Triangular factorization: A = LU Given a square matrix A, we can find L a lower Triangular matrix with 1s on the diagonal and U upper Triangular matrix such that A = LU.

For
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 8 \end{bmatrix}$$
, $L = \begin{bmatrix} 1 & 0 \\ 3 & 1 \end{bmatrix}$ and $U = \begin{bmatrix} 1 & 2 \\ 0 & 2 \end{bmatrix}$

Calculation of A^{-1} : Gauss-Jordan Method

Let $AA^{-1}=I$ If X_1 is a first column of A^{-1} then $AX_1=e_1$, where $e_1=\begin{bmatrix}1&0&\cdots&0\end{bmatrix}^T$. We can use Gaussian Elimination to find X_1 —first column of A^{-1} .

Calculation of A^{-1} : Gauss-Jordan Method

Let $AA^{-1} = I$

If X_1 is a first column of A^{-1} then $AX_1 = e_1$, where $e_1 = \begin{bmatrix} 1 & 0 & \cdots & 0 \end{bmatrix}^T$.

We can use Gaussian Elimination to find X_1 —first column of A^{-1} .

Let
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 8 \end{bmatrix}$$
.

Consider

$$[A|I] = \left[\begin{array}{cc|c} 1 & 2 & 1 & 0 \\ 3 & 8 & 0 & 1 \end{array} \right]$$

Perform elementary row operations on [A|I] to convert A into I. Then I will change to A^{-1} . Write down the solutions of AX = 0 in parametric form where A =

$$\begin{bmatrix} 1 & -4 & -2 & 0 & 3 & -5 \\ 0 & 0 & 1 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 & 1 & -4 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Chemical Equations

Consider a chemical reaction of propane gas with oxygen to form carbon dioxide and water.

$$x_1 C_3 H_8 + x_2 O_2 = x_3 C O_2 + x_4 H_2 O$$
, where x_i are the no. of molecules

Network flow

Vectors in \mathbb{R}^n :

 $\begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix}$

AX = b

where $a_1, a_2, \ldots, a_n \in \mathbb{R}$.

$$\begin{bmatrix} 2 \\ 3 \end{bmatrix}$$
 is a vector in \mathbb{R}^2 .

$$\begin{bmatrix} 2 \\ 3 \\ 0 \end{bmatrix}$$
 is a vector in \mathbb{R}^3 .

Vector addition and scalar multiplication are done like matrices.

Algebraic Properties of \mathbb{R}^n

For all \mathbf{u} , \mathbf{v} , \mathbf{w} in \mathbb{R}^n and all scalars c and d:

(i)
$$\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$$

(v)
$$c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$$

(ii)
$$(u + v) + w = u + (v + w)$$

(vi)
$$(c+d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$$

(iii)
$$u + 0 = 0 + u = u$$

(vii)
$$c(d\mathbf{u}) = (cd)\mathbf{u}$$

(iv)
$$\mathbf{u} + (-\mathbf{u}) = -\mathbf{u} + \mathbf{u} = \mathbf{0}$$
,
where $-\mathbf{u}$ denotes $(-1)\mathbf{u}$

(viii)
$$1\mathbf{u} = \mathbf{u}$$

Linear Combinations

Consider a linear system .

$$x_2 - 4x_3 = 8$$
 $2x_1 - 3x_2 + 2x_3 = 1$
 $5x_1 - 8x_2 + 7x_3 = 1$
 $5x_1 - 8x_2 + 7x_3 = 1$

It can be written as

$$\begin{array}{c|c}
\hline
x_1 \\
\hline
\end{array}
\begin{bmatrix}
0 \\
2 \\
5
\end{bmatrix}
+ x_2 \\
\begin{bmatrix}
1 \\
-3 \\
-8
\end{bmatrix}
+ x_3 \\
\begin{bmatrix}
-4 \\
2 \\
7
\end{bmatrix}
= \begin{bmatrix}
8 \\
1 \\
1
\end{bmatrix}$$

LHS of = is called linear combination of

$$u = \begin{bmatrix} 0 \\ 2 \\ 5 \end{bmatrix}, v = \begin{bmatrix} 1 \\ -3 \\ -8 \end{bmatrix} \& w = \begin{bmatrix} -4 \\ 2 \\ 7 \end{bmatrix}$$

Above equation is called vector equation.

