LITERATURE SURVEY

Date	19.9.2022			
Project Name	Analytics for Hospital's Healthcare Data			
Team ID	PNT2022TMID11392			

Title and Author	Year	Techniques	Findings	Pros	Cons
Data and Network	2021	Data Modelling,	It has explored the	The new way to	The no.of patients
Analytics for		Confidence	potential of data	understand and	is not large and
COVID-19 Patients		interval with	network.	model the	they were treated
- Sergio		Bootstrap, Graph	Analysing the HER	information	in same hospital
Martinez,		Modelling,	and to gain	handled.	so that over fitting
Antonio G		Building graphs	knowledge about	Analysing the	may exit and
marques, Cristina		from MTS	the COVID-19	pairwise	caution when
Soguero-Rui			patients.	correlation	generalizing the
				without making	conclusion.
				any assessment.	
Prediction of	2021	Predictive	In this study,	DT model shows	The DT model was
COVID-19 Hospital		Analysis, Artificial	multivariate	an intriguing role	further validated
Length of Stay		Intelligence, DT	analysis to identify	for	by unsupervised
and Risk of Death		Algorithm	the key variables	dexamethasone in	learning methods
using AI Based			using the DT	saving lives,	showing similar
Modelling –			algorithm	ranging from zero	separation
Bassam				risk of death.	pattern, and ROC
Mahboub,					suggest a stable
Hussam					and robust DT
Alshrideh, Laila					Model.
Salameh					

		·	·		,
Big Data Analytics	2022	Big Data Analytics	Medical facilities	It increased the	It is necessary to
in Healthcare –		and Data-driven	are working on	analytics of	examine use of
Kornelia Batko,		method	both structured	diagnosis,	structured and
Andrzej Slezak			and unstructured	preventing the	unstructured data
			which comes from	public health	in vast area of
			database. It	issues since the	medical field
			clearly shown that	accurate	
			the decision made	prediction is	
			are largely data	involved.	
			driven.		
Hospital Length of	2021	Survival Analysis,	AFT survival	Three different	Missingness of
Stay for COVID-19		MFT data	model and	estimations of LOS	large dataset
patients: Data		preparation, AFT	Truncation	of patients is used.	which may lead in
Driven method for		Model,	Corrected method		bias of estimation.
forward planning			both will		Delay in update
– Bindu vekaria,			underlying		and delay in
Christopher			Weibull		reporting.
Overton,			distribution, were		
Arkadiusz			fitted to the data		
wisniowski, Neil			to estimate LOS		
A Hanley and			from hospital.		
Mark J Elliot.					