TMDb dataset investigation

Table of Contents

- Introduction
- Data collecting
- Data expolaration
- conclusion

Introduction

overview

This data set contains information about 10,000 movies collected from The Movie Database (TMDb), including user ratings and revenue

- Certain columns, like 'cast' and 'genres', contain multiple values separated by pipe (|) characters.
- There are some odd characters in the 'cast' column. Don't worry about cleaning them. You can leave them as is.
- The final two columns ending with "_adj" show the budget and revenue of the associated movie in terms of 2010 dollars, accounting for inflation over time.

*strategy of analysis

Giving overview of the key points about all movies by proposing the frist 9 questions.

Next choosing four categories of revenue to get some insights to see if there is a relationship between the profit and the increasing in the budget of the movie.

Analytic questions for the first part of the strategy:-

```
1.which movie has the biggest and lowest profit?
```

2.which movie has the biggest and lowest budget?

3.which movies has the biggest and lowest revenue?

4.which movies has the longest and shortest runtime?

5.what is the average runtime of all movies?.

6.what are the most successful genres of movies?

7.the most repeated cast?

8.what is the average budget?

```
9. what is the average Revenue ?<br>
```

For the secound part of the starategy>>> based on the comparsion between four revenue categories of movies more than (25,50,100,150)M according to the following questions it can let us to some conclusions

```
1. What is the average budget of the movie?
```

2. What is the average revenue of the movie?

3. What is the average runtime of the movie?

4. Which are the successfull genres?

5. Which are the most frequent cast involved?

the insides we get from answers of those questions can lead us to a conclusion about the next questions

1.what are the best genres of movies constantly?

```
2. what the best cast for the different categories ?<br>
3.is runtime varies according to the cat.?<br>
4. is there a relation between the budget and revenue (BR) and the categories of movies ?<br>
5.is there a relation between avg. of the profit (SR) and the categories ?
```

In [168]:

#loading necessary libraries

```
import pandas as pd
import numpy as np
import operator
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline
```

Data collecting

```
tmdb_data = pd.read_csv('tmdb-movies2.csv')
#printing first five rows
tmdb data.head()
```

									Out[169]:	
	id	imdb_id	popularity	budget	revenue	original_title	cast	homepage	directo	
0	135397	tt0369610	32.985763	150000000	1513528810	Jurassic World	Chris Pratt Bryce Dallas Howard Irrfan Khan Vi	http://www.jurassicworld.com/	Coli Trevorrov	
1	76341	tt1392190	28.419936	150000000	378436354	Mad Max: Fury Road	Tom Hardy Charlize Theron Hugh Keays- Byrne Nic	http://www.madmaxmovie.com/	Georg Mille	
2	262500	tt2908446	13.112507	110000000	295238201	Insurgent	Shailene Woodley Theo James Kate Winslet Ansel	http://www.thedivergentseries.movie/#insurgent	Rober Schwentk	
3	140607	tt2488496	11.173104	200000000	2068178225	Star Wars: The Force Awakens	Harrison Ford Mark Hamill Carrie Fisher Adam D	http://www.starwars.com/films/star-wars- episod	J Abram	
4	168259	tt2820852	9.335014	190000000	1506249360	Furious 7	Vin Diesel Paul Walker Jason Statham Michelle 	http://www.furious7.com/	Jame Wa	
5 r	5 rows × 22 columns									

Data set observation

- 1.) unifiy the currency to dollar.
- 2.) we cannot conculed the populority of the movies based on the average vote account becouse vote_count is different for all the movies

Data Cleaning

1. Removing Unused columns

Columns that we need to delete are

• id, imdb_id, popularity, budget_adj, revenue_adj, homepage, keywords, overview, production_companies, vote_count and vote_average.

```
In [170]:
# list of columb to be deleted
del_col=[ 'id', 'imdb_id', 'popularity', 'budget_adj', 'revenue_adj', 'homepage', 'keywords', 'overview',
#deleting the columns
tmdb_data= tmdb_data.drop(del_col,1)
#previewing the new dataset
tmdb_data.head(4)
```

	budget	revenue	original_title	cast	director	tagline	runtime	genres	release_date	Out[17	70]:
0	150000000	1513528810	Jurassic World	Chris Pratt Bryce Dallas Howard Irrfan Khan Vi	Colin Trevorrow	The park is open.	124	Action Adventure Science Fiction Thriller	06/09/2015	2015	130
1	150000000	378436354	Mad Max: Fury Road	Tom Hardy Charlize Theron Hugh Keays- Byrne Nic	George Miller	What a Lovely Day.	120	Action Adventure Science Fiction Thriller	5/13/15	2015	2.
2	110000000	295238201	Insurgent	Shailene Woodley Theo James Kate Winslet Ansel	Robert Schwentke	One Choice Can Destroy You	119	Adventure Science Fiction Thriller	3/18/15	2015	1:
3	200000000	2068178225	Star Wars: The Force Awakens	Harrison Ford Mark Hamill Carrie Fisher Adam D	J.J. Abrams	Every generation has a story.	136	Action Adventure Science Fiction Fantasy	12/15/15	2015	18)

2. remove the duplicated rows if excist

figure out how many entries we have in the database

```
rows, col = tmdb_data.shape
#We need to reduce the count of row by one as contain header row also.
print('There are {} total entries of movies and {} no.of columns in it.'.format(rows-1, col))
There are 10865 total entries of movies and 11 no.of columns in it.
```

removing the duplicated rows if any excist

```
In [261]:
tmdb_data.drop_duplicates(keep ='first', inplace=True)
rows, col = tmdb_data.shape

print('There are {} entries of movies and {} number of columns.'.format(rows-1, col))
There are 3853 entries of movies and 12 number of columns.
```

So there was a duplicate row and it has been removed now.

3. deleting the zero values from budget and the revenue columns

```
In [262]:
# making a seperate list of revenue and budget columns
temp_list=['budget', 'revenue']
# relpacing all zeros with NAN
tmdb_data[temp_list] = tmdb_data[temp_list].replace(0, np.NAN)
#Removing all the row which has NaN value in temp_list
tmdb_data.dropna(subset = temp_list, inplace = True)

rows, col = tmdb_data.shape
print(' we now have only {} no.of movies.'.format(rows-1))
we now have only 3853 no.of movies.
```

4. separating the release date to reformate it

```
In [263]:
tmdb_data.release_date = pd.to_datetime(tmdb_data['release_date'])
In [264]:
# printing the new dataset
tmdb_data.head(5)
```

	budget	revenue	profit_earned	original_title	cast	director	tagline	runtime	genres	Out[264]:
0	150000000	1513528810	1363528810	Jurassic World	Chris Pratt Bryce Dallas Howard Irrfan Khan Vi	Colin Trevorrow	The park is open.	124	Action Adventure Science Fiction Thriller	2015-06-09
1	150000000	378436354	228436354	Mad Max: Fury Road	Tom Hardy Charlize Theron Hugh Keays- Byrne Nic	George Miller	What a Lovely Day.	120	Action Adventure Science Fiction Thriller	2015-05-13
2	110000000	295238201	185238201	Insurgent	Shailene Woodley Theo James Kate Winslet Ansel	Robert Schwentke	One Choice Can Destroy You	119	Adventure Science Fiction Thriller	2015-03-18
3	200000000	2068178225	1868178225	Star Wars: The Force Awakens	Harrison Ford Mark Hamill Carrie Fisher Adam D	J.J. Abrams	Every generation has a story.	136	Action Adventure Science Fiction Fantasy	2015-12-15
4	190000000	1506249360	1316249360	Furious 7	Vin Diesel Paul Walker Jason Statham Michelle 	James Wan	Vengeance Hits Home	137	Action Crime Thriller	2015-04-01
4										Þ

5. replacing zeros with NAN in runtime column

#replacing zeros with NaN of runtime column tmdb_data['runtime'] =tmdb_data['runtime'].replace(0, np.NAN)

6. reformattin of budget and revenue column.

