Numerical Analysis – Lecture 3

Band matrices The matrix A is a band matrix if there exists an integer r < n such that $A_{i,j} = 0$ for |i-j| > r, i, j = 1, 2, ..., n. In other words, all the nonzero elements of A reside in a band of width 2r along the main diagonal. In that case, according to the statement from the end of the last lecture, A = LU implies that $L_{i,j} = U_{i,j} = 0 \ \forall \ |i-j| > r$ and sparsity structure is inherited by the factorization.

In general, the expense of calculating an LU factorization of an $n \times n$ dense matrix A is $\mathcal{O}(n^3)$ operations and the expense of solving $A\mathbf{x} = \mathbf{b}$, provided that the factorization is known, is $\mathcal{O}(n^2)$. However, in the case of a banded A, we need just $\mathcal{O}(r^2n)$ operations to factorize and $\mathcal{O}(rn)$ operations to solve a linear system. If $r \ll n$ this represents a very substantial saving!

General sparse matrices Factorization methods of sparse matrices depend on the exploitation of pivoting to minimize *fill-in*. There are modern efficient techniques to produce good pivoting strategies for general sparsity structures. They are based on *graph theory* and are well beyond the scope of this lecture course.

3 Iterative methods for linear systems

3.1 Basic iterative schemes

Solution of $A\mathbf{x} = \mathbf{b}$ by factorization is frequently very expensive for large n, even if we exploit sparsity. An alternative is to use *iterative methods*. An example of an iterative scheme is to write A = B + C, where B & C are $n \times n$, B is nonsingular, the system $B\mathbf{x} = \mathbf{c}$ is easy to solve and the matrix C is somehow 'small' in comparison with B. We write the original system in the form $B\mathbf{x} = -C\mathbf{x} + \mathbf{b}$ and consider solving it by iteration. Choose an arbitrary $\mathbf{x}_0 \in \mathbb{R}^n$ and define $\mathbf{x}_{m+1}, m = 0, 1, \ldots$, by solving

$$B\boldsymbol{x}_{m+1} = -C\boldsymbol{x}_m + \boldsymbol{b}. \tag{3.1}$$

Provided that B is, for example, banded, (3.1) is cheap (and the LU factorization of B can be re-used – an example of why the LU formalism is superior to Gaussian elimination). Often the sequence $\{x_m\}_{m=0}^{\infty}$ converges to the solution of Ax = b.

The Jacobi iteration We write $A = A_{\rm L} + A_{\rm D} + A_{\rm U}$, where $A_{\rm L}$ is strictly lower triangular, $A_{\rm D}$ is diagonal and $A_{\rm U}$ is strictly upper triangular. Suppose that no diagonal element of A is zero. The *Jacobi iteration* is

$$A_{\rm D} x_{m+1} = -(A_{\rm L} + A_{\rm U}) x_m + b, \qquad m = 0, 1, \dots$$
 (3.2)

The Gauss-Seidel iteration In the above notation, it takes the form

$$(A_{\rm L} + A_{\rm D}) \boldsymbol{x}_{m+1} = -A_{\rm U} \boldsymbol{x}_m + \boldsymbol{b}, \qquad m = 0, 1, \dots$$
 (3.3)

Note that $A_{\rm L} + A_{\rm D}$ is lower triangular, hence the solution of (3.3) is cheap.

3.2 Necessary and sufficient conditions for convergence

Suppose that A is nonsingular and denote by x^* the solution of Ax = b. Having written A = B + C, we examine the iterative scheme (3.1) (note that (3.2) and (3.3) can be cast in this form). Our

goal is to identify conditions so that $\mathbf{x}_m \to \mathbf{x}^*$, regardless of the choice of $\mathbf{x}_0 \in \mathbb{R}^n$. Subtract $B\mathbf{x}^* = -C\mathbf{x}^* + \mathbf{b}$ from (3.1). This gives $B(\mathbf{x}_{m+1} - \mathbf{x}^*) = -C(\mathbf{x}_m - \mathbf{x}^*)$, hence $B\mathbf{v}_{m+1} = -C\mathbf{v}_m$, where $\mathbf{v}_m := \mathbf{x}_m - \mathbf{x}^*$ is the error in the *m*th iterate. Since B is nonsingular (otherwise we cannot execute (3.1) in the first place), it follows that

$$\mathbf{v}_{m+1} = H\mathbf{v}_m, \quad m = 0, 1, \dots \quad \text{where} \quad H := -B^{-1}C.$$
 (3.4)

