PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:		(11) International Publication Number: WO 00/03053
C22F 1/10	A1	(43) International Publication Date: 20 January 2000 (20.01.00)
(21) International Application Number: PCT/US (22) International Filing Date: 21 June 1999 (3)		(AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT,
(30) Priority Data: 09/112,418 9 July 1998 (09.07.98)	τ	Published With international search report.
(71) Applicant: INCO ALLOYS INTERNATIONA [US/US]; 3200 Riverside Drive, Huntington, W (US).		
(72) Inventors: HIBNER, Edward, Lee; 1 Quail Drive, (25545 (US). MANNAN, Sarwan, Kumar, 1 Orc Road, Barboursville, WV 25504 (US).		
(74) Agents: BYRNE, Richard, L. et al.; Webb Ziesenheim Orkin & Hanson, P.C., 700 Koppers Building, 436 Avenue, Pittsburgh, PA 15219-1818 (US).		
(54) Title: HEAT TREATMENT FOR NICKEL-BASE	ALLOY	YS

(57) Abstract

A heat treatment for hot or cold worked 725 type corrosion resistant alloys to increase the room temperature yield strength of the material to above about 145 ksi (1000MPa). The material is useful for oil patch and gas turbine applications. The process includes annealing the material of about 825 °F (996 °C) for about 0.5–2.5 hours, age hardening the material at about 1700 °F (760 °C) for about 5.5 to 10.5 hours to precipate double gamma prime, furnace cooling the material about 50 °F (28 °C) to 100 °F (56 °C) per hour and heat treating the material at about 1200 °F (649 °C) for about 5.5 to about 12.5 hours.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

L	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
ΛM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΑU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HŲ	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	ΙE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	İtaly	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

WO 00/03053 PCT/US99/14000

-1-

5

HEAT TREATMENT FOR NICKEL-BASE ALLOYS

10

15

TECHNICAL FIELD

The instant invention relates to corrosion resistant nickel-base alloys in general, and more particularly, to a heat treatment that encourages gamma prime and double gamma prime precipitation and relatively high yield strengths on the order of 156-172 ksi (1076-1186MPa).

BACKGROUND ART

In physically and chemically demanding environments, such as oil patch
and gas turbine applications, there is a need for higher strength nickel-base alloys having
corrosion resistance greater than the workhorse 3% molybdenum precipitation hardened
alloys – Inconei® alloy 718 and Incoloy® alloy 925. (Inconel and Incoloy are the
trademarks of the assignee). In particular, a yield strength in the range of about 140-170
ksi (965-1172 MPa) combined with superior corrosion resistance is desired by fabricators
and component manufacturers.

Oil patch applications include subsurface and well head completions and drill components. High strength and corrosion resistant containment rings and associated components on gas turbine engines require lightweight but robust construction.

10

Age hardenable alloys based upon nickel and containing precipitation hardening amounts of titanium, niobium and/or aluminum have been known and used for many years. Various heat treatment techniques have been employed to obtain desired physical and chemical characteristics. See, for example, U.S. patent 3,871,928.

15

More particularly, component fabricators and designers have identified the following characteristics and targets as desirable for specific oil/gas and turbine applications:

20

25

- (1) Age-hardenable yield strengthen ≥ 140 ksi (968 MPa);
- (2) Charpy V-notch impact strength at $-75^{\circ}F$ ($-58^{\circ}C$) = 25 ft-lbs (111 N);
- (3) Pitting resistance superior to alloys 718 (UNS NO 771B) and 925 (UNS NO 6625);
- (4)
 - (5) Stress corrosion cracking resistance to moderately sour oil field

Resistance to hydrogen embrittlement per NACE TM-0177 test;

- environments at temperatures from 250° to 350°F (121 to 177°C);
- (6) Fracture energy as expressed by tensile strength elongation greater than exhibited by alloy 718; and
- (7) High temperature strength greater than exhibited by alloy 625.

