Arithmétique : MHT 711

Examen du 15 décembre 2008

Master Sciences et Technologies, mention Mathématiques ou Informatique, spécialité Cryptologie et Sécurité informatique

Durée : 3 heures. Sans document.

Responsable : Gilles Zémor

Les exercices sont indépendants.

- EXERCICE 1. Utiliser ce que vous savez des facteurs irréductibles de $X^{63} + 1$ dans $\mathbb{F}_2[X]$ pour en déduire le nombre de polynômes irréductibles de degré 6 sur \mathbb{F}_2 . Combien de ces polynômes sont primitifs?
- **Solution.** Il y a 9 polynômes irréductibles de degré 6 et $\phi(63)/6=6$ d'entre eux sont primitifs.
- EXERCICE 2. Soit A l'anneau $\mathbb{F}_3[X]/((X-1)^3)$. Combien A contient-il d'éléments?
 - a) Combien y a-t-il de polynômes unitaires de degré 1 sur \mathbb{F}_3 qui n'ont pas 1 comme racine?
 - b) En déduire le nombre de polynômes *réductibles* unitaires de degré 2 sur \mathbb{F}_3 qui n'ont pas 1 comme racine.
 - c) Combien y a-t-il de polynômes *irréductibles* unitaires de degré $2 \operatorname{sur} \mathbb{F}_3$?
 - d) En déduire le nombre d'éléments de l'anneau des inversibles A^* de A.
 - e) Montrer que pour tout élément α de A^* on a $\alpha^3 \in \mathbb{F}_3$ et $\alpha^6 = 1$. Vérifier que le cardinal de A^* que vous avez trouvé précédemment est bien un multiple de 6.
- Solution. |A| = 27.
 - **a**) 2.
 - **b**) 3.
 - c) 9 6 = 3.
 - **d)** $|A^*| = 2(1+2+3+3) = 18.$
 - e) Si β est la classe de X modulo $(X-1)^3$, tout α s'écrit $a\beta^2+b\beta+c$, $a,b,c\in\mathbb{F}_3$. On a $\alpha^3=a\beta^6+b\beta^3+c$ avec $\beta^3=1$.

- EXERCICE 3. Soit α un élément de \mathbb{F}_8 de polynôme minimal X^3+X+1 . Trouver les puissances α^i de α qui sont de trace nulle.
- Solution. $\alpha, \alpha^2, \alpha^4$.
- Exercice 4.
 - a) Montrer que $X^5 + X^3 + X^2 + X + 1$ est un polynôme irréductible de $\mathbb{F}_2[X]$. Montrer, sans faire de calcul, qu'il est également primitif.
 - b) Soit α une racine de $X^5 + X^3 + X^2 + X + 1$ dans le corps \mathbb{F}_{32} . Quel est le polynôme minimal de α^2 ? Quel est le polynôme minimal de α^3 ?
- Solution.
 - a) il est primitif car 31 est premier.

b)
$$P_{\alpha^2}(X) = P_{\alpha}(X) = X^5 + X^3 + X^2 + X + 1$$
. $P_{\alpha^3}(X) = X^5 + X^4 + X^3 + X + 1$.

- EXERCICE 5. Combien de facteurs irréductibles dans $\mathbb{F}_2[X]$ a le polynôme $X^{17}+1$? Quels sont leurs degrés?
- Solution. Il a 3 facteurs irréductibles de degrés 1, 8, 8.
- EXERCICE 6. Montrer que le polynôme $1+x^3+x^6$ est le polynôme générateur d'un code cyclique binaire de longueur 9. Quelle est la dimension de code ? Quelle est sa distance minimale ?
- **Solution.** On sait que $1+x+x^2$ divise $1+x^3$ donc $1+x^3+x^6=1+x^3+(x^3)^2$ divise $1+(x^3)^3=1+x^9$. La dimension du code est 9-6=3. Sa distance minimale est 3 (écrire tous les mots).
- Exercice 7. Soit la matrice

$$\mathbf{G} = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

et soit C le code linéaire sur \mathbb{F}_2 de matrice génératrice G.

- a) Trouver une autre matrice génératrice de G sous forme systématique, c'està-dire commençant par la matrice identité 4×4 .
- b) En déduire une matrice de parité \mathbf{H} de C.
- c) En déduire la distance minimale de C.
- d) Soit $\mathbf{x} = [100011100]$ un vecteur de \mathbb{F}_2^9 . Calculer son syndrome et en déduire le mot de C le plus proche pour la distance de Hamming.
- e) Quels sont les paramètres (longueur, dimension, distance minimale) du code dual C^{\perp} de C?

– EXERCICE 8. Soit (a_i) la suite définie par $a_0=a_1=a_2=a_3=1$ et la récurrence linéaire :

$$a_i = a_{i-1} + a_{i-4}$$

pour $i \geqslant 4$.

- a) Quelle est la période π de cette suite?
- **b)** Montrer que l'ensemble C constitué du π -uple $(a_0a_1 \dots a_{\pi-1})$, de tous ces décalés circulaires, ainsi que du π -uple nul, est stable par addition dans \mathbb{F}_2^{π} .
- c) En déduire qu'il s'agit d'un code cyclique. Trouver son polynôme générateur.

- Solution.

- a) 15.
- b) C'est parce que la période de a est maximale.
- c) $g(X) = 1 + X + X^2 + X^3 + X^5 + X^7 + X^8 + X^{11}$.