

UNIVERSIDADE FEDERAL DE VIÇOSA – UFV CENTRO DE CIÊNCIAS EXATAS E TECNOLÓGICAS – CCE DEPARTAMENTO DE ENGENHARIA ELÉTRICA - DEL

Medidas Elétricas e Magnéticas ELT210

AULA 08 – Transformadores para Instrumentos de Medição TP's e TC's

Prof. Tarcísio Pizziolo

Transformadores

Transformadores de Potência

1. Acoplamento de Bobinas

As bobinas são constituídas por um **fio enrolado** as quais produzem um fluxo φ de campo magnético ao serem percorridas por uma corrente alternada ou submetidas a uma tensão alternada em seus terminais. Ao aproximarmos uma bobina B_1 energizada por uma fonte V_1 a outra bobina B_2 desenergizada, uma parte do fluxo φ de B_1 provoca uma tensão V_2 em B_2 . Em uma bobina com N espiras o fluxo total produzido será igual a: $\lambda = N \cdot \varphi$ [Wb].

NOTA:

Quando uma corrente I_1 flui pela bobina B_1 é produzido um fluxo magnético φ enlaçando a bobina B_2 o qual produz, pela Lei de indução de Faraday, uma tensão nos terminais de B_2 . Quando uma carga Z_L é conectada nos terminais de B_2 há a circulação de uma corrente I_2 .

2. Transformadores de Potência

O Transformador é uma aplicação clássica do indutor.

Transformadores são equipamentos (máquinas elétricas estáticas) que transformam os valores de tensões e correntes mantendo o valor da potência relacionada a estas duas variáveis constante.

2.1. Transformadores Ideais

São transformadores os quais o acoplamento entre as bobinas é considerado perfeito, ou seja, não há perdas no fluxo de enlace entre as bobinas. Também não são consideradas as perdas no equipamento (Efeito Joule, etc...).

MODELO ESTRUTURAL

2.2 Relações de Tensões e Correntes em Transformadores Ideais

Lei da indução magnética (Faraday): "a tensão induzida em uma bobina é igual à taxa de variação do fluxo magnético total que a enlaça". Como o fluxo magnético total é dado por $\lambda = N$. φ , então:

$$v_{induzida} = \frac{d\lambda}{dt} = N.\frac{d\varphi}{dt}$$

Assim sendo, a tensão induzida é diretamente proporcional ao número N de espiras da bobina.

MODELO CIRCUITAL

A Potência no primário têm que ser a mesma no secundário, então:

2.3 Exemplo de Aplicação de Transformador Ideal

- 1) Qual é a relação de transformação do Transformador Ideal dado acima?
- 2) Se a bobina (enrolamento) do primário possuir 500 espiras, quantas espiras terá a bobina do secundário?
- 3) Este Transformador Ideal (ou TRAFO IDEAL) acima apresenta quais características de transformação em relação à tensão e à corrente?
- 4) Devido à sua característica de transformação de tensão do primário para o secundário como o mesmo é classificado?
- 5) Devido à sua característica de transformação de tensão do secundário para o primário como o mesmo é classificado?

Transformadores para Instrumentos de Medição

3. Considerações sobre Transformadores para Instrumentos

São dispositivos utilizados de modo a tornar compatível as faixas (escalas) de atuação dos instrumentos de medição, controle e/ou proteção.

Os medidores de grandezas elétricas são fabricados para medição em baixa tensão e baixa corrente, o que impossibilita sua ligação direta nas linhas de Alta Tensão. Para estes casos é necessário utilizar transformadores especiais, denominados de Transformadores para Instrumentos que podem ser:

- 1- Transformador de Potencial (TP).
- 2- Transformador de Corrente (TC).

Os TC's e TP's também servem como elementos de isolamento entre os instrumentos ligados no secundário e o circuito de alta tensão, reduzindo o perigo para o operador.

Transformador de Potencial - TP

4. Transformadores de Potencial

Os Transformadores de Potencial (TP's) são equipamentos cujo enrolamento primário é conectado em derivação (ou paralelo) com um circuito elétrico de **Alta Tensão** e o enrolamento secundário é destinado a alimentar bobinas de potencial em **Baixa Tensão** de instrumentos elétricos de medição, controle e proteção.

4. Transformadores de Potencial

- Por norma, a tensão secundária é de 115 V, nos TP's empregados em medição.

