HC32F072 系列

32 位 ARM® Cortex®-M0+ 微控制器

数据手册

产品特性

- 48MHz Cortex-M0+32 位 CPU 平台
- HC32F072 系列具有灵活的功耗管理系统
 - 5μA@3V深度睡眠模式:所有时钟关闭,上电复位有效,IO状态保持,IO中断有效,所有寄存器、RAM和CPU数据保存状态时的功耗
 - 12μA @32.768KHz 低速工作模式:
 CPU 和外设运行,从 FLASH 运行程序
 - 35μA/MHz@3V@24MHz 睡眠模式:
 CPU 停止,外设运行,主时钟运行
 - 130μA/MHz@3V@24MHz 工作模式:
 CPU 和外设运行,从 FLASH 运行程序
 - 4μS 唤醒时间,使模式切换更加灵活高效,系统反应更为敏捷
- 128K 字节 FLASH 存储器,具有擦写保护 功能
- 16K 字节 RAM 存储器,附带奇偶校验, 增强系统的稳定性
- 通用 I/O 管脚 (83/100PIN, 50IO/64PIN, 36IO/48PIN)
- 时钟、晶振
 - 外部高速晶振 4MHz~32MHz
 - 外部低速晶振 32.768KHz
 - 内部高速时钟 4/8/16/22.12/24MHz
 - 内部低速时钟 32.8/38.4KHz
 - PLL 时钟 8MHz~48MHz
 - 硬件支持内外时钟校准和监控
- 定时器/计数器
 - 3个通用 16 位定时器,支持 1 组互补 PWM 输出,支持 2 倍主频 PWM 输出, 最高支持 96MHz PWM 输出
 - 1 个高级 16 位定制器,支持 3 相互补 PWM 输出,支持 2 倍主频 PWM 输出, 最高支持 96MHz PWM 输出
 - 3 个高性能 16 位定时器/计数器,支持 PWM 互补,死区保护功能

- 1 个可编程 16 位定时器 PCA, 支持 5 通道捕获比较, 5 通道 PWM 输出
- 1 个 20 位可编程看门狗电路,内建专用 10kHz 振荡器提供 WDT 计数
- 通讯接口
 - 4路 UART 标准通讯接口
 - 2路 SPI 标准通讯接口
 - 2路 I2C标准通讯接口
 - 2路 I2S 音频通信接口
 - 1路 Crystal-less USB Full Speed Device
 - 1路 CAN 2.0B 标准通讯接口
- 蜂鸣器频率发生器,支持互补输出
- 硬件 CRC-16/32 模块
- 硬件 32 位除法器
- AES-128/192/256 硬件协处理器
- TRNG 真随机数发生器
- 2 通道 DMAC
- 全球唯一 10 字节 ID 号
- 12位1Msps 采样的高速高精度 SARADC, 内置运放,可测量外部微弱信号
- 2路12位500kspsDAC
- 集成 5 个多功能运算放大器,其中两个 OPA 可以作为 2 路 DAC 的输出 Buffer
- 集成 6 位 DAC 和可编程基准输入的 3 路电压比较器
- 集成低电压侦测器,可配置 16 阶比较电平,可监控端口电压以及电源电压
- SWD 调试解决方案,提供全功能调试器
- 工作条件: -40~85°C, 1.8~5.5V
- 封装形式: LQFP100/64/48

支持型号

HC32F072PATA-LQFP100	HC32F072KATA-LQFP64
HC32F072JATA-LQ48	

声明

- ➤ 华大半导体有限公司(以下简称: "HDSC")保留随时更改、更正、增强、修改华大半导体产品和/或本文档的权利,恕不另行通知。用户可在下单前获取最新相关信息。HDSC产品依据购销基本合同中载明的销售条款和条件进行销售。
- ▶ 用户对 HDSC 产品的选择和使用承担全部责任,用户将 HDSC 产品用于其自己或指定第 三方产品上的,HDSC 不提供服务支持且不对此类产品承担任何责任。
- ▶ HDSC 在此确认未以明示或暗示方式授予任何知识产权许可。
- ▶ HDSC 产品的转售,若其条款与此处规定不同,HDSC 对此类产品的任何保修承诺无效。
- ➤ 任何带有"®"或"™"标识的图形或字样是 HDSC 的商标。所有其他在 HDSC 产品上显示的 产品或服务名称均为其各自所有者的财产。
- ▶ 本通知中的信息取代并替换先前版本中的信息。

©2019 华大半导体有限公司 - 保留所有权利

目 录

产品	品特性		1
声	明		2
目	录		3
1	简介		6
	1.1	32 位 CORTEX M0+ 内核	7
	1.2	128K Byte FLASH	7
	1.3	16K Byte RAM	7
	1.4	时钟系统	7
	1.5	工作模式	8
	1.6	通用 IO 端口	8
	1.7	中断控制器	8
	1.8	复位控制器	9
	1.9	DMAC	9
	1.10	定时器/计数器	10
	1.11	看门狗 WDT	12
	1.12	通用异步收发器 UART0~UART3	12
	1.13	同步串行接口 SPI	13
	1.14	I2C 总线	13
	1.15	I2S	13
	1.16	USB	14
	1.17	CAN	14
	1.18	CTS	14
	1.19	蜂鸣器 Buzzer	14
	1.20	时钟校准电路	14
	1.21	唯一识别号 UID	15
	1.22	CRC16/32 硬件循环冗余校验码	15
	1.23	32 位硬件除法器	15
	1.24	AES 硬件加密	16
	1.25	TRNG 真随机数发生器	16
	1.26	12 Bit SARADC	16
	1.27	12 Bit DAC	17
	1.28	电压比较器 VC	17
	1.29	低电压检测器 LVD	17
	1.30	运放 OPA	17
	1.31	嵌入式调试系统	17
	1.32	在线编程模式	18
	1.33	高安全性	18
2	产品阵	容	
	2.1	产品名称	19
	2.2	功能	20

FDSC 华大半导体

3	引脚	配置及功能	22
	3.1	封装示意图	22
	3.2	引脚功能说明	25
	3.3	模块信号说明	37
4	功能	框图	39
5	存储	区映射图	40
6	电气	特性	42
	6.1	测试条件	42
		6.1.1 最小和最大数值	42
		6.1.2 典型数值	42
		6.1.3 供电方案	43
	6.2	绝对最大额定值	44
	6.3	工作条件	46
		6.3.1 通用工作条件	46
		6.3.2 上电和掉电时的工作条件	46
		6.3.3 内嵌复位和 LVD 模块特性	47
		6.3.4 内置的参考电压	49
		6.3.5 供电电流特性	49
		6.3.6 从低功耗模式唤醒的时间	53
		6.3.7 外部时钟源特性	54
		6.3.7.1 外部输入高速时钟	54
		6.3.7.2 外部输入低速时钟	54
		6.3.7.3 高速外部时钟 XTH	55
		6.3.7.4 低速外部时钟 XTL	57
		6.3.8 内部时钟源特性	59
		6.3.8.1 内部 RCH 振荡器	59
		6.3.8.2 内部 RCL 振荡器	60
		6.3.8.3 内部 USB 专用 RC48M 振荡器	60
		6.3.9 PLL 特性	61
		6.3.10 存储器特性	61
		6.3.11 EFT 特性	61
		6.3.12 ESD 特性	62
		6.3.13 I/O 端口特性	62
		6.3.13.1 输出特性——端口	62
		6.3.13.2 输入特性——端口 PA, PB, PC, PD, PE, PF, RESET, USB_DP	64
		6.3.13.3 端口外部输入采样要求——Timer Gate/Timer Clock	64
		6.3.13.4 端口漏电特性——PA, PB, PC, PD, PE, PF	65
		6.3.14 RESETB 引脚特性	66
		6.3.15 ADC 特性	66
		6.3.16 VC 特性	69
		6.3.17 OPA 特性	70
		6.3.18 DAC 特性	71

7	封装信	息		72
]	
8				

1 简介

HC32F072 系列是一款宽电压工作范围的通用 MCU。集成 12 位 1M sps 高精度 SARADC, 2 个 12 位 DAC 以及集成了比较器、运放、内置高性能 PWM 定时器、多路 UART、SPI、I2C、I2S、USB、CAN 等丰富的通讯外设,内建 AES、TRNG 等信息安全模块,具有高整合度、高抗干扰、高可靠性的特点。本产品内核采用 Cortex-M0+内核,配合成熟的 Keil & IAR 调试开发软件,支持 C 语言及汇编语言,汇编指令。

通用 MCU 典型应用

可广泛应用于各类市场应用:如人机交互、手持设备、游戏外设、打印机、可视对讲等智能家居应用。

1.1 32 位 CORTEX M0+ 内核

ARM® Cortex®-M0+ 处理器源于 Cortex-M0,包含了一颗 32 位 RISC 处理器,运算能力达到 0.95 Dhrystone MIPS/MHz。同时加入了多项全新设计,改进调试和追踪能力、减少每条指令循环(IPC)数量和改进 Flash 访问的两级流水线等,更纳入了节能降耗技术。Cortex-M0+ 处理器全面支持已整合 Keil & IAR 调试器。

Cortex-M0+ 包含了一个硬件调试电路,支持 2-pin 的 SWD 调试界面。

ARM Cortex-M0+ 特性:

指令集	Thumb / Thumb-2		
流水线	2级流水线		
性能效率	2.46 CoreMark / MHz		
性能效率	0.95 DMIPS / MHz in Dhrystone		
中断	32个快速中断		
中断优先级	可配置4级中断优先级		
增强指令	单周期32位乘法器		
调试	Serial-wire 调试端口,支持4个硬中断(break point)以及2个观察点		
	(watch point)		

1.2 128K Byte FLASH

内建全集成 FLASH 控制器,无需外部高压输入,由全内置电路产生高压来编程。支持 ISP、IAP、ICP 功能。

1.3 16K Byte RAM

根据客户选择不同的功耗模式,RAM 数据都会被保留。自带硬件奇偶校验位,万一数据被意外破坏,在数据被读取时,硬件电路会立刻产生中断,保证系统的可靠性。

1.4 时钟系统

- 一个频率为 4M~24MHz 可配置的高精度内部时钟 RCH。在配置 24MHz 下,从低功耗模式到工作模式的唤醒时间为 4us,全电压全温度范围内的频率偏差 < ±2.5%,无需外接昂贵的高频晶体。
- 一个频率为 4M~32MHz 的外部晶振 XTH。
- 一个频率为 32.768KHz 的外部晶振 XTL。

- 一个频率为 32.8/38.4KHz 的内部时钟 RCL。
- 一个频率为 8M~48MHz 输出的 PLL。

1.5 工作模式

- 1) 运行模式(Active Mode): CPU 运行,周边功能模块运行。
- 2) 休眠模式(Sleep Mode): CPU 停止运行,周边功能模块运行。
- 3) 深度休眠模式(Deep sleep Mode): CPU 停止运行,高速时钟停止,低功耗功能模块运行。

1.6 通用 IO 端口

最多可提供 83 个 GPIO 端口,其中部分 GPIO 与模拟端口复用。每个端口由独立的控制寄存器位来控制,支持 FAST IO。支持边沿触发中断和电平触发中断,可从各种深度休眠模式下把 MCU 唤醒到工作模式。支持位置位、位清零、位置位清零操作。支持Push-Pull CMOS 推挽输出、Open-Drain 开漏输出。内置上拉电阻、下拉电阻,带有施密特触发器输入滤波功能。输出驱动能力可配置,最大支持 12mA 的电流驱动能力。所有通用 IO 可支持外部异步中断。

1.7 中断控制器

Cortex-M0+处理器内置了嵌套向量中断控制器(NVIC),支持最多 32 个中断请求(IRQ)输入;有四个中断优先级,可处理复杂逻辑,能够进行实时控制和中断处理。 32 个中断入口向量地址,分别为:

中断向量号	中断来源
[0]	GPIO_PA
[1]	GPIO_PB
[2]	GPIO_PC/GPIO_PE
[3]	GPIO_PD/GPIO_PF
[4]	DMAC
[5]	TIM3
[6]	UART0/UART2
[7]	UART1/UART3
[8]	保留
[9]	保留

