Term Project

<u>항공우주응용 SW1</u>

Sejong University Navigation System Lab.

CONTENTS

- **01** Project Overview
- **O2** Topic Explanation
- **03** Grade
- **04** MATLAB Commands

01

Project Overview

Project Overview

Topic 1. 전공관련주제

- GUI(Graphic User Interface), Simulink, Function 이용 필수
- 항공우주공학개론의 문제 혹은 전공 지식과 관련된 문제 해결
- 특별 Case가 아닌 범용 활용 가능한 주제

Topic 2. 위성항법메세지 응용

- NMEA Logger로 위성항법메세지 저장
- 저장한 데이터를 토대로 Matlab GUI 구현

Topic 3. Signal Data 응용

- Signal Logger로 스마트 단말기의 신호정보 저장
- 저장한 데이터를 토대로 Matlab GUI 구현

02

Topic Explanation

Topic Explanation

- Topic 2와 Topic 3의 경우 저장되는 데이터에 대한 기본적인 이해 필요
 - Topic 2
 - **▶** GNSS
 - **▶ NMEA DATA Form**
 - **▶** Logging Method, App
 - Topic 3
 - **▶** Signal DATA
 - **▶** Logging Method, App
 - Examples

GNSS

- Global Navigation Satellite System
 - 인공위성에서 방송된 신호를 수신하는 장치를 이용하여 사용자가 자신의 정확한 시각과 3-D 위치 및 속도를 실시간으로 제공하는 시스템
 - 위성 시스템을 구축한 국가에 따라 명칭이 다름
 - ▶ GPS(미국)
 - ▶ GLONASS(러시아)
 - ▶ BEIDOU(중국)
 - ▶ Galileo(유럽)

NMEA 개요

• NMEA 표준

- 미국의 The National Electronics Association에서 정의한 시간, 위치, 방위 등의 정보를 전송하기 위한 규격
- 관련 웹사이트 : http://www.nmea.org

