Hemoglobin Level Estimation from Photographic images

N I R A N J A N V E R M A 2 1 0 0 2 0 0 8 5

PROF. NIRMAL PUNJABI

Background

- Haemoglobin is very crucial for proper function of bodily organs as it helps to transport oxygen within the body. Anemia develops when haemoglobin level drops below normal level.
- Traditional methods to detect Anemia clinically depends on extraction of blood which requires higher labor, is expensive, time consuming and exposes people to blood transmissible diseases.
- Even use of this invasive method is discouraged in infants, elderly, and pregnant women.

Why ML approach?

Non-invasive Nature:

• ML-based approaches rely on analyzing medical images making them non-invasive & comfortable

Cost Effectiveness:

o Once developed, ML-based systems can significantly reduce the cost of diagnosis

• Efficiency & Scalability:

• They can be deployed on devices like smartphones, making them accessible in rural areas

Accuracy & Early Detection:

 ML models can detect subtle changes in medical images that might not be evident to human observers

Literature Review

- Comparative Study Between Decision Tree, SVM & KNN to Predict Anaemic Condition
- 102 Anemia Detection Using a Full Embedded Mobile Application with YOLO Algorithm

An intelligent non-invasive system for automated diagnosis of anemia exploiting a novel dataset

Literature Review

R&D PROJECT

- Detection of iron deficiency anemia by medical images: a comparative study of machine learning algorithms
- Anaemia detection based on sclera and blood vessel colour estimation

Computer Aided Detection of Anemia-like Pallor

Comparative Study Between Decision Tree, SVM & KNN to **Predict Anaemic** Condition

LINK

Methodology

Comparative Study Between Decision Tree, SVM & KNN to **Predict Anaemic** Condition

LINK

 Capture the Eye Conjunctiva Image and Crop the Eye Conjunctiva Portion

Comparative Study Between Decision Tree, SVM & KNN to **Predict Anaemic** Condition

LINK

 Prepare Mask for Region of Interest Using Matlab Image Thresholding App

Comparative Study Between Decision Tree, SVM & KNN to **Predict Anaemic**

LINK

Condition

Image Processing and Feature Extraction

The percentage of red pixel=

 $\frac{Total\ red\ pixel}{Total\ Red\ pixel\ +\ Total\ Green\ pixel\ +\ Total\ blue\ Pixel}*100$

Name	%Red	%Green	%Blue	Anemic
	Pixel	Pixel	Pixel	Condition
Shahalam	47.6372	26.7953	25.5675	Non Anemic
Rumana	45.0693	29.8506	25.0801	Anemic
Ajmal	46.7979	28.1768	25.0253	Non Anemic
Haradhan	42.2324	30.6757	27.0919	Anemic
Nujhat	43.1425	30.289	26.5686	Anemic
Noor	42.5314	30.9742	26.4944	Anemic

Comparative Study Between Decision Tree, SVM & KNN to **Predict Anaemic** Condition

LINK

• Results:

MODEL	ACCURACY
DECISION TREE	82.6%
SVM	73.9%
KNN	73.9%

Anemia **Detection Using** a Full Embedded Mobile Application with YOLO Algorithm

LINK

Dataset:

 457 images, 121 to the Anemia class and 336 to the non-anemia

• Pre-processing:

 The image was cropped to 1600x1600 pixels around the conjunctiva

• Data Augmentation:

 To equalize the number of images in each classes existing ones were slightly modified by applying flipping and rotation

Anemia **Detection Using** a Full Embedded Mobile Application with YOLO Algorithm

LINK

YOLO v5 architecture is used for classification

- Backbone: A convolutional neural network that aggregates and forms image features at different granularities
- **Neck**: A series of layers to mix and combine image features to pass them forward to prediction
- Head: Consumes features from the neck and takes box and class prediction steps

Anemia **Detection Using** a Full Embedded Mobile Application with YOLO Algorithm

LINK

• Results in PC:

YOLO with preprocessing		
Sensitivity	0.86	
Specificity	0.95	

YOLO without preprocessing		
Sensitivity	0.91	
Specificity	0.95	
Accuracy	93%	

Anemia **Detection Using** a Full Embedded Mobile Application with YOLO Algorithm

LINK

• Results in Mobile:

YOLO with preprocessing		
Sensitivity	0.71	
Specificity	0.89	
Accuracy	80%	

An intelligent non-invasive system for automated diagnosis of anemia exploiting a novel dataset

LINK

DATASET

Novel Dataset:

- Eye conjunctiva photos from Indian and Italian patients.
- Total: 218 images (116 Italian, 95 Indian).
- Images segmented into palpebral and forniceal conjunctiva.

Key Attributes:

- o Demographic data (age, gender) and Hb levels.
- Captured with standardized lighting and distance.

