LaPIS Diagnostic Test Workbook - Mathematics

Name : Chasmitha P

Class: 7

Section : C

School : AKV Public School

Login ID : AKV187

Chasmitha P's Performance Report

Score: 22/40 Percentage: 55.0%

Chasmitha P's Study Planner

Date	Topics Planned	Q. Numbers	Teacher Remark	Teacher Sign	Parent Sign
Teacher's Feedback to Student					
_					
	Class Teacher S	Signature	Princi	ipal Signature	

Data handling

Topics to be Improved		
Arithmetic mean, mode and median	Mean, Median and Mode	
Chance of probability	Sample space in probability, Basis of probability	

Hi, here in this video you will learn Mean, Median, Mode

Question: 1

Find the mode of the following data: 5, 15, 23, 5, 32, 44, 72, 55, 6, 3, 5, 65, 45, 67, 24, 19 and 98.

Answer:

Mode is the number that occurs _____ (frequently / rarely) in a given list of observations.

Arranging the data in ascending order: _____ occurs most number of times. Then, mode of the given data is _____

Question: 2

Which shape contains median of the given data 3, 5, 6, 2, 7, 9, 6, 4 and 1

Answer:

Median is the _____(first/central/last) value of a data when the data is arranged in ascending or descending order.

Arrange the given data in ascending order: _____

Central value of the given data is ______ and it is the _____ of a data.

$\underline{Question: \ 3}$

Marks scored	100	90	80	70
Number of students	4	5	2	1

 $Mean = \underline{\hspace{1cm}} , \, Median = \underline{\hspace{1cm}} \text{ and } Mode = \underline{\hspace{1cm}} .$

Answer:	

 $\mathrm{Mean} = \frac{ $

Here s sum of all observation = $___$, number of observation = $___$

Therefore, mean = _____

Arrange the data in ascending order:

Here, $median = \underline{\hspace{1cm}}$, $mode = \underline{\hspace{1cm}}$.

Hi, here in this video you will learn Basics of probability

Question: 4

Which of the following contains list of all possible outcomes.

Probability

Sample space

Sure events

.....

Impossible events

Answer:

Probability is the measure of _____ (chance /number) of an events happenings.

Sample space consists of _____ (possible/ impossible) outcomes.

Sure events always _____ (occurs/don't occurs).

Impossible events _____ (occurs/ don't occurs).

Therefore, _____ contains list of possible outcomes.

Question: 5

Write the possible outcomes while spinning the given wheel.

Answer:

Outcomes are (possible/impossible) results of an experiment. The possible outcomes while spinning wheel are $\mathbf{\xi}0$, $\mathbf{\xi}10$,
Question: 6
A bag contains three balss of colour blue, green and red. Write the possible outcomes if two balls are taken out.
Answer:
A bag contains, and balls. If one of the ball is blue in colour, then other ball can be or If one of the ball is green in colour, then other ball can be or If one of the ball is red in colour, then other ball can be or Therefore, if two balls are taken out then possible outcomes are blue +,,
Hi, here in this video you will learn Basics of probability
Question: 7
Identify the sure events and impossible events
(i) The sun rises in the west.
(ii) Water is colourless.
(iii) Clock rotates in clock wise direction.
(iv) Ball is square in shape.
Answer:
Events that always occur are called (sure/ impossible) events. Events that cannot occur are called (sure/ impossible) events. Here, The sun rises in the west is event. Water is colourless is event. Clock rotates in clock wise direction is event. Ball is square in shape is event.
Question: 8
Probability of sure events is (greater / smaller) than probability of impossible events
Answer:
Probability of sure event = $\underline{\hspace{1cm}}$ (0/ 1/ any number). Probability of impossible event = $\underline{\hspace{1cm}}$ (0/ 1/ any number). Therefore, Probability of sure event $\underline{\hspace{1cm}}$ Probability of impossible event.
$\underline{\textit{Question: 9}}$

