

# Shenzhen Toby Technology Co., Ltd.

Report No.: TB-FCC165562

Page: 1 of 67

# FCC Radio Test Report

# **Original Grant**

Report No. : TB-FCC165562

Applicant : Shenzhen Forever Young Technology Co.,Ltd

**Equipment Under Test (EUT)** 

**EUT Name**: WiFi Infrared Remote Control

Model No. : S08

Series Model No. : N/A

Brand Name : Zitech

**Receipt Date** : 2019-04-19

**Test Date** : 2019-04-19 to 2019-04-30

**Issue Date** : 2019-05-05

**Standards** : FCC Part 15, Subpart C (15.247: 2018)

Test Method : ANSI C63.10: 2013

Conclusions : PASS

In the configuration tested, the EUT complied with the standards specified above,

The EUT technically complies with the FCC and IC requirements

Test/Witness Engineer : Jason Xu

Test/Witness Engineer : 7

Approved& : fugla.

Authorized

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in the report.

TB-RF-074-1.0



Page: 2 of 67

# Contents

| CON | NTENTS                                                       | 2  |
|-----|--------------------------------------------------------------|----|
| 1.  | GENERAL INFORMATION ABOUT EUT                                | 5  |
|     | 1.1 Client Information                                       | 5  |
|     | 1.2 General Description of EUT (Equipment Under Test)        | 5  |
|     | 1.3 Block Diagram Showing the Configuration of System Tested | 6  |
|     | 1.4 Description of Support Units                             | 6  |
|     | 1.5 Description of Test Mode                                 | 6  |
|     | 1.6 Description of Test Software Setting                     | 8  |
|     | 1.7 Measurement Uncertainty                                  | 8  |
|     | 1.8 Test Facility                                            | 9  |
| 2.  | TEST SUMMARY                                                 | 10 |
| 3.  | TEST EQUIPMENT                                               | 11 |
| 4.  | CONDUCTED EMISSION TEST                                      | 12 |
|     | 4.1 Test Standard and Limit                                  | 12 |
|     | 4.2 Test Setup                                               |    |
|     | 4.3 Test Procedure                                           |    |
|     | 4.4 EUT Operating Mode                                       | 13 |
|     | 4.5 Test Data                                                | 13 |
| 5.  | RADIATED EMISSION TEST                                       | 14 |
|     | 5.1 Test Standard and Limit                                  | 14 |
|     | 5.2 Test Setup                                               |    |
|     | 5.3 Test Procedure                                           | 16 |
|     | 5.4 EUT Operating Condition                                  | 17 |
|     | 5.5 Test Data                                                | 17 |
| 6.  | RESTRICTED BANDS REQUIREMENT                                 | 18 |
|     | 6.1 Test Standard and Limit                                  | 18 |
|     | 6.2 Test Setup                                               |    |
|     | 6.3 Test Procedure                                           | 18 |
|     | 6.4 EUT Operating Condition                                  | 19 |
|     | 6.5 Test Data                                                |    |
| 7.  | BANDWIDTH TEST                                               | 20 |
|     | 7.1 Test Standard and Limit                                  | 20 |
|     | 7.2 Test Setup                                               | 20 |
|     | 7.3 Test Procedure                                           | 20 |
|     | 7.4 EUT Operating Condition                                  | 20 |
|     | 7.5 Test Data                                                | 20 |
| 8.  | PEAK OUTPUT POWER TEST                                       | 21 |
|     | 8.1 Test Standard and Limit                                  | 21 |



Page: 3 of 67

|     | 8.2 Test Setup                                     | 21 |
|-----|----------------------------------------------------|----|
|     | 8.3 Test Procedure                                 | 21 |
|     | 8.4 EUT Operating Condition                        | 21 |
|     | 8.5 Test Data                                      | 21 |
| 9.  | POWER SPECTRAL DENSITY TEST                        |    |
|     | 9.1 Test Standard and Limit                        | 22 |
|     | 9.2 Test Setup                                     | 22 |
|     | 9.3 Test Procedure                                 | 22 |
|     | 9.4 EUT Operating Condition                        | 22 |
|     | 9.5 Test Data                                      | 22 |
| 10. | ANTENNA REQUIREMENT                                | 23 |
|     | 10.1 Standard Requirement                          |    |
|     | 10.2 Antenna Connected Construction                |    |
| ATT | ACHMENT A CONDUCTED EMISSION TEST DATA             |    |
|     | ACHMENT C RESTRICTED BANDS REQUIREMENT AND BAND-ED |    |
|     |                                                    |    |
|     | ACHMENT D BANDWIDTH TEST DATA                      |    |
|     | ACHMENT E PEAK OUTPUT POWER TEST DATA              |    |
|     | ACHMENT F POWER SPECTRAL DENSITY TEST DATA         |    |



Page: 4 of 67

# **Revision History**

| Report No.   | Version | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Issued Date |
|--------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| TB-FCC165562 | Rev.01  | Initial issue of report                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2019-05-05  |
|              |         | COUNTY OF THE PARTY OF THE PART | All U       |
|              | 1       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
|              | 20      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | anii b      |
|              |         | The state of the s | 1           |
|              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
|              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | may 1       |
|              | 30105   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
|              | 90      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | a W         |
| CHILL        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 27       |
|              | Miles . |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
|              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
|              | 2.0     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |



Page: 5 of 67

# 1. General Information about EUT

# 1.1 Client Information

| Applicant    | : | Shenzhen Forever Young Technology Co.,Ltd                                               |
|--------------|---|-----------------------------------------------------------------------------------------|
| Address      | * | 4/F, No.5 Bldg, Fu Hong Industrial Park, Fu Yong Town, Bao'an District, Shenzhen, China |
| Manufacturer |   | Shenzhen Forever Young Technology Co.,Ltd                                               |
| Address      | : | 4/F, No.5 Bldg, Fu Hong Industrial Park, Fu Yong Town, Bao'an District, Shenzhen, China |

# 1.2 General Description of EUT (Equipment Under Test)

| EUT Name               | :               | WiFi Infrared Remote Control                                       |                                                                                        |  |  |  |
|------------------------|-----------------|--------------------------------------------------------------------|----------------------------------------------------------------------------------------|--|--|--|
| Models No.             | :               | S08                                                                |                                                                                        |  |  |  |
| Model<br>Different     |                 | N/A                                                                |                                                                                        |  |  |  |
| CHILL                  |                 | Operation Frequency:                                               | 802.11b/g/n(HT20): 2412MHz~2462MHz                                                     |  |  |  |
| 6.1                    | N               | Number of Channel:                                                 | 802.11b/g/n(HT20):11 channels see note(3)                                              |  |  |  |
|                        | 802.11g: 15.45d | 802.11b: 15.97dBm<br>802.11g: 15.45dBm<br>802.11n (HT20): 14.48dBm |                                                                                        |  |  |  |
| Product                |                 | Antenna Gain:                                                      | 2.5dBi PCB Antenna                                                                     |  |  |  |
| Description            |                 | Modulation Type:                                                   | 802.11b: DSSS(CCK, DQPSK, DBPSK)<br>802.11g/n: OFDM(BPSK,QPSK,16QAM,<br>64QAM)         |  |  |  |
| 1 (10)                 |                 | Bit Rate of Transmitter:                                           | 802.11b:11/5.5/2/1 Mbps<br>802.11g:54/48/36/24/18/12/9/6 Mbps<br>802.11n:up to 150Mbps |  |  |  |
| Power Supply           |                 | DC Voltage by AC/DC                                                | Adapter supplied                                                                       |  |  |  |
| Power Rating           | :               | Input: DC 5V1A                                                     |                                                                                        |  |  |  |
| Software<br>Version    |                 | N/A                                                                |                                                                                        |  |  |  |
| Hardware<br>Version    | :               | N/A                                                                |                                                                                        |  |  |  |
| Connecting I/O Port(S) |                 | Please refer to the User's Manual                                  |                                                                                        |  |  |  |

#### Note:

(1) This Test Report is FCC Part 15.247 for 802.11b/g/n, the test procedure follows the FCC KDB 558074 D01 DTS Meas Guidance v05.



