Statistical Machine Learning

Christoph Lampert

Institute of Science and Technology

Spring Semester 2013/2014 // Lecture 6

Measure Concentration Inequalities

- Z random variables, taking values $z \in \mathcal{Z} \subseteq \mathbb{R}$.
- p(Z=z) probability distribution
 - $m \mu = \mathbb{E}[\,Z\,]$ mean
 - $ightharpoonup \operatorname{Var}[z] = \mathbb{E}[\,(Z-\mu)^2\,]$ variance

Lemma (Law of Large Numbers)

Let Z_1, Z_2, \ldots , be i.i.d. random variables with mean μ , then

$$\frac{1}{m} \sum_{i=1}^{m} Z_i \stackrel{m \to \infty}{\longrightarrow} \mu \quad \text{with probability } 1.$$

Measure concentration inequalities quantify the deviation between the two values for finite m.

Markov's Inequality

Assumption: $\mathcal{Z} \subseteq \mathbb{R}_+$, i.e. Z takes only non-negative values.

Lemma (Markov's inequality)

$$\forall a \ge 0: \quad \mathbb{P}[Z \ge a] \le \frac{\mathbb{E}[Z]}{a}.$$

Proof. Step 1) We can write

$$\mathbb{E}[Z] = \int_{x=0}^{\infty} \mathbb{P}[Z \ge x] \, dx$$

Step 2) Since $\mathbb{P}[Z \geq x]$ is non-increasing in x, we have

$$\forall a \geq 0 \quad \mathbb{E}[Z] \geq \int_{x=0}^{a} \mathbb{P}[Z \geq x] \, d\mathsf{x} \geq \int_{x=0}^{a} \mathbb{P}[Z \geq a] \, d\mathsf{x} = a \mathbb{P}[Z \geq a]$$

Markov's Inequality

Assumption: $Z \subseteq \mathbb{R}_+$, i.e. Z takes only non-negative values.

Lemma (Markov's inequality)

$$\forall a \ge 0: \quad \mathbb{P}[Z \ge a] \le \frac{\mathbb{E}[Z]}{a}.$$

Proof. Step 1) We can write

$$\mathbb{E}[Z] = \int_{x=0}^{\infty} \mathbb{P}[Z \ge x] \, dx$$

Step 2) Since $\mathbb{P}[Z \geq x]$ is non-increasing in x, we have

$$\forall a \geq 0 \quad \mathbb{E}[Z] \geq \int_{x=0}^{a} \mathbb{P}[Z \geq x] \, d\mathsf{x} \geq \int_{x=0}^{a} \mathbb{P}[Z \geq a] \, d\mathsf{x} = a \mathbb{P}[Z \geq a]$$

Example

Is it possible that more than half of the population have a salary more than twice the average? No, by $a=2\mu.$

Chebyshev's Inequality

Lemma (Chebyshev's inequality)

$$\forall a \geq 0: \quad \mathbb{P}[|Z - \mathbb{E}[Z]| \geq a] \leq \frac{Var[Z]}{a^2}$$

Proof. Apply Markov's Inequality to the random variable $(Z - \mathbb{E}[Z])^2$.

For any $a \ge 0$:

$$\mathbb{P}[\,|Z - \mathbb{E}[Z]| \geq a] = \mathbb{P}[(Z - \mathbb{E}[Z])^2 \geq a^2] \overset{\mathsf{Markov}}{\leq} \frac{\mathbb{E}[\,(Z - \mathbb{E}[Z])^2\,]}{a^2} = \frac{\mathsf{Var}[Z]}{a^2}.$$

Chebyshev's Inequality

Lemma (Chebyshev's inequality)

$$\forall a \ge 0: \quad \mathbb{P}[|Z - \mathbb{E}[Z]| \ge a] \le \frac{Var[Z]}{a^2}$$

Proof. Apply Markov's Inequality to the random variable $(Z - \mathbb{E}[Z])^2$.

For any $a \ge 0$:

$$\mathbb{P}[\,|Z - \mathbb{E}[Z]| \geq a] = \mathbb{P}[(Z - \mathbb{E}[Z])^2 \geq a^2] \overset{\text{Markov}}{\leq} \frac{\mathbb{E}[\,(Z - \mathbb{E}[Z])^2\,]}{a^2} = \frac{\mathsf{Var}[Z]}{a^2}.$$

Remark: Chebyshev ineq. has similar role as " 3σ -rule" for Gaussians:

- 68% of probability mass within $\mu \pm \sigma$,
- ullet 95% of probability mass within $\mu \pm 2\sigma$,
- 99.7% of probability mass within $\mu \pm 3\sigma$,

but Chebyshev holds for arbitrary probability distributions.

Chebyshev's Inequality

Example (Match Statistics)

- z = -1 for loss, z = 0 for draw, z = 1 for win.
- $p(-1) = \frac{1}{10}$, $p(1) = \frac{1}{10}$, $p(0) = \frac{4}{5}$.
- $\mathbb{E}[Z] = 0$.
- $Var[Z] = \mathbb{E}[(Z)^2] = \frac{1}{10}(-1)^2 + \frac{4}{5}0^2 + \frac{1}{10}(1)^2 = \frac{1}{5}$

What if we pretended Z is Gaussian?

- $\mu = 0$, $\sigma = \sqrt{\frac{1}{5}} \approx 0.45$,
- \bullet we expect at most 5% prob.mass outside of the interval [-0.9, 0.9]
- but really, its 20%!

With Chebyshev:

• $\mathbb{P}[|Z| \ge 0.9] \le \frac{1}{5}/(0.9)^2 \approx 0.247$, so bound is correct.

Applying Chebyshev's Inequality

Lemma (Quantitative Version of the Law of Large Numbers)

Set Z_1, \ldots, Z_m be i.i.d. random variables with $\mathbb{E}[Z_i] = \mu$ and $Var[Z_i] \leq C$. Then, for any $\delta \in (0,1)$ the following inequality holds with probability at least $1 - \delta$:

$$\left| \frac{1}{m} \sum_{i=1}^{m} Z_i - \mu \right| \le \sqrt{\frac{C}{\delta m}}.$$

Proof. The Z_i are i.i.d., so $\operatorname{Var}\left[\frac{1}{m}\sum_{i=1}^m Z_i\right] = \frac{1}{m}\sum_{i=1}^m \operatorname{Var}[Z_i] \leq C$.

Chebyshev's inequality gives us for any $a \ge 0$:

$$\mathbb{P}\left[\left|\frac{1}{m}\sum_{i=1}^{m}Z_{i}-\mu\right|\geq a\right]\leq \frac{\mathsf{Var}\left[\frac{1}{m}\sum_{i=1}^{m}Z_{i}\right]}{ma^{2}}\leq \frac{C}{ma^{2}}.$$

Setting $\delta = \frac{C}{ma^2}$ and solving for a yields $a = \sqrt{\frac{C}{\delta m}}.$

How large should my test set be?

$$\mathbb{P}\left[\left|\frac{1}{m}\sum_{i=1}^{m}Z_{i}-\mu\right| \leq \sqrt{\frac{C}{\delta m}}\right] \geq 1-\delta.$$

Setup: fixed classifier $g: \mathcal{X} \to \mathcal{Y}$

- test set $\mathcal{D} = \{(x_1, y_1) \dots, (x_n, y_n)\}$ $\overset{i.i.d.}{\sim} p(x, y)$,
- ullet random variables $Z_i = \llbracket g(x_i) = y_i
 rbracket \in \{0,1\}$,
- $\mathbb{E}[Z_i] = \mathbb{E}\{[g(x_i) \neq y_i]\} = \mu$ (test error of g)
- $\operatorname{Var}[Z_i] = \mathbb{E}\{(Z_i \mu)^2\} = \mu(1 \mu)^2 + (1 \mu)\mu^2 = \mu(1 \mu) \Rightarrow C = \frac{1}{4}$

Setup: fixed confidence, e.g. $\delta=0.01$, $\sqrt{\frac{C}{\delta m}}=\sqrt{\frac{0.25}{0.01m}}=5\sqrt{\frac{1}{m}}$

$$\mathbb{P}\left[\left|\frac{1}{m}\sum_{i=1}^{m}Z_{i}-\mu\right|\right] \leq 5\sqrt{\frac{1}{m}} \geq 0.99$$

To be 99%-certain that the error is within $\pm 5\%$, use $m \ge 10,000$.