Let's check the current format of columns in the dataset

tmdb data.dtypes Out[265]:

budget int64 int64 int64 revenue profit_earned
original_title object object cast director object tagline object runtime int64 object genres

#printing the data type

release_date datetime64[ns] release_year int64

profit int64 dtype: object

change_type=['budget', 'revenue'] #changing data type tmdb_data[change_type] = tmdb_data[change_type].applymap(np.int64)

#printing the new information tmdb_data.dtypes

In [266]:

In [176]:

In [265]:

Out[266]:

```
budget
                            int64
                           int64
revenue
profit earned
                           int64
original_title
                          object
cast
                          object
director
                          object
                          object
tagline
runtime
                           int64
genres
                          object
                  datetime64[ns]
release_date
release_year
                           int64
profit
                           int64
dtype: object
```

Data exploration

1. Calculating the profit of the each movie

In [269]:

#insert function with three parameters(index of the column in the dataset, name of the column, value to i
tmdb data.insert(2,'profit earned0',tmdb data['revenue']-tmdb data['budget'])

#previewing the new value of profit_earned in the dataset
tmdb_data.head(3)

Out[269]: budget revenue profit_earned0 profit_earned2 profit_earned original_title cast director tagline runtime Chris The Pratt|Bryce Jurassic Colin Action|Adve **0** 150000000 1513528810 1363528810 1363528810 1363528810 124 Dallas park is World Trevorrow Howard I Irrfan open. Khan|Vi... Tom Hardy|Charlize What a 120 Action|Adve Mad Max: George 228436354 228436354 228436354 **1** 150000000 378436354 Theron|Hugh Lovely Fury Road Miller Keays-Day. Byrne|Nic... One Shailene Choice Woodley|Theo Robert Adve **2** 110000000 295238201 185238201 185238201 185238201 119 Can Insurgent James | Kate Schwentke Destroy Winslet I Ansel... Þ

Answers to the proposed questions for the first step in the strategy >>

1.which movie has the biggest and lowest profit?

In [271]:

```
import pprint
def calculate(column):
    #the highest profit
    high= tmdb_data[column].idxmax()
    high_details=pd.DataFrame(tmdb_data.loc[high])

#the lowest profit
    low= tmdb_data[column].idxmin()
    low_details=pd.DataFrame(tmdb_data.loc[low])

#getting data in one place
    info=pd.concat([high_details, low_details], axis=1)

return info

calculate('profit earned0')
```

	1386	2244
budget	237000000	425000000
revenue	2781505847	11087569
profit_earned0	2544505847	-413912431
profit_earned2	2544505847	-413912431
profit_earned	2544505847	-413912431
original_title	Avatar	The Warrior's Way
cast	Sam Worthington Zoe Saldana Sigourney Weaver S	Kate Bosworth Jang Dong-gun Geoffrey Rush Dann
director	James Cameron	Sngmoo Lee
tagline	Enter the World of Pandora.	Assassin. Hero. Legend.
runtime	162	100
genres	Action Adventure Fantasy Science Fiction	Adventure Fantasy Action Western Thriller
release_date	2009-12-10 00:00:00	2010-12-02 00:00:00
release_year	2009	2010
profit	2544505847	-413912431

Avatar movie has the hieghest profit value = 2544505847.

Whereas The warrior's way has the lowest profit value = -413912431 it seems that it lost alot of money

2.which movie has the biggest and lowest budget?

In [181]:

we will call the same function **calculate(column)** again to calculate the highest and lowest budget calculate('budget')

Out[181]:

	2244	2618
budget	425000000	1
revenue	11087569	100
profit_earned	-413912431	99
original_title	The Warrior's Way	Lost & Found
cast	Kate Bosworth Jang Dong-gun Geoffrey Rush Dann	David Spade Sophie Marceau Ever Carradine Step
director	Sngmoo Lee	Jeff Pollack
tagline	Assassin. Hero. Legend.	A comedy about a guy who would do anything to
runtime	100	95
genres	Adventure Fantasy Action Western Thriller	Comedy Romance
release_date	2010-12-02 00:00:00	1999-04-23 00:00:00
release_year	2010	1999
profit	-413912431	99

.The Warrior's Way has the biggest budget = 425000000 Whereas Lost & Found has the lowest budget = 1 dollar

3.which movies has the giggest and lowest revenue?

In [272]:

we will call the same function **calculate(column)** again for calculating the hieghest and lowest valicalculate('revenue')

Out	[272]	

5067	1386	
6000000	237000000	budget
2	2781505847	revenue
-5999998	2544505847	profit_earned0
-5999998	2544505847	profit_earned2
-5999998	2544505847	profit_earned
Shattered Glass	Avatar	original_title
Hayden Christensen Peter Sarsgaard Chloë Sevig	Sam Worthington Zoe Saldana Sigourney Weaver S	cast
Billy Ray	James Cameron	director
NaN	Enter the World of Pandora.	tagline
94	162	runtime
Drama History	Action Adventure Fantasy Science Fiction	genres
2003-11-14 00:00:00	2009-12-10 00:00:00	release_date
2003	2009	release_year
-599998	2544505847	profit

Avatar has the biggest revenue = 2781505847 dollar. Whereas Shattered Glass has the lowest revenue = 2 dollar

4.which movies has the longest and shortest runtime?

In [183]:

we will call the same function **calculate(column)** again to calculate the longest and shortest runtin calculate('runtime')

Out[183]:

	2107	5162
budget	18000000	10
revenue	871279	5
profit_earned	-17128721	-5
original_title	Carlos	Kid's Story
cast	Edgar Ramírez Alexander Scheer Fadi Abi Samra	Clayton Watson Keanu Reeves Carrie-Anne Moss K
director	Olivier Assayas	Shinichiro Watanabe
tagline	The man who hijacked the world	NaN
runtime	338	15
genres	Crime Drama Thriller History	Science Fiction Animation
release_date	2010-05-19 00:00:00	2003-06-02 00:00:00
release_year	2010	2003
profit	-17128721	-5

Carlos has the longest runtime = 338 minutes. Whereas Kid's Story has the shortest runtime =15 minutes

5.what is the average runtime of all movies?

In [273]:

making a function to find average of a column
def avg_fun(column):
 return tmdb_data[column].mean()

In [274]:

#calling above function
avg_fun('runtime')

So the average runtime a movie is 109 minutes. Lets analyse it in a visual form i.e. by graphical approach.