Raju has pencil, an eraser, a scale, sharpener, colour pencil and protractor in his box. What is the
probability of getting a pen from his box.
Answer:
Things Raju have (Yes/No). Does Raju have pen in his box, (Yes/No).
Then probability of getting pen from his box is $\underline{\hspace{1cm}}$ $(0/1)$

Geometry

Topics to be Improved		
Right angle triangle and pythagoras property	Basics of Pythagoras property	
Types of triangle	Basics of types of triangle (sides)	
Transversal angle made by transversal	Basics of Transversal angle	
Faces vertex and edges	Idenfication of faces, edges and vertices	
Angle sum property of triangle	Angle sum property of triangle	
Related angles	Basic of angles	

Hi, here in this video you will learn **Pythagoras property**

Question:	<i>10</i>

In a right angled triangle, square of the $___$ = sum of the squares of the legs.

......

Answer:

Pythagoras theorem is only applicable for ______ triangle.

Longest side of the triangle is _____ (hypotenuse/ legs) and other two sides are called _____ (hypotenuse/ legs).

Pythagoras theorem states that _____ .

Question: 11

Find the hypotenuse of the triangle ABC if base is 12 m and altitude is 5 m.

Answer:

Pythagoras theorem states that square of the _____ = sum of the squares of its Given: Base = _____, Altitude = _____, Base and altitude are _____ (hypotenuse/legs) of the triangle. By Pythagoras theorem, $(_{)}^{2} = (_{)}^{2} + (_{)}^{2}$ Therefore, hypotenuse of the triangle is _____. Question: 12 Find the length of the rectangle, if breadth is 3 cm and diagonal is 5 cm. Answer: cmcmPythagoras theorem states that square on the _____ = sum of the squares on Is Pythagoras theorem applicable in rectangle? ____ (yes/ no). Given: breadth = _____, length of diagonal = _____ By Pythagoras theorem, $(_{)}^{2} = (_{)}^{2} + (_{)}^{2}$ Therefore, diagonal of the rectangle is _____ Hi, here in this video you will learn **Types of triangle**

Question: 13

Polygon with three sides is called as ______.

Answer:

A polygon is a simple _____ (open / closed) curve made up of only line segments.

Polygon with three sides is called _

Draw a diagram of polygon with three sides:

......

Question: 14

Identify the types of triangles.

......

Answer:

Triangle has _____ sides.

- Triangle with all sides are equal is called _____ triangle.
- Triangle with two sides of equal length is called _____ triangle.
- Triangle with three sides of different length is called _____ triangle.

Question: 15

A park is in the shape of an isosceles triangle. If side length of the park is 30ft and 60ft. then the possible length of third side of park can be ______.

.....

......

Answer:

The shape of the park is ______ .

The shapes has _____ sides and this shape has _____ sides of equal length.

Given: length of sides of park is _____.

The possible length of third side is _____.

Hi, here in this video you will learn Basics of Transversal angle

Question: 16

In given diagram, \angle 1 and \angle 7 are ______ (alternate / corresponding) angles.

Answer:

A line that intersects two or more lines at distinct points is called a _____ (transversal/Intersecting line).

Angle that lies on different vertices and on the opposite sides of transversal is _____ angles.

Angle that lies on different vertices and on the same sides of transversal is _____ angles. Therefore, $\angle 1$ and $\angle 7$ are _____

Question: 17

Find the transversal, alternate angles and corresponding angles in a given diagram.

Answer:

A line that intersects two or more lines at distinct points is called a _____ (transversal/Intersecting line).

In a given diagram, _____ is a transversal line. (BF/AD/CE)

Alternate angles	Corresponding angles
$\angle a$ and $\angle g$, $\angle b$ and $\angle h$,	\angle a and \angle e, \angle b and \angle f,

Question: 18

Find $\angle e$ and $\angle g$ if $\angle a = 30^{\circ}$.

