Jointly Distributed Random Variables

Example 25.1: Let X and Y have joint density

$$f_{XY}(x,y) = \begin{cases} 6e^{-2x}e^{-3y} & x>0, \ y>0\\ 0 & \text{else} \end{cases}$$
 Are X and Y independent?

Solution:

where $h(x) = \begin{cases} e^{-2x} & x > 0 \\ 0 & \text{else} \end{cases} \qquad g(y) = \begin{cases} 6e^{-3y} & y > 0 \\ 0 & \text{else} \end{cases}$

Alternate method: Notice that

So,
$$1 = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{XY}(x, y) \ dxdy$$

 $f_{XY}(x,y) = h(x)g(y)$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h(x)g(y) \, dxdy$$

$$= \underbrace{\int_{-\infty}^{\infty} h(x) \, dx}_{C_1} \underbrace{\int_{-\infty}^{\infty} g(y) \, dy}_{C_2}$$

 $f_X(x) = \int_{-\infty}^{\infty} f_{XY}(x, y) dy = \int_{-\infty}^{\infty} h(x)g(y) dy = C_2 h(x)$ $f_Y(y) = \int_{-\infty}^{\infty} f_{XY}(x, y) dx = \int_{-\infty}^{\infty} h(x)g(y) dx = C_1 g(y)$

Finally,
$$f_X(x)f_Y(y) = C_1C_2h(x)g(y)$$

= $h(x)g(y)$

Example 25.2: Let X and Y have joint pdf

uniformly between noon and 1pm.

second the arrive?

Solution:

 $f_X(x)f_Y(y)$.

Solution:

Proposition 25.1 X and Y are independent if and only if $f_{XY}(x,y) = h(x)g(y)$ for some h(x) and g(y).

So if you can factor $f_{XY}(x,y) = h(x)g(y)$, then X and Y are independent!

And if X and Y are independent, then $f_{XY}(x,y)$ can be factored as $f_{XY}(x,y) =$

 $=f_{XY}(x,y)$

 $f_{XY}(x,y) = \begin{cases} 24xy & x > 0, \ y > 0, \ 0 < x + y < 1 \\ 0 & \text{else} \end{cases}$ Are X and Y independent?

Example 25.3: Two people decide to meet. Each arrives independently and

What is the probability that the first to arrive waits longer than 10 min for the