Elementos da Teoria de Grupos

lcc :: Imat :: 2.º ano paula mendes martins

departamento de matemática :: uminho

generalidades

semigrupos - conceitos básicos

Definição. Um par (S,*) diz-se um *grupóide* se S é um conjunto e * é uma operação binária em S, i.e., se * é definida por

$$\begin{array}{ccc} *: S \times S & \longrightarrow & S \\ (x, y) & \longmapsto & x * y. \end{array}$$

Definição. Seja (S,*) um grupóide. A operação * diz-se *comutativa* ou abeliana se

$$a * b = b * a$$
, $\forall a, b \in S$.

Nestas condições, dizemos que (S,*) é comutativo ou abeliano.

2

Exemplo 1.

- Se * é definida por $x*y=\frac{x+y}{2}$ em $S=\mathbb{R}$, então, (S,*) é um grupóide abeliano.
- Se * é definida por x * y = x y em $S = \mathbb{N}$, então, (N, *) não é um grupóide.
- Se * é definida por x * y = 3 em S = N, então, (N, *) é um grupóide comutativo.
- Se * é a adição ou a multiplicação usuais de classes em \mathbb{Z}_n , com $n \in \mathbb{N}$, então $(\mathbb{Z}_n, *)$ é um grupóide comutativo.

Exemplo 2. Sejam $S = \{a, b, c\}$ e * a operação binária definida pela seguinte tabela (à qual se chama *tabela de Cayley*):

Então, (S,*) é um grupóide comutativo.

Definição. Seja (S,*) um grupóide. A operação * diz-se associativa se

$$a*(b*c) = (a*b)*c, \quad \forall a, b, c \in S.$$

Nestas condições, escrevemos apenas a*b*c e dizemos que o grupóide (S,*) é um *semigrupo*.

Exemplo 3. O conjunto dos números inteiros constitui um semigrupo quando algebrizado com a multiplicação usual.

Exemplo 4. O grupóide do Exemplo 2 não é um semigrupo. De facto, temos que a*(c*c) = a*a = a e (a*c)*c = c.

Definição. Seja (S,*) um grupóide. Um elemento $a \in S$ diz-se um *elemento idempotente* se a*a=a.

Exemplo 5. No primeiro grupóide do Exemplo 1, todos os elementos são idempotentes. De facto, para todo $x \in S$, $x * x = \frac{x+x}{2} = x$.

Definição. Seja (S,*) um grupóide. Um elemento $0 \in S$ diz-se *elemento zero* ou *nulo* se

$$0*a=a*0=0, \forall a \in S.$$

Um elemento $e \in S$ diz-se elemento neutro ou elemento identidade se

$$a*e = e*a = a, \quad \forall a \in S.$$

Observação. Um elemento neutro ou um elemento zero de um grupóide é um elemento idempotente.

Proposição. Num grupóide (S,*) existe, no máximo, um elemento neutro.

Demonstração. Suponhamos que (S,*) admite dois elementos neutros, e e e'. Então, porque e é elemento neutro,

$$e * e' = e'$$
.

Por outro lado, porque e' é elemento neutro,

$$e * e' = e$$
.

Logo,
$$e = e'$$
.

Definição. Um semigrupo (S,*) que admita elemento neutro diz-se um monóide ou um semigrupo com identidade. O único elemento neutro existente num monóide (S,*) representa-se por 1_S .

Exemplo 6. O semigrupo $(\mathbb{N},*)$ onde * está definida por

$$a*b=2ab, \qquad \forall a,b\in\mathbb{N},$$

não admite elemento neutro.

Exemplo 7. O semigrupo (S,*), onde $S = \{a,b,c,d\}$ e * é definida pela tabela

é um monóide, e a é o seu elemento neutro.

Definição. Sejam (S,*) um semigrupo com identidade e $a \in S$. Um elemento $a' \in S$ diz-se *elemento oposto* de a se $a*a' = a'*a = 1_S$.

Proposição. Num semigrupo (S,*) com identidade, um elemento $a \in S$ tem, no máximo, um elemento oposto.

Demonstração. Suponhamos que $a \in S$ admite dois elementos opostos, a' e a''. Então,

$$a' = a' * 1_S = a' * (a * a'') = (a' * a) * a'' = 1_S * a'' = a''.$$

Logo, quando existe, o oposto de um elemento é único.

Observação. Caso não haja ambiguidade quanto à operação *, referimo-nos muitas vezes ao grupóide (respetivamente, semigrupo, monóide) (S,*) como o grupóide (respetivamente, semigrupo, monóide) S.

potência natural de um elemento num semigrupo

Para representarmos a operação binária definida num conjunto podemos usar dois tipos de linguagem: a multiplicativa e a aditiva. Nestes casos temos:

Linguagem multiplicativa	Linguagem aditiva		
a * b = ab (produto de a por b)	a*b=a+b (a soma de a por b)		
a^{-1} é o oposto ou <i>inverso</i> de a	-a é o oposto ou simétrico de a		

Dado um elemento a de um semigrupo S, utilizamos a seguinte notação para representar os seguintes produtos (ou somas):

Linguagem multiplicativa	Linguagem aditiva	
$a^2 = aa$	22 - 2 2	
$a = aa$ $a^3 = aaa$	2a = a + a $3a = a + a + a$	
a — aaa	3a — a — a — a	
:	:	
$a^n = \underbrace{aa \cdot \cdot \cdot aa}$	$na = \underbrace{a + a + \cdots + a + a}_{}$	$(com\ n\in\mathbb{N})$
n vezes	n vezes	

A aⁿ chamamos potência de a e a na chamamos múltiplo de a.

A não ser que seja referido, trabalhamos com a linguagem multiplicativa.

Proposição. Sejam S um semigrupo, $m,n\in\mathbb{N}$ e $a\in S$. Então,

1.
$$a^m a^n = a^{m+n}$$
 [$ma + na = (m+n)a$];

2.
$$(a^m)^n = a^{mn}$$
 [$n(ma) = (nm) a$].

Demonstração. Trivial, tendo em conta a associatividade da operação.

9

grupos - conceitos e resultados básicos

Definição. Seja G um conjunto no qual está definida uma operação binária. Então, G diz-se um grupo se G é um semigrupo com identidade e no qual todos os elementos admitem um único elemento oposto, i.e., G é grupo se:

- **G1.** A operação binária é associativa em G;
- **G2.** $(\exists e \in G) (\forall a \in G)$ ae = ea = a;
- **G3.** $(\forall a \in G) (\exists^! a^{-1} \in G)$ $aa^{-1} = a^{-1}a = e$.

Se a operação for comutativa, o grupo diz-se comutativo ou abeliano.

Representamos a identidade do grupo G por 1_G .

Exemplo 8. $(\mathbb{R},+)$ é grupo abeliano (+ é a adição usual de números reais). (\mathbb{R},\cdot) não é grupo $(\cdot$ é a multiplicação usual de números reais), mas $(\mathbb{R}\setminus\{0\},\cdot)$ é grupo abeliano.

Exemplo 9. Seja $n \in \mathbb{N}$. Sendo \oplus e \otimes as operações de adição e multiplicação usuais de classes de \mathbb{Z}_n , temos que (\mathbb{Z}_n, \oplus) é grupo e (\mathbb{Z}_n, \otimes) não é grupo. Sendo $\mathbb{Z}_n^* = \mathbb{Z}_n \setminus \{[0]_n\}$, temos que $(\mathbb{Z}_n^*, \otimes)$ é grupo se e só se n é primo.

Exemplo 10. (\mathbb{Z},\cdot) não é grupo (\cdot é a multiplicação usual de números inteiros), mas $(\mathbb{Z},+)$ é grupo abeliano (+ é a adição usual de números inteiros).

Exemplo 11. Um conjunto singular, $\{x\}$, quando algebrizado com a única operação binária possível, x*x=x, é um grupo abeliano (chamado de *grupo trivial*).

Proposição. Num grupo G são válidas as leis do corte, i.e., para $x, y, a \in G$,

$$ax = ay \Rightarrow x = y$$
 e $xa = ya \Rightarrow x = y$.

Demonstração. Sejam $a, x, y \in G$. Então,

$$ax = ay \implies a^{-1}(ax) = a^{-1}(ay)$$

$$\Rightarrow (a^{-1}a)x = (a^{-1}a)y$$

$$\Rightarrow 1_Gx = 1_Gy$$

$$\Rightarrow x = y.$$

A segunda implicação demonstra-se de modo análogo.

Observação. Existem semigrupos que não são grupos nos quais se verifica a lei do corte, como, por exemplo, $\mathbb{Z}\setminus\{0\}$ algebrizado com a multiplicação usual de inteiros. Este semigrupo comutativo com identidade satisfaz as leis do corte, mas não é um grupo, pois os únicos elementos que admitem inverso são 1 e -1.

Teorema. Num grupo G, as equações ax = b e ya = b, admitem uma única solução, para quaisquer $a, b \in G$.

Reciprocamente, um semigrupo S no qual as equações ax = b e ya = b admitem soluções únicas, para quaisquer $a, b \in S$, é um grupo.

Demonstração. Suponhamos, primeiro, que G é um grupo. Então, para $a,b\in G$, os elementos $a^{-1}b$ e ba^{-1} de G são soluções das equações ax=b e ya=b, respetivamente. A unicidade destas soluções resulta do facto de as leis de corte serem válidas em G.

Reciprocamente, sejam S um semigrupo e $a \in S$. Então, existem soluções únicas das equações ax = a e ya = a. Sejam e e e' essas soluções, respetivamente. Então, como para todo $b \in S$ existe um único $c \in S$ tal que b = ca, temos que

$$be = (ca) e = c (ae) = ca = b.$$

Logo, e é elemento neutro à direita em S. De modo análogo, provamos que e' é elemento neutro à esquerda. Assim,

$$e = e'e = e'$$

e, portanto, e é elemento neutro do semigrupo S.

Seja $a \in S$. Então, existem soluções únicas das equações ax = e e ya = e. Sejam a' e a'' essas soluções, respetivamente. Temos então que aa' = e e a''a = e. Logo,

$$a'' = a''e = a''(aa') = (a''a)a' = ea' = a',$$

pelo que cada elemento $a \in S$ admite um oposto $a' \in S$. Portanto, S é um grupo.

Proposição. Seja S um semigrupo finito que satisfaz as leis do corte. Então S é um grupo.

Demonstração. Seja a um elemento qualquer de S. Então, as aplicações ρ_a , λ_a : $S \to S$ definidas por, respetivamente, ρ_a (x) = xa e λ_a (x) = ax, $x \in S$, são injetivas. De facto, para $x, y \in S$, tendo em conta as leis do corte,

$$\rho_{a}(x) = \rho_{a}(y) \Leftrightarrow xa = ya \Rightarrow x = y$$

е

$$\lambda_{a}(x) = \lambda_{a}(y) \Leftrightarrow ax = ay \Rightarrow x = y.$$

Logo, sendo S um conjunto finito, temos que as duas aplicações são também sobrejetivas, pelo que as equações ax = b e ya = b têm soluções únicas em S. Assim, pelo teorema anterior, o semigrupo S é um grupo.

Proposição. Seja G um grupo. Então:

- 1. $1_G^{-1} = 1_G$;
- 2. $(a^{-1})^{-1} = a, \forall a \in G;$
- 3. $(ab)^{-1} = b^{-1}a^{-1}, \forall a, b \in G;$
- 4. $(a_1a_2\cdots a_n)^{-1}=a_n^{-1}\cdots a_2^{-1}a_1^{-1}, \ (\forall n\in\mathbb{N})\ (\forall a_1,a_2,\ldots,a_n\in G).$

potência inteira de um elemento num grupo

Dado um elemento a de um grupo G e $p \in \mathbb{Z}$, define-se

$$a^{p}=\underbrace{aa\cdots a}_{p \text{ vezes}}$$
 se $p\in\mathbb{Z}^{+};$
$$a^{p}=1_{G} \qquad \text{se } p=0;$$

$$a^{p}=\left(a^{-1}\right)^{-p}=\left(a^{-p}\right)^{-1} \qquad \text{se } p\in\mathbb{Z}^{-}.$$

Em linguagem aditiva temos

$$pa=\underbrace{a+a+\cdots+a}_{p \text{ vezes}}$$
 se $\mathbb{Z}^+;$ $pa=1_G$ se $p=0;$ $pa=(-p)(-a)=-((-p)a)$ se $p\in\mathbb{Z}^-.$

Proposição. Sejam G um grupo, $x \in G$ e $m, n \in \mathbb{Z}$. Então,

- 1. $x^m x^n = x^{m+n}$ (na linguagem aditiva: mx + nx = (m+n)x);
- 2. $(x^m)^n = x^{mn}$ (na linguagem aditiva: n(mx) = (nm)x).

Demonstração. Temos de considerar vários casos.

- Caso 1: Sejam $m, n \in \mathbb{Z}^+$. O caso resulta imediatamente da definição.
- Caso 2: Sejam $m, n \in \mathbb{Z}^-$. Então, m = -l e n = -k com l, k > 0, pelo que

$$x^{m}x^{n} = x^{-l}x^{-k} = (x^{l})^{-1}(x^{k})^{-1} = (x^{k}x^{l})^{-1}$$
$$= (x^{k+l})^{-1} = x^{-(k+l)} = x^{-k-l} = x^{n+m}.$$

Mais ainda,

$$(x^{m})^{n} = (x^{-l})^{-k} = \left[\left((x^{-1})^{l} \right)^{k} \right]^{-1} = \left[(x^{-1})^{lk} \right]^{-1}$$

$$= \left[(x^{lk})^{-1} \right]^{-1} = x^{lk} = x^{(-m)(-n)} = x^{mn}.$$

Caso 3: Sejam $m,n\in\mathbb{Z}$ tais que $m>0,\;n<0$ e |m|>|n| . Então, n=-l com m>l>0, pelo que

$$x^{m}x^{n} = x^{m-l+l}x^{-l} = x^{m-l}x^{l}(x^{l})^{-1} = x^{m-l}1_{G} = x^{m-l} = x^{m+n},$$

o que prova 1. Por outro lado,

$$(x^m)^n = (x^m)^{-l} = [(x^m)^l]^{-1} = (x^{ml})^{-1} = x^{-ml} = x^{mn},$$

o que prova a condição 2.

Caso 4. Sejam $m,n\in\mathbb{Z}$ tais que $m>0,\ n<0$ e |m|<|n| . Então, n=-l com l>m>0, pelo que

$$\begin{array}{ll} x^m x^n & = x^m x^{-l} = x^m \left(x^l \right)^{-1} = x^m \left(x^{l-m+m} \right)^{-1} = x^m \left(x^{l-m} x^m \right)^{-1} = \\ & = x^m \left(x^m \right)^{-1} \left(x^{l-m} \right)^{-1} = 1_G x^{-(l-m)} = x^{-l+m} = x^{n+m}. \end{array}$$

A demonstração de 2. é igual à do Caso 3.

Os casos em que pelo menos um dos inteiros é zero são triviais e qualquer outro caso é igual aos casos 3 ou 4.

subgrupos

conceitos básicos

Definição. Seja G um grupo. Um seu subconjunto não vazio H diz-se um subgrupo de G se H for grupo para a operação de G restringida a H. Neste caso escrevemos H < G.

Observação. Um grupo G, identificam-se sempre os subgrupos: $\{1_G\}$ (subgrupo trivial) e G (subgrupo impróprio).

Proposição. Sejam G um grupo e H < G. Então:

- 1. O elemento neutro de H, 1_H , é o mesmo que o elemento neutro de G, 1_G ;
- 2. Para cada $h \in H$, o inverso de h em H é o mesmo que o inverso de h em G.

Demonstração.

- 1. Por um lado, porque 1_H é elemento neutro de H, temos que $1_H1_H=1_H$; por outro lado, como 1_G é elemento neutro de G e $1_H\in G$, temos que $1_H1_G=1_H$. Logo, $1_H1_H=1_H1_G$, pelo que, pela lei do corte, $1_H=1_G$.
- 2. Sejam $h\in H,\ h^{-1}$ o inverso de h em G e h' o inverso de h em H. Então, $hh'=1_H=1_G=hh^{-1}.$

Logo, pela lei do corte, $h' = h^{-1}$.

Exemplo 12. O grupóide $(\mathbb{Q}\setminus\{0\},\cdot)$ é subgrupo de $(\mathbb{R}\setminus\{0\},\cdot)$.

Exemplo 13. Seja $G = \{e, a, b, c\}$ o grupo de *4-Klein,* i.e., o grupo cuja operação é definida pela tabela anexa.

Os seus subgrupos são:

$$\{e, a, b, c\}, \{e\}, \{e, a\}, \{e, b\} \in \{e, c\}.$$

e e a b c
a a b c
a a e c b
b b c e a
c b a e

Exemplo 14. Seja $\mathbb{Z}_4=\left\{\bar{0},\bar{1},\bar{2},\bar{3}\right\}$ o conjunto das classes módulo-4 algebrizado com a adição usual de classes.

Então, $(\mathbb{Z}_4,+)$ é grupo e os seus subgrupos são: $\{\bar{0},\bar{1},\bar{2},\bar{3}\}$, $\{\bar{0}\}$ e $\{\bar{0},\bar{2}\}$.

+	Ō	1	2	3	
Ō	Ō	ī	2	3	
ī	ī	2	2 3 0	Ō	
+ 0 1 2 3	0 1 2 3	1 2 3 0		3 0 1 2	
3	3	Ō	ī	2	

critérios de subgrupo

Proposição. Sejam G um grupo e $H \subseteq G$. Então, H < G se e só se são satisfeitas as seguintes condições:

- 1. $H \neq \emptyset$;
- 2. $x, y \in H \Rightarrow xy \in H$;
- 3. $x \in H \Rightarrow x^{-1} \in H$.

Demonstração. Suponhamos que H < G. Então:

- 1. $H \neq \emptyset$, pois $1_G \in H$;
- 2. dados $x, y \in H$, como H é um grupóide, $xy \in H$;
- 3. dado $x \in H$, como todo o elemento de H admite inverso em H e este é igual ao inverso em G, então $x^{-1} \in H$.

Reciprocamente, suponhamos que $H\subseteq G$ satisfaz as condições 1, 2 e 3. Então

- (a) H é grupóide por 2;
- (b) dado $x \in H$ (este elemento existe por 1), $x^{-1} \in H$ (por 3), pelo que $1_G = xx^{-1} \in H$ (por 2);
- (c) qualquer elemento de H admite inverso em H (por 3).

Como a operação é associativa em G, também o é obviamente em H e, portanto, concluímos que H < G.

Proposição. Sejam G um grupo e $H \subseteq G$. Então, H < G se e só se são satisfeitas as seguintes condições:

- 1. $H \neq \emptyset$;
- $2. \ x,y \in H \Rightarrow xy^{-1} \in H.$

Observação. As duas últimas proposições são habitualmente referidas como critérios de subgrupo. São equivalentes e, por isso, a escolha de qual usar para provar que um subconjunto de um determinado grupo é ou não subgrupo deste depende do gosto e destreza de quem está a realizar a prova.

subgrupos especiais

centralizador de um elemento

Definição. Sejam G um grupo e $a \in G$. Chama-se centralizador de a ao conjunto $C(a) = \{x \in G \mid ax = xa\}$.

Exemplo 15.

Seja $G = \{e, p, q, a, b, c\}$ o grupo cuja operação é dada pela tabela anexa. Então,

$$C(e) = G$$
, $C(p) = C(q) = \{e, p, q\}$,
 $C(a) = \{e, a\}$, $C(b) = \{e, b\}$
 $C(c) = \{e, c\}$.

	е	р	q	а	Ь	С	
е	е	р	q	a c b e q	Ь	С	
p	р	q	е	С	а	Ь	
q	q	е	p	Ь	С	а	
a	а	Ь	С	е	p	q	
Ь	Ь	С	а	q	е	p	
С	С	а	Ь	p	q	е	

Proposição. Seja G um grupo. Então, para todo $a \in G$, C(a) < G.

Demonstração. Seja $a \in G$. Então,

- 1. $C(a) \neq \emptyset$, pois $1_G \in G$ é tal que $1_G a = a 1_G$ e, portanto, $1_G \in C(a)$;
- 2. dados $x, y \in C(a)$, temos que $xy \in G$ e

$$a(xy) = (ax) y = (xa) y = x (ay) = x (ya) = (xy) a,$$

pelo que $xy \in C(a)$;

3. dado $x \in C(a)$, temos que $x^{-1} \in G$ e

$$\begin{aligned} \mathsf{a} x &= \mathsf{x} \mathsf{a} & \Rightarrow & \mathsf{x}^{-1} \left(\mathsf{a} \mathsf{x} \right) \mathsf{x}^{-1} &= \mathsf{x}^{-1} \left(\mathsf{x} \mathsf{a} \right) \mathsf{x}^{-1} \\ & \Leftrightarrow & \left(\mathsf{x}^{-1} \mathsf{a} \right) \left(\mathsf{x} \mathsf{x}^{-1} \right) &= \left(\mathsf{x}^{-1} \mathsf{x} \right) \left(\mathsf{a} \mathsf{x}^{-1} \right) \\ & \Leftrightarrow & \left(\mathsf{x}^{-1} \mathsf{a} \right) \mathbf{1}_{\mathsf{G}} &= \mathbf{1}_{\mathsf{G}} \left(\mathsf{a} \mathsf{x}^{-1} \right) \Leftrightarrow \mathsf{x}^{-1} \mathsf{a} &= \mathsf{a} \mathsf{x}^{-1}, \end{aligned}$$

pelo que $x^{-1} \in C(a)$.

