Rappels sur les suites

1 Définition

On peut définir une suite (u_n) :

De façon explicite

 $u_n = f(n)$. et de

façon récurrente :

- \hat{a} un terme : u_0 et $u_{n+1} = f(u_n)$

- à deux termes : u_0 et u_1 et $u_{n+2} = f(u_{n+1}, u_n)$

Par une somme de termes :

$$u_n = \sum_{k=0}^n T_k$$

2 Variation

Pour connaître les variations d'une suite (u_n) , on étudie :

- · Le signe de : $u_{n+1} u_n$
- Si les termes sont strictement positifs, on peut comparer de rapport : $\frac{u_{n+1}}{u_n}$ à 1
- · Si la suite est définie de façon explicite, on peut aussi étudier le signe de la dérivée de la fonction associée.

3 Visualisation

Pour visualiser une suite définie par récurrence, on trace, la fonction f et la droite y = x qui permet de reporter les termes sur l'axe des abscisses.

4 Suites arithmétiques

Définition : $u_{n+1} = u_n + r$ et un premier terme. r est la raison

Propriété : $u_{n+1} - u_n = \text{Cste} \quad \forall n \in \mathbb{N}$

Terme général : $u_n = u_0 + nr$ ou $u_n = u_p + (n - p)r$

Somme des termes : $1 + 2 + 3 + \cdots + n = \frac{n(n+1)}{2}$ donc

on a:
$$S_n = u_0 + u_1 + \dots + u_n = \frac{(n+1)(u_0 + u_n)}{2}$$

Allez-y retrouvez le S_n à l'aide de $u_n = u_0 + nr$

5 Suites géométriques

Définition : $u_{n+1} = q \times u_n$ et un premier terme. q est la raison

Propriété:
$$\frac{u_{n+1}}{u_n} = cste \ \forall n \in N$$

Terme général:

$$u_n = u_0 \times q^n$$
 ou $u_n = u_p \times q^{n-p}$

On note :
$$1 + q^1 + q^2 + \dots + q^n = \frac{1 - q^{n+1}}{1 - q}$$

Donc:
$$S = u_0 + u_1 + \dots + u_n = u_0 \frac{1 - q^{n+1}}{1 - q}$$
, soit

$$S=1^{er}terme \times \frac{1-q^{Nbre\ termes}}{1-q}$$

Raisonnement par récurrence. Limite d'une suite

1 Raisonnement par récurrence

1.1 Axiome de récurrence

<u>Définition</u>: Soit une propriété *P* définie sur N. Si :

- La propriété est **initialisée** à partir d'un certain rang n_0
- La propriété est **héréditaire** à partir d'un certain rang n_0 $(c.-à-d. \forall n \geq n_0 \text{ on ait } P(n) \rightarrow P(n+1))$ Alors la propriété est vraie à partir d'un certain rang n_0 .

1.2 Exemple:

Démontrer que pour tout entier naturel n, la suite (u_n) est définie par : $u_0 = 1$ et $u_{n+1} = \sqrt{2 + u_n}$ et telle que P(n) : $0 < u_n < 2$.

Initialisation: on a u_0 =1 donc 0< u_0 <2. P(0) est **vraie**

Hérédité: On suppose que $0 < u_n < 2$ montrons que $0 < u_{n+1} < 2$

Soit la fonction f définie par $f(x) = \sqrt{x+2}$ est croissante car composée de deux fonctions élémentaires croissantes. On a donc : $0 < u_n < 2 \Leftrightarrow f(0) < f(u_n) < f(2) \Leftrightarrow$

 $\sqrt{2} < \sqrt{u_n + 2} < \sqrt{2 + 2} \Rightarrow \mathbf{0} < U_{n+1} < \mathbf{2}$. La propriété P(n) est héréditaire.

Donc P(n), par initialisation et hérédité, est vrai $\forall n \in N$.

2 Limite d'une suite

Définition:

• On dit que la suite (u_n) a pour limite l, si et seulement si, tout ouvert contenant l contient tous les termes de la suite à partir d'un certain rang.

On note alors : $\lim_{n \to +\infty} u_n =$

l et on dit que la suite **converge** vers **l**

• On dit que la suite (u_n) a pour limite $+\infty(resp.-\infty)$, si on a $\lim_{n\to+\infty} u_n = +\infty$ resp. $\lim_{n\to+\infty} u_n = -\infty$ On dit que la suite **diverge** vers $+\infty$ (resp. vers $-\infty$)

• Théorème d'encadrement ou théorème « des gendarmes » :

 u_n , v_n et w_n Telles que, à partir d'un certain rang on a :

$$v_n \le u_n \le w_n$$
 avec

$$\lim_{n \to +\infty} v_n = \lim_{n \to +\infty} w_n = l \ alors \ \lim_{n \to +\infty} u_n = l$$

• Théorème de comparaison :

 u_n , v_n et w_n Telles que :

$$u_n \ge v_n \ et \ si \ \lim_{n \to +\infty} v_n = +\infty \ alors \lim_{n \to +\infty} u_n = +\infty$$

$$u_n \le w_n \ et \ si \ \lim_{n \to +\infty} w_n = -\infty \ alors \ \lim_{n \to +\infty} u_n = -\infty$$

3 Convergence d'une suite monotone

Définition:

On dit que la suite (u_n) est **majorée** si et seulement si, il existe un réel M tel que : $\forall n \in N$, $u_n \leq M$

On dit que la suite (u_n) est **minorée** si et seulement si, il existe un réel m tel que : $\forall n \in N, u_n \geq m$

Si (u_n) est majorée et minorée, on dit que la suite est **bornée.**

Divergence:

- Si une suite (u_n) est **croissante et non majorée**, alors elle diverge vers $+\infty$
- Si une suite (u_n) est **décroissante et non minorée**, alors elle diverge vers $-\infty$

Convergence:

- Si une suite (u_n) est **croissante et majorée**, alors elle converge.
- Si une suite (u_n) est **décroissante et minorée**, alors elle converge.

Théorème du point fixe :

Soit une suite (u_n) définie par u_0 et $u_{n+1}=f(u_n)$ converge vers l, si la fonction associée f est **continue** en l, alors la limite de la suite (u_n) est solution de l'équation f(x)=x.

Exemple:

Calculer la limite de la suite (u_n) définie par $u_0 = 1$ et $u_{n+1} = \sqrt{2 + u_n}$.