ECE124: Discussion

Discussion #12

Yeonsik Noh, PhD

5.16 Design a sequential circuit with two D flip-flops A and B, and on input x_in.

(b) When $x_{in} = 0$, the state of the circuit remains the same. When $x_{in} = 1$, the circuit goes through the state

transitions from 00 to 11, to 01, to 10, back to 00, and repeat.

แล		HOIII	30 10 11	, 10 0 1, 10 10,	back to ou, and	i repeat.		
	Curren	t State	Input	Next State		•		•
	A	В	х	А В)		•
	0	0	0	00	(00)	/ / 、	(01)	<i>)</i>
	0	0	1	1 1	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			
	0	1	T	0		. ×	4	
	0	1	1	10			\times	
	1	0	0	10	/ 2/		T,	
	1	0	1	00				
	1	1	0	1 1	\sim (1 $^{\circ}$	1	(۱۱)	
	1	1	1	01			A	~ B
\ 0	\		2				4	'\
1			\ 2				-	
A	- (1				1	一 へ		
/							Δ'	B
Δ					'		TI	16
17				-				
		X					_	
۸ (ـــ ا	. 1 \ _ A !\	/ . A V!		B(t+1) = A	AB + A'B'X+ABX			
A(L	⊦1) = A'X	X+AX						

Modified 6.6 Design a four-bit shift register with parallel load using D flip-flops. There is one control input: shift/Load (SH/\overline{LD}) . When $SH/\overline{LD}=1$, the content of the register is shifted toward A₃ by one position. New data are transferred into the register when $SH/\overline{LD}=0$.

6.7 Draw the logic diagram of a four-bit register with four D flip-flops and four 4×1 multiplexers with mode selection inputs s_1 and s_0 . The register operates according to the following function table.

6.8 The serial adder of Fig. 6.6 uses two four-bit registers. Register A holds the binary number 0101 and register B holds 0111. The carry flip-flop is initially reset to 0. List the binary values in register A and the carry flip-flop after each shift.

- 6.10 Design a serial 2's complementer with a shift register and a D flip-flop. The binary number is shifted out from one side and its 2's complement shifted into the other side of the shift register.
- Using the characteristic of 2's complement

pick the first 1 in the bit sequence 0101 0010 100100 011011 1101 1010 1s 1011 11/10 011100 2s

- 6.10 Design a serial 2's complementer with a shift register and a D flip-flop. The binary number is shifted out from one side and its 2's complement shifted into the other side of the shift register.
- Using the characteristic of 2's complement

$$Q(t+1) = Q(t) + x$$
$$y = Q(t) + X$$

6.17 Design a four-bit binary synchronous counter with D flip-flops.

Four-bit synchronous binary counter

*Up-Down Counter Using T flip-flops, design a 2-bit up-down counter with external input x to determine whether Up or Down.

 	 	 •	•		 	 	 	
				:	:			: