Data Science Linear Regression

The textbook for the Data Science course series is freely available online.

Learning Objectives

- The basics of machine learning
- How to perform cross-validation to avoid overtraining
- Several popular machine learning algorithms
- How to build a recommendation system
- What regularization is and why it is useful

Course Overview

There are six major sections in this course: introduction to machine learning; machine learning basics; linear regression for prediction, smoothing, and working with matrices; distance, knn, cross validation, and generative models; classification with more than two classes and the caret package; and model fitting and recommendation systems.

Introduction to Machine Learning

In this section, you'll be introduced to some of the terminology and concepts you'll need going forward.

Machine Learning Basics

In this section, you'll learn how to start building a machine learning algorithm using training and test data sets and the importance of conditional probabilities for machine learning.

Linear Regression for Prediction, Smoothing, and Working with Matrices

In this section, you'll learn why linear regression is a useful baseline approach but is often insufficiently flexible for more complex analyses, how to smooth noisy data, and how to use matrices for machine learning.

Distance, Knn, Cross Validation, and Generative Models

In this section, you'll learn different types of discriminative and generative approaches for machine learning algorithms.

Classification with More than Two Classes and the Caret Package

In this section, you'll learn how to overcome the curse of dimensionality using methods that adapt to higher dimensions and how to use the caret package to implement many different machine learning algorithms.

Model Fitting and Recommendation Systems

In this section, you'll learn how to apply the machine learning algorithms you have learned.

Section 1 - Introduction to Machine Learning Overview

In the Introduction to Machine Learning section, you will be introduced to machine learning.

After completing this section, you will be able to:

- Explain the difference between the **outcome** and the **features**.
- Explain when to use **classification** and when to use **prediction**.
- Explain the importance of **prevalence**.
- Explain the difference between **sensitivity** and **specificity**.

This section has one part: introduction to machine learning.

Notation

There is a link to the relevant section of the textbook: Notation

Key points

- $X_1,...,X_p$ denote the features, Y denotes the outcomes, and \hat{Y} denotes the predictions.
- Machine learning prediction tasks can be divided into **categorical** and **continuous** outcomes. We refer to these as **classification** and **prediction**, respectively.

An Example

There is a link to the relevant section of the textbook: An Example

Key points

- Y_i = an outcome for observation or index i.
- We use boldface for X_i to distinguish the vector of predictors from the individual predictors $X_{i,1},...,X_{i,784}$.
- When referring to an arbitrary set of features and outcomes, we drop the index i and use Y and bold X.
- Uppercase is used to refer to variables because we think of predictors as random variables.
- Lowercase is used to denote observed values. For example, $\mathbf{X} = \mathbf{x}$.

Comprehension Check - Introduction to Machine Learning

1.	True or False: A key feature of machine learning is that the algorithms are built with data.
_	A. True B. False
2.	True or False: In machine learning, we build algorithms that take feature values (X) and train a model using known outcomes (Y) that is then used to predict outcomes when presented with features without known outcomes.
_	A. True B. False

Section 2 - Machine Learning Basics Overview

In the Machine Learning Basics section, you will learn the basics of machine learning.

After completing this section, you will be able to:

- Start to use the **caret** package.
- Construct and interpret a confusion matrix.
- Use conditional probabilities in the context of machine learning.

This section has two parts: basics of evaluating machine learning algorithms and conditional probabilities.

Caret package, training and test sets, and overall accuracy

There is a link to the relevant sections of the textbook: Training and test sets and Overall accuracy

Key points

- Note: the set.seed() function is used to obtain reproducible results. If you have R 3.6 or later, please use the sample.kind = "Rounding" argument whenever you set the seed for this course.
- To mimic the ultimate evaluation process, we randomly split our data into two a training set and a test set and act as if we don't know the outcome of the test set. We develop algorithms using only the training set; the test set is used only for evaluation.
- The createDataPartition() function from the caret package can be used to generate indexes for randomly splitting data.
- Note: contrary to what the documentation says, this course will use the argument p as the percentage of data that goes to testing. The indexes made from createDataPartition() should be used to create the test set. Indexes should be created on the outcome and not a predictor.
- The simplest evaluation metric for categorical outcomes is overall accuracy: the proportion of cases that were correctly predicted in the test set.

Code

```
if(!require(tidyverse)) install.packages("tidyverse")
## Loading required package: tidyverse
## -- Attaching packages -------
## v ggplot2 3.3.2
                          0.3.4
                  v purrr
## v tibble 3.0.3
                  v dplyr
                          1.0.2
## v tidyr 1.1.2
                  v stringr 1.4.0
## v readr
         1.3.1
                  v forcats 0.5.0
## -- Conflicts ------
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()
                masks stats::lag()
```

```
if(!require(caret)) install.packages("caret")
## Loading required package: caret
## Loading required package: lattice
## Attaching package: 'caret'
## The following object is masked from 'package:purrr':
##
##
       lift
if(!require(dslabs)) install.packages("dslabs")
## Loading required package: dslabs
library(tidyverse)
library(caret)
library(dslabs)
data(heights)
# define the outcome and predictors
y <- heights$sex
x <- heights$height
# generate training and test sets
set.seed(2, sample.kind = "Rounding") # if using R 3.5 or earlier, remove the sample.kind argument
## Warning in set.seed(2, sample.kind = "Rounding"): non-uniform 'Rounding' sampler
## used
test_index <- createDataPartition(y, times = 1, p = 0.5, list = FALSE)</pre>
test_set <- heights[test_index, ]</pre>
train_set <- heights[-test_index, ]</pre>
# quess the outcome
y_hat <- sample(c("Male", "Female"), length(test_index), replace = TRUE)</pre>
y_hat <- sample(c("Male", "Female"), length(test_index), replace = TRUE) %>%
 factor(levels = levels(test_set$sex))
# compute accuracy
mean(y_hat == test_set$sex)
## [1] 0.5238095
heights %>% group_by(sex) %>% summarize(mean(height), sd(height))
## `summarise()` ungrouping output (override with `.groups` argument)
```

[1] 0.7933333

```
# examine the accuracy of 10 cutoffs
cutoff <- seq(61, 70)
accuracy <- map_dbl(cutoff, function(x){
   y_hat <- ifelse(train_set$height > x, "Male", "Female") %>%
     factor(levels = levels(test_set$sex))
   mean(y_hat == train_set$sex)
})
data.frame(cutoff, accuracy) %>%
   ggplot(aes(cutoff, accuracy)) +
   geom_point() +
   geom_line()
```


max(accuracy)

[1] 0.8361905

```
best_cutoff <- cutoff[which.max(accuracy)]
best_cutoff

## [1] 64

y_hat <- ifelse(test_set$height > best_cutoff, "Male", "Female") %>%
    factor(levels = levels(test_set$sex))
y_hat <- factor(y_hat)
mean(y_hat == test_set$sex)</pre>
```

[1] 0.8171429

Comprehension Check - Basics of Evaluating Machine Learning Algorithms

- 1. For each of the following, indicate whether the outcome is continuous or categorical.
- Digit reader categorical
- Height continuous
- Spam filter categorical
- Stock prices continuous
- Sex categorical
- 2. How many features are available to us for prediction in the mnist digits dataset?

You can download the mnist dataset using the read_mnist() function from the dslabs package.

```
mnist <- read_mnist()
ncol(mnist$train$images)</pre>
```

[1] 784

Confusion matrix

There is a link to the relevant sections of the textbook: Confusion Matrix

Key points

- Overall accuracy can sometimes be a deceptive measure because of unbalanced classes.
- A general improvement to using overall accuracy is to study sensitivity and specificity separately. **Sensitivity**, also known as the true positive rate or recall, is the proportion of actual positive outcomes correctly identified as such. **Specificity**, also known as the true negative rate, is the proportion of actual negative outcomes that are correctly identified as such.
- A confusion matrix tabulates each combination of prediction and actual value. You can create a confusion matrix in R using the table() function or the confusionMatrix() function from the caret package.

