ATIVIDADE 1

DUPLA: Fernando Andrade Lima Tavares e Nina Magalhães de Oliveira

Dataset utilizado: Breast Cancer (Diagnostic) Dataset

DOI: 10.24432/C51P4M

Criadores: Matjaz Zwitter, Milan Soklic

DESCRIÇÃO DO DATASET

Qual foi o método utilizado para a coleta dos dados?

O dataset foi coletado pela Universidade Medical Centre, Instituto de Oncologia na Ljubljana, Eslovênia, a partir de um estudo médico.

• A base já foi empregada em trabalhos acadêmicos ou pesquisas científicas?

Sim, a base é utilizada em diversos trabalhos acadêmicos envolvendo técnicas estáticas e de machine learning.

Alguns exemplos:

QUOTIENT: Two-Party Secure Neural Network Training and Prediction

Target-Focused Feature Selection Using a Bayesian Approach

AnomiGAN: Generative adversarial networks for anonymizing private medical data

• A base possui alguma certificação oficial ou validação reconhecida?

No site UC Irvine Machine Learning Repository a licença reconhecida do dataset é a Creative Commons Attribution 4.0 International (CC BY 4.0)

Você considera a base de dados confiável?

Ela é uma base bastante consolidada na esfera acadêmica, já que sua origem é bem registrada é sua usabilidade é alta. Portanto, pode-se dizer que a base é confiável.

Variáveis do dataset

Os atributos são computados a partir de uma imagem digitalizada de uma punção aspirativa por agulha fina (procedimento médico minimamente invasivo onde uma agulha fina é usada para coletar uma amostra de células ou fluidos de uma massa suspeita) de uma massa mamária. Eles descrevem as características da célula tumoral presente na imagem.

O dataset possui, também, o ID do sujeito de estudo e o diagnóstico, sendo que o último possui valor binário: M para maligno e B para benigno.

O diagnóstico é a *target*, ou seja, é a variável a qual se deseja entender melhor e até, possivelmente, fazer previsões a partir dos atributos.

Cada coluna segue os padrões descritos abaixo, totalizando 32 colunas, sendo elas:

Nome variável	Tipo	Descrição
diagnosis	Categórica binária	Diagnóstico (benigno ou maligno) da célula tumoral observada
id	Numérica descritiva	ID do sujeito de estudo.
radius-mean	Numérica contínua	Distância média do centro do núcleo até pontos no perímetro. Mede o tamanho geral do núcleo. Um raio maior pode
radius-se		indicar um núcleo maior ou mais irregular.
radius-worst		
texture-mean texture-se	Numérica contínua	Desvio padrão dos valores em escala de cinza da imagem do núcleo, indicando variação na intensidade dos pixels. Representa quão rugosa ou uniforme é a
texture-worst		textura da superfície do núcleo.
perimeter-mean	Numérica contínua	Comprimento total da borda do núcleo. Núcleos maiores ou mais irregulares tendem a ter perímetros maiores.
perimeter-worst		
area-mean	Numérica contínua	Área total do núcleo, medida em número de pixels ou unidades equivalentes. Indica o tamanho do
area-se		núcleo em termos de superfície.

area-worst		
compactness-mean	Numérica contínua	Calculado como (perímetro² / área) - 1,0. Mede o quão "compacto" ou denso é o núcleo. Núcleos irregulares tendem
compactness-se		a ter valores maiores de compacidade.
compactness-worst		
	Numérica	
smoothness-mean	contínua	Medida da variação local nos comprimentos dos raios (distâncias do
smoothness-se		centro ao perímetro). Indica a quão lisa (suave) ou irregular é a borda do núcleo.
smoothness-worst		
concavity-mean	Numérica	Grau da severidade das porções
	contínua	côncavas (entradas ou reentrâncias) do
concavity-se		contorno do núcleo. Valores altos
		indicam bordas mais "dentadas" e
concavity-worst		irregulares.
,		
concave-points-	Numérica	Número de porções côncavas no
mean	contínua	contorno do núcleo, indicando
		irregularidades na forma.
concave-points-se		
concave-points-		
worst		
symmetry-mean	Numérica	
	contínua	Grau de simetria do núcleo. Núcleos
symmetry-se		malignos tendem a ser menos
		simétricos, com formas mais
symmetry-worst		irregulares.
Symmony worst		
fractal-dimension-	Numérica	Aproximação da "rugosidade" ou
mean	contínua	complexidade do contorno do núcleo,
		baseada na dimensão fractal (similar à
fractal-dimension-se		medição da complexidade da linha
		costeira). Valores próximos a 1 indicam
fractal-dimension-		contornos simples; valores maiores
worst		indicam contornos mais complexos e
	i	maicam contonios mais comptexos e
Worst		irregulares.

