1 Hyperfinite samples

In this section we introduce hypefinite samples and prove that all Keisler measures are generated by some hypefinite sample (Lemma 4).

Below $\mathbb U$ is a saturated model of a complete theory $\mathbb T$ in the language $\mathbb L$. We write κ for the cardinality of $\mathbb U$ and assume that κ an inaccessible cardinal larger than |L|. For every $n \in \omega$ define

$$S_n = \left\{ s: \mathcal{U}^n \to \mathbb{R} : s a = 0 \text{ for all but finitely many } a \right\}$$

The elements of S_n are called standard samples (we will mainly use \mathbb{N} -valued samples and interpret these as finite multisets i.e. sets where elements can occur with different multiplicity). Let $\overline{\mathbb{U}}$ be the multi-sorted structure $\langle \mathbb{U}, \mathbb{R}, (S_n)_{n \in \omega} \rangle$. Clearly, $|\overline{\mathbb{U}}| = \kappa$. We call the first sort the home sort; the second is called the real sort. The remaining sorts are called sample sorts.

The language of $\bar{\mathbb{U}}$ is denoted by $\bar{\mathbb{L}}$. It contains L and a symbol for every subset of \mathbb{R}^n and for every function $\mathbb{R}^n \to \mathbb{R}$. Moreover, for every formula in $\varphi(x,z) \in L$ the language \bar{L} contains a function symbol of sort

$$S_{|x|} \times \mathcal{U}^{|z|} \rightarrow \mathbb{R}$$

that we interpret as the function that maps

1.
$$(s,b) \mapsto \sum_{\varphi(x,b)} s x$$
.

As the functions in $S_{|x|}$ are null almost everywhere, the sum in 1 is well-defined. We will use two informal but suggestive symbols for this function: $\sum_{\varphi(x,b)} s \, x$ or $\mu_s \varphi(x,b)$. When $\varphi(x,b)$ is the formula x=b, we write $s \, b$.

There are two extensions of $\bar{\mathbb{U}}$ that are relevant in the following. The first one is denoted by ${}^*\bar{\mathbb{U}} = \langle {}^*\mathbb{U}, {}^*\mathbb{R}, ({}^*S_n)_{n \in \omega} \rangle$. This is an elementary extension of $\bar{\mathbb{U}}$ that is saturated and has cardinality $> \kappa$. The second extension is an intermediate saturated model ${}^{\circ}\mathbb{U}$ such that $\bar{\mathbb{U}} \preceq {}^{\circ}\bar{\mathbb{U}} \preceq {}^*\bar{\mathbb{U}}$ and that $|{}^{\circ}\mathbb{U}| = \kappa$. As κ is inaccessible such model exist and we can assume that the home sort ${}^{\circ}\bar{\mathbb{U}}$ is \mathbb{U} . The other sorts are donoted by ${}^{\circ}\mathbb{R}$ and $({}^{\circ}S_n)_{n \in \omega}$.

1 Remark The model ${}^{\circ}\bar{\mathbb{U}}$ plays the role of the moster model of $\bar{T}=\operatorname{Th}(\bar{\mathbb{U}})$, while ${}^{*}\bar{\mathbb{U}}$ is a model where all global types (i.e. types over ${}^{\circ}\bar{\mathbb{U}}$) are realized. In fact, for notational reasons we will only mention global types through their realizations in ${}^{*}\bar{\mathbb{U}}$. Intuitively the samples in ${}^{*}\bar{\mathbb{U}}$ corresponds to the global Keisler measures while the samples in ${}^{\circ}\bar{\mathbb{U}}$ corresponds to the smooth measures.

The elements of $\bigcup_{n\in\omega} {}^*S_n$ are called (hyperfinite) samples. The support of $s\in {}^*S_{|x|}$ is the definable hyperfinite set $\{a\in {}^*\mathcal{U}^{|x|}: s\ a\neq 0\}$ which we denote by supp s.

If $M \preceq \mathcal{U}$ we write $S_n \upharpoonright M$ for the set of functions $s \in S_n$ such that supp $s \subseteq M^n$. We define \overline{M} to be the structure $\langle M, \mathbb{R}, (S_n \upharpoonright M)_{n \in \omega} \rangle$.

