Notes on Lexicographic Method for Hierarchical Multiobjective Programs

Devanand R

April 2022

1 Variable fixing over Constraint Addition Rule of Lexicographic Method for h-MOLP

Let us consider the following linear program

$$LPP := \min\{c'x : Ax = b; l \le x \le u\}.$$

It is well studied that instead of explicitly adding $l \le x \le u$ as constraints in *LPP* one should prefer handling these constraints implicitly in a fashion similar to that used by the simplex method handling the non-negative constraints $x \ge 0$. This strategy avoids increasing of problem size and working with "compact basis" of size $m \times m$ only. [0]. In our case we are avoiding addition of constraints so that basis matrix size will always be $m \times m$.

Moreover, adding constraints make the problem ill-conditioned, leading to the problem with high condition number (in CPLEX it is referred as kappa value). Let us consider a toy example with two objective vectors in the fallowing hierarchical order: Objective vector $c^1 := (-0.333333, -0.666667)$ is of highest importance and objective vector $c^2 := (1,1)$ of least importance.

$$\mathbf{LP^1} := \min(-0.333333 \ x_1 - 0.666667 \ x_2)$$
 Subject to
$$x_1 + 2x_2 = 3$$
 and Bounds
$$0 \le x_1 \le 2$$

$$0 \le x_2 \le 2$$
 and
$$0 \le x_2 \le 2$$

$$\mathbf{LP^2} := \min(x_1 + x_2)$$
 Subject to
$$x_1 + 2x_2 = 3$$

$$-0.333333 \ x_1 - 0.666667 \ x_2 = -1.0000000006$$
 Bounds
$$0 \le x_1 \le 2$$

$$0 \le x_2 \le 2$$

and

varfix_LP² :=
$$min(x_1 + x_2)$$

Subject to
 $x_1 + 2x_2 = 3$
Bounds
 $0 \le x_1 \le 0$ (1)
 $0 < x_2 < 2$ (2)

In $\mathbf{LP^2}$ we have added the constraint 1 but in $\mathbf{varfix} \cdot \mathbf{LP^2}$ instead of adding the constraint 1, we fix the variable x_1 to zero. The optimal objective value of $\mathbf{LP^1}$, $\mathbf{LP^2}$ and $\mathbf{varfix} \cdot \mathbf{LP^2}$ are -1.000000006, 1.5 and 1.5.

In **LP**², by changing rhs of 1 from -1.0000000006 to -1.0 leads to change in optimal objective value from 1.5 to 2. The condition numbers of basis after solving **LP**² and **varfix_LP**² are 6.7e+8 and 1.0e+0 respectively. It says that a small change in the input can result in a big change in the computed solution of the model. High kappa value can cause various problems [0] in the quality of solution such as:

- 1. inconsistent result when presolving and input parameters are tuned
- inaccuracy in the computed solution that contradicts the constraints in the model, etc.

2 Notations and Conventions

For a nonnegative integer t, we define $[t] := \{1, 2, ..., t\}$ if t > 0 and $[t] := \emptyset$ if t = 0. The dot product of two vectors $u \in \mathbb{R}^n$ and $v \in \mathbb{R}^n$ is denoted by u'v. For an $m \times n$ real matrix $M \in \mathbb{R}^{m \times n}$ we use M' to denote the transpose of M. We use M_i to denote the i^{th} column of M.

3 Linear Programming for Bounded Variables

Let us consider the following linear programming problem such that each decision variable is bounded below by a finite number:

$$LPP := \min_{x \in \mathbb{R}^n} \{ c'x : x \in S \}, \tag{3}$$

where

$$S := \{ x \in \mathbb{R}^n : Ax = b, \ l \le x \le u \}. \tag{4}$$

Here, we assume that the real matrix $A \in \mathbb{R}^{m \times n}$ is of rank m. Moreover, $l_i < u_i$ for each $i \in [n]$.

Definition 3.1. Let $S := \{x \in \mathbb{R}^n : Ax = b, l \le x \le u\}$ be a polyhedron as described above, and let $x^* \in \mathbb{R}^n$.

