PATENT ABSTRACTS OF JAPAN

(11) Publication number: 11039332 A

(43) Date of publication of application: 12.02.99

(51) Int. CI

G06F 17/30 G06T 1/00 G06T 7/00

(21) Application number: 09196154

(22) Date of filing: 22.07.97

(71) Applicant:

HITACHI LTD

(72) Inventor:

MUSHA YOSHINORI HIROIKE ATSUSHI MORI YASUHIDE

(54) METHOD AND DEVICE FOR RETRIEVING IMAGE AND RETRIEVAL SERVICE UTILIZING IT

(57) Abstract:

PROBLEM TO BE SOLVED: To efficiently retrieve a desired image from an image database by calculating integrated similarity from a characteristic amount that is extracted from a reference image and each characteristic amount that is preliminarily assigned to a retrieved image.

SOLUTION: A person who retrieves designates a specific area of a reference image through a GUI of an input operation image display 209, also designates its characteristic amount 201 and inputs its weight 204, etc. Integrated similarity 203' is generated by matching the amount 201 of an image to an image characteristic amount of an image database 205, acquiring similarity 203 in each characteristic amount and weighting a characteristic amount in each reference image. After that, a sort step 208 performs rearrangement in order of large integrated similarity, its retrieval result data name is sent to the display 209 and an image layout is generated. The data names is sent as a read request 212 for a retrieval result image to an image database 205,

and image data 210 is sent to the display 209.

COPYRIGHT: (C)1999,JPO

THIS PAGE BLANK (USPTO)

(19)日本国特許庁 (JP)

(12)公開特許公報 (A)

(11)特許出願公開番号

特開平11-39332

(43)公開日 平成11年(1999)2月12日

(51) Int. C1. 6 G06F 17/30 G06T 1/00 7/00	識別記号	F I G06F 15/40 15/403 15/62 15/70		370 350 460	B C P B		
		審査請求	未請求	請求項の	の数10	OL	(全15頁)
(21)出願番号	特願平9-196154	(71)出願人	株式会社日立製作所 東京都千代田区神田駿河台四丁目 6 番地				
(22)出願日	平成9年(1997)7月22日	(72)発明者					
		(72)発明者	廣池 敦 埼玉県比企郡鳩山町赤沼2520番地 株式会 社日立製作所基礎研究所内				
		(72)発明者	埼玉県比	-			地 株式会
		(74)代理人	弁理士	髙橋 明	夫 ((外1名))

(54) 【発明の名称】画像検索方法およびその装置およびこれを利用した検索サービス

(57)【要約】

【課題】検索者が参照画像を利用して容易に希望の画像 を検索可能とすること。

【解決手段】例示画像や検索者の手元の画像の中に、検索者の希望に合致する画像がない場合に、それらの画像の中から1つ以上の画像を選択し、画像あるいは画像の一部領域毎に1つ以上の特徴量を選択し、検索者の好みに応じて好きな画像の特徴量には正の重みを付与し、嫌いな画像の特徴量には負の重みを付与して特徴量に対応した画像を検索する。

BEST AVAILABLE COPY

【特許請求の範囲】

【請求項1】希望画像と類似した画像及び類似しない画像を1つまたは2つ以上指定して参照画像とし、そのそれぞれの画像あるいは指定された領域から抽出される特徴量の一部または全てを参照画像あるいは指定された領域毎に指定すること、それら各特徴量と画像データベースに登録されている検索対象となる被検索画像が有する各特徴量を用いて総合類似度を算出すること、その類似度に応じた検索結果の画像を出力することとよりなることを特徴とする画像検索方法。

1

【請求項2】検索キーとしての一つの参照画像の複数の領域を指定すること、指定された領域から抽出される特徴量の一部または全てを指定された領域毎に指定すること、それら各特徴量と画像データベースに登録されている検索対象となる被検索画像が有する各特徴量を用いて総合類似度を算出すること、その類似度に応じた検索結果の画像を出力することとよりなることを特徴とする画像検索方法。

【請求項3】前記特徴量の指定が、検索者の望むものに は正の重みを付与するものであり、望まないものには負 20 の重みを付与するものである請求項1または2記載の画 像検索方法。

【請求項4】前記参照画像あるいは指定された領域毎に 指定した特徴量それぞれがその特徴量の存在する位置か らの距離とその特徴量に付与された重みに応じた類似度 場を特徴量空間上にそれぞれ形成し、その類似度場の合 成として形成される総合類似度場が、2つの特徴量に付 与された重みが正同士ならそれら2つの間に総合類似度 場の頂点が生じ、あるいは2つの特徴量に付与された重 みが正と負ならば、正の重みを付与された特徴量に対 し、負の重みを付与された特徴量と反対側へ総合類似度 場の頂点が生じるような性質を持つことを特徴とする請 求項3記載の画像検索方法。

【請求項5】例示画像を表示する例示画像表示装置と、 検索対象の画像に対応する特徴量情報を保持するデータ ペース、例示画像に対して検索のキーとされる特徴量情 報とそれらに付与された重みを表示する特徴量重み表示 手段、例示画像のうち画像あるいは画像の指定された領 域毎に前記特徴量情報とそれらに付与された重みを付与 された画像を参照画像として該参照画像とデータベース に保持された検索対象の画像との間で所定の評価に基づ く類似度を演算する手段、該演算結果に対応する画像情 報を表示する手段よりなることを特徴とする画像検索装 問

【請求項6】例示画像を表示する例示画像表示装置と、 検索対象の画像に対応する特徴量情報を保持するデータ ベース、一つの例示画像を参照画像として複数の指定された領域毎に検索のキーとされる特徴量情報とそれらに 付与された重みを表示する特徴量の重みを表示する手 段、前記特徴量情報とそれらに付与された重みから該参 50 照画像とデータベースに保持された検索対象の画像との 間で所定の評価に基づく類似度を演算する手段、該演算 結果に対応する画像情報を表示する手段よりなることを 特徴とする画像検索装置。

【請求項7】検索結果の出力が参照画像に関する情報を含まず、検索結果における参照画像の類似度あるいはその順位を示すデータが参照画像の表示に付加された請求項4または5記載の画像検索装置。

【請求項8】希望画像と類似した画像及び類似しない画像を1つまたは2つ以上指定して参照画像とし、そのそれぞれの画像あるいは指定された領域から抽出される特徴量の一部または全てを参照画像あるいは指定された領域毎に指定すること、画像から直接物理的な量では抽出することはできないが参照画像あるいは指定された領域毎に特定の特徴量と組として使用することができる仮想的な特徴量を指定すること、それら各特徴量および仮想的な特徴量と画像データベースに登録されている検索対象となる被検索画像が有する各特徴量を用いて総合類似度を算出すること、その類似度に応じた検索結果の画像を出力することとよりなることを特徴とする画像検索方法。

【請求項9】検索者から指定された参照画像に関する画像あるいは画像の指定された領域から抽出される特徴量データを与えられ、与えられた各特徴量と画像データベースに登録されている検索対象となる被検索画像が有する各特徴量を用いて総合類似度を算出し、その類似度に応じた検索結果を検索者に送ることを特徴とする画像検索サービス。

