R_{thch}

per module

Absolute Maximum Ratings		Values		
Symbol	onditions 1)		Units	
V_{CES}		1200	V	
V_{CGR}	R_{GE} = 20 k Ω	1200	V	
I_{C}	T _{case} = 25/80 °C	100 / 80	Α	
I_{CM}	$T_{case} = 25/80 ^{\circ}\text{C}; t_p = 1 \text{ms}$	200 / 160	Α	
V_{GES}		± 20	V	
P_{tot}	per IGBT, T _{case} = 25 °C	690	W	
T_j , (T_{stg})		–40 + 150 (125)	°C	
V_{isol}	AC, 1 min.	2500	V	
humidity	IEC 60721-3-3	class 3K7/IE32		
climate	IEC 68 T.1	40/125/56		
Inverse D	Inverse Diode			
$I_F = -I_C$	T _{case} = 25/80 °C	95 / 65	Α	
$I_{FM} = -I_{CM}$	$T_{case} = 25/80 ^{\circ}\text{C}; t_p = 1 \text{ms}$	200 / 160	Α	
I _{FSM}	$t_p = 10 \text{ ms; sin.; } T_j = 150 ^{\circ}\text{C}$	720	Α	
I ² t	$t_p^i = 10 \text{ ms; } T_j = 150 ^{\circ}\text{C}$	2600	A ² s	

Absolute Maximum Ratings		Values	
Symbol	Conditions 1)		Units
V_{CES}		1200	V
V_{CGR}	R_{GE} = 20 k Ω	1200	V
I_{C}	T _{case} = 25/80 °C	100 / 80	Α
I _{CM}	$T_{case} = 25/80 ^{\circ}\text{C}; t_p = 1 \text{ms}$	200 / 160	Α
V_{GES}	,	± 20	V
P _{tot}	per IGBT, T _{case} = 25 °C	690	W
T_j , (T_{stg})		-40 + 150 (125)	°C
V_{isol}	AC, 1 min.	2500	V
humidity	IEC 60721-3-3	class 3K7/IE32	
climate	IEC 68 T.1	40/125/56	
Inverse Di	iode		
$I_F = -I_C$	T _{case} = 25/80 °C	95 / 65	Α
	$T_{case} = 25/80 ^{\circ}\text{C}; t_p = 1 \text{ms}$	200 / 160	Α
I_{FSM}	$t_p = 10 \text{ ms; sin.; } T_j = 150 \text{ °C}$	720	Α
I ² t	$t_p = 10 \text{ ms; } T_j = 150 \text{ °C}$	2600	A ² s

IFM = -ICM	$I_{\text{case}} = 25/80 \text{ C}; t_{\text{p}} = 1 \text{ ms}$		A		
I _{FSM}	$t_p = 10 \text{ ms; sin.; } T_j = 150 \text{ °C}$	720			Α
I ² t	$t_p = 10 \text{ ms; } T_j = 150 \text{ °C}$	2600			A ² s
		1			1
Charac	cteristics				
Symbol	Conditions 1)	min.	typ.	max.	Units
$V_{(BR)CES}$	$V_{GE} = 0$, $I_{C} = 4$ mA	$\geq V_{CES}$			V
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 2 \text{ mA}$	4,5	5,5	6,5	V
I _{CES}	$V_{GE} = 0$ $T_i = 25 °C$		0,1	1,5	mA
	$V_{CE} = V_{CES} \int T_i = 125 ^{\circ}C$		6		mA
I _{GES}	$V_{GE} = 20 \text{ V}, V_{CE} = 0$			300	nA
V_{CEsat}	$I_C = 75 \text{ A} V_{GE} = 15 \text{ V};$		3,3	3,85	V
V_{CEsat}	$I_{C} = 100 \text{ A} \ \ T_{i} = 25 ^{\circ}\text{C} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$		3,8		V
g _{fs}	$V_{CE} = 20 \text{ V}, I_{C} = 75 \text{ A}$	31			S
Сснс	per IGBT			350	pF
C _{ies}	√ V _{GE} = 0		5	6,6	nF
C _{oes}	>V _{CE} = 25 V		720	900	pF
C _{res}	f = 1 MHz		380	500	pF
L _{CE}				25	nН
t _{d(on)}) V _{CC} = 600 V		80		ns
t _r	$V_{GE} = -15 \text{ V} / +15 \text{ V}^{3}$		40		ns
$t_{d(off)}$	$I_C = 75 \text{ A, ind. load}$		360		ns
\mathbf{t}_{f}	$R_{Gon} = R_{Goff} = 8 \Omega$		20		ns
E _{on}	T _i = 125 °C		9		mWs
E _{off}] ,		3,5		mWs
Inverse D	Piode ⁸⁾				
VE = VEC	I _E = 75 A (V _{GE} = 0 V:		2,0(1,8)	2,5	V
$V_{E} = V_{EC}$	$I_F = 75 \text{ A} \left\{ V_{GE} = 0 \text{ V}; \right.$ $I_F = 100 \text{ A} \left\{ T_j = 25 (125) \text{ °C} \right\}$		2,25(2,05)	2,0	v
V _{TO}	T _i = 125 °C		_,(_,,	1,2	v
r _t	T _i = 125 °C		12	15	mΩ
	$I_F = 75 \text{ A}; T_i = 25 (125) ^{\circ}\text{C}^{-2}$		27(40)	• =	A
Q _{rr}	$I_F = 75 \text{ A}; T_i = 25 (125) ^{\circ}\text{C}^{-2}$		3(10)		μC
	characteristics		` /		<u> </u>
	per IGBT			0,18	°C/W
R_{thjc} R_{thjc}	per diode			0,10	°C/W
\thjc	per diode			0,50	°C/VV

