Complessità del calcolo

Dipartimento di Elettronica, Informazione e Bioingegneria Politecnico di Milano

20 aprile 2022

La complessità del calcolo

Quanto efficientemente risolviamo un problema?

- Razionalizzazione dei concetti di:
 - costo di una computazione (tempo e memoria)
 - misura e confronto del costo di soluzioni a un problema
- Primo passo: costruire strumenti per valutare la complessità di un calcolo
- Secondo passo: analisi di algoritmi e strutture dati notevoli
 - Alcuni problemi sono molto ricorrenti nella pratica
- Obiettivo: saper progettare e combinare algoritmi e strutture dati per realizzare soluzioni efficienti (oltre che corrette)

La complessità del calcolo

Quanto efficientemente risolviamo un problema?

- Posto che un dato problema sia calcolabile, ci domandiamo: a che costo?
- Effettueremo analisi quantitative di:
 - Tempo di calcolo impiegato
 - Spazio occupato (registri, caches, RAM, disco, nastro)
- Analisi fatta su criteri di costo oggettivi (e formalizzabili): non terremo conto di:
 - costi di sviluppo, organizzazione del software, testing
 - tradeoff ambientali tra obiettivi contrastanti

Oltre la (sola) risolvibilità

Dipendenza dal formalismo di calcolo

- Per la tesi di Church-Turing, un problema è calcolabile o meno indipendentemente dallo strumento usato (purché Turing completo)
- Possiamo dire lo stesso della complessità del calcolo?
 - ullet Una somma in unario ha efficienza diversa da una in base b>1
 - Calcolare una traduzione $y = \tau(x)$ decidendo se $\exists z \in L_{\tau} = \{x \dagger y | y = \tau(x)\}$ può essere molto meno efficiente del calcolare la traduzione
- È verosimile assumere che cambiando modello di calcolo non cambi il tempo di esecuzione? Intuitivamente, no.

Costruire uno strumento generale

Costo di calcolo "indipendente" dal formalismo

- Non abbiamo una "tesi di Church-Turing" della complessità
- Ci serve uno strumento per valutare la complessità temporale e spaziale:
 - che tralasci "considerazioni superflue"
 - utilizzabile per la maggioranza dei modelli di calcolo
- Non avendo un formalismo di calcolo "preferito" per costruire il modello, partiamo dalle MT deterministiche
 - Almeno una MT, per preservare le capacità espressive
 - Una MT deterministica, perchè non possiamo costruire fisicamente una ND

Complessità temporale e spaziale

Complessità temporale

- Data la computazione $c_0 \vdash c_r$ di \mathcal{M} la complessità temporale è $T_{\mathcal{M}}(x) = r$ se \mathcal{M} si ferma in un dato c_r , ∞ altrimenti
- \mathcal{M} è deterministica \Rightarrow computazione unica sull'ingresso x

Complessità spaziale

- Data la computazione $c_0 \vdash^* c_r$ di $\mathcal M$ la complessità spaziale è $S_{\mathcal M}(x) = \sum_{j=1}^k \max_{i \in \{0,\dots,r\}} (|\alpha_{ij}|)$ con $|\alpha_{ij}|$ lunghezza del contenuto del j-esimo nastro alla mossa i-esima
 - Intuitivamente: la somma delle quantità massime di nastro occupate, per ogni nastro
- NB: $\forall x, \exists k \in \mathbb{N}, \frac{S_{\mathcal{M}}(x)}{k} \leq T_{\mathcal{M}}(x)$: mi serve almeno il tempo per scrivere i simboli

Esempio: riconoscere $L = \{wcw^R\}$ con MT a 1 nastro

Complessità temporale

- Se $x \in L$, $T_{\mathcal{M}}(x) = |x| + 2$
- Se $x \notin L$, $x = \alpha a.ucu^R.b\beta$, $T_{\mathcal{M}}(x) = |\alpha a.ucu^R.b|$
- Se $x \notin L, x \in \{a, b\}^*, T_{\mathcal{M}}(x) = |x| + 1$
- Se $x \in c^+.\{a,b\}^*$, $T_{\mathcal{M}}(x) = 2$

Complessità spaziale

- Se $x \in L$, $S_{\mathcal{M}}(x) = \left| \frac{|x|}{2} \right|$
- Se $x \notin L, x \in \{a, b\}^*, S_{\mathcal{M}}(x) = |x| + 1$
- Se $x \in c^+$, $S_{\mathcal{M}}(x) = 0$

Riducendo all'essenziale

Analisi su MT

- Contempla tutti i dettagli del funzionamento della MT
 - La complessità temporale dipende dal valore dell'input
 - Spesso più dettagliata di quanto ci interessi

