Non-Dominated Sorting (Multi-Dimensional Sorting)

Sumit Mishra

Department of Computer Science & Engineering Indian Institute of Information Technology Guwahatai $4~\mathrm{April}~2019$ IIT Patna

Outline

- Non-Dominated Sorting
 - Motivation
 - Solution Representation
 - Dominance Relationship
 - Problem Definition
- 2 Approaches
 - Naive Approach
 - Efficient Non-Dominated Sort (ENS)
- Conclusions & Future Work

Outline

- Non-Dominated Sorting
 - Motivation
 - Solution Representation
 - Dominance Relationship
 - Problem Definition
- 2 Approaches
 - Naive Approach
 - Efficient Non-Dominated Sort (ENS)
- Conclusions & Future Work

Motivation

Ticket	Travel Time (in Hrs.)	Ticket Cost (In Thousand)
Tkt_1	1	1
Tkt ₂	1	2
Tkt ₃	3	1
Tkt ₄	2	3
Tkt ₅	4	2

Figure 1: Ticket Comparison

Outline

- Non-Dominated Sorting
 - Motivation
 - Solution Representation
 - Dominance Relationship
 - Problem Definition
- 2 Approaches
 - Naive Approach
 - Efficient Non-Dominated Sort (ENS)
- Conclusions & Future Work

Solution Representation

Solution Representation

A solution 'sol' in M-dimensional space is represented as

$$sol = \{f_1(sol), f_2(sol), \dots, f_M(sol)\}$$
 (1)

where $f_m(sol), 1 \le m \le M$ is the value of solution 'sol' in m^{th} dimension.

Representation of 5 solutions

$$sol_1 = \{1, 1\}$$

 $sol_2 = \{1, 2\}$
 $sol_3 = \{3, 1\}$
 $sol_4 = \{2, 3\}$
 $sol_5 = \{4, 2\}$

Figure 2 : Solutions in 2-dimensional space.

Outline

- Non-Dominated Sorting
 - Motivation
 - Solution Representation
 - Dominance Relationship
 - Problem Definition
- 2 Approaches
 - Naive Approach
 - Efficient Non-Dominated Sort (ENS)
- Conclusions & Future Work

DEFINITION: Dominance Relationship (for minimization problem)

A solution $sol_i = \{f_1(sol_i), f_2(sol_i), \dots, f_M(sol_i)\}$ dominates another solution $sol_j = \{f_1(sol_j), f_2(sol_j), \dots, f_M(sol_j)\}$ denoted as $sol_i \prec sol_j$ iff

- ② $f_m(sol_i) < f_m(sol_j)$ $\exists m \in \{1, 2, ..., M\}$

 sol_i and sol_j are non-dominated represented as $sol_i \leq sol_j$ iff neither $sol_i \prec sol_j$ nor $sol_j \prec sol_i$

In the Figure

DEFINITION: Dominance Relationship (for minimization problem)

A solution $sol_i = \{f_1(sol_i), f_2(sol_i), \dots, f_M(sol_i)\}$ dominates another solution $sol_j = \{f_1(sol_j), f_2(sol_j), \dots, f_M(sol_j)\}$ denoted as $sol_i \prec sol_j$ iff

- ② $f_m(sol_i) < f_m(sol_j)$ $\exists m \in \{1, 2, ..., M\}$

 sol_i and sol_j are non-dominated represented as $sol_i \leq sol_j$ iff neither $sol_i \prec sol_j$ nor $sol_j \prec sol_i$

In the Figure $sol_1 \prec \{sol_2, sol_3, sol_4, sol_5\}$

DEFINITION: Dominance Relationship (for minimization problem)

A solution $sol_i = \{f_1(sol_i), f_2(sol_i), \dots, f_M(sol_i)\}$ dominates another solution $sol_i = \{f_1(sol_i), f_2(sol_i), \dots, f_M(sol_i)\}$ denoted as $sol_i \prec sol_i$ iff

In the Figure
$$sol_1 \prec \{sol_2, sol_3, sol_4, sol_5\}$$
 $sol_2 \prec \{sol_4, sol_5\}$

DEFINITION: Dominance Relationship (for minimization problem)

