

Université Internationale de Casablanca

Cours exposé

ELECTRONIQUE NUMERIQUE

email: nasser_baghdad @ yahoo.fr

ELECTRONIQUE NUMERIQUE

Sommaire

Chapitre I: Technologies des circuits logiques: TTL et CMOS

Chapitre II : Les bases de numération

Chapitre III: Les portes logiques

Chapitre IV: Les fonctions binaires

Chapitre V : Les circuits combinatoires

ELECTRONIQUE NUMERIQUE

Chapitre. VI

Les circuits séquentiels

- I. Les bascules
- II. Les circuits de comptage : compteurs/décompteurs
- **III.** Les registres
- IV. Les mémoires

Système combinatoire - Système séquentiel : Rappel

Les bascules

- 1°) Les bascules RS
- 2°) Les bascules JK
- 3°) Les bascules D
- 4°) Les bascules T

Définition

- ► Une bascule est une micro structure séquentielle qui comprend une ou plusieurs entrées et 2 sorties complémentaires.
- ► On l'appelle aussi élément mémoire ou multivibrateur bistable.
- ► On distingue plusieurs types de bascule.
 - Les bascules RS
 - Les bascules JK
 - Les bascules D
 - Les bascules T

Exemple: bascule D

1°) Les bascules RS

a. Bascule RS asynchrone

Symbole de la bascule RS asynchrone : version n°1

- S (Set) est l'entrée de mise à 1.
- R (Reset) est l'entrée de mise à 0 ou d'effacement de la mémoire.
- La sortie Q donne l'information mémorisée.
- La sortie Q correspond au complément de Q.

S	R	Q _t	$\overline{Q_t}$	Etat des sorties
0	0	Q _{t-1}	$\overline{\mathbf{Q}_{t-1}}$	Mémoire
0	1	0	1	Mise à 0 (MAZ) ou armé
1	0	1	0	Mise à 1 (MAU) ou réarmé
1	1	X	X	Interdit ou irrégulier

Équation de fonctionnement :

$$Q_{t} = S + \overline{R} \cdot Q_{t-1}$$

L'implémentation utilisant les portes NOR

Table de vérité optimisée

S	R	Qt	Qt	Etat des sorties
0	0	Qt-1	Qt-1	Mémoire
0	1	0	1	Mise à 0 (MAZ)
				Reset ou armé
1	0	1	0	Mise à 1 (MAU)
				Set ou réarmé
1	1	0	0	Interdit ou irrégulier

$$Q_{t} = \overline{R} \cdot (S + Q_{t-1})$$

L'implémentation utilisant les portes NAND

Table de vérité optimisée

S	R	Qt	Qt	Etat des sorties
0	0	Qt-1	Qt-1	Mémoire
0	1	0	1	Mise à 0 (MAZ)
				Reset ou armé
1	0	1	0	Mise à 1 (MAU)
				Set ou réarmé
1	1	1	1	Interdit ou irrégulier

$$Q_t = S + \overline{R} \cdot Q_{t-1}$$

Table de vérité

S	R	Qt-1	Qt	Qt	Etat de la sortie
0	0	0	0	1	Mémoire
0	0	1	1	0	Mémoire
0	1	0	0	1	Mise à 0
0	1	1	0	1	Mise à 0
1	0	0	1	0	Mise à 1
1	0	1	1	0	Mise à 1
1	1	0	0 💥	0 ** 1	NOR Interdit NAND
1	1	1	0 ** 1	0 **	NOR Interdit NAND

Équation de fonctionnement :

$$Q_t = S + \overline{R} \cdot Q_{t-1}$$

Symbole de la bascule RS asynchrone : version n°2

- R (Set) est l'entrée de mise à 1 ou mémorisation de l'information reçue.
- S (Reset) est l'entrée de mise à 0 ou d'effacement de la mémoire.
- La sortie Q donne l'information mémorisée.
- La sortie Q correspond au complément de Q.

