Universidade Federal Fluminense Departamento de Engenharia Elétrica TEE00178 – Máquinas II Turma A1 – 2021.1

Professor: Flavio Goulart

Projeto 4 - Impressora 3D

Grupo: Letícia Raposo, Jeferson Oliveira, Wellerson e Renan Freitas

1) INTRODUÇÃO

Objetivos: Dimensionar os motores de passo e equipamentos eletrônicos ancilares

necessários ao funcionamento de uma impressora 3D por extrusão. Desenvolver

matematicamente as características de cargas mecânicas referidas aos eixos de cada motor.

Entrega: Depositar no Classroom 1 arquivo .pdf com o desenvolvimento matemático e 1

arquivo de vídeo de até 20 minutos explicando os procedimentos adotados, análise crítica dos

resultados e conclusões.

Informações: Deseja-se construir uma impressora 3D tipo FDM acionada por motores de passo. A seguir são dados alguns parâmetros de projeto a partir dos quais o sistema deve ser

projetado.

Volume de impressão: 250 mm x 250 mm x 300 mm

Resolução: 0.2 mm(XY) e 0.1 mm(Z)

Velocidade máxima: 100 mm/s

2) TAREFA 1

Defina como será a sua impressora: quais graus de liberdade terá a cabeça extrusora e

quais terá a mesa de impressão. Dimensione as partes móveis: fusos, guias lineares, mesa de impressão, cabeça extrusora, etc. para atender essas definições. Calcule as cargas mecânicas

referidas aos eixos de cada um dos motores. Anexe as folhas de dados das peças escolhidas

no documento a ser entregue.

2.1 - Escolhendo graus de liberdade

Escolhemos 2 graus de liberdade para cabeça extrusora (direita, esquerda, cima,

baixo) e 1 grau de liberdade para mesa de impressão (atrás, frente).

Figura 1 - Dimensões de volume de impressão e graus de liberdade

2.2 - Dimensionando as partes móveis

2.2.1 - Base

Podemos usar hastes roscadas conectadas a bases de plástico/metal através de porcas. Usaremos as porcas para prender todo tipo de suporte, como para motores, polias, frame e etc. Na base colocaremos nosso primeiro motor de passo (motor 1) que será responsável pelo movimento da mesa aquecida na direção do eixo Y. Iremos utilizar um kit (fuso(tr8 8mm) + castanha + suporte castanha + mancais + acoplador) para fazer a transmissão com o motor e assim movimentar a mesa.

Figura 2 - Dimensionamento da base

	Partes Estrutura Base					
Item	Peça	Descrição	Quantidade	Massa Total (g)	Preço	
1	Canto Base	Termoplástico	4	147,2	R\$ 14,72	
2	Acoplador do Motor	Termoplástico	1	8	R\$ 0,80	
3	Suporte para o fuso e sensor	Termoplástico	4	32	R\$ 3,20	
5	Haste Roscada	M10 x 1,0 m	2	50	R\$ 38,00	
6	Kit Fuso Trapezoidal	Tr8 X 400mm	1	200	R\$ 145,00	
7	Sensor de Fim de Curso	Módulo chave	1	2	R\$ 9,00	
8	Motor de Passo	Nema 17 - 42HS48	1	340	R\$ 89,00	
9	Microcontrolador	Arduino Mega 2560	1	Х	R\$ 88,27	
10	Driver	A4988	5	Х	R\$ 57,75	
11	Fonte	Fonte Chaveada 12v 50a 600w Bivolt	1	Х	R\$ 78,00	

Tabela 1 - Partes e quantidade para montagem da base (Editar tabela)

2.2.2 - Mesa Aquecida

Vamos utilizar a cama aquecida (250x250) fixada num suporte mdf/alumínio que está conectado à 2 eixos lineares por rolamentos lineares. Utilizaremos um suporte que faça a conexão com o fuso.

