

BUNDESREPUBLIK DEUTSCHLAND

DE 00/1944

REC'D	16 AUG 2000
WIPO	PCT

4

PRIORITY DOCUMENT
 SUBMITTED OR TRANSMITTED IN
 COMPLIANCE WITH
 RULE 17.1(a) OR (b)

**Prioritätsbescheinigung über die Einreichung
 einer Gebrauchsmusteranmeldung**

Aktenzeichen: 299 09 998.9

Anmeldetag: 12. Juni 1999

Anmelder/Inhaber: Thomas Röitsch, Regensburg/DE

Bezeichnung: Promotorsystem, dessen Herstellung und Verwendung

IPC: H 02 K 1/00

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Gebrauchsmusteranmeldung.

München, den 18. Juli 2000
Deutsches Patent- und Markenamt
Der Präsident
 Im Auftrag

120099

Promotorsystem, dessen Herstellung und Verwendung

Beschreibung

Die Erfindung bezieht sich auf die Genexpression und die Regulation von Genexpression in Pflanzen. Im Speziellen bezieht sich die Erfindung auf DNA-Promotor-Sequenzen, und auf Expressionskassetten, die in Pflanzen eingeführt werden können, um die Transkription einer benachbarten kodierenden Sequenz zeitlich und räumlich innerhalb der Pflanzen zu regulieren. Zusätzlich bezieht sich die Erfindung auf Expressionsvektoren, die solch eine Expressionskassette enthalten und die benutzt werden können, um Pflanzen zu transformieren.

Hintergrund zu der Erfindung

Ein Promotor ist eine DNA-Sequenz, die Expressionsort und -menge eines Genes beeinflußt oder bestimmt, und die Stellen für die Bindung der RNA-Polymerase zur Verfügung stellt. Die Position eines Promotors ist im Genom eines Organismus relativ zum Transkriptionsstartpunkt fixiert. RNA-Polymerase ist ein Enzym, das an den Promotor binden kann und die Transkription eines Genes vollzieht, das unter der Kontrolle dieses Promotors steht. Dabei entsteht die messenger-RNA, die wiederum zur Synthese des Proteins verwendet wird.

Promotoren sind in verschiedenen Organismen untersucht worden. Für bestimmte Spezies konnten konservierte DNA-Bereiche (sog. Consensus-Sequenzen) innerhalb von Promotoren gefunden werden, die mit verschiedenen Genen assoziiert sind. Von diesen Bereichen wird angenommen, daß sie in die Rolle, die der Promotor im Transkriptionsprozeß spielt, eingebunden sind.

Die Initiation des Transkriptionsprozesses in Pflanzen schließt eine Interaktion des Promotors mit der RNA-Polymerase II ein. Innerhalb von Pflanzenpromotoren wurden Consensus-Sequenzen oberhalb des 5'-Endes des Transkriptionsstartpunktes gefunden. Eine dieser Sequenzen ist etwa 7 Basenpaare lang und befindet sich etwa 20-30 Basenpaare oberhalb des Transkriptionsstartpunktes. Diese Sequenz ist als sog. TATA-box bekannt und es wird angenommen, daß sie eine Rolle bei der RNA-Polymerase Bindung spielt. Eine andere Sequenz mit einer Länge von ungefähr 9 Basenpaaren ist etwa 70-90 Basenpaare oberhalb des Transkriptionsstartpunktes zu finden. Diese Sequenz wird CAAT-box genannt und es wird angenommen, daß sie in der Regulation des Transkriptionslevels eine Rolle spielt. Es wurden noch andere Regionen oberhalb des Transkriptionsstartpunktes identifiziert, die die Häufigkeit der Transkriptionsinitiation in Eukaryonten beeinflussen. Diese DNA-Bereiche, die Enhancer genannt werden, beeinflussen die Aktivität von Promotoren in ihrer Nachbarschaft. Diese Sequenzen sind jedoch der Definition nach keine Promotoren, da ihre Position nicht fixiert sein muß.

