Homework #5

Assign date: 2015-08-02 **Due date: 2015-08-10, 6pm**

Submission:

1. Please submit your results <u>in email</u> to the grader: 130301039@svuca.edu Chi Zhang

- 2. Please separate the written answers from the python code: you should submit 1 file in your email cs596-29-hw5 yourID#.doc
- 3. 30 pts per day will be deducted for late submission

Problem 1) Boolean Model (10 pts.)

We are given 6 documents with labels "ham" and "spam" as below. Answer the following questions about Boolean model text retrieval:

- a) If the query is "great OR free NOT hurry", which documents will be retrieved? Answer: D1, D2, D3, D4
- b) If the query is "vocation OR food AND experience", which documents will be retrieved? Answer: D1, D2, D4, D6

ID	Document	Class
1	Enjoy great food experience	Ham
2	Enjoy free vocation experience	Ham
3	Congratulation great vocation reward	Ham
4	Reward great vocation experience	Ham
5	Congratulation great reward hurry	Spam
6	Experience free vocation hurry	Spam

Problem 2) Naïve Bayes spam filter (20 pts.)

We are building a Naïve Bayes classifier based spam filter using the same training data as in Problem-1. Please answer the following questions.

a) First build the vocabulary set from the training data.

Answer:

V = {enjoy, great, food, experience, free, vocation, congratulation, reward, hurry}

b) Build "bag of words" representation for the training set. Please sort the words in alphabetical order from 'a' to 'z'.

Answer:

Sorted V = {congratulation, enjoy, experience, food, free, great, hurry, reward, vocation}

ID	Class	congratulation	enjoy	experience	food	free	great	hurry	reward	vocation
1	Ham	0	1	1	1	0	1	0	0	0
2	Ham	0	1	1	0	1	0	0	0	1

3	Ham	1	0	0	0	0	1	0	1	1
4	Ham	0	0	1	0	0	1	0	1	1
5	Spam	1	0	0	0	0	1	1	1	0
6	Spam	0	0	1	0	1	0	1	0	1
Σ	HAM	1	2	3	1	1	3	0	2	3
Σ	SPAM	1	0	1	0	1	1	2	1	1
2	EALL	2	2	4	1	2	4	2	3	4

c) Apply the NB classifier to decide if the following message is spam: "free reward hurry" Answer:

Two classes: Ham, Spam

N = 6

P(Ham) = 4/6; P(Spam) = 2/6

|V| = 9

ID	Document	Class	Σ of words
1	Enjoy great food experience	Ham	4
2	Enjoy free vocation experience	Ham	4
3	Congratulation great vocation reward	Ham	4
4	Reward great vocation experience	Ham	4
5	Congratulation great reward hurry	Spam	4
6	Experience free vocation hurry	Spam	4

