# DÉTECTION ET SUIVI D'OBJET

Arthur Villarroya-Palau Elias Wazen



#### **PLAN**

01

INTRODUCTION

04

COMPARAISON DES TECHNIQUES AVEC IOU 02

CASCADE DE HAAR

**05** 

**APPLICATION** 

03

YOLO

06

EXEMPLE DE L'APPLICATION



01

INTRODUCTION

#### **INTRODUCTION**



#### ETAT DE L'ART

- Continuité de la localisation d'un objet
- Suivi de ROI
- Méthodes classique (caractéristiques, contours)
- CNN
- Exercice très connu



#### UTILITE

- Sécurité et Surveillance
- Automatisation industrielle et Robotique
- Médecine

#### **INTRODUCTION**

#### **DEUX TECHNIQUES CHOISIES:**

#### CASCADE DE HAAR

- Caractéristiques de Haar
- Classifieur en cascade
- Pour la detection de visage

#### YOLO

- CNN
- Plusieurs classes disponibles
- Pour la detection des objets

#### **INTRODUCTION**

**OUTILS DE PROGRAMMATION UTILISÉS:** 









#### **CASCADE DE HAAR**

#### **EXPLICATION:**

- Technique utilisée pour la détection d'objets
- Haar utilise les caractéristique des images
- Entraînement via des données positives et négatives
- L'utilisation de classifieurs en cascade



# **CASCADE DE HAAR**POINTS FORTS:

- Rapidité
- Capacité à détecter des objets simples
- Efficacité en temps réel

#### **POINTS FAIBLE:**

- Sensibilité à l'éclairage et à l'orientation
- Difficulté avec des objets complexes
- Requiert un ensemble d'entraînement représentatif

## CASCADE DE HAAR RÉSULTATS







#### **YOLO**

#### **EXPLICATION:**

- CNN (réseau de neurones convolutifs)
- 24 couches de convolutions pour les caractéristiques
- Découpe de l'image en imagettes
- Prédiction des bounding box
- Prédiction des classes
- Probabilités trop faibles ignorées
- Utilisation des IOU







#### **YOLO**

#### **POINTS FORTS:**

- Efficacité en temps réel
- Détection d'objets multiples
- Réduction des faux positifs
- Robuste

#### **POINTS FAIBLE:**

- Entraînement intensif
- Latence en fonction des resources
- Manque de précision dans les scénarios de faible luminosité

### **YOLO**

#### RÉSULTATS







#### COMPARAISON AVEC IOU (INTERSECTION OVER UNION)

#### **PRINCIPE**

 Comparaison des bounding box de détection (Haar, YOLO, ... ect) avec les bounding box souhaités (ou parfaites)



#### **COMPARAISON AVEC IOU**

#### **RÉSULTATS**

- Fait à partir d'une base de données d'image et d'un fichier texte qui donne les coordonnées des bounding box
- La technique utilisant les cascade de Haar obtient une IOU moyenne de 29%
- La technique utilisant YOLO obtient une IOU moyenne de 89%

#### **COMPARAISON AVEC IOU**

#### **RÉSULTATS**

- Fait à partir d'une base de données d'image et d'un fichier texte qui donne les coordonnées des bounding box
- La technique utilisant les cascade de Haar obtient une IOU moyenne de 29%
- La technique utilisant YOLO obtient une IOU moyenne de 89%







#### **APPLICATION**





#### **APPLICATION**







06

# EXEMPLE APPLICATION