1. Určenie tiažového zrýchlenia reverzným kyvadlom

V mieste fyzikálneho laboratória experimentálne určte veľkosť tiažového zrýchlenia g.

TEORETICKÝ ÚVOD

Každé teleso upevnené tak, že sa môže otáčať okolo vodorovnej osi neprechádzajúcej jeho ťažiskom, sa nazýva fyzikálne
kyvadlo. Kyvadlo je v rovnovážnej polohe, ak jeho ťažisko T
(obr. 1.1) je v najnižšej polohe, t.j. ak leží na zvislej
priamke pretínajúcej os v bode O.

Obr. 1.1 Fyzikálne kyvadlo

Po vychýlení kyvadla z rovnovážnej polohy koná kyvadlo pôsobením tiažovej sily , ktorá naň pôsobí, otáčavý pohyb, pre ktorý, ako pre každé teleso uložené na pevnej osi, platí pohybová rovnica

$$\overrightarrow{M} = I \overrightarrow{\varepsilon} \tag{1.1}$$

kde \overline{M} je moment vonkajšej sily vzhľadom na os 0, \overline{E} je uhlové zrýchlenie pohybu.

Zvoľme si v smere osi otáčania jednotkový vektor gorientovaný pred rovinu nákresu. Vektor uhlovej výchylky kyvadla z rovnovážnej polohy je potom

$$\vec{\varphi} = \vec{\varphi} \vec{\varphi}$$

a vektor uhlového zrýchlenia

$$\vec{\varepsilon} = \frac{d^2 \varphi}{dt^2} \vec{\varsigma} \tag{1.2}$$

Účinok tiažovej sily Zeme na pohybový stav telesa je taký, ako keby všetky sily pôsobili v ťažisku. Pre stav znázornený na obr. 1.1 vyvolá výslednica tiažových síl otáčavý moment vzhľadom na os otáčania daný vzťahom

$$\vec{M} = \left[(\vec{r} \times \vec{mg}) \cdot \vec{g} \right] \vec{g}$$
 (1.3)

kde m je hmotnosť telesa, \vec{r} polohový vektor ťažiska vzhľadom na bod 0. Úpravou a použitím vzťahov (1.1) a (1.2) dostaneme

$$-\operatorname{mgr}\sin\varphi = I \frac{d^2\varphi}{dt^2} \tag{1.4}$$

Pre malé výchylky platí sin arphi $\stackrel{.}{=}$ arphi a po substitúcii

$$\frac{\text{mgr}}{I} = \omega^2 \tag{1.5}$$

nadobudne pohybová rovnica fyzikálneho kyvadla pre malé výchylky tvar

$$\frac{d^2\varphi}{dt^2} + \omega^2\varphi = 0 ag{1.6}$$

Rovnica (1.6) je diferenciálna rovnica netlmeného harmonického pohybu. Všeobecné riešenie tejto rovnice je

$$\varphi(t) = A \sin(\omega t) + B \cos(\omega t)$$
 (1.7)

Ak v čase t = 0 má kyvadlo maximálnu výchylku $\varphi(0) = \varphi_0$, riešenie rovnice (1.7) sa redukuje na tvar

$$\varphi(t) = \varphi_0 \cos(\omega t) \tag{1.8}$$

Kyvadlo teda kmitá okolo rovnovážnej polohy s uhlovou frekvenciou ω danou vzťahom (1.5), ktorej zodpovedá perioda pohybu – doba kmitu fyzikálneho kyvadla

$$T = \frac{2\pi}{\omega} = 2\pi \sqrt{\frac{I}{mgr}}$$
 (1.9)

METÓDA MERANIA

Reverzné kyvadlo pozostáva z kovovej tyče opatrenej dvoma navzájom rovnobežnými britmi, ktoré vytvárajú dve osi otáčania 01 a 02 tak, aby ťažisko ležalo nesúmerne na úsečke $^01^02$, ako je to znázornené na obr. 1.2. Na jeden koniec tyče je nasunutý

valec - závažie Z, ktorým možno posúvať a meniť tak polohu ťažiska T.

Ak kyvadlo kmitá okolo osi $\mathbf{0}_1$, platí pre uhlovú frekvenciu vzťah

$$\omega_1^2 = \frac{mgr_1}{I_1} \tag{1.10}$$

kde $I_1 = I_0 + mr_1^2$; ak kmitá okolo osi O_2 , platí vzťah

$$\omega_2^2 = \frac{\text{mgr}_2}{I_2} \tag{1.11}$$

kde $I_2 = I_0 + mr_2^2$, I_0 je moment zotrvačnosti telesa vzhľadom na os rovnobežnú s osami 0_1 a 0_2 , ale prechádzajúcej ťažiskom T.

Obr. 1.2 Reverzné kyvadlo

Posúvaním závažia Z možno kyvadlo nastaviť tak, aby kmitalo s rovnakou dobou kmitu okolo obidvoch osí. Potom platí

$$\omega_1 = \omega_2 = \omega \tag{1.12}$$

Použitím vzťahov (1.10), (1.11), (1.12) a vylúčením veličiny \mathbf{I}_0 (ktorej veľkosť nemusíme vôbec poznať), plynie

$$\omega^2 = \frac{g}{r_1 + r_2} = \frac{g}{\ell} \tag{1.13}$$

kde $\boldsymbol{\mathcal{L}}$ je vzájomná vzdialenosť osí $\boldsymbol{0}_1$ a $\boldsymbol{0}_2$.

Pre dobu kmitu vychádza

$$T = \frac{2\pi}{\omega} = 2\pi \sqrt{\frac{\ell}{g}}$$
 (1.14)

OPIS APARATÚRY A POSTUP PRÁCE

a) Prístroje a pomôcky: reverzné kyvadlo, skrutkovač, dĺžkové
meradlo, stopky

b) Postup práce:

Zmeriame závislosť doby kmitu T kyvadla okolo osi 0_1 a 0_2 pri rôznych polohách závažia Z. Polohu závažia meníme s krokom 1 cm. Presnosť merania zvýšime tým, že meriame 10 T alebo 20 T. Pri danom nastavení závažia určíme T_1 aj T_2 . Meranie opakujeme 3-krát. Údaje zapíšeme do tab. 1.1. Je potrebné dbať na to, aby pri každom meraní bola výchylka kyvadla z rovnovážnej polohy rovnaká (značka na zariadení). Z nameraných hodnôt zostrojíme závislosti dôb kmitu T_1 a T_2 od polohy d závažia Z. Z grafu odčítame hodnotu T_1 , pre ktorú platí

$$T = T_1 = T_2$$

Použitím vzťahu (1.14) vypočítame hodnotu tiažového zrýchlenia g a porovnáme ju s presnou hodnotou g_B pre Bratislavu ($g_B = 9,806 \text{ m.s}^{-2}$).

Tab. 1.1

£ =

	01				02			
d (cm)	1.	2.	3.	T ₁(s)	1.	2.	3.	T ₂ (s)
	10 T ₁	10 T ₁	10 T ₁		10 T ₂	10 T ₂	10 T ₂	
								,

OTÁZKY A PROBLÉMY

- 1. Aká musí byť dĺžka matematického kyvadla, aby kmitalo s rovnakou periodou ako fyzikálne kyvadlo?
- 2. V čom spočíva metóda merania tiažového zrýchlenia pomocou reverzného kyvadla?
- 3. Aký je vzťah medzi vzdialenosťou osí reverzného kyvadla a dĺžkou matematického kyvadla kmitajúceho s tou istou periodou ako reverzné kyvadlo?