Cmput 466 / 551

Learning Belief Net Parameters

Readings: ≈HTF 17

(Bayesian Networks without the Tears (Charniak))

R Greiner University of Alberta

Some material taken from C Guesterin (CMU)

Introduce:

- Density estimation
- KL-divergence ... ≈ MLE
- Expectation Maximization
- Gibbs sampling

- Motivation
- What is a Belief Net?

<u>Jump</u>

- ...
- Learning a Belief Net
 - Goal?
 - Learning Parameters Complete Data
 - Learning Parameters Incomplete Data
 - Learning Structure

Learning is ... Training a Classifier

Temp.	Press.	Sore Throat	 Colour	diseaseX
35	95	Y	 Pale	No
22	110	N	 Clear	Yes
:	:		:	:
10	87	N	 Pale	No

Learning is ... Training a Model

Temp.	Press.	Sore Throat	 Colour	diseaseX
35	95	Y	 Pale	No
22	110	N	 Clear	Yes
:	:		:	•
10	87	N	 Pale	No

Learner

Then conditionalize, marginalize to answer *any question*:

Temp	Blood Press.	Sore- Throat	 Colour	diseaseX
32	90	N	 Pale	No

J	Н	В	P(j,b,h)
0	0	0	0.03395
0	0	1	0.0095
0	1	0	0.0003
0	1	1	0.1805
1	0	0	0.01455
1	0	1	0.038
1	1	0	0.00045
1	1	1	0.722

Why Learn Belief Nets?

- Goal#1: Build a classifier
 - What is P(Cancer = + | HA = +, Fev = -, ...) ?
 - Is P(Cancer = + | ...) > P(Cancer = | ...)?
- Goal#2: Build a SET of classifiers
 - What is P(Cancer = + | HA = +, Fev = -, ...) ?
 - What is P(Meningitis = | HA = +, Cold = 3, ...)?
 - What is $P(HospStay = 3 \mid Smoke = 0.1, BNose = -1, ...)$?
- Goal#3: Build a model of the world!
 - ... all interrelations between all subsets of variables
 - Reveal (in)dependencies, connections, ...
 - Note: A completely accurate model will produce correct answers to EVERY P(X | Y) query

Generative Learning

- Generative Learning:
 - Given (sample of) distribution, P(x)
 - Seek model Q(x)
 that matches P(x)

С	S	Α	•••	G	Р	Q
+	У	У	•••	m	0.3	0.2
+	У	У	•••	f	0.1	0.15
:	:	•		:	i	:
_	У	0	•••	f	0.01	0.02
÷	:	:		:	:	:

Note: no "y" vs "x" ...

KL-Divergence ... ≈ MaxLikelihood

Seek the BN that minimizes KL-divergence

$$KL(D; BN) = \sum_{x} P_D(x) \ln \frac{P_D(x)}{P_{BN}(x)}$$

- KL-divergence ...
 - always ≥ 0
 - =0 iff distr's "identical"
 - not symmetric
- but... distrib'n *1* not known; Only have instances

$$S = \{d_r\}$$

drawn iid from \mathcal{D}

 $BN^* = \operatorname{argmin}_{BN} K(\mathfrak{D}; BN)$

= argmax_{BN} $\sum_{x} P_{\mathcal{D}}(x) \ln P_{\mathcal{B}}(x)$

as $\sum_{x} P_{D}(x) \ln P_{D}(x)$

 $\approx \operatorname{argmax}_{BN} \sum_{d \in S} \frac{1}{|S|} \ln P_{BN}^{\text{is independent of BN}}$

as S drawn from D

= argmax_{BN} $\prod_{d \in S} P_{BN}(d)$

= $\operatorname{argmax}_{BN} P_{BN}(S)$

Best Distribution

If goal is BN that approximates 2:

Find BN* that maximizes likelihood of data S

$$\underset{BN}{\operatorname{arg\,min}} KL(\mathcal{D}; BN) \approx \underset{BN}{\operatorname{arg\,max}} P_{BN}(S)$$

- Approaches:
 - Frequentist: Maximize Likelihood
 - + tweaks to address overfitting: BDe, BIC, MDL, ...
 - Bayesian: Maximize a Posteriori

...

Learning Belief Nets

Structure Known Unknown Complete Easy NP-hard Missing Hard ... EM Very hard!!

Typical (Benign) Assumptions

- 1. -Variables are discrete-
- 2. -Each-case -ε_i-∈-S--is-complete
- Rows of CPtables are independent

- 4. -Prior-p($\Theta_{\overline{\chi}}$ -|-G)-is-uniform-- $\theta_{B|+a} \sim \text{Beta}(1,1)$

 - Later: relax Assumptions 1, 2, 4

Learning the CPTs (Frequentist)

 $\theta_{+c|+a,+b}$

 $\theta_{+c|-a,+b}$

 $\theta_{+c|+\underline{a},\underline{-b}}$

 $\theta_{+c|-a,-b|}$

 $\theta_{-c|\underline{+a,+b}}$

 $\theta_{-c|-a,+b}$

 $\theta_{-c|+a,-b}$

 $\theta_{-c|-a,-b}$

Given

- Fixed structure
- over discrete variables { X_i }
- Complete instances
- $\widehat{\Theta}$ = "empirical frequencies"
- Eg:

$$\theta_{+a} = 2 / (2+2) = 0.5$$

$$\theta_{-b} = 3 / (3+1) = 0.75$$

$$\theta_{+c|+a,-b} = 2 / (2+0) = 1.0$$

	A	В	С
d_1	1	0	1
d ₂	0	1	0
d_3	0	0	1
d₄	1	0	1

WHY????

