Visual Saliency Based Image Quality Assessment

Project Presentation | EE698K | 16th April 2018

Gaurav Verma & Paridhi Maheshwari

Department of Electrical Engineering Indian Institute of Technology Kanpur {gverma, paridhi}@iitk.ac.in

 Visual Saliency: The distinct subjective perceptual quality which makes parts of an image stand out from their surroundings and immediately grab our attention.

 Visual Saliency: The distinct subjective perceptual quality which makes parts of an image stand out from their surroundings and immediately grab our attention.

• **Visual Saliency:** The distinct subjective perceptual quality which makes parts of an image stand out from their surroundings and immediately grab our attention.

 Visual Saliency: The distinct subjective perceptual quality which makes parts of an image stand out from their surroundings and immediately grab our attention.

- Spectral residual approach: analyze the log spectrum of an input image (Hou et al. [1])
- LSTM-based saliency attentive model (Cornia et al. [2])
- Generating saliency maps using a variant of pix2px (proposed)

Image Quality Assessment:

- One of the most fundamental and yet challenging problems
- IQA algorithms are designed to mimic the subjective judgements of humans
- PSNR/MSE do not correlate well with human's subjective fidelity rating
- Recently several sophisticated IQA models have been introduced (SSIM)

Image Quality Assessment:

- One of the most fundamental and yet challenging problems
- IQA algorithms are designed to mimic the subjective judgements of humans
- PSNR/MSE do not correlate well with human's subjective fidelity rating
- Recently several sophisticated IQA models have been introduced (SSIM)

Image from Wang et al., 2009

What are others upto?

Image Quality Assessment using Visual Saliency Maps:

- Distortion occurring in an area that attracts the viewer's attention is more annoying than in any other area, and should be weighted accordingly
- Zhang et al. [3] have suggested that VS values change with distortions
- They proposed an index that uses VS as a feature to compute the local similarity between the reference image and its distorted version

What are others upto?

- Image Quality Assessment using Visual Saliency Maps:
 - Distortion occurring in an area that attracts the viewer's attention is more annoying than in any other area, and should be weighted accordingly
 - Zhang et al. [3] have suggested that VS values change with distortions
 - They proposed an index that uses VS as a feature to compute the local similarity

between the reference image and its distorted version

What are others upto?

Image Quality Assessment using Visual Saliency Maps:

- Distortion occurring in an area that attracts the viewer's attention is more annoying than in any other area, and should be weighted accordingly
- Zhang et al. [3] have suggested that VS values change with distortions

They proposed an index that uses VS as a feature to compute the local similarity

between the reference image and its distorted version

However,

- VS maps do not show any significant difference (in terms of mean square error) for the distortion types of contrast reduction (CR) and change of color saturation (CCS).
- This occurs due to the normalization operations involved in VS computational models.

- A new Fourier-based distance metric
 - ↓ for comparing saliency maps
 - ↓ for comparing heat maps

- A new Fourier-based distance metric

 - ↓ for comparing heat maps
- ullet Inputs: Two saliency maps S_1 and S_2
- Proposed Fourier-based distance:

$$d(S_1, S_2) = \sqrt{\sum_{k} \frac{(\mathfrak{F}(S_1 - S_2)_k)^2}{1 + (2\pi |k|)^2}}$$

where $k = (k_x, k_y), k_x \in \{0, \dots, N-1\}$ and $k_y \in \{0, \dots, M-1\}$

- A new Fourier-based distance metric

 - ↓ for comparing heat maps
- ullet Inputs: Two saliency maps S_1 and S_2
- Proposed Fourier-based distance:

$$d(S_1, S_2) = \sqrt{\sum_{k} \frac{(\mathfrak{F}(S_1 - S_2)_k)^2}{1 + (2\pi |k|)^2}}$$

where $k = (k_x, k_y), k_x \in \{0, \dots, N-1\}$ and $k_y \in \{0, \dots, M-1\}$

• In order to limit the value between 0 and 1, apply the transformation

$$\hat{d}(S_1, S_2) = \frac{d(S_1, S_2)}{1 + d(S_1, S_2)}$$

- A new Fourier-based distance metric
 - for comparing saliency maps
 - for comparing heat maps
- Inputs: Two saliency maps S_1 and S_2
- Proposed Fourier-based distance:

pased distance:
$$d(S_1,S_2) = \sqrt{\sum_k \frac{(\mathfrak{F}(S_1-S_2)_k)^2}{1+(2\pi\mid k\mid)^2}} \quad \begin{cases} &\text{Properties}\\ &\text{1. Symmetric}\\ &\text{2. Non-negative}\\ &\text{3. } &\triangle \text{ inequality} \end{cases}$$

where $k = (k_x, k_y), k_x \in \{0, \dots, N-1\}$ and $k_y \in \{0, \dots, M-1\}$

In order to limit the value between 0 and 1, apply the transformation

$$\hat{d}(S_1, S_2) = \frac{d(S_1, S_2)}{1 + d(S_1, S_2)}$$

• Comparing saliency maps

Comparing saliency maps

- The following metrics were investigated:
 - Area under the ROC Curve (AUC_Borji and AUC_Judd)
 - Pearson's Correlation Coefficient (CC)
 - Fourier-based Metric (Fourier)
 - Kullback-Leibler Divergence (KL)
 - Mean Square Error (MSE)
 - Normalized Scanpath Saliency (NSS)
 - Similarity of histogram intersection (SIM)

- Comparing saliency maps
- The following metrics were investigated:
 - Area under the ROC Curve (AUC Borji and AUC Judd)
 - Pearson's Correlation Coefficient (CC)
 - Fourier-based Metric (Fourier)
 - Kullback-Leibler Divergence (KL)
 - Mean Square Error (MSE)
 - Normalized Scanpath Saliency (NSS)
 - Similarity of histogram intersection (SIM)

Dataset: TID2013, a comprehensive dataset for IQA research

There are a total of 25 images and for each reference image, there are 24 distortion types and 5 distortion levels for each distortion type.

⇒ 25 samples at a given distortion level and particular distortion type

Dataset: TID2013, a comprehensive dataset for IQA research

There are a total of 25 images and for each reference image, there are 24 distortion types and 5 distortion levels for each distortion type.

⇒ 25 samples at a given distortion level and particular distortion type

Dataset: TID2013, a comprehensive dataset for IQA research

There are a total of 25 images and for each reference image, there are 24 distortion types and 5 distortion levels for each distortion type.

⇒ 25 samples at a given distortion level and particular distortion type

Experiments:

Saliency maps were generated using Spectral Residual approach [1] and SAM-VGG [2]. The metrics described above were computed between every reference image and the corresponding 24x5 distorted images.

Dataset: TID2013, a comprehensive dataset for IQA research

There are a total of 25 images and for each reference image, there are 24 distortion types and 5 distortion levels for each distortion type.

⇒ 25 samples at a given distortion level and particular distortion type

Experiments:

Saliency maps were generated using Spectral Residual approach [1] and SAM-VGG [2]. The metrics described above were computed between every reference image and the corresponding 24x5 distorted images.

Desired Properties

- High absolute value of the average correlation with subjective scores
- Consistency in sign of the correlation values throughout the distortion types

