Control Flow in Programs (Part I: Sequential and Conditional control)

Venkatesh Choppella

International Institute of Information Technology, Hyderabad

Outline

Programs and Control Flow

Control Flow Graphs

Executions

Conditionals

Conclusion

Control Flow Graphs

Topic

Programs and Control Flow

Control Flow Graphs

Executions

Conditionals

Conclusion

What is a Program?

0

Programs and Control Flow

Program: A sequence instructions interleaved with locations

```
a = 3
b = read()
c = a // b
d = c - a
  end
```

Control Flow Graphs

What is Control flow?

```
a = 3

b = read()

c = a // b

d = c - a

# end
```

What is control flow analysis?

Programs and Control Flow

 Control Flow analysis is the examination of possible paths a program can take when it runs. These paths are called executions.

 Control Flow analysis is done without running the program, i.e., statically.

Control Flow Graphs

Structural Abstraction

Program

```
0
 a =
 b = read()
2
 c = a // b
3
 d =
```

end

Programs and Control Flow

Program

0

2

```
a =
b = read()
c = a // b
d = c - a
```

end

Structural Abstraction

Executions

```
expression assignment
 expression assignment
2
 expression assignment
3
 expression assignment
4
 \# e.n.d.
```

Topic

Control Flow Graphs

Structural Abstraction

Programs and Control Flow

0 expression assignment

expression assignment

2 expression assignment

expression assignment

e.n.d.

Control Transfer Functions

3

Control Transfer Functions

Structural Abstraction

Programs and Control Flow

- expression assignment
 - expression assignment
- 2 expression assignment
- expression assignment
- # e.n.d.

Control Transfer Functions

i	next	error
0	1	4
1	2	4
2	3	4
3	4	4
4		

3

Control Flow Graph

Control Flow Graph

Control Transfer Functions

i	next	error
0	1	4
1	2	4
2	3	4
3	4	4
4		

Control Flow Graph

Programs and Control Flow

Control Transfer Functions

i	next	error
0	1	4
1	2	4
2	3	4
3	4	4
4		

Control Flow Graph

Programs and Control Flow

Control Flow Graph

Control Flow Graph with error edges implicit

•0000000

Topic

Executions

Programs and Control Flow

00000000

What is an execution?

Programs and Control Flow

Control Flow Graph

An execution is a labelled path in the Control Flow graph starting from L_0 and ending at the last location L_N .

Programs and Control Flow

Control Flow Graph

Structurally Feasible Executions:

Executions

0000000

Programs and Control Flow

Control Flow Graph

Structurally feasible executions:

Executions

00000000

1.

$$L_0 \xrightarrow{\textit{next}} L_1 \xrightarrow{\textit{next}} L_2 \xrightarrow{\textit{next}} L_3 \xrightarrow{\textit{next}} L_4$$

2. All error executions (executions containing an error edge).

00000000

Logically feasible executions:

Sequential Flow Program:

CFG:

$$a = 3$$

Programs and Control Flow

$$b = read()$$

$$c = a // b$$

$$d = c - a$$

end

Logically Feasible Executions

Program:

Programs and Control Flow

Control Flow Graph:

Logically feasible executions:

• b is a number not equal to 0:

$$\begin{array}{c} L_0 \xrightarrow{next} L_1 \xrightarrow{next} L_2 \xrightarrow{next} \\ L_3 \xrightarrow{next} L_4 \end{array}$$

- b = 0: $L_0 \xrightarrow{next} L_1 \xrightarrow{next} L_2 \xrightarrow{error} L_4$
- b is not a number: $L_0 \xrightarrow{next} L_1 \xrightarrow{next} L_2 \xrightarrow{error} L_A$

00000000

Actual Execution

Programs and Control Flow

Actual execution given that b = 5:

Program:

Corresponding CFG:

Actual Execution

Programs and Control Flow

Program:

end

Corresponding CFG:

Actual execution given that b = 5:

$$L_0 \xrightarrow{next} L_1 \xrightarrow{next} L_2 \xrightarrow{next} L_3 \xrightarrow{next} L_4$$

Topic

Programs and Control Flow

Control Flow Graphs

Executions

Conditionals

Conclusion

Conditional Control Flow

Programs and Control Flow

- 1. A block is a sequence of instructions.
- 2. An If-else statement $(L_1 L_4)$ has three parts:
 - A 'test' expression (L₁)
 - A 'then' block (L₂ L₂)
 - An 'else' block $(L_4 L_4)$
 - The 'else' keyword (L_3) is punctuation.
- In the concrete syntax, the then and else blocks are indented.

