Tley	rebog					
Clen	Ha	p y	(C	KW	M	
P. S.	Mym	L U	Uh o	2467	obo	Yms
markk • - ka	e gus	ho hul	fuh	MOY	W	
e - ly	4000	sus.				
· - hu	openen.	: 140 :		O		

.

.

Theorema I makino command $(\frac{0}{0})$ 1) fug guapao. 6 Us.(d) 1) $\lim_{x\to a} f(x) = \lim_{x\to a} g(x) = 0$ $= > \lim_{x \to a} \frac{f(x)}{g(x)} = \beta$ 3) $\lim_{x \to a} \frac{f'(x)}{g'(x)} = \beta$ $d = a \in R$: $\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = 0$, kery googigeum fai = g(a) =0, morga $\exists \delta = \min(\delta_1, \delta_2)$: f u g guppp. <math>b $U_{\delta}(a)$ uи g дифференцируемы в $\mathring{U}_{\delta}(a)$ и непрерывны в $U_{\delta}(a)$. Для любых x>a таких, что $g'(x)\neq 0$ на (a;x), по теореме Коши 4.13 Kenn. & Usas. $\frac{f(x)}{g(x)} = \frac{f(x) - f(a)}{g(x) - g(a)} = \frac{f'(\xi)}{g'(\xi)},$ Vx: x > a, g'(x) to ka (a, x) (me. x & us (a+0)) 10. The Kouri $\frac{f'(\xi)}{g'(\xi)} = \frac{f(x) - f(a)}{g(x) - g(a)} = \frac{f(x) - 0}{g(x) - 0} = \frac{f(x)}{g(x)}$, right $\xi = \xi(x) \in (a, x)$ $\alpha < \zeta(x) < x$, $x \rightarrow \alpha + 0 \Rightarrow \lim_{x \rightarrow \alpha \neq 0} \zeta(x) = \alpha + 0$ Так как $a < \xi(x) < x$, то по теореме $3.4 \lim_{x \to a+0} \xi(x) = a + 0$. По теореме 3.5 $\lim_{x\to a+0} \frac{f(x)}{g(x)} = \lim_{u\to a+0} \frac{f'(u)}{g'(u)} = \beta$. Аналогично, $\lim_{x\to a_{10}} \frac{f(x)}{g(x)} = \lim_{x\to a_{10}} \frac{f'(f(x))}{g'(f(x))} = \lim_{x\to a_{10}} \frac{f'(u)}{g'(u)}$ $\lim_{x \to a = 0} rac{f(x)}{g(x)} = eta$, и для $lpha = a \in \mathbb{R}$ теорема доказана. drawwino, $\lim_{x\to a_0} \frac{f(x)}{g(x)} = \beta = 0$ gue $\lambda = a \in R$ g-no

d=100; [beglin : k : hyfykmig

 $\lim_{x\to\infty} \frac{f'(x)}{g'(x)} = \beta = \lim_{t\to\infty} \frac{f'(\frac{t}{t})}{g'(\frac{t}{t})}$

 $\lim_{x\to\infty}\frac{f(x)}{g(x)}=\lim_{t\to0}\frac{f(\frac{t}{t})}{g(\frac{t}{t})}=\lim_{t\to0}\frac{(f(\frac{t}{t}))}{(g(\frac{t}{t}))'}$

Пусть теперь $\alpha=\infty$. Так как $\lim_{x\to\infty}\frac{f'(x)}{g'(x)}=\beta$, то по теореме 3.5 после замены $x=\frac{1}{t}$ имеем: $\lim_{t\to0}\frac{f'\left(\frac{1}{t}\right)}{g'\left(\frac{1}{t}\right)}=\beta$. Тогда после замены $x=\frac{1}{t}$ получим

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{t \to 0} \frac{f\left(\frac{1}{t}\right)}{g\left(\frac{1}{t}\right)} = \lim_{t \to 0} \frac{\left(f\left(\frac{1}{t}\right)\right)'}{\left(g\left(\frac{1}{t}\right)\right)'} =$$

$$= \lim_{t \to 0} \frac{f'\left(\frac{1}{t}\right) \cdot \left(-\frac{1}{t^2}\right)}{g'\left(\frac{1}{t}\right) \cdot \left(-\frac{1}{t^2}\right)} = \lim_{t \to 0} \frac{f'\left(\frac{1}{t}\right)}{g'\left(\frac{1}{t}\right)} = \lim_{t \to 0} \frac{f'\left(\frac{1}{t}\right)}{g'\left(\frac{1}{t}$$

