

Nome: ____

Instituto Federal de Educação, Ciência e Tecnologia de São Paulo Análise e Desenvolvimento de Sistemas Matemática Elementar Prof. Me. Guemael Rinaldi Lattanzi

Prontuário:

(a) $ x = 2$	uações.			
(b) $ x-2 =$	= -1			
(c) $ x = 2x$				
(d) $ x+1 =$				
2. Resolva as in	equações:			
(a) $ x \le 2$				
(b) $ 2x-1 $	< 3			
(c) $ x+1 <$	< 2x-1			
(d) $ x-2 $	- x-1 > 1			
elementos de da lei de forn	quadrada de ordem i uma matriz triangula nação $t_{ij} = 2i^2 - j$. produto $A.T.A^t$ é a s	ar superior T , de or Sendo $A = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$	edem 3, onde $i \leq j$, some uma matriz de order	ão obtidos a partir
(a) 0	(b) 4	(c) 7	(d) 28	(e) 56

 $A = (a_{ij})_{2\times 2}$, tal que $a_{ij} = i^2 + j^2$, e $B = (b_{ij})_{2\times 2}$, tal que $a_{ij} = (i+j)^2$.

Determine pela lei de formação, a matriz C resultante da soma das matrizes A e B.

Lista de Exercícios - 03/11/2019

5.	Uma matriz A de ordem 2 transmite uma palavra de 4 letras em que cada elemento da ma-
	triz representa uma letra do alfabeto. Afim de dificultar a leitura da palavra, por tratar de
	informação secreta, a matriz A é multiplicada pela matriz $B = \begin{pmatrix} 3 & -1 \\ -5 & 2 \end{pmatrix}$ obtendo-se a
	matriz codificada $B.A.$ Sabendo que a matriz $B.A$ é igual a $\begin{pmatrix} -10 & 27 \\ 21 & -39 \end{pmatrix}$, podemos afirmar
	que a soma dos elementos da matriz A é:

- (a) 46
- (b) 48
- (c) 49
- (d) 47
- (e) 50

6. Dada as matrizes $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ e $B = \begin{pmatrix} -1 & 2 \\ 1 & 0 \end{pmatrix}$. O determinante da matriz A.B é:

- (a) 4
- (b) 6
- (c) 8
- (d) 12
- (e) 27

7. Observe a matriz $\begin{pmatrix} 3+t & -4 \\ 3 & t-4 \end{pmatrix}$. Para que o determinante dessa matriz seja nulo, o maior valor real de t deve ser igual a:

- (a) 1
- (b) 2
- (c) 3
- (d) 4
- (e) 5

8. Seja M uma matriz real 2×2 . Defina uma função f na qual cada elemento da matriz se desloca para a posição seguinte no sento horário, ou seja, se $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, implica que $f(M) = \begin{pmatrix} c & a \\ d & b \end{pmatrix}$. Encontre todas as matrizes simétricas 2×2 reais na qual $M^2 = f(M)$.

9. Escalonar, discutir e resolver, caso possível, o sistema a seguir:

$$\begin{cases} 3x + y - z = 0 \\ -x + y - 4z = 0 \\ 7x + y + 2z = 0 \end{cases}$$

10. Considere o sistema linear a seguir:

$$\begin{cases} ax + by = 0 \\ cx + dy = 0 \end{cases}$$

- (a) Se o sistema linear acima é possível e determinado, qual o comportamento da solução geométrica?
- (b) Se o sistema linear acima é possível e indeterminado, qual o comportamento da solução geométrica?
- (c) Se o sistema linear acima é impossível, qual o comportamento da solução geométrica?

- 11. Três amigos foram assistir uma partida de futebol no Maracanã. No intervalo fizeram um lanche e, juntos, gastaram R\$27,80. O primeiro comprou 2 cachorros-quentes, 1 saco de batatas fritas e 1 refrigerante, gastando R\$8,80. O segundo gastou R\$11,60 na compra de 1 cachorro quente, 2 refrigerantes e 2 sacos de batatas fritas. Quanto seria gasto na compra de 4 cachorros-quentes, 6 refrigerantes e 6 sacos de batatas fritas?
- 12. Classifique os sistemas lineares a seguir, caso possível, determine sua solução.

(a)
$$S: \begin{cases} 2x + y + 3z = 8 \\ 4x + 2y + 2z = 4 \\ 2x + 5y + 3z = -12 \end{cases}$$
(b)
$$S: \begin{cases} x + 2y + z = 1 \\ y + 2z = -4 \\ x + y + z = 2 \end{cases}$$
(c)
$$S: \begin{cases} x + 2y + 3z = 11 \\ x - y + 2z = 5 \\ x - y + 2z = 2 \end{cases}$$

13. Resolva os seguintes sistemas de Cramer:

(a)
$$S: \begin{cases} x-y=4\\ x+y=0 \end{cases}$$

(b) $S: \begin{cases} x+y+z=2\\ x-y+z=0\\ y+2z=0 \end{cases}$
(c) $S: \begin{cases} x-y+z+t=0\\ x+y-z+t=1\\ -x+y+z-t=0\\ 2x-y-z+3t=1 \end{cases}$

14. Determinar $m \in \mathbb{R}$ de modo que o sistema abaixo seja de Cramer e, a seguir, resolvê-lo.

$$S: \begin{cases} x - y + z = 2\\ x + 2z = 1\\ x + 2y + mz = 0 \end{cases}$$

- 15. Alice, Beatriz e Carla foram ao shopping. Juntas, Alice e Beatriz tinham R\$132,00; Alice e Carla R\$, 180,00; Beatriz e Carla, R\$ 192,00. Forme um sistema que permita obter a quantia de cada garota. Resolva esse sistema e determine a quantidade de cada uma.
- 16. Determine os valores de a e b, para os quais os sistemas $A = \begin{cases} 2x + y = 3 \\ x + 2y = 5 \end{cases}$ e $B = \begin{cases} ax + by = 2 \\ bx ay = 4 \end{cases}$ são equivalentes.