

EE141-Spring 2010 Digital Integrated Circuits

Lecture 9
Transistors

Guest Lecturer: Andrei Vladimirescu

EECS141 Lecture #9

Administrativia

- □ Midterm on Friday Febr 19 6:30-8pm in 2060 Valley LSB
 - Open book
 - Do not forget your important class material nor calculator
 - Covers from start of semester to optimization of complex logic – wires not included!
- □ Review session tomorrow Th 2/18 at 6:30pm
 - Room to be announced on web-site
- □ No lab this week
- □ Hw 4 due next week Friday

Class Material

- □ Last lecture
 - Wiring + first glimpse at transitors (threshold)
- □ Today's lecture
 - Transistor models
- □ Reading (Ch 3)

EECS141 Lecture #9

MOS Transistor

What do digital IC designers need to know?

Threshold Voltage: Concept

- With positive gate bias, electrons pulled toward the gate
- With large enough bias, enough electrons will be pulled to "invert" the surface (p→n type)
- Voltage at which surface inverts: "magic" threshold voltage V_T

EECS141 Lecture #9

The Threshold Voltage

□ Threshold

$$V_{T} = \varphi_{FB} + 2\varphi_{F} + \frac{Q_{B}}{C_{ox}}$$
Depletion charge
$$V_{T} = V_{T0} + \gamma \cdot \left(\sqrt{|2\varphi_{F} + V_{SB}|} - \sqrt{2\varphi_{F}}\right)$$

□ Fermi potential

$$\Phi_F = \Phi_T \cdot \ln \frac{N_A}{n_i}$$

 $2\Phi_F$ is approximately 0.6V for p-type substrates γ is the body factor V_{70} is approximately 0.45V for our process

Saturation

 $\hfill\Box$ For $(V_{GS}-\hfill {\rm V}_{T}) \leq V_{DS}$, the effective drain voltage and current saturate:

$$V_{DS,eff} = \left(V_{GS} - V_{T}\right)$$

$$V_{DS,eff} = (V_{GS} - V_T)$$

$$I_D = \frac{k'_n}{2} \cdot \frac{W}{L} \cdot (V_{GS} - V_T)^2$$

- □ Of course, real drain current isn't totally independent of V_{DS}
 - For example, approx. for channel-length modulation:

$$I_D = \frac{k'_n}{2} \cdot \frac{W}{L} \cdot (V_{GS} - V_T)^2 \cdot (1 + \lambda \cdot V_{DS})$$

EECS141 Lecture #9

Modes of Operation

Cutoff:

$$V_{GS} - V_{T} < 0$$
 $I_{D} = 0$

Linear (Resistive):

$$V_{GS}-V_T > V_{DS}$$
 $I_D = k_n' \cdot \frac{W}{L} \cdot \left[(V_{GS} - V_T) \cdot V_{DS} - \frac{V_{DS}^2}{2} \right]$

Saturation:

$$0 < V_{GS} - V_T < V_{DS} \qquad I_D = \frac{k'_n}{2} \cdot \frac{W}{L} \cdot (V_{GS} - V_T)^2 \cdot (1 + \lambda \cdot V_{DS})$$

EECS141 10 Lecture #9

Including Velocity Saturation

Approximate velocity: $v = \frac{1}{1}$

$$v = \frac{\mu_n \xi}{1 + \xi/\xi_c} \text{ for } \xi \le \xi_c$$

$$= v_{sat}$$
 for $\xi \ge \xi_c$

Continuity requires that: $\xi_c = 2v_{sat}/\mu_n$

Integrating to find the current again:

$$I_{D} = \frac{\mu_{n} C_{ox}}{1 + (V_{DS}/\xi_{c}L)} \left(\frac{W}{L}\right) \left[(V_{GS} - V_{T}) V_{DS} - \frac{V_{DS}^{2}}{2} \right]$$

Models, Models, Models...

- □ Exact behavior of transistor in velocity sat. somewhat challenging if want simple/easy to use models
- □ So, many different models developed over the years
 - v-sat, alpha, unified, V_T*, etc.
- □ Simple model for manual analysis desirable
 - \bullet Assume velocity perfectly linear until υ_{sat}
 - Assume V_{DSAT} constant

A Unified Model for Manual Analysis

for $V_{GT} \le 0$: $I_D = 0$

for $V_{GT} \ge 0$

$$I_{D} = k' \cdot \frac{W}{L} \cdot \left(V_{GT} \cdot V_{DS,eff} - \frac{V_{DS,eff}^{2}}{2} \right) \cdot \left(1 + \lambda \cdot V_{DS} \right)$$

with $V_{DS,eff} = \min (V_{GT}, V_{DS}, V_{D,VSAT})$

One Last Simplification

□ If device always operates in velocity sat.:

$$I_D = k' \cdot \frac{W}{L} \cdot \left(V_{GS} - V_T - \frac{V_{D,VSAT}}{2}\right) V_{D,VSAT}$$

□ "V_T*" model:

$$V_T^* \equiv V_T + \frac{V_{D,VSAT}}{2}$$

$$I_D = k' \cdot \frac{W}{L} \cdot \left(V_{GS} - V_T^*\right) V_{D,VSAT}$$

□ Good for first cut, simple analysis

Transistor Model for Manual Analysis

Table 3.2 Parameters for manual model of generic 0.25 μm CMOS process (minimum length device).

	V _{T0} (V)	γ (V ^{0.5})	V_{VSAT} (V)	k' (A/V ²)	λ (V ⁻¹)
NMOS	0.43	0.4	0.63	115×10^{-6}	0.06
PMOS	-0.4	-0.4	-1	-30×10^{-6}	-0.1

Textbook: page 103

EECS141 Lecture #9 25²⁵

Gate Capacitance

□ Capacitance (per area) from gate across the oxide is W·L·C_{ox}, where $C_{ox} = \epsilon_{ox}/t_{ox}$

EECS141 Lecture #9 29

Gate Capacitance

- □ Distribution between terminals is complex
 - Capacitance is really distributed
 - Useful models lump it to the terminals
 - Several operating regions:
 - Way off, off, transistor linear, transistor saturated

Transistor In Cutoff

- When the transistor is off, no carriers in channel to form the other side of the capacitor.
 - Substrate acts as the other capacitor terminal
 - Capacitance becomes series combination of gate oxide and depletion capacitance

EECS141 Lecture #9 31

Transistor In Cutoff (cont'd)

- When $|V_{GS}| < |V_T|$, total C_{GCB} much smaller than $W \cdot L \cdot C_{ox}$
 - Usually just approximate with C_{GCB} = 0 in this region.
- (If V_{GS} is "very" negative (for NMOS), depletion region shrinks and C_{GCB} goes back to ~W·L·C_{ox})

Transistor in Linear Region

- Channel is formed and acts as the other terminal
 - C_{GCB} drops to zero (shielded by channel)
- Model by splitting oxide cap equally between source and drain
 - Changing either voltage changes the channel charge

EECS141 Lecture #9 33

Transistor in Saturation Region

- Changing source voltage doesn't change V_{GC} uniformly
 - E.g. V_{GC} at pinch off point still V_{TH}
- Bottom line: C_{GCS} ≈ 2/3·W·L·C_{ox}

Transistor in Saturation Region (cont'd)

- Drain voltage no longer affects channel charge
 Set by source and V_{DS sat}
- If change in charge is 0, C_{GCD} = 0