In [186]:

```
#plotting a histogram of runtime of movies
#giving the figure size(width, height)
plt.figure(figsize=(9,5), dpi = 100)
#On x-axis
plt.xlabel('Runtime of the Movies', fontsize = 15)
#On y-axis
plt.ylabel('Nos.of Movies in the Dataset', fontsize=15)
#Name of the graph
plt.title('Runtime of all the movies', fontsize=15)
#giving a histogram plot
plt.hist(tmdb_data['runtime'], rwidth = 0.9, bins =35)
#displays the plot
plt.show()
```


The distribution of the above formed graph is positively skewed or right skewed! Most of the movies are timed between 80 to 115 minutes. Almost 1000 and more no.of movies fall in this criteria.

In [187]:

```
#plotting the relationship between years and its profit
profits_year = tmdb_data.groupby('release_year')['profit_earned'].sum()
#figure size(width, height)
plt.figure(figsize=(12,6), dpi = 130)
#on x-axis
plt.xlabel('Release Year of Movies in the data set', fontsize = 12)
#on y-axis
plt.ylabel('Profits earned by Movies', fontsize = 12)
#title of the line plot
plt.title('Representing Total Profits earned by all movies Vs Year of their release.')
#plotting the graph
plt.plot(profits_year)
#displaying the line plot
plt.show()
```


#To find that which year made the highest profit?
profits_year.idxmax()

2015

Out[188]:

So we can conclude both graphically as well as by calculations that year 2015 was the year where movies made the highest profit

We will now find characteristics of profitable movies

6. what are the most successful genres of movies?

In [275]:

In [276]:

```
profit_data = tmdb_data[tmdb_data['profit_earned'] != 0 ]
#reindexing new data
profit_data.index = range(len(profit_data))
#we will start from 1 instead of 0
profit_data.index = profit_data.index + 1
#printing the changed dataset
profit_data.head(3)
```

	budget	revenue	profit_earned0	profit_earned2	profit_earned	original_title	cast	director	tagline	runtime	Out[275]:
1	150000000	1513528810	1363528810	1363528810	1363528810	Jurassic World	Chris Pratt Bryce Dallas Howard Irrfan Khan Vi	Colin Trevorrow	The park is open.	124	Action Adve F
2	150000000	378436354	228436354	228436354	228436354	Mad Max: Fury Road	Tom Hardy Charlize Theron Hugh Keays- Byrne Nic	George Miller	What a Lovely Day.	120	Action Adve F
3	110000000	295238201	185238201	185238201	185238201	Insurgent	Shailene Woodley Theo James Kate Winslet Ansel	Robert Schwentke	One Choice Can Destroy You	119	Adve F
-1							**************************************				

#function which will take any column as argument from and keep its track
def data(column):
 #will take a column, and separate the string by '|'
 data = profit_data[column].str.cat(sep = '|')
 #giving pandas series and storing the values separately

```
data = pd.Series(data.split('|'))
     #arranging in descending order
    count = data.value counts(ascending = False)
    return count
                                                                                                         In [277]:
#variable to store the retured value
count = data('genres')
#printing top 10 values
count.head(10)
                                                                                                        Out[277]:
Drama
                    1755
                    1356
Comedy
Thriller
                    1204
Action
                    1084
Adventure
                     749
Romance
                     667
Crime
                     651
                     519
Science Fiction
Horror
                     463
                     425
Family
dtype: int64
```

Lets to a graphical analysis of the above collected data

```
In [278]:
#lets plot the points in descending order top to bottom as we have data in same format.
count.sort_values(ascending = True, inplace = True)
#ploting
It = count.plot.barh(color = '#00FF00', fontsize = 13)
#title
It.set(title = 'Frequent Used Genres in Profitable Movies')
# on x axis
It.set_xlabel('Nos.of Movies in the dataset', color = 'black', fontsize = '13')
#figure size(width, height)
It.figure.set_size_inches(12, 9)
#ploting the graph
```


the top 10 genre are Drama, Comedy, Thriller, Action, Adventure, Romance, Crime, Science Fiction, Horror, Family

7.the most repeated cast?

We will call the same function data(column) again for this analysis

In [279]: #variable to store the retured value count = data('cast') #printing top 10 values count.head(10) Out[279]: Robert De Niro Bruce Willis 46 Samuel L. Jackson 44 Nicolas Cage 43 Matt Damon 36 35 Johnny Depp Tom Hanks 34 34 Morgan Freeman Harrison Ford 34 Brad Pitt 34 dtype: int64

the top 3 cast are Robert De Niro with 52 cast , Bruce Willis with 46 cast , Samuel L. Jackson with 44 cast

8.what is the average budget?

```
#New function to find average

def profit_avg(column):
    return profit_data[column].mean()

# calling the above function for budget
profit_avg('budget')

Out[281]:
37241986.903376624
```

So the average budget of all movies are equal to 37 millon dollars

9. what is the average Revenue earned?

```
In [196]:
# calling the above function for revenue
profit_avg('revenue')
```

107798135.0535065

so the average revenue = 107 millon dollars

calculating ratio between profit mean of the category and No of movies in it
go=(profit_data['profit'].mean()/len(profit_data))
print(go)

18326.27224678698

• #### secound part of the strategy

Before moving further we need to clean our data again. We will be considering only those movies who have earned a significant amount of profit

peaking up 4 catergory of movies according to its profit

choosing catergory of revenue more than (25,50,100,150)M\$

1)category of more than 25M and less than 50M profit movies

What is the average budget of the movie w.r.t Profit of movies making more than 25M and less than 50M Dollars?

Out[196]:

In [198]:

```
# Dataframe which has data of movies which made profit of more the 25M Dollars.
tmdb_data['profit'] = tmdb_data['revenue'] - tmdb_data['budget']
tmdb_profit_data = tmdb_data[(tmdb_data['profit'] >= 25000000) + (tmdb_data['profit'] < 50000000) ^ (tmdb_data['profit'] data_index = range(len(tmdb_profit_data))
#showing the dataset
tmdb_profit_data.head()</pre>
```

C:\Users\Mustafa\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.9_qbz5n2kfra8p0\LocalCache\loca packages\Python39\site-packages\pandas\core\computation\expressions.py:204: UserWarning: evaluating in Py thon space because the '+' operator is not supported by numexpr for the bool dtype, use '|' instead warnings.warn(

) P
										Out[199]:
	budget	revenue	profit_earned	original_title	cast	director	tagline	runtime	genres	release_date
0	6000000	35401758	29401758	Room	Brie Larson Jacob Tremblay Joan Allen Sean Bri	Lenny Abrahamson	Love knows no boundaries	117	Drama Thriller	2015-10-16
1	75000000	108145109	33145109	The Man from U.N.C.L.E.	Henry Cavill Armie Hammer Alicia Vikander Eliz	Guy Ritchie	Saving the world never goes out of style.	116	Comedy Action Adventure	2015-08-13
2	11800000	40272135	28472135	Carol	Cate Blanchett Rooney Mara Kyle Chandler Sarah	Todd Haynes	Some people change your life forever.	118	Romance Drama	2015-11-20
3	60000000	101134059	41134059	Joy	Jennifer Lawrence Bradley Cooper Robert De Nir	David O. Russell	NaN	124	Comedy Drama	2015-12-24
4	105000000	133718711	28718711	Point Break	Edgar Ramírez Luke Bracey Teresa Palmer Delroy	Ericson Core	The only law that matters is gravity	114	Action Crime Thriller	2015-12-03
4										In [200]:

