## **IC Logic Families**

#### Introduction

Digital IC technology has advanced rapidly

| Complexity                           | Number of Gates                              |
|--------------------------------------|----------------------------------------------|
| Small- scale integration(SSI)        | Fewer                                        |
| Medium- scale integration(MSI)       | 12 to $99(10^2 - 10^3)$                      |
| Large- scale integration(LSI)        | 100 to $9,999(10^3 - 10^5)$                  |
| Very large- scale integration(VLSI)  | 10,000 to 99,999( $10^5 - 10^7$ )            |
| Ultra large- scale integration(ULSI) | 100,000 to 999,999( $10^7$ - $10^9$ )        |
| Giga- scale integration(GSI)         | $1,000,000 \text{ or more} (10^9 - 10^{11})$ |
| Tera- scale integration(TSI)         | (10 <sup>12</sup> or more)                   |

- Moore's Law
  - The number of components that can be packed on a computer chip doubles every 18 months while price stays the same.
- Most of the reasons that modern digital systems use integrated circuits
  - Integrated circuits pack a lot more circuitry in a small package
    - the overall size of any digital system is reduced
      - the cost is dramatically reduced because of the economies of mass-producing large volumes of similar devices
  - Integrated circuits have made digital systems more reliable by reducing the number of external interconnections
    - Discrete components(transistor, diode, resistor, etc.) are protected from poor soldering, breaks or shorts in connecting paths on a circuit board

- Integrated circuits have drastically reduced the amount of electrical power needed to perform a given function
  - Integrated circuitry typically requires less power than their discrete counterparts
    - the saving in power supply costs
- There are some things that Integrated circuits cannot do
  - Integrated circuits can not handle very large currents or voltages (because the heat generated in such small spaces would cause temperatures to rise beyond acceptable limits)
  - Integrated circuits can not easily implement certain electrical devices such as inductors, transformers, and large capacitors
- For these reason
  - Integrated circuits are principally used to perform low-power circuit operations that are commonly called *information processing*
  - The operations *that require high power levels or devices that can not be integrated* are still handled by discrete components
- Various Logic Families
  - Bipolar transistors : TTL and ECL
  - Unipolar MOSFET transistors : NMOS, PMOS, and CMOS

## Logic Families Vocabulary

TTL (Transistor Transistor Logic) Integrated-circuit technology that uses the bipolar transistor as the principal circuit element.

CMOS (Complimentary Metal Oxide Semiconductor) Integrated-circuit technology that uses the field-effect transistor as the principal circuit element.

ECL (Emitter Coupled Logic) Integrated-circuit technology that uses the bipolar transistors configured as a differential amplifier. This eliminates saturation and improves speed but uses more power than other families.

## **Digital IC Terminology**

- Voltage Parameters:
  - V<sub>IH</sub>(min): high-level input voltage, the minimum voltage level required for a logic 1 at an *input*.
  - V<sub>IL</sub>(max): low-level input voltage
  - V<sub>OH</sub>(min): high-level output voltage
  - V<sub>OL</sub>(max): low-level output voltage



Figure 15--2 Input and output logic levels for CMOS.



Thomas L. Floyd Digital Fundamentals, 8e

Figure 15--3 Input and output logic levels for TTL.



#### **Current Parameters**

- I<sub>IH</sub>(min): high-level input current, the current that flows into an input when a specified high-level voltage is applied to that input.
- I<sub>IL</sub>(max): low-level input current
- I<sub>OH</sub>(min): high-level output current
- I<sub>OL</sub>(max): low-level output current

# Figure 8-1



FIGURE 8-1 Currents and voltages in the two logic states.

#### **Fan-Out**

- The maximum number of standard logic inputs that an output can drive reliably.
- Also known as the loading factor.

Related to the current parameters (both in high

and low states.)



### **Propagation Delays**

- $t_{pLH}$ : delay time in going from logical 0 to logical 1 state (LOW to HIGH)
- t<sub>pHL</sub>: delay time in going from logical 1 to logical 0 state (HIGH to LOW)
- Measured at 50% points.





#### **Power Requirements**

- Every IC needs a certain amount of electrical power to operate.
- V<sub>cc</sub> (TTL)
- V<sub>DD</sub>(MOS)
- Power dissipation determined by I<sub>cc</sub> and V<sub>cc</sub>.
- Average  $I_{cc}(avg) = (I_{CCH} + I_{CCL})/2$
- $P_D(avg) = I_{cc}(avg) \times V_{cc}$

## Figure 8-3



### **Speed-Power Product**

- Desirable properties:
  - Short propagation delays (high speed)
  - Low power dissipation
- Speed-power product measures the combined effect.

