

Klassierung:

12p, 4/01

Int. Cl.:

C 07 d 93/42

SCHWEIZERISCHE EIDGENOSSENSCHAFT

EIDGENÖSSISCHES AMT FÜR GEISTIGES EIGENTUM

Gesuchsnummer:

8529/61

Anmeldungsdatum:

20. Juli 1961, 19 Uhr

Patent erteilt:

31. Oktober 1966

Patentschrift veröffentlicht: 29. April 1967

HAUPTPATENT

Dr. A. Wander AG, Bern

Verfahren zur Herstellung 11-basisch substituierter Dibenzo[b,f] [1,4]thiazepine

Dr. Jean Schmutz, Muri bei Bern, Dr. Fritz Hunziker, Bern, und Ernst Fischer, Bolligen, sind als Erfinder genannt worden

Gegenstand der Erfindung ist ein Verfahren zur Herstellung von Amidinen der Dibenzo[b,f][1,4]thiazepin-Reihe der Formel:

15

10

von Additionssalzen oder von quaternären Ammoniumderivaten davon. In der Formel I bedeutet Z ein Schwefelatom oder eine Sulfinylgruppe (-SO-). 20 R₁ und R₂ sind gleich oder verschieden und bedeuten Wasserstoff, unsubstituierte oder im Arylrest Substituenten von gleicher Art wie R3 enthaltende Aryloder Aralkylgruppen, Alkenyl- oder Alkylreste mit 1 bis 5 C-Atomen, die gegebenenfalls gemeinsam mit 25 dem Stickstoffatom einen Ring bilden, welcher als weitere Heteroatome O, S oder N enthalten kann, wobei das N seinerseits Wasserstoff oder eine Alkyl-, Hydroxyalkyl- oder Alkoxyalkylgruppe trägt, oder schließlich unsubstituierte oder am Stickstoffatom 30 alkylierte Amino- oder Aminoalkylgruppen. R₃ und R₄ sind gleich oder verschieden und bedeuten Wasserstoff, Halogenatome, Hydroxygruppen, 1 bis 3 C-Atome enthaltende Alkyl-, Alkoxy- oder Alkylmercaptogruppen oder Trifluormethylgruppen.

Verbindungen der Formel I werden erfindungsgemäß erhalten, wenn man ein Thiazepinderivat der Formel:

$$\begin{array}{c|c} A \\ \downarrow \\ N = C \\ \hline \\ Z \\ \end{array} \qquad \begin{array}{c} A_0 \\ \hline \\ -R_3 \end{array} \qquad , \quad \text{(II)} \\ \end{array}$$

worin Z, R₃ und R₄ die oben genannte Bedeutung besitzen und worin A ein Halogenatom, vorzugsweise ein Chloratom, oder eine höchstens 3 C-Atome aufweisende Alkoxy- oder Alkylthiogruppe darstellt, mit 50 einer Verbindung der Formel HNR1R2, beispielsweise Diäthylamin, Piperidin, Morpholin, N-Methylpiperazin, geradkettigen oder verzweigtkettigen, gegebenenfalls alkylierten Alkylendiaminen und dergleichen, umsetzt.

Die Umsetzung des Imidoäthers, Imidothioäthers oder des Imidhalogenids mit dem Amin erfolgt zweckmäßig, indem man die Komponenten, je nach ihren physikalischen Eigenschaften eventuell unter Verwendung eines inerten Verdünnungsmittels, wie Di- 60 oxan, Xylol, Mesitylen, Decalin und dergleichen während einigen Stunden bis zu 3 Tagen auf eine Temperatur von vorzugsweise über 150°C erhitzt, sei es durch Rückflußerhitzung oder unter Verwendung des Einschlußrohres. Das Amin wird dabei vorzugsweise 65 in mindestens dreifachem molarem Überschuß verwendet. Die Reaktion wird oftmals durch Säure katalysiert, wofür dem Reaktionsgemisch einige Tropfen Eisessig (z. B. 5 Tropfen auf 10 g der Thiazepinverbindung) zugesetzt werden können. Nach Einengen 70 des Reaktionsgemisches verteilt man den Rückstand zweckmäßig zwischen Ather und Wasser und entzieht die gebildete Base z. B. durch Extraktion mit verdünnter Salzsäure oder Essigsäure. Aus der nötigen422 793

falls mit Kohle geklärten Hydrochlorid- oder Acetatlösung kann man die Base mit Ammoniak ausfällen und, falls sie gut kristallisiert und in Äther schwer löslich ist, direkt durch Abfiltrieren isolieren, andern-5 falls in Äther aufnehmen und die ätherische Lösung in üblicher Weise durch Auswaschen mit Wasser und Trocknen mit Natriumsulfat aufarbeiten. Die weitere Reinigung erfolgt z. B. durch Umkristallisieren oder Hochvakuumdestillation.