Dis. Type	AUC_Borji	AUC_Judd	CC	Fourier	KL	MSE	NSS	SIM
AGN	-0.0604	-0.0611	0.9320	-0.7319	-0.7923	-0.6994	0.1254	0.9635
ANC	-0.2141	-0.2118	0.9525	-0.7410	-0.7411	-0.6312	0.0229	0.9558
SCN	-0.1086	-0.1089	0.9252	-0.8709	-0.8970	-0.6016	0.4394	0.9598
MN	-0.3723	-0.3800	0.9468	-0.8599	-0.9394	-0.7962	0.1146	0.9706
HFN	-0.2380	-0.2425	0.9277	-0.9483	-0.9231	-0.9425	0.1556	0.9695
IN	-0.0270	-0.0252	0.9281	-0.7846	-0.8223	-0.7324	0.3049	0.9645
QN	-0.1593	-0.1599	0.8395	-0.8559	-0.8557	-0.7844	0.8079	0.9225
GB	0.1621	0.1587	0.7789	-0.8805	-0.8212	-0.7743	0.6506	0.8764
DEN	0.5692	0.5702	0.8933	-0.5159	-0.9114	-0.9252	0.6854	0.9694
JPEG	-0.5176	-0.5141	0.9174	-0.9169	-0.8921	-0.8814	0.7969	0.9752
JP2K	0.4878	0.4729	0.8475	-0.8138	-0.8458	-0.9155	0.8477	0.9177
JGTE	0.1238	0.1152	0.7647	-0.6967	-0.7729	-0.7576	0.7035	0.8255
J2TE	-0.1323	-0.1254	0.8118	-0.8267	-0.8186	-0.7883	0.6764	0.8707
NEPN	-0.0049	-0.0036	0.8969	-0.6732	-0.9183	-0.6530	0.7314	0.9130
Block	0.2293	0.2361	0.3316	-0.0981	-0.4170	-0.1411	0.1869	0.5581
MS	-0.0335	-0.0305	0.6439	-0.4598	-0.6989	-0.7069	0.2640	0.6959
CTC	0.1403	0.1583	-0.5352	0.5086	0.4784	0.3253	0.0012	-0.5703
CCS	0.0725	0.0668	0.4397	0.0310	-0.0434	-0.3647	-0.0118	0.4331
MGN	-0.3422	-0.3459	0.9233	-0.8008	-0.8888	-0.6209	0.2806	0.9578
CN	0.1374	0.1368	0.8743	-0.7989	-0.8972	-0.8547	0.7153	0.9390
LCNI	-0.0397	-0.0383	0.9180	-0.8223	-0.9213	-0.8668	0.6733	0.9687
ICQD	-0.1834	-0.1852	0.8898	-0.7841	-0.8876	-0.9028	0.5031	0.9500
CHA	0.3806	0.3778	0.8763	-0.7990	-0.8630	-0.9018	0.7895	0.9136
SSR	0.5688	0.5656	0.8686	-0.6812	-0.8808	-0.9231	0.8631	0.9400
	Table 1	· Correlation	with Sub	iective Sc	ores: Sne	ctral Resid	dual	

Table 1: Correlation with Subjective Scores: Spectral Residual

Dis. Type	AUC_Borji	AUC_Judd	CC	Fourier	KL	MSE	NSS	SIM
AGN	-0.0442	-0.0439	0.8519	-0.5378	-0.8709	-0.5639	0.5814	0.9179
ANC	0.0008	0.0015	0.9187	-0.5394	-0.9301	-0.6894	0.4927	0.9429
SCN	0.2428	0.2428	0.8844	-0.3839	-0.8689	-0.7375	0.7706	0.9441
MN	-0.3003	-0.3032	0.9303	-0.6721	-0.8832	-0.7502	0.3518	0.9536
HFN	0.1051	0.1060	0.9299	-0.6494	-0.9436	-0.8919	0.8460	0.9713
IN	-0.1707	-0.1717	0.8454	-0.6964	-0.8517	-0.7048	0.6158	0.9124
QN	0.1502	0.1481	0.8564	-0.5927	-0.8364	-0.5748	0.7394	0.9174
GB	-0.0265	-0.0305	0.8992	-0.7561	-0.9168	-0.8533	0.7204	0.9601
DEN	-0.2367	-0.2390	0.8951	-0.7714	-0.9099	-0.6709	0.7135	0.9427
JPEG	-0.1398	-0.1540	0.9183	-0.7710	-0.9052	-0.7511	0.8256	0.9668
JP2K	0.0958	0.0902	0.8984	-0.8129	-0.8984	-0.7663	0.8029	0.9616
JGTE	-0.0388	-0.0394	0.8249	-0.6453	-0.7858	-0.6084	0.6517	0.8683
J2TE	0.1109	0.1056	0.7801	-0.5654	-0.8026	-0.5988	0.6114	0.8673
NEPN	0.0849	0.0846	0.8045	-0.5316	-0.7709	-0.5316	0.4243	0.8517
Block	-0.0105	-0.0020	-0.2914	0.1113	0.2091	-0.1040	-0.2771	-0.2044
MS	-0.0517	-0.0512	0.8704	-0.5631	-0.7406	-0.7114	0.2825	0.8896
СТС	-0.1284	-0.1265	0.4898	-0.2424	-0.5576	-0.3837	0.0452	0.5486
CCS	-0.1519	-0.1531	0.8520	-0.8351	-0.8662	-0.7661	0.6551	0.9122
MGN	-0.2471	-0.2454	0.8368	-0.6339	-0.9070	-0.6717	0.6020	0.9163
CN	-0.1359	-0.1365	0.8883	-0.7072	-0.8817	-0.7351	0.5200	0.9345
LCNI	-0.0114	-0.0269	0.9032	-0.6393	-0.9029	-0.7517	0.7290	0.9527
ICQD	0.1795	0.1777	0.8970	-0.6733	-0.8954	-0.8174	0.8064	0.9515
СНА	0.1761	0.1712	0.9085	-0.7305	-0.9099	-0.8151	0.8602	0.9292
SSR	0.0219	-0.0026	0.9239	-0.7404	-0.9168	-0.7956	0.8352	0.9674
	Tab	le 2: Correla	tion with S	Subjective	Scores: S	SAM-VGG		

