โครงงานเลขที่ วศ.คพ. S007-2/67/2567

เรื่อง

สกรีทเนอร์: ระบบสำรวจถนนสำหรับการจัดการสินทรัพย์เมือง

โดย

นายชาญชล ภานุศุภนิรันดร์ รหัส 640610626
 นายณัฐพงษ์ เทพพิทักษ์ รหัส 640610634
 นายธนภัทร สมสิทธิ์ รหัส 640610639

โครงงานนี้
เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิศวกรรมศาสตรบัณฑิต
ภาควิชาวิศวกรรมคอมพิวเตอร์
คณะวิศวกรรมศาสตร์ มหาวิทยาลัยเชียงใหม่
ปีการศึกษา 2567

PROJECT No. CPE S007-2/67/2567

Screetner: street scanner system for urban asset management

Charnchol Panusupanirun 640610626 Natthaphong Thepphithak 640610634 Thanapat Somsit 640610639

A Project Submitted in Partial Fulfillment of Requirements
for the Degree of Bachelor of Engineering
Department of Computer Engineering
Faculty of Engineering
Chiang Mai University
2024

หัวข้อโครงงาน	: สกรีทเนอร์: ระบบสำรวจถนนสำหรับการจัดการสินทรัพย์เมือง					
โดย	: Screetner: street scanner : นายชาญชล ภานุศุภนิรันดร์	system for urban asset manag รหัส 640610626	ement			
	นายณัฐพงษ์ เทพพิทักษ์ นายธนภัทร สมสิทธิ์	รหัส 640610634				
ภาควิชา	: วิศวกรรมคอมพิวเตอร์					
อาจารย์ที่ปรึกษา	: รศ.ดร. สันติ พิทักษ์กิจนุกูร					
ปริญญา	: วิศวกรรมศาสตรบัณฑิต					
สาขา	: วิศวกรรมคอมพิวเตอร์					
ปีการศึกษา	: 2567					
		าร์ มหาวิทยาลัยเชียงใหม่ ได้อนุมัติให้				
หนึ่งของการศึกษา	ตามหลักสูตรปริญญาวิศวกรรมศ	าสตรบัณฑิต (สาขาวิศวกรรมคอมพิ	วเตอร์)			
		ห้าหน้ากาดวิชาวิเ	ชวกรรมคอมพิวเตอร์			
••••••	(รศ.ดร. สันติ พิทักษ์กิจนุกุร)	NI ANI METER METER THE TELEFORM	LI 911 9 97 LI 67 M 98 LI 6 9			
	(00000000000000000000000000000000000000					
คณะกรรมการสอง	มโครงงาน					
	,	٩ ٩ ٧ ٥ ٩ ١ ١ ١	ประธานกรรมการ			
	(รศ.ดร. สนเ	ติ พิทักษ์กิจนุกูร)				
			กรรมการ			
	(ผศ.ดร. ก	านต์ ปทานุคม)				
			กรรมการ			
	(ผศ.ดร. นว	ดนย์ คุณเลิศกิจ)	. 10 00411 10			
	(11111101100	9 /				

หัวข้อโครงงาน : สกรีทเนอร์: ระบบสำรวจถนนสำหรับการจัดการสินทรัพย์เมือง

: Screetner: street scanner system for urban asset management

โดย : นายชาญชล ภานุศุภนิรันดร์ รหัส 640610626

นายณัฐพงษ์ เทพพิทักษ์ รหัส 640610634 นายธนภัทร สมสิทธิ์ รหัส 640610639

ภาควิชา : วิศวกรรมคอมพิวเตอร์
 อาจารย์ที่ปรึกษา : รศ.ดร.สันติ พิทักษ์กิจนุกูร
 ปริญญา : วิศวกรรมศาสตรบัณฑิต
 สาขา : วิศวกรรมคอมพิวเตอร์

ปีการศึกษา : 2567

บทคัดย่อ

โครงการ Screetner (Street Scanner System for Urban Asset Management) เป็นโครงการที่ถูก พัฒนาเพื่ออำนวยความสะดวกในการบริหารจัดการเกี่ยวกับการจัดเก็บภาษีป้าย ด้วยการใช้เทคโนโลยี Object Detection ในการตรวจจับป้ายที่จัดเก็บภาษีได้ โดยใช้แอปพลิเคชันในโทรศัพท์มือถือในการบันทึกข้อมูลภาพในขณะเดียวกันก็จะมี server ที่คอยประมวลผลรูปภาพนั้น และสุดท้ายก็จะมีเว็บแอปพลิเคชันในการ แสดงผลรายงานข้อมูลที่ได้จากการบันทึกจากบนโทรศัพท์มือถือ

Project Title : Screetner: street scanner system for urban asset management

Name : Charnchol Panusupanirun 640610626

Natthaphong Thepphithak 640610634 Thanapat Somsit 640610639

Department : Computer Engineering

Project Advisor : Assoc. Prof. Santi Phithakkitnukoon, Ph.D.

Degree : Bachelor of Engineering
Program : Computer Engineering

Academic Year : 2024

ABSTRACT

The Screetner project (Street Scanner System for Urban Asset Management) is a project developed to facilitate the management of taxable billboards utilizing Object Detection technology. This is achieved through the use of a mobile application on handheld devices to capture image data, while simultaneously having a server to process the image data. Lastly, there is a web application to display reports derived from the captured data.