Printing the info of the new dataframe
tmdb profit data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 453 entries, 0 to 452

Data	columns (total	12 columns):	
#	Column	Non-Null Count	Dtype
0	budget	453 non-null	int64
1	revenue	453 non-null	int64
2	profit_earned	453 non-null	int64
3	original_title	453 non-null	object
4	cast	452 non-null	object
5	director	453 non-null	object
6	tagline	433 non-null	object
7	runtime	453 non-null	int64
8	genres	453 non-null	object
9	release_date	453 non-null	datetime64[ns]
10	release_year	453 non-null	int64
11	profit	453 non-null	int64
dtype	es: datetime64[n	s](1), int64(6),	object(5)
memoi	rv usage: 42.6+	KB	

We can see that we have 453 movies which has profit more than 25M and less than 50M Dollars

In [282]:

Finfd the average budget of movies which made profit more then 25M Dollars tmdb profit data['budget'].mean()

Out[282]:

26543858.077262692

In [283]:

#plotting a histogram of budget of movies

#giving the figure size(width, height)

```
plt.figure(figsize=(9,5), dpi = 100)
#On x-axis
plt.xlabel('Budget of the Movies in M$', fontsize = 15)
#On y-axis
plt.ylabel('Nos.of Movies in the Dataset', fontsize=15)
#Name of the graph
plt.title('Budget of more than 25M and less than 50M profit movies ', fontsize=15)
#giving a histogram plot
plt.hist(tmdb_profit_data['budget'], rwidth = 0.5, bins =40)
#displays the plot
plt.show()
```


So the average budget of the movies is 26543858.08 Dollars more than 90% of the movies in this category has budget less than 30M dollar

plt.show()

```
What is the average revenue of the movie w.r.t Profit of movies making more then 25M and less than 50M Dollars?
# Finfd the average revenue of movies which made profit more then 25M Dollars
tmdb profit data['revenue'].mean()
                                                                                                       Out[284]:
62817673.401766
#plotting a histogram of revenue of movies
#giving the figure size(width, height)
plt.figure(figsize=(11,6), dpi = 100)
#On x-axis
plt.xlabel('Revenue of the Movies in M$', fontsize = 15)
#On y-axis
plt.ylabel('Nos.of Movies in the Dataset', fontsize=15)
#Name of the graph
plt.title('Revenue of more than 25M and less than 50M profit movies ', fontsize=15)
#giving a histogram plot
plt.hist(tmdb_profit_data['revenue'], rwidth = 0.5, bins =40)
#displays the plot
```

In [284]:

In [296]:

So the average revenue of the movies is 62817673.4 Dollars more than 70% of movies in this category has revenue more than 30M dollars

let's plot a relationship between budget and revenue

more than 90% of the movies in this category have budget less than 30M and revenue >= 30M it seems that there is a consistancy between the two values

next we calculate value SR which will be a stander to compare between the four category

80074.64751545984

it seems that each movie in this category hase an average of profit = 80074.65 dollars

What is the average runtime of the movie w.r.t Profit of movies making more then 25M and less than 50M Dollars?

In [286]:

Finfd the average runtime of movies which made profit more then 25M Dollars tmdb profit data['runtime'].mean()

Out[286]:

In [287]:

109.31567328918322

#plotting a histogram of runtime of movies

#giving the figure size(width, height)
plt.figure(figsize=(9,5), dpi = 100)

#On x-axis

plt.xlabel('Runtime of the Movies', fontsize = 15)

#On y-axis

plt.ylabel('Nos.of Movies in the Dataset', fontsize=15)

#Name of the graph

plt.title('Runtime of more than 25M and less than 50M profit movies ', fontsize=15)

#giving a histogram plot
plt.hist(tmdb_profit_data['runtime'], rwidth = 0.9, bins =35)
#displays the plot

plt.show()

In [209]:

#The First plot is box plot of the runtime of the movies plt.figure(figsize=(9,7), dpi = 105)

#using seaborn to generate the boxplot
sns.boxplot(tmdb_profit_data['runtime'], linewidth = 3)
#diplaying the plot
plt.show()

C:\Users\Mustafa\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.9_qbz5n2kfra8p0\LocalCache\loca packages\Python39\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

75 100 125 150 175 200 225 250 runtime

So the average runtime of the movies is 112.56 Minutes and concentrated between 90-124 minutes

Which are the successfull genres w.r.t Profit of movies making more then 25M and less than 50M Dollars?

In [288]:

This will first concat all the data with | from the whole column and then split it using | and count to
genres_count = pd.Series(tmdb_profit_data['genres'].str.cat(sep = '|').split('|')).value_counts(ascending
genres_count

Out[288]:

Drama	207
Comedy	153
_	
Thriller	137
Action	102
Crime	94
Romance	77
Adventure	72
Horror	68
Science Fiction	44
Mystery	37
Family	36
Fantasy	26
History	20
Music	15
Animation	14
War	12
Western	6
Documentary	5
TV Movie	1
dtype: int64	

```
In [289]:
```

```
# Initialize the plot
diagram = genres_count.plot.bar(fontsize = 10)
# Set a title
diagram.set(title = 'Top Genres')
# x-label and y-label
diagram.set_xlabel('Type of genres')
diagram.set_ylabel('Number of Movies')
# Show the plot
plt.show()
```


We can clearly see in the visualization that most movies has Drama as a genre which tends to higher profit

Which are the most frequent cast involved w.r.t Profit of movies making more then 25M Dollars?

In [291]

This will first concat all the data with | from the whole column and then split it using | and count to
cast_count = pd.Series(tmdb_profit_data['cast'].str.cat(sep = '|').split('|')).value_counts(ascending = For cast_count.head(10))

Out[291]:

```
Mark Wahlberg
                      8
George Clooney
                      7
Robert De Niro
                      7
Dennis Quaid
Bruce Willis
                      6
Sean Penn
Samuel L. Jackson
                      6
Robert Duvall
                      6
Jeff Bridges
                      6
Clint Eastwood
dtype: int64
```

So the Top 5 Mark Wahlberg, George Clooney, Robert De Niro, Dennis Quaid, Bruce Willis Lets visualize this with a plot

In [294]:

```
# Initialize the plot
diagram = cast_count.head(10).plot.barh(fontsize = 11)
# Set a title
diagram.set(title = 'Top Cast')
# x-label and y-label
diagram.set_xlabel('Number of Movies')
diagram.set_ylabel('List of cast')
# Show the plot
plt.show()
```


We can clearly see in the visualization that most movies have Mark Wahlberg as a cast which tends to higher profit.

2)category of more than 50M and less than 100M revenue movies

What is the average budget of the movie w.r.t Profit of movies making more then 50M and less than 100M Dollars?