A solution $sol_i = \{f_1(sol_i), f_2(sol_i), \dots, f_M(sol_i)\}$ dominates another solution $sol_j = \{f_1(sol_j), f_2(sol_j), \dots, f_M(sol_j)\}$ denoted as $sol_i \prec sol_j$ iff

In the Figure
$$sol_1 \prec \{sol_2, sol_3, sol_4, sol_5\}$$
 $sol_2 \prec \{sol_4, sol_5\}$ $sol_3 \prec \{sol_5\}$

DEFINITION: Dominance Relationship (for minimization problem)

A solution $sol_i = \{f_1(sol_i), f_2(sol_i), \dots, f_M(sol_i)\}$ dominates another solution $sol_j = \{f_1(sol_j), f_2(sol_j), \dots, f_M(sol_j)\}$ denoted as $sol_i \prec sol_j$ iff

- $f_m(sol_i) < f_m(sol_j) \quad \exists m \in \{1, 2, \dots, M\}$

In the Figure
$$sol_1 \prec \{sol_2, sol_3, sol_4, sol_5\}$$
 $sol_2 \prec \{sol_4, sol_5\}$ $sol_3 \prec \{sol_5\}$ $sol_2 \prec sol_3$

DEFINITION: Dominance Relationship (for minimization problem)

A solution $sol_i = \{f_1(sol_i), f_2(sol_i), \dots, f_M(sol_i)\}$ dominates another solution $sol_j = \{f_1(sol_j), f_2(sol_j), \dots, f_M(sol_j)\}$ denoted as $sol_i \prec sol_j$ iff

- $f_m(sol_i) < f_m(sol_j) \quad \exists m \in \{1, 2, \dots, M\}$

In the Figure
$$sol_1 \prec \{sol_2, sol_3, sol_4, sol_5\}$$
 $sol_2 \prec \{sol_4, sol_5\}$ $sol_3 \prec \{sol_5\}$ $sol_2 \preceq sol_3$ $sol_3 \prec sol_4$

DEFINITION: Dominance Relationship (for minimization problem)

A solution $sol_i = \{f_1(sol_i), f_2(sol_i), \dots, f_M(sol_i)\}$ dominates another solution $sol_i = \{f_1(sol_i), f_2(sol_i), \dots, f_M(sol_i)\}$ denoted as $sol_i \prec sol_i$ iff

- $f_m(sol_i) < f_m(sol_j) \quad \exists m \in \{1, 2, \dots, M\}$

 sol_i and sol_j are non-dominated represented as $sol_i \leq sol_j$ iff neither $sol_i \prec sol_j$ nor $sol_j \prec sol_i$

In the Figure $sol_1 \prec \{sol_2, sol_3, sol_4, sol_5\}$ $sol_2 \prec \{sol_4, sol_5\}$ $sol_3 \prec \{sol_5\}$ $sol_2 \preceq sol_3$ $sol_3 \preceq sol_4$ $sol_4 \prec sol_5$

$$\textit{sol}_i = \{1,1\} \quad \textit{sol}_j = \{1,5\}$$

$$\mathit{sol}_i = \{1,1\} \quad \mathit{sol}_j = \{1,5\}$$
 Relationship: $\mathit{sol}_i \prec \mathit{sol}_j$

Q1

$$\mathit{sol}_i = \{1,1\} \quad \mathit{sol}_j = \{1,5\}$$
 Relationship: $\mathit{sol}_i \prec \mathit{sol}_j$