【請求項10】検索者に送る検索結果が画像の存在場所30 を示すデータである請求項9記載の画像検索サービス。 【発明の詳細な説明】

[0001]

【発明の属する技術分野】画像検索には、種々の手法があるが、検索対象の画像に画像を間接的に説明するキーワードを付す等の手法によらず、検索者が抽出したいと望んでいる想像上の画像の情報を直接的に画像検索システムへ簡単に且正しく伝えることが重要である。

【0002】本発明は、画像データをデータベースとして備えている画像データベースから希望の画像を効率よく検索するための方法およびそのためのサービスに関する

[0003]

【従来の技術】従来、検索者が抽出したいと思っている 想像上の画像の構図データを検索者にドローツールやペ イントツールなどで描かせる方法(たとえば、Kato,Tet al. "Sketch Retrieval Method for Full Color Image Database" Proc. 11th IAPR International Conference e on Pattern Recognition, Vol.1 pp.530-533(1992)、 西山春彦ら「画像の構図を用いた絵画検索システム」情 処論, Vol.37, No.1, pp.101-109(1996))があったが、 多くの検索者にとってこれは非常に負担が大きい。また、構図以外のテキスチャなどの情報を画像に描いて伝えることは非常に難しかしい。

【0004】他方、一枚の絵を参照画像として用い、その注目したい特徴量を選ばせて画像検索する方法(Flick ner, M. et al.: Query by Image and Video Content: The QBIC System, IEEE Computer, Vol. 28, No. 9, pp. 23-32(1995))がある。しかし、検索者の手元に、あるいはデータベース内の参照画像として用いることができる画像の一覧可能な枚数内に、検索者の望んでいる画像がある10とは限らない。よって、その中でもっとも検索者が望んでいる画像に近い画像を参照画像として選択して画像検索を実行することになるが、画像データベースが巨大になればなるほど、本当に欲しい画像は距離などでソートされた出力画像の上位には出にくくなる。つまり、表示装置の大きさなどによる制限があるために、本当に望んだ画像を手に入れるのは困難となる。

【0005】そこで、検索者に構図等の絵を描かせることなく、かつ手元に、あるいは一覧できる枚数内に、検索者が望んでいる画像に近い画像がなくとも、検索者の 20 抽出したいと思っている想像上の画像の情報を検索システム内に構成する方法が必要である。

【0006】そのような検索システムの提案として、たとえば、特開平7-21198、特開平7-65169、特開平8-249352、特開平8-249353がある。特開平8-249352、特開平8-249353においては、複数画像を参照画像として選び、複数種の特徴量を選択して検索条件を生成するステップによって合成特徴量を生成した後、全ての被検索画像に対して使用することが提案されている。特開平7-21198においては、希望画像と類似した画像及び類似しない画像30の複数を参照画像として選び、その参照画像が持つ全ての特徴量を使用して画像検索を行うことが提案されている。特開平7-65169においては、希望画像と類似した複数の画像を参照画像に選び各画像毎に特徴量を指定して、画像検索を行うことが提案されている。

[0007]

【発明が解決しようとする課題】検索者にとって手軽に、しかも画像が持つ特徴量の多様性から検索者の望む性質を選べるようにする点で、画像検索装置は手軽さを失なわない範囲内で最大限の自由度を検索者に提供する 40べきである。例えば、検索者は例示された画像の中から好きな画像や嫌いな画像を選び出し参照画像とすることができるが、限られた例示画像の中には、検索者が想像している好きな画像や嫌いな画像ががあるとは限らない。しかし、ある例示画像の一部の領域内には、ぴったり好きな画像や嫌いな画像が含まれており、あるいは、更に一部の特徴量に限れば、検索者の好みの特徴量や嫌いな特徴量が含まれていることがある。

1枚以上選び、それぞれの画像で指定した特徴量を組み合せて検索する。さらに必要なら、それぞれの画像で指定した領域の好みの特徴量や嫌いな特徴量を組み合わせて検索することを提案するものである。また、複数画像に代えて、一つの画像の複数領域のそれぞれを好みの画像や嫌いな画像とみなして、それぞれの領域に対して特徴量を指定し、これら特徴量を組み合わせて検索するものとして複数画像の検索に代えることを提案するものである。

[0009]

【課題を解決するための手段】本発明は、希望画像と類似した画像及び類似しない画像を1つまたは2つ以上指定して参照画像としてそのそれぞれの画像あるいは、必要に応じて参照画像の一部領域を指定しこれから抽出される特徴量の一部または全てを参照画像毎に指定し、それら各特徴量と画像データベースに登録されている検索対象となる被検索画像に予め付与されている各特徴量を用いて総合類似度を算出して出力すべき被検索画像データを得ることにより実現できる。

[0010]

【発明の実施の形態】以下に、本発明の好適な一実施例 を添付図を参照して詳細に説明する。

【0011】図Iは本実施例のグラッフィック・ユーザー・インターフェイス(以下、GUI)を示した模式図である。図の例は、表示画面上に、画像を含む画像領域IM₁、IM₁、---、IM₄の6画像領域が表示されている。これらの画像には、線画やパターンのような図ばかりでなく、例えば、イメージリーダで読み込まれるような実画像も含むことができるのは当然である。このGUIは当然パソコン等の計算機とその表示装置により実現される。したがって、後述するようなマウス等を使用した画面上の領域指定あるいは指定された画面上の領域の選択等は通常の操作で簡単に実現できる。

【0012】各画像領域には画像部103、特徴量重み スケール部104、特徴量情報表示部105および画像 情報表示部108が含まれており、各画像領域毎にセッ トとして表示される。また、各画像領域毎に表示される 特徴量重みスケール部104、特徴量情報表示部105 は、検索者が画像部103全体を対象として特徴量を設 定するときは各画像領域に対して一つの表示となるが、 検索者が画像部103の一部の領域を複数指定したとき は、指定された領域毎に特徴量重みスケール部104、 特徴量情報表示部105がセットされることになる。た だし、実施例では、画面の制約から、指定された領域の 一つの特徴量重みスケール部104、特徴量情報表示部 105のみが表示されているものとした。この表示され る特徴量重みスケール部104、特徴量情報表示部10 5は、例えば、最後に設定された指定領域に対応するも のとされる。検索者が他の指定領域をクリックすれば、

量情報表示部105の表示が現れる。したがって、検索 者は一度設定した特徴量の重み付けを簡単に変更するこ とができる。ここで、特徴量とは、本質的には画像自体 が持つ画像全体あるいは指定された領域の画像の本来の 特徴を言うが、本発明では、後述の実施例でも具体例が 説明されるように、例えば、画像を構成している要素の 形あるいは色などがその画像のどこに位置しているかを 示す構図データのようなものをも意味するものである。 これを本発明では、仮想特徴量ということにする。

【0013】検索者は、最初の段階にて、自分で用意し 10 た画像をGUIにセットし、あるいは、画像データベー スのあるデータセットの中から例示用の画像データを読 み出す。表示画面サイズの制約上、一つの画面内に、例 示用の全画像領域が表示されない場合には、スクロール バー107を操作することにより、現在表示されている 画像領域の代わりに表示されていてない画像領域を表示 させることができる。画像情報表示部108には、画像 の名称が表示される。また、表示画面上には、画像初期 化ボタン102が設けられ、これを押すことによって、 特徴量重みスケール部104によって重みを指定した操 20 作を初期化する。さらに、画像検索ボタン101が設け られ、これを押すことによって、画像検索が行なわれ る。

【0014】検索者は、表示されている例示画像領域 [M_{ι} 、 IM_{ι} 、---、 IM_{ι} の内から、参照画像として使用 したい画像の画像部103にポインターを当て画像の内 から検索に用いたい部分領域を指定する。もちろん、必 要に応じて画像全体をしてすることができるのは当然で ある。特徴量重みスケール部104および特徴量情報表 示領域105は対にされて、複数個設けられて、それぞ 30 れに画像から抽出される特徴量の重みと特徴量を示す名 前、記号、アイコンなどが同じ行並びで表示される。検 索者は、画像あるいは指定した領域毎に特徴量を選び、 特徴量重みスケール104にて重みを付与する。この重 みは通常検索者の好みに応じて正や負の値を入力でき

【0015】特徴量重みスケール104にデータを入れ ないか、あるいは0を指定することによって、この画像 を参照画像に選ばないことを指示することができる。図 の例では、例示画像領域 I M₃、 I M₄ および I M₅ の特 徴量重みスケール104は、特徴量の重みが全て0であ り、これらの例示画像は参照画像に採用しなかった場合 を示している。画像初期化ボタン102を押すことで、 重みを指定した操作は無効とされる。この無効にする操 作は全ての参照画像に対して行うことも出来るし、選択 された参照画像に対してのみ行うことも出来る。画像検 索ボタン101を押すことによって、上記の参照画像と それぞれの特徴量とそれぞれの重みを用いて画像検索を 行う。これについては後述する。

し、画像検索ボタン101を押すことによって得られる 検索結果もまた図1のように表示される。 画面の機能は ほとんど上記と同じであるが、画像情報表示領域108 の画像名を示す領域に、画像名の他にその画像の総合類 似度が示され、画像自体は類似度に応じてソートされる ことになる。もし、検索結果表示の画像の中に、参照画 像自体が含まれている場合には、特徴量重みスケール1 04にはこの検索に用いた重みが予め表示される。これ らの検索結果の画像を用いて再び重みを付与し、画像検 索を行なうことができる。

【0017】図2は、画像データベース205および入 力操作・画像表示装置209との関連を含め、画像検索 のデータの流れの一実施例を示した模式図である。

【0018】まず、検索者は例示画像準備ステップ21 3にて、例示画像を準備する。この例示画像は、先にも 述べたように、検索者が直接入力するものでも良いし、 検索者がデータを指定してあらかじめ画像データベース 205に用意されているものから得るものとしても良 い。検索者がデータを指定するものとすると、例示画像 準備ステップ213からその例示画像のデータ名は入力 操作・画像表示装置209へ送られ、画面のレイアウト が作成される。同時に画像データベース205に対し て、例示画像読み込み要求214が送信される。その 後、画像データベース205から例示画像読み込み要求 214に対応した例示画像データ210が入力操作・画 像表示装置209へ送られ、画面レイアウトに従って表 示される。検索者が画像を直接入力する場合には、入力 された画像が入力操作・画像表示装置209へ表示され る。検索者は、入力操作・画像表示装置209のGUI によって、参照画像の特徴付けステップ200により、 参照画像あるいは参照画像の特定領域を指定するととも に、その特徴量を指定し、その重みなどを入力する。図 2では、参照画像に付与する特徴量を201で表示し、 特徴量の重みを204で示した。これらは、図1では1 05、104で示される。ここでは、参照画像から直接 特徴抽出するものとしたが、既に何度も画像検索が行わ れて、参照画像が画像データベース205内に保存され ている場合には、あらかじめ格納されている特徴量を使 用することができる。画像検索ステップ202では参照 画像の特徴量201を入力し、その特徴量に対して画像 40 データベース205の画像特徴量とマッチングを行う。 具体的には、画像データベース205へ特徴量読み込み 要求211を送信し、一つの被検索画像の特徴量の読込 み206を行う。特徴量201と対応する被検索画像の 特徴量とマッチングされ、特徴量毎の類似度203を出 力する。つぎに、入力操作・画像表示部209のGUI によって付与された参照画像毎の特徴量の重み204を 使用して、特徴量の類似度203に重み付けを行い、特 徴量の類似度と重みとを総合した総合類似度203'を 【0016】検索者がGUIによって必要な情報を指定 50 生成する。それはソートステップ208にて蓄えられ

30

る。上記手順を画像データベース205内の検索が終了 するまで繰り返す。その後、ソートステップ208で総 合類似度の大きい順に並べ替え、その検索結果画像デー タ名が入力操作・画像表示装置209へ送られ、画面レ イアウトが作成される。そのデータ名は、検索結果画像 の読み込み要求212として、画像データベースに送ら れ、入力操作・画像表示装置209へ画像データ210 が送られる。こうして画面レイアウトに従って結果表示 が行なわれる。この結果表示に対して、入力操作を行い 画像検索を繰り返すことができる。また、ソートステッ 10 プ208からの結果出力数は、総合類似度の大きい順に 数によって制限する方法もあるし、また総合類似度のし きい値を設定して、それよりも大きい結果のみ出力する

【0019】図3、図4は、1回の画像検索方法の流れ を説明したPAD図(Problem Analysis Diagram)であ

【0020】図3は全体の流れを説明したPAD図であ る。まず、例示画像の表示411が行なわれる。GUI (グラッフィック・ユーザー・インターフェイス) 40 1の入力確定まで、パラメータの入力を続ける。これが 終了すると画像検索409へ移行し、結果表示410に て、検索結果が総合類似度の高い順に表示される。

【0021】GUI401ではイベント入力402が行 われ、画面上のボタン押下やスケール値の変更を受けつ ける。そうして入力されたイベントは、イベント解析部 403にて判定され、それぞれのイベントの処理に移 る。イベント処理404では検索者が表示画面に提示さ れている画像の特徴量に重みを付与することで、その画 像と重みを付与した特徴量を選択しかつ重みも入手す る。イベント処理405では参照画像の領域指定を行 う。領域はポインターにて始点と終点をを対角とする長 方形で指定するのが一般的であるが、一筆書的に自由に 領域を指定しても良い。イベント処理406では検索画 像の類似具合に対する類似度値の対応を調節する検索の 鋭さの入力を行う。イベント処理407では、スクロー ルバーなどの操作により例示画像を切替える。イベント 処理408では、入力の確定を行う。これは画像検索を 実行する時にループから抜けるのに使用される。画像検 索409は、画像データベース内の特徴量を検索する部 40 分である。詳細な流れは図4で説明する。結果表示41 0にて、検索結果が表示される。

