

IoT

Technology and Architecture

Dr. Sarwan Singh

Deputy Director(S)

NIELIT Chandigarh 6

With Amazon testing its Drone Delivery Program, and the launch of Google Glass

Architecture

Collect sensor informa tion

Send to cloud Process with ambient info

Preprocess it Receive user input

Trigger actuator

Hardware

Types

- Microcontroller
- Microprocessor
- SoCs

Chip vendors

- ARM
- Atmel
- TI
- Intel

Development boards

- Arduino
- ARM
- Raspberry Pi
- Beaglebone
- Atmel
- Intel Galileo/ Gen2/ Edison

Microcontroller

System on Chip

Arduino + Shields

Raspberry Pi, Beaglebone

THINGS OF THE STATE OF THE STAT

Node vs Gateway

Parameter	Node	Gateway
Cost	\$10	\$80
Power	Battery	Continuous
Communication	Short Range Wireless	Cloud
Computing Power	Low	Meduim
Size	1"	6"
Unique IP	Not necessary	Most likely

Radio frequency

Components

- transmitter
- Receiver
- Transceivers
- System on Chip

Typical Bands

- 433MHz
- 868 MHz recommended for India
- 2.4 GHz

Examples/Protocols

- ZigBee
- Z-wave
- Bluetooth
- BLE
- Wi-Fi
- Proprietary

Cloud Communication

Components

- Gateway
- Server

Channels

- Wifi
- Ethernet
- GSM/GPRS
- LTE
- 3G
- PLC

Examples/Protocols

- Http/Https
- TCP/IP
- UDP
- MQTT
- CoAP
- XMPP

Cloud

Components

- Streaming
- Data stores
- Rules Processing & Notification
- Device Management Systems
- Analytics and Reporting Engines

Examples

- AWS
- IBM
- CISCO
- Microsoft

Data Streaming

Components

- streaming Server
- Actuation
- Over the Air Updates

Examples

- Tomcat
- Jboss
- Websphere
- Mosquitto
- Node.js TCP/IP

- REST over Http/Https
- Jersey reference implementation
- Entire functionality over REST services
- REST over CoAP under development

Data Store

Sql

- Oracle
- MySQL

NoSql

- Key value –Redis, AmazonSimple DB
- Column –
 Cassandra Hbase
- Document CouchDB, MangoDB
- Graph Neo4J

- Hybrid
- Hibernate
- Modularization

Event Processing

Components

- Real time analytics
- Quick processing
- Processing based on
 - Stream info
 - Patterns
 - Combination of rules

Examples

- Oracle CEP
- Sidhi
- Altibase
- Microsoft StreamInsight

- Custom Rules Engine
- Simple Rules based on UI Scripting
- Plugin mechanism for more complex rules

Analytics

Components

- Real time
- Offline
- Visualization

Examples

- Hadoop Ecosystem
- Spark
- MangoDB
- D3
- Tableau

- MangoDB –Map Reduce
- NVD3 Visualization
- Real time Dashboards
- Domain ontologies

Analytics Maturity

What is Visual Analytics

- Science of analytical reasoning facilitated by visual interactive interfaces
- Integrates new computational and theory-based tools with innovative interactive techniques and visual representations to enable human-information discourse
- Design is based on human cognitive and perceptual principles

UI Technologies

Components

- Business logic
- Data Store
- Visualization
- Integration and Services

Examples

- Angular JS
- Google Toolkit
- Spring MVC/ rails
- Ruby on Rails

- Spring MVC
- Bootstrap and JQuery
- Hibernate
- mySQL

Security

Components

- Wireless communication
- Communication with server
- Security of Data in Cloud

Examples

- DTLS
- Https
- BLE

- HTTPS
- Pseudo Random Numbers
- Proprietary Encoding / Decoding
- Fused code on Chip
- AWS security infrastructure

THINGS OF SOME

Why IoT security difficult? because

- Wireless communication
- Physical insecurity
- Constrained devices
- Potentially sensitive data
- Lack of standards
- Heterogeneity: weakest link problem
- A systems, not software problem
- Classic web/internet threats
- Identity management & dynamism
- Inconvenience and cost

Threats to IoT systems

- The physical devices
 - Can be stolen
 - Can be modified
 - Can be replaced
 - Can be cloned

- The software
 - Can be modified (firmware/OS/middleware)
 - Can be decompiled to extract credentials
 - Can be exhausted (denial of service)

- The network
 - Eavesdropping
 - Man-in-the-middle attacks
 - Rerouting traffic
 - Theft of bandwidth

Challenges and technology trends

THINGS OF STANDARD ST

Power

Chip	ULP Bench Score	Active Mode	Sleep Mode
Atmel L21	185	35uA	200nA
TI MSP 432	167	90uA	800nA

Solid State Battery

Bio Batteries