[10]	SPI0/I2S0	
[11]	SPI1/I2S1	
[12]	I2C0	
[13]	I2C1	
[14]	TIM0	
[15]	TIM1	
[16]	TIM2	
[17]	保留	
[18]	TIM4	
[19]	TIM5	
[20]	TIM6	
[21]	PCA	
[22]	WDT	
[23]	保留	
[24]	ADC/DAC	
[25]	保留	
[26]	VC0/VC1/VC2/ LVD	
[27]	USB	
[28]	CAN	
[29]	保留	
[30]	RAM FLASH	
[31]	CLKTRIM /CTS	

1.8 复位控制器

本产品具有7个复位信号来源,每个复位信号可以让 CPU 重新运行,绝大多数寄存器会被重新复位,程序计数器 PC 会指向起始地址。

	中断来源	
[0]	上电掉电复位 POR BOR	
[1]	外部 Reset Pin 复位	
[2]	WDT 复位	
[3]	PCA 复位	
[4]	Cortex-M0+ LOCKUP 硬件复位	
[5]	Cortex-M0+ SYSRESETREQ 软件	
	复位	
[6]	LVD 复位	

1.9 DMAC

DMAC(直接内存访问控制器)功能块可以不通过 CPU 高速传输数据。使用 DMAC 能

提高系统性能。

- DMAC 配有独立的总线,所以即便是在使用 CPU 总线的同时, DMAC 也可进行传输操作。
- 由 2 条通道组成,能执行 2 种相互独立的 DMA 传输。
- 可设置传输目标地址、传输源地址、传输数据大小、传输请求源以及传输模式,并 能控制各通道的传输操作启动、传输的强行终止以及传输的暂停。
- 可控制所有通道批量传输的启动、强行终止及暂停。
- 多通道同时操作时,可用固定方法或循环方法选择操作通道的优先级。
- 支持使用外设中断信号的硬件 DMA 传输。
- 遵从系统总线(AHB),支持32位地址空间(4GB)。

1.10 定时器/计数器

类型	名称	位宽	预除频	计数方向	PWM	捕获	互补输出
通用定时	TIM0	16/32	1/2/4/8/16	上计数/	2	2	1
器			32/64/256	下计数/			
				上下计数			
	TIM1	16/32	1/2/4/8/16/	上计数/	2	2	1
			32/64/256	下计数/			
				上下计数			
	TIM2	16/32	1/2/4/8/16/	上计数/	2	2	1
			32/64/256	下计数/			
				上下计数			
	TIM3	16/32	1/2/4/8/16/	上计数/	6	6	3
			32/64/256	下计数/			
				上下计数			
可编程计	PCA	16	2/4/8/16/32	上计数	5	5	无
数阵列							
高级定时	TIM4	16	1/2/4/8/16/	上计数/	2	2	1
器			64/256/1024	下计数/			
				上下计数			
	TIM5	16	1/2/4/8/16/	上计数/	2	2	1
			64/256/1024	下计数/			
				上下计数			
	TIM6	16	1/2/4/8/16/	上计数/	2	2	1
			64/256/1024	下计数/			
				上下计数			

通用定时器包含四个定时器 TIM0/1/2/3。

通用定时器特性

- PWM 独立输出, 互补输出
- 捕获输入
- 死区控制
- 刹车控制
- 边沿对齐、对称中心对齐与非对称中心对齐 PWM 输出
- 正交编码计数功能
- 单脉冲模式
- 外部计数功能

TIM0/1/2 功能完全相同。TIM0/1/2 是同步定时/计数器,可以作为 16 位自动重装载功能的定时/计数器,也可以作为 32 位无重载功能的定时/计数器。TIM0/1/2 每个定时器都具有 2 路捕获比较功能,可以产生 2 路 PWM 独立输出或 1 组 PWM 互补输出。具有死区控制功能。

TIM3 是多通道的通用定时器,具有 TIM0/1/2 的所有功能,可以产生 3 组 PWM 互补输出或 6 路 PWM 独立输出,最多 6 路输入捕获。具有死区控制功能。

PCA(可编程计数器阵列 Programmable Counter Array)支持最多 5 个 16 位的捕获/比较模块。该定时/计数器可用作为一个通用的时钟计数/事件计数器的捕获/比较功能。PCA 的每个模块都可以进行独立编程,以提供输入捕捉,输出比较或脉冲宽度调制。另外模块4 有额外的看门狗定时器模式。

高级定时器 Advanced Timer 包含三个定时器 TIM4/5/6。TIM4/5/6 是功能相同的高性能计数器,可用于计数产生不同形式的时钟波形,1个定时器可以产生互补的一对 PWM或者独立的 2 路 PWM 输出,可以捕获外界输入进行脉冲宽度或周期测量。

Advanced Timer 基本的功能及特性如表所示:

波形模式	锯齿波、三角波
基本功能	• 递加、递减计数方向

	• 软件同步
	• 硬件同步
	• 缓存功能
	• 正交编码计数
	• 通用PWM输出
	• 保护机制
	• AOS关联动作
	计数比较匹配中断
中断类型	计数周期匹配中断
	死区时间错误中断

1.11 看门狗 WDT

WDT(Watch Dog Timer)是一个可配置的 20 位定时器,在 MCU 异常的情况下提供复位;内建 10KHz 低速时钟输入作为计数器时钟。调试模式下,可选择暂停或继续运行;只有写入特定序列才能重启 WDT。

1.12 通用异步收发器 UART0~UART3

- 4 路通用异步收发器(Universal Asynchronous Receiver/Transmitter),UART0/UART1。 通用 UART 基本功能:
 - 半双工和全双工传输
 - 8/9-Bit 传输数据长度
 - 硬件奇偶校验
 - 1/1.5/2-Bit 停止位
 - 四种不同传输模式
 - 16-Bit 波特率计数器
 - 多机通讯
 - 硬件地址识别
 - DMAC 硬件传输握手
 - 硬件流控
 - 支持单线模式

1.13 同步串行接口 SPI

2 路同步串行接口(Serial Peripheral Interface) SPI 基本特性:

- 通过编程可以配置为主机或者从机
- 四线传输方式,全双工通信
- 主机模式7种波特率可配置
- 主机模式最大波特率为 1/2 系统时钟
- 从机模式最大波特率为 1/4 系统时钟
- 可配置的串行时钟极性和相位
- 支持中断
- 8位数据传输,先传输高位后低位
- 支持 DMA 软件/硬件访问

1.14 I2C 总线

2 路 I2C,采用串行同步时钟,可实现设备之间以不同的速率传输数据。 I2C 基本特性:

- 支持主机发送/接收,从机发送/接收四种工作模式
- 支持标准(100Kbps) / 快速(400Kbps) / 高速(1Mbps) 三种工作速率
- 支持7位寻址功能
- 支持噪声过滤功能
- 支持广播地址
- 支持中断状态查询功能

1.15 I2S

2路 I2S 音频通信接口

- 支持 Philip/ MSB/LSB /PCM 模式
- 支持 MCK 输出
- 支持 48K, 44.1K, 32 K, 16K, 8K 等不同的音频采样率

- 支持数据长度 16 位, 24 位, 32 位
- 支持帧长度 16 位/32 位
- 支持 DMA 数据传输
- 支持全双工收发(2个I2S配合)
- 支持 master 发送、接收
- 支持 slave 发送、接收

1.16 USB

USB 全速(USBFS)控制器为便携式设备提供了一套 USB 通信解决方案。USBFS 控制器支持设备模式,且芯片内部集成全速 PHY。设备模式下支持全速(FS,12Mb/s)收发器。USBFS 控制器支持 USB 1.1 协议所定义的所有四种传输方式(控制传输、批量传输、中断传输和同步传输)。

1.17 CAN

CAN 通信接口模块配备 512 字节的 RAM 用于存储发送接收的数据。支持 ISO11898-1 规定的 CAN2.0B 协议和 ISO11898-4 规定的 TTCAN 协议。

1.18 CTS

时钟校准定时器可以调整校准 RCH48M 时钟频率,以便提供给 Crystal-less USB 使用。 也可以调整校准其他 RC 振荡的时钟频率,还可以作为一个通用定时器来使用。

1.19 蜂鸣器 Buzzer

4 个通用定时器功能复用输出为 Buzzer 提供可编程驱动频率。该蜂鸣器端口可提供 12mA 的 sink 电流,互补输出,不需要额外的三极管。

1.20 时钟校准电路

内建时钟校准电路,可以通过外部精准的晶振时钟校准内部 RC 时钟,亦可使用内部 RC 时钟去检验外部晶振时钟是否工作正常。

时钟校准基本特性:

- 校准模式
- 监测模式
- 32 位参考时钟计数器可加载初值
- 32 位待校准时钟计数器可配置溢出值
- 6 种参考时钟源
- 6 种待校准时钟源
- 支持中断方式

1.21 唯一识别号 UID

每颗芯片出厂前具备唯一的 10 字节设备标识号,包括 wafer lot 信息,以及芯片坐标信息等。UID 地址为: 0x00100E74 - 0x00100E7D。

1.22 CRC16/32 硬件循环冗余校验码

CRC16 符合 ISO/IEC13239 中给出的多项式 $X^{16} + X^{12} + X^5 + 1$ 。

CRC32 符合 ISO/IEC13239 中给出的多项式 $x^{32}+x^{26}+x^{23}+x^{22}+x^{16}+x^{12}+x^{11}+x^{10}+x^{8}+x^{7}+x^{5}+x^{4}+x^{2}+x+1$ 。

1.23 32 位硬件除法器

HDIV(Hardware Divider)是一个 32 位有/无符号整数硬件除法器。

HDIV 硬件除法器基本特性:

- 可配置有符号/无符号整数除法计算
- 32 位被除数, 16 位除数
- 输出 32 位商和 32 位余数
- 除数为零警告标志位,除法运算结束标志位
- 10 个时钟周期完成一次除法运算
- 写除数寄存器触发除法运算开始
- 读商寄存器/余数寄存器时自动等待计算结束

1.24 AES 硬件加密

AES(The Advanced Encryption Standard)是美国国家标准技术研究所(NIST)在 2000 年 10 月 2 日正式宣布的新的数据加密标准。AES 的分组长度固定为 128 位,而密钥长度支持 128/192/256。

1.25 TRNG 真随机数发生器

TRNG 是一个真随机数发生器,用来产生真随机数。

1.26 12 Bit SARADC

单调不失码的 12 位逐次逼近型模数转换器,在 24M ADC 时钟下工作时,采样率达到 1Msps。参考电压可选择片内精准电压 (1.5v 或 2.5v) 或从外部输入或电源电压。41 个输入通道,包括 36 路外部管脚输入、1 路内部温度传感器电压、1 路 1/3 电源电压、1 路内建 BGR 1.2V 电压、5 路 OPA 输出。内建可配置的输入信号放大器以检测弱信号。

SAR ADC 基本特性:

- 12 位转换精度;
- 1M SPS 转换速度;
- 41 个输入通道,包括 36 路外部管脚输入、1 路内部温度传感器电压、1 路 1/3 AVCC 电压、1 路内建 BGR 1.2V 电压、所有 OPA 输出;
- 4 种参考源: AVCC 电压、ExRef 引脚、内置 1.5v 参考电压、内置 2.5v 参考电压;
- ADC 的电压输入范围: 0~Vref:
- 4种转换模式:单次转换、顺序扫描连续转换、插队扫描连续转换、连续转换累加;
- 输入通道电压阈值监测;
- 软件可配置 ADC 的转换速率;
- 内置信号放大器,可转换高阻信号;
- 支持片内外设自动触发 ADC 转换,有效降低芯片功耗并提高转换的实时性。

1.27 12 Bit DAC

2 通道 12bit 500k sps DAC,可以进行数模转换。

1.28 电压比较器 VC

内建 3 路 VC, 芯片管脚电压监测/比较电路。16 个可配置的正外部输入通道,11 个可配置的负外部输入通道; 5 个内部负输入通道,包括 1 路内部温度传感器电压、1 路内建 BGR 2.5V 参考电压、1 路内建 BGR 1.2V 电压、1 路 64 阶电阻分压。VC 输出可供通用定时器 TIM0/1/2/3 与可编程计数阵列 PCA 捕获、门控、外部计数时钟使用。可根据上升/下降边沿产生异步中断,从低功耗模式下唤醒 MCU。可配置的软件防抖功能。

