5. Infinitesimi e infiniti

Infinitesimi

Definizione

Se

$$\lim_{x \to x_0} f(x) = 0$$

 $\lim_{x\to x_0}f(x)=0$ si dice che la funzione f è **infinitesima** oppure che è un **infinitesimo** per $x\to x_0$.

Confronto tra infinitesimi

Siano f(x) e g(x) due funzioni infinitesime per $x \to x_0$. Se

$$\lim_{x \to x_0} \left| \frac{f(x)}{g(x)} \right| = \begin{cases} 0 & f \text{ è un infinitesimo di ordine superiore} \\ & \text{rispetto a } g \\ l \neq 0 & f \text{ e } g \text{ sono infinitesimi dello stesso} \\ & \text{ordine} \\ +\infty & f \text{ è un infinitesimo di ordine inferiore} \\ & \text{rispetto a } g \end{cases}$$

Esempio

Le funzioni $f(x) = e^{3x} - 1$ e g(x) = sinx sono infinitesime per $x \to 0$, calcoliamo

$$\lim_{x \to 0} \left| \frac{f(x)}{g(x)} \right| = \lim_{x \to 0} \frac{|e^{3x} - 1|}{|\sin x|} = \lim_{x \to 0} \frac{\frac{|e^{3x} - 1|}{|\sin x|}}{\frac{|\sin x|}{|\sin x|}} = 3$$

Ne segue che f e g sono infinitesime dello stesso ordine.

Esercizi

(gli esercizi con asterisco sono avviati)

Le funzioni f e g sono infinitesime f e g sono infinitesime per $x \to x_0$, calcolare il $\lim_{x \to x_0} \left| \frac{f(x)}{g(x)} \right|$ stabilire se una delle due è infinitesima di ordine superiore rispetto all'altra

$$1)f(x) = x + \sqrt{x} \qquad g(x) = \sin x \qquad x_0 = 0$$

2)
$$f(x) = \frac{x^2 + x}{x - 1}$$
 $g(x) = x^2 - 2x$ $x_0 = 0$

3)
$$f(x) = \sqrt{x-1}$$
 $g(x) = x^2 - 1$ $x_0 = 1$

$$4)f(x) = tg^2x g(x) = x\sqrt{x} x_0 = 0$$

$$g(x) = x\sqrt{x}$$

$$x_0 = 0$$

$$5)f(x) = tg^2x$$
 $g(x) = \frac{\sqrt{x}}{x^2 - 1}$ $x_0 = 0$

$$g(x) = \frac{\sqrt{x}}{x^2 - 1}$$

$$x_0 = 0$$

6)
$$f(x) = tg^3x \cdot sinx$$
 $g(x) = x^3 + x^2$ $x_0 = 0$

$$q(x) = x^3 + x^2$$

$$x_0 = 0$$

$$7)f(x) = x^3$$

7)
$$f(x) = x^3$$
 $g(x) = \log(1 + 3x)$ $x_0 = 0$

$$x_0 = 0$$

*8)
$$f(x) = \cos x - \sin x$$
 $g(x) = x - \frac{\pi}{4}$ $x_0 = \frac{\pi}{4}$

$$g(x) = x - \frac{\pi}{4}$$

$$x_0 = \frac{\pi}{4}$$

*9)
$$f(x) = e^{x+1} - 1$$
 $g(x) = x^2 - 1$ $x_0 = -1$

$$g(x) = x^2 - 1$$

$$x_0 = -1$$

10)
$$f(x) = x^3 - 8$$
 $g(x) = x^2 - 5x + 6$ $x_0 = 2$

$$g(x) = x^2 - 5x + 6$$

$$x_0 = 2$$

Funzioni asintoticamente equivalenti

Se

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = 1$$

Si dice che le funzioni f(x) e g(x) sono asintoticamente equivalenti per $x \to x_0$ e si indica

$$f \sim g$$
 per $x \to x_0$.