2 Fact Let $M \preceq \mathcal{U}$ be ω -saturated. Then $\overline{M} \preceq \overline{\mathcal{U}}$. In general, when M is not saturated, we have that for all sentences $\varphi \in \overline{L}(\overline{M})$ with no quantifiers of sample sort

$$\bar{M} \models \varphi \iff \bar{\mathcal{U}} \models \varphi.$$

Proof We prove the second claim first. We can assume that the function $\mu_s \varphi(x,y)$

only occurs in atomic formulas of the form $\mu_s \varphi(x, y) = w$.

Fix $s \in S_{|x|} \upharpoonright M$. Let a_1, \ldots, a_n be an enumeration of supp s and define $r_i = s a_i$. The formula $\mu_s \varphi(x, y) = w$ is easily seen to be equivalent, both in \bar{M} and in $\bar{\mathbb{U}}$, to the conjunction of the formulas

$$\bigwedge_{i=1}^{n} \neg^{\varepsilon(i)} \varphi(a_i, y) \rightarrow \sum_{i=1}^{n} \varepsilon(i) \cdot r_i = w$$

as ε ranges over ${}^n 2$. Hence, every sentence $\varphi \in \bar{L}(\bar{M})$ is equivalent to some sentence in $\psi \in L(M,\mathbb{R})$. As ψ does not contain parameters nor quantifiers of sample sort, its truth in \bar{M} and $\bar{\mathbb{U}}$ depends only on the structures M, \mathbb{R} , respectively \mathbb{U} , \mathbb{R} . Then # is a consequence of $M \preceq \mathbb{U}$.

Now assume that M is ω -saturated. We need to prove that for every tuples a, r, t in \overline{M} of home, real, respectively sample sort we have

$$\bar{M} \models \varphi(a,r,t) \iff \bar{\mathcal{U}} \models \varphi(a,r,t)$$
 for all $\varphi(x,y,w) \in \bar{L}$.

Reason by induction of the syntax. The only interesting case concern the existential quantifier of samle sort, say $\exists u$ where u has the sort of $S_{|x|}$. If $\bar{\mathbb{U}} \models \exists u \ \varphi(u,a,r,t)$ then $\bar{\mathbb{U}} \models \varphi(s,a,r,t)$ for some finite sample $s \in S_n$. Let $b_1,\ldots,b_n \in \mathbb{U}^{|x|}$ enumerate the support of s. Let $c_1,\ldots,c_n \in M^{|x|}$ be such that $b_i \equiv_{a, \text{supp } t} c_i$. By homogeneity, there is an $f \in \text{Aut}(\mathbb{U}/a, \text{supp } t)$ such that $fb_i = c_i$. Extend f to an automorphism of $\bar{\mathbb{U}}$ by requiring that f is the identity on \mathbb{R} and $f(s\,b) = (f\,s)(f\,b)$. Then $\bar{\mathbb{U}} \models \varphi(fs,a,r,t)$, so $\bar{M} \models \varphi(fs,a,r,t)$ follows by induction hypothesis.

- **3 Notation** Throughout the following Δ is a collection of $L_x(\mathcal{U})$ formulas or, depending on the context, the collection of sets defined by these formulas.
- **4 Lemma** Let μ be finitely additive signed measures on Δ , a Boolean algebra. Then there is $s \in {}^*S_{|x|}$ such that

$$\mu_s \varphi(x) = \mu \varphi(x)$$
 for every $\varphi(x) \in \Delta$.

Proof Let u be a variable of sample sort. We claim that the type p(u) defined below is finitely consistent

$$p(u) = \left\{ \sum_{\varphi(x)} u \, x = \mu \varphi(x) : \varphi(x) \in \Delta \right\}$$

Let $\{\varphi_1(x), \ldots, \varphi_n(x)\} \subseteq \Delta$. It suffices to show that there is $s \in S_{|x|}$ such that

1.
$$\sum_{\varphi_i(x)} s x = \mu \varphi_i(x)$$
 for $i = 1, ..., n$

Without loss of generality we can assume that $\{\varphi_1(x), \ldots, \varphi_n(x)\}$ is a Boolean algebra with atoms $\varphi_1(x), \ldots, \varphi_k(x)$ for some $k \leq n$. Pick some $a_1, \ldots, a_k \in \mathcal{U}^{|x|}$ such that $a_i \models \varphi_i(x)$. Pick $s \in S_{|x|}$ with support $\{a_1, \ldots, a_k\}$ and such that

$$s a_i = \mu \varphi_i(x)$$
 for $i = 1, \dots, k$.

