

Consolidated Academic Administration Plan for the Course

Microprocessor (Core) Sem. IV – Program- Computer Engineering 2021-2022 – Even Semester

Dr. Arun Chavan (Cluster Mentor), Faculty Prof. Ajitkumar Khachane, Prof. Suvarna Bhat

Version 0120-7

The academic resources available in VIT -

VMIS (ERP)	V-Refer and V-Live	VIT Library	VAC & MOOC Courses	
Institute & Department	Former IA question papers and	Former IA question papers	Value Added Courses	
Vision and Mission	solutions (prepared by faculty)	solutions - hardcopy	(VAC) are conducted	
Drogram Educational	MU end semester examination	MU end semester exam	throughout the semester	
Program Educational Objectives (PEO)	question papers and solutions	question paper & solutions	& in the semester break -	
Objectives (PEO)	(prepared by faculty)	- by faculty, hardcopy	Enrol for the VACs	
Program Specific Outcome (PSO)	Class notes and Digital Content for the subject (scanned / typed by faculty)	All text books, reference books, e -books mentioned in the syllabus & AAP	Online courses from NPTEL, Coursera etc. are pursued throughout the	
Program Outcome (PO)	Comprehensive question bank, EQ, GQ, PPT, Class Test papers	Technical journals and magazines for reference	semester - Register for the course & get certified	
Departmental	Academic Administration Plan &	VIT library is member of IIT	Watch former lectures	
Knowledge Map	Beyond Syllabus Activity report	Bombay Library	captured in LMS at VIT	

Course Objectives (Write in detail – as per NBA guidelines)

Cognitive	What do you want students to know?	 Basics of Microprocessor Basics of Peripheral chips Advanced features like multitasking, protection mechanism, superscalar architecture Instruction set of microprocessor, Assembler 	
Affective	What do you want students to think / care about?	- Effective utilization of system resources - Memory efficient code	
Behavioural	What do you want students to be able to do?	Develop application by using assembly language and mixed language Designing microprocessor based system as per requirements	

Advice to Students:

1.a

Attend every class!!! Missing even one class can have a substantial effect on your ability to understand the course. Be prepared to think and concentrate, in the class and outside. I will try to make the class very interactive. Participate in the class discussions. Ask questions when you don't understand something. Keep up with the class readings. Start assignments and homework early. Meet me in office hour to discuss ideas, solutions or to check if what you understand is correct. The v-Refer Link for this course -

http://vidyalankarlive.com/vrefer/index.php/apps/files/?dir=/vRefer/CMPN/SEM%20IV/2021-22/MP&fileid=579563

Collaboration Policy:

We encourage discussion between students regarding the course material. However, no discussion of any sort is allowed with anyone on the assignment and homework for the class. If you find solution to some problems in a book or on the internet, you may use their idea for the solution; provided you acknowledge the source (name and page in the book or the website, if the idea is found on the internet). Even though you are allowed to use ideas from another source, you must write the solution in your own words. If you are unsure whether or not certain kinds of collaboration is possible please ask the teacher.

1.b Course Outcome (CO) Statements and Module-Wise Mapping (follow NBA guideline)

CO No.	Statements	Related Module/s
CO1	Describe architecture of x86 processors.	1
CO2	Interpret the instructions of 8086 and write assembly and Mixed language programs.	2
CO3	Explain the concept of interrupts	3
CO4	Identify the specifications of peripheral chip	4
CO5	Design 8086 based system using memory and peripheral chips	5
CO6	Appraise the architecture of advanced processors	6

Mapping of COs with POs (mark S: Strong, M: Moderate, W: Weak, Dash '-': not mapped) (List of POs is available in V-refer)

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO 1	S	М	-	М	М	W	-	-	-	-	-	-
CO 2	S	S	S	М	М	-	М	W	-	М	-	-
CO 3	S	W	-	-	-	-	-	-	-	-	-	-
CO 4	S	М	-	-	-	-	-	-	-	-	-	-
CO 5	S	М	S	S	М	М	-	-	-	М	-	-
CO 6	М	М	-	-	М	-	-	-	-	-	-	М

1.d Mapping of COs with PSOs (mark S: Strong, M: Moderate, W: Weak, Dash '-':not mapped)

	PSO 1	PSO 2	PSO 3	PSO 4
CO 1	S	М	М	NA
CO 2	S	М	W	NA
CO 3	S	-	-	NA
CO 4	S	-	-	NA
CO 5	S	M	W	NA
CO 6	М	M	W	NA

1.e Teaching and Examination Scheme (As specified by the University) for the Course

