

1 A very low drop voltage regulator

Datasheet - production data

Features

- Input voltage from 2.6 to 16 V
- Very low-dropout voltage (500 mV max. at 1 A load)
- Low quiescent current (200 μA typ. @ 1 A load)
- Available in 1% precision in PPAK and DFN6 packages, 2% in DPAK
- 1 A guaranteed output current
- Wide range of output voltages available on request: adjustable from 0.8 V, fixed up to 12 V in 100 mV steps
- Logic-controlled electronic shutdown
- Power Good (PPAK and DFN packages)
- Fast dynamic response to line and load changes
- Internal current and thermal protections
- Temperature range: -40 °C to 125 °C

Applications

- Computer and laptop
- Battery-powered equipments
- · Industrial and medical equipment
- Consumer and set-top box

Description

The LDF is a fast, very low drop linear regulator which operates from an input supply voltage in the range of 2.6 V to 16 V.

It is available in fixed and adjustable output voltage versions, from 0.8 V to 12 V.

The LDF features are: high output precision, very low-dropout voltage, low noise, and low quiescent current, therefore suitable for low voltage microprocessors and memory applications.

Enable logic control pin and power-good output are featured on PPAK/DFN packages.

Current and thermal protection are provided.

Contents

Contents

1	Bloc	Block diagram 3				
2	Pin	configuration				
3	Турі	Typical application5				
4	Abs	olute maximum ratings6				
5	Elec	trical characteristics7				
6	Арр	lication information11				
	6.1	External capacitors				
		6.1.1 Input capacitor				
		6.1.2 Output capacitor				
	6.2	Enable pin operation11				
	6.3	Power Good				
7	Турі	cal characteristics12				
8	Pacl	kage mechanical data				
9	Pacl	kaging mechanical data27				
10	Orde	er codes				
11	Revi	ision history				

LDF Block diagram

1 Block diagram

PG PG IN Power-good signal Power-good signal UVLO BandGap reference BandGap reference Current Power limit Current OpAmp OpAmp OUT OUT Thermal protection Thermal protection R₁ NC ADJ EN EN Internal enable Internal enable GND Adjustable version Fixed version AM13903V1

Figure 1. Block diagram (generic version)

Pin configuration LDF

2 Pin configuration

Figure 2. Pin connection (top view)

Table 1. DPAK, PPAK pin description

Pin n°		Symbol	Function
PPAK	DPAK	Symbol	Function
5	-	ADJ/PG	For adjustable versions: error amplifier input pin For fixed versions: power-good output
2	1	V _{IN}	Input voltage
4	3	V _{OUT}	Output voltage
1	-	EN	Enable pin logic input: low = shutdown, high = active
3	2	GND	Ground
TAB	TAB	GND	Ground

Table 2. DFN6-2x2 and 3x3 pin description

Pin n°	Symbol	Function
2	ADJ/NC	For adjustable versions: error amplifier input pin For fixed versions: not connected
6	V _{IN}	Input voltage
1	V _{OUT}	Output voltage
5	EN	Enable pin logic input: low = shutdown, high = active
3	PG	Power-good output
4	GND	Ground
Exposed pad	GND	Ground

LDF Typical application

3 Typical application

Figure 3. Fixed versions

Figure 4. Adjustable versions (PPAK and DFN6 packages only)

4 Absolute maximum ratings

Table 3. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{IN}	DC input voltage	- 0.3 to 20	V
V _{OUT}	DC output voltage	- 0.3 to V _{IN} + 0.3	V
V _{EN}	Enable input voltage	- 0.3 to V _{IN} + 0.3	V
V _{ADJ}	Adjust pin voltage	- 0.3 to 2	V
V_{PG}	PG pin voltage	- 0.3 to V _{IN} + 0.3	V
I _{LOAD}	Output current	Internally limited	mA
P _D	Power dissipation	Internally limited	mW
T _{STG}	Storage temperature range	- 65 to 150	°C
T _{OP}	Operating junction temperature range	- 40 to 125	°C

Note:

Absolute maximum ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied. All values are referred to GND.

