Глава 6. Метод Гамильтона-Якоби в классической механике

Оглавление

§1. Уравнения Гамильтона	2
§2. Некоторые свойства функции Гамильтона	
§2. Скобки Пуассона	
§3. Теорема Лиувилля	
§4. Уравнение Гамильтона - Якоби	
§4. У равнение 1 амильтона - Акоои	±3

§1. Уравнения Гамильтона

Формулирование законов механики с помощью функции Лагранжа (и выводимых из нее уравнений Лагранжа) предполагает описание механического состояния системы путем задания ее обобщенных координат и скоростей. Такое описание, однако, не является единственно возможным. Ряд преимуществ, в особенности при исследовании различных общих вопросов механики, представляет описание с помощью обобщенных координат и импульсов системы.

Гамильтон получил уравнения движения, в которых независимыми переменными являются обобщенные координаты q_k и обобщенные импульсы p_k - Уравнения Гамильтона или, как их еще называют, канонические уравнения (соответственно q_k и p_k называются каноническими переменными¹), в отличие от уравнений Лагранжа. являются дифференциальными уравнениями первого порядка. Не зато число их, необходимое для описания системы с s степенями свободы, оказывается равным 2s. Естественно, что они не дают ничего нового по существу. Однако канонические уравнения симметричнее уравнений Лагранжа и, кроме того, будучи инвариантными по отношению к каноническим преобразованиям, они открывают большие возможности для обобщений, играющих важную роль в электродинамике, статистической физике и квантовой механике.

Уравнения Гамильтона можно вывести двумя способами: либо из уравнений Лагранжа, либо непосредственно из принципа наименьшего действия (ниже мы приведем оба вывода).

Способ 1.

Выведем уравнения Гамильтона из уравнений Лагранжа. Для этого запишем её полный дифференциал:

$$L = L(q_1, ..., q_s, \dot{q}_1, ..., \dot{q}_s, t) \Rightarrow dL = \sum_i \frac{\partial L}{\partial q_i} dq_i + \sum_i \frac{\partial L}{\partial \dot{q}_i} d\dot{q}_i + \frac{\partial L}{\partial t} dt.$$

-

¹ Уравнения Гамильтона называются каноническими в связи с тем что они остаются инвариантными при весьма общих преобразованиях переменных. С помощью таких канонических преобразований можно перейти от переменных q_k и p_κ к другим каноническим переменным $Q_i(q_1,...,q_s,p_1,...,p_s,t)$ и $P_i(q_1,...,q_s,p_1,...,p_s,t)$. При этом уравнения Гамильтона сохраняют свою форму, правда, с некоторой новой функцией Гамильтона $H'(Q_1,...,Q_s,P_1,...,P_s,t)$, которая заменяет функцию $H(q_1,...,q_s,p_1,...,p_s,t)$. Переменные Q_i и P_i могут иметь другой физически смысл, чем переменные q_k и p_κ .

Поскольку производные $\partial L/\partial q_i$ являются, по определению, обобщенными импульсами p_i , а $\partial L/\partial \dot{q}_i=\dot{p}_i$ в силу уравнений Лагранжа, прееобразуем последнее равенство к виду:

$$dL = \sum_{i} \dot{p}_{i} dq_{i} + \sum_{i} p_{i} d\dot{q}_{i} + \frac{\partial L}{\partial t} dt, \qquad (1.1)$$

Учитывая, что:

$$d\Bigg(\sum_{i}p_{i}\dot{q}_{i}\Bigg) = \sum_{i}p_{i}d\dot{q}_{i} + \sum_{i}dp_{i}\dot{q}_{i} \Leftrightarrow \sum_{i}p_{i}d\dot{q}_{i} = d\Bigg(\sum_{i}p_{i}\dot{q}_{i}\Bigg) - \sum_{i}\dot{q}_{i}dp_{i} ,$$

