Josh Virene ARE256B: Applied Econometrics II 6 March 2024 Problem Set Four:

Question One: Gun Control and Violence: Pooled OLS, Random Effects or Fixed Effects?

Using the gun control data set (Guns and its description Guns_Description are on Canvas), we are interested in the relationship between "shall-carry" laws and violent crime rates, rob- bery rates and murder rates, i.e. we have three different dependent variables. You have a state-level panel for 1977-1999. Perform the following regressions and tabulate the coefficient estimates for "shall-carry" laws as well as their standard errors.

Write down the regression equation for each regression you perform.

A. Perform the pooled OLS regression of each of the three dependent variables on the dummy variable for "shall-carry" law, time trend and other control variables from the dataset. Choose the control variables to include and explain your choice.

Control variables and explanation of choice:

The control variables that I decided to include were density, average income, and population. Given the dependent variables violent crime rate, robbery rate, and murder rate, it makes sense to include each of these right-hand side variables as a control.

- Population density: The intuition behind this control is that a higher population density creates more opportunities for crime to occur between people in a given geographic area.
- Average income: For this control, we might hypothesize that lower income demographics will be more prone to committing any of these three types of crime.
- Population: This control gets at a similar hypothesis to population density; more people *overall* will correspond to higher rates of crime.

Regression equations:

Violent Crime Rate_{it} = $\beta_0 + \beta_1(shall_{it}) + \beta_2(year_{it}) + \beta_3(density_{it}) + \beta_3(avginc_{it}) + \beta_5(pop_{it}) + \epsilon_{it}$

Linear regress	sion			F(5, 11 Prob > 1 R-square Root MS	67) F ed	= = = =	1,173 156.88 0.0000 0.6094 209.36
vio	Coefficient	Robust std. err.	t	P> t	[95%	conf.	interval]
shall year avginc density pop cons	-111.9296 7.103581 4.36877 163.7426 21.47085 -315.8604	16.22195 1.237489 3.371511 10.58664 1.353044 87.99076	-6.90 5.74 1.30 15.47 15.87 -3.59	0.000 0.000 0.195 0.000 0.000	-143 4.67 -2.24 142.9 18.8	5629 6131 9716 1618	-80.10211 9.531533 10.98367 184.5135 24.12552 -143.2226

Robbery Rate_{it} = $\beta_0 + \beta_1(shall_{it}) + \beta_2(year_{it}) + \beta_3(density_{it}) + \beta_3(avginc_{it}) + \beta_5(pop_{it}) + \epsilon_{it}$

rob	Coefficient	Robust std. err.	t	P> t	[95% conf.	interval]
shall year avginc density pop _cons	-22.32884 -1.824314 7.681378 95.97615 11.33618 133.9735	4.920613 .4454408 1.384179 5.753169 .730431 34.32646	-4.54 -4.10 5.55 16.68 15.52 3.90	0.000 0.000 0.000 0.000 0.000	-31.98308 -2.698268 4.965621 84.68843 9.903075 66.62499	-12.6746 9503596 10.39714 107.2639 12.76928 201.3219

Murder Rate_{it} = $\beta_0 + \beta_1(shall_{it}) + \beta_2(year_{it}) + \beta_3(density_{it}) + \beta_3(avginc_{it}) + \beta_5(pop_{it}) + \epsilon_{it}$

mur	Coefficient	Robust std. err.	t	P> t	[95% conf.	interval]
shall year avginc density pop _cons	-1.576891 .0635691 3480876 4.399601 .2473563 4.491434	.2438062 .0260916 .0889933 .4972174 .0226771	-6.47 2.44 -3.91 8.85 10.91 2.30	0.000 0.015 0.000 0.000 0.000 0.021	-2.055239 .0123775 5226924 3.424061 .2028638 .6638312	-1.098544 .1147607 1734828 5.375141 .2918488 8.319037

B. Perform the random-effects regression of each of the three dependent variables on the dummy variable for "shall-carry" law and the same control variables you included in (a).

 $\label{eq:Violent Crime Rate} \begin{aligned} &Violent \ Crime \ Rate_{it} = \beta_0 + \beta_1(shall_{it}) + \beta_2(year_{it}) + \beta_3(density_{it}) + \beta_3(avginc_{it}) + \\ &\beta_5(pop_{it}) + \epsilon_{it} \end{aligned}$

Random-effects GLS regression Group variable: stateid	Number of obs = Number of groups =	1,173 51
R-squared: Within = 0.1237 Between = 0.6248 Overall = 0.5377	Obs per group: min = avg = max =	23 23.0 23
corr(u_i, X) = 0 (assumed)	Wald chi2(5) = Prob > chi2 =	198.09 0.0000

(Std. err. adjusted for 51 clusters in stateid) Robust std. err. vio Coefficient P> | z | [95% conf. interval] -1.16 2.11 0.45 13.18 shall -22.41008 19.33862 0.247 -60.31307 year avginc 4.893376 2.323572 0.035 .339258 9.447493 32.90237 59.54825 24.73666 97.34785 -20.58588 44.13198 6.158246 51.84012 13.64521 0.652 density pop 12.15078 6.421486 0.058 -.4351041 -83.39012 92.21494 sigma_u 186.2457 sigma_e 99.444973 .77815117 (fraction of variance due to u_i)

 $Robbery\,Rate_{it} = \beta_0 + \beta_1(shall_{it}) + \beta_2(year_{it}) + \beta_3(density_{it}) + \beta_3(avginc_{it}) + \beta_5(pop_{it}) + \epsilon_{it}$

Random-effects Group variable		of obs of groups		1,173 51			
R-squared: Within = Between = Overall =				Obs per	mi av	n = rg = nx =	23 23.0 23
corr(u_i, X) =	0 (assumed)			Wald ch: Prob > 0		=	2240.51 0.0000
rob	Coefficient	Robust std. err.	z	P> z	[95%	conf.	interval]
shall year avginc density pop _cons		6.99307 .5382528 2.075687 2.409419 3.217958 44.05293	0.92 0.13 -2.11 39.17 2.46 3.25	0.358 0.899 0.035 0.000 0.014 0.001	-7.280 9865 -8.445 89.65 1.59	472 462 015 681	20.13141 1.123365 3089175 99.0949 14.21097 229.3667
sigma_u sigma_e rho	66.455606 49.069013 .64716776	(fraction	of varia	nce due t	o u_i)		

 $\begin{aligned} &Murder\ Rate_{it} = \beta_0 + \beta_1(shall_{it}) + \beta_2(year_{it}) + \beta_3(density_{it}) + \beta_3(avginc_{it}) + \\ &\beta_5(pop_{it}) + \epsilon_{it} \end{aligned}$

Random-effects Group variable		on			f obs = f groups =	
R-squared: Within = Between = Overall =	0.2654			Obs per o	group: min = avg = max =	23 23.0 23
corr(u_i, X) =	= 0 (assumed)				2(5) = ni2 =	
		(Std. e	rr. adjus	sted for 51	L clusters	in stateid)
mur	Coefficient	Robust std. err.	z	P> z	[95% conf	. interval]
shall year avginc density pop _cons		.4710299 .1122332 .8368017 .1457137 .2118185 1.522192		0.040 0.206 0.000 0.408	-1.412786 4506666 5806989 .5502898 5906041 11.11235	0107206 2.699503 1.121477 .2397093
sigma_u sigma_e rho	3.250556 2.7540148 .58213224	(fraction	of varian	nce due to	u_i)	

C. Perform the fixed-effects regression of each of the three dependent variables on the dummy variable for "shall-carry" law and the same control variables you included in (a). Make sure to compute robust standard errors.

 $\label{eq:Violent Crime Rate} \begin{aligned} &Violent \ Crime \ Rate_{it} = \beta_0 + \beta_1(shall_{it}) + \beta_2(year_{it}) + \beta_3(density_{it}) + \beta_3(avginc_{it}) + \\ &\beta_5(pop_{it}) + \alpha_t + \epsilon_{it} \end{aligned}$

Fixed-effects Group variable		obs = groups =	1,173 51			
R-squared: Within = Between = Overall =	0.4096			Obs per g	group: min = avg = max =	23 23.0 23
corr(u_i, Xb)	-0.8983			F(5, 50) Prob > F	=	338.08 0.0000
vio	Coefficient	Robust std. err.	t	P> t	[95% conf.	interval]
shall year avginc density pop _cons	-14.70016 6.604454 -3.805232 -230.9971 9.719052 12.18994	18.96909 1.841158 7.020479 14.67264 7.25606 95.14375	-0.77 3.59 -0.54 -15.74 1.34 0.13		-52.80069 2.906379 -17.90628 -260.4679 -4.855173 -178.9119	23.40037 10.30253 10.29581 -201.5262 24.29328 203.2918
sigma_u sigma_e rho	584.49363 99.444973 .9718672	(fraction	of varian	nce due to	u_i)	

Robbery Rate_{it} = $\beta_0 + \beta_1(shall_{it}) + \beta_2(year_{it}) + \beta_3(density_{it}) + \beta_3(avginc_{it}) + \beta_5(pop_{it}) + \alpha_t + \epsilon_{it}$

					f obs f groups	= 1,173 = 51
R-squared: Within Between Overall	0.4952			Obs per	group: min avg max	= 23.0
corr(u_i, Xb)	= 0.4040			F(5, 50) Prob > F		= 81.29 = 0.0000
		(Std. e	rr. adjus	ted for 5:	1 clusters	in stateid)
rob	Coefficient	Robust std. err.	t	P> t	[95% con	f. interval]
shall year avginc density pop _cons	9.270621 1.171596 -8.41683 50.57201 4317503 156.2628	7.171637 .6898839 3.437469 11.0238 3.209083 36.40361	1.29 1.70 -2.45 4.59 -0.13 4.29	0.202 0.096 0.018 0.000 0.894 0.000	-5.134036 2140769 -15.32119 28.43006 -6.877383 83.14399	2.557268 -1.512471 72.71396 6.013882
sigma_u sigma_e rho	128.38588 49.069013 .87254216	(fraction	of varian	ce due to	u_i)	

 $\begin{aligned} &Murder\ Rate_{it} = \beta_0 + \beta_1(shall_{it}) + \beta_2(year_{it}) + \beta_3(density_{it}) + \beta_3(avginc_{it}) + \\ &\beta_5(pop_{it}) + \alpha_t + \epsilon_{it} \end{aligned}$

Fixed-effects (within) regression

Group variable	: stateid			Number	of groups =	51
R-squared: Within = Between = Overall =				Obs per	group: min = avg = max =	23 23.0 23
corr(u_i, Xb)	= -0.9876			F(5, 50 Prob >		4677.35 0.0000
		(Std. e	err. adjus	sted for	51 clusters i	n stateid)
mur	Coefficient	Robust std. err.	t	P> t	[95% conf.	interval]
shall year avginc density pop _cons	084854 1792772 .7569266 -15.05388 4527206 20.55347	.3041394 .076204 .4471818 .8655281 .2977387 1.576796	-0.28 -2.35 1.69 -17.39 -1.52 13.03	0.781 0.023 0.097 0.000 0.135 0.000	695736 3323374 1412645 -16.79234 -1.050746 17.38639	.5260279 026217 1.655118 -13.31541 .1453051 23.72056
sigma_u sigma_e rho	26.008852 2.7540148 .98891214	(fraction	of varia	nce due t	o u_i)	

1,173

Number of obs =

D. Compare the results in (a) through (c) in light of the differences between the estimators you considered.

Comparing these three types of models, the effects of the three dependent variables are the most pronounced in the models from part a. The reason for this is that there are neither fixed, nor random effects for the regression model to attribute variation in murder, robbery, and violent crime rates. Then going to b and c, there are much smaller coefficient estimates as a result of including the fixed and random effects.

E. Perform the Hausman test to test the random effects assumption. Can you use the regression you performed in (c)? Under what assumptions is the Hausman test command in Stata valid?

Violent Crime:

	Coeffi (b) fe_vio	cients —— (B) re_vio	(b-B) Difference	sqrt(diag(V_b-V_B)) Std. err.
shall	-14.70016	-22.41008	7.709912	1.528026
year	6.604454	4.893376	1.711078	.320757
avginc	-3.805232	6.158246	-9.963478	1.350373
density	-230.9971	51.84012	-282.8372	27.41538
pop	9.719052	12.15078	-2.431725	3.694035

 $b = \hbox{Consistent under HO and Ha; obtained from $\tt xtreg.} \\ B = \hbox{Inconsistent under Ha, efficient under HO; obtained from $\tt xtreg.}$

Test of HO: Difference in coefficients not systematic

 $\begin{array}{lll} chi2\,(\textbf{4}) &=& (b-B)\,'\,[\,(V_b-V_B)\,^{\wedge}(-1)\,]\,(b-B) \\ &=& \textbf{117.06} \\ \\ Prob > chi2 &=& \textbf{0.0000} \end{array}$

Robbery:

	Coeffice (b) fe_rob	cients —— (B) re_rob	(b-B) Difference	sqrt(diag(V_b-V_B)) Std. err.
shall	9.270621	6.425249	2.845372	.9753652
year	1.171596	.068409	1.103187	.1864474
avginc	-8.41683	-4.37719	-4.039641	.7841576
density	50.57201	94.37252	-43.80052	14.03074
pop	4317503	7.903892	-8.335642	2.014373

b = Consistent under H0 and Ha; obtained from **xtreg**. B = Inconsistent under Ha, efficient under H0; obtained from **xtreg**.

Test of HO: Difference in coefficients not systematic

 $\begin{array}{lll} chi2\,(\textbf{4}) &=& (b-B)\,'\,[\,(V_b-V_B)\,^{\wedge}\,(-1)\,]\,(b-B) \\ &=& \textbf{45.33} \\ Prob > chi2 &=& \textbf{0.0000} \\ (V_b-V_B is not positive definite) \end{array}$

Murder:

	(b) fe_mur	cients —— (B) re_mur	(b-B) Difference	sqrt(diag(V_b-V_B)) Std. err.
shall	084854	4895847	.4047307	.0721358
year	1792772	2306936	.0514164	.0131869
avginc	.7569266	1.059402	3024757	.0557182
density	-15.05388	.8358834	-15.88976	.9371
pop	4527206	1754474	2772732	.1375422

\$b\$ = Consistent under H0 and Ha; obtained from xtreg. B = Inconsistent under Ha, efficient under H0; obtained from xtreg.

