Team Notebook

El Rejunte - Universidad Tecnologica Nacional

October 1, 2025

Contents				4	4.10 Point	10	6.4	Fft	19
					4.11 Poly		6.5	Fraction	
1		orithms	2	4	4.12 Radial Order	12	6.6	Gauss Jordan Bitset	20
		Divide And Conquer Dp	2	4	4.13 Segment	12	6.7	Gauss Jordan Mod	21
	1.2	Lis	2		4.14 Voronoi		6.8	Gauss Jordan	21
	1.3	Mo	2				6.9	Karatsuba	21
	T21			5 (Graphs	13	6.10	Matrix Exp	21
2	Flo		3	5	5.1 2sat	13	6.11	Modular Inverse	22
	2.1	Dinic	3	5	5.2 Articulation	13	6.12	Modular Operations	22
	2.2	Edmonds Karp	3	5	5.3 Bellman Ford	14		Phollard Rho	
	2.3	Hopcroft Karp	4	5	5.4 Biconnected	14		Prime Functions	
	2.4	Hungarian	4	5	5.5 Centroid	15		Simplex	
	2.5	Matching	4	5	5.6 Diameter	15		Simpson	
	2.6	Min Cost Max Flow	5	5	5.7 Dijkstra	15		1	
	2.7	Min Cut	5	Ę	5.8 Dynamic Connectivity	15	7 Stri	ngs	24
	2.8	Push Relabel	5	Ę	5.9 Euler Path		7.1	Aho Corasick	24
2	Car	ne Theory	6	Ę	5.10 Floyd		7.2	Booth	24
J		Green Hackenbush	6		5.11 Heavy Light Decomposition		7.3	Hash Simple	24
	5.1	Green Hackenbush	١		5.12 Kosaraju			Hash	
4	Geo	ometry	6		5.13 Kruskal		7.5	Hash128	25
-	4.1	All Point Pairs	6		5.14 Lca		7.6	Kmp	25
	4.2	Circle	6				7.7	Lcp	25
	4.3	Convex Hull Dyn	7		5.16 Tree Reroot			Manacher	
	4.4	Convex Hull Trick	7		5.17 Virtual Tree		7.9	Suffix Array Slow	26
	4.5	Convex Hull	8		71 7110002 2100 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10		Suffix Array	
	4.6	Halfplane	8	6 N	Math	19		Suffix Automaton	
	4.7	Kd Tree	8	ϵ	3.1 Combinatorics	19		Suffix Tree	
	4.8	Li Chao Tree	9	ϵ	3.2 Crt Euclid	19	7.13	Trie	27
	4.9	Line	10	ϵ	3.3 Discrete Log			Zfunction	

8	Structures	28	8.10 Segtree 2d	31	9 Template	35
	8.1 Bigint	28	8.11 Segtree Dynamic	31	9.1 Template	35
	8.2 Disjoint Intervals	29	8.12 Segtree Implicit	32	-	
	8.3 Fenwick Tree	29	8.13 Segtree Lazy	32	10 Utils	35
	8.4 Gain Cost Set	29	8.14 Segtree Persistent	33	10.1 C++ Utils	3.F
	8.5 Hash Table	29	8.15 Segtree Static	33		
	8.6 Indexed Set	29	8.16 Treap Implicit	33	10.2 Compile Commands	
	8.7 Link Cut Tree	29	8.17 Treap	34		
	8.8 Merge Sort Tree	30	8.18 Union Find Rollbacks	35	10.4 Test Generator	36
	8.9 Rope	31	8.19 Union Find	35	10.5 Theory	36

1 Algorithms

1.1 Divide And Conquer Dp

```
vector<vector<int>> dp; //maybe replace dim of K with only 2
// d&q DP: go down the range [1,r) like merge sort, but also
// making sure to iterate over [from, to) in each step, and
// spliting the [from,to) in 2 parts when goind down:
// [from, best] and [best, to)
void solve(int 1, int r, int k, int from, int to) {
if(1 \ge r) return:
 int cur = (1+r)/2;
 int bestpos = cur-1;
 int best = INF: // assumes we want to minimize cost
 forr(i,from,min(cur, to)) {
 // cost function that usually depends on dp[i][k-1]
 int c = fcost(i, k):
 if(c < best) best = c, bestpos = i;</pre>
 dp[cur][k] = best;
 solve(1, cur, k, from, bestpos+1);
 solve(cur+1, r, k, bestpos, to);
```

1.2 Lis

```
// Change comparisons and binary search for non-increasing
// Given an array, paint it in the least number of colors so
// color turns to a non-increasing subsequence. Solution:
    Min number of
// colors=Length of the longest increasing subsequence
struct lis {
T INF;
int n; vector<T> a; // secuencia y su longitud
vector<pair<T,int>> d; // d[i]=ultimo valor de la
     subsecuencia de tamanio i
vector<int> p; // padres
vector<T> ret; // respuesta
lis(T INF_, vector<T> &a_) {
 n = sz(a_);
 INF = INF :
 a = a_{-};
 d.resize(n+1);
 p.resize(n+1);
```

```
void rec(int i) {
if(i == -1) return:
ret.push_back(a[i]);
rec(p[i]);
int run() {
d[0] = {-INF, -1};
forn(i,n) d[i+1] = {INF, -1};
forn(i,n) {
 int j = int(upper_bound(d.begin(), d.end(), mp(a[i], n))-
      d.begin());
 if(d[i-1].fst<a[i] && a[i]<d[i].fst) {</pre>
  p[i] = d[j-1].snd;
  d[j] = \{a[i], i\};
 }
}
ret.clear():
dforn(i, n+1) if(d[i].fst!=INF) {
 rec(d[i].snd): // reconstruir
 reverse(ret.begin(), ret.end());
 return i; // longitud
return 0;
```

1.3 Mo

```
// Commented code should be used if updates are needed
int n, sq, nq; // array size, sqrt(array size), #queries
struct Qu { //[1, r)
  // int upds; // # of updates before this query
}:
Qu qs[MAXN];
11 ans[MAXN]; // ans[i] = answer to ith query
// struct Upd{
// int p, v, prev; // pos, new_val, prev_val
// };
// Upd vupd[MAXN];
// Without updates
bool qcomp(const Qu& a, const Qu& b) {
 if (a.1 / sq != b.1 / sq) return a.1 < b.1;</pre>
 return (a.1 / sq) & 1 ? a.r < b.r : a.r > b.r;
// With updates
// bool gcomp(const Qu &a, const Qu &b){
```

```
// if(a.1/sq != b.1/sq) return a.1<b.1;</pre>
// if(a.r/sq != b.r/sq) return a.r<b.r;</pre>
// return a.upds < b.upds;</pre>
// }
// Without updates: O(n^2/sq + q*sq)
// with sq = sqrt(n): O(n*sqrt(n) + q*sqrt(n))
// with sq = n/sqrt(q): O(n*sqrt(q))
// With updates: O(sq*q + q*n^2/sq^2)
// with sq = n^(2/3): O(q*n^(2/3))
// with sq = (2*n^2)^(1/3) may improve a bit
void mos() {
 forn(i, nq) qs[i].id = i;
 sq = sqrt(n) + .5; // without updates
 // sq = pow(n, 2/3.0) + .5; // with updates
 sort(qs, qs + nq, qcomp);
 int 1 = 0, r = 0;
 init():
 forn(i, nq) {
   Qu q = qs[i];
   while (1 > q.1) add(--1);
   while (r < q.r) add(r++);
   while (1 < q.1) remove(1++);</pre>
   while (r > q.r) remove(--r);
   // while(upds<q.upds){</pre>
   // if(vupd[upds].p >= 1 && vupd[upds].p < r) remove(</pre>
        vupd[upds].p):
   // v[vupd[upds].p] = vupd[upds].v; // do update
   // if(vupd[upds].p >= 1 && vupd[upds].p < r) add(vupd[</pre>
        upds].p);
   // upds++;
   // }
   // while(upds>q.upds){
        upds--;
   // if(vupd[upds].p >= 1 && vupd[upds].p < r) remove(</pre>
        vupd[upds].p);
   // v[vupd[upds].p] = vupd[upds].prev; // undo update
   // if(vupd[upds].p >= 1 && vupd[upds].p < r) add(vupd[</pre>
        upds].p);
   // }
   ans[q.id] = get_ans();
```

2 Flow

2.1 Dinic

```
struct Edge {
 int u, v;
 ll cap, flow;
 Edge() {}
 Edge(int uu, int vv, ll c) : u(uu), v(vv), cap(c), flow(0)
       {}
}:
struct Dinic {
 int N;
 vector<Edge> E;
 vector<vector<int>> g;
 vector<int> d. pt:
 Dinic(int n): N(n), g(n), d(n), pt(n) {} // clear and
 void addEdge(int u, int v, ll cap) {
   if (u != v) {
     g[u].pb(sz(E));
     E.pb({u, v, cap}):
     g[v].pb(sz(E));
    E.pb(\{v, u, 0\});
 }
 bool BFS(int S, int T) {
   queue<int> q({S});
   fill(d.begin(), d.end(), N + 1);
   d[S] = 0:
   while (!q.empty()) {
    int u = q.front();
     g.pop():
     if (u == T) break;
     for (int k : g[u]) {
      Edge& e = E[k];
      if (e.flow < e.cap && d[e.v] > d[e.u] + 1) {
        d[e.v] = d[e.u] + 1:
        q.push(e.v);
    }
   return d[T] != N + 1;
 11 DFS(int u, int T, 11 flow = -1) {
   if (u == T || flow == 0) return flow:
   for (int& i = pt[u]; i < sz(g[u]); ++i) {
     Edge& e = E[g[u][i]];
     Edge& oe = E[g[u][i] ^1];
     if (d[e.v] == d[e.u] + 1) {
```

```
11 amt = e.cap - e.flow:
      if (flow != -1 && amt > flow) amt = flow:
      if (11 pushed = DFS(e.v, T, amt)) {
        e.flow += pushed:
        oe.flow -= pushed;
        return pushed:
    }
   return 0;
 11 maxFlow(int S. int T) { // O(V^2*E). unit nets: O(sgrt(
      V)*E)
   11 total = 0:
   while (BFS(S, T)) {
     fill(pt.begin(), pt.end(), 0);
     while (11 flow = DFS(S, T)) total += flow:
   return total:
 }
// Dinic wrapper to allow setting demands of min flow on
// If an edge with a min flow demand is part of a cycle,
    then the result
// is not guaranteed to be correct, it could result in false
     positives
struct DinicWithDemands {
 int N:
 vector<pair<Edge. 11>> E: // (normal dinic edge, min flow)
 Dinic dinic:
 DinicWithDemands(int n) : N(n), E(0), dinic(n + 2) {}
 void addEdge(int u, int v, ll cap, ll minFlow) {
   assert(minFlow <= cap);</pre>
   if (u != v) E.pb(mp(Edge(u, v, cap), minFlow));
 11 maxFlow(int S, int T) { // Same complexity as normal
      Dinic
   int SRC = N, SNK = N + 1;
   11 minFlowSum = 0:
   forall(e, E) { // force the min flow
     minFlowSum += e->snd;
     dinic.addEdge(SRC, e->fst.v, e->snd);
     dinic.addEdge(e->fst.u, SNK, e->snd);
     dinic.addEdge(e->fst.u, e->fst.v, e->fst.cap - e->snd);
   dinic.addEdge(T, S, INF); // INF >= max possible flow
   11 flow = dinic.maxFlow(SRC, SNK);
   if (flow < minFlowSum) return -1: // no valid flow exists
   assert(flow == minFlowSum):
```

```
// Now go back to the original network, to a valid
   // state where all min flow values are satisfied.
   forn(i, sz(E)) {
     forn(i, 4) {
       assert(j \% 2 \mid | dinic.E[6 * i + j].flow == E[i].snd);
      dinic.E[6 * i + i].cap = dinic.E[6 * i + i].flow = 0:
     dinic.E[6 * i + 4].cap += E[i].snd;
     dinic.E[6 * i + 4].flow += E[i].snd;
     // don't change edge [6*i+5] to keep forcing the mins
   forn(i, 2) dinic.E[6 * sz(E) + i].cap = dinic.E[6 * sz(E)
         + il.flow = 0:
   // Just finish the maxFlow now
   dinic.maxFlow(S. T):
   flow = 0; // get the result manually
   forall(e, dinic.g[S]) flow += dinic.E[*e].flow;
   return flow;
};
```

2.2 Edmonds Karp

```
struct EdmondsKarp {
 int N:
 vector<unordered_map<int, 11>> g;
 vector<int> p;
 11 f:
 EdmondsKarp(int n) : N(n), g(n), p(n) {}
 void addEdge(int a, int b, int w) { g[a][b] = w; }
 void augment(int v, int SRC, 11 minE) {
   if (v == SRC) f = minE;
   else if (p[v] != -1) {
     augment(p[v], SRC, min(minE, g[p[v]][v]));
     g[p[v]][v] -= f, g[v][p[v]] += f;
 11 maxflow(int SRC, int SNK) { // O(min(VE^2,Mf*E))
   11 ret = 0:
   do {
     queue<int> q;
     q.push(SRC);
     fill(p.begin(), p.end(), -1);
     while (sz(q)) {
      int node = q.front();
      q.pop();
      if (node == SNK) break;
```

2.3 Hopcroft Karp

```
struct HopcroftKarp { // [0,n)->[0,m) (ids independent in
    each side)
 int n, m;
 vector<vector<int>> g;
 vector<int> mt, mt2, ds;
 HopcroftKarp(int nn, int mm) : n(nn), m(mm), g(n) {}
 void add(int a, int b) { g[a].pb(b); }
 bool bfs() {
   queue<int> q;
   ds = vector < int > (n, -1):
   forn(i, n) if (mt2[i] < 0) ds[i] = 0, q.push(i);
   bool r = false;
   while (!q.empty()) {
     int x = q.front();
     q.pop();
     for (int v : g[x]) {
      if (mt[y] >= 0 && ds[mt[y]] < 0) {
        ds[mt[v]] = ds[x] + 1, q.push(mt[v]):
      } else if (mt[v] < 0) r = true;</pre>
   return r;
 bool dfs(int x) {
   for (int y : g[x]) {
     if (mt[y] < 0 \mid | ds[mt[y]] == ds[x] + 1 && dfs(mt[y]))
       mt[y] = x, mt2[x] = y;
       return true;
   ds[x] = 1 << 30;
   return false;
 int mm() { // O(sqrt(V)*E)
```

```
int r = 0;
mt = vector<int>(m, -1);
mt2 = vector<int>(n, -1);
while (bfs()) forn(i, n) if (mt2[i] < 0) r += dfs(i);
return r;
}
};</pre>
```

2.4 Hungarian

```
typedef long double td;
typedef vector<int> vi;
typedef vector vd;
const td INF = 1e100; // for maximum set INF to 0, and
    negate costs
bool zz(td x) { return abs(x) < 1e-9; } // change to x==0,</pre>
    for ints/11
struct Hungarian {
 int n;
 vector<vd> cs;
 vi L. R:
 Hungarian(int N, int M) : n(max(N, M)), cs(n, vd(n)), L(n)
      , R(n) {
   forn(x, N) forn(y, M) cs[x][y] = INF;
 void set(int x, int y, td c) { cs[x][y] = c; }
 td assign() { // O(n^3)
   int mat = 0:
   vd ds(n), u(n), v(n);
   vi dad(n), sn(n);
   forn(i, n) u[i] = *min_element(cs[i].begin(), cs[i].end()
   forn(j, n) {
     v[i] = cs[0][i] - u[0]:
     forr(i, 1, n) v[j] = min(v[j], cs[i][j] - u[i]);
   L = R = vi(n, -1):
   forn(i, n) forn(j, n) if (R[j] == -1 && zz(cs[i][j] - u[i
        ] - v[i])) {
     L[i] = j, R[j] = i, mat++;
     break:
   for (; mat < n; mat++) {</pre>
     int s = 0, j = 0, i;
     while (L[s] != -1) s++:
     fill(dad.begin(), dad.end(), -1);
     fill(sn.begin(), sn.end(), 0);
     forn(k, n) ds[k] = cs[s][k] - u[s] - v[k];
     while (1) {
```

```
forn(k, n) if (!sn[k] && (j == -1 || ds[k] < ds[j]))
       sn[j] = 1, i = R[j];
       if (i == -1) break;
       forn(k, n) if (!sn[k]) {
        td new_ds = ds[j] + cs[i][k] - u[i] - v[k];
        if (ds[k] > new_ds) ds[k] = new_ds, dad[k] = j;
     forn(k, n) if (k != j && sn[k]) {
      td w = ds[k] - ds[i]:
      v[k] += w, u[R[k]] -= w;
     u[s] += ds[i];
     while (dad[i] >= 0) {
      int d = dad[i]:
      R[j] = R[d], L[R[j]] = j, j = d;
     R[j] = s, L[s] = j;
   td ret = 0;
   forn(i, n) ret += cs[i][L[i]];
   return ret:
};
```

5

2.5 Matching

```
vector\langle int \rangle g[MAXN]; // [0,n)->[0,m)
int n. m:
int mat[MAXM];
bool vis[MAXN];
int match(int x) {
 if (vis[x]) return 0;
 vis[x] = true;
 for (int v : g[x])
   if (mat[v] < 0 || match(mat[v])) {</pre>
     mat[y] = x;
     return 1:
   }
 return 0;
vector<pair<int, int> > max_matching() { // O(V^2 * E)
 vector<pair<int, int> > r:
 memset(mat, -1, sizeof(mat));
 forn(i, n) memset(vis, false, sizeof(vis)), match(i);
 forn(i, m) if (mat[i] >= 0) r.pb({mat[i], i});
 return r;
```

2.6 Min Cost Max Flow

```
typedef ll tf;
typedef 11 tc;
const tf INF_FLOW = 1e14;
const tc INF COST = 1e14:
struct edge {
 int u. v:
 tf cap, flow;
 tc cost;
 tf rem() { return cap - flow; }
};
struct MCMF {
 vector<edge> e;
 vector<vector<int>> g;
 vector<tf> vcap;
 vector<tc> dist;
 vector<int> pre;
 tc minCost:
 tf maxFlow:
 // tf wantedFlow: // Use it for fixed flow instead of max
 MCMF(int n) : g(n), vcap(n), dist(n), pre(n) {}
 void addEdge(int u, int v, tf cap, tc cost) {
   g[u].pb(sz(e)), e.pb({u, v, cap, 0, cost});
   g[v].pb(sz(e)), e.pb({v, u, 0, 0, -cost});
 // O(n*m * min(flow, n*m)), sometimes faster in practice
 void run(int s, int t) {
   vector<bool> ing(sz(g));
   maxFlow = minCost = 0; // result will be in these
        variables
    while (1) {
     fill(vcap.begin(), vcap.end(), 0), vcap[s] = INF_FLOW;
     fill(dist.begin(), dist.end(), INF COST), dist[s] = 0:
     fill(pre.begin(), pre.end(), -1), pre[s] = 0;
     queue<int> q:
     q.push(s), inq[s] = true;
     while (sz(q)) { // Fast bellman-ford
       int u = q.front();
       q.pop(), inq[u] = false;
       for (auto eid : g[u]) {
         edge& E = e[eid]:
         if (E.rem() && dist[E.v] > dist[u] + E.cost) {
           dist[E.v] = dist[u] + E.cost;
           pre[E.v] = eid:
           vcap[E.v] = min(vcap[u], E.rem());
```

```
if (!inq[E.v]) q.push(E.v), inq[E.v] = true;
}

}
if (pre[t] == -1) break;
tf flow = vcap[t];
// flow = min(flow, wantedFlow - maxFlow); //For fixed
    flow
maxFlow += flow;
minCost += flow * dist[t];
for (int v = t; v != s; v = e[pre[v]].u) {
    e[pre[v]].flow += flow;
    e[pre[v] ^ 1].flow -= flow;
}
// if(maxFlow == wantedFlow) break; //For fixed flow
}
};
```

2.7 Min Cut

```
// Suponemos un grafo con el formato definido en Push
    relabel
bitset<MAX_V> type, used; // reset this
void dfs1(int nodo) {
 type.set(nodo);
 forall(it, G[nodo]) if (!tvpe[it->fst] && it->snd > 0)
      dfs1(it->fst);
void dfs2(int nodo) {
 used.set(nodo):
 forall(it, G[nodo]) {
   if (!tvpe[it->fst]) {
    // edge nodo -> (it->fst) pertenece al min_cut
     // v su peso original era: it->snd + G[it->fst][nodo]
     // si no existia arista original al reves
   } else if (!used[it->fst]) dfs2(it->fst);
 }
void minCut() // antes correr algun maxflow()
 dfs1(SRC):
 dfs2(SRC):
 return;
```