(здесь мы применили теорему 5.1 для уже разобранного случал $t \to a$, где a=0). Для $\alpha=+\infty$ и $\alpha=-\infty$ доказательства аналогично.

$$= \lim_{t \to 0} \frac{f'(\frac{1}{t}) \cdot (-\frac{1}{t^2})}{g'(\frac{1}{t}) \cdot (-\frac{1}{t^2})} = \lim_{t \to 0} \frac{f'(\frac{1}{t})}{g'(\frac{1}{t})} = \beta$$

2)
$$\lim_{x\to a} f(x) = \lim_{x\to a} g(x) = \infty$$

3)
$$\lim_{x\to a} \frac{f'(x)}{g'(x)} = \beta$$

Теорема 5.2 (второе правило Лопиталя для раскрыодин из 6 СПС, причём $\lim_{x \to \alpha} f(x) = \lim_{x \to \alpha} g(x) = \infty$. Тогда если

$$\lim_{x \to \alpha} \frac{f'(x)}{g'(x)} = \beta$$
, где β — один из θ СПС, то также $\lim_{x \to \alpha} \frac{f(x)}{g(x)} = \beta$

Thoseena!

B gox-be I m. lenumais un geomigenum

Доказательство второго правила Лопиталя значительно сложнее, чем первого, так как невозможно применить теорему некоторую переменную точку. Предварительно докажем сле-

Typen paccuamubans repenyeyn marky, zabucznym om x (I rp. Comman

=> $\lim_{x\to a} \frac{f(x)}{g(x)} = \beta$

Orebugno, un re monceu no anavorem c I m command chajame,

rmo fly(x))=0; kan honoriem Th 0 janiere ruci i grain ka skolubaterimine Burnin npi bornani mpigeni

Onjugueu my morky (cx) mak, mo

$$f(x) - f(y(x)) \sim f(x) \ (-m.e. \ f(y(x)) = O(f(x)), x \to d)) \Rightarrow \lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} \frac{f(x) - f(y(x))}{g(x) - g(y(x))}$$

Th. o magere and op-uni-

Thouga : Ha : [14 (x), x] www : [x, 40x)] (Chronipui, imo Sainine)

Cuancies republicaires The Koille & gave norme han & I rip. Commain

Daranier, umo maras morra ((x) cyvicombyem Millilla окрестности α определена функция $\varphi(x)$ такая, что $\lim_{x \to \alpha} \varphi(x)$ · lim f(x) = co, limg(x)=co. => \forall x \in U_8 (d) \to \forall q(x): =lpha, и при этом $f(arphi(x))=o(f(x)),\,g(arphi(x))=o(g(x)),\,x$ $\lim_{x\to a} \varphi(x) = \lambda, \quad f(\varphi(x)) = O(f(x)), \quad g(\varphi(x)) = O(g(x)), \quad x\to a$ TII.e.: $\psi(x)$ companisment k is nacinalised suggested x, y model if $(\psi(x))$ is $g(\psi(x)) = 0$ marke $\lim_{x \to \infty} f(x)$ is g(x) coombined. f(k) - Tepicopiazujujui, umo: redonoguiui : Kalimin $\lim_{x\to a} \varphi(x) = \alpha : \quad \varphi(x) = a + \beta(x), \quad \lim_{x\to a} \beta(x) = 0$ $f(y(x)) = O(f(x)), \quad x \rightarrow d \quad \text{fim} \quad \frac{f(y(x))}{f(x)} = 0$ Missin: $\lim_{x\to 1} \frac{g(y(x))}{g(x)} = 0$ g(q(x)) = 0(g(x)), x > 2 Kaugen my B(x), byghn ammarkubamber am moro, 4mo qo-u-> 00 yearenes que su su moi orgeonnocme Eygym menere d=ack: Возвини удобную окрестность. и дополнительно ykanum, emo ta yanunan orpunyorum f. 70 le Saw your co . Thanepameren garel

