MACHINE LEARNING LAB 4

NAME:- DIBYA DYUTI BHALLA

SRN:- PES2UG23CS176 SECTION:- C

1. Introduction

The purpose of this project was to build a **complete machine learning pipeline** for the IBM HR Attrition dataset, focusing on **hyperparameter tuning** and **model comparison**. Two approaches were implemented:

- 1. **Manual Grid Search** building a parameter search loop from scratch.
- 2. **Scikit-learn GridSearchCV** leveraging sklearn's optimized search utilities.

Three classifiers were compared: **Decision Tree**, **k-Nearest Neighbors (kNN)**, and **Logistic Regression**. An ensemble **Voting Classifier** was also evaluated.

The main tasks included:

- Preprocessing data using scaling and feature selection.
- Hyperparameter tuning using grid search with cross-validation.
- Evaluating models using multiple performance metrics.
- Comparing manual vs. built-in grid search implementations.

2. Dataset Description

The dataset used was the IBM HR Employee Attrition dataset.

- Number of instances: ~1470 employees
- Number of features (after encoding): ~50+ (varies after one-hot encoding)
- Target variable: Attrition (binary classification)
 - Yes → 1 (Employee left)
 - \circ No \rightarrow 0 (Employee stayed)

This dataset contains demographic, workplace, and personal factors (e.g., age, department, job role, salary, work-life balance) that influence employee attrition.

3. Methodology

Key Concepts

- **Hyperparameter Tuning:** Process of selecting the best model parameters that maximize predictive performance.
- Grid Search: Systematically tries all parameter combinations in a defined grid.
- **K-Fold Cross-Validation:** Data is split into *k* folds (here, k=5). Models are trained on k-1 folds and validated on the remaining fold to ensure robustness.

ML Pipeline

Each model was trained using a three-step pipeline:

- 1. **StandardScaler** standardize features to mean=0, variance=1.
- 2. SelectKBest(f_classif) select top k features.
- 3. Classifier Decision Tree, kNN, or Logistic Regression.

Implementation Process

- Part 1: Manual Grid Search
 - Looped over all hyperparameter combinations.
 - Performed 5-fold stratified CV.
 - o Computed mean ROC AUC per combination.
 - Selected the best parameters.
- Part 2: Scikit-learn GridSearchCV
 - Built identical pipelines.
 - o Used GridSearchCV with scoring="roc_auc" and StratifiedKFold.
 - Extracted best estimator, parameters, and CV score.

4. Results and Analysis

Manual Grid Search - Best Model Performance

Model	Accurac	y Precisio	n Recall F1-Scor	e ROC AUC
Decision Tree	0.8163	0.3684	0.1972 0.2569	0.7029
kNN	0.8277	0.4242	0.1972 0.2692	0.7340

Model Accuracy Precision Recall F1-Score ROC AUC

Logistic Regression 0.8798 0.73	68 0.3944 0.5138	0.8187
--	------------------	--------

Voting Classifier 0.8367 0.4839 0.2113 0.2941 0.8039

Built-in GridSearchCV - Best CV Scores

- **Decision Tree** → Best AUC = 0.7087 (max depth=5, min_samples_split=2, k=5)
- **kNN** → Best AUC = 0.7303 (n_neighbors=11, weights=distance, k=10)
- Logistic Regression → Best AUC = 0.8329 (C=0.1, penalty=l2, solver=lbfgs, k=all)

Built-in Model Performance

Model	Accuracy	Precision	Recall	F1- Score	ROC AUC
Decision Tree	0.8163	0.3684	0.1972	0.2569	0.7029
kNN	0.8277	0.4242	0.1972	0.2692	0.7340
Logistic Regression	0.8798	0.7368	0.3944	0.5138	0.8187
Voting Classifier	(Error due to variable scope, expected similar to manual voting)				

Comparison of Implementations

- Both manual and built-in grid search selected Logistic Regression as the bestperforming model.
- Results were nearly identical; the built-in method was slightly better in CV AUC (0.8329 vs. 0.8187).
- Differences are due to implementation details: sklearn optimizes CV splits and parameter handling more efficiently.

Visualizations (to include in report)

- **ROC Curves:** Logistic Regression curve is consistently higher.
- **Confusion Matrices:** Logistic Regression shows best balance between detecting attrition cases (recall) and minimizing false positives.

Best Model

- Logistic Regression is the best overall model for HR Attrition.
- Hypothesis: The dataset is high-dimensional after one-hot encoding, which suits Logistic Regression's linear decision boundary. Decision Trees overfit and kNN suffers from high-dimensional distance problems.

5. Screenshots

MANUAL METHOD:-

ROC:-

SCIKIT METHOD:-

6. Conclusion

- Key Findings: Logistic Regression consistently outperformed Decision Tree and kNN across manual and built-in methods.
- **Manual vs. Built-in:** Both approaches produced consistent results. The built-in method was more efficient, while the manual implementation helped in understanding grid search mechanics.

Takeaways:

- Logistic Regression is robust for high-dimensional, one-hot encoded datasets.
- Ensembles do not always improve performance when one model dominates.
- Manual grid search is educational, but libraries like scikit-learn are far more practical for real-world use.