A linear system AX = b is same as $x_1C_1 + x_2C_2 + \cdots + x_nC_n = b$ where C_i is i^{th} column of A.

A linear system AX = b is same as $x_1C_1 + x_2C_2 + \cdots + x_nC_n = b$ where C_i is i^{th} column of A.

Theorem

AX = b has a solution if and only if b is a linear combination of columns of A.

A linear system AX = b is same as $x_1C_1 + x_2C_2 + \cdots + x_nC_n = b$ where C_i is i^{th} column of A.

Theorem

AX = b has a solution if and only if b is a linear combination of columns of A.

Hence we need to study linear combination of columns of A.

A linear system AX = b is same as $x_1C_1 + x_2C_2 + \cdots + x_nC_n = b$ where C_i is i^{th} column of A.

Theorem

AX = b has a solution if and only if b is a linear combination of columns of A.

Hence we need to study linear combination of columns of A. Column space of A= set of all linear combinations of columns of A.

$$Col(A) = \{x_1 C_1 + x_2 C_2 + \dots + x_n C_n | x_i \in \mathbb{R} \text{ for all } i\}$$

 $\therefore AX = b$ has a solution iff $b \in Col(A)$.

If $v_1, v_2, ..., v_p \in \mathbb{R}^n$, then Span $\{v_1, v_2, ..., v_p\} = \{c_1v_1 + c_2v_2 + ... + c_pv_p | c_1, c_2, ..., c_p \in \mathbb{R}\}$, the set of all linear combinations of $v_1, v_2, ..., v_p$.

 $\begin{cases} 2 & \text{if } v_1, v_2, \dots, v_p \in \mathbb{R}^n, \text{ then} \end{cases} = \begin{bmatrix} 2 & \text{if } v_1, v_2, \dots, v_p \in \mathbb{R}^n, \text{ then} \end{cases}$ Span $\{v_1, v_2, ..., v_p\} = \{c_1v_1 + c_2v_2 + ... + c_pv_p | c_1, c_2, ..., c_p \in \mathbb{R}\}$, the set of all linear combinations of $v_1, v_2, ..., v_p$. $u = \begin{bmatrix} 2 \\ 3 \end{bmatrix}, v = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ $Span \{v\} = \{c.v | c \in \mathbb{R}\} = \{\begin{bmatrix} c \\ 0 \end{bmatrix} | c \in \mathbb{R}\}$ V= [2] Span {v} = { [2] | C = IR} = X axis $Span \{u\} = \{ [2c] | c \in \mathbb{R} \} 3x - 2y = 0$ $\mathbb{R} = Span \{ [3], [0] \} = \{ [2] + d [0] | c, d \in \mathbb{R} \}$ ~ } [2c+d] | c,d+iR}

If $v_1, v_2, ..., v_p \in \mathbb{R}^n$, then

Span $\{v_1, v_2, ..., v_p\} = \{c_1v_1 + c_2v_2 + ... + c_pv_p | c_1, c_2, ..., c_p \in \mathbb{R}\},\$ the set of all linear combinations of $v_1, v_2, ..., v_p$.

Let

$$u = \begin{bmatrix} 2 \\ 3 \end{bmatrix}, v = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \in \mathbb{R}^{3}$$

Span $\{v\}=\{c.v|c\in\mathbb{R}\}=\{igc|c\ 0\ \Big|\ |c\in\mathbb{R}\}$ Let $u\in\mathbb{R}^n$. Then

 $span\{u\} = \{x.u | x \in \mathbb{R}\}.$

Geometrically it is a line passing through origin and point u.

Let $u, v \in \mathbb{R}^2$. Then $span\{u, v\} = \{x.u + y.v | x, y \in \mathbb{R}\}$. hus a solv: 15t c=0

Geometrically, what will it be?

If $v_1, v_2, ..., v_p \in \mathbb{R}^n$, then

Span $\{v_1, v_2, ..., v_p\} = \{c_1v_1 + c_2v_2 + ... + c_pv_p | c_1, c_2, ..., c_p \in \mathbb{R}\},$ the set of all linear combinations of $v_1, v_2, ..., v_p$.

