Krasnoselskii-Mann Iterations Inertia, Perturbations and Approximation

Daniel Cortild · Juan Peypouquet

Faculty of Science and Engineering University of Groningen

EUROPT 2024

21st Conference on Advanced in Continuous Optimization Lund, Sweden, June 26-28th, 2024

Fixed Point Iterative Schemes

Problem

Given a Hilbert space \mathcal{H} and an operator $T \colon \mathcal{H} \to \mathcal{H}$, find $\hat{x} \in \mathcal{H}$ such that $T\hat{x} = \hat{x}$.

Picard Iterations:

$$x_{k+1} = Tx_k$$

Converges linearly in the contractive setting, might not converge in the nonexpansive setting.

Krasnoselskii-Mann Iterations:

$$x_{k+1} = (1 - \lambda_k)x_k + \lambda_k T x_k$$

Converges in both the contractive and the nonexpansive setting.

Numerical Example

Acceleration Methods

Heavy-Ball Acceleration:

$$\begin{cases} y_k = x_k + \alpha_k(x_k - x_{k-1}) \\ x_{k+1} = (1 - \lambda_k)y_k + \lambda_k T x_k \end{cases}$$

Nesterov Acceleration:

$$\begin{cases} z_k = x_k + \beta_k(x_k - x_{k-1}) \\ x_{k+1} = (1 - \lambda_k)z_k + \lambda_k T z_k \end{cases}$$

General Inertial Scheme:

$$\begin{cases} y_k &= x_k + \alpha_k (x_k - x_{k-1}) \\ z_k &= x_k + \beta_k (x_k - x_{k-1}) \\ x_{k+1} &= (1 - \lambda_k) y_k + \lambda_k T z_k \end{cases}$$

Inexactness and Diagonalization

Perturbed Krasnoselskii-Mann Iterations:

$$x_{k+1} = (1 - \lambda_k)x_k + \lambda_k Tx_k + \varepsilon_k$$

Diagonal Krasnoselskii-Mann Iterations:

$$x_{k+1} = (1 - \lambda_k)x_k + \lambda_k T_k x_k$$

General Scheme:

Introduction

$$\begin{cases} y_k &= x_k + \alpha_k(x_k - x_{k-1}) + \varepsilon_k \\ z_k &= x_k + \beta_k(x_k - x_{k-1}) + \rho_k \\ x_{k+1} &= (1 - \lambda_k)y_k + \lambda_k T_k z_k + \theta_k \end{cases}$$

Weak Convergence

$\mathsf{Theorem}$

Introduction

Let $T_k: \mathcal{H} \to \mathcal{H}$ be a family of nonexpansive operators and assume

- $F := \bigcap_{k>1} \operatorname{Fix}(T_k) \neq \emptyset$,
- $(I T_k)$ is asymptotically demiclosed,
- $(\varepsilon_k), (\rho_k), (\theta_k) \in \ell^1(\mathcal{H}).$

Then, under mild assumptions on the parameters, $x_k \rightharpoonup p^*$ with $p^* \in F$.

Notes:

- If $T_k \equiv T$, the first two conditions are redundant.
- We do not assume (x_k) to be bounded, the residuals to be summable, or any similar assumption.

Shifting Operators

Instead of $\bigcap_{k\geq 1}\operatorname{Fix}(T_k)\neq\emptyset$, assume $F_\infty:=\operatorname{Li}\operatorname{Fix}(T_k)\neq\emptyset$ and fix any $p_k\in\operatorname{Fix}(T_k)$ and $p_\infty\in F_\infty$ such that $p_k\to p_\infty$.

