

Электронные документы.

КОМПАС-3D 20v. Начало работы. Пользовательский интерфейс

Общие требования к разработке, хранению, обращению и применению конструкторских документов в России регламентированы стандартами «Единой системы конструкторской документации (ЕСКД)».

Внедрение современных информационных технологий в эти процессы требовало адаптации комплекса стандартов ЕСКД к новым условиям.

В 2006 году в группу «Общие положения» стандартов ЕСКД были внесены изменения, целью которых является обеспечение равноправного представления технической информации в бумажном и электронном виде.

Стандарты ЕСКД

наличие двух форм КД: традиционной (бумажной) и электронной

равноправность статусов двух форм представления КД и возможность их преобразования друг в друга

ввод в ЕСКД новых понятий (электронная структура изделия, электронная модель изделия) и видов конструкторских документов

правила отображения новых видов КД в существующие виды традиционных КД там, где это возможно, а также признание факта существования электронных документов, не отображаемых в традиционные виды КД (электронная структура изделия, 3*D*-модели, видео- и аудио документы)

ГОСТ 2.051–2013 «Электронные документы. Общие положения»

- устанавливает общие требования к выполнению электронных конструкторских документов (ДЭ) изделий всех отраслей промышленности.

ДЭ выполняют на стадии разработки изделия и применяют на всех последующих стадиях жизненного цикла изделия.

ДЭ получают с помощью программно-технических средств в результате автоматизированного проектирования (разработки) или преобразования документов, выполненных в бумажной форме, в электронную форму

Электронный конструкторский документ – конструкторский документ, выполненный в электронной форме как структурированный набор данных, состоящий из содержательной и реквизитной частей.

Структура простого ДЭ

Реквизитная часть

Содержательная часть

Реквизитная часть состоит из структурированного (сгруппированного) по назначению набора реквизитов и их значений. Номенклатура реквизитов ДЭ - по <u>ГОСТ 2.104</u>

Содержательная часть состоит из одной или нескольких ИЕ (файлов), содержащих необходимую информацию об изделии. Содержательная часть может состоять раздельно или в любом сочетании из текстовой, графической, мультимедийной информации.

ГОСТ 2.052-2015 «Электронная модель изделия. Общие положения»

устанавливает общие требования к выполнению электронных моделей изделий (деталей, сборочных единиц) машиностроения и приборостроения и определяет ряд важных понятий:

- электронная модель изделия: Электронная модель детали или сборочной единицы по <u>ГОСТ 2.102</u>;
- электронная геометрическая модель: Электронная модель изделия, описывающая геометрическую форму, размеры и иные свойства изделия, зависящие от его формы и размеров;
- геометрический элемент: Идентифицированный (именованный) геометрический объект, используемый в наборе данных. Геометрическим объектом может быть точка, линия, плоскость, поверхность, геометрическая фигура, геометрическое тело;

- **геометрия модели**: Совокупность геометрических элементов, которые являются элементами геометрической модели изделия;
- основная геометрия: Совокупность геометрических элементов, которые непосредственно определяют форму моделируемого изделия;
- вспомогательная геометрия модели: Совокупность геометрических элементов, которые используются в процессе создания геометрической модели изделия, но не являются элементами этой модели. Геометрическими элементами могут быть осевая линия, опорные точки сплайна, направляющие и образующие линии поверхности и др.;
- атрибут модели: Размер, допуск, текст или символ, требуемый для определения геометрии изделия или его характеристики;

- плоскость обозначений и указаний: Плоскость в модельном пространстве, на которую выводится визуально воспринимаемая информация, содержащая значения атрибутов модели, технические требования, обозначения и указания;
- данные расположения: Данные, определяющие размещение и ориентацию изделия и его составных частей в модельном пространстве в указанной системе координат;

модельное пространство: Пространство в координатной системе модели, в котором выполняется геометрическая модель изделия;

- модель изделия (модель): Сущность, воспроизводящая свойства реального изделия.

В компьютерной среде электронная модель изделия представляется в виде набора данных, которые вместе определяют геометрию изделия и иные свойства, необходимые для изготовления, контроля, приемки, сборки, эксплуатации, ремонта и утилизации изделия.

Электронная модель изделия, как правило, используется:

- для интерпретации всего составляющего модель набора данных (или его части) в автоматизированных системах;
- для визуального отображения конструкции изделия в процессе выполнения проектных работ, производственных и иных операций;
- для изготовления чертежной конструкторской документации в электронной и/или бумажной форме.

Схема состава электронной геометрической модели изделия

Классификация типов геометрических моделей

Тип геометрической модели для выполнения конкретной ЭГМИ устанавливает разработчик.

