Office Hours

Section 166	Section 133	Section 177
Time : Tue/Thu 11:00-12:20	Time : Tue/Thu 15:30-16:50	Time : Tue/Thu 12:30-13:50
Location: CHEM B250	Location: HEBB 100	Location: CIRS 1250
Instructor: Amani Hariri	Instructor: Dan Bizzotto	Instructor: Keng Chou
Office: CHEM A127	Office: AMPEL 318	Office: CHEM D348
Email: amaniah@chem.ubc.ca	Email: bizzotto@chem.ubc.ca	Email: kcchou@chem.ubc.ca
Office Hours	Office Hours	Office Hours
Wed 5:00 - 6:00 pm in A127	Mondays 4:30-5:30 pm in AMPEL 318	Tuesdays 2:00 - 3:00 pm in D348
(also by appointment)	(also by appointment)	(also by appointment)
Lecture TA : Albert Li	Lecture TA: Daina Baker	Lecture TA: Weiming Song
Office Hours: Mon 6:00-7:00pm in C126 (Chem)	Office Hours: 10:00 to 11:00 am in AMPEL 342	Office Hours: Thurs 6:00-7:00pm in MCLD 2012

 You may attend any office hours, regardless of your section.

Unit 5 Polymers II

Slide Color Codes

All Lectures Section Only

Required OK to Skip Useful Examable

Polymers

 A polymer is a macromolecule constructed by a <u>sequential stringing</u> together of smaller molecules called monomers.

- We'll discuss two types of polymers:
 - Condensation polymers
 - Addition polymers

Condensation

Addition Polymers

- Addition reactions occur when two or more molecules join to form a larger molecule <u>without</u> the <u>loss of any atoms</u> / small molecules.
- 'R' is an abbreviation for a molecule that initiates the polymerization process.
- Dot (•): The dot signifies the presence of an unpaired valence electron, , which makes the species a free radical.

Carbon-Carbon Linkage

Polymerization steps

Addition polymerization occurs in three key stages:

- 1) Initiation. Number of radicals increases.
- 2) Propagation. Number of radicals remains constant.
- 3) Termination. Number of radicals decreases.

Initiation

- A polymerization reaction starts by the <u>formation of a</u> <u>reactive species</u> such as a free radical.
- Radicals are very reactive species with an odd number of electrons. Radicals are generally abbreviated as R·, where the dot represents the unpaired electron.
- (1) Bond cleavage: $R^{O} O^{R} \longrightarrow 2 R^{O}$ (2) Addition: $R^{O} O^{R} \longrightarrow R^{C}$

In general: RO· Is just notated as R·

Initiators

A common radical initiator. Peroxides may be explosive.

(1) Benzoyl peroxide:

(2) Azobisisobutyronitrile (AIBN):

You do NOT need to memorize these structures

Photoinitiators Used in Dental Composite

Propagation

- A growing polymer chain reacts with a monomeric unit, extending the length of the polymer.
- No overall change in number of radical species.

Termination

 Reaction between a growing chain and another radical species (another growing chain, or an initiator).

Examples of addition polymers

Examples of addition polymers

Examples of addition polymers

Worksheet Question #7-8

Fill in the blanks in the table below by drawing the polymer or smallest possible monomer. Classify each polymer as condensation or addition polymer by circling the correct option. Name the type of linkage.

If you find these concepts difficult, please view the videos posted on Canvas that go through these type of problems in detail.

Review Clicker Question

Monomer	
Polymer	

Review Clicker Question

Worksheet Question #6 – GOOD QUESTION

Provide a valid explanation for the trend in polymer molecular weight of **poly(methyl methacrylate)**

shown below.

Concentration of initiator (mmol/L)

 When the <u>number of radicals is small</u>, the <u>termination</u> <u>step is less likely</u> to occur so the polymers continue to grow longer.