Observações:

- 1) O dataset consta com 357 diagnósticos benignos e 212 Malignos
- 2) Um tumor benigno é um crescimento não canceroso com células semelhantes às de origem, crescimento lento, limites definidos, que geralmente pode ser removido com cirurgia e não se espalha para outras

partes do corpo. Já um tumor maligno é canceroso, com células que crescem descontroladamente, podem invadir tecidos vizinhos (comportamento agressivo) e se espalhar para outros órgãos (metástase), exigindo tratamentos mais complexos como quimioterapia e radioterapia.

3) Por não possuir um papel importante dentro das análises que serão feitas do dataset, a variável *id* foi retirada.

Atributos derivados para cada núcleo celular (colunas 3 a 32)

Para cada uma das 10 características abaixo, são calculadas três medidas diferentes:

- -mean (média): média dos valores observados para a característica no núcleo
- 2) **-se** (standard error, erro padrão): medida da variabilidade ou incerteza da característica
- 3) **-worst** (pior): média dos três maiores valores da característica, representando o pior caso observado

Assim, temos um total de 30 atributos derivados (10 características × 3 medidas).

ANÁLISES ESTATÍSTICAS

• Média, mediana, moda, desvio padrão e variância das variáveis

As estatísticas das variáveis do dataset foram calculadas a partir das seguintes funções da linguagem R: *mean* para a média, *median* para a mediana, *var* para a variância e *sd* para o desvio padrão. Para obter a moda, criou-se uma função (*getmode*) a partir dos valores únicos e de maior frequência de cada variável.

	MÉDIA	MEDIANA	MODA	DESVIO PADRÃO	VARIÂNCIA
Radius-mean	14.1272917398	13.37	12.34	12.41892012	3.524048826
	946			95267	21208

Toyture meen	10 2006405061	10.04	15.7	10 40000067	4 201025769
Texture-mean	19.2896485061	18.84	15.7	18.49890867	4.301035768
	511			90515	16695
Perimeter-mean	91.9690333919	86.24	82.61	590.4404795	24.29898103
	156			2177	87549
Area-mean	654.889103690	551.1	512.2	123843.5543	351.9141291
	685			17681	81653
Smoothness-mean	0.09636028119	0.09587	0.1007	0.000197799	0.014064128
	50791			700272903	1376736
Compactness-	0.10434098418	0.09263	0.1206	0.002789187	0.052812757
mean	2777			40043813	9325122
Compactness-	0.10434098418	0.09263	0.1206	0.002789187	0.052812757
mean	2777			40043813	9325122
Concavity-mean	0.08879931581	0.06154	0	0.006355247	0.079719808
Concavity moun	72232	0.00104		90042313	7078935
Concave-points-	0.04891914586	0.0335	0	0.001505660	0.038802844
-		0.0333	0		
mean	99473	0.1700	0.1700	76916354	8591536
Symmetry-mean	0.18116186291	0.1792	0.1769	0.000751542	0.027414281
	7399	0.004=:	0.05.55	821171316	3360357
Fractal-dimension-	0.06279760984	0.06154	0.05667	4.984872279	0.007060362
mean	18278		1	82128e-05	79508446
Radius-se	0.40517205623	0.3242	0.286	0.076902351	0.277312732
	9016			8762222	986104
Texture-se	1.21685342706	1.108	1.15	0.304315949	0.551648392
	503			077143	617202
Perimeter-se	2.86605922671	2.287	1.778	4.087895837	2.021854554
	353			70081	04211
Area-se	40.3370790861	24.53	16.97	2069.431582	45.49100551
	16			86873	61318
Smoothness-mean	0.00704097891	0.00638	0.00639	9.015114003	0.003002517
	036907		9	07557e-06	94383907
Compactness-se	0.02547813884	0.02045	0.0231	0.000320702	0.017908179
	00703			886760619	3256774
Concavity-se	0.03189371634	0.02589	0	0.000911198	0.030186060
Concavity co	4464	0.02000		237823095	3229884
Concave-points-se	0.01179613708	0.01093	0	3.807241912	0.006170285
Concave-points-se	26011	0.01093		90626e-05	17404687
Company at my an		0.04070	0.01044		
Symmetry-se	0.02054229876	0.01873	0.01344	6.833289825	0.008266371
For the Property of	97715	0.000107	0.00000	21288e-05	5287984
Fractal-dimension-	0.00379490386	0.003187	0.00300	7.001691562	0.002646070
se	643234	115	2	87235e-06	9670892
Radius-worst	16.2691898066	14.97	12.36	23.36022417	4.833241580
	784		1	51776	46932
Texture-worst	25.6772231985	25.41	27.26	37.77648276	6.146257623
	94			87567	03832
Perimeter-worst	107.261212653	97.66	117.7	1129.130846	33.60254226
	779			94237	90364
Area-worst	880.583128295	686.5	1269	324167.3851	569.3569926
	255			02168	69949
Smoothness-worst	0.13236859402	0.1313	0.1312	0.000521319	0.022832429
	4605			832526795	4048355
Compactness-	0.25426504393	0.2119	0.3416	0.024754770	0.157336488
worst	6731	3.2113	0.0410	7437041	913742
WOISE	0/01		1	/43/041	313/42