Test of HO: Difference in coefficients not systematic

 $\begin{array}{lll} chi2\,(4) &=& (b^-B)\,'\,[\,(V__b^-V__B)\,^{\wedge}\,(-1)\,]\,(b^-B) \\ &=& 342,31 \\ Prob > chi2 &=& 0.0000 \\ (V__b^-V__B is not positive definite) \end{array}$

The model runs in part c cannot directly be used to perform the Hausman test, the vce (robust) code must be deleted first. The Hausman test is only valid if there is homoscedasticity of α_i , u_i and serial uncorrelatedness of u_{it} .

Question Two: Seat Belt Usage: First-Difference or Fixed-Effects?

In this problem you will use the seat belt data set (SeatBelts and its description Seats-Belts_Description are on Canvas), which is a state-level panel from 1983-1997. Write down the regression equation for each regression you perform.

1. (a) perform the fixed effects regression of fatality rate on seat belt usage, drinkage21, and interaction of drinkage21 and high speed (drinkage21 * speed70) as well as including time fixed effects and including time fixed effects and state-level time trends. Tabulate your estimates of the coefficient on seat belt usage in each case as well as its robust standard errors.

Note: drkspeed = drinkage21 * speed70

Model One: Does not include time or state fixed effect.

 $fatalityrate_{it} = \beta_0 + \alpha_i + \beta_1(sbusage_{it}) + \beta_2(drinkage21_{it}) + \beta_3(drkspeed_{it}) + \epsilon_{it}$

Fixed-effects Group variabl	(within) regr e: fips	ession		Number of Number of	f obs = f groups =	556 51
R-squared: Within Between Overall				Obs per o	group: min = avg = max =	8 10.9 15
corr(u_i, Xb)	= -0.2170			F(3, 50) Prob > F	= =	165.62 0.0000
		(Std	. err. ad	djusted for	r 51 cluster	s in fips)
fatalityrate	Coefficient	Robust std. err.	t	P> t	[95% conf.	interval]
sb_useage drinkage21 drk_speed _cons	0173485 .000648 0002339 .0283424	.0008312 .0008175 .0004745 .000768	-20.87 0.79 -0.49 36.91	0.000 0.432 0.624 0.000	019018 0009939 001187 .0267999	015679 .0022899 .0007193 .029885
sigma_u sigma_e rho	.00446959 .00207147 .82318424	(fraction	of varia	nce due to	u_i)	

Model Two: Time fixed effect.

 $fatalityrate_{it} = \beta_0 + \alpha_i + \beta_1(sbusage_{it}) + \beta_2(drinkage21_{it}) + \beta_3(drkspeed_{it}) + \delta_t + \epsilon_{it}$

Fixed-effects Group variable		ession			of obs		556 51
R-squared: Within = Between = Overall =	= 0.0095			Obs pe	r group	min = avg = max =	8 10.9 15
corr(u_i, Xb)	= - 0.0 4 67			F(17, Prob >	F	= =	49.31 0.0000
		(Std.	err. a	djusted	for 51	clusters	s in fips)
fatalityrate	Coefficient	Robust std. err.	t	P> t	[95	5% conf.	interval]
sb_useage drinkage21 drk_speed	0035785 000684 .0004758	.0014582 .0006614 .0004919	-2.45 -1.03 0.97	0.018 0.306 0.338	00	065074 020124 005122	0006497 .0006444 .0014638

Model Three: Time and state fixed effects.

 $fatalityrate_{it} = \beta_0 + \beta_1(sbusage_{it}) + \beta_2(drinkage21_{it}) + \beta_3(drkspeed_{it}) + \alpha_i + \eta_i(c.year * fips) + \epsilon_{it}$

Fixed-effects Group variable	(within) regr e: fips	ession		Number Number			= =	556 51
R-squared: Within : Between : Overall :				Obs pe	er gr	mi av	in = yg = ax =	8 10.9 15
corr(u_i, Xb)	= -1 .0000			F(17, Prob >	F		=	:
		(Std.	err. ac	djusted	for	51 clu	ısters	in fips)
fatalityrate	Coefficient	Robust std. err.	t	P> t		[95% c	conf.	interval]
sb_useage drinkage21 drk_speed	0028138 0009654 .0005785	.0013163 .0005839 .0004352	-2.14 -1.65 1.33	0.037 0.105 0.190	-	.00545 .00213 .00029	382	00017 .0002074 .0014526

2. (b) Do lower speed limits reduce fatality risk of among young DUI (drivers under influence)?

Whether lower speed limits reduce the fatality risk among young people who are driving under the influence depends on the year in which the accident occurred as well as the state. Examining the regression model that regresses fatality rate on the interaction term speed65*speed70, the marginal effect of this indicator is negative in some cases, which we interpret as a higher speed being associated with a *decrease* in the fatality rate, while in other cases it is positive, so a higher speed *increases the fatality rate*.

fatalityrate	Coefficient	Robust std. err.	t	P> t	[95% conf	. interval]
speed65# speed70 0 1 1 0 1 1	.0003376 .0020622	(empty) .0011295 .0015629	0.30 1.32	0.766 0.193	0019336 0010803	.0026087 .0052047
fips#c.year 1 2 4 5 6 8 9	.0004888 0000974 0004344 .0001982 .0004483 .0004766 .0002729	.0000461 .0000502 5.81e-09 -7 .000052 .0001114 .000052 .0001111	10.59 -1.94 .5e+04 3.81 4.02 9.17 2.46 8.99	0.000 0.058 0.000 0.000 0.000 0.000 0.018 0.000	.000396 0001984 0004344 .0000936 .0002243 .0003721 .0000494 .0003627	.0005816 3.53e-06 0004344 .0003027 .0006722 .0005811 .0004963

To further elaborate on this point, Alabama (FIPS = 01) the presence of highways with a speed limit = 65 MPH, <u>and</u> highways with a speed limit greater than or equal to 70 MPH, is associated with a 0.0048 % increase in fatality rate. Conversely, in Arizona (FIPS = 03) the presence of highways with a speed limit = 65 MPH, <u>and</u> highways with a speed limit greater than or equal to 70 MPH, is associated with a 0.0043 % decrease in fatality rate.

Overall, the impact of high-speed roadways on fatalities depends on both the year and the state.

3. (c) perform the first-difference regression of all three cases in (a). Hint: In order to perform these regressions correctly, first write down the first-difference equation with time fixed effects and state-level time trends before you go to Stata to write down the regression as regress D. (____).

Regression models:

Case one:

$$\begin{split} fatalityrate_{it} = & \ \alpha_i + \beta_1(sbusage_{it}) + \beta_2(drinkage21_{it}) + \beta_3(drkspeed_{it}) + \epsilon_{it} \\ fatalityrate_{it-1} = & \ \alpha_i + \beta_1(sbusage_{i,t-1}) + \beta_2(drinkage21_{i,t-1}) + \beta_3(drkspeed_{i,t-1}) + \epsilon_{it} \\ \Delta fatalityrate_i = & \ \alpha_i + \beta_1(\Delta sbusage_i) + \beta_2(\Delta drinkage21_{i,t-1}) + \beta_3(\Delta drkspeed_{i,t-1}) + \epsilon_{it} \end{split}$$

FD model:

Linear regress	sion			Number of F(3, 494) Prob > F R-squared Root MSE		= = = = =	497 10.10 0.0000 0.0588 .00189
D. fatalityrate	Coefficient	Robust std. err.	t	P> t	[95%	conf.	interval]
sb_useage D1.	0055101	.0011506	-4.79	0.000	007	7707	0032494
drinkage21 D1.	0002309	.0005915	-0.39	0.696	001	3931	.0009312
yy D1.	0	(omitted)					
yn D1.	0001211	.0002937	-0.41	0.680	000	6981	.0004559
ny D1.	0	(omitted)					
nn D1.	0	(omitted)					

FE model:

Fixed-effects Group variabl		ression		Number o			556 51
R-squared: Within Between Overall	= 0.0024			Obs per	grou	p: min = avg = max =	10.9 15
corr(u_i, Xb)	= -0.2170	101-3		F(3, 50) Prob > F	F	= = = = = = = = = = = = = = = = = = = =	0.0000
		(Sta	. err. ac	ijusted id	or 51	cruste.	rs in fips)
fatalityrate	Coefficient	Robust std. err.	t	P> t	[9	5% conf	. interval]
sb_useage drinkage21 yy yn ny nn cons	0173485 .000648 0002339 0 0 0	.0008312 .0008175 .0004745 (omitted) (omitted) (omitted) .000768	-20.87 0.79 -0.49	0.000 0.432 0.624	0 	019018 009939 001187	015679 .0022899 .0007193
sigma_u sigma_e rho	.00446959 .00207147 .82318424	(fraction	of varian	ice due to	o u_i)	

Case two: (Time fixed effect)

$$fatalityrate_{it} = \alpha_i + \beta_1(sbusage_{it}) + \beta_2(drinkage21_{it}) + \beta_3(drkspeed_{it}) + \epsilon_{it}$$

$$fatalityrate_{it-1} = \alpha_i + \beta_1(sbusage_{i,t-1}) + \beta_2(drinkage21_{i,t-1}) + \beta_3(drkspeed_{i,t-1}) + \epsilon_{it}$$

$$\Delta fatalityrate_{it} = \alpha_i + \beta_1(\Delta sbusage_{it}) + \beta_2(\Delta drinkage21_{i,t}) + \beta_3(\Delta drkspeed_{i,t}) + \epsilon_{it}$$

FD model:

Linear regress	Linear regression			Number of obs F(16, 481) Prob > F R-squared Root MSE			497 7.92 0.0000 0.2222 .00175
D. fatalityrate	Coefficient	Robust std. err.	t	P> t	[95%	conf.	interval]
sb_useage D1.	0024382	.0012557	-1.94	0.053	0049	054	.0000291
drinkage21 D1.	0008808	.0005734	-1.54	0.125	0020	076	.0002459
yy D1.	000101	.0003714	-0.27	0.786	0008	3307	.0006287
yn D1.	0	(omitted)					
ny D1.	0	(omitted)					
nn D1.	0	(omitted)					
year 1985	0011357	.0005284	-2.15	0.032	002	2174	0000975
1986 1987 1988 1989 1990 1991 1992 1993 1994 1995	.0009568 0004326 007349 0016834 0007526 0012167 0014083 0001077 0003648 .0002281 000402 0001702	.000471 .0003574 .000328 .0003286 .0003684 .0002974 .0002171 .000295 .0002325 .000221	2.03 -1.21 -2.24 -5.12 -2.04 -4.09 -5.54 -0.50 -1.24 -0.98 -1.99 -0.73	0.043 0.227 0.026 0.000 0.042 0.000 0.620 0.217 0.327 0.465	001 001 002	13794 23291 14764 01801 19073 05343 09445 02288 08744	.0018823 .0002697 -0000903 -0010377 -0006287 -0006324 -0009092 .0003189 .0002149 .000685 -5.90e-06

FE Model

Fixed-effects (within) regression Group variable: fips				Number o	of obs = of groups =	556 51
R-squared: Within = Between = Overall =				Obs per	group: min = avg = max =	10.9 15
corr(u_i, Xb)	0.0467			F(17, 50 Prob > 1		49.31 0.0000
		(Std.	err. ac	ijusted fo	or 51 cluster	rs in fips)
fatalityrate	Coefficient	Robust std. err.	t	P> t	[95% conf	. interval]
sb_useage drinkage21 yy yn ny nn	0035785 000684 .0004758 0	.0014582 .0006614 .0004919 (omitted) (omitted) (omitted)	-2.45 -1.03 0.97	0.018 0.306 0.338	0065074 0020124 0005122	0006497 .0006444 .0014638
year 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995	.0002749 .000291 .001197 .0007536 .0002449 0014578 0021375 0032841 0046496 0047263 0050606 0050253 0054638 0056171	.0010085 .0010622 .0010585 .0010732 .0010508 .0011285 .0011009 .0011611 .001166 .0011849 .0012341 .0012157 .0012768	0.27 0.27 1.13 0.70 0.23 -1.29 -1.94 -2.83 -3.99 -3.99 -4.10 -4.13 -4.28 -4.32	0.786 0.785 0.264 0.486 0.817 0.202 0.058 0.007 0.000 0.000 0.000 0.000	0017508 0018425 00018425 00018657 0037245 0043486 0056164 005916 0071052 0075394 0074641 008283 0082313	.0023006 .0024244 .003323 .0029092 .0023555 .0008089 .0000737 0023076 0023464 0025805 0025805 0025892 0030029
_cons	.0255237	.0009378	27.22	0.000	.02364	.0274074
sigma_u sigma_e rho	.00418229 .00165757 .86424605	(fraction o	f variar	nce due to	o u_i)	

Case three: (Time and state fixed effects)

$$\begin{split} fatalityrate_{it} &= \beta_1(sbusage_{it}) + \beta_2(drinkage21_{it}) + \beta_3(drkspeed_{it}) + \alpha_i + \eta_i(year) + \epsilon_{it} \\ fatalityrate_{it-1} &= \beta_1\big(sbusage_{i,t-1}\big) + \beta_2\big(drinkage21_{i,t-1}\big) + \beta_3\big(drkspeed_{i,t-1}\big) + \alpha_{i,t-1} + \eta_i(year) + \epsilon_{it} \\ \Delta fatalityrate_{it} &= \beta_1(\Delta sbusage_{it}) + \beta_2\big(\Delta drinkage21_{i,t}\big) + \beta_3\big(\Delta drkspeed_{i,t}\big) + \eta_i(year_{it}) + \alpha_{i,} + \epsilon_{it} \end{split}$$

FD model:

Linear regression

Linear regress	sion			Number F(54, 4 Prob > R-squar Root MS	43) = F =	497 2.42 0.0000 0.1527 .0019
D. fatalityrate	Coefficient	Robust std. err.	t	P> t	[95% conf.	interval]
sb_useage D1.	0024594	.0012874	-1.91	0.057	0049896	.0000709
drinkage21 D1.	0003367	.0006038	-0.56	0.577	0015233	.0008499
yy D1.	.000733	.0003629	2.02	0.044	.0000198	.0014462
yn Dî.	۰	(omitted)				
ny D1.	۰	(omitted)				
nn D1.	۰	(omitted)				
fips#c.year 1 2 4 5 6 8 9 10 11 12 13 15 6 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 34 35 36 37 38	-2.09e-07 -4.65e-07 -2.28e-07 -3.54e-07 -2.25e-07 -1.89e-07 -2.55e-07 -4.68e-07 -4.68e-07 -2.77e-08 -5.33e-07 -2.68e-07 -2.10e-07 -2.10e-07 -2.13e-07 -2.13e-07 -2.13e-07 -2.13e-07 -2.13e-07 -2.13e-07 -2.13e-07 -2.15e-07 -2.16e-07	3.79e-07 7.91e-07 3.87e-07 2.17e-07 1.42e-07 1.72e-07 2.68e-07 2.18e-07 3.19e-07 3.19e-07 3.19e-07 2.92e-07 2.92e-07 2.98e-07 2.98e-07 2.98e-07 2.98e-07 2.98e-07 2.98e-07 2.98e-07 2.98e-07 3.15e-07 3.15e-07 4.13e-07 4.13e-07 4.15e-07 5.23e-07 4.15e-07 5.24e-07 5.24e-07	-0.55 -0.59 -0.59 -1.64 -3.01 -1.48 -0.70 -0.29 -1.66 -0.09 -2.16 -1.37 -0.72 -1.36 -0.89 -0.81 -2.25 -2.61 -1.72 -1.100 -0.89 -0.81 -1.17 -1.100 -0.81 -1.17 -1.100 -0.21 -1.100 -0.21 -1.100 -0.21 -1.100 -0.21 -1.100 -0.21	0.581 0.556 0.557 0.102 0.003 0.440 0.482 0.931 0.102 0.108 0.931 0.175 0.381 0.418 0.025 0.099 0.316 0.428 0.099 0.316 0.428 0.	-9.54e-07 -2.02e-06 -9.89e-07 -7.80e-07 -7.99e-07 -7.16e-07 -1.62e-06 -8.93e-07 -1.02e-06 -6.55e-07 -1.02e-06 -6.53e-07 -1.02e-06 -7.83e-07 -1.02e-06 -7.83e-07 -6.79e-07 -6.79e-07 -6.82e-07 -7.03e-07 -7.03e-07 -7.03e-07 -7.03e-07 -7.03e-07 -7.03e-07 -7.12e-06 -8.97e-07 -8.79e-07 -1.12e-06 -8.97e-07 -1.13e-06 -8.97e-07 -1.13e-06 -6.32e-07 -1.13e-06 -6.32e-07 -8.55e-07 -9.65e-07	5.35e-07 1.09e-06 5.34e-07 7.10e-08 -1.49e-07 7.10e-08 1.35e-08 6.00e-07 1.21e-06 -5.90e-08 8.50e-08 6.00e-07 3.74e-08 3.63e-07 1.24e-07 2.56e-07 3.14e-07 3.61e-07 3.61e-07 7.24e-07 7.24e-07 7.24e-07 7.24e-07 7.26e-07
39 40 41 42 45 47 48 49 50 51 53 54 55 55	-2.19e-07 -1.07e-07 -3.84e-07 -4.56e-08 -4.54e-07 -3.24e-07 -2.48e-07 -2.09e-07 -5.80e-08 -4.35e-07 -2.12e-07 -7.18e-07 -7.18e-07 -2.44e-07	1.53e-07 2.37e-07 2.10e-07 2.09e-07 1.94e-07 2.60e-07 1.15e-07 2.74e-07 5.70e-07 2.46e-07 4.97e-07 4.97e-07 5.15e-07	-1.44 -0.45 -1.74 -1.83 -0.23 -0.64 -2.82 -0.72 -0.21 -0.86 -1.21 -1.44 -0.93 -0.40	0.152 0.651 0.082 0.067 0.815 0.526 0.526 0.005 0.472 0.833 0.446 0.390 0.229 0.351 0.689	-5.19e-07 -5.73e-07 -1.15e-06 -7.94e-07 -4.28e-07 -9.65e-07 -1.01e-06 -5.50e-07 -7.78e-07 -1.55e-06 -6.95e-07 -7.12e-07 -1.70e-06 -7.57e-07 -1.22e-06	8.09e-08 3.59e-07 6.95e-08 2.73e-08 3.37e-07 5.79e-08 3.61e-07 4.81e-07 6.85e-07 1.71e-07 2.72e-07 2.72e-07 2.70e-07 8.06e-07

FE model:

Fixed-effects Group variable		ression		Number Number	of obs = of groups =	556 51
R-squared: Within Between Overall				Obs per	group: min = avg = max =	10.9 15
corr(u_i, Xb)	1.0000			F(4, 50 Prob >	F -	:
		(Sto	d. err. ad	djusted f	for 51 cluste:	s in fips)
fatalityrate	Coefficient	Robust std. err.	t	P> t	[95% conf	interval]
sb_useage drinkage21 yy yn ny nn	0044294 .0002634 .0020038 0	.0014182 .0006349 .0003568 (omitted) (omitted) (omitted)	-3.12 0.41 5.62	0.003 0.680 0.000	007278 0010118 .001287	0015808 .0015385 .0027205
fips#c.year 1 2 4 5 6 8 9 10 11 12 13 15 16 17 18 19 20 21 22 23 24 25 26 27 28	0006116 0011773 0004438 0009738 000998 0003616 0005817 0011329 001003 0011405 001003 001405 001003 0004316 0006858 0005057 000316 0006858 0005057 00004771 0006142 0006984 0006142 0006146	.0000679 .0000324 .0000612 .0000374 .0000817 .0000191 .0000297 .0000191 .0000297 .0000412 .000079 .0000535 .0000412 .000079 .000055 .000064 .0000577 .000068 .0000594 .0000376 .0000376	-9.00 -36.32 -7.26.66 -12.07 -21.64 -34.31 -18.95 19.58 -21.16 -12.30 -9.93 -18.48 -7.45 -10.71 -8.76 -5.46 -9.91 -18.34 -21.64 -10.68	0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000	0007481 0012424 0005667 0010488 0011642 0004272 0002698 0001299 000522 0012404 0011668 0002233 0015462 0006621 000548 000548 000548 000548 000548 0006213 000548 00054	0004752 0011122 000319 000319 0003546 00024 0003233 .0006414 0000576 0010253 0004393 0004393 0004393 0004393 0004393 0005764 0012213 0003152 0003152 0003774 0003784 0003784 00031644 0006439 0007387 0007387 0007387 0007387 000374
29 331 332 334 336 337 337 337 337 347 445 447 449 551 556 556 560 560	0008507 0003884 0004423 0009458 0009451 0004118 0013143 0007623 0005292 0006081 000527 000681 000681 000681 000696 000696 000696 000696 000696 0006623 000682 -	.0000721 .0000779 .0000779 .0000879 .0000437 .0000437 .0000437 .0000422 .0000422 .000074 .0000565 .0000629 .0000753 .0000863 .000056 .0000771 .000034 .0000771 .000056 .0000771 .000056 .0000771 .000056 .0000771 .000056 .0000771	-11.80 -4.99 -6.37 -10.97 -23.06 -9.42 -12.71 -16.01 -18.45 -12.54 -12.54 -22.94 -0.70 -5.22 -7.35 -7.32 -8.15 -7.32 -8.15 -7.32 -8.15 -7.32 -8.15 -7.32 -8.15 -8.	0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.0000	0009956 0005848 0005841 0005831 0004495 001522 0008579 0010881 000586 000586 000586 000586 000586 00108 000623 000623 000623 000623 000613 000613 000623	0007059 000232 0007882 0007898 0007898 000324 0011066 0006474 0001292 000622 000622 000624 0001013 0001013 0001013 0004768 0001013 0004768 0004768 0004769 0004768
signa_u signa_e rho	.70700164 .00151157 .99999543	(fraction				

4. (d) compare your results in (a) and (c). Do you have any suggestive evidence for or against strict exogeneity?

In all three cases, we see from the regression output that the difference between the fixed effect and the first differences coefficient estimates is larger than the standard errors (i.e., the difference between the two estimators <u>cannot</u> be explained by sampling variability, so there is evidence that strict exogeneity is violated.

```
*Title: Problem Set Four
*VirenePS3.do
*date: 3.5.2024
* Name: Josh Virene*
* ARE256B- Applied Econometrics II
* Purpose: The purpose of this script is to accomplish the tasks that
are outlined in the problem set four assignment
* -----
*Program Setup
*----
clear all
set more off
* set working directory:
global path = "C:\Users\jwvirene\Desktop\VirenePS4"
cd $path
pwd // to verify directory was changed
* import the dataset upon which we run the analysis:
use "C:\Users\iwvirene\Desktop\VirenePS4\Guns.dta", clear
*----
*Program Setup
*----
version 14 // Set Version number for backward compatibility set more off // Disable partitioned output set linesize 80 // Line size limit to make output more
version 14
readable
capture log close // Close existing log files
log using ps4, replace // Open log file
* preview dataset (if needed)
browse
* we want to know the variable names:
ds
* Question One: Gun Control and Violence: Pooled OLS, Random Effects
or Fixed Effects?
*-----
// first we use xtset to establish that this is panel data
xtset stateid year, yearly
// a) running the three pooled ols regression models (regular
```

```
regressions)
regress vio shall year avginc density pop, robust
regress rob shall year avginc density pop, robust
regress mur shall year avginc density pop, robust
// b) running the random effects regression models
xtreg vio shall year avginc density pop, re vce(robust)
xtreg rob shall year avginc density pop, re vce(robust)
xtreg mur shall year avginc density pop, re vce(robust)
// c) running the fixed effects regression models
xtreg vio shall year avginc density pop, fe vce(robust)
xtreg rob shall year avginc density pop, fe vce(robust)
xtreg mur shall year avginc density pop, fe vce(robust)
// d) no code necessary
// e) Performing the Hausman test to evaluate the random effects
assumption
// violence
xtreg vio shall year avginc density pop, re
estimates store re vio
xtreg vio shall year avginc density pop, fe
estimates store fe_vio
hausman fe_vio re_vio, sigmamore
// robbery
xtreg rob shall year avginc density pop, re
estimates store re rob
xtreg rob shall year avginc density pop, fe
estimates store fe rob
hausman fe rob re rob, sigmamore
// murder
xtreg mur shall year avginc density pop, re
estimates store re mur
xtreg mur shall year avginc density pop, fe
estimates store fe mur
hausman fe mur re mur, sigmamore
* Question Two: Seat Belt Usage: First-Difference or Fixed-Effects?
use "C:\Users\jwvirene\Desktop\VirenePS4\SeatBelts.dta", clear // load
in the new dataset on seatbelt data
xtset fips year, yearly
browse
// a) running the three different regression models
generate drk_speed = drinkage21*speed70 // interaction term
```

```
xtreq fatalityrate sb useage drinkage21 drk speed, fe vce(robust) //
first regression, no time or state effects
xtreg fatalityrate sb_useage drinkage21 drk_speed i.year, fe
vce(robust) // second regression, only time effect
xtreg fatalityrate sb useage drinkage21 drk speed i.year c.year#fips,
fe vce(robust) // third regression, time & state
// b) determining if lower speed limits reduce fatality risk of among
young DUI (drivers under influence)
xtreg fatalityrate speed65#speed70 if ba08 == 0, fe vce(robust)
xtreq fatalityrate speed65#speed70 i.year if ba08 == 0, fe vce(robust)
xtreg fatalityrate speed65#speed70 i.year c.year#fips if ba08 == 0, fe
vce(robust)
// comment on how these are interpreted: The model only runs if ba08 =
0, meaning that blood alcohol limit was not <= 0.08%, so we only run
regression for those who drove under the influence. The interaction
term speed65\#speed70 = 1 if 65 / higher & 70 / higher speed limit, so
these give the effect of a higher speed limit on fatality rate
// c)
// creating year dummies; we omitted 1983 because this is our base
year, so we need it for the first difference estimation between 1983
and 1984
gen yy = (drinkage21==1 \& speed70==1)
gen yn = (drinkage21==1 \& speed70==0)
gen ny = (drinkage21==0 \& speed70==1)
gen nn = (drinkage21==0 \& speed70==0)
// case one model first difference
reg D.fatalityrate D.sb useage D.drinkage21 D.yy D.yn D.ny D.nn,
nocons vce(robust)
xtreg fatalityrate sb_useage drinkage21 yy yn ny nn, fe vce(robust)
// case two model first difference
reg D.fatalityrate D.sb_useage D.drinkage21 D.yy D.yn D.ny D.nn
i.year, nocons vce(robust)
xtreg fatalityrate sb useage drinkage21 yy yn ny nn i.year, fe
vce(robust)
// case three model first difference
reg D.fatalityrate D.sb useage D.drinkage21 D.yy D.yn D.ny D.nn
c.year#fips, nocons vce(robust)
xtreg fatalityrate sb_useage drinkage21 yy yn ny nn c.year#fips, fe
vce(robust)
```


_cons

133.9735

34.32646

3.90

0.000

66.62499

201.3219

```
name: <unnamed>
       log: C:\Users\jwvirene\Desktop\VirenePS4\ps4.smcl
  log type: smcl
opened on: 15 Mar 2024, 11:34:11
1 . *-----
2.
3 . * preview dataset (if needed)
4 . browse
5 . * we want to know the variable names:
6 . ds
                         pw1064
 year
                                    avginc
                                               shall
             rob
             incarc_rate pm1029
 vio
                                     density
 mur
             pb1064
                        pop
                                     stateid
8 . *-----
9 . * Question One: Gun Control and Violence: Pooled OLS, Random Effects or Fixed Effect
 > s?
10. *-----
11.
12. // first we use xtset to establish that this is panel data
13. xtset stateid year, yearly
 Panel variable: stateid (strongly balanced)
  Time variable: year, 77 to 99
Delta: 1 year
14.
15. // a) running the three pooled ols regression models (regular regressions)
16. regress vio shall year avginc density pop, robust
 Linear regression
                                             Number of obs
                                                                    1,173
                                             F(5, 1167)
                                                            =
                                                                  156.88
                                                                  0.0000
                                             Prob > F
                                                             =
                                             R-squared
                                                             =
                                                                   0.6094
                                             Root MSE
                                                                   209.36
                           Robust
         vio
              Coefficient std. err.
                                       t P>|t|
                                                     [95% conf. interval]
                                            0.000
        shall
                -111.9296
                           16.22195
                                     -6.90
                                                   -143.757
                                                                -80.10211
                 7.103581
                         1.237489
                                      5.74
                                            0.000
                                                      4.675629
                                                                 9.531533
        year
       avginc
                 4.36877
                           3.371511
                                      1.30
                                            0.195
                                                     -2.246131
                                                                 10.98367
      density
                 163.7426
                           10.58664
                                      15.47
                                             0.000
                                                      142.9716
                                                                 184.5135
                 21.47085
                                      15.87
                                             0.000
         pop
                           1.353044
                                                      18.81618
                                                                 24.12552
        cons
                -315.8604
                         87.99076
                                     -3.59
                                            0.000
                                                     -488.4981
                                                               -143.2226
17. regress rob shall year avginc density pop, robust
 Linear regression
                                             Number of obs
                                                                    1,173
                                             F(5, 1167)
                                                            =
                                                                  190.07
                                             Prob > F
                                                             =
                                                                  0.0000
                                             R-squared
                                                             =
                                                                   0.7680
                                             Root MSE
                                                                   82.312
                           Robust
               Coefficient std. err.
                                       t P>|t|
                                                     [95% conf. interval]
         rob
                                      -4.54
                                             0.000
        shall
                -22.32884
                           4.920613
                                                     -31.98308
                                                                 -12.6746
                -1.824314
                                      -4.10
                                                                -.9503596
        year
                           .4454408
                                             0.000
                                                     -2.698268
                7.681378
                           1.384179
                                      5.55
                                             0.000
                                                      4.965621
                                                                10.39714
       avginc
                           5.753169
      density
                 95.97615
                                      16.68
                                             0.000
                                                      84.68843
                                                                 107.2639
                 11.33618
                            .730431
                                      15.52
                                             0.000
                                                      9.903075
                                                                 12.76928
         pop
```

18. regress mur shall year avginc density pop, robust

mur	Coefficient	Robust std. err.	t	P> t	[95% conf.	interval]
shall year avginc density pop _cons	-1.576891 .0635691 3480876 4.399601 .2473563 4.491434	.2438062 .0260916 .0889933 .4972174 .0226771	-6.47 2.44 -3.91 8.85 10.91 2.30	0.000 0.015 0.000 0.000 0.000	-2.055239 .0123775 5226924 3.424061 .2028638 .6638312	-1.098544 .1147607 1734828 5.375141 .2918488 8.319037

19.