Hoeffding's Lemma and Inequality

Lemma (Hoeffding's Lemma)

Let Z be a random variable that takes values in [a,b] and $\mathbb{E}[Z]=0$. Then, for every $\lambda>0$,

$$\mathbb{E}[e^{\lambda X}] \le e^{\frac{\lambda^2(b-a)^2}{8}}.$$

Proof: Exercise...

Lemma (Hoeffding's Inequality)

Let Z_1, \ldots, Z_m be i.i.d. random variables that take values in the interval [a,b]. Let $\bar{Z}=\frac{1}{m}\sum_{i=1}^m Z_i$ and denote $\mathbb{E}[\bar{Z}]=\mu$. Then, for any $\epsilon>0$,

$$\mathbb{P}\left[\left|\frac{1}{m}\sum_{i=1}^{m}Z_{i}-\mu\right|>\epsilon\right]\leq 2e^{-m\frac{\epsilon^{2}}{(b-a)^{2}}}.$$

Proof: Blackboard...

Hoeffding's Inequality – Proof

Define new RVs: $X_i = Z_i - \mathbb{E}[Z_i]$, $X = \frac{1}{m} \sum_i X_i$

Note: $\mathbb{E}[X_i] = 0$; $\mathbb{E}[\bar{X}] = 0$; each X_i takes values in $[a - \mathbb{E}[Z_i], b - \mathbb{E}[Z_i]]$

Use 1) monotonicity of \exp and 2) Markov's inequality to check

$$\mathbb{P}[\bar{X} \ge \epsilon] \stackrel{1)}{=} \mathbb{P}[e^{\lambda \bar{X}} \ge e^{\lambda \epsilon}] \stackrel{2)}{\le} e^{-\lambda \epsilon} \mathbb{E}[e^{\lambda \bar{X}}]$$

From 3) the independent of the X_i we have

$$\mathbb{E}[e^{\lambda \bar{X}}] = \mathbb{E}[\prod_{i=1}^{n} e^{\lambda X_i/m}] \stackrel{3)}{=} \prod_{i=1}^{n} \mathbb{E}[e^{\lambda X_i/m}]$$

Use 4) Hoeffding's Lemma for every i:

$$\mathbb{E}[e^{\lambda X_i/m}] \stackrel{4)}{\leq} e^{\frac{\lambda^2(b-a)^2}{8m^2}}.$$

In combination:

$$\mathbb{P}[\bar{X} \ge \epsilon] \le e^{-\lambda \epsilon} e^{\frac{\lambda^2 (b-a)^2}{8m}}$$

Hoeffding's Inequality – Proof cont.

Previous step:

$$\mathbb{P}[\bar{X} \ge \epsilon] \le e^{-\lambda \epsilon} e^{\frac{\lambda^2 (b-a)^2}{8m}}$$

So far, λ was arbitrary. Now we set $\lambda = \frac{4m\epsilon}{(b-a)^2}$

$$\mathbb{P}[\bar{X} \ge \epsilon] \le e^{-\frac{4m\epsilon}{(b-a)^2}\epsilon + \left(\frac{4m\epsilon}{(b-a)^2}\right)^2 \frac{(b-a)^2}{8m}} = e^{-\frac{2m\epsilon^2}{(b-a)^2}}$$

If we repeat the same steps again for $-\bar{X}$ instead of X, we get

$$\mathbb{P}[\bar{X} \le \epsilon] \le e^{-\frac{2m\epsilon^2}{(b-a)^2}}$$

To combine both directions we use the *union bound*:

$$P[A \cup B] \le P[A] + P[B],$$

$$\mathbb{P}[|\bar{X}| \ge \epsilon] = \mathbb{P}[(\bar{X} \ge \epsilon) \lor (\bar{X} \le \epsilon)] \le 2e^{-\frac{2m\epsilon^2}{(b-a)^2}}.$$

How large should my test set be?

$$\mathbb{P}\left[\left|\frac{1}{m}\sum_{i=1}^{m}Z_{i}-\mu\right|>\epsilon\right]\leq 2e^{-m\frac{\epsilon^{2}}{(b-a)^{2}}}.$$

