Android Mobil Uygulama Geliştirme Eğitimi | Java

Değişkenler ve Veri Tipleri

Kasım ADALAN

Elektronik ve Haberleşme Mühendisi

Android - IOS Developer and Trainer

Eğitim İçeriği

- 1. Değişkenler
- 2. Primitif Tipler
- 3. Referans Tiplere Giriş
- 4. Aritmetik Operatörler
- 5. Tip dönüşümleri
- 6. Konsol Girdisi

DEĞİŞKENLER

- Modern diller hafızada saklanan değerleri değişkenler ile ifade etmektedir.
- Değişkenler hafızada geçici olarak saklanan değerleri temsil eder .

Not : Değişkenler kalıcı değildir. Programdan çıkıldığında değerler kaybolur. Kalıcı değerler için değişkenlerin değerleri diske yazılmalıdır.

Değişken Oluşturma

Yas 35 değerini tutan bir kutudur, ve yalnızca tam sayı tutabilir

Data Tipleri

Tam Sayılar

Ondalıklı Sayılar

Long Int Short Byte

Double Float

Metinsel ifadeler

String: Yazılar

Char: Harfler

Mantıksal İfadeler

Boolean: True veya False

Literals - Değerlerin Yazılma Kuralları

 Literals değişkenler için kullanılan değerlerin nasıl yazılması gerektiğini temsil eder.

```
"Ahmet" //String ( Metinsel İfade )
'a' //Char ( Harfsel İfade )
18 // Tam sayı
1.78 // Double ( Ondalıklı Sayı )
1.78f // Float ( Ondalıklı Sayı )
```

Değişkenlere isim verme kuralları

- Case sensitive'dir. Büyük küçük harf farkı vardır.
- Rakamla başlayamaz.
- Boşluk içeremez.
- Türkçe karakter içeremez.
- @, \$, ve % değişken içerisinde kullanılmaz.
- Sınıf isimleri büyük harf ile başlar.

Bazı örnekler

Azad	zara	abc	move_name	a_123
myname50	_temp	j	a23b9	retVal

Örnek

Bir öğrencinin

adını, yaşını, boyunu ve adının baş harfininin tutulduğu değişken oluşturunuz.

Örnek

 Bir şirketin ürünlerinin bilgilerinin tutulduğu ürünler tablosunu temsil eden değişkenleri oluşturunuz.

ürün_id	ürün_adi	ürün_adet	ürün_fiyat	ürün_tedarikci
3416	Kol saati	100	149.99	rolex

System.out.println(); metodu ile Çıktı Alma

- Bu metodları kodlama yaparken sıkça kullanırız.
- Kodlama yaparken kodların çalışma sonuçlarını bu metod ile takip edebiliriz.
- print() yan yana , println() alt alta yazmak için kullanılır.

```
System.out.print("Deneme1");
System.out.println("Deneme1");
System.out.print("Deneme1");
```

Deneme1Deneme1
Deneme1

Kısayol

Değişkenleri Yazdırma

String ifade içine + ifadesi kullanılarak çıktıya değişken eklenebilir.

```
String ad = "Ahmet";
int yil = 10;
System.out.println(ad+" Bursada "+yil+" yıldır yaşamaktadır");
         Ahmet Bursada 10 yıldır yaşamaktadır
int a = 10;
int b = 20;
System.out.println(a+" ve "+b+" nin toplamı : "+(a+b)+" dur");
             10 ve 20 nin toplamı : 30 dur
```

Tür Dönüşümü

- 1. Sayısal ifadelerin kendi aralarında dönüşümü.
 - Explicit (açıktan dönüşüm)
 - Unexplicit (açıktan olmayan dönüşüm)

- 2. Sayısal ifadeler ile String'ler arasındaki dönüşümler.
 - Sayısal ifadeden String'e dönüşüm.
 - String'den Sayısal ifadeye dönüşüm..

SayısalDönüşümler

- Reel sayılar (float, double) tam sayılara dönüşürken ondalık kısmı gider.
- NOT: Genelde küçük veri tipleri büyük veri tiplerine çevrilirken sorun yok ama büyük veri tipinden küçük veri tipine çevrilirken bilgi kaybı olabilir.

Explicit (açıktan değişim)

```
double d = 100.04;
long l = (long)d;
int i = (int)l;
System.out.println("Double deger : " + d);
System.out.println("Long
                         deger : " + 1);
System.out.println("Int deger : " + i);
Çıktı
Double deger : 100.04
Long deger: 100
Int deger: 100
```

```
\frac{\mathsf{double} \!\!\to\! \mathsf{float} \!\!\to\! \mathsf{long} \!\!\to\! \mathsf{int} \!\!\to\! \mathsf{short} \!\!\to\! \mathsf{byte}}{\mathsf{DARALAN}_1}
```

Unexplicit(açıktan olmayan değişim)

```
int i = 100 ;
long l = i;
double d = l;

System.out.println("Int deger : " + i);
System.out.println("Long deger : " + l);
System.out.println("Double deger : " + d);
```

byte \rightarrow short \rightarrow int \rightarrow long \rightarrow float \rightarrow double GENIŞLEYEN

Çıktı

```
Int deger : 100
Long deger : 100
Double deger : 100.0
```

Sayısaldan String'e dönüşüm

```
int sayi = 56 ;
String kelime1 = String.valueOf(sayi);
String kelime2 = Integer.toString(sayi);
String kelime3 = sayi + "" ;
```

String'den Sayısal ifadeye dönüşüm

```
String kelime = "56";
int sayi1 = Integer.parseInt(kelime);
int sayi2 = Integer.valueOf(kelime);
```

```
String kelime = "56";

float sayi1 = Float.parseFloat(kelime);
float sayi2 = Float.valueOf(kelime);

float sayi3 = 12.5f;

String kelime1 = String.valueOf(sayi3);
String kelime2 = Float.toString(sayi3);
String kelime3 = sayi3 + "";
```

Açıklama

- Integer.valueOf() ile Integer.parseInt() metotları arasında temel fark valueOf() metodu Integer tipinde bir nesne,parseInt() metodu ise int tipinde bir veri tipi dönderir.Ve parseInt() metodu temel veri tipi döndürdügü için daha hızlı çalışır.
- (Aynı durum Byte.valueOf()-Byte.parseByte(),Short.valueOf()-Short.parseShort(),Long.valueOf()-Long.parseLong(),Float.valueOf()-Float.parseFloat(),Double.valueOf()-Doble.parseDouble() için de geçerlidir)

Android Kullanım Alanı

1. Durum 2. Durum

Teşekkürler...

