ResNet

Going deeper and deeper...

ResNet

Bottleneck block

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770-778).

Practice

• Run "7.4. Build ResNet from scratch.ipynb"

Basic loop


```
class BasicBlock(nn.Module):
  expansion = 1
  def init (self, inplanes, planes, stride=1, downsample=None,):
    super(BasicBlock, self). init ()
    self.conv1=conv3x3(inplanes,planes,stride)
    self.bn1=nn.BatchNorm2d(planes)
    self.relu=nn.ReLU(inplace=True)
    self.conv2=conv3x3(planes,planes)
    self.bn2=nn.BatchNorm2d(planes)
    self.downsample=downsample
    self.stride=stride
    if(stride!=1 or inplanes!=planes*self.expansion):
      self.downsample=nn.Sequential(
        nn.Conv2d(inplanes,planes*self.expansion,kernel size=1,stride
        nn.BatchNorm2d(planes*self.expansion),
  def forward(self, x):
    residual = x
    out = self.conv1(x)
    out = self.bn1(out)
    out = self.relu(out)
    out = self.conv2(out)
    out = self.bn2(out)
    # Downsample:feature Map size/2 || Channel increase
    if (self.downsample is not None):
      residual = self.downsample(x)
    print("out= ", out.shape, "residual= ", residual.shape)
    out+=residual
    out=self.relu(out)
    return out
```

Batch Normalization

Applies Batch Normalization over a 4D input (a mini-batch of 2D inputs with additional channel dimension) as described in the paper Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift.

$$y = \frac{x - \mathrm{E}[x]}{\sqrt{\mathrm{Var}[x] + \epsilon}} * \gamma + \beta$$

- The mean and standard-deviation are calculated per-dimension over the mini-batches.
- By default, the elements of γ are set to 1 and the elements of β are set to 0.

Batch Normalization


```
class MyResNet(nn.Module):
 def init (self, block, layers, num classes=2):
   super(MyResNet, self). init ()
   self.inplanes = 64
   self.dilation = 1
   self.conv1=nn.Conv2d(3,self.inplanes,kernel_size=7,stride=2,
   self.maxpool=nn.MaxPool2d(kernel size=3,stride=2, padding=1)
   self.layer1=self. make layer(block,64,layers[0])
   self.layer2=self. make layer(block,128,layers[1],stride=2)
   self.avgpool=nn.AdaptiveAvgPool2d((1,1))
   self.fc=nn.Linear(128*block.expansion,num classes)
   self.linear=nn.Linear(128*block.expansion,num classes)
 def make layer(self, block, planes, blocks, stride=1):
   layers=[]
   layers.append(block(self.inplanes,planes,stride))
   self.inplanes=planes*block.expansion
   for i in range(1,blocks):
     layers.append(block(self.inplanes,planes))
    return nn.Sequential(*layers)
 def forward(self, x):
   x=self.conv1(x)
   x=self.maxpool(x)
   x=self.layer1(x)
   x=self.layer2(x)
   x=self.avgpool(x)
   x=torch.flatten(x, 1)
   x=self.fc(x)
    return x
```

```
model=MyResNet(BasicBlock,[1,1]).to(device)
print(model)
MyResNet(
  (conv1): Conv2d(3, 64, kernel size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)
  (maxpool): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)
  (layer1): Sequential(
    (0): BasicBlock(
      (conv1): Conv2d(64, 64, kernel size=(3, 3), stride=(1, 1), padding=(1, 1))
      (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
      (relu): ReLU(inplace=True)
      (conv2): Conv2d(64, 64, kernel size=(3, 3), stride=(1, 1), padding=(1, 1))
      (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
  (layer2): Sequential(
    (0): BasicBlock(
      (conv1): Conv2d(64, 128, kernel size=(3, 3), stride=(2, 2), padding=(1, 1))
      (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
      (relu): ReLU(inplace=True)
      (conv2): Conv2d(128, 128, kernel size=(3, 3), stride=(1, 1), padding=(1, 1))
      (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
      (downsample): Sequential(
        (0): Conv2d(64, 128, kernel size=(1, 1), stride=(2, 2), bias=False)
        (1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
  (avgpool): AdaptiveAvgPool2d(output size=(1, 1))
  (fc): Linear(in features=128, out features=2, bias=True)
  (linear): Linear(in features=128, out features=2, bias=True)
```

```
MyResNet(
  (conv1): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)
  (maxpool): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)
                    out1=model.conv1(imageTensor.to(device))
                     print(out1.shape)
                    torch.Size([1, 64, 112, 112])
              [15]: out2=model.maxpool(out1)
                     print(out2.shape)
                    torch.Size([1, 64, 56, 56])
```

```
(layer1): Sequential(
  (0): BasicBlock(
       (conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
       (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
       (relu): ReLU(inplace=True)
       (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
       (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    )
)
```

```
[16]: out3=model.layer1(out2)

out= torch.Size([1, 64, 56, 56]) residual= torch.Size([1, 64, 56, 56])
```

```
(layer2): Sequential(
  (0): BasicBlock(
    (conv1): Conv2d(64, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
    (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (relu): ReLU(inplace=True)
    (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (downsample): Sequential(
        (0): Conv2d(64, 128, kernel_size=(1, 1), stride=(2, 2), bias=False)
        (1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    )
    )
}
```

```
[17]: out4 = model.layer2(out3)
out= torch.Size([1, 128, 28, 28]) residual= torch.Size([1, 128, 28, 28])
```

```
(avgpool): AdaptiveAvgPool2d(output size=(1, 1))
(fc): Linear(in features=128, out features=2, bias=True)
(linear): Linear(in features=128, out features=2, bias=True)
             [18]: out5= model.avgpool(out4)
                   print(out5.shape)
                   torch.Size([1, 128, 1, 1])
                   out6=torch.flatten(out5,1)
             [19]:
                   print(out6.shape)
                   torch.Size([1, 128])
                   out7 = model.fc(out6)
             [20]:
                   print(out7)
                   tensor([[-0.0661, -0.1440]], device
```

