Fundamentos da tabela verdade - é uma representação tabular que mostra todas as combinações possíveis de valores de verdade para proposições lógicas, indicando os resultados das operações lógicas correspondentes Exemplo:

A, B, C são variáveis de entrada;

 $X = A ^B (A AND B)$

Y = B v C (B OR C)

 $Z = X ^ Y (X AND Y)$

А	В	С	Х	Y	Z
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	1	0
0	1	1	0	1	0
1	0	0	0	0	0
1	0	1	0	1	0
1	1	0	1	1	1
1	1	1	1	1	1

Lei de morgan - estabelece que a negação de uma conjunção E é equivalente à disjunção (OU) das negações das proposições individuais, e a negação de uma disjunção é equivalente à conjunção das negações das proposições

А	В	¬ (A ^ B)	(¬ A) ^ (¬ B)
0	0	0 -> 1	1 v 1 = 1
0	1	0 -> 1	1 v 0 = 1
1	0	0 -> 1	0 v 1 = 1
1	1	1 -> 0	0 v 0 = 0

O conectivo lógico "AND" (E) é uma operação que retorna verdadeiro apenas se ambas as proposições envolvidas são verdadeiras: caso contrário, retorna falso

Α	В	A ^ B
V	V	V
V	F	F
F	V	F
F	F	F

O conectivo lógico "OR" (OU) é uma operação que retorna verdadeiro se pelo menos uma das proposições envolvidas for verdadeira; retorna falso apenas se ambas as proposições forem falsas

Α	В	ΑνΒ
V	V	V
V	F	V
F	V	V
F	F	F

O conectivo lógico "NOT (NÃO) é uma operação que inverte o valor de verdade de uma proposição. Se a proposição é verdadeira, o "NOT" a torna falsa, e se a proposição é falsa, o "NOT" a torna verdadeira

А	В	¬A	¬В
V	V	F	F
F	F	V	V

Alguns pontos sobre a lógica têm que estar bem claros para que possamos construir nossas tabelas verdade.

Toda proposição é binária, ou seja, só pode assumir um dos seguintes valores: verdadeiro (V) ou falso (F). Você pode optar por utilizar 1 para V e 0 para F.

A tabela verdade para o conectivo, representado por "->" (implicação)

Р	Q	P -> Q
V	V	V
V	F	F
F	V	V
F	F	V

observe que a condicional só será falsa se a antecedente (lado esquerdo da seta) for verdadeiro e a consequente (lado direito) da seta for falso

A tabela verdade para o conectivo bicondicional, representado por "<->" (se e somente se)

Р	Q	P <-> Q
V	V	V
V	F	F
F	V	F
F	F	V

A proposição resultante da bicondicional só será falsa se as proposições individuais possuírem valoração diferente.

Tautologia - A tabela para lei de morgan ¬(A v B) <-> ¬A ^ ¬B

А	В	¬(A v B)	¬A ^ ¬B	<->
V	V	F	F	V
V	F	F	F	V
F	V	F	F	V
F	F	V	V	V

Quando o resultado de uma fórmula obtém somente V como resposta, a fórmula é denominada tautologia.

Quando o resultado de uma fórmula obtém somente F como resposta, a fórmula é denominada contradição.

Quando o resultado de uma fórmula obtém pelo menos um valor verdadeiro (V) e um valor falso (F) na última coluna, a fórmula é denominada contingência

1	A∨B⇔B∨A	A∧B⇔B∧A	Comutatividade
2	(A∨B)∨C⇔A∨(B∨C)	(A∨B)∨C⇔A∨(B∨C)	Associatividade
3	$A \lor (B \land C) \Leftrightarrow (A \lor B) \land (A \lor C)$	$A \land (B \lor C) \Leftrightarrow (A \land B) \lor (A \land C)$	Distributividade

Quais passos devemos seguir para resolver expressões lógicas:

- 1. Para expressões que tenham parênteses, primeiro efetuam-se as operações lógicas dentro dos parênteses mais internos;
- 2. ¬ (Negação) (maior precedência);
- 3. v ^, (conjunção e disjunção);
- 4. -> (implicação);
- 5. <-> (bicondicional);

```
O comando se é escrito em inglês (if) e o então nas linguagens C e Java é a chave ( { ) e em python é os dois pontos ( : ).

Ex.: if(execução) {
    system.out.print()
}
```

if cond:

print

Outro detalhe é a escrita da conjunção; em C e Java é feito pelo && e em python pelo comando and

A sintaxe != significa diferente e sintaxe == significa "igual"

Linguagem	Sintaxe
С	if(A!="BRASILIA'&&B=="GASOLINA")
	{
	printf("Petrobras");
	}

Java	<pre>if(A!="BRASILIA'&&B=="GASOLINA") { System.out.println("Petrobras"); }</pre>
Python	if A!="BRASILIA" and B == "GASOLINA": print("Petrobras")