Shrinkage Estimation for Causal Inference and Experimental Design

Evan T. R. Rosenman[†], Guillaume Basse, Mike Baiocchi, Art B. Owen, Francesca Dominici, and Luke Miratrix

†Assistant Professor, Claremont McKenna College

February 7, 2024

Introductions

• Hi! I'm Evan Rosenman

Introductions

- Hi! I'm Evan Rosenman
- First-year Asst. Professor of Statistics at Claremont McKenna

Introductions

- Hi! I'm Evan Rosenman
- First-year Asst. Professor of Statistics at Claremont McKenna
- Research interests
 - Causal inference, experimental design (this talk)
 - Voting, elections, political methodology

Estimators to Combine Data

•00000

Problem Background

- Problem Background
- - SURE-Based Procedures
 - Using a Hierarchical Model

• What is an RCT?

- What is an RCT?
 - Canonical "experiment" in medical sciences + public health

- What is an RCT?
 - Canonical "experiment" in medical sciences + public health
 - Individuals randomized to receive a treatment v. control

- What is an RCT?
 - Canonical "experiment" in medical sciences + public health
 - Individuals randomized to receive a treatment v. control
 - Outcomes measured + compared for treated vs. untreated

- What is an RCT?
 - Canonical "experiment" in medical sciences + public health
 - Individuals randomized to receive a treatment v. control
 - Outcomes measured + compared for treated vs. untreated
- Why are RCTs useful?

- What is an RCT?
 - Canonical "experiment" in medical sciences + public health
 - Individuals randomized to receive a treatment v. control
 - Outcomes measured + compared for treated vs. untreated
- Why are RCTs useful?
 - Researcher controls treatment assignment ⇒

- What is an RCT?
 - Canonical "experiment" in medical sciences + public health
 - Individuals randomized to receive a treatment v. control
 - Outcomes measured + compared for treated vs. untreated
- Why are RCTs useful?
 - Researcher controls treatment assignment ⇒
 - (Almost) no assumptions needed for unbiased treatment effect estimation!

000000

Why not just use RCTs to answer every causal question?

000000

Why not just use RCTs to answer every causal question?

A few reasons!

Application to the WHI

000000

Why not just use RCTs to answer every causal question?

A few reasons!

• Sometimes, cannot (ethically) run an RCT, e.g. smoking

Application to the WHI

Why not just use RCTs to answer every causal question?

A few reasons!

- Sometimes, cannot (ethically) run an RCT, e.g. smoking
- Even when you can, RCTs are typically too <u>small</u> to get a precise estimate for every effect we want...

Why not just use RCTs to answer every causal question?

A few reasons!

Sometimes, cannot (ethically) run an RCT, e.g. smoking

Estimators to Combine Data

- Even when you can, RCTs are typically too small to get a precise estimate for every effect we want...
 - Expensive to run! ⇒ few individuals recruited
 - May need an answer rapidly
 - What about effects on small subgroups?

• What is an ODB?

000000

- What is an ODB?
 - Passively collected data like electronic health records, insurance claims databases, etc.

- What is an ODB?
 - Passively collected data like electronic health records, insurance claims databases, etc.
 - Individuals not randomized \Longrightarrow treatments assigned by some typically unknown procedure

• What is an ODB?

000000

- Passively collected data like electronic health records, insurance claims databases, etc.
- Individuals not randomized ⇒⇒ treatments assigned by some typically unknown procedure
- Can ODBs be useful?

- What is an ODB?
 - Passively collected data like electronic health records, insurance claims databases, etc.
 - Individuals not randomized \Longrightarrow treatments assigned by some typically unknown procedure
- Can ODBs be useful?
 - Often large, cheap, and representative! But...

• What is an ODB?

Problem Background

- Passively collected data like electronic health records. insurance claims databases, etc.
- Individuals not randomized ⇒⇒ treatments assigned by some typically unknown procedure
- Can ODBs be useful?
 - Often large, cheap, and representative! But...
 - No randomization ⇒ treated and untreated units differ ⇒ confounding bias!

- What is an ODB?
 - Passively collected data like electronic health records. insurance claims databases, etc.
 - Individuals not randomized ⇒⇒ treatments assigned by some typically unknown procedure
- Can ODBs be useful?
 - Often large, cheap, and representative! But...
 - No randomization ⇒ treated and untreated units differ ⇒ confounding bias!
 - Ex: Doctors give a drug to sicker patients
 - Ex: Healthier and wealthier people opt into a vaccine

The Data-Combination Problem

RCTs are the gold standard, but yield estimates that are *imprecise*

The Data-Combination Problem

Problem Background

RCTs are the gold standard, but yield estimates that are *imprecise*

ODBs yield biased estimates... but cheap and ubiquitous!

- Electronic health records, disease surveillance
- Fitness trackers, wearable devices, "internet of things"
- E-commerce data, online behavior

Application to the WHI

The Data-Combination Problem

RCTs are the gold standard, but yield estimates that are *imprecise*

ODBs yield biased estimates... but cheap and ubiquitous!

- Electronic health records, disease surveillance
- Fitness trackers, wearable devices, "internet of things"
- E-commerce data, online behavior

Overall goals

Can we use ODBs to...

- obtain better causal estimates by combining ODB causal estimates with those obtained from RCTs?
- design prospective experiments to be more accurate?

 Considerable interest in RCT-ODB evidence synthesis methods from both the FDA (2018) and the European Medicines Agency (2022)

- Considerable interest in RCT-ODB evidence synthesis methods from both the FDA (2018) and the European Medicines Agency (2022)
- Problem relates to several active areas of research:

- Considerable interest in RCT-ODB evidence synthesis methods from both the FDA (2018) and the European Medicines Agency (2022)
- Problem relates to several active areas of research:
 - Meta-analysis (Mueller et al., 2018; Prevost et al., 2000; Thompson et al., 2011)

- Considerable interest in RCT-ODB evidence synthesis methods from both the FDA (2018) and the European Medicines Agency (2022)
- Problem relates to several active areas of research:
 - Meta-analysis (Mueller et al., 2018; Prevost et al., 2000; Thompson et al., 2011)
 - Transportability/generalizability (Stuart et al., 2011; Hartman et al., 2015; Bareinboim and Pearl, 2016)

- Considerable interest in RCT-ODB evidence synthesis methods from both the FDA (2018) and the European Medicines Agency (2022)
- Problem relates to several active areas of research:
 - Meta-analysis (Mueller et al., 2018; Prevost et al., 2000; Thompson et al., 2011)
 - Transportability/generalizability (Stuart et al., 2011; Hartman et al., 2015; Bareinboim and Pearl, 2016)
 - Causal inference (Kallus et al., 2018; Ghassami et al., 2022; Mooij et al., 2016)

- Considerable interest in RCT-ODB evidence synthesis methods from both the FDA (2018) and the European Medicines Agency (2022)
- Problem relates to several active areas of research:
 - Meta-analysis (Mueller et al., 2018; Prevost et al., 2000; Thompson et al., 2011)
 - Transportability/generalizability (Stuart et al., 2011; Hartman et al., 2015; Bareinboim and Pearl, 2016)
 - Causal inference (Kallus et al., 2018; Ghassami et al., 2022; Mooij et al., 2016)
- Notable uptick in methodological work since roughly 2020 (Oberst et al., 2022; Yang et al., 2023; Cheng and Cai, 2021; Chen et al., 2021; Lin and Evans, 2023).

