If the recurrence is of the form $T(n) = aT(\frac{n}{b}) + \Theta(n^k \log^p n)$, where $a \ge 1, b > 1, k > 0$ and p is a real number, then: $1, k \ge 0$ and p is a real number, then:

1) If
$$a > b^k$$
, then $T(n) = \Theta(n^{\log_b^a})$

2) If
$$a > b^k$$
, then $T(n) = \Theta(n^{\log b})$

a. If $p > -1$, then $T(n) = \Theta(n^{\log b} \log p + 1n)$

b. If $p = -1$, then $T(n) = \Theta(n^{\log b} \log \log n)$

c. If $p < -1$, then $T(n) = \Theta(n^{\log b})$

3) If $a < b^k$

a. If $p \ge 0$, then $T(n) = \Theta(n^k \log^p n)$

b. If $p < 0$, then $T(n) = O(n^k)$

b. If
$$p = -1$$
, then $T(n) = \Theta(n^{\log_b^a} \log \log n)$

c. If
$$p < -1$$
, then $T(n) = \Theta(n^{\log_b^a})$

3)
$$\bigcap$$
 If $a < b^k$

a. If
$$p \ge 0$$
, then $T(n) = \Theta(n^k \log^p n)$

b. If
$$p < 0$$
, then $T(n) = O(n^k)$

$$T(n)=3T(n/2)+n^{2}$$
 $AT(n/b)$
 $3T(n/2)$
 $A=3$, $b=2$

$$(nk(\log n)) | n^{2} ()$$

$$= (nk(\log n)) | n^{2} ()$$

$$= (nk(\log n)) | n^{2} ()$$

$$= (n/b)$$
 $= (n/b)$
 $= (n/b)$

$$T(n) = O(n^{2} \log^{n} n)$$

$$= O(n^{2} \log^{n} n)$$

$$= O(n^{2} \log^{n} n) = O(n^{2}).$$

to derign algorithm. Technique Sub problems. Solution of small Sub-problems Merze Sort - Sorting algo build an divide & conquer technique. 1) Reputally divide the avray into 2 egral parts.

123

J 2 3

Even no. of elements