$$\textit{sol}_i = \{1, 2, 1\} \quad \textit{sol}_j = \{1, 1, 1\}$$

Q1

$$sol_i = \{1, 1\}$$
 $sol_j = \{1, 5\}$
Relationship: $sol_i \prec sol_j$

$$sol_i = \{1, 2, 1\}$$
 $sol_j = \{1, 1, 1\}$
Relationship: $sol_j \prec sol_i$

Q1

$$sol_i = \{1, 1\}$$
 $sol_j = \{1, 5\}$
Relationship: $sol_i \prec sol_j$

Q2

$$sol_i = \{1, 2, 1\}$$
 $sol_j = \{1, 1, 1\}$
Relationship: $sol_j \prec sol_i$

$$sol_i = \{1, 2, 1\}$$
 $sol_j = \{1, 1, 2\}$

Q1

$$sol_i = \{1, 1\}$$
 $sol_j = \{1, 5\}$
Relationship: $sol_i \prec sol_j$

Q2

$$sol_i = \{1, 2, 1\}$$
 $sol_j = \{1, 1, 1\}$
Relationship: $sol_j \prec sol_i$

$$sol_i = \{1, 2, 1\}$$
 $sol_j = \{1, 1, 2\}$
Relationship: $sol_i \leq sol_i$

Q1

$$sol_i = \{1, 1\}$$
 $sol_j = \{1, 5\}$
Relationship: $sol_i \prec sol_j$

Q2

$$sol_i = \{1, 2, 1\}$$
 $sol_j = \{1, 1, 1\}$
Relationship: $sol_j \prec sol_i$

Q3

$$sol_i = \{1, 2, 1\}$$
 $sol_j = \{1, 1, 2\}$
Relationship: $sol_i \leq sol_j$

$$sol_i = \{4, 2, 1, 3\}$$
 $sol_i = \{1, 1, 2, 1\}$

Q1

$$sol_i = \{1, 1\}$$
 $sol_j = \{1, 5\}$
Relationship: $sol_i \prec sol_j$

Q2

$$sol_i = \{1, 2, 1\}$$
 $sol_j = \{1, 1, 1\}$
Relationship: $sol_j \prec sol_i$

Q3

$$sol_i = \{1, 2, 1\}$$
 $sol_j = \{1, 1, 2\}$
Relationship: $sol_i \leq sol_i$

$$sol_i = \{4, 2, 1, 3\}$$
 $sol_j = \{1, 1, 2, 1\}$
Relationship: $sol_i \leq sol_i$

Outline

- Non-Dominated Sorting
 - Motivation
 - Solution Representation
 - Dominance Relationship
 - Problem Definition
- 2 Approaches
 - Naive Approach
 - Efficient Non-Dominated Sort (ENS)
- Conclusions & Future Work

Non-Dominated Sorting

DEFINITION: Non-Dominated Sorting [1]

Given a set of N solutions $\{sol_1, sol_2, \ldots, sol_N\}$ in an M-dimensional space. Non-Dominated Sorting divides these solutions in $K(1 \le K \le N)$ different fronts $\{F_1, F_2, \ldots, F_K\}$ which are arranged in decreasing order of their dominance. The division of the solutions in fronts is such that

$$1 \le k \le K$$

$$2 \le k \le K$$

Figure 3: Solutions

Figure 4: Non-Dominated Fronts

Different Approaches

- Naive Approach [4]
- Oeductive Sort [3]

Outline

- Non-Dominated Sorting
 - Motivation
 - Solution Representation
 - Dominance Relationship
 - Problem Definition
- 2 Approaches
 - Naive Approach
 - Efficient Non-Dominated Sort (ENS)
- Conclusions & Future Work

Naive Approach: Basic Idea

- All the solutions belonging to a particular front are obtained together.
 - F₁ is obtained
 - F_2 is obtained
 - :
 - \bullet F_K is obtained
- Each solution is compared with all other solutions.
- The solutions which are not dominated by any other solution are assigned to the current front.

DEFINITION: Domination Count

Domination count of a solution 'sol' in population \mathbb{P} is the number of solutions in \mathbb{P} which dominates solution 'sol'.

In the Figure

DEFINITION: Domination Count

Domination count of a solution 'sol' in population \mathbb{P} is the number of solutions in \mathbb{P} which dominates solution 'sol'.

In the Figure Domination Count of $sol_1 = 0$

DEFINITION: Domination Count

Domination count of a solution 'sol' in population \mathbb{P} is the number of solutions in \mathbb{P} which dominates solution 'sol'.

In the Figure Domination Count of $sol_1 = 0$ Domination Count of $sol_2 = 1$

DEFINITION: Domination Count

Domination count of a solution 'sol' in population \mathbb{P} is the number of solutions in \mathbb{P} which dominates solution 'sol'.

