General Relativity Quick Intro (refresher)

Newtonian Gravity

General Relativity

Poisson (field) equation:

Gravitational

potential field

Einstein's Field Equations:

Curvature — nasty tensors

$$G_{\mu \nu} = R_{\mu \nu} - \frac{1}{2} R g_{\mu \nu}$$
 Einstein tensor Second derivative operator on the metric

$$R = g^{\mu\nu}R_{\mu\nu} \qquad \qquad \text{Ricci Scalar}$$

$$R_{\mu\nu} = R^{\lambda}{}_{\mu\lambda\nu} \qquad \qquad \text{Ricci Tensor}$$

$$R^{\sigma}{}_{\mu\alpha\beta} = \partial_{\alpha}\Gamma^{\sigma}{}_{\mu\beta} - \partial_{\beta}\Gamma^{\sigma}{}_{\mu\alpha} + \Gamma^{\sigma}{}_{\alpha\lambda}\sigma^{\lambda}{}_{\mu\beta} - \Gamma^{\sigma}{}_{\beta\lambda}\Gamma^{\lambda}{}_{\mu\alpha} \qquad \text{Riemann Curvature Tensor}$$

$$\Gamma^{\sigma}{}_{\mu\nu} = \frac{1}{2}g^{\sigma\rho}(\partial_{\mu}g_{\nu\rho} + \partial_{\nu}g_{\rho\mu} - \partial_{\rho}g_{\mu\nu}) \qquad \qquad \text{Connection Coefficient}$$

$$(\text{Christoffel Symbols})$$

Curved spacetime — Geodesics

Gravity is due to curvature

Geodesic equation

$$\frac{d^2x^{\mu}}{d\tau^2} + \Gamma^{\mu}_{\alpha\beta} \frac{dx^{\alpha}}{d\tau} \frac{dx^{\beta}}{d\tau} = 0$$

(Newtonian analogue)

$$\mathbf{a} = -\nabla\Phi \qquad (\mathbf{a} + \nabla\Phi = 0)$$

Schwarzschild solution — spherically symmetric mass

$$ds^{2} = g_{\mu\nu}dx^{\mu}dx^{\nu} = -\left(1 - \frac{2M}{r}\right)dt^{2} + \frac{dr^{2}}{1 - \frac{2M}{r}} + r^{2}\left(d\theta^{2} + \sin^{2}\theta d\phi^{2}\right)$$

Figure 1: Radial, null geodesics in the Schwarzschild spacetime

Newtonian equivalent

$$\Phi(r) = -\frac{GM}{r}$$

P. Lasky (Monash ASP3051 Lecture notes)

Going through the horizon — Painleve-Gullstrand coordinates

Transformation from Schwarzschild Coordinates

$$dt = dT + \sqrt{\frac{2M}{r}} \left(1 - \frac{2M}{r} \right)^{-1} dr$$

$$ds^2 = -\left(1 - \frac{2M}{r}\right)dT^2 - 2\sqrt{\frac{2M}{r}}dTdr + dr^2 + r^2\left(d\theta^2 + \sin^2\theta d\phi^2\right)$$

Figure 2: Radial, null geodesics in Painleve-Gullstrand coordinates. Ingoing geodesics pass through the event horizon without noticing its existence. Outgoing null geodesics that are launched at some r < 2M can not escape out of the black hole.

Orbital dynamics

- Last stable orbit

- Apsidal advance

Lense-Thirring precession (rotating black hole)

Kerr solution — rotating black hole

$$ds^{2} = -\left(1 - \frac{2Mr}{\rho^{2}}\right)dt^{2} - \frac{4Mra\sin^{2}\theta}{\rho^{2}}dt\,d\phi + \frac{\rho^{2}}{\Delta}dr^{2} + \rho^{2}d\theta^{2} + \left(a^{2} + r^{2} + \frac{2Mr}{\rho^{2}}a^{2}\sin^{2}\theta\right)\sin^{2}\theta\,d\phi^{2}$$

$$\rho^2 = r^2 + a^2 \cos^2 \theta$$
$$\Delta = r^2 - 2Mr + a^2$$

When can we use Newtonian?

Newtonian limit Three requirements:

1. The particles are moving slowly, with respect to the speed of light.

$$\frac{dx^i}{d\tau} << \frac{dt}{d\tau}$$

2. The gravitational field is weak. It can be considered a perturbation of flat space.

$$g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}, \qquad |h_{\mu\nu}| << 1$$

3. The field is static; unchanging with time.

When can we use Newtonian?

	h_{00}	System
	$\sim 10^{-9}$	Earth
→ Newtonian OK	$\sim 10^{-6}$	Sun
	$\sim 10^{-4}$	white dwarf
	≈ 0.3	neutron star
	> 0.3	Black holes
GR effects important		

Can we cheat?

Try and account for general relativistic effects e.g.

- Last stable orbit
- Apsidal advance
- Lense-Thirring precession

Modified relativistic potentials

$$\Phi^{\mathrm{K}} = -\frac{GM_{\mathrm{h}}}{R},$$

$$\Phi^{\mathrm{R}} = -\frac{GM_{\mathrm{h}}}{R} - \left(\frac{2R_{\mathrm{g}}}{R - 2R_{\mathrm{g}}}\right) \left[\left(\frac{R - R_{\mathrm{g}}}{R - 2R_{\mathrm{g}}}\right) v_{\mathrm{r}}^{2} + \frac{v_{\mathrm{t}}^{2}}{2}\right]$$

Bonnerot et al. (2016)

