MAX 10 Embedded Memory User Guide

Contents

MAX 10 Embedded Memory Overview	1-1
MAX 10 Embedded Memory Architecture and Features	2-1
MAX 10 Embedded Memory General Features	
Control Signals	
Parity Bit	
Read Enable	
Read-During-Write	
Byte Enable	
Packed Mode Support	
Address Clock Enable Support	
11	
Asynchronous Clear	
Supported Memory Operation Modes	
MAX 10 Embedded Memory Clock Modes	
Asynchronous Clear in Clock Modes	
Output Read Data in Simultaneous Read and Write	
Independent Clock Enables in Clock Modes	
MAX 10 Embedded Memory Configurations	
Port Width Configurations	
Mixed-Width Port Configurations	
Maximum Block Depth Configuration	
Waxiiiaii Block Deptii Goinigaration	
MAX 10 Embedded Memory Design Consideration	
Implement External Conflict Resolution	3-]
Customize Read-During-Write Behavior	3-]
Same-Port Read-During-Write Mode	3-2
Mixed-Port Read-During-Write Mode	3-3
Consider Power-Up State and Memory Initialization	3-5
Control Clocking to Reduce Power Consumption	
Selecting Read-During-Write Output Choices	3-6
RAM: 1-Port IP Core References	4-1
RAM: 1-Port IP Core Signals For MAX 10 Devices	
RAM: 1-Port IP Core Parameters For MAX 10 Devices	
KAIVI, 1-POIL IP COIE PALAINELEIS FOI IVIAA 10 DEVICES	4-3
RAM: 2-PORT IP Core References	5-1
RAM: 2-Ports IP Core Signals (Simple Dual-Port RAM) For MAX 10 Devices	5-5
RAM: 2-Port IP Core Signals (True Dual-Port RAM) for MAX 10 Devices	

RAM: 2-Port IP Core Parameters for MAX 10 Devices	5-9
ROM: 1-PORT IP Core References	6-1
ROM: 1-PORT IP Core Signals For MAX 10 Devices	
ROM: 1-PORT IP Core Parameters for MAX 10 Devices	
ROM: 1-PORT IF Core Parameters for MAX to Devices	0-4
ROM: 2-PORT IP Core References	7-1
ROM: 2-PORT IP Core Signals for MAX 10 Devices	
ROM:2-Port IP Core Parameters For MAX 10 Devices	
Shift Register (RAM-based) IP Core References	8-1
Shift Register (RAM-based) IP Core Signals for MAX 10 Devices	
Shift Register (RAM-based) IP Core Parameters for MAX 10 Devices	
FIFO IP Core References	9-1
FIFO IP Core Signals for MAX 10 Devices	
FIFO IP Core Parameters for MAX 10 Devices	9-4
ALTMEMMULT IP Core References	10-1
ALTMEMMULT IP Core Signals for MAX 10 Devices	
ALTMEMMULT IP Core Parameters for MAX 10 Devices	
Additional Information for MAX 10 Embedded Memory User	Guide A-1
Document Revision History for MAX 10 Embedded Memory User Guide	A-1

MAX 10 Embedded Memory Overview

1

2015.05.04

UG-M10MEMORY

\boxtimes	Subscribe	\bigcirc	Send Feedback
-------------	-----------	------------	---------------

 $\mathrm{MAX}^{\scriptscriptstyle{(8)}}$ 10 embedded memory block is optimized for applications such as high throughput packet processing, embedded processor program, and embedded data storage.

© 2015 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

ISO 9001:2008 Registered

MAX 10 Embedded Memory Architecture and Features

2

2015.05.04

UG-M10MEMORY

The MAX 10 embedded memory structure consists of 9,216-bit (including parity bits) blocks. You can use each M9K block in different widths and configuration to provide various memory functions such as RAM, ROM, shift registers, and FIFO.

The following list summarizes the MAX 10 embedded memory features:

- Embedded memory general features
- Embedded memory operation modes
- Embedded memory clock modes

Related Information

MAX 10 Device Overview

For information about MAX 10 devices embedded memory capacity and distribution

MAX 10 Embedded Memory General Features

MAX 10 embedded memory supports the following general features:

- 8,192 memory bits per block (9,216 bits per block including parity).
- Independent read-enable (rden) and write-enable (wren) signals for each port.
- Packed mode in which the M9K memory block is split into two 4.5 K single-port RAMs.
- Variable port configurations.
- Single-port and simple dual-port modes support for all port widths.
- True dual-port (one read and one write, two reads, or two writes) operation.
- Byte enables for data input masking during writes.
- Two clock-enable control signals for each port (port A and port B).
- Initialization file to preload memory content in RAM and ROM modes.

Control Signals

The clock-enable control signal controls the clock entering the input and output registers and the entire M9K memory block. This signal disables the clock so that the M9K memory block does not see any clock edges and does not perform any operations.

© 2015 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

ISO 9001:2008 Registered

The rden and wren control signals control the read and write operations for each port of the M9K memory blocks. You can disable the rden or wren signals independently to save power whenever the operation is not required.

Figure 2-1: Register Clock, Clear, and Control Signals Implementation in M9K Embedded Memory Block

Parity Bit

You can perform parity checking for error detection with the parity bit along with internal logic resources. The M9K memory blocks support a parity bit for each storage byte. You can use this bit as either a parity bit or as an additional data bit. No parity function is actually performed on this bit. If error detection is not desired, you can use the parity bit as an additional data bit.

Read Enable

M9K memory blocks support the read enable feature for all memory modes.

If you	Then
I I	The data output port retains the previous values that are held during the most recent active read enable.

If you	Then
 Activate the read enable during a write operation, or Do not create a read-enable signal 	 The output port shows: the new data being written, the old data at that address, or a "Don't Care" value when read-during-write occurs at the same address location.

Read-During-Write

The read-during-write operation occurs when a read operation and a write operation target the same memory location at the same time.

The read-during-write operation operates in the following ways:

- Same-port
- Mixed-port

Related Information

Customize Read-During-Write Behavior on page 3-1

Byte Enable

- Memory block that are implemented as RAMs support byte enables.
- The byte enable controls mask the input data, so that only specific bytes of data are written. The unwritten bytes retain the values written previously.
- The write enable (wren) signal, together with the byte enable (byteena) signal, control the write operations on the RAM blocks. By default, the byteena signal is high (enabled) and only the wren signal controls the writing.
- The byte enable registers do not have a clear port.
- M9K blocks support byte enables when the write port has a data width of $\times 16$, $\times 18$, $\times 32$, or $\times 36$ bits.
- Byte enables operate in a one-hot fashion. The LSB of the byteena signal corresponds to the LSB of the data bus. For example, if byteena = 01 and you are using a RAM block in ×18 mode, data[8:0] is enabled and data[17:9] is disabled. Similarly, if byteena = 11, both data[8:0] and data[17:9] are enabled.
- Byte enables are active high.

Byte Enable Controls

Table 2-1: M9K Blocks Byte Enable Selections

byteena[3:0]	Affected Bytes. Any Combination of Byte Enables is Possible.			bles is Possible.
byteena[5.0]	datain x 16	datain x 18	datain x 32	datain x 36
[0] = 1	[7:0]	[8:0]	[7:0]	[8:0]
[1] = 1	[15:8]	[17:9]	[15:8]	[17:9]
[2] = 1	_	_	[23:16]	[26:18]
[3] = 1	_	_	[31:24]	[35:27]

MAX 10 Embedded Memory Architecture and Features

Altera Corporation

Data Byte Output

If you	Then
Deassert a byte-enable bit during a write cycle	The old data in the memory appears in the corresponding data-byte output.
Assert a byte-enable bit during a write cycle	The corresponding data-byte output depends on the Quartus [®] II software setting. The setting can be either the newly written data or the old data at that location.

RAM Blocks Operations

This figure shows how the wren and byteena signals control the RAM operations.

Figure 2-2: Byte Enable Functional Waveform

For this functional waveform, New Data Mode is selected.

Packed Mode Support

You can implement two single-port memory blocks in a single block under the following conditions:

- Each of the two independent block sizes is less than or equal to half of the M9K block size. The maximum data width for each independent block is 18 bits wide.
- Each of the single-port memory blocks is configured in single-clock mode.

Related Information

MAX 10 Embedded Memory Clock Modes on page 2-9

Address Clock Enable Support

- The address clock enable feature holds the previous address value for as long as the address clock enable signal (addressstall) is enabled (addressstall = 1).
- When you configure M9K memory blocks in dual-port mode, each port has its own independent address clock enable.
- Use the address clock enable feature to improve the effectiveness of cache memory applications during a cache-miss.
- The default value for the addressstall signal is low.
- The address register output feeds back to its input using a multiplexer. The addressstall signal selects the multiplexer output.

Figure 2-3: Address Clock Enable Block Diagram

Address Clock Enable During Read Cycle Waveform

Figure 2-4: Address Clock Enable Waveform During Read Cycle

Address Clock Enable During Write Cycle Waveform

Figure 2-5: Address Clock Enable Waveform During Write Cycle

Asynchronous Clear

You can selectively enable asynchronous clear per logical memory using the RAM: 1-PORT and RAM: 2-PORT IP cores.

The M9k block supports asynchronous clear for:

- Read address registers: Asserting asynchronous clear to the read address register during a read operation might corrupt the memory content.
- Output registers: When applied to output registers, the asynchronous clear signal clears the output registers and the effects are immediately seen. If your RAM does not use output registers, you can still clear the RAM outputs using the output latch asynchronous clear feature.
- Output latches

Note: Input registers other than read address registers are not supported.

Figure 2-6: Output Latch Asynchronous Clear Waveform

Related Information

• Internal Memory (RAM and ROM) User Guide.

Resetting Registers in M9K Blocks

There are three ways to reset registers in the M9K blocks:

- Power up the device
- Use the aclr signal for output register only
- Assert the device-wide reset signal using the **DEV_CLRn** option

MAX 10 Embedded Memory Operation Modes

The M9K memory blocks allow you to implement fully-synchronous SRAM memory in multiple operation modes. The M9K memory blocks do not support asynchronous (unregistered) memory inputs.

Note: Violating the setup or hold time on the M9K memory block input registers may corrupt memory contents. This applies to both read and write operations.

