## Zadanie 2

| Operand absolutny | Opis                                          |
|-------------------|-----------------------------------------------|
| I1                | OPEN, przycisk bistabilny do otwierania bramy |
| I2                | CLOSE, przycisk bistabilny do zamykania bramy |
| I3                | GATE_IS_OPEN, wykrycie otwarcia bramy         |
| I4                | GATE_IS_CLOSE, wykrycie zamknięcia bramy      |
| I5                | SENSOR, wykrycie obiektu w bramie             |
| I6                | OPEN_F, wymuszenie otwarcia bramy             |
| Q1                | OPEN_GATE, sygnał otwierający bramę           |
| Q1<br>Q2          | CLOSE_GATE, sygnał zmykający bramę            |
| Q3                | LAMP, sygnalizacja świetlna                   |
| M1                | PKT1                                          |



Naciśnięcie przycisku OPEN (I1) powoduje wysterowanie wyjścia OPEN\_GATE(Q1) oraz uruchomienie sygnalizacji świetlnej LAMP (Q3). Sygnalizacja opiera się na lampie sygnalizacyjnej, która musi być zasilana sygnałem z częstotliwością 1.5Hz z wypełnieniem 50%. Brama otwiera się do czasu wykrycia przez czujnik krańcowy GATE\_IS\_OPEN(I3). Sygnalizacja działa przez czas otwierania bramy i 5s po pełnym otwarciu.

Naciśnięcie przycisku CLOSE (I2) powoduje wysterowanie wyjścia CLOSE\_GATE(Q2) oraz uruchomienie sygnalizacji świetlnej takiej samej jak w przypadku cyklu otwierania. Brama zamyka się do momentu wykrycia przez krańcówkę GATE\_IS\_CLOSE(I4).

Jeżeli podczas zamykania czujnik SENSOR(I5) wykryje przeszkodę, aktywuje się PKT 1 (M1), brama się zatrzymuje, sygnalizacja świetlana LAMP(Q3) przestaje migać i zapala się na czas 7.5s. Po tym czasie układ ponownie sprawdza stan czujnika SENSOR(I5), jeśli czujnik nic nie wykrywa, brama próbuje się ponownie zamknąć. Sygnalizacja ponownie miga. Jeżeli przeszkoda nie zniknęła, brama zaczyna się otwierać i pozostaje w takim stanie.

Wyjścia sterowania silnikiem OPEN\_GATE(Q1) i CLOSE\_GATE(Q2) muszą być zabezpieczone przed jednoczesnym uruchomieniem.

Dodatkowo system jest wyposażony w wymuszone otwieranie bramy OPEN\_F(I6). Jego aktywacja wymusza otwarcie bramy bez względu na pozostały program. Jeżeli brama jest zamykana podczas aktywacji OPEN\_F(I6), wyjście CLOSE\_GATE(Q2) przestaje być aktywne.

## Sposób przygotowania zadania:

Proszę wszelkie wejścia i wyjścia komentować zgodnie z konwencją przedstawioną w zadaniu np.: Q2 (CLOSE\_GATE). Bloki wejść i wyjść (I & Q) powinny znajdować się w miarę możliwości w lewym górnym rogu pola roboczego tak aby możliwe było komfortowe objęcie wszystkich tych bloków na ekranie bez przesadnego oddalania widoku. Wszystkie wejścia w trybie switch. Podane parametry: częstotliwości i okresy oczekiwania- są istotne i proszę się ich trzymać.

Rada: PWM można łatwo generować blokiem 'Asynchronous pulse generator'.

Robienie w LAD nie jest zabronione ale lepiej zrobić w FBD ( i tak będziecie musieli się go nauczyć :D ).