Group Art Unit: Unknown

Amendments to the claims:

CLAIMS:

What is claimed is:

1. (Original) A compound of formula (I) or a pharmaceutically acceptable derivative thereof:

(l)

wherein:

one of Z^1 , Z^2 , Z^3 , Z^4 and Z^5 is N, one is CR^{1a} , and the remainder are CH, or one of Z^1 , Z^2 , Z^3 , Z^4 and Z^5 is CR^{1a} , and the remainder are CH;

R¹ and R^{1a} are independently hydrogen; hydroxy; (C₁₋₆)alkoxy optionally substituted by (C₁₋₆)alkoxy, amino, piperidyl, guanidino or amidino optionally N-substituted by one or two (C₁₋₆)alkyl, acyl or (C₁₋₆)alkylsulphonyl groups, CONH₂, hydroxy, thiol, (C₁₋₆)alkylthio, heterocyclylthio, heterocyclyloxy, arylthio, aryloxy, acyloxy or (C₁₋₆)alkylsulphonyloxy; (C₁₋ 6)alkoxy-substituted(C₁₋₆)alkyl; halogen; (C₁₋₆)alkyl; (C₁₋₆)alkylthio; nitro; azido; acyl; acyloxy; acylthio; (C₁₋₆)alkylsulphonyl; (C₁₋₆)alkylsulphoxide; arylsulphonyl; arylsulphoxide or an amino, piperidyl, guanidino or amidino group optionally N-substituted by one or two (C₁₋₆)alkyl, acyl or (C₁₋₆)alkylsulphonyl groups; and additionally when Z^5 is CR^{1a} , R^{1a} may be (C_{1-4}) alkyl- CO_2H or (C_{1-4}) alkyl- $CONH_2$ in which the C₁₋₄ alkyl is substituted by R¹²; (C₁₋₄)alkyl substituted by amino, cyano or guanidino; aminocarbonyl optionally substituted by hydroxy, (C₁₋₆)alkyl, hydroxy(C₁₋₆)alkyl, aminocarbonyl(C₁₋₆)alkyl, (C₂₋₆)alkenyl, (C₁₋₆)alkylsulphonyl, trifluoromethylsulphonyl, (C₂₋ 6)alkenylsulphonyl, (C₁₋₆)alkoxycarbonyl, (C₁₋₆)alkylcarbonyl, (C₂₋₆)alkenyloxycarbonyl, (C₂₋₆)alkenylcarbonyl, or CH(R¹³)CO₂H or CH(R¹³)CONH₂ optionally further substituted by (C₁₋₆)alkyl, hydroxy(C₁₋₆)alkyl, aminocarbonyl(C₁₋₆)alkyl or (C₂₋₆)alkenyl; hydroxy(C₁₋₆ 6)alkyl; carboxy; cyano or (C₁₋₆)alkoxycarbonyl; wherein R¹³ is a natural □-amino acid side chain, or its enantiomer;

Group Art Unit: Unknown

provided that when one of Z^1 , Z^2 , Z^3 , Z^4 and Z^5 is CR^{1a} and the remainder are CH, then R^1 is not hydrogen;

R² is hydrogen;

R³ is hydrogen; or

R³ is in the 2-, 3- or 4-position and is:

carboxy; (C_{1-6}) alkoxycarbonyl; aminocarbonyl wherein the amino group is optionally substituted by hydroxy, (C_{1-6}) alkyl, hydroxy(C_{1-6})alkyl, aminocarbonyl(C_{1-6})alkyl, (C_{2-6}) alkenyl, (C_{1-6}) alkylsulphonyl, trifluoromethylsulphonyl, (C_{2-6}) alkenylsulphonyl, (C_{1-6}) alkylcarbonyl, (C_{1-6}) alkylcarbonyl or (C_{2-6}) alkenylcarbonyl and optionally further substituted by (C_{1-6}) alkyl, hydroxy((C_{1-6}) alkyl, aminocarbonyl((C_{1-6}) alkyl or (C_{2-6}) alkenyl; cyano; tetrazolyl; 2-oxo-oxazolidinyl optionally substituted by (C_{1-6}) alkylory-3-cyclobutene-1,2-dione-4-yl; 2,4-thiazolidinedione-5-yl; tetrazol-5-ylaminocarbonyl; 1,2,4-triazol-5-yl optionally substituted by (C_{1-6}) alkylory-3-oxo-1,2,4-oxadiazol-3-yl; or