перепишем полученное соотношение (1.1):

$$dL = \sum_{i} \dot{p}_{i} dq_{i} + \sum_{i} p_{i} d\dot{q}_{i} + \frac{\partial L}{\partial t} dt \Leftrightarrow dL = \sum_{i} \dot{p}_{i} dq_{i} + d\left(\sum_{i} p_{i} \dot{q}_{i}\right) - \sum_{i} \dot{q}_{i} dp_{i} + \frac{\partial L}{\partial t} dt \Leftrightarrow$$

$$\Leftrightarrow d\left(\sum_{i} p_{i} \dot{q}_{i}\right) - dL = -\sum_{i} \dot{p}_{i} dq_{i} + \sum_{i} \dot{q}_{i} dp_{i} - \frac{\partial L}{\partial t} dt \Leftrightarrow$$

$$\Leftrightarrow d\left(\sum_{i} p_{i} \dot{q}_{i} - L\right) = \sum_{i} \dot{q}_{i} dp_{i} - \sum_{i} \dot{p}_{i} dq_{i} - \frac{\partial L}{\partial t} dt . \tag{1.2}$$

Величина, стоящая под знаком дифференциала в (1.2), представляет собой энергию системы².

ОПРЕДЕЛЕНИЕ Энергия системы, выраженная через координаты и импульсы, называется <u>гамильтоновой функцией системы</u> (<u>гамильтонианом</u>) и обозначается буквой H:

$$H(p_1,...,p_s,q_1,...,q_s,t) = \sum_i p_i \dot{q}_i - L.$$
(1.3)

Объединяя (1.2) и (1.3) запишем полный дифференциал функции Гамильтона:

$$dH = \sum_{i} \dot{q}_{i} dp_{i} - \sum_{i} \dot{p}_{i} dq_{i} - \frac{\partial L}{\partial t} dt.$$
 (1.4)

С другой стороны полный дифференциал гамильтониана как функции многих переменных равен:

_

² См. §2 главы 2

$$H(p_1,...,p_s,q_1,...,q_s,t) \Rightarrow dH = \sum_i \frac{\partial H}{\partial p_i} dp_i + \sum_i \frac{\partial H}{\partial q_i} dq_i + \frac{\partial H}{\partial t} dt.$$
 (1.5)

Приравниваем (1.4) и (1.5):

$$dH = \sum_{i} \frac{\partial H}{\partial p_{i}} dp_{i} + \sum_{i} \frac{\partial H}{\partial q_{i}} dq_{i} + \frac{\partial H}{\partial t} dt = \sum_{i} \dot{q}_{i} dp_{i} - \sum_{i} \dot{p}_{i} dq_{i} - \frac{\partial L}{\partial t} dt.$$

Для того, чтобы последнее равенство выполнялось, необходимо обеспечить выполнение следующих условий (то есть множители при одинаковых дифференциалах должны быть равны друг другу):

$$\begin{cases} \frac{\partial H}{\partial p_i} = \dot{q}_i \\ \frac{\partial H}{\partial q_i} = -\dot{p}_i \\ i = 1,...s \end{cases}$$
(1.6)

$$\frac{\partial H}{\partial t} = -\frac{\partial L}{\partial t}.\tag{1.7}$$

ОПРЕДЕЛЕНИЕ Уравнения (1.6) суть искомые уравнения движения, называемые **уравнениями Гамильтона**.

Уравнения Гамильтона составляют систему 2s дифференциальных уравнений первого порядка для 2s неизвестных функций $q_i(t)$ и $p_i(t)$, заменяющих собой s уравнений второго порядка метода Лагранжа. Ввиду их формальной простоты и симметрии эти уравнения называют также **каноническими**.

Способ 2.

