

COMP28411 Computer Networks

Nick Filer

Link Layer - 4

Some material from:

Kurose & Rose – Chapter 5 + Slides

09/12/2014 COMP28411 Link Layer

90 Columns

COMP28411 Link Layer

09/12/2014

SONET Encoding

- Overhead bytes are simply encoded using NRZ which can result in weak clock recovery for these few bytes.
- All others are XOR'd with a pattern with lots of 0s and 1s that yields plenty of transitions. So the clock can be recovered.
- At STS-N rates, each frame can hold multiple lower rate frames
 - For example, 3 STS-1 frames fits exactly into an STS-3c frame.
 - The bytes are interleaved giving even spacing. At STS-3 rates an STS-1 frame still arrives at STS-1 rate.
 - Frames are concatenated hence the "c".
 - AN STS-12 frame might be:
 - 4 * STS-3c, 3 * STS-1 + 3 * STS-3c, etc.

 This overall gives extreme scalability to higher and higher rates.

09/12/2014

COMP28411 Link Layer

18

The Real World is Never Synchronous!

- In real networks not everything is exactly synchronized.
 - Or at exactly the wanted (light) frequency.
- This could cause out of synchronization frames at different rates to be cached until the start or end of the next frame.
- Across a network with many junctions the extra delays and memory/hardware costs would be significant.
- So SONET uses offset pointers (in the overhead) to allow multiplexed data to start and end away from frame boundaries and to overlap from one frame to the next.

09/12/2014 COMP28411 Link Layer 19

Framing for Wireless

- Wireless networks much more open to noise and interference.
 - · Need good error detection.
 - Error correction without re-transmission?
 - Fast re-transmission detect duplicates etc. like TCP.

• I want to know what others are doing – when they will shut-up so I can use the medium.

09/12/2014 COMP28411 Link Layer

Explaining Some of the Differences for IEEE 802.11 Wireless Frames - 2

- Protection: CRC32 is not bad + strong physical layer error protection.
 - Forward Error Control (FEC) convolution + Viterbi decoder to protect data.
 - This is one parameter that is varied to provide different data rates.
 - The other is usually the type of modulation but lots of other ways are possible.
- Also has small control frames for ACK + to negotiate use of medium (RequestToSend/ClearToSend).
- Most frames have 2 addresses source + destination. 3 addresses used for bridging through an Access Point.
- 4 address frames introduced to support wireless mesh.
 - Destination, source, intermediate transmitter, intermediate receiver.

09/12/2014 COMP28411 Link Layer

23

Encoding Bits

- Signals travel through the physical medium between hosts.
 - For example, as Voltages Analogue.
- Bits must be encoded into signals by the sender's network adapter and then decoded by the receiver's network adapter.
- We can consider a mapping:
 - 1 to a HIGH value.
 0 to a LOW value.
 voltage, current, phase, frequency
 - This is called Non Return to Zero (NRZ)

• Where is the clock? How does the receiver work out where transitions take place, by how much the voltage changes at transition?

09/12/2014

COMP28411 Link Layer

Manchester Encoding

• Used in IEEE 802.3 Ethernet

• Sends the XOR of the NRZ signal and the clock.

- Now zero and one are encoded by transitions leading to a transition per bit or per complete clock cycle.
- But, the bit rate is now twice the baud rate!
 - Or the clock must be twice the bit rate NRZ and NRZI could go twice as fast if it is possible to keep up. But need RLL.
 - So only 50% as efficient.
 - But, much easier clock recovery.

Much less bothered about synchronization pattern. Likely to have strings of same adjacent digits though.

09/12/2014

COMP28411 Link Layer

37

4B/5B

- Used in 100BASE-TX Cat 5 Ethernet.
- Insert extra bits to break up strings of 1s and 0s.
 - Max one leading zero
 - · Max 2 trailing zeros
 - Therefore no pair of codes has a string of more than three 0s in a line.
 - Sent using NRZI so 1s always have a transition.
 - 80% efficiency compared 50% for Manchester encoding.
 - Space for 32 codes uses 16 = spares for
 - 11111 == idle
 - 00000 == dead
 - 00100 == halt
 - · 6 for control signals if needed
 - 7 unusable as break 0s in line rules.
- Several other variants of this idea exist.

4 Bit Data Symbol	5 Bit Code
0000	11110
0001	01001
0010	10100
0011	10101
0100	01010
0101	01011
0110	01110
0111	01111
1000	10010
1001	10011
1010	10110
1011	10111
1100	11010
1101	11011
1110	11100
1111	11101

09/12/2014

COMP28411 Link Layer

64-QAM

6 bits/symbol

64 QAM

- Modulation is mainly an EE problem!
 - But we must be a little aware of it for wireless and new wired high speed technologies.

