Introduction

The data is related with direct marketing campaigns of a Portuguese banking institution. The classification goal is to predict if the client will or will not subscribe to a term deposit (variable y).

Reading Dataset ¶

```
In [1]:
path="C:\Users\user\Desktop\Namita Chhibba\Semester III\Practical Data Science\Assignme
In [2]:
import pandas as pd
import numpy as np
In [3]:
bank = pd.read_csv(path+"/part1.csv",delimiter=";", index_col=0) # reading the new csv
 file
In [4]:
bank['day_of_week'] = map(lambda x: x.lower(), bank['day_of_week'])
bank['day_of_week'].head(5)
Out[4]:
0
     fri
     fri
1
2
     wed
3
     fri
     mon
Name: day_of_week, dtype: object
```

Data Cleaning and Exploration

```
import matplotlib.pyplot as plt
```

In [58]:

In [7]:

```
bank['age'].plot(kind='hist',bins=20)
plt.title('Histogram and boxplot of ages of customers \n before removing outlier')
plt.xlabel('Age')
plt.show()

bank['age'].plot(kind='box')
#plt.title('Boxplot of ages of customers')
plt.show()
```

Histogram and boxplot of ages of customers

In [8]:

```
b= bank.sort_values(['age'], ascending=[False])
b['age'].head(10)
Out[8]:
394
        250.0
385
        143.0
1215
         88.0
1796
         86.0
696
         86.0
1123
         85.0
3549
         82.0
150
         82.0
4067
         81.0
4066
         81.0
Name: age, dtype: float64
```

In [9]:

```
# Removing impossible age values and plotting again.
mask_age = bank['age'] <=100
bank['Age']=bank.loc[mask_age,'age']
bank['Age'].describe()</pre>
```

Out[9]:

```
count
         4117.000000
mean
           40.112598
std
           10.314219
           18.000000
min
25%
           32.000000
50%
           38.000000
75%
           47.000000
           88.000000
max
Name: Age, dtype: float64
```

In [10]:

```
bank['Age'].plot(kind='hist',bins=20)
plt.title('Histogram and boxplot of ages of customers \n after removing outlier')
plt.xlabel('Age')
plt.show()

bank['Age'].plot(kind='box')
# plt.title('Boxplot of ages of customers \n after removing impossible values')
plt.show()

bank['Age'].describe()
```


Out[10]:

count	4:	117.0000	900
mean		40.1125	598
std		10.3142	219
min		18.0000	900
25%		32.0000	900
50%		38.0000	900
75%		47.0000	900
max		88.000	900
Name:	Age,	dtype:	float64

In [11]:

```
bank['pdays'].plot(kind='hist')
plt.title('Count of customers based on number of days \n that passed after the client w
as last contacted \n from a previous campaign before removing outlier')
plt.xlabel('Pdays')
plt.show()
bank['pdays'].plot(kind='box')
#plt.title('Number of days that passed by after the client was \n last contacted from a
previous campaign for different customers')
plt.show()
bank['pdays'].describe()
```

Count of customers based on number of days that passed after the client was last contacted from a previous campaign before removing outlier

Out[11]:

count	4119.000000
mean	960.422190
std	191.922786
min	0.000000
25%	999.000000
50%	999.000000
75%	999.000000
max	999.000000

Name: pdays, dtype: float64

In [12]:

```
b= bank.sort_values(['pdays'], ascending=[False])
b['pdays'].head(10)
```

Out[12]:

```
0
        999
2722
        999
2708
        999
2710
        999
2711
        999
2712
        999
2713
        999
2714
        999
2715
        999
        999
2716
```

Name: pdays, dtype: int64

In [13]:

```
# As 999 is the data entry corresponding to the client not previously contacted. So we
  remove it and check the plot for remaining
# values.
mask_pdays = bank['pdays'] <999
bank['Pdays']=bank.loc[mask_pdays,'pdays']
bank['Pdays'].describe()</pre>
```

Out[13]:

```
count
         160.000000
mean
           5.862500
std
           3.911743
min
           0.000000
25%
           3.000000
50%
           6.000000
75%
           6.000000
          21.000000
max
```

Name: Pdays, dtype: float64

In [14]:

```
bank['Pdays'].plot(kind='hist')
plt.title('Count of customers based on number of days \n that passed after the client w
as last contacted \n from a previous campaign after removing outlier')
plt.xlabel('Pdays')
plt.show()
bank['Pdays'].plot(kind='box')
#plt.title('Number of days that passed by after the client was \n last contacted from a
previous campaign for different customers')
plt.show()
bank['Pdays'].describe()
```


Out[14]:

count	160.000000
mean	5.862500
std	3.911743
min	0.000000
25%	3.000000
50%	6.000000
75%	6.000000
max	21.000000

Name: Pdays, dtype: float64

In [15]:

```
bank['duration'].plot(kind='hist')
plt.title('Count of customers based on duration of call')
plt.xlabel('duration of call')
plt.show()
bank['duration'].plot(kind='box')
#plt.title('Number of days that passed by after the client was \n last contacted from a previous campaign for different customers')
plt.show()
bank['duration'].describe()
```


Out[15]:

4119.000000 count 256.754978 mean 254.694889 std min 0.000000 25% 103.000000 50% 181.000000 75% 317.000000 3643.000000 max

Name: duration, dtype: float64

In [16]:

```
b= bank.sort_values(['duration'], ascending=[False])
b['duration'].head(10)
```

Out[16]:

```
2231
        3643.0
1546
        3253.0
1392
        2653.0
1685
        2301.0
3266
        1980.0
262
        1868.0
        1855.0
2530
2900
        1855.0
3256
        1820.0
2957
        1806.0
```

Name: duration, dtype: float64

In [17]:

```
bank['previous'].value_counts().plot(kind='bar')
plt.title('Count of customers for different number \n of contacts performed before this
campaign')
plt.xlabel('No. of previous contacts')
plt.ylabel('count')
plt.show()

bank['previous'].describe()
```


Out[17]:

count	4119.000000
mean	0.190337
std	0.541788
min	0.000000
25%	0.000000
50%	0.000000
75%	0.000000
max	6.000000

Name: previous, dtype: float64

In [18]:

```
bank['emp.var.rate'].plot(kind='hist')
plt.title('Count of customers based on \n employment variation rate')
plt.xlabel('duration of call')
plt.show()
bank['emp.var.rate'].describe()
```


Out[18]:

count	4119.000000
mean	0.084972
std	1.563114
min	-3.400000
25%	-1.800000
50%	1.100000
75%	1.400000
max	1,400000

Name: emp.var.rate, dtype: float64

In [19]:

```
bank['cons.price.idx'].plot(kind='hist')
plt.title('Count based on \n consumer price index')
plt.xlabel('duration of call')
plt.show()
bank['cons.price.idx'].describe()
```


Out[19]:

count	4119.000000
mean	93.579421
std	0.579253
min	92.201000
25%	93.075000
50%	93.749000
75%	93.994000
max	94.767000

Name: cons.price.idx, dtype: float64

In [20]:

```
bank['cons.conf.idx'].plot(kind='hist')
plt.title('Count based on \n Consumer confidence index')
plt.xlabel('duration of call')
plt.show()
bank['cons.conf.idx'].describe()
```


Out[20]:

count	4119.000000
mean	-40.499102
std	4.594578
min	-50.800000
25%	-42.700000
50%	-41.800000
75%	-36.400000
max	-26.900000

Name: cons.conf.idx, dtype: float64

In [21]:

```
bank['euribor3m'].plot(kind='hist', bins=5)
plt.title('Count based on \n euribor 3 month rate - daily indicator')
plt.xlabel('euribor 3 month rate ')
plt.ylabel('count')
plt.show()
bank['euribor3m'].describe()
```


Out[21]:

count	4119.000000
mean	3.621787
std	1.733198
min	0.635000
25%	1.334000
50%	4.857000
75%	4.961000
max	5.045000

