Euler Parameters (Quaternions)

Voted most popular attitude coordinates in the non-singular category...

Introduction

- Very popular redundant set of attitude coordinates
- Are called either Euler Parameters (EPs) or quaternions
- Major benefits:
 - Non-singular attitude description
 - Linear differential kinematic equation
 - Works well for small and large rotations
- Drawbacks:
 - Constraint equation must be identified as all times
 - Not as simple to visualize

Definition of EP

• The redundant Euler Parameters are defined using the principal rotation components as

$$\beta_0 = \cos(\Phi/2)$$

$$\beta_1 = e_1 \sin(\Phi/2)$$

$$\beta_2 = e_2 \sin(\Phi/2)$$

$$\beta_3 = e_3 \sin(\Phi/2)$$

 Note that the 4-coordinate set has a single constraint equation! All EPs must lie on the three-dimensional surface of a 4-dimensional hypersphere. Constraints:

$$e_1^2 + e_2^2 + e_3^2 = 1$$

$$\beta_0^2 + \beta_1^2 + \beta_2^2 + \beta_3^2 = 1$$

Unit Hypersphere

• Since the PRV components are not unique, we find that the EP also isn't unique:

$$\beta_0' = \cos\left(-\frac{\Phi}{2}\right) = \cos\left(\frac{\Phi}{2}\right) = \beta_0$$

$$\beta_i' = -e_i \sin\left(-\frac{\Phi}{2}\right) = e_i \sin\left(\frac{\Phi}{2}\right) = \beta_i$$

$$(\hat{e}, \Phi') \qquad \beta'_0 = \cos\left(\frac{\Phi'}{2}\right) = \cos\left(\frac{\Phi}{2} - \pi\right) = -\cos\left(\frac{\Phi}{2}\right) = -\beta_0$$
$$\beta'_i = e_i \sin\left(\frac{\Phi'}{2}\right) = e_i \sin\left(\frac{\Phi'}{2} - \pi\right) = -e_i \sin\left(\frac{\Phi}{2}\right) = -\beta_i$$

• Note that the alternate EP set corresponds to performing the larger principle rotation angle (i.e., rotating the long way round)

Euler Parameter to DCM Relationship

• The rotation matrix can be expressed in terms or EPs as:

$$[C] = \begin{bmatrix} \beta_0^2 + \beta_1^2 - \beta_2^2 - \beta_3^2 & 2(\beta_1 \beta_2 + \beta_0 \beta_3) & 2(\beta_1 \beta_3 - \beta_0 \beta_2) \\ 2(\beta_1 \beta_2 - \beta_0 \beta_3) & \beta_0^2 - \beta_1^2 + \beta_2^2 - \beta_3^2 & 2(\beta_2 \beta_3 + \beta_0 \beta_1) \\ 2(\beta_1 \beta_3 + \beta_0 \beta_2) & 2(\beta_2 \beta_3 - \beta_0 \beta_1) & \beta_0^2 - \beta_1^2 - \beta_2^2 + \beta_3^2 \end{bmatrix}$$

The inverse relationship is found by inspection to be

$$\beta_0 = \pm \frac{1}{2} \sqrt{C_{11} + C_{22} + C_{33} + 1}$$

$$\beta_1 = \frac{C_{23} - C_{32}}{4\beta_0}$$

$$\beta_2 = \frac{C_{31} - C_{13}}{4\beta_0}$$

$$\beta_3 = \frac{C_{12} - C_{21}}{4\beta_0}$$

Singular if: $\beta_0 \to 0$

Sheppard's method is a robust method to compute the EP from a rotation matrix:

1st step: Find largest value of

$$\beta_0^2 = \frac{1}{4} \left(1 + \text{trace} \left([C] \right) \right) \qquad \beta_2^2 = \frac{1}{4} \left(1 + 2C_{22} - \text{trace} \left([C] \right) \right)$$
$$\beta_1^2 = \frac{1}{4} \left(1 + 2C_{11} - \text{trace} \left([C] \right) \right) \qquad \beta_3^2 = \frac{1}{4} \left(1 + 2C_{33} - \text{trace} \left([C] \right) \right)$$

$$\beta_1^2 = \frac{1}{4} \left(1 + 2C_{11} - \text{trace}\left([C]\right) \right) \quad \beta_3^2 = \frac{1}{4} \left(1 + 2C_{33} - \text{trace}\left([C]\right) \right)$$

2nd step: Compute the remaining EPs using

$$\beta_0 \beta_1 = (C_{23} - C_{32})/4$$
 $\beta_1 \beta_2 = (C_{12} + C_{21})/4$

$$\beta_0 \beta_2 = (C_{31} - C_{13})/4$$
 $\beta_3 \beta_1 = (C_{31} + C_{13})/4$

$$\beta_0 \beta_3 = (C_{12} - C_{21})/4$$
 $\beta_2 \beta_3 = (C_{23} + C_{32})/4$

Adding Euler Parameters

• A very useful advantage of EPs is how you can add or subtract two orientations using them. Using DCMs, we can add two rotations using:

$$[FN(\boldsymbol{\beta})] = [FB(\boldsymbol{\beta''})][BN(\boldsymbol{\beta'})]$$

However, using EPs directly, we find the elegant result:

$$\begin{pmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \\ \beta_3 \end{pmatrix} = \begin{bmatrix} \beta_0'' & -\beta_1'' & -\beta_2'' & -\beta_3'' \\ \beta_1'' & \beta_0'' & \beta_3'' & -\beta_2'' \\ \beta_2'' & -\beta_3'' & \beta_0'' & \beta_1'' \\ \beta_2'' & -\beta_1'' & \beta_0'' \end{bmatrix} \begin{pmatrix} \beta_0' \\ \beta_1' \\ \beta_2' \\ \beta_3' \end{pmatrix}$$

Note that this matrix is orthogonal!