30

Assignee produces Inconel alloy 725 (UNS NO 7725). The typical commercial composition of alloy 725 is given below:

15

20

25

CHEMICAL CO	OMPOSITION, WT. %
Nickel	55.0-59.0
Chromium	19.0-22.5
Molybdenum	7.0-9.5
Niobium	2.75-4.0
Titanium	1.0-1.7
Aluminum ·	0.35 max.
Carbon	0.03 max.
Manganese	0.35 max.
Silicon	0.20 max.
Phosphorus	0.015 max.
Sulfur	0.010 max.
Commercial	Trace
impurities	
Iron	Remainder

Alloy 725 is strengthened by precipitation of double gamma prime phase during an aging treatment. Before aging, the alloy is currently solution annealed at 1900°F(1040°C) and water quenched. For sour gas applications, the published recommended aging treatment is 1350°F (730°C) / 8 hours and then air cooling.

In summary, in order to obtain the published high yield strengths for, say, age hardened rounds (133 ksi [917 MPa]) or strip (143 ksi [992 MPa]), the current practice is to anneal, cold work and then age.

In order to exceed the properties of alloys 718 and 925, it was contemplated that a new heat treatment paradigm would be necessary.

SUMMARY OF THE INVENTION

Accordingly, there is provided a heat treatment for 725 type alloys.

In contrast to current practice, the heat treatment is performed directly on hot or cold worked material.

WO 00/03053 PCT/US99/14000

-4-

The heat treatment consists of an initial anneal of about 1825°F (996°C) = 25°F (14°C) for about 0.5 to 2.5 hours, followed by age hardening at about 1400°F (760°C) = 50°F (28°C) for about 5.5 to 10.5 hours, followed by furnace cooling at about 50°F (28°C) = 25°F (14°C) per hour to about 100°F (56°C) = 25°F (14°C) per hour and finally heat treating the alloy at about 1200°F (649°C) = 50° (28°C) for about 5.5 to 12.5 hours.

The resultant room temperature 0.2% yield strength of the alloy is in excess of about 145 ksi (1000 MPa), preferably above 150 ksi (1042 MPa); and more preferably in excess of 155 ksi (1069 MPa).

15

20

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 compares static crack growth data for alloy 725 and alloy 718 at 538°C (1000°F) in air.

Figure 2 compares static crack growth data for alloy 725 and alloy 718 at 649°C (1200°F).

PREFERRED EMBODIMENT OF THE INVENTION

25 For the purposes of this specification, the appearance of the adverb "about" before a single or series of values shall be interpreted to encompass each and every value unless expressly indicated to the contrary.

Although the inventors have endeavored to accurately convert units and measurements, in the event a discrepancy exists between an English unit of measurement and an SI unit of measurement, the English unit of measurement shall be controlling

The instant heat treatment process is applicable to 725 type alloys such as UNS designations NO 07725 and NO 07716.

35

30

WO 00/03053

5

10

15

20

25

Alloy UNS NO 07716 has the approximate ("about") analysi	Allov	UNS NO	07716 ha	s the approximate	("about")	analysi
--	-------	--------	----------	-------------------	-----------	---------

Nickel	61			
Molvbdenum	8.5	Carbon	0.015	
Niobium	3.3	Manganese	0.1	
Titanium	1.3	Phosphorus	0.005	
Aluminum	0.2	Sulfur	0.002	
Iron	Remainder	Silicon	0.1	
Commercial impurities	Тгасе	Chromium	20.5	

The expression "725 type alloy" encompasses the approximate ranges of UNS NO 07725 and NO 07716. Accordingly for this specification, a "725 type alloy" may include the broad approximate lower and upper ranges of the identified component elements and/or the particular composition, identified in the UNS numbers and/or the particular examples disclosed herein.

In general, the alloy is initially annealed at about $1825^{\circ}F$ (996°C) \pm 25°F (14°C) for about 0.5 to 2.5 hours, followed by age hardening at about $1400^{\circ}F$ (760°C) \pm 50°F (28°C) for about 5.5 to 10.5 hours, followed by furnace cooling at about 50° F (90°C) \pm 25°F (14°C) to about 100°F (180°C) \pm 25°F (14°C) per hour and finally heat treating at about 1200° F (649°C) \pm 50°F (28°C) for about 5.5 to 12.5 hours.

The resultant mechanical properties of an alloy 725 bar heat treated pursuant to the process disclosed herein are listed below:

0.2% Yield Strength ksi (MPa)	Tensile Strength ksi (MP2)	% Reduction of Area	% Elongation	Hardness HRC	-75° F (58° C) CVN Impact Strength ft-lb
156 - 172 (1076 - 1186 MPa)	195 - 216 (1345 - 1489 MPa)	35 - 46	21 - 25	38 - 42	27 - 42 (1120 - 187 N)

In contrast, the conventional existing treatment which calls for solution annealing plus age hardening optimizes corrosion resistance to extremely severe sour brine environments containing elemental sulfur at temperatures to 400° F (204°C). The specification yield strength is 120 ksi (827 MPa) minimum and 140 ksi (965 MPa) maximum.

10

15

Oil patch fabricators require higher strengths for flapper values in subsurface safety valves, packers and drilling equipment. Turbine manufactures require high fracture energies, as expressed by tensile strength times elongation, greater than those exhibited by alloy 718 and high temperature strengths greater than those exhibited by alloy 625.

The instant process does not solution anneal all the precipitates in the as hot worked structure which helps control grain size. The 1200°F (749°C) heat treating step grows the gamma double prime precipitates which are formed during the 1400°F (760°C) aging treatment. After the entire process is completed a higher yield strength is obtained. Acceptable ductility and toughness are maintained along with resistance to hydrogen embrittlement as per the NACE Test Method 0177 Oil Patch hydrogen embrittlement test.

The aforementioned test, promulgated by the National Association of Corrosion Engineers, is a severe hydrogen embrittlement test in which the material being tested is galvanically coupled to steel in an oil patch type sour brine environment consisting of hydrogen sulfide saturated 5% sodium chloride with 0.5% acetic acid at 77°F (25°C) for a minimum period of thirty days.

25

Without being limited to a particular theory, it is surmised that annealing the alloy at about 1825°F (996°C) partially dissolves the delta phase (Ni₃Nb) which is generally present in hot worked material (although the instant process is specifically applicable to cold worked forms as well). This helps tailor the microstructure by controlling the grain size. Further, the presence of the intergranular delta phase is also thought to improve the crack growth resistance at elevated temperatures under static or dynamic loading. The double aging treatment at 1400°F (760°C) and 1200°F (649°C) following annealing is designed to produce a morphology and volume fraction of Ni₃(Pl, Ti)-type gamma prime and Ni₃ (Nb, Al, Ti) - type double gamma prime precipitates to maximize the strength and ductility.

35

30

A number of tensile tests were conducted to evaluate the efficacy of the process.

PROCEDURE:

Material for testing came from commercially produced 1% in. to 2% inch (3.18-5.7 cm) diameter Inconel alloy 725 hot rolled bar. The chemical compositions of evaluated heats are shown in Table 1.

10

15

20

Table 1 Chemical Composition of Evaluated Heats (wt,%)						
	HT5132LY	HT5143LY				
С	0.005	0.005				
Mn	0.07	0.13				
Fe	8.46	8.05				
S	0.002	0.003				
Si	<0.01	0.02				
Cu	0.01	0.01				
Ni*	57.64	57.82				
Cr	20.73	20.81				
Al	0.11	0.16				
Ti	1.55	1.5				
Со	<0.01	-0.03				
Мо	7.92	7.95				
Nb	3.48	3.53				
P	0.004	0.004				
В	0.003	0.003				
*Balance elem	nent, approximate composi	tion.				

A hydrogen embrittlement test was conducted in accordance with the aforementioned NACE Test Method TM-0177 (A). Specimens were galvanically coupled to steel. A minimum test duration of 720 hours is required by the specification. In this case, the heat treated Inconel alloy 725 specimens were removed from the environment after 725 hours of exposure.

DATA REVIEW:

Table 2 displays the mechanical properties for alloy 725 hot rolled bar, evaluated in various heat treated conditions. Except for heat treatments 5 and 6, the remaining heat treatments fall within the inventive concept. Material in these heat treated conditions exhibited excellent strength, ductility and toughness.