Table 2: Correlation with Subjective Scores: Saivi-VGG

Observations:

- SIM shows a better correlation with subjective scores for most distortion types.
- Proposed Fourier-based metric outperforms several of the conventional metrics.
- The subjective scores of the distortion type CTC and CCS are very unpredictable.

Observations:

- SIM shows a better correlation with subjective scores for most distortion types.
- Proposed Fourier-based metric outperforms several of the conventional metrics.
- The subjective scores of the distortion type CTC and CCS are very unpredictable.

	Distortion Type	Level 1	Level 2	Level 3	Level 4	Level 5
	AGN	5.6742	5.2282	4.8480	4.2457	3.7745
	ANC	5.9276	5.8537	5.5316	5.0679	4.4795
ļ	CONT	4 7007	10111	9 7074	9 901 4	a core II
L	DIOCK MS	5.2041 6.0760	3.3400 6.0661	5.4004 5.6365	5.7571 5.2406	4.0009 4.6574
	CTC	5.6274	6.4809	4.4817	6.2942	3.4548
	CCS MGN	5.0606 5.5280	4.6608 5.1384	4.2344	3.9255	3.6930 3.6831
	CN	5.8829	5.5507	5.0118	4.1718	3.3123
	LCNI	5.5168	5.0026	4.3262	3.5349	2.4977
	ICQD	5.6912	5.2692	4.5889	3.7901	2.9151
	CHA	6.1127	5.8790	5.1884	4.4065	3.0090
	SSR	5.7730	5.1013	3.9942	2.6151	0.9565

Table 4: Subjective Scores (averaged over all images), for 24 distortion types and 5 levels.

Roadblocks and the Way Around:

- In case of contrast reduction, the perceived saliency patterns change only for the first 4 seconds and become constant thereafter [6]
- The TID2013 experiments are not in direct compliance with these. Hence, due to limited availability of time and resources, we faced a serious roadblock to proceed further.

Roadblocks and the Way Around:

- In case of contrast reduction, the perceived saliency patterns change only for the first 4 seconds and become constant thereafter [6]
- The TID2013 experiments are not in direct compliance with these. Hence, due to limited availability of time and resources, we faced a serious roadblock to proceed further.
- However, we realized that Zhang et al. [3] had exploited the gradient maps of the original image to make up for the inability of their saliency maps in capturing contrast change!

- GANs learn a loss function rather than using an existing one
- The generator G is trained to produce outputs that cannot be distinguished from "real" images by an adversarially trained discriminator, D which is trained to do as well as possible at detecting the generator's "fakes".
- Conditional GANs (cGANs) learn a mapping from observed image x and random noise vector z to y: f(x, z)

- GANs learn a loss function rather than using an existing one
- The generator G is trained to produce outputs that cannot be distinguished from "real" images by an adversarially trained discriminator, D which is trained to do as well as possible at detecting the generator's "fakes".
- Conditional GANs (cGANs) learn a mapping from observed image x and random noise vector z to y: f(x, z)
- Objective of conditional GANs:

$$\mathfrak{L}_{cGAN} = \mathbb{E}_{x,y}[\log D(x,y)] + \mathbb{E}_{x,z}[\log (1 - D(x,G(x,z)))]$$

- GANs learn a loss function rather than using an existing one
- The generator G is trained to produce outputs that cannot be distinguished from "real" images by an adversarially trained discriminator, D which is trained to do as well as possible at detecting the generator's "fakes".
- Conditional GANs (cGANs) learn a mapping from observed image x and random noise vector z to y: f(x, z)
- Objective of conditional GANs:

$$\mathfrak{L}_{cGAN} = \mathbb{E}_{x,y}[\log D(x,y)] + \mathbb{E}_{x,z}[\log (1 - D(x,G(x,z)))]$$

Beneficial to mix the GAN objective with a more traditional loss, such as L2 distance.
 The discriminator's job remains unchanged, but the generator is tasked to not only fool the discriminator but also to be near the ground truth output in an L2 sense.