Concavity-worst	0.27218848330	0.2267	0	0.043524090	0.208624280
	4042			4592607	608132
Concave-points-	0.11460622319	0.09993	0	0.004320740	0.004320740
worst	8594			67909974	67909974
Symmetry-worst	0.00432074067	0.2822	0.3196	0.003827583	0.061867467
	909974			53950593	5375187
Fractal-dimension-	0.08394581722	0.08004	0.07427	0.000326209	0.018061267
worst	31986			378248224	348894

Como é possível observar na tabela, apenas as variáveis *area, perimeter, texture* e *radius* possuem valores significativos, já que são as únicas medidas maiores que zero do dataset.

• Tabela de frequência

Foram criadas tabelas de frequência para a única variável qualitativa do dataset (diagnosis) e para quatro variáveis quantitativas (radius-mean, area-mean, perimeter-mean, texture-mean). Elaborou-se uma função que define as frequências absolutas, relativas e percentuais e, desse modo, gera as tabelas de frequência.

A função primeiro verifica se o dado atribuído é numérico. Se for numérico, ela irá dividi-lo em uma sequência de 5 intervalos, sendo que cada um começa do valor mínimo (arredondado para baixo) e vai até o valor máximo (arredondado para cima). Os intervalos incluem apenas o limite superior. Finalmente, a função irá contar quantas vezes cada intervalo aparece no dado atribuído e armazenar esse valor na variável n_1, que é a frequência absoluta.

Se o dado não for numérico, como é o caso para *diagnosis*, a função irá contar a frequência absoluta de cada categoria. Para a variável diagnosis, serão contadas quantas vezes as categorias M (maligno) e B (benigno) aparecem no dataset.

Para a frequência relativa, calcula-se a proporção de cada intervalo em relação ao total, ou seja, a frequência relativa, armazenada na variável f_1, é obtida com base em n 1.

Já a frequência percentual, transforma-se as frequências relativas em porcentagem, portanto, multiplica-se o valor de f_1 por cem.

Definidos os valores das frequências absolutas (n-1), relativas (f_1) e percentuais (p_1), estes são colocados em vetores em conjunto com a soma deles, ou seja, o total de cada frequência. Os totais devem ser os mesmos para cada variável, então o total de n_1 deve ser 569 (número de linhas do dataset), de f_1 é 1 e de p_1 é 100.

Ao fim, os vetores são unificados em uma tabela que, após algumas modificações de normalização, são transformadas nas tabelas de frequência. Elas possuem os seguintes *layouts*:

Layout da tabela de frequência para as variáveis quantitativas:

Nome da variável	Frequência absoluta	Frequência relativa	Frequência percentual
Intervalo 1			
Intervalo 2			
Intervalo 3			
Intervalo 4			
Intervalo 5			
Total	569	1	100

Layout da tabela de frequência para a variável qualitativa:

Nome da variável	Frequência absoluta	Frequência relativa	Frequência percentual
categoria 1			
categoria 2			
categoria n			
Total	569	1	100