สารบัญ

	บทคัดย่อ	ข
	Abstract	P
	สารบัญ	٩
	สารบัญรูป	จ
1	บทนำ	1
_	1.1 ที่มาของโครงงาน	1
	1.2 วัตถุประสงค์ของโครงงาน	1
	1.3 ขอบเขตของโครงงาน	1
	1.3.1 ขอบเขตด้านฮาร์ดแวร์	1
	1.3.2 ขอบเขตด้านซอฟต์แวร์	2
	1.4 ประโยชน์ที่ได้รับ	2
	1.5 เทคโนโลยีและเครื่องมือที่ใช้	2
	1.5.1 เทคโนโลยีด้านซอฟต์แวร์	2
	1.6 แผนการดำเนินงาน (แก้)	4
	1.7 ผลกระทบด้านสังคม สุขภาพ ความปลอดภัย กฎหมาย และวัฒนธรรม	5
•	વર્ષ વં થ	
2	ทฤษฎีที่เกี่ยวข้อง	6
	2.1 You Only Look Once Object Detection Algorithm (YOLO)2.2 Object Relational Mapping (ORM)	6
	3 · · · · · · · · · · · · · · · · · · ·	7
	2.3 Model–View–Controller design pattern (MVC)	8
	2.4 Hypertext Transfer Protocol (HTTP)	8
	2.5 Docker	8
		0
3	โครงสร้างและขั้นตอนการทำงาน	9
	3.1 การใช้งานพื้นฐาน	9
	3.2 การออกแบบระบบพื้นฐานของโครงงาน	9
	3.2.1 Database Design	9
	3.2.2 System Design	10
	3.2.3 Web Application Flow Diagram	11
	3.2.4 Mobile Application Flow Diagram	12
4	การประเมินระบบ	14
-	4.1 การประเมินประสิทธิภาพซอฟต์แวร์	14
	4.2 การประเมินความพึงพอใจในการใช้งานระบบ	14

สารบัญรูป

2.1	YOLO Architecture
2.2	Object Relational Mapping
2.3	Model-View-Controller
2.4	Docker Architecture
3.1	Database Design
3.2	System Design
3.3	Web Application Flow Diagram
3.4	Mobile Application Flow Diagram
3.5	Login Flow Diagram
3.6	Transition Flow Diagram

บทที่ 1 บทนำ

1.1 ที่มาของโครงงาน

การจัดเก็บภาษีถือเป็นหนึ่งในรายได้หลักของประเทศไม่ว่าจะเป็นภาษีทางตรง อย่างเช่น ภาษีทางตรง ภาษี รายได้บุคคลธรรมดา ซึ่งจะจัดเก็บได้ จากประชาชนผู้มีเงินได้ทั่วไป ภาษีเงินได้นิติบุคคลซึ่งเป็นภาษีที่จัดเก็บ ได้จากเงินได้ของบริษัทหรือห้างหุ้นส่วนนิติบุคคล และยังมีภาษีทางอ้อม เช่น ภาษีมูลค่าเพิ่ม ภาษีธุรกิจเฉพาะ ซึ่งเงินที่ได้จากการเก็บภาษีเหล่าล้วนนำไปให้รัฐบาลใช้ในการพัฒนาประเทศให้เจริญก้าวหน้า

ภาษีป้ายก็เป็นส่วนหนึ่งของรายได้ท้องถิ่นที่สามารถจัดเก็บได้โดยองค์กรปกครองส่วนท้องถิ่น โดยที่ภาษี ลักษณะนี้เมื่อจัดเก็บได้แล้ว ทางท้องถิ่น ไม่จำเป็นต้องส่งคืนให้ทางรัฐ สามารถนำไปใช้จัดการบริหารพัฒนา ภายในท้องถิ่นของตนเองได้ แต่ด้วยความสามารถในการจัดเก็บภาษีป้ายขององค์กรปกครองส่วนท้องถิ่นใน แต่ละที่ ขึ้นอยู่กับปัจจัยหลาย ๆ อย่าง เช่น การที่ไม่สามารถรู้ได้ว่าป้ายที่สามารถจัดเก็บภาษีได้นั้นอยู่ที่ตำแหน่งใดในเขตปกครอง ซึ่งมีส่วนทำให้ประสิทธิภาพในการค้นหาป้ายภายในท้องถิ่นที่มีอยู่ทำได้อยู่จำกัด และ เป็นขั้นตอนที่ต้องใช้กำลังคนในการตรวจสอบเป็นอย่างมาก ดังนั้นจากปัญหาในจุดที่กล่าวมาทำให้เกิดโครง งานที่เป็นเครื่องมือที่ช่วยในการตรวจจับหาป้ายที่คาดว่าจะสามารถนำไปจัดเก็บภาษี และรายงานผลให้กับ แต่ละองค์กรปกครองส่วนท้องถิ่นให้ไปจัดเก็บภาษีจากป้ายเหล่านี้

1.2 วัตถุประสงค์ของโครงงาน

- 1. เพื่อสร้างระบบครบวงจรในการรับวิดีโลแล้วประมวลผลตรวจจับหาป้ายอัตโนมัติ
- 2. เพื่อพัฒนาแอปพลิเคชันที่ใช้ในการอัดวิดีโอเพื่อที่จะส่งให้ระบบประมวลผล
- 3. เพื่อพัฒนาเครื่องมือในการรายงานป้ายที่ค้นพบภายในพื่นที่การปกครองส่วนท้องถิ่นสำหรับการไปจัด เก็บภาษี

1.3 ขอบเขตของโครงงาน

1.3.1 ขอบเขตด้านฮาร์ดแวร์

กล้องถ่ายของโทรศัพท์แต่ละเครื่องจะมีคุณภาพและลักษณ์การร่ายที่แตกต่างกัน ซึ่งอาจส่งผลต่อการตรวจจับ วัตถุทำให้เวลานำรูปภาพที่ได้นำไปประมวลจะได้ผลลัพธ์ที่แตกต่างกัน ซึ่งโทรศัพท์ที่ได้ใช้ในการเก็บข้อมูลที่ นำไปสร้างโมเดลมีอยู่ด้วยกัน 2 เครื่อง โดยมีคุณภาพของกล้องถ่ายรูปดังนี้

