

ூலங்கையின் உயர்தர கணித விஞ்ஞான

பிரிவிற்கான இணையதளம்

SCIENCE EAGLE www.scienceeagle.com

- ✓ t.me/Science Eagle ▶ YouTube / Science Eagle
- f 💆 🔘 /S cience Eagle S L

C.Maths

Physics

Chemistry

+ more

தொண்டைமானாறு வெளிக்கள நிலையம் நடாத்தும் நான்காம் தவணைப் பரீட்சை - 2021 Conducted by Field Work Centre, Thondaimanaru.

4th Term Examination - 2021

இரசாயனவியல் Ι I Chemistry

Two hours

02

Gr -13 (2021)

பகுதி – I

- 1) அணுக்கட்டமைப்பு தொடர்பாக செய்யப்பட்ட பின்வரும் கண்டுபிடிப்புக்களைக் கருதுக.
 - I. அணுவின் அடிப்படைத்துணிக்கை இலத்திரனைப் பெயரிட்டவர்.
 - II. அணுவின் அடிப்படைத்துணிக்கை இலத்திரனின் திணிவு

மேற்குறித்த I, II ஆகிய கண்டுபிடிப்புக்களைச் செய்த இரு விஞ்ஞானிகளும் முறையே,

- ஜே. ஜே. தொம்சனும் றொபேட் மில்லிக்கனும்
- ஜே. ஜே. தொம்சனும் கோல்ஸ்ரைனும்
- (3) கோல்ஸ்ரைனும் றதபேட்டும்.
- (4) பரடேயும் ஜே. ஜே. தொம்சனும்.
- பரடேயும் றொபேட் மில்லிக்கனும்
- அணுவில் (Cr, Z = 24) $l=0, m_1=-2$ என்னும் சக்திச்சொட்டெண்களில் 2) குரோமியம் உள்ள இலத்திரன்கள் எண்ணிக்கைகள் முறையே
 - (1) 8, 10
- (2) 8, 6
- (3) 8, 5
- (4) 7,1
- (5) 7,2
- 3) NCO- அயனிற்கு மிகவும் ஏற்றுக்கொள்ளக்கூடிய லூயி கட்டமைப்பானது.

$$(1)^{(-)} \ddot{N} = C = \ddot{0}$$

$$(1)^{(-)} \ddot{N} = C = \ddot{O}$$

$$(2)^{(2-)} \ddot{N} - C \equiv \ddot{O} +$$

$$(4) : N \equiv \dot{C} - \ddot{O}$$

$$(5)^{(-)} \ddot{N} = \dot{C} - \ddot{O} :$$

$$(3) : N \equiv C - \ddot{O}:$$

$$(4) : \mathbf{N} \equiv \overset{(-)}{\mathbf{C}} - \overset{\dots}{\mathbf{0}}$$

(5)
$$\ddot{N} = \ddot{C} - \ddot{O}$$
:

- 4) மத்திய அணுவைச் சூழ நான்முகி இலத்திரன் சோடிக் கேத்திர கணிதத்தை அடிப்படையாக கொண்டு பல மூலக்கூறுகளின் வடிவங்கள் உள்ளன. அவை
 - நான்முகி, T வடிவம், சீசோவடிவம் (1)
 - நான்முகி, முக்கோண கூம்பகம், கோணவடிவம்.
 - நான்முகி, T வடிவம், தளமுக்கோணம் (3)
 - சீசோவடிவம், முக்கோணம் கூம்பகம், கோணவடிவம் *(*4*)*
 - T வடிவம், முக்கோணக்கூம்பகம், கோணவடிவம் **(5)**
- 5) தரப்பட்டுள்ள சேர்வையின் IUPAC பெயர்.

$$\begin{matrix} 0 & 0 \\ \parallel & \parallel \\ \mathrm{H-C-CH_2-C-CH_2-C-OCH_3} \end{matrix}$$

- (1) methyl 3 bromo 5 oxopentanoate
- (2) methyl 3 bromo 5 formylpentanoate
- (3) methoxy 3 bromo 5 oxopentanoate
- (4) methyl 3 bromo 5 oxopentanoate
- (5) methyl 3 bromo 5 formylpentanoate

(3) $F^- > O^{2-} > Cl^- > Na^+ > Mg^{2+}$ (4) $F^- > O^{2-} > Cl^- > Mg^{2+} > Na^+$ (5) $Cl^- > F^- > O^{2-} > Na^+ > Mg^{2+}$

(1) $Cl^- > O^{2-} > F^- > Na^+ > Mg^{2+}$

6) Na+, Mg²⁺, O²⁻, F-, Cl- என்னும் இனங்களின் ஆரைகள் குறையும் வரிசை

7) அமில KMnO $_4$ கரைசலைப் பயன்படுத்தி மெதனல் (H - $^{
m C}$ - H) கானபீர் ஒட்சைட்டாக (CO $_2$) ஒட்சியேற்றும் தாக்கத்தில் பரிமாறப்படும் மொத்த இலத்திரன்களின் எண்ணிக்கை. (1)9(2) 20 (3) 18

(2) $Cl^{-} > F^{-} > O^{2-} > Na^{+} > Mg^{2+}$

(4) 16

(5) 14

- 8) NaBH4 உடன் தாக்கம் புரியும் போது பின்வரும் எச்சேர்வை தாழ்த்தப்பட முடியாது. (1) $CH_3 - C - H$ (2) $CH_3 - C - CH_3$ (3) $CH_3 - C - OCH_3$ (4) $HO - C - CH_2 - CH_2 - C - H$ (5) $CH_3 - CH = CH - C - H$
- 9) 0.05M செறிவுடைய $m H_2SO_4$ இனதும் 0.1~
 m M செறிவுடைய $m HNO_3$ இனதும் சமகனவளவுகள் கலக்கப்பட்டன. விளைவுக்கலவையின் pH யாது?
- (2) 1.5(5) 0.5(1) 210) (A) $CH_3 - CH_2 - CH_2 - CH_2 - OH$ $CH_3 - CH_2 - CH_2 - CH_2 - OH$

மேற்குறித்த சேர்வைகளின் கொதிநிலைகளின் அதிகரிக்கும் வரிசை (3) A < B < D < C < E(2) B < A < C < D < E

- (1) A < B < C < E < D(5) E < D < C < B < A(4) A < B < C < D < E
- 11) பின்வருவனவற்றில் பிழையான கருத்தை இனங்காண்க.
 - (1) மக்னீசியத்தின் (Mg(g)) இலத்திரன் பெறும் சக்தி நேரானது.
 - (2) NCl₃ இனை நீரில் கரைக்கும் போது ஒரு தொற்றுநீக்கி கிடைக்கப்பெறும்
 - (3) H இன் இலத்திரனினால் உணரப்படும் பயன்படு கருவேற்றம் (Z) ஆனது 2 இலும் குறைவானது
 - (4) NF_3 இன் பிணைப்புக்கோணம் NH_3 இன் பிணைப்புக் கோணத்திலும் குறைவாகும்
 - (5) AlCl₃ ஒரு அயன்பிணைப்பு சேர்வையாகும்.

மெதையில் ஏற்றத்தாக்கத்தை கருதுக. இத்தாக்கத்தில் பரிவின் மூலம் உண்டாக முடியாத படிவுக்கட்டமைப்பு எது?

 CH_3

13) HCl இன் 36.5% (திணிவு வழி) கரைசலொன்றின் அடர்த்தி $1.4~{
m gcm}^{-3}$ ஆகும். HCl கரைசலின் மூலர்திறன் யாது? (H - 1, Cl - 35.5)

(1) 1.4 M

- (2) 2.8 M
- (3) 5 M
- (4) 10 M
- (5) 14 M
- 14) $\rm H_2S$ ஆனது ஒரு இருமூல அமிலமாக தொழிற்படுகின்றது. $\rm k_1=1~x~10^{-8}~moldm^{-3}$ ஆகவும் $\rm k_2=2~x~10^{-16}~moldm^{-3}$ ஆகவும் உள்ளது. கீழே தரப்பட்ட தாக்கத்திற்குரிய சமநிலை மாறிலி யாது?

