

Statistical Geophysics

Chapter 2

Inferential Statistics 1

Parameter estimation

- We will be studying problems of statistical inference.
- Many problems of inference have been dichotomized into two areas: estimation of parameters and tests of hypotheses.
- Parameter estimation: Let X be a random variable, whose density is $f_X(x;\theta)$, where the form of the density is assumed known except that it contains an unknown parameter θ .
- The problem is then to use the observed values x_1, \ldots, x_n of a random sample X_1, \ldots, X_n to estimate the value of θ or the value of some function of θ , say $\tau(\theta)$.

Estimator and estimate

- Any statistic $T = g(X_1, ..., X_n)$ whose values are used to estimate θ is defined to be an estimator of θ .
- That is, T is a known function of observable random variables that is itself a random variable.
- An estimate is the realized value $t = g(x_1, \dots, x_n)$ of an estimator, which is a function of the realized values x_1, \dots, x_n .
- Example: $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$ is an estimator of a mean μ and \bar{x}_n is an estimate of μ . Here, T is \bar{X}_n , t is \bar{x}_n and $g(\cdot)$ is the function defined by summing the arguments and then dividing by n.

Inferential Statistics 1

Estimation by Maximum Likelihood

Background

- In 1921, R. A. Fisher pointed out an attractive rationale, called maximum likelihood (ML), for estimating parameters.
- This procedure says one should examine the likelihood function of the sample values and take as the estimates of the unknown parameters those values that maximize this likelihood function.
- ML is unifying concept to cover a broad range of problems.
- It is generally accepted as the best rationale to apply in estimating parameters, when one is willing to assume the form of the population probability law is known.

Likelihood function

• If X_1, \ldots, X_n are an i.i.d. sample from a population with pdf or pmf $f(x|\theta)$, the likelihood function is defined by

$$L(\theta) = L(\theta|x_1,\ldots,x_n) = \prod_{i=1}^n f(x_i|\theta) .$$

• Maximum likelihood principle: Given $x_1, ..., x_n$ take as the estimate of θ the value $\hat{\theta}$ that maximizes the likelihood, that is,

$$L(\hat{\theta}) = \max_{\alpha} L(\theta)$$
.

• The value $\hat{\theta}$ that maximizes the likelihood is called the maximum likelihood estimate (MLE) for θ .

Log-likelihood and score function

 It is often more convenient to work with the logarithm of the likelihood function, called the log-likelihood:

$$I(\theta) = \ln L(\theta) = \sum_{i=1}^{n} \ln f(x_i|\theta)$$
.

• If the log-likelihood is differentiable (in θ), possible candidates for the MLE are the values that solve

$$s(\theta) = \frac{\partial}{\partial \theta} I(\theta) = 0$$
.

• The first derivative of the log-likelihood is called the score function.

- Let x_1, \ldots, x_n be realizations from $X_i \overset{i.i.d.}{\sim} \mathcal{P}(\lambda)$ $(i = 1, \ldots, n)$ with unknown parameter λ .
- ullet The aim is to estimate λ by maximum likelihood.
- Likelihood function:

$$L(\lambda) = f(x_1, \dots, x_n | \lambda)$$

$$= f(x_1 | \lambda) \cdots f(x_n | \lambda)$$

$$= \prod_{i=1}^n f(x_i | \lambda)$$

$$= \prod_{i=1}^n \left(\frac{\lambda^{x_i}}{x_i!} \exp(-\lambda) \right) .$$

Numerical optimization

Newton-Raphson method

- Suppose that we want to approximate the solution to $s(\theta) = 0$.
- Let us also suppose that we have somehow found an initial approximation to this solution, say $\theta^{(0)}$.
- If $\theta^{(k)}$ is an approximation to $s(\theta) = 0$ and if $s'(\theta^{(k)}) \neq 0$, the next approximation is given by

$$\theta^{(k+1)} = \theta^{(k)} - \frac{1}{s'(\theta^{(k)})} \cdot s(\theta^{(k)})$$
.

 This iterative scheme continues until a prespecified convergence criterion is met.

