Theorem (Master Theorem)

Let $T: \mathbb{N} \longrightarrow \mathbb{R}^+$ be a function. Suppose that

$$T(n) = \begin{cases} 1 & \text{if } n = 1, \\ a \cdot T(n/b) + n^d & \text{if } n > 1, \end{cases}$$

where $a \ge 1$, b > 1 and $d \ge 0$.

- If $d > \log_b(a)$, then $T(n) = O(n^d)$.
- If $d = \log_b(a)$, then $T(n) = O(n^d \log(n))$.
- If $d < \log_b(a)$, then $T(n) = O(n^{\log_b(a)})$.

$$T(n) = 2T(n/2) + n^1$$

$$T(n) = 2T(n/2) + n^1$$

$$a = 2$$
, $b = 2$, $d = 1$

$$T(n) = 2T(n/2) + n^1$$

$$a = 2$$
, $b = 2$, $d = 1$

$$d = \log_b(a)$$

$$T(n) = 2T(n/2) + n^1$$

$$a = 2$$
, $b = 2$, $d = 1$

$$d = \log_b(a)$$

$$T(n) = O(n^1 \log(n)) = O(n \log(n))$$

$$T(n) = 2T(n/2) + n^1$$

$$a = 2$$
, $b = 2$, $d = 1$

$$d = \log_b(a)$$

$$T(n) = O(n^1 \log(n)) = O(n \log(n))$$

$$T(n) = 7T(n/2) + n^2$$

$$T(n) = 2T(n/2) + n^1$$

$$a = 2$$
, $b = 2$, $d = 1$

$$d = \log_b(a)$$

$$T(n) = O(n^1 \log(n)) = O(n \log(n))$$

$$T(n) = 7T(n/2) + n^2$$

$$a = 7, b = 2, d = 2$$

$$T(n) = 2T(n/2) + n^1$$

$$a = 2$$
, $b = 2$, $d = 1$

$$d = \log_b(a)$$

$$T(n) = O(n^1 \log(n)) = O(n \log(n))$$

$$T(n) = 7T(n/2) + n^2$$

$$a = 7$$
, $b = 2$, $d = 2$

$$d < \log_b(a)$$

$$T(n) = 2T(n/2) + n^1$$

$$a = 2$$
, $b = 2$, $d = 1$

$$d = \log_b(a)$$

$$T(n) = O(n^1 \log(n)) = O(n \log(n))$$

$$T(n) = 7T(n/2) + n^2$$

$$a = 7$$
, $b = 2$, $d = 2$

$$d < \log_b(a)$$

$$T(n) = O\left(n^{\log_2(7)}\right)$$

$$T(n) = 2T(n/2) + n^1$$

$$a = 2$$
, $b = 2$, $d = 1$

$$d = \log_b(a)$$

$$T(n) = O(n^1 \log(n)) = O(n \log(n))$$

Strassen:

$$T(n) = 7T(n/2) + n^2$$

$$a = 7$$
, $b = 2$, $d = 2$

$$d < \log_b(a)$$

$$T(n) = O\left(n^{\log_2(7)}\right)$$

Binary Search:

$$T(n) = T(n/2) + n^0$$

$$T(n) = 2T(n/2) + n^1$$

$$a = 2$$
, $b = 2$, $d = 1$

$$d = \log_b(a)$$

$$T(n) = O(n^1 \log(n)) = O(n \log(n))$$

Strassen:

$$T(n) = 7T(n/2) + n^2$$

$$a = 7$$
, $b = 2$, $d = 2$

$$d < \log_b(a)$$

$$T(n) = O\left(n^{\log_2(7)}\right)$$

Binary Search:

$$T(n) = T(n/2) + n^0$$

$$a = 1$$
, $b = 2$, $d = 0$

9/9

$$T(n) = 2T(n/2) + n^1$$

$$a = 2$$
, $b = 2$, $d = 1$

$$d = \log_b(a)$$

$$T(n) = O(n^1 \log(n)) = O(n \log(n))$$

$$T(n) = 7T(n/2) + n^2$$

$$a = 7$$
, $b = 2$, $d = 2$

$$d < \log_b(a)$$

$$T(n) = O\left(n^{\log_2(7)}\right)$$

$$T(n) = T(n/2) + n^0$$

$$a = 1$$
, $b = 2$, $d = 0$

$$d = \log_b(a)$$

$$T(n) = 2T(n/2) + n^1$$

$$a = 2$$
, $b = 2$, $d = 1$

$$d = \log_b(a)$$

$$T(n) = O(n^1 \log(n)) = O(n \log(n))$$

$$T(n) = 7T(n/2) + n^2$$

$$a = 7$$
, $b = 2$, $d = 2$

$$d < \log_b(a)$$

$$T(n) = O\left(n^{\log_2(7)}\right)$$

$$T(n) = T(n/2) + n^0$$

$$a = 1$$
, $b = 2$, $d = 0$

$$d = \log_b(a)$$

$$T(n) = O(n^0 \log(n)) = O(\log(n))$$