Setup: fixed classifier $g: \mathcal{X} \to \mathcal{Y}$

- test set $\mathcal{D} = \{(x_1, y_1) \dots, (x_n, y_n)\}$ $\stackrel{i.i.d.}{\sim} p(x, y)$,
- random variables $Z_i = \llbracket g(x_i) = y_i
 rbracket \in \{0,1\}$, ightarrow b-a=1
- $\mathbb{E}[Z_i] = \mathbb{E}\{[g(x_i) \neq y_i]\} = \mu$ (test error of g)

Setup: fixed confidence $\delta = 0.01$: $m = \log(\frac{2}{\delta})/\epsilon^2 \Rightarrow \epsilon = \sqrt{\log(200)/m}$

$$\mathbb{P}\left[\left|\frac{1}{m}\sum_{i=1}^{m}Z_{i}-\mu\right|\right] \leq 5.3\sqrt{\frac{1}{m}}\right] \geq 0.99$$

To be 99%-certain that the error is within $\pm 5\%$, use $m \ge 11300$.

Difference: Chebyshev's vs. Hoeffding's Inequality

With
$$\Delta = \frac{1}{m} \sum_{i=1}^{m} Z_i$$
 and $\mu = \mathbb{E}[\frac{1}{m} \sum_{i=1}^{m} Z_i]$:

• Chebyshev's: $Var[Z_i] \leq C$

$$\mathbb{P}\left[\left|\Delta - \mu\right| > \sqrt{\frac{C}{\delta m}}\right] \le \delta, \qquad \mathbb{P}\left[\left|\Delta - \mu\right| > \epsilon\right] \le \frac{C}{\epsilon^2 m}$$

- interval decreases like $\frac{1}{\sqrt{m}}$, prob. decreases like $\frac{1}{m}$
- Hoeffding's: Z_i takes values in [a, b]:

$$\mathbb{P}\left[\left|\Delta - \mu\right| > \sqrt{\frac{(b-a)^2 \log \frac{2}{\delta}}{m}}\right] \le \delta, \qquad \mathbb{P}\left[\left|\Delta - \mu\right| > \epsilon\right] \le 2e^{-\frac{m\epsilon^2}{(b-a)^2}}.$$

• interval decreases like $\frac{1}{\sqrt{m}}$, prob. decreases like e^{-m}

Both are typical **PAC** (probably approximately correct) statements: "With prob. $1 - \delta$, the estimated Δ is an ϵ -close approximation of μ ."

PAC Learning

Learning scenario:

- X: input set
- \mathcal{Y} : output/label set, for now: $\mathcal{Y} = \{-1, 1\}$ or $\mathcal{Y} = \{0, 1\}$
- p(x, y): data distribution (unknown to us)
- new: assume deterministic labels, y=f(x) for unknown $f:\mathcal{X}\to\mathcal{Y}$
- $S = \{(x^1, y^1), \dots, (x^m, y^m)\} \stackrel{i.i.d.}{\sim} p(x, y)$: training set
- $\ell: \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$: loss function
- $\mathcal{H} \subseteq \{h : \mathcal{X} \to \mathcal{Y}\}$: hypothesis set (the lerner's choice)

Quantity of interest:

•
$$\mathcal{R}_p(h) = \mathbb{P}_{(x,y) \sim p(x,y)} \{ h(x) \neq y \} = \mathbb{P}_{x \sim p(x)} \{ h(x) \neq f(x) \}$$

What can we learn?

- We know: there is (at least one) $f: \mathcal{X} \to \mathcal{Y}$ that has $\mathcal{R}(f) = 0$.
- Can we find such f from S_m ? If yes, how large must m be?

