

边值微分代数方程的配点法求解器 & 边值问题求解器的最新进展

曲庆宇

2024.11.3

Master student at Zhejiang University
2023 GSoC SciML student
2024 NumFOCUS supported SciML developer
with research interest in numerical methods, differential
equations, and machine learning

Outline

Collocation solvers for BVDAE

Research Overview

Research background

Popular packages

- **FORTRAN**: MIRKDC, BVP_SOLVER, COLSYS, COLNEW, COLDAE...
- MATLAB: bvp4c, bvp5c
- **Python**: scipy.solve_bvp
- R: bvpSolve
- Julia: BoundaryValueDiffEq.jl:
 Shooting, MultipleShooting,
 MIRK2~MIRK6, RadaulIA1,2,3,5,7,
 LobattollIA2,3,4,5, LobattollIB2,3,4,5,
 LobattollIC2,3,4,5, MIRKN2MIRKN6....

Comparison of differential equations solvers suite

Comparison Of D	ifferential Eq	uation Solver	Software											
Subject/Item	MATLAB	SciPy	deSolve	DifferentialEquations.jl	undials	Hairer	ODEPACK/Netlib /NAG	JitCODE	PyDSTool	FATODE	GSL	BOOST	Mathematica	Maple
Language	MATLAB	Python	R	Julia	C++ and Fortran	Fortran	Fortran	Python	Python	Fortran	С	C++	Mathematica	Mapl
Selection of Methods for ODEs	Fair	Poor	Fair	Excellent	⊋ood	Fair	Good	Poor	Poor	Fair	Poor	Fair	Fair	Fair
Efficiency*	Poor	Poor****	Poor***	Excellent	xcellent	Good	Good	Good	Good	Good	Fair	Fair	Fair	Goo
Tweakability	Fair	Poor	Good	Excellent	xcellent	Good	Good	Fair	Fair	Fair	Fair	Fair	Good	Fair
Event Handling	Good	Good	Fair	Excellent	Good**	None	Good**	None	Fair	None	None	None	Good	Goo
Symbolic Calculation of Jacobians and Autodifferentiation	None	None	None	Excellent	lone	None	None	None	None	None	None	None	Excellent	Exc
Complex Numbers	Excellent	Good	Fair	Good	lone	None	None	None	None	None	None	Good	Excellent	Exc
Arbitrary Precision Numbers	None	None	None	Excellent	lone	None	None	None	None	None	None	Excellent	Excellent	Exc
Control Over Linear/Nonlinear Solvers	None	Poor	None	Excellent	xcellent	Good	Depends on the solver	None	None	None	None	None	Fair	Non
Built-in Parallelism	None	None	None	Excellent	xcellent	None	None	None	None	None	None	Fair	None	Nor
Differential-Algebraic Equation (DAE) Solvers	Good	None	Good	Excellent	Good	Excellent	Good	None	Fair	Good	None	None	Good	God
Implicitly-Defined DAE Solvers	Good	None	Excellent	Fair	xcellent	None	Excellent	None	None	None	None	None	Good	Nor
Constant-Lag Delay Differential Equation (DDE) Solvers	Fair	None	Poor	Excellent	lone	Good	Fair (via DDVERK)) Fair	None	None	None	None	Good	Exc
State-Dependent DDE Solvers	Poor	None	Poor	Excellent	lone	Excellent	Good	None	None	None	None	None	None	Exc
Stochastic Differential Equation (SDE) Solvers	Poor	None	None	Excellent	lone	None	None	Good	None	None	None	None	Fair	Poo
Specialized Methods for 2nd Order ODEs and Hamiltonians (and Symplectic Integrators)	None	None	None	Excellent	lone	Good	None	None	None	None	None	Fair	Good	Non
Boundary Value Problem (BVP) Solvers	Good	Fair	None	Good	lone	None	Good	None	None	None	None	None	Good	Fair
GPU Compatibility	None	None	None	Excellent	Good	None	None	None	None	None	None	Good	None	Nor
Analysis Addons (Sensitivity Analysis, Parameter Estimation, etc.)	None	None	None	Excellent	xcellent	None	Good (for some methods like DASPK)	None	Poor	Good	None	None	Excellent	Nor
* Efficiency takes into ac	count not only th	e efficiency of the	implementation, b	ut the features of the impleme	nted methods (adv	anced timesteppir	ng controls, existen	ce of methods wh	nich are known to	be more efficient,	Jacobian handling	g)		
** Event handling needs	to be implement	ed yourself using	basic rooffinding fu	nctionality			For more detailed	d explainations ar	nd comparisons, se	ee the following blo	og post:			
*** There is a way to write	your own C/For	tran code for the	derivative, in which	case it nearly matches Julia's	speed		http://www.stoch	asticlifestyle.com	/a-comparison-b	etween-differential	-equation-solver-s	suites-in-matlab-r-	julia-python-c-and	1-fortr
**** This timing includes J	JIT compilation w	rith Numba, see hi	ttps://github.com/Ju	uliaDiffEq/SciPyDiffEq.jl for timi	ng details									
Scale	None	Poor	Fair	Good	Excellent									

