Introduction

Strassen's matrix multiplication algorithms works faster for n by n matrix than the conventional naive algorithm whose time complexity is $O(n^3)$, in theory. However, for some smaller n, the conventional algorithm runs faster because the time consumed in memory allocation in Strassen's algorithm. But, for this recursive algorithm, we don't need to go to the basic element of this matrix (a 1×1). We may modified the classic algorithm by converting from recursion to conventional algorithm when the dimension is small enough. We call this cross-over point. In this experiment, we try to find the optimal cross-over point for different n from two direction. First, we calculate the exact running time for Strassen's algorithm, modified Strassen's algorithm and conventional algorithm and estimate the cross-over point numerically. These calculation were based on the assumption that the cost of any single arithmetic operation is 1 and all others are free. Second, we implemented these algorithms and get the cross-over point in practice.

Numerical Calculation

To simplify the calculation we assume in the following analysis in this section, the dimension n is power of 2 and the cross-over value is also power of 2. In classic Strassen's algorithm, for a given matrix of given n, we require 7 multiplication of matrices of simension $\frac{n}{2}$. In addition, there are 18 summation and subtraction of size $\frac{n}{2}$. Thus, we can write a recursive equation of the running time:

$$f_1(n) = 7f(\frac{n}{2}) + 18(\frac{n}{2})^2$$

$$= 7^2 f(\frac{n}{4}) + 7 \times 18(\frac{n}{4})^2 + 18(\frac{n}{2})^2$$

$$= 7^k f(\frac{n}{2^k}) + 18n^2 \{7^{k-1}(\frac{n}{2^k})^2 + \dots + 7^0(\frac{n}{2})^2\}$$

when $k = log_2 n$, we arrive at the basic case. Since f(1) = 1. We can conclude that the exact running time of standard Strassen's algorithm is:

$$f_s(n) = 7^{\log_2 n} + 6n^2 \{ (\frac{7}{4})^{\log_2 n} - 1 \}$$

For conventional algorithm, we have a total of n^3 multiplication and $n^2(n-1)$ additions. So the close form running time of conventional algorithm is:

$$f_c(n) = n^2(2n-1)$$

Let's assume we set cross-over point at n_0 . That means above n_0 , we used Strassen's algorithm and below n_0 , we used conventional algorithm. So the running time of this hybrid algorithm is:

$$f_{n_0} = 7^{\log_2 \frac{n}{n_0}} (2n_0^3 - n_0^2) + 6n^2 ((\frac{7}{4})^{\log_2 \frac{n}{n_0}} - 1)$$

We cannot achieve a closed form n_0 for every n. But we can get a numeric estimation. The theoretical running time of standard Strassen's, modified Strassen's with 2×2 , 4×4 , 8×8 , 16×16 basic matrix and conventional algorithm are listed below: For a matrix with size of n, when $n \leq 16$, by no means can Strassen's run faster than conventional algorithm in theory. Then for a matrix of size 32, modified Strassen's with 8×8 basic matrix runs faster. In this case, the theoretical cross-over point maybe between 4 and 8. Then for a matrix with

Table 1: theoretical running time comparison among algorithms up to 2^{12}

n	Strassen's	2*2	4*4	8*8	16*16	Conventional
16	15271	10812	8656	7872	7936	7936
32	111505	80292	65200	59712	60160	64512
64	798967	580476	474832	436416	439552	520192
128	5666497	4137060	3397552	3128640	3150592	4177920
256	39960391	29254332	24077776	22195392	22349056	33488896
512	280902385	205959972	169724080	156547392	157623040	268173312
1024	1971035287	1446438396	1192787152	1100550336	1108079872	2146435072
2048	13816121377	10143943140	8368384432	7722726720	7775433472	17175674880
4096	96788347111	71083099452	58654188496	54134584512	54503531776	137422176256

Figure 1: theoretical running time comparison among algorithms up to 2^{12}

Alternative Solutions

Optimum Solution

${\bf Construction/Implementation}$

Analysis & Testing

Final Evaluation

Attachments