Title

D. Zack Garza

Sunday 13th September, 2020

Contents

1	Sun	day, September 13	1
	1.1	1.a	1
	1.2	3.a	2

| Sunday, September 13

1.1 1.a

 $Proof\ (A \implies B).$

- Suppose $\{a_n\}$ is not bounded above.
- Then any $k \in \mathbb{N}$ is not an upper bound for $\{a_n\}$.
- So choose a subsequence $a_{n_k} > k$, then by order-limit laws,

$$a_{n_k} > k \implies \liminf_{k \to \infty} a_{n_k} > \liminf_{k \to \infty} k = \infty.$$

Note that $\lim_{n \to \infty} a_n$ need not exist, but $\lim_{n \to \infty} a_n$ always exist.

 $Proof(A \Longrightarrow B).$

- Suppose $\{a_n\}$ is bounded by M, so $a_n < M < \infty$ for all $n \in \mathbb{N}$.
- Then if $\{a_{n_k}\}$ is a subsequence, we have $a_{n_k} \in \{a_n\}$, so $a_{n_k} < M$ for all $k \in \mathbb{N}$.
- But then

$$a_{n_k} < M \implies \limsup_{k \to \infty} a_{n_k} \le M,$$

• Now note that if $\lim_{k \to \infty} a_{n_k}$ exists,

$$\lim_{k\longrightarrow\infty}a_{n_k}<\limsup_{k\longrightarrow\infty}a_{n_k}\leq M<\infty,$$

so every subsequence is bounded and thus can not converge to ∞ .

1.2 3.a

Proof.

• Suppose $x_n \leq M$ for all n and let $S := \liminf_{n \to \infty} x_n$ be the infimum of subsequential limits.

Proof (Using definition (ii)).

- Suppose $|x_n| \leq M$ for every n.
- Let $\{x_{n_k}\}$ be an arbitrary subsequence, then since $x_{n_k} \in \{x_n\}$ for all k, $|x_{n_k}| \leq M$ for all k.
- ullet By order-limit laws, for every fixed n we have

$$|x_{n_k}| \le M \implies \inf_{k>n} |x_{n_k}| \le M.$$

• Again applying order limit laws,

$$\inf_{k>n}|x_{n_k}| \le M \implies \lim_{n \longrightarrow \infty} \inf_{k>n}|x_{n_k}| \le M.$$