Activations Functions:

What is an Activation Function?

An activation function in a neural network is a mathematical function applied to each neuron's output (also called the neuron's activation). It determines whether a neuron should be activated or not, introducing non-linearity into the model, which allows the network to learn complex patterns.

Why Do We Need Activation Functions?

1. Introduce Non-linearity:

- Without non-linearity, a neural network, no matter how many layers it has, would behave like a single-layer linear model.
- Non-linear activation functions allow the network to learn and represent complex patterns and functions.

2. Control the Output:

- Activation functions can control the range of the output values (e.g., sigmoid outputs between 0 and 1).
- This is particularly useful for tasks like classification where outputs need to represent probabilities.

3. Gradient Flow:

- Proper activation functions ensure gradients flow properly during backpropagation.
- This helps in updating weights effectively and avoiding issues like vanishing gradients.

Good Features in Activation Functions

1. Non-linearity:

- Enables the network to solve non-trivial problems.
- Example: ReLU introduces non-linearity by zeroing out negative values.

2. Differentiability:

Essential for backpropagation to compute gradients.

Example: Sigmoid and Tanh functions are differentiable at all points.

3. Computational Efficiency:

- Should not add significant computational overhead.
- Example: ReLU is computationally efficient as it only involves a simple threshold operation.

4. Avoiding Vanishing/Exploding Gradients:

- Ensures stable training by maintaining gradient magnitudes.
- Example: ReLU helps mitigate the vanishing gradient problem.

5. Zero-Centered Outputs:

- Helps in faster convergence by making the output range symmetric around zero.
- Example: Tanh outputs range from -1 to 1.

6. Sparse Activation:

- Only a subset of neurons should be active at a time, leading to efficient computation.
- Example: ReLU only activates neurons with positive inputs.

Bad Features in Activation Functions

1. Non-differentiability:

- Prevents the use of gradient-based optimization.
- Example: Binary Step Function is not differentiable.

2. Vanishing Gradients:

- Leads to very small gradients, making it hard for the network to learn.
- Example: Sigmoid can cause vanishing gradients for large positive or negative inputs.

3. Exploding Gradients:

- Causes gradients to become excessively large, leading to unstable training.
- Example: Functions that lead to large outputs for large inputs can cause exploding gradients.

4. Dead Neurons:

- Neurons that never activate and thus do not contribute to learning.
- Example: ReLU can cause dead neurons when inputs are negative.

5. Not Zero-Centered:

- Slows down convergence as gradients may consistently move in a certain direction.
- Example: Sigmoid outputs are not zero-centered (range from 0 to 1).

Activation Functions in Neural Networks: Detailed Analysis

1. Binary Step Function

• Formula:

• Range: {0,1}

- **Usage**: Rarely used in practice due to its simplicity and limitations. Sometimes used in perceptrons for binary classification.
- Advantages: Simple implementation.
- Disadvantages:

- Not useful for multi-class classification.
- Gradient is zero everywhere, hindering backpropagation.
- Not differentiable, making it unsuitable for gradient-based optimization.

2. Linear Function

• Formula:

•

- Range: (-∞,∞)
- **Usage**: Generally used in simple regression tasks or in the final layer of a neural network for regression problems.

Advantages:

- Simple and interpretable.
- No vanishing gradient problem.

• Disadvantages:

- Gradient is constant and does not depend on x.
- Poor at capturing complex patterns.
- The network may not learn non-linear boundaries.

3. Sigmoid Activation Function

• Formula:

• Range: (0,1)

(0,1)(0,1)

• **Usage**: Commonly used in binary classification problems and in the output layer of binary classifiers.

• Advantages:

- Smooth and differentiable.
- Output can be interpreted as probabilities.

• Disadvantages:

- Vanishing gradient problem for large positive or negative values.
- Output is not zero-centered, which can slow down convergence.

4. Tanh (Hyperbolic Tangent) Function

• Formula:

- Range: (-1,1) (-1,1)(-1, 1)
- **Usage**: Often preferred over sigmoid in hidden layers due to its zero-centered output.

• Advantages:

- Zero-centered output.
- Smooth and differentiable.

• Disadvantages:

- $\circ\hspace{0.1in}$ Vanishing gradient problem similar to sigmoid.
- Computationally more expensive than ReLU.

5. ReLU (Rectified Linear Unit)

• Formula:

• Range: [0,∞)

 $[0,\infty)[0, \inf y)$

- **Usage**: Widely used in hidden layers of neural networks.
- Advantages:
 - Computationally efficient.
 - Helps mitigate the vanishing gradient problem.
 - Sparse activation (neurons are activated only when necessary).

