# 2003 Mini-Test 1: Solutions

## Problème 1 (1 point sur 5)

 $1 + 4 \sin 5t - 6 \cos 4t$ 

La fréquence fondamentale:

$$\omega_0 = 1 \implies T_0 = 2\pi$$

Les coefficients sont calculés ainsi

$$3 + 4\sin(5t) - 6\cos(4t)$$

$$= 3 + \frac{4}{2j} \left( e^{j5t} - e^{-j5t} \right) - \frac{6}{2} \left( e^{j4t} + e^{-j4t} \right)$$

$$= 3 - 2j \left( e^{j5t} - e^{-j5t} \right) - 3 \left( e^{j4t} + e^{-j4t} \right)$$

Donc

$$F(0) = 1$$
  $F(4) = -3$   $F(-4) = -3$   $F(5) = -2j$   $F(-5) = 2j$ 

Le spectre de puissance est

$$P(n) = |F(n)|^2$$
  $\Rightarrow$   $P(0) = 1$   $P(4) = 9 = P(-4)$   $P(5) = 4 = P(-5)$ 

#### Spectre de Puissance



fréquence (a) en radians

# Problème 2 (1 point sur 5)



Cette fonction est réelle et impaire...

1.  $f_p(t)$  est une fonction réelle, donc on sait que

$$F^*(n) \neq F(-n)$$
 et l'énoncé est FAUX

2.  $f_p(t)$  est une fonction réelle, donc on sait que

|F(n)| est paire et l'énoncé est FAUX

3. Arg F(n) est toujours réel peu-importe la fonction  $f_p(t)$ 

l'énoncé est FAUX

4.  $f_p(t)$  est une fonction impaire alors F(n) est imaginaire **pur**, donc on sait que

 $B(n) \neq 0$   $\forall n$  et et l'énoncé est FAUX

### Problème 3 (3 points sur 5)



#### a) 1 point

Les coefficients complexes de Fourier pour cette fonction périodique sont déterminés par

$$F(n) = \frac{1}{T_0} \int_0^{T_0} f_p(t) e^{-j\omega_0 nt} dt = \frac{1}{T_0} \int_{-T_0/2}^{T_0/2} f_p(t) e^{-j\omega_0 nt} dt$$

Notez: on peut utiliser n'importe quelle période pour l'intégration.

On commence avec n=0.

$$F(0) = \frac{1}{T_0} \int_{-T_0/2}^{T_0/2} f_p(t) dt = \frac{1}{T_0} \int_{-1}^{0} dt - \frac{1}{T_0} \int_{0}^{1} dt = 0$$

Pour les autres valeurs de n:

$$F(n) = \frac{1}{T_0} \int_{-1}^{0} e^{-jn\omega_0 t} dt - \frac{1}{T_0} \int_{0}^{1} e^{-jn\omega_0 t} dt = \frac{1}{T_0} \left[ \frac{e^{-jn\omega_0 t}}{-jn\omega_0} \right]_{-1}^{0} - \frac{1}{T_0} \left[ \frac{e^{-jn\omega_0 t}}{-jn\omega_0} \right]_{0}^{1}$$

$$= \frac{-1}{T_0 jn\omega_0} \left( 1 - e^{jn\omega_0} \right) - \frac{-1}{T_0 jn\omega_0} \left( e^{-jn\omega_0} - 1 \right)$$

$$= \frac{-1}{T_0 jn\omega_0} \left( 2 - e^{jn\omega_0} - e^{-jn\omega_0} \right) = \frac{-1}{T_0 jn\omega_0} \left( 2 - 2\cos n\omega_0 \right)$$

$$= \frac{2j}{T_0 n\omega_0} \left( 1 - \cos n\omega_0 \right)$$

Nous utilisons la relation  $\cos 2\theta = 1 - 2\sin^2 \theta$  pour la dernière simplification

$$F(n) = \frac{2j}{T_0 n \omega_0} 2 \sin^2 \frac{n \omega_0}{2} = \frac{4j}{T_0 n^2 \pi / T_0} \sin^2 \frac{n \omega_0}{2} = \frac{2j}{n \pi} \sin^2 \frac{n \omega_0}{2}$$

b) Pour  $T_0$ =2 les coefficients sont

$$F(n) = \frac{2j}{n\pi} \sin^2 \frac{n\pi}{2} = \begin{cases} 0 & n \text{ pair} \\ \frac{2j}{n\pi} & n \text{ impair} \end{cases}$$

Pour  $T_0$ =4 les coefficients sont

$$F(n) = \frac{2j}{n\pi} \sin^2 \frac{n\pi}{4} = \begin{cases} \frac{2j}{n\pi} & n/2 \text{ entier et impair} \\ \frac{j}{n\pi} & n \text{ impair} \end{cases}$$

Il y a plus des lignes spectrales plus que le période est grand. En plus, elles sont plus rapprochées parce que  $\omega_0$  est plus petit.

Pour To=4, pour le cas n/2 entier et pair, F(n)=0.