Figura 3 - Estrutura mesa aquecida

	Pa	rtes Estrutura Me	sa aquecida		
Item	Peça	Descrição	Quantidade	Massa Total (g)	Preço
1	Suporte mesa	Alumínio 250mm	1	300	R\$ 50,00
2	Fixador da mesa	Termoplástico	1	8	R\$ 0,80
3	Mesa aquecedora	12 v - 300 w	1	600	R\$ 51,02
4	Rolamento linear	8mm	4	40	R\$ 35,20
5	Guia linear	8mm x 300mm	2	40	R\$ 36,00

Tabela 2 - Partes e quantidade para montagem da estrutura da mesa aquecida (editar)

2.2.3 - Frame Principal

Para o frame podemos utilizar a estrutura de mdf/alumínio/acrílico. Nesta colocaremos 2 motores (motor 2 e 3) para realizar o movimento na direção Z. Novamente utilizaremos o kit (<u>fuso(tr8 8mm</u>) + castanha + suporte castanha + mancais + acoplador) para cada motor e vamos conectá-los ao eixo transversal. Além do uso de suportes.

Figura 4 - Frame principal

		Partes Estrutura F	rame		
Item	Peça	Descrição	Quantidade	Massa Total (g)	Preço
1	Suporte Frame	Alumínio 300mm	1	730	R\$ 135,00
2	Acoplador do Motor	Termoplástico	2	16	R\$ 1,60
3	Kit Fuso Trapezoidal	Tr8 X 400mm	2	400	R\$ 290,00
4	Suporte para o fuso e sensor	Termoplástico	5	40	R\$ 4,00
5	Guia linear	8mm x 400mm	2	60	R\$ 36,00
6	Rolamento linear	8mm	2	20	R\$ 17,60
7	Sensor de Fim de Curso	Módulo chave	1	2	R\$ 9,00
8	Motor de Passo	Nema 17 - 42HS60	2	1100	R\$ 211,00

Tabela 3 - Peças e quantidades para montagem frame (editar)

2.2.4 - Eixo Transversal

Para o eixo transversal vamos usar guias lineares com rolamentos para sustentar o suporte da cabeça extrusora e 'escorregar' na direção do eixo x. Usaremos novamente o kit (<u>fuso(tr8 8mm)</u> + castanha + suporte castanha + mancais + acoplador) para o (motor 4) fazer o movimento. Talvez seja preciso um (motor 5) junto à cabeça extrusora para poder 'puxar' o filamento termoplástico do rolo.

Figura 5 - Eixo Transversal.

	Par	tes Estrutura Eixo	Transversal		
Item	Peça	Descrição	Quantidade	Massa Total (g)	Preço
1	Guia linear	8mm x 300mm	2	60	R\$ 36,00
2	Suporte Lateral	Termoplástico	2	16	R\$ 1,60
3	Cabeça Extrusora	MK8 com motor	1	500	R\$ 219,90
4	Rolamento linear	8mm	2	20	R\$ 17,60
5	Acoplador do Motor	Termoplástico	2	16	R\$ 1,60
6	Kit Fuso Trapezoidal	Tr8 X 300mm	1	200	R\$ 145,00
7	Suporte eixo X	Termoplástico	1	8	R\$ 0,80
8	Sensor de Fim de Curso	Módulo chave	1	2	R\$ 9,00
9	Motor de Passo	Nema 17 - 42HS48	1	340	R\$ 89,00

Tabela 4 - Peças e quantidades para montagem eixo transversal. (editar)

2.3 - Cálculo das cargas

Eixo Horizontal: $\tau_H = \mu * (M * g) * r_F \mu = 0, 6$

Para o eixo y - Vamos considerar coeficiente de atrito como 0,6. A massa total referente a estrutura da mesa aquecida é M= 998 g

considerando uma densidade do termoplástico de 0.9 g/cm³ e um volume de impressão máximo de 18750 cm³, temos uma massa máxima de 16,87 kg.

$$\tau_H^Y = 0.6 * ((0.998 + 16.87) * 9.81) * 0.004 = 0.4 \text{ N.m} = 1.43 \text{ kgf.cm}$$

Para o eixo x - Vamos considerar coeficiente de atrito como 0,6. A massa total referente a estrutura da cabeça extrusora é M= 528 g

$$\tau_H^X = 0,6 * (0,528 * 9,81) * 0,4=1,24 \text{ N.cm}$$

$$\tau_H^X = 0,6 * (0,528 * 9,81) * 0,004 = 0,012 \text{ N.m} = 1.2 \text{ kgf.cm}$$

Eixo Vertical:
$$\tau_V = (1 + \mu) * (M * g) * r_F$$

Para o eixo z - Vamos considerar coeficiente de atrito como 0,6. A massa total referente a estrutura do eixo transversal é M=1122g. Sendo que iremos dividir pelo os 2 motores ficando com M/2=561g

$$\tau_V^Z = (1 + 0, 6) * (0,561 * 9,81) * 0,4 = 3,52 \text{ N.cm}$$

$$\tau_V^Z = (1 + 0.6) * (0.561 * 9.81) * 0.004 = 0.35 \text{ N.m} = 3.5 \text{ kgf.cm}$$

Velocidade de impressão máxima

$$v_{max} = 100 \ mm/s$$

$$Passo_{Fuso} = \frac{Diâmetro}{Rotação} = \frac{8 mm}{rot}$$

$$\eta_F = \frac{v_{max}}{P_F} = \frac{100 \text{ mm/s}}{8 \text{ mm/rot}} = 12,5 \text{ } rps = 750 \text{ } rpm$$

3) TAREFA 2

Dimensione e escolha motores de passo capazes de acionar as respectivas cargas mecânicas calculadas anteriormente nas condições de operação pedidas sem que sejam superdimensionados. Especifíque o tipo de passo (simples, meio ou micro passo), modo de acionamento (unipolar, bipolar paralelo ou série), mostre as ligações dos condutores dos motores e calcule a relação de inércia. Anexe as folhas de dados dos motores no documento a ser entregue.

datasheet motor (modelo KTC-42HS60-1704 - NEMA 17)

Figura 6 - Datasheet do motor 1

Figura 7 - Datasheet do motor 2

Figura 8 - Esquema de ligação dos motores Bipolar Série

Podemos utilizar o passo simples do nosso motor. Uma vez que ele possui um passo de 1.8° que resulta em 200 passos por volta. Como estamos utilizando um fuso de passo 8mm por rotação, temos uma relação de 200 passos para 8mm, ou seja, 200 pulsos para andar 8mm. Com isso conseguimos chegar na relação de 0.04 mm por passo do motor, ou seja, a cada pulso temos uma resolução de 0.04 mm. Isso é 5 vezes mais do que solicitado no projeto para o eixo x/y e 2,5 vezes mais para o eixo z.

$$\frac{360^{\circ}}{1,8^{\circ}} = 200 \ passos/volta$$
; $P_F = 8 \ mm/rot$
 $Resolução = \frac{8}{200} = 0,04 \ mm$

Relação de Inércia:

Relação de Inércia:
$$RI = \frac{M^* r_F^2 + J_F}{J_M}$$
 onde, $J_F = \frac{M^* r_F^2}{2}$

Eixo X

$$J_{M} = 68g.cm2 = 0,068 \text{ kg*cm}^{2}$$

$$J_F^x = \frac{90 * 0.16}{2} = 7.2 \text{ g.cm}^2$$

$$RI_x = \frac{(0.528 \times 0.04^2) + 0.0072}{0.068} = 0,118$$

Eixo Y

 $J_{\rm M} = 68 \text{g.cm} 2 = 0{,}068 \text{ kg.cm}^2$

$$RI_y = \frac{(17.87 \times 0.04^2) + 0.0072}{0.068} = 0,526$$

Eixo Z

 $J_M = 102 \text{ g.cm} 2 = 0.102 \text{ kg.cm}^2$

$$RI_Z = \frac{(0.561 \times 0.04^2) + 0.0072}{0.102} = 0,079$$

4) TAREFA 3

Dimensione os drivers para o correto acionamento dos motores sem que sejam superdimensionados e uma fonte de corrente contínua adequada para alimentação. Anexe as folhas de dados dos drivers e da fonte no documento a ser entregue.

Driver A4988

Datasheet driver A4988

Typical Application Diagram

Figura 9 - Esquema de ligação do Driver

O driver A4988 atende perfeitamente as especificações para acionar os motores escolhidos. O driver foi projetado para operar motores de passo bipolares em passo pleno,

meio passo, $\frac{1}{4}$ de passo, $\frac{1}{8}$ de passo e $\frac{1}{16}$ de passo. Com uma capacidade de unidade de saída de até 35 V e \pm 2 A.

