Определение столкновений движущихся выпуклых объектов в двумерном пространстве (обзор задачи)

Предисловие. Определение столкновений движущихся трехмерных объектов – задача, решаемая при планировании движения роботов, в моделировании физических явлений и т.д. Чтобы подойти к решению этой задачи, рассмотрены аналогичные задачи в двумерном пространстве, оказывающиеся более простыми за счет пониженной размерности и меньшего числа переменных. Достигнут результат: разработан алгоритм определения столкновения движущихся выпуклых объектов в двумерном пространстве, в том числе один из двух объектов может быть нестрого выпуклым . Далее наработки будут использованы для решения задач в трехмерном пространстве.

Применение алгоритма. Предполагается, что при движении объектов, проводятся несложные для вычисления проверки (например, пересечение описанных окружностей). Если такие проверки не исключают столкновения, то начинает работу описываемый алгоритм.

Определение выпуклого объекта (convex object).

Строго выпуклый (strictly convex) эллипс слева и нестрого выпуклый (non-strictly convex) правильный N-угольник с закругленными краями.

Способы задания геометрической фигуры в двумерном пространстве

В работе используется задание фигур уравнениями в параметрической форме. Такой способ позволяет выразить множество точек периметра фигуры как функцию 1 переменного.

Эллипс с длиной $\frac{1}{2}$ горизонтальной оси a и длиной $\frac{1}{2}$ вертикальной оси b задается уравнениями:

$$\begin{aligned}
 x &= a \cos \varphi, \\
 y &= b \sin \varphi, \quad -\pi \leqslant \varphi \leqslant \pi.
 \end{aligned}
 \tag{1}$$

Параметр ϕ в общем случае не равен углу между положительным направлением оси X и лучом из начала координат через точку на периметре.

Потребуется направленный наружу вектор-перпендикуляр в точке, длиной 1:

$$\vec{N} = \left(\frac{\cos\varphi}{a}, \frac{\sin\varphi}{b}\right) / \sqrt{\frac{\cos^2\varphi}{a^2} + \frac{\sin^2\varphi}{b^2}}.$$
 (2)

Денис Евгеньевич Бурыкин. Определение столкновений движущихся выпуклых объектов в двумерном пространстве (обзор задачи). Версия 2025.01.

Также фигуры задаются в параметрической форме т.н. кусочно-заданными функциями (piecewise functions). Пример приведен в <u>Приложение А. Задание фигуры с использованием кусочно-заданной функции</u>.

Способы задания расположения объекта в двумерном пространстве

Задается точка - центр объекта С, и угол поворота объекта angle.

Существует способ задания поворота с использованием матрицы 2x2. Это, вероятно, сократит вычисления, поскольку вначале один раз вычисляются косинус и синус угла поворота.

Поворот точки.

Формула поворота точки (x,y) на угол θ вокруг начала координат:

$$\hat{x} = x \cos \theta - y \sin \theta
\hat{y} = y \cos \theta + x \sin \theta$$
(3)

Слева: эллипс a=1, b=2.

Справа: тот же эллипс, сдвинутый относительно начала координат на C=(1, 2) и повернутый на angle=0.5.

Объекты будут обозначаться: первый объект object1, второй object2.

Преобразование координат, такое, чтобы object2 находился в начале координат не повернутым.

Слева: object1 сплошной линией (эллипс a_1 =0.5, b_1 =0.8), C_1 =(-1.5, 0), angle $_1$ =0.3; object2 пунктирной линией (эллипс a_2 =0.5, b_2 =2), C_2 =(1, 0.5), angle $_2$ =1.

В центре: координаты смещены на C_1 - C_2 , чтобы object2 находился в начале координат.

Справа: поворот на -1 радиан, чтобы object2 был не повернутым.

Расстояние между двумя неподвижными объектами

Сначала будет рассмотрена функция расстояния между двумя неподвижными выпуклыми объектами. Эта же функция возникает при вычислении расстояния между движущимися объектами в любой фиксированный момент времени t.

Наименьшее расстояние между двумя кривыми будет между 2 точками на кривых, таких, что отрезок между этими 2 точками перпендикулярен кривым в точках. Производная расстояния при этом равна нулю.

Реализуется следующий подход: по параметру φ на объекте object1 строится точка и перпендикуляр в точке, затем по перпендикуляру с обратным направлением находится точка на объекте object2. Затем вычисляется расстояние между двумя точками.

Найти точку на периметре, в которой перпендикуляр длиной 1 будет равен данному вектору длиной 1 с обратным направлением.