Una prima semplificazione

- Da $T_{\mathcal{M}}(x)$ e $S_{\mathcal{M}}(x)$ a $T_{\mathcal{M}}(n)$ e $S_{\mathcal{M}}(n)$, dove n è la lunghezza dell'input
 - Nel caso precedente n = |x|
 - Esempi pratici: righexcolonne di una matrice, numero di record in una tabella, numero di pacchetti in arrivo dalla rete
- NB: Si tratta di una semplificazione: in generale abbiamo che $|x_1|=|x_2| \Rightarrow T_{\mathcal{M}}(x_1)=T_{\mathcal{M}}(x_2), |x_1|=|x_2| \Rightarrow S_{\mathcal{M}}(x_1)=S_{\mathcal{M}}(x_2)$

Gestire la variabilità dell'ingresso

Scelte possibili (sia per $T_{\mathcal{M}}(.)$ che per $S_{\mathcal{M}}(.)$)

- Caso pessimo: $T_{\mathcal{M}}(n) = \max_{x,|x|=n} T_{\mathcal{M}}(x)$
- ullet Caso ottimo: $T_{\mathcal{M}}(n) = \min_{x,|x|=n} T_{\mathcal{M}}(x)$
- ullet Caso medio: $T_{\mathcal{M}}(n) = rac{\sum_{x,|x|=n} T_{\mathcal{M}}(x)}{\mathbf{I}^n}$ (con input uniformemente distribuiti su \mathbf{I}^n)

Scelte tipiche

- Consideriamo (quasi) sempre il caso pessimo:
 - È quello più rilevante: vogliamo essere sicuri di finire sempre in tempo
 - L'analisi risulta più semplice del caso medio

Tasso di crescita

Quanto crescono $T_{\mathcal{M}}(n)$ e $S_{\mathcal{M}}(n)$?

- Sapere i valori esatti di $T_{\mathcal{M}}(n)$ e $S_{\mathcal{M}}(n)$ per un dato n è utile, ma non fornisce un'idea globale del comportamento dell'algoritmo
 - Dovremmo calcolarli per ogni n di nostro interesse!
- Focalizziamoci su quanto $T_{\mathcal{M}}(n)$ e $S_{\mathcal{M}}(n)$ crescono in funzione di n
- Osserviamo quindi $T_{\mathcal{M}}(n)$ e $S_{\mathcal{M}}(n)$ quando $n \to \infty$
 - Non distingueremo quindi $T_{\mathcal{M}}(n) = n^2 + 13n$ da $3n^2$, hanno comportamenti "simili"
- \bullet Semplificazione aggressiva ($n^2\approx 10^{80}n^2)$ ma molto efficace se usata con raziocinio

Comportamento asintotico e notazione

Indicare i tassi di crescita

- Introduciamo una notazione per indicare il comportamento asintotico di una funzione:
 - La notazione \mathcal{O} -grande: limite asintotico superiore
 - ullet La notazione Ω -grande: limite asintotico inferiore
 - La notazione Θ -grande: limite asintotico sia sup. che inf.
- ullet Caveat pratico 1: comportamento asintotico o per valori piccoli di n potrebbe non essere un buon modello
- Caveat pratico 2: in qualche (raro) caso valore "piccolo" per n non corrisponde alla nostra intuizione
 - Un algoritmo con complessità asintotica minore può essere più lento di uno a complessità maggiore per tutti i valori di n che ci interessano
 - Tutto funziona ... fin quando non crescono i dati in ingresso

Notazione \mathcal{O} -grande

Definizione

• Data una funzione f(n), $\mathcal{O}(g(n))$ è l'insieme $\mathcal{O}(g(n)) = \{g(n) \mid \exists c > 0, n_0 > 0 \text{ tali che } \forall n > n_0, \ f(n) \leq c \cdot g(n) \}$

Graficamente

- Le funzioni in $\mathcal{O}(g(n))$ (e.g., f(n)) sono dominate da $c \cdot g(n)$ a partire da n_0
- Ogni elemento di $\mathcal{O}(g(n))$ ci dà un limite superiore al valore di f(n) per $n \to \infty$ (a meno di una costante)

Esempi

Facilmente

- $3n^2 + 12n + 35 \in \mathcal{O}(n^2)$
- $5n^3 + 3 \in \mathcal{O}(n^3)$
- $2\log(n) + \log(\log(n)) \in \mathcal{O}(\log(n))$

Leggermente meno facilmente

- $3n^2 + 12n + 35 \in \mathcal{O}(n^{20})$
- $5n^3 + 3 \in \mathcal{O}(2^n)$
- $2\log(n) + \log(\log(n)) \in \mathcal{O}(n)$