Page: 6 of 67

(2) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

(3) Channel List:

| Channel                                 | Frequency<br>(MHz) | Channel | Frequency<br>(MHz) | Channel | Frequency<br>(MHz) |  |  |
|-----------------------------------------|--------------------|---------|--------------------|---------|--------------------|--|--|
| 01                                      | 2412               | 05      | 2432               | 09      | 2452               |  |  |
| 02                                      | 2417               | 06      | 2437               | 10      | 2457               |  |  |
| 03                                      | 2422               | 07      | 2442               | 11      | 2462               |  |  |
| 04                                      | 2427               | 08      | 2447               |         |                    |  |  |
| Note: CH 01~CH 11 for 802.11b/g/n(HT20) |                    |         |                    |         |                    |  |  |

(4) The Antenna information about the equipment is provided by the applicant.

# 1.3 Block Diagram Showing the Configuration of System Tested



# 1.4 Description of Support Units

The EUT has been tested as an independent unit.

# 1.5 Description of Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned follow was evaluated respectively.

| For Conducted Test |                               |  |  |  |
|--------------------|-------------------------------|--|--|--|
| Final Test Mode    | Description                   |  |  |  |
| Mode 1             | Normal Working with TX B Mode |  |  |  |



Page: 7 of 67

| For Radiated Test |                                       |  |  |  |  |
|-------------------|---------------------------------------|--|--|--|--|
| Final Test Mode   | Description                           |  |  |  |  |
| Mode 2            | TX Mode B Mode Channel 01/06/11       |  |  |  |  |
| Mode 3            | TX Mode G Mode Channel 01/06/11       |  |  |  |  |
| Mode 4            | TX Mode N(HT20) Mode Channel 01/06/11 |  |  |  |  |

#### Note:

(1) For all test, we have verified the construction and function in typical operation. And all the test modes were carried out with the EUT in transmitting operation in maximum power with all kinds of data rate.

According to ANSI C63.10 standards, the measurements are performed at the highest, Middle, lowest available channels, and the worst case data rate as follows:

802.11b Mode: CCK (1 Mbps) 802.11g Mode: OFDM (6 Mbps)

802.11n (HT20) Mode: MCS 0 (6.5 Mbps)

- (2) During the testing procedure, the continuously transmitting with the maximum power mode was programmed by the customer.
- (3) The EUT is considered a portable unit; in normal use it was positioned on X-plane. The worst case was found positioned on X-plane. Therefore only the test data of this X-plane was used for radiated emission measurement test.



Page: 8 of 67

# 1.6 Description of Test Software Setting

During testing channel & Power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of WLAN.

| Test Software Version | W     | SecureCRT.exe |       |
|-----------------------|-------|---------------|-------|
| Channel               | CH 01 | CH 06         | CH 11 |
| IEEE 802.11b DSSS     | 20    | 20            | 20    |
| IEEE 802.11g OFDM     | 40    | 40            | 40    |
| IEEE 802.11n (HT20)   | 45    | 45            | 45    |

# 1.7 Measurement Uncertainty

The reported uncertainty of measurement  $y \pm U$ , where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

| Test Item          | Parameters        | Expanded Uncertainty (U <sub>Lab</sub> ) |
|--------------------|-------------------|------------------------------------------|
|                    | Level Accuracy:   |                                          |
| Conducted Emission | 9kHz~150kHz       | ±3.42 dB                                 |
|                    | 150kHz to 30MHz   | ±3.42 dB                                 |
| Dadiated Emission  | Level Accuracy:   | . 4 CO dD                                |
| Radiated Emission  | 9kHz to 30 MHz    | ±4.60 dB                                 |
| Dadiated Emission  | Level Accuracy:   | . 4 40 dD                                |
| Radiated Emission  | 30MHz to 1000 MHz | ±4.40 dB                                 |
| Dadiated Emission  | Level Accuracy:   | . 4 20 dD                                |
| Radiated Emission  | Above 1000MHz     | ±4.20 dB                                 |



Page: 9 of 67

# 1.8 Test Facility

The testing report were performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at 1A/F., Bldg.6, Yusheng Industrial Zone, The National Road No.107 Xixiang Section 467, Xixiang, Bao'an, Shenzhen, Guangdong, China. At the time of testing, the following bodies accredited the Laboratory:

#### **CNAS (L5813)**

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

#### A2LA Certificate No.: 4750.01

The laboratory has been accredited by American Association for Laboratory Accreditation(A2LA) to ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories for the technical competence in the field of Electrical Testing. And the A2LA Certificate No.: 4750.01. FCC Accredited Test Site Number: 854351.

#### IC Registration No.: (11950A-1)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A-1.



Page: 10 of 67

# 2. Test Summary

| FCC Part 15 Subpart C(15.247)/ RSS 247 Issue 2 |                               |                                        |          |         |  |  |  |
|------------------------------------------------|-------------------------------|----------------------------------------|----------|---------|--|--|--|
| Standa                                         | rd Section                    | Toot Itom                              | ludament | Domorle |  |  |  |
| FCC                                            | IC                            | Test Item                              | Judgment | Remark  |  |  |  |
| 15.203                                         | 1                             | Antenna Requirement                    | PASS     | N/A     |  |  |  |
| 15.207                                         | RSS-GEN 7.2.4                 | Conducted Emission                     | PASS     | N/A     |  |  |  |
| 15.205                                         | RSS-GEN 7.2.2                 | Restricted Bands                       | PASS     | N/A     |  |  |  |
| 15.247(a)(2)                                   | RSS 247                       | 6dB Bandwidth                          | PASS     | N/A     |  |  |  |
| 15.247(b)                                      | 5.2 (1)<br>RSS 247<br>5.4 (4) | Peak Output Power                      | PASS     | N/A     |  |  |  |
| 15.247(e)                                      | RSS 247<br>5.2 (2)            | Power Spectral Density                 | PASS     | N/A     |  |  |  |
| 15.247(d)                                      | RSS 247<br>5.5                | Band Edge                              | PASS     | N/A     |  |  |  |
| 15.247(d)&<br>15.209                           | RSS 247<br>5.5                | Transmitter Radiated Spurious Emission | PASS     | N/A     |  |  |  |

Note: "/" for no requirement for this test item.

N/A is an abbreviation for Not Applicable.