1.29 低电压检测器 LVD

对芯片电源电压或芯片管脚电压进行检测。16 档电压监测值(1.8v~3.3v)。可根据上升 /下降边沿产生异步中断或复位。具有硬件迟滞电路和可配置的软件防抖功能。

LVD 基本特性:

- 4 路监测源, AVCC、PC13、PB08、PB07:
- 16 阶阈值电压, 1.8V~3.3V 可选;
- 8种触发条件,高电平、上升沿、下降沿组合;
- 2种触发结果,复位、中断;
- 8 阶滤波配置,防止误触发;
- 具备迟滞功能,强力抗干扰。

1.30 运放 OPA

OPA0/1/2 模块可以灵活配置,适用于简易滤波器和 Buffer 应用。内部的 2 个运放 OPA3/4 可以作为 DAC buffer 使用,也可以配置为运放使用。

1.31 嵌入式调试系统

嵌入式调试解决方案,提供全功能的实时调试器,配合标准成熟的 Keil/IAR 等调试开发软件。支持4个硬断点以及多个软断点。

1.32 在线编程模式

支持在线编程,将BOOT0(PF11)管脚接高电平即可进入ISP在线烧录模式。BOOT0管脚接低电平进入用户模式。

1.33 高安全性

加密型嵌入式调试解决方案,提供全功能的实时调试器。

- 2 产品阵容
- 2.1 产品名称

2.2 功能

产品名称		НС32F072PATA	HC32F072KATA	HC32F072JATA		
引		100	64	48		
通	用引脚数 GPIO	83	50	36		
CD	内核		Cortex M0+			
CP	频率		48MHz			
电池	原电压范围		1.8 ~5.5V			
单/	双电源		单电源			
温』	度范围		-40 ~ 85 °C			
调	式功能		串行线调试接口			
唯-	一识别码		支持			
		UAR	UART0/1/2/3			
多.	功能串行接口	S	SPI0/1			
(Uz	ART/SPI/I2C/I2S)	12	I2C0/1			
		12	I2S0/1			
		Timer0/1/2				
定日	 村器	Timer3				
		Advanced Timer4/5/6				
12	位 A/D 转换器		12bit			
模	以电压比较器		VC0/1/2			
实际	付时钟		有			
端] 中断	83	50	36		
低	电压检测复位	1				
	内部高速振荡		IRC4M/8M/16M/22.12M/24M			
时	器					
钟	内部低速振荡					
	器		IRC32.8K/38.4K			

产品名称		HC32F072PATA	HC32F072KATA	НС32F072JATA						
	PLL		8MHz~48MHz							
	外部高速晶振		AM 20M							
	振荡器		4M~32M							
蜂	鸣器	Max 4ch								
闪石	存安全保护	支持								
RA	M 奇偶校验		支持							

3 引脚配置及功能

3.1 封装示意图

HC32F072PATA-LQFP100

HC32F072KATA-LQFP64

HC32F072JATA-LQ48

图 3-1 封装示意图

3.2 引脚功能说明

LQFP100	LQFP64	LQ48	NAME	DIGITAL	ANALOG
1			PE02	PCA_ECI	
2			PE03	PCA_CH0,	
3			PE04	PCA_CH1,	
4			PE05	PCA_CH2,	
5			PE06	PCA_CH3,	
6	1	1	VCAP		
7	2	2	PC13	TIM3_CH1B I2S0_SCK	LVD0
8	3	3	PC14		XTLI
9	4	4	PC15		XTLO
10			PF09	TIM0_CHA	
11			PF10	TIM0_CHB	
12	5	5	PF00	I2CO_SDA CRS_SYNC UART1_TXD	XTHI
13	6	6	PF01	I2CO_SCL TIM4_CHB UART1_RXD	XTHO
14	7	7	RESETB		
15	8		PC00	UART1_CTS UART2_RTS I2S0_MCK	AIN10, VC0_INP0 VC1_INN0
16	9		PC01	TIM5_CHB UART1_RTS I2S0_SD UART2_CTS	AIN11 VC0_INP1 VC1_INN1
17	10		PC02	SPI1_MISO UART2_RXD	AIN12, VC0_INP2 VC1_INN2
18	11		PC03	SPI1_MOSI UART2_TXD	AIN13 VC0_INP3 VC1_INN3
19			PF02		
20	12	8	VSSA		
21	13	9	AVCC		
22			PF03		

23	14	10	PA00	UART1_CTS	AIN0
23	14	10	PAUU	TIMO_ETR	
					VC0_INP4
				VC0_OUT	VC0_INN0
				TIM1_CHA	VC1_INP0
				TIM3_ETR	VC1_INN4
				TIM0_CHA	
24	15	11	PA01	UART1_RTS	AIN1
				TIM0_CHB	VC0_INP5
				TIM1_ETR	VC0_INN1
				TIM1_CHB	VC1_INP1
				HCLK_OUT	VC1_INN5
				SPI1_MOSI	
25	16	12	PA02	UART1_TXD	AIN2
				TIM0_CHA	VC0_INP6
				VC1_OUT	VC0_INN2
				TIM1_CHA	VC1_INP2
				TIM2_CHA	
				PCLK_OUT	
				SPI1_MISO	
26	17	13	PA03	UART1_RXD	AIN3
				TIM0_GATE	VC0_INP7
				TIM1_CHB	VC0_INN3
				TIM2_CHB	VC1_INP3
				SPI1_CS	
				TIM3_CH1A	
				TIM5_CHA	
27	18		DVSS		
28	19		DVCC		
29	20	14	PA04	SPIO_CS	AIN4
				UART1_TXD	VC0_INP8
				PCA_CH4	VC0_INN4
				TIM2_ETR	VC1_INP4
				TIM5_CHA	OP3_OUT
				LVD_OUT	DAC0_OUT
				TIM3_CH2B	

30	21	15	PA05	SPI0_SCK	AIN5
				TIM0_ETR	VC0_INP9
				PCA_ECI	VC0_INN5
				TIM0_CHA	VC1_INP5
				TIM5_CHB	VC2_INP0
				XTL_OUT	VC2_INN0
				XTH_OUT	OP4_OUT
					DAC1_OUT
31	22	16	PA06	SPI0_MISO	AIN6
				PCA_CH0	VC0_INP10
				TIM3_BK	VC0_INN6
				TIM1_CHA	OP4_INN
				VC0_OUT	
				TIM3_GATE	
32	23	17	PA07	SPI0_MOSI	AIN7
				PCA_CH1	VC0_INP11
				HCLK_OUT	VC0_INN7
				TIM3_CH0B	OP4_INP
				TIM2_CHA	
				VC1_OUT	
				TIM4_CHB	
33	24		PC04	TIM2_ETR	AIN14
				IR_OUT	VC0_INN8
				VC2_OUT	
				12S0_WS	
34	25		PC05	TIM6_CHB	AIN15
				PCA_CH4	VC0_INN9
					OP3_INN
35	26	18	PB00	PCA_CH2	AIN8
35	20	10	PB00	TIM3_CH1B	VC1_INN6
				TIM5_CHB RCH_OUT	OP3_INP
				RCL_OUT PLL_OUT	
	0.7	10	2204		A 13 10 (E) 11 (E = E
36	27	19	PB01	PCA_CH3	AIN9/EXVREF
				PCLK_OUT	VC1_INP6
				TIM3_CH2B	VC1_INN7
				TIM6_CHB	VC2_INP1
				VC2_OUT	VC2_INN1
				TCLK_OUT	

37	28	20	PB02	PCA_ECI	AIN16,
				TIM4_CHA	VC1_INP7
				TIM1_BK	VC1_INN8
				TIM0_BK	OP2_INN
				TIM2_BK	
38			PE07	TIM3_ETR	
39			PE08	TIM3_CH0B	OP2_OUT4
40			PE09	TIM3_CH0A	VC2_INP2
					OP2_OUT3
41			PE10	TIM3_CH1B	VC2_INP3
					OP2_OUT2
42			PE11	TIM3_CH1A	VC2_INP4
					VC2_INN2
					OP2_OUT1
43			PE12	TIM3_CH2B	OP1_OUT4
				SPIO_CS	
				UART3_CTS	
44			PE13	TIM3_CH2A	VC2_INP5
				SPI0_SCK	OP1_OUT3
				UART3_RTS	
45			PE14	TIM3_CH0B	VC2_INP6
				SPI0_MISO	OP1_OUT2
				UART3_RXD	
46			PE15	TIM3_BK	AIN23,
				SPI0_MOSI	VC2_INP7
				UART3_TXD	VC2_INN3
					OP1_OUT1
47	29	21	PB10	I2C1_SCL	AIN17,
				SPI1_SCK	VC1_INP8
				TIM1_CHA	OP2_INP
				TIM3_CH1A	
				UART1_RTS	
48	30	22	PB11	I2C1_SDA	AIN18,
				TIM1_CHB	VC2_INP8
				TIM2_GATE	VC2_INN4
				TIM6_CHA	OP2_OUT
				UART1_CTS	
49	31	23	DVSS		
50	32	24	DVCC		

51	33	25	PB12	SPI1_CS TIM3_BK TIM0_BK TIM6_CHA	AIN19 VC1_INP9 OP1_INN
52	34	26	PB13	SPI1_SCK I2C1_SCL TIM3_CH0B TIM1_CHA TIM1_GATE TIM6_CHB	AIN20 VC1_INP10 OP1_INP
53	35	27	PB14	SPI1_MISO I2C1_SDA TIM3_CH1B TIM0_CHA TIM1_BK	AIN21, VC1_INP11 VC2_INP9 VC2_INN5 OP1_OUT
54	36	28	PB15	SPI1_MOSI TIM3_CH2B TIM0_CHB TIM0_GATE	AIN22, OP0_INN
55			PD08	12S0_SCK	OP0_OUT4
56			PD09	12S0_MCK	VC2_INP10 OP0_OUT3
57			PD10	12S0_SD	VC2_INP11 VC2_INN6 OP0_OUT2
58			PD11	12S0_WS	VC2_INP12 VC2_INN7 OP0_OUT1
59			PD12	UART2_RTS	
60			PD13	UART2_RX	
61			PD14	UART2_TX	
62			PD15	CRS_SYNC UART2_CTS	
63	37		PC06	PCA_CH0 TIM4_CHA TIM2_CHA I2S1_SCK UART3_RXD	OP0_INP

PC07
TIM2_CHB I2S1_MCK UART3_TXD
DART3_TXD
65 39 PC08 PCA_CH2 TIM6_CHA TIM2_ETR I2S1_SD UART3_CTS 66 40 PC09 PCA_CH3 TIM4_CHB TIM1_ETR I2S1_WS UART3_RTS 67 41 29 PA08 UART0_TXD TIM3_CH0A
TIM6_CHA TIM2_ETR 12S1_SD UART3_CTS 66
TIM2_ETR
I2S1_SD UART3_CTS
UART3_CTS
66 40 PCO9 PCA_CH3 TIM4_CHB TIM1_ETR 12S1_WS UART3_RTS 67 41 29 PA08 UART0_TXD TIM3_CH0A
TIM4_CHB TIM1_ETR 12S1_WS UART3_RTS 67 41 29 PA08 UART0_TXD TIM3_CH0A
TIM1_ETR
67 41 29 PA08 UART3_RTS TIM3_CH0A
07 41 29 PA08 UART0_TXD TIM3_CH0A
67 41 29 PA08 UARTO_TXD TIM3_CH0A
TIM3_CH0A
CRS_SYNC
CAN_STBY
TIM1_GATE
TIM4_CHA
TIM3_BK
68 42 30 PA09 UARTO_TXD
TIM3_CH1A
TIM0_BK
I2C0_SCL
HCLK_OUT
TIM5_CHA
69 43 31 PA10 UARTO_RXD
TIM3_CH2A
TIM2_BK
I2C0_SDA
TIM2_GATE
PCLK_OUT
TIM6_CHA
70 44 32 USB_DM TIM6_CHA

