Rudin-Shapiro

April 19, 2010

1 Propriétés de la suite de Rudin-Shapiro

1.1 Définitions

La suite de Rudin-Shapiro est une suite à valeurs dans ± 1 , obtenue comme coefficients d'une suite de polynômes définie récursivement. On construit ces polynômes par le procédé suivant : on pose

$$P_{0} = Q_{0} = 1,$$

$$P_{n+1}(z) = P_{n}(z) + z^{2^{n}}Q_{n}(z)$$

$$Q_{n+1}(z) = P_{n}(z) - z^{2^{n}}Q_{n}(z)$$

de sorte que P_n et Q_n sont de degré 2^n-1 . Puisque P_{n+1} commence par P_n , la suite infinie des coefficients de P_n ne dépend pas de n et elle est à valeurs dans $\{\pm 1\}$ car le shift des fréquences par z^{2^n} empêche les recoupements. On note alors

$$P_n(z) = \sum_{k=0}^{2^n - 1} r_k z^k$$

et

$$Q_n(z) = \sum_{k=0}^{2^n - 1} r_k^{(n)} z^k;$$

Ainsi $r_k^{(n)} = r_k$ si $k < 2^{n-1}$, $r_k^{(n)} = -r_k$ au-delà et $r_k, r_k^{(n)} \in \{\pm 1\}$. La suite (r_k) est la suite de Rudin-Shapiro. Pourquoi cette suite a-t-elle de l'importance en analyse harmonique : parce qu'elle possède des propriétés extrèmales, comparables à celles des suites de ± 1 aléatoires comme on va le voir.

Mais on commence par donner quelqu'autres descriptions de la suite.

La suite de Rudin-Shapiro vérifie les relations de récurrence

$$r_0 = 1$$

 $r_{2n} = r_n$
 $r_{2n+1} = (-1)^n r_n$

et ces relations la déterminent entièrement; en particulier c'est une suite multiplicative (au sens de Gelfond).

D'où une troisième définition arithmétique (attribuée à Brilhart et Carlitz) :

Définition 1.1 La suite (r_n) est aussi définie par

$$r_n = (-1)^{f(n)}$$

 $si\ f(n) = \#\{11\}\ dans\ l'écriture\ 2$ -adique de n.

Il suffit de vérifier que cette suite vérifie les mêmes relations de récurrence : si u_n est cette dernière suite, clairement $u_{2n}=u_n$; maintenant si n a pour chiffres $n_0n_1\cdots n_k$, $2n+1\sim 1n_0n_1\cdots n_k$ a la même nombre de 11 que n si $n_0=0$ et un motif de plus si $n_0=1$; d'où $u_{2n+1}=(-1)^{n_0}u_n=(-1)^nu_n$.

Une dernière définition plus algorithmique se déduit de la seconde (due à Mendes).

Définition 1.2 La suite (r_n) s'obtient aussi comme projection lettre à lettre d'un point fixe d'une substitution de longueur 2 sur un alphabet de 4 lettres. Si $u = \zeta^{\infty}(0)$ avec

$$\zeta(0) = 01, \ \zeta(1) = 02, \ \zeta(2) = 31, \ \zeta(3) = 32$$

alors $r_n = \pi(u_n)$ avec $\pi(0) = \pi(1) = 1$ et $\pi(2) = \pi(3) = -1$. C'est une suite automatique.

Il suffit de poser $A_n = r_{[0,2^n-1]}$ le préfixe de taille 2^n de la suite (r_n) (ie le motif des coefficients de P_n) et $B_n = r_{[2^n,2^{n+1}-1]}$ (ie celui des coefficients de Q_n); ainsi, en notant \overline{A} le mot A dans lequel on a échangé les 1 et -1,

$$A_{n+1} = A_n B_n, \ B_{n+1} = A_n \overline{B_n}.$$

On code alors la suite par $A, B, \overline{B}, \overline{A}$ disons 0, 1, 2, 3, et ζ définit la règle de passage de l'étape n à $n+1: 0 \to 01, 1 \to 02, 2 \to 31, 3 \to 32$. Ensuite on projette.

1.2 Normes $L^1 - L^2 - L^{\infty}$

La première apparition de cette suite de polynômes (P_n) et (Q_n) , dans la thèse de Shapiro, avait pour motivation la comparaison des normes $L^{\infty} - A$ et $L^{\infty} - L^2$ dans l'espace des polynômes trigonométriques. On sait en effet que pour P polynôme trigonométrique de degré N de la forme $\sum_{k=0}^{N} c_k e^{2i\pi kt}$,

$$||P||_1 \le ||P||_2 \le ||P||_{\infty} \le ||P||_A \le \sqrt{N+1}||P||_2$$

Dans quelle mesure ces inégalités sont-elles optimales?

