Lezioni di Ricerca Operativa

Università degli Studi di Salerno

Lezione n° 6

- Ottimi globali e locali
- Risoluzione grafica di un problema di PL
- Definizione di Iperpiano e Semispazi.
- Insiemi convessi.
- Politopi e poliedri.

R. Cerulli – F. Carrabs

Ottimi globali e ottimi locali

$$x \in X \subseteq \mathbb{R}^n$$

Definizione (Ottimo Globale)

Un punto $\underline{x}^* \in X$ è un **ottimo globale** per la funzione di minimo $f(\underline{x})$ se e solo se: $f(\underline{x}^*) \le f(\underline{x}) \ \forall \underline{x} \in X$.

Definizione (Ottimo Locale)

Un punto $\underline{x}' \in X$ è un **ottimo locale** per la funzione di minimo $f(\underline{x})$ se e solo se: $f(\underline{x}') \le f(\underline{x}) \forall \underline{x} \in N(\underline{x}'; \varepsilon)$ con $\varepsilon > 0$.

- Ogni ottimo globale è anche ottimo locale, in generale non è vero il viceversa
- Ci sono però casi particolari in cui tutti gli ottimi locali sono anche ottimi globali

Un esempio

L'azienda Rossi &C. ha vinto una gara d'appalto per la produzione di due tipologie di leghe di acciaio L1 ed L2. Il contratto prevede il pagamento di 10 milioni di euro a condizione che siano rispettate le seguenti proporzioni tra le tonnellate delle due leghe prodotte.

- ➤ La metà delle tonnellate di L1 prodotte non devono superare, per al più 3 unità, le tonnellate di L2 prodotte;
- Le tonnellate di L2 possono essere al più di uno superiori a quelle di L1;
- ➤ Le tonnellate di L2 prodotte non devono mai superare il doppio delle tonnellate di L1 decrementate di 2.

Sapendo che l'azienda spende 3 milioni di euro per produrre una tonnellata della lega L1 ed un milione di euro per la lega L2, individuare un piano di produzione che rispetti i vincoli di produzione minimizzando però i costi di produzione.

L'attuale piano di produzione individuato prevede la produzione di 2 tonnellate di L1 e mezza tonnellata di L2 per una spesa totale di 6,5 milioni di euro e un profitto finale pari a 10 - 6,5 = 3,5 milioni. Si può fare di meglio?

min $z = 3x_1 + x_2$

$$(1) \qquad \frac{1}{2}x_1 - x_2 \qquad \le 3$$

(2)
$$-x_1 + x_2 \leq 1$$

(3)
$$2x_1 - x_2 \ge 2$$

$$(4) x_1, x_2 \geq 0$$

La metà delle tonnellate di L1 prodotte non devono superare, per al più 3 unità, le tonnellate di L2 prodotte

min
$$z = 3x_1 + x_2$$

$$(1) \qquad \frac{1}{2}x_1 - x_2 \qquad \le 3$$

(2)
$$-x_1 + x_2 \leq 1$$

(3)
$$2x_1 - x_2 \ge 2$$

$$(4) x_1, x_2 \geq 0$$

La metà delle tonnellate di L1 prodotte non devono superare, per al più 3 unità, le tonnellate di L2 prodotte

Le tonnellate di L2 possono essere al più di uno superiori a quelle di L1

min
$$z = 3x_1 + x_2$$

$$(1) \qquad \frac{1}{2}x_1 - x_2 \qquad \le 3$$

(2)
$$-x_1 + x_2 \leq 1$$

(3)
$$2x_1 - x_2 \ge 2$$

$$(4) x_1, x_2 \geq 0$$

La metà delle tonnellate di L1 prodotte non devono superare, per al più 3 unità, le tonnellate di L2 prodotte

Le tonnellate di L2 possono essere al più di uno superiori a quelle di L1

Le tonnellate di L2 prodotte non devono mai superare il doppio delle tonnellate di L1 decrementate di 2

a) Risolvere graficamente il problema

min $z = 3x_1 + x_2$

$$(1) \quad \frac{1}{2}x_1 - x_2 \le 3$$

(2)
$$-x_1 + x_2 \le 1$$

(3)
$$2x_1 - x_2 \ge 2$$

(4)
$$x_1, x_2 \ge 0$$

Punto di ottimo (1,0)