Clearly 1 above is satisfied by the finite additivity of the measure.

We say that μ_s is bounded if there an $r \in \mathbb{R}$ such that $|\mu_s| < r$.

5 Corollary Let $s \in {}^*S_{|x|}$ be such that μ_s is bounded. Then there is a $t \in {}^*S_{|x|}$ such that $\mu_t = \operatorname{st}(\mu_s)$, where st denotes the standard part.

2 Pseudofinite samples

We say that a hyperfinite sample $s \in {}^*S_{|x|}$ is pseudofinite over M

1.
$$\varphi(s) \Rightarrow \varphi(\bar{M}) \neq \emptyset$$
 for every $\varphi(u) \in \bar{L}(\bar{M})$

or, equivalently,

2.
$$\varphi(\bar{M}) = S_{|x|} \upharpoonright M \implies \varphi(s)$$
 for every $\varphi(u) \in \bar{L}(\bar{M})$

In other words, s is pseudofinite if $t\bar{p}(s/\bar{M})$ is finitely satisfied in \bar{M} (we will not further mention finite satisfiability in this context to avoid clash with the terminology in the following sections). By Fact 2, every sample is pseudofinite over any ω -saturated model.

The following example should justify the terminology.

6 Example We prove the following claim. Let L be the language of graphs. Let T be the theory of some infinite graph. Fix some $M \leq \mathcal{U}$ and let $s \in {}^*S_1$ be a pseudofinite sample over M. Then supp s is a pseudofinite graph.

Recall the definition of pseudofinite graph. Let T_{fg} the set of sentences in L that hold in every finite graph. A *pseudofinite graph* is any structure that models T_{fg} .

If $\varphi \in L$ is a sentence, we denote by $\bar{\varphi}(u)$ the formula obtained by replacing in φ the quantifiers $\exists x$ and $\forall x$ with their bounded form: $\exists x \in \text{supp } u$, respectively $\forall x \in \text{supp } u$. Then for all $s \in {}^*S_1$, we have that $\bar{\varphi}(s)$ if and only if $\text{supp } s \models \varphi$.

To prove the claim, suppose that supp $s \not\models \varphi$. From the paragraph above we obtain that $\neg \bar{\varphi}(s)$. Hence, by pseudofiniteness, $\neg \bar{\varphi}(t)$ holds for some $t \in S_1 \upharpoonright M$. As supp t is a finite graph, $\varphi \notin T_{\mathrm{fg}}$.

П

If 1 holds for every $\varphi(u) \in \bar{L}(\bar{\mathbb{U}})$ then we say that s is strongly pseudofinite. By the standard argument of existence of coheirs, for every $s \in {}^*S_{|x|}$ there is a strongly pseudofinite $t \in {}^*S_{|x|}$ such that $s \equiv_{\bar{M}} t$.

We use the notion of pseudofiniteness to prove the following.

7 Fact Let $s \in {}^*S_{|x|}$ and let $M \preceq \mathcal{U}$. Then every formula $\varphi(x) \in L(\bar{M})$ such that $\varphi(M) \subseteq \operatorname{supp} s$ is algebraic. In particular, if $\operatorname{supp} s$ is definable by a formula in $L(\mathcal{U})$ then it is finite.

Proof Let s' be such that $s \equiv_{\bar{M}} s'$ and s' is pseudofinite over M. By elementarity $\varphi(M) \subseteq \operatorname{supp} s'$. Therefore the formula $\varphi(u)$ below is satisfied by s'

$$\forall x \Big[\varphi(x) \rightarrow x \in \operatorname{supp} u \Big]$$

By pseudofiniteness this formula is satisfied in \bar{M} hence $\varphi(M)$ is finite.

8 Question Let $s \in {}^*S_{|x|}$ be such that for every $\varphi(u) \in \overline{L}(\overline{M})$

3.
$$\varphi(s) \Rightarrow \varphi(s \cdot \mathbb{1}_A)$$
 for some finite $A \subseteq M$.

Does it follows that supp *s* is finite?

3 Invariant samples I

We introduce the notions of *invariant* and *finitely satisfiable* samples. There are two sensible variants of these notions. Here we consider the most stringent variant, the less stringent one is discussed in the following section.

