ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ) ФАКУЛЬТЕТ АЭРОКОСМИЧЕСКИХ ТЕХНОЛОГИЙ

Определение	критической	силы	при	потери
уст	гойчивости сто	ержне	ей	

Цель работы: 1) Ознакомление с основными положениями теории устойчивости стержней по Эйлеру. 2) Проведение экспериментов и сопоставление расчётных и экспериментальных данных.

Теоретические сведения: Рассмотрим изгиб однородного бруса (балки) произвольного постоянного поперечного сечения на рис. 1. Ввиду бесконечной малости выделенного элемента можно считать, что в результате изгиба прямые AA', NN', BB' и все прямые, им параллельные, перейдут в окружности с центрами, лежащими на оси O, перпендикулярной к плоскости рисунка.

Рис. 1: а) Балка в покоящемся состоянии, б) изогнутая балка

Эта ось называется осью изгиба. Наружные волокна, лежащие выше линии NN', при изгибе удлиняются, волокна, лежащие ниже линии NN', — укорачиваются. Длина линии NN' остается неизменной. Эта линия называется нейтральной линией. Проходящее через нее сечение (недеформированного) бруса плоскостью, перпендикулярной к плоскости рисунка называется нейтральным сечением. Пусть R — радиус кривизны нейтральной линии. Рассмотрим удлинение волокна бруса, находящегося на расстоянии ξ от нейтральной линии. Если брус не слишком толст, так что $|\xi| \ll R$, то длина рассматриваемого волокна будет $l = (R + \xi)\alpha$, а удлинение $\Delta l = l - l_0 = \xi\alpha$. Получаем натяжение вдоль рассматриваемого волокна

$$\tau = E \frac{\xi}{R}$$

отсюда момент сил, действующий на брусок относительно оси, перпендикулярной рисунку и проходящей через середину нейтральной линии

$$M_{\tau} = \frac{E}{R} \int \xi^2 dS = \frac{EJ}{R}$$

где обозначен осевой момент инерции

$$J = \int \xi^2 dS$$

Вспоминая выражение для радиуса кривизны

$$\frac{1}{R} = \frac{y''}{(1 + (y')^2)^{3/2}}$$

Рис. 2: Изгиб стержня под действием внешнего момента

при малых изгибах можно пренебречь квадратом производной. Окончательно запишем выражение для момента сил, действующих внутри стержня

$$M_{\tau} = EJy''$$

Внешний момент силы P равен

$$M = -Py$$

получаем уравнение

$$y'' + k^2 y = 0, \quad k^2 = \frac{P}{EJ}$$

Общее решение данного уравнения представляется в виде

$$y = A\sin kx + B\cos kx$$

где А, В - произвольные постоянные, которые могут быть вычислены из граничных условий

$$x = 0, y = 0; x = l, y = 0$$

окончательный результат

$$B = 0$$
, $A\sin kl = 0$

Случай A=0 соответствует состоянию устойчивости. Потеря устойчивости происходит при условии

$$kl = \pi n$$
, где n – целое число.

Выражая силу получим

$$P = \frac{\pi^2 n^2 E J}{l^2}$$

беря наименьшее значение n получаем выражение для критической силы

$$P_{\rm kp} = \frac{\pi^2 E J}{l_{\rm 9 dp}^2}$$

Так как изначально формула была получена для шарнирно закреплённого с двух сторон стержня, то при изменении способа закрепления концов должно меняться и значение критической силы, это и отражает переменная в знаменателе $l_{\rm 9\varphi\varphi}=\mu l$, где l — фактическая длина стержня, μ — коэффициент, показывающий во сколько раз критическая сила при данном закреплении меньше критической силы при двойном шарнирном крепеже для стержней одинаковой длины.

Рис. 3: Значения коэффициента μ для различных способов закрепления стержня

Обработка данных: В данной работе рассчитывалась критическая сила для каждого из четырех представленных выше способов крепления стержня. Длины каждой из линеек, а также их коэфиициенты μ представлены на схеме ниже. Параметры каждой из линеек:

$$b_I=2,\!81$$
 см, $b_{II}=3,\!59$ см, $h_1=h_2=h=0,\!95$ мм $E=2\cdot 10^6$ кг/см 2

где b_I, b_{II} – высоты ближней и дальней линеек соответственно, h – их толщина, E – модуль Юнга стали. Осевой момент инерции рассчитывается по формуле

$$J = \int \xi^2 dS = \frac{bh^3}{12}$$

Таблица 1: Параметры каждой из линеек

Nº	l, cm	b, cm	μ	J, cm ⁴
I.1	23,1		2,0	
I.2	26,7	2,81	0,7	$2,007 \cdot 10^{-4}$
I.3	31,8		1,0	
II.4	46,5	3,59	0,5	$2,564 \cdot 10^{-4}$
II.5	32,8	3,59	0,7	2,504 · 10

Рис. 4: Схема установки

Рис. 5: Фото установки

Далее, рассчитаем критическую силу для каждого из участков и сравним со значением, полученным на установке

 $P_{\rm kp} = \frac{\pi^2 E J}{(\mu l)^2}$

Таблица 2: Сравнение теоретических и экспериментальных значений $P_{\rm kp}$

$N_{\overline{0}}$	$P_{\text{reop}}, \mathbf{H}$	$P_{\text{эксп}}, \mathbf{H}$
I.1	18,21	18,0
I.2	111,26	_
I.3	38,43	_
II.4	91,85	83,0
II.5	100,20	_

Рассчитаем погрешности $P_{\rm kp}$ учитывая, что

$$\begin{split} \sigma_l &= 5 \cdot 10^{-4} \text{ м; } \sigma_b = 5 \cdot 10^{-5} \text{ м; } text\sigma_h = 10^{-5} \text{ м} \\ P &= f(h,b,l), \quad \sigma_P^2 = \sum (\frac{\partial f}{\partial x_i})^2 \cdot \sigma_{x_i}^2 \\ \varepsilon_P^2 &= \varepsilon_b^2 + 9\varepsilon_h^3 + 4\varepsilon_l^2 \end{split}$$

Таблица 3: Результаты расчета $P_{\kappa p}$ с учётом погрешностей

$N_{\overline{0}}$	P_{reop}, H	ε_P , %
I.1	$18,21 \pm 0,55$	3,04
I.2	$111,26 \pm 3,37$	3,03
I.3	$38,43 \pm 1,16$	3,03
II.4	$91,85 \pm 2,76$	3,01
II.5	$100,20 \pm 3,03$	3,02

Вывод: В данной работе исследовались основные понятия теории устойчивости стержней, в качестве стержней использовались металлические линейки. Для каждой из линеек, в зависимости от способа закрепления её концов, была рассчитана критическая сила $P_{\rm kp}$, для двух из линеек были получены и значения этих сил экспериментально, таким образом была проверена справедливость формулы Эйлера.