Practical Evaluation of Static Analysis Tools for Cryptography: Benchmarking Method and Case of Study

Members:

- Tiago Moreira Trocoli da Cunha (226078)
- Eduardo Ito (159086)
- Albany Pinho (012832)
- Maria Júlia B. de Sousa (117964)
- Lucas André (182495)

Despite of availability of Static Code Analysis Tools (SCATs)

only 35% of cryptographics misuses on such tools are

detected.

--- Braga et al

Table of Contents

Introduction

Cryptography Classification

Methodology

Results Analysis

Conclusion

References

Objective

1) Compare different tools showing their limitations and strengths.

2) Determine how well tools perform in the context of cryptographic software development.

Contribution

- 1- A method for SCAT evaluation in detecting cryptography misuse
- 2- A set of realistic test cases for cryptographic misuse in Java
- 3- Assessment of free SCATs showing actual gaps in crypto misuse coverage
- 4- The evaluation of the tools according to methods defined hereby
- 5- Recommendations for SCAT usage in specific development scenarios

MOTIVAÇÃO

FP, TP = WC, CIB, BR, PDF, ICV, PKC, IVM, PKM, CAI(JAVA)

Methodology

RELATIONSHIP OF SECURITY BENCHMARK WITH DEVELOPMENT LIFE CYCLE

Low Complexity Category

MG	Misuse category	Misuse subtype		
		- Risky or broken crypto		
	Weak	- Proprietary cryptography		
(MG1)	Cryptography	- Determin. symm. encryption		
	(WC)	- Risky or broken hash/MAC		
\mathbf{E}		- Custom implementation		
_		- Wrong configs for PBE		
Group	Coding and	- Common coding errors		
j.	Implementation	- Buggy IV generation		
0	Bugs (CIB)	- Null cryptography		
Misuse	109	- Leak/Print of keys		
Æ		- Use of statistic PRNGs		
2	Bad Randomness	- Predict., low entropy seeds		
	(BR)	- Static, fixed seeds		
	80 80 0	- Reused seeds		

Medium Complexity Category

		ı J
Misuse Group 2 (MG2)	Program Design Flaws (PDF)	 Insecure default behavior Insecure key handling Insecure use of streamciphers Insecure combo encrypt/auth Insecure combo encrypt/hash Side-channel attacks
	Improper Certificate Validation (ICV)	 Missing validation of certs Broken SSL/TLS channel Incomplete cert. validation Improper validated host/user Wildcards, self-signed certs
2	Public-Key Cryptography (PKC) issues	 Deterministic encrypt. RSA Insecure padding RSA enc. Weak configs for RSA enc. Insecure padding RSA sign. Weak signatures for RSA Weak signatures for ECDSA Key agreement: DH/ECDH ECC: insecure curves

High Complexity Category

IG3)	IV and Nonce Management (IVM) issues	- CBC with non-random IV - CTR with static counter - Hard-coded or constant IV - Reused nonce in encryption
Misuse Group 3 (MG3)	Poor Key Management (PKM)	 Short key, improper key size Hard-coded or constant keys Hard-coded PBE passwords Reused keys in streamciphers Use of expired keys Key distribution issues
	Crypto Architecture and Infrastructure (CAI) issues	 Crypto agility issues API misunderstanding Multiple access points Randomness source issues PKI and CA issues

