Probability: Assignment 5

Sree Anusha Ganapathiraju CC22RESCH11003

Fig. 1.3. The Plot of Y

1 Maximum Likelihood

1.1 Generate equiprobable $X \in \{1, -1\}$.

Solution:

The samples are stored in 5 1.dat file.

1.2 Generate

$$Y = AX + N, \tag{1.2.1}$$

where A = 5 dB, and $N \sim \mathcal{N}(0, 1)$.

Solution: The samples are stored in 5_2.dat file.

1.3 Plot Y using a scatter plot.

Solution: = The code for the plot in Figure 1.3 is below.

1.4 Guess how to estimate X from Y.

Solution

From the plot in Figure 1.3, we can see that

$$\hat{X} = \begin{cases} 1 & \text{for } Y < 0 \\ -1 & \text{for } Y > 0 \end{cases}$$

1.5 Find

$$P_{e|0} = \Pr(\hat{X} = -1|X = 1)$$
 (1.5.1)

and

$$P_{e|1} = \Pr(\hat{X} = 1|X = -1)$$
 (1.5.2)

Solution:

The code for finding the $P_{e|0}$ and $P_{e|1}$ is in

The values of $P_{e|0} = 0.00071$ and $P_{e|1} = 0.00081$.

1.6 Find P_e assuming that X has equiprobable symbols.

Solution:

Using law of total probability, we can find the value of P_e . The value of P(X = 1) = 0.5 and P(X = -1) = 0.5 as X is equiprobable.

$$\begin{split} P_e &= P(X=1) \times P_{e|0} + P(X=-1) \times P_{e|1} \\ &= 0.5 \times 0.00071 + 0.5 \times 0.00081 \\ &= 0.000355 + 0.000405 \\ &= 0.00076 \\ &= 7.6 \times 10^{-4} \end{split}$$

1.7 Verify by plotting the theoretical P_e with respect to A from 0 to 10 dB.

Solution:

The code for finding thre theoretical P_e wrt A from 0 to 10dB is in

Accordingly, the plot is in Figure 1.7.

- 1.8 Now, consider a threshold δ while estimating X from Y. Find the value of δ that maximizes the theoretical P_e .
- 1.9 Repeat the above exercise when

$$p_X(0) = p (1.9.1)$$

1.10 Repeat the above exercise using the MAP criterion.

Fig. 1.7. The Plot of P_e wrt A