Efficient and Robust Convolutional Neural Networks via Channel Prioritization and Path Ensemble

Chun-Min Chang¹, Chia-Ching Lin², Kuan-Ta Chen¹ ¹Academia Sinica, ²National Taiwan University

Overview

- Deploying modern neural networks on resource-limited platforms is often impeded by large model size and slow inference time
- A static model is hard to meet different device/application requirements such as power consumption, accuracy, and latency
- We propose a generalizable approach that search for an efficient architecture by pruning and achieve dynamically trade offs between performance and computation costs by switching between sub-paths in the pruned network

Approach

- We sparsify and prioritize channels by using scaling factors of batch normalization as the indicator of the channel's importance
- Once prioritizing channels in decreasing order, a sub-path at (100-p)% utilization can be built by pruning the aftermost p% channels
- Several sub-networks at different utilization levels are jointly trained to obtain the adaptive property

- 1. Monotonically decreasing initialization on scaling factors 2. Train with sparsity and monotonicity-induced penalties
- 3. Prune channels by a global threshold

Fine-tuning stage

- 4. Fix all parameters in BN layers
- 5. Define and sum up the losses at different utilization levels 6. Fine-tune the pruned network with the aggregated loss

p: utilization level, the percentage of used channels

Monotonically decreasing initialization

$$\gamma_l^{(k)} = 1 - \frac{k-1}{N_l}, \quad k = 1, ..., N_l$$

$$N_l$$

$$\gamma_l^{(k)} = 1 - \frac{k-1}{N_l}, \quad k = 1, ..., N_l \qquad L_{m,l}^{(k)} = \begin{cases} \gamma_l^{(k+1)} - \gamma_l^{(k)} &, \text{ if } \gamma_l^{(k+1)} > \gamma_l^{(k)} \\ 0 &, \text{ otherwise} \end{cases} \qquad \sum_{k,l} |\gamma_l^{(k)}|$$

$$\gamma_l^{(k+1)} > \gamma_l^{(k)}$$

$$\sum_{k,l} |$$

Sparsity penalty

Experiment Results

Evaluation of Model Compression and Dynamic Inference Performance

Monotonicity-induced penalty

Model	Accu (%)	Param (M)	%	FLOP (M)	<u></u>
VGG-16	91.62	15.0	100.0	626	100.0
[4]†	91.49	1.40	9.4	308	49.1
CP (100%)	91.43	1.61	10.7	163	26.1
CP (75%)	90.13	0.92	6.2	91.5	14.6
CP (50%)	87.88	0.43	2.9	41.3	6.6
CP (25%)	79.64	0.13	0.8	10.4	1.7

	Accuracy at utilization level			
FLOPs at 100%	100%	75%	50%	25%
3.08×10^{8}	91.49	15.13	10.0	10.0
6.26×10^{8}	89.18	75.25	13.11	10.0
1.63×10^{8}	91.34	90.13	87.88	79.64
1.63×10^{8}	91.35	89.80	86.24	77.57
	3.08×10^{8} 6.26×10^{8} 1.63×10^{8}	FLOPs at 100% 100% 3.08×10^{8} 91.49 6.26×10^{8} 89.18 1.63×10^{8} 91.34	FLOPs at 100% 100% 75% 3.08×10^8 91.49 15.13 6.26×10^8 89.18 75.25 1.63×10^8 91.34 90.13	FLOPs at 100% 100% 75% 50% 3.08×10^8 91.49 15.13 10.0 6.26×10^8 89.18 75.25 13.11 1.63×10^8 91.34 90.13 87.88

Ablation Study

Path Ensemble as Adversarial Defense

	Test set accuracy at utilization				Path
Attack	100%	75%	50%	25%	Ensemble
FSGM, $\epsilon = 0.5$	77.9	80.3	79.5	59.1	81.3
FSGM, $\epsilon = 1.0$	64.5	69.2	73.3	57.4	73.3
FSGM, $\epsilon = 2.0$	46.4	51.8	60.1	53.8	58.8
C&W, k = 0.0	10.5	15.1	15.8	16.0	15.7
C&W, $k = 2.0$	14.7	17.8	18.7	18.2	18.4
C&W, k = 5.0	24.2	25.6	25.8	24.1	26.2
MadryEtAl, $\epsilon = 0.5$	76.5	80.0	79.5	59.1	81.6
MadryEtAl, $\epsilon = 1.0$	53.9	63.6	71.5	57.3	70.0
MadryEtAl, $\epsilon = 2.0$	18.1	28.8	51.1	53.3	45.0
DeepFool	6.9	63.4	69.9	54.5	72.6
MomentumIter, $\epsilon = 0.5$	74.1	78.6	78.9	58.9	80.5
MomentumIter, $\epsilon = 1.0$	51.3	61.7	70.3	56.8	68.1
MomentumIter, $\epsilon = 2.0$	19.5	28.9	49.2	52.6	43.8
Overall	41.4	51.1	57.2	47.8	52.7

Conclusions

- To the best of our knowledge, it is the first method that retakes the priority control on channels in CNNs, enabling network pruning and dynamic inference to trade-off between various resource and performance requirements
- Experiments demonstrated that controlling channel priority during training will not notably degrade model performance
- As a side effect of path ensemble, the robustness against adversarial attacks can be improved by a significant margin without any computation or memory overhead