Page: 11 of 67

# 3. Test Equipment

| Conducted Emiss            | ion Test                         |                   |               |               |                  |
|----------------------------|----------------------------------|-------------------|---------------|---------------|------------------|
| Equipment                  | Manufacturer                     | Model No.         | Serial No.    | Last Cal.     | Cal. Due<br>Date |
| EMI Test Receiver          | Rohde & Schwarz                  | ESCI              | 100321        | Jul. 18, 2018 | Jul. 17, 2019    |
| RF Switching Unit          | Compliance Direction Systems Inc | RSU-A4            | 34403         | Jul. 18, 2018 | Jul. 17, 2019    |
| AMN                        | SCHWARZBECK                      | NNBL 8226-2       | 8226-2/164    | Jul. 18, 2018 | Jul. 17, 2019    |
| LISN                       | Rohde & Schwarz                  | ENV216            | 101131        | Jul. 18, 2018 | Jul. 17, 2019    |
| Radiation Emission         | n Test                           |                   |               |               |                  |
| Equipment                  | Manufacturer                     | Model No.         | Serial No.    | Last Cal.     | Cal. Due<br>Date |
| Spectrum<br>Analyzer       | Agilent                          | E4407B            | MY45106456    | Jul. 18, 2018 | Jul. 17, 2019    |
| EMI Test<br>Receiver       | Rohde & Schwarz                  | ESPI              | 100010/007    | Jul. 18, 2018 | Jul. 17, 2019    |
| Bilog Antenna              | ETS-LINDGREN                     | 3142E             | 00117537      | Jan. 27, 2019 | Jan. 26, 2020    |
| Bilog Antenna              | ETS-LINDGREN                     | 3142E             | 00117542      | Jan. 27, 2019 | Jan. 26, 2020    |
| Horn Antenna               | ETS-LINDGREN                     | 3117              | 00143207      | Mar.03, 2019  | Mar. 02, 2020    |
| Horn Antenna               | ETS-LINDGREN                     | 3117              | 00143209      | Mar.03, 2019  | Mar. 02, 2020    |
| Loop Antenna               | SCHWARZBECK                      | FMZB 1519 B       | 1519B-059     | Mar.04, 2019  | Mar. 03, 2020    |
| Pre-amplifier              | Sonoma                           | 310N              | 185903        | Mar.03, 2019  | Mar. 02, 2020    |
| Pre-amplifier              | HP                               | 8449B             | 3008A00849    | Mar.03, 2019  | Mar. 02, 2020    |
| Cable                      | HUBER+SUHNER                     | 100               | SUCOFLEX      | Jan. 27, 2019 | Jan. 26, 2020    |
| Positioning Controller     | ETS-LINDGREN                     | 2090              | N/A           | N/A           | N/A              |
| Antenna Conduct            | ed Emission                      |                   |               |               |                  |
| Equipment                  | Manufacturer                     | Model No.         | Serial No.    | Last Cal.     | Cal. Due<br>Date |
| Spectrum Analyzer          | Agilent                          | E4407B            | MY45106456    | Jul. 18, 2018 | Jul. 17, 2019    |
| Spectrum Analyzer          | Rohde & Schwarz                  | ESCI              | 100010/007    | Jul. 18, 2018 | Jul. 17, 2019    |
| MXA Signal Analyzer        | Agilent                          | N9020A            | MY49100060    | Sep. 15, 2018 | Sep. 14, 2019    |
| Vector Signal Generator    | Agilent                          | N5182A            | MY50141294    | Sep. 15, 2018 | Sep. 14, 2019    |
| Analog Signal<br>Generator | Agilent                          | N5181A            | MY50141953    | Sep. 15, 2018 | Sep. 14, 2019    |
|                            | DARE!! Instruments               | RadiPowerRPR3006W | 17I00015SNO26 | Sep. 15, 2018 | Sep. 14, 2019    |
| DE Davis C                 | DARE!! Instruments               | RadiPowerRPR3006W | 17I00015SNO29 | Sep. 15, 2018 | Sep. 14, 2019    |
| RF Power Sensor            | DARE!! Instruments               | RadiPowerRPR3006W | 17I00015SNO31 | Sep. 15, 2018 | Sep. 14, 2019    |
|                            | DARE!! Instruments               | RadiPowerRPR3006W | 17I00015SNO33 | Sep. 15, 2018 | Sep. 14, 2019    |



Page: 12 of 67

# 4. Conducted Emission Test

### 4.1 Test Standard and Limit

4.1.1Test Standard FCC Part 15.207

#### 4.1.2 Test Limit

#### **Conducted Emission Test Limit**

| Eroguenov     | Maximum RF Lin   | e Voltage (dBμV) |
|---------------|------------------|------------------|
| Frequency     | Quasi-peak Level | Average Level    |
| 150kHz~500kHz | 66 ~ 56 *        | 56 ~ 46 *        |
| 500kHz~5MHz   | 56               | 46               |
| 5MHz~30MHz    | 60               | 50               |

#### Notes:

- (1) \*Decreasing linearly with logarithm of the frequency.
- (2) The lower limit shall apply at the transition frequencies.
- (3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

# 4.2 Test Setup



#### 4.3 Test Procedure

The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/50uH of coupling impedance for the measuring instrument.

Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.



Page: 13 of 67

I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.

LISN at least 80 cm from nearest part of EUT chassis.

The bandwidth of EMI test receiver is set at 9kHz, and the test frequency band is from 0.15MHz to 30MHz.

# 4.4 EUT Operating Mode

Please refer to the description of test mode.

### 4.5 Test Data

Please refer to the Attachment A.



Page: 14 of 67

# 5. Radiated Emission Test

# 5.1 Test Standard and Limit

5.1.1 Test Standard FCC Part 15.209

5.1.2 Test Limit

### Radiated Emission Limits (9 kHz~1000 MHz)

| Frequency<br>(MHz | Field Strength (microvolt/meter) | Measurement Distance (meters) |
|-------------------|----------------------------------|-------------------------------|
| 0.009~0.490       | 2400/F(KHz)                      | 300                           |
| 0.490~1.705       | 24000/F(KHz)                     | 30                            |
| 1.705~30.0        | 30                               | 30                            |
| 30~88             | 100                              | 3                             |
| 88~216            | 150                              | 3                             |
| 216~960           | 200                              | 3                             |
| Above 960         | 500                              | 3                             |

# Radiated Emission Limit (Above 1000MHz)

| Frequency  | Distance of 3m | (dBuV/m) |
|------------|----------------|----------|
| (MHz)      | Peak           | Average  |
| Above 1000 | 74             | 54       |

#### Note:

- (1) The tighter limit applies at the band edges.
- (2) Emission Level(dBuV/m)=20log Emission Level(uV/m)



Page: 15 of 67

# 5.2 Test Setup



Below 30MHz Test Setup



Below 1000MHz Test Setup



Page: 16 of 67



Above 1GHz Test Setup

#### 5.3 Test Procedure

- (1) Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- (2) Measurements at frequency Below 1GHz. The EUT was placed on a rotating 0.8m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- (3) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- (4) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- (5) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (6) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (7) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.



Page: 17 of 67

(8) For the actual test configuration, please see the test setup photo.

# 5.4 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power.

#### 5.5 Test Data

Remark: During testing above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.

Please refer to the Attachment B.



Page: 18 of 67

# 6. Restricted Bands Requirement

#### 6.1 Test Standard and Limit

6.1.1 Test Standard

FCC Part 15.247(d)

FCC Part 15.209

FCC Part 15.205

6.1.2 Test Limit

| Restricted Frequency | Distance of | 3m (dBuV/m) |
|----------------------|-------------|-------------|
| Band<br>(MHz)        | Peak        | Average     |
| 2310 ~2390           | 74          | 54          |
| 2483.5 ~2500         | 74          | 54          |

# 6.2 Test Setup



#### 6.3 Test Procedure

- (1) The measuring distance of 3m shall be used for measurements at frequency Below 1GHz and above 1 GHz. The EUT was placed on a rotating 0.8m high above ground, the table was rotated 360 degrees to determine the position of the highest radiation.
- (2) Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.



Page: 19 of 67

(3) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.

- (4) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- (5) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (6) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (7) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- (8) For the actual test configuration, please see the test setup photo.

## 6.4 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power.

#### 6.5 Test Data

Please refer to the Attachment C.



Page: 20 of 67

# 7. Bandwidth Test

#### 7.1 Test Standard and Limit

7.1.1 Test Standard FCC Part 15.247 (a)(2)

7.1.2 Test Limit

| FCC Part 15 Subpart C(15.247) |                                      |             |  |  |  |  |
|-------------------------------|--------------------------------------|-------------|--|--|--|--|
| Test Item                     | Test Item Limit Frequency Range(MHz) |             |  |  |  |  |
| Bandwidth                     | >=500 KHz<br>(6dB bandwidth)         | 2400~2483.5 |  |  |  |  |

# 7.2 Test Setup



#### 7.3 Test Procedure

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) The bandwidth is measured at an amplitude level reduced 6dB from the reference level. The reference level is the level of the highest amplitude signal observed from the transmitter at the fundamental frequency. Once the reference level is established, the equipment is conditioned with typical modulating signal to produce the worst –case (i.e the widest) bandwidth.
- (3)Measure the channel separation the spectrum analyzer was set to Resolution Bandwidth:100 kHz, and Video Bandwidth:300 kHz, Detector: Peak, Sweep Time set auto.

# 7.4 EUT Operating Condition

The EUT was set to continuously transmitting in each mode and low, Digital photo framesdle and high channel for the test.

#### 7.5 Test Data

Please refer to the Attachment D.



