Lecture 9: Reinforcement Learning

Simon Parsons

School of Computer Science University of Lincoln

Version 1.1

FACE COVERINGS HELP KEEP OUR COMMUNITY SAFE

TAKE REGULAR LATERAL FLOW TESTS AND PROTECT YOUR FRIENDS

Vaccinate

IF YOU HAVE SYMPTOMS, SELF ISOLATE

Today

- Quantifying uncertainty
 - Intro to probability, etc.
- Probabilistic reasoning
 - Bayesian networks, causal inference, etc.
- Making complex decisions
 - Intro to complex decision making
 - Markov Decision Processes
 - Reinforcement learning
- Reasoning over time
 - · Hidden Markov Models, etc.
- Strategic reasoning
 - Game theory

Recap

- Markov Decision Processes (MDPs) is/are a method that can be used to make decisions when actions are non-deterministic.
- Decisions about what to do.
- Sequential decision problems
 Sequences of decisions.
- Use probability and expectation.

Recap II

- MDP components.
- State space:

Recap III

- MDP components.
- Reward:

	1	2	3	4
1	-0.04	-0.04	-0.04	-0.04
2	-0.04		-0.04	-1
3	-0.04	-0.04	-0.04	+1

• Intrinsic value of each state.

Recap IV

- MDP components.
- Motion model:

 For every state/action combination, how likely are we to get to every other state.

Recap IV

• From these we compute *utilities*, *value iteration*.

3	0.812	0.868	0.918	+1
2	0.762		0.660	-1
1	0.705	0.655	0.611	0.388
,	1	2	3	4

How good each state is in the context of the whole world.

Recap V

• From utilities we extract the *policy*

· What to do in each state.

Recap VI: Utility to policy?

How do we get policies from utilities?

Recap VII: Utility to policy?

 The right answer is by picking the action with the highest expected utility.

Recap VIII: Policy iteration

- The utilities are only helpful in getting us to the policy
- We can also go direct policy iteration.

Limitations of MDPs?

(Pendleton Ward/Cartoon Network)

- MDPs made the assumption that the environment was fully observable.
 - · Agent always knows what state it is in.
- The optimal policy only depends on the current state.
- Not the case in the real world.
 - We only have a belief about the current state.
- POMDPs extend the model to deal with partial observability.

Basic addition to the MDP model is the sensor model:

probability of perceiving evidence *e* in state *s*.

- As a result of noise in the sensor model, the agent only has a belief about which state it is in.
- Probability distribution over the possible states.

"The world is a POMDP"

(b)

 $P(S): P(s_{1,1}) = 0.05, P(s_{1,2}) = 0.01, \dots$

 The agent can compute its current belief as the conditional probability distribution over the states given the sequence of actions and percepts so far.

- The agent can compute its current belief as the conditional probability distribution over the states given the sequence of actions and percepts so far.
- We will come across this task again in temporal probabilistic reasoning.
- Filtering.
- Computing the state that matches best with a stream of evidence.

 If b(s) was the distribution before an action and an observation, then afterwards the distribution is:

$$b'(s') = \alpha P(e|s') \sum_{s} P(s'|s, a) b(s)$$

- Everything in a POMDP hinges on the belief state b.
 - Including the optimal action.
- Indeed, the optimal policy is a mapping $\pi^*(b)$ from beliefs to actions.
 - "If you think you are next to the wall, turn left"
- The agent executes the optimal action given its beliefs, receives a percept e and then recomputes the belief state.

- The big issue in solving POMDPs is that beliefs are continuous.
- When we solved MDPs, we could search through the set of possible actions in each state to find the best.
- To solve a POMDP, we need to look through the possible actions for each belief state.
 But belief is continuous, so there are a lot of belief states.
- Exact solutions to POMDPs are intractable for even small problems (like the example we have been using).
- Need (once again) to use approximate techniques.

Reinforcement Learning

- What happens if we don't know the components of the (PO)MDP?
 - State space
 - Motion model
 - Rewards and utilities.
- We learn them.
- This is the domain of reinforcement learning (RL).
- Learning through trial and error.

RL in a nutshell

(Pendleton Ward/Cartoon Network)

• Agent learns utility $U^{\pi}(s)$ by carrying out runs through the environment, following some policy π .

