First Hit

Previous Doc

Next Doc

Go to Doc#

Generate Collection

Print

L6: Entry 18 of 35

File: JPAB

Jan 20, 1998

PUB-NO: JP410017999A

DOCUMENT-IDENTIFIER: JP 10017999 A

TITLE: HOT ROLLED FERRITIC STAINLESS STEEL PLATE EXCELLENT IN CORROSION RESISTANCE,

FORMABILITY, AND UNIFORMITY OF MATERIAL, AND ITS PRODUCTION

PUBN-DATE: January 20, 1998

INVENTOR-INFORMATION:

NAME

COUNTRY

KONO, MASAAKI SATO, SUSUMU

KOBAYASHI, MAKOTO IKEDA, TOUSHIROU

INT-CL (IPC): C22 C 38/00; B21 B 3/02; C21 D 8/02; C21 D 9/46; C22 C 38/50; C22 C 38/54

ABSTRACT:

PROBLEM TO BE SOLVED: To stably improve corrosion resistance, formability, and uniformity of material by adding Ti or Nb to a ferritic stainless steel and also regulating the grain size of carbides according to the position in plate thickness at the time of hot rolling into plate.

SOLUTION: As a stabilizer for impurities C and N, either or both of Ti and \underline{Nb} are further added to a <u>ferritic stainless steel</u> having a composition containing, by weight, <0.02% C, <2.0% Si, <0.8% Mn, <0.05% P, <0.03% S, 10-25% \underline{Cr} , <1.0% \underline{Ni} , <0.02% N, and <0.1% Al so that inequalities $(Ti/48 + \underline{Nb}/93)/(C/12 + N/14) > 1.5$ and (Ti+Nb) < 0.5% are satisfied. At the time of hot-rolling a slab of this <u>steel</u> into plate, a roughed <u>sheet</u> bar is temporarily coiled at 800-1050°C surface temp. and then finish rolling is carried out from the coiling end to regulate the average grain size of carbides in the <u>stainless steel</u> plate so that it is $\ge 0.02 \mu m$ in the surface layer part and $\ge 0.05 \mu m$ in the central part of the <u>steel</u> plate, respectively.

COPYRIGHT: (C) 1998, JPO

Previous Doc Next Doc Go to Doc#

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公閱番号

特開平10-17999

(43)公開日 平成10年(1998)1月20日

識別記号	庁内整理番号	ΡI				技術表示箇所
302		C 2 2 C	38/00		302Z	
		B 2 1 B	3/02			
	9270-4K	C 2 1 D	8/02		D	
			9/46		Q	
		C 2 2 C	38/50			
	審査請求	未請求 請求	項の数5	OL	(全 11 頁)	最終頁に続く
特顧平 8-167029		(71)出顧人				
平成8年(1996)6月27日				神戸市	中央区北本町	通1丁目1番28
		(72)発明者				
						1番地 川崎製
		(Tab) riserra de			附州兖州内	
		(72)発明者				
						1 番地川崎製
		(74)代理人	、弁理士	杉村	晓秀(外	4名)
						最終質に続く
-	3 0 2 特額平8-167029	3 0 2 9270-4K 審査請求	302 C22C B21B C21D C22C 審查請求 未請求 請求 特顯平8-167029 (71)出題人平成8年(1996)6月27日 (72)発明者	302 B21B 3/02 9270-4K C21D 8/02 9/46 C22C 38/50 審査請求 未請求 請求項の数5 特額平8-167029 (71)出題人 000001 川崎製 兵庫県 号 (72)発明者 阿野 千葉県 鉄株式 (72)発明者 佐藤 千葉県 鉄株式	302 C22C 38/00 B21B 3/02 9270-4K C21D 8/02 9/46 C22C 38/50 審査請求 未請求 請求項の数5 OL 特額平8-167029 (71)出額人 000001258 川崎製鉄株式 兵庫県神戸市 号 (72)発明者 河野 雅昭 千葉県千葉市 鉄株式会社技 (72)発明者 佐藤 進 千葉県千葉市 鉄株式会社技	302 C22C 38/00 302Z B21B 3/02 D 9/46 Q P 9/46 Q C22C 38/50 審査請求 未請求 請求項の数5 OL (全 11 頁) 特額平8-167029 (71)出題人 000001258 川崎製飲株式会社 兵庫県神戸市中央区北本町 号 (72)発明者 河野 雅昭 千葉県千葉市中央区川崎町 鉄株式会社技術研究所内

(54)【発明の名称】 耐食性、成形性および材質均一性に優れるフェライト系ステンレス熱延銅板およびその製造方法

(57)【要約】

【課題】 フェライト系ステンレス熱延鋼板の耐食性および成形加工性を改善すると共に、長手方向にわたる材質均一性を向上させる。

【解決手段】 フェライト系ステンレス熱延鋼板において、特にTiおよびNbのうちから選んだ1種または2種を、次式の関係

(Ti/48+Nb/93) / (C/12+N/14) > 1.5(Ti+Nb) < 0.5 wt%

を満足する範囲において含有させると共に、鋼中に含まれる炭化物につき、その平均粒径を、表層部(最表層~1/5 厚さ)で0.02μ ■以上、板厚中央部位置(2/5~3/5 厚さ)で0.05μ ■以上に制御する。