Answer:

When parallel lines cut by a transversal,

- (i) Alternate angles are _____ (equal / not equal).
- (ii) Corresponding angles are _____ (equal / not equal).

Here, alternate angle of $\angle a$ is _____ and its value is ____. Corresponding angle of $\angle a$ is _____ and its value is _____.

Hi, here in this video you will learn Basics of 3D model

Question: 19

A point at which two or more lines segments meet is called _____(Vertex/ edges/ faces).

Answer:

has two end point (line/line segment/ray).

A ______is a point where two or more line segments meet(Vertex/ edges/ faces). Mark the vertices in the diagram,

Question: 20

Mark and find the number of vertices, edges and faces in a cube.

Answer:

Mark the vertex, edges and faces in a cube.

	of vertex, edges and faces in a cube. vertices, edges and faces.
Question: 21	
TT	

How many vertices, edges and faces does dices have?

Answer: The shape of dice is ______. Dices have _____ vertices, _____ edges and ______ faces. Hi, here in this video you will learn Angle sum property Question: 22

Sum of the angles of triangle is _____.

Answer:

$$\angle A + \angle B + \angle C = \underline{\hspace{1cm}}$$

Angle sum formula = $(n-2) \times 180^{\circ}$, n = number of sides

Triangle has _____ sides.

Sum of the angles of triangle = $(\underline{} - 2) \times 180^{\circ} = \underline{}$

Question: 23

Which of the following triangle satisfy the angle sum property.

Answer:

Angle sum property of triangle: sum of the angles of a triangle is _____

In $\triangle ABC$, Sum of the angles $= \angle A + \angle B + \angle C =$ _____ = ____

In $\triangle PQR$, Sum of the angles = _____ = ____ = ____

In $\triangle KLM$, Sum of the angles = _____ = ____ = ____

In $\triangle XYZ$, Sum of the angles = ____ = ___ = ___

Therefore, the triangles that satisfy the angle sum property are =

Question: 24

Find the angles of triangle, if their angles are in the ratio 8:6:4.

Answer:

Ratio of angles in the triangle is _____

Let's consider the angles of triangle be 8x, ____ and ____

We know sum of the angles of a triangle is ____

Therefore, $8x + \underline{\hspace{1cm}} = 180^{\circ}$. The value of $x = \underline{\hspace{1cm}}$

The angles of the triangle are _____

Hi, here in this video you will learn Related Angles

Question: 25

- (i) When two rays of an angle are perpendicular, then the angle formed between them is a $\underline{\hspace{1cm}}$ angle .
- (ii) When two rays of an angle are in opposite sides, then the angle formed between them is a _____ angle .

Answer:

A _____ (line segment /ray) begins from one point and travels endlessly in a direction.

- (i) The angle formed between two perpendicular rays is ____° and it is called _____ angle.
- (ii) If two rays starting at same point moves in opposite direction, they form a ______ (straight / perpendicular) line. The measure of the angle formed is _____ °and it is called _____ angles.

.....

Question: 26

Find the angle of $\angle DBE$

Answer:

BA and BC are _____ (parallel / perpendicular) rays.

The angle formed between this rays is $__$, $\angle ABC = __$.

$$\angle ABC = \angle ABE + \underline{\hspace{1cm}} + \underline{\hspace{1cm}}$$
= 30° + ____ + _____
= ____

.....

Therefore, $\angle DBE = \underline{\hspace{1cm}}$

Question: 27

Find the complementary angles in the given diagram.

Answer:

Two angles are said be complementary if sum of their angles is equal to _____.

 $\angle AOB =$ ______, and its complement angle is ______.

 $\angle BOC =$ _____, and its complement angle is _____.

 $\angle COD = \underline{\hspace{1cm}}$, and its complement angle is $\underline{\hspace{1cm}}$.

 $\angle DOE =$ _____, and its complement angle is _____.

