[ML20] Assignment 8

Danny Radosevich

Due: Mar 27 (before class)

[1] If $\kappa_1(a,b)$ and $\kappa_2(a,b)$ are two valid kernels, prove that $g(a,b) = \kappa_1(a,b) + \kappa_2(a,b)$ is also a valid kernel.

0.1 Proof

Assume at $\kappa_1(a,b)$ and $\kappa_2(a,b)$ are valid kernels. Then \exists a kernel g(a,b) such that:

$$g(a,b) = \kappa_1(a,b) + \kappa_2(a,b)$$

Because K_1 and K_2 are valid kernels the must both satisfy Mercer's Condition, so $\int \kappa_1 \geq 0$ and $\int \kappa_2 \geq 0$. with K_1 and K_2 we can define an integral such that:

$$g(a,b) = \int \int (\kappa_1(a,b) + \kappa_2(a,b))g(x)g(y)dxdy$$

 $= \int \int \kappa_1(a,b)g(x)g(y)dxdy + \int \int \kappa_2(a,b)g(x)g(y)dxdy$

Where $=\int\int \kappa_1(a,b)g(x)g(y)dxdy + \int\int \kappa_2(a,b)g(x)g(y)dxdy \geq 0$, g(a,b) is also a valid kernel, again by Mercer's condition.

[2] Kernel ridge regression is a powerful nonparameteric model but suffers from the $O(n^3)$ computational complexity, where n is the size of training set. Please develop an efficient approximation KRR (AKRR).

Here are the requirements:

(i) Your model β still minimizes training error over the entire training set, i.e.,

$$J(\beta) = \sum_{i=1}^{n} (\phi(x_i)^T \beta - y_i)^2 + \lambda \beta^T \beta.$$
 (1)

(ii) For AKRR, assume the optimal model is made of k random training instances (k < n), i.e.,

$$\beta = \sum_{j=1}^{k} \alpha_j \phi(x_j). \tag{2}$$

(iii) Plug (2) back to (1), and derive the analytic solution of $\alpha = [\alpha_1, \dots, \alpha_n]^T$. Importantly, show that the computational complexity of getting α is now $O(k^3)$.

$$\begin{split} j(\alpha) &= (\kappa\alpha - Y)^T(\kappa\alpha - y) + \lambda\alpha^T\kappa\alpha \\ \text{where } \kappa \in \mathbb{R}^{kxk} \text{ and is the Gram matrix} \end{split}$$

$$J'(\alpha) = 0$$

$$\alpha = (\kappa + \lambda I)^{-1} Y$$

Let $Y \in \mathbb{R}^{kx'1}$

Previously to find α it was $O(n^3)$, now both K and Y are bounded by k, rather than n so the order to find α is $O(k^3)$

Implement KRR and AKRR, using Gaussian kernel with hyper-parameter σ . Report your results below.

- (a) Draw a figure of two curves for KRR. One is its training MSE versus σ and the other is its testing MSE versus σ . Properly choose 7 candidate values of σ so we may observe overfitting and underfitting.
- (b) Properly choose a σ for AKRR and fix it. Draw a figure of two curves for AKRR. One is its training MSE versus k and the other is its testing MSE versus k. Choose 7 candidate values of k and a proper σ so that you can get as smooth and convergent curves as possible.

Fig. 1. KRR MSE versus σ .

Fig. 2. AKRR MSE versus k. Here $\sigma = \dots$

.

(c) [Bonus] ARKK+ is built on ARKK, but it selects k training instances in a non-random fashion. Please propose your own selection technique and briefly explain it here. You will get 30% bonus if you can show ARKK+ outperforms ARKK, i.e., under the same k and σ , ARKK+ has lower testing MSE – however, both ARKK and ARKK+ show have reasonable testing MSE, as compared with KRR. Report your results in the following table. (Search Python library that can record the running time of a segment of codes.)

Table 1. Performance of KRR, AKRR and AKRR+ $(k=...,\,\sigma=...)$

Method	Training MSE	Testing MSE	Training Time
KRR			
AKRR			
AKRR+			