【0022】図4は、画像データベース内の特徴量検索 の流れを説明したPAD図である。まず検索終了まで繰 り返すループ501に入り、検索方法が全データへのア クセスする方法ならば全てのデータペース内に登録され た画像の特徴量データの全てにアクセスした時点でルー プを抜ける。あるいは、バイナリサーチなどのように全 データにアクセスせずとも検索できる方法であるなら、 木構造の末端へ到達した時点でループを抜ける場合もあ 50

る。処理503にて、画像データベースから1つの画像 に関する各特徴量を取りだす。処理504にて全ての指 定した参照画像についてループを行い、終了したらルー プを抜ける。処理506にて処理504で指定した参照 画像について、検索者が指定した特徴量と処理503で 指定した被検索画像の対応する種類の特徴量に関して類 似度Rijをそれぞれ算出する。処理507にて処理50 6 で計算された類似度R₁₁ に検索者によって各特徴量に 付与された重みWis掛け合わせる。処理505にて処 理504までで作成された重み付き類似度Rijを加算し て総合類似度Rを計算する。処理502の時点では、検 索した被検索画像について総合類似度Rが付与されてお りそれに従って画像のソートを行う。こうして画像検索 が行われる。

【0023】図5は、本発明による検索をネットワーク

システムを利用して行う場合の一実施例としてのクライ アント側とサーバ側とのそれぞれの構成および連係関係 を示した模式図である。クライアント側とサーバ側との 連係は、例えば、画像表示機能を持ったワールドワイド ウエブのブラウザを利用した通信機能によれば容易に実 現できるから、ここでは、これ以上の説明は省略する。 【0024】一点鎖線で囲って示す画像検索クライアン トシステム307と一点鎖線で囲って示す画像検索サー バーシステム308がネットワーク302で接続された 構成をしている。装置301は、図1で説明したような GUIを実装する表示及び入力装置である。GUIにて 参照画像の選択や特徴量の指定、その重み入力などが行 われる。それらのパラメータは、パラメータなどを入力 したり、画面レイアウト情報に従って、例示画像や検索 結果の画像を表示する機能を備えている。装置306 は、ネットワークサーバー303とネットワーク302 を介して通信を行うネットワーククライアントである。 GUIで入力された、入力パラメータを送信したり、画 像データや画面レイアウト情報を受信したりする。装置 303は、GUI機能をネットワーク302を介して提 供するネットワークサーバーである。具体的には、ネッ トワークサーバー303で画面レイアウトを作成しその レイアウト情報をネットワーククライアント306へ送 信したり、入力パラメータを受信して、画像検索装置3 04へ渡したりする。場合によってはGUIを機能させ るためのプログラムやデータをネットワーククライアン ト306へ送信することもある。装置304は、入力パ ラメータに従って画像検索を行う画像検索装置である。 画像データペース305にアクセスして、検索結果をネ ットワークサーバー303へ渡す。画像検索の詳細は、 図2、図3および図4で説明したと同じ手順がネットワ ーク302を介して行われるという点が異なるだけで、 技術的な内容に実質的な差異はない。画像データベース 305には画像自体と画像からあらかじめ抽出しておい た画像毎の特徴量が格納されており、画像検索時に画像

検索装置304に利用される。

【0025】図18は、画像検索クライアント・サーバ ーシステムの通信手順を説明したNSチャートである。 まず、画像検索サーバーシステム(以下、Sシステム) の起動1821が行なわれる。Sシステムが初期化18 22されて、設定ファイルの読み込みなど準備される。 画像検索サーバーシステムは、通常の状態では、常時シ ステムの初期化は終了した状態になされてクライアント からのアクセスに備えるものとされる。画像検索クライ アントシステム(以下、Cシステム)の起動1801が 10 行われると同様にして初期化1802がなされる。クラ イアントが画像検索を行おうとするとき、 Cシステム からアクセス通信接続処理1803にて通信接続要求を Sシステムへ送信する。Sシステムでは、通信接続処理 1823において、通信接続要求のあったCシステムと の間に通信接続を確立する。この中では、接続要求があ るまで通信待機したり、Cシステムとの情報のやりとり やGUIのためのプログラムを送信などが行われる。C システムの通信接続処理1803では、受信した情報を 設定したり、GUIのプログラムを実行したりする。以 20 上で画像検索の準備が完了する。この後、Cシステムで はGUIが起動しはじめ、SシステムではCシステムの 要求に対して反応し処理を実行するようになる。最初 に、Cシステムの処理1804で、例示画像要求を送信 し、通信待機処理1805となる。通信待機中1824 であるSシステムが通信を受信すると、まず受信内容の 判定を行う。通信内容が、例示画像要求1825である なら、「Y」分岐へ行き処理1826で例示画像の送信 を行ったのち通信待機処理1827となる。「N」分岐 の場合、通信内容の別の判定を試みる。Cシステムの通 30 信待機処理1805で例示画像を受信すると、例示画像 表示処理1806でそれを表示する。この状態でCシス テムはGUIが完全に起動状態となり、検索者からの入 力を受ける準備ができる。次に、処理1807で検索者 からの入力を受けつける。検索者の画面の操作を通して 参照画像の選択、画像毎の特徴量の指定、その重みの付 与などを行う。それらのパラメータを処理1808にて 送信し、通信待機中1809となる。 Sシステムでは、 通信待機処理1827の最中に通信を受けると、受信内 容の判定を行う。通信内容がパラメータ受信1828で 40 あるなら、「Y」分岐へ行き処理1829にて画像検索 を行い、処理1830にてその検索結果の画像名や類似 度等の送信を行う。処理1830ではまた画像レイアウ トも作成し、その情報も送信する。「N」分岐の場合、 通信内容の別の判定を試みる。Cシステムの通信待機処 理1809で検索結果を受信すると、それぞれに対応す る検索画像データを処理1810にて要求し、通信待機 中1811となる。Sシステムの通信待機中1831に 通信を受けると、受信内容の判定を行う。通信内容が検

1833にて検索画像の送信を行う。Cシステムの通信 特機処理1811で検索画像を受信すると、処理181 2にて画像レイアウト情報にしたがってレイアウトを表 示する。処理1813は検索者が検索を終了させるまで ループを行い、処理1807へ戻って検索をそのまま続 けるか、あるいは処理1804~1806の例示画像表 示処理へ移行する。検索終了だと処理1814にて終了 処理を行う。Sシステムでは、画像検索サービスが終了 するまで処理1834にてループを行い通信待機状態1 824になる。サービス終了の場合は処理1825にて 終了処理を行う。

【0026】なお、図5、図18の例では、画像データベース305が画像自体をデータとして持ち出力も画像を直接出せるものとして説明したが、ワールドワイドウエブのブラウザを利用した通信機能を利用した検索でよく行われているように、画像データベース305は検索結果として得られる画像の所在を示すデータのみを提供できるようにして、検索者がこの画像の所在を示すデータを利用して画像を得るものとすることもできる。このようにしたときは、画像データベース305は小さいものとできる。