On savait, depuis longtemps déjà, construire des polynômes à coefficients de module 1 (signes complexes), pour lesquels les normes 2 et ∞ sont équivalentes (pour les polynômes unimodulaires, la dernière inégalité est une égalité) : un premier exemple étant celui des gaussiennes complexes

$$||\sum_{1 \le k \le N} e^{2i\pi \frac{k^2}{N}} e^{2i\pi kt}||_{\infty} \le C\sqrt{N};$$

de même, si (ε_k) est une suite infinie et $P(t) = \sum_{k \leq N} \varepsilon_k e^{2\pi i k t}$, alors $||P||_{\infty} \leq C\sqrt{N}$ lorsque

$$\varepsilon_k = e^{ik \log k}$$
, (inégalités de Van der Corput)

ou encore, par le résultat de Hardy-Littlewood (1914), lorsque

$$\varepsilon_k = e^{ik^2\pi\theta}$$
, θ à quotients partiels bornés.

Preuve (cf N.Bary) : Les deux premiers exemples se traitent avec l'inégalité VdC

$$\left| \sum_{a < k \le b} e^{2i\pi f(k)} \right| \le C(|f'(b) - f'(a)| + 1)(1 + 1/\sqrt{\rho})$$

où $|f''| \ge \rho$; ainsi en prenant $f(x) = xt + x^2/N$, a = 0, b = N, on obtient

$$\left| \sum_{1 \le k \le N} e^{2i\pi \frac{k^2}{N}} e^{2i\pi kt} \right| \le 3(1 + \sqrt{N}/\sqrt{2}) = O(\sqrt{N}).$$

Pour la seconde, on raisonne sur des blocs dyadiques et on interpole.

La question de telles estimations avec des polynômes à signes REELS a été posée par Salem devant Shapiro et Rudin i.e. : Existe-t-il des polynômes plats à coefficients réels ?

Le premier exemple auquel on pense ne convient pas tout-à-fait : la suite des symboles de Legendre. Si p est un nombre premier et $\binom{j}{p}$ le symbole de

Legendre alors
$$R(x) = \sum_{j=1}^{p} {j \choose p} e^{2i\pi jx}$$
 est tel que

$$||R||_{\infty} \gg \sqrt{p} \log \log p$$
, (Montgomery).

Si P est à coefficients aléatoires ± 1 , i.e. $P(t) = \sum_{n \leq N} \varepsilon_n e^{2\pi i n t}$ où les (ε_n) sont des Rademacher indépendantes, on sait (Salem-Zygmund, Halasz) que $E(||P(t)||_{\infty}) \sim \sqrt{N \log N}$ et donc que ps,

$$||P||_{\infty} \ll \sqrt{N \log N}$$
, soit $||P||_{\infty}/||P||_2 \ll \sqrt{\log N}$

(puisque $||P||_2 = \sqrt{N+1}$ par Parseval). Il y a donc une perte logarithmique...

On va voir que les polynômes de RS font l'affaire. On considère donc $P_n(t) = \sum_{k=0}^{2^{n}-1} r_k e^{ikt}$ et $Q_n(t) = \sum_{k=0}^{2^{n}-1} r_k^{(n)} e^{ikt}$. Par la règle du parallélogramme

$$|P_{n+1}|^2 + |Q_{n+1}|^2 = |P_n(t) + e^{i2^n t} Q_n(t)|^2 + |P_n(t) - e^{i2^n t} Q_n(t)|^2$$

= $2(|P_n|^2 + |Q_n|^2) = 2^{n+2}$.

Il en résulte que $||P_n||_{\infty} \leq \sqrt{2}\sqrt{2^n}$, autrement dit, les deux normes sont du même ordre de grandeur :

$$||P_n||_2 \le ||P_n||_\infty \le \sqrt{2}||P_n||_2.$$

Cela tient à mise en jeu de matrices de Hadamard : l'identité du parallélogramme

$$|a + b|^2 + |a - b|^2 = 2(|a|^2 + |b|^2)$$

se lit en effet $||Av||^2 = 2||v||^2$ si v est le vecteur de \mathbb{C}^2 à coordonnées a et b, et

$$A = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$

la première matrice de Hadamard.

