Analysis of Nonlinear Circuits

Lecture 6 September 27th, 2018

Jae W. Lee (<u>jaewlee@snu.ac.kr</u>)
Computer Science and Engineering
Seoul National University

Slide credits: Prof. Anant Agarwal at MIT

Review: Discretize Matters

Lumped Matter Discipline (LMD) simplifies circuit analysis.

Review: Discretize Value

- Digital abstraction
 - ➤ Subcircuits for given "switch" setting are linear! So, all 5 methods (m1 m5) can be applied

SR MOSFET Model

Outline

Textbook: Ch. 4.1, 4.2, 4.3, 4.5

- Analytical Method (based on m1, m2, m3)
- Graphical Method
- Incremental Analysis

Analytical Method

How do we analyze nonlinear circuits, for example:

Analytical Method

Using the node method! (remember the node method applies for linear or nonlinear circuits)

$$\frac{v_D - V}{R} + i_D = 0 \qquad \qquad \mathbf{1}$$

$$i_D = ae^{bv_D}$$
 2

2 unknowns 2 equations

Solve the equation by

- trial and error
- numerical methods

Graphical Method

Note: the solution satisfies equations

Graphical Method

Combine the two constraints

Outline

Textbook: Ch. 4.1, 4.2, 4.3, 4.5

- Analytical Method (based on m1, m2, m3)
- Graphical Method
- Incremental Analysis

Motivation: music over a light beam

• If only it were linear ... i_D

it would've been ok.

What do we do?

Result

Result

- The incremental method (or small signal method)
 - 1. Operate at some DC offset or bias point (V_D, I_D) .
 - 2. Superimpose small signal v_d (music) on top of V_D .
 - 3. Response i_d to small signal v_d is approximately linear.

- What does this mean mathematically?
 - Or, why is the small signal response linear?

$$i_D = f(v_D)$$

We replaced

$$v_D = V_D + \Delta v_D$$

nonlinear

large DC

increment from V_D

using Taylor's Expansion to expand $f(v_D)$ near $v_D=V_D$:

$$i_D = f(V_D) + \frac{df(v_D)}{dv_D}\Big|_{v_D = V_D} \cdot \Delta v_D$$

neglect higher order terms because Δv_D is small +

$$\frac{1}{2!} \frac{d^2 f(v_D)}{dv_D^2} \cdot \Delta v_D^2 + \cdots$$

18

Incremental Analysis

What does this mean mathematically? (Cont'd)

We can write

$$(X) : I_D + \Delta i_D \approx f(V_D) + \left. \frac{df(v_D)}{dv_D} \right|_{v_D = V_D} \cdot \Delta v_D$$

What does this mean mathematically? (Cont'd)

equating DC and time-varying parts,

$$I_D = f(V_D) \longrightarrow \text{operating point}$$

$$\Delta i_D = \frac{df(v_D)}{dv_D} \bigg|_{v_D = V_D} \cdot \Delta v_D$$

$$\text{constant w.r.t.} \Delta v_D$$

constant w.r.t. Δv_D

so,
$$\Delta i_D \propto \Delta v_D$$

By notation,
$$\Delta i_D = i_d$$

$$\Delta v_D = v_d$$

What does this mean mathematically? (Cont'd) In our example,

$$i_D = a \ e^{bv_D}$$
 From (X) : $I_D + i_d \approx a \ e^{bV_D} + a \ e^{bV_D} \cdot b \cdot v_d$

Equate DC and incremental terms,

$$I_{D} = a e^{bV_{D}} \longrightarrow \text{operating point}$$

$$(aka bias pt.)$$

$$aka DC \text{ offset}$$

$$i_{d} = \underbrace{(a e^{bV_{D}}) b \cdot v_{d}} \longrightarrow \text{small signal}$$

$$behavior$$

$$constant \longrightarrow \text{linear!}$$

Graphical interpretation

We saw the small signal — mathematically now, circuit

Large signal circuit:

$$I_D = a e^{bV_D}$$

Small signal reponse: $i_d = I_D b y_d$

small signal circuit:

behaves like:

Example: Draw the small signal circuit

$$i_{D} + i_{D} = \begin{cases} Kv_{D}^{2} & for \ v_{D} > 0 \\ 0 & for \ v_{D} \le 0 \end{cases}$$

$$- K = 1 \frac{mA}{V^{2}}$$

$$V_{D} = 1V$$

Conclusion

Nonlinear elements

• e.g., (light emitting) diodes

Solution methods

- Analytical method
- Graphical method
- Piecewise linear method (not covered, Chapter 4.4)
- Incremental analysis

Two types of non-linear circuits

- Digital circuit: assume the operating mode of the device
 - e.g., logic gates
- Analog circuit: bias + incremental analysis (small signal analysis)
 - e.g., amplifiers