In the Figure Domination Count of $sol_1 = 0$ Domination Count of $sol_2 = 1$ Domination Count of $sol_3 = 1$

DEFINITION: Domination Count

Domination count of a solution 'sol' in population \mathbb{P} is the number of solutions in \mathbb{P} which dominates solution 'sol'.

In the Figure Domination Count of $sol_1 = 0$ Domination Count of $sol_2 = 1$ Domination Count of $sol_3 = 1$ Domination Count of $sol_4 = 2$

DEFINITION: Domination Count

Domination count of a solution 'sol' in population \mathbb{P} is the number of solutions in \mathbb{P} which dominates solution 'sol'.

In the Figure Domination Count of $sol_1=0$ Domination Count of $sol_2=1$ Domination Count of $sol_3=1$ Domination Count of $sol_4=2$ Domination Count of $sol_5=3$

Working Example

- For solution sol₁
 - $sol_1 \prec \{sol_2, sol_3, sol_4, sol_5\}$
- For solution sol₂
 - $sol_2 \prec \{sol_4, sol_5\}$
 - $sol_2 \leq \{sol_3\}$
 - $sol_2 \succ \{sol_1\}$
- For solution sol₃
 - $sol_3 \prec \{sol_5\}$
 - $sol_3 \prec \{sol_2, sol_4\}$
 - $sol_3 \succ \{sol_1\}$
- For solution sol₄
 - $sol_4 \leq \{sol_3, sol_5\}$
 - $sol_4 \succ \{sol_1, sol_2\}$
- For solution sol₅
 - $sol_5 \leq \{sol_4\}$
 - $sol_5 \succ \{sol_1, sol_2, sol_3\}$

Figure 5 : Solutions

$$n_{sol_1} = 0$$
 $n_{sol_2} = 1$ $n_{sol_3} = 1$ $n_{sol_4} = 2$ $n_{sol_5} = 3$

Working Example ...

- For solution sol₂
 - $sol_2 \prec \{sol_4, sol_5\}$
 - $sol_2 \leq \{sol_3\}$
- For solution sol₃
 - $sol_3 \prec \{sol_5\}$
 - $sol_3 \leq \{sol_2, sol_4\}$
- For solution sol₄
 - $\bullet \ sol_4 \preceq \{sol_3, sol_5\}$
 - $sol_4 \succ \{sol_2\}$
- For solution sol₅
 - $sol_5 \leq \{sol_4\}$
 - $sol_5 \succ \{sol_2, sol_3\}$

Figure 6 : Solutions

$$\frac{n_{\text{sol}_2} = 0}{n_{\text{sol}_4} = 1} \quad \frac{n_{\text{sol}_3} = 0}{n_{\text{sol}_5} = 2}$$

- For solution sol₄
 - $sol_4 \leq \{sol_5\}$
- For solution sol₅
 - $sol_5 \leq \{sol_4\}$

Figure 7: Solutions

$$n_{\mathsf{sol}_4} = 0 \quad n_{\mathsf{sol}_5} = 0$$

Figure 8: Non-Dominated Fronts

Complexity Analysis

Space Complexity

- Domination count of each of the solutions is stored.
- Initially, the number of solutions is N.
- Space complexity = $\mathcal{O}(N)$

Time Complexity

- Each solution is compared with all other solutions.
 - Time required = $\mathcal{O}(MN^2)$
- This process may be repeated -
 - Minimum 1 time: When N solutions are in single fronts.
 - Maximum N times: When N solutions are in N different fronts.
- Time complexity
 - Best Case = $\mathcal{O}(MN^2)$
 - Worst Case = $\mathcal{O}(MN^3)$

Complexity Analysis

Space Complexity

- Domination count of each of the solutions is stored.
 - Storage requirement = $\mathcal{O}(N)$
- The set of solutions dominated by all the solutions is stored.
 - Storage requirement = $\mathcal{O}(N^2)$
- Space complexity = $\mathcal{O}(N^2)$