2.8 Push Relabel

```
#define MAX_V 1000
int N; // valid nodes are [0...N-1]
#define INF 1e9
// special nodes
#define SRC 0
#define SNK 1
map<int, int> G[MAX_V]; // limpiar esto -- unordered_map
// To add an edge use
#define add(a, b, w) G[a][b] = w
11 excess[MAX V]:
int height[MAX_V], active[MAX_V], cuenta[2 * MAX_V + 1];
queue<int> Q;
void enqueue(int v) {
 if (!active[v] && excess[v] > 0) active[v] = true, 0.push(
void push(int a, int b) {
 int amt = min(excess[a], ll(G[a][b]));
 if (height[a] <= height[b] || amt == 0) return;</pre>
 G[a][b] -= amt. G[b][a] += amt:
 excess[b] += amt, excess[a] -= amt;
 enqueue(b):
void gap(int k) {
 forn(v. N) {
   if (height[v] < k) continue;</pre>
   cuenta[height[v]]--:
   height[v] = max(height[v], N + 1):
   cuenta[height[v]]++;
   enqueue(v);
void relabel(int v) {
 cuenta[height[v]]--;
 height[v] = 2 * N;
 forall(it, G[v]) if (it->snd) height[v] = min(height[v].
      height[it->fst] + 1);
 cuenta[height[v]]++:
 enqueue(v);
11 maxflow() // O(V^3)
 zero(height), zero(active), zero(cuenta), zero(excess);
 cuenta[0] = N - 1:
 cuenta[N] = 1:
 height[SRC] = N;
 active[SRC] = active[SNK] = true;
 forall(it, G[SRC]) {
```

```
excess[SRC] += it->snd;
push(SRC, it->fst);
}
while (sz(Q)) {
  int v = Q.front();
  Q.pop();
  active[v] = false;
  forall(it, G[v]) push(v, it->fst);
  if (excess[v] > 0) cuenta[height[v]] == 1 ? gap(height[v ]) : relabel(v);
}
ll mf = 0;
forall(it, G[SRC]) mf += G[it->fst][SRC];
return mf;
```

3 Game Theory

3.1 Green Hackenbush

```
// A two-player game played on an undirected graph where
    some nodes
// are connected to the ground. On each turn, a player
    removes an edge.
// If this removal splits the graph into two components, any
// that is not connected to the ground is removed. A player
    loses the game
// if it's impossible to make a move.
struct green_hackenbush {
 vector<vector<int>> g:
 vector<int> tin, low, gr;
 int t. root. ans:
 green_hackenbush(int n) {
 t = 0, root = -1, ans = 0;
 g.resize(n): gr.resize(n):
 tin.resize(n); low.resize(n);
 // make u a node in the ground
 void ground(int u) {
 gr[u] = 1; if(root == -1) root = u;
 // call first ground() if u or v are in the ground
 void add edge(int u, int v) {
 if(gr[u]) u = root;
 if(gr[v]) v = root;
 if(u == v) { ans ^= 1; return; }
 g[u].pb(v); g[v].pb(u);
```

```
int solve(int u. int d) {
 tin[u] = low[u] = ++t;
 int ret = 0:
 forn(i,sz(g[u])) {
  int v = g[u][i]:
  if(v == d) continue;
  if(tin[v] == 0) {
   int retv = solve(v.u);
   low[u] = min(low[u], low[v]);
   if(low[v] > tin[u]) ret ^= (1+retv)^1:
   else ret ^= retv:
  }else low[u] = min(low[u], tin[v]);
 forn(i,sz(g[u])) {
  int v = g[u][i];
  if(v != d && tin[u] <= tin[v]) ret ^= 1:</pre>
 return ret:
 int solve() {
 return root == -1? 0 : ans^solve(root.-1):
}:
```

4 Geometry

4.1 All Point Pairs

```
// after each step() execution pt is sorted by dot product
struct all_point_pairs { // O(n*n*log(n*n)), must add id, u,
     v to pto
 vector<pto> pt, ev;
 vector<int> idx;
 int cur step:
 all_point_pairs(vector<pto> pt_) : pt(pt_) {
   idx = vector<int>(sz(pt));
   forn(i, sz(pt)) forn(j, sz(pt)) if (i != j) {
     pto p = pt[i] - pt[i];
     p.u = pt[i].id, p.v = pt[j].id;
     ev.pb(p);
   sort(ev.begin(), ev.end(), cmp(pto(0, 0), pto(1, 0)));
   pto start(ev[0].v, -ev[0].x);
   sort(pt.begin(), pt.end(),
        [&](pto& u, pto& v) { return u * start < v * start;</pre>
```

```
forn(i, sz(idx)) idx[pt[i].id] = i;
  cur_step = 0;
}
bool step() {
  if (cur_step >= sz(ev)) return false;
  int u = ev[cur_step].u, v = ev[cur_step].v;
  swap(pt[idx[u]], pt[idx[v]]);
  swap(idx[u], idx[v]);
  cur_step++;
  return true;
}
```

4.2 Circle

```
#define sqr(a) ((a)*(a))
pto perp(pto a){return pto(-a.y, a.x);}
line bisector(pto a, pto b){
line l = line(a, b); pto m = (a+b)/2;
return line(-1.b, 1.a, -1.b*m.x+1.a*m.y);
struct circle{
pto o; T r;
circle(){}
circle(pto a, pto b, pto c) {
 o = bisector(a, b).inter(bisector(b, c));
 r = o.dist(a):
}
bool inside(pto p) { return (o-p).norm_sq() <= r*r+EPS; }</pre>
bool inside(circle c) { // this inside of c
 T d = (o - c.o).norm sq():
 return d \le (c.r-r) * (c.r-r) + EPS:
// circle containing p1 and p2 with radius r
// swap p1, p2 to get snd solution
circle* circle2PtoR(pto a, pto b, T r_) {
      1d d2 = (a-b).norm_sq(), det = r_*r_/d2 - 1d(0.25);
       if(det < 0) return nullptr;</pre>
 circle *ret = new circle();
       ret->o = (a+b)/ld(2) + perp(b-a)*sqrt(det);
       ret->r = r :
 return ret:
pair<pto, pto> tang(pto p) {
 pto m = (p+o)/2:
 ld d = o.dist(m);
 ld a = r*r/(2*d);
 ld h = sartl(r*r - a*a):
 pto m2 = o + (m-o)*a/d;
```

```
pto per = perp(m-o)/d:
 return make_pair(m2 - per*h, m2 + per*h);
vector<pto> inter(line 1) {
 1d = 1.a, b = 1.b, c = 1.c - 1.a*o.x - 1.b*o.y;
 pto xv0 = pto(a*c/(a*a + b*b), b*c/(a*a + b*b));
 if(c*c > r*r*(a*a + b*b) + EPS) {
  return {}:
 else if(abs(c*c - r*r*(a*a + b*b)) < EPS) {
 return { xy0 + o };
 }else{
 1d m = sart1((r*r - c*c/(a*a + b*b))/(a*a + b*b));
  pto p1 = xy0 + (pto(-b,a)*m);
  pto p2 = xy0 + (pto(b,-a)*m);
 return { p1 + o, p2 + o };
vector<pto> inter(circle c) {
 line 1:
 1.a = o.x - c.o.x:
 1.b = o.v - c.o.v;
 1.c = (sqr(c.r)-sqr(r)+sqr(o.x)-sqr(c.o.x)+sqr(o.y)-sqr(c.
      o.v))/2.0;
 return (*this).inter(1);
ld inter_triangle(pto a, pto b) { // area of intersection
     with oab
 if(abs((o-a)^(o-b)) \le EPS) return 0.:
 vector<pto> q = {a}, w = inter(line(a,b));
 if(sz(w) == 2) forn(i.sz(w)) if((a-w[i])*(b-w[i]) < -EPS)
      q.pb(w[i]);
 q.pb(b);
 if(sz(q) == 4 \&\& (q[0]-q[1])*(q[2]-q[1]) > EPS) swap(q[1],
       q[2]);
 1d s = 0:
 forn(i, sz(q)-1){
  if(!inside(q[i]) || !inside(q[i+1])) {
   s += r*r*angle((q[i]-o),q[i+1]-o)/T(2);
  else s += abs((q[i]-o)^(q[i+1]-o)/2);
 return s;
vector<ld> inter_circles(vector<circle> c){
vector<ld> r(sz(c)+1); // r[k]: area covered by at least k
     circles
form(i, sz(c)) { // O(n^2 \log n) (high constant)
 cmp s(c[i].o, pto(1,0));
```

```
vector<pair<pto,int>> p = {
 \{c[i].o + pto(1,0)*c[i].r, 0\},\
 \{c[i].o - pto(1,0)*c[i].r, 0\}\};
 forn(j, sz(c)) if(j != i) {
 bool b0 = c[i].inside(c[i]), b1 = c[i].inside(c[i]);
  if(b0 && (!b1 || i<i)) k++:
  else if(!b0 && !b1) {
  vector<pto> v = c[i].inter(c[j]);
  if(sz(v) == 2) {
   p.pb({v[0], 1}); p.pb({v[1], -1});
   if(s(v[1], v[0])) k++;
 }
sort(p.begin(), p.end(), [&](pair<pto,int> a, pair<pto,int</pre>
 return s(a.fst,b.fst); });
 forn(j,sz(p)) {
 pto p0 = p[j? j-1: sz(p)-1].fst, p1 = p[j].fst;
 ld a = angle(p0 - c[i].o, p1 - c[i].o);
 r[k] + = (p0.x-p1.x)*(p0.y+p1.y)/ld(2)+c[i].r*c[i].r*(a-sinl)
      (a))/1d(2):
 k += p[j].snd;
}
return r;
```

4.3 Convex Hull Dyn

```
struct semi chull {
 set<pto> pt: // maintains semi chull without collinears
 // in case we want them on the set, make the changes
      commented below
 bool check(pto p) {
  if (pt.empty()) return false;
   if (*pt.rbegin() < p) return false;</pre>
   if (p < *pt.begin()) return false;</pre>
   auto it = pt.lower_bound(p);
   if (it->x == p.x) return p.y <= it->y; // change? for
        collinears
   pto b = *it;
   pto a = *prev(it);
   return ((b - p) ^ (a - p)) + EPS >= 0: // change? for
        collinears
 void add(pto p) {
   if (check(p)) return;
```

```
pt.erase(p);
   pt.insert(p);
   auto it = pt.find(p);
   while (true) {
     if (next(it) == pt.end() || next(next(it)) == pt.end())
           break:
     pto a = *next(it), b = *next(next(it));
     if (((b - a) ^ (p - a)) + EPS >= 0) { // change? for}
          collinears
       pt.erase(next(it));
     } else break:
   it = pt.find(p);
   while (true) {
     if (it == pt.begin() || prev(it) == pt.begin()) break;
     pto a = *prev(it), b = *prev(prev(it));
     if (((b - a) ^ (p - a)) - EPS <= 0) { // change? for
          collinears
       pt.erase(prev(it)):
     } else break:
};
struct CHD {
 semi_chull sup, inf;
 void add(pto p) { sup.add(p), inf.add(p * (-1)); }
 bool check(pto p) { return sup.check(p) && inf.check(p *
      (-1)); }
};
```

4.4 Convex Hull Trick

```
struct CHT {
 deque<pto> h:
 T f = 1, pos;
 CHT(bool min_ = 0) : f(min_ ? 1 : -1), pos(0) {} // min_ = 1
       for min queries
 void add(pto p) { // O(1), pto(m,b) <=> y = mx + b
   p = p * f;
   if (h.empty()) {
     h.pb(p);
     return:
   // p.x should be the lower/greater hull x
   assert(p.x \le h[0].x \mid p.x \ge h.back().x):
   if (p.x \le h[0].x) {
     while (sz(h) > 1 \&\& h[0].left(p, h[1])) h.pop_front(),
         pos--;
     h.push_front(p), pos++;
```

```
while (sz(h) > 1 \&\& h[sz(h) - 1].left(h[sz(h) - 2], p))
           h.pop_back();
     h.pb(p);
   pos = min(max(T(0), pos), T(sz(h) - 1));
 T get(T x) {
   pto q = \{x, 1\};
   // O(log) query for unordered x
   int L = 0, R = sz(h) - 1, M:
   while (L < R) {
     M = (L + R) / 2;
     if (h[M + 1] * q \le h[M] * q) L = M + 1;
     else R = M:
   return h[L] * q * f;
   // O(1) query for ordered x
   while (pos > 0 && h[pos - 1] * q < h[pos] * q) pos--;
   while (pos < sz(h) - 1 \&\& h[pos + 1] * q < h[pos] * q)
        pos++;
   return h[pos] * q * f;
};
```

4.5 Convex Hull

```
// returns convex hull of p in CCW order
// left must return >=0 to delete collinear points
vector<pto> CH(vector<pto>& p) {
 if (sz(p) < 3) return p; // edge case, keep line or point
 vector<pto> ch:
 sort(p.begin(), p.end());
 forn(i, sz(p)) { // lower hull
   while (sz(ch) \ge 2 \&\& ch[sz(ch) - 1].left(ch[sz(ch) - 2],
         p[i]))
     ch.pop_back();
   ch.pb(p[i]);
 ch.pop_back();
 int k = sz(ch):
 dforn(i, sz(p)) { // upper hull
   while (sz(ch) >= k + 2 \&\& ch[sz(ch) - 1].left(ch[sz(ch) -
         2], p[i]))
     ch.pop back():
   ch.pb(p[i]);
 ch.pop_back();
 return ch;
```

4.6 Halfplane

```
struct halfplane { // left half plane
   pto u, uv;
   int id:
   ld angle:
   halfplane() {}
   halfplane(pto u_, pto v_) : u(u_), uv(v_ - u_), angle(
                  atan21(uv.v, uv.x)) {}
   bool operator<(halfplane h) const { return angle < h.angle</pre>
    bool out(pto p) { return (uv ^ (p - u)) < -EPS; }</pre>
    pto inter(halfplane& h) {
         T = ((h.u - u) ^h.uv) / (uv ^h.uv);
         return u + (uv * alpha);
vector<pto> intersect(vector<halfplane> h) {
   pto box[4] = \{\{INF, INF\}, \{-INF, INF\}, \{-INF, -INF\}, \{INF, INF\}, \{INF, INF\},
    forn(i, 4) h.pb(halfplane(box[i], box[(i + 1) % 4]));
    sort(h.begin(), h.end());
    deque<halfplane> dq;
    int len = 0:
    forn(i, sz(h)) {
          while (len > 1 && h[i].out(dq[len - 1].inter(dq[len - 2])
                        )) {
               dq.pop_back(), len--;
          while (len > 1 && h[i].out(dq[0].inter(dq[1]))) { dq.
                         pop_front(), len--; }
          if (len > 0 && abs(h[i].uv ^{\circ} dg[len - 1].uv) <= EPS) {
               if (h[i].uv * dq[len - 1].uv < 0.) { return vector<pto</pre>
                              >(); }
               if (h[i].out(dq[len - 1].u)) {
                     dq.pop_back(), len--;
              } else continue;
          dq.pb(h[i]);
         len++:
    while (len > 2 && dq[0].out(dq[len - 1].inter(dq[len - 2])
         dq.pop_back(), len--;
    while (len > 2 && dq[len - 1].out(dq[0].inter(dq[1]))) {
         dq.pop_front(), len--;
```

```
}
if (len < 3) return vector<pto>();
vector<pto> inter;
forn(i, len) inter.pb(dq[i].inter(dq[(i + 1) % len]));
return inter;
}
```

4.7 Kd Tree

```
bool cmpx(pto a, pto b) { return a.x + EPS < b.x: }
bool cmpy(pto a, pto b) { return a.y + EPS < b.y; }
struct kd_tree {
 pto p;
 T \times O = INF, \times 1 = -INF, \times O = INF, \times 1 = -INF;
 kd tree *1. *r:
 T distance(pto q) {
   T x = min(max(x0, q.x), x1);
   T y = min(max(y0, q.y), y1);
   return (pto(x, y) - q).norm_sq();
 kd tree(vector<pto>&& pts) : p(pts[0]) {
   1 = nullptr, r = nullptr;
   forn(i, sz(pts)) {
     x0 = min(x0, pts[i].x), x1 = max(x1, pts[i].x);
     y0 = min(y0, pts[i].y), y1 = max(y1, pts[i].y);
   if (sz(pts) > 1) {
     sort(pts.begin(), pts.end(), x1 - x0 >= y1 - y0 ? cmpx
          : cmpy);
     int m = sz(pts) / 2;
     1 = new kd_tree({pts.begin(), pts.begin() + m});
     r = new kd tree({pts.begin() + m. pts.end()}):
   }
 void nearest(pto q, int k, priority_queue<pair<T, pto>>&
      ret) {
   if (1 == nullptr) {
     // avoid query point as answer
     // if(p == q) return;
     ret.push({(q - p).norm_sq(), p});
     while (sz(ret) > k) ret.pop();
     return:
   kd_tree *al = 1, *ar = r;
   T bl = 1->distance(q). br = r->distance(q):
   if (bl > br) swap(al, ar), swap(bl, br);
   al->nearest(q, k, ret);
   if (br < ret.top().fst) ar->nearest(q, k, ret);
   while (sz(ret) > k) ret.pop();
```

```
10
```

```
}
priority_queue<pair<T, pto>> nearest(pto q, int k) {
   priority_queue<pair<T, pto>> ret;
   forn(i, k) ret.push({INF * INF, pto(INF, INF)});
   nearest(q, k, ret);
   return ret;
}
};
```

4.8 Li Chao Tree

```
typedef long long T;
const T INF = 1e18:
// Li-Chao works for any function such that any pair of the
// inserted intersect at most once with each other. Most
     problems are
// about lines, but you may want to adapt this struct to
    your function
struct line {
 T m. b:
 line() {}
 line(T m_, T b_) {
   m = m:
   b = b_{-};
 T f(T x) \{ return m * x + b; \}
 line operator+(line 1) { return line(m + 1.m, b + 1.b); }
 line operator*(T k) { return line(m * k, b * k); }
};
struct li chao {
 vector<line> cur. add:
 vector<int> L, R;
 T f. minx. maxx:
 line identity;
 int cnt:
 void new node(line cur , int l = -1, int r = -1) {
   cur.pb(cur_);
   add.pb(line(0, 0));
   L.pb(1);
   R.pb(r);
   cnt++:
 li_chao(bool min_, T minx_, T maxx_) { // for min: min_=1,
       for max: min =0
   f = min_ ? 1 : -1;
   identity = line(0, INF);
   minx = minx :
   maxx = maxx_{:}
```

```
cnt = 0:
 new_node(identity); // root id is 0
// only needed when "adding" lines lazily
void apply(int id, line to_add_) {
 add[id] = add[id] + to add :
 cur[id] = cur[id] + to_add_;
// this method is needed even when no lazy is used, to
// null pointers and other problems in the code
void push lazv(int id) {
 if (L[id] == -1) {
   new node(identity):
   L[id] = cnt - 1:
 if (R[id] == -1) {
   new node(identity):
   R[id] = cnt - 1:
 // code below only needed when lazy ops are needed
  apply(L[id], add[id]);
 apply(R[id], add[id]);
 add[id] = line(0, 0);
// only needed when "adding" lines lazily
void push_line(int id, T tl, T tr) {
 T m = (t1 + tr) / 2:
 insert_line(L[id], cur[id], tl, m);
 insert line(R[id], cur[id], m, tr):
 cur[id] = identity;
// O(log), or persistent return int instead of void
void insert_line(int id, line new_line, T 1, T r) {
 T m = (1 + r) / 2:
 bool lef = new line.f(1) < cur[id].f(1):</pre>
 bool mid = new_line.f(m) < cur[id].f(m);</pre>
 // uncomment for persistent
 // line to_push = new_line, to_keep = cur[id];
 // if(mid) swap(to_push,to_keep);
 if (mid) swap(new line, cur[id]);
 if (r - 1 == 1) {
   // uncomment for persistent
   // new_node(to_keep);
   // return cnt-1:
   return;
 push lazv(id):
 if (lef != mid) {
```

```
// uncomment for persistent
   // int lid = insert_line(L[id],to_push, 1, m);
   // new_node(to_keep, lid, R[id]);
   // return cnt-1:
   insert_line(L[id], new_line, 1, m);
 } else {
   // uncomment for persistent
   // int rid = insert_line(R[id],to_push, m, r);
    // new_node(to_keep, L[id], rid);
    // return cnt-1:
    insert line(R[id], new line, m, r);
// for persistent, return int instead of void
void insert_line(int id, line new_line) {
 insert_line(id, new_line * f, minx, maxx);
// O(log^2) doesn't support persistence
void insert segm(int id, line new line, T 1, T r, T tl, T
  if (tr <= 1 || tl >= r || tl >= tr || 1 >= r) return;
  insert_line(id, new_line, tl, tr);
   return:
 push_lazy(id);
  T m = (t1 + tr) / 2:
 insert_segm(L[id], new_line, 1, r, t1, m);
 insert_segm(R[id], new_line, 1, r, m, tr);
// [1.r)
void insert_segm(int id, line new_line, T l, T r) {
 insert_segm(id, new_line * f, l, r, minx, maxx);
// O(log^2) doesn't support persistence
void add line(int id, line to add , T l, T r, T tl, T tr)
  if (tr <= 1 || tl >= r || tl >= tr || 1 >= r) return;
  if (tl >= 1 && tr <= r) {</pre>
    apply(id, to_add_);
   return:
  push lazv(id):
 push_line(id, tl, tr); // comment if insert isn't used
 T m = (t1 + tr) / 2;
 add line(L[id], to add , l, r, tl, m):
 add_line(R[id], to_add_, 1, r, m, tr);
void add line(int id, line to add , T 1, T r) {
  add_line(id, to_add_ * f, l, r, minx, maxx);
```

```
11
```

```
}
// O(log)
T get(int id, T x, T tl, T tr) {
   if (tl + 1 == tr) return cur[id].f(x);
   push_lazy(id);
   T m = (tl + tr) / 2;
   if (x < m) return min(cur[id].f(x), get(L[id], x, tl, m))
        ;
   else return min(cur[id].f(x), get(R[id], x, m, tr));
}
T get(int id, T x) { return get(id, x, minx, maxx) * f; }
};</pre>
```

