Sequences and Time-Series

Matthew Engelhard

Recall: Word embeddings allow us to quantify word meaning

If we zoom in on a small region of our word map, it's all related words.

Note the similarity of all the words as a whole, but also of the individual neighbors.

"Lawyer" and "attorney" are nearly identical in space!

Applying Word Embeddings to a Sentence

- Look up words individually to obtain their vectors
- Construct a sequence of vectors

Sequences of measurements: same structure

We can make predictions for each:

• Word

• Document (e.g. clinical note)

Collection of documents (e.g. notes for all patients)

Task 1: Predict a label associated with each word

Task 1: Predict a label (?) associated with each word

Multi-Class Logistic Regression (many classes)

Deidentification of Patient Notes

Table 5. Examples of correctly detected PHI instances (in bold) by the ANN

PHI category	ANN
AGE	Father had a stroke at <u>80</u> and died of?another stroke at age Personal data and overall health: Now <u>63</u> , despite his FH: Father: Died @ <u>52</u> from EtOH abuse (unclear exact etiology) Tobacco: smoked from age 7 to <u>15</u> , has not smoked since 15.
CONTACT	History of Present Illness <u>86F</u> reports worsening b/l leg pain. by phone, Dr. Ivan Guy. Call w/ questions <u>86383</u> . Keith Gilbert, H/O paroxysmal afib VNA <u>171-311-7974</u> ======= Medications
DATE	During his <u>May</u> hospitalization he had dysphagia Social history: divorced, quit smoking in <u>08</u> , sober x 10 yrs, She is to see him on the <u>29th</u> of this month at 1:00 p.m. He did have a renal biopsy in teh late <u>60s</u> adn thus will look for results, Results <u>02/20/2087</u> NA 135, K 3.2 (L), CL 96 (L), CO2 30.6, BUN 1 Jose Church, M.D. /ray DD: 01/18/20 DT: <u>01/19/:0</u> DV: 01/18/20

De-identification of patient notes with recurrent neural networks Dernoncourt F, Lee JY, Uzuner O, Szolovits P JAMIA 24(3), 2017, 596–606

- A bidirectional RNN is used to identify PHI (18 HIPAA fields)
- i2b2: 889 discharge summaries,
 >28k PHI tokens
- MIMIC: 1635 discharge summaries, >60k PHI tokens
- State of the art sensitivity and F1 metric on both datasets

Task 1: Predict a label associated with each word

Hypoxemia Prediction during Surgery

Real-time Prediction Task:

- hypoxemia (yes/no) in the next 5 minutes
- based on data from the Anesthesia Information Management System
- static features + real-time features collected up to that time point

Task 1: Predict label assoc. with each time point

Task 2: Predict a label associated with the document

Classification of radiology reports using neural attention models, *IJCNN 2017*

Task 2: Predict a label associated with the report

Task 2: Predict a label associated with the note

Task 2: Predict label assoc. with all measurements

First Challenge: Sequences Vary in Length

- Sentences/text have different # words
- Time-series have different # measurement times

 More generally, even for models where we're making predictions for each word or time point, we have to deal with the whole history of previous words / measurements

• <u>Easy solution</u>: aggregate over words/time points

VSWEM allows us to convert a variable-length sentence to a fixed-length feature vector

Similarly, we can aggregate measurements in a time-series

Similarly, we can aggregate measurements in a time-series

Second Challenge: Is there a better way to aggregate?

- A sentence is more than the average (or max) of its words
- A time-series is more than the average / min / max / SD of individual measurements

- We'd like to interpret words or measurements in context
- <u>Deep learning</u>: we *learn* what's important about the sequence rather than choosing features or summary stats

Recurrent Neural Networks

Predict a label associated with each word

Predict a label associated with each word

Transfer relevant information about earlier words

Transfer *relevant* information about earlier values

Transfer relevant information about earlier values

Since they are neither an input nor an output, the features ζ are said to be a "hidden" layer

Back to Lectures 2-3...

Instead of predicting p_i directly from our feature vector x, introduce a vector of "latent" features ζ (zeta) that we will use to predict p_i

Think of ζ as a <u>learned</u>
 <u>representation</u> that is useful for predicting p

Since they are neither an input nor an output, the features ζ are said to be a "hidden" layer

learned representation of previous words / history

We <u>learn</u> what's important about previous values

Recurrent MLP (NN): these are all the same / have same weights

Task 1: Predict a label associated with the sequence

Hypoxemia Prediction: Use learned representation of previous measurements

Real-time Prediction Task:

- hypoxemia (yes/no) in the next 5 minutes
- based on data from the Anesthesia Information Management System
- static features + real-time features collected up to that time point

Common RNN Variants

Gated Recurrent Unit (GRU)

Long Short Term Memory (LSTM)

- Bidirectional RNNs
 - Look at previous words and upcoming words
 - Usually not appropriate for time-series

Deidentification of Patient Notes

Table 5. Examples of correctly detected PHI instances (in bold) by the ANN

PHI category	ANN
AGE	Father had a stroke at <u>80</u> and died of?another stroke at age Personal data and overall health: Now <u>63</u> , despite his FH: Father: Died @ <u>52</u> from EtOH abuse (unclear exact etiology) Tobacco: smoked from age 7 to <u>15</u> , has not smoked since 15.
CONTACT	History of Present Illness <u>86F</u> reports worsening b/l leg pain. by phone, Dr. Ivan Guy. Call w/ questions <u>86383</u> . Keith Gilbert, H/O paroxysmal afib VNA <u>171-311-7974</u> ======= Medications
DATE	During his <u>May</u> hospitalization he had dysphagia Social history: divorced, quit smoking in <u>08</u> , sober x 10 yrs, She is to see him on the <u>29th</u> of this month at 1:00 p.m. He did have a renal biopsy in teh late <u>60s</u> adn thus will look for results, Results <u>02/20/2087</u> NA 135, K 3.2 (L), CL 96 (L), CO2 30.6, BUN 1 Jose Church, M.D. /ray DD: 01/18/20 DT: <u>01/19/:0</u> DV: 01/18/20

De-identification of patient notes with recurrent neural networks Dernoncourt F, Lee JY, Uzuner O, Szolovits P JAMIA 24(3), 2017, 596–606

- A bidirectional RNN is used to identify PHI (18 HIPAA fields)
- i2b2: 889 discharge summaries,
 >28k PHI tokens
- MIMIC: 1635 discharge summaries, >60k PHI tokens
- State of the art sensitivity and F1 metric on both datasets

Note: we can also *generate* text this way.

Note: we can also *generate* text this way.

Summary

 For sequential data, a key challenge is how to represent the history of previous measurements or words

The simplest approach is to choose summary statistics

• Instead, the recurrent neural network *learns* how to summarize earlier information such that prediction performance is maximized

• Very recently, the RNN has been superseded by *transformer* networks, but the principles are largely the same: we use a deep neural network to refine word representations based on context