NORMAL FORMS IN DBMS

Normalization is the process of minimizing **redundancy** from a relation or set of relations. Redundancy in relation may cause insertion, deletion, and update anomalies. So, it helps to minimize the redundancy in relations. **Normal forms** are used to eliminate or reduce redundancy in database tables.

1. First Normal Form

If a relation contain composite or multi-valued attribute, it violates first normal form or a relation is in first normal form if it does not contain any composite or multi-valued attribute. A relation is in first normal form if every attribute in that relation is **singled valued attribute**.

• Example 1 – Relation STUDENT in table 1 is not in 1NF because of multivalued attribute STUD_PHONE. Its decomposition into 1NF has been shown in table 2.

•

STUD_NO	STUD_NAME	STUD_PHONE	STUD_STATE	STUD_COUNTRY
1	RAM	9716271721,	HARYANA	INDIA
		9871717178		
2	RAM	9898297281	PUNJAB	INDIA
3	SURESH		PUNJAB	INDIA

Table 1

Conversion to first normal form

STUD_NO	STUD_NAME	STUD_PHONE	STUD_STATE	STUD_COUNTRY
1	RAM	9716271721	HARYANA	INDIA
1	RAM	9871717178	HARYANA	INDIA
2	RAM	9898297281	PUNJAB	INDIA
3	SURESH		PUNJAB	INDIA

Table 2

2. Second Normal Form

To be in second normal form, a relation must be in first normal form and relation must not contain any partial dependency. A relation is in 2NF if it has **No Partial Dependency**, i.e., no non-prime attribute (attributes which are not part of any candidate key) is dependent on any proper subset of any candidate key of the table.

Partial Dependency – If the proper subset of candidate key determines non-prime attribute, it is called partial dependency.

• Example 1 – Consider table-3 as following below.

	_		
4)	

•	STUD_NO	COURSE_NO	COURSE_FEE
•	1	C1	1000
•	2	C2	1500
•	1	C4	2000
•	4	C3	1000
•	4	C1	1000
•	2	C5	2000

{Note that, there are many courses having the same course fee. }

Here,

COURSE_FEE cannot alone decide the value of COURSE_NO or STUD NO:

COURSE_FEE together with STUD_NO cannot decide the value of COURSE_NO;

COURSE_FEE together with COURSE_NO cannot decide the value of STUD_NO;

Hence,

COURSE_FEE would be a non-prime attribute, as it does not belong to the one only candidate key {STUD_NO, COURSE_NO}; But, COURSE_NO -> COURSE_FEE, i.e., COURSE_FEE is dependent on COURSE_NO, which is a proper subset of the candidate key. Non-prime attribute COURSE_FEE is dependent on a proper subset of the candidate key, which is a partial dependency and so this relation is not in 2NF.

To convert the above relation to 2NF, we need to split the table into two tables such as:

Table 1: STUD_NO, COURSE_NO Table 2: COURSE_NO, COURSE_FEE

Table 1		Table 2	
STUD_NO	COURSE_NO	COURSE_NO	COURSE_FEE
1	C1	C1	1000
2	C2	C2	1500
1	C4	C3	1000
4	C3	C4	2000
4	C1	C5	2000

3. Third Normal Form

A relation is in third normal form, if there is **no transitive dependency** for non-prime attributes as well as it is in second normal form. A relation is in 3NF if **at least one of the following condition holds** in every non-trivial function dependency $X \rightarrow Y$

- 1. X is a super key.
- 2. Y is a prime attribute (each element of Y is part of some candidate key).

STUD_NO	STUD_NAME	STUD_STATE	STUD_COUNTRY	STUD_AGE
1	RAM	HARYANA	INDIA	20
2	RAM	PUNJAB	INDIA	19
3	SURESH	PUNJAB	INDIA	21

Table 4

Transitive dependency – If A->B and B->C are two FDs then A->C is called transitive dependency.