Supported Memory Operation Modes

Table 2-2: Supported Memory Operation Modes in the M9K Embedded Memory Blocks

Memory Operation Mode	Related IP Core	Description
Single-port RAM	RAM: 1-PORT IP Core	Single-port mode supports non-simultaneous read and write operations from a single address.
		Use the read enable port to control the RAM output ports behavior during a write operation:
		 To show either the new data being written or the old data at that address, activate the read enable during a write operation. To retain the previous values that are held during the most recent active read enable, perform the write operation with the read enable port deasserted.
Simple dual-port RAM	RAM: 2-PORT IP Core	You can simultaneously perform one read and one write operations to different locations where the write operation happens on port A and the read operation happens on port B.
True dual-port RAM	RAM: 2-PORT IP Core	You can perform any combination of two port operations: • two reads, two writes, or, • one read and one write at two different clock frequencies.

Memory Operation Mode	Related IP Core	Description
Single-port ROM	ROM: 1-PORT IP Core	Only one address port is available for read operation.
		You can use the memory blocks as a ROM.
		 Initialize the ROM contents of the memory blocks using a .mif or .hex file. The address lines of the ROM are registered. The outputs can be registered or unregistered. The ROM read operation is identical to the read operation in the single-port RAM configuration.
Dual-port ROM	ROM: 2-PORT IP Core	The dual-port ROM has almost similar functional ports as single-port ROM. The difference is dual-port ROM has an additional address port for read operation.
		You can use the memory blocks as a ROM.
		 Initialize the ROM contents of the memory blocks using a .mif or .hex file. The address lines of the ROM are registered. The outputs can be registered or unregistered. The ROM read operation is identical to the read operation in the single-port RAM configuration.
Shift-register	Shift Register (RAM- based) IP Core	You can use the memory blocks as a shift-register block to save logic cells and routing resources.
		The input data width (w), the length of the taps (m), and the number of taps (n) determine the size of a shift register ($w \times m \times n$).
		You can cascade memory blocks to implement larger shift registers.
FIFO	FIFO IP Core	You can use the memory blocks as FIFO buffers.
		 Use the FIFO IP core in single clock FIFO (SCFIFO) mode and dual clock FIFO (DCFIFO) mode to implement single- and dual-clock FIFO buffers in your design. Use dual clock FIFO buffers when transferring data from one clock domain to another clock domain. The M9K memory blocks do not support simultaneous read and write from an empty FIFO buffer.
Memory-based multiplier	ALTMEMMULT IP Core	You can use the memory blocks as a memory-based multiplier.

Related Information

MAX 10 Embedded Memory Related IPs

MAX 10 Embedded Memory Clock Modes

				Modes		
Clock Mode	Description	True Dual- Port	Simple Dual- Port	Single- Port	ROM	FIFO
Independent Clock Mode	 A separate clock is available for the following ports: Port A—Clock A controls all registers on the port A side. Port B—Clock B controls all registers on the port B side. 	Yes	_	_	Yes	_
Input/Output Clock Mode	 M9K memory blocks can implement input or output clock mode for single-port, true dual-port, and simple dual-port memory modes. An input clock controls all input registers to the memory block, including data, address, byteena, wren, and rden registers. An output clock controls the data-output registers. 	Yes	Yes	Yes	Yes	_
Read or Write Clock Mode	 M9K memory blocks support independent clock enables for both the read and write clocks. A read clock controls the data outputs, read address, and read enable registers. A write clock controls the data inputs, write address, and write enable registers. 	_	Yes	_	_	Yes
Single-Clock Mode	A single clock, together with a clock enable, controls all registers of the memory block.	Yes	Yes	Yes	Yes	Yes

Related Information

- Packed Mode Support on page 2-4
- Control Clocking to Reduce Power Consumption on page 3-5
- Output Read Data in Simultaneous Read and Write on page 2-10

Asynchronous Clear in Clock Modes

In all clock modes, asynchronous clear is available only for output latches and output registers. For independent clock mode, this is applicable on port A and port B.

Output Read Data in Simultaneous Read and Write

If you perform a simultaneous read/write to the same address location using the read or write clock mode, the output read data is unknown. If you want the output read data to be a known value, use single-clock or input/output clock mode and then select the appropriate read-during-write behavior in the RAM: 1-PORT and RAM: 2-PORT IP cores.

Related Information

MAX 10 Embedded Memory Clock Modes on page 2-9

Independent Clock Enables in Clock Modes

Table 2-3: Supported Clock Modes for Independent Clock Enables

Clock Mode	Description
Read/write	Supported for both the read and write clocks.
Independent	Supported for the registers of both ports.

MAX 10 Embedded Memory Configurations

Table 2-4: Maximum Configurations Supported for M9K Embedded Memory Blocks

Feature	M9K Block
	8192 × 1
	4096 × 2
Configurations (depth × width)	2048×4
	1024×8
	1024 × 9
	512 × 16
	512 × 18
	256×32
	256 × 36

Port Width Configurations

The following equation defines the port width configuration: Memory depth (number of words) \times Width of the data input bus.

- If your port width configuration (either the depth or the width) is more than the amount an internal memory block can support, additional memory blocks (of the same type) are used. For example, if you configure your M9K as 512×36 , which exceeds the supported port width of 512×18 , two M9Ks are used to implement your RAM.
- In addition to the supported configuration provided, you can set the memory depth to a non-power of two, but the actual memory depth allocated can vary. The variation depends on the type of resource implemented.
- If the memory is implemented in dedicated memory blocks, setting a non-power of two for the memory depth reflects the actual memory depth.
- When you implement your memory using dedicated memory blocks, refer to the Fitter report to check the actual memory depth.

Mixed-Width Port Configurations

The mixed-width port configuration support allows you to read and write different data widths to an M9K memory block. The following memory modes support the mixed-width port configuration:

- Simple dual-port RAM
- True dual-port RAM
- FIFO

M9K Block Mixed-Width Configurations (Simple Dual-Port RAM)

MISK BIOCK MI	wast block mixed-width Configurations (antiple Dual-Fort NAM)								
Read Port	Write Port Control of the Port								
neau roit	8192 × 1	4096 × 2	2048 × 4	1024 × 8	512 × 16	256 × 32	1024 × 9	512 × 18	256 × 36
8192 × 1	Yes	Yes	Yes	Yes	Yes	Yes	_		_
4096 × 2	Yes	Yes	Yes	Yes	Yes	Yes	_	_	_
2048 × 4	Yes	Yes	Yes	Yes	Yes	Yes	_	_	_
1024 × 8	Yes	Yes	Yes	Yes	Yes	Yes	_	_	_
512 × 16	Yes	Yes	Yes	Yes	Yes	Yes	_	_	_
256 × 32	Yes	Yes	Yes	Yes	Yes	Yes	_	_	_
1024 × 9	_	_	_	_	_	_	Yes	Yes	Yes
512 × 18	_	_	_	_	_	_	Yes	Yes	Yes
256 × 36	_	_	_	_	_	_	Yes	Yes	Yes

M9K Block Mixed-Width Configurations (True Dual-Port RAM Mode)

Read Port	Write Port						
nead Fort	8192×1	4096 × 2	2048 × 4	1024×8	512×16	1024×9	512 × 18
8192 × 1	Yes	Yes	Yes	Yes	Yes	_	_
4096 × 2	Yes	Yes	Yes	Yes	Yes	_	_
2048 × 4	Yes	Yes	Yes	Yes	Yes	_	_
1024 × 8	Yes	Yes	Yes	Yes	Yes	_	_

MAX 10 Embedded Memory Architecture and Features

Altera Corporation

Read Port	Write Port						
neau Foit	8192×1	4096 × 2	2048 × 4	1024×8	512×16	1024×9	512×18
512 × 16	Yes	Yes	Yes	Yes	Yes	_	_
1024 × 9	_	_	_	_	_	Yes	Yes
512 × 18	_	_	_	_	_	Yes	Yes

Maximum Block Depth Configuration

The **Set the maximum block depth** parameter allows you to set the maximum block depth of the dedicated memory block you use. You can slice the memory block to your desired maximum block depth. For example, the capacity of an M9K block is 9,216 bits, and the default memory depth is 8K, in which each address is capable of storing 1 bit (8K \times 1). If you set the maximum block depth to 512, the M9K block is sliced to a depth of 512 and each address is capable of storing up to 18 bits (512 \times 18).

Use this parameter to save power usage in your devices and to reduce the total number of memory blocks used. However, this parameter might increase the number of LEs and affects the design performance.

When the RAM is sliced shallower, the dynamic power usage decreases. However, for a RAM block with a depth of 256, the power used by the extra LEs starts to outweigh the power gain achieved by shallower slices.

The maximum block depth must be in a power of two, and the valid values vary among different dedicated memory blocks.

This table lists the valid range of maximum block depth for M9K memory blocks.

Table 2-5: Valid Range of Maximum Block Depth for M9K Memory Blocks

Memory Block	Valid Range
М9К	256 - 8K. The maximum block depth must be in a power of two.

The IP parameter editor prompts an error message if you enter an invalid value for the maximum block depth. Altera recommends that you set the value of the **Set the maximum block depth** parameter to **Auto** if you are unsure of the appropriate maximum block depth to set or the setting is not important for your design. The **Auto** setting enables the Compiler to select the maximum block depth with the appropriate port width configuration for the type of internal memory block of your memory.

MAX 10 Embedded Memory Design Consideration

2015.05.04

UG-M10MEMORY

Subscribe

There are several considerations that require your attention to ensure the success of your designs.

Implement External Conflict Resolution

In the true dual-port RAM mode, you can perform two write operations to the same memory location. However, the memory blocks do not have internal conflict resolution circuitry.

To avoid unknown data being written to the address, implement external conflict resolution logic to the memory block.

Customize Read-During-Write Behavior

Customize the read-during-write behavior of the memory blocks to suit your design requirements.

Figure 3-1: Difference Between the Two Types of Read-during-Write Operations —Same Port and Mixed Port.

Related Information

Read-During-Write on page 2-3

© 2015 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

ISO 9001:2008 Registered

Same-Port Read-During-Write Mode

The same-port read-during-write mode applies to a single-port RAM or the same port of a true dual-port RAM.

Table 3-1: Output Modes for Embedded Memory Blocks in Same-Port Read-During-Write Mode

This table lists the available output modes if you select the embedded memory blocks in the same-port read-during-write mode.