【0027】図6は、図4の処理506において類似度 Rijを算出するための関数(以下、類似度関数)の一例 を一階微分した関数を示したグラフである。この実施例 における類似度関数は、2つの特徴量間の距離からその 2つの類似度に換算する関数であり、参照画像毎に指定 した特徴量それぞれがその特徴量の存在する位置からの 距離とその特徴量に付与された重みに応じた類似度場を 特徴量空間上にそれぞれ形成し、その類似度場の合成と して形成される総合類似度場が、2つの特徴量に付与さ れた重みが正同士ならそれら2つの間に総合類似度場の 頂点が生じ、あるいは2つの特徴量に付与された重みが 正と負ならば、正の重みを付与された特徴量に対し、負 の重みを付与された特徴量と反対側へ総合類似度場の頂 点が生じるような性質を持つものとするために導入され ている。この関数によって形成される2つの参照画像の 特徴量の類似度場の重ね合せによって、2つの類似度場 のピークの間や外分点へ総合類似度場のピークが形成さ れるのを可能とするために、この関数は以下のような性 質が備えられている。

あるなら、「Y」分岐へ行き処理1829にて画像検索を行い、処理1830にてその検索結果の画像名や類似度等の送信を行う。処理1830ではまた画像レイアウトも作成し、その情報も送信する。「N」分岐の場合、通信内容の別の判定を試みる。Cシステムの通信待機処理1809で検索結果を受信すると、それぞれに対応する検索画像データを処理1810にて要求し、通信待機中1831に通信を受けると、受信内容の判定を行う。通信内容が検索画像要求1832であるなら、「Y」分岐へ行き処理5000年以下でX軸へ漸近する曲線606および正の物質の無限大でX軸へ漸近する曲線606および正の

無限大でX軸へ漸近する曲線607と原点604を通る 部分曲線603、605が結合した線である。微分した ものが、このような条件を満す関数はおおよそ図7のよ うな形となる。点602は変曲点も該当するが変曲点と は限らない。数式で表現すれば、例えば(数1)や(数 2) のようなものが該当する。

[0029]

【数1】

$$f(x) = e^{-x^2} \quad (\Delta 1)$$

[0030]

【数2】

$$f(x) = e^{-x^2} \quad (\mathfrak{A}_1)$$

$$f(x) = \frac{1}{1+x^2} \quad (\mathfrak{A}_2)$$

【0031】微分した形が図8のような関数も前述の条 件を満す。点802は図6の点602に該当するが、こ れは変曲点にはなっていない。また点805においてY 座標がゼロとなっている。図8を導関数とする関数はお およそ図9のような形となる。点903における微分は 図8の点805に対応する。点902は、図8の上昇と 下降の反転する位置(点802)に対応する。また、点 901で傾きがゼロとなっており、これは原点804に 対応する。数式で表現すれば、例えば(数3)のような 10 ものが該当する。

[0032] 【数3】

$$f(x) = \begin{cases} \frac{h}{2}(2-x^2)\cdots |x| \le 1\\ \frac{h}{2}(x-2)^2\cdots 1 \le x \le 2\\ \frac{h}{2}(x+2)^2\cdots -2 \le x \le -1\\ 0\cdots |x| \ge 2 \end{cases}$$
 (\$\delta 3\$)

【0033】ここで、前述した性質を実現する関数に、 図6から図9あるいは(数1)-(数3)で示した関数が 該当する理由を図を用いて簡単に説明する。今、類似度 関数 f(x) の導関数を f(x)とする。まず、 f(x)が x = 0 の時にピークを持つために、f(x)がx = 0にて ゼロになる必要がある。更に、 f(x)がどの向きでも距 離が同じであれば同じ類似度を返すために f(x)は左右

対称である必要があり、そのためには f(x)は原点に対 して点対称となっていなければならない。

【0034】また同様にして(数4)のような関数も該 当する。

[0035]

【数4】

$$f(x) = \begin{cases} \cos x \cdots - \frac{\pi}{2} \le x \le \frac{\pi}{2} \\ 0 \cdots x \le -\frac{\pi}{2}, \frac{\pi}{2} \le x \end{cases}$$
(\$\frac{\pi}{2}\$)

【0036】次に、2つの重みを両方とも(+1.0) とした時の2つの類似度関数の重ね合せをg(x)とす るとその導関数は(数5)のように記述することができ

[0037]

【数5】

$$g'(x) = f'(x) - \left(-f'(x-k)\right) \quad (55)$$

【0038】これを図示すると、例えば図16のように なる。曲線1601がf(x)であり、曲線1602が (-f'(x-k))である。この2つの差がg'

(x) を表現している。g(x) のピークが f(x) と f(x-k) のピーク、つまり0とkの間に生成される ためにはg'(x)がゼロとなる位置が0とkの間にな ければならない。図16では、曲線1601と曲線16 02の交点1603がそれに該当する。この交点が生じ るためには、範囲1604の傾いた曲線と範囲1605 の傾いた曲線が必要である。範囲1604は図6の部分 50

曲線605に該当し、また範囲1605は上下が反転し ているため図6の部分曲線603に該当する。よって、 原点をはさんで正の部分と負の部分でそれぞれf'

(x) < 0, f'(x) > 0 $\forall x$ 【0039】更に、2つの重みをそれぞれ(+1.0) と(-1.0)とした時の2つの類似度関数の重ね合せ をg(x)とするとその導関数は(数6)のように記述

[0040]

することができる。

【数6】

$$g'(x) = f'(x) - f'(x - k) \quad (46)$$

【0041】これを図示すると、例えば図17のようになる。曲線1701が f '(x) であり、曲線1702が f '(x-k) である。この2つの差が g '(x) を表現している。g (x) のピークが f (x) のピークに対して (-f (x-k)) のピークの反対側、たとえば、つまり -k < x < 0 の部分に生成されるためにはg '(x) がゼロとなる位置が -k < x < 0 でなければ 10ならない。図17では、曲線1701と曲線1702の交点1703がそれに該当する。この交点が生じるためには、上述同様に、範囲1704の傾いた曲線と範囲1705の傾いた曲線が必要である。範囲1704は、図6の部分曲線603に該当し、範囲1705は図6の部分曲線601に該当する。更に、このような傾きの曲線が得られるためにはf '(x) の曲線において、上昇と下降が反転する点が存在しなければならない。

【0042】以上の条件をまとめると、最初に述べた条件、即ち導関数 f'(x)として図6や図8のようなも 20のを持つ関数となるのである。

【0043】2つの類似度関数を合成した総合類似度をRとすると、重みが正同士なら図10の破線1006ような形、重みが正と負なら図11の破線1104ような形に合成される。これらは特徴量空間上の2つの位置を直線で結び、その断面を表示した模式図である。図10の点1001と点1003はそれぞれ2つの特徴量の位置を現わしている。実線1004、1005がそれぞれの位置における類似度場である。これらの重ね合せが破線1006となっている。そのピークの特徴量の位置が30点1002であり、点1001と点1003の間に生成されている。図11も同様であり、点1101と点1102が特徴量の位置であり、点1101が負の重みを持った特徴量、点1102が正の重みを持った特徴量である。それらの重ね合せとして、破線1104が生成され

