ELE 364: Assignment #1 Solutions

1. (10 pts) The entropy is:

$$= -\left(\frac{a}{a+b}\log_2\frac{a}{a+b} + \frac{b}{a+b}\log_2\frac{b}{a+b}\right)$$

$$= -\frac{1}{a+b}\left(a\log_2\frac{a}{a+b} + b\log_2\frac{b}{a+b}\right)$$

$$= -\frac{1}{a+b}\left(\log_2\left(\frac{a}{a+b}\right)^a + \log_2\left(\frac{b}{a+b}\right)^b\right)$$

$$= -\frac{1}{a+b}\left(\log_2\frac{a^a}{(a+b)^a} + \log_2\frac{b^b}{(a+b)^b}\right)$$

$$= -\frac{1}{a+b}\log_2\frac{a^ab^b}{(a+b)^{a+b}}$$

$$= \frac{1}{a+b}\log_2\frac{(a+b)^{a+b}}{a^ab^b}$$

2. (10 pts)

(a)
$$p(25-50) = p(100-150) = 0.3$$
 and $p(75-100) = 0.4$.
Entropy $= -\sum p \ log_2(p) = -\{2 \times 0.3 \times \log_2(0.3) + 0.4 \times \log_2(0.4)\} = 1.571$ bits.
Gini index $= 1 - \sum p^2 = 1 - \{2 \times 0.3^2 + 0.4^2\} = 0.660$.

(b) Potential mid-point threshold options are 29, 31, 34.5, 39.5, 46, 57, and 67. Table 1 shows the information gain when plotting the data based on these threshold values.

Table 1: Information gain for each of the candidate age thresholds

Table 1. Information gain for each of the candidate age thresholds				
Split by Threshold	Number of Instances	Partition entropy	Rem.	IG
\geq 29	2/8	1.000 / 1.561	1.449	0.122
≥ 31	3/7	$0.918 \ / \ 1.557$	1.365	0.206
≥ 34.5	4/6	1.000 / 1.459	1.275	0.295
≥ 39.5	5/5	0.971 / 0.971	0.971	0.600
\geq 46	7/3	1.449 / 0.918	1.289	0.281
\geq 57	8/2	$1.406 \ / \ 0.000$	1.125	0.446
\geq 67	9/1	1.530 / 0.000	1.377	0.194

Age ≥ 39.5 has the highest information gain.

(c) Information gain for the education feature using entropy:

$$\begin{split} &H(Education=BS)=-\{(1/4)\times\log_2(1/4)+(3/4)\times\log_2(3/4)\}=0.811 \text{ bits } \\ &H(Education=MS)=-\{(2/3)\times\log_2(2/3)+(1/3)\times\log_2(1/3)\}=0.918 \text{ bits } \\ &H(Education=PhD)=-\{(1/3)\times\log_2(1/3)+(2/3)\times\log_2(2/3)\}=0.918 \text{ bits } \\ &rem(Education)=\{0.4\times0.811+0.3\times0.918+0.3\times0.918\}=0.875 \text{ bits } \\ &Thus, &IG(Education)=H-rem(Education)=1.571-0.875=0.696 \text{ bits.} \end{split}$$

Information gain for the occupation feature using entropy:

$$H(Occupation = farmer) = -\{(1/2) \times \log_2(1/2) + (1/2) \times \log_2(1/2)\} = 1.000 \text{ bits}$$

$$\begin{split} &H(Occupation = professional) = -\{(2/5) \times \log_2(2/5) + (3/5) \times \log_2(3/5)\} = 0.971 \text{ bits } \\ &H(Occupation = teacher) = -\{(2/3) \times \log_2(2/3) + (1/3) \times \log_2(1/3)\} = 0.918 \text{ bits } \\ &rem(Occupation) = \{0.2 \times 1.000 + 0.5 \times 0.971 + 0.3 \times 0.918\} = 0.961 \text{ bits } \\ &\text{Thus, } IG(Occupation) = H - rem(Occupation) = 1.571 - 0.961 = 0.610 \text{ bits.} \end{split}$$

(d) First, we need to calculate the entropy of the dataset with respect to the education feature. $H(Education) = -\{0.4 \times \log_2(0.4) + 2 \times 0.3 \times \log_2(0.3)\} = 1.571$ bits. Information gain ratio for education feature: GR(Education) = IG(Education)/H(Education) = 0.695/1.571 = 0.443.

The entropy of the dataset with respect to the occupation feature. $H(Occupation) = -\{0.2 \times \log_2(0.2) + 0.5 \times \log_2(0.5) + 0.3 \times \log_2(0.3)\} = 1.485$ bits. Information gain ratio for occupation feature: GR(Occupation) = IG(Occupation) / H(Occupation) = 0.610/1.485 = 0.411.

(e) Information gain for the education feature using the Gini index:

$$Gini(Education = BS) = 1 - \{(1/4)^2 + (3/4)^2\} = 0.375$$

$$Gini(Education = MS) = 1 - \{(2/3)^2 + (1/3)^2\} = 0.444$$

$$Gini(Education = PhD) = 1 - \{(1/3)^2 + (2/3)^2\} = 0.444$$

$$rem(Education) = \{0.4 \times 0.375 + 0.3 \times 0.444 + 0.3 \times 0.444\} = 0.416$$
 Thus,
$$IG(Education) = Gini - rem(Education) = 0.660 - 0.414 = 0.246$$

Information gain for the occupation feature using the Gini index:

$$Gini(Occupation = farmer) = 1 - \{(1/2)^2 + (1/2)^2 = 0.500$$

 $Gini(Occupation = professional) = 1 - \{(2/5)^2 + (3/5)^2 = 0.480$
 $Gini(Occupation = teacher) = 1 - \{(2/3)^2 + (1/3)^2 = 0.444$
 $rem(Occupation) = \{0.2 \times 0.500 + 0.5 \times 0.480 + 0.3 \times 0.444\} = 0.473$
Thus, $IG(Occupation) = H - rem(Occupation) = 0.660 - 0.473 = 0.187$

- 3. (10 pts) $\binom{5}{3} \times 0.8^3 \times 0.2^2 + \binom{5}{4} \times 0.8^4 \times 0.2 + \binom{5}{5} \times 0.8^5 = 0.94208.$
- 4. (10 pts)
 - (a) Current weights = .1 and $\epsilon = .1$. New weights of misclassified instances = $\frac{.1}{2 \times .1} = \frac{1}{2}$.
 - (b) New weights of correctly classified instances = $\frac{.1}{2\times.9} = \frac{1}{18}$.
 - (c) Confidence factor $\alpha = \frac{1}{2} \ln(\frac{.9}{.1}) = 1.0986$.