- GANs learn a loss function rather than using an existing one
- The generator G is trained to produce outputs that cannot be distinguished from "real" images by an adversarially trained discriminator, D which is trained to do as well as possible at detecting the generator's "fakes".
- Conditional GANs (cGANs) learn a mapping from observed image x and random noise vector z to y: f(x, z)
- Objective of conditional GANs:

$$\mathfrak{L}_{cGAN} = \mathbb{E}_{x,y}[\log D(x,y)] + \mathbb{E}_{x,z}[\log (1 - D(x,G(x,z)))]$$

- Beneficial to mix the GAN objective with a more traditional loss, such as L2 distance.
 The discriminator's job remains unchanged, but the generator is tasked to not only fool the discriminator but also to be near the ground truth output in an L2 sense.
- However, authors prefer L1 over L2 as it encourages less blurring. Final objective:

$$G^* = \operatorname{arg\ min}_{G} \operatorname{max}_{D} \mathfrak{L}_{cGAN}(G, D) + \lambda \mathfrak{L}_{L1}(G)$$

where, $\mathfrak{L}_{L1}(G) = \mathbb{E}[||y - G(x, z)||_{1}]$

Image Credits: Isola et al.

- Zhang et al. [3] tried to make up for the ineffectiveness of VS maps in detecting contrast change, by taking the gradient maps of the original images into account
 - But, you still need the original images!

- Zhang et al. [3] tried to make up for the ineffectiveness of VS maps in detecting contrast change, by taking the gradient maps of the original images into account
 - But, you still need the original images!
- We too modified the final objective to take into account the gradient, while generating saliency maps

$$G^* = \underset{G}{\operatorname{arg min}_{G} \operatorname{max}_{D}} \mathcal{L}_{cGAN}(G, D) + \lambda \mathcal{L}_{L1}(G)$$

$$G^* = \underset{G}{\operatorname{arg min}_{G} \operatorname{max}_{D}} \mathcal{L}_{cGAN}(G, D) + \lambda_{1} \mathcal{L}_{L1}(G) + \lambda_{2} \mathcal{L}_{EPL}(G)$$

- Zhang et al. [3] tried to make up for the ineffectiveness of VS maps in detecting contrast change, by taking the gradient maps of the original images into account
 - But, you still need the original images!
- We too modified the final objective to take into account the gradient, while generating saliency maps

$$G^* = \underset{G}{\operatorname{arg min}_{G} \operatorname{max}_{D}} \mathcal{L}_{cGAN}(G, D) + \lambda \mathcal{L}_{L1}(G)$$

$$G^* = \underset{G}{\operatorname{arg min}_{G} \operatorname{max}_{D}} \mathcal{L}_{cGAN}(G, D) + \lambda_{1} \mathcal{L}_{L1}(G) + \lambda_{2} \mathcal{L}_{EPL}(G)$$

- $\lambda_2 \mathfrak{L}_{EPL}(G)$ denotes the binary cross-entropy loss between gradient maps of the original image and its saliency map. The gradients were treated as 1 or 0, based on a threshold.
- The VS model learns to change the maps as edges in original images change.

- Zhang et al. [3] tried to make up for the ineffectiveness of VS maps in detecting contrast change, by taking the gradient maps of the original images into account
 - But, you still need the original images!
- We too modified the final objective to take into account the gradient, while generating saliency maps

$$G^* = \underset{G}{\operatorname{arg min}_{G} \operatorname{max}_{D}} \mathcal{L}_{cGAN}(G, D) + \lambda \mathcal{L}_{L1}(G)$$

$$G^* = \underset{G}{\operatorname{arg min}_{G} \operatorname{max}_{D}} \mathcal{L}_{cGAN}(G, D) + \lambda_{1} \mathcal{L}_{L1}(G) + \lambda_{2} \mathcal{L}_{EPL}(G)$$

- $\lambda_2 \mathfrak{L}_{EPL}(G)$ denotes the binary cross-entropy loss between gradient maps of the original image and its saliency map. The gradients were treated as 1 or 0, based on a threshold.
- The VS model learns to change the maps as edges in original images change.
- Does it generate saliency maps that are good for image quality assessment?