S	R	Qt	Qt	Etat des sorties
0	0	X	X	Interdit ou irrégulier
0	1	1	0	Mise à 1 (MAU) Set ou réarmé
1	0	0	1	Mise à 0 (MAZ) Reset ou armé
1	1	Qt-1	Qt-1	Mémoire

L'implémentation utilisant les portes NAND

L'implémentation utilisant les portes NOR

Table de vérité optimisée

S	R	Qt	Qt	Etat des sorties
0	0	1	1	Interdit ou irrégulier
0	1	1	0	Mise à 1 (MAU) Set ou réarmé
1	0	0	1	Mise à 0 (MAZ) Reset ou armé
1	1	Qt-1	Qt-1	Mémoire

Table de vérité optimisée

S	R	Qt	Qt	Etat des sorties
0	0	0	0	Interdit ou irrégulier
0	1	1	0	Mise à 1 (MAU) Set ou réarmé
1	0	0	1	Mise à 0 (MAZ) Reset ou armé
1	1	Qt-1	Qt-1	Mémoire

Diagramme des temps (ou chronogramme) : initialement Q = 0

Diagramme des temps (ou chronogramme) : initialement Q = 0

au: pose un problème d'utilisation de ce type de bascule dans les systèmes asynchrones

b. Bascule RS synchrone

- ► Une bascule RS synchrone est une bascule qui réagit sur l'ordre d'un signal d'horloge.
- ► C'est généralement un train d'onde carré ou rectangulaire noté H, CK, CLK. Il comporte deux fronts : un front montant et un front descendant.

Remarque:

- L'horloge est généralement un signal carré.
- L'horloge peut agir soit avec son niveau (0 ou 1) soit avec son front (montant ou descendant).
- Dans le premier cas, on dit que la bascule est sensible sur le <u>niveau</u> (level sensitive).
- Dans le deuxième cas, on dit que la bascule est sensible sur le front (edge sensitive).

Les différentes configurations :

■ Déclenchement statique

Entrée horloge active sur le niveau bas

Entrée horloge active sur le niveau haut

■ Déclenchement dynamique

Entrée horloge active sur front descendant

Entrée horloge active sur front montant

Exemple de déclenchement statique

- ▶ R et S sont des entées synchrones car elles dépendent de l'hrloge H.
- ► H = 0 verrouille la bascule (mode bloqué) et le changement d'état n'est autorisé que pour H = 1.

Table de vérité

Н	S	R	Qt	Qt	Etat de RS
0	x	x	Qt-1	Qt-1	Mémoire
\downarrow	x	x	Qt-1	Qt-1	Mémoire
\uparrow	х	х	Qt-1	Qt-1	Mémoire
1	0	0	Qt-1	Qt-1	Mémoire
1	0	1	0	1	MAZ
1	1	0	1	0	MAU
1	1	1	1	1	Interdit

Bascule sensible sur niveau le niveau haut (1)

Verrou RS avec porte NOR

 $R1, R2 = 1 \text{ k}\Omega$

R3, $R4 = 47 \text{ k}\Omega$.

Table de vérité

Н	S	R	Qt	Qt	Etat de RS
1	x	х	Qt-1	Qt-1	Mémoire
\downarrow	x	х	Qt-1	Qt-1	Mémoire
\uparrow	х	х	Qt-1	Qt-1	Mémoire
0	0	0	Qt-1	Qt-1	Mémoire
0	0	1	0	1	MAZ
0	1	0	1	0	MAU
0	1	1	1	1	Interdit

Bascule sensible sur niveau le niveau bas (0)

Table de vérité

Н	S	R	Qt	Qt	Etat de RS
0	x	x	Qt-1	Qt-1	Mémoire
1	x	x	Qt-1	Qt-1	Mémoire
\downarrow	x	х	Qt-1	Qt-1	Mémoire
↑	0	0	Qt-1	Qt-1	Mémoire
↑	0	1	0	1	MAZ
<u></u>	1	0	1	0	MAU
↑	1	1	1	1	Interdit

