How effective can simple ordinal peer grading be?

Ioannis Caragiannis George Krimpas **Alexandros Voudouris**

University of Patras

EC 2016

Motivation: verified certificates in MOOCs

The challenge

- The verified certificate should contain reliable information
- How can we evaluate the performance of this huge number of students in an examination?
- Easy solution: use closed type questions (like multiple choice) that can be evaluated automatically
- But ... there are courses where students must be examined using open type assignments (e.g., solve a math exercise, or write an essay)
- Grading is a typical example of a human computation task in such cases
- Limited and costly qualified human resources

Overcoming the problem

Peer assessments

In many courses, the most meaningful assignments cannot be easily graded by a computer. That's why we use peer assessments, where learners can evaluate and provide feedback on each other's work. This technique has been shown in many studies to result in accurate feedback for the learner and a valuable learning experience for the grader.

Peer grading

Each student grades a small number of exam papers submitted by other students

Variations

- Cardinal peer grading
 - use numerical scores as grades
 - [Piech et al. 2013, Shah et al. 2013, Walsh 2014]

- Ordinal peer grading (this work)
 - simply order the exam papers they are given
 - [Raman and Joachims 2014, Caragiannis et al. 2015]

students (that participated)
Sheldon
Leonard
Penny
Howard
Raj
Bernadette
Amy

- Each student gets a bundle of *k* exam papers of other students
- Every exam paper belongs in exactly *k* bundles

students (that participated)	b
Sheldon	Pen
Leonard	Sheldo
Penny	Leo
Howard	Penr
Raj	Leonard
Bernadette	Sheld
Amy	She

bundles (to be graded)		
Penny, Howard, Amy		
Sheldon, Bernadette, Amy		
Leonard, Raj, Amy		
Penny, Raj, Bernadette		
Leonard, Howard, Bernadette		
Sheldon, Leonard, Penny		
Sheldon, Howard, Raj		

- Each student gets a bundle of k exam papers of other students
- Every exam paper belongs in exactly k bundles

- Each student gets a bundle of *k* exam papers of other students
- Every exam paper belongs in exactly *k* bundles

students (that participated)	
Sheldon	
Leonard	
Penny	
Howard	
Raj	
Bernadette	
Amy	

bundles (to be graded)		
F	Penny, Howard, Amy	
Sheldon, Bernadette, Amy		
Leonard, Raj, Amy		
Penny, Raj, Bernadette		
Leonard, Howard, Bernadette		
Sheldon, Leonard, Penny		
5	Sheldon, Howard, Raj	

- Each student gets a bundle of k exam papers of other students
- Every exam paper belongs in exactly *k* bundles
- Each student orders her bundle and produces a partial ranking

students (that participated)	
Sheldon	
Leonard	
Penny	
Howard	
Raj	
Bernadette	
Amy	

bundles (to be graded)	
Penny, Howard, Amy	
Sheldon, Bernadette, Amy	
Leonard, Raj, Amy	
Penny, Raj, Bernadette	
Leonard, Howard, Bernadette	
Sheldon, Leonard, Penny	
Sheldon, Howard, Raj	

partial rankings (outcome of grading)
Penny ≻ Howard ≻ Amy
Sheldon ≻ Bernadette ≻ Amy
Leonard ≻ Raj ≻ Amy
Penny ≻ Bernadette ≻ Raj
Leonard ≻ Bernadette ≻ Howard
Penny ≻ Sheldon ≻ Leonard
Sheldon ≻ Howard ≻ Raj

- Each student gets a bundle of k exam papers of other students
- Every exam paper belongs in exactly k bundles
- Each student orders her bundle and produces a partial ranking

students (that participated)	
Sheldon	
Leonard	
Penny	
Howard	
Raj	
Bernadette	
Amy	

bundles (to be graded)	
Penny, Howard, Amy	
Sheldon, Bernadette, Amy	
Leonard, Raj, Amy	
Penny, Raj, Bernadette	
Leonard, Howard, Bernadette	
Sheldon, Leonard, Penny	
Sheldon, Howard, Raj	

Goals

- Question: How can we aggregate the partial rankings into a ranking of all students?
- Simplicity: Simple aggregation methods, like scoring rules (e.g. Borda)
- Efficiency:
 - Assume that there is an underline true ranking (ground truth)
 - How close is the final ranking to the ground truth?
 - Measure: fraction of correctly recovered pairwise relations

- Every exam paper has a type
 - vector of ranks it gets in the partial rankings it appears in

- Every exam paper has a type
 - vector of ranks it gets in the partial rankings it appears in

students	partial rankings	type
Sheldon	Penny ≻ Howard ≻ Amy	
Leonard	Sheldon ≻ Bernadette ≻ Amy	
Penny	Leonard ≻ Raj ≻ Amy	
Howard	Penny ≻ Bernadette ≻ Raj	
Raj	Leonard ≻ Bernadette ≻ Howard	
Bernadette	Penny ≻ Sheldon ≻ Leonard	
Amy	Sheldon ≻ Howard ≻ Raj	

- Every exam paper has a type
 - vector of ranks it gets in the partial rankings it appears in

students	partial rankings	type
Sheldon	Penny ≻ Howard ≻ Amy	
Leonard	Sheldon ≻ Bernadette ≻ Amy	
Penny	Leonard ≻ Raj ≻ Amy	
Howard	Penny ≻ Bernadette ≻ Raj	
Raj	Leonard ≻ Bernadette ≻ Howard	
Bernadette	Penny > Sheldon > Leonard	
Amy	Sheldon ➤ Howard ➤ Raj	

- Every exam paper has a type
 - vector of ranks it gets in the partial rankings it appears in

students	partial rankings	type
Sheldon	Penny > Howard > Amy	(1, 1, 2)
Leonard	Sheldon ≻ Bernadette ≻ Amy	
Penny	Leonard ≻ Raj ≻ Amy	
Howard	Penny ≻ Bernadette ≻ Raj	
Raj	Leonard > Bernadette > Howard	
Bernadette	Penny > Sheldon > Leonard	
Amy	Sheldon > Howard > Raj	

- Every exam paper has a type
 - vector of ranks it gets in the partial rankings it appears in

students	partial rankings	type
Sheldon	Penny ≻ Howard ≻ Amy	(1, 1, 2)
Leonard	Sheldon ≻ Bernadette ≻ Amy	(1, 1, 3)
Penny	Leonard ≻ Raj ≻ Amy	(1, 1, 1)
Howard	Penny ≻ Bernadette ≻ Raj	(2, 2, 3)
Raj	Leonard ≻ Bernadette ≻ Howard	(2, 3, 3)
Bernadette	Penny ≻ Sheldon ≻ Leonard	(2, 2, 2)
Amy	Sheldon ≻ Howard ≻ Raj	(3, 3, 3)

Consider an ordering of all possible types

Consider an ordering of all possible types

types

(1, 1, 1)

(1, 1, 2)

(1, 1, 3)

(1, 2, 2)

(1, 2, 3)

(2, 2, 2)

(2, 2, 3)

(2, 3, 3)

(3, 3, 3)

Consider an ordering of all possible types

ordering

(1, 1, 1)

(1, 1, 2)

(1, 2, 2)

(1, 1, 3)

(2, 2, 2)

(1, 2, 3)

(2, 2, 3)

(2, 3, 3)

(3, 3, 3)

Consider an ordering of all possible types

ordering

(1, 1, 1)

(1, 1, 2)

(1, 2, 2)

(1, 1, 3)

(2, 2, 2)

(1, 2, 3)

(2, 2, 3)

(2, 3, 3)

(3, 3, 3)

Borda

- In each partial ranking, the first exam paper gets k points, the second get k-1 points, and so on
- The exam papers are sorted in descending order w.r.t. their total points

- Consider an ordering of all possible types
- Order the exam papers according to that type-ordering

ordering	students	type	ranking	
(1, 1, 1)	Sheldon	(1, 1, 2)	1 st	
(1, 1, 2)	Leonard	(1, 1, 3)	2 nd	
(1, 2, 2)	Penny	(1, 1, 1)	3 rd	
(1, 1, 3)	Howard	(2, 2, 3)	4 th	
(2, 2, 2)	Raj	(2, 3, 3)	5 th	
(1, 2, 3)	Bernadette	(2, 2, 2)	6 th	
(2, 2, 3)	Amy	(3, 3, 3)	7 th	
(2, 3, 3)				
4				

(3, 3, 3)

- Consider an ordering of all possible types
- Order the exam papers according to that type-ordering

ordering	students	type	ranking
(1, 1, 1)	Sheldon	(1, 1, 2)	1 st
(1, 1, 2)	Leonard	(1, 1, 3)	2 nd
(1, 2, 2)	Penny	(1, 1, 1)	3 rd
(1, 1, 3)	Howard	(2, 2, 3)	4 th
(2, 2, 2)	Raj	(2, 3, 3)	5 th
(1, 2, 3)	Bernadette	(2, 2, 2)	6 th
(2, 2, 3)	Amy	(3, 3, 3)	7 th
(2, 3, 3)			

(3, 3, 3)

- Consider an ordering of all possible types
- Order the exam papers according to that type-ordering

ordoring	students	typo
ordering	Students	type
(1, 1, 1)	Sheldon	(1, 1, 2)
(1, 1, 2)	Leonard	(1, 1, 3)
(1, 2, 2)	Penny	(1, 1, 1)
(1, 1, 3)	Howard	(2, 2, 3)
(2, 2, 2)	Raj	(2, 3, 3)
(1, 2, 3)	Bernadette	(2, 2, 2)
(2, 2, 3)	Amy	(3, 3, 3)
(2, 3, 3)		
(3, 3, 3)		

	ranking
1 st	Penny
2 nd	
3 rd	
4 th	
5 th	
6 th	
7 th	

- Consider an ordering of all possible types
- Order the exam papers according to that type-ordering

ordering
(1, 1, 1)
(1, 1, 2)
(1, 2, 2)
(1, 1, 3)
(2, 2, 2)
(1, 2, 3)
(2, 2, 3)
(2, 3, 3)
(3, 3, 3)

students	type
Sheldon	(1, 1, 2)
Leonard	(1, 1, 3)
Penny	(1, 1, 1)
Howard	(2, 2, 3)
Raj	(2, 3, 3)
Bernadette	(2, 2, 2)
Amy	(3, 3, 3)

ranking	
1 st	Penny
2 nd	Sheldon
3 rd	Leonard
4 th	Bernadette
5 th	Howard
6 th	Raj
7 th	Amy

- Consider an ordering of all possible types
- Order the exam papers according to that type-ordering

ordering
(1, 1, 1)
(1, 1, 2)
(1, 2, 2)
(1, 1, 3)
(2, 2, 2)
(1, 2, 3)
(2, 2, 3)
(2, 3, 3)
(3, 3, 3)

students	
Sheldon	
Leonard	
Penny	
Howard	
Raj	
Bernadette	
Amy	

type
(1, 1, 2)
(1, 1, 3)
(1, 1, 1)
(2, 2, 3)
(2, 3, 3)
(2, 2, 2)
(3, 3, 3)

ranking				
1 st	Penny			
2 nd	Sheldon			
3 rd	Leonard			
4 th	Bernadette			
5 th	Howard			
6 th	Raj			
7 th	Amy			

ground truth					
1 st	Sheldon				
2 nd	Penny				
3 rd	Leonard				
4 th	Howard				
5 th	Raj				
6 th	Bernadette				
7 th	Amy				

Consider an ordering of all possible types

Order the exam papers according to that type-ordering

ordering ranking ground truth students type **1** st Sheldon (1, 1, 1)Sheldon (1, 1, 2)1st Penny 2nd 2nd (1, 1, 2)Sheldon (1, 1, 3)Penny Leonard (1, 1, 1)3rd 3rd Leonard (1, 2, 2)Penny Leonard 4th 4th (1, 1, 3)Howard (2, 2, 3)Bernadette Howard 5th 5th (2, 2, 2)Raj (2, 3, 3)Howard Raj 6th 6th **Bernadette** (1, 2, 3)**Bernadette** (2, 2, 2)Raj 7th 7th (2, 2, 3)(3, 3, 3)**Amy** Amy Amy (2, 3, 3)correctly (3, 3, 3)recovered