One-Node Bayesian Net

• P(Heads) = θ , P(Tails) = $1-\theta$

$$\begin{array}{c|cccc} \hline & P(C=h) & P(C=t) \\ \hline & \theta & 1-\theta \end{array}$$

- Flips are i.i.d.:
 - Independent events
 - Identically distributed according to Binomial distribution
- Sequence S of α_H Heads and α_T Tails $P(S \mid \theta) = \theta^{\alpha_H} (1 \theta)^{\alpha_T}$

Maximum Likelihood Estimation

- **Data:** Observed set S of α_H Heads and α_T Tails
- Hypothesis Space: Binomial distributions
- Learning θ is an optimization problem
 - What's the objective function?
- **MLE**: Choose $\widehat{\boldsymbol{\theta}}$ that maximizes the probability of observed data:

$$\hat{\theta}$$
 = $\underset{\theta}{\operatorname{arg max}} P(S | \theta)$
 = $\underset{\theta}{\operatorname{arg max}} ln[P(S | \theta)]$

Simple "Learning" Algorithm

$$\hat{\theta}$$
 = arg max $ln [P(S | \theta)]$
= arg max $ln [\theta^h (1 - \theta)^t]$

• Set derivative to zero:
$$\frac{d}{d\theta} \ln P(|\mathcal{S}||\theta) = 0$$

$$\frac{\partial}{\partial \theta} \ln[\theta^h (1 - \theta)^t] = \frac{\partial}{\partial \theta} [h \ln \theta + t \ln (1 - \theta)^t] = \frac{h}{\theta} + \frac{-t}{(1 - \theta)}$$

$$\frac{h}{\theta} + \frac{-t}{(1-\theta)} = 0 \Rightarrow \theta = \frac{h}{t+h}$$
 so just average!!!

If 7 heads, 3 tails, set $\hat{\theta} = 0.7$

Factoids...

Recall that, for a Bayesian Network...
 For a COMPLETE instance, x = (x₁, ..., x_n)
 P(x) = product of CPtable values

 (one from each variable)

- In $a^b = b \ln a$
- In $(a \times b) = \ln a + \ln b$

$$\frac{\partial}{\partial \theta} \ln \theta = \frac{1}{\theta}$$

$$\frac{\partial}{\partial \theta} \ln \theta = \frac{1}{\theta}$$

$$\frac{\partial}{\partial \theta} \ln (1 - \theta) = \frac{-1}{(1 - \theta)}$$

Probability of Complete Instance

$$P(\neg b, e, a, \neg j, m) = P(\neg b) P(e|\neg b) P(a|e, \neg b) P(\neg j|a, e, \neg b) P(m|\neg j, a, e, \neg b)$$

$$P(\neg b) P(e) P(a|e, \neg b) P(\neg j|a) P(m|a)$$

$$0.99 \times 0.02 \times 0.29 \times 0.1 \times 0.70$$

Node independent of predecessors, given parents

Likelihood of the Data (Frequentist)

- θ_{+a} θ_{-a}
- A B
- θ_{+b} θ_{-b}

- P(S | Θ) = \prod_r P(d_r | Θ)
- $P(d_1) = P_{\Theta}(+a, -b, +c)$ = $P_{\Theta}(+a) P_{\Theta}(-b) P_{\Theta}(+c \mid +a, -b)$ = $\Theta_{+a} \Theta_{-b} \Theta_{+c \mid +a, -b}$
- $P(d_2) = P_{\Theta}(-a, +b, -c)$ = $P_{\Theta}(-a) P_{\Theta}(+b) P_{\Theta}(-c \mid -a, +b)$ = $\Theta_{-a} \Theta_{+b} \Theta_{-c \mid -a, +b}$

$\theta_{+c +a,+b}$	$\theta_{-c +a,+b}$
$\theta_{+c -a,+b}$	$\theta_{-c -a,+b}$
$\theta_{+c +a,-b}$	$\theta_{-c +a,-b}$
$\theta_{+c -a,-b}$	$\theta_{-c -a,-b}$