## **Noise Immunity**

- What happens if noise causes the input voltage to drop below  $V_{IH}(min)$  or rise above  $V_{IL}(max)$ ?
- The noise immunity of a logic circuit refers to the circuit's ability to tolerate noise without causing spurious changes in the output voltage.
- Noise margin: Figure 8-4.
- $V_{NH}=V_{OH}(min)-V_{IH}(min)$
- $V_{NL}=V_{IL}(max)-V_{OL}(max)$
- Example 8-1.

Figure 15-4 Illustration of the effects of input noise on gate operation.



Figure 15--5 Illustration of noise margins. Values are for 5 V CMOS, but the principle applies to any logic family.



All rights reserved.

## Figure 8-4: Noise Margin



## **Invalid Voltage Levels**

- For proper operation the input voltage levels to a logic must be kept outside the indeterminate range.
- Lower than  $V_{IL}(max)$  and higher than  $V_{IH}(min)$ .

## **Current-Sourcing and Sinking**



## **IC Packages**

- DIP
- J-Lead
- Gull-wing
- Table 8-2 for a complete list.

## The TTL Logic Family

- Transistor-transistor logic
- Figure 8-7: NAND gate.
- Circuit operation: LOW state, current-sinking
- Circuit operation: HIGH state, current-sourcing.

Figure 15--25 The symbol for a BJT.





Figure 15--26 The ideal switching action of the BJT.



Figure 15--27 A standard TTL inverter circuit.



Figure 15--28 Operation of a TTL inverter.



#### **TTL NAND Gate**



## Figure 8-8: TTL NAND Gate



#### **TTL NOR Gate Circuit**



#### Standard TTL Series Characteristics

- TI introduced first line of standard TTL: 54/74 series (1964)
- Manufacturers' data sheets (Figure 8-11)
  - Supply voltage and temperature range
  - Voltage levels
  - Maximum voltage ratings
  - Power dissipation
  - Propagation delays
  - Fan-out
- Example 8-2

### **Improved TTL Series**

- 74 Series
- Schottky TTL, 74S Series: higher speed
- Low-Power Schottky TTL, 74LS series
- Advanced Schottky TTL, 74AS Series
- Advanced Low-Power Schottky TTL, 74ALS Series
- 74F-Fast TTL

## **Comparison of TTL Series**

| TABLE 8-6 | Typical | TTL series | characteristics. |
|-----------|---------|------------|------------------|
|-----------|---------|------------|------------------|

|                          | 74       | 74S       | 74LS       | 74AS   | 74ALS | 74F |
|--------------------------|----------|-----------|------------|--------|-------|-----|
| Performance ratings      | in Final | 1113/5 11 | Selicitati | hau je |       |     |
| Propagation delay (ns)   | 9        | 3         | 9.5        | 1.7    | 4     | 3   |
| Power dissipation (mW)   | 10       | 20        | 2          | 8      | 1.2   | 6   |
| Speed-power product (pJ) | 90       | 60        | 19         | 13.6   | 4.8   | 18  |
| Max. clock rate (MHz)    | 35       | 125       | 45         | 200    | 70    | 100 |
| Fan-out (same series)    | 10       | 20        | 20         | 40     | 20    | 33  |
| Voltage parameters       |          |           |            |        |       |     |
| V <sub>OH</sub> (min)    | 2.4      | 2.7       | 2.7        | 2.5    | 2.5   | 2.5 |
| V <sub>OL</sub> (max)    | 0.4      | 0.5       | 0.5        | 0.5    | 0.5   | 0.5 |
| $V_{ m IH}({ m min})$    | 2.0      | 2.0       | 2.0        | 2.0    | 2.0   | 2.0 |
| $V_{\rm IL}({ m max})$   | 0.8      | 0.8       | 0.8        | 0.8    | 0.8   | 0.8 |

## **Examples**

- Example 8-3: Noise margin of 74 and 74LS
- Example 8-4: TTL series with max number of fan-out

## **TTL Loading and Fan-Out**

- Figure 8-13: currents when a TTL output is driving several inputs.
- TTL output has a limit,  $I_{OL}(max)$ , on how much current it can sink in the LOW state.
- It also has a limit, I<sub>OH</sub>(max), on how much current it can source in the HIGH state.