SEMITRANS® M **Ultra Fast IGBT Modules**

SKM 100 GB 125 DN

SEMITRANS 2N (low inductance)

Features

- N channel, homogeneous Si
- · Low inductance case
- · Short tail current with low temperature dependence
- · High short circuit capability, self limiting to 6 * I_{cnom}
- Fast & soft inverse CAL diodes ⁸⁾
- · Isolated copper baseplate using DCB Direct Copper Bonding Technology
- · Large clearance (10 mm) and creepage distances (20 mm)

Typical Applications

- · Switched mode power supplies at $f_{sw} > 20 \text{ kHz}$
- · Resonant inverters up to 100 kHz
- Inductive heating

°C/W

0,05

· Electronic welders at $f_{sw} > 20 \text{ kHz}$

¹⁾ T_{case} = 25 °C, unless otherwise specified

 $^{^{2)}}$ $I_F = -I_C$, $V_R = 600$ V, $-di_F/dt = 800$ A/ μ s, $V_{GE} = 0$ V

 $^{^{3)}}$ Use $V_{GEoff} = -5... -15 \text{ V}$

⁸⁾ CAL = Controlled Axial Lifetime Technology

Fig. 1 Rated power dissipation $P_{tot} = f(T_C)$

Fig. 2 Turn-on /-off energy = f (I_C)

Fig. 3 Turn-on /-off energy = f (R_G)

M100G125 - 6 12

Fig. 6 Safe operating area at short circuit $I_C = f(V_{CE})$

Fig. 8 Rated current vs. temperature $I_C = f(T_C)$

Fig. 9 Typ. output characteristic, t_p = 80 μs; 25 °C

Fig. 10 Typ. output characteristic, $t_p = 80 \mu s$; 125 °C

$$V_{CEsat(t)} = V_{CE(TO)(Tj)} + r_{CE(Tj)} \cdot I_{C(t)}$$

$$V_{CE(TO)(Tj)} \le 1.4 + 0.003 (T_j -25) [V]$$

typ.:
$$r_{CE(T_i)} = 0.0253 + 0.000067 (T_i - 25) [\Omega]$$

max.:
$$r_{CE(T_j)} = 0.0307 + 0.00004 (T_j - 25) [\Omega]$$

valid for
$$V_{GE} = +15 {+2 \atop -1}$$
 [V]; $I_C > 0.3 I_{Cnom}$

Fig. 11 Saturation characteristic (IGBT)

Calculation elements and equations

Fig. 12 Typ. transfer characteristic, t_p = 80 μ s; V_{CE} = 20 V

 $V_{GE} = 0 V$ f = 1 MHz

Fig. 13 Typ. gate charge characteristic

Fig. 14 Typ. capacitances vs.V_{CE}

Fig. 15 Typ. switching times vs. I_C

Fig. 16 Typ. switching times vs. gate resistor $R_{\text{\scriptsize G}}$

Fig. 18 Diode turn-off energy dissipation per pulse

Fig. 19 Transient thermal impedance of IGBT $Z_{thJC} = f(t_p)$; $D = t_p / t_c = t_p \cdot f$

Fig. 22 Typ. CAL diode peak reverse recovery current $I_{RR} = f(I_F; R_G)$

Fig. 20 Transient thermal impedance of inverse CAL diodes Z_{thjc} = f (t_p); D = t_p / t_c = t_p · f

Fig. 23 Typ. CAL diode peak reverse recovery current I_{RR} = f (di/dt)

Fig. 24 Typ. CAL diode recovered charge $Q_{rr} = f (di/dt)$

Case outline and circuit diagram

Mechanical Data						
Symbol	Conditions		Values			Units
			min.	typ.	max.	
M_1	to heatsink, SI Units	(M6)	3	_	5	Nm
	to heatsink, US Units		27	_	44	lb.in.
M_2	for terminals, SI Units	(M5)	2,5	_	5	Nm
	for terminals, US Units		22	_	44	lb.in.
а			_	_	5x9,81	m/s ²
w			_	_	160	g

This is an electrostatic discharge sensitive device (ESDS). Please observe the international standard IEC 747-1, Chapter IX.

Eight devices are supplied in one SEMIBOX A without mounting hardware, which can be ordered separately under Ident No. 33321100 (for 10 SEMITRANS 2)

Larger packing units of 20 and 42 pieces are used if suitable

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.