72	46	34	PA13	IR_OUT	SWDIO
				UARTO_RXD	
				LVD_OUT	
				TIM3_ETR	
				VC2_OUT	
73			PF06	I2C1_SCL	
				UARTO_CTS	
74	47	35	AVSS_USB		
75	48	36	AVCC_USB		
76	49	37	PA14	UART1_TXD	SWCLK
				UART0_TXD	
				TIM3_CH2A	
				LVD_OUT	
				RCH_OUT	
				RCL_OUT	
				PLL_OUT	
77	50	38	PA15	SPIO_CS	
				UART1_RXD	
				TIM0_ETR	
				TIM0_CHA	
				TIM3_CH1A	
78	51		PC10	PCA_CH2	
79	52		PC11	PCA_CH3	
80	53		PC12	PCA_CH4	
81			PD00	CAN_RX	
				SPI1_CS	
82			PD01	CAN_TX	
				SPI1_SCK	
83	54		PD02	PCA_ECI	
				TIM1_ETR	
84			PD03	UART1_CTS	
				SPI1_MISO	
				I2S1_SCK	
85			PD04	UART1_RTS	
				SPI1_MOSI	
				I2S1_MCK	

		I			
86			PD05	UART1_TX	
				CAN_STBY	
				I2S1_SD	
87			PD06	UART1_RX	
				I2S1_WS	
88			PD07	UART1_TX	
89	55	39	PB03	SPI0_SCK	VC1_INN9
				TIM0_CHB	
				TIM1_GATE	
				TIM3_CH0A	
				XTL_OUT	
				XTH_OUT	
90	56	40	PB04	SPI0_MISO	VC0_INP12
				PCA_CH0	VC1_INP12
				TIM2_BK	OP2_OUT4
				UARTO_CTS	
				TIM2_GATE	
				TIM3_CH0B	
91	57	41	PB05	SPI0_MOSI	VC0_INP13
				TIM1_BK	
				PCA_CH1	
				UARTO_RTS	
92	58	42	PB06	I2C0_SCL	VC0_INP14
				UART0_TXD	VC1_INP14
				TIM1_CHB	
				TIM0_CHA	
				TIM3_CH0A	
93	59	43	PB07	I2C0_SDA	VC1_INP15
				UARTO_RXD	LVD2
				TIM2_CHB	
				TIM0_CHB	
94	60	44	BOOT0/PF11		
95	61	45	PB08	I2C0_SCL	LVD1
				TIM1_CHA	
				CAN_RX	
				TIM2_CHA	
				TIM0_GATE	
				TIM3_CH2A	
				UART0_TXD	

96	62	46	PB09	I2C0_SDA	
				IR_OUT	
				SPI1_CS	
				TIM2_CHA	
				CAN_TX	
				TIM2_CHB	
				UART0_RXD	
97			PE00	TIM1_CHA	
98			PE01	TIM2_CHA	
99	63	47	DVSS		
100	64	48	DVCC		

每个引脚的数字功能由 PSEL 位域进行控制,详见下表。

			Т	1	1	1	
PSEL	1	2	3	4	5	6	7
PA00	UART1_CTS		TIM0_ETR	VC0_OUT	TIM1_CHA	TIM3_ETR	TIM0_CHA
PA01	UART1_RTS		TIM0_CHB	TIM1_ETR	TIM1_CHB	HCLK_OUT	SPI1_MOSI
PA02	UART1_TXD	TIM0_CHA	VC1_OUT	TIM1_CHA	TIM2_CHA	PCLK_OUT	SPI1_MISO
PA03	UART1_RXD	TIM0_GATE	TIM1_CHB	TIM2_CHB	SPI1_CS	TIM3_CH1A	TIM5_CHA
PA04	SPIO_CS	UART1_TXD	PCA_CH4	TIM2_ETR	TIM5_CHA	LVD_OUT	TIM3_CH2B
PA05	SPI0_SCK	TIM0_ETR	PCA_ECI	TIM0_CHA	TIM5_CHB	XTL_OUT	XTH_OUT
PA06	SPI0_MISO	PCA_CH0	TIM3_BK	TIM1_CHA	VC0_OUT	TIM3_GATE	
PA07	SPI0_MOSI	PCA_CH1	HCLK_OUT	TIM3_CH0B	TIM2_CHA	VC1_OUT	TIM4_CHB
PA08	UART0_TXD	TIM3_CH0A	CRS_SYNC	CAN_STBY	TIM1_GATE	TIM4_CHA	TIM3_BK
PA09	UART0_TXD	TIM3_CH1A	TIM0_BK	I2C0_SCL		HCLK_OUT	TIM5_CHA
PA10	UARTO_RXD	TIM3_CH2A	TIM2_BK	I2C0_SDA	TIM2_GATE	PCLK_OUT	TIM6_CHA
PA11	UARTO_CTS	TIM3_GATE	I2C1_SCL	CAN_RX	VC0_OUT	SPI0_MISO	TIM4_CHB
PA12	UARTO_RTS	TIM3_ETR	I2C1_SDA	CAN_TX	VC1_OUT	SPI0_MOSI	
PA13	IR_OUT	UART0_RXD	LVD_OUT	TIM3_ETR			VC2_OUT
PA14	UART1_TXD	UART0_TXD	TIM3_CH2A	LVD_OUT	RCH_OUT	RCL_OUT	PLL_OUT
PA15	SPIO_CS	UART1_RXD		TIM0_ETR	TIM0_CHA	TIM3_CH1A	
PB00	PCA_CH2	TIM3_CH1B		TIM5_CHB	RCH_OUT	RCL_OUT	PLL_OUT
PB01	PCA_CH3	PCLK_OUT	TIM3_CH2B	TIM6_CHB		VC2_OUT	TCLK_OUT
PB02		PCA_ECI		TIM4_CHA	TIM1_BK	TIM0_BK	TIM2_BK
PB03	SPI0_SCK	TIM0_CHB	TIM1_GATE	TIM3_CH0A		XTL_OUT	XTH_OUT
PB04	SPI0_MISO	PCA_CH0	TIM2_BK	UARTO_CTS	TIM2_GATE	TIM3_CH0B	
PB05	SPI0_MOSI		TIM1_BK	PCA_CH1			UARTO_RTS
PB06	I2CO_SCL	UART0_TXD	TIM1_CHB	TIM0_CHA		TIM3_CH0A	
PB07	I2C0_SDA	UARTO_RXD	TIM2_CHB		TIM0_CHB		
PB08	I2CO_SCL	TIM1_CHA	CAN_RX	TIM2_CHA	TIM0_GATE	TIM3_CH2A	UARTO_TXD
PB09	I2C0_SDA	IR_OUT	SPI1_CS	TIM2_CHA	CAN_TX	TIM2_CHB	UARTO_RXD
PB10	I2C1_SCL	SPI1_SCK	TIM1_CHA		TIM3_CH1A		UART1_RTS
PB11	I2C1_SDA	TIM1_CHB		TIM2_GATE	TIM6_CHA		UART1_CTS
PB12	SPI1_CS	TIM3_BK		TIM0_BK			TIM6_CHA
PB13	SPI1_SCK	I2C1_SCL	TIM3_CH0B		TIM1_CHA	TIM1_GATE	TIM6_CHB
PB14	SPI1_MISO	I2C1_SDA	TIM3_CH1B	TIM0_CHA			TIM1_BK
PB15	SPI1_MOSI	TIM3_CH2B	TIM0_CHB	TIM0_GATE			
PC00			UART1_CTS	UART2_RTS	I2S0_MCK		
PC01		TIM5_CHB	UART1_RTS		12S0_SD	UART2_CTS	
PC02	SPI1_MISO			UART2_RXD			
PC03	SPI1_MOSI				UART2_TXD		
PC04		TIM2_ETR	IR_OUT	VC2_OUT	12S0_WS		
PC05		TIM6_CHB	PCA_CH4		I2S0_SDIN		
PC06	PCA_CH0	TIM4_CHA	TIM2_CHA		I2S1_SCK	UART3_RXD	

PC07	DCA CU1	TIME CHA	TIM2 CHP		I2S1_MCK	LIADT2 TVD	
	PCA_CH1	TIM5_CHA	TIM2_CHB			UART3_TXD	
PC08	PCA_CH2	TIM6_CHA	TIM2_ETR		I2S1_SD	UART3_CTS	
PC09	PCA_CH3	TIM4_CHB	TIM1_ETR		I2S1_WS	UART3_RTS	
PC10			PCA_CH2				
PC11			PCA_CH3				
PC12			PCA_CH4		1000 0014		
PC13			TIM3_CH1B		I2S0_SCK		
PC14							
PC15							
PD00	CAN_RX	SPI1_CS					
PD01	CAN_TX	SPI1_SCK					
PD02	PCA_ECI		TIM1_ETR				
PD03	UART1_CTS	SPI1_MISO		I2S1_SCK			
PD04	UART1_RTS	SPI1_MOSI		I2S1_MCK			
PD05	UART1_TXD		CAN_STBY	I2S1_SD			
PD06	UART1_RXD			12S1_WS			
PD07	UART1_TXD			I2S1_SDIN			
PD08		I2S0_SCK					
PD09		I2S0_MCK					
PD10		12S0_SD					
PD11		12S0_WS					
PD12		UART2_RTS					
PD13	UART2_RXD	I2S0_SDIN					
PD14	UART2_TXD						
PD15	CRS_SYNC	UART2_CTS					
PE00	TIM1_CHA						
PE01	TIM2_CHA						
PE02	PCA_ECI						
PE03	PCA_CH0						
PE04	PCA_CH1						
PE05	PCA_CH2						
PE06	PCA_CH3						
PE07	TIM3_ETR						
PE08	TIM3_CH0B						
PE09	TIM3_CH0A						
PE10	TIM3_CH1B						
PE11	TIM3_CH1A						
PE12	TIM3_CH2B	SPIO_CS	UART3_CTS				
PE13	TIM3_CH2A	SPI0_SCK	UART3_RTS				
PE14	TIM3_CH0B	SPI0_MISO	UART3_RXD				
PE15	TIM3_BK	SPI0_MOSI	UART3_TXD				

PF00	I2C0_SDA	CRS_SYNC	UART1_TXD		
PF01	I2C0_SCL	TIM4_CHB	UART1_RXD		
PF02					
PF03					
PF04					
PF05					
PF06	I2C1_SCL		UARTO_CTS		
PF07	I2C1_SDA		UARTO_RTS		
PF09	TIM0_CHA				
PF10	TIM0_CHB				
PF11					

3.3 模块信号说明

模块	引脚名称	描述
电源	DVCC	数字电源
	AVCC	模拟电源
	DVSS	数字地
	AVSS	模拟地
	AVCC_USB	USB phy电源(不大于3.6V,详见电气参数)
	AVSS_USB	USB phy地
	VCAP	LDO内核供电输出(仅限内部电路使用,需外接不小于1uF的去耦电容)
ISP	воото	BOOT0 (PF11)为高电平进入在线编程模式,通过上位机可以进行在线编程。 BOOT0 (PF11)为低电平为工作模式
ADC	AIN0~AIN35	ADC 输入通道0~35
	ADC_VREF	ADC外部参考电压
电压比较VC	VCIN0~VCIN15	VC 输入0~15
	VC0_OUT	VC0比较输出
	VC1_OUT	VC1比较输出
	VC2_OUT	VC2比较输出
LVD	LVDIN0	电压侦测输入0
	LVDIN1	电压侦测输入1
	LVDIN2	电压侦测输入2
	LVD_OUT	电压侦测输出
OPA	OPx_INN	OPA负端输入
x=0, 1, 2, 3,	OPx_INP	OPA正端输入
4	OPx_OUTy	OPA输出
UART	UARTx_TXD	UARTx数据发送端
x=0, 1, 2, 3	UARTx_RXD	UARTx数据接收端
	UARTx_CTS	UARTx CTS
	UARTx_RTS	UARTx RTS
I2S	I2S_CK	I2S模块时钟信号
x=0, 1	I2S_WS	I2S模块字选信号
	I2S_MCK	I2S模块主模式时钟输出
	I2S_SD	I2S模块数据输入输出
USB	USB_DP	USB 信号
	USB_DM	USB 信号
CAN	CAN_TX	CAN TX输出信号
	CAN_RX	CAN RX输入信号