Um ein fremdes Gen in einem Organismus, z.B. einer Pflanze, exprimieren zu können, muß die kodierende Sequenz dieses Genes unter die Kontrolle eines Promotors gestellt werden und in die Pflanze eingebracht werden. Zur Insertion des zu exprimierenden Genes in das Pflanzengenom wird die fremde DNA meistens in das Ti-Plasmid von Agrobacterium tumefaciens gebracht, und dieses wird dann verwendet um die Pflanzen zu transformieren. Eine zweite häufig verwendete Methode ist die direkte Transformation von DNA z.B. mit Hilfe der sogenannten "particle gun". In den meisten Fällen werden hierfür bisher aus Bakterien isolierte Promotoren oder Promotoren von Pflanzenviren verwendet, die zur Expression des fremden Genes in den Pflanzen führen. Diese Promotoren haben den Nachteil, daß sie artfremd sind und daher den Kontrollmechanismen innerhalb der Pflanzen nicht unterliegen.

Bei Verwendung eines pflanzlichen Promotors ist die Expression eines fremden Genes möglich, die somit auch den pflanzlichen Kontrollmechanismen unterliegt. Durch Untersuchungen der Expression des Genes, vor dem der Promotor ursprünglich liegt, lassen sich genaue Kenntnisse über die Expressionsstärke, die Zeit, zu der das Gen exprimiert wird, und den Expressionsort sammeln, die auf die Expression eines fremden Genes, das unter die Kontrolle dieses Promotors gestellt wird, weitgehend übertragbar sind. Ein weiterer Vorteil ist, daß bei Verwendung eines genau charakterisierten, pflanzlichen Promotors gezielte Eingriffe und Untersuchungen in die Entwicklung bestimmter Pflanzenteile möglich ist.

Im vorliegenden Fall wurde der Promotor einer Invertase aus Tabak kloniert, die in sehr großen Mengen, aber nur in einem bestimmten Entwicklungsstadium und hochspezifisch, nur in den Antheren exprimiert wird. Zur Klonierung des Promotors wurde eine genomische Bank aus Tabak mit einer Sonde aus dem kodierenden Bereich der untersuchten Invertase durchsucht. Die erhaltenen genetischen DNA-Sequenzen wurden mit molekularbiologischen Methoden weiter charakterisiert und schließlich ein Klon isoliert, der die Promotorsequenz enthielt, die dann sequenziert wurde. Es wurden Expressionskassetten mit verschiedenen Genen hergestellt, die in Agrobacterium tumefaciens eingebracht wurden, um Tabakpflanzen damit zu transformieren. Dieses neue Promotorsystem kann nun dazu verwendet werden, fremde Gene in Pflanzen in einem bestimmten räumlichen und zeitlichen Rahmen zu exprimieren. Das Wort fremd meint dabei Gene, die nicht natürlich in Verbindung mit diesem Promotor vorkommen. Außerdem kann mit Hilfe dieses Promotorsystems die Expression von fremden und eigenen Genen in der Pflanze moduliert werden, d.h. Gene können überexprimiert oder reprimiert werden.

12.06.99

5

Ausführungsbeispiele:

1. Die Promotor-DNA-Sequenz, bestehend aus den 4300bp des 5' liegenden DNA-Bereiches, gezählt oberhalb vom Translationsstartpunkt der antherenspezifisch exprimierten Invertase aus Tabak, oder Teile davon, die dadurch gekennzeichnet sind, antherenspezifische Expression für dahinter gelegene Gene zu vermitteln, kann mit Hilfe molekularbiologischer Methoden so verändert werden, daß Restriktionsschnittstellen am 5'- oder 3'-Ende eingefügt werden.
2. Die wie in 1. veränderte Promotor-DNA-Sequenz oder Teile der Promotor-DNA-Sequenz können zur Herstellung einer Expressionskassette zur Expression fremder Gene in Pflanzen verwendet werden. So eine Expressionskassette ist dadurch gekennzeichnet, daß sie a) die Promotor DNA oder Teile davon aus 1. enthält; b) eine Verbindungs-DNA ohne spezielle Funktion bzw. fremde Gene, verbunden mit der ersten Schnittstelle beinhaltet; und c) eine 3'-Region, bestehend aus der 3'-Region eines eukaryontischen Genes enthält, wobei diese 3'-Region eine zweite Restriktionsschnittstelle an ihrem 5'-Ende besitzt und diese 3'-Region über diese zweite Restriktionsschnittstelle mit der Verbindungs-DNA bzw. den fremden Genen aus b) verbunden ist.
3. Eine Expressionskassette wie in 2. beschrieben, kann in einen Expressionsvektor kloniert werden. Dieser Expressionsvektor kann dazu verwendet werden, mit Hilfe verschiedener gängiger Methoden (z.B. Agrobakterien vermittelte Transformation; direkte Transformation) Pflanzen zu transformieren. Transgene Pflanzen können dann unter Bedingungen angezogen werden, unter denen das fremde Gen unter der transkriptionellen Kontrolle der beschriebenen Promotor-DNA-Sequenz exprimiert wird.
4. Die Promotor-DNA oder Teile davon können dazu verwendet werden, die Translation eines pflanzeneigenen Genes zu modulieren. So kann die Expression eines Genes durch Einbringen weiterer Kopien unter der Kontrolle dieses Promotors gesteigert werden oder die Expression kann mit Hilfe der Antisense-Technik unterdrückt werden. Dazu muß die DNA-Sequenz des zu unterdrückenden Genes in "verkehrter Richtung" in eine Expressionskassette wie unter 2. beschrieben kloniert werden und wie unter 3. beschrieben in Pflanzen transformiert werden.

5. Die spezifischen Eigenschaften der Promotor-DNA-Sequenz bzw. von Teilen davon, ermöglichen in transgenen Pflanzen, die wie unter 3. beschrieben hergestellt wurden, eine zeitlich (nur während der Pollenbildung) und räumlich (nur in Antheren) definierte Expression von fremden Genen in Pflanzen.

6. Aufgrund des starken Expressionslevels der antherenspezifischen Invertase in Tabak, lassen sich mit Hilfe dieser Promotor-DNA-Sequenz bzw. mit Teilen davon, in transgenen Pflanzen große Mengen eines bestimmten Proteins zu einem bestimmten Zeitpunkt und in einem bestimmten Ort der Pflanze (siehe 5.) herstellen. Dieses Protein kann dann durch ernten der Antheren, Aufschluß und für das hergestellte Protein spezifische Reinigungsverfahren in großen Mengen gewonnen werden.

7. Die Promotor-DNA-Sequenz, oder Teile davon, können dazu verwendet werden, in die Entwicklung der Antheren in Pflanzen einzugreifen. So können transgene Pflanzen hergestellt werden, bei denen beispielsweise durch Antisense-Expression von Invertasesequenzen die Proteinkörper für die extrazelluläre Invertase verringert werden. Dies kann zu männlich sterilen Pflanzen führen, die in der Landwirtschaft, bei der Herstellung von Hybridsaatgut von großer Bedeutung sind.

8. Die Promotor-DNA-Sequenz, oder Teile davon, können dazu verwendet werden, transgene Pflanzen herzustellen, die pflanzeneigene Stoffe in großer Menge herstellen, die positiv auf ihre Entwicklung, insbesonders betreffend den Ertrag von fruchttragenden Pflanzen, wirken können. Beispiele für solche pflanzeneigene Stoffe wären Wachstumshormone oder Proteine die zur Energieversorgung der wachsenden Gewebe (z.B. Invertasen, Zuckertransporter) notwendig sind.

