TD 2. Substitutions et formes normales dans la logique propositionnelle

Rappel : Si I est une interprétation, et τ est une substitution propositionnelle, alors $I\tau$ est l'interprétation qui associe à une proposition P la valeur $[\![\tau(P)]\!]^I$. Le lemme de substitution propositionnelle garantit que pour toute formule ϕ , $[\![\phi\tau]\!]^I = [\![\phi]\!]^{I\tau}$.

Exercice 1. Engendrer des équivalences par substitution

Soient φ et ψ deux formules propositionnelles équivalentes, et soit τ une substitution propositionnelle.

- (a) Montrer que les formules $\varphi \tau$ et $\psi \tau$ sont équivalentes.
- (b) En déduire que si φ et ψ sont deux formules propositionnelles, les formules $\neg(\varphi \lor \psi)$ et $\neg \varphi \land \neg \psi$ sont équivalentes.

Exercice 2. Encore sur les substitutions

Considérons la formule $\varphi = (P \wedge Q) \vee R$, les substitutions $\tau_1 = [(S \vee Q)/P, \neg Q/R], \tau_2 = [(Q \wedge P)/Q]$ et l'interprétation I = [1/P, 0/Q, 0/R, 0/S].

- (a) Calculer les formules $\varphi \tau_1$ et $\varphi \tau_2$.
- (b) Calculer les interprétations $I\tau_1$ et $I\tau_2$.
- (c) Vérifier que $[\![\varphi\tau_1]\!]^I = [\![\varphi]\!]^{I\tau_1}$ et que $[\![\varphi\tau_2]\!]^I = [\![\varphi]\!]^{I\tau_2}$.
- (d) De quel énoncé les deux égalités du point précédent sont-elles des cas particuliers?

Rappel : On rappelle que la mise en forme normale négative peut se faire avec l'algorithme suivant, défini par induction structurelle sur la syntaxe des formules :

$$\operatorname{nnf}(P) \stackrel{\operatorname{def}}{=} P , \qquad \operatorname{nnf}(\neg P) \stackrel{\operatorname{def}}{=} \neg P ,
\operatorname{nnf}(\varphi \lor \psi) \stackrel{\operatorname{def}}{=} \operatorname{nnf}(\varphi) \lor \operatorname{nnf}(\psi) , \qquad \operatorname{nnf}(\neg(\varphi \lor \psi)) \stackrel{\operatorname{def}}{=} \operatorname{nnf}(\neg\varphi) \land \operatorname{nnf}(\neg\psi) ,
\operatorname{nnf}(\varphi \land \psi) \stackrel{\operatorname{def}}{=} \operatorname{nnf}(\varphi) \land \operatorname{nnf}(\psi) , \qquad \operatorname{nnf}(\neg(\varphi \land \psi)) \stackrel{\operatorname{def}}{=} \operatorname{nnf}(\neg\varphi) \lor \operatorname{nnf}(\neg\psi) ,
\operatorname{nnf}(\neg\neg\varphi) \stackrel{\operatorname{def}}{=} \operatorname{nnf}(\varphi) .$$

Une formule sous forme normale négative s'écrit donc dans la syntaxe ci-dessous:

(littéraux)
$$\ell ::= P \mid \neg P$$
 (formules)
$$\varphi ::= \ell \mid \varphi \vee \varphi \mid \varphi \wedge \varphi$$

À partir d'une formule sous cette forme, les deux algorithmes suivant permettent d'obtenir une formule équivalente sous forme normale conjonctive (pour cnf) et sous forme normale disjonctive (pour dnf) :

$$\operatorname{cnf}(\varphi \vee (\psi \wedge \psi')) = \operatorname{cnf}((\psi \wedge \psi') \vee \varphi) \stackrel{\operatorname{def}}{=} \operatorname{cnf}(\varphi \vee \psi) \wedge \operatorname{cnf}(\varphi \vee \psi') .$$
$$\operatorname{dnf}(\varphi \wedge (\psi \vee \psi')) = \operatorname{dnf}((\psi \vee \psi') \wedge \varphi) \stackrel{\operatorname{def}}{=} \operatorname{dnf}(\varphi \wedge \psi) \vee \operatorname{dnf}(\varphi \wedge \psi') .$$