Categories	Mathematics	Basic Science & General Engg.	Humanities & Soft Skill	Core Engg./ Technology - Design & Analysis	Multidisciplinary
Tick suitable category	-	-	-	✓	-

Subject Code	Cubiast Nama	Teaching Scheme			Credits Assigned			
Subject Code	Subject Name	Theory	Practical	Tutorial	Theory	TW/Practical	Tutorial	Total
CSC405	Microprocessor	03	02	-	03	01	-	04
		-			-			

		Examination Scheme								
Subject Code	Cubioct Namo	Theory Marks IA Test			End Sem.					
Subject Code	Subject Name	IA 1	IA 2	Average of	Exam	TW	Practical	Oral	Total	
		IA I	IA Z	IA1 and IA2	Marks					
CSC405	Microprocessor	20	20	20	80	25	-	-	125	
(For Lab										
Only)										

1.f Faculty-Wise Distribution of all Lecture-Practical-Tutorial Hours for the Course

Divisions	Lecture		Practical (Hrs.)				Tutorial (Hrs.)				
DIVISIONS	(Hrs.)	Batch 1	Batch 2	Batch 3	Batch 4	Batch 1	Batch 2	Batch 3	Batch 4		
	3		2								
A & B	SB		SB		-	-	-	-	-		

	3	2	-				
A & B	ARK	ARK		-	-	-	-

1.g Office Hours (Faculty will be available in office in this duration for solving students' query)

Division	Day	Time (at least 1 Hr. / Division)	Venue (Office Room No.)		
A & B	Friday	3:00 pm to 4:00 pm	Faculty cabin		

Syllabus : Module Wise Teaching Hours and % Weightage in University Question Paper

2.a

Module No.	Module Title and Brief Details	Teaching Hrs. for each module	% Weightage in University Question Papers
1	The Intel Microprocessors 8086 Architecture 1.1 8086CPU Architecture, 1.2 Programmer's Model 1.3 Functional Pin Diagram 1.4 Memory Segmentation 1.5 Banking in 8086 1.6 Demultiplexing of Address/Data bus 1.7 Functioning of 8086 in Minimum mode and Maximum mode 1.8 Timing diagrams for Read and Write operations in minimum and maximum mode 1.9 Interrupt structure and its servicing	08	21%
2	Instruction Set and Programming 2.1 Addressing Modes 2.2 Instruction set-Data Transfer Instructions, String Instructions, Logical Instructions, Arithmetic Instructions, Transfer of Control Instructions, Processor Control Instructions 2.3 Assembler Directives and Assembly Language Programming, Macros, Procedures	06	15%-
3	Memory and Peripherals interfacing 3.1 Memory Interfacing - RAM and ROM Decoding Techniques - Partial and Absolute 3.2 8255-PPI-Block diagram, CWR, operating modes, interfacing with 8086 3.3 8257-DMAC-Block diagram, DMA operations and transfer modes. 3.4 Programmable Interrupt Controller 8259-Block Diagram, Interfacing the 8259 in single and cascaded mode.	08	21%
4	Intel 80386DX Processor 4.1 Architecture of 80386 microprocessor 4.2 80386 registers—General purpose Registers, EFLAGS and Control registers 4.3 Real mode, Protected mode, virtual 8086 mode 4.4 80386 memory management in Protected Mode — Descriptors and selectors, descriptor tables, the memory	07	18%

	paging mechanism		
5	Pentium Processor 5.1 Pentium Architecture 5.2 Superscalar Operation, 5.3 Integer &Floating-Point Pipeline Stages, 5.4 Branch Prediction Logic, 5.5 Cache Organization and 5.6 MESI protocol	06	15%
6	Pentium 4 6.1 Comparative study of 8086, 80386, Pentium I, Pentium II and Pentium III 6.2 Pentium 4: Net burst micro architecture. 6.3 Instruction translation look aside buffer and branch prediction 6.4 Hyper threading technology and its use in Pentium 4	04	10%
	Total	39	100%

2.b Prerequisite Courses

No.	Semester	Name of the Course	Topic/s
1	3	Digital Logic and Computer Architecture	Logic gates, Multiplexers, Demultiplexes, Encoder, Decoder, Latches, Flip-flops , Registers ,control unit, memory, ALU etc.
2	2	Structured Programming Approach	C Programming

2.c Relevance to Future Courses

No.	Semester	Name of the Course		
1	VI	System Programming & Complier Construction		
2	VIII	High Performance Computing		
3	VII, VIII	Project based on Microprocessor/ Microcontroller		

2.d Identify real life scenarios / examples which use the knowledge of the subject

Real Life Scenario	Concept Used
Industrial Automation	Interfacing of sensors and actuators
Office Automation	Communication Protocols
Robotics in Healthcare	Precision control, Motors: DC, Servo, Stepper
Automobile Controls & Automation Systems – Engine firing control, Dashboard, Navigation and lighting control, Climate control, GPS, EBD/ABS Systems, Electronic Suspensions, CAN bus systems.	Interfacing of sensors, actuators with standard bus protocols(CAN,I2C,SPI)

Consumer Electronics Systems – Mobile Phones, TV,	
Fridge, Microwave Oven, Washing Machine, Audio	Advance processors are used
Music Systems, Digital Camera and Camcorder etc.	

