Review of Feedback Control System

Frequency Response

Amplitude Ratio (AR) = \hat{A}/A Phase lag (ϕ) = $-\Delta t/P*360$

The process acts as a "filter" or "amplifier" that attenuates or amplifies the input at frequency ω .

The frequency response of a process G(s) at a specific frequency ω is a complex number and can be obtained by substituting $s = j\omega$

Frequency Response

- $G(j\omega) = Re(\omega) + j Im(\omega) = \rho(\omega)e^{j\phi(\omega)}$
- $\rho(\omega) = AR = \sqrt{Re^2(\omega) + Im^2(\omega)} = |G(j\omega)|$
- $\phi = phase \ difference = arc \tan \left(\frac{Im(\omega)}{Re(\omega)}\right) = \angle G(j\omega)$
- Two ways of representing the frequency response
 - Bode Plot
 - Log-Log plot of AR vs ω and semi-log plot ϕ vs ω
 - Nyquist Plot
 - Plot of $Re(\omega)$ vs $Im(\omega)$ for various values of ω .
 - Frequency does not appear explicitly in this plot.

Bode Plot

Steady state gain: $K = \rho(0)e^{j\phi(0)}$

Bandwidth, ω_b , defines the highest frequency at which the process displays no attenuation. It is calculated based on the frequency when amplitude reaches 0.707 K.
Roll-off is slope of decaying AR at high frequencies.

Bode Stability Criterion

D(s)

Consider open-loop control system

Open-loop Response to $Y_{SP}(s)$

- 1. Introduce sinusoidal input in setpoint (D(s)=0) and observe sinusoidal output
- 2. Fix gain such AR=1 and input frequency such that ϕ =-180
- 3. At same time, connect close the loop and set $Y_{SP}(s)=0$
- Q: What happens if AR <1, 1 and >1?

Bode Stability Criterion

A closed-loop system is unstable if the frequency of the response of the open-loop G_{OL} has an amplitude ratio greater than one at the critical frequency. Otherwise it is stable.

Strategy:

1. Solve for ω in

$$arg(G_{OL}(j\omega)) = -\pi$$

2. Calculate AR

$$AR = G_{OL}(j\omega)$$

Bode Stability Criterion

To check for stability:

- 1. Compute open-loop transfer function
- 2. Solve for ω in ϕ =- π
- 3. Evaluate AR at ω
- 4. If AR>1 then process is unstable

Find ultimate gain:

- 1. Compute open-loop transfer function without controller gain
- 2. Solve for ω in ϕ =- π
- 3. Evaluate AR at ω
- 4. Let $K_{cu} = \frac{1}{AR}$

Bode Criterion

Consider the transfer function and controller

$$G(s) = \frac{5e^{-0.1s}}{(s+1)(0.5s+1)} \qquad G_{\mathcal{C}}(s) = 0.4\left(1 + \frac{1}{0.1s}\right)$$

- Open-loop transfer function

$$G_{OL}(s) = \frac{5e^{-0.1s}}{(s+1)(0.5s+1)} 0.4 \left(1 + \frac{1}{0.1s}\right)$$

- Amplitude ratio and phase shift

$$AR = \frac{5}{\sqrt{1 + \omega^2}} \frac{1}{\sqrt{1 + 0.25\omega^2}} 0.4 \sqrt{1 + \frac{1}{0.01\omega^2}}$$
$$\phi = -0.1\omega - \tan^{-1}(\omega) - \tan^{-1}(0.5\omega) - \tan^{-1}(\frac{1}{0.1\omega})$$

- At ϕ =- π , ω =1.4128, AR=6.746

Bode Stability

- Phase Crossover frequency (ω_{gc}) is the frequency at which phase lag is 180°.
- Gain Crossover frequency (ω_{pc}) is the frequency at which AR = 1
- Gain Margin (GM) is the amount of gain required for the AR to reach 1 at phase crossover frequency.
 GM=1/AR_C, where AR_C is the Amplitude ratio at gain crossover frequency.
- Phase Margin (PM) is the amount of phase difference required for phase lag to reach 180° at gain crossover frequency. PM= $180+\phi_{pc}$ where ϕ_{pc} is phase lag at phase crossover frequency.

