0.1 irtkd: k-Dimensional Item Response Theory Model

Given several observed dependent variables and an unobserved explanatory variable, item response theory estimates the latent variable (ideal points). The model is estimated using the Markov Chain Monte Carlo algorithm, via a combination of Gibbs sampling and data augmentation. Use this model if you believe that the ideal points lie in k dimensions. See the unidimensional item response model (Section ??) for a single hypothesized latent variable.

Syntax

Inputs

irtkd accepts the following arguments:

- Y1, Y2, and Y3: Y1 contains the items for subject "Y1", Y2 contains the items for subject "Y2", and so on.
- dimensions: The number of dimensions in the latent space. The default is 1.

Additional arguments

irtkd accepts the following additional arguments for model specification:

- item.constraints: a list of lists specifying possible simple equality or inequality constraints on the item parameters. A typical entry has one of the following forms:
 - varname = list(): by default, no constraints are imposed.
 - varname = list(d, c): constrains the dth item parameter for the item named varname to be equal to c.
 - varname = list(d, "+"): constrains the dth item parameter for the item named varname to be positive;
 - varname = list(d, "-"): constrains the dth item parameter for the item named varname to be negative.

In a k dimensional model, the first item parameter for item i is the difficulty parameter α_i , the second item parameter is the discrimination parameter on dimension 1, $(\beta_{i,1})$, the third item parameter is the discrimination parameter on dimension 2, $(\beta_{i,2}), \ldots$, and (k+1)th item parameter is the discrimination parameter on dimension k, $(\beta_{i,k})$. The item difficulty parameter (α) should not be constrained in general.

irtkd accepts the following additional arguments to monitor the sampling scheme for the Markov chain:

- burnin: number of the initial MCMC iterations to be discarded (defaults to 1,000).
- mcmc: number of the MCMC iterations after burnin (defaults to 20,000).
- thin: thinning interval for the Markov chain. Only every thin-th draw from the Markov chain is kept. The value of mcmc must be divisible by this value. The default value is 1.
- verbose: defaults to FALSE. If TRUE, the progress of the sampler (every 10%) is printed to the screen. The default is FALSE.
- zelig.data: the input data frame if save.data = TRUE.
- seed: seed for the random number generator. The default is NA which corresponds to a random seed 12345.
- alphabeta.start: starting values for the item parameters α and β , either a scalar or a $(k+1) \times items$ matrix. If it is a scalar, then that value will be the starting value for all the elements of alphabeta.start. The default is NA which sets the starting values for the unconstrained elements based on a series of proportional odds logistic regressions. The starting values for the inequality constrained elements are set to be either 1.0 or -1.0 depending on the nature of the constraints.
- store.item: defaults to FALSE. If TRUE stores the posterior draws of the item parameters. (For a large number of draws or a large number observations, this may take a lot of memory.)
- store.ability: defaults to TRUE, storing the posterior draws of the subject abilities. (For a large number of draws or a large number observations, this may take a lot of memory.)
- drop.constant.items: defaults to TRUE, dropping items with no variation before fitting the model.

irthed accepts the following additional arguments to specify prior parameters used in the model:

- b0: prior mean of (α, β) , either as a scalar or a vector of compatible length. If a scalar value, then the prior means for both α and β will be set to that value. The default is 0.
- B0: prior precision for (α, β) , either a scalar or a $(k+1) \times items$ matrix. If a scalar value, the prior precision will be a blocked diagonal matrix with elements diag(B0,items). The prior precision is assumed to be same for all the items. The default is 0.25.

Zelig users may wish to refer to help(MCMCirtKd) for more information.

Convergence

Users should verify that the Markov Chain converges to its stationary distribution. After running the zelig() function but before performing setx(), users may conduct the following convergence diagnostics tests:

- geweke.diag(z.out\$coefficients): The Geweke diagnostic tests the null hypothesis that the Markov chain is in the stationary distribution and produces z-statistics for each estimated parameter.
- heidel.diag(z.out\$coefficients): The Heidelberger-Welch diagnostic first tests the null hypothesis that the Markov Chain is in the stationary distribution and produces p-values for each estimated parameter. Calling heidel.diag() also produces output that indicates whether the mean of a marginal posterior distribution can be estimated with sufficient precision, assuming that the Markov Chain is in the stationary distribution.
- raftery.diag(z.out\$coefficients): The Raftery diagnostic indicates how long the Markov Chain should run before considering draws from the marginal posterior distributions sufficiently representative of the stationary distribution.

If there is evidence of non-convergence, adjust the values for burnin and mcmc and rerun zelig().

Advanced users may wish to refer to help(geweke.diag), help(heidel.diag), and help(raftery.diag) for more information about these diagnostics.

Examples

1. Basic Example

Attaching the sample dataset:

Fitting a one-dimensional item response theory model using irtkd:

```
> z.out <- zelig(cbind(Rehnquist, Stevens, OConnor, Scalia, Kennedy,
+ Souter, Thomas, Ginsburg, Breyer) ~ NULL, dimensions = 1,
+ data = SupremeCourt, model = "irtkd", B0 = 0.25, burnin = 5000,
+ mcmc = 50000, thin = 10, verbose = TRUE)</pre>
```

Checking for convergence before summarizing the estimates:

```
> geweke.diag(z.out$coefficients)
```

- > heidel.diag(z.out\$coefficients)
- > raftery.diag(z.out\$coefficients)
- > summary(z.out)

Model

Let Y_i be a vector of choices on J items made by subject i for i = 1, ..., n. The choice Y_{ij} is assumed to be determined by unobserved utility Z_{ij} , which is a function of subject abilities (ideal points) θ_i and item parameters α_j and β_j ,

$$Z_{ij} = -\alpha_j + \beta_i' \theta_i + \epsilon_{ij}.$$

In the k-dimensional item response theory model, each subject's ability is represented by a k-vector, θ_i . Each item has a difficulty parameter α_j and a k-dimensional discrimination parameter β_j . In one-dimensional item response theory model, k = 1.

• The stochastic component is given by

$$Y_{ij} \sim \text{Bernoulli}(\pi_{ij})$$

= $\pi_{ij}^{Y_{ij}} (1 - \pi_{ij})^{1 - Y_{ij}}$,

where $\pi_{ij} = \Pr(Y_{ij} = 1) = E(Z_{ij}).$

The error term in the unobserved utility equation has a standard normal distribution,

$$\epsilon_{ij} \sim \text{Normal}(0,1).$$

• The systematic component is given by

$$\pi_{ij} = \Phi(-\alpha_j + \beta_j \theta_i),$$

where $\Phi(\cdot)$ is the cumulative density function of the standard normal distribution with mean 0 and variance 1, while θ_i contains the k-dimensional subject abilities (ideal points), and α_j and β_j are the item parameters. Both subject abilities and item parameters need to estimated from the model. The model is identified by placing constraints on the item parameters.

• The *prior* for θ_i is given by

$$\theta_i \sim \text{Normal}_k(0, I_k)$$

• The joint *prior* for α_i and β_i is given by

$$(\alpha_j, \beta_j)' \sim \operatorname{Normal}_{k+1} \left(b_{0_j}, B_{0_j}^{-1} \right)$$

where b_{0_j} is a (k+1)-vector of prior mean and B_{0_j} is a $(k+1) \times (k+1)$ prior precision matrix which is assumed to be diagonal.

Output Values

The output of each Zelig command contains useful information which you may view. For example, if you run:

```
z.out <- zelig(cbind(Y1, Y2, Y3) ~ NULL, model = "irtkd", data)</pre>
```

then you may examine the available information in z.out by using names(z.out), see the draws from the posterior distribution of the coefficients by using z.out\$coefficients, and view a default summary of information through summary(z.out). Other elements available through the \$ operator are listed below.

- From the zelig() output object z.out, you may extract:
 - coefficients: draws from the posterior distributions of the estimated subject abilities (ideal points). If store.item = TRUE, the estimated item parameters α and β are also contained in coefficients.
 - data: the name of the input data frame.
 - seed: the random seed used in the model.
- Since there are no explanatory variables, the sim() procedure is not applicable for item response models.

How to Cite

To cite the *irtkd* Zelig model use:

Ben Goodrich and Ying Lu. 2007. "irtkd: K-Dimensional Item Response Model," in Kosuke Imai, Gary King, and Olivia Lau, "Zelig: Everyone's Statistical Software," http://gking.harvard.edu/zelig.

To cite Zelig as a whole, please reference these two sources:

Kosuke Imai, Gary King, and Olivia Lau. 2007. "Zelig: Everyone's Statistical Software," http://GKing.harvard.edu/zelig.

Kosuke Imai, Gary King, and Olivia Lau. 2008. "Toward A Common Framework for Statistical Analysis and Development," *Journal of Computational and Graphical Statistics*, forthcoming, http://gking.harvard.edu/files/abs/z-abs.shtml.

See also

The k dimensional item-response function is part of the MCMCpack library by Andrew D. Martin and Kevin M. Quinn (Martin and Quinn 2005). The convergence diagnostics are part of the CODA library by Martyn Plummer, Nicky Best, Kate Cowles, and Karen Vines (Plummer et al. 2005). Sample data are adapted from Martin and Quinn (2005).

Bibliography

Martin, A. D. and Quinn, K. M. (2005), MCMCpack: Markov chain Monte Carlo (MCMC) Package.

Plummer, M., Best, N., Cowles, K., and Vines, K. (2005), coda: Output analysis and diagnostics for MCMC.