3. Past Results – Division-Wise

Details	Target – May 2022	May 2021	May 2020	May 2019
Course Passing % – Average of 3 Divisions	100%	100%	100%	100%
Marks Obtained by Course Topper (mark/100)	95	90		80

	Division A		Division B		
Year	Initials of Teacher	% Result	Initials of Teacher	% Result	
Dec 2019	AC	98.5	MS	98.1	
Dec 2020	AC	100	AC	100	
Dec 2021	MS	100	MS	100	

All the Learning Resources – Books and E-Resources

4.a List of Text Books (T – Symbol for Text Books) to be Referred by Students

Sr. N o	Text Book Titles	Author/s	Publisher	Editio n	Modul e Nos.
1	Microprocessor and Interfacing	Douglas Hall	Tata McGraw Hill	Third Ed	1,2,3,4
2	Microcomputer Systems: 8086/8088 family Architecture, Programming and Design (T)	Liu & Gibson	PHI Publication	NA	1,2,3,4
3	Pentium Processor System Architecture (T)	Tom Shanley & Don Anderson	Addison Wesley	NA	6
4	Advanced Microprocessor	Daniel Taba k	Tata McGraw H ill	Fifth Editio n	6
5	The 80386DX Microprocessor: Hardware, Software and Interfacing	Walter A Triebel	Prentice Hall	NA	5

4.b List of Reference Books (R – Symbol for Reference Books) to be Referred by Students

Sr. N o	Reference Book Titles	Author/s	Publisher	Editio n	Module Nos.
1	8086/8088 family: Design Programming and Interfacin g	John Uffenbeck	PHI	Third Editio n	1,2,3,4
2	Intel Microprocessors (R)	Barry B. Brey	Pearson Educati on India	Eight h Editio n	1,2,3,4,5, 6
3	Processor Architecture and Interfacing (R)	Swati Joshi, Atul Joshi, Hemlata Jadhav	Wiley		5,6
4	The X86 Microprocessors: Architecture and Programming (8086 to Pentium)	Das Lyla B	Pearson Educati on India		1,2,3,4,5, 6
5	Intel Manuals				1,2,3,4,5, 6
6	Programmer's Reference Manual for IBM Personal Computers	Steven Armbru st, Ted Forgeron	McGraw Hill		2
7	IBM PC Assembly Language and Programming	Peter Abel	Prentice Hall of India	Eight h Editio n	2

4.c List of E - Books (E - Symbol for E-Books) to be Referred by Students

Sr. N o	E- Book Titles	Author/s	Publisher	Edition	Module Nos.
1	8086_family_Users_Manual_1pdf https://edge.edx.org/c4x/BITSPilani/EEE231/asse t/8086_family_Users_Manual_1pdf	Intel	Intel		1,2,3,4
2	INTEL 80386 PROGRAMMER'S REFERENCE MANUAL https://pdos.csail.mit.edu/6.828/2012/readings/i 386.pdf	Intel	Intel		5
3	Pentium® Processor Family Developer's Manual http://datasheets.chipdb.org/Intel/x86/Pentium/ 241428_4.PDF	Intel	Intel		6

Reading latest / top rated research papers (at least 5 papers)

4.d

Name of Paper Authors with Background		Published in		Problem Statement	
	Background	Date	Journal		
Demonstration of a Single-Flux-Quantum Microprocessor Operating With Josephson-CMOS Hybrid Memory	Yuki Hironaka Affiliation Department of Electrical and Computer Engineering Yokohama National University Yokohama, Japan	2020	IEEE Transactions on Applied Superconductivity	A single-instruction SFQ microprocessor whose data memory is implemented using Josephson-CMOS hybrid memory with a 16 × 4-b accessible address space.	
Design of an 8-bit Bit- Parallel RSFQ Microprocessor	Pei-Yao Qu Affiliation State Key Laboratory of Computer Architecture Institute of Computing Technology Chinese Academy of Sciences, Beijing, China	2020	IEEE Transactions on Applied Superconductivity	The proposed microprocessor processes 8-bit data each clock cycle. Ten different instructions are executed. The microprocessor mainly consists of an on-chip instruction memory, two data registers, an instruction decoder, an 8-bit bit-parallel arithmetic logic unit, and a program counter.	
Runtime Performance Optimization of 3-D Microprocessors in Dark Silicon	Hai Wang Affiliation State Key Laboratory of	2021	IEEE Transactions on Computers	The new method determines many runtime settings of the 3-D system on the fly, including the active core and cache bank positions, active	