Page: 21 of 67

# 8. Peak Output Power Test

### 8.1 Test Standard and Limit

8.1.1 Test Standard FCC Part 15.247 (b)

8.1.2 Test Limit

| FCC Part 15 Subpart C(15.247)       |                  |             |  |  |  |
|-------------------------------------|------------------|-------------|--|--|--|
| Test Item Limit Frequency Range(MHz |                  |             |  |  |  |
| Peak Output Power                   | 1 Watt or 30 dBm | 2400~2483.5 |  |  |  |

# 8.2 Test Setup



#### 8.3 Test Procedure

The measurement is according to section 9.1.2 of KDB 558074 D01 DTS Meas Guidance v05. The EUT was connected to RF power meter via a broadband power sensor as show the block above. The power sensor video bandwidth is greater than or equal to the DTS bandwidth of the equipment.

# 8.4 EUT Operating Condition

The EUT was set to continuously transmitting in the max power during the test.

### 8.5 Test Data

Please refer to the Attachment E.



Page: 22 of 67

# 9. Power Spectral Density Test

#### 9.1 Test Standard and Limit

9.1.1 Test Standard FCC Part 15.247 (e)

9.1.2 Test Limit

| FCC Part 15 Subpart C(15.247)        |                    |             |  |  |  |  |
|--------------------------------------|--------------------|-------------|--|--|--|--|
| Test Item Limit Frequency Range(MHz) |                    |             |  |  |  |  |
| Power Spectral Density               | 8dBm(in any 3 kHz) | 2400~2483.5 |  |  |  |  |

# 9.2 Test Setup



#### 9.3 Test Procedure

The EUT was directly connected to the Spectrum Analyzer and antenna output port as show in the block diagram above. The measurement according to section 10.2 of KDB 558074 D01 DTS Meas Guidance v05.

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Set analyser center frequency to DTS channel center frequency.
- (3) Set the span to 1.5 times the DTS bandwidth.
- (4) Set the RBW to: 3 kHz(5) Set the VBW to: 10 kHz
- (6) Detector: peak
- (7) Sweep time: auto
- (8) Allow trace to fully stabilize. Then use the peak marker function to determine the maximum amplitude level.

# 9.4 EUT Operating Condition

The EUT was set to continuously transmitting in each mode and low, Digital photo framesdle and high channel for the test.

#### 9.5 Test Data

Please refer to the Attachment F.



Page: 23 of 67

# 10. Antenna Requirement

# 10.1 Standard Requirement

10.1.1 Standard FCC Part 15.203

## 10.1.2 Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

#### 10.2 Antenna Connected Construction

The gains of the antenna used for transmitting is 2.5dBi, and the antenna de-signed with permanent attachment and no consideration of replacement. Please see the EUT photo for details.

#### Result

The EUT antenna is a PCB Antenna. It complies with the standard requirement.

| Antenna Type  |                                   |        |  |  |  |
|---------------|-----------------------------------|--------|--|--|--|
| I TO          | ⊠Permanent attached antenna       | (LIII) |  |  |  |
|               | Unique connector antenna          |        |  |  |  |
| WW CONTRACTOR | Professional installation antenna |        |  |  |  |







# **Attachment A-- Conducted Emission Test Data**





Report No.: TB-FCC165562 Page: 25 of 67





Page: 26 of 67

# Attachment B-- Radiated Emission Test Data

### 9KHz~30MHz

From 9KHz to 30MHz: Conclusion: PASS

Note: The amplitude of spurious emissions which are attenuated by more than 20dB

below the permissible value has no need to be reported.

#### 30MHz~1GHz

| peratur | e:                                               | 25 ℃                                                                                  |                                                                         |                                                                                                   |                                                                                                                                                                 | <b>Relative Humidity:</b> 55%                                                                                                                                                                                         |                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                          |
|---------|--------------------------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Voltage | e:                                               | AC 1                                                                                  | 20V/                                                                    | 60HZ                                                                                              |                                                                                                                                                                 | 1                                                                                                                                                                                                                     | 6.                                                                                                                                                                                                                                                    | Alor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9                                                                                                                                                                                                                                                                                                          |
| Pol.    |                                                  | Horizontal                                                                            |                                                                         |                                                                                                   |                                                                                                                                                                 |                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                            |
| Mode:   | -                                                | TX B Mode 2412MHz                                                                     |                                                                         |                                                                                                   |                                                                                                                                                                 |                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1111                                                                                                                                                                                                                                                                                                       |
| nark:   |                                                  | Only                                                                                  | wors                                                                    | e case                                                                                            | is reported                                                                                                                                                     | AND                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Carlo                                                                                                                                                                                                                                                                                                      |
| dBuV/m  |                                                  |                                                                                       |                                                                         |                                                                                                   |                                                                                                                                                                 |                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                            |
|         |                                                  |                                                                                       |                                                                         |                                                                                                   |                                                                                                                                                                 |                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                            |
|         |                                                  |                                                                                       |                                                                         |                                                                                                   |                                                                                                                                                                 |                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                            |
|         |                                                  |                                                                                       |                                                                         |                                                                                                   |                                                                                                                                                                 |                                                                                                                                                                                                                       | (RF)FCC                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                            |
|         |                                                  |                                                                                       |                                                                         |                                                                                                   |                                                                                                                                                                 |                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                       | Margin -b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1015                                                                                                                                                                                                                                                                                                       |
|         |                                                  |                                                                                       |                                                                         |                                                                                                   |                                                                                                                                                                 |                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                            |
|         |                                                  |                                                                                       |                                                                         |                                                                                                   |                                                                                                                                                                 |                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                            |
|         |                                                  |                                                                                       |                                                                         |                                                                                                   | E                                                                                                                                                               |                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                       | Markey                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Mulli                                                                                                                                                                                                                                                                                                      |
| 2       | 3<br>X                                           | 4                                                                                     |                                                                         |                                                                                                   | 6<br>Xv. , , , , X                                                                                                                                              | manual                                                                                                                                                                                                                | and with a wind of the                                                                                                                                                                                                                                | "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                            |
| . July  | Mayour                                           | ~ <b>X</b> ~~                                                                         | www                                                                     | maden                                                                                             | WANTED TO SHOW                                                                                                                                                  | N. A.                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                            |
|         |                                                  |                                                                                       |                                                                         |                                                                                                   |                                                                                                                                                                 |                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                            |
|         |                                                  |                                                                                       |                                                                         |                                                                                                   |                                                                                                                                                                 |                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                            |
| 000 40  | 50                                               | 60                                                                                    | 70                                                                      |                                                                                                   | (MHz)                                                                                                                                                           | 300                                                                                                                                                                                                                   | 400 5                                                                                                                                                                                                                                                 | 500 600 700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1000.0                                                                                                                                                                                                                                                                                                     |
|         |                                                  |                                                                                       |                                                                         | - 12                                                                                              | 0                                                                                                                                                               |                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                            |
| o Mk    | Fre                                              | n                                                                                     |                                                                         |                                                                                                   |                                                                                                                                                                 |                                                                                                                                                                                                                       | Limit                                                                                                                                                                                                                                                 | Over                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                            |
|         |                                                  |                                                                                       |                                                                         |                                                                                                   |                                                                                                                                                                 | dBuV/m                                                                                                                                                                                                                | dBuV/m                                                                                                                                                                                                                                                | dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Detect                                                                                                                                                                                                                                                                                                     |
| *       | 33.32                                            | 79                                                                                    | 2                                                                       | 8.84                                                                                              | -15.50                                                                                                                                                          | 13.34                                                                                                                                                                                                                 | 40.00                                                                                                                                                                                                                                                 | -26.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | QP                                                                                                                                                                                                                                                                                                         |
|         | 40.84                                            | 46                                                                                    | 2                                                                       | 9.30                                                                                              | -19.52                                                                                                                                                          | 9.78                                                                                                                                                                                                                  | 40.00                                                                                                                                                                                                                                                 | -30.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | QP                                                                                                                                                                                                                                                                                                         |
|         | 48.67                                            | '19                                                                                   | 3                                                                       | 3.25                                                                                              | -22.80                                                                                                                                                          | 10.45                                                                                                                                                                                                                 | 40.00                                                                                                                                                                                                                                                 | -29.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | QP                                                                                                                                                                                                                                                                                                         |
|         | 61.77                                            | 81                                                                                    | 3                                                                       | 0.79                                                                                              | -24.21                                                                                                                                                          | 6.58                                                                                                                                                                                                                  | 40.00                                                                                                                                                                                                                                                 | -33.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | QP                                                                                                                                                                                                                                                                                                         |
|         |                                                  |                                                                                       | 2                                                                       | 5.18                                                                                              | -21.81                                                                                                                                                          | 13.37                                                                                                                                                                                                                 | 43.50                                                                                                                                                                                                                                                 | -30.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | QP                                                                                                                                                                                                                                                                                                         |
| ,       | 146.3                                            | 735                                                                                   | 3.                                                                      |                                                                                                   |                                                                                                                                                                 |                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                            |
|         | Voltage Pol. Mode: ark: dBuV/m  2 000 40  D. Mk. | Voltage: Pol. Mode: hark:  dBuV/m  2 3  000 40 50  D. Mk. Fre MH  * 33.32 40.84 48.67 | Voltage: AC 1 Pol. Horiz Mode: TX B park: Only dBuV/m  2 3 000 40 50 60 | Voltage: AC 120V/6 Pol. Horizontal Mode: TX B Mod ork: Only wors  dBuV/m  2 3 40.8446 2 48.6719 3 | Voltage: AC 120V/60HZ  Pol. Horizontal  Mode: TX B Mode 2412l  only worse case  dBuV/m  Reading  Level  MHz dBuV  * 33.3279 28.84  40.8446 29.30  48.6719 33.25 | Voltage: AC 120V/60HZ  Pol. Horizontal  Mode: TX B Mode 2412MHz  Only worse case is reported  dBuV/m  Reading Correct Level Factor  MHz dBuV dB/m  * 33.3279 28.84 -15.50  40.8446 29.30 -19.52  48.6719 33.25 -22.80 | Voltage: AC 120V/60HZ  Pol. Horizontal  Mode: TX B Mode 2412MHz  Only worse case is reported  dBuV/m  Reading Correct Measure- Factor ment  MHz dBuV dB/m dBuV/m  * 33.3279 28.84 -15.50 13.34  40.8446 29.30 -19.52 9.78  48.6719 33.25 -22.80 10.45 | Voltage: AC 120V/60HZ  Pol. Horizontal  Mode: TX B Mode 2412MHz  Jark: Only worse case is reported    Control   Cont | Voltage: AC 120V/60HZ  Pol. Horizontal  Mode: TX B Mode 2412MHz  Only worse case is reported  dBuv/m  Reading Correct Measure- ment Limit Over  MHz dBuV dB/m dBuv/m dBuv/m dB  * 33.3279 28.84 -15.50 13.34 40.00 -26.66  40.8446 29.30 -19.52 9.78 40.00 -30.22  48.6719 33.25 -22.80 10.45 40.00 -29.55 |



