Chứng minh CRT cho RSA

Đỗ Quốc Thế

January 5, 2021

CRT: Cho $n_i \in \mathcal{P}$, $n_i \neq n_j, \forall i \neq j$, $a_i \in \mathbb{N}$. Hệ phương trình (1) có nghiệm duy nhất trong $\mathbb{Z}_{n_1 n_2 \dots n_k}$

$$\begin{cases} x & \equiv a_1 \pmod{n_1} \\ x & \equiv a_2 \pmod{n_2} \\ & \vdots \\ x & \equiv a_k \pmod{n_k} \end{cases}$$
 (1)

RSA: Cho $p, q \in \mathcal{P}, p \neq q, n = pq, \phi = (p-1)(q-1), \phi(p) = p-1, \phi(q) = q-1$. Chọn e sao cho $gcd(e, \phi) = 1$, chọn d sao cho $ed \equiv 1 \pmod{\phi}$.

Encrypt: $c = m^e \mod n$ Decrypt: $m = c^d \mod n$

Ta có: $m \mod p = (c^d \mod n) \mod p = c^d \mod p = c^{d \mod \phi(p)} \mod p$

Giải thích: $d = k\phi(p) + d \mod \phi(p)$

 $c^d \mod p = c^{k\phi(p)+d \mod \phi(p)} \mod p = (c^{\phi(p)})^k c^{d \mod \phi(p)} \mod p = c^{d \mod \phi(p)} \mod p$ Vây ta có:

$$\begin{cases}
m \equiv c^{d \mod \phi(p)} \pmod{p} \\
m \equiv c^{d \mod \phi(q)} \pmod{q}
\end{cases}$$
(2)

Giải hệ CRT (2) ta được m