 (C_{1-4}) alkyl or ethenyl optionally substituted with any of the substituents listed above for R^3 and/or up to 3 groups R^{12} independently selected from:

thiol; halogen; (C_{1-6}) alkylthio; trifluoromethyl; azido; (C_{1-6}) alkoxycarbonyl; (C_{1-6}) alkylcarbonyl; (C_{2-6}) alkenyloxycarbonyl; (C_{2-6}) alkenylcarbonyl; hydroxy optionally substituted by (C_{1-6}) alkyl, (C_{2-6}) alkenyl, (C_{1-6}) alkoxycarbonyl, (C_{1-6}) alkylcarbonyl, (C_{2-6}) alkenylcarbonyl or aminocarbonyl wherein the amino group is optionally substituted by (C_{1-6}) alkyl, (C_{2-6}) alkenyl, (C_{1-6}) alkylcarbonyl or (C_{2-6}) alkenylcarbonyl; amino optionally mono- or disubstituted by (C_{1-6}) alkoxycarbonyl, (C_{2-6}) alkenylcarbonyl, (C_{2-6}) alkenyloxycarbonyl, (C_{2-6}) alkenylcarbonyl, (C_{1-6}) alkylsulphonyl, (C_{2-6}) alkenylsulphonyl or aminocarbonyl wherein the amino group is optionally substituted by (C_{1-6}) alkyl or (C_{2-6}) alkenyl; aminocarbonyl wherein the amino group is optionally substituted by (C_{1-6}) alkyl, hydroxy (C_{1-6}) alkyl, aminocarbonyl or (C_{2-6}) alkenyl, (C_{2-6}) alkenyl, (C_{2-6}) alkenyl, (C_{1-6}) alkoxycarbonyl, (C_{1-6}) alkylcarbonyl, (C_{2-6}) alkenyloxycarbonyl or (C_{2-6}) alkenylcarbonyl and optionally further substituted by (C_{1-6}) alkyl, hydroxy (C_{1-6}) alkyl, aminocarbonyl (C_{1-6}) alkyl, aminocarbonyl; or (C_{2-6}) alkenyl; oxo; (C_{1-6}) alkylsulphonyl; (C_{2-6}) alkyl, aminocarbonyl; or (C_{2-6}) alkenyl; oxo; (C_{1-6}) alkylsulphonyl; (C_{2-6}) alkenylsulphonyl; or (C_{2-6}) alkenyl; oxo; (C_{1-6}) alkylsulphonyl; (C_{2-6}) alkenylsulphonyl; or (C_{2-6}) alkenyl; oxo; (C_{1-6}) alkylsulphonyl; or (C_{2-6}) alkenyl; oxo; (C_{1-6}) alkylsulphonyl; or optionally substituted by (C_{1-6}) alkyl or (C_{2-6}) alkenyl; oxo; (C_{1-6}) alkylsulphonyl; or optionally substituted by (C_{1-6}) alkyl or (C_{2-6}) alkenyl;

in addition when R³ is disubstituted with a hydroxy or amino containing substituent and a carboxy containing substituent these may together form a cyclic ester or amide linkage, respectively; or

Group Art Unit: Unknown

when R^3 is in the 3-position R^2 and R^3 may together form a divalent residue = $CR^{51}R^{61}$ where R^{51} and R^{61} are independently selected from hydrogen, (C_{1-6})alkyl, (C_{2-6})alkenyl, aryl(C_{1-6})alkyl and aryl(C_{2-6})alkenyl, any alkyl or alkenyl moiety being optionally substituted by up to three R^{12} groups;

