<u>Exemplul 2</u>. Să se determine minimul şi maximul elementelor unui vector.

```
if nimpar then m \leftarrow a<sub>1</sub>; M \leftarrow a<sub>1</sub>; k \leftarrow 1
else if a_1 < a_2 then m \leftarrow a_1; M \leftarrow a_2
          else m \leftarrow a<sub>2</sub>; M \leftarrow a<sub>1</sub>;
         k \leftarrow 2
while k \leq n-2
      if a_{k+1} < a_{k+2} then if a_{k+1} < m then m \leftarrow a_{k+1}
                                     if a_{k+2}>M then M \leftarrow a_{k+2}
                           else if a_{k+2} < m then m \leftarrow a_{k+2}
                                     if a_{k+1}>M then M \leftarrow a_{k+1}
     k \leftarrow k+2
```

► T(n)=?

T(n)=
$$\lceil 3n/2 \rceil - 2$$
:

• n impar :

$$T(n) =$$

• n par:

$$T(n) =$$

$$T(n) = [3n/2] - 2:$$

• n impar :

$$T(n) = 3(n-1)/2 = (3n+1)/2-2 = [3n/2]-2$$

• n par:

$$T(n) = 1+3(n-2)/2 = 3n/2-2 = \lceil 3n/2 \rceil - 2$$

$$T(n) = \lceil 3n/2 \rceil - 2$$

o Optimal?

$$T(n) = \left[3n/2\right] - 2$$

- Proprietate Orice algoritm de determinare a minimului și maximului unui vector cu n elemente bazat pe comparări necesită cel puţin [3n/2] - 2 comparări
- Idee de demonstraţie:

$$T(n) = \left[3n/2\right] - 2$$

- Proprietate Orice algoritm de determinare a minimului și maximului unui vector cu n elemente bazat pe comparări necesită cel puţin [3n/2] - 2 comparări
- Idee de demonstrație:
- La un pas al algoritmului analizăm:
 - ce tipuri de elemente pot apărea în funcție de rezultatele comparărilor deja efectuate
 - între ce tipuri de elemente va face comparații un algoritm eficient

Detalii

- A= mulţimea elementelor care nu au participat încă la comparări; a=|A|;
- B= au participat la comparări şi au fost totdeauna mai mari decât elementele cu care au fost comparate; b=|B|;
- C= au participat la comparări şi au fost totdeauna mai mici decât elementele cu care au fost comparate; c=|C|;
- D= au participat la comparări şi au fost cel puţin o dată mai mari şi cel puţin o dată mai mici decât elementele cu care au fost comparate; d=|D|;

Detalii

- A= mulţimea elementelor care nu au participat încă la comparări; a=|A|;
- B= au participat la comparări şi au fost totdeauna mai mari decât elementele cu care au fost comparate; b=|B|;
- C= au participat la comparări şi au fost totdeauna mai mici decât elementele cu care au fost comparate; c=|C|;
- D= au participat la comparări şi au fost cel puţin o dată mai mari şi cel puţin o dată mai mici decât elementele cu care au fost comparate; d=|D|;

Ce tipuri de elemente nu mai trebuie luate în considerare în comparări într-un algoritm eficient?

Detalii

- A= mulţimea elementelor care nu au participat încă la comparări; a=|A|;
- B= au participat la comparări şi au fost totdeauna mai mari decât elementele cu care au fost comparate; b=|B|;
- C= au participat la comparări şi au fost totdeauna mai mici decât elementele cu care au fost comparate;
 c=|C|;
- D= au participat la comparări şi au fost cel puţin o dată mai mari şi cel puţin o dată mai mici decât elementele cu care au fost comparate;
 d=|D|; ⇒ nu pot fi min sau max

Detalii

- Un pas al algoritmului = configurația (a,b,c,d)
- Inițial configurația (n,0,0,0)
- Final configurația (0,1,1,n-2)
- Numărul minim de comparări efectuate de algoritm = numărul minim de comparări pentru a trece din $(n,0,0,0) \rightarrow (0,1,1,n-2)$

- $(n,0,0,0) \rightarrow (0,1,1,n-2)$
- În ce configurații se poate ajunge din (a,b,c,d) în urma unei comparații?