Alguns **TP's** encontrados no mercado:

2,3 k / 115 V 13,8 k / 115 V 69 k / 115 V

- Se em um TP de 13,8 k/115 V for aplicada uma tensão de 13,44 kV no primário, no secundário teremos 112 V, mantendo a relação de transformação (a = 120).
- Os TP's são projetados para suportarem uma sobretensão de até 10% em regime permanente;
- Os TP's alimentam instrumentos de **alta impedância**, como os voltímetros, e assim **a corrente secundária dos mesmo é muito pequena** (praticamente vazios).

4.1 Características dos Transformadores de Potencial

- Relação Nominal do TP (K_p):

$$kp = \frac{V_{1n}}{V_{2n}} = \frac{n_1}{n_2}$$
 Tensões para as quais o TP foi construído!

- Relação Real (K_r):

$$kr=rac{oldsymbol{V}_{1medida}}{oldsymbol{V}_{2medida}}$$

 $kr = rac{oldsymbol{V}_{1medida}}{oldsymbol{V}_{2medida}}$ Se modifica a cada nova medição e depende da carga no secundário!

- Fator de Correção da Relação (FCR_D):

$$FCR_{p} = \frac{k_{r}}{k_{p}} \times 100\%$$

Erro de Relação:

$$\in = 100 - FCR_P$$

 $\in = 100 - FCR_P$ | Estabelece limites inferior e superior para o FCRp

- Erro de Fase (y): defasagem entre a tensão medida do primário e

a do secundário;

4.2 Classificação dos Transformadores de Potencial

De acordo com a ABNT os TP's são classificados em três diferentes Classes de Exatidão, são elas:

- 1- Classe de exatidão **0,3**;
- 2- Classe de exatidão **0,6**;
- 3- Classe de exatidão 1,2;

Para se estabelecer a Classe de Exatidão dos TP's, são feitos ensaios em vazio e depois com cargas padronizadas, sobre três condições de tensões: tensão nominal 100%, 90% da tensão nominal e 110% da tensão nominal.

Os TP's utilizados em medição de energia elétrica para fins de faturamento devem possuir uma Classe de Exatidão 0,3.

5. Classe de Exatidão de TP's.

Aplicação dos TP's quanto à exatidão	
Classe de Exatidão	Aplicação
Melhor do que O, 3	 TP padrão Medições em laboratório Medições especiais
0,3	— Medição de energia elétrica para faturamento a consumidor
0,6 ou 1,2	- Medição de energia elétrica sem finalidade de faturamento - Alimentação de relés - Alimentação de instrumentos de controle; - voltimetro - wattimetro - tasímetro - sincronoscápio - frequencímetro, etc

14

5. Classe de Exatidão de TP's.

5. Classe de Exatidão de TP's.

Ex.: Quais são as características de um TP assinalado ao lado?

$$\epsilon = -0.2\%$$

$$FCR_P = 100,2\%$$

$$V = +20^{\circ}$$

TP classe 1,2

6. Foto de um TP.

- Primário com isolamento para Alta Tensão!
- Secundário com isolamento para Baixa Tensão!

6. Considerações Finais sobre Transformadores de Potencial (TP)

- O TP é similar em construção a um pequeno Transformador de Potência, onde o primário possui muitas espiras com fios de bitola menores, sendo conectado ao lado de Alta Tensão, enquanto o secundário é conectado ao voltímetro (lado de baixa tensão).
- Se um voltímetro estiver permanentemente ligado, a escala do aparelho é projetada para apresentar no visor a tensão de alta tensão, sem a necessidade de conhecer a relação de transformação.

Transformador de Corrente - TC

1. Transformadores de Corrente

- Os transformadores de corrente (**TC's**) são equipamentos que permitem aos instrumentos de **medição e proteção** funcionarem adequadamente, sem que seja necessário possuírem correntes nominais de acordo com a corrente do circuito a qual estão ligados. Pois nos sistemas elétricos industriais os níveis de corrente envolvidos, geralmente são muito elevados para os equipamentos de medição e proteção.
- Os TC's possuem um enrolamento primário com poucas espiras e fios de bitolas maiores, suportando uma alta corrente.
- Em geral a saída no secundário é de 5 A, quando no primário passa a corrente nominal.

Alguns **TC's** de mercado:

200 / 5 A

500 / 5 A

1 k / 5 A

- Impedância do secundário baixa:
- Transformador praticamente com secundário em curto-circuito!