Page: 27 of 67





Page: 28 of 67

# **Above 1GHz**

| Temperature:  | 25 ℃                       | Relative Humidity:    | 55%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|---------------|----------------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test Voltage: | AC 120V/60HZ               | CALIF.                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Ant. Pol.     | Horizontal                 |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Test Mode:    | TX B Mode 2412MHz          | 11:30                 | C. C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Remark:       | No report for the emission | which more than 10 de | B below the prescribed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|               | limit.                     |                       | THE STATE OF THE S |

| No. | Mk. | Freq.    | Reading<br>Level |       | Measure-<br>ment | Limit  | Over   |          |
|-----|-----|----------|------------------|-------|------------------|--------|--------|----------|
|     |     | MHz      | dBuV             | dB/m  | dBuV/m           | dBuV/m | dB     | Detector |
| 1   | *   | 4824.980 | 29.17            | 14.55 | 43.72            | 54.00  | -10.28 | AVG      |
| 2   |     | 4823.404 | 43.14            | 14.55 | 57.69            | 74.00  | -16.31 | peak     |

### **Emission Level= Read Level+ Correct Factor**

| Temperature:  | 25 ℃                                                       | Relative Humidity: | 55%  |  |  |  |  |
|---------------|------------------------------------------------------------|--------------------|------|--|--|--|--|
| Test Voltage: | AC 120V/60HZ                                               | AC 120V/60HZ       |      |  |  |  |  |
| Ant. Pol.     | Vertical                                                   |                    |      |  |  |  |  |
| Test Mode:    | TX B Mode 2412MHz                                          |                    |      |  |  |  |  |
| Remark:       | No report for the emission which more than 10 dB below the |                    |      |  |  |  |  |
|               | prescribed limit.                                          |                    | 6:17 |  |  |  |  |
|               |                                                            |                    |      |  |  |  |  |

| No | . Mk | . Freq.  |       |       | Measure-<br>ment | Limit  | Over   |          |
|----|------|----------|-------|-------|------------------|--------|--------|----------|
|    |      | MHz      | dBuV  | dB/m  | dBuV/m           | dBuV/m | dB     | Detector |
| 1  |      | 4824.356 | 43.86 | 14.55 | 58.41            | 74.00  | -15.59 | peak     |
| 2  | *    | 4824.776 | 29.19 | 14.55 | 43.74            | 54.00  | -10.26 | AVG      |



Page: 29 of 67

| Temperature:  | 25 ℃                                  | Relative Humidity:            | 55%         |
|---------------|---------------------------------------|-------------------------------|-------------|
| Test Voltage: | AC 120V/60HZ                          |                               |             |
| Ant. Pol.     | Horizontal                            |                               |             |
| Test Mode:    | TX B Mode 2437M                       | lHz                           | DAIL S      |
| Remark:       | No report for the e prescribed limit. | mission which more than 10 dB | 3 below the |

| No. | Mk. | Freq.    |       | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          |
|-----|-----|----------|-------|-------------------|------------------|--------|--------|----------|
|     |     | MHz      | dBuV  | dB/m              | dBuV/m           | dBuV/m | dB     | Detector |
| 1   |     | 4873.468 | 43.60 | 14.86             | 58.46            | 74.00  | -15.54 | peak     |
| 2   | *   | 4874.916 | 29.06 | 14.86             | 43.92            | 54.00  | -10.08 | AVG      |

# Emission Level= Read Level+ Correct Factor

| Temperature:  | 25 ℃                                                       | Relative Humidity: | 55%  |  |  |  |  |
|---------------|------------------------------------------------------------|--------------------|------|--|--|--|--|
| Test Voltage: | AC 120V/60HZ                                               | AC 120V/60HZ       |      |  |  |  |  |
| Ant. Pol.     | Vertical                                                   | Vertical           |      |  |  |  |  |
| Test Mode:    | TX B Mode 2437MHz                                          |                    | 507  |  |  |  |  |
| Remark:       | No report for the emission which more than 10 dB below the |                    |      |  |  |  |  |
|               | prescribed limit.                                          |                    | 6:17 |  |  |  |  |
|               |                                                            |                    |      |  |  |  |  |

| No | . Mk | . Freq.  | Reading<br>Level |       | Measure-<br>ment | Limit  | Over   |          |
|----|------|----------|------------------|-------|------------------|--------|--------|----------|
|    |      | MHz      | dBuV             | dB/m  | dBuV/m           | dBuV/m | dB     | Detector |
| 1  | *    | 4874.800 | 29.06            | 14.86 | 43.92            | 54.00  | -10.08 | AVG      |
| 2  |      | 4874.928 | 43.72            | 14.86 | 58.58            | 74.00  | -15.42 | peak     |



Page: 30 of 67

| Temperature:  | 25 ℃                 | Relative Humidity:            | 55%         |
|---------------|----------------------|-------------------------------|-------------|
| Test Voltage: | AC 120V/60HZ         |                               |             |
| Ant. Pol.     | Horizontal           |                               |             |
| Test Mode:    | TX B Mode 2462M      | Hz                            | D. A. C.    |
| Remark:       | No report for the en | mission which more than 10 dE | 3 below the |

| No | o. Mk | . Freq.  | Reading<br>Level |       | Measure-<br>ment | Limit  | Over   |          |
|----|-------|----------|------------------|-------|------------------|--------|--------|----------|
|    |       | MHz      | dBuV             | dB/m  | dBuV/m           | dBuV/m | dB     | Detector |
| 1  | ×     | 4924.860 | 29.49            | 15.18 | 44.67            | 54.00  | -9.33  | AVG      |
| 2  |       | 4924.760 | 43.91            | 15.18 | 59.09            | 74.00  | -14.91 | peak     |