Output Mode	Description
"new data" (flow-through)	The new data is available on the rising edge of the same clock cycle on which the new data is written.
Ç	When using New Data mode together with byte enable, you can control the output of the RAM.
	When byte enable is high, the data written into the memory passes to the output (flow-through).
	When byte enable is low, the masked-off data is not written into the memory and the old data in the memory appears on the outputs. Therefore, the output can be a combination of new and old data determined by byteena.
"don't care"	The RAM outputs reflect the old data at that address before the write operation proceeds.

Figure 3-2: Same-Port Read-During-Write: New Data Mode

Figure 3-3: Same Port Read-During-Write: Old Data Mode

Mixed-Port Read-During-Write Mode

The mixed-port read-during-write mode applies to simple and true dual-port RAM modes where two ports perform read and write operations on the same memory address using the same clock—one port reading from the address, and the other port writing to it.

Table 3-2: Output Modes for RAM in Mixed-Port Read-During-Write Mode

Output Mode	Description
"old data"	A read-during-write operation to different ports causes the RAM output to reflect the "old data" value at the particular address.
"don't care"	The RAM outputs "don't care" or "unknown" value.

Figure 3-4: Mixed-Port Read-During-Write: Old Data Mode

In Don't Care mode, the old data is replaced with "Don't Care".

Mixed-Port Read-During-Write Operation with Dual Clocks

For mixed-port read-during-write operation with dual clocks, the relationship between the clocks determines the output behavior of the memory.

If You	Then
Use the same clock for the two clocks	The output is the old data from the address location.
Use different clocks	The output is unknown during the mixed-port read-during-write operation. This unknown value may be the old or new data at the address location, depending on whether the read happens before or after the write.

Consider Power-Up State and Memory Initialization

Consider the power-up state of the different types of memory blocks if you are designing logic that evaluates the initial power-up values, as listed in the following table:

Table 3-3: Initial Power-Up Values of Embedded Memory Blocks

Memory Type	Output Registers	Power Up Value	
M9K	Used	Zero (cleared)	
IVIDIK	Bypassed	Zero (cleared)	

By default, the Quartus II software initializes the RAM cells to zero unless you specify a .mif.

All memory blocks support initialization with a .mif. You can create .mif files in the Quartus II software and specify their use with the RAM IP when you instantiate a memory in your design. Even if a memory is preinitialized (for example, using a .mif), it still powers up with its output cleared. Only the subsequent read after power up outputs the preinitialized values.

Only the following MAX 10 configuration modes support memory initialization:

- Single Compressed Image with Memory Initialization
- Single Uncompressed Image with Memory Initialization

Related Information

Selecting Internal Configuration modes.

Provides more information about selecting MAX 10 internal configuration modes.

Control Clocking to Reduce Power Consumption

Reduce AC power consumption in your design by controlling the clocking of each memory block:

- Use the read-enable signal to ensure that read operations occur only when necessary. If your design does not require read-during-write, you can reduce your power consumption by deasserting the readenable signal during write operations, or during the period when no memory operations occur.
- Use the Quartus II software to automatically place any unused memory blocks in low-power mode to reduce static power.
- Create independent clock enable for different input and output registers to control the shut down of a particular register for power saving purposes. From the parameter editor, click **More Options** (beside the clock enable option) to set the available independent clock enable that you prefer.

Related Information

MAX 10 Embedded Memory Clock Modes on page 2-9

Selecting Read-During-Write Output Choices

- Single-port RAM only supports same-port read-during-write, and the clock mode must be either single clock mode, or input/output clock mode.
- Simple dual-port RAM only supports mixed-port read-during-write, and the clock mode must be either single clock mode, or input/output clock mode.
- True dual-port RAM supports same port read-during-write and mixed-port read-during-write.
 - For same port read-during-write, the clock mode must be either single clock mode, input/output clock mode, or independent clock mode.
 - For mixed port read-during-write, the clock mode must be either single clock mode, or input/ output clock mode.

Note: If you are not concerned about the output when read-during-write occurs and would like to improve performance, select **Don't Care**. Selecting **Don't Care** increases the flexibility in the type of memory block being used, provided you do not assign block type when you instantiate the memory block.

Table 3-4: Output Choices for the Same-Port and Mixed-Port Read-During-Write

	Single-Port RAM	Simple Dual- Port RAM	Tı	rue Dual-Port RAM
Memory Block	Same-Port Read-During- Write	Mixed-Port Read-During- Write	Same-Port Read-During- Write	Mixed-Port Read-During-Write
M9K	Don't Care	Old Data	New Data	Old Data
	New Data	Don't Care	Old Data	Don't Care
	Old Data			

RAM: 1-Port IP Core References

4

2015.05.04

UG-M10MEMORY

Subscribe

Send Feedback

The RAM: 1-Port IP core implements the single-port RAM memory mode.

Figure 4-1: RAM: 1-Port IP Core Signals with the Single Clock Option Enabled

Figure 4-2: RAM: 1-Port IP Core Signals with the Dual Clock Option Enabled

© 2015 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

ISO 9001:2008 Registered

RAM: 1-Port IP Core Signals For MAX 10 Devices

Table 4-1: RAM:1-Port IP Core Input Signals

Signal	Required	Description
data	Yes	Data input to the memory. The data port is required and the width must be equal to the width of the q port.
address	Yes	Address input to the memory.
wren	Yes	Write enable input for the wraddress port.
addressstall_a	Optional	Address clock enable input to hold the previous address of address_a port for as long as the addressstall_a port is high.
clock	Yes	The following list describes which of your memory clock must be connected to the clock port, and port synchronization in different clocking modes:
		 Single clock—Connect your single source clock to clock port. All registered ports are synchronized by the same source clock. Read/Write—Connect your write clock to clock port. All registered ports related to write operation, such as data_a port, address_a port, wren_a port, and byteena_a port are synchronized by the write clock. Input/Output—Connect your input clock to clock port. All registered input ports are synchronized by the input clock. Independent clock—Connect your port A clock to clock port. All registered input and output ports of port A are synchronized by the port A clock.
clkena	Optional	Clock enable input for clock port.
rden	Optional	Read enable input for rdaddress port.
aclr	Optional	Asynchronously clear the registered input and output ports. The asynchronous clear effect on the registered ports can be controlled through their corresponding asynchronous clear parameter, such as indata_aclr, wraddress_aclr, and so on.

Altera Corporation RAM: 1-Port IP Core References

Signal	Required	Description
inclock	Optional	 The following list describes which of your memory clock must be connected to the inclock port, and port synchronization in different clock modes: Single clock—Connect your single source clock to inclock port and outclock port. All registered ports are synchronized by the same source clock. Read/Write—Connect your write clock to inclock port. All registered ports related to write operation, such as data port, wraddress port, wren port, and byteena port are synchronized by the write clock. Input/Output—Connect your input clock to inclock port. All registered input ports are synchronized by the input clock.
inclocken	Optional	Clock enable input for inclock port.
outclock	Optional	The following list describes which of your memory clock must be connected to the outglock port, and port synchronization in different clock modes: • Single clock—Connect your single source clock to inclock port and outglock port. All registered ports are synchronized by the same source clock. • Read/Write—Connect your read clock to outglock port. All registered ports related to read operation, such as rdaddress port, rdren port, and q port are synchronized by the read clock. • Input/Output—Connect your output clock to outglock port. The registered q port is synchronized by the output clock.
outclocken	Optional	Clock enable input for outclock port.

Table 4-2: RAM:1-Port IP Core Output Ports

Signal	Required	Description
d	Yes	Data output from the memory. The q port must be equal to the width data port.

RAM: 1-Port IP Core Parameters For MAX 10 Devices

Table 4-3: RAM: 1-Port IP Core Parameters for MAX 10 Devices

This table lists the IP core parameters applicable to MAX 10 devices.

Parameter	Values	Description
Parameter Settings: Widths/Blk Type/Clks		

RAM: 1-Port IP Core References

Altera Corporation

Paramete	r	Values	Description
		1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 36, 40, 48, 64, 72, 108, 128, 144, and 256.	Specifies the width of the 'q' output bus in bits.
How many <x>-bit words of memory?</x>		32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, and 65536.	Specifies the number of <x>-bit words.</x>
What should the memo	ory block type be?		
Auto		On/Off	Specifies the memory block type. The
M9K		On/Off	types of memory block that are available for selection depends on your
LC		On/Off	target device.
	Use default logic cell style	On/Off	Specifies the logic cell implementation
Options	Use Stratix M512 emulation logic cell style	On/Off	options. This option is enabled only when you choose LCs memory type.
Set the maximum block depth to		Auto, 32, 64, 128, 256, 512, 1024, 2048, 4096, and 8192	Specifies the maximum block depth in words. This option is disabled only when you choose LCs memory type.
What clocking method	would you like to	use?	
Single clock		On/Off	A single clock and a clock enable controls all registers of the memory block.
Dual clock: use separate 'input' and 'output' clocks		On/Off	An input and an output clock controls all registers related to the data input and output to/from the memory block including data, address, byte enables, read enables, and write enables.
Parameter Settings: Regs/Clkens/Byte Enable/AcIrs			
Which ports should be	registered?		
'data' and 'wren' input ports		_	This option is automatically enabled. Specifies whether to register the read or write input and output ports.
'address' input port		_	This option is automatically enabled. Specifies whether to register the read or write input and output ports.
'q' output port		On/Off	Specifies whether to register the read or write input and output ports.