Erreichte Vorteile:

Mit Verwendung dieses Promotorsystems steht ein Werkzeug zur Verfügung, mit dem man zeitlich und örtlich gezielt fremde Proteine in Pflanzen exprimieren kann und pflanzeneigene Gene in ihrem Expressionslevel modulieren kann.

12.00.99

7

Zeichnung 1: Promotor-DNA-Sequenz der extrazellulären Invertase aus Tabak

1 TCTAGAACATGA CGCCACCGGC CAGGACGGGG AGTATGATT CCCCGAATGT
 51 TCGTTCAACT nCATTGTTAA AACCTGTTAG CGTGATGCAG CCCGGTACTA
 101 TCTTATCCTC GAGTTTCATT TGTGCAAGTA CTCGAGGATG GACAATTAC
 151 GGGCCACTCC CATCGTCCAC CATAATGCGT CTTACATCTG TATCTAATAT
 201 TCGTAAAGTG ATAACAGAGGG CATCATAGTG AGGGAAAACC AAACCGTGGT
 251 TATCTGACTT ATCGGAAGATG ATACTTTCTT TAAGTTCTC GTACCGTTCA
 301 TGAGTGATTA ACTGTTGAG CTTGTGGGTT GTGGCGAACT TTACGTTGTT
 351 GATCGAAACG TCGTCTCCGC CCCCGATGAT AATGTGAATG GTGCGAGTCG
 401 GTCAGGGTGG TTTGGCGGT CCCTGGTGTGTT GTTCACGTCC TCGAGAAAAG
 451 TTGGTCCTTC CTCGGTCACA CAACAATATT TTGAGGTGTC CTTGATGAAG
 501 CATGTCCATG ACCTCTTGTGTT TAGGGCGAT ACAATCCTCA GTTTTGTGAC
 551 CTCGCTCTG GTGGAACTCG CAGAGGGCAT CTGATTTCT AGTGCTTGGA
 601 TCTGACCTCA TCTTTGTGG CCACTTACT TTTGGTCCGA GCTTCTTCAA
 651 TGCATAGACT ATTTCTGAGG GTGACACACA AAATTGTGA GCGGATAGTA
 701 AAGAGGGCAT ACCTCTCTCG TTCCGGTGAG TCCCTGTCTT TGGCCTAGAT
 751 GGGCCCTCTT CGTAGCAGGG AAGGGGCATG ATGGCACTTT TGACATATGG
 801 TTGATCCATT TCTCGGTTAG ATCATGGAGC TGCAAGATCT CTCTTGGCAT
 851 CATTGAGG ATCCTTCCTG GTTTGGCTT GTACCGAGGT CAATCGATGA
 901 GTTGGCCCCT TCAGGTCGTC TTCGTCGGCA CGGGCCTCAG CACAGTAGGC
 951 GTTGTGTATT TCATCCCAAG TGGTTGGAGG ATATTCATA AGTTGGTTA
 1001 ACAGTTTCTT GGTGCCCTC GAGCCATTCA TGTTCAAGCCC ATTCTGGAAA
 1051 GTTGCCTACAA CCATTCTTC TGATACATTC GGTAAGGTCA TCCTTACTCT
 1101 GTTGAATCGA GCGAGGAAGT CCCCCTCAATTC CTCTCCGAGT GATTGTTGA
