Laplace Transform Table

Laplace Transform Table	
Time Signal	Laplace Transform
u(t)	1/s
u(t) - u(t - c), c > 0	$(1-e^{-cs})/s, c>0$
$t^N u(t), N = 1, 2, 3, \dots$	$\frac{N!}{s^{N+1}}$, $N = 1, 2, 3,$
$\delta(t)$	1
$\delta(t-c)$, c real	e^{-cs} , c real
$e^{-bt}u(t)$, b real or complex	$\frac{1}{s+b}$, b real or complex
$t^N e^{-bt} u(t), N = 1, 2, 3,$	$\frac{N!}{(s+b)^{N+1}}, N=1, 2, 3, \dots$
$\cos(\omega_o t)u(t)$	$\frac{s}{s^2 + \omega_o^2}$
$\sin(\omega_o t)u(t)$	$\frac{\omega_o}{s^2 + \omega_o^2}$
$\cos^2(\omega_o t)u(t)$	$\frac{s^2 + 2\omega_o^2}{s(s^2 + 4\omega_o^2)}$
$\sin^2(\omega_o t)u(t)$	$\frac{2\omega_o^2}{s(s^2+4\omega_o^2)}$
$e^{-bt}\cos(\omega_o t)u(t)$	$\frac{s+b}{(s+b)^2 + \omega_o^2}$
$e^{-bt}\sin(\omega_o t)u(t)$	$\frac{\omega_o}{(s+b)^2 + \omega_o^2}$
$t\cos(\omega_o t)u(t)$	$\frac{s^2 - \omega_o^2}{(s^2 + \omega_o^2)^2}$
$t\sin(\omega_o t)u(t)$	$\frac{2\omega_o s}{(s^2 + \omega_o^2)^2}$
$Ae^{-\zeta\omega_n t}\sin\left[\left(\omega_n\sqrt{1-\zeta^2}\right)t\right]u(t)$	$\frac{\alpha}{s^2 + 2\zeta\omega_n s + \omega_n^2}$
where: $A = \frac{\alpha}{\omega_n \sqrt{1 - \zeta^2}}$	
$Ae^{-\zeta\omega_n t}\sin\left[\left(\omega_n\sqrt{1-\zeta^2}\right)t+\phi\right]u(t)$	$\beta \frac{s+\alpha}{s^2+2\zeta\omega_n s+\omega_n^2}$
$A = \beta \sqrt{\frac{(\alpha - \zeta \omega_n)^2}{\omega_n^2 (1 - \zeta^2)} + 1} \phi = \tan^{-1} \left(\frac{\omega_n \sqrt{1 - \zeta^2}}{\alpha - \zeta \omega_n} \right)$	
$te^{-bt}\cos(\omega_o t)u(t)$	$\frac{(s+b)^2 - \omega_o^2}{((s+b)^2 + \omega_o^2)^2}$
$te^{-bt}\sin(\omega_o t)u(t)$	$\frac{2\omega_o(s+b)}{((s+b)^2+\omega_o^2)^2}$

Laplace Transform Properties

Property Name	Property	
Linearity	ax(t) + bv(t)	aX(s) + bV(s)
Right Time Shift	x(t-c), c>0	$e^{-cs}X(s)$
(<u>Causal</u> Signal)		` '
Time Scaling	x(at), a > 0	$\frac{1}{a}X(s/a), a>0$
Multiply by t^n	$t^n x(t), n = 1, 2, 3, \dots$	$(-1)^n \frac{d^n}{ds^n} X(s), n = 1, 2, 3, \dots$
Multiply by Exponential	$e^{at}x(t)$, a real or complex	X(s-a), a real or complex
Multiply by Sine	$\sin(\omega_o t)x(t)$	$\frac{j}{2} [X(s+j\omega_o) - X(s-j\omega_o)]$
Multiply by Cosine	$\cos(\omega_o t) x(t)$	$\frac{1}{2} \left[X(s + j\omega_o) + X(s - j\omega_o) \right]$
Time Differentiation	$\dot{x}(t)$	sX(s)-x(0)
2 nd Derivative	$\ddot{x}(t)$	$s^2X(s) - sx(0) - \dot{x}(0)$
n^{th} Derivative	$x^{(N)}(t)$	$s^{N}X(s) - s^{N-1}x(0) - s^{N-2}\dot{x}(0) -$
		$\cdots - sx^{(N-2)}(0) - x^{(N-1)}(0)$
Time Integration	$\int_{0}^{t} x(\lambda) d\lambda$	$\frac{1}{s}X(s)$
	-∞	S
Convolution in Time	x(t) * h(t)	X(s)H(s)
Initial-Value Theorem	$x(0) = \lim_{s \to \infty} [sX(s)]$	
	$\dot{x}(0) = \lim_{s \to \infty} \left[s^2 X(s) - sx(0) \right]$	
	$x^{(N)}(0) = \lim_{s \to \infty} \left[s^{N+1} X(s) - s^{N} x(0) - s^{N-1} \dot{x}(0) - \dots - s x^{(N-1)}(0) \right]$	
Final-Value Theorem	If $\lim_{t \to \infty} x(t)$ exists, then $\lim_{t \to \infty} x(t) = \lim_{s \to 0} sX(s)$	