- (a) x^* is a basic solution if:
 - (i) all equality constraints are active
 - (ii) out of the constraints that are active at x^* , there are n of them that are linearly independent.
- (b) if a basic solution satisfies all of the constraints, then it is called a basic feasible solution

Notice that $x^* \in S$ is a basic feasible solution if and only if it is an extreme point of S.

Theorem 3.2. Let $S := \{x \in \mathbb{R}^n : Ax = b, l \le x \le u\}$ be a polyhedron as described in Equation 4. $x^* \in \mathbb{R}^n$ is a basic solution if and only if $Ax^* = b$, and there exist an index set $I_B \subseteq [n]$ of cardinality m such that:

- (a) The columns A_i , $i \in I_B$ are linearly independent.
- (b) if $i \notin I_B$, then either $x_i^* = l_i$ or $x_i^* = u_i$.

If x^* is a basic solution of S, the variables x_i^* , $i \in I_B$ are called the basic variables, and the remaining variables are called the nonbasic variables. The columns A_i , $i \in I_B$ are called the basic columns, and the remaining columns are called the nonbasic columns. The m basic columns written adjacent to each other, form a matrix, and is called the basis matrix B. Let $I_{N_1} := \{i \in [n] : x_i^* = l_i\}$ be the index set associated with the nonbasic variables at their lower bounds, and $I_{N_2} := \{i \in [n] : x_i^* = u_i\}$ be the index set associated with the nonbasic variables at their upper bounds. The columns A_i , $i \in I_{N_1}$ are the nonbasic columns associated with the index set I_{N_2} , and the columns A_i , $i \in I_{N_2}$ are the nonbasic columns associated with the index set I_{N_2} . The matrix associated with the nonbasic columns A_i , $i \in I_{N_1}$ is denoted by N_1 , and the matrix associated with the nonbasic columns A_i , $i \in I_{N_2}$ is denoted by N_2 .

Let x^* be a basic solution of S, and let B be an associated basis matrix. By representing the index set [n] as $I_B \cup I_{N_1} \cup I_{N_2}$, one can partition the matrix A into $[B, N_1, N_2]$, the decision variable x' into $[x'_B, x'_{N_1}, x'_{N_2}]$, the basic solution x^* into $[x'_B, x'_{N_1}, x'_{N_2}]$, and the cost vector c' into $[c'_B, c'_{N_1}, c'_{N_2}]$.

Definition 3.3. Let x^* be a basic solution of S. Let B be an associated basis matrix, and let c_B be the vector of costs associated with the basic variables. The reduced cost \bar{c}_i for each $i \in [n]$ is defined as:

$$\bar{c}_i := c_i - c_B' B^{-1} A_i$$

Theorem 3.4. Consider the linear programming problem as presented in Equation 3. Let x^* be a basic feasible solution of S. Let B be an associated basis matrix, and let \bar{c} be the associated vector of reduced costs. Assume that $\bar{c}_i \geq 0$ for all $i \in N_1$ and $\bar{c}_i \leq 0$ for all $i \in N_2$. Then, x^* is an optimal solution.

Proof. We will establish that $c'x^* \le c'y$ for all $y \in S$. Let $y \in S$, and let $d := y - x^*$. From $Ax^* = Ay = b$ we have Ad = 0. As $Ad = Bd_B + \sum_{i \in N_1 \cup N_2} A_i d_i$, we have

$$d_B = -\sum_{i \in N_1 \cup N_2} B^{-1} A_i d_i.$$

Now,

$$\begin{split} c'd \\ &= c'_B d_B + \sum_{i \in N_1 \cup N_2} c_i d_i \\ &= c'_B (-\sum_{i \in N_1 \cup N_2} B^{-1} A_i d_i) + \sum_{i \in N_1 \cup N_2} c_i d_i \\ &= \sum_{i \in N_1 \cup N_2} (c_i - c'_B B^{-1} A_i) d_i \\ &= \sum_{i \in N_1} \bar{c}_i d_i + \sum_{i \in N_2} \bar{c}_i d_i \end{split}$$

For $i \in N_1$, we have $d_i = y_i - x_i^* = y_i - l_i \ge 0$. This implies that $\bar{c}_i d_i \ge 0$. For $i \in N_2$, we have $d_i = y_i - x_i^* = y_i - u_i \le 0$, which implies that $\bar{c}_i d_i \ge 0$. As a result, $c'd \ge 0$, completing the proof.