Basic Concept: Confusion Matrix

		True con	dition			
	Total population	Condition positive	Condition negative	$= \frac{\Sigma \text{ Condition positive}}{\Sigma \text{ Total population}}$	Σ True positi	racy (ACC) = ve + Σ True negative al population
Predicted	Predicted condition True positive positive		False positive, Type I error	Positive predictive value (PPV), Precision = Σ True positive Σ Predicted condition positive	False discovery rate (FDR) = Σ False positive Σ Predicted condition positive	
condition	Predicted condition negative	False negative, Type II error	True negative	False omission rate (FOR) = Σ False negative Σ Predicted condition negative	Negative predictive value (NPV) = $\frac{\Sigma \text{ True negative}}{\Sigma \text{ Predicted condition negative}}$	
		True positive rate (TPR), Recall, Sensitivity, probability of detection, Power = $\frac{\Sigma \text{ True positive}}{\Sigma \text{ Condition positive}}$	False positive rate (FPR), Fall-out, probability of false alarm $= \frac{\Sigma \text{ False positive}}{\Sigma \text{ Condition negative}}$	Positive likelihood ratio (LR+) = TPR FPR	Diagnostic odds ratio	F ₁ score =
		False negative rate (FNR), Miss rate $= \frac{\Sigma \text{ False negative}}{\Sigma \text{ Condition positive}}$	Specificity (SPC), Selectivity, True negative rate (TNR) = Σ True negative Σ Condition negative	Negative likelihood ratio (LR-) = FNR TNR		2 · Precision · Recall Precision + Recall

Basic concept: Precision and Recall

How many selected items are relevant?

How many relevant items are selected?

Recall =

- POSITIVE: cryptographic misuse, vulnerability found
- NEGATIVE: correct use of cryptography, no vulnerability

Example

- 22 test cases which 10 are misuses and 12 are good uses.
- A SCAT reported 13 reported as positive cases which 8 are true misuses and 5 are actually false alarms.

Test Case	Report	Reported by SCAT			
	Reported Positive (P)	Reported Negative (N)			
Positive (misuse)	8 (TP)	2 (FN)			
Negative (good use)	5 (FP)	7 (TN)			

Oracle Test	Reported by Evaluated Tool			
Case	Reported Positive	Reported Negative		
Positive	True Positive (TP)	False Negative (FN)		

False Positive (FP)

Negative

Metrics				
Recall	TP / (TP + FN)			
Precision	TP / (TP + FP)			
F-Measure	2TP / (2TP + FN + FP)			

True Negative (TN)

TABLE III
CONTEXTS COMBINING TEAMS AND APPLICATION PROFILES.

C#	Context	App profile	Misuse groups
C1	Novice team, no expert	Low complexity	MG1
C2	Novice team with expert	Low to medium	MG1 and MG2
С3	Skilled team, no expert	Medium to high	MG2 and MG3
C4	Skilled team and expert	High complexity	MG3

1. Unsupported Novice Team (C1)

- Team wants to avoid calling out experts for false alarms (low FP) → Precision.
- Low false negative (FN) helps optimize time for experts → Recall.

2. Supported Novice Team (C2)

- Team wants solve as much as true positive cases with experts (low FN)→Recall.
- Low false alarms helps experts → Precision.

3. Unsupported Knowledgeable Team (C3)

- Experienced developers want to solve as many of the issue, in a best effort approach
 → F-measure
- In complex cases, experienced developers may not detect all omission cases, that experts can solve, but support not always available (Low FN) → Recall

4. Supported Knowledgeable Team (C4)

- Team members can easily identify FP, so the most important is FN → Recall
- Low FP is time-saving → Precision

Based on our previous observations, we can create a table of context x priority metrics.

TABLE IV
DEVELOPMENT CONTEXTS AND RECOMMENDED METRICS.

Context	1st. Metric	2nd. Metric
C1	Precision	Recall
C2	Recall	Precision
C3	F-Measure	Recall
C4	Recall	Precision

Scenarios

TABLE V
WEIGHTS FOR SCENARIOS, CONTEXT, AND MISUSE GROUPS.

