Analysis of parallel groups designs

Daniel Hammarström

17 oktober 2018

Background

- ▶ In sport science (and e.g. medical-, nutritional-, psychological-sciences), intervention-studies are common. We are interested in the effect of e.g. a training method, nutritional supplement or drug.
- ► The outcome in these studies could be physical performance, degree of symptoms, muscle size or some other measure that we are interested in studying.
- ► These studies are often called Randomized Controlled Trials (RCT)

Different study design

- ► The choice of study design relates to the research-question and dictates what statistical methods can be applied.
- ► The study design affects the ability of the study to detect an effect (the power)
- ► A common case of a RCT is the parallel-groups design
- Participants are allocated to two or more "treatment groups", at random, one group gets a treatment, the other group acts as the control.
- Usually, a measurement is made prior to the intervention (Baseline) and after the intervention.
- This is a common design when wash-out is not possible and thus, the two treatment can not be compared within the same individual.

A pre-post parallel-groups design

A pre-post parallel-groups design

What is the question

- ► Here we are interested in the **treatment effect** (or the difference in effect of two different treatments)
- ▶ This means that we want to establish if

$$\Delta Y_A - \Delta Y_B \neq 0$$

... meaning that the **null hypothesis** is that the **change** (Δ) in group A is not different to the **change** in group B

Different statistical solutions (1)

We could do a t-test on the change score between groups. This is equivalent to a regression model where we model change as a function of groups

$$outcome = \beta_0 + \beta_1 Group_B$$

```
# t.test example
with(data, t.test(outcome_A, outcome_B, paired = FALSE)
# The same in regression
lm(change ~ group, data = data)
```

Problems with the simple solution

- Baseline values can affect the interpretation of a pre- to post-intervention study through regression to the mean
- ▶ If we analyse change scores (post pre), regression to the mean will give an overestimation of the effect, if there is, by chance, a difference in baseline values between groups (lower values in treatment group) (Vickers and Altman 2001).
- ▶ If we analyse follow up scores, the pattern will be reversed.

A solution to this problem

- ► Instead of only analyzing change-scores, we can also control for the relationship between baseline values and the change scores.
- ► This technique is called Analysis of Co-Variance (ANCOVA), where the baseline is considered the adding the covariance.
- ► This is an extension of the simple linear regression

```
# Extending the linear regression equation
lm(change ~ baseline + group, data = data)
```

Why ANCOVA

- ► The ANCOVA model has better power (Senn 2006)
- ► The ANCOVA model gives **unbiased** estimates of differences between groups (Vickers and Altman 2001)

When can we use the ANCOVA model?

 When the allocation of participants have been done at random (e.g. RCTs), differences at baseline should be due to random variation

Presentation of 10 vs 30RM-study

- ▶ 31 participants were assigned to one of two groups training with either 10RM or 30RM, 27 participants completed the trials (24 participants completed to full time).
- ► The main interest in the study was development of strength and muscle hypertrophy (we are interested in strength)
- ► The variables in the file are:
- a. subject: ID of participant
- b. timepoint: prior to *pre* or after the intervention *post*
- c. group: The intervention group
- d. exercise: The exercise that was tested, *legpress*, *benchpress* or *bicepscurl*
- e. load: The load lifted in 1RM test (kg)

Reading the data set and exploratory analysis

Exploratory analysis

The main purpose of your analysis:

What training method would you, based on your analysis recommend for improvning maximal strength?

How to answer the question

- Choose the most appropriate 1RM test or use all
- ▶ Choose the most appropriate statistical model/test, compare different models (1m on the change-score, 1m with baseline as covariate, 1m on post-values with baseline as a covariate)
- Write a full report (Background, methods (with emphasis on statistics), results and discussion)

References

Senn, S. 2006. "Change from Baseline and Analysis of Covariance Revisited." Journal Article. *Stat Med* 25 (24): 4334–44. https://doi.org/10.1002/sim.2682.

Vickers, Andrew J., and Douglas G. Altman. 2001. "Analysing Controlled Trials with Baseline and Follow up Measurements." Journal Article. *BMJ : British Medical Journal* 323 (7321): 1123–4. http:

//www.ncbi.nlm.nih.gov/pmc/articles/PMC1121605/%0Ahttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1121605/pdf/1123.pdf.