

Bu ders, Pamukkale Üniversitesi, Fen Edebiyat Fakültesi, Fizik Bölümü tarafından diğer fakültelerde ortak okutulan Genel Fizik-I dersi için hazırlanmıştır.

Ana kaynak kitap olarak resimdeki ders kitabi takip edilecektir.

https://www.pau.edu.tr/fizik

BÖLÜM-05 Hareket Kanunları

İçerik:

- Kuvvet Kavramı
- **❖** Newton'un Birinci Yasası ve Eylemsiz Sistemler
- * Kütle
- Newton'un İkinci Yasası
- * Kütle Çekim Kuvveti ve Ağırlık
- **❖** Newton'un Üçüncü Yasası
- * Newton Yasalarının Bazı Uygulamaları
- Sürtünme Kuvvetleri

Newton' un Üçüncü Yasası (Etki-Tepki Yasası)

İki cisim birbirlerine kuvvet uygularsa bu cisimler etkileşiyordur. İki cisim etkileşirse, cisimler birbirlerine eşit büyüklükte fakat ters yönlü kuvvet uygular.

Şekildeki gibi C bloğuna yaslanmış bir B cismi düşünelim.

 $\overrightarrow{F_{BC}}$: C bloğunun B cismine uyguladığı kuvvet $\overrightarrow{F_{CB}}$: B bloğunun C cismine uyguladığı kuvvet

$$\vec{F}_{BC} = -\vec{F}_{CB}$$

$$F_{BC} = F_{CB}$$

Birbirleriyle etkileşen iki cisim arasındaki bu iki kuvvet **Newton' un üçüncü- kanunu** olarak adlandırılır.

İkinci bir örnek ise aşağıdaki şekilde verilmiştir.

Newton'un üçüncü yasası gereği burada da,

$$\vec{F}_{CE} = -\vec{F}_{EC}$$
 olur.

Newton Yasalarının Uygulaması (Serbest- Cisim Diyagramları)

Newton yasalarını uygulayarak mekanik problemlerinin çözümü serbest- cisim diyagramını çizmekle başlar. Bu, incelenen sistem bir bütün olarak veya her cisim için ayrı ayrı yapılır. Daha sonra her cisim için uygun bir koordinat sistemi seçilir.

Aşağıda verilen örneği gözönüne alalım. Bu örnek, sürtünmesiz bir sistemde A ve B gibi iki blok ve A bloğuna etkiyen bir \vec{F}_{dis} kuvveti içermektedir.

Şöyle "sistem" ler düşünebiliriz:

- a) Sistem1= blok A+ blok B. Yatay kuvvet \vec{F}_{dis}
- b) Sistem2= blok A. Cisme etkiyen iki yatay kuvvet vardır: \vec{F}_{dis} ve \vec{F}_{AB}
 - c) Sistem= blok B. Cisme etkiyen yatay kuvvet: \vec{F}_{BA}

Örnek 5-7: Kütleleri m_1 ve m_2 olan iki blok yatay, düzgün ve sürtünmesiz bir düzlemde birbirleriyle temas halindedir. Yatay sabit bir \vec{F} kuvveti şekilde görüldüğü gibi m_1 kütlesine uygulanıyor.

- a) İki bloklu sistemin ivmesini bulunuz.
- b) Bloklar arasındaki temas kuvveti bulunuz.

Çözüm 5-7:

a)
$$\sum F_x(sistem) = F = (m_1 + m_2)a_x \implies a_x = \frac{F}{(m_1 + m_2)}$$

b) m_2 bloğu için Newton'un ikinci yasasından;

$$\sum F_x = F_{21} = m_2 a_x \Longrightarrow F_{21} = \frac{m_2}{(m_1 + m_2)} F = F_{12}$$

bulunur.

Örnek 5-8: Şekilde görüldüğü gibi, bir kişi elindeki *m* kütleli balığı asansörün içinde tavana asılı yaylı bir terazi ile tartmak istiyor. Yaylı terazinin, asansörün yukarı veya aşağı doğru ivmelendiğinde balığın gerçek kütlesinden daha farklı bir değer ölçeceğini ispatlayınız.