	Electronic Thin Films and Integrated Devices University of Electronic Science and Technology of China Chengdu, Sichuan, China			cache bank number, and the voltage/frequency (V/f) level of each active core, which optimizes the performance of the 3-D microprocessor under thermal constraint.
Updates on Testing Microprocessors	Heather Quinn Also published	2021	IEEE Transactions on Nuclear Science	a discussion of the changes to both the input vectors and the checkers
Effectively	under: Heather M. Quinn, H. Quinn			are presented with test results showing the effect of both on the
	Affiliation Los Alamos			previous and new algorithms.
	National Laboratory, USA			

4.e Based on research paper an identify the current Problem statement

Duble of Clate cont			Used in			
Problem Statement	Quiz	Assignment	Lab	Mini Project	Poster Presentation	Test
Overview of modern computers and modern technologies used to build microprocessors	V	√	V		-	-

4.f Identify Companies / Industries which use the knowledge of the subject and thus may provide Internships and final Placements

	To be / Contacted for				
Name of the Company	Student Internship	Student Final Placement	Faculty Internship		
IBM India Pvt Ltd, Bengaluru	√	√	-		
TCS	√	√			
Wipro	√	√			
Cognizant	√	√			
Accenture	√	√			
Infosys	√	√			

Identify suitable relevant TOP Guest Speakers from Industry (CS50 Lecture by Mark Zuckerberg - 7 December 2005 - YouTube)

Name of the Identified Guest Speaker	Designation	Name of the Company
Mr. Mubeen Abbas	Marketing Manager	NXP Semiconductors N.V.
Mr. Rangarajan Anand	Product Manager	Microchip Technology Inc.

4.h Identify relevant Technical competitions to participate [Competitions -Paper Presentations, Projects, Hackathons, IVs etc..]

4.g

Name of the Relevant Technical Competition Identified to participate	Organized by	Date of the Event
Texas Instruments Innovation Challenge	Texas Instruments, India	March-April Every Year
The Freescale Cup	Freescale Community, india	November-December Every Year
Hardware Hackathon	Centre for Electronics	June-July Every Year
	Design and Technology, NSIT, Delhi	
Intel IoT Roadshow	Intel	August-September Every Year
Intel India Embedded Challenge	Intel	November-December Every Year
National Instruments NIYANTRA	National Instruments	March-April Every Year

4.i

Identify faculty in TOP schools / Universities who are teaching same / similar subject and develop rapport e.g. Exchange Lecture Material (Assignments / Tests / Project etc..), Joint Paper Publication

	Name of	Name of	Т	ype of Collaboration	
University	the Course	Faculty	Exchange of Lecture Material	Joint Publication/ Research	Other
IIT, Mumbai	Microproce ssors	Dr. Rajbabu Velmurugan (rajbabu[AT]e e.iitb.ac.in)	-	-	√

4.j

Web Links and Names of Magazines, Journals, E-journals – [VIT is member of IIT Bombay Library]

Refer online journals subscribed in VIT library. You can also access IIT Bombay online library for journals from IITB campus.

Sr. No	Web-Links and Names of Journals and E-Journals Recommended to Students for this Course	Web-Links and Names of Magazines Recommended to Students for this Course	Module Nos.
1	IEEE-xplore Journals of Electronics & Communications Society	Electronics for you	All
2	IEEE-xplore Control and computations Society	Elector India Magazine	All
3		IEEE Electronics online e-magazine	All

4.k

Module Best Available in - $\underline{\text{Tick ONE}}$ best resource [from $\underline{\textit{4.a}}$ to $\underline{\textit{4.d}}$ in this AAP] & give details

