EE241 SPRING 2015: TUTORIAL #7

Friday, March 6, 2015

PROBLEM 1: Solve the following system using Cramer's rule

$$\begin{bmatrix} 3 & 3 & 2 \\ 1 & 3 & 2 \\ -1 & 2 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 4 \\ 6 \\ 4 \end{bmatrix}$$

Solution. Recall Cramer's rule, i.e.: that \vec{x} has components

$$x_i = \frac{\det(A_i)}{\det(A)}$$

where A_i is the A matrix with the i^{th} column replaced by \vec{b} . For us this means (expanding up from the bottom right entry each time)

$$det(A_1) = \begin{vmatrix} 4 & 3 & 2 \\ 6 & 3 & 2 \\ 4 & 2 & 0 \end{vmatrix}$$

$$= 8,$$

$$det(A_2) = \begin{vmatrix} 3 & 4 & 2 \\ 1 & 6 & 2 \\ -1 & 4 & 0 \end{vmatrix}$$

$$= -12,$$

$$det(A_3) = \begin{vmatrix} 3 & 3 & 4 \\ 1 & 3 & 6 \\ -1 & 2 & 4 \end{vmatrix}$$

$$= -10$$

We also have that

$$det(A) = \begin{vmatrix} 3 & 3 & 2 \\ 1 & 3 & 2 \\ -1 & 2 & 0 \end{vmatrix}$$
$$= 0 \cdot \begin{vmatrix} 3 & 3 \\ 1 & 3 \end{vmatrix} - 2 \cdot \begin{vmatrix} 3 & 3 \\ -1 & 2 \end{vmatrix} + 2 \cdot \begin{vmatrix} 1 & 3 \\ -1 & 2 \end{vmatrix}$$
$$= -8$$

Thus, altogether,

$$\vec{x} = \left[\begin{array}{c} -1\\ 3/2\\ 5/4 \end{array} \right]$$

PROBLEM 2: Let $\vec{u} = [1, 2, 3]$ and $\vec{v} = [3, 4, 6]$.

- (a) What is $|\vec{u}|$?
- (b) What is $|\vec{v}|$?
- (c) What is the distance between the points associated with \vec{u} and \vec{v} ?
- (d) Consider a matrix A such that $A^T A = 2I$. What is the distance between $\vec{x} = A\vec{u}$ and $\vec{y} = A\vec{v}$?

Solution.

1

(a)
$$|\vec{u}| = \sqrt{14}$$
?

(b)
$$|\vec{v}| = \sqrt{61}$$
?

- (c) Simply find the length of the vector $\vec{w} = \vec{v} \vec{u} = [2, 2, 3]$. The distance is $|\vec{w}| = \sqrt{17}$.
- (d) Note that there are a few ways to calculate distance,

$$\begin{aligned} |\vec{x} - \vec{y}| &= |A\vec{u} - A\vec{v}| \\ &= |A (\vec{u} - \vec{v})| \\ &= \sqrt{(A (\vec{u} - \vec{v}))^T (A (\vec{u} - \vec{v}))} \\ &= \sqrt{(\vec{u} - \vec{v})^T A^T A (\vec{u} - \vec{v})} \\ &= \sqrt{(\vec{u} - \vec{v})^T 2I (\vec{u} - \vec{v})} \\ &= \sqrt{2} \sqrt{(\vec{u} - \vec{v})^T (\vec{u} - \vec{v})} \\ &= \sqrt{2} |\vec{u} - \vec{v}| \\ &= \sqrt{34}. \end{aligned}$$