DSA Blatt 02

Leonard Oertelt 1276156 Julian Opitz 1302082

Aufage 4:

a)

Fibonacci:

Rekursiv mit 46 als Eingabe: 1836311903 (Berechnung benötigte ca. 4.795s)

Iterativ mit 46 als Eingabe: 1836311903 (Berechnung benötigte ca. 2.1 * 10⁻⁸s)

b)

Fakultät:

Rekursiv mit 10 als Eingabe: 3628800 (Berechnung benötigte ca. 2.6 * 10⁻⁸s)

Iterativ mit 10 als Eingabe: 3628800 (Berechnung benötigte ca. 1.628 * 10⁻⁹s)

c)

Pseudocode Logarithmusfunktion:

Algorithm logarithmusNIterationen(x,n)

sum
$$\leftarrow$$
 0;
for k \leftarrow 0 to n do
sum \leftarrow sum + $\frac{(x-1)^{2k+1}}{(2k+1)(x+1)^{2k+1}}$;
return 2 * sum;

d)

Algorithm logarithmusNIterationenOptimized(x,n)

sum ← 0;
bruch ←
$$\frac{x-1}{x+1}$$
;
for k ← 0 to n do
exponent ← 2k + 1;
sum ← sum + $\frac{bruch^{exponent}}{exponent}$
return 2 * sum;

e)

		Alg c			Alg d			Alg mit
Eingabe	5 Schritte	10 Schritte	20 Schritte	5 Schritte	10 Schritte	20 Schritte	Taschenrechner	Eps = 1E-9
0	-3,574	-4,267	-4,267	-3,574	-4,267	-4,267	Error	-21,994
1	0	0	0	0	0	0	0	0
2	0,693	0,693	0,693	0,693	0,693	0,693	0,693	0,693
4	1,385	1,386	1,386	1,385	1,386	1,386	1,386	1,386
8	2,055	2,078	2,079	2,055	2,078	2,079	2,079	2,079
10	2,255	2,299	2,303	2,255	2,299	2,303	2,303	2,303

Aufgabe 5:

a)

$$2^{n+1} \in O(2^n)$$
 mit $f(n) = 2^n$ und $g(n) = 2^{n+1}$

daraus folgt:

1.
$$2^{n+1} \le c * 2^n$$

2. nach n umstellen:

$$2^{n+1} \le c * 2^n$$
 | log_2
 $n+1 \le log_2c + n$ | $- n$
 $1 \le log_2c$ | $2^{()}$

$$2^1\!\le c$$

n ist weggefallen:

die Ungleichung ist erfüllt, wenn $c \ge 2$.

3. Schluss:

Also gilt für g(n) =
$$2^{n+1}$$
 und f(n) = 2^n und $c \ge 2$ die Aussage g \in O(f) $2^{n+1} = 2 * 2^n$

q.e.d.

$$2^{n+1} \in \Omega(2^n)$$
 mit $f(n) = 2^n$ und $g(n) = 2^{n+1}$

daraus folgt:

1.
$$c * f(n) \le g(n)$$

2. umstellen:

$$\begin{array}{lll} c * 2^n \leq 2^{n+1} & & | log_2 \\ log_2 c + n \leq n+1 & & | -n \\ log_2 c \leq 1 & & | 2^{()} \\ c \leq 2 & & & \end{array}$$

3. Schluss:

die Ungleichung ist erfüllt, wenn $c \le 2$.

Also gilt für g(n) =
$$2^{n+1}$$
 und f(n) = 2^n und $c \le 2$ die Aussage g $\in \Omega(f)$ $2^{n+1} = 2 * 2^n$

q.e.d.

c) Zu beweisen:

$$\frac{n(n-2)}{3} \in O(n^2)$$

$$\frac{n(n-2)}{3} = \frac{1}{3}n^2 - \frac{2}{3}n$$

Rechenregel der Addition:

$$f = \frac{1}{3}n^2$$

$$g = \frac{-2}{3}n$$

$$f + g \in O(\max\{f,g\}) = O(f) \text{ da } g \in O(f) = \frac{-2}{3}n \in O(n^2)$$

daraus folgt Terme niedrigerer Ordnung als n² fallen weg (Folie 33):

$$\frac{1}{3}n^2 \in O(n^2)$$

Rechenregel der Multiplikation:

$$a = \frac{1}{3}$$

$$b = n^2$$

$$a \in O(1) \land b \in O(n^2) \to a * b \in O(1 * n^2)$$

daraus folgt, mit Bezug auf Folie 33, konstante Faktoren fallen weg:

$$n^2 \in O(n^2)$$

q.e.d.

$$10000 \cdot n \cdot (n+100) \cdot (n+1000)$$

$$= 10000n^3 + 11000000n^2 + 1000000000n$$

Terme Niedrigerer Ordnung als das Polynom fallen weg:

$$O(10000n^3+11000000n^2+1000000000n)$$

$$= O(10000n^3)$$

Konstante Faktoren fallen weg:

$$O(10000n^3)$$

$$= O(n^3)$$

e)

$$\frac{n^2+19n-2}{\sqrt{n}}$$

$$= (n^2 + 19n - 2) \cdot n^{-\frac{1}{2}}$$

$$= n^{\frac{3}{2}} + 19n^{\frac{1}{2}} - 2n^{-\frac{1}{2}}$$

Terme Niedrigerer Ordnung als das Polynom fallen weg:

$$O(n^{\frac{3}{2}} + 19n^{\frac{1}{2}} - 2n^{-\frac{1}{2}}) = O(n^{\frac{3}{2}}) = O(n \cdot \sqrt{n})$$

- q.e.d.

$$(n+1)! \in O(n!)$$

$$(n+1)! = n! \cdot (n+1)$$

$$n! \cdot (n+1) \le c \cdot n!$$
 | :n!

$$n+1 \le c \qquad \qquad |-1$$

$$n \leq c - 1$$

Da (c-1) konstant ist und n unendlich groß werden kann ist die Ungleichung nicht erfüllt:

$$(n+1)! \notin O(n!)$$