IN THE CLAIMS

Please amend claims 1, 9 and 13 as follows:

1. (Currently Amended) A process for preparing a sulfinyl compound of formula (I), or a pharmaceutically acceptable salt, hydrate or solvate thereof,

$$R_1$$
 R_2
 R_3
 N
 N
 R_4
 R_4
 R_1
 R_4
 R_5
 R_4

which process comprises oxidation of a sulfide compound of formula (II)

$$R_1$$
 R_2
 R_3
 N
 N
 R_4
(III)

wherein in both formulae (I) and (II) R_1 and R_3 are selected from the group consisting of hydrogen, methyl or C_{1-4} alkoxy, R_2 is selected from the group consisting of substituted or unsubstituted C_{1-4} alkoxy and R_4 is selected from the group consisting of hydrogen or substituted or unsubstituted C_{1-4} alkoxy;

characterized in that an oxidizing agent comprising an aqueous alkali or alkali earth metal hypohalite solution, having a concentration in the range of 2 to 5% to form a reaction mixture, wherein a solution of an alkali or alkali earth metal hydroxide is present in the reaction mixture at least during the oxidation step, is added to a suspension or solution of a sulfide compound of formula (II) and thereafter this is added thereto and thereafter there is added thereto an oxidizing agent comprising an aqueous alkali or alkali earth metal hypohalite solution, having a concentration in the range of 2 to 5% such that a sulfide compount of formula (II) is oxidized to a sulfinyl compound of formula (I) in the present of the alkali or alkali earth metal hydroxide whereby the pH of the reaction mixture at least during said oxidation step is in the range of from 9 to 12, and optionally converting a sulfinyl compound of formula (I) to a pharmaceutically acceptable salt, hydrate or solvate thereof.

- 2. (Original) A process according to claim 1, wherein a compound of formula (II) is reacted with an aqueous hypohalite solution in the presence of a catalyst selected from the group consisting of pyridine, di-isopropyl ethyl amine and N,N-dimethyl amino pyridine.
- 3. (Previously Presented) A process according to claim 1, which comprises dissolving or suspending a compound of formula (II) in a solvent selected from the group consisting of water, lower alkyl alcohols, esters, ethers and chlorinated solvents, or a mixture of two or more of these solvents.

- 4. (Original) A process according to claim 3, wherein said solvent is selected from the group consisting of water, methanol, ethanol, isopropanol, di-isopropyl ether, dichloromethane, acetonitrile and ethyl acetate, or a mixture of two or more of these solvents.
- 5. (Previously Presented) A process according to claim 1, which is carried out at a temperature in the range of -30 to 50°C.
- 6. (Original) A process according to claim 5, which is carried out at a temperature in the range of 0 to 30°C.
- 7. (Previously Presented) A process according to claim 1, wherein said alkali metal or alkali earth metal hypohalite is selected from the group consisting of sodium hypochlorite, sodium hypobromite and calcium hypochlorite.
- 8. (Original) A process according to claim 7, wherein said aqueous hypohalite solution comprises sodium hypochlorite.
 - 9. Cancelled.
- 10. (Previously Presented) A process according to claim 1, wherein in formula (I) R_1 represents methyl, R_2 represents trifluoroethoxy, R_3 represents hydrogen and R_4 represents hydrogen.
- 11. (Previously Presented) A process according to claim 1, wherein in formula (I) R_1 represents methyl, R_2 represents methoxy, R_3 represents methyl and R_4 represents methoxy.
- 12. (Previously Presented) A process according to claim 1, wherein in formula (I) R_1 represents methoxy, R_2 represents methoxy, R_3 represents hydrogen and R_4 represents difluoromethoxy.

13. (Previously Presented) A process according to claim 1, wherein in formula (I) R_1 represents methyl, R_2 represents OCH₂CH₂CH₂OMe, R_3 represents hydrogen and R_4 represents hydrogen.

14-34. (Cancelled).