

IMPLEMENTASI K-MEANS CLUSTERING
DAN MODIFIKASI ADHOC ON-DEMAND
DISTANCE VECTOR ROUTING PROTOCOL
PADA MOBILE ADHOC NETWORK UNTUK
MENINGKATKAN PERFORMA PENGIRIMAN
ANTAR NODE

FAHRIZAL NAUFAL AHMAD – 05111640000135 DOSEN PEMBIMBING 1: Dr.Eng. Radityo Anggoro, S.Kom., M.Sc. DOSEN PEMBIMBING 2: Ir.F.X. Arunanto M.Sc.

OUTLINES

Pendahuluan

01

O

03

Uji Coba dan Evaluasi

Metode Modifikasi

02

04

Kesimpulan dan Saran

ADHOC ON-DEMAND DISTANCE VECTOR

AODV merupakan perpaduan antara DSR dan DSDV. AODV mengambil karakteristik DSR yaitu melakukan route discovery bila dibutuhkan. Perbedaan AODV dan DSR adalah AODV menggunakan routing table tradisional yaitu satu entri per tujuan [2].

AODV sendiri mempunyai 2 fase utama, yaitu Route Discovery dan Route Maintenance. Pada setiap fase, proses ini melibatkan beberapa jenis paket yang disebut control messages.

MOBILE ADHOC NETWORKS

Mobile Ad hoc Network(MANET) merupakan sebuah jaringan yang terbentuk dari beberapa node yang bergerak bebas dan dinamis. MANET memungkinkan terjadinya komunikasi jaringan tanpa bergantung pada ketersedian infrastruktur jaringan yang tetap [1].

LATAR BELAKANG

1

AODV adalah distance vector routing protocol yang termasuk dalam klasifikasi reaktif routing protocol, yang hanya merequest sebuah rute saat dibutuhkan. Teknologi AODV pun pada akhirnya dikembangkan dan akhirnya muncul teknologi baru yang bisa digunakan pada perangkat bergerak, yaitu Mobile Ad-hoc Network (MANET).

2

Beberapa penelitian melakukan evaluasi dari MANET. Dihasilkan bahwa jika MANET mengirim paket data melalui rute yang telah rusak, maka sistem tersebut tidak dapat memberikan rute cadangan langsung. Maka dari itu, perlu sekali dilakukan optimasi performa dari MANET.

3

Penulis akan melakukan modifikasi terhadap MANET dengan melakukan implementasi K-Means Clustering pada AODV Routing Protocol untuk meningkatkan Packet Delivery Ratio, dan menurunkan routing overhead, average hop count dan end-to-end delay.

RUMUSAN MASALAH

- Bagaimana melakukan implementasi K-Means Clustering pada AODV Routing Protocol pada MANET?
- Bagaimana peranan K-Means Clustering dalam AODV Based Backup Routing dalam mengurangi Packet Loss Ratio pada MANET?
- Bagaimana peranan algoritma K-means dalam AODV Based Backup Routing memengaruhi performa MANET secara keseluruhan diukur dari Packet Delivery Ratio, End-to-end Delay, dan Routing Overhead

TUJUAN

Melakukan implementasi K-means dalam AODV routing protocol pada MANET.

Menganalisis peranan Algoritma K-means dalam AODV Based Backup Routing dalam mengurangi Packet Loss Ratio pada MANET.

Menganalisis performa AODV Based Backup Routing yang telah ditambah algoritma K-means dengan mengukur matriks Packet Delivery Ratio (PDR), Endto-end Delay, dan Routing Overhead.