Valore ottimo $2z^* = 3$

Gradiente (3,1)

Un problema di PL può essere:

Non Ammissibile

quando $X = \emptyset$ ossia quando non esistono soluzioni ammissibili

Ammissibile con valore ottimo illimitato

```
quando z^* = -\infty (PL di minimo) oppure z^* = +\infty (PL di massimo) (N.B. non esiste un punto di ottimo x^*)
```

Ammissibile con soluzione ottima finita:

```
(PL di minimo) se esiste un punto \underline{x}^* \in X : f(\underline{x}^*) \le f(\underline{x}) \ \forall \underline{x} \in X
(PL di massimo) se esiste un punto \underline{x}^* \in X : f(\underline{x}^*) \ge f(\underline{x}) \ \forall \underline{x} \in X
```

- > unico punto di ottimo
- > infiniti punti di ottimo

La risoluzione di un problema di PL comporta sempre la restituzione di una delle precedenti tre risposte.

Definizione (Problema inammissibile)

Un problema di ottimizzazione si dice **inammissibile** se X= \emptyset , cioè non esistono soluzioni ammissibili.

Graficamente:

$$X = \emptyset \Longrightarrow \nexists \underline{x} \in \mathbb{R}^n : A\underline{x} \ge b, \underline{x} \ge \underline{0}$$

Definizione (Ottimo illimitato)

Un problema di ottimizzazione di minimo si dice **illimitato inferiormente** se scelto un qualsiasi scalare k, esiste sempre un punto <u>x</u>∈X tale che f(<u>x</u>) < k.

(**n.b.** una soluzione con valore ottimo illimitato implica un insieme di ammissibilità X illimitato, ma non è vero il viceversa)

Definizione (Ottimo illimitato)

Un problema di ottimizzazione di massimo si dice **illimitato superiormente** se scelto un qualsiasi scalare k, esiste sempre un punto <u>x</u>∈X tale che f(<u>x</u>) > k.

X illimitato

min $z = -x_1 - x_2$ (1) $\frac{1}{2}x_1 - x_2 \le 3$

(2) $-x_1 + x_2 \le 1$

(3) $2x_1 - x_2 \ge 2$

 $(4) \quad x_1, x_2 \geq 0$

b) Determinare una nuova funzione obiettivo che abbia ottimo illimitato

 $\min z = x_2$

$$(1) \quad \frac{1}{2}x_1 - x_2 \le 3$$

(2)
$$-x_1 + x_2 \le 1$$

(3)
$$2x_1 - x_2 \ge 2$$

(4)
$$x_1, x_2 \ge 0$$

c) Determinare una nuova funzione obiettivo che abbia infiniti punti di ottimo

min $z = 2x_1 - x_2$

 $(1) \quad \frac{1}{2}x_1 - x_2 \le 3$

(2) $-x_1 + x_2 \le 1$

(3) $2x_1 - x_2 \ge 2$

(4) $x_1, x_2 \ge 0$

c) Determinare una nuova funzione obiettivo che abbia infiniti punti di ottimo

Due problemi di PL

PROBLEMA 1:

Una multinazionale produce due versioni di una bevanda energetica: normale e super. Per ogni quintale di bevanda venduta, l'azienda ha un profitto pari ad 1000 euro per il tipo normale e 1200 euro per il tipo super. Nella produzione è necessario utilizzare in sequenza tre tipi di macchinari, A, B, C, che ogni giorno possono lavorare un numero di ore massimo come riportato nella tabella seguente:

	ORE	NORMALE	SUPER
A	4	1	0.4
В	6	0.75	1
\mathbf{C}	3.5	1	0

Per produrre un quintale di bevanda (normale o super) è richiesto l'utilizzo delle macchine per il tempo indicato nella stessa tabella. L'obiettivo del signor Rossi è quello di pianificare la produzione giornaliera dei due tipi di bevande al fine di massimizzare il profitto (supponendo che l'intera produzione verrà venduta).