Une matrice A carrée $q \times q$ à coefficients ± 1 est appelée matrice de Hadamard si elle vérifie $A^*A = qI$. Ces matrices peuvent être engendrées par blocs selon la relation

$$A_1 = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}, \quad A_{k+1} = \begin{pmatrix} A_k & A_k \\ A_k & -A_k \end{pmatrix}.$$

(De telles matrices existent pour d'autres tailles que les puissances de 2, e.g. pour q multiple de 4 et \leq 664).

De plus, le résultat vaut pour la suite infinie : en effet, par un découpage en blocs dyadiques, Shapiro et Rudin ont montré que si $P(t) = \sum_{k=0}^{N} r_k e^{ikt}$,

$$||P||_{\infty}/||P||_2 \le 2 + \sqrt{2}$$
, pour tout N

et Saffari prétend avoir la meilleure constante : $\sqrt{6}$.

Cette propriété implique aussi l'équivalence des normes L^1 et L^2 par l'inégalité immédiate :

$$||P||_2 \le \sqrt{||P||_1||P||_\infty};$$

$$(\text{si } ||P||_{\infty} \le C||P||_2 \text{ alors } ||P||_2 \le C||P||_1).$$

Certains motifs finis possèdent cette dernière propriété; c'est le cas de la suite des symboles de Legendre sur $\mathbf{Z}/p\mathbf{Z}$ cette fois, où p est un nombre premier fixé. Si $R(x) = \sum_{j=1}^{p-1} \binom{j}{p} e^{2i\pi jx/p}$, on a en utilisant les sommes de Gauss,

$$|R(x)| = \sqrt{p}$$
, et donc $||R||_1 = (p-1)/\sqrt{p}$,

avec ici la norme dans $L^1(\mathbf{Z}/p\mathbf{Z}, \lambda)$. Le polynôme P = R + 1 à coefficients ± 1 est tel que $||P||_1/||P||_2 \ge 1 - 2/\sqrt{p}$.

Remarque : Il résulte de l'équivalence des normes $L^{\infty} - L^2$, l'équivalence des normes L^2 et L^q pour tout q et on va s'intéresser aux constantes.

1.3 Corrélations

Si (X_n) est une suite de variables aléatoires indépendantes centrées, elles sont non-corrélées au sens où $E(X_nX_m)=0$ pour $n\neq m$, plus généralement $E(X_{n_1}X_{n_2}\cdots X_{n_k})=0$ si $n_i\neq n_j$ pour tous $i\neq j$. Wiener a introduit une notion déterministe de corrélation, pour une suite bornée. Si (u_n) est une suite bornée de nombres complexes, par compacité, il existe (N_j) telle que

$$\lim_{j \to \infty} \frac{1}{N_j} \sum_{n < N_j} u_{n+k} \overline{u_n} = \gamma(k) \text{ existe pour tout } k \ge 0$$

Si on prolonge γ aux entiers négatifs par $\gamma(-k) = \overline{\gamma(k)}$, on obtient une fonction définie positive sur \mathbf{Z} qui est donc la transformée de Fourier d'une mesure positive sur \mathbf{T} . Lorsque cette mesure est unique, on l'appelle la mesure de corrélation de la suite.

Proposition 1.1 La mesure de corrélation de la suite (r_n) est la mesure de Lebesgue.

Démonstration de Kamae : Si l'écriture de n en base 2 est $n = \sum e_j(n)2^j$, rappelons que

 $r_n = (-1)^{\sum_{0}^{\infty} e_j(n)e_{j+1}(n)}.$

La mesure de corrélation de la suite (r_n) existe car c'est une suite multiplicative. Il suffit donc de montrer que

$$\lim_{N \to \infty} \frac{1}{2^N} \sum_{n=0}^{2^N - 1} r_n r_{n+k} = 0$$

pour $k \ge 1$. Fixons n et k. Posons

$$a(n) = \max\{j; \ e_j(n) \neq e_j(n+k)\}\$$

de sorte que $e_{a(n)}(n) = 0$ et $e_{a(n)}(n+k) = 1$ et $e_{a(n)+t}(n) = e_{a(n)+t}(n+k)$ si $t \ge 1$. En modifiant le a(n) + 1-ième digit dans n, on définit un nouvel entier

$$\bar{n} = \begin{cases} n + 2^{a(n)+1} & si & e_{a(n)+1}(n) = 0\\ n - 2^{a(n)+1} & si & e_{a(n)+1}(n) = 1 \end{cases}$$

Clairement, pour $j \neq a(n) + 1$, $e_j(n) = e_j(\bar{n})$ et $e_j(n+k) = e_j(\bar{n}+k)$.