- Xiaomi 11T Pro ความละเอียด 108 ล้านพิกเซล
- Samsung Galaxy A50s ความละเอียด 48 ล้านพิกเซล

ความสูงของรถแต่ละคัน และมุมกล้องในการถ่ายภาพมักมีความแตกต่างกันไป ซึ่งอาจส่งผลให้ประสิท-ธิภาพในการตรวจจับวัตถุได้ไม่เท่ากัน โดยรถยนต์ที่ใช้ในการอัดวิดีโอสำหรับในการเทรนโมเดลเป็น Honda City 2024

Mobile application ที่เป็นส่วนของการส่งข้อมูลภาพไปยังเซิฟเวอร์จำเป็นต้องเชื่อมต่ออินเทอร์เน็ตอยู่ ตลอดทั้งการใช้งาน เนื่องจากต้องมีการส่งข้อมูลตลอดเวลา ทั้งนี้สืบก็จะมีเรื่องของการใช้งานทรัพยากรแบต

เตอร์มากตามไปด้วย และในการของการแสดงผลที่เป็นเว็บแอปพลิเคชันจะสามารถใช้งานได้เฉพาะ ในคอม-พิวเตอร์เท่านั้น

1.3.2 ขอบเขตด้านซอฟต์แวร์

ในการเก็บภาษีป้ายนั้นจะถูกแบ่งออกเป็นป้ายหลาย ๆ ประเภท อย่างเช่น ป้ายที่มีอักษรไทยล้วน ป้ายที่มี อักษรไทยปนกับอักษรต่างประเทศหรือปนกับภาพ และหรือเครื่องหมาย ป้ายที่ไม่มีอักษรไทย ไม่ว่าจะมีภาพ และหรือเครื่องหมายใด ๆ ซึ่งแต่ละประเภทนั้นจะมีอัตราการเก็บภาษีที่แตกต่างกันออกไป แต่ในการประมวลผลในเชิฟเวอร์นั้นจะไม่มีการตรวจสอบและแบ่งแยกประเภทของป้าย และจะรวบรวมเป็นคลาสประเภท เดียวกันแทน อีกทั้งป้ายที่สามารถจัดเก็บภาษีได้บางประเภทมีลักษณะคล้ายกับป้ายบอกทางและป้ายจราจร จึงอาจทำให้มีข้อผิดพลาดเกิดขึ้นในการตรวจจับในบางสถานการณ์

1.4 ประโยชน์ที่ได้รับ

1. ได้เครื่องมือที่ช่วยอำนวยความสะดวกในการเก็บภาษีป้ายให้มีประสิทธิภาพมากยิ่งขึ้น

1.5 เทคโบโลยีและเครื่องมือที่ใช้

1.5.1 เทคโนโลยีด้านซอฟต์แวร์

- 1. JetBrainIDEs เป็นชุดเครื่องมือพัฒนาโปรแกรมจาก JetBrains ที่ประกอบด้วย IDEs หลายตัว เช่น IntelliJ IDEA, PyCharm, และ WebStorm ซึ่งช่วยในการพัฒนาโปรแกรมในภาษาต่าง ๆ อย่างมี ประสิทธิภาพ
- 2. Data Grip เป็นเครื่องมือจัดการฐานข้อมูลจาก JetBrains ที่ช่วยในการเชื่อมต่อและจัดการฐานข้อมูล หลายประเภท เช่น MySQL, PostgreSQL, และ SQLite ซึ่งช่วยให้นักพัฒนาสามารถทำงานกับ ฐานข้อมูลได้ง่ายขึ้น
- 3. Python เป็นภาษาโปรแกรมมิ่งที่มีความยืดหยุ่นสูงและสามารถนำมาใช้ในการพัฒนาโปรแกรมต่าง ๆ ได้หลากหลาย ซึ่งมีความเหมาะสมในการ ใช้งานในโครงการที่ต้องการประมวลผลข้อมูลที่ซับซ้อนและ มีขนาดใหญ่ อย่างเช่น โมเดลการเรียนรู้เชิงลึก ที่พวกเราจะนำไปใช้กับการตรวจจับวัตถุ
- 4. Typescript คือภาษาคอมพิวเตอร์ที่ใช้ในการพัฒนาเว็บร่วมกับ HTML เพื่อให้เว็บมีลักษณะแบบได-นามิก หมายถึง เว็บสามารถตอบสนองกับ ผู้ใช้งานหรือแสดงเนื้อหาที่แตกต่างกันไปโดยจะอ้างอิงตาม เว็บบราวเซอร์ที่ผู้เข้าชมเว็บใช้งานอยู่
- 5. Golang เป็นภาษาการเขียนโปรแกรมที่พัฒนาโดย Google ซึ่งมีประสิทธิภาพสูงและเหมาะสำหรับ การพัฒนาแอปพลิเคชันที่ต้องการความเร็วและความเสถียร
- 6. Tusd เป็นเซิร์ฟเวอร์ที่ใช้ในการอัปโหลดไฟล์ขนาดใหญ่แบบต่อเนื่อง (resumable file uploads) ซึ่ง ช่วยให้การอัปโหลดไฟล์มีความเสถียรและไม่ขาดตอน
- 7. Azure Logic Apps เป็นบริการของ Microsoft Azure ที่ช่วยในการสร้างและจัดการเวิร์กโฟลว์ อัตโนมัติสำหรับการรวมระบบและการประมวลผลข้อมูล