Logo,
$$C(a) < G$$
.

centro de um grupo

Definição. Seja G um grupo. Chama-se centro de G ao conjunto

$$Z(G) = \{x \in G \mid \forall a \in G, \quad ax = xa\}.$$

Exemplo 16. Se G é o grupo do exemplo 15, então, $Z(G) = \{e\}$.

Exemplo 17. Se G é um grupo abeliano, então, Z(G) = G.

Observação. É consequência imediata das definições de centro de um grupo e de centralizador de um elemento desse grupo que

$$Z(G) = \bigcap_{a \in G} C(a).$$

Proposição. Seja G um grupo. Então, Z(G) < G.

Demonstração. Seja G um grupo. Então,

- $1. \ \ Z\left(G\right) \neq \emptyset, \ \mathsf{pois} \ 1_{G} \in G \ \mathsf{\acute{e}} \ \mathsf{tal} \ \mathsf{que}, \ \mathsf{para} \ \mathsf{todo} \ a \in G, \quad 1_{G} a = a1_{G} \ \mathsf{e}, \ \mathsf{portanto}, \ 1_{G} \in Z\left(G\right);$
- 2. dados $x, y \in Z(G)$, temos que $xy \in G$ e, para todo $a \in G$,

$$a(xy) = (ax) y = (xa) y = x (ay) = x (ya) = (xy) a,$$

pelo que $xy \in Z(G)$;

3. dado $x \in Z(G)$, temos que $x^{-1} \in G$ e, para todo $a \in G$,

$$x^{-1}a = (x^{-1}a)e = (x^{-1}a)(x^{-1}x) = (x^{-1}ax^{-1})x =$$

$$= x(x^{-1}ax) = (xx^{-1})(ax^{-1}) = 1_G(ax^{-1}) = ax^{-1},$$

pelo que $x^{-1} \in Z(G)$.

Logo,
$$Z(G) < G$$
.

intersecção de subgrupos

Proposição. Sejam G um grupo e H, K < G. Então, $H \cap K < G$.

Demonstração. Sejam G um grupo e H, K < G. Então,

- 1. $H \cap K \neq \emptyset$, pois $1_G \in H$ e $1_G \in K$, pelo que $1_G \in H \cap K$;
- 2. dados $x,y\in H\cap K$, temos que $x,y\in H$ e $x,y\in K$, pelo que $xy\in H$ e $xy\in K$. Logo, $xy\in H\cap K$.
- 3. dado $x \in H \cap K$, temos que $x \in H$ e $x \in K$, pelo que $x^{-1} \in H$ e $x^{-1} \in K$ e, portanto, $x^{-1} \in H \cap K$.

Logo, $H \cap K < G$.

Corolário. Seja G um grupo. Então, a intersecção de uma família não vazia de subgrupos de G é ainda um subgrupo de G.

subgrupo gerado

Proposição. Sejam G um grupo e $\varnothing \neq X \subseteq G$. Consideremos o conjunto $\mathcal H$ de todos os subgrupos de G que contêm X. Então, $\bigcap_{H \in \mathcal H} H$ é o menor subgrupo de G que contém X.

Mais ainda, pela definição de \mathcal{H} , temos que, $X\subseteq\bigcap_{H\in\mathcal{H}}H.$

Finalmente, seja K < G tal que $X \subseteq K$. Então, $K \in \mathcal{H}$ e, portanto, $\bigcap_{H \in \mathcal{H}} H \subseteq K$.

Concluímos então que $\bigcap_{H\in\mathcal{H}}H$ é o menor subgrupo que contém X.

Definição. Sejam G um grupo e $\varnothing \neq X \subseteq G$. Chama-se subgrupo de G gerado por X, e representa-se por $\langle X \rangle$, ao menor subgrupo que contém X. Se $X = \{a\}$, então escrevemos $\langle a \rangle$ para representar $\langle X \rangle$ e falamos no subgrupo de G gerado por a.

Observação. Pela última proposição, temos que $\langle X \rangle$ é a intersecção de todos os subgrupos de G que contêm X.

Exemplo 18. Se $G = \{e, a, b, c\}$ é o grupo 4-Klein, cujos subgrupos são $\{e, a, b, c\}$, $\{e\}$, $\{e, a\}$, $\{e, b\}$ e $\{e, c\}$ (Exemplo 13.), então, $< a >= \{e, a\}$ e $< \{a, b\} >= G$.

Proposição. Sejam G um grupo e $a \in G$. Então, $\langle a \rangle = \{a^n \mid n \in \mathbb{Z}\}$.

Demonstração. Seja $B = \{a^n \mid n \in \mathbb{Z}\}$. Então,

1. $B \neq \emptyset$, pois $1_G = a^0$ e, portanto, $1_G \in B$;

Dados $x, y \in B$, sabemos que existem $n, m \in \mathbb{Z}$ tais que $x = a^n$ e $y = a^m$ e, por isso,

$$xy^{-1} = a^n (a^m)^{-1} = a^n a^{-m} = a^{n-m}.$$

Como $n - m \in \mathbb{Z}$, temos que $xy^{-1} \in B$. Logo, B < G.

- 2. Como $1 \in \mathbb{Z}$, temos que $a \in B$.
- 3. Seja H < G tal que $a \in H$. Então,

$$x \in B \Rightarrow (\exists n \in \mathbb{Z}) \quad x = a^n \Rightarrow x \in H(pois H < G)$$

e, portanto $B \subseteq H$.

Logo,
$$\langle a \rangle = B$$
.

ordem de um elemento

conceitos básicos

Dados um grupo G e $a \in G$, vimos que

$$\langle a \rangle = \{ a^n : n \in \mathbb{Z} \}.$$

É óbvio que, no caso de $a=1_G$, o subgrupo reduz-se ao subgrupo trivial.

Mais ainda, no grupo $(\mathbb{R}\setminus\{0\},\cdot)$, é fácil ver que $\langle -1\rangle=\{-1,1\}$.

Torna-se, portanto, óbvio que, embora o subgrupo gerado esteja definido à custa do conjunto dos inteiros, nem sempre vamos obter um número infinito de elementos.

Definição. Sejam G um grupo e $a \in G$.

- 1. Diz-se que a tem ordem infinita, e escreve-se $o(a) = \infty$, se não existe nenhum $p \in \mathbb{N}$ tal que $a^p = 1_G$.
- 2. Diz-se que a tem ordem k ($k \in \mathbb{N}$), e escreve-se o(a) = k, se
 - (a) $a^k = 1_G$;
 - (b) $p \in \mathbb{N}$ e $a^p = 1_G \Rightarrow k \leq p$.

Exemplo 19. Considerando o conjunto dos números reais:

- Em $(\mathbb{R},+)$, a ordem de qualquer elemento não nulo a é infinita. Por outro lado, o(0)=1.
- Em $(\mathbb{R}\setminus\{0\},\times)$, temos que o(1)=1, o(-1)=2 e se $x\in\mathbb{R}\setminus\{-1,0,1\}$, então $o(x)=\infty$.

Exemplo 20. No grupo 4-Klein $G = \{1_G, a, b, c\}$ temos que:

1.
$$o(1_G) = 1$$
;

2.
$$o(a) = o(b) = o(c) = 2$$
.

Exemplo 21. No grupo $\mathbb{Z}_4 = \{\bar{0}, \bar{1}, \bar{2}, \bar{3}\}$, temos que:

- 1. $o(\bar{0}) = 1$;
- $2. \ o\left(\overline{1}\right)=4, \ \mathsf{pois} \ \overline{1}\neq \overline{0}, \overline{1}+\overline{1}=\overline{2}\neq \overline{0}, \overline{1}+\overline{1}+\overline{1}=\overline{3}\neq \overline{0} \ \mathsf{e} \ \overline{1}+\overline{1}+\overline{1}+\overline{1}=\overline{0};$
- 3. $o\left(\overline{2}\right)=2$, pois $\overline{2}\neq\overline{0}$ e $\overline{2}+\overline{2}=\overline{0}$
- $\text{4. }o\left(\bar{\bf 3}\right)=\text{4, pois }\bar{\bf 3}\neq\bar{\bf 0},\bar{\bf 3}+\bar{\bf 3}=\bar{\bf 2}\neq\bar{\bf 0},\bar{\bf 3}+\bar{\bf 3}+\bar{\bf 3}=\bar{\bf 1}\neq\bar{\bf 0}\text{ e }\bar{\bf 3}+\bar{\bf 3}+\bar{\bf 3}+\bar{\bf 3}=\bar{\bf 0}.$

Proposição. Num grupo G o elemento identidade é o único elemento que tem ordem 1.

Demonstração. É óbvio que $o\left(1_{G}\right)=1$. Provemos agora que é único elemento nestas condições. Suponhamos que $a\in G$ é tal que $o\left(a\right)=1$. Então, $a^{1}=1_{G}$, i.e., $a=1_{G}$.

Proposição. Sejam G um grupo e $a \in G$ um elemento com ordem infinita. Então, para $m, n \in \mathbb{Z}$,

$$a^m \neq a^n$$
 se $m \neq n$.

Demonstração. Sejam $m, n \in \mathbb{Z}$ tal que $a^m = a^n$. Então,

$$a^{m} = a^{n}$$
 $\Rightarrow a^{m}a^{-n} = a^{n}a^{-m} = 1_{G}$
 $\Rightarrow a^{m-n} = a^{n-m} = 1_{G}$
 $\Rightarrow a^{|m-n|} = 1_{G}$
 $\Rightarrow |m-n| = 0$ $(o(a) = \infty)$
 $\Rightarrow m = n$.

Logo, se $m \neq n$ então $a^m \neq a^n$.

Corolário. Sejam G um grupo e $a \in G$ um elemento com ordem infinita. Então, $\langle a \rangle$ tem um número infinito de elementos.

Corolário. Num grupo finito nenhum elemento tem ordem infinita.

Proposição. Sejam G um grupo, $a \in G$ e $k \in \mathbb{N}$ tal que o(a) = k. Então,

- 1. se um inteiro n tem r como resto na divisão por k então $a^n = a^r$;
- 2. para $n \in \mathbb{Z}$, $a^n = 1_G \Leftrightarrow k \mid n$;
- 3. $\langle a \rangle = \{1_G, a^1, a^2, \dots, a^{k-1}\};$
- 4. $\langle a \rangle$ tem exatamente k elementos.

Demonstração.

1. Sejam $n \in \mathbb{Z}$ e $0 \le r < k$ para os quais existe $q \in \mathbb{Z}$ tal que n = qk + r. Então,

$$a^{n} = a^{qk+r} = a^{qk}a^{r} = \left(a^{k}\right)^{q}a^{r} = 1_{G}^{q}a^{r} = 1_{G}a^{r} = a^{r}.$$

2. Pretendemos provar que $a^m = 1_G \Leftrightarrow k \mid m$, ou seja, que

$$a^m = 1_G \Leftrightarrow m = kp$$
 para algum $p \in \mathbb{Z}$.

Suponhamos primeiro que m=kp para algum $p\in\mathbb{Z}$. Então,

$$a^{m} = a^{kp} = (a^{k})^{p} = 1_{G}^{p} = 1_{G}.$$

Reciprocamente, suponhamos que $a^m=1_G$. Sabemos que, pelo algoritmo da divisão, existem $p\in\mathbb{Z}$ e $0\leq r< k$ tais que m=kp+r e, portanto,

$$1_G = a^m = a^{kp+r} = (a^k)^p a^r = 1_G^p a^r = 1_G a^r = a^r.$$

Como o(a) = k, temos que r = 0 (pois $0 \le r < k$ e $k \le r$ se $r \ge 1$). Logo, m = kp.

3. Sabemos que $\langle a \rangle = \{a^n \mid n \in \mathbb{Z}\}$. Obviamente, temos que $\left\{1_G, a, a^2, a^3, \dots, a^{k-1}\right\} \subseteq \langle a \rangle$. Seja $x \in \langle a \rangle$. Então,

$$x = a^p$$
 para algum $p \in \mathbb{Z}$.

Se $p \in \{0,1,2,3,\ldots,k-1\}$ então $x \in \left\{1_G,a,a^2,a^3,\ldots,a^{k-1}\right\}$. Se $p \notin \{0,1,2,3,\ldots,k-1\}$ então sabemos, por 1, que existe $0 \le r \le k-1$ tal que $a^p = a^r$. Logo, $\langle a \rangle \subseteq \left\{e,a,a^2,a^3,\ldots,a^{k-1}\right\}$ e a igualdade verifica-se.

4. Pretendemos provar que, na lista 1_G , a, a^2 , a^3 , ..., a^{k-1} não há repetição de elementos. Suponhamos que sim, i.e., suponhamos que

$$a^p = a^q \qquad \text{com } 0 \le q$$

Então, p-q>0 e

$$a^{p-q} = a^p a^{-q} = a^q a^{-q} = 1_G$$

pelo que $k \leq p-q \leq k-1$, o que é impossível. Logo, não há qualquer repetição e o subgrupo $\langle a \rangle$ tem exatamente k elementos.

ordem de um elemento (cont.)

algumas propriedades

Proposição. Sejam G um grupo e $a,b\in G$. Então, a e $b^{-1}ab$ têm a mesma ordem.

Demonstração. Suponhamos que $o(a)=n_0$ é finita. Sabemos que $(b^{-1}ab)^{n_0}=b^{-1}a^{n_0}b$ (ver exercício 9b da folha 2). Logo, como $a^{n_0}=1_G$, obtemos

$$(b^{-1}ab)^{n_0} = b^{-1}1_Gb = b^{-1}b = 1_G.$$

Suponhamos agora que k é um inteiro positivo tal que $(b^{-1}ab)^k=1_G$. Então,

$$\begin{aligned} (b^{-1}ab)^k &= 1_G & \Leftrightarrow b^{-1}a^kb = 1_G \\ & \Leftrightarrow b(b^{-1}a^kb)b^{-1} = b1_Gb^{-1} \\ & \Leftrightarrow (bb^{-1})a^k(bb^{-1}) = 1_G \\ & \Leftrightarrow a^k = 1_G. \end{aligned}$$

Como a ordem de a é n_0 , segue-se que $k \ge n_0$. Assim, n_0 é, de facto, o menor inteiro positivo n tal que $(b^{-1}ab)^n = 1_G$, ou seja, $o(b^{-1}ab) = n_0$.

Mostramos de seguida que, se a tiver ordem infinita, então, $b^{-1}ab$ também tem ordem infinita, usando a regra do contrarrecíproco. Suponhamos que $o(b^{-1}ab)=k$ é finita. Então, pelo que acabámos de provar, $o\left(b(b^{-1}ab)b^{-1}\right)=k$ e, portanto, o(a)=k é finita.

Observação. Se G é abeliano, o resultado anterior não tem qualquer interesse porque se reduz a o(a) = o(a).

Proposição. Seja G um grupo e $a \in G$ um elemento de ordem finita n. Então, para qualquer $p \in \mathbb{N}$, $o(a^p) = \frac{n}{d}$, onde d = m.d.c.(n, p).

Demonstração. Sejam $p \in \mathbb{N}$ e d = m.d.c.(n,p). Então $\frac{n}{d}$, $\frac{p}{d} \in \mathbb{N}$ e d = xn + yp, para certos $x, y \in \mathbb{N}$. Temos

$$(a^p)^{\frac{n}{d}} = (a^n)^{\frac{p}{d}} = 1_G^{\frac{p}{d}} = 1_G.$$

Se $k \in \mathbb{N}$ é tal que $(a^p)^k = 1_G$, então, como o(a) = n, temos que $n \mid pk$ (ponto 2 da Proposição do slide 35), i.e., pk = nq para certo $q \in \mathbb{N}$.

$$d = xn + yp \Rightarrow dk = xnk + ypk = xnk + ynq = n(xk + yq)$$

$$\Rightarrow k = \frac{n}{d}(xk + yq),$$

pelo que $\frac{n}{d} \mid k$. Portanto, $o(a^p) = \frac{n}{d}$.

Exemplo 22. Considere-se o grupo ($\mathbb{Z}_{31}^*, \otimes$). Facilmente se verifica que, neste grupo, $o([2]_{31}) = 5$. Então,

$$o([8]_{31}) = o([2]_{31}^{3}) = \frac{5}{\text{m.d.c.}(5,3)} = 5.$$

Lema. Sejam G um grupo e $a,b\in G$. Então, para qualquer inteiro positivo k,

$$(ab)^k = 1_G \Leftrightarrow (ba)^k = 1_G.$$

Demonstração. Sejam a, b elementos arbitrários de um grupo G e k um inteiro positivo. Temos:

$$(ab)^{k} = 1_{G} \qquad \Leftrightarrow (ab)^{k+1} = ab$$

$$\Leftrightarrow a(ba)^{k}b = ab$$

$$\Leftrightarrow a^{-1} \left[a(ba)^{k}b \right] b^{-1} = a^{-1}(ab)b^{-1}$$

$$\Leftrightarrow (a^{-1}a)(ba)^{k}(bb^{-1}) = (a^{-1}a)(bb^{-1})$$

$$\Leftrightarrow (ba)^{k} = 1_{G}. \qquad \Box$$

Corolário. Sejam G um grupo e $a, b \in G$. Se ab tem ordem finita então o(ba) = o(ab).

Proposição. Sejam G um grupo e $a \in G$. Então, $o(a^{-1}) = o(a)$.

Demonstração. O resultado é imediato tendo em conta que, para todo $k \in \mathbb{Z}$,

$$a^k = 1_G \Leftrightarrow (a^{-1})^k = 1_G.$$

Proposição. Se $a \in b$ são elementos de ordem finita de um grupo abeliano G, então $o(ab) \mid o(a) o(b)$.

Demonstração. Se G é abeliano, sabemos que, para todo $n \in \mathbb{Z}$, $(ab)^n = a^n b^n$ (exercício 9 da folha 2). Assim, temos que

$$(ab)^{o(a)\,o(b)} = a^{o(a)\,o(b)}b^{o(a)\,o(b)} = (a^{o(a)})^{o(b)}(b^{o(b)})^{o(a)} = (1_G)^{o(b)}(1_G)^{o(a)} = 1_G1_G = 1_G.$$

Pelo ponto 2 da proposição do slide 35 estamos em condições de concluir que $o(ab) \mid o(a) \, o(b)$. \square

Observação. Que relação terá de existir entre as ordens finitas de *a* e *b* para que a ordem de *ab* seja não só um divisor mas sim igual ao produto daquelas ordens?

Exemplo 23. No grupo aditivo (\mathbb{Z}_6) , temos que $o([2]_6) = 3$, $o([3]_6) = 2$ e $o([4]_6) = 3$.

Temos que

$$o([2]_6 \oplus [4]_6) = o([0]_6) = 1 e o([2]_6) o([4]_6) = 3 \times 3 = 9.$$

Temos também que

$$o([2]_6 \oplus [3]_6) = o([5]_6) = 6 e o([2]_6) o([3]_6) = 3 \times 2 = 6.$$

o teorema de Lagrange

produto de subconjuntos de um grupo

Definição. Sejam G um grupo e $X, Y \subseteq G$. Chama-se produto de X por Y, e representa-se por XY, ao conjunto

$$XY = \begin{cases} \{xy \in G : x \in X \text{ e } y \in Y\} & \text{se } X \neq \emptyset \text{ e } Y \neq \emptyset; \\ \emptyset & \text{se } X = \emptyset \text{ ou } Y = \emptyset. \end{cases}$$

Se $X \neq \emptyset$, chama-se *inverso de* X, e representa-se por X^{-1} , ao conjunto $X^{-1} = \{x^{-1} : x \in X\}$.

Proposição. Sejam G um grupo e $\mathcal{P}(G)=\{X\mid X\subseteq G\}$. Então, $\mathcal{P}(G)$ é um semigrupo com identidade $\{1_G\}$, quando algebrizado com o produto de subconjuntos de G.

Observação. Na prática, a proposição anterior assegura que dados um grupo G e $A, B, C \subseteq G$, podemos falar no subconjunto ABC de G, uma vez que ABC = A(BC) = (AB)C. É também importante referir que, de um modo geral, no semigrupo $\mathcal{P}(G)$, o elemento A^{-1} não é elemento oposto de A, como mostra o seguinte exemplo.

Exemplo. Seja $G = \{e, a, b, c\}$ o grupo de *4-Klein,* i.e., o grupo cuja operação é dada pela tabela

Se $A = \{a, b\}$, então, $A^{-1} = \{a^{-1}, b^{-1}\} = \{a, b\}$, pelo que

$$A^{-1}A = \{aa, ab, ba, bb\} = \{e, c\} \neq \{e\}.$$

Logo, no semigrupo $\mathcal{P}(G)$, o elemento A^{-1} não é o oposto do elemento A.

Notação. Dados $a \in G$ e $Y \subseteq G$, escreve-se aY para representar $\{a\}$ Y e Ya para representar Y $\{a\}$. Assim,

$$aY = \{ay \in G \mid y \in Y\}, \qquad Ya = \{ya \in G \mid y \in Y\}.$$

relações de congruência num grupo

Recordar. Dado um conjunto X, chamamos relação binária em X a qualquer subconjunto R de $X \times X$. Para $x, y \in X$, dizemos que x está R relacionado com y se $(x,y) \in R$ e podemos escrever x R y em vez de $(x,y) \in R$.