	CAN_STBY	CAN STBY 信号		
CTS	CTS_SYNC	CTS 外部同步信号		
SPI	SPIx_MISO	SPI模块主机输入从机输出数据信号		
x=0, 1	SPIx_MOSI	SPI模块主机输出从机输入数据信号		
	SPIx_SCK	SPI模块时钟信号		
	SPIx_CS	SPI 片选		
I2C	I2Cx_SDA	I2C模块数据信号		
x=0, 1	I2Cx_SCL	I2C模块时钟信号		
通用定时器	TIMx_CHA	Timer的捕获输入比较输出A		
TIMx	TIMx_CHB	Timer的捕获输入比较输出B		
x=0, 1, 2	TIMx_ETR	Timer的外部计数输入信号		
	TIMx_GATE	Timer的门控信号		
通用定时器	TIM3_CHyA	Timer的捕获输入比较输出A		
TIM3	TIM3_CHyB	Timer的捕获输入比较输出B		
y=0, 1, 2	TIM3_ETR	Timer的外部计数输入信号		
J • • • •	TIM3_GATE	Timer的门控信号		
可编程计数阵列	PCA_ECI	外部时钟输入信号		
PCA	PCA_CH0	捕获输入/比较输出/PWM输出 0		
	PCA_CH1	捕获输入/比较输出/PWM输出 1		
	PCA_CH2	捕获输入/比较输出/PWM输出 2		
	PCA_CH3	捕获输入/比较输出/PWM输出 3		
	PCA_CH4	捕获输入/比较输出/PWM输出 4		
高级定时器	TIM4_CHA	Advanced Timer4 比较输出/捕获输入端A		
Advanced Timer	TIM4_CHB	Advanced Timer4 比较输出/捕获输入端B		
	TIM5_CHA	Advanced Timer5 比较输出/捕获输入端A		
	TIM5_CHB	Advanced Timer5 比较输出/捕获输入端B		
	TIM6_CHA	Advanced Timer6 比较输出/捕获输入端A		
	TIM6_CHB	Advanced Timer6 比较输出/捕获输入端B		

表 3-1 模块信号说明

注意:

- IO 端口复位为输入高阻状态,休眠模式和深度休眠模式保持之前的端口状态。

4 功能框图

5 存储区映射图

	lo išn	
0x2000_4000	保留	
	SRAM (16KByte)	
0x2000_0000		
	保留	
0x0002_0000		
	主闪存区 (128KByte)	
0x0000_0000		

6 电气特性

6.1 测试条件

除非特别说明,所有电压的都以 VSS 为基准。

6.1.1 最小和最大数值

除非特别说明,在生产线上通过对 100%的产品在环境温度 TA=25°C 和 TA=TAmax 下执行的测试(TAmax 与选定的温度范围匹配),所有最小和最大值将在最坏的环境温度、供电电压和时钟频率条件下得到保证。

在每个表格下方的注解中说明为通过综合评估、设计模拟和/或工艺特性得到的数据,不会在生产线上进行测试;在综合评估的基础上,最小和最大数值是通过样本测试后,取其平均值再加减三倍的标准分布(平均±3Σ)得到。

6.1.2 典型数值

除非特别说明,典型数据是基于 TA=25° C 和 VCC=3.3V(1.8V \leq VCC \leq 5.5V 电压范围)。这些数据仅用于设计指导而未经测试。

典型的 ADC 精度数值是通过对一个标准的批次采样,在所有温度范围下测试得到,95%产品的误差小于等于给出的数值(平均 $\pm 2\Sigma$)。

6.1.3 供电方案

注意:

- 每组电源都需要一个去耦电容,去耦电容尽量靠近相应电源管脚。

6.2 绝对最大额定值

加在器件上的载荷如果超过"绝对最大额定值"列表中给出的值,可能会导致器件永久性地损坏。这里只是给出能承受的最大载荷,并不意味在此条件下器件的功能性操作无误。器件长期工作在最大值条件下会影响器件的可靠性。

符号	描述	最小值	最大值	单位
VCC - VSS	外部主供电电压(包含AVCC和DVCC) ⁽¹⁾	-0.3	5.5	V
AVCC_USB	USB phy供电电压 ⁽²⁾	3.0	3.6	V
$V_{\rm IN}$	在其它引脚上的输入电压(3)	VSS-0.3	VCC + 0.3	V
ΔVCCx	不同供电引脚之间的电压差		50	mV
VSSx - VSS	不同接地引脚之间的电压差		50	mV
V _{ESD} (HBM)	ESD静电放电电压(人体模型)	参考绝对最大	に 値电气参数	V

表 6-1 电压特性

- 1. 所有的电源(DVCC, AVCC)和地(DVSS, AVSS)引脚必须始终连接到外部允许范围内的供电系统上。
- 2. AVCC_USB 不可高于 AVCC/VCC 0.3V。
- 3. $I_{INJ(PIN)}$ 绝对不可以超过它的极限,即保证 V_{IN} 不超过其最大值。如果不能保证 V_{IN} 不超过其最大值,也要保证在外部限制 $I_{INJ(PIN)}$ 不超过其最大值。当 V_{IN} > VCC 时,有一个正向注入电流;当 V_{IN} < VSS 时,有一个反向注入电流。

符号	描述	最大值(1)	单位
I_{VCC}	经过DVCC/AVCC电源线的总电流(供应电流) ⁽¹⁾	300	mA
I _{vss}	经过VSS地线的总电流(流出电流) ⁽¹⁾	300	mA
I_{IO}	任意I/O和控制引脚上的输出灌电流	25	mA
	任意I/O和控制引脚上的输出电流	-25	mA
$I_{INJ(PIN)}^{(2) (3)}$	RESETB引脚的注入电流	+/-5	mA
	XTH的XTHI引脚和XTL的XTLI引脚的注入电流	+/-5	mA
	其他引脚的注入电流(4)	+/-5	mA
$\sum I_{\text{INJ(PIN)}}^{(2)}$	所有I/O和控制引脚上的总注入电流 ⁽⁴⁾	+/-25	mA

表 6-2 电流特性

- 1. 所有的电源(DVCC, AVCC)和地(DVSS, AVSS)引脚必须始终连接到外部允许范围内的供电系统上。
- 2. I_{INJ(PIN)}绝对不可以超过它的极限,即保证 V_{IN}不超过其最大值。如果不能保证 VIN 不超过其最大值,也要保证在外部限制 I_{INJ(PIN)}不超过其最大值。当 V_{IN}>VCC 时,有一个正向注入电流;当 VIN<VSS 时,有一个反向注入电流。
- 3. 反向注入电流会干扰器件的模拟性能。
- 4. 当几个 I/O 口同时有注入电流时, $\sum I_{INJ(PIN)}$ 的最大值为正向注入电流与反向注入电流的即时绝对值之和。该结果基于在器件 $4 \land I/O$ 端口上 $\sum I_{INJ(PIN)}$ 最大值的特性。

符号	描述	数值	单位
TSTG	储存温度范围	-60 ~ + 150	°C
TJ	最大结温度	105	°C

表 6-3 温度特性

6.3 工作条件

6.3.1 通用工作条件

符号	参数	条件	最小值	最大值	单位
fHCLK	内部AHB时钟频率		0	48	MHz
fPCLK0	内部APB0时钟频率		0	48	MHz
fPCLK1	内部APB1时钟频率		0	48	MHz
DVCC	标准工作电压		1.8	5.5	V
AVCC_USB	USB phy供电电压 ⁽¹⁾		3.0	3.6	V
AVCC ⁽²⁾	模拟部分工作电压	必须与DVCC ⁽³⁾ 相同	1.8	5.5	V
PD	功率耗散 TA=85℃	LQFP100		476	mW
	功率耗散 TA=85℃	LQFP64		455	mW
	功率耗散 TA=85℃	LQFP48		364	mW
TA	环境温度	最大功率消耗	-40	85	°C
		低功率消耗(4)	-40	105	°C
TJ	结温度范围		-40	105	°C

表 6-4 通用工作条件

- 1. AVCC_USB 不可高于 AVCC/VCC 0.3V。
- 2. 当使用 ADC 时,参见 ADC 电气参数。
- 3. 建议使用相同的电源为 DVCC 和 AVCC 供电,在上电和正常操作期间, DVCC 和 AVCC 之间最多允许有 300mV 的差别。
- 4. 在较低的功率耗散的状态下,只要 T_J 不超过 T_{Jmax} , T_A 可以扩展到这个范围。

6.3.2 上电和掉电时的工作条件

符号	参数	条件	最小值	最大值	单位
t_{Vcc}	VCC上升速率		0	8	μs/V
$t_{ m Vcc}$	VCC下降速率		10	∞	μs/V

表 6-5 上电和掉电的工作条件

6.3.3 内嵌复位和 LVD 模块特性

1. 设计保证,不在生产中测试。

图 6-1 POR/Brown Out 示意图

符号	参数	条件	最小值	典型值	最大值	单位
Vpor	POR 释放电压(上电过程)		1.45	1.50	1.65	V
	BOR 检测电压(掉电过程)					

表 6-6 POR/Brown Out

符号	参数	条件	最小值	典型值	最大值	单位
Vex	外部输入电压范围		0		VCC	V
Vlevel	检测阈值	LVD_CR.VTDS=0000	1.7	1.8	1.9	V
		LVD_CR.VTDS =0001	1.8	1.9	2.0	
		LVD_CR.VTDS =0010	1.9	2.0	2.1	
		LVD_CR.VTDS =0011	2.0	2.1	2.2	
		LVD_CR.VTDS =0100	2.1	2.2	2.3	
		LVD_CR.VTDS=0101	2.2	2.3	2.4	
		LVD_CR.VTDS=0110	2.3	2.4	2.5	
		LVD_CR.VTDS=0111	2.4	2.5	2.6	
		LVD_CR.VTDS=1000	2.5	2.6	2.7	
		LVD_CR.VTDS=1001	2.6	2.7	2.8	
		LVD_CR.VTDS=1010	2.7	2.8	2.9	
		LVD_CR.VTDS=1011	2.8	2.9	3.0	
		LVD_CR.VTDS=1100	2.9	3.0	3.1	
		LVD_CR.VTDS=1101	3.0	3.1	3.2	
		LVD_CR.VTDS=1110	3.1	3.2	3.3	
		LVD_CR.VTDS=1111	3.2	3.3	3.4	
Icomp	功耗			0.12		uA
Tresponse	响应时间			80		uS
Tsetup	建立时间			400		uS
Vhyste	迟滞电压			40		mV
Tfilter	滤波时间	LVD_debounce = 000		7		uS
		LVD_debounce = 001		14		
		LVD_debounce = 010		28		
		LVD_debounce = 011		112		
		LVD_debounce = 100		450		
		LVD_debounce = 101		1800		
		LVD_debounce = 110		7200		
		LVD_debounce = 111		28800		

表 6-7 LVD 模块特性

6.3.4 内置的参考电压

符号	参数	条件	最小值	典型值	最大值	单位
V _{REF25}	Internal 2.5v Reference Voltage	常温25℃ 3.3V	2.475	2.5	2.525	V
V _{REF25}	Internal 2.5v Reference Voltage	-40C~85C; 2.8V~5.5V	2.463	2.5	2.525	V[1]
V _{REF15}	Internal 1.5v Reference Voltage	常温25℃ 3.3V	1.485	1.5	1.515	V
V _{REF15}	Internal 1.5v Reference Voltage	-40C~85C; 1.8V~5.5V	1.477	1.5	1.519	V[1]
T_{Coeff}	Internal 2.5v 1.5v temperature	-40 ~ 85°C			120	ppm/
	coefficient	-40 ~ 65 C			120	°C

^{1.} 数据基于考核结果,不在生产中测试

6.3.5 供电电流特性

电流消耗是多种参数和因素的综合指标,这些参数和因素包括工作电压、环境温度、 I/O 引脚的负载、产品的软件配置、工作频率、I/O 脚的翻转速率、程序在存储器中的 位置以及执行的代码等。

微控制器处于下列条件:

- 所有的 I/O 引脚都处于输入模式,并连接到一个静态电平上——VCC 或 VSS(无负载)。
- 所有的外设都处于关闭状态,除非特别说明。
- 闪存存储器的访问时间调整到 fHCLK 的频率(0~24MHz 时为 0 个等待周期, 24~48MHz 时为 1 个等待周期)。
- 当开启外设时: fPCLK0 = fHCLK, fPCLK1 = fHCLK。