Çözüm 5-8:

Asansör yukarı doğru ivmelensin:

$$\sum F_y = T - mg = ma \Longrightarrow T = m(g + a)$$

Asansör aşağı doğru ivmelensin:

$$\sum F_{y} = T - mg = -ma \Longrightarrow T = m(g - a)$$

Asansör sabit hızla hareket etsin:

$$\sum F_y = T - mg = 0 \Longrightarrow T = mg$$

Görüldüğü gibi, ivmeli hareket durumunda balığın ağırlığı (T), gerçek ağırlığından farklı ölçülür.

Örnek 5-9: Kütleleri farklı iki cisim, ağırlığı ihmal edilebilir sürtünmesiz bir makara üzerinden bir iple şekildeki gibi asılmıştır. Bu sisteme "Atwood düzeneği" diyoruz. Sistem serbest bırakıldığında, kütlelerin ivmesi ve ipteki gerilme kuvveti ne olur?

Çözüm 5-9: $m_2 > m_1$ olduğunu kabul edelim:

 m_1 ve m_2 için Newton'un ikinci yasası, sırasıyla:

$$\sum F_{y} = T - m_{1}g = m_{1}a_{y} \ (E\$ - 1)$$

$$\sum F_{y} = m_{2}g - T = m_{2}a_{y} \ (E\$ - 2)$$

Bu iki denklemden T' yi yok edersek ivme, $a_y = \frac{(m_2 - m_1)}{(m_1 + m_2)}g$

bulunur. Bunu da Eş-1' de yerine koyarsak,

$$T = m_1(a_y + g) = m_1 \left(\frac{(m_2 - m_1)}{(m_1 + m_2)} + 1\right)g$$

$$T = \left(\frac{2m_1 m_2}{(m_1 + m_2)}\right)g$$
 bulunur.

Örnek 5-10: Kütleleri m_1 ve m_2 olan iki blok, sürtünmesiz ve ağırlıksız bir makara üzerinden ağırlıksız bir iple birbirine bağlıdır. m_2 bloğu, eğim açısı θ olan sürtünmesiz eğik bir düzlem üzerindedir. Sistem serbest bırakıldığında m_2 bloğu eğik düzlemden aşağıya doğru kaydığına göre, hareketin ivmesini ve ipte oluşan gerilme kuvvetini bulunuz.

Çözüm 5-10:

 m_1 ve m_2 için Newton'un ikinci yasası, sırasıyla:

$$\sum F_{x} = 0 \ (E\S - 1)$$

$$\sum F_{y} = T - m_{1}g = m_{1}a \ (E\S - 2)$$

$$\sum F_{x'} = m_{2}g\sin\theta - T = m_{2}a \ (E\S - 3)$$

$$\sum F_{y'} = n - m_{2}g\cos\theta = 0 \ (E\S - 4)$$

Eş-2 ve Eş-3 denklemlerinden T' yi yok edersek ivme,

$$a = \left(\frac{m_2 \sin \theta - m_1}{(m_1 + m_2)}\right) g$$

Bunu da Eş-2' de yerine koyarsak;

$$T = \left(\frac{m_1 m_2 (1 + \sin \theta)}{(m_1 + m_2)}\right) g$$
 bulunur.

Sürtünme Kuvveti ($f_{sürtünme}$): Durmakta olan bir cismin harekete geçirilmesini engel olmaya çalışan ve hareket halindeki bir cismi de durdurmaya çalışan kuvvete denir.

Sürtünme kuvveti daima

- ✓ Cismi harekete geçirmeye çalışan kuvvete ve-veya cismin hareketine ters yönlüdür.
- ✓ Tepki kuvveti ile doğru orantılıdır. $f_s \alpha N$
- ✓ Sürtünen yüzeylerin cinsine bağlıdır.
- ✓ Sürtünen yüzeylerin alanına bağlı değildir.
- ✓ Sürtünme kuvveti tek başına iş yapamaz, yani sürtünme kuvveti durmakta olan bir cisme etkiyen uygulama kuvvetinden daha büyük olamaz.

$$f_s = \mu . N$$

 μ : sürtünme katsayısı

N: normal kuvvet

Hareket vok

Sürtünme Kuvvetleri

Yatay zeminde duran bir sandık düşünelim. Sandığı sola doğru artan bir kuvvetle çekelim. Sandık hareket etmediği sürece, temas yüzeyinde, uyguladığımız \vec{F} kuvvetini dengeleyen bir \vec{f}_s kuvveti oluşur. Bu kuvvet "statik sürtünme kuvveti" olarak tanımlanır.