Altera Corporation RAM: 1-Port IP Core References

Parameter		Values	Description
Create one clock enable signal for each clock signal.		On/Off	Specifies whether to turn on the option to create one clock enable signal for each clock signal.
More Options	Use clock enable for port A input registers	On/Off	Specify whether to use clock enable for port A input and output registers.
	Use clock enable for port A output registers	On/Off	Specify whether to use clock enable for port A input and output registers.
	Create an 'addressstall_a' input port	On/Off	Specifies whether to create clock enables for address registers. You can create these ports to act as an extra active low clock enable input for the address registers.
Create an 'aclr' asynchronous clear for the registered ports.		On/Off	Specifies whether to create an asynchronous clear port for the registered ports.
More Options	'q' port	On/Off	Specifies whether the q port is cleared by the aclr port.
Create a 'rden' read enable signal		On/Off	Specifies whether to create a rden read enable signal.
Parameter Settings:	Read During Write	Option	
Single Port Read Du	ring Write Option		
What should the q output be when reading from a memory location being written to?		Don't Care New Data	Specifies the output behavior when read-during-write occurs.
		• Old Data	 Don't Care—The RAM outputs "don't care" or "unknown" values for read-during-write operation. New Data—New data is available on the rising edge of the same clock cycle on which it was written. Old Data— The RAM outputs reflect the old data at that address before the write operation proceeds.
Get x's for write masked bytes instead of old data when byte enable is used		On/Off	Turn on this option to obtain 'X' on the masked byte.
Parameter Settings:	Mem Init	•	
Do you want to spec	ify the initial conten	t of the memory?	

RAM: 1-Port IP Core References

Altera Corporation

Parameter	Values	Description
No, leave it blank	On/Off	Specifies the initial content of the memory. Initialize the memory to zero.
Initialize memory content data to XXX on power-up in simulation	On/Off	
Yes, use this file for the memory content data	On/Off	Allows you to specify a memory initialization file (.mif) or a hexadecimal (Intel-format) file (.hex). Note: The configuration scheme of your device is Internal
		Configuration. In order to use memory initialization, you must select a single image configuration mode with memory initialization, for example the Single Compressed Image with Memory Initialization option. You can set the configuration mode on the Configuration page of the Device and Pin Options dialog box.
Allow In-System Memory Content Editor to capture and update content independently of the system clock	On/Off	Specifies whether to allow In-System Memory Content Editor to capture and update content independently of the system clock.
The 'Instance ID' of this RAM is	_	Specifies the RAM ID.

Altera Corporation RAM: 1-Port IP Core References

RAM: 2-PORT IP Core References

5

2015.05.04

UG-M10MEMORY

Subscribe C

The RAM: 2-PORT IP core implements the simple dual-port RAM and true dual-port RAM memory modes.

Figure 5-1: RAM: 2-Port IP Core Signals With the One Read Port and One Write Port, and Single Clock Options Enabled

© 2015 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

ISO 9001:2008 Registered

Figure 5-2: RAM: 2-Port IP Core Signals with the One Read Port and One Write Port, and Dual Clock: Use Separate 'Read' and 'Write' Clocks Options Enabled

Figure 5-3: RAM: 2-Port IP Core Signals with the One Read Port and One Write Port, and Dual Clock: Use Separate 'Input' and 'Output' Clocks Options Enabled

Altera Corporation RAM: 2-PORT IP Core References

Figure 5-4: RAM: 2-Port IP Core Signals with the Two Read/Write Ports and Single Clock Options Enabled

Figure 5-5: RAM: 2-Port IP Core Signals with the Two Read/Write Ports and Dual Clock: Use Separate 'Input' and 'Output' Clocks Options Enabled

Altera Corporation RAM: 2-PORT IP Core References

Figure 5-6: RAM: 2-Port IP Core Signals with the Two Read/Write Ports and Dual Clock: Use Separate for A and B Ports Options Enabled

RAM: 2-Ports IP Core Signals (Simple Dual-Port RAM) For MAX 10 Devices

Table 5-1: RAM: 2-Ports IP Core Input Signals (Simple Dual-Port RAM)

Signal	Required	Description
data	Yes	Data input to the memory. The data port is required and the width must be equal to the width of the q port.
wraddress	Yes	Write address input to the memory. The wraddress port is required and must be equal to the width of the raddress port.
wren	Yes	Write enable input for wraddress port. The wren port is required.
rdaddress	Yes	Read address input to the memory. The rdaddress port is required and must be equal to the width of wraddress port.

Signal	Required	Description
clock	Yes	The following list describes which of your memory clock must be connected to the clock port, and port synchronization in different clock modes:
		 Single clock—Connect your single source clock to clock port. All registered ports are synchronized by the same source clock. Read/Write—Connect your write clock to clock port. All registered ports related to write operation, such as data_a port, address_a port, wren_a port, and byteena_a port are synchronized by the write clock. Input/Output—Connect your input clock to clock port. All registered input ports are synchronized by the input clock. Independent clock—Connect your port A clock to clock port. All registered input and output ports of port A are synchronized by the port A clock.
inclock	Yes	The following list describes which of your memory clock must be connected to the inclock port, and port synchronization in different clock modes: • Single clock—Connect your single source clock to inclock port and outclock port. All registered ports are synchronized by the same source clock. • Read/Write—Connect your write clock to inclock port. All
		registered ports related to write operation, such as data port, wraddress port, wren port, and byteena port are synchronized by the write clock. Input/Output—Connect your input clock to inclock port. All registered input ports are synchronized by the input clock.
outclock	Yes	The following list describes which of your memory clock must be connected to the outclock port, and port synchronization in different clock modes:
		 Single clock—Connect your single source clock to inclock port and outclock port. All registered ports are synchronized by the same source clock. Read/Write—Connect your read clock to outclock port. All registered ports related to read operation, such as rdaddress port, rdren port, and q port are synchronized by the read clock. Input/Output—Connect your output clock to outclock port. The registered q port is synchronized by the output clock.
rden	Optional	Read enable input for rdaddress port. The rden port is supported when the use_eab parameter is set to OFF. Instantiate the IP core if you want to use read enable feature with other memory blocks.

Altera Corporation RAM: 2-PORT IP Core References

Signal	Required	Description
byteena_a	Optional	Byte enable input to mask the data_a port so that only specific bytes, nibbles, or bits of the data are written. The byteena_a port is not supported in the following conditions: • If the implement_in_les parameter is set to ON. • If the operation_mode parameter is set to ROM.
outclocken	Optional	Clock enable input for outclock port.
inclocken	Optional	Clock enable input for inclock port.

Table 5-2: RAM: 2-Ports IP Core Output Signals (Simple Dual-Port RAM)

Signal	Required	Description
ď		Data output from the memory. The q port is required, and must be equal to the width data port.

RAM: 2-Port IP Core Signals (True Dual-Port RAM) for MAX 10 Devices

Table 5-3: RAM: 2-Port IP Core Input Signals (True Dual-Port RAM)

Signal	Required	Description
data_a	Optional	Data input to port A of the memory. The data_a port is required if the operation_mode parameter is set to any of the following values: • SINGLE_PORT • DUAL_PORT • BIDIR_DUAL_PORT
address_a	Yes	Address input to port A of the memory. The address_a port is required for all operation modes.
wren_a	Optional	Write enable input for address_a port. The wren_a port is required if you set the operation_mode parameter to any of the following values: • SINGLE_PORT • DUAL_PORT • BIDIR_DUAL_PORT
data_b	Optional	Data input to port B of the memory. The data_b port is required if the operation_mode parameter is set to BIDIR_DUAL_PORT.
address_b	Optional	Address input to port B of the memory. The address_b port is required if the operation_mode parameter is set to the following values: • DUAL_PORT • BIDIR_DUAL_PORT

RAM: 2-PORT IP Core References

Altera Corporation

Signal	Required	Description
wren_b	Yes	Write enable input for address_b port. The wren_b port is required if you set the operation_mode parameter to BIDIR_DUAL_PORT.
clock	Yes	The following list describes which of your memory clock must be connected to the clock port, and port synchronization in different clock modes:
		 Single clock—Connect your single source clock to clock port. All registered ports are synchronized by the same source clock. Read/Write—Connect your write clock to clock port. All registered ports related to write operation, such as data_a port, address_a port, wren_a port, and byteena_a port are synchronized by the write clock. Input/Output—Connect your input clock to clock port. All registered input ports are synchronized by the input clock. Independent clock—Connect your port A clock to clock port. All registered input and output ports of port A are synchronized by the port A clock.
inclock	Yes	 The following list describes which of your memory clock must be connected to the inclock port, and port synchronization in different clock modes: Single clock—Connect your single source clock to inclock port and outclock port. All registered ports are synchronized by the same source clock. Read/Write—Connect your write clock to inclock port. All registered ports related to write operation, such as data port, wraddress port, wren port, and byteena port are synchronized by the write clock. Input/Output—Connect your input clock to inclock port. All registered input ports are synchronized by the input clock.
outclock	Yes	 The following list describes which of your memory clock must be connected to the outclock port, and port synchronization in different clock modes: Single clock—Connect your single source clock to inclock port and outclock port. All registered ports are synchronized by the same source clock. Read/Write—Connect your read clock to outclock port. All registered ports related to read operation, such as rdaddress port, rdren port, and q port are synchronized by the read clock. Input/Output—Connect your output clock to outclock port. The registered q port is synchronized by the output clock.

Altera Corporation RAM: 2-PORT IP Core References

Signal	Required	Description
rden_a	Optional	Read enable input for address_a port. The rden_a port is supported depending on your selected memory mode and memory block.
rden_b	Optional	Read enable input for address_b port. The rden_b port is supported depending on your selected memory mode and memory block.
byteena_a		Byte enable input to mask the data_a port so that only specific bytes, nibbles, or bits of the data are written. The byteena_a port is not supported in the following conditions: • If the implement_in_les parameter is set to ON. • If the operation_mode parameter is set to ROM.
addressstall_a	Optional	Address clock enable input to hold the previous address of address_a port for as long as the addressstall_a port is high.
addressstall_b	Optional	Address clock enable input to hold the previous address of address_b port for as long as the addressstall_b port is high.

Table 5-4: RAM:2-Port IP Core Output Signals (True Dual-Port RAM)

Signal	Required	Description
q_a	Yes	Data output from Port A of the memory. The q_a port is required if the operation_mode parameter is set to any of the following values:
		• SINGLE_PORT • BIDIR_DUAL_PORT
		• ROM
		The width of q_a port must be equal to the width of data_a port.
q_b	Yes	Data output from Port B of the memory. The q_b port is required if you set the operation_mode to the following values: • DUAL_PORT
		BIDIR_DUAL_PORT
		The width of q_b port must be equal to the width of data_b port.

RAM: 2-Port IP Core Parameters for MAX 10 Devices

Table 5-5: RAM: 2-Port IP Core Parameters for MAX 10 Devices

This table lists the IP core parameters applicable to MAX 10 devices.

