

IIC2223/IIC2224 - Teoría de Autómatas y Lenguajes Formales - 2' 2024

Tarea 2

Publicación: Viernes 6 de septiembre.

Entrega: Jueves 12 de septiembre hasta las 23:59 horas.

Indicaciones

- Debe entregar una solución para cada pregunta (sin importar si está en blanco).
- Cada solución debe estar escrita en L⁴TEX. No se aceptarán tareas escritas a mano ni en otro sistema de composición de texto.
- Responda cada pregunta en una hoja separada y ponga su nombre en cada hoja de respuesta.
- Debe entregar una copia digital por el buzón del curso, antes de la fecha/hora de entrega.
- Se penalizará con 1 punto en la nota final de la tarea por cada regla que no se cumpla.
- La tarea es individual.

Pregunta 1

1. Para el siguiente DFA, realice el método de eliminación de estados y encuentre una expresión regular equivalente. Detalle cada uno de los pasos, como también el autómata finito no determinista generalizado resultante después de cada etapa.

2. Sea $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$ un DFA. El método de eliminación de estados para construir una expresión regular desde \mathcal{A} depende del orden \leq sobre Q escogido para eliminar estados. O sea, para dos ordenes distintos \leq_1 y \leq_2 , podemos generar distintas expresiones regulares R_1 y R_2 si aplicamos la eliminación de estados siguiendo \leq_1 o \leq_2 , respectivamente. Para un orden \leq de los estados Q, sea $R_{\mathcal{A}}^{\leq}$ la expresión regular resultante de seguir el método de eliminación de estados sobre \mathcal{A} según el orden \leq .

Demuestre una familia de DFAs $\{A_n\}_{n\in\mathbb{N}}$ con $A_n=(Q_n,\Sigma,\delta_n,q_0^n,F_n)$ sobre el mismo alfabeto Σ tal que $|Q_n|\in\Theta(n)$ (esto es, el número de estados crece lineal con respecto a n) y, para cada n, existe un orden \leq_n de Q_n tal que $R_{A_n}^{\leq n}$ tiene tamaño $|R_{A_n}^{\leq n}|\in\Omega(2^n)$ donde |R| corresponde al número de letras y operadores en la expresión regular R.

Solución

Problema 1.1 Antes de comenzar con el método de eliminación de estados, primero se debe convertir el DFA a un GNFA. Para ello, debemos agregar 2 nuevos estados q_i y q_f y conectarlos al estado 0 mediante ε -transiciones, resultando en el siguiente GNFA:

A continuación, iniciamos el método de eliminación de estados. Por simplicidad, las expresiones regulares se irán simplificando a medida que se avanza en el método, pero no se mostrará explícitamente. Por ejemplo, (εa) se simplificará a (a) y $(\varnothing + a)$ se simplificará a (a).

Paso 1: Eliminar el estado 1.

Paso 2: Eliminar el estado 3.

Paso 3: Eliminar el estado 2.

Paso 4: Eliminar el estado 0.

$$\rightarrow (q_i)$$
 $(ab^*(ce+de))^*$ q_f

Dado que solo tenemos 2 estados, el inicial y el final, la expresión regular resultante es la expresión correspondiente a la transición entre estos dos estados, es decir, $(ab^*(ce+de))^*$.

Distribución de puntaje

- 1 punto por convertir el DFA a GNFA.
- $\bullet\,$ 1 punto por eliminar los estados 1, 3 y unir las expresiones ce y de.
- 1 punto por eliminar el estado 2 junto a su loop.
- 1 punto por concluir con la eliminación de estados y obtener la expresión regular.

Problema 1.2 Definimos la familia de DFAs $\{A_n\}_{n\in\mathbb{N}}$ de forma inductiva de la siguiente manera:

\mathcal{A}_0 :

\mathcal{A}_1 :

\mathcal{A}_n :

Formalmente, $\mathcal{A}_0 = (Q_0, \Sigma, \delta_0, q_0^0, F_0)$ donde:

•
$$Q_0 = \{p_0, r_0, s_0, q\}$$

•
$$\Sigma = \{a, b, c, d, e\}$$

•
$$\delta_0$$
 es tal que:

$$- \delta_0(p_0, a) = q$$

$$- \delta_0(q, b) = q$$

$$- \delta_0(q, c) = r_0$$

$$- \delta_0(q, d) = s_0$$

$$- \delta_0(r_0, e) = p_0$$

$$- \delta_0(s_0, e) = p_0$$

•
$$q_0^0 = p_0$$

•
$$F_0 = \{p_0\}$$

Y para n > 0, $\mathcal{A}_n = (Q_n, \Sigma, \delta_n, q_0^n, F_n)$ donde:

$$\bullet \ Q_n = Q_{n-1} \uplus \{p_n, r_n, s_n\}$$

• δ_n es tal que posee las mismas transiciones que δ_{n-1} , a las que se les añaden:

$$- \delta_n(p_n, a) = p_{n-1}$$

$$- \delta_n(p_{n-1}, c) = r_{n-1}$$

$$- \delta_n(p_{n-1}, d) = s_{n-1}$$

$$- \delta_n(r_n, e) = p_n$$

$$- \delta_n(s_n, e) = p_n$$

$$\bullet \ q_0^n = p_n$$

•
$$F_n = \{p_n\}$$

Tamaño del DFA A_n

Para mostrar que $|Q_n| \in \Theta(n)$, primero notamos que $|Q_0| = 4$, luego, como $Q_n = Q_{n-1} \uplus \{p_n, r_n, s_n\}$, tenemos que $|Q_n| = |Q_{n-1}| + 3$ para n > 0. Por lo tanto, $|Q_n| = 4 + 3n$, es decir, $|Q_n| \in \Theta(n)$.

Orden \leq_n y eliminación de estados

El orden que seguiremos para eliminar los estados de \mathcal{A}_n será el siguiente:

$$q \leq_n r_0 \leq_n s_0 \leq_n p_0 \leq_n r_1 \leq_n s_1 \leq_n p_1 \leq_n \cdots \leq_n r_n \leq_n s_n \leq_n p_n$$

Este proceso de eliminación de estados se ilustra de la siguiente manera en el algortimo de eliminación de estados para A_n :

Convertir a GNFA:

Eliminar q:

Eliminar r_0 y s_0 :

En este punto, definimos $R_0 = ab^*c + ab^*d$. Luego, notamos que debido a como se construyó \mathcal{A}_n , la expresión regular que describe el lenguaje aceptado por \mathcal{A}_0 es $R_{\mathcal{A}_0}^{\leq_0} = (R_0)^*$.

Eliminar p_0 , r_1 y s_1 :

Eliminar p_1 , r_2 y s_2 :

Eliminar hasta r_n y s_n :

Notamos que cada R_i es de la forma $a(R_{i-1})^*ce + a(R_{i-1})^*de$, por lo tanto, la cantidad de caracteres en R_i es al menos el doble de la cantidad de caracteres en R_{i-1} , lo que implica un crecimiento exponencial en la cantidad de caracteres de R_n con respecto a n, es decir, $|R_n| \in \Omega(2^n)$.

Distribución de puntaje

- 1 punto por definir correctamente la familia de DFAs.
- 1 punto por demostrar que $|Q_n| \in \Theta(n)$.
- 1 punto por presentar el orden de eliminación de los estados.
- 1 punto por demostrar el orden genera que $|R_{A_n}^{\preceq_n}| \in \Omega(2^n)$.

Pregunta 2

Sean $a, b, c \in \mathbb{N}$ tal que a > 0. Para cada uno de los siguientes lenguajes sobre el alfabeto $\Sigma = \{1\}$, diga si el lenguaje es regular o no. Demuestre su afirmación.

1.
$$L_1 = \{1^{b \cdot n + c} \mid n \ge 0\}$$

2.
$$L_2 = \{1^{a \cdot n^2 + b \cdot n + c} \mid n \ge 0\}$$

Solución

Problema 2.1 El lenguaje L_1 es regular. Para demostrarlo construiremos una expresión regular que lo genere. Al tener $\mathbf{1}^{b \cdot n + c}$ es claro que esto significa $(\mathbf{1}^n)$ b veces, seguido de c veces 1. Ejemplo de esto es:

- 1^c , n = 0
- 1^{b+c} , n=1
- 1^{2b+c} , n=2
- 1^{3b+c} , n=3

Y así sucesivamente.

Este tipo de patrón se puede reconocer con la expresión regular $R_1 = (1^b)^* \cdot 1^c$. Por lo tanto, L_1 es regular.

Demostración.

• $L_1 \subseteq \mathcal{L}(R_1)$.

Sea $w \in L_1$, entonces $w = \mathbf{1}^{b \cdot n + c}$ para algún $n \ge 0$. Por lo tanto, $w = \mathbf{1}^b \cdot \mathbf{1}^b \cdot \mathbf{1}^b \cdot \mathbf{1}^b \cdot \mathbf{1}^c$, donde $\mathbf{1}^b$ se repite n veces. Esto es equivalente a $(\mathbf{1}^b)^* \cdot \mathbf{1}^c$. Por lo tanto, $w \in \mathcal{L}(R_1)$.

• $\mathcal{L}(R_1) \subseteq L_1$.

Sea $w \in \mathcal{L}(R_1)$, entonces $w = (1^b)^* \cdot 1^c$. Por lo tanto, $w = 1^b \cdot 1^b \cdot 1^b \cdot 1^c$, donde 1^b se repite 0 o más veces. Esto es equivalente a $1^{b \cdot n + c}$. Por lo tanto, $w \in L_1$.

Por lo tanto, $L_1 = \mathcal{L}(R_1)$ y L_1 es regular.

Distribución de puntaje

- 1 punto por decir que el lenguaje es regular.
- 2 puntos por la expresión regular o autómata que genera el lenguaje.
- 1 punto por argumentar o demostrar correctitud de la expresión regular o autómata.

Problema 2.2 Necesitamos demostrar que el lenguaje que consiste en todas las palabras de longitud cuadrática de la forma $a \cdot n^2 + b \cdot n + c$ no es regular. Para esto, podemos utilizar el contrapositivo del lema de bombeo.

- Para todo N > 0
- Existe una palabra $x \cdot y \cdot z \in L_2$ con $|y| \ge N$ tal que
- Para todo $u \cdot v \cdot w = y \text{ con } v \neq \epsilon$
- Existe un $i \geq 0$ tal que $x \cdot u \cdot v^i \cdot w \cdot z \notin L_2$

Sea N > 0 cualquiera. Considere $n \in \mathbb{N}$ lo suficientemente grande tal que $N < n < a \cdot n^2 + b \cdot n + c$. Con este n, definimos la palabra $w = 1^{a \cdot n^2 + b \cdot n + c}$. Es claro ver que $w \in L_2$.

Después, elegimos la descomposición $w = x \cdot y \cdot z \in L_2$ con $x = \mathbf{1}^{a \cdot n^2 + b \cdot n + c - N}$, $y = \mathbf{1}^N$ y $z = \epsilon$. Lo anterior está bien definido ya que $a \cdot n^2 + b \cdot n + c - N > 0$ por definición de n.

Ahora tomamos una descomposición cualquiera de la forma $y=1^k\cdot 1^l\cdot 1^m$ con l>0 y k+l+m=N. Si bombeamos con i=2, obtendremos la palabra $x\cdot u\cdot v^2\cdot w\cdot z=1^{a\cdot n^2+b\cdot n+c-N}\cdot 1^k\cdot 1^{2\cdot l}\cdot 1^m$.

Observando el exponente de la palabra, tenemos que

$$a \cdot n^2 + b \cdot n + c - N + k + l + m + l = a \cdot n^2 + b \cdot n + c - N + N + l = a \cdot n^2 + b \cdot n + c + l$$

Ahora, necesitamos argumentar que esta palabra no pertenece a L_2 . Como $0 < l \le N < n$, entonces:

$$a \cdot n^2 + b \cdot n + c < a \cdot n^2 + b \cdot n + c + l$$

$$\leq a \cdot n^2 + b \cdot n + c + N$$

$$< a \cdot n^2 + b \cdot n + c + n$$

Luego, como sabemos que $n \leq 2 \cdot a \cdot n + b + a$ dado que $a \geq 1$ y $b \geq 0$, tenemos que

$$a \cdot n^2 + b \cdot n + c + n \le a \cdot n^2 + b \cdot n + c + 2 \cdot a \cdot n + b + a$$
$$\le a \cdot (n+1)^2 + b \cdot (n+1) + c$$

De ambas desigualdades concluimos que:

$$a \cdot n^2 + b \cdot n + c < a \cdot n^2 + b \cdot n + c + l < a \cdot (n+1)^2 + b \cdot (n+1) + c$$

Por lo tanto, la palabra $x \cdot u \cdot v^i \cdot w \cdot z$ ya no corresponde a un número de la forma $a \cdot n^2 + b \cdot n + c$ para ningún $n \in \mathbb{N}$, lo que contradice la suposición de que L_2 es regular. Por lo tanto, L_2 no es regular.

Distribución de puntaje

- 1 punto por escoger la correctamente la división de la palabra.
- 1 punto por escoger un i que haga fallar la propiedad de bombeo.
- 1 punto por la desigualdad que muestra que la palabra bombeada no pertenece al lenguaje.
- 1 punto por identificar que b puede ser 0.

Evaluación y puntajes de la tarea

Cada item de cada pregunta se evaluará con un puntaje de 0, 1, 2, 3 o 4 puntos. Todas las preguntas tienen la misma ponderación en la nota final y cada item tiene la misma ponderación en cada pregunta.