NOT

correctly recovered

- Consider an ordering of all possible types
- Order the exam papers according to that type-ordering

ordering				
(1, 1, 1)				
(1, 1, 2)				
(1, 2, 2)				
(1, 1, 3)				
(2, 2, 2)				
(1, 2, 3)				
(2, 2, 3)				
(2, 3, 3)				
(3, 3, 3)				

students	type		
Sheldon	(1, 1, 2)		
Leonard	(1, 1, 3)		
Penny	(1, 1, 1)		
Howard	(2, 2, 3)		
Raj	(2, 3, 3)		
Bernadette	(2, 2, 2)		
Amy	(3, 3, 3)		

ranking			
1 st	Penny		
2 nd	Sheldon		
3 rd	Leonard		
4 th	Bernadette		
5 th	Howard		
6 th	Raj		
7 th	Amy		

ground truth			
1 st	Sheldon		
2 nd	Penny		
3 rd	Leonard		
4 th	Howard		
5 th	Raj		
6 th	Bernadette		
7 th	Amy		

efficiency = 16/21 = 76.19%

Overview of our approach

Grading behavior (noise model)

• Noise (stochastic) matrix $P = (p_{ij})_{i, j=1...k}$

• p_{ij} = Pr[student ranks an exam paper at position i | the correct position of this exam paper in the bundle is j]

A noise model built from real data

0.463	0.257	0.102	0.058	0.058	0.058
0.205	0.316	0.227	0.110	0.066	0.073
0.161	0.191	0.257	0.205	0.132	0.051
0.102	0.117	0.191	0.242	0.279	0.066
0.044	0.066	0.139	0.220	0.301	0.227
0.022	0.051	0.080	0.161	0.161	0.522

Realistic model

- Field experiment at our university
- Data collected from 136 undergraduate students
- Each student ordinal graded a bundle of k=6 exam papers

Assessing the quality of type-ordering aggregation rules

- Assumption: number of students tends to infinity
 - The ranks in the ground truth are real numbers in [0,1]

$$C(\succ) = \int_0^1 \int_x^1 \left(\sum_{\sigma, \sigma': \sigma \succ \sigma'} \Pr[x \rhd \sigma \text{ and } y \rhd \sigma'] \right) dy dx$$

$$\approx \sum_{\sigma, \sigma': \sigma \succ \sigma'} \int_0^1 \int_x^1 \Pr[x \rhd \sigma] \cdot \Pr[y \rhd \sigma'] dy dx$$

$$= \sum_{\sigma, \sigma': \sigma \succ \sigma'} W(\sigma, \sigma')$$

Assessing the quality of type-ordering aggregation rules

- Assumption: number of students tends to infinity
 - The ranks in the ground truth are real numbers in [0,1]

$$C(\succ) = \int_0^1 \int_x^1 \left(\sum_{\sigma, \sigma': \sigma \succ \sigma'} \Pr[x \rhd \sigma \text{ and } y \rhd \sigma'] \right) dy dx$$

$$\approx \sum_{\sigma, \sigma': \sigma \succ \sigma'} \int_0^1 \int_x^1 \Pr[x \rhd \sigma] \cdot \Pr[y \rhd \sigma'] dy dx$$

$$= \sum_{\sigma, \sigma': \sigma \succ \sigma'} W(\sigma, \sigma') \qquad \text{Neglect dependencies}$$

Optimization

 Optimization problem: compute an ordering of the types such that the sum of weights is maximized

Optimization

- Optimization problem: compute an ordering of the types such that the sum of weights is maximized
 - ⇒ FEEDBACK ARC SET (NP-hard) ...
- Turns out to be fairly easy in practical scenarios (k=6)

A theoretical result

Theorem

In the perfect grading model, Borda (with any tie-breaking rule) is the optimal type-ordering aggregation rule

Predicted vs. observed efficiency

	perfect	realistic		mallows	
	Borda (optimal)	optimal	Borda	optimal	Borda
predicted	92.01 %	80.01 %	79.57 %	85.15 %	84.38 %
observed	92.02 %	80.09 %	79.57 %	85.16 %	84.39 %

- The observed efficiency (almost) coincides with the expected theoretical one
- Borda is always close to optimal ... but not optimal!

Borda vs. optimal

Each point corresponds to a simulated exam with 10000 students

Are 136 samples enough?

Test for Mallows (for which we know the actual model)

Future work

- More real-world field experiments to produce realistic models
 - The one we performed was without training
 - What if we trained the students to ordinal grading first?
 - Try different values of k?
- Real-world ordinal peer grading experiments
 - http://co-rank.ceid.upatras.gr/
- Game theoretic or adversarial extensions

