Characteristic Equation

Learning Objectives:

- 1. Use the characteristic equation to find the eigenvalues of a matrix.
- 2. Define when two matrices are similar and describe the relationship between their eigenvalues.

1 Characteristic polynomial

Recall: So far we have seen how to find eigenvectors if we are given eigenvalues. So far we do not know how to find the eigenvalues themselves.

Example 1. How do we find the eigenvalues of a matrix A?

Example 2. Find the eigenvalues of

$$A = \left(\begin{array}{cccc} 2 & 1 & 3 & -1 \\ 0 & -2 & 0 & 2 \\ 0 & 0 & -2 & 5 \\ 0 & 0 & 0 & 0 \end{array}\right).$$

Example 3. Find the eigenvalues of and eigenvectors of

$$A = \left(\begin{array}{cc} 2 & -4 \\ -1 & 2 \end{array}\right).$$

Example 4. Find the eigenvalues of

$$A = \left(\begin{array}{ccc} 6 & -2 & 0 \\ -2 & 9 & 0 \\ 5 & 8 & 3 \end{array}\right).$$

2 Similar matrices

In practice, it is often hard to compute eigenvalues for large matrices. Instead we utilize **similar matrices** to simplify the calculation.

Definition: Two matrices A and B are similar if

Remark: If A is similar to B then $B = P^{-1}AP$, so A is similar to B if and only if B is similar to A.

Theorem: If $n \times n$ matrices A and B are similar, then they have the same characteristic polynomials and eigenvalues.

Example 5. T/F: If A and B are similar then $\det A = \det B$.

Example 6. T/F: The matrices

$$\left(\begin{array}{ccc} 2 & 0 & 2 \\ 0 & 2 & 1 \\ 0 & 0 & 3 \end{array}\right), \quad \left(\begin{array}{ccc} 2 & 0 & 1 \\ 0 & 3 & 2 \\ 0 & 0 & 3 \end{array}\right)$$

are similar.