Graph Neural Networks and "Learning Graphical State Transitions"

Zafarali Ahmed

Deep Learning + Linguistics Reading Group, March 1st 2018

Overview

- Motivation
- 2. Task (bAbl)
- 3. Background
 - a. Gated Recurrent Unit
 - b. Graph Neural Networks
 - c. Gated Graph Neural Networks
- 4. Learning Graphical State Transitions

Motivation

Motivation

 Rich and beautiful linguistic theory on representing sentences and tasks as trees and graphs

- Can we leverage structure of these trees/graphs to improve deep

based approach for AMR parsing." Proceedings of the Nineteenth Conference on Computational

Natural Language Learning, 2015

Constituency Parse

https://en.wikipedia.org/wiki/Phrase_structure_grammar

Dependency Parse

Motivation

- Does adding such structure really help? Seq2Seq forever?
- Yes, leveraging the tree structure and adding concepts from linguistics helps in learning to do propositional logic

Table 2: Propositional Logic Model Accuracy.

	model	valid	test (easy)	test (hard)	test (big)	test (massive)	test (exam)
baselines benchmark models	Linear BoW	52.6	51.4	50.0	49.7	50.0	52.0
	MLP BoW	57.8	57.1	51.0	55.8	49.9	56.0
	Transformer	57.1	56.8	50.8	51.2	50.3	46.9
	ConvNet Encoders	59.3	59.7	52.6	54.9	50.4	54.0
	LSTM Encoders	68.3	68.3	58.1	61.1	52.7	70.0
	BiDirLSTM Encoders	66.6	65.8	58.2	61.5	51.6	78.0
	TreeNet Encoders	72.7	72.2	69.7	67.9	56.6	85.0
	TreeLSTM Encoders	79.1	77.8	74.2	74.2	59.3	75.0
	LSTM Traversal	62.5	61.8	56.2	57.3	50.6	61.0
	BiDirLSTM Traversal	63.3	64.0	55.0	57.9	50.5	66.0
new model	PossibleWorldNet	98.7	98.6	96.7	93.9	73.4	96.0

Recall First Order Logic

Richard Evans, David Saxton, David Amos, Pushmeet Kohli, Edward Grefenstette, Can Neural Networks Understand Logical Entailment? (ICLR 2018)

The bAbl Task

Motivation: A set of tasks that demonstrates the utility/learning process of the algorithm.

Idea: A sequence of facts (the story) followed by a question. Used to test different aspects of reasoning.

Examples

Task 1: Single Supporting Fact

Mary went to the bathroom.

John moved to the hallway.

Mary travelled to the office.

Where is Mary? A:office

Task 3: Three Supporting Facts

John picked up the apple.

John went to the office.

John went to the kitchen. John dropped the apple.

Where was the apple before the kitchen? A:office

Task 5: Three Argument Relations

Mary gave the cake to Fred.

Fred gave the cake to Bill.

Jeff was given the milk by Bill.

Who gave the cake to Fred? A: Mary

Who did Fred give the cake to? A: Bill

Task 7: Counting

Daniel picked up the football.

Daniel dropped the football.

Daniel got the milk.

Daniel took the apple.

How many objects is Daniel holding? A: two

Task 9: Simple Negation

Sandra travelled to the office.

Fred is no longer in the office.

Is Fred in the office? A:no
Is Sandra in the office? A:yes

Task 2: Two Supporting Facts

John is in the playground.

John picked up the football.

Bob went to the kitchen.

Where is the football? A:playground

Task 4: Two Argument Relations

The office is north of the bedroom.

The bedroom is north of the bathroom.

The kitchen is west of the garden.

What is north of the bedroom? A: office

What is the bedroom north of? A: bathroom

Task 6: Yes/No Questions

John moved to the playground.

Daniel went to the bathroom.

John went back to the hallway.

Is John in the playground? A:no

Is Daniel in the bathroom? A:yes

Task 8: Lists/Sets

Daniel picks up the football.

Daniel drops the newspaper.

Daniel picks up the milk.

John took the apple.

What is Daniel holding? milk, football

Task 10: Indefinite Knowledge

John is either in the classroom or the playground.

Sandra is in the garden.