Esempi

a) Poiché

$$\lim_{x\to 0} \frac{\sin(mx)}{mx} = 1 \qquad \text{allora} \qquad \sin(mx) \sim mx \qquad \text{per } x\to 0 \ \ , \ (m\neq 0)$$

$$\lim_{x\to 0} \frac{\log(1+x)}{x} = 1 \qquad \text{allora} \qquad \log(1+x) \sim x \qquad \text{per } x\to 0$$

b) Consideriamo il polinomio

$$P(x)=a_nx^n+a_{n-1}x^{n-1}+\cdots+a_{n-h}x^{n-h}$$
 $(n,h\in\mathbb{N}_0,\ h< n)$, infinitesimo per $x\to 0$. Poiché

$$\lim_{x \to 0} \frac{a_n x^n + a_{n-1} x^{n-1} + \dots + a_{n-h} x^{n-h}}{x^{n-h}} = a_{n-h}$$

il polinomio è infinitesimo per x o 0 rispetto all'infinitesimo principale x di ordine uguale alla potenza di grado inferiore;

inoltre, essendo

$$\lim_{x \to 0} \frac{a_n x^n + a_{n-1} x^{n-1} + \dots + a_{n-h} x^{n-h}}{a_{n-h} x^{n-h}} = 1$$

risulta

$$P(x) \sim a_{n-h} x^{n-h}$$
 per $x \to 0$.

Si dice anche che $a_{n-h}x^{n-h}$ è la **parte principale dell'infinitesimo per** $x\to \mathbf{0}$, avendo trascurato gli infinitesimi di ordine superiore.

Tabella funzioni equivalenti (o parte principale)per $x \to 0$ $P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_{n-h} x^{n-h} \sim a_{n-h} x^{n-h}$ $\sin(mx) \sim mx$ $tg(mx) \sim mx$ $1 - \cos(mx) \sim \frac{1}{2} (mx)^2$ $\arcsin(mx) \sim mx$ $arctg(mx) \sim mx$ $arctg(mx) \sim mx$ $\log(1 + mx) \sim mx$ $e^{mx} - 1 \sim mx$

Ordine di infinitesimo

Se f e g sono due funzioni infinitesime per $x \to x_0$ e se esiste un numero $\alpha \in \mathbb{R}_0^+$ tale che :

$$\lim_{x \to x_0} \frac{|f(x)|}{|g(x)|^{\alpha}} = l \neq 0$$

si dice che la funzione f(x) è un **infinitesimo di ordine** α rispetto a g(x) (presa come campione).

Esempio

La funzione $f(x)=1-\cos x$ è infinitesima di ordine 2 per $x\to 0$ rispetto all'infinitesimo campione x , infatti

$$\lim_{x \to 0} \frac{|1 - \cos x|}{|x|^{\alpha}} = \lim_{x \to 0} \frac{|1 - \cos x|}{|x|^{2}|x|^{\alpha - 2}} = \begin{cases} 0 & \text{se } \alpha < 2\\ \frac{1}{2} & \text{se } \alpha = 2\\ +\infty & \text{se } \alpha > 2 \end{cases}$$

La parte principale è $\frac{1}{2}x^2$.

Esercizi

Determinare l'ordine di infinitesimo delle seguenti funzioni per $x \to 0$ rispetto all'infinitesimo principale x e determinarne la parte principale:

11)
$$f(x) = 3x^4 - 2x^3 - 5x^2$$

13)
$$f(x) = 5x^3 + x$$

$$15)f(x) = x + tg(x)$$

17)
$$f(x) = \sqrt{x^6 + x^4}$$

*19
$$f(x) = \sqrt{\frac{x^4 + 2x^2}{x+1}}$$

$$21)f(x) = \frac{x^3 + 3x^2}{x\sqrt[3]{x}}$$

$$23)f(x) = \sin^3 x$$

$$25)f(x) = \sin(x^4)\cos x$$

*27)
$$f(x) = \sin(4x)tgx$$

$$29)f(x) = \frac{1}{2}e^{3x} - \frac{1}{2}$$

$$31) f(x) = e^{-x^2} - 1$$

$$33)f(x) = arctg\sqrt{x}$$

$$35)f(x) = \log(1 + x^2)$$

12)
$$f(x) = 2x^2 \sqrt[3]{x} + x^3$$

14)
$$f(x) = x^4 + \sin x$$

16)
$$f(x) = \frac{x^4 - x^2 + 3x}{\sqrt{x}}$$

18)
$$f(x) = \sqrt[3]{x^2 + x}$$

20)
$$f(x) = \sqrt{1-x} - \sqrt{1+x}$$

22)
$$f(x) = \sqrt[3]{\frac{4x^3 + x}{x + 5}}$$

$$24) \ f(x) = (\sin x)^4 \cos x$$

26)
$$f(x) = (\sin x)^3 x^2$$

28)
$$f(x) = 1 - \cos(4x)$$

30)
$$f(x) = \frac{1}{3}e^{x^2} - \frac{1}{3}$$

32)
$$f(x) = \arcsin(5x^3)$$

*34)
$$f(x) = \sqrt{x} + \arcsin\sqrt[4]{x}$$
;

$$36) f(x) = \log(1 + \sin x)$$

Esercizi

Determinare l'ordine di infinitesimo delle seguenti funzioni per $x \to x_0$ rispetto all'infinitesimo principale $x - x_0$:

*37)
$$f(x) = x^4 - 2x^3 + 2x^2 - 2x + 1$$
 $x_0 = 1$

*38)
$$f(x) = \sqrt{x^2 - 4} + 2 - x$$

$$x_0 = 2^+$$

39)
$$f(x) = (x-1)^2 + \sin(x-1)$$
 $x_0 = 1$

$$x_0 = 1$$

40)
$$f(x) = log(2 - x)$$

$$x_0 = 1$$

41)
$$f(x) = tg(x+1)^2$$

$$x_0 = -1$$

42)
$$f(x) = \sqrt{3+x} - x - 3$$

$$x_0 = -3^+$$

43)
$$f(x) = e^{(x+2)^2} - 1$$

$$x_0 = -2$$

*44)
$$f(x) = \frac{x^2 - 10x + 25}{\sqrt{x - 5}}$$

$$x_0 = 5^+$$

45)
$$f(x) = 1 + \cos x$$

$$x_0 = -\pi$$

*46)
$$f(x) = \sqrt[3]{-x^2 + 6x} + 3$$

$$x_0 = -3$$

La funzione f(x) è un **infinitesimo di ordine** α ($\alpha \in \mathbb{R}_0^+$) per $x \to \infty$ se

$$\lim_{x \to \infty} \left| \frac{f(x)}{\frac{1}{x^{\alpha}}} \right| = \lim_{x \to \infty} |x|^{\alpha} |f(x)| = l \neq 0$$

Esercizi

Determinare l'ordine di infinitesimo delle seguenti funzioni per $x \to \infty$ rispetto all'infinitesimo principale $\frac{1}{x}$:

*47)
$$f(x) = \frac{1}{x^2 + x}$$

48)
$$f(x) = \frac{\sqrt{x}}{x^2 + x + 1}$$

49)
$$f(x) = \sqrt[3]{\frac{x^2}{x^4 + 3}}$$

*50)
$$f(x) = \frac{\sqrt{2+x}}{4x+x^3}$$

*51)
$$f(x) = \frac{3x-1}{x\sqrt{x}+\sqrt[3]{x}}$$

52)
$$f(x) = \sin^2 \frac{1}{x}$$

53)
$$f(x) = \frac{1}{\sqrt[3]{x^2 + 1} + x^2 \sqrt{x}}$$

54)
$$f(x) = 1 - e^{-\frac{1}{x^2}}$$

55)
$$f(x) = log(1 + \frac{1}{x}) + \frac{1}{x^2}$$

$$56) \ f(x) = tg\left(\frac{1}{x}\right)^2$$

Infiniti

Definizione di infinito

Si dice che la funzione f è **infinita** per $x \to x_0$ o che è **un infinito** se:

$$\lim_{x \to x_0} f(x) = +\infty \qquad (-\infty)$$

Analogamente, se f è definita in un insieme illimitato superiormente (inferiormente) e se:

$$\lim_{x\to +\infty} f(x) = +\infty \ (-\infty \) \qquad \left(\lim_{x\to -\infty} f(x) = +\infty \ (-\infty \) \right)$$
 si dice che f è **infinita** per $x\to +\infty \ (-\infty \)$.

Confronto tra infiniti

Siano f(x) e g(x) due funzioni **infinite** per $x \to x_0$. Se

$$\lim_{x \to x_0} \left| \frac{f(x)}{g(x)} \right| = \begin{cases} +\infty & f \text{ è un infinito di ordine superiore} \\ & \text{rispetto a } g \\ l \neq 0 & f \text{ e } g \text{ sono infinite dello stesso} \\ & \text{ordine} \\ 0 & f \text{ è un infinito di ordine inferiore} \\ & \text{rispetto a } g \end{cases}$$

Ordine di infinito

Se esiste un numero $\alpha \in \mathbb{R}_0^+$ tale che

$$\lim_{x \to x_0} \frac{|f(x)|}{|g(x)|^{\alpha}} = l \neq 0$$

si dice che f è infinito di ordine α rispetto a g.

Esempi

a) Sia $P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$ un polinomio di grado n.