# Emission Level= Read Level+ Correct Factor

| Temperature:  | 25 ℃                   | Relative Humidity:          | 55%         |  |  |  |  |
|---------------|------------------------|-----------------------------|-------------|--|--|--|--|
| Test Voltage: | AC 120V/60HZ           | AC 120V/60HZ                |             |  |  |  |  |
| Ant. Pol.     | Vertical               |                             |             |  |  |  |  |
| Test Mode:    | TX B Mode 2462MHz      |                             | 500         |  |  |  |  |
| Remark:       | No report for the emis | ssion which more than 10 dB | 3 below the |  |  |  |  |
|               |                        |                             |             |  |  |  |  |

| No | . Mk. | Freq.    |       | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          |
|----|-------|----------|-------|-------------------|------------------|--------|--------|----------|
|    |       | MHz      | dBuV  | dB/m              | dBuV/m           | dBuV/m | dB     | Detector |
| 1  |       | 4923.136 | 43.85 | 15.17             | 59.02            | 74.00  | -14.98 | peak     |
| 2  | *     | 4924.900 | 29.54 | 15.18             | 44.72            | 54.00  | -9.28  | AVG      |



Page: 31 of 67

| Temperature:  | 25 ℃                       | Relative Humidity:    | 55%         |
|---------------|----------------------------|-----------------------|-------------|
| Test Voltage: | AC 120V/60HZ               |                       |             |
| Ant. Pol.     | Horizontal                 |                       |             |
| Test Mode:    | TX G Mode 2412MHz          | 133                   | CHI.        |
| Remark:       | No report for the emission | which more than 10 de | B below the |
|               | prescribed limit.          |                       |             |

| No. | Mk | . Freq.  |       | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          |
|-----|----|----------|-------|-------------------|------------------|--------|--------|----------|
|     |    | MHz      | dBuV  | dB/m              | dBuV/m           | dBuV/m | dB     | Detector |
| 1   |    | 4824.884 |       |                   |                  | 74.00  | -16.08 | peak     |
| 2   | *  | 4823.972 | 29.15 | 14.55             | 43.70            | 54.00  | -10.30 | AVG      |

# Emission Level= Read Level+ Correct Factor

| Temperature:  | 25 ℃                                       | Relative Humidity:       | 55%         |  |  |  |  |
|---------------|--------------------------------------------|--------------------------|-------------|--|--|--|--|
| Test Voltage: | AC 120V/60HZ                               | AC 120V/60HZ             |             |  |  |  |  |
| Ant. Pol.     | Vertical                                   |                          |             |  |  |  |  |
| Test Mode:    | TX G Mode 2412MHz                          |                          | 500         |  |  |  |  |
| Remark:       | No report for the emissi prescribed limit. | on which more than 10 dB | 3 below the |  |  |  |  |
|               |                                            |                          |             |  |  |  |  |

| No. | . Mk | Freq.    | Reading<br>Level |       | Measure-<br>ment | Limit  | Over   |          |
|-----|------|----------|------------------|-------|------------------|--------|--------|----------|
|     |      | MHz      | dBuV             | dB/m  | dBuV/m           | dBuV/m | dB     | Detector |
| 1   | *    | 4824.960 | 29.17            | 14.55 | 43.72            | 54.00  | -10.28 | AVG      |
| 2   |      | 4823.192 | 43.79            | 14.55 | 58.34            | 74.00  | -15.66 | peak     |



Page: 32 of 67

| Temperature:  | 25 ℃                       | Relative Humidity:    | 55%         |
|---------------|----------------------------|-----------------------|-------------|
| Test Voltage: | AC 120V/60HZ               |                       |             |
| Ant. Pol.     | Horizontal                 |                       |             |
| Test Mode:    | TX G Mode 2437MHz          | 1333                  | CHI.        |
| Remark:       | No report for the emission | which more than 10 de | B below the |
|               | prescribed limit.          |                       | - 44        |

| No. | М | k. | Freq.   | Reading<br>Level |       | Measure-<br>ment | Limit  | Over   |          |
|-----|---|----|---------|------------------|-------|------------------|--------|--------|----------|
|     |   |    | MHz     | dBuV             | dB/m  | dBuV/m           | dBuV/m | dB     | Detector |
| 1   | * | 4  | 874.880 | 29.04            | 14.86 | 43.90            | 54.00  | -10.10 | AVG      |
| 2   |   | 4  | 874.176 | 42.72            | 14.86 | 57.58            | 74.00  | -16.42 | peak     |

### **Emission Level= Read Level+ Correct Factor**

| Temperature:  | 25 ℃                                     | Relative Humidity:         | 55%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|---------------|------------------------------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test Voltage: | AC 120V/60HZ                             |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Ant. Pol.     | Vertical                                 |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Test Mode:    | TX G Mode 2437MHz                        |                            | THE STATE OF THE S |
| Remark:       | No report for the emis prescribed limit. | sion which more than 10 dB | 3 below the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|               |                                          |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| No. | Mk. | Freq.    | Reading<br>Level |       | Measure-<br>ment | Limit  | Over   |          |
|-----|-----|----------|------------------|-------|------------------|--------|--------|----------|
|     |     | MHz      | dBuV             | dB/m  | dBuV/m           | dBuV/m | dB     | Detector |
| 1   |     | 4873.244 | 43.26            | 14.86 | 58.12            | 74.00  | -15.88 | peak     |
| 2   | *   | 4874.900 | 29.07            | 14.86 | 43.93            | 54.00  | -10.07 | AVG      |



Page: 33 of 67

| Temperature:  | 25 ℃                       | Relative Humidity:      | 55%         |
|---------------|----------------------------|-------------------------|-------------|
| Test Voltage: | AC 120V/60HZ               |                         |             |
| Ant. Pol.     | Horizontal                 |                         |             |
| Test Mode:    | TX G Mode 2462MHz          | 11:30                   | MAD.        |
| Remark:       | No report for the emission | n which more than 10 dl | B below the |
|               | prescribed limit.          |                         | A HI        |

| No. | . Mk | Freq.    | Reading<br>Level |       | Measure-<br>ment | Limit  | Over   |          |
|-----|------|----------|------------------|-------|------------------|--------|--------|----------|
|     |      | MHz      | dBuV             | dB/m  | dBuV/m           | dBuV/m | dB     | Detector |
| 1   |      | 4923.036 | 44.19            | 15.17 | 59.36            | 74.00  | -14.64 | peak     |
| 2   | *    | 4924.740 | 29.48            | 15.18 | 44.66            | 54.00  | -9.34  | AVG      |

# Emission Level= Read Level+ Correct Factor

| 25 ℃              | Relative Humidity:                       | 55%                                                                                         |
|-------------------|------------------------------------------|---------------------------------------------------------------------------------------------|
| AC 120V/60HZ      |                                          |                                                                                             |
| Vertical          |                                          |                                                                                             |
| TX G Mode 2462MH  | Z                                        | 507                                                                                         |
|                   | ssion which more than 10 de              | 3 below the                                                                                 |
| prescribed limit. |                                          |                                                                                             |
|                   | AC 120V/60HZ  Vertical  TX G Mode 2462MH | AC 120V/60HZ  Vertical  TX G Mode 2462MHz  No report for the emission which more than 10 dB |

| No. | . Mk | . Freq.  | Reading<br>Level |       | Measure-<br>ment | Limit  | Over   |          |
|-----|------|----------|------------------|-------|------------------|--------|--------|----------|
|     |      | MHz      | dBuV             | dB/m  | dBuV/m           | dBuV/m | dB     | Detector |
| 1   | *    | 4924.152 | 29.54            | 15.17 | 44.71            | 54.00  | -9.29  | AVG      |
| 2   |      | 4923.204 | 43.80            | 15.17 | 58.97            | 74.00  | -15.03 | peak     |