Code

```
# tabulate each combination of prediction and actual value
table(predicted = y_hat, actual = test_set$sex)
##
           actual
## predicted Female Male
##
     Female 50
##
      Male
                69 379
test_set %>%
  mutate(y_hat = y_hat) %>%
  group_by(sex) %>%
  summarize(accuracy = mean(y_hat == sex))
## `summarise()` ungrouping output (override with `.groups` argument)
## # A tibble: 2 x 2
     sex
            accuracy
               <dbl>
     <fct>
## 1 Female
               0.420
## 2 Male
               0.933
prev <- mean(y == "Male")</pre>
confusionMatrix(data = y_hat, reference = test_set$sex)
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction Female Male
##
       Female 50 27
                  69 379
##
       Male
##
##
                  Accuracy : 0.8171
                    95% CI: (0.7814, 0.8493)
##
##
       No Information Rate: 0.7733
##
       P-Value [Acc > NIR] : 0.008354
##
##
                     Kappa : 0.4041
##
   Mcnemar's Test P-Value : 2.857e-05
##
##
               Sensitivity: 0.42017
               Specificity: 0.93350
##
##
            Pos Pred Value: 0.64935
##
            Neg Pred Value: 0.84598
##
                Prevalence: 0.22667
##
            Detection Rate: 0.09524
##
      Detection Prevalence: 0.14667
##
         Balanced Accuracy: 0.67683
##
##
          'Positive' Class : Female
##
```

Balanced accuracy and F1 score

There is a link to the relevant sections of the textbook: Balanced accuracy and F1 Score

Key points

- For optimization purposes, sometimes it is more useful to have a one number summary than studying both specificity and sensitivity. One preferred metric is **balanced accuracy**. Because specificity and sensitivity are rates, it is more appropriate to compute the *harmonic* average. In fact, the **F1-score**, a widely used one-number summary, is the harmonic average of precision and recall.
- Depending on the context, some type of errors are more costly than others. The **F1-score** can be adapted to weigh specificity and sensitivity differently.
- You can compute the F1-score using the F_meas() function in the caret package.

Code

```
# maximize F-score
cutoff <- seq(61, 70)
F_1 <- map_dbl(cutoff, function(x){
   y_hat <- ifelse(train_set$height > x, "Male", "Female") %>%
      factor(levels = levels(test_set$sex))
   F_meas(data = y_hat, reference = factor(train_set$sex))
})
data.frame(cutoff, F_1) %>%
   ggplot(aes(cutoff, F_1)) +
   geom_point() +
   geom_line()
```



```
max(F_1)
## [1] 0.6142322
best_cutoff <- cutoff[which.max(F_1)]
best_cutoff

## [1] 66

y_hat <- ifelse(test_set$height > best_cutoff, "Male", "Female") %>%
    factor(levels = levels(test_set$sex))
sensitivity(data = y_hat, reference = test_set$sex)

## [1] 0.6806723

specificity(data = y_hat, reference = test_set$sex)

## [1] 0.8349754
```

Prevalence matters in practice

There is a link to the relevant sections of the textbook: Prevalence matters in practice

Key points

• A machine learning algorithm with very high sensitivity and specificity may not be useful in practice when prevalence is close to either 0 or 1. For example, if you develop an algorithm for disease diagnosis with very high sensitivity, but the prevalence of the disease is pretty low, then the precision of your algorithm is probably very low based on Bayes' theorem.

ROC and precision-recall curves

There is a link to the relevant sections of the textbook: ROC and precision-recall curves

Key points

- A very common approach to evaluating accuracy and F1-score is to compare them graphically by plotting both. A widely used plot that does this is the **receiver operating characteristic (ROC) curve**. The ROC curve plots sensitivity (TPR) versus 1 specificity or the false positive rate (FPR).
- However, ROC curves have one weakness and it is that neither of the measures plotted depend on prevalence. In cases in which prevalence matters, we may instead make a **precision-recall plot**, which has a similar idea with ROC curve.