An intelligent non-invasive system for automated diagnosis of anemia exploiting a novel dataset

<u>LINK</u>

FEATURE EXTRACTION

14 features are extracted

- mean_r, mean_g, mean_b: Intensity values of red green and blue pixel in ROI
- mean_r-g: distinction between the red and green components, which reflect blood characteristics
- HHR (high hue ratio): represents the proportion of pixels with high values in the hue component
- Ent (Entropy): entropy values can indicate different textures and blood-vessel distributions
- **B** (brightness): brightness given by the average grayscale of the image
- Age
- Gender

An intelligent non-invasive system for automated diagnosis of anemia exploiting a novel dataset

LINK

FEATURE EXTRACTION

Gray-Level Features for Blood Vessel Analysis

- **g1**: Difference between pixel intensity and the minimum intensity in the window.
- g2: Difference between the maximum intensity in the window and pixel intensity.
- g3: Difference between pixel intensity and the mean intensity in the window.
- **g4**: Standard deviation of pixel intensities in the window.
- g5: Pixel intensity of the center pixel.

Average these values across the entire ROI

An intelligent non-invasive system for automated diagnosis of anemia exploiting a novel dataset

<u>LINK</u>

MODELS

1. RUSboost

METRIC	Whole conjunctiva	Palpebral conjunctiva
Accuracy	0.83 ± 0.04	0.83 ± 0.04
Sensitivity	0.66 ± 0.16	0.69 ± 0.15
Specificity	0.87 ± 0.06	0.87 ± 0.06

An intelligent non-invasive system for automated diagnosis of anemia exploiting a novel dataset

LINK

MODELS

2. Random Forest

METRIC	Whole conjunctiva	Palpebral conjunctiva
Accuracy	0.85 ± 0.03	0.84 ± 0.03
Sensitivity	0.51 ± 0.16	0.49 ± 0.17
Specificity	0.93 ± 0.04	0.93 ± 0.05

An intelligent non-invasive system for automated diagnosis of anemia exploiting a novel dataset

<u>LINK</u>

MODELS

3. SVM

METRIC	Whole conjunctiva	Palpebral conjunctiva		
Accuracy	0.86 ± 0.03	0.87 ± 0.03		
Sensitivity	0.64 ± 0.12	0.62 ± 0.13		
Specificity	0.91 ± 0.04	0.93 ± 0.03		

An intelligent non-invasive system for automated diagnosis of anemia exploiting a novel dataset

<u>LINK</u>

MODELS

4. KNN

METRIC	Whole conjunctiva	Palpebral conjunctiva
Accuracy	0.83 ± 0.04	0.78 ± 0.04
Sensitivity	0.53 ± 0.13	0.46 ± 0.13
Specificity	0.90 ± 0.04	0.86 ± 0.05

An intelligent non-invasive system for automated diagnosis of anemia exploiting a novel dataset

<u>LINK</u>

MODELS

5. MobileNet-V2

METRIC	Whole conjunctiva	Palpebral conjunctiva
Accuracy	0.82 ± 0.06	0.83 ± 0.06
Sensitivity	0.49 ± 0.21	0.52 ± 0.21
Specificity	0.90 ± 0.06	0.90 ± 0.06

Detection of iron deficiency anemia by medical images: a comparative study of machine learning algorithms

<u>LINK</u>

Methodology

Detection of iron deficiency anemia by medical images: a comparative study of machine learning algorithms

LINK

DataSet

Detection of iron deficiency anemia by medical images: a comparative study of machine learning

LINK

algorithms

Feature Extraction

- Each image's ROI is converted to the CIE Lab* color space
- Visible colors are converted into a three-dimensional, device-independent space (L*, a*, b*).
- L* (Lightness): Ranges from 0 (black) to 100 (white).
- a* axis: Red (a* >0), Green (a* <0)
- b* axis: Yellow (b*>0), Blue (b*<0)

Detection of iron deficiency anemia by medical images: a comparative study of machine learning algorithms

LINK

Results

Anaemia detection based on sclera and blood vessel colour estimation

LINK

Sclera Segmentation

Algorithm	Parameters	Precision	Recall	F1	F2
Nearest Neighbour	K=7, uniform weights	87.0	78.0	79.8	78.4
Random Forest	estimators=20, max features=auto, Gini criterion	78.0	73.0	72.5	72.4
Adaboost	Estimators=40	83.0	73.0	74.7	73.2
Polynomial SVM	C=20, degree=3, gamma=auto	74.6	90.1	80.1	86.4

Anaemia detection based on sclera and blood vessel colour estimation

LINK

Vessel Detection

To identify blood vessels in the sclera, both a weighted line detection algorithm and a hidden Markov model (HMM) are used here

Algorithm	Parameters	Precision	Recall	F1	F2
Nearest Neighbour	K=7, uniform weights	92.0	77.0	82.6	78.9
Random Forest	estimators=20, max features=log2, Gini criterion	69.0	72.0	70.0	71.1
Adaboost	Estimators=2	72.0	72.0	70.3	71.0
Polynomial SVM	C=60, degree=4, gamma=auto	57.6	95	71.4	83.8

Pipeline

01

Data

PreProcessing

- Resize
- Normalize
- Augment

02

Traditional

ML way

- Feature
 - Engg
- Ml model

03

Deep

Learning

Based

Models

04

Optimization

Future Research

RECOMMENDATION FOR NEXT RESEARCH

Need to read about YOLO and how it works

Thank you