【特許請求の範囲】

【請求項1】

C:0.02wt%以下、 Si: 2.0 wt%以下、 hn: 0.8 wt%以下、 P:0.05wt%以下、 S:0.03wt%以下、 Cr: 10~25wt%、 N: 0.02wt%以下、 Ni: 1.0 wt%以下、

Al: 0.1 wt%以下

を含み、かつTiおよびNbのうちから選んだ1種または2 種を、次式の関係

(Ti/48+Nb/93)/(C/12+N/14) > 1.5(Ti + Nb) < 0.5 wt%

を満足する範囲において含有し、残部は実質的にFeの組 成になり、

さらに、鋼中に含まれる炭化物の平均粒径が、表層部 (最表層~1/5 厚さ)で0.02μ■以上、板厚中央部位置 (2/5~3/5 厚さ)で0.05μ■以上の条件を満足するこ とを特徴とする、耐食性、成形性および材質均一性に優 れるフェライト系ステンレス熱延續板。

【請求項2】 請求項1において、鋼組成が、さらにB およびCaのうちから選んだ1種または2種:0.01wt%以 20 下を含有するものである、耐食性、成形性および材質均 一性に使れるフェライト系ステンレス熱延頻板。

【請求項3】 請求項1または2において、鋼組成が、 さらにMo, Cu, Co, VおよびZrのうちから選んだ1種ま たは2種以上:5.0 %以下を含有するものである、耐食 性、成形性および材質均一性に優れるフェライト系ステ ンレス熱延鋼板。

【請求項4】

C:0.02wt%以下、 Si: 2.0 wt%以下、 Mn: 0.8 wt%以下、 P:0.05wt%以下、 S:0.03wt%以下、 Cr: 10~25wt% N:0.02wt%以下、 Ni: 1.0 wt%以下、 Al: 0.1 wt%以下

を含み、かつTiおよびNbのうちから選んだ1種または2 種を、次式の関係

(Ti/48+Nb/93)/(C/12+N/14) > 1.5(Ti + Nb) < 0.5 wt%

を満足する範囲において含有する組成になる鋼スラブ を、熱間圧延するに際し、

が 800~1050℃の間で一日コイルに巻き取り、その後、 巻き終わり端から仕上げ圧延を開始することを特徴とす る、耐食性、成形性および材質均一性に優れるフェライ ト系ステンレス熱延頻板の製造方法。

【請求項5】 請求項4において、巻き終わり端からの 仕上げ圧延に際し、当該シートバーの後端に、後続する シートバーコイルの巻き終わり端を接続し、連続的に仕 上げ圧延を行うことを特徴とする、耐食性、成形性およ び材質均一性に優れるフェライト系ステンレス熱延鋼板 の製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】この発明は、耐食性、成形性 および材質均一性に優れるフェライト系ステンレス熱延 鋼板およびその製造方法に関するものである。

2

[0002]

【従来の技術】ステンレス鋼は、普通鋼と比較すると、 Cr. Ni等の合金元素を多量に含んでいるため、高価では あるが、著しく耐食性に優れる材料であり、耐食性の要 10 求される環境でも無垢で使用できる利点がある。かかる ステンレス鋼としては、常温でフェライト単相組織から なるフェライト系ステンレス鋼、オーステナイト単相組 織からなるオーステナイト系ステンレス鋼、フェライト とオーステナイトの2相組織を有する二相ステンレス 鋼、さらにはマルテンサイト組織を有するマルテンサイ ト系ステンレス鋼などの種類がある。

【0003】このうちフェライト系ステンレス鋼は、オ ーステナイト系ステンレス鋼と比較すると、加工性や耐 食性の点でやや劣るものの、耐応力腐食割れ性に優れる と共に、Niをほとんど含有せず安価であることから、各 種厨房器具や自動車排気系部品(エキゾーストマニホー ルド、エキゾーストパイプ、コンバーターシェル、マフ ラー) などの用途に広く使用されている。このような、 耐食性と共に加工性が必要な用途に用いる場合、加工性 を改善するために、例えば特開昭52-31919号公報などに 開示されているように、フェライト系ステンレス鋼に「 i, Nb等の元素を添加して鋼中に固溶するCやNなどの 不純物元素を固定する技術が適用されている。

【0004】ところで、このようなフェライト系ステン 30 レス鋼板は、通常、連続鋳造鋳片を加熱した後、熱間圧 延→熱延板焼鈍・酸洗→冷間圧延→仕上げ焼鈍・酸洗の 各工程を経て製造されたステンレス冷延鋼板として提供 されている。一方、上記工程のうち冷間圧延以降の工程 を省略して製造されるステンレス熱延鋼板は、冷間圧延 以降の設備費や運転費を大幅に軽減できるため、オース テナイト系に比較して安価というフェライト系ステンレ ス鋼板の利点が一層高まり、また短時間に製造すること ができるので、工業上のメリットは極めて大きい。

【0005】しかしながら、一般にフェライト系ステン 租圧延段階を経たシートバーを、シートバーの表面温度 40 レス熱延鋼板は、同組成のステンレス冷延鋼板に比べる と耐食性および成形加工性が劣るという問題があった。 この点、特開平7-233449号公報には、耐食性および加 工性を兼ね備えるフェライト系ステンレス熱延鋼板とし て、CおよびNを0.015 %以下に抑制した低Crフェライ ト系ステンレス鋼に0.02~0.2 %のTiおよび一定量のS を添加したものが開示されている。しかしながら、上記 の鋼板は、耐食性を、板厚:3.6 📟の熱延板の鋼板中央 部から採取し、2㎜まで減厚した試料で評価しており、 実際の使用環境と同じく、減厚せずに熱延板表面ままで 50 耐食性を評価した場合には耐食性が不足してしまうとい