Name: euribor3m, dtype: float64

In [22]:

```
bank['nr.employed'].plot(kind='hist', bins=5)
plt.title('Number of employees - quarterly indicator')
plt.xlabel('number of employees ')
#plt.xlim(0,6)
#plt.axis([0, 6, min(y), max(y)])
plt.ylabel('count')
plt.show()
bank['nr.employed'].describe()
```


Out[22]:

count	4119.000000
mean	5166.536386
std	73.619352
min	4963.600000
25%	5099.100000
50%	5191.000000
75%	5228.100000
max	5228.100000

Name: nr.employed, dtype: float64

Count of customers based on various variables

Based on Term Deposit

In [23]:

```
bank['y'].value_counts().plot(kind='bar')
plt.title('Count of customers subscribed to term deposit')
plt.ylabel('count')
plt.show()
bank['y'].describe()
```


Out[23]:

count 4119 unique 2 top no freq 3668

Name: y, dtype: object

Based on different jobs

In [24]:

```
bank['job'].value_counts().plot(kind='bar')
plt.title('Count of customers in different jobs')
plt.xlabel('job type')
plt.ylabel('count')
plt.show()
bank['job'].describe()
```


Out[24]:

count 4119
unique 12
top admin.
freq 1012

Name: job, dtype: object

Based on Marital Status

In [25]:

```
bank['marital'].value_counts().plot(kind='bar')
plt.title('Count of customers of different marital status')
plt.xlabel('Marital status')
plt.ylabel('count')
plt.show()

bank['marital'].describe()
```


Out[25]:

count 4119
unique 4
top married
freq 2509

Name: marital, dtype: object

Based on Educational Status

In [26]:

```
bank['education'].value_counts().plot(kind='bar')
plt.title('Count of customers of different educational status')
plt.xlabel('education status')
plt.ylabel('count')
plt.show()

bank['education'].describe()
```


Out[26]:

count 4119
unique 8
top university.degree
freq 1264
Name: education, dtype: object

Based on Credit

In [27]:

```
bank['default'].value_counts().plot(kind='bar')
plt.title('Count of customers having credit in default')
plt.xlabel('Default status')
plt.ylabel('count')
plt.show()
bank['default'].describe()
```


Out[27]:

count 4119 unique 3 top no freq 3315

Name: default, dtype: object

Based on Housing Loan

In [28]:

```
bank['housing'].value_counts().plot(kind='bar')
plt.title('Count of customers having housing loan')
plt.xlabel('Housing loan status')
plt.ylabel('count')
plt.show()

bank['housing'].describe()
```


Out[28]:

count 4119
unique 3
top yes
freq 2175

Name: housing, dtype: object

Based on Personal Loan

In [29]:

```
bank['loan'].value_counts().plot(kind='bar')
plt.title('Count of customers having personal loan')
plt.xlabel('Personal loan status')
plt.ylabel('count')
plt.show()
bank['loan'].describe()
```


Out[29]:

count 4119 unique 3 top no freq 3349

Name: loan, dtype: object

Based on Contact Type

In [30]:

```
bank['contact'].value_counts().plot(kind='bar')
plt.title('Count of customers with different contact type')
plt.xlabel('Communication type')
plt.ylabel('count')
plt.show()

bank['contact'].describe()
```


Out[30]:

count 4119
unique 2
top cellular
freq 2652

Name: contact, dtype: object

Based on Last Contact Month of Year

In [31]:

```
bank['month'].value_counts().plot(kind='bar')
plt.title('Count of customers based on \n last contact month of year')
plt.xlabel('month')
plt.ylabel('count')
plt.show()

bank['month'].describe()
```


Out[31]:

count 4119
unique 10
top may
freq 1378

Name: month, dtype: object

Based on Last Contact Day of Week

In [32]:

```
bank['day_of_week'].value_counts().plot(kind='bar')
plt.title('Count of customers based on \n last contact day of the week')
plt.xlabel('day of week')
plt.ylabel('count')
plt.show()
bank['day_of_week'].describe()
```


