EQUIVALENCES AND INFERENCE RULES

The symbol (*) means that the "dual rule" must also be considered (that is, the one obtained replacing \vee by \wedge and vice versa).

1. Equivalences

Name	Rule	Short name
Associative	$P \lor (Q \lor R) \equiv (P \lor Q) \lor R \ (*)$	A
Commutative	$P \vee Q \equiv Q \vee P \ (*)$	С
Distributive	$P \lor (Q \land R) \equiv (P \lor Q) \land (P \lor R) \ (*)$	D
Identity element	$P \lor \phi \equiv P; P \land \tau \equiv P$	Id
Inverse element	$P \vee \neg P \equiv \tau; P \wedge \neg P \equiv \phi$	Inv
Absorption	$\tau \vee P \equiv \tau; \phi \wedge P \equiv \phi$	Abs
Simplification	$P \lor (P \land Q) \equiv P \ (*)$	Simp
Idempotent law	$P \vee P \equiv P; P \wedge P \equiv P$	Idemp
De Morgan laws	$\neg (P \lor Q) \equiv \neg P \land \neg Q \ (*)$	DM
Double negation law	$\neg(\neg P) \equiv P$	DN
Conditional-disjunction	$P \to Q \equiv \neg P \lor Q$	CD
Conditional-biconditional	$(P \to Q) \land (Q \to P) \equiv P \leftrightarrow Q$	СВ
Transposition	$P \to Q \equiv \neg Q \to \neg P$	Т
Exportation law	$(P \land Q) \to R \equiv P \to (Q \to R)$	Е
Negation of quantifiers	$\neg \forall x \ P(x) \equiv \exists x \ \neg P(x); \ \neg \exists x \ P(x) \equiv \forall x \ \neg P(x)$	NQ

2. Inference rules (or implications)

Name	Rule	Short name
Conjunction	$\{P,Q\} \vdash P \land Q$	Conj
Simplification	$\{P \wedge Q\} \vdash P; \{P \wedge Q\} \vdash Q$	Simp
Addition	$\{P\} \vdash P \lor Q; \{Q\} \vdash P \lor Q$	Add
Modus ponens	$\{P, P \to Q\} \vdash Q$	MP
Modus tollens	$\{\neg Q, P \to Q\} \vdash \neg P$	MT
Disjunctive syllogism (or Modus Tollendo Ponens)	$\{\neg P, P \lor Q\} \vdash Q$	DS (or MTP)
Hypothetical syllogism	$\{P \to Q, Q \to R\} \vdash (P \to R)$	HS
Universal specification	$\forall x \ P(x) \vdash P(y) \ (y \ arbitrary)$	US
Existential specification	$\exists x \ P(x) \vdash P(a) \ (a \ specific)$	ES
Universal generalization	$P(y)$ for any $y \vdash \forall x P(x)$	UG
Existential generalization	$P(a)$ for certain $a \vdash \exists x P(x)$	EG