Теперь получим уравнения Гамильтона из принципа наименьшего действия. Напомним, что согласно этому принципу система движется так, что действие S имеет наименьшее возможное значение³. Это означает, что вариация действия δS равна нулю:

³ См. §2 главы 1

$$\delta S = \delta \int_{t_1}^{t_2} L(q_1, ..., q_s, \dot{q}_1, ..., \dot{q}_s) dt = 0.$$
 (1.8)

Выразим функцию Лагранжа через гамильтониан, используя (1.3), и подставим в подынтегральное выражение (1.8):

$$\delta S = \delta \int_{t_1}^{t_2} L(q_1, ..., q_s, \dot{q}_1, ..., \dot{q}_s) dt = \delta \int_{t_1}^{t_2} \left(\sum_i p_i \dot{q}_i - H \right) dt = 0.$$

Перенесем варьирование под знак интеграла и вычислим вариацию подынтегрального выражения:

$$\delta S = \int_{t_{1}}^{t_{2}} \delta \left(\sum_{i} p_{i} \dot{q}_{i} - H \right) dt = \int_{t_{1}}^{t_{2}} \left(\delta \sum_{i} p_{i} \dot{q}_{i} - \delta H \right) dt = \int_{t_{1}}^{t_{2}} \left(\sum_{i} \delta \left(p_{i} \dot{q}_{i} \right) - \left[\sum_{i} \frac{\partial H}{\partial q_{i}} \delta q_{i} - \sum_{i} \frac{\partial H}{\partial p_{i}} \delta p_{i} \right] \right) dt = \int_{t_{1}}^{t_{2}} \left(\sum_{i} \delta p_{i} \dot{q}_{i} + \sum_{i} p_{i} \delta \dot{q}_{i} - \sum_{i} \frac{\partial H}{\partial q_{i}} \delta q_{i} - \sum_{i} \frac{\partial H}{\partial p_{i}} \delta p_{i} \right) dt \Rightarrow$$

$$\delta S = \int_{t_{1}}^{t_{2}} \sum_{i} \left(\dot{q}_{i} \delta p_{i} + p_{i} \delta \dot{q}_{i} - \frac{\partial H}{\partial q_{i}} \delta q_{i} - \frac{\partial H}{\partial p_{i}} \delta p_{i} \right) dt = 0. \tag{1.9}$$

Проинтегрируем второе слагаемое, стоящее под знаком суммы, воспользовавшись формулой интегрирования по частям:

$$\int_{t_1}^{t_2} p_i \delta \dot{q}_i dt = p_i \delta q_i \bigg|_{t_1}^{t_2} - \int_{t_1}^{t_2} \dot{p}_i \delta q_i dt = - \int_{t_1}^{t_2} \dot{p}_i \delta q_i dt ,$$

так как вариации δq_i при подстановке пределов интегрирования обращаются в нуль⁴.В результате, условие (1.9) примет следующий вид:

$$\delta S = \int_{t_1}^{t_2} \sum_{i} \left(\dot{q}_i \delta p_i - \dot{p}_i \delta q_i - \frac{\partial H}{\partial q_i} \delta q_i - \frac{\partial H}{\partial p_i} \delta p_i \right) dt = 0 \Leftrightarrow$$

$$\Leftrightarrow \delta S = \int_{t_1}^{t_2} \sum_{i} \left(\left\{ \dot{q}_i - \frac{\partial H}{\partial p_i} \right\} \delta p_i - \left\{ \dot{p}_i + \frac{\partial H}{\partial q_i} \right\} \delta q_i \right) dt = 0.$$

 $^{^4}$ При варьировании траекторий начальная и конечные точки предполагаются закрепленными (см. $\S 3$ главы 1)

В силу произвольности вариаций δp_i и δq_i это условие может выполняться только в случае, если выражения в фигурных скобках будут равны нулям. Отсюда сразу получаются система уравнений (1.6).

