

On Buffer Centering for Bittide Synchronization

Sanjay Lall, Google Research and Stanford University

Călin Caşcaval, Martin Izzard, and Tammo Spalink, Google Research

1

Overview

- Google research project
 - originated at Princeton: Spalink 2006.
 - broad scope: applications, scheduling, simulation, hardware, theory
- paper
 - problem formulation
 - model well-posedness
 - simulation algorithm
- outline: the mechanism, logical synchrony, controlling frequency

Overview

- at each node *i*
 - clock
 - each incoming link has a queue called the *elastic buffer*

- at each node, with each clock tick
 - a frame is removed from all elastic buffers
 - a frame is sent on all outgoing links

Mechanism

- ullet if oscillator at node j is faster than that at i
 - j's elastic buffer will drain
 - i's elastic buffer will fill
- nodes observe elastic buffers, adjust frequency

Logical Synchrony

- \bullet marked frames from nodes 1 and 3 always arrive simultaneously at node 2
- an example of *logical synchrony*
- does not require clocks to be synchronized

Abstract frame model

Modeling frames and phase

$$eta_{i imes j}(t) = \lfloor heta_i(t - l_{i imes j})
floor - \lfloor heta_j(t)
floor + \lambda_{i imes j}$$

- \bullet history of clock phases θ determines location of every frame
- ullet $\lambda_{i ilde{r}j}$ is a constant, determined by clock offsets at boot
- buffer occupancy is (roughly) phase difference between clocks at each end of the link

Control loop

$$egin{aligned} rac{d heta_i}{dt} &= \omega_i \ \omega_i &= c_i + \omega_i^{ extsf{u}} \end{aligned}$$

$$eta_{i o j}(t) = \lfloor heta_i(t - l_{i o j})
floor - \lfloor heta_j(t)
floor + \lambda_{i o j} \ r_i = \sum_{j \mid j \sim i} (eta_{j o i} - eta^{ ext{off}})$$

$$c_i = k_P r_i$$

 ω_i^u is uncorrected frequency, unknown c_i is frequency correction

 $eta_{j imes i}$ is buffer occupancy

 r_i is sum of buffer occupancies relative to offset

proportional controller law

Control

Control objectives

- frequencies cannot remain different for too long, otherwise buffers will over/underflow
- bittide performance requirement: maintain buffer occupancy within limits
- ideally buffer occupancies should be small, and frequencies large
- controller must be decentralized
- no *in-band* signalling
- failure handling, addition and removal of nodes, boot, etc.,

Proportional control

- $k_P = 0.01$
- latency = 1.0
- $poll_period = 10$
- uncorrected_frequency = (1.1, 1.4, 2.0)
- $control_delay = 2$
- varying step width is a consequence of periodic sampling w.r.t. the local clock

Example: Proportional control

- frequency correction is proportional to sum of relative buffer offsets
- equilibrium buffer offsets nonzero

Proportional-integral control

• ensures small steady state relative buffer occupancy

Reset control

• first, apply proportional control

$$c_i = k_P \sum_{j
ightarrow i} oldsymbol{eta}_{i imes j}^{\mathsf{rel}}$$

- ullet this converges $c_i(t)
 ightarrow c_i^{
 m ss}$
- ullet at large time T change to proportional-plus-offset

$$c_i = c_i^{\mathsf{ss}} + k_P \sum_{j
ightarrow i} oldsymbol{eta}_{i * j}^{\mathsf{rel}}$$

- immediately after the switch, nodes are at the wrong frequency
- ullet system is stable, so will return to equilibrium, which happens when $c_i=c_i^{
 m ss}$
- paper shows that for irreducible graphs with a linear model

$$\sum_{j \to i} \beta_{i \to j}^{\mathsf{rel}} \to 0$$

as reframing time T and t become large

Reset

- controller shutdown at time $t \approx 4e9$
- at time $t \approx 6e9$, turn on the controller with new offset

Soft reset

• first, apply proportional control

$$c_i = k_P \sum_{j
ightarrow i} oldsymbol{eta}_{i ext{+} j}^{\mathsf{rel}}$$

- this converges $c_i(t) o c_i^{\mathsf{ss}}$
- now *slowly* change to proportional-plus-offset

$$c_i = f(t) c_i^{\mathsf{ss}} + k_P \sum_{j
ightarrow i} oldsymbol{eta}_{i ext{ iny } j}^{\mathsf{rel}}$$

where f(t) slowly changes from 0 to 1 over some interval

Example: soft reset

- ullet controller shutdown at time $t \approx 4e9$
- ullet soft reset over approximate interval [6e9, 1e10]

Summary

- soft reset
 - $\bullet \ \ use \ P \ control \ initially$
 - shutdown after convergence
 - turn on P control plus offset
- retains stability, keeps buffers at (or near) midpoint
- does not require integral control, spanning tree or global coordination

Thank you!