$Assignment_1_Jose_Zacarias$

July 14, 2024

0.0.1 Student Name: Jose Zacarias

0.0.2 Student Id: N01663659

- 0.1 Examine the dataset and use the most effective visualization graph to address the following questions. Provide your answers and analyses for each question alongside the visualizations.
 - How Does the Funding Ecosystem changes with respect to Time?
 - What is the General Amount that Startups get in India?
 - Which Kind of Industries are more preferred for Startups?
 - Does Location also play a role, In determining the Growth of a Startup?
 - Who plays the main role in Indian Startups Ecosystem?
 - What are the different Types of Funding for Startups?

```
[1]: import pandas as pd
import numpy as np
import re
from datetime import datetime
import matplotlib.pyplot as plt
```

```
[2]: df = pd.read_csv('startup_funding.csv')
    df.tail()
```

[2]:		Sr No Date	dd/mm/yyyy	Startup Name	${\tt Industry}$	Vertical	SubVertical	\
	3039	3040	29/01/2015	Printvenue		NaN	NaN	
	3040	3041	29/01/2015	Graphene		NaN	NaN	
	3041	3042	30/01/2015	Mad Street Den		NaN	NaN	
	3042	3043	30/01/2015	Simplotel		NaN	NaN	
	3043	3044	31/01/2015	couponmachine in		NaN	NaN	

City	Location	Investors Name InvestmentnType \setminus	١
3039	NaN	Asia Pacific Internet Group Private Equity	
3040	NaN	KARSEMVEN Fund Private Equity	
3041	NaN	Exfinity Fund, GrowX Ventures. Private Equity	
3042	NaN	MakeMyTrip Private Equity	
3043	NaN U	K based Group of Angel Investors Seed Funding	

Amount in USD Remarks

```
3039 45,00,000 NaN
3040 8,25,000 Govt backed VC Fund
3041 15,00,000 NaN
3042 NaN Strategic Funding, Minority stake
3043 1,40,000 NaN
```

0.2 Cleaning and formatting the dataset

```
[3]: # replacing all the values with 'N/A', None, '', 'undisclosed' with Nan df = df.replace(['N/A', None, '', 'undisclosed', 'Undisclosed', 'unknown'], np.

nan)

# Droping two lines manually because is too much code to handle this and is_

only 2 lines

df = df.drop(2571)

df = df.drop(2606)
```

0.2.1 Lets see the empty values per column

```
[4]: for columnName in df.columns:
    column = df[columnName]
    missing_values = column.isna().sum()
    print(columnName, missing_values)
```

Sr No 0
Date dd/mm/yyyy 0
Startup Name 0
Industry Vertical 171
SubVertical 934
City Location 180
Investors Name 35
InvestmentnType 4
Amount in USD 967
Remarks 2623

Lets check the unique values

```
[5]: print(df.nunique())
print('The length of data is',len(df))
```

```
Sr No
                     3042
Date dd/mm/yyyy
                     1033
Startup Name
                     2457
Industry Vertical
                      819
SubVertical
                     1942
City Location
                      112
Investors Name
                     2409
InvestmentnType
                       55
Amount in USD
                      467
Remarks
                       72
```

```
dtype: int64
The length of data is 3042
```

Some values in the column Date need formatting, lets format them

```
[6]: def clean date(date str):
         # Remove unwanted characters
         date str = date str.replace('.', '/')
         date_str = date_str.replace('//', '/')
         date_str = date_str.replace('\\xc2\\xa0', '')
         date_str = re.sub(r'^\xc2\xa0', '', date_str)
         date_str = re.sub(r'[^\d/]', '/', date_str)
         # Add missing slashes for dates like 05/072018 to 05/07/2018
         date_str = re.sub(r'(\d{2})/(\d{2})(\d{4})', r'\1/\2/\3', date_str)
         # Handle cases where the year is in two digits
         if len(date_str.split('/')[-1]) == 2:
             date_str = date_str[:-2] + '20' + date_str[-2:]
         # Convert to datetime object and format correctly
         try:
             date_obj = datetime.strptime(date_str, '%d/%m/%Y')
         except ValueError:
             try:
                 date_obj = datetime.strptime(date_str, '%d/%m/%y')
             except ValueError:
                 return None # or handle the error as needed
         return date_obj.strftime('%d/%m/%Y')
     # Apply the cleaning function to the date column, creating a new column and
     \hookrightarrow dropping the old one
     df['date'] = df['Date dd/mm/yyyy'].apply(clean_date)
     df.drop(columns=['Date dd/mm/yyyy'], inplace=True)
```

We have to fill all missing values, lets do it one at a time

```
Industry vertical: Lets fill this one using mode
```

```
[7]: mode = df['Industry Vertical'].mode()[0]
print('Industry Vertical mode: ', mode)
df['Industry Vertical'] = df['Industry Vertical'].fillna(mode)
```

