182. (2006 Spring Exam) Let $a, b \in \mathbb{R}$ with a < b and $f : [a, b] \to \mathbb{R}$ be continuous. Also, let f(x) be differentiable for all $x \in (a, b)$. Prove that if the graph of f is not a line segment, then there exist numbers x_1 and x_2 in the open interval (a, b) such that

$$f'(x_1) < \frac{f(b) - f(a)}{b - a} < f'(x_2).$$

183. (2006 Spring Exam) Let $f, g : [0,1] \to \mathbb{R}$ be continuous. If there exists a sequence of numbers $x_1, x_2, x_3, \ldots \in [0,1]$ such that $g(x_n) = f(x_{n+1})$ for $n = 1, 2, 3, \ldots$, then prove that there exists $w \in [0,1]$ such that g(w) = f(w).

<u>Caution</u> Be careful, x_{n_i} converges does not imply x_{n_i+1} converges !!!

- 184. (2006 Fall Exam) (a) Determine the set of <u>all</u> the positive numbers b such that $\sum_{k=1}^{\infty} \frac{k}{(k+b)^2}$ converges. Be sure to prove you have gotten all such b.
 - (b) Determine the set of <u>all</u> the positive numbers c such that $\sum_{k=1}^{\infty} \frac{(-1)^k k}{(k+c)^2}$ converges. Be sure to prove you have gotten all such c.
- 185. (2006 Fall Exam) Let $(0, \frac{1}{2}) \cap \mathbb{Q} \subseteq A_1 \subseteq [0, 1)$. For n = 1, 2, 3, ..., let

$$A_{n+1} = \{ \sqrt{x} : x \in A_n \}.$$

Determine the supremum and infimum of $\bigcup_{k=1}^{\infty} A_k$ with proof.

- 186. (2006 Fall Exam) (a) State the definition of a sequence a_1, a_2, a_3, \ldots of real numbers <u>converges</u> to a number L.
 - (b) Let x_1, x_2, x_3, \ldots and y_1, y_2, y_3, \ldots be sequences of positive numbers such that $\lim_{n \to \infty} x_n = 1 = \lim_{n \to \infty} y_n$. Prove that

$$\lim_{n \to \infty} \left(4x_n + \frac{1}{y_n} \right) = 5$$

by checking the definition of limit. Do not use the computation formulas for limits, sandwich theorem or l'Hopital's rule, otherwise you will get 0 mark for this problem!

187. (2006 Fall Exam) Let

$$x_1 = 2$$
, $x_2 = 4$ and $x_{n+2} = \sqrt{10x_n - 9}$ for $n = 1, 2, 3, \dots$

Determine if the sequence x_1, x_2, x_3, \ldots converges or not with proof. In case of convergence, also find the limit.

- 188. (2007 Spring Exam) (a) Let $f: S \to \mathbb{R}$ be a function and x_0 be an accumulation point of S. State the definition of $\lim_{x \to x_0} f(x) = L$ (or "f(x) converges to L as x tends to x_0 ").
 - (b) Let $f:(0,+\infty)\to\mathbb{R}$ be defined by $f(x)=\frac{1}{\sqrt{x}+1}$. Prove that $\lim_{x\to 1}f(x)=\frac{1}{2}$ by checking the definition. (Zero mark will be given to those who used computation formulas, sandwich theorem or l'Hopital's rule!)
- 189. (2007 Spring Exam (a) State the definition of x_1, x_2, x_3, \ldots is a Cauchy sequence.

- (b) Define $a_1 = 1$ and $a_{n+1} = 2a_n + \sin a_n$ for $n = 1, 2, 3, \ldots$ Prove that $\frac{a_1}{2}, \frac{a_2}{4}, \ldots, \frac{a_n}{2^n}, \ldots$ is a Cauchy sequence by checking the definition of Cauchy sequence. (Zero mark will be given to those who used the fact that convergent sequences are Cauchy sequences!)
- 190. (2007 Spring Exam) Let $f:[0,1] \to [0,1]$ be continuous such that f(0)=0, f(1)=1 and f(f(x))=x for all $x \in [0,1]$. Prove that f(x)=x for all $x \in [0,1]$.
- 191. (2007 Spring Exam) Let $f:[0,1] \to \mathbb{R}$ be continuous and let it be differentiable on (0,1). Also, f(0)=0 and f(1)=1. Let a and b be positive real numbers.
 - (a) Prove that there exist $x_0 \in (0,1)$ such that $f(x_0) = \frac{a}{a+b}$.
 - (b) Prove that there exist distinct $x_1, x_2 \in (0, 1)$ such that

$$\frac{a}{f'(x_1)} + \frac{b}{f'(x_2)} = a + b.$$

(c) Prove that if $c_1, c_2, \ldots, c_n > 0$ and $c_1 + c_2 + \cdots + c_n = 1$, then there exist distinct $t_1, t_2, \ldots, t_n \in (0, 1)$ such that

$$\frac{c_1}{f'(t_1)} + \frac{c_2}{f'(t_2)} + \dots + \frac{c_n}{f'(t_n)} = 1.$$

- 192. (2007 Spring Exam) Determine the domain (of convergence) of $\sum_{k=1}^{\infty} \frac{1}{2^k k} (3x-1)^k$.
- 193. (2007 Spring Exam) Determine whether the improper integral $\int_{-1}^{1} \frac{dx}{x \cos x}$ converges or not. Also, determine whether the principal value integral P.V. $\int_{-1}^{1} \frac{dx}{x \cos x}$ converges or not.
- 194. (2007 Spring Exam) Prove that the series of functions $\sum_{k=1}^{\infty} \frac{1}{k^2(e^{kx} + e^{-kx})}$ converges uniformly on \mathbb{R} .
- 195. (2007 Spring Exam) For n = 1, 2, 3, ..., let $x_n, y_n \in (0, +\infty)$ and let $\{x_n\}, \{y_n\}$ be Cauchy sequences. Prove that $\left\{\frac{y_n}{x_n + 1}\right\}$ is also a Cauchy sequence by checking the definition of Cauchy sequence.
- 196. (2007 Spring Exam) State Lebesgue's theorem.
 - (b) Let $f, g: [0,1] \to \mathbb{R}$ be monotone functions. Prove that $h: [0,1] \to \mathbb{R}$ defined by

$$h(x) = \begin{cases} f(x) - g(x) & \text{if } x \in [0, 1/2) \\ f(x) + g(x) & \text{if } x \in [1/2, 1] \end{cases}$$

is bounded and Riemann integrable on [0, 1].

