Exercise 1:

- 1. Let (B^1, B^2) be two independent Brownian motions.
 - a) (2 points) Find for $\rho \in [-1, 1]$ constants a and b such that

$$W^1 := B^1 \text{ and } W^2 := aB^1 + bB^2$$

satisfy $[W^1]_t = [W^2]_t = t$ and $[W^1, W^2]_t = \rho t$. Compute $\operatorname{corr}(W^1_t, W^2_t)$.

b) (2 points) Consider adapted and left-continuous bounded processes x_s , y_s , z_s and v_s . Define

$$X_t := \int_0^t x_s dW_s^1, \quad Y_t := \int_0^t y_s dW_s^2,$$

$$Z_t := \int_0^t z_s dX_s, \quad V_t := \int_0^t v_s dY_s.$$

Find $[Z, V]_t, t > 0$.

a)

$$\rho t = [W^1, W^2]$$
$$= [B^1, aB^1 + bB^2]$$

, since the quadratic covariation is bilinear in it's arguments

$$= a \left[B^1, B^1 \right] + b \underbrace{\left[B^1, B^2 \right]}_{=0, \text{since} B^1 \text{and} B^2 \text{independent}}$$

$$= a \left[B^1 \right]$$
$$= at$$

$$\Rightarrow a = \rho$$

$$\begin{split} t &= \left[W^2 \right] \\ &= \left[W^2, W^2 \right] \\ &= \left[aB^1 + bB^2, aB^1 + bB^2 \right] \\ &= \left[aB^1 + bB^2, aB^1 \right] + \left[aB^1 + bB^2, bB^2 \right] \\ &= \left[aB^1, aB^1 \right] + \underbrace{\left[bB^2, aB^1 \right]}_{=0} + \underbrace{\left[aB^1, bB^2 \right]}_{=0} + \left[bB^2, bB^2 \right] \\ &= a^2 \underbrace{\left[B^1, B^1 \right]}_{\left[B^1 \right] = t} + b^2 \underbrace{\left[B^2, B^2 \right]}_{\left[B^2 \right] = t} \\ \Rightarrow b^2 = 1 - a^2 \end{split}$$

$$\operatorname{corr}(W_{t}^{1}, W_{t}^{2}) = \frac{\operatorname{Cov}(W_{t}^{1}, W_{t}^{2})}{\sigma_{W_{t}^{1}}\sigma_{W_{t}^{2}}}$$

$$= \frac{\operatorname{Cov}(B_{t}^{1}, aB_{t}^{1} + bB_{t}^{2})}{\sigma_{W_{t}^{1}}\sigma_{W_{t}^{2}}}$$

$$= \frac{a\operatorname{Cov}(B_{t}^{1}, B_{t}^{1}) + b\operatorname{Cov}(B_{t}^{1}, B_{t}^{2})}{\sigma_{B_{t}^{1}}\sigma_{aB_{t}^{1} + bB_{t}^{2}}}$$

$$= \frac{a\operatorname{Cov}(B_{t}^{1}, B_{t}^{1}) + b\operatorname{Cov}(B_{t}^{1}, B_{t}^{2})}{ab\sigma_{B_{t}^{1}}^{2}\sigma_{B_{t}^{2}}}$$

$$= \frac{at}{abt\sqrt{t}} = \frac{1}{b\sqrt{t}}$$

b)

$$\begin{split} [Z,V]_t &= \left[\int_0^t z_s dX_s, \int_0^t v dY_s \right]_t \\ &= \int_0^t z_s v_s d \left[X, Y \right]_s \\ &= \int_0^t z_s v_s d \left[\int x_s dW_s^1, \int y_s dW_s^2 \right]_s \\ &= \int_0^t z_s v_s d \left(\int_0^t x_s y_s d \underbrace{\left[W^1, W^2 \right]}_{\left[B^1, a B^1 + b B^2 \right]} \right) \\ &= \int_0^t z_s v_s d \left(\int_0^t x_s y_s d \underbrace{\left[u \underbrace{\left[u^1, u^2 \right]}_{=t} + b \underbrace{\left[u^1, u^2 \right]}_{=0} \right]}_{=0} \right) \right) \\ &= \int_0^t z_s v_s d \left(\int_0^t x_s y_s d dt \right) \end{split}$$