Definition (Probably Approximately Correct (PAC) Learnability)

A hypothesis class \mathcal{H} is called **PAC learnable** by an algorithm A, if

- for every $\epsilon > 0$ (accuracy o "approximate correct")
- and every $\delta > 0$ (confidence \rightarrow "probably")

there exists an

•
$$m_0 = m_0(\epsilon, \delta) \in \mathbb{N}$$
 (minimal sample size)

such that

- for every probability distribution d over \mathcal{X} ,
- and for every labeling function $f: \mathcal{X} \to \mathcal{Y}$, with $\mathcal{R}_d(f) = 0$,

when we run the learning algorithm A on a training set consisting of $m \geq m_0$ examples sampled i.i.d. from d, the algorithm returns a hypothesis $h \in \mathcal{H}$ that, with probability at least $1 - \delta$, fulfills $\mathcal{R}_d(h) \leq \epsilon$.

$$\forall m \geq m_0(\epsilon, \delta) \quad \mathbb{P}_{S \sim d^m}[\mathcal{R}_d(A[S]) > \epsilon] \leq \delta.$$

Empirical Risk Minimization

Definition (Empirical Risk Minimization (ERM) Algorithm)

$$\begin{array}{ll} \textbf{input} \ \, \text{hypothesis set} \ \, \mathcal{H} \subseteq \{h: \mathcal{X} \to \mathcal{Y}\} \ \, \text{(not necessarily finite)} \\ \textbf{input} \ \, \text{training set} \ \, S = \{(x^1, y^1), \ldots, (x^m, y^m)\} \\ \textbf{output} \ \, h = \ \, \underset{h \in H}{\operatorname{argmin}} \frac{1}{m} \sum_{i=1}^m \llbracket h(x^i) = y^i \rrbracket \quad \, \text{(best on training set)} \end{array}$$

ERM learns the classifier of minimal training error.

- We saw already: this might or might not work well.
- Can we characterize when ERM works and when it fails?

Example: Learning Thresholding Functions

- $\mathcal{X} = [0, 1], \ \mathcal{Y} = \{0, 1\},\$
- $\mathcal{H} = \{h_a(x) = [x \ge a], \text{ for } 0 \le a \le 1\},$
- $f(x) = h_{a_f}(x)$ for some $0 \le a_f \le 1$.
- for simplicity: $d(x) \equiv 1$ (uniform distribution in \mathcal{X})
- training set $S = \{(x^1, y^1), \dots, (x^m, y^m)\}$
- ERM rule: $h = \operatorname*{argmin}_{h_a \in H} \frac{1}{m} \sum_{i=1}^m \llbracket h_a(x^i) = y^i \rrbracket$,

pick smallest possible "+1" region (largest a) when not unique (to make algorithm deterministic)

Claim: ERM learns f (in the PAC sense) Proof: blackboard...

Example: Learning Unions of Intervals

- $\mathcal{X} = [0, 1], \ \mathcal{Y} = \{0, 1\},\$
- $\mathcal{H} = \{h_{\mathcal{I}}(x) \text{ for } \mathcal{I} = \{I_1, \dots, I_K\} \text{ for some } K \in \mathbb{N}\},$ for $h_{\mathcal{I}}(x) = [\![x \in I_1 \vee I_2 \vee \dots \vee I_K]\!]$ with $I_i = [a_k, b_k]$
- $f(x) = h_{[a_f,b_f]}(x)$ for some $0 \le a_f \le b_f \le 1$.
- for simplicity: $d(x) \equiv 1$ (uniform distribution in \mathcal{X})
- training set $S = \{(x^1, y^1), \dots, (x^m, y^m)\}$
- ERM rule: $h = \operatorname*{argmin}_{\mathcal{I}} \frac{1}{m} \sum_{i=1}^{m} \llbracket h_{\mathcal{I}}(x^i) = y^i \rrbracket$,

pick smallest possible "+1" region when not unique

Claim: ERM fails to learn f in the PAC sense Proof: blackboard...

Can we prove more general statements?

Theorem (Learnability of finite hypothesis classes (realizable case))

Let $\mathcal{H} = \{h_1, \dots, h_K\}$ be a finite hypothesis class and $f \in \mathcal{H}$ (i.e. the true labeling function is one of the hypotheses).

Then $\mathcal H$ is PAC-learnable by the empirical risk minimization algorithm with $m_0(\epsilon,\delta)=\frac{1}{\epsilon}\big(\log(|\mathcal H|+\log(1/\delta)\,\big)$

Proof: blackboard.

Examples: Finite hypothesis classes

Model selection:

 Clients offer me trained classifiers: decision tree, LogReg or an SVM? Which one should I buy?