Example 1 – In relation STUDENT given in Table 4,
FD set: {STUD_NO -> STUD_NAME, STUD_NO -> STUD_STATE,
STUD_STATE -> STUD_COUNTRY, STUD_NO -> STUD_AGE}
Candidate Key: {STUD_NO}

For this relation in table 4, STUD_NO -> STUD_STATE and STUD_STATE -> STUD_COUNTRY are true. So STUD_COUNTRY

is transitively dependent on STUD_NO. It violates the third normal form. To convert it in third normal form, we will decompose the relation STUDENT (STUD_NO, STUD_NAME, STUD_PHONE, STUD_STATE, STUD_COUNTRY_STUD_AGE) as: STUDENT (STUD_NO, STUD_NAME, STUD_PHONE, STUD_STATE, STUD_STATE, STUD_AGE) STATE_COUNTRY (STATE, COUNTRY)

4. <u>BCNF</u>

BCNF (Boyce Codd Normal Form) is the advanced version of 3NF. A table is in BCNF if every functional dependency X->Y, X is the super key of the table. For BCNF, the table should be in 3NF, and for every FD. LHS is super key.

Consider a relation R with attributes (student, subject, teacher).

Student	Teacher	Subject
Jhansi	P.Naresh	Database
jhansi	K.Das	C
subbu	P.Naresh	Database
subbu	R.Prasad	С

F: { (student, Teacher) -> subject

(student, subject) -> Teacher

Teacher -> subject}

Candidate keys are (student, teacher) and (student, subject).

The above relation is in 3NF [since there is no transitive dependency]. A relation R is in BCNF if for every non-trivial FD X->Y, X must be a key.

The above relation is not in BCNF, because in the FD (teacher->subject), teacher is not a key. This relation suffers with anomalies –

For example, if we try to delete the student Subbu, we will lose the information that R. Prasad teaches C. These difficulties are caused by the fact the teacher is determinant but not a candidate key.

Decomposition for BCNF

Teacher-> subject violates BCNF [since teacher is not a candidate key].

If $X \rightarrow Y$ violates BCNF then divide R into R1(X, Y) and R2(R-Y).

So R is divided into two relations R1(Teacher, subject) and R2(student, Teacher).

R1

Teacher	Subject
P.Naresh	database
K.DAS	С
R.Prasad	С

R2

Student	Teacher
Jhansi	P.Naresh
Jhansi	K.Das
Subbu	P.Naresh
Subbu	R.Prasad

All the anomalies which were present in R, now removed in the above two relations.

Note:

BCNF decomposition does not always satisfy dependency preserving property. After BCNF decomposition if dependency is not preserved then we have to decide whether we want to remain in BCNF or rollback to 3NF. This process of rollback is called denormalization.

Fourth Normal Form (4NF)

Fourth Normal Form comes into picture when **Multi-valued Dependency** occur in any relation.

Rules for 4th Normal Form

For a table to satisfy the Fourth Normal Form, it should satisfy the following two conditions:

- 1. It should be in the **Boyce-Codd Normal Form**.
- 2. And, the table should not have any **Multi-valued Dependency**.

What is Multi-valued Dependency?

A table is said to have multi-valued dependency, if the following conditions are true,

- 1. For a dependency $A \rightarrow B$, if for a single value of A, multiple value of B exists, then the table may have multi-valued dependency.
- 2. Also, a table should have at-least 3 columns for it to have a multi-valued dependency.

Below we have a college enrolment table with columns s_id, course and hobby.

s_id	course	hobby
1	Science	Cricket
1	Maths	Hockey
2	C#	Cricket

2 Php	Hockey
-------	--------

As you can see in the table above, student with s_id 1 has opted for two courses, **Science** and **Maths**, and has two hobbies, **Cricket** and **Hockey**.

You must be thinking what problem this can lead to, right?

Well the two records for student with s_id 1, will give rise to two more records, as shown below, because for one student, two hobbies exists, hence along with both the courses, these hobbies should be specified.

s_id	course	hobby
1	Science	Cricket
1	Maths	Hockey
1	Science	Hockey
1	Maths	Cricket

And, in the table above, there is no relationship between the columns course and hobby. They are independent of each other.

So there is multi-value dependency, which leads to un-necessary repetition of data and other anomalies as well.

How to satisfy 4th Normal Form?

To make the above relation satisfy the 4th normal form, we can decompose the table into 2 tables.

CourseOpted Table

s_id	course
1	Science
1	Maths
2	C#
2	Php

And, Hobbies Table,

s_id	hobby
1	Cricket
1	Hockey
2	Cricket
2	Hockey

Now this relation satisfies the fourth normal form.

A table can also have functional dependency along with multi-valued dependency. In that case, the functionally dependent columns are moved in a separate table and the multi-valued dependent columns are moved to separate tables.

If you design your database carefully, you can easily avoid these issues.

############