§2. Некоторые свойства функции Гамильтона

Исследуем функцию Гамильтона H. Найдем полную производную от этой функции по времени, воспользовавшись разложением (1.5):

$$\frac{dH}{dt} = \sum_{i} \frac{\partial H}{\partial p_{i}} \frac{dp_{i}}{dt} + \sum_{i} \frac{\partial H}{\partial q_{i}} \frac{dq_{i}}{dt} + \frac{\partial H}{\partial t}$$

Учтивая систему уравнений Гамильтона (1.6) заменим соответствующие частные производные:

$$\frac{dH}{dt} = \sum_{i} \frac{\partial H}{\partial p_{i}} \dot{p}_{i} + \sum_{i} \frac{\partial H}{\partial q_{i}} \dot{q}_{i} + \frac{\partial H}{\partial t} \Leftrightarrow$$

$$\Leftrightarrow \frac{dH}{dt} = \sum_{i} \dot{q}_{i} \dot{p}_{i} - \sum_{i} \dot{p}_{i} \dot{q}_{i} + \frac{\partial H}{\partial t} \Leftrightarrow$$

$$\Leftrightarrow \frac{dH}{dt} = \frac{\partial H}{\partial t}.$$
(1.10)

 \blacksquare ВАЖНО Таким образом, если функция H не зависит явно от времени, она сохраняет свое значение, что является ожидаемым в силу закона сохранения энергии.

Возьмем второе уравнение из системы (1.6):

$$\frac{\partial H}{\partial q_i} = -\dot{p}_i \iff \dot{p}_i = -\frac{\partial H}{\partial q_i}.$$

С другой стороны, согласно уравнениям Лагранжа:

$$\frac{dL}{dt} \underbrace{\frac{\partial L}{\partial \dot{q}_i}}_{p_i} - \frac{\partial L}{\partial q_i} = 0 \Leftrightarrow \dot{p}_i = \frac{\partial L}{\partial q_i}.$$

Приравнивая последние два равенства друг к другу, получим:

$$\dot{p}_i = -\frac{\partial H}{\partial q_i} = \frac{\partial L}{\partial q_i}.$$
(1.11)

Отсюда следует, что те обобщенные координаты, которые являются циклическими, т. е. не входят явно в функцию Лагранжа L, не войдут явно и в функцию Гамильтона H.

Ранее было установлено, что обобщенные импульсы, соответствующие циклическим координатам, являются интегралами движения.

ВАЖНО Из сказанного можно заключить, что обобщенные импульсы, соответствующие координатам q_i не входящим явно в гамильтониан (т.е. циклическим относительно функции H), остаются постоянными, то есть $p_k = const$ при условии, что $\partial H/\partial q_i = 0$.

§2. Скобки Пуассона

Пусть f(p,q,t) — некоторая функция координат, импульсов и времени. Составим ее полную производную по времени

$$\frac{df}{dt} = \frac{\partial f}{\partial t} + \sum_{k} \left(\frac{\partial f}{\partial q_k} \dot{q}_k + \frac{\partial f}{\partial p_k} \dot{p}_k \right).$$

Подставив сюда вместо \dot{q}_k и \dot{p}_k их выражения из уравнений Гамильтона (40.4), получим

$$\frac{df}{dt} = \frac{\partial f}{\partial t} + \{Hf\},\tag{42.1}$$

где введено обозначение

$$\{Hf\} = \sum_{k} \left(\frac{\partial H}{\partial p_{k}} \frac{\partial f}{\partial q_{k}} - \frac{\partial H}{\partial q_{k}} \frac{\partial f}{\partial p_{k}} \right). \tag{42.2}$$

Выражение (42.2) называют *скобками Пуассона* для величин H и f.

Такие функции от динамических переменных, которые остаются постоянными при движении системы, называются, как мы знаем, интегралами движения. Мы видим из (42.1), что условие того, чтобы величина f была интегралом движения (df/dt=0), можно написать в виде

$$\frac{\partial f}{\partial t} + \{Hf\} = 0. \tag{42.3}$$

Если же интеграл движения не зависит от времени явно, то

$$\{Hf\} = 0, (42.4)$$

т.е. его скобки Пуассона с функцией Гамильтона должны обращаться в нуль.