- 197. (2007 Spring Exam) Let $a_1 > 0$ and $a_{n+1} = a_n + \frac{1}{a_n}$ for $n = 1, 2, 3, \ldots$ Show that $\lim_{n \to +\infty} \frac{a_n^2}{n} = 2$.
- 198. (2007 Spring Exam) Prove that the equation $1 x + \frac{x^2}{2} \frac{x^3}{3} + \dots + \frac{x^{2006}}{2006} \frac{x^{2007}}{2007} = 0$ has a positive solution.
- 199. (2007 Spring Exam) State Taylor's theorem with Lagrange remainder.

- (b) Let $f: \mathbb{R} \to \mathbb{R}$ be a three-times differentiable function. If f(x) and f'''(x) are bounded functions on \mathbb{R} , then prove that f'(x) and f''(x) are also bounded functions on \mathbb{R} .
- 200. (2007 Fall Exam) (a) Determine (with proof) if $\sum_{k=1}^{\infty} \frac{2^k k^2}{(2k)!}$ converges.
 - (b) Determine (with proof) if $\sum_{k=3}^{\infty} \frac{\cos k}{k(\ln k)^2}$ converges.
- 201. (2007 Fall Exam) (a) Let D be a nonempty subset of \mathbb{R} such that $\inf D = 2$ and $\sup D = 5$. Determine (with proof) the supremum and infimum of the set

$$A = \left\{ \frac{x}{y} : x, y \in D \right\}.$$

(b) (6 marks) Let c be a positive rational number. Determine (with proof) the supremum and infimum of

$$B = \{x + y : x \in [0, c\sqrt{2}] \cap \mathbb{Q}, \ y \in [0, c] \setminus \mathbb{Q}\}.$$

- 202. (2007 Fall Exam) Let S be a nonempty countable subset of the interval $(0, +\infty)$. Prove that there exists a positive real number which is not the area of any triangle whose three sides have lengths in S.
- 203. (2007 Fall Exam) Let x_1, x_2, x_3, \ldots be a sequence of real numbers such that

$$x_{n+1} = \frac{x_1 - 2}{10 + x_n}$$
 for $n = 1, 2, 3, \dots$

- (a) If $x_1 = -7$, then prove that x_1, x_2, x_3, \ldots converges and find its limit.
- (b) If $x_1 = 26$, then prove that x_1, x_2, x_3, \ldots converges and find its limit.
- 204. (2007 Fall Exam) For n = 1, 2, 3, ..., let

$$y_n = \frac{4n^2 - \sqrt{n}}{2n^2 + n} + \frac{n-1}{n}$$
.

Prove that $\lim_{n\to\infty} y_n = 3$ by checking the definition of limit of a sequence <u>only</u>.

205. (2007 Fall Exam) Let A and B be nonempty subsets of \mathbb{R} . Both A and B are bounded above. Let

$$C = (A \setminus B) \cup (B \setminus A).$$

- (a) Give an example of such sets A and B so that C is nonempty and $\sup C \neq \max\{\sup A, \sup B\}$.
- (b) If C is nonempty and $\sup C \neq \max\{\sup A, \sup B\}$, then prove that

$$\sup(A \cap B) = \max\{\sup A, \sup B\}.$$

(c) If C is nonempty and $\sup A \neq \sup B$, then prove that

$$\sup C = \max\{\sup A, \sup B\}.$$

206. (2007 Fall Exam) (a) State the definition of a sequence x_1, x_2, x_3, \ldots of real numbers converging to a real number L.

- (b) (15 marks) Let a_1, a_2, a_3, \ldots be positive numbers such that $\lim_{n \to \infty} \frac{a_n}{a_{n+1} + a_{n+2}} = 0$. Prove that a_1, a_2, a_3, \ldots cannot be bounded above.
- 207. (2008 Spring Exam) Prove that $\lim_{x\to 1} \frac{3x}{x^2+2} = 1$ by checking the ε - δ definition of limit of function. (Do not use any computation formula, sandwich theorem or l'Hopital's rule, otherwise, you will get zero mark.)
- 208. (2008 Spring Exam) Let a_1, a_2, a_3, \ldots be a Cauchy sequence of real numbers. Let $b_n \in \mathbb{R}$ satisfy

$$a_n \le b_n \le a_n + \frac{1}{n}$$
 for $n = 1, 2, 3, \dots$

Prove that b_1, b_2, b_3, \ldots is a Cauchy sequence by checking the definition of Cauchy sequence.

(Do not use Cauchy theorem that said a sequence converges if and only if it is a Cauchy sequence, otherwise you will get zero mark.)

- 209. (2008 Spring Exam) Let $f: \mathbb{R} \to \mathbb{R}$ be continuous such that $f(x+2\pi) = f(x)$ for all $x \in \mathbb{R}$. Prove that there exists at least one $x_0 \in \mathbb{R}$ such that $f(x_0) = x_0$.
- 210. (2008 Spring Exam) Let $f: \mathbb{R} \to \mathbb{R}$ be twice differentiable. There are $a, b \ge 0$ such that for all $x \in [0, 1]$, we have $|f(x)| \le a$ and $|f''(x)| \le b$. Prove that for every $c \in (0, 1)$ we have

$$|f'(c)| \le 2a + \frac{1}{2}b.$$

- 211. (2008 Spring Exam) Determine the domain (of convergence) of $f(x) = \sum_{k=1}^{\infty} \frac{k^2}{3^k} (\pi 2x)^k$.
- 212. (2008 Spring Exam) Determine whether the improper integral $\int_{-1}^{1} \frac{x \, dx}{\sin^2 x}$ converges or not. Also, determine whether the principal value integral P.V. $\int_{-1}^{1} \frac{x \, dx}{\sin^2 x}$ converges or not.
- 213. (2008 Spring Exam) Prove the series of functions $\sum_{k=1}^{\infty} \left(\frac{kx}{1+k^2x^2}\right)^k$ converges uniformly on \mathbb{R} .
- 214. (2008 Spring Exam) Let $\{x_n\}, \{y_n\}$ be two Cauchy sequences of real numbers. Prove that $\sqrt{x_n^2 + y_n^2}$ is also a Cauchy sequence by checking the definition of Cauchy sequence.
- 215. (2008 Spring Exam) (a) State Lebesgue's theorem.
 - (b) For n = 1, 2, 3, ..., let $f_n : [0, 1] \to [0, 1]$ be Riemann integrable functions. Prove that $g : [0, 1] \to \mathbb{R}$ defined by g(0) = 0 and

$$g(x) = f_n(x)$$
 for $n = 1, 2, 3, ...$ and $x \in \left(\frac{1}{n+1}, \frac{1}{n}\right]$

is Riemann integrable on [0, 1].