위성신호를 해석해낸 수신기가 정보를 외부로 송출하기 위한 형식 중 하나

NMEA Sentence

• 시간, 위치, 방위 등의 정보를 전송하기 위한 규격

```
$GPGSA, A, 3, 19, 28, 02, 06, 22, 01, 23, 17, 03, 09, , , 1.2, 0.7, 1.0+3D
$GPGSA, A, 3, 75, 70, 68, 84, 85, 69, , , , , , , 1.2, 0.7, 1.0+32
$GPGSY, 3, 2, 12, 22, 20, 046, 40, 02, 14, 269, 37, 28, 34, 191, 47, 03, 40, 049, 49*71
$GPGSY,3,3,12,06,47,285,50,19,62,327,52,11,02,092,,12,05,328,*7日
$GLGSY, 3, 1, 11, 69, 54, 060, 46, 85, 46, 334, 50, 68, 10, 027, 38, 75, 20, 270, 43+60
$GLGSY, 3, 2, 11, 70, 47, 165, 48, 84, 50, 062, 45, 76, 09, 328, , 83, 08, 102, +63
$GLGSV.3.3.11.71.03.193..74.05.223..86.03.301.+51
$GPRMC,032944.00,A,3733.14261,N,12704.44036,E,0.0,,280916,7.9,E,N+17
$GPGGA.032944.00.3733.14261.N.12704.44036.E.1.16.0.7.95.27.M.19.71.M...+52
$GPGSA, A, 3, 19, 28, 02, 06, 22, 01, 23, 17, 03, 09, , , 1 . 2, 0 . 7, 1 . 0+3D
$GPGSA.A.3.75,70,68,84,85,69,,,,,,1.2,0.7,1.0+32
$GPGSY, 3, 1, 12, 17, 79, 017, 53, 23, 24, 104, 43, 01, 10, 070, 36, 09, 18, 138, 40+79
$GPGSY,3,2,12,22,20,046,40,02,14,269,37,28,34,191,47,03,40,049,48*70
$GPGSY,3,3,12,06,47,285,50,19,62,327,51,11,01,092,,12,05,328,*7E
$GLGSY, 3, 1, 11, 69, 54, 060, 46, 85, 46, 334, 50, 68, 10, 027, 39, 75, 20, 270, 43+61
$GLGSY.3.2.11.70,47,165,47,84,50,062,45,76,09,328,,83,08,102,+6C
$GLGSV, 3, 3, 11, 71, 03, 193, , 74, 05, 223, , 86, 03, 301, +51
$GPRMC,032944.62.A.3733.14260.N.12704.44035.E.0.0..280916.7.9.E.N*11
$GPGGA,032944.62,3733.14260,N,12704.44035,E,1,16,0.7,95.26,M,19.71,M,,*55
$GPVTG,,T,,M,O.O,N,O.1,K,A+22
```

```
$GPGGA,032123.00,3733.35141,N,12704.48614,E,1,08,0.00,29.7,M,,,,*33
$GPRMC, 032123.00, A, 3733.35141, N, 12704.48614, E, 0.000, 0.0, 021124, , , A*52
$GPGGA,032124.00,3733.34852,N,12704.48436,E,1,08,0.00,30.3,M,,,,*30
$GPRMC, 032124.00, A, 3733.34852, N, 12704.48436, E, 11.575, 208.1, 021124, ,, A*61
$GPGGA,032125.00,3733.34507,N,12704.48125,E,1,08,0.00,28.9,M,,,,*38
$GPRMC, 032125.00, A, 3733.34507, N, 12704.48125, E, 13.382, 209.4, 021124, ,, A*62
$GPGGA,032126.00,3733.34622,N,12704.48159,E,1,08,0.00,23.1,M,,,,*37
$GPRMC, 032126.00, A, 3733.34622, N, 12704.48159, E, 7.585, 208.2, 021124, ,, A*5D
$GPGGA,032127.00,3733.34435,N,12704.48311,E,1,08,0.00,24.2,M,,,,*38
$GPRMC, 032127.00, A, 3733.34435, N, 12704.48311, E, 6.721, 212.0, 021124, ,, A*52
$GPGGA,032128.00,3733.34297,N,12704.48074,E,1,08,0.00,30.7,M,,,,*39
$GPRMC,032128.00,A,3733.34297,N,12704.48074,E,6.816,211.0,021124,,,A*5B
$GPGGA,032129.00,3733.33961,N,12704.47442,E,1,08,0.00,33.4,M,,,,*33
$GPRMC,032129.00,A,3733.33961,N,12704.47442,E,9.017,208.5,021124,,,A*5A
$GPGGA,032130.00,3733.34096,N,12704.47542,E,1,08,0.00,35.8,M,,,,*36
$GPRMC, 032130.00, A, 3733.34096, N, 12704.47542, E, 6.934, 208.1, 021124, ,, A*56
$GPGGA,032131.00,3733.34269,N,12704.47963,E,1,08,0.00,38.1,M,,,,*3E
$GPRMC, 032131.00, A, 3733.34269, N, 12704.47963, E, 4.564, 207.9, 021124, ,, A*56
$GPGGA,032132.00,3733.34139,N,12704.47812,E,1,08,0.00,45.3,M,,,,*34
$GPRMC,032132.00,A,3733.34139,N,12704.47812,E,4.750,215.1,021124,,,A*5A
```

* 스마트 기기에 따라 순서가 다를 수 있음

NMEA Sentence

Example

\$GPRMC,141114.999,A,3730.0264,N,12655.2351,E,15.51,202.12,101200,,*3C

Component	Description
\$	문장의 시작
Device ID ' GP '	현재 데이터를 말하는 <mark>장치의 ID</mark> '\$'다음에 오는 문자 2개
Sentence ID ' RMC '	문장을 구별하는 용도 Device ID 다음에 오는 문자 3개
콤마(,)	각 필드를 구분

^{*} Device ID, Sentence ID 로 나머지 데이터(14114.999,A,3730.0264, ...)를 구분

NMEA Format

- 약 20개 이상의 NMEA Protocol 존재
 - \$XXGGA : GNSS Fix Data (시간, 위도, 경도, 고도 등을 포함)
 - \$XXGSA: GNSS DOP and Active Satellite (위성의 PRN 번호 포함)

(각 시점에서 받은 데이터 세트를 구분하는 척도)

\$XXGSV : GPS Satellites in View

(현재 GPS Module이 수신할 수 있는 모든 위성의 정보)