Heat	Heat Room Temperature Tensile Treatment						-75°F CVN (- 58°C) Impact Strength (N)	Lateral Expansion in (mm)
		YS ksi (MPa)	ULT kai (MPa)	%RA	%EL			
HT5132LY(22)	1	168.6 (1162)	212.3 (1464)	1 40.8	22.5	42		
	2	170.6 (1176)	213.2 (1470)	40.4	22.6	40		
	3	167.0 (1151)	211.4 (1458)	39.9	21.9	41		
HT5132LY(24)	4	172.1 (1187)	215.8 (1488)	35.6	20.6	42		
HT5143Y(31)	5	145.3 (1002)	203.5 (1403)	35.1	22.9	39		
• •	6	140.5 (969)	201.4 (1389)	35.0	23.7	36		
. •	1	158.1 (1090)	198.9 (1371)	43.3	25.2	39	(129) 29:30(133)	(0.33) 0.013;0.020 (0.51)
	2	160.1 (1104)	202.3 (1395)	45.7	25.4	41	(165) 37;37 (165)	0.41) 0.016;0.019
	3	150.6 (1038)	193.2 (1322)	44.4	24.6	39	(116) 26;26	(0.36) 0.014;0.012 (0.30)
	4	158.3 (1091)	198.5 (1369)	40.7	25.1	38	(120) 27;29 (129)	(0.36) 0.014;0.017 (0.43)
HT51432Y(13)	5	137.7 (949)	193.4 (1333)	39.7	25.5	38	(98) 22;20 (89)	(0.43) 0.017;0.012 (0.30)
	6	133.0 (917)	190.4 (1313)	38.3	25.8	34	(107) 24;23	(0.30) 0.012;0.013 (0.33)
	7	158.5 (1093)	197.1 (1359)	43.8	24.7	40	(116) 26;26 (116)	(0.36) 0.014;0.013 (0.33)
	8	158.5 (1093)	199.1 (1373)	44.0	24.6	38	(178) 40;32 (142)	(0.53) 0.021;0.048 (1.22)
	9	156.2 (1077)	197.5 (1362)	42.7	25.1	39	(133) 30,33 (147)	(0.41) 0.016;0.010 (0.25)
	10	157.7 (1087)	195.0 (1344)	42.2	24.8	41	(173) 39,42	(0.43) 0.017;0.017 (0.43)

Heat Treated Condition:

- 1: 1825°F (996°C)/1b/AC + 1400°F(760°C)/10h,FC at 50°(90°C)/h to 1200°F(649°C)/8b/AC
 2: 1825°F (996°C)/1b/AC + 1400°F(760°C)/6h,FC at 50°(90°C)/h to 1200°F(649°C)/12b/AC
 3: 1825°F (996°C)/1b/AC + 1400°F(760°C)/14h,FC at 50°(90°C)/h to 1200°F(649°C)/4b/AC
 4: 1825°F (996°C)/1b/AC + 1400°F(760°C)/10h,FC at 50°(90°C)/h to 1200°F(649°C)/8b/AC
 5: 1825°F (996°C)/1b/AC + 1550°F(843°C)/3h,AC + 1400°F/8b, FC at 50°/h to 1150°F (621°C)
- /8b/AC 6: 1850°F (1010°C)/1h/AC + 1400°F(760°C)/3h,FC at 50°(90°C)/h to 1200°F(649°C)/8h/AC
- 7: 1825°F (996°C)/2h/AC + 1400°F(760°C)/6h/FC at 50°(90°C)/h to 1200°F(649°C)/8h/AC 8: 1825°F (996°C)/2h/AC + 1400°F(760°C)/6h/FC at 50°(90°C)/h to 1200°F(649°C)/6h/AC 9: 1825°F (996°C)/2h/AC + 1400°F(760°C)/6h/FC at 50°(90°C)/h to 1200°F(649°C)/12h/AC

- 10: 1825°F (996°C)1b/AC + 1400°F(760°C)6b,FC at 50°(90°C)/b to 1200°F(649°C)/6/AC
- (FC = Furnace Cool, AC = Air Cooling h=hour)
 (VN = Charpy V-Notch, HRC = Hardness Rockwell C.RA = Reduction in Area, EL = Elongation))

Samples 4, 8, 9 and 10 were subjected to and passed the NACE Test Method 0177 (A) oil patch hydrogen embrittlement test. After 725 hours of exposure to the sour brine environment, there was no cracking f duplicate specimens coupled to steel.

