Manasa and Subsequences

Manasa recently lost a bet to Amit. To settle the problem, they are playing a game:

They have *N* balls in front of them. Each ball, except the 1st ball, is numbered from 0 to 9. The 1st ball is numbered from 1 to 9.

Amit calculates all the subsequences of the number thus formed. Each subsequence of sequence S is represented by S_k .

```
e.g. S = 123

S_0 = 123,

S_1 = 12,

S_2 = 13,

S_3 = 23,

S_4 = 1,

S_5 = 2, and

S_6 = 3.
```

Each subsequence S_k also represents a number. e.g. S_1 represents tweleve, S_2 represents thirteen.

Now Manasa has to throw S_k candies into an intially empty box, where k goes from 0 to (maximum number of subsequences - 1).

At the end of the game, Manasa has to find out the total number of candies, T, in the box. As T can be large, Amit asks Manasa to tell $T \% (10^9 + 7)$. If Manasa answers correctly, she can keep all the candies. Manasa can't take all this Math and asks for your help.

Help her!

Note: A subsequence can also be have preceding zeros. For example, the sequence 103 has subsequences 103, 10, 13, 03, 1, 0, and 3 (so both 03 and 3 are counted separately).

Input Format

A single line containing a number having N digits.

Output Format

A number containing the output.

Constraints

 $1 \le N \le 2*10^5$

Sample Input 00

111

Sample Output 00

147

Sample Input 01

123

Sample Output 01

177

Explanation

The subsequence of number 111 are 111, 11, 11, 11, 1, 1 and 1. Whose sum is 147.

The subsequence of number 123 are 123, 12 , 23, 13, 1, 2 and 3. Whose sum is 177.