EUROPEAN PATENT OFFICE

Patent Abstracts of Japan

PUBLICATION NUMBER PUBLICATION DATE

: 11246665 14-09-99

BEST AVAILABLE COPY

APPLICATION DATE

: 27-02-98

: 10061912 APPLICATION NUMBER

APPLICANT: JAPAN SCIENCE & TECHNOLOGY CORP;

INVENTOR: OGAWA MAKOTO;

: C08G 77/20 C08G 77/08 C08G 77/32 C09D183/07 INT.CL.

: SELF-RETAINING POROUS SILICA AND ITS PRODUCTION TITLE

ABSTRACT: PROBLEM TO BE SOLVED: To obtain a copolymer excellent in transparency and

self-retaining properties, capable of presenting porous silica having a high specific surface area and useful for minute molecule-permeable materials, optical catalysts, catalyst carriers, etc., by polymerizing a mixture of specific silane compounds in the presence of a

surfactant.

SOLUTION: This production of self-retaining porous silica is to copolymerize (B) a tetraalkoxysilane [e.g., the alkoxy is a 1-5C (branched) alkoxy] with (C) an alkenyttrialkoxysilane (e.g. the alkoxy is a 1-5C (branched) alkoxy and the alkenyl is a 2-5C (branched) alkenyl] in the presence of (A) a surfactant [e.g. a 14-30C (branched) alkyltrimethylammonium chloride]. The copolymer is obtained, e.g. by using 0.05-0.5 mole times of the component A based on the sum total mole number of the components B and C and copolycondensing them in the presence of water in an acidic condition. The objective porous silica is obtained by baking the copolymer and removing the component A.

COPYRIGHT: (C)1999,JPO

(5)

特開平11-246665

(6)

特別平11-246665

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平11-246665

(43)公開日 平成11年(1999)9月14日

(51) Int.CI.*	識別記号	F I
COBG 77/20	1	C08G 77/20
		77/08
77/0		77/32
77/35		
CO9D 183/0	7	C 0 9 D 183/07
		等査請求 未請求 請求項の数6 FD (全 6 頁)
(21)出顧番号	特願平10-61912	(71)出版人 396020800
		科学技術扳與學樂団
(22) 出額日	平成10年(1998) 2月27日	埼玉県川口市本町4丁目1番8号
		(72)発明者 小川 誠
		東京都三鷹市牟礼1-4-9
		(74)代理人 护理士 佐伯 意生
		(11/104)/ 1/62 22 22 42

(54) 【発明の名称】 自己保持性多孔質シリカ及びその製造方法

(57)【要約】 (修正有)

[課題] 本発明は、多孔性や透明性のみならず、自己 保持性に優れた多孔質のシリカ材料を提供するものであ る。

【解決手段】 本発明は、テトラアルコキシシランとアルケニルオキシトリアルコキシシランとの共重合体、それからなる多孔質シリカ材料、及び多孔質シリカ膜に関する。また、本発明は、界面活性剤の存在下に、テトラアルコキシシランとアルケニルオキシトリアルコキシシランとを共縮合させ、次いでこれを焼成することからなる多孔質テトラアルコキシシランとアルケニルオキシトリアルコキシシランとの共重合体の製造方法に関する。

(2)

404 881 7777

特開平11-246665

2

【特許請求の範囲】

【請求項1】 テトラアルコキシシランとアルケニルトリアルコキシシランを、界面活性剤の存在下に重合させてなる共重合体。

1

【請求項2】 界面活性剤がアルキルトリメチルアンモニウム塩である請求項1に記載の共重合体。

【請求項3】 多孔質で自己保持性である請求項1又は 2に記載の共乗合体。

【請求項4】 請求項1、2又は3に記載の共重合体が らなる多孔質シリカ材料。

【請求項5】 自己保持性膜である請求項4に記載の多 孔質シリカ材料。

【請求項6】 昇面活性剤の存在下に、テトラアルコキシシランとアルケニルトリアルコキシシランとを共縮合させ、次いでこれを焼成することからなる多孔質テトラアルコキシシランとアルケニルトリアルコキシシランとの共命合体の製造方法。

【発明の詳細な説明】

[0001]

【発明の属する分野】本発明は、新規なシラン共重合体 20 に関する。より詳細には、本発明は、テトラアルコキシシランとアルケニルトリアルコキシシランとを、界面活性剤の存在下に重合させてなる共宜合体であり、自己保持性に優れた商比表面積の多孔質シリカに関する。

[0002]

