Vector Models and Text processing

10.03.2023

Munich

Definitions
Vocabulary = set of all words
Corpus = Collection of Mr. 1263 (x128et)
N-Graw = Sequence of N conscribine items
1 = luigram 2 = Bigram 3= Trigram
Box of words
- Text is sequential - Order doesn't water Dop Toy = Toy Dop used in Vector Models in Bag of words
Court Vectorizes
- justance of Bap of words, order doesn't matter
h I - Prior contense, the book
somment by leftences into numerical representation
VocaBerlary size -> every word has a number
I like eggs and I like costs There eggs and I like costs 1 1 0 1
I have easts of 1 of 1
2 (182 CBS Count)
Wito enpure
Bio (xxx) - Physics
conut

Practical issues Tokenization-convert string containing words into array of numbers long us short documents $\hat{x} = \frac{x}{u \times u_2} \|x\|_2 = \sqrt{\frac{y}{1-1}}^2$ gparse matrices to be used Norwalizatiou Tokevization » old approach -> eplit() x String eplit works well for 2NN classification × Punktuation I hate cats. us I hate cats? Count Vertorizer ignores princt. x Casing Cat name us cat animal × Accounts vaive us vaive count vertorizer strip accounts x character Bossed 14 words = 1M em Beddings = 1M last layer not much information, But 26 letters + punctuation Subword - Based Toberization walking > walk +ing smodifier walking => walke=> tree = equal weights Count Vectorizer has word/char Based tokenization Stopwords - Very common words with less meaning (the, it, and is) - increasing vector dimensionality - distance will be diminished (Between rectors)

- Count Vectorizer has english stopword library - NLTV has stopwords from other languages Stemmino and Lemmatization
-Basic tokenization: walk, walking, walks Lovery high dimensions all different tokens - Search engine will treat all words independently - Stemming -> chop the end of the word (erude) - Lemmatization -> true root of the word (sophisticated) Reduces vocabulary size
Stemming SSES -> remove es: Bosses -> Boss Replacement -> Replace Porter stemmer in NLTZ
Lemmatization 10 Ble
- Look up table Better -> Grood Was -> Be Ts -> Be Mice -> Mice - Wordnet DB in NLTk - Pos (parts of epeech) signifies wether word is noun, ad; verb Trump has devoted following The cost B following we. - NLTk can do POS tagging - Application: search engine, doc. retrieval, social media tags, ads

Cosine Distance =
$$1 - Cosine$$
 Similarity dist = $1 - (-1) = 2$ for 180° dist = $1 - 1 = 0$ for 0° Which to use?

Which to use?

Mitochandria x long Book

Short Gooks have smaller encl. distance compared to Books on Biology topics

Voltage

-If vectors are normalized in L2 form, distance can

$$||x-y||_{2}^{2} = (x-y)^{T}(x-y)$$

$$= x^{T}x - 2x^{T}y + y^{T}y \quad \text{But } x^{T}x = y^{T}y = 1 \quad \text{for } 12$$

$$= 2 - 2x^{T}y \quad x^{T}y = \frac{x^{T}y}{||x||_{2}} = \cos \theta$$

$$= 2 - 2\cos \theta$$

$$= 2 \cdot \cos \theta \text{ distance}$$

Word to Index Happing

	word1	word 2	Lwords	•
Doc 1	0	1.	1	
Dec 2	2	2	0	
Doc 3	1	1	1	· ·

Vocabulary size N=5 0-> I 1-> like 2-> cats ... $current_idx = 0$ word 2 idx = 83 for doc 14 bocs: tokens = word_tokenize(doc) for token in tokens: if token not in word 21dx: word 2 idx [token] = current - index current_idx += 1 -> map token to index value is juder Word 2 rudex -> Count Vectorizer -> TF 1DF

-words not appearing in test set?

if frequency in train set is low -> ignore or assign zuntus

- Leverse Mapping input #345 -> word

Neural Word embeddings

em Bedding = vector convert moras into vectors, doc = sequence of vectors CNN/RNN/Transformers are Built for sequences

Word2vec

neural network, weights are the embeddings NN goal is to predict if a word is in the context of another word

... the fox jumped over the lary dog ...

context window

Jumps -> NN _ Fox (1) -> weights are the > Deg & Neutal embeddings

Glove
like recommender system score= 1/2 Score= 1/4
like recommender system score= 1/2 Score= 1/4 The quick brown fox jumps over the lazy dog.
1 word away = score=1 Postings are based on dictance Then: how high a word rates another word Then: how high a word rates another word
Word Vectors
Europeddiups are low-dimentional and dense
- Doc > Tokewize -> word vectors -> Average (vectors) Lo 1 vector of the same site for a Doc
— Word Analogies
arithmetic: U(ving)-V(queen)= U(man)-vIwomany
x= v(king)-v(man) +v(woman)
France: Paris Italy: Dome countries
Japan: Japanese languages
Uiani: Florida cities
Dec: Nov worths
- Learne meaning from word pos. in vector space weights are close to optimal, no need for training