Batwave Object Detective Car (B.O.D)

A Line-Following Surveillance and Alert Robot

Course Title: Microprocessor and Microcontroller Lab

Course Code: CSE 316

Group Members

Name	Registration No.
H.M. Tahsin Sheikh	22201243
Shadman Sarwer	22201242
Humayra Jihan Arpita	22201244

Table of Contents

SI.	Section Title	Page No.
1.	Segment 1: Project Title, Subtitle & Goals	3
2.	Segment 2: Project Overview	4
3.	Segment 3: Module Description	5
4.	Segment 4: Project Timeline (Gantt Chart)	6
5.	Segment 5: Project Budget	7
6.	Segment 6: CEP Mapping	8
7.	Segment 7: Conclusion & References	9

Project Title: Batwave Object Detective Car (B.O.D)

Project Subtitle: A Line-Following Surveillance Robot with Object Detection, Alerts, and CCTV Recording

Project Goals:

- To design and develop a line-following robot capable of autonomous indoor/outdoor patrolling.
- To implement ultrasonic and PIR sensors for real-time obstacle and human detection.
- To integrate alert mechanisms (buzzer, LEDs, and laser) for signaling the presence of obstacles or people.
- To add a camera system (ESP32-CAM/Raspberry Pi Camera) for continuous video recording like CCTV.
- To ensure stable and efficient operation using rechargeable Li-ion batteries and a regulated power supply.
- To make the system scalable with IoT connectivity (remote monitoring & logging).

Project Description

The **Batwave Object Detective Car (B.O.D.)** is an autonomous line-following robot designed for smart surveillance and security. It navigates predefined paths using an IR sensor array, detects obstacles with ultrasonic sensors, and identifies human presence with a PIR sensor. Upon detection, the system triggers alerts through a buzzer, LEDs, and a laser beam. Additionally, an onboard camera module records or streams video, similar to a mobile CCTV unit, making the project a practical integration of robotics, sensing, and monitoring technologies.

Project Overview:

The Batwave Object Detective Car (B.O.D.) is a robotic vehicle that combines line-following navigation, object detection, and CCTV-style surveillance. It follows a marked path using an IR sensor array, detects obstacles with ultrasonic sensors, and identifies human presence with a PIR sensor. When detection occurs, it triggers alerts through a buzzer, LEDs, and a laser pointer.

A camera module (ESP32-CAM or Raspberry Pi Camera) records or streams video, turning the robot into a **mobile surveillance unit**. Powered by a rechargeable Li-ion battery pack with regulated output, the system runs efficiently for extended patrols. With its modular design, the B.O.D. is a **cost-effective and scalable platform** for smart home security, robotics learning, and automation applications.

Functional Description:

- Line Following: IR sensor array detects path lines, allowing the car to navigate predefined routes.
- Object Detection: Ultrasonic sensors measure distance; PIR sensors detect human presence.
- Alert System: When a human/object is detected, the buzzer sounds, the LED flashes, and a laser beam activates.
- Camera System: ESP32-CAM or Raspberry Pi Camera records or streams live video for surveillance.
- **Power Management:** |Rechargeable battery pack powers motors, sensors, and controllers with regulated outputs.

Operational Workflow:

- IR sensors guide the robot to follow a line/patrol path.
- Ultrasonic & PIR continuously monitor surroundings.
- If object/human detected →robot halts→ activates buzzer, LED, and laser → records video evidence.
- Camera stores/streams video to SD card or server.
- System resumes patrol after clearance.

Key Features:

1. Smooth **PID-controlled line following**.

- 2. Human & object detection with Ultrasonic + PIR combo.
- 3. **Alert system**: buzzer + LEDs + low-power laser module.
- 4. **CCTV-like recording**: ESP32-CAM or Raspberry Pi camera.
- 5. Rechargeable Li-ion battery power system.
- 6. Expandable with IoT cloud monitoring.

Required Modules:

1. Main Controller:

- Arduino Nano / ESP32 → controls motors, sensors, and alerts.
- Raspberry Pi (optional) → handles video recording & advanced processing.

2. Sensors:

- IR sensor array (QTR-5RC) → line following.
- Ultrasonic sensors $(3x \text{ HC-SR04}) \rightarrow \text{obstacle/object detection}$.
- **PIR motion sensor** → human detection.

3. Actuators:

- 2 × DC gear motors with wheels → drive system.
- Motor driver TB6612FNG → efficient motor control.
- Laser module $(5V) \rightarrow$ detection pointer.
- Buzzer & LEDs → alert system.

4. Camera System:

- ESP32-CAM module (budget option) OR
- Raspberry Pi + Pi Camera (high-quality option).