216. (2008 Spring Exam) Let $a_1, a_2, a_3, \ldots \in \mathbb{R}$ and s_n be the *n*-th partial sum of the convergent series $\sum_{k=1}^{\infty} a_k$. Prove that $\lim_{n \to \infty} \frac{a_1 + 2a_2 + 3a_3 + \cdots + na_n}{n} = 0$.

- 217. (2008 Spring Exam) Let $f: \mathbb{R} \to \mathbb{R}$ be a twice differentiable function such that f''(x) is continuous and $|f''(x)| \le 1$ for all $x \in [0, 1]$. If $f\left(\frac{1}{2}\right) = 0$, then prove that $\left|\int_0^1 f(x) \ dx\right| \le \frac{1}{24}$.
- 218. (2008 Fall Exam) (a) Determine if the series $\sum_{k=1}^{\infty} (\cos k) \sin(\frac{1}{k^2 + \sqrt{2}})$ converges.
- 219. (2008 Fall Exam) (b) Prove the sequence $\{x_n\}$ converges, where

$$x_1 = 1$$
 and $x_{n+1} = \frac{4\sqrt{x_n} + x_n}{3}$

and find its limit.

220. (2008 Fall Exam) (a) Determine (with proof) the supremum and infimum of

$$B = \{\cos x + \sin y : x, y \in (0, \pi/2] \cap \mathbb{Q}\}.$$

(b) Let D and E be nonempty bounded subsets of $\mathbb R$ such that

$$\inf D = 3$$
, $\sup D = 5$, $\inf E = 7$ and $\sup E = 9$.

Determine (with proof) the supremum and infimum of the set

$$A = \left\{ x + \frac{1}{y} : \ x \in D, \ y \in E \right\}.$$

- 221. (2008 Fall Exam) Prove that there exists a positive real number c which does <u>not</u> equal to any number of the form $2^{a+b\sqrt{2}}$, where $a, b \in \mathbb{Q}$.
- 222. (2008 Fall Exam) (a) Prove that $\lim_{x\to 1} \frac{x+8}{x^2+3} = \frac{9}{4}$ by checking the definition of limit of a function or the limit of a sequence via the sequential limit theorem.
 - (b) Let $\{a_n\}$ and $\{b_n\}$ be two sequences of real numbers such that both $\{a_n\}$ and $\{b_n\}$ converge to 1. Prove that $\lim_{n\to\infty} \left(2b_n^3 + \frac{a_n}{2n}\right) = 2$ by checking the definition of limit of a sequence.
- 223. (2008 Fall Exam) (a) Determine (with proof) the infimum of the set

$$S = \{x : x \in \mathbb{R} \text{ and there exist } b, c \in [-1, 1) \text{ such that } x^2 + bx + c = 0\}.$$

(b) (12 marks) Let A_1, A_2, A_3, \ldots be subsets of [0,1] such that $\bigcap_{n=1}^{\infty} A_n$ is nonempty. If

$$\sup \{\inf A_n : n = 1, 2, 3, \ldots \} = \inf \{\sup A_n : n = 1, 2, 3, \ldots \},\$$

then prove that $\bigcap_{n=1}^{\infty} A_n$ has exactly one element.

- 224. (2008 Fall Exam) For all $k \in \mathbb{N}$, let $a_k > 0$ and $\sum_{k=1}^{\infty} a_k = 1$. For all $n \in \mathbb{N}$, let $s_n = \sum_{k=1}^{n} a_k$ and $t_n = \sum_{k=n}^{\infty} a_k$.
 - (a) (10 marks) Prove that $\sum_{n=1}^{\infty} (-1)^n t_n$ and $\sum_{n=1}^{\infty} \frac{a_n}{\sqrt{s_n}}$ both converge.

- (b) Prove that $\sum_{n=1}^{\infty} \frac{a_n}{\sqrt{t_n}}$ converges.
- 225. (2009 Spring Exam) Let a_1, a_2, a_3, \ldots be a Cauchy sequence of positive real numbers. For $n = 1, 2, 3, \ldots$, let

$$b_n = \sin(a_n^2) + \sqrt[3]{7a_n}.$$

Prove that b_1, b_2, b_3, \ldots is a Cauchy sequence by checking the definition of Cauchy sequence.

(Do not use Cauchy theorem that said a sequence converges if and only if it is a Cauchy sequence, otherwise you will get zero mark. However, you may use the fact Cauchy sequences are bounded.)

226. (2009 Spring Exam) Let $f: \mathbb{R} \to \mathbb{R}$ be twice differentiable and f''(x) be continuous. If

$$f(-1) = 0$$
, $f(0) = 2$, $f(1) = 5$ and $f'(0) = 0$,

then prove that there exists $c \in \mathbb{R}$ such that $f''(c) = \sqrt{2}$.

- 227. (2009 Spring Exam) Prove that there exists a unique continuous function $f:[0,1] \to [0,1]$ such that f(f(f(x))) + f(x) = 2x for all $x \in [0,1]$.
- 228. (2009 Spring Exam) Determine the domain (of convergence) of $f(x) = \sum_{k=1}^{\infty} \frac{(-1)^k}{k^4} (3x-2)^k$.
- 229. (2009 Spring Exam) Determine whether the improper integral $\int_{-1}^{1} \frac{\sin x}{x^2 \cos^2 x} dx$ converges or not. Determine whether the principal value integral P.V. $\int_{-1}^{1} \frac{\sin x}{x^2 \cos^2 x} dx$ converges or not.
- 230. (2009 Spring Exam) Prove that $\sum_{k=1}^{\infty} k \left(\frac{x^2}{1+x^3}\right)^k$ converges uniformly on $[0,+\infty)$.
- 231. (2009 Spring Exam) Determine $\lim_{n\to\infty} \frac{1^{1/n} + 2^{1/n} + \dots + n^{1/n}}{\sqrt{1} + \sqrt{2} + \dots + \sqrt{n}}$ and $\lim_{x\to 0+} \frac{\sin(x^2) x^2\cos(\sqrt{x})}{e^{x^3} 1}$.
- 232. (2009 Spring Exam) Let x_1, x_2, x_3, \ldots be a Cauchy sequence in \mathbb{R} and let

$$y_n = x_{n+1} + x_n^2 + \cos(x_n)$$
 for $n = 1, 2, 3, \dots$

Prove that y_1, y_2, y_3, \ldots is also a Cauchy sequence by checking the definition of Cauchy sequence.