4.9 Line

```
int sgn(T x) \{ return x < 0 ? -1 : !!x; \}
struct line {
 T a. b. c: // Ax+Bv=C
 line() {}
 line(T a_, T b_, T c_) : a(a_), b(b_), c(c_) {}
 // TO DO: check negative C (multiply everything by -1)
 line(pto u, pto v): a(v.y - u.y), b(u.x - v.x), c(a * u.x)
       + b * u.v) {}
 int side(pto v) { return sgn(a * v.x + b * v.y - c); }
 bool inside(pto v) { return abs(a * v.x + b * v.y - c) <=
 bool parallel(line v) { return abs(a * v.b - v.a * b) <=</pre>
      EPS: }
 pto inter(line v) {
   T \det = a * v.b - v.a * b;
   if (abs(det) <= EPS) return pto(INF, INF);</pre>
   return pto(v.b * c - b * v.c, a * v.c - v.a * c) / det;
 }
};
```

4.10 Point

```
typedef long double T; // double could be faster but less
    precise
typedef long double ld;
const T EPS = 1e-9; // if T is integer, set to 0
const T INF = 1e18;
struct pto{
    T x, y;
    pto() : x(0), y(0) {}
    pto(T _x, T _y) : x(_x), y(_y) {}
    pto operator+(pto b) { return pto(x+b.x, y+b.y); }
```

```
pto operator-(pto b) { return pto(x-b.x, y-b.y); }
pto operator+(T k) { return pto(x+k, y+k); }
pto operator*(T k) { return pto(x*k, y*k); }
pto operator/(T k) { return pto(x/k, y/k); }
// dot product
T operator*(pto b) { return x*b.x + v*b.v: }
// module of cross product, a^b>0 if angle_cw(u,v)<180</pre>
T operator^(pto b) { return x*b.y - y*b.x; }
// vector projection of this above b
pto proj(pto b) { return b*((*this)*b) / (b*b); }
T norm_sq() { return x*x + y*y; }
ld norm() { return sartl(x*x + v*v); }
ld dist(pto b) { return (b - (*this)).norm(); }
 //rotate by theta rads CCW w.r.t. origin (0,0)
pto rotate(T ang) {
 return pto(x*cosl(ang) - y*sinl(ang), x*sinl(ang) + y*cosl
      (ang)):
// true if this is at the left side of line ab
 bool left(pto a, pto b) { return ((a-*this) ^ (b-*this)) >
bool operator<(const pto &b) const {</pre>
 return x < b.x-EPS | (abs(x - b.x) <= EPS && y < b.y-EPS)
 bool operator == (pto b) { return abs(x-b.x) <= EPS && abs(y-b.y)
     )<=EPS: }
};
ld angle(pto a, pto o, pto b) {
 pto oa = a-o, ob = b-o:
return atan21(oa^ob, oa*ob);
ld angle(pto a, pto b) { // smallest angle bewteen a and b
ld cost = (a*b) / a.norm() / b.norm();
return acosl(max(ld(-1.), min(ld(1.), cost)));
```

4.11 Poly

```
nxt.pb(pt[i]): len++:
if(len>2 && abs((nxt[1]-nxt[len-1])^(nxt[0]-nxt[len-1]))
     <= EPS)
 nxt.pop_front(), len--;
 if(len>2 && abs((nxt[len-1]-nxt[len-2])^(nxt[0]-nxt[len
      -21)) <= EPS)
 nxt.pop_back(), len--;
pt.clear(); forn(i,sz(nxt)) pt.pb(nxt[i]);
void normalize() {
delete collinears():
if(pt[2].left(pt[0], pt[1])) reverse(pt.begin(), pt.end())
     : //make it CW
 int n = sz(pt), pi = 0;
 forn(i, n)
 if(pt[i].x<pt[pi].x || (pt[i].x==pt[pi].x && pt[i].y<pt[</pre>
      pi].y))
  pi = i:
 rotate(pt.begin(), pt.begin()+pi, pt.end());
bool is_convex() { // delete collinear points first
int N = sz(pt);
if(N < 3) return false;</pre>
bool isLeft = pt[0].left(pt[1], pt[2]);
forr(i, 1, sz(pt))
 if(pt[i].left(pt[(i+1)%N], pt[(i+2)%N]) != isLeft)
  return false:
return true;
// for convex or concave polygons
// excludes boundaries, check it manually
bool inside(pto p) { // O(n)
bool c = false;
 forn(i, sz(pt)) {
 int i = (i+1)\%sz(pt):
 if((pt[j].v>p.v) != (pt[i].v > p.v) &&
  (p.x < (pt[i].x-pt[j].x)*(p.y-pt[j].y)/(pt[i].y-pt[j].y)+
      pt[i].x))
  c = !c:
 return c;
bool inside_convex(pto p) { // O(lg(n)) normalize first
if(p.left(pt[0], pt[1]) || p.left(pt[sz(pt)-1], pt[0]))
     return false:
 int a = 1, b = sz(pt)-1;
 while(b-a > 1){
 int c = (a+b)/2:
 if(!p.left(pt[0], pt[c])) a = c;
```

```
else b = c:
}
return !p.left(pt[a], pt[a+1]);
// cuts this along line ab and return the left side
// (swap a, b for the right one)
poly cut(pto a, pto b) \{ // O(n) \}
vector<pto> ret;
forn(i, sz(pt)) {
 1d left1 = (b-a)^(pt[i]-a), left2 = (b-a)^(pt[(i+1)%sz(pt
      )]-a):
 if(left1 >= 0) ret.pb(pt[i]);
 if(left1*left2 < 0)</pre>
  ret.pb(line(pt[i], pt[(i+1)%sz(pt)]).inter(line(a, b)));
return poly(ret);
// cuts this with line ab and returns the range [from, to]
// strictly on the left side (note that indexes are
    circular)
ii cut(pto u, pto v) { // O(log(n)) for convex polygons
int n = sz(pt); pto dir = v-u;
int L = farthest(pto(dir.y,-dir.x));
int R = farthest(pto(-dir.y,dir.x));
if(!pt[L].left(u,v)) swap(L,R);
if(!pt[L].left(u,v)) return mp(-1,-1); // line doesn't cut
      the polv
ii ans:
int 1 = L, r = L > R? R+n : R;
while(1<r) {
 int med = (1+r+1)/2:
 if(pt[med >= n ? med-n : med].left(u,v)) 1 = med;
 else r = med-1:
ans.snd = 1 \ge n ? 1-n : 1:
1 = R, r = L < R ? L+n : L;
while(l<r) {
 int med = (1+r)/2:
 if(!pt[med >= n ? med-n : med].left(u,v)) l = med+1;
 else r = med:
ans.fst = 1 >= n ? 1-n : 1;
return ans;
// addition of convex polygons
poly minkowski(poly p) { // O(n+m) n=|this|,m=|p|
```

```
this->normalize(): p.normalize():
 vector<pto> a = (*this).pt, b = p.pt;
a.pb(a[0]); a.pb(a[1]);
b.pb(b[0]); b.pb(b[1]);
 vector<pto> sum;
 int i = 0, i = 0:
 while(i < sz(a)-2 | | j < sz(b)-2 | {
 sum.pb(a[i]+b[j]);
 T cross = (a[i+1]-a[i])^(b[j+1]-b[j]);
 if(cross \le 0 \&\& i \le sz(a)-2) i++;
 if(cross >= 0 && i < sz(b)-2) i++:
return poly(sum);
pto farthest(pto v) { // O(log(n)) for convex polygons
if(sz(pt)<10) {
 int k=0:
 forr(i,1,sz(pt)) if(v * (pt[i] - pt[k]) > EPS) k = i;
 return pt[k]:
7
pt.pb(pt[0]);
 pto a=pt[1] - pt[0];
 int s = 0, e = sz(pt)-1, ua = v*a > EPS;
if(!ua && v*(pt[sz(pt)-2]-pt[0]) <= EPS){ pt.pop_back();</pre>
     return pt[0];}
 while(1) {
 int m = (s+e)/2; pto c = pt[m+1]-pt[m];
 int uc = v*c > EPS:
 if(!uc && v*(pt[m-1]-pt[m]) <= EPS){ pt.pop_back();</pre>
      return pt[m]:}
 if(ua && (!uc || v*(pt[s]-pt[m]) > EPS)) e = m;
 else if(ua || uc || v*(pt[s]-pt[m]) >= -EPS) s = m. a = c
      . ua = uc:
 else e = m;
 assert(e > s+1):
}
ld inter circle(circle c){ // area of intersection with
    circle
1d r = 0.:
 forn(i.sz(pt)) {
 int j = (i+1)%sz(pt); ld w = c.inter_triangle(pt[i], pt[j
 if(((pt[j]-c.o)^(pt[i]-c.o)) > 0) r += w;
 else r -= w;
return abs(r);
// area ellipse = M PI*a*b where a and b are the semi axis
```

```
// area triangle = sart(s*(s-a)(s-b)(s-c)) where s=(a+b+c)
ld area(){ // O(n)
 ld area = 0:
 forn(i, sz(pt)) area += pt[i]^pt[(i+1)%sz(pt)];
 return abs(area)/ld(2):
// returns one pair of most distant points
pair<pto,pto> callipers() { // O(n), for convex poly,
     normalize first
 int n = sz(pt):
 if(n <= 2) return {pt[0], pt[1%n]}:</pre>
 pair<pto,pto> ret = {pt[0], pt[1]};
 T maxi = 0; int j = 1;
 forn(i.sz(pt)) {
  while(((pt[(i+1)\%n]-pt[i])^(pt[(j+1)\%n]-pt[j]))<-EPS)j=(j)
       +1)%sz(pt):
  if(pt[i].dist(pt[j]) > maxi+EPS)
   ret = {pt[i], pt[j]}, maxi = pt[i].dist(pt[j]);
 return ret;
pto centroid(){ // (barycenter, mass center, needs float
     points)
 int n = sz(pt);
 pto r(0,0); ld t=0;
 forn(i,n) {
  r = r + (pt[i] + pt[(i+1)\%n]) * (pt[i] ^ pt[(i+1)\%n]);
  t += pt[i] ^ pt[(i+1)%n];
 return r/t/3;
// Dynamic convex hull trick (based on poly struct)
vector<polv> w:
void add(pto g) { // add(g), O(log^2(n))
vector<pto> p = {q};
while(!w.empty() && sz(w.back().pt) < 2*sz(p)){</pre>
 for(pto v : w.back().pt) p.pb(v);
 w.pop_back();
w.pb(poly(CH(p))); // CH = convex hull, must delete
     collinears
T query(pto v) { // \max(q*v:q in w), O(\log^2(n))
T r = -INF:
for(auto& p : w) r = max(r, p.farthest(v)*v);
return r:
```

4.12 Radial Order

4.13 Segment

```
struct segm {
 pto s, e;
 segm(pto s_, pto e_) : s(s_), e(e_) {}
 pto closest(pto b) {
   pto bs = b - s, es = e - s:
   ld l = es * es;
   if (abs(1) <= EPS) return s;</pre>
   1d t = (bs * es) / 1:
   if (t < 0.) return s; // comment for lines</pre>
   else if (t > 1.) return e: // comment for lines
   return s + (es * t):
 bool inside(pto b) { return abs(s.dist(b) + e.dist(b) - s.
      dist(e)) < EPS: }
 pto inter(segm b) { // if a and b are collinear, returns
      one point
   if ((*this).inside(b.s)) return b.s;
   if ((*this).inside(b.e)) return b.e:
   pto in = line(s, e).inter(line(b.s, b.e));
   if ((*this).inside(in) && b.inside(in)) return in;
   return pto(INF, INF);
 }
}:
```

4.14 Voronoi

```
// Returns planar graph representing Delaunav's
    triangulation.
// Edges for each vertex are in ccw order.
// To use doubles replace __int128 for long double in line
pto pinf = pto(INF, INF):
typedef struct QuadEdge* Q;
struct QuadEdge {
 int id, used;
 pto o;
 O rot. nxt:
 QuadEdge(int id = -1, pto o = pinf)
     : id(id_), used(0), o(o_), rot(0), nxt(0) {}
 Q rev() { return rot->rot: }
  Q next() { return nxt: }
 Q prev() { return rot->next()->rot; }
 pto dest() { return rev()->o: }
Q edge(pto a, pto b, int ida, int idb) {
 Q e1 = new QuadEdge(ida, a);
 Q e2 = new QuadEdge(idb, b);
 Q e3 = new QuadEdge;
 Q e4 = new QuadEdge;
 tie(e1->rot, e2->rot, e3->rot, e4->rot) = {e3, e4, e2, e1
 tie(e1->nxt, e2->nxt, e3->nxt, e4->nxt) = \{e1, e2, e4, e3\}
      }:
 return e1;
void splice(Q a, Q b) {
 swap(a->nxt->rot->nxt, b->nxt->rot->nxt);
 swap(a->nxt, b->nxt);
void del_edge(Q& e, Q ne) {
 splice(e, e->prev());
 splice(e->rev(), e->rev()->prev());
 delete e->rev()->rot:
 delete e->rev():
 delete e->rot;
 delete e:
 e = ne;
Q conn(Q a, Q b) {
 Q = edge(a \rightarrow dest(), b \rightarrow o, a \rightarrow rev() \rightarrow id, b \rightarrow id);
 splice(e, a->rev()->prev());
  splice(e->rev(), b):
```

```
return e:
auto area(pto p, pto q, pto r) { return (q - p) ^ (r - q); }
// is p in circumference formed by (a.b.c)?
bool in_c(pto a, pto b, pto c, pto p) {
// Warning: this number is O(max_coord^4).
 // Consider using doubles or an alternative method for
      this function
 \_int128 p2 = p * p, A = a * a - p2, B = b * b - p2, C = c
 return area(p, a, b) * C + area(p, b, c) * A + area(p, c,
      a) *B > EPS:
pair<Q. Q> build tr(vector<pto>& p, int 1, int r) {
 if (r - 1 + 1 \le 3) {
   Q = edge(p[1], p[1 + 1], 1, 1 + 1), b = edge(p[1 + 1],
        p[r], 1 + 1, r):
   if (r - 1 + 1 == 2) return {a, a->rev()};
   splice(a->rev(), b);
   auto ar = area(p[1], p[1 + 1], p[r]);
   Q c = abs(ar) > EPS ? conn(b, a) : 0;
   if (ar >= -EPS) return {a, b->rev()};
   return {c->rev(), c};
 int m = (1 + r) / 2:
 Q la, ra, lb, rb;
 tie(la, ra) = build tr(p, l, m):
 tie(lb, rb) = build_tr(p, m + 1, r);
 while (1) {
   if (ra->dest().left(lb->o, ra->o)) ra = ra->rev()->prev()
   else if (lb->dest().left(lb->o, ra->o)) lb = lb->rev()->
        next():
   else break:
 Q b = conn(lb->rev(), ra);
 auto valid = [&](Q e) { return b->o.left(e->dest(), b->
      dest()): }:
 if (ra->o == la->o) la = b->rev();
 if (1b->o == rb->o) rb = b:
 while (1) {
   Q L = b - rev() - rext();
   if (valid(L))
     while (in_c(b->dest(), b->o, L->dest(), L->next()->dest
          ()))
       del_edge(L, L->next());
   Q R = b \rightarrow prev();
```

13

```
if (valid(R))
          ()))
       del_edge(R, R->prev());
   if (!valid(L) && !valid(R)) break;
   if (!valid(L) || (valid(R) && in c(L->dest(), L->o, R->o,
         R->dest())))
    b = conn(R, b\rightarrow rev());
   else b = conn(b->rev(), L->rev());
 return {la, rb}:
vector<vector<int>> delaunay(vector<pto> v) {
 int n = sz(v):
 auto tmp = v;
 vector<int> id(n):
 iota(id.begin(), id.end(), 0);
 sort(id.begin(), id.end(), [&](int 1, int r) { return v[1]
       < v[r]: }):
 forn(i, n) v[i] = tmp[id[i]];
 assert(unique(v.begin(), v.end()) == v.end());
 vector<vector<int>> g(n);
 int col = 1:
 forr(i, 2, n) col &= abs(area(v[i], v[i - 1], v[i - 2]))
      <= EPS:
 if (col) {
   forr(i, 1, n) g[id[i - 1]].pb(id[i]), g[id[i]].pb(id[i -
        1]);
 } else {
   Q = build_tr(v, 0, n - 1).fst;
   vector<Q> edg = {e};
   for (int i = 0; i < sz(edg); e = edg[i++]) {
    for (Q at = e; !at->used; at = at->next()) {
       at->used = 1;
      g[id[at->id]].pb(id[at->rev()->id]);
       edg.pb(at->rev());
 return g;
```

Graphs

5.1 2sat

```
// Usage:
```

```
// 1. Create with n = number of variables (0-indexed)
while (in_c(b->dest(), b->o, R->dest(), R->prev()->dest // 2. Add restrictions through the existing methods, using
                                                         // negating variable X for example.
                                                         // 3. Call satisf() to check whether there is a solution or
                                                         // 4. Find a valid assignment by looking at verdad[cmp[2*X]]
                                                             for each
                                                         // variable X
                                                         struct Sat2 {
                                                          // We have a vertex representing a variable and other for
                                                          // negation. Every edge stored in G represents an
                                                               implication.
                                                          vector<vector<int>> G:
                                                           // idx[i]=index assigned in the dfs
                                                          // lw[i]=lowest index(closer from the root) reachable from
                                                           // verdad[cmp[2*i]]=valor de la variable i
                                                           int N, qidx, qcmp;
                                                           vector<int> lw, idx, cmp, verdad;
                                                           stack<int> q;
                                                           Sat2(int n) : G(2 * n), N(n) {}
                                                           void tin(int v) {
                                                            lw[v] = idx[v] = ++qidx;
                                                            q.push(v), cmp[v] = -2;
                                                             forall(it, G[v]) if (!idx[*it] || cmp[*it] == -2) {
                                                              if (!idx[*it]) tjn(*it);
                                                              lw[v] = min(lw[v], lw[*it]);
                                                             if (lw[v] == idx[v]) {
                                                              int x;
                                                              do { x = q.top(), q.pop(), cmp[x] = qcmp; } while (x !=
                                                              verdad[qcmp] = (cmp[v ^ 1] < 0);
                                                              qcmp++;
                                                           bool satisf() { // O(N)
                                                            idx = lw = verdad = vector < int > (2 * N, 0);
                                                             cmp = vector<int>(2 * N. -1):
                                                            qidx = qcmp = 0;
                                                            forn(i, N) {
                                                              if (!idx[2 * i]) tjn(2 * i);
                                                              if (!idx[2 * i + 1]) tjn(2 * i + 1);
                                                            forn(i, N) if (cmp[2 * i] == cmp[2 * i + 1]) return false
                                                            return true:
```

```
// a -> b. here ids are transformed to avoid negative
 void addimpl(int a, int b) {
   a = a >= 0 ? 2 * a : 2 * (~a) + 1:
   b = b >= 0 ? 2 * b : 2 * (~b) + 1;
   G[a].pb(b), G[b ^ 1].pb(a ^ 1):
 void addor(int a, int b) { addimpl(~a, b); } // a | b = ~a
 void addeg(int a, int b) {
                                           // a = b, a <-> b
       (iff)
   addimpl(a, b):
   addimpl(b, a);
 void addxor(int a, int b) { addeq(a, "b); } // a xor b
 void force(int x, bool val) {
                                          // force x to take
       wal
   if (val) addimpl(~x, x);
   else addimpl(x, ~x):
 // At most 1 true in all v
 void atmost1(vector<int> v) {
   int auxid = N;
   N += sz(v):
   G.rsz(2 * N):
   forn(i, sz(v)) {
     addimpl(auxid, ~v[i]);
     if (i) {
       addimpl(auxid, auxid - 1);
       addimpl(v[i], auxid - 1);
     auxid++;
   assert(auxid == N);
};
```

5.2 Articulation

```
int N:
vector<int> G[1000000];
// V[i]=node number(if visited), L[i]= lowest V[i] reachable
int qV, V[1000000], L[1000000], P[1000000];
void dfs(int v, int f) {
 L[v] = V[v] = ++qV;
 forall(it, G[v]) if (!V[*it]) {
   dfs(*it, v):
   L[v] = min(L[v], L[*it]);
```

```
P[v] += L[*it] >= V[v];
}
else if (*it != f) L[v] = min(L[v], V[*it]); }
int cantart() { // O(n)
    qV = 0;
    zero(V), zero(P);
    dfs(1, 0);
    P[1]--;
    int q = 0;
    forn(i, N) if (P[i]) q++;
    return q;
}
```

5.3 Bellman Ford

```
// Mas lento que Dijsktra, pero maneja arcos con peso
    negativo
//
// Can solve systems of "difference inequalities":
// 1. for each inequality x_i - x_j <= k add an edge j->i
    with weight k
// 2. create an extra node Z and add an edge Z->i with
    weigth 0 for
// each variable x_i in the inequalities
// 3. run(Z): if negcycle, no solution, otherwise "dist" is
     a solution
11
// Can transform a graph to get all edges of positive weight
//("Jhonson algorightm"):
// 1. Create an extra node Z and add edge Z->i with weight 0
     for all
// nodes i
// 2. Run bellman ford from Z
// 3. For each original edge a->b (with weight w), change
     its weigt to
// be w+dist[a]-dist[b] (where dist is the result of step
// 4. The shortest paths in the old and new graph are the
// weight result may differ, but the paths are the same)
// Note that this doesn't work well with negative cycles,
// identify them before step 3 and then ignore all new
     weights that
// result in a negative value when executing step 3.
struct BellmanFord {
 vector<vector<ii>>> G; // ady. list with pairs (weight, dst
 vector<ll> dist;
```

```
int N:
BellmanFord(int n) : G(n), N(n) {}
void addEdge(int a, int b, ll w) { G[a].pb(mp(w, b)); }
void run(int src) { // O(VE)
 dist = vector<11>(N, INF);
 dist[src] = 0:
 forn(i, N - 1) forn(j, N) if (dist[j] != INF) forall(it,
     dist[it->snd] = min(dist[it->snd], dist[j] + it->fst)
bool hasNegCycle() {
 forn(j, N) if (dist[j] != INF)
     forall(it, G[j]) if (dist[it->snd] > dist[j] + it->
          fst) return true;
 // inside if: all points reachable from it->snd will have
 // distance. However this is not enough to identify which
 // nodes belong to a neg cycle, nor even which can reach
 // cycle. To do so, you need to run SCC (kosaraju) and
 // whether each SCC hasNegCycle independently. For those
 // do hasNegCycle, then all of its nodes are part of a (
 // necessarily simple) neg cycle.
 return false:
```

