STA 104: Applied Statistical Methods: Nonparametric Statistics

Course Material Summary

University of California at Davis

Last Edit Date: 02/21/2022

Disclaimer and Term of Use:

- 1. We do not guarantee the accuracy and completeness of the summary content. Some of the course material may not be included, and some of the content in the summary may not be correct. You should use this file properly and legally. We are not responsible for any results from using this file.
- 2. Although most of the content in this summary is originally written by the creator, there may be still some of the content that is adapted (derived) from the slides and codes from *Professor Maxime Pouokam*. We use those as references and quotes in this file. Please contact us to delete this file if you think your rights have been violated.
- 3. This work is licensed under a <u>Creative Commons Attribution 4.0</u> International License.

STA 104 Summary

Topic	Content
Parametric vs non-	Non-parametric statistics uses techniques that do not require typical assumptions of traditional techniques.
parametric	In a traditional test, we assume
	In a traditional test, we assume: 1) Random sample was taken, or equivalently the X_i values are independent.
	2) The sample size $n \ge 30$ (CLT), and the population is normal
	2) The sumple size $n = 30$ (CDT), and the population is normal
	When we do not have these assumptions above, the distributions based on CLT cannot be used, which means we need to
	assume a named distribution. This is what non-parametric do. It is often called "distribution free".
	When assumptions are NOT violated, the parametric tests have more power.
	When assumptions are violated, the non-parametric tests have more power.
	$* Power = 1 - P(Type\ II\ error) = P(Reject\ H_0 \mid H_0\ False)$
	Test for single median
Binomial test	We use median because we do not have these assumptions in parametric tests. Median is actually a proportion, which is 50%. θ_m denotes all possible medians. θ_m^* is the hypothesized median. n is the sample size.
	Assumption: A random sample was taken from the population (equivalently, observations are independent).
	Step 1: State the null and alternative hypothesis
	$H_0: \theta_m = \theta_m^* v.s. H_1: \theta_m \neq \theta_m^* (H_0: p = 0.5 H_1: p \neq 0.5) (two - sided)$
	$H_0: \theta_m \le \theta_m^* \ v.s. \ H_1: \theta_m > \theta_m^* \ (H_0: p \le 0.5 \ H_1: p > 0.5) \ (right \ tail, \ one - sided)$
	$H_0: \theta_m \ge \theta_m^* \ v.s. \ H_1: \theta_m < \theta_m^* \ (H_0: p \ge 0.5 \ H_1: p < 0.5) \ (left \ tail, \ one - sided)$
	Step 2: Calculate the test statistic
	$B^{+} = \# of X_{i} > \theta_{m}^{*}, B^{+} \sim Binomial(n, \frac{1}{2})$
	Step 3: Calculate p-value
	$H_1: \theta_m \neq \theta_m^* (H_0: p = 0.5 \ H_1: p \neq 0.5) => p - value = 2(\min \{P(X \ge B^+), P(X \le B^+)\})$
	$H_1: \theta_m > \theta_m^* (H_0: p \le 0.5 \ H_1: p > 0.5) => p - value = P(X \ge B^+)$
	$H_1: \theta_m < \theta_m^* \ (H_0: p \ge 0.5 \ H_1: p < 0.5) => p - value = P(X \le B^+)$
	Interpretation: If the true median equals to θ_m^* , we can observe our data or more extreme with probability p-value.
	Step 4: Reject H_0 if p-value $< \alpha$
Normal Approximation to Binomial test	(1) then we have a reasonable sample size, we may assume B 11 (1) type (1 p)) based on EE1, where p
to Dinomai test	under H_0 . We now can use a z distribution.

	Assumption: A random sample was taken from the population (equivalently, observations are independent), and there are at least 5 observations above and below the hypothesized median.
	Step 1: State the null and alternative hypothesis $H_0: \theta_m = \theta_m^* \ v.s. \ H_1: \theta_m \neq \theta_m^* \ (H_0: p = 0.5 \ H_1: p \neq 0.5) \ (two - sided)$ $H_0: \theta_m \leq \theta_m^* \ v.s. \ H_1: \theta_m > \theta_m^* \ (H_0: p \leq 0.5 \ H_1: p > 0.5) \ (right \ tail, \ one - sided)$ $H_0: \theta_m \geq \theta_m^* \ v.s. \ H_1: \theta_m < \theta_m^* \ (H_0: p \geq 0.5 \ H_1: p < 0.5) \ (left \ tail, \ one - sided)$
	Step 2: Calculate the test statistic $Z_S = \frac{S - n(0.5)}{\sqrt{n(0.25)}}$, where $S = B^+ = \#$ of $X_i > \theta_m^*, B^+ \sim Binomial(n, \frac{1}{2})$
	Step 3: Calculate p-value $H_1: \theta_m \neq \theta_m^* \ (H_0: p = 0.5 \ H_1: p \neq 0.5) => p - value = 2P(Z > Z_S)$ $H_1: \theta_m > \theta_m^* \ (H_0: p \leq 0.5 \ H_1: p > 0.5) => p - value = P(Z > Z_S)$ $H_1: \theta_m < \theta_m^* \ (H_0: p \geq 0.5 \ H_1: p < 0.5) => p - value = P(Z < Z_S)$ Interpretation: If the true median equals to θ_m^* , we can observe our data or more extreme with probability p-value.
Confidence Interval for median	Step 4: Reject H_0 if p-value $< \alpha$ Find a $(1 - \alpha)100\%$ confidence interval for the median, using the normal approximation to binomial. Step 1: Get the location
	Lower bound location = $-z_{1-\frac{\alpha}{2}}*(\sqrt{0.25n}) + 0.5n$ Upper bound location = $+z_{1-\frac{\alpha}{2}}*(\sqrt{0.25n}) + 0.5n + 1$
Estimation for	Step 2: Find the number in the rounded location to get the confidence interval $(X_{lower\ bound\ location},\ X_{upper\ bound\ location})$ Find a $(1-\alpha)100\%$ confidence interval for the CDF at x .
Percentile and CDF	Step 1: Get the proportion $\hat{F}(x) = \hat{p} = \frac{\# \ of \ X_i \le x}{n} \sim N(p, \sqrt{(p(1-p))/n})$
	Step 2: Get the lower and upper bound Lower bound: $\hat{p} - z_{1-\frac{\alpha}{2}} * \sqrt{(p(1-p))/n}$ Upper bound: $\hat{p} + z_{1-\frac{\alpha}{2}} * \sqrt{(p(1-p))/n}$

	Step 3: Convert the lower and upper bound to percentile
	(lower bound percentile, upper bound percentile) × 100%
Confidence Intervals for percentiles	Find a $(1 - \alpha)100\%$ confidence interval for the $(p^*)100^{th}$ percentile.
	Step 1: Get the location
	Lower bound location = $n(p^*) - z_{1-\frac{\alpha}{2}} * \sqrt{p^*(1-p^*)n}$
	Upper bound location = $n(p^*) + 1 + z_{1-\frac{\alpha}{2}} * \sqrt{p^*(1-p^*)n}$
	Step 2: Find the number in the rounded location and get the confidence interval
	$(X_{lower\ bound\ location}, X_{upper\ bound\ location})$
	# When we get a location equals to 0 or n+1, we should use 1 or n as our location.
	Tests for two groups
Comparing two means	The goal is to determine whether two means are statistically different. Assumptions for parametric test are:
	1) Random sample from both groups
	2) Groups are independent
	3) \bar{X}_1 and \bar{X}_2 are normal
Permutation test for	Let $F_1(x) = \text{CDF}$ for group 1, $F_2(x) = \text{CDF}$ for group 2. If the distributions for the groups are equal, $F_1(x) = F_2(x)$.
two groups	Both groups are from the same population.
	Assumption: A random sample was taken from each group, groups independent.
	Step 1: state the null and alternative hypothesis
	$H_0: F_1(x) = F_2(x)$ v.s $H_1: F_1(x) \ge F_2(x)$ or $F_1(x) \le F_2(x)$ (two - sided) # distributions are different
	$H_1: F_1(x) \le F_2(x)$ (right tail, one – sided) # group 1 tends to be larger than group 2
	$H_1: F_1(x) \ge F_2(x)$ (left tail, one – sided) # group 2 tends to be larger than group 1
	Step 2: Calculate the observed statistic and all permutations
	$D^{OBS} = \bar{X}_1 - \bar{X}_2$ or $D^{OBS} = total_1 - total_2$ or $D^{OBS} = median_1 - median_2$
	Permutations = $\binom{m+n}{m} = \binom{m+n}{n} = \frac{(m+n)!}{m!n!}$
	Step 3: Calculate the permutation p-value
	$H_1: F_1(x) \ge F_2(x) \text{ or } F_1(x) \le F_2(x) = > \frac{\# \text{ of } D_i \ge D^{OBS} }{normutations}$
	$H_1: F_1(x) \ge F_2(x) \text{ or } F_1(x) \le F_2(x) \implies \frac{\# \text{ of } D_i \ge D^{OBS} }{permutations}$ $H_1: F_1(x) \le F_2(x) \implies \frac{\# \text{ of } D_i \ge D^{OBS}}{permutations}$

