Chemistry: A Molecular Approach, 2nd Ed. Nivaldo Tro

Chapter 7
The QuantumMechanical
Model of the
Atom

Roy Kennedy
Massachusetts Bay Community College
Wellesley Hills, MA

The Nature of Light: Its Wave Nature

- Light is a form of electromagnetic radiation
 - ✓ composed of perpendicular oscillating waves, one
 for the electric field and one for the magnetic field
 - > an electric field is a region where an electrically charged particle experiences a force
 - ➤ a magnetic field is a region where a magnetized particle experiences a force
- All electromagnetic waves move through space at the same, constant speed
 - √ 3.00 x 10⁸ m/s in a vacuum = the speed of light, c

Electromagnetic Radiation

Wave Characteristics

- The amplitude is the height of the wave
 - ✓ the amplitude is a measure of how intense the light is the larger the amplitude, the brighter the light
- The wavelength (λ) is a measure of the distance covered by the wave
- The frequency (ν) is the number of waves that pass a point in a given period of time units are hertz (Hz) or cycles/s = s⁻¹

$$> 1 \text{ Hz} = 1 \text{ s}^{-1}$$

Color

- The color of light is determined by its wavelength
 - ✓ or frequency
- White light is a mixture of all the colors of visible light
 - √ a spectrum
 - ✓ RedOrangeYellowGreenBlueViolet
- When an object absorbs some of the wavelengths of white light and reflects others, it appears colored
 - ✓ the observed color is predominantly the colors reflected

© 2011 Pearson Education, Inc.

Electromagnetic Spectrum

Continuous Spectrum

© 2011 Pearson Education, Inc.

White light spectrum

Thermal Imaging using Infrared Light

© 2011 Pearson Education, Inc.

Sunburns Caused by High-Energy UV Radiation

© 2011 Pearson Education, Inc.

Interference

- The interaction between waves is called interference
- When waves interact so that they add to make a larger wave it is called constructive interference
 - ✓ waves are in-phase
- When waves interact so they cancel each other it is called destructive interference
 - √ waves are out-of-phase

Interference

Diffraction

2-Slit Interference

© 2011 Pearson Education, Inc.

The Photoelectric Effect

Einstein's Explanation

- Einstein proposed that the light energy was delivered to the atoms in packets, called quanta or photons
- The energy of a photon of light is directly proportional to its frequency
 - √ inversely proportional to its wavelength
 - ✓ the proportionality constant is called Planck's Constant, (h) and has the value 6.626 x 10⁻³⁴ J·s

$$E = h v = \frac{h \cdot c}{\lambda}$$

Ejected Electrons

 One photon at the threshold frequency gives the electron just enough energy for it to escape the atom

```
✓ binding energy, φ
```

- When irradiated with a shorter wavelength photon, the electron absorbs more energy than is necessary to escape
- This excess energy becomes kinetic energy of the ejected electron

Kinetic Energy =
$$E_{photon} - E_{binding}$$

 $KE = hv - \phi$

Exciting Gas Atoms to Emit Light with Electrical Energy

© 2011 Pearson Education, Inc.

Emission Spectra

Examples of Spectra

Tro: Chemistry: A Molecular Approach, 2/e

Rydberg's Spectrum Analysis

Johannes Rydberg (1854–1919)

 Rydberg analyzed the spectrum of hydrogen and found that it could be described with an equation that involved an inverse square of integers

$$\frac{1}{\lambda} = 1.097 \times 10^7 \text{ m}^{-1} \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right)$$

Rutherford's Nuclear Model

- The atom contains a tiny dense center called the nucleus
 - √ the volume is about 1/10 trillionth the volume of the atom
- The nucleus is essentially the entire mass of the atom
- The nucleus is positively charged
 - ✓ the amount of positive charge balances the negative charge of the electrons
- The electrons move around in the empty space of the atom surrounding the nucleus

Problems with Rutherford's Nuclear Model of the Atom

- Electrons are moving charged particles
- According to classical physics, moving charged particles give off energy
- Therefore electrons should constantly be giving off energy
 - ✓ should cause the atom to glow!
- The electrons should lose energy, crash into the nucleus, and the atom should collapse!!
 - ✓ but it doesn't!