(Pendleton Ward/Cartoon Network)

- In passive reinforcement learning the agent's policy is fixed.
- Agent doesn't make a choice about how to act.

 We think of agents performing runs through the state space, like this:

$$\begin{split} (1,1)_{-0.04} &\to (1,2)_{-0.04} \to (1,3)_{-0.04} \to \\ (1,2)_{-0.04} &\to (1,3)_{-0.04} \to (2,3)_{-0.04} \dots \end{split}$$

Actions are dictated by the policy.

 We think of agents performing runs through the state space, like this:

$$\begin{split} (1,1)_{-0.04} &\to (1,2)_{-0.04} \to (1,3)_{-0.04} \to \\ (1,2)_{-0.04} &\to (1,3)_{-0.04} \to (2,3)_{-0.04} \dots \end{split}$$

Note the rewards attached to each state.

 We assume that the rewards are directly experienced by the agent.

 The utility U^π(s) of a state s under policy π is the expected sum of the (discounted) rewards obtained when following π.

$$U^{\pi}(s) = E\left[\sum_{t=0}^{\infty} \gamma^t R(S_t)\right]$$

where S is the state reached at t from s when executing π .

• So if we run the policy for long enough, we will compute the utility of the states from the onward rewards.

Direct utility estimation

- We can estimate the utility of a state by the rewards generated along the run from that state.
- Direct utility estimation.
- Each run gives us one or more samples for the utility of a state.

Direct utility estimation

Given the run:

$$\begin{split} (1,1)_{-0.04} \rightarrow (1,2)_{-0.04} \rightarrow (1,3)_{-0.04} \rightarrow (1,2)_{-0.04} \rightarrow \\ (1,3)_{-0.04} \rightarrow (2,3)_{-0.04} \rightarrow (3,3)_{-0.04} \rightarrow (4,3)_{+1} \end{split}$$

a sample utility of (1,1) from the run above is the sum of the rewards all the way to a goal state.

- 0.72 in this case.
- The same run will produce two samples for (1,2) and (1,3).
 - 0.76 and 0.84
 - 0.8 and 0.88
- (Here we set the discount to 1).
- We then average the samples so far to get the current estimated value.

Estimate utilities

· Given this run:

$$(1,1)_{-0.04} \rightarrow (1,1)_{-0.04} \rightarrow (1,2)_{-0.04} \rightarrow (1,3)_{-0.04} \rightarrow (2,3)_{-0.04} \rightarrow (3,3)_{-0.04} \rightarrow (4,3)_1$$

What is the estimated utility of state (1, 1)?

Estimate utilities

- 0.78 is the right answer.
- (If you got 0.76, it is because you didn't average over the twoestimates.)

Direct utility estimation

- So we know how to calculate:
 - Rewards
 - Utilities

Probability estimation

- As the agent moves it can calculate a sample estimate of $P(s'|s,\pi(s))$
- Each time it moves it creates a new sample for one state.
- Given:

$$\begin{array}{c} (1,1)_{-0.04} \rightarrow (1,2)_{-0.04} \rightarrow (1,3)_{-0.04} \rightarrow (1,2)_{-0.04} \rightarrow \\ (1,3)_{-0.04} \rightarrow (2,3)_{-0.04} \rightarrow (3,3)_{-0.04} \rightarrow (4,3)_{+1} \end{array}$$

we get:

$$P((1,2)|(1,1), Up) = 1$$

 $P((1,2)|(1,3), Right) = 0.5$
 $P((2,3)|(1,3), Right) = 0.5$

Estimate probabilities

Given this run under the policy above:

$$(1,1)_{-0.04} \rightarrow (1,1)_{-0.04} \rightarrow (1,2)_{-0.04} \rightarrow (1,3)_{-0.04}$$

 $\rightarrow (2,3)_{-0.04} \rightarrow (3,3)_{-0.04} \rightarrow (4,3)_1$

What is the estimated value of P((1,2)|(1,1), Up)?

Estimate probabilities

• 0.5 is the right answer.