Time Complexity

- Each solution is compared with all other solutions exactly once.
 - Time required = $\mathcal{O}(MN^2)$
- The set of dominated solutions are traversed once and domination count value is reduced.
 - Time required -
 - When N solutions are in single fronts: $\mathcal{O}(N)$
 - When N solutions are in N different fronts: $\mathcal{O}(N^2)$
- Total time complexity = $\mathcal{O}(MN^2)$

Outline

- Non-Dominated Sorting
 - Motivation
 - Solution Representation
 - Dominance Relationship
 - Problem Definition
- 2 Approaches
 - Naive Approach
 - Efficient Non-Dominated Sort (ENS)
- Conclusions & Future Work

Efficient Non-Dominated Sort: Basic Idea

- Various approaches usually compare a solution with all other solutions in the population before assigning it to a front.
- ENS compares the solutions with only those solutions that have already been assigned to a front.

Efficient Non-Dominated Sort

FIRST PHASE: Pre-Sorting

The solutions are sorted in ascending order based on the objective [2]. **Advantage:** When two solutions sol_i and sol_j , $i > j, 1 \le i, j \le N$ are compared, only two possibilities

- sol_i is non-dominated with sol_j
- sol_i is dominated by sol_i.

SECOND PHASE: Assignment

Sorted solutions are assigned to their respective front.

Working Example

Solution	Objectives
sol_1	1,1
sol ₂	1,2
sol ₃	3,1
sol ₄	2,3
sol ₅	4,2

Solution	Objectives
sol_1	1,1
sol ₂	1,2
sol ₄	2,3
sol ₃	3,1
sol ₅	4,2

(a)

(b)

Table 1: (a). A set of 5 solutions where two objectives are associate with each solution. (b). Solutions in sorted order based on objectives.

Figure 9: Solutions

• $F_1 = \{sol_1\}$

Solution	Objectives
sol ₂	1,2
sol ₄	2,3
sol ₃	3,1
sol ₅	4,2

Table 2: Un-assigned Solutions

Figure 10: Solutions

- $F_1 = \{sol_1\}$
- $F_2 = \{sol_2\}$

Solution	Objectives
sol ₄	2,3
sol ₃	3,1
sol ₅	4,2

Table 3: Un-assigned Solutions

Figure 11: Solutions

- $F_1 = \{sol_1\}$
- $F_2 = \{sol_2\}$
- $F_3 = \{sol_4\}$

Solution	Objectives
sol ₃	3,1
sol ₅	4,2

Table 4: Un-assigned Solutions

Figure 12: Solutions

- $F_1 = \{sol_1\}$
- $F_2 = \{sol_2, sol_3\}$
- $F_3 = \{sol_4\}$

Solution	Objectives
sol ₅	4,2

Table 5: Un-assigned Solutions

Figure 13: Solutions

•
$$F_1 = \{sol_1\}$$

•
$$F_2 = \{sol_2, sol_3\}$$

•
$$F_3 = \{sol_4, sol_5\}$$

Figure 14: Non-Dominated Fronts

Searching Techniques

To assign solution to a front, two search techniques can be used -

- Sequential search
- Binary search

Sequential

To obtain the position of un-assigned solution, sequential search is used in the sorted set of fronts.

Binary

To obtain the position of un-assigned solution, binary search is used in the sorted set of fronts.

Sequential Search Based Technique

- $F_1 = \{sol_1\}$
- $F_2 = \{sol_2, sol_3\}$
- $F_3 = \{sol_4\}$

Solution	Objectives
sol ₅	4,2

Table 6: Un-assigned Solutions

Figure 15 : Solutions

Sequential Search

Solution sol_5 is compared with the solutions of F_1, F_2, F_3 in a sequential manner. Order of comparison –

- F₁
- F₂
- F₃

Binary Search Based Technique

- $F_1 = \{sol_1\}$
- $F_2 = \{sol_2, sol_3\}$
- $F_3 = \{sol_4\}$

Solution	Objectives
sol ₅	4,2

Table 7: Un-assigned Solutions

Figure 16: Solutions

Binary Search

Solution sol_5 is first compared with F_2 and then depending on the dominance relationship of sol_5 with the solutions of F_2 , sol_5 is compared with either F_1 or F_3 . Order of comparison –