Tabelas de frequência geradas no R:

```
Tabela de frequência para: diagnosis diagnosis n_i f_i p_i
1 B 357 0.627 62.742
2 M 212 0.373 37.258
3 Total 569 1 100
```

```
Tabela de frequência para: radius-mean radius-mean n_i f_i p_i
1 [6,11.8) 148 0.26 26.011
2 [11.8,17.5) 318 0.559 55.888
3 [17.5,23.2) 93 0.163 16.344
4 [23.2,29) 10 0.018 1.757
5 Total 569 1 100
```

```
Tabela de frequência para: texture-mean
  texture-mean n_i
                      f_i
      [9,16.8) 167 0.293
1
                           29.35
   [16.8,24.5) 334 0.587 58.699
   [24.5,32.2)
                64 0.112 11.248
     [32.2,40)
                           0.703
                 4 0.007
5
         Total 569
                        1
                             100
```

```
Tabela de frequência para: perimeter-mean
                       f_i
  perimeter-mean n_i
                               p_i
1
       [43,79.5) 205
                     0.36 36.028
2
      [79.5,116) 264 0.464 46.397
3
       [116,152) 89 0.156 15.641
4
       [152,189)
                  11 0.019
                             1.933
5
           Total 569
                               100
```

```
Tabela de frequência para: area-mean area-mean n_i f_i p_i
1 [143,732) 413 0.727 72.711
2 [732,1.32e+03) 130 0.229 22.887
3 [1.32e+03,1.91e+03) 22 0.039 3.873
4 [1.91e+03,2.5e+03) 3 0.005 0.528
5 Total 568 1 100
```

Histograma

A fim de se obter uma representação gráfica da distribuição de frequências das variáveis contínuas *radius-mean* e *texture-mean*, criaram-se histogramas delas. Na linguagem R, utiliza-se a função *hist()* para plotar os histogramas nos quais o eixo x representa os intervalos das variáveis contínuas e o eixo y representa a frequência de cada intervalo.

Histograma da variável radius-mean

Histogram of x\$`radius-mean`

Histograma da variável texture-mean

Histogram of x\$`texture-mean`

Observa-se que a os valores da variável *radius-mean* estão concentrados no intervalo entre 10 e 15, já para a variável *texture-mean*, a maioria dos dados encontra-se entre o intervalo 15 e 20. Concluir que existe uma relação entre esses valores e o diagnóstico não é viável, tanto pela necessidade de uma análise mais completa de todos os dados quanto pela lacuna de conhecimento médico. Entretanto, é possível afirmar que a criação de histogramas pode indicar certos padrões e/ou tendências que auxiliam na elaboração de importantes *insights*.

Fez-se, também, o ajuste de distribuição das probabilidades para os dados da variável *perimeter-worst* utilizando as distribuições normal e gama:

Distribuição normal da variável perimeter-worst

Distribuição gama da variável perimeter-worst

Por fim, criou-se um histograma da variável *perimeter-worst* com a curva de densidade, a qual foi inserida no gráfico utilizando a função *density()*. Durante a análise do dataset, conclui-se que a curva de densidade é a que melhor se adapta aos dados.

Vale ressaltar, também, que este histograma aceita o parâmetro probabilidade como sendo verdadeira, ou seja, em vez das contagens absolutas, ele considera as probabilidades para a plotagem.

Histograma da variável perimeter-worst com a curva de densidade:

Histogram of x\$`perimeter-worst`

Boxplot

Boxplots são formas convenientes de exibir graficamente uma variável, já que conseguem transmitir informações sobre a dispersão e simetria dos dados e evidenciar possíveis outliers. Além disso, caso necessário, facilitam a comparação entre os conjuntos de dados.

Foram gerados boxplots para as seguintes variáveis: *smoothness-mean*, *concavity-mean* e *compactness-mean*:

Boxplot da variável smoothness-mean

Com mediana em torno de 0.10, Ele apresenta menor quantidade de outliers e menos dispersão. Como *smoothness-mean* mede pequenas variações no raio da superfície do tumor, tende a ser mais estável, tanto em tumores benignos quanto malignos.

Boxplot da variável concavity-mean

Concavity Mean

Com a mediana em torno de 0.06, possui muitos outliers acima de 0.25, indicando que alguns tumores têm *concavity-mean* bem mais alta que a maioria, isso implica em como concavidade está ligada a irregularidades no contorno do tumor, valores altos podem estar associados a tumores malignos.

Boxplot da variável compactness-mean

Mediana próxima de 0.09, existem diversos outliers acima de 0.23, a compactação mede a solidez do tumor; valores altos sugerem formas mais anômalas, ligadas a malignidade.