- 233. (2009 Spring Exam) (a) State Lebesgue's theorem.
 - (b) Let S be a set of measure 0. Prove that $T = \{2x : x \in S\}$ is also a set of measure 0. Let $f: [0,1] \to [0,1]$ be a Riemann integrable function. Prove that $g: [0,2] \to [0,1]$ defined by g(x) = f(x/2) is Riemann integrable on [0,1].
- 234. (2009 Spring Exam) Let $f: \mathbb{R} \to \mathbb{R}$ be a 7-times differentiable function such that for all $x \in \mathbb{R}$, $f^{(7)}(x) + f(x) = 0$ and $f(0) = f'(0) = \cdots = f^{(7)}(0) = 0$. Prove that f is n-times differentiable for every integer n > 7. Prove that f(t) = 0 for all $t \in \mathbb{R}$.
- 235. (2009 Fall Exam) (a) Determine (with proof) <u>all</u> nonnegative real number b such that the series $\sum_{k=1}^{\infty} \frac{2^{k+3}}{k^2(b+1)^k}$ converges. (This means for the <u>remaining</u> nonnegative real number b, you also have to explain why the series diverges.) Show details!

- (b) Let a_1, a_2, a_3, \ldots be real numbers in the open interval (0, 1) such that $\sum_{k=1}^{\infty} a_k$ converges. Determine (with proof) whether $\sum_{k=1}^{\infty} \frac{\sin a_k}{1 a_k}$ converges or not.
- 236. (2009 Fall Exam) Let D be a nonempty bounded subset of \mathbb{R} such that $\operatorname{inf} D = 3$ and $\sup D = 5$. Let

$$A = \{xy + xy^3 : x \in (2, \pi] \cap \mathbb{Q}, y \in D\}.$$

Show that A is bounded. Determine (with proof) the infimum and supremum of A.

237. (2009 Fall Exam) Let S be the set of <u>all</u> points (x, y) in the coordinate plane that satisfy the equations

$$x^2 + y^2 = a^2$$
 and $y = x^2 - x^3 + b$

for some $a, b \in \mathbb{Q}$ with $a \neq b$. Determine (with proof) if S is countable or not.

- 238. (2009 Fall Exam) Let $x_1 = 1$ and for n = 1, 2, 3, ..., let $x_{n+1} = \frac{x_n^3 + x_n}{5}$.
 - (a) Prove that the sequence x_1, x_2, x_3, \ldots converges and find its limit.
 - (b) Prove that the series $\sum_{n=1}^{\infty} x_n$ converges.
- 239. (2009 Fall Exam) Let $x_1 = 2$ and for n = 1, 2, 3, ..., let $x_{n+1} = \frac{22}{3} + \frac{16}{3x_n}$.
 - (a) Prove that the sequence x_1, x_2, x_3, \ldots converges and find its limit.
 - (b) Prove that the series $\sum_{n=1}^{\infty} (x_n x_{n+1})$ converges and determine its sum.
- 240. (2009 Fall Exam) Let a_1, a_2, a_3, \ldots and b_1, b_2, b_3, \ldots be two sequences of real numbers such that both of them converge to 1. Prove that $\lim_{n\to\infty} \left(\frac{3a_n^2+1}{a_n^2+1}+\frac{nb_n}{n+2}\right)=3$ by checking the definition of limit of a sequence.

Do not use computation formulas, sandwich theorem or L'Hopital's rule, otherwise you will get zero mark on this problem!

241. (2009 Fall Exam) Let a_1, a_2, a_3, \ldots be a sequence of positive real numbers. For $n = 1, 2, 3, \ldots$, let

$$P_n(x) = (x+1)(x+2)\cdots(x+n)$$
 and $Q_n(x) = (x+a_1)(x+a_2)\cdots(x+a_n)$.

- (a) For every $x \in \mathbb{R}$, determine whether $\sum_{n=1}^{\infty} \frac{P_n(x)}{n!} x^n$ converges or not.
- (b) Prove that $\lim_{n\to\infty} \frac{a_n}{Q_n(1)} = 0$.
- 242. (2010 Spring Exam) Let $f:[1,3]\to\mathbb{R}$ be defined by $f(x)=\frac{1}{\sqrt[4]{x^2+6x}}$. Prove that $\lim_{x\to 2}f(x)=\frac{1}{2}$ by checking the ε - δ definition of limit of function.
- 243. (2010 Spring Exam) Let a_1, a_2, a_3, \ldots be a Cauchy sequence of real numbers. For $n = 1, 2, 3, \ldots$, let

$$b_n = \sin^2(a_n + a_{2n}).$$

Prove that b_1, b_2, b_3, \ldots is a Cauchy sequence by checking the definition of Cauchy sequence.

- 244. (2010 Spring Exam) Prove that there does not exist any continuous function $f: \mathbb{R} \to \mathbb{R}$ such that f(x) is rational if and only if f(x+1) is irrational.
- 245. (2010 Spring Exam) Let $f: \mathbb{R} \to \mathbb{R}$ be twice differentiable and for all $x \in [0, 1], |f''(x)| \le 2010$. If there exists $c \in (0, 1)$ such that f(c) > f(0) and f(c) > f(1), then prove that

$$|f'(0)| + |f'(1)| \le 2010.$$

- 246. (2010 Spring Exam) Determine the domain (of convergence) of $f(x) = \sum_{k=1}^{\infty} \frac{1}{k\sqrt{k}} (2x-1)^k$.
- 247. (2010 Spring Exam) Determine whether the improper integral $\int_{-1}^{1} \frac{\cos x}{x(x^2+1)} dx$ converges or not. Determine whether the principal value integral P.V. $\int_{-1}^{1} \frac{\cos x}{x(x^2+1)} dx$ converges or not.
- 248. (2010 Spring Exam) Let a_1, a_2, a_3, \ldots and b_1, b_2, b_3, \ldots be Cauchy sequences in $[0, +\infty)$ and let

$$c_n = a_n^2 + \sqrt{b_n} + \sin(a_n + b_n)$$
 for $n = 1, 2, 3, ...$

Prove that c_1, c_2, c_3, \ldots is also a Cauchy sequence by checking the definition of Cauchy sequence.