10 Results are shown in Table 3.

10

15

Table 3. TM0177 (A) Hydrogen Embrittlement Test* Results

Heat Treated Condition	Test Duration, hours	Comment			
4	725	Passed, no cracking			
8	725	Passed, no cracking			
9	725	Passed, no cracking			
10	725	Passed, no cracking			
*Tested galvanically coupled to steel					

An additional series of experimental heat treatment tests were undertaken on a forged ring made from alloy 725.

A 6 inch (15.2 cm) diameter forging stock round of heat HT6094L Y (alloy 725) was forged to a ring (13 inch [33cm] outer diameter, 8 inch [20.3 cm] inner diameter, and 3 inch [7.6 cm] height). The chemical composition of heat HT6094L Y is given in Table 4.

Table 4. Chemical Composition of Heat HT6094L Y.

Ni	Cr	Fe	Mo	Nb	Ti	Al	С
58.08	20.73	7.71	7.99	3.47	1.52	0.21	0.010

The forged ring was subjected to annealing at 1800°F (982°C), 1825°F (996°C), and 1850°F (1010°C) for one hour. These annealing conditions provided fully recrystalized microstructure with grain sizes of ASTM #7, 6, and 5 respectively. The material annealed at 1825°F (996°C) was subjected to three aging conditions coded A, B, and C. The aging conditions are given below:

25 A= 1325°F (718°C)/8h, Furnace Cool at 100°F (56°C)/h to 1150°F (621°C), Hold at 1150°F(621°C)/8h, Air Cool

B= 1400°F(760°C)/10h, Furnace Cool at 100°F(56°C)/h to 1200°F(649°C), Hold at 1200°F(649°C)/8h, Air Cool

5 C= 1550°F(843°C)/3h Air Cool + 1325°F (718°C)/8h, Furnace Cool at 100°F(56°C)/h to 1150°F(625°C), Hold at 1150°F(625°C)/8h, Air Cool

Code B's heat treatment resulted in the best combination of properties for room temperature tensile, 1200°F (649°C) tensile, and 1200°F-110ksi [649°C-758 MPa] stress rupture (Tables 5, 6 and 7). Therefore, code B heat treatment was selected to evaluate long term stability and crack growth resistance. The tensile properties reported are the averages of duplicate tests.

15 <u>Table 5. Room Temperature Tensile Properties.</u>

Heat Treatment	Yield Strength ksi (MPa)	Tensile Strength ksi (MPa)	% Elongation	Reduction of Area
A	132 (910)	190 (1310)	27	53
В	150 (1034)	198 (1365)	21	41
С	141 (972)	195 (1344)	21	36

Table 6. High Temperature (1200°F) Tense Properties

Heat Treatment	Yield Strength ksi (MPa)	Tensile Strength ksi (MPa)	% Elongation	Reduction of Area
A	111 (765)	160 (1103)	36	59
В	127 (876)	171 (1179)	27	43
С	120 (827	168 (1158)	31_	54

Table 7. Combination Bar Stress Rupture Tests at 1200°F-110ksi.

Heat Treatment	Rupture Life, h	% Elongation	Reduction in Area
A	35.6	14.7	29.8
	53.3	24	22.2
В	45.2	43.5	49
	31.8	23.6	29.2
С	11.8	40.8	52
	12.4	28.6	32.9

20

Table 8 shows room temperature tensile properties of the material exposed at 1100°F (593°C) up to 5000h. The initial 500h exposure increased the room temperature

WO 00/03053

-11-

yield strength to 160ksi (1103MPa) and thereafter it remained constant up to a total exposure time of 5000h. Room temperature elongation and reduction of area did not change with exposure. The initial 500h exposure at 1100°F (593°C) increased the 1200°F (649°C) yield strength to 134ksi (924MPa) (Table 9) and thereafter it remained constant up a total exposure time of 7500h. High temperature elongation essentially remained constant with exposure except 1000h exposure with had low elongation of 16%.