Table 4. Thermal data

Symbol	Parameter		Unit			
Symbol	r at attletel	PPAK	DPAK	DFN6-2x2	DFN6-3x3	Offic
R _{thJA}	Thermal resistance junction-ambient	100	100	65	55	°C/W
R _{thJC}	Thermal resistance junction-case	8	8	6.5	10	°C/W

6/34 DocID025502 Rev 1

5 Electrical characteristics

 T_J = 25 °C, V_{IN} = $V_{OUT(NOM)}$ + 1 $V^{(1)},$ C_{IN} = 1 $\mu\text{F},$ C_{OUT} = 2.2 $\mu\text{F},$ I_{LOAD} = 10 mA, V_{EN} = 2 V, unless otherwise specified.

Table 5. LDF (fixed versions) electrical characteristics

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V_{IN}	Operating input voltage		2.6		16	V
V _{OUT}	V _{OUT} accuracy, PPAK and DFN6	V_{OUT} +1 $V^{(1)} \le V_{IN} \le 16 \text{ V}$ $I_{LOAD} = 10 \text{ mA}$	-1		1	%
VOUT	versions	10 mA \leq I _{LOAD} \leq 1 A T _J = -40 to 125 °C	-1.5		1.5	%
V	V _{OUT} accuracy,	V_{OUT} +1 $V^{(1)} \le V_{IN} \le 16 \text{ V}$ $I_{LOAD} = 10 \text{ mA}$	-2		2	%
V _{OUT}	DPAK version	10 mA \leq I _{LOAD} \leq 1 A T _J = -40 to 125 °C	-3		3	%
		$V_{OUT}+1 \ V^{(1)} \le V_{IN} \le 16 \ V$		0.01		
ΔV _{OUT}	Static line regulation	$V_{OUT}+1 \ V^{(1)} \le V_{IN} \le 16 \ V,$ $T_{J} = -40 \text{ to } 125 \ ^{\circ}\text{C}$			0.04	%/V
		10 mA ≤ I _{LOAD} ≤ 1 A		0.2		
ΔV _{OUT}	Static load regulation	10 mA \leq I _{LOAD} \leq 1 A, T _J = -40 to 125 °C			0.6	%/A
V _{DROP}	Dropout voltage (2)	I _{LOAD} = 1 A, -40 °C <t<sub>J<125 °C</t<sub>		200	500	mV
	Quiescent current	ON mode: $V_{EN} = 2 V$ $I_{LOAD} = 10 \text{ mA to 1 A},$ $T_{J} = -40 \text{ to 125 °C}$		200	800	
IQ		OFF mode: V _{EN} = GND, PPAK and DFN versions		30		μА
		OFF mode: V _{EN} = GND, PPAK and DFN versions, -40 °C <t<sub>J<125 °C</t<sub>			120	
I _{SC}	Short-circuit current	V _{IN} >3 V		1.5		Α
V _{EN}	Enable input logic low	V _{IN} = 2.6 V to 16 V, -40 °C <t<sub>J<125 °C</t<sub>			8.0	V
V EN	Enable input logic high	VIN = 2.0 V to 10 V, -40 0~11/~120 0	2			V
I _{EN}	Enable pin input current	$V_{EN} = V_{IN}$		5	10	μΑ
	Power-good output	Rising edge		0.92* V _{OUT}		
PG	threshold	Falling edge		0.8* V _{OUT}		V
	Power-good output voltage low	I _{SINK} = 6 mA, open drain output		0.4		

Electrical characteristics LDF

Table 5. LDF (fixed versions) electrical characteristics (continued)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
SVR	Cumply yeltogo	V_{IN} = 4.5 +/- 0.5 V_{RIPPLE} Frequency = 120 Hz, V_{OUT} = 3.3 V		60		
	Supply voltage rejection	V_{IN} = 4.5 +/- 0.5 V_{RIPPLE} Frequency = 120 Hz to 100k Hz V_{OUT} = 3.3 V		45		dB
e _N	Output noise voltage	Bw = 10 Hz to 100 kHz, I_{LOAD} = 100 mA C_{OUT} = 2.2 μ F		45		μV _{RMS} /V _{OUT}
Та	Thermal shutdown			170		ů
T _{SHDN}	Hysteresis			10		

^{1.} For V_{OUT} <1.6 V; V_{IN} = 2.6 V

^{2.} Dropout voltage is the input-to-output voltage difference at which the output voltage is 100 mV below its nominal value. This specification does not apply to output voltages below 1.6 V

 T_J = 25 °C, V_{IN} = $V_{OUT(NOM)}$ + 1 $V^{(1)},$ C_{IN} = 1 $\mu\text{F},$ C_{OUT} = 2.2 $\mu\text{F},$ I_{LOAD} = 10 mA, V_{EN} = 2 V, unless otherwise specified.

