

Plan

- L'expérience OPERA.
- Étude de reconstruction de vertex v_{μ} CC
- Étude de reconstruction du canal $v_{\tau} \rightarrow \tau \rightarrow 3$ hadrons
- Recherche de vertex au milieu du bruit de fond

Pourquoi OPERA?

• Fait suite aux résultats de l'expérience Super-Kamiokande

• SK montre une variation de la répartition zénithale des neutrinos

muoniques

OPERA:

- Son but : montrer de manière irréfutable l'oscillation υ_{μ} -> υ_{τ}
- La seule expérience d'apparition.

OPERA

Le faisceau

Faisceau de neutrinos μ produit au CERN à partir de protons de 400GeV

- Une énergie moyenne de 17Gev
- 98% des neutrinos ont E>3.5Gev

Source de neutrinos μ : $\bullet \pi^+ -> \mu^+ + \nu_{\mu}$ $\bullet K^+ -> \mu^+ + \nu_{\mu}$

OPERA

Le détecteur

OPERA

La détection

$\begin{array}{c} OPERA \\ \textit{La détection du } \nu_{\tau} \end{array}$

- De manière indirecte via le lepton tau issu de l'intéraction du neutrino avec le plomb.
- Majoritairement par les produits de désintégration du tau.

$\tau^{-} \rightarrow \mu^{-} + \overline{\upsilon_{\mu}} + \upsilon_{\tau}$	17.36%	1 vertex + 1 kink :
$\tau^{-} \rightarrow e^{-} + \overline{\upsilon_e} + \upsilon_{\tau}$	17.84%	τ
$\tau^{-} \rightarrow h^{-} + \upsilon_{\tau} (+n\pi^{0})$	49.22%	X
$\tau^- \rightarrow h^- h^- h^+ \upsilon_{\tau} (+n\pi^0)$	15.19%	2 vertex : hadrons
		Tadrons
		1

Source: PDG 2005

Procédure

- Génération d'événements → Simulation du détecteur → reconstruction → Comparaison simulation/reconstruction
- Simulation du bruit de fond de rayonnement cosmique introduit pour l'alignement des émulsions

- Etude en deux étapes :
 - Interaction v_{μ} CC (1 vertex)
 - Interaction v_{τ} CC (2 vertex)

Exemple d'événements

Interaction \mathbf{v}_{μ} CC (1 vertex)

Interaction \mathbf{v}_{τ} CC (2 vertex)

υ_μ CC sans bruit de fond

Multiplicité

Multiplicité moyenne:

Génération	7.6	
Simulation	6.7	A étudier
Reconstruction	3.7	Trettadier

υ_μ CC sans bruit de fond

Distribution d'impulsion

	P < 0.7 GeV/c	$P>0.7~{ m GeV/c}$
Traces perdues à la simulation	56%	7%
Traces perdues à la reconstruction	72%	15%
Traces perdues au total	88%	21%

υ_μ CC sans bruit de fond

Résolution spatiale

3 sous populations distinguées par la distance traces/vertex

	σ_1	σ_2	σ_3
σ_{xy}	0.4 ± 0.1	1.1 ± 0.1	2.8 ± 0.2
σ_z	3.2 ± 0.4	10.9 ± 0.7	29 ± 2

$$\sigma_z = 10 \sigma_{xy}$$

υ_μ CC sans bruit de fond Pureté et efficacité de reconstruction

Sans bruit de fond (5000 événements) :

Evénement simulé avec au moins deux traces	4589
Evénement reconstruits	4110
Evénement bon	3336
Efficacité	$(73 \pm 1)\%$
Pureté	$(81 \pm 2)\%$

Le bruit de fond cosmique

Provient de l'exposition des briques pour le l'alignement

- -Principalement des muons
- -4 traces par mm²
- -Energie moyenne de 4 GeV

υ_μ CC avec bruit de fond

Pureté et efficacité de reconstruction

Avec bruit de fond (3000 et 1000 événements) :

	Bruit de font à 4 GeV	Bruit de fond réel
Evènement simulé avec au moins deux traces	2742	915
Evènement reconstruits	2464	811
Evènement bon	1945	665
Efficacité	$(71 \pm 2)\%$	$(73 \pm 4)\%$
Pureté	$(79 \pm 1)\%$	$(82 \pm 2)\%$

υτ CC sans bruit de fond

Distribution d'impulsion

	1er vertex (P<0.7Gev)	2e vertex
Traces perdues à la simulation	57%	4%
Traces perdues à la reconstruction	75%	22%
Traces perdues au total	89%	25%

υτ CC sans bruit de fond

Vertex d'origine des traces rattachées à chaque vertex reconstruit

Erreur de rattachement des traces du même ordre pour les deux vertex :

Vertex 1	1155/8991 (12%)
Vertex 2	922/5975 (15%)

υτ СС

Sans bruit de fond (5000 evts):

	Nombre D'événements simulés	Nombre d'événements reconstruits	Nombre D'événements purs	ε	π
Type 1	3859	1606	856	22% (1%)	53% (2%)
Type 2	3639	988	744	20% (1%)	75% (4%)

Avec bruit de fond 4 GeV (3000 evts):

