

Topic 6. Signed Number Format

Prepared by Nabila Husna Shabrina

Contact: nabila.husna@umn.ac.id

Subtopic

6.1 Signed Number

6.2 1's and 2's Complement

6.3 Fixed Point

Signed number

- Signed number represents negative number
- Computers only know binary, therefore we use signed number to understand how computers represents and computes negative number
- There are 2 method
 - Signed magnitude
 - Complements: one's complement and two's complement

Signed magnitude

Example of signed magnitude

Positive number

Negative number

Disadvantages

• Range only from -2⁽ⁿ⁻¹⁾ to +2⁽ⁿ⁻¹⁾-1

Example : the representation for 4 bits signed number (1 for sign bit and 3 bits for magnitude bits) is $-2^{(4-1)}-1$ to $+2^{(4-1)}-1$

$$-2^{(3)} - 1$$
 to $+2^{(3)} - 1$

Whereas, in non signed number the range for 4 bit binary is from 0 tp 15

Example.

-15₁₀ as a 6-bit number

⇒ 101111₂

+23₁₀ as a 6-bit number

 \Rightarrow 010111₂

-56₁₀ as a 8-bit number

→ 10111000₂

+85₁₀ as a 8-bit number

 \Rightarrow 01010101₂

-127₁₀ as a 8-bit number

⇒ 111111112

- Signed number can also be represented using complements
- There are two complement form
 - 1's complement
 - 2's complement

1's Complement

- Complementing each digit in binary number
- Positive number remains the same
- Negative number is represented by complementing every bits
- Range -2(n-1) to +2(n-1)-1

Example.

Positive number $(9)_{10} = (1001)_2$,

Negative number $(-9)_{10} = (0110)_2$,

1's complement addition and subtraction

Subtraction can be implemented in addition form

$$A - B = A + (-B) or - (B) + A$$

Steps

- Take 1's complement for subtrahend, add it to the minuend
- If carry is not generated, the result is said to be **negative** & is in 1's complement form, take 1's complement again to get the magnitude of the actual result
- If carry is generated, the result is **positive**, add 1 it to get the actual result

Example.

Find 3 - 12 using 1's complement

 $3 \rightarrow 0011$; -12 (using 1's complement) $\rightarrow 0011$

0011

0011+

0 1 1 0 → carry is not generated, take the 1's complement form to get the magnitude → 1001 so the result is -9

Example.

Find 54 - 72 using 1's complement

 $54 \rightarrow 0110110$; -72 (using 1's complement) $\rightarrow 0110111$

0110110

0110111+

1 1 0 1 1 0 1 \rightarrow carry is not generated, take the 1's complement form to get the magnitude \rightarrow 0010010, so the result is -18

```
Example.
Find 12 - 3 using 1's complement
-3 (using 1's complement) \rightarrow 1100; 12 \rightarrow 1100
        1100
        1100+
      11000 \rightarrow carry is generated
               <u>1 +</u>
         1001 \rightarrow the result is 9
```

```
Example.

Find 48 - 28 using 1's complement

48 \rightarrow 110000; -28 (using 1's complement) \rightarrow 100011

110000

100011+

1010011 \rightarrow 100011

carry is generated, add it to the result

1+

010100 \rightarrow 1000 \rightarrow 10000
```

2's Complement

- Complementing each digit in binary number and add by 1
- Positive number remains the same
- Negative number is represented by complementing every bits and adding 1 to the complemented bit
- Range -2(n-1) to +2(n-1)-1
- The main difference between 1's complement and 2's complement is that 1's complement has two representations of 0, while 2's complement only have 1 representation for 0

Example.

Positive number $(9)_{10} = (1001)_2$,

Negative number $(-9)_{10} = (0111)_2$,

2's complement addition and subtraction

Subtraction can be implemented in addition form

$$A - B = A + (-B) or - (B) + A$$

Steps

- Take 2's complement for subtrahend, add it to the minuend
- If carry is not generated, the result is said to be **negative** & is in 2's complement form. Take 2's complement again to get the magnitude of the actual result
- If carry is generated, discard the carry

```
Example.
```

```
Find 48 - 28 using 2's complement
```

 $48 \rightarrow 110000$; -28 (using 2's complement) \rightarrow 100100

110000

100100 +

1 0 1 0 1 $\overline{0}$ carry is generated, discard the carry, the answer is 010100 (20)

Example.

Find
$$(111000)_2 - (101001)_2$$

 $(111000)_2 - (101001)_2 = 56 - 41$

2's complement 0f 41 \rightarrow 010111

111000

010111+

1 0 0 1 1 1 1 \rightarrow carry is generated, discard the carry, the answer is 001111 (15)

Example.

Find 54 - 72 using 2's complement

 $54 \rightarrow 0110110$; -72 (using 2's complement) $\rightarrow 0111000$

0110110

0111000+

1 1 0 1 1 1 0 \rightarrow carry is not generated, take the 2's complement form to get the magnitude \rightarrow 0010010, so the result is -18

- Digital system only have 0 and 1
- However, in real world we use fractional number such as 3.12, 3,5, 11,8 etc.
- There are two representation :
 - Fixed point
 - Floating point
- Fixed point representation has fixed number of bits for integer part and for fractional part

 There are three parts of a fixed-point number representation: the sign field, integer field, and fractional field

Unsigned fixed point Integer Fraction

Signed fixed point Sign Integer Fraction

Example.

Represent fixed point of unsigned binary number 0110110 using 4 integer bits and 3 fractional bits

Example.

Represent (-7.5) using 8 bit binary representation with 4 digits integer and 4 fraction bit (using 2's complement)

$$(7,5)_{10} \rightarrow (111.1)_2 \rightarrow (0111.1000)$$

2's complement

1000.1000

Example.

Compute 0.75 +(-0.625) using 8 bits fixed point number

$$(0.75)_{10} \rightarrow (0000.1100)_2$$

$$(0.625)_{10} \rightarrow (0000.1010)_2$$

2's complement

 $(1111.0110)_2$

$$\begin{array}{r} 0000.1100 \\ \underline{1111.0110} + \\ 0000.0010 \end{array}$$

- IEEE Standard 754 floating point is the most common representation today for real numbers on computers
- Makes particularly efficient use of the computer to represent extremely large or small value
- Recall scientific notation format
 - a value whose magnitude is in the range of 1≤n<10
 - a power of 10
 - 3498523 is written as 3.498523×10⁶
 - -0.0432 is written as -4.32×10^{-2}

- In Binary floating point the format will be written in
 - a value whose magnitude is in the range of 1≤n<2
 - a power of 2
 - -6.84 is written as -1.71×2²
 - 0.05 is written as 1.6×2^{-5}

- It has 3 components
 - The sign: 0 represents a positive number while 1 represents a negative number
 - The exponent: to represent both positive and negative exponents.
 - The mantissa: The mantissa is part of a number in scientific notation or a floating-point number

mantissa

exponent

 6.02×10^{23}

Example.

IEEE 754 Standard → Standard format for floating point

Single Precision
IEEE 754 Floating-Point Standard

Double precision

Double Precision
IEEE 754 Floating-Point Standard

The difference

IEEE 754 Format	Sign	Exponent	Mantissa	Exponent Bias
32 bit single precision	1 bit	8 bits	23 bits (+ 1 not stored)	2(8-1) - 1 = 127
64 bit double precision	1 bit	11 bits	52 bits (+ 1 not stored)	2(11-1) - 1 = 1023

Decimal to IEEE 754 Conversion

- Determine the sign bit
- Convert to pure binary
- Normalize to determine the mantissa and the unbiased exponent by placing the binary point after leftmost 1
- Determine the biased exponent by adding 127 then converting to an unsigned binary integer
- Remove the leading 1 from the mantissa by removing the leftmost 1
- Write the actual result in 32- or 64-bit format

Example.