Finite precision:

- For $x \in \mathbb{R}^d$, the hypothesis set $\mathcal{H} = \{f(x) = \operatorname{sign}\langle w, x \rangle\}$ is infinite.
- But: on a computer, w is restricted to 64-bit doubles: $|\mathcal{H}_c| = 2^{64d}$. $m_0(\epsilon, \delta) = \frac{1}{\epsilon} (\log(|\mathcal{H}| + \log(1/\delta))) \approx \frac{1}{\epsilon} (44d + \log(1/\delta))$

Implementation:

• $\mathcal{H} = \{$ all algorithms implementable in 10 KB C-code $\}$ is finite.

Logarithmic dependence on $|\mathcal{H}|$ makes even large (finite) hypothesis sets (kind of) feasible.

Agnostic PAC Learning

More realistic scenario: labeling isn't a deterministic function

- X: input set
- \mathcal{Y} : output/label set, for now: $\mathcal{Y} = \{-1, 1\}$ or $\mathcal{Y} = \{0, 1\}$
- p(x, y): data distribution (unknown to us)
- assume deterministic labels, y = f(x) for unknown $f: \mathcal{X} \to \mathcal{Y}$
- $S = \{(x^1, y^1), \dots, (x^m, y^m)\} \overset{i.i.d.}{\sim} p(x, y)$: training set
- $\ell: \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$: loss function
- $\mathcal{H} \subseteq \{h: \mathcal{X} \to \mathcal{Y}\}$: hypothesis set (the lerner's choice)

Quantity of interest:

•
$$\mathcal{R}_p(h) = \mathbb{P}_{(x,y) \sim p(x,y)} \{ h(x) \neq y \}$$

What can we learn?

- there might not be an $f: \mathcal{X} \to \mathcal{Y}$ that has $\mathcal{R}(f) = 0$.
- ullet but can we at least find the best h from the hypothesis set?

Definition (Agnostic PAC Learning)

A hypothesis class $\mathcal H$ is called **agnostic PAC learnable** by A, if

- $\quad \text{ for every } \epsilon > 0 \qquad \text{ (accuracy} \rightarrow \text{"approximate correct")}$
- and every $\delta > 0$ (confidence \rightarrow "probably")

there exists an

• $m_0 = m_0(\epsilon, \delta) \in \mathbb{N}$ (minimal sample size)

such that

• for every probability distribution d(x,y) over $\mathcal{X} \times \mathcal{Y}$, when we run the learning algorithm A on a training set consisting of $m \geq m_0$ examples sampled i.i.d. from d, the algorithm returns a hypothesis $h \in \mathcal{H}$ that, with probability at least $1 - \delta$, fulfills

$$\mathcal{R}_d(h) \leq \min_{\bar{h} \in \mathcal{H}} \mathcal{R}_d(\bar{h}) + \epsilon.$$

$$\forall m \geq m_0(\epsilon, \delta) \quad \mathbb{P}_{S \sim d^m} [\mathcal{R}_d(A[S]) - \min_{\bar{h} \in \mathcal{H}} \mathcal{R}_d(\bar{h}) > \epsilon] \leq \delta.$$

Uniform Convergence is Sufficient for Learnability

There's three main quantities:

- training error, $\hat{\mathcal{R}}_S(h) = rac{1}{m} \sum_{i=1}^m \llbracket h(x^i) = y^i
 rbracket$ for any $h \in \mathcal{H}$,
- generalizaton error, $\mathcal{R}_d(h) = \mathbb{E}_{(x,y)\sim d}[\![h(x)=y]\!]$ for any $h\in\mathcal{H}$,
- best achievable generalization error, $\min_{ar{h}\in\mathcal{H}}\mathcal{R}(ar{h}).$

Uniform Convergence is Sufficient for Learnability

There's three main quantities:

- training error, $\hat{\mathcal{R}}_S(h) = \frac{1}{m} \sum_{i=1}^m \llbracket h(x^i) = y^i
 rbracket$ for any $h \in \mathcal{H}$,
- generalization error, $\mathcal{R}_d(h) = \mathbb{E}_{(x,y)\sim d}[\![h(x)=y]\!]$ for any $h\in\mathcal{H}$,
- best achievable generalization error, $\min_{\bar{h}\in\mathcal{H}}\mathcal{R}(\bar{h})$.

