CS578: Internet of Things

IEEE 802.15.4e

IEEE 802.15.4e Standard: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6185525
Article: "IEEE 802.15.4e: A survey" https://www.sciencedirect.com/science/article/pii/S0140366416301980

Dr. Manas Khatua

Assistant Professor, Dept. of CSE, IIT Guwahati

E-mail: manaskhatua@iitg.ac.in

"The best among you is the one who doesn't harm others with his tongue and hands." - Muhammad

Limitations of 802.15.4 MAC

- Unbounded latency
 - Both BE and Non-BE mode use CSMA/CA
 - No bound on maximum delay to reach destination
- Non-reliable communication
 - Very low delivery ratio due to the inefficiency of CSMA/CA

- No protection against interferences/multipath fading
 - Due to usage of single channel
- Powered relay nodes in multi-hop network
 - Relay nodes keep their radio active always.
 - complex synchronization and beacon scheduling in BE mode for multihop
 - Consume large energy
- So, IEEE 802.15.4 is unsuitable for many critical scenarios
 - when applications have stringent requirements

Requirements of Critical Applications

- > Timeliness
 - Deterministic latency for packet delivery
- Reliability
 - Wire-like reliability may be required, e.g., 99.9% or better
- Scalability
 - Large network size
- Energy Efficiency
 - Target battery lifetime: 5 years, or more

Introduction to 802.15.4e

- ➤ IEEE 802.15 **Task Group 4e** was created in 2008
 - To redesign the existing 802.15.4 MAC
- ➤ IEEE 802.15.4e MAC Enhancement Standard approved in 2012
 - Contains idea from existing WirelessHART and ISA 100.11.a
 - Time slotted access
 - Shared and dedicated slots
 - Multi-channel communication
 - Frequency hopping
 - Introduce five MAC behaviour modes to support specific applications
 - General functional enhancements
 - Not tied to any specific application domain

MAC modes

- Time Slotted Channel Hopping (TSCH)
 - Industrial automation and process control
 - Delay sensitive applications

- Deterministic and Synchronous Multi-channel Extension (DSME)
 - Industrial and commercial applications
 - Non-delay tolerant and delay tolerant applications

- Low Latency Deterministic Network (LLDN)
 - For single hop and single-channel networks
 - Star topology
 - Provides very low latency

Cont...

- Asynchronous multi-channel adaptation (AMCA)
 - For large network such as smart utility networks, infrastructure monitoring
 - Used in non Beacon-Enabled PANs
 - Device selects best link quality channel as its designated listening channel
 - Sender node switch to receiver designated listening channel to transmit its data
 - Beacon or Hello packet is used to advertise node designated listening channel

- Radio Frequency Identification Blink (BLINK)
 - For Application like item/people identification, location and tracking
 - Node communicate without prior association
 - No ACK required
 - Aloha protocol is used to transmit BLINK packet by "transmit only" devices

General Functional Enhancements

These are not tied to any specific application domain:

- Low Energy (LE)
 - Operate in very low duty cycle (<= 1%)
 - Appearing always on to the upper layers
 - Intended for applications that can trade latency for energy efficiency
- Information Elements (IE)
 - Mechanism to exchange information at the MAC sublayer
- Enhanced Beacons (EB)
 - Extension of the 802.15.4 beacon frames
 - Allow to create application-specific frames, by including relevant IEs

Cont...

- Multi purpose Frame
 - MAC wise frame format, differentiate on Information Elements (IE)
- MAC Performance Metric
 - To provide feedback on channel quality to upper layers
 - IP protocol may implement dynamic fragmentation of datagrams depending on the channel conditions
- Fast Association (FastA)
 - Allows a node to associate in a reduced amount of time
 - Critical application gives priority to latency over energy

TSCH Mode

- Topology independent
- Time slotted access.
 - Increase throughput by eliminating collision among competing nodes
 - Predictable and bounded latency
- Multi-channel communication
 - More nodes exchange their frames at the same time
 - ✓ Increases network capacity
- Channel hopping
 - Mitigates the effects of interference and multipath fading / multipath interference
 - ✓ Improve reliability

- So, TSCH provides
 - increased network capacity,
 - high reliability, and
 - predictable latency,
 - while maintaining very low duty cycles

Slotframe Structure

TsTxOffset: Timeslot
 Transmission Offset
 = TsCCAOffset + TsCCA + TsRxTx

Figure 22b—Timeslot diagram of acknowledged transmission

Synchronization

- In each slotframe, EB is broadcasted by PAN Coordinator or other FFDs.
 - For network advertisement and synchronization
 - EB contains information of
 - ✓ Channel hopping, timeslot details, and slotframe information for Synchronization
- A node can start sending its beacon only after getting a valid EB frame