Probability estimation

- So we can calculate:
 - Rewards
 - Utilities
 - Probabilities

Probability estimation

- So we know how to calculate:
 - Rewards
 - Utilities
 - Probabilities
- None of it is much more complicated than counting.

Direct utility estimation

• So, over time, the agent builds up estimates of:

and $P(s'|s, \pi(s))$, for every s, s' for the given $\pi(s)$.

Passive learning

- What does a solution look like?
- A list of states s_i.
- Each state has a utility estimate associated with it U(s).
- Each state has an action associated with it, $\pi(s)$.
- Each state action pair has a probability distribution:

$$P(S'|s,\pi(s))$$

over the states S' that it gets to from s by doing $\pi(s)$.

• (May not encounter every state.)

Aside

- We haven't said where the states come from.
- Sometimes we will know what they are.
- (Implied by the existence of the policy).
- Other times we will learn the states as we go along.
- Basic requirement is that we can distinguish states from one another.

Passive learning

- How does an agent decide what to do?
- Then the agent just computes each step using one-step lookahead on the expected value of actions.
- Picks the action a with the greatest expected utility.
- The resulting policy may well differ from π .
- Its data on actions will be limited because it has only been trying π .

Passive learning

- Has to vary π if it wants to learn the full space.
- But is this worth it?
- After all, once we have an idea of how to act to get to the goal, is more learning justified?
- Tradeoff exploration and exploitation

Tradeoff

Tradeoff

• But explore less over time.

Problem with direct utility estimation

- Treats utilities of states as independent.
- But we know that they are connected.

$$U_{i+1}(s) \leftarrow R(s) + \gamma \max_{a \in A(s)} \sum_{s'} P(s'|s,a) U_i(s')$$

- Ignoring the connection means that learning may converge slowly.
- So another approach to utility estimation: adaptive dynamic programming.
- Still doing passive reinforcement learning.
- But doing it smarter.

- We can improve on direct utility estimation by applying a version of the Bellman equation.
- This says:

$$U(s) = R(s) + \gamma \max_{a \in A(s)} \sum_{s'} \Pr(s'|s, a) U(s')$$

 The utility of a state is the reward for being in that state plus the expected discounted reward of being in the next state.

(Mervyn Peake)

· What we actually have here:

$$egin{aligned} oldsymbol{\mathcal{U}}^{\pi}(oldsymbol{s}) &= oldsymbol{\mathcal{R}}(oldsymbol{s}) + \gamma \sum_{oldsymbol{s}'} oldsymbol{\mathcal{P}}(oldsymbol{s}'|oldsymbol{s}, \pi(oldsymbol{s})) oldsymbol{\mathcal{U}}^{\pi}(oldsymbol{s}') \end{aligned}$$

- We know π , so we know what action we will carry out.
- We have π , because it is passive learning.

- So, how to we benefit from applying the Bellman equation?
- Bellman states a constraint on utilities, but what does that mean in practice?
- Two approaches:
 - ① Directly solve the Bellman equations
 - 2 Apply value iteration
- (Rather like policy iteration.)

Solving the Bellman equations

• The fixed policy version of the Bellman equation is:

$$U^{\pi}(s) = R(s) + \gamma \sum_{s'} P(s'|s,\pi(s)) U^{\pi}(s')$$

- This is just a set of simultaneous equations.
 (Unlike the standard version of the Bellman equation, there is no max to complicate things.)
- Can just plug results into an LP solver
- Updates all the utilities of all the states where we have experienced the transitions.

Solving the Bellman equations

- Note that updated values are estimates.
- They are no better than the estimated values of utility and probability we had before.
- We just get quicker convergence because the utilities are consistent.

Using value iteration

- Can also use value iteration to update the utilities we have for each state.
- Update using:

$$U_{i+1}(s) \leftarrow R(s) + \gamma \sum_{s'} P(s'|s, \pi(s)) U_i(s')$$

until convergence.

 Again, the results are still estimates, and no better than the estimates we got from direct estimation or solving the Bellman equations.

- In all cases:
 - Direct utility estimation
 - 2 ADP: solving Bellman equations
 - 3 ADP: applying value iteration

what we get out depends on what we put in.

- The quality of the utility estimates will depend on how well we have explored the space.
- Roughly this is how many times we have encountered each state.