Is John in the classroom? A:maybe

Is John in the office? A:no

Background

Gated Recurrent Units

$$\begin{split} z_t &= \sigma\left(W_z \cdot [h_{t-1}, x_t]\right) \quad \leftarrow \text{Update gate} \\ r_t &= \sigma\left(W_r \cdot [h_{t-1}, x_t]\right) \quad \leftarrow \text{Reset gate} \\ \tilde{h}_t &= \tanh\left(W \cdot [r_t * h_{t-1}, x_t]\right) \quad \leftarrow \text{Proposal} \\ h_t &= (1 - z_t) * h_{t-1} + z_t * \tilde{h}_t \quad \leftarrow \text{Propagated} \end{split}$$

Graph Neural Networks

General Idea:

- Each node has a label /
- Each node has a hidden representation x
- We compute x based on a function f of the neighbours of it.
- Apply f multiple times (i.e. obtain a fixed point of x)
- Compute *g* for each node to get a node-level classification

Trained using Almeida–Pineda algorithm to find *x* followed by MSE loss and BPTT

$$\mathbf{x}_n(t+1) = f_{\mathbf{w}}(\mathbf{l}_n, \mathbf{l}_{\text{co}[n]}, \mathbf{x}_{\text{ne}[n]}(t), \mathbf{l}_{\text{ne}[n]})$$

 $\mathbf{o}_n(t) = g_{\mathbf{w}}(\mathbf{x}_n(t), \mathbf{l}_n), \quad n \in \mathbf{N}.$

Gated Graph Neural Networks

Key Idea: Replace iterative calculation of *x* by using a GRU applied for *T* timesteps!

$$\mathbf{h}_{v}^{(1)} = [\mathbf{x}_{v}^{\top}, \mathbf{0}]^{\top}$$

$$\mathbf{1} \qquad \mathbf{r}_{v}^{t} = \sigma \left(\mathbf{W}^{r} \mathbf{a}_{v}^{(t)} + \mathbf{U}^{r} \mathbf{h}_{v}^{(t-1)} \right)$$

$$\mathbf{a}_{v}^{(t)} = \mathbf{A}_{v}^{\top} \left[\mathbf{h}_{1}^{(t-1)\top} \dots \mathbf{h}_{|\mathcal{V}|}^{(t-1)\top} \right]^{\top} + \mathbf{b}$$

$$\mathbf{2} \qquad \mathbf{h}_{v}^{(t)} = \tanh \left(\mathbf{W} \mathbf{a}_{v}^{(t)} + \mathbf{U} \left(\mathbf{r}_{v}^{t} \odot \mathbf{h}_{v}^{(t-1)} \right) \right)$$

$$\mathbf{5} \qquad \mathbf{h}_{v}^{(t)} = (1 - \mathbf{z}_{v}^{t}) \odot \mathbf{h}_{v}^{(t-1)} + \mathbf{z}_{v}^{t} \odot \widetilde{\mathbf{h}_{v}^{(t)}}.$$

$$\mathbf{6} \qquad \mathbf{6} \qquad \mathbf{6$$

$$\text{Final Graph Level Prediction: } \mathbf{h}_{\mathcal{G}} = \tanh \left(\sum_{v \in \mathcal{V}} \sigma \left(i(\mathbf{h}_v^{(T)}, \boldsymbol{x}_v) \right) \odot \tanh \left(j(\mathbf{h}_v^{(T)}, \boldsymbol{x}_v) \right) \right),$$

Gated Graph Neural Networks: Example

(Unroll 1 Timestep)

Also called a propagation step

"Adjacency Matrix"

Gated Graph Sequence Neural Network

A Gated Graph Neural Network to produce the next graph state

Performance

Task	RNN	LSTM	GG-NN
bAbI Task 4	97.3±1.9 (250)	97.4±2.0 (250)	100.0±0.0 (50)
bAbI Task 15	48.6 ± 1.9 (950)	50.3±1.3 (950)	100.0 ± 0.0 (50)
bAbI Task 16	33.0 ± 1.9 (950)	37.5±0.9 (950)	$100.0\pm0.0(50)$
bAbI Task 18	88.9±0.9 (950)	88.9±0.8 (950)	$100.0\pm0.0(50)$

Two argument Relations
Basic Induction,
Basic Deduction
Size Reasoning

Table 1: Accuracy in percentage of different models for different tasks. Number in parentheses is number of training examples required to reach shown accuracy.