n-ham = 4+4+4+4 = 16

n-spam = 4+4 = 8

$$\begin{split} & \mathsf{P}(\mathsf{free} \,|\, \mathsf{Ham}) \, = \, \frac{1+1}{16+9} \, = \, \frac{2}{25} \,\, ; \,\, \mathsf{P}(\mathsf{free} \,|\, \mathsf{Spam}) \, = \, \frac{1+1}{8+9} \, = \, \frac{2}{17} \\ & \mathsf{P}(\mathsf{reward} \,|\, \mathsf{Ham}) \, = \, \frac{2+1}{16+9} \, = \, \frac{3}{25} \,\, ; \,\, \mathsf{P}(\mathsf{reward} \,|\, \mathsf{Spam}) \, = \, \frac{1+1}{8+9} \, = \, \frac{2}{17} \\ & \mathsf{P}(\mathsf{hurry} \,|\, \mathsf{Ham}) \, = \, \frac{0+1}{16+9} \, = \, \frac{1}{25} \,\, ; \,\, \mathsf{P}(\mathsf{hurry} \,|\, \mathsf{Spam}) \, = \, \frac{2+1}{8+9} \, = \, \frac{3}{17} \\ & \mathsf{P}(\mathsf{ham} \,|\, \text{``free reward hurry''}) \, = \, \mathsf{P}(\mathsf{ham}) \, . \, \mathsf{P}(\mathsf{free} \,|\, \mathsf{ham}) \, . \, \mathsf{P}(\mathsf{reward} \,|\, \mathsf{ham}) \, . \, \mathsf{P}(\mathsf{hurry} \,|\, \mathsf{ham}) \\ & \mathsf{P}(\mathsf{ham} \,|\, \text{``free reward hurry''}) \, = \, \frac{4}{6} * \, \frac{2}{25} * \, \frac{3}{25} * \, \frac{1}{25} \, = \, \frac{4}{15625} \, = \, \mathbf{0.000256} \\ & \mathsf{P}(\mathsf{spam} \,|\, \text{``free reward hurry''}) \, = \, \mathsf{P}(\mathsf{spam}) \, . \, \mathsf{P}(\mathsf{free} \,|\, \mathsf{spam}) \, . \, \mathsf{P}(\mathsf{reward} \,|\, \mathsf{spam}) \, . \, \mathsf{P}(\mathsf{hurry} \,|\, \mathsf{spam}) \\ & \mathsf{P}(\mathsf{spam} \,|\, \text{``free reward hurry''}) \, = \, \frac{2}{6} * \, \frac{2}{17} * \, \frac{2}{17} * \, \frac{3}{17} \, = \, \frac{4}{4913} \, = \, \mathbf{0.000814} \end{split}$$

P(ham | "free reward hurry") < P(spam | "free reward hurry")

⇒ "free reward hurry" is more likely a spam message.

d) Decide if the following message is spam: "great food reward"

Answer:

P(great|Ham) =
$$\frac{3+1}{16+9} = \frac{4}{25}$$
; P(great|Spam) = $\frac{1+1}{8+9} = \frac{2}{17}$
P(food|Ham) = $\frac{1+1}{16+9} = \frac{2}{25}$; P(food|Spam) = $\frac{0+1}{8+9} = \frac{1}{17}$
P(reward|Ham) = $\frac{2+1}{16+9} = \frac{3}{25}$; P(reward|Spam) = $\frac{1+1}{8+9} = \frac{2}{17}$
P(ham|"great food reward") = $\frac{4}{6} * \frac{4}{25} * \frac{2}{25} * \frac{3}{25} = \frac{16}{15625} = 0.001024$
P(spam|"great food reward") = $\frac{2}{6} * \frac{2}{17} * \frac{1}{17} * \frac{2}{17} = \frac{14}{14739} = 0.00027$
P(ham| "great food reward") > P(spam| "great food reward")

⇒ "great food reward" should not be a spam message.

Problem 3) Cosine similarity (16 pts.)

Based on the same training data as in Problem-1, answer the following questions: (Please sort the features in alphabetical order from 'a' to 'z')

a) Build the vector representation for the class "Ham"

Answer:

Vectors representation for class "Ham":

	DOC-1	DOC-2	DOC-3	DOC-4
congratulation	0	0	1	0
enjoy	1	1	0	0
experience	1	1	0	1
food	1	0	0	0
free	0	1	0	0
great	1	0	1	1
hurry	0	0	0	0
reward	0	0	1	1
vocation	0	1	1	1

Summation of all vectors in class "Ham" produce a resultant vector representing class "Ham":

$$\vec{v}_{ham} = [\vec{D}_1, \vec{D}_2, \vec{D}_3, \vec{D}_4] \rightarrow \sum \vec{v}_{ham} = (1,2,3,1,1,3,0,2,3)$$

b) Build the vector representation for the class "Spam"

Answer:

Vectors representation for class "Spam":

	DOC-5	DOC-6
congratulation	1	0
enjoy	0	0
experience	0	1
food	0	0
free	0	1
great	1	0
hurry	1	1
reward	1	0
vocation	0	1

Summation of all vectors in class "Spam" produce a resultant vector representing class "Spam":

$$\vec{v}_{spam} = [\vec{D}_5, \vec{D}_6] \rightarrow \sum \vec{v}_{spam} = (1,0,1,0,1,1,2,1,1)$$

c) Build the vector representation for the test document: "free reward hurry", and calculate its Cosine similarities to both the ham and spam classes.

