# **ACT 1 Introduction aux circuits séquentiels**

Nous allons découvrir le fonctionnement de circuits de décision dits « séquentiels ».

# 1 Rappels sur l'algèbre de Boole

#### **Notations**

- La conjonction, notée & (esperluette), ^ ou . est lue "ET"
- La disjonction, notée | (pipe), v ou + est lue "OU"
- la négation, notée ~, ¬ ou (lire barre) est lue "NON"

## **Symboles**

Les symboles américains représentant les fonctions logiques sont différents de la norme européenne (forme arrondie).

| FONCTION     | EQUATION                   | SYMBOLES      |              |             | TABLES DE        |                  |                  |
|--------------|----------------------------|---------------|--------------|-------------|------------------|------------------|------------------|
| FUNCTION     |                            | International | Français     | Allemand    | VERITE           |                  |                  |
|              |                            |               |              | 7           | а                | $\perp$          | S                |
| NON          | S = <u>a</u>               | *             | 1 0-         | <b>−</b> D~ | 0<br>1           |                  | 1<br>0           |
| ET           | S = a.b                    |               | -[&]         | <b>→</b>    | 0<br>0<br>1<br>1 | 0<br>1<br>0<br>1 | 0 0 1            |
| NAND         | $S = \overline{a \cdot b}$ | a s           | - & <b>-</b> |             | 0<br>0<br>1<br>1 | 0<br>1<br>0<br>1 | 1<br>1<br>1<br>0 |
| ου           | S = a + b                  | <u>∞</u>      | <u>≥</u> 1   | $\Box$      | 0<br>0<br>1<br>1 | 0<br>1<br>0<br>1 | 0<br>1<br>1<br>1 |
| NOR          | S = a + b                  | a S           |              | <b>→</b>    | 0<br>0<br>1<br>1 | b<br>0<br>1<br>0 | 1<br>0<br>0      |
| OU Exclusif  | S = a ⊕ b                  | a s           | =1           |             | 0<br>0<br>1<br>1 | 0<br>1<br>0      | 0 1 1 0          |
| NOR Exclusif | S = a + b                  |               | = 1          |             | 0<br>0<br>1<br>1 | 0<br>1<br>0<br>1 | 1<br>0<br>0<br>1 |

### **Propriétés**

#### Éléments neutres

- 0 est élément neutre de la fonction OU : a+0=a
- 0 est élément absorbant de la fonction ET : a·0=0
- 1 est élément neutre de la fonction ET : a·1= a
- 1 est élément absorbant de la fonction OU : a+1=1

### Complémentarité

- $a+\overline{a}=1$
- $a \cdot \overline{a} = 0$

#### Commutativité

- du produit logique : a·b=b·a
- de la somme logique : a+b=b+a

#### Distributivité

- de la fonction ET par rapport à la fonction OU :  $a \cdot (b+c) = a \cdot b + a \cdot c$
- de la fonction OU par rapport à la fonction ET :  $a+(b\cdot c)=(a+b)\cdot(a+c)$

### Absorption

•  $a+a\cdot b=a\cdot 1+a\cdot b=a\cdot (1+b)=a$ 

### Idempotence

- a+a=a
- a·a=a

#### Associativité

- du produit logique :  $a \cdot (b \cdot c) = (a \cdot b) \cdot c = a \cdot b \cdot c$
- de la somme logique : a+(b+c)=(a+b)+c=a+b+c

#### Théorèmes de DE MORGAN

- Premier théorème :  $\overline{a+b} = \overline{a} \cdot \overline{b}$
- Deuxième théorème :  $\overline{a \cdot b} = \overline{a} + \overline{b}$

# 2 <u>La bascule RS</u>

Soit la fonction booléenne suivante et son chronogramme :



| Entrée | Entrée | Sortie Q | Sortie /Q | Remarques |
|--------|--------|----------|-----------|-----------|
| R      | S      | Qn+1     | /Qn+1     |           |
| 0      | 0      |          |           |           |
| 0      | 1      |          |           |           |
| 1      | 0      |          |           |           |
| 1      | 1      |          |           |           |

- Compléter la table de vérité de la bascule.
- Quelle utilisation concrète cela pourrait-il avoir ?

# 3 La bascule RS synchrone

• Comment synchroniser le changement d'état avec une horloge ?



- Comment éliminer la dernière combinaison en ayant toujours S et R complémentaires ?
- Comment appeler ce signal alors ?

