Quiz 7 problem bank

- 1. Verify $\mathbf{x}_1 = \begin{pmatrix} 3t^2 \\ 5t \end{pmatrix}$ and $\mathbf{x}_2 = \begin{pmatrix} t^{-6} \\ -t^{-7} \end{pmatrix}$ are solutions to $t^2\mathbf{x}' = \begin{pmatrix} -3t & 3t^2 \\ 5 & -2t \end{pmatrix}\mathbf{x}$.
- 2. Let $\mathbf{x}_1(t) = \begin{pmatrix} t^2 \\ t+3 \end{pmatrix}$ and $\mathbf{x}_2(t) = \begin{pmatrix} t+2 \\ 2 \end{pmatrix}$ be solutions to $\mathbf{x}' = A(t)\mathbf{x}$. Find the solution with $\mathbf{x}(0) = \begin{pmatrix} 4 \\ 1 \end{pmatrix}$, and determine the interval on which uniqueness is *guaranteed* by the Wronskian.
- 3. Let $\mathbf{x}_1(t) = \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}$, $\mathbf{x}_2(t) = e^t \begin{pmatrix} 1 \\ 0 \\ -2 \end{pmatrix}$, $\mathbf{x}_3(t) = e^t \begin{pmatrix} -1 \\ 2 \\ 1 \end{pmatrix}$ be solutions to $\mathbf{x}' = A\mathbf{x}$. Find the solution with $\mathbf{x}(0) = \begin{pmatrix} 5 \\ 7 \\ -9 \end{pmatrix}$.
- 4. Find the general form for solutions to the system $\mathbf{x}' = \begin{pmatrix} 2 & 1 \\ 3 & 4 \end{pmatrix} \mathbf{x}$.
- 5. Find the general form for solutions to $\mathbf{x} = \begin{pmatrix} 4 & -3 \\ 2 & -1 \end{pmatrix} \mathbf{x}'$. (Hint: $A^{-1}A = I$.)
- 6. Find the solution to the system $\mathbf{x}' = \begin{pmatrix} 1 & 1 \\ 6 & 0 \end{pmatrix} \mathbf{x}$ with $\mathbf{x}(0) = \begin{pmatrix} 7 \\ -1 \end{pmatrix}$.
- 7. Given $\mathbf{x}_1 = e^t \begin{pmatrix} \cos(4t) 3\sin(4t) \\ 2\cos(4t) + 2\sin(4t) \end{pmatrix}$ is a solution to $\mathbf{x}' = A\mathbf{x}$, find the solution with $\mathbf{x}(0) = \begin{pmatrix} 7 \\ -2 \end{pmatrix}$.
- 8. Find the solution to the system $\mathbf{x}' = \begin{pmatrix} 1 & 1 \\ -2 & -1 \end{pmatrix} \mathbf{x}$ with $\mathbf{x}(0) = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$.
- 9. Find the general form for solutions to the system $x' = \begin{pmatrix} 1 & 1 \\ -1 & 3 \end{pmatrix} x.$
- 10. Given $\mathbf{x}_1 = e^{5t} \begin{pmatrix} 1-2t \\ t \end{pmatrix}$ is a solution to $\mathbf{x}' = A\mathbf{x}$, find the solution with $\mathbf{x}(0) = \begin{pmatrix} 8 \\ -3 \end{pmatrix}$.

The quiz will consist of two randomly chosen problems (with possibly small variations; so make sure to learn processes and not just memorize answers).