Convert 19.25 into IEEE 754 standard 32-bit floating-point binary

Step 1. Determine the sign bit

Positive number \rightarrow sign bit = 0

Step 2. Convert to pure binary

		16	8	4	2	1	0.5	0.25	0.125	0.0625	0.03125
19.59375 ₁₀	=	1	0	0	1	1	1	0	0	1	1

Step 3. Normalize to determine the mantissa and the unbiased exponent

$$1 \sqrt{0} \sqrt{0} \sqrt{1} \sqrt{1}$$
 1 0 0 1 1 = 1.001110011 x 2⁴

Step 4. Determined the biased component

$$4 + 127 = 131_{10} = 10000011_2$$

Step 5. Remove the leading 1 from mantissa

Step 6. Write the result in 32 format

Sign b	it			Ехро	nent		Mantissa																								
0	1	0	0	0	0	0	1	1	0	0	1	1	1	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Example.

Convert -123.3 into IEEE 754 standard 32-bit floating-point binary

Step 1. Determine the sign bit

Sign bit = 1

Step 2. Convert to pure binary

```
123.3_{10} = 1111011.01001100110011001..._{2}
                  remainder
                                                 0.3 \times 2 = 0.6
123 \div 2 = 61
 61 \div 2 = 30
                                                 0.6 \times 2 = 1.2
                  remainder
                  remainder
     \div 2 = 15
                                                  0.2 \times 2 = 0.4
                  remainder 1
                                                  0.4 \times 2 = 0.8
              3 remainder
                                                  0.8 \times 2 = 1.6
                                                 0.6 \times 2 = 1.2
                  remainder
                  remainder
                                                 0.2 \times 2 = 0.4
```

Step 3. Normalize to determine the mantissa and the unbiased exponent

$$1111011.0100110011001... = 1.1110110100110011001... \times 2^{6}$$

Step 4. Determined the biased component

$$6 + 127 = 133_{10} = 10000101_2$$

Step 5. Remove the leading 1 from mantissa

1.1110110100110011001... = 11101101001100110011001

Round mantissa up if necessary

1110110100110011001 + 1 11101101001100110011010

Step 6. Write the result in 32 format

1 10000101 11101101001100110011010

IEEE 754 to Decimal Conversion

- Determine the sign bit
- Determine the exponent in decimal
- Remove the exponent bias by subtracting 127
- Convert the mantissa to decimal
- Add 1 to the mantissa and include the sign
- Calculate the final result

Example.

Step 1. Determine the sign bit

 $0 \rightarrow positive$

Step 2. Determine the exponent in decimal

$$(100000100)_2 = (132)_{10}$$

Step 3. Remove the exponent bias

$$132 - 127 = 5$$

Step 4. Convert the mantissa to decimal

0.5	0.25	0.125	0.0625	0.03125	0.015625
• 1	1	0	1	0	1

$$0.5 + 0.25 + 0.0625 + 0.015625 = 0.828125$$

Step 5. Add 1 to the mantissa and include in the sign

$$0.828125 + 1 = 1.828125$$

Step 6. Calculate the final result

$$1.828125 \times 2^5 = 58.5$$

Example.

Step 1. Determine the sign bit

1 → negative

Step 2. Determine the exponent in decimal

$$(00001001)_2 = (9)_{10}$$

Step 3. Remove the exponent bias

$$9 - 127 = -118$$

Step 4. Convert the mantissa to decimal

0.5	0.25	0.125	0.0625	0.03125	0.015625	0.0078125	0.00390625
• 0	0	0	1	1	0	0	1

0.0625 + 0.03125 + 0.00390625 = 0.09765625

Step 5. Add 1 to the mantissa and include in the sign

 $0.09765625 + 1 = 1.09765625 \rightarrow -1.09765625$ (because the sign is -)

Step 6. Calculate the final result

 $-1.09765625 \times 2^{-118} = -3.30313912581062 \dots \times 2^{-36}$

Reserved value

Exponent Value	Mantissa	Represents
1111111	All zeros	Infinity (∞)
1111111	Not all zeros	Not a number (NAN)
00000000	All zeros	Zero
0000000	Not all zeros	Subnormal (very small)

References

M. Morris Mano, Digital Design, 5th ed, Prentice Hall, 2012, Chapter 1

Next Topic : Combinational Logic Circuit