Definition 3.5. A basis matrix is said to be optimal if $\bar{c}_i \ge 0$ for all $i \in N_1$ and $\bar{c}_i \le 0$ for all $i \in N_2$.

4 Variable Fixing

Theorem 4.1. Let $LP := \min_{x \in \mathbb{R}^n} \{c'x : Ax = b, l \le x \le u\}$ be a linear programming problem, where $A \in \mathbb{R}^{m \times n}$ is a real matrix of rank m, and $l_i < u_i$ for each $i \in [n]$. We assume that the feasible set $S := \{x \in \mathbb{R}^n : Ax = b, l \le x \le u\}$ is non-empty. Let B be an optimal basis for problem LP. Let x^* and $\bar{c} := c'_B B^{-1}A$ be the optimal solution and the reduced cost vector associated with B. Then the following are true.

- (i) $F := \{x \in S : c'x = c'x^*\}$, the set of optimal solutions of LP, is a face of S.
- (ii) F can be represented as

$$S \cap \{x \in \mathbb{R}^n : x_i = l_i \ \forall i \in [n] : \bar{c}_i > 0\} \cap \{x \in \mathbb{R}^n : x_i = u_i \ \forall i \in [n] : \bar{c}_i < 0\}$$

(iii) In particular, $F = \{x \in \mathbb{R}^n : Ax = b, \tilde{l} \le x \le \tilde{u}\},\$

where \tilde{l}_i , \tilde{u}_i for $i \in [n]$ is defined as:

$$\tilde{l}_i := \begin{cases} u_i, & \text{if } \bar{c}_i < 0 \\ l_i, & \text{otherwise,} \end{cases}$$

and

$$\tilde{u}_i := \begin{cases} l_i, & \text{if } \bar{c}_i > 0 \\ u_i, & \text{otherwise.} \end{cases}$$

Proof. (i) Note that x^* is an optimal solution of LP. This means that

$$F = \arg\min_{x \in S} c'x$$

In other words, F is the set of optimal solutions of LP. Moreover, it is straightforward to verify that F is a face of S.

(ii) As *B* is an optimal basis for problem *LP* and x^* is the optimal solution of *LP* associated with *B*, we have $x_{N_1}^* = l_{N_1}$, $x_{N_2}^* = u_{N_2}$, and $x_B^* = B^{-1}b - B^{-1}N_1l_{N_1} - B^{-1}N_2u_{N_2}$. Now,

$$c'x^* = c'_B x_B^* + c'_{N_1} x_{N_1}^* + c'_{N_2} x_{N_2}^*,$$

$$\Rightarrow c'x^* = c'_B \Big(B^{-1}b - B^{-1}N_1 l_{N_1} - B^{-1}N_2 u_{N_2} \Big) + c'_{N_1} l_{N_1} + c'_{N_2} u_{N_2}$$

$$\Rightarrow c'x^* = c'_B B^{-1}b + \bar{c}'_{N_1} l_{N_1} + \bar{c}'_{N_2} u_{N_2}$$

$$R := \{ x \in \mathbb{R}^n : l \le x \le u \}$$

$$E := \{ x \in \mathbb{R}^n : Ax = b, c'x = cx^* \}.$$

So.

Let

$$F = E \cap R$$

By applying a suitable row operation on E we have

$$E = \{x \in \mathbb{R}^n : Ax = b, (c' - c'_R B^{-1} A)x = c' x^* - c'_R B^{-1} b\}.$$

Substituting the value of $c'x^*$ we have

$$E = \{x \in \mathbb{R}^n : Ax = b, \ \bar{c}'x = \bar{c}'_{N_1}l_{N_1} + \bar{c}'_{N_2}u_{N_2}\}.$$

Recall that $\bar{c}_B = 0_{m \times 1}$. Hence,

$$E = \{ x \in \mathbb{R}^n : Ax = b, \ \overline{c}'_{N_1} x_{N_1} + \overline{c}'_{N_2} x_{N_2} = \overline{c}'_{N_1} l_{N_1} + \overline{c}'_{N_2} u_{N_2} \}.$$