Out[32]:

count 4119 unique 5 top thu freq 860

Name: day_of_week, dtype: object

Based on Outcome of previous marketing campaign

In [33]:

```
bank['poutcome'].value_counts().plot(kind='bar')
plt.title('Count of customers based on \n outcome of previous marketing campaign')
plt.xlabel('outcome')
plt.ylabel('count')
plt.show()
bank['poutcome'].describe()
```


Out[33]:

count 4119
unique 3
top nonexistent
freq 3523

Name: poutcome, dtype: object

In [34]:

#bank.loc[471]['duration']

In [35]:

```
bank['campaign'].value_counts().plot(kind='bar')
bank['campaign'].describe()
```

Out[35]:

count	4119.000000
mean	2.537266
std	2.568159
min	1.000000
25%	1.000000
50%	2.000000
75%	3.000000
max	35.000000

Name: campaign, dtype: float64

Sanity Checks

1. age

In [38]:

```
bank[(bank['age']>100) | (bank['age']<0)]
```

Out[38]:

age		age	job	marital	education	default	housing	loan	oan contact month		contact month day		onth day_of_v	
3	885	143.0	unemployed	married	basic.4y	no	no	no	cellular	may	_			
3	394	250.0	admin.	married	basic.9y	no	no	no	cellular	aug				

2 rows × 23 columns

2. duration

In [40]:

```
bank[(bank['duration']== 0) & (bank['y'].str.contains('no'))]
# sanity check as per the requirement mentioned in column information
```

Out[40]:

		age	job	marital	education	default	housing	loan	contact	month	day_of_wee
	1950	39.0	admin.	married	high.school	no	yes	no	telephone	may	tı

1 rows × 23 columns

3. pdays

In [42]:

```
(bank['pdays'] ==999).sum(axis=0)
# bank.pdays.value_counts()[999]
```

Out[42]:

3959

In [43]:

print bank[bank.pdays == 999]

,	age	job	marital	education	default	housing
0	30.0	blue-collar	married	basic.9y	no	yes
1	39.0	services	single	high.school	no	no
2	25.0	services	married	high.school	no	yes
3	38.0	services	married	basic.9y	no	unknown
4	47.0	admin.	married	university.degree	no	yes
5	32.0	services	single	university.degree	no	no
6	32.0	admin.	single	university.degree	no	yes
7	41.0	entrepreneur	married	university.degree	unknown	yes
8	31.0	services	divorced	<pre>professional.course</pre>	no	no
9	35.0	blue-collar	married	basic.9y	unknown	no
10	25.0	services	single	basic.6y	unknown	yes
11	36.0	self-employed	single	basic.4y	no	no
12	36.0	admin.	married	high.school	no	no
13	47.0	blue-collar	married	basic.4y	no	yes
14	29.0	admin.	single	high.school	no	no
15 16	27.0 44.0	services admin.	single divorced	university degree	no	no
16 17	46.0	admin.	divorced	university.degree university.degree	no	no
18	45.0	entrepreneur	married	university.degree	no unknown	yes yes
19	50.0	blue-collar	married	basic.4y	no	no no
20	55.0	services	married	basic.4y	unknown	yes
22	29.0	technician	single	university.degree	no	yes
23	40.0	management	married	high.school	no	no
24	44.0	technician	married	professional.course	unknown	yes
25	38.0	technician	married	professional.course	no	yes
26	36.0	technician	divorced	professional.course	no	no
27	28.0	blue-collar	married	basic.6y	unknown	no
28	47.0	admin.	single	unknown	unknown	no
29	34.0	admin.	married	university.degree	no	no
30	38.0	technician	married	university.degree	no	yes
• • •	• • •	• • •	• • •	•••	• • •	
4087	29.0	admin.	married	university.degree	no	yes
4089	25.0	admin.	single	university.degree	no	yes
4090	43.0	blue-collar	married	basic.4y	unknown	yes
4091	38.0	management	married	high.school	unknown	no
4092	30.0	blue-collar	single	high.school	no	no
4093	56.0	retired	married	basic.4y	unknown	no
4095	36.0	admin. services	single	university.degree	no	no
4096 4097	33.0 41.0	blue-collar	married divorced	high.school basic.9y	no	no
4098	34.0	housemaid	single	university.degree	no no	no yes
4099	58.0	admin.	divorced	high.school	no	no
4100	41.0	admin.	divorced	high.school	no	no
4101	35.0	entrepreneur	single	university.degree	no	yes
4102	31.0	blue-collar	single	basic.9y	unknown	no
4103	43.0	services	married	high.school	no	no
4104	42.0	technician	divorced	professional.course	no	yes
4105	47.0	housemaid	married	basic.4y	unknown	yes
4106	45.0	entrepreneur	divorced	basic.9y	no	yes
4107	36.0	admin.	married	university.degree	unknown	yes
4108	32.0	admin.	married	university.degree	no	yes
4109	63.0	retired	married	high.school	no	no
4110	53.0	housemaid	divorced	basic.6y	unknown	unknown
4111	30.0	technician	married	university.degree	no	no
4112	31.0	technician	single	professional.course	no	yes
4113	31.0	admin.	single	university.degree	no	yes
4114	30.0 39.0	admin. admin.	married	basic.6y	no	yes
4115 4116	39.0 27.0	student	married single	high.school high.school	no	yes no
4110	27.0	Student	2111816	HITEH SCHOOL	no	110