• By reshuffling the terms (i.e. permutation) in the last EP addition equation, we can also write this as

$$\begin{pmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \\ \beta_3 \end{pmatrix} = \begin{bmatrix} \beta'_0 & -\beta'_1 & -\beta'_2 & -\beta'_3 \\ \beta'_1 & \beta'_0 & -\beta'_3 & \beta'_2 \\ \beta'_2 & \beta'_3 & \beta'_0 & -\beta'_1 \\ \beta'_3 & -\beta'_2 & \beta'_1 & \beta'_0 \end{bmatrix} \begin{pmatrix} \beta''_0 \\ \beta''_1 \\ \beta''_2 \\ \beta''_3 \end{pmatrix}$$

• To subtract two orientations described through EPs, we can use the last two equations and exploit the orthogonality property of the 4x4 matrix to invert it and solve for either β' or β'' .

Euler Parameter Differential Equation

- Using the differential equation of DCMs, and the relationship between EPs and DCMs, we can derive the differential kinematic equations of Euler parameters.
- However, this is a rather lengthy and algebraically complex task. The end result is the amazingly simple bi-linear result:

$$\begin{pmatrix} \dot{\beta}_0 \\ \dot{\beta}_1 \\ \dot{\beta}_2 \\ \dot{\beta}_3 \end{pmatrix} = \frac{1}{2} \begin{bmatrix} \beta_0 & -\beta_1 & -\beta_2 & -\beta_3 \\ \beta_1 & \beta_0 & -\beta_3 & \beta_2 \\ \beta_2 & \beta_3 & \beta_0 & -\beta_1 \\ \beta_3 & -\beta_2 & \beta_1 & \beta_0 \end{bmatrix} \begin{pmatrix} 0 \\ \omega_1 \\ \omega_2 \\ \omega_3 \end{pmatrix}$$

• Rearranging the terms on the right hand side of this differential equation, we can also write this as

$$\begin{pmatrix} \dot{\beta}_0 \\ \dot{\beta}_1 \\ \dot{\beta}_2 \\ \dot{\beta}_3 \end{pmatrix} = \frac{1}{2} \begin{bmatrix} 0 & -\omega_1 & -\omega_2 & -\omega_3 \\ \omega_1 & 0 & \omega_3 & -\omega_2 \\ \omega_2 & -\omega_3 & 0 & \omega_1 \\ \omega_3 & \omega_2 & -\omega_1 & 0 \end{bmatrix} \begin{pmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \\ \beta_3 \end{pmatrix}$$

• Having the differential equation depend linearly on the EPs is important in estimation theory. This makes the EPs ideal coordinate candidates to be used in a Kalman filter (Spacecraft orientation estimator).

2nd Euler Parameter Differential Kinematic Eqs.

 The EP differential equations can also be written in the following convenient form for numerical integration:

$$\dot{\boldsymbol{\beta}} = \frac{1}{2} [B(\boldsymbol{\beta})] \boldsymbol{\omega} \qquad [B(\boldsymbol{\beta})] = \begin{vmatrix} -\beta_1 & -\beta_2 & -\beta_3 \\ \beta_0 & -\beta_3 & \beta_2 \\ \beta_3 & \beta_0 & -\beta_1 \\ -\beta_2 & \beta_1 & \beta_0 \end{vmatrix}$$

• The [B] matrix satisfies the following useful identities:

$$[B(\boldsymbol{\beta})]^T \boldsymbol{\beta} = \mathbf{0}$$
$$[B(\boldsymbol{\beta})]^T \boldsymbol{\beta}' = -[B(\boldsymbol{\beta}')]^T \boldsymbol{\beta}$$

3rd Euler Parameter Differential Kinematic Eqs.

• In control applications, the scalar and vector components of the Euler parameters are sometimes treated separately.

Define:
$$\boldsymbol{\epsilon} \equiv (\beta_1, \beta_2, \beta_3)^T$$

Define:
$$[T(\beta_0, \boldsymbol{\epsilon})] = \beta_0[I_{3\times 3}] + [\tilde{\boldsymbol{\epsilon}}]$$

Differential
$$\dot{eta}_0 = -rac{1}{2} m{\epsilon}^T m{\omega} = -rac{1}{2} m{\omega}^T m{\epsilon}$$
 Equation: $\dot{m{\epsilon}} = rac{1}{2} [T] m{\omega}$

Conclusion

- Non-singular, redundant set of attitude coordinates
- Euler parameter vector must abide by the unit length constraint
- There are two sets of EPs that describe a particular orientation (short and long way round)
- Convenient method to add two EP vectors
- Linear differential kinematic equations

