PROBABILIDAD II

Grado en Matemáticas

Tema 2 Independencia

Javier Cárcamo

Departamento de Matemáticas Universidad Autónoma de Madrid

javier.carcamo@uam.es

Javier Cárcamo

Probabilidad II. Tema 2: Independencia

Tema 2: Independencia

- 1. Independencia de sucesos
- 2. Teorema fundamental de la independencia
- 3. Límite inferior y superior
- 4. Lemas de Borel-Cantelli
- 5. La Ley 0-1 de Kolmogorov

Definición: (Ω, \mathcal{F}, P) espacio de probabilidad. Dos sucesos $A, B \in \mathcal{F}$ se dicen **independientes** si $P(A \cap B) = P(A)P(B)$.

Notación: $AB = A \cap B$. (A, B indep. sii P(AB) = P(A)P(B).)

Observaciones:

- Si P(A) = 0, entonces A y B ind. para todo $B \in \mathcal{F}$.
- Si P(A) = 1, entonces A y B ind. para todo $B \in \mathcal{F}$.
- Si A y B ind. con P(B) > 0, entonces P(A|B) = P(A).

Nota: Si A y B son independientes, la ocurrencia de uno no altera la probabilidad de que ocurra el otro (y al revés). Justamente ésta es la idea detrás de la definición de independencia.

• Si A y B ind., entonces: A, B^c ind.; A^c, B ind.; $y A^c, B^c$ ind.

Ejemplo: Las extracciones sucesivas de bolas con reemplazamiento son independientes. $(P(B_2|B_1) = P(B_2))$. Sin embargo, las extracciones sucesivas de bolas sin reemplazamiento *no* son independientes $(P(B_2|B_1) \neq P(B_2))$.

Javier Cárcamo

Probabilidad II. Tema 2: Independencia

_

Independencia de sucesos

Definición: (Ω, \mathcal{F}, P) espacio de probabilidad. Tres sucesos $A, B, C \in \mathcal{F}$ se dicen (mutuamente) independientes si:

- $P(A \cap B) = P(A)P(B)$.
- $P(A \cap C) = P(A)P(C)$.
- $P(B \cap C) = P(B)P(C)$.
- $P(A \cap B \cap C) = P(A)P(B)P(C)$.

Observación: $A, B, C \in \mathcal{F}$ son independientes sii (*) y (**).

(*)
$$\left\{ \begin{array}{l} P(AB) = P(A)P(B) \\ P(AC) = P(A)P(C) \\ P(BC) = P(B)P(C) \end{array} \right\} \quad \{A, B, C\} \text{ ind. dos a dos}$$

$$(**) P(ABC) = P(A)P(B)P(C)$$

Observación: $(*) \Rightarrow (**) y (**) \Rightarrow (*)$.

Observación: $A, B, C \in \mathcal{F}$ son independientes sii (*) y (**).

 $\{A, B, C\}$ independientes dos a dos.

$$(**) \qquad P(ABC) = P(A)P(B)P(C).$$

Observación: $(*) \Rightarrow (**) y (**) \Rightarrow (*)$.

Contraejemplo 1: $(*) \Rightarrow (**)$

 $(\Omega = \{a, b, c, d\}, \mathcal{P}(\Omega), P)$ modelo de Laplace.

(Los sucesos elementales $\{a\}$, $\{b\}$, $\{c\}$ y $\{d\}$ son equiprobables.)

 $A = \{a, b\}$, $B = \{b, c\}$ y $C = \{c, a\}$ son independientes dos a dos, pero *no* son (mutuamente) independientes.

Contraejemplo 2: $(**) \Rightarrow (*)$

 $(\Omega = \{a_1, a_2, a_3, a_4, a_5, a_6, a_7, a_8\}, \mathcal{P}(\Omega), P)$ modelo de Laplace.

 $A = \{a_1, a_2, a_3, a_4\}, B = \{a_1, a_3, a_5, a_7\}, C = \{a_1, a_2, a_4, a_8\}$ verifican (**), pero no son independientes dos a dos.