う問題があった。また、このフェライト系ステンレス熱 延銅板の耐食性、成形加工性は、ステンレス冷延鋼板と 比較するとコイルの長手方向にわたるばらつきが大き く、コイル全長にわたって均質な特性を維持することは 難しい。従って、ステンレス熱延鋼板として出荷する場 合、目標の材質を得ることができなかった部分について は、その切り捨てを余儀なくされ、生産性およびコスト の面で問題を残していた。

[0006]

題を有利に解決するもので、まず第1に、熱延ステンレ ス鋼板では耐食性が不足していたために、従来は冷延ス テンレス鋼板を使用せざるを得なかった分野にも適用可 能な、耐食性が良好で安価なフェライト系ステンレス熱 延鯛板を提供することを目的とする。またこの発明の第 2の目的は、従来のステンレス熱延綱板と比較してプレ ス成形時などに特に必要とされる深校り性に代表される ような成形加工性を大幅に改善することにある。さらに この発明の第3の目的は、従来のステンレス熱延鋼板と 比較して、鋼板の長さ方向における耐食性、成形加工性 20 などの材質均質性を高め、製品歩留りおよび生産性を向 上させることにある。

[0007]

【課題を解決するための手段】さて、発明者らは、上記 の目的を達成すべく鋭意研究を行った結果、Ti, Nbの添 加により炭窒化物を十分析出固定したフェライト系ステ ンレス熱延頻板において、その熱延板中に析出する炭化 物の平均粒径を、表層部 (最表層~1/5 厚さ)で0.02μ ■ 以上、かつ板厚中央部位置 (2/5~3/5 厚さ)で0.05 **μ■ 以上に制御することにより、耐食性および成形加工 30** 性の有利な改善が図れること、しかもかような炭化物の 析出制御は、熱間圧延中のシートバーを所定の条件で一 旦コイルに巻き取ることにより実現できること、また被 圧延材の粗圧延における圧延先後端を仕上げ圧延におい て逆転させることにより、熱延コイルの長手方向におけ る材質均質性が向上すること、さらにシートバーを一旦 巻き取った後に先行する被仕上げ圧延材の後端と、後続 するシートバーコイルの巻き終わり端を接続して仕上げ 圧延を行うことにより、熱延コイルの長手方向の材質均 一性が一層向上することの知見を得た。この発明は、上 40 の製造方法。 記の知見に立脚するものである。

【0008】すなわち、この発明の要旨構成は次のとお りである.

1. C:0.02xt%以下、 Si: 2.0 wt%以下、

Mn: 0.8 wt%以下、 P:0.05wt%以下、

S:0.03wt%以下、 Cr: 10~25wt%

N:0.02wt%以下、 Ni: 1.0 wt%以下、

Al: 0.1 wt%以下

を含み、かつTiおよびNbのうちから選んだ1種または2 種を、次式の関係

(Ti/48+Nb/93)/(C/12+N/14) > 1.5(Ti + Nb) < 0.5 wt%

を満足する範囲において含有し、残部は実質的にFeの組 成になり、さらに、劉中に含まれる炭化物の平均粒径 が、表層部 (最表層~1/5 厚さ) で0.02μ■ 以上、板厚 中央部位置 (2/5~3/5 厚さ) で0.05μ■ 以上の条件を 満足することを特徴とする、耐食性、成形性および材質 均一性に優れるフェライト系ステンレス熱延鋼板。

【0009】2. 上記1において、鋼組成が、さらにB 【発明が解決しようとする課題】この発明は、上記の問 10 およびCaのうちから選んだ 1 種または 2 種:0. 01wt%以 下を含有するものである、耐食性、成形性および材質均 一性に優れるフェライト系ステンレス熱延鋼板。

> 【0010】3. 上記1または2において、鋼組成が、 さらにMo, Cu, Co, VおよびZrのうちから選んだ1種ま たは2種以上:5.0 %以下を含有するものである、耐食 性、成形性および材質均一性に優れるフェライト系ステ ンレス熱延鋼板。

[0011]

4. C:0.02wt%以下、 Si: 2.0 wt%以下、

Mn: 0.8 wt%以下、 P:0.05wt%以下、

S:0.03wt%以下、 Cr: 10~25wt%、

N:0.02wt%以下。 Ni: 1.0 wt%以下、

Al: 0.1 wt%以下

を含み、かつTiおよびNbのうちから選んだ1種または2 種を、次式の関係

(Ti/48+Nb/93)/(C/12+N/14) > 1.5(Ti + Nb) < 0.5 wt%

を満足する範囲において含有する組成になる鋼スラブ を、熱間圧延するに際し、粗圧延段階を経たシートバー を、シートバーの表面温度が 800~1050°Cの間で一旦コ イルに巻き取り、その後、巻き終わり端から仕上げ圧延 を開始することを特徴とする、耐食性、成形性および材 質均一性に優れるフェライト系ステンレス熱延鋼板の製 造方法。