Post Newtonian corrections

$$\frac{\mathrm{d}\boldsymbol{v}_{i}}{\mathrm{d}t} = \sum_{j}^{N_{\mathrm{nei}}} m_{j} \left(\frac{P_{i}}{\rho_{i}^{2}} + \frac{P_{j}}{\rho_{j}^{2}} + \Pi_{ij} \right) \nabla_{j} W(r_{ij}, h_{ij})
- \sum_{j}^{N} \frac{GM(r_{ij})}{r_{ij}^{2}} \frac{\boldsymbol{r}_{ij}}{r_{ij}}
+ \boldsymbol{a}_{i,0\mathrm{PN}} + \frac{1}{c^{2}} \boldsymbol{a}_{i,1\mathrm{PN}} + \frac{1}{c^{3}} \boldsymbol{a}_{i,1.5\mathrm{PN}} + \frac{1}{c^{4}} \boldsymbol{a}_{i,2\mathrm{PN}}$$

Corrections to acceleration

$$a_{i,\text{OPN}} = -\frac{GM_{\text{BH}}}{r_{i\text{BH}}^{2}} n_{i\text{BH}}$$

$$a_{i,\text{1PN}} = \left[\frac{5G^{2}m_{i}M_{\text{BH}}}{r_{i\text{BH}}^{3}} + \frac{4G^{2}M_{\text{BH}}^{2}}{r_{i\text{BH}}^{3}} + \frac{GM_{\text{BH}}}{r_{i\text{BH}}^{2}} \left(\frac{3}{2} (n_{i\text{BH}} \cdot v_{\text{BH}})^{2} - v_{i}^{2} + 4(v_{i} \cdot v_{\text{BH}}) - 2v_{\text{BH}}^{2} \right) \right] n_{i\text{BH}}$$

$$+ \frac{GM_{\text{BH}}}{r_{i\text{BH}}^{2}} [4(n_{i\text{BH}} \cdot v_{i}) - 3(n_{i\text{BH}} \cdot v_{\text{BH}})] v_{i\text{BH}}$$

Hayasaki et al. (2016)

More corrections

$$a_{i,2\text{PN}} = -\left[\frac{57G^3m_i^2M_{\text{BH}}}{4r_{i\text{BH}}^4} + \frac{69G^3m_iM_{\text{BH}}^2}{2r_{i\text{BH}}^4}\right]$$

$$a_{i,2\text{PN}} = -\left[\frac{57G^3m_i^2M_{\text{BH}}}{4r_{i\text{BH}}^4} + \frac{69G^3m_iM_{\text{BH}}^2}{2r_{i\text{BH}}^4}\right] + \frac{9G^3M_{\text{BH}}^3}{r_{i\text{BH}}^4} \left[-\frac{15}{8}(n_{i\text{BH}} \cdot v_{\text{BH}})^4 + \frac{3}{2}(n_{i\text{BH}} \cdot v_{\text{BH}})^2v_i^2 - 6(n_{i\text{BH}} \cdot v_{\text{BH}})^2(v_i \cdot v_{\text{BH}}) + \frac{3}{2}(n_{i\text{BH}} \cdot v_{\text{BH}})^2v_i^2 - 6(n_{i\text{BH}} \cdot v_{\text{BH}})^2v_{\text{BH}}^2 + 4(v_i \cdot v_{\text{BH}})^2v_{\text{BH}}^2 + 4(v_i \cdot v_{\text{BH}})v_{\text{BH}}^2 + \frac{G^2m_iM_{\text{BH}}}{r_{i\text{BH}}^3} \left[\frac{39}{2}(n_{i\text{BH}} \cdot v_i)^2 - 39(n_{i\text{BH}} \cdot v_i)(n_{i\text{BH}} \cdot v_{\text{BH}}) + \frac{17}{2}(n_{i\text{BH}} \cdot v_{\text{BH}})^2 - \frac{15}{4}v_i^2 - \frac{5}{2}(v_i \cdot v_{\text{BH}}) + \frac{5}{4}v_{\text{BH}}^2 \right] n_{i\text{BH}} + \frac{GM_{\text{BH}}^2}{r_{i\text{BH}}^3} \left[\frac{4}{2}(n_{i\text{BH}} \cdot v_i)^2 - 4(n_{i\text{BH}} \cdot v_i)(n_{i\text{BH}} \cdot v_{\text{BH}}) + 6(n_{i\text{BH}} \cdot v_{\text{BH}})^2 - 8(v_i \cdot v_{\text{BH}}) + 4v_{\text{BH}}^2 \right] n_{i\text{BH}} + \frac{G^2M_{\text{BH}}^2}{r_{i\text{BH}}^3}$$

$$\begin{bmatrix}
-2(\boldsymbol{n}_{iBH} \cdot \boldsymbol{v}_{i}) - 2(\boldsymbol{n}_{iBH} \cdot \boldsymbol{v}_{BH}) \\
+ \frac{G^{2}\boldsymbol{m}_{i}\boldsymbol{M}_{BH}}{r_{iBH}^{3}} \\
-\frac{63}{4}(\boldsymbol{n}_{iBH} \cdot \boldsymbol{v}_{i})
\end{bmatrix} \boldsymbol{v}_{iBH} \\
+ \frac{55}{4}(\boldsymbol{n}_{iBH} \cdot \boldsymbol{v}_{BH}) \\
+ \frac{G\boldsymbol{M}_{BH}}{r_{iBH}^{2}} \\
-6(\boldsymbol{n}_{iBH} \cdot \boldsymbol{v}_{i})(\boldsymbol{n}_{iBH} \cdot \boldsymbol{v}_{BH})^{2} \\
+ \frac{9}{2}(\boldsymbol{n}_{iBH} \cdot \boldsymbol{v}_{BH})^{3} + (\boldsymbol{n}_{iBH} \cdot \boldsymbol{v}_{BH})\boldsymbol{v}_{i}^{2} \\
-4(\boldsymbol{n}_{iBH} \cdot \boldsymbol{v}_{i})(\boldsymbol{v}_{i} \cdot \boldsymbol{v}_{BH}) \\
+4(\boldsymbol{n}_{iBH} \cdot \boldsymbol{v}_{BH})(\boldsymbol{v}_{i} \cdot \boldsymbol{v}_{BH}) \\
+4(\boldsymbol{n}_{iBH} \cdot \boldsymbol{v}_{i})\boldsymbol{v}_{BH}^{2} - 5(\boldsymbol{n}_{iBH} \cdot \boldsymbol{v}_{BH})\boldsymbol{v}_{BH}^{2} \\
\end{bmatrix} \boldsymbol{v}_{iBH},$$

Hayasaki et al. (2016)

More corrections

$$E_i = E_{i,0\text{PN}} + \frac{1}{c^2} E_{i,1\text{PN}} + \frac{1}{c^3} E_{i,1.5\text{PN}} + \frac{1}{c^4} E_{i,2\text{PN}},$$

$$\begin{split} E_{i,\text{OPN}} &= \frac{1}{2} (m_i v_i^2 + M_{\text{BH}} v_{\text{BH}}^2) - \frac{G m_i M_{\text{BH}}}{r_{i \text{BH}}}, \\ E_{i,\text{IPN}} &= -\frac{G^2 m_i^2 M_{\text{BH}}}{2 r_{i \text{BH}}^2} + \frac{m_i v_i^4}{8} + \frac{G m_i M_{\text{BH}}}{r_{i \text{BH}}} \\ &\times \left[-\frac{1}{4} (\boldsymbol{n}_{i \text{BH}} \cdot \boldsymbol{v}_i) (\boldsymbol{n}_{i \text{BH}} \cdot \boldsymbol{v}_{\text{BH}}) + \frac{3}{2} v_i^2 - \frac{7}{4} (\boldsymbol{v}_i \cdot \boldsymbol{v}_{\text{BH}}) \right] \\ &- \frac{G^2 M_{\text{BH}}^2 m_i}{2 r_{i \text{BH}}^2} + \frac{M_{\text{BH}} v_{\text{BH}}^4}{8} + \frac{G M_{\text{BH}} m_i}{r_{i \text{BH}}} \\ &\times \left[-\frac{1}{4} (\boldsymbol{n}_{i \text{BH}} \cdot \boldsymbol{v}_{\text{BH}}) (\boldsymbol{n}_{i \text{BH}} \cdot \boldsymbol{v}_i) + \frac{3}{2} v_{\text{BH}}^2 - \frac{7}{4} (\boldsymbol{v}_{\text{BH}} \cdot \boldsymbol{v}_i) \right], \\ E_{i,1.5\text{PN}} &= \frac{G M_{\text{BH}}}{r_{i \text{BH}}^2} [\boldsymbol{S}_i \cdot (\boldsymbol{n}_{i \text{BH}} \times \boldsymbol{v}_i)] - \frac{G m_i}{r_{i \text{BH}}^2} [\boldsymbol{S}_{\text{BH}} \cdot (\boldsymbol{n}_{i \text{BH}} \times \boldsymbol{v}_{\text{BH}})], \end{split}$$

$$\begin{split} E_{i,2\text{PN}} &= -\frac{G^3 m_i^3 M_{\text{BH}}}{2 r_{i\text{BH}}^3} - \frac{19 G^3 m_i^2 M_{\text{BH}}^2}{8 r_{i\text{BH}}^3} + \frac{5}{16} m_i v_i^6 \\ &- \frac{G^3 M_{\text{BH}}^3 m_i}{2 r_{i\text{BH}}^3} - \frac{19 G^3 M_{\text{BH}}^2 m_i^2}{8 r_{i\text{BH}}^3} + \frac{5}{16} M_{\text{BH}} v_{\text{BH}}^6 \\ &+ \frac{G^2 m_i^2 M_{\text{BH}}}{r_{i\text{BH}}^2} \left[\frac{29}{4} (\mathbf{n}_{i\text{BH}} \cdot \mathbf{v}_i)^2 - \frac{13}{4} (\mathbf{n}_{i\text{BH}} \cdot \mathbf{v}_i) (\mathbf{n}_{i\text{BH}} \cdot \mathbf{v}_{\text{BH}}) \right. \\ &+ \frac{1}{2} (\mathbf{n}_{i\text{BH}} \cdot \mathbf{v}_{\text{BH}})^2 - \frac{3}{2} v_i^2 + \frac{7}{4} v_{\text{BH}}^2 \right] + \frac{G^2 M_{\text{BH}}^2 m_i}{r_{i\text{BH}}^2} \\ &\times \left[\frac{29}{4} (\mathbf{n}_{i\text{BH}} \cdot \mathbf{v}_{\text{BH}})^2 - \frac{13}{4} (\mathbf{n}_{i\text{BH}} \cdot \mathbf{v}_{\text{BH}}) (\mathbf{n}_{i\text{BH}} \cdot \mathbf{v}_i) \right. \\ &+ \frac{1}{2} (\mathbf{n}_{i\text{BH}} \cdot \mathbf{v}_{i})^2 - \frac{3}{2} v_{\text{BH}}^2 + \frac{7}{4} v_i^2 \right] + \frac{G m_i M_{\text{BH}}}{r_{i\text{BH}}} \\ &+ \frac{G m_i M_{\text{BH}}}{r_{i\text{BH}}} \left[\frac{3}{8} (\mathbf{n}_{i\text{BH}} \cdot \mathbf{v}_{\text{BH}})^3 (\mathbf{n}_{i\text{BH}} \cdot \mathbf{v}_i) \right. \\ &+ \frac{1}{2} (\mathbf{n}_{i\text{BH}} \cdot \mathbf{v}_i)^3 (\mathbf{n}_{i\text{BH}} \cdot \mathbf{v}_{\text{BH}}) (\mathbf{n}_{i\text{BH}} \cdot \mathbf{v}_{\text{BH}}) \\ &+ \frac{3}{16} (\mathbf{n}_{i\text{BH}} \cdot \mathbf{v}_i)^3 (\mathbf{n}_{i\text{BH}} \cdot \mathbf{v}_{\text{BH}})^2 \\ &+ \frac{3}{16} (\mathbf{n}_{i\text{BH}} \cdot \mathbf{v}_i)^2 (\mathbf{n}_{i\text{BH}} \cdot \mathbf{v}_{\text{BH}})^2 \\ &+ \frac{3}{8} (\mathbf{n}_{i\text{BH}} \cdot \mathbf{v}_i)^2 (\mathbf{n}_{i\text{BH}} \cdot \mathbf{v}_{\text{BH}})^2 \\ &+ \frac{3}{8} (\mathbf{n}_{i\text{BH}} \cdot \mathbf{v}_i)^2 (\mathbf{n}_{i\text{BH}} \cdot \mathbf{v}_{\text{BH}}) \\ &+ \frac{3}{4} (\mathbf{n}_{i\text{BH}} \cdot \mathbf{v}_i) (\mathbf{n}_{i\text{BH}} \cdot \mathbf{v}_{\text{BH}}) (\mathbf{v}_i \cdot \mathbf{v}_{\text{BH}}) \\ &+ \frac{3}{4} (\mathbf{n}_{i\text{BH}} \cdot \mathbf{v}_i) (\mathbf{n}_{i\text{BH}} \cdot \mathbf{v}_{\text{BH}}) (\mathbf{v}_i \cdot \mathbf{v}_{\text{BH}}) \\ &+ \frac{5}{8} v_i^2 (\mathbf{v}_i \cdot \mathbf{v}_{\text{BH}}) + \frac{17}{8} (\mathbf{v}_i \cdot \mathbf{v}_{\text{BH}})^2 + \frac{31}{16} v_i^2 v_{\text{BH}}^2 \\ &- \frac{55}{8} v_i^2 (\mathbf{v}_i \cdot \mathbf{v}_{\text{BH}}) + \frac{17}{8} (\mathbf{v}_i \cdot \mathbf{v}_{\text{BH}})^2 + \frac{31}{16} v_i^2 v_{\text{BH}}^2 \\ &- \frac{55}{8} v_i^2 (\mathbf{v}_i \cdot \mathbf{v}_{\text{BH}}) + \frac{17}{8} (\mathbf{v}_i \cdot \mathbf{v}_{\text{BH}})^2 + \frac{17}{16} v_i^2 v_{\text{BH}}^2 \\ &- \frac{55}{16} v_i^2 v_{\text{BH}}^2 + \frac{17}{16} v_i^2 v_{\text{BH}}^2 \right] \\ &- \frac{55}{16} v_i^2 v_{\text{BH}}^2 + \frac{17}{16} v_i^2 v_{\text{BH}}^2 \right] \\ &- \frac{55}{16} v_i^2 v_{\text{BH}}^2 + \frac{17}{16} v_i^2 v_{\text{BH}}^2 \right) \\ &- \frac{55}{16} v_i^2 v_{\text{BH}}^2 + \frac{17}{16} v_i^2 v_{\text{BH}}^2 \right]$$