Table 6. LDF (adjustable version) electrical characteristics

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{IN}	Operating input voltage		2.6		16	V
	Reference voltage	V _{IN} = V _{OUT} +1 V ⁽¹⁾		0.8		V
V_{ADJ}	Reference voltage	V_{OUT} +1 $V^{(1)} \le V_{IN} \le 16 \text{ V}$ $I_{LOAD} = 10 \text{ mA}$	-1		1	%
	tolerance	10 mA \leq I _{LOAD} \leq 1 A T _J = -40 to 125 °C	-1.5		1.5	70
		$V_{OUT}+1 V^{(1)} \le V_{IN} \le 16 V$		0.01		
ΔV_{OUT}	Static line regulation	$V_{OUT}+1V^{(1)} \le V_{IN} \le 16 \text{ V},$ $T_{J} = -40 \text{ to } 125 \text{ °C}$			0.04	%/V
		10 mA ≤ I _{LOAD} ≤ 1 A		0.2		
ΔV_{OUT}	Static load regulation	10 mA \leq I _{LOAD} \leq 1 A, T _J = -40 to 125 °C		0.2	0.6	%/A
V _{DROP}	Dropout voltage ⁽²⁾	V _{OUT} fixed to 2.5 V, I _{LOAD} = 1 A, -40 °C <t<sub>J<125 °C</t<sub>		200	500	mV
	Quiescent current	ON mode: $V_{EN} = 2 \text{ V}$ $I_{LOAD} = 10 \text{ mA to 1 A},$ $T_J = -40 \text{ to } 125 \text{ °C}$		200	800	
IQ		OFF mode: V _{EN} = GND, PPAK and DFN versions		30		μA
		OFF mode: V _{EN} = GND, PPAK and DFN versions, -40 °C <t<sub>J<125 °C</t<sub>			120	
I_{SC}	Short-circuit current	V _{IN} >3 V		1.5		Α
V_{EN}	Enable input logic low	V _{IN} = 2.6 V to 16 V, -40 °C <t<sub>J<125 °C</t<sub>			8.0	V
V EN	Enable input logic high	VIN = 2.0 V to 10 V, -40 OC1JC123 O	2			V
I _{EN}	Enable pin input current	$V_{EN} = V_{IN}$		5	10	μΑ
	Power-good output	Rising edge		0.92* V _{ADJ}		
PG	threshold	Falling edge		0.8* V _{ADJ}		V
	Power-good output voltage low	I _{SINK} = 6 mA, open drain output		0.4		
	Supply voltage	$V_{IN} = 3 \text{ V +/- } 0.5 \text{ V}_{RIPPLE}$ Frequency= 120 Hz, $V_{OUT} = 0.8 \text{ V}$		62		
SVR	Supply voltage rejection	V_{IN} = 3 V +/- 0.5 V_{RIPPLE} Frequency = 120 Hz to 100 kHz, V_{OUT} = 0.8V		55		dB
	1	1		1	·	·

Electrical characteristics LDF

Table 6. LDF (adjustable version) electrical characteristics

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
e _N	Output noise voltage	$B_{\rm W}$ = 10 Hz to 100 kHz, $I_{\rm LOAD}$ = 100 mA $C_{\rm OUT}$ = 2.2 μF		50		μV _{RMS} /V _{OUT}
т.	Thermal shutdown			170		°C
^I SHDN	Hysteresis			10		

^{1.} For V_{OUT} <1.6 V; V_{IN} = 2.6 V

^{2.} Dropout voltage is the input-to-output voltage difference at which the output voltage is 100 mV below its nominal value. This specification does not apply to output voltages below 1.6 V

6 Application information

6.1 External capacitors

The LDF voltage regulator requires external ceramic capacitors to assure the control loop stability. These capacitors must be selected to meet the requirements of minimum capacitance and equivalent series resistance (see *figures 25, 26*). Input/output capacitors should be located as closer as possible to the relative pins.

6.1.1 Input capacitor

An input capacitor, whose minimum value is 1 μ F, must not be located farther than 0.5" from the input pin of the device and returned to a clean analog ground.