	Dis. Type	AUC_Borji	AUC_Judd	CC	Fourier	KL	MSE	NSS	SIM
Ϊ	Block	-0.0105	-0.0020	-0.2914	0.1113	0.2091	-0.1040	-0.2771	-0.2044
	MS	-0.0517	-0.0512	0.8704	-0.5631	-0.7406	-0.7114	0.2825	0.8896
	CTC	-0.1284	-0.1265	0.4898	-0.2424	-0.5576	-0.3837	0.0452	0.5486
	CCS	-0.1519	-0.1531	0.8520	-0.8351	-0.8662	-0.7661	0.6551	0.9122
	MGN	-0.2471	-0.2454	0.8368	-0.6339	-0.9070	-0.6717	0.6020	0.9163
	CNI	_0 1350	_0 1365	U 8883	-0 7072	_0 2217	₋∩ 7351	0.5200	0 03/15
		Tal	ole 1: Correlati	on with Sub	jective Sco	res: Spectra	al Residual		

	RIOCK	0.2293	U.2301	0.3310	-0.0981	-0.41/0	-U.1411	0.1809	0.5581
	MS	-0.0335	-0.0305	0.6439	-0.4598	-0.6989	-0.7069	0.2640	0.6959
	CTC	0.1403	0.1583	-0.5352	0.5086	0.4784	0.3253	0.0012	-0.5703
Ш	CCS	0.0725	0.0668	0.4397	0.0310	-0.0434	-0.3647	-0.0118	0.4331
П	MGN	-0.3422	-0.3459	0.9233	-0.8008	-0.8888	-0.6209	0.2806	0.9578
	CN	∩ 1374	0 1368	0 8743	-0 7989	_N 8972	-N 85 4 7	0 7153	U 030U

Table 2: Correlation with Subjective Scores: SAM-VGG

Does it generate saliency maps that are good for image quality assessment? Yes! *

	Dis. Type	AUC_Borji	AUC_Judd	CC	Fourier	KL	MSE	NSS	SIM
Π	Block	-0.0105	-0.0020	-0.2914	0.1113	0.2091	-0.1040	-0.2771	-0.2044
	MS	-0.0517	-0.0512	0.8704	-0.5631	-0.7406	-0.7114	0.2825	0.8896
	CTC	-0.1284	-0.1265	0.4898	-0.2424	-0.5576	-0.3837	0.0452	0.5486
	CCS	-0.1519	-0.1531	0.8520	-0.8351	-0.8662	-0.7661	0.6551	0.9122
	MGN	-0.2471	-0.2454	0.8368	-0.6339	-0.9070	-0.6717	0.6020	0.9163
	CNI	_0 1350	_0 1365	U 8883	_0 7072	_∩ ጰጰ17	_0 7351	0.5200	0 03/15

Table 1: Correlation with Subjective Scores: Spectral Residual

RIOCK	0.2293	U.2301	U.3310	-0.0981	-U.41/U	-0.1411	0.1809	U.5581
MS	-0.0335	-0.0305	0.6439	-0.4598	-0.6989	-0.7069	0.2640	0.6959
СТС	0.1403	0.1583	-0.5352	0.5086	0.4784	0.3253	0.0012	-0.5703
CCS	0.0725	0.0668	0.4397	0.0310	-0.0434	-0.3647	-0.0118	0.4331
MGN	-0.3422	-0.3459	0.9233	-0.8008	-0.8888	-0.6209	0.2806	0.9578
CN	∩ 1374	0 1368	0 8743	-0 7989	_n 8972	_∩ 85 4 7	0 7153	0 9390

Table 2: Correlation with Subjective Scores: SAM-VGG

СТС	-0.4289	0.0368	0.6827	-0.2191	-0.3642	-0.3768	0.4571	0.3061
ccs	-0.2293	0.0429	0.5321	0.0468	-0.1279	-0.2987	0.2842	0.6821

Table 3: Correlation with Subjective Scores: pix2pix + EPL (proposed)

But, are the generated saliency maps good for general purposes? Yes!