Hayasaki et al. (2016)

Let's just do it properly!

General Relativistic Smoothed Particle Hydrodynamics (GR SPH)

David Liptai

Supervisors: Daniel Price and Paul Lasky

Motivations

National Science Foundation/LIGO/Sonoma State University/A. Simonnet

Neutron star mergers

SPH is the perfect tool!

- 1) No preferred **geometry**
- 2) Resolution follows mass
- 3) No need for background density floor

Except.... No GR!

Tearing Discs and QPOs?

Tidal Disruption Events (TDEs)

Paredes-Fortuny et al. (2015)

Springel et al. (2005)

Credit: Hotaka Shiokawa

Relativistic Pulsar Winds

Cosmological
Simulations with full GR

Event Horizon Telescope

Equations of relativistic hydrodynamics

Continuity:
$$\frac{\mathrm{d}\rho^*}{\mathrm{d}t} = -\rho^* \frac{\partial v^i}{\partial x^i}$$

Momentum:
$$\frac{\mathrm{d}p_i}{\mathrm{d}t} = -\frac{1}{\rho^*} \frac{\partial (\sqrt{-gP})}{\partial x^i} + \frac{\sqrt{-g}}{2\rho^*} \left(T^{\mu\nu} \frac{\partial g_{\mu\nu}}{\partial x^i} \right)$$

Energy:
$$\frac{\mathrm{d}e}{\mathrm{d}t} = -\underbrace{\frac{1}{\rho^*} \frac{\partial (\sqrt{-g} P v^i)}{\partial x^i}}_{\text{"Hydro"}} + \underbrace{\frac{-\sqrt{g}}{2\rho^*} \left(\frac{\partial g_{\mu\nu}}{\partial t}\right)}_{\text{"Hydro"}}$$

"GR"

Equations of relativistic hydrodynamics

Continuity:
$$\frac{\mathrm{d}\rho_a}{\mathrm{d}t} = \frac{1}{\Omega_a} \sum_{b} \frac{\partial W_{ab}(h_a)}{\partial x^i},$$

$$\frac{\partial x^i}{\partial x^i}, \qquad \rho_a^* = \sum_b m_b W_{ab}(h_a)$$

Momentum:
$$\frac{\mathrm{d}p_i^a}{\mathrm{d}t} = -\sum_b m_b \left[\frac{\sqrt{-g_a}P_a}{\Omega_a \rho_a^{*2}} \frac{\partial W_{ab}(h_a)}{\partial x^i} + \frac{\sqrt{-g_b}P_b}{\Omega_b \rho_b^{*2}} \frac{\partial W_{ab}(h_b)}{\partial x^i} \right] + f_i^a,$$

Checklist: Metrics and Coordinates

- Minkowski, Schwarzschild and Kerr
- Need in **Cartesian**-like coordinates
- A way to compute derivatives
- Choice of **frame?** (which observer?)

$$ds^{2} = -\left(1 - \frac{2M}{r}\right)dt^{2} + \frac{dr^{2}}{1 - \frac{2M}{r}} + r^{2}\left(d\theta^{2} + \sin^{2}\theta d\phi^{2}\right)$$

$$= -\left(1 - \frac{2M}{r}\right)dt^2 + \dots dx^2 + \dots dx dy + \dots dx dz + \dots$$