 $\lim_{x \to \infty} f(x) = \infty$, $\lim_{x \to \infty} g(x) = \infty$

f(a ± 6,) ≠ 0, g(a ± 6,1 ≠ 0

IO, E(0,1): VXEUG(a) L> |f(x)|71, |g(x)|71,

 \square Пусть сначала $lpha \,=\, a,\; a\, \in\, \mathbb{R}.$ Так как $\lim_{x \to a} f(x) \,=\, \infty,$

 $\lim_{x\to a}g(a)=\infty$, то найдётся $\delta_1\in(0;1)$ такое, что |f(x)|>1 и |g(x)|>1 при $x\in\mathring{U}_{\delta_1}(a)$. При этом $f(a\pm\delta_1)\neq 0,$ $g(a\pm\delta_1)\neq 0.$

: dejuni $\mathcal{O}_{L} < \min(\mathcal{S}_{1}, \frac{1}{2})$, surrisingui, imado ho	mon : Sh - 0. p
· beiga · lioneno bziens mory po · O., imo mo · He	
. м. к f. и. д> . о	
$\exists \delta_1: 0 < \delta_i < min(\delta_i, \frac{1}{2}), \forall x \in U_{\delta_i}(a) \mapsto$	Далее, $\exists \delta_2 > 0, \delta_2 < \min\left(\delta_1; \frac{1}{2}\right)$ такое, что $\forall x \in \mathring{U}_{\delta_2}(a)$
	$\left \frac{f(x)}{f(a\pm\delta_1)} \right > 1, \left \frac{g(x)}{g(a\pm\delta_1)} \right > 1 \text{(для обоих знаков \pm)}.$
$\left \frac{f(x)}{f(a\pm\delta_i)}\right > 1 \qquad \left \frac{g(x)}{g(a\pm\delta_i)}\right > 1$	
Bozbinia Si:	
	* Аналогично, $\exists \delta_3 > 0, \ \delta_3 < \min\left(\delta_2; \frac{1}{3}\right)$ такое, что $\forall x \in \mathring{U}_{\delta_3}(a)$
$\exists \delta_3: 0 < \delta_3 < \min(\delta_1, \frac{1}{3}), \forall x \in U_{\delta_1}(a) \rightarrow$	$\left \frac{f(x)}{f(a\pm\delta_2)}\right > 2, \left \frac{g(x)}{g(a\pm\delta_2)}\right > 2.$
$\left \frac{f(x)}{f(a\pm\delta_2)}\right > 1 \left \frac{g(x)}{g(a\pm\delta_2)}\right > 1$	
$ f(a \pm \delta_2) \qquad g(a \pm \delta_2) $	
Compour nocugoboment poems on max, your	Строим таким образом последовательность $\delta_n,\ n=1,\ 2,\ \dots$ такую, что $\delta_{n+1}<\min\left(\delta_n,\frac{1}{n+1}\right)$ и при всех $x\in\mathring{U}_{\delta_{n+1}}(a)$
	$\left \frac{f(x)}{f(a \pm \delta_n)} \right > n, \left \frac{g(x)}{g(a \pm \delta_n)} \right > n.$ (5.1)
$0 < \delta_{n+1} < \min \left(\delta_{n}, \frac{1}{n+1} \right), \forall x \in \mathcal{N}_{\delta_{n+1}}(a) \rightarrow$	
$\left \frac{f(x)}{2n} \right _{2n} \left \frac{g(x)}{2n} \right _{2n} $	
$\left \frac{f(x)}{f(a\pm\delta_n)}\right > n \left \frac{g(x)}{g(a\pm\delta_n)}\right > n (1)$	
Λ . Λ	о, что последовательность δ_n строго убывает, и $\lim_{n\to\infty}\delta_n=$ (так как $0<\delta_n<\frac{1}{n}$ при всех n).
	$\frac{1}{n} \operatorname{Rec} \left(\frac{1}{n} \right) = \frac{1}{n} \operatorname{Rec} \left(\frac{1}{n} \right)$
$\lim_{n\to\infty} \delta_n = 0 \left(\begin{array}{c} 0 < \delta_n < \frac{1}{n} \end{array} \right)$	
: meners: regreno geneino bimo chajo di u x:	
me neperimu k $q_{i}u \cdot \mathcal{G}_{n(i)}$; $\ell_{i}m \cdot \mathcal{G}_{n(i)} = 0$	
	Для любого $x \in \mathring{U}_{\delta_2}(a)$
309aguu n = n(x):	найдётся единственное натуральное число $n=n(x)$ такое, что $\delta_{n+2}\leqslant x-a <\delta_{n+1}$ (см. рис. 5.1).
$\forall x \in U_{\mathcal{S}}(a) \hookrightarrow \exists ! n = n(x) : \delta_{n+1} \leq x-a < \delta_{n+1}$	$\frac{x}{a - \delta_n \ a - \delta_{n+1} a - \delta_{n+2} \ a \ a + \delta_{n+2} a + \delta_{n+1}}$
(: m. e. : \f. \chi. \ch	Puc. 5.1
n mouroi, ymo X & U.S., (a) U X. E. (U.S., (a))	' · · · · · · · · · · × · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·	a delan attan

