

CausalAF: Causal Autoregressive Flow for Safety-Critical Driving Scenario Generation

Carnegie Mellon University

Wenhao Ding, Haohong Lin, Bo Li, Ding Zhao Contact: wenhaod@andrew.cmu.edu

Motivation

- Autonomous Vehicles (AV) are usually developed and evaluated in typical scenarios, which are not enough for safety purpose.
- Adversarial Generation is one way to generate safety-critical scenarios as explored in existing works.
- However, adversarial attack is inefficient and lack of diversity.
- ▶ In this paper, we investigate how **causality** increases the efficiency.

Safety-critical because the view of vehicle A is blocked by vehicle B

Not safety-critical if we remove vehicle B

Representation of Scenario

• Causal Graph (CG) $\mathcal{G}^C = (V^C, E^C)$

$$p(x_1,...,x_n) = \prod_{j=1}^n p_j(x_j | \mathbf{pa}(x_j))$$

Assume global Markov property

 $\mathcal{G}^B = (V^B, E^B)$ • Behavioral Graph (BG)

(i, i) means independent action

(i, j) means i influence j

Proposed Method (CausalAF)

1. High-level Framework

Use Normalizing flow as generative model

$$p_{\boldsymbol{x}}(\boldsymbol{x}) = p_0(f^{-1}(\boldsymbol{x})) \left| \det \frac{\partial f^{-1}(\boldsymbol{x})}{\partial \boldsymbol{x}} \right|$$

$$oldsymbol{x} = oldsymbol{z}_K = f_K^{-1} \circ f_{K-1}^{-1} \circ \cdots \circ f_0^{-1} = \mathcal{M}_\phi^{-1}(oldsymbol{z}_0), \quad oldsymbol{z}_0 \sim \mathcal{N}(oldsymbol{0}, oldsymbol{I})$$

Node generation $V^B[i,:] \sim \mathcal{N}\left(\mu_i^v, (\sigma_i^v)^2\right) = \mu_i^v + \sigma_i^v \odot \epsilon$

Edge generation $E^B[i,j,:] \sim \mathcal{N}\left(\mu_{i,j}^e, (\sigma_{i,j}^e)^2\right) = \mu_{i,j}^e + \sigma_{i,j}^e \odot \epsilon$

2. Autoregressive Generation

Causal Graph works as two masks

• Causal Ordering Mask (COM) $M^o(\mathcal{G}^C)$

One-hot mask $v_i = \arg\max(M^o(\mathcal{G}^C) \odot \operatorname{softmax}(V^B[i,:]))$

• Causal Visibility Mask (CVM) $M^x(\mathcal{G}^C)$ $M^e(\mathcal{G}^C)$

Mask out non-cause nodes $V^B(t) = V^B(t) \odot M^x(\mathcal{G}^C)$ $E^B(t) = E^B(t) \odot M^e(\mathcal{G}^C)$

Environment Scenario

Traffic-light. One potential safety-critical event could happen when the traffic light T turns from green to yellow to give the road right to an autonomous vehicle A.

Pedestrian. A pedestrian P and an autonomous vehicle A are crossing the road in vertical directions.

Lane-changing. An autonomous vehicle A takes a lane-changing behavior due to a static car S parked in front of it. Meanwhile, a vehicle R drives in the opposite lane.

Experiment

Table 1: Results of safety-critical scenario generation. Bold font means the best

Environment	L2C [5]	MMG [4]	SAC [15]	Baseline	Baseline+COM	CausalAF
Traffic-light Pedestrian Lane-changing	0.69 ± 0.41	0.43 ± 0.56	0.47 ± 0.61 0.38 ± 0.49 0.58 ± 0.41	0.35 ± 0.65	0.69 ± 0.52 0.57 ± 0.48 0.88 ± 0.04	$0.98\pm0.01 \\ 0.83\pm0.13 \\ 0.91\pm0.06$

When the number of irrelevant vehicle increases, CausalAF shows larger advantages over the baseline

Evaluate 4 RL agents (trained with random or generated scenarios) on safety-critical scenarios.

Table 2: Comparison of RL algorithms evaluated on safety-critical scenarios

Method	Traffic-light		Pedestrian		Lane-changing	
	Random	Generated	Random	Generated	Random	Generated
SAC [15]	0.35±0.23	$0.91 {\pm} 0.03$	0.30 ± 0.41	$0.92 {\pm} 0.03$	0.49 ± 0.37	0.95±0.04
PPO [16]	0.27 ± 0.33	$0.86 {\pm} 0.10$	0.23 ± 0.49	0.80 ± 0.12	0.37 ± 0.38	0.92 ± 0.04
DDPG [17]	0.42 ± 0.49	0.89 ± 0.07	0.27 ± 0.52	$0.85{\pm}0.09$	0.48 ± 0.39	0.95 ± 0.02
MBRL [18]	0.62 ± 0.11	0.98 ± 0.02	0.50 ± 0.11	0.97 ± 0.01	0.73 ± 0.13	0.98 ± 0.01