- 249. (2010 Spring Exam) (a) State Lebesgue's theorem.
 - (b) Let $f:[0,1]\to [0,1]$ be a Riemann integrable function. Let r_1,r_2,r_3,\ldots be a strictly increasing sequence in (0,1]. Prove that $g:[0,1]\to [0,1]$ defined by

$$g(x) = \begin{cases} 1 - f(x) & \text{if } x \notin \{r_1, r_2, r_3, \ldots\} \\ \cos x & \text{if } x \in \{r_1, r_2, r_3, \ldots\} \end{cases}$$

is Riemann integrable on [0,1].

250. (2010 Spring Exam) Let $f:(-1,1)\to\mathbb{R}$ be four times differentiable such that for all $c\in(-1,1)$, $|f^{(4)}(c)|\leq 1$. Prove that for all $x\in(0,1)$, we have

$$\left| f''(0) - \frac{f(x) - 2f(0) + f(-x)}{x^2} \right| \le \frac{x^2}{12}.$$

- 251. (2010 Spring Exam) For n = 1, 2, 3, ..., let $x_n = \sum_{k=n+1}^{\infty} \frac{1}{k^2}$. Prove that $\lim_{n \to \infty} nx_n = 1$.
- 252. (2010 Fall Exam) Let A be a nonempty bounded subset of \mathbb{R} such that $\inf A = 1$ and $\sup A = 3$. Let

$$B = \{ \sqrt{2x(15 + xy)} : x \in (2, 4) \cap \mathbb{Q}, y \in A \}.$$

Prove that B is bounded. Determine (with proof) the infimum and supremum of B.

253. (2010 Fall Exam) Prove the sequence $\{x_n\}$ converges, where

$$x_1 = 5$$
 and $x_{n+1} = \frac{7}{x_n + 5}$,

and find its limit.

- 254. (2010 Fall Exam) Do either (a) or (b) below:
 - (a) Determine (with proof) all positive irrational numbers b such that

$$\sum_{k=1}^{\infty} \frac{\cos(k-3b)}{(2k-b)((\ln k)^2+1)}$$

converges.

(b) Determine (with proof) whether the set

$$S = \left\{ b : b \in (0, +\infty) \setminus \mathbb{Q} \text{ and } \sum_{k=1}^{\infty} \frac{\cos(k-3b)}{(2k-b)((\ln k)^2 + 1)} \text{ converges} \right\}$$

is countable or not.

- 255. (2010 Fall Exam) Let $x_1 = \frac{1}{4}$ and for n = 1, 2, 3, ..., let $x_{n+1} = \frac{\sqrt{x_n} + 3x_n}{4}$
 - (a) Prove that the sequence x_1, x_2, x_3, \ldots converges and find its limit.
 - (b) Determine (with proof) the supremum of $A = \left\{ \sqrt{x_n \frac{1}{4n}} : n = 1, 2, 3, \ldots \right\}$.
- 256. (2010 Fall Exam) Let a_1, a_2, a_3, \ldots be a sequence of real numbers that converges to 1. Prove that $\lim_{n \to \infty} \left(\frac{3 + a_n^2}{a_n + 1} + \frac{2n}{4 + n} \right) = 4$ by checking the definition of limit of a sequence. Do not use computation formulas, sandwich theorem or L'Hopital's rule, otherwise you will get zero mark on this problem!
- 257. (2010 Fall Exam) (a) Let S be the set of all intersection points (x, y) that lie on the graphs of at least one pair of equations $y = x^3 + mx + n$ and $mx^2 ny^2 = 1$, where $m, n \in \mathbb{Q}$. Determine (with proof) whether S is a countable set or not.
 - (b) Prove that there exist infinitely many positive real numbers that are not equal to any number of the form $a + b(2^c \pi^d)$, where $a, b \in \mathbb{Q} \cap (0, +\infty)$ and $c, d \in \mathbb{Q} \cap [0, +\infty)$.
- 258. (2011 Spring Exam) Let $f:[0,+\infty)\to\mathbb{R}$ be defined by $f(x)=\sin^2\left(\frac{1}{1+\sqrt[4]{x}}\right)$. Prove that $\lim_{x\to 1}f(x)=\sin^2\frac{1}{2}$ by checking the ε - δ definition of limit of function.
- 259. (2011 Spring Exam) Let A_1, A_2, A_3, \ldots be a Cauchy sequence of decreasing <u>positive</u> real numbers. For $n = 1, 2, 3, \ldots$, let B_n be a real number such that

$$\sqrt{A_{n+2011}} \le B_n \le \sqrt{A_n}.$$

Prove that B_1, B_2, B_3, \ldots is a Cauchy sequence by checking the definition of Cauchy sequence.

- 260. (2011 Spring Exam) Let $f: \mathbb{R} \to \mathbb{R}$ be twice differentiable on \mathbb{R} . If f(0) = f(1) = 0 and $\max\{f(x) : x \in [0,1]\} = 2$, then prove that there exists $\theta \in (0,1)$ such that $f''(\theta) \leq -16$.
- 261. (2011 Spring Exam) Let $f: \mathbb{R} \to \mathbb{R}$ be continuous and decreasing. Prove that there exists a unique element $(a, b, c) \in \mathbb{R}^3 = \mathbb{R} \times \mathbb{R} \times \mathbb{R}$ such that

$$a = f(b), \quad b = f(c) \quad \text{and} \quad c = f(a).$$

262. (2011 Spring Exam) Determine the domain (of convergence) of $f(x) = \sum_{k=1}^{\infty} \frac{(-1)^k}{k} (x-3)^{k+2}$.

- 263. (2011 Spring Exam) Determine whether the improper integral $\int_{-1}^{1} \frac{\tan x}{x^2} dx$ converges or not. Determine whether the principal value integral P.V. $\int_{-1}^{1} \frac{|\tan x|}{x^2} dx$ converges or not.
- 264. (2011 Spring Exam) Determine (with proof) if $\sum_{k=1}^{\infty} \sqrt{k} \left(\frac{x}{e^{kx}} \right)$ converges uniformly on $[2, +\infty)$.
- 265. (2011 Spring Exam) Let a_1, a_2, a_3, \ldots and b_1, b_2, b_3, \ldots be Cauchy sequences in $[0, +\infty)$. Let

$$c_n = \sqrt{a_n + b_n} + \frac{a_n^2}{n}$$
 for $n = 1, 2, 3, \dots$

Prove that c_1, c_2, c_3, \ldots is also a Cauchy sequence by checking the definition of Cauchy sequence.

