# SVM ALGORITHMS FOR SENTIMENT ANALYSIS

Advanced Topics in Computer science Project

Pegoraro Alessandro









# Sentiment analysis

- Classification task:
  - Given a text as input, we want to identify what the subject feels about the object of the text
  - o In our specific task the text will be a movie review and the object will be a movie
- Two different versions:
  - Binary (Positive, Negative)
  - Fine-grained with neutral reviews



SENTIMENT ANALYSIS

## Dataset

- Stanford Sentiment Treebank SST-5 and SST-2
  - Movie review sentences labelled with 5 classes
  - Each sentence is represented in a binary parse tree
  - Each node represents a phrase and is labeled
  - The root node represent the true sentiment of the review.
  - On SST-5 the root label can range between negative, somewhat negative, neutral, somewhat positive and positive
  - ON SST-2 the neutral tree are discarded, and it becomes: negative or somewhat negative vs somewhat positive or positive

# **Dataset**



## Related work

- Current Best Models for SST
  - RNTN: Recursive deep models for semantic compositionality over a sentiment treebank,
    2013. SST-5: 45.70% SST-2: 85.40%
  - LSTM: Improved Sentence Modeling using Suffix Bidirectional LSTM, 2018. SST-5: 56.20%
  - RoBERTa: Self-explaining structures improve nlp models, 2020. SST-5: 59.10%
  - RoBERTa: SMART: Robust and Efficient Fine-Tuning for Pre-trained Natural Language
    Models through Principled Regularized Optimization, 2019. SST-2: 97.50%
- Tree kernel for SVM
  - Tagging Kernel: New Ranking Algorithms for Parsing and Tagging, 2002.
  - Semantic Role Labeling: Semantic Role Labeling via Tree Kernel Joint Inference, 2006.
  - Tree Kernel: Kernel Methods for Tree Structured Data, 2009.

# Approach

- Traditional SVM preprocessing and feature extraction
  - Bag of Words
  - Tf-idf representation
  - Part of Speech
  - Tree label
    Using the scikit-learn library
- Tree structure exploitation with Tree kernels for SVM
  - Tree preprocessing
  - Subtree kernel
  - SubSet Tree kernel
  - Partial Tree kernel
  - String kernel

Using the SVM-LIGHT-TK library



# **Traditional SVM**

- Model1: Root sentence + Tf-idf representation
- Model2: PoS tagging + Bag of word + root's children's label
- Model3: PoS tagging + Tf-idf representation + root's children's label

The SVM in the scikit-learn library could only accept array with a fixed number of numerical features

# Tree kernel for SVM

Subtree kernel ST
 weighted sum of the number of matching proper subtrees

$$K_{subtree}(T_1, T_2) = \sum_{t_1 \in T_1} \sum_{t_2 \in T_2} C(t_1, t_2)$$

with  $C(t_1,t_2)$  sums of all matching features rooted in  $t_1$  and  $t_2$ 

SubSet Tree kernel SST
 weighted sum of the number of shared subset trees

$$K_{subset}(T_1, T_2) = \sum_{s \in m} h_s(T_1) h_s(T_2)$$

with  $h_s(T)$  the number of times the subset tree s occurs in T

# Tree kernel for SVM

Partial Tree kernel PT

weighted sum of the number of all matching subtrees same formulation as ST different local kernel  $C(t_1,t_2)$ 

$$C(t_1, t_2) = 1 + \sum_{J_1, J_2, |J_1| = |J_2|} \prod_{i=1}^{|J_1|} C(ch_{t_1}[J_{1i}], ch_{t_2}[J_{2i}])$$

with  $J_{1i}$  and  $J_{2i}$  index associated with the child  $ch_{t_1}$  and  $ch_{t_2}$  respectively

# Tree kernel for SVM

The SVM-LIGHT-TK library provided the following Tree kernels:

- ST: SubTree kernel
- **SST:** SubSet Tree kernel
- SST-BoW: SubSet Tree kernel + Bag of Word with leaves as features
- PT: Partial Tree kernel
- SSTK kernel: Fast Partial Tree kernel within first tree level + SubSet
  Tree kernel for the remaining tree level
- **IBRID:** Partial Tree kernel + no leaves contribution
- STRING: String representation comparison

# Results

- All but the SubTree kernel outperformed the SVM models in SST-2
- The **Empty** preprocessing did not brought up any improvement in any kernel
- All but the IBRID kernel perform best with no preprocessed trees

| SVM    | SST-5  | SST-2  |
|--------|--------|--------|
| Model1 | 40.04% | 80.61% |
| Model2 | 49.50% | 91.32% |
| Model3 | 52.44% | 92.42% |

|                |        | SST-2  |        |
|----------------|--------|--------|--------|
| Kernel         | Normal | PoS    | Empty  |
| SSTK           | 96.21% | 95.83% | 94.45% |
| $\mathbf{ST}$  | 78.20% | 75.34% | 75.01% |
| $\mathbf{SST}$ | 96.21% | 95.83% | 94.45% |
| SST-BOW        | 96.10% | 95.44% | 93.79% |
| PT             | 95.50% | 95.33% | 94.89% |
| IBRID          | 97.20% | 97.42% | 96.81% |
| STRING         | 96.37% | 92.20% | 92.20% |
|                |        |        |        |

| Model   | SST-5  | SST-2  |
|---------|--------|--------|
| RNTN    | 45.70% | 85.40% |
| LSTM    | 56.20% | #      |
| RoBERTa | 59.10% | 97.50% |

# Considerations

- Both the traditional SVM model and the Tree kernels outperform the base models proposed for SST-5 and SST-2 respectively.
- The traditional SVM model does not perform as well as the newest models that use LSTM or TRANSFORMER
- The Tree kernels instead are just shy of .08% in accuracy with respect to the current best model proposed
- Given that SVM-LIGHT-TK does not support multiclass classification natively it could be interesting to develop an one-vs-one or one-vs-rest approach