	$\mu \circ f D < DOBS$
	$H_1: F_1(x) \ge F_2(x) = > \frac{\# of \ D_i \le D^{OBS}}{permutations}$
	Step 4: If p-value $< \alpha$, reject H_0 .
	# When we have asymmetric distributions, we use the median to compare outliers. Otherwise, we use total or mean.
	## If the sample sizes of each group are the same, the test results from total and mean are the same. Otherwise, the results will be different.
Approximate	Steps for an approximate permutation test (for coding):
Permutation Test	1) Record D^{OBS}
	2) Create one vector of all observations
	3) Randomly shuffle the (m + n) observations, and assign first m to group 1, last n to group 2
	4) Compute D_i = observed difference (in means/medians/totals)
	5) Repeat step 3 and 4, $R > 2000$ times
	6) Based on these R random values of D_i , we have an approximate p-values are:
	$H_1: F_1(x) \ge F_2(x) \text{ or } F_1(x) \le F_2(x) \Longrightarrow (\# \text{ of } D_i \ge D^{OBS}) / R$
	$H_1: F_1(x) \le F_2(x) = (\# \text{ of } D_i \ge D^{OBS}) / R$
	$H_1: F_1(x) \ge F_2(x) = (\# \text{ of } D_i \le D^{OBS}) / R$
	7) If p-value $< \alpha$, reject H_0
Confidence Interval for	A $(1-\alpha)100\%$ CI for a p-value p^* is:
p-value	$p^* \pm z_{1-rac{lpha}{2}} \sqrt{p^*(1-p^*)/R}$
Normal Approximation to permutation	We use the overall mean \bar{x}^* and overall standard deviation S^* in our test statistics. For this test, we need $n + m \ge 30$.
	Assumption: A random sample was taken from each group, groups independent.
	Step 1: state the null and alternative hypothesis
	$H_0: F_1(x) = F_2(x)$ v.s $H_1: F_1(x) \ge F_2(x)$ or $F_1(x) \le F_2(x)$ (two - sided) # distributions are different
	$H_1: F_1(x) \le F_2(x)$ (right tail, one – sided) # group 1 tends to be larger than group 2 $H_1: F_1(x) \ge F_2(x)$ (left tail, one – sided) # group 2 tends to be larger than group 1
	Step 2: Calculate the test statistic
	$Z_S = \frac{\bar{x}_1 - \bar{x}^*}{S^* / \sqrt{m}}$ or $Z_S = \frac{\bar{x}_2 - \bar{x}^*}{S^* / \sqrt{n}}$
	where $\bar{x}^* = \frac{1}{m+n} \sum x_i$, $S^* = \sqrt{\frac{1}{m+n-1} \sum (x_i - \bar{x}^*)^2}$
	Step 3: Calculate the permutation p-value

