

Deep Learning

Logistic Regression Classifier

Dr. Mehran Safayani

կ safayani@iut.ac.ir

safayani.iut.ac.ir

https://www.aparat.com/mehran.safayani

https://github.com/safayani/deep_learning_course

Supervised Learning

Input(x)	Output (y)	Application
Home features	Price	Real Estate
Ad, user info	Click on ad? (0/1)	Online Advertising
Image	Object (1,,1000)	Photo tagging
Audio	Text transcript	Speech recognition
English	Chinese	Machine translation
Image, Radar info	Position of other cars	Autonomous driving

Basics of Neural Network Programming

Binary Classification

Binary Classification

1 (cat) vs 0 (non cat)

Binary classification

• Notation

$$(\vec{x}, y)$$
 $x \in R^{n_x}, y \in \{0,1\}$

Binary classification

• m training example: $\{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}, ..., (x^{(m)}, y^{(m)})\}$

Logistic Regression

• Given x, output $\hat{y} = P(y=1|x)$ $0 \le \hat{y} \le 1$

 $x \in \mathbb{R}^{n_x}$ parameters: $w \in \mathbb{R}^{n_x}$, $b \in \mathbb{R}$

$$\hat{\mathbf{y}} = \mathbf{w}^{\mathrm{T}} \mathbf{x} + \mathbf{b}$$

Sigmoid function $\sigma(z) = \frac{1}{1 + e^{-z}}$

if z large $\sigma(z) \approx 1$

if z large negative $\sigma(z) \approx 0$

Logistic Regression

•
$$\hat{y} = \sigma(\underbrace{w^T x + b}_{z})$$

$$\hat{y} = w^T x$$

$$x_0 = 1, x \in \mathbb{R}^{n_x + 1}$$

$$\begin{bmatrix} b = w_0 \\ w_1 \\ w_2 \\ w_3 \\ \vdots \\ \vdots \\ \vdots \\ w \end{bmatrix}$$
• $\hat{y} = w^T x$

Logistic Regression cost function

• Loss (error) function: $L(\hat{y}, y) = \frac{1}{2}(\hat{y} - y)^2 = \frac{1}{2}(\sigma(w^Tx + b) - y)^2$ SE: Square Error

• What is the problem?

•

Convexity

https://mlstory.org/optimization.html

Function h(u) with $u \in X$ is convex if for any $u, v \in X$ and for any $0 \le \lambda \le 1$ we have:

$$h(\lambda u + (1 - \lambda)v) \leq \lambda h(u) + (1 - \lambda) h(v)$$

برای توابع محدب هر بهینه محلی یک بهینه سراسری است.

Cross Entropy

• $L(\hat{y}, y) = -(y \log \hat{y} + (1-y)\log(1-\hat{y}))$

if
$$y=1$$
: $L(\hat{y}, y) = -\log \hat{y}$

if
$$y=0$$
: $L(\hat{y}, y) = -\log(1-\hat{y})$

https://datamonje.com/classification-loss-functions/

• Cost function:
$$J(w,b) = \frac{1}{m} \sum_{i=1}^{m} L(y^{(i)}, \hat{y}^{(i)})$$

$$= -\frac{1}{m} \sum_{i=1}^{m} \left[y^{(i)} \log \hat{y}^{(i)} + (1 - y^{(i)}) \log (1 - \hat{y}^{(i)}) \right]$$

Decision Boundary

$$\theta = \begin{bmatrix} -3\\1\\1 \end{bmatrix}$$

Predict
$$y = 1$$
, $if \underbrace{-3 + x_1 + x_2 \ge 0}_{\theta^T X}$ $x_1 + x_2 \ge 3$

Non-Linear Decision Boundaries

Cost Function

Minimize $J(b, w_1)$

$$b, w_1$$

If
$$J(w_1) = (w_1 - 2)^2$$

$$\frac{dJ(w_1)}{dw_1} = 0$$

$$\frac{dJ(w_1)}{dw_1} = 2 (w_1 - 2) = 0 \longrightarrow w_1 = 2$$

Minimize
$$J(b, w_1)$$

 b, w_1

Minimize
$$J(b, w_1, ..., w_n)$$

 $b, w_1, ..., w_n$

Repeat until convergence: {

For j=0,...,n

$$w_j = w_j - \alpha \frac{dJ(b, w_1, ..., w_n)}{dw_j}$$

 α is learning rate

Updating all w_i Simultaneously

Convergence condition:

$$\|W^{t+1} - W^t\|_2 \le \varepsilon$$

Correct form

temp0 =
$$\boldsymbol{b} - \alpha \frac{dJ(\boldsymbol{b}, w_1)}{db}$$

temp1 =
$$w_1 - \alpha \frac{dJ(b, w_1)}{dw_1}$$

b = temp0

$$w_1$$
 = temp1

Incorrect form

$$\boldsymbol{b} = \boldsymbol{b} - \alpha \frac{d\boldsymbol{J}(\boldsymbol{b}, \boldsymbol{w}_1)}{d\boldsymbol{b}}$$

$$w_1 = w_1 - \alpha \frac{dJ(b, w_1)}{dw_1}$$

خطوط مماس نشان داده شده دارای شیب یا مشتق مثبت هستند. در نتیجه:

$$\frac{dJ(w^1)}{dw^1} > 0, \ \alpha > 0 \implies \alpha \frac{dJ(w^1)}{dw^1} > 0$$

$$\implies w^2 = w^1 - \alpha dw^1$$

w کوچکتر میشود و به سمت چپ حرکت میکنیم.

خطوط مماس نشان داده شده دارای شیب یا مشتق مثبت هستند. در نتیجه:

$$\frac{dJ(w^1)}{dw^1} < 0, \ \alpha > 0 \implies \alpha \frac{dJ(w^1)}{dw^1} < 0$$

$$\implies w^2 = w^1 - \alpha dw^1$$

w بزرگتر میشود و به سمت راست حرکت میکنیم.

Choosing Learning Rate

Gradient Descent Weakness

• 1)
$$\alpha > 0$$

Repeat {

$$w = w - \alpha \frac{dJ(w)}{\underbrace{d(w)}}$$

}until convergence

$$w = w - \alpha dw$$

$$z = w^T x + b$$

- $\hat{y} = a = \sigma(z)$
- $L(a, y) = -(y \log a + (1 y) \log(1 a))$

$$L(a, y) = -(y \log a + (1 - y) \log(1 - a))$$

Computational Graph
$$\frac{da}{dz} = \dot{\sigma}(z) = \underbrace{\sigma(z)}_{a} \underbrace{(1 - \sigma(z))}_{1-a}$$

$$dz = \underbrace{\sigma(z)}_{a} = \underbrace{\underbrace{\sigma(z)}_{1-a}}_{x_1}$$

$$a = \sigma(z) = \frac{1}{1 + e^{-z}}$$

$$v_1$$

$$a = \sigma(z) = \frac{1}{1 + e^{-z}} \qquad \begin{array}{c} x_1 \\ w_1 \\ x_2 \\ w_2 \end{array} \qquad z = w_1 x_1 + w_2 x_2 + b \qquad \hat{y} = a = \sigma(z)$$

$$da = \frac{dL}{da} = \frac{-y}{a} + \frac{1-y}{1-a} = \frac{a-y}{a(1-a)}$$

$$\hat{y} = a = \sigma(z)$$
 $L(a, y)$

$$dz = \frac{dL}{dz} = \frac{dL(a, y)}{dz} = \frac{dL}{da} \times \frac{da}{dz} = \frac{a - y}{a(1 - a)} \times a(1 - a) = a - y$$

$$dw_1 = \frac{dL}{dw_1} = \frac{dL}{\underbrace{dz}} \times \frac{dz}{\underbrace{dw_1}} = x_1 dz \qquad dw_2 = x_2 dz$$

$$db = \frac{dL}{db} = \frac{dL}{dz} \times \frac{\overrightarrow{dz}}{\overrightarrow{db}} = dz$$

•
$$J(w,b) = \frac{1}{m} \sum_{i=1}^{m} L(a^{(i)}, y^{(i)})$$

•
$$a^{(i)} = \hat{y}^{(i)} = \sigma(z^{(i)}) = \sigma(wx^{(i)} + b)$$

•
$$dw_j = \frac{1}{m} \sum_{i=1}^{m} \frac{dL(a^{(i)}, y^{(i)})}{dw_j}$$

Logistic regression on m examples

$$J=0;$$
 $dw_1=0;$ $dw_2=0;$ $db=0;$ $w_1 \leftarrow \operatorname{ran} dom \quad w_2 \leftarrow \operatorname{ran} dom \quad b \leftarrow \operatorname{ran} dom$

