

Algoritmos e Lógica de Programação

Webaula 2

Tipos de dados e expressões: literais, lógicas e aritméticas Experimente

Na aula passada, você investiu o seu tempo para obter as informações que serão necessárias para apresentar o algoritmo do protótipo do aplicativo, passo a passo. Você viu que:

- As ações precisam ser codificadas e decodificadas para a linguagem de computador (ASCII).
- A lógica existente entre os processos que o aplicativo deverá executar.
- A competência técnica da equipe de desenvolvimento para a identificação das expressões e os tipos de dados que serão utilizados bem como o que é variável ou constante.

$$\rho^{p} > \sum_{j=0,j\neq p} A_{j}\rho^{j}, \qquad \Delta_{L} \qquad \text{Melhore esta Webaula} \qquad 2$$

$$Q_{n+k}(x)]^{T}V_{k}^{+}Q_{n+k}(y), \qquad G(u) = \prod_{k=1}^{\mu} (u + u_{k})G_{0}(u), \qquad \Delta_{L} \arg f(z) = (\pi/2)(S_{1} + S_{2})$$

$$\prod_{k=1}^{\mu} (u + u_{k})G_{0}(u), \quad \rho^{p} > \sum_{j=0,j\neq p}^{n} A_{j}\rho^{j}, \qquad K_{n}^{(r)}(x,y) = K_{n}(x,y) + \sum_{k=0}^{r} [V_{k}^{+}Q_{n+k}(x)]^{T}V_{k}^{-1}Q_{n+k}(y), \qquad K_{n}^{(r)}(x,y) = K_{n}(x,y) + \sum_{k=0}^{r} [V_{k}^{+}Q_{n+k}(x)]^{T}V_{k}^{-1}Q_{n+k}(y), \qquad G(u) = \prod_{k=1}^{\mu} (u + u_{k})G_{0}(u), \qquad K_{n}^{(r)}(x,y) = K_{n}(x,y) + \sum_{k=0}^{r} [V_{k}^{+}Q_{n+k}(x)]^{T}V_{k}^{+}Q_{n+k}(y), \qquad K_{n}^{(r)}(x,y) = K_{n}(x,y) + \sum_{k=0}^{r} [V_{k}^{+}Q_{n+k}(x)]^{T}V_{k}^{+}Q_{n+k}(y), \qquad K_{n}^{(r)}(x,y) = K_{n}(x,y) + \sum_{k=0}^{r} [U_{k}^{+}Q_{n+k}(x)]^{T}V_{k}^{+}Q_{n+k}(y), \qquad G(u) = \prod_{k=1}^{\mu} (u + u_{k})G_{0}(u). \qquad G(u) = \prod_{k=1}^{\mu} (u + u_{k})G_{0}(u). \qquad G(u) = \prod_{k=1}^{\mu} (u + u_{k})G_{0}(u). \qquad G(u) = \prod_{k=0}^{\mu} (u + u_{k})G_{0}(u). \qquad G(u) = \prod_{k=0}^$$

Fonte: Shutterstock (2015)

A fim de apresentar uma solução em algoritmos para os comerciantes do Litoral Sul, a sua missão nesta fase é definir as expressões matemáticas, lógicas e literais que serão utilizadas. Ao conjunto de operações é dado o nome de função. Defina, de acordo com o algoritmo apresentado anteriormente, quais serão e como devem ser implementadas. Além das expressões, identifique também quais são os tipos de dados e as respectivas variáveis ou constantes que devem ser declaradas para a realização das operações.

Você pode utilizar, para os cálculos mais complexos, operadores e funções em linguagem algorítmica para as mais diversas operações que o aplicativo deverá executar. As expressões, os tipos de dados e variáveis aqui apresentados servem como referência para o desenvolvimento de software independentemente da linguagem ou paradigma de programação, no entanto, é preciso se atentar à sintaxe de cada um deles.

Clique sobre a palavra em destaque.

