SYLLABUS: AM226_neural_computation_fall2021_syllabus.pdf

Prerequisite Problems: <u>AM226_PS0_21F.pdf</u>
Final Project Info: <u>AM226_Final_Projects.pdf</u>

Instructor: Prof. Cengiz Pehlevan, cpehlevan@seas.harvard.edu,

 $\textbf{Teaching fellows:} \ Jacob \ Zavatone-Veth, \ \underline{\texttt{j} zavatoneveth@g.harvard.edu}$

 $Abdulkadir\ Canatar,\ \underline{canatara@g.harvard.edu}$

Please sign up for course Slack Channel.

Date Topic Reading and Notes		
Sep	Introduction; Supervised Learning and	Slides: Introduction.pdf Lecture Notes: Supervised Learning and Perceptron.pdf Recommended Reading: Chapter 3 of Models of the Mind book introduces the history behind the McCulloch and Pitts model and the Perceptron algorithm.
Sep	Perceptron Learning Algorithm	Lecture Notes: Supervised Learning and Perceptron.pdf Recommended Reading: Hertz et al. (Introduction to the theory of neural computation) Chapter 5 (Note that a free online copy is available through the library. See the Library Reserves or this link: https://ebookcentral-proquest-com.ezp-prod1.hul.harvard.edu/lib/harvard-ebooks/reader.action?docID=5320059&ppg=112)
Sep 13	Perceptron	Recommended Reading: Hertz et al., Chapter 5 (Note that a free online copy is available through the library. See the Library Reserves or this link: https://ebookcentral-proquest-com.ezp-prod1.hul.harvard.edu/lib/harvard-ebooks/reader.action?docID=5320059&ppg=112) Lecture Notes: Supervised Learning and Perceptron.pdf Slides: Perceptrons_at_capacity_upload.pptx Recommended Reading: Cover's paper Recommended Reading: Emin Orhan's note on Cover's theorem Optional Tutorial: Tutorial: Tutorial on Gardner's Calculation
Sep	Purkinje cells at capacity; Maximum margin classifiers	Brunel et al., (2004) Optimal Information Storage and the Distribution of Synaptic Weights: Perceptron versus Purkinje Cell (Available in Library Reserves) Barbour et al., (2007) What can we learn from synaptic weight distributions? (Available in Library Reserves) Lecture Notes: MaxMargin-Kernel.pdf Andrew Ng's Lecture Notes on Support Vector Machines
Sep	Nonlinearly Separable Data; Kernel SVM;	Lecture Note: MaxMargin-Kernel.pdf Andrew Ng's Lecture Notes on Support Vector Machines Slides: Kernels_and_Cerebellar-like_architectures.pptx Further reading: Raymond JL, Medina JF. Computational principles of supervised learning in the cerebellum. Annual review of neuroscience. 2018 Jul 8;41:233-53. (Available in Library Reserves) Further reading: Cho, Y., & Saul, L. K. (2009). Kernel methods for deep learning. In Advances in neural information processing systems (pp. 342-350). Further reading: Babadi B, Sompolinsky H. Sparseness and expansion in sensory representations. Neuron. 2014 Sep 3;83(5):1213-26. (Available in Library Reserves) Further reading: Litwin-Kumar, Ashok, et al. "Optimal degrees of synaptic connectivity." Neuron 93.5 (2017): 1153-1164. (Available in Library Reserves)

Sep 22	Multilayer	Deep Learning Book Chapter 6 Lecture Note: Multilayer Networks and the Backpropagation Algorithm.pdf
Sep 27	Multilayer Neural Networks; Backpropagation algorithm and its biological plausibility:	Deep Learning Book Chapter 6 Lecture Note: Multilayer Networks and the Backpropagation Algorithm.pdf Optional reading: Whittington, J.C. and Bogacz, R., 2019. Theories of error back-propagation in the brain. Trends in cognitive sciences. Optional reading: Lillicrap, T.P., Cownden, D., Tweed, D.B. and Akerman, C.J., 2016. Random synaptic feedback weights support error backpropagation for deep learning. Nature communications, 7, p.13276.
Sep 29	global error	Lecture Note: <u>Learning_with_a_global_error_signal.pdf.pdf</u> Optional reading: Williams, Ronald J. "Simple statistical gradient-following algorithms for connectionist reinforcement learning." <i>Machine learning</i> 8.3-4 (1992): 229-256.
Oct 4	Actor-Critic- Experimenter Learning	Lecture Note: Learning_with_a_global_error_signal.pdf.pdf Slides: Actor_Critic_Experimenter_Learning.pdf Optional reading: Fiete, I.R., Fee, M.S. and Seung, H.S., 2007. Model of birdsong learning based on gradient estimation by dynamic perturbation of neural conductances. Journal of neurophysiology, 98(4), pp.2038-2057.
Oct 6	in Deep Networks; Neural Tangent	Lecture Notes: NTK.pdf Optional reading: Canatar, Abdulkadir, Blake Bordelon, and Cengiz Pehlevan. "Spectral bias and task-model alignment explain generalization in kernel regression and infinitely wide neural networks." <i>Nature communications</i> 12.1 (2021): 1-12.
Oct 13	Networks; Rescorla- Wagner Rule	Slides: Generalization_in_NNs_AM226.pdf Slides: Reinforcement_Learning.pdf Optional reading: Dayan and Abbott; Chapter 9 (Links to an external site.) Optional reading: Daw and Tobler, 2014; Value Learning through Reinforcement: The Basics of Dopamine and Reinforcement Learning (Available in Library Reserves) Optional reading: Schultz, W., Dayan, P., Montague, P.R., 1997. A neural substrate of prediction and reward. Science. 275, 15931599. (Available in Library Reserves)
Oct 18	TD-Learning; Unsupervised Learning with Hebbian Plasticity	Slides: Reinforcement_Learning.pdf Slides: PCA_oja.pdf Optional reading: Hertz et al. Chapter 8
Oct 20	PCA Networks; Retinal Ganglion	Notes: PCA Networks and Redundancy Reduction.pdf Slides: Whitening Theory.pdf Optional reading: Hertz et al. Chapter 8
Oct 25		Notes: PCA Networks and Redundancy Reduction.pdf Slides: Whitening_Theory.pdf Optional reading: Huang, Y., & Rao, R. P. (2011). Predictive coding. Wiley Interdisciplinary Reviews: Cognitive Science, 2(5), 580-593. (Links to an external site.)Read this for more detail on another approach to efficient coding, called predictive coding, related to redundancy reduction. Optional reading: Natural Image Statistics: Chapter 5 Principal Components and Whitening, Read this if you want to learn more about natural image statistics and whitening theory