Page: 34 of 67

| Temperature:  | 25 ℃                       | Relative Humidity:    | 55%         |  |  |  |
|---------------|----------------------------|-----------------------|-------------|--|--|--|
| Test Voltage: | AC 120V/60HZ               |                       |             |  |  |  |
| Ant. Pol.     | Horizontal                 | Horizontal            |             |  |  |  |
| Test Mode:    | TX N(HT20) Mode 2412M      | Hz                    | U.H.D.      |  |  |  |
| Remark:       | No report for the emission | which more than 10 de | B below the |  |  |  |
|               | prescribed limit.          |                       | - 11        |  |  |  |

| No | . Mk | . Freq.  |       | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          |
|----|------|----------|-------|-------------------|------------------|--------|--------|----------|
|    |      | MHz      | dBuV  | dB/m              | dBuV/m           | dBuV/m | dB     | Detector |
| 1  | *    | 4825.000 | 29.14 | 14.55             | 43.69            | 54.00  | -10.31 | AVG      |
| 2  |      | 4824.356 | 43.28 | 14.55             | 57.83            | 74.00  | -16.17 | peak     |

# Emission Level= Read Level+ Correct Factor

| Relative Humidity:           | 55%         |  |  |  |
|------------------------------|-------------|--|--|--|
| -                            |             |  |  |  |
|                              |             |  |  |  |
| Vertical                     |             |  |  |  |
| 2412MHz                      |             |  |  |  |
| mission which more than 10 d | B below the |  |  |  |
|                              | 4:17        |  |  |  |
| _                            |             |  |  |  |

| No. Mk. |   | Freq.    |       | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          |
|---------|---|----------|-------|-------------------|------------------|--------|--------|----------|
|         |   | MHz      | dBuV  | dB/m              | dBuV/m           | dBuV/m | dB     | Detector |
| 1       |   | 4824.360 | 43.56 | 14.55             | 58.11            | 74.00  | -15.89 | peak     |
| 2       | * | 4824.980 | 29.16 | 14.55             | 43.71            | 54.00  | -10.29 | AVG      |



Page: 35 of 67

| Temperature:                       | 25 ℃                                                       | Relative Humidity: | 55% |  |  |
|------------------------------------|------------------------------------------------------------|--------------------|-----|--|--|
| Test Voltage:                      | AC 120V/60HZ                                               |                    |     |  |  |
| Ant. Pol.                          | Horizontal                                                 |                    |     |  |  |
| Test Mode: TX N(HT20) Mode 2437MHz |                                                            |                    |     |  |  |
| Remark:                            | No report for the emission which more than 10 dB below the |                    |     |  |  |
|                                    | prescribed limit.                                          |                    |     |  |  |

| No. | Mk. | Freq.    | Reading<br>Level |       | Measure-<br>ment | Limit  | Over   |          |
|-----|-----|----------|------------------|-------|------------------|--------|--------|----------|
|     |     | MHz      | dBuV             | dB/m  | dBuV/m           | dBuV/m | dB     | Detector |
| 1   |     | 4873.804 | 43.60            | 14.86 | 58.46            | 74.00  | -15.54 | peak     |
| 2   | *   | 4874.980 | 29.06            | 14.86 | 43.92            | 54.00  | -10.08 | AVG      |

# Emission Level= Read Level+ Correct Factor

| Temperature:       | 25 ℃                                                       | Relative Humidity:      | 55% |  |  |  |  |
|--------------------|------------------------------------------------------------|-------------------------|-----|--|--|--|--|
| Test Voltage:      | st Voltage: AC 120V/60HZ                                   |                         |     |  |  |  |  |
| Ant. Pol. Vertical |                                                            |                         |     |  |  |  |  |
| Test Mode:         | TX N(HT20) Mode 24                                         | TX N(HT20) Mode 2437MHz |     |  |  |  |  |
| Remark:            | No report for the emission which more than 10 dB below the |                         |     |  |  |  |  |
| prescribed limit.  |                                                            |                         |     |  |  |  |  |
|                    |                                                            |                         |     |  |  |  |  |

| No. Mk. |   | Иk. | Freq.    | Reading<br>Level |       | Measure-<br>ment | Limit  | Over   |          |
|---------|---|-----|----------|------------------|-------|------------------|--------|--------|----------|
|         |   |     | MHz      | dBuV             | dB/m  | dBuV/m           | dBuV/m | dB     | Detector |
| 1       | * |     | 4874.920 | 29.07            | 14.86 | 43.93            | 54.00  | -10.07 | AVG      |
| 2       |   |     | 4874.952 | 42.86            | 14.86 | 57.72            | 74.00  | -16.28 | peak     |



Page: 36 of 67

| Temperature:  | 25 ℃                                                       | Relative Humidity: | 55% |  |  |
|---------------|------------------------------------------------------------|--------------------|-----|--|--|
| Test Voltage: | AC 120V/60HZ                                               |                    |     |  |  |
| Ant. Pol.     | Horizontal                                                 |                    |     |  |  |
| Test Mode:    | TX N(HT20) Mode 2462MH                                     | z                  |     |  |  |
| Remark:       | No report for the emission which more than 10 dB below the |                    |     |  |  |
|               | prescribed limit.                                          |                    |     |  |  |

| No. Mk. |   | k. F | req.  |       | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          |
|---------|---|------|-------|-------|-------------------|------------------|--------|--------|----------|
|         |   | I    | MHz   | dBuV  | dB/m              | dBuV/m           | dBuV/m | dB     | Detector |
| 1       | * | 492  | 4.856 | 29.48 | 15.18             | 44.66            | 54.00  | -9.34  | AVG      |
| 2       |   | 492  | 4.072 | 43.71 | 15.17             | 58.88            | 74.00  | -15.12 | peak     |

### **Emission Level= Read Level+ Correct Factor**

| Temperature:               | 25 ℃                                                                         | Relative Humidity:      | 55% |  |  |  |  |
|----------------------------|------------------------------------------------------------------------------|-------------------------|-----|--|--|--|--|
| Test Voltage: AC 120V/60HZ |                                                                              |                         |     |  |  |  |  |
| Ant. Pol.                  | Vertical                                                                     |                         |     |  |  |  |  |
| Test Mode:                 | TX N(HT20) Mode 2462MH                                                       | TX N(HT20) Mode 2462MHz |     |  |  |  |  |
| Remark:                    | No report for the emission which more than 10 dB below the prescribed limit. |                         |     |  |  |  |  |

| No. Mk. |   | Freq.    | Reading<br>Level |       | Measure-<br>ment | Limit  | Over   |          |
|---------|---|----------|------------------|-------|------------------|--------|--------|----------|
|         |   | MHz      | dBuV             | dB/m  | dBuV/m           | dBuV/m | dB     | Detector |
| 1       |   | 4923.668 | 43.75            | 15.17 | 58.92            | 74.00  | -15.08 | peak     |
| 2       | * | 4924.052 | 29.51            | 15.17 | 44.68            | 54.00  | -9.32  | AVG      |



Page: 37 of 67

## Conducted RF Spurious Emission Test Data





Page: 38 of 67

# Attachment C-- Restricted Bands Requirement and Band-edge Test Data

#### (1) Radiation Test





Page: 39 of 67





Page: 40 of 67



**Emission Level= Read Level+ Correct Factor** 



Page: 41 of 67



**Emission Level= Read Level+ Correct Factor** 



Page: 42 of 67





Page: 43 of 67



**Emission Level= Read Level+ Correct Factor** 



Page: 44 of 67

| Temperature:  | 25 ℃              | Relative Humidity: | 55%  |
|---------------|-------------------|--------------------|------|
| Test Voltage: | AC 120V/60HZ      |                    |      |
| Ant. Pol.     | Horizontal        |                    |      |
| Test Mode:    | TX G Mode 2462MHz | 133                | UNIO |
| Remark:       | N/A               |                    | 610  |
|               |                   |                    |      |



| No | . Mk. | Freq.    | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit            | Over      |          |
|----|-------|----------|------------------|-------------------|------------------|------------------|-----------|----------|
|    |       | MHz      | dBuV             | dB/m              | dBuV/m           | dBuV/m           | dB        | Detector |
| 1  | Х     | 2467.400 | 99.52            | 2.64              | 102.16           | -<br>Fundamental | Frequency | peak     |
| 2  | *     | 2469.200 | 84.81            | 2.65              | 87.46            | -<br>Fundamental | Frequency | AVG      |
| 3  |       | 2483.500 | 64.19            | 2.71              | 66.90            | 74.00            | -7.10     | peak     |
| 4  |       | 2483.500 | 42.43            | 2.71              | 45.14            | 54.00            | -8.86     | AVG      |