- Nodes synchronize on a periodic slotframe
- Clock drift occurs due to
 - Differences in manufacturing, temperature and supply voltage
 - ✓ Clocks of different nodes typically pulse at a slightly different frequency
- Nodes need to periodically re-synchronize
 - Frame-based synchronization
 - ACK-based synchronization

Channel Hopping

The channel offset is translated in an operating frequency f using

$$f = F\{(ASN + chOf) \mod n_{ch}\};$$
 ASN = k. S + t

- ASN (absolute slot number): total # of slots elapsed since the network was deployed
- n_{ch}: number of physical channels presently available to consider
- F is implemented as a look-up-table containing the set of available channels
- k : count of slotframe cycle since the start of the network
- S: slotframe size
- t: timeslot in a slotframe

- ➤ Max. no. of available channel =16
- Each channel is identified by a channelOffset
- ➤ Channel could be blacklisted because of low quality

Link and Schedule

- Link: Pairwise assignment of a directed communication between devices in a specific slot, with a given channel offset
- Link is denoted by [t, chOf]
 - t is timeslot no. in the slotframe
 - *chOf is* channel offset
- Two types of Link
 - Dedicated links
 - ✓ Direct access
 - ✓ One transmitter One receiver
 - ✓ Generally used for Data Packet
 - Shared links ———
 - ✓ TSCH CSMA-CA protocol
 - ✓ Multiple transmitters/receivers
 - ✓ Generally used for Control Packet

TSCH CSMA/CA

IEEE 802.15.4 default CSMA/CA v/s TSCH CSMA/CA algorithm

	802.15.4 CSMA/CA	TSCH CSMA/CA
Backoff Mechanism	transmitting node waits for a random backoff time before trying to transmit	backoff mechanism is activated only after the node has experienced a collision. By default no backoff
Backoff unit duration	320μs (~20 symbol duration)	corresponds to a slot duration (~10ms)
Clear Channel Assessment (CCA)	each node performs CCA to check the channel state, before performing transmission	CCA is used to avoid the packet transmission if a strong external interference is detected. Internal collision is not possible due to TSCH.
Packet dropping	If the sender consecutively found channel busy for macMaxCSMABackoffs times	only if it reaches the maximum number of retransmissions i.e., macMaxFrameRetries

Cont...

Generally retransmission in TSCH is not allowed. It is handled by link scheduling

CSMA/CA used in shared link to avoid repeated collisions.

In **dedicated link**, no chance of collision.

TSCH CSMA/CA

A THE OF TECHNOON

See the IEEE 802.15.4 – 2015 standard to get this flowchart

Network Formation

- PAN coordinator starts the process of network formation by sending EB frame
 - Network advertisement
- EBs are special frames containing
 - Synchronization information
 - ✓ allows new devices to synchronize to the network
 - Channel hopping information
 - ✓ allows new devices to learn the channel hopping sequence
 - Timeslot information
 - ✓ describes when to expect a frame transmission and when to send an acknowledgment
 - Initial link and slotframe information
 - ✓ allows new devices to know:
 - o when to listen for transmissions from the advertising device
 - o when to transmit to the advertising device

Cont...

- A new node starts listening for EB on a certain frequency
- Upon receiving an EB
 - The MAC layer notifies the higher layer
 - The higher layer initializes the slotframe and links
 - ✓ Using information in the received EB message
 - Switches the device into TSCH mode
 - ✓ At this point the device is connected to the network
 - The device allocates communication resources
 - √ (i.e., slotframes and links)
 - and starts advertising, on its turn
- the 802.15.4e standard did not define the EB advertising policy.

Network Formation Goals

- Optimizing the network formation process
 - Synchronized communication schedule consumes less energy of nodes by reducing duty cycle
- Minimum Joining time
 - Devices must keep the radio ON during the joining phase
 - EBs should be sent frequently to reduce waiting time
- Minimize EB transmissions
 - Frequent EB transmission consumes more communication resources
 - Also Increases energy consumption at network and node level

A. Kalita and M. Khatua, "6TiSCH – IPv6 Enabled Open Stack IoT Network Formation: A Review", **ACM Transactions on Internet of Things**, Volume 3, Issue 3, Article No. 24, pp. 1-36, 2022.

TSCH Link scheduling

- Assignment of unique link to node for data transmission
- It is challenging in dynamic network
 - Node join / leave in between
 - Traffic rate changes in between
- ➤ IEEE 802.15.4e standard does not specify how to derive an appropriate link schedule
- Existing multi-channel scheduling schemes are not suitable for TSCH networks
 - They do not allow per-packet channel hopping
 - Not for resource-constrained nodes
 - They are not efficient in terms of channel utilization

Cont...