## **Figure 8-13**



# **Determining the fan-out**

- Same IC family.
- Find fan-out (LOW): I<sub>OL</sub>(max)/I<sub>IL</sub>(max)
- Find fan-out (HIGH): I<sub>OH</sub>(max)/I<sub>IH</sub>(max)
- Fan-out: smaller of the above
- Example 8-6: Fan-out of 74AS20 NAND gates

## **Determining the fan-out**

- Different IC families
- Step 1: add up the  $I_{\rm IH}$  for all inputs connected to an output. The sum must be less than the output's  $I_{\rm OH}$  specification.
- Step 2: add up the  $I_{IL}$  for all inputs connected to an output. The sum must be less than the output's  $I_{OL}$  specification.
- Examples 8-7 to 8-9.

#### Other TTL Characteristics

- Unconnected inputs (floating): acts like a logic 1.
- Unused inputs: three different ways to handle.
- Tie-together inputs: common input generally represent a load that is the sum of the load current rating of each individual input. Exception: for AND and NAND gates, the LOW state input load will be the same as a single input no matter how many inputs are tied together.
- Example 8-10.

## Other TTL Characteristics (cont'd)

- Current transients (Figure 8-18)
- Connecting TTL outputs together
  - Totem-pole outputs should no be tied together

### **MOS Digital ICs**

- MOS: metal-oxide-semiconductor
- MOSFET: MOS field-effect transistors.
- The Good:
  - Simple
  - Inexpensive to fabricate
  - Small
  - Consumes little power
- The bad:
  - Static-electricity damage.
  - Slower than TTL

#### The MOSFET

- P-MOS: P-channel MOS
- N-MOS: N-channel MOS, fastest
- CMOS: complementary MOS, higher speed, lower power dissipation.
- Figure 8-20: how N-channel MOSFET works:
  - V<sub>GS</sub>=0V OFF State, R<sub>off</sub>= 10<sup>10</sup> ohms
  - V<sub>GS</sub>=5V ON State,R<sub>on</sub>=1000 ohms

Figure 15--15 Basic symbols and switching action of MOSFETs.



### N-MOS INVERTER



| V <sub>in</sub> | $Q_1$                     | $Q_2$                                 | V <sub>out</sub> |
|-----------------|---------------------------|---------------------------------------|------------------|
| 0V              | R <sub>on</sub> =<br>100K | R <sub>off</sub> = 10 <sup>10</sup> K | 5V               |
| 5V              | R <sub>on</sub> =<br>100K | R <sub>on</sub> =<br>1K               | 0.05<br>V        |

#### **CMOS**

- Uses both P- and N-channel MOSFETs in the same circuit to realize several advantages over the P-MOS and N-MOS families.
- CMOS INVERTER (Figure 8-22)
- CMOS NAND (Figure 8-23)
- CMOS NOR (Figure 8-24)

#### **CMOS NAND Gate**



CMOS NAND gate.

### **CMOS NOR Gate**



| A    | В    | X    |  |  |
|------|------|------|--|--|
| LOW  | LOW  | HIGH |  |  |
| LOW  | HIGH | LOW  |  |  |
| HIGH | LOW  | LOW  |  |  |
| HIGH | HIGH | LOW  |  |  |

#### **CMOS Series Characteristics**

- Pin-compatible
- Functionally equivalent
- Electrically compatible
- 4000/14000 Series
- 74C, 74HC/HCT, 74AC/ACT, 74AHC,
- BiCMOS (Bipolar + CMOS)
- Table 8-10: low-voltage series characteristics
- Table 8-11, comparison of ECL, CMOS and TTL Series

# **Low-Voltage Technology**

- 5V → 3.3V
- Reduces power dissipation
- 74LVC, 74ALVC, 74LV, 74LVT

#### Other CMOS Issues

- Conventional CMOS outputs should not be connected together.
- Bilateral switch (Figure 8-43,44)

## **IC** Interfacing

- Connecting the output(s) of one circuit to the input(s) of another circuit that has different electrical characteristics.
- Occurs often in complex digital systems, where designers utilize different logic families for different parts of system.
- TTL driving CMOS
- CMOS driving TTL

## TTL driving CMOS

- No problem with the current requirements (See Table 8-12)
- $V_{OH}$ (min) of TTL is low compared to  $V_{IH}$ (min) of some CMOS series (Table 8-9), use pull-up resistor to raise TTL output voltage (Figure 8-46)
- TTL driving high-voltage CMOS ( $V_{DD}$  of CMOS is greater than 5V)
  - Use 7407 buffer
  - Use voltage level-translator (such as 4504B)

## **CMOS** driving TTL

- HIGH state: Table 8-9 and 8-12 indicate no special consideration the HIGH state.
- LOW state: depends on the series used.