Exercice 1. Quelle est la contraposée des implications suivantes? Même question avec la négation.

- (i) Si x > 0, alors $f(x) \le 0$.
- (ii) Si ab = 0, alors (a = 0 ou b = 0).
 - (i) Contraposée : Si f(x) > 0, alors $x \le 0$. Négation : (x > 0) et (f(x) > 0).
 - (ii) Contraposée : Si $(a \neq 0 \text{ et } b \neq 0)$, alors $ab \neq 0$. Négation : (ab = 0) et $(a \neq 0 \text{ et } b \neq 0)$.

Exercice 2. Expliquer verbalement ce que signifient les assertions suivantes et écrire leur négation.

- (i) $\forall x \in \mathbb{R}, x^2 < 0$.
- (ii) $\forall x, y \in \mathbb{Q}, [x < y \implies \exists z \in \mathbb{Q}, x < z < y].$
- (iii) $\forall A \in \mathbb{R}, \exists n \in \mathbb{N}, n > A.$
- (iv) $\forall n \in \mathbb{N}, \exists p \geq n, \forall r \mathbb{N}, \forall s \mathbb{N}, [p = rs \implies (r = 1) \lor (s = 1)].$
 - (i) "Le carré d'un nombre réel est négatif." Négation : $\exists x \in \mathbb{R}, x^2 \geq 0$.
 - (ii) "On peut trouver un nombre rationnel entre chaque paire de nombres rationnels distincts."

("\(\text{est dense.} " ?)

Négation : $\exists x, y \in \mathbb{Q}, [x < y \land (\forall z \in \mathbb{Q}, z < x \land y < z)].$

(iii) "Il existe des entiers naturels arbitrairement grands."

Négation : $\exists A \in \mathbb{R}, \forall n \in \mathbb{N}, n \leq A$

(iv) "Il existe une infinité de nombres premiers." Négation : $\exists n \in \mathbb{N}, \forall p \geq n, \exists r \in \mathbb{N}, \exists s \in \mathbb{N}, [(p = rs) \land (r \neq 1) \land (s \neq 1)]$

Exercice 3. Écrire la négation des assertions suivantes.

- (i) $\forall x, y \in E, xy = yx$.
- (ii) $\exists x \in E, \forall y \in E, xy = yx.$
- (iii) $\forall a, b \in A, [ab = 0 \implies (a = 0) \lor (b = 0)].$
- (iv) $\forall x \in \mathbb{R}, \forall y \in \mathbb{R}, [x < y \implies f(x) < f(y)]$ (où f est une fonction de \mathbb{R} dans \mathbb{R}).
- (v) $\forall \epsilon > 0, \exists N \in \mathbb{N}, [n \geq N \implies |u_n \ell| < \epsilon]$ (où (u_n) est une suite réelle et $\ell \in \mathbb{R}$).
- (vi) $\exists \ell \in \mathbb{R}, \forall \epsilon > 0, \exists N \in \mathbb{N}, [n \geq N \implies |u_n \ell| < \epsilon]$ (où (u_n) est une suite réelle).
 - (i) $\neg [\forall x, y \in E, xy = yx] \iff \exists x, y \in E, xy \neq yx.$
 - (ii) $\neg [\exists x \in E, \forall y \in E, xy = yx] \iff \forall x \in E, \exists y \in E, xy \neq yx.$
 - (iii) $\neg [\forall a, b \in A, [ab = 0 \implies (a = 0) \lor (b = 0)]] \iff \exists a, b \in A, [ab = 0 \land (a \neq 0) \land (b \neq 0)].$
 - (iv) $\neg [\forall x \in \mathbb{R}, \forall y \in \mathbb{R}, [x < y \implies f(x) < f(y)]] \iff \exists x \in \mathbb{R}, \exists y \in \mathbb{R}, [x < y \land f(x) \ge f(y)]$
 - $(\mathbf{v}) \ \neg [\forall \epsilon > 0, \exists N \in \mathbb{N}, [n \ge N \implies |u_n \ell| < \epsilon]] \iff \exists \epsilon > 0, \forall N \in \mathbb{N}, [n \ge N \land |u_n \ell| \ge \epsilon]$
 - (vi) $\neg [\exists \ell \in \mathbb{R}, \forall \epsilon > 0, \exists N \in \mathbb{N}, [n \geq N \implies |u_n \ell| < \epsilon]]$ $\iff \forall \ell \in \mathbb{R}, \exists \epsilon > 0, \forall N \in \mathbb{N}, [n \geq N \land |u_n - \ell| \geq \epsilon]$

Exercice 4. Soient E, F et G trois ensembles. Montrer que si $E \subset F$ et $F \subset G$, alors $E \subset G$.