	A	В	С
d_1	1	0	1
d ₂	0	1	0
d_3	0	0	1
d ₄	1	0	1

$$\begin{array}{l} \bullet \ \mathsf{P}(\ \mathsf{S} \ | \ \Theta \) = \Theta_{+a}^{2} \ \Theta_{-a}^{2} \ \Theta_{+b}^{1} \ \Theta_{-b}^{3} \ \Theta_{+c|+a,+b}^{0} \ \Theta_{+c|+a,+b}^{0} \ \Theta_{+c|+a,-b}^{2} \dots \\ = \Theta_{+a}^{N_{+a}} \ \Theta_{-a}^{N_{-a}} \ \Theta_{+b}^{N_{+b}} \ \Theta_{-b}^{N_{-b}} \ \Theta_{+c|+a,+b}^{N_{+c|+a,+b}} \ \Theta_{+c|+a,-b}^{0} \dots \\ = \prod_{ijk} \theta_{iik}^{N_{ijk}} \end{array}$$

Example of Parameter θ_{ijk}

4th	\Rightarrow
•	

				P(Fever=?	Ca, Fiu, Maii)
	Cold	Flu	Malaria	True	False
	F	F	F	$ heta_{111}$	$ heta_{112}$
	F	F	Т	$ heta_{121}$	$ heta_{122}$
	F	Т	F	θ_{131}	<i>6</i> ₁₃₂
-	F	T	I	$ heta_{141}$	▶ θ ₁₄₂
	Т	F	F	$ heta_{151}$	θ_{152}
	Т	F	Т	$ heta_{161}$	θ_{162}
	Т	Т	F	$ heta_{171}$	θ_{172}
	Т	T	Т	$ heta_{181}$	θ_{182}

- $\bullet \Theta_{ijk} = P(X_i = V_{ik} \mid Pa_i = pa_{ij})$
 - variable#1 -- here, "Fever"
 - 4th value of parents [Cold=F, Flu=T, Malaria=T]
 - 2nd value of Fever-node here, "Fever = FALSE"
- Note: $\sum_{k} \Theta_{ijk} = 1$

Example of Count N_{ijk}

4 th	\Rightarrow
-------------	---------------

			P(Fever=?	Cu, Fiu, Maii)
Cold	Flu	Malaria	True	False
F	F	F	N ₁₁₁	N ₁₁₂
F	F	Т	N ₁₂₁	N ₁₂₂
F	Т	F	N ₁₃₁	N ₁₃₂
F	T	T	N ₁₄₁	▶ N ₁₄₂
Т	F	F	N ₁₅₁	N ₁₅₂
Т	F	Т	N ₁₆₁	N ₁₆₂
Т	Т	F	N ₁₇₁	N ₁₇₂
Т	Т	Т	N ₁₈₁	N ₁₈₂

- N_{iik} refers to ...
 - variable#1 -- here, "Fever"
 - 4th value of parents [Cold=F, Flu=T, Malaria=T]
 - 2nd value of Fever-node -- here, "Fever = FALSE"
- N_{ijk} is number of data-tuples
 where variable#i = its kth value
 & parents(variable#i) = jth value

Task#1:

Fixed Structure, Complete Tuples

■ What are the ML values for Θ, given iid data $S = \{ d_r \}, ...$

$$P(S \mid \Theta) = \prod_{d \in S} P(d \mid \Theta) = \prod_{d \in S} \prod_{[X_i = x_{ik}, Pa_i = pa_{ij}] \in d} \Theta_{ijk} =$$

$$\prod_{ijk} \Theta_{ijk}^{N_{ijk}} = \prod_{ij} \prod_{k} \Theta_{ijk}^{N_{ijk}}$$

- $\Theta^{(ML)}$ = argmax_{Θ} { P(S | Θ) }

 - = $\operatorname{argmax}_{\Theta} \{ \log P(S \mid \Theta) \}$ = $\operatorname{argmax}_{\Theta} \{ \sum_{ij} \sum_{k} N_{ijk} \log \Theta_{ijk}) \}$

 $\forall ij \sum_{k} \Theta_{iik} = 1$

MLE Values

- $\Theta^{(ML)} = \underset{\forall ij \ \sum_{k} \Theta_{ijk} = 1}{\operatorname{argmax}_{\Theta}} \left\{ \sum_{ij} \sum_{k} N_{ijk} \log \Theta_{ijk} \right\}$
- Notice θ_{ij} is independent of θ_{rs} when $i \neq r$ or $j \neq s$... \Rightarrow can solve each $\sum_k N_{ijk} \log \theta_{ijk}$ individually!
- For each $\sum_{k} N_{ijk} \log \theta_{ijk}$... as $\sum_{k} \theta_{ijk} = 1$, optimum is

$$\theta_{ijk} = \frac{N_{ijk}}{\sum_{k'} N_{ijk'}} = \frac{\#(X_i = v_{i,k} \& \mathbf{Pa}_i = \mathbf{pa}_{i,j})}{\#(\mathbf{Pa}_i = \mathbf{pa}_{i,j})}$$

- Observed Frequency Estimates!
- Undefined if $\sum_k N_{ijk} = 0 \dots \#(\mathbf{Pa}_i = \mathbf{pa}_{i,j}) = 0$

