ANALIZA MATEMATYCZNA LISTA ZADAŃ 13

13.01.20

(1) Oblicz pole figury ograniczonej krzywymi:

(a)
$$y = x^2 i y = 2x + 5$$
,

(a) $y = x^2$ i y = 2x + 5, (b) $y = e^x$ i prostą przechodzącą przez punkty (0,1) i (1,e),

(c)
$$y = \sin(x) i y = \frac{2x}{\pi}$$
,

(e)
$$y = \frac{1}{x}$$
 i $y = \frac{5}{2} - x$,

(c) $y = \sin(x) i y = \frac{2x}{\pi}$, (d) $y = x^4 i y = x^3$, (e) $y = \frac{1}{x} i y = \frac{5}{2} - x$, (f) $y = \frac{1}{x^2}$, $y = \frac{1}{x^3} i x = 2$.

(2) Oblicz długość łuku krzywej $y=f(x),\,a\leq x\leq b$ dla podanych f(x) i [a,b]:

a)
$$x$$
, $[1, 2]$, (b) $2x-3$, $[-7, 12]$, (c) e^x , $[-7, 12]$

(a) x, [1,2], (b) 2x-3, [-7,12], (c) e^x , [1,2], (d) $\sqrt{x^3}$, [6,10], (e) $\frac{e^x+e^{-x}}{2}$, [0,1].

(3) Dla danych f(x) i [a, b] oblicz pole powierzchni bocznej bryły powstałej przez obrót krzywej y = f(x), $a \le x \le b$ wokół osi OX:

(a)
$$x^3$$
, $[0,5]$, (b) e^{-x} , $[0,10]$, (c) \sqrt{x} , $[0,4]$, (d) $\sin(x)$, $[0,\pi]$, (e) $\cos(7x)$, $[0,2\pi]$.

(4) Dla danych f(x) i [a,b] oblicz objętość bryły powstałej przez obrót obszaru $0 \le$ $y \le f(x)$, $a \le x \le b$ wokół osi OX:

(a)
$$\sqrt[3]{x}$$
, $[0,1]$, (b) x , $[1,5]$, (c) x^7 , $[0,10]$, (d) e^x , $[-3,0]$, (e) $\sin(x)$, $[0,\frac{3\pi}{2}]$.

(d)
$$e^x$$
, $[-3, 0]$, (e) $\sin(x)$, $[0, \frac{3\pi}{2}]$.

(5) Oblicz długość łuku krzywej $y = \sqrt{(x+5)^3}, \ 0 \le x \le 8.$

(6) Oblicz objętość bryły powstałej przez obrót obszaru $0 \le y \le xe^x, 0 \le x \le 1$ wokół osi OX.

(7) Oblicz długość łuku krzywej $y = \log(x), 1 \le x \le \sqrt{3}$.

(8) Oblicz objętość bryły powstałej przez obrót obszaru $\arctan(x) \le y \le \sqrt{\arctan^2(x) + 1 + \sin(x)}, \ 0 \le x \le 2\pi \text{ wokół osi } OX.$

(9) Od pomarańczy o grubej skórce odcięto końce, tak, że ukazał się miąższ. Pomarańczę następnie pokrojono w równe plastry. Pokaż, że każdy plaster zawiera tyle samo skórki.

(10) Zbadaj zbieżność całek niewłaściwych i oblicz te, które są zbieżne:

(a)
$$\int_0^\infty \frac{dx}{x^2 + 1},$$

(c)
$$\int_{1}^{\infty} \frac{dx}{\sqrt{x}}$$

(a)
$$\int_{0}^{\infty} \frac{dx}{x^{2} + 1}$$
, (b) $\int_{0}^{4} \frac{dx}{\sqrt{x}}$, (c) $\int_{1}^{\infty} \frac{dx}{\sqrt{x}}$, (d) $\int_{-1}^{1} \frac{x - 1}{x^{2} - 1} dx$, (e) $\int_{2}^{\infty} \frac{dx}{x \log(x)}$, (f) $\int_{0}^{\infty} \frac{dx}{e^{\sqrt[3]{x}}}$, (g) $\int_{0}^{\infty} \cos(x) dx$, (h) $\int_{1}^{\infty} x^{\frac{1}{x}} dx$, (i) $\int_{-\infty}^{\infty} e^{x} dx$,

(f)
$$\int_0^\infty \frac{dx}{e^{\sqrt[3]{x}}},$$

(g)
$$\int_0^\infty \cos(x) \, dx$$

(i)
$$\int_{-\infty}^{\infty} e^x \, dx$$

$$(j) \quad \int_0^1 e^{\frac{1}{x}} \, dx$$

(j)
$$\int_0^1 e^{\frac{1}{x}} dx$$
, (k) $\int_1^\infty \frac{e^{-\frac{1}{x}}}{x^3} dx$, (l) $\int_2^\infty \frac{dx}{x \log^2(x)}$,

(m)
$$\int_0^\infty x^3 \sin(x^4) \, dx.$$