Option	Legal Values	Description
Parameter Settings: General		

RAM: 2-PORT IP Core References

Altera Corporation

O _F	otion	Legal Values	Description
How will you be us	sing the dual port RAM?	With one read port and one write portWith two read/write ports	Specifies how you use the dual port RAM.
size?		As a number of wordsAs a number of bits	Determines whether to specify the memory size in words or bits.
Parameter Setting	s: Widths/ Blk Type		
How many <x>-bi</x>	t words of memory?	_	Specifies the number of <x> -bit words.</x>
Use different data widths on different ports		On/Off	Specifies whether to use different data widths on different ports.
Read/Write Ports	When you select With one read port and one write port, the following options are available: • How wide should the 'data_a' input bus be? • How wide should the 'q' output bus be? When you select With two read/write ports, the following options are available: • How wide should the 'q_a' output bus be? • How wide should the 'q_a' output bus be? • How wide should the 'q_b' output bus be?	1, 2, 3, 4, 5, 6, 7, 8, 9, 16, 18, 32, 36, 64, 72, 108, 128, 144, 256, and 288	Specifies the width of the input and output ports. The How wide should the 'q' output bus be? and the How wide should the 'q_b' output bus be? options are only available when you turn on the Use different data widths on different ports parameter.

Altera Corporation RAM: 2-PORT IP Core References

Option	Legal Values	Description
What should the memory block type be	AutoM9KLCs	Specifies the memory block type. The types of memory block that are available for selection depends on your target device.
		The LCs value is only available under the following conditions:
		 Turn on the With one read port and one write port option Turn off Use different data widths on different ports option.
Option How should the memory be implemented?	 Use default logic cell style Use Stratix M512 emulation logic cell style 	Specifies the logic cell implementation options. This option is enabled only when you choose LCs memory type.
Set the maximum block depth to	 Auto 128 256 512 1024 2048 4096 	Specifies the maximum block depth in words.

RAM: 2-PORT IP Core References

Altera Corporation

Option	Legal Values	Description
What clocking method would you like to use?	When you select With one read port and one write port, the following values are available: • Single clock • Dual clock: use separate 'input' and 'output' clocks • Dual clock: use separate 'read' and 'write' clocks When you select With two read/write ports, the following options are available: • Single clock • Dual clock: use separate 'input' and 'output' clocks • Dual clock: use separate clocks for A and B ports	 Specifies the clocking method to use. Single clock—A single clock and a clock enable controls all registers of the memory block. Dual Clock: use separate 'input' and 'output' clocks—An input and an output clock controls all registers related to the data input and output to/ from the memory block including data, address, byte enables, read enables, and write enables. Dual clock: use separate 'read' and 'write' clocks—A write clock controls the data-input, write-address, and write-enable registers while the read clock controls the data-output, read-address, and read-enable registers. Dual clock: use separate clocks for A and B ports—Clock A controls all registers on the port A side; clock B controls all registers on the port B side. Each port also supports independent clock enables for both port A and port B registers, respectively.
Create a 'rden' read enable signal	On/Off	Available when you select With one read port and one write port option.
Create a 'rden_a' and 'rden_b' read enable signal	On/Off	 Available when you select With two read/write ports option. Specifies whether to create a read enable signal for Port A and B.

Altera Corporation RAM: 2-PORT IP Core References

O _f	otion	Legal Values	Description
Byte Enable Ports	Create byte enable for port A	On/Off	Specifies whether to create a byte enable for Port A and B. Turn on these options if you want to mask the input data so that only specific bytes, nibbles, or bits of data are written.
Parameter Setting	s: Regs/Clkens/Aclrs		
Which ports should be registered?	When you select With one read port and one write port, the following options are available: • Write input ports 'data_a', 'wraddress_a', and 'wren_a' • Read input ports 'rdaddress' and 'rden' • Read output port(s) 'q_a' and 'q_b' When you select With two read/write ports, the following options are available: • Write input ports 'data_a', 'wraddress_a', and 'wren_a' write	On/Off	Specifies whether to register the read or write input and output ports.
	input ports • Read output port(s) 'q'_a and 'q_b'		
More Option	When you select With one read port and one write port, the following options are available:	On/Off	The read and write input ports are turned on by default. You only need to specify whether to register the Q output ports.
	• 'q_b' port		
	When you select With two read/write ports, the following options are available:		
	'q_a' port'q_b' port		

RAM: 2-PORT IP Core References

Altera Corporation

Ομ	otion	Legal Values	Description
Create one clock en clock signal.	nable signal for each	On/Off	Specifies whether to turn on the option to create one clock enable signal for each clock signal.
More Option	When you select With one read port and one write port, the following option is available: Clock enable options: Clock enable options: Use clock enable for write input registers Address options Create an 'wr_addressstall' input port. Create an 'rd_addressstall' input port. Create an 'rd_addressstall' input port. When you select With two read /write ports, the following options are available: Clock enable options Use clock enable for port A input registers Use clock enable for port A output registers Use clock enable for port A output registers Address options Create an 'addressstall_a' input port. Create an 'addressstall_b' input port.	On/Off	Clock enable options—Clock enable for port B input and output registers are turned on by default. You only need to specify whether to use clock enable for port A input and output registers. Address options—Specifies whether to create clock enables for address registers. You can create these ports to act as an extra active low clock enable input for the address registers.
Create an `aclr' asy registered ports.	nchronous clear for the	On/Off	Specifies whether to create an asynchronous clear port for the registered ports.

Altera Corporation RAM: 2-PORT IP Core References

Or	otion	Legal Values	Description
More Option	When you select With one read port and one write port, the following options are available: • 'rdaddress' port • 'q_b' port When you select With two read /write ports, the following options are available: • 'q_a' port • 'q_b' port	On/Off	Specifies whether the raddress, q_a, and q_b ports are cleared by the aclr port.
Parameter Setting	s: Output 1		
Mixed Port Read- During-Write for Single Input Clock RAM	When you select With one read port and one write port, the following option is available: • How should the q output behave when reading a memory location that is being written from the other port? When you select With two read /write ports, the following option is available: • How should the q_ a and q_b outputs behave when reading a memory location that is being written from the other port?	 Old memory contents appear I do not care (the outputs will be undefined) 	Specifies the output behavior when read-during-write occurs. • Old memory contents appear— The RAM outputs reflect the old data at that address before the write operation proceeds. • I do not care—This option functions differently when you turn it on depending on the following memory block type you select: • When you set the memory block type to Auto, or M9K, the RAM outputs 'don't care' or "unknown" values for read-during-write operation without analyzing the timing path.

RAM: 2-PORT IP Core References

Altera Corporation

(Option	Legal Values	Description
and read operation	ne timing between write on. Metastability issues are er writing and reading at at the same time.	On/Off	This option is automatically turned on when you turn on the I do not care (The outputs will be undefined) option. This option enables the RAM to output 'don't care' or 'unknown' values for read-during-write operation without analyzing the timing path.
Parameter Settin	ngs: Output 2 (This tab is	only available when yo	u select two read/write ports)
Port A Read- During-Write Option Port B Read- During-Write Option	What should the 'q_a' output be when reading from a memory location being written to? What should the 'q_b' output be when reading from a memory location being written to?	New data Old Data	Specifies the output behavior when read-during-write occurs. • New Data—New data is available on the rising edge of the same clock cycle on which it was written. • Old Data—The RAM outputs reflect the old data at that address before the write operation proceeds.
Get x's for write masked bytes instead of old data when byte enable is used		On/Off	This option is automatically turned on when you select the New Data value. This option obtains 'X' on the masked byte.

Altera Corporation RAM: 2-PORT IP Core References

Option	Legal Values	Description
Do you want to specify the initial content of the memory?	No, leave it blank Yes, use this file for the memory content data	 Specifies the initial content of the memory. To initialize the memory to zero, select No, leave it blank. To use a Memory Initialization File (.mif) or a Hexadecimal (Intelformat) File (.hex), select Yes, use this file for the memory content data.
		Note: The configuration scheme of your device is Internal Configuration. In order to use memory initialization, you must select a single image configuration mode with memory initialization, for example the Single Compressed Image with Memory Initialization option. You can set the configuration mode on the Configuration page of the Device and Pin Options dialog box.
The initial content file should conform to which port's dimension?	• PORT_A • PORT_B	Specifies which port's dimension that the initial content file should conform to.

RAM: 2-PORT IP Core References

Altera Corporation

ROM: 1-PORT IP Core References

б

2015.05.04

UG-M10MEMORY

Subscribe

Send Feedback

The ROM: 1-PORT IP core implements the single-port ROM memory mode.

Figure 6-1: ROM: 1-PORT IP Core Signals with the Single Clock Option Enabled

© 2015 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

ISO 9001:2008 Registered

Figure 6-2: ROM: 1-PORT IP Core Signals with the Dual Clock: Use Separate 'Input' and 'Output' Clocks Option Enabled

ROM: 1-PORT IP Core Signals For MAX 10 Devices

Table 6-1: ROM: 1-PORT IP Core Input Signals

Signal	Required	Description
address	Yes	Address input to the memory.
addressstall_a	Optional	Address clock enable input to hold the previous address of address_a port for as long as the addressstall_a port is high.
rden	Optional	Read enable input for rdaddress port. The rden port is supported when the use_eab parameter is set to OFF. Instantiate the IP if you want to use read enable feature with other memory blocks.

Altera Corporation ROM: 1-PORT IP Core References

Signal	Required	Description
clock	Yes	The following list describes which of your memory clock must be connected to the clock port, and port synchronization in different clock modes:
		 Single clock—Connect your single source clock to clock port. All registered ports are synchronized by the same source clock. Read/Write—Connect your write clock to clock port. All registered ports related to write operation, such as data_a port, address_a port, wren_a port, and byteena_a port are synchronized by the write clock. Input/Output—Connect your input clock to clock port. All registered input ports are synchronized by the input clock. Independent clock—Connect your port A clock to clock port. All registered input and output ports of port A are synchronized by the port A clock.
clken	Optional	Clock enable input for clock port.
inclock	Yes	 The following list describes which of your memory clock must be connected to the inclock port, and port synchronization in different clock modes: Single clock—Connect your single source clock to inclock port and outclock port. All registered ports are synchronized by the same source clock. Read/Write—Connect your write clock to inclock port. All registered ports related to write operation, such as data port, wraddress port, wren port, and byteena port are synchronized by the write clock. Input/Output—Connect your input clock to inclock port. All registered input ports are synchronized by the input clock.
inclocken	Optional	Clock enable input for inclock port.
outclock	Yes	The following list describes which of your memory clock must be connected to the outglock port, and port synchronization in different clock modes: • Single clock—Connect your single source clock to inglock port and outglock port. All registered ports are synchronized by the same source clock. • Read/Write—Connect your read clock to outglock port. All registered ports related to read operation, such as rdaddress port, rdren port, and q port are synchronized by the read clock. • Input/Output—Connect your output clock to outglock port. The registered q port is synchronized by the output clock.