266. (2011 Spring Exam) Let $f:[0,1] \to [0,1]$ be a Riemann integrable function. Prove that $F:[0,2] \to [0,1]$ defined by

$$F(x) = \begin{cases} |f(x) - 1| & \text{if } x \in [0, 1) \\ f(x - 1) & \text{if } x \in [1, 2] \end{cases}$$

is Riemann integrable on [0, 2].

267. (2011 Spring Exam) Let $g:[1,2] \to [0,1]$ be a Riemann integrable function. Prove that $G:[0,1] \to [0,1]$ defined by

$$G(x) = \begin{cases} g(x+1) & \text{if } x \in [0,1] \setminus \{1, \frac{1}{2}, \frac{1}{3}, \dots\} \\ 1 & \text{if } x \in \{1, \frac{1}{2}, \frac{1}{3}, \dots\} \end{cases}$$

is Riemann integrable on [0,1] by checking the integral criterion.

268. (2011 Fall Exam) Prove the sequence $\{x_n\}$ converges, where

$$x_1 = 27$$
 and $x_{n+1} = 8 - \sqrt{28 - x_n}$ for $n = 1, 2, 3, \dots$

and find its limit.

269. (2011 Fall Exam) Suppose A and B are two nonempty bounded subsets of \mathbb{R} such that inf A=1, sup A=5, inf B=0 and sup B=1. Let

$$C = \Big\{ \frac{y}{3-x} - \frac{1}{y}: \ x \in B, \ y \in A \Big\}.$$

Prove that C is bounded. Determine (with proof) the infimum and supremum of C.

270. (2011 Fall Exam) (a) Give an example of <u>real numbers</u> c_1, c_2, c_3, \ldots such that

$$\sum_{k=1}^{\infty} c_k$$
 converges, but $\sum_{k=1}^{\infty} (-1)^k c_k$ diverges.

Be sure to explain the convergence and divergence of these series.

(b) Let $0 < a_k < 1$ for $k = 1, 2, 3, \ldots$ Suppose $\sum_{k=1}^{\infty} a_k$ converges. Determine (with proof) at least one real number b such that

$$\sum_{k=1}^{\infty} \frac{b - \cos a_k}{\sin a_k}$$
 converges.

Determine (with proof) all such real number b.

- 271. (2011 Fall Exam) Let $x_1 = 0$, $x_2 = 3$ and for n = 1, 2, 3, ..., let $x_{n+2} = \sqrt{\frac{4}{9}x_{n+1}^2 + \frac{5}{9}x_n^2}$.
 - (a) Prove that the sequence x_1, x_2, x_3, \ldots converges.
 - (b) Determine (with proof) the limit of the sequence x_1, x_2, x_3, \ldots
- 272. (2011 Fall Exam) Let a_1, a_2, a_3, \ldots be a sequence of real numbers that converges to 3. Prove that

$$\lim_{n \to \infty} \left(\frac{a_n}{a_n^2 + 3} + \frac{3n^2}{1 + 4n^2} + \frac{a_n}{n} \right) = 1$$

by checking the definition of limit of a sequence.

- 273. (2011 Fall Exam) Prove that there exist infinitely many positive irrational numbers that are <u>not</u> equal to any number of the form $\frac{a\sqrt{2}+b}{c+d\pi}$, where $a,b,c,d\in\mathbb{Q}\cap(0,+\infty)$.
 - (b) Let $f: \mathbb{R} \to \mathbb{Q}$ be a function. Prove that there exists an uncountable subset S of \mathbb{R} such that for all $x, y \in S$, we have f(x) = f(y).
- 274. (2012 Spring Exam) Let $f:[0,+\infty)\to\mathbb{R}$ be defined by $f(x)=\sqrt{\frac{1}{2+\sqrt{x}}}$. Prove that $\lim_{x\to 4}f(x)=\frac{1}{2}$ by checking the ε - δ definition of limit of function.
- 275. (2012 Spring Exam) Let a_1, a_2, a_3, \ldots be a Cauchy sequence of real numbers. For $n = 1, 2, 3, \ldots$, let $b_n = a_n \sin a_n$. Prove that b_1, b_2, b_3, \ldots is a Cauchy sequence by checking the definition of Cauchy sequence.
- 276. (2012 Spring Exam) Let $f:[0,2] \to \mathbb{R}$ be continuous and f(2)=0. If $\lim_{x\to 1} \frac{f(x)-2}{\sqrt{x}-1}=1$, then prove that there exists $x\in[0,2]$ such that $f(x)=x^2$.
- 277. (2012 Spring Exam) Let $f: \mathbb{R} \to \mathbb{R}$ be three-times differentiable on \mathbb{R} . If $\frac{f(0) + f(2)}{2} = f(1)$, then prove that there exist $a, b, c \in \mathbb{R}$ such that

$$f'''(a) - f'''(b) = 6f''(c).$$

- 278. (2012 Spring Exam) Determine whether the improper integral $\int_{-1}^{1} \frac{\sin x}{\sin(x^2)} dx$ converges or not. Determine whether the principal value integral P.V. $\int_{-1}^{1} \frac{\sin x}{\sin(x^2)} dx$ converges or not.
- 279. (2012 Spring Exam) Let a_1, a_2, a_3, \ldots be a Cauchy sequence in $[0, +\infty)$ and let

$$c_n = \sin(a_n^2 + \sqrt{a_n})$$
 for $n = 1, 2, 3, \dots$

Prove that c_1, c_2, c_3, \ldots is also a Cauchy sequence by checking the definition of Cauchy sequence.

280. (2012 Spring Exam) Let $f: \mathbb{R} \to \mathbb{R}$ be three-time differentiable. If

$$f(0) = 5$$
, $f(2) = 7$ and for all $x \in [0, 2]$, $|f'''(x)| \le 6$,

then prove that $|f'(1)| \leq 2$.