Для эллипса выведена формула:

$$(x, y) = (-a^2 N_x, -b^2 N_y) / \sqrt{a^2 N_x^2 + b^2 N_y^2} .$$
 (4)

Для нестрого выпуклых фигур существует множество точек на периметре, в которых перпендикуляр длиной 1 будет равен данному вектору с обратным направлением, то есть взаимно-однозначное соответствие отсутствует. Поэтому описываемый подход применим только в случае, если object2 строго выпуклый.

Вычисление расстояния по заданному ϕ

- 1. По φ найти точку P_1 на периметре object1 и перпендикуляр в точке N;
- 2. Построить систему координат, в которой object2 находится в начале координат не повернутым (локальная система координат object2);
- 3. P₁ и N перевести в локальную систему координат object2;
- 4. По -N найти точку P_2 на периметре object2;
- 5. Вычислить расстояние между двумя точками P_1 и P_2 .

При вычислении расстояния также вычисляются первая и вторая производные по $\, \, \phi . \,$

Справа изображены три разные расстояния:

- "Обычное" расстояние по прямой на евклидовой плоскости функция distanceEuclidean(φ)
- Расстояние "вперед" из точки P_1 вдоль перпендикуляра N- функция distanceFwd(φ)
- "Боковое" расстояние между прямой, построенной из P_1 и N, и точкой P_2 функция distanceSide(φ)

Основной объем действий при вычислений этих функций один и тот же.

Анализ функций расстояния

Справа изображены два объекта, ниже – функции расстояния в зависимости от $\varphi \in [-\pi, \pi]$. Значения функции distanceFwd(φ) выведены с обратным знаком для удобства сопоставления.

- Необходимо найти либо минимум distanceEuclidean(φ), либо максимум distanceFwd(φ), либо ноль distanceSide(φ).
- У функций несколько локальных экстремумов. Глобальный экстремум отличается тем, что в нем distanceFwd(φ) > 0.
- У distanceFwd(φ) значительно шире интервалы сходимости, чем у distanceEuclidean(φ), то есть интервалы, такие, что при начале работы численного метода в любой из точек которых будет найден локальный экстремум.
- Для нестрого выпуклых объектов необходимо адресовать дополнительные вопросы. См. <u>Приложение В. Пример с одним нестрого выпуклым объектом</u>.

Реализовано нахождение глобального минимума distanceEuclidean(φ). Алгоритм в значительной степени основан на методе Ньютона в оптимизации (Newton's method in optimization). При нахождении локального минимума, в котором distanceFwd(φ) < 0, продолжается поиск других минимумов методом бисекции на интервалах длиной более заданной, на которых поиск ранее не проводился.

Для нахождения начального значения φ , создается система координат, в которой object1 находится в начале координат не повернутым, создается вектор \vec{N} из начала координат в центр object2 (то есть \vec{N} - это центр object2 в локальной системе координат object1). В случае эллипса

$$\varphi = \operatorname{atan2}(a N_{y}, b N_{x}). \tag{5}$$

Также см. Приложение С. Эллипсы с соотношением сторон 1:100 и более.

Расстояние между двумя движущимися объектами

В работе алгоритма используются функции зависимости расстояния от φ и t: distanceFwd(φ , t) и distanceSide(φ , t). Для вычисления этих функций выполняются действия:

- 1. Вычисление положений object1 и object2 в момент времени *t*;
- 2. Действия, перечисленные в "Вычисление расстояния по заданному ф";

Вычисляются как значения функций в точке, так и частные производные 1 и 2 порядка по ϕ и t:

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial \varphi} \\ \frac{\partial f}{\partial t} \end{bmatrix}; \qquad \nabla^2 f = \begin{bmatrix} \frac{\partial^2 f}{\partial \varphi^2} & \frac{\partial^2 f}{\partial \varphi \partial t} \\ \frac{\partial^2 f}{\partial t \partial \varphi} & \frac{\partial^2 f}{\partial t^2} \end{bmatrix}. \tag{6}$$

Реализован следующий алгоритм:

- 1. Определяется ϕ и расстояние между двумя объектами при t=0;
- 2. Выполняются шаги алгоритма с увеличением t, при этом поддерживается и корректируется ϕ , соответствующее минимальному расстоянию.

Критерии прекращения работы алгоритма:

- 1. Столкновение объектов. Объекты считаются столкнувшимися при достижении заданного расстояния между ними (установлено $(1..4)\cdot 10^{-6}$). Пересечения объектов не допускается.
- 2. Увеличение расстояния до такого, при котором столкновение точно невозможно, определяемое несложным для вычисления критерием (например, более суммы радиусов описанных окружностей).