We write $\operatorname{Aut}({}^*\mathcal{U}/A, \{\mathcal{U}\})$ for the set of automorphisms of ${}^*\mathcal{U}$ that fix A pointwise and \mathcal{U} setwise. Note that every automorphism $f \in \operatorname{Aut}({}^*\mathcal{U})$ has a canonical extension to an automorphism in $\operatorname{Aut}({}^*\bar{\mathcal{U}})$, which we denote by the same symbol f. Namely, this is the extension that is the identity on ${}^*\mathbb{R}$ and that maps $s \in {}^*S_n$ to the unique $fs \in {}^*S_n$ such that (fs)(fa) = f(sa).

Given $s \in {}^*S_{|x|}$, we say that μ_s is invariant over A if for every $f \in \operatorname{Aut}({}^*\mathcal{U}/A, \{\mathcal{U}\})$

$$\mu_s = \mu_{fs}$$

Note that this is equivalent to requiring that

$$\mu_s \varphi(x,b) = \mu_s \varphi(x,fb)$$
 for every $\varphi(x,z) \in L$ and $b \in \mathcal{U}^{|z|}$.

9 Definition We say that *s* is finitely satisfiable in *M* if for every $\varphi(x) \in L(\mathcal{U})$

$$\varphi(\operatorname{supp} s) \neq \emptyset \Rightarrow \varphi(M) \neq \emptyset.$$

The following lemma shows that the finite satisfiability of a sample corresponds (in a sense) to the finite satisfiability of the associated Keisler measure.

10 Lemma Let μ be as in Lemma 4 with $\Delta = L(\mathcal{U})$. Assume that

$$\mu \varphi(x) \neq 0 \implies \varphi(M) \neq \emptyset$$
 for every $\varphi(x) \in \Delta$.

Then there is $s \in {}^*S_{|x|}$ that is finitely satisfied in M and

$$\mu_s \varphi(x) = \mu \varphi(x)$$
 for every $\varphi(x) \in \Delta$.

Proof Let p(u) be as in the proof of Lemma 4. Define

$$q(u) = \left\{ \forall x \left[\varphi(x) \to ux = 0 \right] : \varphi(x) \in \Delta, \varphi(M) = \emptyset \right\}$$

We need to show that $p(u) \cup q(u)$ is finitely consistent. Apply the same reasoning as in the proof of Lemma 4.

11 Fact Every sample $s \in {}^*S_{|x|}$ that is finitely satisfiable in M is invariant over M.

Proof If s is not M-invariant then for some $f \in \operatorname{Aut}(*\mathcal{U}/M, \{\mathcal{U}\})$, some $\varphi(x, z) \in L$ and $b \in \mathcal{U}^{|z|}$

$$\mu_s \varphi(x,b) \neq \mu_s \varphi(x,fb)$$

In particular

$$0 \neq \mu_s \Big(\varphi(x,b) \leftrightarrow \varphi(x,fb) \Big)$$

Then there is $a \in \text{supp } s$ such that $\varphi(a,b) \not\leftrightarrow \varphi(a,fb)$. Hence, from the finite satisfiability of s, we obtain that $\varphi(M,b) \neq \varphi(M,fb)$. This contradicts the M-invarance of μ_s .

4 Invariant samples II

The exposition is parallel to that of the previous section with no significant differences.

We write $\operatorname{Aut}({}^*\bar{\mathbb{U}}/A, \{\mathbb{U}\})$ for the set of automorphisms of ${}^*\bar{\mathbb{U}}$ that fix A pointwise and \mathbb{U} setwise. Given $s \in {}^*S_{|x|}$, we say that μ_s is weakly invariant over A if for every $f \in \operatorname{Aut}({}^*\bar{\mathbb{U}}/A, \{\mathbb{U}\})$

$$\mu_s \approx \mu_{fs}$$

Note that this is equivalent to requiring that

$$\mu_s \varphi(x,b) \approx \mu_s \varphi(x,fb)$$
 for every $\varphi(x,z) \in L$ and $b \in \mathcal{U}^{|z|}$.