 $H_2S_{(aq)} + H_2O_{(l)} \rightleftharpoons 2H_3O$

- (1) 24 mol 2 dm $^{-6}$
- $(2) mol^2 dm^{-6}$
 - mol^2dm^{-6} (3) .5 mol^2dm^{-6}

(4) $^{24} \text{ mol}^2 \text{dm}^{-6}$

- 24 mol² dm⁻⁶
- 15) ${
 m MgCO_3}$, ${
 m CaCO_3}$ ஐயும் மாத்திரம் கொண்ட ஒரு மாதிரியின் $1.84{
 m g}$ ஆனது மிகையான ஐதான HCl இல் கரைத்த போது நியம வெப்ப அமுக்கத்தில் $0.44828~{
 m dm}^3$ ${
 m CO_2}$ வெளிவிடப்பட்டது. இம்மாதிரியில் ${
 m CaCO_3}$ இன் திணிவு சதவீதம் (${
 m C}=12,{
 m O}=16,{
 m M}=24,{
 m Ca}=40$) (மூலர்கனவளவு = $22.414{
 m dm}^3{
 m mol}^{-1}$)

(1) 54.35

- (2) 44.70
- (3) 27.50
- (4) 22.35
- (5) 14.90
- 16) மாறா வெப்பநிலையில் ஒரு மூடிய கொள்கலத்தில் $H_{2(g)} + I_{2(g)} \rightleftharpoons 2 \, HI_{(g)}$ என்னும் சமநிலை காணப்படுகின்றது. வெப்பநிலையை மாறிலியாக வைத்துக்கொண்டு இக்கொள்கலத்தின் கனவளவு அதிகரிக்கப்படுமாயின் முற்தாக்க, பிற்தாக்க வீதங்களில் ஏற்படக்கூடிய மாற்றங்கள்?

	முற்தாக்கம்	பிற்தாக்கம்
(1)	மாற்றமடையாது	<mark>மா</mark> ற்றமடையாத
(2)	குறைவடையும்	குறைவடையும்
(3)	குறைவடையும்	அதிகரிக்கும்
(4)	அதிகரிக்கும்	குறையும்
(5)	அதிகரிக்கும்	அதிகரிக்கும்

17) ஒரு தரப்பட்ட வெப்பநிலையில் ஒரு விறைத்த மூடிய கொள்கலத்தில் தாக்கும் $2N_2O_{5(g)} oup 4NO_{2(g)} + O_{2(g)}$ என நடைபெறுகின்றது. இத்தாக்கத்தின் போது O_2 உருவாகும் வீதம் $1 ext{moldm}^{-3}S^{-1}$ ஆகக் காணப்பட்டது. அதேவேளையில் N_2O_5 அழிவடைதல், NO_2 உருவாதில் வீதங்களை எது காட்டுகின்றது? (N_2O_5 சார்பான தாக்கவரிசை 2 ஆகும்)

	$N_2O_{5(g)}$	$NO_{2(s)}$	
(1)	2	2	
(2)	2	4	
(3)	2	1	
(4)	1	4	
(5)	4	2.	

- 18) வாயுக்கள் தொடர்பான பின்வரும் கூற்றுக்களில் தவறானது?
 - (1) PV = nRT ஒரு இலட்சிய வாயுச்சமன்பாடாகும
 - (2) PV = nRT ஒரு நிலைச்சமன்பாடாகும்
 - (3) நியம சுற்றுப்புறவெப்பநிலை (SATP) அமுக்கத்தில் வாயு ஒன்றின்மூலர்கனவளவு $24.790 \mathrm{dm^3 mol^{-1}}$ ஆ கு ம்.
 - (4) வந்தர்வாலின் சமன்பாடு மெய்வாயுக்களிற்கு மட்டுமே பயன்படுத்த முடியும்.
 - (5) இலட்சியவாயுச்சமன்பாடு இலட்சியவாயுக்களிற்கு மட்டுமே பயன்படுத்த முடியும்.

- 19) சக்தியியல் சம்பந்தமான பின்வரும் கூற்றுக்களில் தவறான கூற்று எது?
 - (1) தகனவெப்பத்தின் போது எப்போதும் வெளிவிடப்படும்.
 - (2) வாயுநிலையிலுள்ள அணுக்கள் நீரேற்றத்தின் போது எப்போதும் வெப்பம் வெளிவிடப்படும்.
 - (3) சாலகபிரிகை வெப்பமானது எப்போதும் நேர்ப்பெறுமானம் உடையது.
 - (4) இலத்திரன் பெறும் சக்தியானது **எப்போதும்** மறைப்பெறுமானம் உடையது.
 - (5) திண்ம சேர்வை ஒன்று வாயுநிலையிலுள்ள சேர்வையாக மாறும் போது எந்திரப்பி எப்போதும் அதிகரிக்கும்
- 20) பின்வரும் தாக்கத்தின் பிரதான விளைபொருள் யாது?

$$\begin{array}{c|c}
CO_2H & & \\
NaBH_4 & \\
H-C & COCH_3
\end{array}$$

$$\begin{array}{c} \text{(1)} \quad \text{CH}_2\text{OH} \\ \\ \text{HOCH}_2 \quad \text{CHOHCH}_3 \end{array}$$

$$\begin{array}{c|c}
(5) & CO_2H \\
0 & \\
H-C & COCH_3
\end{array}$$

$$CH_{3} - CH_{3} - CH_{3}$$

$$CH_{3} - CH_{3}$$

$$CH_{3} - CH_{3}$$

$$CH^{3} - C \longrightarrow \bigcirc \bigcirc \bigcirc C - CI$$

$$CH_3 - C \longrightarrow OH$$

$$C \longrightarrow C - CH$$

$$CH_3$$

(3)

$$CH_3 - CH_2OH$$

$$H$$

$$(4)$$

(1)

$$CH_3 - C - \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc C - CH_3$$

$$(5)$$

- 22) அறைவெப்பநிலையில் $(NH_4)_2CO_{3(s)}$ ஐ நீரில்கரைக்கும் போது கரைசலின் ΔH , ΔS , ΔG என்பவற்றிட்கான மாற்றம் பற்றி உண்மையானது.
 - ΔS ΔΗ ΔG நேர் நேர் (1) நேர் (2) நேர் நேர் மறை நேர் (3) மறை மறை (4) மறை மறை மறை **(5)** மறை நேர் மறை

- 23) P தொகுப்பு மூலகங்கள், சேர்வைகள் பற்றிய பின்வரும் கூற்றுக்களில் தவறானது.
 - (1) AlCl $_3$ ஆனது மிகையான NaOH கரைசலுடன் தாக்கமுற்று தெளிந்த கரைசலைக் கொடுக்கும்.
 - (2) $AlCl_3$ ஆனது வாயுநிலையில் இரு மூலக்கூறுகள் இணைந்து Al_2Cl_6 ஆகக் காணப்படும்.
 - (3) காபனானது இரண்டு பிறதிருப்பங்களை மட்டும் உடையது.
 - (4) NH_3 ஆனது அரிதாக சிலதாக்கங்களில் அமிலமான தொழிற்படலாம்.
 - (5) NH₃ ஆனது அரிதாக சிலதாக்கங்களில் ஒட்சியேற்றியாக தொழிற்படலாம்.
- 24) பின்வரும் எந்தசோடி சேர்வைகளை தனித்தனி வெப்பமேற்றுகையில் ${
 m NH}_{
 m 3(g)}$ பெறப்படும்.
 - (1) NH₄Cl, NH₄NO₂
- (2) $(NH_4)_2SO_4$, NH_4NO_3
- (3) NH_4NO_3 , $(NH_4)_2Cr_2O_7$

- (4) NH₄Cl, (NH₄)₂SO₄
- (5) NH₄NO₂, NH₄NO₃
- 25) பின்வரும் கூற்றுக்களில் எது தவறானது?
 - (1) பெரும்பாலான அமில காரத்தாக்கங்கள் முதன்மைத் தாக்கங்கள் ஆகும்.
 - (2) முதன்மைத் தாக்கங்களில் தாக்க இடைநிலைகள் ஈடுபடுவதில்லை.
 - (3) பல்படித்தாக்கத்தின் மெதுவான படியில் தாக்கவீதம் தங்கியிருக்கும்.
 - (4) பல்படித்தாக்கத்தின் படிகளின் தாக்க வேகங்கள் சமனற்றன.
 - (5) பல்படிதாக்கத்தின் வீத நிர்ணயப்படியின் தாக்கவீத மாறிலியும் ஒட்டுமொத்த தாக்க மாறிலி எப்போதும் சமனாகும்.
- 26) மூலக்கூற்றுதிறன் பற்றிய பின்வரும் கூற்றுக்களில் தவறானது எது?
 - (1) முதன்மைத் தாக்கங்களின் மூலக்கூற்றுத்திறன் தாக்கவரிசைக்கு சமனாகும்.
 - (2) மூலக்கூற்றுத்திறனின் பருமன் 3 இலும் அதிகமாகவும் காணப்படலாம்.
 - (3) மூலக்கூற்றுத்திறன் ஒருபோதும் பூச்சியம் பின்னம்முடிவிலியாக இருக்கமுடியாது.
 - (4) பல்படித்தாக்கத்தின் வீதநிர்ணயபடியின் பீசமானம் மூலக்கூற்றுத்திறனைத்தரும்.
 - (5) தாக்கிகளின் செறிவு அதிகரிக்கும் போது மூலக்கூற்றுத்திறன் அதிகரிக்கும்.
- 27) T_1T_2 $(T_2>T_1)$ ஆகிய இருவெப்பநிலைகளில் மாறா அமுக்கத்திலும் $A_{(g)}
 ightleftharpoons B_{(g)}$ இன் தாக்க (extent of reaction) உடன் நியம கிப்ஸ் மாறல் உருவில் காட்டப்பட்டுள்ளது. பின்வருவனவற்றில் இத்தாக்கம் பற்றி சரியான கூற்று / கூற்றுக்கள் எது / எவை?
 - a) T_1 இல் சமநிலை மாறிலி T_2 இல் இருப்பதை விட பெரிதாகும்.
 - b) தாக்கம் அகவெப்பத்திற்குரியது.
 - c) தாக்கம் ஒரு நேர் ΔS^{θ} பெறுமானத்தைக் கொண்டிருக்கும்.
 - d) தாக்கம் புறவெப்பத்திற்குரியது.
 - (1) a,b மட்டும்