Uma relação binária R num dado conjunto X diz-se uma relação de equivalência se R é:

- Reflexiva $(\forall x \in X, x R x)$;
- Simétrica ($\forall x, y \in X, x R y \Rightarrow y R x$);
- Transitiva $(\forall x, y, z \in X, (x R y \land y R z \Rightarrow x R z).$

Se num conjunto X estiver definida uma operação binária (como é o caso dos grupos), uma relação de equivalência ρ em X diz-se:

- uma relação de congruência à esquerda se: $\forall x, y, z \in X, x \rho y \Rightarrow zx \rho zy$;
- uma relação de congruência à direita se: $\forall x, y, z \in X, \ x \rho y \Rightarrow xz \rho yz$;
- uma relação de congruência se: $\forall x, y, z \in X, \ x \rho y \Rightarrow (zx \rho zy \land xz \rho yz)$.

Proposição. Sejam G um grupo e H < G. A relação $\equiv^e \pmod{H}$, definida em G por

$$\forall x, y \in G, \qquad x \equiv^e y \pmod{H} \iff x^{-1}y \in H$$

é uma relação de congruência à esquerda.

Demonstração. Primeiro, verifiquemos que $\equiv^e \pmod{H}$ é uma relação de equivalência. De facto:

- (i) Para todo $x \in G$, $x^{-1}x = 1_G \in H$, pelo que a relação é reflexiva.
- (ii) Sejam $x, y \in G$ tais que $x \equiv^{e} y \pmod{H}$. Então,

$$x \equiv^{e} y \, (\operatorname{mod} H) \Leftrightarrow x^{-1} y \in H \Rightarrow y^{-1} x = \left(x^{-1} y\right)^{-1} \in H \Leftrightarrow y \equiv^{e} x \, (\operatorname{mod} H) \, .$$

Logo, a relação é simétrica.

(iii) Sejam $x, y, z \in G$ tais que $x \equiv^e y \pmod{H}$ e $y \equiv^e z \pmod{H}$. Então,

$$x \equiv^e y \pmod{H}$$
 e $y \equiv^e z \pmod{H}$ \iff $x^{-1}y \in H$ e $y^{-1}z \in H$
 \Rightarrow $x^{-1}z = x^{-1}yy^{-1}z \in H$
 \iff $x \equiv^e z \pmod{H}$,

pelo que a relação é transitiva.

Verifiquemos agora que a relação é compatível com a multiplicação à esquerda:

Sejam $x,y\in G$ tal que $x\equiv^e y\ (\operatorname{mod} H)$ e $a\in G$. Queremos provar que $ax\equiv^e ay\ (\operatorname{mod} H)$. De facto,

$$x \equiv^{e} y \pmod{H} \iff x^{-1}y \in H$$

$$\iff x^{-1}ey \in H$$

$$\iff x^{-1}a^{-1}ay \in H$$

$$\iff (ax)^{-1}ay \in H$$

$$\iff ax \equiv^{e} ay \pmod{H}.$$

Concluímos então que $\equiv^e \pmod{H}$ é uma relação de congruência à esquerda.

Analogamente, provamos que

Proposição. Sejam G um grupo e H < G. A relação $\equiv^d \pmod{H}$, definida em G por

$$\forall x, y \in G, \qquad x \equiv^d y \pmod{H} \iff xy^{-1} \in H$$

é uma relação de congruência à direita.

Definição. Sejam G um grupo e H < G. À relação $\equiv^e \pmod{H}$ chama-se congruência esquerda módulo H e à relação $\equiv^d \pmod{H}$ chama-se congruência direita módulo H.

Cada uma destas relações de equivalência define em G uma partição (que pode não ser necessariamente a mesma). Representando por $[a]_e$ a classe de equivalência do elemento $a \in G$ quando consideramos a congruência esquerda módulo H, temos que

$$x \in [a]_e \Leftrightarrow x \equiv^e a \pmod{H} \Leftrightarrow x^{-1}a \in H \Leftrightarrow \exists h \in H : x^{-1}a = h$$

 $\Leftrightarrow \exists h \in H : x^{-1} = ha^{-1} \Leftrightarrow \exists h \in H : x = ah^{-1} \Leftrightarrow x \in aH,$

pelo que

$$[a]_e = aH, \quad \forall a \in G.$$

De modo análogo, representando por $[a]_d$ a classe de equivalência do elemento $a \in G$ quando consideramos a congruência direita módulo H, temos que

$$[a]_d = Ha, \quad \forall a \in G.$$

Definição. Sejam G um grupo e H < G. Para cada $a \in G$, o subconjunto aH designa-se por classe lateral esquerda de a módulo H e o subconjunto Ha designa-se por classe lateral direita de a módulo H.

Exemplo 22. Seja $G = \{e, a, b, c\}$ o grupo de *4-Klein,* i.e., o grupo cuja operação é dada pela tabela

Considerando o subgrupo $H = \{e, a\}$, as classes laterais esquerdas são

$$eH = H = aH$$
 e $bH = \{b, c\} = cH$

e as classes laterais direitas são iguais já que o grupo é comutativo.

Exemplo 23. Seja $G = \{e, p, q, a, b, c\}$ o grupo cuja operação é dada pela tabela

Então, considerando o subgrupo $H = \{e, a\}$, as classes laterais esquerdas são

$$eH = H = aH$$
, $bH = \{b, q\} = qH$ e $cH = \{c, p\} = pH$

e as classes laterais direitas são

$$He = H = Ha$$
, $Hb = \{b, p\} = Hp$ e $Hc = \{c, q\} = Hq$.

Proposição. Sejam G um grupo e H < G. Se H é finito então cada classe módulo H tem a mesma cardinalidade que H.

Demonstração. Sejam G um grupo e $a \in G$. As aplicações

são bijecções em G. Logo, $\lambda_a|_H$ e $\rho_a|_H$ são bijecções de H em λ_a (H)=aH e de H em ρ_a (H)=Ha, respetivamente. Assim, se H for finito,

$$\sharp (aH) = \sharp H = \sharp (Ha).$$

Proposição. Sejam G um grupo finito e H < G. Se a_1H , a_2H , ..., a_rH são exatamente as classes laterais esquerdas de H em G (com $r \ge 1$ e $a_1, a_2, \ldots, a_r \in G$), então, $Ha_1^{-1}, Ha_2^{-1}, \ldots, Ha_r^{-1}$ são exatamente as classes laterais direitas de H em G.

Demonstração. Cada elemento de G pertence exatamente a uma e uma só classe lateral esquerda a_1H, a_2H, \ldots, a_rH . Sejam $x \in G$ e $1 \le i \le r$. Então,

$$x \in Ha_i^{-1} \Leftrightarrow x \left(a_i^{-1}\right)^{-1} \in H \Leftrightarrow xa_i \in H \Leftrightarrow \left(x^{-1}\right)^{-1} a_i \in H \Leftrightarrow x^{-1} \in a_i H.$$

Como a condição $x^{-1} \in a_i H$ é verdadeira para exatamente um valor de i, então também a expressão $x \in Ha_i^{-1}$ é verdadeira para exatamente um valor de i.

Observação. No seguimento desta proposição, escrevemos

$$G/_{\equiv^e (\operatorname{mod} H)} = \{a_1H, a_2H, \dots, a_rH\}$$

se e só se

$$G/_{\equiv^d \pmod{H}} = \left\{ Ha_1^{-1}, Ha_2^{-1}, \dots, Ha_r^{-1} \right\}.$$

teorema de Lagrange

Definição. Sejam G um grupo finito e H < G. Chama-se:

- 1. ordem do grupo G, e representa-se por |G|, ao número de elementos de G;
- 2. *índice de H*, e representa-se por [G:H], ao número de classes laterais esquerdas (ou direitas) de H em G.

Teorema. (Teorema de Lagrange) Sejam G um grupo finito e H < G. Então,

$$|G| = [G:H] \cdot |H|.$$

Demonstração. Imediata, tendo em conta que, se se considerar a partição em G definida pela congruência esquerda módulo H, temos [G:H] classes, cada uma das quais com |H| elementos. \square

Corolário. Num grupo finito G, a ordem de cada elemento divide a ordem do grupo.

Demonstração. Imediata, tendo em conta que $o(a) = |\langle a \rangle|$, para todo $a \in G$.

Corolário. Sejam G um grupo finito e p um primo tal que |G|=p. Então, existe $b\in G$ tal que $G=\langle b\rangle$.

Demonstração. Como p é primo, $p \neq 1$, pelo que $G \neq \{1_G\}$. Seja $x \in G$ tal que $x \neq 1_G$. Então,

$$o(x) \mid p \Rightarrow o(x) = p$$

 $\Rightarrow |\langle x \rangle| = p$
 $\Leftrightarrow G = \langle x \rangle$.

O recíproco do teorema de Lagrange nem sempre é verdadeiro: o facto de a ordem de um grupo admitir um determinado fator, não implica que exista necessariamente um subgrupo desse grupo cuja ordem é esse fator.

No entanto, se esse fator é um número primo, temos:

Teorema. (*Teorema de Cauchy*) Sejam G um grupo de ordem $n \in \mathbb{N}$ e p um primo divisor de n. Então, existe um elemento $a \in G$ tal que o(a) = p.

subgrupos normais e grupos quociente

subgrupos normais

Definição. Sejam G um grupo e H < G. Diz-se que H é *subgrupo normal* ou *invariante* de G, e escreve-se $H \triangleleft G$, se

$$\forall x \in G, xH = Hx.$$

Exemplo 24. Seja $G = \{e, p, q, a, b, c\}$ o grupo cuja operação é dada pela tabela

	е	p	q	a	b	С	
е	e p q a b	р	q	а	b	С	
p	р	q	е	С	а	Ь	
q	q	е	р	Ь	С	а	
a	а	Ь	С	е	p	q	
Ь	Ь	С	а	q	е	p	
С	С	а	Ь	р	q	е	

(ver Exemplo 23) e $H=\{e,a\}$. Então, como $bH=\{b,q\}\neq\{b,p\}=Hb$, concluímos que H não é subgrupo normal de G. No entanto, se considerarmos o subgrupo $K=\{e,p,q\}$, temos que $K\lhd G$, uma vez que

$$eK = Ke = pK = Kp = qK = Kq = K = \{e, p, q\}$$

е

$$aK = Ka = bK = Kb = cK = Kc = \{a, b, c\}.$$

Proposição. Dado um grupo G qualquer, o subgrupo trivial e o subgrupo impróprio são subgrupos normais de G.

Demonstração. Sejam G um grupo e $a \in G$. Então, como as equações ax = b e ya = b têm soluções únicas, para qualquer $b \in G$, temos que

$$aG = \{ag : g \in G\} = G = \{ga : g \in G\} = Ga,$$

o que permite concluir que $G \triangleleft G$.Além disso,

$$a\{1_G\} = \{a1_G\} = a = \{1_Ga\} = \{1_G\}a,$$

ou seja, $\{1_G\} \triangleleft G$.

Proposição. Seja G um grupo abeliano. Então, qualquer subgrupo H de G é normal em G

Demonstração. Basta ter em conta que, se G é abeliano e $a \in G$, então, $aH = \{ah \in G : h \in H\} = \{ha \in G : h \in H\} = Ha$.

Exemplo 25. Seja G um grupo. Então, $Z(G) \triangleleft G$. De facto, seja $g \in G$. Então,

$$x \in gZ(G) \Leftrightarrow (\exists a \in Z(G)) \quad x = ga$$

 $\Leftrightarrow (\exists a \in Z(G)) \quad x = ag \Leftrightarrow x \in Z(G)g.$

Exemplo 26. Sejam G um grupo e H < G tal que [G : H] = 2. Então, $H \triangleleft G$. De facto, de [G : H] = 2, temos que existe $x \in G \backslash H$ tal que Hx = xH. Assim, para todo $y \in G$, como

$$yH = \begin{cases} H & \text{se } y \in H \\ xH & \text{se } y \notin H \end{cases}$$

е

$$Hy = \begin{cases} H & \text{se } y \in H \\ Hx & \text{se } y \notin H, \end{cases}$$

temos que yH = Hy, qualquer que seja $y \in G$.

Vimos já que a comutatividade num grupo G implica a normalidade dos subgrupos. Assim, podemos afirmar que se H é um subgrupo de G tal que, para todos $a \in G$ e $h \in H$, ah = ha, então $H \triangleleft G$.

Reciprocamente, se H é um subgrupo normal de G o que podemos afirmar é que

$$\forall a \in G, \ \forall h_1 \in H, \ \exists h_2 \in H: \ ah_1 = h_2 a.$$

Teorema. Sejam G um grupo e H < G. Então,

$$H \triangleleft G \iff (\forall x \in G) (\forall h \in H) \quad xhx^{-1} \in H.$$

Demonstração. $[\Rightarrow]$ Suponhamos que $H \lhd G$. Então, para todo $x \in G$,

$$xH = Hx$$
.

Sejam $g \in G$ e $h \in H$. Temos que existe $h' \in H$

$$ghg^{-1} = (gh)g^{-1} = (h'g)g^{-1} = h'(gg^{-1}) = h',$$

pelo que $ghg^{-1} \in H$.

[\Leftarrow] Suponhamos que, para todos $x \in G$ e $h \in H$, $xhx^{-1} \in H.$

Queremos provar que $H \triangleleft G$.

Seja $g \in G$. Então,

$$y \in gH$$
 \Leftrightarrow $(\exists h' \in H)$ $y = gh'$
 \Leftrightarrow $(\exists h' \in H)$ $y = gh' (g^{-1}g)$
 \Leftrightarrow $(\exists h' \in H)$ $y = (gh'g^{-1})g$
 \Rightarrow $y \in Hg$ por hipótese,

pelo que $gH \subseteq Hg$. De modo análogo, prova-se que $Hg \subseteq gH$ e, portanto, Hg = gH.

Exemplo 27. O Teorema anterior pode ser usado para provar facilmente que a interseção de dois subgrupos normais de um mesmo grupo é ainda um subgrupo normal desse grupo.

Sejam G um grupo e H_1 e H_2 dois subgrupos normais de G. Sabemos já que $H_1 \cap H_2 < G$. Para provar que este subrupo é normal em G, basta considerar $x \in G$ e $h \in H_1 \cap H_2$ e provar que $xhx^{-1} \in H_1 \cap H_2$. De facto, se $h \in H_1 \cap H_2$, então $h \in H_1$ e $h \in H_2$.

Como $H_1 \triangleleft G$, $x \in G$ e $h \in H_1$, temos, pelo teorema anterior, que $xhx^{-1} \in H_1$. Analogamente, como $H_2 \triangleleft G$, temos que $xhx^{-1} \in H_2$. Logo $xhx^{-1} \in H_1 \cap H_2$ e, novamente pelo teorema anterior, $H_1 \cap H_2 \triangleleft G$.

grupos quociente

Observação. É óbvio que, se um grupo G admite um subgrupo normal H, as relações $\equiv^e \pmod{H}$ e $\equiv^d \pmod{H}$ são uma e uma só relação de congruência. De facto,

$$x \equiv^e y \pmod{H} \Leftrightarrow x^{-1}y \in H \Leftrightarrow y \in xH = Hx$$

 $\Leftrightarrow yx^{-1} \in H \Leftrightarrow x \equiv^d y \pmod{H}.$

Assim, fala-se de uma única relação $\equiv \pmod{H}$, que, por sua vez, define um único conjunto quociente, que se representa por G/H. Logo,

$$G/H = \{xH \mid x \in G\} = \{Hx \mid x \in G\}.$$

Proposição. Sejam G um grupo e $H \triangleleft G$. Então, G/H é grupo, se considerarmos o produto de subconjuntos de G.

Demonstração. Sejam $x,y\in \mathcal{G}.$ Então,

$$xHyH = xyHH = xyH$$
,

pelo que G/H é fechado para o produto.

Mais ainda, a operação é associativa, H é o seu elemento neutro e cada classe xH admite a classe $x^{-1}H$ como elemento inverso.

Definição. Sejam G um grupo e $H \triangleleft G$. Ao grupo G/H chama-se grupo quociente.

Exemplo 28. Considere-se o subgrupo $3\mathbb{Z}=\{3k:k\in\mathbb{Z}\}$ do grupo (aditivo) \mathbb{Z} . Como a adição usual de inteiros é comutativa, concluímos que $3\mathbb{Z}\lhd\mathbb{Z}$. Como estamos a trabalhar com a linguagem aditiva, temos que, dados $x,y\in\mathbb{Z}$,

$$x \equiv y \pmod{3\mathbb{Z}} \Leftrightarrow x + (-y) \in 3\mathbb{Z} \Leftrightarrow x - y = 3k, \text{ para algum } k \in \mathbb{Z} \Leftrightarrow x \equiv y \pmod{3}.$$

Assim, temos que

$$\mathbb{Z}/3\mathbb{Z} = \{[0]_3, [1]_3, [2]_3\} = \mathbb{Z}_3.$$

Proposição. Sejam G um grupo e θ uma relação de congruência definida em G. Então, a classe de congruência do elemento identidade, $[1_G]_{\theta}$, é um subgrupo normal de G. Mais ainda, para $x,y\in G$,

$$x \theta y \iff x^{-1}y \in [1_G]_{\theta}$$
.

Demonstração. Seja G um grupo e θ uma relação de congruência em G.

Pretendemos provar, primeiro, que

$$[1_G]_{\theta} = \{x \in G \mid x\theta 1_G\} \vartriangleleft G.$$

De facto,

- (i) $[1_G]_{\theta} \neq \emptyset$, pois é uma classe de congruência;
- (ii) Sejam $x,y\in [1_G]_{\theta}$. Então,

$$x \theta 1_G \Rightarrow xy \theta 1_G y = y \theta 1_G \Rightarrow xy \theta 1_G$$

pelo que $xy \in [1_G]_{ heta}$;

(iii) Seja $x \in [1_G]_{ heta}$. Então,

$$x \theta 1_G \Rightarrow xx^{-1} \theta 1_G x^{-1} \Leftrightarrow 1_G \theta x^{-1} \Rightarrow x^{-1} \theta 1_G$$

pelo que $x^{-1} \in [1_G]_{ heta}$.

Logo, $[1_G]_{\theta}$ é um subgrupo de G.

Mais ainda, sejam $x \in G$ e $a \in [1_G]_{\theta}$. Então,

$$\mathsf{a}\,\theta\,\mathbf{1}_{\mathsf{G}}\Rightarrow \mathsf{x}\mathsf{a}\mathsf{x}^{-1}\,\theta\,\mathsf{x}\mathbf{1}_{\mathsf{G}}\mathsf{x}^{-1}=\mathsf{x}\mathsf{x}^{-1}=\mathbf{1}_{\mathsf{G}},$$

pelo que $xax^{-1} \in [1_G]_{\theta}$ e, portanto, $[1_G]_{\theta}$ é invariante.

Finalmente, sejam $x, y \in G$. Então,

$$x \theta y \Rightarrow x^{-1} x \theta x^{-1} y \Leftrightarrow 1_G \theta x^{-1} y \Leftrightarrow x^{-1} y \in [1_G]_{\theta}$$

е

$$x^{-1}y \in \left[1_G\right]_\theta \Leftrightarrow x^{-1}y\,\theta\,1_G \Rightarrow xx^{-1}y\,\theta\,x1_G \Leftrightarrow y\,\theta\,x.$$

Logo,

$$x \theta y \Longleftrightarrow x^{-1}y \in [1_G]_{\theta}$$
.

Observação. Com o que vimos até agora, é claro que existe uma relação biunívoca entre o conjunto das congruências possíveis de definir num grupo e o conjunto dos subgrupos normais nesse mesmo grupo: Cada subgrupo normal H de um grupo G define uma relação de congruência em G (relação mod H) e cada relação de congruência em G origina um subgrupo normal de G (a classe do elemento identidade).

62

morfismos

conceitos básicos

Definição. Sejam G_1 , G_2 grupos. Uma aplicação $\psi:G_1\longrightarrow G_2$ diz-se um morfismo ou homomorfismo se

$$(\forall x, y \in G_1)$$
 $\psi(xy) = \psi(x)\psi(y)$.

Um morfismo diz-se um *epimorfismo* se for uma aplicação sobrejetiva. Um morfismo diz-se um *monomorfismo* se for uma aplicação injetiva. Um morfismo diz-se um *isomorfismo* se for uma aplicação bijetiva. Neste caso, escreve-se $G_1\cong G_2$ e diz-se que os dois grupos são *isomorfos*. Um morfismo de um grupo nele mesmo diz-se um *endomorfismo*. Um endomorfismo diz-se um *automorfismo* se for uma aplicação bijetiva.

Exemplo 29. Sejam G_1 e G_2 grupos e $\varphi: G_1 \to G_2$ definida por $\varphi(x) = 1_{G_2}$, para todo $x \in G_1$. Então, φ é um morfismo de grupos (conhecido por *morfismo nulo*).

De facto, dados $x, y \in G_1$, temos que $\varphi(xy) = 1_G = 1_G 1_G = \varphi(x)\varphi(y)$.