		Category	(Plea	se Tick	Mark) -	√	Availa		
Mod ule		Book		Ma ga-	ga- ? (i.e. Name, 0		Details of the Resource (i.e. Name, Chapter no.etc.)		
No.	Te xt	Refere nce	E- Bo ok	zine	Regu lar	E- Jour nal	Υ	N	
1			√					√	8086_family_Users_Manual_1pdf https://edge.edx.org/c4x/BITSPilani/EEE231/asset/8086_f amily_Users_Manual_1pdf 1. Chapter -1 Page 1-1 to 1-14 2. Chapter -2 Page 2-1 to 2-14
2			√					√	8086_family_Users_Manual_1pdf https://edge.edx.org/c4x/BITSPilani/EEE231/asset/8086_f amily_Users_Manual_1pdf 1. Chapter – 2 Page 2-29 to 2-92
3			V					√	8086_family_Users_Manual_1pdf https://edge.edx.org/c4x/BITSPilani/EEE231/asset/8086_f amily_Users_Manual_1pdf 1. Chapter – 2 Page 2-22 to 2-29
4			√					√	R1 Chapter 7 # Pages 328 – 394 R1 Chapter 8 # Pages 423 – 469 R1 Chapter 9 # Pages 475 – 517
5			V					√	INTEL 80386 PROGRAMMER'S REFERENCE MANUAL https://pdos.csail.mit.edu/6.828/2012/readings/i386.pdf 1. Chapter 2 Page 22 to 44 2. Chapter 4 Page 85 to 90 3. Chapter 5 Page 91 to 105 4. Chapter 6 Page 105 to 129 5. Chapter 7 Page 130 to 144 6. Chapter 15 Page 217 to 222
6			√					√	Pentium® Processor Family Developer's Manual http://datasheets.chipdb.org/Intel/x86/Pentium/241428 4.PDF 1. Chapter 2 Page 2-1 to 2-4 2. Chapter 3 Page 3-1 to 3-27
7	-	-	-	-	-	-	-	-	-

4.l

Referred to any top-rated university in that subject for content

University	Name of the Course	Name of Faculty	Date of Delivery of the Course	Remarks
California State	Microprocessors	DR. I-HUNG KHOO		
University, Long				
Beach				

Faculty received any certification related to their subject. List of Certifications Identified / Done

	Certifying Agency	Certific	ation	-
Course		Done on	Proposed to be on	Remarks
Switching circuits and logic design	NPTEL	June 2018	November 2018	Successfully completed
Computer organization and architecture : A pedagogical aspect	NPTEL	January 2019	April 2019	Successfully completed

Completed subject wise/cluster wise training with cluster mentor. List of relevant Refresher Course Identified / Done

	Certifying Agency (As suggested by	Certifi	cation		
Course	DAB/Cluster Mentor/Industry/University other than MU)	Done on Proposed to be on		Remarks	
Pedagogy	Learning to Teach Online - Coursera	30/04/2020	April 2020	Successfully completed	
PBL	'Design Thinking' by ATAL Academy	7/12/2020	11/12/2020	Successfully completed	
Sub. Content Training	Content emerging trend in		October 2020	Successfully completed	

4.0 Best Practices Identified and adopted

4.n

No.	Item	Best Practices Identified				
		Univ. 1	Univ. 2	Univ. 3		

1	Microsite	California State University, Long Beach		
2	Video Lectures	IIT, Mumbai	IIT, Madras	IIT, Kharagpur
3	Assignments	California State University, Long Beach		
4	Mini Project			
5	Assessment Metric			
6	Quizzes	IIT, Mumbai	IIT, Madras	IIT, Kharagpur
7	Labs/ Practical (PBL)	IIT, Mumbai California State University, Long Beach	IIT, Madras	IIT, Kharagpur
8	Tests			
9	Etc			
10	Peer Assessment etc.	IIT, Mumbai	IIT, Madras	IIT, Kharagpur

4.p

Web Links for Online Notes/YouTube/VIT Digital Content/VIT Lecture Capture/NPTEL Videos

Students can view lectures by VIT professors, captured through LMS 'Lecture Capture' in VIT campus for previous years.

No.	Websites / Links	M o d u l e N o s .
1	http://www.ques10.com/p/10876/explain-the-interrupt-structure-of-8086-processor/http://www.bime.ntu.edu.tw/~ttlin/Course15/lecture_notes/C15_LECTURE_NOTE_11(2%20in%201).pdf	M o d u l e 3 l n t e r r u p t s

2	http://nptel.ac.in/courses/108107029/module9/lecture1/lecture1.pdf http://aturing.umcs.maine.edu/~meadow/courses/cos335/Intel8255A.pdf	M o d u l e 4 8 2 5
3	http://nptel.ac.in/courses/108107029/module10/lecture1/lecture1.pdf https://technicalpublications.org/media/freedownloads/8253_54-1.pdf	M o d u l e 4 8 2 5 3
4	https://pdos.csail.mit.edu/6.828/2014/readings/hardware/8237A.pdf http://nptel.ac.in/courses/Webcourse-contents/IIT%20Kharagpur/Embedded%20systems/Pdf/Lesson- 16.pdf	M o d u l e 4 8 2 3 7
5	http://nptel.ac.in/courses/108107029/module11/lecture2/lecture2.pdf http://www.cs.put.poznan.pl/rklaus/AK/katalogi%20pdf/drKlaus%208259a.pdf http://gradestack.com/Microprocessors-and/8259-Interfacing-with/8259-Interfacing-With/19322-3912-38212-study-wtw	M o d u l e 3 8 2 5 9
6	https://pdos.csail.mit.edu/6.828/2008/readings/i386.pdf	M o d u

	е
	5
	8
	0
	3
	8
	6

4.q Recommended MOOC Courses like Coursera / NPTEL / MIT-OCW / edX/VAC etc.

