Programación con invariantes

Repaso - ciclos

Sintaxis de un ciclo:

```
1 while(B) {
2 //cuerpo del ciclo
3}
```

- El ciclo se repite continuamente mientras la guarda B se cumpla. Cada repetición es una iteración.
- El ciclo termina cuando no se cumpla la guarda.
- Al salir, en caso de que el ciclo terminara, el estado resultante es el mismo que el del final de la última iteración.

```
1 bool hayMayorACero(vector<int> v) {
2    int i = 0;
3    bool encontre = false;
4    int n = v.size();
5    while(i < n) {
6        encontre = encontre | | v[i] > 0;
7        i = i + 1;
8    }
9    return encontre;
10}
```


¿Son Invariantes del ciclo?

- $I \equiv i < n$
- ▶ $I \equiv i < n \land (encontre = true \lor encontre = false)$
- ► $I \equiv 0 \le i \le n \land_L encontre = true \leftrightarrow (\exists k : \mathbb{Z}) \ 0 \le k \le i \land_L v[k] > 0$
- ► $I \equiv 0 \le i \le n \land_L encontre = true \leftrightarrow (\exists k : \mathbb{Z}) \ 0 \le k < i \land_L v[k] > 0$

Repaso - Invariantes

- **Definición**. Un predicado I es un invariante de un ciclo si:
 - 1. vale antes de comenzar el ciclo, y
 - 2. si vale I ∧ B al comenzar una iteración arbitraria, entonces sigue valiendo I al finalizar la ejecución del cuerpo del ciclo.

```
1 //vale I
2 while(B) {
3 //vale I ∧ B ← Principio de iteración
4 Cuerpo del ciclo
5 //vale I ← Final de iteración
3}
```

```
1 bool hayMayorACero(vector<int> v) {
2    int i = 0;
3    bool encontre = false;
4    int n = v.size();
5    while(i < n) {
6        encontre = encontre | | v[i] > 0;
7        i = i + 1;
8    }
9    return encontre;
10}
```


¿Son Invariantes del ciclo?

- $I \equiv i < n$
- ▶ $I \equiv i < n \land (encontre = true \lor encontre = false)$
- ► $I \equiv 0 \le i \le n \land_L encontre = true \leftrightarrow (\exists k : \mathbb{Z}) \ 0 \le k \le i \land_L v[k] > 0$
- ► $I \equiv 0 \le i \le n \land_L encontre = true \leftrightarrow (\exists k : \mathbb{Z}) \ 0 \le k < i \land_L v[k] > 0$

```
1 bool hayMayorACero(vector<int> v) {
2    int i = 0;
3    bool encontre = false;
4    int n = v.size();
5    while(i < n) {
6        encontre = encontre | | v[i] > 0;
7        i = i + 1;
8    }
9    return encontre;
10}

Principio de iteración

Final de iteración
```

Principio de Iteración

Iteración	i	v[i]	encontre
1	0	-1	false
2	1	2	false
3	2	-3	true

Final de Iteración

Iteración	encontre	i	v[i]
1	false	1	2
2	true	2	-3
3	true	3	Т

Principio de Iteración

	_	_	
Iteración	i	v[i]	encontre
1	0	-1	false
2	1	2	false
3	2	-3	true

$$v = \{-1, 2, -3\}$$

n = v.size()

Final de Iteración

Tillarac iteración			
Iteración	encontre	i	v[i]
1	false	1	2
2	true	2	-3
3	true	3	Т

¿Son Invariantes del ciclo?

- $I \equiv i \leq n$
- $I \equiv i < n \land (encontre = true \lor encontre = false)$
- ► $I \equiv 0 \le i \le n \land_L encontre = true \leftrightarrow (\exists k : \mathbb{Z}) \ 0 \le k \le i \land_L v[k] > 0$
- ► $I \equiv 0 \le i \le n \land_L encontre = true \leftrightarrow (\exists k : \mathbb{Z}) \ 0 \le k < i \land_L v[k] > 0$

Principio de Iteración

Iteración	i	v[i]	encontre
1	0	-1	false
2	1	2	false
3	2	-3	true

$$v = \{-1, 2, -3\}$$

n = v.size()

Final de Iteración

T III do Roi doloi!			
Iteración	encontre	i	v[i]
1	false	1	2
2	true	2	-3
3	true	3	

¿Son Invariantes?

- $I \equiv i < n$
- ► $I \equiv i \leq n \land (encontre = true \lor encontre = false)$

Principio de Iteración

Iteración	i	v[i]	encontre
1	0	-1	false
2	1	2	false
3	2	-3	true

$$v = \{-1, 2, -3\}$$

n = v.size()

Final de Iteración

- 111011 010 110101011			
Iteración	encontre	i	v[i]
1	false	1	2
2	true	2	-3
3	true	3	上

▶
$$I \equiv 0 \le i \le n \land_L encontre = \mathbf{true} \leftrightarrow (\exists k : \mathbb{Z}) \ 0 \le k \le i \land_L v[k] > 0$$

Principio de Iteración

Iteración	i	v[i]	encontre
1	0	-1	false
2	1	2	false
3	2	-3	true

$$v = \{-1, 2, -3\}$$

n = v.size()