【従来の核析】分子状の水や空気などの小さな分子は透過することができるが、被状の水などのように大きな物体は透過できないという、ナノサイズの微小孔を有する材料が、衣服や包装材のコーティング材料とされている。また、空気、特に酸素透過性の材料として、ナノサムズの微小孔を有する材料が包装材料やシートなどに使用されている。これらの微小分子透過性材料は、微小分子の透過性に関わる多孔性だけでなく、透明性や自己保持性などの諸特性が要求されている。また、センサー、触媒担体、特に透明性を活かして光触媒としても応用されている。

【0003】本発明者は、界面活性剤アルキルトリメチルアンモニウム塩の存在下に、テトラメトキシシランやテトラエトキシシランのような四官能性アルコキシシランを加水分解、组合して得られた溶液を基板上にスピン 40コートすることによりシリカ界面活性剤メソ様造体が基板上に厚さ1mm程度の透明な薄膜が得られ、これを空気中で焼成し界面活性剤を除去することによりナノサイズの多孔質のシリカ材料が得られることを既に見出してきた(M.0gawa, J. An. Chem. Soc., 116, 7941 (1994); M.0gawa, Chem. Commun., 1149 (1996))。

[0004] しかし、この公知の方法で得られる重合体は、膜の自己保持性が不十分で膜の取り扱い性に問題があり、実用化の障害になっている。

100051

【発明が解決すべき課題】本発明は、多孔性や透明性の みならず、自己保持性に優れた多孔質のシリカ材料を提 供することを目的としている。

[0006]

【課題を解決するための手段】本発明は、テトラアルコキシシランとアルケニルトリアルコキシシランを、界面活性剤の存在下に重合させてなる共重合体、それからなる多孔質シリカ材料、及び、自己保存性膜であるシリカ材料に関する。本発明に使用する界面活性剤としては、アルギルトリメチルアンモニウム塩が好ましい。また、本発明の共重合体は、多孔質で自己保持性であることを特徴とするものである。さらに、本発明は、界面活性剤の存在下に、テトラアルコキシシランとアルケニルトリアルコキシシランとを共縮合させ、次いでこれを焼成することからなる多孔質テトラアルコキシシランとアルケニルトリアルコキシシランとの共重合体の製造方法に関する。

【0007】本発明で使用されるテトラアルコキシシランのアルコキシ基としては、炭素数1から15、好ましくは1から10、より好ましくは1から5の直離状又は分枝状アルコキシ基であり、例えば、メトキシ基、エトキシ基、プロポキシ基などが挙げられる。本発明のテトラアルコキシシランの4個のアルコキシ基は、同一であってもよいし、相互に異なっていてもよいが、同一のアルコキシ基を有するものが好ましい。また、本発明のテトラアルコキシシランは、アルコキシ基の一部又は全部が環換又は非置換フェノキシ基になっていてもよい。本発明のテトラアルコキシシランとしては、例えば、テトラメトキシシラン、チトラプロポキシシラン、ジメトキシジエトキシシラン、チトラプロポキシシラン、ジメトキシジエトキシシランなどがある。

【0008】本発明で使用されるアルケニルトリアルコ キシシランのアルコキシ基は、前記したアルコキシ基で よく、これらのアルコキシ恙は同一であっても相互に異 なるものであってもよい。また、アルケニルトリアルコ キシシランのアルケニル甚としては、炭素数2から1 5、好ましくは2から10、より好ましくは2から5の 直鎖状又は分枝状アルケニル基であり、例えば、ビニル 基、1-プロピレン恭、1-プチレン基などが挙げられ る。本発明のアルケニルトリアルコキシシランのアルコ キシ茏は、3個である必要はなく、2個であってもよ く、アルコキシ基の一部又は全部が最換又は非置換フェ ノキシ基であってもよい。本発明のアルケニルトリアル コキシシランとしては、ビニルトリメトキシシラン(V TMOS)、ビニルトリエトキシシラン、ビニルトリブ ロポキシシラン、1ープロピレントリメトキシシラン、 1ープロピレントリエトキシシラン、1ープロピレント リプロポキシシラン、ピニルジメトキシエトキシシラン などが挙げられる。

50 【0009】本発明のアルケニルトリアルコキシシラン

特開平11-246665

(3)

の使用量は、アトラアルコキシシランの等量以下であり、好ましくはテトラアルコキシシラン1モルに対してアルケニルトリアルコキシシランが0.01~0.8モル、より好ましくは0.1~0.5モルである。

