Estimation of parameters for stochastic dynamic models

Ben Bolker

McMaster University
Departments of Mathematics & Statistics and Biology

20 June 2013

Outline

- 1 Philosophy
- 2 Stochastic simulation
 - Discrete time
 - Continuous time
- 3 Simple approaches
 - Trajectory matching
 - Gradient matching
 - Comparison
- 4 Fancier methods
 - SIMEX
 - Kalman filter
- 5 State space models
 - General intro
 - Markov chain Monte Carlo

Outline

Philosophy

- 1 Philosophy
- 2 Stochastic simulation
 - Discrete time
 - Continuous time
 - 3 Simple approach
 - Trajectory matching
 - Gradient matching
 - Comparison
 - 4 Fancier method
 - SIMEX
 - Kalman filter
 - 5 State space model
 - General intro
 - Markov chain Monte Carlo

Modeling

Philosophy

•000

Typical stats	Typical math
stochastic	deterministic
static	dynamic
phenomenological	mechanistic

Standard time-series models (ARIMA, spectral/wavelet analyses) are (mostly) phenomenological

Process and measurement error

- For stochastic models need to define both a process model and an observation model (= measurement model)

 Process model $Y(t+1) \sim F(Y(t))$ Measurement model $Y_{\text{obs}}(t) \sim Y(t)$
- Only process error affects the future dynamics of the process (usually)
- Might decompose process model into a deterministic model for the expectation and (additive?) noise around the expectation: e.g. $Y(t) = \mu + \epsilon$, $Y(t) \sim \text{Poisson}(\exp(\eta))$

Process and measurement error

- For stochastic models need to define both a **process model** and an **observation model** (= measurement model)

 Process model $Y(t+1) \sim F(Y(t))$
 - Measurement model $Y_{\rm obs}(t) \sim Y(t)$
- Only process error affects the future dynamics of the process (usually)
- Might decompose process model into a deterministic model for the expectation and (additive?) noise around the expectation: e.g. $Y(t) = \mu + \epsilon$, $Y(t) \sim \text{Poisson}(\exp(\eta))$

Process and measurement error

- For stochastic models need to define both a process model and an observation model (= measurement model)

 Process model $Y(t+1) \sim F(Y(t))$
 - Measurement model $Y_{\mathrm{obs}}(t) \sim Y(t)$
- Only process error affects the future dynamics of the process (usually)
- Might decompose process model into a deterministic model for the expectation and (additive?) noise around the expectation: e.g. $Y(t) = \mu + \epsilon$, $Y(t) \sim \text{Poisson}(\exp(\eta))$

Philosophy

■ Process error induces dynamic changes in variance

- Process+observation error induce correlations between subsequent observations
- Observation at next time step depends on unobserved value at current time step
- Simple statistical methods

 (i.e. uncorrelated, equal variance)

- Process error induces dynamic changes in variance
- Process+observation error induce correlations between subsequent observations
- Observation at next time step depends on unobserved value at current time step
- Simple statistical methods

 (i.e. uncorrelated, equal variance)

- Process error induces dynamic changes in variance
- Process+observation error induce correlations between subsequent observations
- Observation at next time step depends on unobserved value at current time step
- Simple statistical methods

 (i.e. uncorrelated, equal variance)

Process error induces dynamic changes in variance

- Process+observation error induce correlations between subsequent observations
- Observation at next time step depends on unobserved value at current time step
- Simple statistical methods

 (i.e. uncorrelated, equal variance)

Fancier methods

Philosophy

0000

How should we interpret this single realization?

- 2 Stochastic simulation
 - Discrete time
 - Continuous time
- - Trajectory matching
 - Gradient matching
 - Comparison
- - SIMEX
 - Kalman filter
- - General intro

Linear model

$$egin{aligned} N(1) &= a \ N(t+1) &\sim \mathsf{Normal}(N(t)+b, \sigma^2_{\mathsf{proc}}) \ N_{\mathsf{obs}}(t) &\sim \mathsf{Normal}(N(t), \sigma^2_{\mathsf{obs}}) \end{aligned}$$

