

Quick-Sort Inventor

◆Invented by Hoare in 1962

查爾斯·安東尼·理察·霍爾爵士(Charles Antony Richard Hoare,縮寫為 C. A. R. Hoare,1934年1月11日-),生於斯里蘭卡可倫坡,英國計算機科學家,圖靈獎得主。他設計了可快速進行排序程序的快速排序(quick sort)演算法,提出可驗證程式正確性的霍爾邏輯(Hoare logic)、以及提出可訂定並時程序(concurrent process)的交互作用(如哲學家用餐問題(dining philosophers problem)的交談循序程續(CSP, Communicating Sequential Processes)架構。(圖及說明摘自維基百科)

About Quick-Sort

- Fastest known sorting algorithm in practice Under some assumptions
 - Caveat: not stable
 - In-place, good for internal sorting
- Complexity
 - Average-case complexity $O(n \log n)$
 - Worse-case complexity $O(n^2)$
 - Rarely happens if remedied correctly

Quick-Sort Example

Quick-Sort

- Quick-sort is a sorting algorithm based on divideand-conquer:
 - Divide: pick an element x
 (called pivot) and partition
 S into
 - L elements less than x
 - *E* elements equal *x*
 - *G* elements greater than *x*
 - Conquer: sort L and G
 - Combine: join *L*, *E* and *G*

Key to the success of quicksort:

- Select a good pivot
- In-place partition

Partition

- We partition an input sequence as follows:
 - We remove, in turn, each element y from S and
 - We insert y into L, E or G, depending on the result of the comparison with the pivot x
- Each insertion and removal is at the beginning or at the end of a sequence, and hence takes O(1) time
- \bullet Thus, the partition step of quick-sort takes O(n) time

```
Algorithm partition(S, p)
    Input sequence S, position p of pivot
    Output subsequences L, E, G of the
        elements of S less than, equal to,
        or greater than the pivot, resp.
   L, E, G \leftarrow empty sequences
   x \leftarrow S.erase(p)
    while \neg S.empty()
       y \leftarrow S.eraseFront()
       if y < x
            L.insertBack(y)
        else if y = x
            E.insertBack(y)
        else \{ y > x \}
            G.insertBack(y)
```

return L, E, G

Quick-Sort Tree

- An execution of quick-sort is depicted by a binary tree
 - Each node represents a recursive call of quick-sort and stores
 - Unsorted sequence before the execution and its pivot
 - Sorted sequence at the end of the execution
 - The root is the initial call
 - The leaves are calls on subsequences of size 0 or 1

Execution Example

Pivot selection

Partition, recursive call, pivot selection

Partition, recursive call, base case

Recursive call, ..., base case, join

Recursive call, pivot selection

Partition, ..., recursive call, base case

Worst-case Running Time

- The worst case for quick-sort occurs when the pivot is the minimum or maximum element
- One of L and G has size n-1 and the other has size 0
- The running time is proportional to the sum

$$n + (n-1) + \ldots + 2 + 1$$

Thus, the worst-case running time of quick-sort is $O(n^2)$

depth time

Expected Running Time

- Consider a recursive call of quick-sort on a sequence of size s
 - Good call: the sizes of L and G are each less than 3s/4
 - Bad call: one of L and G has size greater than 3s/4

- ♠ A call is good with probability 1/2
 - 1/2 of the possible pivots cause good calls:

Expected Running Time, Part 2

- lacktriangle Probabilistic Fact: The expected number of coin tosses required in order to get k heads is 2k
- \bullet For a node of depth i, we expect
 - i/2 ancestors are good calls
 - The size of the input sequence for the current call is at most $(3/4)^{i/2}n$
- Therefore, we have
 - For a node of depth $2\log_{4/3}n$, the expected input size is one
 - The expected height of the quick-sort tree is $O(\log n)$
- The amount or work done at the nodes of the same depth is O(n)
- Thus, the expected running time of quick-sort is $O(n \log n)$