12 Definition We say that *s* is weakly finitely satisfiable in *M* if for every $\varphi(x) \in L(\mathcal{U})$

$$\mu_s \varphi(x) \not\approx 0 \Rightarrow \varphi(M) \neq \emptyset.$$

13 Fact Every sample $s \in {}^*S_{|x|}$ that is weakly finitely satisfiable in M is weakly invariant over M.

Proof If s is not weakly M-invariant then for some $f \in \operatorname{Aut}({}^*\overline{\mathbb{U}}/A, \{\mathbb{U}\})$, some $\varphi(x,z) \in L$ and $b \in \mathbb{U}^{|z|}$

$$\mu_s \varphi(x,b) \not\approx \mu_s \varphi(x,fb)$$

In particular

$$0 \not\approx \mu_s \Big(\varphi(x,b) \not\leftrightarrow \varphi(x,fb) \Big)$$

Then, by the finite satisfiability of s, we obtain that $\varphi(M,b) \neq \varphi(M,fb)$. This contradicts the M-invariance of μ_s .

5 Smooth samples

We say that a non-negative sample $s \in {}^*S_{|x|}$ is smooth over A, if for every $\varphi(x,z) \in L$, every $b \in \mathcal{U}^{|z|}$ and every $\varepsilon \in \mathbb{R}^+$ there are two formulas $\psi_1(x), \psi_2(x) \in L(M)$ such that $\psi_1(x) \to \varphi(x,b) \to \psi_2(x)$ and

$$\mu_s \psi_1(x) \approx_{\varepsilon} \mu_s \psi_2(x)$$

If for a given $\varphi(x,z) \in L$ and $\varepsilon \in \mathbb{R}^+$, finitely many pairs of formulas $\psi_1(x)$, $\psi_2(x)$ suffices for all $b \in \mathcal{U}^{|z|}$, we say that s is uniformly smooth.

- **14 Fact** The following are equivalent for every non-negative sample $s \in {}^*S_{|x|}$
 - 1. s is smooth over A;
 - 2. *s* is uniformly smooth over *A*;
 - 3. if $t \in {}^*S_{|x|}$ is non-negative and $\mu_s \psi(x) \approx \mu_t \psi(x)$ for all $\psi(x) \in L(A)$, then $\mu_s \approx \mu_t$.

Proof A compactness argument easily proves 1⇔2.

1 \Rightarrow 3 Negate 3. Then for $\mu_s \not\approx_{\varepsilon} \mu_t$ for some $\varepsilon \in \mathbb{R}^+$ and some $\varphi(x) \in L(\mathcal{U})$. Suppose s is smooth and let $\psi_1(x), \psi_2(x)$ as above but with $\varepsilon/3$ for ε . Then also $\mu_t(\psi_2(x) \setminus \psi_1(x)) < \varepsilon/3$. Therefore $\mu_t \varphi(x) \approx_{\varepsilon/3} \mu_t \psi_2(x) = \mu_s \psi_2(x) \approx_{\varepsilon/3} \mu_s \varphi(x)$. A contradiction.

3 \Rightarrow 1 Negate 1. Compactness and the fact that $\bar{\mathcal{U}} \preceq {}^*\bar{\mathcal{U}}$ ensure the existence of s_1 and s_2 such that $s_1 \equiv_M s_2 \equiv_M s$ and

$$(\forall a \in \operatorname{supp} s_1 \setminus \operatorname{supp} s) \quad \varphi(a) \quad \wedge \quad (\forall a \in \operatorname{supp} s \setminus \operatorname{supp} s_1) \neg \varphi(a);$$

$$(\forall a \in \operatorname{supp} s_2 \setminus \operatorname{supp} s) \neg \varphi(a) \quad \wedge \quad (\forall a \in \operatorname{supp} s \setminus \operatorname{supp} s_2) \quad \varphi(a).$$

Moreover we require that the cardinalities of $\varphi(\operatorname{supp} s_1)$ and $\neg \varphi(\operatorname{supp} s_2)$ are maximal given the properties above.

Let
$$r_1 = \inf \{ r \in \mathbb{R} : \mu_s \psi(x) \le r \text{ and } \psi(x) \to \varphi(x) \};$$

 $r_2 = \sup \{ r \in \mathbb{R} : \mu_s \psi(x) \ge r \text{ and } \varphi(x) \to \psi(x) \}.$

Then μ_{s_1} and μ_{s_2} coincide with μ_s on L(M) but $\mu_{s_2}\varphi(x) - \mu_{s_1}\varphi(x) = r_2 - r_1 \ge \varepsilon$. This contraddicts 3.

15 Fact ??? The following are equivalent

- 1. *s* is smooth;
- 2. every saturated elementary extension of \bar{U} contains a sample t such that $\mu_t \approx \mu_s$.