Un abuso notazionale comunemente accettato

ullet È comune usare $f(n)=\mathcal{O}(g(n))$ al posto di $f(n)\in\mathcal{O}(g(n))$ (o f(n) è $\mathcal{O}(g(n))$)

Notazione Ω -grande

Definizione (Knuth)

• Data una funzione f(n), $\Omega(g(n))$ è l'insieme $\Omega(g(n)) = \{g(n) \mid \exists c > 0, n_0 > 0 \text{ tali che } \forall n > n_0, \ f(n) \geq c \cdot g(n) \}$

Graficamente

• Le funzioni in $\Omega(g(n))$ (e.g., f(n)) dominano $c \cdot g(n)$ a partire da n_0

Esempi

Direttamente dalla definizione

- $3n^2 + 12n + 35 \in \Omega(n^2)$
- $7n^2\log(n) + 15 \in \Omega(n^2\log(n))$
- $n2^n + n^{50} \in \Omega(n2^n)$

Di conseguenza, anche

- $3n^2 + 12n + 35 \in \Omega(n)$
- $5n^4 + 3 \in \Omega(log(n))$, ma $5n^4 + 3 \notin \Omega(n^4log(n))$
- $n2^n + n^{13} \in \Omega(2^n)$, ma $n2^n + n^{13} \notin \Omega(2^{n^2})$

Proprietà

• Se e solo se $f(n) \in \mathcal{O}(g(n))$ allora $g(n) \in \Omega(f(n))$

Notazione Θ -grande

Definizione

• Data f(n), l'insieme $\Theta(g(n))$ è $\Theta(g(n)) = \{g(n) \mid \exists c_1 > 0, c_2 > 0, n_0 > 0 \text{ tali che } \forall n > n_0, \ c_1 \cdot g(n) \leq f(n) \leq c_2 \cdot g(n) \}$

Graficamente

• Le funzioni in $\Theta(g(n))$ sono comprese tra $c_1 \cdot g(n)$ e $c_2 \cdot g(n)$ a partire da n_0

Esempi

Direttamente dalla definizione

- $3n^2 + 12n + 35 \in \Theta(n^2)$
- $7n^2\log(n) + 15 \in \Theta(n^2\log(n))$
- $n2^n + n^{50} \in \Theta(n2^n)$

Tuttavia

- $3n^2 + 12n + 35 \notin \Theta(n)$
- $3n^2 + 12n + 35 \notin \Theta(\log(n))$
- $n2^n + n^{50} \notin \Theta(2^n)$
- $n2^n + n^{50} \notin \Theta(n^{100})$

Proprietà di $\mathcal{O}, \Omega, \Theta$

Proprietà di Θ

- ullet Θ è una relazione di equivalenza sull'insieme di funzioni
 - Riflessiva: $f(n) \in \Theta(f(n))$
 - Simmetrica: $f(n) \in \Theta(g(n)) \Leftrightarrow g(n) \in \Theta(f(n))$
 - Transitiva: $f(n) \in \Theta(g(n)) \land h(n) \in \Theta(g(n)) \Rightarrow f(n) \in \Theta(h(n))$

Proprietà di \mathcal{O}, Ω

- Esse sono riflessive: $f(n) \in \mathcal{O}(f(n))$, $f(n) \in \Omega(f(n))$
- $f(n) \in \Theta(g(n))$ se e solo se $f(n) \in \mathcal{O}(g(n)) \wedge f(n) \in \Omega(g(n))$
- \mathcal{O} e Ω sono relazioni d'ordine parziale

Confronti operativi

Definizioni come limiti

- Se $\lim_{n\to\infty} \frac{f(n)}{g(n)} = c, c \neq 0$ e $c \neq \infty$ allora $f(n) \in \Theta(g(n))$
 - ullet Gli andamenti asintotici di f e g differiscono per una costante moltiplicativa
- Se $\lim_{n\to\infty}\frac{f(n)}{g(n)}=0$ allora $f(n)\in\mathcal{O}(g(n))$, ma $f(n)\notin\Theta(g(n))$
 - Il comportamento di f(n) è diverso in modo sostanziale da quello di g(n) (in particolare, cresce più velocemente)
 - Si indica anche, con notazione più sintetica, $\Theta(f(n)) < \Theta(g(n))$
- L'uso della notazione $\mathcal{O}, \Omega, \Theta$ estrae la porzione "più importante" di una funzione di complessità: il comportamento a meno di una costante moltiplicativa

