AUTOVALORES Y AUTOVECTORES

Definiciones. Interpretación geométrica. Círculos de Gerschgorin. Método de las potencias.

Manuel Carlevaro

Departamento de Ingeniería Mecánica

Grupo de Materiales Granulares - UTN FRLP

manuel.carlevaro@gmail.com

Definición: Autovalor y autovector.

Sea ${\pmb A} \in K^{n \times n}$ y ${\pmb v} \in K^n$. ${\pmb v}$ es un **autovector** de ${\pmb A}$ si

$$\mathbf{A}\mathbf{v} = \lambda \mathbf{v}$$

donde λ es un escalar en K, denominado **autovalor** asociado con ${m v}$.

1

Definición: Autovalor y autovector.

Sea ${m A} \in K^{n imes n}$ y ${m v} \in K^n$. ${m v}$ es un **autovector** de ${m A}$ si

$$\mathbf{A}\mathbf{v} = \lambda \mathbf{v}$$

donde λ es un escalar en K, denominado **autovalor** asociado con ${m v}$.

En forma equivalente:

$$(\mathbf{A} - \lambda \mathbf{I})\mathbf{v} = \mathbf{0} \tag{1}$$

Este sistema tiene solución $oldsymbol{v}
eq oldsymbol{0}$ si y solo si:

$$\det(\boldsymbol{A} - \lambda \boldsymbol{I}) = 0$$

denominado **polinomio característico**, $p_A(\lambda)$, y por el teorema fundamental del álgebra: $\mapsto n$ raíces.

1

Definición: Autovalor u autovector.

Sea ${m A} \in K^{n imes n}$ y ${m v} \in K^n$. ${m v}$ es un **autovector** de ${m A}$ si

$$\mathbf{A}\mathbf{v} = \lambda \mathbf{v}$$

donde λ es un escalar en K, denominado **autovalor** asociado con ${m v}$.

En forma equivalente:

$$(\boldsymbol{A} - \lambda \boldsymbol{I})\boldsymbol{v} = \boldsymbol{0} \tag{1}$$

Este sistema tiene solución $oldsymbol{v}
eq oldsymbol{0}$ si y solo si:

$$\det(\boldsymbol{A} - \lambda \boldsymbol{I}) = 0$$

denominado **polinomio característico**, $p_A(\lambda)$, y por el teorema fundamental del álgebra: $\mapsto n$ raíces.

Ejemplo:

$$\mathbf{A} = \begin{bmatrix} 3 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 3 \end{bmatrix}$$

$$p_A(\lambda) = \det(\mathbf{A} - \lambda \mathbf{I}) = \begin{vmatrix} 3 - \lambda & -1 & 0 \\ -1 & 2 - \lambda & -1 \\ 0 & -1 & 3 - \lambda \end{vmatrix}$$
$$= -\lambda^3 + 8\lambda^2 - 19\lambda + 12 = 0$$

Solución: $\lambda_1=1, \lambda_2=3, \lambda_3=4$. Reemplazando cada autovalor en (1):

$$oldsymbol{v}_1 = aegin{bmatrix}1\\2\\1\end{bmatrix}, oldsymbol{v}_2 = begin{bmatrix}1\\0\\-1\end{bmatrix}, oldsymbol{v}_3 = cegin{bmatrix}1\\-1\\1\end{bmatrix}$$

1

Intepretación gráfica

$$p_A(\lambda) = \det(\mathbf{A} - \lambda \mathbf{I}) = \begin{vmatrix} 2 - \lambda & 1\\ 1 & 2 - \lambda \end{vmatrix}$$
$$= (2 - \lambda)^2 - 1 = \lambda^2 - 4\lambda + 3 = (\lambda - 3)(\lambda - 1) = 0$$

Intepretación gráfica

$$p_A(\lambda) = \det(\mathbf{A} - \lambda \mathbf{I}) = \begin{vmatrix} 2 - \lambda & 1\\ 1 & 2 - \lambda \end{vmatrix}$$
$$= (2 - \lambda)^2 - 1 = \lambda^2 - 4\lambda + 3 = (\lambda - 3)(\lambda - 1) = 0$$