- 20. // b) running the random effects regression models $\,$
- 21. xtreg vio shall year avginc density pop, re vce(robust)

Random-effects GLS regression Group variable: stateid	Number of obs = Number of groups =	1,173 51
R-squared: Within = 0.1237 Between = 0.6248 Overall = 0.5377	Obs per group: min = avg = max =	23 23.0 23
corr(u i, X) = 0 (assumed)	Wald chi2(5) = Prob > chi2 =	198.09 0.0000

(Std. err. adjusted for 51 clusters in stateid)

vio	Coefficient	Robust std. err.	Z	P> z	[95% conf.	interval]
shall year avginc density pop _cons	-22.41008 4.893376 6.158246 51.84012 12.15078 -83.39012	19.33862 2.323572 13.64521 3.932795 6.421486 92.21494	-1.16 2.11 0.45 13.18 1.89 -0.90	0.247 0.035 0.652 0.000 0.058 0.366	-60.31307 .339258 -20.58588 44.13198 4351041 -264.1281	15.49292 9.447493 32.90237 59.54825 24.73666 97.34785
sigma_u sigma_e rho	186.2457 99.444973 .77815117	(fraction	of varia	nce due t	co u_i)	

22. xtreg rob shall year avginc density pop, re vce(robust)

Random-effects GLS regression Group variable: stateid	Number of obs = Number of groups =	1,173 51
R-squared: Within = 0.0260 Between = 0.7878 Overall = 0.7238	Obs per group: min = avg = max =	23 23.0 23
$corr(u_i, X) = 0$ (assumed)	Wald chi2(5) = Prob > chi2 =	2240.51 0.0000

(Std. err. adjusted for **51** clusters in **stateid**)

rob	Coefficient	Robust std. err.	Z	P> z	[95% conf.	interval]
shall year avginc density pop _cons	6.425249 .068409 -4.37719 94.37252 7.903892 143.0246	6.99307 .5382528 2.075687 2.409419 3.217958 44.05293	0.92 0.13 -2.11 39.17 2.46 3.25	0.358 0.899 0.035 0.000 0.014 0.001	-7.280916 9865472 -8.445462 89.65015 1.59681 56.68241	20.13141 1.123365 3089175 99.0949 14.21097 229.3667
sigma_u sigma_e rho	66.455606 49.069013 .64716776	(fraction	of varia	nce due t	to u_i)	

23. xtreg mur shall year avginc density pop, re vce(robust)

Random-effects GLS regression Group variable: stateid	Number of obs = Number of groups =	1,173 51
R-squared: Within = 0.0632 Between = 0.2654 Overall = 0.2278	Obs per group: min = avg = max =	23 23.0 23
corr(u i, X) = 0 (assumed)	Wald chi2(5) = Prob > chi2 =	253.80 0.0000

(Std. err. adjusted for **51** clusters in **stateid**)

mur	Coefficient	Robust std. err.	Z	P> z	[95% conf.	interval]
shall year avginc density pop _cons	4895847 2306936 1.059402 .8358834 1754474 14.09579	.4710299 .1122332 .8368017 .1457137 .2118185 1.522192	-1.04 -2.06 1.27 5.74 -0.83 9.26	0.299 0.040 0.206 0.000 0.408 0.000	-1.412786 4506666 5806989 .5502898 5906041 11.11235	.4336169 0107206 2.699503 1.121477 .2397093 17.07923
sigma_u sigma_e rho	3.250556 2.7540148 .58213224	(fraction	of varia	nce due t	to u_i)	

- 25. // c) running the fixed effects regression models26. xtreg vio shall year avginc density pop, fe vce(robust)

Fixed-effects (within) regression Group variable: stateid	Number of obs Number of groups		1,173 51
R-squared: Within = 0.1864 Between = 0.4096 Overall = 0.3363	Obs per group: mir avg max	g =	23 23.0 23
corr(u_i, Xb) = -0.8983	F(5, 50) Prob > F	= =	338.08 0.0000

(Std. err. adjusted for 51 clusters in stateid)

vio	Coefficient	Robust std. err.	t	P> t	[95% conf.	interval]
shall year avginc density pop _cons	-14.70016 6.604454 -3.805232 -230.9971 9.719052 12.18994	18.96909 1.841158 7.020479 14.67264 7.25606 95.14375	-0.77 3.59 -0.54 -15.74 1.34 0.13	0.442 0.001 0.590 0.000 0.186 0.899	-52.80069 2.906379 -17.90628 -260.4679 -4.855173 -178.9119	23.40037 10.30253 10.29581 -201.5262 24.29328 203.2918
sigma_u sigma_e rho	584.49363 99.444973 .9718672	(fraction	of varia	nce due t	o u_i)	

27. xtreg rob shall year avginc density pop, fe vce(robust)

Fixed-effects (within) regression Group variable: stateid	Number of obs Number of groups		1,173 51
R-squared:	Obs per group:		
Within = 0.0394	min	_ =	23
Between = 0.4952	avo	· =	23.0
Overall = 0.4556	max	=	23
	F(5, 50)	=	81.29
corr(u i, Xb) = 0.4040	Prob > F	=	0.0000

(Std. err. adjusted for 51 clusters in stateid)

rob	Coefficient	Robust std. err.	t	P> t	[95% conf.	interval]
shall year avginc density pop _cons	9.270621 1.171596 -8.41683 50.57201 4317503 156.2628	7.171637 .6898839 3.437469 11.0238 3.209083 36.40361	1.29 1.70 -2.45 4.59 -0.13 4.29	0.202 0.096 0.018 0.000 0.894 0.000	-5.134036 2140769 -15.32119 28.43006 -6.877383 83.14399	23.67528 2.557268 -1.512471 72.71396 6.013882 229.3816
sigma_u sigma_e rho	128.38588 49.069013 .87254216	(fraction	of varia	nce due t	co u_i)	

28. xtreg mur shall year avginc density pop, fe vce(robust)

Fixed-effects (within) regression Group variable: stateid	Number of obs Number of groups		1,173 51
R-squared: Within = 0.2950 Between = 0.7563 Overall = 0.5829	ar	n = rg = ax =	23 23.0 23
corr(u_i, Xb) = -0.9876	F(5, 50) Prob > F	=	4677.35 0.0000

(Std. err. adjusted for **51** clusters in **stateid**)

mur	Coefficient	Robust std. err.	t	P> t	[95% conf.	interval]
shall year avginc density pop _cons	084854 1792772 .7569266 -15.05388 4527206 20.55347	.3041394 .076204 .4471818 .8655281 .2977387	-0.28 -2.35 1.69 -17.39 -1.52 13.03	0.781 0.023 0.097 0.000 0.135 0.000	695736 3323374 1412645 -16.79234 -1.050746 17.38639	.5260279 026217 1.655118 -13.31541 .1453051 23.72056

26.008852

sigma u

```
sigma e
                 2.7540148
          rho
                 .98891214
                           (fraction of variance due to u i)
29.
30. // d) no code necessary
32. // e) Performing the Hausman test to evaluate the random effects assumption
33.
34. // violence
35. xtreg vio shall year avginc density pop, re
                                                                      1,173
 Random-effects GLS regression
                                                Number of obs =
                                               Number of groups =
 Group variable: stateid
                                                                         51
 R-squared:
                                                Obs per group:
      Within = 0.1237
                                                             min =
                                                                          23
                                                             avg =
      Between = 0.6248
                                                                        23.0
      Overall = 0.5377
                                                             max =
                                                                          23
                                               Wald chi2(5)
                                                                       203.57
 corr(u i, X) = 0 (assumed)
                                               Prob > chi2
                                                                =
                                                                       0.0000
          vio Coefficient Std. err.
                                          z P>|z|
                                                        [95% conf. interval]
       shall
                -22.41008 11.80126
                                       -1.90 0.058 -45.54012
                                                                     .7199727
                 4.893376 1.000642
                                        4.89
                                              0.000
                                                        2.932154
                                                                     6.854597
        vear
                  6.158246 3.888565
                                         1.58
                                              0.113
                                                       -1.463201
                                                                     13.77969
       avginc
                  51.84012
                            17.14947
                                         3.02
                                               0.003
                                                         18.22778
                                                                     85.45245
      density
                            3.714081
                                         3.27
                 12.15078
                                               0.001
                                                         4.871313
                                                                     19.43024
         pop
         cons
                 -83.39012 57.79864
                                        -1.44
                                              0.149
                                                        -196.6734
                                                                     29.89313
                186.2457
      sigma u
      sigma e
                 99.444973
                 .77815117 (fraction of variance due to u i)
          rho
36. estimates store re_vio
37. xtreg vio shall year avginc density pop, fe
                                                                    1,173
                                               Number of obs = Number of groups =
 Fixed-effects (within) regression
                                                                         51
 Group variable: stateid
 R-squared:
                                                Obs per group:
      Within = 0.1864
                                                             min =
                                                                         23
      Between = 0.4096
                                                             avg =
                                                                        23.0
      Overall = 0.3363
                                                             max =
                                                                         23
                                                                       51.17
                                                F(5, 1117)
                                                Prob > F
 corr(u i, Xb) = -0.8983
                                                               =
                                                                       0.0000
                                              P>|t| [95% conf. interval]
          vio
               Coefficient Std. err.
                                         t
        shall
                -14.70016 11.30657
                                        -1.30
                                              0.194 -36.88467
                                                                     7.484338
                  6.604454
                            .9984119
                                               0.000
                                                         4.64548
                                        6.61
                                                                     8.563428
        year
                           30.72536
4 977
       avginc
                 -3.805232
                                        -0.97
                                               0.331
                                                        -11.47928
                                                                    3.868816
      density
                 -230.9971
                                        -7.52
                                               0.000
                                                        -291.283
                                                                    -170.7111
         pop
                 9.719052
                                         1.95
                                               0.051
                                                        -.0466908
                                                                    19.48479
         cons
                12.18994 49.24403
                                         0.25
                                              0.805
                                                        -84.43128
                                                                   108.8112
      sigma u
                584.49363
      sigma e
                 99.444973
                 .9718672 (fraction of variance due to u i)
         rho
```

39. hausman fe_vio re_vio, sigmamore

Note: the rank of the differenced variance matrix (4) does not equal the number of coefficients being tested (5); be sure this is what you expect, or there may be problems computing the test. Examine the output of your estimators for anything unexpected and possibly consider scaling your variables so that the coefficients are on a similar scale.

	Coeffi (b) fe_vio	cients —— (B) re_vio	(b-B) Difference	sqrt(diag(V_b-V_B)) Std. err.
shall	-14.70016	-22.41008	7.709912	1.528026
year	6.604454	4.893376	1.711078	.320757
avginc	-3.805232	6.158246	-9.963478	1.350373
density	-230.9971	51.84012	-282.8372	27.41538
pop	9.719052	12.15078	-2.431725	3.694035

b = Consistent under HO and Ha; obtained from **xtreg**. B = Inconsistent under Ha, efficient under H0; obtained from **xtreg**.

Test of HO: Difference in coefficients not systematic

 $chi2(4) = (b-B)'[(V_b-V_B)^(-1)](b-B)$ = 117.06 Prob > chi2 = 0.0000

40.

41. // robbery 42. xtreg rob shall year avginc density pop, re

Random-effects GLS regression Group variable: stateid	Number of obs = Number of groups =	1,173 51
R-squared: Within = 0.0260 Between = 0.7878 Overall = 0.7238	Obs per group: min = avg = max =	23 23.0 23
corr(u_i, X) = 0 (assumed)	Wald chi2(5) = Prob > chi2 =	

rob	Coefficient	Std. err.	z	P> z	[95% conf.	interval]
shall year avginc density pop _cons	6.425249 .068409 -4.37719 94.37252 7.903892 143.0246	5.596493 .4657042 1.801882 6.438762 1.481897 25.9131	1.15 0.15 -2.43 14.66 5.33 5.52	0.251 0.883 0.015 0.000 0.000	-4.543675 8443544 -7.908814 81.75278 4.999428 92.23581	17.39417 .9811724 8455654 106.9923 10.80836 193.8133
sigma_u sigma_e rho	66.455606 49.069013 .64716776	(fraction	of varia	nce due t	o u_i)	

43. estimates store re_rob

44. xtreg rob shall year avginc density pop, fe

· · · · · · · · · · · · · · · · · · ·				of obs = of groups =	1,173 51	
R-squared: Within = Between = Overall =				Obs per	<pre>group: min = avg = max =</pre>	23 23.0 23
corr(u_i, Xb)	= 0.4040			F(5, 11 : Prob > 1		9.16 0.0000
rob	Coefficient	Std. err.	t	P> t	[95% conf.	interval]
shall year avginc density pop _cons	9.270621 1.171596 -8.41683 50.57201 4317503 156.2628	5.578986 .4926452 1.929879 15.16078 2.455901 24.29842	1.66 2.38 -4.36 3.34 -0.18 6.43	0.001	-1.675851 .2049815 -12.20343 20.8252 -5.250449 108.5871	20.21709 2.13821 -4.630234 80.31882 4.386948 203.9385
sigma_u sigma_e rho	128.38588 49.069013 .87254216	(fraction o	of variar	nce due to	o u_i)	

F test that all $u_i=0$: F(50, 1117) = 43.34

Prob > F = 0.0000

- 45. estimates store fe_rob
- 46. hausman fe_rob re_rob, sigmamore

Note: the rank of the differenced variance matrix (4) does not equal the number of coefficients being tested (5); be sure this is what you expect, or there may be problems computing the test. Examine the output of your estimators for anything unexpected and possibly consider scaling your variables so that the coefficients are on a similar scale.

