송한림

05.14.2024

Question 1

어느 마을 사람들은 모두 개를 한 마리씩 키우고 있다. 어느날 촌장이 마을에 미친개가 있으니 미친개의 주인은 밤에 자신의 개를 총으로 쏴 죽이라고 했다.

- 개의 주인은 자신의 개가 미쳤는지 알 수 없으나, 주인을 제외한 다른 사람들은 가능하다.
- ② 모든 마을 사람들은 하루 안에 마을의 모든 개를 확인할 수 있다.
- ③ 미친개는 그 주인만이 죽일 수 있다.
- 마을 사람들은 모두 매우 똑똑해 최선의 선택을 하지만, 너무 과묵해서 누구의 개가 미쳤는지 그 주인에게 절대로 알려주지 않는다.

하루가 지나고 이틀이 지나고 사흘이 지나도 총소리는 나지 않았으나, 나흘째에 총성이 몇 발 울렸다. 그렇다면 미친 개는 몇 마리일까?

미친개를 찿아라

Solution.

Solution.

사실, 이러한 풀이는 수학적 귀납법과 밀접한 관계가 있다.

미안하다..

Recall (수학적 귀납법(The Induction Principle))

x에 대한 명제를 P(x)라 하자. 다음과 같은 조건들을 만족할 때, 모든 자연수 n에 대해 P가 성립한다.

- P(0)이 성립한다.
- ② 모든 $n \in \mathbb{N}$ 에 대하여, P(n)이면 P(n+1)이다.

Recall (수학적 귀납법(The Induction Principle))

x에 대한 명제를 P(x)라 하자. 다음과 같은 조건들을 만족할 때, 모든 자연수 n에 대해 P가 성립한다.

- P(0)이 성립한다.
- ② 모든 n ∈ N에 대하여, P(n)이면 P(n+1)이다.

이때,

- 자연수는 무엇일까?
- ② 어떤 자연수 n이 있을 때, n + 1은 어떻게 정의될까?

Recall (수학적 귀납법(The Induction Principle))

x에 대한 명제를 P(x)라 하자. 다음과 같은 조건들을 만족할 때, 모든 자연수 n에 대해 P가 성립한다.

- P(0)이 성립한다.
- ② 모든 n ∈ N에 대하여, P(n)이면 P(n+1)이다.

이때,

- 자연수는 무엇일까?
- ② 어떤 자연수 n이 있을 때, n + 1은 어떻게 정의될까?
- ⇒ 우선, 자연수가 만들어지는 과정을 알아보자.

집합과 공리

자연수를 만들기 전에, 다음과 같은 규칙(공리)들을 설정하자.

Axiom

- ① 공집합(∅)이 존재한다.
- ② X ⊆ Y 이고 Y ⊆ X 이면 X = Y이다.
- x에 대한 명제를 P(x)라 하자. 모든 집합 A에 대해,
 B = {x ∈ A : P(x)가 참이다}가 존재한다.
- 모든 집합 A, B에 대하여, {A, B}가 존재한다.
- 모든 집합 A, B에 대하여, A∪B가 존재한다.
- 모든 집합 S에 대하여, 멱집합 P(S)가 존재한다.
 ex. A = {a, b, c}.
 - $\Rightarrow P(A) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}.$

Definition 2

- 0 = Ø이라 하자.
- ② 집합 x의 <u>다음수(successor)</u>는 $S(x) = x \cup \{x\}$ 을 의미하며, S(x) = x + 1로 표기한다.

Definition 2

- 0 = Ø이라 하자.
- ② 집합 x의 <u>다음수(successor)</u>는 $S(x) = x \cup \{x\}$ 을 의미하며, S(x) = x + 1로 표기한다.

Example 3

 $1 = S(0) = \emptyset \cup \{\emptyset\} = \{\emptyset\}.$

Definition 2

- 0 = Ø이라 하자.
- ② 집합 x의 <u>다음수(successor)</u>는 $S(x) = x \cup \{x\}$ 을 의미하며, S(x) = x + 1로 표기한다.

Example 3

- $1 = S(0) = \emptyset \cup \{\emptyset\} = \{\emptyset\}.$
- **2** $2 = S(1) = 1 \cup \{1\} = \{\emptyset\} \cup \{\{\emptyset\}\} = \{\emptyset, \{\emptyset\}\}.$

Definition 2

- ① 0 = Ø이라 하자.
- ② 집합 x의 <u>다음수(successor)</u>는 $S(x) = x \cup \{x\}$ 을 의미하며, S(x) = x + 1로 표기한다.

Example 3

- **1** $1 = S(0) = \emptyset \cup \{\emptyset\} = \{\emptyset\}.$
- **2** $2 = S(1) = 1 \cup \{1\} = \{\emptyset\} \cup \{\{\emptyset\}\} = \{\emptyset, \{\emptyset\}\}.$
- $\mathbf{3} = S(2) = 2 \cup \{2\} = \{\emptyset, \{\emptyset\}\} \cup \{\{\emptyset, \{\emptyset\}\}\}\}$ $= \{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}\}.$

Definition 2

- 0 = Ø이라 하자.
- ② 집합 x의 <u>다음수(successor)</u>는 $S(x) = x \cup \{x\}$ 을 의미하며, S(x) = x + 1로 표기한다.