281. (2012 Spring Exam) Let $f:[0,1] \to [0,1]$ be a Riemann integrable function. Let $g:[0,1] \to [0,1]$ be an increasing function. Define $h:[0,1] \to [0,1]$ by

$$h(x) = \begin{cases} f(x) & \text{if } x \notin \{1, \frac{1}{2}, \frac{1}{3}, \dots\} \cup \left[\frac{2}{3}, \frac{3}{4}\right], \\ g(x) & \text{if } x \in \{1, \frac{1}{2}, \frac{1}{3}, \dots\} \cup \left[\frac{2}{3}, \frac{3}{4}\right]. \end{cases}$$

- (a) Use Lebesgue's theorem to prove h(x) is Riemann integrable on [0,1].
- (b) Use the integral criterion to prove h(x) is Riemann integrable on [0,1].
- 282. (2012 Fall Exam) Let S be the set of all points $(x,y) \in \mathbb{R}^2$ that satisfy the system of equations

$$x + y = mx^2 - x^3$$
 and $mx + y^4 = x^6 - 7mx^3 + 2$

for some $m \in \mathbb{Q}$. Determine (with proof) if S is countable or not.

- 283. (2012 Fall Exam) Determine (with proof) <u>all</u> positive real number b such that the series $\sum_{k=1}^{\infty} \frac{2^{k+3}}{\sqrt{k}(\sqrt{b}+1)^k}$ converges. Be sure to prove you have gotten all such b.
- 284. (2012 Fall Exam) Let S be a nonempty countable subset of \mathbb{R} . Prove that there exists a positive real number r such that the equation $5^x + 7^y = \sqrt{r}$ does not have any solution with $x, y \in S$.
- 285. (2012 Fall Exam) If $x_1 = -2$ and $x_{n+1} = \sqrt{6 + x_n}$ for $n = 1, 2, 3, \ldots$, then prove that x_1, x_2, x_3, \ldots converges and find its limit.
 - (b) (14 marks) If $y_1 = 0$ and $y_{n+1} = \frac{2}{2 + y_n}$ for $n = 1, 2, 3, \ldots$, then prove that y_1, y_2, y_3, \ldots converges and find its limit.
- 286. (2012 Fall Exam) (a) Let D be a nonempty subset of \mathbb{R} with D = 1 and D = 5. Determine (with proof) the supremum of the set

$$E = \left\{ x(y + \sqrt{2}) - \frac{1}{x} : x \in D, y \in [0, \sqrt{2}) \cap \mathbb{Q} \right\}.$$

- (b) Let A, B, C be nonempty subsets of \mathbb{R} such that $A \subseteq B \subseteq C$. Suppose C is bounded above in \mathbb{R} . If $\sup A = w = \sup C$, then prove that $\sup B = w$.
- 287. (2012 Fall Exam) Let b_1, b_2, b_3, \ldots be a sequence of positive real numbers with $\lim_{n\to\infty} b_n = 2$. Prove that

$$\lim_{n\to\infty} \left(\frac{4n-1}{n+3} - \frac{2}{b_n} + \frac{b_n}{n}\right) = 3$$

by checking the definition of limit of a sequence only.

288. (2013 Spring Exam) Let a_1, a_2, a_3, \ldots be a Cauchy sequence of <u>positive</u> real numbers. For $n = 1, 2, 3, \ldots$, let $b_n = \sqrt{\frac{a_n}{a_n + 3} + 5}$. Prove that b_1, b_2, b_3, \ldots is a Cauchy sequence by checking the definition of Cauchy sequence.

- 289. (2013 Spring Exam) Let $f:[0,+\infty)\to\mathbb{R}$ be defined by $f(x)=\frac{x}{1+2x}+\frac{2}{2+\sqrt{x}}$. Prove that $\lim_{x\to 1}f(x)=1$ by checking the ε - δ definition of limit of function.
- 290. (2013 Spring Exam) Let $f: \mathbb{R} \to \mathbb{R}$ be twice differentiable. If f'(0) = 2 = f'(1) and for all $x \in [0, 1]$, $|f''(x)| \le 4$, then prove that $|f(1) f(0)| \le 3$.
- 291. (2013 Spring Exam) Let $f: \mathbb{R} \to \mathbb{R}$ be differentiable such that for all $x \in \mathbb{R}$,

$$f(1-f(x)) = 1-x^9.$$

If f(1) = 0 and f'(1) < 0, then prove that there exists $r \in \mathbb{R}$ such that $f(r) = r^{2013}$.

- 292. (2013 Spring Exam) Determine the domain (of convergence) of $f(x) = \sum_{k=3}^{\infty} \frac{\ln k}{\ln(k+1)} (2x-1)^k$.
- 293. (2013 Spring Exam) Determine whether the principal value integral P.V. $\int_{-1}^{1} \frac{\cos x}{(x \sin x)^{1/4}} dx$ converges or not.
- 294. (2013 Spring Exam) Let x_1, x_2, x_3, \ldots be a Cauchy sequence in $(0, +\infty)$ and let

$$y_n = e^{-x_n} + \left(\frac{x_n}{n}\right)^2$$
 for $n = 1, 2, 3, \dots$

Prove that $y_1, y_2, y_3, ...$ is also a Cauchy sequence by checking the definition of Cauchy sequence. (Do not use the theorem that asserts a sequence is a Cauchy sequence if and only if it converges. Otherwise you will get 0 mark for this problem!)

- 295. (2013 Spring Exam) Let $f:[0,1] \to [0,1]$ be a function that is continuous at all $x \in [0,1] \setminus \mathbb{Q}$. Let $g:[0,1] \to [0,1]$ be defined by $g(x) = f(x)f\left(\frac{x}{\sqrt{2}}\right)$ for all $x \in [0,1]$. Prove that g(x) is Riemann integrable on [0,1] by Lebesgue's theorem.
- 296. (2013 Spring Exam) Let the sequence a_1, a_2, a_3, \ldots converge to $\sqrt{3}$, where all $a_n \in \mathbb{R}$. Define

$$b_n = \frac{1}{n^2} \sum_{k=1}^{n} (n+1-k)a_k$$
 for $n = 1, 2, 3, \dots$

Prove that the sequence b_1, b_2, b_3, \ldots converges and find its limit.

297. (2013 Spring Exam) Let $h:[0,2] \to [0,1]$ be Riemann integrable. Define $p:[0,2] \to [0,2]$ by

$$p(x) = \begin{cases} 1 & \text{if } x \in \left\{ \frac{n}{n+1} : n = 1, 2, 3, \dots \right\} \\ h(x) + 1 & \text{if } x \in [0, 2] \setminus \left\{ \frac{n}{n+1} : n = 1, 2, 3, \dots \right\} \end{cases}$$

Prove that p(x) is Riemann integrable on [0,2] using the integral criterion.