【0012】5.上記4において、巻き終わり端からの 仕上げ圧延に際し、当該シートバーの後端に、後続する シートバーコイルの巻き終わり端を接続し、連続的に仕 上げ圧延を行うことを特徴とする、耐食性、成形性およ び材質均一性に優れるフェライト系ステンレス熱延鋼板

[0013]

【発明の実施の形態】以下、この発明において鋼の成分 組成を上記の範囲に限定した理由について説明する。

C: 0.02wt%以下

Cは、後述するNと共に、この発明において特に重要な 元素である。Cは、鋼板の耐食性および加工性(r値) を低下させる元素なので、可能な限り低減させることが 望ましいが、いたずらに高純度化することは精錬コスト の上昇を招く。そこで、この発明では、僅かに含有する 50 CもTi, Nbの添加により析出固定する。ここで、後述す

るように炭化物の析出形態、分布が、耐食性、加工性の 向上に重要である。しかしながら、かかる析出制御によ っても、Cの含有量が0.02xt%を超えると鋼板中の総析 出量が増加し、耐食性、加工性の低下を招くので、その 含有量は0.02 水%以下に制限した。

【0014】Si: 2.0 wt%以下

Siは、鋼の脱酸に有効なだけでなく、高温での耐酸化性 や高温塩害特性にも有用な元素である。従って、特に自 動車排気系部材などの用途で使用する場合には、少なく とも0.6 xt%程度含有させることが望ましい。しかしな 10 TiおよびNbはいずれも、強力なC, N安定化元素であ がら、2.0 xt%を超えて含有させると伸び特性の著しい 劣化を招くので、2.0 xt%以下に限定した。

【0015】Mn:0.8 wt%以下

hは、鋼中のSを析出固定し熱間圧延性を改善するのに 有効な元素であるが、あまり多量に含有されるとかえっ て加工性の劣化を招くので、0.8 xt%以下に限定した。

【0016】P:0.05wt%以下

Pは、熱間割れ性を高め、熱間圧延性だけでなく熱延板 靱性を低下させるので0.05wt%以下に制限した。

【0017】S:0.03wt%以下

Sは、熱間加工性を劣化させる有害元素であるが、通 常、加と結合して加いを形成するので、含有量が0.03kt %以下ではその悪影響は小さい。しかしながら、0.03wt %を超えて含有すると、析出したMSが発錆の起点とな り耐食性が劣化すると共に、結晶粒界に偏析し粒界脆化 を促進するので、その含有量は0.03wt%以下に制限し た。

[0018] Cr: 10~25wt%

Crは、耐食性および高温下での耐酸化性を得るために不 可欠な元素であるが、含有量が10mt%未満ではその効果 30 に乏しい。一方、25wt%を超えると、素材自体の耐食性 が十分に高くなるため、耐食性は表層部の炭化物の析出 形態にさほど依存しなくなり、またCr含有量が高くなる と素材コストの上昇および製造性の劣化に伴う歩留りの 低下に起因した製造コストの上昇を招く、そこで、Cr量 は10~25xt%の範囲に限定した。

【0019】N:0.02wt%以下

Nは、Cと同様、鋼板の加工性(r値)を低下させる元 素なので、可能な限り低減させることが望ましいが、い たずらな高純度化は精錬コストの上昇を招くので、Cと 40 同じく、僅かに含有するNは後述するように窒化物形成 元素 (Ti, Nb) の添加により固定し、無害化する。しか しながら、含有量が0.02xt%を超えると鋼板中の析出物 量が増加し、耐食性、加工性の低下を招くので、0.02wt %以下に制限した。

【0020】Ni:1.0 wt%以下

Niは、熱延板の製性改善に寄与するだけでなく、酸に対 する耐食性の向上にも有効であるが、高価な元素なので 多量の添加はコストの上昇を招き、また過剰に添加する と高温割れなどの悪影響も生じるので、1.0 wt%以下に 50 たところ、窒化物、酸化物では差異は見られないのに対

限定した。

【0021】Al:0.1 wt%以下

Alは、脱酸に有効な元素であるが、過剰に添加すると鋼 板中に AlzOsが残留し耐食性の低下を招くだけでなく、 熱延焼鈍板の加工性も劣化させるので、0.1 ut%以下に 限定した。

6

[0022]

(Ti/48+Nb/93)/(C/12+N/14) > 1.5(Ti + Nb) < 0.5 wt%

り、この発明においてとりわけ重量な元素である。これ らの元素の1種または2種の添加により、含有するCお よびNのほとんどを炭化物、窒化物として析出固定する ことができる。そのためには、最低でも (C+N) に対 して原子比で1.5 を超える量のTiおよび/またはNbを含 有させることが重要である。しかしながら、単独使用ま たは併用いずれの場合においても含有量が 0.5wt%以上 になると、母材の加工性がかえって低下するだけでな く、溶接部の加工性も大きく低下する。また靱性が著し 20 く劣化し、製造工程において支障をきたすので、その上 限を 0.5wt%に規定した。

【0023】以上、必須成分について説明したが、この 発明では、必要に応じて以下の元素を含有させることが できる。

Bおよび/またはCa: 0.01wt%以下

Bは、鋼板の結晶粒界に濃縮し、2次加工脆性を改善す る有用元素である。また、熱延中の加工歪みの蓄積を促 進し、焼鈍後の再結晶集合組織の {111} 面の集積を 高め、成形性の改善にも有効に寄与する、かかる効果