R⁴ is a group -CH₂-R⁵ in which R⁵ is selected from:

 $(C_{1-12})\text{alkyl}; \ \text{hydroxy}(C_{1-12})\text{alkyl}; \ (C_{1-12})\text{alkoxy}(C_{1-12})\text{alkyl}; \ (C_{1-12})\text{alkyl}; \ (C_{1-12})\text{alkyl}; \ (C_{1-12})\text{alkyl}; \ (C_{1-12})\text{alkoxy}(C_{3-6})\text{cycloalkyl}; \ (C_{1-12})\text{alkoxy}(C_{3-6})\text{cycloalkyl}; \ (C_{1-12})\text{alkyl}; \ \text{hydroxy-}, \ (C_{1-12})\text{alkoxy-} \ \text{or} \ (C_{1-12})\text{alkanoyloxy-}(C_{3-6})\text{cycloalkyl}(C_{1-12})\text{alkyl}; \ \text{cyano}; \ \text{cyano}(C_{1-12})\text{alkyl}; \ (C_{2-12})\text{alkynyl}; \ \text{tetrahydrofuryl}; \ \text{mono-} \ \text{or} \ \text{di-}(C_{1-12})\text{alkylamino}(C_{1-12})\text{alkyl}; \ \text{optionally substituted phenyl}(C_{1-12})\text{alkyl}; \ \text{mono-} \ \text{or} \ \text{di-} \ (C_{1-12})\text{alkyl} \text{amino}(\text{hydroxy}) \ (C_{1-12})\text{alkyl}; \ \text{optionally substituted diphenyl}(C_{1-12})\text{alkyl}, \ \text{phenoxy}(C_{1-12})\text{alkyl}; \ \text{optionally substituted phenyl}(C_{1-12})\text{alkyl}; \ \text{optionally substituted benzoyl} \ \text{or} \ \text{benzoyl}(C_{1-12})\text{alkyl}; \ \text{optionally substituted heteroaryl} \ \text{or} \ \text{heteroaryl}(C_{1-12})\text{alkyl}; \ \text{and} \ \text{optionally substituted heteroaroyl} \ \text{or} \ \text{heteroaroyl}(C_{1-12})\text{alkyl}; \ \text{and} \ \text{optionally substituted heteroaroyl}(C_{1-12})\text{alkyl}; \ \text{opti$

A is CR⁶R⁷ and B is SO₂ CO or CH₂ wherein:

each of R⁶ and R⁷ is independently selected from: hydrogen; (C_{1-6}) alkoxy; thiol; (C_{1-6}) alkylthio; halo; trifluoromethyl; azido; (C_{1-6}) alkyl; (C_{2-6}) alkenyl; (C_{1-6}) alkoxycarbonyl; (C_{1-6}) alkylcarbonyl; (C_{2-6}) alkenyloxycarbonyl; (C_{2-6}) alkenyloxycarbonyl; hydroxy, amino or aminocarbonyl optionally substituted as for corresponding substituents in R³; (C_{1-6}) alkylsulphonyl; (C_{2-6}) alkenylsulphonyl; or (C_{1-6}) aminosulphonyl wherein the amino group is optionally substituted by (C_{1-6}) alkyl or (C_{2-6}) alkenyl;

R¹⁰ is selected from (C₁₋₄)alkyl; (C₂₋₄)alkenyl and aryl any of which may be optionally substituted by a group R¹² as defined above; carboxy; aminocarbonyl wherein the amino group is optionally substituted by hydroxy, (C₁₋₆)alkyl, (C₂₋₆)alkenyl, (C₁₋₆)alkylsulphonyl, trifluoromethylsulphonyl, (C₂₋₆)alkenylsulphonyl, (C₁₋₆)alkoxycarbonyl, (C₁₋₆)alkylcarbonyl, (C₂₋₆)alkenyloxycarbonyl or (C₂₋₆)alkenylcarbonyl and optionally further substituted by (C₁₋₆)alkyl or (C₂₋₆)alkenyl; (C₁₋₆)alkylsulphonyl; trifluoromethylsulphonyl; (C₂₋₆)alkenylsulphonyl; (C₁₋₆)alkoxycarbonyl; (C₁₋₆)alkylcarbonyl; (C₂₋₆)alkenyloxycarbonyl; and (C₂₋₆)alkenylcarbonyl;