- 8. Azure Blob Storage เป็นบริการจัดเก็บข้อมูลแบบออบเจ็กต์ของ Microsoft Azure ที่ใช้ในการจัด เก็บข้อมูลขนาดใหญ่ เช่น ไฟล์วิดีโอและรูปภาพ
- 9. Azure App Instance เป็นบริการของ Microsoft Azure ที่ใช้ในการโฮสต์และจัดการแอปพลิเคชัน บนคลาวด์
- 10. Azure Container Registry เป็นบริการของ Microsoft Azure ที่ใช้ในการจัดเก็บ จัดการ และ เรียกใช้งานคอนเทนเนอร์
- 11. Azure Log Analytics workspace เป็นบริการของ Microsoft Azure ที่ใช้ในการจัดการ จัดเก็บ และวิเคราะห์ข้อมูลของระบบเช่น Log และ Metric
- 12. Azure Email Communication Service เป็นบริการของ Microsoft Azure ที่ใช้ในการส่งอีเมล และการสื่อสารอื่น ๆ ระหว่างระบบ
- 13. Flutter เป็นเฟรมเวิร์กที่พัฒนาโดย Google ที่ใช้ในการพัฒนาแอปพลิเคชันข้ามแพลตฟอร์ม (crossplatform) ทั้งบน iOS และ Android ด้วยโค้ดเบสเดียว
- 14. Next.js เป็นเฟรมเวิร์กที่ใช้ในการพัฒนาเว็บแอปพลิเคชันแบบเซิร์ฟเวอร์ไซด์เรนเดอริ่ง (SSR) และ สเตติกไซต์เจเนอเรชัน (SSG) ซึ่งช่วยให้การพัฒนาเว็บมีประสิทธิภาพและความเร็วสูงขึ้น และยังมีฟี- เจอร์ที่ช่วยในการทำ SEO ได้ดีขึ้น
- 15. YOLOv8 เป็นระบบที่ใช้ในการพัฒนาโนโมเดลตรวจจับวัตถุความเร็วสูงแบบเวลาจริง ด้วยการเรียนรู้ เชิงลึกและการมองเห็นคอมพิวเตอร์
- 16. Figma เครื่องมือออกแบบเว็บไซต์ แอปพลิเคชัน โลโก้ และอื่น ๆ ทำให้นักออกแบบ UX/UI สะดวก มากขึ้น ผ่านการใช้ฟีเจอร์ต่าง ๆ ซึ่งมีจุดเด่นอยู่ที่การใช้งานบนได้ทุกระบบปฏิบัติการ และยังมี Community ที่ผู้ใช้สามารถแชร์ไฟล์งาน Prototype หรือ Plug-in ต่าง ๆ แล้วนำไปปรับใช้กับงานของตัว เองได้
- 17. Linux เป็นระบบปฏิบัติการ (Operating System) ที่เป็น Open Source และเป็นพื้นฐานบนหลัก การของ Unix ซึ่งถูกพัฒนาขึ้นโดย Linus Torvalds ในปี ค.ศ. 1991 ซึ่งเป็นระบบปฏิบัตการที่เรา จะนำมาใช้งาน
- 18. Kong เป็น API Gateway ที่ช่วยในการจัดการ API และการเชื่อมต่อระหว่างบริการต่าง ๆ ในระบบ ซึ่งช่วยเพิ่มความปลอดภัยและประสิทธิภาพในการทำงานของ API
- 19. Docker เป็นแพลตฟอร์มที่ใช้ในการสร้าง จัดส่ง และรันแอปพลิเคชันในคอนเทนเนอร์ ซึ่งช่วยให้การ พัฒนาและการนำแอปพลิเคชันไปใช้งานมีความยืดหยุ่นและรวดเร็ว
- 20. Github Action เป็นเครื่องมือที่ใช้ในการทำ CI/CD (Continuous Integration/Continuous Deployment) บนแพลตฟอร์ม GitHub ซึ่งช่วยให้การทดสอบและการนำโค้ดไปใช้งานเป็นไปอย่างอัต-โนมัติและมีประสิทธิภาพ
- 21. Draw.io เป็นเครื่องมือออนไลน์ที่ใช้ในการสร้างไดอะแกรมและแผนภาพต่าง ๆ เช่น แผนภาพการไหล (flowchart) และแผนภาพสถาปัตยกรรมระบบ ซึ่งช่วยให้การออกแบบและสื่อสารข้อมูลเป็นไปอย่าง มีประสิทธิภาพ

- 22. Postman เป็นเครื่องมือที่ใช้ในการทดสอบ API ซึ่งช่วยให้นักพัฒนาสามารถส่งคำขอ (request) และ ดูผลลัพธ์ (response) ของ API ได้อย่างง่ายดาย
- 23. PostgreSQL เป็นระบบจัดการฐานข้อมูลเชิงสัมพันธ์ (RDBMS) ที่มีความเสถียรและมีประสิทธิภาพ สุง ซึ่งใช้ในการจัดการและเก็บข้อมูลในโครงการ
- 24. MongoDB เป็นระบบจัดการฐานข้อมูลแบบ NoSQL ที่มีความยืดหยุ่นสูงและสามารถจัดการข้อมูล ที่ไม่มีโครงสร้าง (unstructured data) ได้อย่างมีประสิทธิภาพ
- 25. Redis เป็นฐานข้อมูลแบบ key-value ที่ทำงานในหน่วยความจำ (in-memory) ซึ่งมีความเร็วสูงและ เหมาะสำหรับการจัดเก็บข้อมูลที่ต้องการการเข้าถึงอย่างรวดเร็ว
- 26. Roboflow เป็นเครื่องมือที่สามารถใช้ทำการ Labeling ข้อมูล และสร้าง Dataset สำหรับการเทรน โมเดล Computer Vision ได้อย่างง่ายดาย

