Subject: Data Mining and Warehousing SAP ID: 60004220253 – Devansh Mehta

Experiment 03

Code:

Naïve bayes

import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
dataset=pd.read_csv('diabetes.csv')
X= dataset.iloc[:,:-1].values
y= dataset.iloc[:,:-1].values
from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.2,random_state=0)
from sklearn.naive_bayes import GaussianNB
from sklearn.metrics import accuracy_score,confusion_matrix
clf1 = GaussianNB()
clf1.fit(X_train, y_train)
predicted1 = clf1.predict(X_test)
accuracy1 = accuracy_score(predicted1,y_test)
print('Accuracy_score=',accuracy1

from sklearn.metrics._plot.confusion_matrix import ConfusionMatrixDisplay lables=[0,1] cm1=confusion_matrix(y_test,predicted1,labels=lables) disp1=ConfusionMatrixDisplay(confusion_matrix=cm1,display_labels=lables) disp1.plot()

Output:

Accuracy score= 0.7922077922077922

Subject: Data Mining and Warehousing

SAP ID: 60004220253 - Devansh Mehta

import numpy as np
import matplotlib.pyplot as plt
from sklearn.metrics import roc_curve, roc_auc_score, auc
fpr, tpr, thresholds = roc_curve(y_test, predicted1)
auroc = roc_auc_score(y_test, predicted1)
print(f"AUROC: {auroc}")

AUROC: 0.7430900775502088

```
\label{eq:plt.figure} $$ plt.figure(figsize=(8,6)) $$ plt.plot(fpr, tpr, color='darkorange', lw=2, label=f'AUROC = {auroc:.2f}') $$ plt.plot([0,1], [0,1], color='navy', lw=2, linestyle='--') $$ plt.xlim([0.0, 1.0]) $$ plt.ylim([0.0, 1.05]) $$
```


Subject: Data Mining and Warehousing

SAP ID: 60004220253 – Devansh Mehta

plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver Operating Characteristic (ROC) Curve')
plt.legend(loc='lower right')
plt.show()

Subject: Data Mining and Warehousing

SAP ID: 60004220253 – Devansh Mehta

Decision Tree

from sklearn.tree import DecisionTreeClassifier clf = DecisionTreeClassifier() clf.fit(X_train,y_train) DT_predicted=clf.predict(X_test) DT1 = accuracy_score(DT_predicted, y_test)

print("Accuracy:", DT1)

Accuracy: 0.7727272727272727

labels = [0,1]
cm = confusion_matrix(y_test, DT_predicted, labels=labels)
disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=labels)
disp.plot()

SAP ID: 60004220253 – Devansh Mehta

A.Y. 2022-2023

Subject: Data Mining and Warehousing

fpr, tpr, thresholds = roc_curve(y_test, predicted1)
auroc = roc_auc_score(y_test, DT_predicted)
print(f"AUROC: {auroc}")

AUROC: 0.7410021873135813

K Fold

from sklearn.model_selection import KFold from sklearn.model_selection import cross_val_score kfold = KFold(n_splits = 10, shuffle = True, random_state=42) scores = cross_val_score(clf1,X,y,cv=kfold,scoring='accuracy') for i in scores: print(i)

- 0.7012987012987013
- 0.8311688311688312
- 0.6883116883116883
- 0.7922077922077922
- 0.8051948051948052
- 0.6753246753246753
- 0.8571428571428571
- 0.7142857142857143
- 0.6578947368421053
- 0.7894736842105263