Let

$$u = \left[\begin{array}{c} 2 \\ 3 \end{array} \right], v = \left[\begin{array}{c} 1 \\ 0 \end{array} \right]$$

Span
$$\{v\}=\{c.v|c\in\mathbb{R}\}=\{\left[\begin{array}{c}c\\0\end{array}\right]|c\in\mathbb{R}\}$$
 Let $u\in\mathbb{R}^n$. Then

 $span\{u\} = \{x.u | x \in \mathbb{R}\}.$

Geometrically it is a line passing through origin and point u.

Let $u, v \in \mathbb{R}^2$. Then $span\{u, v\} = \{x.u + y.v | x, y \in \mathbb{R}\}$.

Geometrically, what will it be?

For a matrix A,

$$Col(A) := span\{C_1, C_2, \dots, C_n\} \subseteq \mathbb{R}^m$$

The equation Ax = b has a solution if and only if b is a linear combination of the columns of A.

The equation Ax = b has a solution if and only if b is a linear combination of the columns of A.

Theorem

Let A be an $m \times n$ matrix. Then the following statements are logically equivalent

- 1. For each $b \in \mathbb{R}^m$, the equation AX = b has a solution.
- 2. Each $b \in \mathbb{R}^m$, is a linear combination of the columns of A.
- 3. $Col(A) = \mathbb{R}^m$.
- 3. $Col(A) = \mathbb{R}$.

 4. A has a pivot position in every row.

Homogeneous Linear System : Ax > 0

The homogeneous equation AX = 0 has a nontrivial solution if and only if the REF(A) has at least one free variable.

Suppose augmented form [A|0] is

Suppose augmented form
$$[A|0]$$
 is
$$\begin{bmatrix}
3 & 5 & -4 & 0 \\
-3 & -2 & 4 & 0 \\
6 & 1 & -8 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
3 & 5 & -4 & 0 \\
R_3 \rightarrow R_3 \rightarrow R_4
\end{bmatrix}$$

$$\begin{bmatrix}
3 & 5 & -4 & 0 \\
R_3 \rightarrow R_4 \rightarrow R_4
\end{bmatrix}$$

$$\begin{bmatrix}
3 & 5 & -4 & 0 \\
R_3 \rightarrow R_4 \rightarrow R_4
\end{bmatrix}$$

$$\begin{bmatrix}
3 & 5 & -4 & 0 \\
R_3 \rightarrow R_4 \rightarrow R_4
\end{bmatrix}$$

$$\begin{bmatrix}
3 & 5 & -4 & 0 \\
R_3 \rightarrow R_4 \rightarrow R_4
\end{bmatrix}$$

$$\begin{bmatrix}
3 & 5 & -4 & 0 \\
R_3 \rightarrow R_4 \rightarrow R_4
\end{bmatrix}$$

$$\begin{bmatrix}
3 & 5 & -4 & 0 \\
R_3 \rightarrow R_4 \rightarrow R_4
\end{bmatrix}$$

$$\begin{bmatrix}
3 & 5 & -4 & 0 \\
R_3 \rightarrow R_4 \rightarrow R_4
\end{bmatrix}$$

$$\begin{bmatrix}
3 & 5 & -4 & 0 \\
R_3 \rightarrow R_4 \rightarrow R_4
\end{bmatrix}$$

$$\begin{bmatrix}
3 & 5 & -4 & 0 \\
R_3 \rightarrow R_4 \rightarrow R_4
\end{bmatrix}$$

$$\begin{bmatrix}
3 & 5 & -4 & 0 \\
R_3 \rightarrow R_4 \rightarrow R_4
\end{bmatrix}$$

$$\begin{bmatrix}
3 & 5 & -4 & 0 \\
R_3 \rightarrow R_4 \rightarrow R_4
\end{bmatrix}$$