Lemme 1.1 Pour tout $n \ge 0$, on a

$$r_n r_{n+k} + r_{\bar{n}} r_{\bar{n}+k} = 0$$

Démonstration : Il suffit de démontrer que $r_n r_{n+k} r_{\bar{n}} r_{\bar{n}+k} = -1$ pour tout $n \geq 0$. Or $r_n r_{n+k} r_{\bar{n}} r_{\bar{n}+k}$

$$= (-1)^{\sum_{j=0}^{\infty} (e_j(n)e_{j+1}(n) + e_j(\bar{n})e_{j+1}(\bar{n}) + e_j(n+k)e_{j+1}(n+k) + e_j(\bar{n}+k)e_{j+1}(\bar{n}+k))}$$

se réduit, compte tenu des premières remarques, à

$$= (-1)^{\sum_{j=a(n)}^{a(n)+1} (e_j(n)e_{j+1}(n) + e_j(\bar{n})e_{j+1}(\bar{n}) + e_j(n+k)e_{j+1}(n+k) + e_j(\bar{n}+k)e_{j+1}(\bar{n}+k))}.$$

Now, toujours par définition de \bar{n} , $e_{a(n)+1}(n) + e_{a(n)+1}(\bar{n}) = e_{a(n)+1}(n+k) + e_{a(n)+1}(\bar{n}+k) = 1$; on trouve ainsi

$$r_n r_{n+k} r_{\bar{n}} r_{\bar{n}+k} = (-1)^{1+e_{a(n)+2}(n)+e_{a(n)+2}(n+k)} = -1$$

 \Diamond

On termine alors la preuve de la proposition. La somme

$$\sum_{n=0}^{2^{N}-1} r_{n} r_{n+k} = \sum_{\substack{n<2^{N} \\ \bar{n}<2^{N}}} r_{n} r_{n+k} + \sum_{\substack{n<2^{N} \\ \bar{n}\geq 2^{N}}} r_{n} r_{n+k}$$

se réduit à $\sum_{\substack{n<2N\\ \bar{n}>2^N}} r_n r_{n+k}$, puisque, par le lemme,

$$\sum_{\substack{n < 2^N \\ \bar{n} < 2^N}} r_n r_{n+k} = -\sum_{\substack{\bar{n} < 2^N \\ n < 2^N}} r_{\bar{n}} r_{\bar{n}+k} = -\sum_{\substack{n < 2^N \\ \bar{n} < 2^N}} r_n r_{n+k},$$

 $(n = \bar{n})$. Mais, si $n < 2^N$,

$$\bar{n} \ge 2^N \iff a(n) \ge N - 1, \ et \ \bar{n} = n + \frac{1}{2^{a(n)+1}}.$$

On en déduit que

$$\frac{1}{2^N} \#\{n < 2^N, \ \bar{n} \ge 2^N\} \sim \frac{1}{2^N} \#\{n < 2^N, \ a(n) = N - 1, N\}$$

et tend vers 0. D'où le résultat.

Démonstration métrique : On revient à $P_n(t) = \sum_{k=0}^{2^n-1} r_k e^{ikt}$ et $Q_n(t) = \sum_{k=0}^{2^n-1} r_k^{(n)} e^{ikt}$. On a obtenu, par la règle du parallélogramme, l'identité

$$|P_{k+1}|^2 + |Q_{k+1}|^2 = 2(|P_k|^2 + |Q_k|^2) = 2^{k+2}.$$

Notons maintenant

$$R_N(t) = \frac{1}{N} \Big| \sum_{n < N} r_n e^{int} \Big|^2.$$

On sait, par définition, que la suite (R_N) converge préfaiblement vers la mesure de corrélation σ de la suite de Rudin-Shapiro. Par ailleurs

$$R_{2^k} = \frac{|P_k|^2}{2^k};$$

posons de même

$$T_{2^k} = \frac{|Q_k|^2}{2^k}.$$

Il résulte de (1) que la suite $R_{2^k} + T_{2^k}$ stationne et vaut identiquement 2. Si on montre que (T_{2^k}) converge elle aussi vers σ et que σ est à densité positive $f \in L^{\infty}$, on en déduira f = 1 et la proposition.

