Problem Formulation

Figure - agram of a 2-spring stac

Diagram of a 2-spring stack-damper system with a mass (m) suspended on top of it

m - Mass of the suspended block

 NL_1 - Top conical disk spring (Non-linear)

 NL_2 - Bottom conical disk spring (Non-linear)

c - Damping coefficient of the Damper

For the mass,

 δ_{st} is the displacement in **static equilibrium** $x_{st,d}(t)$ is the **dynamic displacement** $x_{st}(t) = \delta_{st} + x_{st,d}(t)$ is the **total displacement**

For the bottom of NL_1 ,

 δ_1 is the displacement in static equilibrium $x_{1,d}(t)$ is the dynamic displacement $x_1(t) = \delta_1 + x_{1,d}(t)$ is the total displacement