Learning Graphical State Transitions

Goal: incrementally construct graph given natural language input

In particular:

- Internal state is a graph: many tasks have this property
- Recurrent model manipulates the graph hidden state using *transformations*.
- These transformations are differentiable

Graph	Differentiable Graph				
Nodes	Nodes				
Adjacency Matrix	Connectivity Matrix Component c_vv'y represents belief that there is an edge from node v to v' of type y				
N node types	N node types, s_v belief that node v should exist.				
Y edge types	Y edge types				
X_v, node annotation, h_v node hidden	X_v such that sum(X_v) = 1 Each component x_vj represent belief of node v being type j				

Graph Transformations

- Node Addition
 - Add new node and assign strength, annotation
- Node State Update
 - Updates the internal state
- Edge Update
 - Updates edge between pairs of nodes
- Propagate
 - Does a propagation step between all nodes in the graph
- Aggregate
 - Attention mechanism to select nodes and produce an output

"operations act on all nodes and edges in parallel" (Visualizations in the extra slides)

Graph Transformations

Add, RNN that produces nodes and strengths

State Update, uses input to update internal states

Edge Update, edges are added or pass removed based on informinput and internal between states edges.

Propagation, pass information between nodes of the graph

Aggregation, use attention mechanism to produce an output based on graph and internal states

[&]quot;operations act on all nodes and edges in parallel" (More visualizations in the extra slides)

Question Answering Pseudocode

Loop over all sentences Add new nodes in the story Algorithm 1 Graph Transformation Pseudocode 11: $\mathcal{G} \leftarrow \mathcal{T}_{add}(\mathcal{G}, [\mathbf{i}^{(k)} \mathbf{h}_{\mathcal{G}}^{add}])$ 1: $G \leftarrow \emptyset$ Sentence 12: $\mathcal{G} \leftarrow \mathcal{T}_{\mathcal{C}}(\mathcal{G}, \mathbf{i}^{(k)})$ 2: for k from 1 to K do representation $\mathcal{G} \leftarrow \mathcal{T}_{\mathrm{h}}(\mathcal{G}, \mathbf{i}^{(k)})$ 13: end for if direct reference enabled then 14: $\mathcal{G} \leftarrow \mathcal{T}_{h}^{query}(\mathcal{G}, \mathbf{i}^{query})$ Interna $\mathcal{G} \leftarrow \mathcal{T}_{\text{h.direct}}(\mathcal{G}, \mathbf{D}^{(k)})$ 15: if direct reference enabled then state $\mathcal{G} \leftarrow \mathcal{T}_{\mathbf{b}, \text{direct}}^{\text{query}}(\mathcal{G}, \mathbf{D}^{\text{query}})$ end if update 6: 16: 7: if intermediate propagation enabled then 17: end if 8: $\mathcal{G} \leftarrow \mathcal{T}_{\text{prop}}(\mathcal{G})$ 18: $\mathcal{G} \leftarrow \mathcal{T}_{prop}^{query}(\mathcal{G})$ 19: $\mathbf{h}_{G}^{\text{answer}} \leftarrow \mathcal{T}_{\text{repr}}^{\text{query}}(\mathcal{G})$ 9: end if $\mathbf{h}_{\mathcal{G}}^{\mathrm{add}} \leftarrow \mathcal{T}_{\mathrm{repr}}(\mathcal{G})$ 10: 20: **return** $f_{\text{output}}(\mathbf{h}_{\mathcal{G}}^{\text{answer}})$

Training

- Supervised training to increase the likelihood of producing a correct answer
- HOWEVER:
 - Author was not able to make internal states mean anything useful for humans.

