Seja J: A-DIR e g: A-DIR integáveis, proce a designalade de Schwarz:
$\left[\int_{A} f(x) g(x) dx\right]^{2} \leq \int_{A} f(x)^{2} dx \cdot \int_{A} g(x)^{2} dx$
Vamos considerar: $p(\lambda) = \int (\int x) + \lambda (g(x))^2 dx = \lambda^2 \int g^2(x) dx +$
22 f fr.) g(x) dx + f f2(x) dx. Como p(1) é elevado ao quadrado,
\int_{A}
logo p(2) >0 e portanto Apa (0, ou sija se utilizonmos."
$\Delta = b - tac - \Delta + \int f(x) dx - f(x) dx - f(x) dx = \Delta$
$\Delta = 5^2 - 4ac - 4 \left(\int_A f(x) \cdot g(x) dx \right)^2 - 4 \int_A g^2(x) dx \cdot \int_A f(x) dx > 0 - 1$ $\left(\int_A f(x) \cdot g(x) dx \right)^2 \leq \int_A f^2(x) dx \cdot \int_A g^2(x) dx$ $\int_A f(x) \cdot g(x) dx = \int_A f^2(x) dx \cdot \int_A g^2(x) dx$
A THOUSE A THOUSE
Portanto temos a disiqual acde de Sohwarz.