Microcontrolador Arduino Mega 2560

Figura 10 - Microcontrolador

DATASHEET ARDUINO MEGA 2560

Microcontroller	ATmega2560
Operating Voltage	5V
Input Voltage (recommended)	7-12V
Input Voltage (limits)	6-20V
Digital I/O Pins	54 (of which 14 provide PWM output)
Analog Input Pins	16
DC Current per I/O Pin	40 mA
DC Current for 3.3V Pin	50 mA
Flash Memory	256 KB of which 8 KB used by bootloader
SRAM	8 KB
EEPROM	4 KB
Clock Speed	16 MHz

Figura 11 - Especificações técnicas do microcontrolador

Esse modelo de arduino foi escolhido, pois oferece várias entradas e faixa de tensão lógica compatível com as dos drivers.

Fonte de Alimentação

Figura 12 - Fonte chaveada de 12V 50A e 600w

Escolhemos uma fonte chaveada bivolt com Tensão máxima de entrada de 127V a 220V e tensão máxima de saída de 12V a 13V. Além disso, a fonte consegue fornecer ao sistema até 50A e 600w, e com isso fica dentro das especificações de todo nosso sistema. Levando em consideração:

- Motores consomem aproximadamente 9 W cada, totalizando 36W, com corrente de aproximadamente 1,7A por fase de cada motor.
- O conjunto cabeça extrusora consome 40W com corrente de 3,3 A.
- Nossa mesa aquecida consome 300W com corrente de 25A.

Somando as potências e correntes do nosso sistema concluímos que a nossa fonte precisa atender pelo menos 42A e 400W. Além disso, é importante reparar que as tensões de alimentação dos componentes, como a mesa aquecida, a cabeça extrusora e o microcontrolador que é de 12V.

5) TAREFA 4

Monte uma planilha com o orçamento de todas as peças e equipamentos escolhidos para o projeto desta impressora 3D. Compare os valores com os obtidos por outros grupos e discorra sobre possíveis diferenças nas escolhas, vantagens e desvantagens do seu projeto em relação aos demais.

Planilha de orçamento:

Partes Estrutura Base						
Item	Peça	Descrição	Quantidade	Massa Total (g)	Preço	
1	Canto Base	Termoplástico	4	147,2	R\$ 14,72	
2	Acoplador do Motor	Termoplástico	1	8	R\$ 0,80	
3	Suporte para o fuso e sensor	Termoplástico	4	32	R\$ 3,20	
5	Haste Roscada	M10 x 1,0 m	2	50	R\$ 38,00	
6	Kit Fuso Trapezoidal	Tr8 X 400mm	1	200	R\$ 145,00	
7	Sensor de Fim de Curso	Módulo chave	1	2	R\$ 9,00	
8	Motor de Passo	Nema 17 - 42HS48	1	340	R\$ 89,00	
9	Microcontrolador	Arduino Mega 2560	1	х	R\$ 88,27	
10	Driver	A4988	5	Х	R\$ 57,75	
11	Fonte	Fonte Chaveada 12v 50a 600w Bivolt	1	X	R\$ 78,00	
					R\$ 523,74	

		Partes Estrutura Mesa	aquecida		
Item	Peça	Descrição	Quantidade	Massa Total (g)	Preço
1	Suporte mesa	Alumínio 250mm	1	300	R\$ 50,00
2	Fixador da mesa	Termoplástico	1	8	R\$ 0,80
3	Mesa aquecedora	12 v - 300 w	1	600	R\$ 51,02
4	Rolamento linear	8mm	4	40	R\$ 35,20
5	Guia linear	8mm x 300mm	2	40	R\$ 36,00
					D# 470.00

		Partes Estrutura	Frame		
Item	Peça	Descrição	Quantidade	Massa Total (g)	Preço
1	Suporte Frame	Alumínio 300mm	1	730	R\$ 135,00
2	Acoplador do Motor	Termoplástico	2	16	R\$ 1,60
3	Kit Fuso Trapezoidal	Tr8 X 400mm	2	400	R\$ 290,00
4	Suporte para o fuso e sensor	Termoplástico	5	40	R\$ 4,00
5	Guia linear	8mm x 400mm	2	60	R\$ 36,00
6	Rolamento linear	8mm	2	20	R\$ 17,60
7	Sensor de Fim de Curso	Módulo chave	1	2	R\$ 9,00
8	Motor de Passo	Nema 17 - 42HS60	2	1100	R\$ 211,00
		•			R\$ 704,20

