Midterm Exam

I hereby swear that the work done on this assignment is my own and I have not given nor received aid that is inappropriate for this assignment.

Problem I

Suppose that X and Y are finite CW-complexes with Euler characteristics $\chi(X)$ and $\chi(Y)$. Show that $\chi(X \times Y) = \chi(X) \cdot \chi(Y)$.

Proof. Note that $\chi(X) = \sum_{i=0}^{n} (-1)^{i} c_{i}^{X}$ and $\chi(Y) = \sum_{j=0}^{m} (-1)^{j} c_{j}^{Y}$, where c_{k}^{X} and c_{k}^{Y} denote the number of k-cells for X and Y respectively.

Furthermore, each k-cell of $X \times Y$ is given from the product of a ℓ -cell from X and an $k - \ell$ -cell from Y (where we can set c_{ℓ}^{X} , $c_{\ell}^{Y} = 0$ if it has no ℓ -cells). Hence, it follows that

$$c_k^{X \times Y} = \sum_{\ell=0}^k c_\ell^X c_{k-\ell}^Y.$$

Thus,

$$\chi(X) \cdot \chi(Y) = \left(\sum_{i=0}^{n} (-1)^{i} c_{i}^{X}\right) \left(\sum_{j=0}^{m} (-1)^{j} c_{j}^{Y}\right)$$

$$= \sum_{i=0}^{n} \sum_{j=0}^{m} (-1)^{i+j} c_{i}^{X} c_{j}^{Y}$$

$$= \sum_{i+j=0}^{n+m} (-1)^{i+j} \sum_{\ell=0}^{i+j} c_{\ell}^{X} c_{i+j-\ell}^{Y}$$

$$= \sum_{k=0}^{n+m} (-1)^{k} \sum_{\ell=0}^{k} c_{\ell}^{X} c_{k-\ell}^{Y}$$

$$= \sum_{k=0}^{n+m} (-1)^{k} c_{k}^{X \times Y}$$

$$= \chi(X \times Y).$$

Problem II

Suppose that X is a finite CW-complex and n > 1. Show that $H_i(X \times \mathbb{S}^n; \mathbb{F}) = H_i(X; \mathbb{F}) \oplus H_{i-n}(X; \mathbb{F})$.

Proof. First, we claim that $H_i(X \times \mathbb{S}^n) \cong H_i(X) \oplus H_i(X \times \mathbb{S}^n, X \times \{pt\})$. Define $r: X \times \mathbb{S}^n \to X \times \{pt\}$ by $(x,a) \mapsto (x,pt)$. Note that this is a retraction since $r \circ i(x,pt) = r(x,pt) = (x,pt)$, where $i: X \times \{pt\} \hookrightarrow X \times \mathbb{S}^n$ is the inclusion map. Furthermore, note that

$$H(r) \circ H(i) = H(r \circ i) = H(\mathrm{id}_{X \times \mathbb{S}^n}) = id_{H(X \times \mathbb{S}^n)},$$

which implies that H(i) is injective. It follows that the exact sequence

$$0 \to X \times \{pt\} \hookrightarrow X \times \mathbb{S}^n \to X \times \mathbb{S}^n / X \times \{pt\} \to 0$$

induces the short exact sequence

$$0 \to H_i(X \times \{pt\}) \to H_i(X \times \mathbb{S}^n) \to H_i(X \times \mathbb{S}^n, X \times \{pt\}) \to 0,$$

which implies that $H_i(X \times \mathbb{S}^n) \cong H_i(X \times \{pt\}) \oplus H_i(X \times \mathbb{S}^n, X \times \{pt\}).$