Definition (ϵ -representative sample)

A training set S is called $\epsilon\text{-representative}$ (for the current situation), if

$$\forall h \in \mathcal{H} \quad |\hat{\mathcal{R}}_S(h) - \mathcal{R}_d(h)| \leq \epsilon.$$

Uniform Convergence is Sufficient for Learnability

There's three main quantities:

- training error, $\hat{\mathcal{R}}_S(h) = \frac{1}{m} \sum_{i=1}^m \llbracket h(x^i) = y^i
 rbracket$ for any $h \in \mathcal{H}$,
- generalization error, $\mathcal{R}_d(h) = \mathbb{E}_{(x,y)\sim d}\llbracket h(x) = y
 rbracket$ for any $h\in \mathcal{H}$,
- best achievable generalization error, $\min_{\bar{h}\in\mathcal{H}}\mathcal{R}(\bar{h})$.

Definition (ϵ -representative sample)

A training set S is called ϵ -representative (for the current situation), if

$$\forall h \in \mathcal{H} \quad |\hat{\mathcal{R}}_S(h) - \mathcal{R}_d(h)| \leq \epsilon.$$

Lemma ("ERM works well for $(\epsilon/2)$ -representative training sets")

Let S be $(\epsilon/2)$ -representative. Then any h_{ERM} with $\hat{\mathcal{R}}_S(h_{ERM}) = \min_{\bar{h} \in \mathcal{H}} \hat{\mathcal{R}}_S(\bar{h})$ (i.e. a possible output of ERM) fulfills

$$\mathcal{R}_d(h_{ERM}) \leq \min_{\bar{h} \in \mathcal{H}} \mathcal{R}_d(\bar{h}) + \epsilon.$$

Lemma ("ERM works well for $(\epsilon/2)$ -representative training sets")

Let S be $(\epsilon/2)$ -representative. Then any h_{ERM} with $\hat{\mathcal{R}}_S(h_{ERM}) = \min_{\bar{h} \in \mathcal{H}} \hat{\mathcal{R}}_S(\bar{h})$ (i.e. a possible output of ERM) fulfills

$$\mathcal{R}_d(h_{ERM}) \leq \min_{ar{h} \in \mathcal{H}} \mathcal{R}_d(ar{h}) + \epsilon.$$

Proof. For any $h \in \mathcal{H}$:

$$\mathcal{R}_d(h_{ERM}) \le \hat{\mathcal{R}}_S(h_{ERM}) + \frac{\epsilon}{2} \le \hat{\mathcal{R}}_S(h) + \frac{\epsilon}{2} \le \mathcal{R}(h) + \frac{\epsilon}{2} + \frac{\epsilon}{2} = \mathcal{R}(h) + \epsilon$$

Taking the minimum over $h \in \mathcal{H}$ on both sides, we obtain

$$\mathcal{R}_d(h_{ERM}) \le \min_{h \in \mathcal{H}} \mathcal{R}(h) + \epsilon$$

Uniform Conference

Definition

A hypothesis class $\ensuremath{\mathcal{H}}$ is said to have the $\ensuremath{\textbf{uniform}}$ convergence property, if

• for every $\epsilon > 0$, and every $\delta > 0$

there exists an

•
$$m^{UC} = m^{UC}(\epsilon, \delta) \in \mathbb{N}$$

such that

• for every probability distribution d over \mathcal{X} ,

if

• S is a training set of size $m \geq m^{UC}$, sampled i.i.d. from d, the probability that S is ϵ -representable is at least $1-\delta$.

$$\forall m \geq m_0(\epsilon, \delta) \quad \mathbb{P}_{S \sim d^m} [\forall h \in \mathcal{H} : |\hat{\mathcal{R}}_S(h) - \mathcal{R}_d(h)| \leq \epsilon] \geq 1 - \delta,$$
or
$$\forall m \geq m_0(\epsilon, \delta) \quad \mathbb{P}_{S \sim d^m} [\exists h \in \mathcal{H} : |\hat{\mathcal{R}}_S(h) - \mathcal{R}_d(h)| > \epsilon] < \delta.$$

Uniform Conference is sufficient for PAC Learnability

Lemma

Let \mathcal{H} have the uniform convergence property with sample complexity $m_{UC}(\epsilon,\delta)$, then \mathcal{H} is agnostically PAC-learnable with sample complexity $m(\epsilon,\delta) \leq m_{UC}(\delta/2,\delta)$, and the ERM rule is a successful PAC learning algorithm.

