Viet M. Bui

vietbui20@augustana.edu 2

Claim: $\mathbb S$ spans $\mathbb L$, $Q\in\mathbb L\wedge P\in\mathbb S$: Q is written as a linear combination of point of $\mathbb S$, the coefficient of P is not zero. If $\mathbb S'$ is the set obtained from $\mathbb S$ by replacing P with Q, then $\mathbb S'$ also spans $\mathbb L$

Define: $S=\{T_1,T_2,\ldots,T_n,P\}$, $S'=\{T_1,T_2,\ldots,T_n,Q\}$ Assume:

- ullet $\mathbb S$ spans $\mathbb L$
- ullet $Q\in\mathbb{L}$
- $P \in \mathbb{S}$
- $Q = c_1 T_1 + \ldots + c_n P_n + c_p P, c_p \neq 0$

W.M.S. \mathbb{S}' spans \mathbb{L}

Let: $A \in \mathbb{L}, A \notin \mathbb{S}$

$$A=d_1T_1+\ldots+d_nT_n+d_pP$$
 ($A\in spanS$, definition of span)

Perform arithmetic of $Q=c_1T_1+\ldots+c_nP_n+c_pP,c_p$

$$c_pP=Q-(c_1T_1+\ldots+c_nT_n)$$

$$P=rac{1}{c_p}(Q-(c_1T_1+\ldots+c_nT_n))$$
 (can do since $c_p
eq 0$)

$$A=d_1T_1+\ldots+d_nT_n+d_p(rac{1}{c_p}(Q-(c_1T_1+\ldots+c_nT_n)))$$
 (substitution)

$$A=(d_1-rac{d_pc_1}{c_p})T_1+\ldots+(d_n-rac{d_pc_n}{c_p})T_n+rac{d_p}{c_p}Q$$

A can be written as linear combination of other point in S^\prime

$$\Rightarrow A \in spanS'$$

Therefore S' spans $\mathbb L$