Uygulanan F kuvveti arttıkça, f_s kuvveti de artar.

Uygulanan F kuvveti $f_{s,maks}$ değerini aştığı zaman, hareket başlar ve sandık sola doğru ivmelenir. Sandık harekete başladıktan sonra, sandıkla zemin arasındaki kuvvet artık "kinetik sürtünme kuvveti" dir ve f_k ile gösterilir $(f_k < f_{s,maks})$

Sandığın sabit bir hızla harekete devam etmesini istiyorsak, uyguladığımız F kuvvetini f_k 'yı dengeleyecek şekilde $(F = f_k)$ düşürmemiz gerekecektir.

Sabit hızla

Sürtünmenin Kuvvetinin Özellikleri

Özellik - 1: Temas eden iki yüzey birbirlerine göre hareketli değillerse, statik sürtünme kuvveti \vec{f}_s uygulanan \vec{F} kuvvetini dengeler.

Özellik - 2: Statik sürtünme kuvveti $\vec{f_s}$ 'nin büyüklüğü sabit değildir. 0 'dan $f_{s,maks} = \mu_s n$ değerine kadar değişir. Burada μ_s statik sürtünme katsayısıdır. Uygulanan F kuvveti, $f_{s,maks}$ kuvvetini aştığı anda sandık harekete başlar.

Özellik - 3: Sandık harekete başladıktan sonra, sürtünme kuvveti artık "kinetik sürtünme kuvveti" \vec{f}_k 'dır ve büyüklüğü $f_k = \mu_k n$ eşitliği ile verilir. Burada μ_k kinetik sürtünme katsayısıdır.

Not-1: Statik ve kinetik sürtünme kuvvetleri temas yüzeyine paraleldir.

- ➤ Kinetik sürtünme kuvveti harekete ters yöndedir.
- ➤ Statik sürtünme kuvveti kayma eğiliminin tersi yönündedir.

Not-2: Kinetik sürtünme katsayısı μ_k , hareket eden cismin hızıyla bir miktar değişiyor olmasına rağmen, bu değişim ihmal edilebilir ölçüdedir.

<u>Bir Sistemin Denge yada Hareket Denklemlerini Yazarken Uyulması Gereken Kurallar:</u>

- 1. Önce sistemde bulunan her bir cisim üzerine etkiyen ya da etkiyebilecek tüm kuvvet vektörlerini cisim üzerinde göstermeliyiz. (Serbest cisim diyagramı)
- 2. Cisim hangi düzlem üzerinde bulunuyorsa dik koordinatlar sistemini o düzlem üzerine yerleştirmeliyiz.
- 3. Eğer varsa, kuvvet vektörlerini bu yerleştirdiğimiz koordinat sistemine göre bileşenlerine ayırmalıyız.
- 4. Sistem dengede ise her bir cisim için:

Dengenin temel şartı olan Newton'un 1. kanununu uygulamalıyız.

$$\sum \vec{F} = 0 \implies \begin{cases} \sum \vec{F}_x = 0 \\ \sum \vec{F}_y = 0 \end{cases} \implies \vec{v} = 0$$

$$\sum \vec{F}_y = 0 \implies \vec{v} = \text{sabit}$$

5. Sistem dengede değil ise her bir cisim için: (hareket denklemi yazılır.)

Önce harekete serbest bırakılan sistemde her bir cisim için muhtemel hareket yönü ve ivmesinin yönü tayin edilir.

Her bir cisim için, sistemin hareket ivmesi doğrultusuna yönelmiş kuvvet vektörlerinin büyüklüğü pozitif tersini de negatif kabul ederek cismin üzerine etkiyen kuvvetlerin vektörel toplamını yaparız.