Con $\lambda_1 = 3$:

$$\begin{cases} (2-3)x + y &= 0 \\ x + (2-3)y &= 0 \end{cases} \Longrightarrow \mathbf{v}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

Intepretación gráfica

$$p_A(\lambda) = \det(\mathbf{A} - \lambda \mathbf{I}) = \begin{vmatrix} 2 - \lambda & 1\\ 1 & 2 - \lambda \end{vmatrix}$$
$$= (2 - \lambda)^2 - 1 = \lambda^2 - 4\lambda + 3 = (\lambda - 3)(\lambda - 1) = 0$$

Con $\lambda_1 = 3$:

$$\begin{cases} (2-3)x + y &= 0 \\ x + (2-3)y &= 0 \end{cases} \Longrightarrow \mathbf{v}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

Con $\lambda_2 = 1$:

$$\begin{cases} (2-1)x + y &= 0 \\ x + (2-1)y &= 0 \end{cases} \Longrightarrow \mathbf{v}_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

Nota: si consideramos la norma vectorial $l_2: \|\cdot\|$:

$$\|\boldsymbol{A}\|_2 = \rho(\boldsymbol{A}^{\dagger}\boldsymbol{A})^{1/2}$$

Si
$$m{A}$$
 es simétrica, $\|m{A}\|_2 =
ho(m{A})$.

.

Métodos:

- Analítico: n < 5.
- Parciales: computan solo autovalores extremos (módulo máximo o mínimo). Método de las potencias.
- Globales: aproximan a todo el **espectro** de A, $\sigma(A)$. Método QR.

Métodos:

- ▶ Analítico: n < 5.
- Parciales: computan solo autovalores extremos (módulo máximo o mínimo). Método de las potencias.
- Globales: aproximan a todo el **espectro** de A, $\sigma(A)$. Método QR.

Teorema : Círculo de Gerschgorin.

 $m{A} \in K^{n \times n}$, $r_i = \sum_{j \neq i}^n |a_{ij}|$ para cada $i = 1, 2, \cdots, n$. Sea

$$C_i = \{ z \in \mathbb{C} : |z - a_{ii}| \le r_i \}$$

- 1. Si λ es un autovalor, está en uno de los C_i .
- 2. Si k círculos C_i forman una región conectada $R \in \mathbb{C}$, dijunta de los restantes n-k círculos, entonces R contiene exactamente k autovalores.

Métodos:

- Analítico: n < 5.
- Parciales: computan solo autovalores extremos (módulo máximo o mínimo). Método de las potencias.
- Globales: aproximan a todo el **espectro** de A, $\sigma(A)$. Método QR.

Teorema : Círculo de Gerschgorin.

 $m{A} \in K^{n \times n}$, $r_i = \sum_{j \neq i}^n |a_{ij}|$ para cada $i = 1, 2, \cdots, n$. Sea

$$C_i = \{ z \in \mathbb{C} : |z - a_{ii}| \le r_i \}$$

- 1. Si λ es un autovalor, está en uno de los C_i .
- 2. Si k círculos C_i forman una región conectada $R \in \mathbb{C}$, dijunta de los restantes n-k círculos, entonces R contiene exactamente k autovalores.

Ejemplo:

$$\begin{bmatrix} 1 & -1 & 0 \\ 1 & 5 & 1 \\ -2 & -1 & 9 \end{bmatrix}$$

$$r_1 = |-1| + |0| = 1, r_2 = |1| + |1| = 2, r_3 = |-2| + |-1| = 3.$$

 $\lambda_1 = 1.33192769, \lambda_2 = 8.81113862, \lambda_3 = 4.85693369$.