Es versteht sich, daß man die basische Seitenkette, soweit R1 und R2 nicht gleichzeitig Wasserstoff bedeuten, auch schrittweise einführen kann, indem man die Thiazepinverbindung der Formel II zunächst mit Ammoniak oder einem primären Amin umsetzt und R₁ und/oder R₂ nachträglich einführt.

Weitere N-Atome der basischen Seitenkette können gegebenenfalls ebenfalls nachträglich alkyliert werden.

Diejenigen Produkte, in welchen Z eine Sulfinyl-20 gruppe bedeutet, können auch dadurch erhalten werden, daß man ein entsprechendes in 5-Stellung sauerstofffreies Thiazepinderivat in an sich bekannter Weise oxydiert.

Die nach diesem Verfahren erhaltenen Basen 25 sind gelb, in vielen Fällen kristallisierbar, sonst im Hochvakuum unzersetzt destillierbar, und besitzen schon auf Grund der Amidingruppierung, abgesehen von allfälligen weiteren basischen Stickstoffatomen, genügende Basenstärke, um mit anorganischen oder organischen Säuren, beispielsweise Salzsäure, Bromwasserstoffsäure, Schwefelsäure, Salpetersäure, Phosphorsäure, Essigsäure, Oxalsäure, Malonsäure, Bernsteinsäure, Maleinsäure, Äpfelsäure, Weinsäure, Toluolsulfonsäure und dergleichen, in Wasser beständige Additionssalze zu bilden, in welcher Form die Produkte ebenfalls verwendet werden können.

Um die quaternären Ammoniumderivate der Verbindungen gemäß Formel I zu erhalten, kann man entweder Ausgangsstoffe verwenden, die bereits qua-40 ternäre Stickstoffatome aufweisen, oder man kann die der Quaternisierung zugänglichen Stickstoffatome nach erfolgter Bildung der Basen (I) nachträglich in an sich bekannter Weise quaternisieren, beispielsweise durch Behandlung mit einem Dialkylsulfat, Alkyl-45 halogenid oder Sulfonsäurealkylester.

Die als Ausgangsstoffe verwendeten Verbindungen der Formel II erhält man beispielsweise durch thermische Cyclisierung entsprechend substituierter

Substanz

2-Chlor-11-(N-methylpiperazino)dibenzo[b,f][1,4]thiazepin

Haloperidol

Perphenazin

Chlorpromazin

o-Amino-o'-carboxy-diphenylsulfide zum Lactam, dessen tautomere Form der Formel II entspricht, worin A eine Hydroxylgruppe ist. Durch Behandeln des Lactams einerseits mit Phosphorpentasulfid in siedendem Pyridin kann man das in Alkalilauge lösliche, 65 gelbe Thiolactam (Formel II; A = SH; tautomere Form), und daraus durch Alkylierung mit Alkali und Dialkylsulfat den Imidothioäther (Formel II; A = S-Alkyl), beide Stufen in guter Ausbeute erhalten. Anderseits kann man aus dem Lactam durch Behandeln 70 mit einem Gemisch aus Phosphoroxychlorid und Phosphorpentachlorid das Imidehlorid, und in entsprechender Weise die anderen Imidhalogenide erhal-

Die in erfindungsgemäßer Weise erhaltenen Ba- 15 sen, quaternären Ammoniumderivate und Säure-Additionssalze sind neue Verbindungen, die als Wirkstoffe in Arzneimitteln Verwendung finden können, insbesondere als Analgetika, Chemotherapeutika, Antihistaminika, Antiallergika, Sedativa, Adrenoly- 80 tika und Neuroplegika. Einzelne davon eignen sich zur Behandlung psychotischer Zustände.

