Изучение многочастичных распадов Λ_b на Большом адронном коллайдере

Гусейнов Абдул-Керим Демирович 1

 $M\Gamma Y$ им. M. B. Ломоносова, физический факультет, кафедра общей ядерной физики

Изучение тяжелых барионов и их многочастичных распадов важно для проверки Стандартной модели и поисков новой физики, поскольку в многопетлевых диаграммах Фейнмана возрастает влияние возможных новых частиц. Λ_b — самый легкий прелестный барион, его распады с переходом барионного числа протону интересны еще и для изучения адронизации кварков. При изучении распадов по спектру инвариантных масс важную роль играет модель соответствующих вкладов в спектр. В зависимости от нее, конечный результат может иметь разную систематическую погрешность, быть более или менее стабильным по отношению к статистическим погрешностям экспериментальных данных.

Исследование основано на данных, соответствующих интегральной светимости $3.0~ \text{фб}^{-1}$, собранных детектором LHCb Большого адронного коллайдера. В работе изучаются вероятности распадов $\Lambda_b \to D^+ p \pi^- \pi^-$ и $\Lambda_b \to D^{*+} p \pi^- \pi^-$ с $D^{*+} \to D^+ \pi^0 / D^+ \gamma$, $D^+ \to K^- \pi^+ \pi^+$, в нормировке на канал $\Lambda_b \to \Lambda_c \pi^+ \pi^- \pi^-$, $\Lambda_c \to p K^- \pi^+$. Для спектров инвариантных масс $D^+ p \pi^- \pi^-$ и $\Lambda_c \pi^+ \pi^- \pi^-$ строятся модели вкладов основных (эксклюзивных) и инклюзивных распадов вблизи массы Λ_b , изучается стабильность результата по отношению к характеристикам модели и по отношению к статистическим погрешностям данных.

Анализ производится с помощью программного пакета Ostap на базе RooFit, ROOT.

¹Kerim.Guseinov@cern.ch