は、極微量の添加で現れるが、過剰に添加するとその効 果が飽和するだけでなく、逆に材料を硬化させ伸び特性 の劣化ひいては加工性の低下を招く。従って、B含有量 は0.01vt%以下に限定した。Caは、Ti含有鋼において、 溶鋼鋳造時におけるTi系介在物によるノズル詰まりの抑 制に有効に寄与するが、過剰に添加すると耐食性の劣化 を招くので、含有量は0.01wt%以下に限定した。

【0024】Mo, Cu, Co, VおよびZrのうちから選んだ 1種または2種以上: 5.0 %以下

Mo, CuおよびCoは共に、耐食性を一層向上させる効果が あり、必要に応じて添加する。V, Zrは共に、Ti, Nbと 同様、C、Nと炭窒化物を形成する元素であり、この発 明におけるTi, Nbを補佐し、加工性を改善する効果を有 する。しかしながら、これら元素の含有量が、単独使用 または併用いずれの場合においても、5.0 xt%を超える と熱間圧延中の加工性が著しく低下するので、その含有 量は5.0wt%以下に制限した。

【0025】次に、この発明における、炭化物の析出形 態について説明する。さて、発明者らは、フェライト系 ステンレス熱延鋼板の析出物について詳細な検討を行っ

し、TiまたはNb系の炭化物の析出挙動は板厚方向で異な り、常法に従い熱間圧延を行って製造した熱延板では、 鋼板表層部近傍の炭化物粒径は、鋼板中心部付近の炭化 物粒径 (0.02μ■ 程度) より明らかに小さい(0.003μ■ 程度)ことが判明した。また、炭化物の析出状態と耐食 性および成形加工性との関係を調査した結果、同じ組成 の鋼板で比較した場合、炭化物粒径が大きくなると、特 に表層部の炭化物粒径が大きくなると、耐食性が向上す ることが判明した。その理由は、明確に解明されたわけ ではないが、(1) 表層炭化物が析出粗大化すると、発銹 10 起点となる表層部の炭化物数が減少する、(2) また特に 表層部近傍においてTiあるいはNbの炭化物が微細な場合 には、これらの元素によるCの固定が弱いもしくは十分 でなく、耐食性を劣化させるCr系の炭化物の析出を併発 するためと推測している。

【0026】また、成形加工性も炭化物粒径が大きくな ると向上する傾向が見られた。特に成形性は板厚中央部 付近の炭化物粒径との相関が強く見られた。この理由に ついても明らかではないが、考えられる理由として、

(1) 熱間圧延中に炭化物の析出成長が進行することによ 20 り、地鉄部の純化が促進し、引き続く焼鈍での再結晶過 程で成形性に有利として知られる {111} 集合組織の 形成が促進される、(2) 炭化物粒径が大きくなること と、焼鈍工程における再固溶が抑制され、 {111} 集 合組織の発達が促進される、等が挙げられる。

【0027】従って、炭化物の析出状態について以下の ように限定する。表層部 (最表層~1/5 厚さ)で0.02μ ■ 以上、板厚中央部位置(2/5~3/5 厚さ)で0.05μ■ 以上

表層部の炭化物粒径が大きくなるにつれて耐食性が向上 30 するが、その効果は表層部の平均粒径が0.02μ■ 以上で 顕著となる。また、成形加工性も向上するが、その効果 は板厚中央部の炭化物の平均粒径が0.05μ■ 以上で顕著 となる。従って、耐食性および成形加工性ともに優れる 炭化物の平均粒径範囲として、表層部(最表層~1/5 厚 さ)の炭化物の平均粒径については0.02μ■以上、また 板厚中央部位置(2/5~3/5 厚さ)の炭化物の平均粒径 については0.05µ■以上に限定したのである。

【0028】次に、この発明における製造方法の限定理 由について説明する。上記した炭化物の析出形態制御 は、以下に述べる製造方法によって実現可能となったも のである。

熱間圧延におけるシートバー巻き取り: 粗圧延を終えた シートバーは、コイルに巻き取ることにより、圧延中の 急激な温度降下が回避され、コイル全長にわたって均熱 化される。その結果、Ti、Nbなどの安定化元素による炭 化物の析出粗大化が進行するものと考えられる。すなわ ち、常法に従って熱間圧延を施した場合、ロールとの接 触ならびに冷却水の噴射などにより、鋼板表層付近は局 所的な温度降下を生じるため、熱延中に析出する析出物 50 圧延端のない圧延を実施できる。かくして、上記した圧

は表層部で微細となる。この点、この発明の方法に従 い、シートバー状態で一旦巻き取り処理を施した場合に は、温度降下していた表層部は復熱され、鋼板の板厚方 向での温度均一化が達成される。また、この巻き取り処 理によれば、粗圧延終了から仕上げ圧延が開示されるま での時間が従来の方法よりも長くなり、しかもシートバ ーコイル全体としての温度降下は抑制された状態にあ る。さらに後述するように、巻き取り処理に施される温 度域は地鉄組織が再結晶すると共にTi,Nbの炭化物析出 が活発に進行する温度である。その結果、シートバーコ イル全域にわたって炭化物の析出成長が進行し、特に従 来法では困難であった板厚表層部付近の炭化物の析出成 長についても容易に進行するものと推定される。