\$XXRMC : Recommended Minimum data

(추천되는 최소한의 데이터) - 기본정보

사용자의 위치 정보와 관련된 NMEA Protocol

1. \$GPGGA data

\$XXGGA: GNSS Fix Data (시간, 위도, 경도, 고도 등을 포함)

GNGGA: GNSS 위성을 모두 사용

GPGGA: GPS 위성만 사용

- Fix type: 0-invalid, 1-GPS, 2-DGPS
- Satellite used
- HDOP: Horizontal 방향 측위 성능 지표
- Altitude : MSL 기준 고도
- **Geoid Seperation**

1. \$GPGGA data

• \$XXGGA : GNSS Fix Data (시간, 위도, 경도, 고도 등을 포함)

Example) \$GPGGA,092204.999,4250.5589,S,14718,E,1,04,24,4,19.7,M,,,,0000*1F

Field	Example	Comments
Sentence ID	\$GPGGA	Message ID \$GPGGA
UTC Time	092204.999	hhmmss.sss
Latitude	4250.5589	ddmm.mmmm
N/S Indicator	S	N = North, S = South
Longitude	14718.5084	dddmm.mmmm
E/W Indicator	Е	E = East, W = West
Position Fix	1	0 = Invalid, 1 = Valid SPS, 2 = Valid DGPS, 3 = Valid PPS
Satellites used	04	Number of SVs in use
HDOP	24.4	Horizontal dilution of precision
Altitude	19.7	Altitude in meters according to WGS-84 ellipsoid
Altitude Units	M	M = Meters
Geoid Seperation		Geoid seperation in meters according to WGS-84 ellipsoid
Seperation Units		M = Meters
DPGS Age		Age of DGPS data in seconds(null = DGPS is not used)
DGPS Station ID	0000	Reference staion ID, 0000 - 4095
Checksum	*1F	

2. \$GPGSA data

• \$XXGSA: GPS Satellite in View(현재 GPS Module이 수신할 수 있는 모든 위성의 정보)

Example) \$GPGSA,A,3,01,20,19,13,,,,,,40.4,24.4,32.2*0A

Field	Example	Comments					
Sentence ID	\$GPGSA	Message ID \$GPGSA					
Mode 1	A	A = Automatic 2D/3D, M = Manual 2D/3D					
Mode 2	3	1 = No fix, 2 = 2D, 3 = 3D					
Satellite used 1	01	PRN number, 01 – 32 for GPS					
Satellite used 2	20	PRN number, 01 – 32 for GPS					
Satellite used 3	19	PRN number, 01 – 32 for GPS					
Satellite used 4	13	PRN number, 01 – 32 for GPS					
Satellite used 5							
Satellite used 6							
Satellite used 7							
PDOP	40.4	Position dilution of precision					
HDOP	24.4	Horizontal dilution of precision					
VDOP	32.2	Vertical dilution of precision					
Checksum	*0A						

2. \$GPGSA Message set

```
.75,70,68,84,85,69,,,,,,1.2,0.7,1.0+32
$GPGSV,3,1,12,17,79,017,54,23,24,104,43,01,10,070,36,09,18,138,40*7E
$GPGSV,3,2,12,22,20,046,40,02,14,269,37,28,34,191,47,03,40,049,49*71
$GPGSV,3,3,12,06,47,285,50,19,62,327,52,11,02,092,,12,05,328,*7日
  _GSY,3,1,11,69,54,060,46,85,46,334,50,68,10,027,38,75,20,270,43+60
  _GSV,3,2,11,70,47,165,48,84,50,062,45,76,09,328,,83,08,102,*63
  _GSV,3,3,11,71,03,193,,74,05,223,,86,03,301,*51
$GPRMC,032944.00,A,3733.14261,N,12704.44036,E,O.O,,280916,7.9,E,N*17
$GPGGA,032944.00,3733.14261,N,12704.44036,E,1,16,0.7,95.27,M,19.71,M,,*52
$GPGSA,A,3,75,70,68,84,85,69,
           12,17,79,017,53,23,24,104,43,01,10,070,36,09,18,138,40*79
$GPGSV,3,2,12,22,20,Q46,40,02,14,269,37,28,34,191,47,03,40,049,48*70
              06,47,285,50,19,62,327,51,11,01,092,,12,05,328,*7E
           .1,69,54,060,46,85,46,334,50,68,10,027,39,75,20,270,43+61
$GLGSV.3.3.1°
                         시작으로 다음 $GPGSA 메시지가 나오기 전 까지가 1세트
$GPGGA,Q
                    |마다 제공하는 메시지가 더 많을 수 있고, 순서도 다를 수 있음을 인지
```