Javier Cárcamo

Probabilidad II. Tema 2: Independencia

Independencia de sucesos

Definición: Sea $\{A_i\}_{i\in I} \subset \mathcal{F}$. Se dice que los sucesos $\{A_i\}_{i\in I}$ son (mutuamente) independientes si

$$\forall \{A_{i_1},\ldots,A_{i_n}\} \subset \{A_i\}_{i\in I}, \ \mathrm{P}(A_{i_1}\cdots A_{i_n}) = \mathrm{P}(A_{i_1})\cdots \mathrm{P}(A_{i_n}).$$

En particular, n sucesos $\{A_1, \ldots, A_n\}$ son independientes sii:

- $P(A_1 \cap A_2) = P(A_1)P(A_2)$.
- $P(A_1 \cap A_3) = P(A_1)P(A_3)$.

: : :

- $P(A_1 \cap A_2 \cap A_3) = P(A_1)P(A_2)P(A_3)$.
- $P(A_1 \cap A_2 \cap A_4) = P(A_1)P(A_2)P(A_4)$.

• $P(A_1 \cap \cdots \cap A_n) = P(A_1) \cdots P(A_n)$.

Pregunta: Comprobar la independencia de algunos sucesos puede ser una tarea complicada. ¿Cuántas condiciones debemos comprobar para asegurar que $\{A_1, \ldots, A_n\}$ son independientes?

Proposición: $\{A_i\}_{i\in I}$ independientes $\Longrightarrow \{A_i^c\}_{i\in I}$ independientes.

Teorema fundamental de la independencia

Definición: Sea (Ω, \mathcal{F}, P) un espacio de probabilidad. Un familia $\{\mathcal{C}_i\}_{i\in I}$ de clases (no vacías) de sucesos se dice que es una **familia de clases independientes de sucesos (f.c.i.s.)** si para cada elección $\{C_i: C_i \in \mathcal{C}_i, i \in I\}$, los sucesos $\{C_i\}_{i\in I}$ son independientes. Es decir, si para cada colección finita $\{i_1, \ldots, i_k\} \subset I$, se verifica $P(C_{i_1} \cdots C_{i_k}) = P(C_{i_1}) \cdots P(C_{i_k})$.

Observación: A, B independientes, entonces $\sigma(A)$, $\sigma(B)$ f.c.i.s.

Definición: Una colección \mathcal{C} de $\mathcal{P}(\Omega)$ es un π -sistema si

- (a) $\Omega \in \mathcal{C}$.
- (b) $A, B \in \mathcal{C}$, entonces $AB \in \mathcal{C}$ (estable para intersecciones finitas).

Teorema fundamental de la independencia

Sean $C_1, \ldots, C_n \subset \mathcal{F}$ π -sistemas.

$$C_1, \ldots, C_n$$
 f.c.i.s. $\Longrightarrow \sigma(C_1), \ldots, \sigma(C_n)$ f.c.i.s.

Javier Cárcamo

Probabilidad II. Tema 2: Independencia

7

Teorema fundamental de la independencia

Aplicaciones:

- ① $\{A_1, \ldots, A_n\}$ independientes. $C_i = \{A_i, \Omega\}$ π -sistema. Por el TFI, las clases $\sigma(C_i) = \{\emptyset, A_i, A_i^c, \Omega\}$ $(i = 1, \ldots, n)$ f.c.i.s.
- 2 $\mathcal{F}_1, \mathcal{F}_2, \mathcal{F}_3, \mathcal{F}_4, \mathcal{F}_5$ sub- σ -álgebras de \mathcal{F} y f.c.i.s. Demostrad usando el TFI que $\mathcal{F}_I = \sigma(\mathcal{F}_1 \cup \mathcal{F}_2)$ y $\mathcal{F}_{II} = \sigma(\mathcal{F}_3 \cup \mathcal{F}_4 \cup \mathcal{F}_5)$ son también f.c.i.s.