Beispielsweise zeigt das gemäß Beispiel 23 erhal-2-Chlor-11-(N-methyl)piperazino-dibenzo[b,f]-[1,4]thiazepin im Tierversuch die Eigenschaften 85 eines Heuroleptikums mit stark motilitätsdämpfender Wirkung sowie kataleptischen und apomorphinantagonistischen Eigenschaften. Die motilitätsdämpfende Wirkung wurde einerseits durch Messung der Laufaktivität bei Mäusen nach der Methode von Caviezel 90 und Baillod (Pharm. Acta Helv. 33, 469 (1958), anderseits im «Open-field»-Test an Ratten nach der Methode von Janssen et al. (Psychopharmacologia 1, 389 (1960) an je 10 Tieren bestimmt. Der ermittelte Durchschnittswert wird in der folgenden Tabelle I mit 95 den entsprechenden Werten für bekannte Neuroleptika verglichen. In dieser sind ferner Vergleichswerte für die akute Toxizität an der Maus sowie für die kataleptische Wirkung enthalten. Die letztere wurde an Ratten geprüft, die man in verschiedenen Zeit- 100 abständen nach s. c. Injektion verschiedener Substanzmengen mit beiden Vorderpfoten und eine 7 cm hohe Säule legte, wobei die Verharrungsdauer gemessen wurde. Die in Tabelle I angegebenen Zahlenwerte entsprechen den graphisch ermittelten Substanzmen- 105 gen, die 180 Minuten nach Injektion im Mittel von 10 Tieren eine Verharrungsdauer von 30 Sekunden bewirkten.

Tabelle 1

Toxizität

DL 50 Maus mg/kg p.o.

270

125

120

135

T assfalledissiele

2

 DE 50% mg/kg p. o.	DE 50% mg/kg p. o.	DE 30 sec. mg/kg s. c.	
0,6	0,33	0.72	— 115
0,3	3,4	0,72	

1,0 0,24 >5,0 3,5 4,9 3,8

120

Beispiel 1

in 40 ml absolutem Xylol gelöst, mit 4,3 g Piperidin versetzt und 5 Stunden auf Rückfluß erhitzt. Das 5 Reaktionsgemisch wird mit Wasser versetzt und mit konzentrierter Natronlauge alkalisch gemacht. Die Xylolschicht wird abgetrennt, mit Wasser neutral gewaschen und mit Salzsäure extrahiert. Die sauren Auszüge werden mit konzentrierter Ammoniaklösung 10 alkalisch gemacht und das ausgefallene Öl wird ausgeäthert. Die ätherische Lösung wird mit Wasser gewaschen und eingedampft. Der Rückstand wird aus Äther/Petroläther kristallisiert. Man erhält 3,4 g 11-Piperidino-dibenzo[b,f][1,4]thiazepin vom Schmelz-15 punkt 133-134° C.

In analoger Weise wie im oben beschriebenen Bei-3,5 g 11-Chlor-dibenzo[b,f][1,4]thiazepin werden · spiel erhält man aus den entsprechenden Ausgangsstoffen die in der nachfolgenden Tabelle II genannten Produkte. Darin bedeutet A den entsprechenden Rest der Ausgangsverbindung der Formel II.

$$-N$$
 R_2

ist die entsprechende Gruppe in der Verbindung der Formel I. Z, R₃ und R₄ sind die entsprechenden Substituenten in den Verbindungen der Formeln I und II. In der letzten Kolonne bedeutet Ae Äther, Pe Petroläther und Ac Aceton.

Tabelle II

Beispiel	Ausgangsamin	A	z	R ₃ bzw. R ₄	$-N$ R_{a}	Ausbeute in % der Theorie	Smp. bzw. *Sdp. der Base
	N-Methylpiperazin	-Cl	`s'	Н	-N—CH ₃	84	102-103° C (aus Ae/Pe)
3	Dimethylamin	–Cl	\s'	Н	−N(CH ₃) ₃	73	121–122° C (aus Ac/Pe)
4	β -Dimethylamino-	-Cl	\s	Н	-NH-CH ₂ -CH ₂ -N(CH ₃) ₂	41	96–97° C (aus Ae/Pe)
5	äthylamin as-Dimethyl- hydrazin	-Cl	s	·H	-NH-N(CH₃)₂	50	181–183° C (aus Essig- ester/Pe)
6	Morpholin	–Cl	S	H	-N_O	73	*190–194° C/ 0,07 mm Hg a)
7	N-Methylpiperazin	–Cl	S	6-Cl	-N N-CH ₃	77	82–88° C (aus Ae/Pe)
8	γ-Dimethylamino- propylamin	–Cl	`s´	Н	-NH-CH ₂ -CH ₂ -CH ₂ -N(CH ₈) ₂	81	125-126° C (aus Ac/Pe)
9	N,N'-Trimethyl- äthylendiamin	-Cl	s	Н	-N-CH ₂ -CH ₂ -N(CH ₃) ₂ CH ₃	88	89–90° C (aus Pe)
10	Piperazin	Cl	\s	Н	-N NH	85	122-124° C (aus Ac/Pe)
11	Hydrazin	Cl	s	н	-NH-NH ₂	69	119–121° C (aus Essig- ester/Pe)
12	Anilin	–Cl	s	Н	-ИН-	77	127-128 und 155-156° C (aus Ac/Ae/Pe)
13	p-Chloranilin	-Cl	S	н	-NH-Cl	80	154–155° C (aus Ac/Ae/Pe)