•

Algorithm

- ComputeMLE(graph G, data S): return MLE parameters $[\theta_{ijk}]$
- Initialize N_{ijk} ← 0
- Walk thru data \$
 - Whenever see [X_i=v_{ik}, Pa_i=pa_{ij}], increment N_{ijk} += 1
- Return parameters: $\left|\theta_{ijk}\right| = \overline{\Sigma}$

$$\theta_{ijk} = \frac{N_{ijk}}{\sum_{r} N_{ijr}}$$

Buckets

$$N_{+a} = 0$$

$$N_{-a} = 0$$

$$N_{-a} = 0$$
 $N_{+b|+a} = 0$

$$N_{-b|+a} = 0$$

$$N_{+b|-a} = 0$$

$$N_{-b|-a} = 0$$

A	В	
+	+	
+	_	

0

Problems with MLE

- 0/0 issues
- Do you really believe 0% if 0 / 0+2 ?
- Which is better?
 - 3 heads, 2 tails
 - 30 heads, 20 tails
 - 3E23 heads, 2E23 tails

- $\theta = 3/(3+2) = 0.6$
- $\theta = 30/(30+20) = 0.6$
- $\theta = 3E23/(3E3+2E23) = 0.6$
- What if you already know SOMETHING about the variable...

≈ 50/50 ...

Bayesian Learning

$$P(\theta | S) \propto P(S | \theta) P(\theta)$$
 $\uparrow \qquad \uparrow \qquad \uparrow$
posterior

 $P(S | \theta) P(\theta) \rightarrow \uparrow \qquad \uparrow \qquad \uparrow$
likelihood prior

Likelihood function is simply Binomial:

$$P(S \mid \theta) = \theta^{m_H} (1 - \theta)^{m_T}$$

- What about prior?
 - Represent expert knowledge
 - Simple posterior form
- Conjugate priors:
 - Closed-form representation of posterior (more details soon)
 - For Binomial, conjugate prior is Beta distribution⁸

Beta Prior Distribution – $P(\theta)$

• Prior:
$$P(\theta) = \frac{\theta^{\alpha_H - 1} (1 - \theta)^{\alpha_T - 1}}{B(\alpha_H, \alpha_T)} \sim Beta(\alpha_H, \alpha_T)$$

• Likelihood function:
$$P(\mathcal{D} \mid \theta) = \theta^{m_H} (1 - \theta)^{m_T}$$

- Given X ~ Beta(a, b) :
 - Mean: a/(a + b)
 - Unimodal if a,b>1... here mode: $\frac{a-1}{a-1}$

$$\frac{a-1}{a+b-2}$$

• Variance:
$$\frac{a b}{(a+b)^2(a+b-1)}$$

Posterior distribution... from Beresti

$$P(\theta \mid \mathcal{D}) \propto P(\theta) P(\mathcal{D} \mid \theta)$$

Prior
$$P(\theta)$$

Likelihood
$$P(D|\theta)$$

$$= \Theta^{\alpha_H - 1} (1 - \Theta)^{\alpha_T - 1} \times \Theta^{m_H} (1 - \Theta)^{m_T}$$

$$imes oxedot \Theta^{m_H} (1-\Theta)^{m_T}$$

$$= \Theta^{\alpha_H + m_H - 1} (1 - \Theta)^{\alpha_T + m_T - 1}$$

$$\sim$$
 Beta $(\alpha_H + m_H, \alpha_T + m_T)$

Distribution over Parameter

- What is "real" value of $\theta_{A=1}$?
- If ...
 - uncertainty in expert opinion
 - limited training data only a distribution!

Distribution over Parameters

Buckets

$$u_{+a} := \alpha_{+a}$$

•
$$u_{-a}$$
 := α_{-a}

$$u_{+b|+a} := \alpha_{+b|+a}$$

$$u_{-b|+a} := \alpha_{-b|+a}$$

$$u_{+b|-a} := \alpha_{+b|-a}$$

$$u_{-b|-a} := \alpha_{-b|-a}$$

A	В	
+	+	
+		

Buckets

$$u_{+a} := 1$$

$$u_{+b|+a} := 1$$
 $u_{-b|+a} := 1$

$$u_{-b|+a} := 1$$

$$u_{+bl-a} := 2$$

•
$$u_{+b|-a} := 2$$

• $u_{-b|-a} := 7$

A	В
+	+
+	

If you want POINT estimates...

$$\mathbf{u}_{+a}$$
 := $\mathbf{1}'$

•
$$u_{+b|+a} := 1$$
/
• $u_{-b|+a} := 1$ /

$$u_{-bl+a} := 1$$

$$u_{+b|-a} := 2$$

$$u_{-b|-a} := 7$$

 $\hat{\Theta}_{B|-a} = \left| \frac{2}{2+7}, \frac{7}{2 + 7} \right|$

Α	В	
+	+	
+	_	

Note: no 0/0 issues!

