MATH2022 Take Home Quiz

1. Answer: A.

For the elements in \mathbb{Z} , only $(-1)^{-1} = -1$ and $1^{-1} = 1$. Other elements do not have multiplicative inverses and therefore \mathbb{Z} is not a field with respect to multiplication.

2. Answer: D.

We have $5 \times 3 = 15$ (over \mathbb{R}), which is 2 over \mathbb{Z}_{13} . Therefore, $\frac{2}{3} = 5$ in \mathbb{Z}_{13} , not 6.

For other options:

A.
$$4 \times 4 = 16$$
 (over \mathbb{R}), which is 3 over $\mathbb{Z}_{13} \rightarrow \frac{3}{4} = 4$ in \mathbb{Z}_{13} . True.

B.
$$8 \times 3 = 24$$
 (over \mathbb{R}), which is 2 over $\mathbb{Z}_{11} \to \frac{2}{3} = 8$ in \mathbb{Z}_{11} . True.

C.
$$2 \times 4 = 8$$
 (over \mathbb{R}), which is 3 over $\mathbb{Z}_5 \to \frac{3}{4} = 2$ in \mathbb{Z}_5 . True.

E.
$$9 \times 4 = 36$$
 (over \mathbb{R}), which is 3 over $\mathbb{Z}_{11} \rightarrow \frac{3}{4} = 9$ in \mathbb{Z}_{11} . True.

3. Answer: B.

$$(2019)^{2022} = 3^{2022} (mod 7) = (3^2)^{1011}$$

$$= 9^{1011} = 2^{1011} (mod 7)$$

$$= (2^3)^{337} = 8^{337}$$

$$= 1^{337} (mod 7) = 1.$$

It will be Tuesday (1 day after Monday).

4. Answer: A.

Expand the matrix M over the second column. We have

det
$$M = -2 \begin{vmatrix} 4 & 1 \\ 1 & 1 \end{vmatrix} - 1 \begin{vmatrix} 1 & 3 \\ 4 & 1 \end{vmatrix} = 5$$
 over \mathbb{R} , which is 0 over \mathbb{Z}_5 .

5. Answer: E.

We write the matrix equation into an augmented matrix and performing row reduction over \mathbb{Z}_2 .

$$\begin{bmatrix} 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix} \quad (R_3 \to R_3 + R_1) \quad \begin{bmatrix} 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix} \quad (R_2 \to R_2 + R_3)$$

$$\begin{bmatrix} 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix} \quad (R_1 \to R_1 + R_2) \quad \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

Therefore, x = 1, y = 0, and z = 1.

6. Answer: D.

Rewrite the system of linear equations into an augmented matrix

$$\begin{bmatrix} 1 & 0 & 1 & 1 \\ 1 & 1 & \lambda & 2 \\ -2 & \lambda & 4 & -4 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & \lambda - 1 & 1 \\ 0 & \lambda & 6 & -2 \end{bmatrix} \quad (R_2 \rightarrow R_2 - R_1 \text{ and } R_3 \rightarrow R_3 + 2R_1)$$

$$\begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & \lambda - 1 & 1 \\ 0 & 0 & 6 - \lambda^2 + \lambda & -2 - \lambda \end{bmatrix} \quad (R_3 \to R_3 - \lambda R_2)$$

The system is inconsistent over \mathbb{R} when it has a pivot at the rightmost column, that is when $6 - \lambda^2 + \lambda = 0$ and $-2 - \lambda \neq 0$.

We have $6 - \lambda^2 + \lambda = 0$ when $\lambda = -2$ or $\lambda = 3$. On the other hand, $-2 - \lambda \neq 0$ when $\lambda \neq -2$.

Thus, for the system to be inconsistent over \mathbb{R} , we need $\lambda = 3$. Let $\lambda = 3$, our augmented matrix in \mathbb{Z}_5 would be

$$\begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 2 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Let z = t, we can write x and y in terms of t:

$$\begin{cases} x = 1 - t = 1 + 4t \\ y = 1 - 2t = 1 + 3t \end{cases}$$

The solution set over \mathbb{Z}_5 :

$$\{(1+4t, 1+3t, t), t \in \mathbb{R}\}$$

Thus with $\lambda = 3$, the system is consistent over \mathbb{R} , but has 5 solutions over \mathbb{Z}_5 (5 choices for t).

7. Answer: B.

Performing row reduction in \mathbb{Z}_{2} .

$$M = \begin{bmatrix} 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix} (R_3 \to R_3 + R_1)$$

$$= \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix} (R_3 \to R_3 + R_2 \text{ and } R_1 \to R_1 + R_2)$$

$$= \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} (R_2 \to R_2 + R_3)$$

8. Answer: D.

Let z = t, w = s
$$\begin{cases} x = -2t = t \\ y = 1 - t - s = 1 + 2t + 2s \end{cases}$$

The solution set over \mathbb{Z}_3 :

$$\{(t, 1+2t+2s, t, s) with t, s \in \mathbb{R}\}$$

Thus, there are $3^2 = 9$ solutions over \mathbb{Z}_3 (3 choices for t and 3 choices for s).