Next, we show that $H_i(X \times \mathbb{S}^n, X \times \{pt\}) \cong H_{i-1}(X \times \mathbb{S}^{n-1}, X \times \{pt\})$. Decompose $\mathbb{S}^n = \tilde{A} \cup \tilde{B}$, where \tilde{A} and \tilde{B} are the upper and lower hemispheres respectively. We replace \tilde{A} and \tilde{B} with A and B where the hemisphere is slightly thickened at the equator by a factor $\epsilon > 0$. Note that $\mathbb{S}^n = A \cup B = \text{int } A \cup \text{int } B$. Note that A, B are homeomorphic to \mathbb{D}^n and $A \cap B$ is homeomorphic to $\mathbb{S}^{n-1} \times (-\epsilon, \epsilon)$, which is homotopy equivalent to \mathbb{S}^{n-1} . From Mayer-Vietoris, we have the sequence

$$\cdots \to H_i(X \times \mathbb{D}^n, X \times \{pt\}) \oplus H_i(X \times \mathbb{D}^n, X \times pt) \to H_i(X \times \mathbb{S}^n, X \times \{pt\})$$

$$\xrightarrow{\delta_{i-1}} H_{i-1}(X \times \mathbb{S}^{n-1}, X \times \{pt\}) \to H_{i-1}(X \times \mathbb{D}^n, X \times \{pt\}) \oplus H_{i-1}(X \times \mathbb{D}^n, X \times pt) \to \dots$$

Since \mathbb{D}^n is homotopy equivalent to a point, it follows from exactness that $H_i(X \times \mathbb{S}^{n-1}, X \times \{pt\}) \cong H_{i-1}(X \times \mathbb{S}^{n-1}, X \times \{pt\})$. By iterating this n times, we obtain $H_i(X \times \mathbb{S}^n, X \times \{pt\}) \cong H_{i-n}(X \times \mathbb{S}^0, X \times \{pt\}) \cong H_{i-n}(X)$, since S^0 consists of two points and $H_{i-n}(X \times \{pt\}) \cong H_{i-n}(X)$.

Problem III

Let X be the topological space we get by identifying opposite points on the equator of \mathbb{S}^2 . What is $H_*(X; \mathbb{F})$?

Proof. We give a CW-decomposition of X consisting of a point attached to S^1 , and attaching the northern and southern hemispheres to S^1 . Then $C_0(X) = \mathbb{F}$ since it is generated by a point, $C_1(X) = \mathbb{F}$ since it is generated by the equator, and $C_2(X) = \mathbb{F}^2$ since it is generated by the two hemispheres. Note that the gluing maps for the hemispheres are of degree 2 and -2 respectively since under the quotient, when going around the boundary of each hemisphere we wind twice around S^1 , and the two maps go in opposite directions.

This gives the sequence:

$$0 \to \mathbb{F}^2 \xrightarrow{d_2} \mathbb{F} \xrightarrow{d_1} \mathbb{F} \to 0.$$

Note that $d_1 = 0$ since when we go around S^1 , we meet the point from both sides. If we denote e_1^2 , e_2^2 to be the gluing maps for the hemispheres and e as the gluing map for S^1 , from the Cellular Boundary Formula, we have

$$d_2(e_1^2) = 2e^1, d_2(e_2^2) = -2e^1.$$

It follows that im d_2 is generated by $2e^1$, which is isomorphic to $2\mathbb{F}$.

$$0 = d_2(ae_1^2 + be_2^2) = 2ae^1 - 2be^1,$$

which happens when a = b. Thus, $\ker d_2$ is generated by $e_1^2 + e_2^2$, which is isomorphic to \mathbb{F} . Thus, $H_2(X) = \mathbb{F}$, $H_1(X) = \mathbb{F}/2\mathbb{F}$, and $H_0(X) = \mathbb{F}$, $H_i(X) = 0$ for i > 2. Therefore, $H_*(X) = \mathbb{F}_{(2)} \oplus \mathbb{F}/2\mathbb{F} \oplus F_{(0)}$.

Problem IV

Let X be the topological space we get from the full triangle Δ^2 by identifying its three vertices. Compute $H_*(X; \mathbb{F})$.