4

Beta Distribution

Model row-parameter

$$\theta_{B|a=1} = \langle \theta_{b=0|a=1}, \theta_{b=1|a=1} \rangle$$

as Beta distribution

$$\bullet_{\mathsf{B}|\mathsf{A}=1} = \langle \theta_{\mathsf{B}=0|\mathsf{A}=1}, \ \theta_{\mathsf{B}=1|\mathsf{A}=1} \rangle \sim \mathsf{Beta}(\ 1,\ 1\)$$

kinda like seeing 2 instances with $\langle A=1 \rangle$:

1	with	$\langle A=1,$	B=0	
1	with	$\langle A=1,$	$B=1\rangle$	

A	В	С	D
1	0	0	1
1	1	1	1
0	0	1	1
:	:	:	:

Beta Distribution, II

 $\bullet_{B|A=1} = \langle \theta_{B=0|A=1}, \theta_{B=1|A=1} \rangle \sim \text{Beta}(1, 1)$

$$\Rightarrow \left| \mathbf{E}[\theta_{B=0|A=1}] = \widehat{\boldsymbol{\theta}}_{b|+a} \right| = \frac{1}{1+1} = 0.5$$

Now... observe data 5:

$$\begin{cases}
A & B & C & E \\
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 1 \\
1 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 \\
\vdots & \vdots & \vdots & \vdots
\end{cases}$$

$$\begin{cases}
A & B & C & E \\
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 1 \\
1 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 \\
\vdots & \vdots & \vdots & \vdots
\end{cases}$$

$$\begin{cases}
A & B & C & E \\
1 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\vdots & \vdots & \vdots & \vdots
\end{cases}$$

$$\begin{cases}
A & \text{"}(A=1, B=0) \text{ "S} \\
A & \text{"}(A=1, B=0) \text{ "S} \\
A & \text{"}(A=1, B=0) \text{ "S}
\end{cases}$$

Beta Distribution, III

$$\bullet_{\mathsf{B}|\mathsf{A}=1} = \langle \theta_{\mathsf{B}=0|\mathsf{A}=1}, \; \theta_{\mathsf{B}=1|\mathsf{A}=1} \rangle \sim \mathsf{Beta}(1,1)$$

$$\Rightarrow \left| \mathbf{E}[\theta_{B=1|A=1}] = \widehat{\theta}_{+b|+a} \right| = \frac{1}{1+1} = 0.5$$

Then observe data S

New distribution is

$$\theta'_{B|A=1} \sim Beta(1+2, 1+4) = Beta(3, 5)$$

$$\Rightarrow E[\theta_{B=1|A=1} \mid S] = \hat{\theta}_{+b|+a} \mid S = \frac{3}{3+5} = 0.375$$

$\theta_{B|A=1} \sim Beta(3,5)$ Distribution

Posterior Distribution of ⊕

Posterior distribution is...

Posterior Distribution

- Initially: $P(X_i | p_{ij}) \dots$ $\theta_{ij} \sim Dir(\alpha_{ij1}, \dots, \alpha_{ijr})$
- Data S includes
 N_{ijk} examples including [X_i=v_{ik}, Pa_i=pa_{ij}]
- Posterior $\theta_{ij} \mid S \sim Dir(\alpha_{ij1} + N_{ij1}, ..., \alpha_{ijr} + N_{ijr})$
- Expected value

$$E[\theta_{ijk}] = \frac{N_{ijk} + \alpha_{ijk}}{\sum_{r} N_{ijr} + \alpha_{ijr}}$$

Compare to Frequentist:

$$\hat{\theta}_{ijk} = \frac{N_{ijk}}{\sum_{r} N_{ijr}}$$

Algorithm

ComputePosterior (graph G, data S, priors $[\alpha_{iik}]$): return posterior parameters [uiik]

- Initialize $u_{ijk} \leftarrow \alpha_{ijk}$
- Walk thru data S
 - Whenever see [X_i=v_{ik}, Pa_i=pa_{ii}], increment u_{iik} += 1
- Set parameters:

$$\theta_{ij}$$
 |S ~ Dir(u_{ij1} , ..., u_{ijr})

If want expected value: $E[\theta_{ijk}] = \frac{u_{ijk}}{\sum u_{...}}$

$$E[\theta_{ijk}] = \frac{u_{ijk}}{\sum_{r} u_{ijr}}$$

Priors for Parameters

- Does this make sense?
 - EffectiveSampleSize($\theta_{Y|+x}$) = 2
 - But only 1 example ~ "+x" ??

- J-Equivalent structure
- What happens after [+x, -y]?
 - Should be the same!!

Priors for Parameters

[+x, -y]

BDe Priors

- This makes more sense:
 - EffectiveSampleSize($\theta_{Y|+x}$) = 2
 - Now \approx 2 examples \sim "+x"??

- J-Equivalent structure
- Now what happens after [+x, -y]?