(2) b, c மட்டும்

(3) b, c மட்டும்

(4) a, b, c மட்டும்

- (5) a, c, d மட்டும்
- 28) ஒரு அனயனை மாத்திரம் கொண்ட ஓர் உப்பை அமிலமாக்கிய KMnO4 தாக்கமுறவிடப்பட்ட போது KMnO₄ கரைசலின் ஊதா நிறம் நீங்கியது. பின்வருவனவவற்றில் எதுவாகும்?
 - (1) NO_2^-
- (2) SO_4^{2-}
- (3) HSO_4^-
- (4) CO_3^{2-} (5) PO_4^{3-}
- 29) 100⁰C யில் தொகுதியில் கொதிக்கின்றது. தூய நீரானது அதன் ஆவியுடன் முடிய இவ்வெப்பநிலையில் நீரின் ஆவியாதல் வெப்பவுள்ளுறை $40.65~\mathrm{kJmol}^{-1}$ ஆகும். $100^{0}\mathrm{C}$ யில் நீரின் ஆவியாதல் எந்திரப்பி $Jk^{-1}mol^{-1}$ இல்,
 - (1) 109
- (2) 118
- (3) 125
- (4) 150
- (5) 178

- 30) A தொடக்கம் E வரையுள்ள நீர்க்கரைசல்களின் pH இன் அதிகரிக்கும் வரிசை.
 - (A) $0.5 \text{ M} (NH_4)_2 SO_4$
- (B) 0.1 M NH₄Cl
- (C) 0.5 M NH₄Cl

- (D) $0.5M \text{ CH}_3\text{COO}^-\text{NH}_4^+$
- (E) $0.5 \text{ M CH}_3\text{COO}^-\text{Na}^+$
- ❖ 31 தொடக்கம் 40 வரையுள்ள வினாக்கள் ஒவ்வொன்றிற்கும் (a), (b), (c), (d) எனும் நான்கு தெரிவுகள் தரப்பட்டுள்ளன. அவற்றுள் ஒன்று திருத்தமானது அல்லது ஒன்றுக்கு மேற்பட்டவை திருத்தமானவை. திருத்தமான தெரிவை / தெரிவுகளை தேர்ந்தெடுக்க.

1	2	3	4	5
(a),(b)	(b) (c)	(c) (d)	(d) (a)	வேறு தெரிவுகளின்
ஆகியவை	ஆகியவை	ஆகியவை	ஆகியவை	எண்ணோ
மாத்திரம்	மாத்திரம்	மாத்திரம்	மாத்திரம்	சேர்மானவைகளோ
திருத்தமானவை	திருத்தமானவை	திருத்தமானவை	திருத்தமானவை	திருத்தமானவை

- 31) 3d தொகுப்பு மூலகங்களையும் அவற்றின் சேர்வைகளையும் பற்றி பின்வரும் கூற்றுக்களில் எது / எவை சரியானவை?
 - a) 3d தொகுப்பு மூலகங்களில் Sc ஒரு தாண்டல் மூலமாகும்.
 - b) $[Cr(H_2O)_6]^{3+}$ கரைசலானது ஊதா நிறமுடையது.
 - c) Mn இன் அதியுயர் ஒட்சியேற்றநிலையில் பெறப்படும் ஒட்சைட்டு மூல இயல்புடையது.
 - d) மிகை NaOH உடன் ${\rm ZnCl_2}$ கரைசல் தாக்கமுற்று வெண்ணிற ${\rm Zn(OH)_2}$ வீழ்படிவைக்கொடுக்கும்.
- 32) பின்வரும் மூலக்கூறு பற்றி எந்தக்கூற்று / கூற்றுக்கள் சரியானது / சரியானவை?

H
H
C
$$A = A = C - C = C = C = C = C$$
H
H
H
H
H
H

- a) a, b, c, d, e எனப்பெயரிடப்பட்ட அணுக்கள் ஒரு நேர்கோட்டில் இருக்கின்றன.
- b) b, c, d, e, f எனப்பெயரிடப்பட்ட அணுக்கள் ஒரே தளத்தில் உள்ளன.
- c) c, d, e எனப் பெயரிடப்பட்ட அணுக்கள் ஒரு நேர்கோட்டில் உள்ளன.
- d) b, c, d, e, f எனப்பெயரிடப்பட்ட அணுக்கள் ஒரு நேர்கோட்டில் உள்ளன.
- 33) நைத்திரிக்கமிலம் பற்றிய பின்வரும் கூற்றுக்களில் எது / எவை சரியானது?
 - a) நைத்திரிக்கமிலம் ஒட்சியேற்றும் கருவியாக தொழிற்பட முடியாது.
 - b) நைத்திரிக்கமிலம் ஒரு போதும் மூலமாக செயற்படமாட்டாது.
 - c) தூய நைத்திரிக்கமிலம் நிறமற்ற திரவமாகும்.
 - ${
 m d}$) நைத்திரிக்கமிலத்தின் எல்லா ${
 m N-O}$ பிணைப்புக்களின் நீளங்கள் சமனானவை.
- 34) ஓர் அகவெப்பத்தாக்கம் மாறா வெப்பநிலையிலும் அமுக்கத்திலும் சுயமாக நடைபெறும் எனின்
 - a) தொகுதியின் வெப்பவுள்ளுறை குறையும்.
- b) தொகுதியின் எந்திரப்பி அதிகரிக்கும்.
- c) தொகுதியின் வெப்பவுள்ளுறை அதிகரிக்கும்.
- d) தொகுதியின் எந்திரப்பி குறையும்.
- 35) 2-பென்டீன் சம்பந்தமாக பின்வருவனவற்றுள் உண்மையான கூற்று / கூற்றுக்கள் எது / எவை?
 - a) கேத்திர கணித சமபகுதியச் சேர்வையை காட்டும்.
 - b) ஒளியியல் சமபகுதியத்தை சேர்வை காட்டாது.
 - c) Br₂/CCl₄ உடன் தாக்கபுரிந்து பெறப்படும் விளைபொருள் ஒளியியல் சமபகுதியத்தைக் காட்டும்.
 - d) HBr உடன் தாக்கம் புரிந்து பெறப்படும் விளைபொருள் ஒளியியல் சமபகுதியத்தை காட்டாது.

- 36) H_2O_2 , H_2S பற்றிய பின்வரும் கூற்றுக்களில் எது / எவை சரியானவை?
 - a) இவை இரண்டும் ஒட்சியேற்றியாகவும் தாழ்த்தியாகவும் தொழிற்படும்.
 - b) PbS திண்மத்திற்கு H₂O₂ இனைச் சேர்க்கும் வெண்ணிற PbSO₄ பெறப்படும்.
 - c) H₂S ஆனது தாழ்த்தியாக மட்டுமே தொழிற்படக்கூடியது
 - d) H₂S ஆனது அமிலமாகவும் மூலமாகவும் தொழிற்படும்.
- 37) ஊக்கி பற்றிய பின்வரும் கூற்றுகளில் உண்மையானது எது / எவை?
 - a) சமநிலைத்தாக்கத்தில் ஊக்கி முற்தாக்கவேகத்தை மட்டும் அதிகரிக்கும்.
 - b) ஊக்கி ஒருதாக்கத்தின் வெப்பவுள்ளுறையை மாற்றாது.
 - c) தாக்கத்தின் போது ஒரு ஊக்கியின் பௌதீகநிலை மாற்றமடையலாம்.
 - d) ஊக்கி ஏவற்சக்தியை அதிகரிக்கும்.
- 38) 500 K இல் $PCl_{5(g)}$ இன் 2 mol, $PCl_{3(g)}$ இன் 0.2 mol Cl_2 இன் 0.2 mol ஆகியன 2 dm^3 விறைத்த குடுவையில் இடப்பட்டு சமநிலையடையவிடப்பட்டது.

 $PCl_{5(g)} \rightleftharpoons PCl_{3(g)} + Cl_{2(g)}$ $K_c = 10^3 moldm^{-3}$ எனின் தொகுதியின் ஆரம்பத்திலிருந்து சமநிலை அடையும் வரைக்குமான மாற்றங்கள் பற்றிய பின்வரும் கூற்றுகளில் எது / எவை சரியானது / சரியானவை? Q_C ஆனது தாக்க ஈவாகும்.