Yapılan bu toplamı (ki bu, o cismin üzerine etkiyen toplam yani net kuvvettir) o cismin "m" kütlesi ile cismin "a" hareket ivmesinin çarpımına eşitleriz.

$$\Sigma \vec{F} = \vec{F}_{net} = m.\vec{a}$$

Bu denklem yazma işlemi sistemde bulunan kütle sayısınca tekrarlanır.

Örnek 5-12: m kütleli bir blok sürtünmeli eğik bir düzlem üzerindedir. Eğim açısı θ , blok hareket edinceye kadar arttırılabiliyor. Bloğun kaymaya başladığı kritik açı θ_k olduğuna göre, zeminle blok arasındaki statik sürtünme katsayısı μ_s nedir?

Çözüm 5-12: Kritik durumda (yani kayma başlamadan hemen önce):

$$\sum_{s} F_{s} = mg \sin \theta - f_{s} = ma_{s} = 0$$

$$\sum_{s} F_{y} = n - mg \cos \theta = ma_{y} = 0 \qquad \mathbf{n} = \mathbf{mgcos}\theta$$

$$f_{s} = mg \sin \theta = \left(\frac{n}{\cos \theta}\right) \sin \theta = n \tan \theta$$

Eğik düzlem θ_k kritik açı değerini alınca,

$$f_s = f_{s,maks} = \mu_s n \qquad \text{Olur.}$$

$$f_{s,maks} = n \tan \theta_k = \mu_s n \implies \mu_s = \tan \theta_k$$

Örnek 5-13: Donmuş bir gölet üzerinde, bir buz hokeyi diskine 20 m/s 'lik bir ilk hız veriliyor. Disk, buz üzerinde 115 m yol aldıktan sonra durduğuna göre, zeminle hokey diski arasındaki kinetik sürtünme katsayısı μ_k nedir?

Çözüm 5-13: Sağa ve yukarıya doğru olan yönleri pozitif alarak diske, bileşenler cinsinden Newton'un ikinci yasasını uygularsak;

$$\sum F_y = n - mg = ma_y = 0 \implies n = mg$$

$$\sum F_x = -f_k = ma_x$$

$$f_k = \mu_k n = \mu_k mg \implies a_x = -\mu_k g$$

Disk negatif ivme ile ivmelenir ve yavaşlar. Ayrıca, ivme diskin kütlesinden bağımsız ve sabittir. Çünkü, burada μ_k 'nın sabit kaldığı kabul edilmektedir. İvme sabit olduğu için;

$$v_{xs}^2 = v_{xi}^2 + 2a_x \Delta x \implies a_x = -\frac{20^2}{(2)(115)} = -\frac{40}{23} \text{ m/s}^2$$

$$a_x = -\mu_k g = -\mu_k (9.8) = -\frac{40}{23} \implies \mu_k = 0.177$$

Örnek 5-14: Pürüzlü bir yüzey üzerindeki m_1 kütleli bir blok, hafif bir iple sürtünmesiz ve kütlesi ihmal edilebilir bir makara üzerinden m_2 kütleli küresel cisme bağlanmıştır. m_1 bloğuna şekildeki gibi yatayla θ açısı yapan bir F kuvveti uygulanıyor. Blok ile zemin arasındaki kinetik sürtünme katsayısı μ_k ise, sistemin ivmesini bulunuz.

Çözüm 5-14:

 m_1 kütleli blok için bileşenleri cinsinden Newton'un ikinci yasası uygulanırsa;

$$\sum F_y = n + F \sin \theta - m_1 g = 0 \Rightarrow n = m_1 g - F \sin \theta$$

$$f_k = \mu_k n = \mu_k (m_1 g - F \sin \theta)$$

 m_2 kütleli blok için bileşenleri cinsinden Newton'un ikinci yasası uygulanırsa;

$$\sum F_{y} = T - m_2 g = m_2 a$$

Bu ifadeleri Eşitlik-1'de yerine koyarsak

$$F\cos\theta - m_2(a+g) - \mu_k(m_1g - F\sin\theta) = m_1a$$

$$F\cos\theta - m_2a - m_2g + \mu_kF\sin\theta - \mu_km_1g = m_1a$$

 $F(\cos\theta + \mu_k \sin\theta) - g(m_2 + \mu_k m_1) = a(m_1 + m_2)$

$$a = \frac{F(\cos\theta + \mu_k \sin\theta) - g(m_2 + \mu_k m_1)}{(m_2 + m_1)}$$

bulunur.