BDe Priors

BDe Prior

- View Dirichlet parameters as "fictitious samples"
 - equivalent sample size
- Pick a fictitious sample size m'
- For each possible family, define a prior distribution $P(X_i, Pa_{X_i})$
 - Represent with a BN
 - Usually independent (product of marginals)
 - $P(X_i, Pa_{X_i}) = P'(X_i) \prod_{x_{j \in Pa[X_i]}} P'(x_j)$
 - P($\theta[x_i | Pa_{X_i} = u) = Dir(m' P'(x_i = 1, Pa_{X_i} = u), ..., m' P'(x_i = k, Pa_{X_i} = u))$
 - Typically, P'(X_i) = uniform

- MLE:
 - score decomposes according to CPTs
 - optimize each CPT separately
- Bayesian parameter learning:
 - motivation for Bayesian approach
 - Bayesian prediction
- Bayesian learning for BN parameters
 - Global parameter independence
 - BDe if and only if score equivalence

 - Predictive distribution model averaging, for free!

Outline

- Motivation
- What is a Belief Net?
- Learning a Belief Net
 - Goal?
 - Learning Parameters Complete Data
 - Learning Parameters Incomplete Data
 - Gradient Descent
 - EM
 - Gibbs
 - Learning Structure

4

#2: Known structure, Missing data

- To find good Θ , need to compute $P(\Theta \mid S, G)$
- Easy if ...Hard

$$S = \left\{ \begin{array}{cccc} c_1 \colon & \left\langle \begin{smallmatrix} * & & \dots & c_{1N} \\ c_2 \colon & \left\langle c_{21} & \dots & \begin{smallmatrix} * \\ * \\ \vdots & \left\langle \vdots & c_{ij} & \vdots \\ c_m \colon & \left\langle c_{m1} & \dots & c_{mN} \right\rangle \end{array} \right\} \text{ incomplete}$$

- What if S is incomplete ?
 - Some c_{ij} = *
 - $c_{iK} = * \forall i$ (ie, X_K never seen... "Hidden variables")
- Here:
 - Given fixed structure
 - Missing (Completely) At Random:
 Omission not correlated with value, etc.
- Approaches:
 - Gradient Ascent, EM, Gibbs sampling, ...

Gradient Ascent

- Want to maximize likelihood
 - $\theta^{(MLE)} = \operatorname{argmax}_{\theta} L(\theta : S)$
- Unfortunately...
 - $L(\theta : S)$ is nasty, non-linear, multimodal fn
 - So...
- Gradient-Ascent
- ... 1st-order Taylor series expansion...

$$f_{\rm obj}(\theta) \approx f_{\rm obj}(\theta^0) + (\theta - \theta^0) \nabla f_{\rm obj}(\theta^0)$$

Need derivative!

```
Procedure Gradient-Ascent ( \theta^1, // Initial starting point f_{\text{obj}}, // Function to be optimized \delta // Convergence threshold ) 1 \quad t \leftarrow 1 2 do 3 \quad \theta^{t+1} \leftarrow \theta^t + \sqrt{\nabla f_{\text{obj}}(\theta^t)} 4 t \leftarrow t+1 5 while \|\theta^t - \theta^{t-1}\| > \delta 6 return (\theta^t)
```


Issues with Gradient Ascent

- Constraints
 - $\Theta_{iik} \in [0,1]$
 - $\sum_{\mathsf{r}} \Theta_{\mathsf{iir}} = 1$
 - But ... Θ_{iik} += $\alpha \Delta \Theta_{iik}$ could violate constraints
 - Use $\lambda_{ijk} = \log(\theta_{ijk})$
 - Find best λ_{ijk} ... ignore constraints ...
- Lots of Tricks for efficient ascent
 - Line Search
 - Conjugate Gradient
 - **...**

[See earlier notes on optimization]

Expectation Maximization (EM)

- EM is designed to find most likely θ, given incomplete data!
- Recall simple Maximization needs counts:

$$\#(+x, +y)$$
, ... for $N_{+y|+x}$, ...

But is instance [?, +y] in ... #(+x, +y)? ... #(-x, +y)?

- Why not put it in BOTH... fractionally ?
 - What is weight of #(+x, +y)?
 - $P_{\theta}(+x + y)$, based on current value of θ
- Compute "expected sufficient statistics": $E_{\theta}[N_{ijk}]$

4

EM Approach – E Step

Camarala	Α	В	C
Sample S =	0(0	1
	*	1	0
	9	*	1
	*	*	1

Set S(0) =
$$\begin{bmatrix} A & B & C \\ 0 & 0 & 1 & 1.0 \\ 0 & 1 & 0 & 0.7 \\ 1 & 0 & 0.3 \\ 0 & 0 & 1 & 0.1 \\ 0 & 1 & 1 & 0.9 \\ \hline 0 & 0 & 1 & 0.2 \times 0.1 \\ 0 & 1 & 1 & 0.8 \times 0.1 \\ 1 & 1 & 1 & 0.8 \times 0.9 \end{bmatrix}$$