Tipul elementelor comparate	Configurație obținută
A, A	
B, B	
C, C	
A, B	
A, C	
B, C	

- $(n,0,0,0) \rightarrow (0,1,1,n-2)$
- În ce configurații se poate ajunge din (a,b,c,d) în urma unei comparații?

Tipul elementelor comparate	Configurație obținută
A, A	(a-2, b+1, c+1, d)
B, B	
C, C	
A, B	
A, C	
B, C	

- $(n,0,0,0) \rightarrow (0,1,1,n-2)$
- În ce configurații se poate ajunge din (a,b,c,d) în urma unei comparații?

Tipul elementelor comparate	Configurație obținută
A, A	(a-2, b+1, c+1, d)
B, B	(a, b-1, c, d+1)
C, C	(a, b, c-1, d+1)
A, B	
A, C	
B, C	

- $(n,0,0,0) \rightarrow (0,1,1,n-2)$
- În ce configurații se poate ajunge din (a,b,c,d) în urma unei comparații?

Tipul elementelor comparate	Configurație obținută
A, A	(a-2, b+1, c+1, d)
B, B	(a, b-1, c, d+1)
C, C	(a, b, c-1, d+1)
A, B	(a-1, b, c+1, d) - defavorabil (a-1, b, c, d+1)
A, C	
B, C	

- $(n,0,0,0) \rightarrow (0,1,1,n-2)$
- În ce configurații se poate ajunge din (a,b,c,d) în urma unei comparații?

Tipul elementelor comparate	Configurație obținută
A, A	(a-2, b+1, c+1, d)
B, B	(a, b-1, c, d+1)
C, C	(a, b, c-1, d+1)
A, B	(a-1, b, c+1, d) - defavorabil (a-1, b, c, d+1)
A, C	(a-1, b+1, c, d) - defavorabil (a-1, b, c, d+1)
B, C	(a, b, c, d) – defavorabil (a, b–1, c–1, d+2)

 $(n,0,0,0) \rightarrow (0,1,1,n-2)$

Tipul elementelor comparate	Configurație obținută
A, A	(a-2, b+1, c+1, d)
B, B	(a, b-1, c, d+1)
C, C	(a, b, c-1, d+1)
A, B	(a-1, b, c+1, d) – defavorabil
A, C	(a-1, b+1, c, d) – defavorabil
B, C	(a, b, c, d) – defavorabil

▶ Pentru n=2k, succesiunea minimă de la (n,0,0,0) la (0,1,1,n-2):

 $(n,0,0,0) \rightarrow (0,1,1,n-2)$

Tipul elementelor comparate	Configurație obținută
A, A	(a-2, b+1, c+1, d)
B, B	(a, b-1, c, d+1)
C, C	(a, b, c-1, d+1)
A, B	(a-1, b, c+1, d) – defavorabil
A, C	(a-1, b+1, c, d) – defavorabil
B, C	(a, b, c, d) – defavorabil

- Pentru n=2k, succesiunea minimă de la (n,0,0,0) la (0,1,1,n-2):
 - k comparări între perechi de elemente din A \Rightarrow (0,k,k,0)
 - prin k-1 comparări B, B \Rightarrow (0,1,k,k-1)
 - prin k-1 comparări C, C \Rightarrow (0,1,1,n-2) Total k+(k-1)+(k-1)=3k-2= $\lceil 3n/2 \rceil$ -2 comparări.

 $(n,0,0,0) \rightarrow (0,1,1,n-2)$

Tipul elementelor comparate	Configurație obținută
A, A	(a-2, b+1, c+1, d)
B, B	(a, b-1, c, d+1)
C, C	(a, b, c-1, d+1)
A, B	(a-1, b, c+1, d) – defavorabil
A, C	(a-1, b+1, c, d) – defavorabil
B, C	(a, b, c, d) – defavorabil

▶ Pentru n=2k+1 - exerciţiu