TMR 4585 Specialization Course UWT Introduction to Subsea Pipeline Technology

by Prof. Svein Sævik, Trondheim, 2019

Objective

- The give the student basic knowledge related to pipeline technology such that he is able to:
 - > Perform pipeline design with reference to the DnV standard related to:
 - ✓ Minimum wall thickness
 - ✓ Hydrodynamic stability
 - ✓ Free span length
 - ✓ Installation design
 - √ Temperature buckling
 - Understand the basic principles related to:
 - ✓ Flow assurance issues
 - ✓ Material selection
 - ✓ Welding
 - ✓ Stress and fatigue issues related to free spans in irregular seabed areas

Contents

- Pipeline systems
- Relevant failure modes
- Load scenarios pipelines
- Challenges for Pipeline systems in Irregular areas

Pipeline Systems

- **Export (transportation) pipelines**
 - Processed fluid
 - Carbon steel
- Flowlines to transferr products from wellhead to platform and between platforms
- Corrosive environment (CO₂, H₂S)
 ✓ Advanced corrosion resistent materials
 - ✓ Corrosion environment control by inhibitors
 - Flow assurance
 - ✓ Watercontent and hydrates
- **Waterinjection lines**

 - To keep pressure in reservoir Advanced materials if unprocessed seawater
- **Chemical injection lines**
 - Corrosion inhibitor
 - Anti-freeze inhibitor
- **Umbilicals**
 - Signal transmission
 - Power supply
- **Bundles**
 - Flowline
 - Injection line
 - Umbilicals

Subsea pipeline system design is a multidisciplinary task

Fluid flow technology

- > Fluid composition
- Pressure profile
- > Temperature profile
- Transcients
- Operation philosophy

Material techology

- ➤ Material selection corrosive fluid composition (CO₂, H₂S)
- Corrosion control by inhibitor systems
- CP design Corrosive external environment (seawater)
- Welding defects allowable strain at the welds
- Material behaviour

Geotechnics

- Pipe-soil interaction
- > Design of rock supports in free spans

Coastal engineering

- Current models and characteristics
- Oceanography/Hydrodynamics
 - Metocean data
 - Loads
- Structural mechanics
 - Analyse pipeline installation and operation load scenarios
 - Design against relevant failure modes

Relevant system failure modes

Flow failure

Hydrate or vax blocking

Corrosion failure

- Internal corrosion
- External corrosion

Structural Failure

- Excessive yielding
- Local buckling due to bending and external pressure
- Buckle propagation
- Impact loads denting
- > Buckle propagation
- Ovalization
- > Fracture
- > Fatigue

Example – Hydrate plugging

Hydrates

Example - bending induced local buckling

Example - bending induced local buckling

Fracture

Load scenarios - pipelines

Pipeline installation:

- Gravity
 - ✓ Excessive yielding
 - ✓ Local buckling including buckle propagation
 - ✓ Fracture
 - ✓ Lateral stability
- Wave and current induced loads and vessel motion
 - ✓ Fatigue
 - ✓ Lateral stability
 - Interference with other installations
 - Excessive yielding and buckling
 - ✓ Vortex induced vibration and fatigue
- > External pressure
 - ✓ Local buckling and collapse
- Hydrostatic testing
 - ✓ Bursting

Load scenarios - pipelines

Pipeline operation:

- Gravity
 - ✓ Excessive yielding at free-span shoulders
- Wave and current loads
 - ✓ Fatigue
 - ✓ Lateral stability
 - Interference with other installations
 - Excessive yielding and local buckling
 - ✓ Vortex induced vibration and fatigue
- Operation temperature and pressure
 - ✓ Bursting
 - ✓ Global buckling
 - Excessive yielding and local buckling
 - Fracture
 - ✓ Low cycle fatigue due to shutdown
- > Interference with shipping activities
 - ✓ Excessive yielding and local buckling due to trawl pull-over
 - ✓ Fatigue

Case - The Ormen Lange field

Routing challenges

Challenges for Pipeline Systems in Irregular areas

- Curve stability during installation
- Routing, free spans
 - Screening on allowable spans
- VIV induced fatigue in free spans
 - Cross flow and inline responses
- Expansion control
 - Feed-in analysis as basis for rock dumping
- Trawling
 - Impact, hooking, bending moment capacity
- Accidental loads (e.g. anchor dragging)

Dedicated finite elements

- Pipe elements
- Roller contact elements to describe vessel/pipe interaction
- Nonlinear springs to handle tensioner systems
- Seabed contact elements to describe the pipe/seabed interaction
- Formulation of finite elements for analysing pipelines requires:
 - ✓ Large displacement kinematics
 - ✓ Elastoplastic material laws
 - ✓ Energy Principle on total and incremental form

Curve stability during installation

FREE SPAN ANALYSIS RESULTS

FREE SPAN VIV RESPONSE MODELS

Modal analysis – Inline modes

Modal analysis – Cross flow Modes

FATIGUE PROPERTIES OF LINEPIPE STEEL

Comparison between different environments, Curve F1 (DNV RP-C203) Comparison of S-N curves, F1 curve (DNV RP-C203)

FATIGUE LIFETIME - INLINE

Lifetime INLINE KP 6.3 - 6.8 Condition: Operation

6391 6407 6423 6439 6455 6471 6487 6503 6519 6535 6551 6567 6583 6599 6615 6631 6647 6663 6679 6695 6711 6727 6743 6759 6775 6791

KP(m)

Expansion control

- Pipelines resting on seabed and exposed to high temperatures and pressures may buckle as a bar (Euler Buckling)
- Due to seabed irregularities the buckling may be localized at the point of max imperfections:
 - > The pipe first undergoes uplift at crown of imperfection
 - ➤ Having lost contact at the crown of imperfection the pipe will then buckle laterally

 To avoid excessive strains it may be necessary to perform rock installation to increase axial friction and reduce feed-in

Expansion control - Analysis

Load and Response from Trawlboard/Pipe interaction

Accidental load analysis – Anchor hitting pipeline in trench