Key ideas and processes

- Many of the same ideas translate into linear systems, $\mathbf{x}' = A(t)\mathbf{x} + \mathbf{f}(t)$, e.g. verifying, superposition, $\mathbf{x} = \mathbf{x}_c + \mathbf{x}_p$, solving initial conditions, The Wronskian is now $w(\mathbf{x}_1, \dots \mathbf{x}_n) = |\mathbf{x}_1 \dots \mathbf{x}_n|$ (determinant where columns are the functions).
- For $\mathbf{x}' = A\mathbf{x}$, solutions take form $c_1 e^{\lambda_1 t} \mathbf{v}_1 + \dots + c_n e^{\lambda_n t} \mathbf{v}_n$, where $A\mathbf{v}_i = \lambda_i \mathbf{v}_i$ (e.g. these are eigenvalues and eigenvectors).
- To find eigenvalues find the roots of the polynomial $|A-\lambda I|=0$ (found taking determinant of matrix A with " $-\lambda$ " added to diagonal terms). Note: sum of eigenvalues is sum of diagonal entries; product of eigenvalues is determinant. To find eigenvector for λ_i find non-zero vector with $(A-\lambda_i I)\mathbf{v}_i=\mathbf{0}$. For 2×2 this is done quickly by noting if $A-\lambda I=\begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}$, then desired vector is either of $\begin{pmatrix} \beta \\ -\alpha \end{pmatrix}$ or $\begin{pmatrix} \delta \\ -\gamma \end{pmatrix}$
- Complex eigenvalues/eigenvectors occur in conjugate pairs. Can use this to rewrite solutions with sine and cosine. Namely if $\lambda = \alpha + \beta i$ and $\mathbf{v} = \mathbf{a} + i \mathbf{b}$ then taking real parts give $(e^{\alpha t} \cos(\beta t) \mathbf{a} e^{\alpha t} \sin(\beta t) \mathbf{b})$ and imaginary parts give $(e^{\alpha t} \cos(\beta t) \mathbf{b} + e^{\alpha t} \sin(\beta t) \mathbf{a})$.
- When shortage of eigenvectors we "bump". So if \mathbf{v} is eigenvector (e.g. $(A \lambda I)\mathbf{v} = 0$), find \mathbf{w} with $(A \lambda I)\mathbf{w} = \mathbf{v}$. Then two solutions are $e^{\lambda t}\mathbf{v}$ and $e^{\lambda t}(t\mathbf{v} + \mathbf{w})$. This can be generalized when even more eigenvectors are missing.

Comments and (partial) answers on problems

1. (plug it in and verify)

2.
$$\binom{4+2t-t^2}{1-t}$$
; $-1 < t < 6$

3.
$$\begin{pmatrix} 3 + 2e^{t} \\ 3 + 4e^{t} \\ -3 - 6e^{t} \end{pmatrix}$$

4.
$$\mathbf{x} = Ae^{t} \begin{pmatrix} 1 \\ -1 \end{pmatrix} + Be^{5t} \begin{pmatrix} 1 \\ 3 \end{pmatrix}$$

5.
$$\mathbf{x} = Ae^{\frac{1}{2}t} \begin{pmatrix} 3\\2 \end{pmatrix} + Be^{t} \begin{pmatrix} 1\\1 \end{pmatrix}$$

6.
$$\mathbf{x} = \begin{pmatrix} 3e^{-2t} + 4e^{3t} \\ -9e^{-2t} + 8e^{3t} \end{pmatrix}$$

7.
$$\mathbf{x} = e^{t} \begin{pmatrix} 7\cos(4t) - \sin(4t) \\ -2\cos(4t) + 6\sin(4t) \end{pmatrix}$$

8.
$$\mathbf{x} = \begin{pmatrix} 2\cos(t) + 3\sin(t) \\ \cos(t) - 5\sin(t) \end{pmatrix}$$

9.
$$\mathbf{x} = Ae^{2t} \begin{pmatrix} t \\ t+1 \end{pmatrix} + Be^{2t} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

10.
$$\mathbf{x} = e^{5t} \begin{pmatrix} 8 - 4t \\ -3 + 2t \end{pmatrix}$$

1. Verify
$$\mathbf{x}_1 = \begin{pmatrix} 3\mathbf{t}^2 \\ 5\mathbf{t} \end{pmatrix}$$
 and $\mathbf{x}_2 = \begin{pmatrix} \mathbf{t}^{-6} \\ -\mathbf{t}^{-7} \end{pmatrix}$ are solutions to $\mathbf{t}^2\mathbf{x}' = \begin{pmatrix} -3\mathbf{t} & 3\mathbf{t}^2 \\ 5 & -2\mathbf{t} \end{pmatrix}\mathbf{x}$.

$$\chi_{2}$$
: LHS: $t^{2}\chi_{2}' = t^{2}\begin{pmatrix} -6t^{-7} \\ 7t^{-8} \end{pmatrix} = \begin{pmatrix} -6t^{-5} \\ 7t^{-6} \end{pmatrix}$
 χ_{2} : LHS: $t^{2}\chi_{2}' = t^{2}\begin{pmatrix} -6t^{-7} \\ 7t^{-6} \end{pmatrix} = \begin{pmatrix} -6t^{-5} \\ 7t^{-6} \end{pmatrix} = \begin{pmatrix}$

2. Let $\mathbf{x}_1(t) = \begin{pmatrix} t^2 \\ t+3 \end{pmatrix}$ and $\mathbf{x}_2(t) = \begin{pmatrix} t+2 \\ 2 \end{pmatrix}$ be solutions to $\mathbf{x}' = A(t)\mathbf{x}$. Find the solution with $\mathbf{x}(0) = \begin{pmatrix} 4 \\ 1 \end{pmatrix}$, and determine the interval on which uniqueness is *guaranteed* by the Wronskian.