By setting $\tilde{T}_k x = T_k (x + p_k - p_\infty) - p_k + p_\infty$, $\tilde{x}_k = x_k - p_{k-1} + p_\infty$, $\tilde{y}_k = y_k - p_k + p_\infty$, and $\tilde{z}_k = z_k - p_k + p_\infty$, our algorithm becomes

$$\begin{cases} \tilde{y}_k &= \tilde{x}_k + \alpha_k (\tilde{x}_k - \tilde{x}_{k-1}) + \tilde{\varepsilon}_k, \\ \tilde{z}_k &= \tilde{x}_k + \beta_k (\tilde{x}_k - \tilde{x}_{k-1}) + \tilde{\rho}_k, \\ \tilde{x}_{k+1} &= (1 - \lambda_k) \tilde{y}_k + \lambda_k \tilde{T}_k \tilde{z}_k + \theta_k, \end{cases}$$

for

$$\begin{cases} \tilde{\varepsilon}_k := p_{k-1} - p_k + \alpha_k (p_{k-1} - p_{k-2}) + \varepsilon_k, \\ \tilde{\rho}_k := p_{k-1} - p_k + \beta_k (p_{k-1} - p_{k-2}) + \rho_k. \end{cases}$$

Weak Convergence

Let $T_k : \mathcal{H} \to \mathcal{H}$ be a family of nonexpansive operators.

Theorem

Introduction

Assume

- $F := \bigcap_{k>1} \operatorname{Fix}(T_k) \neq \emptyset$,
- \bullet $(I T_k)$ is asymptotically demiclosed.
- $(\varepsilon_k), (\rho_k), (\theta_k) \in \ell^1(\mathcal{H}).$

Then, under *mild assumptions* on the parameters, $x_k \rightharpoonup p^*$ with $p^* \in F$.

Corollary

Assume

- $F_{\infty} := \text{Li Fix}(T_k) \neq \emptyset$,
- \bullet (T_k) nicely approximates F_{∞} ,
- $(\varepsilon_k), (\rho_k), (\theta_k) \in \ell^1(\mathcal{H}),$
- there exists a sequence (p_k) with $p_k \in Fix(T_k)$ and $(p_k - p_{k-1}) \in \ell^1(\mathcal{H}).$

Then, under mild assumptions on the parameters, $x_k \rightharpoonup p^*$ with $p^* \in F_{\infty}$.

Strong Convergence

Let $T_k: \mathcal{H} \to \mathcal{H}$ be a family of q_k -contractive operators with $q_k < q < 1$.

Theorem

Introduction

Assume

• Fix $(T_k) = \{p^*\},$

•
$$(\varepsilon_k), (\rho_k), (\theta_k) \in \ell^2(\mathcal{H}).$$

Then, under *mild assumptions* on the parameters, $x_k \to p^*$.

Moreover, if $\varepsilon_k \equiv \rho_k \equiv \theta_k \equiv 0$, the convergence becomes linear.

Corollary

Assume

- Fix $(T_k) = \{p_k\}$ with $p_k \to p^*$ and $(p_k - p_{k-1}) \in \ell^2(\mathcal{H}),$
- $(\varepsilon_k), (\rho_k), (\theta_k) \in \ell^2(\mathcal{H}),$

Then, under *mild assumptions* on the parameters, $x_k \to p^*$.

Image Inpainting

Corrupt Image

Recovered Image

Figure: Not obtained through described algorithm!

Mathematical Formulation

$$\min_{Z \in [0,1]^{M \times N \times 3}} \left\{ \frac{1}{2} \|\mathcal{A}Z - Z_{\mathsf{corrupt}}\|^2 + \sigma \|Z_{(1)}\|_* + \sigma \|Z_{(2)}\|_* \right\}$$

D. Cortild (RuG)

Visual Results

Introduction

Original Image

Heavy Ball

Corrupt Image

Nesterov

Non-Inertial

Reflected

Figure: Process obtained with $\rho = 1.8$, $\lambda = 1.3$, and $\sigma = 0.5$.

Convergence Plots

Numerical Example

0000

Figure: Process obtained with $\rho = 1.8$, $\lambda = 1.3$, and $\sigma = 0.5$.

Result Based on Algorithm

Figure: Obtained through Nesterov accelerated algorithm.

- Optimal parameter selection
- Contribution of perturbation parameters

Convergence Results

Paper: Cortild, D. & Peypouquet, J. (2024). Krasnoselskii-Mann Iterations: Inertia, Perturbations and Approximation.

arXiv preprint arXiv:2401.16870

Thank you!