Clustering Categorical Data

Import the relevant libraries

```
In [4]: import pandas as pd
        import matplotlib.pyplot as plt
        import seaborn as sns
        sns.set()
        from sklearn.cluster import KMeans
```

Load the data

Load data from the csv file: 'Categorical.csv'.

```
In [5]: # Load the data
        raw data = pd.read csv('Categorical.csv')
        # Check the data
        raw data
```

Out[5]:		name	Longitude	Latitude	continent
	0	Aruba	-69.982677	12.520880	North America
	1	Afghanistan	66.004734	33.835231	Asia
	2	Angola	17.537368	-12.293361	Africa
	3	Anguilla	-63.064989	18.223959	North America
	4	Albania	20.049834	41.142450	Europe
	•••				
	236	Samoa	-172.164851	-13.753243	Oceania
	237	Yemen	47.586762	15.909280	Asia
	238	South Africa	25.083901	-29.000341	Africa
	239 Zambia	Zambia	27.774759	-13.458242	Africa
	240	Zimbabwe	29.851441	-19.004204	Africa

241 rows × 4 columns

Map the data

Use the 'continent' category for this analysis.

```
In [6]: data_mapped = data.copy()
        data mapped['continent'] = data mapped['continent'].map({'North America':0, 'Europe':1, 'Asia':2, 'Africa':3, 'Sout
        data mapped
```

Out[6]:		name	Longitude	Latitude	continent
	0	Aruba	-69.982677	12.520880	0
	1	Afghanistan	66.004734	33.835231	2
	2	Angola	17.537368	-12.293361	3
	3	Anguilla	-63.064989	18.223959	0
	4 Albania	20.049834	41.142450	1	
	•••				
	236	Samoa	-172.164851	-13.753243	5
	237	Yemen	47.586762	15.909280	2
	238	South Africa	25.083901	-29.000341	3
	239	Zambia	27.774759	-13.458242	3
	240	Zimbabwe	29.851441	-19.004204	3

241 rows × 4 columns

Select the features

```
x = data_mapped.iloc[:, 3:4]
In [7]:
```

Clustering

```
In [8]:
        kmeans = KMeans(4)
        kmeans.fit(x)
        KMeans(n_clusters=4)
Out[8]:
```

Use 4 clusters initially.

Clustering results

```
In [9]: identified_clusters = kmeans.fit_predict(x)
         identified_clusters
        array([1, 3, 0, 1, 1, 1, 1, 3, 0, 3, 2, 2, 2, 2, 1, 2, 1, 3, 0, 1, 0, 0,
                3, 1, 3, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 3, 3, 0, 0, 1, 0, 3, 0, 0,
               0, 0, 2, 0, 0, 0, 1, 1, 1, 1, 3, 3, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0,
               1, 1, 0, 1, 2, 0, 1, 1, 2, 0, 1, 3, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1,
               2, 0, 3, 2, 1, 1, 1, 1, 3, 1, 3, 3, 2, 1, 3, 3, 1, 3, 1, 1, 1, 1, 3,
               3, 3, 3, 0, 3, 3, 2, 1, 3, 1, 3, 3, 3, 0, 0, 1, 1, 3, 0, 1, 1, 1,
               3, 1, 0, 1, 1, 0, 2, 1, 2, 1, 0, 1, 3, 1, 3, 2, 0, 0, 1, 2, 0, 3,
               0, 2, 0, 2, 0, 1, 2, 1, 1, 3, 2, 2, 3, 3, 1, 2, 0, 3, 2, 2, 1, 1,
               3, 1, 0, 3, 2, 3, 1, 1, 0, 0, 3, 0, 0, 0, 3, 2, 2, 2, 0, 1, 1, 0,
               0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 2, 3, 1, 0, 0, 3, 3, 3, 3, 2, 1, 0,
               3, 3, 0, 0, 1, 0, 1, 3, 1, 1, 0, 1, 1, 3, 2, 2, 2, 3, 0, 0, 0])
In [10]: data_with_clusters = data_mapped.copy()
```

```
data_with_clusters
                                       Latitude continent Cluster
Out[10]:
                           Longitude
                   name
```

data_with_clusters['Cluster'] = identified_clusters

	name	Longitude	Latitude	continent	Cluster		
0	Aruba	-69.982677	12.520880	0	1		
1	Afghanistan	66.004734	33.835231	2	3		
2	Angola	17.537368	-12.293361	3	0		
3	Anguilla	-63.064989	18.223959	0	1		
4	Albania	20.049834	41.142450	1	1		
•••					•••		
236	Samoa	-172.164851	-13.753243	5	2		
237	Yemen	47.586762	15.909280	2	3		
238	South Africa	25.083901	-29.000341	3	0		
239	Zambia	27.774759	-13.458242	3	0		
240	Zimbabwe	29.851441	-19.004204	3	0		
241 rows × 5 columns							

Plot the data

In [11]: plt.scatter(data['Longitude'], data['Latitude'], c=data_with_clusters['Cluster'], cmap = 'rainbow') plt.xlim(-180,180)

```
plt.ylim(-90, 90)
plt.show()
```