23/2020				1 011	uguese bai	ik Dala Allalysis		
4117	58.0	admin.	mar	rried	high.	school	no	no
4118	34.0	management		ingle	_	school	no	yes
				8 -	0			,
	loan	contact	month	day_of_week		previous	nout	come
\	10011	concacc	morren	day_or_week	• • •	previous	pouc	Come
\		collulan	m = 1.	£n;		0	nanavis	+
0	no	cellular	may	fri	• • •	0	nonexis	
1	no	telephone	may	fri	• • •	0	nonexis	
2	no	telephone	jun	wed	• • •	0	nonexis	
3	unknown	telephone	jun	fri	• • •	0	nonexis	
4	no	cellular	nov	mon	• • •	0	nonexis	
5	no	cellular	sep	thu		2	fai	lure
6	no	cellular	sep	mon		0	nonexis	tent
7	no	cellular	nov	mon		0	nonexis	tent
8	no	cellular	nov	tue		1	fai	lure
9	no	telephone	may	thu		0	nonexis	tent
10	no	cellular	juĺ	thu		0	nonexis	tent
11	no	cellular	jul	thu	• • •	0	nonexis	
12	no	telephone	may	wed		0	nonexis	
13	no	telephone	jun	thu		0	nonexis	
14		cellular	_	fri	• • •	0	nonexis	
	no		may		• • •		nonexis	
15 16	no	cellular	jul	wed	• • •	0		
16	no	cellular	jul	wed	• • •	0	nonexis	
17	no	telephone	jul	mon	• • •	0	nonexis	
18	yes	cellular	aug	mon	• • •	0	nonexis	
19	yes	cellular	jul	tue	• • •	0	nonexis	
20	no	cellular	jul	tue		0	nonexis	tent
22	yes	cellular	aug	wed		0	nonexis	tent
23	yes	cellular	aug	wed		0	nonexis	tent
24	no	telephone	may	fri		0	nonexis	tent
25	no	cellular	aug	mon		0	nonexis	tent
26	no	telephone	may	wed		0	nonexis	tent
27	no	cellular	may	mon		1		lure
28	no	telephone	may	thu		0	nonexis	
29	no	cellular	aug	tue	•••	0	nonexis	
30		cellular	mar	tue	• • •	1		lure
	yes				• • •		Iai	
4007	•••	+-1		• • • + b	• • •	•••	nanavia	+ +
4087	no	telephone	may	thu	• • •	0	nonexis	
4089	yes	cellular	oct	fri	• • •	1		lure
4090	yes	telephone	may	tue	• • •	0	nonexis	
4091	no	telephone	may	thu	• • •	0	nonexis	
4092	no	telephone	jul	wed	• • •	0	nonexis	
4093	no	cellular	jul	tue		0	nonexis	tent
4095	yes	cellular	aug	fri		0	nonexis	tent
4096	no	telephone	may	mon		0	nonexis	tent
4097	no	cellular	aug	tue		0	nonexis	tent
4098	no	cellular	aug	thu		0	nonexis	tent
4099	no	cellular	aug	tue		0	nonexis	tent
4100	no	cellular	apr	fri	• • •	0	nonexis	
4101	no	cellular	jul	mon	• • •	0	nonexis	
4102	yes	telephone	jun	fri		0	nonexis	
4103	no	telephone	_	mon	• • •	0	nonexis	
		•	may		• • •			
4104	no	cellular	aug	mon	• • •	0	nonexis	
4105	no	telephone	jul	tue	• • •	0	nonexis	
4106	no	cellular	may	tue	• • •	0	nonexis	
4107	no	cellular	aug	wed	• • •	0	nonexis	
4108	no	telephone	may	thu	• • •	0	nonexis	
4109	no	cellular	oct	wed	• • •	0	nonexis	
4110	unknown	telephone	may	fri		0	nonexis	
4111	yes	cellular	jun	fri	• • •	1	fai	lure
4112	no	cellular	nov	thu		0	nonexis	tent
4113	no	cellular	nov	thu		0	nonexis	tent