Estimators to Combine Data

Outline

- Problem Background
- Assumptions and Set-Up
- - SURE-Based Procedures
 - Using a Hierarchical Model

Potential Outcomes Framework

• Have a sample of units i = 1, ..., n. We are interested in some outcome measure Y

Estimators to Combine Data

Potential Outcomes Framework

- Have a sample of units i = 1, ..., n. We are interested in some outcome measure Y
- For each unit, i, we suppose there are two associated values
 - $Y_i(1)$: outcome if unit i receives the treatment
 - $Y_i(0)$: outcome if unit *i* receives placebo

Potential Outcomes Framework

- Have a sample of units i = 1, ..., n. We are interested in some outcome measure Y
- For each unit, i, we suppose there are two associated values

Estimators to Combine Data

- $Y_i(1)$: outcome if unit i receives the treatment
- $Y_i(0)$: outcome if unit i receives placebo
- Causal quantity we are interested in is

$$\tau_i = Y_i(1) - Y_i(0)$$

Causal Estimands

Fundamental Problem of Causal Inference

• Each unit has a treatment status $Z_i \in \{0,1\}$, and we observe

$$Y_i = Z_i Y_i(1) + (1 - Z_i) Y_i(0).$$

Estimators to Combine Data

• Hence: cannot observe both $Y_i(0)$ and $Y_i(1)$ simultaneously!

Causal Estimands

- Fundamental Problem of Causal Inference
 - Each unit has a treatment status $Z_i \in \{0,1\}$, and we observe

$$Y_i = Z_i Y_i(1) + (1 - Z_i) Y_i(0).$$

Estimators to Combine Data

- Hence: cannot observe both $Y_i(0)$ and $Y_i(1)$ simultaneously!
- Typically settle for:
 - Average treatment effect (ATE):

$$\mathbb{E}(Y(1)-Y(0)),$$
 or

Conditional average treatment effect (CATE):

$$\mathbb{E}(Y(1) - Y(0) \mid X \in \mathcal{X}).$$

Our Problem: Notation

Observational data: n_o units sampled from

$$(Y_i(0), Y_i(1), X_i, Z_i) \stackrel{\text{iid}}{\sim} F_O.$$

potential outcomes treatment indicators

• Experimental data: sample n_r units via

$$(Y_i(0), Y_i(1), X_i, Z_i) \stackrel{\text{iid}}{\sim} F_R.$$

Stratification

Assume strata k = 1, ..., K. Stratum k defined by set of covariates values \mathcal{X}_k . Define variables: $S_i = k \iff X_i \in \mathcal{X}_k$.

Stratification

Assume strata k = 1, ..., K. Stratum k defined by set of covariates values \mathcal{X}_k . Define variables: $S_i = k \iff X_i \in \mathcal{X}_k$.

Figure 1: Example stratification of RCT and ODB with 12 strata.

Assumptions and Non-Assumptions

• Under F_0 ,

$$Y_i(1), Y_i(0) \not\perp Z_i \mid X_i$$

No unconfoundedness assumption for observational study.

Assumptions and Non-Assumptions

• Under F_0 ,

$$Y_i(1), Y_i(0) \not\perp Z_i \mid X_i$$

No unconfoundedness assumption for observational study.

 \bigcirc Under F_R ,

$$Y_i(1), Y_i(0) \perp Z_i \mid X_i$$
.

Assumptions and Non-Assumptions

• Under F_0 ,

$$Y_i(1), Y_i(0) \not\perp Z_i \mid X_i$$

Estimators to Combine Data

No unconfoundedness assumption for observational study.

 \bigcirc Under F_R .

$$Y_i(1), Y_i(0) \perp Z_i \mid X_i$$
.