In [297]:

In [215]:

```
# Dataframe which has data of movies which made profit of more the 50M Dollars.
tmdb_data['profit'] = tmdb_data['revenue'] - tmdb_data['budget']
tmdb_profit_data0 = tmdb_data[(tmdb_data['profit'] >= 50000000) + (tmdb_data['profit'] < 100000000) ^(tmd
# Reindexing the dataframe
tmdb_profit_data0.index = range(len(tmdb_profit_data0))
#showing the dataset
tmdb_profit_data0.head()</pre>
```

C:\Users\Mustafa\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.9_qbz5n2kfra8p0\LocalCache\loca packages\Python39\site-packages\pandas\core\computation\expressions.py:204: UserWarning: evaluating in Py thon space because the '+' operator is not supported by numexpr for the bool dtype, use '|' instead warnings.warn(

										Out[231
	budget	revenue	profit_earned0	profit_earned2	profit_earned	original_title	cast	director	tagline	runtime	
)	30000000	91709827	61709827	61709827	61709827	Southpaw	Jake Gyllenhaal Rachel McAdams Forest Whitaker	Antoine Fuqua	Believe in Hope.	123	
	20000000	88346473	68346473	68346473	68346473	Spotlight	Mark Ruffalo Michael Keaton Rachel McAdams Lie	Tom McCarthy	Break the story. Break the silence.	128	
2	49000000	102069268	53069268	53069268	53069268	Chappie	Sharlto Copley Dev Patel Ninja Yolandi Visser	Neill Blomkamp	I am consciousness. I am alive. I am Chappie.	120	
;	58000000	150170815	92170815	92170815	92170815	Goosebumps	Jack Black Dylan Minnette Odeya Rush Amy Ryan	Rob Letterman	The stories are alive.	103	Ad
	11000000	62076141	51076141	51076141	51076141	Brooklyn	Saoirse Ronan Domhnall Gleeson Emory Cohen Emi	John Crowley	Two countries, two loves, one heart	111	

Printing the info of the new dataframe
tmdb_profit_data0.info()

```
RangeIndex: 512 entries, 0 to 511
Data columns (total 12 columns):
                     Non-Null Count Dtype
   Column
                     _____
0
    budget
                     512 non-null
1
    revenue
                     512 non-null
                                      int64
 2
    profit earned 512 non-null
                                      int64
 3
    original title 512 non-null
                                      object
 4
    cast
                     512 non-null
                                      object
 5
    director
                     512 non-null
                                      object
 6
    tagline
                     500 non-null
                                      object
 7
    runtime
                     512 non-null
                                      int64
                     512 non-null
                                      object
    genres
9
    release_date
                     512 non-null
                                      datetime64[ns]
10 release_year
                     512 non-null
                                      int64
11 profit
                     512 non-null
                                      int64
dtypes: datetime64[ns](1), int64(6), object(5)
memory usage: 48.1+ KB
     We can see that we have 512 movies which has profit more then 50M and less than 100M Dollars
                                                                                                      In [298]:
# Finfd the average budget of movies which made profit more then 50M Dollars
tmdb_profit_data0['budget'].mean()
                                                                                                     Out[298]:
37819309.318359375
                                                                                                      In [299]:
#plotting a histogram of budget of movies
#giving the figure size(width, height)
plt.figure(figsize=(11,6), dpi = 100)
```

<class 'pandas.core.frame.DataFrame'>

#On x-axis

#On y-axis

#Name of the graph

#giving a histogram plot

plt.xlabel('Budget of the Movies in M\$', fontsize = 15)

plt.ylabel('Nos.of Movies in the Dataset', fontsize=15)

plt.hist(tmdb_profit_data0['budget'], rwidth = 0.5, bins =40)

plt.title('Budget of more than 50M and less than 100M profit movies ', fontsize=15)

What is the average revenue of the movie w.r.t Profit of movies making more then 50M and less than 100M Dollars?

```
In [300]:
```

```
# Finfd the average revenue of movies which made profit more then 50M Dollars
tmdb profit data0['revenue'].mean()
```

Out[300]:

In [301]:

109164816.16992188

#plotting a histogram of revenue of movies

```
#giving the figure size(width, height)
plt.figure(figsize=(11,6), dpi = 100)
#On x-axis
plt.xlabel('Revenue of the Movies in M$', fontsize = 15)
#On y-axis
plt.ylabel('Nos.of Movies in the Dataset', fontsize=15)
#Name of the graph
plt.title('Revenue of more than 50M and less than 100M profit movies ', fontsize=15)
#giving a histogram plot
plt.hist(tmdb_profit_data0['revenue'], rwidth = 0.5, bins =40)
#displays the plot
```


So the average revenue of the movies is 109164816.2 Dollars and more than 50% of movies in this category have revenue greater than 80M dollar

let's plot a relationship between budget and revenue

In [220]:

```
#let's polt a relationship between budget and revenue
sns.set_theme(style="white")
# Plot miles per gallon against horsepower with other semantics
sns.relplot(x="revenue", y="budget",
            sizes=(40, 400), alpha=.8, palette="muted",
            height=6 ,data=tmdb profit data0,facet kws=dict(sharex=False))
plt.show()
```


this much better than the previous category it shows that most of the movies in this cat. have revenue more than 60M dollar with budget less than 30M dollars

```
In [302]:
```

```
#calculating thr ratio between profit and No of movies in the category
SR2=(tmdb_profit_data0['profit'].mean()/len(tmdb_profit_data))
print(SR2)
```

157495.6001138245

the average profit of each movie in this cat. = 157495.6 dollar much better than the previous cat.

What is the average runtime of the movie w.r.t Profit of movies making more then 50M and less than 100M Dollars?

```
In [303]:
```

```
\# Finfd the average runtime of movies which made profit more then 50M Dollars tmdb_profit_data0['runtime'].mean()
```

Out[303]:

110.50390625

plt.show()

In [304]:

```
#plotting a histogram of runtime of movies

#giving the figure size(width, height)
plt.figure(figsize=(11,6), dpi = 100)

#On x-axis
plt.xlabel('Runtime of the Movies', fontsize = 15)
#On y-axis
plt.ylabel('Nos.of Movies in the Dataset', fontsize=15)
#Name of the graph
plt.title('Runtime of more than 50M and less than 100M profit movies ', fontsize=15)

#giving a histogram plot
plt.hist(tmdb_profit_data0['runtime'], rwidth = 0.9, bins =35)
#displays the plot
```


#The First plot is box plot of the runtime of the movies plt.figure(figsize=(9,7), dpi=105)

#using seaborn to generate the boxplot
sns.boxplot(tmdb_profit_data0['runtime'], linewidth = 3)
#diplaying the plot
plt.show()

C:\Users\Mustafa\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.9_qbz5n2kfra8p0\LocalCache\loca packages\Python39\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

80 100 120 140 160 180 200 220 runtime

So the average runtime of the movies is 109 Minutes focused in 95-120 minutes

Which are the successfull genres w.r.t Profit of movies making more then 50M and less than 100M Dollars?

In [225]:

This will first concat all the data with | from the whole column and then split it using | and count to
genres_count = pd.Series(tmdb_profit_data0['genres'].str.cat(sep = '|').split('|')).value_counts(ascending
genres_count

Out[225]:

Drama	217
Comedy	193
Thriller	172
Action	147
Adventure	101
Romance	83
Crime	81
Horror	68
Family	63
Science Fiction	58
Fantasy	57
Mystery	47
History	25
Animation	20
War	17
Music	16
Western	4
Documentary	3
Foreign	1
dtype: int64	

```
In [305]:
```

```
# Initialize the plot
diagram = genres_count.plot.bar(fontsize = 10)
# Set a title
diagram.set(title = 'Top Genres')
# x-label and y-label
diagram.set_xlabel('Type of genres')
diagram.set_ylabel('Number of Movies')
# Show the plot
plt.show()
```


We can clearly see in the visualization that most movies has Drama as a genre which tends to higher profit

Which are the most frequent cast involved w.r.t Profit of movies making more then 50M and less than 100M Dollars?

In [307]:

This will first concat all the data with | from the whole column and then split it using | and count to
cast_count = pd.Series(tmdb_profit_data0['cast'].str.cat(sep = '|').split('|')).value_counts(ascending = 1
cast_count.head(10)

Out[307]:

```
Denzel Washington
                      9
Matt Damon
Robert De Niro
                      8
Steve Carell
                      8
Michael Douglas
                      7
                      7
Eddie Murphy
Brad Pitt
                      7
Al Pacino
                      6
Robert Duvall
                      6
Paul Rudd
dtype: int64
```

So the Top 5 cast are Denzel Washington, Matt Damon, Robert De Niro, Steve Carell, Michael Douglas Lets visualize this with a plot

```
In [308]:
```

```
# Initialize the plot
diagram = cast_count.head(10).plot.barh(fontsize = 10)
# Set a title
diagram.set(title = 'Top Cast')
# x-label and y-label
diagram.set_xlabel('Number of Movies')
diagram.set_ylabel('List of cast')
# Show the plot
plt.show()
```


We can clearly see in the visualization that most movies have Denzel Washington as a cast which tends to higher profit.

3)category of more than 100M and less than 150M revenue movies

What is the average budget of the movie w.r.t Profit of movies making more than 100M and less than 150M Dollars?

In [309]:
Dataframe which has data of movies which made profit of more the 50M Dollars.
tmdb_data['profit'] = tmdb_data['revenue'] - tmdb_data['budget']
tmdb_profit_data2 = tmdb_data[(tmdb_data['profit'] >= 100000000) + (tmdb_data['profit'] < 150000000) ^ (t
Reindexing the dataframe
tmdb_profit_data2.index = range(len(tmdb_profit_data2))
#showing the dataset
tmdb_profit_data2.head()</pre>

C:\Users\Mustafa\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.9_qbz5n2kfra8p0\LocalCache\loca packages\Python39\site-packages\pandas\core\computation\expressions.py:204: UserWarning: evaluating in Py thon space because the '+' operator is not supported by numexpr for the bool dtype, use '|' instead warnings.warn(

4											···.▶
										C	Out[309]:
	budget	revenue	profit_earned0	profit_earned2	profit_earned	original_title	cast	director	tagline	runtime	
0	44000000	155760117	111760117	111760117	111760117	The Hateful Eight	Samuel L. Jackson Kurt Russell Jennifer Jason	Quentin Tarantino	No one comes up here without a damn good reason.	167	Crime Dr
1	28000000	133346506	105346506	105346506	105346506	The Big Short	Christian Bale Steve Carell Ryan Gosling Brad	Adam McKay	This is a true story.	130	
2	68000000	215863606	147863606	147863606	147863606	Ted 2	Mark Wahlberg Seth MacFarlane Amanda Seyfried	Seth MacFarlane	Ted is Coming, Again.	115	
3	40000000	162610473	122610473	122610473	122610473	Bridge of Spies	Tom Hanks Mark Rylance Amy Ryan Alan Alda Seba	Steven Spielberg	In the shadow of war, one man showed the world	141	
4	55000000	203427584	148427584	148427584	148427584	Everest	Jason Clarke Jake Gyllenhaal Josh Brolin John	Baltasar Kormákur	The Storm Awaits.	121	
4											Þ

In [230]:

```
RangeIndex: 278 entries, 0 to 277
Data columns (total 12 columns):
                    Non-Null Count Dtype
   Column
                     _____
0
    budget
                     278 non-null
                                     int64
1
     revenue
                     278 non-null
                                     int64
 2
    profit earned 278 non-null
                                     int64
 3
    original title 278 non-null
                                     object
 4
                     278 non-null
    cast
                                     object
 5
    director
                     278 non-null
                                     object
 6
    tagline
                     270 non-null
                                     object
 7
    runtime
                     278 non-null
                                      int64
                     278 non-null
    genres
                                     object
9
    release_date
                     278 non-null
                                     datetime64[ns]
10 release_year
                     278 non-null
                                     int64
                     278 non-null
11 profit
                                     int64
dtypes: datetime64[ns](1), int64(6), object(5)
memory usage: 26.2+ KB
     We can see that we have 278 movies in this cat.
                                                                                                     In [310]:
# Finfd the average budget of movies which made profit more then 50M Dollars
tmdb_profit_data2['budget'].mean()
                                                                                                    Out[310]:
51263946.44964029
                                                                                                     In [311]:
#plotting a histogram of budget of movies
#giving the figure size(width, height)
plt.figure(figsize=(11,6), dpi = 100)
```

<class 'pandas.core.frame.DataFrame'>

#On x-axis

#On y-axis

#Name of the graph

#giving a histogram plot

plt.xlabel('Budget of the Movies in M\$', fontsize = 15)

plt.ylabel('Nos.of Movies in the Dataset', fontsize=15)

plt.hist(tmdb_profit_data2['budget'], rwidth = 0.5, bins =40)

plt.title('Budget of more than 100M and less than 150M profit movies ', fontsize=15)

What is the average revenue of the movie w.r.t Profit of movies making more then 100M and less than 150M Dollars?

```
In [312]:
# Finfd the average revenue of movies which made profit more then 50M Dollars
tmdb_profit_data2['revenue'].mean()
                                                                                                     Out[312]:
173312035.4028777
                                                                                                     In [313]:
#plotting a histogram of revenue of movies
#giving the figure size(width, height)
plt.figure(figsize=(11,6), dpi = 100)
#On x-axis
plt.xlabel('Revenue of the Movies in M$', fontsize = 15)
#On y-axis
plt.ylabel('Nos.of Movies in the Dataset', fontsize=15)
#Name of the graph
plt.title('Revenue of more than 100M and less than 150M profit movies ', fontsize=15)
#giving a histogram plot
plt.hist(tmdb profit data2['revenue'], rwidth = 0.5, bins =40)
#displays the plot
```


So the average revenue of the movies is 173312035.4 Dollars and more than 55% of the movies have revenue more than 130M

In [235]:

let's plot a relationship between budget and revenue

plt.show()

more than 75% of the movies have budget less than 30M with revenue more than 130M and it is better than the previous one

In [236]:

```
#calculating thr ratio between profit and No of movies in the category
SR1=(tmdb_profit_data2['profit'].mean()/len(tmdb_profit_data))
print(SR1)
```