Ejemplo concreto: A, B, C, D, E sucesos independientes. Las σ -álgebras $\mathcal{F}_1 = \{\emptyset, A, A^c, \Omega\}, \ldots, \mathcal{F}_5 = \{\emptyset, E, E^c, \Omega\}$ son f.c.i.s. En particular, $\sigma(\mathcal{F}_1 \cup \mathcal{F}_2)$ y $\sigma(\mathcal{F}_3 \cup \mathcal{F}_4 \cup \mathcal{F}_5)$ son también f.c.i.s. Por ejemplo, los sucesos AB^c y $C \cup (D - E)$ son independientes.

Corolario: Teorema de agrupamiento

Sea $\{\mathcal{F}_i\}_{i\in I}$ familia independiente de σ -álgebras de \mathcal{F} . Consideremos $\{I_j\}_{j\in J}$ partición de I y $\mathcal{F}_{I_j}=\sigma\left(\bigcup_{i\in I_j}\mathcal{F}_i\right)$. Se tiene que

 $\{\mathcal{F}_{I_i}\}_{j\in J}$ es una familia independiente de σ -álgebras.

- (a) Límite inferior y superior de sucesiones de números reales.
- (b) Límite inferior y superior de sucesiones de funciones.
- (c) Límite inferior y superior de sucesiones de conjuntos.

(a) Límite inferior y superior de sucesiones de números reales

Sea $\{a_n\} \subset \overline{\mathbb{R}}$. Formamos la sucesión:

$$\left\{\begin{array}{l} b_1 = \sup_{k \geq 1} a_k \\ b_2 = \sup_{k \geq 2} a_k \\ \vdots \\ b_n = \sup_{k \geq n} a_k \\ \vdots \\ \vdots \\ \end{array}\right\} \quad b_1 \geq b_2 \geq b_3 \geq \cdots \geq b_n \geq \cdots$$

 $\{b_n\}$ es una sucesión decreciente en $\overline{\mathbb{R}}$. Por tanto, existe $\lim_{n\to\infty}b_n=\inf_{n\geq 1}b_n$. Se define el **límite superior de** $\{a_n\}$ como

$$\limsup_{n\to\infty} a_n = \inf_{n\geq 1} \left(\sup_{k\geq n} a_k \right) = \lim_{n\to\infty} \left(\sup_{k\geq n} a_k \right).$$

Límite inferior y superior

Sea $\{a_n\} \subset \overline{\mathbb{R}}$. Formamos la sucesión:

$$\left\{\begin{array}{l} c_1 = \inf_{k \geq 1} a_k \\ c_2 = \inf_{k \geq 2} a_k \\ \vdots & \vdots \\ c_n = \inf_{k \geq n} a_k \\ \vdots & \vdots \end{array}\right\} \quad c_1 \leq c_2 \leq c_3 \leq \cdots \leq c_n \leq \cdots$$

 $\{c_n\}$ es una sucesión creciente en $\overline{\mathbb{R}}$. Por tanto, existe $\lim_{n\to\infty}c_n=\sup_{n\geq 1}b_n$. Se define el **límite inferior de** $\{a_n\}$ como

$$\liminf_{n\to\infty} a_n = \sup_{n>1} \left(\inf_{k\geq n} a_k \right) = \lim_{n\to\infty} \left(\inf_{k\geq n} a_k \right).$$

Ejercicio: Calcular el límite superior e inferior de las siguientes sucesiones: $\{n\}_{n\in\mathbb{N}}$; $\{1/n\}_{n\in\mathbb{N}}$; $\{a_n\}_{n\in\mathbb{N}}$ con $a_{2n-1}=1$ y $a_{2n}=0$. **Propiedades:** Entendemos que $n \to \infty$.

