Partielle afledede

Partielle afledede

Vi så sidste gang på snitkurver og de funktioner, hvis grafer danner snitkurverne. Disse funktioner kalder vi *snitfunktioner*. Mere præcist, hvis vi har en funktion

$$f: \mathbb{R}^2 \to \mathbb{R}$$
,

så har vi snitfunktionerne $g_k: \mathbb{R} \to \mathbb{R}$ og $h_k: \mathbb{R} \to \mathbb{R}$ givet ved henholdsvist

$$g_k(y) = f(k, y), h_k(x) = f(x, k),$$

som begge er funktioner af én variabel. Hvis disse er differentiable, så kan vi bestemme deres afledede funktion præcist som vi er vant til.

Eksempel 1.1. Lad f være givet ved

$$f(x,y) = x^2 + 2y.$$

Så har vi for hvert k snitfunktionerne

$$g_k(y) = f(k,y) = k^2 + 2y$$

og

$$h_k(x) = f(x,k) = x^2 + 2k.$$

Disse er differentiable funktioner. Derfor kan de differentieres som sædvanligt:

$$\frac{d}{dy}g_k(y) = 2,$$

og

$$\frac{d}{dx}h_k(x) = 2x.$$

Det er dog en smule besværligt at skulle konstruere en snitfunktion hver gang vi vil bestemme en sådan afledt. Derfor defineres de partielle afledede af en funktion af to variable.

Definition 1.2. Lad $f: \mathbb{R}^2 \to \mathbb{R}$ være en funktion af to variable. Så defineres den partielle afledede i (x, y) til f med hensyn til x som grænseværdien

$$\frac{\partial}{\partial x}f(x,y) = \lim_{h \to 0} \frac{f(x+h,y) - f(x,y)}{h},$$

og den partielle afledede i (x, y) med hensyn til y defineres som grænseværdien

$$\frac{\partial}{\partial y} f(x,y) = \lim_{h \to 0} \frac{f(x,y+h) - f(x,y)}{h}.$$

Det er ikke nødvendigvist givet, at disse grænseværdier eksisterer, men vi vil kun betragte tilfælde, hvor de eksisterer. Vi noterer også $\frac{\partial}{\partial x}f$ som f'_x , og tilsvarende noteres $\frac{\partial}{\partial y}f$ som f'_y .

Når vi laver partiel differentiation med henhold til x, så differentierer normalt mht. x og betragter y som en konstant og vice versa.

Eksempel 1.3. Rumfanget af en cylinder afhænger af to variable - radius r og højde h. Rumfanget af en cylinder er givet ved

$$R(h,r) = h\pi r^2.$$

De partielle afledede af cylinderen er derfor

$$\frac{\partial}{\partial h}R(h,r) = \pi r^2,$$

og

$$\frac{\partial}{\partial r}R(h,r) = 2h\pi r.$$

Væksten i højdens retning er derfor konstant, hvorimod væksten i radius retning er lineært voksende.

Eksempel 1.4. En funktion $f: \mathbb{R}^2 \to \mathbb{R}$ er givet ved

$$f(x,y) = \ln(x) + \sqrt{y}.$$

Så er de partielle afledede givet ved

$$f_x'(x,y) = \frac{1}{x}$$

og

$$f_y'(x,y) = \frac{1}{2\sqrt{y}}.$$

Til slut defineres gradienten for en funktion $f: \mathbb{R}^2 \to \mathbb{R}$.

Definition 1.5 (Gradient). Lad $f: \mathbb{R}^2 \to \mathbb{R}$ være givet. Så defineres gradienten $\operatorname{til} f \operatorname{som} \operatorname{vektoren}$

$$\nabla f = \begin{pmatrix} \frac{\partial}{\partial x} f(x, y) \\ \frac{\partial}{\partial y} f(x, y) \end{pmatrix}$$

Gradienten for en funktion er den retning, hvor funktionen vokser mest i et givent punkt.

Opgave 1

Bestem de partielle afledede til følgende funktioner

1)
$$f(x,y) = x^2 + 3x + y$$

2)
$$f(x,y) = xy + x^2 + 4y$$

3)
$$f(x,y) = x^2 + xy + y^2$$

3)
$$f(x,y) = x^2 + xy + y^2$$
 4) $f(x,y) = \sqrt{xy} + \frac{1}{x+y}$
5) $f(x,y) = (x+y)(x-y)$ 6) $f(x,y) = 10(3x+2y)^2$
7) $f(x,y) = \cos(x)\sin(y)$ 8) $f(x,y) = \cos(x+y)\sin(yx)$

5)
$$f(x,y) = (x+y)(x-y)$$

6)
$$f(x,y) = 10(3x + 2y)^2$$

7)
$$f(x,y) = \cos(x)\sin(y)$$

8)
$$f(x,y) = \cos(x+y)\sin(yx)$$

Opgave 2

i) Lad f være givet ved

$$f(x,y) = x^2 + xy + y^2$$
.

Bestem

$$\frac{\partial^2}{\partial x \partial y} f(x, y),$$

og

$$\frac{\partial^2}{\partial y \partial x} f(x, y),$$

og sammenlign dine resultater

ii) Lad f være givet ved

$$f(x,y) = e^{(x-y)(x+y)}$$

Bestem

$$\frac{\partial^2}{\partial x \partial y} f(x, y),$$

og

$$\frac{\partial^2}{\partial y \partial x} f(x, y),$$

og sammenlign dine resultater.

Opgave 3

Bestem gradienten til følgende funktioner:

1)
$$f(x,y) = x^2 + y^2$$

2)
$$f(x,y) = (x - 2y)(3y - 4x^2)$$

4) $f(x,y) = e^{x^2 + xy + y^2}$

3)
$$f(x,y) = \sqrt{x^2 + y}$$

4)
$$f(x,y) = e^{x^2 + xy + y^2}$$

5)
$$f(x,y) = \ln(x+y+10)$$
 6) $f(x,y) = (x+y)^5$

6)
$$f(x,y) = (x+y)^5$$

Opgave 4

i) Lad f være givet ved

$$f(x,y) = x^2 + xy + y^2.$$

Bestem gradienten af f i punktet (-1,3).

ii) Lad f være givet ved

$$f(x,y) = \frac{1}{x+y}.$$

Bestem gradienten af f i punktet (2, -4)

Opgave 5

I følgende opgave skal I bevise, at partiel differentiation fungerer nøjagtigt som normal differentiation i tilfældet at vi kan dele vores funktion af to variable op på en pæn måde.

i) Vis, at hvis f(x,y) = g(x) + h(y), så er $f'_{x}(x,y) = g'(x)$ og $f'_{y}(x,y) = h'(y)$

ii) Vis, at hvis $f(x,y) = g(x) \cdot h(y)$ så er $f'_x(x,y) = g'(x)h(y)$ og $f'_y(x,y) = g'(x)h(y)$ g(x)h'(y).