ておりそのピークの位置が点1103である。点110 2に対して点1101から反対側に生成されている。

【0044】以上に説明した類似度関数は、類似度関数の引数に入力される距離は、ユークリッド空間上の距離に限ったものではない。例えば、極座標空間上の距離を使用すると、その距離とは特徴量ベクトルの間の角度に相当する。例えば、(数4)の類似度関数は、Y軸の正の部分に注目すると、2つの特徴量ベクトル間の射影を表現する類似度と考えることができる。その場合の類似度関数は2つの特徴量ベクトルをa、bとすると(数7)のように書くことができ、パタン識別などでよく使用されている類似度と同じものとなる。

[0045]

【数7】

$$f(\vec{a}, \vec{b}) = \begin{cases} \frac{\vec{a} \cdot \vec{b}}{\|\vec{a}\| \cdot \|\vec{b}\|} & \cdots & \vec{a} \cdot \vec{b} \ge 0 \\ 0 & \cdots & \vec{a} \cdot \vec{b} \le 0 \end{cases}$$
 (\$\frac{\pi}{2}\$)

【0046】さて、実際に使用される場合の一つの例として、総合類似度Rを算出する関数として(数8)を使用することができる。この例は、希望画像と類似した画像及び類似しない画像を1つまたは2つ以上指定して参照画像とし、そのそれぞれの画像から抽出される特徴量の一部または全て、あるいは、必要に応じて参照画像の任意の領域を指定して画像検索を行う場合に、各特徴量と画像データベースに登録されている検索対象となる被検索画像が有する各特徴量を用いて総合類似度を算出することにより、類似度に対応した画像検索を行うことを可能にした例である。

[0047]

【数8】

$$R = \sum_{i} W_{i} f\left(\sqrt{\sum_{j} \alpha_{ij} \|\vec{x}_{j} - \vec{q}_{ij}\|^{2}}\right) \quad \text{($$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$}$$

【0048】ここで、i は参照画像を区別する番号、j 40 は特徴量ペクトルの種類を区別する番号である。 W_i は参照画像に付与された重みであり、値は正や零、負をとりうる。 $\alpha_{1,1}$ は類似度場の広がりを制御するパラメータで「検索の鋭さ」と呼んでおり、値は正か零である。選択しない特徴量にはゼロを指定する。 f は類似度関数、 x_1 はデータベース内の画像に関する特徴量ペクトル、 q_1 は参照画像の特徴量ペクトルである。

【0049】W₁には好きな画像には正の重みを付与し、嫌いな画像には負の重みを付与する。更に、α₁,にはその画像について、特徴量毎の重みを付与する。この 50

式の場合には検索の鋭さのパラメータを付与することになる。検索の鋭さのパラメータは、検索キーとして使用される複数の特徴量間の距離によって、正の重み同士を合成した場合にはその間にピークが出来、正と負の重み同士なら正の重みの特徴量に対して負の重みの特徴量と反対側へピークが来るような範囲内の値を初期値として決められるが、検索者は希望に応じてその値を変更することができる。

【0050】この類似度合成式によって生成される総合類似度場を模式的に表した図が図12である。多くの要素によって構成される特徴量ベクトルは多次元空間上の

1点として表現できるが、図12はその多次元空間を模式的に2次元で表現した。実際の表示装置では、これを等高線を付した濃淡図あるいは色付きの図で示し、明るいところほど類似度が大きく、暗いところほど類似度が小さいことを示すものとすれば見やすいが、この図面では、便宜上、同じ類似度値を等高線(1204で例示)で示し、類似度のピークを頂点1201,1202および1205で示している。黒丸を付した頂点1202が最も類似度が高く、Xを付した頂点1205が最も類似度が低い。点1203は説明のための任意の類似度の点 10である。

【0051】今、Wiとして正の重みをもつ画像が特徴量空間上の点1201と点1203にあるとする。そして、Wiとして負の重みを持つ画像が点1205にあるとする。それぞれの特徴量空間上の位置から等方的に類似度場が形成されるが、それらを線形和として総合類似度場が形成される。頂点1202を持つ領域が総合類似度場のピークの領域である。それぞれの重みの大きさによって、このピークの位置は変り得る。図では点1201と点1203を結ぶ位置のほぼ中央付近に出来るはず20のピークが、点1205の負の重みの特徴量によって斥力を受け、点1201と点1203を結ぶ線に点1205の垂線が直交する位置から左側の1202の位置にずれている様子を示している。

【0052】さて、前述の類似度合成式では、1枚の参照画像の中に検索者にとって好きな特徴量と嫌いな特徴量が含まれていた場合に、その検索者の意思を反映することができない。そこで、それを改良した一実施例として(数9)の式を使用することができる。

[0053]

【数9】

$$R = \sum_{i,j} W_{ij} f\left(\sqrt{\alpha_{ij}} \left\| \vec{x}_j - \vec{q}_{ij} \right\| \right) \quad (349)$$

【0054】ここで、i は参照画像を区別する番号、j は特徴量ベクトルの種類を区別する番号である。 $W_{i,j}$ は 参照画像毎の各特徴量に付与された重みであり、値は正や零、負をとりうる。 $\alpha_{i,j}$ は類似度場の広がりを制御するパラメータで「検索の鋭さ」と呼んでおり、値は正か 40 零である。f は類似度関数、 $x_{i,j}$ はデータベース内の画像に関する特徴量ベクトル、 $\alpha_{i,j}$ は参照画像の特徴量ベクトルである。

【0055】この類似度合成式では、参照画像毎に指定する特徴量毎に検索者の好みを反映させることができる。すなわち、参照画像の好きな特徴量には正の重みを付与し参照画像の嫌いな特徴量には負の重みを付与するのである。

【0056】図13は、この(数9)による類似度合成 式によって生成される総合類似度場を模式的に表した図 50 である。例えば、色特徴量の軸が横軸、微分特徴量の軸が縦軸だとする。この場合も濃淡図あるいは色付きの図とすると見やすいが、便宜上等高線によるものとした。図ではそれぞれ正の重みの場合を示している。特徴量毎に独立に重みを付与して線形和されるため、それぞれの軸に垂直なかまぼこ型の類似度場が生成される。その類似度場の交差した点1303が最も総合類似度が高くなる。また、図では1次元で表現されている縦軸、横軸も実は多次元であり、それぞれの軸に関する類似度場の合成においては、図12で説明したようなピークの位置に関する性質を持っている。

【0057】また検索者が、特徴量を指定する場合を考 えると、上の例のように色特徴量と微分特徴量のように 複数の特徴量を指定した場合には、その両方の性質をも った画像がもっとも最初に結果表示されるべきである。 それは(数8)の類似度場においても、(数9)の類似 度場においても、同じように両方の性質を持ったものが 最初に結果表示される。しかし、そのような両方の性質 を持った画像がたまたま画像データベース内になかった 場合はどうなるであろうか。(数8)の場合には、ピー クの近辺においては検索者の好みが反映されたような類 似度場になっているが、近辺にも全く画像がなかった場 合には出力結果に検索者の意図が反映されたものが得ら れるとは限らない。これは(数8)は特徴量に関しては AND条件のような働きをするためである。それに対し (数9) の場合、両方の特徴量の性質がない場合には、 片方の性質の特徴量の結果を出力してくれる。検索者が 特徴量同士を独立に考えることが考えやすく自然である ため、相応しい出力方法と思われる。これは(数9)に よる検索が状況に応じてAND条件やOR条件を使い分 けるような働きをするためである。もちろん、本発明は 条件に応じてAND条件やOR条件を使い分けるような 実施例を否定するものではない。