5.4 Biconnected

```
struct Bicon {
  vector<vector<int>> G;
  struct edge {
    int u, v, comp;
    bool bridge;
  };
  vector<edge> ve;
  void addEdge(int u, int v) {
    G[u].pb(sz(ve)), G[v].pb(sz(ve));
    ve.pb({u, v, -1, false});
  }
  // d[i] = dfs id
  // b[i] = lowest id reachable from i
  // art[i]>0 iff i is an articulation point
```

```
// nbc = total # of biconnected comps
// nart = total # of articulation points
vector<int> d, b, art;
int n. t. nbc. nart:
Bicon(int nn) {
 n = nn:
 t = nbc = nart = 0;
 b = d = vector < int > (n, -1);
 art = vector<int>(n, 0);
 G = vector<vector<int>>(n);
 ve.clear():
stack<int> st;
void dfs(int u, int pe) \{ // O(n + m) \}
 b[u] = d[u] = t++;
 forall(eid, G[u]) if (*eid != pe) {
   int v = ve[*eid].u ^ ve[*eid].v ^ u:
   if (d[v] == -1) {
     st.push(*eid):
     dfs(v, *eid):
     if (b[v] > d[u]) ve[*eid].bridge = true; // bridge
     if (b[v] >= d[u]) {
                                           // art
       if (art[u]++ == 0) nart++;
       int last: // start biconnected
       do {
         last = st.top();
         st.pop();
         ve[last].comp = nbc;
       } while (last != *eid);
       nbc++: // end biconnected
     b[u] = min(b[u], b[v]);
   } else if (d[v] < d[u]) { // back edge}
     st.push(*eid);
     b[u] = min(b[u], d[v]);
   }
 }
void run() { forn(i, n) if (d[i] == -1) art[i]--, dfs(i,
     -1): }
// block-cut tree (copy only if needed)
vector<set<int>> bctree; // set to dedup
vector<int> artid:
                         // art nodes to tree node (-1 for
      !arts)
void buildBlockCutTree() { // call run first!!
 // node id: [0, nbc) -> bc, [nbc, nbc+nart) -> art
 int ntree = nbc + nart, auxid = nbc;
 bctree = vector<set<int>>(ntree);
 artid = vector<int>(n, -1);
 forn(i, n) if (art[i] > 0) {
```

15

5.5 Centroid

```
// Usage: 1. Centroid(# nodes), 2. add tree edges, 3. build
     (). 4. use it
struct Centroid {
 vector<vector<int>> g;
 vector<int> vp. vsz:
 vector<bool> taken;
 Centroid(int n) : g(n), vp(n), vsz(n), taken(n) {}
 void addEdge(int a, int b) { g[a].pb(b), g[b].pb(a); }
 void build() { centroid(0, -1, -1); } // O(nlogn)
 int dfs(int node, int p) {
   vsz[node] = 1;
   forall(it, g[node]) if (*it != p && !taken[*it])
     vsz[node] += dfs(*it. node):
   return vsz[node]:
 void centroid(int node, int p, int cursz) {
   if (cursz == -1) cursz = dfs(node, -1);
   forall(it, g[node]) if (!taken[*it] && vsz[*it] > cursz /
     vsz[node] = 0, centroid(*it, p, cursz);
     return:
   taken[node] = true, vp[node] = p;
   // do something using node as centroid
   forall(it, g[node]) if (!taken[*it]) centroid(*it, node,
        -1):
 }
};
```

5.6 Diameter

```
vector<int> G[MAXN];
int n, m, p[MAXN], d[MAXN], d2[MAXN];
int bfs(int r, int* d) {
 aueue<int> a:
 d[r] = 0, q.push(r);
 int v:
 while (sz(q)) {
   v = q.front();
   q.pop();
   forall(it, G[v]) if (d[*it] == -1) {
    d[*it] = d[v] + 1, p[*it] = v, q.push(*it):
 }
 return v: // ultimo nodo visitado
vector<int> diams:
vector<ii> centros:
void diametros() {
 memset(d, -1, sizeof(d));
 memset(d2, -1, sizeof(d2));
 diams.clear(), centros.clear();
 forn(i, n) if (d[i] == -1) {
   int v, c;
   c = v = bfs(bfs(i, d2), d);
   forn(_, d[v] / 2) c = p[c];
   diams.pb(d[v]);
   if (d[v] & 1) centros.pb(ii(c, p[c]));
   else centros.pb(ii(c, c)):
```

5.7 Dijkstra

```
Q.push(make_pair(0, src)), dist[src] = 0;
while (sz(Q)) {
    int node = Q.top().snd;
    ll d = Q.top().fst;
    Q.pop();
    if (d > dist[node]) continue;
    forall(it, G[node]) if (d + it->fst < dist[it->snd]) {
        dist[it->snd] = d + it->fst;
        // vp[it->snd] = node;
        Q.push(mp(dist[it->snd], it->snd));
    }
}
}
```

16

5.8 Dynamic Connectivity

```
struct UnionFind {
 int n, comp;
 vector<int> pre, si, c;
 UnionFind(int n = 0) : n(n), comp(n), pre(n), si(n, 1) {
   forn(i, n) pre[i] = i;
 int find(int u) { return u == pre[u] ? u : find(pre[u]); }
 bool merge(int u. int v) {
   if ((u = find(u)) == (v = find(v))) return false;
   if (si[u] < si[v]) swap(u, v);</pre>
   si[u] += si[v], pre[v] = u, comp--, c.pb(v);
   return true;
 int snap() { return sz(c): }
 void rollback(int snap) {
   while (sz(c) > snap) {
     int v = c.back();
     c.pop_back();
     si[pre[v]] -= si[v], pre[v] = v, comp++;
 }
};
enum { ADD, DEL, QUERY };
struct Querv {
 int type, u, v;
struct DvnCon { // bidirectional graphs: create vble as
    DynCon name(cant_nodos)
 vector<Query> q;
 UnionFind dsu:
 vector<int> match, res;
```

```
// se puede no usar cuando hav identificador para cada
      arista (mejora poco)
 map<ii, int> last;
 DvnCon(int n = 0) : dsu(n) {}
 void add(int u, int v) // to add an edge
   if (u > v) swap(u, v);
   q.pb((Query){ADD, u, v}), match.pb(-1);
   last[ii(u, v)] = sz(q) - 1;
 void remove(int u, int v) // to remove an edge
   if (u > v) swap(u, v);
   q.pb((Query){DEL, u, v});
   int prev = last[ii(u, v)];
   match[prev] = sz(q) - 1;
   match.pb(prev):
 void querv() // to add a question (query) type of query
   q.pb((Query){QUERY, -1, -1}), match.pb(-1);
 void process() // call this to process gueries in the
      order of q
   forn(i, sz(q)) if (q[i].type == ADD && match[i] == -1)
        match[i] = sz(q);
   go(0, sz(q));
 void go(int 1. int r) {
   if (1 + 1 == r) {
     if (q[1].type == QUERY) // Aqui responder la query
          usando el dsu!
       res.pb(dsu.comp); // agui query=cantidad de
            componentes conexas
     return:
   int s = dsu.snap(), m = (1 + r) / 2;
   forr(i, m, r) if (match[i] != -1 \&\& match[i] < 1) dsu.
        merge(q[i].u, q[i].v);
   go(1. m):
   dsu.rollback(s);
   s = dsu.snap():
   forr(i, 1, m) if (match[i] != -1 && match[i] >= r)
       dsu.merge(q[i].u, q[i].v);
   go(m, r);
   dsu.rollback(s);
};
```

5.9 Euler Path

```
// Be careful with nodes with degree 0 when solving your
    problem, the
// comments below assume that there are no nodes with degree
// Euler [path/cycle] exists in a bidirectional graph iff
    the graph is
// connected and at most [2/0] nodes have odd degree. The
// start from an odd degree vertex when there are 2.
// Euler [path/cycle] exists in a directed graph iff the
// [connected when making edges bidirectional / a single SCC
// at most [1/0] node have indg - outdg = 1, at most [1/0]
    node have
// outdg - indg = 1, all the other nodes have indg = outdg.
// must start from the node with outdg - indg = 1. when
    there is one.
// Directed version (uncomment commented code for undirected
struct edge {
 int v;
 // list<edge>::iterator rev;
 edge(int yy) : y(yy) {}
struct EulerPath {
 vector<list<edge>> g:
 EulerPath(int n) : g(n) {}
 void addEdge(int a, int b) {
   g[a].push_front(edge(b));
   // auto ia = g[a].begin();
   // g[b].push_front(edge(a));
   // auto ib = g[b].begin();
   // ia->rev=ib. ib->rev=ia:
 }
 vector<int> p;
 void go(int x) {
   while (sz(g[x])) {
     int y = g[x].front().y;
     // g[y].erase(g[x].front().rev);
     g[x].pop_front();
     go(y);
   p.push_back(x);
```

```
}
vector<int> getPath(int x) { // get a path that starts
    from x
    // you must check that a path exists from x before
        calling get_path!
p.clear(), go(x);
reverse(p.begin(), p.end());
return p;
}
};
```

17

5.10 Floyd

```
// Min path between every pair of nodes in directed graph
// G[i][j] initially needs weight of edge (i, j) or INF
// be careful with multiedges and loops when assigning to G
int G[MAX_N][MAX_N];
void floyd() { // O(N^3)
  forn(k, N) forn(i, N) if (G[i][k] != INF) forn(j, N) if (G
        [k][j] != INF)
        G[i][j] = min(G[i][j], G[i][k] + G[k][j]);
}
bool inNegCycle(int v) { return G[v][v] < 0; }
// checks if there's a neg. cycle in path from a to b
bool hasNegCycle(int a, int b) {
  forn(i, N) if (G[a][i] != INF && G[i][i] < 0 && G[i][b] !=
        INF) return true;
  return false;
}</pre>
```

5.11 Heavy Light Decomposition

```
18
```

```
}
  int curpos;
 vector<int> pos, head;
 void hld(int x, int c) {
   if (c < 0) c = x;
   pos[x] = curpos++, head[x] = c:
   int mx = -1;
   for (int y : g[x]) if (y != p[x] && (mx < 0 || w[mx] < w[
        y])) mx = y;
   if (mx \ge 0) hld(mx, c);
   for (int y : g[x]) if (y != mx && y != p[x]) hld(y, -1);
 // Here ST is segtree static/dynamic/lazy or other DS
      according to problem
 tipo query(int x, int y, ST& st) { // ST tipo
   tipo r = neutro;
   while (head[x] != head[v]) {
     if (dep[head[x]] > dep[head[y]]) swap(x, y);
     r = oper(r, st.get(pos[head[y]], pos[y] + 1)); // ST
     v = p[head[v]];
   if (dep[x] > dep[y]) swap(x, y);
                                         // now x is lca
   r = oper(r, st.get(pos[x], pos[y] + 1)); // ST oper
   return r;
 }
}:
// for point updates: st.set(pos[x], v) (x = node, v = new
// for lazy range updates: something similar to the query
// for queries on edges: - assign values of edges to "child"
     node
                      - change pos[x] to pos[x]+1 in query (
    line 34)
```

5.12 Kosaraju

```
struct Kosaraju {
  vector<vector<int>> G, gt;
  // nodos 0...N-1; componentes 0...cantcomp-1
  int N, cantcomp;
  vector<int>> comp, used;
  stack<int>> pila;
  Kosaraju(int n): G(n), gt(n), N(n), comp(n) {}
  void addEdge(int a, int b) { G[a].pb(b), gt[b].pb(a); }
  void dfs1(int nodo) {
    used[nodo] = 1;
    forall(it, G[nodo]) if (!used[*it]) dfs1(*it);
```

```
pila.push(nodo);
 void dfs2(int nodo) {
   used[nodo] = 2:
   comp[nodo] = cantcomp - 1;
   forall(it, gt[nodo]) if (used[*it] != 2) dfs2(*it):
 void run() {
   cantcomp = 0:
   used = vector<int>(N, 0);
   forn(i, N) if (!used[i]) dfs1(i);
   while (!pila.emptv()) {
     if (used[pila.top()] != 2) {
      cantcomp++:
       dfs2(pila.top());
     pila.pop();
 }
};
```

5.13 Kruskal

```
struct Edge {
   int a, b, w;
};
bool operator<(const Edge& a, const Edge& b) { return a.w <
        b.w; }

// Minimun Spanning Tree in O(E log E)

11 kruskal(vector<Edge> &E, int n) {
   11 cost = 0; sort(E.begin(), E.end());
   UnionFind uf(n);
   forall(it, E) if(!uf.join(it->a, it->b))
      cost += it->w;
   return cost;
```

5.14 Lca

```
#define lg(x) (31 - __builtin_clz(x)) //=floor(log2(x))
// Usage: 1) Create 2) Add edges 3) Call build 4) Use
struct LCA {
  int N, LOGN, ROOT;
  // vp[k][node] holds the 2^k ancestor of node
  // L[v] holds the level of v
  vector<int> L;
  vector<vector<int>> vp, G;
```

```
LCA(int n, int root): N(n), LOGN(lg(n) + 1), ROOT(root),
      L(n), G(n)
   // Here you may want to replace the default from root to
        other
   // value, like maybe -1.
   vp = vector<vector<int>>(LOGN, vector<int>(n, root));
 void addEdge(int a, int b) { G[a].pb(b), G[b].pb(a); }
 void dfs(int node, int p, int lvl) {
   vp[0][node] = p, L[node] = lvl;
   forall(it, G[node]) if (*it != p) dfs(*it, node, lvl + 1)
 void build() {
   // Here you may also want to change the 2nd param to -1
   dfs(ROOT, ROOT, 0);
   forn(k, LOGN - 1) forn(i, N) vp[k + 1][i] = vp[k][vp[k][i]
 int climb(int a, int d) { // O(lgn)
   if (!d) return a;
   dforn(i, lg(L[a]) + 1) if (1 << i <= d) a = vp[i][a], d
        -= 1 << i:
   return a;
 int lca(int a, int b) { // O(lgn)
   if (L[a] < L[b]) swap(a, b);</pre>
   a = climb(a, L[a] - L[b]):
   if (a == b) return a;
   dforn(i, lg(L[a]) + 1) if (vp[i][a] != vp[i][b]) a = vp[i
       ][a], b = vp[i][b];
   return vp[0][a];
 int dist(int a, int b) { // returns distance between nodes
   return L[a] + L[b] - 2 * L[lca(a, b)]:
};
```

5.15 Prim

```
vector<ii> G[MAXN];
bool taken[MAXN];
priority_queue<ii, vector<ii>, greater<ii> > pq; // min heap
void process(int v) {
  taken[v] = true;
  forall(e, G[v]) if (!taken[e->second]) pq.push(*e);
}
// Minimun Spanning Tree in O(n^2)
ll prim() {
```

```
19
```

```
zero(taken);
process(0);
ll cost = 0;
while (sz(pq)) {
   ii e = pq.top();
   pq.pop();
   if (!taken[e.second]) cost += e.first, process(e.second);
}
return cost;
```

5.16 Tree Reroot

```
struct Edge {
 int u. v: // maybe add more data, depending on the problem
};
// USAGE:
// 1- define all the logic in SubtreeData
// 2- create a reroot and add all the edges
// 3- call Reroot.run()
struct SubtreeData {
 // Define here what data you need for each subtree
 SubtreeData() {} // just empty
 SubtreeData(int node) {
   // Initialize the data here as if this new subtree
   // has size 1. and its only node is 'node'
 void merge(Edge* e, SubtreeData& s) {
   // Modify this subtree's data to reflect that 's' is
        being
   // merged into 'this' through the edge 'e'.
   // When e == NULL, then no edge is present, but then, '
        this'
   // and 's' have THE SAME ROOT (be CAREFUL with this).
   // These 2 subtrees don't have any other shared nodes nor
         edges.
 }
};
struct Reroot {
 int N: // # of nodes
 // vresult[i] = SubtreeData for the tree where i is the
 // this should be what you need as result
 vector<SubtreeData> vresult, vs;
 vector<Edge> ve:
 vector<vector<int>>> g; // the tree as a bidirectional
 Reroot(int n): N(n), vresult(n), vs(n), ve(0), g(n) {}
 void addEdge(Edge e) { // will be added in both ways
```

```
g[e.u].pb(sz(ve)):
   g[e.v].pb(sz(ve));
   ve.pb(e);
 void dfs1(int node, int p) {
   vs[node] = SubtreeData(node):
   forall(e, g[node]) {
     int nxt = node ^ ve[*e].u ^ ve[*e].v;
     if (nxt == p) continue;
     dfs1(nxt, node);
     vs[node].merge(&ve[*e], vs[nxt]):
 }
 void dfs2(int node, int p, SubtreeData fromp) {
   vector<SubtreeData> vsuf(sz(g[node]) + 1);
   int pos = sz(g[node]);
   SubtreeData pref = vsuf[pos] = SubtreeData(node);
   vresult[node] = vs[node];
   dforall(e, g[node]) { // dforall = forall in reverse
     vsuf[pos] = vsuf[pos + 1];
     int nxt = node ^ ve[*e].u ^ ve[*e].v;
     if (nxt == p) {
      pref.merge(&ve[*e], fromp);
      vresult[node].merge(&ve[*e], fromp);
       continue;
     vsuf[pos].merge(&ve[*e], vs[nxt]):
   assert(pos == 0):
   forall(e, g[node]) {
     int nxt = node ^ ve[*e].u ^ ve[*e].v:
     if (nxt == p) continue;
     SubtreeData aux = pref:
     aux.merge(NULL, vsuf[pos]);
     dfs2(nxt, node, aux);
     pref.merge(&ve[*e], vs[nxt]);
 void run() {
   dfs1(0, 0):
   dfs2(0, 0, SubtreeData()):
 }
};
```

5.17 Virtual Tree

```
// Usage: (VT = VirtualTree)
```

```
// 1- Build the LCA and use it for creating 1 VT instance
// 2- Call updateVT every time you want
// 3- Between calls of updateVT you probably want to use the
     tree, imp
// and VTroot variables from this struct to solve your
    problem
struct VirtualTree {
 // n = #nodes full tree
 // curt used for computing tin and tout
 int n, curt;
 LCA* lca:
 vector<int> tin. tout:
 vector<vector<ii>>> tree; // {node, dist}, only parent ->
      child dire
 // imp[i] = true iff i was part of 'newv' from last time
 // updateVT was called (note that LCAs are not imp)
 vector<bool> imp;
 void dfs(int node, int p) {
   tin[node] = curt++:
   forall(it, lca->G[node]) if (*it != p) dfs(*it, node);
   tout[node] = curt++:
 VirtualTree(LCA* 1) { // must call 1.build() before
   lca = 1, n = sz(1->G), lca = 1, curt = 0;
   tin.rsz(n), tout.rsz(n), tree.rsz(n), imp.rsz(n);
   dfs(1->ROOT, 1->ROOT):
 bool isAncestor(int a, int b) { return tin[a] < tin[b] &&
      tout[a] > tout[b]: }
 int VTroot = -1; // root of the current VT
 vector<int> v; // list of nodes of current VT (includes
      LCAs)
 void updateVT(vector<int>& newv) { // O(sz(newv)*log)
   assert(!newv.emptv()):
                                  // this method assumes non
   auto cmp = [this](int a, int b) { return tin[a] < tin[b];</pre>
   forn(i, sz(v)) tree[v[i]].clear(), imp[v[i]] = false;
   v = newv:
   sort(v.begin(), v.end(), cmp);
   set<int> s;
   forn(i, sz(v)) s.insert(v[i]), imp[v[i]] = true;
   forn(i, sz(v) - 1) s.insert(lca->lca(v[i], v[i + 1]));
   v.clear();
   forall(it, s) v.pb(*it):
   sort(v.begin(), v.end(), cmp);
   stack<int> st:
   forn(i, sz(v)) {
```

```
20
```

6 Math

6.1 Combinatorics

```
void cargarComb() { // O(MAXN^2)
 forn(i, MAXN) { // comb[i][k]=i tomados de a k = i!/(k!*(
      i-k)!)
   comb[0][i] = 0:
   comb[i][0] = comb[i][i] = 1;
   forr(k, 1, i) comb[i][k] = (comb[i - 1][k - 1] + comb[i -
         1][k]) % MOD;
 }
}
ll lucas(ll n, ll k, int p) { // (n,k)%p, needs comb[p][p]
    precalculated
 ll aux = 1:
 while (n + k) {
   aux = (aux * comb[n % p][k % p]) % p;
   n /= p, k /= p;
 }
 return aux;
```