Research background

BVP has the form of:

$$\frac{du}{dt} = f(u, p, t), \quad a < t < b$$
$$g(u(a), u(b)) = 0$$

Swirling flow problem

$$\frac{du}{dt} = f(u, p, t), \quad a < t < b$$

$$\begin{cases} \epsilon f'''' + f f''' + g g' = 0 \\ \epsilon g'' + f g' - f' g = 0 \end{cases}$$

$$\begin{cases} x' = \frac{v_x v_c}{h} \\ y' = \frac{v_y v_c}{h} \end{cases}$$

$$f(0) = f(1) = f'(0) = f'(1)$$

$$g(0) = \Omega_0, \ g(1) = \Omega_1$$

■ The best launching time problem(Optimal Control)

$$\begin{cases}
\epsilon f'''' + f f''' + g g' = 0 \\
\epsilon g'' + f g' - f' g = 0
\end{cases}$$

$$\begin{cases}
x' = \frac{v_x v_c}{h} \\
y' = \frac{v_y v_c}{h} \\
v'_x = \frac{F}{M|v_c|\sqrt{1+\lambda^2}} \\
v'_y = \frac{F}{M|v_c|\sqrt{1+\lambda^2}} - \frac{g}{v_c} \\
\lambda'_2 = 0 \\
\lambda' = -\lambda_2 \frac{v_c}{h} \\
t'_f = 0
\end{cases}$$

BVP solving is vital in modeling and understanding complex dynamical system

$$t_0 = 0, \ x_0 = 0, \ y_0 = 0,$$

 $v_{x0} = 0, \ v_{y0} = 0,$
 $y_f = h, \ v_x(t_f) = v_c, \ v_y(t_f) = v_c$

Methods overview

Classical Runge-Kutta methods

■ Explicit Runge-Kutta methods

$$k_{1} = f(t_{n}, y_{n})$$

$$k_{2} = f(t_{n} + c_{2}h, y_{n} + (a_{2,1}k_{1})h)$$

$$k_{3} = f(t_{n} + c_{3}h, y_{n} + (a_{3,1}k_{1} + a_{3,2}k_{2})h)$$

$$\vdots$$

$$k_{s} = f(t_{n} + c_{s}h, y_{n} + (a_{s,1}k_{1} + a_{s,2}k_{2} + \dots + a_{s,s-1}k_{s-1})h)$$

$$y_{n+1} = y_{n} + h \sum_{i=1}^{s} b_{i}k_{i}$$

■ Implicit Runge-Kutta methods

$$k_{1} = f(t_{n} + c_{1}h, y_{n} + h \sum_{l=1}^{s} a_{1,l}k_{l})$$

$$k_{2} = f(t_{n} + c_{2}h, y_{n} + h \sum_{l=1}^{s} a_{2,l}k_{l})$$

$$k_{3} = f(t_{n} + c_{3}h, y_{n} + h \sum_{l=1}^{s} a_{3,l}k_{l})$$

$$\vdots$$

$$k_{s} = f(t_{n} + c_{s}h, y_{n} + h \sum_{l=1}^{s} a_{s,l}k_{l})$$

$$y_{n+1} = y_{n} + h \sum_{i=1}^{s} b_{i}k_{i}$$

Methods overview

Monotonic Implicit Runge-Kutta(MIRK) methods

$$\frac{du}{dt} = f(u, p, t), \quad t \in [a, b]$$

$$g_a(y(a)) = 0, \quad g_b(y(b)) = 0$$

$$\{t_i\}_{i=0}^N, \quad t_0 = a, \ t_N = b$$

> MIRK methods has Butcher tableau coefficients

satisfying
$$c_j = v_j + \sum_{k=1}^{j-1} a_{j,k}$$

Computation of discrete stages

$$K_j = f(t_i + c_j h_i, (1 - v_j)y_i + v_j y_{i+1} + h_i \sum_{r=1}^{j-1} x_{jr} K_r)$$