Direct condensation polymerization

- Monomers with two or more functional groups, such as -COOH, -OH, -NH₂, react directly to form polymers.
- No prior chemical modifications needed.
- Example:

Clicker review: worksheet question 7

Which of the monomers below directly lead to condensation polymerization reactions?

$$A \longrightarrow C \longrightarrow C = N$$

- D. Molecules A + B
- E. Molecules B + C

Monomer(s)	Polymer
	Addition
H ₂ N OH	Condensation
	If condensation, type of linkage:
ОН	Addition
	Condensation
N N	If condensation, type of linkage:
	Addition
C≡N	Condensation
	If condensation, type of linkage:

Monomer(s)	Polymer
	Addition
H ₂ N OH	Condensation Condensation, type of linkage:

Carbon-Carbon

Molecular weight (MW) distributions

- A synthetic polymer will have a range of chain lengths of differing molecular mass, or a mass distribution.
- Differences in molecular weight affect solubility, strength, viscosity, among other properties.

Factors affecting polymer properties

- Polymers are versatile materials because their properties can be tailored in a number of ways.
- For instance, <u>molecular weight</u>, <u>architecture</u>, <u>crosslinking</u>, and <u>composition</u> are some of the factors that can be modified to produce materials with different properties.

Mechanical strength

 Definition – the strength of a material is its ability to withstand an applied load without plastic deformation.

- Stress: force per unit area
- Strain: the ratio of the change in length to the original length

Steel Strength Used in Cars

Molecular weight and mechanical strength

- When MW is below a certain point, the polymer has no mechanical strength.
- As MW increases beyond that point, mechanical strength increases rapidly (A-B).
- At a given chain length, the increase in MW does not significantly change the mechanical strength of the material.

Architecture

- Polymers are <u>not always linear</u>, they can also be branched.
- Branched polymers can have several architectures: star, comb or brush to name a few.

- Architecture can have significant effects on polymer properties.
- For instance, <u>branching</u> can enhance chain entanglement that leads to <u>increased viscosity</u>. A polymer's viscosity is important for polymer processing.

Crosslinking

- When two or more polymer chains are connected via covalent bonds the chains are said to be crosslinked.
- The molecular weight of a cross-linked polymer is very high.

- Crosslinking has marked effects on a polymer's properties.
 It improves mechanical strength and increases thermal stability.
- The reversibility of elastomers is due to "<u>light</u>"
 (occasional) crosslinking between the polymer chains.

Composition

- The identity of the <u>monomer</u> will also greatly impact the properties of the polymer.
- For example, polymers with <u>CH₃ or F</u> side chains are <u>hydrophobic</u> whereas polymers with <u>OH</u> groups are <u>hydrophilic</u>.

Polypropylene (Hydrophobic)

Teflon (Hydrophobic)

Poly(vinyl alcohol) (Hydrophilic)

Composition

Polypropylene (Hydrophobic)

- heat-resistant
- resistant to acids
- high strength

Teflon (Hydrophobic)

Poly(vinyl alcohol) (Hydrophilic)

water-soluble

Detergent pods

Entropic elasticity

• Glass transition- a physical transformation at its glass transition temperature (T_g) , where the polymer change from a hard, rigid, glassy state to a softer, more flexible, rubbery state, or vice versa.

Examples of Glass Transition

- Summer Tires: Have a T_g around 5-10 °C, making them suitable for warmer weather but performing poorly in cold conditions.
- Winter Tires: Are engineered with a much lower T_g , around -50 °C, staying flexible and maintain grip in the winter.

HDPE vs LDPE

HDPE (high-density polyethylene)

LDPE (Low-density polyethylene)

HDPE vs. LDPE

	HDPE (#2 plastic)	LDPE (#4 plastic)
Structure	Linear	Branched
Uses	Hard hats, bottle caps, Nalgene bottles (semi- opaque)	Plastic wrap, snap-on lids, 6-pack rings
Young's modulus	600-1400 MPa	200-400 MPa
Chemical formula	(CH ₂) _n	(CH ₂) _n
Synthetic method	Metal catalyst (e.g. Ziegler-Natta)	Radical/addition polymerization

HDPE: high-density polyethylene

Young's modulus

• Definition:

$$E = \frac{\sigma}{\epsilon}$$

 σ is stress (force per unit area) ϵ is strain (proportional deformation)