Symbol	Parameter	Conditions			Typ ⁽¹⁾	Max ⁽²⁾	Unit			
I _{DD} (AVCC_USB)		Active			4		mA			
			4M	990						
		Vcore=1.5V Vcc=3.3V T _A =2xC	RCH clock source	8M	1950					
I _{DD} All peripherals	All requireds are leaders.			16M	3860					
	ON,			22.12M	5350		uA			
	,						24M	5780		uA
IVAIVI)			PLL RCH4M to	32M	7910					
			xxM clock source	48M	11760					

				4M	340			
				8M	650			
			RCH	16M	1240			
	All peripherals clock	Vcore=1.5V	clock source	22.12M	1700			
	OFF,	Vcc=3.3V		24M	1840		uA	
	Run while(1) in RAM	T _A =2xC	PLL RCH4M to	32M	2680			
			xxM clock source	48M	3950			
				4M	830			
				8M	1520			
I _{DD}	All peripherals clock	Vcore=1.5V	RCH	16M	2970			
(Run	OFF,	V _{cc} =3.3V	clock source	22.12M	3970		uA	
CoreMark)	Run CoreMark in Flash	T _A =2xC		24M	4290			
			PLL RCH4M to	48M FlashWait=1	6770			
		Vcore=1.5V		4M	1330	1800		
		Vcc=1.8-	5011	8M	2480	3430	uA	
		5.5V	RCH	16M	4980	6570		
		T _A =N40C-	clock source	22.12M	6750	8960		
		85C		24M	6080	9680		
				16M	5260	6550		
	All peripherals clock ON		PLL RCH4M to xxM clock source	24M	7380	9260		
		Vcore=1.5V Vcc=1.8- 5.5V T _A =N40C- 85C		32M FlashWait=1	9190	10640	^	
				40M FlashWait=1	11340	13150	uA	
l _{DD}	Run while(1) in Flash			48M FlashWait=1	13460	15750		
(Run mode)				16M	5340	6610		
		\/ooro=1 E\/		24M	7460	9380		
		Vcore=1.5V Vcc=1.8-	PLL RCH8M to	32M FlashWait=1	9250	10740	^	
		5.5V T _A =N40C- 85C	xxM clock source	40M FlashWait=1	11380	13290	uA	
				48M FlashWait=1	13560	15840		
	All manifely and	\/4_5\/		4M	670	1070	- uA	
	All peripherals clock	Vcore=1.5V	RCH	8M	1190	1980		
	OFF, Run while(1) in Flash	V _{cc} =1.8- 5.5V	clock source	16M	2270	3580		
	Kuli Willie(1) III FidSfi	J.UV		22.12M	3060	4780		

T _A =N40C-			
85C 24M 3290	5110		
16M 2550	3530		
24M 3450	4780		
Vcore=1.5V Vcc=1.8- PLL RCH4M to FlashWait=1 3950	4660	^	
5.5V xxM T _A =N40C- clock source	5710	uA	
48M FlashWait=1 5680	6770		
16M 2610	3600		
24M 3510	4850		
Vcore=1.5V Vcc=1.8- PLL RCH8M to FlashWait=1 4000	4730	^	
5.5V xxM T _A =N40C- clock source FlashWait=1 4840	5760	uA	
48M FlashWait=1 5730	6850		
Vcore=1.5V 4M 830	940		
V _{cc} =1.8-	1870	uA	
5.5V RCH 16M 3230	3680		
T _A =N40C- clock source 22.12M 4490	5120		
85C 24M 4840	5570		
16M 3550	4060		
24M 5050	5760		
$V_{cc}=1.5V$ $V_{cc}=1.8 5.5V$ PLL RCH4M to FlashWait=1 6670	7630	uA	
All peripherals clock T _A =N40C- clock source TlashWait=1 8300	9500	uА	
(Sleep mode) 48M 9920 FlashWait=1	11360		
16M 3620	4120		
Vcore=1.5V 24M 5110	5840		
Vcc=1.8- Vcc=1.8- 5.5V PLL RCH8M to FlashWait=1 6730	7700	uA	
T _A =N40C- clock source 85C 40M FlashWait=1 8340	9580	uл	
48M FlashWait=1 9980	11420		
All peripherals clock Vcore=1.5V RCH 4M 180	220	uA	
OFF V _{cc} =1.8- clock source 8M 330	390	uA	

		5.5V		16M	600	680		
		T _A =N40C-		22.12M	820	930		
		85C		24M	880	990		
				16M	900	1010		
				24M	1110	1260		
		V_{cc} =1.8- PLL RCH4M to	32M FlashWait=1	1410	1600	uA		
		5.5V T _A =N40C- 85C	xxM clock source	40M FlashWait=1	1720	1960	uA	
		030		48M FlashWait=1	2040	2320		
				16M	960	1080		
		Vcore=1.5V		24M	1170	1320		
		V _{cc} =1.8-	PLL RCH8M to	32M FlashWait=1	1470	1670	^	
	5.5V T _A =N40C- 85C	clock source	40M FlashWait=1	1780	2030	uA		
		830		48M FlashWait=1	2100	2390		
	All peripherals clock Vcore=1.5V Vcc=1.8-	XTL32K	T _A =N40- 25C	16	20			
			clock source	T _A =50C	17	22	uA	
l _{DD}	Run while(1) in Flash	Flash 5.5V	Driver=0x0	T _A =85C	23	29		
(LP Run)	All peripherals clock	Vcore=1.5V Vcc=1.8-	XTL32K	T _A =N40- 25C	11	15	^	
	OFF, Run while(1) in Flash	5.5V	clock source Driver=0x0	T _A =50C	12	16	uA	
		J.J V	DIIVEI – UXU	T _A =85C	18	23		
	All peripherals clock	Vcore=1.5V	XTL32K	T _A =N40- 25C	11	12	^	
	ON	V _{cc} =1.8- 5.5V	clock source Driver=0x0	T _A =50C	12	13	uA	
I_{DD}		J.J V	DIIVEI –UXU	T _A =85C	18	20		
(LP Sleep)	All peripherals clock	Vcore=1.5V	XTL32K	T _A =N40- 25C	6	6		
	OFF	V _{cc} =1.8-	clock source	T _A =50C	7	7	uA	
		5.5V	Driver=0x0	T _A =85C	13	14		
I _{DD} (DeepSleep	XTL32K	Vcore=1.5V	XTL32K Driver=0x0	T _A =N40- 25C	3570	3860	nΛ	
mode)	+DeenSleen	V _{cc} =1.8- 5.5V		T _A =50C	4280	4790	nA	
modej		J.5 V		T _A =85C	8740	10410		

	IRC32K	Vcore=1.5V		T _A =N40- 25C	3570	3830		
	+DeepSleep	V _{cc} =1.8- 5.5V		T _A =50C	4270	4750	nA	
		5.5V		T _A =85C	8740	10410		
	WDT	Vcore=1.5V		T _A =N40- 25C	3290	3520		
	+DeepSleep	V _{cc} =1.8- 5.5V	T _A =50C	3980	4430	nA		
		5.50	5.57	T _A =85C	8410	10020		
		Vcore=1.5V		T _A =N40- 25C	3180	3400		
	DeepSleep Vc=1.8- 5.5V			T _A =50C	3870	4310	nA	
			T _A =85C	8330	9970			

- 1. 若没有其他指定条件,该 Typ 的值是在 25 ° C & $V_{CC} = 3.3V$ 测得。
- 2. 若没有其他指定条件,该 Max 的值是 V_{CC} = 1.8-5.5 & Temperature = N40 85 ° C 范围内的最大值。
- 3. 数据基于考核结果,不在生产中测试

表 6-1 工作电流特性

6.3.6 从低功耗模式唤醒的时间

唤醒时间是在 RCH 振荡器的唤醒阶段测量得到。唤醒时使用的时钟源依当前的操作模式而定:

- 休眠模式: 时钟源是 RCH 振荡器
- 深度休眠模式:时钟源是进入深度休眠时所使用的时钟是 RCH 振荡器

Symbol	Papameter	Conditions	Min	Тур	Max	Unit
T_{wu}	休眠模式唤醒时间			1.8		μs
	深度休眠唤醒时间	$F_{MCLK} = 4MHz$		9.0		μs
		$F_{MCLK} = 8MHz$		6.0		μs
		$F_{MCLK} = 16MHz$		5.0		μs
		$F_{MCLK} = 24MHz$		4.0		μs

1. 唤醒时间的测量是从唤醒事件开始至用户程序读取第一条指令。

6.3.7 外部时钟源特性

6.3.7.1 外部输入高速时钟

符号	参数	条件	最小值	典型值	最大值	单位
fXTH_ext	用户外部时钟频率(1)		0	8	32	MHz
VXTHH	输入引脚高电平电压		0.7VCC		VCC	V
VXTHL	输入引脚低电平电压		VSS		0.3VCC	V
Tr(XTH)	上升的时间(1)				20	ns
Tf(XTH)	下降的时间(1)				20	ns
Tw(XTH)	输入高或低的时间(1)		16			ns
Cin(XTH)	输入容抗(1)			5		pF
Duty	占空比		40		60	%
IL	输入漏电流			_	±1	μΑ

由设计保证,不在生产中测试。

6.3.7.2 外部输入低速时钟

符号	参数	条件	最小值	典型值	最大值	单位
fXTH_ext	用户外部时钟频率(1)		0	32.768	1000	KHz
VXTHH	输入引脚高电平电压		0.7VCC		VCC	V
VXTHL	输入引脚低电平电压		VSS		0.3VCC	V
Tr(XTH)	上升的时间(1)				50	ns
Tf(XTH)	下降的时间(1)				50	ns
Tw(XTH)	输入高或低的时间(1)		450			ns
Cin(XTH)	输入容抗(1)			5		pF
Duty	占空比		30		70	%
IL	输入漏电流				±1	μΑ

由设计保证,不在生产中测试。

6.3.7.3 高速外部时钟 XTH

高速外部时钟(XTH)可以使用一个 4~32MHz 的晶体/陶瓷谐振器构成的振荡器产生。本节中所给出的信息是基于使用下表中列出的典型外部元器件,通过综合特性评估得到的结果。在应用中,谐振器和负载电容必须尽可能地靠近振荡器的引脚,以减小输出失真和启动时的稳定时间。有关晶体谐振器的详细参数(频率、封装、精度等),请咨询相应的生产厂商。

外部 XTH 晶振⁽¹⁾⁽²⁾

符号	参数	条件	最小值	典型值	最大值	单位
FCLK	振荡频率		4		32	MHz
ESR _{CLK}	支持的晶振ESR范围	32M		30	60	Ohm
		4M		400	1500	Ohm
$C_{LX}^{(3)}$	负载电容	两个管脚都有负载电容	12		24	pF
Duty	占空比		40	50	60	%
Idd ⁽⁴⁾	电流	32M Xtal, CL=12pF, ESR=30ohm		600		uA
T _{start} ⁽⁵⁾	启动时间	32MHz		300		us
		@ XTH_CR.Driver=1111				
		4MHz		2		ms
		@ XTH_CR.Driver=0011				

- 1. 谐振器的特性参数由晶体/陶瓷谐振器制造商给出。
- 2. 由综合评估得出,不在生产中测试。
- 3. C_{LX} 指 XTAL 的两个管脚负载电容 C_{L1} 和 C_{L2} 。对于 C_{L1} 和 C_{L2} ,建议使用高质量的、为高频应用而设计瓷介电容器,并挑选符合要求的晶体或谐振器。通常 C_{L1} 和 C_{L2} 具有相同参数。晶体制造商通常以 C_{L1} 和 C_{L2} 的串行组合给出负载电容的参数。在选择 C_{L1} 和 C_{L2} 时,应该根据晶振的频率和 ESR 等参数,并且将 PCB 和 MCU 引脚的容抗考虑在内。在晶振频率为 32M 时, C_{LX} 需要选择小的电容值, XTH_CR . Driver 为 1110 时,可以选择 C_{LX} 为 12pF。
- 4. 电流跟随频率变化而变化,测试条件: XTH_CR.Driver=1110
- 5. T_{start} 是启动时间,是从软件使能 XTH 开始测量,直至得到稳定的 32MHz/4MHz 振荡这段时间。这个数值是在 XTH_CR.Startup=10 设置下,使用一个标准的晶体谐振器上测量得到,它可能因晶体制造商和型号的不同而变 化较大。