Exercise 2:

2. Kunita Watanabe decomposition, hedging with correlated assets.

a) (2 points) Consider two martingales $N, M \in \mathcal{M}^{2,c}$ and denote by $N_t = N_0 + \int_0^t H_s dM_s + L_t$, $t \leq T$, the Kunita Watanabe decomposition of N wrt M. Show that the integrand H satisfies the relation

 $[M, N]_t = \int_0^t H_s d[M]_s, \quad t \le T.$

Suppose that - as in the case of martingales driven by Brownian motion - $d[M,N]_t = \alpha_t^{[M,N]}dt$ and $d[M]_t = \alpha_t^{[M]}dt$ with $\alpha_t^{[M]} > 0$. Conclude that $H_t = \alpha_t^{[M,N]}/\alpha_t^{[M]}$.

b) (2 points) Consider a model with two correlated assets with dynamics $dS_t^i = \sigma_i S_t^i dB_t^i$ for two standard Brownian motions B^1 , B^2 with $[B^1, B^2]_t = \rho t$ for some $\rho \in [-1, 1]$. Compute the Kunita Watanabe decomposition of S^2 wrt S^1 . (This is one possible approach for hedging the non-tradable asset S^2 with the tradable asset S^1 .)

a)

$$\begin{split} [M,N]_t &= \left[M,N_0 + \int_0^t H_s dM_s + L_t\right]_t \\ &= [M,N_0] + \left[M,\int_0^t H_s dM_s\right] + [M,L_t] \\ &= \left[\int_0^t 1 dM_s, \int_0^t H_s dM_s\right] \\ &= \int_0^t 1 H_s d\left[M_s,M_s\right] \\ &= \int_0^t H_s d\left[M_s\right] \end{split}$$

and

$$\begin{split} \left[M,N\right]_t &= \int_0^t H_s d \left[M\right]_s \\ \Rightarrow d \left[M,N\right]_t &= H_s d \left[M\right]_s \\ \Rightarrow \alpha_t^{[M,N]} dt &= H_s \alpha_t^{[M]} dt \\ \Rightarrow H_s &= \frac{\alpha_t^{[M,N]}}{\alpha_t^{[M]}} \end{split}$$

Exercise 3:

We start with:

$$[M_t] = [N_t - \lambda t] = [N_t] - 2[N_t, \lambda t] + [\lambda t] = [N_t]$$
(1)

The increments of λt go asymptotically to 0 as the size of the increments gets smaller. Therefore their covariation with N_t goes to 0 as well.

We divide t into sub-intervals: $0 = t_0 < t_1 < t_2 < ... < t_n = t$

We know that for sufficiently small increments ΔN is either 1 when there is a jump and 0 when there is no jump and therefore:

$$[N_t] = \lim_{n \to \infty} \sum_{i=1}^n (N_{t_i} - N_{t_{i-1}})^2 = N_t$$
 (2)

3. Quadratic variation of compensated Poisson process . Consider a Poisson process N_t with parameter λ and recall that $M_t = N_t - \lambda_t$ is a square integrable martingale. Use the characterization of quadratic variation to show that $[M_t] = N_t$.

Exercise 4:

4. Generator of the Heston model $\,$ (3 points) Consider a two-dimensional process X,v with

$$dX_t = \mu X_t dt + \sigma_1 \sqrt{v_t} dB_{t,1}$$

$$dv_t = \kappa (\theta - v_t) dt + \sigma_2 \sqrt{v_t} dB_{t,2}$$

for constants $\mu, \sigma_1, \sigma_2, \kappa, \theta > 0$ and two Brownian motions B_1, B_2 with $[B_1, B_2]_t = \rho t$ for some $-1 \le \rho \le 1$. Compute the generator of the process (X, v).