	Coeffic	cients		
	(b)	(B)	(b-B) Difference	sqrt(diag(V_b-V_B)) Std. err.
	fe_rob	re_rob	Difference	sta. err.
shall	9.270621	6.425249	2.845372	. 9753652
year	1.171596	.068409	1.103187	.1864474
avginc	-8.41683	-4.37719	-4.039641	.7841576
density	50.57201	94.37252	-43.80052	14.03074
pop	4317503	7.903892	-8.335642	2.014373

b = Consistent under H0 and Ha; obtained from xtreg. B = Inconsistent under Ha, efficient under H0; obtained from xtreg.

Test of HO: Difference in coefficients not systematic

$$\begin{array}{rcl} \text{chi2}\,(\textbf{4}) &=& \text{(b-B)'[(V_b-V_B)^(-1)](b-B)} \\ &=& \textbf{45.33} \\ \text{Prob} > \text{chi2} &=& \textbf{0.0000} \\ \text{(V_b-V_B is not positive definite)} \end{array}$$

48. // murder

49. xtreg mur shall year avginc density pop, re

<u> </u>			Number of obs = 1,1 Number of groups =				
R-squared: Within = Between = Overall =				Obs per	group: min avg max	=	23 23.0 23
corr(u_i, X) =	= 0 (assumed)			Wald ch Prob >	i2(5) chi2	=	
mur	Coefficient	Std. err.	Z	P> z	[95% co	nf.	interval]
shall year avginc density pop _cons	4895847 2306936 1.059402 .8358834 1754474 14.09579	.3647782 .0300707 .1159332 .3780224 .0887446 1.66336	-1.34 -7.67 9.14 2.21 -1.98 8.47	0.180 0.000 0.000 0.027 0.048 0.000	-1.20453 28963 .832177 .094973 349383 10.8356	1 3 1 6	.2253674 1717561 1.286627 1.576794 0015112 17.35592
sigma_u sigma_e rho	3.250556 2.7540148 .58213224	(fraction	of variar	nce due t	o u_i)		

50. estimates store re_mur

51. xtreg mur shall year avginc density pop, fe

Fixed-effects (within) regression Group variable: stateid	Number of obs = Number of groups =	1,173 51
R-squared: Within = 0.2950 Between = 0.7563 Overall = 0.5829	Obs per group: min = avg = max =	23 23.0 23
corr(u_i, Xb) = -0.9876	F(5, 1117) = Prob > F =	93.46 0.0000

mur	Coefficient	Std. err.	t	P> t	[95% conf.	interval]
shall year avginc density pop _cons	084854 1792772 .7569266 -15.05388 4527206 20.55347	.3131224 .0276499 .1083151 .8509038 .1378383 1.363757	-0.27 -6.48 6.99 -17.69 -3.28 15.07	0.786 0.000 0.000 0.000 0.001 0.000	6992284 2335287 .5444026 -16.72343 7231717 17.87766	.5295204 1250256 .9694506 -13.38433 1822696 23.22929
sigma_u sigma_e rho	26.008852 2.7540148 .98891214	(fraction	of varia	nce due t	co u_i)	

- 52. estimates store fe mur
- 53. hausman fe mur re mur, sigmamore

Note: the rank of the differenced variance matrix (4) does not equal the number of coefficients being tested (5); be sure this is what you expect, or there may be problems computing the test. Examine the output of your estimators for anything unexpected and possibly consider scaling your variables so that the coefficients are on a similar scale.

	Coeffi	cients —— (B)	(b-B)	sqrt(diag(V b-V B))
	fe_mur	re_mur	Difference	Std. err.
shall year avginc density pop	084854 1792772 .7569266 -15.05388 4527206	4895847 2306936 1.059402 .8358834 1754474	.4047307 .0514164 3024757 -15.88976 2772732	.0721358 .0131869 .0557182 .9371 .1375422

b = Consistent under H0 and Ha; obtained from xtreg.
B = Inconsistent under Ha, efficient under H0; obtained from xtreg.

Test of HO: Difference in coefficients not systematic

 $chi2(4) = (b-B)'[(V_b-V_B)^(-1)](b-B)$ = 342.31 Prob > chi2 = 0.0000 (V_b-V_B is not positive definite)

54.

55. *----

- 56. * Question Two: Seat Belt Usage: First-Difference or Fixed-Effects?
- 57. *----
- 58. use "C:\Users\jwvirene\Desktop\VirenePS4\SeatBelts.dta", clear // load in the new da > taset on seatbelt data
- 59. xtset fips year, yearly

Panel variable: fips (strongly balanced)
Time variable: year, 1983 to 1997
Delta: 1 year

- 60. browse
- 61. // a) running the three different regression models
- 62. generate drk speed = drinkage21*speed70 // interaction term
- 63. xtreg fatalityrate sb_useage drinkage21 drk_speed, fe vce(robust) // first regressio
 > n, no time or state effects

Fixed-effects (within) regression Group variable: fips	Number of obs Number of groups		556 51
R-squared: Within = 0.5758 Between = 0.0024 Overall = 0.1573	Obs per group: min avg max	=	8 10.9 15
corr(u_i, Xb) = -0.2170	F(3, 50) Prob > F	= =	165.62 0.0000

(Std. err. adjusted for **51** clusters in **fips**)

fatalityrate	Coefficient	Robust std. err.	t	P> t	[95% conf.	interval]
sb_useage drinkage21 drk_speed _cons	0173485 .000648 0002339 .0283424	.0008312 .0008175 .0004745 .000768	-20.87 0.79 -0.49 36.91	0.000 0.432 0.624 0.000	019018 0009939 001187 .0267999	015679 .0022899 .0007193 .029885
sigma_u sigma_e rho	.00446959 .00207147 .82318424	(fraction	of varia	nce due t	o u_i)	

64. xtreg fatalityrate sb_useage drinkage21 drk_speed i.year, fe vce(robust) // second r > egression, only time effect

Fixed-effects (within) regression Group variable: fips	Number of obs Number of groups		556 51
R-squared: Within = 0.7360 Between = 0.0095 Overall = 0.2633	av	n = g = x =	8 10.9 15
corr(u_i, Xb) = -0.0467	F(17, 50) Prob > F	= =	49.31 0.0000

(Std. err. adjusted for **51** clusters in **fips**)

fatalityrate	Coefficient	Robust std. err.	t	P> t	[95% conf.	interval]
sb_useage drinkage21 drk_speed	0035785 000684 .0004758	.0014582 .0006614 .0004919	-2.45 -1.03 0.97	0.018 0.306 0.338	0065074 0020124 0005122	0006497 .0006444 .0014638
year 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996	.0002749 .000291 .001197 .0007536 .0002449 0014578 0021375 0032841 0046496 0047263 0050606 0050223 0054638 0056171	.0010085 .0010622 .0010585 .0010732 .0010508 .0011285 .0011009 .0011611 .001166 .0011849 .0012341 .0012157 .0012768 .0013015	0.27 0.27 1.13 0.70 0.23 -1.29 -1.94 -2.83 -3.99 -3.99 -4.10 -4.13 -4.28 -4.32	0.786 0.785 0.264 0.486 0.817 0.202 0.058 0.007 0.000 0.000 0.000 0.000	0017508 0018425 000929 001402 0018657 0037245 0043486 0056164 0056164 0071062 0075394 0074641 0080283 0082313	.0023006 .0024244 .003323 .0029092 .0023555 .0008089 .0000737 0009519 0023076 0023464 0025818 0025805 0028992 0030029
_cons	.0255237	.0009378	27.22	0.000	.02364	.0274074
sigma_u sigma_e rho	.00418229 .00165757 .86424605	(fraction	of varia	nce due t	o u_i)	

note: 56.fips#c.year omitted because of collinearity.

Fixed-effects (within) regression Number of obs = 556 Group variable: fips Number of groups = 51 R-squared: Obs per group: Within = 0.8397 min = 8 Between = **0.1192** avg = 10.9 Overall = **0.0629** max =15 F(17, 50)= corr(u i, Xb) = -1.0000Prob > F

(Std. err. adjusted for **51** clusters in **fips**)