6.2 Crt Euclid

```
11 d = euclid(b, a % b, vv, xx):
 return vy -= a / b * xx, d;
// Chinese remainder theorem (special case): find z such
// z % m = a, z % n = b. Here, z is unique modulo M = lcm(m,
     n)
// Return -1 when there is no solution
// CRT is associative and idempotent
11 crt(ll a, ll m, ll b, ll n) {
 if (n > m) swap(a, b), swap(m, n);
 ll x, y, g = euclid(m, n, x, y);
 if ((a - b) % g != 0) return -1; // comment to get RTE
      when there is no solution
  assert((a - b) \% g == 0);
 x = (b - a) \% n * x % n / g * m + a;
 return x < 0 ? x + m * n / g : x;
// Chinese remainder theorem: find z such that z % m[i] = r[
     il for all i.
// Note that the solution is unique modulo M = lcm_i (m[i]).
// Return z. On failure, return -1.
// Note that we do not require the m[i]'s to be relatively
11 crt(const vector<11>& r, const vector<11>& m) {
 assert(sz(r) == sz(m)):
 11 \text{ ret} = r[0], 1 = m[0];
 forr(i, 1, sz(m)) {
 ret = crt(ret, 1, r[i], m[i]);
 1 = lcm(r[i], m[i]);
 if (ret == -1) break:
 return ret:
```

6.3 Discrete Log

```
// 0(sqrt(m)*log(m))
// returns x such that a^x = b (mod m) or -1 if inexistent
ll discrete_log(ll a, ll b, ll m) {
    a %= m, b %= m;
    if (b == 1) return 0;
    int cnt = 0;
    ll tmp = 1;
    for (ll g = __gcd(a, m); g != 1; g = __gcd(a, m)) {
        if (b % g) return -1;
        m /= g, b /= g;
    }
}
```

6.4 Fft

```
typedef __int128 T;
typedef double ld;
typedef vector<T> poly;
const T MAXN = (1 << 21); // MAXN must be power of 2,</pre>
// MOD-1 needs to be a multiple of MAXN, big mod and
    primitive root for NTT
const T MOD = 2305843009255636993LL, RT = 5;
// const T MOD = 998244353, RT = 3;
// NTT
struct CD {
T x:
 CD(T x_{-}) : x(x_{-}) \{ \}
 CD() {}
};
T mulmod(T a, T b) { return a * b % MOD; }
T addmod(T a, T b) {
 Tr = a + b:
 if (r >= MOD) r -= MOD:
 return r;
T submod(T a, T b) {
Tr = a - b;
 if (r < 0) r += MOD;
 return r:
```

```
21
```

```
CD operator*(const CD& a, const CD& b) { return CD(mulmod(a,
    x. b.x)): }
CD operator+(const CD& a, const CD& b) { return CD(addmod(a.
    x. b.x)): }
CD operator-(const CD& a, const CD& b) { return CD(submod(a.
    x. b.x)): }
vector<T> rts(MAXN + 9, -1);
CD root(int n, bool inv) {
 T r = rts[n] < 0 ? rts[n] = expMod(RT, (MOD - 1) / n) :
      rts[n];
 return CD(inv ? expMod(r, MOD - 2) : r);
// FFT
// struct CD {
// ld r, i;
// CD(ld r_{-} = 0, ld i_{-} = 0) : r(r_{-}), i(i_{-}) {}
// ld real() const { return r: }
// void operator/=(const int c) { r /= c. i /= c: }
// }:
// CD operator*(const CD& a, const CD& b) {
// return CD(a.r * b.r - a.i * b.i. a.r * b.i + a.i * b.r):
// }
// CD operator+(const CD& a, const CD& b) { return CD(a.r +
    b.r. a.i + b.i): }
// CD operator-(const CD& a, const CD& b) { return CD(a.r -
    b.r. a.i - b.i): }
// const ld pi = acos(-1.0):
CD cp1[MAXN + 9], cp2[MAXN + 9]:
int R[MAXN + 9];
void dft(CD* a, int n, bool inv) {
 forn(i, n) if (R[i] < i) swap(a[R[i]], a[i]);
 for (int m = 2; m <= n; m *= 2) {
   // ld z=2*pi/m*(inv?-1:1); // FFT
   // CD wi=CD(\cos(z), \sin(z)): // FFT
   CD wi = root(m, inv); // NTT
   for (int j = 0; j < n; j += m) {</pre>
     CD w(1);
     for (int k = j, k2 = j + m / 2; k2 < j + m; k++, k2++)
         {
       CD u = a[k];
       CD v = a[k2] * w:
       a[k] = u + v;
       a[k2] = u - v;
      w = w * wi:
 // if(inv) forn(i,n) a[i]/=n; // FFT
```

```
if (inv) { // NTT
   CD z(expMod(n, MOD - 2));
   forn(i, n) a[i] = a[i] * z;
poly multiply(poly& p1, poly& p2) {
 int n = sz(p1) + sz(p2) + 1;
 int m = 1, cnt = 0;
 while (m <= n) m += m, cnt++;</pre>
 forn(i, m) {
   R[i] = 0:
   forn(i, cnt) R[i] = (R[i] \ll 1) \mid ((i \gg i) \& 1):
 forn(i, m) cp1[i] = 0, cp2[i] = 0;
 forn(i, sz(p1)) cp1[i] = p1[i];
 forn(i, sz(p2)) cp2[i] = p2[i];
 dft(cp1, m, false);
 dft(cp2, m, false);
 forn(i, m) cp1[i] = cp1[i] * cp2[i];
 dft(cp1, m, true):
 poly res;
 n -= 2:
 // forn(i,n) res.pb((T) floor(cp1[i].real()+0.5)); // FFT
 forn(i, n) res.pb(cp1[i].x); // NTT
 return res:
```

6.5 Fraction

```
struct frac {
   int p, q;
   frac(int p = 0, int q = 1) : p(p), q(q) { norm(); }
   void norm() {
      int a = gcd(q, p);
      if (a) p /= a, q /= a;
      else q = 1;
      if (q < 0) q = -q, p = -p;
   }
   frac operator+(const frac& o) {
      int a = gcd(o.q, q);
      return frac(p * (o.q / a) + o.p * (q / a), q * (o.q / a))
          ;
   }
   frac operator-(const frac& o) {
      int a = gcd(o.q, q);
      return frac(p * (o.q / a) - o.p * (q / a), q * (o.q / a))
          ;
   }
   frac operator*(frac o) {</pre>
```

```
int a = gcd(o.p, q), b = gcd(p, o.q);
  return frac((p / b) * (o.p / a), (q / a) * (o.q / b));
}
frac operator/(frac o) {
  int a = gcd(o.q, q), b = gcd(p, o.p);
  return frac((p / b) * (o.q / a), (q / a) * (o.p / b));
}
bool operator<(const frac& o) const { return p * o.q < o.p
     * q; }
bool operator==(frac o) { return p == o.p && q == o.q; }
};</pre>
```

6.6 Gauss Jordan Bitset

```
// https://cp-algorithms.com/linear_algebra/linear-system-
    gauss.html
// special case of gauss_jordan_mod with mod=2, bitset for
// finds lexicographically minimal solution (0 < 1. False <
// for lexicographically maximal change your solution model
    accordingly
int gauss(vector<bitset<N> > a, int n, int m, bitset<N>& ans
    ) {
 vector<int> where(m, -1);
 for (int col = m - 1, row = 0; col >= 0 && row < n; --col)
   for (int i = row; i < n; ++i)</pre>
     if (a[i][col]) {
       swap(a[i], a[row]);
       break;
   if (!a[row][col]) continue;
   where[col] = row:
   for (int i = 0; i < n; ++i)</pre>
     if (i != row && a[i][col]) a[i] ^= a[row]:
   ++row;
 ans.reset();
 forn(i, m) if (where[i] != -1) { ans[i] = a[where[i]][m] &
       a[where[i]][i]: }
 forn(i, n) if ((ans & a[i]).count() % 2 != a[i][m]) return
 forn(i, m) if (where[i] == -1) return INF:
 return 1;
```

6.7 Gauss Jordan Mod

```
// inv -> modular inverse function
// disclaimer: not very well tested, but got AC on a problem
int gauss(vector<vector<int> > a, vector<int>& ans) {
 int n = (int)a.size();
 int m = (int)a[0].size() - 1:
 vector<int> where(m, -1);
 for (int col = 0, row = 0; col < m && row < n; ++col) {
   int sel = row:
   for (int i = row: i < n: ++i)</pre>
     if (a[i][col] > a[sel][col]) sel = i:
   if (a[sel][col] == 0) continue;
   for (int i = col; i <= m; ++i) swap(a[sel][i], a[row][i])</pre>
   where[col] = row;
   for (int i = 0; i < n; ++i)
     if (i != row) {
       int c = (a[i][col] * inv(a[row][col])) % MOD:
       for (int j = col; j <= m; ++j)</pre>
         a[i][j] = (a[i][j] - a[row][j] * c % MOD + MOD) %
     }
   ++row:
 ans.clear();
 ans.rsz(m. 0):
 for (int i = 0: i < m: ++i)
   if (where[i] != -1) ans[i] = (a[where[i]][m] * inv(a[
        where[i]][i])) % MOD;
 for (int i = 0; i < n; ++i) {</pre>
   int sum = 0:
   for (int j = 0; j < m; ++j) sum = (sum + ans[j] * a[i][j</pre>
        1) % MOD:
   if ((sum - a[i][m] + MOD) % MOD != 0) return 0;
 for (int i = 0; i < m; ++i)</pre>
   if (where[i] == -1) return INF;
 return 1:
```

6.8 Gauss Jordan

```
// https://cp-algorithms.com/linear_algebra/linear-system-
gauss.html
```

```
const double EPS = 1e-9:
const int INF = 2; // a value to indicate infinite solutions
int gauss(vector<vector<double> > a. vector<double>& ans) {
 int n = (int)a.size();
 int m = (int)a[0].size() - 1:
 vector<int> where(m, -1):
 for (int col = 0, row = 0; col < m && row < n; ++col) {</pre>
   int sel = row:
   for (int i = row: i < n: ++i)</pre>
     if (abs(a[i][col]) > abs(a[sel][col])) sel = i:
   if (abs(a[sel][col]) < EPS) continue;</pre>
   for (int i = col; i <= m; ++i) swap(a[sel][i], a[row][i])</pre>
   where[col] = row;
   for (int i = 0; i < n; ++i)
     if (i != row) {
       double c = a[i][col] / a[row][col]:
       for (int j = col; j <= m; ++j) a[i][j] -= a[row][j] *</pre>
   ++row;
 ans.assign(m, 0);
 for (int i = 0: i < m: ++i)
   if (where[i] != -1) ans[i] = a[where[i]][m] / a[where[i
 for (int i = 0; i < n; ++i) {</pre>
   double sum = 0;
   for (int j = 0; j < m; ++j) sum += ans[j] * a[i][j];</pre>
   if (abs(sum - a[i][m]) > EPS) return 0;
 for (int i = 0: i < m: ++i)
   if (where[i] == -1) return INF;
 return 1;
```

6.9 Karatsuba

```
const int x = min(one, two):
if (one < two) rec_kara(a, x, b + x, two - x, r + x);
if (two < one) rec_kara(a + x, one - x, b, x, r + x);
const int n = (x + 1) / 2, right = x / 2:
vector<T> tu(2 * n);
rec kara(a, n, b, n, tu.data()):
forn(i, 2*n-1) {
 r[i] += tu[i]:
 r[i+n] -= tu[i];
 tu[i] = 0;
rec kara(a + n, right, b + n, right, tu.data()):
forn(i, 2*right-1) r[i+n] -= tu[i], r[i+2*n] += tu[i];
tu[n-1] = a[n-1]; tu[2*n-1] = b[n-1];
forn(i, right) tu[i] = a[i]+a[i+n], tu[i+n] = b[i]+b[i+n];
rec_kara(tu.data(), n, tu.data() + n, n, r + n);
template<typename T> vector<T> multiply(vector<T> a, vector<</pre>
    T> b) {
if(a.empty() || b.empty()) return {};
vector<T> r(a.size() + b.size() - 1);
rec_kara(a.data(), a.size(), b.data(), b.size(), r.data());
return r;
```

6.10 Matrix Exp

```
typedef ll tipo; // maybe use double or other depending on
    the problem
struct Mat {
 int N; // square matrix
 vector<vector<tipo>> m:
 Mat(int n) : N(n), m(n, vector < tipo > (n, 0)) {}
 vector<tipo>& operator[](int p) { return m[p]; }
 Mat operator*(Mat& b) { // O(N^3), multiplication
   assert(N == b.N);
   Mat res(N):
   forn(i, N) forn(j, N) forn(k, N) // remove MOD if not
      res[i][j] = (res[i][j] + m[i][k] * b[k][j]) % MOD;
   return res:
 Mat operator (int k) { // O(N^3 * logk), exponentiation
   Mat res(N), aux = *this;
   forn(i, N) res[i][i] = 1:
   while (k)
     if (k & 1) res = res * aux, k--;
     else aux = aux * aux, k \neq 2:
   return res;
```

```
}
};
```

6.11 Modular Inverse

```
#define MAXMOD 15485867
11 inv[MAXMOD]: // inv[i]*i=1 mod MOD
void calc(int p) { // O(p)
 inv[1] = 1;
 forr(i, 2, p) inv[i] = p - ((p / i) * inv[p % i]) % p;
int inverso(int x) {
                                    // O(log MOD)
 return expMod(x, eulerPhi(MOD) - 1): // si mod no es primo
      (sacar a mano)
 return expMod(x, MOD - 2);
                                    // si mod es primo
// fact[i] = i!\%MOD and ifact[i] = 1/(i!)\%MOD
// inv is modular inverse function
11 fact[MAXN]. ifact[MAXN]:
void build facts() { // O(MAXN)
 fact[0] = 1;
 forr(i, 1, MAXN) fact[i] = fact[i - 1] * i % MOD;
 ifact[MAXN - 1] = inverso(fact[MAXN - 1]);
 dforn(i, MAXN - 1) ifact[i] = ifact[i + 1] * (i + 1) % MOD
 return;
// n! / k!*(n-k)!
// assumes 0 <= n < MAXN
ll comb(ll n. ll k) {
 if (k < 0 || n < k) return 0;</pre>
 return fact[n] * ifact[k] % MOD * ifact[n - k] % MOD;
```

6.12 Modular Operations

```
const 11 MOD = 1000000007; // Change according to problem
// Only needed for MOD > 2^31
// Actually, for 2^31 < MOD < 2^63 it's usually better to
    use __int128
// and normal multiplication (* operator) instead of mulMod
// returns (a*b) %c, and minimize overfloor
11 mulMod(11 a, 11 b, 11 m = MOD) { // O(log b)
    11 x = 0, y = a % m;
    while (b > 0) {
        if (b % 2 == 1) x = (x + y) % m;
    }
}
```

```
v = (v * 2) \% m:
 return x % m:
11 \exp Mod(11 b, 11 e, 11 m = MOD) { // O(log e)}
 if (e < 0) return 0:
 ll ret = 1:
 while (e) {
   if (e & 1) ret = ret * b % m; // ret = mulMod(ret,b,m);
        //if needed
   b = b * b % m:
                                // b = mulMod(b,b,m):
   e >>= 1:
  return ret:
11 sumMod(l1 a, l1 b, l1 m = MOD) {
 a %= m:
 b %= m:
 if (a < 0) a += m:
 if (b < 0) b += m;
 return (a + b) % m:
11 difMod(l1 a, l1 b, l1 m = MOD) {
 a %= m:
 b %= m:
 if (a < 0) a += m;</pre>
 if (b < 0) b += m:
 ll ret = a - b;
 if (ret < 0) ret += m:
 return ret;
11 divMod(11 a, 11 b, 11 m = MOD) { return mulMod(a, inverso
    (b), m); }
```

6.13 Phollard Rho

```
return false:
bool rabin(ll n) { // devuelve true si n es primo
 if (n == 1) return false:
 const int ar[] = {2, 3, 5, 7, 11, 13, 17, 19, 23};
 forn(i, 9) if (!es primo prob(n, ar[i])) return false:
 return true:
ll rho(ll n) {
 if ((n & 1) == 0) return 2;
 11 x = 2, v = 2, d = 1:
 11 c = rand() % n + 1:
 while (d == 1) {
  // may want to avoid mulMod if possible
   // maybe replace with * operator using __int128?
   x = (mulMod(x, x, n) + c) \% n;
   y = (mulMod(y, y, n) + c) \% n;
   y = (mulMod(y, y, n) + c) \% n;
   if (x - y \ge 0) d = gcd(n, x - y):
   else d = gcd(n, y - x);
 return d == n ? rho(n) : d:
void factRho(ll n, map<ll, ll>& f) { // 0 ((n ^ 1/4) * logn)
 if (n == 1) return:
 if (rabin(n)) {
   f[n]++:
   return:
 11 factor = rho(n):
 factRho(factor, f):
 factRho(n / factor, f);
```

6.14 Prime Functions

```
#define MAXP 100000 // no necesariamente primo
int criba[MAXP + 1];
void crearCriba() {
  int w[] = {4, 2, 4, 2, 4, 6, 2, 6};
  for (int p = 25; p <= MAXP; p += 10) criba[p] = 5;
  for (int p = 9; p <= MAXP; p += 6) criba[p] = 3;
  for (int p = 4; p <= MAXP; p += 2) criba[p] = 2;
  for (int p = 7, cur = 0; p * p <= MAXP; p += w[cur++ & 7])
    if (!criba[p])
    for (int j = p * p; j <= MAXP; j += (p << 1))
        if (!criba[j]) criba[j] = p;
}
vector<int> primos;
```

```
24
```

```
void buscarPrimos() {
 crearCriba():
 forr(i, 2, MAXP + 1) if (!criba[i]) primos.push_back(i);
// factoriza bien numeros hasta MAXP^2. llamar a
    buscarPrimos antes
void fact(ll n, map<ll, ll>& f) { // 0 (cant primos)
 forall(p, primos) {
   while (!(n % *p)) {
    f[*p]++: // divisor found
     n /= *p:
 if (n > 1) f[n]++:
// factoriza bien numeros hasta MAXP, llamar crearCriba
void fact2(11 n, map<11, 11>& f) { // 0 (lg n)
 while (criba[n]) {
   f[criba[n]]++:
   n /= criba[n];
 if (n > 1) f[n]++;
// Usar asi: divisores(fac. divs. fac.begin()): NO ESTA
void divisores(map<11, 11>& f, vector<11>& divs, map<11, 11</pre>
    >::iterator it.
             11 n = 1) {
 if (it == f.begin()) divs.clear():
 if (it == f.end()) {
   divs.pb(n);
   return:
 ll p = it->fst, k = it->snd;
 forn(_, k + 1) divisores(f, divs, it, n), n *= p;
11 cantDivs(map<11, 11>& f) {
 ll ret = 1:
 forall(it, f) ret *= (it->second + 1);
 return ret;
11 sumDivs(map<11, 11>& f) {
 ll ret = 1:
 forall(it, f) {
   11 \text{ pot} = 1, \text{ aux} = 0;
```

```
forn(i, it->snd + 1) aux += pot, pot *= it->fst:
   ret *= aux:
 return ret;
11 eulerPhi(ll n) { // con criba: O(lg n)
 map<11, 11> f;
 fact(n, f);
 11 \text{ ret = n};
 forall(it, f) ret -= ret / it->first:
 return ret:
11 eulerPhi2(11 n) { // 0 (sqrt n)
 forr(i, 2, n + 1) {
   if ((11)i * i > n) break;
   if (n % i == 0) {
     while (n % i == 0) n /= i:
    r -= r / i:
 if (n != 1) r -= r / n;
 return r:
```

6.15 Simplex

```
typedef double tipo;
typedef vector<tipo> vt;
// maximize c^T x s.t. Ax<=b, x>=0, returns pair (max val.
    solution vector)
pair<tipo, vt> simplex(vector<vt> A, vt b, vt c) {
 int n = sz(b), m = sz(c):
 tipo z = 0:
 vector<int> X(m), Y(n);
 forn(i, m) X[i] = i:
 forn(i, n) Y[i] = i + m;
 auto pivot = [&](int x, int y) {
   swap(X[y], Y[x]);
   b[x] /= A[x][v]:
   forn(i, m) if (i != y) A[x][i] /= A[x][y];
   A[x][y] = 1 / A[x][y];
   forn(i, n) if (i != x && abs(A[i][y]) > EPS) {
    b[i] -= A[i][v] * b[x]:
    forn(j, m) if (j != y) A[i][j] -= A[i][y] * A[x][j];
     A[i][y] *= -A[x][y];
   z += c[y] * b[x];
```

```
forn(i, m) if (i != v) c[i] -= c[v] * A[x][i]:
 c[v] *= -A[x][v]:
};
while (1) {
 int x = -1, y = -1;
  tipo mn = -EPS:
 forn(i, n) if (b[i] < mn) mn = b[i], x = i;
 if (x < 0) break:
 forn(i, m) if (A[x][i] < -EPS) {</pre>
   v = i;
   break:
 assert(y >= 0); // no solution to Ax<=b
 pivot(x, y);
while (1) {
 tipo mx = EPS;
 int x = -1, y = -1;
 forn(i, m) if (c[i] > mx) mx = c[i], v = i:
 if (v < 0) break:
  tipo mn = 1e200;
  forn(i, n) if (A[i][y] > EPS && b[i] / A[i][y] < mn) {</pre>
   mn = b[i] / A[i][v], x = i;
  assert(x >= 0); // c^T x is unbounded
 pivot(x, y);
forn(i, n) if (Y[i] < m) r[Y[i]] = b[i];
return {z, r}:
```