	Nombre D'événements	Nombre	Nombre	3	π
	simulés	d'événements	D'événements		
	1//	reconstruits	purs		
Type 1	2308	867	482	21% (1%)	56% (3%)
Type 2	2173	557	436	20% (1%)	78% (5%)

Avec bruit de fond réel (1000 evts):

	Nombre D'événements simulés	Nombre d'événements reconstruits	Nombre D'événements purs	ε	π
Type 1	785	329	170	22% (2%)	52% (5%)
Type 2	737	195	153	21% (2%)	78% (8%)

Retrouver le vertex au milieu du bruit de fond

υ_μ CC avec bruit de fond Retrouver le vertex au milieu du bruit de fond

- •Erreur gaussienne ajoutée à la position du vertex simulé avec $\sigma_z = 10 * \sigma_{xy}$
- •200 événements
- •Comptage du nombre de bonnes réponses (équivalente à la recherche sans bruit de fond)

Limite circulaire

Limite elliptique (facteur 10)

υτ CC avec bruit de fond

Retrouver le vertex au milieu du bruit de fond

Conclusion

- -L'étude d'intéractions neutrinos $v_{\mu}CC$ et $v_{\tau}CC$ nous a montré que :
- La reconstruction est acceptable pour les événements à un vertex
- La reconstruction à deux vertex plus délicate
- -L'étude avec bruit de fond cosmique a montré qu'il n'influençait pas la reconstruction à 1 ou 2 vertex.
- -On pourra adapter la distance de recherche autour du point d'arrêt des traces en fonction de la précision de ce dernier

Perspectives:

- -Déterminer la valeur de la précision du point d'arrêt
- -Nouvel algorithme de reconstruction de vertex en cours d'implémentation

υτ CC sans bruit de fond

Multiplicité

Multiplicité plus faible après reconstruction Multiplicités moyennes :

	1er vertex	2eme vertex
Génération	6.4	3.0
Simulation	3.9	2.8
Reconstruction	3.6	2.5

Retrouver le vertex au milieu du bruit de fond

- Recherche du vertex reconstruit le plus proche du point d'arrêt (défini par le scanback)
- Pour l'instant le point d'arret pris comme étant le vertex généré.
- Limitation de la zone de recherche à une distance fixe du point.

υτ СС

Résolutions spatiales

Sans bruit de fond (5000 événements):

	σ_1	σ_2	σ_3
$\sigma_x y$ vertex 1	0.63 ± 0.05	2.2 ± 0.2	8.8 ± 0.5
$\sigma_x y$ vertex 2	0.67 ± 0.04	2.6 ± 0.1	10.8 ± 0.9
σ_z vertex 1	5.1 ± 0.3	20 ± 2	
σ_z vertex 2	5.1 ± 0.5	19 ± 2	

Avec bruit de fond (1000 événements):

	σ_1	σ_2	σ_3
$\sigma_x y$ vertex 1	0.55 ± 0.07	2.4 ± 0.2	24 ± 17
$\sigma_x y$ vertex 2	0.7 ± 0.1	1.9 ± 0.3	17 ± 7
σ_z vertex 1	5.1 ± 0.9	19 ± 5	
σ_z vertex 2	3.2 ± 0.9	13 ± 2	

υμ CC sans bruit de fond

Résolution spatiale

Problématique

La détection $\upsilon_{\tau} \rightarrow \tau \rightarrow 3$ hadrons

- Bruit de fond physique dû aux v_{μ} du faisceau n'ayant pas oscillé
- Canal parasité par $v_{\mu} \rightarrow \mu + c \rightarrow 3$ hadrons
- Distances de vol du charme de l'ordre de celle du τ
- Identifier les événements v_{τ} parmi les données.
- =>Estimer avec quelle qualité les événements à 2 vertex sont reconstruits (FEDRA)

Λ_{c}^{\pm}	26%
D±	10%
D ₀ \ <u>D</u> ₀	45%
D, ±	18%

Oscillation neutrinos

- 3 saveurs chacune associée à un lepton
- En MQ, il y a oscillation entre ces 3 états s'ils ne sont pas états propres de masse.
- Permet d'expliquer les déficits de neutrinos dans certaines expériences.
- Oscillation entre deux saveurs :

$$\begin{pmatrix} \nu_{\mu} \\ \nu_{\tau} \end{pmatrix} = \begin{pmatrix} \cos(\theta_{23}) & \sin(\theta_{23}) \\ -\sin(\theta_{23}) & \cos(\theta_{23}) \end{pmatrix} \begin{pmatrix} \nu_{2} \\ \nu_{3} \end{pmatrix}$$

$$P(\nu_{\mu} \to \nu_{\tau}) = \sin^{2}(2\theta_{23})\sin^{2}(1.27\frac{\Delta m_{23}^{2}L}{E})$$

Masse ve	<2eV
Masse υμ	<170 KeV
Masse υτ	<18 MeV

υτ CC avec bruit de fond

Retrouver le vertex au milieu du bruit de fond

- •Recherche du 1er vertex identique au υμ
- •Pour trouver le 2e vertex on part du 1er si on l'a trouvé.
- •On limite la recherche dans la zone à droite du 1er vertex.
- •Utilisation des même limitation de distance de recherche.

υμ CC sans bruit de fond

