Kapitel 4 – Sequentielle Logik

- 1. Speichernde Elemente
- 2. Sequentielle Schaltkreise
- 3. Entwurf sequentieller Schaltkreise
- 4. SRAM
- 5. Anwendung: Datenpfade von ReTI

Albert-Ludwigs-Universität Freiburg

Prof. Dr. Christoph Scholl Institut für Informatik WS 2015/16

Schaltpläne (1/3)

Analyse von Schaltplänen $SP = (\vec{X}_n, G, typ, IN, \vec{Y}_m)$ mit G nicht notwendigerweise azyklisch.

Schaltpläne (2/3)

Def .:

- Eine Zellenbibliothek $BIB \subseteq \bigcup_{n \in \mathbb{N}} \mathbb{B}_n$ enthält Basisoperationen, die den Grundgattern entsprechen.
- Ein 5-Tupel $SP = (\vec{X}_n, G, typ, IN, \vec{Y}_m)$ heißt Schaltplan mit n Eingängen und m Ausgängen über der Zellenbibliothek BIB genau dann, wenn
 - $\vec{X}_n = (x_1, \dots, x_n)$ ist eine endliche Folge von Eingängen.
 - G = (V, E) ist ein gerichteter Graph mit $\{0, 1\} \cup \{x_1, \dots, x_n\} \subseteq V$.
 - Die Menge $I = V \setminus (\{0,1\} \cup \{x_1,...,x_n\})$ heißt Menge der Gatter.
 - Die Abbildung $typ: I \rightarrow BIB$ ordnet jedem Gatter $v \in I$ einen Zellentyp $typ(v) \in BIB$ zu.
 - ...

Schaltpläne (3/3)

- Für jedes Gatter $v \in I$ mit $typ(v) \in B_k$ gilt indeg(v) = k.
- $indeg(v) = 0 \text{ für } v \in \{0,1\} \cup \{x_1,\ldots,x_n\}.$
- Die Abbildung $IN: I \rightarrow E^*$ legt für jedes Gatter $v \in I$ eine Reihenfolge der eingehenden Kanten fest, d.h. falls indeg(v) = k, dann ist $IN(v) = (e_1, \dots, e_k)$ mit $Z(e_i) = v \quad \forall 1 < i < k.$
- Die Folge $\vec{Y}_m = (y_1, ..., y_m)$ zeichnet Knoten $y_i \in V$ als Ausgänge aus.

Belegungen von Schaltplänen (1/2)

Sei nun ein Schaltplan $SP = (\vec{X}_n, G, typ, IN, \vec{Y}_m)$ gegeben.

■ Eine Abbildung $\Phi_{SP,a}: V \to \{0,1\}$ für $a = (a_1, \dots, a_n) \in \mathbb{B}^n$ heißt Belegung für Eingangsbelegung a, falls

$$lacktriangledown \Phi_{SP,a}(0) = 0, \, \Phi_{SP,a}(1) = 1,$$

■ für alle $\underline{v \in I}$ mit $typ(v) = \underline{g} \in B_k$, $IN(v) = (e_1, ..., e_k)$ gilt $\Phi_{SP,a}(v) = \underline{g}(\Phi_{SP,a}(Q(e_1)), ..., \Phi_{SP,a}(Q(e_k)))$.

Belegung von Schaltplänen (2/2)

- Da ein Schaltplan nicht azyklisch ist, muss nicht zu jeder Eingangsbelegung eine Belegung definiert sein (im Gegensatz zu Schaltkreisen).
- Falls bei einem Schaltplan zu einer Eingangsbelegung eine Belegung definiert ist, dann nennen wir diese zur Verdeutlichung auch stabile Belegung.

Genauer: Es ist möglich, dass es zu einer Eingangsbelegung a

- <u>keine</u> stabile Signalbelegung $\Phi_{SP,a}$ gibt,
- mehrere stabile Signalbelegungen $\Phi_{SP,a}$ gibt.

Beispiel 1

Für a = 1 existiert keine stabile Signalbelegung (siehe Ausgang von G_1).

■
$$nand(1,0) = 1$$
, $nand(1,1) = 0$
The $n = 0$ existist one stabile tignallelegury | mandid theory on $G_0 = 1$. $mand(0,1) = 1$

Beispiel 2 (1/2)

Betrachte Eingangsbelegung /S = 1, /R = 1

- $\blacksquare G_1 : nand(1,1) = 0$
 - \blacksquare $G_2: nand(0,1) = 1$
- $\Rightarrow \Phi_{SP,(1,1)}(G_1)=0$ und $\Phi_{SP,(1,1)}(G_2)=1$ stellt eine stabile Signalbelegung dar!