Code

Note: your results and plots may be slightly different.

```
p <- 0.9
n <- length(test_index)
y_hat <- sample(c("Male", "Female"), n, replace = TRUE, prob=c(p, 1-p)) %>%
factor(levels = levels(test_set$sex))
mean(y_hat == test_set$sex)
```

```
# ROC curve
probs <- seq(0, 1, length.out = 10)
guessing <- map_df(probs, function(p){
   y_hat <-
        sample(c("Male", "Female"), n, replace = TRUE, prob=c(p, 1-p)) %>%
        factor(levels = c("Female", "Male"))
   list(method = "Guessing",
        FPR = 1 - specificity(y_hat, test_set$sex),
        TPR = sensitivity(y_hat, test_set$sex))
})
guessing %>% qplot(FPR, TPR, data =., xlab = "1 - Specificity", ylab = "Sensitivity")
```



```
cutoffs <- c(50, seq(60, 75), 80)
height_cutoff <- map_df(cutoffs, function(x){
   y_hat <- ifelse(test_set$height > x, "Male", "Female") %>%
   factor(levels = c("Female", "Male"))
   list(method = "Height cutoff",
        FPR = 1-specificity(y_hat, test_set$sex),
        TPR = sensitivity(y_hat, test_set$sex))
})

# plot both curves together
bind_rows(guessing, height_cutoff) %>%
   ggplot(aes(FPR, TPR, color = method)) +
```

```
geom_line() +
geom_point() +
xlab("1 - Specificity") +
ylab("Sensitivity")
```



```
# plot precision against recall
guessing <- map_df(probs, function(p){</pre>
  y_hat <- sample(c("Male", "Female"), length(test_index),</pre>
                  replace = TRUE, prob=c(p, 1-p)) %>%
    factor(levels = c("Female", "Male"))
  list(method = "Guess",
    recall = sensitivity(y_hat, test_set$sex),
    precision = precision(y_hat, test_set$sex))
})
height_cutoff <- map_df(cutoffs, function(x){
  y_hat <- ifelse(test_set$height > x, "Male", "Female") %>%
    factor(levels = c("Female", "Male"))
  list(method = "Height cutoff",
       recall = sensitivity(y_hat, test_set$sex),
    precision = precision(y_hat, test_set$sex))
})
bind_rows(guessing, height_cutoff) %>%
  ggplot(aes(recall, precision, color = method)) +
  geom_line() +
  geom_point()
```

Warning: Removed 1 row(s) containing missing values (geom_path).

Warning: Removed 1 rows containing missing values (geom_point).


```
guessing <- map_df(probs, function(p){</pre>
  y_hat <- sample(c("Male", "Female"), length(test_index), replace = TRUE,</pre>
                  prob=c(p, 1-p)) %>%
    factor(levels = c("Male", "Female"))
  list(method = "Guess",
    recall = sensitivity(y_hat, relevel(test_set$sex, "Male", "Female")),
    precision = precision(y_hat, relevel(test_set$sex, "Male", "Female")))
})
height_cutoff <- map_df(cutoffs, function(x){
  y_hat <- ifelse(test_set$height > x, "Male", "Female") %>%
    factor(levels = c("Male", "Female"))
  list(method = "Height cutoff",
       recall = sensitivity(y_hat, relevel(test_set$sex, "Male", "Female")),
    precision = precision(y_hat, relevel(test_set$sex, "Male", "Female")))
})
bind_rows(guessing, height_cutoff) %>%
  ggplot(aes(recall, precision, color = method)) +
  geom_line() +
 geom_point()
```

Warning: Removed 1 row(s) containing missing values (geom_path).

Warning: Removed 1 rows containing missing values (geom_point).

Comprehension Check - Practice with Machine Learning, Part 1

The following questions all ask you to work with the dataset described below.

The reported_heights and heights datasets were collected from three classes taught in the Departments of Computer Science and Biostatistics, as well as remotely through the Extension School. The Biostatistics class was taught in 2016 along with an online version offered by the Extension School. On 2016-01-25 at 8:15 AM, during one of the lectures, the instructors asked student to fill in the sex and height questionnaire that populated the reported_heights dataset. The online students filled out the survey during the next few days, after the lecture was posted online. We can use this insight to define a variable which we will call type, to denote the type of student, inclass or online.

The code below sets up the dataset for you to analyze in the following exercises:

```
if(!require(dplyr)) install.packages("dplyr")
if(!require(lubridate)) install.packages("lubridate")

## Loading required package: lubridate

##
## Attaching package: 'lubridate'

## The following objects are masked from 'package:base':
##
## date, intersect, setdiff, union
```

```
library(dplyr)
library(lubridate)
data(reported_heights)

dat <- mutate(reported_heights, date_time = ymd_hms(time_stamp)) %>%
    filter(date_time >= make_date(2016, 01, 25) & date_time < make_date(2016, 02, 1)) %>%
    mutate(type = ifelse(day(date_time) == 25 & hour(date_time) == 8 & between(minute(date_time), 15, 30)
    select(sex, type)

y <- factor(dat$sex, c("Female", "Male"))
x <- dat$type</pre>
```

1. The type column of dat indicates whether students took classes in person ("inclass") or online ("online"). What proportion of the inclass group is female? What proportion of the online group is female?

Enter your answer as a percentage or decimal (eg "50%" or "0.50") to at least the hundredths place.