Лабораторная работа №1

Вариант 13

Часть 1

			1					T	
0.053	0.026	0.037	0.056	0.041	0.035	0.031	0.046	0.021	0.054
0.035	0.039	0.043	0.031	0.038	0.023	0.045	0.026	0.037	0.042
0.030	0.041	0.021	0.047	0.026	0.046	0.033	0.038	0.053	0.035
0.049	0.054	0.039	0.034	0.051	0.029	0.046	0.023	0.038	0.043
0.026	0.039	0.033	0.020	0.042	0.050	0.025	0.037	0.041	0.029
0.029	0.038	0.027	0.043	0.035	0.030	0.049	0.055	0.039	0.034
0.022	0.045	0.034	0.055	0.037	0.025	0.033	0.051	0.027	0.045
0.041	0.051	0.027	0.046	0.029	0.038	0.042	0.020	0.039	0.031
0.025	0.047	0.030	0.050	0.023	0.039	0.035	0.049	0.030	0.047
0.034	0.022	0.042	0.031	0.049	0.033	0.056	0.037	0.050	0.025

Таблица 1.13

Рисунок 1 – График значений таблицы 1.13

Вывод: получившийся в ходе выполнения лабораторной работы график подчиняется закону нормального распределения по следующем признакам

нормального распределения: целые части среднего значения (на Рисунке 1 — Меап (0.037480)) и значения медианы (на Рисунке 1 — Median (0.037500)) равны, коэффициент симметрии (на Рисунке 1 — Skewness (0.082257)) стремится к нулю, коэффициент эксцесса (на Рисунке 1 — Kurtosis (2.046952)) стремится к 3. Подтверждением подчинения закону нормального распределения является коэффициент Жака Бера (на Рисунке 1 — Jaque-Bera (3,897358)), который должен находится в пределах от 0 до 6, и значение показателя вероятности (на Рисунке 1 — Probability (0.142462)), который должен быть больше 0.05.

Часть 2

2	0,82	1,04	2	4	1	0,92	1,22	0,72	1,38
1	1,08	1,16	0,92	1,06	0,76	1,2	0,82	1,04	1,14
0,9	1,12	0,72	1,24	0,82	1,22	0,96	4	1,36	1
1,28	1,38	2	3	5	0,88	1,22	0,76	1,06	2
4	1,08	0,96	0,7	1,14	1,3	3	1,04	3	0,88
0,88	4	0,84	1,16	1	0,9	1,28	1,4	1,08	2
0,74	1,2	0,98	1,4	1,04	1	0,96	1,32	3	1,2
1,12	1,32	0,84	1,22	3	1,06	1,14	0,7	1,08	6
3	1,24	0,9	1,3	0,76	1,08	1	1,28	0,9	1,24
0,98	0,74	1,14	0,92	1,28	0,96	1,42	4	1,3	0,8

Таблица 2

Рисунок 2 – График значений таблицы 2

Вывод: получившийся в ходе выполнения лабораторной работы график не подчиняется закону нормального распределения по следующем признакам нормального распределения: целые части среднего значения (на Рисунке 2 – Mean (1.454)) и значения медианы (на Рисунке 2 – Median (1.120)) равны, коэффициент симметрии (на Рисунке 2 – Skewness (2.432865)) стремится к нулю, коэффициент эксцесса (на Рисунке 2 – Kurtosis (8.746293)) стремится к 3. Подтверждением неподчинения закону нормального распределения является коэффициент Жака Бера (на Рисунке 2 – Jaque-Bera (236.2301)), который должен находится в пределах от 0 до 6, и значение показателя вероятности (на Рисунке 2 – Probability (0.0)), который должен быть больше 0.05.