BAREM DETALIAT DE CORECTARE

pentru TS2 la "Matematică" / I1B & I1Xb

(seria 2016 - 2017 / 24.11.2016)

15 puncte - bonusul de participare la TS2

25 de puncte - subiectul $1\,$

i) Abordarea chestiunii
$\mathcal{B} = \{ b \in \mathbb{R} \mid g(b) \text{ are sens} \} = \left\{ b \in \mathbb{R} \mid \sum_{n=1}^{\infty} \frac{(\ln(n^2 + 1) - 2\ln n)^b}{9n^2 - 3n - 2} \right\} $ (1.1)
$\ln(n^2+1) > 2 \ln n, \forall n \in \mathbb{N}^* \Longrightarrow$
$\implies x_n = \frac{(\ln(n^2 + 1) - 2\ln n)^b}{9n^2 - 3n - 2} > 0, \forall n \in \mathbb{N}^*, \forall b \in \mathbb{R} (1.2) \dots \dots$
$(1.2) \Longrightarrow \sum_{n=1}^{\infty} x_n$ este o serie cu termeni pozitivi (1.3)
$\ln(n^2+1) - 2\ln n = \ln\left(1 + \frac{1}{n^2}\right), \forall n \in \mathbb{N}^* (1.4) \dots 1 \text{ punct}$
$(1.4) \Longrightarrow \exists \lim_{n \to \infty} x_n = \lim_{n \to \infty} \frac{\left(\ln\left(1 + \frac{1}{n^2}\right)\right)^b}{9n^2 - 3n - 2} = \begin{cases} \lim_{n \to \infty} \frac{n^{-2b}}{9n^2 - 3n - 2}, \ b < 0\\ 0, \ b \ge 0 \end{cases} =$
$= \begin{cases} \infty, b < -1 \\ \frac{1}{9}, b = -1 \\ 0, b > -1 \end{cases} $ (1.5)
$(1.5) \Longrightarrow \sum_{n=1}^{\infty} x_n (D), \forall b \in (-\infty, -1] \text{ si}$
criteriul necesar de convergență = îndeplinit, $\forall b \in (-1, \infty)$ (1.6) 2 puncte $\forall b \in \mathbb{R}, \exists \lim_{n \to \infty} \frac{x_n}{n^{-2(b+1)}} = \frac{1}{9} \in (0, \infty)$ (1.7)
$(1.3) + (1.6)$ (pentru $b \in (-1, \infty)$) + $(1.7) \Longrightarrow \sum_{n=1}^{\infty} x_n \sim \sum_{n=1}^{\infty} \frac{1}{n^{2(b+1)}}$ (1.8)
$\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}} (D) , \forall \alpha \in (-\infty, 1] \text{ si } \sum_{n=1}^{\infty} \frac{1}{n^{\alpha}} (C) , \forall \alpha \in (1, \infty) (1.9) \dots 2 \text{ puncte}$
$(1.8) + (1.9) \Longrightarrow \sum_{n=1}^{\infty} x_n (D), \forall b \in (-\infty, -\frac{1}{2}] \text{ si } \sum_{n=1}^{\infty} x_n (C), \forall b \in (-\frac{1}{2}, \infty) (1.10) \dots 1 \text{ punct}$
$(1.10) \Longrightarrow \operatorname{concluzia}: \mathcal{B} = (-\frac{1}{2}, \infty) (1.11) \dots \dots \dots \dots \dots \dots \dots \dots \dots $
TOTAL: 17 DIFFICIE
ii) Abordarea chestiunii
$(1.11) \implies 0 \in \mathcal{B} \implies g(0) \text{ are sens} (1.12) \qquad \qquad 1 \text{ punct}$
$(1.1) + (1.12) \Longrightarrow g(0) = \sum_{n=1}^{\infty} \frac{1}{9n^2 - 3n - 2} (1.13) \dots 1$ punct
$9n^2 - 3n - 2 = (3n - 2)(3n + 1), \forall n \in \mathbb{N}^*$ (1.14)
$(1.14) \Longrightarrow \frac{1}{9n^2 - 3n - 2} = \frac{1}{3} \left(\frac{1}{3n - 2} - \frac{1}{3n + 1} \right), \forall n \in \mathbb{N}^* (1.15) \dots 1 \text{ punct}$