end

Structural Abstraction

Program 0

1

2

3

4

5

6

Programs and Control Flow

```
a = read()
if
   a < 5:
    = 7
else:
    а
```

Structural Abstraction

```
expression assignment
 if:
2
     expression assignment
3
 else:
4
     expression assignment
5
 expression assignment
```

end

Structural Abstraction

Programs and Control Flow

```
0
 expression assignment
 if:
2
      expression assignment
3
 else:
4
     expression assignment
5
 expression assignment
 # end
```

Control Transfer Functions

Control Transfer Functions

Structural Abstraction

Programs and Control Flow

```
0
 expression assignment
 if:
2
```

3

else:

expression assignment

expression assignment

expression assignment

e.n.d.

Control Transfer Functions

i	next	true	false	error
0	1			6
1		2	3	6
2	5			6
3	4			
4	5			6
5	6			6
6				

4

5

Programs and Control Flow

Control Transfer Functions

i	next	true	false	error
0	1			6
1		2	3	6
2	5			6
3	4			
4	5			6
5	6			6
6				

Control Flow Graph with Error edges implicit

Control Flow Graph

Programs and Control Flow

Control Transfer Functions

i	next	true	false	error
0	1			6
1		2	3	6
2	5			6
3	4			
4	5			6
5	6			6
6				

Control Flow Graph with error edges implicit

Structurally Feasible Executions

Programs and Control Flow

000000

Structurally Feasible Executions:

Structurally Feasible Executions

CFG:

Programs and Control Flow

Structurally Feasible Executions:

1.
$$L_0 \xrightarrow{next} L_1 \xrightarrow{true} L_2 \xrightarrow{next} L_5 \xrightarrow{next} L_6$$

$$\text{2.} \ \ L_0 \xrightarrow{\textit{next}} \ L_1 \xrightarrow{\textit{false}} \ L_3 \xrightarrow{\textit{next}} \ L_4 \xrightarrow{\textit{next}} \ L_5 \xrightarrow{\textit{next}} \ L_6$$

3. All error executions.

Logically Feasible Executions

Program:

Programs and Control Flow

end

CFG:

Logically Feasible Executions:

Logically Feasible Executions

Program:

Programs and Control Flow

end

CFG:

Logically Feasible Executions:

1. *a* < 5: $L_0 \xrightarrow{next} L_1 \xrightarrow{true} L_2 \xrightarrow{next}$ $L_{\mathsf{E}} \xrightarrow{\mathsf{next}} L_{\mathsf{G}}$

- 2. $a \ge 5$: $L_0 \xrightarrow{next} L_1 \xrightarrow{false} L_3 \xrightarrow{next}$ $L_1 \xrightarrow{next} L_5 \xrightarrow{next} L_6$
- 3. a is not a number: $L_0 \xrightarrow{next} L_1 \xrightarrow{error} L_6$

Actual Execution

Programs and Control Flow

Program:

CFG:

Actual execution given that value read at L_0 is the number 3.

Actual execution

Programs and Control Flow

Program:

CFG:

Actual execution, given that value read at L_0 is the number 3.

$$L_0 \xrightarrow{next} L_1 \xrightarrow{true} L_2 \xrightarrow{next} L_5 \xrightarrow{next} L_6$$

Control Flow Graphs

Topic

Conclusion

Program and its structural abstraction

- Location: a natural number between 0 and N
- 2. Instruction: A basic executional unit of a program
- 3. **Program**: A map from [0..N-1] to instructions
- 4. Structural abstraction of an instruction: Expression assignment, if or else
- 5. **Structural abstraction** of a **program**: structural abstractions of all its instructions

Programs and Control Flow

1. Control Transfer Functions: partial functions from locations to locations

Executions

2. next, error, true and false: control transfer functions

- 3. Control Flow Graph: A diagram representing the control transfer functions
- 4. **Control Flow Graph with implicit error edges**: error edges suppressed to reduce clutter

Programs and Control Flow

Programs and Control Flow

- 1. **Execution**: A labelled path from L_0 to L_N .
- 2. Structurally feasible executions: Possible executions inferable from the structural abstraction of a program

Executions

- 3. Logically feasible executions: Possible executions inferable from the actual program
- 4. Actual Execution: The single execution when the results of all the read() expressions, if any, in the program are known