Question 2

(a)

Proof:

(1) We wish to disprove $\exists a > 1, \exists M > 0, \forall x \in \mathbb{R} (a^x \geq M)$, where $a, M \in \mathbb{R}$. It suffices to prove the negation. Which is:

$$\forall a > 1, \forall M > 0, \exists x \ (a^x < M)$$

- (2) Let $a, M \in \mathbb{R}$ be arbitrary, such that a > 1 and M > 0.
- (3) Let $x = \log_a(M 1)$
- (4) Then we have,

$$a^{x} = a^{\log_{a}(M-1)} = M - 1 < M$$

$$\implies a^{x} < M$$

as needed.

(5) Thus, since $a, M \in \mathbb{R}$, were both arbitrary, we conclude that $\forall a > 1, \forall M > 0, \exists x \ (a^x < M)$.

(b)

Proof:

- (1) We wish to prove $\forall x \in \mathbb{R}, \forall y \in \mathbb{R}((y-x>1) \implies (\exists n \in \mathbb{Z}(x < n < y))).$
- (2) Let $x, y \in \mathbb{R}$ be arbitrary, and assume that y x > 1.
- (3) Notice that either $x \notin \mathbb{Z}$, or $x \in \mathbb{Z}$. We proceed by cases.
- (4) Note that from (2), $y x > 1 \implies x + 1 < y$
- (5) Case 1: If $x \notin \mathbb{Z}$, let $n = \lceil x \rceil$.

Now, $n = \lceil x \rceil > x$, so, n > x. And by (4), $n = \lceil x \rceil < x + 1 < y$. So, n < y.

Therefore, x < n < y, as needed.

(6) Case 2: If $x \in \mathbb{Z}$, let n = x + 1.

Now, n = x + 1 > x, so, n > x. And by (4), n = x + 1 < y, so n < y.

Therefore, x < n < y, as needed.

(7) In either case, since x and y were arbitrary, x < n < y, as needed. Thus,

$$\forall x \in \mathbb{R}, \forall y \in \mathbb{R}((y-x>1) \implies (\exists n \in \mathbb{Z}(x < n < y)))$$