

## INSTITUT TEKNOLOGI BANDUNG FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM PROGRAM STUDI FISIKA

Jl. Ganesha No 10 Bandung 40132 Indonesia

## UJIAN III FISIKA DASAR IA (FI-1101) SEMESTER 1, TAHUN 2022/2023 KAMIS, 15 DESEMBER 2022, PUKUL 09.15-11.15 WIB

Petunjuk: gunakan Percepatan gravitasi (g): 10 m/s<sup>2</sup>

Bilangan Avogadro (N<sub>A</sub>):  $6.02 \times 10^{23} \, \text{mol}^{-1}$ Konstanta gas ideal (R):  $8.31 \, \text{J/mol.K}$ Konstanta Boltzmann (k<sub>B</sub>):  $1.38 \times 10^{-23} \, \text{J/K}$ 

- 1. Posisi sebuah partikel yang bergerak sepanjang sumbu x adalah  $x = 15t 5t^3$ , x dalam m dan t dalam sekon. Tentukan (a) kapan kecepatannya bernilai nol? (b) kapan percepatannya bernilai nol? (c) pada interval waktu yang mana percepatannya negatif? (d) buat sketsa grafik x terhadap t untuk 0 < t < 5 s.
- 2. Sebuah benda bermassa 20 kg ditarik dengan gaya sebesar 172 N oleh sebuah mobil pada suatu bidang miring kasar dengan koefisien gesek kinetik  $\mu_k = \frac{1}{8}$ , seperti ditunjukkan pada gambar. Benda itu kemudian bergeser naik sejauh d = 5 m. Sudut kemiringan  $\theta$  diketahui sedemikian rupa sehingga  $\sin \theta = \frac{3}{5}$ .



- a. Hitung usaha yang dilakukan pada benda oleh gaya tarik mobil.
- b. Hitung usaha yang dilakukan pada benda oleh gaya gravitasi.
- c. Hitung usaha yang dilakukan pada benda oleh gaya gesek.
- d. Jika benda awalnya diam, tentukan kecepatan benda.
- 3. Sebuah partikel bermassa 2 kg diberikan gaya ke arah sumbu *x*-positif dengan gaya yang besarnya bervariasi terhadap waktu seperti ditunjukkan pada gambar.
  - a. Tentukan percepatan partikel pada t = 2.5 sekon
  - b. Tentukan Impuls yang diberikan gaya selama selang waktu 5 sekon.
  - c. Tentukan kecepatan akhir partikel dengan notasi vektornya jika partikel bergerak dari keadaan diam.
  - d. Tentukan gaya rata-rata kepada partikel pada selang waktu t = 0 hingga t = 5.00 s.



- 4. Bejana berbentuk silinder dengan luas penampang  $\mathbf{A} = 0.8 \text{ m}^2$  diisi air setinggi 1,6 m. Tekanan total di permukaan adalah 100 kPa, dan rapat massa air 1000 kg/m³.
  - a. Hitung tekanan absolut pada permukaan dasar silinder tersebut.
  - b. Andai ada kebocoran di titik **R** dan titik **S** dengan luas penampang sama, tapi kedalaman titik **S** lebih besar daripada titik **R**, maka dari kebocoran mana yang debit pemancarannya lebih besar? Beri alasannya.
  - c. Tentukan jangkauan terjauh pancaran air dari **R** sesaat kebocoran terjadi dengan luas penampang A/50 dan kedalaman titik **R** adalah 0,8 m.
- 5. Sebuah gas ideal mengalami proses seperti pada gambar berikut. Pada titik **a** suhu *T* bernilai 250 K. Tentukanlah:
  - a. Berapa banyak mol gas tersebut
  - b. Nilai suhu pada titik **b**
  - c. Total energi yang diberikan pada gas selama siklus proses abca tersebut