$H_1: F_1(x) \leq F_2(x) \Rightarrow p - value = P(Z > Z_S) \\ H_1: F_1(x) \geq F_2(x) \Rightarrow p - value = P(Z < Z_S) \\ \text{Step 4: If p-value} < \alpha, reject H_0. \\ \text{Assumption: A random sample was taken from each group, groups independent.} \\ \text{Wilcoxon Rank Sum} \\ \text{(WRS) test} \\ \text{Step 1: State the null and alternative hypothesis} \\ H_0: F_1(x) = F_2(x) v.s H_1: F_1(x) \geq F_2(x) vr_1(x) \leq F_2(x) (two - sided) \# \text{ distributions are different} \\ H_1: F_1(x) \leq F_2(x) (vright tail, \ one - sided) \# \text{ group 1 tends to be larger than group 2} \\ H_1: F_1(x) \geq F_2(x) (left tail, \ one - sided) \# \text{ group 2 tends to be larger than group 1} \\ \text{Step 2: Calculate test statistic} \\ 1) \text{Combine the } m + n \text{ values into one group} \\ 2) \text{Calculate the rank for each data point:} \\ R(x_1) = \# \text{ of } data \leq x_1, \ i = 1,, m + n \\ \text{Note: if there are ties, average the ranks of the tied observations, and assign the tied values as their ranks} \\ 3) \text{Calculate the total rank in group 1 } (\text{arbitrary choice of groups}). This is our test statistic, $W_{OBS} = \sum_{group 1} R(x_1)$.} \\ \text{Step 3: Calculate the exact p-value} \\ \text{Permutations} = \binom{m+n}{n}, W_1 = \text{sum of rank in group 1} \\ H_1: F_1(x) \geq F_2(x) \Rightarrow F_1(x) \leq F_2(x) \geq \sum_{group 1} F_1(x) \otimes F_2(x) \Rightarrow \sum_{group 1} F_2(x) \otimes F_2(x) \Rightarrow $		$H_1: F_1(x) \ge F_2(x) \text{ or } F_1(x) \le F_2(x) \implies p-value = 2P(Z > Z_S)$
Wilcoxon Rank Sum (WRS) test Step 4: If p-value $< \alpha$, reject H_0 . Assumption: A random sample was taken from each group, groups independent. Step 1: State the null and alternative hypothesis $H_0: F_1(x) = F_2(x)$ v. s. $H_1: F_1(x) \ge F_2(x)$ or $F_1(x) \le F_2(x)$ (two $-$ sided) # distributions are different $H_1: F_1(x) \ge F_2(x)$ or $F_1(x) \le F_2(x)$ (two $-$ sided) # group 1 tends to be larger than group 2 $H_1: F_1(x) \ge F_2(x)$ (left tail, one $-$ sided) # group 2 tends to be larger than group 1 Step 2: Calculate test statistic 1) Combine the m + n values into one group 2) Calculate the rank for each data point: $R(x_i) = \# of data \le x_i$, $i = 1,, m + n$ Note: If there are itse, average the ranks of the tied observations, and assign the tied values as their ranks 3) Calculate the total rank in group 1 (arbitrary choice of groups). This is our test statistic, $W_{OBS} = \sum_{group} R(x_i)$. Step 3: Calculate the exact p-value Permutations $= \binom{m+n}{n}$, W_i = sum of rank in group 1 $H_1: F_1(x) \ge F_2(x)$ or $F_1(x) \le F_2(x) = 2 * \min \left(\frac{\# of W_i \ge W_{OBS}}{\text{permutations}}, \frac{\# of W_i \le W_{OBS}}{\text{permutations}}\right)$ $H_1: F_1(x) \ge F_2(x) = 3 * \frac{\# of W_i \ge W_{OBS}}{\text{permutations}}$ $H_1: F_1(x) \ge F_2(x) = 3 * \frac{\# of W_i \ge W_{OBS}}{\text{permutations}}$ Step 4: If p-value $< \alpha$, reject H_0 . # WRS tends to have higher power when the distribution is skewed, outliers are present, since assigning ranks essentially removes all influence of both issues. ## Permutation tests tend to have higher power when the distribution is thought to be symmetric, and when using the mean. Large Sample Large Sample Let $N = m + n$, and $R(x_1),, R(x_N)$ be the corresponding combined ranks of the two groups. Let $S_1 = \text{sum of ranks in}$		$H_1: F_1(x) \le F_2(x) \implies p - value = P(Z > Z_S)$
Wilcoxon Rank Sum (WRS) test $ \begin{cases} \textbf{Step 1: State the null and alternative hypothesis} \\ H_0: F_1(x) = F_2(x) v.s H_1: F_1(x) \geq F_2(x) v.f Y_1(x) \leq F_2(x) (two - sided) \text{# distributions are different} \\ H_1: F_1(x) \leq F_2(x) (vight \ tail, \ one - sided) \text{# group 1 tends to be larger than group 2} \\ H_2: F_1(x) \geq F_2(x) (vight \ tail, \ one - sided) \text{# group 2 tends to be larger than group 2} \\ \textbf{Step 2: Calculate test statistic} \\ 1) \text{Combine the m} + \text{n values into one group} \\ 2) \text{Calculate the rank for each data point:} \\ R(x_i) = \# \ of \ data \leq x_i, i = 1,, m + n \\ \text{Note: If there are ties, average the ranks of the tied observations, and assign the tied values as their ranks} \\ 3) \text{Calculate the total rank in group 1} \text{(arbitrary choice of groups). This is our test statistic, } \\ W_{OBS} = \sum_{group\ 1} R(x_i) \\ \textbf{Step 3: Calculate the exact p-value} \\ \text{Permutations} = \binom{m^*n}{n}, W_i = \text{sum of rank in group 1} \\ H_1: F_1(x) \geq F_2(x) \text{ or } F_1(x) \leq F_2(x) = 2 \text{ * min} \left(\frac{\# \ of \ W_i \geq W_{OBS}}{\text{permutations}}, \frac{\# \ of \ W_i \leq W_{OBS}}{\text{permutations}} \right) \\ H_1: F_1(x) \leq F_2(x) = \frac{\# \ of \ W_i \otimes W_{OBS}}{\text{permutations}} \\ H_1: F_1(x) \geq F_2(x) = \frac{\# \ of \ W_i \otimes W_{OBS}}{\text{permutations}} \\ H_1: F_1(x) \geq F_2(x) = \frac{\# \ of \ W_i \otimes W_{OBS}}{\text{permutations}} \\ \text{Step 4: If p-value} < \alpha, \text{reject } H_0. \\ \# \text{WRS tends to have higher power when the distribution is thought to be symmetric, and when using the mean.} \\ \text{Late N = m + n, and } R(x_1),, R(x_N) \text{ be the corresponding combined ranks of the two groups. Let } S_1 = \text{sum of ranks in} $		$H_1: F_1(x) \ge F_2(x) \implies p - value = P(Z < Z_S)$
Wilcoxon Rank Sum (WRS) test $ \begin{cases} \textbf{Step 1: State the null and alternative hypothesis} \\ H_0: F_1(x) = F_2(x) v.s H_1: F_1(x) \geq F_2(x) v.f Y_1(x) \leq F_2(x) (two - sided) \text{# distributions are different} \\ H_1: F_1(x) \leq F_2(x) (vight \ tail, \ one - sided) \text{# group 1 tends to be larger than group 2} \\ H_2: F_1(x) \geq F_2(x) (vight \ tail, \ one - sided) \text{# group 2 tends to be larger than group 2} \\ \textbf{Step 2: Calculate test statistic} \\ 1) \text{Combine the m} + \text{n values into one group} \\ 2) \text{Calculate the rank for each data point:} \\ R(x_i) = \# \ of \ data \leq x_i, i = 1,, m + n \\ \text{Note: If there are ties, average the ranks of the tied observations, and assign the tied values as their ranks} \\ 3) \text{Calculate the total rank in group 1} \text{(arbitrary choice of groups). This is our test statistic, } \\ W_{OBS} = \sum_{group\ 1} R(x_i) \\ \textbf{Step 3: Calculate the exact p-value} \\ \text{Permutations} = \binom{m^*n}{n}, W_i = \text{sum of rank in group 1} \\ H_1: F_1(x) \geq F_2(x) \text{ or } F_1(x) \leq F_2(x) = 2 \text{ * min} \left(\frac{\# \ of \ W_i \geq W_{OBS}}{\text{permutations}}, \frac{\# \ of \ W_i \leq W_{OBS}}{\text{permutations}} \right) \\ H_1: F_1(x) \leq F_2(x) = \frac{\# \ of \ W_i \otimes W_{OBS}}{\text{permutations}} \\ H_1: F_1(x) \geq F_2(x) = \frac{\# \ of \ W_i \otimes W_{OBS}}{\text{permutations}} \\ H_1: F_1(x) \geq F_2(x) = \frac{\# \ of \ W_i \otimes W_{OBS}}{\text{permutations}} \\ \text{Step 4: If p-value} < \alpha, \text{reject } H_0. \\ \# \text{WRS tends to have higher power when the distribution is thought to be symmetric, and when using the mean.} \\ \text{Late N = m + n, and } R(x_1),, R(x_N) \text{ be the corresponding combined ranks of the two groups. Let } S_1 = \text{sum of ranks in} $		
Step 1: State the null and alternative hypothesis $H_0: F_1(x) = F_2(x) v.s H_1: F_1(x) \geq F_2(x) \text{ or } F_1(x) \leq F_2(x) \text{ (two - sided)} \text{# distributions are different} \\ H_1: F_1(x) \leq F_2(x) \text{(right tail, one - sided)} \text{# group 1 tends to be larger than group 2} \\ H_1: F_1(x) \geq F_2(x) \text{ (left tail, one - sided)} \text{# group 1 tends to be larger than group 2} \\ H_1: F_1(x) \geq F_2(x) \text{ (left tail, one - sided)} \text{# group 2 tends to be larger than group 1} \\ \text{Step 2: Calculate test statistic} \\ 1) \text{Combine the } m + n \text{ values into one group} \\ 2) \text{Calculate the mak for each data point:} \\ R(x_i) = \# \text{ of } \text{ data} \leq x_i, i = 1,, m + n \\ \text{Note: If there are ties, average the ranks of the tied observations, and assign the tied values as their ranks} \\ 3) \text{Calculate the exact p-value} \\ \text{Permutations} = {m+n \choose n}, W_l = \text{sum of rank in group 1} \\ H_1: F_1(x) \geq F_2(x) \text{ or } F_1(x) \leq F_2(x) = > 2 * \min\left(\frac{\# \text{ of } W_1 \geq W_{OBS}}{\text{permutations}}\right) \\ H_1: F_1(x) \geq F_2(x) \Rightarrow \frac{\# \text{ of } W_1 \geq W_{OBS}}{\text{permutations}} \\ H_1: F_1(x) \geq F_2(x) \Rightarrow \frac{\# \text{ of } W_2 \otimes W_{OBS}}{\text{permutations}} \\ H_1: F_1(x) \geq F_2(x) \Rightarrow \frac{\# \text{ of } W_2 \otimes W_{OBS}}{\text{permutations}} \\ \text{Step 4: If p-value} < \alpha, \text{ reject } H_0. \\ \# \text{ WRS tends to have higher power when the distribution is skewed, outliers are present, since assigning ranks essentially removes all influence of both issues.} \\ \# \text{ Permutation tests tend to have higher power when the distribution is thought to be symmetric, and when using the mean.} \\ \text{Let N = m + n, and } R(x_1),, R(x_N) \text{ be the corresponding combined ranks of the two groups. Let } S_1 = \text{ sum of ranks in} $		
$H_0: F_1(x) = F_2(x) v.s H_1: F_1(x) \geq F_2(x) or F_1(x) \leq F_2(x) (two-sided) \# \text{ distributions are different} \\ H_1: F_1(x) \leq F_2(x) (right \ tail, \ one-sided) \# \text{ group } 1 \text{ tends to be larger than group } 2 \\ H_1: F_1(x) \geq F_2(x) (left \ tail, \ one-sided) \# \text{ group } 2 \text{ tends to be larger than group } 1 \end{cases}$ $Step 2: \text{ Calculate test statistic} $ $1) \text{ Combine the } m + n \text{ values into one group} $ $2) \text{ Calculate the rank for each data point:} \\ R(x_1) = \# \text{ of } data \leq x_1, i = 1,, m + n \\ \text{ Note: If there are ties, average the ranks of the tied observations, and assign the tied values as their ranks} $ $3) \text{ Calculate the exact p-value} \\ \text{ Permutations } = \binom{m+m}{n}, W_i = \text{ sum of rank in group } 1 \\ H_1: F_1(x) \geq F_2(x) \text{ or } F_1(x) \leq F_2(x) \Rightarrow 2 * \min\left(\frac{\# \text{ of } W_1 \geq W_{OBS}}{\text{ permutations}}\right) \\ H_1: F_1(x) \leq F_2(x) \Rightarrow \frac{\# \text{ of } W_1 \geq W_{OBS}}{\text{ permutations}} \\ H_1: F_1(x) \geq F_2(x) \Rightarrow \frac{\# \text{ of } W_1 \leq W_{OBS}}{\text{ permutations}} \\ \text{ Step 4: If p-value } < \alpha, \text{ reject } H_0. \\ \# \text{ WRS tends to have higher power when the distribution is skewed, outliers are present, since assigning ranks essentially removes all influence of both issues.} \\ \# \text{ Permutation tests tend to have higher power when the distribution is thought to be symmetric, and when using the mean.} \\ \text{Let N = m + n, and } R(x_1),, R(x_N) \text{ be the corresponding combined ranks of the two groups. Let } S_1 = \text{ sum of ranks in}$		Assumption: A random sample was taken from each group, groups independent.
$H_1\colon F_1(x) \leq F_2(x) \ (right\ tail,\ one-sided)\ \#\ group\ 1\ tends\ to\ be\ larger\ than\ group\ 2}$ $H_1\colon F_1(x) \geq F_2(x) \ (left\ tail,\ one-sided)\ \#\ group\ 2\ tends\ to\ be\ larger\ than\ group\ 1$ $Step\ 2\colon Calculate\ test\ statistic$ 1) Combine the $m+n$ values into one group 2) Calculate the rank for each data point: $R(x_i) = \#\ of\ data \leq x_i,\ i=1,,m+n$ Note: If there are ties, average the ranks of the tied observations, and assign the tied values as their ranks 3) Calculate the total rank in group 1 (arbitrary choice of groups). This is our test statistic, $W_{OBS} = \sum_{group\ 1} R(x_i)$. $Step\ 3\colon Calculate\ the\ exact\ p-value$ $Permutations = \binom{m+n}{n},\ W_i = \text{sum\ of\ rank\ in\ group\ 1}$ $H_1\colon F_1(x) \geq F_2(x)\ or\ F_1(x) \leq F_2(x) \Rightarrow 2 \ast \min\left(\frac{\#\ of\ W_i \geq W_{OBS}}{permutations}\right)$ $H_1\colon F_1(x) \leq F_2(x) \Rightarrow \frac{\#\ of\ W_i \geq W_{OBS}}{permutations}$ $H_1\colon F_1(x) \geq F_2(x) \Rightarrow \frac{\#\ of\ W_i \geq W_{OBS}}{permutations}$ $H_1\colon F_1(x) \geq F_2(x) \Rightarrow \frac{\#\ of\ W_i \geq W_{OBS}}{permutations}$ $H_1\colon F_1(x) \geq F_2(x) \Rightarrow \frac{\#\ of\ W_i \geq W_{OBS}}{permutations}$ $H_1\colon F_1(x) \geq F_2(x) \Rightarrow \frac{\#\ of\ W_i \geq W_{OBS}}{permutations}$ $H_1\colon F_1(x) \geq F_2(x) \Rightarrow \frac{\#\ of\ W_i \geq W_{OBS}}{permutations}$ $H_1\colon F_1(x) \geq F_2(x) \Rightarrow \frac{\#\ of\ W_i \leq W_{OBS}}{permutations}$ $H_1\colon F_1(x) \geq F_2(x) \Rightarrow \frac{\#\ of\ W_i \leq W_{OBS}}{permutations}$ $H_1\colon F_1(x) \geq F_2(x) \Rightarrow \frac{\#\ of\ W_i \leq W_{OBS}}{permutations}$ $H_1\colon F_1(x) \geq F_2(x) \Rightarrow \frac{\#\ of\ W_i \leq W_{OBS}}{permutations}$ $H_1\colon F_1(x) \geq F_2(x) \Rightarrow \frac{\#\ of\ W_i \leq W_{OBS}}{permutations}$ $H_1\colon F_1(x) \geq F_2(x) \Rightarrow \frac{\#\ of\ W_i \leq W_{OBS}}{permutations}$ $H_1\colon F_1(x) \geq F_2(x) \Rightarrow \frac{\#\ of\ W_i \leq W_{OBS}}{permutations}$ $H_1\colon F_1(x) \geq F_2(x) \Rightarrow \frac{\#\ of\ W_i \leq W_{OBS}}{permutations}$ $H_1\colon F_1(x) \geq F_2(x) \Rightarrow \frac{\#\ of\ W_i \leq W_{OBS}}{permutations}$ $H_1\colon F_1(x) \geq F_2(x) \Rightarrow \frac{\#\ of\ W_i \leq W_{OBS}}{permutations}$ $H_1\colon F_1(x) \geq F_2(x) \Rightarrow \frac{\#\ of\ W_i \leq W_{OBS}}{permutations}$ $H_1\colon F_1(x) \geq F_2(x) \Rightarrow \frac{\#\ of\ W_i \leq W_{OBS}}{permutations}$ $H_1\colon F_1(x) \geq F_2(x) \Rightarrow \frac{\#\ of\ W_i \leq W_{OBS}}{permutations}$ $H_1\colon F_1(x) \geq \frac{H_1(x)}{permuta$		Step 1: State the null and alternative hypothesis
1) Combine the m + n values into one group 2) Calculate the rank for each data point: $R(x_l) = \# \text{ of } data \leq x_l, i = 1,, m + n$ Note: If there are ties, average the ranks of the tied observations, and assign the tied values as their ranks 3) Calculate the total rank in group 1 (arbitrary choice of groups). This is our test statistic, $W_{OBS} = \sum_{group} R(x_l)$. Step 3: Calculate the exact p-value Permutations = $\binom{m+n}{n}$, W_l = sum of rank in group 1 $H_1: F_1(x) \geq F_2(x) \text{ or } F_1(x) \leq F_2(x) \Rightarrow 2* \min\left(\frac{\# \text{ of } W_l \geq W_{OBS}}{\text{permutations}}, \frac{\# \text{ of } W_l \leq W_{OBS}}{\text{permutations}}\right)$ $H_1: F_1(x) \leq F_2(x) \Rightarrow \frac{\# \text{ of } W_l \geq W_{OBS}}{\text{permutations}}$ $H_1: F_1(x) \geq F_2(x) \Rightarrow \frac{\# \text{ of } W_l \geq W_{OBS}}{\text{permutations}}$ Step 4: If p-value < α , reject H_0 . # WRS tends to have higher power when the distribution is skewed, outliers are present, since assigning ranks essentially removes all influence of both issues. ## Permutation tests tend to have higher power when the distribution is thought to be symmetric, and when using the mean. Large Sample Let N = m + n, and $R(x_1),, R(x_N)$ be the corresponding combined ranks of the two groups. Let S_1 = sum of ranks in		$H_1: F_1(x) \le F_2(x)$ (right tail, one – sided) # group 1 tends to be larger than group 2
1) Combine the m + n values into one group 2) Calculate the rank for each data point: $R(x_l) = \# \text{ of } data \leq x_l, i = 1,, m + n$ Note: If there are ties, average the ranks of the tied observations, and assign the tied values as their ranks 3) Calculate the total rank in group 1 (arbitrary choice of groups). This is our test statistic, $W_{OBS} = \sum_{group} R(x_l)$. Step 3: Calculate the exact p-value Permutations = $\binom{m+n}{n}$, W_l = sum of rank in group 1 $H_1: F_1(x) \geq F_2(x) \text{ or } F_1(x) \leq F_2(x) \Rightarrow 2* \min\left(\frac{\# \text{ of } W_l \geq W_{OBS}}{\text{permutations}}, \frac{\# \text{ of } W_l \leq W_{OBS}}{\text{permutations}}\right)$ $H_1: F_1(x) \leq F_2(x) \Rightarrow \frac{\# \text{ of } W_l \geq W_{OBS}}{\text{permutations}}$ $H_1: F_1(x) \geq F_2(x) \Rightarrow \frac{\# \text{ of } W_l \geq W_{OBS}}{\text{permutations}}$ Step 4: If p-value < α , reject H_0 . # WRS tends to have higher power when the distribution is skewed, outliers are present, since assigning ranks essentially removes all influence of both issues. ## Permutation tests tend to have higher power when the distribution is thought to be symmetric, and when using the mean. Large Sample Let N = m + n, and $R(x_1),, R(x_N)$ be the corresponding combined ranks of the two groups. Let S_1 = sum of ranks in		Step 2: Calculate test statistic
 2) Calculate the rank for each data point: R(x_i) = # of data ≤ x_i, i = 1,, m + n Note: If there are ties, average the ranks of the tied observations, and assign the tied values as their ranks 3) Calculate the total rank in group 1 (arbitrary choice of groups). This is our test statistic, W_{OBS} = ∑_{group 1}R(x_i). Step 3: Calculate the exact p-value Permutations = (m+n), W_i = sum of rank in group 1 H₁: F₁(x) ≥ F₂(x) or F₁(x) ≤ F₂(x) => 2 * min (# of W_i≥W_{OBS} / permutations) H₁: F₁(x) ≤ F₂(x) => # of W_i≥W_{OBS} / permutations H₁: F₁(x) ≥ F₂(x) => # of W_i≥W_{OBS} / permutations H₁: F₁(x) ≥ F₂(x) => # of W_i≥W_{OBS} / permutations Step 4: If p-value < α, reject H₀. # WRS tends to have higher power when the distribution is skewed, outliers are present, since assigning ranks essentially removes all influence of both issues. ## Permutation tests tend to have higher power when the distribution is thought to be symmetric, and when using the mean. Large Sample Let N = m + n, and R(x₁),, R(x_N) be the corresponding combined ranks of the two groups. Let S₁ = sum of ranks in 		
Note: If there are ties, average the ranks of the tied observations, and assign the tied values as their ranks 3) Calculate the total rank in group 1 (arbitrary choice of groups). This is our test statistic, $W_{OBS} = \sum_{group \ 1} R(x_i)$. Step 3: Calculate the exact p-value Permutations = $\binom{m+n}{n}$, W_i = sum of rank in group 1 $H_1: F_1(x) \ge F_2(x)$ or $F_1(x) \le F_2(x) = 2 * \min\left(\frac{\# \ of \ W_i \ge W_{OBS}}{\text{permutations}}, \frac{\# \ of \ W_i \le W_{OBS}}{\text{permutations}}\right)$ $H_1: F_1(x) \le F_2(x) = > \frac{\# \ of \ W_i \ge W_{OBS}}{\text{permutations}}$ $H_1: F_1(x) \ge F_2(x) = > \frac{\# \ of \ W_i \le W_{OBS}}{\text{permutations}}$ Step 4: If p-value < α , reject H_0 . # WRS tends to have higher power when the distribution is skewed, outliers are present, since assigning ranks essentially removes all influence of both issues. ## Permutation tests tend to have higher power when the distribution is thought to be symmetric, and when using the mean. Large Sample Let $N = m + n$, and $R(x_1),, R(x_N)$ be the corresponding combined ranks of the two groups. Let $S_1 = \text{sum of ranks in}$		
