Honors Calculus, Math 1450 - Assignment I Solution

$$f(x) = x^{-2} \Rightarrow f(x) = -2x^{-3}$$

•
$$f(x) = x^{T} \Rightarrow f(x) = T x^{T-1}$$
 (TT is a constant)

$$f(-2) = \lim_{h \to 0} \frac{f(2+h) - f(2)}{h} = \lim_{h \to 0} \frac{(2+h)^3 - (-2)^3}{h}$$

$$= \lim_{h \to 0} \frac{-8 + 12h - 6h^2 + h^3 - (-8)}{h} = \lim_{h \to 0} \frac{12h - 6h^2 + h^3}{h}$$

$$= \lim_{h \to 0} \frac{12 - 6h + h^2}{h^2} = (2 + 12h - 6h + h^2)$$

By Product Rule, we have
$$(fg) = fg + gf$$
 and $(fg)(1) = f(1) \cdot g(1) + g(1) \cdot f(1)$

$$= 3 \cdot 2 + (-3) \cdot (1) = 6 - 3 = 3$$

(a)
$$f(x)=2x^3$$
, $\frac{df}{dx}=6x^2$

(b)
$$fox) = \frac{1}{\chi^2+1}$$
. By Quotient Rule, we have

$$\frac{df}{dx} = \frac{(1)^{2}(x^{2}+1)^{2}}{(x^{2}+1)^{2}} = -\frac{2x}{(x^{2}+1)^{2}}$$

Another way:
$$f(x) = \frac{1}{x^2+1} = (x^2+1)^{-1}$$
. Then

By Chain Rule, we have

$$f(x) = -1 \cdot (x+1)^{2} \cdot (x+1) = -(x+1)^{2} \cdot (2x) = -\frac{2x}{(x+1)^{2}}$$

$$f(x) = \frac{2x^3}{x+1}$$
 By Quotient Rule, we have

$$\frac{df}{dx} = \frac{(2x^3)(x+1) - (2x^3)(x+1)}{(x+1)^2} = \frac{6x^2(x+1) - 2x^3}{(x+1)^2} = \frac{4x^3 + 6x^2}{(x+1)^2}$$

(5) By Chath Rule,

$$\frac{d}{dx} \left[(f(x))^2 + 1 \right] = 2 (f(x)) \cdot f(x).$$

$$g'(x) = \lim_{h \to 0} \frac{g(x+h) - g(x)}{h} = \lim_{h \to 0} \frac{f(c(x+h)) - f(cx)}{h}$$

$$= \lim_{h \to 0} \frac{f(cx+ch) - f(cx)}{h} = \lim_{h \to 0} \frac{c}{ch} \cdot \frac{f(cx+ch) - f(cx)}{ch}$$

$$= \lim_{h \to 0} \frac{f(cx+ch) - f(cx)}{ch} = c \cdot f(cx).$$

(a)
$$f(x) = x^3 + 3x^2$$
. Then $f(x) = 3x^2 + 6x \Rightarrow$
 $f'(x) = 6x + 6$.

(b) Given
$$f(x) = x^3$$
. Then $f(x) = 3x^2$.

(c) Given
$$f(x) = ax^2 + bx + c$$
 and a_1b_1c are constants.
 $f(x) = 2ax + b \Rightarrow f(x) = 2a$.

(8) Given curve
$$y = \frac{8}{x^2 + x + z}$$
, Find tangent line of y at $x = 2$.
For a line, we need the slope of the line and a point at the line, quotient rule

(1) Slope at
$$X=2 \Rightarrow \frac{dy}{dx}\Big|_{X=2} = \frac{(8)(x^{2}+x^{2}+2) - (x^{2}+x^{2}+2) \cdot 8}{(x^{2}+x^{2}+2)^{2}}\Big|_{X=2} = \frac{-8 \cdot (2x+1)}{(x^{2}+x^{2}+2)}\Big|_{X=2} = \frac{-8 \cdot 5}{2^{2}+2+2} = \frac{-40}{8} = -5$$

② Given point is
$$(2, y(2)) = (2, \frac{\$}{2+2+2}) = (2, 1)$$

Then, by ① ②, the equation of Largert line is $y-1=-5(x-2)$.

Suppose
$$f$$
 is differentiable.