Sr.	MOOC Course Link	Course conducted by –	Course	Certificate
No.		Person / University / Institute	Duration	(Y / N)
		/ Industry		
1	https://swayam.gov.in/nd1_noc20_ee11/preview	Prof. Shaik Rafi Ahamed	12	Y
		IIT Guwahati (NPTEL)	weeks	
	https://nptel.ac.in/courses/108/105/108105102/	Prof. Shantanu	12	Υ
2		Chattopadhyay	Weeks	
		(NPTEL)		
	https://www.classcentral.com/course/swayam-	Chester Rebeiro	8 Week	Y
_	microprocessors-and-microcontrollers-9894 4	IIT Madras		
3	https://www.mooc-			
	list.com/tags/microprocessors			

Consolidated Course Lesson Plan

	From (date/month/year) To (date/month/year)		Total Number of Weeks	
Semester Duration	10/01/2022	30/04/2022	15	

	.or	O N	Lecture Topics / IA 1 and IA 2 /	Actual			ommended wing / Reading
Wee k	Lecture no.		BSA planned to be covered	date of Completio n	COs	Lecture No. (on LMS)	Chapter No. / Page Nos./ Books/ Web Site
1	1	1	8086/8088 CPU Architecture, Programmer's Model		CO1		R1 Page 99- 106 E2 1. Chapter – 2 Page 2-29 to 2-92
2	2	2	Data Transfer Instructions Arithmetic Instructions		CO2		1. Chapter – 2 Page 2-29 to 2-92
2			Transfer of control Instructions Processor Control Instructions		CO2		1. Chapter – 2 Page 2-29 to 2-92
3	3	2	Logical Instructions String Instructions		CO2		E2

9	8	4		CO4		
8			the 8259 in single and cascaded mode, Operating modes, programs for 8259 using ICWs and OCWs			Pages 483 – 512
	7	3	Programmable Interrupt Controller 8259 – Block Diagram, Interfacing	CO3		R1 Chapter 7 #
7	6	1 & 3	Functioning of 8086 in Minimum mode and Maximum mode Timing diagrams for Read and Write operations in minimum and maximum mode Types of interrupts Interrupt Service Routine Interrupt Vector Table Servicing of Interrupts by 8086 microprocessor	CO1, CO2 CO1		T2 Page 314 - 329 8086_family_U sers_Manual_1pdf https://edge.e dx.org/c4x/BIT SPilani/EEE231 /asset/8086 fa mily Users Ma nual 1 .pdf 1. Chapter -1 Page 1-1 to 1- 14 2. Chapter -2 Page 2-1 to 2- 14
6		1	Study of 8284 Clock Generator Study of 8288 Bus Controller	CO1	Lect 4	T2 Page 310 - 324
5	5	1	8086 pin configuration, Banking in 808 Demultiplexing of Address/Data bus	CO1		E1 1. Chapter -1 Page 1-1 to 1-14 2. Chapter -2 Page 2-1 to 2-14
4	4	2	Mixed Language Programming with C Language and Assembly Language.	CO2		E2 1. Chapter – 2 Page 2-29 to 2-92 T1 Page 2.7- 2.9 R1 Page 106 – 114
			Assembler Directives and Assembly Language Programming, Macros, Procedures Programming based on DOS and BIOS Interrupts (INT 21H, INT 10H)	CO2		1. Chapter – 2 Page 2-29 to 2-92 E2 1. Chapter – 2 Page 2-29 to 2-92