269421.8299188464

each movie in this cat. has mean profit = 269421.8 dollars

What is the average runtime of the movie w.r.t Profit of movies making more then 100M and less than 150M Dollars?

```
In [314]:
```

```
# Finfd the average runtime of movies which made profit more then 50M Dollars
tmdb_profit_data2['runtime'].mean()
```

```
Out[314]:
```

112.07194244604317 In [315]:

```
#plotting a histogram of runtime of movies
```

```
#giving the figure size(width, height)
plt.figure(figsize=(11,6), dpi = 100)
```

plt.xlabel('Runtime of the Movies', fontsize = 15) #On y-axis

#On x-axis

plt.ylabel('Nos.of Movies in the Dataset', fontsize=15)

#Name of the graph

plt.title('Runtime of more than 100M and less than 150M profit movies ', fontsize=15)

```
#giving a histogram plot
```

plt.hist(tmdb_profit_data2['runtime'], rwidth = 0.9, bins =35)

#displays the plot

plt.show()

#The First plot is box plot of the runtime of the movies plt.figure(figsize=(9,7), dpi=105)

#using seaborn to generate the boxplot
sns.boxplot(tmdb_profit_data2['runtime'], linewidth = 3)
#diplaying the plot
plt.show()

C:\Users\Mustafa\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.9_qbz5n2kfra8p0\LocalCache\loca packages\Python39\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

80 100 120 140 160 180 runtime

So the average runtime of the movies is 112 Minutes and lying between 100-120 minutes

Which are the successfull genres w.r.t Profit of movies making more then 100M and less than 150M Dollars?

In [240]:

This will first concat all the data with | from the whole column and then split it using | and count to
genres_count = pd.Series(tmdb_profit_data2['genres'].str.cat(sep = '|').split('|')).value_counts(ascending
genres_count

Out[240]:

Comedy	108
Drama	105
Action	91
Thriller	82
Adventure	60
Crime	49
Romance	49
Science Fiction	37
Family	33
Horror	30
Fantasy	27
Mystery	25
Animation	17
War	14
Music	12
History	5
Western	5
Documentary	1
dtype: int64	

```
# Initialize the plot
diagram = genres_count.plot.bar(fontsize = 10)
# Set a title
diagram.set(title = 'Top Genres')
# x-label and y-label
diagram.set_xlabel('Type of genres')
diagram.set_ylabel('Number of Movies')
# Show the plot
plt.show()
```


We can clearly see in the visualization that most movies has Comedy as a genre which tends to higher profit

Which are the most frequent cast involved w.r.t Profit of movies making more then 100M and less than 150M Dollars?

In [319]:

This will first concat all the data with | from the whole column and then split it using | and count to
cast_count = pd.Series(tmdb_profit_data2['cast'].str.cat(sep = '|').split('|')).value_counts(ascending = 1
cast count.head(10)

Out[319]:

```
Sylvester Stallone 9
Adam Sandler 9
Brad Pitt 7
Sean Connery 7
Denzel Washington 7
Drew Barrymore 6
Cameron Diaz 6
Jim Carrey 5
Robert De Niro 5
Danny Glover 5
dtype: int64
```

So the Top 5 cast are Sylvester Stallone, Adam Sandler, Brad Pitt, Sean Connery, Denzel Washington Lets visualize this with a plot

In [318]:

```
# Initialize the plot
diagram = cast_count.head(10).plot.barh(fontsize = 10)
# Set a title
diagram.set(title = 'Top Cast')
# x-label and y-label
diagram.set_xlabel('Number of Movies')
diagram.set_ylabel('List of cast')
# Show the plot
plt.show()
```


We can clearly see in the visualization that most movies have Sylvester Stallone as a cast which tends to higher profit.

category of more than 150M revenue movies

What is the average budget of the movie w.r.t Profit of movies making more then 150M Dollars?

In [320]:

```
# Dataframe which has data of movies which made profit of more the 150M Dollars.
tmdb_data['profit'] = tmdb_data['revenue'] - tmdb_data['budget']
tmdb_profit_data1 = tmdb_data[(tmdb_data['profit'] >= 1500000000)]
# Reindexing the dataframe
tmdb_profit_datal.index = range(len(tmdb_profit_datal))
#showing the dataset
tmdb_profit_datal.head()
```

Out[320]:

In [321]:

	budget	revenue	profit_earned0	profit_earned2	profit_earned	original_title	cast	director	tagline	runtime	
0	150000000	1513528810	1363528810	1363528810	1363528810	Jurassic World	Chris Pratt Bryce Dallas Howard Irrfan Khan Vi	Colin Trevorrow	The park is open.	124	Action
1	150000000	378436354	228436354	228436354	228436354	Mad Max: Fury Road	Tom Hardy Charlize Theron Hugh Keays- Byrne Nic	George Miller	What a Lovely Day.	120	Action
2	110000000	295238201	185238201	185238201	185238201	Insurgent	Shailene Woodley Theo James Kate Winslet Ansel	Robert Schwentke	One Choice Can Destroy You	119	
3	200000000	2068178225	1868178225	1868178225	1868178225	Star Wars: The Force Awakens	Harrison Ford Mark Hamill Carrie Fisher Adam D	J.J. Abrams	Every generation has a story.	136	Action
4	190000000	1506249360	1316249360	1316249360	1316249360	Furious 7	Vin Diesel Paul Walker Jason Statham Michelle 	James Wan	Vengeance Hits Home	137	Ac

Printing the info of the new dataframe
tmdb_profit_datal.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 548 entries, 0 to 547
Data columns (total 14 columns):
# Column
                   Non-Null Count Dtype
                    0 budget
                    548 non-null
    revenue
                                   int64
                   548 non-null
1
2 profit earned0 548 non-null int64
 3 profit earned2 548 non-null int64
 4 profit_earned 548 non-null int64
                                  object
   original_title 548 non-null
 6
    cast
                    548 non-null
                                    object
                   548 non-null
    director
 7
                                    object
               543 non-null object
 8 tagline
9 runtime
                   548 non-null int64
10 genres 548 non-null object
11 release_date 548 non-null dateti
12 release_year 548 non-null int64
                                   datetime64[ns]
13 profit
                   548 non-null int64
dtypes: datetime64[ns](1), int64(8), object(5)
memory usage: 60.1+ KB
     There are 548 movies with revenue more than 150M
                                                                                                  In [246]:
# Finfd the average budget of movies which made profit more then 50M Dollars
tmdb_profit_data1['budget'].mean()
                                                                                                 Out[246]:
86241770.0729927
                                                                                                  In [322]:
#plotting a histogram of budget of movies
#giving the figure size(width, height)
plt.figure(figsize=(11,6), dpi = 100)
#On x-axis
plt.xlabel('Budget of the Movies in M$', fontsize = 15)
#On y-axis
plt.ylabel('Nos.of Movies in the Dataset', fontsize=15)
#Name of the graph
plt.title('Budget of more than 150M profit movies ', fontsize=15)
#giving a histogram plot
plt.hist(tmdb profit data['budget'], rwidth = 0.5, bins =40)
#displays the plot
plt.show()
```


So the average budget of the movies is 86241770.1 Dollars and more than 80% with budget less than 100M

What is the average revenue of the movie w.r.t Profit of movies making more then 150M Dollars?

