EDS 223: Geospatial Analysis & Remote Sensing Week 8

Welcome!

- Remote sensing of vegetation
 - Leaf
 - Canopy
 - Landscape
 - Vegetation indices
- Investigating plant phenology in Southern CA

Source: NASA, Leah Hustak

Why does the reflectance spectra for vegetation look like this?

Source: NASA, Leah Hustak

interfaces)

More complex leaves: • More internal scattering

- · Lower transmission
- · More diffuse scattering

Remotely sensing leaf moisture content

shortwave infrared reflectance

Soil reflectance

soil and vegetation both strongly reflect near infrared

Soil reflectance

soil and vegetation both strongly reflect near infrared healthy vegetation absorbs more red

Soil reflectance

soil and vegetation both strongly reflect near infrared healthy vegetation absorbs more red

moisture content

near infrared reflectance

Goals:

- Distinguish (un)healthy vegetar and soil
- Stay constant across images

Goals:

- Distinguish (un)healthy vegetar and soil
- Stay constant across images

Difference Vegetation Index

DVI = Near infrared - Red

Goals:

- Distinguish (un)healthy vegetar and soil
- Stay constant across images

Difference Vegetation Index

DVI = Near infrared - Red

Goals:

- Distinguish (un)healthy vegetageneral
- Stay constant across images

Difference Vegetation Index

DVI = Near infrared - Red

Goals:

- Distinguish (un)healthy vegetar and soil
- Stay constant across images

Ratio Vegetation Index

RVI = Near infrared ÷ Red

Goals:

- Distinguish (un)healthy vegetar and soil
- Stay constant across images

Ratio Vegetation Index

RVI = Near infrared ÷ Red

Goals:

- Distinguish (un)healthy vegetare
 and soil
- Stay constant across images

Ratio Vegetation Index

RVI = Near infrared ÷ Red

Goals:

- Distinguish (un)healthy vegetare
 and soil
- Stay constant across images

Ratio Vegetation Index

 $RVI = Near infrared \div Red$

🗴 But, division by zero errors....

Goals:

- Distinguish (un)healthy vegetar and soil
- Stay constant across images

Normalized Difference Vegetation Index

 $NDVI = \frac{\text{Near infrared - Red}}{\text{Near infrared + Red}}$

Goals:

- Distinguish (un)healthy vegetar and soil
- Stay constant across images

Normalized Difference Vegetation Index

 $NDVI = \frac{\text{Near infrared - Red}}{\text{Near infrared + Red}}$

Goals:

- Distinguish (un)healthy vegetage
 and soil
- Stay constant across images

Normalized Difference Vegetation Index

 $NDVI = \frac{\text{Near infrared - Red}}{\text{Near infrared + Red}}$

Goals:

- Distinguish (un)healthy vegetageneral
 and soil
- Stay constant across images

Normalized Difference Vegetation Index

$$\frac{\text{NDVI} = \text{Near infrared - Red}}{\text{Near infrared + Red}}$$

Rarely divides by zero

Remote sensing of vegetation

Remote sensing of vegetation

Vegetation phenology

Source: EcoTree

Vegetation phenology

Goals:

 Understand the phenological cycles of plant communities near the Santa Clara River

Approach:

- Estimate NDVI from monthly Landsat images
- Use study sites representing:
 - Riparian forest
 - Grasslands
 - Chaparral shrublands

Source: The Nature Conservancy