Checklist:

Time Integration

- Preserve the Hamiltonian properties of the system
- Operator splitting approach
- Time reversible (conserves energy)
- Cost effective for 2nd order

Modified Leapfrog algorithm

$$\begin{split} p_i^{n+\frac{1}{2}} &= p_i^n + \frac{\Delta t}{2} f_i^{\,\mathrm{sph}}(p_i^n, x^{i,n}), \\ p_i^{m+\frac{1}{2}} &= p_i^m + \frac{\Delta t_{\mathrm{ext}}}{2} f_i^{\,\mathrm{ext}}(p_i^{m+\frac{1}{2}}, x^{i,m}), \\ x^{i,m+1} &= x^{i,m} + \frac{\Delta t_{\mathrm{ext}}}{2} \left[\frac{\mathrm{d} x^i}{\mathrm{d} t}(p_i^{m+\frac{1}{2}}, x^{i,m}) \right. \\ & \left. + \frac{\mathrm{d} x^i}{\mathrm{d} t}(p_i^{m+\frac{1}{2}}, x^{i,m+1}) \right], \\ p_i^{m+1} &= p_i^{m+\frac{1}{2}} + \frac{\Delta t_{\mathrm{ext}}}{2} f_i^{\,\mathrm{ext}}(p_i^{m+\frac{1}{2}}, x^{i,m+1}), \\ p_i^{n+1} &= p_i^{n+\frac{1}{2}} + \frac{\Delta t}{2} f_i^{\,\mathrm{sph}}(p_i^{n+1}, x^{i,n+1}) \end{split}$$

Checklist: Recovery of Primitive Variables

- Every time-step
- Rigorous and cheap
- Cannot solve explicitly
- Newton-Raphson scheme (Tejeda 2012)

$$\rho^* = \sqrt{-g}\rho U^0,$$

$$p_i = U^0 w g_{i\mu} v^{\mu},$$

$$e = U^0 \left[w g_{i\mu} v^{\mu} v^i - (1+u) g_{\mu\nu} v^{\mu} v^{\nu} \right],$$

$$ho = v_i = 1$$

Testing

Metric terms, time integration, conservative to primitive

Three parts:

- 1) Orbital dynamics
- 2) Shocks and special relativity
- 3) 3D GR hydrodynamics

Tests: Schwarzschild metric

Radial Infall

Circular orbits

Precession

Tests: Kerr metric

Apsidal precession

Liptai and Price 2018 (In prep.)

Tests: Kerr metric

Epicyclic frequency

Vertical-oscillation frequency

Liptai and Price 2018 (In prep.)

Spaghettification

Bob

INTERSTOPHER NOLAN

NOVEMBER 2014

Matthew McConaughey

Bob

Nodal Precession

У

Tests: shock capturing

- 1D shock tubes
- Minkowski metric (special rel)

$$\frac{\mathrm{d}p_{i}}{\mathrm{d}t} = -\sum_{b} m_{b} \left[\frac{\sqrt{-g_{a}}P_{a}}{\Omega_{a}\rho_{a}^{*2}} \frac{\partial W_{ab}(h_{a})}{\partial x^{i}} + \frac{\sqrt{-g_{b}}P_{b}}{\Omega_{b}\rho_{b}^{*2}} \frac{\partial W_{ab}(h_{b})}{\partial x^{i}} \right] + \left(\frac{\mathrm{d}p_{i}}{\mathrm{d}t} \right)_{\mathrm{diss}}$$

$$\frac{\mathrm{d}e}{\mathrm{d}t} = \sum_{b} \left[\sqrt{-g_{a}}P_{a} + \partial W_{ab}(h_{a}) - \sqrt{-g_{b}}P_{b} + \partial W_{ab}(h_{b}) \right] + \left(\frac{\mathrm{d}p_{i}}{\mathrm{d}t} \right)_{\mathrm{diss}}$$

$$\frac{\mathrm{d}e}{\mathrm{d}t} = -\sum_{b} m_{b} \left[\frac{\sqrt{-g_{a}}P_{a}}{\Omega_{a}\rho_{a}^{*2}} v_{b}^{i} \frac{\partial W_{ab}(h_{a})}{\partial x^{i}} + \frac{\sqrt{-g_{b}}P_{b}}{\Omega_{b}\rho_{b}^{*2}} v_{a}^{i} \frac{\partial W_{ab}(h_{b})}{\partial x^{i}} \right] + \left(\frac{\mathrm{d}e}{\mathrm{d}t} \right)_{\mathrm{diss}}$$

What should we use?

Attempts at artificial dissipation in SR

Chow & Monaghan (1997)
Overly dissipative

Siegler & Riffert (2000) No artificial conductivity

1D special relativistic shock tubes

Artificial viscosity only

Artificial viscosity AND conductivity

Liptai and Price 2018 (In prep.)

Evolving Entropy

- **Split dissipation** —artificial viscosity from conductivity
- Positive definite contribution to entropy
- Evolve entropy:
 - robust no negative pressures

$$K = P \rho^{\gamma_{\rm ad}}$$

$$\frac{dK}{dt} = \frac{U^0 K}{u} \left[\frac{de}{dt} + \frac{\sqrt{-g}}{2\rho^*} T^{\mu\nu} \frac{\partial g_{\mu\nu}}{\partial t} - v^i \left(\frac{dp_i}{dt} - \frac{\sqrt{-g}}{2\rho^*} T^{\mu\nu} \frac{\partial g_{\mu\nu}}{\partial x^i} \right) - \frac{P\sqrt{-g}}{\rho^{*2}} \frac{d\rho^*}{dt} \right]$$

$$= 0$$

$$\frac{\mathrm{d}K_a}{\mathrm{d}t} = \frac{U_a^0 K_a}{u_a} \text{ [dissipation terms]}$$

1D special relativistic shock tubes

Ultra-relativistic 1D

Sine wave perturbation 1D

Liptai and Price 2018 (In prep.)

