These slides are by courtesy of Prof. 李稻葵 and Prof. 郑捷.

Chapter Two

Budget Constraint

Where are We in the Course?

We are working on the 1st of the 3 components of microeconomics: Consumer behavior, production theory, and market.

There are three elements of consumer behavior: budget constraint, preference, and choices.

Consumption Choice Sets

A consumption choice set is the collection of all consumption choices available to the consumer.

What constrains consumption choice?

- Money
- And something else?

Budget Constraints

Consumer plans to spend money on n goods

Bundle: (x_1, \ldots, x_n)

Q: When is a bundle $(x_1, ..., x_n)$ affordable at prices $p_1, ..., p_n$?

A: When

 $p_1x_1 + ... + p_nx_n \le m$ where m is the consumer's income.

Budget Constraints

The consumer's budget set is the set of all affordable bundles;

B(p₁, ..., p_n, m) =
{
$$(x_1, ..., x_n) | x_1 \ge 0, ..., x_n \ge 0 \text{ and } p_1x_1 + ... + p_nx_n \le m }$$

The budget line is the upper boundary of the budget set.

Budget Set for Two Commodities

Budget Set for Two Commodities

Budget Constraints

If n = 3 what do the budget line and the budget set look like?

Budget Set for Three Commodities

Budget Constraints

For n = 2 and x_1 on the horizontal axis, the budget line's slope is $-p_1/p_2$. What does it mean?

$$x_2 = -\frac{p_1}{p_2} x_1 + \frac{m}{p_2}$$

Increasing x_1 by 1 must reduce x_2 by p_1/p_2 .

– Opportunity cost / trade-off

Budget Constraints

On the budget line, getting an extra unit of commodity 1 means forgoing p_1/p_2 units of commodity 2

Notes on Units of Measure

Economists tend to be sloppy in terms of units of measure.

It depends on specific applications:

- -15 kg of apples
- -1 hour of massage

— ...

Income and Price Changes

What happens as prices or income change?

Higher income gives more choice

How do the budget set change as p_1 decreases from p_1 to p_1 ?

Uniform Ad Valorem Sales Taxes in the US

An ad valorem sales tax levied at a rate of 5% increases all prices by 5%, from p to (1+0.05)p = 1.05p.

An ad valorem sales tax levied at a rate of t increases all prices by tp from p to (1+t)p.

A uniform sales tax is applied uniformly to all commodities.

Uniform Ad Valorem Sales Taxes

A uniform sales tax levied at rate t changes the constraint from $p_1x_1 + p_2x_2 \le m$ to $(1+t)p_1x_1 + (1+t)p_2x_2 \le m$ i.e. $p_1x_1 + p_2x_2 \le m/(1+t)$.

Uniform Ad Valorem Sales Taxes _{x₂}

The Food Stamp Program in the US

Food stamps are coupons that can be legally exchanged only for food.

How do food stamps change a family's budget set?

What if food stamps can be traded on a black market at the price of \$0.5?

Relative Prices

Suppose prices and income are measured in dollars. Say $p_1=\$2$, $p_2=\$3$, m=\$12. Then the constraint is

$$2x_1 + 3x_2 \le 12$$
.

Relative Prices

The constraint for $p_1=2$, $p_2=3$, m=12 $2x_1 + 3x_2 \le 12$ is also $x_1 + (3/2)x_2 \le 6$, the constraint for $p_1=1$, $p_2=3/2$, m=6.

Setting p₁=1 makes commodity 1 the numeraire and defines all prices in terms of commodity 1.

Numeraire

Any commodity can be chosen as the numeraire without changing the budget set.

 Dividing the budget constraint by p_k will make commodity k the numeraire.

Shapes of Budget Set

But what if prices are not constants?

- E.g. bulk buying discounts
- or the opposite, price penalties for buying "too much".

Then lines will be curved.

Shapes of Budget Sets - Quantity Discounts

Suppose p_2 is constant at \$1 but that $p_1=\$2$ for $0 \le x_1 \le 20$ and $p_1=\$1$ for $x_1>20$.

Then budget line's slope is

$$-p_1/p_2 = \begin{cases} -2, & \text{for } 0 \le x_1 \le 20 \\ -1, & \text{for } x_1 > 20 \end{cases}$$

Shapes of Budget Sets with a Quantity Discount

Shapes of Budget Sets with a Quantity Discount

Shapes of Budget Sets with a Quantity Discount

Shapes of Budget Sets with a Quantity Penalty

Shapes of Budget Sets - One Price Negative

Commodity 1 is stinky garbage. You are paid \$2 per unit to accept it; *i.e.* $p_1 = -\$2$. $p_2 = \$1$. Income, other than from accepting commodity 1, is m = \$10.

Then the constraint is $-2x_1 + x_2 \le 10$ or $x_2 \le 2x_1 + 10$.

Shapes of Budget Sets - One Price Negative

Shapes of Budget Sets - One Price Negative

More General Choice Sets

Choices are usually constrained by more than a budget; e.g. time constraints and other resources constraints.

A bundle is available only if it meets every constraint.

More General Choice Sets Other Stuff

At least 10 units of food must be eaten to survive **Food**

More General Choice Sets Other Stuff

The set of feasible bundles is the intersection.

A Quick Summary

- 1. Basic concepts
 - 1. Budget set
 - 2. Numeraire and relative price
- 2. Basic skills
 To work out a budget set