Repeat{

For
$$i=1$$
 to m

$$z^{(i)} = w^{T}x^{(i)} + b$$

$$a^{(i)} = \sigma(z^{(i)})$$

$$J += [y^{(i)}Loga^{(i)} + (1 - y^{(i)})Log(1 - a^{(i)})]$$

$$dz^{(i)} = a^{(i)} - y^{(i)}$$

$$dw_{1} += x_{1}^{(i)} dz^{(i)} \qquad dw_{2} += x_{2}^{(i)} dz^{(i)} \qquad db += dz^{(i)}$$

 $dw_2/=m$;

$$w^t = \begin{bmatrix} w_1^t \\ w_2^t \\ b^t \end{bmatrix} w^{t+1} = \begin{bmatrix} w_1^{t+1} \\ w_2^{t+1} \\ b^{t+1} \end{bmatrix}$$

$$\|w^{t+1} - w^t\|_2 \le \varepsilon$$

$$dw = \begin{bmatrix} dw_1 \\ dw_2 \\ db \end{bmatrix}$$

$$||dw|| \le \varepsilon = 10^{-4}$$

$$db/=m$$
;

$$w_1 = w_1 - \alpha \, dw_1$$
 $w_2 = w_2 - \alpha \, dw_2$ $b = b - \alpha \, db$

What's wrong with the code?

} until convergence

J/=m; $dw_1/=m;$

Logistic regression on m examples

```
w_1 \leftarrow \text{ran}dom \quad w_2 \leftarrow \text{ran}dom \quad b \leftarrow \text{ran}dom
Repeat{
J=0; dw_1=0; dw_2=0; db=0;
          For i=1 to m
                    z^{(i)} = w^T x^{(i)} + b
                    a^{(i)} = \sigma(z^{(i)})
```

$$a^{(i)} = \sigma(z^{(i)})$$

$$J += \left[y^{(i)} Log a^{(i)} + (1 - y^{(i)}) Log (1 - a^{(i)}) \right]$$

$$dz^{(i)} = a^{(i)} - y^{(i)}$$

$$dw_1 += x_1^{(i)} dz^{(i)}$$
 $dw_2 += x_2^{(i)} dz^{(i)}$ $db += dz^{(i)}$

$$dw_2 += x_2^{(i)} dz^{(i)}$$

$$dw_2 += x_2^{(i)} dz^{(i)}$$

$$J/=m;$$
 $dw_1/=m;$

$$dw_2/=m$$
;

$$db/=m$$
;

$$w_1 = w_1 - \alpha \, dw_1$$
 $w_2 = w_2 - \alpha \, dw_2$ $b = b - \alpha \, db$

} until convergence

$$w^t = \begin{bmatrix} w_1^t \\ w_2^t \\ b^t \end{bmatrix} w^{t+1} = \begin{bmatrix} w_1^{t+1} \\ w_2^{t+1} \\ b^{t+1} \end{bmatrix}$$

$$\|w^{t+1} - w^t\|_2 \le \varepsilon$$

$$dw = \begin{bmatrix} dw_1 \\ dw_2 \\ db \end{bmatrix}$$

$$||dw|| \le \varepsilon = 10^{-4}$$

•
$$z=0$$
;
For i in $range(n_x)$
 $z += w[i] * x[i]$ First method
 $z += b$

•
$$z=0$$
;
$$z = np.dot(w, x) + b$$
Second method
SIMD
GPU

$$z^{(1)} = w^{T}x^{(1)} + b \ z^{(2)} = w^{T}x^{(2)} + b$$

$$z^{(m)} = w^{T}x^{(m)} + b$$

$$a^{(1)} = \sigma(z^{(1)}) \qquad a^{(2)} = \sigma(z^{(2)}) \qquad a^{(m)} = \sigma(z^{(m)})$$

$$\downarrow X = \begin{bmatrix} x^{(1)}x^{(2)} & \dots & x^{(m)} \\ x^{(1)}x^{(2)} & \dots & x^{(m)} \\ y^{T}\end{bmatrix} \in R^{n_{x} \times m} \qquad \underbrace{[w_{1} \dots w_{n_{x}}]}_{w^{T}} \begin{bmatrix} x^{(1)}x^{(2)} & \dots & x^{(m)} \\ y^{T}x^{(1)} + b & y^{T}x^{(2)} + b \end{bmatrix}}_{w^{T}x^{(m)} + b} = w^{T}X + [b \ b \dots b]_{1 \times m}$$

$$\bullet Z = \begin{bmatrix} z^{(1)} & z^{(2)} & \dots & z^{(m)} \\ w^{T}x^{(1)} + b & w^{T}x^{(2)} + b \end{bmatrix}}_{w^{T}x^{(m)} + b} = w^{T}X + [b \ b \dots b]_{1 \times m}$$