Group Art Unit: Unknown

and R^{11} is hydrogen; or (C_{1-4}) alkyl or (C_{2-4}) alkenyl optionally substituted with 1 to 3 groups selected from:

carboxy; (C_{1-4}) alkoxycarbonyl; (C_{1-4}) alkylcarbonyl; (C_{2-4}) alkenyloxycarbonyl; (C_{2-4}) alkenylcarbonyl; aminocarbonyl wherein the amino group is optionally substituted by hydroxy, (C_{1-4}) alkyl, hydroxy (C_{1-4}) alkyl, aminocarbonyl (C_{1-4}) alkyl, (C_{2-4}) alkenyl, (C_{1-4}) alkylsulphonyl, trifluoromethylsulphonyl, (C_{2-4}) alkenylsulphonyl, (C_{1-4}) alkoxycarbonyl, (C_{1-4}) alkylcarbonyl, (C_{2-4}) alkenyloxycarbonyl or (C_{2-4}) alkenylcarbonyl; cyano; tetrazolyl; 2-oxo-oxazolidinyl optionally substituted by (C_{1-4}) alkenylcarbonyl; (C_{2-4}) alkenylcarbonyl; (C_{2-4}) alkenylcarbonyl; (C_{2-4}) alkylthio; trifluoromethyl; azido; hydroxy optionally substituted by (C_{1-4}) alkyl, (C_{2-4}) alkenyl, (C_{1-4}) alkoxycarbonyl, (C_{1-4}) alkylcarbonyl, (C_{2-4}) alkenyloxycarbonyl, (C_{2-4}) alkenylcarbonyl; oxo; (C_{1-4}) alkylsulphonyl; (C_{2-4}) alkenylsulphonyl; or (C_{1-4}) alkylor (C_{2-4}) alkenyl or (C_{2-4}) alkenyl.

- 2. (Original) A compound according to claim 1 wherein:
 - (a) Z^1 is N, and Z^2 - Z^5 are CH,
 - (b) Z^{1} - Z^{5} are each CH, or
 - (c) Z^5 is N, and Z^1 - Z^4 are CH,

and Z³ may instead be CF.

- 3. (Currently Amended) A compound according to claim 1 or 2 wherein R^1 and R^{1a} are independently methoxy, amino(C_{3-5})alkyloxy, guanidino(C_{3-5})alkyloxy, piperidyl(C_{3-5})alkyloxy, nitro or fluoro.
- 4. (Currently Amended) A compound according to any one of the preceding claims claim 1 wherein R^3 is hydrogen; (C_{1-4}) alkyl; ethenyl; optionally substituted 1-hydroxy(C_{1-4})alkyl; carboxy; (C_{1-6}) alkoxycarbonyl; optionally substituted aminocarbonyl; carboxy(C_{1-4})alkyl; optionally substituted aminocarbonyl(C_{1-4})alkyl; cyano(C_{1-4})alkyl; optionally substituted 2-oxo-oxazolidinyl or optionally substituted 2-oxo-oxazolidinyl(C_{1-4} alkyl).
- 5. (Currently Amended) A compound according to any one of the preceding claims claim 1 wherein R³ is in the 3-position and the substitutents at the 3- and 4-position of the piperidine ring are *cis*.
- 6. (Currently Amended) A compound according to any one of the preceding claims claim 1 wherein A is CHOH or CH₂, and B is CH₂.

Group Art Unit: Unknown

 (Currently Amended) A compound according to any one of the preceding claims claim 1 wherein R¹¹ is hydrogen.