R code (version 1)

```
## set up parameters etc.
nt <- 20: a <- 6: b <- 1
sd_proc <- sqrt(2)
sd obs <- sqrt(2)
N <- Nobs <- numeric(nt)
set.seed(101) ## for reproducibility
## actual model
N[1] \leftarrow a
Nobs[1] \leftarrow rnorm(1,N[1],sd obs)
for (i in 1:nt) {
  N[i+1] \leftarrow rnorm(1, N[i]+b, sd_proc)
  Nobs[i+1] \leftarrow rnorm(1,N[i+1],sd_proc)
```

R code (version 2)

```
library("deSolve")
##
   Attaching package:
                         'deSolve'
##
   The following object is masked from
'package: graphics':
##
##
      matplot
linfun <- function(t,y,parms) {</pre>
  g <- with(as.list(c(y,parms)), {</pre>
     N_new <- rnorm(1,N+b,sd_proc)</pre>
```

R code (version 3)

For this particular example, we can cheat because the process error doesn't really affect the future dynamics — it just accumulates:

```
N_det <- a+b*(0:(nt-1))
set.seed(101) ## for reproducibility
N <- N_det+cumsum(c(0,rnorm(nt-1,0,sd_proc)))
N_obs <- rnorm(nt,N,sd_obs)</pre>
```

Hyperbolic nonlinear model

(Equating (1) process-error-only and observation-error-only and (2) deterministic and stochastic version is fairly hard ...)

Continuous time

Stochastic ODEs

Stochastic simulation

- continuous-time, continuous-state
- ordinary differential equations plus a Wiener process (= derivative of a Brownian motion)
- delicate analysis (For biologists: Turelli (1977); Roughgarden (1995). For mathematicians: Øksendal (2003))
- Specialized integration methods
- Better for cellular/physiological than population models?

Continuous time

Markov processes

- continuous-time, discrete-state
- specify (limits of) probabilities of transitions per unit time, e.g. $P(N \to N+1)$ in the interval (t, t+dt) is rN(t) dt
- Even harder than SDEs to analyze rigorously . . .
- But computationally straightforward: Gillespie algorithm and variations (Gillespie, 2007): exponentially distributed time between transitions

- 1 Philosophy
- 2 Stochastic simulation
 - Discrete time
 - Continuous time
- 3 Simple approaches
 - Trajectory matching
 - Gradient matching
 - Comparison
- 4 Fancier method
 - SIMEX
 - Kalman filter
- 5 State space models
 - General intro
 - Markov chain Monte Carlo

Trajectory matching

Trajectory matching

- Easiest approach: just simulate the deterministic version of the model (i.e., with neither observation nor process error) and compare
- Because measurement error is (typically) independent at each observation, just have to multiply probabilities/add log-likelihoods
- for Normally distributed, equal-variance error, maximum likelihood estimation is equivalent to OLS fitting
- Very common for ODE model fitting, e.g. Gani and Leach (2001); van Veen et al. (2005).

Pseudo-code

```
## deterministic dynamics:
## function of parameters, possibly including ICs
determ_fun <- function(determ_params) { ... }</pre>
## objective function (neg. log-likelihood, SSQ, ...)
## 'params' includes process and observation parameters
obj_fun <- function(params,data) {
  estimate <- determ_fun(params[determ_params]))</pre>
  obj <- fun(estimate,data,params[obs_params])</pre>
  return(obj)
find_minimum(obj_fun,starting_params,...)
```

Real code (using for loops)

```
determ_fun <- function(p,nt) {
  with (as.list(p), a+b*(1:nt))
}
obj_fun <- function(p,nt,Nobs) {
  estimate <- determ_fun(p[c("a","b")],nt)</pre>
  ## negative log-lik. of Normal
  obj <- -sum(dnorm(Nobs, estimate, p["sd"], log=TRUE))</pre>
  return(obj)
optim(fn=obj_fun,par=c(a=5,b=2,sd=1),nt=20,Nobs=linN)
```

Real code (using mle2())

```
library(bbmle)
determ fun <- function(a,b,nt) a+b*(1:nt)
mle2(Nobs~dnorm(determ fun(a,b,nt),sd),
     data=list(Nobs=linN,nt=nt),
     start=list(a=5,b=2,sd=1).
     method="Nelder-Mead")
## Warning in calc_mle2_function(minuslog1,
parameters, start = start, parnames = parnames, :
using dnorm() with sd implicitly set to 1 is rarely
sensible
```

mle2() simplifies computation of confidence intervals, likelihood

Trajectory matching

Real code (using linear regression, lm())

Trajectory matching

Logistic model fit

15

Gradient matching

- Next-easiest approach: assume only process error (no measurement error)
- N(t+1) depends only on N(t) (which we know exactly): conditional independence
- One-step-ahead prediction
- Simple for discrete-time models (we need to specify $N(t+1) \sim N(t)$ anyway)
- Somewhat more complicated for continuous-time models (Ellner et al., 2002)

Gradient matching

Pseudo-code

```
## deterministic dynamics:
## function of parameters and previous values
onestep_fun <- function(determ_params, Nt) { ... }</pre>
## objective function (neg. log-likelihood, SSQ, ...)
obj_fun <- function(params,data) {</pre>
  obj <- ... ## numeric vector of length (nt-1)
  for (i in 1:(nt-1)) {
     estimate <- onestep_fun(N[i],params[determ_params]))</pre>
     obj[i] <- fun(estimate, N[i+1], params[obs_params])</pre>
  }
  return(sum(obj))
find_minimum(obj_fun,starting_params,...)
```

Gradient matching

Logistic growth fit

Comparison

How can we use these?

- Try both and hope the answers are not importantly different ...
- Use biological knowledge of whether process ≫ observation error or vice versa

Comparison

Logistic fit comparisons

Outline

- 1 Philosophy
- 2 Stochastic simulation
 - Discrete time
 - Continuous time
- 3 Simple approache
 - Trajectory matching
 - Gradient matching
 - Comparison
- 4 Fancier methods
 - SIMEX
 - Kalman filter
- 5 State space models
 - General intro
 - Markov chain Monte Carlo

SIMEX

- SIMulation-EXtrapolation method
- Requires (1) an independent estimate of the observation error;
 (2) that we can sensibly add additional observation error to the data
- Slightly easier for Normal errors
- Probably most sensible for experimental data?
- Examples: Ellner et al. (2002); Melbourne and Chesson (2006)

Procedure

- based on estimated observation error, pick a range of increased error values, e.g. tripling the existing observation variance in 4-8 steps
- for each error magnitude, generate a data set with that increased error (more stable to inflate a single set of errors)
- estimate parameters for each set using gradient matching (i.e. assume $\sigma_{\rm obs}^2 = 0$)
- fit a linear or quadratic regression model for parameter = f(total error)
- extrapolate the fit to zero

SIMEX

Logistic fit

Total observation error

- General approach to account for dynamic variance, expected population state
- Works for linear (typically Normal) models; can be extended to nonlinear models
- Natural multivariate extensions: include bias, external shocks, etc. (Schnute, 1994)

Concept and implementation

Concept

- Variance increases with process error; decreases with (accurate) observations
- Expected population state follows expected dynamics; drawn toward (accurate) observations
- Procedure (pseudo-pseudo-code)
 - Run KF for specified values of parameters, σ_{obs}^2 , σ_{proc}^2 to
 - Estimate objective function (SSQ) for $N_{\text{obs}}|\hat{N}, \sigma_N^2$
 - Minimize over {parameters, σ_{obs}^2 , σ_{proc}^2 }

Philosophy

Concept and implementation

Concept

- Variance increases with process error; decreases with (accurate) observations
- Expected population state follows expected dynamics; drawn toward (accurate) observations
- Procedure (pseudo-pseudo-code)
 - Run KF for specified values of parameters, σ_{obs}^2 , σ_{proc}^2 to compute $\hat{N}(t)$, $\sigma_N^2(t)$
 - Estimate objective function (SSQ) for $N_{\text{obs}}|\hat{N}, \sigma_N^2$
 - Minimize over {parameters, σ_{obs}^2 , σ_{proc}^2 }

Autoregressive model

$$N(t) \sim ext{Normal}(a + bN(t-1), \sigma^2_{ ext{proc}})$$
 $N_{ ext{obs}}(t) \sim ext{Normal}(N((t), \sigma^2_{ ext{obs}})$

- $b < 1, a > 0 \rightarrow \mathsf{stable}$ dynamics
- lacksquare b>1 o exponential growth

Procedure

Update mean, variance of true density according to previous expected mean and variance:

$$ext{mean}(N(t)|N_{ ext{obs}}(t-1)) \equiv \mu_1 = a + b\mu_0$$
 $ext{Var}(N(t)|N_{ ext{obs}}(t-1)) \equiv \sigma_1^2 = b^2\sigma_0^2 + \sigma_{ ext{proc}}^2$