Lemme 1.2 1) (T_{2^k}) converge préfaiblement vers σ . 2) $\sigma = f dt$, $f \geq 0$, $f \in L^{\infty}$. Démonstration: Par un argument d'interpolation, on peut établir

$$0 \le R_N(t) \le (2 + \sqrt{2})^2 = C, \ \forall N \ge 0.$$

Si K_L est le L-ième noyau de Féjer, quand $N \to \infty$,

$$R_N * K_L(t) = \sum_{|k| < L} (1 - \frac{|k|}{L}) \hat{R}_N(k) e^{ikt} \to \sum_{|k| < L} (1 - \frac{|k|}{L}) \hat{\sigma}(k) e^{ikt} = \sigma * K_L(t),$$

Comme $||R_N * K_L||_{\infty} \leq ||R_N||_{\infty}||K_L||_1 \leq C$, la suite $(\sigma * K_L)_L$ est uniformément bornée (dans le dual L^{∞}); par Banach-Alaoglu, $(\sigma * K_L)_L$ admet une valeur d'adhérence préfaible $f \in L^{\infty}$: il existe (L_i) telle que

$$\lim_{j\to\infty}\int h(\sigma*K_{L_j})=\int hf,\quad\forall h\in L^1;$$

en particulier avec $h = e_k$, ce qui implique que $\hat{\sigma}(k) = \hat{f}(k)$ pour tout $k \in \mathbf{Z}$, et $\sigma = f dt$.

Reste à établir 1). A straightforward calculation donne immédiatement à l'aide de (1)

$$R_{2^{k+1}} - T_{2^{k+1}} := \frac{1}{2^{k+1}} (|P_{k+1}|^2 - |Q_{k+1}|^2) = \frac{1}{2^{k+1}} 4\Re(P_k \overline{\gamma_k Q_k}),$$

avec $\gamma_k = e_{2^k}$. Si ce dernier terme converge préfaiblement vers 0, $R_{2^k} + T_{2^k}$ convergera (w^*) vers 2f et f = 1.

Lemme 1.3 Pour tout $m \in \mathbb{Z}$, $|\int P_k \overline{\gamma_k Q_k} e^{imt} dt| \leq |m|$.

Démonstration: $P_k \overline{\gamma_k Q_k} = \sum_{0 \le j, \ell < 2^k} r_j s_\ell e^{i(j-\ell-2^k)t}$ et

$$\int P_k \overline{\gamma_k Q_k} e^{imt} dt = \sum_{0 \le j, \ell < 2^k} r_j s_\ell e^{i(m+j-\ell-2^k)t}.$$

Si $j < 2^k - |m|$, $m + j < 2^k \le 2^k + \ell$ de sorte que $m + j - \ell - 2^k \ne 0$ et l'intégrale est nulle.

Si $j \in [2^k - |m|, 2^k[, m+j-\ell-2^k = 0$ pour la seule valeur $\ell = m+j-2^k$ et finalement

 $\left| \int P_k \overline{\gamma_k Q_k} e^{imt} dt \right| \le \sum_{2^k - |m| \le j < 2^k} 1 = |m|.$

1.4 Multi-corrélations

1.5 Fonction sommatoire

2 Problèmes restants sur Rudin-Shapiro

2.1 Moments des polynômes de Rudin-Shapiro

Si on note P_n le *n*-ième polynôme, Q_n son compère,

$$\begin{cases} P_{n+1}(t) = P_n(t) + e^{i2^n t} Q_n(t) \\ Q_{n+1}(t) = P_n(t) - e^{i2^n t} Q_n(t) \end{cases}$$

alors

$$|P_n|^2 + |Q_n|^2 = 2^{n+1}$$

et

$$0 \le |P_n(t)|^2/2^n \le 2.$$

On a remarqué que les normes $||P_n||_2$ et $||P_n||_q$ sont équivalentes et il est naturel d'étudier le comportement en n de $||P_n||_q/||P_n||_2$. Il est conjecturé que pour tout $q \ge 0$

$$\int_{\mathbf{T}} \left(\frac{|P_n(t)|^2}{2^n} \right)^q dt \to \frac{1}{2} \int_0^2 x^q dx = \frac{2^q}{q+1},$$

autrement dit, que la suite de variables aléatoires ($|P_n(t)|^2/2^n$) converge en loi vers la loi uniforme sur [0,2].