Bascule sensible sur le front montant (↑)

Table de vérité

Н	S	R	Qt	Qt	Etat de RS
0	x	x	Qt-1	Qt-1	Mémoire
1	x	x	Qt-1	Qt-1	Mémoire
↑	х	х	Qt-1	Qt-1	Mémoire
\downarrow	0	0	Qt-1	Qt-1	Mémoire
\downarrow	0	1	0	1	MAZ
\downarrow	1	0	1	0	MAU
\downarrow	1	1	1	1	Interdit

Bascule sensible sur le front descendant (\downarrow)

2°) Les bascules JK

- ► Puisque les lettres J et K étaient peu utilisées dans les systèmes électroniques il a été décidé d'utiliser ces lettres comme entrées "set" et "reset ".
- ▶ pour un système utilisant plusieurs bascules ce sont les indices qui permettent de les distinguer les unes des autres.

a. Bascule JK asynchrone

Symbole de la bascule JK asynchrone

- J (Set) est l'entrée de mise à 1.
- K (Reset) est l'entrée de mise à 0 ou d'effacement de la mémoire.
- La sortie Q donne à l'information mémorisée.
- La sortie Q correspond au complément de Q.

L'implémentation utilisant les portes NAND

Table de vérité optimisée

J	K	Qt	Qt	Etat des sorties
0	0	Qt-1	Qt-1	Mémoire
0	1	0	1	Mise à 0 (MAZ) ou armé
1	0	1	0	Mise à 1 (MAU) ou réarmé
1	1	Qt-1	Qt-1	Toggle ou basculement

Équation de fonctionnement:

$$Q_t = J \cdot \overline{Q_{t-1}} + \overline{K} \cdot Q_{t-1}$$

Table de vérité détaillée

J	К	Qt-1	Qt	Qt	Etat de la sortie
0	0	0	0	1	Mémoire
0	0	1	1	0	Mémoire
0	1	0	0	1	Mise à 0
0	1	1	0	1	Mise à 0
1	0	0	1	0	Mise à 1
1	0	1	1	0	Mise à 1
1	1	0	1	0	Toggle
1	1	1	0	1	Toggle

Équation de fonctionnement :

$$Q_t = J \cdot \overline{Q_{t-1}} + \overline{K} \cdot Q_{t-1}$$

Diagramme des temps (ou chronogramme) : initialement Q = 0

Diagramme des temps (ou chronogramme) : initialement Q = 0

 τ : pose un problème d'utilisation de ce type de bascule dans les systèmes asynchrones

b. Bascule JK synchrone

Les différentes configurations :

■ Déclenchement statique

Entrée horloge active sur le niveau bas

Entrée horloge active sur le niveau haut

■ Déclenchement dynamique

Entrée horloge active sur front descendant

Entrée horloge active sur front montant

Table de vérité

Н	J	K	Qt	Qt	État de JK
0	x	x	Qt-1	Qt-1	Mémorise
\downarrow	x	х	Qt-1	Qt-1	Mémorise
↑	x	х	Qt-1	Qt-1	Mémorise
1	0	0	Qt-1	Qt-1	Mémoire
1	0	1	0	1	MAZ
1	1	0	1	0	MAU
1	1	1	Qt-1	Qt-1	Toggle

Bascule se déclenchant sur niveau le niveau haut (1)

Diagramme des temps (ou chronogramme) : initialement Q = 0

De quel type de déclenchement s'agit-il?