Step 3: Calculate the exact p-value Permutations = $\binom{m+n}{n}$, W_i = sum of rank in group 1 $H_1: F_1(x) \ge F_2(x)$ or $F_1(x) \le F_2(x) = 2 * \min\left(\frac{\# of W_i \ge W_{OBS}}{\text{permutations}}, \frac{\# of W_i \le W_{OBS}}{\text{permutations}}\right)$ $H_1: F_1(x) \ge F_2(x) = 2 * \min\left(\frac{\# of W_i \ge W_{OBS}}{\text{permutations}}, \frac{\# of W_i \le W_{OBS}}{\text{permutations}}\right)$ $H_1: F_1(x) \le F_2(x) = 3 * \frac{\# of W_i \ge W_{OBS}}{\text{permutations}}$ $H_1: F_1(x) \ge F_2(x) = 3 * \frac{\# of W_i \le W_{OBS}}{\text{permutations}}$ $H_1: F_1(x) \ge F_2(x) = 3 * \frac{\# of W_i \le W_{OBS}}{\text{permutations}}$ $H_1: F_1(x) \ge F_2(x) = 3 * \frac{\# of W_i \le W_{OBS}}{\text{permutations}}$ $H_1: F_1(x) \ge F_2(x) = 3 * \frac{\# of W_i \le W_{OBS}}{\text{permutations}}$ $H_1: F_1(x) \ge F_2(x) = 3 * \frac{\# of W_i \le W_{OBS}}{\text{permutations}}$ $H_1: F_1(x) \ge F_2(x) = 3 * \frac{\# of W_i \le W_{OBS}}{\text{permutations}}$ $H_1: F_1(x) \ge F_2(x) = 3 * \frac{\# of W_i \le W_{OBS}}{\text{permutations}}$ $H_1: F_1(x) \ge F_2(x) = 3 * \frac{\# of W_i \le W_{OBS}}{\text{permutations}}$ $H_1: F_1(x) \ge F_2(x) = 3 * \frac{\# of W_i \le W_{OBS}}{\text{permutations}}$ $H_1: F_1(x) \ge F_2(x) = 3 * \frac{\# of W_i \le W_{OBS}}{\text{permutations}}$ $H_1: F_1(x) \ge F_2(x) = 3 * \frac{\# of W_i \le W_{OBS}}{\text{permutations}}$ $H_1: F_1(x) \ge F_2(x) = 3 * \frac{\# of W_i \le W_{OBS}}{\text{permutations}}$ $H_1: F_1(x) \ge F_2(x) = 3 * \frac{\# of W_i \le W_{OBS}}{\text{permutations}}$ $H_1: F_1(x) \ge F_2(x) = 3 * \frac{\# of W_i \le W_{OBS}}{\text{permutations}}$ $H_1: F_1(x) \ge F_2(x) = 3 * \frac{\# of W_i \le W_{OBS}}{\text{permutations}}$ $H_1: F_1(x) \ge F_2(x) = 3 * \frac{\# of W_i \le W_{OBS}}{\text{permutations}}$ $H_1: F_1(x) \ge F_2(x) = 3 * \frac{\# of W_i \le W_{OBS}}{\text{permutations}}$ $H_1: F_1(x) \ge F_2(x) = 3 * \frac{\# of W_i \le W_{OBS}}{\text{permutations}}$ $H_1: F_1(x) \ge F_2(x) = 3 * \frac{\# of W_i \le W_{OBS}}{\text{permutations}}$ $H_1: F_1(x) \ge F_2(x) = 3 * \frac{\# of W_i \le W_{OBS}}{\text{permutations}}$ $H_1: F_1(x) \ge F_2(x) = 3 * \frac{\# of W_i \le W_{OBS}}{\text{permutations}}$ $H_1: F_1(x) \ge F_2(x) = 3 * \frac{\# of W_i \le W_{OBS}}{\text{permutations}}$ $H_1: F_1(x) \ge F_2(x) = 3 * \frac{\# of W_i \le W_{OBS}}{\text{permutations}}$ $H_1: F_1(x) \ge F_2(x) = 3 * \frac{\# of W_i \le W_i \le W_i}{\text{permutations}}$		$R(x_i) = \# \ of \ data \le x_i, \ i = 1,, m + n$
Permutations = $\binom{m+n}{n}$, W_i = sum of rank in group 1 $H_1: F_1(x) \ge F_2(x)$ or $F_1(x) \le F_2(x) = 2 * \min\left(\frac{\# \ of \ W_i \ge W_{OBS}}{\text{permutations}}, \frac{\# \ of \ W_i \le W_{OBS}}{\text{permutations}}\right)$ $H_1: F_1(x) \le F_2(x) = 3 * \frac{\# \ of \ W_i \ge W_{OBS}}{\text{permutations}}$ $H_1: F_1(x) \ge F_2(x) = 3 * \frac{\# \ of \ W_i \le W_{OBS}}{\text{permutations}}$ Step 4: If p-value < α , reject H_0 . # WRS tends to have higher power when the distribution is skewed, outliers are present, since assigning ranks essentially removes all influence of both issues. ## Permutation tests tend to have higher power when the distribution is thought to be symmetric, and when using the mean. Large Sample Let $N = m + n$, and $R(x_1), \dots, R(x_N)$ be the corresponding combined ranks of the two groups. Let $S_1 = \text{sum of ranks in}$		
$H_1: F_1(x) \geq F_2(x) \text{ or } F_1(x) \leq F_2(x) \implies 2*\min\left(\frac{\# \text{ of } W_1 \geq W_{OBS}}{\text{permutations}}, \frac{\# \text{ of } W_1 \leq W_{OBS}}{\text{permutations}}\right)$ $H_1: F_1(x) \leq F_2(x) \implies \frac{\# \text{ of } W_1 \leq W_{OBS}}{\text{permutations}}$ $H_1: F_1(x) \geq F_2(x) \implies \frac{\# \text{ of } W_1 \leq W_{OBS}}{\text{permutations}}$ $Step 4: \text{ If } p\text{-value} < \alpha, \text{ reject } H_0.$ $\# \text{ WRS tends to have higher power when the distribution is skewed, outliers are present, since assigning ranks essentially removes all influence of both issues.}$ $\# \text{ Permutation tests tend to have higher power when the distribution is thought to be symmetric, and when using the mean.}$ $\text{Large Sample} \qquad \text{Let } N = m + n, \text{ and } R(x_1), \dots, R(x_N) \text{ be the corresponding combined ranks of the two groups. Let } S_1 = \text{ sum of ranks in }$		Step 3: Calculate the exact p-value
$H_1: F_1(x) \geq F_2(x) \text{ or } F_1(x) \leq F_2(x) \implies 2*\min\left(\frac{\# \text{ of } W_1 \geq W_{OBS}}{\text{permutations}}, \frac{\# \text{ of } W_1 \leq W_{OBS}}{\text{permutations}}\right)$ $H_1: F_1(x) \leq F_2(x) \implies \frac{\# \text{ of } W_1 \leq W_{OBS}}{\text{permutations}}$ $H_1: F_1(x) \geq F_2(x) \implies \frac{\# \text{ of } W_1 \leq W_{OBS}}{\text{permutations}}$ $Step 4: \text{ If } p\text{-value} < \alpha, \text{ reject } H_0.$ $\# \text{ WRS tends to have higher power when the distribution is skewed, outliers are present, since assigning ranks essentially removes all influence of both issues.}$ $\# \text{ Permutation tests tend to have higher power when the distribution is thought to be symmetric, and when using the mean.}$ $\text{Large Sample} \qquad \text{Let } N = m + n, \text{ and } R(x_1), \dots, R(x_N) \text{ be the corresponding combined ranks of the two groups. Let } S_1 = \text{ sum of ranks in }$		Permutations = $\binom{m+n}{n}$, W_i = sum of rank in group 1
$H_1: F_1(x) \le F_2(x) \implies \frac{\# of \ W_i \ge W_{OBS}}{\text{permutations}}$ $H_1: F_1(x) \ge F_2(x) \implies \frac{\# of \ W_i \le W_{OBS}}{\text{permutations}}$ $\text{Step 4: If p-value} < \alpha, \text{ reject } H_0.$ $\# \text{ WRS tends to have higher power when the distribution is skewed, outliers are present, since assigning ranks essentially removes all influence of both issues.}$ $\# \text{ Permutation tests tend to have higher power when the distribution is thought to be symmetric, and when using the mean.}$ Large Sample $\text{Let N = m + n, and } R(x_1), \dots, R(x_N) \text{ be the corresponding combined ranks of the two groups. Let } S_1 = \text{sum of ranks in}$		
Step 4: If p-value $< \alpha$, reject H_0 . # WRS tends to have higher power when the distribution is skewed, outliers are present, since assigning ranks essentially removes all influence of both issues. ## Permutation tests tend to have higher power when the distribution is thought to be symmetric, and when using the mean. Large Sample Let $N = m + n$, and $R(x_1),, R(x_N)$ be the corresponding combined ranks of the two groups. Let $S_1 = \text{sum of ranks in}$		
Step 4: If p-value $< \alpha$, reject H_0 . # WRS tends to have higher power when the distribution is skewed, outliers are present, since assigning ranks essentially removes all influence of both issues. ## Permutation tests tend to have higher power when the distribution is thought to be symmetric, and when using the mean. Large Sample Let $N = m + n$, and $R(x_1),, R(x_N)$ be the corresponding combined ranks of the two groups. Let $S_1 = \text{sum of ranks in}$		$H_1: F_1(x) \le F_2(x) \implies \frac{\text{if } S(x) + \text{if } S(x)}{\text{permutations}}$
# WRS tends to have higher power when the distribution is skewed, outliers are present, since assigning ranks essentially removes all influence of both issues. ## Permutation tests tend to have higher power when the distribution is thought to be symmetric, and when using the mean. Large Sample Let N = m + n, and R(x ₁),, R(x _N) be the corresponding combined ranks of the two groups. Let S ₁ = sum of ranks in		$H_1: F_1(x) \ge F_2(x) = > \frac{\# \text{ of } W_i \le W_{OBS}}{\text{permutations}}$
essentially removes all influence of both issues. ## Permutation tests tend to have higher power when the distribution is thought to be symmetric, and when using the mean. Large Sample Let $N = m + n$, and $R(x_1),, R(x_N)$ be the corresponding combined ranks of the two groups. Let $S_1 = \text{sum of ranks in}$		Step 4: If p-value $< \alpha$, reject H_0 .
## Permutation tests tend to have higher power when the distribution is thought to be symmetric, and when using the mean. Large Sample Let $N = m + n$, and $R(x_1),, R(x_N)$ be the corresponding combined ranks of the two groups. Let $S_1 = \text{sum of ranks in}$		
Large Sample Let $N = m + n$, and $R(x_1),, R(x_N)$ be the corresponding combined ranks of the two groups. Let $S_1 = \text{sum of ranks in}$		costinuity removes an infraence of both issues.
Large Sample Let $N = m + n$, and $R(x_1),, R(x_N)$ be the corresponding combined ranks of the two groups. Let $S_1 = \text{sum of ranks in}$		
	Large Sample	
	1	