3. \$GPGSV data

• \$XXGSV : GPS Satellites in View (현재 GPS Module이 수신할 수 있는 모든 위성의 정보)

Example) \$GPGSV,3,1,10,20,78,331,45,01,59,235,47,22,41,069,,13,32,252,45*70

Field	Example	Comments				
Sentence ID	\$GPGSV	Message ID \$GPGSV				
Number of messages	3	Number of messages in complete message (1-3)				
Sequence number	1	Sequence number of this entry (1-3)				
Satellites in View	10					
Satellite ID 1	20	SV PRN number				
Elevation 1	78	Elevation in degrees, 90° maximum				
Azimuth 1	331	Azimuth, degrees from True North, 000° - 359°				
SNR 1	45	SNR, 00 dB - 99 dB (null = not tracking)				
Satellite ID 2	01	SV PRN number				
Elevation 2	59	Elevation in degrees, 90° maximum				
Azimuth 2	235	Azimuth, degrees from True North, 000° - 359°				
SNR 2	47	SNR, 00 dB – 99 dB (null = not tracking)				

3. \$GPGSV data

```
$GPGSV.3.1.11.02.78.087.46.05.64.310.46.06.39.116.46.07.18.074.39*73
$GPGSV,3,2,11,09,12,040,38,13,38,192,46,15,09,213,37,20,18,270,38*7<u>0</u>
$GPGSV,3,3,11,29,25,310,41,30,17,108,38,,...46*77
$GLGSV,3,1,09,70,46,025,39,86,60,309,38,85,54,177,41,80,07,090,*61
$GLGSV,3,2,09,79,07,035,,84,07,158,,87,07,331,,71,58,285,*68
                                                               GLONASS
|$GLGSV.3.3.09.72.15.246.*5D
$BDGSV,3,1,09,201,41,158,45,206,67,284,48,208,51,187,47,214,48,045,44*66
$BDGSV,3,2,09,202,24,240,,203,41,205,,205,07,255,,209,41,255,*6D
                                                                 Beidou
$BDGSV.3.3.09.211.05.161.*60
$GPGGA.090435.6.3733.143268.N.12704.438440.E.1.06.1.0.69.5.M.18.0.M..*64
$GPVTG..T.O.O.M.1.O.N.1.9.K.A*O4
$GPGSA,A,2,02,05,06,07,13,29,,,,,,1.4,1.0,0.9*31
$GNGSA,A,2,02,05,06,07,13,29,,,,,,1.4,1.0,0.9*2F
$GNGSA,A,2,70,86,85,,,,,,1.4,1.0,0.9*24
$BDGSA,A,2,201,206,208,214,,,,,,,1.4,1.0,0.9*25
$GPRMC,090435.6,A,3733.143268,N,12704.438440,E,1.0,,180915,0.0,E,A*22
```

Header	Description				
\$XXGSV	Global Navigation Satellites in view				
\$XXGSA	GNSS DOP and active satellites				
\$XXGGA	Global Navigation Satellite System Fix Data				

XX ID	Description			
GP	GPS			
GL	GLONASS			
BD	Beidou			
GN	Multi-GNSS			

4. \$GPRMC data

• \$XXRMC : Recommended Minimum data (추정되는 최소한의 데이터, 기본정보)

Example) \$GPRMC,092204.999,A,4250.5589,S,14718.5084,E,0.00,89.68,211200,,*25

Field	Example	Comments				
Sentence ID	\$GPRMC					
UTC Time	092204.999	hhmmss.sss				
Status	A	A = Valid, V = Invalid				
Latitude	4250.5589	ddmm.mmmm				
N/S Indicator S		N = North, S= South				
Longitude 14718.5084		dddmm.mmmm				
E/W Indicator E		E = East, W = West				
Speed over ground 0.00		Knots				
Course over ground	0.00	Degrees				
UTC Data	211200	DDMMYY				
Magnetic variation		Degrees				
Magnetic variation		E = East, W = west				
Checksum	*25					