6.1.2 Output capacitor

Ceramic capacitors could be used on the output, provided that they must meet the minimum amount of capacitance and E.S.R. (equivalent series resistance) value required. 2.2 μ F is suggested as minimum capacitance to guarantee the stability of the regulator. Anyway, other C_{OUT} values can be used according to the *figures 25, 26* showing the allowable ESR range as a function of the output capacitance.

The output capacitor must maintain its ESR in the stable region over the full operating temperature range to assure stability. Besides, capacitor tolerance and temperature variation must be taken into account to assure the minimum amount of capacitance.

6.2 Enable pin operation

This pin can be used to turn OFF the regulator when it is pulled down, so to drastically reduce the current consumption. When the enable feature is not used, this pin must be tied to V_{IN} to keep the regulator output in ON state every time. To assure the proper operation, the signal source, used to drive the EN pin, must be able to swing above and below the specified thresholds listed in the electrical characteristics (V_{EN}). The EN pin must not be left floating because it is not internally pulled down/up.

6.3 Power Good

The LDF features an open drain PG pin to sequence either external supplies or loads and to provide fault detection. This pin requires an external resistor (R_{PG}) to pull Power Good high when the output is within the power-good tolerance window. Typical values for this resistor range from 10 k Ω to 100 k Ω .

Typical characteristics LDF

7 Typical characteristics

 C_{IN} = C_{OUT} = 1 μ F, V_{IN} = V_{OUT} +1 V, V_{EN} to V_{IN} , I_{OUT} = 10 mA, unless otherwise specified.

Figure 5. Output voltage vs. temperature, fixed version

5.20 5.15 5.10 5 V version, V_{IN} = V_{our} + 1 V, I_{OUT} = 10 mA

5 5.05 5 5.00 4.95 4.90 4.85 4.80 -50 -25 0 25 50 75 100 125 150 Temperature [°C]

Figure 6. Output voltage vs. temperature, adjustable version

Figure 7. Line regulation vs. temperature

12/34

Figure 8. Load regulation vs. temperature

Figure 9. Short-circuit current vs. dropout

Figure 10. Dropout voltage vs. temperature

Figure 11. Quiescent current vs. temperature, $I_{OUT} = 10 \text{ mA}$

Figure 12. Quiescent current vs. temperature, $I_{OUT} = 1 A$

Figure 13. Shutdown current vs. temperature

Figure 14. Enable pin current vs. temperature

Typical characteristics LDF

Figure 15. Enable high threshold vs. temperature

Figure 16. Enable low threshold vs. temperature

Figure 17. Output voltage vs. input voltage

Figure 18. Line transient

Figure 19. Load transient (V_{OUT} = 3.3 V)

Figure 20. Load transient $(V_{OUT} = V_{ADJ})$

Figure 21. Start-up transient

Figure 22. Enable transient

Figure 23. SVR vs. frequency $(V_{OUT} = 5 V)$

Figure 24. SVR vs. frequency $(V_{OUT} = V_{ADJ})$

Figure 25. Stability plane ADJ (C_{OUT}, ESR)

Figure 26. Stability plane 3.3 V (C_{OUT}, ESR)

8 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark.

Table 7. DPAK mechanical data

Dim.		mm	
Dilli.	Min.	Тур.	Max.
А	2.20		2.40
A1	0.90		1.10
A2	0.03		0.23
b	0.64		0.90
b4	5.20		5.40
С	0.45		0.60
c2	0.48		0.60
D	6.00		6.20
D1		5.10	
E	6.40		6.60
E1		4.70	
е		2.28	
e1	4.40		4.60
Н	9.35		10.10
L	1.00		1.50
(L1)		2.80	
L2		0.80	
L4	0.60		1.00
R		0.20	
V2	0°		8°

E -THERMAL PAD c2 *L2* $D^{\prime}1$ Н <u>b(</u>2x) R C SEATING PLANE <u>A2</u> (L1) *V2* GAUGE PLANE 0,25 0068772_K

Figure 27. DPAK drawings

Figure 28. DPAK footprint (a)

a. All dimensions are in millimeters.

