Math 430 Assignment 8

Arnold Jiadong Yu

October 30, 2018

4.1 solution:

$$\max 3p_2 + 6p_3$$
s.t. $p_1 \le 0$

$$p_2 \ge 0$$

$$p_3 \text{ free}$$

$$2p_1 + 3p_2 - p_3 \ge 1$$

$$3p_1 + p_2 - p_3 \le -1$$

$$-p_1 + 4p_2 + 2p_3 \le 0$$

$$p_1 - 2p_2 + p_3 = 0$$

i.e.

$$\max 3p_2 + 6p_3$$
s.t. $2p_1 + 3p_2 - p_3 \ge 1$

$$3p_1 + p_2 - p_3 \le -1$$

$$-p_1 + 4p_2 + 2p_3 \le 0$$

$$p_1 - 2p_2 + p_3 = 0$$

$$p_1 \le 0$$

$$p_2 \ge 0$$

$$p_3 \text{ free}$$

4.2

solution:

The dual problem is

$$\max_{\mathbf{p}'} \mathbf{b}$$
s.t. $\mathbf{p}' \mathbf{A} \le \mathbf{c}'$
 $\mathbf{p} \ge 0$

Convert to equivalent minimization problem

$$min - \mathbf{p}'\mathbf{b}$$
s.t. $-\mathbf{p}'\mathbf{A} \ge -\mathbf{c}'$

$$\mathbf{p} \ge 0$$

In order to be identical, then $-\mathbf{p}'\mathbf{b} = \mathbf{c}'\mathbf{x}$ and $\mathbf{b} = -\mathbf{c}$, and \mathbf{A} must be a square matrix to stay in the same dimension. Moreover, $\mathbf{A}\mathbf{x} \Leftrightarrow -\mathbf{p}'\mathbf{A}$ implies $\mathbf{A} = -\mathbf{A}'$. Also, \mathbf{p}, \mathbf{x} have same nonnegative components. Consider an example of a primal problem

$$\min x_1 + x_2$$
s.t.
$$-x_2 \ge -1$$

$$x_1 \ge -1$$

$$x_1, x_2 \ge 0$$

The equivalent dual problem is

$$\max - p_1 - p_2$$
s.t. $p_2 \le 1$

$$-p_1 \le 1$$

$$p_1, p_2 \ge 0$$

Convert to minimization problem

$$\min p_1 + p_2$$
s.t.
$$-p_2 \ge -1$$

$$p_1 \ge -1$$

$$p_1, p_2 \ge 0$$

which is identical to the primal problem.

4.4

solution:

Let **A** be a symmetric square matrix, i.e. $\mathbf{A} = \mathbf{A}'$ and assume \mathbf{x}^* satisfies $\mathbf{A}\mathbf{x}^* = \mathbf{c}$ and $\mathbf{x}^* \geq 0$, then \mathbf{x}^* is a feasible solution. Moreover, the dual problem is identical to the primal problem by the previous exercise,

$$\max \mathbf{p}' \mathbf{c}$$
s.t.
$$\mathbf{p}' \mathbf{A} \le \mathbf{c}'$$

$$\mathbf{p} \ge 0$$

Since the problem is identical, then let $\mathbf{p}^* = \mathbf{x}^*$. i.e.

$$(\mathbf{p}^*)'\mathbf{A} = \mathbf{A}'\mathbf{p}^* = \mathbf{A}\mathbf{p}^* = \mathbf{A}\mathbf{x}^* = \mathbf{c}$$

Thus \mathbf{p}^* is a feasible solution of the dual problem. Therefore, $(\mathbf{p}^*)'\mathbf{c} = \mathbf{c}\mathbf{x}^*$. As a result both \mathbf{x}^* , \mathbf{p}^* are optimal solutions by Corollary 4.2.