3D Hydrodynamics

Publications of the Astronomical Society of Australia (PASA)

© Astronomical Society of Australia 2017; published by Cambridge University Press.

doi: 10.1017/pas.2017.xxx.

PHANTOM: A smoothed particle hydrodynamics and magnetohydrodynamics code for astrophysics

Daniel J. Price^{1*}, James Wurster^{2,1}, Chris Nixon³, Terrence S. Tricco^{4,1}, Stéven Toupin⁵, Alex Pettitt⁶, Conrad Daniel J. Price^{1*}, James Wurster^{2,1}, Chris Nixon³, Terrence S. Tricco^{4,1}, Stéven Toupin⁵, Alex Pettitt⁶, Conrad Daniel J. Price^{1*}, James Wurster^{2,1}, Chris Nixon³, Terrence S. Tricco^{4,1}, Stéven Toupin⁵, Alex Pettitt⁶, Conrad Daniel J. Price^{1*}, James Wurster^{2,1}, Chris Nixon³, Terrence S. Tricco^{4,1}, Stéven Toupin⁵, Alex Pettitt⁶, Conrad Daniel J. Price^{1*}, James Wurster^{2,1}, Chris Nixon³, Terrence S. Tricco^{4,1}, Stéven Toupin⁵, Alex Pettitt⁶, Conrad Daniel J. Price^{1*}, James Wurster^{2,1}, Chris Nixon³, Terrence S. Tricco^{4,1}, Stéven Toupin⁵, Alex Pettitt⁶, Conrad Daniel J. Price^{1*}, James Wurster^{2,1}, Chris Nixon³, Terrence S. Tricco^{4,1}, David Lintai¹. Hauke Wornel^{9,1} Chan Dobbs². Rebecca Nealon¹. David Lintai¹. Hauke Wornel^{9,1} Chan Dobbs². Rebecca Nealon¹. David Lintai¹. Daniel J. Price^{1*}, James Wurster^{2,1}, Chris Nixon³, Terrence S. Tricco^{4,1}, Stéven Toupin⁵, Alex Pettitt⁶, Conra Chan¹, Guillaume Laibe⁷, Simon Glover⁸, Clare Dobbs², Rebecca Nealon¹, Pavid Liptai¹, Roberto Iaconi¹³, Thomas Chan¹, Guillaume Laibe⁷, Simon Glover⁸, Clare Dobbs², Rebecca Nealon¹, Christoph Federrath¹², Roberto Iaconi¹³, Chaniel Mentiplay¹, Enrico Ragusa¹¹, Christoph Federrath¹², Daniel Mentiplay¹, Clément Bonnerot¹⁰, Giovanni Dipierro¹¹, Enrico Ragusa¹¹, Christoph Federrath¹³, Daniel Mentiplay¹, Park Hutchison¹, Thomas Constantino², Ben Ayliffe^{15,1}, Daniel Mentiplay¹, Mark Hutchison¹, Thomas Constantino², Ben Ayliffe^{15,1}, Daniel Mentiplay¹, Mark Hutchison¹, Thomas Constantino², Ben Ayliffe^{15,1}, Daniel Mentiplay¹, Mark Hutchison¹, Thomas Constantino³, Ben Ayliffe^{15,1}, Daniel Mentiplay¹, Daniel Mentiplay¹, Ben Ayliffe^{15,1}, Daniel Mentiplay¹, Da Clément Bonnerot¹⁰, Giovanni Dipierro¹¹, Enrico Ragusa¹¹, Christoph Federrath¹², Roberto Iaconi¹³, Daniel Mentiplay¹, Reichardt¹³, Duncan Forgan¹⁴, Mark Hutchison¹, Thomas Constantino², Ben Ayliffe^{15,1}, Daniel Mentiplay¹, Kieran Hirsh¹ and Giusenne Lodato¹¹

Kieran Hirsh¹ and Giuseppe Lodato¹¹

Kieran Hirsh¹ and Giuseppe Lodato¹¹

Monash Centre for Astrophysics (MoCA) and School of Physics and Astronomy, Monash University, Vic. 3800, Australia

Monash Centre for Astrophysics (MoCA) and School of Physics and Astronomy, Monash University, Vic. 3800, Australia

School of Physics, University of Exeter, Stocker Rd., Exeter EX4 4QL, UK ²School of Physics, University of Exeter, Stocker Rd., Exeter EX4 4QL, UK

Theoretical Astrophysics Group, Department of Physics & Astronomy, University of St. George Street, Toronto, ON M5S 3Theoretical Astrophysics Group, University of Bruxelles (ULB), CP226, Boulevard du Triomphe B1050 4 Canadian Institute for Theoretical Astrophysics (IAA), Université Libre de Bruxelles (ULB), CP226, Boulevard du Triomphe SInstitut d'Astronomie et d'Astrophysique (IAA), Université Libre de Bruxelles (ULB), CP226, Boulevard du Triomphe SInstitut d'Astronomie et d'Astrophysique (IAA), Université Libre de Bruxelles (ULB), CP226, Boulevard du Triomphe SInstitut d'Astronomie et d'Astrophysique (IAA), Université Libre de Bruxelles (ULB), CP226, Boulevard du Triomphe SInstitut d'Astronomie et d'Astrophysique (IAA), Université Libre de Bruxelles (ULB), CP226, Boulevard du Triomphe SInstitut d'Astronomie et d'Astrophysique (IAA), Université Libre de Bruxelles (ULB), CP226, Boulevard du Triomphe SInstitut d'Astronomie et d'Astrophysique (IAA), Université Libre de Bruxelles (ULB), CP226, Boulevard du Triomphe SInstitut d'Astronomie et d'Astrophysique (IAA), Université Libre de Bruxelles (ULB), CP226, Boulevard du Triomphe SInstitut d'Astronomie et d'Astrophysique (IAA), Université Libre de Bruxelles (ULB), CP226, Boulevard du Triomphe SIN (IAA), Université Libre de Bruxelles (ULB), CP226, Boulevard du Triomphe SIN (IAA), Université Libre de Bruxelles (ULB), CP226, Boulevard du Triomphe SIN (IAA), Université Libre de Bruxelles (ULB), CP226, Boulevard du Triomphe SIN (IAA), Université Libre de Bruxelles (ULB), CP226, Boulevard du Triomphe SIN (IAA), Université Libre de Bruxelles (ULB), CP226, Boulevard du Triomphe SIN (IAA), Université Libre de Bruxelles (ULB), CP226, Boulevard du Triomphe SIN (IAA), Université Libre de Bruxelles (ULB), CP226, Boulevard du Triomphe SIN (IAA), Université Libre de Bruxelles (ULB), CP226, Boulevard du Triomphe SIN (IAA), Université Libre de Bruxelles (ULB), CP226, Boulevard du Triomphe SIN (IAA), Univers ⁴Canadian Institute for Theoretical Astrophysics (CITA), University of Toronto, 60 St. George Street, Toronto, ON M5S 3H8, Ca

