Бизнес-оценка рекомендательных систем

Дмитрий Шипилов

ML Engineer, Uzum Market

Skillbox

Планирование А/В-тестирования

Цели темы

- Научиться планировать A/B-тест
- 2 Изучить, как рассчитывать итог А/В-теста
- Понять, зачем нужны А/А-тесты

А/В-тест

А/В-тест (А/В-эксперимент) — это исследование, суть которого заключается в сравнении поведения пользователей в нескольких различных группах.

Сравнение двух версий

Конверсия старой версии: (30/920) × 100 = 3,2

Конверсия новой версии: (35/900) × 100 = 3,8

	Старая версия	Новая версия
Количество просмотров	920	900
Количество кликов	30	35
Конверсия, %	3.2	3.8

Этапы тестирования

- Предварительная проверка
- 2 Выбор метрики
- 3 Нулевая гипотеза и уровень значимости
- 4 Определение размера эффекта
- Подсчёт размера групп и длительности теста
- Выбор критерия и подведение результатов

Предварительная проверка модели

Разметка — это процесс оценки, отображающий, насколько эти предсказания выглядят осмысленно и релевантно для данного юзера.

- Прогнозы должны отличаться для каждого из пользователей
- Имеет смысл провести разметку на части прогнозов

Выбор метрики

Защитные метрики — это самые важные метрики проекта, которые не должны стать хуже в рамках проводимого теста. Например, ARPU — средняя прибыль проекта с одного пользователя (Average Revenue Per User).

Метрика:

- должна отражать бизнес ценность
- вы должны влиять на метрику в тесте

Нулевая гипотеза

Гипотеза — предположение об отличии между группами.

Нулевая гипотеза (или Н0) — это консервативное предположение о том, что между нашими группами нет никаких различий, например: «конверсия новой рекомендательной системы не отличается от прошлой».

Альтернативная гипотеза (Н1) утверждает обратное: «конверсия новой рекомендательной системы отличается от прошлой (не обязательно в хорошую сторону)».

Уровень значимости α и мощность

Уровень значимости α — максимальная вероятность отклонить верную нулевую гипотезу.

Чем ниже значение α, тем больше наблюдений нужно будет в каждой из групп.

Мощность — способность засечь разницу между группами.

Часто используемые значения:

- $\alpha 5\% (0.05)$
- мощность 80 % (0,8)

Ошибки I и II рода

Ошибка I рода — отклонить нулевую гипотезу, хотя она была верной, ограничивая с помощью уровня значимости.

Ошибка II рода — принять неверную нулевую гипотезу, ограничивая с помощью мощности.

		Верная гипотеза	
		H_0	H_1
Результат применения критерия	H_0	H_0 верно принята	H_0 неверно принята (Ошибка <i>второго</i> рода)
	H_1	H_0 неверно отвергнута (Ошибка <i>первого</i> рода)	H_0 верно отвергнута

Размер эффекта

Ожидаемый размер эффекта можно предположить исходя из:

- исторических данных
- опыта
- офлайн-метрики

Если офлайн – метрика (например, nDCG) выросла несильно, то и онлайн-метрика, скорее всего, тоже вырастет не особо сильно.

Эффект бывает абсолютным и относительным: конверсия новой системы 4 % вместо 3 % значит абсолютный рост в 1 %, а относительный — почти 33 %.

Длительность теста и размер групп

На основе уровня значимости и ожидаемого размера эффекта можно сказать, сколько пользователей необходимо в группе А — тестовой — и группе В — контрольной.

На основе этого можно подсчитать, сколько времени необходимо крутить тест до того, как в каждой группе будет нужное количество юзеров.

Калькуляторы:

- <u>abtestguide</u>
- evanmiller
- select-statistics

Длительность теста и размер групп

Подведение итогов теста: критерии

Статистический критерий — математический инструмент, который принимает на вход данные о ваших распределениях и на их основе подсчитывает специальные статистики.

Реализованы в пакетах SciPy и Statsmodels.

Например, для конверсий подойдёт test_proportions_2indep из Statsmodels.

Подведение итогов теста и p-value

P-value — это вероятность получить такое или ещё более экстремальное распределение статистики, если нулевая гипотеза верна, рассчитывается с помощью статистического критерия.

Сравнивается с выбранным уровнем значимости α.

Если p_value < alpha, то можете отклонить нулевую гипотезу.

Если p_value > alpha, то данные не говорят о том, что нулевую гипотезу можно отклонить.

Множественное тестирование

Если гипотез несколько, например, у вас больше двух групп, то один из способов избежать ошибки — поправка Бонферрони,

т. е. нормирование выбранного уровня значимости α на фактическое количество групп N.

Множественное тестирование

```
N — общее количество групп (например, 3)
```

α — выбранный уровень значимости (0,05)

 α _new = α /N новый уровень значимости

 α _new = 0,05/3 = 0,016

А/А-тесты

Попытка найти различия, когда в группах их фактически нет.

Помогает понять, что с вашей системой всё хорошо.

Выводы

- Узнали, как планировать A/B-тест
- 2 Рассмотрели множественное тестирование
- Поняли, зачем нужны А/А-тесты