【0010】本発明で使用される界面活性剤としては、テトラアルコキシシランとアルケニルトリアルコキシシランとを共縮合できるものであれば、特に制限はない。これは、この重合反応で得られた共重合体を焼成するときに、重合反応のときに存在していた界面活性剤が除去されてしまうからである。しかし、後述するように、得られた共更合体の秩序構造は重合反応で使用される界面活性剤の極類や大きさに依存しているようであるから、目的とする秩序構造に応じて界面活性剤を選択する必要がある。

【0011】このような目的で使用される界面活性剤と しては、テトラアルキルアンモニウム塩が好ましい。テ トラアルキルアンモニウム塩のアルキル基としては、戾 **索数1から30、好ましくは1から20の直鎖状又は分** 枝状アルキル基であり、4個のアルキル基は、何一であ ってもよいし、相互に異なっていてもよいが、アルキル 20 トリメチル体が好ましい。 アルキルトリメチルアンモニ ウム塩のアルキル基は、炭素数14以上の比較的長鎖の ものが好ましい。界面活性剤のテトラアルキルアンモニ ウム塩の対イオンとしては、塩素イオン、臭素イオンな どのハロゲンイオンが好ましいが、これらに限定される ものではない。界面活性剤のテトラアルキルアンモニウ ム塩としては、テトラデカニルトリメチルアンモニウム 塩化物、ヘキサデシルトリメチルアンモニウム塩化物、 オクタデカニルトリメチルアンモニウム塩化物、エイコ サニルトリメチルアンモニウム塩化物などが挙げられ **٥.**

【0012】本発明の界面活性剤の使用金は、テトラアルコキシシランとアルケニルトリアルコキシシランの合計モル数に対して、0.05~0.5モル、好ましくは0.1~0.3モルであるが、特に限定されない。

【0013】本発明のテトラアルコキシシランとアルケニルトリアルコキシシランとの共重合体は、界面活性剤の存在下に、テトラアルコキシシランとアルケニルトリアルコキシシランとを共縮合させ、次いでこれを焼成することにより製造することができる。共縮合反応は、水の存在下に行われる。反応条件としては、通常の加水分解の条件でよく、反応温度は、宝温から溶媒の沸点温度、好ましくは電温から80℃程度である。p. Hは、酸性側であればよい。水のほかに特に溶媒を使用する必要はないが、水と混合し得る有機溶媒を併用することもできる。

【0014】共重合反応で得られた溶液を、好ましくは シート状に展開して通常の方法により乾燥する。シート 状に展開する方法としては、通常の成形方法によること もできるが、特に痒膜を製造する場合にはスピンコート 50

による方法をとることもできる。その後、得られた乾燥物を焼成する。焼成は空気中で行うことができるが、これに限定されるものではない。焼成温度としては、反応時に存在していた界面活性剤が除去される温度であれば、特に制限はないが、250℃以上、好ましくは300℃以上である。

【0015】本発明の共重合体は、透明で自己保持性の メン構造体である。X線回折パターンにおいて、低角度 に一本の回折ビークが見られる。図1は、界面活性剤と して、オクタデカニルトリメチルアンモニウム塩化物 (Cis TAC) (図1中の(a)) 、ヘキサデシルトリメ チルアンモニクム塩化物(C16 TAC)(図1中の (b)) 、テトラデカニルトリメチルアンモニウム塩化 物 (Cu TAC) (図1中の(c))、ドデカニルトリメ ヂルアンモニウム塩化物(Ciz T A C)(図 1 中の (d))、を使用して製造された本発明の共宜合体のX れるd値は、使用した界面活性剤のアルキル鎖長に依存 して変化し、Cis TAC、Cis TAC、および、Cis T ACの時、それぞれ3.63、3.34および3.20 nmであった(図2参照)。図2は、X線回折パターン から得られたせ値を示したものであり、黒三角印は各々 の昇面活性剤を使用した場合の焼成前のd値であり、黒 四角印は焼成後の d 値を示している。主た、焼成による 界面活性剤の除去後もマクロな形態は保持され、X線回 折パターンにおけるピークは残存し秩序構造が維持され ることがわかった。

【0016】本発明の共重合体のメソ構造は、重合反応時に使用される昇面活性剤が秩序構造の形成に寄与していることが示された。本発明の方法では、溶媒の揮発に伴い秩序構造が形成されると考えられが、テトラメトキシシラン(TMOS)を単独で使用した従来の系では自己保持性の膜を得るのは困難であったのに対して、三官能性のビニルトリメトキシシラン(VTMOS)を添加することにより自己保持性のメソ構造体膜が得られた。この原因は、三官能性のビニルトリメトキシシラン(VTMOS)を添加することにより、生成物のゲル化速度が遅くなるからであると考えられるが、予想外のことであった。

