Artificial Intelligence

An Overview of Al and Machine Learning

Available on Amazon!

Al for People and Business (AIPB) Framework North Star People and Business—Better Human Experiences and Business Success Why Focused Unified Explainable Benefits People & Business Focused Holistic Scientific Managers Builders Experts Designers Testers Scientists Considerations Readiness Maturity Assessment Components Methodology Build Strategy Assess Vision Deliver Optimize Assessment Strategy Prioritized Roadmap Analytics Outputs Testable Solution **Vision Statement** Optimizations Solution Strategy POC, MVP, Pilot

What is Al?

Intelligence

Learning, understanding, and the application of the knowledge learned to achieve one or more goals

Artificial Intelligence

Intelligence exhibited by machines Also known as cognitive computing

Related Fields

Neuroscience, psychology, philosophy, mathematics, statistics, computer science

Artificial Intelligence Concepts

Cognition

The mental action or process of acquiring knowledge and understanding through thought, experience, and the senses. ¹

Machine Learning Definition

Non-Technical

Automatically Learn from data, and be able to improve knowledge learned from experience, without explicit programming or domain expertise.

Technical

Machine learning algorithms learn a target function that maps input variables to output variables (mapping function)

Machine Learning Definition Cont.

Parametric

Type of optimization problem

- Assumed model form (params, functions, ...)
- Learn optimal parameters (aka coefficients)

$$Y_i = \beta_0 + \beta_1 X_i$$
Target Param 1 Param 2 Data/Feature

Non-Parametric

No assumed model form

Data Types

Structured

Date	Open	Vol	Close
01/01/18	0.87	10K	1.23
01/02/18	1.23	8K	1.65

Unstructured

Image Audio Video Text

Semi-structured

XML JSON

Copyright © Alex Castrounis

Machine Learning Data

Labeled

Date	Open (\$)	Volume (k)		Close (\$)
01/01/20	0.87	10.7		1.23
01/02/20	1.23	8.3	•••	1.65

Features + Target

Unlabeled

F Name	Age	Email	•••	Zip
Sarah	28	s@	• • •	99999
Joe	42	j@	• • •	88888

Features Only

Target

Machine Learning Types

Supervised [Labeled]

Unsupervised [Unlabeled]

Semi-supervised [Both]

Self-supervised [Unlabeled]

Reinforcement

Transfer

Algorithms

Supervised - Regression

Supervised - Classification

Supervised - Both

Unsupervised

Simple and Multiple Linear Regression

Random Forests

K-Means

Principle Component Analysis (PCA)

Naïve Bayes

Neural Networks

K Nearest Neighbors (KNN)

Hidden Markov Models

Support Vector Machines (SVM)

Decision Trees

Logistic Regression

Gaussian Mixture Model

ExtraTrees

Generalized Linear/Additive Models (GLM/GAM)

Artificial Neurons

Artificial Neural Network

AI Categories and Relationships

Increasing Level of Sophistication

GABDO Al Process Model

Tradeoffs and Considerations

Model

- Overfitting vs underfitting (bias/variance)
- Performance vs interpretability/explainability (black box)
- Complexity vs simplicity (parsimony)

Data and features

- Representative and balanced
- Adequate quantity, depth, and completeness
- Intractability (data, algorithm, feature engineering)

Performance

Error tradeoffs

(non-exhaustive)

Overfitting vs Underfitting

High bias (underfit)

"Just right"

High variance (overfit)

Image Credit: Andrew Ng's Coursera Machine Learning course

Summary and Next Steps

- Artificial intelligence and machine learning are
 - Incredibly powerful fields that can drive innovation and the creation of amazing new products and services
 - Fields that can benefit both businesses and customers alike
 - Going to become more ubiquitous and important over time
 - Important to understand, even if at a high level only
- Continue learning about Al
 - Artificial Intelligence: Al For Business
 - Artificial Intelligence: Real-World Applications

Thank You!

youtube.com/whyofai

whyofai.com/newsletter

Available on Amazon