Collocation equations in subinterval

$$\phi_i(y_i, y_{i+1}) = y_{i+1} - y_i - h_i \sum_{j=1}^{3} b_j K_j = 0$$

> Nonlinear system in the whole time span

$$\Phi(Y) = \begin{pmatrix} g_a(y_0) \\ \phi_1(y_0, y_1) \\ \vdots \\ \phi_N(y_{N-1}, y_N) \\ g_b(y_N) \end{pmatrix} = 0$$

Methods overview

MIRK methods

> Using NonlinearSolve.jl to solve the nonlinear system, forming the Newton iteration with a

banded matrix

Sparsity Detection
No Sparsity Detection
Aprox. Sparsity

10
10
Aprox. Sparsity

10
10
No Repair Sparsity

10
10
No Repair Sparsity

10
10
No Repair Sparsity

10
No Repair Sparsity

10
No Repair Sparsity

10
No Repair Sparsity

No Repair Sparsi

- ➤ Utilize SparseDiffTools.jl to exploit the sparse pattern and matrix coloring to accelerate the nonlinear solving
- > Using automatical jacobian selection algorithm to solve the nonlinear system, then we get the initial discrete solution and the discrete stages for the defect estimation

$$\phi_i(y_i, y_{i+1}) = y_{i+1} - y_i - h_i \sum_{j=1}^s b_j K_j = 0$$

$$K_j = f(t_i + c_j h_i, (1 - v_j) y_i + v_j y_{i+1} + h_i \sum_{r=1}^{j-1} x_{jr} K_r)$$

NonlinearSolve.jl: High-Performance and Robust Solvers for Systems of Nonlinear Equations in Julia

Defect control adaptivity

Adaptivity in MIRK and FIRK

Improve accuracy→Refine mesh→Low efficiency
Improve efficiency→Coarsen mesh→Low accuracy

The balance between accuracy and efficiency ②

The core of the defect control adaptivity: According to the computing defect refine the grid to achieve more accurate numerical solutions

Numerical Solution of Boundary Value Problems for Ordinary Differential Equations

Collocation methods

Computing example

A simple boundary value problem

$$z'' = z$$

Satisfying boundary conditions

$$z(0) = 1, \quad z(1) = 0$$

Transforming to first-order system

$$\begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} y_2 \\ \frac{1}{\lambda} f(y_1) \end{pmatrix}$$

With boundary conditions

$$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} y_1(0) \\ y_2(0) \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} y_1(1) \\ y_2(1) \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

Setting adaptive kwargs as true, we can turn on defect control adaptivity(on by default)

```
using BoundaryValueDiffEq, Plots
function f!(du, u, p, t)
   du[1] = u[2]
   du[2] = 1/p * u[1]
end
function bc!(resid, u, p, t)
    resid[1] = u[1][1] - 1
    resid[2] = u[1][end]
end
u0 = [0, 0]
tspan = (0.0, 1.0)
prob = BVProblem(f!, bc!, u0, tspan)
sol = solve(prob, MIRK4(), adaptive=true)
```

Shooting methods

Basic idea of shooting methods

Shooting method convert BVP to IVP and adjusting its numerical solution to satisfy the boundary conditions

MultipleShooting method divides the interval into several subintervals and forms several IVPs, then uses a similar idea of Shooting to solve the BVP

Usage example

```
using BoundaryValueDiffEq, OrdinaryDiffEq
sol = solve(prob, Shooting(Tsit5()), dt=0.01)
using BoundaryValueDiffEq, OrdinaryDiffEq
sol = solve(prob, MultipleShooting(5, Tsit5()), dt=0.01)
```

Problem constructor

Boundary value problem construction

Normal Boundary value problem **BVProblem**

Has two-point constraints or multi-points constraints

```
using BoundaryValueDiffEq, Plots
function f!(du, u, p, t)
    du[1] = u[2]
   du[2] = 1/p * u[1]
end
function bc!(resid, u, p, t)
    resid[1] = u[1][1] - 1
    resid[2] = u[1][end]
end
u0 = [0, 0]
tspan = (0.0, 1.0)
prob = BVProblem(f!, bc!, u0, tspan)
sol = solve(prob, MIRK4(), adaptive=true)
```

