Workshop 6: Heine-Borel Theorem, Topology in \mathbb{R}^n

Let's make one thing clear: compact sets are **not** intuitive. The open cover definition of a compact set is weird and does not, at least at a first glance, justify why we even call a compact set compact. In order to truly understand the nomenclature of a compact set and to gain an intuition behind them, we begin with a brief discussion behind why they are useful. In particular, they are useful for analyzing a new kind of function you are soon to learn: **uniformly continuous functions**.

Suppose that $E \subseteq \mathbb{R}$ and that $f: E \to \mathbb{R}$ is continuous. This means that for any $\epsilon > 0$ and $x \in E$, we can choose $\delta_x > 0$ such that $|f(x) - f(y)| < \epsilon$ whenever $|x - y| < \delta_x$ for any $y \in E$. This definition is arguably complicated, but let's look at something: the existence of $\delta_x > 0$ depends on the choice of x. Can we find a $\delta > 0$ that works independently of the choice of x?

- (a) Let $\delta = \inf\{\delta_x : x \in E\}$. If E is finite, is δ positive?
- (b) If E is infinite and there exists $\epsilon > 0$ such that for every $\delta > 0$, there is $x, y \in E$ such that $|x y| < \delta$ and $|f(x) f(y)| \ge \epsilon$, explain why $\inf\{\delta_x : x \in E\} = 0$. [Hint: Try a contradiction.]

(c) Now consider $(x - \delta_x, x + \delta_x) \cap E$, and let $y_1, y_2 \in (x - \delta_x, x + \delta_x) \cap E$. Show that $|f(y_1) - f(y_2)| < 2\epsilon$.

(d) Now suppose there is x_1, \ldots, x_n such that $E \subseteq \bigcup_{i=1}^n (x_i - \delta_{x_i}, x_i + \delta_{x_i})$. Why would this potentially imply that f is both continuous and that the existence of δ is independent of x?

Notice that in part (d), the key idea is the finiteness in the number of intervals in the union. This leads to the definition of a compact set.

Definition 1. Let
$$E \subseteq \mathbb{R}$$
. We say that E is *compact* if for every _______ of $\{G_{\alpha}\}_{{\alpha}\in A}$, there is a ______ of $\{G_{\alpha}\}_{{\alpha}\in A}$.

While not clear yet, a compact set essentially is a set within a particular region that has no "punctures". For example, a set like $[0,1] \cup [2,3]$ is compact since [1,3] and [2,3] is compact, but $[0,1/2) \cup (1/2,1]$ is not compact because 1/2 is a "puncture". But do you notice something? The first set discussed is also closed, while the second example is not closed.

Question. Provide an example of a subset of \mathbb{R} that is closed in \mathbb{R} but is not compact.

If the example you provided is indeed a compact set, what property do you notice that it has? If you did your work correctly, it should obey the following major theorem.

Theorem 1. Let $E \subseteq \mathbb{R}$.

- (i) If E is compact, then E is closed and bounded.
- (ii) (Heine-Borel Theorem) If E is closed and bounded, then E is compact.

The proof of (i) is in your textbook. We will focus on just the proof of (ii). We follow the proof of the Heine-Borel Theorem in Gaughan's *Introduction to Analysis*.

(a) Let E be closed and bounded, and let $\{G_{\alpha}\}_{{\alpha}\in A}$ be an open cover of E. We will suppose for a contradiction that $\{G_{\alpha}\}_{{\alpha}\in A}$ has no finite subcover. Because E is bounded, there is some closed interval $[\alpha, \beta]$ such that ...

(b) Consider the midpoint γ_0 of $[\alpha, \beta]$, and consider $[\alpha, \gamma_0] \cap E$ and $[\gamma_0, \beta] \cap E$. Why can't both of these sets be covered by a finite subfamily of $\{G_\alpha\}_{\alpha \in A}$?

(c) Select the interval from above that cannot be covered by a finite subfamily and call it $[\alpha_1, \beta_1]$. What deduction can we make if we choose a midpoint γ_1 of this interval?

- (d) Now you probably see the pattern that is emerging. A particular sequence $\{[\alpha_n, \beta_n]\}_{n=1}^{\infty}$ has been obtained. Based on the work you did above, answer the following questions:
 - (i) Describe $\beta_n \alpha_n$ in terms of $\beta \alpha$.

(ii) For any $n \in \mathbb{N}$, what is the "smallest" interval is $[\alpha_{n+1}, \beta_{n+1}]$ contained inside?

(iii) What property does $[\alpha_n, \beta_n] \cap E$ have with respect to $\{G_\alpha\}_{\alpha \in A}$? (*Hint*: Parts (b) and (c)).

(e) Using one of (i)-(iii), explain why $[\alpha_n, \beta_n] \cap E$ must be nonempty.

(f) By (e), for every $n \in \mathbb{N}$, there is $x_n \in [\alpha_n, \beta_n] \cap E$, so the set $P := \{x_n : n \in \mathbb{N}\}$ is nonempty. Suppose in one case that P is finite. What is an example of a case where P can indeed be finite?