20/2020			i oltagacoc Be	ink Data Analysis	
4114	yes cel	lular jul	thu	0	nonexistent
4115	•	phone jul	fri	0	nonexistent
4116		lular may	mon	1	failure
4117		lular aug	fri	0	nonexistent
4118		lular nov	wed	0	nonexistent
0		cons.price.idx			
y \ 0	-1.8	92.893	-46.2	1.313	5099.100000
no 1	1.1	93.994	-36.4	4.855	5191.000000
no 2	1.4	94.465	-41.8	4.962	5228.100000
no 3	1.4	94.465	-41.8	4.959	5228.100000
no 4	-0.1	93.200	-42.0	4.191	5195.800000
no 5	-1.1	94.199	-37.5	0.884	4963.600000
no 6	-1.1	94.199	-37.5	0.879	4963.600000
no 7	-0.1	93.200	-42.0	4.191	5195.800000
no 8 no	-0.1	93.200	-42.0	4.153	5195.800000
9 no	1.1	93.994	-36.4	4.855	5191.000000
10 no	1.4	93.918	-42.7	4.958	5228.100000
11 no	1.4	93.918	-42.7	4.968	5228.100000
12 no	1.1	93.994	-36.4	4.859	5191.000000
13 no	1.4	94.465	-41.8	4.958	5228.100000
14 no	-1.8	92.893	-46.2	1.313	
15 no	1.4	93.918	-42.7	4.963	
16 no	1.4	93.918	-42.7		
17 no	1.4	93.918 93.444	-42.7 -36.1		5228.100000
18 no 19	1.4	93.918	-42.7		
yes 20	1.4	93.918	-42.7		
no 22	1.4	93.444	-36.1	4.967	
no 23	1.4	93.444	-36.1	4.965	5228.100000
no 24	1.1	93.994	-36.4	4.864	5191.000000
no 25	1.4	93.444	-36.1	4.965	5228.100000
yes 26	1.1	93.994	-36.4	4.856	5191.000000
no 27	-1.8	92.893	-46.2	1.299	5099.100000