- Il nostro obiettivo è decidere quanti quintali produrre per ogni tipologia di bevanda; assegniamo ad ogni tipologia di bevanda una variabile (x₁=normale, x₂=super)
- I vincoli del problema devono modellare il rispetto del numero massimo di ore di lavorazione per ogni macchinario

$$\max 1000x_{1} + 1200x_{2}$$

$$x_{1} + 0.4x_{2} \le 4$$

$$x_{1} \le 3.5$$

$$0.75x_{1} + x_{2} \le 6$$

$$\underline{x} \ge \underline{0}$$

Due problemi di PL

PROBLEMA 2:

Il cuoco del ristorante dove lavoriamo ci ha assegnato il compito di andare a comprare le mele e le arance con 20 euro in tasca. Il costo di ogni kg di mele è pari a 5 euro mentre ogni kg di arance costa 2 euro. Inoltre il cuoco non vuole che acquistiamo più di 3.5 kg di mele. Infine il fruttivendolo questa settimana offre un buono sconto da 1 euro su ogni kg di mele e di 1.2 euro su ogni kg di arance acquistato. Questi buoni sconto sono però offerti a condizione che il numero di kg di mele, moltiplicato per 3, più il numero di kg di arance, moltiplicato per 4, non superi i 24 kg. L'obiettivo da raggiungere è quello di ottenere il massimo sconto (da utilizzare per spese successive), rispettando però le indicazioni sia del cuoco che del fruttivendolo.

- x₁=chili di mele da acquistare, x₂=chili di arance da acquistare
- Funzione obiettivo: Massimizzare il valore totale dei buoni sconto ottenuti
- Vincolo 1: rispetto del limite di spesa
- Vincolo 2: rispetto della richiesta del cuoco
- Vincolo 3: rispetto della condizione imposta dal fruttivendolo per avere accesso ai buoni sconto

max
$$x_1 + 1.2x_2$$

$$5x_1 + 2x_2 \le 20$$

$$x_1 \le 3.5$$

$$3x_1 + 4x_2 \le 24$$

$$\underline{x} \ge \underline{0}$$

$$\max 1000x_1 + 1200x_2$$

$$x_1 + 0.4x_2 \le 4$$

$$x_1 \le 3.5$$

$$0.75x_1 + x_2 \le 6$$

$$\underline{x} \ge \underline{0}$$

max
$$x_1 + 1.2x_2$$

$$5x_1 + 2x_2 \le 20$$

$$x_1 \le 3.5$$

$$3x_1 + 4x_2 \le 24$$

$$\underline{x} \ge \underline{0}$$

- I vincoli dei due problemi definiscono lo stesso insieme di soluzioni ammissibili (possibili assegnamenti di valori alle variabili);
- Data la proporzionalità tra i coefficienti di costo delle due funzioni obiettivo,
 le soluzioni ottime di P1 e P2 coincidono;
- Il valore della funzione obiettivo all'ottimo per P1 (<u>c^Tx</u>) sarà pari a 1000 volte quello di P2.

Risolvere i seguenti problemi

max $1000x_1 + 1200x_2$

$$x_1 + 0.4x_2 \le 4$$

$$x_1 \le 3.5$$

$$0.75x_1 + x_2 \le 6$$

$$\underline{x} \ge \underline{0}$$

max $x_1 + 1.2x_2$

$$5x_1 + 2x_2 \le 20$$

$$x_1 \le 3.5$$

$$3x_1 + 4x_2 \le 24$$

$$\underline{x} \ge \underline{0}$$

Iperpiano: generalizzazione della retta

Definizione (Iperpiano)

Un **iperpiano** in \mathbb{R}^n è l'insieme dei punti $H = \{\underline{x} \in \mathbb{R}^n : \underline{p}^T \underline{x} = k\}$ dove p^T è un vettore non nullo in \mathbb{R}^n e k è uno scalare.

- \succ Il vettore \underline{p}^T è il **gradiente** o **normale** dell'iperpiano.
- Il verso del gradiente indica la direzione di crescita dell'iperpiano.

Iperpiano

Consideriamo un punto \underline{x}_0 di H ed il gradiente \underline{p}^T . L'iperpiano H è l'insieme dei vettori \underline{x} tali che il vettore (\underline{x} - \underline{x}_0) è perpendicolare a p^T .

$$\underline{x}_0 \in H \implies \underline{p}^T \underline{x}_0 = k$$

$$\underline{x} \in H \implies p^T \underline{x} = k$$

sottraendo:

$$\underline{p}^T(\underline{x} - \underline{x}_0) = 0$$

se due vettori hanno prodotto interno nullo allora sono perpendicolari.