- F₂
- F₃

Efficient Non-Dominated Sort

Based on sequential search and binary search technique, there are two approaches derived from ENS:

- ENS-SS: Efficient Non-Dominated Sort Based on Sequential Search
- ENS-BS: Efficient Non-Dominated Sort Based on Binary Search

Complexity Analysis: First Phase

- Solutions are sorted based on the objective.
- Heap sort is used: $\mathcal{O}(N \log N)$
- While comparing two solutions minimum 1 and maximum M objective may be considered.
- Time Complexity:
 - Best Case: $\mathcal{O}(N \log N)$
 - Worst Case: $O(MN \log N)$

Complexity Analysis: Second Phase

- A solution sol_i belongs to front F_k , iff
 - Condition 1: sol_i is dominated by at-least one solution belonging to fronts $F_1, F_2, \ldots, F_{k-1}$.
 - Condition 2: sol_i is non-dominated with all the previous solutions of front F_k.
- Both these conditions are considered to obtain the time complexity.

Complexity Analysis of ENS-SS: Worst case

All the solutions are in single front

- Condition 1: Not Applicable
- Condition 2:

No. of dominance comparisons $= 0 + 1 + 2 + \ldots + (N-1)$

$$=\sum_{i=1}^{N}(i-1)=\frac{1}{2}N(N-1) \qquad (2)$$

All the solutions are in different fronts

Condition 1:

No. of dominance comparisons = 0 + 1 + 2 + ... + (N - 1)

$$=\sum_{k=1}^{N}(k-1)=\frac{1}{2}N(N-1) \quad (3)$$

• Condition 2: Not Applicable

Complexity Analysis of ENS-SS: Best case

N solutions are equally divided into \sqrt{N} fronts¹

Condition 1:

No. of dominance comparisons
$$=\sum_{k=1}^{\sqrt{N}}(k-1)\sqrt{N}=\frac{1}{2}N(\sqrt{N}-1)$$
 (4)

Condition 2:

No. of dominance comparisons
$$= \sum_{k=1}^{\sqrt{N}} \left[0 + 1 + 2 + \ldots + (\sqrt{N} - 1) \right]$$
$$= \frac{1}{2} N(\sqrt{N} - 1) \tag{5}$$

Total no. of dominance comparisons
$$=\frac{1}{2}N(\sqrt{N}-1)+\frac{1}{2}N(\sqrt{N}-1)$$
 $=N(\sqrt{N}-1)$ (6)

Complexity Analysis of ENS-BS

Worst Case: All the solutions are in single front

- Condition 1: Not Applicable
- Condition 2:

No. of dominance comparisons
$$=0+1+2+\ldots+(N-1)$$

$$=\frac{1}{2}N(N-1) \tag{7}$$

Best Case: All the solutions are in different fronts

Condition 1:

No. of dominance comparisons
$$= \sum_{k=1}^{N} \lceil \log k \rceil = N \log N - (N-1)$$
$$= \mathcal{O}(N \log N) \tag{8}$$

• Condition 2: Not Applicable

Complexity of ENS-SS and ENS-BS: Summary

ENS-SS

• Worst Case: $\mathcal{O}(MN^2)$

• Best Case: $\mathcal{O}(MN\sqrt{N})$

ENS-BS

• Worst Case: $\mathcal{O}(MN^2)$

• Best Case: $\mathcal{O}(MN \log N)$

Working Example in Different Scenarios

- N solutions in single front
- N solutions in N fronts

Solution	Objectives
sol_1	1,8
sol ₂	2,7
sol ₃	3,6
sol ₄	4,5
sol ₅	5,4
sol ₆	6,3
sol ₇	7,2
sol ₈	8,1

Solution	Objectives
sol ₁	1,8
sol ₂	2,7
sol ₃	3,6
sol ₄	4,5
sol ₅	5,4
sol ₆	6,3
sol ₇	7,2
sol ₈	8,1
	•

(a)

(b)

Table 8: (a). A set of 8 solutions where two objectives are associate with each solution. (b). Solutions in sorted order based on objectives.