**Emission Level= Read Level+ Correct Factor** 



Page: 45 of 67





Page: 46 of 67





Page: 47 of 67





Page: 48 of 67



**Emission Level= Read Level+ Correct Factor** 



Page: 49 of 67





Page: 50 of 67







Page: 51 of 67







Page: 52 of 67







Page: 53 of 67

## **Attachment D-- Bandwidth Test Data**

| 11 14 1                         | . 10       |                 |                    |       |  |
|---------------------------------|------------|-----------------|--------------------|-------|--|
| Temperature:                    | 25         | 5 °C            | Relative Humidity: | 55%   |  |
| Test Voltage:                   | A          | C 120V/60HZ     |                    |       |  |
| Test Mode:                      | T          | TX 802.11B Mode |                    |       |  |
| Channel frequency 6dB Bandwidth |            |                 | 99% Bandwidth      | Limit |  |
| (MHz)                           |            | (MHz)           | (MHz)              | (MHz) |  |
| 2412                            |            | 8.101           | 10.707             |       |  |
| 2437                            |            | 8.544           | 10.668             | >=0.5 |  |
| 2462                            | 2462 8.064 |                 | 10.618             |       |  |
|                                 |            |                 |                    |       |  |

#### 802.11B Mode





54 of 67 Page:







Page: 55 of 67

| Temperature:      | 25 ℃             | Relative Humidity: | 55%   |  |  |
|-------------------|------------------|--------------------|-------|--|--|
| Test Voltage:     | AC 120V/60HZ     |                    |       |  |  |
| Test Mode:        | TX 802.11G Mode  |                    |       |  |  |
| Channel frequence | cy 6dB Bandwidth | 99% Bandwidth      | Limit |  |  |
| (MHz)             | (MHz)            | (MHz)              | (MHz) |  |  |
| 2412              | 16.32            | 16.534             |       |  |  |
| 2437              | 16.35            | 16.619             | >=0.5 |  |  |
| 2462 16.33        |                  | 16.808             | 7     |  |  |
|                   | 802.11G          | Mode               |       |  |  |





Page: 56 of 67





#### 802.11G Mode





Page: 57 of 67

| Temperature:      | 25 ℃                  | Relative Humidity: | 55%   |  |  |
|-------------------|-----------------------|--------------------|-------|--|--|
| Test Voltage:     | AC 120V/60HZ          |                    |       |  |  |
| Test Mode:        | TX 802.11N(HT20) Mode |                    |       |  |  |
| Channel frequence | y 6dB Bandwidth       | 99% Bandwidth      | Limit |  |  |
| (MHz)             | (MHz)                 | (MHz)              | (MHz) |  |  |
| 2412              | 17.58                 | 17.826             |       |  |  |
| 2437              | 17.58                 | 17.906             | >=0.5 |  |  |
| 2462              | 17.57                 | 18.111             |       |  |  |
|                   | 802.11N(HT2           | 20) Mode           |       |  |  |
|                   | 0440.84               |                    |       |  |  |





Report No.: TB-FCC165562 58 of 67









Page: 59 of 67

## **Attachment E-- Peak Output Power Test Data**

| <b>Test Conditions</b> | : Continuous transmitting Mode    |               |             |  |  |
|------------------------|-----------------------------------|---------------|-------------|--|--|
| Temperature:           | perature: 25 °C Relative Humidity |               | 55%         |  |  |
| Test Voltage:          | AC 120V/60HZ                      | TO LOCALIDADE | WHILE THE   |  |  |
| Mode                   | Mode Channel frequency Test Resul |               | Limit (dBm) |  |  |
|                        | 2412                              | 15.39         |             |  |  |
| 802.11b                | 2437                              | 15.73         |             |  |  |
|                        | 2462                              | 15.97         |             |  |  |
|                        | 2412                              | 14.54         |             |  |  |
| 802.11g                | 2437                              | 15.15         | 30          |  |  |
|                        | 2462                              | 15.45         |             |  |  |
| 902 44 m               | 2412                              | 13.77         |             |  |  |
| 802.11n                | 2437                              | 14.28         |             |  |  |
| (HT20)                 | 2462                              | 14.48         |             |  |  |
|                        | Resu                              | ılt: PASS     |             |  |  |

| Duty Cycle        |                         |             |  |  |  |
|-------------------|-------------------------|-------------|--|--|--|
| Mode              | Channel frequency (MHz) | Test Result |  |  |  |
| 802.11b           | 2412                    |             |  |  |  |
|                   | 2437                    |             |  |  |  |
|                   | 2462                    |             |  |  |  |
|                   | 2412                    |             |  |  |  |
| 802.11g           | 2437                    | >98%        |  |  |  |
|                   | 2462                    |             |  |  |  |
| 000 44 =          | 2412                    |             |  |  |  |
| 802.11n<br>(HT20) | 2437                    |             |  |  |  |
|                   | 2462                    |             |  |  |  |



Page: 60 of 67





#### 802.11 G Mode 2437 MHz





Page: 61 of 67





Report No.: TB-FCC165562 Page: 62 of 67

## **Attachment F-- Power Spectral Density Test Data**

TOBY

| Temperature:      | 25 ℃            |               | Relative Humidity: | 55%   |  |
|-------------------|-----------------|---------------|--------------------|-------|--|
| Test Voltage:     | AC 120V/60HZ    |               |                    |       |  |
| Test Mode:        | TX 802.11B Mode |               |                    |       |  |
| Channel Frequency |                 | Power Density |                    | Limit |  |
| (MHz)             | (MHz)           |               | (dBm/3 kHz)        |       |  |
| 2412              | 2412            |               | -10.012            |       |  |
| 2437              |                 | -10.038       |                    | 8     |  |
| 2462 -9.8         |                 | -9.86         | 66                 |       |  |
| 000 44D Mo.do     |                 |               |                    |       |  |

#### 802.11B Mode





Page: 63 of 67



#### 802.11B Mode





Page: 64 of 67

| Temperature:                          | 25 ℃            | ~ 111        | Temperature: | 25 ℃       |  |  |
|---------------------------------------|-----------------|--------------|--------------|------------|--|--|
| Test Voltage:                         | AC 120V/        | AC 120V/60HZ |              |            |  |  |
| Test Mode:                            | TX 802.11G Mode |              |              |            |  |  |
| Channel Frequency Power Density Limit |                 |              |              | Limit      |  |  |
| (MHz)                                 |                 | (dBm/3 kHz)  |              | (dBm/3kHz) |  |  |
| 2412                                  |                 | -16.313      |              |            |  |  |
| 2437                                  |                 | -16.795      |              | 8          |  |  |
| 2462 -15.469                          |                 |              |              |            |  |  |
|                                       |                 | 000 440 M    | - da         |            |  |  |

#### 802.11G Mode





Page: 65 of 67



#### 802.11G Mode





Page: 66 of 67

| Temperature:                        | 25 ℃         | Temperature:   |             | <b>25</b> ℃ |  |  |
|-------------------------------------|--------------|----------------|-------------|-------------|--|--|
| Test Voltage:                       | AC 120V/     | AC 120V/60HZ   |             |             |  |  |
| Test Mode:                          | TX 802.1     | 11N(HT20) Mode |             |             |  |  |
| Channel Frequency Power Density Lir |              |                |             | Limit       |  |  |
| (MHz)                               | (MHz)        |                | (dBm/3 kHz) |             |  |  |
| 2412                                | 2412 -18.246 |                |             |             |  |  |
| 2437                                |              | -17.393        |             | 8           |  |  |
| 2462                                | 2462 -17.526 |                |             |             |  |  |
|                                     |              | 002 44N/UT2    | n) Mada     |             |  |  |

#### 802.11N(HT20) Mode





Page: 67 of 67



----END OF REPORT----