Bölüm Sonu Problemleri

Problem 20: $\vec{F}_1 = (-2\hat{\imath} + 2\hat{\jmath}) N$, $\vec{F}_2 = (5\hat{\imath} - 3\hat{\jmath}) N$ ve $\vec{F}_3 = (-45\hat{\imath}) N$ 'luk üç kuvvet bir cisme etki ederek ona 3,75 m/s^2 'lik bir ivme kazandırıyor.

a) İvmenin yönü nedir?

Çözüm 20:

a)
$$\sum \vec{F} = m\vec{a} \implies \vec{F}_1 + \vec{F}_2 + \vec{F}_3 = m\vec{a}$$

$$(-2\hat{\imath} + 2\hat{\jmath} + 5\hat{\imath} - 3\hat{\jmath} - 45\hat{\imath}) N = m(3,75 m/s^2) \hat{a}$$

yazılabilir. Burada \hat{a} , ivmenin yönünü gösterir.

$$(-42\hat{\imath} - \hat{\jmath}) N = m(3,75 m/s^2) \hat{a}$$

İvme ile kuvvet aynı yön ve doğrultuda olmalarından dolayı

$$\theta = \tan^{-1}\left(\frac{-1}{-42}\right) = 1{,}36^0 \cong 1^0 \quad x - ekseninin \ altında$$

$$\theta = 180^0 + 1^0 = 181^0$$

b) Cismin kütlesi nedir?

$$|\vec{F}| = \sqrt{(-42)^2 + (-1)^2} = 42.0 \ N \implies m = \frac{42.0}{3.75} = 11.2 \ kg$$

c) Cisim durgun halden harekete başlıyorsa son hızı ne olur?

$$v_s = v_i + at = 0 + (3.75 \text{ m/s}^2)(10 \text{ s}) = 37.5 \text{ m/s}$$

d) 10 s sonunda hızı ne olur?

$$|\vec{v}_s| = \sqrt{(-37.5)^2 + (-0.654)^2} \cong 37.5 \, m/s$$

e) 10 s sonunda hız vektörünün bileşenleri nedir?

$$\vec{v}_s = (37,5)\cos 181^0 \hat{\imath} + (37,5)\sin 181^0 \hat{\jmath}$$

$$\vec{v}_s = (-37,5\hat{\imath} - 0,654\hat{\jmath}) \, m/s$$

Problem 22: 3 kgkütleli bir cisim, x ve y koordinatları $x = 5t^2 - 1$ ve $y = 3t^3 + 2$ olacak şekilde bir düzlemde hareket ediyor. Burada x, y metre ve t saniye cinsindendir. 2 s sonra kütleye etki eden net kuvvetin büyüklüğünü bulunuz.

Çözüm 22:

$$v_x = \frac{dx}{dt}$$
 ve $v_y = \frac{dy}{dt}$ ise $v_x = 10t$ ve $v_y = 9t^2$ olur.
 $a_x = \frac{dv_x}{dt}$ ve $a_y = \frac{dv_y}{dt}$ ise $a_x = 10 \text{ m/s}^2$ ve $a_y = 18t \text{ m/s}^2$ olur.

Böylece, t = 2 s için; $a_x = 10 m/s^2$ (sabit) ve $a_y = 36 m/s^2$ olur.

$$F_x = ma_x = (3 kg)(10 m/s^2) = 30 N$$

$$F_y = ma_y = (3 kg)(36 m/s^2) = 108 N$$

$$\vec{F} = (30\hat{\imath} + 108\hat{\jmath}) N$$

$$|\vec{F}| = \sqrt{(30)^2 + (108)^2} \approx 112 N$$

Problem 38: Şekilde görüldüğü gibi, sürtünmesiz yatay masa üzerindeki bir

 m_1 kütlesi oldukça hafif P_1 makarasından geçen hafif bir ipe bağlanmış, sonra da P_1 makarası, P_2 makarasından geçirilen hafif bir iple m_2 kütlesine bağlanmıştır.

a) m_1 kütlesinin ivmesi a_1 , m_2 kütlesinin ivmesi de a_2 ise, bu ivmeler arasında nasıl bir ilişki vardır?