 \bullet For $k = 1, \ldots, K$, have

$$au_k \equiv \mathbb{E}_R (Y_i(1) - Y_i(0) \mid S_i = k) = \mathbb{E}_O (Y_i(1) - Y_i(0) \mid S_i = k)$$

Assume "transportability" of CATEs across datasets. Denote as $\tau = (\tau_1, \dots, \tau_K) \in \mathbb{R}^K$ the vector of CATEs

Estimators to Combine Data

•00000000000000000

Outline

- Problem Background
- Stimators to Combine Data
 - SURE-Based Procedures
 - Using a Hierarchical Model

Setup

Collect our estimators into vectors:

$$\hat{\boldsymbol{ au}}_{\boldsymbol{r}} = (\hat{ au}_{r1}, \dots, \hat{ au}_{rK}), \quad \hat{\boldsymbol{ au}}_{\boldsymbol{o}} = (\hat{ au}_{o1}, \dots, \hat{ au}_{oK}) \in \mathbb{R}^K$$

Estimators to Combine Data

Setup

Collect our estimators into vectors:

$$\hat{\tau}_{r} = (\hat{\tau}_{r1}, \dots, \hat{\tau}_{rK}), \qquad \hat{\tau}_{o} = (\hat{\tau}_{o1}, \dots, \hat{\tau}_{oK}) \in \mathbb{R}^{K}$$

$$\begin{array}{c} \text{Income} \\ \text{Income} \\ \text{$50-100K$} \\ \text{$100K+$} \\ \text{4} \\ \text{4}$$

Figure 2: Causal estimates by stratum.

Under mild conditions, we have

$$\hat{oldsymbol{ au}}_{oldsymbol{r}} \sim \mathcal{N}\left(oldsymbol{ au}, oldsymbol{\Sigma}_{oldsymbol{r}}
ight), \quad \hat{oldsymbol{ au}}_{oldsymbol{o}} \sim \left(oldsymbol{ au} + oldsymbol{\xi}, oldsymbol{\Sigma}_{o}
ight)$$

Estimators to Combine Data

0000000000000000

for bias ξ and covariance matrices Σ_r and Σ_o

Under mild conditions, we have

$$\hat{oldsymbol{ au}}_{oldsymbol{r}} \sim \mathcal{N}\left(oldsymbol{ au}, oldsymbol{\Sigma}_{oldsymbol{r}}
ight), \quad \hat{oldsymbol{ au}}_{oldsymbol{o}} \sim \left(oldsymbol{ au} + oldsymbol{\xi}, oldsymbol{\Sigma}_{o}
ight)$$

Estimators to Combine Data

00000000000000000

for bias ξ and covariance matrices Σ_r and Σ_o

- $\Sigma_r = \text{diag}(\sigma_{r1}^2, \dots, \sigma_{rK}^2)$ is estimable from the data
- £ cannot be estimated using obs data alone

Under mild conditions, we have

Problem Background

$$\hat{oldsymbol{ au}}_{oldsymbol{r}} \sim \mathcal{N}\left(oldsymbol{ au}, oldsymbol{\Sigma}_{oldsymbol{r}}
ight), \quad \hat{oldsymbol{ au}}_{oldsymbol{o}} \sim \left(oldsymbol{ au} + oldsymbol{\xi}, oldsymbol{\Sigma}_{o}
ight)$$

for bias ξ and covariance matrices Σ_r and Σ_o

- $\Sigma_r = \text{diag}(\sigma_{r1}^2, \dots, \sigma_{rK}^2)$ is estimable from the data
- £ cannot be estimated using obs data alone
- Seek to design estimator $\hat{\tau} = f(\hat{\tau}_r, \hat{\tau}_o)$ to minimize expected squared error loss:

$$\mathcal{L}(\hat{\boldsymbol{\tau}}, \boldsymbol{ au}) = \sum_{k=1}^{K} (\hat{\tau}_k - \tau_k)^2.$$

Useful Prior Work

Shrinkage estimation: "learn weights from the data"

a rich literature stretching back to multivariate normal mean estimation via the James-Stein estimator (Stein, 1956)

Useful Prior Work

- Shrinkage estimation: "learn weights from the data"

 a rich literature stretching back to multivariate normal mean estimation via the James-Stein estimator (Stein, 1956)
- Green and Strawderman (1991) and Green et al. (2005) propose estimators δ_1, δ_2 for shrinkage between ...
 - ullet a normal, unbiased estimator (like $\hat{ au}_r$), and
 - a biased estimator (like $\hat{\tau}_o$)

