Chapitre 17.

Probabilités

Les savoir-faire du parcours

- · Savoir déterminer si un nombre peut être ou non la probabilité d'un évènement.
- Savoir estimer la probabilité d'un évènement.
- · Savoir déterminer des évènements certains ou impossibles.
- Savoir faire le lien entre fréquence observée et fréquence théorique.
- Savoir calculer des probabilités par dénombrement.
- · Savoir calculer une probabilité avec un arbre.
- · Savoir utiliser le vocabulaire des ensembles.
- Savoir calculer la probabilité d'un évènement contraire.
- Savoir calculer la probabilité d'une union d'évènements.
- Savoir présenter des ensembles dans un tableau pour calculer une probabilité.

Les mathématiciennes et mathématiciens

Compétence.

1

Expériences aléatoires.

Définition 1.

Une expérience est aléatoire lorsqu'elle a plusieurs résultats ou issues possibles et que l'on ne peut pas prévoir, à priori, quel résultat se produira.

Définition 2.

- Un résultat possible d'une expérience aléatoire s'appelle une issue.
- L'ensemble de toutes les issues possibles d'une expérience aléatoire s'appelle l'univers. On le note Ω

Définition 3.

On peut schématiser une expérience aléatoire sous la forme d'un arbre.

L'arbre des possibles permet de visualiser les issues d'une expérience aléatoire.

Évènements d'une expérience aléatoire

Définition 4: Évènements.

- Un évènement est une partie (ou sous-ensemble) de l'univers.
- Un évènement élémentaire est un événement composé d'une seule issue.
- · Lorsque le résultat d'une expérience aléatoire appartient à un évènement, on dit que l'événement est réalisé.

Définition 5: Évènements contraires.

Soit A et B deux évènements.

On dit que A et B sont complémentaires lorsque A est composé de toutes les issues de l'univers n'appartenant

On dit aussi que B est l'évènement contraire de A et on le note \overline{A} .

Définition 6: Réunion et intersection d'évènements.

Soit A et B deux évènements.

- L'intersection de A et de B, notée $A \cap B$ est l'évènement constitué des issues appartenant à la fois à A
- La réunion de A et de B, notée $A \cup B$ est l'évènement constitué des issues appartenant à A ou à B.

Définition 7: Évènements incompatibles..

Soit A et B deux évènements.

On dit que A et B sont incompatibles (ou disjoints) lorsqu'ils n'ont aucune issue en commun ($A \cap B = \emptyset$). Ils ne peuvent pas se réaliser simultanément.

Premier SF

Probabilité d'un évènement.

Définition 8.

Les fréquences obtenues d'un événement E se rapprochent d'une valeur théorique lorsque le nombre d'expérience augmente (Loi des grands nombres).

Cette valeur s'appelle la probabilité de l'événement E et se note p(E).

Propriété 9.

La probabilité d'un événement est une fréquence théorique donc pour tout événement E, on a $0 \le p(E) \le 1$

Définition 10.

- On dit qu'un événement est impossible lorsque sa probabilité est égale à 0.
- On dit qu'un événement est certain lorsque sa probabilité est égale à 1.

Calculs de probabilités

Propriété 11.

La probabilité d'un évènement est la somme des probabilités des évènements élémentaires qui le constituent.

Définition 12.

Lorsque tous les évènements élémentaires ont la même probabilité de se réaliser on dit qu'on est en situation d'équiprobabilité.

Propriété 13.

En situation d'équiprobabilité sur un univers Ω , la probabilité d'un évènement A est :

 $p(A) = \frac{\text{nombre d'issues réalisant } A}{\text{nombre total d'issues de } \Omega}$

Premier SF Compétence. 5 **Deuxième SF** Compétence. 6 **Troisième SF** Compétence.

Loi de probabilité.

Définition 14.

On considère une expérience aléatoire dont l'univers Ω est fini et formé de n issues $\Omega = \{e_1; e_2; \dots; e_n\}$ Définir une loi de probabilité sur Ω c'est associer à chaque évènement élémentaire e_i sa probabilité. On peut représenter une loi de probabilité sous la forme d'un tableau.

Issue
$$\begin{vmatrix} e_1 & e_2 & e_3 & \dots & e_n \\ p(e_i) & p_1 & p_2 & p_3 & \dots & p_n \end{vmatrix}$$

Propriété 15.

La somme des probabilités des évènements élémentaires est égale à 1.

Formules avec des probabilités.

Propriété 16: Probabilité d'un évènement contraire..

Soit A un évènement et \overline{A} son évènement contraire. Alors $p(A) + p(\overline{A}) = 1$ ou $p(A) = 1 - p(\overline{A})$.

Propriété 17: Probabilité d'une réunion d'événements..

Soit A et B deux évènements alors $p(A \cup B) = p(A) + p(B) - p(A \cap B)$.

Propriété 18.

Soit A et B deux évènements incompatibles alors $p(A \cup B) = p(A) + p(B)$

Premier SF

AUTOÉVALUATION Probabilités

31