1.6 แผนการดำเนินงาน (แก้)

ขั้นตอนการดำเนินงาน	ต.ค. 2566	w.g. 2566	ร.ค. 2566	ม.ค. 2567	ก.พ. 2567	มิ.ค. 2567	เม.ย. 2567	พ.ค. 2567	มิ.ย. 2567
เลือกอาจารย์ที่ปรึกษา และ เลือกหัวข้อโครงงาน									
ออกแบบระบบการทำงานโดยคร่าว และ เครื่องมือที่ใช้									
ในการทำโครงงาน									
ศึกษาข้อมูลเกี่ยวกับขอบเขตพื้นที่ที่จะใช้ทำโครงงาน									
เก็บข้อมูลเพื่อใช้ในกระบวนการเทรนโมเดลสำหรับการ									
ตรวจจับวัตถุ									
คัด เลือก ข้อมูล และ พัฒนา โมเดล สำหรับ กระบวนการ									
เทรนโมเดล									
ออกแบบระบบ									

ขั้นตอนการดำเนินงาน	ก.ค. 2567	ส.ค. 2567	ก.ย. 2567	ต.ค. 2567	w.e. 2567	ธ.ค. 2567	ม.ค. 2568	ก.พ. 2568
พัฒนา กับ ทดสอบ แอปพลิเคชัน ที่ ใช้ ใน การ อัด วิดีโอ และ เว็บ แอปพลิเคชันในการรายงานข้อมูล								
ดิพลอยระบบโดยรวม								
ตรวจสอบความถูกต้องสมบูรณ์หลังการนำไปใช้								
เขียนรายงาน								

1.7 ผลกระทบด้านสังคม สุขภาพ ความปลอดภัย กฎหมาย และวัฒนธรรม

การพัฒนาระบบในการตรวจจับป้ายที่สามารถนำไปเก็บภาษีได้นั้น จะช่วยอำนวยความสะดวกให้สามารถจัด-การได้ง่ายและสะดวกยิ่งขึ้น ซึ่งมีผลกระทบในด้านกฎหมายเพราะภาษีป้ายเป็นภาษีที่จัดเก็บจากป้ายที่ แสดง ชื่อ ยี่ห้อ หรือเครื่องหมายที่ใช้ในการประกอบ การค้า หรือประกอบกิจการอื่นเพื่อหารายได้ หรือ โฆษณาการ ค้า ซึ่งในส่วนของการเสียนั้นก็ขึ้นอยู่กับประเภทของป้ายตามที่กฎหมายกำหนด และรายได้ที่ได้จากการจัด เก็บภาษีก็จะถูกนำไปพัฒนาบ้านเมืองต่อไป

บทที่ 2 ทฤษฎีที่เกี่ยวข้อง

การทำโครงงานเริ่มต้นด้วยการศึกษาค้นคว้าทฤษฎีที่เกี่ยวข้อง หรืองานวิจัย/โครงงานที่เคยมีผู้พัฒนาและนำ เสนอไว้แล้ว ซึ่งเนื้อหาในบทนี้ก็จะเกี่ยวกับ การอธิบายถึงทฤษฎีที่นำไปประยุกต์ใช้กับโครงงานนี้ เพื่ออำนวย ให้ผู้อ่านทำความเข้าใจกับตัวระบบของโครงงานได้ง่ายขึ้น

2.1 You Only Look Once Object Detection Algorithm (YOLO)

YOLO [?] เป็นอัลกอริทึมสำหรับการระบุบริเวณที่สนใจภายในภาพ และจำแนกประเภทของวัตถุบนแต่ละ บริเวณแบบเวลาจริงเหมือนกับตัวจำแนกภาพปกติ โดยที่ภาพหนึ่งสามารถประกอบด้วยบริเวณที่สนใจหลาย บริเวณ แล้วแต่ละบริเวณจะนำไปจำแนกวัตถุที่แตกต่างกันได้ ซึ่งทำให้เกิดความซับซ้อนสูงในการ จำแนกภาพ ระหว่างการตรวจจับวัตถุ ต่างจากอัลกอริทึมตรวจจับวัตถุทั่วไปที่จะใช้อัลกอริทึมแบบ Two-stage Object Detection YOLO นั้นจะใช้แบบ Single-shot Object Detection แทน ซึ่งใช้การสแกนภาพแต่ละภาพ เพียงครั้งเดียวสำหรับการพยากรตำแหน่งของวัตถุที่ต้อง การจะตรวจจับ และเนื่องจากการประมวลผลภาพ เพียงครั้งเดียวนั้น ส่งผลให้อัลกอริทึมดังกล่าวใช้ระยะเวลาในการประมวลผลต่ำ เหมาะกับการนำไปใช้แบบ เวลาจริง แต่ก็แลกมากับข้อเสียที่ความแม่นยำในการตรวจจับภาพนั้นอาจไม่มากเท่าอัลกอริทึมแบบ Two-stage Object Detection โดยใช้เทคนิคการเรียนรู้แบบ Convolutional Neural Network ดังรูปที่ 2.1