Tabela cruzada

Seguindo as orientações do Professor, o P-valor foi desconsiderado e apenas o X-squared = 223.77 foi utilizado e, com isso, implica-se que as variáveis concavity-mean e diagnosis são correlacionadas.

Tabela Cruzada:

	Benigno	Maligno
Concavidade Pequena	349	93
Concavidade Média	5	104
Concavidade Grande	3	15

Teste de Correlação e gráfico de dispersão

O dataset não possui variáveis quantitativas discretas, portanto, o teste de correlação foi realizado para dados quantitativos contínuos, sendo utilizadas as colunas texture-mean e radius-mean.

Os resultados indicam uma correlação positiva moderada entre as variáveis radius-mean e texture-mean ($r \approx 0,32$), sugerindo que valores maiores de raio médio tendem a estar associados a valores maiores de textura média. O teste de significância apresentou p-valor extremamente baixo (p < 0,001), o que confirma que essa correlação dificilmente ocorreu por acaso. O intervalo de confiança de 95% (0,25 a 0,39) está inteiramente acima de zero, reforçando a existência de uma relação positiva consistente entre as variáveis. Na prática, isso significa que há associação entre o tamanho médio das células e sua textura, embora a relação não seja forte, indicando que outros fatores também influenciam a textura.

Gráfico de Dispersão:

Dispersão: Radius Mean vs Texture Mean

O gráfico de dispersão mostra que existe uma tendência positiva entre as variáveis radius-mean e texture-mean, ou seja, à medida que o raio médio aumenta, a textura média também tende a aumentar. Apesar de os pontos estarem relativamente espalhados, é possível perceber esse padrão de crescimento, o que confirma a correlação positiva moderada observada anteriormente ($r \approx 0,32$). A maior concentração de dados ocorre na faixa de raio médio entre 10 e 15 e textura média entre 15 e 25, indicando que a maioria das observações se encontra nesse intervalo.

Tapply e Boxplot para quantitativa por qualitativa

```
$B
Min. 1st Qu. Median Mean 3rd Qu. Max.
6.981 11.080 12.200 12.147 13.370 17.850

$M
Min. 1st Qu. Median Mean 3rd Qu. Max.
10.95 15.07 17.32 17.46 19.59 28.11

B M
3.170222 10.265431
B M
357 212
```

A análise descritiva do *radius-mean* mostra que, em média, os tumores malignos apresentam raio médio consideravelmente maior (por volta de 17) do que os tumores benignos (por volta de 12). Além disso, a variância dos casos malignos é mais alta, indicando maior dispersão dos valores. A amostra é composta por 357 casos benignos e 212 malignos, e os valores mínimos e máximos confirmam que tumores malignos tendem a ter raios maiores em relação aos benignos.

Radius Mean por Diagnóstico

Diagnóstico (B = Benigno, M = Maligno)

O boxplot evidencia que o radius-mean tende a ser significativamente maior em tumores malignos do que em tumores benignos, reforçando que essa variável é potencialmente útil para distinguir entre os dois diagnósticos. Apesar de alguma sobreposição entre os grupos, a separação entre as medianas e a maior amplitude dos valores malignos indicam que o tamanho médio das células é uma característica relevante para a classificação.

Referências

Zwitter, M.; Soklic, **M. Breast Cancer (Diagnostic) Dataset.** UCI Machine Learning Repository, 1988. DOI. Disponível em: https://doi.org/10.24432/C51P4M.

BREAST-CANCER-EDA-AND-MODELING-R [repositório]. GitHub. Disponível em: https://github.com/fertavares/Breast-Cancer-EDA-and-Modeling-R.

R CORE TEAM. The R Stats Package. **Vienna: R Foundation for Statistical Computing, 2023.** Disponível em: https://stat.ethz.ch/R-manual/R-devel/library/stats/html/00Index.html.

WICKHAM, H.; HELLMUND, B. **readr: Read Rectangular Text Data.** R package version 2.1.4. RStudio, 2023. Disponível em: https://readr.tidyverse.org/.DELIGNETTE-MULLER, M. L.

DUTANG, C. fitdistrplus: Help to Fit of a Parametric Distribution to Non-Censored or Censored Data. R package version 1.1-11. Vienna: R Foundation for Statistical Computing, 2015. Disponível em: https://cran.r-project.org/package=fitdistrplus.