Therefore, in the given figure the complementary angles are $\angle AOB$, _____ and $\angle BOC$, _____

Number system

Topics to be Improved		
Fractions	Division of fraction	
Introduction to rational numbers	Basics of rational numbers	
Operations on rational numbers	Division of rational numbers	
Integers	Basics of integers	
Exponents	Solving exponents	

Hi, here in this video you will learn Division on fractions

Question: 28

Find the shape which contains the improper fraction of $5\frac{2}{7}$.

10	
35	

.....

	<u> </u>	
	32	
	7	/
\		

Answer:

 $5\frac{2}{7}$ is a _____ (proper/mixed) fraction. Here, 5 is ____ , 2 is ____ and 7 is ____

To convert mixed fraction into improper fraction, $\frac{\text{(Whole} \times \underline{\hspace{1cm}} \text{)+Numerator}}{\text{Denominator}}$

$$5\frac{2}{7} = \frac{(--- \times ---) + ---- }{7} = \frac{\square}{\square}$$

Question: 29

Solve: $\frac{1}{3} \div \frac{14}{3}$

Answer:

To divide a fraction by another fraction, multiply the dividend by $___$ (same / reciprocal) of the divisor. Here, dividend = $__$ and divisor = $__$.

$$\frac{1}{3} \div \frac{14}{3} = \frac{1}{3} \times \boxed{\square} = \boxed{\square}$$

Question: 30

Find the half of the fraction $\frac{12}{40}$.

Answer:

To find half of a number, divide the number by _

$$\frac{12}{40} \div \underline{\qquad} = \frac{12}{40} \times \boxed{\qquad} = \boxed{\qquad}$$

Then the answer is _____

Hi, here in this video you will learn Basics of rational numbers

Question: 31

The numbers in the diagram represents_

Answer:

0, 4,5,2,3,1 are _____ numbers.

-1,-2, -3, -4 are ______ numbers.

The combination of these circles are called _____.

 $\frac{1}{49},\,\frac{1}{2},\,\frac{8}{27},\,\frac{11}{5},\,\frac{13}{75}$ are _____. Combination of all three circles are called as _____ numbers.

Question: 32

Shade the correct form of rational numbers.

Answer:

Rational number can be expressed as ______, where both numerator and denominator are _____ (integer/ not a integer), denominator is equal to _____ (zero/ one/ any integer other than zero).

Question: 33

Circle the number which is not a rational number.

$$\frac{-5}{-8}$$
 $\frac{-3}{2}$ $\frac{12}{-6}$ $\frac{0}{-9}$ 256 $\frac{4}{0}$

Answer:

Rational number can be expressed as ______, where both numerator and denominator are ______(integer/ not a integer), denominator is equal to ______ (zero/ one/ any integer other than zero).

Here, ______ is/are rational number and ______ is/are not a rational number.

Hi, here in this video you will learn **Operation on rational numbers**

Question: 34

Fill in the boxes to make the given expression correct.

$$\frac{1}{5} \div \frac{14}{15} = \frac{1}{\square} \times \square$$

......

Answer:

When any fraction is divided by a fraction, we multiply the dividend by the ______(same/reciprocal) of the divisor.

Here, dividend = $_$ and divisor = $_$

$$\frac{1}{5} \div \frac{14}{15} = \frac{1}{\square} \times \square = \square$$

 $Question:\ 35$

Solve: $\frac{18}{7} \div 0.6$

Answer:

Fraction form of $0.6 = \underline{\hspace{1cm}}$,

when any fraction is divided by a fraction, we multiply the dividend by the ______ (same/reciprocal) of the divisor. Here, dividend = _____ and divisor = _____.

$$\frac{18}{7} \div \boxed{ } = \frac{18}{7} \times \boxed{ } = \boxed{ }$$

Question: 36

Find the missing number in the expression $\frac{8}{3} \div \frac{16}{\square} = 2$

Answer:

$$\frac{8}{3} \div \frac{16}{\square} = 2$$

.....

$$\frac{8}{3} \times \frac{\square}{16} = 2$$

Transposing 8/3 to RHS,

$$\frac{\square}{16} = 2 \square \frac{8}{3}$$

$$\frac{\square}{16} = 2 \times \boxed{\square}$$

$$\frac{\square}{16} = \frac{\square}{\square}$$

Transposing 16 to other side, the result is ______.

