Multi-Class and Multi-Label Classification

CS4780/5780 – Introduction to Machine Learning

Thorsten Joachims Cornell University

Multi-Class Classification

- Binary Classification
 - $Y = \{+1, -1\}$
- Multi-Class Classification
 - $Y = \{1,2,3,...,k\}$
 - Example: Image classification as Cat vs. Dog vs. ... vs. Tree
- Approaches
 - 1. "Native" multi-class methods: KNN, Naïve Bayes, LDA
 - Multi-class extensions: multi-class SVMs, multi-class neural networks, ...
 - 3. Multi-class to binary reductions
 - One-against-the-rest
 - Pairwise
 - Error Correcting Output Codes

One-Against-the-Rest

- Idea: Split multi-class problem into multiple binary classification problems.
- Procedure
 - Training:

For each $t \in \{1,2,3,...,k\}$, train binary classifier h_t with labels

$$\bar{y}_i = \begin{cases} +1 & if \ t = y_i \\ -1 & otherwise \end{cases}$$

– Prediction:

$$h(\vec{x}) = \underset{t \in \{1,..,k\}}{\operatorname{argmax}} [\vec{w}_t \cdot \vec{x} + b_t]$$

Multi-Label Classification

- Multi-Class Classification
 - $Y = \{1,2,3,...,k\}$
 - Example: Image classification as one of Cat vs. Dog vs. Tree \rightarrow y = Cat
- Multi-Label Classification
 - $Y = PowerSet\{1,2,3,...,k\}$
 - Example: Identify set of all objects in image $y = \{Cat, Dog\}$
- Procedure
 - Idea: Represent set of labels as bitvector y = (1,1,-1)
 - Training:

For each $t \in \{1,2,3,...,k\}$, train binary classifier h_t with labels

$$\bar{y}_i = \begin{cases} +1 & if \ t \in y_i \\ -1 & otherwise \end{cases}$$

– Prediction:

$$h(\vec{x}) = (h_1(\vec{x}), h_1(\vec{x}), \dots, h_k(\vec{x}))$$

Summary

- Multi-class and Multi-label problems can be reduced to binary classification
- Efficiency can be an issue, if the number of classes/labels is large
 - (→ Extreme Classification)