<u>SamataroKami</u>

Destacado: [PS4][MX] Unas competitivas en la tarde | #RocketLeague

00:21:19

Empaquetamiento/Corte óptimo de objetos suaves

Defensa de anteproyecto

Luis Ángel Gutiérrez Rodríguez

Universidad Autónoma de Nuevo León San Nicolás de los Garza, México

Mayo 30, 2022

Contenido

- Introducción
- 2 Antecedentes
- Metodología
- 4 Resultados
- 6 Resultados

Introducción

Resumen

Los problemas de empaquetamiento, también conocidos como *Cutting and Packing Problems*, son aquellos donde se tienen dos conjuntos de entidades, los **contenedores** y los **objetos**. Todos los objetos siempre deben quedar empaquetados en la menor cantidad de contenedores disponibles.

Introducción

Objetos suaves

Un objeto suave es aquel cuyas propiedades físicas son fijas, pero su forma y tamaño pueden modificarse dentro de ciertos límites.

Antecedentes

El empaquetamiento de objetos convexos se ha abordado de maneras diferentes en la literatura. En ellas podemos encontrar el empaguetamiento aleatorio de partículas con forma de tetraedro [Zhao et al., 2015]; el empaquetamiento en columnas de esferas y elipses en contenedores cilíndricos [Zhao et al., 2020, Romanova et al., 2020]; Entre otros.

Figura: Ejemplo de empaquetamiento en cilindros y rectángulos

Antecedentes

En la literatura podemos observar una clara tendencia por resolver estos problemas utilizando experimentación empírica, o utilizando el método de elementos discretos (DEM en inglés). El DEM consiste en replicar la experimentación empírica en un simulador de físicas.

Figura: Diferentes tipos de excentricidades

Metodología

En este proyecto se empaguetarán los objetos más sencillos de cada dimensión geométrica, triángulos y tetraedros respectivamente para la 2D y 3D. Posteriormente se evaluará continuar con objetos más complejos descomponiéndolos con la triangulación de Delaunay [Rajan, 1994].

Figura: Triangulación de Delauney

Metodología

Tomaremos en cuenta que cada triángulo es una composición de tres vértices y estos vértices a su vez se componen en coordenadas x y y, convexas al contenedor. Para evitar la superposición de los triángulos implementaremos el lema de Farkas.

Conjuntos y Parámetros

Sea ρ una variable que determina la excentricidad de los triángulos Sea T_i un conjunto de M Triángulos equiláteros. $\forall i \in M$ Sea $T_i = \{X_i^j\}$ $\forall i \in M, \forall j \in \{1,2,3\}$

Variables de decisión

 X_i^j es el vértice j del triángulo i Z es el tamaño del lado de un contenedor cuadrado $\alpha_{k,p}$ es el componente más grande de la multiplicación escalar de los componentes de los vértices $\forall k>p\in M$ $\beta_{k,p}$ es el componente más pequeño de la multiplicación escalar de los componentes de los vértices $\forall k>p\in M$ $v_{k,p}$ es un vector con componentes x y y, que sirve para normalizar los triángulos

Función Objetivo

 $mín Z^2$

Restricciones:

Contenedor

$$0 <= x_i^j <= Z \quad \forall i \in T, \forall j \in \{1, 2, 3\}$$

$$0 <= y_i^j <= Z \quad \forall i \in T, \forall j \in \{1, 2, 3\}$$

Conservación de área de los triángulos

Sea
$$a_i = ||X_i^1 - X_i^2|| \quad \forall i \in T$$

Sea $b_1 = ||X_i^1 - X_i^3|| \quad \forall i \in T$
Sea $c_1 = ||X_i^3 - X_i^2|| \quad \forall i \in T$
Sea $s_i = (a_i + b_1 + c_1)/2 \quad \forall i \in T$
 $\sqrt{(s_i) * (s_i - a_i) * (s_i - b_i) * (s_i - c_i)} = \sqrt{3}/4 \quad \forall i \in M$

Excentricidad de triángulos

$$(1 - \rho) <= ||X_i^1 - X_i^2|| <= (1 + \rho) \quad \forall i \in T$$

$$(1 - \rho) <= ||X_i^1 - X_i^3|| <= (1 + \rho) \quad \forall i \in T$$

$$(1 - \rho) <= ||X_i^3 - X_i^2|| <= (1 + \rho) \quad \forall i \in T$$

No superposición de los triángulos

$$\begin{array}{ll} \alpha_{k,p} + \beta_{k,p} <= 0 & \forall k,p \in T, k > p \\ \alpha_{k,p} >= v_{k,p} * X_{\hat{\gamma}} & \forall k,p \in T_k > p, \quad \forall j \in \{1,2,3\} \\ -\beta_{k,p} <= v_{k,p} * X_{\hat{\gamma}} & \forall k,p \in T_k > p, \quad \forall j \in \{1,2,3\} \\ ||v_{k,p}|| = 1 & \forall k,p \in T, k > p \end{array}$$

Resultados

Figura: baron solver T2

Figura: lindo solver T2

Figura: knitro solver T2

Resultados

Figura: baron solver T3

Figura: lindo solver T3

Figura: knitro solver T3

Productos que se generarán

- Ampliación y modificación de los modelos que más se adapten a nuestra problemática
- Generación o modificación de instancias adecuadas al problema
- Presentar en un congreso nacional o internacional los resultados obtenidos
- Publicar al menos dos artículos científicos en revistas JCR de alto impacto relacionadas con la optimización matemática
- Generar una tesis doctoral sobre el tema de investigación

Referencias I

- Rajan, V. T. (1994).

 Optimality of the delaunay triangulation in r d.

 Discrete & Computational Geometry, 12(2):189–202.
- Romanova, T., Litvinchev, I., and Pankratov, A. (2020). Packing ellipsoids in an optimized cylinder. *European Journal of Operational Research*, 285(2):429–443.
- Zhao, B., An, X., Zhao, H., Gou, D., Shen, L., and Sun, X. (2020).

Dem simulation on random packings of binary tetrahedron-sphere mixtures.

Powder Technology, 361:160-170.

Referencias II

Zhao, S., Zhou, X., Liu, W., and Lai, C. (2015).

Random packing of tetrahedral particles using the polyhedral discrete element method.

Particuology, 23:109-117.