Hi, here in this video you will learn Basics of integers

Question: 37

Highlight the ring that contains whole numbers.

Answer:
The numbers inside the inner ring $(1, 2, 3, \ldots)$ are numbers.
The numbers inside the middle ring are numbers.
The numbers inside the outer ring are negative numbers, positive numbers and zero and they are called as
caned as
Question: 38
Colour the frame of the box which contains the number 1, 4 and -10 $$
Whole Negative Integers Naturals
numbers numbers numbers numbers
Answer:
Whole number consists of $0,1,2,3,4,$. Negative number consists of
Natural numbers consists of Integers consists of Now, 1, 4, -10 are in
Now, 1, 4, -10 are m
Question: 39
State whether the statement is true or false.
Every positive number is an integer.
Answer:
Positive numbers are Integers consists of
Therefore, positive numbers are (in/not in) integers.
Hi, here in this video you will learn Exponents and power
Question: 40
Find the exponential form of 1000.
Answer:
(Exponents/Base) tells us how many times a number should be multiplied by itself
to get the desired result.
Exponents is also called as (Base / Power).
1000 can be written as = $10 \times $
10 is raised to the power of $\underline{} = (10)^{}$
To its failboar to the power of = (10)
Question: 41

Find the value of $(-2)^3$.

Answer:

(Exponents/Base) tells us how many times a number should be multiplied by itself to get the desired result.

In this exponential form $(-2)^3$, base = ____, power = ____. $(-2)^3 = \underline{\hspace{1cm}} \times \underline{\hspace{1cm}} \times \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$.

Question: 42

(i) Tenth power of 100 is ____ ($(10)^{100}$ or $(100)^{10}$).

(ii) k is raised to the power of 5 is ____ ($(k)^5$ or $(5)^k$).

Answer:

Exponential form = (Base)—

(ii) k is raised to the power of 5: Base = ____, Power/Exponent = ____, exponential form = ____.

Comparing Quantities

Topics to be Improved

Conversion of fraction into percentage

Conversion of fraction into percentage

......

Hi, here in this video you will learn Converting fraction into percentage

Question: 43

Complete the box in the given equation.

$$5\% = \frac{5}{}$$

Answer:

Percentage are the fraction with the denominator _____.

Therefore, 5% can be expressed as _____

......

Question: 44

Mark the correct conversion form of fraction $\frac{1}{2}$ to percentage.

(i)
$$\frac{1}{2} \times \frac{50}{50} = \frac{50}{100} = 50\%$$

(ii)
$$\frac{1}{2} \times \frac{100}{100} = \frac{100}{200} = 200\%$$

(iii)
$$\frac{1}{2} \times 100 = \frac{100}{2} = 50\%$$

Answer:

To convert fraction into percentage, the value of ______ (denominator / numerator) should be 100 or _____ (multiply / divide) the fraction with 100 %.

.....

Therefore, correct conversion form is _____

Question: 45

Find the percentage of shaded part of square.

Answer:	
The square shape is divided into parts.	
Number of shaded part of square is	
Shaded part of square in fraction is	
To Convert into percentage,	x 100

Algebra

	Topics to be Improved
subtraction of algebraic expressions	subtraction of algebraic expressions
Addition and subtraction of algebraic expressions	Like terms and Unlike terms
Basics of simple equation	Formating of simple equation

Hi,	here	in	this	video	you	will	learn	Sub	otraction	on	expressio	n

$Question: \ 46$
Find the sum of two expressions $a + b + c$ and $b + c + d$
Answer:
The given two expressions are and The two terms will get added only if they are(Like/ Unlike) terms. The sum of two expressions = + The answer is

.....