1/20/2020			i ortuguese barik bi	ata Ariaiysis	
no 28	1.1	93.994	-36.4	4.860	5191.000000
no 29	1.4	93.444	-36.1	4.963	5228.100000
no					
30 no	-1.8	92.843	-50.0	1.687	5166.536386
• • •	•••	•••	•••	• • •	•••
4087	1.1	93.994	-36.4	4.860	5191.000000
no 4089	-3.4	92.431	-26.9	0.739	5017.500000
yes 4090 no	1.1	93.994	-36.4	4.857	5191.000000
4091	1.1	93.994	-36.4	4.860	5191.000000
no 4092	1.4	93.918	-42.7	4.956	5228.100000
no 4093	1.4	93.918	-42.7	4.961	5228.100000
no 4095	1.4	93.444	-36.1	4.963	5228.100000
no 4096	1.1	93.994	-36.4	4.857	5191.000000
no 4097	1.4	93.444	-36.1	4.963	5228.100000
no 4098	1.4	93.444	-36.1	4.963	5228.100000
no 4099	1.4	93.444	-36.1	4.963	5228.100000
no 4100	-1.8	93.075	-47.1	1.405	5099.100000
no 4101	1.4	93.918	-42.7	4.960	5228.100000
no 4102	1.4	94.465	-41.8	4.959	5228.100000
no 4103	1.1	93.994	-36.4	4.857	5191.000000
no 4104	1.4	93.444	-36.1	4.970	5228.100000
no 4105	1.4	93.918	-42.7	4.961	5228.100000
no 4106	-1.8	92.893	-46.2	1.344	5099.100000
no 4107	1.4	93.444	-36.1	4.964	5228.100000
no 4108	-1.8	92.893	-46.2	1.266	5099.100000
no 4109	-3.4	92.431	-26.9	0.740	5017.500000
no 4110	1.1	93.994	-36.4	4.855	5191.000000
no 4111	-1.7	94.055	-39.8	0.748	4991.600000
no 4112	-0.1	93.200	-42.0	4.076	5195.800000
no 4113	-0.1	93.200	-42.0	4.076	5195.800000
no 4114 no	1.4	93.918	-42.7	4.958	5228.100000

1/23/2020				Portuguese Ba	nk Data Analysis	
4115		1.4	93.918	-42.7	4.959	5228.100000
no						
4116		-1.8	92.893	-46.2	1.354	5099.100000
no 4117		1.4	93.444	-36.1	4.966	5228.100000
no		1.7	JJ. 111	30.1	4.500	3220.100000
4118		-0.1	93.200	-42.0	4.120	5195.800000
no						
	Age	Pdays				
0	30.0	NaN				
1	39.0	NaN				
2	25.0	NaN				
3	38.0	NaN				
4	47.0	NaN				
5 6	32.0 32.0	NaN NaN				
7	41.0	NaN				
8	31.0	NaN				
9	35.0	NaN				
10	25.0	NaN				
11	36.0	NaN				
12 13	36.0 47.0	NaN NaN				
13 14	29.0	NaN				
15	27.0	NaN				
16	44.0	NaN				
17	46.0	NaN				
18	45.0	NaN				
19 20	50.0	NaN				
22	55.0 29.0	NaN NaN				
23	40.0	NaN				
24	44.0	NaN				
25	38.0	NaN				
26 27	36.0	NaN				
27 28	28.0 47.0	NaN NaN				
29	34.0	NaN				
30	38.0	NaN				
• • •	• • •	• • •				
4087	29.0	NaN				
4089 4090	25.0 43.0	NaN NaN				
4090	38.0	NaN				
4092	30.0	NaN				
4093	56.0	NaN				
4095	36.0	NaN				
4096	33.0	NaN				
4097 4098	41.0 34.0	NaN NaN				
4099	58.0	NaN				
4100	41.0	NaN				
4101	35.0	NaN				
4102	31.0	NaN				
4103	43.0	NaN				
4104 4105	42.0 47.0	NaN NaN				
4105	45.0	NaN				
4107	36.0	NaN				
4108	32.0	NaN				

```
4109
     63.0
             NaN
4110
     53.0
             NaN
     30.0
             NaN
4111
4112 31.0
             NaN
4113 31.0
             NaN
4114 30.0
             NaN
4115
     39.0
             NaN
4116 27.0
             NaN
4117 58.0
             NaN
4118 34.0
             NaN
[3959 rows x 23 columns]
```

4. previous

```
In [45]:
```

```
bank[bank['previous']<0]</pre>
```

Out[45]:

age job marital education default housing loan contact month day_of_week ... pre

0 rows × 23 columns

In [46]:

```
bank[bank['campaign']<0]</pre>
```

Out[46]:

age job marital education default housing loan contact month day_of_week ... pre

0 rows × 23 columns

In [47]:

```
import numpy
stds=3  # 3 standard deviation
std=numpy.std(bank['emp.var.rate'])

z = bank[['emp.var.rate']].transform(
    lambda x: (x - x.mean()).div(x.std()))
outliers = z.abs() > stds
b= bank[outliers.any(axis=1)]
b['emp.var.rate']
```