ROM: 1-PORT IP Core References

Altera Corporation

Signal	Required	Description
outclocken	Optional	Clock enable input for outclock port.

Table 6-2: ROM: 1-PORT IP Core Output Signals

Signal	Required	Description
ď	Yes	Data output from the memory. The q port is required, and must be equal to the width data port.

ROM: 1-PORT IP Core Parameters for MAX 10 Devices

Table 6-3: ROM: 1-Port IP Core Parameters for MAX 10 Devices

This table lists the IP core parameters applicable to MAX 10 devices.

Option	Legal Values	Description			
Parameter Settings: General	Parameter Settings: General				
How wide should the 'q' output bus be?	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 36, 40, 48, 64, 72, 108, 128, 144, and 256.	Specifies the width of the 'q' output bus in bits.			
How many <x>-bit words of memory?</x>	32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, and 65536.	Specifies the number of <x> -bit words.</x>			
What should the memory block type be?	Auto M9K	Specifies the memory block type. The types of memory block that are available for selection depends on your target device.			
Set the maximum block depth to	 Auto 32 64 128 256 512 1024 2048 4096 8192 	Specifies the maximum block depth in words.			

Altera Corporation ROM: 1-PORT IP Core References

Option	Legal Values	Description
What clocking method would you like to use?	Single clock Dual clock: use separate 'input' and 'output' clocks	Specifies the clocking method to use. • Single clock—A single clock and a clock enable controls all registers of the memory block. • Dual clock: use separate 'input' and 'output' clocks—An input and an output clock controls all registers related to the data input and output to/ from the memory block including data, address, byte enables, read enables, and write enables.
Parameter Settings: Regs/Clkens/Aclrs		
Which ports should be registered? • 'address' input port • 'q' output port	On/Off	Specifies whether to register the read or write input and output ports.
Create one clock enable signal for each clock signal.	On/Off	Specifies whether to turn on the option to create one clock enable signal for each clock signal.
 Clock enable options Use clock enable for port A input registers Use clock enable for port A output registers Address options Create an 'address-stall_a' input port 	On/Off	 Clock enable options— Clock enable for port B input and output registers are turned on by default. You only need to specify whether to use clock enable for port A input and output registers. Address options— Specifies whether to create clock enables for address registers. You can create these ports to act as an extra active low clock enable input for the address registers.
Create an 'aclr' asynchronous clear for the registered ports.	On/Off	Specifies whether to create an asynchronous clear port for the registered ports.

ROM: 1-PORT IP Core References

Altera Corporation

	Option	Legal Values	Description
More Options	 'address' port 'q' port	On/Off	Specifies whether the address and q ports are cleared by the aclr port.
Create a 'rden' r	ead enable signal	On/Off	Specifies whether to create a rden read enable signal.
Parameter Setti	ings: Mem Init		
Do you want to of the memory?	specify the initial content	Yes, use this file for the memory content data.	Specifies the initial content of the memory. In ROM mode you must specify a Memory Initialization File (.mif) or a Hexadecimal (Intel-format) File (.hex). The configuration scheme of your device is Internal Configuration. In order to use memory initialization, you must select a single image configuration mode with memory initialization, for example the Single Compressed Image with Memory Initialization option. You can set the configuration mode on the Configuration page of the Device and Pin Options dialog box.
	n Memory Content Editor update content independ- em clock	On/Off	Specifies whether to allow In-System Memory Content Editor to capture and update content independently of the system clock.
The 'Instance ID	D' of this RAM is	_	Specifies the RAM ID.

Altera Corporation ROM: 1-PORT IP Core References

ROM: 2-PORT IP Core References

7

2015.05.04

UG-M10MEMORY

This IP core implements the dual-port ROM memory mode. The dual-port ROM has almost similar functional ports as single-port ROM. The difference is dual-port ROM has an additional address port for read operation.

Figure 7-1: ROM: 2-PORT IP Core Signals with the Single Clock Option Enabled

© 2015 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

ISO 9001:2008 Registered

Figure 7-2: ROM: 2-PORT IP Core Signals with the Dual Clock: Use Separate 'Input' and 'Output' Clocks Option Enabled

Figure 7-3: ROM: 2-PORT IP Core Signals with the Dual Clock: Use Separate Clocks for A and B Ports Option Enabled

Altera Corporation ROM: 2-PORT IP Core References

ROM: 2-PORT IP Core Signals for MAX 10 Devices

Table 7-1: ROM: 2-PORT IP Core Input Signals

Signal	Required	Description	
address_a	Yes	Address input to port A of the memory. The address_a port is required for all operation modes.	
rden_a	Optional	Read enable input for address_a port. The rden_a port is supported depending on your selected memory mode and memory block.	
address_b	Optional	Address input to port B of the memory. The address_b port is required if the operation_mode parameter is set to the following values: • DUAL_PORT • BIDIR_DUAL_PORT	
rden_b	Optional	Read enable input for address_b port. The rden_b port is supported depending on your selected memory mode and memory block.	
clock	Yes	The following list describes which of your memory clock must be connected to the clock port, and port synchronization in different clock modes: • Single clock—Connect your single source clock to clock port. All registered ports are synchronized by the same source clock. • Read/Write—Connect your write clock to clock port. All registered ports related to write operation, such as data_a port, address_a port, wren_a port, and byteena_a port are synchronized by the write clock. • Input/Output—Connect your input clock to clock port. All registered input ports are synchronized by the input clock. • Independent clock—Connect your port A clock to clock port. All registered input and output ports of port A are synchronized by the port A clock.	
addressstall_a	Optional	Address clock enable input to hold the previous address of address_a port for as long as the addressstall_a port is high.	
addressstall_b	Optional	Address clock enable input to hold the previous address of address_b port for as long as the addressstall_b port is high.	

Signal	Required	Description	
inclock	Yes	The following list describes which of your memory clock must be connected to the inclock port, and port synchronization in different clock modes:	
		 Single clock—Connect your single source clock to inclock port and outclock port. All registered ports are synchronized by the same source clock. Read/Write—Connect your write clock to inclock port. The write clock synchronizes all registered ports related to write operation, such as data port, wraddress port, wren port, and byteena port. Input/Output—Connect your input clock to inclock port. The input clock synchronizes all registered input ports. 	
outclock	Yes	The following list describes which of your memory clock must be connected to the outclock port, and port synchronization in different clock modes:	
		 Single clock—Connect your single source clock to inclock port and outclock port. All registered ports are synchronized by the same source clock. Read/Write—Connect your read clock to outclock port. The read clock synchronizes all registered ports related to read operation, such as rdaddress port, rdren port, and q port. Input/Output—Connect your output clock to outclock port. The output clock synchronizes the registered q port. 	
inclocken	Optional	Clock enable input for inclock port.	
outclocken	Optional	Clock enable input for outclock port.	
aclr	Optional	Asynchronously clear the registered input and output ports. The asynchronous clear effect on the registered ports can be controlle through their corresponding asynchronous clear parameter, such as indata_aclr and wraddress_aclr.	

Table 7-2: ROM: 2-PORT IP Core Output Signals

Signal	Required	Description
q_a	Yes	Data output from port A of the memory. The q_a port is required if you set the operation_mode parameter to any of the following values: • SINGLE_PORT • BIDIR_DUAL_PORT • ROM The width of the q_a port must be equal to the width of the data_a port.

Altera Corporation ROM: 2-PORT IP Core References

Signal	Required	Description
q_b	Yes	Data output from port B of the memory. The q_b port is required if you set the operation_mode parameter to the following values:
		• DUAL_PORT
		BIDIR_DUAL_PORT
		The width of q_b port must be equal to the width of data_b port.

ROM:2-Port IP Core Parameters For MAX 10 Devices

Table 7-3: ROM:2-Port IP Core Parameters for MAX 10 Devices

This table lists the IP core parameters applicable to MAX 10 devices.

Option		Legal Values	Description
Parameter Set	tings: Widths/Blk Type		
How do you want to specify the memory size?		As a number of wordsAs a number of bits	Determines whether to specify the memory size in words or bits.
How many <x< td=""><td>>-bit words of memory?</td><td>_</td><td>Specifies the number of <x>-bit words.</x></td></x<>	>-bit words of memory?	_	Specifies the number of <x>-bit words.</x>
Use different d ports	ata widths on different	On/Off	Specifies whether to use different data widths on different ports.
Read Ports	How wide should the 'q_a' output bus be?	1 2 2 4 5 6 7 0 0	Specifies the width of the input and output ports.
	How wide should the 'q_b' output bus be?	1, 2, 3, 4, 5, 6, 7, 8, 9, 16, 18, 32, 36, 64, 72, 108, 128, 144, 256, and 288	The How wide should the 'q_b' output bus be? option is only available when you turn on the Use different data widths on different ports parameter.
What should the memory block type be?		Auto, M9K	Specifies the memory block type. The types of memory block that are available for selection depends on your target device.
Set the maximum block depth to		Auto, 128, 256, 512, 1024, 2048, 4096, 8192	Specifies the maximum block depth in words.

	Option	Legal Values	Description
What clocking method would you like to use?		 Single clock Dual clock: use separate 'input' and 'output' clocks Dual clock: use separate clocks for A and B ports 	 Single clock—A single clock and a clock enable controls all registers of the memory block. Dual Clock: use separate 'input' and 'output' clocks—An input and an output clock controls all registers related to the data input and output to/from the memory block including data, address, byte enables, read enables, and write enables. Dual clock: use separate clocks for A and B ports—Clock A controls all registers on the port A side; clock B controls all registers on the port also supports independent clock enables for both port A and port B registers, respectively.
Create a 'rden_a' signal	Create a 'rden_a' and 'rden_b' read enable signal		Specifies whether to create read enable signals.
Parameter Settir	ngs: Regs/Clkens/Aclrs		
Which ports should be registered?	Write input portsRead output port(s)	On/Off	Specifies whether to register the read or write input and output ports.
More Options	 Input ports 'address_a' port 'address_b' port Q output ports 'q_a' port 'q_b' port 	On/Off	The read and write input ports are turned on by default. You only need to specify whether to register the Q output ports.
Create one clock clock signal.	Create one clock enable signal for each clock signal.		Specifies whether to turn on the option to create one clock enable signal for each clock signal.