- 298. (2014 Exam) Prove that there exist infinitely many real numbers r such that the equation $10^{xy} + r y^3 = xy$ does not have any solution with $x, y \in \mathbb{Q}$.
- 299. (2014 Exam) Let A be a nonempty bounded subset of \mathbb{R} such that inf A=0 and $\sup A=3$. Let

$$B = \{x + 2^{xy} + y : x \in [1, 2] \setminus \mathbb{Q}, y \in A\}.$$

Prove that B is bounded. Determine (with proof) the infimum and supremum of B.

300. (2014 Exam) Prove that the sequence $\{x_n\}$ converges, where

$$x_1 = 11$$
 and for $n = 1, 2, 3, ..., x_{n+1} = \frac{18}{x_n + 7}$

and find its limit. Show all details.

301. (2014 Exam) Prove that

$$\lim_{n \to \infty} \left(\frac{6n^2 + n - 3}{1 + 2n^2} + \frac{n + 5\sqrt{n} + \sqrt[3]{n}}{6 + n} \right) = 4$$

by checking the definition of limit of a sequence only.

- 302. (2014 Exam) Let $J: \mathbb{R} \to \mathbb{R}$ be defined by $J(x) = \sin\left(\frac{x-1}{|x|+2}\right) + \frac{3-x}{x^2+3}$. Prove that $\lim_{x\to 1} J(x) = \frac{1}{2}$ by checking the ε - δ definition of limit of function.
- 303. (2014 Exam) (a) Give the name of a theorem that was taught in class that you would use to solve part (c) of this problem.
 - (b) Describe the theorem you named in part (a) and state the reason(s) you want to use it for solving part (c).
 - (c) Let $f: \mathbb{R} \to \mathbb{R}$ be twice differentiable. For every $x \in [1,3]$, |f''(x)| > 1. If f(1) = 0 = f(3), then prove that there exists at least one $w \in [1,3]$ such that $|f(w)| \ge \frac{1}{2}$.
- 304. (2014 Exam) Let a_1, a_2, a_3, \ldots be a sequence of real numbers such that a_1, a_3, a_5, \ldots is a Cauchy sequence and for $j = 1, 2, 3, \ldots, a_{2j} = a_{2j-1} + \frac{1}{j}$. Prove that a_1, a_2, a_3, \ldots is a Cauchy sequence by checking the definition of Cauchy sequence.
- 305. (2014 Exam) Let $g: \mathbb{R} \to \mathbb{R}$ be three times differentiable such that

$$g(0) > 0$$
, $g'(0) < 0$ and $g''(0) = 0$.

If for all x > 0, g'''(x) < 0, then prove that there exists some $r \in (0, +\infty)$ such that g(r) = 0.

- 306. (2014 Exam) Let $F: \mathbb{R} \to \mathbb{R}$ be a continuous function such that for all $x \in \mathbb{R}$, 3F(F(x)) = F(x) + x. Prove that F(0) = 0.
- 307. (2014 Exam) Let $p:[1/2,1] \to [0,1]$ be Riemann integrable such that p(1/2) = p(1) = 0. Define $h:[0,1] \to [-1,1]$ as follows: h(0) = h(1) = 0 and

for all
$$n = 0, 1, 2, \ldots$$
 and $x \in [1/2^{n+1}, 1/2^n), h(x) = (-1)^n p(2^n x).$

Prove that h is Riemann integrable on [0,1] by Lebesgue's theorem.

308. (2015 Exam) Let A be a nonempty bounded subset of \mathbb{R} such that $\inf A = 1$ and $\sup A = 2$. Let

$$B = \left\{ \sqrt{y} \cos x : x \in \left(0, \frac{\pi}{3}\right] \cap \mathbb{Q}, \ y \in A \right\}.$$

Prove that B is bounded. Determine (with proof) the infimum and supremum of B.

309. (2015 Exam) (a) Prove that the sequence $\{w_n\}$ converges, where

$$w_1 = 6$$
 and for $n = 1, 2, 3, ..., w_{n+1} = 6 - \frac{9}{w_n}$

and find its limit.

(b) Prove that the sequence $\{x_n\}$ converges, where

$$x_1 = 60$$
 and for $n = 1, 2, 3, ..., x_{n+1} = 8 + \frac{120}{x_n}$

and find its limit.

310. (2015 Exam) Let y_1, y_2, y_3, \ldots and z_1, z_2, z_3, \ldots be sequences of real numbers such that both converge to 4. Prove that

$$\lim_{n\to\infty}\Bigl(\frac{9}{z_n^2+2}+\frac{5}{y_n-2}\Bigr)=3$$

by checking the definition of limit of a sequence only.

- 311. (2015 Exam) Prove that there exist infinitely many positive real numbers r such that the equation $2^x r^3 = \pi^y$ does not have any solution with $x, y \in \mathbb{Q}$.
- 312. (2015 Exam) Let x_1, x_2, x_3, \ldots be a Cauchy sequence of real numbers in $[1, +\infty)$. For every positive integer n, let $y_n = x_{2n} \frac{x_n}{x_n + 1}$. Prove that y_1, y_2, y_3, \ldots is a Cauchy sequence by checking the definition of Cauchy sequence.
- 313. (2015 Exam) Let $f: \mathbb{R} \to (0, +\infty)$ be a function such that $\lim_{x \to 1} f(x) = 1$. Prove that

$$\lim_{x \to 1} \sin\left(\frac{5\pi}{4}\sqrt[3]{2f(x) + 6}\right) = 1$$

by checking the ε - δ definition of limit of function.

- 314. (2015 Exam) Let $f:[0,1] \to [0,1]$ be continuous and injective with f(0) < f(1). Determine how many solution(s) the equation $\frac{1-f(x)}{1+f(x)} = \frac{x^2}{2-x^2}$ has and prove your answer is correct.
- 315. (2015 Exam) Let $f: \mathbb{R} \to \mathbb{R}$ be n-time differentiable for n = 1, 2, 3. If f(2) = 4, f(1) = 2 and f''(0) = 1, then prove that there exist $a, b, c \in [0, 2]$ such that

$$8f'''(a) - 3f''(b) + 6f'(c) = 0.$$

316. (2015 Exam) Let $f:[0,1] \to [0,1]$ be an increasing function. Define $g:[0,1] \to [0,1]$ by

$$g(x) = \begin{cases} f(2x) & \text{if } x \in [0, 1/2) \\ 1 - f(2x - 1) & \text{if } x \in [1/2, 1] \end{cases}.$$

Prove that q is Riemann integrable on [0,1] by checking the integral criterion.