Il ne faut pas confondre " $(|P_n(t)|^2/2^n)$ converge en loi vers la loi uniforme sur [0,2]" et " $(|P_n(t)|^2/2^n)$ converge préfaiblement vers la mesure de Lebesgue sur \mathbf{T} ". Si on pose $X_n = |P_n(t)|^2/2^n$, la première affirmation signifie " μ_{X_n} converge préfaiblement vers μ_X , mesure de Lebesgue sur [0,2]"

Tout d'abord, il faut remarquer que, Q_n et P_n étant reliés par la relation

$$Q_n(z) = (-1)^{n-1} P_n^*(-z)$$

où P^* est le polynôme réciproque de P $(P^*(z) = z^d P(1/z))$, on a

$$\int_{\mathbf{T}} |P_n(t)|^q dt = \int_{\mathbf{T}} |Q_n(t)|^q dt$$

pour tout entier q.

La relation se vérifie par récurrence sur $n \ge 1$. C'est clair pour n = 1 car le motif des coefficients de P^* est le motif symétrique de celui de P. Supposons le résultat pour n; cela implique

$$Q_n^*(-z) = (-1)^n P_n^*(z)$$

car $P^*(-z) = (-1)^d [P(-z)]^*$ si $d = \deg P$ et $\deg Q_n = 2^n - 1$. Maintenant

$$Q_{n+1}(z) = P_n(z) - z^{2^n} (-1)^{n-1} P_n^*(-z)$$

alors que

$$P_{n+1}^*(-z) = Q_n^*(-z) + z^{2^n} P_n^*(-z);$$

en combinant, il vient

$$Q_{n+1}(z) = P_n(z) - (-1)^{n-1}(P_{n+1}^*(-z) - Q_n^*(-z)) = (-1)^n P_{n+1}^*(-z).$$

On en déduit l'égalité des moments car $P(1/z) = \overline{P(z)}$ sur le cercle.

Les premiers calculs de moments confirment la conjecture. Si q=1, cela résulte simplement du calcul de la norme L^2 de P_n .

Pour q=2, il s'agit de calculer la norme L^4 de P_n et ceci a été fait par Littlewood, retrouvé par Newman et d'autres :

Proposition 2.1 Si l'on note $a_n = \int_{\mathbf{T}} \left(\frac{|P_n(t)|^2}{2^n}\right)^2 dt$ on a

$$a_{n+1} = 2 - \frac{1}{2}a_n.$$

Preuve : Notons dans ce qui suit γ_j le caractère e^{i2^jx} . De la relation

$$|P_n|^2 + |Q_n|^2 = 2^{n+1}$$

on tire en élevant au carré

$$\int_{\mathbf{T}} \left(\frac{|P_n(t)|^2}{2^n} \right)^2 dt + \int_{\mathbf{T}} \left(\frac{|Q_n(t)|^2}{2^n} \right)^2 dt + 2 \int_{\mathbf{T}} \frac{|P_n(t)|^2}{2^n} \frac{|Q_n(t)|^2}{2^n} dt = 4$$

soit, compte tenu de la remarque précédente,

$$\int_{\mathbf{T}} \left(\frac{|P_n(t)|^2}{2^n}\right)^2 dt + \int_{\mathbf{T}} \frac{|P_n(t)|^2}{2^n} \frac{|Q_n(t)|^2}{2^n} dt = 2.$$
 (1)

Maintenant on calcule

$$\int_{\mathbf{T}} |P_n Q_n|^2 dt = 2 \int_{\mathbf{T}} |P_{n-1}|^4 dt$$
 (2)

En effet, en élevant au carré l'identité

$$P_{n+1}Q_{n+1} = P_n^2 - \gamma_n^2 Q_n^2$$

on obtient

$$|P_{n+1}Q_{n+1}|^2 = |P_n|^4 + |Q_n|^4 - 2\Re W_n^2$$

avec $W_n = \gamma_n \overline{P_n} Q_n$; or W_n étant à spectre dans $[1, \infty[$, W_n^2 est à spectre dans $[2, \infty[$ et sa moyenne est nulle; en intégrant, on trouve

$$\int_{\mathbf{T}} |P_{n+1}Q_{n+1}|^2 dt = \int_{\mathbf{T}} (|P_n|^4 + |Q_n|^4) dt = 2 \int_{\mathbf{T}} |P_n|^4 dt,$$

d'où (2). On reporte dans (1) et on normalise pour obtenir $a_{n+1} = 2 - \frac{1}{2}a_n$. \diamondsuit

Corollaire 2.1 La conjecture est satisfaite pour les moments d'ordre 4 :

$$\int_{\mathbf{T}} \frac{|P_n(t)|^4}{2^{2n}} dt \to 4/3.$$

Preuve : La limite ℓ pour (a_n) vérifie $\ell = 2 - \frac{\ell}{2}$ soit $\ell = 4/3$.

Proposition 2.2 La conjecture est vraie pour les moments d'ordre 6.

