- 1. (a) For $a \ge 0$, let $x_1 = a$ and $x_{n+1} = \frac{1}{5}(x_n^2 + 6)$ for all $n \in \mathbb{N}$. [8]
 - i. Find (all) the values of a in $[0,\infty)$ for which (x_n) is decreasing/increasing.
 - ii. Verify whether the sequence (x_n) converges if $3 < a < \frac{7}{2}$.
 - (b) Suppose $\sum_{n=1}^{\infty} |a_n|$ converges. Show that for $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that $|\sum_{i=m}^{n} a_i| < \epsilon$ for all $m, n \in \mathbb{N}$ satisfying n > m > N. [4]

(Tentative) Marking scheme for Question 1:

(a)(i) Note that
$$x_{n+1} - x_n = \frac{1}{5}(x_n^2 - x_{n-1}^2),$$
 [1]

$$x_2 - x_1 = \frac{1}{5}(a^2 + 6) - a = \frac{1}{5}(a - 2)(a - 3),$$
 [1]

and $x_{n+1} \ge x_n$ if $x_2 - x_1 \ge 0$ and $x_{n+1} \le x_n$ if $x_2 - x_1 \le 0$.

Now
$$(x_n)$$
 is increasing on $[0,2]$ and $[3,\infty)$

and is decreasing on
$$[2,3]$$
. [1]

(a)(ii) If
$$x_n \to \ell$$
 then $\ell^2 - 5\ell + 6 = 0$, i.e., $\ell = 2$ or 3

Since (x_n) is strictly increasing, (x_n) cannot converge either to 2 or 3. [1]

(b) The sequence of partial sums (S_n) of $\sum_{n=1}^{\infty} |a_n|$ satisfies the Cauchy criterion.[1] Therefore for $\epsilon > 0$, $\exists N$ s.t. $|S_n - S_{m-1}| < \epsilon \ \forall m, n \in \mathbb{N}, n > m > N$.

That is
$$\sum_{i=m}^{n} |a_i| < \epsilon \ \forall \ m, n \in \mathbb{N}, n > m > N.$$
 [2]

Use the fact that
$$\left|\sum_{i=m}^{n} a_i\right| \leq \sum_{i=m}^{n} |a_i|$$
. [1]

- 2. (a) Let $f:(-1,1)\to\mathbb{R}$ be a twice differentiable function such that f''(0)>0. Show that there exists $n\in\mathbb{N}$ such that $f(\frac{1}{n})\neq 1$.
 - (b) Let $0 < x_0 < 1$. Using the fixed point iteration method generate a sequence of approximate solutions of the equation $x^3 7x + 2 = 0$ for the starting value x_0 . [5]

(Tentative) Marking scheme for Question 2:

(a) Suppose
$$f(\frac{1}{n}) = 1$$
 for all $n \in \mathbb{N}$

Then
$$f(0) = 1$$
 by the continuity of f , [1]

and
$$f'(0) = \lim_{n \to \infty} \frac{f(\frac{1}{n}) - f(0)}{\frac{1}{n}} = 0.$$
 [1]

By Rolle's theorem,
$$\exists c_n \in (0, \frac{1}{n})$$
 such that $f'(c_n) = 0$ for all n [2]

Now
$$f''(0) = \lim_{n \to \infty} \frac{f'(c_n) - f'(0)}{c_n} = 0$$
 which is a contradiction. [1]

(b) Consider
$$x_{n+1} = \frac{1}{7}(x_n^3 + 2)$$
 [2]

Now
$$|x_{n+2} - x_{n+1}| \le \frac{1}{7} |x_{n+1}^3 - x_n^3|$$

= $\frac{1}{7} |x_{n+1}^2 + x_{n+1}x_n + x_n^2| |x_{n+1} - x_n| \le \frac{3}{7} |x_{n+1} - x_n|.$ [3]

Therefore (x_n) converges (to a solution of $x^3 - 7x + 2 = 0$).

Alternate Solution:

Consider
$$x_{n+1} = f(x_n)$$
 where $f(x) = \frac{1}{7}(x^3 + 2)$. [2]

Observe that
$$f:[0,1] \to [0,1]$$
 i.e., $f([0,1]) \subseteq [0,1]$. [1]

and
$$|f'(x)| \le \frac{3}{7}$$
 on $[0,1]$

Hence (x_n) converges.