Exemplo 30. A aplicação $\varphi : \mathbb{R} \to \mathbb{R} \setminus \{0\}$, definida por $\varphi(x) = e^x$ para todo $x \in \mathbb{R}$, é um morfismo do grupo $(\mathbb{R}, +)$ no grupo $(\mathbb{R} \setminus \{0\}, \times)$.

A conclusão é imediata tendo em conta que, para todos os reais x e y, $e^{x+y}=e^xe^y$ e que $e^x\neq 0$.

Exemplo 31. A aplicação $\varphi: \mathbb{Z}_4 \to \mathbb{Z}_2$, definida por

$$\varphi([0]_4) = \varphi([2]_4) = [0]_2$$
 $\varphi([1]_4) = \varphi([3]_4) = [1]_2$

é um morfismo de grupos.

Para provar esta afirmação, temos de verificar os 10 casos distintos possíveis (temos 16 somas possíveis, mas os dois grupos são comutativos):

$$\begin{split} &\varphi([0]_4 \oplus [0]_4) = \varphi([0]_4) = [0]_2 = [0]_2 \oplus [0]_2 = \varphi([0]_4) \oplus \varphi([0]_4) \\ &\varphi([0]_4 \oplus [1]_4) = \varphi([1]_4) = [1]_2 = [0]_2 \oplus [1]_2 = \varphi([0]_4) \oplus \varphi([1]_4) \\ &\varphi([0]_4 \oplus [2]_4) = \varphi([2]_4) = [0]_2 \oplus [0]_2 = \varphi([0]_4) \oplus \varphi([2]_4) \\ &\varphi([0]_4 \oplus [3]_4) = \varphi([3]_4) = [1]_2 = [0]_2 \oplus [1]_2 = \varphi([0]_4) \oplus \varphi([3]_4) \\ &\varphi([1]_4 \oplus [1]_4) = \varphi([2]_4) = [0]_2 = [1]_2 \oplus [1]_2 = \varphi([1]_4) \oplus \varphi([1]_4) \\ &\varphi([1]_4 \oplus [2]_4) = \varphi([3]_4) = [1]_2 = [1]_2 \oplus [0]_2 = \varphi([1]_4) \oplus \varphi([2]_4) \\ &\varphi([2]_4 \oplus [2]_4) = \varphi([0]_4) = [0]_2 = [1]_2 \oplus [1]_2 = \varphi([1]_4) \oplus \varphi([3]_4) \\ &\varphi([2]_4 \oplus [2]_4) = \varphi([0]_4) = [0]_2 = [0]_2 \oplus [0]_2 = \varphi([2]_4) \oplus \varphi([2]_4) \\ &\varphi([3]_4 \oplus [3]_4) = \varphi([2]_4) = [0]_2 = [1]_2 \oplus [1]_2 = \varphi([3]_4) \oplus \varphi([3]_4) \\ &\varphi([3]_4 \oplus [3]_4) = \varphi([2]_4) = [0]_2 = [1]_2 \oplus [1]_2 = \varphi([3]_4) \oplus \varphi([3]_4) \end{split}$$

Este morfismo pode ser definido por $\varphi([x]_4) = [x]_2$, para todo $[x]_4 \in \mathbb{Z}_4$. Será que, dados $n, m \in \mathbb{N}$, a correspondência de \mathbb{Z}_n para \mathbb{Z}_m , definida por $\varphi([x]_n) = [x]_m$ é um morfismo de grupos?

A resposta à pergunta do slide anterior é NÃO.

Se n < m, a correspondência nem sequer é uma aplicação, uma vez que $[m]_n = [m-n]_n$ e $\varphi([m]_n) = [0]_m \neq [-n]_m = \varphi([m-n]_n)$.

Se $n \geq m$, a correspondência é uma aplicação, mas não necessariamente um morfismo de grupos. Como contraexemplo, podemos considerar a aplicação $\varphi: \mathbb{Z}_5 \to \mathbb{Z}_6$, definida por $\varphi([x]_5) = [x]_6$. Temos

$$\varphi([2]_5 \oplus [4]_5) = \varphi([1]_5) = [1]_6 \neq [0]_6 = [2]_6 \oplus [4]_6 = \varphi([2]_5) \oplus \varphi([4]_5).$$

Prova-se que $\varphi: Z_n \to Z_m$, definida por $\varphi([x]_n) = [x]_m$ é um morfismo de grupos se e só se $m \mid n$.

Proposição. Sejam G_1 e G_2 dois grupos. Se $\psi:G_1\longrightarrow G_2$ é um morfismo então $\psi\left(1_{G_1}\right)=1_{G_2}$.

Demonstração. Temos que

$$1_{G_1}1_{G_1}=1_{G_1},$$

pelo que

$$\psi\left(1_{\mathcal{G}_{1}}\right)\psi\left(1_{\mathcal{G}_{1}}\right)=\psi\left(1_{\mathcal{G}_{1}}1_{\mathcal{G}_{1}}\right)=\psi\left(1_{\mathcal{G}_{1}}\right).$$

Por outro lado, como $\psi\left(1_{\mathcal{G}_1}\right)\in\mathcal{G}_2$, temos que

$$\psi\left(1_{G_1}\right)1_{G_2} = \psi\left(1_{G_1}\right).$$

Logo,

$$\psi\left(1_{\mathit{G}_{1}}\right)\psi\left(1_{\mathit{G}_{1}}\right)=\psi\left(1_{\mathit{G}_{1}}\right)1_{\mathit{G}_{2}},$$

pelo que, pela lei do corte,

$$\psi\left(1_{G_1}\right) = 1_{G_2}.$$

Proposição. Sejam G_1 e G_2 dois grupos e $\psi: G_1 \longrightarrow G_2$ um morfismo. Então $[\psi(x)]^{-1} = \psi(x^{-1})$.

Demonstração. Seja $x \in G_1$. Então,

$$\psi\left(\mathbf{x}\right)\psi\left(\mathbf{x}^{-1}\right)=\psi\left(\mathbf{x}\mathbf{x}^{-1}\right)=\psi\left(\mathbf{1}_{G_{1}}\right)=\mathbf{1}_{G_{2}}$$

е

$$\psi\left(x^{-1}\right)\psi\left(x\right) = \psi\left(x^{-1}x\right) = \psi\left(1_{G_1}\right) = 1_{G_2}.$$

Logo, pela própria definição de inverso, $[\psi(x)]^{-1} = \psi(x^{-1})$.

Proposição. Sejam G_1 e G_2 dois grupos, $H\subseteq G_1$ e $\psi:G_1\to G_2$ um morfismo. Então,

$$H < G_1 \Rightarrow \psi(H) < G_2$$
.

Demonstração. Seja $H < G_1$. Então:

1. $\psi(H) \neq \emptyset$, pois

$$1_{G_1} \in H \Rightarrow \psi(1_{G_1}) \in \psi(H);$$

2. Sejam $a,b\in\psi\left(H\right)$. Então,

$$(\exists x, y \in H)$$
 $a = \psi(x)$ e $b = \psi(y)$.

Assim,

$$\left(\exists x,y\in H\right)\quad ab=\psi\left(x\right)\psi\left(y\right)=\psi\left(xy\right),$$

pelo que $z = xy \in H$ é tal que $ab = \psi(z)$. Logo, $ab \in \psi(H)$;

3. Seja $a \in \psi(H)$. Então, existe $x \in H$ tal que $a = \psi(x)$. Como

$$a = \psi(x) \Rightarrow a^{-1} = [\psi(x)]^{-1} = \psi(x^{-1})$$

 $e x^{-1} \in H$, temos que $a^{-1} \in \psi(H)$.

Concluímos, assim, que ψ (H) < G.

Corolário. Seja $\psi: G_1 \longrightarrow G_2$ um morfismo de grupos. Se ψ é um monomorfismo então $G_1 \cong \psi(G_1)$.

Observação. Dois grupos finitos isomorfos têm a mesma ordem. Mas, dois grupos com a mesma ordem, não são necessariamente isomorfos. Como contraexemplo, basta pensar no grupo 4-Klein e no \mathbb{Z}_4 .

De facto, se o grupo 4-Klein $G=\{e,a,b,c\}$ fosse isomorfo ao grupo aditivo $\mathbb{Z}_4=\{\overline{0},\overline{1},\overline{2},\overline{3}\}$ e $f:G\to\mathbb{Z}_4$ fosse um isomorfismo de grupos, teríamos

$$\overline{0} = f(e) = f(xx) = f(x) \oplus f(x),$$

para todo $x \in G$. Sendo f bijetiva, concluíamos que todos os elementos de \mathbb{Z}_4 eram simétricos de si próprios, o que é uma contradição, pois, em \mathbb{Z}_4 , apenas as classes $\overline{0}$ e $\overline{2}$ são inversas de si próprias.

Proposição. Sejam G_1 e G_2 dois grupos, $H \subseteq G_1$ e $\psi: G_1 \to G_2$ um epimorfismo. Então,

$$H \triangleleft G_1 \Rightarrow \psi(H) \triangleleft G_2$$
.

Demonstração. Considerando a proposição anterior, como $H < G_1$, temos que $\psi(H) < G_2$. Assim, falta apenas provar que, para $g \in G_2$ e $a \in \psi(H)$, temos que $gag^{-1} \in \psi(H)$. De facto,

$$\begin{split} g \in G_2, a \in \psi\left(H\right) & \Rightarrow (\exists x \in G_1, h \in H) \ g = \psi\left(x\right), \quad a = \psi\left(h\right) \\ & \Rightarrow (\exists x \in G_1, h \in H) \ gag^{-1} = \psi\left(x\right)\psi\left(h\right)[\psi\left(x\right)]^{-1} \\ & \Rightarrow gag^{-1} = \psi\left(xhx^{-1}\right) \ com \ xhx^{-1} \in H \\ & \rightarrow gag^{-1} \in \psi\left(H\right), \end{split}$$

pelo que $\psi(H) \lhd G_2$.

núcleo de um morfismo

Definição. Seja $\psi: G_1 \longrightarrow G_2$ um morfimo de grupos. Chama-se *núcleo* (ou *kernel*) de ψ , e representa-se por $\operatorname{Nuc}\psi$ ou $\ker\psi$, ao subconjunto de G_1

$$\mathrm{Nuc}\psi = \left\{ x \in \mathit{G}_{1} \mid \psi\left(x\right) = 1_{\mathit{G}_{2}} \right\}.$$

Exemplo 32. Se $\varphi: \mathbb{Z}_4 \to \mathbb{Z}_2$ é o morfismo definido no Exemplo 31., temos que

$$\mathrm{Nuc}\varphi=\{[0]_4\,,[2]_4\}.$$

Exemplo 33. Sejam G_1 e G_2 grupos e $\varphi:G_1\to G_2$ o morfismo nulo. Então, ${\rm Nuc}\varphi=G_1.$

Proposição. Seja $\psi: G_1 \longrightarrow G_2$ um morfismo de grupos. Então, $\operatorname{Nuc}\psi \lhd G_1$.

Demonstração. Começamos por provar que $\mathrm{Nu} c \psi$ é subgrupo de G_1 .

- 1. Observemos, primeiro, que $1_{G_1} \in \mathrm{Nuc}\psi$. De facto, $1_{G_1} \in G_1$ e $\psi\left(1_{G_1}\right) = 1_{G_2}$;
- 2. Sejam $a, b \in G_1$. Como $a^{-1}b \in G_1$ e

$$\begin{split} a,b \in \text{Nuc}\psi & \Rightarrow \psi\left(a\right) = \psi\left(b\right) = 1_{G_2} \\ & \Rightarrow \psi\left(a^{-1}\right) = [\psi\left(a\right)]^{-1} = 1_{G_2}^{-1} = 1_{G_2} = \psi\left(b\right) \\ & \Rightarrow \psi\left(a^{-1}b\right) = \psi\left(a^{-1}\right)\psi\left(b\right) = 1_{G_2}1_{G_2} = 1_{G_2} \end{split}$$

temos que

$$a, b \in \text{Nuc}\psi \Rightarrow a^{-1}b \in \text{Nuc}\psi.$$

Assim, concluímos que este subconjunto de G_1 é, de facto, um seu subgrupo. Sejam $g \in G_1$ e $b \in \mathrm{Nuc}\psi$. Então,

$$gbg^{-1} \in G_1$$

е

$$\begin{array}{ll} \psi \left(\mathsf{g} \mathsf{b} \mathsf{g}^{-1} \right) & = & \psi \left(\mathsf{g} \right) \psi \left(\mathsf{b} \right) \psi \left(\mathsf{g}^{-1} \right) \\ & = & \psi \left(\mathsf{g} \right) \mathbf{1}_{G_2} \left[\psi \left(\mathsf{g} \right) \right]^{-1} \\ & = & \mathbf{1}_{G_2}, \end{array}$$

pelo que $gbg^{-1} \in \text{Nuc}\psi$. Logo, $\text{Nuc}\psi \lhd G_1$.

O núcleo de um morfismo de grupos $\psi:G_1 \to G_2$ define uma relação de congruência, a saber

$$\begin{aligned} x \equiv y \pmod{\operatorname{Nuc}\psi} &\Leftrightarrow xy^{-1} \in \operatorname{Nuc}\psi \\ &\Leftrightarrow \psi \left(xy^{-1} \right) = \mathbf{1}_{G_2} \\ &\Leftrightarrow \psi \left(x \right) \left[\psi \left(y \right) \right]^{-1} = \mathbf{1}_{G_2} \\ &\Leftrightarrow \psi \left(x \right) = \psi \left(y \right). \end{aligned}$$

Pelo que acabámos de ver, a demonstração da proposição seguinte é trivial.

Proposição. Seja $\psi: G_1 \to G_2$ um morfismo de grupos. Então, ψ é um monomorfismo se e só se $\mathrm{Nuc}\psi = \{1_{G_1}\}.$

Proposição. Sejam G um grupo e $H \triangleleft G$. Então,

$$\pi: G \longrightarrow G/H$$
$$x \longmapsto xH$$

é um epimorfismo (ao qual se chama epimorfismo canónico) tal que $\mathrm{Nuc}\pi=H.$

Demonstração. Sejam G um grupo e $H \triangleleft G$.

Então, para $x, y \in G$,

$$\psi(xy) = (xy) H = xHyH = \psi(x) \psi(y)$$
,

pelo que π é um morfismo. Além disso, ψ é obviamente sobrejetiva (cada classe é imagem por π do seu representante). Por fim,

$$x \in \text{Nuc}\pi \quad \Leftrightarrow \pi(x) = H$$

 $\Leftrightarrow xH = H \Leftrightarrow x \in H.$

teorema fundamental do homomorfismo

Os resultados que estudámos no final da secção anterior dizem-nos que:

- (i) Dado um morfismo qualquer entre dois grupos, o seu núcleo é um subgrupo normal do domínio;
- (ii) Dado um subgrupo normal de um grupo, existe um morfismo cujo núcleo é aquele subgrupo.

Considerando as duas situações em simultâneo, temos que: se $\psi: G \to G'$ é um morfismo de grupos, então, por (i),

$$\text{Nuc}\psi \triangleleft G$$
.

Logo, por (ii), $\pi: G o G/_{\mathrm{Nuc}\psi}$ é um epimorfismo tal que

$$Nuc\pi = Nuc\psi$$
.

Teorema Fundamental do Homomorfismo. Seja $\theta:G\longrightarrow G'$ um morfismo de grupos. Então,

$$\operatorname{Im} \theta \cong G/_{\operatorname{Nuc}\theta}$$
.

Demonstração. Sejam $K = \operatorname{Nuc} \theta$ e $\phi: G/_K \longrightarrow G'$ tal que $\phi(xK) = \theta(x), \quad \forall x \in G.$

Estará a função ϕ bem definida, i.e., se xK = yK será que $\theta(x) = \theta(y)$? SIM. De facto,

$$xK = yK \Leftrightarrow x^{-1}y \in K (= \text{Nuc}\,\theta)$$

 $\Leftrightarrow \theta (x^{-1}y) = 1_{G'}$
 $\Leftrightarrow \theta (x) = \theta (y).$

Além disso, demonstrámos ainda que $\theta(x) = \theta(y) \Rightarrow xK = yK$, i.e., que

$$\phi(xK) = \phi(yK) \Rightarrow xK = yK$$
,

pelo que ϕ é injectiva.

Mais ainda,

$$\operatorname{Im} \phi = \{\phi(xK) \mid x \in G\}$$
$$= \{\theta(x) \mid x \in G\}$$
$$= \operatorname{Im} \theta.$$

Observamos, por último, que ϕ é um morfismo, já que

$$\phi(xKyK) = \phi(xyK) = \theta(xy) = \theta(x)\theta(y) = \phi(xK)\phi(yK).$$

Concluímos, então, que ϕ é um monomorfismo cujo conjunto imagem (que é isomorfo ao seu domínio) é igual a ${\rm Im}\theta$.

Logo,

$$\operatorname{Im} \theta \cong G/_{K} = G/_{\operatorname{Nuc} \theta}.$$

78

definição e exemplos

Definição. Um grupo G diz-se cíclico se

$$(\exists a \in G) \quad G = \langle a \rangle,$$

i.e., se existe $a \in G$ tal que

$$(\forall x \in G) (\exists n \in \mathbb{Z}) \quad x = a^n.$$

Exemplo 34. O grupo $(\mathbb{Z},+)$ é cíclico, já que $\mathbb{Z}=\langle 1 \rangle$, pois para todo $n \in \mathbb{Z}$, temos que $n=n \cdot 1$.

Exemplo 35. O grupo $(\mathbb{R}, +)$ não é cíclico. Não existe nenhum real x tal que $\forall a \in \mathbb{R}, \ \exists n \in \mathbb{Z}: \ a = nx.$

Exemplo 36. O grupo $(\mathbb{Z}_4,+)$ é cíclico, já que $\mathbb{Z}_4=\left\langle \left[1\right]_4\right\rangle =\left\langle \left[3\right]_4\right\rangle.$ De facto,

$$[0]_4 = 0 [1]_4 = 0 [3]_4$$
 $[1]_4 = 1 [1]_4 = 3 [3]_4$ $[2]_4 = 2 [1]_4 = 2 [3]_4$ $[3]_4 = 3 [1]_4 = 1 [3]_4$

Exemplo 37. Para qualquer $n \in \mathbb{N}$, temos que $(\mathbb{Z}_n, +)$ é cíclico, já que $\mathbb{Z}_n = \langle [1]_n \rangle$.

Exemplo 38. O conjunto $G = \{i, -i, 1, -1\}$, quando algebrizado pela multiplicação usual de complexos, é um grupo cíclico. De facto, $G = \langle i \rangle$.

Exemplo 39. O grupo trivial $G = \{1_G\}$ é um grupo cíclico. De facto, $\langle 1_G \rangle = \{1_G\}$.

propriedades elementares

Proposição. Todo o grupo cíclico é abeliano.

Demonstração. Sejam $G=\langle a\rangle$ e $x,y\in G$. Então, existem $n,m\in\mathbb{Z}$ tais que $x=a^n$ e $y=a^m$. assim,

$$xy = a^n a^m = a^{n+m} = a^{m+n} = a^m a^n = yx.$$

Observação. Observe-se que o recíproco do teorema anterir não é verdadeiro.

Exemplo 40. O grupo 4-Klein é um grupo abeliano. No entanto, não é cíclico, pois $\langle 1_G \rangle = \{1_G\} \neq G$, $\langle a \rangle = \{1_G, a\} \neq G$, $\langle b \rangle = \{1_G, b\} \neq G$ e $\langle c \rangle = \{1_G, c\} \neq G$. Assim, podemos concluir que não existe $x \in G$ tal que $G = \langle x \rangle$.

Teorema. Qualquer subgrupo de um grupo cíclico é cíclico.

Demonstração. Sejam $G = \langle a \rangle$, para algum $a \in G$, e H < G.

Se $H = \{1_G\}$, então $H = \langle 1_G \rangle$ e, portanto, H é cíclico.

Se $H \neq \{1_G\}$, então, existe $x = a^n \in G$ $(n \neq 0)$ tal que $x \in H$. Então, H tem pelo menos uma potência positiva de a. Seja d o menor inteiro positivo tal que $a^d \in H$. Vamos provar que $H = \left\langle a^d \right\rangle$:

- (i) Por um lado $a^d \in H$, logo $\langle a^d \rangle \subseteq H$;
- (ii) Reciprocamente, seja $y \in H$. Como $y \in G$, $y = a^m$ para algum $m \in \mathbb{Z} \setminus \{0\}$. Então, existem $q, r \in \mathbb{Z}$ com $0 \le r < d$, tais que

$$y=a^m=a^{dq+r}=a^{qd}a^r.$$

Assim, $a^r = \left(a^d\right)^{-q} a^m \in H$, pelo que r = 0. Logo, $a^m = a^{qd} \in \left\langle a^d \right\rangle$, pelo que $H \subseteq \left\langle a^d \right\rangle$. \square

Observação. Se o grupo G é cíclico e tem ordem n, isto é, se existe $a \in G$ tal que $G = \langle a \rangle = \{1_G, a, a^2, ..., a^{n-1}\}$, então, para qualquer divisor positivo k de n, $a \in G$ dum subgrupo de $a \in G$ com ordem $a \in G$.

Exemplo 41. Os subgrupos do grupo cíclico \mathbb{Z} são todos do tipo $n\mathbb{Z}$. De facto, para todo $n \in \mathbb{Z}$, $\langle n \rangle = n\mathbb{Z}$.

