Object Detection (2)

POSTECH MIV Lab.

TA: Injun Choi, Sooyeon Jeon, Joonhyuk Park, Yubin Han

Object Detection: A Naïve Approach

Motivated by the great success of deep learning in image classification

2-stage object detection

출처: https://www.youtube.com/watch?v=jqNCdjOB15s

Fast R-CNN

동일한 Region proposal을 이용하되 이미지를 한 번만 CNN에 넣어 Feature Map 생성

ROI pooling

ROI pooling

• 각 ROI 영역에 대하여 max pooling을 이용해 고정된 크기의 벡터를 생성함.

Fast R-CNN

동일한 Region proposal을 이용하되 이미지를 한 번만 CNN에 넣어 Feature Map 생성

Fast R-CNN

- Slow-processing time
 Much Faster By ROI-pooling, 1 forward path of CNN in one image
 - It needs to iterate forward propagation of input image patch over all proposals(~2000 forward propagations in practice)
- Separate optimization of model components End-to-End Learning (joint optimize all the component parameters)
 - Feature: CNN
 - Classifier: SVM
 - Region proposal: Selective Search Window
 - Post-processing: Bounding box regression
 - → It is not desirable to the find optimal combination of all components

Faster R-CNN

• 병목(bottleneck)에 해당하던 Region Proposal 작업을 GPU 장치에서 수행하도록 합니다. (RPN 적용)

Faster R-CNN

Region Proposal Networks (RPN)

- RPN 네트워크는 feature map이 주어졌을 때 물체가 있을 법한 위치를 예측합니다.
 - k개의 앵커 박스(anchor box)를 이용합니다.
 - 슬라이딩 윈도우(sliding window)을 거쳐 각 위치에 대해 Regression과 Classification을 수행합니다.

Rol Pooling

Rol Pooling

Rol Align

3x3 Rol Pooling

Rol divided into boxes

Rol Align

Get Features by Max Pooling

Faster R-CNN

Result

per image

system	time	07 data	07+12 data
R-CNN	~50s	66.0	-
Fast R-CNN	~2s	66.9	70.0
Faster R-CNN	198ms	69.9	73.2

detection mAP on PASCAL VOC 2007, with VGG-16 pre-trained on ImageNet

R-CNN Variants들의 발전 방향 및 장단점 분석

CNN을 이용해 각 Region의 클래스를 분류할 수 있습니다. 장점 R-CNN (CVPR 2014) 전체 프레임워크를 End-to-End 방식으로 학습할 수 없습니다. 따라서 Global 단점 Optimal Solution을 찾기 어렵습니다. 발 전 Feature Extraction, Rol Pooling, Region Classification, Bounding Box 장점 Regression 단계(step)를 모두 End-to-End로 묶어서 학습할 수 있습니다. Fast R-CNN (ICCV 2015) 방 향 단점 여전히 첫 번째 Selective Search는 CPU에서 수행되므로 속도가 느립니다. 장점 RPN을 제안하여, 전체 프레임워크를 End-to-End로 학습할 수 있습니다. Faster R-CNN (NIPS 2015) 여전히 많은 컴포넌트로 구성되며, Region Classification 단계에서 각 특징 벡 단점 터(feature vector)는 개별적으로 FC layer로 Forward 됩니다.

Faster R-CNN실습