Urto Elastico in due dimensioni

Tratterà la simulazione di Urti Elastici tra circonferenze.

Cambiare gli assi

Per trattare più semplicemente l'urto conviene cambiare gli assi per trasformare il sistema di riferimento.

I e j sono due versori, cioè vettori di modulo unitario, in particolare:

- i è la direzione che congiunge i centri; è il versore radiale.
- j è perpendicolare ad i; è il versore tangenziale.

Perché cambiare gli assi

Invece che usare x e y sono passato ad un sistema di riferimento in cui utilizzo i e j.

In direzione radiale invece avrò un urto elastico monodimensionale.

La Massa

Per semplificare i calcoli, assumeremo che la masse delle circonferenze in gioco siano uguali, in particolare ci permette di eliminare termini negativi dalla seguente formula:

$$\begin{cases} v_{1f} = v_{1i} \frac{(m_1 - m_2)}{(m_1 + m_2)} + v_{2i} \frac{2m_2}{(m_1 + m_2)} \\ v_{2f} = v_{2i} \frac{(m_2 - m_1)}{(m_1 + m_2)} + v_{1i} \frac{2m_1}{(m_1 + m_2)} \end{cases}$$

Ponendo m1 = m2 otteniamo che:

$$\begin{cases} v_{1f} = v_{2i} \\ v_{2f} = v_{1i} \end{cases}$$
 Le velocità sull'asse radiale si scambiano.

Sistema di riferimento risultante

Unendo le componenti radiale e tangenziale arriviamo al seguente risultato:

$$\vec{v}_{1f} = (\vec{v}_{1i} * \hat{\jmath})\hat{\jmath} + (\vec{v}_{2i} * \hat{\imath})\hat{\imath}$$
componente componente radiale componente radiale

In generale le componenti si calcolano facendo il prodotto tra il versore ed il vettore.

Bordi della simulazione

Sarà necessario cambiare solo una delle componenti della velocità.

Se il corpo si scontra con un muro a destra o sinistra solo la componente x cambia di segno.

Se il corpo si scontra con un muro sopra o sotto solo la componente y cambia di segno.

Attrito

• Calcolando la forza di attrito dinamico (dato il coefficiente)

$$\vec{F}_d = \mu_d |\vec{N}| (-\hat{v})$$
 dove, nel nostro caso, N = mg

Descriviamo la legge orario dei corpi come un Moto Uniformemente Accelerato dove $a = -g\mu_d$ successivamente possiamo utilizzare il metodo di integrazione numerica offerto da Eulero per esplicitare le posizione e le velocità delle circonferenze sulle basi di un Δt stabilito.