Regression Models Project - Motor Trend Data 'mtcars' Miles Per Gallon Analysis

james c walmsley 12/1/2016

I. Executive Summary:

Add after completing analysis
NOTE: include some info on cor, confint, ChisSq?, VIF

II. Problem Statement & Questions to Answer:

Q1 "Is an automatic or manual transmission better for 'mpg'"
Q2 "Quantify the MPG difference between automatic and manual transmissions"

Grading - Criteria (remove on completion)!!!

YES!!!! Did the student interpret the coefficients correctly?

YES!!!! Did the student do some exploratory data analyses?

Did the student fit multiple models and detail their strategy for model selection?

Did the student answer the questions of interest or detail why the question(s) is (are) not answerable?

Did the student do a residual plot and some diagnostics?

Did the student quantify the uncertainty in their conclusions and/or perform an inference correctly?

Was the report brief (about 2 pages long) for the main body of the report and no longer than 5 with supporting appendix of figures?

Did the report include an executive summary?

YES!!!! Was the report done in Rmd (knitr) with pdf output?

III. Analysis Considerations:

```
Descriptive - (dim, mean, sd, sigma^2, str & summary) statistics

Exploratory - pairs, histograms, QQ, fitted, residualplots, boxplots
& (multiple plots); T-Test

Analysis - OLS, simple linear regression, statistical linear regression, multivariate regression & model selection, logistic regression, pValues, adjustments,
```

diagnostics; ANOVA, coeficients, confint, correlation, covariance, variance inflation

resid

IV. Software Environment:

```
Set working directory:
```

```
setwd("~/Desktop/Coursera_R/7_Regression Models/RM_proj_MPG_MotorTrendData")
```

System - session Info:

sessionInfo()

V. Accessing Data:

Clean up the work space & get the data:

```
rm(list=ls()); data("mtcars");mtcars
```

VI. Raw Data Overview: Motor Trend 'mtcars' data set: Descriptive Statistics

A data frame with 32 observations on 11 variables.

- [, 1] mpg Miles/(US) gallon
- [, 2] cyl Number of cylinders
- [, 3] disp Displacement (cu.in.)
- [, 4] hp Gross horsepower
- [, 5] drat Rear axle ratio
- [, 6] wt Weight (1000 lbs)
- [, 7] qsec 1/4 mile time
- [, 8] vs V/S
- [, 9] am Transmission (0 = automatic, 1 = manual)
- [,10] gear Number of forward gears
- [,11] carb Number of carburetors

VII. Process Data:

```
Transformationns = Factor variables 8:11; modify variable names for col 8 & 9
```

```
data("mtcars");for(i in c(2,8:11))mtcars[,i] <- as.factor(mtcars[,i]);mtcars[,]</pre>
```

VIII. Exploratory Analysis:

Add narrative here!!

```
data(mtcars);library(car);library(dplyr)
h1 <- sapply(mtcars, range, simplify = TRUE); h1; mu1 <- sapply(mtcars, mean, simplify = TRUE); mu1
         mpg cyl disp hp drat
                                   wt qsec vs am gear carb
               4 71.1 52 2.76 1.513 14.5
  [2,] 33.9
               8 472.0 335 4.93 5.424 22.9
##
          mpg
                     cyl
                               disp
                                             hp
                                                      drat
##
   20.090625
                6.187500 230.721875 146.687500
                                                  3.596563
                                                             3.217250
##
         qsec
                      vs
                                           gear
                                                      carb
   17.848750
                0.437500
                                                  2.812500
                           0.406250
                                       3.687500
c1 <- sapply(mtcars, sd, simplify = TRUE);c1;c2 <- sapply(mtcars, var, simplify = TRUE);c2</pre>
##
           mpg
                       cyl
                                   disp
                                                           drat
                                                                          wt
##
     6.0269481
                 1.7859216 123.9386938
                                                                   0.9784574
                                         68.5628685
                                                      0.5346787
##
                                                           carb
          qsec
                        VS
                                     am
                                               gear
##
     1.7869432
                 0.5040161
                              0.4989909
                                          0.7378041
                                                      1.6152000
##
                                      disp
                                                                 drat.
                         cyl
                                                     hp
## 3.632410e+01 3.189516e+00 1.536080e+04 4.700867e+03 2.858814e-01
                        qsec
                                        ٧s
## 9.573790e-01 3.193166e+00 2.540323e-01 2.489919e-01 5.443548e-01
           carb
## 2.608871e+00
ordmtcars <- mtcars[order(mtcars$mpg,decreasing = TRUE),]</pre>
ordmtcars2 <- mtcars[order(mtcars$mpg,decreasing = FALSE),]</pre>
rbind(head(ordmtcars2), head(ordmtcars))
                        mpg cyl disp hp drat
                                                   wt qsec vs am gear carb
## Cadillac Fleetwood 10.4
                              8 472.0 205 2.93 5.250 17.98
## Lincoln Continental 10.4
                              8 460.0 215 3.00 5.424 17.82
## Camaro Z28
                       13.3
                              8 350.0 245 3.73 3.840 15.41
## Duster 360
                       14.3
                              8 360.0 245 3.21 3.570 15.84
                                                                           4
## Chrysler Imperial
                       14.7
                              8 440.0 230 3.23 5.345 17.42
## Maserati Bora
                       15.0
                              8 301.0 335 3.54 3.570 14.60
## Toyota Corolla
                       33.9
                              4 71.1 65 4.22 1.835 19.90
## Fiat 128
                       32.4
                              4 78.7
                                       66 4.08 2.200 19.47
                                                             1
                                                                           1
## Honda Civic
                       30.4
                              4 75.7 52 4.93 1.615 18.52
## Lotus Europa
                       30.4
                              4 95.1 113 3.77 1.513 16.90
                                                                           2
## Fiat X1-9
                       27.3
                                 79.0
                                       66 4.08 1.935 18.90
                                                                           1
## Porsche 914-2
                       26.0
                              4 120.3 91 4.43 2.140 16.70
```