Объекты в моменты времени t=0, t=1, t=2.

Функция distanceSide(φ , t).

Функция distanceFwd(φ , t).

Функция distanceEuclidean(φ , t). Работа с этой функцией оказывается менее результативной: численному методу в среднем требуется больше итераций (соответственно больше вычислений), в связи с меньшими интервалами конвергенции.

Один шаг алгоритма

Эта тема продолжает находиться на этапе разработки, но уже понятны основные моменты.

Алгоритм делает шаг вдоль нуля функции distanceSide(φ , t). В отличие от движения вдоль экстремумов, это позволяет использовать дополнительно 1 порядок аппроксимации.

В окрестностях точки (φ_0, t_0) функция приближенно представляется многочленом Тэйлора 2 порядка:

$$P = \begin{bmatrix} \varphi - \varphi_0 \\ t - t_0 \end{bmatrix}; \quad f(\varphi, t) = f(\varphi_0, t_0) + P^T \nabla f(\varphi_0, t_0) + \frac{1}{2} P^T \nabla^2 f(\varphi_0, t_0) P.$$
 (7)

Эквивалентная запись без матриц и операторов:

$$f(\varphi, t) = f(\varphi_0, t_0) + \frac{\partial f}{\partial \varphi}(\varphi - \varphi_0) + \frac{\partial f}{\partial t}(t - t_0) + \frac{1}{2} \frac{\partial^2 f}{\partial \varphi^2}(\varphi - \varphi_0)^2 + \frac{\partial^2 f}{\partial \varphi \partial t}(\varphi - \varphi_0)(t - t_0) + \frac{1}{2} \frac{\partial^2 f}{\partial t^2}(t - t_0)^2.$$
(8)

Получается алгебраическая кривая 2 порядка. Кривая, изгибаясь, может начинать поворачивать так, что движение вдоль кривой оказывается в направлении, противоположном увеличению t.

Это является одним из факторов, ограничивающих длину шага алгоритма.

Для сравнения, справа изображена аппроксимация прямой линией.

Backtracking

- 1. Выполненный шаг оказывается в точке, не соответствующей критериям.
- 2. Выполнен backtracking.
- 3. Участок, движение по которому формально возможно, не связанный с участком, по которому идут шаги алгоритма. Он соответствует (см. изображение справа) с движением object1 после прохождения насквозь через object2.

Коррекция ϕ для соответствия значения функции нулю

После выполнения шага алгоритма, значение функции часто оказывается не равным нулю.

- 1. Выполнен шаг алгоритма. distanceSide(φ , t) \approx -0.2
- 2. Выполнена коррекция без изменения t. distanceSide(φ , t) \approx -0.0007
- 3. Необходима еще коррекция (не показана). После коррекции distanceSide (φ , t) \approx -3·10⁻¹¹ и шаг алгоритма считается выполненным.

Для коррекции не требуется вычислять заново положения объектов и не нужны производные по t. Применяется метод Галлея (Halley's method).

Приложение А. Задание фигуры с использованием кусочно-заданной функции

Фигура shape1 на изображении справа определяется тремя параметрами r_1 , r_2 , r_3 . Периметр фигуры непрерывен, функция перпендикуляра в точке в зависимости от φ также непрерывна. Периметр фигуры состоит из нескольких частей, задаваемых разными функциями:

- При $|\varphi| > \pi/2$ фигура задается теми же уравнениями, что и эллипс при $a=r_3, b=r_1+r_2$.
- При $|\varphi| \le \pi/2 \lor |\varphi| \ge \arctan(r_2/r_1)$ периметр фигуры является частью окружности с центром в точке $(0, \pm r_2)$ и радиусом r_1 . Координаты точки на периметре задаются уравнениями:

$$d = r_2 |\sin \varphi| + \sqrt{r_1^2 - r_2^2 \cos^2 \varphi},$$

$$x = d \cos \varphi,$$

$$y = d \sin \varphi.$$
(9)

Вектор – перпендикуляр в точке:

$$(N_x, N_y) = \left(\frac{x}{r_1}, \operatorname{sgn}(y) \frac{|y| - r_2}{r_1}\right)$$
 (10)

Фигура shape1 с параметрами r_1 =0.5, r_2 =1, r_3 =0.8

Вектор нужен длиной 1. Для этого вычисляется длина вектора length = $\sqrt{(N_x^2 + N_y^2)}$ и компоненты делятся на длину.

