CS 6140: Machine Learning

Spring 2018

Assignment 3

1.3

1.

Spambase

Fold	Training Accuracy	Training Precision	Training Recall	Test Accuracy	Test Precision	Test Recall
1	0.92557	0.92693	0.88270	0.92399	0.92593	0.88235
2	0.92531	0.92852	0.88142	0.91686	0.89375	0.88820
3	0.92452	0.92324	0.88411	0.92162	0.92500	0.87574
4	0.92452	0.92561	0.87992	0.92399	0.92045	0.90000
5	0.92188	0.92127	0.87995	0.94537	0.93750	0.92025
6	0.92478	0.92452	0.88352	0.92874	0.93671	0.88095
7	0.92689	0.92907	0.88259	0.91924	0.91954	0.88889
8	0.93059	0.92625	0.89888	0.92874	0.90385	0.90385
9	0.93032	0.93115	0.89029	0.89549	0.88757	0.85714
10	0.92689	0.92725	0.88765	0.91686	0.94203	0.82803
Mean	0.92613	0.92638	0.88510	0.92209	0.91923	0.88254
Standard Deviation	0.00254	0.00275	0.00553	0.01187	0.01768	0.02433

Breast Cancer

Fold	Training Accuracy	Training Precision	Training Recall	Test Accuracy	Test Precision	Test Recall
1	0.98828	0.99468	0.97396	0.98246	1.00000	0.95000
2	0.99219	1.00000	0.97849	0.96491	0.96154	0.96154
3	0.99023	0.99476	0.97938	0.96491	0.94444	0.94444
4	0.98828	0.99471	0.97409	1.00000	1.00000	1.00000
5	0.98828	0.99492	0.97512	0.98246	0.91667	1.00000
6	0.98633	0.98889	0.97268	1.00000	1.00000	1.00000
7	0.99023	1.00000	0.97312	0.98246	1.00000	0.96154
8	0.98633	0.98925	0.97354	0.96491	0.95652	0.95652
9	0.98633	0.98947	0.97409	1.00000	1.00000	1.00000

10	0.99220	0.98953	0.98953	0.92857	0.94737	0.85714
Mean	0.98887	0.99362	0.97640	0.97707	0.97265	0.96312
Standard Deviation	0.00215	0.00403	0.00486	0.02112	0.02948	0.04152

Pima Indian Diabetes

Fold	Training Accuracy	Training Precision	Training Recall	Test Accuracy	Test Precision	Test Recall
1	0.78582	0.74093	0.59336	0.72727	0.65000	0.48148
2	0.77424	0.73000	0.58871	0.83117	0.65217	0.75000
3	0.78871	0.74317	0.57872	0.74026	0.78261	0.54545
4	0.78292	0.73626	0.56780	0.71429	0.70833	0.53125
5	0.77713	0.72775	0.57676	0.81818	0.84211	0.59259
6	0.77713	0.73262	0.56846	0.84416	0.80000	0.74074
7	0.78148	0.73370	0.56962	0.75325	0.77273	0.54839
8	0.77713	0.72487	0.57322	0.81818	0.82609	0.65517
9	0.78035	0.73846	0.58776	0.72368	0.56250	0.39130
10	0.77746	0.73632	0.59438	0.80263	0.62500	0.52632
Mean	0.78024	0.73441	0.57988	0.77731	0.72215	0.57627
Standard Deviation	0.00429	0.00549	0.00984	0.04760	0.09093	0.10638

2.

Spambase

Breast Cancer

Pima Indian Diabetes

3.

I set the initial iterations to 1000 and ran the regression with tolerance 0.1. Gradually increasing the tolerance by 10 percent checked if the mean accuracy increases. If so continued to test for more other tolerance values and if not used the previous tolerance value. I printed for average learning loops for each fold and found that the maximum loops never reach more than 750, so left it unchanged at 1000.