a disan at San

Maximi comazan, xame à l'estrain buge, un zaganin n(x) $h(x) \int (Hecryone) Ha (a - S_1, a)$ n(x) положительна, нестрого убывает на $(a; a + \delta_2)$ и нестрого возрастает на $(a - \delta_2; a)$. n(x) ((Hecompose) Ha (a, a+S,) Так как функция n(x) неограничена на $(a; a + \delta_2)$ и на $(a - \delta_2)$ $-\delta_2;a)$, то $\lim_{x o a+0}n(x)=+\infty$ и $\lim_{x o a-0}n(x)=+\infty$ (по теореме 3.9 N(x) Keorp Ha (a-S, a) u (a, a+S,), о пределах монотонных функций) no Th. o mugue won go wi $\lim_{x\to\infty} N(x) = +\infty$, $\lim_{x\to\infty} N(x) = +\infty$ $0 < \delta_{n(x)} < \frac{1}{n(x)} = 1 \quad \lim_{x \to a} \delta_{n(x)} = 0$ $0<\delta_{n(x)}<rac{1}{n(x)}, ext{ To } \lim_{x\to a}\delta_{n(x)}=0$ rycom p(x)= a + onas, flim ((x) = a (m.k. fim Snox) = 0) is (1) zamithim à ± Sn ita (1. (x) = à ± Snox) : u nèperséprient leio $W_{(1)} = \frac{f(y(x))}{f(x)} \left| \left\langle \frac{1}{n(x)} \right\rangle \right| = \frac{g(y(x))}{g(x)} \left| \left\langle \frac{1}{n(x)} \right\rangle \right| \forall x \in \mathcal{U}_{\delta_{n+1}}(a)$ $\lim_{x\to a} \frac{f(y(x))}{f(x)} = 0, \text{ m.e. } f(y(x)) = 0(f(x)), x\to a$ Аналогично, $g(\varphi(x)) = o(g(x))$ при $x \to a$. Наконец, так как $0<\delta_{n(x)}<rac{1}{n(x)},$ то $\lim_{x o a}\delta_{n(x)}=0,$ значит, $\lim_{x o a}\varphi(x)=a.$ доказана для случая $\alpha = a \in \mathbb{R}$. Для $\alpha = a + 0$ упрощения в доказательстве очевидны. $\lim_{x\to a} \frac{g(y(x))}{g(x)} = 0$, m.e. g(y(x)) = 0(g(x)), $x\to a$ Если $\alpha = \infty$, то доказательство аналогично, только $\delta_1 > 1$. J= 03: $\delta_2>\max(\delta_1,2),\,\delta_3>\max(\delta_2,3)$ и т.д., $\delta_{n+1}>\max(\delta_n,n+1)$ при всех $n=1,\,2,\,\ldots$ Последовательность δ_n строго возрастает и

 $\lim \delta_n = +\infty$ (так как $\delta_n > n$ при всех n). Неравенство (5.1) $n\to\infty$ примет вид

$$\left|\frac{f(x)}{f(\pm\delta_n)}\right|>n,\quad \left|\frac{g(x)}{g(\pm\delta_n)}\right|>n\quad \text{при}\quad |x|>\delta_{n+1}.$$

Функция n(x) определяется так: $\delta_{n+1} < |x| \leqslant \delta_{n+2}, \ \varphi(x) =$ $=\pm\delta_{n(x)}$ (знак +, если x>0; знак -, если x<0) (см. рис. 5.2).

