

Point $(\frac{1}{2}a,1)$ lies between two different lines $x+y-a$ and $x+y-2a$ mathemas. In mathema	1. (3)	2. (1)	3. (2)	4. (2)	5. (1)	6. (3)	7. (2)	8. (2)
Point $\left(\frac{2}{3}a,1\right)$ lies between two different lines $x+y-a$ and $x+y-2a$ mathematically an expensive formulations of the point $A(x)$ and	(1)mathon	10. (4) athor						
$\begin{array}{c} \vdots \left(\frac{1}{2}a+1-a\right)\left(\frac{1}{2}a+1-2a\right) < 0 \\ \text{sing}=x,2\cup 2, a \\ \text{matheres} \\ m$. (3)							
\Rightarrow a $6 < \infty < 202 x$ mather so mat	Point $\left(\frac{3}{2}a\right)$, 1) lies between t	wo different lines $x +$	y = a and $x + y = 2a$	mathongo			
Fine, the least integral value of $ a $ is 3 mathons of mathons o	$\therefore \left(\frac{3}{2}a+1\right)$	$-a$) $\left(\frac{3}{2}a+1-2\right)$	(a) < 0					
Hence, the least integral value of $ a $ is 3 matheres. Matheres matheres matheres matheres. Matheres matheres matheres matheres matheres matheres matheres. More what if $A(x_1, y_1)$ & $B(x_2, y_2)$ lies on the same side of the line $x + y_1 - 1 = 0$. Matheres m								
We know that if $A(x_1, y_1) \& B(x_2, y_2)$ lies on the same side to line $L=0$, then $L_{A(x_1, y_1)} L_{B(x_1, y_2)} > 0$. Given, the points $A(1, 2) \& B(\sin\theta, \cos\theta)$ lies on the same side of the line $x + y - 1 = 0$. The probability of the same side of the line $x + y - 1 = 0$. The same side of the line $x + y - 1 = 0$. The same side of the line $x + y - 1 = 0$. The same side of the line $x + y - 1 = 0$. The same side of the line $x + y - 1 = 0$. The same side of the line $x + y - 1 = 0$. The same side of the line $x + y - 1 = 0$. The same side of the line $x + y - 1 = 0$. The same side of the line $x + y - 1 = 0$. The same side of the line $x + y - 1 = 0$. The same side of the line $x + y - 1 = 0$. The same side of the line $x + y - 1 = 0$. The same side of the line $x + y - 1 = 0$. The same s		least integral value	e of $ a $ is 3					
Given, the points $A(1,2)$ & $B[\sin\theta,\cos\theta]$ lies on the same side of the line $x+y-1=0$. The following states of	` '							
$ \begin{array}{c}(1+2-1)(\sin\theta + \cos\theta - 1) > 0 \\ \Rightarrow \sin\theta \cos\theta > 1 \\ \Rightarrow \sin\theta \otimes \frac{1}{\sqrt{2}} + \cos\theta \times \frac{1}{\sqrt{2}} > 1 \times \frac{1}{\sqrt{3}} \\ \Rightarrow \sin\theta \otimes \frac{1}{\sqrt{2}} + \cos\theta \times \frac{1}{\sqrt{2}} > 1 \times \frac{1}{\sqrt{3}} \\ \Rightarrow \sin\theta \cos\frac{1}{2} + \cos\theta \sin\frac{1}{4} > \frac{1}{\sqrt{2}} \\ \Rightarrow \sin(\theta + \frac{1}{4}) > \frac{1}{\sqrt{2}} \\ \Rightarrow \cos(\theta + \frac{1}{4}) < \frac{3\pi}{4} \\ \Rightarrow 0 < \theta < \frac{2\pi}{4} \\ \Rightarrow \theta \in (0, \frac{\pi}{2}) \\ \Rightarrow \theta$								
$\Rightarrow \sin\theta \times \frac{1}{\sqrt{2}} + \cos\theta \times \frac{1}{\sqrt{2}} > 1 \times \frac{1}{\sqrt{2}} $ mathongs with mathons with	$\therefore (1+2-$	$1)(\sin \theta + \cos \theta -$	1)> 0					