- a) தொடக்கத்தில் $Q_C < K_C \ PCl_{5(g)}$ ஆனது $PCl_{3(g)}$ ஆகவும் $Cl_{2(g)}$ ஆகவும் பிரிகையடைந்த வண்ணம் சமநிலை அடையும்.
- b) தொடக்கத்தில் $Q_C < K_C \ PCl_{3(g)}$ ஆனது $PCl_{5(g)}$ உண்டாவதற்கு தொடங்கி சமநிலை அடையும்.
- c) தொடக்கத்தில் $m Q_C > K_C \ PCl_{3(g)}$ ஆனது $m PCl_{5(g)}$ உண்டாவதற்கு தொடங்கி சமநிலை அடையும்
- d) தொடக்கத்தில் $\mathrm{Q}_\mathrm{C} < \mathrm{K}_\mathrm{C}$, $\mathrm{Q}_\mathrm{C} = \mathrm{K}_\mathrm{C}$ ஆகும் வரை தாக்கம் முன்னோக்கி நகரும்.
- 39) S தொகுப்பு மூலகங்கள் பற்றிய பின்வரும் கூற்றுக்களில் சரியானது / சரியானவை?
 - a) Na இலும் பார்க்க K ஆனது நீருடன் உக்கிரமாக தாக்கமுறும்.
 - b) Na₂CO₃ திண்மத்தின் நீரில் கரைதிறன் NaHCO₃ திண்மத்திலும் உயர்வாகும்.
 - c) 1ம் கூட்ட உப்புக்களில் LiF மட்டும் நீரில் கரையாது.
 - d) LiHCO₃ ஆனது ஆய்வுகூடத்தில் திண்மநிலையில் காணப்படும்.
- 40) அற்கைல் ஏலைட்டு A யிற்கும் தாக்குபொருள் சிலவற்றிட்குமான தாக்கம் தொடர்பாக சரியானது எது / எவை?

$$\begin{array}{c|c}
CI \\
CH_3 - C - CH_3 \\
CH_3
\end{array}$$
(A)

- a) சோடியம் சேர் மெதனோல் உடன் தாக்கமுறுகையில் ஈதர் மட்டும் பெறப்படும்.
- b) சோடியம் சேர் மெதனோல் உடன் தாக்கமுறுகையில் பிரதான விளைவாக அற்கீன் பெறப்படுகையில் பக்கவிளைவாக ஈதர் பெறப்படலாம்.
- c) நீர் KOH உடனான தாக்கத்தின் போது தாக்கம் இரண்டு படிகளில் நிகழும்.
- d) நீர் KOH உடனான தாக்கத்தின் போது முதல் காபோனீயம் அயன் ஒன்று இடைநிலையாக உருவாகும்.

💠 41 தொடக்கம் 50 வரையுள்ள வினாக்கள் ஒவ்வொன்றிலும் இரண்டு கூற்றுக்கள் தரப்பட்டுள்ளன.

தெரிவுகள்	முதலாம் கூற்று	இரண்டாம் கூற்று		
(1)	உண்மை	உண்மையாக இருந்து முதலாம் கூற்றுக்கு திருத்தமான விளக்கத்தை தருவது		
(2)	உண்மை	உண்மையாக இருந்து முதலாம் கூற்றுக்கு திருத்தமான விளக்கத்தை தராதது		
(3)	உண்மை	பொய்		
(4)	பொய்	உண்மை		
(5)	பொய்	பொய்		

	முதலாம் கூற்று	இரண்டாம் கூற்று
41)	NaF இலும் பார்க்க Na ₂ O ஆனது கூடுதலாக பங்கீட்டு வலு இயல்பை உடையது	அன்னயன் பெரிதாக அத்துடன் உயர் ஏற்றத்தைக் கொண்டதாக இருக்கும் போது அது உயர் முனைவாகு தன்மையை கொண்டிருக்கும்.
42)	Buton — 1- ol இன் கொதிநிலை propanoic acid இன் கொதிநிலையிலும் குறைவாகும்.	அற்ககோலில் இரண்டு மூலக்கூறுகளுக்கு இடையில் குறைந்தளவு ஐதரசன் பிணைப்பு காணப்படும். அதேவேளை இரண்டு காபொட்சலிக்கமில மூலக்கூறுகளிற்கிடையில் அதிக ஐதரசன் பிணைப்பு காணப்படும்.
43)	சமநிலையொன்றில் தாக்கி அழிவடையும் வீதம் விளைவு உருவாகும் வீதத்திற்கு சமனாகும்.	சமநிலை தாக்கியின் செறிவு விளைவின் செறிவிற்கு சமனாகும்.
44)	2 – hexane ஈர்வெளிமய சமபகுதியச் சேர்வையைக் காட்டும்	2 — hexane இன் திண்ம தோற்ற சமபகுதியத்தைக் காட்டும் ஒன்றுக்கொன்று ஆடிவிம்பங்களாக அமையாத கட்டமைப்புக்கள். ஈர்வெளிமய சமபகுதியமாக அமையலாம்.
45)	phenol ஆனது Phenoxide அயனாக H ⁺ அயனை இழந்து இலகுவாக மாற்றமடையும்.	Phenol இலும் பார்க்க Phenoxide அயன் உறுதியானது.
46)	பூச்சியவரிசைத் தாக்கத்தின் அரைவாழ்வுக்காலம் மாறிலியாகும்.	பூச்சியவரிசைத் தாக்கத்தின் அரைவாழ்வுக்காலம் தாக்கியின் செறிவில் தங்கியிருப்பதில்லை.
47)	புறவெப்பத்தாக்கமொன்றின் வேகம் வெப்பநிலை அதிகரிப்புடன் குறைவடையும்.	வெப்பநிலை அதிகரிக்கும் போது சக்தி தடையைத் தாண்டும் மூலக்கூறுகளின் அதிகரிக்கும்.
48)	ஒரே வெப்பநிலையில் NH ₃ வாயுவின் சராசரி வர்க்கவேகம் HCl வாயுவின் சராசரி வர்க்கவேகத்திலும் குறைவாகும்.	வெப்பநிலை மாறாத போது வாயுக்களின் சராசரி வர்க்கவேகம் அவற்றின் மூலர்திணிவிற்கு நேர்மாறுவிகித சமனாகும்.
49)	மென்னமிலம் ஒன்றின் அயனாக்க மாறிலியானது வெப்பநிலை அதிகரிப்புடன் அதிகரிக்கும்.	வெப்பநிலை அதிகரிக்கும் போது அயனாக்க அளவு அதிகரிப்பதால் அயனாக்கமாறிலி அதிகரிக்கின்றது.
50)	$A + B \rightarrow Z$ எனும் தாக்கத்தின் A தொடர்பான தாக்கவரிசை பூச்சியம் எனின் A இன் செறிவுக்கு எதிராக வீதத்தின் வரைபு x அச்சிற்கு சமாந்தரமான நேர்கோடாகும்.	தாக்கத்தின் வீதம் A யின் செறிவைச்சார்ந்திருப்பதில்லை.

தொண்டைமானாறு வெளிக்கள நிலையம் நடாத்தும் நான்காம் தவணைப் பரீட்சை - 2021 Conducted by Field Work Centre, Thondaimanaru.

FWC	4" Term Examination - 2021
இரசாயன	
Chemistr	ry II A Gr -13 (2021)
∻ நான்கு வ	பினாக்களுக்கும் இத்தாளிலேயே விடையளிக்குக.
1) (a) பின்வ	பரும் வினாக்களுக்கு தரப்பட்ட வெற்றிடங்களில் எழுதுக.
(i)	Ba, Al, S ஆகிய மூலலகங்களுள் "கல்கோகெனைட்டுக்கள்" வகையைச் சார்ந்த மூலகம்
(ii)	Cl ⁻ ,K ⁺ ,S ²⁻ ஆகிய சம இலத்திரன் அயன்களில் மிகப்பெரிய அயனாரை உடைய மூலகம் எது?
(iii)	நைதரசன் (N), மக்னீசியம் (Mg), சிலிக்கன் (Si) என்பவற்றில் எது கூடிய வீச்சுடைய ஒட்சியேற்ற எண்களை அதன் சேர்வைகளில் கொண்டிருக்கும்
(iv)	F, Cl, Ar ஆகிய மூலகங்களில் முதல் அயனாக்கல் சக்தி உயர்வாக உள்ள மூலகம் எது?
(v)	S, C, Si என்பவற்றுள் அதிகூடிய இலத்திரன் ஏற்ற வெப்ப உள்ளுறைச் சக்தி உடைய மூலகம் எது?
(vi)	Fe, Cr, Mn ஆகியவற்றுள் மூலக நிலையில் அதிகூடிய சோடியாக்ககப்படாத இலத்திரன்களைக் கொண்டுள்ள மூலகம் எது?
(b) i. dithio கோட்	onate (S ₂ O ₆ ²⁻) அயனிற்கு மிகவும் ஏற்றுக்கொள்ளக்கூடிய லூயி குற்று – .டுக்கட்டமைப்பை வரைக. அதன் அடிப்படைக் கட்டமைப்பு கீழே தரப்பட்டுள்ளது.

