

Acknowledgements

Coauthors

Maria Luna Miño Taras Lychuk Arnie Waddell Alan Moulin

Funding

Agriculture and Agri-Food Canada

Introduction

- Sediment fingerprinting links sources to downstream sediment
 - Using soil/sediment properties as fingerprints (tracers)
 - Provide an estimate of the relative contribution from each source
- Used to understand watershed processes and guide management practices

Research question

- Characterizing the sources of sediment is an important step
- Focus has been on:
 - Novel fingerprints
 - Fingerprint selection
- What about the sampling design?
 - Logistics
 - Cost
 - Judgement

Objectives

Using a range of soil colour and geochemical properties across two contrasting land uses:

- 1. Quantify the variability
- 2. Characterize the spatial patterns
- 3. Assess the the importance of terrain attributes

Location

Sampling

- Surface soil
- 49 points at 100m spacing

Lab analysis

- Sieved to < 63 um
- Geochemistry
 - Aqua-regia
 - 51 geochemical elements
- Spectral reflectance
 - FieldSpecPro
 - 15 colour coefficients

Based on previous work (Luna Miño et al. 2024)

- Ca, Co, Cs, Fe, Li, La, Nb, Ni, Rb, and Sr
- a*, b*, h*, and x

Univariate analysis

- Mean
- Standard deviation
- Skewness
- Coefficient of variation

Univariate analysis

Overall

- Colour properties and the agricultural land use
 - Exhibited <u>lower variability</u> and <u>more</u> <u>symmetrical</u> data
- Forested site has a more complex topography and geomorphic setting (floodplain)
 - Greater variability in SOM and grain size
- Colour properties make ideal fingerprints
- Differences between sites makes direct comparisons a bit tricky
 - Transformations?

- Spatial autocorrelation
 - Semivariograms
- Interpolation and mapping
 - Kriging

Nugget = 0.0 Sill = 7.2 Range = 580m Spatial Class = Strong

- Spatial autocorrelation
 - Semivariograms
- Interpolation and mapping
 - Kriging

Nugget = 1.6 Sill = 2.7 Range = 269m Spatial Class = Moderate

Semivariogram interpretation

- Small nugget reflects low measurement or sampling error
- Small sill indicates low overall variance
- Small range indicate spatial correlation persists over short distances

Spatial autocorrelation

- Soil properties at the **agricultural site** exhibited **stronger** spatial autocorrelation
 - 6 soil properties at the forested site exhibited no spatial autocorrelation
- Soil properties presented patterns that <u>roughly matches</u> the topography

Terrain analysis

- Terrain attributes
 - System for Automated Geoscientific Analyses (SAGA)
 - Random Forest Regression
- 1. Plan curvature
- 2. Profile curvature
- 3. SAGA wetness index
- 4. Catchment area
- 5. Relative slope position
- 6. Vertical channel network distance

Terrain analysis

- Elevation was ranked as the most important predictor
 - SAGA Wetness Index
 - Relative Slope Position
- Patterns linked to hydrologic properties and processes
- Terrain attributes can be used to guide sampling and interpret data

Conclusions

- Agricultural site:
 - Gently sloping terrain
 - Lower variability
 - Approximately normal data distributions
 - Moderate to strong spatial autocorrelation

- Forested site:
 - Complex terrain
 - Higher variability
 - Data often non-normal
 - Fewer properties with spatial autocorrelation

Conclusions

- Topographic effects evident in many soil property patterns
- Top terrain predictors: elevation, SAGA Wetness Index, and relative slope position
 - Terrain-soil relationships were inconsistent in strength and direction
- Terrain-driven spatial patterns can inform more targeted soil sampling

Characterizing Sediment Source Variability

Landscape and Land Use Influences on Fingerprint Properties

O alex-koiter

X alex-koiter

@Alex_Koiter@mstdn.ca

y @alex_koiter

Want to learn more?

Slides created with Quarto Updated 2025-06-19