Una prima applicazione

Riconoscere $L = \{wcw^r\}$ con MT a 1 nastro

- $T_{\mathcal{M}}(n)$ è $\Theta(n)$, $S_{\mathcal{M}}(n)$ è anch'essa $\Theta(n)$
- Ci sono possibilità di miglioramento (= soluzioni a complessità inferiore)?
- Per $T_{\mathcal{M}}(n)$, è ben difficile (devo leggere tutta la stringa)
- Per $S_{\mathcal{M}}(n)$, sì. Ad esempio, con MT a 2 nastri:
 - Memorizzo solo la posizione del carattere da confrontare (in binario)
 - Sposto la testina e confronto i caratteri in posizione i e n-i+1
- NB: la complessità spaziale tiene conto solamente le celle dei nastri memoria
 - Unica eccezione: MT a nastro singolo, dove contiamo le celle dell'unico nastro

Pseudocodice per MT a 2 nastri Na, Nb

- ① Ciclo per trovare c, ad ogni passo incrementa il contatore memorizzato N_a $[T_{\mathcal{M}}(n) = n \log(n), S_{\mathcal{M}}(n) = \log(n)]$
- ② Ripeti fino a quando il contatore su N_a è =0
 - Copia il contenuto di N_a su N_b $[T_{\mathcal{M}}(n) = S_{\mathcal{M}}(n) = \log(n)]$
 - ② Sposta la testina di ingresso di N_b posti a sx, decrementando N_b $[T_{\mathcal{M}}(n)=i\log(i), S_{\mathcal{M}}(n)=\log(n)]$
 - **1** Memorizza il carattere nello stato $[T_{\mathcal{M}}(n)=S_{\mathcal{M}}(n)=k]$
 - Ritorna al carattere c [$T_{\mathcal{M}}(n)=i,S_{\mathcal{M}}(n)=k$]
 - **5** Copia il contenuto di N_a su N_b $[T_{\mathcal{M}}(n) = S_{\mathcal{M}}(n) = \log(n)]$
 - Sposta la testina di ingresso di N_b posti a dx, decrementando N_b $[T_{\mathcal{M}}(n)=i\log(i), S_{\mathcal{M}}(n)=\log(n)]$
 - \odot Confronta il carattere con lo stato, se diversi halt $[T_{\mathcal{M}}(n)=S_{\mathcal{M}}(n)=k]$
 - **3** Decrementa N_a e torna a c $[T_{\mathcal{M}}(n) = \log(i) + i$, $S_{\mathcal{M}}(n) = \log(n)]$

Considerazioni sul $T_{\mathcal{M}}(n)$ e $S_{\mathcal{M}}(n)$

Compromessi tra spazio e tempo

- La nuova soluzione è $S_{\mathcal{M}}(n) \in \Theta(\log(n))$, ma $T_{\mathcal{M}}(n) \in \Theta(n^2 \log(n))$
- È un caso di compromesso spazio-temporale: la soluzione è più lenta ma occupa meno spazio
 - È possibile spesso precalcolare alcuni risultati utilizzati spesso e andare a rileggerli da memoria al posto di ricalcolarli da zero
- ullet Questo esempio giustifica perchè in una MT a k nastri, per convenzione la testina di ingresso si muove in entrambe le direzioni
 - Farla muovere in una sola direzione non cambia il potere computazionale della MT ...
 - ullet ... ma previene esempi (non banali) di algoritmi con $S_{\mathcal{M}}(n)$ sub-lineare

Modelli di calcolo

Altri modelli deterministici di calcolo

- FSA: hanno sempre $S_{\mathcal{FSA}}(n) \in \Theta(1)$, $T_{\mathcal{FSA}}(n) \in \Theta(n)$
 - Tecnicamente, $T_{\mathcal{FSA}}(n) = n$, leggono un carattere per mossa
- APD: hanno sempre $S_{\mathcal{APD}}(n) \in \mathcal{O}(n), T_{\mathcal{APD}}(n) \in \Theta(n)$
- MT a nastro singolo?
 - È facile trovare una soluzione $T_{\mathcal{M}}(n) \in \Theta(n^2)$ per il riconoscimento di $L = \{wcw^r\}$
 - ullet $S_{\mathcal{M}}(n)$ non potrà mai essere minore di $\Theta(n)$
 - Non esiste un algoritmo più efficiente di $T_{\mathcal{M}}(n) \in \Theta(n^2)$ per MT a nastro singolo (Intuizione: a ogni controllo di ognuna delle $\frac{n-1}{2}$ coppie di lettere, la TM scandisce una porzione di nastro che passa su c)
- In generale: MT a nastro singolo sono più potenti degli APD, ma ciò che eseguono può avere qualunque complessità spazio/temporale!