Problem Background

- Shrinkage estimation: "learn weights from the data" \Rightarrow a rich literature stretching back to multivariate normal mean estimation via the **James-Stein estimator** (Stein, 1956)
- Green and Strawderman (1991) and Green et al. (2005) propose estimators δ_1, δ_2 for shrinkage between ...
 - a normal, unbiased estimator (like $\hat{\tau}_r$), and
 - a biased estimator (like $\hat{\tau}_{o}$)

Key ideas

- Take convex combinations of components of $\hat{\tau}_r$ and $\hat{\tau}_o$.
- Bias-variance tradeoff: estimators can stabilize high-variance $\hat{\tau}_r$ by introducing some bias with shrinkage toward $\hat{\tau}_o$

Estimators to Combine Data

0000**00000000**000000

Outline

- Problem Background
- Stimators to Combine Data
 - SURE-Based Procedures
 - Using a Hierarchical Model

Stein's Unbiased Risk Estimate (SURE): foundational result in the shrinkage estimation literature.

Stein's Unbiased Risk Estimate (SURE): foundational result in the shrinkage estimation literature.

Upshot: when weighting between between (normal) estimator $\hat{\theta}_1$ and another estimator $\hat{\theta}_2$: SURE is an unbiased estimator of the estimation error, even if parameter θ is unknown!

Overall Idea

Stein's Unbiased Risk Estimate (SURE): foundational result in the shrinkage estimation literature.

Estimators to Combine Data

Upshot: when weighting between between (normal) estimator $\hat{\theta}_1$ and another estimator $\hat{\theta}_2$: SURE is an unbiased estimator of the estimation error, even if parameter θ is unknown!

Utility: gives us an objective function! To design estimators, a common tactic (Li et al., 1985; Xie et al., 2012) is to

- posit a method to do the weighting
- derive exact functional form by minimizing SURE

Theorem (Estimator Risk)

Suppose we have $\mathbf{U} \sim \mathcal{N}(\boldsymbol{\theta}, \boldsymbol{\Sigma})$, random \mathbf{B} , and $\mathcal{L}(\boldsymbol{\theta}, \mathbf{v}) = (\mathbf{v} - \boldsymbol{\theta})^{\mathsf{T}} (\mathbf{v} - \boldsymbol{\theta})$ where $\Sigma = diag(\sigma_1^2, \dots, \sigma_k^2)$.

Theorem (Estimator Risk)

Suppose we have $\mathbf{U} \sim \mathcal{N}(\boldsymbol{\theta}, \boldsymbol{\Sigma})$, random \mathbf{B} , and $\mathcal{L}(\boldsymbol{\theta}, \mathbf{v}) = (\mathbf{v} - \boldsymbol{\theta})^{\mathsf{T}} (\mathbf{v} - \boldsymbol{\theta})$ where $\boldsymbol{\Sigma} = \mathsf{diag}(\sigma_1^2, \dots, \sigma_k^2)$. Then for

$$\kappa(U,B) = U - g(U,B)$$

where $\mathbf{g}(\mathbf{U}, \mathbf{B})$ is a function of \mathbf{U} and \mathbf{B} that is differentiable, satisfying $\mathbb{E}(||\mathbf{g}||^2) < \infty$,

Theorem (Estimator Risk)

Suppose we have $\mathbf{U} \sim \mathcal{N}(\boldsymbol{\theta}, \boldsymbol{\Sigma})$, random \mathbf{B} , and $\mathcal{L}(\boldsymbol{\theta}, \mathbf{v}) = (\mathbf{v} - \boldsymbol{\theta})^{\mathsf{T}} (\mathbf{v} - \boldsymbol{\theta})$ where $\Sigma = diag(\sigma_1^2, \dots, \sigma_k^2)$. Then for

$$\kappa(U,B) = U - g(U,B)$$

where g(U, B) is a function of U and B that is differentiable, satisfying $\mathbb{E}(||\mathbf{g}||^2) < \infty$, we have