2 Now update the mean and variance of the **observed** density at time t:

$$\begin{split} \mathsf{mean}(\mathit{N}_\mathsf{obs}(t)|\mathit{N}_\mathsf{obs}(t-1)) &\equiv \mu_2 = \mu_1 \\ \mathsf{Var}(\mathit{N}_\mathsf{obs}(t)|\mathit{N}_\mathsf{obs}(t-1)) &\equiv \sigma_2^2 = \sigma_1^2 + \sigma_\mathsf{obs}^2 \end{split}$$

Now update true (expected) mean and variance to account for current observation:

$$ext{mean}(ext{N}| ext{N}_{ ext{obs}}(t)) \equiv \mu_3 = \mu_1 + rac{\sigma_1^2}{\sigma_2^2}(ext{N}_{ ext{obs}}(t) - \mu_2)$$
 $ext{Var}(ext{N}(t)| ext{N}_{ ext{obs}}(t)) \equiv \sigma_3^2 = \sigma_1^2 \left(1 - rac{\sigma_1^2}{\sigma_2^2}\right)$

Pseudo-code

```
KFpred <- function(params, var_proc, var_obs, init) {</pre>
  set initial values
  for (i in 2:nt) {
     ## ... calculate mu\{1-3\}, sigma^2\{1-3\} as above
     N[i] <- mu_3; Var[i] <- sigmasq_3</pre>
  }
  return(list(N=N, Var=Var))
KFobj <- function(params, var_proc, var_obs, init, Nobs)</pre>
   pred <- KFpred(params, var_proc, var_obs, init)</pre>
   obj_fun(Nobs,mean=pred$N,sd=sqrt(pred$Var))
}
minimize(KFobj,start_values,Nobs)
```

Extended Kalman filter

To fit (mildly) nonlinear models with the deterministic skeleton

$$N(t+1)=f(N(t)),$$

we just replace a and b in the autoregressive model N(t+1)=a+bN(t) with the coefficients of the first two terms of the Taylor expansion of f():

$$f(N(\tau)) \approx f(N(t)) + \frac{df}{dN}(N(\tau) - N(t)) + \dots$$

Multivariate extension (Schnute, 1994)

process:
$$m{X}_t = m{A}_t + m{B}_t m{X}_{t-1} + m{\delta}_t$$
 observation: $m{Y}_t = m{C}_t + m{D}_t m{X}_t + m{\epsilon}_t$

Allows for bias, cross-species effects in both process and observation, correlation in process and observation noise . . .

- 1 Philosophy
- 2 Stochastic simulation
 - Discrete time
 - Continuous time
- 3 Simple approache
 - Trajectory matching
 - Gradient matching
 - Comparison
- 4 Fancier methods
 - SIMEX
 - Kalman filter
- 5 State space models
 - General intro
 - Markov chain Monte Carlo

State space models

- models that address the fundamental problem that the probability of a set of observations depends on the unobserved true values
- somehow have to deal with (integrate over?) the range of possible values of the latent variables
- problems are generally very high-dimensional (many unobserved values), so brute force fails: stochastic (Monte Carlo) integration
- \blacksquare exploit conditioning: if we know N(t), N(t-1) and N(t) are conditionally independent

Markov chain Monte Carlo

Very general way of calculating Bayesian posterior densities Gibbs sampling exploit conditioning:

$$\mathsf{Prob}(A,B,\mathcal{C}) \propto \mathsf{Prob}(A|B,\mathcal{C}) \cdot \mathsf{Prob}(B|A,\mathcal{C}) \cdot \mathsf{Prob}(\mathcal{C}|A,B)$$

This means that we can sample the conditional probabilities **sequentially** and get the right answer.

Rejection sampling (Metropolis-Hastings): we can pick new values of parameters at random, then pick a random number to decide whether to keep them. If our rule satisfies

$$\frac{\mathsf{Prob}(A)}{\mathsf{Prob}(B)} = \frac{P(\mathsf{jump}\ B \to A)P(\mathsf{accept}\ A|B)}{P(\mathsf{jump}\ A \to B)P(\mathsf{accept}\ B|A)}$$

then in the long run our chain will converge to the right distribution

Black boxes/magic

Given enough time and thought, you can construct your own Gibbs and Metropolis-Hastings samplers. Alternatively, you can use a powerful but opaque tool called BUGS (Bayesian Inference Using Gibbs Sampling), which exists in several incarnations (WinBUGS, OpenBUGS, JAGS).