		Optional reading: Atick, J. J., & Redlich, A. N. (1992). What does the retina know about natural scenes?. <i>Neural computation</i> , 4(2), 196-210. (Library Reserves) Full information theoretic treatment of redundancy reduction.
		Optional reading: Pitkow, X., & Meister, M. (2012). Decorrelation and efficient coding by retinal ganglion cells. <i>Nature neuroscience</i> , 15(4), 628-635. and Abbasi-Asl, R., Pehlevan, C., Yu, B. and Chklovskii, D., 2016, November. Do retinal ganglion cells project natural scenes to their principal subspace and whiten them?. In 2016 50th Asilomar Conference on Signals, Systems and Computers (pp. 1641-1645). IEEE. (Library Reserves) Tests of the whitening theory
		Slides: Sparse_Coding.pptx
Oct 27	Sparse Coding	Optional reading: Olshausen, B. A., & Field, D. J. (1997). Sparse coding with an overcomplete basis set: A strategy employed by V1?. <i>Vision research</i> , <i>37</i> (23), 3311-3325. (Library Reserves) and Olshausen, B. A., & Field, D. J. (1996). Emergence of simple-cell receptive field properties by learning a sparse code for natural images. <i>Nature</i> , <i>381</i> (6583), 607-609. (Library Reserves)
		Optional reading: Koulakov, A. A., & Rinberg, D. (2011). Sparse incomplete representations: a potential role of olfactory granule cells. <i>Neuron</i> , 72(1), 124-136. (Library Reserves) This paper uses the sparse coding model to explain a circuit motif in the olfactory bulb
		Optional reading: Chettih, S. N., & Harvey, C. D. (2019). Single-neuron perturbations reveal feature-specific competition in V1. <i>Nature</i> , 567(7748), 334-340. (Library Reserves) This paper tests a major prediction of the sparse coding model.
	Population	No lecture today. Please see this recorded lecture, and come to class if you have questions. https://harvard.zoom.us/rec/play/I1M12V8AL8poj anNW24TWGSxHYK0FSkAaiP4ycFZlz1_sEGi6RdbX0NRhOJO9WqU0Oqw7L4Vx7h2Pa.OWpIRmK0YFeDz_iN
Nov		Slides: Neural_Coding_and_Decoding.pptx
	Coding	Lecture notes: Population_Coding.pdf
		Optional Reading: Dayan and Abbott, Chapter 1 has a good discussion of coding with spikes and Poisson processes
Nov 3	Statistical Estimation	Lecture notes: Population_Coding.pdf Optional Reading: Dayan and Abbott, Chapter 3 has a good discussion of statistical estimation
	_	Lecture notes: Population Coding.pdf
Nov 8	Fisher Information	Optional Reading: Dayan and Abbott, Chapter 3 has a good discussion of statistical estimation
		Lecture notes: Population_Coding.pdf
Nov	Noise	Slides: Noise_Correlations.pdf
1	Correlations	Optional Reading: Rumyantsev, O.I., Lecoq, J.A., Hernandez, O., Zhang, Y., Savall, J., Chrapkiewicz, R., Li, J., Zeng, H., Ganguli, S. and Schnitzer, M.J., 2020. Fundamental bounds on the fidelity of sensory cortical coding. <i>Nature</i> , 580(7801), pp.100-105. (Library reserves)
		Lecture notes: <u>Hopfield Networks - 1.pdf</u>
	Hopfield Networks	Recommended Reading: Hertz et al. (Introduction to the theory of neural computation) Chapter 2 (Note that a free online copy is available through the library. See the Library Reserves or this link: https://ebookcentral-proquest-com.ezp-prod1.hul.harvard.edu/lib/harvard-ebooks/reader.action?docID=5320059&ppg=112)
	Hopfield Networks	Lecture notes: Hopfield_Networks-II.pdf
	Hopfield Networks; Line Attractors	Lecture Notes: Hopfield_Networks-II.pdf
		Lecture Notes: Line_Attractor.pdf
22		Bonus lecture notes on how to train attractors: <u>Hopfield_Networks-III.pdf</u>
		Slides: <u>Hopfield_Nets.pptx</u> <u>Neural-Integrators-Manifold-Attractors.pptx</u>
		Lecture Notes: Line_Attractor.pdf
Nov	Line Attractor;	Lecture Notes: The Ring Attractor.pdf

29	Ring Attractor	Optional reading: Seung, H.S., 1996. How the brain keeps the eyes still. <i>Proceedings of the National Academy of Sciences</i> , 93(23), pp.13339-13344.
Dec 1	Ring Attractor	Lecture Notes: The Ring Attractor.pdf Bonus lecture notes: Chaos.pdf Slides: Neural-Integrators-Manifold-Attractors.pptx Code: RingNetwork.m