ELEMENTARY SET THEORY

An SAD3 Formalisation of the Appendix of "General Topology" by John L. Kelley Functions and Preliminaries

October 26, 2018

0.1 Preliminaries

[prove off] Let x, y, z stand for *classes*. [object/-s]

Signature (Ontology). An object is a notion. Let a, b, c, d, e, u, v stand for objects.

Let $a \in x$ stand for a is an element of x.

Axiom. Every element of x is an object.

Axiom (I). For each x for each y x = y iff for each z $z \in x$ iff $z \in y$. [set/-s]

Definition (1). A set is a class that is an object.

Definition (2). $x \cup y = \{object \ u \mid u \in x \ or \ u \in y\}.$

Definition (23). $\bigcup x = \{objectu \mid for some \ y(y \in x \ and \ u \in y)\}$. Let the union of $x \ stand \ for \bigcup x$.

Definition (25). A subclass of y is a class x such that each element of x is an element of y. Let $x \subset y$ stand for x is a subclass of y. Let x is contained in y stand for $x \subset y$.

Theorem (27). x = y iff $x \subset y$ and $y \subset x$.

Theorem (28). If $x \subset y$ and $y \subset z$ then $x \subset z$.

Axiom (III). If x is a set then there is a set y such that for each z if $z \subset x$ then $z \in y$.

Theorem (33). If x is a set and $z \subset x$ then z is a set.

Definition (36). $2^x = \{ set \ y \mid y \subset x \}.$

Theorem (38a). If x is a set then 2^x is a set.

Proof. Let x be a set. Take a set y such that for each z if $z \subset x$ then $z \in y$ (by III). Then $2^x \subset y$.

Definition (40). $\{a\} = \{a\}.$

Signature (48). (a,b) is an object.

Definition (48a). An ordered pair is an object c such that there exist objects a and b such that c = (a, b).

Axiom (55). If (a, b) = (c, d) then a = c and b = d.

[relation/-s]

Definition (56). A relation is a class r such that every element of r is an ordered pair.

Let r, s, t stand for relations.

Definition (57). $r \circ s = \{(x, z) \mid x, z \text{ are objects and there exists } b \text{ such that } (x, b) \in s \text{ and } (b, z) \in r\}.$

0.2 Functions (Maps)

Since "function" is predefined in SAD3, we use the word "map" instead.

[/prove] [map/-s]

Definition (63). A map is a relation f such that for each a, b, c if $(a, b) \in f$ and $(a, c) \in f$ then b = c. Let f, g stand for maps.

Theorem (64). If f, g are maps then $f \circ g$ is a map.

Definition (65). domain $f = \{object \ u \mid there \ exists \ an \ object \ v \ such \ that \ (u,v) \in f\}.$

Definition (66). range $f = \{object \ v \mid there \ exists \ an \ object \ u \ such \ that \ (u,v) \in f\}.$

Signature (68). Let $u \in \text{domain } f$. The value of f at u is an object v such that $(u,v) \in f$. Let f(u) stand for the value of f at u.

Theorem (70). Let f be a map. Then $f = \{(u, f(u)) \mid u \in \text{domain } f\}$.

Theorem (71). Assume domain f = domain g and for every element u of domain f(u) = g(u). Then f = g.

Axiom (V). If f is a map and domain f is a set then range f is a set.

Axiom (VI). If x is a set then $\bigcup x$ is a set.

Definition (72). $x \times y = \{(u, v) \mid u \in x \text{ and } v \in y\}.$

Theorem (73). Let u be an object. Let y be a set. Then $\{u\} \times y$ is a set.

Proof. Define $f = \{(w, v) \mid w \in y \text{ and } v = (u, w)\}$. f is a map. domain f = y. range $f = \{u\} \times y$.

Theorem (74). Let x, y be sets. Then $x \times y$ is a set.

Proof. Define $f = \{(u, w) \mid u \in x \text{ and } w = \{u\} \times y\}$. f is a map. domain f = x. range f is a set. range $f = \{\text{set } z \mid \text{there exists } u \in x \text{ such that } z = \{u\} \times y\}$. $\bigcup(\text{range } f)$ is a set. $\bigcup(\text{range } f) \subset x \times y$. Let us show that $x \times y \subset \bigcup(\text{range } f)$. Let $w \in x \times y$. Take an $u \in x$ and $v \in y$ such that w = (u, v). $w \in \{u\} \times y \in \text{range } f$. $w \in \bigcup \text{range } f$. end.

Theorem (75). Let f be a map. Let domain f be a set. Then f is a set.

Proof.
$$f \subset \text{domain } f \times \text{range } f$$
.

Definition (76). $y^x = \{ map \ f \mid domain f = x \ and \ range f \subset y \}.$

Theorem (77). Let x, y be sets. Then y^x is a set.

Proof.
$$y^x \subset 2^{x \times y}$$
.

Definition (78). f is on x iff x = domain f.

Definition (79). f is to y iff range $f \subset y$.

Definition (80). f is onto y iff range f = y.