Кафедра системного программирования СПбГУ

Автономная 3D навигация Выпускная квалификационная работа

Гальковский Антон Денисович, 16.Б10-мм

научный руководитель: д.ф.-м.н., проф. А.Н. Терехов консультант: ст.преп. А.А. Пименов рецензент: к.ф.-м.н. К.С. Амелин

9 июня 2020 г.

Рис.: Проецирование точки на изображение в идеальном случае

Рис.: Восстановление положения точки в идеальном случае

Рис.: Проецирование точки на изображение в дискретном случае

Рис.: Восстановление положения точки в дискретном случае

Проблема

Рис.: Погрешность восстановления положения точки при прямолинейном движении

Возможное решение

Рис.: Уменьшение погрешности при добавлении поперечного сдвига

Постановка задачи

Цель — разработка подхода к навигации квадрокоптера, основанного на отслеживании областей возможного положения точек в пространстве и использующего идею с поперечными сдвигами для более точной локализации точек.

Задачи:

- Изучение предметной области и поиск подхода к навигации для взятия за основу
- Внесение в его реализацию необходимых изменений для начала реализации предлагаемого подхода
- Поиск и реализация метода отслеживания областей возможного положения точек
- Реализация идеи с поперечными сдвигами
- Анализ влияния предлагаемого подхода на работоспособность алгоритма навигации

"Flying on point clouds"

HKUST (2018): "Flying on point clouds: Online trajectory generation and autonomous navigation for quadrotors in cluttered environments"

"Flying on point clouds"

- Robot Operating System
- Визуализация с помощью rviz
- Проблема с лидаром
- Проблема с представлением карты

Рис.: Новое представление карты

Рис.: Симуляция rgbd-камеры на основе симуляции обычной камеры

Рис.: Математически строгое пересечение

Рис.: Пересечение в виде усечённого конуса

Рис.: Отслеживание областей возможного положения точек

Рис.: Шаблон поперечного сдвига

Изменения в структуре

Рис.: Изначальная структура

Изменения в структуре

Рис.: Конечная структура

Испытания

Рис.: Результаты тестирования

Результаты

- Изучена предметная область автономной навигации квадрокоптеров, сделан выбор существующей реализации навигации (в симуляции) для взятия за основу
- Внесены необходимые изменения в способ представления карты, существенно расширен набор доступных сенсоров для симуляции
- Подтверждена работоспособность существующего подхода при использовании rgbd-камеры
- Разработан и реализован метод отслеживания областей возможного положения точек, основанный на представлении областей в виде усечённых конусов
- Реализована идея с поперечными сдвигами
- Проверена работоспособность разработанного подхода