Лабораторная работа №2.

- 1. Построить численное решение задачи Коши на отрезке с различными шагами методом Адамса-Бэшформа и Адамса-Мултона.
 - 2. Построить точное решение
 - 3. Оценить погрешность вычислений.

Пример (в данном примере в качестве предиктора взят метод Рунге-Кутта, но можно использовать любой другой, в том числе и метод Эйлера)

Многошаговые методы решения задачи Коши характеризуются тем, что решение в текущем узле зависит от данных не в одном предыдущем узле, как это имеет место в одношаговых методах, а от нескольких предыдущих узлах. Многие многошаговые методы различного порядка точности можно конструировать с помощью квадратурного способа (т.е. с использованием эквивалентного интегрального уравнения). Решение дифференциального уравнения удовлетворяет интегральному соотношению:

$$y_{k+1} = y_k + \int_{x_k}^{x_{k+1}} f(x, y(x)) dx$$

Если решение задачи Коши получено в узлах вплоть до k-го, то можно аппроксимировать подынтегральную функцию, например: интерполяционным многочленом какой-либо степени. Вычислив интеграл от построенного многочлена на отрезке, получим ту или иную формулу Адамса. В частности, если использовать многочлен нулевой степени (то есть заменить подынтегральную функцию ее значением на левом конце отрезка в точке), то получим явный метод Эйлера. Если проделать то же самое, но подынтегральную функцию аппроксимировать значением на правом конце, то получим неявный метод Эйлера.

Метод Адамса

При использовании интерполяционного многочлена 3-ей степени построенного по значениям подынтегральной функции в последних четырех узлах получим метод Адамса четвертого порядка точности:

$$y_{k+1} = y_k + \frac{h}{24} (55f_k - 59f_{k-1} + 37f_{k-2} - 9f_{k-3}),$$

Где fk - значение подынтегральной функции в узле xk

Метод Адамса-Бэшфортса-Моултона

Данный метод типа предиктор—корректор позволяет повысить точность вычислений метода Адамса за счет двойного вычисления значения функции f(x,y) при определении y_{k+1} на каждом новом шаге по x.

Этап предиктор

Аналогично методу Адамса по значениям в узлах $x_{k-3}, x_{k-2}, x_{k-1}, x_k$ рассчитывается "предварительное" значение решения в узле x_{k+1} .

$$\hat{y}_{k+1} = y_k + \frac{h}{24} (55f_k - 59f_{k-1} + 37f_{k-2} - 9f_{k-3}), \tag{4.26}$$

С помощью полученного значения \hat{y}_{k+1} рассчитывается "предварительное" значение функции $f_{k+1} = f(x_{k+1}, \hat{y}_{k+1})$ в новой точке.

Этап корректор

На корректирующем этапе по методу Адамса 4-го порядка по значениям в узлах $x_{k-2}, x_{k-1}, x_k, x_{k+1}$ рассчитывается "окончательное" значение решения в узле x_{k+1} .

$$y_{k+1} = y_k + \frac{h}{24} (9f_{k+1} + 19f_k - 5f_{k-1} + f_{k-2}), \tag{4.27}$$

Пример 4.7. Методом Адамса с шагом h=0.1 получить численное решение дифференциального уравнения $y'=(y+x)^2$ с начальными условиями y(0)=0 на интервале [0,1.0]. Численное решение сравнить с точным решением $y=\tan(x)-x$.

Решение

Данная задача на первой половине интервала совпадает с задачей из примера 4.4. Поэтому для нахождения решения в первых узлах беем использовать результаты решения этой задачи методом Рунге-Кутты четвертого порядка (4.10) приведенные в примере 4.4.

Таблица 4.13

k			(/)		_
κ	x_k	\mathcal{Y}_k	$f(x_k, y_k)$	${\cal Y}_{ucm}$	$\varepsilon_{\scriptscriptstyle k}$
0	0.0	0.0000000	0.000000000	0.000000	0.0000000
1	0.1	0.000334589	0.010067030	0.00033467	0.8301E-07
2	0.2	0.002709878	0.041091295	0.002710036	0.1573E-06
3	0.3	0.009336039	0.095688785	0.009336250	0.2103E-06
4	0.4	0.022715110	0.178688064	0.022793219	0.781090E-
					04
5	0.5	0.046098359	0.298223418	0.046302490	0.204131E-
					03
6	0.6	0.083724841	0.467479658	0.084136808	0.411968E-
					03
7	0.7	0.141501753	0.708125200	0.142288380	0.786628E-
					03
8	0.8	0.228133669	1.057058842	0.229638557	0.150489E-
					02
9	0.9	0.357181945	1.580506443	0.360158218	0.297627E-
					02
10	1.0	0.551159854	2.406096892	0.557407725	0.624787E-
					02

Решением задачи является табличная функция располагающаяся во втором и третьем столбцах таблицы

Пример 4.8. Методом Адамса-Бэшфортса-Моултона с шагом h=0.1 получить численное решение начальной задачи из Примера 4.7.

Решение

Как и в предыдущем примере в первых трех узлах после начального решение получаем методом Рунге-Кутты 4-го порядка. Начиная с четвертого узла (k=4)на каждом шаге в расчетах y_{k+1} используем соотношения (4.26),(4.27).

Таблица 4.14

k	x_k	$\hat{\mathcal{Y}}_k$	\mathcal{Y}_k	$f(x_k, y_k)$	${\cal Y}_{ucm}$	$\varepsilon_{\scriptscriptstyle k}$
О	0.0	-	0.0000000	0.000000000	0.000000	0.0000000
1	0.1	-	0.000334589	0.010067030	0.00033467	0.8301E-
						07
2	0.2	-	0.002709878	0.041091295	0.002710036	0.1573E-06
3	0.3	-	0.009336039	0.095688785	0.009336250	0.2103E-
						06
4	0.4	0.022715110	0.02279808	0.17875822	0.022793219	o.4863E-
						05
5	0.5	0.046197407	0.04631491	0.29845998	0.046302490	0.1242E-
						04
6	0.6	0.083978353	0.08416105	0.46807634	0.084136808	0.2424E-
						04
7	0.7	0.142027364	0.142331883	0.70952300	0.142288380	0.4350E-
						04
8	0.8	0.229171282	0.229714203	1.06031134	0.229638557	0.7565E-
						04
9	0.9	0.359247335	0.360288001	1.58832585	0.360158218	0.1298E-
						03
10	1.0	0.555451403	0.557625580	2.42619745	0.557407725	0.2179E-03

Решением задачи является табличная функция располагающаяся во втором и четвертом столбцах таблицы 4.14.

Решение полученное методом Адамса-Бэшфортса-Моултона несколько точнее, чем решение методом Адамса.