8

【0029】さらに粗圧延を終えたシートバーをコイル に巻き取り、その後巻き戻しながら仕上げ圧延を行うこ とにより、粗圧延における被圧延材の先後端が、仕上げ 圧延で逆転して圧延されることとなる。このため、粗圧 延において先行端側から後尾端側にかけて温度勾配が不 可避的に生じていたのに対し、仕上げ圧延では被圧延材 が温度の低い粗圧延後尾端側から圧延されることになる ので、仕上げ圧延においても圧延材全長にわたって温度 が均熱化されるという効果も有する。

【0030】シートバーの巻き取り温度:800~1050℃ この発明の要点は、シートバー段階で、TiまたはNbによ って十分にCを析出固定し、炭化物を成長させることに ある。しかしながら、表面温度が1050℃を超えると巻き 取りによっても析出が十分に進行しない。一方、800 ℃ に満たないと、板厚中央部付近での炭化部の析出は進行 するものの、表層部付近では析出速度が低下し、十分な 炭化物粒子の成長が得られなくなる。また 800℃未満で は続く仕上げ圧延の温度が低下し表面品質を劣化させる 不利もある。それ故、巻き取り温度は 800~1050℃好ま しくは 800~1000℃の範囲に限定したのである。

【0031】連続仕上げ圧延:仕上げ圧延に際して、圧 延中および圧延後仕上げ圧延機を通過してコイラーにて 巻き取られるまでの間、被圧延材は所定の温度域で圧 延、巻き取りを行うべく、水冷などの方法により冷却さ れる。ここで、コイル先端部は仕上げ圧延機を通過して コイラーに巻き付くまでの間、一方、コイル後端部は仕 40 上げ圧延機を通過後コイラーに巻き取られるまでの間、 いずれも鋼板が拘束されていないため、水冷すると冷却 の不均一および形状の不均一を引き起こし、これらの部 分では満足いく冷却が行えない。この点、粗圧延を終え たシートバーをコイルに巻き取り、その後巻き戻しなが ら仕上げ圧延を開始する際、先行するシートバーの後端 に後続するシートバーコイルの巻き終わり端を接続し て、仕上げ圧延を連続的に行うようにすれば、仕上げ圧 延からコイラー巻き取りまでに関しては、最初の圧延材 の先端部および最終の圧延材の後端部を除いて実質的に

延端部での冷却不均一や形状の不均一という問題の生じ ることのない圧延を行うことができるのである。

【0032】なお、熱間圧延を終えた鋼板は、焼鈍によ り軟化して、加工性の向上を図る必要があるが、この焼 鈍条件は、特に限定されず、常法従って行えば良く、好 適には 800~1050℃の温度範囲で行うことが望ましい。

[0033]

【実施例】

実施例1

表1に示す成分組成になるフェライト系ステンレス鋼ス 10 【表1】 ラブを、粗圧延スタンド3段、仕上げ圧延スタンド7段

10

の熱間圧延機にて、板厚:2.0 ㎜に圧延した。その際、 表2に示す温度で粗圧延後のシートバーを一旦コイルに 巻き取り、その後巻き戻しながら仕上げ圧延を行った。 一方、比較例としては常法に従い、粗圧延に続いて巻き 取り処理を行うことなく仕上げ圧延を行った。また一部 の圧延材については、先行、後行するシートバーを接合 して仕上げ圧延を連続的に行った。その後、900℃×3 分の焼鈍を行い、酸洗デスケーリングを行った。

[0034]

·		T	T	T	T	T	т —	_	Τ=
#	200	,	•	•	Ŀ	•	,		H
12	Ľ	L	0 11	1	'		1	1	ı
>	1	ı	9.08	1	ı	ı	9	0.01	ı
8	ı	ı	0 01	ı	ı	1	1	1	1
3		ı	1	1	ı	ı	0.11	ı	1
9	1	1	,	ı	1	ı	1.86	0.85	١
3	1	ı	ı	ı	ı	0.0012	1	0.0018	1
m	1	ı	1	ı	1	0.0011	ı	ı	1
(T1, Nb)/(C, N)	£ 43	2.79	2.51	1.79	4.68	2.88	3.88	8.20	1.28
2	200 0	Q 48	8 8 0	0.15	800 V	100 '0	0.35	0.09	0,001
F	0.28	0.002	0 00Z	0.15	8E V	zz v	T00 T	0.38	0.15
₹	g 08	0.01	10.0	9.0	20 T	10 '0	0.01	0.01	0.02
×	0.09	0.11	71 '0	0.13	0.13	0.83	0.25	0.18	0.81
z	0. 008	0.011	600 TO	a. 016	510 D	a 013	a. 008	a 007	a 015
3	12.2	1.32	14.9	9 71	18.2	16.3	19.3	18.0	18.6
S	0.008	0. 002	0. DOZ	a 019	a 019	a 011	a 008	a 005	a 015
Đ,	a. 025	0 czz	0.022	0.038	0.033	0.001	D. 032	0.028	0.028
4	Q.41	0.38	Q.3	0.15	0. 15	0. 13	0. 15	0. 18	0.13
18	0.31	0.85	0.76	1.35	0.08	0.05	62.73	C 23	ය ස
ပ	900.	a. 012	a 012	a. 018	a. 005	00 D	a. 005	Q 007	Q 017
#	∢	æ	ပ	Ω	ы	Ď.	ڻ	Ħ	-

[0035]

* *【表2】.