• При $|\varphi|$ < arctan (r_2/r_1) часть периметра является вертикальной прямой линией. Координаты точки:

$$(x, y) = (r_1, r_1 \tan \varphi). \tag{11}$$

Вектор – перпендикуляр в точке на этом интервале не зависит от φ и равен:

$$\vec{N} = (1, 0).$$
 (12)

Из-за того, что \vec{N} на интервале не зависит от φ , производные компонентов вектора $\frac{d}{d\,\varphi}N_{_X}(\,\varphi)$, $\frac{d}{d\,\varphi}N_{_Y}(\,\varphi)$ на этом интервале равны нулю.

Итого для последующих действий по определению столкновений с другими объектами нужны:

- Координаты точки в зависимости от φ ;
- Вектор-перпендикуляр длиной 1 в точке в зависимости от φ ;
- Первая и вторая производные вышеупомянутых 4 величин по φ .

Производные вычисляются вместе со значениями функций с применением методов автоматического дифференциирования (automatic differentiation).

На некоторых интервалах производные равны нулю, а также в точках $\varphi = \pm \arctan(r_2/r_1)$, $\varphi = \pm \pi/2$ часть производных не непрерывны, то есть некоторые из 4 функций не являются непрерывно дифференциируемыми в этих точках.

Проверка с применением Computer Algebra System (CAS) "Wolfram Alpha"

Пусть r_1 =0.5, r_2 =1, r_3 =0.8. Тогда $\arctan(r_2/r_1)\approx 1.10715$. Похоже, что в этой CAS нет возможности построить параметрическую кусочно-заданную функцию или одновременно несколько параметрически заданных функций.

Проведено несколько построений с разными интервалами t, с указанием одинаковых диапазонов координат и отношения x/y=1:

parametric plot x=0.8 cos t, y=1.5 sin t, $\{t,-3/2 \text{ pi},-\text{pi}/2\}$, plotrange ((-2,2),(-2,2)), AspectRatio 1

parametric plot x=cos t($|\sin t|+sqrt(0.25-cos^2 t)$), y=sin t($|\sin t|+sqrt(0.25-cos^2 t)$), {t,1.10715,pi/2}, plotrange ((-2,2),(-2,2)), AspectRatio 1

parametric plot x=cos t($|\sin t|+sqrt(0.25-cos^2 t)$), y=sin t($|\sin t|+sqrt(0.25-cos^2 t)$), $\{t,-pi/2,-1.10715\}$, plotrange ((-2,2),(-2,2)), AspectRatio 1

parametric plot x=0.5, y=0.5 tan(t), $\{t,-1.10715,1.10715\}$, plotrange ((-2,2),(-2,2)), AspectRatio 1

Снимки экрана с несколькими построениями были скомбинированы с использованием gimp: наложены в несколько слоев, из верхних слоев убран фон при помощи Layer → Transparency → Color to Alpha.

Результат (на изображении слева) соответствует ожидаемому.

Справа: дополнительная обработка в gimp.

Приложение В. Пример с одним нестрого выпуклым объектом

На графике в начальный момент времени видны интервалы, в которых первая и вторая производные равны нулю. На этих интервалах метод Ньютона в оптимизации не будет работать.

Также видны точки, в которых первая производная не непрерывна.

distanceSide(φ , t).

Справа: фрагмент 3D графика функции в окрестности точки столкновения. Точка находится на прямом участке периметра object2.

Приложение С. Эллипсы с соотношением сторон 1:100 и более

Для иллюстрации возникающих сложностей при нахождении расстояния при t=0 в случае большого отношения длин сторон, рассматриваются два эллипса (справа) с отношением сторон 1:5 и 1:15.

На графике distanceEuclidean(φ) три локальных минимума. У минимума при $\varphi \approx 0$ большой радиус конвергенции.

У глобального минимума радиус конвергенции примерно 0.2 - 0.3. При увеличении соотношения длин сторон до 1:100 это значение уменьшается до примерно 0.01. На графике пик будет шириной менее 1рх.

Приложение D. Вращение объекта 30 радиан/с

В приложениях может оказаться необходимым обрабатывать и значительно более высокие скорости вращения.

object1 - правильный гептагон с закругленными углами (regular heptagon with rounded corners) вращается и медленно движется. До момента столкновения с object2 делает примерно пол-оборота.

Справа: фрагмент в окрестности начала координат, увеличенный в 20 раз.

distanceSide(φ , t).