ii. Į	இவ்வயனுக்கு	ஏற்றுக்கொள்ளக்கூடிய	மூன்று பரிவுக்	கட்டமைப்புக்க	ளைதத் தருக	
_						
				•••••	•••••	•••••
·						
iii. a	கீ ழே தரப்பட்	ட லூயியின் கட்டமை	ப்பில் காபன்	அனுக்களிலு	ர்ள இலக்கா	ங்களைக் கருத <u>ி</u>
	• •	ு. டவணையை பூரணப்படு		J. J.		O.F
		0				
		$ \overset{1}{C}H_2 = \overset{2}{C}H - \overset{ }{C} \overset{3}{-} $	$\overset{4}{\text{CH}} - \overset{5}{\text{C}} \equiv \overset{6}{\text{CH}}$			
			NH ₂			
			C ¹	C ₃	C ⁴	C ⁶
i.	அணுவின்	கலப்பாக்கம்	, , ,	G		ď
ii	. அணுவை	சுற்றியுள்ள இலத்திரன்			40	
	1	த்திரகணிதம்				
ii	i. ஒட்சியேற் _!	ற எண் பெறுமானம்	\),	
iv. (C^1 , C^3 , C^4 , C^4	⁶ ஆகிய மூலகங்களின்	மின்னெதிர் <u>த்</u> த	ன்மை அதிகர்	ரிக்கும் ஒழுங்	கை தருக.
•						
(C)	fas maini a	ிள்ள பட்டியலில் முனை	ு. இ <i>ள</i> ர்ராகவ	. <i>இன</i> ்ரன்0	رسرمان برام س	
i. d			வு துளங்களை	ப துனமகண ரு	குறப்படுக்.	
	NH ₃ , B	Cl ₃ , CCl ₄ , H ₂ S				
		உம்		உய்)	
	_	மன்பாடு மூலக்கூறு ஒ ட்ட இடைவெளிகனைை			ர கணிப்பது	தொடர்பானது
[💹 தரப்பட்ட	_ பெட்டியில் +, (-), x, ÷	என்பவற்றுள்	ஏதாவது ஒன்ன	ற பொருத்து	மாக இடுக.]
Į	இருமுனைவுத்	திருப்புத்திறன் (μ) = 🗖				

	தாழ்வாகவுள்ளது. (பொருத்த மற்றவ	தை நீக்கிவிடுக.)	உமது விை	டக்கான காரன
	சுருக்கமாக தருக.			
	பின்வரும் காபனேற்றுக்களின் வெப்ப	ையியை வ	indi. O amentl	செப்படுத்துக.
	விடையை சுருக்கமாக விளக்குக.			
			5	
			தருக.	
•	துணை இடைக்கவர்ச்சி விசைகள் மூன்றி	ான பெயர்களைத		
	துணை இடைக்கவர்ச்சி விசைகள் மூன்றி			
•	துணை இடைக்கவர்ச்சி விசைகள் மூன்றி			

2) (a)	X ஆனது ஆவர்த்தன அட்டவணையில் அணு எண் 20 இற்கு உட்பட்ட மூலகம் ஆகும். X ஆனது அணு எண் 20 இற்குட்பட்ட மூலகங்களுள் உயர்உருகுநிலை உடையது. இது மூன்று புறதிருப்பங்களை உடையது.
i.	மூலகம் X இனை இனம் காண்க.
ii.	மூலகம் X இன் இலத்திரன் நிலையமைப்பைத் தருக
iii.	X உருவாக்கும் மூன்று ஒட்சைட்டுக்களின் மூலக்கூற்றுச் சூத்திரங்களைத் தருக.
iv.	X இன் மேற்குறித்த ஒட்சைட்டுக்கள் ஒன்றிலிருந்து(Y) மென்னமிலம் ஒன்று தோன்றுவதற்கான இரசாயனச் சமன்பாட்டைத்தருக.
v.	இம் மென்னமிலத்தின் சாத்தியமான நீர்ப்பகுப்புத் தாக்கங்களைத் தருக.
vi.	Y இன் உடனான சாத்தியமான சமப்படுத்தப்பட்ட இரசாயனத் தாக்கங்களைத் தருக.
(b)	Al தூள் உடன் கார ஊடகத்தில் (NaOH உடன்) அயன்களை இனம் காணப்படும்
i.	திட்டத்தைக் கருதி பின்வரும் வினாக்களுக்கு விடை தருக. ஒட்சியேற்றல் தாக்கம்

ii.	தாழ்த்தல் தாக்கம்
iii.	நிகர தாக்கம்
iv.	வெளிவரும் வாயுவை இனம் காண்பதற்கான பரிசோதனைச் செயற்பாடு ஒன்று தருக.
v.	I. NO $_3^-$ அயன்களை இனம் காண்பதற்கான பிறிதொரு பரிசோதனைத் திட்டம் ஒன்றை சுருக்கமாக குறிப்பிடுக.
	II. தோற்றுவிக்கப்படும் சிக்கல் அயனின் சூத்திரத்தையும் நிறத்தையும் தருக.
(C)	பின்வரும் சேர்வைகளின் IUPAC பெயரைத் தருக.
i.	H ₂ S
ii.	HClO ₃
iii.	KH ₂ PO ₄
iv.	P ₄ O ₆

	பினா $\mathrm{Na_2S_2O_{3(aq)}}$ இற்கும் $\mathrm{HNO_{3(aq)}}$ இற்குமிடையிலான தாக்கத்தில் ஒவ்வொரு தாக்கி ான தாக்கவரிசையை ஆய்வுகூடத்தில் பரிசோதனை வாயிலாக துணிதலுடன் தொடர்பானது. $\mathrm{Na_2S_2O_{3(aq)}}$ இற்கும் $\mathrm{HNO_{3(aq)}}$ இற்குமிடையிலான தாக்கத்திற்கான சமப்படுத்திய இரசாயனச் சமன்பாட்டை எழுதுக.
ii.	மேற்படி தாக்கத்தின் அவதானங்கள் இரண்டைக் குறிப்பிடுக.
iii.	வினாவில் குறிப்பிடப்பட்ட நோக்கத்துக்காக மேற்கொள்ளப்படவேண்டிய செயன்முறையின் முக்கிய படிகளை சுருக்கமாக விபரிக்குக.
iv.	இங்கு புள்ளடி மறைய எடுக்கும் நேரத்தை அளவிடும் போது ஏற்படக்கூடிய வழுவைக்
14.	குறைப்பதற்கு உம்மால் மேற்கொள்ளப்பட வேண்டிய முற்காப்பு நடவடிக்கைகள் யாவை?
v.	மேற்படி பரிசோதனையில் தாக்கவீதம் எவ்வாறு அளக்கப்படுகிறது?
ν.	

பின்வரும் அட்டவணைகளுக்கேற்ப மேற்படி பரிசோதனை மேற்கொள்ளப்பட்டது. அட்டவணை I

பரிசோதனை இல	$0.15\ moldm^{-3}$ $Na_2S_2O_{3(aq)}$ இன் கனவளவு $/\ cm^3$	3 moldm ⁻³ HNO _{3(aq)} இன் கனவளவு / cm ³	காய்ச்சிவடித் த நீர் <i>/ cm</i> ³	X அடையாளம் மறைய எடுக்கும் நேரம் /(s)	$\frac{1}{t}/s^{-1}$
1	25.0	5.0	0.0	10	
2	20.0	5.0	5.0	12.5	
3	15.0	5.0	10.0	16.5	
4	10.0	5.0	15.0	25	
5	05.0	5.0	20.0	50	

அட்டவணை II

பரிசோதனை இல	$2\ moldm^{-3}$ $Na_2S_2O_3$ இன்கனவளவு $/\ cm^3$	$0.1\ moldm^{-3}$ HNO_3 இன்கனவளவு $/\ cm^3$	காய்ச்சிவடித் த நீர் <i>/ cm</i> ³	X அடையாளம் மறைய எடுக்கும் நேரம் /(s)	$\frac{1}{t}/s^{-1}$
1	20	5.0	0.0	20.1	
2	20	4.0	1.0	19.9	
3	20	3.0	2.0	20.0	
4	20	2.0	3.0	20.0	
5	20	1.0	4.0	20.1	

vi. ஒவ்வொரு பரிசோதனையிலும் தாக்கவீதம் நேரத்துக்கு நேர்மாறு விகித சமன் எனக்கருதி $rac{1}{t}$ இன் பெறுமானங்கணித்து அட்டவணையின் இறுதி நிரலை பூரணப்படுத்துக.