Table 8. Room Temperature Tensile Properties of As-produced (Code B heat treated) and 1100°F (593°C) Exposed Material.

Exposure Condition	Yield Strength ksi (MPa)	Tensile Strength ksi (MPa)	% Elongation	Reduction of Area
As-produced	150 (1034)	198 (1365)	21	41
500 hours	161 (1110)	205 (1413)	20	44
1000 hours	158 (1089)	202 (1993)	21	44
5000 hours	159 (1096)	203 (1399)	18	34

15

25

Table 9. High Temperature (1200°F [649°C]) Tensile Properties of As-produced (Code B heat treated) and 1100°F (598°C) Exposed Material.

Exposure Condition	Yield Strength ksi (MPa)	Tensile Strength ksi (MPa)	% Elongation	Reduction of Area
As-produced	127 (876)	171 (1179)	27	43
500 hours	134 (924)	175 (931)	29	50
1000 hours	134 (924)	176 (1213)	16	23
2500 hours	133 (917)	176 (931)	24	39
7500 hours	134 (924)	176 (1213)	27	44

Figures 1 and 2 compare the crack growth data of alloys 725 and 718 at 1000°F (538°C) and 1200°F (649°C) in air. Crack growth resistance of alloy 725 when processed in accordance with the instant heat treatment is at least an order of magnitude better than standard treated alloy 718.

In summary, the heat treatment of annealing the worked alloy at about 1825°F (996°C)/10h air cooling + about 1400°F (760°C)/10h, furnace cooling at about 100°F (56°C)/h to 1200°F (649°C), holding at about 1200°F (649°C)/8h, and air cooling provided the best combination of properties for room temperature tensile, high temperature tensile, and stress rupture. The material subjected to this heat treatment demonstrated

5 excellent long term thermal stability at 1100°F (593°C). Further, the static crack growth resistance of alloy 725 subjected to this heat treatment was at least an order of magnitude better than alloy 718 at 1000°F(538°C) and 1200°F(649°C).

In accordance with the provisions of the statute, the specification illustrates
and describes specific embodiments of the invention. Those skilled in the art will
understand that changes may be made in the form of the invention covered by the claims;
and that certain features of the invention may sometimes be used to advantage without a
corresponding use of the other features.

2	The embodiments of the invention in which an exclusive property of				
	privilege is claimed are defined as follows:				
	1. A	process for heat treating an age hardenable 725 type alloy nickel-			
	base alloy to a yield 5	trength in excess of about 145 ksi (100MPa) the method comprising:			
10					
	a)	providing a hot or cold worked material consisting essentially of			
		725 type alloy;			
	b)	annealing the material at about 1825°F (996°C) ± 25°F (14°C)			
		for about 0.5 to 2.5 hours;			
15	c)	age hardening the material at about 1400°F (760°C) ± 50°F			
		(28°C) for about 5.5 to 10.5 hours;			
	d)	furnace cooling the material to about 1200°F (649°C); and			
	e)	heat treating the material at about 1200°F (649°C) ± 50°F			
		(28°C) for about 5.5 to 12.5 hours.			
20					
	2. Th	ne process according to claim 1 including furnace cooling the material			
	about 50°F (28°C) ±	25°F (14°C) per hour to about 100°F (56°C) ± 25°F (14°C) per			
	hour.				
25	3. Th	ne process according to claim 1 comprising:			
	a)	annealing the material at about 1825°F (996°C) for about 10			
		hours;			
	b)	age hardening the material at about 1400°F (760°C) for about 10			
	hours;				
30	c)	furnace cooling the material at about 100°F (56°C) per hour to			
		about 1200°F (649°C), and			
	d)	heat treating the material at about 1200°F (649°C) for about 8			
		hours.			
35	4 T3	ne process according to claim 1 wherein the 725 type alloy is selected			

from the group consisting of UNS NO 07725 and UNS NO 07716.