The Bohr Model of the Atom

Neils Bohr (1885–1962)

- The nuclear model of the atom does not explain what structural changes occur when the atom gains or loses energy
- Bohr developed a model of the atom to explain how the structure of the atom changes when it undergoes energy transitions
- Bohr's major idea was that the energy of the atom was quantized, and that the amount of energy in the atom was related to the electron's position in the atom
 - quantized means that the atom could only have very specific amounts of energy

Bohr's Model

- The electrons travel in orbits that are at a fixed distance from the nucleus
 - √ stationary states
 - ✓ therefore the energy of the electron was proportional to the distance the orbit was from the nucleus
- Electrons emit radiation when they "jump" from an orbit with higher energy down to an orbit with lower energy
 - ✓ the emitted radiation was a photon of light
 - ✓ the distance between the orbits determined the energy of the photon of light produced

Bohr Model of H Atoms

Wave Behavior of Electrons

Louis de Broglie (1892–1987)

- de Broglie proposed that particles could have wave-like character
- de Broglie predicted that the wavelength of a particle was inversely proportional to its momentum
- Because it is so small, the wave character of electrons is significant

$$\lambda(m) = \frac{h\left(\frac{kg \cdot m^2}{s^2} \cdot s\right)}{mass(kg) \cdot velocity(m \cdot s^{-1})}$$

Electron Diffraction

 Proof that the electron had wave nature came a few years later with the demonstration that a beam of electrons would produce an interference pattern as waves do

© 2011 Pearson Education, Inc.

Uncertainty Principle

$$\Delta x \times \Delta v \ge \frac{h}{4\pi} \left(\frac{1}{m}\right)$$

 Heisenberg stated that the product of the uncertainties in both the position and speed of a particle was inversely proportional to its mass

- $\checkmark x = \text{position}, \ \Delta x = \text{uncertainty in position}$
- \checkmark v = velocity, \triangle v = uncertainty in velocity
- √ m = mass
- This means that the more accurately you know the position of a small particle, such as an electron, the less you know about its speed
 - ✓ and vice-versa

Uncertainty Principle Demonstration

Electron Energy

- Electron energy and position are complementary
 ✓ because KE = ½mv²
- For an electron with a given energy, the best we can do is describe a region in the atom of high probability of finding it
- Many of the properties of atoms are related to the energies of the electrons

Schrödinger's Equation $\mathcal{H}\psi=E\psi$

- Schödinger's Equation allows us to calculate the probability of finding an electron with a particular amount of energy at a particular location in the atom
- Solutions to Schödinger's Equation produce many wave functions, Ψ
- A plot of distance vs. Ψ² represents an orbital, a probability distribution map of a region where the electron is likely to be found

Solutions to the Wave Function, Ψ

- Calculations show that the size, shape, and orientation in space of an orbital are determined to be three integer terms in the wave function
 - ✓ added to quantize the energy of the electron
- These integers are called quantum numbers
 - ✓ principal quantum number, *n*
 - ✓ angular momentum quantum number, I
 - ✓ magnetic quantum number, m

 _I

Principal Quantum Number, n

- Characterizes the energy of the electron in a particular orbital
 - √ corresponds to Bohr's energy level
- n can be any integer ≥ 1
- The larger the value of n, the more energy the orbital has
- Energies are defined as being negative
 - ✓ an electron would have E = 0 when it just escapes the
 atom
- The larger the value of n, the larger the orbital
- As n gets larger, the amount of energy between orbitals gets smaller

$$E_n = -2.18 \times 10^{-18} \text{ J} \left(\frac{1}{n^2}\right)$$
 for an electron in H

Principal Energy Levels in Hydrogen

Angular Momentum Quantum Number, I

- The angular momentum quantum number determines the shape of the orbital
- I can have integer values from 0 to (n-1)
- Each value of l is called by a particular letter that designates the shape of the orbital
 - ✓ s orbitals are spherical
 - ✓ p orbitals are like two balloons tied at the knots
 - ✓ d orbitals are mainly like four balloons tied at the knot
 - ✓ f orbitals are mainly like eight balloons tied at the knot