6.16 Simpson

7 Strings

7.1 Aho Corasick

```
struct Node {
 map<char, int> next, go;
 int p, link, leafLink;
 char pch;
 vector<int> leaf:
 Node(int pp, char c) : p(pp), link(-1), leafLink(-1), pch(
      c) {}
};
struct AhoCorasick {
 vector < Node > t = {Node(-1, -1)}:
 void add_string(string s, int id) {
   int v = 0:
   for (char c : s) {
     if (!t[v].next.count(c)) {
       t[v].next[c] = sz(t);
       t.pb(Node(v, c));
     v = t[v].next[c]:
   t[v].leaf.pb(id);
 int go(int v, char c) {
   if (!t[v].go.count(c)) {
     if (t[v].next.count(c)) t[v].go[c] = t[v].next[c];
     else t[v].go[c] = v == 0 ? 0 : go(get_link(v), c);
   return t[v].go[c];
 int get link(int v) { // suffix link
   if (t[v].link < 0) {</pre>
     if (!v || !t[v].p) t[v].link = 0:
     else t[v].link = go(get_link(t[v].p), t[v].pch);
   return t[v].link:
 // like suffix link, but only going to the root or to a
 // a non-emtpy "leaf" list. Copy only if needed
 int get_leaf_link(int v) {
   if (t[v].leafLink < 0) {</pre>
     if (!v || !t[v].p) t[v].leafLink = 0;
     else if (!t[get_link(v)].leaf.empty()) t[v].leafLink =
          t[v].link;
     else t[v].leafLink = get_leaf_link(t[v].link);
   return t[v].leafLink;
```

```
}
};
```

7.2 Booth

```
// Booth's algorithm
// Find lexicographically minimal string rotation in O(|S|)
int booth(string S) {
 S += S; // Concatenate string to it self to avoid modular
      arithmetic
 int n = sz(S):
 vector<int> f(n, -1):
 int k = 0: // Least rotation of string found so far
 forr(j, 1, n) {
   char sj = S[j];
   int i = f[j - k - 1];
   while (i != -1 and sj != S[k + i + 1]) {
    if (sj < S[k + i + 1]) k = j - i - 1;
    i = f[i];
   if (si != S[k + i + 1]) {
    if (si < S[k]) k = i;
    f[j - k] = -1;
   } else {
    f[j - k] = i + 1;
 return k; // Lexicographically minimal string rotation's
      position
```

7.3 Hash Simple

```
// P should be a prime number, could be randomly generated,
// sometimes is good to make it close to alphabet size
// MOD[i] must be a prime of this order, could be randomly
    generated
const int P = 1777771, MOD[2] = {999727999, 1070777777};
const int PI[2] = {325255434, 10018302}; // PI[i] = P^-1 %
    MOD[i]
struct Hash {
    l1 h[2];
    vector<1l> vp[2];
    deque<int> x;
    Hash(vector<int>& s) {
        forn(i, sz(s)) x.pb(s[i]);
        forn(k, 2) vp[k].rsz(s.size() + 1);
```

```
forn(k, 2) {
   h[k] = 0:
   vp[k][0] = 1;
   11 p = 1:
   forr(i, 1, sz(s) + 1) {
     h[k] = (h[k] + p * s[i - 1]) % MOD[k];
     vp[k][i] = p = (p * P) % MOD[k];
 }
// Put the value val in position pos and update the hash
void change(int pos, int val) {
 forn(i, 2) h[i] = (h[i] + vp[i][pos] * (val - x[pos] +
       MOD[i])) % MOD[i];
 x[pos] = val;
// Add val to the end of the current string
void push back(int val) {
 int pos = sz(x):
 x.pb(val);
 forn(k, 2) {
   assert(pos <= sz(vp[k]));</pre>
   if (pos == sz(vp[k])) vp[k].pb(vp[k].back() * P % MOD[k
        1):
   ll p = vp[k][pos];
   h[k] = (h[k] + p * val) % MOD[k];
 }
// Delete the first element of the current string
void pop_front() {
 assert(sz(x) > 0);
 forn(k, 2) {
   h[k] = (h[k] - x[0] + MOD[k]) \% MOD[k];
   h[k] = h[k] * PI[k] % MOD[k];
 x.pop_front();
11 getHashVal() { return (h[0] << 32) | h[1]; }</pre>
```

7.4 Hash

```
// P should be a prime number, could be randomly generated,
// sometimes is good to make it close to alphabet size
// MOD[i] must be a prime of this order, could be randomly
    generated
const int P = 1777771, MOD[2] = {999727999, 10707777777};
```

```
const int PI[2] = {325255434, 10018302}; // <math>PI[i] = P^{-1} \%
    MOD[i]
struct Hash {
 vector<int> h[2], pi[2];
 vector<11> vp[2]; // Only used if getChanged is used (
      delete it if not)
 Hash(string& s) {
   forn(k, 2) h[k].rsz(s.size() + 1), pi[k].rsz(s.size() +
        1).
       vp[k].rsz(s.size() + 1);
   forn(k, 2) {
     h[k][0] = 0:
     vp[k][0] = pi[k][0] = 1;
     11 p = 1;
     forr(i, 1, sz(s) + 1) {
       h[k][i] = (h[k][i-1] + p * s[i-1]) % MOD[k];
       pi[k][i] = (1LL * pi[k][i - 1] * PI[k]) % MOD[k];
       vp[k][i] = p = (p * P) % MOD[k];
   }
 ll get(int s, int e) { // get hash value of the substring
      [s. e)
   11 H[2];
   forn(i, 2) {
     H[i] = (h[i][e] - h[i][s] + MOD[i]) % MOD[i];
     H[i] = (1LL * H[i] * pi[i][s]) % MOD[i];
   return (H[0] << 32) | H[1];
 // get hash value of [s, e) if origVal in pos is changed
 // Assumes s <= pos < e. If multiple changes are needed,</pre>
 // do what is done in the for loop for every change
 ll getChanged(int s, int e, int pos, int val, int origVal)
       {
   ll hv = get(s, e), hh[2];
   hh[1] = hv & ((1LL << 32) - 1);
   hh[0] = hv >> 32;
   forn(i, 2) hh[i] = (hh[i] + vp[i][pos] * (val - origVal +
         MOD[i])) % MOD[i]:
   return (hh[0] << 32) | hh[1];</pre>
 }
};
```

7.5 Hash128

```
typedef __int128 bint; // needs gcc compiler?
```

```
const bint MOD = 212345678987654321LL, P = 1777771, PI =
    106955741089659571LL:
struct Hash {
 vector<bint> h, pi;
 Hash(string& s) {
   assert((P * PI) % MOD == 1):
   h.resize(s.size() + 1), pi.resize(s.size() + 1);
   h[0] = 0, pi[0] = 1;
   bint p = 1;
   forr(i, 1, sz(s) + 1) {
    h[i] = (h[i-1] + p * s[i-1]) % MOD;
     pi[i] = (pi[i - 1] * PI) % MOD:
    p = (p * P) \% MOD;
 11 get(int s, int e) { // get hash value of the substring
   return (((h[e] - h[s] + MOD) % MOD) * pi[s]) % MOD;
 }
};
```

7.6 Kmp

```
// b[i] = longest border of t[0,i) = length of the longest
    prefix of
// the substring P[0..i-1) that is also suffix of the
    substring P[0..i)
// For "AABAACAABAA", b[i] = \{-1, 0, 1, 0, 1, 2, 0, 1, 2, 3, 
vector<int> kmppre(string& P) { //
 vector < int > b(sz(P) + 1):
 b[0] = -1:
 int j = -1;
 forn(i, sz(P)) {
   while (j \ge 0 \&\& P[i] != P[j]) j = b[j];
   b[i + 1] = ++i;
 return b;
void kmp(string& T, string& P) { // Text, Pattern -- 0(|T|+|
    PI)
 int j = 0;
 vector<int> b = kmppre(P);
 forn(i, sz(T)) {
   while (j \ge 0 \&\& T[i] != P[j]) j = b[j];
   if (++j == sz(P)) {
    // Match at i-j+1, do something
     j = b[j];
```

```
}
```

26

7.7 Lcp

```
// LCP(sa[i], sa[j]) = min(lcp[i+1], lcp[i+2], ..., lcp[j])
// example: "banana", sa = \{5,3,1,0,4,2\}, lcp =
    {0,1,3,0,0,2}
// Num of dif substrings: (n*n+n)/2 - (sum over lcp array)
// Build suffix array (sa) before calling
vector<int> computeLCP(string& s, vector<int>& sa) {
 int n = s.size(), L = 0:
 vector<int> lcp(n), plcp(n), phi(n);
 phi[sa[0]] = -1;
 forr(i, 1, n) phi[sa[i]] = sa[i - 1];
 forn(i, n) {
   if (phi[i] < 0) {</pre>
     plcp[i] = 0;
     continue;
   while (s[i + L] == s[phi[i] + L]) L++;
   plcp[i] = L;
   L = \max(L - 1, 0);
 forn(i, n) lcp[i] = plcp[sa[i]];
 return lcp; // lcp[i]=LCP(sa[i-1],sa[i])
```

7.8 Manacher

```
int d1[MAXN]; // d1[i] = max odd palindrome centered on i
int d2[MAXN]; // d2[i] = max even palindrome centered on i
// s aabbaacaabbaa
// d1 1111171111111
// d2 0103010010301
void manacher(string& s) { // O(|S|) - find longest
    palindromic substring
    int l = 0, r = -1, n = s.size();
    forn(i, n) { // build d1
        int k = i > r ? 1 : min(d1[l + r - i], r - i);
        while (i + k < n && i - k >= 0 && s[i + k] == s[i - k]) k
        ++;
        d1[i] = k--;
        if (i + k > r) l = i - k, r = i + k;
    }
    l = 0, r = -1;
    forn(i, n) { // build d2
```

```
int k = (i > r ? 0 : min(d2[1 + r - i + 1], r - i + 1)) +
   while (i + k \le n \&\& i - k \ge 0 \&\& s[i + k - 1] == s[i -
        k]) k++:
   d2[i] = --k:
   if (i + k - 1 > r) l = i - k, r = i + k - 1:
}
```

Suffix Array Slow

```
pair<int, int> sf[MAXN]:
bool sacomp(int lhs, int rhs) { return sf[lhs] < sf[rhs]: }</pre>
vector<int> constructSA(string& s) { // O(n log^2(n))
 int n = s.size():
                                  // (sometimes fast enough)
 vector<int> sa(n), r(n);
 forn(i, n) r[i] = s[i]; // r[i]: equivalence class of s[i
      ..i+m)
 for (int m = 1; m < n; m *= 2) {</pre>
   // sf[i] = \{r[i], r[i+m]\}, used to sort for next
        equivalence classes
   forn(i, n) sa[i] = i, sf[i] = \{r[i], i + m < n ? r[i + m]
   stable_sort(sa.begin(), sa.end(), sacomp); // O(n log(n))
   // if sf[sa[i]] == sf[sa[i-1]] then same equivalence
         r[sa[i - 1]]:
 }
 return sa:
```

Suffix Array 7.10

```
#define RB(x) (x < n ? r[x] : 0)
void csort(vector<int>& sa, vector<int>& r, int k) { //
    counting sort O(n)
 int n = sa.size():
 vector<int> f(max(255, n), 0), t(n);
 forn(i, n) f[RB(i + k)]++;
 int sum = 0:
 forn(i, max(255, n)) f[i] = (sum += f[i]) - f[i]:
 forn(i, n) t[f[RB(sa[i] + k)]++] = sa[i];
 sa = t:
vector<int> constructSA(string& s) { // O(n logn)
```

```
int n = s.size(), rank:
vector < int > sa(n), r(n), t(n):
forn(i, n) sa[i] = i, r[i] = s[i]; // r[i]: equivalence
    class of s[i..i+k)
for (int k = 1; k < n; k *= 2) {
 csort(sa, r, k):
 csort(sa, r, 0);
                  // counting sort, O(n)
 t[sa[0]] = rank = 0; // t : equivalence classes array for
       next size
 forr(i, 1, n) {
   // check if sa[i] and sa[i-1] are in te same
        equivalence class
   if (r[sa[i]] != r[sa[i - 1]] || RB(sa[i] + k) != RB(sa[
        i - 1] + k)
     rank++:
   t[sa[i]] = rank;
 if (r[sa[n-1]] == n-1) break:
return sa;
```

Suffix Automaton

```
// The substrings of S can be decomposed into equivalence
forr(i, 1, n) r[sa[i]] = sf[sa[i]] != sf[sa[i - 1]] ? i : 1 // 2 substr are of the same class if they have the same set
                                                                of endpos
                                                           // Example: endpos("bc") = {2, 4, 6} in "abcbcbc"
                                                           // Each class is a node of the automaton.
                                                           // Len is the longest substring of each class
                                                           // Link in state X is the state where the longest suffix of
                                                               the longest
                                                           // substring in X, with a different endpos set, belongs
                                                           // The links form a tree rooted at 0
                                                           // last is the state of the whole string after each
                                                                extention
                                                           struct state {
                                                            int len. link:
                                                            map<char, int> next;
                                                           }; // clear next!!
                                                           state st[MAXN];
                                                           int sz, last;
                                                           void sa init() {
                                                            last = st[0].len = 0;
                                                            sz = 1:
                                                            st[0].link = -1:
```

```
void sa extend(char c) {
 int k = sz++. p: // k = new state
 st[k].len = st[last].len + 1;
 // while c is not present in p assign it as edge to the
      new state and
 // move through link (note that p always corresponds to a
      suffix state)
 for (p = last; p != -1 \&\& !st[p].next.count(c); p = st[p].
      link)
   st[p].next[c] = k;
 if (p == -1) st[k].link = 0:
  else {
   // state p already goes to state q through char c. Then,
        link of k
   // should go to a state with len = st[p].len + 1 (because
         of c)
   int a = st[p].next[c]:
   if (st[p].len + 1 == st[q].len) st[k].link = q;
     // q is not the state we are looking for. Then, we
     // create a clone of q (w) with the desired length
     int w = sz++:
     st[w].len = st[p].len + 1;
     st[w].next = st[q].next;
     st[w].link = st[q].link;
     // go through links from p and while next[c] is q,
          change it to w
     for (; p != -1 && st[p].next[c] == q; p = st[p].link)
          st[p].next[c] = w;
     // change link of g from p to w. and finally set link
          of k to w
     st[q].link = st[k].link = w;
 last = k:
// input: abcbcbc
// i.link.len.next
// 0 -1 0 (a,1) (b,5) (c,7)
// 1 0 1 (b,2)
// 2 5 2 (c.3)
// 3 7 3 (b,4)
// 4 9 4 (c.6)
// 5 0 1 (c.7)
// 6 11 5 (b,8)
// 7 0 2 (b,9)
// 8 9 6 (c,10)
// 9 5 3 (c.11)
// 10 11 7
// 11 7 4 (b.8)
```

7.12 Suffix Tree

```
const int INF = 1e6 + 10: // INF > n
const int MAXLOG = 20; // 2^MAXLOG > 2*n
// The SuffixTree of S is the compressed trie that would
    result after
// inserting every suffix of S.
// As it is a COMPRESSED trie, some edges may correspond to
// instead of chars, and the compression is done in a way
    that every
// vertex that doesn't correspond to a suffix and has only
// descendent, is omitted.
struct SuffixTree {
 vector<char> s:
 vector<map<int, int>> to; // fst char of substring on edge
 // s[fpos[i], fpos[i]+len[i]) is the substring on the edge
       between
 // i's father and i.
 // link[i] goes to the node that corresponds to the
      substring that
 // result after "removing" the first character of the
      substring that
 // i represents. Only defined for internal (non-leaf)
      nodes.
 vector<int> len, fpos, link;
 SuffixTree(int nn = 0) { // O(nn). nn should be the
      expected size
   s.reserve(nn), to.reserve(2 * nn), len.reserve(2 * nn);
   fpos.reserve(2 * nn), link.reserve(2 * nn);
   make node(0, INF):
  int node = 0, pos = 0, n = 0:
 int make_node(int p, int 1) {
   fpos.pb(p), len.pb(l), to.pb({}), link.pb(0);
   return sz(to) - 1:
 void go_edge() {
   while (pos > len[to[node][s[n - pos]]]) {
     node = to[node][s[n - pos]];
     pos -= len[node];
  void add(char c) {
   s.pb(c), n++, pos++;
   int last = 0;
   while (pos > 0) {
     go_edge();
```

```
int edge = s[n - pos]:
    int& v = to[node][edge];
    int t = s[fpos[v] + pos - 1];
    if (v == 0) {
     v = make_node(n - pos, INF);
     link[last] = node:
     last = 0:
    } else if (t == c) {
     link[last] = node:
     return;
    } else {
     int u = make node(fpos[v], pos - 1);
     to[u][c] = make_node(n - 1, INF);
     to[u][t] = v:
     fpos[v] += pos - 1, len[v] -= pos - 1;
     v = u, link[last] = u, last = u;
    if (node == 0) pos--;
    else node = link[node]:
}
// Call this after you finished building the SuffixTree to
// set some values of the vector 'len' that currently have
// value (because of INF usage). Note that you shouldn't
     call 'add'
// anymore after calling this method.
void finishedAdding() {
  forn(i, sz(len)) if (len[i] + fpos[i] > n) len[i] = n -
      fpos[i];
// From here, copy only if needed!!
// Map each suffix with it corresponding leaf node
// vleaf[i] = node id of leaf of suffix s[i..n)
// Note that the last character of the string must be
// Use 'buildLeaf' not 'dfs' directly. Also '
     finishedAdding' must
// be called before calling 'buildLeaf'.
// When this is needed, usually binary lifting (vp) and
     depths are
// also needed.
// Usually you also need to compute extra information in
vector<int> vleaf, vdepth:
vector<vector<int>> vp;
void dfs(int cur, int p, int curlen) {
 if (cur > 0) curlen += len[cur]:
  vdepth[cur] = curlen;
```

```
vp[cur][0] = p;
   if (to[cur].empty()) {
     assert(0 < curlen && curlen <= n);</pre>
     assert(vleaf[n - curlen] == -1):
     vleaf[n - curlen] = cur;
     // here maybe compute some extra info
   } else forall(it, to[cur]) {
       dfs(it->snd, cur, curlen);
       // maybe change return type and here compute extra
   // maybe return something here related to extra info
 void buildLeaf() {
   vdepth.rsz(sz(to), 0):
                                      // tree size
   vleaf.rsz(n, -1);
                                      // string size
   vp.rsz(sz(to), vector<int>(MAXLOG)); // tree size * log
   dfs(0, 0, 0);
   forr(k, 1, MAXLOG) forn(i, sz(to)) vp[i][k] = vp[vp[i][k
        - 1]][k - 1];
   forn(i, n) assert(vleaf[i] != -1);
};
```

7.13 Trie

```
struct Trie {
 map<char, Trie> m; // Trie* when using persistence
 // For persistent trie only. Call "clone" probably from
 // "add" and/or other methods, to implement persistence.
 void clone(int pos) {
   Trie* prev = NULL:
   if (m.count(pos)) prev = m[pos];
   m[pos] = new Trie();
   if (prev != NULL) {
     m[pos] \rightarrow m = prev \rightarrow m;
     // copy other relevant data
 void add(const string& s, int p = 0) {
   if (s[p]) m[s[p]].add(s, p + 1);
 void dfs() {
  // Do stuff
   forall(it. m) it->second.dfs():
};
```

7.14 Zfunction

```
// z[i] = length of longest substring starting from s[i]
     that is prefix of s
// z[i] = max k: s[0,k) == s[i,i+k)
vector<int> zFunction(string& s) {
 int 1 = 0, r = 0, n = sz(s);
 vector<int> z(n, 0):
 forr(i, 1, n) {
   if (i \le r) z[i] = min(r - i + 1, z[i - 1]);
   while (i + z[i] < n \&\& s[z[i]] == s[i + z[i]]) z[i]++:
   if (i + z[i] - 1 > r) l = i, r = i + z[i] - 1;
 return z:
void match(string& T, string& P) { // Text, Pattern -- 0(|T
 string s = P + '\$' + T; // '\$' should be a character that
      is not present in T
 vector<int> z = zFunction(s);
 forr(i, sz(P) + 1, sz(s)) if (z[i] == sz(P)); // match
      found, idx = i-sz(P)-1
```

8 Structures

8.1 Bigint

```
#define BASEXP 6
#define BASE 1000000
#define LMAX 1000
struct bint {
 int 1:
 11 n[LMAX];
 bint(11 x = 0) {
  1 = 1:
   forn(i, LMAX) {
    if(x) 1 = i + 1:
    n[i] = x \% BASE:
    x /= BASE:
 }
 bint(string x) {
   1 = (x.size() - 1) / BASEXP + 1:
   fill(n, n + LMAX, 0);
   ll r = 1:
   forn(i, sz(x)) {
    n[i / BASEXP] += r * (x[x.size() - 1 - i] - '0');
```

```
r *= 10:
     if (r == BASE) r = 1:
 void out() {
   cout << n[1 - 1]:
   dforn(i, 1 - 1) printf("%6.61lu", n[i]); // 6=BASEXP!
 void invar() {
   fill(n + 1, n + LMAX, 0);
   while (1 > 1 && !n[1 - 1]) 1--:
bint operator+(const bint& a. const bint& b) {
 c.1 = max(a.1, b.1);
 11 a = 0:
 forn(i, c.1) q += a.n[i] + b.n[i], c.n[i] = q % BASE, q /=
 if (q) c.n[c.1++] = q;
 c.invar();
 return c:
pair < bint, bool > lresta(const bint& a, const bint& b) // c =
 bint c:
 c.1 = max(a.1, b.1):
 forn(i, c.1) q += a.n[i] - b.n[i], c.n[i] = (q + BASE) %
      BASE.
                                 q = (q + BASE) / BASE - 1;
 c.invar():
 return make_pair(c, !q);
bint& operator = (bint& a. const bint& b) { return a = lresta
    (a. b).first: }
bint operator-(const bint& a, const bint& b) { return lresta
    (a, b).first; }
bool operator < (const bint& a, const bint& b) { return !
    lresta(a, b).second: }
bool operator <= (const bint& a, const bint& b) { return
    lresta(b, a).second: }
bool operator == (const bint& a, const bint& b) { return a <=
    b && b <= a; }
bint operator*(const bint& a. 11 b) {
 bint c;
 11 q = 0;
 forn(i, a.1) q += a.n[i] * b, c.n[i] = q % BASE, q /= BASE
```

```
c.1 = a.1:
 while (q) c.n[c.l++] = q \% BASE, q /= BASE;
 c.invar():
 return c:
bint operator*(const bint& a. const bint& b) {
 bint c:
 c.1 = a.1 + b.1:
 fill(c.n, c.n + b.1, 0);
 forn(i, a.1) {
   11 a = 0:
   forn(i, b.l) q += a.n[i] * b.n[i] + c.n[i + i], c.n[i + i]
       ] = q \% BASE,
                                                           BASE
   c.n[i + b.1] = a:
 c.invar():
 return c:
pair<bint. 11> ldiv(const bint& a, ll b) { // c = a / b : rm
     = a % b
 bint c:
 11 \text{ rm} = 0:
 dforn(i, a.l) {
   rm = rm * BASE + a.n[i]:
   c.n[i] = rm / b:
   rm %= b;
 c.1 = a.1:
 c.invar();
 return make pair(c, rm):
bint operator/(const bint& a. 11 b) { return ldiv(a. b).
ll operator%(const bint& a, ll b) { return ldiv(a, b).second
pair<bint, bint> ldiv(const bint& a, const bint& b) {
 bint c:
 bint rm = 0:
 dforn(i, a.1) {
   if (rm.l == 1 && !rm.n[0]) rm.n[0] = a.n[i]:
     dforn(j, rm.l) rm.n[j + 1] = rm.n[j];
     rm.n[0] = a.n[i]:
     rm.l++;
   11 q = rm.n[b.1] * BASE + rm.n[b.1 - 1];
   ll u = q / (b.n[b.l - 1] + 1);
```