- 5. The process according to claim 1 including forming gamma double prime particles in the 725 type alloy during age hardening.
 - 6. The process according to claim 1 wherein the room temperature yield strength of the material is about 150 172 ksi (1076-1186 MPa).

15

20

- 7. The process according to claim 1 wherein the 725 type alloy consists essentially of about 55-59% nickel, about 19-22.5% chromium, about 7-9.5% molybdenum, about 2.75-4% niobium, about 1-1.7% titanium, up to about 0.35% aluminum, up to about 0.03% carbon, up to about 0.35% manganese, up to about 0.2% silicon, up to about 0.015% phosphorus, up to about 0.01% sulfur commercial impurities and balance iron.
- 8. The process according to claim 1 wherein the 725 type alloy consists essentially of about 61% nickel, about 20.5% chromium, about 8.5% molybdenum, about 1.3% titanium, about 3.3% niobium, about 0.2% aluminum, about 0.015 carbon, about 0.1% manganese, about 0.1% silicon, about 0.005% phosphorus about 0.002% sulfur, commercial impurities and balance iron.
- 9. The process according to claim 1 wherein the 725 type alloy consists
 25 essentially of about 55-61% nickel, about 19-22.5% chromium, about 7-9.5%
 molybdenum, about 2.75-4% niobium, about 1-1.7% titanium, up to about 0.35%
 aluminum, up to about 0.03% carbon, up to about 0.35% manganese, up to about 0.2%
 silicon, up to about 0.015% phosphorus, up to about 0.01% sulfur commercial impurities
 and balance iron.

30

10. The process according to claim 1 wherein the 725 type alloy has a Charpy-V-notch impact strength equal to or greater than about 25 ft-lbs (111N).

FIG.1

FIG.2

INTERNATIONAL SEARCH REPORT

International application No. PCT/US99/14000

A. CLASSIFICATION OF SUBJECT MATTER IPC(6) :C22F 1/10 US CL :148/675, 676, 677				
	o International Patent Classification (IPC) or to both DS SEARCHED	national classification and IPC		
	ocumentation searched (classification system followe	d by classification symbols)		
	148/675, 676, 677	, , ,		
Documentat	tion searched other than minimum documentation to the	e extent that such documents are included	in the fields searched	
NONE				
Electronic d	ata base consulted during the international search (na	ame of data base and, where practicable,	search terms used)	
APS-USP	AT, Ni, Cr, Mo, anneal?, aging, age harden?, cool?			
c. Doc	UMENTS CONSIDERED TO BE RELEVANT			
Category*	Citation of document, with indication, where ap	propriate, of the relevant passages	Relevant to claim No.	
Y	US 5,556,594 A (FRANK et al.) 17 Se 60 - column 9, line 18.	1-10		
A	US 5,244,515 A (MIGLIN) 14 Septer 1-3.	1-10		
A	US 5,059,257 A (WANNER et al.) Table 1; column 6, lines 49-65; and c	1-10		
Y	US 4,979,995 A (HATTORI et al.) 2: lines 20-27; column 4, line 64 - colum	1-10		
Further documents are listed in the continuation of Box C. See patent family annex.				
* Special categories of cited documents: "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand				
	cument defining the general state of the art which is not considered be of particular relevance	the principle or theory underlying the		
	lier document published on or after the international filing date	"X" document of particular relevance; the considered novel or cannot be considered.		
cit	cument which may throw doubts on priority claim(s) or which is ed to establish the publication date of another citation or other	"Y" document of particular relevance: the	alaimed invention arrest ba	
considered to involve an inventiv		step when the document is		
"O" document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents, such the international filing date but later than "A" document member of the same patent family			ne art	
the priority date claimed				
Date of the actual completion of the international search Date of mailing of the international search report O 4 NOV 1999			· ·	
Name and mailing address of the ISA/US Authorized officer				
Name and mailing address of the ISA/US Commissioner of Patents and Trademarks Box PCT Washington, D.C. 20231 Facsimile No. (703) 305-3230 Authorized officer JOHN P. SHEEHAN Telephone No. (703) 308-0651				
Washington, D.C. 20231 Facsimile No. (703) 305-3230 Telephone No. (703) 308-0651				