We now prove (b).

Proposition 49.16. Assume that $\nabla J_{u_i} \neq 0$ for i = 0, ..., k, and let $\Delta_{\ell} = u_{\ell+1} - u_{\ell}$, for $\ell = 0, ..., k$. Then $\Delta_{\ell} \neq 0$ for $\ell = 0, ..., k$, and

$$\langle A\Delta_{\ell}, \Delta_{i} \rangle = 0, \quad 0 < i < \ell < k.$$

The vectors $\Delta_0, \ldots, \Delta_k$ are linearly independent.

Proof. Since J is a quadratic functional we have

$$\nabla J_{v+w} = A(v+w) - b = Av - b + Aw = \nabla J_v + Aw.$$

It follows that

$$\nabla J_{u_{\ell+1}} = \nabla J_{u_{\ell} + \Delta_{\ell}} = \nabla J_{u_{\ell}} + A\Delta_{\ell}, \quad 0 \le \ell \le k. \tag{*}_1$$

By Proposition 49.15, since

$$\langle \nabla J_{u_i}, \nabla J_{u_i} \rangle = 0, \quad 0 \le i \ne j \le k,$$

we get

$$0 = \langle \nabla J_{u_{\ell}+1}, \nabla J_{u_{\ell}} \rangle = \|\nabla J_{u_{\ell}}\|^2 + \langle A\Delta_{\ell}, \nabla J_{u_{\ell}} \rangle, \quad \ell = 0, \dots, k,$$

and since by hypothesis $\nabla J_{u_i} \neq 0$ for $i = 0, \dots, k$, we deduce that

$$\Delta_{\ell} \neq 0, \quad \ell = 0, \dots, k.$$

If $k \geq 1$, for $i = 0, \dots, \ell - 1$ and $\ell \leq k$ we also have

$$0 = \langle \nabla J_{u_{\ell+1}}, \nabla J_{u_i} \rangle = \langle \nabla J_{u_{\ell}}, \nabla J_{u_i} \rangle + \langle A \Delta_{\ell}, \nabla J_{u_i} \rangle$$
$$= \langle A \Delta_{\ell}, \nabla J_{u_i} \rangle.$$

Since $\Delta_j = u_{j+1} - u_j \in \mathcal{G}_j$ and \mathcal{G}_j is spanned by $(\nabla J_{u_0}, \nabla J_{u_1}, \dots, \nabla J_{u_j})$, we obtain

$$\langle A\Delta_{\ell}, \Delta_{j} \rangle = 0, \quad 0 \le j < \ell \le k.$$

For the last statement of the proposition, let w_0, w_1, \ldots, w_k be any k+1 nonzero vectors such that

$$\langle Aw_i, w_j \rangle = 0, \quad 0 \le i < j \le k.$$

We claim that w_0, w_1, \ldots, w_k are linearly independent.

If we have a linear dependence $\sum_{i=0}^{k} \lambda_i w_i = 0$, then we have

$$0 = \left\langle A\left(\sum_{i=0}^{k} \lambda_i w_i\right), w_j \right\rangle = \sum_{i=0}^{k} \lambda_i \langle Aw_i, w_j \rangle = \lambda_j \langle Aw_j, w_j \rangle,$$

where we form these inner products for $j=0,\ldots,k$, in that order. Since A is symmetric positive definite (because J is a quadratic elliptic functional) and $w_j \neq 0$, we have $\langle Aw_j, w_j \rangle > 0$, and so $\lambda_j = 0$ for $j=0,\ldots,k$. Therefore the vectors w_0, w_1,\ldots,w_k are linearly independent.