METODOLOGI

DIAGRAM ALUR SIMULASI

MODIFIKASI PROTOKOL AODV

K-MEANS CLUSTERING

BACK-UP ROUTING

BACKUP ROUTING

SKENARIO MOBILITAS

Skenario Grid

Skenario Real

SKENARIO GRID

700X700 M 4X4 TITIK 9 PETAK

SKENARIO REAL

JL. DR SOETOMO SURABAYA

METRIK ANALISIS (FILE AWK)

$$PDR = \frac{packet\ received}{packet\ sent}\ x\ 100\%$$

$$E2E = \frac{\sum_{n=1}^{recvnum} CBR(RecvTime) - CBR(SentTime)}{recvnum}$$

$$RO = \sum_{n=1}^{sentnum} packet sent$$

$$HC = \frac{\sum_{n=1}^{recvnum} hop\ count}{recvnum}$$

KONFIGURASI SIMULASI

No	Parameter	Spesifikasi
1	Network Simulator Tool	NS2
2	Routing Protocol	AODV
3	Simulation Time	200 s
4	Number of Nodes	50, 100, 150, 200
5	Simulation Area	700 m x 700 m
6	Number of Cluster	5,10, 15, 20
7	Number of Clustering	1
8	Antenna Model	Omni Antenna
9	MAC Type	MAC/802_11
10	Network Interfaces Types	Wireless
11	Transmission Range	400 m
11	Source/Destination Node	Static
12	Initial Node Energy	100 Joule

UJI COBA DAN EVALUASI

LINGKUNGAN UJI COBA

Despite being red, Mars is a cold place, not hot. It's full of iron oxide dust

SKENARIO GRID

Venus has a beautiful name and is the second planet from the Sun

SKENARIO REAL

Mercury is the closest planet to the Sun and the smallest in our Solar System

LINGKUNGAN UJI COBA

Komponen	Spesifikasi		
CPU	Intel(R) core(TM) i7-8750H CPU @		
	2.20GHz		
Sistem Operasi	Linux Mint 19.3 "Tricia" - Cinnamon (64-		
	bit)		
Linux Kernel	Linux Kernel 4.4		
Memori	16.4 GB		
Penyimpanan	50 GB		

SKENARIO GRID

PACKET DELIVERT RATIO

END TO END DELAY

ROUTING OVERHEAD

AVERAGE HOP COUNT

SKENARIO GRID: PACKET DELIVERY RATIO

Jumlah	AODV	AODV	Perbedaan
Node	Modifikasi	Asli (%)	(%)
(Cluster)	(%)		
50(5)	86,973	80,368	6,605
100(10)	83,139	61,841	21,298
150(15)	77,145	65,476	11,669
200(20)	83,295	69,041	14,254

E2E Hasil Simulasi Skenario Grid 1400 1200 1000 E2E (ms) 800 600 400 200 50(5) 100(10) 150(15) 200(20) Jumlah Node (Cluster) ■ AODV Modifikasi ■ AODV Asli

SKENARIO GRID: END TO DELAY

Jumlah	AODV	AODV	Perbedaan
Node	Modifikasi	Asli (ms)	(ms)
(Cluster)	(ms)		
50(5)	242,34141	838,2864	-595,94499
100(10)	799,6421	1265,1203	-465,4782
150(15)	780,5188	962,08983	-181,57103
200(20)	829,46716	1245,8534	-416,38624

RO Hasil Simulasi Skenario Grid 40000 35000 30000 ---25000 — 20000 15000 10000 5000 50(5) 100(10) 150(15) 200(20) Jumlah Node (Cluster) ■ AODV Modifikasi ■ AODV Asli

SKENARIO GRID: ROUTING OVERHEAD

Jumlah Node (Cluster)	AODV Modifikasi	AODV Asli	Perbedaan
50(5)	9701,1	1323,6	8377,5
100(10)	20234,5	2752,1	17482,4
150(15)	28704,2	3492,4	25211,8
200(20)	37069,7	4537,3	32532,4

SKENARIO GRID: AVERAGE HOP COUNT

Jumlah Node	A ODV Modifikasi	A ODV Asli	Perbedaan
(Cluster)	2.005	4.070	0.002
50(5) 100(10)	3,985 4,178	4,078 5,167	-0,093 -0,989
150(15)	4,112	4,253	-0,141
200(20)	3,757	4,026	-0,269