Preuve : La même méthode permet de vérifier la conjecture pour les moments d'ordre 6 (q=3). Il est plus commode de travailler avec les polynômes normalisés :

$$X_n = \frac{P_n}{||P_n||_2} = \frac{P_n}{2^{n/2}}, \quad Y_n = \frac{Q_n}{||Q_n||_2} = \frac{Q_n}{2^{n/2}};$$

ainsi les relations deviennent:

$$|X_n|^2 + |Y_n|^2 = 2 (3)$$

$$|X_n|^2 - |Y_n|^2 = W_{n-1} (4)$$

où cette fois $W_n = 2\Re(\gamma_n \overline{X_n} Y_n)$. On calcule ainsi

$$|X_n|^2 - 1 = \frac{W_{n-1}}{2}, \quad |Y_n|^2 - 1 = -\frac{W_{n-1}}{2}$$
 (5)

de sorte que, X_n et Y_n ayant les mêmes moments, on a

Lemme 2.1 Pour q impair et tout $n \ge 1$, $\int_{\mathbf{T}} W_{n-1}^q(t) dt = 0$.

On en déduit en particulier lorsque q=3

$$0 = \int_{\mathbf{T}} (|X_n(t)|^2 - 1)^3 dt$$
$$= \left(\int_{\mathbf{T}} |X_n(t)|^6 dt - 1 \right) - 3\left(\int_{\mathbf{T}} |X_n(t)|^4 dt - 1 \right) + 3\left(\int_{\mathbf{T}} |X_n(t)|^2 dt - 1 \right);$$

et comme la dernière intégrale est nulle, on obtient

$$\int_{\mathbf{T}} |X_n(t)|^6 dt = 1 + 3(\int_{\mathbf{T}} |X_n(t)|^4 dt - 1)$$

soit en tenant compte du résultat précédent

$$\lim_{n} \int_{\mathbf{T}} |X_n(t)|^6 dt = 2.$$

 \Diamond

Si on poursuit de cette façon, tout le problème se réduit à estimer le comportement de $\int W_n^q$ lorsque q est pair.

Conjecture bis : Si q est pair, $\int |X_n|^{2q} (= \int |Y_n|^{2q}) \sim \int W_{n-1}^q$.

Proposition 2.3 La conjecture bis implique la conjecture de Saffari.

Preuve : Supposons la conjecture bis vérifiée. On va établir la conjecture de Saffari par récurrence sur q. Notons $n_j = \int |X_n|^{2j}$ et supposons que pour j < q, n_j tend vers $\frac{2^j}{j+1}$. On va montrer que n_q tend vers $\frac{2^q}{q+1}$ à l'aide du lemme suivant :

Lemme 2.2

$$\sum_{j=0}^{n} (-1)^{n-j} C_n^j \frac{2^j}{j+1} = \begin{cases} 0 & \text{si } n \text{ est impair} \\ 1/(n+1) & \text{si } n \text{ est pair} \end{cases}$$

Partons de

$$\int (|X_n|^2 - 1)^q = \sum_{j=0}^q C_q^j (-1)^{q-j} n_j$$

Il vient des relations (5)

$$\int (|X_n|^2 - 1)^q = 2^{-q} \int W_{n-1}^q.$$

Commençons par le cas q impair. Par le lemme 2.1, $\int W_{n-1}^q = 0$ et en développant,

$$\int |X_n|^{2q} = \sum_{j=0}^{q-1} (-1)^{q-j-1} C_q^j n_j;$$

La limite vaut donc

$$\sum_{j=0}^{q-1} (-1)^{q-j-1} C_q^j \frac{2^j}{j+1} = \frac{2^q}{q+1}$$

d'aprés le lemme 2.2 (on n'a pas utilisé la conjecture bis).

Supposons maintenant q pair. Cette fois, par la conjecture bis,

$$\sum_{j=0}^{q} (-1)^{q-j} C_q^j n_j = \int (|X_n|^2 - 1)^q = 2^{-q} \int W_{n-1}^q \sim 2^{-q} n_q$$

soit

$$n_q(1-2^{-q}) \sim \sum_{j=0}^{q-1} (-1)^{q-j-1} C_q^j n_j.$$
 (6)

 \Diamond

Toujours par le lemme 2.2 avec q pair,

$$\sum_{j=0}^{q-1} (-1)^{q-j-1} C_q^j \frac{2^j}{j+1} = \frac{2^q - 1}{q+1},$$

et on a le résultat en passant à la limite dans (6).