•
$$Z = \underbrace{np \cdot dot(w \cdot T, X)}_{1, m} + \underbrace{b}_{(1,1)}$$
 "broadcasting" $[b, b \dots, b]_{1 \times m}$

$$\begin{array}{c} \bullet \ A = \left[a^{(1)}, a^{(2)}, \ldots, a^{(m)}\right] = \sigma(\underbrace{Z}) \\ 1 \times m \\ \bullet \ dz^{(1)} = a^{(1)} - y^{(1)} \qquad dz^{(2)} = a^{(2)} - y^{(2)} \\ \bullet \ dZ = \left[dz^{(1)} \, dz^{(2)} \ldots \, dz^{(m)}\right]_{1 \times m} \\ \bullet \ A = \left[a^{(1)} \, a^{(2)} \ldots \, a^{(m)}\right] \qquad Y = \left[y^{(1)} \, y^{(2)} \ldots \, y^{(m)}\right] \\ \bullet \ dZ = A - Y = \left[a^{(1)} - y^{(1)} \, a^{(2)} - y^{(2)} \ldots \, a^{(m)} - y^{(m)}\right] \\ \bullet \ dw = 0 \qquad db = 0 \\ \bullet \ dw = 0 \qquad db = 0 \\ \bullet \ dw = 0 \qquad db = 0 \\ \bullet \ dw + x^{2} \, dz^{2} \\ dz^{2} \, dz^{2} \\ dz^{2} \, dz^{2} \\ dz^{2} \, dz^{2} \, dz^{2} \\ dz^{2} \, dz^{$$

$$dw = \frac{1}{m} \left[x^{(1)} dz^{1} + x^{(2)} dz^{2} + \dots + x^{(m)} dz^{m} \right] \qquad dw = \frac{1}{m} X dz^{T} = \frac{1}{m} \begin{bmatrix} x^{(1)} x^{(2)} & \dots & x^{(m)} \\ x^{(1)} x^{(2)} & \dots & x^{(m)} \end{bmatrix}_{\times} \begin{bmatrix} dz \\ dz^{3} \\ \vdots \\ dz^{m} \end{bmatrix}$$

• $w_1, w_2, b \leftarrow random$

For iter in range(1000)

 $Z = W^{T}X + b = np \cdot dot(w.T,X) + b$ $A = \sigma(Z)$ dZ = A - Y $dw = \frac{1}{m}X dz^{T}$ $db = \frac{1}{m}np.sum(dz)$ $w = w - \alpha dw$ $b = b - \alpha db$

 $w = np \cdot random \cdot randn(n_x, 1)$

Logistic Regression Cost function

•
$$\hat{y} = \sigma(w^T x + b)$$
 $0 < \sigma(z) = \frac{1}{1 + e^{-z}} < 1$

$$\bullet \ \hat{y} = p(y = 1|x)$$

• if
$$y = 1$$
: $p(y|x) = \hat{y}$
• if $y = 0$: $p(y|x) = 1 - \hat{y}$

• if
$$y = 0 : p(y|x) = 1 - \hat{y}$$

•
$$p(y|x) = \hat{y}^y (1 - \hat{y})^{1-y}$$
 distribution? Bernoulli

• if
$$y = 1$$
: $p(y|x) = \hat{y}$

• if
$$y = 0 : p(y|x) = 1 - \hat{y}$$

•
$$\log p(y|x) = \log[\hat{y}^y(1-\hat{y})^{1-y}] = y\log\hat{y} + (1-y)\log(1-\hat{y})$$

= $-L(\hat{y}, y)$ Max Likelihood

Logistic Regression Cost function

- $\log P(labels in trainingset) = \log \prod_{i=1}^{m} P(y^i \mid x^i)$
- $\log P(\dots) = \sum_{i=1}^{m} \log P(y^{(i)} \mid x^{(i)}) = -\sum_{i=1}^{m} L(\hat{y}^{(i)}, y^{(i)})$
- Cost function $\underbrace{J(w,b)}_{minimize} = \frac{1}{m} \sum_{i=1}^{m} L(\hat{y}^{(i)}, y^{(i)})$

Neural Networks