```
In [323]:
```

Finfd the average revenue of movies which made profit more then 150M Dollars tmdb_profit_data1['revenue'].mean()

> Out[323]: In [324]:

#plotting a histogram of revenue of movies

```
#giving the figure size(width, height)
plt.figure(figsize=(11,6), dpi = 100)
```

```
#On x-axis
plt.xlabel('Revenue of the Movies in M$', fontsize = 15)
#On y-axis
```

plt.ylabel('Nos.of Movies in the Dataset', fontsize=15)

#Name of the graph

432591643.8521898

plt.title('Revenue of more than 150M profit movies ', fontsize=15)

```
#giving a histogram plot
plt.hist(tmdb_profit_data1['revenue'], rwidth = 0.5, bins =40)
#displays the plot
plt.show()
```


So the average revenue of the movies is 432591643.9 Dollars more than 90% of movies have revenue more than 250M

let's plot a relationship between budget and revenue

90% of the movies has budget less than 100M and revenue more than 250M

In [325]:

each movie in this cat. has mean profit = 764569.3 dollar much better than the previous cat.

What is the average runtime of the movie w.r.t Profit of movies making more then 150M Dollars?

Finfd the average runtime of movies which made profit more then 50M Dollars
tmdb_profit_data1['runtime'].mean()

Out[326]:
117.43248175182482

In [327]:
#plotting a histogram of runtime of movies

#giving the figure size(width, height)
plt.figure(figsize=(9,5), dpi = 100)

#On x-axis
plt.xlabel('Runtime of the Movies', fontsize = 15)
#On y-axis
plt.ylabel('Nos.of Movies in the Dataset', fontsize=15)
#Name of the graph
plt.title('Runtime of more than 150M profit movies ', fontsize=15)
#giving a histogram plot
plt.hist(tmdb_profit_datal['runtime'], rwidth = 0.9, bins =35)
#displays the plot
plt.show()

#The First plot is box plot of the runtime of the movies plt.figure(figsize=(9,7), dpi = 105)

#using seaborn to generate the boxplot
sns.boxplot(tmdb_profit_datal['runtime'], linewidth = 3)
#diplaying the plot
plt.show()

In [254]:

In [326]:

C:\Users\Mustafa\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.9_qbz5n2kfra8p0\LocalCache\loca packages\Python39\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

So the average runtime of the movies is 117.4 Minutes and it is lying between 100-125 minutes

Which are the successfull genres w.r.t Profit of movies making more then 150M Dollars?

In [328]:

This will first concat all the data with | from the whole column and then split it using | and count to
genres_count = pd.Series(tmdb_profit_datal['genres'].str.cat(sep = '|').split('|')).value_counts(ascending
genres_count

Out[328]:

Action	226
Adventure	218
Comedy	191
Drama	159
Thriller	151
Family	133
Fantasy	117
Science Fiction	111
Animation	85
Romance	83
Crime	63
Mystery	41
Horror	25
Music	19
War	15
History	9
Western	5
dtype: int64	

So the Top 10 Genres are Action, Adventure, Comedy, Drama, Thriller, Family, Fantasy, Science Fiction, Animation, Romance Lets visualize this with a plot

```
# Initialize the plot
diagram = genres_count.plot.bar(fontsize = 10)
# Set a title
diagram.set(title = 'Top Genres')
# x-label and y-label
diagram.set_xlabel('Type of genres')
diagram.set_ylabel('Number of Movies')
# Show the plot
plt.show()
```


We can clearly see in the visualization that most movies has Action as a genre which tends to higher profit

Which are the most frequent cast involved w.r.t Profit of movies making more then 150M Dollars?

In [330]:

▼

This will first concat all the data with | from the whole column and then split it using | and count to
cast_count = pd.Series(tmdb_profit_datal['cast'].str.cat(sep = '|').split('|')).value_counts(ascending = 1
cast count.head(20)

Out[330]:

```
Tom Cruise
                    19
Tom Hanks
                     1.5
Bruce Willis
                     13
Robin Williams
                     12
Will Smith
                     11
Harrison Ford
                    11
Brad Pitt
                     11
Ben Stiller
Liam Neeson
                     10
Cameron Diaz
                     10
Julia Roberts
Gary Oldman
                    10
Anne Hathaway
                     10
Matt Damon
Samuel L. Jackson
                     10
Emma Watson
Jim Carrey
                      9
                      9
Leonardo DiCaprio
Ralph Fiennes
                      9
Angelina Jolie
                      9
dtype: int64
```

So the Top 5 cast are Tom Cruise, Tom Hanks, Bruce Willis, Robin Williams, Brad Pitt Lets visualize this with a plot

In [331]:

```
# Initialize the plot
diagram = cast_count.head(10).plot.barh(fontsize = 10)
# Set a title
diagram.set(title = 'Top Cast')
# x-label and y-label
diagram.set_xlabel('Number of Movies')
diagram.set_ylabel('List of cast')
# Show the plot
```


We can clearly see in the visualization that most movies have Tom Cruise as a cast which tends to higher profit.

In [332]:

#the data about the ratio between profit and number of movies in each category is collected in the book of SR= pd.read_csv('book.csv')
SR.head()

Out[332]:

	category	SR
0	25M	80074.64752
1	50M	157495.60010
2	100M	269421.82990
3	150M	764569.25780

here we make a relationship which can be used to make assumption about relationship between the budget and revenue it as the follow .

SR=profit(revenue-budget)/number of movies in each category

next we ploting the relationship between the categories and $\ensuremath{\mathsf{SR}}$

In [333]:

```
# plotting a relatinship to figure out some conclusion
sns.lineplot(data=SR,x="category",y="SR")
plt.show()
```


there is an expontional relationship between two variant

In [334]:

BR= pd.read_csv('Book1.csv')
BR.head()

	category	DK
0	25M	2.296296
1	50M	2.945946
2	100M	3.392157
3	150M	5.023256

ВD

Next is a relation between the ratio of budget and revenue (BR) and each responding cat.

In [335]:

```
# plotting a relatinship to figure out some conclusion
sns.lineplot(data=BR,x="category",y="BR")
plt.show()
```


ther is a direct relationship between both variants

conclusion

- 1.) 1.what are the best genres of movies constantly?
- A1) Drama, Comedy, Action, Thriller and Adventure
- 2.) what the best cast for the different categories ? A2)for the general categories Robert De Nero ,Bruce Willis and Matt Demain

for the high profittable movies Tom cruis

- 3.) is runtime varies according to the cat.?
- A3) no , it is seemly constant (109-117) minutes
- 4.) is there a relation between the budget and revenue (BR) and the categories of movies ?
- A4) there is an direct relationship , so for better revenue movie should has a good budget
- 5.)is there a relation between avg. of the profit (SR) and the categories ?
- A5) there is an expontial relationship, so with increasing in revenue ther is much increasing in the profit **tip for the movie makers

there is a increamental relationship between the budget and the revenue rate , so the make a profitable movie the budget should not be less than 60M

limitations

- 1) I relied on movies which revenue in the range more than(25,50,100,150)M dollars and it is not inclusive
- 2) Data may not be up to date and it affects
- 3) there are different currency in the revenue and budget columns it differs according to the production country
- 4) there were a drop in rows which contains missing values