Scenario	Context	Weights per misuse group			
Scenario	Context	MG1	MG2	MG3	
S1	C1	High	Low	Low	
S2	C2	Medium	High	Low	
S3	C3	Low	Medium	High	
S4	C4	Low	Low	High	

- 220 misuses (+)
- 182 good uses (-)
- 384 test programs (Java)

Criteria	Subset	Misuse	Good use
Misuse	MG1	61	34
	MG2	106	99
group	MG3	35	49
	EDR	90	93
Counts	AVD	49	39
Crypto	RND	13	10
use cases	PPE	10	5
	SC	40	35
	Enc/Dec	83	68
	Sign/Ver	26	27
Counts	Hash/MAC	22	11
Crypto	KG	43	61
coding tasks	SSL	10	3
	Cert	5	2
	Rand	12	10
	WC	20	10
	CIB	29	16
	BR	12	8
Misuse	PDF	23	14
1.115	ICV	15	5
categories	PKC/ENC	27	30
	PKC/SIG	21	25
	PKC/ECC	14	20
	PKC/KA	6	5
	IVM	8	10
	PKM	19	32
	CAI	8	7

SCATS

FindSecBug 1.5.0 (FSB)

VisualCodeGrepper 2.1.0 (VCG)

Xanitizer (Xan)

SonarQube (SQ)

Yasca

TABLE VII RESULTS FOR FIVE FREE SCATS.

Tools	Measures			Metrics			
	TP	TN	FN	FP	Prec.	Recall	F-M
FSB	51	147	151	35	0.593	0.252	0.354
Xan	68	140	134	42	0.618	0.337	0.436
SQ	5	181	197	1	0.833	0.025	0.048
VCG	7	180	195	2	0.778	0.035	0.066
Yasca	8	182	194	0	1.000	0.040	0.076

- Xan detected \(\frac{1}{3} \) of all misuses.
- All tools detected only 35% of all misuses
- Xan has the highest TPs and lowest FNs → better tool.

TABLE VIII
RESULTS FOR MISUSE GROUP ONE (MG1).

Tools	Me	trics for '	WC	Me	trics for	CIB	Metrics for BR			
10015	Prec.	Recall	F-M	Prec.	Recall	F-M	Prec.	Recall	F-M	
FSB	0.727	0.40	0.516	0.50	0.172	0.256	1.0	0.417	0.588	
Xan	0.588	0.50	0.541	0.70	0.483	0.571	1.0	0.417	0.588	
SQ	1.0	0.20	0.333	0.0	0.0	0.0	0.0	0.0	0.0	
VCG	1.0	0.20	0.333	0.0	0.0	0.0	1.0	0.250	0.400	
Yasca	1.0	0.30	0.462	0.0	0.0	0.0	1.0	0.167	0.286	

Weak Cryptography (WC):

- Xan and FSB are the best (high recall).
- Most tools detected DES and 3DES.
- Yasca didn't detected SHA-1.
- Only Xan detected weak hash functions.
- No tool detected BlowFish, RC4 and insecure PBE.

TABLE VIII RESULTS FOR MISUSE GROUP ONE (MG1).

Tools	Me	trics for \	WC	Me	trics for	CIB	Metrics for BR			
	Prec.	Recall	F-M	Prec.	Recall	F-M	Prec.	Recall	F-M	
FSB	0.727	0.40	0.516	0.50	0.172	0.256	1.0	0.417	0.588	
Xan	0.588	0.50	0.541	0.70	0.483	0.571	1.0	0.417	0.588	
SQ	1.0	0.20	0.333	0.0	0.0	0.0	0.0	0.0	0.0	
VCG	1.0	0.20	0.333	0.0	0.0	0.0	1.0	0.250	0.400	
Yasca	1.0	0.30	0.462	0.0	0.0	0.0	1.0	0.167	0.286	

Code Implementation (CIB):

- SQ, VCQ and Yasca didn't score TP and FP.
- Xan had the most TP but high FP (false alarms) -> High Precision.
- Xan and FSB detected Buggy IV and NullCypher.
- Only Xan detected leak of privacy.
- None detected saved keys in strings.

