ЭЛЕМЕНТЫ МАТЕМАТИЧЕСКОЙ СТАТИСТИКИ

ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ

Пример 1. По выборке 5, 2, 2, 1, 6, 3, 1, 2, 3, 5

- 1) записать вариационный ряд;
- 2) составить статистический ряд;
- 3) записать эмпирическую функцию распределения и построить ее график;
 - 4) построить полигон частот.

Решение. 1) Вариационный ряд: 1, 1, 2, 2, 2, 3, 3, 5, 5, 6. Размах выборки $\omega = 6 - 1 = 5$.

2) Подсчитав частоты различных значений в выборке, составим статистический ряд:

x_i	1	2	3	5	6
n_i	2	3	2	2	1

Объём выборки равен сумме частот наблюдаемых значений и равен n = 2 + 3 + 2 + 2 + 1 = 10.

3) Для построения эмпирической функции распределения удобно записать статистический ряд, заменив в таблице частоты на относительные частоты:

x_i	1	2	3	5	6
$\underline{n_i}$	0,2	0,3	0,2	0,2	0,1
n					

Наименьшее выборочное значение 1, поэтому эмпирическая функция распределения равна нулю для всех $x \le 1$. Дальше её значение изменяется каждый раз при переходе x через значения x_i , увеличиваясь на величину относительной частоты $\frac{n_i}{n}$. Наибольшее выборочное значение 6, поэтому эмпирическая функция распределения равна 1 при всех x > 6. Итак,

$$F^*(x) = \begin{cases} 0, & x \le 1, \\ 0, 2, & 1 < x \le 2, \\ 0, 5, & 2 < x \le 3, \\ 0, 7, & 3 < x \le 5, \\ 0, 9, & 5 < x \le 6, \\ 1, & x > 6. \end{cases}$$

Ее график изображен на рис. 1.

Рис. 1. График эмпирической функции распределения

Полигон частот изображен на рис. 2.

Рис. 2. Полигон частот

Пример 2. Построить гистограмму относительных частот и эмпирическую функцию распределения по данному интервальному ряду

Интервалы наблю-	5–10	10–15	15–20	20–25	25–30	30–35
даемых значений СВ						
Частоты n_i	6	7	17	36	24	10

Решение. Объём выборки n=6+7+17+36+24+10=100. Длина каждого интервала h=5. Для построения эмпирической функции распределения найдём середины интервалов x_i^* и относительные частоты $\frac{n_i}{n}$; для построения гистограммы относительных частот найдём для каждого интервала значение $\frac{n_i}{nh}$. Дополним этими сведениями ста-

тистический ряд:

Интервалы наблюдае-	5-10	10–15	15–20	20–25	25–30	30–35
мых значений СВ						
Частоты пі	6	7	17	36	24	10
$\underline{n_i}$	0,06	0,07	0,17	0,36	0,24	0,1
n						
n_i						
\overline{nh}	0,012	0,014	0,034	0,072	0,048	0,02
Середины интервалов	7,5	12,5	17,5	22,5	27,5	32,5
x_i^*						

Гистограмма относительных частот и эмпирическая функция распределения представлены на рис. 3 и рис. 4 соответственно.

Рис. 3. Гистограмма частот

Рис. 4. Эмпирическая функция распределения

Пример 3. По выборке 5, 2, 2, 1, 6, 3, 1, 2, 3, 5 найти выборочное

среднее, выборочную дисперсию, несмещённую оценку дисперсии.

Решение. Составим статистический ряд:

x_i	1	2	3	5	6
n_i	2	3	2	2	1

Найдем выборочное среднее

$$\overline{x} = \frac{1}{10}(1 \cdot 2 + 2 \cdot 3 + 3 \cdot 2 + 5 \cdot 2 + 6 \cdot 1) = 3$$

и выборочную дисперсию:

$$D_{\rm B} = \frac{1}{10} (1^2 \cdot 2 + 2^2 \cdot 3 + 3^2 \cdot 2 + 5^2 \cdot 2 + 6^2 \odot 1) - 3^2 = 2,8.$$

Тогда несмещённая оценка дисперсии равна:

$$s^2 = \frac{10}{9} \cdot 2.8 = 3.11;$$

несмещённая оценка σ (среднеквадратичного отклонения) s = 1,7635.

Пример 4. Найти выборочное среднее, выборочную дисперсию и несмещённую оценку дисперсии по данному интервальному статистическому ряду:

Интервалы наблюдае- мых	5–10	10–15	15–20	20–25	25–30	30–35
значений СВ						
Частоты пі	6	7	17	36	24	10

Решение. Для расчёта воспользуемся формулами числовых характеристик выборки в случае группированного статистического ряда. Итак,

$$\overline{x} = \frac{1}{100} (7,5 \cdot 6 + 12,5 \cdot 7 + 17,5 \cdot 17 + 22,5 \cdot 36 + 27,5 \cdot 24 + 32,5 \cdot 10) = 22,25;$$

$$D_{\text{B}} = \frac{1}{100} \Big((7,5 - 22,25)^2 \cdot 6 + (12,5 - 22,25)^2 \cdot 7 + (17,5 - 22,25)^2 \cdot 17 + (22,5 - 22,25)^2 \cdot 36 + (27,5 - 22,25)^2 \cdot 24 + (32,5 - 22,25)^2 \cdot 10 \Big) = 40,6875;$$

несмещённая оценка дисперсии равна $s^2 = \frac{100}{99} \cdot 40,6875 = 41,1.$

Пример 5. По результатам наблюдений установить вид эмпирической зависимости у от х и методом наименьших квадратов найти

$$y = f(x)$$
:
 $\begin{vmatrix} x_i & 1 & 2 & 3 & 4 \\ v_i & 2 & 4 & 5 & 7 \end{vmatrix}$

 y_i

Решение. Наносим точки $(x_i; y_i)$ на плоскость Oxy (рис. 5) и по их расположению замечаем, что они группируются вокруг прямой линии. Поэтому сглаживать экспериментальные данные будем линейной функцией: y = ax + b.

Рис. 5. Экспериментальные данные

Согласно методу наименьших квадратов, искомые коэффициенты а и в находим из системы

$$\begin{cases} nb + a\sum_{i=1}^{n} x_{i} = \sum_{i=1}^{n} y_{i}, \\ b\sum_{i=1}^{n} x_{i} + a\sum_{i=1}^{n} x_{i}^{2} = \sum_{i=1}^{n} x_{i}y_{i}. \end{cases}$$

Предварительно необходимо найти указанные суммы. Для удобства все вычисления расположим в таблице:

Расчетная таблица

x_i	y_i	$x_i y_i$	x_i^2	y_i^2
1	2	2	1	4
2	4	8	4	16
3	5	15	9	25
4	7	28	16	49
10	18	53	30	94

$$\begin{cases} 4b + 10a = 18; \\ 10b + 30a = 53. \end{cases}$$

Подставляя найденные суммы в систему, имеем $\begin{cases} 4b + 10a = 18;\\ 10b + 30a = 53. \end{cases}$ Решая систему, находим $a = 1,6;\ b = 0,5$ и уравнение сглаживающей линии y = 1,6x + 0,5, график которой изображён на рис. 5.