$$\begin{bmatrix}
3 & 5 & -4 & 0 \\
R_3 \rightarrow R_4
\end{bmatrix}$$

$$\begin{bmatrix}
3 & 5 & -4 & 0 \\
R_3 \rightarrow R_4
\end{bmatrix}$$

$$\begin{bmatrix}
3 & 5 & -4 & 0 \\
R_3 \rightarrow R_4
\end{bmatrix}$$

$$\begin{bmatrix}
3 & 5 & -4 & 0 \\
R_3 \rightarrow R_4
\end{bmatrix}$$

$$\begin{bmatrix}
3 & 5 & -4 & 0 \\
R_3 \rightarrow R_4
\end{bmatrix}$$

$$\begin{bmatrix}
3 & 5 & -4 & 0 \\
R_3 \rightarrow R_4
\end{bmatrix}$$

$$\begin{bmatrix}
3 & 5 & -4 & 0 \\
R_3 \rightarrow R_4
\end{bmatrix}$$

$$\begin{bmatrix}
3 & 5 & -4 & 0 \\
R_3 \rightarrow R_4
\end{bmatrix}$$

$$\begin{bmatrix}
3 & 5 & -4 & 0 \\
R_3 \rightarrow R_4
\end{bmatrix}$$

$$\begin{bmatrix}
3 & 5 & -4 & 0 \\
R_3 \rightarrow R_4
\end{bmatrix}$$

$$\begin{bmatrix}
3 & 5 & -4 & 0 \\
R_3 \rightarrow R_4
\end{bmatrix}$$

$$\begin{bmatrix}
3 & 5 & -4 & 0 \\
R_3 \rightarrow R_4
\end{bmatrix}$$

$$\begin{bmatrix}
3 & 5 & -4 & 0 \\
R_3 \rightarrow R_4
\end{bmatrix}$$

$$\begin{bmatrix}
3 & 5 & -4 & 0 \\
R_3 \rightarrow R_4
\end{bmatrix}$$

$$\begin{bmatrix}
3 & 5 & -4 & 0 \\
R_3 \rightarrow R_4
\end{bmatrix}$$

$$\begin{bmatrix}
3 & 5 & -4 & 0 \\
R_3 \rightarrow R_4
\end{bmatrix}$$

$$\begin{bmatrix}
3 & 5 & -4 & 0 \\
R_3 \rightarrow R_4
\end{bmatrix}$$

$$\begin{bmatrix}
3 & 5 & -4 & 0 \\
R_3 \rightarrow R_4
\end{bmatrix}$$

$$\begin{bmatrix}
3 & 5 & -4 & 0 \\
R_3 \rightarrow R_4
\end{bmatrix}$$

$$\begin{bmatrix}
3 & 5 & -4 & 0 \\
R_3 \rightarrow R_4
\end{bmatrix}$$

$$\begin{bmatrix}
3 & 5 & -4 & 0 \\
R_3 \rightarrow R_4
\end{bmatrix}$$

$$\begin{bmatrix}
3 & 5 & -4 & 0 \\
R_3 \rightarrow R_4
\end{bmatrix}$$

$$\begin{bmatrix}
3 & 5 & -4 & 0 \\
R_3 \rightarrow R_4
\end{bmatrix}$$

$$\begin{bmatrix}
3 & 5 & -4 & 0 \\
R_3 \rightarrow R_4
\end{bmatrix}$$

$$\begin{bmatrix}
3 & 5 & -4 & 0 \\
R_3 \rightarrow R_4
\end{bmatrix}$$

$$\begin{bmatrix}
3 & 5 & -4 & 0 \\
R_3 \rightarrow R_4
\end{bmatrix}$$

$$\begin{bmatrix}
3 & 5 & -4 & 0 \\
R_3 \rightarrow R_4
\end{bmatrix}$$

$$\begin{bmatrix}
3 & 5 & -4 & 0 \\
R_3 \rightarrow R_4
\end{bmatrix}$$

$$\begin{bmatrix}
3 & 5 & -4 & 0 \\
R_3 \rightarrow R_4
\end{bmatrix}$$

$$\begin{bmatrix}
3 & 5 & -4 & 0 \\
R_3 \rightarrow R_4
\end{bmatrix}$$

$$\begin{bmatrix}
3 & 5 & -4 & 0 \\
R_3 \rightarrow R_4
\end{bmatrix}$$

$$\begin{bmatrix}
3 & 5 & -4 & 0 \\
R_3 \rightarrow R_4
\end{bmatrix}$$

$$\begin{bmatrix}
3 & 5 & -4 & 0 \\
R_3 \rightarrow R_4
\end{bmatrix}$$

$$\begin{bmatrix}
3 & 5 & -4 & 0 \\
R_3 \rightarrow R_4
\end{bmatrix}$$

$$\begin{bmatrix}
3 & 5 & -4 & 0 \\
R_3 \rightarrow R_4
\end{bmatrix}$$

$$\begin{bmatrix}
3 & 5 & -4 & 0 \\
R_3 \rightarrow R_4
\end{bmatrix}$$

$$\begin{bmatrix}
4 & 1 & 0 \\
R_3 \rightarrow R_4
\end{bmatrix}$$

$$\begin{bmatrix}
4 & 1 & 0 \\
R_3 \rightarrow R_4
\end{bmatrix}$$

$$\begin{bmatrix}
4 & 1 & 0 \\
R_3 \rightarrow R_4
\end{bmatrix}$$

$$\begin{bmatrix}
4 & 1 & 0 \\
R_3 \rightarrow R_4
\end{bmatrix}$$