Poiché

$$\lim_{x \to \infty} P(x) = \infty \qquad \text{il polinomio è infinito per } x \to \infty.$$

Per calcolare l'ordine di ∞ raccogliamo x^n a fattor comune, ottenendo

$$\lim_{x \to \infty} P(x) = \lim_{x \to \infty} x^n \left(a_n + \frac{a_{n-1}}{x} + \dots + \frac{a_0}{x^n} \right) = \lim_{x \to \infty} a_n x^n = \infty$$

Pertanto l'ordine di ∞ è uguale al grado n, cioè il polinomio tende all'infinito per

 $x \to \infty$ con il termine di grado massimo $a_n \, x^n$ che prende il nome di **parte** principale di ∞ .

Esercizi

Determinare l'ordine di infinito delle seguenti funzioni per $x \to \infty$ rispetto all'infinito principale x:

57)
$$f(x) = 2x^6 - x^2 + 2$$

58)
$$f(x) = x^4 - 3x^5$$

59)
$$f(x) = \frac{x-2x^4}{3x+1}$$

* 60)
$$f(x) = \sqrt{x} - 3\sqrt[3]{x^2 + 3}$$

61)
$$f(x) = 3x^2\sqrt{x} - 3x^3$$

62)
$$f(x) = \frac{1}{2}x^3\sqrt{x} - x^3\sqrt[4]{x-2} - x$$

63)
$$f(x) = \frac{5x^6 - 2}{\sqrt[3]{x^2}}$$

64)
$$f(x) = x + \sqrt[3]{\frac{x^2}{x+1}}$$

*65)
$$f(x) = \sqrt[4]{\frac{5+x^2}{x+7}}$$

66)
$$f(x) = x^3 \sqrt{x} + \frac{x^2}{x+2}$$

67)
$$f(x) = x \sqrt[3]{\frac{x+2}{x-5}}$$

68)
$$f(x) = \frac{x-2x^2}{x+1} + \sqrt{x^3}$$

69)
$$f(x) = \frac{4x - x^6 \sqrt[3]{x}}{x^2 + x + 1}$$

70)
$$f(x) = \frac{1-2x^7}{\sqrt{x}+\sqrt[3]{x}}$$

71)
$$f(x) = \frac{x^4 + \sin x}{x + 4}$$

72)
$$f(x) = \frac{\sqrt{x} - x^3}{\sqrt{x} + 1}$$

73) Verificare che $f(x) = \frac{1}{\sqrt{x^2 - 1}}$ è un infinito pe $x \to 1^+$ di ordine $\frac{1}{2}$ rispetto all'infinito $\frac{1}{x - 1}$.

74) Verificare che $f(x) = \frac{1}{x^3 - 2x + 1}$ è un infinito pe $x \to 1$ di ordine 1 rispetto all'infinito $\frac{1}{x - 1}$.

*75) Verificare che $f(x) = \frac{1}{\sqrt[5]{x^3 - 5x + 2}}$ è un infinito pe $x \to 2$ di ordine $\frac{1}{5}$ rispetto all'infinito $\frac{1}{x - 2}$.

*75. S. fattorizzando il radicando si ha: si ha $x^3 - 5x + 2 = (x - 2)(x^2 + 2x - 1)...$;

*76) Verificare che $f(x) = \frac{1}{(x^3-1)(x^2-4x+3)}$ è un infinito pe $x \to 1$ di ordine 2 rispetto all'infinito $\frac{1}{x-1}$.

*77) Dopo aver verificato che $\lim_{x\to 0}\frac{tg(2x)}{x^3}=+\infty$, determinare l'ordine di infinito rispetto all'infinito campione $\frac{1}{x}$

