2020

PROBLEM 1 (2.3). Let χ be a character of G. Define $\det \chi: G \to \mathbb{C}$ as follows: Choose ρ affording χ and set

$$(\det \chi)(g) = \det \rho(g).$$

Show that $\det \chi$ is a uniquely defined linear character of G.

PROBLEM 2 (2.4).

- (A) Let *G* be a nonabelian group of order 8. Show that *G* has a unique nonlinear irreducible character χ . Show that $\chi(1) = 2$, $\chi(z) = -2$, $\chi(x) = 0$, where $z = G \{1\}$ and $x \in G G'$.
- **(B)** If $G \cong D_8$, show that $\det \chi \neq 1_G$.
- (C) If $G \cong Q_8$, show that $\det \chi = 1_G$.

HINT: Show that $Ker(\det \chi)$ contains all elements of order 4. Use Lemma 2.15.

PROBLEM 3 (2.5).

- (A) Find a real representation of D_8 which affords the character χ of problem 2.4 (A). (B) Show that this cannot be done for the group Q_8 .

PROBLEM 4 (2.8). Let χ be a faithful character of G. Show that $H \subseteq G$ is abelian iff every irreducible constituent of χ_H is linear.

PROBLEM 5 (2.9). (A) Let χ be a character of an abelin group A. Show that

$$\sum_{a\in A} |\chi(x)|^2 \ge |A|\chi(1).$$

(B) Let $A \subseteq G$ with A abelian and |G:A| = n. Show that $\chi(1) \le n$ for all $\chi \in Irr(G)$. *Solution*.

PROBLEM 6 (2.10). Suppose $G = \bigcup_{i=1}^n A_i$, where the A_i are abelian subgroups of G and $A_i \cap A_j = 1$ if $i \neq j$.

- (A) Let $\chi \in |\operatorname{rr}(G)$. Show that if $\chi(1) > 1$, then $\chi(1) \ge |G|/(n-1)$. (B) If G is nonabelian, then $|A_i| \le n-1$ for each i and $n-1 \ge |G|^{1/2}$.

PROBLEM 7 (2.11). Let $g \in G$. Show that g is conjugate to g^{-1} in G iff $\chi(g)$ is real for all characters χ