SECOND SEMESTER 2020-21 COURSE HANDOUT

Date: 18.01.2021

In addition to part I (General Handout for all courses appended to the Time table) this portion gives further specific details regarding the course.

Course No : PHY F421

Course Title : Advanced Quantum Mechanics

Instructor-in-Charge : Rakesh Choubisa

1. Course Description: This course will cover advanced topics of quantum mechanics. The course will start with a quick recapitulation of the basics. Then it will discuss some topics which a Master student is expected to know: such as symmetries, time-dependent perturbation, scattering, and indistinguishable particles. This course will give a glimpse of an alternate formulation of quantum mechanics (path integral formulation) and will also extend the study of quantum mechanics in the relativistic regime. This course will also time to time highlight some applications of quantum mechanics.

2. Scope and Objectives of the Course:

- Quantum mechanics of time-dependent systems will be discussed
- The scattering of quantum particles will be discussed
- The role of symmetries in quantum mechanics will be emphasized (concept of group theory will be introduced)
- Quantum mechanics of indistinguishable particles will be discussed (discussion on Bosons and Fermions)
- The path integral formulation of quantum mechanics will be introduced
- Quantum mechanics in the relativistic regime will be discussed
- 3. Text Books: Modern Quantum Mechanics (2nd ed.) by J. J. Sakurai and J. Napolitano, *Pearson*

4. Reference Books:

- 1. Quantum Mechanics (4th ed.) by L. I. Schiff, McGraw-Hill
- 2. Principles of Quantum Mechanics (2nd ed.) by R. Shankar, Springer
- 3. Quantum Mechanics: Fundamentals (2nd ed.) by K. Gottfried and T.-M. Yan, Springer
- 4. Lectures on Quantum Mechanics by G. Baym, Westview
- 5. Group Theory and Quantum Mechanics by M. Tinkham, McGraw-Hill

5. Course Plan:

Module No.	Lecture Session	Reference	Learning outcomes	
1. Recapitulation	L1.1-1.2 State vector, opera-	Class notes	Students will get a chance to	
of basics	tor: wave function, observa-		refresh their memory	
	bles; Schrodinger equation			
2. Approximate	L4.1 Variational Methods	TB. Chap. 5.4	Students will learn how to ap-	
methods	L4.2-4.3 The WKB Method	R2. Chap. 16.2	proximately solve quantum	
	L4.4-4.7 Time-dependent Per-	TB. Chaps. 5.5-	mechanical problems which	
	turbation Theory	5.9	are not analytically solvable	
3. Scattering theo-	L5.1-5.2 Scattering amplitude	TB. Chaps. 6.1-	Students will learn about this	
ry	L5.3 The Born approximation	6.7	very important process in the	
	L5.4 Partial wave analysis		quantum mechanical regime	
	L5.5 Eikonal approximation			

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, Pilani BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, Pilani

Pilani Campus AUGS/ AGSR Division

	L5.6 Low energy scattering			
	L5.7 Resonance scattering			
4. Symmetries	L2.1 Transnational Symmetry	TB. Chap. 4	Students will get an under-	
	L2.2-2.4 Rotational Symmetry	R1. Chap. 4	standing of the role of symme-	
	L2.5-2.6 Discrete Symmetries	R2. Chaps. 11-12	tries and will learn how to ex-	
	L2.7-2.8 Gauge Symmetries	TB. Chap. 2.7	ploit it to simplify a problem	
5. Alternative	L3.1-3.2 Path Integral Formu-	TB. Chap. 2.6	Students will get a glimpse of	
formulation	lation	R2. Chap. 8	this alternative formulation of	
		_	Quantum Mechanics	
6. Identical parti-	L6.1 Permutation symmetry	TB. Chaps. 7.1-	Students will learn how to	
cles	L6.2 Symmetrization postulate	7.5	solve multi-particle quantum	
	L6.3 Two electrons system		systems	
	L6.4-6.5 Multiparticle states			
7. Relativistic	L7.1 Introduction	TB. Chaps. 8.1-	Students will get an exposure	
quantum Mechan-	L7.2 The Dirac equation	8.4	of the relativistic particles in	
ics	L7.3 Symmetries of the Dirac	R3. Chap. 13.3	the quantum regime	
	equation			
	L7.4 The central potential			
	L7.5 The electromagnetic in-			
	teraction of Dirac particles			

6. Evaluation Scheme:

Component	Duration	Weightage (%)	Date & Time	Nature of component (Close Book/ Open Book)
Mid-Semester Test	90 Min.	30		
Comprehensive Examination	2h	40	1/5/2021, FN	
Tutorials		20	Will be announced in the class.	Total four tests will be conducted, of which best three will be counted.
Assignments		10		

- 7. Chamber Consultation Hour: Will be announced in the class.
- **8.** Make-up Policy [Strict]: Strictly no make up for the tutorials. If the student is unable to appear for the Regular Test/Examination due to genuine exigencies**, the student must refer to the procedure for applying for Make-up Test/Examination. [**Sickness leading to hospitalization and out-of-station with prior permission from/intimation to the IC]
- **9. Note (if any):** It shall be the responsibility of the individual student to be regular in maintaining the self study schedule as given in the course handout and attend lectures. Mid Semester Test and Comprehensive Examination are according to the Evaluation Scheme given in the Course Handout.

(Rakesh Choubisa)
Instructor-in-charge
Course No. PHY F421