For additional exploratory graphical analysis see Appendix A, Figures 1:4

IX. Statistical Modeling, Regression & Model Fit:

```
Assumptions:
```

 ${\tt A}$ ${\tt A}$ correlation to mpg ratings may exist among multiple variables ${\tt B}$

Bivariate Linear Model

Multivariate LM (all vars) Fitted Plot

Multivariate LM (all vars) Fitted & Adjusted

(Note: the variable qsec appears to be significant at this point)

MultivariateLM(allvars)VIF(varianceInflationFactor)

(Note: at this point qsec no longer appears significant; but drat now appears to be instead, and notice the variance inflation figures of the other variables now seem to warrant removing them from the model)

Multivariate LM Nested & ANOVA table (Note: here that with the nested model approach that models 2 & 4 are indicated to be significant)

Best Fit Modeling (Note: comparing the following three models and using anova table test we find that model fbf3 is highly significant and therefore discard the other two models)

NEXT PROCESS TO CHECK!!!!! IS RESIDUALS TO IDENTIFY POOR MODEL FIT??

NEXT PROCESS: R^2 the percentage of total variability explained by the linear relationship with the predictor !!!!

```
## Warning: In lm.fit(x, y, offset = offset, singular.ok = singular.ok, ...) :
## extra argument 'family' will be disregarded
```

dfbeta Plots

ISSUE NEEDS RESOLUTION

```
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 37.32155131 3.0546385 12.21799285 5.843477e-13
## am -0.02361522 1.5456453 -0.01527855 9.879146e-01
## wt -5.35281145 0.7882438 -6.79080719 1.867415e-07

## [1] 31.07411 43.56899

## [1] -3.184815 3.137584
```

Find something with levels

X. Preliminary Findings:

Questions of Interest:

A What other regressors if any correlated with mpg rating and transmission type?

```
B
Interpretation of Results:
   A Using ANOVA table with Nested Multivariate Regression fit it is clear that the variable w
   B Based on the
   C
```

XI. Inference:

```
Hypothesis':
    A HO = The difference between Automatic and Manual transmission MPG = 0
    B Ha = The difference between Automatic and Manual transmission MPG != 0
    C Desired confidence interval = .95 (one sided) ??
```

XII. Conclusions / Recommendations:

A B

XIII. Are there other alternative analyses?

```
A VIF
B Challenge the results ?
C Measures of uncertainty 'e'
```

XIV. Appendix A: "Exploratory Graphical Analysis""

Pairs Plot

Histograms Plot

```
## Mazda RX4 Wag 21.0 6 160 110 3.90 2.620 16.46 V-block Manual 4 4 ## Datsun 710 22.8 4 108 93 3.85 2.320 18.61 S-block Manual 4 1
```


Box Plot

```
## Mazda RX4 Wag 21.0 6 160 110 3.90 2.620 16.46 V-block Manual 4 4 ## Datsun 710 22.8 4 108 93 3.85 2.320 18.61 S-block Manual 4 1
```

omatic vs Manual Transmission, Miles Per Gallon

Transmission

Simple Linear Regression Plot

```
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 17.147368 1.124603 15.247492 1.133983e-15
## amManual 7.244939 1.764422 4.106127 2.850207e-04
```


=== END ===