Gain Margin and Phase Margin

Wcg is the frequency where the gain margin is measured, which is a -180° phase crossing frequency.

Wcp is the frequency where the phase margin is measured, which is a 0-dB gain crossing frequency.

Nyquist Stability Criterion

If N is the number of times that the Nyquist plot encircles the point (-1,0) in the complex plane in the clockwise direction, and P is the number of open-loop poles of G_{OL} that lie in the right-half plane, then Z=N+P is the number of unstable roots of the closed-loop characteristic equation.

Strategy

- 1. Substitute $s=j\omega$ in $G_{OL}(s)$
- 2. Plot $G_{Ol}(j\omega)$ in the complex plane
- 3. Count encirclements of (-1,0) in the clockwise direction

Nyquist Criterion

Consider the transfer function

$$G(s) = \frac{5e^{-0.1s}}{(s+1)(0.5s+1)}$$

and the P controller

$$G_c(s) = 3.2$$

PID Controller Tuning

Controller Tuning: A Motivational Example

Unit-step disturbance responses for the candidate controllers (FOTD Model: K = 1, τ = 20, θ = 4

Performance Criteria For Closed-Loop Systems

- 1. The closed-loop system must be stable.
- 2. The effects of disturbances are minimized, providing good *disturbance rejection*.
- 3. Rapid, smooth responses to set-point changes are obtained, that is, good *set-point tracking*.
- 4. Steady-state error (offset) is eliminated.
- 5. Excessive control action is avoided.
- 6. The control system is robust, that is, insensitive to changes in process conditions and to inaccuracies in the process model.

Measure of Control Performance

- Overshoot.
- Decay ratio.
- Rising time or Response time.
- Stabilization time or Settling time.
- Integral Error
 - \triangleright Integral Absolute Error (IAE) $\int_0^\infty |e(t)| dt$
 - > Integral Square Error (ISE) $\int_0^\infty e^2(t) dt$
 - ightharpoonup Integral time absolute error (ITAE) $\int_0^\infty t|e(t)|dt$
- Phase Margin
- Gain Margin

PID controller settings can be determined by a number of alternative techniques:

- 1. Empirical Tuning correlations using FODT model
 - 1. Step response FODT model
 - 2. Continuous Cycling
- 2. Direct Synthesis (DS) method
- 3. Internal Model Control (IMC) method
- 4. Optimization method
- 5. Frequency response techniques
- 6. On-line tuning after the control system is installed.

Empirical Tuning Correlations:

Controller:
$$G(c) = K_c \left(1 + \frac{1}{\tau s} + \tau_D s \right)$$

• For PID with derivative on output:

•
$$K'_{c} = \frac{2\tau_{I}K_{c}}{\tau_{I} + \sqrt{\tau_{I}(\tau_{I} - 4\tau_{D})}}$$
; $\tau'_{I} = \frac{\tau_{I} + \sqrt{\tau_{I}(\tau_{I} - 4\tau_{D})}}{2}$; $\tau'_{D} = \frac{\tau_{I} - \sqrt{\tau_{I}(\tau_{I} - 4\tau_{D})}}{2}$

Step Response Model :
$$G(s) = \frac{K}{\tau s + 1} e^{-\theta s}$$

- Ziegler-Nichols relations
- Cohen-Coon
- Chien-Hrones-Reswick (CHR)

Controller Type	From Step response			
	K _C	$ au_I$	$ au_D$	
Р	$\frac{ au}{ heta K}$			
PI	$0.9 \frac{\tau}{\theta K}$	3.3 θ		
PID	$1.2 \frac{\tau}{\theta K}$	2 θ	0.5 θ	

