1. Définition d'un automate à Bornes Linéaires

Un automate à bornes linéaires est composé d'un organe de commande à états finis, d'une bande en entrée et d'une tête de lecture-écriture (Figure 1).

A l'état initial, le mot à reconnaitre est délimité par deux symboles le C et \$. Ces deux symboles bornent l'espace de travail pour la reconnaissance des mots d'un langage.

Figure 1. Automate à bornes linéaires

L'organe de commande a un nombre fini d'états. L'automate fonctionne étape par étape (lettre par lettre). A chaque étape, il peut changer d'états en exécutant un ensemble d'opérations :

- Lire la lettre sous la tête de lecture-écriture $(T_{L/E})$ et la remplacer par une autre
- Faire passer $T_{L/E}$ à la case à Gauche ou à Droite.

Plus formellement, un automate à bornes linéaires est un 7-uplets <X, Y, S, S₀, F, II, G, D> où :

X est l'alphabet d'entrée, C et \$ sont deux lettres qui délimitent le mot à reconnaitre.

Y est l'alphabet auxiliaire (alphabet de marquage),

S est l'ensemble des états de l'automate,

 S_0 est l'état initial, $S_0 \in S$

F est l'ensemble des états finaux, $F \subseteq S$

G : Déplacement de la tête de lecture-écriture à gauche

D : Déplacement de la tête de lecture-écriture à droite

II est l'ensemble des instructions, II : $S \times (X \cup Y) \rightarrow S \times (X \cup Y) \times \{D, G\}$

2. Opérations

Quatre opérations, définies ci-dessous, sont associées à l'automate à bornes linéaires:

Lecture et écriture : $S_i x_i \rightarrow S_j y_i \quad x_i, y_i \in (X \cup Y) \text{ et } S_i, S_j \in S$

Si l'automate est à l'état S_i et si la lettre x_i est sous $T_{L/E}$ alors l'automate passe à l'état S_j et remplace x_i par y_i .

Cette opération peut-être représentée graphiquement de la manière suivante :

Lecture: $S_i x_i \rightarrow S_j x_i$ $x_i \in (X \cup Y), S_i, S_j \in S$

Si l'automate est à l'état S_i , et si la lettre x_i est sous $T_{L/E}$, l'automate passe à l'état S_i .

Déplacement de la tête de lecture-écriture à Droite: S_i $x_i \rightarrow S_j$ D, $x_i \in (X \cup Y)$, S_i , $S_j \in S$ S_i l'automate est à l'état S_i , et la lettre x_i est sous $T_{L/E}$, l'automate passe à l'état S_j et $T_{L/E}$ est déplacée à Droite.

Déplacement de la tête de lecture-écriture à Gauche: S_i $x_i \to S_j$ G, $x_i \in (X \cup Y)$, S_i , $S_j \in S$ S_i l'automate est à l'état S_i , et la lettre x_i est sous $T_{L/E}$, l'automate passe à l'état S_j et $T_{L/E}$ est déplacée à Gauche.

Exercice 1:

Donner l'automate à bornes linéaires reconnaissant le langage suivant $L = \{a^n \ b^n \ c^n, \ n \ge 0\}$

3. Configuration d'un automate à bornes linéaires

- Une configuration d'un automate à bornes linéaires est un triplet (y, Si, w), où Si est l'état courant dans lequel est l'automate, y est le mot à gauche de $T_{L/E}$ (déjà traversé) et $T_{L/E}$ pointe sur la première lettre du mot w, w et $y \in (X \cup Y)^*$.
- On appelle configuration initiale le triplet (ε, S_0, w) , l'automate est à l'état initial S_0 et le mot à reconnaître en entrée est $w, w \in X^*$.
- On appelle configuration finale le triplet (y, S_f, y') , où S_f est un état final $S_f \in F$ et $y, y' \in$ $(X \cup Y)^*$.

Mot reconnu par un automate à bornes linéaires 4.

Soit $\mathit{A_{BL}}\xspace^{<}X,\,Y,\,S,\,S_0,\,F,\,II,\,D,\,G^{>}$ un automate à bornes linéaires. Un mot $w\in X^*$ est reconnu par A_{BL} si ce mot fait passer l'automate de sa configuration initiale à une configuration finale : $\varepsilon, S_0, w \mid \frac{*}{A_{BL}} y, S_f, y'$

Langage reconnu par un automate à bornes linéaires 5.

Un langage reconnu par un automate à pile est défini comme suit :
$$L(A_{BL}) = \{ w \in X^* \ tq \ (\epsilon, S_0, \, w) \bigg| \frac{*}{A_{\mathcal{D}}} \quad (y, S_f, \, y') \ \}$$