	<u> </u>										T -#
牌种	ma	(C) (C) (C)	シートバー 登合の存実	受職に現代的 単型的技法 (xm)	中央網路(1億 甲基投資 (am)	CCT 付別機 (国)	東 雑 記録学 (XC)	第 章 高級等 (36)	耐性 同比等 (Vic)	rill	9 3
1	Λ	άL	4L	_0, 004	0.624	100	67	67	•	0.50	比較無
2	٨	1000	αL .	0.005	0.063	10	89	67	-3	0.03	比較利
3	Λ	1050	מנ	0.022	0.863	10		67	<u> </u>	1.07	399
4	Α	950	άL	0.046	0.672	LO	53	ä	21	1.12	発作詞
5	Λ	850	αι	0.047	0.675	10		67	Z1	1.16	発売時
6	Λ	940	89	0.050	0.670	10	6	67	23	1.55	7072F
1	В	<u>ar</u>	αL	0.002	1.02	100	•	43	•	0.53	比較阿
	В	-	αL	B. 028	0.063	100	30		30	1.08	是野網
9	В	53)	なし	B. 062	0.075	100	92	8	23	ın	元
10	В	<u>.759</u>	なし	<u>0.008</u>	0.051	100	40	43	7	LŒ	出版例
ո	С	<u> </u>	なし	& OSEZ	0,019	100		40	•	4.50	Batter
12	C	1110	QL	0.000	0.031	129		40	انة ا	4.65	比較明
13	C	B20	89	0.017	0.072	tte	29	40	25	L	AMM
14	Đ	άL.	₩L	0.004	4.02			40		4.62	JERRE
5	D	1030	なし	0.022	0.000	LTP9	22	40	20	L 03	998
L.	D	900	なし	0.094	0.074	LDD	22	40	23	1. 1B	知例
17	E	弘上	なし	0.002	A. 019	1200	65	4 5	•	1.8	上校
18	E	1918	なし	Q. 65 1	6.050	1.000	墅	45	29	LOS	現門門
19	B	800	なし	2. 63B	.A.077	100	79	45	36	LZI	現理的
20	R	_750	&F	<u>0, 615</u>	0:073	199	47	45	-4	LH	比较們
20	P	在上	なし	0.001	0.012	199	47	47	0	0.55	比較利
22	P	1960	ar	0.025	0.652	190	25	47	25	LI	PHYSIA
2	P	220	89	5 023	0.672	180	21	4 7	24	1.13	规则
24	P	_740	Q.L	_0.007	0.059	100	44	47	•	166	出數
5	G	在上	te L	0.002	0.018	200	23	25	0	0.54	出数
25	G	1099	tal	<u>4.000</u>	0.000	200	Э	28	-7	0.62	比較何
27	G	259	αL .	F 020	€ 071	200	22	23	22	113	元78 9
2	G	800	₩.	B. 027	8.GT9	200	29	22	29	1. 16	50707 1
29	H	<u> </u>	a L	4.07	£ 020	200		20	o	0.57	比较的
30	Æ	1,000	89	4. 650	A.063	209	19	30	25	LD	是特別
21	1	άL	te l	0.002	0.058	100	51	51	•	0.53	
#	1	850	#L	0.015	0.059	160	a	51		0.7	比较們

【0036】かくして得られた熱延コイルの長手方向ほ 加工性の評価を行った。耐食性は、表3に示す条件で塩 乾湿複合(CCT)サイクル試験を行い、試験後の発錆 面積で評価した。また、同組成の常法に従ってシートバ 一巻き取り処理を行わずに圧延して製造された供試材の 発銷面積率を基準値として、この基準値に対する耐食性 向上率を、次式

耐食性向上率(%)={(基準面積率)-(供試材の発 G (基準面積率) × 100

で求め、評価の指標とした。また、成形加工性は、圧延*

*方向に対して平行にJIS 13号B試験片を切り出し、15% ぼ中央部付近よりサンプルを採取し、耐食性および成形 30 引っ張りにおけるランクフォード値を求め、評価した。 さらに、コイルの長手方向中央部付近より採取したサン プルを、表層部 1/5厚さ(表層部試料)、中央部 1/5厚 さ(中央部試料)にそれぞれ切削加工し、析出物分析用 試料を作製したのち、電解法により析出物を抽出採取し た。ついで遠心分離式粒度分布測定装置および透過型電 子顕微鏡(TEM)での観察分析を一部併用して得られ た析出物の測定を行い、炭化物の平均粒径を求めた。

[0037]

【表3】

THE THE PROPERTY OF THE PROPER	<u>жение выс</u>	1712 /					
サイクル	溶液	進度(℃)	望 度 (%)	時 間 (h)			
★ 器	5.0% NaCl	35	_	0.5			
乾 燥	_	60	≤ 40	1.0			
没 潤		40	≥ 95	1.0			

【0038】表2に、シートバー巻き取り温度、シート バー接合の有無、析出炭化物の平均粒径、発銷面積率、 耐食性向上率および圧延方向のランクフォード値(r

※有量が少なく、Ti, NbとC, Nの含有比がこの発明の適 正範囲を外れる比較鋼である。その他の鋼A、B、C、 D, E, F, GおよびHはこの発明の成分組成範囲を満 値)の関係をまとめて示す。表1中、鋼Iは、Ti,Nb含※50 足するものであるが、シートバー巻き取りを行わない従