			Memory Interfacing - RAM and ROM Decoding Techniques – Partial and Absolute	CO4	R1 Chapter 7 # Pages 328 – 394
10	9	4	8255-PPI – Block diagram, Functional PIN Diagram, CWR, operating modes, interfacing with 8086.	CO4 CO4	R1 Chapter 8 # Pages 423 – 469
	10	4	8253 PIT - Block diagram, Functional PIN Diagram, CWR, operating modes, interfacing with 8086	CO4	R1 Chapter 8 # Pages 423 – 469
11			8257-DMAC – Block diagram, Functional PIN Diagram, Register organization, DMA operations and transfer modes	CO4	R1 Chapter 9 # Pages 475 – 517
	11	5	Architecture of 80386 microprocessor 80386 registers, General purpose Registers, EFLAGS and Control registers	CO5	E2 1. Chapter 2 Page 22 to 44 2. Chapter 4 Page 85 to 90 3. Chapter 5 Page 91 to 105 4. Chapter 6 Page 105 to 129 5. Chapter 7 Page 130 to 144 6. Chapter 15 Page 217 to 222
12			Real mode, Protected mode, virtual 8086 mode	CO5	E2 1. Chapter 2 Page 22 to 44 2. Chapter 4 Page 85 to 90 3. Chapter 5 Page 91 to 105 4. Chapter 6 Page 105 to 129 5. Chapter 7 Page 130 to 144 6. Chapter 15 Page 217 to 222
13	12	5 & 6	80386 memory management in Protected Mode – Descriptors and	CO5	E2 1. Chapter 2 Page 22 to 44

			selectors, descriptor tables, the memory paging mechanism		2. Chapter 4 Page 85 to 90 3. Chapter 5 Page 91 to 105 4. Chapter 6 Page 105 to 129 5. Chapter 7 Page 130 to 144 6. Chapter 15 Page 217 to 222
			Pentium Architecture Superscalar Operation,	CO6	E3 1. Chapter 2 Page 2-1 to 2- 4 2. Chapter 3 Page 3-1 to 3- 27
14	13	6	Integer & Floating Point Pipeline Stages, Branch Prediction Logic,	CO6	E3 1. Chapter 2 Page 2-1 to 2- 4 2. Chapter 3 Page 3-1 to 3- 27
14			Cache Organisation and MESI Model	CO6	E3 1. Chapter 2 Page 2-1 to 2- 4 2. Chapter 3 Page 3-1 to 3- 27

Rubric for Grading and Marking of Term Work (inform students at the beginning of semester)

Lecture + Practical (% Attendance) & Marks	Assign- ments	Tutorial	Lab / Practical Performance	Lab Journal Assessment	Class Tests (Other than IA)	Pop Quiz	Take Home Test	Total
05	05		05	05	05			25

Assignment/ Tutorial No.	Title of the Assignments / Tutorials	СО Мар	Assignment/ Tutorials given to Students on	Week of Submission
1	Fundamentals of 8086 Processor	CO1	4 th Week July 2020	1 st Week August 2020
2	Addressing modes and Instructions	CO2	3 rd week August 2020	4 th Week August 2020
3	Interrupts	CO3	2 nd Week September	3 rd Week September
4	80386 Processor	CO5	1 st Week October	2 nd Week October

Analysis of Assignment / Tutorial Questions and Related Resources

ent / No.	No.	7	Гуре* (/)			Based on	#	Questio	n Type (√)
Assignment / Tutorial No. Week No.	Week N	R	PQ	ОВТ	Module No.	Text Book	Reference Book	Other Learning Resource	MU EQ	Thought Provoking
1	3	√			1	T1	R1		√	
2	6	√			2			E1	√	
3	9	√			3		R1		√	
4	11	√			5			E2	√	

^{*} Tick ($\sqrt{\ }$) the Type of the Assignment: Regular (R); Pop Quiz (PQ) ; Open Book Test for TE/BE/ME (OBT)

Internal Assessment / Other Class Test / Open Book Test (OBT)/Take Home Test (THT) Details

Tests	Test Dates	Module No.	СО Мар	IA Question Paper Pattern	Policy
1 st IA Test		1,2	CO1, CO2	Q1 – MCQ - 10 Marks Q2 – 1 numerical 5 Marks	No IA Re-test
2 nd IA Test		3,4,5,6	CO3, CO4, CO5, CO6	Q3 – 1 numerical 5 Marks 20 marks each for IA 1 & 2	IA is a Head of passing *
Pop Quiz	Every Lecture	2	CO2	MCQ	
Take Home Test-1	5 th Week	1,2	CO1, CO2	Q1 – MCQ - 10 Marks Q2 – 1 numerical 5 Marks Q3 – 1 numerical 5 Marks	

[#] Write number for text book, reference book, other learning resource from this AAP – from Points 4.a to 4.d

Take Home Test-2	11 th Week	3,4,5,6	CO3, CO4, CO5, CO6		
------------------------	-----------------------	---------	-----------------------	--	--

^{*} Failures of IA test (IA1+IA2) shall appear for IA test in the next semester. There is no provision for re-test in the same semester.