Cohen-Coon formula

- Z-N type empirical tuning formula using process model $G(s) = \frac{K}{\tau s + 1} e^{-\theta s}$
- Designed to achieve ¼ decay ratio
- Define $a = \frac{\tau}{\theta K}$

Controller	Cohen-Coon				
Type	K _C	$ au_I$	$ au_D$		
Р	$a\left(1+\frac{\theta}{3\tau}\right)$				
PI	$a\left(0.9 + \frac{\theta}{12\tau}\right)$	$\frac{\theta[30+3(\theta/\tau)]}{9+20(\theta/\tau)}$			
PID	$a\left(\frac{3\theta + 16\tau}{12\tau}\right)$	$\frac{\theta[32+6(\theta/\tau)]}{13+8(\theta/\tau)}$	$\frac{4\theta}{11+2(\theta/\tau)}$		

Chien-Hrones-Reswick (CHR) tuning formula

- Z-N type tuning formula
 - 1. for known parameters FODT process $G(s) = \frac{K}{\tau s + 1} e^{-\theta s}$
 - 2. Emphasizes setpoint tracking or disturbance rejection
 - 3. Accommodates speed of response and overshoot qualitatively
 - 4. Define $a = \frac{\tau}{\theta K}$

Controller Type	0% Overshoot Setpoint (Disturbance)			20% Overshoot Setpoint (Disturbance)		
	K _C	$ au_I$	$ au_D$	K _C	$ au_I$	$ au_D$
Р	0.3 a (0.3 a)			0.7 a (0.7 a)		
PI	0.35 a (0.6 a)	1.2 τ (4 θ)		0.6 a (0.7 a)	τ (2.3 θ)	
PID	0.6 a (0.95 a)	τ (2.4 θ)	0.5 θ (0.42 θ)	0.95 a (1.2 a)	1.4 τ (2 θ)	0.47 θ (0.42 θ)

Continuous Cycling Method

Ziegler and Nichols (1942) introduced the *continuous cycling method* for controller tuning. It is based on the following trial-and-error procedure:

Step 1. After the process has reached steady state (at least approximately), eliminate the integral and derivative control action.

Step 2. Set K_c equal to a small value and place the controller in the automatic mode.

Step 3. Introduce a small set-point step change so that the controlled variable moves away from the set point. Gradually increase K_c in small increments until continuous cycling occurs.

The term continuous cycling refers to a sustained oscillation with a constant amplitude. The numerical value of Kc that produces continuous cycling (for proportional-only control) is called the *ultimate gain*, K_{cu} . The period of the corresponding sustained oscillation is referred to as the *ultimate period*, P_u .

Step 4. Calculate the PID controller settings using the tuning relations in Table.

Controller Type	Tyreus-Luyben			Ziegler-Nichols		
	K _C	$ au_I$	$ au_D$	K _C	$ au_I$	$ au_D$
Р	-			K _{CU} /2		
PI	K _{CU} /3.2	2.2 P _u		K _{CU} /2.2	P _u /1.2	
PID	K _{CU} /2.2	2.2 P _u	P _u /6.3	K _{CU} /1.7	P _u /2	P _u /8

Example

Process Transfer function

$$G(s) = \frac{5}{(4s+1)(3s+1)(2s+1)(s+1)}$$

Characteristic Eqn. $1 + G_{OL} = 1 + K_c G = 0$

So,
$$24s^4 + 50s^3 + 35s^2 + 10s + 1 + 5K_c = 0$$

Routh Array

24 35
$$1+5K_c$$

50 10
30.2 $1+5K_c$ $K_{cu} = -0.2 \text{ or } 1.008$
10 $-50(1+5K_c)/30.2$ 0 $\omega_c = 0.446$
 $1+5K_c$ $P_u = 14.0879$

Direct Synthesis (DS) method

In the Direct Synthesis (DS) method, the controller design is based on a process model and a desired closed-loop transfer function.