Industry Vertical mode: Consumer Internet

SubVertical: fill this one using mode as well

```
[8]: mode = df['SubVertical'].mode()[0]
print('SubVertical mode: ', mode)
df['SubVertical'] = df['SubVertical'].fillna(mode)
```

SubVertical mode: Online Lending Platform

City Location, Investors name and remarks lets fill them with just "Not provided"

```
[9]: # city location column name have 2 spaces in between
df['City Location'] = df['City Location'].fillna('Not provided')
df['Investors Name'] = df['Investors Name'].fillna('Not provided')
df['Remarks'] = df['Remarks'].fillna('Not provided')
```

For investment Type lets fill with the mode

```
[10]: mode = df['InvestmentnType'].mode()[0]
print('InvestmentnType mode: ', mode)
df['InvestmentnType'] = df['InvestmentnType'].fillna(mode)
```

InvestmentnType mode: Private Equity

```
[11]: def indian_to_number(value):
          if pd.isna(value):
              return np.nan
          if isinstance(value, (int, float)):
              return round(value, 2)
          # Remove commas and convert to float
          try:
              return float(str(value).replace(',', ''))
          except ValueError:
              return np.nan
      df['Amount in USD'] = df['Amount in USD'].apply(indian_to_number)
      # Convert to numeric type (float to handle potential NaN values)
      df['Amount in USD'] = pd.to_numeric(df['Amount in USD'], errors='coerce')
      # Calculate mean of non-NaN values
      mean_value = round(df['Amount in USD'].mean(), 2)
      print(f"Mean value: {mean_value}")
      df['Amount in USD'] = df['Amount in USD'].fillna(mean_value)
      def format_large_number(number):
          if number >= 1000:
              formatted_number = f"{number / 1000:.1f}".rstrip('0').rstrip('.')
          else:
              formatted_number = str(number)
          return float(formatted_number)
```

```
df['Amount in USD'] = df['Amount in USD'].apply(format_large_number)
     Mean value: 18438521.25
[12]: # Managing outliers
      def adjust_outliers(df, column_name):
          Q1 = df[column name].quantile(0.25)
          Q3 = df[column_name].quantile(0.75)
          IQR = Q3 - Q1
          min_val = Q1 - 1.5 * IQR
          max_val = Q3 + 1.5 * IQR
          df[column_name] = np.where(df[column_name] < min_val, min_val,__</pre>

df [column_name])
          df[column_name] = np.where(df[column_name] > max_val, max_val,__

df[column_name])
          return df[column name]
      df['Amount in USD'] = adjust_outliers(df, 'Amount in USD')
[13]: for columnName in df.columns:
          column = df[columnName]
          missing_values = column.isna().sum()
          print(columnName, missing values)
     Sr No 0
     Startup Name 0
     Industry Vertical 0
     SubVertical 0
     City Location 0
     Investors Name 0
     InvestmentnType 0
     Amount in USD 0
     Remarks 0
     date 0
     If you want to see the result of the data cleaned, run this line without the comment
     and a CSV file will be generated where you can see the new data
[14]: # df.to_csv('cleaned_data.csv', index=False)
     0.3 Now we can go with the questions
     How Does the Funding Ecosystem changes with respect to Time?
[15]: df['date'] = pd.to_datetime(df['date'], format='%d/%m/%Y', errors='coerce')
      # Extract the year and month from the date
```

```
df['Year'] = df['date'].dt.year
df['Month'] = df['date'].dt.month
# Group by year and month and sum the funding amounts
monthly_funding = df.groupby(['Year', 'Month'])['Amount in USD'].sum().
 →reset_index()
# monthly_funding.head(20)
# Create a new column for Year-Month
monthly_funding['Year-Month'] = monthly_funding['Year'].astype(str) + '-' +__
 →monthly_funding['Month'].astype(str).str.zfill(2)
# Sort by date
monthly_funding = monthly_funding.sort_values(by=['Year', 'Month'])
# Plotting the data
plt.figure(figsize=(20, 6))
plt.plot(monthly_funding['Year-Month'], monthly_funding['Amount in USD'],
 →marker='o')
plt.xticks(rotation=45)
plt.xlabel('Time (Year-Month)')
plt.ylabel('Total Funding Amount (USD)')
plt.title('Funding Ecosystem Changes Over Time')
plt.grid(True)
plt.tight_layout()
# Show the plot
plt.show()
```


We can see here that the total founding amount decrease with the time

0.3.1 What is the General Amount that Startups get in India?

```
[16]: plt.figure(figsize=(20, 6))
   plt.boxplot(df['Amount in USD'], vert=False)
   plt.title('Distribution of Startup Funding Amounts in India')
   plt.xlabel('Amount in USD')
   plt.grid(True)
   plt.show()
   df['Amount in USD'].describe()
```



```
[16]: count
                3042.000000
      mean
               11184.124227
      std
               11558.283731
      min
                  16.000000
      25%
                1000.000000
      50%
                7450.000000
      75%
               18438.500000
      max
               44596.250000
      Name: Amount in USD, dtype: float64
```

