



# **Tartalom**

| 1 A projekt bemutatása                   | 3   |
|------------------------------------------|-----|
| ReHAB – A magaslégköri ballon            |     |
| 2 A tavaszi félév során elért eredmények |     |
| 2.1 OBC                                  | 6   |
| 2.2 COM és SNW                           | 7   |
| 2.3 EPS                                  | 7   |
| 2.4 STRU                                 | 8   |
| 2.5 GND                                  | 9   |
| 3 További célkitűzések                   | .10 |



## 1 A projekt bemutatása

A Projekt célja egy moduláris, nagy megbízhatóságú telemetria egység tervezés és építése, melyet nagy biztonságot igénylő és kemény környezeti hatások között zajló feladatok esetén lehet használni.

#### Az egység alapelemei:

- Fedélzeti Számítógép (OBC)
- Kommunikációs egység (COM)
- Szenzorrendszer (SNW)
- Energiaellátó egység (EPS)



A jelenlegi repülő rendszer

A csapat jelenleg elsősorban magaslégköri ballonos repülések tervezésén dolgozik, de a távlati tervek között szerepel egy kutató-roverrel és egy rakétás repüléssel foglalkozó ág elindítása is.

A LEGO Kör ezzel a projekttel szeretne nyitni az aerospace (repülés és űreszközök) terület felé, megismertetni a körtagokat és az érdeklődő hallgatókat e terület fejlesztési kihívásaival és érdekességeivel.



### ReHAB – A magaslégköri ballon

Reusable High Altitude Balloon, vagyis többször felhasználható magaslégköri ballon. A névből kiderül, hogy egy olyan eszköz tervezésébe és kivitelezésébe vágtunk bele, amely több repülés során is felhasználható, ezzel kikerülve a későbbi felbocsájtások előtt a kapszula (sárkány) elkészítését és univerzális alapot adhat magaslégköri kísérletek elvégzéséhez.

A magaslégköri ballon (HAB) általában személyzet nélküli, könnyű mérőkapszula, melyet egy hidrogén vagy hélium töltetű ballon emel a magasba. A legelterjedtebb felhasználása különböző meteorológia mérések kivitelezése. A HAB-ok legtöbbször 25-30 km magasságig jutnak, majd ejtőernyővel visszatérnek a földre.

A ReHAB ballon fő célja, hogy a kezdő mérnökök megismerkedhessenek a hibatűrő és extrém körülmények közötti mérés-adatgyűjtő eszközök tervezésével. Remek ugródeszka az űreszközök felé, hiszen a közeli űr meghódítása során több olyan környezeti paraméterrel is meg kell küzdeni, amik egy nagyobb távolságú űrrepülés esetén is fennalhat.



A ReHAB-150-II rendszer, repülésre készen

A nyári időszakban a csapat megkezdte a következő repülés előkészítését, melyhez teljesen az UPRA csapat által tervezett és kivitelezett modulokat szeretnénk használni.



### 2 A tavaszi félév során elért eredmények

A félév során elsődleges feladatunk a rendszer felkészítése volt a Global Space Balloon Challenge április 10-27 közötti felbocsátási ablakában történő repülésre. A felengedés 2015. április 17-ére lett kitűzve, melyre az alrendszerek integrálását, a korábban használt földi állomás felkészítését és repülés előtti teszteket végeztünk el. A repülés során sajnos bekövetkezett egy a tesztek során felderítetlenül maradt szoftverhiba, melynek hatására a fedélzeti rendszerünk a felbocsátás után nem sokkal leállt. Egy tartalék GPS vevő segítségével sikerült meghatároznunk a landolás helyét és begyűjthettük az egységet. Sajnos GSBC kritériumokat nem sikerült teljesítenünk, ezért nem tudtuk nevezni az eredményeinket a versenybe.



A landolás helyszíne

Az alrendszerek fejlesztése során felmerült problémák miatt a tervezett rendszerhez képest más konfigurációt alkalmaztunk. A repülés során bekövetkezett hiba többek között ennek, a határidő előtti nem tervezett változtatáshoz is köthető. A küldetés során gyűjtött adatok segítségével sikerült stabilizálni a jelenlegi fedélzeti rendszert, melyet a tervek szerint a további repülések alkalmával is használni fogunk.

A felbocsátás óta eltelt időszakban elvégeztük a javításokat és bővítéseket a fedélzeti számítógép szoftverén, valamint különböző teszteket futtattunk e módosítások validálására.

A ReHAB ballon mellett elkezdtük előkészíteni a kutató-rover valamint a PicoBallon projekt beindítását, a leendő feladatokat felvázoltuk és elkezdtük az erőforrások megszervezését a feladathoz.



#### 2.1 OBC

A Fedélzeti számítógép felelős a rendszerszinkronizálásért, a telemetria csomagok pontos összeállításáért, a GPS adatok feldolgozásáért valamint a fényképezők vezérléséért. Az OBC rendelkezik egy integrált kamerával, melynek képét SD-kártyára menti valamint lehetőség van az elkészült felvételek rádiós úton történő letöltésére.





A Fedélzeti számítógép

A félév során az OBC szoftverét előkészítettük az alrendszerekkel történő integrálására, ehhez néhány extra funkció implementálására is szükség volt. A repülés után tovább finomítottuk a szoftver, felderítettük a felbocsátás során bekövetkezett hiba forrását és további biztonsági funkciókkal láttuk el. A feljavított rendszer ezek után intenzív tesztelésen esett át, mely során teljes funkcionalitással üzemeltettük az összes alrendszert közel egy héten keresztül.



#### 2.2 COM és SNW

A félév során a kommunikációs modul és a szenzorrendszer beágyazott szoftverének a fejlesztése volt a fő feladat. A felbocsátás közeledtével derült ki, hogy két alrendszerhez választott mikrokontroller nem felel meg minden funkció megfelelő ellátására. A fejlesztés során rengeteg hibával és akadállyal szembesültünk, melyet nem lehetett határidőre megoldani. E problémák miatt döntöttünk úgy, hogy a korábbi repülés alkalmával használt COM modult fogjuk integrálni valamint a szenzorrendszert ismét a földön tartjuk.

A további egyeztetések során úgy határoztunk, hogy a COM és SNW modulokat új mikrokontrollerek kiválasztásával áttervezzük. Az új modulok elkészültéig a korábbi COM modult és az SNW modul egyszerűsített prototípusát használjuk.

#### 2.3 **EPS**

Az energiaellátó alrendszer jelenleg a korábbi tesztrepülésen használt egyszerű kapcsolóüzemű tápegység. A felbocsátásig nem készült el az UPRA formatényezős változat, de erre nem is volt szükség. A repülő rendszerbe a korábban használt tápegység került integrálásra, melynek rögzítési pontjai lehetővé tették, hogy beleférjen a jelenlegi formatényezőbe.

A félév során az intelligens EPS hardveres-szoftveres tervezése is gőzerővel haladt. A terv, hogy segítségével az egyes alrendszerek energia felvétele repülés közben monitorozható legyen és hiba esetén megfelelően be tudjunk avatkozni az esetleges végzetes meghibásodások elkerülése érdekében.



### **2.4 STRU**

A repüléshez a korábban használt szerkezetet használtuk, így ezzel a részegységgel ebben a félévben nem volt különösebb feladatunk.



Mérőkapszula és szigetelés

Tovább folytatódott az alternatív váz tervezése, melyet kisebb finomítások után gyártásba szeretnénk küldeni, hogy valós körülmények között tesztelhessük.



Az alternatív váz terve



#### **2.5 GND**

Tovább folytatódott a saját földi állomásunk tervezése. A tervek szerint egy online elérhető, több munkaállomás kezelésére képes rádióállomást építünk, melynek segítségével kialakíthatjuk a saját vezérlőközpontunkat a Kollégiumban. A rádiós infrastruktúra kiépítését a HA5KFU szakkollégiumi rádióklubbal közösen szeretnénk megvalósítani, melyből mind a HA5KFU mind az UPRA csapat profitálhat.

A félév során tovább dolgoztunk a földi állomás hardverén, elsősorban az alkatrészek beszerzése és pár funkcionalitás finomítása volt napirenden. Elkezdtük a munkaállomásokat kiszolgáló szoftveres feladatok előkészítését, meghatároztuk a szükséges funkcionalitásokat és a kialakításhoz szükséges platformot.



### 3 További célkitűzések

A nyár folyamán legalább még egy repülést tervezünk a jelenlegi fedélzeti rendszerrel, mely a javítások és tesztek után stabilnak bizonyult, így rövid időn belül ismét felkészülhetünk egy felbocsátásra.

A továbbiakban a COM és SNW alrendszerek újratervezése, valamint a kutató-rover és PicoBallon projektek előzetes tervezése is folytatódni fog.

A következő félév során kiépítjük a saját földi irányítóközpontunkat, melynek rádiós infrastruktúráját a HA5KFU-val közösen tervezzük megvalósítani. Az irányító központ a LEGO Laborban kerül kiépítésre, ahonnan a Schönherz tetején található földi rádióállomás mellett további rádióállomásokat is szeretnénk egyszerre vezérelni.

A ballon követéséhez szeretnénk kifejleszteni egy APRS modult, mely segítségével megbízhatóbb követést tudunk megvalósítani és szélesebb körben követhetővé válik a repülésünk.

Tovább kívánjuk mélyíteni a kapcsolatunkat más ballonos csapatokkal, és a későbbiekben közös felbocsátásokat szervezni ezekkel a csapatokkal itthon és külföldön.