(g) Continuing from (f), since P is finite, make a conclusion about $\bigcap_{n=1}^{\infty} ([\alpha_n, \beta_n] \cap E)$. Why can't we use the Nested Interval Property or Compact Nested Interval Property?

(h) Since $\{G_{\alpha}\}_{{\alpha}\in A}$ is an open cover for E, then use (g) and the definition of an open set in \mathbb{R} to draw a conclusion regarding a particular interval contained within an element of $\{G_{\alpha}\}_{{\alpha}\in A}$.

(i) Let $\epsilon > 0$. Given $(1/2^n)_{n=1}^{\infty}$ converges to 0, what conclusion can be drawn regarding $\beta_n - \alpha_n = \frac{1}{2^n} (\beta - \alpha)$?

(j) Using (g) and (i), what implication results from letting $x \in [\alpha_n, \beta_n] \cap E$?

(k) Using (h) and (j), draw a conclusion about a set from $\{G_{\alpha}\}_{{\alpha}\in A}$ that $[\alpha_n,\beta_n]\cap E$ is contained inside.

(l) What contradiction arises as a result of (k)?

Note that we still need to consider the case where P is infinite. This is left as an exercise for you in the extra practice section.

Topology on \mathbb{R}^n

Question. When considering the metric topology on \mathbb{R}^n , we must understand what a *metric* space is. Given a space X and a function $d: X \times X \to [0, \infty)$ satisfying the following:

- (a) d(x,x) = 0 for all $x \in X$,
- (b) d(x,y) = d(y,x) for all $x, y \in X$,
- (c) $d(x,z) \le d(x,y) + d(y,z)$ for all $x,y,z \in X$,

we say that (X, d) is a *metric space*, where d is the metric, or distance function, on the space X. More often than not, X is used in place of (X, d) when the context is clear.

1. Let $d: \mathbb{R} \times \mathbb{R} \to [0, \infty)$ be given by d(x, y) = |x - y|. Using the space below, show that (a), (b), and (c) hold, implying that d is a metric on \mathbb{R} .

2. If we want a metric on \mathbb{R}^n , how should we define $d: \mathbb{R}^n \times \mathbb{R}^n \to [0, \infty)$?

3. Using your response from (2), write an appropriate definition for $V_{\epsilon}(\mathbf{x})$ for any $\epsilon > 0$ and $\mathbf{x} \in \mathbb{R}^n$.

4. Using (3), write a definition for a limit point	for	\mathbb{R}^n .
--	-----	------------------

5. Write a definition for a convergent sequence in \mathbb{R}^n .

Exercise 1. Let $\{F_n\}_{n=1}^{\infty}$ be a sequence of nonempty compact subsets of \mathbb{R}^n . Assume that $F_{k+1} \subseteq F_k$ for all $k \in \mathbb{N}$. Prove that $\bigcap_{n=1}^{\infty} F_n \neq \emptyset$.

(a) Reread the definition of a compact set in your textbook. Use this to deduce a reasonable definition for a compact subset of \mathbb{R}^n .

(b) Complete the proof of Exercise 1. In order to understand why no steps have been provided, consider the following question: does the proof of the Nested Compact Set Property in the textbook depend in any way on the inherent properties of the choice of the metric space itself?

Extra Practice

- 1. Finish the proof of the Heine-Borel Theorem by proving the infinite case for P. (Here you will need to use the assumption that E is closed!)
- 2. Let $d^*: \mathbb{R}^2 \times \mathbb{R}^2 \to [0, \infty)$ be given by

$$d^*(\mathbf{p}, \mathbf{q}) = |p_1 - q_1| + |p_2 - q_2|$$

(note that $\mathbf{p} = (p_1, p_2)$ and $\mathbf{q} = (q_1, q_2)$). Prove that d^* is a metric on \mathbb{R}^2 . We refer to this as the ℓ_1 -metric on \mathbb{R}^2 . (The ℓ_p -metric, where $p \in [1, \infty)$, is given by $d_{\ell_p}(\mathbf{p}, \mathbf{q}) = (|p_1 - q_1|^p + |p_2 - q_2|^p)^{1/p}$. When $p = \infty$, $d_{\ell_\infty}(\mathbf{p}, \mathbf{q}) = \sup\{|p_1 - q_1|, |p_2 - q_2|\}$.)

- 3. Let $\mathbf{x} = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$. We define a set $A \subseteq \mathbb{R}^n$ to be bounded if there exists $M \ge 0$ such that $||\mathbf{x}|| = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2} \le M$ for all $\mathbf{x} \in A$.
 - (a) Reread the definition of the closure of a set in \mathbb{R} . Deduce a reasonable definition for the closure of a set in \mathbb{R}^n .
 - (b) Prove that if $D \subseteq \mathbb{R}^n$ is bounded, then \overline{D} is bounded.
 - (c) Let $A \subseteq \mathbb{R}^n$. Recall the definition of a compact set that you deduced in Exercise 1(a). Prove that A is compact if and only if A is closed and bounded.