Proof. combine two previous lemma:

- uniform convergence (for $\delta,\epsilon/2$)
- implies
- $\epsilon/2$ -representativeness,
- implies
 - (δ, ϵ) learnability (by ERM rule).

Finite Hypothesis Classes are PAC Learnable

Theorem

Every finite hypothesis set, \mathcal{H} , is agnostic PAC-learnable by the ERM algorithm.

Finite Hypothesis Classes are PAC Learnable

Theorem

Every finite hypothesis set, \mathcal{H} , is agnostic PAC-learnable by the ERM algorithm.

Proof. it's enough to show that ${\mathcal H}$ has the uniform convergence property.

Part 1) let $\epsilon > 0$, $\delta > 0$ be fixed. We want to find m

$$\Pr_{S \sim d} \left[\forall h \in \mathcal{H} : |\hat{\mathcal{R}}_S(h) - \mathcal{R}_d(h)| \le \epsilon \right] \ge 1 - \delta,$$

for |S| = m, or equivalently, the m such that

$$\Pr_{S \sim d} \left[\exists h \in \mathcal{H} : |\hat{\mathcal{R}}_S(h) - \mathcal{R}_d(h)| > \epsilon \right] \leq \delta,$$

Note:

$$\left\{S: \ \exists h \in \mathcal{H}: |\hat{\mathcal{R}}_S(h) - \mathcal{R}_d(h)| > \epsilon\right\} = \bigcup_{h \in \mathcal{H}} \left\{S: |\hat{\mathcal{R}}_S(h) - \mathcal{R}_d(h)| > \epsilon\right\}$$

Union bound:

$$\Pr_{S \sim d} \left[\exists h \in \mathcal{H} : |\hat{\mathcal{R}}_S(h) - \mathcal{R}_d(h)| > \epsilon \right] \le \sum \Pr_{S \sim d} \left[|\hat{\mathcal{R}}_S(h) - \mathcal{R}_d(h)| > \epsilon \right]$$

Finite Hypothesis Classes are PAC Learnable – Proof cont.

Part 2) We show that for any fixed h (chosen before S is sampled), $\Pr_{S \sim d} \left[|\hat{\mathcal{R}}_S(h) - \mathcal{R}_d(h)| > \epsilon \right]$ is small for large enough m = |S|.

Reminder:

•
$$\hat{\mathcal{R}}_S(h) = \frac{1}{m} \sum_{i=1}^m [h(x^i) = y^i]$$
, and $\mathcal{R}_d(h) = \mathbb{E}_{(x,y) \sim d}[h(x) = y]$.

h is fixed, independent of S. Therefore, $\mathbb{E}_{S\sim d}\{\hat{\mathcal{R}}_S(h)\}=\mathcal{R}_d(h)$.

Apply Hoeffding's inequality: $\mathbb{P}_S[|\hat{\mathcal{R}}_S(h) - \mathcal{R}_d(h)| > \epsilon] \leq 2e^{-2m\epsilon^2}$

Part 3) We insert Part 2) into Part 1):

$$\Pr_{S \sim d} \left[\exists h \in \mathcal{H} : |\hat{\mathcal{R}}_S(h) - \mathcal{R}_d(h)| > \epsilon \right] \le \sum_{h \in \mathcal{H}} 2e^{-2m\epsilon^2} = 2|\mathcal{H}|e^{-2m\epsilon^2}$$

If we choose $m \geq \frac{\log(2|\mathcal{H}|/\delta)}{2\epsilon^2}$, then $2|\mathcal{H}|e^{-2m\epsilon^2} \leq 2|\mathcal{H}|e^{-\log(2|\mathcal{H}|/\delta)} = \delta$.

 \mathcal{H} has the uniform convergence property with $m_{UC}(\epsilon,\delta) = \left\lceil \frac{\log(2|\mathcal{H}|/\delta)}{2\epsilon^2} \right\rceil$.