Under the assumption that the distributions are equal, every $R(x_i)$ should have been equally likely to come from both
groups.

Assumption: A random sample was taken from each group, independent groups, combined sample size at least 30.

Step 1: State the null and alternative hypothesis

$$H_0: F_1(x) = F_2(x)$$
 $v.s$ $H_1: F_1(x) \ge F_2(x)$ or $F_1(x) \le F_2(x)$ (two - sided) # distributions are different $H_1: F_1(x) \le F_2(x)$ (right tail, one - sided) # group 1 tends to be larger than group 2 $H_1: F_1(x) \ge F_2(x)$ (left tail, one - sided) # group 2 tends to be larger than group 1

Step 2: Our test-statistic is

$$Z_S = \frac{W_{OBS} - E[S_1]}{\sqrt{\sigma_S^2}}$$

where
$$W_{OBS} = \sum_{group \ 1} R(x_i)$$
, $E[S_1] = m\mu_R$, $\sigma_S^2 = \frac{mn\sigma_R^2}{N-1}$
where $\mu_R = \frac{1}{N} \sum_{i} R(x_i)$, $\sigma_R^2 = \frac{1}{N} \sum_{i} (R(x_i) - \bar{x}_R)^2$

If
$$N \ge 30$$
, we have $S_1 \sim N(m\mu_R, \frac{mn\sigma_R^2}{N-1})$

If there are no ties, then
$$E[S_1] = \frac{m(N+1)}{2}$$
, $\sigma_R^2 = \frac{mn(N+1)}{12}$

Step 3: Get the p-value

$$H_1: F_1(x) \ge F_2(x) \text{ or } F_1(x) \le F_2(x) \implies P(Z > |Z_S|)$$

 $H_1: F_1(x) \le F_2(x) \implies P(Z > Z_S)$
 $H_1: F_1(x) \ge F_2(x) \implies P(Z < Z_S)$

Step 4: If p-value $< \alpha$, reject H_0 .

Mann-Whitney Test (alternative to WRS)

Let $X_1, ..., X_m$ be our sample from group 1. Let $Y_1, ..., Y_n$ be our sample from group 2.

Assumption: A random sample was taken from each group, groups independent.

Step 1: State the null and alternative hypothesis

$$H_0: F_1(x) = F_2(x)$$
 v.s $H_1: F_1(x) \ge F_2(x)$ or $F_1(x) \le F_2(x)$ (two - sided) # distributions are different $H_1: F_1(x) \le F_2(x)$ (right tail, one - sided) # group 1 tends to be larger than group 2 $H_1: F_1(x) \ge F_2(x)$ (left tail, one - sided) # group 2 tends to be larger than group 1

Step 2: Calculate test statistic

 $U_{MW} = (\# of \ pairs (X_i < Y_i)) + \frac{1}{2} (\# of \ pairs (X_i = Y_i))$

If group 1 is lower than group 2, U_{MW} will be closed to the maximum # of pairs.

If group 1 is larger than group 2, U_{MW} will be closed to 1.

Number of possible pairs = m*n

The test statistic is in U or Mann-Whitney Distribution.

Step 3: Calculate p-value

Let $U_{1-\frac{\alpha}{2}} = \left(1 - \frac{\alpha}{2}\right) 100^{th}$ percentile of U (upper)

Let $U_{\frac{\alpha}{2}} = \left(\frac{\alpha}{2}\right) 100^{th}$ percentile of U (lower)

$$H_1: F_1(x) \ge F_2(x) \text{ or } F_1(x) \le F_2(x) \implies \text{If } U_{MW} > U_{1-\frac{\alpha}{2}} \text{ or } U_{MW} < U_{\frac{\alpha}{2}} \implies < \alpha$$

$$H_1: F_1(x) \le F_2(x) \implies If \ U_{MW} < U_{\frac{\alpha}{2}} \implies < \frac{\alpha}{2}$$

$$H_1: F_1(x) \ge F_2(x) = If U_{MW} > U_{1-\frac{\alpha}{2}} = < \frac{\alpha}{2}$$

Need to look at the table of Mann-Whitney Distribution.

Step 4: If p-value $< \alpha$, reject H_0 .

Kolmogorov Smirnov (KS) Test

Assumption: A random sample was taken from each group, groups independent. Distributions should be continuous.

Step 1: State the null and alternative hypothesis

$$H_0: F_1(x) = F_2(x)$$
 v.s $H_1: F_1(x) \ge F_2(x)$ or $F_1(x) \le F_2(x)$ (two – sided) # distributions are different

Step 2: Calculate test statistic

Let $\hat{F}_1(x)$ = empirical CDF of group 1

Let $\hat{F}_2(x)$ = empirical CDF of group 2

Then,

- 1) Combine the data from both groups
- 2) Calculate $\hat{F}_1(x)$ for both groups observations Calculate $\hat{F}_2(x)$ for both groups observations
- 3) Calculate the difference between $\hat{F}_1(x) \hat{F}_2(x)$ for all observations
- 4) Our test-statistic is then $K_S = \max |\hat{F}_1(x) \hat{F}_2(x)|$

Step 3: Calculate p-value

The p-value is a permutation p-value:

$$(\# \text{ of } |\widehat{F}_1(x) - \widehat{F}_2(x)| \ge K_s) / {m+n \choose n}$$

or divided by R if it's a random permutation test

	Step 4: If p-value $< \alpha$, reject H_0 .		
Confidence Interval for shift parameter	Step 1: Find all n*m pairwise differences, $X_i - Y_i$		
Sint parameter	Step 2: Order the pairwise differences, call them pwd(1), pwd(2),, pwd(n*m)		
	Step 3: We want the locations, call them $P(pwd(ka) \le \Delta \le pwd(kb)) = 1 - \alpha$ # kb - 1 because of discrete data		
	Step 4: Confidence interval is $(ka = U_{\frac{\alpha}{2}})$	$+ 1, kb = U_{1-\frac{\alpha}{2}})$	
	# If CI of Δ has both bounds > 0, then gr ## If CI of Δ has both bounds < 0, then gr ### If CI of Δ has contains 0, then there	group 1 has smaller distribution/measure	ement than group 2.
Choose an appropriate	Di di di	G	***
test	Distribution	Statistic	Winner
	Symmetric	Mean	Permutation
	Symmetric	Median	Wilcoxon Rank Sum
	Asymmetric	Mean	Wilcoxon Rank Sum
	Asymmetric	Median	Permutation
	Tests for	three or more groups	
ANOVA (non-	Notation: Assume we have K groups		
parametric,	Let $X_{ij} = j^{th}$ observation from i^{th} group	# The idea is the same as paramet	ric ANOVA.
permutation based)	Let n_i = sample size of i^{th} group	We compare the difference in me	ans to the
	Let $\bar{X}_i = \text{sample mean of } i^{th} \text{group}$	overall mean to the spread of each	
	Let S_i^2 = sample variance of i^{th} group		- 8 4
	Let $N = \text{overall sample size} = \sum_{i=1}^{k} n_i$		
	Let \bar{X} = overall sample mean = $\frac{\sum_{i=1}^{k} n_i \bar{X}_i}{N}$		
	The following measure the difference $SST = \text{Sum of squared treatment} = \sum_{i=1}^{k} MST = \frac{SST}{k-1}$	~ .	
	The following measure the variances v	vithin each group:	

$$SSE = \sum_{i=1}^{k} (n_i - 1) S_i^2 = \text{Sum of square errors}$$

$$MSE = \frac{SSE}{N-k}$$

Test statistic:

$$F_S = \frac{MST}{MSE}$$

When F_s is large => variance between groups is larger than within groups => means are significantly different ## When F_s is small => variance between groups is smaller than within groups => means are not significantly different

Assumptions (traditional):

- 1) Random samples are taken from all k groups
- 2) All k groups are independent
- 3) $\sigma_1 = \sigma_2 = \dots = \sigma_k$ equal variance (Levene's Test)
- 4) $\epsilon_{ij} \sim N(0, \sigma_{\epsilon}^2)$ independent and identically distributed (QQ plot and Shapiro-Wilks Test)

When the assumptions do not hold, we do not know what the distribution of F_s . But, we can find the permutation distribution.

