Supplémentaire commun à deux sous-espaces vectoriels

Soit E un \mathbb{K} - espace vectoriel de dimension finie $n \in \mathbb{N}^*$.

On se donne A et B deux sous-espaces vectoriels de E et on se pose le problème suivant :

A quelle(s) condition(s) existe-t-il un sous-espace vectoriel C tel que : $A+B=A\oplus C=B\oplus C$.

1. Dans cette question on suppose que le sous-espace vectoriel C existe. Montrer que $\dim A = \dim B$ et déterminer $\dim C$.

Dans la suite de notre étude, nous allons supposer $\dim A = \dim B$ et montrer que le sous-espace vectoriel C existe.

- 2. On étudie pour commencer le cas où A et B seraient deux hyperplans distincts.
- 2.a Justifier l'existence de vecteurs $\vec{u} \in A$ et $\vec{v} \in B$ tels que $\vec{u} \notin B$ et $\vec{v} \notin A$.
- 2.b Etablir que $\vec{w} = \vec{u} + \vec{v} \notin A \cup B$.
- 2.c Observer que $C = \text{Vect}(\vec{w})$ est solution du problème posé.
- 3. On revient au cas général et on suppose seulement $\dim A = \dim B$
- 3.a Résoudre le problème posé lorsque A = BDans la suite, on suppose $A \neq B$.
- 3.b Justifier qu'il existe un sous-espace vectoriel A' tel que $(A \cap B) \oplus A' = A$. De manière symétrique, on introduit B' sous-espace vectoriel tel que $(A \cap B) \oplus B' = B$.
- 3.c Montrer que $A' \cap B' = \{\vec{o}\}\$ et $\dim A' = \dim B' \in \mathbb{N}^*$. Dans la suite, on pose $p = \dim A' = \dim B'$.
- 3.d Justifier l'existence de bases $\mathcal{B} = (\vec{e}_1, ..., \vec{e}_n)$ et $\mathcal{C} = (\vec{f}_1, ..., \vec{f}_n)$ aux sous-espaces vectoriels A' et B'.
- 4. On reprend les objets introduits ci-dessus afin de construire un sous-espace vectoriel C solution. On forme $\mathcal{D} = (\vec{g}_1, ..., \vec{g}_p)$ en posant, pour tout $i \in \{1, ..., p\}$, $\vec{g}_i = \vec{e}_i + \vec{f}_i$.
- 4.a Montrer que la famille \mathcal{D} est libre.
- 4.b On pose $C = \text{Vect}(\vec{g}_1, ..., \vec{g}_p)$. Déterminer $\dim C$.
- 4.c Montrer que $A \cap C = \{\vec{o}\}\$.
- 4.d Conclure que $A + B = A \oplus C = B \oplus C$.