

$\mathrm{TDT4136}-\mathrm{Introduction}$ to Artificial Intelligence

Assignment no. 5

Lars Moen

1 Models and entailment in propositional logic

1.1 Validity and Soundness

- a) Generate the vocabulary of the following argument.
- b) Translate the argument into propositional logic statements.
- c) Add a premise (P4) to make the conclusion of the argument valid.

P1 to P3 are the premises, C is the conclusion:

- (P1) If Peter's argument is valid and all the premises of Peter's argument are true, then Peter's argument is sound.
- (P2) If the premises of Peter's argument entail the conclusion of Peter's argument, then Peter's argument is valid.
- (P3) The premises of Peter's argument entail the conclusion of Peter's argument.
- (C) Peter's argument is sound.
- a) Vocabulary:
 - \bullet V: Peter's argument is valid
 - P: The premises of Peter's argument
 - S: Peter's argument is sound
 - C: The conclusion of Peter's argument

b)

- (P1): $V \wedge P \Longrightarrow S$
- (P2): $P \models C \Longrightarrow V$
- (P3): $P \models C$
- (C): S

c)

To make the conclusion of the argument valid, one can add the premise:

(P4): The Premises of Peter's argument are true.

1.2 Modelling

For each of the following statements, determine if they are satisfiable by building the complete model (truth table) and mark tautologies.

I have given steps in the truth tables alternative lettering to save space in the tables.

a)
$$(p \Longleftrightarrow q) \Longrightarrow ((p \Longrightarrow r) \Longrightarrow (q \Longrightarrow r))$$

\overline{p}	\overline{q}	r	$(p \Longleftrightarrow q)$	$(p \Longrightarrow r)$	$(q \Longrightarrow r)$	$(b \Longrightarrow c)$	$a \Longrightarrow (b \Longrightarrow c)$
			a	b	c		
1	1	1	1	1	1	1	1
1	1	0	1	0	0	1	1
1	0	0	0	0	1	1	1
1	0	1	0	1	1	1	1
0	1	0	0	1	0	0	1
0	1	1	0	1	1	1	1
0	0	1	1	1	1	1	1
0	0	0	1	1	1	1	1

As we can see this is a tautology as the expression is always true and thus it is also satisfiable.

b)
$$(p \lor (\neg q \Longrightarrow r)) \Longrightarrow (q \lor (\neg p \Longrightarrow r))$$

\overline{p}	\overline{q}	r	$(\neg q \Longrightarrow r)$	$(\neg p \Longrightarrow r)$	$(p \lor a)$	$(q \lor b)$	$(p \lor a) \Longrightarrow (q \lor b)$
			a	b			
1	1	1	1	1	1	1	1
1	1	0	1	1	1	1	1
1	0	0	0	1	1	1	1
1	0	1	1	1	1	1	1
0	1	0	1	0	1	0	0
0	1	1	1	1	1	1	1
0	0	1	1	1	1	1	1
0	0	0	0	0	0	0	1

The statement is satisfiable.

c)
$$(\neg(p \land (q \Longrightarrow \neg r))) \Longrightarrow ((p \Longrightarrow q) \land (p \Longrightarrow r))$$

\overline{p}	\overline{q}	r	$(q \Longrightarrow \neg r)$	$(p \Longrightarrow q)$	$(p \Longrightarrow r)$	$(p \wedge a)$	$(b \wedge c)$	$(\neg(p \land a)) \Longrightarrow (b \land c)$
			a	b	c			
1	1	1	0	1	1	0	1	1
1	1	0	1	1	0	1	0	1
1	0	0	1	0	0	1	1	1
1	0	1	0	0	1	0	0	0
0	1	0	1	1	1	0	1	1
0	1	1	1	1	1	0	1	1
0	0	1	1	1	1	0	1	1
0	0	0	0	1	1	1	1	1

The statement is satisfiable.

$$\mathrm{d}) \ \, (\neg (\neg p \Longrightarrow (q \wedge r))) \Longrightarrow (\neg (p \vee q) \wedge r)$$

\overline{p}	\overline{q}	r	$(q \wedge r)$	$(p \lor q)$	$(\neg p \Longrightarrow a)$	$(\neg b \wedge r)$	$(\neg c \Longrightarrow d)$
			a	b	c	d	
1	1	1	1	1	1	1	1
1	1	0	0	1	1	1	1
1	0	0	1	1	1	1	1
1	0	1	0	1	1	1	1
0	1	0	0	1	0	1	1
0	1	1	1	1	1	1	1
0	0	1	0	0	0	1	1
0	0	0	1	0	1	0	1

The statement is a tautology and is thus also satisfiable.

