Ministério da Educação

Universidade Tecnológica Federal do Paraná - Câmpus Pato Branco Departamento Acadêmico de Informática

Curso de Engenharia de Computação/Elétrica

Disciplina: Redes de Computadores - Prof. Dr. Fábio Favarim

Trabalho 1: Práticas Endereçamento/Roteamento IPv4/IPv6

Esse trabalho tem o objetivo de fixar o conteúdo de endereçamento e roteamento IPv4 e IPv6, roteamento e a prática de configuração de roteadores via CLI. Com a conclusão desta atividade, você será capaz de demonstrar que obteve as seguintes habilidades:

- Configurar topologias física e lógica;
- Definir as rotas estáticas para redes remotas;
- Fazer a documentação da rede;
- Configurar switches, roteadores e dispositivos finais de modo a permitir a comunicação entre
- Verificar a conectividade entre os dispositivos usando protocolo IPv4 e IPv6.

Este trabalho consiste de 4 topologias, conforme apresentado a seguir. O endereço de cada sub-rede está apresentado no Quadro 1.

Topologia 1 (1 ponto) – Observe que todos os dispositivos finais alcançam uns aos outros, mesmo estando em sub-redes separadas quando se usa IPv4. Isto se deve por que as redes estão diretamente conectadas ao roteador e as rotas para essas redes são automaticamente criadas pelo próprio roteador quando se atribui endereços nas interfaces. No IPv6, assim como no IPv4, as rotas também são automaticamente aprendidas, porém é preciso ativar o serviço de roteamento IPv6 no roteador.

Topologia 2 (1,5 ponto) - Observe que os dispositivos finais somente alcançam uns aos outros dentro da mesma sub-rede. No entanto, para que haja comunicação entre redes remotas, se faz necessário criar as rotas estáticas para essas redes nos roteadores.

Topologia 3 (2 pontos) – Idem Topologia 2, porém com mais um roteador intermediário.

Topologia 4 (2,5 pontos) – Idem Topologia 2, porém, com mais uma LAN.

Obs: no Roteador (R2) inserir mais uma interface de rede além das duas já existentes. Sugestão: usar o módulo NM-1FE2W (que fornece uma interface FastEthernet).

Topologia 5 (3 pontos) – Mesmas LANs da topologia anterior, porém em uma topologia diferente.

Sub-Rede	I	Pv4*	IPv6* Endereço da sub-rede	
	Endereço da sub-rede	Máscara sub-rede / (Prefixo sub-rede)		
LAN0	200.200. N .0	255.255.255.192 (/2 6)	2001:0DB8:ACAD: NN 00::/64	
LAN1	200.200. N .64	255.255.255.224 (/27)	2001:0DB8:ACAD: NN 01::/64	
LAN2	200.200. N .96	255.255.255.224 (/27)	2001:0DB8:ACAD: NN 02::/64	
WAN1	200.200. N .128	255.255.255.252 (/30)	2001:0DB8:ACAD: NN FF::1:0/112	
WAN2	200.200. N .132	255.255.255.252 (/30)	2001:0DB8:ACAD: NN FF::2:0/112	
WAN3	200.200. N .136	255.255.255.252 (/30)	2001:0DB8:ACAD: NN FF::3:0/112	

Quadro 1: Sub-redes

^{*} N e NN equivalem aos dois últimos números do RA, sendo que NN deve ser convertido para hexadecimal. Ex: se o seu número for 11, ficaria 200.200.11.0/24 e 2001:0DB8:ACAD:0B00::/56.

Instruções:

- A atividade é individual!!
- Para cada uma das 5 topologias de rede devem ser feitas as tarefas seguintes.
- Tarefa 1: Documentar as informações de endereçamento IP (IPv4 e IPv6) de todos os dispositivos, conforme modelo disponível no Anexo 1, com o endereçamento IP:
 - O PC 1 usará o primeiro endereço de host válido da respectiva LAN;
 - O PC 2 usará o segundo endereço de host válido da respectiva LAN;
 - O Switch (S) usará o penúltimo endereço de host válido (IPv4) da respectiva LAN;
 - Atribuir as interfaces dos roteadores que estão ligadas às LANs, o último endereço válido (IPv4) da respectiva LAN. No IPv6 deve-se usar o mesmo Id de host usado no IPv4, por exemplo, se no IPv4 o endereço for 200.200.N.94, no IPv6 será 2001:db8:acad:NN01::94.
 - Nas WANs atribuir o 1º e 2º endereços válidos (IPv4 e IPv6-GUA) para cada uma das extremidades do enlace.
 - os endereços IPv6 de link-local (LLA) de todos os hosts devem ser auto-atribuídos por meio de EUI-64.
 - os endereços IPv6 de **link-local (LLA)** das interfaces dos roteadores que estiverem conectadas aos links WAN devem devem ser **auto-atribuídos** por meio de **EUI-64**.
 - o endereço IPv6 da interface de cada roteador que está conectada com às LANs deve se especificar manualmente os endereço da interface usando o endereço FE80::1
- Tarefa 2: Documentar as tabelas de roteamento, para IPv4 e IPv6, para cada um dos roteadores da topologia.
- Tarefa 3: Criar a topologia funcional no Packet Tracer
 - **Etapa 1: Criar** a topologia, conforme ilustrado nas figuras.
 - Deve ser usado roteadores modelo 2811 e switches modelo 2960, que são os equipamentos disponíveis no laboratório de redes;
 - Na área de trabalho de cada topologia deve ser inserido o RA + Nome do aluno;
 - Sugere-se que seja inserido as informações de endereçamento na topologia (área de trabalho do Packet Tracer), para ficar mais fácil a visualização.
 - Etapa 2: Realizar as configurações a seguir nos dispositivos finais (computadores) e intermediários (switches e roteadores). Todas as configurações nos dispositivos intermediários devem ser feitas via CLI.
 - Nomear com o nome que aparece nas figuras + as iniciais do seu nome (ex: Fábio Favarim, para o PC0.1, ficará PC0.1-FF, para R1 ficará R1-FF).
 - Endereçar todas as interfaces de rede dos computadores (IPv4/máscara, IPv6/prefixo e gateway), roteadores (IPv4/máscara, IPv6/prefixo), switches (IPv4 na SVI e gateway) de acordo com a documentação feita na Tarefa 1.
 - **Inserir** uma **descrição** em cada interface, de acordo com a rede a qual está conectada (ex: LAN1):
 - Configurar as rotas estáticas (IPv4 e IPv6) de acordo com a documentação feita na Tarefa 1.
 - Etapa 3: Testar se a topologia está totalmente funcional executando ping (IPv4 e IPv6) a partir do PC0.1 para todas a interfaces dos dispositivos finais e intermediários;
 - Se não houver sucesso é provável que alguma configuração de endereço IP, máscara de subrede ou o gateway não foi corretamente executada, ou ainda, porque não há rota para a rede remota.
 - Etapa 4: Proteger o acesso aos equipamentos intermediários (somente nas Topologias 1 e 5)
 - Exigir que as senhas tenham comprimento mínimo de **8 caracteres**;
 - Impedir tentativas de login por ataque de força bruta de modo a bloquear tentativas de login por 300 segundos se houver 3 tentativas de login com falha dentro de 60 segundos;
 - Encerrar as conexões via console e VTY após 10 minutos de inatividade;
 - Proteger o acesso ao modo EXEC privilegiado com senha secreta (secret) @dmin-nome, sendo nome, o seu primeiro nome. (ex: @dmin-fabio);
 - Proteger o acesso via console com a senha cons-nome, sendo nome, o seu primeiro nome;
 - Habilitar o acesso via Telnet com a senha telnet-nome, sendo nome, o seu primeiro nome;
 - Configurar um banner com o texto:
 - "Acesso restrito aos alunos da Disciplina Redes de Computadores 2023/1!"
 - "Administrador: SEU NOME + SOBRENOME"

Critérios de avaliação e datas de entrega:

- Tarefa 1 15% da nota indicada em cada uma das topologias;
 - Enviar (via Moodle) um arquivo em formato pdf, nomeado como Trabalho1-Tarefa1-NomeAluno.pdf, contendo a documentação da Tarefa 1.
 - O Data da entrega: até 09/05/2023 às 18h40min
 - No dia 09/05/2023 às 18h40min será disponibilizado o gabarito da documentação para conferência.
- Tarefa 2 15% da nota indicada em cada uma das topologias;
 - Enviar (via Moodle) um arquivo em formato pdf, nomeado como Trabalho1-Tarefa1-NomeAluno.pdf, contendo:
 - a documentação da Tarefa 1, corrigida de acordo com o gabarito disponibilizado;
 - a documentação da Tarefa 2, nomeado como Trabalho 1-Tarefas 1 e 2-Nome Aluno.pdf.
 - Data da entrega: 16/05/2023 às 18h40min
 - No dia 16/05/2023 às 18h40min será disponibilizado o gabarito da documentação para conferência.
- Tarefa 3 70% da nota indicada em cada uma das topologias;
 - Enviar (via Moodle) um arquivo compactado, com o nome Trabalho1-NomeAluno.zip, contendo:
 - um arquivo em formato **pdf**, nomeado como Trabalho1-Tarefa1e2-NomeAluno.pdf, contendo:
 - a documentação da Tarefa 1, corrigida de acordo com o gabarito disponibilizado;
 - a documentação da Tarefa 2, corrigida de acordo com o gabarito disponibilizado;
 - a documentação do erros de conectividade não solucionados.
 - arquivos do Packet Tracer (pkt) com cada topologia da Etapa 2.
 - O nome do arquivo deve identificar "T1-Topologia" + Identificação da Topologia+ nome do aluno (Ex: "T1-Topologia1-FabioFavarim.pkt").
 - O Data para entrega: 23/05/2023 às 18h40min

Ministério da Educação Universidade Tecnológica Federal do Paraná - Câmpus Pato Branco Departamento Acadêmico de Informática

Curso de Engenharia de Computação

ANEXO 1 - Documentação – Trabalho 1 Práticas de Endereçamento/Roteamento

Nome/RA:	 	 	
Topologia 1			

		Tabela de Ende	reçamento	
		IPv4	Máscara de subrede	IPv4 Gateway
Dispositivo	Interface	IPv6 / Prefixo (GUA) IPv6 / Prefixo (LLA)		IPv6 Gateway
PC0.1	NIC			
PC0.2	NIC			
PC1.1	NIC			
PC1.2	NIC			
S1	SVI			
S2	SVI			
R1	Fa0/0			
R1	Fa0/1			

R1 – Tabela de Roteamento					
IPv4					
Tipo	Rede de Destino	Más	cara	Next Hop	Interface Saída
_					
IPv6					
Tipo	Rede de Destino /	Prefixo		Next Hop	Interface Saída

Erros não resolvidos

- Ex1: Não houve sucesso no ping do PC0.1 a interface Fa0/0 de R1;
 Ex2: Não houve sucesso no ping do PC0.1 ao PC1.1;