

Algorithms and Data Structures

Open Hashing

Ulf Leser

Repetition

- Universe, Hash function, fill degree, synonyms, collision
- Hash tables, in general, provide a way to insert, delete and find in average O(1) time
- So why still use binary trees?
 - Complex operations are expensive (no order on the elements in a hash table); e.g. extract min, max, etc.
 - Fixed storage can be a problem
 - We might/will have collisions
 - One solution: separate/direct chaining
 - Alternative? Today ...

Open Hashing

- Open Hashing: Store all values inside hash table A
- General framework
 - No collision: Business as usual
 - Collision: Chose another index and probe again (is it "open"?)
 - As second index might be full as well, probing must be iterated
- Many suggestions on how to chose the next probe index
- In general, we want a strategy (probe sequence) that
 - ... ultimately visits any index in A (and few twice before)
 - is deterministic when searching, we must follow the same order of indexes (probe sequence) as for inserts

Reaching all Indexes of A

Definition

Let A be a hash table, |A|=m, over universe U and h a hash function for U into A. Let $I=\{0, ..., m-1\}$. A probe sequence is a deterministic, surjective function s: $UxI \rightarrow I$

Remarks

- We use j to denote elements of the sequence: Where to jump after j-1 probes
- s need not be injective a probe sequences may cross itself
 - But it is better if it doesn't
- We typically use $s(k, j) = (h(k) s'(k, j)) \mod m$ for a properly chosen function s'
- Example: s'(k, j) = j, hence $s(k, j) = (h(k)-j) \mod m$

Searching

```
func int search(k int) {
     \dot{1} := 0;
   first := h(k);
   repeat
       pos := (first-s'(k, j)) \mod m;
       j := j+1;
7.
     until (A[pos]=k) or
            (A[pos]=null) or
            (j=m)
8.
     if (A[pos]=k) then
9.
       return pos;
10.
     else
11.
       return -1;
12.
     end if:
13. }
```

- Let s'(k, 0) := 0
- We assume that s cycles through all indexes of A
 - In whatever order
- Probe sequences longer than m-1 usually make no sense, as they necessarily look into indexes twice
 - But beware of non-injective functions

Deletions

Deletions are a problem

- Assume $h(k) = k \mod 11$ and $s(k, j) = (h(k) + 3*j) \mod m$

Remedies

- Leave a mark (tombstone)
 - During search, jump over tombstones
 - During insert, tombstones may be replaced
- Re-organize list
 - Keep pointer p to index where a key should be deleted
 - Walk to end of probe sequence (first empty entry)
 - Move last non-empty entry to index p
 - Requires to completely run through the probe sequence for every deletion (otherwise only n/2 on average)
 - Not compatible with strategies that keep probe sequences sorted
 - See later

Open versus External collision handling

Pro

- We do not need more space than reserved more predictable
- A typically is filled more homogeneously less wasted space

Contra

- More complicated
- Depending on method, we get worse average-case / worst-case complexities for insertion/deletion/sort
 - Especially deletions have overhead
- A gets full; we cannot go beyond $\alpha=1$
- If A gets very large, we can elegantly store overflow chains on external memory

Overview

- We will look into three strategies
 - Linear probing: $s(k, j) := (h(k) j) \mod m$
 - Double hashing: $s(k, j) := (h(k) j*h'(k)) \mod m$
 - Ordered hashing: Any s; values in probe sequence are kept sorted

Others

- Quadratic hashing: $s(k, j) := (h(k) floor(j/2)^{2*}(-1)^{j}) \mod m$
 - Less vulnerable to local clustering then linear hashing
- Uniform hashing: s is a random permutation of I dependent on k
 - High administration overhead, guarantees shortest probe sequences

Content of this Lecture

- Open Hashing
 - Linear Probing
 - Double Hashing
 - Ordered Hashing

Linear Probing

Probe sequence function: s(k, j) := (h(k) - j) mod m

Analysis

- The longer a chain ...
 - the more different values of h(k) it covers
 - the higher are the chances to produce more collisions
 - the faster it will grow, the faster it will merge with other chains
- Assume an empty position p left of a chain of length n and an empty position q with an empty cell to the right
 - Also assume h is uniform
 - Chances to fill q with next insert: 1/m
 - Chances to fill p with the next insert: n/m
- Linear probing tends to quickly produce long, completely filled stretches of A with high collision probabilities

Analysis

In Numbers

- Scenario: Some inserts, then many searches
 - Expected number of probes per search are most important

erfolgreiche Suche:

$$C_n \approx \frac{1}{2} \left(1 + \frac{1}{(1 - \alpha)} \right)$$

erfolglose Suche:

$$C'_n \approx \frac{1}{2} \left(1 + \frac{1}{\left(1 - \alpha \right)^2} \right)$$

α	C_n (erfolgreich)	C'n(erfolglos)
0.50	1.5	2.5
0.90	5.5	50.5
0.95	10.5	200.5
1.00	_	-

Source: S. Albers / [OW93]

Quadratic Hashing

erfolgreiche Suche:

$$C_n \approx 1 - \frac{\alpha}{2} + \ln\left(\frac{1}{(1-\alpha)}\right)$$

erfolglose Suche:

$$C'_n \approx \frac{1}{1-\alpha} - \alpha + \ln\left(\frac{1}{(1-\alpha)}\right)$$