(a) $\lim_{h \to 0} \frac{f(x+5h)-f(x)}{h} = \lim_{h \to 0} \frac{f(x+5h)-f(x)}{5h} = \lim_{h \to 0} \frac{f(x+5h)-f(x)}{5h}$

$$= 5 \lim_{h \to 0} \frac{f(x+5h)-f(x)}{5h} = 5 \cdot f(x).$$

(b)
$$\lim_{h \to 0} \frac{f(x) - f(x+h)}{h} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = -\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= -f(x).$$

(10) Given curve y=ex. Find the equation of normal line of y at x=2. Fait: Let ST be the slope of tangent line and In be the slope of normal line. We have S_T $S_n = -I$. $\Rightarrow S_n = -\frac{1}{S_T}$. · Slope of normal line at x=2: First, we find $S_T = \frac{dy}{dx}|_{x=2} = e^x|_{x=2} = e^z$. Then $S_n = -\frac{1}{0z}$ · PoTut: (2, y(2)) = (2, e). Then the line is $y-e^2=-\frac{1}{e^2}(x-2)$. (11). Given $y = (x^{-1} + 2x)^{5}$. Then by chain Rule

 $\frac{dy}{dx} = 5(x^{\dagger}t2x)^{\dagger} \cdot (x^{\dagger}t2x)^{\prime}$ $=5(x^{1}+2x)^{4}\cdot[-x^{2}+2]$

$$\frac{d}{dx}(xy+yx^2) = \frac{d}{dx}(x+y)$$

$$\Rightarrow \frac{d}{dx}(xy) + \frac{d}{dx}(yx^2) = 1 + \frac{dy}{dx}$$

$$\Rightarrow$$
 $y + x \frac{dy}{dx} + x^2 \frac{dy}{dx} + 2xy = 1 + \frac{dy}{dx}$

$$\Rightarrow y + 2xy - 1 = \frac{dy}{dx} - x \frac{dy}{dx} - x^2 \frac{dy}{dx}$$

$$\Rightarrow$$
 y+zxy-(=(1-x-x²) $\frac{dy}{dx}$

$$\Rightarrow \frac{dy}{dx} = \frac{y}{1-x-x^2}$$

Thus,
$$\frac{dy}{dx}\Big|_{(x,y)=(1,1)} = \frac{y+2xy-1}{1-x-x^2}\Big|_{(x,y)=(1,1)} = \frac{1+2\cdot1\cdot1-1}{1-1-1^2} = \frac{2}{-1}=-2$$

(13). Given a curve $y = \frac{1-x}{x+1}$ and -a line 3x+2y=1.

To Find a tangent line of y such that this line is parallel to 3x+2y=1, it means these two lines have the same slope.

$$3x+2y=1 \Rightarrow 2y=1-3x \Rightarrow y=-\frac{3}{2}x+\frac{1}{2} \Rightarrow$$

the slope of this line is $-\frac{3}{2}$.

Then, find x such that
$$y(x) = -\frac{3}{2}$$
, we have $y(x) = \frac{3}{2}$, we have $y(x) = \frac{(1-x)(x+1)-(1-x)(x+1)}{(x+1)^2} = \frac{(x+1)^2}{(x+1)^2}$

$$= \frac{-x - 1 - 1 + x}{(x + 1)^{2}} = -\frac{2}{(x + 1)^{2}}$$
Thus
$$= \frac{2}{(x + 1)^{2}} = -\frac{2}{(x + 1)^{2}}$$

$$= \frac{2}{(x + 1)^{2}} = -\frac{2}{(x + 1)^{2}} = -\frac{2}{(x + 1)^{2}}$$

$$= \frac{2}{(x + 1)^{2}} = -\frac{2}{(x + 1)^{2}} =$$

• As
$$X = -1 + \frac{2}{3}$$
, we have $y = \frac{2 - \frac{2}{3}}{\frac{2}{3}} = \frac{13}{2}(2 - \frac{2}{3}) = 13 - 1$ and

fangout line is
$$y-(B-1) = -\frac{3}{2}[X-(-1+\frac{2}{6})]$$

. As
$$X = -1 - \frac{2}{13}$$
. We have $y = \frac{2 + \frac{2}{13}}{-\frac{2}{13}} = -\frac{13}{2}(2 + \frac{2}{13}) = -13 - 1$
and largent line is $y - (-13 - 1) = -\frac{2}{2}[X - (-1 - \frac{2}{13})]$.

