

Department of Electrical and Computer Engineering AIML (ECE304) - Spring 2025

Instructor: Prof. Vinod Sharma

ASSIGNMENT-1

- 1. Consider the given data set ($Dataset 1_Assignment 1.csv$). The Data set contains 10000 samples with two features x_1 and x_2 and four classes $y \in \{0,1,2,3\}$. The features are independent and identically distributed (iid). The distributions are Gaussian with means (-1,-1) for class 0, (-1,1) for class 1, (1,-1) for class 2, and (1,1) for class 3, respectively and the variances are $(\sigma_1^2=0.1, \, \sigma_2^2=0.1)$ (i.e., $P(x|i)=\frac{1}{\sqrt{2\pi\sigma_1^2}}\exp(-\frac{(x_1-\mu_1)^2}{2\sigma_1^2})\frac{1}{\sqrt{2\pi\sigma_2^2}}\exp(-\frac{(x_2-\mu_2)^2}{2\sigma_2^2})$). The prior probabilities of the classes are $\pi(0)=0.1, \, \pi(1)=0.3, \, \pi(2)=0.25$, and $\pi(3)=0.35$.
 - (a) Using the given information, design a Bayesian Classifier and get the probability of error.
 - (b) By using the first 5000 samples of the given data set, estimate the prior probabilities $\hat{\pi}(i), i \in \{0, 1, 2, 3\}$ and the variances $\hat{\sigma}_i^2$, $j \in \{1, 2\}$. For the second 5000 samples,
 - obtain the probability of classification error using the Bayesian classifier of part(a)
 - obtain the Bayesian classifier using the obtained $\hat{\pi}(i)$, $\hat{P}(x|i)$ and $\hat{\sigma}_j^2$, and obtain the probability of classification error using this classifier.