Esempio in \mathbb{R}^2

Sia \underline{x}_0 =(1,5/2) un punto di H, e verifichiamo che un qualunque altro punto $\underline{x} \in H$ (ad esempio (-2,1)) è tale che \underline{x} - \underline{x}_0 è perpendicolare a \underline{p}

$$H = \left\{ (x_1, x_2) : p_1 x_1 + p_2 x_2 = k \right\}$$
$$= -\frac{1}{2} x_1 + x_2 = 2$$

Definizione (Semispazio)

Un **semispazio** in \mathbb{R}^n è l'insieme dei punti $\{\underline{x} \in \mathbb{R}^n : \underline{p}^T \underline{x} \ge k\}$ oppure $\{\underline{x} \in \mathbb{R}^n : \underline{p}^T \underline{x} \le k\}$ dove \underline{p}^T è un vettore non nullo in \mathbb{R}^n e k è uno scalare.

Un iperpiano H divide lo spazio \mathbb{R}^n cui appartiene in due semispazi.

$$H = \{ \underline{x} \in \mathbb{R}^n : \underline{p}^T \underline{x} = k \}$$

$$S_1 = \{ \underline{x} \in \mathbb{R}^n : \underline{p}^T \underline{x} \ge k \} \qquad S_2 = \{ \underline{x} \in \mathbb{R}^n : \underline{p}^T \underline{x} \le k \}$$

Esempio

Insieme convesso

Definizione (Insieme Convesso)

Un insieme X è **convesso** se e solo se dati due punti $\underline{x} \in X$ e $\underline{y} \in X$ ogni punto \underline{w} ottenuto come loro combinazione convessa ossia

$$\underline{w} = \lambda \underline{x} + (1 - \lambda)\underline{y} \qquad \lambda \in [0, 1]$$

appartiene ad X.

insieme NON convesso

Alcuni insiemi convessi

Lemma

L'insieme $X = \{\underline{x} : A\underline{x} = \underline{b}, \ \underline{x} \geq \underline{0}\}$ è un insieme convesso

DIM. Dobbiamo dimostrare che scelti due qualsiasi punti \underline{x} e \underline{y} di X, un qualunque punto \underline{w} ottenuto dalla loro combinazione convessa appartiene ancora ad X. Poichè \underline{x} e \underline{y} appartengono ad X abbiamo che:

$$\underline{x} \in X \implies A\underline{x} = b, \ \underline{x} \ge \underline{0}$$
 e $\underline{y} \in X \implies A\underline{y} = b, \underline{y} \ge \underline{0}$

Inoltre sia $\underline{w} = \lambda \underline{x} + (1 - \lambda)\underline{y}$ con $\lambda \in [0,1]$. Premoltiplicando tutto per la matrice A otteniamo:

$$A\underline{w} = \lambda A\underline{x} + (1 - \lambda)A\underline{y}$$
 con $\lambda \in [0,1]$

Andando a sostituire ad $A\underline{x}$ e ad Ay il valore \underline{b} si ha che:

 $A\underline{w} = \lambda \underline{b} + (1 - \lambda)\underline{b} = \underline{b}$ quindi il sistema di equazioni è soddisfatto da \underline{w}

Infine poiché $\underline{x} \geq \underline{0}$, $\underline{y} \geq \underline{0}$ e $\lambda \in [0,1]$ si ha che $w_i = \lambda x_i + (1-\lambda)y_i \geq 0 \ \forall i$ In conclusione, poiché $\underline{A}\underline{w} = \underline{b}$ e $\underline{w} \geq \underline{0}$ si ha che $\underline{w} \in X$.

Alcuni insiemi convessi

Lemma

L'iperpiano $H = \{\underline{x} : p^T \underline{x} = k\}$ è un insieme convesso.

Lemma

I semispazi $\{\underline{x}: p^T\underline{x} \ge k\}$ e $\{\underline{x}: p^T\underline{x} \le k\}$ sono insiemi convessi.

Lemma

L'intersezione di iperpiani e semispazi genera un insieme convesso.