항공우주응용SW1 TermProject

항법 메세지를 통한 프로그램 구현

1. NMEA Logger로 항법데이터 저장

- Android, IOS 기반 기기 모두 사용 가능
- NMEA Logging 이 가능한 앱(GnssLogger App) 다운로드
- 최소 1시간 이상 데이터 Logging
- Logging 된 데이터를 매트랩 작업 환경으로 load

항법 메세지를 통한 프로그램 구현

2. 데이터를 이용하여 GUI 구성

- Trajectory, Ground track 등을 plot
- 그 외 자유롭게 표현

Signal Logger

Signal Logger(Android)

- Android 기반 기기만 Logging 가능
- <u>최소 1시간 이상 데이터 Logging</u>
- Logging 된 데이터를 매트랩 작업 환경으로 load

Signal Logger - Form

Signal Logger(Android)

mcc	mnc	cellid	lat	lon	signal	measured_at	rating	speed	direction	act	ta
450	6	52523278	37.55233	127.074	-91	1.73054E+12	5.8	0.263016	211.4388	LTE	
450	6	52550416	37.55227	127.074	-85	1.73054E+12	6.8	1.175952	203.7516	LTE	C
450	6	52550416	37.55223	127.0739	-85	1.73054E+12	8.6	1.213135	240.323	LTE	C
450	6	52550416	37.55224	127.0739	-85	1.73054E+12	10.8	1.189455	269.1254	LTE	C
450	6	52550416	37.55224	127.0737	-84	1.73054E+12	9.9	1.167222	285.1964	LTE	1
450	6	52550416	37.55229	127.0737	-84	1.73054E+12	14.1	1.152073	311.2334	LTE	1
450	6	52550416	37.55238	127.0737	-85	1.73054E+12	11.4	1.18577	282.7131	LTE	1
450	6	52550416	37.5523	127.0736	-87	1.73054E+12	16.5	1.237453	259.1203	LTE	1
450	6	52550416	37.55213	127.0735	-88	1.73054E+12	14.9	1.32046	226.0085	LTE	C
450	6	52550416	37.55206	127.0735	-90	1.73054E+12	8.2	1.230421	218.0819	LTE	C
450	6	52550412	37.55201	127.0734	-87	1.73054E+12	6.4	1.208025	216.3887	LTE	C
450	6	52550412	37.55205	127.0733	-82	1.73054E+12	12.2	1.26654	230.8534	LTE	C
450	6	52550412	37.55194	127.0732	-80	1.73054E+12	17.1	1.251003	139.1908	LTE	C
450	6	52550412	37.55189	127.0733	-80	1.73054E+12	14	1.338062	143.4874	LTE	C
450	6	52550412	37.55182	127.0733	-80	1.73054E+12	12.7	1.24138	142.672	LTE	C

- Mcc = Mobile Country code (한국 : 450)
- Mnc = Moblie Network code (U플러스 : 6, KT : 8, SK telecom : 50) 사용하는 act에 따라 상이
- Cellid = 휴대폰 이용자가 속한 기지국의 셀 아이디
- Signal = 네트워크의 세기를 나타내며, dbm단위 (0에 가까울수록 신호세기가 강함)
- **Direction** = 단말기로부터 기지국의 방향 (0°~360°)

Signal Logger

- Signal
 - **Formula**

•
$$P(dbm) = 10log(\frac{P}{1mW})$$

- ⇒ 사용자가 보수적으로 잡고 싶다면 더 낮추

- 이동통신의 신호의 경우 대개 1mW보다 훨씬 약함
- Log Scale로 Plot 했을 때 음수 값으로 표현 되는 것이 일반적

• 이륙시 필요한 활주거리를 구하는 프로그램

- 승객, 수 ,항속거리, 항속 시간 엔진 수를 입력
- 이륙 최대 중량, 순항 속도, 필요 이상 추력을 계산해주는 프로그램

프로그램을 실행시킨 후 START버튼을 누른다.

입력한 값에 따라 계산된 3가지 값이 나온다

설계 하고자 하는 항공기의 해당하는 값을 입력 한다

추력 기준, MTOW 기준으로 추천 된 엔진 중 한 개를 선택한다.