Answer:

Vector representation of Q1 = "free reward hurry":

q1 = (0,0,0,0,1,0,1,1,0)

Using Cosine Similarity Formula

$$cosine(d_i, q) = \frac{d \cdot q}{\|d_j\| * \|q\|}$$

cosine(ham,
$$q1$$
) = 0.281 cosine(spam, $q1$) = 0.730

Since cosine(spam,q1) > cosine(ham,q1), therefore Q1="free reward hurry" is more likely a <u>spam message</u>.

d) Build the vector representation for the test document: "great food reward", and calculate its Cosine similarities to both the ham and spam classes.

Answer:

Vector representation of Q2 = "great food reward":

	Query 2:
	(great food reward)
congratulation	0
enjoy	0
experience	0
food	1
free	0

great	1
hurry	0
reward	1
vocation	0

q2 = (0,0,0,1,0,1,0,1,0)

Using Cosine Similarity Formula

$$cosine(d_i, q) = \frac{d \cdot q}{\|d_i\| + \|q\|}$$

cosine(ham, q2) = 0.562 cosine(spam, q2) = 0.365

Since cosine(ham,q2) > cosine(spam,q2), therefore Q2="great food reward" is more likely a ham message.

Problem 4) Tf-Idf transform (24 pts.)

Based on the same training set as in Problem-1, construct the Tf-Idf transform either manually or using Sklearn. Answer the following questions: (Please sort the features in alphabetical order from 'a' to 'z')

a) What is the bag of words representation of the 6 training documents after Tf-Idf transform?

Answer:

We will re-use the document term matrix in previous Problem 2:

DOC-ID	congratulation	enjoy	experience	food	free	great	hurry	reward	vocation
1	0	1	1	1	0	1	0	0	0
2	0	1	1	0	1	0	0	0	1
3	1	0	0	0	0	1	0	1	1
4	0	0	1	0	0	1	0	1	1
5	1	0	0	0	0	1	1	1	0
6	0	0	1	0	1	0	1	0	1

Calculate TF table:

Since the maximum frequency of each term in each document is 1 (i.e. no duplicated word in each document), we can re-use the above table as the term frequency table.

Calculate IDF table:

$$idf_i = \log_2 \frac{Total_no_of_documents}{Number_of_documents_containing_term_i}$$

The total number of document N = 6. Thefore the idf values for all terms are:

congratulation	= log2(6/2)	1.5850
enjoy	= log2(6/2)	1.5850
experience	= log2(6/4)	0.5850
food	= log2(6/1)	2.5850
free	= log2(6/2)	1.5850
great	= log2(6/4)	0.5850
hurry	= log2(6/2)	1.5850
reward	= log2(6/3)	1.0000
vocation	= log2(6/4)	0.5850

Multiply tf and the idf score of each term, we have the TF-IDF matrix below:

	congratulation	enjoy	experience	food	free	great	hurry	reward	vocation
DOC-1	0.000	1.585	0.585	2.585	0.000	0.585	0.000	0.000	0.000
DOC-2	0.000	1.585	0.585	0.000	1.585	0.000	0.000	0.000	0.585
DOC-3	1.585	0.000	0.000	0.000	0.000	0.585	0.000	1.000	0.585
DOC-4	0.000	0.000	0.585	0.000	0.000	0.585	0.000	1.000	0.585
DOC-5	1.585	0.000	0.000	0.000	0.000	0.585	1.585	1.000	0.000
DOC-6	0.000	0.000	0.585	0.000	1.585	0.000	1.585	0.000	0.585

b) Calculate Cosine similarities of the test document "free reward hurry" to the two classes "Ham" and "Spam" using Tf-Idf weights.