Une formule sous forme normale conjonctive s'écrit $\bigwedge_{1 \leq i \leq m} \bigvee_{1 \leq j \leq n_i} \ell_{i,j}$ et une formule sous forme normale disjonctive s'écrit $\bigvee_{1 \leq i \leq m} \bigwedge_{1 \leq j \leq n_i} \ell_{i,j}$ où les $\ell_{i,j}$ sont des littéraux

Exercice 3. Forme normale négative

- (a) Calculer $\operatorname{nnf}(\neg(P \vee \neg(Q \wedge \neg R)))$
- (b) Calculer $\operatorname{nnf}((P \Rightarrow Q) \Leftrightarrow (\neg Q \Rightarrow \neg P))$.

Exercice 4. Formes clausales

- (a) Calculer $\operatorname{cnf}((P_1 \wedge Q_1) \vee (P_2 \wedge Q_2))$. Est-ce que la manière de calculer est unique?
- (b) Donner un algorithme pour vérifier si une formule cnf est valide.
- (c) Calculer $\operatorname{dnf}((P_1 \vee \neg P_2 \vee P_3) \wedge Q)$.
- (d) Donner un algorithme pour vérifier efficacement si une formule sous forme normale disjonctive est satisfiable.

Exercice 5. Tables de vérité et formes normales disjonctives complètes

Soit
$$\varphi = \neg (P \lor (Q \land R))$$

- (a) Écrire la table de vérité de φ et construire à partir de cette table une formule dnf ψ telle que ψ soit équivalente à φ .
- (b) Calculer $dnf(nnf(\varphi))$ et vérifier que cette formule est équivalente à φ .

Rappel : On rappelle l'algorithme vu en cours qui permet de construire, pour une formule propositionnelle φ sous forme normale négative, une formule propositionnelle ψ sous forme 3-clausale conjonctive telle que φ et ψ sont équi-satisfiables.

Pour chaque sous-formule φ' de la formule φ , on introduit une proposition fraîche $Q_{\varphi'} \notin \text{fp}(\varphi)$, mis à part les littéraux, pour lesquels on définit $Q_{\varphi'} \stackrel{\text{def}}{=} P$ si $\varphi' = P$ et $Q_{\varphi'} \stackrel{\text{def}}{=} \neg P$ si $\varphi' = \neg P$. On définit aussi pour chaque sous-formule non littérale φ' de φ une formule

$$\psi_{\varphi'} \stackrel{\text{def}}{=} \begin{cases} Q_{\varphi_1} \vee Q_{\varphi_2} & \text{si } \varphi' = \varphi_1 \vee \varphi_2 \ , \\ Q_{\varphi_1} \wedge Q_{\varphi_2} & \text{si } \varphi' = \varphi_1 \wedge \varphi_2 \ . \end{cases}$$

La formule désirée est alors $\psi \stackrel{\text{def}}{=} Q_{\varphi} \wedge \bigwedge_{\varphi' \text{ sous-formule non littérale de } \varphi}(Q_{\varphi'} \Rightarrow \psi_{\varphi'}).$

Cette formule se transforme facilement en une forme 3-clausale conjonctive. La formule propositionnelle ψ est de taille linéaire en la taille de la formule propositionnelle φ .

Exercice 6. Forme clausale equi-satisfiable

- (a) Calculer la forme normale négative de la loi de PEIRCE $((P \Rightarrow Q) \Rightarrow P) \Rightarrow P$.
- (b) Appliquer à la formule obtenue au point précédent l'algorithme ci-dessus.
- (c) Vérifier que la loi de Peirce est valide. Soit ψ la formule en forme 3-clausale conjonctive produite au point précédent. Donner une interprétation I_1 qui satisfait ψ et une interprétation I_2 qui la contredit.