I teoremi di accelerazione lineare

Teorema (Compressione dello spazio)

Se L è accettato da una MT \mathcal{M} a k nastri in $S_{\mathcal{M}}(n)$, per ogni $c \in \mathbb{Q}, c > 0$ posso costruire una MT \mathcal{M}' a k nastri con $S_{\mathcal{M}'}(n) < c \cdot S_{\mathcal{M}}(n)$

Schema della dimostrazione

- Scelgo un fattore di compressione r tale che $r \cdot c > 2$
- Per ognuno degli i nastri di \mathcal{M} , considero l'alfabeto Γ_i e costruisco Γ_i' di \mathcal{M}' creando un elemento in Γ_i' per ogni $s \in \Gamma_i^r$
- Costruisco l'OC di \mathcal{M}' in modo tale per cui:
 - Calcoli con i nuovi simboli sui nastri emulando le mosse di $\mathcal M$ spostando le testine sui nastri ogni r movimenti di $\mathcal M$
 - Memorizzi la posizione della testina "all'interno" dei nuovi simboli degli alfabeti di nastro Γ_i usando gli stati

I teoremi di accelerazione lineare - 2

Teorema (Da k a 1 nastro di memoria)

Se L è accettato da una MT \mathcal{M} a k nastri in $S_{\mathcal{M}}(n)$, posso costruire una MT \mathcal{M}' a 1 nastro (non nastro singolo) con $S_{\mathcal{M}'}(n) = S_{\mathcal{M}}(n)$ (concateno i contenuti dei k nastri su uno solo)

Teorema

Se L è accettato da una MT \mathcal{M} a k nastri in $S_{\mathcal{M}}(n)$, per ogni $c \in \mathbb{R}, c > 0$ posso costruire una MT \mathcal{M}' a 1 nastri con $S_{\mathcal{M}'}(n) < c \cdot S_{\mathcal{M}}(n)$ (come sopra + compressione)

I teoremi di accelerazione lineare - 3

Teorema

Se L è accettato da una MT \mathcal{M} a k nastri in $T_{\mathcal{M}}(n)$, per ogni $c \in \mathbb{Q}, c > 0$ posso costruire una MT \mathcal{M}' a k+1 nastri con $T_{\mathcal{M}'}(n) = \max(n+1, c \cdot T_{\mathcal{M}}(n))$ (come sopra + compressione)

Schema di dimostrazione

- ullet Approccio simile alla complessità spaziale: codifichiamo in modo compresso i simboli dell'alfabeto di ${\cal M}$
- Dobbiamo considerare che la compressione è fatta a runtime: il minimo costo per effettuare la compressione è lineare nel numero di simboli da comprimere
- ullet Comprimendo r simboli in uno, nel caso pessimo, possono servirmi 3 mosse di \mathcal{M}' per emularne r+1 di \mathcal{M}

Conseguenze pratiche

L'unico "pasto gratis" è lo speedup lineare

- Lo schema di dimostrazione usato per le MT vale anche per i calcolatori a-la Von Neumann
 - Equivale a cambiare la dimensione della word della macchina ($32b \rightarrow 64b$) o, equivalentemente, ad usare operazioni vettoriali (SSE/AVX,Neon,Altivec)
- Possiamo avere speedup *lineari* arbitrariamente grandi, aumentando il parallelisimo fisico (stanti i limiti della termodinamica/trasmissione dei segnali)
- Miglioramenti più che lineari nel tempo di calcolo possono essere ottenuti solo cambiando algoritmo
 - Concepire/utilizzare algoritmi efficienti è di gran lunga più efficace della forza bruta

Modelli di calcolo a confronto

MT vs. calcolatori reali

- Differenze "marginali": un calcolatore è in grado di fare operazioni aritmetiche su tipi a dimensione finita in tempo costante (e.g., add in un ciclo di clock), la MT necessita di propagare gli effetti al singolo bit uno per uno
 - Il calcolatore opera con un alfabeto molto vasto, $|\mathbf{I}| = 2^w$, dove w è la dimensione della parola architetturale
- Un calcolatore può accedere direttamente ad una cella di memoria, una MT impiega $\Theta(n)$ dove n è la distanza della stessa dalla posizione della testina
- Cambiamo modello di calcolo, avvicinandoci ai calcolatori reali

La macchina RAM

Un calcolatore semplificato

- La macchina RAM è dotata di un nastro di lettura In e uno di scrittura Out come la MT
- Assumiamo il programma cablato nell'OC, così come la logica del program counter
- La RAM è dotata di una memoria con accesso a indirizzamento diretto $M[n], n \in \mathbb{N}$ al posto dei nastri di memoria: l'accesso non necessita di scorrimento delle celle
- \bullet Le istruzioni di un programma usano come primo operando sorgente e come operando destinazione $\mathtt{M}[0]$
- Ogni cella contiene un intero $(x \in \mathbb{N})$