Assumptions (non-parametric):

A random sample was taken from each group, groups independent.

Step 1: State the null and alternative hypothesis

$$H_0: F_1(x) = F_2(x) = \dots = F_k(x)$$
 v.s. $H_1: F_i(x) \le F_i(x)$ or $F_i(x) \ge F_i(x)$ for some $i \ne j$

Step 2: Calculate the observed test statistic

$$F_{OBS} = \frac{MST}{MSE}$$

Step 3: Find the permutation p-value:

Possible permutations =
$$\frac{N!}{n_1!n_2!...n_k!}$$

We can also use random permutations:

- 1) Randomly assign the N observations into the k groups, R > 4000 times
- 2) Calculate the R values of F_s , denote F_i
- 3) Our p-value is (# of $F_i \ge F_{OBS}$)/R

Step 4: If p-value $< \alpha$, reject H_0 .

Kroskall-Wallis (KW)
Test (permutation
based)

Kroskall-Wallis test uses ranks rather than the actual X_{ij} values. Has confidence interval.

Assumptions:

Step 1: State the null and alternative hypothesis
A random sample was taken from each group, groups independent.

$$H_0: F_1(x) = F_2(x) = \dots = F_k(x)$$
 v.s. $H_1: F_i(x) \le F_j(x)$ or $F_i(x) \ge F_j(x)$ for some $i \ne j$

Step 2: Calculate the test statistic

$$KW_{OBS} = \frac{1}{S_P^2} \sum_{i=1}^k n_i \left(\bar{R}_i - \frac{N+1}{2} \right)^2$$

Where S_R^2 = variance of ranks, regardless of groups, \bar{R}_i = mean rank of each group # This form of KW test works whenever ties are present or not

Step 3: Calculate the approximate permutation p-value

p-value = (# of $KW_i \ge KW_{OBS}$)/R

Step 4: If p-value $< \alpha$, reject H_0 .

Large Sample
Approximation to
Kroskall-Wallis Test

If the n_i 's are large, but an assumption of ANOVA is violated, we may use a large sample approximation.

Motivation: In traditional ANOVA, we know that SST/σ_{ϵ}^2 is distributed X^2 with df = k - 1.

Now, replace X_{ij} with R_{ij} , which is the corresponding ranks, we can see:

$$SST_R = \sum_{i=1}^k n_i \left(\bar{R}_i - \frac{N+1}{2} \right)^2$$

But the normalizing constant for the X^2 distribution has changed (since we are using R_{ij})

 $E[c(SST_R)] = k - 1$ (since we know $E[X_{k-1}^2] = k - 1$), which gives $c = 1/S_R^2$

This gives our test statistic as:

$$KW = \frac{1}{S_R^2} \sum_{i=1}^k n_i \left(\bar{R}_i - \frac{N+1}{2} \right)^2 \sim X_{k-1}^2$$

Assumptions:

A random sample was taken from each group, groups independent, combined sample size at least 30.

Step 1: State the null and alternative hypothesis

$$H_0: F_1(x) = F_2(x) = \dots = F_k(x)$$
 v.s. $H_1: F_i(x) \le F_j(x)$ or $F_i(x) \ge F_j(x)$ for some $i \ne j$

Step 2: Calculate the test statistic

$$KW = \frac{1}{S_R^2} \sum_{i=1}^k n_i \left(\bar{R}_i - \frac{N+1}{2} \right)^2$$

Where S_R^2 = variance of ranks, regardless of groups, \bar{R}_i = mean rank of each group

	Step 3: Calculate the p-value p-value = $P(X_{k-1}^2 > KW)$
	Step 4: If p-value $< \alpha$, reject H_0 .
Asymptotic Bonferroni	Assumptions:
and Tukey cutoffs (Corrections for	A random sample was taken from each group, groups independent, combined sample size at least 30.
multiple comparisons)	Bonferroni (BON) cutoff:
	$BON = Z_{1 - \frac{\alpha}{2g}} \sqrt{S_R^2 \left(\frac{1}{n_i} + \frac{1}{n_j}\right)}$
	Tukey (HSD) cutoff:
	$HSD = q_{\alpha}(k, df = N - k) \sqrt{S_R^2 \left(\frac{1}{n_i} + \frac{1}{n_j}\right)}$
	Parametric version of Tukey:
	We reject H_0 if $\left \bar{X}_i - \bar{X}_j \right \ge q_{\alpha}(k, df = N - k) \sqrt{MSE\left(\frac{1}{n_i} + \frac{1}{n_j}\right)}$
	If $ \bar{R}_i - \bar{R}_j > BON$ or HSD , we may conclude that the specific group have significant different average ranks.
Permutation cutoff for	Assumptions: A random sample was taken from each group, groups independent.
Bonferroni and Tukey	A random sample was taken from each group, groups independent.
	There are $\binom{k}{2}$ possible permutations. Compare the p-values to $\frac{\alpha}{g}$.
	Step 1: Randomly shuffle each observation into a group, R>4000.
	Step 2: Pick a comparison measure, T_{ij} . Common values are $ \bar{X}_i - \bar{X}_j $, $ \bar{R}_i - \bar{R}_j $, $ median_i - median_j $, $\frac{\bar{X}_i - \bar{X}_j}{\sqrt{MSE\left(\frac{1}{n_i} + \frac{1}{n_j}\right)}}$
	Step 3: For each R permutation, calculate $Q_{ij} = \max T_{ij} $
	Step 4: Let $q^*(\alpha)$ be the $(1-\alpha)100^{th}$ percentile of Q_{ij} . Then groups i and j are significant different if $\left T_{ij}^{OBS}\right > q^*(\alpha)$. We can also find the p-value = $(\# \text{ of } Q_{ij} \ge T_{ij}^{OBS})/R$. If p-value $< \alpha$, groups i and j are significant different.

Kroskall-Wallis v.s.	The KW test will have higher power than a permutation test when:
Permutation	1) Outliers are present
	2) The distribution of one or more groups is skewed
	3) The distribution of one or more groups has "heavy tails"
	Test for linear relationship
Parametric test for	Assumptions:
correlation	1) Pairs are independent (random selection of pairs)
	2) (x_i, y_i) are distributed bivariate normal, where $r = \frac{1}{n-1} \sum_{i=1}^k \left(\frac{x_i - \bar{x}}{S_x} \right) \left(\frac{y_i - \bar{y}}{S_y} \right)$
	Let ρ denote the population correlation between numeric variables X and Y. We measure n pairs of data, (x_i, y_i) .
	Step 1: State the null and alternative hypothesis
	$H_0: \rho = 0 v.s. H_1: \rho \neq 0$
	$H_0: \rho \ge 0 v.s. H_1: \rho < 0$
	$H_0: \rho \le 0 v.s. H_1: \rho > 0$
	Step 2: Calculate the test statistic
	$t_{\scriptscriptstyle S} = r \sqrt{\frac{n-2}{1-r^2}}$
	Step 3: Calculate the p-value
	$H_1: \rho \neq 0 \implies p-value = 2P(t> t_s)$
	$H_1: \rho < 0 \implies p - value = P(t < t_s)$
	$H_1: \rho > 0 \Rightarrow p-value = P(t > t_s)$
	Step 4: If p-value $< \alpha$, reject H_0 .
	We can also create linear regression line and a test for the slope:
	True model: $Y_i = \beta_0 + \beta_1 x_i + \epsilon_i$
	Least square line: $\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 \bar{x}$, $\hat{\beta}_1 = r \left(\frac{S_y}{S_x} \right)$, $\beta_1 = \bar{y} - \hat{\beta}_1 \bar{x}$
	Assumptions:
	1) Pairs are randomly sampled/independent
	2) $\epsilon_i \sim N(0, \sigma_\epsilon^2)$ independent and identically distributed

Step 1: State the null and alternative hypothesis

$$H_0: \beta_1 = 0 \quad v.s. \quad H_1: \beta_1 \neq 0$$

 $H_0: \beta_1 \geq 0 \quad v.s. \quad H_1: \beta_1 < 0$
 $H_0: \beta_1 \leq 0 \quad v.s. \quad H_1: \beta_1 > 0$

Step 2: Calculate the test statistic

$$t_s = \hat{\beta}_1 \sqrt{\frac{\sum (x_i - \bar{x})^2}{MSE}} \sim t(df = n - 2)$$
, where $MSE = \frac{\sum (y_i - \hat{y}_i)^2}{n - 2}$

Step 3: Calculate the p-value

$$H_1: \beta_1 \neq 0 => p - value = 2P(t > |t_s|)$$

 $H_1: \beta_1 < 0 => p - value = P(t < t_s)$
 $H_1: \beta_1 > 0 => p - value = P(t > t_s)$

Step 4: If p-value $< \alpha$, reject H_0 .

