1er Parcial Lógica 2012

- 1. Sea $F:\langle L,s,i,0,1\rangle \to \langle L',s',i',0',1'\rangle$ un isomorfismo de reticulados acotados, y sea $a \in L$ un átomo. Pruebe que F(a) es un átomo.
- 2. Pruebe que no hay un homomorfismo sobre F de $\langle \mathcal{P}(\{1,2,3\}), \cup, \cap \rangle$ en $\langle \{1,2,3\}, \max, \min \rangle$.
- 3. V o F. Justifique.
 - a. Si $L \subseteq \mathcal{P}(X)$ y $\langle L, \cup, i \rangle$ es un reticulado, entonces $A : B = A \cap B$.
 - b. Si el reticulado L tiene una congruencia heta
 eq L imes L tal que L/ heta tiene mayor elemento, entonces L tiene mayor elemento.
 - c. Sean ≤ y ≤'órdenes parciales del conjunto P tales que ≤ está contenido en ≤'. Si $\langle P, \leq \rangle$ es un reticulado, entonces $\langle P, \leq' \rangle$ también.
 - d. Sea $L = \langle \mathcal{P}\left(\{0, \frac{1}{2}, 1, 2\}\right), \cup, \cap \rangle$. Si definimos θ por: $A\theta B \Leftrightarrow \{ \lfloor x \rfloor \mid x \in A \} = \{ \lfloor x \rfloor \mid x \in B \},$

entonces θ es una congruencia de L. ($\lfloor x \rfloor$ es la parte entera de x.)