Practice – Load pre-trained ResNet

```
In [2]: import torchvision
    model = torchvision.models.resnet18(pretrained=True)

Downloading: "https://download.pytorch.org/models/resnet18-5c106cde.pth" t
    HBox(children=(FloatProgress(value=0.0, max=46827520.0), HTML(value='')))
```

ResNet

```
ResNet(
  (conv1): Conv2d(3, 64, kernel size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)
  (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (relu): ReLU(inplace=True)
  (maxpool): MaxPool2d(kernel size=3, stride=2, padding=1, dilation=1, ceil mode=False)
  (layer1): Sequential(
    (0): BasicBlock(
      (conv1): Conv2d(64, 64, kernel size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
      (relu): ReLU(inplace=True)
      (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
    (1): BasicBlock(
      (conv1): Conv2d(64, 64, kernel size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
      (relu): ReLU(inplace=True)
      (conv2): Conv2d(64, 64, kernel size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
```

ResNet

```
(layer2): Sequential(
 (0): BasicBlock(
    (conv1): Conv2d(64, 128, kernel size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
    (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
    (relu): ReLU(inplace=True)
    (conv2): Conv2d(128, 128, kernel size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
    (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
    (downsample): Sequential(
     (0): Conv2d(64, 128, kernel size=(1, 1), stride=(2, 2), bias=False)
     (1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
  (1): BasicBlock(
    (conv1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
    (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
    (relu): ReLU(inplace=True)
    (conv2): Conv2d(128, 128, kernel size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
   (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
```

Why deep?

With same number of parameters, which NN is better?

Deep is better

Layer X Size	Word Error Rate (%)	Layer X Size	Word Error Rate (%)	
1 X 2k	24.2			
2 X 2k	20.4	\//	Why?	
3 X 2k	18.4	VVIIV:		
4 X 2k	17.8			
5 X 2k	17.2	→1 X 3772	22.5	
7 X 2k	17.1	→ 1 X 4634	22.6	
		1 X 16k	22.1	

deep + thin

Seide, Frank, Gang Li, and Dong Yu. "Conversational Speech Transcription Using Context-Dependent Deep Neural Networks." *Interspeech*. 2011.

Reason 1 – Modularization

Deep → Modularization → Less training data?

Universality theorem

Any continuous function f

$$f: \mathbb{R}^N \to \mathbb{R}^M$$

Can be realized by a network with one hidden layer

(given **enough** hidden neurons)

Yes, shallow network can represent any function.

However, using deep structure is more effective.

Reason 2: End-to-end learning

End-to-end learning

Deep Learning

Reference: 李弘毅 ML Lecture 11 https://youtu.be/XsC9byQkUH8

Reason 3 - Easier to handle complex task

Very similar input, different output

Very different input, similar output

Reference: 李弘毅 ML Lecture 11 https://youtu.be/XsC9byQkUH8

Easier to handle complex task with DL

How to implement

this in PyTorch?

Reference: 李弘毅 ML Lecture 11 https://youtu.be/XsC9byQkUH8

What does CNN learn?

Recap – Filter searches a particular pattern in different regions and summarize the results in feature map

Only the weight of the 1st convolution filters can be directly visualized. How to interpret the filter weights of other convolution layers?

How to use gradient ascent to implement this in PyTorch?

With MNIST data set, in the convolution layer, the filters detects a particular texture pattern.

The output of the k-th filter is a 11 x 11 matrix. Degree of the activation of the k-th filter: $a^k = \sum_{i=1}^{11} \sum_{j=1}^{11} a_i^t$ $x^* = arg \max_x a^k \text{ (gradient ascent)}$

How to implement this in PyTorch?

Reference: 李弘毅 ML Lecture 10 https://youtu.be/FrKWiRv254g

In the hidden layer of the fully-connected NN, each neuron detects an overall pattern in the picture rather than a particular texture pattern.

If we watch the output layer node, it is easy to see that CNN is easily fooled.

Adding regularization to the objective function to force most pixels be "NO INK"

 $x^* = \arg\max_{x} y^i$

Here white pixels indicate ink, and black pixels indicate "NO INK".

L1 regularization to force xij=0, i.e., force most pixels to be black, NO INK (as only small part of the image has ink)

Practice – What does CNN learn?

Run "6.5 GradCAM.ipynb"

HW5 (3)

	Class index predicted by the model	Class index you assigned
AlexNet		
VGG		
ResNet18		

Use CNN in Alpha GO

Some patterns are much smaller than the whole image

Alpha Go uses 5 x 5 for first layer

The same patterns appear in different regions.

Use CNN in Alpha GO

Neural network architecture. The input to the policy network is a $19 \times 19 \times 48$ image stack consisting of 48 feature planes. The first hidden layer zero pads the input into a 23 \times 23 image, then convolves k filters of kernel size 5 \times 5 with stride 1 with the input image and applies a rectifier nonlinearity. Each of the subsequent hidden layers 2 to 12 zero pads the respective previous hidden layer into a 21×21 image, then convolves *k* filters of kernel size 3×3 with stride 1, again followed by a rectifier nonlinearity. The final layer convolves 1 filter of kernel size 1×1 with stride 1 with a different bias for each position and applies a softmax func-Alpha Go does not use Max Pooling Extended tion. The Data Table 3 additionally show the results of training with k = 128, 256 and 384 filters.