KNAPSACK

1. Hill Climbing

Es un algoritmo de búsqueda local que se mueve continuamente en la dirección del aumento de valor con el fin de encontrar la mejor solución. Es el algoritmo que se va a utilizar como base para el siguiente.

2. Random Restart HC

Este algoritmo ejecuta varias búsquedas Hill-Climbing y se queda con la ejecución que mejor evaluación haya obtenido mediante la función get.knapsack.value().

3. Local Beam Search

Es un algoritmo de búsqueda de primero en anchura, e incorpora una heurística para escoger los mejores nodos en cada nivel.

4. Características de los algoritmos

	Óptimo	Completo	Complejidad espacial	Complejidad temporal
Hill Climbing	Es óptimo para problemas convexos, para otros problemas, solo será óptimo en locales (soluciones que no se pueden mejorar con ninguna configuración vecina)	No es completo	Lineal O(b)	O(∞)
Random Restar HC	Puede llegar a soluciones óptimas dentro del tiempo polinomial para la mayoría de los espacios problemáticos.	El algoritmo es completo con probabilidad próxima a 1, es decir, ejecutando el algoritmo una gran cantidad de veces se llegará al máximo global.	Superior a Hill Climbing normal	Superior al Hill Climbing normal
Local Beam Search	No es óptimo, ya que no hay garantía de que vaya a encontrar la mejor solución, por lo general, Local Beam Search devuelve siempre la primera mejor solución	En general, no es completo, incluso con tiempo de memoria ilimitado es posible que el algoritmo pierda el nodo objetivo.	beam_width*ma x_fanout O(bk)	Lineal O(bmk)

5. Comparación de la media y desviación estandar

Hill Climbing				
	MEDIA	DESVIACIÓN ESTÁNDAR		
5 Objetos	0,01 s	0,015 s		
	10,2 p	3,52 p		
10 Objetos	0,014 s	0,009 s		
10 Objetos	30963,26 p	6160,7 p		
50 Objector	0,04 s	0,03 s		
50 Objetos	13425,53 p	883,28 p		
100 Objetos	0,11 s	0,0622 s		
	25961 p	1607,63 p		

Random Restart Hill Climbing				
	MEDIA	DESVIACIÓN ESTÁNDAR		
5 Objetos	0,37 s	0,035 s		
5 Cojetos	14,93 p	0,25 p		
10 Objetos	0,44 s	0,052 s		
10 Objetos	39011,6 p	4251,58 p		
50 Objetos	0,64 s	0,12 s		
50 Objetos	15222,06 p	877,23 p		
100 Objetos	1,056 s	0,24 s		
100 Objetos	30288.33 p	1701,86 p		

Local Beam Search 3 Beams					
	MEDIA	DESVIACIÓN ESTÁNDAR			
5 Objetos	0,34 s	0,090 s			
y Objetos	12,2 p	2,42 p			
10 Objetos	0,33 s	0,1103 s			
10 Objetos	19152,46 p	10208,9 p			
50 Objetos	0,63 s	0,279 s			
50 Objetos	10820,66 p	2380,52 p			
100 Objetos	0,883 s	0,44 s			
100 Objetos	23875,13 p	3322,32 p			
Local Beam Search 5 Beams					
	MEDIA	DESVIACIÓN ESTÁNDAR			
5 Objetos	0,39 s	0,091 s			
	11,26 p	2,68 p			
10 Objetos	0,42 s	0,093 s			
10 Objetos	24616,86 p	7065,69 p			
50 Objetos	0,74 s	0,168 s			
50 Objetos	11809,33 p	2099,52 p			
100 Objetos	1,014 s	0,31 s			
100 Objetos	25401,33 p	2243,17 p			
	Local Beam Search 10 Beams				
	MEDIA	DESVIACIÓN ESTÁNDAR			
5 Objetos	0,49 s	0,053 s			
0 : 5,	12,2 p	1,47 p			
10 Objetos	0,52 s	0,044 s			
10 00,000	22064 p	10205,38 p			
50 Objetos	0,9253 s	0,0818 s			
Jo Objetos	12678,93 p	1763,46 p			
100 Objetos	1,23 s	0,054 s			
100 Objetos	24505 p	2922,98 p			

6. Justificar los resultados basándose en las características

El Random Restart Hill Climbing obtiene mayor puntuación y menor desviación estándar en el coste que el Hill Climbing normal, pero el tiempo medio de ejecución es bastante mayor. Basándose en las características de los algoritmos esto es lo que debería suceder, ya que el Random Restart es óptimo y completo, además al ejecutar varias iteraciones del propio algoritmo Hill Climbing siempre se obtendrán resultados mejores y más exactos, reduciendo las desviaciones estándar y mejorando la media de puntos.

Por lo general en el algoritmo Local Beam Searh tiende a mejorar el coste cuanta más cantidad de Beams haya. De la misma manera aumenta también el tiempo de ejecución en relación con la cantidad de Beams. Se podría decir que este algoritmo con una buena cantidad de Beams obtiene mejores resultados que el Hill Climbing normal, aun así estos resultados serian inferiores a la variante de Random Restart HC.