6.3.7.4 低速外部时钟 XTL

低速外部时钟(XTL)可以使用一个 32.768kHz 的晶体/陶瓷谐振器构成的振荡器产生。本节中所给出的信息是基于典型外部元器件,通过综合特性评估得到的结果。在应用中,谐振器和负载电容必须尽可能地靠近振荡器的引脚,以减小输出失真和启动时的稳定时间。有关晶体谐振器的详细参数(频率、封装、精度等),请咨询相应的生产厂商。外部 XTL 晶振⁽¹⁾

符号	参数	条件	最小值	典型值	最大值	单位
F _{CLK}	振荡频率			32.768		KHz
ESR _{CLK}	支持的晶振ESR范围			65	85	kOhm
C _{Lx}	负载电容	两个管脚都有负载电容		12		pF
DC _{ACLK}	占空比		30	50	70	%
Idd ⁽³⁾	电流	ESR= 65 kOhm C _L =12 pF		350	1000	nA
T _{start} ⁽⁴⁾	启动时间	ESR=65 kOhm, C _L =12 pF, 40% - 60% duty cycle has been reached		500		ms

- 1. 由综合评估得出,不在生产中测试。
- 2. C_{LX} 指 XTAL 的两个管脚负载电容 C_{L1} 和 C_{L2}。对于 C_{L1} 和 C_{L2},建议使用高质量的资介电容器,并挑选符合要求的晶体或谐振器。通常 C_{L1} 和 C_{L2} 具有相同参数。晶体制造商通常以 C_{L1} 和 C_{L2} 的串行组合给出负载电容的参数。在选择 C_{L1} 和 C_{L2} 时,应该将 PCB 和 MCU 引脚的容抗考虑在内。
- 3. 典型值为XTL_CR.Driver=1001时的功耗。选择具有较小ESR值的高质量振荡器,可以通过减小XTL_CR.Driver设置值以优化电流消耗。
- 4. Tstart 是启动时间,是从软件使能 XTL 开始测量,直至得到稳定的 32768 振荡这段时间。这个数值是在 XTL_CR.Driver=1001 和 XTL_CR.Startup=10 设置下,使用一个标准的晶体谐振器上测量得到,它可能因晶体制造商和型号的不同而变化较大。

6.3.8 内部时钟源特性

6.3.8.1 内部 RCH 振荡器

Symbol	Papameter	Conditions	Min	Тур	Max	Unit
Dev	RCH振荡器精度	User-trimmed with		0.25		%
		clock_trim for given VCC				
		and TA conditions				
		$VCC = 1.8V \sim 5.5V$	-2.5		+2.5	%
		$T_{AMB} = -40$ °C ~ 85 °C				
		$VCC = 1.8V \sim 5.5V$	-2.0		+2.0	%
		$T_{AMB} = -20$ °C ~ 50 °C				
F _{CLK}	振荡频率		4.0	4.0	24.0	MHz
				8.0		
				16.0		
				22.12		
				24.0		
I_{CLK}	功耗	$F_{MCLK} = 4MHz$		80		μΑ
		$F_{MCLK} = 8MHz$		100		μΑ
		$F_{MCLK} = 16MHz$		120		μΑ
		$F_{MCLK} = 24MHz$		140		μΑ
DC _{CLK}	占空比(1)		45	50	55	%

^{1.} 由综合评估得出,不在生产中测试。

6.3.8.2 内部 RCL 振荡器

Symbol	Papameter	Conditions	Min	Тур	Max	Unit
Dev	RCL振荡器精度	User-trimmed with		0.5		%
		clock_trim for given VCC				
		and TA conditions				
		$VCC = 1.8V \sim 5.5V$	-2.5		+2.5	%
		$T_{AMB} = -40$ °C ~ 85 °C				
		$VCC = 1.8V \sim 5.5V$	-1.5		+1.5	%
		$T_{AMB} = -20^{\circ}C \sim 50^{\circ}C$				
F _{CLK}	振荡频率			38.4		KHz
				32.768		
T_{CLK}	启动时间			150		uS
DC _{CLK}	占空比(1)		25	50	75	%
I_{CLK}	功耗			0.35		μΑ

^{1.} 由综合评估得出,不在生产中测试。

6.3.8.3 内部 USB 专用 RC48M 振荡器

Parameter	Description	Min	Тур	Max	Units	Condition
DVCC	Analog 5V Supply	1.8	3.3	5.5	V	
T	Junction Temperature	-40	27	105	deg C	
F _{RC48M}	Frequency	-	48	-	MHz	-
TRIM	RC48M user-trimming step	0.06(2)	0.12	0.2(2)	%	-
DUCy _{RC48M}	Duty cycle	45(2)	-	55 ⁽²⁾	%	-
		6(3)	-	6(3)	%	T _A =-40 to 105 °C
ACC	Accuracy of the RC48M	TBD ⁽³⁾	-	TBD ⁽³⁾	%	T _A =-10 to 85 °C
ACC _{RC48M}	oscillator(factory calibrated)	TBD ⁽³⁾	-	TBD ⁽³⁾	%	TA=0 to 70 °C
		2 ⁽³⁾	-	2(3)	%	TA=25 °C
t _{su(RC48M)}	RC48M oscillator startup time	-	-	20(2)	uS	
I _{DDA(RC48M)}	RC48M oscillator power consumption	-	270	350(2)	uA	

- 1. AVCC=3.3V, TA=-40 to 105 °C unless otherwise specified
- 2. Guatanteed by design, not tested in production
- 3. Data based on characterization results, not tested in production

6.3.9 PLL 特性

符号	参数	条件	最小值	典型值	最大值	单位
Fin ⁽¹⁾	输入时钟		4	4	24	MHz
	输入时钟占空比		40		60	%
Fout	输出频率		8	-	48	MHz
Duty ⁽¹⁾	输出占空比		48%	-	52%	
Tlock ⁽¹⁾	锁定时间	输入频率4MHz	-	100	200	us

^{1.} 由综合评估得出,不在生产中测试。

6.3.10 存储器特性

符号	参数	条件	最小值	典型值	最大值	单位
EC _{FLASH}	擦写次数	Regulator	20K			cycles
		voltage=1.5v,				
		$T_{AMB} = 25$ °C				
RET _{FLASH}	数据保存期限	$T_{AMB} = 85^{\circ}C$	20			Years
		常温	100			Years
Tw_prog	编程时间		6		7.5	μs
T _{p_erase}	页擦除时间		4		5	ms
T _{m_erase}	整片擦除时间		30		40	ms

6.3.11 EFT 特性

芯片复位可以使系统恢复正常操作。

符号	级别/类型
EFT to IO	2kV
(IEC61000-4-4)	Class:4
EFT to Power	4kV
(IEC61000-4-4)	Class:4

软件建议

软件的流程中必须包含程序跑飞的控制,如:

- 被破坏的程序计数器
- 意外的复位
- 关键数据被破坏(控制寄存器等)

在进行 ESD 测试时,可以把超出应用要求的电压直接施加在芯片上,当检测到意外动作的地方,软件部分需要加强以防止发生不可恢复的错。

6.3.12 ESD 特性

使用特定的测量方法,对芯片进行强度测试以决定它的电气敏感性方面的性能。

符号	参数	条件	最小值	典型值	最大值	单位
VESD _{HBM}	ESD @ Human Body Mode			4		KV
VESD _{CDM}	ESD @ Charge Device Mode			1		KV
VESD _{MM}	ESD @ machine Mode			200		V
Ilatchup	Latch up current			200		mA

6.3.13 I/O 端口特性

6.3.13.1 输出特性——端口

符号	参数	条件	最小值	最大值	单位
V _{OH}	High level output	Sourcing 4 mA, $VCC = 3.3 \text{ V}$	VCC-0.25		V
	voltage	(see Note 1)			
	Source Current	Sourcing 8 mA, $VCC = 3.3 \text{ V}$	VCC-0.6		V
		(see Note 2)			
V _{OL}	Low level output voltage	Sinking 5 mA, $VCC = 3.3 \text{ V}$		VSS+0.25	V
	Sink Current	(see Note 1)			
		Sinking 14 mA, $VCC = 3.3 \text{ V}$		VSS+0.6	V
		(see Note 2)			
V_{OHD}	High level output	Sourcing 8 mA, $VCC = 3.3 \text{ V}$	VCC-0.25		V
	voltage	(see Note 1)			
	Double source Current	Sourcing 18 mA, VCC = 3.3V	VCC-0.6		V
		(see Note 2)			
V_{OLD}	Low level output voltage	Sinking 8 mA, $VCC = 3.3 \text{ V}$		VSS+0.25	V
	Double Sink Current	(see Note 1)			
		Sinking 18 mA , $VCC = 3.3 \text{ V}$		VSS+0.6	V
		(see Note 2)			

表 6-4 端口输出特性

NOTES: 1. The maximum total current, I_{OH}(max) and I_{OL}(max), for all outputs combined, should not exceed 40 mA to satisfy the maximum specified voltage drop.

2. The maximum total current, $I_{OH}(max)$ and $I_{OL}(max)$, for all outputs combined, should not exceed 100 mA to satisfy the maximum specified voltage drop.

图 6-2 输出端口 VOH/VOL 实测曲线

6.3.13.2 输入特性——端口 PA, PB, PC, PD, PE, PF, RESET, USB_DP

符号	参数	条件	最小值	典型值	最大值	单位
V _{IH}	Positive-going	VCC=1.8v	1.2			V
	input	VCC=3.3v	2.0			V
	threshold voltage	VCC=5.5v	3.3			V
V _{IL}	Negative-going	VCC=1.8v			0.8	V
	input	VCC=3.3v			1.5	V
	threshold voltage	VCC=5.5v			2.4	V
V _{hys(1)}	Input voltage	VCC=1.8v		0.3		V
	hysteresis	VCC=3.3v		0.4		V
	$(V_{IH} - V_{IL})$	VCC=5.5v		0.6		V
R _{pullhigh}	Pullup resistor	Transmitting	1425		3090	ohm
(USB_DP)		Idle	900		1575	
R _{pullhigh}	Pullup resistor	Pullup enabled		80		Kohm
(GPIO)		VCC=3.3V				
$R_{ m pulllow}$	Pulldown resistor	Pulldown enabled		40		Kohm
(GPIO)		VCC=3.3V				
Cinput	Input capacitance			5		pf

^{1.} 由综合评估得出,不在生产中测试。

6.3.13.3 端口外部输入采样要求——Timer Gate/Timer Clock

符号	参数	条件	最小值	典型值	最大值	单位
t(int)	External interrupt	External trigger signal for the	1.8v	30		ns
	timing	interrupt flag (see Note 1)	3.3v	30		ns
			5.5v	30		ns
t(cap)	Timer capture	Timer4/5/6 capture pulse	1.8v	0.5		us
	timing	width	3.3v	0.5		us
		Fsystem = 4MHz	5.5v	0.5		us
t(clk)	Timer clock	Timer0/1/2/4/5/6 external	1.8v		PCLK/2	MHz
	frequency applied	clock input	3.3v		PCLK/2	MHz
	to pin	Fsystem = 4MHz	5.5v		PCLK/2	MHz
t(pca)(2)	PCA clock	PCA external clock input	1.8v		PCLK/8	MHz
	frequency	Fsystem = 4MHz	3.3v		PCLK/8	MHz
	applied to pin		5.5v		PCLK/8	MHz

NOTES: 1. The external signal sets the interrupt flag every time the minimum $t_{(int)}$ parameters are met. It may be set even with trigger signals shorter than $t_{(int)}$.

^{2.} 由综合评估得出,不在生产中测试。

6.3.13.4 端口漏电特性——PA, PB, PC, PD, PE, PF

符	号	参数	条件	最小值	典型值	最大值	单位
I _{lkg}	(Px.y)	Leakage current	$V_{(Px.y)}$ (see Note 1, 2)		±50		nA

NOTES: 1. The leakage current is measured with VSS or VCC applied to the corresponding pin(s), unless otherwise noted.

^{2.} The port pin must be selected as input.