รูปที่ 2.1: You Only Look Once Architecture

2.2 Object Relational Mapping (ORM)

Object-Relational Mapping [?] เป็นการสร้างการสัมพันธ์ระหว่างฐานข้อมูลแบบ Relational กับโครง-สร้างข้อมูลแบบ Object-Oriented ตามรูปที่ 2.2 ในการพัฒนาซอฟต์แวร์ เช่น เว็บแอปพลิเคชัน โดยที่ไม่ ต้องเขียน SQL โดยตรงแต่สามารถใช้ภาษาโปรแกรมเพื่อจัดการกับข้อมูลแทน ซึ่งสามารถป้องกันการโจมตี แบบ SQL Injection ได้ ในกรณีที่กำหนดให้มีการเปลี่ยนแปลงในโครงสร้างข้อมูล คุณสมบัติหรือโครงสร้าง ข้อมูลในฐานข้อมูลจะถูกปรับเปลี่ยนตามในโครงสร้างของ Object ในโปรแกรม เป็นฐานข้อมูลแบบเสมือนใน โปรแกรม โดยที่การจัดเก็บข้อมูลยังคงเป็นแบบ Relational เหมือนเดิม โดยไม่ต้องใช้ SQL Statements โดยตรง

รูปที่ 2.2: Object Relational Mapping

2.3 Model-View-Controller design pattern (MVC)

Model-View-Controller [?] เป็นรูปแบบโครงสร้างที่แยกแอปพลิเคชันออกเป็น 3 ส่วนหลักคือ: โมเดล (model), มุมมอง (view), และคอนโทรลเลอร์ (controller) แต่ละส่วนมีการสร้างขึ้นเพื่อจัดการด้านพัฒนา ส่วนแอปพลิเคชันที่เฉพาะเจาะจง ตามรูปที่ 2.3 MVC เป็นหนึ่งในรูปแบบการพัฒนาเว็บตามมาตรฐานอุต-สาหกรรมที่ถูกใช้บ่อยที่สุดเพื่อสร้างโครงงานที่สามารถเพิ่มและขยายขนาดในอนาคตได้ โดยที่ว่าเพื่อให้โปรแกรมนั้นดูเรียบง่ายต่อการแก้ไขจัดการ ซึ่งความหมายในแต่ละส่วนของ MVC นั้นได้แก่

- 1. Model คือส่วนที่รับผิดชอบเกี่ยวกับข้อมูลและการประมวลผลทางด้านข้อมูลในแอปพลิเคชัน เช่น การ เชื่อมต่อกับฐานข้อมูล การจัดการข้อมูล และการประมวลผลทางข้อมูล เป็นต้น โดยที่ model มักจะ เป็นตัวแทนของข้อมูลและสถานะของแอปพลิเคชัน
- 2. View คือส่วนที่จะเป็นหน้าตาของโปรแกรมที่ผู้ใช้จะใช้งานจากส่วนนี้ ไม่ว่าจะเป็นการกรอกข้อมูล, ดู ผลลัพธ์ หรือการมีปฏิสัมพันธ์กับผู้ใช้ (User Interface) view จริง ๆ แล้วก็คือส่วนที่เรียกว่า GUI (Graphic User Interface)
- 3. Controller เป็นส่วนที่รับผิดชอบในการควบคุมและจัดการกับการกระทำที่เกิดขึ้นจากผู้ใช้งาน เช่น การรับข้อมูลจากผู้ใช้งาน, การส่งข้อมูลไปยังโมเดลเพื่อประมวลผล, และการอัพเดตสถานะของ view ซึ่งโดยทั่วไปแล้ว controller จะเป็นตัวกลางที่เชื่อมต่อระหว่าง model และ view โดยการควบคุม การทำงานของทั้งสอง

รูปที่ 2.3: Model-View-Controller Design Pattern

2.4 Hypertext Transfer Protocol (HTTP)

HTTP (Hypertext Transfer Protocol) เป็นโปรโตคอลสื่อสารที่ใช้ในการส่งข้อมูลระหว่างเครื่องคอมพิว-เตอร์บนเครือข่ายอินเทอร์เน็ต โดย HTTP มีหน้าที่เป็นตัวกลางในการร้องขอและส่งข้อมูลระหว่างเว็บไซต์ (web servers) และเบราว์เซอร์ (web browsers) หรือแอปพลิเคชันอื่น ๆ ที่ใช้เครือข่ายอินเทอร์เน็ต

• API (Application Programming Interface) เป็นชุดของกฎและโครงสร้างข้อมูลที่กำหนดโดย โปรแกรมคอมพิวเตอร์เพื่อให้แอปพลิเคชันอื่น ๆ สามารถสื่อสารและทำงานร่วมกันได้ ในเชิงพื้นฐาน API เป็นวิธีที่แอปพลิเคชันใช้เรียกใช้ฟังก์ชันหรือการบริการที่ให้มาจากแหล่งข้อมูลหรือบริการ ซึ่งอาจ เป็นเซิร์ฟเวอร์เว็บ ฐานข้อมูล หรือแหล่งข้อมูลอื่น ๆ โดยทั่วไป API จะรองรับการร้องขอและการตอบ กลับโดยใช้ฟอแมตที่เป็นรูปแบบมาตรฐาน เช่น JSON (JavaScript Object Notation) หรือ XML (Extensible Markup Language)

2.5 Docker

Docker [?] เป็นเทคโนโลยีคอนเทนเนอร์แพลตฟอร์มที่ช่วยในการสร้างและทำการงานร่วมกับคอนเทนเนอร์ อย่างมีประสิทธิภาพ ด้วย Docker ผู้ใช้สามารถแยกแยะและแพคเกจแอปพลิเคชันพร้อมกับสิ่งที่เกี่ยวข้อง ทั้งหมด เช่น ไฟล์ ระบบปฏิบัติการ ไลบรารี และสิ่งอื่น ๆ ลงในคอนเทนเนอร์ได้อย่างเรียบง่าย โดยมีโครงสร้างการทำงานตามรูปที่ 2.4 ผู้ใช้สามารถสร้าง และรันคอนเทนเนอร์ได้โดยง่าย นอกจากนี้ Docker ยังช่วย ลดปัญหาเกี่ยวกับสภาพแวดล้อมและการติดตั้งโปรแกรมที่ชับซ้อน ทำให้การพัฒนาและการทำงานของโปรแกรมมีประสิทธิภาพมากขึ้น