		Partes Estrutura Eixo	Transversal		
Item	Peça	Descrição	Quantidade	Massa Total (g)	Preço
1	Guia linear	8mm x 300mm	2	60	R\$ 36,00
2	Suporte Lateral	Termoplástico	2	16	R\$ 1,60
3	Cabeça Extrusora	MK8 com motor	1	500	R\$ 219,90
4	Rolamento linear	8mm	2	20	R\$ 17,60
5	Acoplador do Motor	Termoplástico	2	16	R\$ 1,60
6	Kit Fuso Trapezoidal	Tr8 X 300mm	1	200	R\$ 145,00
7	Suporte eixo X	Termoplástico	1	8	R\$ 0,80
8	Sensor de Fim de Curso	Módulo chave	1	2	R\$ 9,00
9	Motor de Passo	Nema 17 - 42HS48	1	340	R\$ 89,00
		•	-	•	R\$ 520,50

Custo Total	R\$ 1.921,46
-------------	--------------

Comparando com os outros grupos o orçamento: Grupo 2:

Orçamento	Orçamer	nto – Partes Móve	is	
orçanicino	Componente	Preço unitário	Quantidade	Preço total
	Mesa de alumínio aquecida	R\$ 299,90	1	R\$ 299,90
	Superfície de vidro temperado	R\$ 100,00	1	R\$ 100,00
	Fuso - eixo X	R\$ 120,00	1	R\$ 120,00
	Fuso – eixo Y	R\$ 120,00	1	R\$ 120,00
	Fuso - eixo Z	R\$ 199,90	1	R\$ 199,90
	Guia - eixo X	R\$ 21,53	2	R\$ 43,06
Custo total do Projeto:	Guia - eixo Y	R\$ 21,53	2	R\$ 43,06
	Guia - eixo Z	R\$ 23,31	2	R\$ 46,62
	Cabeça extrusora e bico	R\$ 196,02	1	R\$ 196,02
	Chave fim de curso	R\$ 11,99	3	R\$ 35,97
>= R\$ 1.837,32			TOTAL	R\$ 1.204,53
	Orçamento – Moto	res de Passo, Dri	vers & Fonte	
	Componente	Preço unitário	Quantidade	Preço total
	Motor de passo - eixo X (AK17/1.1F6LN1.8)	R\$ 150,00	1	R\$ 150,00
	Motor de passo - eixo Y (AK17/1.1F6LN1.8)	R\$ 150,00	1	R\$ 150,00
	Motor de passo - eixo Z (AK23/4.6F6FL1.8)	R\$ 178,90	1	R\$ 178,90
	Driver do motor - eixo X (A4988)	R\$ 15,50	1	R\$ 15,50
	Driver do motor - eixo Y (A4988)	R\$ 15,50	1	R\$ 15,50
	Driver do motor - eixo Z (A3967)	R\$ 21,02	1	R\$ 21,02
	Fonte de alimentação	R\$ 101,87	1	R\$ 101,87
			TOTAL	R\$ 632,79

O grupo 2 possui um valor de orçamento próximo ao nosso. Porém através da tabela fornecida pelo grupo, podemos observar algumas vantagens e desvantagens:

Vantagens:

• Utiliza apenas 3 motores para os 3 graus de liberdade

Desvantagens:

- Para o eixo Z necessitam de um motor mais potente, consequentemente mais caro
- O acionamento dos driver deve ser feito através de um microcontrolador, que não foi levado no orçamento

Concluímos que mesmo utilizando 3 motores, o custo do projeto seria maior que o nosso, uma vez que não foi levado em consideração o microcontrolador e nem as peças de estrutura para montagem da impressora

Grupo 7:

Componente	Quantidade		otal (R\$
CABEÇA DE EXTRUSÃO	1	R\$	74.
MESA DE IMPRESSÃO	1	R\$	183.0
MESA AQUECIDA	1	R\$	78.9
GUIAS LINEARES 8mm X 400mm	5	R\$	240.0
FUSO TRAPEZOIDAL TR8 x 400mm Passo 8mm COM CASTANHA	3	R\$	179.7
MANCAL COM ENROLAMENTO P/ EIXO LIENAR FUSO 8mm	5	R\$	97.1
DRIVERS	3	R\$	239.7
FONTE DE 24V/360W	1	R\$	160.0
ARDUINO MEGA 2560 R3 + CABO USB	1	R\$	187.90
CARTUCHO AQUECEDOR CERÂMICO	1	R\$	19.9
TERMISTOR NTC 100K	1	R\$	8.90
HOTEND + TERMISTOR	1	RŚ	129.90
CHAVE FIM DE CURSO RAMPS REPRAP	3	R\$	25.20
DISPLAY GRÁFICO LCD	1	RŚ	119.90
MOTOR DE PASSO NEMA AK17/1.10F6LN1.8	1	RŚ	132.60
MOTOR DE PASSO NEMA AK23/7.0F8FN1.8	1	R\$	245.00
MOTOR DE PASSO AK23/4.6FL1.8	1	R\$	269.90
CARRETEL FILAMENTO PLA 1kG, 1,75mm	2	RŚ	239.80
FILAMENTO ABS 1kG	2	RŚ	150.00
KIT - ESTRUTURA DE ALUMÍNIO MDF E PARAFUSOS	1	R\$	198.00
	TOTAL	RŚ 2.	.980.51

O grupo 7 possui um valor de orçamento bem maior que o nosso. Porém através da tabela fornecida pelo grupo, podemos observar algumas vantagens e desvantagens:

Vantagens:

- Utiliza apenas 3 motores para os 3 graus de liberdade
- A cabeça extrusora é bem barata
- A fonte necessita de menos potência que a nossa
- Foi levado em consideração a matéria prima para impressão
- Display LCD
- Termistor

Desvantagens:

- O grupo fez uso de dois motores bem mais potentes, consequentemente mais caros.
- O grupo pagou mais caro nos drivers, microprocessador e motores.

Concluímos que o grupo considerou aspectos do projeto que agregam qualidade a impressora, porém achamos que o valor ficou muito alto e fora do escopo do orçamento.

Grupo 4:

Elemento	Link	Valor		Qnt	Valor total	
Kit cabeça extrusora	1ink	R\$	199.90	1	R\$	199.90
Mesa aquecida	link	R\$	299.64	1	R\$	299.64
Mesa de Vidro Borossilicato	link	R\$	122.40	1	R\$	122.40
Kit fuso + guias + elementos de apoio	<u>link</u>	R\$	254.50	2	R\$	509.00
Acoplamento flexível	<u>link</u>	R\$	11.30	2	R\$	22.60
Fuso de esferas passo 8mm	1ink	R\$	54.00	2	R\$	108.00
Castanhas anti-folgas	<u>link</u>	R\$	17.96	2	R\$	35.92
Guias lineares	<u>link</u>	R\$	16.99	2	R\$	33.98
Motor Nema 17	<u>link</u>	R\$	132.60	3	R\$	397.80
Motor Nema 23	<u>link</u>	R\$	269.90	1	R\$	269.90
Al. Estrutural Perfil V-slot 2 peças	1ink	R\$	38.00	4	R\$	152.00
2 drivers A4988 + 2 shields	<u>link</u>	R\$	45.00	2	R\$	90.00
Driver V44 A3967	<u>link</u>	R\$	16.00	1	R\$	16.00
Fonte de alimentação 24V - 360W	<u>link</u>	R\$	160.00	1	R\$	160.00
TOTAL					2417.14	

O grupo 4 possui um valor de orçamento um pouco maior que o nosso. Porém através da tabela fornecida pelo grupo, podemos observar algumas vantagens e desvantagens:

Vantagens:

• A fonte necessita de menos potência que a nossa.

Desvantagens:

- Mesa aquecida e vidro bem caro.
- A fonte, mesmo sendo de potência menor, é mais cara que a nossa.

Concluímos que o grupo não levou em consideração o material para construção da impressora, o que aumentaria mais ainda o orçamento do projeto.

Link das peças:

Estrutura Base

Kit Fuso

Haste Roscada

<u>Termoplástico</u>

Sensor fim de curso

Estrutura Base

Suporte mesa

Mesa aquecida

Rolamento da guia

Guia linear

Estrutura Frame

Frame

Estrutura eixo transversal

Motores

Motor de passo de 7,3 kgf.cm

Motor de passo de 5,0 kgf.cm

Fonte de alimentação

Fonte 12V - 50A - 600W

Mesa aquecida

Almofada aquecedora de silicone

Cabeça extrusora

Kit completo cabeça extrusora

Drivers

Arduino ATmega2560

A4988