La macchina RAM

Instruction set e semantica pseudo-RTL

Istruzione	Semantica
LOAD X	$\mathtt{M}[0] \leftarrow \mathtt{M}[X]$
LOAD= X	$\mathtt{M}[0] \leftarrow X$
LOAD* X	$\texttt{M}[0] \leftarrow \texttt{M}[\texttt{M}[X]]$
STORE X	$\texttt{M}[X] \leftarrow \texttt{M}[0]$
STORE* X	$\texttt{M}[\texttt{M}[X]] \leftarrow \texttt{M}[0]$
ADD X	$\texttt{M}[0] \leftarrow \texttt{M}[0] + \texttt{M}[X]$
SUB X	$\texttt{M}[0] \leftarrow \texttt{M}[0] - \texttt{M}[X]$
MUL X	$\texttt{M}[0] \leftarrow \texttt{M}[0] \times \texttt{M}[X]$
DIV X	$\texttt{M}[0] \leftarrow \texttt{M}[0]/\texttt{M}[X]$
HALT	

Istruzione	Semantica
READ X	$\mathtt{M}[X] \leftarrow \mathtt{In}$
READ* X	$\mathtt{M}[\mathtt{M}[X]] \leftarrow \mathtt{In}$
WRITE X	$\mathtt{Out} \leftarrow \mathtt{M}[X]$
WRITE= X	$\mathtt{Out} \leftarrow X$
WRITE* X	$\mathtt{Out} \leftarrow \mathtt{M}[\mathtt{M}[X]]$
JUMP 1	$\mathtt{PC} \leftarrow l$
JZ 1	$Se\;\mathtt{M}[0]=0$
J4 I	$\mathtt{PC} \leftarrow l$
Ci sono JGT	T,JGZ,JLT,JLZ

Test (semplice) di primalità in assembly RAM

Stampa 1 se I	'intero s	u nastro è p	rimo 0 altrimenti			
1		READ 1		12		MUL 2
2 3		LOAD= 1 SUB 1		13 14		SUB 1 JZ no
4		JZ no		15		LOAD 2
5		LOAD= 2		16		ADD= 1
6		STORE 2		17		STORE 2
7	loop:	LOAD 1		18		JUMP loop
8		SUB 2		19	yes:	WRITE= 1
9		JZ yes		20		HALT
10		LOAD 1		21	no:	WRITE= O
11		DIV 2		22		HALT

Complessità del precedente programma

Analisi di complessità temporale e spaziale

- Per la RAM, valutiamo la complessità in funzione del numero di mosse/numero di celle di memoria
- ullet Assunzione di base: istruzioni singole a costo costante c_i , dove i è l'indice della riga
- Le istruzioni 1 6 sono eseguite al più una volta \rightarrow costo $= c_1 + c_2 + c_3 + c_4 + c_5 + c_6$, è una costante k_1
- Analogamente per le istruzioni 19 22, costo costante k_2
- Le istruzioni 7 18 hanno costo costante k_3 , ma sono eseguite, nel caso pessimo n volte
- $T_{RAM}(n) = k_1 + nk_3 + k_2 = \Theta(n)$
- $S_{\mathcal{RAM}}(n) = 3 = \Theta(1)$ (uso solo 3 celle di mem)

Analisi di altri algoritmi

Riconoscere $L = \{wcw^R\}$

- $T_{\mathcal{RAM}}(n) = \Theta(n)$
- $S_{\mathcal{RAM}}(n) = \Theta(n)$

Ricerca Binaria

- Input: una sequenza ordinata di interi, ed un numero da cercare in essa
- Output: 1 se l'elemento cercato esiste nella sequenza, 0 altrimenti
- Analizziamo la porzione di codice dopo che:
 - La sequenza è stata caricata in memoria
 - \bullet M[1] e M[2] contengono gli indirizzi della prima e dell'ultima cella della sequenza stessa

Ricerca Binaria: codice

1		READ 3	16		JZ yes
2		LOAD 1	17		JLT low
3		STORE 4	18		JUMP high
4		ADD 2	19	low:	LOAD 6
5		SUB= 1	20		SUB= 1
6		STORE 5	21		STORE 5
7	loop:	LOAD 5	22		JUMP loop
8		SUB 4	23	high:	LOAD 6
9		JZ no	24		ADD= 1
10		LOAD 5	25		STORE 4
11		ADD 4	26		JUMP loop
12		DIV= 2	27	yes:	WRITE= 1
13		STORE 6	28		HALT
14		LOAD* 6	29	no:	WRITE= O
15		SUB 3	30		HALT

Limiti del criterio di costo

Numeri molto grandi

- ullet Consideriamo il caso del calcolo di 2^{2^n} con una RAM
- Uno schema di implementazione possibile è
 read(n); x=2;
 for(int i=0; i < n; i++) {x = x*x;}
 write(n):</pre>
- Che complessità temporale ha l'implementazione qui sopra? $T_{\mathcal{R}AM}(n) = k_1 + nk_2 + k_3 = \Theta(n)$
- Qualcosa non va: mi servono 2^n bit solo per scrivere il risultato!