Practical Activities – Regular Experiments

9.a	Practical A	Activities – Regular Experiments		
Practical No.	Module No.	Title of the Regular Experiments	Topics to be highlighted	CO Map
1	2	Study of tools used for programming of microprocessors (TASM)	Turbo Assembler	CO2
		Develop assembly language code to add, subtract two, 8-	Instruction set &	CO2
2	2	bit numbers which will occupy minimum program	Addressing	
		memory space	modes	
		Develop assembly language code to multiply, divide, two,	Instruction set &	CO2
3	2	8-bit numbers which will occupy minimum program	Addressing	
		memory space	modes	
		Develop assembly language code to convert the input	Instruction set &	CO2
4	2	from key board to the format which can be used for	Addressing	
		processing internally	modes	
		Develop Assembly language program using	Data Transfer	CO2
5	2	8086 microprocessor for block copy, block exchange with and without string instructions	Instructions	
6		Develop a 8086 program for block exchange operation	Data Transfer	CO2
6			Instructions	
		Given a bucket of ten, 8-bit numbers, develop assembly	Instruction set &	CO2
7	2	language code to find out smallest and largest element	Addressing	
		out of the bucket	modes	
		Develop a 8086 program to count no of odd and even	Instruction set &	CO2
8	2	numbers in given array	Addressing	
			modes	
		Develop 8086 Assembly Language Program to implement	Sorting logics such as bubble-sort.	CO2
9	2	bubble sort technique to arrange the Numbers in given bucket	as bubble-SUL.	
		of 8 bit numbers in (a) Ascending Order (b) Descending Order.		
10	2	Develop 8086 Assembly Language Program to – Find whether user entered string is Palindrome or not.	Palindrome Logic	CO2

9.b Practical Activities – Newly Added Experiments

Practical No.	Module No.	Title of the Newly Added Experiments	Concepts to be highlighted	СО Мар
INO.	INO.		riigriiigritea	

1	2	Develop 8086 Assembly Language Program to implement bubble sort technique to arrange the Numbers in given bucket of 8 bit numbers in (a) Ascending Order (b) Descending Order.	Sorting logics such as bubble-sort.	CO2
2	2	Develop 8086 Assembly Language Program to – Find whether user entered string is Palindrome or not.	Palindrome Logic	CO2

9.c Practical Activities – PBL Experiments

Practical No.	Module No.	Title of the PBL Experiments	Concepts to be highlighted	СО Мар
1	2	Develop assembly language code to convert the input from key board to the format which can be used for processing internally	Instruction set & Addressing modes	CO2
2	2	Develop assembly language code to add, subtract two, 8-bit numbers which will occupy minimum program memory space	Instruction set & Addressing modes	CO2

10 Beyond Syllabus Activities for Gap Mitigation

No.	Type of the Activity	Activities	Details – no of attendees, guest, feedback, mark sheet, report
		1- Guest Lectures by Industry Expert	Planned in the 7 th Week
	Experiential learning/Interaction	2- Workshops	-
1	with Outside World	3- Mini Project	-
		4- Industrial Visit	-
		5- Any other activity	-
		1- Poster Presentation	-
		2- Minute Papers	-
2	Collaborative & Group Activity	3- Students Seminars	Planned in the 8 th Week
		4- Students Debates	-
		5- Panel Discussion / Mock GD	-

		6- Mock Interview	-
		7- Any other activity	-
	Co Comindos	1- Informative videos (NPTEL/Youtube /TEDx/ MIT OW/edX)	Planned in the 2 nd Week
3	Co-Curricular Activity	2- Lecture Capture Usage	-
		3- Any other activity	-
		1- Class Tests/ Weekly Tests	-
		2- Pop Quiz	Planned in 10 th week
	Tests 8 Assessments	3- Mobile App Based Quiz	-
4		4- Open Book	-
		5- Take Home Test	-
		6- Any other activity	-

11.1 One-on-One Academic Mentoring Meetings done

No	Name of Mentee	Date of One-On-One Meeting				
INO	Name of Mentee	Beginning of Sem.	After Mid Term Results	Before End Sem.		

11.2 Identify Financial Concerns and refer appropriately

No.	Name of Mentee	Individual Goals	Any Financial Concern which	Any Emotional Concern to
		Identified	needs to be referred to	be referred to

* Do not delete any activity. Give details for planned events. Write 'NA' for activity Not Planned.

Consolidated Academic Administration Plan Prepared by (mention all theory teaching faculty names with signature)

Please write below your name and sign with date of the external cluster mentor meeting

Ajitkumar Khachane	Suvarna E	Bhat	 Faculty 3	
 External Industry Mentor	External Academic Mentor	VIT Cluster Mentor	Program HOD	