Soluzioni

- 1. S. g di ordine superiore rispetto a f; 2. S. f e g dello stesso ordine;
- 3. S. g di ordine superiore rispetto a f; 4. S. f di ordine superiore rispetto a g;
- 5. S. f di ordine superiore rispetto a g; 6. S. f di ordine superiore rispetto a g;
- **7. S.** f di ordine superiore rispetto a g;
- *8. S. f e g dello stesso ordine; (tenere conto che $cosx sinx = \sqrt{2} \left(\frac{\sqrt{2}}{2} cosx \frac{\sqrt{2}}{2} sinx \right) = \sqrt{2} sin \left(\frac{\pi}{4} x \right)$...);
- ***9. S.** f e g dello stesso ordine; $\left(\lim_{x\to -1}\left|\frac{e^{x+1}-1}{(x+1)(x-1)}\right|=\lim_{x\to -1}\frac{1}{|x-1|}\left|\frac{e^{x+1}-1}{x+1}\right|=\frac{1}{2}\right)$;
- 10. S. f e g dello stesso ordine;
- **11. S.** 2; $-5x^2$; **12. S.** $\frac{7}{3}$; $2x^2\sqrt[3]{x}$; **13. S**. 1; x; **14. S**. 1; x;
- **15.** S. 1; 2x; **16.** S. $\frac{1}{2}$; $3\sqrt{x}$; **17.** S. 2; x^2 ; **18.** S. $\frac{1}{3}$; $\sqrt[3]{x}$;
- *19. S. 1; $\sqrt{2}|x|$; ($\lim_{x\to 0} \frac{\sqrt{\frac{x^4+2x^2}{x+1}}}{|x|^{\alpha}} = \lim_{x\to 0} \frac{|x|\sqrt{\frac{x^2+2}{x+1}}}{|x|^{\alpha}} = \sqrt{2}$ se $\alpha=1$);
- **20.** S. 1; -x; **21.** S. $\frac{2}{3}$; $3\sqrt[3]{x^2}$; **22.** S. $\frac{1}{3}$; $\sqrt[3]{\frac{x}{5}}$; **23.** S. 3; x^3 ; **24.** S. 4; x^4 ;
- **25. S.** 4; x^4 ; **26. S.** 5; x^5 ;
- *27. S. 2; $4x^2$; $(\lim_{x\to 0} \frac{|\sin(4x)tgx|}{|x|^{\alpha}} = \lim_{x\to 0} 4 \left| \frac{\sin(4x)}{4x} \right| \left| \frac{tgx}{x} \right| \frac{1}{|x|^{\alpha-2}} = 4$ se $\alpha = 2$);
- **28. S.** 2; $8x^2$; **29. S.** 1; $\frac{3}{2}x$; **30. S.** 2; $\frac{1}{3}x^2$; **31. S.** 2; $-x^2$;
- **32.** S. 3; $5x^3$; **33.**S. $\frac{1}{2}$; \sqrt{x} ;
- *34. S. $\frac{1}{4}$; $\sqrt[4]{x}$; (\sqrt{x} è infinitesimo per $x \to 0^+$ di ordine $\frac{1}{2}$, inoltre $\lim_{x \to 0^+} \frac{\operatorname{arctg} \sqrt[4]{x}}{x^{\alpha}} = \frac{1}{2}$
 - $= \lim_{x \to 0^+} \frac{\operatorname{arctg}^{4}\sqrt{x}}{\sqrt[4]{x} \cdot x} = 1 \text{ se } \alpha = \frac{1}{4}, \text{ pertanto la funzione è infinitesima di ordine } \frac{1}{4}\operatorname{per} x \to 0^+);$
- **35. S.** 2; x^2 ; **36. S.** 1; x;
- *37. S. 2; (fattorizzando si ha: $f(x) = (x-1)^2(x^2+1)...$);
- *38. S. $\frac{1}{2}$; (per x > 2 risulta: $\lim_{x \to 2^+} \frac{|\sqrt{x-2}\sqrt{x+2}-(x-2)|}{|x-2|^{\alpha}} = \lim_{x \to 2^+} \frac{|\sqrt{x+2}-\sqrt{x-2}|}{|x-2|^{\alpha-\frac{1}{2}}} = 2$ per $\alpha = \frac{1}{2}$);
- **39. S.** 1; **40. S.** 1; **41. S.** 2; **42. S.** $\frac{1}{2}$; **43. S.** 2;

*44. S.
$$\frac{3}{2}$$
; ($\lim_{x \to 5^+} \frac{\frac{(x-5)^2}{\sqrt{x-5}}}{|x-5|^{\alpha}} = \lim_{x \to 5^+} \frac{(x-5)^{\frac{3}{2}}}{|x-5|^{\alpha}} = 1$ se $\alpha = \frac{3}{2}$);