Final de Iteración

- 111011 010 110101011			
Iteración	encontre	i	v[i]
1	false	1	2
2	true	2	-3
3	true	3	上

Principio de Iteración

Iteración	i	v[i]	encontre	
1	0	-1	false	
2	1	2	false	
3	2	-3	true	

$$v = \{-1, 2, -3\}$$

n = v.size()

Final de Iteración

Iteración	encontre	v[i]	
1	false	1	2
2	true	2	-3
3	true	3	Т

Principio de Iteración

Iteración	i	v[i]	encontre
1	0	-1	false
2	1	2	false
3	2	-3	true

$$v = \{-1, 2, -3\}$$

n = v.size()

Final de Iteración

T III do Itordolori				
Iteración	encontre	i	v[i]	
1	false	1	2	
2	true	2	-3	
3	true	3	Т	

¿Son Invariantes?

- $I \equiv i < n$
- ► $I \equiv i < n \land (encontre = true \lor encontre = false)$
- ► $I \equiv 0 \le i \le n \land_L encontre = true \leftrightarrow (\exists k : \mathbb{Z}) \ 0 \le k \le i \land_L v[k] > 0$

Principio de Iteración

Iteración	i	v[i]	encontre
1	0	-1	false
2	1	2	false
3	2	-3	true

$$v = \{-1, 2, -3\}$$

n = v.size()

Final de Iteración

Iteración	encontre	i	v[i]	
1	false	1	2	
2	true	2	-3	
3	true	3	上	

¿Es un Invariante?

▶ $I \equiv 0 \le i \le n \land_L encontre = \mathbf{true} \leftrightarrow (\exists k : \mathbb{Z}) \ 0 \le k < i \land_L v[k] > 0$

Principio de Iteración

Iteración	i	v[i]	encontre
1	0	-1	false
2	1	2	false
3	2	-3	true

$$v = \{-1, 2, -3\}$$

n = v.size()

Final de Iteración

T III do Itol dolori				
Iteración	encontre	i	v[i]	
1	false	1	2	
2	true	2	-3	
3	true	3		

Principio de Iteración

Iteración	i	v[i]	encontre		
1	0	-1	false		
2	1	2	false		
3	2	-3	true		

$$v = \{-1, 2, -3\}$$

n = v.size()

Final de Iteración

Iteración	encontre	i	v[i]	
1	false	1	2	
2	true	2	-3	
3	true	3	上	

Principio de Iteración

Iteración	i	v[i]	encontre
1	0	-1	false
2	1	2	false
3	2	-3	true

$$v = \{-1, 2, -3\}$$

n = v.size()

Final de Iteración

T ITIAT AO TEOTAOTOTT				
Iteración	encontre	i	v[i]	
1	false	1	2	
2	true	2	-3	
3	true	3	Т	

Principio de Iteración

Iteración	i	v[i]	encontre
1	0	-1	false
2	1	2	false
3	2	-3	true

$$v = \{-1, 2, -3\}$$

n = v.size()

Final de Iteración

Iteración	encontre	i	v[i]
1	false	1	2
2	true	2	-3
3	true	3	Т

Principio de Iteración

Iteración	i	v[i]	encontre	
1	0	-1	false	
2	1	2	false	
3	2	-3	true	

$$v = \{-1, 2, -3\}$$

n = v.size()

Final de Iteración

Iteración	encontre	i	v[i]
1	false	1	2
2	true	2	-3
3	true	3	Т

Principio de Iteración

Iteración	i	v[i]	encontre	
1	0	-1	false	
2	1	2	false	
3	2	-3	true	

true

$$v = \{-1, 2, -3\}$$

n = v.size()

Final de Iteración

Iteración	encontre	i	v[i]
1	false	1	2
2	true	2	-3
3	true	3	Т

Principio de Iteración

Iteración	i	v[i]	encontre
1	0	-1	false
2	1	2	false
3	2	-3	true

$$v = \{-1, 2, -3\}$$

n = v.size()

Final de Iteración

T III di do Itordolori			
Iteración	encontre	i	v[i]
1	false	1	2
2	true	2	-3
3	true	3	

¿Son Invariantes del ciclo?

- I ≡ i < n </p>
- ► $I \equiv i < n \land (encontre = true \lor encontre = false)$
- ► $I \equiv 0 \le i \le n \land_L encontre = true \leftrightarrow (\exists k : \mathbb{Z}) \ 0 \le k \le i \land_L v[k] > 0$
- ► $I \equiv 0 \le i \le n \land_L encontre = true \leftrightarrow (\exists k : \mathbb{Z}) \ 0 \le k < i \land_L v[k] > 0$

Repaso - Teorema del Invariante

Sea Pc la precondición del ciclo, Qc la postcondición, B la guarda e I un invariante del ciclo. Si se cumple:

- 1. $P_C \Rightarrow I$,
- 2. $\{I \land B\}$ cuerpo del ciclo $\{I\}$,
- 3. $I \wedge \neg B \Rightarrow Q_C$

entonces el ciclo es parcialmente correcto (si termina, termina en Qc).