ADMIRAL Project

Graham Klyne

Zoology Department
Oxford University

- Background (1 slide)
- Goals (1 slide)
- Technical gloss (1 slide)
- Achievements (1 slide)
- Missed achievements (1 slide)
- Lessons (the rest)

All clipart used is CC0, obtained from http://www.openclipart.org

Background

Empty repositories: we want to make it easy for researchers to lodge their data in repositories

Principles:

"Sheer curation" dataset and metadata acquisition fitting into existing research practice "Curation by addition" take whatever we can get, and allow datasets to be incrementally improved until ready for publication

Goals

- Data management tools used by researchers
 - Easy for researchers to use
 - Serves as a bridge between current practice and a university data repository
- Data as first class output: citable by DOIs
- Supporting "long tail" small research groups
- Services for improving data annotations

ADMIRAL: Dramatis Machinae

Researcher's desktop - no special software

Admiral file sharing and data staging area

Oxford Bodleian Library Databank repository

Achievements

- Simple file sharing platform with daily backups
- Used by researchers with no extra software
- Submission to data repository via web interface
- Staged model for data acquisition accepted
 - fits existing data collection and triage practices
- Engagement with departmental IT support
- Framework for assigning British Library Datacite DOIs is being implemented
 - late in the project, no published data DOIs yet

Missed achievements

- Inflexible dual access control (file and web)
- No University SSO integration
 - failure of existing desktop tools
- No meaningful progress on annotation tools
 - delays with core system
 - storage capacity was higher user priority
- Not yet achieved significant user engagement with data publication processes
 - delays to integration with Databank repository

Less is more (work)

- Doing something lightweight and seamless with existing software components can be harder work than writing new software.
- But hopefully more sustainable.
- From the project proposal: This project will depend heavily upon, and will bridge between, existing systems, reducing the development effort – the last bit didn't quite work out that way!

Third party dependency risks

- Much effort was spent on getting third partyu software to behave (more or less) the way we (i.e. our researchers) wanted
- Access to deep expertise about the components used would probably cut development costs and improve outcomes
- In the project risk analysis, dependency on even very well established third party software did not fully recognize these difficulties

Working with users

- Working with users takes time and effort. It can be hard to timeshare between user engagement and development work
- It's probably better to have different people focused on development and user-facing aspects of the work (e.g. Scrum PO?)
- It's hard to arrange frequent meetings with busy researchers, some of whom are often not in the department or even the country
- Feedback doesn't happen instantly, or quickly

Choice of test users

- Our earliest, very engaged test user has been most helpful, and more forgiving of interim deployments and subsequent disruptions
- Choosing engaged, sympathetic users can add enormous value to a project
- Having several test groups signed up has helped us to ensure we have useful level of such engagement. Offering the lions share of resources (e.g. storage) to a fully engaged user might be a good strategic priority

Quality cost

- Because we needed to create a system that researchers could depend upon, much effort was put into creating testing code
- Doing this at the system integration level can be complex and time consuming
- We believe the effort expended did pay for itself over the project life time
- Recall Frederick Brooks' Mythical Man-Month:

Storage costs

 The cost of medium-to-long term storage (Tbytes for 5-10 years) remains the elephant in the room, especially for HD video data and multidimensional microscopy

- Researchers seem to accept about £80/Tb/year, which is roughly the hardware cost recovery for SAN RAID array storage
- Full service managed storage appears to cost closer to £1000/Tb/year

Virtualization

 Operational factors and running multiple virtual environments on a single host can be like having all eggs in one basket

 The ability and capacity for live migration of systems to different hardware would provide

resilience

Staff retention

- (Broken record time again!)
- Difficulty of attracting/retaining staff, particularly in an academic (non-service) department where staffing is subject to project funding
- Both Databank and ADMIRAL work packages underwent staffing upheavals
- Recognizing this is due to factors beyond JISC control, are there grounds to examine the nature of the overall innovation ecosystem?

Co-development risk

- There is an added risk associated with codevelopment activities
 - i.e. when independent groups develop interdependent components, such that resource conflicts in one group impact the other
 - project rhythms are not so easily synchronized
- This might be mitigated if the substantive new developments are controlled by a common chain of management, especially with respect to priority setting and resource commitment