来法にて熱延し製造した供試材1,7,11;14,17,2 1,25および29はいずれも、表層近傍および板厚中央部 付近の炭化物の平均粒径がともに小さい。これに対し て、この発明に従い、シートバー巻き取りを行って製造 された供試材3,4,5,6(以上は供試材1を基準と して比較)、供試材8,9(以上は供試材7を基準として比較)、供試材13(以上は供試材11を基準として比較)、供試材15,16(以上は供試材11を基準として比較)、供試材15,16(以上は供試材17を基準として比較)、供試材18,19(以上は供試材17を基準として比較)、供試材22,23(以上は供試材21を基準として比

較) および供試材30 (以上は供試材29を基準として比較) はいずれも、基準材と比較して表層近傍および板厚中央部付近の炭化物の平均粒径がともに大きく、耐食性、成形加工性ともに向上している。

較)、供試材27,28(以上は供試材25を基準として比

【0039】しかしながら、シートバー巻き取りを行っ た場合でも、巻き取り温度がこの発明の範囲より高い供 試材2(供試材1を基準として比較)、供試材12(供試 材11を基準として比較) および供試材26 (供試材25を基 準として比較)は、表層、中央部ともに炭化物はこの発 20 明の範囲まで成長しておらず、耐食性、成形加工性とも 基準材と比較して目立った向上は見られなかった。ま た、逆に巻き取り温度がこの発明の範囲より低い供試材 10 (供試材7を基準として比較)、供試材20 (供試材17 を基準として比較) および供試材24 (供試材21を基準と して比較)は、表層部付近の炭化物の成長が十分ではな く、耐食性は基準材とほとんど変わらなかった。一方、 Ti,Nb含有量が少なくこの発明の銅組成を満足しない鋼 Iは、この発明の製造方法に従ってシートバー巻き取り を行った場合でも(供試材32)、炭化物の成長は表層部 30 ・中央部ともに十分ではなく、従来法で製造した基準材 (供試材31)に対して耐食性、成形加工性共に向上はほ とんど見られなかった。

【0040】網A、B、C、D、E、F、G、Hおよび 比較網Iを用いた以上の結果を、耐食性向上率およびr 値に及ぼす表層および中央部の炭化物粒径の影響に整理 して図1、2に示す。同図より、耐食性は表層炭化物粒 径に依存し、一方r値に代表される成形加工性は板厚中 央部付近の炭化物粒径に依存することが明らかである。 【0041】実施例2

実施例1に示した網Aより作製した供試材1,4,6を

採取したコイルより、コイル長手方向中央部以外からも サンプリングを断続的に採取し、耐食性、成形加工性両 特性のコイル全長にわたる均質性について調査した。図 3に、コイル長手方向の耐食性向上率および r 値の変化 を示す。ここでLEは粗圧延における圧延先端であり、 TEは粗圧延における圧延後端である。従来法に従い製 造された比較例である供試材1は、全体的に特性が低い だけでなく、コイル先後端におけるr値の劣化ならびに 特にTE側での耐食性の劣化が著しいのに対し、この発 10 明に従いシートバー巻き取りを行った供試材4はコイル 全長にわたって優れた耐食性ならびに成形性を示し、そ の変動幅も小さくなる傾向を示している。さらに、巻き 取り後、シートバーを接合して圧延を連続的に行った供 試材6については、その材質変動幅は一層小さい。従っ て、コイル長手方向における均一性もこの発明の方法に よれば向上することが明らかである。

16

[0042]

【発明の効果】かくして、この発明に従い、フェライト系ステンレス鋼熱延板において、Ti,Nbの添加により炭窒化物を十分析出固定すると共に、その熱延板中に析出する炭化物の平均粒径を、表層部(最表層~1/5 厚さ)で0.02μm以上、かつ板厚中央部位置(2/5~3/5 厚さ)で0.05μm以上に制御することにより、フェライト系ステンレス鋼熱延板の耐食性および成形加工性を格段に向上させることができ、またこの炭化物の析出制御を熱間圧延中のシートバーを所定の条件で一旦巻き取ることにより、さらに好ましくは、シートバーを一旦巻き取った後に先行する圧延材の後端とシートバーコイルの巻き終り端を接合して仕上げ圧延を連続的に実施することにより、熱延コイルの長手方向における材質均質性を格段に向上させることができ、材質の安定化、歩留りの向上に大きく寄与する。

【図面の簡単な説明】

【図1】鋼板表層部(最表層~1/5 厚さ)の炭化物の平 均粒径と、耐食性向上率および r 値との関係を示すグラ フである。

【図2】鋼板板厚中心部(2/5~3/5 厚さ)の炭化物の 平均粒径と、耐食性向上率およびr値との関係を示すグ ラフである。

40 【図3】コイル長手方向にわたる、耐食性向上率および r値の変化を示すグラフである。

【図2】

【図3】

フロントページの続き

(51) Int. Cl . ⁶

識別記号 庁内整理番号

FΙ

技術表示箇所

C22C 38/54

C22C 38/54

(72)発明者 小林 真

千葉県千葉市中央区川崎町1番地 川崎製

鉄株式会社技術研究所内

(72) 発明者 池田 東至朗

千葉県千葉市中央区川崎町1番地 川崎製

鉄株式会社技術研究所内