Proof. We give two arguments. First note that Δ^2 is homeomorphic to the closed disc \mathbb{D}^2 , which is homotopic to a point. Since homology is preserved under homotopy equivalence, it follows that $H_*(X; \mathbb{F}) = \mathbb{F}_{(0)}$.

We can also compute this explicitly. We take a triangle with vertices x, y, z, edges u = [xy], v = [yz], w = [zx], and face T = [xyz]. Note that $C_0(X) = \mathbb{F}^3$ since it is generated by x, y, z, $C_1(X) = \mathbb{F}^3$ since it is generated by u, v, w and $C_2(X) = \mathbb{F}$ since it is generated by T. This gives the chain complex:

$$0 \to \mathbb{F} \xrightarrow{\partial_2} \mathbb{F}^3 \xrightarrow{\partial_1} \mathbb{F}^3 \to 0.$$

Note that $\partial_1 u = y - x$, $\partial_1 v = z - y$, $\partial_1 w = x - z$. Furthermore, $\partial_2 T = v + w + u$. Note that

$$0 = \partial_1(au + bv + cw) = a(y - x) + b(z - y) + c(x - z) = x(-a + c) + y(a - b) + z(b - c),$$

which happens whenever a = b = c. This implies that ker ∂_1 is generated by u + v + w, which is isomorphic to \mathbb{F} . Furthermore, note that the image of ∂_2 is generated by u + v + w, so $H_1(X) = 0$.

Then, the image of ∂_1 is generated by x-y, y-z, z-x and the kernel of ∂_0 is generated by x, y, z so it follows that $H_0(X) = \mathbb{F}$. For i > 1, it is clear that $H_i(X; \mathbb{F}) = 0$, so it follows that $H_*(X; \mathbb{F}) = \mathbb{F}_{(0)}$, as desired.

Problem V

Show that chain homotopy of chain maps is an equivalence relation.

Proof. Suppose $f, g, h: C \to D$ are chain maps.

- Reflexive: Note that f f = 0, so if we take the zero map $0 : C \to D$, then $0 = \partial_D \circ 0 0 \circ \partial_C = f f$.
- Symmetric: Suppose f is chain homotopic to g. There exists a homomorphism φ : $C \to D$ so that $f g = \partial_D \circ \varphi \varphi \circ \partial_C$. Then, note that $g f = \partial_D \circ (-\varphi) (-\varphi) \circ \partial_C$, so it follows that g is chain homotopic to f.
- Transitive: Suppose that f is chain homotopic to g and g is chain homotopic to h. There exist homomorphisms $\varphi, \psi: C \to D$ such that $f g = \partial_D \circ \varphi \varphi \circ \partial_C$ and $g h = \partial_D \circ \psi \psi \circ \partial_C$. Then, note that

$$f - h = (f - g) + (g - h)$$

$$= \partial_D \circ \varphi - \varphi \circ \partial_C + \partial_D \circ \psi - \psi \circ \partial_C$$

$$= \partial_D \circ (\varphi + \psi) - (\varphi + \psi) \circ \partial_C.$$

Problem VI

Suppose that X is a finite CW-complex and $A, B \subset X$ are subcomplexes with the property that $X = A \cup B$. Show that

$$\chi(X) = \chi(A) + \chi(B) - \chi(A \cap B).$$

Proof. It suffices to show that $c_n^{A \cup B} = c_n^A + c_n^B - c_n^{A \cap B}$. This is precisely the principle of inclusion-exclusion: for finite sets C, D, $|C \cup D| = |C| + |D| - |C \cap D|$. A short proof of this is as follows. In order to count the elements of $C \cup D$, we count the number of elements in C once and the number of elements in C once. However, the elements in $C \cap D$ are counted twice, so we subtract this from our count so that every element is counted exactly once. The result follows from setting $C = X_n^A$ and $D = X_n^B$, the respective n-skeletons.