Soit $x \in E$. Puisque $E \subset F$, alors $x \in F$. De plus, comme $F \subset G, x \in G$. Donc, $[\forall x \in E, (E \subset F) \land (F \subset G) \implies x \in G] \iff E \subset G$.

Source files available at : github.com/MathiasBuff/bsc-math

Exercice 5. Soient A, B et C trois ensembles.

(i) Montrer que $A = B \iff (A \cap B = A \cup B)$.

(ii) Montrer que $A = B \iff (\mathcal{P}(A) = \mathcal{P}(B))$.

(ii) (A = B) <=> (P(A) = P(B))

Pour montrer que P(A) = P(B), nous devois montren :

(a) P(A) ⊂ P(B)

(b) P(B) ⊂ P(A)

Montrons (a) Soit CeP(A), c'est-à-dire CeA. Comme A=B, A∈B.

Poisque CeA et A∈B, C∈B (Exercise 4.)

Par conséquent, C∈P(B). Comme Cest général, P(A) ⊂ P(B).

Le même caisonnement peut être appliqué pour montren (b).

Puisque (a) et (b) sont vraies, [(A=B) ⇒> (P(A)=P(B)] est démontrée vraie.

El Preuve par contra posée: Montrons ¬(A=B) ⇒ ¬(P(A)=P(B))

Puisque A≠B, sans perte de généralité, il existe x∈A, x≠B.

Preuve par contra posée: Montrons $\neg (A=B) \Rightarrow \neg (P(A)=P(B))$ Puisque $A \neq B$, sans perte de généralité, il existe $x \in A$, $x \notin B$.

Puisque $x \in A$, $\{x\} \in P(A)$ et puisque $x \notin B$, $\{x\} \notin P(B)$.

Par conséquent, $P(A) \neq P(B)$.

Par contra posée $(P(A)=P(B)) \Rightarrow (A=B)$.

Ayant montré \Rightarrow et \Leftarrow , nous avons montré $(A=B) \Leftarrow \neg (P(A)=P(B))$

(iii) Montrer que $(A \cup B = A \cup C) \land (A \cap B = A \cap C) \implies (B = C)$.

Exercice 5 (cont.)

(ii) Preuve par contraposée: 7 (B=C) => 7 [(AUB=AUC) \(\lambda\) (ANB=ANC)] (*)

Puisque B \(\percent{\omega}\) C, sans perte de généralité il existe \(\chi\) \(\percent{\omega}\) (\(\percent{\omega}\) \(\percent{\omega}\) (\(\percent{\omega}\) (\(\percent{\omega}\))

Considérens les cas suivants:

\(\chi\) \(\chi\) \(\percent{\omega}\) A \(\omega\) donc \(\percent{\omega}\) \(\percen\

Exercice 6. Dites si les assertions suivantes sont VRAIES ou FAUSSES.

- (i) $\mathbb{N} \in \mathbb{Z}$.
- (ii) $\mathbb{N} \subset \mathbb{Z}$.
- (iii) $\emptyset \in \mathbb{N}$.
- (iv) $\emptyset \subset \mathbb{N}$.
- (v) $\{1,2\} \in \mathcal{P}(\{1,2,3\}).$
- (vi) $\{1,2\} \subset \mathcal{P}(\{1,2,3\})$.
- (vii) $\{\{1\}\}\subset \mathcal{P}(\{1,2,3\}).$

Exercise 6
(i) "
$$N \in Z$$
" FAUX, N_{s} rest pas élément de Z
(ii) " $N \in Z$ " VRAI
(iii) " $\emptyset \in \mathbb{N}$ " FAUX, c.f. (i)
(iv) " $\emptyset \in \mathbb{N}$ " VRAI

 $P(\{12,33\}) = \{\emptyset, \{13, \{23, \{33, \{1,23, \{1,33, \{2,33, \{1,2,33\}\}\}\}\}\}\}$ (*)
(iv) " $\{1,2\} \in P(\{12,33\})$ " VRAI
(v) " $\{1,2\} \in P(\{12,33\})$ " FAUX, selon * 1, 2 ne sont pas des éléments de $P(\{12,33\})$ " VRAI
(vi) " $\{1,2\} \in P(\{12,33\})$ " VRAI

Exercice 7. Considérons les sous-ensembles de N

$$A=\{1,2,3,4,5,6,7\},\quad B=\{1,3,5,7\},\quad C=\{2,4,6\},\quad D=\{3,6\}.$$

- (i) Déterminer $B \cap D$ et $C \cap D$.
- (ii) Déterminer $B \cup D$ et $C \cup D$. L'une de ces deux unions est-elle disjointe?
- (iii) Déterminer les complémentaires dans A de B, C et D.