Magnetic Quantum Number, m₁

- The magnetic quantum number is an integer that specifies the orientation of the orbital
 - ✓ the direction in space the orbital is aligned relative
 to the other orbitals
- Values are integers from -/ to +/
 - √ including zero
 - ✓ gives the number of orbitals of a particular shape
 - when l = 2, the values of m_l are -2, -1, 0, +1, +2; which means there are five orbitals with l = 2

Describing an Orbital

- Each set of n, l, and m_l describes one orbital
- Orbitals with the same value of n are in the same principal energy level
 - √ aka principal shell
- Orbitals with the same values of n and l are said to be in the same sublevel
 - √ aka subshell

Energy Shells and Subshells

Quantum Mechanical Explanation of Atomic Spectra

- Each wavelength in the spectrum of an atom corresponds to an electron transition between orbitals
- When an electron is excited, it transitions from an orbital in a lower energy level to an orbital in a higher energy level
- When an electron relaxes, it transitions from an orbital in a higher energy level to an orbital in a lower energy level
- When an electron relaxes, a photon of light is released whose energy equals the energy difference between the orbitals

Electron Transitions

- To transition to a higher energy state, the electron must gain the correct amount of energy corresponding to the difference in energy between the final and initial states
- Electrons in high energy states are unstable and tend to lose energy and transition to lower energy states
- Each line in the emission spectrum corresponds to the difference in energy between two energy states

Quantum Leaps

Predicting the Spectrum of Hydrogen

- The wavelengths of lines in the emission spectrum of hydrogen can be predicted by calculating the difference in energy between any two states
- For an electron in energy state n, there are (n 1) energy states it can transition to, therefore (n 1) lines it can generate
- Both the Bohr and Quantum Mechanical Models can predict these lines very accurately for a 1-electron system

Energy Transitions in Hydrogen

- The energy of a photon released is equal to the difference in energy between the two levels the electron is jumping between
- It can be calculated by subtracting the energy of the initial state from the energy of the final state

$$\begin{split} \Delta E_{\text{electron}} &= E_{\text{final state}} - E_{\text{initial state}} \\ &= -\left[\left(-2.18 \times 10^{-18} \text{ J} \left(\frac{1}{n_{\text{final}}^2} \right) \right) - \left(-2.18 \times 10^{-18} \text{ J} \left(\frac{1}{n_{\text{initial}}^2} \right) \right) \right] \\ &= \frac{hc}{\lambda} = E_{\text{photon}} = 2.18 \times 10^{-18} \text{ J} \left[\left(\frac{1}{n_{\text{final}}^2} \right) - \left(\frac{1}{n_{\text{initial}}^2} \right) \right] \end{split}$$

Hydrogen Energy Transitions

Probability & Radial Distribution Functions

- ψ^2 is the probability density
 - ✓ the probability of finding an electron at a particular point in space
 - ✓ for s orbital maximum at the nucleus?
 - √ decreases as you move away from the nucleus
- The Radial Distribution function represents the total probability at a certain distance from the nucleus
 - ✓ maximum at most probable radius

Nodes in the functions are where the probability drops to 0

Probability Density Function

The probability density function represents the total probability of finding an electron at a particular point in space

Radial Distribution Function

The radial distribution function represents the total probability of finding an electron within a thin spherical shell at a **distance** *r* from the nucleus

The probability at a point decreases with increasing distance from the nucleus, but the volume of the spherical shell increases

The net result is a plot that indicates the most probable distance of the electron in a 1s orbital of H is 52.9 pm

2s and 3s

Tro: Chemistry: A Molecular Approach, 2/e

47

Copyright © 2011 Pearson Education, Inc.