⁵Institut d'Astronomie et d'Astrophysique (IAA), Université Libre de Bruxelles (ULB), CP226, Boulevard du Triomphe B1050

Brussels, Belgium Brussels, Belgium
6 Department of Cosmosciences, Hokkaido University, Sapporo 060-0810, Japan
7 Univ Lyon, ENS de Lyon, CNRS, Centre de Recherche Astrophysique de Lyon Astrophysik, Albert-Ueberle-Str 2, D-69120
8 Zentrum für Astronomie der Universität Heidelberg, Institut für Theoretische Astrophysik, Heidelberg, Germany

Heidelberg, Germany
Potsdam, An der Sternwarte 16, 14482 Potsdam, Germany
Heidelberg, ¹¹Dipartimento di Fisica, Università Degli Studi di Milano, Via Celoria 16, Milano, 20133, Italy Canberra, ACT 2611, Australia National University, Sydney, Australia University of St. Andrews, North Haugh, St. 13 Department of Physics and Astronomy, Macquarie University, Sydney, Australia University of St. Andrews, Telepartment of Physics and Astronomy, Macquarie University, Canberra, ACT 2611, Australia University of St. Andrews, North Haugh, St. Andrews, Fife KY16 9SS, UK Andrews, Fife KY16 9SS, UK

Andrews, Fite KY 16 988, UK 15 Met Office, FitzRoy Road, Exeter, EX1 3PB, UK

Abstract
We present Phantom, a fast, parallel, modular and low-memory smoothed particle hydrodynamics and magnetic physical applications in three dimensions and the present physical applications in three dimensions. We present Phanton, a fast, parallel, modular and low-memory smoothed particle hydrodynamics and magnetohydrodynamics code developed over the last decade for astrophysical applications in three dimensions. The code has been developed with a focus on stellar galactic planetary and high energy astrophysical specific planetary and h magnetohydrodynamics code developed over the last decade for astrophysical applications in three dimensions. The code has been developed with a focus on stellar, galactic, planetary and high energy astrophysics of accretion discs and turbulence from the hirth of planets to and has already been used widely for studies of accretion discs and turbulence from the hirth of planets to and has already been used widely for studies of accretion discs and turbulence from the hirth of planets. sions. The code has been developed with a focus on stellar, galactic, planetary and high energy astrophysics and has already been used widely for studies of accretion discs and turbulence, from the birth of planets to and has already been used widely for studies of accretion discs and turbulence, are modules for magnetable and test the core algorithms as well as modules for magnetable. and has already been used widely for studies of accretion discs and turbulence, from the birth of planets to how black holes accrete. Here we describe and test the core algorithms as well as modules for magnetohydrodynamics celf-gravity sink particles. He chemistry duet-gas mixtures physical viscosity external forces drodynamics celf-gravity sink particles. He chemistry duet-gas mixtures physical viscosity external forces drodynamics celf-gravity sink particles. how black holes accrete. Here we describe and test the core algorithms as well as modules for magnetohydrodynamics, self-gravity, sink particles, H₂ chemistry, dust-gas mixtures, physical viscosity, external forces drodynamics, self-gravity, sink particles, H₂ chemistry, dust-gas mixtures, physical viscosity, external forces drodynamics, self-gravity, sink particles, H₂ chemistry, dust-gas mixtures, physical viscosity, external forces drodynamics, self-gravity, sink particles, H₂ chemistry, dust-gas mixtures, physical viscosity, external forces drodynamics, self-gravity, sink particles, H₂ chemistry, dust-gas mixtures, physical viscosity, external forces drodynamics, self-gravity, sink particles, H₂ chemistry, dust-gas mixtures, physical viscosity, external forces drodynamics, self-gravity, sink particles, H₂ chemistry, dust-gas mixtures, physical viscosity, external forces drodynamics, self-gravity, sink particles, H₂ chemistry, dust-gas mixtures, physical viscosity, external forces drodynamics, self-gravity, sink particles, H₂ chemistry, dust-gas mixtures, physical viscosity, external forces drodynamics, self-gravity, sink particles, H₂ chemistry, dust-gas mixtures, physical viscosity, external forces drodynamics, self-gravity, sink particles, H₂ chemistry, dust-gas mixtures, h₂ chemistry, dust-gas mixtures, h₃ chemistry, h₄ chemistry, h₄ chemistry, h₅ chemistry, h drodynamics, self-gravity, sink particles, H₂ chemistry, dust-gas mixtures, physical viscosity, external forces including numerous galactic potentials as well as implementations of Lense-Thirring precession, Poynting Phanton is hereby made publicly available.

Robertson drag and stochastic turbulent driving Phanton is hereby made publicly available. including numerous galactic potentials as well as implementations of Lense-Thirring precession. PHANTOM is hereby made publicly available. Robertson drag and stochastic turbulent driving.

