

The can see the probabilities, but not the values. We must visit the first 3 nodes due to lack of information, the center branch works at the first node, calculates that probability, which is 2.1, still less than the left-most branch, goes next, and even with a tested value of 9, the chance node has the apportunity to be higher than the left most node, we clock it, get 3.6 to edd up to 5.7, this is now the highest value so we don't cave about the next value. We go to the right must node and see 0.1, we check it to get 0.6, we look exert, see 0.5, if we test with 9, we get 4.5 which leaves a remainder of 0.4 to multiply 65 something and possibly give you a greater value, we check it and get 2, we are now at 2.6, we see 0.4, test it with 9 to get 3.6, which added to 2.6 will give you a greater value than 5.7, we check it, it's a 2 and we toked 3.4.

Exercise 2
binani composed disult
Dinary composed digits 1. The simplest genotype would be n that represent the angles of each bend. The values that the individual genes can have mould be in the form of vectors that represent each dimension in which the bend lays. The binary would allow for easy crossover and the vector for easy pin-pointing of which dimension the bend is in. 2. Crossover can be performed by taking the two bendshingly with the best fitness function and splitting each of them into portions that can be shared. These combined attributes from each angle forms a new, fifter, generation. 3. The termination condition is when there is no result better than our greatest distances of at least 100 km.
2. Crossover can be performed by taking the two bendshingly with the best fitness function and splitting each of them into portions that can be shared. These combined attached from each apple from a new fitter accuration
3. The termination condition is when there is no result better than our greatest distance of at least 100 km. Ex/(larification: if the best value is 150 and it can't get bETTER
than 156, then that's when we stop.
* Note to Self *
theach gere should have a rector of 3 values that can represent 30 space (x, y, z)
maybe by very encode
4 5, 8, 17 maybe be vary choole give us where each bend is and would allow 4 easy
Crassour.