If β_1 or $\rho = 0$ => no linear relationship between X and Y ## If β_1 or $\rho < 0$ => negative linear relationship between X and Y ### If β_1 or $\rho > 0$ => positive linear relationship between X and Y

Permutation test for the slope

Common reasons we use a non-parametric test:

- 1) Outliers present (violates normality)
- 2) Non constant variance (violates normality)
- 3) Small sample size (may not be able to conclude normal)

Assumptions:

A random sample of pairs of data was taken.

Step 1: State the null and alternative hypothesis

$$H_0: \beta_1 = 0 \quad v.s. \quad H_1: \beta_1 \neq 0$$

 $H_0: \beta_1 \geq 0 \quad v.s. \quad H_1: \beta_1 < 0$
 $H_0: \beta_1 \leq 0 \quad v.s. \quad H_1: \beta_1 > 0$

Step 2: Calculate the observed test hypothesis

$$\hat{\beta}_1^{OBS}$$
 = estimated least-squares slope = $r \frac{s_y}{s_x}$

Step 3: Calculate the permutation p-value

	There are n ways to pair the first y_i with an x_i , then n-1 ways to pair the second y_i with an x_i , etc. There are n! possible
	permutations.
	1) Permute the data and calculate $\hat{\beta}_1^i$
	2) Repeat for either
	i) All n! permutations
	ii) $R > 3000$ random permutations
	3) The actual or estimated permutation p-values are
	$H_1: \beta_1 \neq 0 => \frac{\# of \widehat{\beta}_1^i \geq \widehat{\beta}_1^{OBS} }{m!} \text{ (actual) or } \frac{\# of \widehat{\beta}_1^i \geq \widehat{\beta}_1^{OBS} }{m!} \text{ (estimated)}$
	$H_1: \beta_1 < 0 = > \frac{\# of \widehat{\beta}_1^i \le \widehat{\beta}_1^{OBS}}{n!} $ (actual) or $\frac{\# of \widehat{\beta}_1^i \le \widehat{\beta}_1^{OBS}}{R}$ (estimated)
	$H_1: \beta_1 > 0 = \frac{\# of \widehat{\beta}_1^{\frac{1}{2}} \ge \widehat{\beta}_1^{OBS}}{n!} \text{ (actual) or } \frac{\# of \widehat{\beta}_1^{\frac{1}{2}} \ge \widehat{\beta}_1^{OBS}}{R} \text{ (estimated)}$
	Step 4: If p-value $< \alpha$, reject H_0 .
Large Sample	Assumptions:
approximation to	A random sample of pairs of data was taken, combined sample size at least 30.
permutation test for the	
slope	Step 1: State the null and alternative hypothesis
	$H_0: \rho = 0 \ v.s. \ H_1: \rho \neq 0$
	$H_0: \rho \ge 0 v.s. H_1: \rho < 0$
	$H_0: \rho \le 0 v.s. H_1: \rho > 0$
	Step 2: Calculate the test statistic
	$Z_s = \frac{r-0}{1/\sqrt{n-1}} = r\sqrt{n-1} \sim N(0,1/\sqrt{n-1})$
	2/ 1/4
	Step 3: Calculate the p-value
	$ H_1: \rho \neq 0 => 2P(Z > Z_S)$
	$H_1: \rho < 0 \implies P(Z < Z_S)$
	$H_1: \rho > 0 \implies P(Z > Z_S)$
	Step 4: If p-value $< \alpha$, reject H_0 .
Spearman's Rank	Let $R(X_i) = \text{rank for } x_i, i = 1,, n$; $R(Y_i) = \text{rank for } y_i, i = 1,, n$.
Correlation	$\bar{R}(x)$ = average rank of x_i , $S_{R(Y)}$ = standard deviation of rank of Y_i
	Step 1: State the null and alternative hypothesis
	$H_0: \rho_s = 0 v.s. H_1: \rho_s \neq 0$
	$H_0: \rho_s \le 0 v.s. H_1: \rho_s > 0$

$$H_0: \rho_s \ge 0 \quad v.s. \quad H_1: \rho_s < 0$$

Step 2: Calculate the test statistic

$$r_{S} = \frac{1}{n-1} \sum_{i=1}^{k} \left(\frac{R(x_{i}) - \bar{R}(x)}{S_{R(x)}} \right) \left(\frac{R(y_{i}) - \bar{R}(y)}{S_{R(y)}} \right)$$

Step 3: Calculate the p-value

$$H_1: \rho_s \neq 0 => 2P(r_s^* > |r_s|)$$

 $H_1: \rho_s > 0 => P(r_s^* > r_s)$
 $H_1: \rho_s < 0 => P(r_s^* < r_s)$
If $H_1: \rho_s < 0$, $P(r_s^* < -c) = P(r_s^* > c)$

Step 4: If p-value $< \alpha$, reject H_0 .

Kendall's Tau

Kendall's Tau does not use ranks directly, but also does not use the original data.

Suppose we looks at a pair of (x_i, y_i) , say (x_1, y_1) and (x_2, y_2) .

- 1) If as X increases, Y tends to increase, then we should see $x_1 > x_2 = y_1 > y_2$.
- 2) If as X increases, Y tends to decrease, then we should see $x_1 > x_2 \implies y_1 < y_2$.

We use this to describe "discordant" and "concordant" pairs.

Concordant pairs: If
$$X_i < X_j => Y_i < Y_j$$
, or equivalently $(X_i - X_j)(Y_i - Y_j) > 0$ (or $X_i > X_j => Y_i > Y_j$)
Discordant pairs: If $X_i < X_j => Y_i > Y_j$, or equivalently $(X_i - X_j)(Y_i - Y_j) < 0$ (or $X_i < X_j => Y_i > Y_j$)

If most pairs are concordant => positive linear relationship If most pairs are discordant => negative linear relationship

The "population" value of Kendall's Tau is

$$\tau = 2P[(X_i - X_j)(Y_i - Y_j) > 0] - 1$$
, which is a rescaled probability of concordant pairs.

If all pairs are concordant, $\tau = 1$. If all pairs are discordant, $\tau = -1$. If exactly half are concordant, half are discordant, $\tau = 0$.

There are
$$\binom{n}{2}$$
 total pairs (X_i, X_j) , (Y_i, Y_j) then $U_{ij} = 1$ if $(X_i - X_j)(Y_i - Y_j) > 0$ (concordant) $U_{ij} = \frac{1}{2}$ if $(X_i - X_j)(Y_i - Y_j) = 0$ (tied) $U_{ij} = 0$ if $(X_i - X_j)(Y_i - Y_j) < 0$ (discordant)

	Let $V_i = \sum_{j=i+1}^n U_{ij} = \#$ of concordant pairs for i^{th} value (x_i, y_i) .
	# j = i + 1 ensures that we are never comparing the same pair.
	$r_{\tau} = \frac{2\left[\sum_{i=1}^{n-1} V_i\right]}{\binom{n}{i}} - 1$
	(2)
Exact Hypothesis Test	Step 1: State the null and alternative hypothesis
for $ au$	$H_0: \tau = 0 v.s. H_1: \tau \neq 0$
	$H_0: \tau \le 0 v.s. H_1: \tau > 0$
	$H_0: \tau \ge 0 \ v.s. \ H_1: \tau < 0$
	Step 2: Calculate test statistic
	$r_{\tau} = \frac{2\left[\sum_{i=1}^{n-1} V_i\right]}{\binom{n}{i}} - 1$
	$\binom{r_{\tau}}{r} = \binom{n}{2}$
	Step 3: Calculate the p-value
	$H_1: \tau \neq 0 => 2P(r_{\tau}^* > r_{\tau})$
	$H_1: \tau > 0 \implies P(r_\tau^* > r_\tau)$
	$H_1: \tau < 0 => P(r_{\tau}^* < r_{\tau})$
	Step 4: If p-value $< \alpha$, reject H_0 .
Permutation test for τ	Same step 1 and 2 as exact hypothesis test for τ
	Step 3: Calculate the p-value
	$H_1: \tau \neq 0 => (\# r_{\tau}^* \geq r_{\tau OBS})/R$
	$H_1: \tau > 0 \implies (\# r_\tau^* \ge r_{\tau OBS})/R$
	$H_1: \tau < 0 \implies (\# r_\tau^* \le r_{\tau OBS})/R$
	Step 4: If p-value $< \alpha$, reject H_0 .
Asymptotic	The following formula can be used with or without ties.
Approximation for τ	Let $s_i = \#$ of ties for the i^{th} tied value of X
XX 71	Let $t_i = \#$ of ties for the i^{th} tied value of Y
When to use which	1) When there are no outliers, and the distribution is approximately symmetric (but with low sample size) use a
correlation	permutation test for the slope.
	2) When outliers are present in the data, use Spearman's of Kendall's.

3) Kendall and Spearman tend to have similar results, but Spearman tends to have higher power at low sample sizes, and
Kendall has higher power in large sample sizes.