ii.	அட்டவணை இல I இல் HNO_3 இன் செறிவை $\mathrm{Na_2S_2O_{3(aq)}}$ இன் செறிவிலும் ஒப்பீட்டளவில்
	உயர்வாகவும் அட்டவணை II இல் ${ m Na_2S_2O_{3(aq)}}$ இன் செறிவை ${ m HNO_{3(aq)}}$ இன் செறிவிலும்
	உயர்வாகவும் பேணுவதன் காரணம் யாது?
iii.	ஒவ்வொரு பரிசோதனையிலும் மொத்தக்கனவளவை மாறாமல் பேணுவதன் காரணம் யாது?

ix. ஓவ்வொரு பரிசோதனையிலும் மாறும் செறிவுடைய தாக்கியின் செறிவுகளைக் கணித்து அதற்கு எதிராக $\frac{1}{t}$ ஐ குறித்து வரைபுகள் வரைக.

x. வரைபிலிருந்து $m Na_2S_2O_{3(aq)}$, $m HNO_{3(aq)}$ சார்பான தாக்க வரிசைகளை உய்த்தறிந்து வீத விதிக்கோவையை எழுதுக.

b) பின்வரும் தாக்கத்தைக் கருதுக.

$$A + B + C$$
 → விளைவு

இத்தாக்கம் பின்வரும் படிகளினூடாக நடைபெறுகின்றதென்க.

- ${
 m I.}$ ${
 m A}+{
 m C}
 ightharpoons {
 m X}$ (விரைவான சமநிலைப்படி; சமநிலை மாறிலி k_1)
- ${
 m II.} \quad {
 m X} + {
 m C} \
 ightharpoons {
 m Y} \qquad \qquad {
 m (all}$ வெரவான சமநிலைப்படி; சமநிலை மாறிலி k_2)
- III. $y+B \rightarrow Z$ (மெதுவான படி) $Z+n B+n C \rightarrow$ விளைவு
 - i. மேலுள்ள படிகளில் எது தரப்பட்ட தாக்கத்தின் வீதத்தை நிர்ணயிக்கும்?

.....

ii. அப்படிக்குரிய தாக்க வீதத்துக்கான கோவையொன்றை எழுதுக.

.....

iii.	இதிலிருந்து	தரப்பட்ட த	நாக்கத்தின்	ഖ്த ഖിதിത	யப் பெறுச	5		
சேர்வ என்ப உடன் முழை செந்ந அவத பெறு கிடை	வைகளாகும். ன மட்டும் எջ ர உடனடிக்க றயே P, Q,	இவை யா திருரு சமபர லங்கலைக் R, S என்ப வைத் தே கொடுக்கவ	வும் Na த குதியத்தன் கொடுத்த ன பெறப் நாற்றுவித்து பில்லை. பே பகுப்புச் பெ	உடன் H ₂ மையைக் க து. A, B, பட்டன. இஎ து. ஆனால சேர்வை Q ,	வாயுவை ாட்டுவன. I C, E என்ப பற்றில் P, ல் Q, R ஆனது CH பு ஒளியியம	வெளிவிட்ட D ஆனது ந பன PCC S ஆனது ட பீலிங்கி ₃ CH ₂ MgBi ல் தொழிற்	_ன. அவற்றி நீரற்ற ZnCl ₂ , ஆல் ஒட்சி பீலிங்கின் கரைசஓ உடன் பரி பாடுடைய ஒ	் யேற்றப்பட்டு கரைசலுடன் லுடன் எந்த கரிக்கப்பட்டு ஒரு சேர்வை
		A		В			C	
	D)			E			

R

iii. P, Q என்பவற்றை வேறுபடுத்தி இனங்காண்பதற்கு வினாவில் குறிப்பிடப்படாத ஒரு சோதனையையும் அவதானத்தையும் குறிப்பிடுக.

b) I. பின்வரும் தாக்கங்களில் பொருத்தமான இடங்களில் தாக்குபொருட்களை / விளைவுகளை எழுதுக. தாக்க நிபந்தனைகள் இருப்பின் அவற்றையும் குறிப்பிடல் வேண்டும்.

i.
$$\mathrm{CH_3CH_2} - \mathrm{C} \equiv \mathrm{CH}$$

$$\mathrm{CH_3CH_2CH} = \mathrm{CH_2}$$

ii.
$$\begin{array}{c} 0 \\ || \\ CH_3C - NH_2 \end{array}$$
 $\begin{array}{c} P_2O_5/\Delta \end{array}$

iii.
$$\mathsf{CH_3CH_2Cl} \qquad \qquad \mathsf{CH_3-CH-O-CH_2CH_3} \\ \mathsf{CH_3}$$

தொண்டைமானாறு வெளிக்கள நிலையம் நடாத்தும் நான்காம் தவணைப் பரீட்சை - 2021 Conducted by Field Work Centre, Thondaimanaru. 4th Term Examination - 2021

இரசாய<mark>னவியல் II B</mark> Chemistry II B

Gr -13 (2021)

02 T II B

பகுதி – II B

- 🌣 இப்பகுதியிலிருந்து எவையேலும் இரு வினாக்ளுக்கு மட்டும் விடையளிக்குக.
- 5) a) 127°C வெப்பநிலையில் வன்மையான மூடிய பாத்திரமொன்றினுள் ஒவ்வொன்றும் 1 மூல் அளவான A, B, C ஆகிய வாயுக்கள் செலுத்தப்பட்ட போது அமுக்கம் 6 x 10⁵ Pa ஆக காணப்பட்டது. வெப்பநிலை 227°C ஆக உயர்த்தப்பட்ட போது வாயு A ஆனது பகுதியாக கூட்டப்பிரிகையடைந்து B, C வாயுக்களை உருவாக்கியது. சமநிலையில் A, B, C என்பன முறையே 0.5 மூல், 2 மூல், 1.5 மூல் ஆகக் காணப்பட்டது.
 - i. பொருத்தமான கணிப்பின் உதவி<mark>யுடன்</mark> சம<mark>ப்படுத்தப்பட்ட இரசாய*னச் சமன்*பாட்டை</mark> உருவாக்குக.
 - ii. சமநிலையில் A, B, C என்பவற்றின் பகுதியமுக்கங்களை துணிக.
 - iii. K_p பெறுமானத்தை துணிக.
 - iv. இதிலிருந்து K_C பெறுமானத்தை உய்த்தறிக. (500 K இல் RT = 4000 Jmol⁻¹ எனக் கொள்க.)
 - v. வெப்பநிலை 27°C ஆக குறைக்கப்பட்ட போது வாயு C ஆ**னது** திண்மமாக மாற்றப்படுகின்றதெனக் கொள்க. அத்துடன் திண்மத்தின் கனவளவு புறக்கணிக்ககத்தக்கதெனவும் கருதுக. இந்நிலையில் தாக்கசமன்பாட்டின் பீசமானத்தில் மாற்றமில்லாமல் புதிய சமநிலையொன்று தோற்றுவிக்கப்பட்டதோடு தாக்கத்தொகுதியின் மொத்த அமுக்கம் $3 \times 10^5 \, \mathrm{Pa}$ ஆகவும் காணப்படாது எனின் $27^{\circ}\mathrm{C}$ இல் புதிய சமநிலையின் K_{P} ஐ கணிக்க.
 - vi. பகுதி (v) இலுள்ள சமநிலைத்தொகுதியின் கனவளவு அரைப்பங்காக்கப்படின் சமநிலை எவ்வாறு நகர்த்தப்படும்?
 - b) பின்வரும் தரவுகளை உபயோகித்து 25° C இல் $2\mathrm{H}_{2(\mathrm{g})}$ + $\mathrm{O}_{2(\mathrm{g})}$ ightarrow $2\mathrm{H}_{2}\mathrm{O}_{(\mathrm{g})}$ எனும் தாக்கத்தின்
 - i. நியம வெப்பவுள்ளுறை மாற்றம்
 - ii. நியம எந்திரப்பி மாற்றம் என்பவற்றை கணிக்குக.

iii. **இதிலிருந்து மேலுள்ள தாக்கம்** 25⁰C இல் சுயமாக நடைபெறுமா? இல்லையா? என எதிர்வு கூறுக.

H-H நியம் பிணைப்பு பிரிகை வெப்பவுள்ளுறை = +432kJ mol^{-1}

O=O நியம_் பிணைப்பு பிரிகை வெப்பவுள்ளுறை $=+494 \mathrm{kJmol}^{-1}$

O – H நியம பிணைப்பு பிரிகை வெப்பவுள்ளுறை = + 460kJmol $^{-1}$

சேர்வை	S ⁰ /Jmol ⁻¹ K ⁻¹
H ₂ O _(g)	+ 1888
H _{2(g)}	+ 130.7
O _{2(g)}	+ 205.1

c) 4.157 dm³ கனவளவுடைய பாத்திரமொன்றினுள் 27°C வெப்பநிலையில் 1 mol A_(g) சேர்க்கப்பட்ட போது பின்வரும் சமநிலை பெறப்பட்டது.

$$A_{(g)} \rightleftharpoons 2B_{(g)}$$

மேற்படி தாக்கத்தின் போதான கிப்சின் சுயாதீன சக்தியின் மாறல் கீழே தரப்பட்டுள்ளது.

i. P, Q, R ஆகிய புள்ளிகளுக்குரிய ΔG இன் குறியை இனங்காண்பதுடன் தாக்கம் கயாதீனமானது / சுயாதீனமற்றது / சமநிலையில் உள்ளது என அருகில் எழுதுக.