1.3 Modelling 2

Let ϕ be a sentence that contains three atomic constituents and let the truth conditions of ϕ be defined by the truth table below. Write a propositional logic statement that contains p, q, and r as constituents, and that is equivalent to ϕ .

p	q	r	ϕ
1	1	1	1
1	1	0	1
1	0	1	0
1	0	0	1
0	1	1	1
0	1	0	1
0	0	1	0
0	0	0	1

A statement that contains p, q, and r and is equivalent to ϕ is

$$((p \Longrightarrow r) \Longrightarrow (p \Longrightarrow q)) \land ((r \Longrightarrow p) \lor q)$$

2 Resolution in propositional logic

2.1 Conjuctive Normal Form

Convert each of the following sentences to their Conjuctive Normal Form (CNF).

a)
$$p \iff q$$

$$\Rightarrow (p \Longrightarrow q) \land (q \Longrightarrow p)$$
$$\Rightarrow (\neg p \lor q) \land (\neg q \lor p)$$

b)
$$\neg((p \Longrightarrow q) \land r)$$

$$\Rightarrow \neg((\neg p \lor q) \land r)$$

$$\Rightarrow (p \land \neg q) \lor (\neg r)$$

$$\Rightarrow (p \lor \neg r) \land (\neg q \lor \neg r)$$

c)
$$((p \lor q) \lor (r \land (\neg(q \Longrightarrow r))))$$

$$\Rightarrow (p \lor q \lor (r \land (\neg (\neg q \lor r))))$$

$$\Rightarrow (p \lor q \lor (r \land (q \land \neg r)))$$

$$\Rightarrow (p \lor (r \land q \land \neg r)) \land (q \lor (r \land q \land \neg r))$$

$$\Rightarrow (p \lor r) \land (p \lor q) \land (p \lor \neg r) \land (q \lor r) \land (\lor p) \land (q \lor \neg r)$$

$$\Rightarrow (p \lor q \lor r) \land (p \lor q \lor \neg r)$$

$$\Rightarrow (p \lor q)$$

d) Is the solution to c) really a CNF?

As the solution to c) can be simplified to $(p \lor q)$ the solution is not a true CNF, but rather a disjunction of literals. It can still be written as a CNF with r and $\neg r$, but it is in practice $(p \lor q)$.

2.2 Inference in propositional logic

Use resolution to conclude r from the following statements.

a)
$$(p \Longrightarrow q) \Longrightarrow q$$

$$(\neg p \lor q) \Longrightarrow q$$

$$\neg (\neg p \lor q) \lor q$$

$$p \land \neg q \lor q$$

$$p$$

b)
$$p \Longrightarrow r$$

$$\neg p \lor r$$

c)
$$(r \Longrightarrow s) \Longrightarrow (\neg(s \Longrightarrow q))$$

$$\begin{array}{l} (\neg r \vee s) \Longrightarrow (\neg (\neg s \vee q)) \\ \neg (\neg r \wedge s) \vee (s \wedge \neg q) \\ r \wedge (s \wedge \neg q) \end{array}$$

We can see that from a) and b) we get the clauses p and $(\neg p \lor r)$ from these two we can infer r. Thus r can be concluded from the statements.

$$\frac{p, \quad \neg p \vee r}{r}$$

3 Representation in First-Order Logic (FOL)

Consider the following baseball vocabulary:

- 1. Pitcher(p) is a predicate where person p is a pitcher.
- 2. $flies(p_1, p_2)$ is a predicative where person p_1 flies out to person p_2 .
- 3. Centerfielder(p) is a predicate where person p is a centerfielder.
- 4. scores(p) is a predicate where person p scores.
- 5. $friend(p_1, p_2)$ is a predicate where person p_1 is the friend of person p_2 (but not vice versa).
- 6. Robinson, Crabb, Samson, Jones are constants denoting persons.