รูปที่ 2.4: Docker Architecture

2.6 Interactive Website

Interactive website [?] คือ เว็บไซต์ที่สามารถให้ผู้ใช้งาน communicate หรือ interact เช่น การแสดง ความคิดเห็น การตอบโต้กับตัวเว็บ การได้รับผลจากการกระทำในเว็บ ในลักษระที่เป็นมิตรต่อผู้ใช้ โดยปัจจุบัน มักใช้ animation sound picture audio etc. ประกอบ เพื่อให้มีความสนุกสนานและเพิ่มการเข้าถึงได้ง่าย ของผู้ใช้ ทั้งนี้อาจทำเพื่อเก็บข้อมูลหลังจากการใช้งานเว็บไซต์ได้อีกด้วย ซึ่งดีกว่าเว็บที่มีแต่ตัวอักษร หรือ การ แสดงผลเฉย ๆ ที่ได้รับข้อมูลทางฝ่ายเดียวอย่างแน่นอน

บทที่ 3 โครงสร้างและขั้นตอนการทำงาน

3.1 การใช้งานพื้นฐาน

ในส่วนของโมไบล์แอปพลิเคชัน เป็นเครื่องมือที่จะจำเป็นต้องใช้งานกล้องและบันทึกพิกัดตำแหน่งทาง GPS อยู่ตลอดเวลาเพื่อทำการส่งรูปภาพ พร้อมกับพิกัดตำแหน่ง แล้วนำไประมวลผลในเซอร์วิสที่ได้ออกแบบเอาไว้ โดยที่เซอร์วิสดังกล่าวจะทำการประมวลผลรูปภาพเพื่อหาป้ายโฆษณาที่สามารถจัดเก็บภาษีได้ และหลังจาก นั้นก็จะจัดเก็บลงฐานข้อมูลต่อไป

ในส่วนของเว็บแอปพลิเคชัน จะเป็นส่วนของการแสดงผลข้อมูลที่ได้บันทึกมาได้ส่วนของโมไบล์แอปพลิ-เคชัน โดยจะแสดงในรูปแบบของหมุดในแผนที่ คล้าย ๆ กับการปักหมุดของ Google map โดยที่ในแต่ละ หมุดสามารถกดเพื่อดูรายละเอียดต่าง ๆ ได้ เช่น พิกัดของหมุดนั้น และลักษณะรูปป้ายในตำแหน่งนั้นๆที่ได้ บันทึกมาจากโมไบล์แอปฯ

3.2 การออกแบบระบบพื้นฐานของโครงงาน

3.2.1 Database Design

ประกอบด้วย 4 ตารางดังรูปที่ 3.1 ได้แก่

- 1. User table: เนื่องจากระบบต้องมีการ Authentication เพื่อเข้าใช้งานไม่ว่าจะเป็นทั้งส่วนของ โม-ไบล์แอปฯ หรือเว็บแอปฯ ดังนั้นตารางนี้จึงจะใช้เก็บข้อมูลพื้นฐานต่าง ๆ ที่จำเป็นต่อการยืนยันตัวตน ทั้งหมด
- 2. Role table: ใช้ในการเก็บบทบาททั้งหมดที่มีของระบบ เช่น ผู้ดูแลระบบ ผู้สำรวจ และอื่น ๆ
- 3. Asset table: ใช้ในการเก็บข้อมูลที่ได้รับมาจาก โมไบล์แอปฯ ไม่ว่าจะเป็นตำแหน่งของรูป ชื่อของรูป และประเภทของ asset ที่ตรวจจับได้
- 4. Asset type table: ใช้ในการเก็บประเภทของ asset ต่างๆที่ระบบสามารถตรวจจับได้
- 5. Config table: ใช้เก็บการตั้งค่าพื้นฐานต่างๆเช่น ขอบเขตของแผนที่

รูปที่ 3.1: Overall Database Design

3.2.2 System Design

จากรูป จะอธิบายถึงโครงสร้างระบบของโครงงานงานนี้ในรูปแบบ Flow diagram เพื่อให้เข้าใจถึงโครงสร้าง การทำงานพอสังเขป โดยที่ซอฟต์แวร์จะประกอบด้วย 3 ส่วนหลัก ๆ ได้ Mobile application ซึ่งจะทำงาน ตามรูปที่ 3.2 Web application ซึ่งจะทำงานตามรูปที่ 3.3 และ Processing server โดยที่ลักษณะการ ทำงานร่วมกันระหว่างทั้งสามส่วนประกอบ แสดงตามรูปที่ 3.1

รูปที่ 3.2: Overall System Design

3.2.3 Web Application Flow Diagram

จากรูปที่ 3.3 จะอธิบายถึงลำดับการทำงานของเว็บแอปพลิเคชันในรูปแบบของ flow diagram เพื่อให้เข้าใจ ในลำดับการทำงานอย่างพอสังเขป พอหลังจากที่ได้เข้าระบบสู้หน้า dashboard จะมีตัวเลือกที่สามารถทำ ทำได้อยู่ 3 อย่างคือ filter เป็นการคัดกรองข้อมูลให้เหลือเพียงข้อมูลในช่วงเวลาที่เราต้องการ asset เป็นการ กดที่รูปภาพเพื่อที่จะดูข้อมูลที่เกี่ยวกับ asset ดังกล่าว และ icon เป็นส่วนที่จะแสดงตัวเลือกเพิ่มเติมอีก 4 ทางเพื่อให้เราสามารถเลือกเข้าไปยังหน้าอื่นต่อไปได้