Out[47]:

Series([], Name: emp.var.rate, dtype: float64)

In [48]:

```
#import numpy
stds=3  # 3 standard deviation
std=numpy.std(bank['cons.price.idx'])

z = bank[['cons.price.idx']].transform(
    lambda x: (x - x.mean()).div(x.std()))
outliers = z.abs() > stds
b= bank[outliers.any(axis=1)]
b['cons.price.idx']
```

Out[48]:

Series([], Name: cons.price.idx, dtype: float64)

In [49]:

```
#import numpy
stds=3  # 3 standard deviation
std=numpy.std(bank['cons.conf.idx'])

z = bank[['cons.conf.idx']].transform(
    lambda x: (x - x.mean()).div(x.std()))
outliers = z.abs() > stds
b= bank[outliers.any(axis=1)]
b['cons.conf.idx']
```

Out[49]:

Series([], Name: cons.conf.idx, dtype: float64)

In [50]:

```
#import numpy
stds=2  # 3 standard deviation
std=numpy.std(bank['euribor3m'])

z = bank[['euribor3m']].transform(
    lambda x: (x - x.mean()).div(x.std()))
outliers = z.abs() > stds
b= bank[outliers.any(axis=1)]
b['euribor3m']
```

Out[50]:

Series([], Name: euribor3m, dtype: float64)

In [51]:

```
#import numpy
stds=3  # 3 standard deviation
std=numpy.std(bank['nr.employed'])

z = bank[['nr.employed']].transform(
    lambda x: (x - x.mean()).div(x.std()))
outliers = z.abs() > stds
b= bank[outliers.any(axis=1)]
b['nr.employed']
```

Out[51]:

Series([], Name: nr.employed, dtype: float64)

In [52]:

```
print("String type or not?")
for y in bank.columns:
    print "---- %s ---" % y
    if(bank[y].dtype == np.float64 or bank[y].dtype == np.int64):
        print("No")
    else:
        print("yes string type")
```

```
String type or not?
---- age ---
No
---- job ---
yes string type
---- marital ---
yes string type
---- education ---
yes string type
---- default ---
yes string type
---- housing ---
yes string type
---- loan ---
yes string type
---- contact ---
yes string type
---- month ---
yes string type
---- day_of_week ---
yes string type
---- duration ---
No
---- campaign ---
No
---- pdays ---
---- previous ---
No
---- poutcome ---
yes string type
---- emp.var.rate ---
---- cons.price.idx ---
---- cons.conf.idx ---
---- euribor3m ---
No
---- nr.employed ---
No
---- y ---
yes string type
---- Age ---
No
---- Pdays ---
Nο
```

In [53]:

```
bank.dropna().boxplot(column='duration',by='y')
plt.title('Boxplot grouped by target variable "y" \n for duartion of call')
plt.suptitle("") # to get rid of auto generated title for boxplot in python
plt.ylabel('duration of call')
plt.show()
```

Boxplot grouped by target variable "y" for duartion of call

In [54]:

Out[54]:

у	no	yes
marital		
divorced	403	43
married	2257	252
single	998	155
unknown	10	1

In [55]:

Barplot depicting relationship between target variable y and marital categories

In [56]:

```
bank.plot(kind='scatter', x='emp.var.rate', y='campaign')
plt.title("Scatter plot between employment variation rate and \n number of contacts per
formed during this campaign")
```

Out[56]:

Text(0.5,1,u'Scatter plot between employment variation rate and \n number of contacts performed during this campaign')

Scatter plot between employment variation rate and number of contacts performed during this campaign

Scatter Matrix for numerical variables

In [57]:

```
from pandas.plotting import scatter_matrix
scatter_matrix(bank,alpha=0.2,figsize=(21,21),diagonal='hist')
plt.show()
```