Çözüm 38:

a) P_1 makarasının ivmesi a_2 'dir. Çünkü m_2 kütlesi aşağı doğru a_2 ivmesi ile hız kazanırsa P_1 makarasını da aynı ivme ile çeker. Aynı süre içinde m_1 kütlesinin hareketi P_1 makarasından iki kat daha fazladır. Bu nedenle m_1 kütlesinin ivmesi de P_1 makarasının ivmesinin iki katı olmalıdır. Yani;

$$a_1 = 2a_2$$

Enerji korunumuna göre T_1 kuvvetinin yaptığı iş T_2 kuvvetinin yaptığı işe eşittir;

$$x_1 T_1 = x_2 T_2$$

 $2T_1 = T_2$ ise $x_1 T_1 = 2x_2 T_1$
 $x_1 = \frac{1}{2} a_1 t^2$ ve $x_2 = \frac{1}{2} a_2 t^2$
 $\frac{1}{2} a_1 t^2 T_1 = 2 \frac{1}{2} a_2 t^2 T_1 \implies a_1 = 2a_2$

b) İplerdeki gerilmeler nedir?

$$m_2 g - T_2 = m_2 a_2 \tag{1}$$

$$T_1 = m_1 a_1 = 2m_1 a_2 \quad (2)$$

$$T_2 - 2T_1 = 0$$

(3)

yazılabilir.

$$m_2g - 2T_1 = m_2a_2 \Rightarrow m_2g - 2T_1 = \frac{T_1}{2m_1}m_2 \Rightarrow 2m_1m_2g - 4m_1T_1 = T_1m_2$$

$$T_1(m_2 + 4m_1) = 2m_1m_2g$$

$$T_1 = \frac{2m_1m_2g}{(m_2 + 4m_1)}$$

ve
$$T_2 = 2T_1$$
 ise

$$T_2 = \frac{4m_1m_2g}{(m_2+4m_1)}$$

bulunur.

c) m_1 , m_2 ve g cinsinden a_1 ve a_2 ivmelerini ifade ediniz.

$$T_1 = m_1 a_1 \Rightarrow a_1 = \frac{2m_1 m_2 g}{(m_2 + 4m_1)m_1} = \frac{2m_2 g}{(m_2 + 4m_1)}$$

$$a_1 = 2a_2 \Longrightarrow a_2 = \frac{m_2g}{(m_2 + 4m_1)}$$

Problem 67: 2 kg'lık bir blok, 5 kg 'lık bir blok üzerine şekilde görüldüğü gibi yerleştirilmiştir. Yüzeyle 5 kg 'lık blok arasındaki kinetik sürtünme katsayısı 0,2 'dir. 5 kg'lık bloğa yatay bir \vec{F} kuvveti uygulanmıştır.

a) Her blok için serbest cisim diyagramını çiziniz.

a)

Bloklar arasındaki sürtünme kuvveti, 2 kg 'lık bloğu hızlandırır.

b) Her iki bloğu sağa doğru $3 m/s^2$ 'lik bir ivmeyle çekebilmek için gerekli olan kuvveti hesaplayınız.

Her iki blok için:

$$\sum F = ma$$
 olur. Böylece;
$$F - \mu n_2 = ma$$
 yazılabilir.
$$F - (0,200)[(5,00+2,00)(9,80)] = (5,00+2,00)(3,00)$$
 $F = 34,7 N$

c) 2 kg'lık bloğun, kütleler 3 m/s^2 'lik bir ivmeyle giderken diğerinin üzerinden düşmemesi için aralarındaki minimum sürtünme katsayısı ne olmalıdır?

$$f_s = \mu_1(2,00)(9,80) = m_1 a = (2,00)(3,00)$$

 $\mu_1 = 0,306$

Yararlandığım Kaynaklar:

- Fen ve Mühendislik için Fizik-1, Serway-Beichner, Çeviri: Prof. Dr. Kemal ÇOLAKOĞLU
- ❖ Üniversite Öğrencileri İçin Fizik 1 Çalışma Kitabı, Dr. Tayfun DEMİRTÜRK www.youtube.com/user/tdemirturk