Binomial Queues

- Binomial queues support all three priority queue operations Merge, Insert and DeleteMin in O(log N) time
- Idea: Maintain a collection of heap-ordered trees
 - Forest of binomial trees
- Recursive Definition of Binomial Tree (based on height k):
 - Only one binomial tree for a given height
 - Binomial tree of height 0 = single root node
 - Binomial tree of height $k = B_k = Attach B_{k-1}$ to root of another B_{k-1}

- To construct a binomial tree B_k of height k:
 - 1. Take the binomial tree B_{k-1} of height k-1
 - 2. Place another copy of B_{k-1} one level below the first
 - 3. Attach the root nodes
- Binomial tree of height k has exactly 2^k nodes (by induction) B_0 B_1 B_2 B_3

- To construct a binomial tree B_k of height k:
 - 1. Take the binomial tree B_{k-1} of height k-1
 - 2. Place another copy of B_{k-1} one level below the first
 - 3. Attach the root nodes
- Binomial tree of height k has exactly 2^k nodes (by induction) B_0 B_1 B_2 B_3

- To construct a binomial tree B_k of height k:
 - 1. Take the binomial tree B_{k-1} of height k-1
 - 2. Place another copy of B_{k-1} one level below the first
 - 3. Attach the root nodes
- Binomial tree of height k has exactly 2^k nodes (by induction) B_0 B_1 B_2 B_3

- To construct a binomial tree B_k of height k:
 - 1. Take the binomial tree B_{k-1} of height k-1
 - 2. Place another copy of B_{k-1} one level below the first
 - 3. Attach the root nodes
- Binomial tree of height k has exactly 2^k nodes (by induction)
 B. B. B.

- To construct a binomial tree B_k of height k:
 - 1. Take the binomial tree B_{k-1} of height k-1
 - 2. Place another copy of B_{k-1} one level below the first
 - 3. Attach the root nodes
- Binomial tree of height k has exactly 2^k nodes (by induction) B_0 B_1 B_2 B_3

- To construct a binomial tree B_k of height k:
 - 1. Take the binomial tree B_{k-1} of height k-1
 - 2. Place another copy of B_{k-1} one level below the first
 - 3. Attach the root nodes
- Binomial tree of height k has exactly 2^k nodes (by induction)
 R

- To construct a binomial tree B_k of height k:
 - 1. Take the binomial tree B_{k-1} of height k-1
 - 2. Place another copy of B_{k-1} one level below the first
 - 3. Attach the root nodes
- Binomial tree of height k has exactly 2^k nodes (by induction)

 $\mathbf{B}_0 \qquad \mathbf{B}_1 \qquad \qquad \mathbf{B}_2 \qquad \qquad \mathbf{B}_3$

Why Binomial?

- Why are these trees called binomial?
 - Hint: how many nodes at depth d?

Why Binomial?

- Why are these trees called binomial?
 - Hint: how many nodes at depth d?

Number of nodes at different depths d for $B_k =$

Binomial coefficients of $(a + b)^k = k!/((k-d)!d!)$

Definition of Binomial Queues

Binomial Queue = "forest" of heap-ordered binomial trees

Binomial queue H1 5 elements = 101 base 2 $\rightarrow B_2 B_0$

Binomial Queue Properties

Suppose you are given a binomial queue of N nodes

- 1. There is a unique set of binomial trees for N nodes
- 2. What is the maximum number of trees that can be in an N-node queue?
 - 1 node → 1 tree B_0 ; 2 nodes → 1 tree B_1 ; 3 nodes → 2 trees B_0 and B_1 ; 7 nodes → 3 trees B_0 , B_1 and B_2 ...
 - Trees B_0 , B_1 , ..., B_k can store up to $2^0 + 2^1 + ... + 2^k = 2^{k+1} 1$ nodes = N.
 - Maximum is when all trees are used. So, solve for (k+1).
 - Number of trees is $\leq \log(N+1) = O(\log N)$

Binomial Queues: Merge

- Main Idea: Merge two binomial queues by merging individual binomial trees
 - Since B_{k+1} is just two B_k 's attached together, merging trees is easy
- Steps for creating new queue by merging:
 - 1. Start with B_k for smallest k in either queue.
 - 2. If only one B_k , add B_k to new queue and go to next k.
 - 3. Merge two B_k 's to get new B_{k+1} by making larger root the child of smaller root. Go to step 2 with k = k + 1.

H1: H2:

H1: H2:

H1: H2: 7 3 5 2 1 3 21 9 6 8 11 5

H1: H2:

H1: H2:

Binomial Queues: Merge and Insert

- What is the run time for Merge of two O(N) queues?
 - O(number of trees) = O(log N)
- How would you insert a new item into the queue?
 - Create a single node queue B₀ with new item and merge with existing queue
 - Again, O(log N) time
- Example: Insert 1, 2, 3, ...,7 into an empty binomial queue

Binomial Queues: DeleteMin

• Steps:

- 1. Find tree B_k with the smallest root
- 2. Remove B_k from the queue
- 3. Delete root of B_k (return this value); You now have a new queue made up of the forest B_0 , B_1 , ..., B_{k-1}
- 4. Merge this queue with remainder of the original (from step 2)
- Run time analysis: Step 1 is O(log N), step 2 and 3 are O(1), and step 4 is O(log N). Total time = O(log N)
- Example: Insert 1, 2, ..., 7 into empty queue and DeleteMin

DeleteMin