Altera Corporation ROM: 2-PORT IP Core References

0	ption	Legal Values	Description			
More Options	 Clock enable options Use clock enable for port A input registers Use clock enable for port A output registers Address options Create an 'addressstall_a' input port. Create an 'addressstall_b' input port. 	On/Off	 Clock enable options—Clock enable for port B input and output registers are turned on by default. You only need to specify whether to use clock enable for port A input and output registers. Address options—Specifies whether to create clock enables for address registers. You can create these ports to act as an extra active low clock enable input for the address registers. 			
Create an 'aclr' as registered ports.	Create an 'aclr' asynchronous clear for the registered ports.		Specifies whether to create an asynchronous clear port for the registered ports.			
More Options	 'q_a' port 'q_b' port	On/Off	Specifies whether the 'q_a', and 'q_b' ports are cleared by the aclr port.			
Parameter Settin	Parameter Settings: Mem Init					

ROM: 2-PORT IP Core References

Altera Corporation

Option	Legal Values	Description
Do you want to specify the initial content of the memory?	Yes, use this file for the memory content data	Specifies the initial content of the memory.
		 To initialize the memory to zero, select No, leave it blank. To use a Memory Initialization File (.mif) or a Hexadecimal (Intel-format) File (.hex), select Yes, use this file for the memory content data.
		Note: The configuration scheme of your device is Internal Configuration. In order to use memory initialization, you must select a single image configuration mode with memory initialization, for example the Single Compressed Image with Memory Initialization option. You can set the configuration mode on the Configuration page of the Device and Pin Options dialog box.
The initial content file should conform to which port's dimension?	• PORT_A • PORT_B	Specifies which port's dimension that the initial content file should conform to.

Altera Corporation ROM: 2-PORT IP Core References

Shift Register (RAM-based) IP Core References

8

2015.05.04

UG-M10MEMORY

Subscribe

Send Feedback

The Shift Register (RAM-based) IP core contains additional features not found in a conventional shift register. You can use the memory blocks as a shift-register block to save logic cells and routing resources. You can cascade memory blocks to implement larger shift registers.

Figure 8-1: Shift Register (RAM-based) IP Core Signals

Shift Register (RAM-based) IP Core Signals for MAX 10 Devices

Table 8-1: Shift Register (RAM-based) IP Core Input Signals

Signal	Required	Description	
shiftin[]	Yes	Data input to the shifter. Input port width bits wide.	
clock	Yes	Positive-edge triggered clock.	
clken	No	Clock enable for the clock port. clken defaults to VCC.	
aclr	No	Asynchronously clears the contents of the shift register chain. The shiftout outputs are cleared immediately upon the assertion of the aclr signal.	

Table 8-2: Shift Register (RAM-based) IP Core Output Signals

Signal	Required	Description
shiftout[]	Yes	Output from the end of the shift register. Output port width bits wide.

© 2015 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

ISO 9001:2008 Registered

Signal	Required	Description
taps[]	Yes	Output from the regularly spaced taps along the shift register. Output port width * number_of_taps wide. This port is an aggregate of all the regularly spaced taps (each width bits) along the shift register.

Shift Register (RAM-based) IP Core Parameters for MAX 10 Devices

Table 8-3: Shift Register (RAM-based) IP Core Parameters for MAX 10 Devices

This table lists the IP core parameters applicable to MAX 10 devices.

Option	Values	Description
How wide should the "shiftin" input and the "shiftout" output buses be?	1, 2, 3, 4, 5, 6, 7, 8, 12, 16, 24, 32, 48, 64, 96, 128, 192, and 256.	Specifies the width of the input pattern.
How many taps would you like?	1, 2, 3, 4, 5, 6, 7, 8, 12, 16, 24, 32, 48, 64, 96, and 128.	Specifies the number of regularly spaced taps along the shift register.
Create groups for each tap output	On/Off	Creates groups for each tap output.
How wide should the distance between taps be?	3, 4, 5, 6, 7, 8, 16, 32, 64, and 128	Specifies the distance between the regularly spaced taps in clock cycles. This number translates to the number of RAM words that will be used. The value must be at least 3.
Create a clock enable port	On/Off	Creates the clken port
Create an asynchronous clear port	On/Off	Creates the aclr port.
What should the RAM block type be?	Auto, M9K	Specifies the RAM block type.

FIFO IP Core References

2015.05.04

UG-M10MEMORY

The FIFO IP core implements the FIFO mode, enabling you to use the memory blocks as FIFO buffers.

- Use the FIFO IP core in single clock FIFO (SCFIFO) and dual clock FIFO (DCFIFO) modes to implement single- and dual-clock FIFO buffers in your design.
- Dual clock FIFO buffers are useful when transferring data from one clock domain to another clock domain.
- The M9K memory blocks do not support simultaneous read and write from an empty FIFO buffer.

Figure 9-1: FIFO IP Core: SCFIFO Mode Signals

© 2015 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

ISO 9001:2008 Registered

Figure 9-2: FIFO IP Core: DCFIFO Mode Signals

FIFO IP Core Signals for MAX 10 Devices

Table 9-1: FIFO IP Core Input Signals

Signal	Required	Description
clock	Yes	Positive-edge-triggered clock.
wrclk	Yes	Positive-edge-triggered clock. Synchronizes the following ports: • data • wrreq • wrfull • wrempty • wrusedw
rdclk	Yes	Positive-edge-triggered clock. Synchronizes the following ports: • q • rdreq • rdfull • rdempty • rdusedw
data	Yes	Holds the data to be written in the FIFO IP core when the wrreq signal is asserted. If you manually instantiate the FIFO IP core, ensure that the port width is equal to the How wide should the FIFO be? parameter.

Signal	Required	Description
wrreq	Yes	Assert this signal to request for a write operation.
		Ensure that the following conditions are met:
rdreq	Yes	 Do not assert the wrreq signal when the full (for the FIFO IP core in SCFIFO mode) or wrfull (for the FIFO IP core in DCFIFO mode) port is high. Enable the overflow protection circuitry or turn on the Disable overflow checking. Writing to a full FIFO will corrupt contents parameter so that the FIFO IP core can automatically disable the wrreq signal when it is full. The wrreq signal must meet the functional timing requirement based on the full or wrfull signal. Do not assert the wrreq signal during the deassertion of the aclr signal. Violating this requirement creates a race condition between the falling edge of the aclr signal and the rising edge of the write clock if the wrreq port is set to high. Assert this signal to request for a read operation. The rdreq signal
rareq	103	acts differently in normal synchronous FIFO mode and show-ahead mode synchronous FIFO modes. Ensure that the following conditions are met:
		• Do not assert the rdreq signal when the empty (for the FIFO IP core in SCFIFO mode) or rdempty (for the FIFO IP core in DCFIFO mode) port is high. Enable the underflow protection circuitry or turn on the Disable underflow checking. Reading from an empty FIFO will corrupt contents parameter so that the FIFO IP core can automatically disable the rdreq signal when it is empty. The rdreq signal must meet the functional timing requirement based on the empty or rdempty signal.
sclr	No	Assert this signal to clear all the output status ports, but the effect on
aclr	No	the q output may vary for different FIFO configurations. There are no minimum number of clock cycles for aclr signals that must remain active.

Table 9-2: FIFO IP Core Output Signals

Signal	Required	Description
đ		Shows the data read from the read request operation. In SCFIFO and DCFIFO modes, the width of the q port must be equal to the width of the data port. If you manually instantiate the IPs, ensure that the port width is equal to the How wide should the FIFO be? parameter. In DCFIFO_MIXED_WIDTHS mode, the width of the q port can be different from the width of the data port. If you manually instantiate the IP, ensure that the width of the q port is equal to the Use a different output width parameter. The IP supports a wide write port with a narrow read port, and vice versa. However, the width ratio is restricted by the type of RAM block, and in general, are in the power of 2.

FIFO IP Core References

Altera Corporation

Signal	Required	Description	
full wrfull rdfull	No	When asserted, the FIFO IP core is considered full. Do not perform write request operation when the FIFO IP core is full. In general, the rdfull signal is a delayed version of the wrfull signal. However, the rdfull signal functions as a combinational output instead of a	
		derived version of the wrfull signal. Therefore, you must always refer to the wrfull port to ensure whether or not a valid write request operation can be performed, regardless of the target device.	
empty		When asserted, the FIFO IP core is considered empty. Do not	
wrempty		perform read request operation when the FIFO IP core is empty. In general, the wrempty signal is a delayed version of the rdempty	
rdempty	No	signal. However, the wrempty signal functions as a combinational output instead of a derived version of the rdempty signal. Therefore, you must always refer to the rdempty port to ensure whether or not a valid read request operation can be performed, regardless of the target device.	
almost_full	No	Asserted when the usedw signal is greater than or equal to the Almost full parameter. It is used as an early indication of the full signal.	
almost_empty	No	Asserted when the usedw signal is less than the Almost empty parameter. It is used as an early indication of the empty signal.	
usedw		Show the number of words stored in the FIFO. Ensure that the port	
wrusedw	No	width is equal to the usedw [] parameter if you manually instantiate the FIFO IP core in SCFIFO or DCFIFO modes. In DCFIFO_	
rdusedw	No	MIXED_WIDTH mode, the width of the wrusedw and rdusedw ports must be equal to the usedw [] and Use a different output width parameters respectively.	

FIFO IP Core Parameters for MAX 10 Devices

Table 9-3: FIFO IP Core Parameters for MAX 10 Devices

This table lists the IP core parameters applicable to MAX 10 devices.