Observação. Resulta da definição de grupo cíclico que qualquer elemento que tenha ordem igual à ordem do grupo é um seu gerador e que qualquer gerador de um grupo cíclico finito tem ordem igual à ordem do grupo.

Exemplo 42. Em
$$\mathbb{Z}_4$$
 tem-se que: $o\left(\overline{3}\right)=4$ e $\mathbb{Z}_4=\left\langle\overline{3}\right\rangle$. Em geral, para $n\geq 2$, como $o([x]_n)=\frac{n}{\mathrm{m.d.c.}(x,n)}$, temos que $\mathbb{Z}_n=<[x]_n>\Longleftrightarrow\mathrm{m.d.c.}(x,n)=1.$

Para um grupo $G = \langle a \rangle$, G é abeliano e se H < G, $H = \langle a^d \rangle$, para algum $d \in \mathbb{N}$. Assim, $H \triangleleft G$, pelo que podemos falar no grupo G/H. Vejamos de seguida como são os elementos deste grupo:

Proposição. Seja $G = \langle a \rangle$ um grupo infinito e $H = \langle a^d \rangle \triangleleft G$. Então, $H, aH, a^2H, ..., a^{d-1}H$ é a lista completa de elementos de G/H.

Demonstração. Observemos primeiro que, para todo $x \in G$, $xH = a^rH$, para algum $r \in \{0,1,2,...,d-1\}$.

De facto, se $x \in G = \langle a \rangle$, então existe $p \in \mathbb{Z}$ para o qual $x = a^p$. Mas, se $p \in \mathbb{Z}$, existem $q \in \mathbb{Z}$ e $0 \le r \le d-1$ tais que p = qd + r, pelo que $a^p = a^{qd+r} = a^r \cdot \left(a^d\right)^q \in a^r H$. Logo, $a^p H = a^r H$. Provemos agora que, para 0 < i, j < d-1.

$$i \neq j \Longrightarrow a^i H \neq a^j H$$
.

Suponhamos que i < j. Então, $0 \le j - i \le d - 1$, pelo que

$$a^{i}H = a^{j}H \quad \Leftrightarrow \left(a^{i}\right)^{-1}a^{j} \in H \Leftrightarrow a^{j-i} \in H$$

 $\Leftrightarrow j-i = kd, \text{ para algum } k \in \mathbb{Z}$
 $\Leftrightarrow j-i = 0 \Leftrightarrow j = i.$

Logo, a implicação verifica-se e, portanto, $G/_{H} = \{H, aH, ..., a^{d-1}H\}$.

morfismos entre grupos cíclicos

Proposição. Dois grupos cíclicos finitos são isomorfos se e só se tiverem a mesma ordem.

Demonstração. Sejam G e T dois grupos cíclicos e finitos. Então, existem $a \in G$ e $b \in T$ tais que $G = \langle a \rangle$ e $T = \langle b \rangle$.

Se $G \cong T$, então obviamente G e T têm a mesma ordem.

Se G e T têm a mesma ordem n, então, o(a) = o(b) = n e

$$G = \left\{1_G, a, a^2, ..., a^{n-1}\right\}, \qquad T = \left\{1_T, b, b^2, ..., b^{n-1}\right\}.$$

Logo, a aplicação $\psi: \textit{G}
ightarrow \textit{T}$ definida por

$$\psi = \left(\begin{array}{cccc} 1_G & a & a^2 & \cdots & a^{n-1} \\ 1_T & b & b^2 & \cdots & b^{n-1} \end{array}\right)$$

é obviamente um isomorfismo.

Corolário. Sejam $n \in \mathbb{N}$ e G um grupo cíclico de ordem n. Então, $G \cong \mathbb{Z}_n$.

Observação. Vimos já que se G é um grupo e $a \in G$ é tal que $o(a) = \infty$, então, para $m, n \in \mathbb{Z}$

$$m \neq n \Longrightarrow a^m \neq a^n$$
.

Assim, se G é infinito e cíclico, temos que $G=\langle a \rangle$ para algum $a \in G$ tal que $o(a)=\infty$, pelo que

$$G = \left\{..., a^{-2}, a^{-1}, 1_G, a, a^2, a^3, ...\right\}.$$

Proposição. Se G é um grupo cíclico infinito, então, $G \cong \mathbb{Z}$.

permutações

Definição. Seja A um conjunto. Uma permutação de A é uma aplicação bijetiva de A em A.

Observação. Se A é um conjunto finito com n elementos $(n \in \mathbb{N})$, podemos estabelecer uma bijeção entre A e o conjunto $\{1,2,...,n\}$, pelo que aqui iremos adoptar esta última notação para qualquer conjunto com n elementos. Assim, dizemos, por exemplo, que

$$\phi = \left(\begin{array}{rrrr} 1 & 2 & 3 & 4 \\ 2 & 1 & 3 & 4 \end{array}\right)$$

é uma permutação de um conjunto com 4 elementos.

Observação. Se A é um conjunto finito com n elementos ($n \in \mathbb{N}$), sabemos que podemos definir n! permutações de A distintas. Mais ainda, se algebrizarmos este conjunto de n! elementos com a composição de aplicações obtemos, obviamente, um grupo.

- (i) A composta de duas permutações é uma permutação;
- (ii) A composição de aplicações, em particular de permutações, é associativa;
- (iii) A função identidade é uma permutação e é o elemento neutro para a composição de aplicações;
 - (iv) A aplicação inversa de uma permutação é uma permutação.

Definição. Chama-se grupo simétrico de um conjunto com n elementos, e representa-se por S_n , ao grupo das permutações desse conjunto.

Exemplo 43. Se considerarmos um conjunto com dois elementos,

$$S_2 = \left\{ \left(\begin{array}{cc} 1 & 2 \\ 1 & 2 \end{array} \right), \left(\begin{array}{cc} 1 & 2 \\ 2 & 1 \end{array} \right) \right\};$$

Exemplo 44. Se considerarmos um conjunto com 3 elementos,

$$S_3 = \left\{ \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} \right\}.$$

Exemplo 45. Se considerarmos um conjunto com 4 elementos, temos que

Proposição. O grupo simétrico S_n é não comutativo, para todo $n \ge 3$.

Demonstração. Se f e g são as permutações de S_n definidas por

$$f(1) = 2$$
, $f(2) = 3$, $f(3) = 1$, $f(k) = k$, $\forall 4 \le k \le n$,
 $g(1) = 2$, $g(2) = 1$, $g(k) = k$, $\forall 3 \le k \le n$,

temos que

$$(f \circ g)(1) = 3 \neq 1 = (g \circ f)(1).$$

grupo diedral

Definição. Chama-se grupo diedral ao grupo das simetrias e rotações de uma linha poligonal.

Representamos por D_n o grupo diedral de um polígono regular com n lados.

Exemplo 46. $D_3 = S_3$

Temos:

Rotações: 0° ; 120° e 240° ;

Simetrias: 3 simetrias axiais.

Representando as simetrias e rotações pelas permutações em $\{1,2,3\}$, temos:

Rotações de 0°, 120° e 240°:

$$\rho_1 = \left(\begin{array}{ccc} 1 & 2 & 3 \\ 1 & 2 & 3 \end{array}\right), \quad \rho_2 = \left(\begin{array}{ccc} 1 & 2 & 3 \\ 2 & 3 & 1 \end{array}\right) \text{ e } \rho_3 = \left(\begin{array}{ccc} 1 & 2 & 3 \\ 3 & 1 & 2 \end{array}\right);$$

simetrias em relação às bissetrizes dos ângulos 1, 2 e 3:

$$\theta_1 = \left(\begin{array}{ccc} 1 & 2 & 3 \\ 1 & 3 & 2 \end{array} \right), \quad \theta_2 = \left(\begin{array}{ccc} 1 & 2 & 3 \\ 3 & 2 & 1 \end{array} \right) \ e \ \theta_3 = \left(\begin{array}{ccc} 1 & 2 & 3 \\ 2 & 1 & 3 \end{array} \right).$$

Considerando a composição de funções, obtemos a tabela:

0	ρ_1	ρ_2	ρ_3	θ_1	θ_2	θ_3
ρ_1	ρ_1	ρ_2	$ \begin{array}{c} \rho_3 \\ \rho_1 \\ \rho_2 \\ \theta_3 \\ \theta_1 \\ \theta_2 \end{array} $	θ_1	θ_2	θ_3
ρ_2	ρ_2	ρ_3	$ ho_1$	θ_3	$ heta_1$	θ_2
ρ_3	ρ_3	ρ_1	ρ_2	θ_2	θ_3	$ heta_1$
$ heta_1$	θ_1	θ_2	θ_3	ρ_1	ρ_2	ρ_3
θ_2	θ_2	θ_3	θ_1	ρ_3	ρ_1	ρ_2
θ_3	θ_3	θ_1	θ_2	ρ_2	ρ_3	ρ_1

O grupo D_3 é (o menor grupo) não abeliano, $1_{D_3} = \rho_1$ e os seus subgrupos são:

$$\{\rho_1\}, \{\rho_1, \theta_1\}, \{\rho_1, \theta_2\}, \{\rho_1, \theta_3\}, \{\rho_1, \rho_2, \rho_3\} \in D_3.$$

Destes, quais são normais?

Exemplo 47. D_4 é um subgrupo próprio de S_4

Rotações de 0°, 90°, 180° e 270°:

$$\rho_1 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix}, \ \rho_2 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix},$$

$$\rho_3 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix} e \rho_4 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 2 & 3 \end{pmatrix};$$

Simetrias em relação às bissectrizes [1, 3] e [2, 4]:

$$\theta_1 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 4 & 3 & 2 \end{pmatrix}$$
 e $\theta_2 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 1 & 4 \end{pmatrix}$;

Simetrias em relação às mediatrizes do lado [1, 2] e do lado [2, 3]:

$$\theta_3 = \left(\begin{array}{cccc} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{array}\right) \ \mathbf{e} \ \theta_2 = \left(\begin{array}{cccc} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \end{array}\right).$$

Assim, D_4 tem 8 elementos enquanto que S_4 tem 24 elementos.

Considerando a composição de funções, obtemos a tabela

ρ_1	ρ_1	ρ_2	ρ_3	ρ_4	θ_1	θ_2	θ_3	θ_4
ρ_1	ρ_1	ρ_2	ρ_3	$ ho_{4}$	θ_1	θ_2	θ_3	θ_4
ρ_2	ρ_2	$ ho_3$	$ ho_{4}$	ρ_1	θ_2	θ_3	$ heta_4$	θ_1
$ ho_3$	$ ho_3$	$ ho_{4}$	ρ_1	ρ_2	$ heta_3$	$ heta_4$	$ heta_1$	θ_2
$ ho_{4}$	ρ_4	ρ_1	ρ_2	$ ho_3$	$ heta_4$	$ heta_1$	θ_2	θ_3
$ heta_1$	θ_1	$ heta_4$	$ heta_3$	θ_2	ρ_1	$ ho_{4}$	$ ho_3$	ρ_2
θ_2	θ_2	$ heta_1$	$ heta_4$	θ_3	ρ_2	ρ_1	$ ho_{4}$	$ ho_3$
θ_3	θ_3	θ_2	$ heta_1$	$ heta_4$	$ ho_3$	ρ_2	ρ_1	$ ho_{4}$
$ heta_4$	$ heta_4$	$ \begin{array}{c} \rho_2 \\ \rho_3 \\ \rho_4 \\ \rho_1 \\ \theta_4 \\ \theta_1 \\ \theta_2 \\ \theta_3 \end{array} $	θ_2	θ_1	ρ_{4}	ρ_3	ρ_2	ρ_1

Os subgrupos de D4 são

$$\{\rho_1\}, \{\rho_1, \theta_1\}, \{\rho_1, \theta_2\}, \{\rho_1, \theta_3\}, \{\rho_1, \theta_4\}, \{\rho_1, \rho_3\},$$

$$\{\rho_1, \rho_2, \rho_3, \rho_4\}, \{\rho_1, \rho_3, \theta_1, \theta_3\}, \{\rho_1, \rho_3, \theta_2, \theta_4\}, D_4\}.$$

Destes, quais são normais?

Exemplo 48. Relativamente à figura

o grupo diedral é composto pelas aplicações

$$\phi_1 = \left(\begin{array}{cccc} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{array}\right), \ \phi_2 = \left(\begin{array}{cccc} 1 & 2 & 3 & 4 \\ 3 & 2 & 1 & 4 \end{array}\right),$$

$$\phi_3 = \left(\begin{array}{cccc} 1 & 2 & 3 & 4 \\ 1 & 4 & 3 & 2 \end{array} \right) \ {\rm e} \ \phi_4 = \left(\begin{array}{cccc} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{array} \right).$$

Definição. Diz-se que uma permutação σ de um conjunto finito A é um ciclo de comprimento n se existirem $a_1, a_2, \ldots, a_n \in A$ tais que

$$\sigma\left(a_{1}\right)=a_{2},\quad\sigma\left(a_{2}\right)=a_{3},\ldots,\quad\sigma\left(a_{n-1}\right)=a_{n},\quad\sigma\left(a_{n}\right)=a_{1}$$

e se

$$\sigma(x) = x, \quad \forall x \in A \setminus \{a_1, a_2, ..., a_n\}.$$

Neste caso, representa-se este facto por

$$\sigma = \left(\begin{array}{ccccc} a_1 & a_2 & \dots & a_{n-1} & a_n \end{array} \right).$$

Exemplo 49. Se $A = \{1, 2, 3, 4, 5\}$, temos que

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 2 & 5 & 1 & 4 \end{pmatrix}
= \begin{pmatrix} 1 & 3 & 5 & 4 \end{pmatrix} = \begin{pmatrix} 3 & 5 & 4 & 1 \end{pmatrix}
= \begin{pmatrix} 5 & 4 & 1 & 3 \end{pmatrix} = \begin{pmatrix} 4 & 1 & 3 & 5 \end{pmatrix}.$$

Observação. Em S_n , o produto (composição) de dois ciclos pode ou não ser um ciclo, como o prova o seguinte exemplo: em S_6 ,

não é um ciclo. De facto, se representarmos este produto por σ , temos que $\sigma(2)=4,\ \sigma(4)=5,\ \sigma(5)=2$ e $\sigma(1)\neq 1$.

Por outro lado,

Definição. Dado um conjunto A finito, dizemos que dois ciclos são *disjuntos* se não existir nenhum elemento de A que apareça simultaneamente na notação desses ciclos, i.e., se nenhum elemento de A for transformado simultaneamente pelos dois ciclos.

Exemplo 50. Em S_6 ,

$$\sigma = \left(\begin{array}{ccccc} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 5 & 2 & 4 & 3 & 1 \end{array}\right) = (1 \quad 6)(2 \quad 5 \quad 3),$$

i.e., a permutação σ é o produto de dois ciclos disjuntos.

Teorema. Toda a permutação σ de um conjunto finito é um produto (composição) de ciclos disjuntos.

Demonstração. Suponhamos, sem perdas de generalidade, que $A=\{1,2,3,...,n\}$. Consideremos então o primeiro elemento (1) e, para a permutação σ em A, consideremos a lista

1
$$\sigma(1)$$
 $\sigma^{2}(1)$ $\sigma^{4}(1)$ (*)

Como A é finito, sabemos que os elementos de (*) não podem ser todos distintos. Seja σ^r (1) o primeiro elemento que aparece repetido. Então, σ^r (1) = 1.

De facto, se

$$\sigma^{r}\left(1\right)=\sigma^{s}\left(1\right), \qquad \text{para algum } s \in \left\{1,2,...,r-1\right\},$$

concluíamos que

$$\sigma^{r-s}(1) = id(1) = 1$$
 e $0 < r - s < r$,

pelo que σ^r (1) não seria o primeiro elemento a aparecer repetido.

Formamos então o ciclo

$$\rho_1 = \begin{pmatrix} 1 & \sigma(1) & \sigma^2(1) & \cdots & \sigma^{r-1}(1) \end{pmatrix}.$$

Seja, então, i o primeiro elemento de A que não aparece em ρ_1 . Aplicamos a i o raciocínio aplicado a 1 e formamos o ciclo

$$\rho_2 = \begin{pmatrix} i & \sigma(i) & \sigma^2(i) & \cdots & \sigma^{t-1}(i) \end{pmatrix}.$$

Por raciocínios análogos, "percorremos" todos os elementos de A. Suponhamos que são k os ciclos que formamos. Então, $\sigma=\rho_1\cdots\rho_k$.

Vejamos agora que os ciclos são disjuntos dois a dois.

Consideremos os ciclos ρ_1 e ρ_2 . Suponhamos que existe $j \in A$ tal que j aparece no ciclo ρ_1 e no ciclo ρ_2 . Suponhamos, sem perdas de generalidade, que $j = \sigma^2$ (1) e que $j = \sigma^3$ (i). Então,

$$\rho_1 = \left(\sigma^2(1) \quad \sigma^3(1) \quad \cdots \quad \sigma^{r-1}(1) \quad 1\right)$$

$$= \left(j \quad \sigma(j) \quad \sigma^2(j) \quad \cdots\right)$$

$$= \left(\sigma^3(i) \quad \sigma^4(i) \quad \sigma^5(i) \quad \cdots\right) = \rho_2,$$

o que não acontece pois i não aparece em ρ_1 .

Generalizando esta demonstração, provamos que todos os ciclos são disjuntos dois a dois.

Questão: Porque é que é importante escrever uma permutação como produto de ciclos disjuntos?

Resposta: Porque ciclos disjuntos comutam!

$$(1 \ 2 \ 3)(4 \ 5) = (4 \ 5)(1 \ 2 \ 3)$$

$$(1 \ 2 \ 3)(1 \ 2) = (1 \ 3) \neq (2 \ 3) = (1 \ 2)(1 \ 2 \ 3)$$

Observação. Relembrar que num grupo G, para $a, b \in G$,

$$ab = ba \Leftrightarrow \forall n \in \mathbb{Z}, \ (ab)^n = a^n b^n.$$

Questão: Dada uma permutação σ num conjunto com n elementos, i.e., dado o elemento $\sigma \in S_n$, qual será a sua ordem?

Resposta:

- 1. se σ é um ciclo, então $o(\sigma)$ é o comprimento do ciclo.
- 2. se σ é um produto de pelo menos dois ciclos disjuntos, então $o(\sigma)$ é o m.m.c. entre os comprimentos dos ciclos em questão.

Exemplo 51. Em S_8 , como

$$\phi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 2 & 4 & 1 & 7 & 8 & 5 & 6 \end{pmatrix} = \begin{pmatrix} 1 & 3 & 4 \end{pmatrix} \begin{pmatrix} 5 & 7 \end{pmatrix} \begin{pmatrix} 6 & 8 \end{pmatrix}, \text{ temos que } o(\phi) = 6 \text{ pois o mínimo múltiplo comum entre as ordens dos três ciclos disjuntos é 6}.$$

grupo alterno

Definição. Uma transposição é um ciclo de comprimento 2.

Proposição. Qualquer ciclo é produto de transposições.

Demonstração. Imediata, tendo em conta que

$$(a_1 \quad a_2 \quad a_3 \quad \cdots \quad a_n) = (a_1 \quad a_n) \begin{pmatrix} a_1 & a_{n-1} \end{pmatrix} \cdots \begin{pmatrix} a_1 & a_3 \end{pmatrix} \begin{pmatrix} a_1 & a_2 \end{pmatrix}.$$

Observação. Considerando o teorema e a proposição anteriores, temos que qualquer permutação se escreve como produto de transposições.

Exemplo 52. Em S_7 ,

$$\left(\begin{array}{cccccc} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 2 & 4 & 1 & 7 & 5 & 6 \end{array}\right) = (1 \quad 3 \quad 4)(5 \quad 7 \quad 6) = (1 \quad 4)(1 \quad 3)(5 \quad 6)(5 \quad 7).$$

Teorema. Nenhuma permutação de um conjunto finito pode ser expressa simultaneamente como produto de um número par de transposições e como produto de um número ímpar de transposições.

Definição. Uma permutação diz-se *par* se se escreve como o produto de um número par de transposições. Uma permutação diz-se *impar* se se escreve como produto de um número impar de transposições.

Exemplo 53.

 Em S_n, a identidade é uma permutação par. De facto, se A tem n elementos

$$id = (a_i \quad a_j)(a_i \quad a_j),$$

para quaisquer $a_i, a_j \in A$.

 Em S_n, um ciclo de comprimento ímpar é uma permutação par e um ciclo de comprimento par é uma permutação ímpar

$$(1 \ 2 \ 3) = (1 \ 3)(1 \ 2)$$
 $(1 \ 2 \ 3 \ 4) = (1 \ 4)(1 \ 3)(1 \ 2)$.

Teorema. Seja A um conjunto com n elementos. Então, o conjunto das permutações pares em A é um subgrupo de S_n de ordem $\frac{n!}{2}$.

Demonstração. Seja

$$A_n = \{\sigma : \sigma \text{ \'e uma permutação par}\}$$
 .

Sabemos que $id \in A_n$, que a composição de duas permutações pares é ainda uma permutação par e que a inversa de uma permutação par é ainda uma permutação par. Logo, temos que A_n é um subgrupo do grupo S_n .