Results:

- Typically quicker than direct utility estimation.
- Error is for *U*(1, 1).

- Still passive learning, so a solution is as before:
- A list of states s_i.
- Each state has a utility estimate associated with it U(s).
- Each state has an action associated with it, $\pi(s)$.
- Each state action pair has a probability distribution:

$$\mathbf{P}(S'|s,\pi(s))$$

over the states S' that it gets to from s by doing $\pi(s)$.

After learning

- Now, to get the utilities, the agent started with a fixed policy, so it always knew what action to take.
- It used this to get utilities.
- Having gotten the utilities, it could use them to choose actions.
 - Just picks the action with the best expected utility in a given state.
- However, there is a problem with doing this.

Problems

- The transition model is a maximum likelihood estimate (Just the sample average).
- Maximum likelihood models tend to overfit.
- Maximum likelihood action selection can be dangerous.

Problems

Might not yet have experienced the bad effects of an action:

(Calista Condo/South Jersey Times)

 Maybe your autonomous car learnt that running a red light saves time.

Problems

- Of course, this kind of over-reliance on not-fully-explored state/action spaces is what people do all the time.
- There is no way to be sure that the action your maximum likelihood-based reinforcement learner is picking doesn't have possible bad outcomes.
- Usually tackle this by ensuring wide exploration.

- In the previous approach we used the fact that we are learning in the context of an MDP.
- Another way to use Bellman (= constraints between states).
- Use the observed transitions to adjust the utilities of the states.
- · Let's look at an example.

(b)

Consider this trajectory:

$$\begin{array}{cccc} (1,1)_{-0.04} \stackrel{\textit{Up}}{\rightarrow} (1,2)_{-0.04} \stackrel{\textit{Up}}{\rightarrow} (1,3)_{-0.04} \stackrel{\textit{Right}}{\rightarrow} (2,3)_{-0.04} \stackrel{\textit{Right}}{\rightarrow} \\ (3,3)_{-0.04} \stackrel{\textit{Right}}{\rightarrow} (3,2)_{-0.04} \stackrel{\textit{Up}}{\rightarrow} (3,3)_{-0.04} \stackrel{\textit{Right}}{\rightarrow} (4,3)_{+1} \end{array}$$

Consider the transition from (1,3) to (2,3).

$$\begin{array}{cccc} (1,1)_{-0.04} \stackrel{\textit{Up}}{\rightarrow} (1,2)_{-0.04} \stackrel{\textit{Up}}{\rightarrow} (1,3)_{-0.04} \stackrel{\textit{Right}}{\rightarrow} (1,2)_{-0.04} \stackrel{\textit{Up}}{\rightarrow} \\ (1,3)_{-0.04} \stackrel{\textit{Right}}{\rightarrow} (2,3)_{-0.04} \stackrel{\textit{Right}}{\rightarrow} (3,3)_{-0.04} \stackrel{\textit{Right}}{\rightarrow} (4,3)_{+1} \end{array}$$

Assume that we have utility estimates:

$$U^{\pi}(1,3) = 0.84$$

 $U^{\pi}(2,3) = 0.92$

(These are the values from the run we considered earlier.)

 These results should be linked by a Bellman-type update.

In other words, we should expect:

$$U^{\pi}(1,3) = -0.04 + U^{\pi}(2,3)$$

and so $U^{\pi}(1,3) = 0.88$

- Currently have $U^{\pi}(1,3) = 0.84$
- So maybe the current estimate is too low.

• In other words, we should expect:

$$U^{\pi}(1,3) = -0.04 + U^{\pi}(2,3)$$

and so $U^{\pi}(1,3) = 0.88$

- Currently have $U^{\pi}(1,3) = 0.84$
- So maybe the current estimate is too low.
- Now generalise the idea.

• The *temporal difference* update for a transition from s to s' is:

$$U^{\pi}(s) \leftarrow U^{\pi}(s) + \alpha(R(s) + \gamma U^{\pi}(s') - U^{\pi}(s))$$

- α is a learning rate.
 - Controls how quickly we update the utility when we have new information.
- The rule is called "temporal difference" because the update occurs between successive states.