Типы геометрических моделей

- твердотельная модель: Трехмерная электронная геометрическая модель, представляющая форму изделия как результат композиции заданного множества геометрических элементов с применением операций булевой алгебры к этим геометрическим элементам;
- поверхностная модель: Трехмерная электронная геометрическая модель, представленная множеством ограниченных поверхностей, определяющих в пространстве форму изделия;
- каркасная модель: Трехмерная электронная геометрическая модель, представленная пространственной композицией точек, отрезков и кривых, определяющих в пространстве форму изделия.

КОМПАС-3D — российская система трехмерного проектирования

Системные требования для работы КОМПАС-3D 20v:

- операционная система: MS Windows 10, MS Windows 8.1.
- 64-разрядная версия операционной системы
- многоядерный процессор (4 ядра и больше) с тактовой частотой 3 ГГц и выше
- 16 ГБ оперативной памяти и более
- видеокарта с поддержкой OpenGL 4.5, с 2 ГБ видеопамяти и более, пропускная способность видеопамяти 80 ГБ/с и более
- монитор с разрешением 1920x1080 пикселов или более

Установка программы

Скачать бесплатное ПО для использования в учебных целях

Предлагаем вашему вниманию бесплатные программы, дистрибутивы которых вы можете скачать для использования в учебных целях.

Ознакомьтесь с линейкой продуктов КОМПАС и рекомендациями по их использованию для каждого типа пользователей.

Использование ПО в учебных целях	Название продукта	Школьник		Препо- даватель	Домашний мастер	Учебное заведение*
Бесплатно	KOMΠAC-3D LT	✓		✓		✓
	КОМПАС-3D Учебная версия	✓	✓			

Стартовый экран Компас-3D

Основные типы документов

Перечень ссылок на:

- Учебные материалы;
- Форумы;
- Служба поддержки;
- Сайты.

Подсказки по работе в среде Компас

Документы, создаваемые в Компас-3D v20

Деталь — расширение файла .m3d. 3D-модель создается последовательностью различных операций, для которых, необходимо наличие 2D-эскиза

Сборка — расширение файла .a3d. 3D-сборка содержит в своем составе более одной 3D-детали, между которыми существуют взаимосвязи;

Чертеж – расширение файла .cdw. – основной графический документ. Используется для создания чертежей как на основе 3D-модели, так и с нуля;

Текстовый документ – расширение файла .kdw. Используется для оформления паспортов и пояснительных записок;

Спецификация — расширение файла .cpw. Этот вид документа используется для создания спецификации как ассоциативно связанных с 2D- или 3D-сборкой, так и с нуля.

фрагмент — расширение файла .frw. Это графический документ отличается от чертежа тем, что не содержит элементов оформления.

Специальные документы:

Интерфейс – оболочка программного продукта, осуществляющая взаимосвязь между пользователем и ядром программы.

Панель быстрого доступа

Панель быстрого доступа — содержит кнопки вызова команд выбора режима, управления изображением активного документа. Здесь содержатся команды: создать эскиз; изменить масштаб, ориентацию модели; изменить представление модели; скрыть или отобразить вспомогательные компоненты; размеры выбранного элемента; перестроить модель, если геометрия модели не соответствует исходным данным

Дерево документа - отображает состав компонентов, используемых для построения модели и позволяет:

- Редактировать элементы построения и оформления документа;
- Скрывать и исключать элементы из построения и оформления документа;
- Перемещать элементы по дереву построения. При перемещении операций учитывается их иерархия. Операцию невозможно переместить выше исходного или ниже производного объекта в Дереве документа.

Пользовательские настройки

Вкладка «Система» позволяет изменить внешний вид интерфейса, а также различные настройки параметров системы (общие, экран, файл, настроить автосохранение, печать, текстовый и графический редакторы и т.д).

Вкладка «Новые документы» позволяет установить параметры новых документов (имя файла по умолчанию, параметры текстовых документов, спецификации, параметры графических документов).

Вкладка «Текущая деталь» дублирует команды вкладки Новые документы для текущих документов.

Пользовательские настройки программы КОМПАС-3D v20 находятся по ссылке:

Главное меню – вкладка Настройка – команда Параметры

Навигация.

Управление ориентацией и масштабом модели в графической области Главное меню — Вид

Основные этапы построения твердого тела

• Выбор плоскости:

В качестве плоскостей построения могут быть заданы:

- Координатные плоскости (XY, ZX, ZY);
- Вспомогательные плоскости
- Плоскости грани построенных трехмерных моделей.

• Создание эскиза:

Эскизы используются для различных целей:

- Задание формы сечения тела или поверхности;
- Задание траектории перемещения сечения;
- Задание положения экземпляров массива.

• Команда построения:

Формообразующие операции:

- Выдавливание;
- По траектории;
- По сечениям.

