INTRO TO DATA SCIENCE HW 2

Ben Green

Contents

		1
Question	2	1 1
Question	3	1
${f Question}$	4	1
Question	5	2
Question	7	2

Green, Ben Page 1

Question 1

1a.

The probability of a bit in the array remaining 0 is:

$$e^{\frac{-20}{99}}$$
 (1)

which comes out to .819. So, 1-.819 = .181 is the expected fraction of 1's.

1b.

The expected fraction of 0's is 1-.181 = .819

Question 2

The false positive rate is:

$$(1 - e^{\frac{-3*2}{11}}) = (1 - e^{\frac{6}{11}}) \tag{2}$$

Question 3

a	b	c	a	d	e	a	c	b	b
1									
.9	1								
.81	.9	1							
	.81	.9	1.81						
	.729	.81	1.1629	1					
	.6561	.729	1.4661	.9	1				
	.5905	.6561		.81	.9	2.4661			
	.5314			.729	.81	2.219	1.6561		
				.6561	.729	1.997	1.4904	1.5314	
				.5905	.6561	1.797	1.3413		2.5314

Question 4

 $(3x +7) \mod 11$

 $X=1 \ 10 \ \text{mod} \ 11 = 10 \ 1010$

 $x=2 13 \mod 11 = 2 0010$

 $X=3 16 \mod 11 = 5 0101$

 $X=4 19 \mod 11 = 8 1000$

 $X=5 22 \mod 11 = 0 0000$

Green, Ben Page 2

```
X=6 25 mod 11 = 3 0011
X=7 28 mod 11 = 6 0110
X=8 31 mod 11 = 9 1001
X=9 34 mod 11 = 1 0001
X=10 37 mod 11 = 4 0100
```

Set 10 9 1 7 10 would have to be in the set since the estimate of the number of distinct elements is 2^r where r is the max tail length in the set.

Question 5

Question 7

Assuming that you've picked door number 1, there are three (equally likely) possible scenarios:

- 1. You pick the door with the prize, and the other two doors are empty.
- 2. Both your door and door number 2 are empty.
- 3. Both your door and door number 3 are empty.

Overall, there are two groups of possibilities - that you've picked a winning door (1/3) or you've picked an empty door (2/3).

Green, Ben Page 3

If an empty door is revealed, it must either be door 2 or 3, because you picked door number 1. Now you are presented with the same two groups - but the second group's doors now have probabilities 0 and 2/3 of containing the prize, when originally they were 1/3 each.

Since your door (door number 1) has a probability of 1/3 and the other closed door has a probability of 2/3, you should switch doors.