The Shapes of Atomic Orbitals

- The I quantum number primarily determines the shape of the orbital
- I can have integer values from 0 to (n-1)
- Each value of l is called by a particular letter that designates the shape of the orbital
 - ✓ s orbitals are spherical
 - ✓ p orbitals are like two balloons tied at the knots.
 - ✓ d orbitals are mainly like four balloons tied at the knot
 - ✓ f orbitals are mainly like eight balloons tied at the knot

I = 0, the **s** orbital

- Each principal energy level has one s orbital
- Lowest energy orbital in a principal energy state
- Spherical
- Number of nodes = (n-1)

1s orbital surface

I = 1, p orbitals

 Each principal energy state above n = 1 has three p orbitals

$$\sqrt{m_1} = -1, 0, +1$$

 Each of the three orbitals points along a different axis

$$\checkmark p_x, p_y, p_z$$

- 2nd lowest energy orbitals in a principal energy state
- Two-lobed
- One node at the nucleus, total of n nodes

p orbitals

I = 2, **d** orbitals

Each principal energy state above n = 2 has five d
 orbitals

$$\sqrt{m_1} = -2, -1, 0, +1, +2$$

- Four of the five orbitals are aligned in a different plane
 - ✓ the fifth is aligned with the z axis, d_{z squared}
 - $\checkmark d_{xy}, d_{yz}, d_{xz}, d_{x \text{ squared y squared}}$
- 3rd lowest energy orbitals in a principal energy level
- Mainly four-lobed
 - ✓ one is two-lobed with a toroid
- Planar nodes
 - √ higher principal levels also have spherical nodes

d orbitals

Orbital Energies

Slide 54 of 50

General Chemistry: Chapter 8

Tro: Chemistry: A Molecular Approach, 2/e

Slide 55 of 50

General Chemistry: Chapter 8

Prentice-Hall Copyright © 2011 Pearson Education, Inc.

Aufbau Process and Hunds Rule

Slide 56 of 50

General Chemistry: Chapter 8

Tro: Chemistry: A Molecular Approach, 2/e

Filling p Orbitals

Slide 57 of 50

General Chemistry: Chapter 8

Filling the d Orbitals

Slide 58 of 50

Tro: Chemistry: A Molecular Approach, 2/e

General Chemistry: Chapter 8

TABLE 8.2 Electron Configurations of Some Groups of Elements

Group	Element	Configuration
1	Н	$1s^1$
	Li	[He]2s ¹
	Na	$[Ne]3s^1$
	K	$[Ar]4s^1$
	Rb	$[Kr]5s^1$
	Cs	$[Xe]6s^1$
	Fr	$[Rn]7s^1$
17	F	[He] $2s^22p^5$
	Cl	[Ne] $3s^23p^5$
	Br	$[Ar]3d^{10}4s^24p^5$
	I	$[Kr]4d^{10}5s^25p^5$
	At	$[Xe]4f^{14}5d^{10}6s^26p^5$
18	Не	$1s^2$
	Ne	[He] $2s^22p^6$
	Ar	[Ne] $3s^23p^6$
	Kr	$[Ar]3d^{10}4s^24p^6$
	Xe	$[Kr]4d^{10}5s^25p^6$
	Rn	$[Xe]4f^{14}5d^{10}6s^26p^6$

Copyright © 2007 Pearson Prentice Hall, Inc.

Slide 59 of 50

General Chemistry: Chapter 8

Prentice-Hall Copyright © 2011 Pearson Education, Inc.

8-12 Electron Configurations and the Periodic Table

						Inner-	transition ele	ements					9
	<i>r</i>						f block						
	58	59	60	61	62	63	$64 (4f)^{65}$	66	67	68	69	70	71
8	Ce	Pr	Nd	Pm	Sm	Eu	Gd Tb	Dy	Но	Er	Tm	Yb	Lu
	90	91	92	93	94	95	96 97 (5f)	98	99	100	101	102	103
8	Th	Pa	U	Np	Pu	Am	Cm Bk	Cf	Es	Fm	Md	No	Lr

Slide 60 of 50

General Chemistry: Chapter 8

Tro: Chemistry: A Molecular Approach, 2/e

Prentice-Hall

Copyright © 2011 Pearson Education, Inc.