- Strong Supervision

 Provide the correct graph at train time and minimize loss between true graph and hidden graph

$$\mathcal{L}_{\text{node}} = -\max_{\pi} \sum_{v=|\mathcal{V}_{\text{old}}|+1}^{|\mathcal{V}_{\text{new}}|} s_{\pi(v)}^* \ln(s_v) + (1 - s_{\pi(v)}^*) \ln(1 - s_v) + \mathbf{x}_{\pi(v)}^* \cdot \ln(\mathbf{x}_v).$$

substitute fuzzy graph with true graph

Performance

е		Task	GGT-NN + direct ref	GGT-NN	LSTM	MemNN	MemN2N	EntNet
		1	0	0.7	50.0	0	0	0.7
		2	0	5.7	80.0	0	8.3	56.4
		3	1.3	12.0	80.0	0	40.3	69.7
	Two argument Relation	s 4	1.2	2.2	39.0	0	2.8	1.4
		5	1.6	10.9	30.0	2.0	13.1	4.6
		6	0	7.7	52.0	0	7.6	30.0
		7	0	5.6	51.0	15.0	17.3	22.3
		8	0	3.3	55.0	9.0	10.0	19.2
		9	0	11.6	36.0	0	13.2	31.5
		10	3.4	28.6	56.0	2.0	15.1	15.6
		11	0	0.2	28.0	0	0.9	8.0
		12	0.1	0.7	26.0	0	0.2	0.8
		13	0	0.8	6.0	0	0.4	9.0
		14	2.2	55.1	73.0	1.0	1.7	62.9
	Basic Induction	0.00000	0.9	0	79.0	0	0	57.8
	Basic Deduction	n <u>16</u>	0	0	77.0	0	1.3	53.2
	Positional Reasonin	ıg <u>17</u>	34.5	48.0	49.0	35.0	51.0	46.4
	Size Reasonin	ıg <u>18</u>	2.1	10.6	48.0	5.0	11.1	8.8
	Path Findin	ıg 19	0	70.6	92.0	64.0	82.8	90.4
		20	0	1.0	9.0	0	0	2.6

Number of training examples needed to get >= 95%

More data efficient?	Z=	Z		Z ja	Z
Task	GGT-NN + direct ref	GGT-NN	Task	GGT-N + direct	GGT:
1 - Single Supporting	Fact 100	1000	11 - Basic Coreference	100	1000
2 - Two Supporting F	acts 250	-	12 - Conjunction	500	1000
3 - Three Supporting	Facts 1000	-	13 - Compound Coref.	100	1000
4 - Two Arg. Relation	ns 1000	1000	14 - Time Reasoning	1000	-
5 - Three Arg. Relati	ons 500	-	15 - Basic Deduction	500	500
6 - Yes/No Questions	100	_	16 - Basic Induction	100	500
7 - Counting	250	_	17 - Positional Reasoning	_	-
8 - Lists/Sets	250	1000	18 - Size Reasoning	1000	-
9 - Simple Negation	250	-	19 - Path Finding	500	-
10 - Indefinite Knowle	edge 1000	-	20 - Agent's Motivations	250	250

What did the hidden graphs learn?

- 1. John grabbed the milk.
- 2. John travelled to the bedroom.
- 3. Sandra took the football.
- 4. John went to the garden.
- 5. John let go of the milk. —
- 6. Sandra let go of the football.
- 7. John got the football.
- 8. John grabbed the milk.

Where is the milk?

Discussion Points

- How can we use this?
- What kind of tasks are suitable for this kind of work?
- How can we reduce the need for strong supervision?
- Mixing strong and weak supervision?
- Suboptimal graphs?
- Can we generalize *between* tasks in a few-shot learning sense?
 - Example strong supervision on one task, no supervision on another

References

- 1. <u>Scarselli, Franco, et al. "The graph neural network model." IEEE Transactions on Neural Networks20.1 (2009): 61-80.</u>
- 2. Li, Yujia, et al. "Gated graph sequence neural networks." ICLR 2016 (2016).
- 3. <u>Johnson, Daniel D. "Learning graphical state transitions." ICLR 2017 (2017).</u>

More:

Blog: http://www.hexahedria.com/2016/11/06/introducing-the-ggt-nn.html

Reviews: https://openreview.net/forum?id=HJ0NvFzxl¬eId=HJ0NvFzxl

Code: https://github.com/hexahedria/gated-graph-transformer-network

Node addition

Node state update

Edge update

Aggregation

