ÜBUNGEN ZUR VORLESUNG MITTLERER KRÜMMUNGSFLUSS

Blatt 4

Aufgabe 10 (Starkes Maximumprinzip für Tensoren III). (8 Punkte)

Sei $A = (A_{ij})_{1 \leq i,j \leq n}$ mit $A_{ij} \in C^{\infty}(M^n \times [0,T))$ symmetrisch. Sei $B = (B_{ij}(A_{kl}, p, t))_{1 \leq i,j \leq n}$ mit $B_{ij} \in C^1(M^n \times [0,T))$ symmetrisch, lokal Lipschitz in A und erfülle die Null-Eigenvektor-Bedingung.

Sei
$$u^k \in L^{\infty}(M^n \times [0,T)), 1 \le k \le n.$$

Gelte

$$\partial_t A_{ij} = \Delta_{g(t)} A_{ij} + u^k \nabla_k^{g(t)} A_{ij} + B_{ij} (A_{kl}, \cdot)$$

in $M^n \times (0,T)$ und $A_{ij}(\cdot,0) \succeq 0$ für alle $t \in [0,T)$.

Zeige:

(i) Falls $t_2 > t_1$ in [0, T), dann gilt

$$\inf_{p \in M^n} \operatorname{rang} A(p, t_2) \ge \sup_{p \in M^n} \operatorname{rang} A(p, t_1)$$

und es existiert $\delta > 0$ so dass rang A(p,t) konstant ist für alle $p \in M^n$ und $t \in (0,\delta)$. Hinweis: Benutze Aufgabe 9.

- (ii) (ker A ist glatt in Raum und Zeit). Sei $(0, \delta)$ das Zeitinervall aus (i). Dann gilt für alle $t \in (0, \delta)$, dass ker $A(t) \subset TM^n$ ein glattes Unterraum, der glatt von der Zeit abhängt.
- (iii) Es gilt

$$\ker A(t) \subset \ker B(A(t),t)$$
 und $\ker A(t) \subset \bigcap_{s \in (0,\delta)} \ker B(A(s),s)$

für alle $t \in (0, \delta)$.

(iv) (ker A ist parallel in Raum und Zeit). Sei $(0,\delta)$ das Zeitinervall aus (i). Dann ist für $t \in (0,\delta)$, $\ker A(t)$ invariant unter parallelem Transport im Raum und konstant in der Zeit. Hinweis: Zeige zunächst, dass

$$\nabla_v w$$
, Δw , $\partial_t w \in \ker A(t)$ und w , $\nabla_v w \in \ker \nabla_v A(t)$

für alle $w \in \ker A(t)$. Zeige dann, dass die Koeffizienten eines Vektors $v_0 \in \ker A(p_0, t_0)$ bezüglich einer Basis $\{w_i\}_{1 \leq i \leq \dim \ker A(p_0,t_0)}$ zuerst für feste Zeit entlang einer beliebigen räumlichen Kurve eine gewöhnliche Differentialgleichung erfüllen, wirlche lösbar ist. Danach zeige dasselbe für festen Raum und variable Zeit.

Aufgabe 11. (4 Punkte)

Seien $p_N, p_S \in \mathbb{S}^n$ und $N, S \in \mathbb{S}^n$ der Nord- bzw. Südpol der Sphäre. Finde eine Abbildung X: $\mathbb{S}^n \to \mathbb{S}^n$ mit $X(p_N) = N$ und $X(p_S) = S$ welche konform zu einer Standardeinbettung der \mathbb{S}^n ist.

Hinweis: Beachte, dass die stereographische Projektion konform ist.

Definition 1 (Typ-I-Reskalierung). Sei $T < \infty$ und $X : M^n \times [0,T) \to \mathbb{R}^{n+1}$ glatte Familie von Immersionen. Sei $(p_k, t_k)_{k \in \mathbb{N}}$ eine Blow-up-Folge in $M^n \times [0,T)$ mit $t_k \nearrow T$ für $k \to \infty$ und

$$|A|^2(p_k, t_k) = \max_{p \in M^n} |A|^2(p, t_k) = \max_{M^n \times [0, t_k]} |A|^2(p, t)$$

für jedes $k \in \mathbb{N}$. Wir definieren $\lambda_k^2 := |A|^2(p_k, t_k)$ und $\alpha_k := -\lambda_k^2 T$ und die reskalierten Immersionen $X_k : M^n \times [\alpha_k, 0) \to \mathbb{R}^2$ durch

$$X_k(p,\tau) := \lambda_k \left(X \bigg(p, T + \frac{\tau}{\lambda_k^2} \bigg) - x_0 \right) \,.$$

Aufgabe 12 (Eigenschaften der Typ-I-Reskalierung). (2 Punkte) Sei $X: M^n \times (0,T) \to \mathbb{R}^{n+1}$ eine Lösung des MCF mit $T < \infty$.

Zeige, dass für die Typ-I Reskalierung im Falle einer Typ-I Singularität

$$\lambda_k \to \infty$$
 und $\alpha_k \to -\infty$

für $k \to \infty$, und

$$X_k(0,\tau_k) \in B_{3C_0^2}(0)\,, \qquad |A_k|^2(0,\tau_k) = 1 \qquad \text{ und } \qquad \max_{M^n \times [\alpha_k, -\delta^2]} |A_k| \leq \frac{C_0}{\delta}$$

für alle $k \in \mathbb{N}$ und $\delta > 0$ gilt, wobei

$$\tau_k := -\lambda_k^2 (T - t_k) \in \left[-\frac{C_0^2}{2}, -\frac{1}{2} \right].$$

Definition 2 (Typ-II-Reskalierung). Sei $T < \infty$ und $X : M^n \times [0,T) \to \mathbb{R}^{n+1}$ glatte Familie von Immersionen. Sei $(p_k, t_k)_{k \in \mathbb{N}}$ eine Folge in $M^n \times [0, T - 1/k]$ mit

$$T_k := |A|^2(p_k, t_k) \left(T - \frac{1}{k} - t_k \right) = \max_{(p, t) \in M^n \times [0, T - 1/k]} \left(|A|^2(p, t) \left(T - \frac{1}{k} - t \right) \right)$$

für alle $k \in \mathbb{N}$. Wir definieren $\lambda_k^2 := |A|^2(p_k, t_k)$ und $\alpha_k := -\lambda_k^2 t_k$ und die reskalierten Immersionen $X_k : M^n \times [\alpha_k, T_k] \to \mathbb{R}^{n+1}$ durch

$$X_k(p,\tau) := \lambda_k \left(X \left(p, t_k + \frac{\tau}{\lambda_k^2} \right) - X(p_k, t_k) \right).$$

Aufgabe 13 (Eigenschaften der Typ-II-Reskalierung). (2 Punkte) Sei $X: M^n \times (0,T) \to \mathbb{R}^{n+1}$ eine Lösung des MCF mit $T < \infty$.

Zeige, dass für die Typ-II-Reskalieruung im Falle einer Typ-II-Singularität

$$\lambda_k \to \infty$$
, $\alpha_k \to -\infty$ und $T_k \to \infty$

für $k \to \infty$, und

$$X_k(0,0) = 0$$
, $|A_k|^2(0,0) = 1$ und $\max_{M^n \times [\alpha_k, \bar{T}]} |A_k|^2 < 1 + \varepsilon$

für alle $k \in \mathbb{N}$, $\varepsilon > 0$ und $\overline{T} > 0$ gilt.

Abgabe: Bis Mittwoch, 09.01.2018, 10:00 Uhr, in die Mappe vor Büro F 402.