· Compare the ADP update:

$$extstyle egin{aligned} extstyle U^\pi(s) &= extstyle R(s) + \gamma \sum_{s'} extstyle P(s'|s,\pi(s)) U^\pi(s') \end{aligned}$$

with the TD update:

$$\mathbf{U}^{\pi}(\mathbf{s}) \leftarrow \mathbf{U}^{\pi}(\mathbf{s}) + \alpha(\mathbf{R}(\mathbf{s}) + \gamma \mathbf{U}^{\pi}(\mathbf{s}') - \mathbf{U}^{\pi}(\mathbf{s}))$$

• The ADP update:

$$extstyle egin{aligned} extstyle U^\pi(s) &= extstyle \mathsf{R}(s) + \gamma \sum_{s'} extstyle \mathsf{P}(s'|s,\pi(s)) extstyle U^\pi(s') \end{aligned}$$

can be read as a statement about the stopping condition.

- No change in values when both sides of the equation are equal.
- Connects the utility of s with that of all its successor states.

· The TD update:

$$U^{\pi}(s) \leftarrow U^{\pi}(s) + \alpha(R(s) + \gamma U^{\pi}(s') - U^{\pi}(s))$$

only adjusts the utility of s with that of a single successor s'.

- Yet to manages to reach the same equilibrium.
- How?

TD update:

$$\mathbf{U}^{\pi}(\mathbf{s}) \leftarrow \mathbf{U}^{\pi}(\mathbf{s}) + \alpha(\mathbf{R}(\mathbf{s}) + \gamma \mathbf{U}^{\pi}(\mathbf{s}') - \mathbf{U}^{\pi}(\mathbf{s}))$$

 In the long run, the transition from s to s' will happen exactly in proportion to:

$$P(s'|s,\pi(s))$$

• So $U^{\pi}(s')$ will be averaged into $U^{\pi}(s)$ exactly the right amount.

- Well, ok, that is a bit of a simplification.
- We need to adjust α over time.
- Need to ensure that:

$$\sum_{t=1}^{\infty} \alpha(t) = \infty$$

$$\sum_{t=1}^{\infty} \alpha^{2}(t) < \infty$$

to guarantee convergence.

This is satisfied if:

$$\alpha(t) = O(1/t)$$

· Results:

• Error is for *U*(1, 1).

A bit slower and noisier than ADP

- The final thing to note is that TD learning is model free.
- There is no transition model.
- That makes it easier to apply (no need to count transition probabilities).
- Learning reduces to applying the TD rule on transition from one state to another.

- The passive reinforcement learning agent is told what to do.
- Fixed
- An active reinforcement learning agent must decide what to do. (While learning)
- We'll think about how to do this by adapting the passive ADP learner.

- We can use exactly the same approach to estimating the transition function.
- Sample average of the transitions we observe.
- But computing utilities is more complex.

 When we had a policy, we could use the simple version of the Bellman equation:

$$\mathit{U}^{\pi}(s) = \mathit{R}(s) + \gamma \sum_{s'} \mathit{P}(s'|s,\pi(s)) \mathit{U}^{\pi}(s')$$

- But we don't have a policy.
- When we have to choose actions, we need the utility values to base our choice of action on.
- How do we get utilities?

- We use value iteration.
- At any stage, we can run:

$$U_{i+1}(s) \leftarrow R(s) + \gamma \max_{a \in A(s)} \sum_{s'} P(s'|s, a) U_i(s')$$

to stability to compute a new set of utilities.

So establishing utilities is not so hard.

- Deciding what to do, what action to take, is the next issue.
- Normally after running value iteration we would choose the action with the highest expected utility.
- Greedy agent
- Could do that while we are learning.
- This turns out not to be so great an idea.
- Typically a greedy agent will not learn the optimal policy

On the usual example:

Graph is error compared with optimal utility values.

Greedy vs optimal

- Greedy (left) and optimal (right)
- Greedy prefers the lower route, despite the danger of -1.

- The issue is that once the agent finds a run that leads to a good reward, it tends to stick to it.
- It stops exploring.

- A typical approach is to change the estimated utility assigned to states in value iteration.
- Manipulate the values to force the learner to explore.
- Then, once exploration is sufficient, we just let it do its thing.