160	ΔG	சுயாதீனமானது / சுயாதீனமற்றது / சமநிலை
P		
Q		
R		

ii. P, Q, R ஆகிய சந்தர்ப்பங்களில் Q_c, K_c இற்கிடையிலான தொடர்புடைமையை (> அல்லது < அல்லது =) குறித்துக்காட்டுக.

P :

 Q_{C} K_{C}

Q:

Q_c K_c

R:

Q_C K_C

iii. 27°C இல் மேற்குறிப்பிட்ட சமநிலையின் K_p ஐத் துணிக.

6)a) 25°C இல் 0.10 moldm⁻³ CH₃COOH கரைசலின் 25 cm³ ஆனது நியமிப்புக்குடுவையொன்றினுள் எடுக்கப்பட்டு பொருத்தமான காட்டியொன்றின் முன்னிலையில் அளவியிலுள்ள 0.20moldm⁻³ NaOH_(aq) இனால் நியமிக்கப்படுகின்றது.

 $(25^{\circ}\text{C} \ \Omega)$ CH₃COOH Ω K_a = $1.8 \times 10^{-5} \text{ moldm}^{-3}$

- i. ஆரம்ப CH₃COOH_(aq) இன் pH ஐக் கணிக்குக.
- ii. NaOH கரைசலின் 10.0 cm³ ஆனது நியமிப்புக்குடுவையினுள் சேர்க்கப்பட்ட நிலையில் நியமிப்புக்குடுவையினுள் உள்ள கரைசலின் pH ஐத் துணிக.
- iii. சமவலுப்புள்ளியை அடையத் தேவையான NaOH கரைசலின் கனவளவைக் காண்க.
- iv. சமவலுப் புள்ளியில் pH ஐக் கணிக்க.
- v. NaOH **கரைசலின் 20 cm³ இனை நியமிப்புக் குடுவையினுள் சேர்க்கையி**ல் அதனுள் காணப்படும் கரைசலின் pH ஐக் கணிக்க.
- vi. சேர்க்கப்பட்ட NaOH இன் கனவளவை X அச்சிலும் நியமிப்புக்குடுவையில் உள்ள கரைசலின் pH பெறுமானத்தை Y அச்சிலும் குறித்து பரும்படியான வரைபை வரைக. உமது வரைபில் சமவலுப் புள்ளிக்குரிய pH ஐக் குறித்துக்காட்டுக.
- b) H_{2(g)} **இன் மூலர்கனவளவை பயன்ப**டுத்தி Mg இன் சாரணுத்திணிவைப் பரி**சோதனை** ரீதியாகத் **துணிவதற்கு திட்டமிடப்பட்**டது.
 - i. Mg, **ஐதான** HCl பயன்படுத்தப்படும் இப் பரிசோதனைக்கு பயன்படுத்<mark>தப்படும் உ</mark>பகரண அமைப்பின் பெயரிடப்பட்ட படத்தை வரைந்து காட்டுக.
 - ii. **மேற்ப**டி பரிசோதனையின் போது பெறப்பட்ட பெறுபேறுகள் கீழே தரப்பட்டுள்ளன.

அறை வெப்பநிலை = 27°

வளிமண்டல அமுக்கம் = 1.013 x 10⁵ Pa

27°C இல் நீரின் நிரம்பலாவியமுக்கம் = 0.036 x 10⁵ Pa

உருவான H₂ வாயுவின் கனவளவு = 50 cm³

Mg துண்டின் திணிவு = 0.05 g

மேலுள்ள தரவுகளைப் பயன்படுத்தி Mg இன் சாரணுத்திணிவைக் கணிக்க.

7)a)

- i. 0.05 moldm⁻³ செறிவுடைய மென்காரம் B இன் pH ஐ 25°C இல் காண்க. (25°C இல் B இன் K_b = 5 x 10⁻⁶ moldm⁻³, K_w = 1 x 10⁻¹⁴ mol²dm⁻⁶)
- ii. **மேலே குறிப்பிட்ட மென்காரம்** B **இன்** 25 cm³ ஆனது 0.1 moldm⁻³ HCl இனால் **நியமிக்கப்படுகின்றது என்க**.
 - i. நியமிப்பின் போது நடைபெறும் தாக்கத்துக்கான ஈடுசெய்த சமன்பாட்டை தருக.

iii.

I. நியமிப்பின் சமவலுப்புள்ளியில் உருவான உப்பின் நீர்ப்பகுப்பைக் கருதுவதன் மூலம் அந்நிலையில் கரைசலின் pH இற்கான கோவையை $pH = \frac{1}{2}pK_W - \frac{1}{2}\log\left(\frac{C}{K_b}\right)$ எனக் காட்டுக.

(இங்கு உருவான உப்பின் ஆரம்ப செறிவு C ஆகும்)

iv. இதிலிருந்து சமவலுப்புள்ளியில் pH ஐ கணிக்குக.

b) I. 3d மூலகம் A ஆனது நீர் ஊடகத்தில் உருவாக்கும் சிக்கல்அயன் B ஆகும். B இன் இரசாயனச் சூத்திரம் [A(H₂O)_n]^{m+} B ஆனது பின்வரும் தாக்கங்களுக்கு உட்படுகின்றது

- i. மூலகம் A ஐ இனம்காண்க.
- ii. சிக்கலயன் B இலுள்ள A இன் ஒட்சியேற்ற நிலை யாது?
- iii. m, n என்பவற்றின் பெறுமானங்களைக் குறிப்பிடுக.
- iv. P, Q, R, S, T என்பவற்றின் சூத்திரங்களை எழுதுவதுடன் P, Q, T ஆகியவற்றின் நி**றங்களை**யும் குறிப்பிடுக
- II. P, Q, R எனும் 3 சிக்கற்சேர்வைகள் ஒவ்வொன்றும் எண்முகிக் கட்டமைப்புடைய இணைப்புக்கோளத்தைக் கொண்டுள்ளன. அவற்றின் மூலக்கூற்றுச் சூத்திரங்கள் (வரிசையில் தரப்படவில்லை) CoCl₂IN₄H₁₂, CoClBrN₅O₂H₁₂, CoCl₃N₄H₁₂. மேலுள்ள சேர்வைகளின் **நீர்க்கரைசல்களுக்கு தனித்தனி**யே Cl₂ நீர் / CHCl₃ என்பன சேர்த்துக் குலுக்கப்பட்ட போது CHCl₃ படையில் பெறப்பட்ட அவதானங்கள் கீழ்த்தரப்பட்டுள்ளன.

சேர்வை	Cl ₂ நீர் / CHCl ₃ இட்ட போது அவதானம்
P	மாற்றம் இல்லை
Q	ஊதா நிறம்
R	செம்மஞ்சள் நிறம்

- i. P, Q, R **இன் கட்ட**மைப்புக்களை தருக.
- ii. CHCl₃ படையில் பெறப்படும் நிறங்களுக்கான பொருத்தமான தாக்கங்களை (அயன்களை மாத்திரம் கருதி) எழுதுக.
- iii. சேர்வை R இன் பிறிதொரு சமபகுதியம் S ஆனது Cl_2 நீர் / CHCl $_3$ உடன் அவதானம் **எதனையும் கொடுக்கவில்லை எனின்** S இற்குச் சாத்தியமான ஒரு கட்டமைப்பைத் தருக.
- iv. **சேர்வை** S **இல் உள்ள அன்னயனை இனங்காண்**பதற்கான ஒரு சோதனையைக் குறிப்பிடுக.