We employ the notation $\rho(P)$ for the magnitude of the largest (in absolute value) eigenvalue of the $n \times n$ matrix P. The quantity $\rho(P)$ is called the *spectral radius* of the matrix P. Note: Recall that, even if P is real, its eigenvalues might be complex.

Theorem $\lim_{m\to\infty} \boldsymbol{x}_m = \boldsymbol{x}^*$ for all $\boldsymbol{x}_0 \in \mathbb{R}^n$ if and only if $\rho(H) < 1$.

Proof. We commence with the case $\rho(H) \geq 1$ and wish to demonstrate that \boldsymbol{v}_m need not tend to $\boldsymbol{0}$. Let λ be an eigenvalue of H such that $|\lambda| = \rho(H)$ and let \boldsymbol{w} be a corresponding eigenvector, $H\boldsymbol{w} = \lambda \boldsymbol{w}$. If \boldsymbol{w} is real, we choose $\boldsymbol{x}_0 = \boldsymbol{x}^* + \boldsymbol{w}$, hence $\boldsymbol{v}_0 = \boldsymbol{w}$. It follows at once by induction that $\boldsymbol{v}_m = \lambda^m \boldsymbol{w}$, and this cannot tend to zero since $|\lambda| \geq 1$.

If $\lambda \in \mathbb{C} \setminus \mathbb{R}$ then w is complex. Moreover, also $\bar{\lambda} \neq \lambda$ is an eigenvalue and \bar{w} is its eigenvector (the bar denotes complex conjugation). Note that w and \bar{w} are linearly independent (otherwise they would have corresponded to the same eigenvalue). We denote the *Euclidean length* of $p \in \mathbb{C}^n$ by

$$\|p\| = \left\{\sum_{k=1}^{n} |p_k|^2\right\}^{1/2}.$$

Note that $\|p\|$ is a continuous function of the components of p. Hence, $\|zw + \bar{z}\bar{w}\|$ is a continuous function of the complex variable z. It is a consequence of the linear independence of w and \bar{w} and of the theorem that a continuous function attains its minimum in a closed interval that

$$\inf_{-\pi \leq \theta \leq \pi} \left\| e^{i\theta} \boldsymbol{w} + e^{-i\theta} \bar{\boldsymbol{w}} \right\| = \min_{-\pi \leq \theta \leq \pi} \left\| e^{i\theta} \boldsymbol{w} + e^{-i\theta} \bar{\boldsymbol{w}} \right\| = \nu,$$

say, is positive. By homogeneity, it is true for every $z\in\mathbb{C}$ that

$$||z\boldsymbol{w} + \bar{z}\bar{\boldsymbol{w}}|| \ge \nu|z|. \tag{3.5}$$

We let $\boldsymbol{x}_0 = \boldsymbol{x}^* + \boldsymbol{w} + \bar{\boldsymbol{w}}$, hence $\boldsymbol{v}_0 = \boldsymbol{w} + \bar{\boldsymbol{w}}$. Note that everything in sight is real! We have by induction on (3.1) that

$$\boldsymbol{v}_m = \lambda^m \boldsymbol{w} + \bar{\lambda}^m \bar{\boldsymbol{w}}, \qquad m = 0, 1, \dots$$

Setting $z = \lambda^m$, (3.5) implies that $||v_m|| \ge \nu |\lambda^m| \ge \nu$. Hence the sequence $\{v_m\}_{m=0}^{\infty}$ is bounded away from zero and $v_m \ne 0$. This completes the proof of the 'only if' part of the theorem.