EJEMPLO 5 Di en qué regla de inferencia se basa el argumento siguiente:

«Si llueve hoy, entonces hoy no haremos una barbacoa. Si no hacemos una barbacoa hoy, haremos una barbacoa mañana. Por tanto, si llueve hoy, haremos una barbacoa mañana».

Solución: Sean p la proposición «Llueve ahora», q «Hoy no haremos una barbacoa» y r «Haremos una barbacoa mañana». Entonces, este argumento es de la forma

$$p \to q$$

$$q \to r$$

$$\therefore p \to r$$

Por tanto, este argumento es un silogismo hipotético.

ARGUMENTOS VÁLIDOS

Se dice que un argumento deductivo es correcto si siempre que todas las hipótesis son verdaderas, la conclusión también lo es. Consecuentemente, mostrar que q se deduce lógicamente de las hipótesis $p_1, p_2, ..., p_n$ es lo mismo que mostrar que la implicación

$$(p_1 \land p_2 \land \cdots \land p_n) \rightarrow q$$

es verdadera. Cuando todas las proposiciones utilizadas en un argumento correcto son verdaderas, se llega a una conclusión correcta. No obstante, un argumento correcto puede conducir a una conclusión incorrecta si se utilizan una o más proposiciones falsas en el argumento. Por ejemplo,

«Si
$$\sqrt{2} > \frac{1}{2}$$
, en tal caso $\left(\sqrt{2}\right)^2 > \left(\frac{3}{2}\right)^2$. Sabemos que $\sqrt{2} > \frac{3}{2}$; por consiguiente, $\left(\sqrt{2}\right)^2 = 2 > \left(\frac{3}{2}\right)^2 = \frac{9}{4}$ ».

es un argumento correcto basado en el modus ponens. Sin embargo, la conclusión de este argumento es falsa, porque $2 < \frac{9}{4}$. Se ha usado en el argumento la proposición falsa « $\sqrt{2} > \frac{3}{2}$ », lo que significa que la conclusión de este argumento puede ser falsa.

Cuando hay muchas premisas, a menudo se necesitan varias reglas de inferencia para demostrar que un argumento es correcto. Esto se ilustra en los ejemplos siguientes, donde se muestra paso a paso cómo se llega de un argumento a otro, razonando explícitamente cada paso que se ha dado. Estos ejemplos muestran también cómo se pueden analizar argumentos en lenguaje natural utilizando reglas de inferencia.

Ejemplos

EJEMPLO 6

Muestra que las hipótesis «Esta tarde no hace sol y hace más frío que ayer», «Iremos a nadar sólo si hace sol», «Si no vamos a nadar, daremos un paseo en canoa» y «Si damos un paseo en canoa, estaremos en casa para la puesta de sol» conducen a la conclusión «Estaremos en casa para la puesta de sol».

Solución: Sea p la proposición «Esta tarde hace sol», q la proposición «Hace más frío que ayer», r la proposición «Iremos a nadar», s la proposición «daremos un paseo en canoa» y t la proposición «Estaremos en casa para la puesta de sol». Entonces, las hipótesis se pueden expresar como $\neg p \land q, r \rightarrow p, \neg r \rightarrow s \ y \ s \rightarrow t$. La conclusión es simplemente t. [En el caso de la segunda hipótesis, se recuerda que una de las formas de expresar $r \rightarrow p$ recogida en la página 5, Sección 1.1, es «r sólo si p», que es la forma de la hipótesis «Iremos a nadar sólo si hace sol].

Construimos un argumento para mostrar que nuestras hipótesis conducen a la conclusión deseada como sigue.

Paso	Razonamiento
1. $\neg p \land q$	Hipótesis
2. <i>¬p</i>	Simplificación usando el paso 1
3. $r \rightarrow p$	Hipótesis