6.3.14 RESETB 引脚特性

RESETB 引脚输入驱动使用 CMOS 工艺,它连接了一个不能断开的上拉电阻。

符号	参数	条件	最小值	典型值	最大值	单位
$V_{\text{IL}(\text{RESETB})}^{(1)}$	输入低电平电压		-0.3		0.8	V
$V_{\text{IH}(\text{RESETB})}$	输入高电平电压		0.8*VCC		VCC+0.5	V
$V_{\text{hys}(\text{RESETB})}$	施密特触发器电压迟滞			200		mV
$R_{ m PU}$	弱上拉等效电阻	$V_{\text{IN}} = V_{\text{SS}}$		80		kΩ
$V_{\text{F(RESETB)}}^{(1)}$	输入滤波脉冲				100	ns
V _{NF(RESETB)} (1)	输入非滤波脉冲		300			ns

^{1.} 由设计保证,不在生产中测试。

6.3.15 ADC 特性

符号	参数	条件	最小值	典型值	最大值	单位
V _{ADCIN}	Input voltage range	Single ended	0		V _{ADCREFIN}	V
V _{ADCREFIN}	Input range of external reference voltage	Single ended	0		AVCC	V
I _{ADC1}	Active current including reference generator and buffer	200kSPS		2		mA
I _{ADC2}	Active current without reference generator and buffer	1MSPS		0.5		mA
C _{ADCIN}	ADC input capacitance			16	19.2	pF
$R_{ADC}^{(1)}$	ADC sampling switch impedance			1.5		KOhm
R _{AIN} ⁽¹⁾	ADC external input resistor ⁽²⁾				100	KOhm
F _{ADCCLK}	ADC clock Frequency				24M	Hz
T _{ADCSTART}	Startup time of reference generator and ADC core			30		μS
T _{ADCCONV}	Conversion time		20	24	28	cycles
ENOB	Effective Bits	1MSPS@VCC>=2.7v 500KSPS@VCC>=2.4v 200KSPS@VCC>=1.8v REF=EXREF		10.3		Bit
		1MSPS@VCC>=2.7v 500KSPS@VCC>=2.4v		10.3		Bit

		200VCDC@VCC>=1 9				
		200KSPS@VCC>=1.8v				
		REF=VCC				
		200KSPS@VCC>=1.8v		9.4		Bit
		REF=internal 1.5V). 1		Dit
		200KSPS@VCC>=2.8v		0.4		D'
		REF=internal 2.5V		9.4		Bit
		1MSPS@VCC>=2.7v				
		500KSPS@VCC>=2.4v		60.2		1D
		200KSPS@VCC>=1.8v		68.2		dB
		REF=EXREF				
		1MSPS@VCC>=2.7v				
a) ID	Signal to Noise	500KSPS@VCC>=2.4v		60.2		10
SNR	Ratio	200KSPS@VCC>=1.8v		68.2		dB
		REF=VCC				
		200KSPS@VCC>=1.8v				1D
		REF=internal 1.5V		60		dB
		200KSPS@VCC>=2.8v		1.0		
		REF=internal 2.5V		60		dB
DNH (1)	D:00 1	200KSps;			4	I GD
DNL ⁽¹⁾	Differential non-linearity	VREF=EXREF/AVCC	-1		1	LSB
DII (1)	T . 1 12 13	200KSps;			2	I CD
INL ⁽¹⁾	Integral non-linearity	VREF=EXREF/AVCC	-3		3	LSB
Eo	Offset error			0		LSB
Eg	Gain error			0		LSB
	1					

- 1. 由设计保证,不在生产中测试。
- 2. ADC 的典型应用如下图所示:

对于 0.5LSB 采样误差精度要求的条件下,外部输入阻抗的计算公式如下:

$$R_{AIN} = \frac{M}{F_{ADC} * C_{ADC} * (N+1) * ln(2)} - R_{ADC}$$

其中 F_{ADC} 为 ADC 时钟频率,寄存器 ADC_CR0<3:2>可设定其与 PCLK 的关系,如下表。

下表为 ADC 时钟频率 F_{ADC} 和 PCLK 分频比关系:

ADC_CR0<3:2>	N
00	1
01	2
10	4
11	8

M 为采样周期个数,由寄存器 ADC CR0<13:12>设定。

下表为采样时间 t_{sa} 和 ADC 时钟频率 F_{ADC} 的关系:

ADC_CR0<13:12>	M
00	4
01	6
10	8
11	12

下表为 ADC 时钟频率 F_{ADC} 和外部电阻 R_{AIN} 的关系(M=12,采样误差 0.5LSB 的条件下):

R _{AIN} (KOhm)	$F_{ADC}(KHz)$
10	5600
30	2100
50	1300
80	820
100	660
120	550
150	450

对于上述典型应用,应注意:

- 尽量减小 ADC 输入端口 AIN_X 的寄生电容 $C_{PARACITIC}$;
- 除了考虑 R_{AIN} 值外,如果信号源 V_{AIN} 的内阻较大时,也需要加入考虑。

6.3.16 VC 特性

符号	参数	条件	最小值	典型值	最大值	单位
Vin	Input voltage range		0		5.5	V
Vincom	Input common mode range		0		VCC-0.2	V
Voffset	Input offset	常温25°C 3.3V	-10		+10	mV
Icomp	Comparator's current	VCx_BIAS_SEL=00		0.3		uA
		VCx_BIAS_SEL=01		1.2		
		VCx_BIAS_SEL=10		10		
		VCx_BIAS_SEL=11		20		
Tresponse	Comparator's response time	VCx_BIAS_SEL=00		20		uS
	when one input cross	VCx_BIAS_SEL=01		5		
	another	VCx_BIAS_SEL=10		1		
		VCx_BIAS_SEL=11		0.2		
Tsetup	Comparator's setup time	VCx_BIAS_SEL=00		20		uS
	when ENABLE.	VCx_BIAS_SEL=01		5		
	Input signals unchanged.	VCx_BIAS_SEL=10		1		
		VCx_BIAS_SEL=11		0.2		
Twarmup	From main bandgap enable			20		uS
	to 1.2V BGR reference.					
	Temp sensor voltage, ADC					
	internal 1.5V \ 2.5V					
	reference stable					
Tfilter	Digital filter time	VC_debounce = 000		7		μS
		VC_debounce = 001		14		
		VC_debounce = 010		28		
		VC_debounce = 011		112		
		VC_debounce = 100		450		
		VC_debounce = 101		1800		
		VC_debounce = 110		7200		
		VC_debounce = 111		28800		

6.3.17 OPA 特性

OPA: (AVCC= $2.2V \sim 5.5 \text{ V}$, AVSS=0 V, Ta= $-40 ^{\circ}\text{C} \sim +85 ^{\circ}\text{C}$)

符号	参数	条件	最小值	典型值	最大值	单位
Vi	输入电压		0	-	AVCC	V
Vo	输出电压 ⁽¹⁾		0.1	-	AVCC- 0.2	V
Io	输出电流(1)				1	mA
RL	负载电阻 ⁽¹⁾		5K			Ohm
Tstart	初始化时间(2)				20	us
Vio	输入失调电压	Vic=AVCC/2, Vo=AVCC/2, RL=5KΩ, Rs=50 pF		±6		mV
PM	相位裕度(1)	Vic=AVCC/2, Vo=AVCC/2 RL=5kΩ, CL=50pF		80	-	deg
UGBW	单位增益带宽(1)	Vic=AVCC/2, Vo=AVCC/2 RL=5kΩ, CL=50pF		9.3		MHz
SR	压摆率 ⁽¹⁾	RL= $5k\Omega$, CL= $50pF$		8		V/uS

- 1. 由设计保证,不在生产中测试。
- 2. 需要同时设置 BGR_CR<0>=1

6.3.18 DAC 特性

符号	参数	工作条件	最小	典型	最大	单位
V_{DACOUT}	Output voltage range	AVCC voltage reference, single ended	0		Vcc	V
V_{DACCM}	Output common mode voltage range		0		Vcc	V
I_{DAC}	Active current	500kSamples/s		15		uA
SR _{DAC}	Sample rate				500	Ksps
t _{DACCONV}	Conversion time		2			us
t _{DACSETTLE}	Setting time			5		us
SNR_{DAC}	Signal to Noise Ratio			59		dB
SNDR _{DAC}	Signal to Noise and Distortion Ratio			57		dB
SFDR _{DAC}	Spurious Free Dynamic Range			56		dB
V _{DACOFFSET}	Offset voltage	w/o buffer		2		mV
DNL _{DAC}	Differential non- linearity			±1		LSB
INL _{DAC}	Integral non- linearity			±5		LSB

7 封装信息

7.1 封装尺寸

LQFP100 封装

	Millimeter		
Symbol	Min	Nom	Max
A			1.60
	0.05		
A1	0.05		0.15
A2	1.35	1.40	1.45
A3	0.59	0.64	0.69
b	0.18		0.26
b1	0.17	0.20	0.23
С	0.13	-	0.17
c1	0.12	0.13	0.14
D	15.80	16.00	16.20
D1	13.90	14.00	14.10
Е	15.80	16.00	16.20
E1	13.90	14.00	14.10
eВ	15.05		15.35
e		0.50BSC	
L	0.45		0.75
L1		1.00REF	
θ	0		7°

NOTE:

 Dimensions "D1" and "E1" do not include mold flash.

LQFP64 封装

	L	QFP64 (10x1	0)
Symbol	Min	Nom	Max
A			1.60
A1	0.05		0.15
A2	1.35	1.40	1.45
A3	0.59	0.64	0.69
b	0.18		0.26
b1	0.17	0.20	0.23
С	0.13		0.17
c1	0.12	0.13	0.14
D	11.80	12.00	12.20
D1	9.90	10.00	10.10
E	11.80	12.00	12.20
E1	9.90	10.00	10.10
eB	11.05		11.25
e		0.50BSC	
L	0.45		0.75
L1		1.00REF	
θ	0°		7°

NOTE:

 Dimensions "D1" and "E1" do not include mold flash.

LQFP48 封装

DETAIL: F

	Millimeter	
Min	Nom	Max
		1.60
0.05		0.15
	1.40	1.45
		0.69
		0.26
	0.20	0.23
		0.17
	0.13	0.14
		9.20
		7.10
		9.20
		7.10
		8.25
0.10	0.50RSC	0.23
0.40		0.65
0.40		0.05
0	1.00KL1	7°
	Min 0.05 1.35 0.59 0.18 0.17 0.13 0.12 8.80 6.90 8.80 6.90 8.10 0.40	Min Nom 0.05 1.35 1.40 0.59 0.64 0.18 0.17 0.20 0.13 0.12 0.13 8.80 9.00 6.90 7.00 8.80 9.00 6.90 7.00 8.10 0.50BSC 0.40 1.00REF

NOTE:

Dimensions "D1" and "E1" do not include mold flash.

7.2 丝印说明

LQFP100 封装 LQFP64 封装

LQFP48 封装

8 订购信息

Part Number		HC32F072PATA-LQFP100	HC32F072KATA-LQFP64	HC32F072JATA-LQ48
Mamani	Flash	128K	128K	128K
Memory	RAM	16K	16K	16K
1/0)	83	50	36
TIMER	GTIMER	4	4	4
TIMER	ATIMER	3	3	3
	UART	4	4	2
	I2C	2	2	2
Connectivity	SPI	2	2	2
Connectivity	USB	√	√	\checkmark
	CAN	√	√	\checkmark
	I2S	√	√	\checkmark
	ADC*12bit	24ch	23ch	17ch
Analog	DAC*12bit	2ch	2ch	2ch
Allalog	ОР	5	5	3
Comp		3	3	3
Secruty	AES	\checkmark	\checkmark	\checkmark
LV	D	\checkmark	\checkmark	\checkmark
LV	R	\checkmark	\checkmark	\checkmark
Votage	Vdd	1.8~5.5v	1.8~5.5v	1.8~5.5v
Pack	age	LQFP100(14*14)	LQFP64(10*10)	LQFP48(7*7)
出货	形式	盘装	盘装	盘装
脚间	脚间距 0.5mm 0.5mm 0.5mm		0.5mm	

版本记录 & 联系方式

版本	修订日期	修订内容摘要
v1.0	2019/04/19	初稿发布。

如果您在购买与使用过程中有任何意见或建议,请随时与我们联系。

Email: mcu@hdsc.com.cn

网址: http://www.hdsc.com.cn/mcu.htm

通信地址:上海市张江高科园区碧波路 572 弄 39 号

邮编: 201203