α	C_n (erfolgreich)	C'n(erfolglos)
0.50	1.44	2.19
0.90	2.85	11.40
0.95	3.52	22.05
1.00	-	-

Source: S. Albers / [OW93]

Discussion

- Disadvantage of linear (and quadratic) hashing:
 Problems with the original hash function h are preserved
 - Probe sequence only depends on h(k), not on k
 - s'(k, j) ignores k
 - All synonyms k, k' will create the same probe sequence
 - Two keys that form a collision are called synonyms
 - Thus, if h tends to generate clusters (or inserted keys are non-uniformly distributed in U), also s tends to generate "clusters" (i.e., sequences filled from multiple keys)

Double Hashing

- Double Hashing: Use a second hash function h'
 - $s(k, j) := (h(k) j*h'(k)) \mod m \text{ (with } h'(k) \neq 0)$
 - Further, we want that $\neg h'(k)|m$ (done if m is prime)
- h' should spread h-synonyms
 - If h(k)=h(k'), then hopefully $h'(k)\neq h'(k')$
 - Otherwise, we preserve problems with h
 - Optimal case: h' statistically independent of h, i.e., $p(h(k)=h(k') \land h'(k)=h'(k')) = p(h(k)=h(k'))*p(h'(k)=h'(k'))$
- Example: If $h(k) = k \mod m$, then $h'(k) = 1 + k \mod (m-2)$

Example (Linear Probing produced 9 collisions)

• $h(k) = k \mod 11$; $h'(k) = 1 + k \mod 9$

Analysis

Would need a lengthy proof

$$C'_n \le \frac{1}{1-\alpha}$$

$$C_n \approx \frac{1}{\alpha} * \ln\left(\frac{1}{(1-\alpha)}\right)$$

α	C_n (erfolgreich)	C'n(erfolglos)
0.50	1.39	2
0.90	2.56	10
0.95	3.15	20
1.00	-	_

Another Example

Observation

We change the order of insertions (and nothing else)

Observation

- The number of collisions depends on the order of inserts
 - Because h' spreads h-synonyms differently for different values of k
- We cannot change the order of inserts, but ...
- Observe that when we insert k' and there already was a k with h(k)=h(k'), we actually have two choices
 - Until now we always looked for a new place for k'
 - Why not: set A[h(k')]=k' and find a new place for k?
 - If s(k',1) is filled but s(k,1) is free, then the second choice is better
 - Insert is faster, searches will be faster on average

Brent's Algorithm

- Brent's algorithm:
 - Upon collision, propagate key for which the next index in probe sequence is free; if both are occupied, propagate k'
- Improves only successful searches
 - Otherwise we have to follow the chain to its end anyway
- One can show that the average-case probe length for successful searches now is constant (~2.5 accesses)
 - Even for relatively full tables

Content of this Lecture

- Open Hashing
 - Linear Probing
 - Double Hashing
 - Ordered Hashing

Idea

- Can we do something to improve unsuccessful searches?
 - Recall overflow hashing: If we keep the overflow chain sorted, we can stop searching after n/2 comparisons on average
- Transferring this idea: We must keep the keys in any probe sequence ordered
 - We have seen with Brent's algorithm that we have the choice which key to propagate whenever we have a collision
 - Thus, we can also choose to always propagate the smaller of both keys – which generates a sorted probe sequence
- Result: Unsuccessful are as fast as successful searches
 - Note: This trick cannot be combined with Brent's algorithm conflicting rules

Details

- In Brent's algorithm, we only replace a key if we can insert the replaced key directly into A
- Now, we must replace keys even if the next slot in the probe sequence is occupied
 - We run through probe sequence until we meet a key that is larger
 - We insert the new key here
 - All subsequent keys must be replaced (moved in probe sequence)
- Note that this doesn't make inserts slower than before
 - Without replacement, we would have to search the first free slot
 - Now we replace until the first free slot

Critical Issue

- Imagine ins(6) would first probe position 1, then 4
- Since 6<9, 9 is replaced; imagine the next slot would be 8
- Since 9<14, 14 is replaced

Problem

- 14 is not a synonym of 9 two probe sequences cross each other
- Thus, we don't know where to move 14 the next position in general requires to know the "j", i.e., the number of hops that were necessary to get from h(14) to slot 8

Solution

- Ordered hashing only works if we can compute the next offset without knowing j
 - E.g. linear hashing (offset -1) or double hashing (offset -h'(k))
- But is the method still correct?
 - Yes (for formal proof, see [OW93])
 - The critical points are where probe sequences cross

Wrap-Up

- In general, complexity of hash-operations depends basically on fill-degree, not on the size of the hash table!
- Open hashing can be a good alternative to overflow hashing even if the fill grade approaches 1
 - Very little average-case cost for look-ups with double hashing and Brent's algorithm or using ordered hashing
 - Depending which types of searchers are more frequent
- Open hashing suffers from having only static place, but guarantees to not request more space once A is allocated
 - Less memory fragmentation
- Open hashing is often used if only few deletions occur

Dynamic Hashing

- Dynamic Hashing adapts the size of the hash table
 - Once fill degree exceeds (falls under) a threshold, increase (decrease) table size
- Used a lot in databases
 - Hash table in main memory, all synonyms in one disc block
 - We increase hash table when synonym block overflows
- Main problem: Avoid rehashing
 - Even if |A| increases, our original hash function (using m) will never address the new slots
 - Undesirable: Create new hash function and rehash all values