Most startups receive funding amounts between \$1,000 and \$18,438.50, with the median amount being \$7,450. This indicates that half of the startups receive funding below \$7,450,

Which Kind of Industries are more preferred for Startups?

```
[17]: # There are too many unique values in this column so I will list the top 5
  top_5_values = df['Industry Vertical'].value_counts().nlargest(5)
# Plot the histogram
  plt.figure(figsize=(15, 6))
  top_5_values.plot(kind='bar')
  plt.title(f'Top 5 Most more preferrer Industries for Startups')
  plt.ylabel('Frequency')
  plt.xticks(rotation=45)
  plt.show()
```


Consumer internet is the most preferred industry by startups

0.3.2 Does Location also play a role, In determining the Growth of a Startup?

Let group the cities and see the mean and media values of the investment amount

```
[18]: location_stats = df.groupby('City Location')['Amount in USD'].agg(['mean', ___
      # Select the top 10 cities by the number of startups
     top_cities = location_stats.head(10)
     # Plot the mean and median funding amount for the top cities
     plt.figure(figsize=(14, 8))
     top_cities[['mean', 'median']].plot(kind='bar', figsize=(14, 8),__
      ⇔edgecolor='black')
     plt.title('Average and Median Funding Amounts in Top Cities')
     plt.xlabel('City')
     plt.ylabel('Amount in USD')
     plt.grid(True)
     plt.xticks(rotation=45)
     plt.legend(['Mean Funding Amount', 'Median Funding Amount'])
     plt.show()
     top_cities
```

<Figure size 1400x800 with 0 Axes>

[18]:		mean	median	count
	City Location			
	Bangalore	11247.676214	8000.0	700
	Mumbai	10749.922261	5750.0	566
	New Delhi	11003.558551	12000.0	421
	Gurgaon	12168.846516	11000.0	287
	Not provided	10399.792500	5000.0	180
	Bengaluru	13206.250355	7000.0	141
	Pune	10910.176190	5600.0	105
	Hyderabad	8676.812626	3000.0	99
	Chennai	10643.250000	6000.0	97
	Noida	10698 706522	9475 0	92

we can see here that the location does play an important role the growth of a startup, as indicated by the variation in the average and median funding amounts across different cities.

0.3.3 Who plays the main role in Indian Startups Ecosystem?

```
plt.figure(figsize=(14, 8))
top_investors.plot(kind='bar', figsize=(14, 8), edgecolor='black')
plt.title('Top Investors in the Startup Ecosystem')
plt.xlabel('Investor')
plt.ylabel('Amount in USD / Number of Investments')
plt.grid(True)
plt.xticks(rotation=45)
plt.legend(['Total Investment Amount', 'Number of Investments'])
plt.show()
```

<Figure size 1400x800 with 0 Axes>

[19]:		sum	count
	Investors Name		
	Ratan Tata	443059.00	25
	Indian Angel Network	227572.00	23
	Sequoia Capital	226323.25	15
	Undisclosed Investors	216491.00	39
	Not provided	190059.65	35
	Undisclosed investors	176313.25	30

Accel Partners	164111.75	12
Tiger Global Management	152692.50	7
Naspers	133788.75	3
RoundGlass Partners	133069.50	10

Ratan tata is the one who invest more in startups so he plays the main role

0.3.4 What are the different Types of Funding for Startups?

```
[20]: funding_types = df['InvestmentnType'].value_counts()
funding_types
```

[20]:	InvestmentnType		
	Private Equity	1360	
	Seed Funding	1353	
	Seed/ Angel Funding	60	
	Seed / Angel Funding	47	
	Seed\\nFunding	30	
	Debt Funding	25	
	Series A	24	
	Seed/Angel Funding	23	
	Series B	20	
	Series C	14	
	Series D	12	
	Angel / Seed Funding	8	
	Seed Round	7	
	Private Equity Round	4	
	Pre-Series A	4	
	Seed	4	
	Seed / Angle Funding	3	
	Equity	2	
	Venture Round	2	
	pre-Series A	2	
	Series E	2	
	Corporate Round	2	
	Series F	2	
	Seed Funding Round	1	
	Private	1	
	Private Funding	1	
	Series H	1	
	Series G	1	
	Seed funding	1	
	Structured Debt	1	
	Series B (Extension)	1	
	Term Loan	1	
	PrivateEquity	1	
	Angel Funding	1	

Pre-series A	1
Private\\nEquity	1
Crowd funding	1
Equity Based Funding	1
Mezzanine	1
Single Venture	1
Debt-Funding	1
Venture	1
Pre Series A	1
Debt	1
Funding Round	1
Inhouse Funding	1
Debt and Preference capital	1
Bridge Round	1
Venture - Series Unknown	1
Angel Round	1
Series J	1
Angel	1
Maiden Round	1
pre-series A	1
Crowd Funding	1
Name: count, dtype: int64	

0.3.5 We can see here the different types of investment, I didn't use a graph for this because this way is more readable.