Model Name	Published	Code	AUC- Judd [?]	SIM [?]	EMD [?]	AUC- Borji [?]	sAUC [?]	CC [?]	NSS [?]	KL [?]
Baseline: infinite humans [?]			0.92	1	0	0.88	0.81	1	3.29	0
Deep Gaze 2	Matthias Kümmerer, , Thomas S. A. Wallis, Leon A. Gatys, Matthias Bethge. DeepGaze II: Understanding Low- and High-Level Contributions to Fixation Prediction [ICCV 2017]			0.46 (0.43)			0.72 (0.77)			0.96 (1.04)
SALICON	Xun Huang, Chengyao Shen, Xavier Boix, Qi Zhao		0.87	0.60	2.62	0.85	0.74	0.74	2.12	0.54
DeepFix	Srinivas S S Kruthiventi, Kumar Ayush, R. Venkatesh Babu DeepFix: A Fully Convolutional Neural Network for predicting Human Eye Fixations [arXiv 2015]		0.87	0.67	2.04	0.80	0.71	0.78	2.26	0.63
Deep Spatial Contextual Long- term Recurrent Convolutional Network (DSCLRCN)	Nian Liu, Junwei Han. A Deep Spatial Contextual Long-term Recurrent Convolutional Network for Saliency Detection [arXiv 2016]		0.87	0.68	2.17	0.79	0.72	0.80	2.35	0.95
Saliency Attentive Model (SAM-ResNet)	Marcella Cornia, Lorenzo Baraldi, Giuseppe Serra, Rita Cucchiara. Predicting Human Eye Fixations via an LSTM- based Saliency Attentive Model [arXiv 2016]	python	0.87	0.68	2.15	0.78	0.70	0.78	2.34	1.27

Image Credits: http://saliency.mit.edu

But, are the generated saliency maps good for general purposes? Yes!

Model Name	Published	Code	AUC- Judd [?]	SIM [?]	EMD [?]	AUC- Borji [?]	sAUC [?]	CC [?]	NSS [?]	KL [?]	
Baseline: infinite humans [?]			0.92	1	0	0.88	0.81	1	3.29	С	
Deep Gaze 2	Matthias Kümmerer, , Thomas S. A. Wallis, Leon A. Gatys, Matthias Bethge. DeepGaze II: Understanding Low- and High-Level Contributions to Fixation Prediction [ICCV 2017]				3.98 (4.52)		0.72 (0.77)				NSS: 2.31
SALICON	Xun Huang, Chengyao Shen, Xavier Boix, Qi Zhao		0.87	0.60	2.62	0.85	0.74	0.74	2.12	0.54	KL: 0.67
DeepFix	Srinivas S S Kruthiventi, Kumar Ayush, R. Venkatesh Babu DeepFix: A Fully Convolutional Neural Network for predicting Human Eye Fixations [arXiv 2015]		0.87	0.67	2.04	0.80	0.71	0.78	2.26	0.63	
Deep Spatial Contextual Long- term Recurrent Convolutional Network (DSCLRCN)	Nian Liu, Junwei Han. A Deep Spatial Contextual Long-term Recurrent Convolutional Network for Saliency Detection [arXiv 2016]		0.87	0.68	2.17	0.79	0.72	0.80	2.35	0.95	
Saliency Attentive Model (SAM-ResNet)	Marcella Cornia, Lorenzo Baraldi, Giuseppe Serra, Rita Cucchiara. Predicting Human Eye Fixations via an LSTM- based Saliency Attentive Model [arXiv 2016]	python	0.87	0.68	2.15	0.78	0.70	0.78	2.34	1.27	Image Credits:

Summary

$$d(S_1, S_2) = \sqrt{\sum_k \frac{(\mathfrak{F}(S_1 - S_2)_k)^2}{1 + (2\pi \mid k \mid)^2}}$$
$$\hat{d}(S_1, S_2) = \frac{d(S_1, S_2)}{1 + d(S_1, S_2)}$$