422	2 793				4		
				Tabelle	2 (Fortsetzung)		
14	γ-Dimethylamino- propyl-methyl-amin	-Cl	s	Н	-N-CH ₂ -CH ₃ -CH ₂ -N(CH ₃) ₂	83	69-70° C (aus Pe)
15	1-Diäthylamino- 4-amino-pentan	–Cl	s	Н	-NH-CH-(CH ₂) ₃ -N(C ₂ H ₅) ₂ CH ₃	76	76–77° C (aus Ae/Pe)
16	N-Methylpiperazin	-Cl	S	8-CH ₃	$-N$ $N-CH_3$	75	152-153° C (aus Ac/Pe)
17	N-Methylpiperazin	-Cl	s	8CF ₈	-N-CH ₃	64	b)
18	N-Methylpiperazin	-Cl	s	8Cl	-N-CH ₃	80	166–167° C (aus Ac/Pe)
19	N-Methylpiperazin	-Cl	s	7- C l	-N—CH ₃	56	136-138° C (aus Ae/Pe)
20	N-Methylpiperazin	-Cì	s	8-OCH ₃	-N N-CH₃	45	116-118° C (aus Ac/Pe)
21	N-Methylpiperazin	Cl	s	3-Cl	-N_N-CH ₈	63	c)
22	N-Methylpiperazin	–Cl	s	3-CH ₃	$-N$ $N-CH_3$	61	92–95° C (aus Ae/Pe)
23	N-Methylpiperazin	-Cl	s	2-Cl	-N_N-CH ₃	73	118-120° C (aus Ae/Pe)
24	N-Methylpiperazin	Cl	s	7-SCH ₃	-N_N-CH ₃	69	113-115° C (aus Ae/Pe)
25	β-Dimethylamino- äthylamin	–Cl	s	2-Cl	-NH-CH ₂ -CH ₂ -N(CH ₃) ₂	69	54-60° C (aus Pe)
26	Piperazin	–Cl	s	2-Cl	-N_NH	85	132–134° C (aus Ae/Pe)
27	β -Piperazino- äthanol	-Cl	s	2-Cl	-N—CH ₂ -CH ₂ -OH	67	d)
28	N,N'-Trimethyl- äthylendiamin	-Cl	s	2-Cl	-N-CH ₂ -CH ₂ -N(CH ₃) ₂	70	e)
29	γ-Dimethylamino- propylamin	-Ci	s	2–Cl	CH ₃ -NH-(CH ₂) ₃ -N(CH ₃) ₂	77	104–106° C (aus Ae/Pe)
30	N-Methylanilin	-Cl	s	2-Cl	¬N- CH ₃	68	141–143° C (aus Ac/Pe)
31	Morpholin	-Cl	s	2–Cl	-N_O	72	148-150° C (aus Ac/Pe)
32	N-Methylpiperazin	Cl	s	2-CH ₃	-N N-CH ₃	85	99–107° C (aus Pe)
33	Morpholin	–Ci	s	2-CH ₃	¬N_O	80	147–148° C (aus Ac/Pe)

Tabelle II (Fortsetzung

34	N-Methylpiperazin	–Cl	s	2-Br	$-N$ $N-CH_3$	75	137–138° C (aus Ac/Pe)
35	N-Methylpiperazin	-Cl	s	2-F	$-N$ $N-CH_3$	72	80–84° C (aus Pe)
36	N-Methylpiperazin	-Cl	s	4-CH ₃	-N_N-CH ₃	79	149-150° C (aus Ac/Pe)
37	Piperidin	–Cl	`s'	2-OCH ₃	-N	84	116-117° C (aus Ae/Pe)
38	Morpholin	–Cl	s	2-OCH ₃	-NO	81	174–175° C (aus Ac/Pe)
39	N-β-Methoxyäthyl- piperazin	-Cl	s	2–Cl	N-CH ₂ -CH ₂ -OCH ₃	75	f) –
40	Ammoniak	-Cl	s	Н	_NH ₂	88	176–178° C (aus Essig- ester/Pe)
41	p-Methoxyanilin	-Cl	s	Н	-NH-CD-OCH3	69	158-160° C (aus Ac/Pe)
42	β -Piperazino- äthanol	-Cl	s	н	-N_N-CH ₂ -CH ₂ -OH	71	g) –
43	N-Methyl-N'-di- äthyl-äthylendiamin	-Cl	s	Н	$-N-CH_2-CH_2-N(C_2H_5)_2$ CH_3	69	h) –