【0058】図14は、本発明の他のグラッフィック・ ユーザー・インターフェイス(GUI)の例を示した一 実施例である。

【0059】ウィンドー1401は、参照画像を表示しておく参照画像蓄積ウィンドーであり、全ての検索を通じて参照画像及び特徴量などに付与された重み等も保存しておくことができる。画像1402は、選択された参照画像である。ここで領域を1つまたは2つ以上指定することができる。指定した領域をクリックすることで領域を選択すると、スケール104の特徴量重みスケールや表示領域105のひとつの特徴量に関する情報が、選択した領域に関する表示に変更される。表示領域1403は、その参照画像に関する情報で、画像名や検索結果におけるその画像自身の順位や総合類似度を表示する。スクロールバー1404は、参照画像蓄積ウィンドーのスクロールバーである。ウィンドーにおさまりきらなかった参照画像を次々表示することができる。参照画像に

関するこれらの点については、先に実施例と本質的に異 なることはない。

【0060】ウィンドー1405は、画像検索結果を表 示する画像検索結果表示ウィンドーである。検索結果は ここに表示される。また、検索結果にはウィンドー14 01にて指定された参照画像は含まれないようになって いる。画像1406は検索された画像で、表示領域14 07は画像に対する情報が表示される。画像名や総合類 似度や順位などである。画像1406をクリックするこ とで、参照画像に選ぶことができ、参照画像蓄積ウィン 10 ドー1401の中に同じ画像が表示され領域指定や特徴 量毎の重み指定を行うことができるようになる。スクロ ールバー1408は、画像検索結果表示ウィンドーのス クロールバーである。

【0061】図1に示したGUIとの違いは、ウィンド -1401とウィンドー1405のように参照画像と検 索結果の画像を区別するために、参照画像蓄積ウィンド ーと画像検索結果表示ウィンドーが独立に存在している ことである。それぞれのウィンドーは不要なときにはア イコン化されて小さくなったり、その他の方法でこのス 20 クリーンから見えなくすることができる。またウィンド 一自体を表示装置の画面いっぱいに広げる方法も用意さ れており、参照画像および検索結果画像を必要に応じて 一覧しやすくすることができる。

【0062】次に、前述した、仮想特徴量を利用した検 索について説明する。

【0063】以下に仮想特徴量について(数5)のよう な類似度合成式の場合を例に挙げて説明する。簡単のた め特徴量が2種類、色特徴量cと微分特徴量とがあった とする。すると、(数5)は(数10)のように表現で 30 きる。

[0064]

【数10】

$$R = \sum_{i} R_{i}$$

$$R_{i} = W_{i,C} f_{i,C} + W_{i,D} f_{i,D}$$
(\$\frac{1}{2}\$)

【0065】iは参照画像を区別する番号、Wileは色

特徴量の重み、Wilaは微分特徴量の重み、filaは色特 徴量に関する類似度関数、 fila は微分特徴量に関する 類似度関数である。

【0066】またここで色特徴量と言ってもさまざまな ものが考えられる。例えば、構図情報付きの色特徴量で あったり解像度が異なる色特徴量などである。ここでは 仮想特徴量を説明するために構図情報の例をとりあげて 説明する。

【0067】図15は構図情報について説明した模式図 である。画像1501は、参照画像あるいは被検索画像 の一つである。画像全体に対して色特徴量を抽出する と、色特徴量ベクトルの要素1503を複数個持つベク トルとして色特徴量ベクトル1504が得られる。例え ば、色特徴量ベクトル1504がヒストグラムで構成さ れていれば要素1503はその一つのビンに対応する。 次に、構図情報を伴なった色特徴量を考えると、画像1 502のようになる。画像が4×3に分割されており、 そのそれぞれの部分において、画像1501に対して行 った色特徴量抽出を行う。すると、図の例では12倍の 特徴量が得られる。各分割画像毎に色特徴量ベクトルの 要素1503が得られ、これらが各分割画像毎に色特徴 量ベクトル1504を構成する。これらを総合したもの として特徴量ベクトル1505が構成される。この情報 によって例えば、画像の下の方にはほぼ緑色が占めてお り、真中付近には黄色が占めているというような構図情 報を表現することができる。とくに、色特徴量ベクトル 1503がヒストグラムで構成されておれば、ベクトル 1504の色特徴量からベクトル1505の特徴量を構 成することができる。この場合、構図情報とは色特徴量 に付随した情報であり、構図情報のみの情報を取り出す ことはできない。

【0068】構図情報は色特徴量から分離して取り出す ことはできないが、特徴量の重み付けを考える場合には 構図情報への重み付けとして色情報とは独立に付与する GUIを作ることができる。例えば、(数11)がそれ を実現したひとつの参照画像における類似度の例であ る。

[0069]

【数11】

$$\begin{split} R_{i} &= W_{i,C} \Big\{ \Big(1 - W_{i,S} \Big) f_{i,C} + W_{i,S} f_{i,CS} \Big\} \\ &+ W_{i,D} \Big\{ \Big(1 - W_{i,S} \Big) f_{i,D} + W_{i,S} f_{i,DS} \Big\} \end{split}$$

【0070】Wiiiは構図情報への重みで0~1の間の 値をとる。 fi... は構図情報付きの色特徴量の類似度関 数、filidは構図情報付きの微分特徴量の類似度関数で ある。W.,,という重みは構図情報に対して付けられた 重みであるが、物理的な特徴量としては構図情報のみの 50 へ提示したものを「仮想特徴量」と呼んでいる。もちろ

ものは得られない。そのような場合でも(数11)のよ うに重みとしてはあり得る。このように重みとしてのみ 見えるものを仮想的な特徴量としてみなすことによって 特徴量と同じように扱えるようにGUIによって検索者

ん、この例では色特徴量の構図特徴量のように特徴量毎に仮想特徴量を用意することもできる。その場合でも、 検索者にとっては構図情報と特徴量情報をGUIによって独立に操作できるので、直観的に理解しやすいことが 特徴である。

【0071】以上説明したように、本発明の実施例では、以下のように多様な観点での検索が効率よく出来る。

【0072】(1)検索者は、検索者の手元の画像からあるいは画像データベース内の一覧可能な枚数内からあ 10 るいはその他の入手方法による画像から参照画像として、希望画像と類似した画像及び類似しない画像を1つまたは2つ以上指定することができ、必要に応じて参照画像の領域を指定することができ、そのそれぞれの画像から抽出される特徴量の一部または全てを参照画像毎に指定することができる。