Keywords: hydrodynamics — methods: numerical — magnetohydrodynamics (MHD) — accretion, accretion disce — ISM: general codes has become crucial to ensure that these experiments can be both verified and reproduced. tion discs — ISM: general

702

Numerical simulations are the 'third pillar' of astrophysics, standing alongside observations and analytic physics, scanding alongside observations and analytic theory. Since it is difficult to perform laboratory extheory. periments in the relevant physical regimes and over the correct range of length and time-scales involved in most sight. As algorithms and simulation codes become ever more sophisticated, the public availability of simulation simulation.

This code al., 2017) and turbulence (Kitsionas et al., 2012b; gan et al., 2017) and turbulence (Kitsionas et al., 2012b; Price & Federrath, 2010; Price et al., 2011; Price, 2012b; as well as for studies of the Galaxy. astrophysical problems, we turn instead to 'numerical

PHANTOM is a smoothed particle hydrodynamics (SPH) code, written in Fortran 90, developed over the last decade. It has been used widely for studies of accretion (Lodato & Price, 2010; Nixon et al., 2012a; Rosotti tion (Louato & Fince, 2010, Nixon et al., 2012b; Facchini et al., 2012; Nixon, 2012; Nixon et al., 2012b; Facchini et al., 2012; Mixon et al., 2013; Martin et al., 2014a,b; et al., 2013; Nixon et al., 2013; Martin et al., 2014a,b; Nixon & Lubow, 2015; Coughlin & Nixon, 2015; Forgan et al., 2017) and turbulence (Kitsionas et al., 2009;

*daniel.price@monash.edu

10 months later...

3D Special relativistic shocktubes

Mildly-relativistic 3D

Ultra-relativistic 3D

Liptai and Price 2018 (In prep.)

3D spherical blast wave

Liptai and Price 2018 (In prep.)

Generalised Bondi flow (Schwarzschild)

Preliminary black hole accretion disc

Preliminary black hole accretion disc — tilt

Preliminary TDE in GR

Conclusions

- **Orbital tests** (Schwarzschild AND Kerr) are in excellent agreement with theory
- We can handle relativistic shocks very well
- We have **split artificial dissipation** into viscosity and conductivity
- Merged with PHANTOM to do full 3D-GRSPH simulations

Bonus slide: The Kerr metric... But which frame?

Boyer-Lindquist

- Far away observer
- Has event horizon singularity

$$ds^{2} = -\left[1 - \frac{2mr}{r^{2} + a^{2}\cos^{2}\theta}\right]dt^{2} - \frac{4mra\sin^{2}\theta}{r^{2} + a^{2}\cos^{2}\theta}dt d\phi$$

$$+ \left[\frac{r^{2} + a^{2}\cos^{2}\theta}{r^{2} - 2mr + a^{2}}\right]dr^{2} + (r^{2} + a^{2}\cos^{2}\theta)d\theta^{2}$$

$$+ \left[r^{2} + a^{2} + \frac{2mra^{2}\sin^{2}\theta}{r^{2} + a^{2}\cos^{2}\theta}\right]\sin^{2}\theta d\phi^{2}.$$

Kerr-Schild "Cartesian"

- In-falling observer
- No singularity at event horizon

$$ds^{2} = -dt^{2} + dx^{2} + dy^{2} + dz^{2}$$

$$+ \frac{2mr^{3}}{r^{4} + a^{2}z^{2}} \left[dt + \frac{r(x dx + y dy)}{a^{2} + r^{2}} + \frac{a(y dx - x dy)}{a^{2} + r^{2}} + \frac{z}{r} dz \right]^{2}$$

Doran

- Can also "go through" the horizon
- Lapse = 1 everywhere

$$ds^{2} = -dt^{2} + (r^{2} + a^{2}\cos^{2}\theta) d\theta^{2} + (r^{2} + a^{2})\sin^{2}\theta d\phi^{2}$$

$$+ \left[\frac{r^{2} + a^{2}\cos^{2}\theta}{r^{2} + a^{2}}\right] \left\{dr + \frac{\sqrt{2mr(r^{2} + a^{2})}}{r^{2} + a^{2}\cos^{2}\theta} (dt - a\sin^{2}\theta d\phi)\right\}^{2}.$$
(90)

Controlling artificial conductivity

$$\left(\frac{\mathrm{d}\mathbf{p}_{a}}{\mathrm{d}t}\right)_{\mathrm{diss}} \sim \sum_{b} \frac{m_{b}}{\bar{\rho}_{ab}} v_{\mathrm{sig}} \,\,\mathbf{\hat{r}}_{ab} \cdot (\mathbf{p}_{a} - \mathbf{p}_{b}) \,\overline{\nabla}W_{ab}$$

$$\left(\frac{\mathrm{d}\mathbf{e}_{a}}{\mathrm{d}t}\right)_{\mathrm{diss}} \sim \sum_{b} \frac{m_{b}}{\bar{\rho}_{ab}} v_{\mathrm{sig}} \left(\mathbf{e}_{a} - \mathbf{e}_{b}\right) \,\,\mathbf{\hat{r}}_{ab} \cdot \overline{\nabla}W_{ab}$$

Non-relativistic

$$e = \frac{1}{2}v^2 + u$$

$$e_a - e_b = \frac{1}{2}\alpha_{\text{visc}}\left(v_a^2 - v_b^2\right) + \alpha_{\text{cond}}\left(u_a - u_b\right)$$

Viscosity

Conductivity

Relativistic

$$e = \frac{v^2}{\sqrt{1 - v^2}} (1 + u + P/\rho) + \sqrt{1 - v^2} (1 + u)$$

$$e_a - e_b = \dots ???? \dots$$

$$\alpha_{\text{visc}} \left[\overline{\omega} \left(\gamma_a v_a^2 - \gamma_b v_b^2 \right) + \left(\frac{1}{\gamma_a} - \frac{1}{\gamma_b} \right) \right] + \alpha_{\text{cond}} \left[\frac{u_a}{\gamma_a} - \frac{u_b}{\gamma_b} \right]$$

Viscosity

Conductivity