```
In [1]: # Import the required library
import pandas as pd
```

In [7]: # Load the dataset
 df=pd.read_csv("C:/Users/user/Desktop/ANJALI RAJ/linear regression/Salary_Data
 df.head()

Out[7]:

	YearsExperience	Salary
0	1.1	39343.0
1	1.3	46205.0
2	1.5	37731.0
3	2.0	43525.0
4	2.2	39891.0

```
In [15]: from sklearn.model_selection import train_test_split
    x=df[["YearsExperience"]]
    y=df["Salary"]
    x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.20,random_state
```

- In [16]: # Train the model
 from sklearn.linear_model import LinearRegression
 model=LinearRegression()
 model.fit(x_train,y_train)
- Out[16]: LinearRegression
 LinearRegression()
- In [17]: # Testing/ Predicting the model
 y_predict=model.predict(x_test)
- In [22]: # Evaluate the Performance of the ML Model
 from sklearn.metrics import mean_squared_error
 mse=mean_squared_error(y_test,y_predict)
 print(f"mean_squared_error.{mse}")

mean_squared_error.49830096.85590839

```
In [24]: # Plotting the regression line
    import matplotlib.pyplot as plt
    plt.scatter(x_test,y_test,color="black")
    plt.plot(x_test,y_predict,color="blue",linewidth=3)
    plt.xlabel("Experience(years)")
    plt.ylabel("Salary")
    plt.title("Linear Regression Model")
    plt.show()
```

Linear Regression Model

In []: