001 **BUS STOP**

Funded Research Project Proposal

IoT Driven Smart Bus Stops

Project Guides

- Dr P. Mirunalini Assoc. Professor, CSE
- Dr B. Bharathi
 Assoc. Professor, CSE
- Dr Cherry Mathew Philipose Asst. Professor, English

Project Students

- Karthik Desingu, B.E CSE
- Daniel Mark Isaac, B.E. ECE

Waiting Indefinitely at Bus Stops...

The Problem

Indefinite Waiting

Commuters are kept in the dark.

Move back-and-forth to read bus numbers

Impractical Signage

Signage that can't be read from far.
Only in the local language

Worse for the Specially-Abled

Unpredictable systems keep them **dependent** on others.

Inaccurate Schedules

Seldom follow the prescribed schedule. Heavy **Traffic.**

Inefficient Existing Systems

Existing systems use **expensive** GPS

Not easily adaptable.

Proposed Solution

- An Internet of Things and Machine Learning based system to track, announce and predict schedule of buses.
- Live tracking of buses on a dedicated website.
- Using collected data to build a predictive model to provide a tentative schedule.

Smart Bus Stop

Web-Application for Tracking

Track live-location of any bus on the go

- A predicted tentative
 schedule at your fingertips
- Plan your commute accordingly
- Avoid waiting at bus stops and save time

Why is this a Better Solution?

Proposed Solution

Compatible Model

- Can be directly embedded into existing buses and stops. Easy to install beacons and portable system
- Cost-effective
 - Low-cost Radio-Frequency transmitters and receivers
- Schedule Prediction and Announcement
 - Using collected data and traffic statistics to predict a tentative schedule and announce arrival of buses

Existing and Other Systems

- Heavy on Installation Time and Cost
 - Many of the proposed systems require significant modification of buses/stops to be installed
- Expensive
 - Usage of expensive GPS modules
 - **Close-spacing** of bus stops eliminates need for GPS
- Inexistence of such Models
 - Most announcement systems are manual, limited to major termini
 - Absence of live-tracking for city buses

Advantages & Future Extensions

Other Advantages

- Specially-abled people can simply listen to the announcements
- Automatically report buses that do not stop, to the city corporation
- Better **accuracy** compared to GPS modules
- Not susceptible to **relocation** of bus-stops
- Announcements are made one-stop in advance, in English for the benefit of outsiders

Adaptability

- Can use **solar panels** to power the device at bus-stops
- With larger panels, charging spots and water-filters can be set up
- For real-scale implementation, microwave transmitter can be used
- Translations can be made to include local language also, through simple software changes
- Microcontrollers and web-access can support future applications

Module-Wise Task Allocation — TRANSMITTER MODULE

Functionality

- Accept trip details from bus in-charge
- Periodically transmit trip details

- Arduino Microcontrollers
- RF Transmitter
- Input device for in-charge

Module-Wise Task Allocation — RECEIVER MODULE

Functionality

- Detect arrival of bus
- Identify trip details
- Register timestamp in Database

- Raspberry Pi Microcontrollers
- Arduino Microcontrollers
- RF Transmitter
- RF Receiver

Module-Wise Task Allocation — INTIMATION MODULE

Module-Wise Task Allocation — WEB-APPLICATION MODULE

Functionality

- Access bus data from database
- Provide an user-friendly interface
- Display live-location to end user

- Raspberry Pi Microcontrollers
- User's output device

Module-Wise Task Allocation – SCHEDULE PREDICTION MODULE

Functionality

- Access past bus data
- Analyze data patterns
- Predict a tentative schedule

- Raspberry Pi Microcontrollers
- GPU for training the model

Querying the Directions API

01

BUS ARRIVES at PREVIOUS BUS STOP

The microcontroller is triggered to compute and announce
 ETA

QUERY THE DIRECTIONS API for ETA

- Query is made through a simple **URL** with a unique **API key**
- ETA between the stops is returned based in live traffic data

ANNOUNCE BUS DETAILS with ETA

The speakers and LCD is used to notify the arrival of the bus

- The Directions API is used to give an ETA of the bus after it has reached the previous bus stop
- More suitable and effective for considering live traffic status.
- The ML based prediction
 is used only for a
 tentative schedule on the
 website based on past
 data.

02

Project Deliverables

MACHINE LEARNING MODEL

A predictive model to use **past bus arrival data** at stops to forecast a tentative schedule

IoT BEACON and ANNOUNCEMENT SETUP

The IoT system to both **detect bus arrival** and announce **ETA**at the subsequent stop.

WEB APPLICATION

An output node to provide **live bus tracking** along with the predicted schedule to the end user

MINIATURE SIMULATION MODEL - 2 STOPS

A composite miniature model to simulate the functioning on a small scale

Tentative Timeline

Project Action Plan – Completion of Milestones

IoT Driven Smart Bus-Stops

Project Guides

- Dr P. Mirunalini, Assoc. Professor, CSE
- Dr B. Bharathi, Assoc. Professor, CSE
- Dr Cherry Mathew Philipose, Asst. Professor, English

Project Students

- Karthik Desingu, B.E. CSE
- Daniel Mark Isaac, B.E. ECE

Thank You