$$X = A_{X_1} + B_{X_2} \le + \cos i s \text{ superpossition}$$

$$X = A \begin{pmatrix} t^2 \\ t^2 \end{pmatrix} + B \begin{pmatrix} t^2 \\ 2 \end{pmatrix}$$

$$X = A \begin{pmatrix} t^2 \\ t^2 \end{pmatrix} + B \begin{pmatrix} t^2 \\ 2 \end{pmatrix}$$

$$X = A \begin{pmatrix} t^2 \\ t^2 \end{pmatrix} + B \begin{pmatrix} t^2 \\ 2 \end{pmatrix} + B \begin{pmatrix} t^2 \\ 2 \end{pmatrix}$$

$$X = A \begin{pmatrix} t^2 \\ t^2 \end{pmatrix} + A \begin{pmatrix}$$

$$W = \begin{cases} t^{2} t^{2} \\ t^{3} 2 \end{cases} = 2t^{2} - (t+3)(t+2)$$

$$= 2t^{2} - t^{2} - 3t - 2t - 6$$

$$= t^{2} - 5t - 6$$

$$0 = (t-6)(t+1)$$

$$[W \neq evv'] = -1, 6$$

3. Let
$$\mathbf{x}_1(\mathbf{t}) = \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}$$
, $\mathbf{x}_2(\mathbf{t}) = e^{\mathbf{t}} \begin{pmatrix} 1 \\ 0 \\ -2 \end{pmatrix}$, $\mathbf{x}_3(\mathbf{t}) = e^{\mathbf{t}} \begin{pmatrix} -1 \\ 2 \\ 1 \end{pmatrix}$ be solutions to $\mathbf{x}' = A\mathbf{x}$. Find the solution with $\mathbf{x}(0) = \begin{pmatrix} 5 \\ 7 \\ -9 \end{pmatrix}$. In the solution with $\mathbf{x}(0) = \begin{pmatrix} 5 \\ 7 \\ -9 \end{pmatrix}$.

use super position

Solution with
$$x(0) = \begin{bmatrix} 7 \\ 9 \end{bmatrix}$$
. Assigned

 $X = A \times 1 + B \times 2 + C \times 3$
 $X = A \begin{pmatrix} 1 \\ -1 \end{pmatrix} + B \begin{pmatrix} 0 \\ -2 \end{pmatrix} + C \begin{pmatrix} -1 \\ 2 \end{pmatrix}$ easter to contain the property of t

4. Find the general form for solutions to the system 6 this must be X=ex. X=ex. X=ex. X=ex. X=V. $\mathbf{x}' = \begin{pmatrix} 2 & 1 \\ 3 & 4 \end{pmatrix} \mathbf{x}.$ eigen vec to X=Ae 5t(1) + Be t(-1)

5. Find the general form for solutions to
$$\mathbf{x} = \begin{pmatrix} 4 & -3 \\ 2 & -1 \end{pmatrix} \mathbf{x}'$$
. (Hint: $\mathbf{A}^{-1}\mathbf{A} = \mathbf{I}$.)

$$x' = Ax$$

$$X = Ax'$$

$$A^{-1}x = A^{-1}Ax'$$

$$A^{-1}x = Ix' = x'$$

$$\frac{1}{ad-bc}\begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \chi = \chi^{1}$$

$$\frac{1}{4(1)-(-3)2} = \frac{1}{-4+6} \left(\frac{-1}{-2}\frac{3}{4}\right) x = x'$$

$$\frac{1}{2} \begin{pmatrix} -1 & 3 \\ -2 & 4 \end{pmatrix} x = x'$$

$$\begin{pmatrix} -1/2 & 3/2 \\ -1 & 2 \end{pmatrix} = \chi^{1}$$

$$(A - \lambda I) = 0$$

= $|-1/2 - \lambda|^{3/2}$
 $|-1|^{2-\lambda}$

$$O = \left(\frac{1}{2} - \lambda\right) \left(2 - \lambda\right) - \left(-\frac{3}{2}\right)$$

$$0 = -1 - 2\lambda + \frac{1}{2} + \lambda^2 + \frac{3}{2}$$

$$-0 = -2 - 4\lambda + \lambda + 2\lambda^2 + \frac{3}{2}$$

$$2\lambda^{2} = 3\lambda + 1 = 0$$

$$(2\lambda - 1)(\lambda - 1) > 6$$

$$(\lambda = (1 + 1))$$

$$\frac{2}{3} \frac{1}{2}$$

$$\frac{3}{2} \frac{3}{2} \frac{3}{2} = 0$$

$$\frac{3}{2} = 0$$

$$\begin{pmatrix} 3/2 & 3/2 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
ergenvector

$$(X = Ae^{1/2}t(3) + Be^{t}(1)$$

6. Find the solution to the system $\mathbf{x}' = \begin{pmatrix} 1 & 1 \\ 6 & 0 \end{pmatrix} \mathbf{x}$ with $\mathbf{x}(0) = \begin{pmatrix} 7 \\ -1 \end{pmatrix}$.

- note: vse values that rake inits! matrix equal to o

$$\left[X = Ae^{-2+\begin{pmatrix} -1\\3 \end{pmatrix}} + Be^{3+\begin{pmatrix} 1\\2 \end{pmatrix}}\right]$$

$$X = \begin{pmatrix} -2t + Be^{3t} \\ 3Ae^{-2t} + 2Be^{3t} \\ 3Ae^{-2t} + 2Be^{3t} \\ 3A + 2B = -1 \\ -3A + 3B = 21 \\ 5B = 20 \\ \hline{B=4} \end{pmatrix}$$

$$X = \begin{pmatrix} -2t + 4B \\ 3A + 2B \\ \hline -2t + 4Be^{3t} \\ \hline -2e^{-2t} + 8e^{3t} \\ \hline -2e^{-2t} + 8e^{3t} \\ \hline \end{pmatrix}$$

7. Given $x_1=e^t\begin{pmatrix}\cos(4t)-3\sin(4t)\\2\cos(4t)+2\sin(4t)\end{pmatrix}$ is a solution to $\mathbf{x}' = A\mathbf{x}$, find the solution with $\mathbf{x}(0) = \begin{pmatrix} 7 \\ -2 \end{pmatrix}$.

Complex eigenvalue 1 = a ± bi V = (x + Bi)

(east +ie sinbt) (x+Bi) XZA e at cos bt · x - e at sin bt · B) + B(e at cos bt · B + e at sin bt · x) $X_{l} = \left(e^{t}\cos(4t) - 3e^{t}\sin(4t)\right)$ $2e^{t}\cos(4t) + 2e^{t}\sin(4t)$ = let cas 4t | -3et sin 4t |

Zet cas 4t | Zet sin 4t |

Simplify this = e t cos 4 t (1) + e t sin 4 t (-3) a = 1, b = 4 $\beta = \begin{pmatrix} 1 \\ 2 \end{pmatrix} \quad \alpha = \begin{pmatrix} -3 \\ 2 \end{pmatrix}$

 $\chi = A \left(e^{t} \cos 4t \cdot \left(\frac{3}{2} \right) - e^{t} \sin 4t \left(\frac{1}{2} \right) + B \left(e^{t} \cos 4t \left(\frac{1}{2} \right) + e^{t} \sin 4t \left(\frac{3}{2} \right) \right)$ $\sin 0 = 0$

 $\times (0) = (-2) = A(-3) + B(2)$

\(\tau = -2 \left(e^{\frac{1}{2}} \cdot e^{\frac{1}{2}} \right) - e^ /2(-2) +20=-2

+ (e + cos 46(2) +e + sin 46 (-3)

8. Find the administration to the system
$$x' - (\frac{1}{2} - \frac{1}{2})x$$

with $x(0) = (\frac{1}{1})$
 $A - \lambda F = 0$
 $A - \lambda F = 0$

9. Find the general form for solutions to the system
$$x' = \begin{pmatrix} 1 & 1 \\ -1 & 3 \end{pmatrix} x.$$

$$a \lambda = 2$$

$$(\lambda -2)^2 = 0$$

$$(\lambda -2)^2 = 0$$

$$(\lambda = 2, 2)$$

$$X = Ae^{2t}(1) + Be^{2t}(t(1)) + (-1)$$

$$\lambda = 5,5$$

$$\chi_{1} = e^{5t} \left(t \left(-\frac{2}{1} \right) + \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right)$$

bump up erserveetre beset correction vector

$$X = Ae^{s+\left(-\frac{2}{i}\right)} + Be^{s+\left(t\left(-\frac{2}{i}\right)+\left(1\right)\right)}$$

$$\chi(0) = A\begin{pmatrix} -2\\1 \end{pmatrix} + B\begin{pmatrix} 1\\0 \end{pmatrix} = \begin{pmatrix} -2A+B\\A+0 \end{pmatrix} = \begin{pmatrix} 8\\-3 \end{pmatrix}$$

$$-2(-3) + 6 = 8$$

$$-6 + 6 = 8$$

$$-8 = 2$$

$$X = -3e^{s+(-2)} + 2e^{s+(t(-2)+(1))}$$