IMPORTANTE !!!

Pelo fato do **TC** abaixar o valor da corrente no secundário até **5** A, para manter a mesma potência, o valor da tensão nos terminais do secundário eleva-se a valores os quais poderão trazer malefícios ao

usuário (Alta tensão).

Para manter a segurança os **TC's** sempre deverão estar **curto- circuitados no secundário** quando não houver instrumetnos de medição e/ou de proteção conectados a ele.

2. Tipos de Transformadores de Corrente

Existem vários tipos de transformadores de corrente, os principais são:

❖Tipo Barra: o enrolamento primário é uma barra fixada no núcleo do TC.
S1 (Secundário)

Tipo Barra

❖Tipo Enrolado: o primário e o secundário são enrolados em um mesmo núcleo.
S1 (Secundário)

2. Tipos de Transformadores de Corrente

❖Tipo janela: não possui primário próprio sendo construído com uma abertura através do núcleo por onde passa o condutor do circuito primário formando uma ou mais espiras.

Tipo núcleo dividido: tipo de TC janela onde a parte do núcleo é separável facilitando o enlaçamento do condutor primário

6. Foto de um TC.

- Primário com fios de bitolas maiores!
- Secundário com fios de bitolas menores!

7. Exercícios

- 1) Um consumidor, categoria comercial, é alimentado através de um transformador próprio de 112,5 kVA, 13,8k/380-220 V. O medidor trifásico, provido de indicador de demanda máxima, está instalado no lado de baixa tensão, alimentado através de 3 TC's de 200/5 A. Este medidor tem constante própria de multiplicação igual a 3 para consumo e demanda, sendo a escala de demanda marcada de 0 a 2 kW. As leituras do medidor foram as seguintes: consumo de 471 kWh no dia 30/11/2010 e 600 kWh no dia 31/12/2010. Calcular:
- a) energia elétrica (kWh) consumida no período dado.
- b) o custo da energia elétrica no período considerado.
- Tarifa de energia elétrica: R\$ 0,65/kWh.

respostas: a) 15.480 kWh; b) R\$ 10.062,00

- 2) Uma pequena indústria é alimentada através de um transformador próprio de 45 kVA, 13,8k/380-220 V. O medidor trifásico, provido de indicador de demanda máxima, está instalado no lado de baixa tensão, alimentado através de 3 TC's de 100/5 A. Este medidor tem as seguintes constantes próprias de multiplicação: para consumo 1 e para demanda 0,01 kW/divisão, sendo a escala de demanda marcada de 0 a 450 divisões. As leituras de consumo do medidor foram as seguintes: consumo de 2230 kWh no dia 30/11/2010 e de 2396 kWh no dia 31/12/2010. A leitura da demanda foi de 130 divisões. Calcular: a) a energia elétrica (kWh) solicitada no período mencionado.
- b) a demanda solicitada no período mencionado.
- c) a quantia total a ser paga pelo consumidor sabendo que a tarifa em vigor na ocasião, para consumidor industrial, é a seguinte:
- Consumo de energia: R\$ 0,107/kWh consumo mensal.
- Demanda de potência: R\$ 9,42 por kW mensal.

respostas: a) 3.320 kWh e 26 kW; b) R\$ 600,16

- 3) Uma pequena indústria é alimentada através de um transformador próprio de 150 kVA, 13.800/380-220 V. O medidor está instalado no lado de baixa tensão, através de 3 TC's de 250/5 A. Este medidor tem as seguintes constantes próprias de multiplicação: para consumo 1 e para demanda 0,01 kW/divisão, sendo a escala de demanda marcada de 0 a 480 divisões. As leituras de consumo do medidor foram as seguintes: consumo de 25819 kWh no dia 30/11/2010 e de 26573 kWh no dia 31/12/2010. A leitura da demanda foi de 246 divisões. Calcular:
- a) a energia elétrica (kWh) solicitada no período mencionado.
- b) a demanda solicitada no período mencionado.
- b) a quantia total a ser paga pelo consumidor sabendo que a tarifa em vigor na ocasião, para consumidor comercial primário é a seguinte:
- Consumo de energia: R\$ 0,107/kWh consumo mensal.
- Demanda de potência: R\$ 9,42 por kW mensal.

respostas: a) 37.700 kWh e 123 kW; b) R\$ 5.192,56