Centralized Scheduling

- Link schedule computed and distributed by a special node
 - ✓ Network coordinator
 - ✓ Based on information received by all the nodes of the network
 - ✓ Link schedule has to be re-computed and re-distributed every time a change in the operating conditions occurs
 - ✓ Not good for dynamic network and large scale network

Distributed Scheduling

- Link schedule is computed autonomously by each node
 - ✓ Based on local, partial information exchanged with its neighbors
- Limited Overhead
 - ✓ Suitable for energy-constrained nodes
- Good choice for dynamic network and large scale network

negotiate schedule

Autonomous Scheduling

- No negotiation is used to create the TSCH schedule
- Only used information from routing protocol (RPL)
- Nodes autonomously calculate their cell usage plan based on the RPL structure.
 - ✓ Does not require any central coordinator, negotiation, signaling or any path reservation

infer schedule from local state (topology)

TSCH: Open Issues

- Network Formation
 - Current solution inefficient for
 - Energy consumption
 - Formation time
 - Mobile Objects
- Security
 - Selective Jamming (SJ) attacks
 - Secure Beacons and Different Frequency hopping sequence
- TSCH network synchronization
 - Energy consumption
- TSCH slot/cell scheduling
 - Guaranteed QoS

6TiSCH Network

- 6TiSCH working group created by IETF
- Goal: integrate TSCH with the open source IP protocol stack
 - To enable IPv6 over TSCH mode of IEEE 802.15.4e
 - Defining a new functional entity in charge of TSCH scheduling

(b) ZigBeeIP stack.

(c) 6TiSCH stack.

A new sublayer, called 6top

- Works on top of TSCH
- Build and manage TSCH schedule
 - add/delete links/cells
- 6top also collects connectivity information
 - Monitors the performance of cells

Survey Article: "IETF 6TiSCH: A Tutorial" https://ieeexplore.ieee.org/document/8823863

Need for 6TiSCH

- In 6TiSCH, the TSCH MAC mode is placed under an IPv6-enabled protocol stack:
 - IPv6 over Low-Power Wireless Personal Area Network (6LoWPAN)
 - IPv6 Routing Protocol for Low-Power and Lossy Networks (RPL), and
 - Constrained Application Protocol (CoAP)

- TSCH does not define
 - Policies to build and maintain the communication schedule
 - Mechanisms to match the schedule to the multi-hop paths maintained by RPL
 - Mechanisms to adapt the resources allocated between neighbor nodes to the data traffic flows
 - Techniques to allow differentiated treatment of packets
 - √ data packets & control packet

6TiSCH Architecture

- Considers low-power lossy-network (LLN)
- ➤ Allow more than 1000 nodes
- Nodes are in same IPv6 subnet
- 6Lowpan Header compression (HC) is used to transmit packet

- Presence of high-speed backbone (e.g. WiFi mesh) to connect all nodes
- Constrained nodes are attached to backbone through backbone router (BBR)
- Backbone is connected to the Internet through a Gateway

Fig. 6TiSCH Architecture

RFC 9030: An Architecture for IPv6 over the Time-Slotted Channel Hopping Mode of IEEE 802.15.4 (6TiSCH)

6TiSCH Protocol Stack

Application (CoAP)	RFC8613 RFC7252	(2019) object security extension to CoAP (2014) base CoAP specification
Routing (RPL)	RFC6554 RFC6553 RFC6552 RFC6550	(2012) header format for routing header (2012) header format for RPL option (2012) Objective Function, RPL algorithm (2012) base RPL specification
Adaptation (6LoWPAN)	RFC8505 RFC8138 RFC8025 RFC6282 RFC4944	(2018) neighbor discovery and registration (2017) routing header compression (2016) mechanism for extending 6LoWPAN (2011) updated base 6LoWPAN specification (2007) base 6LoWPAN specification
Scheduling (6TiSCH)	draft-ietf-6tisch-msf RFC8480 RFC8137 draft-ietf-6tisch-minimal-security RFC8180	(WIP) distributed scheduling algorithm RFC 9033 (2018) 6P, distributed scheduling protocol (2017) container for 6P (WIP) security framework for 6TiSCH RFC 9031 (2017) minimal 6TiSCH
Physica layer	IEEE802,15,4	(2015) 2.4 GHz, 50-200 m range, 250 kbps, 127 byte frames

Source: Xavier Vilajosana et al., "IETF 6TiSCH: A Tutorial" IEEE Communications Surveys & Tutorials, 22(1), 2020, pp. 595–615.

Lessons Learned

- ✓ Limitations of IEEE 802.15.4
- ✓ IEEE 802.15.4e
 - ✓ MAC Modes
 - ✓ Functional Enhancements
- ✓ IEEE 802.15.4 TSCH
 - Functionalities
 - TSCH CSMA/CA
 - Network Formation
 - Link Scheduling
- ✓ Introduction to 6TiSCH Networks

Thanks!