A fim de apresentar uma solução em algoritmos para os comerciantes do Litoral Sul, a sua missão nesta fase é definir as expressões matemáticas, lógicas e literais que serão utilizadas. Ao conjunto de operações é dado o nome de função. Defina, de acordo com o algoritmo

Relembre: Como vimos na Webaula 1, algoritmo pode ser definido como um conjunto de processos ou ações que obedecem a uma sequência lógica para executar uma tarefa. Jis serão e s. Além das n quais são as variáveis eclaradas

Você pode utilizar, para os cálculos mais complexos, operadores e funções em linguagem algorítmica para as mais diversas operações que o aplicativo deverá executar. As expressões, os tipos de dados e variáveis aqui apresentados servem como referência para o desenvolvimento de software independentemente da linguagem ou paradigma de programação, no entanto, é preciso se atentar à sintaxe de cada um deles.

Clique sobre a palavra em destaque.

Você já conheceu alguns operadores matemáticos que são comumente utilizados para cálculos considerados simples. Mas e se você precisar calcular, por exemplo, uma equação de segundo grau ou ainda uma integral, derivadas, logaritmos?

Enfim, há uma infinidade de funções e suas aplicações são importantes! Vamos conhecer outros operadores matemáticos que auxiliam na elaboração de funções e cálculos mais complexos.

Tabela 1: Operações complexas com operador.

Operações	Operador	Exemplo
Exponenciação	۸	a ^ b
Divisão inteira	\	a\b retorna o valor inteiro da divisão

Módulo	%	a %b resto de divisão
Inversão de sinal	-	-a (-(-a) resulta em a)

Fonte: Piva Junior. (2012, p. 61)

Tabela 2: Operações complexas com funções.

Operações	Funções	Explicação
Raiz Quadrada	Raizq(x)	Raiz quadrada
Exponenciação	Exp(x,y)	x elevado a y
Valor absoluto	Abs(x)	Valor absoluto de x
Arco Cosseno	ArcCos(x)	Ângulo em radianos cujo cosseno é representado por x
Arco Seno	ArcSen(x)	Ângulo em radianos cujo seno é representado por x
Arco Tangente	ArcTan(x)	Ângulo em radianos
Cosseno	Cos(x)	Cosseno em radianos do ângulo x
Cotangente	CoTan(x)	Retorna o ângulo x em radianos
Parte inteira do número	Int(x)	Retorna a parte inteira do número x
Logaritmo	Log(x)	Retorna o logaritmo de x na base 10
Logaritmo Neperiano	LogN(x)	Retorna o logaritmo neperiano de x (base e)
Valor Pi(∏)	Pi	Retorna o valor 3.141592
Quadrado	Quad(x)	Retorna o quadrado de x
Valor aleatório	Rand	Randômico entre 0 e 1
Seno	Sen(x)	Retorna o seno do ângulo x em radianos
Tangente	Tan(x)	Retorna a tangente do ângulo x em radianos

Fonte: Piva Junior (2012, p. 61-62).

Clique na tabela para ampliá-la:

Tabela 2: Operações complexas com funções.

Operações	Funções	Explicação	
Raiz Quadrada	Raizq(x)	Raiz quadrada	
Exponenciação	Exp(x,y)	x elevado a y	
Valor absoluto	Abs(x)	Valor absoluto de x	
Arco Cosseno	ArcCos(x)	Ângulo em radianos cujo cosseno é representado por x	
Arco Seno	ArcSen(x)	Ângulo em radianos cujo seno é representado por x	
Arco Tangente	ArcTan(x)	Ângulo em radianos	
Cosseno	Cos(x)	Cosseno em radianos do ângulo x	
Cotangente	CoTan(x)	Retorna o ângulo x em radianos	
Parte inteira do número	Int(x)	Retorna a parte inteira do número x	
Logaritmo	Log(x)	Retorna o logaritmo de x na base 10	
Logaritmo Neperiano	LogN(x)	Retorna o logaritmo neperiano de x (base e)	
Valor Pi(π)	Pi	Retorna o valor 3.141592	
Quadrado	Quad(x)	Retorna o quadrado de x	
Valor aleatório	Rand	Randômico entre 0 e 1	
Seno	Sen(x)	Retorna o seno do ângulo x em radianos	
Tangente	Tan(x)	Retorna a tangente do ângulo x em radianos	

Há também os operadores lógicos e relacionais. Veja a seguir:

Tabela 3: Operadores relacionais.