Other estimation methods

- The method of moments uses sample moments to estimate the parameters of an assumed probability law.
- Least squares estimation minimizes the sum of the squares of the deviations of the observed values and the fitted values.
- Bayesian estimation is based on combining the evidence contained in the data with prior knowledge, based on subjective probabilities, of the values of unknown parameters.

Inferential Statistics 1

Properties of Estimators

Evaluating estimators

- We have outlined reasonable techniques for finding out estimators of parameters.
- Are some of many possible estimators better in some sense, than others?
- When we are faced with the choice of two or more estimators for the same parameter, it becomes important to develop criteria for comparing them.
- We will now define certain properties, which an estimator may or may not possess, that will help us in deciding whether one estimator is better than another.

Unbiasedness

Definition:

• An estimator $T = g(X_1, \dots, X_n)$ is defined to be an unbiased estimator of an unknown parameter θ if and only if

$$\mathsf{E}(T) = \theta$$
 for all values of θ .

- The difference $E(T) \theta$ is called the bias of T and can be either positive, negative, or zero.
- An estimator T of θ is said to be asymptotically unbiased if

$$\lim_{T\to\infty}\mathsf{E}(T)=\theta \ .$$

Precision of estimation

- For observations x_1, \ldots, x_n an estimator T yields an estimate $t = g(x_1, \ldots, x_n)$.
- In general, the estimate will not be equal to θ .
- For unbiased estimators the precision of the estimation method is captured by the variance of the estimator, Var(T).
- The square root of Var(T) (the standard deviation of T) is called the standard error, which in general has to be estimated itself.

Lower bound for variance

• Let X be a random variable with density $f(x, \theta)$. Under certain regularity conditions:

$$Var(T) \ge \frac{1}{n E\left[\left(\frac{\partial}{\partial \theta} \ln f(x, \theta)\right)^2\right]}$$
,

where T is an unbiased estimator of θ .

• The equation above is called the Cramér-Rao inequality, and the right-hand side is called the Cramér-Rao lower bound for the variance of unbiased estimators of θ .

Mean-squared error

Definition:

• The mean-squared error (MSE) of $T = g(X_1, ..., X_n)$ (as an estimator for θ) is

$$MSE(T) = E[(T - \theta)^2] = Var(T) + (E(T) - \theta)^2.$$

• Suppose T is an unbiased estimator of θ , then MSE(T) = Var(T).

Consistency

Definition:

• Let $T = g(X_1, ..., X_n)$ be an estimator for θ . Then, T is a consistent estimator for θ if

$$\lim_{n o \infty} \mathsf{P}(|\mathit{T} - \theta| \geq \epsilon) = \mathsf{0} \ \ \mathsf{for any} \ \epsilon > \mathsf{0} \ \ .$$

From the Chebyshev inequality we know that

$$P(|T - \theta| \ge \epsilon) \le \frac{1}{\epsilon^2} E[(T - \theta)^2]$$

= $\frac{1}{\epsilon^2} MSE(T)$.

• It follows that if MSE(T) \to 0 as $n \to \infty$, then T is consistent.

Efficiency

Definition:

• If T_1 and T_2 are two estimators of θ , then T_1 is more efficient than T_2 if

$$MSE(T_1) \leq MSE(T_2)$$
 for any value of θ

with strict inequality holding somewhere.

• For two unbiased estimators T_1 and T_2 of θ , T_1 is more efficient than T_2 if

$$Var(T_1) \leq Var(T_2)$$
 for any value of θ

with strict inequality holding somewhere.

Inferential Statistics 1

Confidence Intervals

Interval estimation

- So far, we have dealt with the point estimation of a parameter.
- It seems desirable that a point estimate should be accompanied by some measure of the possible error of the estimate.
- We might make the inference of estimating that the true value of the parameter is contained in some interval.
- Interval estimation: Define two statistics $T_1 = g_1(X_1, \ldots, X_n)$ and $T_2 = g_2(X_1, \ldots, X_n)$, where $T_1 \le T_2$, so that $[T_1, T_2]$ constitutes an interval for which the probability can be determined that it contains the unknown θ .