SKENARIO REAL

PACKET DELIVERT RATIO

END TO END DELAY

ROUTING OVERHEAD

AVERAGE HOP COUNT

SKENARIO REAL: PACKET DELIVERY RATIO

Jumlah	AODV	AODV	Perbedaan
Node	Modifikasi	Asli	(%)
(Cluster)	(%)	(%)	
50(5)	82,608	77,379	5,229
100(10)	78,333	46,266	32,067
150(15)	77,269	53,447	23,822
200(20)	71,927	55,834	16,093

SKENARIO REAL: END TO DELAY

Jumlah	AODV	AODV	Perbedaan
Node	Modifikasi	A sli (ms)	(ms)
(Cluster)	(ms)		
50(5)	471,53471	904,2857	-432,75099
100(10)	625,37918	1982,5671	-1357,18792
150(15)	711,1943	1848,9637	-1137,7694
200(20)	1111,78121	2676,64494	-1564,86373

SKENARIO REAL: ROUTING OVERHEAD

Jumlah	AODV	AODV	Perbedaan
Node	Modifikasi	Asli	
(Cluster)			
50(5)	9718,8	1058,4	8660,4
100(10)	19474,2	2375,4	17098,8
150(15)	28210,8	3723,6	24487,2
200(20)	35575,1	3988,862	31586,238

SKENARIO REAL: AVERAGE HOP COUNT

Jumlah	AODV	AODV	Perbedaan
Node	Modifikasi	Asli	
(Cluster)			
50(5)	3,727	4,335	-0,608
100(10)	3,971	5,301	-1,33
150(15)	4,002	5,606	-1,604
200(20)	3,893	5,252	-1,359

KESIMPULAN

```
PDR -> +
```

E2E -> -

HC -> -

RO -> +

SKENARIO GRID:

PDR -> +20%

E2E -> -40%

HC -> -8%

RO -> +677%

SKENARIO REAL:

PDR -> +37%

E2E -> -59%

HC -> -23%

RO -> +747%

SARAN

- MEMPERBANYAK VARIASI UJI COBA AGAR DATA LEBIH AKURAT
- MENERAPKAN SEBUAH METODE UNTUK MENGURANGI HASIL ROUTING OVERHEAD
- MENAMBAHKAN METODE LAIN KE DALAM AODV, CONTOH: PARTICLE SWARM ORGANIZATION

THANKS!

Does anyone have any question?

Fahrizal.8898@gmail.com +62 813 2046 5964

DAFTAR PUSTAKA

- [1] M. L. Raja dan C. D. S. S. Baboo, "An Overview of MANET: Applications, Attacks and Challenges," *International Journal of Computer Science and Mobile* Computing, vol. 3, no. 1, pp. 408-417, 2014.
- [2] M. Singh dan S. Kumar, "A Survey: Ad-hoc on Demand Distance Vector (AODV) Protocol," *International Journal* of Computer Applications, vol. 161, no. 1, pp. 38-44, 2017.
- [3] G. G. S. Sruthy, "AODV based backup routing for optimized performance in mobile ad-hoc networks," 2017 International Conference on Computing Methodologies and Communication (ICCMC), pp. 684-688, 2017.
- [4] "OpenStreetMap," [Online]. Available: https://www.openstreetmap.org/.. [Diakses 22 May 2020].
- [5] B. A. Kumar, M. V. Subramanyam dan K. S. Prasad, "An Energy Efficient Clustering Using K-Means and AODV Routing Protocol in Ad-hoc Networks," *International Journal of Intelligent Engineering & Systems*, vol. 12, no. 2, 2019.
- [6] "JOSM," [Online]. Available: josm.openstreetmap.de/.. [Diakses 22 5 2020].
- [7] K. Shaymala, S. K. Lokhande, R. B. P dan S. Kumar, "Efficient backup routing scheme in AODV with unidirectional links," 2011 Annual IEEE India Conference, 2011.