J. A

(4)

404 881 7777

特開平11-246665

【0018】図4は、界面活性剤としてオクタデカニル トリメチルアンモニウム塩化物(C18 TAC)を使用し て製造された本発明の共重合体の熱重量分析(TG)及 び示差熱分析(DTA)を示したものである。

【0019】水発明は、透明性、自己保持性に優れ、高 比表面積の多孔質のシリ力共重合体を提供するものであ り、特に膜状又はシート状の成形品として有用な材料を 提供するものである。

[0020]

【実施例】次に、本発明を実施例により説明するが、本 10 発明はこれらの実施例に限定されるものではない。

【0021】实施例1

テトラメトキシシラン (TMOS) 1g (3モル (モル 比)) と、ビニルトリメトキシシヲン(V TMO S) 0. 325g (1モル (基準モル比)) を、水中に入 れ、この中にヘキサデシルトリメチルアンモニウム塩化 物 (CsTAC)0. 350g (0. 5モル (モル 比)) を加えて、塩酸で酸性にした(pH<1)。この 混合物を、20℃で反応させて、均一な溶液を得た。得 られた均一な溶液を、基板上に展開し、60℃で24時 20 間乾燥して、目的の共重合体を得た。これを空気中で、 550℃5時間、焼成して界面活性剤を除去した共重合 体を得た。得られた共重合体のX線回折パターンを図1 (図1中の (a)) に、フーリエ変換赤外線スペクトル (PTIR) を図3 (図3中の(a)) に、熱重量分析 (TC) 及び示差熱分析(DTA)を図4に示す。得ら れた共角合体は、多孔質で自己保持性に優れたものであ った。

【0022】実施例2

使用する界面活性剤を、実施例1のヘキサデシルトリメ 80 チルアンモニウム塩化物に代えて、オクタデシルトリメ チルアンモニウム塩化物 (Cie TAC) を用いて、実施 例1と同様にして共重合体を得た。得られた共重合体の X辞回折パターンを図1(図1中の(b))に、フーリ 工変換赤外祿スペクトル(FTIR)を図3(図3中の (b)) に示す。得られた共重合体は、多孔質で自己保 特性に優れたものであった。

【0023】実施例3

使用する界面活性剤を、実施例1のヘキサデシルトリメ メチルアンモニウム塩化物 (Cit TAC) を用いて、実 施例1と同様にして共重合体を得た。得られた共重合体 のX級回折パターンを図1(図1中の(c))に、フー リエ変換赤外線スペクトル(FTIR)を図3(図3中 の(c))に示す。得られた共重合体は、多孔質で自己 保持性に優れたものであった。

【0024】 実施例4

使用する界面活性剤を、実施例1のヘキサデシルトリメ チルアンモニウム塩化物に代えて、 ドデカニルトリメチ ルアンモニウム塩化物(C tz YAC)を用いて、実施例 1と同様にして共重合体を得た。 得られた共重合体のX 蒜回折パターンを図1(図1中の(d))に、フーリエ 変換赤外線スペクトル(FTIR)を図3(図3中の) (d)) に示す。得られた共重合体は、多孔質で自己保 特性に優れたものであった。

[0025]

【発明の効果】本発明は、透明性、自己保持性に優れ、 高比表面積の多孔質のシリカ共重合体を提供するもので あり、特に膜状又はシート状の成形品として有用な材料 を提供するものである。

【図面の簡単な説明】

【図1】図1は、本発明の共重合体のX線回折パターン を示すものである。

【図2】図2は、本発明の共重合体の d 値を示すもので

[図3] 図3は、本発明の共重合体のFTIRを示すも のである。

【図4】図4は、本発明の共重合体の熱重量分析(T C) 及び示差熱分析(DTA)を示すものである。 【符号の説明】

- (a) 界面活性剤としてオクタデカニルトリメチルア ンモニウム塩化物 (Cis TAC)を使用した共重合体を 用いたもの。
- (b) 界面活性剤としてヘキサデシルトリメチルアン モニウム塩化物 (C16 TAC) を使用した共算合体を用 いたもの。
- (c) 界面活性剤としてテトラデカニルトリメチルア ンモニウム塩化物(Cu TAC)を使用した共重合体を 用いたもの。
- (d) 界面活性剤としてドデカニルトリメチルアンモ チルアンモニウム塩化物に代えて、テトラデカニルトリ 40 ニウム塩化物 (C12 TAC) を使用した共茧合体を用い たもの。

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.