Método de las potencias:

 $A \in \mathbb{R}^{n \times n}$, con elementos de $\sigma(A)$ que satisfacen: $|\lambda_1| > |\lambda_2| \ge |\lambda_3| \ge \cdots \ge |\lambda_n|$. λ_1 : autovalor dominante. $\{v_1, v_2, \cdots, v_n\}$ forman una base en \mathbb{R}^n (linealmente independientes).

$$x = \sum_{j=1}^{n} \beta_j v_j$$

Multiplicando ambos miembros por $oldsymbol{A}, oldsymbol{A}^2, \cdots, oldsymbol{A}^k, \cdots$:

$$egin{aligned} oldsymbol{A}oldsymbol{x} &= \sum_{j=1}^n eta_j oldsymbol{A}oldsymbol{v}_j = \sum_{j=1}^n eta_j \lambda_j oldsymbol{v}_j \ oldsymbol{A}^2oldsymbol{x} &= \sum_{j=1}^n eta_j \lambda_j oldsymbol{A}oldsymbol{v}_j = \sum_{j=1}^n eta_j \lambda_j^2 oldsymbol{v}_j \ &dots \ oldsymbol{A}^koldsymbol{x} &= \sum_{j=1}^n eta_j \lambda_j^k oldsymbol{v}_j \end{aligned}$$

Factorizando λ_1 en la última ecuación:

$$oldsymbol{A}^k oldsymbol{x} = \lambda_1^k \sum_{j=1}^n eta_j \left(rac{\lambda_j}{\lambda_1}
ight)^k oldsymbol{v}_j$$

Dado que $\forall j, \, |\lambda_1| > |\lambda_j|; \lim_{k \to \infty} (\lambda_j/\lambda_1)^k = 0$, y

$$\lim_{k \to \infty} \mathbf{A}^k \mathbf{x} = \lim_{k \to \infty} \lambda_1^k \beta_1 \mathbf{v}_1 \tag{2}$$

Si $|\lambda_1| < 1$, (2) \mapsto **0**, si $|\lambda_1| > 1$, (2) diverge $(\beta_1 \neq 0)$. Elegimos $\boldsymbol{x} = \boldsymbol{x}^{(0)}$ con $\|\cdot\|_{\infty}$: $\boldsymbol{x}^{(0)}_{\infty}$ con

$$x_{p_0}^{(0)} = 1 = \|\boldsymbol{x}^{(0)}\|_{\infty}$$

Hacemos $oldsymbol{y}_{(1)} = oldsymbol{A} oldsymbol{x}^{(0)}$ y definimos $\mu^{(1)} = y_{p_0}^{(1)}$:

$$\mu^{(1)} = y_{p_0}^{(1)} = \frac{y_{p_1}^{(1)}}{x_{p_0}^{(0)}} = \frac{\beta_1 \lambda_1 v_{p_0}^{(1)} + \sum_{j=2}^n \beta_j \lambda_j v_{p_0}^{(j)}}{\beta_1 v_{p_0}^{(1)} + \sum_{j=2}^n \beta_j v_{p_0}^{(j)}}$$
$$= \lambda_1 \left[\frac{\beta_1 v_{p_0}^{(1)} + \sum_{j=2}^n \beta_j (\lambda_j / \lambda_1) v_{p_0}^{(j)}}{\beta_1 v_{p_0}^{(1)} + \sum_{j=2}^n \beta_j v_{p_0}^{(j)}} \right]$$

$$\boldsymbol{x}^{(1)} = \frac{\boldsymbol{y}^{(1)}}{y_{p_1}^{(1)}} = \frac{1}{y_{p_1}^{(1)}} \boldsymbol{A} \boldsymbol{x}^{(0)}$$

Sea p_1 el menor entero tal que $|y_{p_1}^{(1)}| = ||\boldsymbol{y}^{(1)}||_{\infty}$:

Entonces: $x_{n_1}^{(1)} = 1 = ||x^{(1)}||_{\infty}$. Ahora

$$m{y}^{(2)} = m{A}m{x}^{(1)} = rac{1}{m{y}_{n_1}^{(1)}}m{A}^2m{x}^{(0)}$$

Ч

$$\mu^{(2)} = y_{p_1}^{(2)} = \frac{y_{p_1}^{(2)}}{x_{p_1}^{(1)}} = \frac{\left[\beta_1 \lambda_1^2 v_{p_1}^{(1)} + \sum_{j=2}^n \beta_j \lambda_j^2 v_{p_1}^{(j)} \middle/ y_{p_1}^{(1)}\right]}{\left[\beta_1 \lambda_1 v_{p_1}^{(1)} + \sum_{j=2}^n \beta_j \lambda_j v_{p_1}^{(j)} \middle/ y_{p_1}^{(1)}\right]}$$
$$= \lambda_1 \left[\frac{\beta_1 v_{p_1}^{(1)} + \sum_{j=2}^n \beta_j (\lambda_j / \lambda_1)^2 v_{p_1}^{(j)}}{\beta_1 v_{p_1}^{(1)} + \sum_{j=2}^n \beta_j (\lambda_j / \lambda_1) v_{p_1}^{(j)}}\right]$$

Sea p_2 el menor entero tal que $|y_{p_2}^{(2)}| = ||\boldsymbol{y}^{(2)}||_{\infty}$:

$$m{x}^{(2)} = rac{m{y}^{(2)}}{v^{(2)}} = rac{1}{v^{(2)}}m{A}m{x}^{(1)} = rac{1}{v^{(2)}v^{(1)}}m{A}^2m{x}^{(0)}$$

inductivamente:

$$\boldsymbol{y}^{(m)} = \boldsymbol{A}\boldsymbol{x}^{(m-1)}$$

 \mapsto secuencias $\{x^{(m)}\}_{m=0}^{\infty}, \{y^{(m)}\}_{m=0}^{\infty}, \{\mu^{(m)}\}_{m=0}^{\infty}, \{\mu^{(m)}\}_{m=$

$$\mu^{(m)} = y_{p_{m-1}}^{(m)}$$

$$= \lambda_1 \left[\frac{\beta_1 v_{p_{m-1}}^{(1)} + \sum_{j=2}^n (\lambda_j / \lambda_1)^m \beta_j v_{p_{m-1}}^{(j)}}{\beta_1 v_{p_{m-1}}^{(1)} + \sum_{j=2}^n (\lambda_j / \lambda_1)^{m-1} \beta_j v_{p_{m-1}}^{(j)}} \right]$$

 $m{x}^{(m)} = rac{m{y}^{(m)}}{y_{n^{(m)}}} = rac{m{A}^m m{x}^{(0)}}{\prod_{k=1}^m y_{n^k}^{(k)}}$

donde para cada paso, p_m es el menor entero para el

cual
$$|y_{p_m}^{(m)}| = \|\boldsymbol{y}^{(m)}\|_{\infty}$$
.
Dado que $|\lambda_j/\lambda_1| < 1, j = 2, \cdots, n$,
 $\lim_{m \to \infty} \mu^{(m)} = \lambda_1$, eligiendo $\boldsymbol{x}^{(0)}$ tal

 $\lim_{m\to\infty}\mu^{(m)}=\lambda_1$, eligiendo $\boldsymbol{x}^{(0)}$ tal que $\beta_1\neq 0$. Además, la secuencia $\{x^{(m)}\}_{m=0}^{\infty}$ converge al autovalor

asociado con λ_1 con norma l_{∞} igual a 1.

Ejemplo:

$$A = \begin{bmatrix} -2 & -3 \\ 6 & 7 \end{bmatrix}, v_1 = \begin{bmatrix} 1 \\ -2 \end{bmatrix}, v_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

Con $\sigma(\boldsymbol{A}) = \{4,1\}$. Tomemos $\boldsymbol{x}^{(0)} = [1,1]^{\mathsf{T}}$:

$$x^{(1)} = Ax^{(0)} = \begin{bmatrix} -5\\13 \end{bmatrix}, x^{(2)} = Ax^{(1)} = \begin{bmatrix} -29\\61 \end{bmatrix}$$

$$x^{(3)} = Ax^{(2)} = \begin{bmatrix} -125\\253 \end{bmatrix}, x^{(4)} = Ax^{(3)} = \begin{bmatrix} -509\\1021 \end{bmatrix}$$

$$\boldsymbol{x}^{(5)} = \boldsymbol{A}\boldsymbol{x}^{(4)} = \begin{bmatrix} -2045 \\ 4093 \end{bmatrix}, \boldsymbol{x}^{(6)} = \boldsymbol{A}\boldsymbol{x}^{(5)} = \begin{bmatrix} -8189 \\ 16381 \end{bmatrix}$$