Parameter	HDL Parameter	Description
How wide should the FIFO be?		Specifies the width of the data and q ports for the FIFO IP core in SCFIFO mode and DCFIFO mode. For the FIFO IP core in DCFIFO_MIXED_WIDTHS mode, this parameter specifies only the width of the data port.
Use a different output width ⁽¹⁾	lpm_width_r	Specifies the width of the q port for the FIFO IP core in DCFIFO_MIXED_WIDTHS mode.

Send Feedback

 $^{^{\}mbox{\scriptsize (1)}}$ Applicable in DCFIFO_MIXED_WIDTHS mode only.

Parameter	HDL Parameter	Description
Usedw[]	lpm_widthu	Specifies the width of the usedw port for the FIFO IP core in SCFIFO mode, or the width of the rdusedw and wrusedw ports for the FIFO IP core in DCFIFO mode. For the FIFO IP core in DCFIFO_MIXED_WIDTHS mode, it only represents the width of the wrusedw port.
How deep should the FIFO be?	lpm_numwords	Specifies the depths of the FIFO you require. The value must be at least 4 . The value assigned must comply with the 2 ^{LPM_WIDTHU} equation.
Which kind of read access do you want with the rdreq signal?	lpm_showahead	Specifies whether the FIFO is in normal synchronous FIFO mode or show-ahead mode synchronous FIFO mode. Fornormal synchronous FIFO mode, the FIFO IP core treats the rdreq port as a normal read request that only performs read operation when the port is asserted. For show-ahead mode synchronous FIFO mode, the FIFO IP core treats the rdreq port as a read-acknowledge that automatically outputs the first word of valid data in the FIFO IP core (when the empty or rdempty port is low) without asserting the rdreq signal. Asserting the rdreq signal causes the FIFO IP core to output the next data word, if available. If you turn on this parameter, you may reduce performance.
Do you want a common clock for reading and writing the FIFO?		Identifies the library of parameterized modules (LPM) entity name. The values are SCFIFO and DCFIFO .
Disable overflow checking. Writing to a full FIFO will corrupt contents		Specifies whether or not to enable the protection circuitry for overflow checking that disables the wrreq port when the FIFO IP core is full. This parameter is enabled by default.
Disable underflow checking. Reading from an empty FIFO will corrupt contents.		Specifies whether or not to enable the protection circuitry for underflow checking that disables the rdreq port when the FIFO IP core is empty. This parameter is enabled by default. Note that reading from an empty SCFIFO mode gives unpredictable results.
Add an extra MSB to add_usedw_msb_ bit		Increases the width of the rdusedw and wrusedw ports by one bit. By increasing the width, it prevents the FIFO IP core from rolling over to zero when it is full. This parameter is disabled by default.

FIFO IP Core References

Altera Corporation

⁽²⁾ Applicable in DCFIFO mode only.

Parameter	HDL Parameter	Description
How many sync stages? ⁽²⁾	rdsync_ delaypipe	Specifies the number of synchronization stages in the cross clock domain. The value of the rdsync_delaypipe parameter relates the synchronization stages from the write control logic to the read control logic; the wrsync_delaypipe parameter relates the synchronization stages from the read control logic to the write control logic. Use these parameters to set the number of synchronization stages if the clocks are not synchronized, and set the clocks_are_synchronized parameter to FALSE. The actual synchronization stage implemented relates variously to the parameter value assigned, depends on the target device.
How many sync stages? ⁽²⁾	wrsync_delaypipe	Specifies the number of synchronization stages in the cross clock domain. The value of the rdsync_delaypipe parameter relates the synchronization stages from the write control logic to the read control logic; the wrsync_delaypipe parameter relates the synchronization stages from the read control logic to the write control logic. Use these parameters to set the number of synchronization stages if the clocks are not synchronized, and set the clocks_are_synchronized parameter to FALSE. The actual synchronization stage implemented relates variously to the parameter value assigned, depends on the target device.
Implement FIFO storage with logic cells only, even if the device contains memory blocks.	use_eab	Specifies whether or not the FIFO IP core is constructed using RAM blocks. This parameter is disabled by default. If you turn off this parameter, the FIFO IP core is implemented in logic elements, regardless of the memory block type assigned to the What should the memory block type be parameter.
Add circuit to synchronize 'aclr' input with 'wrclk'(2)	write_aclr_ synch	Specifies whether or not to add a circuit that causes the aclr port to be internally synchronized by the wrclk clock. Adding the circuit prevents the race condition between the wrreq and aclr ports that could corrupt the FIFO IP core. This parameter is disabled by default.
Add circuit to synchronize 'aclr' input with 'rdclk'	read_aclr_ synch	Specifies whether or not to add a circuit that causes the aclr port to be internally synchronized by the rdclk clock. Adding the circuit prevents the race condition between the rdreq and aclr ports that could corrupt the FIFO IP core. This parameter is disabled by default.

Altera Corporation FIFO IP Core References

Parameter	HDL Parameter	Description	
Which type of optimization do you want? (2)	clocks_are_ synchronized	Specifies whether or not the write and read clocks are synchronized, which in turn determines the number of internal synchronization stages added for stable operation of the FIFO. The values are TRUE and FALSE. If omitted, the default value is FALSE. You must only set the parameter to TRUE if the write clock and the read clock are always synchronized and they are multiples of each other. Otherwise, set this to FALSE to avoid metastability problems. If the clocks are not synchronized, set the parameter to FALSE, and use the rdsync_delaypipe and wrsync_delaypipe parameters to determine the number of synchronization stages required.	
What should the memory block type be	ram_block_type	Specifies the target device's memory block to be used. To get the proper implementation based on the RAM configuration that you set, allow the Quartus II software to automatically choose the memory type by ignoring this parameter and turn on the Implement FIFO storage with logic cells only, even if the device contains memory blocks. parameter. This gives the Compiler the flexibility to place the memory function in any available memory resource based on the FIFO depth required.	
Would you like to register the output to maximize the performance but use more area? (3)	add_ram_ output_ register	Specifies whether to register the q output. The values are Yes (best speed) and No (smallest area). The default value is No (smallest area).	
Becomes true when usedw[] is greater than or equal to: ⁽³⁾ Almost full ⁽³⁾	almost_full_ value	Sets the threshold value for the almost_full port. When the number of words stored in the FIFO IP core is greater than or equal to this value, the almost_full port is asserted.	
Almost empty(3)		Sets the threshold value for the almost_empty port. When	
Becomes true when usedw[] is less than:(3)	almost_empty_ value	the number of words stored in the FIFO IP core is less than this value, the almost_empty port is asserted.	
Currently selected device family	intended_ device_family	Specifies the intended device that matches the device set in your Quartus II project. Use this parameter only for functional simulation.	

FIFO IP Core References

Altera Corporation

⁽³⁾ Applicable in SCFIFO mode only.

ALTMEMMULT IP Core References 10

2015.05.04

UG-M10MEMORY

Subscribe

Send Feedback

The ALTMEMMULT IP core creates only memory-based multipliers using on-chip memory blocks found in M9K memory blocks.

Figure 10-1: ALTMEMMULT IP Core Signals

ALTMEMMULT IP Core Signals for MAX 10 Devices

Table 10-1: ALTMEMMULT IP Core Input Signals

Signal	Required	Description
clock	Yes	Clock input to the multiplier.
coeff_in[]	No	Coefficient input port for the multiplier. The size of the input port depends on the width_c parameter value.
data_in[]	Yes	Data input port to the multiplier. The size of the input port depends on the width_d parameter value.
sclr	No	Synchronous clear input. If unused, the default value is active high.
sel[]	No	Fixed coefficient selection. The size of the input port depends on the widths parameter value.
sload_coeff	No	Synchronous load coefficient input port. Replaces the current selected coefficient value with the value specified in the coeff_in input.

© 2015 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

ISO 9001:2008 Registered

Signal	Required	Description
sload_data	No	Synchronous load data input port. Signal that specifies new multiplication operation and cancels any existing multiplication operation. If the MAX_CLOCK_CYCLES_PER_RESULT parameter has a value of 1, the sload_data input port is ignored.

Table 10-2: ALTMEMMULT IP Core Output Signals

Signal	Required	Description
result[]	Yes	Multiplier output port. The size of the input port depends on the width_r parameter value.
result_valid	Yes	Indicates when the output is the valid result of a complete multiplication. If the MAX_CLOCK_CYCLES_PER_RESULT parameter has a value of 1, the result_valid output port is not used.
load_done	No	Indicates when the new coefficient has finished loading. The load_done signal asserts when a new coefficient has finished loading. Unless the load_done signal is high, no other coefficient value can be loaded into the memory.

ALTMEMMULT IP Core Parameters for MAX 10 Devices

Table 10-3: ALTMEMMULT IP Core Parameters for MAX 10 Devices

This table lists the IP core parameters applicable to MAX 10 devices.

Option	Values	Description
How wide should the 'data_ in' input bus be?	2, 3, 4, 5, 6, 7, 8, 16, 24, and 32	Specifies the width of the data_in port.
What is the representation of 'data_in'?	SIGNED, UNSIGNED	Specifies whether the data_in input port is signed or unsigned.
How wide should the coefficient be?	2, 3, 4, 5, 6, 7, 8, 16, 24	Specifies the width of the coeff_in port.
What is the representation of the coefficient?	SIGNED, UNSIGNED	Specifies whether the <code>coeff_in</code> input port and the pre-loaded coefficients are signed or unsigned.
What is the value of the initial coefficient?	0, 1, 2, 3, and 4	Specifies value of the first fixed coefficient.
Create ports to allow loading coefficients	On/Off	Creates the coeff_in and sload_coeff port.
Create a synchronous clear input	On/Off	Creates the sclr port.
What should the RAM block type be?	Auto, M9K	Specifies the RAM block type.

Send Feedback

Additional Information for MAX 10 Embedded Memory User Guide

2015.05.04

UG-M10MEMORY

N.	3	Su	hs	cri	he
	v	Ju	w	u	N

Document Revision History for MAX 10 Embedded Memory User Guide

Date	Version	Changes
May 2015	2015.05.04	 Updated 'Yes, use this file for the memory content data' parameter note for RAM:1-Port, RAM:2-Port, ROM:1-Port, and ROM:2-Port. Added information about the internal configuration mode that supports memory initialization in 'Consider Power-Up State and Memory Initialization'
September 2014	2014.09.22	Initial release.

© 2015 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

ISO 9001:2008 Registered