【0073】指定された参照画像あるいはこれらの部分領域の各特徴量と画像データベースに登録されている被検索画像が有する各特徴量を用いて総合類似度を算出され、その類似度の順に被検索画像が出力される。そのた20め、検索者は参照画像毎に注目した特徴量を1つ以上指定して検索者の好みに合うか合わないかを画像検索装置へ提示することができる。また画像検索装置は特徴量が指定された1つ以上の参照画像を使って、検索者が希望する画像とぴったり合った画像が、自分の手元に、あるいは例示画像中になくとも、1つ以上、ある特徴量に関して似ていれば、あるいは似ていないものがあれば、検索者が望む画像を出力することができる。

【0074】(2)検索者は、また、特徴量の一部または全てについて特徴量に検索者の望むものには正の重み 30を付与し、望まないものには負の重みを付与することができ、付与した重みを用いて総合類似度による検索が実施できる。そのため、1つの参照画像の中に検索者が好きな特徴量と、嫌いな特徴量が混在している場合にも、両者をそれぞれ適切に画像検索装置へ提示できる。また、検索者にとってある特徴量が別の特徴量より自分の好みに合っているという程度の指標を画像検索に利用できる。

【0075】(3)同じ種類の特徴における特徴量間の 距離から類似度を算出する関数において、それぞれの特 40 徴量毎に算出された類似度を検索者が付与した重みに従って合成した総合類似度による検索が実施できる。その ため、検索者が望む特徴量と望まない特徴量では、望む 特徴量に対し望まない特徴量から遠ざかる側にある画像 を検索できる。更に、検索者が望んだあるいは望まない 特徴量を考慮した総合類似度傾斜となった画像の検索出 力の順序とすることができる。その結果、その指定した 画像がない場合にもその周辺において検索者の好みを反 映した表示順位で画像を一覧することができる。

【0076】(4) さまざまな例示とさまざまな検索を 50

通しても、表示に影響を受けることなく、参照画像表示部に例示画像または検索結果の画像から選択した画像を蓄積し表示することができる。これによって、検索の結果、結果表示画像からなくなってしまう検索者の手元の画像や画像データベース内から選んだ画像及びそれらの画像において指定された特徴量とそれらに付与された重みを、画像検索後にも再利用することが容易になる。そのため、検索者の試行錯誤を助け、特徴量や重みをかえて、画像検索装置から得られる結果の感触を捕みやすくする。また、結果表示と参照画像表示が別のウィンドーとした場合、画像表示装置の大きさの制約を限界まで使って、結果の一覧を見たい場合にも参照画像の一覧を見たい場合にもそれぞれ対応することができる。

【0077】(5)検索結果に参照画像が表示される場合においても、検索結果の表示画面から参照画像を除いて一覧表示することとすれば、画像表示装置の大きさの制約いっぱいまで有効に使用可能にし、その上検索結果における参照画像の順位が分かる。そのため、結果の一覧を見たい場合に、参照画像を検索結果から除くことにより画像表示装置の大きさの制約を有効に使用することができる。

【0078】(6)画像から特徴量のような物理的な量では抽出することはできないが、画像の持つ物理的な量をその存在する位置情報例えば構図データとしてセットとして捕らえれば有用な特徴量として扱うことができるデータを仮想特徴量として重み付けをして総合類似度の計算に使用できるものとした。そのため、特徴量という形で抽出できない情報も仮想特徴量という形で検索者が利用可能なものとした。

【0079】(7)本発明による検索をネットワークシステムを利用して行う場合には、検索者は画像のデータベースを持つ必要がなく、内容の充実した検索サービスを受けることができる。

[0080]

【発明の効果】本発明は、検索者の望んだ画像を容易に得ることができるから、デザインを利用することを頻繁に行う広告業界や放送業界、あるいはデザインを売ることを目的としたコンテンツサービス業界等において、有効に利用できるのみならず、PC上で動作する個人ベースでホームページやその他のデザインを作成するなどの創造支援アプリケーションにも利用できる。

【図面の簡単な説明】

【図1】本実施例のグラッフィック・ユーザー・インターフェイスを示した模式図。

【図2】画像検索のデータの流れの一実施例を示した模式図。

【図3】1回の画像検索の全体の流れを説明したPAD図。

【図4】画像検索の全体の流れのうち、画像データペース内の特徴量検索の流れを説明したPAD図。

【図5】本発明による検索をネットワークシステムを利用して行う場合の一実施例としてのクライアント側とサーバ側とのそれぞれの構成および連係関係を示した模式図。

【図6】実施例における類似度R₁」を算出するための類似度関数の一例を一階微分した関数を示したグラフ。

【図7】図6に対応する類似度関数を示したグラフ。

【図8】実施例における他の類似度R₁」を算出するための類似度関数の一例を一階微分した関数を示したグラフ。

【図9】図8に対応する類似度関数を示したグラフ。

【図10】正の重みを持った2つの類似度関数の重ね合せの説明図。

【図11】正と負の重みを持った2つの類似度関数の重ね合せの説明図。

【図12】類似度合成式の一実施例によって作られる類似度場の模式図。

【図13】類似度合成式の別の一実施例によって作られる類似度場の模式図。

【図14】参照画像が別ウィンドーとなっている他の実 20 施例のグラッフィック・ユーザー・インターフェイスを 示した模式図。

【図15】仮想特徴量の例として構図情報を説明した模式図。

【図16】正の重みの2つの類似度関数の重ね合せがピークを持つ条件の説明図。

【図17】正と負の重みの類似度関数の重ね合せがピー

図 1

クを持つ条件の説明図。

【図18】画像検索クライアント・サーバーシステムの通信手順の説明図。

【符号の説明】

101:画像検索開始ボタン、102:画面初期化ボタ ン、103:例示画像あるいは検索結果の画像、10 4:特徴量重みのスケール、105:特徴量の名前やそ の他の情報の表示領域、106:重みが0の場合のスケ ール、107:スクロールバー、108:表示画像の名 10 前や類似度その他の情報、IM1, IM1, ----, I M₆:参照画像、302:ネットワーク、303:GU Iを提供するネットーワークサーバー、304:画像検 索装置、305:画像データベース、306:GUIを 提供するネットワーククライアント、307:画像検索 クライアントシステム、308:画像検索サーバーシス テム、1401:参照画像蓄積ウィンドー、1402: 参照画像のひとつ、1403:参照画像に関する情報表 示領域、1404:参照画像蓄積ウィンドーのスクロー ルパー、1405:画像検索結果表示ウィンドー、14 06:検索された画像のひとつ、1407:検索結果の 画像に関する情報表示領域、1408:画像検索結果表 示ウィンドーのスクロールバー、1501:参照画像あ るいは被検索画像のひとつ、1502:画像分割された 参照画像あるいは被検索画像、1503:特徴量ベクト ルのひとつの要素、1504:色特徴量ベクトル、15 05:特徴量ベクトル。

【図1】

【図4】

[図10]

【図11】

【図12】

【図13】

【図16】

【図17】

図16

図17

[図14]

【図15】

【図18】

図18

BEST AVAILABLE COPY

THIS PAGE BLANK (USPTO)