		
<213> /	Artificial Sequence	
<220>		
<223>	Primer TLII-9B	

<400> 59	
ggatgcátgc gccggccgaa gggctcggag	30
<210> 60	
<211> 32	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer TLII-10	
<400> 60	
gcactagtga tggcgatcgg gtcctctgtc gc	32
<210> 61	
<211> 37	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer TLII-22	
<400> 61	
tgatccatgc tgcggccgct agcgtgggca tggccgc	37
<210> 62	
<211> 37	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer TLII-23	
<400> 62	
gcggccatgc ccacgctagc ggccgcagca tggatca	37