Un criterio di costo più preciso

Quando contare i singoli bit serve

- Il criterio di costo precedente considera un intero arbitrario di dimensione costante
 - È una semplificazione: "1" è più corto di "1000000"
- L'approssimazione regge fin quando una singola parola della macchina reale contiene gli interi che maneggiamo
- Se questo non accade, dobbiamo tenere conto del numero di cifre necessarie per rappresentare un intero
 - Caricare e salvare interi non è più a costo costante
 - Le operazioni elementari (somma, prodotto...) neppure
 - Anche gli indirizzi di memoria sono interi \rightarrow stesse problematiche nel (raro) caso in cui parola della macchina non riesce a contenere il massimo indirizzo (μ C a 8 bit)

Criterio di costo logaritmico

Contare i singoli bit

- Copiare/spostare/scrivere/leggere un intero i costa tanto quanto il suo numero di cifre in base b: $\log_b(i) = \Theta(\log(i))$
 - Con b=2 il costo è il numero di bit usati per rappresentare i
- Il costo delle operazioni aritmetico/logiche elementari dipende dall'operazione (definiamo $d = \log_2(i)$)
 - Addizioni, sottrazioni, op. al bit $\Theta(d)$
 - Moltiplicazioni: metodo scolastico $\Theta(d^2)$
 - Primo miglioramento: $\Theta(d^{\log_2(3)}) \approx \Theta(d^{1.58})$
 - Ulteriore miglioramento: $\Theta(d \log(d) \log(\log(d)))$
 - Miglior algoritmo attuale: $\Theta(d \log(d))$
 - Divisioni: metodo scolastico $\Theta(d^2)$, o al costo dell'algoritmo di moltiplicazione scelto per $\log^2(d)$
- JUMP e HALT sono a costo costante, così come le Jcc (il valore del codice di condizione è nella PSW, già calcolato)

Calcolo di 2^{2^n} , complessità a costo logaritmico

```
Analisi di caso pessimo, MUL scolastica
                READ 2 \log(n)
                LOAD= 2 \log(2) = k
                STORE 1 \log(2) = k
               LOAD 1 \log(2^{2^{n-1}}) = 2^{n-1}

MUL 1 (\log(2^{2^{n-1}}))^2 = (2^{n-1})^2 = 2^{2n-2}
       loop:
  5
                STORE 1 \log(2^{2^n}) = 2^n
  6
                LOAD 2 \log(n)
  8
                SUB= 1 \log(n)
  9
                          \log(n-1)
                STORE 2
 10
                JGT loop
                            \log(2^{2^n}) = 2^n
 11
                WRITE 1
 12
                HALT
T_{RAM}(n) = \log(n) + n(2^{n-1} + 2^{2n-2} + 2^n + 3\log_2(n)) + 2^n = \Theta(n2^{2n-2})
```

Rapporti tra criteri di costo

Ri-analizzando

- Riconoscere $L = \{wcw^R\}$ è $\Theta(n \log(n))$ (colpa del contatore)
- Ricerca binaria: $\Theta(\log(n)^2)$ (colpa degli indici)

Quale criterio scegliere?

- Se la dimensione di ogni singolo elemento in ingresso non varia significativamente nell'esecuzione dell'algoritmo (= stesso numero di cifre per tutta l'esecuzione): costo costante
- Nel caso in cui ci sia un significativo cambio nella dimensione dei singoli elementi in ingresso (= il numero di cifre cresce in modo significativo): costo logaritmico

Rapporti tra complessità con diversi modelli di calcolo

Modelli di calcolo diversi → diversa efficienza

- Risolvere lo stesso problema con macchine diverse può dare luogo a complessità diverse
- Non esiste un modello migliore in assoluto

Tesi di correlazione polinomiale

- Sotto "ragionevoli" ipotesi di criteri di costo, se un problema è risolvibile da $\mathcal M$ in $T_{\mathcal M}(n)$, allora è risolvibile da un qualsiasi altro modello (Turing-completo) $\mathcal M'$ in $T_{\mathcal M'}(n)=\pi(T_{\mathcal M}(n))$ dove $\pi(\cdot)$ è un opportuno polinomio
- Dimostriamo il teorema di correlazione (temporale) polinomiale tra MT e RAM