Для любой пары величин f и g скобки Пуассона определяются аналогично (42.2):

$$\{fg\} = \sum_{k} \left(\frac{\partial f}{\partial p_k} \frac{\partial g}{\partial q_k} - \frac{\partial f}{\partial q_k} \frac{\partial g}{\partial p_k} \right). \tag{42.5}$$

Скобки Пуассона обладают следующими свойствами, легко выводимыми из определения.

Если переставить функции, то скобки переменят знак; если одна из функций — постоянная (c), то скобка равна нулю:

$$\{fg\} = -\{gf\},\tag{42.6}$$

$$\{fc\} = 0.$$
 (42.7)

Далее,

$${f_1 + f_2, g} = {f_1g} + {f_2g},$$
 (42.8)

$$\{f_1 f_2, g\} = f_1 \{f_2 g\} + f_2 \{f_1 g\}. \tag{42.9}$$

Взяв частную производную от (42.5) по времени, получим

$$\frac{\partial}{\partial t} \{ fg \} = \left\{ \frac{\partial f}{\partial t} g \right\} + \left\{ f \frac{\partial g}{\partial t} \right\}. \tag{42.10}$$

Если одна из функций f или g совпадает с одним из импульсов или координат, то скобки Пуассона сводятся просто к частной производной:

$$\{fq_k\} = \frac{\partial f}{\partial p_k},\tag{42.11}$$

$$\{fp_k\} = -\frac{\partial f}{\partial a_k}.\tag{42.12}$$

Формулу (42.11), например, получим, положив в (42.5) $g = q_k$; вся сумма сведется при этом к одному члену, так как $\frac{\partial q_k}{\partial q_l} = \delta_{kl}$, а $\frac{\partial q_k}{\partial q_l} = 0$. Положив в (42.11) и (42.12) функцию f равной q_i и p_i , получим, в частности,

$$\{q_i q_k\} = 0, \quad \{p_i p_k\} = 0, \quad \{p_i q_k\} = \delta_{ik}.$$
 (42.13)

Между скобками Пуассона, составленными из трех функций, существует соотношение

$${f{gh}} + {g{hf}} + {h{fg}} = 0;$$
 (42.14)

оно называется тождеством Якоби.

Очень важным свойством скобок Пуассона является их инвариантность относительно канонических преобразований. Это означает, что

$$\{\varphi, \psi\}_{q, p} := \{\varphi, \psi\}_{Q, P},$$
 (31.17)

где Q, P — переменные, полученные из q, p с помощью канонических преобразований.

В квантовой механике мы познакомимся с квантовыми скобками Пуассона, которые являются квантовомеханическим аналогом рассмотренных в этом параграфе классических скобок Пуассона.

§3. Теорема Лиувилля

Для геометрической интерпретации механических явлений часто пользуются понятием о так называемом ϕ азовом пространстве 2s измерений, на координатных осях которого откладываются значения s обобщенных координат и s импульсов данной механической системы. Каждая точка этого пространства отвечает определенному состоянию системы. При движении системы изображающая ее фазовая точка описывает в фазовом пространстве соответствующую линию, называемую ϕ азовой траекторией. Произведение дифференциалов

$$d\Gamma = dq_1 \dots dq_s dp_1 \dots dp_s$$

можно рассматривать как «элемент объема» фазового пространства. Рассмотрим теперь интеграл $\int d\Gamma$, взятый по некоторой области фазового пространства и изображающий собой ее объем. Покажем, что эта величина обладает свойством инвариантности по отношению к каноническим преобразованиям: если произвести каноническое преобразование от переменных p,q к переменным P,Q, то объемы соответствующих друг другу областей пространств p,q и P,Q одинаковы:

$$\int \dots \int dq_1 \dots dq_s \, dp_1 \dots dp_s = \int \dots \int dQ_1 \dots dQ_s \, dP_1 \dots dP_s. \quad (46.1)$$

Как известно, преобразование переменных в кратном интеграле производится по формуле

$$\int \dots \int dQ_1 \dots dQ_s \, dP_1 \dots dP_s = \int \dots \int Ddq_1 \dots dq_s \, dp_1 \dots dp_s,$$
где

$$D = \frac{\partial(Q_1, \dots, Q_s, P_1, \dots, P_s)}{\partial(q_1, \dots, q_s, p_1, \dots, p_s)}$$

$$(46.2)$$

есть так называемый *якобиан преобразования*. Поэтому доказательство теоремы (46.1) сводится к доказательству того, что якобиан всякого канонического преобразования равен единице:

$$D = 1. (46.3)$$

Воспользуемся известным свойством якобианов, которое позволяет обращаться с ними в определенном смысле, как с дробями. «Разделив числитель и знаменатель» на $\partial(q_1,\ldots,q_s,\,P_1,\ldots,P_s)$, получим

$$D = \frac{\partial(Q_1, \dots, Q_s, P_1, \dots, P_s)}{\partial(q_1, \dots, q_s, P_1, \dots, P_s)} / \frac{\partial(q_1, \dots, q_s, p_1, \dots, p_s)}{\partial(q_1, \dots, q_s, P_1, \dots, P_s)}. \tag{46.4}$$

Согласно другому известному правилу якобиан, у которого в «числителе» и «знаменателе» фигурируют одинаковые величины, сводится к якобиану от меньшего числа переменных, причем при всех дифференцированиях в нем выпавшие одинаковые величины должны считаться постоянными. Поэтому

$$D = \left\{ \frac{\partial(Q_1, \dots, Q_s)}{\partial(q_1, \dots, q_s)} \right\}_{P=\text{const}} / \left\{ \frac{\partial(p_1, \dots, p_s)}{\partial(P_1, \dots, P_s)} \right\}_{q=\text{const}}.$$
(46.5)

Рассмотрим якобиан, стоящий в числителе этого выражения. Согласно определению это есть определитель ранга s, составленный из элементов $\partial Q_i/\partial q_k$ (элемент на пересечении i-й строки и k-го столбца). Представив каноническое преобразование с помощью производящей функции $\Phi(q,P)$ в форме (45.8), получим

$$\frac{\partial Q_i}{\partial q_k} = \frac{\partial^2 \Phi}{\partial q_k \partial P_i}.$$

Таким же образом найдем, что i, k-й элемент определителя в знаменателе выражения (46.5) равен $\frac{\partial^2 \Phi}{\partial q_i \partial P_k}$. Это значит, что оба определителя отличаются только заменой строк на столбцы и обратно. Поэтому они равны друг другу, так что отношение (46.5) равно единице, что и требовалось доказать.

Представим себе теперь, что каждая точка данного участка фазового пространства перемещается со временем согласно уравнениям движения рассматриваемой механической системы. Тем самым будет перемещаться и весь участок. При этом его объем остается неизменным:

$$\int d\Gamma = \text{const}. \tag{46.6}$$

Это утверждение (так называемая meopema Лиувилля) непосредственно следует из инвариантности фазового объема при канонических преобразованиях и из того, что самое изменение p и q при движении можно рассматривать (как было указано в конце предыдущего параграфа) как каноническое преобразование.

Совершенно аналогичным образом можно доказать инвариантность интегралов

$$\iint \sum_{i} dq_{i} dp_{i},$$

$$\iiint \iint \sum_{i \neq k} dq_{i} dp_{i} dq_{k} dp_{k},$$

в которых интегрирование производится по заданным двух-, четырех- и т.д. -мерным многообразиям в фазовом пространстве.

§4. Уравнение Гамильтона - Якоби

Непосредственно относится к классической (не квантовой) механике, однако хорошо приспособлено для установления связи между классической механикой и квантовой, так как его можно, например, получить практически прямо из уравнения Шрёдингера в приближении быстроосциллирующей волновой функции (больших частот и волновых чисел).