Para demonstrar que $|A_n| = \frac{n!}{2}$, basta considerar uma transposição $\tau \in S_n$ e a aplicação

$$\phi_{\tau}: A_n \longrightarrow B_n$$

$$\sigma \longmapsto \tau \sigma,$$

onde B_n é o conjunto das permutações ímpares.

Provando que ϕ_{τ} é bijetiva, temos que $\#(A_n) = \#(B_n)$ e, como $\#(A_n) + \#(B_n) = \#(S_n) = n!$, o resultado é imediato.

Definição. Seja A um conjunto com n elementos. Chama-se grupo alterno de A, e representa-se por A_n , ao subgrupo de S_n das permutações pares.

Exemplo 54.
$$A_2 = \{id\}$$

 $A_3 = \{id, (123), (132)\}$
 $A_4 = \{id, (123), (132), (124), (142), (134), (134),$
 $(234), (243), (12)(34), (13)(24), (14)(23)\}$

o teorema de representação de Cayley

Teorema de Representação de Cayley

Para finalizarmos este capítulo sobre grupos, vamos mostrar a importância do estudo do grupo simétrico na Teoria de Grupos. De facto, como se prova no próximo teorema, qualquer grupo é isomorfo a um subgrupo de um dado grupo simétrico.

Teorema. (Teorema de representação de Cayley) Todo o grupo é isomorfo a um grupo de permutações.

Demonstração. Para cada $x \in G$, a aplicação

$$\lambda_x : G \longrightarrow G$$
 $a \longmapsto \lambda_x (a) = xa,$

é uma permutação em G.

Assim, se S é o grupo das permutações de G, consideramos a função

$$\begin{array}{ccc} \theta: \mathsf{G} & \longrightarrow & \mathsf{S} \\ & \mathsf{x} & \longmapsto & \lambda_{\mathsf{x}}. \end{array}$$

Então, para $x, y, g \in G$,

$$(\lambda_x \circ \lambda_y)(g) = \lambda_x (\lambda_y (g)) = \lambda_x (yg) = x (yg) = (xy) g = \lambda_{xy} (g),$$

pelo que

$$\theta(x)\theta(y) = \theta(xy)$$
,

i.e., θ é um morfismo.

Mais ainda,

$$x \in \text{Nuc}\theta \Leftrightarrow \theta(x) = \text{id}_G \Leftrightarrow \lambda_x = \text{id}_G \Rightarrow x = \lambda_x(1_G) = \text{id}_G(1_G) = 1_G,$$

e, portanto,

$$Nuc\theta = \{1_G\}$$
.

Logo, θ é um monomorfismo, pelo que $G \cong \operatorname{Im} \theta < \mathcal{S}$.

Exemplo 55. Seja $G = \mathbb{Z}_4$. Então, como para todos $a, x \in \mathbb{Z}_4$, $\lambda_a(x) = a + x$, temos que

$$\lambda_{\bar{0}} = \begin{pmatrix} \bar{0} & \bar{1} & \bar{2} & \bar{3} \\ \bar{0} & \bar{1} & \bar{2} & \bar{3} \end{pmatrix} = id$$

$$\lambda_{\bar{1}} = \begin{pmatrix} \bar{0} & \bar{1} & \bar{2} & \bar{3} \\ \bar{1} & \bar{2} & \bar{3} & \bar{0} \end{pmatrix} = (\bar{0} & \bar{1} & \bar{2} & \bar{3})$$

$$\lambda_{\bar{2}} = \begin{pmatrix} \bar{0} & \bar{1} & \bar{2} & \bar{3} \\ \bar{2} & \bar{3} & \bar{0} & \bar{1} \end{pmatrix} = (\bar{0} & \bar{2}) (\bar{1} & \bar{3})$$

$$\lambda_{\bar{3}} = \begin{pmatrix} \bar{0} & \bar{1} & \bar{2} & \bar{3} \\ \bar{3} & \bar{0} & \bar{1} & \bar{2} \end{pmatrix} = (\bar{0} & \bar{3} & \bar{2} & \bar{1}).$$

Assim, $\mathbb{Z}_4 \cong \{\lambda_{\bar{0}}, \lambda_{\bar{1}}, \lambda_{\bar{2}}, \lambda_{\bar{3}}\}$.

Elementos da Teoria de Anéis

lcc :: Imat :: 2.º ano paula mendes martins

departamento de matemática :: uminho

generalidades

conceitos básicos

Definição. Seja A um conjunto não vazio e duas operações binárias, que representamos por + e por \cdot , nele definidas. O triplo $(A, +, \cdot)$ diz-se um *anel* se

- 1. (A, +) é um grupo comutativo (também chamado *módulo*);
- 2. (A, \cdot) é um semigrupo;
- 3. A operação \cdot é *distributiva* em relação à operação +, i.e., para todos $a,b,c\in A,$

$$a \cdot (b+c) = a \cdot b + a \cdot c$$
 e $(b+c) \cdot a = b \cdot a + c \cdot a$.

O anel A diz-se comutativo se a multiplicação for comutativa.

Observação. Referimo-nos sempre à primeira operação (i.e., à operação para a qual temos um grupo) como *adição*. À segunda operação (i.e., à operação para a qual temos um semigrupo) chamamos *multiplicação*.

Definições. Seja $(A, +, \cdot)$ um anel.

- Ao elemento neutro do grupo chamamos zero do anel e representamos por 0_A.
- Quando existe, ao elemento neutro do semigrupo chamamos identidade do anel e representamos por 1_A.
- Ao elemento oposto de a ∈ A para a adição chamamos simétrico de a e representamos por −a (note-se que, sendo (A, +) grupo, qualquer elemento do anel admite um único simétrico).
- No caso de o anel ter identidade, podem existir elementos que admitem elemento oposto para a multiplicação. Quando existe, referimo-nos ao elemento oposto de a ∈ A para a multiplicação como o inverso de a.
 Neste caso, representamos o inverso de a por a⁻¹.

Observação. Se não houver ambiguidade, falamos no anel A quando nos referimos ao anel $(A,+,\cdot)$ e omitimos o sinal da multiplicação na escrita de expressões.

Exemplo 1. Seja $A = \{a\}$. Então, $(A, +, \cdot)$, onde a + a = a e $a \cdot a = a$, é um anel comutativo com identidade, ao qual se chama *anel nulo*. Representa-se por $A = \{0_A\}$.

Exemplo 2. $(\mathbb{Z}, +, \times)$ e $(\mathbb{R}, +, \times)$ são anéis comutativos com identidade.

Exemplo 3. Dado $n \in \mathbb{N}$, $(\mathbb{Z}_n, +, \times)$ é um anel comutativo com identidade.

Exemplo 4. Dado o natural $n \ge 2$, $(n\mathbb{Z}, +, \times)$ é um anel comutativo sem identidade.

Exemplo 5. $(\mathcal{M}_2(\mathbb{R}), +, \times)$ é um anel não comutativo com identidade.

Proposição. Seja A um anel. Então, para todo $x \in A$, $0_A x = x 0_A = 0_A$.

Demonstração. Seja $x \in A$. Então, pela distributividade, temos que $0_A x + 0_A x = (0_A + 0_A) x$. Mas,

$$\begin{array}{ll} 0_Ax + 0_Ax = (0_A + 0_A) \, x & \Leftrightarrow 0_Ax + 0_Ax = 0_Ax \\ & \Leftrightarrow 0_Ax + 0_Ax = 0_Ax + 0_A \\ & \Leftrightarrow 0_Ax = 0_A. \end{array}$$

Logo, $0_A x = 0_A$. Analogamente, de

$$x0_A + x0_A = x (0_A + 0_A)$$

e de

$$x0_A + x0_A = x(0_A + 0_A) \Leftrightarrow x0_A = 0_A,$$

obtemos $x0_A = 0_A$.

Proposição. Se $A \neq \{0_A\}$ é um anel com identidade 1_A , então $1_A \neq 0_A$.

Demonstração. Se 0_A fosse a identidade do anel, então, para $x \neq 0_A$, teríamos $x = 0_A x$. Mas, pela proposição anterior, $0_A x = 0_A$, pelo que $x = 0_A$.

Proposição. Sejam A um anel e $x, y \in A$. Então:

1.
$$(-x) y = x (-y) = -xy$$
;

2.
$$(-x)(-y) = xy$$
.

Demonstração. Sejam $x, y \in A$. Então,

1. (-x) y é o simétrico de xy já que

$$(-x) y + xy = (-x + x) y = 0_A y = 0_A$$

e x(-y) é também o simétrico de xy pois

$$x(-y) + xy = x(-y + y) = x0_A = 0_A;$$

$$Logo, -xy = (-x)y = x(-y).$$

2. (-x)(-y) é o simétrico de (-xy) já que

$$(-x)(-y) + (-xy) = (-x)(-y) + (-x)y$$

= $(-x)(-y+y) = (-x)0_A = 0_A$.

Como o simétrico de -xy é, de facto, xy, obtemos o resultado pretendido.

Proposição. Sejam A um anel, $n \in \mathbb{N}$ e $a, b_1, b_2, ..., b_n \in A$. Então,

1.
$$a(b_1 + b_2 + \cdots + b_n) = ab_1 + ab_2 + \cdots + ab_n$$
;

2.
$$(b_1 + b_2 + \cdots + b_n) a = b_1 a + b_2 a + \cdots + b_n a$$
.

Observação. A propriedade apresentada na última proposição é conhecida, em Teoria de Anéis, como *propriedade distributiva generalizada*.

potências e múltiplos

Seja $(A,+,\cdot)$ um anel. Então, (A,+) é grupo, pelo que podemos falar nos múltiplos de expoente **inteiro** de $a\in A$. Assim, temos

- i. $0a = 0_A$;
- ii. (n+1)a = na + a, para todo $n \in \mathbb{N}_0$;
- ii. na = -(-na), para todo $n \in \mathbb{Z}^-$.

Proposição. Sejam A, um anel, $a,b\in A$ e $m,n\in \mathbb{Z}$. Então,

- 1. (m+n) a = ma + na;
- 2. n(ma) = (nm) a;
- 3. n(a + b) = na + nb.

7

Proposição. Sejam A um anel, $a, b \in A$ e $n \in \mathbb{Z}$. Então,

$$n(ab) = (na) b = a(nb).$$

Demonstração. Temos de considerar três casos:

- (i) n = 0. A demonstração é trivial.
- (ii) n > 0. Resulta da propriedade distributiva generalizada:

$$(na) b = (\underbrace{a+a+\cdot+a}_{n\times})b = \underbrace{ab+ab+\cdot\cdot\cdot ab}_{n\times} \times = n(ab)$$

е

$$a(nb) = a(\underbrace{b+b+\cdot +b}_{n\times}) = \underbrace{ab+ab+\cdot \cdot \cdot ab}_{n} \times = n(ab).$$

(iii) n < 0. Para $a, b \in A$, temos que

$$n(ab) = -[(-n)(ab)] = -[((-n)a)b] = [-(-(na))]b = (na)b$$

е

$$n(ab) = -[(-n)(ab)] = -[a((-n)b)] = a[-(-n)b] = a(nb).$$

Seja $(A,+,\cdot)$ um anel. Então, (A,\cdot) é semigrupo, pelo que podemos falar nas potências de expoente **natural** de $a\in A$. Assim, temos

- i. $a^1 = a$;
- ii. $a^{n+1} = a^n \cdot a$, para todo $n \in \mathbb{N}$.

Proposição. Sejam A um anel, $a \in A$ e $m, n \in \mathbb{N}$. Então,

- 1. $(a^n)^m = a^{nm}$;
- $2. \ a^n a^m = a^{n+m}.$

Observação. Tendo em conta que estamos a trabalhar num anel e, portanto, a trabalhar com duas operações simultaneamente, distinguiremos as duas potências a^n e na (com $a \in A$ e $n \in \mathbb{N}$) falando em *múltiplo de a* para na e em potência de a para a^n .

elementos de um anel

Definição. Seja A um anel com identidade 1_A . Um elemento $a \in A$ diz-se uma unidade se admite um inverso em A. Representa-se por \mathcal{U}_A o conjunto das unidades de um anel com identidade.

Exemplo 6. No anel $(\mathbb{Z}, +, \times)$, temos que $\mathcal{U}_A = \{-1, 1\}$.

Exemplo 7. No anel $(\mathbb{R},+,\times)$, temos que $\mathcal{U}_A=\mathbb{R}\setminus\{0\}$.

Exemplo 8. No anel $(\mathcal{M}_2(\mathbb{R}),+,\times)$, temos que

$$\mathcal{U}_{A}=\left\{ \left[egin{array}{cc} a & b \\ c & d \end{array}
ight] \in \mathcal{M}_{2}\left(\mathbb{R}
ight) \mid ad-bc
eq 0
ight\}.$$

Quem são as unidades em $(\mathbb{Z}_n,+,\times)$, para $n\in\mathbb{N}$?São os elementos $[x]_n$, com $\mathrm{m.d.c.}(x,n)=1$.

Definição. Seja A um anel. Um elemento $a \in A$ diz-se *simplificável* se, para todos $x, y \in A$

$$xa = ya$$
 ou $ax = ay \Longrightarrow x = y$.

Exemplo 9. Nos anéis $(\mathbb{Z}, +, \times)$ e $(\mathbb{R}, +, \times)$, qualquer elemento não nulo é simplificável.

Exemplo 10. No anel $(\mathcal{M}_2(\mathbb{R}), +, \times)$, o elemento $\begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix}$ não é simplificável. De facto,

е

$$\begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ -1 & -2 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix} \begin{bmatrix} 3 & 2 \\ -3 & -2 \end{bmatrix}$$
$$\begin{bmatrix} 1 & 2 \\ -1 & -2 \end{bmatrix} \neq \begin{bmatrix} 3 & 2 \\ -3 & -2 \end{bmatrix}.$$

Observação. Num anel A, todo a unidade é simplificável, mas nem todo o elemento simplificável é uma unidade.

Definição. Seja A um anel. Um elemento $a \in A$ diz-se um *divisor de zero* se existe $b \in A \setminus \{0_A\}$ tal que

$$ab = 0_A$$
 ou $ba = 0_A$.

Observação. O elemento zero de um anel A só não é divisor de zero se $A = \{0_A\}$.

Exemplo 11. Nos anéis $(\mathbb{Z}, +, \times)$ e $(\mathbb{R}, +, \times)$, o único divisor de zero existente é o elemento 0.

Exemplo 12. No anel $(\mathcal{M}_2(\mathbb{R}), +, \times)$, qualquer matriz $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ tal que ad-bc=0 é divisor de zero.

Quem são os divisores de zero em $(\mathbb{Z}_n, +, \times)$, para $n \in \mathbb{N}$?

Exemplo 13.

- Os divisores de zero do anel $(\mathbb{Z}_6, +, \times)$ são os elementos $[0]_6$, $[2]_6$, $[3]_6$ e $[4]_6$ pois $[0]_6 \times [1]_6 = [0]_6$, $[2]_6 \times [3]_6 = [0]_6$ e $[4]_6 \times [3]_6 = [0]_6$.
- No anel $(\mathbb{Z}_7, +, \times)$, o único elemento divisor de zero é $[0]_7$.

Proposição. No anel $(\mathbb{Z}_n, +, \times)$, os divisores de zero são os elementos $[x]_n$, onde $\mathrm{m.d.c.}(x, n) \neq 1$.

Demonstração. Se $1 \neq d = \text{m.d.c.}(x, n)$, então, existem $a, b \in \mathbb{Z}$ tais que d = ax + bn e existe n = kd. Assim, em \mathbb{Z}_n , $[d]_n = [a]_n[x]_n + [0]_n(*)$ e, portanto, $[0]_n = [kd]_n = [ka]_n[x]_n$ com $[ka]_n \neq [0]_n$.

característica de um anel

definição e exemplos

Sejam A um anel e $a \in A$. Considerando os múltiplos de a, i.e., os elementos da forma na com $n \in \mathbb{Z}$, temos duas situações a considerar:

- (i) $(\exists m \in \mathbb{Z} \setminus \{0\})$ $(\forall a \in A)$ $ma = 0_A$;
- (ii) $(\forall m \in \mathbb{Z} \setminus \{0\}) (\exists b \in A) \quad mb \neq 0_A$ (i.e., $nb = 0_A \ (\forall b \in A) \Rightarrow n = 0$).

Exemplo 14. São exemplos da situação (ii) o anel dos reais e o anel dos inteiros.

Exemplo 15. É exemplo da situação (i) o anel $(\mathbb{Z}_4, +, \cdot)$.

Definição. Seja A um anel.

1. Se

$$nb = 0_A, \ \forall b \in A \Rightarrow n = 0,$$

A diz-se um anel de característica 0 e escreve-se c(A) = 0;

2. Se

$$(\exists m \in \mathbb{Z} \setminus \{0\}) (\forall a \in A) \quad ma = 0_A,$$

A diz-se um anel de *característica q* onde $q = \min\{n \in \mathbb{N} : na = 0_A \ \forall a \in A\}$. Escreve-se c(A) = q.

Observação. A segunda parte da definição faz todo o sentido, pois se A é um anel que satisfaz 2., temos que, sendo

$$M = \{ m \in \mathbb{Z} : ma = 0_A, \quad \forall a \in A \},$$

(M,+) é um subgrupo do grupo cíclico $(\mathbb{Z},+)$ e, portanto, é ele próprio um grupo cíclico e o seu gerador é o menor inteiro positivo de M.

Como (A, +) é grupo, podemos falar da ordem de qualquer elemento de A.

Se A é um anel de característica q e $x \in A$ é tal que a ordem de x no grupo (A, +) é o (x) = p, qual a relação de p com q?

A resposta é obviamente $p \mid q$. De facto, se q é a característica de A, temos que $qa = 0_A$, para todo $a \in A$. Em particular, para a = x temos que $qx = 0_A$. Logo, como p = o(x), vem, como consequência da definição de ordem de um elemento, que $p \mid q$.

Assim, podemos concluir que a característica de um anel finito A é o m.m.c. entre as ordens de todos os elementos de A.

Proposição. Sejam $A \neq \{0_A\}$ um anel com identidade 1_A e $n \in \mathbb{N}$. Então, a característica de A é n se e só se a ordem de 1_A é n.

Demonstração. [\Rightarrow]. Por hipótese, temos que c(A) = n, i.e., temos que:

- (i) $\forall a \in A \quad na = 0_A$;
- (ii) $(\exists p \in \mathbb{N} \forall a \in A \quad pa = 0_A) \Longrightarrow n \mid p$.

Queremos provar que $o(1_A) = n$, i.e., queremos provar que:

- (a) $n1_A = 0_A$;
- (b) $(\exists p \in \mathbb{N} : p1_A = 0_A) \Longrightarrow n \mid p$.

A condição (a) resulta naturalmente da condição (i). Para provarmos a condição (b) supomos que existe $p \in \mathbb{N}$ tal que $p1_A = 0_A$. Para aplicarmos (ii), temos que provar que $pa = 0_A$ para todo $a \in A$. De facto, $pa = p(1_Aa) = (p1_A)a = 0_Aa = 0_A$. Assim, por (ii), temos que $n \mid p$. Logo, verifica-se a condição (b).

[\Leftarrow]. Suponhamos agora que $p(1_A) = n$, i.e., que (a) e (b) são satisfeitos. Queremos provar que o anel satisfaz (i) e (ii):

(i) Para todo $a \in A$, temos que

$$na = n(1_A a) = (n1_A)a = 0_A a = 0_A.$$

(ii) Seja $p \in \mathbb{N}$ tal que, para todo $a \in A$, $pa = 0_A$. Em particular, como $1_A \in A$, temos que $p1_A = 0_A$. Então, por (b), concluímos que $n \mid p$, o que termina a nossa demonstração.

Exemplo 16. Seja $n \in \mathbb{N}$. Como, em \mathbb{Z}_n , $o(\overline{1}) = n$, concluímos que $c(\mathbb{Z}_n) = n$.

Exemplo 17. O anel dos números inteiros e o anel dos números reais são anéis de característica 0, uma vez que, nestes anéis, o(1) é infinita.

anéis especiais

domínios de integridade

Definição. Um anel comutativo com identidade A diz-se um domínio (ou anel) de integridade se admitir como único divisor de zero o elemento zero do anel.

Exemplo 18. Os anéis $(\mathbb{Z}, +, \times)$ e $(\mathbb{R}, +, \times)$ são domínios de integridade.

Exemplo 19. O anel das matrizes quadradas de ordem 2 não é um domínio de integridade.

Observação. Se A é um domínio de integridade, então, $A \neq \{0_A\}$.

Proposição. Seja A um anel comutativo com identidade. Então, as seguintes afirmações são equivalentes:

- 1. A é domínio de integridade;
- 2. $A \setminus \{0_A\} \neq \emptyset$ e todo o elemento de $A \setminus \{0_A\}$ é simplificável.

Demonstração. Suponhamos que A é um domínio de integridade. Então, $A \setminus \{0_A\} \neq \emptyset$. Sejam $y \in A \setminus \{0_A\}$ e $a, b \in A$ tais que ya = yb. Então, $ya - yb = 0_A$, pelo que

$$y\left(a-b\right)=0_{A}.$$

Como A é domínio de integridade e $y \neq 0_A$, temos que

$$a - b = 0_A$$
,

i.e.,

$$a = b$$
.

Supondo que ay = by, faz-se o raciocínio análogo.

Reciprocamente, suponhamos que todo o elemento $y \in A \setminus \{0_A\} \neq \emptyset$ é simplificável. Como $A \setminus \{0_A\} \neq \emptyset$, temos que 0_A é um divisor de zero. Vejamos que é o único elemento nestas condições. Seja x_0 um divisor de zero de A, i.e., seja $x_0 \in A$ para o qual existe $b \in A \setminus \{0_A\}$ tal que

$$bx_0 = 0_A$$
 ou $x_0b = 0_A$.

Suponhamos, sem perda de generalidade, que é a primeira condição que se verifica. Então,

$$bx_0 = 0_A = b0_A$$
.

e, como b é simplificável (já que $b \neq 0_A$), temos que

$$x_0 = 0_A$$
.

Logo, 0_A é o único dividor de zero, pelo que A é um domínio de integridade.

Proposição. Seja A um anel comutativo com identidade. Então, as seguintes afirmações são equivalentes:

- 1. A é domínio de integridade;
- 2. $A \setminus \{0_A\} \neq \emptyset$ e $A \setminus \{0_A\}$ é subsemigrupo de A relativamente ao produto.

Demonstração. Suponhamos que A é domínio de integridade. Então, $A \setminus \{0_A\} \neq \emptyset$. Provemos então que $(A \setminus \{0_A\}, \cdot)$ é subsemigrupo de (A, \cdot) . De facto:

- (a) $A \setminus \{0_A\} \subseteq A$;
- (b) se $a, b \in A \setminus \{0_A\}$, $ab \in A \setminus \{0_A\}$. Se $ab = 0_A$, com $a, b \in A \setminus \{0_A\}$, $a \in b$ seriam divisores de zero e, portanto, A não seria um domínio de integridade.

Reciprocamente, suponhamos que $A\setminus\{0_A\}\neq\emptyset$ e que $(A\setminus\{0_A\},\cdot)$ é subsemigrupo de (A,\cdot) , ou seja, que

$$a \neq 0_A, b \neq 0_A \Longrightarrow ab \neq 0_A.$$
 (*)

De $A\setminus\{0_A\}\neq\emptyset$ concluímos que 0_A é divisor de zero. Provemos que é único. Seja x_0 um divisor de zero. Então, existe $y\in A\setminus\{0_A\}$ tal que

$$x_0y = 0_A$$
 ou $yx_0 = 0_A$.

Comparando com (*), concluímos que $x_0 = 0_A$.

Proposição. Seja A um anel comutativo com identidade. Então, as seguintes afirmações são equivalentes:

- 1. A é domínio de integridade;
- A\ {0_A} ≠ ∅ e, se as equações ax = b e xa = b (a ≠ 0_A) tiverem solução, então, a solução é única.

Demonstração. Seja A um domínio de integridade. Então, $A \setminus \{0_A\} \neq \emptyset$. Suponhamos que, para $a, b \in A$ com $a \neq 0_A$,

$$(\exists x_0, y_0 \in A) \qquad ax_0 = b \quad \text{e} \quad y_0 a = b.$$

Sejam x_1 e y_1 outras soluções das equações ax = b e $x_2 = b$, respetivamente. Então,

$$ax_0 = b = ax_1$$
 e $y_0 a = b = y_1 a$

e, pelo facto de todos os elementos não nulos serem simplificáveis, temos que

$$x_0 = x_1$$
 e $y_0 = y_1$.

Logo, as soluções, quando existem, são únicas.

Reciprocamente, suponhamos que $A \setminus \{0_A\} \neq \emptyset$ e que, para $a \in A \setminus \{0_A\}$ e $b \in A$, se as equações ax = b e xa = b tiverem solução, então, a solução é única.

Como $x = 0_A$ é solução de $ax = 0_A$ e $xa = 0_A$, concluímos então que $x = 0_A$ é a única solução possível. Logo, 0_A é o único divisor de zero de A, pelo que A é um domínio de integridade.

anéis de divisão e corpos

Definição. Um anel A diz-se um anel de divisão se $(A \setminus \{0_A\}, \cdot)$ é um grupo. Um anel de divisão comutativo diz-se um *corpo*.

Resulta da definição que qualquer corpo é um domínio de integridade, mas o recíproco não é verdadeiro.

Exemplo 20. O domínio de integridade $(\mathbb{Z},+,\times)$ não é um anel de divisão, pois $(\mathbb{Z}\setminus\{0\},\times)$ não é grupo.

Exemplo 21. O domínio de integridade $(\mathbb{R}, +, \times)$ é um corpo e, portanto, um anel de divisão.

Exemplo 22. Seja $\mathcal{Q}=\{a+bi+cj+dk: a,b,c,d\in\mathbb{R}\}$, onde $i^2=j^2=k^2=-1$, ij=-ji=k, ki=-ik=j, jk=-kj=i. Considere em \mathcal{Q} as operações + e \times definidas por

$$(a + bi + cj + dk) + (a' + b'i + c'j + d'k)$$

= $a + a' + (b + b')i + (c + c')j + (d + d')k$

е

$$(a + bi + cj + dk) \times (a' + b'i + c'j + d'k) =$$

$$aa' - bb' - cc' - dd' + (ab' + a'b + cd' - c'd)i +$$

$$(ac' - bd' + a'c + b'd)j + (ad' + bc' - b'c + a'd)k.$$

Então, $(Q, +, \times)$ é um anel de divisão não comutativo. Este anel designa-se por *Anel dos Quarteniões*.

subanéis

conceitos básicos

Definição. Uma parte A' de um anel (respetivamente, domínio de integridade, anel de divisão, corpo) A diz-se um subanel (respetivamente, subdomínio de integridade, subanel de divisão, subcorpo) de A se for um anel (respetivamente, domínio de integridade, anel de divisão, corpo) relativamente às restrições das operações de adição e produto do anel.

Exemplo 23. Quando consideradas as operações usuais de adição e multiplicação, o anel $\mathbb Z$ é subanel e subdomínio de integridade de $\mathbb R$, mas não é seu subanel de divisão, nem subcorpo.

Exemplo 24. Quando consideradas as operações usuais de adição e multiplicação, o anel $n\mathbb{Z}$ $(n \in \mathbb{N} \setminus \{1\})$ é subanel mas não é subdomínio de integridade de \mathbb{Z} .

Exemplo 25. Dado um anel A, $\{0_A\}$ e A são subanéis de A. No entanto, dado um anel de divisão ou corpo A, $\{0_A\}$ não é subanel de divisão nem subcorpo de A.

Proposição. Sejam A um anel e $A' \subseteq A$. Então, A' é subanel de A se e só se:

- 1. $A' \neq \emptyset$;
- 2. $x, y \in A' \Rightarrow x y \in A'$;
- 3. $x, y \in A' \Rightarrow xy \in A'$

Proposição. Sejam A um domínio de integridade e $A' \subseteq A$. Então, A' é subdomínio de integridade de A se e só se:

- 1. $1_A \in A'$;
- 2. $x, y \in A' \Rightarrow x y \in A'$;
- 3. $x, y \in A' \Rightarrow xy \in A'$

Proposição. Sejam A um anel de divisão (respetivamente, corpo) e $A' \subseteq A$. Então, A' é subanel de divisão (respetivamente, subcorpo) de A se e só se:

- 1. $A' \neq \emptyset$;
- 2. $x, y \in A' \Rightarrow x y \in A'$;
- $3. \ x,y \in A' \backslash \{0_A\} \Rightarrow xy^{-1} \in A' \backslash \{0_A\}.$

intersecção, união e soma de subanéis

INTERSECÇÃO Sejam A um anel e A_1 e A_2 subanéis de A. Então, $A_1 \cap A_2$ é subanel de A.

UNIÃO Sejam A um anel e A_1 e A_2 subanéis de A. A união $A_1 \cup A_2$ não é necessariamente um subanel de A.

SOMA Sejam A um anel e A_1 e A_2 subanéis de A. Como $(A_1, +)$ e $(A_2, +)$ são subgrupos do grupo comutativo (A, +), sabemos que o subconjunto

$$A_1 + A_2 = \{a_1 + a_2 : a_1 \in A_1, a_2 \in A_2\}$$

de A é subgrupo de (A, +) (Relembrar que se G é grupo e H, K < G então HK < G se e só se HK = KH; em linguagem aditiva, escrevemos H + K < G se e só se H + K = K + H). No entanto, dados $a_1 + a_2, b_1 + b_2 \in A_1 + A_2$,

$$(a_1 + a_2)(b_1 + b_2) = a_1b_1 + a_2b_1 + a_1b_2 + a_2b_2$$

não é necessariamente um elemento de $A_1 + A_2$, pelo que $A_1 + A_2$ não é necessariamente um subanel de A.

ideais e relações de congruência num anel

Definição. Seja A um anel. Uma parte I de A diz-se um ideal direito (respetivamente, ideal esquerdo) de A se:

- 1. (I,+)<(A,+);
- 2. $(\forall a \in A) (\forall x \in I)$ $xa \in I$ (respetivamente, $ax \in I$)

Se I for simultaneamente ideal esquerdo e ideal direito, então, I diz-se um ideal de A.

Exemplo 26. Consideremos o anel $(\mathbb{Z},+,\times)$. O conjunto $2\mathbb{Z}$ é um seu ideal pois $(2\mathbb{Z},+)<(\mathbb{Z},+)$ e o produto de um inteiro qualquer por um inteiro par é um inteiro par.

Exemplo 27. Relativamente ao anel $(\mathbb{Z}_4,+,\cdot)$, o conjunto $\{\bar{0},\bar{2}\}$ é um ideal pois

$$\left(\left\{\bar{0},\bar{2}\right\},+\right)<\left(\mathbb{Z}_{4},+\right)$$

е

$$\begin{split} &\bar{0}\cdot\bar{0}=\bar{0}\cdot\bar{1}=\bar{0}\cdot\bar{2}=\bar{0}\cdot\bar{3}=\bar{0}\in\left\{\bar{0},\bar{2}\right\}\\ &\bar{2}\cdot\bar{0}=\bar{2}\cdot\bar{2}=\bar{0}\in\left\{\bar{0},\bar{2}\right\} \quad e\quad \bar{2}\cdot\bar{1}=\bar{2}\cdot\bar{3}=\bar{2}\in\left\{\bar{0},\bar{2}\right\}. \end{split}$$

Como o anel em questão é comutativo, concluímos que $\left\{ \bar{0},\bar{2}\right\}$ é um ideal de $\mathbb{Z}_{4}.$

Exemplo 28. Seja A um anel. Então, $\{0_A\}$ é um ideal de A (ao qual se chama ideal trivial de A).

Exemplo 29. Um anel A é um ideal de si próprio (ao qual se chama *ideal impróprio de A*).

Proposição. Todo o ideal de um anel A é um subanel de A. Proposição. A intersecção de uma família de ideais de um anel A é um ideal de Α. Proposição. Num anel com identidade todo o ideal que contém essa identidade é impróprio. **Demonstração.** Sejam A um anel com identidade 1_A e I um ideal de A tal que $1_A \in I$. Então, $\forall a \in A$, $a = a \cdot 1_A \in I$. Logo, $A \subseteq I$. Como, por definição, $I \subseteq A$, temos o resultado pretendido, i.e., I = A.

Proposição. Num anel de divisão existem apenas dois ideais: o trivial e o impróprio.

Demonstração. Vimos já que $\{0_A\}$ e A são ideais de qualquer anel A. Vejamos que, se A é um anel de divisão, estes ideais são de facto os únicos ideais de A. Seja $I \neq \{0_A\}$ um ideal de A. Então, existe $x \in A \setminus \{0_A\}$ tal que $x \in I$. Mas, como $(A \setminus \{0_A\}, \cdot)$ é um grupo, temos que $x^{-1} \in A \setminus \{0_A\} \subseteq A$. Assim, como I é um ideal de A, temos que

$$1_A = xx^{-1} \in I.$$

Logo, I é um ideal que contém a identidade do anel, pelo que, pela proposição anterior, é o ideal impróprio.

Exemplo 30. Os únicos ideias do corpo \mathbb{R} são $\{0\}$ e o próprio \mathbb{R} .

O facto de $2\mathbb{Z}$ ser ideal de \mathbb{Z} permite-nos concluir que \mathbb{Z} não é corpo.

Podemos ter ideais de um anel A que sejam gerados por um elemento de a.

Definição. Sejam A um anel e $a \in A$. Chama-se ideal principal direito (respetivamente, ideal principal esquerdo, ideal principal) gerado por a, e representa-se por $(a)_d$ (respetivamente $(a)_e$, (a)) ao menor ideal direito (respetivamente, ideal esquerdo, ideal) que contém a.

Exemplo 31. Consideremos o anel \mathbb{Z}_4 com as operações usuais de adição e multiplicação de classes. Como a multiplicação é comutativa, todos os ideais esquerdos são direitos e viceversa, pelo que podemos falar simplesmente em ideais. Os ideais de \mathbb{Z}_4 são $\{\bar{0}\}$, $\{\bar{0},\bar{2}\}$ e \mathbb{Z}_4 . Assim, temos que

$$\left(\overline{0}\right)=\{\overline{0}\},\quad \left(\overline{2}\right)=\{\overline{0},\overline{2}\},\quad \left(\overline{1}\right)=\left(\overline{3}\right)=\mathbb{Z}_4.$$

Proposição. Sejam A um anel e $a \in A$. Então,

- 1. $(a)_d$ é a intersecção de todos os ideais direitos de A que contêm a.
- 2. $(a)_e$ é a intersecção de todos os ideais esquerdos de A que contêm a.
- 3. (a) é a intersecção de todos os ideais de A que contêm a.

Exemplo 32. No corpo \mathbb{R} , $(0) = \{0\}$ e $(x) = \mathbb{R}$, para todo $x \neq 0$.

Exemplo 33. No domínio de integridade \mathbb{Z} , $(-n) = (n) = n\mathbb{Z}$, para todo $n \in \mathbb{N}_0$.

Proposição. Sejam A um anel com identidade e $a \in A$. Então, $(a)_d = aA$ e $(a)_a = Aa$.

Demonstração. Seja A um anel com identidade 1_A e $a \in A$. Pretendemos provar que

$$aA = \{ax \mid x \in A\}$$

é o menor ideal direito que contém a.

De facto, (aA, +) é um subgrupo de (A, +), pois

- (i) $aA \neq \emptyset$, já que $a = a \cdot 1_A \in aA$;
- (ii) $ax, ay \in aA \Rightarrow ax ay = a(x y) \in A$;

Mais ainda.

$$x \in A$$
, $ay \in aA \Rightarrow (ay) x = a(xy) \in aA$,

pelo que aA é um ideal de A.

Por outro lado, ao provar que $aA \neq \emptyset$, provamos que aA contém a.

Finalmente, seja J um ideal direito de A tal que $a \in J$. Então,

$$x \in aA$$
 \Rightarrow $x = ay$ com $y \in A$ \Rightarrow $x = ay$ com $a \in J$ e $y \in A$ \Rightarrow $x = ay \in J$.

De modo análogo, prova-se que $(a)_e = Aa$.

Corolário. Sejam A um anel comutativo com identidade e $a \in A$. Então, (a) = Aa = aA.

congruências

Definição. Seja A um anel. Uma relação de equivalência ρ definida em A diz-se uma relação de congruência se, para todos $x, x', y, y' \in A$,

$$x \rho x'$$
 e $y \rho y' \Rightarrow (x + y) \rho (x' + y')$ e $(xy) \rho (x'y')$.

Exemplo 34. Considere-se em $\mathbb Z$ a relação

$$a \rho b \Leftrightarrow a - b \in 2\mathbb{Z}$$
.

Então, a relação ρ é de equivalência e é tal que

$$\begin{array}{lll} a\,\rho\,b & \mathrm{e} & a'\,\rho\,b' & \Leftrightarrow & a-b,a'-b' \in 2\mathbb{Z} \\ \\ \Rightarrow & a+a'-\left(b+b'\right) \in 2\mathbb{Z} & \mathrm{e} \\ \\ & aa'-bb'=aa'-ba'+ba'-bb'=\left(a-b\right)a'+b\left(a'-b'\right) \in 2\mathbb{Z} \\ \\ \Leftrightarrow & \left(a+a'\right)\,\rho\,\left(b+b'\right) & \mathrm{e} & aa'\,\rho\,bb', \end{array}$$

pelo que ρ é uma relação de congruência em \mathbb{Z} .

Proposição. Sejam A um anel e I um ideal de A. Então, a relação definida em A por

$$a \rho b \Leftrightarrow a - b \in I$$

é uma relação de congruência.

Demonstração. Comecemos por provar que ρ é uma relação de equivalência em A: Como (I, +) é subgrupo comutativo de (A, +), temos que:

- (i) para todo $a \in A$, $a-a=0_A \in I$ e, portanto, $a \rho a$. Assim, ρ é reflexiva;
- (ii) se $a, b \in A$ são tais que $a \rho b$, temos que $a b \in I$ e, portanto, $b a = -(a b) \in I$. Logo, $b \rho a$, o que nos permite concluir que ρ é simétrica;
 - (iii) se $a,b,c\in A$ são tais que $a\rho$ b e b ρ c, temos que $a-b\in I$ e $b-c\in I$ e, portanto, $a-c=(a-b)+(b-c)\in I.$

Assim, $a \rho c$, o que nos permite concluir que ρ é transitiva.

Assim, ρ é uma relação de equivalência. Para concluir que ρ é uma relação de congruência basta verificar que

$$a \rho b$$
, $a' \rho b' \Rightarrow (a + a') \rho (b + b') e aa' \rho bb'$.

De facto, como I é ideal de A,

$$\begin{array}{ll} a \, \rho \, b, \ a' \, \rho \, b' & \Rightarrow a - b, a' - b' \in I \\ & \Rightarrow (a + a') - (b + b') \in I, \\ & aa' - bb' = aa' - ba' + ba' - bb' = (a - b)a' + b(a' - b') \in I \\ & \Leftrightarrow (a + a') \, \rho \, (b + b'), \ aa' \, \rho \, bb'. \end{array}$$

Proposição. Seja ρ uma relação de congruência definida num anel A. Então:

- 1. a classe $[0_A]_{\rho}$ é um ideal de A;
- 2. $a \rho b \Leftrightarrow a b \in [0_A]_{\rho}$;
- 3. $(\forall a \in A)$ $[a]_{\rho} = a + [0_A]_{\rho} (= \{a + x \in A \mid x \rho 0_A\}).$

Demonstração. (i) Sendo uma classe de equivalência, temos que $\neq \emptyset$. Sejam $a,b \in [0_A]_{\rho}$. Então, $a \rho 0_A$ e $b \rho 0_A$ e, portanto, $a - b \rho 0_A$, pelo que $a - b \in [0_A]_{\rho}$. Então, $([0_A]_{\rho},+) < (A,+)$. Sejam $a \in [0_A]_{\rho}$ e $x \in A$. Então $a \rho 0_A$ e $x \rho x$ e, portanto, $a x \rho 0_A x$ e $x a \rho x 0_A$, i.e., $a x \rho 0_A$ e $x a \rho 0_A$. Assim, $a x, x a \in [0_A]_{\rho}$. Estamos em condições de concluir que $[0_A]_{\rho}$ é um ideal de A.

(ii) Sejam $a, b \in A$. Então,

$$a \rho b \Leftrightarrow a - b \rho b - b \Leftrightarrow a - b \rho 0_A \Leftrightarrow a - b \in [0_A]_{\rho}$$

(iii) Seja $a \in A$. Então,

$$b \in [a]_{\rho} \Leftrightarrow b \rho a \Leftrightarrow b - a \in [0_A]_{\rho} \Leftrightarrow b = a + [0_A].$$

anéis quociente

definição

Se ρ é uma relação de congruência num anel A (e, portanto, de equivalência), podemos então falar no conjunto quociente

$$A/\rho = \left\{ \left[\mathbf{a} \right]_{\rho} \mid \mathbf{a} \in A
ight\}.$$

Neste conjunto, definem-se duas operações binárias:

1. uma adição de classes: para $a, b \in A$,

$$[a]_{\rho} + [b]_{\rho} = [a+b]_{\rho};$$

2. uma multiplicação de classes: para $a, b \in A$,

$$[a]_{\rho} \cdot [b]_{\rho} = [a \cdot b]_{\rho}.$$

Sendo ρ uma relação de congruência, prova-se que as operações estão bem definidas, i.e., não dependem da escolha do representante da classe:

Se
$$[a]_{
ho}=[a']_{
ho}$$
 e $[b]_{
ho}=[b']_{
ho}$, temos que

$$a \rho a' e b \rho b'$$
,

pelo que

$$(a+b) \rho (a'+b')$$
 e $(ab) \rho (a'b')$

e, portanto,

$$[a+b]_{
ho}=\left[a'+b'
ight]_{
ho}\quad \mathrm{e}\quad [ab]_{
ho}=\left[a'b'
ight]_{
ho}.$$

Teorema. Sejam A um anel e ρ uma relação de congruência definida em A. Então, considerando a adição e a multiplicação acima definidas, $(A/\rho,+,\cdot)$ é um anel.

Observação. Sabemos que existe uma relação biunívoca entre o conjunto das relações de congruência em A e o conjunto dos ideais de A. Assim, se I é ideal de A, podemos também falar num anel quociente:

Definição. Sejam A um anel e I é ideal de A. Chama-se anel quociente módulo I ao anel $(A/I, +, \cdot)$, onde

•
$$A/I = \{x + I : x \in A\}$$
 e
$$y \in x + I \Leftrightarrow y - x \in I.$$

• para todos $x, y \in A$,

$$(x+1) + (y+1) = (x+y) + 1$$

е

$$(x+I)(y+I) = xy + I.$$

Proposição. Sejam A um anel e I um ideal de A.

- 1. Se A é uma anel comutativo, então A/I é um anel comutativo;
- 2. Se A é um anel com identidade 1_A , então A/I é um anel com identidade $1_A + I$.

Exemplo 32. Considerando o anel dos inteiros relativos, sabemos que, para cada $n \in \mathbb{N}$, $n\mathbb{Z}$ é um ideal de \mathbb{Z} . Podemos então considerar o anel quociente $\mathbb{Z}/n\mathbb{Z}$. Mais ainda, para cada $x \in \mathbb{Z}$,

$$[x]_{n\mathbb{Z}} = x + n\mathbb{Z} = r + n\mathbb{Z} = [r]_n,$$

onde r é o resto da divisão inteira de x por n e, por isso, é tal que 0 < r < n-1.

Logo,

$$\mathbb{Z}/n\mathbb{Z}=\mathbb{Z}_n.$$

ideais primos e ideais maximais

Definição. Seja A um anel comutativo com identidade. Um ideal I de A diz-se maximal se não existir um ideal K de A tal que

$$I \subsetneq K \subsetneq A$$
.

Exemplo 33. O ideal $2\mathbb{Z}$ do anel \mathbb{Z} é maximal. O ideal $4\mathbb{Z}$ não é maximal pois

$$4\mathbb{Z} \subsetneqq 2\mathbb{Z} \subsetneqq \mathbb{Z}.$$

Definição. Seja A um anel comutativo com identidade. Um ideal I de A diz-se primo se $A \setminus I \neq \emptyset$ e $A \setminus I$ é fechado para o produto.

Exemplo 34. O ideal $2\mathbb{Z}$ do anel \mathbb{Z} é primo. De facto, $\mathbb{Z}\backslash 2\mathbb{Z}=2\mathbb{Z}+1$ é fechado para o produto, já que, para todos $n,m\in\mathbb{Z}$,

$$(2n+1)(2m+1) = 2(n+m+2nm) + 1.$$

Teorema. Sejam A um anel comutativo com identidade e I um ideal de A. Então, são equivalentes as seguintes afirmações:

- 1. I é maximal;
- 2. A/I é corpo.

Demonstração. $[(i)\Rightarrow (ii)]$. Como A é um anel comutativo com identidade, temos que A/I é um anel comutativo com identidade. Para provar que A/I é corpo, falta apenas provar que todo o elemento não nulo $x+I\in A/I$ admite um inverso.

Seja $a + I \in A/I$ tal que $a + I \neq I$. Então,

$$K = \{i + xa \in A \mid i \in I \text{ e } x \in A\}$$

é um ideal de A. De facto,

- (a) $0_A = 0_A + 0_A a$, pelo que $0_A \in K$ e, portanto, $K \neq \emptyset$;
- (b) para $i + xa, j + ya \in K$, temos que $i + xa (j + ya) = (i j) + (x y) a \in K$;
- (c) Para $i+xa \in K$ e $y \in A$, temos que y (i+xa)=yi+(yx) a. Como $yi \in I$ (porque I é ideal) e $yx \in A$, concluímos que y $(i+xa) \in K$.

Como o anel é comutativo, concluímos que K é um ideal de A.

Mais ainda, o ideal assim definido K é tal que $I \subsetneq K$. De facto,

$$i \in I \Rightarrow i = i + 0_A a \in K$$

e $a \notin I$ é tal que $a = 0_A + 1_A a \in K$.

Logo, porque I é um ideal maximal por hipótese, temos que K=A. Então, $1_A\in K$, pelo que existem $i_1\in I$ e $x_1\in A$ tais que $1_A=i_1+x_1a$, ou seja, $1_A-x_1a=i_1\in I$. Logo, $(1_A-x_1a)+I=I$. Mas,

$$(1_A - x_1 a) + I = I \Leftrightarrow x_1 a + I = 1_A + I \Leftrightarrow (x_1 + I) (a + I) = 1_A + I,$$
 pelo que $(a + I)^{-1} = x_1 + I$.

 $[(ii) \Rightarrow (i)]$. Seja I um ideal de A tal que A/I é um corpo.

Suponhamos que existe um ideal K de A, tal que $I \subsetneq K \subseteq A$. De $I \subsetneq K$, concluímos que $(\exists x \in K)$ $x \notin I$.

Logo, $x + I \neq I$. Mas,

$$x + I \neq I \Rightarrow (\exists x' + I \in (A/I) \setminus \{I\}) \quad (x + I) (x' + I) = 1_A + I$$

$$\Rightarrow (\exists x' \in A \setminus I) \quad xx' + I = 1_A + I$$

$$\Rightarrow (\exists x' \in A \setminus I) \quad xx' - 1_A = i \in I$$

$$\Rightarrow (\exists x' \in A) \quad 1_A = xx' - i, \quad \text{com } i, x \in K,$$

$$\Rightarrow 1_A \in K.$$

Assim, K = A e, portanto, I é maximal.

Exemplo 35. Se considerarmos o anel \mathbb{Z} , um ideal é maximal se e só se é do tipo $p\mathbb{Z}$, com p primo, pois \mathbb{Z}_p só é corpo se p for primo.

Teorema. Sejam A um anel comutativo com identidade e I um ideal de A. Então, são equivalentes as seguintes afirmações:

- 1. I é ideal primo;
- 2. A/I é um domínio de integridade.

Demonstração. $[(i)\Rightarrow (ii)]$. Como A é um anel comutativo com identidade, A/I também. Mais ainda, como I é primo, $A\setminus I\neq\emptyset$, pelo que $A/I\neq\{I\}$. Para provar que A/I é um domínio de integridade, falta então provar que

$$(x+I)(y+I) = I \Longrightarrow x+I = I \text{ ou } y+I = I.$$

De facto,

$$(x+I)(y+I) = I \iff xy+I = I$$

$$\iff xy \in I$$

$$\implies x \in I \text{ ou } y \in I \quad (I \text{ primo})$$

$$\iff x+I = I \text{ ou } y+I = I.$$

 $[(ii)\Rightarrow(i)]$. Seja A um anel e I um ideal de A tal que A/I é um domínio de integridade. Então, $A/I\neq\{I\}$ e, portanto, $A\neq I$ pelo que $A\setminus I\neq\emptyset$.

Sejam $a, b \in A \setminus I$. Pretendemos provar que $ab \in A \setminus I$.

Suponhamos que $ab \in I$. Então, ab + I = I. Logo,

$$(a+I)(b+I) = I \Longrightarrow a+I = I \text{ ou } b+I = I,$$

o que contradiz a hipótese de $a, b \in A \setminus I$.

Como consequência dos dois últimos teoremas, temos que

Corolário. Qualquer anel maximal de um anel comutativo com identidade é ideal primo.

Demonstração. A demonstração é trivial, tendo em conta que todo o corpo é um domínio de integridade. Assim,

I ideal maximal \iff A/I corpo \implies A/I domínio de integridade \iff I ideal primo.

49

morfismos

definição e propriedades

Definição. Sejam A e A' dois anéis. Uma aplicação $\varphi: A \to A'$ diz-se um morfismo (ou homomorfismo) de anéis se satisfaz as seguintes condições:

- 1. $(\forall a, b \in A)$ $\varphi(a+b) = \varphi(a) + \varphi(b)$;
- 2. $(\forall a, b \in A)$ $\varphi(a \cdot b) = \varphi(a) \cdot \varphi(b)$.

Um morfismo diz-se um *monomorfismo* (respetivamente, *epimorfismo*, *isomorfismo*) se for injetivo (respetivamente, sobrejetivo, bijetivo)

Um morfismo diz-se um *endomorfismo* se A=A'. Um endomorfismo bijetivo diz-se um *automorfismo*.

Exemplo 36. Sejam A e A' anéis. Então, a aplicação $\varphi_0: A \to A'$ definida por $\varphi_0(x) = 0_{A'}$, para todo $x \in A$, é um morfismo, ao qual chamamos *morfismo nulo*.

Exemplo 37. Seja A um anel. Então, a aplicação identidade em A é um automorfismo, ao qual chamamos *morfismo identidade*.

Exemplo 38. A aplicação $\varphi: \mathbb{Z} \to \mathbb{Z}_{10}$ definida por $\varphi(n) = [6n]_{10}$, para todo $n \in \mathbb{Z}$, é um homomorfismo de anéis. De facto, para $n, m \in \mathbb{Z}$ temos:

- 1. $\varphi(n+m) = [6(n+m)]_{10} = [6n+6m]_{10} = [6n]_{10} + [6m]_{10} = \varphi(n) + \varphi(m);$
- 2. $\varphi(nm) = [6(nm)]_{10} = [36(nm)]_{10} = [(6n)(6m)]_{10} = [6n]_{10}[6m]_{10} = \varphi(n)\varphi(m)$, uma vez que $36 \equiv 6 \pmod{10}$.

Proposição. Sejam A e A' dois anéis e $\varphi:A\to A'$ um morfismo. Então, $\varphi\left(0_A\right)=0_{A'}$.

Demonstração. De

$$0_{A'} + \varphi(0_A) = \varphi(0_A) = \varphi(0_A + 0_A) = \varphi(0_A) + \varphi(0_A)$$

concluímos, pela lei do corte, que

$$\varphi\left(0_{A}\right)=0_{A'}$$
.

Exemplo. 39. A aplicação $\varphi: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ definida por $\varphi((n,m)) = 3n + m + 3$ não é um morfismo de anéis pois

$$\varphi(0_{\mathbb{Z}\times\mathbb{Z}}) = \varphi((0,0)) = 3 \times 0 + 0 + 3 = 3 \neq 0 = 0_{\mathbb{Z}}.$$

Proposição. Sejam A e A' dois anéis e $\varphi: A \to A'$ um morfismo. Então, $(\forall a \in A) \quad \varphi(-a) = -\varphi(a)$.

Demonstração. Seja $a \in A$. Como

$$\varphi(-a) + \varphi(a) = \varphi(-a+a) = \varphi(0_A) = 0_{A'},$$

temos que

$$-\varphi\left(a\right)=\varphi\left(-a\right).$$

Proposição. Sejam A e A' dois anéis e $\varphi:A\to A'$ um morfismo. Então, $(\forall a\in A)\,(\forall k\in\mathbb{Z})\quad \varphi(ka)=k\varphi(a)$.

Demonstração. Temos de considerar 3 casos:

• k = 0. Seja $a \in A$. Então,

$$\varphi\left(0a\right)=\varphi\left(0_{A}\right)=0_{A^{\prime}}=0\varphi\left(a\right);$$

• $k \in \mathbb{Z}^+$. Seja $a \in A$. Então, como $\varphi(1a) = \varphi(a) = 1\varphi(a)$ e, sempre que $\varphi(na) = n\varphi(a)$, temos que

$$\varphi\left(\left(n+1\right)a\right)=\varphi\left(na+a\right)=\varphi\left(na\right)+\varphi\left(a\right)=n\varphi\left(a\right)+\varphi\left(a\right)=\left(n+1\right)\varphi\left(a\right),$$

concluímos, por indução, que $\varphi(ka) = k\varphi(a)$, para todo $k \in \mathbb{N}$.

• $k \in \mathbb{Z}^-$. Seja $a \in A$. Então,

$$\varphi\left(ka\right) = \varphi\left(-(-k)a\right) = -\varphi\left((-k)a\right) = -(-k)\varphi\left(a\right) = k\varphi\left(a\right).$$

Proposição. Sejam $\varphi:A\to A'$ um morfismo de anéis e B um subanel de A.

Então, $\varphi(B)$ é um subanel de A'.

Demonstração. Seja B um subanel de A. Então,

- (i) $\varphi(B) \neq \emptyset$, pois $0_{A'} = \varphi(0_A)$ e $0_A \in B$;
- (ii) dados $x, y \in \varphi(B)$, existem $a, b \in B$ tais que $x = \varphi(a)$ e $y = \varphi(b)$, pelo que

$$x - y = \varphi(a) - \varphi(b) = \varphi(a - b)$$
 com $a - b \in B$

е

$$xy = \varphi(a)\varphi(b) = \varphi(ab) \quad \text{com } ab \in B.$$

Assim, $x - y, xy \in \varphi(B)$, pelo que $\varphi(B)$ é um subanel de A'.

Proposição. Sejam $\varphi: A \to A'$ um epimorfismo de anéis e I um ideal de A.

Então,
$$\varphi(I)$$
 é um ideal de A' .

Demonstração. Pela proposição anterior, temos que $(\varphi(I), +) < (A', +)$. Por outro lado, sejam $a' \in A'$ e $x' \in \varphi(I)$. Então, existem $a \in A$ e $i \in I$ tais que $\varphi(a) = a'$ e $\varphi(i) = x'$, pelo que

$$a'x' = \varphi(a)\varphi(i) = \varphi(ai) \in \varphi(I)$$

е

$$x'a' = \varphi(i)\varphi(a) = \varphi(ia) \in \varphi(I)$$
.

Logo, $a'x', x'a' \in \varphi(I)$, pelo que $\varphi(I)$ é um ideal de A'.

Proposição. Sejam $\varphi:A\to A'$ um morfismo de anéis e B' um subanel de A'. Então,

$$\varphi^{-1}(B') = \{x \in A \mid \varphi(x) \in B'\}$$

é um subanel de A.

Demonstração. Seja B' um subanel de A'. Então,

- (i) $\varphi^{-1}(B') \neq \emptyset$ pois $\varphi(0_A) = 0_{A'} \in B'$, pelo que $0_A \in \varphi^{-1}(B')$;
- (ii) dados $x,y\in \varphi^{-1}\left(B'\right)$, temos que $\varphi(x),\varphi(y)\in B'$ e, portanto, $\varphi\left(x-y\right)=\varphi\left(x\right)-\varphi\left(y\right)\in B'$, pelo que $x-y\in \varphi^{-1}\left(B'\right)$;
- (iii) dados $x,y\in \varphi^{-1}\left(B'\right)$, temos que $\varphi(x),\varphi(y)\in B'$ e, portanto, $\varphi\left(xy\right)=\varphi\left(x\right)\varphi\left(y\right)\in B'$, pelo que $xy\in \varphi^{-1}\left(B'\right)$.

Assim, $\varphi^{-1}(B')$ é um subanel de A.

Proposição. Sejam $\varphi: A \to A'$ um morfismo de anéis e I' um ideal de A'. Então,

$$\varphi^{-1}\left(I'\right) = \left\{x \in A \mid \varphi\left(x\right) \in I'\right\}$$

é um ideal de A.

Demonstração. Seja I' um ideal de A'. Então, pela proposição anterior, $\varphi^{-1}\left(I'\right)$ é um subanel de A. Por outro lado, seja $a \in A$ e $x \in \varphi^{-1}\left(I'\right)$. Então, $\varphi(x) \in I'$ e, portanto,

$$\varphi(ax) = \varphi(a)\varphi(x) \in I'$$
, pelo que $ax \in \varphi^{-1}(I')$ e, portanto, $\varphi^{-1}(I')$ é um ideal de A .

núcleo e imagem de um morfismo

Definição. Seja $\varphi: A \to A'$ um morfismo de anéis.

1. Chama-se *Núcleo de* φ (ou *kernel de* φ), e representa-se por $\mathrm{Nuc}\varphi$ (ou $\mathrm{Ker}\varphi$), ao subconjunto de A definido por

$$\mathrm{Nuc}\varphi = \{x \in A : \varphi(x) = 0_{A'}\};$$

2. Chama-se imagem de φ , e representa-se por $\mathrm{Im}\varphi$ ou φ (A), ao subconjunto de A' definido por

$$\operatorname{Im}\varphi = \{\varphi(x) : x \in A\}.$$

Proposição. Seja $\varphi:A\to A'$ um morfismo de anéis. Então,

- 1. $Nuc\varphi$ é um ideal de A;
- 2. $\text{Im}\varphi$ é um subanel de A'.
- 1. Trivial, tendo em conta que $\mathrm{Nuc}\varphi=\varphi^{-1}\left\{\mathbf{0}_{A'}\right\}$ e $\left\{\mathbf{0}_{A'}\right\}$ é um ideal de A'.
- 2. Trivial, tendo em conta que ${
 m Im} arphi = arphi(A)$ e que A é um subanel de A.

Exemplo 40. Considere-se o morfismo de anéis $\varphi: \mathbb{Z} \to \mathbb{Z}_{10}$ definido por $\varphi(n) = [6n]_{10}$, para todo $n \in \mathbb{Z}$.

Por um lado, tendo em conta que $\operatorname{Nuc} \varphi = \{n \in \mathbb{Z} : \varphi(n) = [0]_{10}\}$ e que

$$\begin{split} \varphi(n) &= [0]_{10} &\Leftrightarrow [6n]_{10} = [0]_{10} \\ &\Leftrightarrow 6n \equiv 0 (\bmod{10}) \\ &\Leftrightarrow n \equiv 0 (\bmod{\frac{10}{\mathrm{m.d.c.}(6,10)}}) \\ &\Leftrightarrow n \equiv 0 (\bmod{5}), \end{split}$$

concluímos que $\operatorname{Nuc} \varphi = 5\mathbb{Z}$.

Por outro lado,

$$\operatorname{Im}\varphi = \{\varphi(n) : n \in \mathbb{Z}\}
= \{[6n]_{10} : n \in \mathbb{Z}\} = \{[0]_{10}, [2]_{10}, [4]_{10}, [6]_{10}, [8]_{10}\}.$$

Proposição. Sejam A um anel e I um seu ideal. Então, a aplicação $\pi:A\to A/I$ definida por $\pi(x)=x+I$ ($x\in A$), é um epimorfismo (ao qual se chama *epimorfismo canónico*).

Demonstração. Sejam A um anel e I um ideal de A. Então, em A/I, temos que

$$(x + 1) + (y + 1) = (x + y) + 1$$

е

$$(x + 1)(y + 1) = xy + 1.$$

Logo, a aplicação π é tal que

$$\pi(x) + \pi(y) = \pi(x + y)$$

е

$$\pi(x)\pi(y)=\pi(xy),$$

pelo que π é um morfismo. Além disso, o facto de qualquer elemento de A/I se definir à custa de um representante de A, permite-nos concluir que π é uma aplicação sobrejetiva.

Teorema Fundamental do Homomorfismo. Seja $\varphi:A\to A'$ um morfismo de anéis. Então,

$$A/\mathrm{Nuc}\varphi\cong\varphi(A)$$
.

Demonstração. Seja $\varphi:A\to A'$ um morfismo de anéis. Então, $\mathrm{Nuc}\varphi$ é um ideal de A e, portanto, $\pi:A\to A/\mathrm{Nuc}\varphi$ é um epimorfismo. Seja θ a relação que a cada classe $x+\mathrm{Nuc}\varphi$ de $A/\mathrm{Nuc}\varphi$ faz corresponder o elemento φ (x) de A'. Então,

(i) θ é uma aplicação injectiva, pois

$$(\forall x + \text{Nuc}\varphi \in A/\text{Nuc}\varphi)$$
 $x \in A \in \varphi(x) \in A'$,

е

$$\begin{aligned} x + \mathrm{Nuc}\varphi &= y + \mathrm{Nuc}\varphi &\iff x - y \in \mathrm{Nuc}\varphi \\ &\iff \varphi \left(x - y \right) = \mathbf{0}_{A'} \\ &\iff \varphi \left(x \right) - \varphi \left(y \right) = \mathbf{0}_{A'} \\ &\iff \varphi \left(x \right) = \varphi \left(y \right). \end{aligned}$$

(ii) θ é um morfismo, pois

$$\pi ((x + \text{Nuc}\varphi) + (y + \text{Nuc}\varphi)) = \pi ((x + y) + (\text{Nuc}\varphi))$$

$$= \varphi (x + y)$$

$$= \varphi (x) + \varphi (y)$$

$$= \pi (x + \text{Nuc}\varphi) + \pi (y + \text{Nuc}\varphi)$$

е

$$\pi ((x + \operatorname{Nuc}\varphi) \cdot (y + \operatorname{Nuc}\varphi)) = \pi ((x \cdot y) + (\operatorname{Nuc}\varphi))$$

$$= \varphi (x \cdot y)$$

$$= \varphi (x) \cdot \varphi (y)$$

$$= \pi (x + \operatorname{Nuc}\varphi) \cdot \pi (y + \operatorname{Nuc}\varphi).$$

(iii)
$$\theta\left(A/\mathrm{Nuc}\varphi\right) = \mathrm{Im}\varphi$$
, porque
$$y \in \theta\left(A/\mathrm{Nuc}\varphi\right) \iff (\exists x \in A) \quad y = \theta\left(x + \mathrm{Nuc}\varphi\right)$$
$$\iff (\exists x \in A) \quad y = \varphi\left(x\right)$$
$$\iff y \in \mathrm{Im}\varphi.$$

Logo, concluímos que

$$A/\mathrm{Nuc}\varphi \cong \mathrm{Im}\varphi.$$