To do this, we can use:

$$U_{i+1}(s) \leftarrow R(s) + \gamma \max_{a \in A(s)} f\left(\sum_{s'} P(s'|s,a)U_i(s'), N(s,a)\right)$$

where:

- N(s, a) counts how many times we have done a in s,
- f(u, n) provides an exploration-happy estimate of the utility of a state.

For example:

$$f(u, n) = \begin{cases} R^+ & \text{if } n < N_e \\ u & \text{otherwise} \end{cases}$$

 R^+ is an optimistic reward, and $N_{\rm e}$ is the number of times we want the agent to be forced to pick an action in every state.

- We force the learner to pick each state/action pair N_e times.
- N_e becomes another parameter that has to be adjusted until we find good solutions.

• Slow to converge on *U*, but quickly finds a policy that is close to optimal.

Active reinforcement learning: solution

- A list of states $s_1, \ldots s_n$.
- Each state has a utility estimate associated with it U(s).
- Each state has a set of actions associated with it, a₁,...a_m.
- Each state/action pair has a probability distribution:

$$\mathbf{P}(S'|s,a_i)$$

over the states s' that it gets to from s by doing a_i .

Model-free active learning

- The form of active reinforcement learning we have just looked at learns a transition model.
- What about a model free version?
- Can quite easily define an active version of temporal difference learning.

- Q-learning is a model-free approach to active reinforcement learning.
- It doesn't need to learn P(s'|s, a).
- Revolves around the Q-value of a state/action pair, Q(s, a)
- Q(s, a) denotes the value of doing a in s, so that:

$$U(s) = \max_{a} Q(s, a)$$

• Easier to learn than U(s)

We can write:

$$Q(s,a) = R(s) + \gamma \sum_{s'} P(s'|s,a) \textit{max}_{a'} Q(s',a')$$

- Note that the sum is over s'
- Can compute estimates of Q(s, a) by running value-iteration style updates on this.
- But it wouldn't be model-free.

However, we can write the update rule as:

$$Q(s, a) \leftarrow Q(s, a) + \alpha \left(R(s) + \gamma \max_{a'} Q(s', a') - Q(s, a) \right)$$

and recalculate everytime that a is executed in s and takes the agent to s'.

- Again, α is the learning rate.
- Note the similarity between this update, and the one for TD-learning (slide 68).

Action selection

- Since Q-learning is an active approach to reinforcement learning, we have to choose which a' to select in s'.
- Again greedy selection is usually a poor choice.
- Typical approach is to force exploration as we did before.

#AIMA3e function Q-Learning_Agent(percept) returns an action inputs: percept, a percept indicating the current state s' and reward signal r' persistent: Q, a table of action values indexed by state and action, initially zero N_{sa} , a table of frequencies for state-action pairs, initially zero s, a, r, the previous state, action, and reward, initially null

```
if Terminal?(s) then Q[s, \text{None}] \leftarrow r'

if s is not null then

increment N_{sa}[s, a]

Q[s, a] \leftarrow Q[s, a] + \alpha(N_{sa}[s, a])(r + y \max_{a'} Q[s', a'] - Q[s, a])

s, a, r \leftarrow s', \operatorname{argmax}_{a'} f(Q[s', a'], N_{sa}[s', a']), r'

return a
```

- Note that α is a function of the number of visits to s, a.
- Ensures convergence.

Q-learning: solution

- A list of state action pairs $\langle s_i, a_i \rangle$.
- Each state/action pair has $Q(s_i, a_i)$.
- For a given s_i , just pick the a_j to maximise $Q(s_i, a_j)$.

And more ...

· Lots more we could look at.

Summary

- We started by looking at the difficulties of extending this work to partially observable worlds.
- Then we looked at how reinforcement learning can help solve MDPs for which we don't have a model.
- Looked at both passive and active methods.
- Looked at both model-based and model-free methods.

Version History

- Version 1.0, 30th December 2021
- Version 1.1, 10th January 2021
 - Added in the answers to the polls.
 - Added the policy on slide 38.
- Note that I did not remove the slides (69–73) that I skipped over, because I thought that change of slide numebring would be confusing when looking back at the video.