$\Rightarrow \sin\theta \cos\frac{\pi}{4} + \cos\theta \cdot \sin\frac{\pi}{4} > \frac{1}{\sqrt{2}}$ $\Rightarrow \sin(\theta + \frac{\pi}{4}) > \frac{1}{\sqrt{2}}$ $\Rightarrow 0 < \theta < \frac{\pi}{2}$ $\Rightarrow 0 < \theta < \frac$			$> 1 \times \frac{1}{2}$ mathona					
$3 \cdot 2 \cdot (-1 \cdot 4) \cdot 4$ $\Rightarrow 0 < \theta < \frac{\pi}{2}$ $\Rightarrow \theta \in (0, \frac{\pi}{2})$ Mathongo W			•					
$3 \cdot (2 \cdot (-1)^4)^4 \Rightarrow 0 \in \theta \in \frac{\pi}{2}$ $\Rightarrow 0 \in \theta (0, \frac{\pi}{2})$ $\Rightarrow 0 \in (0, \frac{\pi}$	$\Rightarrow \sin(heta +$	$\left(-\frac{\pi}{4}\right) > \frac{1}{\sqrt{2}}$ nother	ngo ///. mathona					
$\theta \in \left(0, \frac{\pi}{2}\right)$ mathongs \mathbb{Z} mathongs	4 (0	4) 4						
Let $A \equiv (-2,0)$, $B = \left(-1,\frac{1}{\sqrt{3}}\right)$, $C \equiv (\cos\theta,\sin\theta)$ what mather mather solutions are substituted by the state of the	$\Rightarrow 0 < \theta < 0$	$\left\langle \frac{\pi}{2} \right\rangle$ mathor						
Let $A \equiv (-2,0)$, $B = \left(-1,\frac{1}{\sqrt{5}}\right)$, $C \equiv (\cos\theta,\sin\theta)$, we mathong we mat	\	$\frac{1}{2}$						
Equation to AB , $y = 0 = \begin{pmatrix} \frac{1}{\sqrt{3}} - 0 \\ -1 + 2 \end{pmatrix}$ ($x + 2$) nongo y mathongo y mathon		-2,0), B = (-1, -1)	$\left(\frac{1}{\sqrt{2}}\right), C \equiv (\cos \theta, \sin \theta)$					
$\Rightarrow \sqrt{3}y = x + 2, \text{ Point C lies on this line.}$ $\Rightarrow \sqrt{3}\sin\theta - \cos\theta = 2, \text{thongo} \text{// mathongo} // mat$			/3/					
$\Rightarrow \sqrt{3}y = x + 2, \text{ Point C lies on this line.}$ $y = \sqrt{3} \sin \theta - \cos \theta = 2 \tan \theta = 0$ $\Rightarrow \frac{\sqrt{3}}{2} \sin \theta - \frac{1}{2} \cos \theta = 1$ $\Rightarrow \sin \left(\theta - \frac{\pi}{6}\right) = 1, \text{ where } \theta \in [0, 2\pi]$ $\theta = \frac{\pi}{2} = \frac{\pi}{3}$ $x = \frac{\pi}{3} = \frac{\pi}{3} = \frac{\pi}{3}$ $x = \frac{\pi}{3} = $	y - 0 = 0	$\frac{\frac{1}{\sqrt{3}}-0}{-1+2}$ $(x+2)$						
$\frac{1}{2}$ \Rightarrow $\sqrt{3}\sin\theta - \cos\theta = 2$ honge $\frac{1}{2}$ mathonge $\frac{1}{2}$ ma	`	,						
$\Rightarrow \frac{\sqrt{2}}{2} \sin \theta - \frac{1}{2} \cos \theta = 1$ $\Rightarrow \sin \left(\theta - \frac{\pi}{6} \right) = 1, \text{ where } \theta \in [0, 2\pi]$ $\Rightarrow \theta = \frac{\pi}{6} = \frac{\pi}{2}$ $\Rightarrow \theta = \frac{\pi}{2} + \frac{\pi}{6} = \frac{2\pi}{3}$ $\Rightarrow \theta = \frac{\pi}{4} + \frac{\pi}{6} = \frac{\pi}{4}$ $\Rightarrow \theta = \frac{\pi}{4} + \frac{\pi}{6} = $								
$ \frac{1}{1} \frac{1}{2} 1$	$\Rightarrow \frac{\sqrt{3}}{2}\sin\theta$	$\theta - \frac{1}{2}\cos\theta = 1$						
$\theta = \frac{\pi}{2} + \frac{\pi}{6} = \frac{2\pi}{3}$ So, only one value of θ is possible. We mathongo We			\in $[0,2\pi]$					
So, only one value of θ is possible. // mathongo // m		2						
			sible. mgo ///. mathong					

Answer Keys and Solutions 4½ (2)athongo ¼, mathongo ¼,

mathongo /// mathongo Let the line passing through (-3, 4) intersect the coordinate axes at A & B. By mid-point formula, co-ordinates of $P\left(\frac{\alpha+0}{2}, \frac{0+\beta}{2}\right)$.