W_pg값으로 계산된 동체 형상을 확인한다.

Plot Airfoil 버튼을 눌러 선택한 익형에 대한 형태를 그래프로 확인한다

추천되는 Airfoil을 확인 하고 3가지 형태 중 원하는 것을 선택한다.

최종 결과에서 계산 값 및 선택한 Airfoil과 engine 이름을 확인하고 그래프를 통해 타항공기와의 값을 비교한다.

Airbus A330 MTOW 242,000 kg Passenger 406 Thrusr 287~316kN Cruise Speed 871km/h Range 13,450km

- 호만 천이 궤도를 바탕으로 한 궤도 천이 계산 프로그램
- 천이를 시작하는 궤도 반지름, 천이할 궤도 반지름, 위성 질량 입력
- GUI 상으로 궤도를 plot하고 초기 속도, 천이 후 속도, 주기 등을 계산 하여 표시

1. 어린이 대공원에서의 이동 경로를 plot하고 특정 지점에서 퀴즈를 내는 프로그램

• 한강에서 이동 거리와 현재 위치에서 가장 가까운 화장실을 알려주는 프로그램

- Signal Logger(Android Only)
 - 어플리케이션을 이용하여, 학교 주변 또는 서울 지역의 통신 신호 강도를 Logging

 - MATLAB에서 Logging 데이터를 시간대 및 지역 별로 처리
 통신사 및 지역 선택 후 통신 세기 Map을 확인할 수 있는 프로그램

03

Grade

평가 배점 및 고려 요소

발표 평가 (50점)

의미 전달력, 시간활용, 프로그램 무결성,범용 활용 가능성, 질의대처능력

보고서 평가 (50점)

문제 이해도, 알고리즘 견고성, 모듈 간 유기성, 수업 학습 내용 활용 적절성, 창의성

보고서 양식

- 1. 서론
 - 1.1 배경
 - 1.2 목적
- 2. 본론
 - 2.1 배경 지식
 - 2.2 프로그램 구성
 - 2.3 세부 컴포넌트 기능
 - 2.4 프로그램 사용 방법
 - 2.5 프로그램 검증
 - 2.6 결과 및 분석

- 3. 결론
 - 3.1 결론 및 활용 방안
 - 3.2 향후 과제
- 4. 기타
- 4.1 조원 기여도 (4명 : 총 400%) 및 서명
- 4.2 수업 관련 느낀 점 및 건의사항

본론 세부사항

2.1 배경 지식

- NMEA 데이터에 포함된 위성 항법 관련 배경 지식 (Topic 2 선정 시)
- 핵심 알고리즘의 flow-chart 도시를 통한 전공 지식 간 흐름도 표현

2.2 프로그램 구성

- 전체 프로그램 구성 및 각 컴포넌트간 유기성 표현을 위한 개념 도시

2.3 세부 컴포넌트 기능

- 각 컴포넌트(GUI, Simulink, m-file function 등) 별 주요 기능 설명 및 분석

2.4 프로그램 사용 방법

- 개발한 프로그램 사용 방법

2.5 프로그램 검증

- 개발한 프로그램 실행 예시 및 검증

2.6 결과 및 분석

- 주요 case 의 결과 및 분석

04

MATLAB 명령어

MATLAB 명령어

- NMEA 데이터 활용 시 유용한 MATLAB 명령어
 - **fopen :** Text 파일을 열기 위한 명령어
 - ❖ 사용 예시

```
%filename = 'Logging_data.txt';
filename = 'Logging_data.nmea';
fid = fopen(filename, 'rt');

변수명

파일이름
(확장자 포함)

Open type
('rt': text 타입으로 읽기)
```

MATLAB 명령어

- NMEA 데이터 활용 시 유용한 MATLAB 명령어
 - feof:
 - 불러온 Text 파일의 끝을 판단
 - 파일의 마지막일 경우 1을 return
 - 그 외의 경우에는 0을 return

❖ 사용 예시

fopen 으로 지정한 변수명

MATLAB 명령어

- NMEA 데이터 활용 시 유용한 MATLAB 명령어
 - fgetl:
 - 불러온 Text 파일의 한 줄을 읽음
 - ❖ 사용 예시

THANK YOU

For Your Attention

kim_hyunw_@naver.com