CONFIANZA EN HIPÓTESIS FILOGENÉTICAS

1. Índice de Decaimiento (Decay Index) o Soporte de Bremer

Long: 292 pasos

Ln(ML) = -998.7

2. Bootstrap No Paramétrico

Original data set

	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
A	Т	Т	Т	С	С	Т	Т	Т	С	А	G	G	Т	A	т	Т	Α	Т	G	Α	G	Α	Т	Α	С	G	Т	Α	С	Т	G	Α	A	A	A	Α	G	Т	С	C
В	Т	Т	Т	С	С	Т	Т	Т	Т	Α	G	G	Т	Т	т	G	A	Т	G	Α	G	Α	Т	A	С	Α	Т	Т	Α	С	G	Α	A	A	G	Α	G	Т	С	A
C	Т	Т	т	G	С	Т	Т	С	Т	С	G	G	Т	Α	С	Т	Α	С	A	Α	Т	Α	Т	A	Т	Α	Т	Α	С	С	Α	G	A	Α	A	A	G	Т	С	A
D	Т	Т	Т	G	С	Т	Т	С	С	G	Α	С	Т	Α	С	Α	Α	A	G	G	С	Α	Т	A	С	G	Т	Α	G	С	Т	G	A	Α	A	A	G	G	С	G
E	С	Т	т	G	С	С	Т	Α	С	Т	G	Т	T	G	С	Α	Α	Т	Α	Α	Т	Α	Т	A	С	G	A	Α	G	С	Т	Α	A	A	A	A	G	Т	С	G
F	Т	Т	С	G	т	C	С	С	С	G	G	C	Т	Α	С	Α	Α	Т	G	G	Т	Α	Т	Α	Т	G	Т	A	С	Т	С	G	A	A	A	A	G	A	Т	G
G	G	Т	Т	G	т	Т	Т	С	С	G	G	C	Т	A	C	Α	G	Т	G	Α	Т	Α	Т	A	С	G	Т	Α	С	С	С	G	A	G	A	A	С	Т	T	G
Н	т	Т	т	А	т	Т	т	С	С	G	G	С	Т	Α	С	Α	G	Т	G	Α	Т	Α	Т	Α	С	G	Т	G	С	С	С	G	A	G	А	A	G	Т	Т	G

Bootstrap data set

	02	39	35	22	36	31	40	05	16	23	15	35	35	40	03)6	24	33	06	07	14	20	35	01	36	09	13	22	11	25	26	33	03	09	16	20	08	18	17	32
A	Т	С	Α	A	А	G	С	C	Т	Т	Т	A	A	С	Т	т	A	A	Т	т	Α	Α	Α	Т	A	С	т	А	G	С	G	Α	Т	С	T	Α	Т	Т	A	A
В	Т	С	G	A	Α	G	A	С	G	Т	Т	G	G	Α	т	т	A	А	Т	Т	Т	Α	G	Т	A	Т	Т	Α	G	С	Α	Α	Т	Т	G	Α	Т	Т	A	A
C	Т	С	Α	Α	A	A	Α	С	Т	Т	С	A	A	A	т	т	A	A	Т	Т	A	Α	Α	Т	A	Т	Т	A	G	T	Α	Α	Т	Т	Т	Α	С	C	А	G
D	Т	C	Α	A	Α	Т	G	С	A	Т	С	A	A	G	Т	Т	A	A	Т	Т	Α	G	A	Т	A	С	Т	А	Α	С	G	Α	Т	С	Α	G	С	Α	A	G
E	Т	C	Α	A	A	Т	G	С	A	Т	С	A	A	G	т	C	A	A	С	Т	G	А	A	С	Α	С	Т	Α	G	С	G	Α	Т	С	Α	Α	Α	Т	A	A
F	Т	Т	Α	Α	Α	С	G	Т	A	Т	С	А	A	G	С	C	A	A	С	С	A	G	A	Т	Α	С	Т	А	G	Т	G	Α	С	С	Α	G	С	т	А	G
G	Т	T	Α	Α	Α	С	G	Т	Α	Т	С	Α	A	G	Т	т	Α	Α	т	Т	Α	Α	A	G	A	C	Т	А	G	С	G	Α	Т	С	А	Α	C	Т	G	G
Н	т	Т	А	A	A	С	G	Т	A	Т	С	А	А	G	Т	Т	A	Α	Т	Т	А	А	Α	Т	Α	С	Т	A	G	С	G	Α	Т	С	Α	А	С	т	G	G