- 3. (a) Sketch the graph of the function $f(x) = \frac{2x^2+1}{x^2+1}$ after finding the intervals of decrease/increase, intervals of concavity/convexity, points of local minima/local maxima, points of inflection and asymptotes. [8]
 - (b) Consider the series $\frac{1}{4} + \frac{1}{5} + \frac{1}{4^2} + \frac{1}{5^2} + \frac{1}{4^3} + \frac{1}{5^3} + \frac{1}{4^4} + \frac{1}{5^4} + \dots$ Using the ROOT TEST show that the series converges. [4]

Tentative Marking Scheme for Question 3:

(a)
$$f(x) = 2 - \frac{1}{x^2 + 1} \Rightarrow y = 2$$
 is an asymptote. [1]

$$f'(x) = \frac{2x}{(x^2+1)^2} \Rightarrow f$$
 is decreasing on $(-\infty, 0)$ and increasing on $(0, \infty)$ [1]

and
$$f$$
 has a local minimum at $x = 0$. [1]

$$f''(x) = \frac{2(1-3x^2)}{(x^2+1)^3} \Rightarrow f \text{ is concave on } (-\infty, -\frac{1}{\sqrt{3}}) \text{ and } (\frac{1}{\sqrt{3}}, \infty)$$
 [1]

convex on
$$(-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}})$$
 [1]

and
$$-\frac{1}{\sqrt{3}}$$
 and $\frac{1}{\sqrt{3}}$ are the points of inflection. [1]

[2]

For the graph see Figure 1.

(b) The terms can be either $5^{-\frac{n}{2}}$ or $4^{-\frac{n+1}{2}}$. [1]

Since
$$(5^{-\frac{n}{2}})^{\frac{1}{n}} \to \frac{1}{\sqrt{5}}$$
 and $(4^{-\frac{n+1}{2}})^{\frac{1}{n}} \to \frac{1}{\sqrt{4}}$, [2]

$$a_n^{\frac{1}{n}} < L$$
 eventually for some L satisfying $\frac{1}{2} < L < 1$. [1]

Hence by the root test the series converges.

Alternate Solution:

The series can be written as a sum of two series and for each series the root test can be applied.

- 4. (a) Let $f:[a,b] \to \mathbb{R}$ be continuous. Show that f is bounded. [6]
 - (b) For x > 0, show that the Maclaurin series of e^x converges to e^x . [6]

Tentative Marking Scheme for Question 4:

(a) Suppose f is not bounded. [1]

Then for every $n \in \mathbb{N}$, $\exists x_n \in [a, b]$ such that $|f(x_n)| > n$ or $|f(x_n)| \to \infty$. [1]

By B-W Theorem, $\exists x_{n_k} \to x_0 \text{ for some } x_0 \in [a, b].$ [2]

By the continuity of
$$f$$
, $f(x_{n_k}) \to f(x_0)$. [1]

Hence $(f(x_{n_k}))$ is bounded which is a contradiction. [1]

(b) Let $f(x) = e^x$. Fix x > 0. By Taylor's Theorem $\exists c_n \in (0, x)$ such that

$$f(x) = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} + \frac{f^{n+1}(c_n)}{(n+1)!} x^{n+1}.$$
 [2]

Note that
$$\frac{f^{n+1}(c_n)}{(n+1)!}x^{n+1} = \frac{e^{c_n}}{(n+1)!}x^{n+1} \le \frac{e^x}{(n+1)!}x^{n+1}$$
. [2]

Let
$$a_{n+1} = \frac{e^x}{(n+1)!}x^{n+1}$$
, then $\frac{a_{n+1}}{a_n} = \frac{x}{n+1} \to 0$. This implies that $a_n \to 0$. [2]

This shows that $\frac{f^{n+1}(c_n)}{(n+1)!}x^{n+1} \to 0$ and hence $\sum_{n=0}^{\infty} \frac{x^n}{n!}$ converges to e^x .

- (a) Let f be differentiable on [a,b]. Show that there exist $c_1,c_2,c_3\in(a,b)$ such that $c_1 \neq c_3$ and $f'(c_2) + f'(c_3) = 2f'(c_1)$. [6]
 - (b) Suppose that $a_n > 0$ for all n and $\sum_{n=1}^{\infty} a_n$ converges. Discuss the convergence/ divergence of the series $\sum_{n=1}^{\infty} \sqrt{a_n} \sin(a_n)$. [6]

Tentative Marking Scheme for Question 5:

(a) By MVT,
$$\exists c_1 \in (a, b)$$
 such that $f(b) - f(a) = f'(c_1)(b - a)$ [1]

By MVT,
$$\exists c_2 \in (a, \frac{a+b}{2})$$
 such that $f(\frac{a+b}{2}) - f(a) = f'(c_2)(\frac{b-a}{2})$ [1]

and
$$\exists c_3 \in (\frac{a+b}{2}, b)$$
 such that $f(b) - f(\frac{a+b}{2}) = f'(c_3)(\frac{b-a}{2})$ [1]

This implies that
$$f(b) - f(a) = (f'(c_2) + f'(c_3))(\frac{b-a}{2}).$$
 [2]

That is
$$f'(c_2) + f'(c_3) = 2f'(c_1)$$
 [1]

(b)
$$\sum_{n=1}^{\infty} a_n$$
 converges $\Rightarrow a_n \to 0$ and hence $\sqrt{a_n} \to 0$. [1]

Since
$$a_n \sqrt{a_n} \le a_n$$
, by comparison test, $\sum_{n=1}^{\infty} a_n \sqrt{a_n}$ converges. [2]

Note that
$$\lim_{n\to\infty} \frac{\sqrt{a_n}\sin(a_n)}{\sqrt{a_n}a_n} \to 1$$
. [2]
By LCT $\sum_{n=1}^{\infty} \sqrt{a_n}\sin(a_n)$ converges. [1]

By LCT
$$\sum_{n=1}^{\infty} \sqrt{a_n} \sin(a_n)$$
 converges. [1]

- 6. (a) Let f be a differentiable function on \mathbb{R} such that f(0) = f(1) = 0, f'(0) > 0 and f'(1) > 0. [8]
 - i. Show that there exists a $\delta > 0$ such that f(x) < 0 on $(1 \delta, 1)$.
 - ii. Show that there exist $c_1, c_2 \in (0,1)$ such that $c_1 \neq c_2$ and $f'(c_1) = f'(c_2) = 0$.
 - (b) Let $f:(a,b)\to\mathbb{R}$ be twice differentiable and convex. If $x_0\in(a,b)$ show that the [4]graph of f is above the tangent line to the graph at $(x_0, f(x_0))$.

Tentative Marking Scheme for Question 6:

(a)(i) If
$$\forall n, \exists x_n \in (1 - \frac{1}{n}, 1) \text{ s.t. } f(x_n) \ge 0, \text{ then } f'(1) = \lim_{x_n \to 1^-} \frac{f(x_n)}{x_n - 1} \le 0.$$

(OR) Since
$$f'(1) = \lim_{x \to 1^-} \frac{f(x)}{x-1} > 0$$
, $\exists \ \delta > 0$ such that $f(x) < 0$ on $(1 - \delta, 1)$. [3]

(a)(ii) Observe, as done in (i), that
$$\exists \delta_1 > 0$$
 such that $f(x) > 0$ on $(0, \delta_1)$ [2] Choose $\delta_2 = \min\{\delta, \delta_1, \frac{1}{4}\}.$

By IVP,
$$\exists c \in (\delta_2, 1 - \delta_2)$$
 such that $f(c) = 0$. [2]

By Rolle's theorem $\exists c_1 \in (0, c) \text{ and } c_2 \in (c, 1) \text{ s.t. } f'(c_1) = 0 \text{ and } f'(c_2) = 0.$ [1]

(b) Since
$$f$$
 is convex, $f''(x) \ge 0$ on (a, b) .

The equation of the tangent line is
$$y = f(x_0) + f'(x_0)(x - x_0)$$
. [1]

By Taylor's theorem there exists c between x and x_0 such that

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{(x - x_0)^2}{2} f''(c)$$
 This implies that $f(x) \ge f(x_0) + f'(x_0)(x - x_0)$. [2]