Elementy statystyki - DEST LIO

Zajęcia 4

Estymacja przedziałowa

Rozwiązanie Zadania 1 (a):

Niech $\mathbf{X} = (X_1, X_2, \dots, X_n)'$ będzie próbą prostą z rozkładu wykładniczego $Ex(\lambda)$, $\lambda > 0$ jest nieznanym parametrem. Funkcja gęstości tego rozkładu ma postać:

$$f_{\lambda}(x) = \lambda \exp(-\lambda x) I_{(0,\infty)}(x).$$

Wskazówka: $2\lambda n\bar{X} \sim \chi^2(2n)$, gdzie $\bar{X} = \frac{1}{n} \sum_{i=1}^n X_i$.

(1) Wyznaczamy funkcję centralną. Na podstawie wskazówki otrzymujemy:

$$Q(\mathbf{X}, \lambda) = 2\lambda n\bar{X} \sim \chi^2(2n).$$

(2) Wyznaczamy stałe a i b tak, aby $P(a < Q < b) = 1 - \alpha$, gdzie $\alpha \in (0,1)$. Postąpimy standardowo i wyznaczymy te stałe z warunków $P(Q \leq a) = P(Q \geq b) = \frac{\alpha}{2}$. Mamy

$$P(Q \leqslant a) = \frac{\alpha}{2}$$

$$F_Q(a) = \frac{\alpha}{2}$$

$$a = F_Q^{-1}\left(\frac{\alpha}{2}\right)$$

$$a = \chi^2\left(\frac{\alpha}{2}, 2n\right),$$

gdzie $\chi^2(\alpha,p)$ jest kwantylem rzędu α z rozkładu chi-kwadrat z p stopniami swobody. Podobnie wyznaczamy stałą b:

$$P(Q \geqslant b) = \frac{\alpha}{2}$$

$$1 - P(Q < b) = \frac{\alpha}{2}$$

$$1 - F_Q(b) = \frac{\alpha}{2}$$

$$F_Q(b) = 1 - \frac{\alpha}{2}$$

$$b = F_Q^{-1} \left(1 - \frac{\alpha}{2} \right)$$

$$b = \chi^2 \left(1 - \frac{\alpha}{2}, 2n \right).$$

(3) Rozwiązujemy poniższą nierówność względem λ :

$$\begin{aligned} a &< Q < b \\ a &< 2\lambda n\bar{X} < b \\ \frac{a}{2n\bar{X}} &< \lambda < \frac{b}{2n\bar{X}}. \end{aligned}$$

Zatem przedział ufności dla parametru λ na poziomie ufności $1-\alpha$ ma postać:

$$\left(\frac{\chi^2\left(\frac{\alpha}{2},2n\right)}{2n\bar{X}},\frac{\chi^2\left(1-\frac{\alpha}{2},2n\right)}{2n\bar{X}}\right).$$

1