Consider the block diagram of a feedback control system in Figure

The closed-loop transfer function for set-point changes is:

$$\frac{Y}{Y_{sp}} = \frac{K_m G_c G_v G_p}{1 + G_c G_v G_p G_m} \tag{1}$$

Direct Synthesis (DS) method

For simplicity, let $G \cong G_v G_p G_m$ and assume that $G_m = K_m$.

Then Eq. I reduces to:
$$\frac{Y}{Y_{sp}} = \frac{G_c G}{1 + G_c G}$$

Rearranging and solving for G_c gives an expression for the feedback controller:

$$G_c = \frac{Y/Y_{sp}}{G(1-Y/Y_{sp})}$$

Above equation cannot be used for controller design because the closed-loop transfer function Y/Y_{sp} is not known.

Also, it is useful to distinguish between the actual process G and the model, that provides an approximation of the process behavior.

A practical design equation can be derived by replacing the unknown G by \tilde{G} , and Y/Y_{sp} by a desired closed-loop transfer function, $(Y/Y_{sp})_d$:

 $G_c = \frac{\left(Y/Y_{sp}\right)_d}{\widetilde{G}\left(1 - Y/Y_{sp}\right)_d}$

Note that the controller transfer function contains the **inverse of** the process model.

For processes without time delays, the following first-order model is a reasonable choice,

$$\left(\frac{Y}{Y_{sp}}\right)_d = \frac{1}{\tau_c s + 1}$$

Where τ_c is the desired closed loop time constant.

Because the steady-state gain is one, **no offset** occurs for set-point changes.

By substituting

$$\left(\frac{Y}{Y_{sp}}\right)_{d} = \frac{1}{\tau_{c}s+1} \qquad \qquad G_{c} = \frac{\left(Y/Y_{sp}\right)_{d}}{\widetilde{G}\left(1-Y/Y_{sp}\right)_{d}}$$

Solving for G_c , the controller design equation becomes:

$$G_c = \frac{1}{\widetilde{G}} \frac{1}{\tau_c s}$$

The term $\frac{1}{\tau_c s}$ provides integral control action and thus eliminates offset.

Design parameter τ_c provides a convenient controller tuning parameter that can be used to make the controller more aggressive (small τ_c) or less aggressive (large τ_c).

• Process Model, $\tilde{G}(s)$

Controller, $G_c(s)$

$$\frac{1}{K\tau_c s}$$
 I-Controller

•
$$\frac{K}{S}$$

$$\frac{1}{K\tau_c}$$

 $\frac{1}{K\tau_C}$ P-Controller

•
$$\frac{K}{\tau s + 1}$$

$$\frac{\tau}{K\tau_c}(1+\frac{1}{\tau s})$$
 PI

$$\frac{K}{(\tau_1 s + 1)(\tau_2 s + 1)}$$

$$\frac{\tau_{1} + \tau_{2}}{K\tau_{c}} \left(\frac{\tau_{1}\tau_{2}s^{2} + (\tau_{1} + \tau_{2})s + 1}{(\tau_{1} + \tau_{2})s} \right)$$

If the process transfer function contains a known time delay θ , a reasonable choice for the desired closed-loop transfer function is:

$$\left(\frac{Y}{Y_{sp}}\right)_{d} = \frac{e^{-\theta s}}{\tau_{c} s + 1}$$

The time-delay term in above is essential because it is physically impossible for the controlled variable to respond to a set-point change at t = 0.

Combining reference trajectory with controller equation:

$$\left(\frac{Y}{Y_{sp}}\right)_{d} = \frac{e^{-\theta s}}{\tau_{c} s + 1}$$

$$G_{c} = \frac{(Y/Y_{sp})_{d}}{\widetilde{G}(1 - (Y/Y_{sp})_{d})}$$

Combining reference trajectory with controller equation:

$$\left(\frac{Y}{Y_{sp}}\right)_{d} = \frac{e^{-\theta s}}{\tau_{c} s + 1}$$

$$G_{c} = \frac{(Y/Y_{sp})_{d}}{\widetilde{G}(1 - (Y/Y_{sp})_{d})}$$

Gives:

$$G_c = \frac{1}{\widetilde{G}} \frac{e^{-\theta s}}{\tau_c s + 1 - e^{-\theta s}}$$

Approximating the time-delay term with a truncated Taylor series expansion: $e^{-\theta s} = 1 - \theta s$ we get

$$G_c = \frac{1}{\widetilde{G}} \frac{e^{-\theta s}}{(\tau_c + \theta)s}$$

Note that this controller also contains integral control action.