Confidence interval

Definition:

• Given a random sample X_1, \ldots, X_n let $T_1 = g_1(X_1, \ldots, X_n)$ and $T_2 = g_2(X_1, \ldots, X_n)$ be two statistics satisfying $T_1 \leq T_2$ for which

$$P(T_1 \le \theta \le T_2) = 1 - \alpha .$$

- Then the random interval $[T_1, T_2]$ is called a (1α) -confidence interval for θ .
- 1 $-\alpha$ is called the confidence coefficient and T_1 and T_2 are called the lower and upper confidence limits, respectively.
- A value $[t_1, t_2]$, where $t_j = g_j(x_1, \dots, x_n)$ (j = 1, 2) is an observed (1α) -confidence interval for θ .

One-sided confidence interval

Definition:

• Let $T_1 = -\infty$ and $T_2 = g_2(X_1, \dots, X_n)$ be a statistic for which

$$P(\theta \le T_2) = 1 - \alpha .$$

- Then T_2 is called a one-sided upper confidence limit for θ .
- Similarly, let $T_2 = \infty$ and $T_1 = g_1(X_1, \dots, X_n)$ be a statistic for which

$$P(T_1 \leq \theta) = 1 - \alpha$$
.

• Then T_1 is called a one-sided lower confidence limit for θ .

Confidence intervals for the mean (σ^2 known)

100(1 $-\alpha$) %-confidence interval for μ (scenario σ^2 known)

• For a normally distributed random variable *X*:

$$\left[\bar{X}-z_{1-\alpha/2}\frac{\sigma}{\sqrt{n}},\bar{X}+z_{1-\alpha/2}\frac{\sigma}{\sqrt{n}}\right] \ .$$

• For an arbitrarily distributed random variable X and n > 30,

$$\left[\bar{X} - z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}, \bar{X} + z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}\right]$$

is an approximate confidence interval for μ .

• For $0 , <math>z_p$ is the p-quantile of the standard normal distribution, that is, it is the value for which $F(z_p) = \Phi(z_p) = p$. Hence, $z_p = \Phi^{-1}(p)$.

Confidence intervals for the mean (σ^2 unknown)

100(1 $-\alpha$) %-confidence interval for μ (scenario σ^2 unknown)

• For a normally distributed random variable *X*:

$$\left[\bar{X} - t_{1-\alpha/2}(n-1)\frac{S}{\sqrt{n}}, \bar{X} + t_{1-\alpha/2}(n-1)\frac{S}{\sqrt{n}}\right] \ ,$$

where $S = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2}$ and $t_{1-\alpha/2}(n-1)$ being the $(1-\alpha/2)$ -quantile of the *t*-distribution with n-1 degrees of freedom.

• For an arbitrarily distributed random variable X and n > 30,

$$\left[\bar{X} - z_{1-\alpha/2} \frac{S}{\sqrt{n}}, \bar{X} + z_{1-\alpha/2} \frac{S}{\sqrt{n}}\right]$$

is an approximate confidence interval for μ .

Confidence intervals for the variance

 $100(1-\alpha)$ %-confidence interval for σ^2

• For a normally distributed random variable *X*:

$$\left[\frac{(n-1)S^2}{\chi^2_{1-\alpha/2}(n-1)}, \frac{(n-1)S^2}{\chi^2_{\alpha/2}(n-1)}\right] ,$$

where $\chi^2_{1-\alpha/2}(n-1)$ and $\chi^2_{\alpha/2}(n-1)$ denote the $(1-\alpha/2)$ -quantile and $(\alpha/2)$ -quantile, respectively, of the chi-square distribution with n-1 degrees of freedom.

Confidence interval for a proportion

100(1 $-\alpha$) %-confidence interval for π

• In dichotomous populations and for n > 30, an approximate confidence interval for $\pi = P(X = 1)$ is given by

$$\left[\hat{\pi} - z_{1-\alpha/2}\sqrt{\frac{\hat{\pi}(1-\hat{\pi})}{n}}, \hat{\pi} + z_{1-\alpha/2}\sqrt{\frac{\hat{\pi}(1-\hat{\pi})}{n}}\right] ,$$

where $\hat{\pi} = \bar{X}$ denotes the relative frequency.