BUGS allows you to specify a model in a specialized language (that looks a lot like R); it then constructs samplers for you and runs a Markov chain. It can be accessed via R (R2jags package) or MATLAB (https://code.google.com/p/matbugs/).

Black boxes/magic

Given enough time and thought, you can construct your own Gibbs and Metropolis-Hastings samplers. Alternatively, you can use a powerful but opaque tool called BUGS (Bayesian Inference Using Gibbs Sampling), which exists in several incarnations (WinBUGS, OpenBUGS, JAGS).

BUGS allows you to specify a model in a specialized language (that looks a lot like R); it then constructs samplers for you and runs a Markov chain. It can be accessed via R (R2jags package) or MATLAB (https://code.google.com/p/matbugs/).

BUGS code for the logistic function

```
model <- function() {</pre>
  t[1] \leftarrow n0 ## initial values ...
  o[1] ~ dnorm(t[1],tau.obs)
  for (i in 2:N) { ## step through observations ...
     v[i] \leftarrow t[i-1] + r * t[i-1] * (1-t[i-1]/K)
     t[i] ~ dnorm(v[i],tau.proc)
     o[i] ~ dnorm(t[i],tau.obs)
  }
  r ~ dunif(0.1,maxr) ## priors ...
  K \sim dgamma(0.005, 0.005)
  tau.obs \sim dgamma(0.005, 0.005)
  tau.proc ~ dgamma(0.005,0.005)
  n0 ~ dgamma(1,n0rate)
```

Markov chain Monte Carlo

Dependency structure for logistic model

Markov chain Monte Carlo

Running BUGS

- Good news: BUGS code is (relatively) intuitive
- Bad news:
 - Debugging is hard
 - Different parameterizations
 - Need to figure out how long to run chains (convergence diagnostics)
 - Poor mixing
 - Slow computation

Frequentist methods

- MCMC is usually done in a Bayesian framework; opens various cans of worms
- there are many other related approaches, some classical
 - sequential Monte Carlo/particle filters (lonides et al., 2006;
 Doucet et al., 2001; de Valpine, 2004): R pomp package
 - data cloning (Lele et al., 2007): R dclone package

Continuous-time models

I know this is possible via particle filtering methods, but I've never tried it . . .

Philosophy

References

- de Valpine, P., 2004. Journal of the American Statistical Association, 99:523-536.
- Doucet, A., de Freitas, N., and Gordon, N.J., 2001. Sequential Monte Carlo methods in practice. Springer-Verlag, New York, USA.
- Ellner, S.P., Seifu, Y., and Smith, R.H., 2002. Ecology, 83(8):2256-2270.
- Gani, R. and Leach, S., 2001. Nature, 414(6865):748-751.
- Gillespie, D.T., 2007. Annual Review of Physical Chemistry, 58:35-55. ISSN 0066-426X. doi:10.1146/annurev.physchem.58.032806.104637. PMID: 17037977.
- Ionides, E.L., Bretó, C., and King, A.A., 2006. Proceedings of the National Academy of Sciences of the USA, 103(49):18438-18443. doi:doi:10.1073pnas.0603181103.
- Lele, S.R., Dennis, B., and Lutscher, F., 2007. Ecology Letters, 10:551-563. doi:doi:10.1111/j.1461-0248.2007.01047.x.
- Melbourne, B.A. and Chesson, P., 2006. Ecology, 87:1478-1488.
- Roughgarden, J., 1995. Theory of Population Genetics and Evolutionary Ecology: An Introduction.

 Benjamin Cummings, facsimile edition. ISBN 0134419650.
- Schnute, J.T., 1994. Canadian Journal of Fisheries and Aquatic Sciences, 51:1676–1688.
- Turelli, M., 1977. Theoretical Population Biology, 12(2):140-178. ISSN 00405809.
- $van\ Veen,\ F.J.F.,\ van\ Holland,\ P.D.,\ and\ Godfray,\ H.C.J.,\ 2005.\ \textit{Ecology},\ 86(12): 1382-1389.$
- Øksendal, B.K., 2003. Stochastic differential equations: an introduction with applications. Springer, Berlin: New York. ISBN 3540047581 9783540047582.