I. First Order with Dead Time (FOTD) Process

Consider the standard FOTD model,

$$\widetilde{G} = \frac{Ke^{-\theta s}}{\tau s + 1}$$

Substituting FOTD model into Controller equation and rearranging gives a PI controller;

$$\widetilde{G} = \frac{Ke^{-\theta s}}{\tau s + 1} \qquad G_c = \frac{1}{\widetilde{G}} \frac{e^{-\theta s}}{(\tau_c + \theta)s} \qquad G_c = K_c \left(1 + \frac{1}{\tau_I s}\right)$$

with the following controller settings:

$$K_c = \frac{1}{K} \frac{\tau}{\theta + \tau_c} \qquad \tau_I = \tau$$

Example 12.1

Use the DS design method to calculate PID controller settings for the process:

$$G = \frac{2e^{-s}}{(10s+1)(5s+1)}$$

Consider three values of the desired closed-loop time constant: .

$$\tau_c = 1,3,10$$

Evaluate the controllers for unit step changes in both the set point and the disturbance, assuming that $G_d = G$.

Repeat the evaluation for two cases:

- a. The process model is perfect (G = G).
- b. The model gain is incorrect, K = 0.9, instead of the actual value, K = 2.

Direct Synthesis (DS) method [cont.]

2. Second-Order-plus-Time-Delay (SOTD) Model

Consider a second-order-plus-time-delay model,

$$\widetilde{G} = \frac{Ke^{-\theta s}}{(\tau_1 s + 1)(\tau_2 s + 1)}$$

Substitution into G_c eqn. and rearranging gives a PID controller;

$$\widetilde{G} = \underbrace{\frac{Ke^{-\theta s}}{(\tau_1 s + 1)(\tau_2 s + 1)}} \qquad G_c = \underbrace{\frac{1}{\widetilde{G}} \frac{e^{-\theta s}}{(\tau_c + \theta)s}} \qquad G_c = K_c \left(1 + \frac{1}{\tau_I s} + \tau_D s\right)$$

with the following controller settings:

$$K_c = \frac{1}{K} \frac{\tau_1 + \tau_2}{\tau_c + \theta} \qquad \tau_I = \tau_1 + \tau_2 \qquad \tau_D = \frac{\tau_1 \tau_2}{\tau_1 + \tau_2}$$

Use the DS design method to calculate PID controller settings for the for two cases:

$$\widetilde{G} = \frac{2e^{-\theta s}}{(10s+1)(5s+1)}$$

$$G_c = \frac{1}{\widetilde{G}} \frac{e^{-\theta s}}{(\tau_c + \theta)s}$$

$$G_c = \frac{(10s+1)(5s+1)}{2e^{-\theta s}} \frac{e^{-\theta s}}{(\tau_c + \theta)s}$$

Comparing with standard PID controller;

$$G_c = \frac{(10s+1)(5s+1)}{2(\tau_c + \theta)s}$$

$$G_c = K_c \left(1 + \frac{1}{\tau_I s} + \tau_D s\right)$$

$$= \frac{50s^2 + 15s + 1}{2(\tau_c + \theta)s}$$

$$= K_c \left(\frac{\tau_I \tau_D s^2 + \tau_I s + 1}{\tau_I s}\right)$$

Thus;

$$\tau_I = 15$$
 $\tau_D = 50/15 = 3.33$ $K_c = 15/[2(\tau_c + 1)]$

The controller settings are as follows:

$$au_I = 15$$
 $au_D = 50/15 = 3.33$ $K_c = 15/[2(au_c + 1)]$ (a)For K = 2
$$K_c = 15/[0.9(au_c + 1)]$$
 (b)For K = 0.9