பகுதி – II C

இப்பகுதியிலிருந்து எவையேலும் இரு விளாக்ளுக்கு மட்டும் விடையளிக்குக

8) a) ஒரேயொரு தொடங்கும் சேர்வையாக CH_3COCH_3 ஐ மாத்திரம் பயன்படுத்தி சேர்வை W இன் தொகுப்புக்கான தாக்க ஒழுங்குமுறை கீழே தரப்பட்டுள்ளது. p, Q, R, S, T, U, V ஆகிய கட்டமைப்புக்களை இனம் காண்பதன் மூலமும், A, B, C, D, E, F, G ஆகிய தாக்கு பொருட்களை கீழே தரப்பட்டுள்ள பட்டியலில் இருந்த தெரிந்தெடுப்பதன் மூலமும் கீழ்வரும் தாக்கத்திட்டத்தை பூரணப்படுத்துக.

$$W = CH_3 - CH - CH_2 - C - CH - CH_3$$

$$CH_3 CH_3 CH_3$$

தாக்கு பொருட்களின் பட்டியல்

Mg, உலர்ஈதர், ஐதான H_2SO_4 , $LiAlH_4$, PCl_5 , ஐதான NaOH, G-குறி H_2SO_4 , வெப்பம், H_2 , Ni (தூள்), H_2O

b) பின்வரும் மாற்றலை 7 படிகளுக்கு மேற்படாது எங்கணம் நிக**ழ்த்துவீர் எனக்காட்டுக**.

c)
$$CH_3$$

 $CH_3 - C - Cl$ \longrightarrow P
 CH_3

- i) P ஐ இனம்காண்க.
- ii) மேற்படி தாக்கத்திற்கு பொருத்தமான பொறிமுறையைத் தருக.
- d)(i) (பீளோல் குளோரைட்டு) கருநாட்ட பிரதியீட்டுத் தாக்கத்தில் ஈடுபடுமா? ஆம் / இல்லை பொருத்தமற்றதை நீக்கிவிடுக.
 - (ii) உமது விடையை விளக்குக.

- b) தொழிற்சாலையொன்றில் இருந்து வெளியேறும் நீரில் SO_3^{2-} மற்றும் SO_4^{2-} அயன்கள் இருப்பது உறுதிப்படுத்தப்பட்டது. இவற்றின் செறிவுகளை துணிவதற்கு பின்வரும் செய்முறைத்திட்டங்கள் மேற்கொள்ளப்பட்டன.
 வெளியேறும் நீர்மாதிரியின் $25.0 \, \mathrm{cm}^3$ எடுக்கப்பட்டு $0.5 \, \mathrm{moldm}^{-3} \, \mathrm{I}_2$ கரைசலின் $25.0 \, \mathrm{cm}^3$ உடன் தாக்கமடைய விடப்பட்டது. மேற்குறித்த தாக்கங்களின் பின்னர் எஞ்சியிருக்கும் I_2 உடன் தாக்கம் புரிவதற்கு $0.20 \, \mathrm{moldm}^{-3} \, \mathrm{Na}_2 \mathrm{S}_2 \mathrm{O}_3$ கரைசலின் $30.00 \, \mathrm{cm}^3$ தேவைப்பட்டது. மேற்படி நீர்மாதிரியின் பிறிதொரு $25.0 \, \mathrm{cm}^3$ ஆனது, $0.5 \, \mathrm{moldm}^{-3} \, \mathrm{I}_2$ கரைசலின் $25.0 \, \mathrm{cm}^3$ உடன் தாக்கமடையவிடப்பட்டது. பின்னர் இக்கரைசல் ஐதான HNO_3 கரைசலுடன் அமிலமாக்கப்பட்டு மிகை BaCl_2 கரைசலுடன் தாக்கமடையச் செய்யப்பட்டபோது வெண்ணிற வீழ்படிவு பெறப்பட்டது. இவ்வீழ்படிவு வடித்து மாறாத்திணிவு வரை உலர்த்தப்பட்டு நிறுக்கப்பபட்டபோது திணிவு $3.728\mathrm{g}$ ஆகக் காணப்பட்டது. வெளியேற்றப்படும் நீர்மாதிரியில் உள்ள SO_3^{2-} மற்றும் SO_4^{2-} அயன்களின் செறிவுகளைக் காண்க. ($\mathrm{Ba} = 137, \, \mathrm{S} = 32, \, \mathrm{O} = 16$)
- 10) A) 'A' என்பது 3d தொகுப்பைச் சேர்ந்த ஒரு மூலகம் ஆகும். மூலகம் A ஆனது அதன் ஒட்சைட்டுக்களில் அமில, மூல, மற்றும் ஈரியல்பு ஒட்சைட்டுக்களை உருவாக்கும். A யின் இழிவு ஒட்சியேற்ற நிலையில் உள்ள கற்றயனின் நீர்க்கரைசலின் நிறம் மென்சிவப்பாகும். A யிற்கு பரந்தவீச்சுடைய ஒட்சியேற்ற எண்கள் அதன் உறுதியான சேர்வைகளில் காணப்படும்.
 - i. மூலகம் A ஐ இனம்காண்க.
 - ii. மூலகம் A யின் கற்றயன் A²⁺ இன் இலத்திரன் நிலையமைப்பைத் **தருக**.
 - iii. மேற்படி கற்றயன் A^{2+} (நீர்க்கரைசல் நிலையில்) செறி HCl உடன் தோற்றுவிக்குமம் சிக்கல் அயனையும் அதன் நிறத்தையும் தருக.
 - iv. A உருவாக்கும் ஒட்சைட்டுக்களை குறிப்பிட்டு அவற்றின் அமில, மூல ஈரியல்பு நிலைகளையும் ஒட்சியேற்ற நிலைகளையும் குறிப்பிடுக.
 - v. மூலகம் 'A' உருவாக்கும் ஒட்சோ அன்னயன் இரண்டையும் குறிப்பிட்டு அவ் ஒட்சோ அனயன்களின் பெயரையும் குறிப்பிடுக.
 - vi. அவ் ஒட்சோ அனயன்களில் உயர் ஒட்சியேற்ற நிலையில் (மூலகம் Aயின் ஒட்சியேற்ற நிலை) காணப்படும் ஒட்சோ அன்னயன் செறி HCl உடன் ஏற்படுத்துதும் இரசாயன தாக்கத்தின் சமப்படுத்திய சமன்பாட்டை தருக.
 - vii. A யின் உபயோகம் இரண்டு தருக.
 - viii. A²⁺ இன் நீர்க்கரைசல் அமோனியா கரைசலுடன் தோற்றுவிக்கும் விளைவின் சூத்திரத்தையும் நிறத்தையும் தருக.

- B) P, Q, R ஆகியன மூன்று சிக்கல் அயன்கள் ஆகும். அவை நேர் அல்லது எதிர் அயன்களாகக் காணப்படும். மேற்படி சேர்வைகள் ஒவ்வொன்றும் ஒரே வகை இணையியை (X, Y, Z) மட்டும் மத்திய கற்றயனுடன் இணைக்கப்பட்ட இணைப்புக்கோளத்தில் கொண்டுள்ளன. மேற்படி P, Q, R ஆகிய சிக்கல் சேர்வைகளில் இரண்டு எண்முகி வடிவ இணைப்புக்கோளத்தை கொண்டுள்ளன. இச்சிக்கல் சேர்வைகள் (P, Q, R) பற்றிய விபரணமும் அவற்றின் நிறங்களும் கீழே தரப்பட்டுள்ளன.
 - மத்திய கற்றயன் C ஆனது ஒன்றுக்கு மேற்பட்ட இணையி X உடன் இணைந்து பச்சை நிறக்கரைசலைத் தோற்றுவித்தது.
 - 2) மத்திய கற்றயன் C ஆனது ஒன்றுக்கு மேற்பட்ட இணையி Y உடன் இணைந்து நீல நிறக்கரைசலை தோற்றுவித்தது.
 - மத்திய கற்றயன் C ஆனது ஒன்றுக்கு மேற்பட்ட இணையி Z உடன் இணைந்து மஞ்சள் நிறக்கரைசலை தோற்றுவித்தது.
 - i. இணையிகள் X, Y, Z இணை இனம் காண்க.
 - இவ் இணையிகள் மேற்கூறப்பட்ட நிபந்தனையில் மத்திய கற்றயனுடன் இணைந்து
 உருவாக்கும் சிக்கல் அயன்களின் (P, Q, R) கட்டமைப்புக்களை எழுதுக.
 - iii. உம்மால் வழங்கப்பட்ட மூன்று சிக்கல் அயன்களினதும் IUPAC பெயரை குறிப்பிடுக.
 - iv. எண்முகி வடிவ கேத்திரகணித சிக்கல் அயன் சேர்வைகள் இரண்டையும் இனம் கண்டு குறிப்பிடுக.
 - v. அவற்றின் வடிவங்களை வரைக.
 - vi. இவ் மத்திய கற்றயன் NaOH கரைசலுடன் தோற்றுவிக்கும் சூத்திரத்தையும் அதன் நிறத்தையும் தருக.
 - vii. இணையி X ஐ கொண்டுள்ள சிக்கல் அயன்சேர்வை மிகை Y உடன் உருவாக்கும் சிக்கல் அயன்சேர்வைக்கான சமப்படுத்தப்படட்ட இரசாயனச் சமன்பாட்டை தருக.

ூலங்கையின் உயர்தர கணித விஞ்ஞான

பிரிவிற்கான இணையதளம்

SCIENCE EAGLE www.scienceeagle.com

- f ✓ ◎ /Science Eagle SL

- Biology
- C.Maths
- Physics
- Chemistry
 - + more