Beispiel 2 (2/2)

Betrachte Eingangsbelegung /S = 1, /R = 1

- \blacksquare $G_1: \underline{nand(1,0)} = 1$
- \blacksquare G_2 : nand(1,1) = 0

 $\Rightarrow \Phi'_{SP,(1,1)}(G_1)=1$ und $\Phi'_{SP,(1,1)}(G_2)=0$ stellt ebenfalls eine stabile Signalbelegung dar!

RS-Flipflop

- Die vorherige Schaltung heißt RS-Flipflop (kurz RS-FF).
- Sie hat für die Eingangsbelegung /S = 1, /R = 1 zwei stabile Zustände.

■ Frage: Wie kann man von einem Zustand zum anderen kommen?

Übergang (1/2)

- Für das Umschalten von einem Zustand zum anderen in einer realen Implementierung eines RS-FFs ist es von entscheidender Bedeutung, dass reale Gatter Verzögerungszeiten haben.
- D.h.: Wenn sich die Eingangsbelegung eines Gatters ändert, dann erfolgt die daraus resultierende Änderung des Ausgangswertes nicht direkt, sondern mit einer gewissen Verzögerung.
- (Detailliertere Betrachtung in Kapitel 5, Physikalische Eigenschaften von Gattern.)

Übergang (2/2)

■ Zustand Q = 0 mit $S = 1, R = 1 \rightarrow Z$ ustand Q = 1:

- Senke /S zur Zeit t_0 ab und hebe zu $t_0 + x$ wieder an (einen solchen Signalverlauf nennt man Puls).
- Nach Zeit $t_{P/SQ}$ ist Q = 1.
- Nach Zeit $t_{P/S/Q}$ ist Q=0.
- Wechsel von Zustand Q = 1 zu Zustand Q = 0 aus Symmetriegründen analog.

Weitere Bezeichnungen

- Umschalten des FF in Zustand Q = 1 heißt Setzen (set).
- Umschalten des FF in Zustand Q = 0 heißt Zurücksetzen (reset).
- /S heißt <u>Set-Signal.</u>
- \blacksquare /R = /C heißt Reset- oder Clear-Signal.
- Weil /R,/S durch Absenken aktiviert werden, nennt man sie active low.
- Signalnamen von active-low-Signalen beginnen in der Regel mit /.

"Zustand" Q = 1, /Q = 1

- Stabile Signalbelegung bei Eingangsbelegung S = 0, $\sqrt{q} = 0$
- Aber warum ist es trotzdem problematisch, /S und /R gleichzeitig zu aktivieren (/S = 0, /R = 0)?

Flackern

Annahme:

- S und R werden nach ihrer Aktivierung beide gleichzeitig inaktiv (00 → 11)
- G₁ und G₂ schalten exakt gleich schnell, d.h. haben exakt die gleiche Verzögerungszeit

- ⇒ Es kommt es zum Flackern ("metastabiler" Zustand).
- In der Praxis wird in der Regel nach einer gewissen Zeit einer der beiden stabilen Zustände angenommen (weil Gatterverzögerungen leicht variieren).

Schaltsymbol eines RS-FF

Nachteil von RS-FF

Beim Speichern eines Wertes <u>0</u> oder <u>1</u> muss man den Wert kennen:

- lacksquare 0 \rightarrow Aktiviere /R
- $\ \ \, \blacksquare \ \, 1 \rightarrow \mathsf{Aktiviere} \, \underline{/\mathcal{S}}$

Ziel:

Speichern unbekannter Werte.

D-Latch

■ W ist active high.

■
$$W = 0 \Rightarrow /S, /R$$
 inaktiv

$$W = 1 \Rightarrow \begin{cases} /S \text{ aktiv, falls } \underline{D = 1} \\ /R \text{ aktiv, falls } \underline{D = 0} \end{cases}$$

Symbol:

Petradte der Fell (dass D=1 abgespeidert wird.

Regionderny for soy. Setup-Deit: Man will / R stabil and 1 halter.

Begindung für sog. Rold - Deit! Efnanso. Man will / R stebil auf 1 Sebten.

Ansteuerung: Schreibimpuls

- Die Daten müssen für eine gewisse Zeit t_{SDW}, genannt Setup-Zeit, an D stabil anliegen.
- Dann geht *W* von 0 auf 1, bleibt für eine Zeit *y*, genannt Pulsweite, auf 1 und geht auf 0 zurück.
- Anschließend müssen die Daten für eine Zeit t_{HDW}, genannt Hold-Zeit, an *D* stabil gehalten werden.

