Лабораторна робота 5

Тема: Об'єктно-реляційна модель *EAV/CR* –

Entity-Attribute-Value with Classes and Relationships

(Сутність-Атрибут-Значення з Класами і Відношеннями) в СУБД Oracle

Завлання

В лабораторній роботі використовується БД, створена у лабораторній роботі №2 відповідно до вашого варіанта.

За кожним етапом створити файл-скрипт N.sql, де N – номер етапу, в який під час виконання завдань вказувати:

- 1) умова завдання у вигляді багаторядкового коментаря
- 2) *SQL*-команда
- 3) рядки із відповіддю на запит (для *SELECT*-комнад) або реакція СУБД (для помилки) у вигляді багаторядкового коментаря

Для отримання рядків із відповіддю на *SQL*-команда зручно використовувати *SQLPlus*.

Під час Online-заняття бажано встигнути виконати 1-3 завдання етапів 1-5 з урахуванням 2-х таблиць БД

Етап 1. Створення описів об'єктних типів

- 1.1. Створити таблицю опису об'єктних типів.
- 1.2 Нехай у лабораторній роботі №1 було створено UML-діаграму концептуальних класів. Для трьох класів з UML-діаграми, пов'язаних між собою, бажано зв'язком «узагальнення», «агрегатна асоціація» та «іменована асоціація», заповнити опис об'єктних типів.
 - 1.3 Отримати інформацію про об'єктні типи.
- 1.4 Отримати інформацію про об'єктні типи та можливі зв'язки між ними типу «узагальнення», «агрегатна асоціація».

Етап 2. Створення описів атрибутних типів

- 2.1. Створити таблицю описів атрибутних типів.
- 2.2 Для раніше використаних класів UML-діаграми заповнити описи атрибутних типів.
- 2.3 Отримати інформацію про атрибутні типи.
- 2.4 Отримати інформацію про атрибутні типи та можливі зв'язки між ними типу «іменована асоціація».

Етап 3. Створення описів листових значень

- 3.1 Створити таблицю описів листових значень.
- 3.2 Для одного з атрибутних типів, який може містити кінцеву множину можливих значень, заповнити описи листових значень.
 - 3.3 Отримати інформацію про листові значення.

Етап 4. Створення описів екземплярів об'єктів

- 4.1 Створити таблицю описів екземплярів об'єктів.
- 4.2 На основі вмісту двох рядків двох таблиць, заповнених у лабораторній роботі №3, заповнити описи екземплярів об'єктів.
- 4.3 Отримати колекцію екземплярів об'єктів для одного з об'єктних типів, використовуючи його кол.
- 4.4 Отримати один екземпляр об'єкта заданого імені для одного з об'єктних типів, використовуючи його код.

Етап 5. Створення описів значень атрибутів екземплярів об'єктів

- 5.1 Створити таблицю описів значень атрибутів екземплярів об'єктів.
- 5.2 На основі вмісту двох рядків двох таблиць, заповнених у лабораторній роботі №3, та опису атрибутів екземплярів об'єктів, заповнити описи значень атрибутів екземплярів об'єктів.
- 5.3 Модифікувати рішення завдання 4.3, отримавши колекцію екземплярів об'єктів за заданим значенням одного з атрибутів об'єктів.

Етап 6. (за бажанням) Створення описів зв'язків "іменована асоціація" між екземплярами об'єктів

- 6.1 Створити таблицю описів зв'язків "іменована асоціація" між екземплярами об'єктів.
- 6.2 Заповнити таблицю зв'язків з урахуванням можливих зв'язків «іменована асоціація» між раніше створеними екземплярами об'єктів класів.

Етап 7. (за бажанням) Виконання запитів до БД EAV, еквівалентних запитам до реляційної БД

7.1 Виконати запит до БД, результат якого відповідає результату виконання запиту на підставі рішення завдання № 4.2 лабораторної роботи № 3:

Для однієї з таблиць створити команду отримання значень всіх колонок (явно перерахувати) за окремими рядками з урахуванням умови: символьне значення однієї з колонок має співпадати з якимось константним значенням.

7.2 Виконати запит до БД, результат якого відповідає результату виконання запиту на підставі рішення завдання № 6.1 лабораторної роботи № 3:

Для однієї з таблиць створити команду отримання кількості рядків таблиці.

7.3 Виконати запит до БД, результат якого відповідає результату виконання запиту на підставі рішення завдання № 3.2 лабораторної роботи № 4:

Для двох таблиць, пов'язаних через РК-колонку та FK-колонку, створити команду отримання двох колонок першої та другої таблиць з використанням екві-з'єднання таблиць. Використовувати префікси.

Етап 8. Документування результатів роботи на Веб-сервісі *GitHub*

- 8.1 Розпочинаючи роботу над документуванням рішень лабораторної роботи, необхідно у вашому *GitHub*-репозиторії створити *Issue* з назвою *«tasks-of-laboratory-work-5»*.
 - 1) створити *Issue* з назвою «tasks-of-laboratory-work-5»;
 - 2) підключити до Issue ваш GitHub-project (правий розділ «Projects» сторінки з Issue);
- 3) змінити статус *Issue* з «*Todo*» на «*In progress*», автоматично перевівши *Scrum*-картку з цим *Issue* на *Scrum*-дошку «*In progress*»;
- 4) створити нову *Git*-гілку з назвою, яка відповідає назві *Issue*, наприклад, *«tasks-of-laboratory-work-5»* (використовується посилання *«Create a branch»* у правому розділі *«Development»* сторінки з *Issue*).
- 8.2 Після створення *Git*-гілки перейти до цієї гілки для створення оновлень файлів *Git*-репозиторію.
- 8.3 У новій гілці Git-репозиторію створити каталог з назвою «5-EAV-vs-Traditional» (кнопка «Add file» «Сreate new file»), при створенні якого одночасно створити файл README.md з першим рядком «5 Об'єктно-реляційна модель EAV/CR Entity-Attribute-Value with Classes and Relationships» зі стилем «Заголовок 3-го рівня» мови розмітки Markdown (три символи решітка ###).
- 8.4 Розмістити в каталозі «5-EAV-vs-Traditional» GitHub-репозиторія файли 1.sql, 2.sql, 3.sql, 4.sql, 5.sql, 6.sql, 7.sql з рішеннями завдань відповідних етапів.
 - 8.5 Виконати запит *Pull Request*, розпочавши процес *Code Review*.

Під час створення *Pull Request* необхідно вказати:

- Reviewers = Oleksandr Blazhko, Maria Glava;
- *Labels* = *enhancement* (*New feature or request*);
- *Projects* = посилання на *GitHub-project*.

Завершення процесу *Code Review* відбудеться до початку нового заняття, після чого викладач закриє *Issue*, завершуючи процес виконання завдань з лабораторної роботи.

Під час консультації в понеділок ви зможете отримати більше коментарів щодо ваших рішень.