Tools	Me	trics for \	WC	Me	trics for	CIB	Metrics for BR			
	Prec.	Recall	F-M	Prec.	Recall	F-M	Prec.	Recall	F-M	
FSB	0.727	0.40	0.516	0.50	0.172	0.256	1.0	0.417	0.588	
Xan	0.588	0.50	0.541	0.70	0.483	0.571	1.0	0.417	0.588	
SQ	1.0	0.20	0.333	0.0	0.0	0.0	0.0	0.0	0.0	
VCG	1.0	0.20	0.333	0.0	0.0	0.0	1.0	0.250	0.400	
Yasca	1.0	0.30	0.462	0.0	0.0	0.0	1.0	0.167	0.286	

Bad Randomness (BR):

- No tool detected fixed seeds nor reuse.
- SQ didn't score.
- Xan and FSB detected all statics PRNG.
- VCG and Yasca got low recall.

TABLE IX
RESULTS FOR MISUSE GROUP TWO (MG2).

Tools	Met	trics for I	PDF	Me	trics for I	PKC	Metrics for ICV		
10015	Prec.	Recall	F-M	Prec.	Recall	F-M	Prec.	Recall	F-M
FSB	0.417	0.217	0.286	1.0	0.221	0.361	1.0	0.267	0.421
Xan	0.357	0.217	0.270	1.0	0.235	0.381	1.0	0.133	0.235
SQ	0.0	0.0	0.0	1.0	0.015	0.029	0.0	0.0	0.0

Program Design Flow (PDF):

- SQ, VCG and Yasca didn't score.
- FSB -> highest Prec.
- FSB can detected AES insecure default.
- Other insecure default (RSA, PBE, OAEP...) were not detected.
- Tool didn't score well (blind spots).

TABLE IX
RESULTS FOR MISUSE GROUP TWO (MG2).

Tools	Met	trics for I	PDF	Me	trics for I	PKC	Metrics for ICV		
10015	Prec.	Recall	F-M	Prec.	Recall	F-M	Prec.	Recall	F-M
FSB	0.417	0.217	0.286	1.0	0.221	0.361	1.0	0.267	0.421
Xan	0.357	0.217	0.270	1.0	0.235	0.381	1.0	0.133	0.235
SQ	0.0	0.0	0.0	1.0	0.015	0.029	0.0	0.0	0.0

Public-Key Cryptography (PKC):

- VCG and Yasca didn't score.
- All others → highest precision (no FP).
- Xan wins → highest recall and f-measure.
- No one detected insecure hash.
- SQ bug → case sensitive for algorithm names.

TABLE IX
RESULTS FOR MISUSE GROUP TWO (MG2).

Tools	Met	trics for I	PDF	Me	trics for I	PKC	Metrics for ICV		
10015	Prec.	Recall	F-M	Prec.	Recall	F-M	Prec.	Recall	F-M
FSB	0.417	0.217	0.286	1.0	0.221	0.361	1.0	0.267	0.421
Xan	0.357	0.217	0.270	1.0	0.235	0.381	1.0	0.133	0.235
SQ	0.0	0.0	0.0	1.0	0.015	0.029	0.0	0.0	0.0

Improper Certificate Validation (ICV):

- FSB and Xan detected certificate validation related to SSL/TLS.
- Xan has a bug that prevented the detection of misuse in nested classes.
- FSB got better recall and f-measure due to higher TP.

TABLE X
RESULTS FOR MISUSE GROUP THREE (MG3).

Tools	Met	trics for I	VM	Met	rics for P	YKM	Metrics for CA		
10015	Prec.	Recall	F-M	Prec.	Recall	F-M	Prec.	Recall	F-M
FSB	0.286	0.500	0.364	0.263	0.263	0.263	0.0	0.0	0.0
Xan	0.231	0.375	0.286	0.263	0.263	0.263	0.800	1.0	0.889

IV and Nonce Management:

- VCG, SQ and Yasca didn't score.
- No tools detected non-random IV for CTR.
- No tools detected static counter for CTR.
- High FP → tools had difficulties to understand program design for IV management.

TABLE X
RESULTS FOR MISUSE GROUP THREE (MG3).