$$\begin{bmatrix}
4 & 1 & 0 \\
R_3 \rightarrow R_4
\end{bmatrix}$$

$$\begin{bmatrix}
4 & 1 & 0 \\
R_3 \rightarrow R_4
\end{bmatrix}$$

$$\begin{bmatrix}
4 & 1 & 0 \\
R_3 \rightarrow$$

Homogeneous Linear System

The homogeneous equation AX = 0 has a nontrivial solution if and only if the REF(A) has at least one free variable. Suppose augmented form [A|0] is

$$\begin{bmatrix} 3 & 5 & -4 & 0 \\ -3 & -2 & 4 & 0 \\ 6 & 1 & -8 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 3 & -3 & 7 \\ 0 & 1 & -4 & 5 \end{bmatrix}$$

Non homogeneous linear system

Theorem

Suppose the equation Ax = b is consistent for some given b, and solution (i.e., Ap = b). Then the solution set of Ax = b is the set of all vectors of the form $w = p + v_h$, where v_h is any solution of the homogeneous equation Ax = 0.

$$\begin{bmatrix}
3 & 5 & -4 \\
-3 & -2 & 4
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2
\end{bmatrix} = \begin{bmatrix}
8 \\
-5
\end{bmatrix} = b$$

$$P = \begin{bmatrix}
1 \\
6
\end{bmatrix} + \begin{bmatrix}
3 \\
6
\end{bmatrix}$$

$$\begin{bmatrix}
3 \\
7
\end{bmatrix}$$

$$\begin{bmatrix}
4 \\
5
\end{bmatrix}$$

$$\begin{bmatrix}
3 \\
7
\end{bmatrix}$$

$$\begin{bmatrix}
4 \\
5
\end{bmatrix}$$

$$\begin{bmatrix}
3 \\
7
\end{bmatrix}$$

$$\begin{bmatrix}
4 \\
7
\end{bmatrix}$$

$$\begin{bmatrix}
3 \\
7
\end{bmatrix}$$

$$\begin{bmatrix}
4 \\
7
\end{bmatrix}$$

$$\begin{bmatrix}
3 \\
7
\end{bmatrix}$$

$$\begin{bmatrix}
4 \\
7
\end{bmatrix}$$

$$\begin{bmatrix}
4 \\
7
\end{bmatrix}$$

$$\begin{bmatrix}
3 \\
7
\end{bmatrix}$$

$$\begin{bmatrix}
4 \\
7
\end{bmatrix}$$

particular so

Non homogeneous linear system

Theorem

Suppose the equation Ax = b is consistent for some given b, and let p be a solution (i.e., Ap = b). Then the solution set of Ax = b is the set of all vectors of the form $w = p + v_h$, where v_h is any solution of the homogeneous equation Ax = 0.

WRITING A SOLUTION SET (OF A CONSISTENT SYSTEM) IN PARAMETRIC VECTOR FORM

- 1. Row reduce the augmented matrix to reduced echelon form.
- 2. Express each basic variable in terms of any free variables appearing in an equation.
- 3. Write a typical solution \mathbf{x} as a vector whose entries depend on the free variables, if any.
- **4.** Decompose **x** into a linear combination of vectors (with numeric entries) using the free variables as parameters.

Linear Independence

$$Ax = 0$$

Lt $Ax = 0$ how only one sol' (ig. $x = 0$)

Let A be a matrix of order $m \times n$. We say columns of A to be linearly independent if AX = 0 has only trivial (0) solution.

Linear Independence

Let A be a matrix of order $m \times n$. We say columns of A to be linearly independent if AX = 0 has only trivial (0) solution.

Definition

A set of vectors $\{v_1, v_2, \dots, v_n\}$ in \mathbb{R}^m is said to be linearly independent if the vector equation

$$x_1v_1 + x_2v_2 + \cdots + x_nv_n = 0$$

has only trivial solution.

