Gradient, Divergence, Curl, Nabla (Del) Operator, Laplacian Operator

A. R. Moghaddamfar

K. N. Toosi University of Technology

E-mail: moghadam@kntu.ac.ir

- Gradient and Nabla (Del) Operator
- 2 Divergence and Curl
- 3 Summary
- 4 Conservative Vector Fields
- 5 Laplacian Operator

Gradient and Nabla (Del) Operator

• Let f(x, y, z) be a *scalar field*. The *gradient* of f is the vector field defined by

$$\operatorname{grad}(f) = \nabla(f) = \left\langle \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} \right\rangle = \frac{\partial f}{\partial x} \vec{\mathbf{i}} + \frac{\partial f}{\partial y} \vec{\mathbf{j}} + \frac{\partial f}{\partial z} \vec{\mathbf{k}}.$$

• The vector differential operator

$$\nabla = \left\langle \frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z} \right\rangle = \frac{\partial}{\partial x} \vec{\mathbf{i}} + \frac{\partial}{\partial y} \vec{\mathbf{j}} + \frac{\partial}{\partial z} \vec{\mathbf{k}},$$

is called nabla or del.

Divergence and Curl of a Vector Field

• Let

$$\vec{\mathbf{F}} = \langle P(x, y, z), Q(x, y, z), R(x, y, z) \rangle,$$

be a *vector field*, continuously differentiable with respect to x, y and z. Then the *divergence* of $\vec{\mathbf{F}}$ is the scalar field defined by

$$\operatorname{div}(\vec{\mathbf{F}}) = \nabla \cdot \vec{\mathbf{F}} = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}.$$

• The curl of $\vec{\mathbf{F}}$ is the vector field defined by

$$\operatorname{curl}(\vec{\mathbf{F}}) = \nabla \times \vec{\mathbf{F}} = \left| \begin{array}{ccc} \vec{\mathbf{i}} & \vec{\mathbf{j}} & \vec{\mathbf{k}} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{array} \right|.$$

Summary

 \bullet Scalar Field \Longrightarrow Vector Field

$$\nabla(f) = \frac{\partial f}{\partial x}\vec{\mathbf{i}} + \frac{\partial f}{\partial y}\vec{\mathbf{j}} + \frac{\partial f}{\partial z}\vec{\mathbf{k}}.$$

• Vector Field \Longrightarrow Scalar Field

$$\operatorname{div}(\vec{\mathbf{F}}) = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}.$$

• Vector Field \Longrightarrow Vector Field

$$\operatorname{curl}(\vec{\mathbf{F}}) = \left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z}\right)\vec{\mathbf{i}} + \left(\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x}\right)\vec{\mathbf{j}} + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right)\vec{\mathbf{k}}.$$

Conservative Vector Fields

Definition 1 (Conservative Vector Fields)

Let $\vec{\mathbf{F}}: D \to \mathbb{R}^n$ be a vector field with domain $D \subseteq \mathbb{R}^n$. The vector field $\vec{\mathbf{F}}$ is said to be *conservative* if it is the gradient of a scalar field, in other words:

 $\vec{\mathbf{F}}$ is conservative $\iff \exists$ a differentiable function f s.t. $\vec{\mathbf{F}} = \nabla(f)$

Such a function f is called a potential function for $\vec{\mathbf{F}}$.

Two Examples:

- $\vec{\mathbf{F}}(x,y,z) = \langle 2xyz^3, \ x^2z^3, \ 3x^2yz^2 \rangle$ is conservative, since $\vec{\mathbf{F}} = \nabla(f)$ for the function $f(x,y,z) = x^2yz^3$.
- $\vec{\mathbf{F}}(x,y,z) = \langle 2z, z^2, 2x + 2yz \rangle$ is conservative, since $\vec{\mathbf{F}} = \nabla(f)$ for the function $f(x,y,z) = 2xz + yz^2$.

Laplacian Operator

The Laplacian operator

$$\nabla \cdot \nabla = \nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2},$$

is defined for a scalar field f(x, y, z) by:

$$\nabla \cdot (\nabla(f)) = \nabla^2(f) = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2}.$$

and for a vector field

$$\vec{\mathbf{F}}(x,y,z) = \langle P(x,y,z), Q(x,y,z), R(x,y,z) \rangle,$$

by:

$$\nabla^2(\vec{\mathbf{F}}) = \langle \nabla^2(P), \nabla^2(Q), \nabla^2(R) \rangle.$$

Some Properties of Divergence and Curl

Result 1

If $f, g : \mathbb{R}^3 \to \mathbb{R}$ are scalar fields and $\vec{\mathbf{F}}, \vec{\mathbf{G}} : \mathbb{R}^3 \to \mathbb{R}^3$ are vector fields, then we have:

- (a) $\nabla(f+g) = \nabla(f) + \nabla(g)$.
- (b) $\nabla \cdot (\vec{\mathbf{F}} + \vec{\mathbf{G}}) = \nabla \cdot \vec{\mathbf{F}} + \nabla \cdot \vec{\mathbf{G}}.$
- (d) $\nabla \times (\vec{\mathbf{F}} + \vec{\mathbf{G}}) = \nabla \times \vec{\mathbf{F}} + \nabla \times \vec{\mathbf{G}}$.
- (e) $\nabla \cdot (f\vec{\mathbf{F}}) = \nabla(f) \cdot \vec{\mathbf{F}} + f\nabla \cdot \vec{\mathbf{F}}$.
- (f) $\nabla \times (f\vec{\mathbf{F}}) = \nabla(f) \times \vec{\mathbf{F}} + f\nabla \times \vec{\mathbf{F}}$.