Operações	Operador	Exemplo
Igual	=	a = b (a é igual a b?)
Diferente	<>	a < > b (a é diferente de b?)
Maior que	>	a > b (a é maior que b?)
Menor que	<	a < b (a é menor que b?)
Maior ou igual	>=	a >= b (a é maior ou igual a b?)
Menor ou igual	<=	a <= (a é menor ou igual a b?)

Fonte: Piva Junior (2012, p. 62-63).

Operadores lógicos e relacionais:

Tabela 4: Operadores lógicos.

Operadores	Significado		
não	É unário na negação. Tem a maior precedência entre os operadores lógicos. não (VERDADEIRO)= FALSO, e não (FALSO)= VERDADEIRO		
ou	Resulta em Verdadeiro quando um dos seus operandos lógicos for verdadeiro		
е	Operador que resulta VERDADEIRO apenas se seus dois operandos lógicos forem verdadeiros		
xou	Operador que resulta VERDADEIRO se seus dois operandos lógicos forem diferentes, e FALSO se forem iguais		

Fonte: Piva Junior (2012, p. 63-64).

Cada uma dessas operações pode auxiliar o seu trabalho para a execução de operações matemáticas, por exemplo.

Webaula 2

Tipos de dados e expressões: literais, lógicas e aritméticas

Explore

Olá, Aluno!

Vamos agora aprofundar as leituras do material didático, então, acompanhe a explicação dos conteúdos a seguir sobre os respectivos testes e aplicações dos operadores lógicos. Vamos lá!

Link

Mas antes, sugiro a leitura do material sobre Caracteres. Ela te ajudará a compreender ainda mais o contexto desde a declaração das variáveis até o uso dos operadores. Disponível em: http://www.ime.usp.br/~pf/algoritmos/aulas/char.html. Acesso em: 10 abr. 2015.

Para verificar se as proposições são verdadeiras ou falsas de acordo com o operador lógico que é utilizado, é aconselhável que você saiba como realizar o teste. Para tal, a sugestão é o uso da tabela verdade.

Então, a considerar os operadores lógicos, confira a seguir os testes que podem ser realizados.

Conheça o exemplo: Suponha que uma concessionária tenha uma meta por vendedor de 18 carros por mês e o mínimo de R\$ 58.000,00 de valor bruto de vendas. Se o vendedor atingir a meta, ele receberá 10% de comissão. Senão, o vendedor recebe apenas 0,08% do total como participação nas vendas.

Clique sobre as áreas em destaque:

Fonte: Shutterstock, (2015).

Para a expressão: A= B e D, observe:

В	D	A= B e D
Falso	Falso	Falso
Falso	Verdadeiro	Falso
Verdadeiro	Falso	Falso
Verdadeiro	Verdadeiro	Verdadeiro

Seja A o valor da comissão, B o total de carros vendidos e D o valor mínimo de vendas, elabore a expressão lógica que atenda esta operação.

Clique aqui para ver a resposta.

Resposta: a expressão que representa essa operação é:

Considere que, devido a uma mudança na regra, agora o operador irá aceitar ao menos uma das condições para que resulte em verdadeiro. Observe como fica a expressão com o operador lógico ou:

В	D	A= B ou D
Falso	Falso	Falso
Falso	Verdadeiro	Verdadeiro
Verdadeiro	Falso	Verdadeiro
Verdadeiro	Verdadeiro	Verdadeiro

Elabore a expressão lógica que atenda esta operação.

Clique aqui para ver a resposta.

Resposta: a expressão que representa essa operação é:

Ainda considerando o exemplo do vendedor de carros, elabore a expressão que representa esta operação:

В	A= não B
Falso	Verdadeiro
Verdadeiro	Falso

Elabore a expressão lógica que atenda esta operação.

Clique aqui para ver a resposta.

Resposta: a expressão que representa essa operação é: Resposta: A= (nao(B>=18) e (nao(D>=58.000)).

Assista ao vídeo Lógica de Programação: Operadores Lógicos I e veja as aplicações dos operadores lógicos. Está em uma linguagem fácil e acessível. Bons estudos!

Bons Estudos