Г.- Я. у. и связанный с ним метод решения задач механики играют важную роль и в др. областях физики, особенно в оптике и квантовой механике.

Варьирование действия

$$S == \int_{t_1}^{t_2} L \, dt \tag{32.1}$$

при нахождении истинной траектории движения системы (имеется в виду траектория в конфигурационном пространстве, т. е. в пространстве s измерений; s — число степеней свободы системы) заключается в сравнении значений S для близких траекторий с закрепленными концами, т. е. с одинаковыми значениями $q_k(t_1) = q_k^{(1)}$ и $q_k(t_2) = q_k^{(2)}$. Наглядно это можно представить с помощью рис. 32.1. Лишь та траектория, для которой S минимально, отвечает действительному движению (на рисунке она изображена сплошной линией).

В этом параграфе мы будем рассматривать действие S как величину, характеризующую движение по истинным траекториям, и исследуем, как эта величина ведет себя при изменениях точки $q^{(2)}$ (при $t_2 = \text{const}$), а также при изменениях t_2 (символ $q^{(2)}$ означает совокупность всех $q_k^{(2)}$). Таким образом, мы будем обращаться с действием как с функцией:

$$S == S(q_b, t), \tag{32.2}$$

где q_k — координаты конечного положения системы, а t — момент времени, когда это положение достигается.

Возьмем вблизи точки $q^{(2)}$ точку с координатой $q^{(2)} + \delta q$, в которую система попадает в тот же момент времени t_2 , в который она приходит в точку $q^{(2)}$ (рис. 32.2). Действие для траектории, приводящей систему в точку $q^{(2)} + \delta q$, отличается от действия для

траектории, по которой система приходит в точку $q^{(2)}$, на величину

$$\delta S = \int_{t_1}^{t_2} \sum_{k} \left(\frac{\partial L}{\partial q_k} \, \delta q_k + \frac{\partial L}{\partial \dot{q}_k} \, \delta \dot{q}_k \right) dt. \tag{32.3}$$

Здесь δq_k есть разность значений q_k , взятых для обеих траекторий в один и тот же момент времени t; аналогично $\delta \dot{q}_k$ — разность \dot{q}_k в момент t.

Проинтегрируем по частям второе слагаемое в (32.3):

$$\int_{t_1}^{t_2} \frac{\partial L}{\partial \dot{q}_k} \, \delta \dot{q}_k \, dt = \frac{\partial L}{\partial \dot{q}_k} \, \delta q_k \int_{t_1}^{t_2} - \int_{t_1}^{t_2} \left(\frac{d}{dt} \, \frac{\partial L}{\partial \dot{q}_k} \right) \delta q_k \, dt \,. \quad (32.4)$$

Для истинной траектории $\partial L/\partial q_k$ представляет собой обобщенный импульс p_k . Начала обеих траекторий совпадают, поэтому $\delta q_k(t_1) = 0$. Величину $\delta q_k(t_2)$ можно обозначить просто δq_k . Следовательно, первый член в правой части (32.4) можно представить в виде $p_k \delta q_k$.

Подставим (32.4) в выражение (32.3):

$$\delta S = \sum_{k} p_{k} \, \delta q_{k} + \int_{t_{1}}^{t_{2}} \sum_{k} \left(\frac{\partial L}{\partial q_{k}} - \frac{d}{dt} \, \frac{\partial L}{\partial \dot{q}_{k}} \right) \delta q_{k} \, dt \, .$$

Истинные траектории удовлетворяют уравнениям Лагранжа. Поэтому подынтегральная функция, а значит, и сам интеграл будет нулем. Таким образом, мы получаем для приращения действия S, обусловленного изменением координат конечного положения системы на δq_k (при неизменном времени движения), значение

$$\delta S = \sum_{s} p_{k} \, \delta q_{k}. \tag{32.5}$$

Здесь p_k — величина импульса в момент t_2 . Из выражения (32.5) вытекает, что

$$\frac{\partial S}{\partial q_k} = p_k. \tag{32.6}$$

Следовательно, частные производные от действия по обобщенным координатам равны соответствующим обобщенным импульсам.