9. Answer: E.

We have matrix M

$$\begin{bmatrix} 2 & 8 \\ 2 & 3 \end{bmatrix} \sim \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix} \text{ row operation corresponds to } N_1 = \begin{bmatrix} 1/2 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix} \sim \begin{bmatrix} 1 & 4 \\ 0 & -5 \end{bmatrix}$$
 row operation corresponds to $N_2 = \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix}$

$$\begin{bmatrix} 1 & 4 \\ 0 & -5 \end{bmatrix} \sim \begin{bmatrix} 1 & 4 \\ 0 & 1 \end{bmatrix}$$
 row operation corresponds to $N_3 = \begin{bmatrix} 1 & 0 \\ 0 & -1/5 \end{bmatrix}$

$$\begin{bmatrix} 1 & 4 \\ 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
 row operation corresponds to $N_4 = \begin{bmatrix} 1 & -4 \\ 0 & 1 \end{bmatrix}$

Since

$$I = N_4 N_3 N_2 N_1 M = M^{-1} M$$

$$M^{-1} = N_4 N_3 N_2 N_1$$

$$(M^{-1})^{-1} = (N_4 N_3 N_2 N_1)^{-1}$$

We can express M in terms of N_4^{-1} , ..., N_1^{-1} :

$$M = N_1^{-1} N_2^{-1} N_3^{-1} N_4^{-1}$$

It turns out that $N_1^{-1} = E_3$, repeating the same process for the remaining elementary matrices, we have

$$M = N_1^{-1} N_2^{-1} N_3^{-1} N_4^{-1} = E_3 E_1 E_4 E_2$$

10. Answer: E.

For the right hand side, we have:

$$R_{\pi/2}T_{2\pi/3}R_{\pi/2} = \begin{bmatrix} \cos\left(\frac{\pi}{2}\right) & -\sin\left(\frac{\pi}{2}\right) \\ \sin\left(\frac{\pi}{2}\right) & \cos\left(\frac{\pi}{2}\right) \end{bmatrix} \begin{bmatrix} \cos\left(\frac{2\pi}{3}\right) & \sin\left(\frac{2\pi}{3}\right) \\ \sin\left(\frac{2\pi}{3}\right) & -\cos\left(\frac{2\pi}{3}\right) \end{bmatrix} \begin{bmatrix} \cos\left(\frac{\pi}{2}\right) & -\sin\left(\frac{\pi}{2}\right) \\ \sin\left(\frac{\pi}{2}\right) & \cos\left(\frac{\pi}{2}\right) \end{bmatrix}$$

$$= \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{bmatrix}$$

While for the right hand side:

$$T_{4\pi/3} = \begin{bmatrix} \cos(\frac{4\pi}{3}) & \sin(\frac{4\pi}{3}) \\ \sin(\frac{4\pi}{3}) & -\cos(\frac{4\pi}{3}) \end{bmatrix} = \begin{bmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & \frac{1}{2} \end{bmatrix}.$$

11. Answer: C.

Substituting $x = ab(ba)^{-1}c$, we have:

$$a^{-1}xc^{-1}ba = a^{-1}ab(ba)^{-1}cc^{-1}ba$$

$$= (a^{-1}a)b(ba)^{-1}(cc^{-1})ba$$

$$= b(a^{-1}b^{-1})(ba)$$

$$= ba^{-1}(b^{-1}b)a$$

$$= b(a^{-1}a)$$

$$= b$$

12. Answer: A

$$\alpha = (12)(321)(431)(365)$$

= (23)(431)(365)
= (1432)(365)
= (146532)

13. Answer: C.

Given $\alpha = (1\ 3\ 2)(4\ 6\ 5)$ and $\gamma = \beta^{-1}\alpha\beta = (4\ 2\ 5)(6\ 1\ 3)$, our goal is to find the permutation β such that γ is the conjugate of α by β .

Consider $\beta = (1 \ 6 \ 2 \ 3)$:

For the first 3-cycle of α , we have:

the image of 1 under β is 6

the image of 3 under β is 1

the image of 2 under β is 3

While for the second 3-cycle of α :

the image of 4 under β is 4

the image of 6 under β is 2

the image of 5 under β is 5

Thus, $\alpha^{\beta} = (6\ 1\ 3)(4\ 2\ 5)$. Since the product of disjoint cycles are commutative, $(6\ 1\ 3)(4\ 2\ 5) = (4\ 2\ 5)(6\ 1\ 3) = \gamma$.

14. Answer: B.

$$\alpha = (1\ 2\ 3\ 4\ 5) = (1\ 2)(1\ 3)(1\ 4)(1\ 5)$$
: even
$$\beta = (1\ 3)(2\ 4)(6\ 5)$$
: odd
$$\gamma = (1\ 2\ 3)(4\ 5\ 6) = (1\ 2)(1\ 3)(4\ 5)(4\ 6)$$
: even

15. Answer: C.

7	1	2
3		6
4	8	5

can be transformed into

7	1	2
3	5	8
4	6	

corresponds to (17432)(68) or (17)(14)(13)(12)(68), which is a product of an odd number of transpositions.

Hence, the configuration C is impossible to reach from the 8-puzzle square.