• Disadvantages:

 $\circ~$ Can create "dead neurons" (neurons that never activate if x<0 consistently).

x < 0x < 0

6. Leaky ReLU

• Formula:

•

Leaky ReLU Activation Function

$$leakyrelu(z) = \begin{cases} 0.01z & for z < 0 \\ z & for z \ge 0 \end{cases}$$
Range: -infinity to infinity

- Range: (-∞,∞)
 (-∞,∞)
- Usage: Used to address the dead neuron problem in ReLU.
- Advantages:
 - Mitigates the dead neuron problem by allowing a small gradient when x < 0.

- Disadvantages:
 - The choice of the leakage factor (0.01) may not be optimal for all tasks.

7. Parametric ReLU

• Formula:

- Range: (-∞,∞)
 (-∞,∞)
- **Usage**: Used to address dead neurons with a learnable parameter a.

aa

Advantages:

 Allows the network to learn the optimal value of a for better performance.

aa

• Disadvantages:

More complex than ReLU and Leaky ReLU.

8. Exponential Linear Unit (ELU)

• Formula:

• Range: $(-\infty,\infty)$ for x<0 and $[0,\infty)$ for x≥0

$$(-\infty,\infty)$$

• **Usage**: Used to avoid dead neurons and to have smooth gradients for negative inputs.

Advantages:

- Helps mitigate the vanishing gradient problem.
- \circ The negative saturation (when x<0) helps regularize the network.

Disadvantages:

More computationally intensive due to the exponential function.

9. Swish

• Formula:

Swish

• Range: (-∞,∞)

 $(-\infty,\infty$

• **Usage**: Used in deeper neural networks and has shown to outperform ReLU in certain tasks.

• Advantages:

- Smooth and differentiable.
- No dead neuron problem.
- Better performance in deep networks.

• Disadvantages:

- More computationally intensive than ReLU.
- Non-monotonic, which can complicate understanding of the activation's effect.

10. Softmax

• Formula:

•

.

- Range: [0,1] for each output neuron, and the sum of all outputs is 1.
 [0,1][0, 1]
- **Usage**: Used in the output layer for multi-class classification problems.

Advantages:

- Converts logits to probabilities, making them interpretable.
- Ensures that outputs sum to 1, representing a valid probability distribution.

• Disadvantages:

- Computationally intensive due to exponentiation and normalization.
- Can suffer from the vanishing gradient problem if logits are large.

Summary of Usage and Recommendations

- **Binary Step Function**: Simple tasks with binary outputs, though rarely used in practice due to its limitations.
- **Linear Function**: Regression problems, particularly in the output layer.
- Sigmoid Function: Binary classification, particularly in the output layer.
- **Tanh Function**: Preferred over sigmoid for hidden layers due to zero-centered output.
- **ReLU Function**: Default choice for hidden layers in most networks.
- Leaky ReLU: Used when encountering dead neurons with ReLU.
- Parametric ReLU: Advanced variant of Leaky ReLU when even finer control over negative slopes is needed.
- **ELU**: Used when the benefits of ReLU are desired, but with smoother negative saturation to avoid dead neurons.
- **Swish**: Used in deeper networks for better performance, though computationally more demanding.
- **Softmax**: Used in the output layer for multi-class classification to convert logits to probabilities.

- Binary Classification: Sigmoid (output layer), Tanh/ReLU (hidden layers).
- Multi-class Classification: Softmax (output layer), ReLU (hidden layers).
- Regression: Linear (output layer), ReLU (hidden layers).
- General Use: ReLU for hidden layers due to efficiency and effectiveness.

Nane	Plot	Equation	Derivative
Identity		f(x) = x	f'(x) = 1
Binary step		$f(x) = \begin{cases} 0 & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} 0 & \text{for } x \neq 0 \\ ? & \text{for } x = 0 \end{cases}$
Logistic (a.k.a Soft step)		$f(x) = \frac{1}{1 + e^{-x}}$	f'(x) = f(x)(1 - f(x))
TanH		$f(x) = \tanh(x) = \frac{2}{1 + e^{-2x}} - 1$	$f'(x) = 1 - f(x)^2$
ArcTan		$f(x) = \tan^{-1}(x)$	$f'(x) = \frac{1}{x^2 + 1}$
Rectified Linear Unit (ReLU)		$f(x) = \begin{cases} 0 & \text{for } x < 0 \\ x & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} 0 & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$
Parameteric Rectified Linear Unit (PReLU) ^[2]		$f(x) = \begin{cases} \alpha x & \text{for } x < 0 \\ x & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} \alpha & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$
Exponential Linear Unit (ELU) ^[3]		$f(x) = \begin{cases} \alpha(e^x - 1) & \text{for } x < 0 \\ x & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} f(x) + \alpha & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$
SoftPlus		$f(x) = \log_e(1 + e^x)$	$f'(x) = \frac{1}{1 + e^{-x}}$