

Who am I?

Roger Johansson

Senior Solution Architect – Starcounter http://StarCounter.io

Akka.NET and Proto.Actor Founder http://GetAkka.net, http://Proto.Actor

Twitter: @rogeralsing

Github: rogeralsing

Mail: roger@starcounter.com

http://Github.com/rogeralsing/presentations

Actor Model, Scalability, Distributed Systems, C#, Go, Kotlin

Agenda

Setting the stage - Why we need in memory computing:

- Application Platform
- Micro-Apps

The Starcounter information operating system:

- Our approach to in memory computing
- The future of hardware
- The Mars project

Application Platform

Front-end Framework

React, Polymer

Communication

Palindrom - REST, Web Sockets

Application

View Models, Entities, App Logic

In Memory App Platform

Mapping, Persistence, Queries

Starcounter

Front-end Framework Client Side Code Network **Services + Contracts Application Code** O/R Mapper Network **Database Traditional Stack**

Front-end Framework Network **View Models Application In Memory App Platform** Starcounter

Micro-Applications

App A App B App C

Model A Model B Model C

Starcounter

Data Flow Programming

In Memory, For Real

Application Process

Object Object 123

FirstName Alan

LastName Turing

Age 41

Offline copy of database data

Map to and from Object / Storage model

Data is stored on disk, optimized for spinning disks and moving arms

Object Mapper

Network / IPC

	•	
		K.

ObjectId	FirstName	LastName	Age
123	Alan	Turing	41
124	Ada	Lovelace	36
125	Grace	Hopper	86

Database Process

Transfer Data over network

Application Process

Object Cobject CobjectId 123

FirstName Alan Turing Age 41

Offline copy of database data

Map to and from Object / Relational model

Data is mainly kept in memory, enabling faster reads and writes **Object Mapper**

Network / IPC

Memory

ObjectId	FirstName	LastName	Age
123	Alan	Turing	41
124	Ada	Lovelace	36
125	Grace	Hopper	86

Database Process

Transfer Data over network

Object ObjectId 123

Stateless Entity maps directly to shared memory

Shared Memory

Data is kept in memory and shared across processes

ObjectId	FirstName	LastName	Age
123	Alan	Turing	41
124	Ada	Lovelace	36
125	Grace	Hopper	86

Database Process

C# Source Code

```
public class Person
  public string FirstName
    get;
    set;
```

C# Compiler Output

```
public class Person
 private string _firstName;
 public string FirstName
   get => _firstName;
   set value => _firstName = value;
```

Starcounter Weaver Output

```
public class Person
 private string firstName;
 private ulong id;
 public string FirstName
   get => DbState.GetString(_id, FirstNameId);
   set value => DbState.SetString(_id, FirstNameId, value)
```

Millions of operations per second

O/R mapper - Object Graphs

Lazy Load

Execute SQL Query per traversed relation

Eager Load

Carefully defining load boundaries

Ripple load, Hundreds/Thousands of queries per view

Hard to maintain, inefficient joined queries

Starcounter - Object Graphs

Chasing Pointers

Traversing relations are simple pointer traversals

 $\wedge \vee$ Module Variant MODULE VARIANTS

The Future of Hardware

Price of 1MB in USD over time

Registers

Cache

Main Memory

Solid State Disk

Magnetic Disk

Registers

Cache

Main Memory

Non Volatile Memory

Solid State Disk

Magnetic Disk

Current

Future

Starcounter on the CPUs of 2018

QEA