Introduction to Computational Techniques in Physics/Data Science Applications in Physics

The What and Why of Computing

Why Computing?

- Necessary tool
 - Physics =
 - Observations →
 - Make a set of or
 - Summarize the
 - Most are drawn with some degree of
 - e.g.
 - In reality, we know to some precision

(e.g.

- e.g. $G_N =$
- Many measurements are
 - Have to be interpreted in

and

of

- Many measurements require complicated
 - Computerization
- are computerized
- And use computers too

My First Exposure to Computing

Examples (My Research)

Examples (My Research)

M. Muskinja (PostDoc)

Examples (My Research)

Describing the Data

- Data: results of
 - In physics we mostly deal with , i.e.
 - Other fields may deal with
 - An American Robin has gray upper parts and head, and orange under parts, usually brighter in the male
 - Numbers are to handle
 - We will mostly deal with
- Types of quantitative data
 - data, e.g.
 - data, e.g.
 - Some , e.g. from
 - data, e.g.
 - Sets of :

Visualizing the Data

- Tables
 - datasets can be difficult to
- Graphs
 - •
- Charts

•

Examples

Examples

Examples

How You Should Learn

Stage 4: Unconsciously Competent Stage 3: Consciously Competent Stage 2: Consciously Incompetent Stage 1: Unconsciously Incompetent

How to Approach This Course

- Active Learning
 - Learn by
- Three main threads to the course
 - •
 - lacktriangle
 - •
- No single book covers all of it
 - Recommend two (Newman, Hughes & Hase)
 - Many online resources for each step
 - Book → Lecture → Workshop → HW → Book cycle applies

Let's take a look at the jupyter notebook

Operating Systems, Programming Environments, Representations

Brief Spiel: Operating Systems

- Operating System () is an interface
 between a and a
 - Translate to electronic signals, report results back
 - Optimized for hardware, efficient
 - Low-level code
 - Interface can be graphical (), text-based (), or mixed (

Source: Wikipedia

Unix/Linux

Designed to be

 One of the oldest (surviving) OS (Initially developed for , ported to (Linux and spinoffs) Variants are now running on a variety of hardware • PC (• Mac (• smartphones (even the occasional microwave Robust, efficient

, so basic interface is a

Programming Environments

- interface
- interface
- Connecting to a server (ssh, terminal)
- Scripts
- Compiled vs interpreted languages

Source: Wikipedia

Brief Spiel: Programming Languages

- Programming languages allow to translate sets of (an algorithm) to a form understandable by a
- Classifications
 - •
- •
- •
- •
- Implementations
 - •
- •
- •
- •

Data Representation

• Data on computers represented in

- format
- Base representation (as opposed to base
 - $abcd_2 =$
- Examples:

Decimal numbers	Binary equivalent	Decimal numbers	Binary equivalent
Hullibers		ilullibela	
	0000	8	1000
1	0001	9	1001
2	0010	10	1010
3	0011	11	1011
4	0100	12	1100
5	0101	13	1101
6	0110	14	1110
7	0111	15	1111

- Smallest memory cell:
 - bits = byte (B)
- Measures of memory
 - | kB =
- ; I MB =

, etc

Binary Representation

- Practical consequences
 - All numbers in the digital format are , i.e. they have precision
 - This is easy to understand with (by construction)
 - Real numbers: think about representation in
 - 0.125 =
 - Could you represent I/I0 in powers of 2? What about π ?
 - Basic data types have and value, as well as precision, determined by the data type size
 - i.e. how much is allocated for each data type
 - Most common: or bytes for integer and real values

Examples: Integer Data

• C/C++

```
root [0] sizeof(int) // number of bytes for interger
(const int)4
root [1] sizeof(long) // number of bytes for long integer
(const int)8
root [2] [
```

- This means:
 - Range of signed ints in C is ±2147483647
 - Range of unsigned ints in C is 0..4294967295
 - E.g. time in Unix is represented as
 in seconds from Jan I,
 Hence the impending end of time in
 - (Google "end of unix time")

Examples: Real numbers

Real

numbers are represented by 3 fields

- •
- •
- lacktriangle

value =
$$(-1)^{\text{sign}} \times \left(1 + \sum_{i=1}^{23} b_{23-i} 2^{-i}\right) \times 2^{(e-127)}$$

- For example, most languages use numbers
 - and in C/C++

and floating point

Precision and Range

for both onigio and double precioion then heating point harmbere.

Property	Value for float	Value for double
Largest representable number	3.402823466e+38	1.7976931348623157e+308
Smallest number without losing precision	1.175494351e-38	2.2250738585072014e-308
Smallest representable number(*)	1.401298464e-45	5e-324
Mantissa bits	23	52
Exponent bits	8	11
Epsilon(**)	1.1929093e-7	2.220446049250313e-16

http://www.cprogramming.com/tutorial/floating_point/understanding_floating_point_representation.html

What about Python? Let's go back to the Notebook