- 1 If $a_n = -\lim \sup(-a_n)$; If $a_n = -\lim \inf(-a_n)$.
- 2 lím inf $a_n \leq$ lím sup a_n .
- 3 lím inf $a_n =$ lím sup $a_n = I \in \overline{\mathbb{R}} \iff$ existe lím $a_n = I$.
- $\{a_n\}, \{b_n\} \subset \overline{\mathbb{R}} \text{ con } a_n \leq b_n \text{ para todo } n, \text{ entonces}$
 - lím sup $a_n <$ lím sup b_n ,
 - lím inf $a_n \leq$ lím inf b_n .
- **5** $\{a_n\}$, $\{b_n\} \subset \overline{\mathbb{R}}$, entonces
 - $\lim \sup(a_n + b_n) \le \lim \sup a_n + \lim \sup b_n$
 - $\liminf(a_n + b_n) \ge \liminf a_n + \liminf b_n$,

siempre y cuando $\{a_n + b_n\}$ esté bien definida y los miembros de la derecha están bien definidos.

Javier Cárcamo

Probabilidad II. Tema 2: Independencia

-1-

Límite inferior y superior

(b) Límite inferior y superior de sucesiones de funciones

Sea $\{f_n\}$ con $f_n:\Omega\longrightarrow\overline{\mathbb{R}}$. Se definen la función **límite superior** de $\{f_n\}$ como lím $\sup_{n\to\infty}f_n$ tal que

$$\left(\limsup_{n\to\infty}f_n\right)(\omega)=\limsup_{n\to\infty}f_n(\omega),\quad \omega\in\Omega.$$

Análogamente, el **límite inferior de** $\{f_n\}$ es lím $\inf_{n\to\infty}f_n$ tal que

$$\left(\liminf_{n\to\infty}f_n\right)(\omega)=\liminf_{n\to\infty}f_n(\omega),\quad\omega\in\Omega.$$

(c) Límite inferior y superior de sucesiones de conjuntos.

 Ω conjunto. $(\mathcal{P}(\Omega), \subset)$ parcialmente ordenado. $\{A_i\}_{i\in I}\subset \mathcal{P}(\Omega)$

- $A_i \subset \bigcup_{i \in I} A_i$, $i \in I$. $\bigcup_{i \in I} A_i$ es cota superior de $\{A_i\}_{i \in I}$.
- Si $A_i \subset B$, $i \in I$, entonces $\bigcup_{i \in I} A_i \subset B$. $\bigcup_{i \in I} A_i$ es la menor cota superior.

$$\bigcup_{i \in I} A_i = \sup_{i \in I} A_i. \quad \left(\text{Análogamente} \quad \bigcap_{i \in I} A_i = \inf_{i \in I} A_i. \right)$$

Definición: Dada $\{A_n\} \subset \mathcal{P}(\Omega)$, se definen

$$\limsup_{n\to\infty} A_n = \bigcap_{n\geq 1} \left(\bigcup_{k\geq n} A_k\right) = \inf_{n\geq 1} \left(\sup_{k\geq n} A_k\right).$$

$$\liminf_{n\to\infty} A_n = \bigcup_{n\geq 1} \left(\bigcap_{k\geq n} A_k\right) = \sup_{n\geq 1} \left(\inf_{k\geq n} A_k\right).$$

Javier Cárcamo Probabilidad II. Tema 2: Independencia

Límite inferior y superior

Propiedades: Entendemos que $n \to \infty$.

- 2 Caracterización por elementos:
 - $-\omega \in \text{lím sup } A_n \iff \omega \in A_n \text{ para infinitos } n\text{-s.}$
 - $-\omega \in \text{lim inf } A_n \iff \omega \in A_n \ n \geq n_0 \ (\text{para casi todo } n).$
- **3** Interpretación: $\{A_n\} \subset \mathcal{F} \Rightarrow \limsup A_n$, lím inf $A_n \in \mathcal{F}$.
 - $\lim \sup A_n = \operatorname{que} \operatorname{ocurran} \operatorname{infinitos} A_n$.
 - lím inf A_n = que ocurran casi todos los A_n (que ocurran todos salvo un número finito de ellos).
- 4 If $A_n = (\lim A_n^c)^c$, If $A_n = (\lim A_n^c)^c$.
- **5** Ifm inf $A_n \subset \text{Ifm sup } A_n$.