Remarque : Rappelons par ailleurs que W_n converge faiblement vers 0...

2.1.1 Résultats de Doche-Habsieger :

Ils formulent une conjecture plus générale (qui implique celle de Saffari) sous forme d'une relation de récurrence à établir, ce qu'ils font avec maple pour $q \leq 26$. On considère les "polynômes"

$$R_n(z, a, a', b, b') = \left[(aP_n(z) + bQ_n(z))(a'P_n(z^{-1}) + b'Q_n(z^{-1})) \right]^q$$

de sorte que, en prenant $a' = \bar{a}, b' = \bar{b}$ et $z = e^{it}$, apparaît $|aP_n + bQ_n|^{2q}$, et on essaie d'établir une relation pour

$$S_n(z, a, a', b, b') = \frac{1}{2^n} \sum_{\sigma^n(y)=z} R_n(y, a, a', b, b')$$

avec σ le shift. Cela revient à prélever dans R_n les fréquences multiples de 2^n et contracter z^{k2^n} en z^k (à la manière de la tranformation de Graeffe), i.e.

$$S_n = \sum_{-q < k < q} c_{k2^n} z^k$$

si $R_n = \sum_{-2^n q < k < 2^n q} c_k z^k$. Ainsi

1. le moment d'ordre 2q de $aP_n + bQ_n$ est le coefficient constant dans $R_n(e^{it}, a, \bar{a}, b, \bar{b})$ et c'est AUSSI le coefficient constant dans S_n . (En faisant a = 1, b = 0 on trouve le moment d'ordre 2q de P_n).

- 2. Avec l'avantage que toute relation de récurrence linéaire vérifiée par S_n le sera par les q-moments; or S_n reste confiné dans les polynômes de degré q-1 en z et z^{-1} ...
- 3. Comment passe-t-on de S_n à S_{n+1} :

$$S_{n+1}(z, a, a', b, b') = \frac{1}{2} \sum_{y^2=z} S_n(y, a+b, a'+b', (a-b)y, (a'-b')/y)$$

avec T un opérateur linéaire agissant sur un sous-espace F de polynômes en 6 variables de degré borné (par q), donc de dimension finie.

- 4. $S_n = T^n S_0$ où $S_0(z, a, a', b, b') = (aa' + bb' + ab' + a'b)^q$, il est donc naturel de faire d'entrée un changement de variables, en remplaçant a, a', b, b' par $aa' \pm bb'$, $ab' \pm a'b$... On essaiera ensuite de réduire la dimension de F (en tenant compte des symétries).
- 5. Cayley-Hamilton appliqué à T induit ainsi une relation de récurrence sur les S_n .
- 6. T est un opérateur de type transfert dont on aimerait montrer qu'il est Perron-Frobenius avec comme valeur propre dominante simple 2^q . Ainsi on aurait $F = F_0 \oplus F_1$ avec F_0 espace propre de dim 1 associé à 2^q et F_1 un complémentaire stable par T. Et la projection de S_0 sur F_0 donnerait le résultat.

Une piste consisterait à étudier directement la suite de matrices associées, ce que suggère le choix de R_n ci-dessus.

On pourrait aussi chercher simplement la limite sans établir de formule de récurrence sur les moments.

Résultats de Z.Zalcwasser : Cette étude des moments n'est pas sans rappeler le travail analogue de Zalcwasser sur les polynômes modulaires. Il s'intéresse aux moments des polynômes

$$r_n(x) = \sum_{1 \le k \le n} e^{i\pi(k-1/2)^2 x}, \ s_n(x) = \sum_{1 \le k \le n} e^{i\pi k^2 x}, \ t_n(x) = \sum_{1 \le k \le n} (-1)^k e^{i\pi k^2 x}$$

et obtient des encadrements asymptotiques, dont il tire des conséquences sur la convergence ps de séries de la forme $\sum_{n\geq 1} a_n e^{i\pi n^2 x}$.

- 2.2 Lien entre la suite de Rudin-Shapiro et les carrés
- 2.3 Lien entre la suite de Morse et celle de Rudin-Shapiro
- 3 Généralisations
- 3.1 Polynômes de Littlewood
- 3.2 Suite de Rudin-Shapiro en base autre que 2

On considère la suite définie par

$$u_n = (-1)^{n_0 n_1 + n_1 n_2 + \dots + n_{k-1} n_k}$$

si $n = \sum_{j \le k} n_j q_j$; déjà le cas $q_j = q^j$ avec q = 3 par exemple peut être intéressant ?