Лабораторна робота №6 Наївний Байєс в Python

Мета роботи: набути навичок працювати з даними і опонувати роботу у Python з використанням теореми Байэса.

Посилання на гіт: https://github.com/IPZ213mmv/Lab6

Завдання 3. Використовуя данні з пункту 2 визначити відбудеться матч при наступних погодних умовах чи ні: Розрахунки провести з використанням Python.

	I .	
2, 7, 12	Outlook = Overcast	Перспектива = Похмуро
	Humidity = High	Вологість = Висока
	Wind = Strong	Вітер = Сильний

Лістинг програми:

```
Частотні таблиці з даними
frequency table = {
P_Yes = 9 / 14
P_No = 5 / 14
def calculate probability(attribute, value, target):
    return frequency table[attribute][target][value] /
sum(frequency table[attribute][target].values())
    calculate probability('Outlook', conditions['Outlook'], 'Yes') *
    calculate probability('Humidity', conditions['Humidity'], 'Yes') *
```

					Житомирська політехніка.24.121.12.000 — Лр6			- /lp6	
Змн.	Арк.	№ докум.	Підпис	Дата					
Розр	об.	Маліновський М.В,			Звіт з	/lim.	Арк.	Аркушів	
Пере	вір.	Голенко М.Ю.					1	3	
Kepit	Вник								
Н. контр.			·		Лабораторної роботи 6 <i>ФІКТ Гр. ІПЗ</i>		73- <i>21</i> -3		
Зав.	каф.								

```
P_No_given_conditions = (
    calculate_probability('Outlook', conditions['Outlook'], 'No') *
    calculate_probability('Humidity', conditions['Humidity'], 'No') *
    calculate_probability('Wind', conditions['Wind'], 'No') *
    P_No
)

# Нормалізація
P_Total = P_Yes_given_conditions + P_No_given_conditions
P_Yes_final = P_Yes_given_conditions / P_Total
P_No_final = P_No_given_conditions / P_Total

Print("Ймовірність гри (Yes):", round(P_Yes_final, 4))

print("Ймовірність гри (No):", round(P_No_final, 4))

# Висновок
if P_Yes_final > P_No_final:
    print("Матч відбудеться.")
else:
    print("Матч не відбудеться.")
```

Результат:

Ймовірність гри (Yes): 1.0 Ймовірність гри (No): 0.0 Матч відбудеться.

Завдання 4. Застосуєте методи байєсівського аналізу до набору даних про ціни на квитки на іспанські високошвидкісні залізниці.

Лістинг програми:

```
# Завантаження та ознайомлення з даними
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.maive_bayes import GaussianNB
from sklearn.metrics import accuracy_score, classification_report

# Завантаження даних із локального файлу
file_path = 'renfe_small.csv' # Змініть на шлях до вашого локального файлу
data = pd.read_csv(file_path)

# Перегляд перших рядків та інформації про дані
print(data.head())
print(data.info())

# Попередня обробка даних
# Видалення рядків з пропушеними значеннями
data = data.dropna()

# Перетворення категоріальних змінних на числові
categorical_columns = ['insert_date', 'origin', 'destination', 'train_type',
'fare', 'ticket_type']
data = pd.get_dummies(data, columns=categorical_columns, drop_first=True)

# Розділення даних на навчальну та тестову вибірки
# Припустимо, що цільова змінна - 'fare'
X = data.drop('fare', axis=1)
y = data['fare']

# Розділення на навчальну та тестову вибірки
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,
```

		Маліновський М.В.		
		Голенко М.Ю.		
Змн.	Арк.	№ докум.	Підпис	Дата

```
random_state=42)

# Навчання наївного байєсівського класифікатора
# Ініціалізація та навчання моделі
model = GaussianNB()
model.fit(X_train, y_train)

# Прогнозування на тестових даних
y_pred = model.predict(X_test)

# Оцінка точності моделі
accuracy = accuracy_score(y_test, y_pred)
report = classification_report(y_test, y_pred)

print(f'Toчність моделі: {accuracy}')
print('Звіт про класифікацію:')
print(report)
```

Результат:

	insert_	_date ori	gın	train_class	fare
Θ	2019-04-22 08:0	00:25 MAD	RID	Turista	Flexible
1	2019-04-22 10:0	3:24 MAD	RID	Turista	Promo
2	2019-04-25 19:1	19:46 MAD	RID	Turista	Promo
3	2019-04-24 06:2	21:57 SEVI	LLA	Turista con enlace	Promo +
4	2019-04-19 21:1	l3:55 VALEN	CIA	Turista	Promo

		Маліновський М.В.		
		Голенко М.Ю.		
Змн.	Арк.	№ докум.	Підпис	Дата