Two-point boundary value problems TwoPointBVProblem

Constraints at start and end

```
using BoundaryValueDiffEq, Plots
function f!(du, u, p, t)
   du[1] = u[2]
   du[2] = 1/p * u[1]
end
function bca!(resid, u_a, p)
   resid[1] = u_a[1] - 1
end
function bcb!(resid, u b, p)
   resid[1] = u b[1]
end
u0 = [0.0, 0.0]
tspan = (0.0, 1.0)
prob = TwoPointBVProblem(f!, (bca!, bcb!), u0, tspan;
       bcresid prototype = (zeros(1), zeros(1)))
sol = solve(prob, MIRK4(), adaptive=true)
```

Methods evaluation

Benchmarks

Use standard testing problem set to benchmark algorithms in BoundaryValueDiffEq.jl:

- MIRK2~MIRK6 methods
- RadaullA methods
- LobattollA, LobattollB, LobattollC methods
- SingleShooting methods
- MultipleShooting methods
- BVPM2(FORTRAN BVP solver)
- COLNEW(FORTRAN BVP solver)
- BVPSOL(FORTRAN BVP solver)

https://docs.sciml.ai/SciMLBenchmarksOutput/dev/NonStiffBVP/linear_wpd/

https://archimede.uniba.it/~bvpsolvers/testsetbvpsolvers/?page_id=29

Methods overview

Runge-Kutta-Nystrom(RKN) methods

$$y''(t) = f(t, y(t), y'(t))$$

 $y(t_0) = y_0, \quad y'(t_0) = y'_0$

> RKN methods has Butcher table formation

satisfying
$$c_j = \sum_{i=1}^s a_{i,j}$$

Computation of discrete stages

$$K_i = f(t_0 + c_i h,$$
 $y_0 + c_i h y_0' + h^2 \sum_{j=1}^i \bar{a}_{i,j} K_j,$ $y_0' + h \sum_{j=1}^i a_{i,j} K_j)$

> Iterations in the whole interval

$$y_{n+1} = y_n + hy'_n + h^2 \sum_{i=1}^{s} \bar{b}_i K_i$$

$$y'_{n+1} = y'_n + h \sum_{i=1}^{s} b_i K_i$$

Methods overview

Monotonic Implicit Runge-Kutta-Nystrom(MIRKN) methods

$$y''(t) = f(t, y(t), y'(t))$$

$$g(y(a), y'(a), y(b), y'(b)) = 0$$

$$\{t_i\}_{i=0}^{N}, \quad t_0 = a, \ t_N = b$$

MIRKN methods has Butcher table formation

satisfying
$$c_r = v_r' + \sum_{i=1}^s x_{rj}'$$

> Computation of discrete stages

$$K_r = f\left(t_{i-1} + c_r h, \right.$$

$$(1 - v_r)y_{i-1} + v_r y_i + h((c_r - v_r - w_r)y'_{i-1} + w_r y'_i) + h^2 \sum_{j=1}^{r-1} x_{rj} K_j,$$

$$(1 - v'_r)y'_{i-1} + v'_r y'_i + h \sum_{j=1}^{r-1} x'_{rj} K_j$$

$$\begin{bmatrix} y_i - y_{i-1} - hy'_{i-1} - h^2 \sum_{r=1}^s b_r k_r \\ y'_i - y'_{i-1} - h \sum_{r=1}^s b'_r k_r \end{bmatrix} = 0$$

Methods overview

Use MIRKN methods

Example second-order BVP

$$\begin{cases} y_1''(x) = y_2(x) \\ \epsilon y_2''(x) = -y_1(x)y_2'(x) - y_3(x)y_3'(x) \\ \epsilon y_3''(x) = y_1'(x)y_3(x) - y_1(x)y_3'(x) \end{cases}$$

With boundary conditions

$$y_1(0) = y_1'(0) = y_1(1) = y_1'(1) = 0$$

$$y_3(0) = -1, \quad y_3(1) = 1$$

Successful solving:

Comparison between MIRK and MIRKN:

ϵ	MIRK methods	MIRKN methods
0.1	8.11×10^{-2}	4.36×10^{-2}
0.01	2.89×10^{-1}	1.50×10^{-1}
0.001	1.14	4.40×10^{-1}
0.0001	5.77	3.33
10^{-5}	72.8	24.0
10^{-6}	143.3	59.5
10^{-7}	515.7	210.8

