MATH 102: IDEAS OF MATH

WORKSHEET 10

1. Concepts

Definition 1 (Injective functions). Let $f: A \to B$ be a function. f is said to be *injective* (or *one-to-one*) if

$$\forall a_1, a_2 \in A, f(a_1) = f(a_2) \implies a_1 = a_2.$$

An injective function is called an *injection*.

Definition 2 (Surjective functions). Let $f: A \to B$ be a function. f is said to be *surjective* (or *onto*) if

$$\forall b \in B \exists a \in A, f(a) = b$$
.

A surjective function is called a *surjection*.

Definition 3 (Bijective function). A function f is *bijective* if it is both injective and surjective.

A bijective function is called a *bijection*.

Definition 4. Let A be a set. A function $f: A \to A$ is called an identity function if f(a) = a.

An identity function on a set A is denoted by id_A .

Definition 5. Let $f: A \to B$ and $g: B \to C$ be functions. The composition of g and f, denoted by $g \circ f: A \to C$, is defined to be

$$(g \circ f)(a) = g(f(a)),$$

for all $a \in A$.

2. Problems

Problem 1. Let $f: \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R} \to [0, \infty)$ be such that f(x) = 2 + 5x, $g(x) = x^2 + 3$. Find

- (1) Domain and codomain of $g \circ f$,
- (2) A formula for $g \circ f$.

Date: Nov 8, 2023.

Problem 2. Let $A = \mathbb{R} \setminus \{1\}$, and let $f: A \to A$ be defined as follows: $f(x) = \frac{x+1}{x-1}$.

- a. Show that f is one-to-one and onto.
- b. Show that $f \circ f = id_A$.

Problem 3. Let $A = \mathcal{P}(\mathbb{R})$. Define $f : \mathbb{R} \to A$ by the formula $f(x) = \{y \in \mathbb{R} \mid y^2 < x\}$.

- a. Find f(2).
- b. Is f one-to-one? Is it onto?

Problem 4. Suppose $f: A \to B$ and $g: B \to C$.

- (1) If f and g are both one-to-one, then so is $g \circ f$.
- (2) If f and g are both onto, then so is $g \circ f$.