Table de vérité

Н	J	K	Qt	Qt	État de JK
1	x	x	Qt-1	Qt-1	Mémorise
\downarrow	x	х	Qt-1	Qt-1	Mémorise
1	x	х	Qt-1	Qt-1	Mémorise
0	0	0	Qt-1	Qt-1	Mémoire
0	0	1	0	1	MAZ
0	1	0	1	0	MAU
0	1	1	Qt-1	Qt-1	Toggle

Bascule se déclenchant sur niveau le niveau bas (0)

Table de vérité

Н	J	K	Qt	Qt	État de JK
0	x	x	Qt-1	Qt-1	Mémorise
1	x	х	Qt-1	Qt-1	Mémorise
↑	x	х	Qt-1	Qt-1	Mémorise
\downarrow	0	0	Qt-1	Qt-1	Mémoire
\downarrow	0	1	0	1	MAZ
\downarrow	1	0	1	0	MAU
\downarrow	1	1	Qt-1	Qt-1	Toggle

Bascule se déclenchant sur niveau front descendant (↓)

Table de vérité

Н	J	K	Qt	Qt	État de JK
0	x	x	Qt-1	Qt-1	Mémorise
1	x	х	Qt-1	Qt-1	Mémorise
	x	х	Qt-1	Qt-1	Mémorise
↑	0	0	Qt-1	Qt-1	Mémoire
↑	0	1	0	1	MAZ
<u></u>	1	0	1	0	MAU
<u></u>	1	1	Qt-1	Qt-1	Toggle

Bascule se déclenchant sur niveau front montant (↑)

c. Bascule JK synchrone avec des entrées asynchrones prioritaires

Version n° 1 : celle du banc numérique

Table de vérité

Preset	Clear	Q _t	Etat
ou	ou		
S	R		
0	0	Q _{t-1}	Bascule bloquée
			« ambigüité »
0	1	1	RAU
1	0	0	RAZ
1	1	\downarrow	JKH

Preset et clear sont des entrées prioritaires asynchrones

0 prédominant le 1

Version n° 2

Table de vérité

Preset ou S	Clear ou R	Qt	Etat
1	1	Qt- 1	Bascule bloquée « ambigüité »
1	0	1	MAU ou RAU
0	1	0	MAZ ou RAZ
0	0	\downarrow	JKH

Preset et clear sont des entrées prioritaires asynchrones

1 prédominant le 0

Cas particulier: Les bascules JK maitres - esclaves

- ► A l'état haut de l'Horloge les informations passent dans le maître. L'esclave garde toujours en mémoire les états précédents qui sont disponibles en sortie.
- Les informations seront transmises du maître dans l'esclave au niveau zéro de l'Horloge.
- Nous avons donc deux états:
 - Niveau 1 de l'Horloge : Enregistrement par le maître.
 - Niveau 0 de l'Horloge : Affichage par l'esclave.

BASCULE JK MAITRE - ESCLAVE

Intérêt de la bascule JK M/E

En cas de de conflit : front de l'horloge coïncidant avec le changement d'état des entrées synchrones J et K, on considère une commande à t⁻ « état précédent ».

3°) Les bascules D

a. Bascule D asynchrone

C'est une bascule délai (delay) qui recopie.

L'implémentation utilisant les portes NOR

L'implémentation utilisant les portes NAND

Technologie: NOR

Tec	hno	logie	: N	AND
		iogic		

S	R	Qt	Qt	Etat des sorties
0	0	Qt-1	Qt-1	Mémoire
0	1	0	1	Mise à 0 (MAZ)
				ou armé
1	0	1	0	Mise à 1 (MAU)
				ou réarmé
1	1	0	0	Interdit ou irrégulier

S	R	Qt	Qt	Etat des sorties
0	0	Qt-1	Qt-1	Mémoire
0	1	0	1	Mise à 0 (MAZ) ou armé
1	0	1	0	Mise à 1 (MAU) ou réarmé
1	1	1	1	Interdit ou irrégulier

Table de vérité

D	Q	Etat de la sortie
0	0	Recopie
1	1	Recopie

Équation de fonctionnement :

$$D = S = \overline{R} = Q$$

Diagramme des temps (ou chronogramme) : initialement Q = 0

b. Bascule D synchrone

► Réalisation à partir de RSH

L'implémentation utilisant les portes NAND

$$D = S = \overline{R}$$

Les différentes configurations :