4

EM Approach – E Step

Carranala	Α	В	С
Sample S =	0	0	1
	*	1	0
	0	*	1
	*	*	1

Set S(0) =
$$\begin{vmatrix} A & B & C \\ 0 & 0 & 1 & 1.0 \\ 0 & 1 & 0 & 0.7 \\ 1 & 1 & 0 & 0.3 \\ 0 & 0 & 1 & 0.1 \\ 0 & 1 & 1 & 0.9 \\ 0 & 0 & 1 & 0.2 \times 0.1 \\ 0 & 1 & 1 & 0.2 \times 0.9 \\ + (0.8 \times 0.1) & 1 & 1 & 0.8 \times 0.9$$

$$E_{\theta^0}[N_{+b|+c}] = 0.9 + (0.2x0.9) + (0.8x0.9)$$

 $E_{\theta^0}[N_{-b|+c}] = 1 + 0.1 + (0.2x0.1) + (0.8x0.1)$

EM Approach – M Step

Use fractional data:

$$S^{(0)} =$$

Α	В	С	
0	0	1	1.0
0	1	0	0.7
1	1	0	0.3
0	0	1	0.1
0	1	1	0.9
0	0	1	0.7 × 0.1
0	1	1	0.7 × 0.9
1	0	1	8.3 × 0.1
1	1	1	0.3 × 0.9
•			

	1	1.0	$\theta_{+a +c}$	$\theta_{-a +c}$	
	0	0.7			A
•	0	0.3	$\theta_{+a -c}$	$\theta_{-a -c}$	
	1	0.1			
• •	1	0.9			
	1	0.7 × 0.1			
	1	0.7 × 0.9			
	1	8.3 × 0.1			
		<u></u>			

New estimates:

$$E_{\Theta}[N_{+a|+c}]$$

$$(0.3 \times 0.1) + (0.3 \times 0.9)$$

$$= \frac{1 + E_{\Theta}[N_{-a|+c}]}{[(0.3 \times 0.1) + (0.3 \times 0.9)] + [1 + (0.1 + 0.9) + (0.7 \times 0.1) + (0.7 \times 0.9)]} = \frac{1 + E_{\Theta}[N_{-a|+c}]}{[(0.3 \times 0.1) + (0.3 \times 0.9)] + [1 + (0.1 + 0.9) + (0.7 \times 0.1) + (0.7 \times 0.9)]}$$

$$\hat{\theta}_{+c}^{(1)} = \frac{E_{\theta}[N_{-c}]}{E_{\theta}[N_{+c}] + E_{\theta}[N_{-c}]} = \frac{1.0 + (1.0) + (1.0)}{4} = 0.75$$

$$\hat{\theta}_{+b|+c}^{(1)} = \frac{E_{\theta}[N_{+b|+c}]}{E_{\theta}[N_{+b|+c}] + E_{\theta}[N_{-b|+c}]} = \frac{0.9 + (0.2 \times 0.9) + (0.8 \times 0.9)}{3} = 0.6$$

 $\theta_{+b|+c}$

 $\theta_{\text{+b|-c}}$

 $\theta_{-b|+c}$

 $\theta_{-b|-c}$

EM Approach – M Step

Use fractional data:

$$S^{(0)} =$$

Α	В	С	
0	0	1	1.0
0	1	0	0.7
1	1	0	0.3
0	0	1	0.1
0	1	1	0.9
0	0	1	0.7 × 0.1
0	1	1	0.7 × 0.9
1	0	1	8.3 × 0.1
1	1	1	0.3 × 0.9

Α	В	C		
0	0	1	1.0	$\theta_{+a +c}$ $\theta_{-a +c}$
0	1	0	0.7	\mathbf{A}
1	1	0	0.3	$\theta_{+a -c}$ $\theta_{-a -c}$
0	0	1	0.1	
0	1	1	0.9	
0	0	1	0.7 × 0.1	
0	1	1	0.7 × 0.9	
1	0	1	0.3 × 0.1	
1	1	1	0.3 × 0.9	

•New estimates:

$$\hat{\theta}_{+a|+c}^{(1)}$$
 =

$$E_{\Theta}[N_{+a|+c}]$$

$$[E_{-a|+c}] + E_{\Theta}[N_{-a|+c}]$$

$$(0.3 \times 0.1) + (0.3 \times 0.9)$$

$$\frac{}{[(0.3\times0.1)+(0.3\times0.9)]+[1+(0.1+0.9)+(0.7\times0.1)+(0.7\times0.9)]}=0$$

 $\theta_{+b|+c}$

 $\theta_{+b|\underline{-c}}$

 $\theta_{-b|+c}$

 $\theta_{\text{-b|-c}}$

$$\hat{\theta}_{+c}^{(1)} =$$

$$\frac{L_{\theta}[I \setminus c]}{[N] + E_{\alpha}[N]}$$

$$=\frac{1.0+(1.0)+(1.0)}{1.0}=0.75$$

$$E_{\theta}[N_{+c}] + E_{\theta}[N_{-c}]$$

$$E_{\theta}[N_{+c}] + E_{\theta}[N_{-c}]$$

$$\frac{E_{\theta}[N_{+b|+c}]}{E_{\theta}[N_{+b|+c}] + E_{\theta}[N_{-b|+c}]} =$$

- **E-step**: estimate expected sufficient statistics (wrt missing values) using current $\theta^{(t)}$ values
- **M-step**: compute new $\theta^{(t+1)}$ values, using these expected sufficient statistics

EM Steps

E step:

- Given parameters $\theta^{(t)}$
- find probability of each missing value
 - ... so get $E_{\theta(t)}[N_{ijk}]$

M step:

- Given completed (fractional) data
 - based on $E_{\theta(t)}[N_{ijk}]$
- find max-likely parameters $\theta^{(t+1)}$

EM Process

EM Approach

- Assign $\Theta^{(0)} = \{\theta_{ijk}^{(0)}\}$ randomly.
- Iteratively, m = 0 ...

E step: Compute EXPECTED value of N_{ijk} , given $\langle G, \theta^m \rangle$

$$\widehat{N}_{ijk} = E_{P(x|S,\theta^m,G)}(N_{ijk}) = \sum_{c_{\ell} \in S} P(x_i^k, pa_i^j \mid c_{\ell}, \theta^m, S)$$

M step: Update values of θ^{m+1} based on \hat{N}_{ijk}

$$\theta_{ijk}^{m+1} = \frac{\hat{N}_{ijk} + 0}{\sum_{k=1}^{r_i} (\hat{N}_{ijk} + 0)}$$

... until $|\theta^{m+1} - \theta^m| \gtrsim 0$.

• Return θ^m

1. This is ML computation; MAP is similar

"O"
$$\rightarrow \alpha_{ijk}$$

- 2. Finds local optimum
- 4. Views each tupe with r "*"s as O(2") partial tuples 3. Used for HMM

4

Facts about EM ...

- Converges eventually
- When not converged: Always improves likelihood
 - L($\theta^{(t+1)} : S$) > L($\theta^{(t)} : S$)
 - ... except at stationary points...
- For CPtable for Belief net:
 - Need to perform general BN inference
 - Use Clique-tree or ClusterGraph
 ... just needs one pass
 (as N_{iik} depends on node+parents)

Outline

- Motivation
- What is a Belief Net?
- Learning a Belief Net
 - Goal?
 - Learning Parameters Complete Data
 - Learning Parameters Incomplete Data
 - Gradient Descent
 - EM
 - Gibbs
 - Learning Structure

Gibbs Sampling

ullet Let $S^{(0)}$ be COMPLETED version of S, randomly filling-in each missing c_{ij}

Let
$$d_{ij}^{(0)}=c_{ij}$$
 If $c_{ij}=*$, then $d_{ij}^{(0)}=\mathrm{Random}[\mathrm{\ Domain}(X_i)\]$

- For k = 0..
 - Compute $\Theta^{(k)}$ from $S^{(k)}$ [frequencies]
 - Form $S^{(k+1)}$ by...
 - * If $c_{ij} \neq *$, $d_{ij}^{k+1} \coloneqq c_{ij}$
 - * If $c_{ij}=*$ then

Let d_{ij}^{k+1} be random value for X_i , based on current distr Θ^k over $Z-X_i$

• Return average of these $\Theta^{(k)}$'s

Note: As $\Theta^{(k)}$ based on COMPLETE DATA $S^{(k)}$ $\Rightarrow \Theta^{(k)}$ can be computed efficiently!

"Multiple Imputation"

Gibbs Sampling – Example

New

$$S^{(1)} =$$

Flip 0.3-coin:

Flip 0.9-coin:

Flip 0.8-coin:

Flip 0.9-coin:

Α	В	С
0	0	1
0	1	0
0	1	1
1	1	1

Guess initial values θ^0					
			0.55	0.45	
0.8	0.2			0.9	0.1
0.3	0.7	A	B	0.4	0.6

Then

- Use $S^{(1)}$ to get new $\theta^{(2)}$ parameters
- Form new $S^{(2)}$ by drawing new values from $\theta^{(2)}$

Gibbs Sampling (con't)

- Algorithm: Repeat
 - Given COMPLETE data $S^{(i)}$, compute new ML values for $\{\theta_{ijk}^{(i+1)}\}$
 - Using NEW parameters, impute (new) missing values S(i+1)
- Q: What to return?

AVERAGE over **separated ⊕**(i)'s

- eg, $\Theta^{(500)}$, $\Theta^{(600)}$, $\Theta^{(700)}$, ...
- Q: When to stop?

When distribution over ⊖(i)s has converged

- Comparison: Gibbs vs EM
 - + EM "splits" each instance
 ...into 2^r parts if r *'s
 - EM knows when it is done, and what to return

General Issues

- All alg's are heuristic...
 - Starting values θ⁽⁰⁾
 - Stopping criteria
 - Escaping local maxima

So far, trying to optimize likelihood.
 Could try to optimize APPROXIMATION to likelihood...

Summary of Approaches

- Gradient Ascent
- EM-based (many variants)
- Gibbs sampling
 - Multiple imputation