1.4

1.
$$\sigma(\alpha) = \frac{1}{1+e^{-\alpha}}$$

$$\frac{d\sigma(x)}{dx} \quad \omega_{\text{MAR}} \quad \chi = \omega^{T} \chi$$

$$\frac{d}{dx} \left(\frac{1}{1+e^{-\omega^{T} \chi}}\right) \Rightarrow -\frac{\frac{d}{dx} \left(1+e^{-\omega^{T} \chi}\right)^{2}}{\left(1+e^{-\omega^{T} \chi}\right)^{2}}$$

$$\Rightarrow -\frac{\frac{d}{dx} \left(1\right) + \frac{d}{dx} \left(e^{-\omega^{T} \chi}\right)}{\left(1+e^{-\omega^{T} \chi}\right)^{2}} = -\frac{e^{-\omega^{T} \chi}}{\left(1+e^{-\omega^{T} \chi}\right)^{2}}$$

$$\Rightarrow \frac{\omega^{T} e^{-\omega^{T} \chi}}{\left(1+e^{-\omega^{T} \chi}\right)^{2}}$$

Posterior probability
$$\sigma(\alpha) = \frac{1}{1+e^{-\alpha}}$$

$$P(y=1|\mathbf{x}, \mathbf{w}) = \sigma(\mathbf{w}^{T}\mathbf{x}) = \frac{1}{1+e^{-\omega^{T}\mathbf{x}}}$$

$$9 \in \{-1,1\}^{2}$$

$$P(y=-1|\mathbf{x}, \mathbf{w}) = 1 - P(y=1|\mathbf{x}, \mathbf{w})$$

$$= 1 - \frac{1}{1+e^{-\omega^{T}\mathbf{x}}}$$

$$P(y=-1|\mathbf{x}, \mathbf{w}) = \frac{1}{1+e^{-\omega^{T}\mathbf{x}}}$$

$$P(y=\pm 1|\mathbf{x}, \mathbf{w}) = \frac{1}{1+e^{-y\mathbf{w}^{T}\mathbf{x}}}$$

$$y_1 \in \{2, 1, 1\}$$

$$P(y_1 \mid x_1) = \frac{1}{1 + e^{-y_1 f(x_1)}}$$
Likelihood is $\frac{N}{1 + e^{-y_1 f(x_1)}}$

$$+ aking negative log, likelihood function in $\sum_{i=1}^{N} log(1 + e^{-y_1 f(x_1)})$$$

Recall

2

Precision

Recall

2.6

1.

$$\widehat{\omega}_{MAP} = \underset{\omega}{\operatorname{argmax}} P(\omega | C)$$

$$= \underset{\omega}{\operatorname{argmax}} P(C | \omega) \cdot P(\omega)$$

$$= \underset{\omega}{\operatorname{argmax}} P(C | \omega) \cdot P(\omega)$$

$$= \underset{\omega}{\operatorname{argmax}} T P(C | \omega) \cdot P(\omega)$$

$$= \underset{\omega}{\operatorname{argmax}} (\operatorname{eg} P(C | \omega) + \log P(\omega))$$

$$\widehat{\omega}_{MAP} = \underset{\omega}{\operatorname{argmax}} (n_d \cdot \log \omega + (N - n_d) \cdot \log (1 - \omega) + \log P(\omega))$$

$$\widehat{\omega}_{MAP} = \underset{\omega}{\operatorname{argmax}} (n_d \cdot \log \omega + (N - n_d) \cdot \log (1 - \omega) + \log P(\omega))$$

$$P(x \mid x) = \frac{T(\frac{x}{2}, x_1)}{\frac{\pi}{1}} \frac{\pi}{1} x_1^{x_1-1}$$

$$P(\omega \mid c) \propto P(c \mid \omega) . P(\omega)$$

$$\propto \left(\frac{\pi}{1} \omega_1^{N_1}\right) \left(\frac{\pi}{1} \omega_1^{x_1-1}\right)$$

$$= \frac{\pi}{1} \omega_1^{N_1+x_1-1}$$

$$= P(\omega \mid N+x)$$

$$\frac{\pi}{1} \left(\frac{\pi}{1} \left(\frac{\pi}{1}\right)\right)$$

$$= \frac{\pi}{1} \left(\frac{\pi}{1} \left(\frac{\pi}{1}\right)\right)$$

3.

$$\widehat{\theta}_{MLE} = argmax P(D|\theta) \ and \ \widehat{\theta}_{MAP} = argmax P(D|\theta)P(\theta)$$

In both cases the MAP is the product of MLE and Prior probability