Entrée horloge active au niveau bas

Entrée horloge active au niveau haut

■ Déclenchement dynamique

Entrée horloge active sur front descendant

Entrée horloge active sur front montant

Table de vérité

Н	D	Qt	Etat de D
0	X	Qt-1	Mémorisation
\downarrow	X	Qt-1	Mémorisation
↑	x	Qt-1	Mémorisation
1	0	0	Recopie
1	1	1	Recopie

Bascule latch ou verrou

Déclenchement sur le niveau haut (1)

Table de vérité

Н	D	Qt	Etat de D
1	x	Qt-1	Mémorisation
\downarrow	x	Qt-1	Mémorisation
\uparrow	x	Qt-1	Mémorisation
0	0	0	Recopie
0	1	1	Recopie

Bascule latch ou verrou

Déclenchement sur le niveau bas (0)

GÉNIE INFORMATIQUE ECOLE D'INGENIERIE - 1^{ère} Année

Chapitre VI: Les circuits séquentiels

Table de vérité

Н	D	Qt	Etat de D
0	X	Qt-1	Mémorisation
1	х	Qt-1	Mémorisation
1	х	Qt-1	Mémorisation
\downarrow	0	0	Recopie
\downarrow	1	1	Recopie

Déclenchement sur le front descendant (\ \)

Table de vérité

Н	D	Qt	Etat de D
1	x	Qt-1	Mémorisation
\downarrow	х	Qt-1	Mémorisation
1	х	Qt-1	Mémorisation
<u></u>	0	0	Recopie
↑	1	1	Recopie

Déclenchement sur le niveau bas (↑)

Diagramme des temps (ou chronogramme) : initialement Q = 0

Chronogramme: initialement Q = 0

Exercices

Chronogramme : initialement Q = 0

4°) Les bascules T

a. Bascule T asynchrone

► C'est une bascule (Trigger) qui commute.

► Réalisation à partir de la bascule JK asynchrone

Basculement et Mémorisation

M T....

T = J = K = 1 (Toggle)

► Réalisation à partir de la bascule RS asynchrone

S	R	Qt	Qt	État des sorties
0	1	1	0	Toggle
1	0	0	1	Toggle

Remarque:

$$T = S = \overline{R}$$

► Réalisation pratique assez difficile car les états des sorties de Q et Q peuvent être contradictoires : la réaction externe de la bascule → prise en compte du temps de propagation interne

Réalisation à partir de la bascule D asynchrone

D	Qt	-Qt	État des sorties
0	1	0	Toggle
1	0	1	Toggle

b. Bascule T synchrone

Réalisation à partir de la bascule JKH

н	J	K	Qt	t	Qt	État des sorties
\downarrow	0	0	Qt-	1	Qt-1	Mémorisation
\downarrow	1	1	Qt-	1	Qt-1	Toggle
0	X	х	Qt-	1	Qt-1	Mémorisation
1	X	х	Qt-	1	Qt-1	Mémorisation
↑	X	х	Qt-	1	Qt-1	Mémorisation

► Réalisation à partir de la bascule RSH

					4
Н	S	R	Qt	Qt	État des sorties
\downarrow	0	1	1	0	Toggle
\downarrow	1	0	0	1	Toggle
0	X	x	Qt-1	Qt-1	Mémorisation
1	X	х	Qt-1	Qt-1	Mémorisation
↑	X	x	Qt-1	Qt-1	Mémorisation

► Réalisation à partir de la bascule DH

Н	D	Qt	Qt	État des sorties
\downarrow	0	1	0	Toggle
\downarrow	1	0	1	Toggle
0	X	Qt-1	Qt-1	Mémorisation
1	X	Qt-1	Qt-1	Mémorisation
\uparrow	X	Qt-1	Qt-1	Mémorisation

