Chapter 1

Nonstationary Times Series - Exercises

Shu Shen

Exercise 16.3 Suppose $Y_t = X_t + u_t$ where $X_t = X_{t-1} + e_t$ with $(e_t, u_t) \sim I(0)$.

- (a) Is $Y_t I(0)$ or I(1)?.
- (b) Find the asymptotic functional distribution of $n^{-1/2}Y_{\lfloor nr \rfloor}$.

Solution. 16.3

(a)

$$Y_{t} = X_{t} + u_{t}$$

$$= X_{t-1} + e_{t} + u_{t}$$

$$= X_{t-2} + e_{t-1} + e_{t} + u_{t}$$

$$= \dots$$

$$= X_{0} + \sum_{i=1}^{t} e_{i} + u_{t}$$

$$\Delta Y_{t} = Y_{t} - Y_{t-1}$$

$$= X_{t} - X_{t-1} + u_{t} - u_{t-1}$$

$$= e_{t} + \Delta u_{t}$$

Since $(e_t, u_t) \sim I(0)$, ΔY_t is stationary with positive long-run variance. Thus, Y_t is I(1). (b)

$$Y_{t} = \sum_{i=1}^{t} e_{i} + u_{t} + X_{0}$$
$$= S_{t} + u_{t} + X_{0}$$

Because ΔY_t is stationary and $E[\Delta Y_t] = 0$,

$$n^{-1/2}Y_{\lfloor nr \rfloor} = S_n(r) + n^{-1/2}u_{\lfloor nr \rfloor} + n^{-1/2}X_0$$

$$= S_n(r) + o_p(1)$$

$$\stackrel{d}{\to} B(r)$$

with covariance matrix Ω which is the long-run variance of ΔY_t .

Exercise 16.4 Let $Y_t = e_t$ be i.i.d. and $X_t = \Delta Y_t$.

- (a) Show that Y_t is stationary and I(0).
- (b) Show that X_t is stationary but not I(0).

Solution. 16.4

(a) Since e_t is i.i.d. with finite variance, $Y_t = e_t$ is stationary with constant mean and variance

$$\gamma_{Y}(\ell) = Cov(Y_{t}, Y_{t-\ell}) = Cov(e_{t}, e_{t-\ell}) = \begin{cases} var(e_{t}) & \text{if } \ell = 0\\ 0 & \text{if } \ell \neq 0 \end{cases}$$

and thus its long-run variance $\sum_{\ell=-\infty}^{\infty} \gamma_{Y}(\ell) > 0$ is positive. As a result, Y_{t} is I(0).

(b) $X_t = \Delta Y_t$ is stationary because Y_t is stationary. Its variance is

$$\begin{split} \gamma_{X}\left(\ell\right) &= Cov\left(X_{t}, X_{t-\ell}\right) = Cov\left(\Delta Y_{t}, \Delta Y_{t-\ell}\right) \\ &= Cov\left(Y_{t} - Y_{t-1}, Y_{t-\ell} - Y_{t-\ell-1}\right) \\ &= 2\gamma_{Y}\left(\ell\right) - \gamma_{Y}\left(\ell+1\right) - \gamma_{Y}\left(\ell-1\right) \\ &= \begin{cases} -var\left(e_{t}\right) & \text{if } \ell = -1 \\ 2var\left(e_{t}\right) & \text{if } \ell = 0 \\ -var\left(e_{t}\right) & \text{if } \ell = 1 \\ 0 & \text{if } \ell \neq -1, 0, 1 \end{cases} \end{split}$$

Because its long-run variance $\sum_{\ell=-\infty}^{\infty} \gamma_X(\ell) = 0$, we conclude that X_t is not I(0).

Exercise 16.6 Take the AR(1) model $Y_t = \alpha Y_{t-1} + e_t$ with i.i.d. e_t and the least squares estimator $\hat{\alpha}$. In Chaper 14 we learned that the asymptotic distribution when $|\alpha| < 1$ is $\sqrt{n} (\hat{\alpha} - \alpha) \stackrel{d}{\to} N(0, 1 - \alpha^2)$. How do you reconcile this with Theorem 16.9, especially for α close to one?

Solution. 16.6

(1) When $|\alpha| < 1$,

$$var(Y_t) = var\left(\sum_{i=0}^{\infty} \alpha^i e_{t-i}\right) = \sum_{i=0}^{\infty} (\alpha^i)^2 var(e_{t-i}) = \sigma^2 \sum_{i=0}^{\infty} (\alpha^i)^2 = \frac{\sigma_e^2}{1 - \alpha^2}$$

$$\sqrt{n}(\hat{\alpha} - \alpha) = \frac{\frac{1}{\sqrt{n}} \sum Y_{t-1} e_t}{\frac{1}{n} \sum Y_t^2}$$

The numerator $\frac{1}{\sqrt{n}} \sum Y_{t-1} e_t \xrightarrow{d} N\left(0, var\left(Y_{t-1} e_t\right)\right) = N\left(0, var\left(Y_{t-1}\right) \sigma_e^2\right)$. The denominator $\frac{1}{n} \sum Y_t^2 \xrightarrow{p} var\left(Y_t\right)$. Therefore,

$$\sqrt{n}\left(\hat{\alpha}-\alpha\right) = \frac{\frac{1}{\sqrt{n}}\sum Y_{t-1}e_t}{\frac{1}{n}\sum Y_t^2} \sim N\left(0, \frac{\sigma_e^2}{var\left(Y_t\right)}\right) = N\left(0, 1-\alpha^2\right).$$

(2) The last expression implies that when $\alpha \rightarrow 1$,

$$\sqrt{n}\left(\hat{\alpha} - \alpha\right) = \frac{\frac{1}{\sqrt{n}}\sum Y_{t-1}e_t}{\frac{1}{n}\sum Y_t^2} \sim N\left(0, \frac{\sigma_e^2}{var\left(Y_t\right)}\right) \sim N\left(0, 0\right) = 0$$

In other words, the scaling factor \sqrt{n} is not big enough to blow $(\hat{\alpha} - \alpha)$ into an non-degenerate random variable. Actually, then $\alpha = 1$, the proper scaling factor should be n, as we will see in the next question.

(3) When $\alpha = 1$,

$$n\left(\hat{\alpha}-\alpha\right) = \frac{\frac{1}{n}\sum Y_{t-1}e_t}{\frac{1}{n^2}\sum Y_t^2}.$$

The numerator

$$\sum_{t=0}^{n-1} \frac{Y_t}{\sqrt{n}} \frac{Y_{t+1} - Y_t}{\sqrt{n}} = \int S_n(r) \, \mathrm{d}S_n(r) \stackrel{d}{\to} \int_0^1 B \, \mathrm{d}B = \sigma_e^2 \int W \, \mathrm{d}W.$$

The denominator

$$\frac{1}{n} \sum_{t=0}^{n-1} \left(\frac{Y_t}{\sqrt{n}} \right)^2 = \sum_{t=0}^{n-1} \frac{1}{n} S_n^2(r) \xrightarrow{d} \int_0^1 B^2 = \sigma^2 \int_0^1 W^2.$$

Therefore,

$$n\left(\hat{\alpha}-1\right) \xrightarrow{d} \frac{\int_0^1 W dW}{\int_0^1 W^2}$$