Comparing with given co-ordinate values, we get was a mathong with given co-ordinate values, we get with given co-ordinate values. $\frac{\alpha+0}{2}=-3\Rightarrow \alpha=-6$

and $\frac{\beta+0}{2}=4\Rightarrow\beta=8$ mathongo /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo /// Hence, equation of line is $\frac{x}{-6} + \frac{y}{8} = 1$ $\Rightarrow 4x - 3y + 24 = 0$

(1) Let slope of a line be m. ngo /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo /// Now, the equation of a line passing through (1, 0) is

y - 0 = m(x - 1)

 $\Rightarrow mx + y - m = 0$ nathongo /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo ///

Distance from origin = $\frac{\sqrt{3}}{2}$

 $\Rightarrow \frac{|-m|}{\sqrt{1+m^2}} = \frac{\sqrt{3}}{2}$ mathongo /// mathongo // mathongo // mathongo // mathongo /// mathongo // mathongo // mathongo // mathongo // mathongo // mat $\Rightarrow 4m^2 = 3(1+m^2)$

 $\Rightarrow m^2 = 3$ \Rightarrow m'= $r\pm\sqrt{3}$ % mathongo %

.: Equations of lines are

 $\sqrt{3}x - y - \sqrt{3} = 0$ and $-\sqrt{3}x - y + \sqrt{3} = 0$ ongo $\frac{1}{2}$ mathongo $\frac{1}{2}$

 $\Rightarrow \sqrt{3}x - y - \sqrt{3} = 0$ and $\sqrt{3}x + y - \sqrt{3} = 0$

(3) Let the equation of the line parallel to x-2y=1 is $x-2y+\lambda=0$

Since, it passes through (3, 5)

 $\therefore 3 - 10 + \lambda = 0 \implies \lambda = 7$ \therefore The lines is x - 2y + 7 = 0.

The point of intersection of x - 2y + 7 = 0 and 2x + 3y - 14 = 0 is (1, 4).

The distance between (3,5) and (1,4) mathongo /// mathongo /// mathongo /// mathongo /// mathongo ///

 $=\sqrt{(3-1)^2+(5-4)^2}=\sqrt{4+1}=\sqrt{5}$

Answer Keys and Solutions JEE Main Crash Course 7. (2)athongo //. mathongo mathongo /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo /// $\sqrt{3}x + y = 1 \Rightarrow y = -\sqrt{3}x + 1$ Slope of line= $-\sqrt{3}$ Let slope of second line=m mg /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo For angle between two lines, $\tan \theta = \pm \frac{m_1 - m_2}{1 + m_1 m_2}$ $\tan 60^{\circ} = \pm \left(\frac{-\sqrt{3}-m}{1-\sqrt{2}-m}\right)$ $\sqrt{3} = \pm \left(\frac{-\sqrt{3}-m}{1-\sqrt{3}m} \right)$ $\Rightarrow \sqrt{3} \Big(1 - \sqrt{3}m\Big) = -\sqrt{3} - m \ or \ \sqrt{3} \Big(1 - \sqrt{3}m\Big) = \sqrt{3} + m$ $\Rightarrow \sqrt{3} - 3m = -\sqrt{3} - m \text{ or } \sqrt{3} - 3m = \sqrt{3} + m \text{ mathongo } \text{$ $\Rightarrow 2\sqrt{3} = 2m \text{ or } 4m = 0$ $\Rightarrow m = \sqrt{3} \ or, m = 0$ But line intersects X-axis, therefore $m \neq 0$ athongo /// mathongo // mathongo /// mathongo /// mathongo /// mathongo /// mathongo // mathongo /// mathongo /// mathongo /// mathongo /// mathongo // mathong Slope of req. line = $\sqrt{3}$ Eq. is $(y + 2) = \sqrt{3}(x - 3)$ i.e.y $\sqrt{3}x + 2 + 3\sqrt{3} = 0$ ngo /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo

Answer Keys and Solutions

Answer Keys and Solutions