29

```
ll v = q / b.n[b.l - 1] + 1;
while (u < v - 1) {
    ll m = (u + v) / 2;
    if (b * m <= rm) u = m;
    else v = m;
}
c.n[i] = u;
rm -= b * u;
}
c.l = a.l;
c.invar();
return make_pair(c, rm);
}
bint operator/(const bint& a, const bint& b) { return ldiv(a , b).first; }
bint operator%(const bint& a, const bint& b) { return ldiv(a , b).second; }</pre>
```

8.2 Disjoint Intervals

```
// stores disjoint intervals as [first, second)
// the final result is the union of the inserted intervals
// [1, 5), [2, 4), [10, 13), [11, 15) -> [1, 5), [10, 15)
struct disjoint_intervals {
 set<ii>> s:
 void insert(ii v) {
   if (v.fst >= v.snd) return;
   auto at = s.lower bound(v):
   auto it = at:
   if (at != s.begin() && (--at)->snd >= v.fst) v.fst = at->
        fst. --it:
   for (; it != s.end() && it->fst <= v.snd; s.erase(it++))</pre>
     v.snd = max(v.snd, it->snd);
   s.insert(v):
 }
};
```

8.3 Fenwick Tree

8.4 Gain Cost Set

```
// stores pairs (benefit,cost) (erases non-optimal pairs)
// Note that these pairs will be increasing by g and
    increasing by c
// If we insert a pair that is included in other, the big
    one will be deleted
// For lis 2d, create a GCS por each posible length, use as
    (-g, c) and
// binary search looking for the longest length where (-g, c
    ) could be added
struct GCS {
 set<ii>> s:
 void add(int g, int c) {
   ii x = \{g, c\};
   auto p = s.lower_bound(x);
   if (p != s.end() && p->snd <= x.snd) return;</pre>
   if (p != s.begin()) { // erase pairs with less or eq
        benefit and more cost
     --p;
     while (p->snd >= x.snd) {
      if (p == s.begin()) {
        s.erase(p):
        break;
       s.erase(p--);
   s.insert(x);
 int get(int gain) { // min cost for the benefit greater or
       equal to gain
   auto p = s.lower_bound((ii){gain, -INF});
   int r = p == s.end() ? INF : p \rightarrow snd;
   return r;
```

8.5 Hash Table

8.6 Indexed Set

8.7 Link Cut Tree

```
const int N_DEL = 0, N_VAL = 0; // neutral elements for
    delta & values
inline int u_oper(int x, int y){ return x + y; } // update
    operation
inline int q_oper(int lval, int rval){ return lval + rval; }
    // query operation
inline int u_segm(int d, int len){return d==N_DEL?N_DEL:d*
    len;} // upd segment
inline int u_delta(int d1, int d2){ // update delta
    if(d1==N_DEL) return d2;
    if(d2==N_DEL) return d1;
    return u_oper(d1, d2);
```

```
inline int a_delta(int v, int d){ // apply delta
return d==N_DEL ? v : u_oper(d, v);
// Splay tree
struct node_t{
 int szi, n_val, t_val, d;
 bool rev:
 node_t *c[2], *p;
 node_t(int v) : szi(1), n_val(v), t_val(v), d(N_DEL), rev
      \{(0)_{\alpha}, (0)\}
   c[0]=c[1]=0;
 bool is_root(){return !p || (p->c[0] != this && p->c[1] !=
       this);}
 void push(){
   if(rev){
     rev=0: swap(c[0], c[1]):
     forr(x,0,2) if(c[x]) c[x]->rev^=1;
   n_val = a_delta(n_val, d); t_val=a_delta(t_val, u_segm(d,
         szi)):
   forr(x,0,2) if(c[x])
 c[x]->d = u_delta(d, c[x]->d);
   d=N_DEL;
 void upd();
typedef node t* node:
int get_sz(node r){return r ? r->szi : 0;}
int get_tree_val(node r){
 return r ? a_delta(r->t_val, u_segm(r->d,r->szi)) : N_VAL;
void node t::upd() {
 t_val=q_oper(q_oper(get_tree_val(c[0]),a_delta(n_val,d)),
      get_tree_val(c[1]));
 szi = 1 + get_sz(c[0]) + get_sz(c[1]);
void conn(node c, node p, int is_left){
if(c) c->p = p:
if(is_left>=0) p->c[!is_left] = c;
void rotate(node x){
 node p = x-p, g = p-p;
 bool gCh=p->is_root(), is_left = x==p->c[0];
 conn(x->c[is_left],p,is_left);
 conn(p,x,!is_left);
 conn(x,g,gCh?-1:(p==g->c[0]));
 p->upd():
```

```
void splay(node x){
 while(!x->is_root()){
   node p = x-p, g = p-p;
   if(!p->is_root()) g->push();
    p->push(): x->push():
   if(!p->is\_root()) rotate((x==p->c[0])==(p==g->c[0])? p :
   rotate(x):
  x->push(); x->upd();
// Link-cut Tree
// Keep information of a tree (or forest) and allow to make
     many types of
// operations (see them below) in an efficient way.
     Internally, each node of
// the tree will have at most 1 "preferred" child. and as a
// tree can be seen as a set of independent "preferred"
     paths. Each of this
// paths is basically a list, represented with a splay tree,
// "implicit key" (for the BST) of each element is the depth
      of the
// corresponding node in the original tree (or forest). Also
     . each of these
// preferred paths (except one of them), will know who its "
     father path" is.
// i.e. will know the preferred path of the father of the
     top-most node.
// Make the path from the root to 'x' to be a "preferred
     path", and also make
// 'x' to be the root of its splay tree (not the root of the
      original tree).
node expose(node x){
 node last = 0;
 for(node y=x; y; y=y->p)
 splay(y), y \rightarrow c[0] = last, y \rightarrow upd(), last = y;
 splay(x);
 return last:
void make_root(node x){expose(x);x->rev^=1;}
node get_root(node x){
 expose(x);
 while (x->c[1]) x = x->c[1]:
 splay(x);
 return x:
```

```
node lca(node x, node y){expose(x); return expose(y);}
bool connected(node x, node y){
expose(x); expose(y);
return x==y ? 1 : x->p!=0;
// makes x son of y
void link(node x, node y){ make_root(x); x->p=y; }
void cut(node x, node y){ make_root(x); expose(y); y->c[1]->
    p=0; v->c[1]=0; }
node father(node x){
expose(x):
node r = x->c[1];
if(!r) return 0:
while (r->c[0]) r = r->c[0]:
return r;
// cuts x from its father keeping tree root
void cut(node x){ expose(father(x)): x->p = 0: }
int query(node x, node y){
make_root(x); expose(y);
return get_tree_val(y);
void update(node x, node y, int d){
make_root(x); expose(y); y->d=u_delta(y->d,d);
node lift_rec(node x, int k){
if(!x) return 0:
if(k == get_sz(x \rightarrow c[0])) \{ splay(x); return x; \}
if(k < get_sz(x->c[0])) return lift_rec(x->c[0],k);
return lift_rec(x->c[1], k-get_sz(x->c[0])-1);
// k-th ancestor of x (lift(x.1) is x's father)
node lift(node x, int k){ expose(x);return lift_rec(x,k); }
// distance from x to its tree root
int depth(node x){ expose(x):return get sz(x)-1: }
```

8.8 Merge Sort Tree

```
32
```

```
datain xx = x; // copy to avoid changing original
    if (xx.fst >= xx.snd) return:
    auto at = s.lower_bound(xx);
    auto it = at:
    if (at != s.begin() && (--at)->snd >= xx.fst) xx.fst = at
        ->fst. --it:
    for (; it != s.end() && it->fst <= xx.snd; s.erase(it++))</pre>
     xx.snd = max(xx.snd. it->snd):
    s.insert(xx):
  void get(const query& q, dataout& ans) {
    // modify this method according to problem
    // the example below is "is there any range covering q?"
    set<datain>::iterator ite = s.ub(mp(q + 1, 0));
   if (ite != s.begin() && prev(ite)->snd > q) ans = true;
 }
}:
struct MST {
  int sz:
  vector<DS> t:
  MST(int n) {
   sz = 1 \ll (32 - \_builtin\_clz(n));
   t = vector < DS > (2 * sz);
  void insert(int i, int j, datain& x) { insert(i, j, x, 1,
       0. sz): }
  void insert(int i, int j, datain& x, int n, int a, int b)
    if (j <= a || b <= i) return;</pre>
    if (i <= a && b <= i) {</pre>
     t[n].insert(x);
     return;
    // needed when want to update ranges that intersec with [
    // usually only needed on range-query + point-update
        problem
    // t[n].insert(x);
    int c = (a + b) / 2;
    insert(i, j, x, 2 * n, a, c);
    insert(i, i, x, 2 * n + 1, c, b):
  void get(int i, int j, query& q, dataout& ans) {
   return get(i, j, q, ans, 1, 0, sz);
  void get(int i, int j, query& q, dataout& ans, int n, int
      a, int b) {
    if (i <= a || b <= i) return:</pre>
    if (i <= a && b <= i) {</pre>
     t[n].get(q, ans);
```

```
return;
}
// needed when want to get from ranges that intersec with
        [i,j)
// usually only needed on point-query + range-update
        problem
// t[n].get(q, ans);
int c = (a + b) / 2;
get(i, j, q, ans, 2 * n, a, c);
get(i, j, q, ans, 2 * n + 1, c, b);
}
}; // Use: 1- definir todo lo necesario en DS, 2- usar
```

8.9 Rope

```
#include <ext/rope>
using namespace __gnu_cxx;
rope<int> s:
// Sequence with O(log(n)) random access, insert, erase at
     any position
// s.push_back(x)
// s.append(other_rope)
// s.insert(i.x)
// s.insert(i,other_rope) // insert rope r at position i
// s.erase(i,k) // erase subsequence [i,i+k)
// s.substr(i,k) // return new rope corresponding to
     subsequence [i,i+k)
// s[i] // access ith element (cannot modify)
// s.mutable reference at(i) // acces ith element (allows
     modification)
// s.begin() and s.end() are const iterators (use
     mutable_begin(), mutable_end()
// to allow modification)
```

8.10 Segtree 2d

```
void upd(int x, int v, int v) { // O(logn * logm)
 st[x + n][y + m] = v;
 for (int j = y + m; j > 1; j >>= 1) // update ranges
      containing y+m
   st[x + n][i >> 1] = operacion(st[x + n][i], st[x + n][i]^*
 for (int i = x + n; i > 1; i >>= 1) // in each range that
      contains row x+n
   for (int j = y + m; j; j >>= 1) // update the ranges that
         contains v+m
     st[i >> 1][i] = operacion(st[i][i], st[i ^ 1][i]);
int query(int x0, int x1, int y0, int y1) { // O(logn * logm
 int r = NEUT;
 // start at the bottom and move up each time
 for (int i0 = x0 + n, i1 = x1 + n; i0 < i1; i0 >>= 1, i1
      >>= 1) {
   int t[4], a = 0:
   // if the whole segment of row node i0 is included, then
        move right
   if (i0 & 1) t[q++] = i0++;
   // if the whole segment of row node i1-1 is included,
        then move left
   if (i1 & 1) t[q++] = --i1;
   forn(k, q) for (int j0 = y0 + m, j1 = y1 + m; j0 < j1; j0
         >>= 1, i1 >>= 1) {
     if (j0 & 1) r = operacion(r, st[t[k]][j0++]);
     if (j1 & 1) r = operacion(r, st[t[k]][--j1]);
   }
 return r:
```

8.11 Segtree Dynamic

```
typedef ll tipo;
const tipo neutro = 0;
tipo oper(const tipo& a, const tipo& b) { return a + b; }
struct ST {
  int sz;
  vector<tipo> t;
  ST(int n) {
    sz = 1 << (32 - __builtin_clz(n));
    t = vector<tipo>(2 * sz, neutro);
}
tipo& operator[](int p) { return t[sz + p]; }
```

```
void updall() { dforn(i, sz) t[i] = oper(t[2 * i], t[2 * i])
        + 1]): }
  tipo get(int i, int j) { return get(i, j, 1, 0, sz); }
  tipo get(int i, int j, int n, int a, int b) { // O(log n),
        [i, j)
    if (i <= a || b <= i) return neutro:</pre>
    if (i <= a && b <= j) return t[n]; // n = node of range [</pre>
        a.b)
    int c = (a + b) / 2:
    return oper(get(i, j, 2 * n, a, c), get(i, j, 2 * n + 1,
        c. b)):
  void set(int p, tipo val) { // O(log n)
    while (p > 0 \&\& t[p] != val) {
     t[p] = val;
     p /= 2;
     val = oper(t[p * 2], t[p * 2 + 1]);
 }
}; // Use: definir oper tipo neutro,
// cin >> n; ST st(n); forn(i, n) cin >> st[i]; st.updall();
```

8.12 Segtree Implicit

```
typedef int tipo;
const tipo neutro = 0;
tipo oper(const tipo& a, const tipo& b) { return a + b; }
// Compressed segtree, it works for any range (even negative
     indexes)
struct ST {
 ST *lc, *rc;
 tipo val:
 int L, R;
 ST(int 1, int r, tipo x = neutro) {
   lc = rc = nullptr:
   L = 1, R = r, val = x;
 ST(int 1, int r, ST* lp, ST* rp) {
   if (lp != nullptr && rp != nullptr && lp->L > rp->L) swap
        (lp, rp);
   lc = lp, rc = rp;
   L = 1, R = r;
   val = oper(lp == nullptr ? neutro : lp->val.
             rp == nullptr ? neutro : rp->val);
 // O(log(R-L)), parameter 'isnew' only needed when
      persistent
```

```
// This operation inserts at most 2 nodes to the tree. i.e
 // total memory used by the tree is O(N), where N is the
 // of times this 'set' function is called. (2*log nodes
      when persistent)
 void set(int p, tipo x, bool isnew = false) { // return ST
       * for persistent
   // uncomment for persistent
   // if(!isnew) {
   // ST* newnode = new ST(L, R, lc, rc):
   // return newnode->set(p, x, true):
   // }
   if (L + 1 == R) {
     val = x:
     return; // 'return this;' for persistent
   int m = (L + R) / 2;
   ST**c = p < m ? &lc : &rc:
   if (!*c) *c = new ST(p, p + 1, x);
   else if ((*c)->L \le p \&\& p < (*c)->R) {
     // replace by comment for persistent
     (*c)->set(p, x);
     // *c = (*c) - set(p,x);
   } else {
     int 1 = L, r = R;
     while ((p < m) == ((*c)->L < m)) {
       if (p < m) r = m:
       else l = m;
       m = (1 + r) / 2:
     *c = new ST(1, r, *c, new ST(p, p + 1, x));
     // The code above, inside this else block, could be
     // replaced by the following 2 lines when the complete
     // range has the form [0, 2<sup>k</sup>)
     // int rm = (1 << (32 - builtin clz(p^(*c)->L)))-1:
     // *c = new ST(p \& rm, (p | rm)+1, *c, new ST(p, p+1,
          x)):
   val = oper(lc ? lc->val : neutro, rc ? rc->val : neutro);
   // return this: // uncomment for persistent
  tipo get(int ql, int qr) { // O(log(R-L))
   if (qr <= L || R <= ql) return neutro;</pre>
   if (ql <= L && R <= qr) return val;</pre>
   return oper(lc ? lc->get(ql, qr) : neutro, rc ? rc->get(
        ql, qr) : neutro);
}; // Usage: 1- RMQ st(MIN_INDEX, MAX_INDEX) 2- normally use
```

8.13 Segtree Lazv

```
typedef 11 Elem:
typedef ll Alt;
const Elem neutro = 0;
const Alt neutro2 = 0;
Elem oper(const Elem& a, const Elem& b) { return a + b; }
struct ST {
int sz:
 vector<Elem> t;
 vector<Alt> dirty: // Alt and Elem could be different
      types
 ST(int n) {
   sz = 1 << (32 - __builtin_clz(n));</pre>
   t = vector<Elem>(2 * sz, neutro);
   dirty = vector<Alt>(2 * sz. neutro2):
 Elem& operator[](int p) { return t[sz + p]; }
 void updall() { dforn(i, sz) t[i] = oper(t[2 * i], t[2 * i])
 void push(int n, int a, int b) { // push dirt to n's child
   if (dirty[n] != neutro2) { // n = node of range [a,b)
     t[n] += dirty[n] * (b - a); // CHANGE for your problem
       dirty[2 * n] += dirty[n]; // CHANGE for your
            problem
       dirty[2 * n + 1] += dirty[n]; // CHANGE for your
            problem
     dirty[n] = neutro2;
 Elem get(int i, int j, int n, int a, int b) { // O(lgn)
   if (i <= a || b <= i) return neutro:</pre>
   push(n, a, b);
                                    // adjust value before
        using it
   if (i <= a && b <= j) return t[n]; // n = node of range [</pre>
        a,b)
   int c = (a + b) / 2:
   return oper(get(i, j, 2 * n, a, c), get(i, j, 2 * n + 1,
        c, b));
 Elem get(int i, int j) { return get(i, j, 1, 0, sz); }
 // altera los valores en [i, j) con una alteracion de val
 void update(Alt val. int i. int i. int n. int a. int b) {
      // O(lgn)
   push(n, a, b);
   if (j <= a || b <= i) return;</pre>
   if (i <= a && b <= j) {</pre>
```

33

```
34
```

```
dirtv[n] += val: // CHANGE for your problem
     push(n, a, b);
     return;
   int c = (a + b) / 2;
   update(val, i, j, 2 * n, a, c), update(val, i, j, 2 * n +
   t[n] = oper(t[2 * n], t[2 * n + 1]);
 void update(Alt val, int i, int j) { update(val, i, j, 1,
}: // Use: definir operacion, neutros, Alt. Elem, uso de
    dirty
// cin >> n; ST st(n); forn(i,n) cin >> st[i]; st.updall()
```

8.14 Segtree Persistent

```
typedef int tipo;
const tipo neutro = 0;
tipo oper(const tipo& a, const tipo& b) { return a + b; }
struct ST {
 int n;
 vector<tipo> st;
 vector<int> L. R:
 ST(int nn) : n(nn), st(1, neutro), L(1, 0), R(1, 0) {}
 int new_node(tipo v, int 1 = 0, int r = 0) {
   int id = sz(st);
   st.pb(v), L.pb(1), R.pb(r);
   return id:
 int init(vector<tipo>& v, int 1, int r) {
   if (1 + 1 == r) return new node(v[1]):
   int m = (1 + r) / 2, a = init(v, 1, m), b = init(v, m, r)
   return new_node(oper(st[a], st[b]), a, b);
 int update(int cur, int pos, tipo val, int l, int r) {
   int id = new_node(st[cur], L[cur], R[cur]);
   if (1 + 1 == r) {
     st[id] = val:
     return id:
   int m = (1 + r) / 2, ASD; // MUST USE THE ASD!!!
   if (pos < m) ASD = update(L[id], pos, val, 1, m), L[id] =</pre>
   else ASD = update(R[id], pos, val, m, r), R[id] = ASD;
   st[id] = oper(st[L[id]], st[R[id]]);
   return id:
```

```
tipo get(int cur. int from. int to. int 1. int r) {
   if (to <= 1 || r <= from) return neutro;</pre>
   if (from <= 1 && r <= to) return st[cur];</pre>
   int m = (1 + r) / 2;
         . to. m. r)):
  int init(vector<tipo>& v) { return init(v, 0, n); }
  int update(int root, int pos, tipo val) {
   return update(root, pos, val, 0, n);
 tipo get(int root, int from, int to) { return get(root,
      from, to, 0, n); }
}; // usage: ST st(n); root = st.init(v) (or root = 0);
// new_root = st.update(root,i,x); st.get(root,l,r);
```