Table 8. PPAK mechanical data

Dim		mm	
Dim.	Min.	Тур.	Max.
А	2.2		2.4
A1	0.9		1.1
A2	0.03		0.23
В	0.4		0.6
B2	5.2		5.4
С	0.45		0.6
C2	0.48		0.6
D	6		6.2
D1		5.1	
E	6.4		6.6
E1		4.7	
е		1.27	
G	4.9		5.25
G1	2.38		2.7
Н	9.35		10.1
L2		0.8	1
L4	0.6		1
L5	1		
L6		2.8	
R		0.20	
V2	0°		8°

"GATE" Note 6 Ε-THERMAL PAD B2-- E1 L2 D1 D L4 A 1 B (4x) Note 7 R С G SEATING PLANE Ľ6 L5 GAUGE PLANE 0,25 0078180_F

Figure 29. PPAK drawings

Table 9. DFN6-3x3 mechanical data

Dim.		mm	
Dilli.	Min.	Тур.	Max.
Α	0.80		1
A1	0	0.02	0.05
А3		0.20	
b	0.23		0.45
D	2.90	3	3.10
D2	2.23		2.50
E	2.90	3	3.10
E2	1.50		1.75
е		0.95	
L	0.30	0.40	0.50

BOTTOM VIEW D2 -EXPOSED PAD PIN 1 ID (6x) 5 | 4 **b** (6x) // 0.1 C -*A3* SEATING PLANE A1-Ċ O.08 C LEADS COPLANARITY E/2 PIN 1 ID -D/2-OP VIEW 7946637_C

Figure 30. DFN6-3x3 drawings

Figure 31. DFN6-3x3 footprint

Table 10.DFN6-2x2 mechanical data

Dim.	mm			
	Min.	Тур.	Max.	
А	0.80	0.90	1.00	
A1	0.00	0.02	0.05	
b	0.25	0.30	0.35	
D	2.00 BSC			
Е	2.00 BSC			
е	0.65 BSC			
D2	1.45	1.60	1.70	
E2	0.85	1.00	1.10	
L	0.20	0.25	0.30	
К	0.15			
aaa	0.05			
bbb	0.10			
ccc	0.10			
ddd	0.05			
eee	0.08			
N	6			

Figure 32. DFN6-2x2 drawings

Figure 33. DFN6-2x2 footprint

9 Packaging mechanical data

Table 11. PPAK and DPAK tape and reel mechanical data

Таре				Reel	
mm Dim		Dim.	mm		
Dim.	Min.	Max.	— Dim.	Min.	Max.
A0	6.8	7	А		330
В0	10.4	10.6	В	1.5	
B1		12.1	С	12.8	13.2
D	1.5	1.6	D	20.2	
D1	1.5		G	16.4	18.4
Е	1.65	1.85	N	50	
F	7.4	7.6	Т		22.4
K0	2.55	2.75			
P0	3.9	4.1		Base qty.	2500
P1	7.9	8.1		Bulk qty.	2500
P2	1.9	2.1			
R	40				
Т	0.25	0.35			
W	15.7	16.3			

Top cover tolerance on tape +/- 0.2 mm

Top cover tape

For machine ref. only including draft and radii concentric around B0

User direction of feed

Liser direction of feed

AM08852v1

Figure 34. PPAK and DPAK tape

Table 12. DFN6-3x3 tape and reel mechanical data

Dim.	mm			
	Min.	Тур.	Max.	
A0	3.20	3.30	3.40	
В0	3.20	3.30	3.40	
K0	1	1.10	1.20	

Figure 36. DFN6-3x3 tape

#0.5 #0.3

Figure 37. DFN6-3x3 reel

Table 13. DFN6-2x2 tape and reel mechanical data

Dim.	mm			
Dilli.	Min.	Тур.	Max.	
А			180	
С	12.8		13.2	
D	20.2			
N	60			
Т			14.4	
Ao		2.4		
Во		2.4		
Ко		1.3		
Ро		4		
Р		4		

Figure 38. DFN6-2x2 tape and reel

Order codes LDF

10 Order codes

Different output voltage versions of the LDF available on request:

Table 14. Device summary

Packages				Output voltages
PPAK	DPAK	DFN6-3x3	DFN6-2x2	Output voltages
LDF18PT-TR				1.8 V
LDF25PT-TR				2.5 V
LDF33PT-TR	LDF33DT-TR			3.3 V
LDFPT-TR		LDFPUR	LDFPVR	ADJ

LDF Revision history

11 Revision history

Table 15. Document revision history

Date	Revision	Changes
05-Dec-2013	1	Initial release.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2013 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

34/34 DocID025502 Rev 1

