

Ministério da Educação

UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Campus Apucarana

Curso de Bacharelado em Engenharia de Computação

Laboratório de Sistemas Digitais (SICO5A) Laboratório 1: Simulação computacional no Logisim.

i) Simular no Logisim um circuito lógico cuja saída seja nível alto quando a maioria das entradas, A, B, C for nível alto, vide Figura 1.

Figura 1 – Problema 1.

Α	В	С	Saída
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Primeiramente montei o mapa de karnaugh achando o sistema abaixo, demonstrado na foto abaixo:

Imagem 1 - Mapa de Karnaugh.

Após isso montei o sistema no logisim e também a tabela verdade para conferir com a nossa primeira cedida pelo enunciado.

Imagem 2 - Circuito no Logisim.

Tabela 1 - Tabela verdade.

a	b	С	Х
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Após a simulação podemos observar que o circuito lógico simplificado está feito de maneira correta, pois se compararmos a tabela cedida com a que obtivemos notamos que elas são idênticas.

ii) Um número de quatro bits é apresentado por ABCD, em que D é o LSB. Projeto um circuito lógico que gere um nível alto na saída sempre que o número binário for maior que 0010 e menor que 1000.

Figura 2 - Problema 2.

Α	В	С	D	Saída
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	1
0	1	0	0	1
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

Como podemos observar, na imagem 3 foi feito o mapa de Karnaugh e é criado o circuito como mostrado na figura 4. Logo comparando a tabela do exercício com a tabela verdade do circuito encontrado, podemos afirmar que a simplificação está correta.

Imagem 3 - Mapa de Karnaugh.

Imagem 4 - Circuito Logisim.

Tabela 2 - Tabela verdade.

Α	В	С	D	Х
0	0	0	0	0
0	0	0	1	0
0	0	1	0	
0	0	1	1	1
0 0 0 0	1	0	0 1 0	0 1 1
0	1	0		1
		1	1 0 1 0	
0 0 1	1 1	1	1	1 1
1	0	0	0	0
1	0	0	1	0
1		1	0	0
1 1 1 1	0 0 1	1	0 1 0	0 0 0
1	1	0	0	0
	1	0		
1 1 1	1 1	1	1 0 1	0 0 0
1	1	1	1	0