A new Fourier-based distance metric for comparing visual saliency maps

Dis. Type	AUC.Borji	AUC_Judd	CC	Fourier	KL.	MSE	NSS	SIM
AGN	-0.0442	-0.0439	0.8519	-0.5378	-0.8709	-0.5639	0.5814	0.917
ANC	0.0008	0.0015	0.9187	-0.5394	-0.9301	-0.6894	0.4927	0.942
SCN	0.2428	0.2428	0.8844	-0.3839	-0.8689	-0.7375	0.7706	0.944
MN	-0.3003	-0.3032	0.9303	+0.6721	-0.8832	-0.7502	0.3518	0.953
HEN	0.1051	0.1060	0.9299	-0.6494	-0.9436	-0.8919	0.8460	0.971
IN	-0.1707	-0.1717	0.8454	-0.6964	-0.8517	-0.7048	0.6158	0.912
QN	0.1502	0.1481	0.8564	-0.5927	-0.8364	-0.5748	0.7394	0.917
GB	-0.0265	-0.0305	0.8992	-0.7561	-0.9168	-0.8533	0.7204	0.960
DEN	-0.2367	-0.2390	0.8951	-0.7714	-0.9099	-0.6709	0.7135	0.942
JPEG	-0.1398	-0.1540	0.9183	-0.7710	-0.9052	-0.7511	0.8256	0.966
JP2K	0.0958	0.0902	0.8984	-0.8129	-0.8984	-0.7663	0.8029	0.961
JGTE	-0.0388	-0.0394	0.8249	-0.6453	-0.7858	-0.6084	0.6517	0.868
J2TE	0.1109	0.1056	0.7801	-0.5654	-0.8026	-0.5988	0.6114	0.867
NEPN	0.0849	0.0846	0.8045	-0.5316	-0.7709	-0.5316	0.4243	0.851
Block	-0.0105	-0.0020	-0.2914	0.1113	0.2091	-0.1040	-0.2771	-0.204
MS	-0.0617	-0.0512	0.8704	-0.5631	-0.7406	-0.7114	0.2825	0.889
CTC	-0.1284	-0.1265	0.4898	-0.2424	-0.5576	-0.3837	0.0452	0.548
CCS	-0.1519	-0.1531	0.8520	-0.8351	-0.8662	-0.7661	0.6551	0.912
MGN	-0.2471	-0.2454	0.8368	+0.6339	-0.9070	-0.6717	0.6020	0.910
CN	-0.1359	-0.1365	0.8883	-0.7072	-0.8817	-0.7351	0.5200	0.934
LCNI	-0.0114	-0.0269	0.9032	-0.6393	-0.9029	-0.7517	0.7290	0.952
ICQD	0.1795	0.1777	0.8970	-0.6733	-0.8954	-0.8174	0.8064	0.951
CHA	0.1761	0.1712	0.9085	-0.7306	-0.9099	-0.8151	0.8602	0.920
SSR	0.0219	-0.0026	0.9239	-0.7404	-0.9168	-0.7956	0.8352	0.967

Extensive experimentation with existing saliency maps comparison metrics

Proposed a model to generate saliency maps that can be for image quality assessment

Code Contributions

Our code:

- 1. Generation of saliency maps using Spectral-Residual method
- 2. All experiments pertaining to Fourier based metric
- 3. Evaluation and comparison of different metrics
- 4. Modification to the pix2pix code (including edge preserving loss)

Off the shelf codes:

- SAM-VCG Saliency map generation code: [<u>Link</u>]
- 2. Saliency metric codes: [Link]
- Pix2pix code: [<u>Link</u>]

References

- [1] Hou, Xiaodi, and Liqing Zhang. "Saliency detection: A spectral residual approach." *Computer Vision and Pattern Recognition, 2007. CVPR'07. IEEE Conference on.* IEEE, 2007.
- [2] Cornia, Marcella, et al. "Predicting human eye fixations via an LSTM-based saliency attentive model." *arXiv preprint arXiv:1611.09571* (2016).
- [3] Zhang, Lin, Ying Shen, and Hongyu Li. "VSI: A visual saliency-induced index for perceptual image quality assessment." IEEE Transactions on Image Processing 23.10 (2014): 4270-4281.
- [4] Bylinskii, Zoya, et al. "What do different evaluation metrics tell us about saliency models?." *arXiv* preprint arXiv:1604.03605(2016).
- [5] Isola, Phillip, et al. "Image-to-image translation with conditional adversarial networks." *arXiv* preprint (2017).
- [6] Einhäuser, Wolfgang, and Peter König. "Does luminance-contrast contribute to a saliency map for overt visual attention?." *European Journal of Neuroscience* 17.5 (2003): 1089-1097.