Timing-Diagramm

Wie lange müssen die einzelnen Signale aktiv sein, damit der Schreibvorgang reibungslos abläuft?

 \Rightarrow Siehe Kapitel 5.2 (Timing).

Weitere Eigenschaften eines D-Latches

- Bisher: Keine Datenänderungen während des Schreibpulses auf *W*.
- Man kann das D-Latch aber auch im transparenten Modus betreiben:
 - Das D-Latch heißt transparent, wenn das Schreibsignal aktiv ist.
 - Hält man W lange aktiv und ändert D zur Zeit t, dann ändert sich Q zur Zeit $t + \underline{t}_{PDQ}$.
 - Auch hier sind zeitliche Bedingungen zu beachten: Keine Datenänderungen kurz nach Beginn des Transparenzmodus bzw. kurz vor Ende des Transparenzmodus.

Taktflankengesteuertes D-Flipflop (1/2)

■ Taktflankengesteuerte Flipflops wie das D-Flipflop übernehmen Daten zu einem bestimmten Zeitpunkt (kein transparenter Modus!), nämlich bei der steigenden Flanke des Clocksignals.

D	ck	Q	/Q
0	4	0	1
1	7	1	0
X	0	Q	/Q
X	-	Q	/Q

Vorteil: Daten müssen lediglich bei der steigenden Taktflanke stabil sein (zzgl. Setup- und Holdzeit).

Taktflankengesteuertes D-Flipflop (2/2)

- Realisierung: Wesentlich komplexer als bei taktzustandsgesteuerten D-Latches
- Analyse des Schaltplanes (und entsprechende Timing-Analyse) wesentlich komplizierter.

D-FF: Realisierung mit RS-Flipflops

Einfache Bausteine mit Flipflops

- Register
- Schieberegister
- Zähler

n-Bit Register

Rop. ReTI . ACC, INA, IN2 aind 32-Rot-Register

■ n D-Flipflops mit gemeinsamen Clocksignal.

■ Entsprechend: *n*-Bit Latch = *n* D-Latches mit gemeinsamem Schreibsignal *W*.

Ditlide Bedingunger, danit das functionist then- Eiter quelkeitet, inden " Close - Riche rult eu - Told-Leiter: Dunker nutt großer den als Deco seiten von steignder Coelpane su dater des Edieberegeter ck ck ck ck

■ In jedem Takt (bei jeder steigenden Flanke von *ck*) werden die Werte im Register um eine Position nach rechts verschoben.

27 / 31

Zähler

L) E.B. Programmeiller der ReTI!

Ein *n*-Bit-Zähler ist eine Schaltung mit folgenden Ein- und Ausgängen:

- Dateneingänge $X = \underbrace{(X_{n-1}, \dots, X_0)}$
- Datenausgänge $Y = (Y_{n-1}, \dots, Y_0)$
- Dateneingang C_{in} für Eingangsübertrag
- Datenausgang Cout f
 ür Ausgangs
 übertrag
- Eingänge für Kontrollsignale:

 - ck (Clock)

Aufbau eines Zählers

n-Bit Zähler: Funktionalität

- Ein Zähler speichert ein *n*-Bit-Wort, das an den Ausgängen Y erscheint (Zählerstand).
- Bei jeder steigenden Flanke von *ck* wird ein neuer Zählerstand Yneu gespeichert. Für Yneu gilt :

$$Y_{\textit{neu}} = \begin{cases} \underbrace{0 \dots 0}, & \text{falls } \underline{/C = 0} \\ \underline{X}, & \text{falls } \underline{/C = 1}, \underline{/L = 0} \\ \underline{bin_n((\langle Y \rangle + C_{\textit{in}}) mod 2^n)}, & \text{falls } \underline{/C = 1}, \underline{/L = 1} \end{cases}$$

$$\langle Y \rangle + c_{in}$$
: Züller elölu wenn $c_{in} = 1$ wit $\langle 1 \dots 1 \rangle = 2^{m} - 1$ $\langle 1 \dots 1 \rangle + 1 = (2^{m} - 1) + 1 = 2^{m} + 1$ $\langle 0 \dots 0 \rangle = 0$ (2ⁿ) nod $2^{m} = 0$ \times mod $2^{n} = X$ for $0 \leq x \leq 2^{m} > 1$.

CS - Kapitel 4 - Sequentielle Logik

n-Bit Zähler kaskadieren

Ausgangsübertrag Cout ermöglicht es, den Zähler zu kaskadieren, zum Beispiel aus s n-Bit-Zählern einen (s·n)-Bit-Zähler zu bauen.

