Worksheet for the determination of the absorbed dose to water in an electron-beam

Date:

31-Mar-25

CLINICA AUNA CHICLAYO

User:

1. Radiation treatment unit and reference conditions for $D_{w,Q}$ determination **INFINITY CHICLAYO** Accelerator: Nominal energy: 12.000 MeV g cm⁻² MU min⁻ Nominal dose rate: Measured R₅₀: 4.740 Reference phantom: obtained from Reference field size: 10X10 cm x cm Reference SSD: 100 cm g cm⁻² g cm Beam quality, Q (R_{50,w}) Ref. depth $z_{ref,w} = 0.6 R_{50} - 0.1$: 2.8 2. Ionization chamber and electrometer 268895004 Ion. chamber model Serial No.: $\rm g~cm^{-2}$ Chamber wall / window material: **PMMA** thickness: 0.1180 g cm⁻² Waterproof sleeve material: thickness: Phantom window material: thickness: g cm⁻² Abs. dose-to-water calibration factor ^a Calibration quality Q_0 : Calibration depth: 5.0 g cm⁻ If Q_0 is electron beam, give $R_{50,w}$: Reference conditions for calibration *P*₀: **101.3** kPa T_0 : 20.0 Rel. humidity: 50 Pol. potential V_1 : Calib. polarity: User polarity: Calibration laboratory: **LSCD IPEN** Date: 26-Jun-24 Electrometer model: PC ELECTROMETER Serial no.: 270267006 Calib. separately from chamber: Range setting: If yes Calibration laboratory: Date: 3. Phantom Water phantom window material: thickness: g cm⁻² g cm⁻³ Plastic phantom phantom material: density: g cm⁻² depth scaling factor c_{pl} : reference depth $z_{ref,pl} = z_{ref} / c_{pl}$: fluence scaling factor: $h_{pl} =$ 4. Dosimetry reading ^b and correction for influence quantities Uncorrected dosimeter reading at V_1 and user polarity: 12.788 Corresponding accelerator monitor units: 100 MU 0.1279 Ratio of dosimeter reading and monitor units: (i) P: **100.6** kPa T: 23.5 Rel. humidity: 1.0189 (ii) Electrometer calibration factor (iii) Polarity correction c rdg at $+V_1$ $M_{+} = 12.788$ rdg at $-V_1$: $M_{-} = -12.794$ 1.0002

(iv) Recombination correction (two-voltage method) V_2 (reduced) = Polarizing voltages: V_1 (normal) = -300 Readings at each V: $M_1 =$ 12.788 $M_2 =$ 12.746 Voltage ratio $V_1 / V_2 =$ Read. ratio $M_1/M_2 =$ 2.0000 1.0033 Beam type: $a_0 = 2.3370$ -3.6360 $a_2 =$ 2.2990 1.0032 d

Corrected dosimeter reading at the voltage V₁:

1.3075E-01

5. Absorbed dose to water at the reference depth, z_{ref}

Beam quality correction factor for user quality Q:

If Q_0 is ⁶⁰Co Table 18 gives
If Q_0 is electron beam Table 19 gives

Use derived from

If is derived from series of electron beam calibrations

Calibration laboratory: Date:

9.9134E-03 Gy / MU

6. Absorbed dose rate to water at the depth of dose maximum, z_{max}

Depth of dose maximum: $z_{max} = 2.40$ g cm⁻²

Percentage depth-dose at z_{ref} for a 10X10 cm x cm field size:

 $PDD(z_{ref} = 2.8 \text{ g cm}^{-2}) = 99.24$ %

Absorbed-dose calibration of monitor at z_{max} :

9.9893E-03 Gy/MU

0.913

Notes: 300 -150 -300 Voltaje nC

-12.783 12.738 12.776
-12.8 12.748 12.792
-12.8 12.751 12.797

-12.794 12.746 12.788

^a Note that if Q_0 is 60 Co,

is denoted $N_{D,w}$

^d Check that

0.003

0.003

^b All readings should be checked for leakage and corrected if necessary

 $^{^{\}rm c}$ M in the denominator of k_{pol} denotes reading at the user polarity. Preferably, each reading in the equation should be the average of the ratios of M (or M_+ or M_-) to the reading of an external monitor, M_{em} .