 1151 TGGCAAATAT ATCGTTCACT CTTGCCTCCG CGTTTTAGC CCAAACATGG
 1201 GCCATTATGA ACTTGTGCGC CATCTCTTCG AATATTGCAA TGGAGCGCGC
 1251 GGGCAGCTGT GAATACCAAG TCAATGCTCC TCEGGTAAGG GTCTCGCCGA
 1301 ACATTTCAA CAAGATGGAG GAGACTGTT CTTGGAGAG ATCATGGCCC
 1351 TTTACCGCAG TGACATAATG ATTACATGAT CTTCGGGGTC GGTGTACCA
 1401 TCATAAAATT TCAGATAAGG TGGCATCTG AACGTCTTGG GTATGGCATA
 1451 TGGGGCGGCT TCATCACTGT AGGGTTGCTC GACTAACCGA CCAGCGTCTC
 1501 TTTTGGAAA TATTTTGGG GCACCCGGTA TTTTATCGAC TCTTTCTTGG
 1551 TGTTCTCTCA TTTGATCCCG AAGCATTTA TTTTCGTTT CCATTTCTTC
 1601 CATTTCCTTC AGAATGGCCG TGAGGGTGT ATTACCTGCA TTATTAATAT
 1651 TGTGAGTGAT ACCTGTTACT GAAGGGGGAG GGTGTGCTG TTTGGTCATT
 1701 GCTGGTGCAA TGCAAGTCCT TGCAATTCT CTAATACCT CCTGAGTGGG
 1751 TTTGTTGAGG ATGCCGGTCA GCATATTGT CAGCCAAGCT TCGAGTAGCT
 1801 TCTTCACCGC TGGTGGCGCC TCTTCCGTTG TGGACGTGGA AGCTCCTTTA
 1851 CCGCGGGATG TTGCGATACT GCTGTGAGGG AGGGGTGATC CACTTCGTCTG
 1901 GGGAGAGGTG TTAGGCGTTA TGCCTTCGCC TTCTATTGCG GAGACCTCAT
 1951 TGATGGTGTGTT TAAGAGGTTG GTAGTGAGAT TGGCCACTGC CTTCATCCTT
 2001 TCTTCTCCCT TACCTGCCAT GTCAGATCTG GGTGTACAAG GAAGTAGGAG
 2051 CTTCTCTCTC TCTTTTTGT GAATTGTGCC AGTTATAGAT CTAAAAGAAA
 2101 CTAAAGTTT AACTAGACTA TCCTCACAGA CGGCGCCAAA TTGTTTGACC
 2151 AAAAATATA GACTTTGAT TAAATTAATT AATATTGTAT GACAAAGGAT
 2201 TAAACCTAGT TAATGATAAT AACTTCAGAT CTATAATCAA TTAACAGCAA
 2251 TCACGGTCAT AGCAGCGTTG AGAGAAGATT AAATGTGATG TnCATTCAAT
 2301 ATTTCAAGAT CATTAAATGAT AGGGGAATAT CAAGCAATAA ATAACGATAA
 2351 ATGGCATTAA AGTAAATAAG GAGAATGATT CACCCAAATAT TGAATGAGGT
 2401 GGATGATTCT TCTTTTGAC AATGATGAAT GATGGnCAA TACTAGAATG
 2451 TTGGGACCT TCTCGGATCT AATGAAAAAA GTATGGAATA GTAGATAATC
 2501 GAATCTCTT AGAAAGGTAG TGATTGTCTT TTATCTAGAG AGAAAGTCTG