total expected time: $O(n \log n)$

In-Place Quick-Sort

```
// quick-sort S
 template <typename E, typename C>
 void quickSort(std::vector<E>& S, const C& less) {
   if (S.size() \le 1) return;
                                                      // already sorted
   if (S.size() \le 1) return;
quickSortStep(S, 0, S.size()-1, less);
                                                      // call sort utility
 template <typename E, typename C>
 void quickSortStep(std::vector<E>& S, int a, int b, const C& less) {
   if (a >= b) return;
                                                      // 0 or 1 left? done
   E pivot = S[b];
                                                      // select last as pivot
   int | = a:
                                                      // left edge
   int r = b - 1:
                                                      // right edge
   while (l \ll r) {
     while (I \le r \&\& !less(pivot, S[I])) I++; // scan right till larger
     while (r >= 1 \&\& !less(S[r], pivot)) r--; // scan left till smaller
                                                      // both elements found
     if (1 < r)
       std::swap(S[I], S[r]);
                                                      // until indices cross
   std::swap(S[I], S[b]);
                                                      // store pivot at I
   quickSortStep(S, a, I-1, less);
                                                      // recur on both sides
   quickSortStep(S, I+1, b, less);
Code Fragment 11.7: A coding of in-place quick-sort, assuming distinct elements.
```

Partitioning Algorithm Illustrated

How to Pick the Pivot (1/2)

- Strategy 1: Pick the first or the last element
 - Works only if the input S is random
 - O(n²) if input S is sorted or almost sorted

- Strategy 2: Pick a random element
 - Usually works well
 - Extra computation for random number generation
- Strategy 3: Perform random permutation of input S first
 - Usually works well

random_shuffle()
in STL

How to Pick the Pivot (2/2)

- Strategy 4: Median of three
 - Ideally, the pivot should be the median of input S, which divides the input into two sequences of almost the same length
 - However, computing median takes O(n)
 - So we find the approximate median via
 - Pivot = median of the left-most, right-most,
 and the center element of the array S

Example of Median of Three

- *Let input $S = \{6, 1, 2, 9, 0, 3, 5, 2, 7, 8\}$
 - left=0 and S[left] = 6
 - right=9 and S[right] = 8
 - center = (left+right)/2 = 4 and S[center] =
 0
 - Pivot = median of $\{6, 8, 0\} = 6$

Dealing with Small Arrays

- For small arrays (say, $N \le 20$),
 - Insertion sort is faster than quicksort
- Quicksort is recursive
 - So it can spend a lot of time sorting small arrays
- Hybrid algorithm:
 - Switch to using insertion sort when problem size is small (say for N < 20)

Summary of Sorting Algorithms

Algorithm	Time	Notes Comprehensive list!
selection-sort	$O(n^2)$	in-place, unstableslow, for small data sets (< 1K)
insertion-sort bubble-sort	$O(n^2)$	■in-place, stable■ slow, for small data sets (< 1K)
quick-sort	$O(n \log n)$ expected	 in-place, unstable fastest (?), for large data sets (1K ~ 1M)
heap-sort	$O(n \log n)$	 in-place, unstable fast, for large data sets (1K ~ 1M)
merge-sort	$O(n \log n)$	 not in-place, stable fast, for huge data sets (> 1M)

More About Selection Sort

- How come it's unstable?
 - Example: 2_a 2_b 1

Quiz!

- How to make it stable?
 - Quickest fix: Use "insert" instead of "swap"
 - Expensive for arrays
 - Cheap for linked lists

http://www.geeksforgeeks.org/stable-selection-sort

More About Heap Sort

- How come it's unstable?
 - Example: 2_a 2_b 1
- How to make it stable?
 - Please post it to FB

How to Make it Stable?

- How come make a general-purpose unstable sort algorithm stable?
 - Use the original key and a new key of the array's index to perform multiple-key comparison for sorting
 - Example of selection sort
 - ◆ [2 2 1]

http://www.quora.com/What-should-be-done-to-make-unstable-sorting-algorithms-stable