TCS Quantum Challenge

Jose Manuel Carpinteyro S. Ernesto Alcalá R.

Introduction

Challenge Introduction

Large retailers have problems for replenishing stores with right products, quantities, etc., in the right time (restock), requiring precision while also finding the right balance between stock and availability.

Importance of the problem

Currently, for a retailer with over a thousand stores and tens of thousands of different SKUs, granularity is traded off against speed of calculation and hence, SKUs are grouped, this results in a sub-optimal solution.

So for a better optimization in cost-benefit is important not to trade that much of granularity and also being able to cover the demand needed.

Understanding the problem

Interpretation

Highlights

Identify a quantum-based solution approach to solve the need of SKU optimizing capital and cost

- Granularity
- Seasonality
- Speed
- Precision
- Forecast
- Demand

Dataset Overview

- Briefly introduce the data provided
- Highlight important characteristics and how they fit into your approach

Some Classic ML Models for Retail Optimization

 Demand Forecasting with Long Short-Term Memory (LSTM) Networks:

Why: LSTMs are well-suited for capturing sequential patterns and are effective in modeling time-series data, making them suitable for forecasting demand. By considering factors like rate of sale, seasonality, and sales forecast accuracy, LSTM networks can provide more accurate predictions compared to traditional methods.

• Optimization with Reinforcement Learning (RL):

Why: Reinforcement Learning can be applied to optimize the supply chain decisions, considering factors such as delivery frequency, pack sizes, and distribution center capacity. RL models can adapt to changing conditions and learn optimal strategies over time, enabling the system to find better solutions for the dynamic and complex challenges in replenishing stock.

 Random Forests for Inventory Optimization:

Why: Random Forests are robust and can handle a large number of features. They can be employed for inventory optimization, taking into account multiple dimensions like range, physical variations between stores, and store access limitations. Random Forests can provide insights into feature importance, helping identify critical factors influencing the stock replenishment process.

Some Quantum ML models

Quantum Support Vector Machine (QSVM):

Purpose: Used for classification tasks in quantum machine learning.

Key Feature: Utilizes quantum parallelism to enhance the efficiency of support vector machine algorithms.

Ouantum Neural Networks:

Purpose: Applies quantum principles to neural networks, potentially providing advantages in certain tasks.

Key Feature: Leverages quantum entanglement and superposition for computations.

Quantum K-Means Clustering:

Purpose: Used for clustering data points into groups.

Key Feature: Exploits quantum parallelism to speed up the clustering process.

Variational Quantum Eigensolver (VQE):

Purpose: Used for solving optimization problems, including those in chemistry and materials science.

Key Feature: Applies a variational approach to find the minimum eigenvalue of a given Hamiltonian.

Choosing the right model

Classic Neural Network:

Framework: Classical neural networks operate in a classical computing framework, using classical bits for information representation.

Processing: Computation is based on classical binary logic, involving weighted sums and activation functions in a layer-wise fashion.

Superposition and Entanglement: Lacks the inherent ability for quantum superposition and entanglement, limiting parallelism and potential computational speedup.

Training Algorithm: Typically trained using classical optimization algorithms like gradient descent.

Memory: Stores and processes information using classical bits with well-defined states (0 or 1).

Quantum Neural Network:

Framework: Operates within a quantum computing framework, utilizing quantum bits or qubits for information representation.

Processing: Leverages quantum principles, such as superposition and entanglement, to perform parallel computations across multiple states simultaneously.

Superposition and Entanglement: Can exploit quantum superposition and entanglement, potentially offering advantages in certain computational tasks.

Training Algorithm: May involve quantum algorithms like quantum gradient descent or variational quantum circuits for optimization.

Memory: Uses qubits, which can exist in a superposition of states, allowing for richer and more complex representations.

Proposed Solution

Why will it work?

Selecting a Model: Quantum Neural Network

Neural Networks (particularly LSTM) are well-suited for capturing sequential patterns and are effective in modeling time-series data, making them suitable for forecasting demand.

By considering factors like rate of sale, seasonality, and sales forecast accuracy, LSTM networks can provide more accurate predictions compared to traditional methods.

Based on this description and the previous research for Quantum ML models, we opted for this solution.

Why will it work?

Quantum vs Classical Neural Networks

We will be doing a comparison between the LSTM neural network and the Quantum Neural Network, this is because:

- a) We want to use a model that can be in "similar conditions"
- Having a similar methodology, compare the results
- Explore also if there's a significant change between models and also having a challenge model
- d) Compare results

Innovation Quotient

Our solution harnesses the power of quantum computing in a truly innovative approach to retail inventory management.

- Breakthrough application of quantum computing in the retail sector.
- A unique hybrid blend of classic and quantum neural networks.
- Novel, SKU-based method for precision optimization of stock levels.

Deep dive into Proposed Solution

We've harnessed both classic and quantum modeling to revamp the replenishment system, creating an optimized, data-driven approach for increased efficiency and accuracy.

- Utilization of deep and quantum neural networks for individualized forecasting and precise predictions.
- SKU-based replenishment enables a detailed understanding of each product's needs.
- Historical sales data and variables such as seasonality guide accurate future demand predictions.
- Lead time predictions ensure no understock or overstock scenarios, optimizing costs.
- The ultimate goal is a harmonious balance between stock availability and supply chain costs.

Early Experiments

In the early stages of our project, we've seen promising results from the classic neural network, and are optimistic about the quantum model's potential.

- The classic neural network has improved stock prediction, reducing costs and boosting revenue.
- Research suggests the quantum model could greatly surpass the classic one in speed and accuracy due to its high-level processing abilities.
- Our work developing the Quantum Neural Network is ongoing, but initial modeling is promising.

Roadmap for Phase II

As we gear up for Phase II of our project, we remain cognizant of potential challenges and are ready to take definitive steps to overcome these, further refining our Quantum Neural Network model.

- Our primary challenge is debugging and perfecting our Quantum Neural Network algorithm.
 We plan to involve more quantum computing experts to expedite this process.
- Key milestones include achieving a deployment-ready status of our quantum model and demonstrating its superiority over the classic model.
- To iteratively enhance our models, we'll track prediction accuracy and cost savings in a real retail environment.

We are confident that the meticulous plans detailed for Phase II will allow us to create an impactful, efficient, and optimized retail replenishment system.

Conclusions

Our innovative solution presents a groundbreaking approach to inventory management and reaffirms the transformative potential of quantum computing in retail.

- We leverage both classical and quantum neural networks to address intricate challenges in SKU-based replenishment.
- Our strategy capitalizes on the emerging quantum computing field, boosting processing speed and prediction accuracy far beyond classical algorithms.
- The proposed solution assures substantial cost savings, fosters customer satisfaction, and revolutionizes retail inventory management.

Thanks

Time for Q&A