12.06.99

8

2551 CTTTCAAAG AATATTTTA TCAGAGAATA TTACATCCCC CTCTCCCT
2601 ATnTCTTTT CTATTATAT GGGACATTCC TCAATCAATC CTAAAAGTAC
2651 ATACACCAAG AATATTCAAT AAAATATTTT TTTGAATATT CTATTATAAA
2701 AACTAGCTGT TAGCACTCGA CCTCGGTCGn TATTGACTAC TCGGTTACGA
2751 GCCCTGTCAT TTACTAATCG ACCTCGATTA CATCACTTTC TACGATACTG
2801 CTTCATGTCA AATCTTAATG AAAGCAGATT TTGACCATA CAATAATATG
2851 ACAAAAATTGC TTCCAAAGAA AACATGGCTC TTATAGTGAA ATATCGTTAG
2901 ACTGTTATAG AAAGATCTGA ATTTATTTAT AAGAATAGTG TTTTTTCTT
2951 TTCTTTCAT ATCTAAGGAG TAAAGCAACC ATGAATAGAA AAGGCTTAGT
3001 AACTATATAT CAAAGGAATG GTGTTTTTC TTTAAATATG GATAAAAATT
3051 TGTGAATATA GAAGATTAGA TCAATTAAACA AAGGTTATGG TGGAGTGGTA
3101 AGCAGAGGCG GACCTATGTG TTATAGTAAG GGGTCACCCA CTACTAGAAA
3151 TCCGGTAAAG ATCGATCAAA AAACCGACCA ACATTGGTCG GTAATGGCCA
3201 AAAACTGACC AAAACGCGAT CATTACGTG TGAACGGTAT TTTTATGGTC
3251 GGAAAGGAAT ACCGACCAAA GTTGGTCGGA AATTACCGAC CAACTTGTT
3301 CGGTCAATTAA ATTCAAAAAA AAATATTGTA AAAAAAAACC GACCAAAGTT
3351 GATCGGTATT TTAATTATGT AATAAAAAGA TTCACTATCT GGGAAATCGAA
3401 CCGGGGCTG TACTATGGCA AGATACTATT CTACCACTAG ACCATTGGTT
3451 CATTITGTTT TAAGACTGTC TTTTATTGTA TTTATACTCT TTAATTATAT
3501 TTTTGACGA AAATAACCGA CCAAAGTTGG TCGATTTTAT TAAAAAGTAA
3551 ATTACTTAC CAAAGTTGGT CGATTTTTT AAATGATCCG CCGAATTAAC
3601 CGACCAATT TGGTAGGTTT TTTTAATATT ATTTTTATT TATTTTAATT
3651 GAAAAACTAA CCAAAGTTAG TCGGTTCTT GAAACATAAA TTCGCGGGA
3701 CTCAAAATA GTTCCCAGCA TTTTGCGCC AAAGAAAACC GACCAAAGTT
3751 GGTGGTTTC GTAAAAAAAAA AAAAAATTAA AAAAATATAT TTTAAAAAAC
3801 CGACCAACTT TAGTCGGTTT TTTGGTCGAT TTTTGACCG ACCAAAGTTG
3851 GTCGGTCGAC CTTGGTCGGT TTTGCGCAA TTTCTAGTAG TGACCGAAC
3901 CTGTAAGCTT CGGGAGAAAT TTTGTATATG TATATGTGTA TATCCTTAAA
3951 ATGATTAATT TAAAGAACGn nGCACCTGA ATACTAGAAG CCTTTAGGGG
4001 CACTAGATGA GCAGAATAAC GTGTTCTCGT CGCGTAAAAA TACTTGGATC
4051 CGCCTATGAT GGTAAGTACT TCTTCGTCCT TAATCAGAGG TTTGACTTC
4101 GAGCTCCAGA TATAAACTAT AGACTCGTCT TTATAGCACC TTTAATAAG
4151 ACTATGACTT CATCTGATTT CTCTATAAAT ACTCCTCAAG CTTTCGGTT
4201 TTCTCCATTG TTCAGTTCT TTCTCCACAT CACAGAAGTG AAAACAAAAC
4251 AAGAAGAAGA AGAAGAAGAA AAATAAAGAG TTTCTGTCAA ATTAAGTCCA
4301 ATAGGGAAAA TG

12.08.99

9

Ansprüche

1. Promotorsystem, gekennzeichnet durch einen Klon aus genomischen DNA-Sequenzen.
2. Promotorsystem, gekennzeichnet durch Expressionskassetten.
3. Verwendung eines Promotorsystems nach Anspruch 1 oder 2 zum Beeinflussen eines Genes.
4. Verfahren zur Herstellung eines Promotorsystems nach Anspruch 1 oder 2.
5. Verfahren zum Experimentieren mit einem Promotorsystem nach Anspruch 1 oder 2.