SPAM

Answer:

Vectors representation of class "Ham" and "Spam" based on the summation of {D1,D2,D3,D4} and {D5,D6} on TF-IDF matrix:

CONGRATULATION	1.585	1.585
ENJOY	3.170	0.000
EXPERIENCE	1.755	0.585
FOOD	2.585	0.000
FREE	1.585	1.585
GREAT	1.755	0.585
HURRY	0.000	3.170
REWARD	2.000	1.000
VOCATION	1.755	0.585

HAM

 $c-ham_{TF-IDF-ed} = (1.585, 3.170, 1.755, 2.585, 1.585, 1.755, 0, 2, 1.755)$ $c-spam_{TF-IDF-ed} = (1.585, 0, 0.585, 0, 1.585, 0.585, 3.170, 1, 0.585)$

Q1 = "free reward hurry", q1 = (0,0,0,0,1,0,1,1,0)

```
cosine(ham, q1) = 0.350
cosine(spam, q1) = 0.804
```

Since cosine(spam,q1) > cosine(ham,q1), therefore Q1="free reward hurry" is more likely a spam message.

c) Calculate Cosine similarities of the test document "great food reward" to the two classes "Ham" and "Spam" using Tf-Idf weights

Answer:

```
 \begin{array}{l} \text{c-ham}_{\mathsf{TF\text{-}IDF\text{-}ed}} = (1.585,\, 3.170,\, 1.755,\, 2.585,\, 1.585,\, 1.755,\, 0,\, 2,\, 1.755) \\ \text{c-spam}_{\mathsf{TF\text{-}IDF\text{-}ed}} = (1.585,\, 0,\, 0.585,\, 0,\, 1.585,\, 0.585,\, 3.170,\, 1,\, 0.585) \end{array}
```

$$q2 = (0,0,0,1,0,1,0,1,0)$$

$$cosine(ham, q2) = 0.619$$

 $cosine(spam, q2) = 0.221$

Since cosine(ham,q2) > cosine(spam,q2), therefore Q2="great food reward" is more likely a ham message.

Problem 5) Rocchio Text Classifier (30 pts.)

Using the training data in Problem-1, find the centroids for the "spam" and "ham" classes of the Rocchio Text Classifier as discussed in the class. Recall that the Rocchio classifier computes the centroid C_i for each class i from relevant and irrelevant documents as follows:

$$\mathbf{c}_{i} = \frac{\alpha}{|D_{i}|} \sum_{\mathbf{d} \in D_{i}} \frac{\mathbf{d}}{\|\mathbf{d}\|} - \frac{\beta}{|D - D_{i}|} \sum_{\mathbf{d} \in D - D_{i}} \frac{\mathbf{d}}{\|\mathbf{d}\|}$$

For the current problem, make the following assumptions:

- (a) Tf-IDF weight is NOT used.
- (b) The weights $\alpha = 1$ and $\beta = 0.5$.

Answer:

Term frequency matrix

1	2	3	4	5	6
Ham	Ham	Ham	Ham	Spam	Spam
0	0	1	0	1	0
1	1	0	0	0	0
1	1	0	1	0	1
1	0	0	0	0	0
0	1	0	0	0	1

1	0	1	1	1	0
0	0	0	0	1	1
0	0	1	1	1	0
0	1	1	1	0	1

$$\vec{v}_{ham} = \left[\vec{D}_1, \vec{D}_2, \vec{D}_3, \vec{D}_4 \right] \ \rightarrow \ \Sigma \, \vec{v}_{ham} = (1,2,3,1,1,3,0,2,3)$$

$$\vec{v}_{spam} = [\vec{D}_5, \vec{D}_6] \rightarrow \sum \vec{v}_{spam} = (1,0,1,0,1,1,2,1,1)$$

$$\vec{c}_{ham} = \frac{1}{4} * \frac{(1,2,3,1,1,3,0,2,3)}{2} - \frac{0.5}{2} * \frac{(1,0,1,0,1,1,2,1,1)}{2}$$

$$= (0.,0.25,0.25,0.125,0.,0.25,-0.25,0.125,0.25)$$

$$\vec{c}_{spam} = \frac{1}{2} * \frac{(1,0,1,0,1,1,2,1,1)}{2} - \frac{0.5}{4} * \frac{(1,2,3,1,1,3,0,2,3)}{2} \\ = (0.1875, -0.125, 0.0625, -0.0625, 0.1875, 0.0625, 0.5, 0.125, 0.0625)$$