Sb useage			(Std	l. err. a	djusted	for 51 cluster	s in fips)
Sb useage			Robust				
driñkage21 0009654 .0005785 .0004352 1.33 0.190 0002956 .0004526 year 1884 .0005634 .0010526 0.54 0.595 0015508 .0026776 1985 .0001381 .000962 0.14 0.886 0017942 .0020705 1986 .0015515 .0005899 1.61 0.114 000387 .0035091 1987 .0015355 .0010867 1.19 0.241 000579 .0035891 1989 000246 .0012241 002 .994 0024833 .0024311 1990 0003849 .001466 0.2 .994 0024833 .0023178 1991 001193 .0014492 0.82 0.414 0041039 .0017178 1993 0019137 .0015011 -1.27 0.208 0049287 .0010113 1994 001589 .0018083 .0016121 -1.17 0.248 005121 .001551 1995 001596 </th <th>fatalityrate</th> <th>Coefficient</th> <th></th> <th>t</th> <th>P> t </th> <th>[95% conf.</th> <th>interval]</th>	fatalityrate	Coefficient		t	P> t	[95% conf.	interval]
driñkage21 0009654 .0005785 .0004352 1.33 0.190 0002956 .0004526 year 1884 .0005634 .0010526 0.54 0.595 0015508 .0026776 1985 .0001381 .000962 0.14 0.886 0017942 .0020705 1986 .0015515 .0005899 1.61 0.114 000387 .0035091 1987 .0015355 .0010867 1.19 0.241 000579 .0035891 1989 000246 .0012241 002 .994 0024833 .0024311 1990 0003849 .001466 0.2 .994 0024833 .0023178 1991 001193 .0014492 0.82 0.414 0041039 .0017178 1993 0019137 .0015011 -1.27 0.208 0049287 .0010113 1994 001589 .0018083 .0016121 -1.17 0.248 005121 .001551 1995 001596 </td <td>sb useage</td> <td>0028138</td> <td>.0013163</td> <td>-2.14</td> <td>0.037</td> <td>0054576</td> <td>00017</td>	sb useage	0028138	.0013163	-2.14	0.037	0054576	00017
drk_speed							
Year 1984	_						
1984				_,	***		
1985							
1986							
1987							
1988							
1989							
1990							
1991							
1992							
1993							
1994							
1995							
1996							
fips#c.year 1							
1							
1							
2 0011381 .0000882 -12.90 0.000 0013153 000961 4 0001054 .0000677 -1.56 0.126 0002414 .0000306 5 0006715 .0000625 -10.75 0.000 000797 0001546 8 0003354 .0000955 -3.51 0.001 0005271 0001436 9 0001873 .0001016 -1.84 0.071 0003975 .0001169 10 0003073 .0000949 -3.24 0.002 0004979 0001166 11 .0006239 .0000949 -3.24 0.002 000443 .0008036 12 00077 .0000767 -10.03 0.000 0004443 .0008036 12 00077 .0000767 -10.03 0.000 0006933 0005104 15 .0001456 .0000973 1.50 0.141 000499 000714 16 0009295 .0000747 -12.44 0.000							
4 0001054 .0000677 -1.56 0.126 0002414 .0000306 5 000713 .0000934 -7.63 0.000 000906 0005253 6 0006715 .0000625 -10.75 0.000 000797 0001436 8 0001873 .0001016 -1.84 0.071 0003915 .0001169 10 0003073 .0000949 -3.24 0.002 0004799 0001166 11 .0006239 .0000895 6.97 0.000 .0004443 .0008036 12 00077 .0000767 -10.03 0.000 0009241 0006159 13 006043 .0000468 -12.92 0.000 0006983 0005104 15 .0001456 .0000973 1.50 0.141 0000499 .000341 16 0009295 .0000747 -12.44 0.000 001796 0007793 17 0003296 .0000914 -3.61 0.001 -							
5 000713 .0000934 -7.63 0.000 0009006 0005253 6 0006715 .0000625 -10.75 0.000 000797 000146 8 0003354 .0000955 -3.51 0.001 0005271 0001436 9 001873 .0001016 -1.84 0.071 0004979 0001166 11 .0006239 .0000895 6.97 0.000 .0004443 .0008036 12 00077 .0000767 -10.03 0.000 0009241 0006159 13 0006043 .0000468 -12.92 0.00 0006983 0005104 15 .0001456 .0000973 1.50 0.141 000499 .000341 16 0003296 .0000747 -12.44 0.000 001796 0007793 17 0003266 .0000914 -3.61 0.001 000749 0003903 19 0001666 .0000886 -1.88 0.066							
6 0006715 .0000625 -10.75 0.000 000797 000546 8 0003354 .0000955 -3.51 0.001 0005271 0001436 9 000373 .0001016 -1.84 0.071 0003915 .0000169 10 000373 .0000949 -3.24 0.002 0004979 0001166 11 .0006239 .0000767 -10.03 0.000 0009241 0006159 13 0006043 .0000468 -12.92 0.000 0006983 0005104 15 .0001456 .0000973 1.50 0.141 000499 .000341 16 0003296 .0000974 -12.44 0.000 001796 0007793 17 0003296 .0000914 -3.61 0.001 000749 0003903 19 0001666 .0000886 -1.88 0.066 000749 0003903 19 0001666 .0000886 -1.88 0.066 <							
8 0003354 .0000955 -3.51 0.001 0005271 0001436 9 0001873 .0001016 -1.84 0.071 0003915 .0000169 10 0003073 .0000949 -3.24 0.002 0004979 0001166 11 .0006239 .0000895 6.97 0.000 .0004443 .0008036 12 00077 .0000767 -10.03 0.000 0009241 0006159 13 0006043 .0000468 -12.92 0.000 0006983 0005104 15 .0001456 .0000973 1.50 0.141 0000499 .000341 16 0003296 .0000747 -12.44 0.000 0010796 0007793 17 0003296 .0000914 -3.61 0.001 000749 0003903 19 0001666 .0000886 -1.88 0.066 0003446 .000144 20 0003579 .0000953 -3.76 0.000 0004777 0001951 21 0004575 .0000833 -0.							
9							
10 0003073 .0000949 -3.24 0.002 0004979 0001166 11 .0006239 .0000895 6.97 0.000 .0004443 .0008036 12 00077 .0000767 -10.03 0.000 0006983 0005159 13 0006043 .0000468 -12.92 0.000 0006983 0005104 15 .0001456 .00009747 -12.44 0.000 0010796 0007793 17 0003296 .0000914 -3.61 0.001 000749 0003903 19 0001666 .0000886 -1.88 0.066 0003446 .0000114 20 0003364 .0000704 -4.78 0.000 0004777 0001951 21 0003579 .0000833 -0.20 0.846 0001466 .00004575 .0000815 -5.61 0.000 00044777 0001951 23 0004575 .000815 -5.61 0.000 0006804 0002938							
12 00077 .0000767 -10.03 0.000 0009241 0006159 13 0006043 .0000468 -12.92 0.000 0006983 0005104 15 .0001456 .0000973 1.50 0.141 0000499 .000341 16 0009295 .0000747 -12.44 0.000 001796 000793 17 0003296 .0000914 -3.61 0.001 0005131 000146 18 0005697 .0000893 -6.38 0.000 000749 0003903 19 0001666 .0000886 -1.88 0.066 0003446 .0000114 20 0003579 .0000953 -3.76 0.000 0005493 0001866 22 0004575 .0000815 -5.61 0.000 0006213 0002938 24 0004575 .0000815 -5.61 0.000 006804 0002938 24 0005919 .000094 -6.01 0.000							
12 00077 .0000767 -10.03 0.000 0009241 0006159 13 0006043 .0000468 -12.92 0.000 0006983 0005104 15 .0001456 .0000973 1.50 0.141 0000499 .000341 16 0009295 .0000747 -12.44 0.000 001796 000793 17 0003296 .0000914 -3.61 0.001 0005131 000146 18 0005697 .0000893 -6.38 0.000 000749 0003903 19 0001666 .0000886 -1.88 0.066 0003446 .0000114 20 0003579 .0000953 -3.76 0.000 0005493 0001866 22 0004575 .0000815 -5.61 0.000 0006213 0002938 24 0004575 .0000815 -5.61 0.000 006804 0002938 24 0005919 .000094 -6.01 0.000	11	.0006239	.0000895	6.97	0.000	.0004443	.0008036
15 .0001456 .0000973 1.50 0.141 0000499 .000341 16 0009295 .0000747 -12.44 0.000 0010796 0007793 17 0003296 .0000914 -3.61 0.001 0005131 000146 18 0005697 .0000893 -6.38 0.000 000749 0003903 19 0001666 .0000886 -1.88 0.066 0003446 .0000114 20 0003579 .0000953 -3.76 0.000 0005493 0001666 22 0000163 .0000833 -0.20 0.846 0001836 .0001511 23 0004575 .0000815 -5.61 0.000 0006213 0002938 24 0004837 .0000979 -4.94 0.000 0006804 0002871 25 0005919 .0000944 -6.01 0.000 0007896 0003942 26 0002916 .000972 -3.00 0.004 0004869 0003942 28 005388 .0000461 <td< td=""><td>12</td><td>00077</td><td>.0000767</td><td></td><td>0.000</td><td>0009241</td><td>0006159</td></td<>	12	00077	.0000767		0.000	0009241	0006159
16 0009295 .0000747 -12.44 0.000 0010796 0007793 17 0003296 .0000914 -3.61 0.001 0005131 000146 18 0005697 .0000893 -6.38 0.000 000749 0003903 19 0001666 .0000886 -1.88 0.066 0003446 .0000114 20 0003579 .0000953 -3.76 0.000 0005493 0001666 22 0004575 .0000815 -5.61 0.000 0006213 0002938 24 0004837 .0000979 -4.94 0.000 0006804 0002871 25 0005919 .0000944 -6.01 0.000 0007896 0003942 26 0002916 .0000972 -3.00 0.004 0004869 0003942 26 0005388 .000461 -11.69 0.000 0003725 0003344 29 005388 .0000461 -11.69 0.000 006314 000462 30 000171 .000897		0006043	.0000468	-12.92	0.000	0006983	0005104
17 0003296 .0000914 -3.61 0.001 0005131 000146 18 0005697 .0000893 -6.38 0.000 000749 0003903 19 0001666 .0000886 -1.88 0.066 0003446 .0000114 20 0003579 .0000953 -3.76 0.000 0005493 0001666 22 0000163 .0000833 -0.20 0.846 0001836 .0001511 23 0004575 .0000815 -5.61 0.000 0006213 0002938 24 0004837 .0000979 -4.94 0.000 0006804 0002871 25 0005919 .0000944 -6.01 0.000 0007896 0003942 26 0002916 .0000972 -3.00 0.004 0004869 0003942 27 -5.58e-06 .000096 -0.06 0.951 0001876 .0001764 28 0005388 .0000461 -11.69 0.000 0006314 000462 30 0001071 .000897 <						0000499	
18 0005697 .0000893 -6.38 0.000 000749 0003903 19 0001666 .0000886 -1.88 0.066 0003446 .0000114 20 0003364 .0000704 -4.78 0.000 0004777 0001951 21 0003579 .0000953 -3.76 0.000 0005493 0001666 22 0000163 .0000833 -0.20 0.846 0001836 .0001511 23 0004575 .0000815 -5.61 0.000 0006213 0002938 24 0004837 .0000979 -4.94 0.000 0006804 0002871 25 0005919 .0000944 -6.01 0.000 0007896 0003942 26 0002916 .0000972 -3.00 0.004 0004869 0003942 27 -5.58e-06 .0000906 -0.06 0.951 0001876 .0001764 28 0005388 .0000461 -11.69 0.000 0006314 000462 30 0001071 .000897							
19 0001666 .0000886 -1.88 0.066 0003446 .0000114 20 0003364 .0000704 -4.78 0.000 0004777 0001951 21 0003579 .0000953 -3.76 0.000 0005493 0001666 22 0000163 .0000833 -0.20 0.846 0001836 .0001511 23 0004575 .0000815 -5.61 0.000 0006213 0002938 24 0004837 .0000979 -4.94 0.000 0006804 0002871 25 0005919 .0000984 -6.01 0.000 0007896 0003942 26 0002916 .0000972 -3.00 0.004 0004869 000964 27 -5.58e-06 .0000996 -0.06 0.951 0001876 .0001764 28 0003535 9.49e-06 -37.26 0.000 0006314 0003344 29 0005388 .0000461 -11.69 0.000 006314 0004462 30 0001242 .0000802							
20 0003364 .0000704 -4.78 0.000 0004777 0001951 21 0003579 .0000953 -3.76 0.000 0005493 0001666 22 0000163 .0000833 -0.20 0.846 0001836 .0001511 23 0004575 .0000815 -5.61 0.000 0006213 0002938 24 0004837 .0000979 -4.94 0.000 0006804 0002871 25 0005919 .0000984 -6.01 0.000 0007896 0003942 26 0002916 .0000972 -3.00 0.004 0004869 0003942 27 -5.58e-06 .0000996 -0.06 0.951 0001876 .0001764 28 0003535 9.49e-06 -37.26 0.000 0003725 0003344 29 0005388 .0000461 -11.69 0.000 006314 0004462 30 000171 .000897 -1.19 0.238 0002872 .0000729 31 0005751 .000518							
21 0003579 .0000953 -3.76 0.000 0005493 0001666 22 0000163 .0000833 -0.20 0.846 0001836 .0001511 23 0004575 .0000815 -5.61 0.000 0006213 0002938 24 0004837 .0000979 -4.94 0.000 0006804 0002871 25 0005919 .0000984 -6.01 0.000 0007896 0003942 26 0002916 .0000972 -3.00 0.004 0004869 0001964 27 -5.58e-06 .0000996 -0.06 0.951 0001876 .0001764 28 0003535 9.49e-06 -37.26 0.000 0003725 0003344 29 0005388 .0000461 -11.69 0.000 006314 0004462 30 000171 .0000897 -1.19 0.238 0002872 .0000729 31 0005751 .0000518 -11.09 0.000 0006792 0004709 33 0005785 .0000931							
22 0000163 .0000833 -0.20 0.846 0001836 .0001511 23 0004575 .0000815 -5.61 0.000 0006213 0002938 24 0004837 .0000979 -4.94 0.000 0006804 0002871 25 0005919 .0000984 -6.01 0.000 0007896 0003942 26 0002916 .0000972 -3.00 0.004 0004869 0000964 27 -5.58e-06 .0000906 -0.06 0.951 0001876 .0001764 28 0003535 9.49e-06 -37.26 0.000 0003725 00034462 30 0005388 .0000461 -11.69 0.000 0006314 0004462 30 000171 .0000897 -1.19 0.238 0002872 .0000729 31 0005751 .0000518 -11.09 0.000 0006792 0004709 33 0005785 .0000931 -6.21 0.000 0007655 0003915							
23 0004575 .0000815 -5.61 0.000 0006213 0002938 24 0004837 .0000979 -4.94 0.000 0006804 0002871 25 0005919 .0000984 -6.01 0.000 0007896 0003942 26 0002916 .0000972 -3.00 0.004 0004869 0000964 27 -5.58e-06 .0000906 -0.06 0.951 0001876 .0001764 28 0003535 9.49e-06 -37.26 0.000 0003725 0003442 29 0005388 .0000461 -11.69 0.000 006314 0004462 30 000171 .0000897 -1.19 0.238 0002872 .0000729 31 0001242 .0000802 -1.55 0.128 0002852 .0000368 32 0005751 .000518 -11.09 0.000 0006792 0004709 33 0005785 .0000931 -6.21 0.000 0007655 0003915							
24 0004837 .0000979 -4.94 0.000 0006804 0002871 25 0005919 .0000984 -6.01 0.000 0007896 0003942 26 0002916 .0000972 -3.00 0.004 0004869 0000964 27 -5.58e-06 .0000906 -0.06 0.951 0001876 .0001764 28 0003535 9.49e-06 -37.26 0.000 0003725 0003442 29 0005388 .0000461 -11.69 0.000 0006314 0004462 30 000171 .0000897 -1.19 0.238 0002872 .0000729 31 0001242 .0000802 -1.55 0.128 0002852 .0000368 32 0005751 .000518 -11.09 0.000 0006792 0004709 33 0005785 .0000931 -6.21 0.000 0007655 0003915							
25							
26 0002916 .0000972 -3.00 0.004 0004869 0000964 27 -5.58e-06 .0000906 -0.06 0.951 0001876 .0001764 28 0003535 9.49e-06 -37.26 0.000 0003725 0003344 29 0005388 .0000461 -11.69 0.000 0006314 0004462 30 0001071 .0000897 -1.19 0.238 0002872 .0000729 31 0001242 .0000802 -1.55 0.128 0002852 .0000368 32 0005751 .0000518 -11.09 0.000 0006792 0004709 33 0005785 .0000931 -6.21 0.000 0007655 0003915							
27 -5.58e-06 .0000906 -0.06 0.951 0001876 .0001764 28 0003535 9.49e-06 -37.26 0.000 0003725 0003344 29 0005388 .0000461 -11.69 0.000 0006314 0004462 30 0001071 .0000897 -1.19 0.238 0002872 .0000729 31 0001242 .0000802 -1.55 0.128 0002852 .0000368 32 0005751 .0000518 -11.09 0.000 0006792 0004709 33 0005785 .0000931 -6.21 0.000 0007655 0003915							
29 0005388 .0000461 -11.69 0.000 0006314 0004462 30 0001071 .0000897 -1.19 0.238 0002872 .0000729 31 0001242 .0000802 -1.55 0.128 0002852 .0000368 32 0005751 .0000518 -11.09 0.000 0006792 0004709 33 0005785 .0000931 -6.21 0.000 0007655 0003915	27	-5.58e-06	.0000906			0001876	.0001764
30							
31							
32							
33 0005785 .0000931 -6.21 0.00000076550003915							
34 0002017 .0000984 -2.05 0.0460003992 -4.08e-06							
	34	0002017	.0000984	-2.05	0.046	0003992	-4.08e-06

66.

67. // b) determining if lower speed limits reduce fatality risk of among young DUI (dri > vers under influence)

68. xtreg fatalityrate speed65#speed70 if ba08 == 0, fe vce(robust) note: 0b.speed65#1.speed70 identifies no observations in the sample.

Fixed-effects (within) regression Group variable: fips	Number of obs Number of groups		676 49
R-squared: Within = 0.4255 Between = 0.1091 Overall = 0.0586	Obs per group: min avg max	=	5 13.8 15
corr(u_i, Xb) = -0.2542	1 (2) 40)	= =	119.16 0.0000

(Std. err. adjusted for 49 clusters in fips)

fatalityrate	Coefficient	Robust std. err.	t	P> t	[95% conf.	interval]
speed65# speed70 0 1 1 0 1 1	0 0056814 0081663	(empty) .0003791 .0006499	-14.99 -12.57	0.000	0064437 0094731	0049191 0068596
_cons	.025474	.0002357	108.08	0.000	.0250001	.0259479
sigma_u sigma_e rho	.00544825 .00314646 .74989117	(fraction	of varia	nce due t	co u_i)	

69. xtreg fatalityrate speed65#speed70 i.year if ba08 == 0, fe vce(robust) note: 0b.speed65#1.speed70 identifies no observations in the sample.