09/12/2014

COMP28411 Link Layer

47

Maximum Data Rates

- In 1927 Nyquist determined that the maximum number of pulses a channel can carry is:
 - No. symbols per second $f_{pulse} = 2 * Bandwidth B_{Hz}$
- Hartley then formulated a rule for the gross bit rate.
 - Where M is a message or symbol.
 - $M_{Pulses} = 1 + \frac{A}{\Delta V}$ • Depends on signal amplitude [-A ... + A] Volts.
 - Sensitivity/precision of the receiver $\pm -\Delta V$ Volts.
 - The information per pulse in bits per pulse/symbol is then the base 2 logarithm, to derive the line rate $R_{\rm bps}$. $R_{bps} = f_{pulse} \log_2(M)$
 - To allow for Analog Bandwidth vs digital R values this is converted to a proportion.

$$R_{bps} \le 2B \log_2(M)$$

Shannon then introduced the idea of noisy channels where there is some wanted signal and some unwanted signal.

09/12/2014

COMP28411 Link Layer

Shannon-Hartley theorem

- With channel capacity C and data rate R:
 - If R < C there are codes for transmitting information where the probability of error at a receiver is arbitrarily small.
 - Below rate C we can find codes that will work.
 - If R > C then the probability of errors increases as R increases.
 - Cannot guarantee correct transmission.
 - We know of codes that come very close to the Shannon limit Turbo codes, Reed Solomon codes
- In channel with AWGN and B_{Hz} bandwidth:
 - Additive White Gaussian Noise = wideband with a flat power spectral density. Close to real world.

$$C = B \log_2 \left(1 + \frac{\text{Signal Power}}{\text{Noise Power}} \right)$$

Here: Signal and Noise power are measured in Watts giving a power ratio. In engineering often Decibels (dB) are used for ratios. If given dB a conversion will be needed!

09/12/2014

COMP28411 Wireless Introduction

Some Useful Info for Calculations

- X_{dB} represents the ratio between the measured value X and a reference X₀ expressed in Decibels. For example 30dB is a power ratio $10^{30/10} = 10^3 = 1000$.
- Decibels are the <u>unit of choice for power</u> in many communications applications as the numbers are easier than Watts for very small or big values.
- Maths Reminder:
 - Converting to logs in Base N

 $\log_N(X) = \log(X)/\log(N)$ so: $\log 2(X) = \log(X)/\log(2)$

Convert back using xy e.g. 10^{y} for \log_{10} or 2^{y} for log₂. Also use **Natural Logs to base** "e".

09/12/2014

COMP28411 Wireless Introduction

Shannon-Hartley Limit Examples

• Old telephones (POTS) have an approx 4Khz bandwidth and a typical SNR of 20dB (= 100). So:

$$C = 4000\log_2(101) = 26,632 = 26.6Kbps$$

 A radio link needs 200Mbps in less than 20MHz bandwidth so we need SNR?

$$\log_2(1+S/N) = \frac{C}{B} = \frac{200 \times 10^6}{20 \times 10^6} = 10$$

1 + S/N = 1024 SO $\frac{S}{N} = 1023$ or 30dB

09/12/2014

COMP28411 Wireless Introduction

51

Building Block - Twisted Pair

Categories of Guided Media

- Twisted pair cables
 - Unshielded (UTP)
 - Shielded (STP) more expensive but less susceptible to noise

- Two insulated wires twisted around each other to reduce the effects of outside interference (affects both conductors evenly); Each pair consists of two wires which provides a signal path and a return path.
- Typically two or four pairs contained in a single cable;
- Unshielded or shielded forms (individual pairs may also have separate shields);
- Shielded cable was introduced for use with data transmission (unshielded for voice) but good quality unshielded twisted pair now being used for LANs;
- Relatively the cheapest and the most popular of all media.

09/12/2014

COMP28411 Link Layer

Summary

- Today we have talked about:
 - Link Layer Framing
 - · Byte oriented
 - Point to Point (PPP)
 - Byte Counting (sort of)
 - IEEE 802.11 (WiFi) not strictly byte counting but similar example
 - · Bit Oriented
 - High-Level Data Link Control (HDLC)
 - · Clock Oriented
 - Synchronous Optical Network (SONET)
 - Framing for ADSL and other Link Layer Carrier Connections
 - Some differences between wired and wireless frames.
 - Encoding binary values for transmission
 - Modulation Conversion of digital to analogue symbol representations.
- That's All Folks!

09/12/2014 COMP28411 Link Layer

Questions?

- Suggest a high quality frame preamble sequence for an:
 - NRZ
 - NRZI

coded frame header?

- Why is NRZI generally better for clock recovery than NRZ?
 - When does NRZI fail badly?
- Which 4B/5B 4 bit data symbols provide the best clock synchronization?
- A 64 QAM system sends frames at 72Mbps. What is the baud rate of this system?
 - What would the baud rate if:16 QAM, QPSK or BPSK had been used instead of 64 QAM?

09/12/2014

COMP28411 Link Layer