As $F = E \cap R$, we have

$$F = \{ x \in S : \vec{c}'_{N_1} x_{N_1} + \vec{c}'_{N_2} x_{N_2} = \vec{c}'_{N_1} l_{N_1} + \vec{c}'_{N_2} u_{N_2} \}$$
 (5)

Now, we will complete Theorem 4.1(ii) by using six logical equivalent steps. Let $y \in F$. The first equivalence follows from Equation 5. Recall that $\bar{c}_i \ge 0$ for all $i \in I_{N_1}$ and $\bar{c}_i \le 0$ for all $i \in I_{N_2}$. This implies the second equivalence. As $\bar{c}_i = 0$ for $i \in I_B$, we have $\{i \in N_1 : \bar{c}_i > 0\} = \{i \in [n] : \bar{c}_i > 0\}$ and $\{i \in N_2 : \bar{c}_i < 0\} = \{i \in [n] : \bar{c}_i > 0\}$

 $\{i \in [n] : \bar{c}_i < 0\}$. As a result, the third equivalence follows. Let $\alpha_i := y_i - l_i$ for all $i \in [n] : \bar{c}_i > 0$, and $\beta_i := y_i - u_i$ for all $i \in [n] : \bar{c}_i > 0$. The fourth equivalence follows from the definition of α_i and β_i . After simplification, we obtain the fifth equivalence. Recall that $l_i \le y_i \le u_i$ for all $i \in [n]$. This means that $\alpha_i \ge 0$ for all $i \in [n] : \bar{c}_i > 0$, and $\beta_i \le 0$ for all $i \in [n] : \bar{c}_i < 0$.

$$y \in F$$

$$\Leftrightarrow y \in S \text{ and } \sum_{i \in I_{N_1}} \bar{c}_i y_i + \sum_{i \in I_{N_2}} \bar{c}_i y_i = \sum_{i \in I_{N_1}} \bar{c}_i l_i + \sum_{i \in I_{N_2}} \bar{c}_i u_i$$

$$\Leftrightarrow y \in S \text{ and } \sum_{i \in I_{N_1} : \bar{c}_i > 0} \bar{c}_i y_i + \sum_{i \in I_{N_2} : \bar{c}_i < 0} \bar{c}_i y_i = \sum_{i \in I_{N_1} : \bar{c}_i > 0} \bar{c}_i l_i + \sum_{i \in I_{N_2} : \bar{c}_i < 0} \bar{c}_i u_i$$

$$\Leftrightarrow y \in S \text{ and } \sum_{i \in [n] : \bar{c}_i > 0} \bar{c}_i y_i + \sum_{i \in [n] : \bar{c}_i < 0} \bar{c}_i y_i = \sum_{i \in [n] : \bar{c}_i > 0} \bar{c}_i l_i + \sum_{i \in [n] : \bar{c}_i < 0} \bar{c}_i u_i$$

$$\Leftrightarrow y \in S \text{ and } \sum_{i \in [n] : \bar{c}_i > 0} \bar{c}_i(l_i + \alpha_i) + \sum_{i \in [n] : \bar{c}_i < 0} \bar{c}_i(u_i + \beta_i) = \sum_{i \in [n] : \bar{c}_i > 0} \bar{c}_i l_i + \sum_{i \in [n] : \bar{c}_i < 0} \bar{c}_i u_i$$

$$\Leftrightarrow y \in S \text{ and } \sum_{i \in [n] : \bar{c}_i > 0} \bar{c}_i \alpha_i + \sum_{i \in [n] : \bar{c}_i < 0} \bar{c}_i \beta_i = 0$$

$$\Leftrightarrow y \in S \cap \{x \in \mathbb{R}^n : x_i = l_i \ \forall i \in [n] : \bar{c}_i > 0\} \cap \{x \in \mathbb{R}^n : x_i = u_i \ \forall i \in [n] : \bar{c}_i < 0\}$$

(iii) From the definition of \tilde{l} and \tilde{u} Theorem 4.1(iii) is true.

References

Diagnosing ill conditioning. https://www.ibm.com/support/pages/diagnosing-ill-conditioning. Accessed: 2022-02-18.

Mokhtar S Bazaraa, John J Jarvis, and Hanis D Sherali. *Linear programming and network flows*. John Wiley & Sons, 2008.