Fixed-effects (within) regression Group variable: fips	Number of obs Number of groups	=	676 49
R-squared: Within = 0.6973	Obs per group:	_	5
Between = 0.0207	avg		13.8
Overall = 0.2879	max	=	15
corr(u_i, Xb) = -0.0069	F(16, 48) Prob > F	= =	52.24 0.0000

(Std. err. adjusted for 49 clusters in fips)

fatalityrate	Coefficient	Robust std. err.	t	P> t	[95% conf.	. interval]
speed65# speed70 0 1 1 0 1 1	0 000607 0002949	(empty) .0008978 .0013102	-0.68 -0.23	0.502 0.823	0024121 0029293	.0011981
year 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997	0008068001943500163660023637002998400477780053478006768800826560085193008625800853180091196	.0004296 .0005023 .0006796 .0012027 .0011337 .001148 .0010751 .0010678 .0009882 .000959 .001135 .0012778 .0013263 .0013587	-1.88 -3.87 -2.41 -1.97 -2.64 -4.16 -4.97 -6.34 -8.36 -8.88 -7.60 -6.69 -6.73 -6.71	0.066 0.000 0.020 0.055 0.011 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0016705 0029535 0030031 0047818 0052778 0070859 0075095 0089159 0102524 0104476 0109079 0111231 0115986 0118514	.000056900093350002702 .000054400071890024697003186100462180062787006591006343800598460062650063878
sigma_u sigma_e rho	.00482145 .00230983 .813332	(fraction				.0201403

70. xtreg fatalityrate speed65#speed70 i.year c.year#fips if ba08 == 0, fe vce(robust) note: 0b.speed65#1.speed70 identifies no observations in the sample. note: 56.fips#c.year omitted because of collinearity.

Fixed-effects (within) regression Group variable: fips	Number of obs Number of groups		676 49
<pre>R-squared: Within = 0.7965 Between = 0.3407 Overall = 0.2195</pre>	Obs per group: min avg max	=	5 13.8 15
corr(u_i, Xb) = -1.0000	$\frac{F(16, 48)}{Prob > F}$	= =	

(Std. err. adjusted for **49** clusters in **fips**)

fatalityrate	Coefficient	Robust std. err.	t	P> t	[95% conf.	interval]
speed65# speed70 0 1 1 0 1 1	0 .0003376 .0020622	(empty) .0011295 .0015629	0.30 1.32	0.766 0.193	0019336 0010803	.0026087 .0052047
year 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996	0010538 0024376 0023778 0041037 0050874 0071358 0079313 0096525 0114082 0119699 0126688 0133987 0140955 0145992	.0004463 .0005393 .0007321 .0014739 .0013962 .0014297 .0013345 .0012599 .0012223 .0014243 .0016116 .0016827	-2.36 -4.52 -3.25 -2.78 -3.64 -4.99 -5.15 -9.06 -9.79 -8.89 -8.31 -8.38 -8.22	0.022 0.000 0.002 0.008 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0019512 003522 0038499 0070673 0078946 0100104 0106145 0123665 0139414 0144275 0155325 0166391 0174787 0181699	0001565 0013532 0009057 0011401 0022801 0042611 0052482 0069385 0088751 0095122 0098051 0101584 0107123 0110285
fips#c.year 1 2 4 5 6 8 9 10 11 12 13 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40	.000488800009740004344 .0001982 .0004483 .0004766 .0002729 .00102190001436 .0000736 .00076050001165 .0004927 .000205 .000581 .0004927 .000205 .000581 .0004927 .000205 .000581 .0004927 .000205 .000581 .0004927 .000205 .000581 .0004927 .000205 .000581 .0004927 .0008758 .0008755 .0008755 .0008738 .0002853 .000538600007510003943 .0006090008738 .000282 .0005928 .000282	.0000461 .0000502 5.81e-09 .000052 .0001114 .000052 .0001111 .000052 .0000556 .000019 .000118 .0000111 .0000488 .000052	10.59 -1.94 -7.5e+04 3.81 4.02 9.17 2.46 8.99 19.65 -2.58 3.87 6.44 -10.51 10.10 3.94 11.17 2.27 7.76 9.05 -4.67 7.51 5.17 9.91 13.01 1.1e+04 6.8e+04 9.3e+04 -7.10 5.31 -15.73 3.98 -0.42 11.40 6.71 7.8e+04	0.000 0.058 0.000 0.000 0.000 0.018 0.000 0.013 0.000	.00039600019840004344 .0000936 .0002243 .0003721 .0000494 .0003627 .00091740002553 .00052320001387 .0003947 .0001005 .0004765 .000164 .000299 .0003660011525 .0002857 .0001608 .0004109 .0005719 .0004709 .0005719 .000624 .0003925 .0001808 .0004109 .0005385000752000506 .00037830009855 .00011530001528 .0004882 .0002441 .0004533	.0005816 3.53e-060004344 .0003027 .0006722 .0005811 .0004963 .0005718 .00112650000319 .0001119 .00099780005908 .0005908 .0005908 .0005908 .0005908 .0005908 .0005908 .0005908 .0005908 .0005908 .0005908 .0005908 .0005908 .0005908 .0005908 .0005908 .0005908 .0005908 .0005908 .000624 .0003652 .000624 .0003899 .0005361 .0000624 .0003899 .0005351 .0001004 .000351 .0001004 .0006973 .0004533
42 44 45 46 47 48 50	.0003201 .0003066 0001128 .0007095 .0003156 .0002328	.0000586 .0000586 .000052 5.81e-09 .000052 5.81e-09	5.46 5.23 -2.17 1.2e+05 6.07 4.0e+04 4.91	0.000 0.000 0.035 0.000 0.000 0.000	.0002023 .0001887 0002173 .0007095 .0002111 .0002328	.000438 .0004244 -8.21e-06 .0007096 .0004202 .0002329

.0002904

.0000588

4.94

0.000

.0001722

.0004087

51

D1.

0 (omitted)

```
53
                   .0003273
                              5.81e-09
                                        5.6e+04
                                                  0.000
                                                            .0003273
                                                                        .0003274
                               .000052
                                                  0.003
                                                            -.0002663
           54
                  -.0001617
                                          -3.11
                                                                        -.0000572
           55
                    .000433
                               .000052
                                           8.33
                                                  0.000
                                                             .0003285
                                                                         .0005376
           56
                             (omitted)
         _cons
                  -.5094092
                             .0781725
                                          -6.52
                                                 0.000
                                                            -.6665855
                                                                        -.3522329
       sigma u
                  .74083233
                  .00197315
       sigma e
          rho
                  .99999291
                              (fraction of variance due to u i)
72. // comment on how these are interpreted: The model only runs if ba08 = 0, meaning th
 > at blood alcohol limit was not <= 0.08%, so we only run regression for those who dro
 > ve under the influence. The interaction term speed65#speed70 = 1 if 65 / higher & 70
 > / higher speed limit, so these give the effect of a higher speed limit on fatality
73.
74. // c) 75. // creating year dummies; we omitted 1983 because this is our base year, so we need
 > it for the first difference estimation between 1983 and 1984
77. gen yy = (drinkage21==1 \& speed70==1)
78. gen yn = (drinkage21==1 \& speed70==0)
79. gen ny = (drinkage21==0 \& speed70==1)
80. gen nn = (drinkage21==0 \& speed70==0)
81.
83. // case one model first difference
84. req D.fatalityrate D.sb useage D.drinkage21 D.yy D.yn D.ny D.nn, nocons vce(robust)
 note: D.yy omitted because of collinearity.
 note: D.ny omitted because of collinearity.
 note: D.nn omitted because of collinearity.
 Linear regression
                                                  Number of obs
                                                                              497
                                                                            10.10
                                                  F(3, 494)
                                                                    =
                                                  Prob > F
                                                                    =
                                                                           0.0000
                                                  R-squared
                                                                    =
                                                                           0.0588
                                                  Root MSE
                                                                           .00189
                               Robust
 fatalityrate
                 Coefficient
                              std. err.
                                                  P>|t|
                                                            [95% conf. interval]
    sb useage
                  -.0055101
                              .0011506
                                          -4.79
                                                  0.000
                                                           -.0077707
                                                                        -.0032494
           D1.
   drinkage21
                  -.0002309
                             .0005915
                                          -0.39
           D1.
                                                 0.696
                                                           -.0013931
                                                                       .0009312
            УУ
           DĪ.
                          0
                            (omitted)
            yn
           DĪ.
                  -.0001211
                             .0002937
                                          -0.41 0.680
                                                           -.0006981
                                                                        .0004559
            nv
                            (omitted)
                          0
           D1.
           nn
```

```
85. xtreg fatalityrate sb useage drinkage21 yy yn ny nn, fe vce(robust)
 note: yn omitted because of collinearity.
 note: ny omitted because of collinearity.
 note: nn omitted because of collinearity.
                                                                             556
 Fixed-effects (within) regression
                                                  Number of obs
 Group variable: fips
                                                  Number of groups =
 R-squared:
                                                  Obs per group:
      Within = 0.5758
                                                                               8
                                                                min =
      Between = 0.0024
                                                                avg =
                                                                             10.9
      Overall = 0.1573
                                                                max =
                                                                              15
                                                  F(3, 50)
                                                                           165.62
 corr(u i, Xb) = -0.2170
                                                  Prob > F
                                                                           0.0000
                                   (Std. err. adjusted for 51 clusters in fips)
                               Robust
                 Coefficient std. err.
                                                  P>|t|
                                                            [95% conf. interval]
 fatalityrate
                                           t
                              .0008312
    sb useage
                  -.0173485
                                         -20.87
                                                  0.000
                                                            -.019018
                                                                        -.015679
                              .0008175
   drinkage21
                    .000648
                                           0.79
                                                  0.432
                                                           -.0009939
                                                                         .0022899
                  -.0002339
                              .0004745
                                          -0.49
                                                  0.624
                                                            -.001187
                                                                         .0007193
           УУ
            yn
                          0
                             (omitted)
                          0
                             (omitted)
           ny
                          0
                             (omitted)
           nn
                                                            .0267999
         cons
                   .0283424
                               .000768
                                          36.91
                                                  0.000
                                                                          .029885
       sigma_u
                  .00446959
       sigma e
                  .00207147
          rho
                  .82318424
                              (fraction of variance due to u i)
86.
87. // case two model first difference
88. reg D.fatalityrate D.sb_useage D.drinkage21 D.yy D.yn D.nn i.year, nocons vce(r
 > obust)
 note: D.yn omitted because of collinearity.
 note: D.ny omitted because of collinearity.
 note: D.nn omitted because of collinearity.
 Linear regression
                                                  Number of obs
                                                                             497
                                                  F(16, 481)
                                                                    =
                                                                             7.92
                                                  Prob > F
                                                                           0.0000
                                                                    =
                                                  R-squared
                                                                           0.2222
                                                  Root MSE
                                                                    =
                                                                           .00175
                               Robust
  fatalityrate
                 Coefficient
                              std. err.
                                             t
                                                  P>|t|
                                                            [95% conf. interval]
    sb useage
                  -.0024382
                              .0012557
                                         -1.94
                                                  0.053
                                                           -.0049054
                                                                         .0000291
           D1.
   drinkage21
                  -.0008808
                              .0005734
                                          -1.54
                                                  0.125
                                                           -.0020076
                                                                         .0002459
           D1.
            УУ
           DĪ.
                   -.000101
                              .0003714
                                          -0.27
                                                  0.786
                                                           -.0008307
                                                                        .0006287
            yn
           DĪ.
                             (omitted)
           ny
                             (omitted)
           D1.
                          0
           nn
           D1.
                          0
                             (omitted)
          vear
                  -.0011357
                             .0005284
                                         -2.15 0.032
                                                            -.002174 -.0000975
         1985
```

.0009568

-.0004326

.000471

.0003574

2.03

-1.21

0.043

0.227

.0000313

-.0011349

.0018823

.0002697

1986

1987

sigma_u

sigma e

.00418229

.00165757 .86424605

```
0.026
                                        -2.24
                                                         -.0013794
        1988
                 -.0007349
                              .000328
                                                                    -.0000903
        1989
                 -.0016834
                            .0003286
                                        -5.12
                                                0.000
                                                         -.0023291
                                                                     -.0010377
        1990
                 -.0007526
                            .0003684
                                        -2.04
                                               0.042
                                                         -.0014764
                                                                     -.0000287
                                               0.000
        1991
                 -.0012167
                            .0002974
                                        -4.09
                                                          -.001801
                                                                     -.0006324
        1992
                 -.0014083
                             .000254
                                        -5.54
                                               0.000
                                                         -.0019073
                                                                     -.0009092
                 -.0001077
        1993
                                                                     .0003189
                             .0002171
                                        -0.50
                                               0.620
                                                         -.0005343
                                                                     .0002149
        1994
                 -.0003648
                             .000295
                                        -1.24
                                               0.217
                                                         -.0009445
        1995
                  .0002281
                            .0002325
                                         0.98
                                                         -.0002288
                                                                       .000685
                                                0.327
        1996
                 -.0004402
                              .000221
                                         -1.99
                                                0.047
                                                         -.0008744
                                                                     -5.90e-06
                 -.0001702
        1997
                             .0002328
                                        -0.73
                                               0.465
                                                         -.0006277
                                                                     .0002873
89. xtreg fatalityrate sb useage drinkage21 yy yn ny nn i.year, fe vce(robust)
 note: yn omitted because of collinearity.
 note: ny omitted because of collinearity.
 note: nn omitted because of collinearity.
                                                Number of obs
                                                                           556
 Fixed-effects (within) regression
 Group variable: fips
                                                Number of groups =
                                                                           51
 R-squared:
                                                Obs per group:
      Within = 0.7360
                                                              min =
      Between = 0.0095
                                                                         10.9
                                                              avq =
      Overall = 0.2633
                                                              max =
                                                F(17, 50)
                                                                 =
                                                                         49.31
 corr(u i, Xb) = -0.0467
                                                Prob > F
                                  (Std. err. adjusted for 51 clusters in fips)
                             Robust
 fatalityrate
                Coefficient std. err. t P>|t| [95% conf. interval]
                -.0035785
                             .0014582
                                        -2.45 0.018
                                                        -.0065074
                                                                    -.0006497
    sb useage
                            .0006614
                                               0.306
                                                         -.0020124
                                                                     .0006444
                  -.000684
                                        -1.03
   drinkage21
                  .0004758
                             .0004919
                                         0.97
                                                0.338
                                                         -.0005122
                                                                      .0014638
           VУ
                        0
                           (omitted)
           vn
           ny
                         Λ
                            (omitted)
           nn
                         0
                            (omitted)
         year
                                               0.786
                            .0010085
        1984
                  .0002749
                                         0.27
                                                         -.0017508
                                                                      .0023006
                   .000291
        1985
                                               0.785
                            .0010622
                                         0.27
                                                         -.0018425
                                                                     .0024244
        1986
                   .001197
                            .0010585
                                         1.13
                                               0.264
                                                          -.000929
                                                                      .003323
                            .0010732
                  .0007536
                                         0.70
                                               0.486
                                                          -.001402
                                                                     .0029092
        1987
                  .0002449
                                                                     .0023555
        1988
                            .0010508
                                         0.23
                                                0.817
                                                         -.0018657
        1989
                 -.0014578
                            .0011285
                                        -1.29
                                                         -.0037245
                                                                     .0008089
                                                0.202
        1990
                 -.0021375
                            .0011009
                                        -1.94
                                               0.058
                                                         -.0043486
                                                                     .0000737
                            .0011611
        1991
                 -.0032841
                                        -2.83
                                                0.007
                                                         -.0056164
                                                                     -.0009519
                 -.0046496
        1992
                                        -3.99
                                                                     -.0023076
                              .001166
                                                0.000
                                                         -.0069916
        1993
                 -.0047263
                            .0011849
                                        -3.99
                                                0.000
                                                         -.0071062
                                                                     -.0023464
                            .0012341
        1994
                 -.0050606
                                                0.000
                                                                     -.0025818
                                        -4.10
                                                         -.0075394
        1995
                 -.0050223
                            .0012157
                                        -4.13
                                                0.000
                                                         -.0074641
                                                                     -.0025805
        1996
                 -.0054638
                            .0012768
                                        -4.28
                                                0.000
                                                         -.0080283
                                                                     -.0028992
        1997
                 -.0056171
                            .0013015
                                        -4.32
                                               0.000
                                                         -.0082313
                                                                    -.0030029
                  .0255237
                            .0009378
                                        27.22
                                                0.000
                                                            .02364
                                                                     .0274074
        cons
```

