4 (a) A ball Y moves along a horizontal frictionless surface and collides with a ball Z, as illustrated in the views from above in Fig. 4.1 and Fig. 4.2.

BEFORE COLLISION

AFTER COLLISION

Fig. 4.1 (not to scale)

Fig. 4.2 (not to scale)

Ball Y has a mass of 0.25 kg and initially moves along a line PQ. Ball Z has a mass m_7 and is initially stationary.

After the collision, ball Y has a final velocity of $3.7\,\mathrm{m\,s^{-1}}$ at an angle of 27° to line PQ and ball Z has a final velocity of $5.5\,\mathrm{m\,s^{-1}}$ at an angle of 44° to line PQ.

(i) Calculate the component of the final momentum of ball Y in the direction perpendicular to line PQ.

component of momentum =Ns [2]

(ii) By considering the component of the final momentum of each ball in the direction perpendicular to line PQ, calculate m_Z .

 $m_{\rm Z}$ =kg [1]

(iii)	During the collision, the average force exerted on Y by Z is F_Y and the average force exerted on Z by Y is F_Z .
	Compare the magnitudes and directions of $F_{\rm Y}$ and $F_{\rm Z}$. Numerical values are not required.
	magnitudes:
	directions:
	[2]

(b) Two blocks, A and B, move directly towards each other along a horizontal frictionless surface, as shown in the view from above in Fig. 4.3.

Fig. 4.3

The blocks collide perfectly elastically. Before the collision, block A has a speed of $4\,\mathrm{m\,s^{-1}}$ and block B has a speed of $6\,\mathrm{m\,s^{-1}}$. After the collision, block B moves back along its original path with a speed of $2\,\mathrm{m\,s^{-1}}$.

Calculate the speed of block A after the collision.

speed =
$$m s^{-1}$$
 [1]

[Total: 6]