Lot $y = x^2 \cdot tan^{-1}(2x)$. By Chain Rie and Product Rule, $y = (x^2) \tan(2x) + x^2 [\tan(2x)]$ = $2x \cdot \tan(2x) + x^2 \frac{1}{1 + (2x)^2} \cdot (2x)$ $=2x-\tan(2x)+\frac{2x^2}{1+(2x)^2}$ (15). Let y=tan (sino), We have (y=[tan(sino)] y= 2 [tan (sino)]. (tan (sino)) = 2 [tan(sino)]. Sec2(sino). [sino] = 2. [tan(sino)] sec (sino) coso. (16). Let 4=cos (4x)+sin (2x). We obtain $\frac{dy}{dz} = 2 \left[\cos(ux) \right] \left[\cos(ux) \right] + 2 \left[\sin(2x) \right] \cdot \left[\sin(2x) \right]$ = $2 \cos(4x) \cdot [-4\sin(4x)] + 2 \sin(2x) \cdot 2 \cos(2x)$ =-8 cos(4x) sin(4x) + 4 sin(2x) cos(2x). Find the Langert line at X= II, we have ax x=== -8 cos(4. T) · sin(4. T) + 4 sin(2. T) cos(2. T) = 0 and point (7,4(4))=(7,2), then langest line is 4=2.

8,

(17) If fox = esin(x), we have $f(x) = (sin(x)) \cdot e^{sin(x)} = cos(x) \cdot e^{sin(x)}$ Since e >0 YxeIR and -1 < cos(x) <1 YxeIR We have $cos(x) \cdot e^{sin(x)} \leq e^{sin(x)}$ \Rightarrow $f(x) \leq f(x)$. (18). The function of position of x wiret time is X(t)= 11+4t2, for t>0, (xit)=(1+4t2)2) Then Velocity is $x(t) = \frac{dx}{dt} = \frac{1}{2}(1+4t^2)^{\frac{1}{2}}$, gt = \frac{1}{2} \frac{1}{1+4+2} \display \frac{4\times}{1+4+2} and acceleration is $\chi''(x) = \frac{dx}{dt^2} = \left[\frac{1}{2}(1+4t^2)^{\frac{1}{2}} + 3t\right]'$ product Rule $=4(1+4t^{-\frac{1}{2}}+4t(-\frac{1}{2})(1+4t^{2})^{\frac{2}{3}}$ (8t) $=4(1+4t^2)^{\frac{3}{2}}-16t^2(1+4t^2)^{\frac{3}{2}}$ To find limit velocity, we have

9.

Given the trajectory of a particle $\frac{y(x)}{4} + x(x) = 1$.

To find the point(s) at which the velocity in the vertical direction equals the Velocity in the horizontal direction it is sufficient to have a point (x,y) such that $\frac{dx}{dt} = \frac{dy}{dt}$, or $\frac{dy}{dt} = 1$.

Then, do $\frac{d}{dt}$ on $\frac{y^2+x^2=1}{4}$, we have $\frac{dy}{dt} = \frac{2x}{y} = \frac{4x}{y} = 1$. $\frac{1}{4} \cdot 2y \cdot \frac{dy}{dt} + 2x \cdot \frac{dx}{dt} = 0 \Rightarrow \frac{dy}{dx} = \frac{2x}{y} = \frac{4x}{y} = 1$. $\Rightarrow 4x = y$, use this equality we have. $\frac{(-4x)^2+x^2=1}{4} \Rightarrow 4x^2+x^2=1 \Rightarrow 5x^2=1 \Rightarrow x=\pm 15$.

There, $x = \frac{1}{5} \cdot y = \frac{4}{15}$ or $x = -\frac{1}{5} \cdot y = \frac{4}{5}$.

$$\frac{d^2y}{dt^2} = -y, -(x)$$

To check (a)
$$y = \sin(x)$$
 is a solution of (x) , we have $\frac{d^2y}{dx^2} = \frac{d}{dt}(\frac{dy}{dt}) = \frac{d}{dt}(\cos(t)) = -\sin(t)$, and $-y = -\sin(t)$ which is equal to $\frac{d^2y}{dx^2}$.

To check (b)
$$y = cozit$$
) is a solution of (x) , we have $\frac{d^2y}{dt^2} = \frac{d}{dt} \left(\frac{dy}{dt} \right) = \frac{d}{dt} \left(-\sin t \right) = -\cos(t)$ and $-y = -\cos(t)$ which is exact $\frac{d^2y}{dt^2}$.

Find the solution of $\frac{d^2y}{dt^2} = -4y$. Since this differential equation has similar form of (x). We can guess the solutions are $y = \sin(\alpha t)$ and $y = \cos(\alpha t)$ for an undetermined constant a

For
$$y=sin(at)$$
, we have $\frac{dy}{dt^2}=-asin(at)$ and $-4y=-4sin(at)$
 $\Rightarrow -asin(at)=-4sin(at)$ $\Rightarrow a=4$ $\Rightarrow a=\pm2$
So $y=sin(2t)$ and $y=sin(-2t)$ are the solutions,

Similarly, $y = \cos(2t)$ and $y = \cos(-2t)$ are the solutions.