Now look at the following translations of natural language into first order logic statements describing a baseball game. Using the provided vocabulary, translate the conclusion of each of the following arguments into an FOL statement.

a) Argument A

Only pitchers fly out to Robinson. Crabb scores only if Samson flies out to Robinson and Robinson is a centerfielder. Crabb scores.

Conclusion: Samson is a pitcher.

- $\forall x : [flies(x, Robinson) \Longrightarrow Pitcher(x)]$
- $scores(Crabb) \Longrightarrow (flies(Samson, Robinson) \land Centerfielder(Robinson))$
- \bullet scores(Crabb)

Conclusion as FOL statement: Pitcher(Samson)

b) Argument B

No centerfielder who does not score has any friends. Robinson and Jones are both center-fielders. Any centerfielder who flies out to Jones does not score. Robinson flies out to Jones.

Conclusion: Jones is not a friend of Robinson

- $\forall x : [(Centerfielder(x) \land \neg scores(x)) \Longrightarrow \neg \exists y : [friend(y, x)]]$
- $Centerfielder(Robinson) \wedge Centerfielder(Jones)$
- $\forall x : [(Centerfielder(x) \land flies(x, Jones)) \Longrightarrow \neg scores(x)]$
- \bullet flies(Robinson, Jones)

Conclusion as FOL statement: $\neg friend(Jones, Robinson)$

4 Resolution in FOL

Using resolution, prove the conclusions from **Arguments A** and **B** from exercise 3

Argument A

First, we need to write the clauses of the arguments on CNF:

• $\forall x : [flies(x, Robinson) \Longrightarrow Pitcher(x)]$

```
\forall x : [\neg flies(x, Robinson) \lor Pitcher(x)]
\neg flies(x, Robinson) \lor Pitcher(x)
```

 $\bullet \ scores(Crabb) \Longrightarrow (flies(Samson, Robinson) \land Centerfielder(Robinson)) \\$

```
\neg scores(Crabb) \lor (flies(Samson, Robinson) \land Centerfielder(Robinson))
(\neg scores(Crabb) \lor flies(Samson, Robinson)) \land (\neg scores(Crabb) \lor Centerfielder(Robinson))
```

- \bullet scores(Crabb)
- Pitcher(Samson)

Thus we get the clauses:

- 1.1 $\neg flies(x, Robinson) \lor Pitcher(x)$
- $1.2 \neg scores(Crabb) \lor flies(Samson, Robinson)$
 - $2 \ \neg scores(Crabb) \lor Centerfielder(Robinson)$
 - $3 \ scores(Crabb)$
- $\neg G \neg Pitcher(Samson)$

which by resolution yields

as $\neg Pitcher(Samson)$ is unsatisfiable by resolution the conclusion is proven.

Argument B

- $Centerfielder(Robinson) \wedge Centerfielder(Jones)$
- $\forall x : [(Centerfielder(x) \land flies(x, Jones)) \Longrightarrow \neg scores(x)]$

```
 \begin{split} \forall x : \left[ \neg (Centerfielder(x) \land flies(x, Jones)) \lor \neg scores(x) \right] \\ (\neg Centerfielder(x) \land \neg flies(x, Jones)) \lor \neg scores(x) \\ (\neg Centerfielder(x) \lor \neg scores(x)) \land (\neg flies(x, Jones) \lor \neg scores(x)) \end{split}
```

- flies(Robinson, Jones)
- $\neg friend(Jones, Robinson)$

The clauses are then:

- 1.1 $\neg Centerfielder(x) \lor \neg friend(F(x), x)$
- $1.2 \ scores(x) \lor \neg friend(F(x), x)$
- $2.1 \ Centerfielder(Robinson)$
- $2.2 \ Centerfielder(Jones)$
- $3.1 \neg Centerfielder(x) \lor \neg scores(x)$
- $3.2 \ \neg flies(x, Jones) \lor \neg scores(x)$
 - $4 \ flies(Robinson, Jones)$
- $\neg G \ friend(Jones, Robinson)$

which yields:

given F(Robinson) = Jones, friend(Jones, Robinson) is unsatisfiable by resolution and the conclusion is proven.