	School A	School B
Number of boys	100b	250b
Number of girls	150g	200g
Number of teachers	25t	45t

- (i) Total number of boys in school A and B is _____
- (ii) Total number of students in school B is _____
- (iii) How many more teachers are there in school B than school A? _____

Answer:

Question: 47

(i)	Number of boys in school $A = \underline{\hspace{1cm}}$,
	Number of boys in school $B = \underline{\hspace{1cm}}$.
	Total number of boys in school A and school B is $___$ + $___$ = $__$

(ii) Number of boys in school $B = \underline{\hspace{1cm}}$, Number of girls in school $B = \underline{\hspace{1cm}}$.

Total number of students in school B is $___+$ $___=$

(iii) Number of teachers more in school B than school A = Teachers in school B - Teachers in school A = $_$

Question: 48

Solve the following:

$$\begin{array}{c|c}
13x + \underline{\hspace{1cm}} \\
(+) & 12x + 10y \\
\underline{\hspace{1cm}} + 25y
\end{array}$$

$$\begin{array}{c|c}
3a - 5b \\
\hline
(-) & 5a - 7b \\
\hline
-2a - \underline{\hspace{1cm}}
\end{array}$$

Answer:

The two terms will get added only if they are _____ (like/unlike) terms.

$$\begin{array}{c|c}
13x + \underline{\hspace{1cm}} \\
(+) & 12x + 10y \\
\underline{\hspace{1cm}} + 25y
\end{array}$$

$$\begin{array}{ccc}
 & 3a - 5b \\
 & 5a - 7b \\
 & -2a - \underline{\hspace{1cm}}
 \end{array}$$

Hi, here in this video you will learn **Addition on expression**

Question: 49

Shade the like terms.

.....

Answer:

Given terms are

Two or more term have _____ (same/ different) variables is called like terms.

Here, like terms are _____

Question: 50

Complete the expression $7r^2 + r \square - 2 \square = r^2$

Answer:

_____ (Like / Unlike) terms can be added or subtracted.

			_	
$7r^2+$ r \square $-$	2	= $($ 7	+ 2	$)_{r^2} = $

0	P 1			
Question:	$oldsymbol{j}$	 	 	

Sam have 3a chocolates and 9y icecream. Ram have 7a chocolates and 5y icecream.

- (i) Total chocolates Ram and Sam have : _____.
- (ii) How many icecreams Sam have more than Ram:

Answer:

	Chocolates	Icecream
Sam		
Ram		

(i) Total chocolates Ram and Sam have:

Ram's chocolate + Sam's chocolates = _____ + ____ = ___

(ii) How many icecreams Sam have more than Ram:

_____ icecream - ____ icecream = ____ - __ = ____

Hi, here in this video you will learn Solving an equation using application

Question: 52

Box B contains _____ times the number of chocolates in Box A

Answer:

Box A contains _____ chocolates.

Box B contains _____ chocolates.

No. of chocolates in Box $B = \underline{\hspace{1cm}} \times (No. of chocolates in Box A)$

Question: 53

Write the equation for the following statement.

Subtracting four times of m from 4 is n

Answer:

	Four Subtracting four times of	times of $m = \underline{\hspace{1cm}}$ f m from $4 = \underline{\hspace{1cm}}$	
The equation is	_		
Question: 54			
	o statements $(<,>,=)$ and 9 to the product of a and	2	
Answer:			
	Sum of '	2a and 9 =	
		of a and $2 = \underline{\hspace{1cm}}$	
	Add 9 to the product o		
Therefore sum of $2a$ ϵ	nd 9 Add 9 to the produc	ct of a and 2	