

Série d'exercices: Suites et Séries de Fonctions

Exercice 1. Etudier la convergence simple et uniforme de la suite de fonctions (f_n) dans les cas suivants:

- 1. $f_n(x) = \frac{nx}{1 + n^2x^2}$, avec $n \in \mathbb{N}$ et $x \in \mathbb{R}$.
- 2. $f_n(x) = (x + \frac{e^{-x}}{n})^2$, avec $n \in \mathbb{N}^*$ et $x \in [0, +\infty[$.
- 3. $f_n(x) = (x + \frac{1}{n})^2$, avec $n \in \mathbb{N}^*$ et $x \in \mathbb{R}$.
- 4. $f_n(x) = n(\arctan(x + \frac{1}{n}) \arctan(x \frac{1}{n})), \text{ avec } n \in \mathbb{N}^* \text{ et } x \in \mathbb{R}.$

Exercice 2.

Pour tout $n \in \mathbb{N}^*$ soit f_n la fonction définie sur \mathbb{R}^+ par:

$$f_n(x) = (1 + \frac{x}{n})^{-n}$$
.

- 1. Montrer que la suite de fonctions $(f_n)_{n\geq 1}$ converge simplement sur \mathbb{R}^+ vers une fonction f.
- 2. Vérifier que: $\forall n \geq 1, f_n \geq f$.
- 3. Montrer que la suite de fonctions $(f_n)_{n\geq 1}$ converge uniformément sur \mathbb{R}^+ .
- 4. Calcular $\lim_{n\to+\infty}\int_0^a f_n(t)dt$ avec $a\in]0,+\infty[$.

Exercice 3.

1. Soit, pour $n \in \mathbb{N}^*$, la fonction f_n définie sur \mathbb{R}^+ par:

$$f_n(x) = \begin{cases} n^2 x, & si \ x \in [0, \frac{1}{n}[.\\ \frac{1}{x}, & si \ x \in [\frac{1}{n}, +\infty[.\end{cases}$$

Etudier la convergence simple de la suite de fonctions (f_n) .

- 2. Soit (f_n) une suite de fonctions croissantes définies sur I qui converge simplement vers une fonction f. Montrer que f est croissante.
- 3. Pour tout entier n > 1 et $x \in \mathbb{R}$, on pose $f_n(x) = \sin(x + \frac{1}{n})$. Etudier la convergence uniforme de (f_n) .
- 4. Etudier la convergence uniforme de la suite de fonctions (f_n) , où f_n est définie sur [0,1] par:

$$f_n(x) = x^n(1-x).$$

Exercice 4. Soit $(f_n)_{n>1}$ la suite de fonctions définies sur [0,1] par:

$$f_n(x) = \frac{2^n x}{1 + 2^n n x^2}.$$

- 1. Déterminer la limite simple de la suite $(f_n)_{n>1}$ sur [0,1].
- 2. Calculer $\lim_{n\to +\infty} \int_0^1 f_n(t)dt$. Y-a-t-il convergence uniforme de la suite $(f_n)_{n>1}$ sur [0,1]?

Exercice 5. Soit $f(x) = \sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{\ln(nx)}$.

- 1. Vérifier que f est bien définie sur $]1, +\infty[$.
- 2. Déterminer $\lim_{x \to +\infty} f(x)$ et $\lim_{x \to 1^+} f(x)$.
- 3. Montrer que f est de classe C^1 sur $]1,+\infty[$ et dresser son tableau de variation.

Exercice 6. Pour x > 0, on pose $S(x) = \sum_{n=0}^{+\infty} \frac{(-1)^n}{n!(x+n)}$.

- 1. Démontrer que S(x) est bien définie.
- 2. Montrer que S est de classe C^1 .
- 3. Donner une relation entre S(x) et S(x+1).
- 4. Donner un équivalent de S en 0.
- 5. Donner un équivalent de S en $+\infty$.

Exercice 7. Pour $x \ge 0$ et $n \in \mathbb{N}^*$, on pose $f_n(x) = \frac{1}{n(1+x^2n)}$.

- 1. Déterminer $D \subset \mathbb{R}^+$ le domaine de définition de la fonction $f = \sum_{n=1}^{+\infty} f_n$.
- 2. Étudier la continuité de f sur D.

Exercice 8. Pour $x \in [0,1]$ et $n \in \mathbb{N}^*$, on pose $u_n(x) = \begin{cases} -\frac{x^n \ln x}{n}, & \text{si } x \in]0,1] \\ 0, & \text{si } x = 0 \end{cases}$.

- 1. Montrer que la série $\sum_{n>0} u_n$ converge simplement sur [0,1].
- 2. Calcular $I = \int_0^1 \ln x . \ln(1-x) dx$.

Exercice 9. Pour $x \in \mathbb{R}$ et $n \in \mathbb{N}^*$, on pose

$$h(x) = \sum_{n=1}^{+\infty} \frac{1}{n^x} \ et \ g(x) = \sum_{n=1}^{+\infty} \frac{(-1)^n}{n^x}.$$

- 1. Déterminer les domaines de définitions D_h et D_g de h et g.
- 2. Étudier la continuité de h et g.
- 3. Donner une relation entre g(x) et h(x) pour $x \in D_h \cap D_q$.
- 4. En déduire un équivalent simple de h(x) au voisinage de 1.

Exercice 10.

1. Soit f une fonction continue sur [0,1] à valeurs dans \mathbb{R} . Pour $n \in \mathbb{N}^*$, on note

$$B_n(f)(x) = \sum_{k=0}^n C_n^k f(\frac{k}{n}) x^k (1-x)^{n-k}.$$

- (a) Calculer $B_n(f)$ quand f est la fonction $x \mapsto 1$, quand f est la fonction $x \mapsto x$, quand f est la fonction $x \mapsto x(x-1)$.
- (b) En déduire que $B_n(f)(x) = \sum_{k=0}^n C_n^k (k nx)^2 x^k (1 x)^{n-k} = nx(1 x)$.
- 2. Montrer que la suite de fonctions $(B_n(f))$ converge uniformément sur [0,1] vers f.
- 3. Soit f une application continue sur [a,b] à valeurs dans \mathbb{R} . Montrer que f est limite uniforme sur [a,b] d'une suite de polynômes.