15-455: UCT K. Sutner

Assignment 6 Due: March 25, 2022.

1. Small Space (20)

Background

Write $bin(x) \in \mathbf{2}^*$ for the binary expansion of $x \in \mathbb{N}$. For simplicity assume LSD first (though the claim also holds for MSD first). Define the languages

$$K = \{ 0^n 1^n \mid n \ge 0 \} \subseteq \mathbf{2}^*$$

$$L = \{ \sin(0) \# \sin(1) \# \dots \# \sin(n) \mid n \ge 0 \} \subseteq \{0, 1, \#\}^*$$

For example 0#1#01#11#001#101 is a string in L.

Recall that $\mathrm{SPACE}(o(\log\log n))$ is already $\mathrm{SPACE}(1)$, but that is as far as one can go: with $\log\log n$ space we can do something "useful" that a finite state machine cannot do.

Task

- A. Show that the context-free language K is in \mathbb{L} .
- B. Show that L is not regular.
- C. Show that L is in SPACE($\log \log n$).

2. Regular Expression Equivalence (20)

Background

Two regular expressions α and β are equivalent if they denote the same language: $\mathcal{L}(\alpha) = \mathcal{L}(\beta)$. Some equivalences are trivial, say, $\alpha_1 + \alpha_2$ is equivalent to $\alpha_2 + \alpha_1$, but in general the algebra of regular expressions is fairly complicated (thanks to the Kleene star operation), and it is difficult to check equivalence with algebraic methods. For example,

$$(\alpha^k)^*(\varepsilon + \alpha + \alpha^2 + \ldots + \alpha^{k-1}) = \alpha^*$$

which is pretty wild from an algebraic perspective.

At any rate, one would like to understand the complexity of the following decision problem:

Problem: Regular Expression Equivalence (REE)

Instance: Two regular expressions α and β .

Question: Are α and β equivalent?

Task

A. Describe a real algorithm to solve REE.

B. What is the time/space complexity of your algorithm?

C. Explain how to implement an equivalence test in PSPACE.

Comment

REE turns out to be PSPACE-complete (NP-complete for a single-letter alphabet), but we won't go there.

UCT HW 6 2 of 4

3. More Tilings (30)

Background

Recall the tiling problem from the previous homework: we discussed the pointed square tiling (PST) problem: can a $n \times n$ square can be tiled by a given set of tiles (with SW and NE corners fixed)? This problem turns out to be \mathbb{NP} -complete.

Define the pointed rectangular tiling (PRT) problem as follows: given a "width" n, is there a "height" m so that the $n \times m$ rectangle can be tiled (again assuming a given SW and NE tile). So the input is the tile set, the 2 corner tiles, and 0^n ; by contrast, m is not part of the input.

Task

- A. Show that the pointed rectangle tiling problem is in PSPACE.
- B. Show that the pointed rectangle tiling problem is PSPACE-hard.

Comment

There is no need to repeat all the details of the old PST construction, just explain what the essential differences are in this version of the problem.

UCT HW 6 3 of 4

4. CSL Emptiness (30)

Background

Membership in a CSL L is trivially decidable, but even the CSL-Emptiness problem (is $\mathcal{L}(G) = \emptyset$?) is already undecidable. This is slightly surprising, since one might be tempted to think that the argument for context-free grammars could somehow be lifted to the context-sensitive scenario.

Let \mathcal{M} be some arbitrary Turing machine.

Task

- A. Find a convenient (for part B) way to express computations of \mathcal{M} as strings over some alphabet.
- B. Show that the language of all accepting computations of \mathcal{M} is context-sensitive.
- C. Conclude that CSL-Emptiness is undecidable.

UCT HW 6 4 of 4