45. S. 2 ;

*46. S. 1;
$$(\lim_{x \to -3} \frac{\left|\sqrt[3]{-x^2+6x}+3\right|}{|x+3|^{\alpha}} = \lim_{x \to -3} \frac{\left|\left(\sqrt[3]{-x^2+6x}+3\right)\left(\sqrt[3]{(-x^2+6x)^2}-3\sqrt[3]{-x^2+6x}+9\right)\right|}{\left(\sqrt[3]{(-x^2+6x)^2}-3\sqrt[3]{-x^2+6x}+9\right)|x+3|^{\alpha}} =$$

$$= \lim_{x \to -3} \frac{|x^2 - 6x - 27|}{\left(\sqrt[3]{(-x^2 + 6x)^2} - 3\sqrt[3]{-x^2 + 6x} + 9\right)|x + 3|^{\alpha}} = \lim_{x \to -3} \frac{|(x + 3)(x - 9)|}{\left(\sqrt[3]{(-x^2 + 6x)^2} - 3\sqrt[3]{-x^2 + 6x} + 9\right)|x + 3|^{\alpha}} = = \frac{4}{15} \text{ se } \alpha = 1 \text{)};$$

*47. S. 2;
$$(\lim_{x\to\infty}\frac{\frac{1}{|x^2+x|}}{\frac{1}{|x|^{\alpha}}}=\lim_{x\to\infty}\frac{|x|^{\alpha}}{|x^2+x|}=1$$
 per $\alpha=2$;

48. S.
$$\frac{3}{2}$$
; **49. S.** $\frac{2}{3}$;

*50. S.
$$\frac{5}{2}$$
; $(\lim_{x \to +\infty} |x|^{\alpha} \frac{\sqrt{2+x}}{|4x+x^3|} = \lim_{x \to +\infty} |x|^{\alpha-3} \frac{\sqrt{x}\sqrt{\frac{2}{x}+1}}{\left|\frac{4}{x^2}+1\right|} = \lim_{x \to +\infty} |x|^{\alpha-\frac{5}{2}} \frac{\sqrt{\frac{2}{x}+1}}{\left|\frac{4}{x^2}+1\right|} = 1$ se $\alpha = \frac{5}{2}$);

*51. S.
$$\frac{1}{2}$$
; $(\lim_{x \to +\infty} |x|^{\alpha} \frac{|x||_{3-\frac{1}{x}|}}{|x\sqrt{x}||_{1+\frac{3\sqrt{x}}{x\sqrt{x}}|}} = \lim_{x \to +\infty} |x|^{\alpha-\frac{1}{2}} \frac{|3-\frac{1}{x}|}{|1+\frac{3\sqrt{x}}{x\sqrt{x}}|} = 3 \text{ se } \alpha = \frac{1}{2})$;

52. S. 2; **53. S.**
$$\frac{5}{2}$$
; **54. S.** 2; **55. S.** 2; **56. S.** 2;

*60. S.
$$\frac{2}{3}$$
; $(\lim_{x \to +\infty} \frac{\left| \sqrt{x} - 3\sqrt[3]{x^2 + 3} \right|}{|x|^{\alpha}} = \lim_{x \to +\infty} \frac{\left| \sqrt[3]{x^2} \left(\frac{1}{6\sqrt{x}} - 3\sqrt[3]{1 + \frac{3}{x^2}} \right) \right|}{|x|^{\alpha}} = 2 \text{ se } \alpha = \frac{2}{3}$);

61. S. 3; **62. S.**
$$\frac{7}{2}$$
; **63. S.** $\frac{16}{3}$; **64. S.** 1;

*65. S.
$$\frac{1}{4}$$
; $(\lim_{x \to +\infty} \frac{\sqrt[4]{\frac{x^2(1+\frac{5}{x^2})}{x(7+\frac{1}{x})}}}{|x|^{\alpha}} = \sqrt[4]{\frac{1}{7}}$ se $\alpha = \frac{1}{4}$);

66. S.
$$\frac{7}{2}$$
; 67. S. 1; 68. S. $\frac{3}{2}$; 69. S. $\frac{13}{3}$; 70. S. $\frac{13}{2}$;

71. S. 3; **72.** S.
$$\frac{5}{2}$$
;

*75. S. fattorizzando il radicando si ha: si ha $x^3 - 5x + 2 = (x - 2)(x^2 + 2x - 1)...$;

*76. S fattorizzando il denominatore risulta:

$$(x^3 - 1)(x^2 - 4x + 3) = (x - 1)(x^2 + x + 1)(x - 1)(x - 3)...;$$

*77. S.2;
$$(\lim_{x\to 0}\frac{tg(2x)}{x^3} = \lim_{x\to 0}\frac{tg(2x)}{2x} \cdot \frac{2x}{x^3} = \lim_{x\to 0} 1 \cdot \frac{2}{x^2} = +\infty ...);$$