Теперь допустим, что верхний предел интегрирования в (32.1) не фиксирован. Чтобы подчеркнуть это, запишем действие в виде

$$S = \int_{t_1}^{t} L \, dt. \tag{32.7}$$

Представленное так действие является функцией верхнего предела интегрирования, т. е. S = S(t). Из (32.7) следует, что

$$\frac{dS}{dt} = L. \tag{32.8}$$

Вместе с тем, в соответствии с (32.2) можно написать, что

$$\frac{dS}{dt} = \frac{\partial S}{\partial t} + \sum_{k} \frac{\partial S}{\partial q_{k}} \dot{q}_{k} = \frac{\partial S}{\partial t} + \sum_{k} p_{k} \dot{q}_{k} \quad (32.9)$$

(мы учли соотношение (32.6)). Приравняв правые части выражений (32.8) и (32.9), получим для частной

производной от S по t значение

$$\frac{\partial S}{\partial t} = -\left(\sum_{k} \rho_{k} \dot{q}_{k} - L\right).$$

Выражение в скобках есть гамильтониан H. Следовательно,

$$\frac{\partial S}{\partial t} = -H(q_k, p_k, t). \tag{32.10}$$

В соответствии с формулами (32.6) и (32.10) дифференциал функции (32.2) можно представить в виде

$$dS = \sum_{k} p_{k} dq_{k} - H dt.$$
 (32.11)

Заменим в уравнении (32.10) p_k их значениями из (32.6) и запишем это уравление следующим образом:

$$\frac{\partial S}{\partial t} + H\left(q_1, q_2, \ldots, q_s; \frac{\partial S}{\partial q_1}, \frac{\partial S}{\partial q_2}, \ldots, \frac{\partial S}{\partial q_s}; t\right) = 0.$$
(32.12)

Мы получили дифференциальное уравнение, которому должна удовлетворять функция $S(q_1, q_2, \ldots, q_s; t)$. Его называют уравнением Гамильтона — Якоби. Оно является уравнением в частных производных первого порядка.

Уравнение (32.12) лежит в основе некоторого общего метода интегрирования уравнений движения. Однако рассмотрение этого метода выходит за рамки нашего курса.

В случае консервативной системы со стационарными связями время не входит явно в функцию H и $H=E=\mathrm{const}$ (см. (30.9)). Поэтому согласно (32.10) зависимость S от t выражается слагаемым -Et. Следовательно, действие распадается на два члена, один из которых зависит только от обобщенных координат, а другой — только от времени

$$S(q_k, t) = S_0(q_k) - Et.$$
 (32.13)

Функцию $S_0(q_k)$ называют укороченным действием. Подставив S в виде (32.13) в уравнение (32.12), придем к уравнению Гамильтона — Якоби для укороченного действия

$$H\left(q_1, q_2, \ldots, q_s; \frac{\partial S_0}{\partial q_1}, \frac{\partial S_0}{\partial q_2}, \ldots, \frac{\partial S_0}{\partial q_s}\right) = E.$$
 (32.14)

В частном

случае при движении одной материальной точки в силовом поле, определяемом силовой ф-цией U(x, y, z, t), Γ .- Я. у. имеет вид

$$\frac{\partial S}{\partial t} + \frac{1}{2m} \left[\left(\frac{\partial S}{\partial x} \right)^2 + \left(\frac{\partial S}{\partial y} \right)^2 + \left(\frac{\partial S}{\partial z} \right)^2 \right] - U(x, y, z, t) = 0$$

где m - масса точки, x, y, z - её координаты.