Definición: $\{A_n\} \subset \mathcal{P}(\Omega)$. $A_n \to A$ si lím sup $A_n =$ lím inf $A_n = A$.

Ejercicio: Si $A_n \uparrow A$ ó $A_n \downarrow A$, entonces $A_n \rightarrow A$.

Teorema: Sea $\{A_n\} \subset \mathcal{F}$. Se tiene,

 $P(\liminf A_n) \leq \liminf P(A_n) \leq \limsup P(A_n) \leq P(\limsup A_n).$

Teorema: 1^{er} Lema de Borel-Cantelli

Sea $\{A_n\} \subset \mathcal{F}$.

Si
$$\sum_{n=1}^{\infty} P(A_n) < \infty$$
, entonces $P(\limsup A_n) = 0$.

Teorema: 2^{ndo} Lema de Borel-Cantelli

Sea $\{A_n\} \subset \mathcal{F}$ independientes.

Si
$$\sum_{n=1}^{\infty} \mathrm{P}(A_n) = \infty$$
, entonces $\mathrm{P}(\limsup A_n) = 1$.

Javier Cárcamo

Probabilidad II. Tema 2: Independencia

La ley 0-1 de Kolmogorov

 $\{\mathcal{F}_n\}$ sucesión de sub- σ -álgebras de \mathcal{F} . Consideramos:

$$\begin{cases}
\mathcal{F}^{1} = \sigma\left(\bigcup_{i \geq 1} \mathcal{F}_{i}\right) \\
\mathcal{F}^{2} = \sigma\left(\bigcup_{i \geq 2} \mathcal{F}_{i}\right) \\
\vdots \qquad \vdots \\
\mathcal{F}^{n} = \sigma\left(\bigcup_{i \geq n} \mathcal{F}_{i}\right) \\
\vdots \qquad \vdots \qquad \vdots
\end{cases}$$

$$\mathcal{F}^{1} \supseteq \mathcal{F}^{2} \supseteq \mathcal{F}^{3} \supseteq \cdots \supseteq \mathcal{F}^{n} \supseteq \cdots .$$

$$\mathcal{F}^n\downarrow igcap_{k=1}^\infty \mathcal{F}^k=\mathcal{F}^\infty$$
 es σ -álgebra

Definición: \mathcal{F}^{∞} se llama σ -álgebra asintótica (relativa a $\{\mathcal{F}_n\}$). Si $A \in \mathcal{F}^{\infty}$, A se llama suceso asintótico.

Ejemplo:
$$\{\mathcal{F}_n\} \subset \mathcal{F} \text{ y } A_n \in \mathcal{F}_n \text{ } (n \in \mathbb{N}).$$
 $\limsup A_n \in \mathcal{F}^{\infty} \text{ y } \liminf A_n \in \mathcal{F}^{\infty}.$

Observación: \mathcal{F}^{∞} no depende de lo que ocurra al principio.

 $\{\mathcal{F}_n\}\subset\mathcal{F}$ con \mathcal{F}^{∞} σ -álgebra asintótica. Si $\mathcal{F}_1,\ldots,\mathcal{F}_k$ se cambia por $\mathcal{F}'_1,\ldots,\mathcal{F}'_k$, la σ -álgebra asintótica de $\mathcal{F}'_1,\ldots,\mathcal{F}'_k,\mathcal{F}_{k+1},\ldots$ es \mathcal{F}^{∞} .

Teorema: Ley 0-1 de Kolmogorov

Sea $\{\mathcal{F}_n\}\subset\mathcal{F}$ familia independiente de sub- σ -álgebras.

Para todo $A \in \mathcal{F}^{\infty}$, se tiene P(A) = 0 ó 1.

Ejemplo: Si $A_1, A_2, ...$ son independientes, entonces $P(\limsup A_n) = 0$ o $P(\limsup A_n) = 1$.

En este caso, los lemas de Borel-Cantelli son más informativos porque dan un criterio que permite saber cuándo estamos en una u otra situación.