TEC0001 – Teoria da Computação Aula 02 Máquina de Turing

Karina Girardi Roggia karina.roggia@udesc.br

Departamento de Ciência da Computação Centro de Ciências Tecnológicas Universidade do Estado de Santa Catarina

2016

Karina G. Roggia 2016 TEC0001 - Aula02 1 / 13

Sumário

Turing

Conceituação

Definição Formal

Computação

Exemplos

2 / 13

Alan Turing

Alan Turing

- Cientista da Computação, Matemático, Lógico, Criptoanalista e Biomatemático
- Pai da Computação Teórica e da Inteligência Artificial

Conceito

Procura reproduzir uma pessoa trabalhando na solução de um problema:

- Instrumento para escrever, outro para apagar
- Folha de papel dividida em regiões
- Movimentos para troca de regiões.

Durante o trabalho:

- Pode-se ler um símbolo
- Símbolo existente pode ser alterado
- Ação a ser executada depende do símbolo lido e do "estado mental" do trabalhador

Karina G. Roggia 2016 TEC0001 - Aula02 4 / 1:

Conceito

Algumas Simplificações:

- A folha de papel tem dimensões tão grandes quanto necessárias
- Ela é organizada de forma unidimensional e dividida em células
- O conjunto de símbolos é finito
- O conjunto de estados mentais é finito
- Apenas um símbolo é lido de cada vez
- A atenção se desloca apenas para as células adjacentes

Karina G. Roggia 2016 TEC0001 - Aula02 5 / 1

Componentes

Definição Formal

Definição (Máquina de Turing)

Uma máquina de Turing é uma estrutura algébrica $M=\langle Q, \Sigma, \Gamma, \delta, q_0, q_{aceita}, q_{rejeita} \rangle$ onde Q, Σ, Γ são conjuntos **finitos** e

- Q é o conjunto de estados
- Σ é o alfabeto de entrada
- Γ é o alfabeto da fita sendo que

 - $\bullet \ \ \lrcorner \notin \Sigma$
 - $\Sigma \subseteq \Gamma$
- $\delta: Q \times \Gamma \rightarrow Q \times \Gamma \times \{E, D\}$ é a função de transição
- q₀ é o estado inicial
- q_{aceita} é o estado de aceitação
 - $q_{rejeita}$ é o estado de rejeição onde $q_{aceita}
 eq q_{rejeita}$

Diagrama de Estados

Se

$$\delta(q_i,x)=(q_j,y,E)$$

então

$$q_i$$
 $\xrightarrow{(x,y,E)}$ q_j

Computação

Configuração Inicial:

- Entrada $w = \sigma_1 \sigma_2 \dots \sigma_n$ com $\sigma_i \in \Sigma$ para $i = 1, 2, \dots, n$ é colocada nas n células mais à esquerda da fita
- Restante da fita está preenchida com o caracter especial
- Cabeçote posicionado na célula mais à esquerda da fita
- Controle de estado está no estado inicial q₀

Computação

Processamento

- Estando-se no estado $q_i \neq q_{aceita}, q_{rejeita}$, ao ler um símbolo $\gamma \in \Gamma$, verifica-se qual o resultado de $\delta(q_i, \gamma)$
- Caso $\delta(q_i, \gamma) = (q_j, \rho, X)$, sendo $\rho \in \Gamma$ e $X \in \{E, D\}$
 - Escreve-se ρ na célula atual da fita
 - O cabeçote move-se para a esquerda (direita) caso X = E (X = D)
 - O controle de estado passa para o estado q_j . Se $q_j=q_{aceita}$ $(q_j=q_{rejeita})$ a máquina para aceitando (rejeitando) a entrada
- Caso $\delta(q_i, \gamma)$ não esteja definido, a máquina para, indo para o estado de rejeição $q_{rejeita}$

Karina G. Roggia 2016 TEC0001 - Aula02 10 / 13

Computação

Observação

Caso o cabeçote esteja posicionado na célula mais à esquerda da fita e o movimento da função programa seja E, o cabeçote permanece onde está. Cabe ao programa(dor) controlar tal comportamento da máquina.

Karina G. Roggia 2016 TEC0001 - Aula02 11 / 13

Configuração

${\sf Supondo}$

Escreveremos esta configuração como

abq₃baca

Karina G. Roggia 2016 TEC0001 - Aula02 12 / 13

Exemplos

Definir uma Máquina de Turing que...

- **1** Reconhece a linguagem $\{w \# w \mid w \in \{a, b\}^*\}$
- **2** Reconhece a linguagem $\{a^n b^n \mid n > 0\}$
- 3 Computa um número inteiro multiplicado por 2, sendo a representação do número n:
 - a) uma sequência de *n* vezes o símbolo 1
 - b) em binário