DETECTING WINDOWS ATTACKS WITH SPLUNK

Page 15 / Detecting Kerberos Brute Force Attacks

Detecting Kerberos Brute Force Attacks

When adversaries perform Kerberos-based user enumeration, they send an AS-REQ (Authentication Service Request) message to the Key Distribution Center (KDC), which is responsible for handling Kerberos authentication. This message includes the username they're trying to validate. They pay close attention to the response they receive, as it reveals valuable information about the existence of the specified user account.

A valid username will prompt the server to return a TGT or raise an error like KRB5KDC_ERR_PREAUTH_REQUIRED, indicating that preauthentication is required. On the other hand, an invalid username will be met with a Kerberos error code KRB5KDC_ERR_C_PRINCIPAL_UNKNOWN in the AS-REP (Authentication Service Response) message. By examining the responses to their AS-REQ messages, adversaries can quickly determine which usernames are valid on the target system.

How Kerberos Brute Force Attacks Look Like On The Wire

■ kerberos					
No.	Time	Source	Destination	Protocol Le	ingth Info
3206	14.697848	192.168.38.104	192.168.38.102	KRB5	287 AS - REQ
3207	14.698175	192.168.38.102	192.168.38.104	KRB5	160 KRB Error: KRB5KDC_ERR_C_PRINCIPAL_UNKNOWN
3216	14.755297	192.168.38.104	192.168.38.102	KRB5	289 AS-REQ
3217	14.755607	192.168.38.102	192.168.38.104	KRB5	160 KRB Error: KRB5KDC_ERR_C_PRINCIPAL_UNKNOWN
3226	14.811835	192.168.38.104	192.168.38.102	KRB5	291 AS-REQ
3227	14.812134	192.168.38.102	192.168.38.104	KRB5	160 KRB Error: KRB5KDC_ERR_C_PRINCIPAL_UNKNOWN
3236	14.869272	192.168.38.104	192.168.38.102	KRB5	289 AS-REQ
3237	14.869599	192.168.38.102	192.168.38.104	KRB5	160 KRB Error: KRB5KDC_ERR_C_PRINCIPAL_UNKNOWN
3246	14.926350	192.168.38.104	192.168.38.102	KRB5	292 AS-REQ
3247	14.926667	192.168.38.102	192.168.38.104	KRB5	160 KRB Error: KRB5KDC_ERR_C_PRINCIPAL_UNKNOWN
3256	14.983953	192.168.38.104	192.168.38.102	KRB5	291 AS-REQ
3257	14.984290	192.168.38.102	192.168.38.104	KRB5	160 KRB Error: KRB5KDC_ERR_C_PRINCIPAL_UNKNOWN
3266	15.042399	192.168.38.104	192.168.38.102	KRB5	288 AS-REQ
3267	15.042723	192.168.38.102	192.168.38.104	KRB5	160 KRB Error: KRB5KDC_ERR_C_PRINCIPAL_UNKNOWN
3276	15.098845	192.168.38.104	192.168.38.102	KRB5	296 AS-REQ

Let's now navigate to the bottom of this section and click on "Click here to spawn the target system!". Then, access the Splunk interface at https://[Target IP]:8000 and launch the Search & Reporting Splunk application. The vast majority of searches covered from this point up to end of this section can be replicated inside the target, offering a more comprehensive grasp of the topics presented.

Additionally, we can access the spawned target via RDP as outlined below. All files, logs, and PCAP files related to the covered attacks can be found in the /home/htb-student and /home/htb-student/module_files directories.

Detecting Kerberos Brute Force Attacks
MisaelMacias@htb[/htb]\$ xfreerdp /u:htb-student /p:'HTB_@cademy_stdnt!' /v:[Target IP] /dynamic-res

Related Evidence

- Related Directory: /home/htb-student/module_files/kerberos_bruteforce
- Related Splunk Index: kerberos_bruteforce
- Related Splunk Sourcetype: bro:kerberos:json

Detecting Kerberos Brute Force Attacks With Splunk & Zeek Logs

Now let's explore how we can identify Kerberos brute force attacks, using Splunk and Zeek logs.

Detecting Kerberos Brute Force Attacks

ResourcesGo to Questions

Table of Contents Leveraging Windows Event Logs 6 Detecting Common User/Domain Recon Detecting Password Spraying Detecting Responder-like **Attacks** Detecting Kerberoasting/AS-REProasting Detecting Pass-the-Hash Detecting Pass-the-Ticket Detecting Overpass-the-Hash **Detecting Golden** Tickets/Silver Tickets Detecting Unconstrained **Delegation/Constrained Delegation** Detecting DCSync/DCShadow

Leveraging Splunk's Application Capabilities

Creating Custom Splunk Applications

Leveraging Zeek Logs

- Detecting RDP Brute Force Attacks
- Detecting Beaconing Malware
- Detecting Nmap Port Scanning
- Detecting Kerberos Brute Force
 Attacks
- Detecting Kerberoasting

 Detecting Golden Tickets
- Detecting Cobalt Strike's

- Detecting Exfiltration (DNS)
- Detecting Ransomware

Skills Assessment