Anmerkungen zu Tabelle II (letzte Kolonne):

- a) Das Hydrochlorid schmilzt bei 190-213°C (aus Methanol/Äther)
- b) Das Dihydrochlorid (aus Isopropanol/Ather) schmilzt bei 192° C unter Zersetzung
 - c) Das Hydrochlorid zersetzt sich über 215° C

45

- d) Das Hydrochlorid schmilzt bei 194-200° C (aus Methanol/Äther)
- e) Das Hydrochlorid schmilzt bei 196-197° C (aus 95 Äthanol/Äther)
- f) Das Dihydrochlorid schmilzt bei 215–225° C (aus Methanol/Ather)
- g) Das Hydrochlorid schmilzt bei 230-248°C (aus Methanol/Äther)
- h) Das Hydrochlorid schmilzt bei 179-180°C (aus Methanol/Ather)

PATENTANSPRUCH I

Verfahren zur Herstellung von Amidinen der Dibenzo[b,f][1,4]thiazepin-Reihe der Formel:

$$R_{4}$$
 R_{4}
 R_{4}
 R_{4}
 R_{5}
 R_{1}
 R_{2}
 R_{2}
 R_{3}
 R_{4}
 R_{4}
 R_{5}
 R_{4}
 R_{5}
 R_{4}
 R_{5}
 R_{4}
 R_{5}
 R_{4}
 R_{5}
 R_{7}
 R_{1}
 R_{2}
 R_{2}
 R_{3}

in welcher Z ein Schwefelatom oder eine Sulfinylgruppe bedeutet, R_1 und R_2 gleich oder verschieden 105 sind und Wasserstoff, unsubstituierte oder im Arylrest Substituenten von gleicher Art wie R_3 enthaltende Aryl- oder Aralkylgruppen, Alkenyl- oder Afkylreste mit 1 bis 5 C-Atomen, die gegebenenfalls gemeinsam mit dem Stickstoffatom einen Ring bilden, 110 welcher als weitere Heteroatome O, S oder N enthalten kann, wobei das N seinerseits Wasserstoff oder eine Ałkyl-, Hydroxyalkyl- oder Alkoxyalkyl-gruppe trägt, oder schließlich unsubstituierte oder am Stickstoffatom alkylierte Amino- oder Amino- 115

10

alkylgruppen bedeuten; und in welcher R₃ und R₄ gleich oder verschieden sind und Wasserstoff, Halogenatome, Hydroxygruppen, Trifluormethylgruppen oder 1 bis 3 C-Atome enthaltende Alkyl-, Alkoxyoder Alkylmercaptogruppen bedeuten; von Säure-Additionssalzen oder von quaternären Ammoniumderivaten davon, dadurch gekennzeichnet, daß man ein Thiazepinderivat der Formel:

$$R_4$$
 $N=C$
 R_3 , (II)

worin A ein Halogenatom oder eine höchstens 3 C20 Atome aufweisende Alkoxy- oder Alkylthiogruppe
darstellt, bzw. ein quaternäres Ammoniumderivat davon, mit einer Verbindung der Formel HNR₁R₂ umsetzt.

UNTERANSPRÜCHE

- 1. Verfahren nach Patentanspruch I, dadurch ge- 25 kennzeichnet, daß man in erhaltene Amidine der Formel I, in denen R_1 und/oder R_2 Wasserstoff bedeuten, nicht Wasserstoff bedeutende Reste R_1 und/oder R_2 nachträglich einführt.
- 2. Verfahren nach Patentanspruch I oder Unter- 30 anspruch 1, dadurch gekennzeichnet, daß man in der Seitenkette gegebenenfalls vorhandene weitere N-Atome nachträglich alkyliert.
- 3. Verfahren nach Patentanspruch I oder Unteranspruch 1 oder 2, dadurch gekennzeichnet, daß 3s man in erhaltenen Amidinen der Formel I, in denen Z ein Schwefelatom bedeutet, das Schwefelatom nachträglich zur Sulfinylgruppe oxydiert.

PATENTANSPRUCH II

Verwendung der nach Patentanspruch I oder 40 einem der vorangegangenen Unteransprüche erhaltenen, keine quaternären Ammoniumgruppen enthaltenden Amidine der Formel I zur Herstellung ihrer quaternären Ammoniumderivate, dadurch gekennzeichnet, daß man die genannten Amidine mit Quaternisierungsmitteln behandelt.

Dr. A. Wander AG