	$\tau_c = 1$	$\tau_c = 3$	$\tau_c = 10$
$K_c(\tilde{K}=2)$	3.75	1.88	0.682
$K_c \left(\tilde{K} = 2 \right) $ $K_c \left(\tilde{K} = 0.9 \right)$	8.33	4.17	1.51
τ_I	15	15	15
$ au_D$	3.33	3.33	3.33

The values of K_c decrease as τ_c increases, but the values of $\tau_I and \ \tau_D$ and do not change

Simulation results for (a) $(\widetilde{G} = G)$, $\widetilde{K} = 2$

Simulation results for (b) $(\widetilde{K} = 0.9)$.

As τ_c increases, the responses become more sluggish

Which one is better???WHY?

$$K_c = \frac{1}{K} \frac{\tau_1 + \tau_2}{\tau_c + \theta}$$

Thank you

Direct Synthesis Method

- In the Direct Synthesis (DS) method, the controller design is based on a process model and a desired closed-loop transfer function.
- The latter is usually specified for set-point changes, but responses to disturbances can also be utilized (Chen and Seborg, 2002).
- Although these feedback controllers do not always have a PID structure, the DS method does produce PI or PID controllers for common process models.
- As a starting point for the analysis, consider the block diagram of a feedback control system in Figure 12.2. The closed-loop transfer function for set-point changes was derived in Section 11.2:

$$\frac{Y}{Y_{sp}} = \frac{K_m G_c G_v G_p}{1 + G_c G_v G_p G_m}$$
(12-1)

Fig. 12.2. Block diagram for a standard feedback control system.

For simplicity, let $G \triangleq G_v G_p G_m$ and assume that $G_m = K_m$. Then Eq. 12-1 reduces to

$$\frac{Y}{Y_{sp}} = \frac{G_c G}{1 + G_c G} \tag{12-2}$$

Rearranging and solving for G_c gives an expression for the feedback controller:

$$G_c = \frac{1}{G} \left(\frac{Y/Y_{sp}}{1 - Y/Y_{sp}} \right) \tag{12-3a}$$

- Equation 12-3a cannot be used for controller design because the closed-loop transfer function Y/Y_{sp} is not known *a priori*.
- Also, it is useful to distinguish between the actual process G and the model, \tilde{G} , that provides an approximation of the process behavior.
- A practical design equation can be derived by replacing the unknown G by \tilde{G} , and Y/Y_{sp} by a *desired closed-loop transfer function*, $(Y/Y_{sp})_d$:

$$G_c = \frac{1}{\tilde{G}} \left[\frac{\left(Y/Y_{sp} \right)_d}{1 - \left(Y/Y_{sp} \right)_d} \right]$$
 (12-3b)

- The specification of $(Y/Y_{sp})_d$ is the key design decision and will be considered later in this section.
- Note that the controller transfer function in (12-3b) contains the inverse of the process model owing to the $1/\tilde{G}$ term.
- This feature is a distinguishing characteristic of model-based control.

Desired Closed-Loop Transfer Function

For processes without time delays, the first-order model in Eq. 12-4 is a reasonable choice,

$$\left(\frac{Y}{Y_{sp}}\right)_{d} = \frac{1}{\tau_{c}s+1} \tag{12-4}$$

- The model has a settling time of $\sim 4\tau_c$, as shown in Section 5. 2.
- Because the steady-state gain is one, no offset occurs for setpoint changes.
- By substituting (12-4) into (12-3b) and solving for G_c , the controller design equation becomes:

$$G_c = \frac{1}{\tilde{G}} \frac{1}{\tau_c s} \tag{12-5}$$

- The $1/\tau_c s$ term provides integral control action and thus eliminates offset.
- Design parameter τ_c provides a convenient controller tuning parameter that can be used to make the controller more aggressive (small τ_c) or less aggressive (large τ_c).