UC Berkeley Stat 88 Fall 2016

Homework 8

Due on Gradescope 11/22/2016 at 4:00PM (Before Lecture)

- 1. <u>Lost order:</u> Let \boldsymbol{x} be a list of three numbers $\{1,3,5\}$. Let \boldsymbol{y} be a list of another three numbers $\{2,4,6\}$, but suppose that you lost the order of these three numbers, so you're not sure whether \boldsymbol{y} is $\{4,2,6\}$, or $\{6,4,2\}$, etc.
 - (a) What is the arrangement of numbers in y that has maximum correlation with x?
 - (b) What is the arrangement of numbers in y that has minimum correlation with x?
- 2. <u>Variance of a sum:</u> We have two lists of numbers \boldsymbol{x} and \boldsymbol{y} each with n elements. \boldsymbol{x} has average $\bar{\boldsymbol{x}}$ and standard deviation $s_{\boldsymbol{y}}$. \boldsymbol{x} and \boldsymbol{y} have covariance $Cov(\boldsymbol{x},\boldsymbol{y})$.

We construct a new list z with n elements, whose entries are determined by $z_i = x_i + y_i$.

- (a) Write the standard deviation of z in terms of \bar{x} , \bar{y} , s_x , s_y , and Cov(x, y). (Hint: Use the computational forms of the variance and covariance).
- (b) How does correlation between the lists x and y affect the variance of the list z?
- 3. Freebie from polling notebook: In the polling example we discussed, we had two lists with length \overline{N} composed of 1's and 0's: c of candidate preferences for each person in the population, and t of voter turnout status. We said that the vote share for the candidate of interest was given by:

$$\mu_v = \frac{\sum_{i=1}^{N} t_i c_i}{\sum_{i=1}^{N} c_i},$$

but because it is difficult to measure t_i for each person, we wanted to figure out whether we could instead measure population candidate preference instead:

$$\mu_c = \frac{1}{N} \sum_{i=1}^{N} c_i.$$

Prove that if t_i and c_i have correlation 0, then $\mu_c = \mu_v$.