- 8. (Currently Amended) A compound according to any one of the preceding claims claim 1 wherein R^4 is (C_{5-12}) alkyl, optionally substituted phenyl (C_{2-3}) alkyl or optionally substituted phenyl (C_{3-4}) alkenyl.
- 9. (Original) A compound according to claim 1 selected from:

 1-Heptyl-4-[2-(R)-hydroxy-2-(6-methoxyquinolin-4-yl)]ethylaminopiperidine;

 cis-3-(R/S)-Ethoxycarbonyl-1-heptyl-4-(S/R)-[2-(R)-hydroxy-2-(6-methoxyquinolin-4-yl)]ethylaminopiperidine;

 cis-3-(R/S)-Aminocarbonyl-1-heptyl-4-(S/R)-[2-(R)-hydroxy-2-(6-methoxyquinolin-4-yl)]ethylaminopiperidine;

 cis-1-Heptyl-3-(R/S)-hydroxymethyl-4-(S/R)-[2-(R)-hydroxy-2-(6-methoxyquinolin-4-yl)]ethylaminopiperidine;

 cis-3-(R/S)-carboxy-1-heptyl-4-(S/R)-[2-(R)-hydroxy-2-(6-methoxyquinolin-4-yl)]ethylaminopiperidine;

 1-Heptyl-4-[2-(S)-hydroxy-2-(6-methoxyquinolin-4-yl)]ethylaminopiperidine; or

 1-Heptyl-4-[2-(R)-hydroxy-2-(6-methoxyquinolin-4-yl)]ethyl(N-methyl)aminopiperidine; or a pharmaceutically acceptable derivative thereof.
- 10. (Original) A pharmaceutical composition comprising a compound of formula (I) as defined in claim 1, or a pharmaceutically acceptable derivative thereof, and a pharmaceutically acceptable carrier.
- 11. (Original) A method of treatment of bacterial infections in mammals which method comprises the administration to a mammal in need of such treatment an effective amount of a compound of formula (I) as defined in claim 1, or a pharmaceutically acceptable derivative thereof.
- 12. (Cancelled).
- 13. (Original) A process for preparing a compound of formula (I) as defined in claim 1, or a pharmaceutically acceptable derivative thereof, which process comprises: reacting a compound of formula (IV) with a compound of formula (V):

Group Art Unit: Unknown

$$R^{1'} \xrightarrow{Z^{2'}} Z^{3'} \xrightarrow{N} X$$

$$= HNR^{11'} \xrightarrow{4} NR^{4'}$$

$$= R^{2'} \qquad R^{3'}$$

$$= R^{2'} \qquad (V)$$

wherein $Z^{1'}$, $Z^{2'}$, $Z^{3'}$, $Z^{4'}$, $Z^{5'}$, $R^{11'}$, $R^{1'}$, $R^{2'}$, $R^{3'}$ and $R^{4'}$ are Z^{1} , Z^{2} , Z^{3} , Z^{4} , Z^{5} , R^{11} , R^{1} , R^{2} , R^{3} and R^{4} as defined in formula (I) or groups convertible thereto; and:

- (i) X_i is $CR^6R^7SO_2W$
- (ii) X is A'-COW
- (iii) X is CR⁶=CH₂
- (iv) X is oxirane and

in which W is a leaving group e.g. halogen, A' is A as defined in formula (I), or a group convertible thereto, and oxirane is:

wherein R^6 and R^7 are as defined in formula (I); and thereafter optionally or as necessary converting $Z^{1'}$, $Z^{2'}$, $Z^{3'}$, $Z^{4'}$, $Z^{5'}$, A', $R^{11'}$, $R^{1'}$, $R^{2'}$, $R^{3'}$ and $R^{4'}$ to Z^1 , Z^2 , Z^3 , Z^4 , Z^5 , A, R^{11} , R^1 , R^2 , R^3 and R^4 , converting A-B to other A-B, interconverting R^{11} , R^1 , R^2 , R^3 and/or R^{4} , and/or forming a pharmaceutically acceptable derivative thereof.