5. Power Supply:

- 2 × 18650 Li-ion batteries (7.4V pack).
- TP4056 charging module.
- UBEC 5V regulator for a stable supply.

6. Mechanical Structure:

- Chassis & Sensor Mounts Securely hold and support all components
- 4-wheel acrylic/metal chassis.
- Mounts for sensors, camera, and battery pack.

Segment 8

Project Timeline (Gantt Chart):

Task	Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7
Requirement Analysis							
Circuit & Mechanical Design							
Component Selection &							
Purchase							
Line Following Module							
Detection Module							
Testing & Debugging							
Final Demo & Documentation							

Budget Preparation of the Project:

Serial Component Quantity Unit Price (%) Total (%)						
1	Arduino Nano / ESP32	1	350–800	350-800		
2			1000– 3500	1000– 3500		
3	IR Line Sensor Array (QTR-5RC)	1	700	700		
4	HC-SR04 Ultrasonic Sensor	3	90	270		
5	PIR Sensor	1	200	200		
6	TB6612FNG Motor Driver	1	500	500		
7	Plastic Chassis	1	400	400		
8	Li-ion Battery Pack (2S)	1	1200	1200		
9	Battery Case	1	60	60		
10	Female-to-Female Jumper Wires	1 set	120	120		
11	On/Off Switch	1	80	80		
12	100 cm General Wiring	1 roll	25	25		
13	Wiring, PCB, mounts	1	500	500		
14	microSD Card (64GB)	1	600	600		
	Total Estimated Cost			6000 & Approx		

CEP Mapping of the Project

1. Knowledge Profile (K's) Mapping

	K's Attributes How K's Are Addressed Through Our Project CO PO					
K Code	Attribute	How K's Are Addressed Through Our	Related	Related POs		
		Project	COs			
K4	Specialist	Applied knowledge of robotics,	CO1,	PO1		
	Knowledge	embedded systems, sensor fusion (IR,	CO2			
		ultrasonic, PIR), and camera integration				
		for surveillance.				
K5	Engineerin	Designed line-following algorithm	CO2,	PO3, PO5,		
	g Design	(PID), integrated detection & alert	CO3,CO			
		system, developed recording/streaming	4			
		logic using ESP32-CAM / Raspberry				
		Pi.				
K6	Engineerig	Practically implemented using	CO3,CO	PO4, PO5, PO6		
	Practice	Arduino/ESP32, ultrasonic sensors,	4,CO5			
		PIR, IR array, motor driver, buzzer, and				
		laser, following prototyping standards.				

2. Complex Engineering Problems (P's) Mapping

	P's Attributes How P's Are Addressed Through Our Project CO PO					
P Code	Attribute	How P's Are Addressed Through Our Project	Related COs	Related POs		
P4	Practical Implementat ion	Assembled modules including IR array, ultrasonic sensors, PIR, motor driver, and camera into one integrated platform.	CO2, CO3	PO4, PO5		
P5	Experimenta tion & Testing	Calibrated line-following PID values, tested ultrasonic distance thresholds, PIR sensitivity, and camera recording quality.	CO3, CO4	PO4, PO9		

P6	Prototyping	Built a functional prototype of the patrol	CO4,	PO5, PO6
	& Validation	robot with real-time detection & recording,	CO5	
		validated through indoor roaming tests.		

3. Complex Engineering Activities (A's) Mapping

A's Attributes How A's Are Addressed Through Our Project CO PO					
A Code	Attribute	How A's Are Addressed Through Our	Related	Related	
		Project	COs	POs	
A3	Teamwork	Worked collaboratively in design, coding,	CO4	PO9,	
	&	circuit wiring, sensor integration, and		PO11	
	Collaboratio	debugging.			
	n				
A5	Ethics &	Ensured safe use of laser (<5mW),	CO3,	PO6, PO7	
	Sustainabilit	followed surveillance ethics, used	CO5		
	у	rechargeable batteries for eco-friendly			
		power.			

Segment 11

Conclusion

The Batwave Object Detective Car (B.O.D.) is a **multi-functional patrol robot** that combines **line-following navigation**, **real-time detection**, **alerts**, **and CCTV-style video recording**. With modular expansion, it can evolve into a complete home surveillance robot with IoT monitoring. This project demonstrates a **fusion of robotics**, **embedded systems**, **and security applications**, making it useful for real-world home safety and automation.

References

For our project:

- Arduino Official Website https://www.arduino.cc
- ESP32 IoT Documentation https://docs.espressif.com
- RoboticsBD, TechShopBD component datasheets
- TinkerCAD Circuits https://www.tinkercad.com
- Blynk IoT Platform https://blynk.io
- IEEE Robotics & IoT research papers (2021–2024)