Упрощения в доказательстве при $\alpha = +\infty$ и

Berneuce no II np. lonumais, nanoumo:

Theopens II nyaburo lonuman (a)

1) fug guppe busico)

2) $\lim_{x\to a} f(x) = \lim_{x\to a} g(x) = \infty$

3) $\lim_{x\to a} \frac{f'(x)}{g'(x)} = \beta$

1 Ony ((x) Kax & Meture

 $\lim_{x \to \lambda} \frac{f(x)}{g(x)} = \lim_{x \to \lambda} \frac{f(x) - f(y(x))}{g(y) - g(y(x))}$

 $\frac{\int \lim_{x \to a} \frac{f'(x)}{g'(x)} \cdot \frac{f'(x)}{g'(x)}}{g'(x)} \cdot \frac{g'(x)}{g'(x)} \cdot \frac{g'(x)}{g'(x)} + 0 \quad \text{for } 0 \leq 0 \leq 0$

Теорема 5.2 (второе правило Лопиталя для раскрытия неопределённости $\frac{\infty}{\infty}$). Пусть функции f и g дифференцируемы в некоторой проколотой окрестности α , где α один из 6 СПС, причём $\lim_{x\to\alpha} f(x) = \lim_{x\to\alpha} g(x) = \infty$. Тогда если $\lim_{x\to\alpha} \frac{f'(x)}{g'(x)} = \beta$, где β один из 6 СПС, то также $\lim_{x\to\alpha} \frac{f(x)}{g(x)} = \beta$.

Попределим $\varphi(x)$, как в лемме 5.1. Так как $f(\varphi(x)) = o(f(x))$ при $x \to \alpha$, то $f(x) - f(\varphi(x)) \sim f(x)$; аналогично $g(x) - g(\varphi(x)) \sim g(x)$. Тогда по теореме 3.22

 $\lim_{x \to \alpha} \frac{f(x)}{g(x)} = \lim_{x \to \alpha} \frac{f(x) - f(\varphi(x))}{g(x) - g(\varphi(x))}$

Функция $\frac{f'(x)}{g'(x)}$ определена в некоторой проколотой окрестности α , следовательно, $g'(x) \neq 0$ в этой проколотой окрестности α . Применим к функциям f и g теорему Коши 4.13 на отрезке $[\varphi(x);x]$ (или на $[x;\varphi(x)]$, смотря что больше):

The Kours Ra Ey (x); x J www Ex, gax) J (changes, and Some)

=> $\lim_{x\to a} \frac{f(x)}{g(x)} = \beta$

mais forme)

 $\frac{f(x) - f(q(x))}{g(x) - g(q(x))} = \frac{f(\xi)}{g'(\xi)}, \ \xi = \xi(x), \ y(x) < \xi(x) < x$

 $\lim_{x\to a} \psi(x) = \lambda = 1$ $\lim_{x\to a} \psi(x) = \lambda$

 $\frac{f(x)-f(\varphi(x))}{g(x)-g(\varphi(x))}=\frac{f'(\xi)}{g'(\xi)}\,,\quad\text{где}\quad \xi=\xi(x),\quad \varphi(x)<\xi(x)< x.$ Так как $\lim_{x\to\alpha}\varphi(x)=\alpha$, то по теореме 3.4 (или её аналогу

Так как $\lim_{x\to\alpha}\varphi(x)=\alpha$, то по теореме 3.4 (или её аналогу лемме 3.2 в случае бесконечного символа α) $\lim_{x\to\alpha}\xi(x)=\alpha$. Тогда по теореме 3.5

 $\lim_{x \to \alpha} \frac{f(x)}{g(x)} = \lim_{x \to \alpha} \frac{f'(\xi(x))}{g'(\xi(x))} = \lim_{u \to \alpha} \frac{f'(u)}{g'(u)} = \beta.$

 $\lim_{x\to\infty}\frac{f(x)}{g(x)}=\lim_{x\to\infty}\frac{f(x)-f(q(x))}{g(x)-g(q(x))}=\lim_{x\to\infty}\frac{f'(q(x))}{g'(q(x))}=\lim_{x\to\infty}\frac{f'(q($