(fraction of variance due to u i)

38

-2.64e-07

3.57e-07

-0.74

0.460

-9.65e-07

4.37e-07

```
90.
91. // case three model first difference
92. reg D.fatalityrate D.sb useage D.drinkage21 D.yy D.yn D.ny D.nn c.year#fips, nocons
  > vce(robust)
  note: D.yn omitted because of collinearity.
  note: D.ny omitted because of collinearity.
  note: D.nn omitted because of collinearity.
                                                      Number of obs
                                                                                   497
 Linear regression
                                                      F(54, 443)
                                                                                  2.42
                                                                         =
                                                                                0.0000
                                                      Prob > F
                                                                         =
                                                                                0.1527
                                                      R-squared
                                                                         =
                                                      Root MSE
                                                                                 .0019
                                 Robust
  fatalityrate
                  Coefficient
                                std. err.
                                                                 [95% conf. interval]
                                                      P>|t|
                                                t
     sb useage
                                             -1.91
                   -.0024594
                                .0012874
                                                      0.057
                                                                -.0049896
                                                                              .0000709
           D1.
    drinkage21
                                .0006038
           D1.
                   -.0003367
                                             -0.56
                                                      0.577
                                                                -.0015233
                                                                              .0008499
            УУ
           DĪ.
                     .000733
                                .0003629
                                              2.02
                                                      0.044
                                                                 .0000198
                                                                              .0014462
             yn
           DĪ.
                               (omitted)
            ny
                               (omitted)
                            0
           D1.
            nn
           D1.
                            0
                               (omitted)
   fips#c.year
                   -2.09e-07
                                3.79e-07
                                             -0.55
                                                      0.581
                                                                -9.54e-07
                                                                              5.35e-07
            2
                   -4.65e-07
                                7.91e-07
                                             -0.59
                                                      0.556
                                                                -2.02e-06
                                                                              1.09e-06
             4
                   -2.28e-07
                                3.87e-07
                                             -0.59
                                                      0.557
                                                                -9.89e-07
                                                                              5.34e-07
             5
                   -3.54e-07
                                2.17e-07
                                             -1.64
                                                      0.102
                                                                -7.80e-07
                                                                              7.10e-08
                                             -3.01
             6
                   -4.29e-07
                                                                -7.09e-07
                                                                             -1.49e-07
                                1.42e-07
                                                      0.003
             8
                   -2.55e-07
                                1.72e-07
                                             -1.48
                                                      0.140
                                                                -5.93e-07
                                                                              8.36e-08
             9
                   -1.89e-07
                                2.68e-07
                                             -0.70
                                                      0.482
                                                                -7.16e-07
                                                                              3.38e-07
                                                                              1.21e-06
           10
                   -2.05e-07
                                7.18e-07
                                             -0.29
                                                      0.775
                                                                -1.62e-06
           11
                    3.13e-07
                                6.13e-07
                                              0.51
                                                      0.610
                                                                -8.93e-07
                                                                              1.52e-06
                                                                             -5.90e-08
                                                      0.025
           12
                   -4.68e-07
                                2.08e-07
                                             -2.25
                                                                -8.77e-07
           13
                   -4.60e-07
                                2.77e-07
                                             -1.66
                                                      0.098
                                                                -1.00e-06
                                                                              8.50e-08
           15
                   -2.77e-08
                                             -0.09
                                                                -6.56e-07
                                                                              6.00e-07
                                3.19e-07
                                                      0.931
           16
                   -5.33e-07
                                2.47e-07
                                             -2.16
                                                      0.032
                                                                -1.02e-06
                                                                             -4.69e-08
           17
                   -2.68e-07
                                1.96e-07
                                             -1.37
                                                      0.172
                                                                -6.53e-07
                                                                              1.17e-07
           18
                   -4.91e-07
                                2.69e-07
                                             -1.83
                                                      0.068
                                                                -1.02e-06
                                                                              3.74e-08
           19
                   -2.10e-07
                                2.92e-07
                                             -0.72
                                                      0.472
                                                                -7.83e-07
                                                                              3.63e-07
           20
                                2.04e-07
                                                      0.175
                                                                -6.79e-07
                   -2.78e-07
                                                                              1.24e-07
                                             -1.36
           21
                   -2.13e-07
                                2.39e-07
                                             -0.89
                                                      0.373
                                                                -6.82e-07
                                                                              2.56e-07
           22
                   -2.53e-07
                                2.88e-07
                                             -0.88
                                                      0.381
                                                                -8.20e-07
                                                                              3.14e-07
           23
                                                                -6.88e-07
                                                                              2.86e-07
                   -2.01e-07
                                2.48e-07
                                             -0.81
                                                      0.418
           24
                   -3.12e-07
                                1.39e-07
                                             -2.25
                                                      0.025
                                                                -5.85e-07
                                                                             -3.90e-08
           25
                                             -2.61
                   -4.01e-07
                                1.54e-07
                                                      0.009
                                                                -7.03e-07
                                                                             -9.89e-08
           26
                   -2.77e-07
                                1.60e-07
                                             -1.73
                                                      0.085
                                                                -5.92e-07
                                                                              3.82e-08
           27
                   -1.99e-07
                                1.98e-07
                                             -1.00
                                                      0.316
                                                                -5.87e-07
                                                                              1.90e-07
           28
                                                                -8.73e-07
                                                                              3.67e-07
                   -2.53e-07
                                3.15e-07
                                             -0.80
                                                      0.422
           29
                   -2.27e-07
                                5.23e-07
                                             -0.43
                                                      0.664
                                                                -1.25e-06
                                                                              8.01e-07
                                                                -8.99e-07
           30
                   -8.76e-08
                                4.13e-07
                                             -0.21
                                                      0.832
                                                                              7.24e-07
           31
                   -1.27e-07
                                2.81e-07
                                             -0.45
                                                      0.651
                                                                -6.79e-07
                                                                              4.25e-07
           32
                   -5.21e-07
                                4.58e-07
                                                      0.255
                                                                -1.42e-06
                                                                              3.78e-07
                                             -1.14
           33
                   -4.47e-07
                                2.29e-07
                                             -1.95
                                                      0.051
                                                                -8.97e-07
                                                                              2.56e-09
           34
                   -1.66e-07
                                1.54e-07
                                             -1.08
                                                      0.281
                                                                -4.69e-07
                                                                              1.36e-07
           35
                                             -2.55
                                                                             -1.46e-07
                   -6.36e-07
                                2.49e-07
                                                      0.011
                                                                -1.13e-06
           36
                   -3.16e-07
                                1.61e-07
                                             -1.96
                                                      0.051
                                                                -6.32e-07
                                                                              7.91e-10
                                                      0.072
           37
                   -4.09e-07
                                2.27e-07
                                             -1.81
                                                                -8.55e-07
                                                                              3.61e-08
```

corr(u i, Xb) = -1.0000

```
93. xtreg fatalityrate sb useage drinkage21 yy yn ny nn c.year#fips, fe vce(robust)
 note: yn omitted because of collinearity.
 note: ny omitted because of collinearity.
 note: nn omitted because of collinearity.
                                                                             556
 Fixed-effects (within) regression
                                                  Number of obs =
                                                  Number of groups =
 Group variable: fips
                                                                              51
 R-squared:
                                                  Obs per group:
      Within = 0.7971
                                                                min =
                                                                               8
      Between = 0.1963
                                                                avg =
                                                                             10.9
      Overall = 0.1052
                                                                max =
                                                                              15
                                                  <u>F(4, 50)</u>
```

(Std. err. adjusted for **51** clusters in **fips**)

=

Prob > F

		,				<u>-</u> ,
fatalityrate	Coefficient	Robust std. err.	t	P> t	[95% conf.	interval]
sb_useage drinkage21 YY yn ny nn	0044294 .0002634 .0020038 0	.0014182 .0006349 .0003568 (omitted) (omitted) (omitted)	-3.12 0.41 5.62	0.003 0.680 0.000	007278 0010118 .001287	0015808 .0015385 .0027205
fips#c.year 1 2 4 5 6 8 9 10 11 12 13 15 16 17 18 19 20 21 22 23 24 25 26 27 28	0006116001177300044380009738000998000390900025490003616 .0005817001132900100300014050013638000550700084680004316000685800050570003316000477100072310007231000498400027590006204	.0000679 .0000324 .0000612 .0000374 .0000827 .0000181 7.43e-06 .0000191 .0000297 .0000535 .0000412 .0000709 .0000555 .0000458 .0000555 .000064 .0000577 .0000608 .0000496 .0000394 .0000376 .0000467 .0000467	-9.00 -36.32 -7.26 -26.06 -12.07 -21.64 -34.31 -18.95 19.58 -21.16 -12.30 -3.41 -19.23 -9.93 -18.48 -7.45 -10.71 -8.76 -5.46 -9.61 -18.34 -21.64 -10.68 -5.15 -6.16	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	000748100124240005667001048800116420004272000269800039990005220012404001166800022330015062000662100093890005480005480005768000576800080230008923000892200038350008227	0004752 0011122 000321 0008987 0008319 000324 000324 000323 .0006414 0010253 0008393 0000576 0012213 0004393 0004393 0003152 0003572 0003898 0003774 0004047 0004047 0001684 0001684 0001684

```
29
           -.0008507
                        .0000721
                                    -11.80
                                             0.000
                                                                    -.0007059
                                                       -.0009956
    30
           -.0003884
                        .0000779
                                     -4.99
                                                       -.0005448
                                              0.000
                                                                     -.000232
    31
           -.0004423
                        .0000701
                                    -6.31
                                              0.000
                                                       -.0005831
                                                                    -.0003015
    32
           -.0009648
                        .0000879
                                    -10.97
                                              0.000
                                                       -.0011415
                                                                    -.0007882
    33
                                    -23.06
                                                                    -.0007898
           -.0008651
                        .0000375
                                              0.000
                                                       -.0009405
    34
           -.0004118
                        .0000437
                                    -9.42
                                              0.000
                                                       -.0004996
                                                                     -.000324
    35
                                    -12.71
           -.0013143
                        .0001034
                                              0.000
                                                        -.001522
                                                                    -.0011066
    36
           -.0007623
                        .0000476
                                    -16.01
                                              0.000
                                                       -.0008579
                                                                    -.0006667
    37
           -.0009813
                        .0000532
                                    -18.45
                                              0.000
                                                       -.0010881
                                                                    -.0008745
    38
                        .0000422
                                              0.000
           -.0005292
                                    -12.54
                                                        -.000614
                                                                    -.0004444
    39
           -.0006081
                        .0000748
                                     -8.13
                                              0.000
                                                       -.0007583
                                                                    -.0004578
    40
           -.0002427
                        .0000565
                                     -4.29
                                              0.000
                                                       -.0003562
                                                                    -.0001292
    41
           -.0007626
                        .0000679
                                    -11.23
                                              0.000
                                                       -.0008989
                                                                    -.0006262
    42
           -.0006817
                        .0000297
                                    -22.94
                                              0.000
                                                       -.0007414
                                                                     -.000622
                        .0000772
                                                       -.0002086
    44
                                     -0.70
           -.0000537
                                              0.490
                                                                     .0001013
    45
           -.0009567
                        .0000753
                                    -12.70
                                              0.000
                                                        -.001108
                                                                    -.0008054
           -.0004505
    46
                        .0000863
                                     -5.22
                                              0.000
                                                       -.0006237
                                                                    -.0002772
    47
           -.0004704
                        .0000347
                                    -13.56
                                              0.000
                                                       -.0005401
                                                                    -.0004007
    48
           -.0005036
                        .0000714
                                     -7.05
                                              0.000
                                                        -.000647
                                                                    -.0003602
                        .0000917
    49
                                              0.002
           -.0003013
                                     -3.28
                                                       -.0004855
                                                                     -.000117
    50
           -.0006623
                         .000074
                                     -8.96
                                              0.000
                                                       -.0008108
                                                                    -.0005137
    51
           -.0005893
                         .000056
                                    -10.52
                                              0.000
                                                       -.0007018
                                                                    -.0004768
    53
           -.0006986
                        .0000771
                                    -9.07
                                              0.000
                                                       -.0008534
                                                                    -.0005438
    54
                                    -29.66
                                              0.000
           -.0012921
                        .0000436
                                                       -.0013796
                                                                    -.0012046
    55
                        .0000356
           -.0005313
                                    -14.94
                                              0.000
                                                       -.0006028
                                                                    -.0004599
    56
           -.0002554
                        .0001092
                                     -2.34
                                              0.023
                                                       -.0004747
                                                                    -.0000361
  _cons
            1.271754
                        .1074714
                                     11.83
                                              0.000
                                                        1.055891
                                                                     1.487617
            .70700164
sigma_u
sigma e
            .00151157
   rho
                        (fraction of variance due to u_i)
            .99999543
```