	Young's Modulus (x10 ⁹ Pa)
cotton	5
leather	0.22
brass	110
copper	130
lead	14
nylon	1.8
Brick	28
Concrete	24
Diamond	11,000
Pine	13, 1.2
natural rubber	0.0019

HDPE vs. LDPE

Worksheet Question #9 – GOOD QUESTION

Rank the following polymers in terms of <u>increasing</u> <u>flexibility</u>. Explain your reasoning.

$$\left\{\begin{array}{c} \mathbf{O} \\ \end{array}\right\}_{n}$$

polyethylene glycol (PEG)

A)
$$A < B < C$$

C)
$$B < A < C$$

B.
polyacrylic acid
(PAA)

E)
$$C < B < A$$

Worksheet Question #9 – GOOD QUESTION

Rank the following polymers in terms of increasing flexibility. Explain your reasoning.

Α. polyethylene glycol (PEG)

A)
$$A < B < C$$

C)
$$B < A < C$$

B. polyacrylic acid (PAA)

Worksheet Question #10 – GOOD QUESTION

Which of the following monomers (A or B) produces a polymer with the <u>highest melting</u> <u>point</u>? Briefly explain your reasoning. Assume the molecular weight of the resulting polymer is the same.

Worksheet Question #10 – GOOD QUESTION

Which of the following monomers (A or B) produces a polymer with the <u>highest melting</u> <u>point</u>? Briefly explain your reasoning. Assume the molecular weight of the resulting polymer is the same.

Worksheet Question #11 – GOOD QUESTION

Which of the following reactions produces a branched polymer?

D. Both A + B

E. Both A + C

Worksheet Question #11 – GOOD QUESTION

Which of the following reactions produces a branched polymer?

Special monomer properties

Polymer light emitting diodes (PLEDs) can be used for bendable screens.

Blueprint question

LDPE

HDPE

What factors need to be considered when designing polymers for various applications?

http://toyworth.com/browse/action/figure/Star/Wars/89/1979/Accessories/Millennium/Falcon.html https://www.boiseweekly.com/CityDesk/archives/2015/03/24/video-north-idaho-pranksters-stretching-saran-wrap-across-highway https://www.acparadise.com/acp/display.php?c=71400 https://sites.google.com/site/carloswilson291126/kevlar http://www.jotun.com/ww/en/b2b/paintsandcoatings/chemical-plants/

Blueprint question

High-density polyethylene **HDPE**

Branched Inefficient packing structure Flexible

Linear structure Efficient packing Strong but less flexible (LDFs)

Thermoplastics, processed using injection molding or thermoforming

Blueprint question

Nylon

Kevlar has high strength but less elasticity → More H-bonding interactions and LDFs.

Both Nylon and Kevlar are spun into fibres that are woven into fabrics

Not bulletproof

Kevlar synthesis

condensation reaction:

poly paraphenylene terephthalamide a.k.a Kevlar

terephthaloyl chloride

1,4-phenylene-diamine (para-phenylenediamine)

soluble in sulfuric acid

Kevlar (para-aramid synthetic fiber)

Strength from many interchain bonds...

aromatic stacking

polymer strands are oriented along fiber direction during spinning

- Fill in the blanks in the table below by drawing the polymer or smallest possible monomer.
- Classify each polymer as a condensation or addition polymer by circling the correct option.
- Name the type of linkage.

Monomer	Polymer	Type of Po	olymerization
H ₂ N OH	\[\bar{N}\]	Addition Type of linkage	Condensation

Monomer	Polymer	Type of Po	olymerization
N		Addition	Condensation
		Type of linkag	e:

Addition carbon-carbon N Addition carbon-carbon

Monomer(s)	Polymer	Type of Polymerization
Challenge:		Addition Condensation
		Type of linkage:

and more possibilities!

Monomer(s)	Polymer	Type of Polymerization
H ₂ N NH ₂		Addition Condensation
		Type of linkage:

Monomer(s)	Polymer	Type of Polymerization
HOCH ₂ CH ₂ OH		Addition Condensation
но-с		Type of linkage:

