Name:			
Instruct	or.		

Math 10560, Quiz 8 Tutorial April 4, 2017

- The Honor Code is in effect for this quiz. All work is to be your own.
- No calculators.
- ullet The quiz lasts for 25 Minutes .
- Be sure that your name is on every page in case pages become detached.
- Be sure that you have all 5 pages of the test.

PLE.	ASE MARK Y	YOUR ANSWI	ERS WITH A	N X, not a circ	ele!
1.	(a)	(b)	(c)	(d)	(e)
2.	(a)	(b)	(c)	(d)	(e)
3.	(a)	(b)	(c)	(d)	(e)
4.	(a)	(b)	(c)	(d)	(e)
5.	(a)	(b)	(c)	(d)	(e)

Name:			
Instruct	or:		

Multiple Choice

1.(2 pts) Consider the following series

(I)
$$\sum_{n=3}^{\infty} \frac{\sin(n)}{n^3 + 1}$$
 (II) $\sum_{n=3}^{\infty} \frac{(-1)^n}{\sqrt{n^{3/2} - 1}}$.

Which of the following statements is true?

- (a) (I) is absolutely convergent and (II) is conditionally convergent.
- (b) (I) and (II) are both conditionally convergent.
- (c) (I) and (II) both diverge.
- (d) (I) converges and (II) diverges.
- (e) (I) and (II) are both absolutely convergent.

2.(2 pts) Consider the following series.

(I)
$$\sum_{n=1}^{\infty} \frac{\sin(1/n)}{n^2}$$
 (II) $\sum_{n=1}^{\infty} \frac{n^4 - 1}{n^5 - n^3 + 1}$ (III) $\sum_{n=1}^{\infty} \frac{\cos(1/n)}{n}$.

Which of the following is $\underline{\mathbf{true}}$?

- (a) (I) and (III) converge while (II) diverges.
- (b) All three series diverge.
- (c) All three series converge.
- (d) (III) converges while (I) and (II) diverge.
- (e) (I) converges while (II) and (III) diverge.

3.(2 pts) For what values of p is the following series convergent?

$$\sum_{n=2}^{\infty} \frac{(-1)^{n-1} \ln n}{n^p}$$

p > 0(a)

(b) p < 0

(c) for any p such that $p \neq 0$

- (d) for all p
- (e) p > 1

4.(2 pts) Find the exact value of

$$\sum_{n=1}^{\infty} \frac{3^{2n-1}}{10^n}$$

- (a) 3
- (b) 1
- (c) $\frac{10}{3}$ (d) 9

Name:	
Instructor:	

5.(2 pts)Consider the following two series

(I)
$$\sum_{n=1}^{\infty} \frac{\sin(n)}{n\sqrt{n}+1}$$
 (II) $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{\sqrt{n^2+1}}$.

Which of the following is **true**?

- (a) They are both absolutely convergent.
- (b) (I) is divergent while (II) is conditionally convergent.
- (c) They are both divergent.
- (d) (I) is absolutely convergent and (II) is conditionally convergent.
- (e) They are both conditionally convergent.

Name: _______
Instructor: ______

The following is the list of useful trigonometric formulas:

$$\sin^2 x + \cos^2 x = 1$$

$$1 + \tan^2 x = \sec^2 x$$

$$\sin^2 x = \frac{1}{2}(1 - \cos 2x)$$

$$\cos^2 x = \frac{1}{2}(1 + \cos 2x)$$

$$\sin 2x = 2\sin x \cos x$$

$$\sin x \cos y = \frac{1}{2}(\sin(x - y) + \sin(x + y))$$

$$\sin x \sin y = \frac{1}{2}(\cos(x - y) - \cos(x + y))$$

$$\cos x \cos y = \frac{1}{2}(\cos(x - y) + \cos(x + y))$$

$$\int \sec \theta = \ln|\sec \theta + \tan \theta| + C$$