RAM simula MT a k nastri: simulazione delle azioni

- Mappiamo la MT sulla RAM:
 - Stato della MT → Prima cella di memoria della RAM
 - Una cella RAM per ogni cella del nastro
 - ullet Suddividiamo la restante memoria della RAM in blocchi da k celle
- Riempiamo i blocchi con questa strategia:
 - Blocco 0 : posizione delle k testine
 - Blocco n, n > 0: n-esimo simbolo di ognuno dei k nastri
- La RAM emula la lettura di un carattere sotto la testina con un accesso indiretto, usando l'indice contenuto nel blocco 0

RAM simula MT a k nastri: lettura

- Lettura del il blocco 0 e dello stato $(\Theta(k))$ mosse)
- ullet Lettura dei valori sui nastri in corrispondenza delle testine $(\Theta(k))$ accessi indiretti)

RAM simula MT a k nastri: Scrittura

- Scrittura dello stato $(\Theta(1))$
- Scrittura delle celle dei nastri ($\Theta(k)$) accessi indiretti)
- Scrittura nel blocco 0 per aggiornare le posizioni delle k testine $(\Theta(k))$

Complessità dell' emulazione

• RAM emula una mossa della MT con un k di mosse: $T_{\mathcal{RAM}}(n) = \Theta(T_{\mathcal{M}}(n))$ (= $\Theta(T_{\mathcal{M}}(n) \log(T_{\mathcal{M}}(n)))$ costo log.)

MT a k nastri simula RAM (senza MUL/DIV per semplicità)

Organizziamo un nastro della MT così:

- Il nastro è inizialmente vuoto: salviamo solo le celle in cui è avvenuta una STORE
- Usiamo un ulteriore nastro per contenere M[0] in binario
- Usiamo un ultimo nastro come stoccaggio temporaneo per quando serve salvare per la prima volta $M[i_j]$ ma $M[i_k]$ e $M[i_l]$, $i_k < i_j < i_l$, sono state già salvate

MT a k nastri simula RAM: simulare istruzioni

- \bullet LOAD x: cerco x sul nastro principale, copio la porzione accanto nella zona dati di M[0] usando il nastro di supporto
- STORE x: cerco x sul nastro principale:
 - Se lo trovo, salvo il valore di M[0]
 - Altrimenti, creo dello spazio usando il nastro di servizio se necessario e salvo
- ADD x: cerco x, copio $\mathtt{M}[x]$ sul nastro di supporto, calcolo la somma scrivendo direttamente in $\mathtt{M}[0]$
- In generale: simulare una mossa della RAM richiede alla MT un numero di mosse < da $c \times (lunghezza del nastro principale)$

Lemma (Occupazione sul nastro principale)

Lo spazio occupato sul nastro principale è $\mathcal{O}(T_{\mathcal{RAM}}(n))$

Dimostrazione.

- ullet Ogni cella della RAM occupa $\log(i_j) + \log(\mathtt{M}[i_j])$
- Ogni cella della RAM viene materializzata solo se la RAM effettua una STORE
- ullet La STORE costa alla RAM $\log(i_j) + \log(\mathtt{M}[i_j])$
- Per riempire r celle la RAM ci mette $\sum_{j=1}^r \log(i_j) + \log(\mathtt{M}[i_j])$ in tempo: quantità identica allo spazio che occupano sul nastro della MT

Concludendo

- La MT impiega al più $\Theta(T_{\mathcal{RAM}}(n))$ per simulare una mossa della RAM
- Se la RAM ha complessità $T_{\mathcal{RAM}}(n)$ essa effettua al più $T_{\mathcal{RAM}}(n)$ mosse (ogni mossa costa almeno 1)
- La simulazione completa della RAM da parte della MT costa al più $\Theta((T_{\mathcal{RAM}}(n))^2)$ il legame tra $T_{\mathcal{RAM}}(n)$ e $T_{\mathcal{MT}}(n)$ tra è polinomiale

Conseguenze della correlazione temporale tra MT RAM

Implicazioni della correlazione polinomiale

- La relazione polinomiale tra il tempo di calcolo su $T_{\mathcal{RAM}}(n)$ e $T_{\mathcal{MT}}(n)$ ci consente di definire la classe di problemi risolvibili in tempo/spazio polinomiale (classe P)
- Questo risultato ha portato alla formulazione di una "tesi di trattabilità": i problemi risolvibili in P sono quelli trattabili
- La classe P comprende anche polinomi come n^{30} , ma l'esperienza pratica conferma che la maggioranza dei problemi polinomiali di interesse pratico ha anche un grado del polinomio accettabile