Tools	Met	trics for I	VM	Met	rics for P	КМ	Metrics for CAI		
10015	Prec.	Recall	F-M	Prec.	Recall	F-M	Prec.	Recall	F-M
FSB	0.286	0.500	0.364	0.263	0.263	0.263	0.0	0.0	0.0
Xan	0.231	0.375	0.286	0.263	0.263	0.263	0.800	1.0	0.889

Poor Key Management (PKM):

- VCG, SQ and Yasca did not score.
- FSB and Xan were tied.

Tools	Metrics for IVM			Met	rics for P	YKM	Me	trics for (CAI
10015	Prec.	Recall	F-M	Prec.	Recall	F-M	Prec.	Recall	F-M
FSB	0.286	0.500	0.364	0.263	0.263	0.263	0.0	0.0	0.0
Xan	0.231	0.375	0.286	0.263	0.263	0.263	0.800	1.0	0.889

Crypto Architecture and Infrastructural (CAI):

- Most difficult to detect.
- But Xan obtained good results.

TABLE XI
WEIGHTED METRICS FOR FIVE SCATS IN FOUR SCENARIOS.

Tools	Weighted metrics for S1		Weigh	ted metrics	for S2	Weigh	ted metrics	for S3	Weighted metrics for S4			
10015	W-Prec.	W-Recall	W-F-M	W-Prec.	W-Recall	W-F-M	W-Prec.	W-Recall	W-F-M	W-Prec.	W-Recall	W-F-M
Xan	0.737	0.451	0.537	0.756	0.302	0.392	0.563	0.431	0.427	0.488	0.510	0.471
FSB	0.701	0.316	0.425	0.747	0.266	0.377	0.412	0.253	0.270	0.281	0.259	0.242
Yasca	0.556	0.130	0.208	0.208	0.049	0.078	0.042	0.010	0.016	0.056	0.013	0.021
VCG	0.556	0.125	0.204	0.208	0.047	0.076	0.042	0.009	0.015	0.056	0.013	0.020
SQ	0.306	0.056	0.093	0.313	0.024	0.041	0.125	0.006	0.010	0.056	0.006	0.010

Conclusion

About the tools

- Benchmark of cryptographic misuse helps to categorize static analysis tools (SCATs)
- Recommended metrics (precision, recall, and f-measure)

Secure software development

- Useful for scheduling activities during project planning
- Dimension resources based on context and complexity of applications
 - Based on developer skills and expert availability

Conclusion

- Tests based on Java
- Focus on cryptography misuses, may perform better with other security domains
- Newer versions of tools may change (improve?) results
- Free tools recommended for MG1 cases, or MG2 with expert help, not suitable for advanced scenarios

TABLE XIII
CONTEXTS LINK LIKELY MISUSES AND TOOL USAGE.

Context	Misuse group	Usage	Tool
C1	MG1	Integrated to IDE	Xan and FSB
C2	MG1 and MG2	IDE and build	Xan and FSB
C3	MG2 and MG3	Build and review	None
C4	MG3	Reviews	None

Questions???

References

[1] A. Braga and R. Dahab. Practical evaluation of static analysis tools for cryptography: benchmarking method and case study. *IEEE 28th International Symposium on Software Reliability Engineering*, Oct. 2017.

[2] C. Paar and J. Pelzl. Understanding cryptography. *ACM Computing Classification* (1998): E.3, K.4.4, K.6.5., 1998.

Acronyms

PDF	Program design flaws
PKC	Public-key cryptography
PKM	Poor Key Management
PPE	Password Protection with Encryption
PRNG	Pseudorandom number generator
SC	Secure communication
WC	Weak cryptography

Acronyms

AVD	Authentication and Validation of Data
BR	Bad Randomness
CAI	Crypto Architecture and Infrastructure
CIB	Coding and implementation bugs
ICV	Improper certificate validation
EDR	Encrypt Data at Rest
IVM	IV and nonce management