Figure 17: Solutions

• $F_1 = \{sol_1\}$

Solution	Objectives
sol ₂	2,7
sol ₃	3,6
sol ₄	4,5
sol ₅	5,4
sol ₆	6,3
sol ₇	7,2
sol ₈	8,1

Table 9: Un-assigned Solutions

Figure 18: Solutions

• $F_1 = \{sol_1, sol_2\}$

Solution	Objectives
sol ₃	3,6
sol ₄	4,5
sol ₅	5,4
sol ₆	6,3
sol ₇	7,2
sol ₈	8,1

Table 10: Un-assigned Solutions

Figure 19: Solutions

• $F_1 = \{sol_1, sol_2, sol_3\}$

Solution	Objectives
sol ₄	4,5
sol ₅	5,4
sol ₆	6,3
sol ₇	7,2
sol ₈	8,1

Table 11: Un-assigned Solutions

Figure 20: Solutions

 $\bullet \ F_1 = \{sol_1, sol_2, sol_3, sol_4\}$

Solution	Objectives
sol ₅	5,4
sol ₆	6,3
sol ₇	7,2
sol ₈	8,1

Table 12: Un-assigned Solutions

Figure 21: Solutions

 $\bullet \ F_1 = \{\mathit{sol}_1, \mathit{sol}_2, \mathit{sol}_3, \mathit{sol}_4, \mathit{sol}_5\}$

Solution	Objectives
sol ₆	6,3
sol ₇	7,2
sol ₈	8,1

Table 13: Un-assigned Solutions

Figure 22: Solutions

• $F_1 = \{sol_1, sol_2, sol_3, sol_4, sol_5, sol_6\}$

Solution	Objectives
sol ₇	7,2
sol ₈	8,1

Table 14: Un-assigned Solutions

Figure 23: Solutions

• $F_1 = \{sol_1, sol_2, sol_3, sol_4, sol_5, sol_6, sol_7\}$

Solution	Objectives
sol ₈	8,1

Table 15: Un-assigned Solutions

Figure 24: Solutions

• $F_1 = \{sol_1, sol_2, sol_3, \dots, sol_7, sol_8\}$

Figure 25 : Non-Dominated Fronts

Working Example: N Solutions in N Fronts

Solution	Objectives
sol_1	1,1
sol ₂	2,2
sol ₃	3,3
sol ₄	4,4
sol ₅	5,5
sol ₆	6,6
sol ₇	7,7
sol ₈	8,8

Solution	Objectives
sol_1	1,1
sol ₂	2,2
sol ₃	3,3
sol ₄	4,4
sol ₅	5,5
sol ₆	6,6
sol ₇	7,7
sol ₈	8,8

(b)

Table 16: (a). A set of 8 solutions where two objectives are associate with each solution. (b). Solutions in sorted order based on objectives.

Figure 26: Solutions

• $F_1 = \{sol_1\}$

Solution	Objectives
sol ₂	2,7
sol ₃	3,6
sol ₄	4,5
sol ₅	5,4
sol ₆	6,3
sol ₇	7,2
sol ₈	8,1

Table 17: Un-assigned Solutions

Figure 27: Solutions

- $F_1 = \{sol_1\}$
- $F_2 = \{sol_2\}$

Solution	Objectives
sol ₃	3,6
sol ₄	4,5
sol ₅	5,4
sol ₆	6,3
sol ₇	7,2
sol ₈	8,1

Table 18: Un-assigned Solutions

Figure 28: Solutions

- $F_1 = \{sol_1\}$
- $F_2 = \{sol_2\}$
- $F_3 = \{sol_3\}$

Solution	Objectives
sol ₄	4,5
sol ₅	5,4
sol ₆	6,3
sol ₇	7,2
sol ₈	8,1

Table 19: Un-assigned Solutions

Figure 29: Solutions

•
$$F_1 = \{sol_1\}$$

•
$$F_2 = \{sol_2\}$$

•
$$F_3 = \{sol_3\}$$

•
$$F_4 = \{sol_4\}$$

Solution	Objectives
sol ₅	5,4
sol ₆	6,3
sol ₇	7,2
sol ₈	8,1

Table 20: Un-assigned Solutions

Figure 30: Solutions

•
$$F_1 = \{sol_1\}$$

•
$$F_2 = \{sol_2\}$$

•
$$F_3 = \{sol_3\}$$

•
$$F_4 = \{sol_4\}$$

•
$$F_5 = \{sol_5\}$$

Solution	Objectives
sol ₆	6,3
sol ₇	7,2
sol ₈	8,1

Table 21: Un-assigned Solutions

Figure 31: Solutions

•
$$F_1 = \{sol_1\}$$

•
$$F_2 = \{sol_2\}$$

•
$$F_3 = \{sol_3\}$$

•
$$F_4 = \{sol_4\}$$

•
$$F_5 = \{sol_5\}$$

•
$$F_6 = \{sol_6\}$$

Solution	Objectives
sol ₇	7,2
sol ₈	8,1

Table 22: Un-assigned Solutions

Figure 32: Solutions

•
$$F_1 = \{sol_1\}$$

•
$$F_2 = \{sol_2\}$$

•
$$F_3 = \{sol_3\}$$

•
$$F_4 = \{sol_4\}$$

•
$$F_5 = \{sol_5\}$$

•
$$F_6 = \{sol_6\}$$

•
$$F_7 = \{sol_7\}$$

Solution	Objectives
sol ₈	8,1

Table 23: Un-assigned Solutions

Figure 33: Solutions

•
$$F_1 = \{sol_1\}$$

•
$$F_2 = \{sol_2\}$$

•
$$F_3 = \{sol_3\}$$

•
$$F_4 = \{sol_4\}$$

•
$$F_5 = \{sol_5\}$$

•
$$F_6 = \{sol_6\}$$

•
$$F_7 = \{sol_7\}$$

•
$$F_8 = \{sol_8\}$$

Figure 34: Non-Dominated Fronts

Conclusions

 Discussed non-dominated sorting problem and various approaches to solve it.

Conclusions

• Discussed non-dominated sorting problem and various approaches to solve it.

Future Research Direction

• Parallel non-dominated sorting approaches.

Conclusions

 Discussed non-dominated sorting problem and various approaches to solve it.

- Parallel non-dominated sorting approaches.
- Develop an efficient approach specially for small number of fronts.

Conclusions

 Discussed non-dominated sorting problem and various approaches to solve it.

- Parallel non-dominated sorting approaches.
- Develop an efficient approach specially for small number of fronts.
- Efficient handling of duplicate solutions.

Conclusions

 Discussed non-dominated sorting problem and various approaches to solve it.

- Parallel non-dominated sorting approaches.
- Develop an efficient approach specially for small number of fronts.
- Efficient handling of duplicate solutions.
- Efficiently find the dominance relationship between the solutions.

Conclusions

 Discussed non-dominated sorting problem and various approaches to solve it.

- Parallel non-dominated sorting approaches.
- Develop an efficient approach specially for small number of fronts.
- Efficient handling of duplicate solutions.
- Efficiently find the dominance relationship between the solutions.
- Develop approximate non-dominated sorting approaches.

Conclusions

 Discussed non-dominated sorting problem and various approaches to solve it.

- Parallel non-dominated sorting approaches.
- Develop an efficient approach specially for small number of fronts.
- Efficient handling of duplicate solutions.
- Efficiently find the dominance relationship between the solutions.
- Develop approximate non-dominated sorting approaches.
- Find the lower bound on the time complexity of non-dominated sorting.

References I

- Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and T. Meyarivan.
 A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II.
 IEEE Transactions on Evolutionary Computation, 6(2):182–197, April 2002.
- [2] Mikkel T. Jensen. Reducing the Run-Time Complexity of Multiobjective EAs: The NSGA-II and Other Algorithms. IEEE Transactions on Evolutionary Computation, 7(5):503–515. October 2003.
- [3] Kent McClymont and Ed Keedwell. Deductive Sort and Climbing Sort: New Methods for Non-Dominated Sorting. Evolutionary Computation, 20(1):1–26, Spring 2012.
- [4] N. Srinivas and Kalyanmoy Deb.
 Multiobjective Optimization Using Nondominated Sorting in Genetic Algorithms. *Evolutionary Computation*, 2(3):221–248, Fall 1994.

Thank you!

