${\rm MAT}224{\rm H}1{\rm S}$ - Linear Algebra II

Notes on Dimension

That every basis for a given vector space V contains exactly the same number of vectors paves the way to the following definition.

Definition: Let V be a vector space and n a positive integer. If there is a list of vectors $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_r$ of vectors that is a basis for V, then V is n-dimensional (or V has dimension n). The zero vector space has dimension zero. If V has dimension n for some nonnegative integer n, then V is f-inite dimensional otherwise V is infinite dimensional. If V is finite dimensional is dimension is denoted dim V.

> think about 2x2 matrix. Standard Examples: $\dim \mathbb{R}^n = n$, $\dim P_n(\mathbb{R}) = n + 1$, $\dim M_{\max}(\mathbb{R}) = mn$. $M = \begin{pmatrix} a & b \\ C & d \end{pmatrix}$

Example: Let $P(\mathbb{R})$ be the set of all polynomials with real coefficients with the same operations of vector addition and scalar multiplication as in $P_n(\mathbb{R})$. Then $P(\mathbb{R})$ is a vector space. As in $P_n(\mathbb{R})$, the zero vector in $P(\mathbb{R})$ is the zero polynomial. The vectors $1, x, x^2, \dots, x^n$ are linearly independent in $P(\mathbb{R})$ for each $n=1,2,\dots$. The Fundamental Theorem says that if $P(\mathbb{R})$ is finite dimensional, then dim $P(\mathbb{R}) \geq 3$. Since this is impossible $P(\mathbb{R})$ is infinite dimensional.

A 1, X^2, \dots, X^n are L. I, $X^n \in \mathbb{R}$ for $X^n \in \mathbb{R}$ since

Since 1, X, X2, ..., Xn are L.I

Exercise and Discussion: Let $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4$ be vectors in a vector space V. Suppose that $\mathbf{x}_3 = \mathbf{x}_1 - \mathbf{x}_2$ for each $n = 1, 2, 3, \dots$ \longrightarrow there are infinitely many and $\mathbf{x}_4 = 2\mathbf{x}_1 + 3\mathbf{x}_2 - \mathbf{x}_3$, and that $U = \operatorname{span}\{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4\}$.

(a) What are the possible dimensions of U?

(b) Suppose dim U=2. Must $\{x_3, x_4\}$ be linearly independent?

(a) $x_3 = x_1 - x_2 =$ a L.C. of x_1, x_2

$$\chi_{\psi} = 2x_1 + 3x_2 - x_3$$

= $2x_1 + 3x_2 - (x_1 - x_2)$.

possible dimensions of U: 0, 1, 2 -> x, and x are LI.

(b) Suppose dim U=2, X, and X_2 are $L.I \Longrightarrow U=\text{span}\{x_1, x_2\}$

X3= X1-X2

$$\chi_{\psi} = \chi_1 + \psi \chi_2$$
.

1 of 3

ax2 + bx4 = 0.

a(x1-x2)+b(x1+4x2)=0

 $(a+b)x_1+(4b-a)x_2=0$.

: X1 and X2 are L.I.

$$\begin{array}{ccc} & s & a+b=0 \\ & 4b-a=0. \end{array} \implies \begin{array}{c} s & a=0 \\ & b=0. \end{array} \implies X_3 \text{ and } X_p \text{ are } L.I.$$

The following theorem says two things about a finite dimensional vector space V: (a) any list of vectors that span V contains a shorter list that is a basis for V; and (b) any linearly independent list of vectors can be extended to a longer list that is a basis for V.

Theorem: Let V be a nonzero vector space and $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_r \in V$.

- (a) If $\mathrm{span}\{\mathbf{x}_1,\mathbf{x}_2,\dots,\mathbf{x}_r\}=V,$ then $n=\dim V\leq r,$ and there are indices $i_1,i_2,\dots,i_n\in\{1,2,\dots,r\}$ such that the list $\mathbf{x}_{i_1},\mathbf{x}_{i_2},\dots,\mathbf{x}_{i_n}$ is a basis for V.
- (b) If $n=\dim V>r$, and $\mathbf{x}_1,\mathbf{x}_2,\ldots,\mathbf{x}_r$ are linearly independent, then there are n-r vectors $\mathbf{y}_1,\mathbf{y}_2,\ldots,\mathbf{y}_{n-r}\in V$ such that the list $\mathbf{x}_1,\mathbf{x}_2,\ldots,\mathbf{x}_r,\mathbf{y}_1,\mathbf{y}_2,\ldots,\mathbf{y}_{n-r}$ is a basis for V.

any spanning set can be reduced to a basis (by removing

a spanning set contains a basis.

independent set can be enlarged into a basis.

4 V=span {x,} => dan V=1, {xi} 33 a base

the dimension of P(R) chowas of n.

If {Xi,} is not a basis for V, there exists

V+ span {xi}

redundant rectors until the number of vectors = dimension of U).

Exercise and Discussion: Consider the vectors p(x) = 1 + x, and $q(x) = 1 + x + x^2$ in $P_2(\mathbb{R})$. Find a

Exercise and Discussion: Consider the vectors p(x)=1+x, and $q(x)=1+x+x^2$ in $P_2(\mathbb{R})$. Find a third vector r(x) such that the list p(x), q(x), r(x) is a basis for $P_2(\mathbb{R})$.

because $0 \cdot (1+X) + 0 \cdot (1+X+X^2)$ is the only linear combination to represent 1 dimension of $P_2(R)$ is $n+1=2+1=3 \implies \{1+X+X^2,1\}$ is a books for $P_2(R)$.

Exercise and Discussion: Let V be an n-dimensional vector space and $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n \in V$. In no more than three sentences, explain why the following statements are true. If it takes you more than three sentences, see if you can find a more elegant explanation.

- (a) If $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n$ spans V, then $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n$ is a basis for V
- (b) If $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n$ is linearly independent, then $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n$ is a basis for V.

The following theorem details the dimensional relationship between a subspace and its parent space.

Theorem: Let U be a subspace of an n-dimensional vector space V. Then U is finite dimensional and $\dim U \leq n$, with equality iff U = V.

This theorem guarantees that for any two subspaces U and W of a finite dimensional vectors space V, their sum U+W and intersection $U\cap W$ are both finite dimensional since each is a subspace of V. Furthermore, $U\cap W$ is a subspace of U and of W, so any basis for $U\cap W$ can be extended to a basis for U; it can also be extended to a basis for W. Paying close attention to how these bases interact leads to the following result.

Theorem: Let U and W be subspaces of a finite dimensional vector space V. Then

 $\dim(U + W) = \dim U + \dim W - \dim(U \cap W).$

3 of 3