2. Bootstrap No Paramétrico

2. Bootstrap No Paramétrico

2. Bootstrap No Paramétrico

Bootstrap Paramétrico

Nuevas matrices generadas a través de simulación, usando un modelo de evolución

Bootstrap Paramétrico

			Т	o:	
		A	С	G	T
	A	$1/4 + 3/4e^{-4/3\mu t}$	$1/4 - 1/4e^{-4/3\mu t}$	$1/4 - 1/4e^{-4/3\mu t}$	$1/4 - 1/4e^{-4/3\mu t}$
From:	С	$1/4 - 1/4e^{-4/3\mu t}$	$1/4 + 3/4e^{-4/3\mu t}$	$1/4 - 1/4e^{-4/3\mu t}$	$1/4 - 1/4e^{-4/3\mu t}$
Fro	G	$1/4 - 1/4e^{-4/3\mu t}$	$1/4 - 1/4e^{-4/3\mu t}$	$1/4 + 3/4e^{-4/3\mu t}$	$1/4 - 1/4e^{-4/3\mu t}$
	Т	$1/4 - 1/4e^{-4/3\mu t}$	$1/4 - 1/4e^{-4/3\mu t}$	$1/4 - 1/4e^{-4/3\mu t}$	$1/4 + 3/4e^{-4/3\mu t}$

$$X = 0.05$$

$$Y = 0.02$$

$$Z = 0.1$$

Bootstrap Paramétrico: para probar hipótesis

Comparación de conjuntos de datos (topologías)

- Kishino-Hasegawa (KH) test (compara árboles a priori)
- Shimodaira-Hasegawa (HS) test
- Approximately Unbiased Test (AU)

H0 = Todos los árboles (incl. el ML) están igualmente soportados por los datos

HA= Algunos o todos los árboles NO están igualmente soportados por los datos

CONFLICTO EN HIPÓTESIS FILOGENÉTICAS

Particiones a veces generan hipótesis conflictivas

- Morfología vs. molecular
- Genomas diferentes
- Genes codificadores y no codificadores
- Posiciones en codón
- Intrón vs. exón
- Proteína intra vs. extracelular

CONFLICTO EN HIPÓTESIS FILOGENÉTICAS

Razones de conflicto

- Metodológicas
 - Contaminación
 - Mala identificación
 - Errores de laboratorio/computacional
 - Genes parálogos
- Biológicas:
 - Separación incompleta de linajes
 - > Introgresión
 - Transferencia Horizontal de genes

SEPARACIÓN INCOMPLETA DE LINAJES

SEPARACIÓN INCOMPLETA DE LINAJES

Separación completa

Gorilla

Chimp

Human-Chimp-Gorilla
Ancestor

Human-Chimp
Ancestor

Chimp

Gorilla
Human

Human

Separación incompleta

INTROGRESIÓN

TRANSFERENCIA HORIZONTAL DE GENES

Comparación de conjuntos de datos

Comparación de conjuntos de datos (matriz)

Homogeneidad de las particiones (ILD test)

Comparación de conjuntos de datos (matriz)

Homegeneidad de las particiones (ILD test)

- A TTCGAGAACACGGCCCTTTGCGACCCATGTTGTTATTCGAGAACACGGCCCTTTGCGACCCATGTTGTTA
- B TCAGAGAACACGACACTTTGCGACCCATGTTGTTATCCGGAAGTAAACACCCCTTGTAACCCCCAGCTATCG
- C TCCGAGAGCACGGACCTTCGCGACCTATGTTATTGTCCGGAAGTAGACGCCCTTGTAACCCCAGCTATCG
- D TCCGGAAGTAAACACCCTTGTAACCCCAGCTATCGTCCGAGAGCACGGACCTTCGCGACCTATGTTATTG
- E TCCGGAAGTAGACGCCCTTGTAACCCCAGCTATCGTCTGGGAGCACAAGTCCTCACGACCCCTGCTATTG
- F TCCGGGAGTAAATGCCCTTGGGACCCCTGCTATTGTCTGGGAGCACAAATCCTCACGACCCCTGCTATTG
- G TCTGGGAGCACAAGTCCTCACGACCCCTGCTATTGTCAGAGAACACGACACTTTGCGACCCATGTTGTTA
- H TCTGGGAGCACAAATCCTCACGACCCCTGCTATTGTCCGGGAGTAAATGCCCTTTGGGACCCCTGCTATTG

Comparación de conjuntos de datos (matriz)

Homegeneidad de las particiones (ILD test)

Comparación de conjuntos de datos

- Métodos para árboles de especies
 - Basados en parsimonia: Minimización de las coalescencias profundas

Comparación de conjuntos de datos

- Métodos para árboles de especies
 - Análisis Bayesiano de Concordancia (no limitado a sorteo incompleto de linajes)

Analisis Bayesiano de Concordancia