รูปที่ 3.3: Web Application Flow Diagram

3.2.4 Mobile Application Flow Diagram

รูปที่ 3.4 จะอธิบายถึงลำดับการทำงานขอโมไบล์แอปพลิเคชันในรูปแบบของ flow diagram เพื่อให้เข้าใจ ในลำดับการทำงานอย่างพอสังเขป โดยพอผู้ใช้จะเริ่มเข้าใช้งานแอปพลิเคชัน ผู้ใช้จะต้องผ่านการเข้าสู่ระบบ ซึ่งมีขั้นตอนการทำงานดังรูปที่ 3.5 เพื่อเป็นการยืนยันตัวตน หลังจากที่ได้เข้าสู่แอปพลิเคชันเรียบร้อยแล้ว ผู้ ใช้งานจะสามารถเริ่มสตรีมวิดีโอเพื่อทำการส่งรูปภาพในช่วงเวลาหนึ่งพร้อมแนบตำแหน่งพิกัดในช่วงเวลาดัง กล่าวไปยังเซอร์วิสที่ได้จัดเตรียมเอาไว้อยู่ตลอดเวลาที่ทำการสตรีม เพื่อให้ทางเซอร์วิสทำการคืนค่าออกมาว่า ในตำแหน่งนี้จะมี asset อยู่เท่าไหร่ โดยจะมีขั้นตอนการทำงานดังรูปที่ 3.6 ซึ่งสิ่งที่คืนค่ามาทุกครั้งนั้นจะเอา มาจัดเก็บเอาไว้บนมือถือชั่วคราวและยังไม่ได้ทำการบันทึกข้อมูลลงไปในฐานข้อมูลเพื่อให้ผู้ใช้งานสามารถดู ข้อมูลได้ตลอดเวลาว่าปัจจุบันมี asset อยู่เท่าไหร่จนจบการทำงาน และในตอนท้ายของการทำงานผู้ใช้สามารถที่จะเลือกได้ว่าจะทำการสตรีมต่ออีกครั้งหรือไม่ หากไม่ทำการสตรีมต่อ ผู้ใช้งานต้องเลือกว่าจะทำการ ส่งข้อมูลทั้งหมดที่ได้มานั้นไปยังฐานข้อมูลหรือไม่

รูปที่ 3.4: Mobile Application Flow Diagram

รูปที่ 3.5: Login Flow Diagram

รูปที่ 3.6: Transition Flow Diagram

บทที่ 4

การประเมินระบบ

4.1 การประเมินประสิทธิภาพซอฟต์แวร์

ทดสอบประสิทธิภาพซอฟต์แวร์โดยจะมีการแบ่งส่วนในการทดสอบออกเป็นส่วน ๆ เพื่อให้รู้ว่าในแต่ละส่วน ของซอฟต์แวร์ของเรานั้น ทำงานได้อย่างมีประสิทธิภาพหรือไม่ จึงสามารถแบ่งออกการประเมินได้เป็นดังนี้

- 1. Classification model เป็นการทดสอบเพื่อประเมินและตรวจสอบความเร็วในการประมวลผลเพื่อ ทำการ classify ว่า object ใดเป็นป้ายที่สามารถจัดเก็บภาษีได้ รวมถึงในเรื่องของความแม่นยำในการ classify
- 2. Response time เป็นการทดสอบเพื่อประเมินในเรื่องของความเร็วในการรับส่งข้อมูลระหว่าง client กับ application server

4.2 การประเมินความพึงพอใจในการใช้งานระบบ

ทดสอบความพึงพอใจในการใช้งานจะมีการแบ่งออกเป็นสองส่วน คือส่วนของแอปพลิเคชันในโทรศัพท์มือถือ กับส่วนของเว็บแอปพลิเคชัน โดยจะมีเกณฑ์การให้คะแนนอยู่ที่ 1 ถึง 5 โดยจะมีการให้คะแนนในเรื่องดังต่อ ไปนี้

- 1. ความง่ายต่อการใช้งานของแอปพลิเคชัน
- 2. ความสะดวกในการใช้งานในตอนเริ่มต้นของแอปพลิเคชัน
- 3. ความดึงดูดในการใช้งานของแอปพลิเคชัน
- 4. ประโยชน์ที่มีของแอปพลิเคชัน

โดยที่ทั้ง 4 ข้อเป็นพิจราณาจากแนวคิดตาม The Four Elements of User Experience [?] ที่ประกอบ

- 1. Usability ความใช้ง่ายในการใช้งาน เกี่ยวข้องกับสามารถในการใช้งาน รวมไปถึงความเหมาะสมการ ใช้งานกับผู้งานใช้
- 2. Adaptability ความสามารถในงานปรับตัว กล่าวถึงระดับความยากง่ายของการใช้งานตั้งแต่จุดเริ่มต้น จนถึงจุดสิ้นสุดของระบบ โดยที่ผู้งานสามารถใช้งานได้อย่างคล่องแคล่ว
- 3. Desirability ความพึงพอใจ คือเมื่อใช้งานแล้วผู้ได้รับประสบการณ์ที่ดีในจากใช้งานของระบบ
- 4. Value คุณค่าของระบบ คือระบบที่ผู้ใช้เข้ามาใช้งานมีความสอดคล้องกับความต้องการของผู้ใช้