8.15 Segtree Static

```
// Solo para funciones idempotentes (como min y max, pero no
// Usar la version dynamic si la funcion no es idempotente
struct RMQ {
#define LVL 10 // LVL such that 2^LVL>n
 tipo vec[LVL][1 << (LVL + 1)]:
 tipo& operator[](int p) { return vec[0][p]; }
 tipo get(int i, int j) { // intervalo [i,j) - 0(1)
   int p = 31 - __builtin_clz(j - i);
   return min(vec[p][i], vec[p][i - (1 << p)]);</pre>
 void build(int n) { // O(nlogn)
   int mp = 31 - __builtin_clz(n);
   forn(p, mp) forn(x, n - (1 << p)) vec[p + 1][x] =
       min(vec[p][x], vec[p][x + (1 << p)]);
 }
}: // Use: define LVL v tipo: insert data with []: call
    build; answer queries
```

8.16 Treap Implicit

```
// An array represented as a treap, where the "key" is the
// However, the key is not stored explicitly, but can be
    calculated as
// the sum of the sizes of the left child of the ancestors
    where the node
// is in the right subtree of it.
```

```
// (commented parts are specific to range sum queries and
                                                                   other problems)
                                                              // rng = random number generator, works better than rand in
                                                                   some cases
return oper(get(L[cur], from, to, 1, m), get(R[cur], from | mt19937 rng(chrono::steady_clock::now().time_since_epoch().
                                                                   count()):
                                                              typedef struct item* pitem;
                                                              struct item {
                                                               int pr, cnt, val;
                                                               bool rev; // for reverse operation
                                                                int sum; // for range query
                                                                int add: // for lazv prop
                                                                pitem 1, r;
                                                                pitem p; // ptr to parent, for getRoot
                                                                item(int val) : pr(rng()), cnt(1), val(val), rev(false),
                                                                     sum(val), add(0) {
                                                                 1 = r = p = NULL:
                                                              }:
                                                              void push(pitem node) {
                                                               if (node) {
                                                                 // for reverse operation
                                                                 if (node->rev) {
                                                                    swap(node->1, node->r);
                                                                    if (node->1) node->1->rev ^= true;
                                                                    if (node->r) node->r->rev ^= true;
                                                                    node->rev = false:
                                                                 // for lazy prop
                                                                 node->val += node->add. node->sum += node->cnt * node->
                                                                  if (node->1) node->1->add += node->add;
                                                                 if (node->r) node->r->add += node->add:
                                                                 node -> add = 0;
                                                              int cnt(pitem t) { return t ? t->cnt : 0; }
                                                              int sum(pitem t) { return t ? push(t), t->sum : 0; } // for
                                                                   range query
                                                              void upd_cnt(pitem t) {
                                                               if (t) {
                                                                 t\rightarrow cnt = cnt(t\rightarrow 1) + cnt(t\rightarrow r) + 1;
                                                                 t\rightarrow sum = t\rightarrow val + sum(t\rightarrow l) + sum(t\rightarrow r): // for range sum
                                                                 if (t->1) t->1->p = t;
                                                                                                         // for getRoot
                                                                 if (t->r) t->r->p = t;
                                                                                                         // for getRoot
                                                                 t->p = NULL:
                                                                                                         // for getRoot
                                                              void split(pitem node, pitem& L, pitem& R, int sz) { // sz:
                                                                   wanted size for L
```

```
if (!node) {
   L = R = 0:
   return;
 push(node);
 // If node's left child has at least sz nodes, go left
 if (sz <= cnt(node->1)) split(node->1, L, node->1, sz), R
      = node;
 // Else, go right changing wanted sz
 else split(node->r, node->r, R, sz - 1 - cnt(node->l)), L
      = node:
 upd cnt(node):
void merge(pitem& result, pitem L, pitem R) { // O(log)
 push(L), push(R);
 if (!L || !R) result = L ? L : R;
 else if (L->pr > R->pr) merge(L->r, L->r, R), result = L;
 else merge(R->1, L, R->1), result = R;
 upd cnt(result):
void insert(pitem& node, pitem x, int pos) { // 0-index 0(
    log)
 pitem 1, r;
 split(node, 1, r, pos);
 merge(1, 1, x);
 merge(node, 1, r);
void erase(pitem& node, int pos) { // 0-index 0(log)
 if (!node) return;
 push(node):
 if (pos == cnt(node->1)) merge(node, node->1, node->r);
 else if (pos < cnt(node->1)) erase(node->1, pos);
 else erase(node->r, pos - 1 - cnt(node->l));
 upd_cnt(node);
// reverse operation
void reverse(pitem& node, int L, int R) { //[L, R) O(log)
 pitem t1, t2, t3;
 split(node, t1, t2, L);
 split(t2, t2, t3, R - L);
 t2->rev ^= true:
 merge(node, t1, t2);
 merge(node, node, t3):
// lazy add
void add(pitem& node, int L, int R, int x) { //[L, R) O(log)
 pitem t1, t2, t3;
 split(node, t1, t2, L):
 split(t2, t2, t3, R - L);
 t2->add += x:
```

```
merge(node, t1, t2):
 merge(node, node, t3);
// range query get
int get(pitem& node, int L, int R) { //[L, R) 0(log)
 pitem t1, t2, t3:
 split(node, t1, t2, L);
 split(t2, t2, t3, R - L);
 push(t2):
 int ret = t2->sum;
 merge(node, t1, t2):
 merge(node, node, t3):
 return ret;
void push_all(pitem t) { // for getRoot
 if (t->p) push_all(t->p);
 push(t):
pitem getRoot(pitem t. int& pos) { // get root and position
    for node t
 push_all(t);
 pos = cnt(t->1):
 while (t->p) {
   pitem p = t-p;
   if (t == p -> r) pos += cnt(p -> 1) + 1;
 return t:
void output(pitem t) { // useful for debugging
 if (!t) return;
 push(t);
 output(t->1):
 cout << ' ' << t->val;
 output(t->r):
```

8.17 Treap

```
typedef struct item* pitem;
struct item {
    // pr = randomized priority, key = BST value, cnt = size
        of subtree
    int pr, key, cnt;
    pitem 1, r;
    item(int key) : key(key), pr(rand()), cnt(1), 1(NULL), r(
            NULL) {}
};
int cnt(pitem node) { return node ? node->cnt : 0; }
```

```
void upd_cnt(pitem node) {
if (node) node->cnt = cnt(node->1) + cnt(node->r) + 1;
// splits t in 1 and r - 1: <= kev. r: > kev
void split(pitem node, int key, pitem& L, pitem& R) { // O(
    log)
 if (!node) L = R = 0;
 // if cur > key, go left to split and cur is part of R
 else if (key < node->key) split(node->1, key, L, node->1),
 // if cur <= key, go right to split and cur is part of L
 else split(node->r, kev, node->r, R), L = node;
 upd_cnt(node);
// 1) go down the BST following the key of the new node (x),
// you reach NULL or a node with lower pr than the new one.
// 2.1) if you reach NULL, put the new node there
// 2.2) if you reach a node with lower pr. split the subtree
     rooted at that
// node, put the new one there and put the split result as
    children of it.
void insert(pitem& node, pitem x) { // O(log)
 if (!node) node = x;
 else if (x->pr > node->pr) split(node, x->key, x->1, x->r)
      . node = x:
 else insert(x->key <= node->key ? node->l : node->r, x);
 upd cnt(node):
// Assumes that the kev of every element in L <= to the kevs
void merge(pitem& result, pitem L, pitem R) { // O(log)
// If one of the nodes is NULL, the merge result is the
      other node
 if (!L || !R) result = L ? L : R:
 // if L has higher priority than R, put L and update it's
 // with the merge result of L->r and R
 else if (L->pr > R->pr) merge(L->r, L->r, R), result = L;
 // if R has higher priority than L, put R and update it's
      left child
 // with the merge result of L and R->1
 else merge(R->1, L, R->1), result = R:
 upd cnt(result):
// go down the BST following the key to erase. When the key
// replace that node with the result of merging it children
void erase(pitem& node, int key) { // O(log), (erases only 1
     repetition)
```

```
36
```

```
if (node->kev == kev) merge(node, node->l, node->r);
 else erase(key < node->key ? node->l : node->r, key);
 upd_cnt(node);
// union of two treaps
void unite(pitem& t. pitem L. pitem R) { // O(M*log(N/M))
 if (!L || !R) {
   t = L ? L : R;
   return:
 if (L->pr < R->pr) swap(L, R);
 pitem p1. p2:
 split(R, L->key, p1, p2);
 unite(L->1, L->1, p1);
 unite(L->r, L->r, p2);
 t = L;
 upd cnt(t):
pitem kth(pitem t. int k) { // element at "position" k
 if (!t) return 0:
 if (k == cnt(t->1)) return t;
 return k < cnt(t\rightarrow 1) ? kth(t\rightarrow 1, k) : kth(t\rightarrow r, k - cnt(t
      ->1) - 1);
pair<int, int> lb(pitem t, int key) { // position and value
    of lower bound
 if (!t) return {0, 1 << 30};</pre>
                                    // (special value)
 if (kev > t->kev) {
   auto w = lb(t->r, kev);
   w.fst += cnt(t->1) + 1:
   return w;
 auto w = lb(t->1, kev):
 if (w.fst == cnt(t->1)) w.snd = t->key;
 return w:
```

8.18 Union Find Rollbacks

```
dsu with rollbacks() {}
 dsu with rollbacks(int n) {
   p.rsz(n), rnk.rsz(n);
   forn(i, n) { p[i] = i, rnk[i] = 0; }
   comps = n;
 int find_set(int v) { return (v == p[v]) ? v : find_set(p[
      vl): }
 bool unite(int v. int u) {
   v = find_set(v), u = find_set(u);
   if (v == u) return false:
   if (rnk[v] > rnk[u]) swap(v, u);
   op.push(dsu_save(v, rnk[v], u, rnk[u]));
   u = [v]a
   if (rnk[u] == rnk[v]) rnk[u]++;
   return true:
 void rollback() {
   if (op.empty()) return;
   dsu_save x = op.top();
   op.pop(), comps++;
   p[x.v] = x.v, rnk[x.v] = x.rnkv;
   p[x.u] = x.u, rnk[x.u] = x.rnku;
};
```

8.19 Union Find

```
struct UnionFind {
 int nsets:
 vector<int> f, setsz; // f[i] = parent of node i
 UnionFind(int n): nsets(n), f(n, -1), setsz(n, 1) {}
 int comp(int x) { return (f[x] == -1 ? x : f[x] = comp(f[x
      1)); } // 0(1)
 bool join(int i, int j) { // returns true if already in
      the same set
   int a = comp(i), b = comp(j);
   if (a != b) {
     if (setsz[a] > setsz[b]) swap(a, b);
     f[a] = b; // the bigger group (b) now represents the
         smaller (a)
     nsets--, setsz[b] += setsz[a];
   return a == b:
 }
};
```

9 Template

9.1 Template

```
#include <bits/stdc++.h>
#define forr(i, a, b) for (int i = (a): i < (b): i++)
#define forn(i, n) forr(i, 0, n)
#define dforn(i, n) for (int i = (n) - 1; i \ge 0; i--)
#define forall(it, v) for (auto it = v.begin(); it != v.end
    (); it++)
#define sz(c) ((int)c.size())
#define rsz resize
#define pb push_back
#define mp make_pair
#define lb lower_bound
#define ub upper_bound
#define fst first
#define snd second
#ifdef ANARAP
// local
#else
// judge
#endif
using namespace std;
typedef long long 11;
typedef pair<int, int> ii;
int main() {
// agregar g++ -DANARAP en compilacion
#ifdef ANARAP
 freopen("input.in", "r", stdin);
 // freopen("output.out", "w", stdout);
#endif
 ios::sync_with_stdio(false);
 cin.tie(NULL);
 cout.tie(NULL):
 return 0:
```

10 Utils

10.1 C++ Utils

```
// 1- (mt19937_64 for 64-bits version)
```

```
mt19937 rng(
   chrono::steady_clock::now().time_since_epoch().count());
shuffle(v.begin(), v.end(), rng); // vector random shuffle
// 2- Pragma
#pragma GCC optimize("03,unroll-loops")
#pragma GCC target("avx2.bmi.bmi2.lzcnt.popcnt")
// 3- Custom comparator for set/map
struct comp {
 bool operator()(const double& a, const double& b) const {
   return a + EPS < b;</pre>
 }
}:
set<double, comp> w; // or map<double,int,comp>
// 4- Iterate over non empty subsets of bitmask
for (int s = m: s: s = (s - 1) & m) // Decreasing order
for (int s = 0; s = s - m \& m;) // Increasing order
// 5- Other bits operations
int __builtin_popcount(unsigned int x) // # of bits on in x
int builtin popcountll(unsigned long long x) // ll version
int builtin ctz(unsigned int x) //# of trailing 0 (x != 0)
int __builtin_clz(unsigned int x) // # of leading 0 (x != 0)
v = (x & (-x)) // Find the least significant bit that is on
// 6- Input
inline void Scanf(int& a) { // only positive ints
 char c = 0:
 while (c < 33) c = getc(stdin);</pre>
 while (c > 33) a = a * 10 + c - '0', c = getc(stdin):
```

10.2 Compile Commands

```
g++ -std=c++20 file -o filename Para Geany: compile: g++ -DANARAP -std=c++20 -g -O2 -Wconversion -Wshadow -Wall -Wextra -c "%f" build: g++ -DANARAP -std=c++20 -g -O2 -Wconversion -Wshadow -Wall -Wextra -o "%e" "%f"
```

10.3 Python Example

```
import sys, math
input = sys.stdin.readline
############## ---- Input Functions ---- #########
def inp():
    return(int(input()))
def inlt():
```

```
return(list(map(int,input().split())))
def insr():
    s = input()
    return(list(s[:len(s) - 1]))
def invr():
    return(map(float,input().split()))
n, k = inlt() # read two numbers in a line
```

10.4 Test Generator

```
# usage: (note that test_generator.py refers to this file)
# 1. Modify the code below to generate the tests you want to
# 2. Compile the 2 solutions to compare (e.g. A.cpp B.cpp
# 3. run: python3 test_generator.py A B
# Note that 'test_generator.py', 'A' and 'B' must be in the
# Note that A and B must READ FROM STANDARD INPUT, not from
# be careful with the usual freopen("input.in", "r", stdin)
     in them
import sys, subprocess
from datetime import datetime
from random import randint, seed
def buildTestCase(): # example of trivial "a+b" problem
 a = randint(1,100)
 b = randint(1.100)
 return f"{a} {b}\n"
seed(datetime.now().timestamp())
ntests = 100 # change as wanted
sol1 = sys.argv[1]
sol2 = svs.argv[2]
# Sometimes it's a good idea to use extra arguments that
     could then be
# passed to 'buildTestCase' and help you "shape" your tests
for curtest in range(ntests):
 test case = buildTestCase()
 # Here the test is executed and outputs are compared
 print("running... ", end='')
 ans1 = subprocess.check output(f"./{sol1}".
 input=test_case.encode('utf-8')).decode('utf-8')
 ans2 = subprocess.check_output(f"./{sol2}",
 input=test case.encode('utf-8')).decode('utf-8')
 if ans1 == ans2:
```

10.5 Theory

Derangements: Permutations of a set such that none of the elements appear in their original position.

$$D(n) = (n-1)(D(n-1) + D(n-2)) = nD(n-1) + (-1)^n = \left\lfloor \frac{n!}{e} \right\rfloor$$

Burnside's lemma: Given a group G of symmetries and a set X, the number of elements of X up to symmetry equals

$$\frac{1}{|G|} \sum_{g \in G} |X^g|,$$

where X^g are the elements fixed by g (g.x = x). If f(n) counts "configurations" (of some sort) of length n, we can ignore rotational symmetry using $G = Z_n$ to get

$$g(n) = \frac{1}{n} \sum_{k=0}^{n-1} f(\gcd(n,k)) = \frac{1}{n} \sum_{k|n} f(k)\phi(n/k).$$

Labeled unrooted trees: # on n vertices: n^{n-2} # on k existing trees of size n_i : $n_1 n_2 \cdots n_k n^{k-2}$ # with degrees d_i : $(n-2)!/((d_1-1)!\cdots(d_n-1)!)$ Catalan numbers:

$$C_n = \frac{1}{n+1} {2n \choose n} = {2n \choose n} - {2n \choose n+1} = \frac{(2n)!}{(n+1)!n!}$$

$$C_0 = 1, \ C_{n+1} = \frac{2(2n+1)}{n+2}C_n, \ C_{n+1} = \sum_{i=1}^{n} C_i C_{n-i}$$

 $C_n = 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, \dots$

- $\bullet\,$ sub-diagonal monotone paths in an $n\times n$ grid.
- strings with n pairs of parenthesis, correctly nested.

- binary trees with with n+1 leaves (0 or 2 children).
- binary search trees with *n* vertices.
- binary trees with n nodes is $C_n * n!$.
- ordered trees with n+1 vertices.
- ways a convex polygon with n+2 sides can be cut into triangles by connecting vertices with straight lines.
- \bullet permutations of [n] with no 3-term increasing subseq.

Stars and bars: Count number of ways to partition a set of n unlabeled objects into k (possibly empty) labeled subsets:

$$\binom{n+k-1}{n}$$

Stirling numbers: Count number of ways to partition a set of n labeled objects into k nonempty unlabeled subsets:

$$S_{n,k} = \frac{1}{k!} \sum_{i=0}^{k} (-1)^{k-i} {k \choose i} i^n = \sum_{i=0}^{k} \frac{(-1)^{k-i} i^n}{(k-i)! i!}$$

Bell numbers: Count number of partitions of a set with n members:

$$B_n = \sum_{k=0}^n S_{n,k}$$

Binomial formula:

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}$$

Number of Spanning Trees: Create an $N \times N$ matrix mat, and for each edge $a \to b \in G$, do mat[a][b]--, mat[b][b]++ (and mat[b][a]--, mat[a][a]++ if G is undirected). Remove the ith row and column and take the determinant; this yields the number of directed spanning trees rooted at i (if G is undirected, remove any row/column).

Erdős–Gallai theorem: A simple graph with node degrees $d_1 \geq \cdots \geq d_n$ exists iff $d_1 + \cdots + d_n$ is even and for every $k = 1 \dots n$,

$$\sum_{i=1}^{k} d_i \le k(k-1) + \sum_{i=k+1}^{n} \min(d_i, k).$$

Equations:

$$ax^2 + bx + c = 0 \Rightarrow x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

The extremum is given by x = -b/2a.

$$ax + by = e$$

$$cx + dy = f$$

$$\Rightarrow x = \frac{ed - bf}{ad - bc}$$

$$y = \frac{af - ec}{ad - bc}$$

Triangles: Side lengths: a, b, c

Semiperimeter: $p = \frac{a+b+c}{2}$

Area: $A = \sqrt{p(p-a)(p-b)(p-c)}$

Circumradius: $R = \frac{abc}{4A}$

Inradius: $r = \frac{A}{p}$

Length of median (divides triangle into two equal-area triangles): $m_a = \frac{1}{2}\sqrt{2b^2 + 2c^2 - a^2}$

Spherical coordinates:

$$x = r \sin \theta \cos \phi \qquad r = \sqrt{x^2 + y^2 + z^2}$$

$$y = r \sin \theta \sin \phi \qquad \theta = a\cos(z/\sqrt{x^2 + y^2 + z^2})$$

$$z = r \cos \theta \qquad \phi = a\tan(y, x)$$

Sums:

$$c^{a} + c^{a+1} + \dots + c^{b} = \frac{c^{b+1} - c^{a}}{c-1}, c \neq 1$$

$$1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$$

$$1^{2} + 2^{2} + 3^{2} + \dots + n^{2} = \frac{n(2n+1)(n+1)}{6}$$

$$1^{3} + 2^{3} + 3^{3} + \dots + n^{3} = \frac{n^{2}(n+1)^{2}}{4}$$

$$1^{4} + 2^{4} + 3^{4} + \dots + n^{4} = \frac{n(n+1)(2n+1)(3n^{2} + 3n - 1)}{30}$$

Series:

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots, (-\infty < x < \infty)$$

$$\ln(1+x) = x - \frac{x^{2}}{2} + \frac{x^{3}}{3} - \frac{x^{4}}{4} + \dots, (-1 < x \le 1)$$

$$\sqrt{1+x} = 1 + \frac{x}{2} - \frac{x^{2}}{8} + \frac{2x^{3}}{32} - \frac{5x^{4}}{128} + \dots, (-1 \le x \le 1)$$

$$\sin x = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} - \frac{x^{7}}{7!} + \dots, (-\infty < x < \infty)$$

$$\cos x = 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} - \frac{x^{6}}{6!} + \dots, (-\infty < x < \infty)$$

Lagrange interpolation: n + 1 points determine the following polynomial of degree n:

$$f(x) = \sum_{i=1}^{n} y_i \prod_{i \neq j} \frac{x - x_j}{x_i - x_j}$$

Note: denominator can be get efficiently if x coordinates are all from 1 to n+1 using suffix and prefix arrays.

Expectation is linear:

$$E(aX + bY) = aE(X) + bE(Y)$$

Pick's theorem: $A = I + \frac{B}{2} - 1$

Konig's Theorem: In a bipartite graph, max matching = min vertex cover (cover edges using nodes).

Also, min edge cover (cover nodes using edges) = max independent set = N - min vertex cover = N - max matching

set is a set of elements no two of which are comparable to theorem states that for any partially ordered set, the sizes when u < v. Those vertices outside the min vertex cover in each other, and a chain is a set of elements every two of of the max antichain and of the min chain decomposition both U and V form a max antichain. which are comparable. A chain decomposition is a partition are equal. Equivalent to Konig's theorem on the bipartite

Dilworth's Theorem: An antichain in a partially ordered of the elements of the order into disjoint chains. Dilworth's graph (U, V, E) where U = V = S and (u, v) is an edge

39