Problem constructor

Second order boundary value problem construction

Normal Boundary value problem **SecondOrderBVProblem**

Has two-point constraints or multi-points constraints

```
using BoundaryValueDiffEq, Plots
function f!(ddu, du, u, p, t)
    \epsilon = 0.1
    ddu[1] = u[2]
    ddu[2] = (-u[1]*du[2] - u[3]*du[3])/\epsilon
    ddu[3] = (du[1]*u[3] - u[1]*du[3])/\epsilon
end
function bc!(res, du, u, p, t)
    res[1] = u[1][1]
    res[2] = u[end][1]
    res[3] = u[1][3] + 1
    res[4] = u[end][3] - 1
    res[5] = du[1][1]
    res[6] = du[end][1]
end
u0 = [1.0, 1.0, 1.0]
tspan = (0.0, 1.0)
prob = SecondOrderBVProblem(f!, bc!, u0, tspan)
sol = solve(prob, MIRKN4(), dt=0.01)
```

Two-point boundary value problems TwoPointSecondOrderBVProblem Constraints at start and end

```
using BoundaryValueDiffEq, Plots
function f!(ddu, du, u, p, t)
    \epsilon = 0.1
    ddu[1] = u[2]
    ddu[2] = (-u[1]*du[2] - u[3]*du[3])/\epsilon
    ddu[3] = (du[1]*u[3] - u[1]*du[3])/\epsilon
end
function bca!(res, du, u, p)
    res[1] = u[1]
    res[3] = u[3] + 1
    res[5] = du[1]
function bcb!(res, du, u, p)
    res[1] = u[1]
    res[2] = u[3] - 1
    res[3] = du[1]
end
u0 = [1.0, 1.0, 1.0]
tspan = (0.0, 1.0)
prob=TwoPointSecondOrderBVProblem(f!,(bca!, bcb!),u0,tspan,
        bcresid_prototype=(zeros(3), zeros(3)))
sol = solve(prob, MIRKN4(), dt=0.01)
```

Background

Basic mathematical background

Boundary Value Differential-Algebraic Equations has the form of

■ Hydrodynamic semiconductor

$$\begin{cases} x_1' = x_2 y - \alpha J \\ x_2' = y - 1 \\ 0 = x_1 - (\frac{J^2}{y} + y) \end{cases}$$
$$y(0) = y(\beta) = \bar{n}$$

Methods overview

Dilemma of Boundary value differential-algebraic equations

BDF and implicit Runge-Kutta behave well on initial value DAE, but cause instability when solving boundary value DAE

The possible occurrence of increasing solution modes for BVPs render robust schemes such as BDF unstable

We need native BVDAE solvers in the SciML universe!!

Backgroud

Research background

	BVDAE solvers
MATLAB	BVPSUITE
Mathematica	None
Fortran	COLDAE
Python	Interfacing COLDAE(solve_bvp)
R	Interfacing COLDAE(bvpSolve)
Julia	SciML BoundaryValueDiffEq.jl

Methods overview

BVDAE Gauss-Legendre collocation

1.Build collocation equations with Implicit RK tableau

 \succ In Gauss-Legendre collocation points: $t_i=t_{n-1}+
ho_jh_n, \quad j=1,\cdots,k$

Monomial representation for piecewise approximation

$$u_i^{\pi} = \sum_{l=0}^{m_i - 1} \frac{(t - t_{n-1})^l}{l!} z_{n-1, p+l} + (h_n)^{m_i} \sum_{l=1}^k \psi_l(\frac{t - t_{n-1}}{h_n}) \omega_{il}$$

Which satisfying

$$D^j \psi_l(0) = 0, \ j = 0, \cdots, m_i - 1$$

$$D^{m_i}\psi_l(\rho_i) = \delta_{j,l} \ j, l = 1, \cdots, k$$

Substitute to the collocation equations:

$$D^{m_i} u_i^{\pi}(t_j) = f_i(t_j, z^{\pi}(t_j), y^{\pi}(t_j)),$$

$$0 = f_i(t_j, z^{\pi}(t_j), y^{\pi}(t_j))$$

Methods overview

BVDAE Gauss-Legendre collocation

2. Construct a nonlinear system

Discretized BVDAE has the underlying geometry in the form of

Almost Block Diagonal Matrices

https://github.com/ErikQQY/AlmostBlockDiagonals.jl

Methods overview

BVDAE Gauss-Legendre collocation

Almost block diagonal matrix gaussian elimination

Factorized almost block diagonal matrix substitution

Methods overview

BVDAE Gauss-Legendre collocation

Methods overview

Numerical Example

Numerical index-1 BVDAE example:

$$\begin{cases} x'_1 = (\epsilon + x_2 - p_2(t))y + p'_1(t) \\ x'_2 = p'_2(t) \\ x'_3 = y \\ 0 = (x_1 - p_1(t))(y - e^t) \end{cases}$$

With boundary conditions

$$\begin{cases} x_1(0) = p_1(0) \\ x_2(1) = p_2(0) \\ x_3(0) = 1 \end{cases}$$

Successful solving:

```
function f!(du, u, p, t)
    du[1] = (1 + u[2] - sin(t)) * u[4] + cos(t)
    du[2] = cos(t)
    du[3] = u[4]
    du[4] = (u[1] - sin(t)) * (u[4] - e^t)
end
function bc! (res, u, p, t)
    res[1] = u[1]
    res[2] = u[3] - 1
    res[3] = u[2] - sin(1.0)
end
u0 = [0.0, 0.0, 0.0, 0.0]
tspan = (0.0, 1.0)
zeta = [0.0, 0.0, 1.0]
fun = ODEFunction(f!, bc!;
    differential_vars=[true,true,true,false])
prob = BVProblem(fun, bc!, u0, tspan, 2.7)
sol = solve(prob, Ascher4(zeta = zeta), dt = 0.01) [8.833259994646044, 8.8332699946274833, 8.9999999994731288, 2.349526461264176-7
```

```
ulia> sol = solve(prob, Ascher4(zeta=zeta1), dt=0.05)
retcode: Success
Interpolation: 1st order linear
t: 21-element Vector{Float64}:
u: 21-element Vector{Vector{Float64}}:
 [0.0, -6.787465755374971e-16, 1.0, 2.9754690790284775e-9]
 0.09983341657254163. 0.09983341664682757. 0.999999999257134. 3.2669019322848324e-8
 [0.29552020644144134, 0.29552020666133916, 0.999999997801016, 9.078355482885126e-8
  0.34289780720029905, 0.34289780745545095, 0.999999997448475, 1.0483470975828086e-
  0.522687228541724, 0.522687228930659, 0.999999996110649, 1.5807845932979118e-7]
 [0.6051864052857161. 0.6051864057360393. 0.999999995496763. 1.8246053849142003e-7
  0.6442176867583241, 0.6442176872376908, 0.999999999520633, 1.9398259720996858e-7
 [0.7173560903657336, 0.7173560908995227, 0.999999994662103, 2.1554426766372893e-7
 [0.7833269090446044, 0.7833269096274833, 0.999999994171208, 2.3495264461264017e-7]
```

Methods overview

The final solver

- > The **expected final implemented solver**:
- Collocation for semi-explicit index-1 BVDAE
- Projected collocation methods

- > Future plans of the project:
- Refactor the current implementation to the SciML style
- Support higher-index and mixed-order BVDAE problem solving
- Benchmarks against Fortran solvers

Additional

Google Summer of Code

Apply

Interested contributors propose a project to work on.

Code

Accepted GSoC contributors spend the summer coding with guidance from a mentor.

Share

Submit your code for the world to use!

How to get involved?

SciML Fellowship

SciML Small Grants Program: Funded Open Source Contributions to Julia's SciML

Process:

- · Pick a project from the project list
- · Send a short application to sciml@julialang.org
- Solidify acceptance criteria with the steering council and reviewer
- Once accepted, you have 1 month to complete the issue, no other applications accepted for the project in that time frame.
- · Make pull requests, submit code
- Get code reviewed by experts
- When merged, profit! \$\$\$

For details, see the projects list: https://sciml.ai/small_grants/

Help SciML Improve! Projects include:

- Improving compilation latency and startup times
- Improvements to the package structure for designing new solver algorithms
- Developing and maintaining benchmarks

And many more to come

Interested in helping SciML improve faster? Consider donating to the SciML Open Source Organization to help fund more small grants projects! Earmarking funds for specific projects is accepted and we'd be happy to help craft the project to ensure success!

Thanks for Watching!!!