Aproximaciones al autovalor dominante λ_1 :

$$\lambda_1^{(1)} = \frac{61}{13} = 4.6923,$$
 $\lambda_1^{(2)} = \frac{253}{61} = 4.14654$
 $\lambda_1^{(3)} = \frac{1021}{253} = 4.03557,$
 $\lambda_1^{(4)} = \frac{4093}{1021} = 4.00881$
 $\lambda_1^{(5)} = \frac{16381}{4002} = 4.00200$

Un autovector aproximado para

$$\lambda_1^{(5)} = 16381/4093 = 4.00200 \text{ es}$$

$$oldsymbol{x}^{(6)} = egin{bmatrix} -8189 \ 16381 \end{bmatrix}
ightarrow egin{bmatrix} -0.49908 \ 1 \end{bmatrix} pprox oldsymbol{v}_1$$

Ejemplo:

$$A = \begin{bmatrix} -2 & -3 \\ 6 & 7 \end{bmatrix}, v_1 = \begin{bmatrix} 1 \\ -2 \end{bmatrix}, v_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

Con $\sigma(\mathbf{A}) = \{4, 1\}$. Tomemos $\mathbf{x}^{(0)} = [1, 1]^{\mathsf{T}}$:

$$\boldsymbol{x}^{(1)} = \boldsymbol{A}\boldsymbol{x}^{(0)} = \begin{bmatrix} -5\\13 \end{bmatrix}, \boldsymbol{x}^{(2)} = \boldsymbol{A}\boldsymbol{x}^{(1)} = \begin{bmatrix} -29\\61 \end{bmatrix}$$

$$\boldsymbol{x}^{(3)} = \boldsymbol{A}\boldsymbol{x}^{(2)} = \begin{bmatrix} -125\\253 \end{bmatrix}, \boldsymbol{x}^{(4)} = \boldsymbol{A}\boldsymbol{x}^{(3)} = \begin{bmatrix} -509\\1021 \end{bmatrix}$$

$$\boldsymbol{x}^{(5)} = \boldsymbol{A}\boldsymbol{x}^{(4)} = \begin{bmatrix} -2045\\4093 \end{bmatrix}, \boldsymbol{x}^{(6)} = \boldsymbol{A}\boldsymbol{x}^{(5)} = \begin{bmatrix} -8189\\16381 \end{bmatrix}$$

Aproximaciones al autovalor dominante λ_1 :

$$\lambda_1^{(1)} = \frac{61}{13} = 4.6923, \qquad \lambda_1^{(2)} = \frac{253}{61} = 4.14654$$

$$\lambda_1^{(3)} = \frac{1021}{253} = 4.03557, \quad \lambda_1^{(4)} = \frac{4093}{1021} = 4.00881$$

$$\lambda_1^{(5)} = \frac{16381}{4093} = 4.00200$$

Un autovector aproximado para

$$\lambda_1^{(5)} = 16381/4093 = 4.00200$$
 es

$$oldsymbol{x}^{(6)} = egin{bmatrix} -8189 \\ 16381 \end{bmatrix}
ightarrow egin{bmatrix} -0.49908 \\ 1 \end{bmatrix} pprox oldsymbol{v}_1$$

Desventajas:

- ▶ No se sabe al inicio si *A* tiene un autovalor dominante.
- $lackbox{ No se conoce cómo debe elegirse } m{x}^{(9)}$ para que tenga una contribución no nula del autovector asociado al autovalor dominante, si existe.

LECTURAS RECOMENDADAS I

- ▶ burden2017. Capítulo 9.
- ▶ moreno2014. Capítulo 3.
- ▶ bradie2006. Capítulo 4.
- ▶ salgado2023. Capítulo 8.
- quarteroni2000. Capítulo 5.