Poliedri

Definizione (Poliedro)

Un **poliedro** è l'insieme dei punti ottenuto dall'intersezione di un numero finite di iperpiani e semispazi.

Lemma

Il poliedro è un insieme convesso.

Un poliedro può essere:

Limitato (politopo)

Un poliedro X è limitato quando esiste uno scalare k tale che $\|\underline{x}\| \le k \quad \forall \underline{x} \in X$.

Illimitato

Esempio: politopo

Insieme convesso

Esempio: poliedro illimitato

Funzione convessa

Definizione (Funzione convessa)

Una funzione $f(\underline{x})$ si dice convessa su insieme X se, presi comunque due punti \underline{x}' , $\underline{x}'' \in X$ risulta che: $f(\lambda \underline{x}' + (1-\lambda)\underline{x}'') \le \lambda f(\underline{x}') + (1-\lambda)f(\underline{x}'')$ con $\lambda \in [0,1]$

Teorema (Funzione convessa)

Una funzione lineare del tipo $\underline{c}^T\underline{x}$ è una funzione convessa.

DIM. Dalla definizione di funzione convessa, sostituendo la $f(\underline{x})$ con $\underline{c}^T\underline{x}$ si ha:

$$\begin{array}{ccc}
f(\lambda \underline{x}' + (1 - \lambda)\underline{x}'') & \longrightarrow & \underline{c}^{\mathsf{T}} \lambda \underline{x}' + \underline{c}^{\mathsf{T}} (1 - \lambda)\underline{x}'' \\
\lambda f(\underline{x}') + (1 - \lambda)f(\underline{x}'') & \longrightarrow & \lambda \underline{c}^{\mathsf{T}} \underline{x}' + (1 - \lambda)\underline{c}^{\mathsf{T}} \underline{x}''
\end{array} \right} \quad \text{uguali}$$

Poiché $f(\lambda \underline{x}' + (1-\lambda)\underline{x}'') = \lambda f(\underline{x}') + (1-\lambda)f(\underline{x}'')$ la funzione $\underline{c}^T\underline{x}$ è convessa.

Ottimi globali e ottimi locali

Teorema (ottimi locali e globali)

Se f è una funzione di minimo convessa e X è un insieme convesso allora ogni ottimo locale \underline{x}' di f su X (se ne esistono) è anche un ottimo globale.

DIM. Ragioniamo per assurdo e supponiamo che l'ottimo locale \underline{x}' non sia un ottimo globale. Quindi deve esistere un $\underline{x}'' \in X$ tale che $f(\underline{x}'') < f(\underline{x}')$. Il segmento $\lambda \underline{x}' + (1 - \lambda)\underline{x}''$, con $\lambda \in [0, 1]$, è interamente contenuto in X perché quest'ultimo è un insieme convesso. Inoltre la convessità di f implica che $\forall \lambda \in [0, 1]$:

$$f(\lambda \underline{x}' + (1-\lambda) \underline{x}'') \leq \lambda f(\underline{x}') + (1-\lambda)f(\underline{x}'') < \lambda f(\underline{x}') + (1-\lambda)f(\underline{x}') = f(\underline{x}')$$

Quindi il valore di f in un qualsiasi punto del segmento tra \underline{x}' e \underline{x}'' è strettamente minore di $f(\underline{x}')$. Dal momento che, per ogni $\varepsilon > 0$, l'intorno $N(\underline{x}', \varepsilon)$ di \underline{x}' contiene almeno un punto \underline{w} del segmento diverso da \underline{x}' e $f(\underline{w}) < f(\underline{x}')$ allora \underline{x}' non è un ottimo locale. Assurdo.

Ottimi globali e ottimi locali

$$\min z = \underline{c}^T \underline{x}$$

$$A\underline{x} = \underline{b} \quad (1)$$

$$\underline{x} \ge 0 \quad (2)$$

Poiché

- la funzione obiettivo $f(\underline{x}) = \underline{c}^T \underline{x}$ è una funzione convessa e
- l'insieme $X = \{\underline{x}: A\underline{x} = \underline{b}, \underline{x} \ge \underline{0}\}$ è un insieme convesso

vale il teorema precedente e quindi nei problemi di PL gli ottimi locali e globali coincidono.