Apr 24, 2025 kw35262

"Big Leaf" v.s. "Big Tree":

Noah-MP land surface model with plant hydraulics scheme (Noah-MP-PHS) Evaluation

Koutian Wu¹, Lingcheng Li², Daniella Rempe¹, Ashley Matheny¹, Zong-Liang Yang¹
(1) Jackson School of Geosciences, UT Austin, Austin, TX, USA
(2) Atmospheric Sciences and Global Change Division, PNNL, Richland, WA, USA

What are "Big Leaf" and "Big Tree"?

"Big Leaf"

Soil moisture

→
Carbon and water simulations

→ Uncertainties

PHS "Big Tree"

Difference between the "Big leaf" and "Big tree" approach (extracted from Li et al., 2021).

"Big Tree"

Soil moisture <add> whole-plant hydraulics

 \rightarrow

Carbon and water simulations

→
Uncertainties
expect to reduce

What are "Big Leaf" and "Big Tree"?

"Big Leaf"

Soil moisture

 \rightarrow

Carbon and water simulations

 \rightarrow

Uncertainties

Most land surface models, e.g., Noah-MP

(b) Transpiration (TR) $k_{\text{leaf-atm.}}$ C_{leaf} Sapflow (J) C_{stem} Ψ_{stem} soil-root flow (Oi)

PHS "Big Tree"

Difference between the "Big leaf" and "Big tree" approach (extracted from Li et al., 2021).

"Big Tree"

Soil moisture <add> whole-plant hydraulics

 \rightarrow

Carbon and water simulations

→ Uncertainties expect to reduce

Noah-MP-PHS

2025/4/24

From Problem to Collaborators

Lingcheng Li
Plant hydraulic
modeling
PNNL

Daniella Rempe
Near-surface
hydrology
UT-Austin

Ashley Matheny
Ecohydrologist
UT-Austin

Zong-Liang Yang
Land-surface
modeling
UT-Austin

A specific problem: Noah-MP vs Noah-MP-PHS

evaluation.

025/4/24

2008-09: Might observational instrument failure
-->
Did not analyze

Differences: Late spring Summer (peak) Fall

The Noah-MP-PHS land surface model robustly (not so robust as Noah-MP) simulates water-carbon coupling at the US-Syv (Sylvania Wilderness Area) site during 2002-2007. The simulation results exhibit strong agreement with observational data, showing correlation coefficients for latent heat flux, sensible heat flux, and carbon flux as measured by Gross Primary Production (GPP).

Future: Noah-MP-PHS+X

2025/4/24

Last but not least...

ACKNOWLEDGMENTS

KW is sponsored by Jackson School Graduate Teaching Assistant Research Funds. Simulation performed on TACC supercomputer system.

REFERENCES

- 1. Desai 2024, AmeriFlux BASE US-Syv [Dataset]
- 2. Li et al. 2021, JAMES, Plant hydraulics in Noah-MP

Thank you! Any questions?

Koutian Wu, ktwu@utexas.edu