Example 3

- **1** $1 = S(0) = \emptyset \cup \{\emptyset\} = \{\emptyset\}.$
- **2** $2 = S(1) = 1 \cup \{1\} = \{\emptyset\} \cup \{\{\emptyset\}\} = \{\emptyset, \{\emptyset\}\}.$
- **3** $3 = S(2) = 2 \cup \{2\} = \{\emptyset, \{\emptyset\}\} \cup \{\{\emptyset, \{\emptyset\}\}\}\}$ = $\{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}\}.$
- $\mathbf{0} \ \mathbf{4} = \dots = \{\varnothing, \{\varnothing\}, \{\varnothing, \{\varnothing\}\}, \{\varnothing, \{\varnothing\}, \{\varnothing, \{\varnothing\}\}\}\}\}.$

Definition 2

- ① 0 = Ø이라 하자.
- ② 집합 x의 <u>다음수(successor)</u>는 $S(x) = x \cup \{x\}$ 을 의미하며, S(x) = x + 1로 표기한다.

Example 3

- $1 = S(0) = \emptyset \cup \{\emptyset\} = \{\emptyset\}.$
- **2** $2 = S(1) = 1 \cup \{1\} = \{\emptyset\} \cup \{\{\emptyset\}\} = \{\emptyset, \{\emptyset\}\}.$
- **3** $3 = S(2) = 2 \cup \{2\} = \{\emptyset, \{\emptyset\}\} \cup \{\{\emptyset, \{\emptyset\}\}\}\}$ = $\{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}\}.$
- $\mathbf{0} \ \mathbf{4} = \dots = \{\varnothing, \{\varnothing\}, \{\varnothing, \{\varnothing\}\}, \{\varnothing, \{\varnothing\}, \{\varnothing, \{\varnothing\}\}\}\}\}.$

Example 3에서 알 수 있듯이, 이러한 표기는 너무 복잡하다는 단점이 존재한다.

Corollary 4

$$x = \{0, 1, 2, \cdots, x - 1\}.$$

Proof.

- $0 1 = {\emptyset} = {0}.$
- $2 = 1 \cup \{1\} = \{0\} \cup \{1\} = \{0, 1\}.$
- $3 = 2 \cup \{2\} = \{0,1\} \cup \{2\} = \{0,1,2\}.$
- $4 = 3 \cup \{3\} = \{0, 1, 2\} \cup \{3\} = \{0, 1, 2, 3\}.$

i i i

이러한 과정을 반복하여 원하는 결과를 도출할 수 있다.

Definition 5

다음과 같은 조건들을 만족하는 집합 /를 <u>귀납적(inductive)</u>이라 정의하자.

- $0 \in I$.
- ② $n \in I$ 이면 $(n+1) \in I$ 이다.

Definition 5

다음과 같은 조건들을 만족하는 집합 /를 <u>귀납적(inductive)</u>이라 정의하자.

- **1** $0 \in I$.
- ② $n \in I$ 이면 $(n+1) \in I$ 이다.

Definition 6

<u>자연수의 집합(the set of all natural numbers)</u>이란 다음과 같은 집합을 의미한다.

 $\mathbb{N} = \{x : 모든 귀납적인 집합 I 에 대하여 <math>x \in I \text{ OIT}\}.$

이때, №의 원소를 자연수(natural numbers)라고 한다.

Theorem 7

 \mathbb{N} 은 귀납적이다. 또한, 모든 귀납적인 집합 I에 대해 $\mathbb{N}\subseteq I$ 를 만족하다.

Proof. (i) 모든 귀납적인 집합 I에 대해 $0 \in I$ 를 만족하므로, $0 \in \mathbb{N}$ 이다.

(ii) 만약 $n \in \mathbb{N}$ 이라면, 모든 귀납적인 집합 I에 대해 $n \in I$ 일 것이므로, $(n+1) \in I$ 임을 알 수 있다. 따라서 $(n+1) \in \mathbb{N}$ 이다. 즉, \mathbb{N} 은 귀납적이다.

Principle 8 (수학적 귀납법(The Induction Principle))

x에 대한 명제를 P(x)라 하자. 다음과 같은 조건들을 만족할 때, 모든 자연수 n에 대해 P가 성립한다.

- P(0)이 성립한다.
- ② 모든 n ∈ N에 대하여, P(n)이면 P(n+1)이다.

Proof. 두 조건들을 간단히 말하자면, $A = \{n \in \mathbb{N} : P(n)\}$ 가 귀납적이라는 것과 동치이다. 따라서 $\mathbb{N} \subseteq A$ 임을 알 수 있다. \square

사실, 이는 №의 정의에서 자연스럽게 따라오는 결과이기도 하다.

Principle 9 (강한 수학적 귀납법(The Induction Principle, Second Version))

x에 대한 명제를 P(x)라 하자. 어떤 $n \in \mathbb{N}$ 에 대해서도, 모든 k < n에 대해 P(k)를 만족할 경우 P(n) 역시 만족한다고 하자. 그렇다면 모든 자연수 n에 대해 P가 성립한다.