$$\begin{array}{c} (1.15) \implies s_n = \sum\limits_{i=1}^{n} \frac{1}{\gcd^2 - 3\alpha - 2} = \frac{1}{3} \left(1 - \frac{1}{3\alpha + 1}\right), \forall n \in \mathbb{N}^* \ (1.16) \\ (1.17) \implies \text{conclusia} : g(0) = \frac{1}{3} \\ & & & & & & & & \\ \hline (1.17) \implies \text{conclusia} : g(0) = \frac{1}{3} \\ & & & & & & & \\ \hline (1.17) \implies \text{conclusia} : g(0) = \frac{1}{3} \\ & & & & & & & \\ \hline (1.17) \implies \text{conclusia} : g(0) = \frac{1}{3} \\ & & & & & & \\ \hline (1.17) \implies \text{conclusia} : g(0) = \frac{1}{3} \\ & & & & & \\ \hline (1.17) \implies \text{conclusia} : g(0) = \frac{1}{3} \\ & & & & & \\ \hline (1.17) \implies \text{conclusia} : g(0) = \frac{1}{3} \\ & & & & \\ \hline (1.17) \implies \text{conclusia} : g(0) = \frac{1}{3} \\ & & & & \\ \hline (1.18) \implies \text{conclusia} : g(0) = \frac{1}{3} \\ & & & & \\ \hline (1.19) \implies \text{conclusia} : g(0) = \frac{1}{3} \\ & & & & \\ \hline (1.19) \implies \text{conclusia} : g(0) = \frac{1}{3} \\ & & & & \\ \hline (1.19) \implies \text{conclusia} : g(0) = \frac{1}{3} \\ & & & & \\ \hline (1.19) \implies \text{conclusia} : g(0) = \frac{1}{3} \\ & & & \\ \hline (1.19) \implies \text{conclusia} : g(0) = \frac{1}{3} \\ & & & \\ \hline (2.1) \implies \text{conclusia} : g(0) = \frac{1}{3} \\ & & & \\ \hline (2.1) \implies \text{conclusia} : g(0) = \frac{1}{3} \\ & & & \\ \hline (2.1) \implies \text{conclusia} : g(0) = \frac{1}{3} \\ & & & \\ \hline (2.1) \implies \text{conclusia} : g(0) = \frac{1}{3} \\ & & & \\ \hline (2.1) \implies \text{conclusia} : g(0) = \frac{1}{3} \\ & & & \\ \hline (2.1) \implies \text{conclusia} : g(0) = \frac{1}{3} \\ & & & \\ \hline (2.1) \implies \text{conclusia} : g(0) = \frac{1}{3} \\ & & & \\ \hline (2.1) \implies \text{conclusia} : g(0) = \frac{1}{3} \\ & & & \\ \hline (2.1) \implies \text{conclusia} : g(0) \implies \text{conclusia} : g(0) = \frac{1}{3} \\ & & & \\ \hline (2.1) \implies \text{conclusia} : g(0) \implies \text{conclu$$

$\forall U, V \in \mathcal{P}(X), \ U \subseteq V \Longrightarrow \overline{U} \subseteq \overline{V}$ (3.3)	
$(3.2) + (3.3) \implies \overline{X \setminus B} \subseteq \overline{X \setminus A} (3.4) \dots$	
$(3.4) + (3.1) \implies \overline{X \setminus A} = X \qquad (3.5)$	1 punct
$(3.5) + (3.1) \implies \forall B = mulţime frontieră în (X, \tau) \stackrel{\forall A \in \mathcal{P}(B)}{\Longrightarrow} A = mulţine$	$me\ frontier\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
	Total: 10 puncte
ll) Abordarea chestiunii	1 punct
$\forall B \in \mathcal{P}(X)$, cu $\overline{X \setminus B} = X$ și $B = \overline{B}$ (3.6) $\Longrightarrow Fr(B) = B$ (trebuie	*
$Fr(B) \stackrel{def}{=} \overline{B} \cap \overline{X \setminus B}$ (3.7)	2 puncte
$(3.6) \Longrightarrow \overline{B} \cap \overline{X \setminus B} = B \cap X = B (3.8) \dots$	3 puncte
$(3.7) + (3.8) \Longrightarrow B = Fr(B) (3.9) \dots$	1 punct
$(3.9) \implies \text{q.e.d.} \qquad \dots$	1 punct
	Total: 10 puncte

$15~\mathrm{puncte}$ - subjectul 4

v) Abordarea chestiunii
$(44) \rightarrow \text{conflucion} u \neq 0$ (45)
$(4.4) \Longrightarrow \text{concruzia. } \mu \neq 0 (4.5) \qquad \qquad$
Total: 7 puncte
vv) Abordarea chestiunii
$\forall v \in Ker(S - \mu I) \setminus \{\theta_{\mathbb{R}^3}\} \Longrightarrow S(v) = \mu v (4.6) \dots 1 \text{ punct}$
$(4.6) \implies S^*(S(v)) = \mu S^*(v)$ (4.7)
$(4.7) \stackrel{(S^* \circ S = I)}{\Longrightarrow} v = \mu S^*(v) (4.8) \qquad 2 \text{ puncte}$
$(4.8) \stackrel{(4.5)}{\Longrightarrow} S^*(v) = \frac{1}{\mu}v \qquad (4.9) \qquad $
(4.9) \Longrightarrow concluzia: $v \in Ker(S^* - \frac{1}{\mu}I) \setminus \{\theta_{\mathbb{R}^3}\}$
Total: 8 puncte

Precizări: a) Sunt luate în considerație, punctându-se în mod echivalent, și alte soluționări decât cele sugerate de prezentul barem.

b) Nota acordată întregii teme se stabilește prin împărțirea la 10 a punctajului total obținut.

F. Iacob / 23.11.2016