Prof. Dr. Cisinski, Dr. Hoang-Kim Nguyen, Sebastian Wolf

Exercises for the course Higher Category Theory (return:15.12.20, 16:00)

Exercise 1 (2+4=6 points). Let \mathcal{C} and \mathcal{D} be two small categories. We define their join $\mathcal{C} * \mathcal{D}$ as follows: the set of objects is the disjoint union of the set of objects of \mathcal{C} and of the set of objects of \mathcal{D} , and

$$\operatorname{Hom}_{\mathbb{C}*\mathcal{D}}(x,y) = \begin{cases} \operatorname{Hom}_{\mathbb{C}}(x,y) & \text{if both } x \text{ an } y \text{ are in } \mathbb{C}, \\ \operatorname{Hom}_{\mathcal{D}}(x,y) & \text{if both } x \text{ an } y \text{ are in } \mathbb{D}, \\ \{0\} & \text{if } x \text{ is in } \mathbb{C} \text{ and } y \text{ in } \mathbb{D}, \\ \emptyset & \text{if } x \text{ is in } \mathbb{D} \text{ and } y \text{ in } \mathbb{C}. \end{cases}$$

The composition law is the one induced by the composition laws of $\mathbb C$ and $\mathbb D$. We denote by $p:\mathbb C*\mathbb D\to [1]$ the unique functor defined by p(x)=0 for x in $\mathbb C$ and p(y)=1 for y in $\mathbb D$ on objects.

- 1. Given a functor $q:\mathcal{A}\to [1]$, for $i\in\{0,1\}$, we denote by \mathcal{A}_i the full subcategory of \mathcal{A} whose objects are those a with q(a)=i. We assume given two functors $u_0:\mathcal{A}_0\to \mathcal{C}$ and $u_1:\mathcal{A}_1\to \mathcal{D}$. Prove that there is a unique functor $u:\mathcal{A}\to\mathcal{C}*\mathcal{D}$ with pu=q, such that the restriction of u to \mathcal{C} and \mathcal{D} is u_0 and u_1 , respectively.
- 2. Prove that there is a canonical isomorphism

$$N(\mathbb{C} * \mathbb{D}) \cong N(\mathbb{C}) * N(\mathbb{D})$$
.

Hint. Use the universal property of the join and the fact that representable presheaves on Δ are nerves.

Exercise 2 (2+4+2+4+2=14 points). Let X and Y be ∞ -categories. The main goal of the exercise is to show that the join X * Y is an ∞ -category. We let $p : X * Y \to \Delta^1$ be the canonical map. In fact, we will prove that p is an inner fibration. We consider a commutative square of the form below, with 0 < k < n.

$$\Lambda_k^n \xrightarrow{u} X * Y
\downarrow p
\Delta^n \xrightarrow{v} \Delta^1$$

- 1. Let *i* be the biggest element of $\{0, \ldots, n\}$ such that v(i) = 0. Check that $\Delta^n = \Delta^i * \Delta^{n-i-1}$, with the convention that $\Delta^{-1} = \emptyset$.
- 2. Assume that 0 < k < i. Check that v sends Λ_k^i to 0 in Δ^1 and deduce that there is a map $\alpha : \Delta^i \to X$ which extends the restriction of u to Λ_k^i . Let $\beta : \Delta^{n-i-1} \to Y$. Prove that $\alpha * \beta$ restricted to Λ_k^n is equal to u and that $p(\alpha * \beta) = v$.
- 3. Assume that i < k < 0. Show that there is a map $f : \Delta^n \to X * Y$ with $f_{|\Lambda_k^n} = u$ and p(f) = v. *Hint.* Use the operator $T \mapsto T^{op}$ to reduce to the case where 0 < k < i.
- 4. Assume that k = i. Show that there is a unique map $f: \Delta^n \to X * Y$ with $f_{|\Lambda^n|} = u$ and p(f) = v.
- 5. Prove that there is a canonical isomorphism of categories:

$$ho(X * Y) \cong ho(X) * ho(Y)$$
.