$$\mathbb{E}\left(||\boldsymbol{\theta} - \boldsymbol{\kappa}(\boldsymbol{U}, \boldsymbol{B})||_{2}^{2}\right) =$$

$$Tr(\Sigma) + \mathbb{E}\left(\sum_{k=1}^{K} g_{k}^{2}(\boldsymbol{U}, \boldsymbol{B}) - 2\sigma_{k}^{2} \frac{\partial g_{k}(\boldsymbol{U}, \boldsymbol{B})}{\partial U_{k}}\right).$$

From this theorem, obtain a generalization of Stein's Unbiased Risk Estimate (Stein, 1981),

$$\mathsf{SURE}(\boldsymbol{\theta}, \kappa(\boldsymbol{Z}, \boldsymbol{Y})) = \mathsf{Tr}(\boldsymbol{\Sigma}) + \sum_{k=1}^K g_k^2(\boldsymbol{U}, \boldsymbol{B}) - 2\sigma_k^2 \frac{\partial g_k(\boldsymbol{U}, \boldsymbol{B})}{\partial U_k}.$$

Estimators to Combine Data

From this theorem, obtain a generalization of Stein's Unbiased Risk Estimate (Stein, 1981),

$$\mathsf{SURE}(\boldsymbol{\theta}, \kappa(\boldsymbol{Z}, \boldsymbol{Y})) = \mathsf{Tr}(\boldsymbol{\Sigma}) + \sum_{k=1}^K g_k^2(\boldsymbol{U}, \boldsymbol{B}) - 2\sigma_k^2 \frac{\partial g_k(\boldsymbol{U}, \boldsymbol{B})}{\partial U_k}.$$

Estimators to Combine Data

From this theorem, obtain a generalization of Stein's Unbiased Risk Estimate (Stein, 1981),

$$\mathsf{SURE}(\boldsymbol{\theta}, \kappa(\boldsymbol{Z}, \boldsymbol{Y})) = \mathsf{Tr}(\boldsymbol{\Sigma}) + \sum_{k=1}^K g_k^2(\boldsymbol{U}, \boldsymbol{B}) - 2\sigma_k^2 \frac{\partial g_k(\boldsymbol{U}, \boldsymbol{B})}{\partial U_k}.$$

Estimators to Combine Data

0000000000000000000

In keeping with the literature, a simple procedure:

- Posit a structure for the shrinkage estimator
- Derive a functional form by minimizing SURE

Case 1: Common Shrinkage Factor

We consider shrinkage estimators which share a common shrinkage λ factor across components. Denote a generic estimator as

$$\kappa(\lambda, \hat{\tau}_{r}, \hat{\tau}_{o}) = \hat{\tau}_{r} - \lambda(\hat{\tau}_{r} - \hat{\tau}_{o}).$$

We consider shrinkage estimators which share a common shrinkage λ factor across components. Denote a generic estimator as

$$\kappa(\lambda, \hat{\tau}_{r}, \hat{\tau}_{o}) = \hat{\tau}_{r} - \lambda(\hat{\tau}_{r} - \hat{\tau}_{o})$$
.

Then SURE evaluates to

Problem Background

$$\mathsf{SURE}(\lambda) = \mathsf{Tr}\left(\Sigma_r\right) + \lambda^2 \left(\hat{\boldsymbol{\tau}}_{\boldsymbol{o}} - \hat{\boldsymbol{\tau}}_{\boldsymbol{r}}\right)^\mathsf{T} \left(\hat{\boldsymbol{\tau}}_{\boldsymbol{o}} - \hat{\boldsymbol{\tau}}_{\boldsymbol{r}}\right) - 2\lambda \mathsf{Tr}(\Sigma_r)$$

Case 1: Common Shrinkage Factor

We consider shrinkage estimators which share a common shrinkage λ factor across components. Denote a generic estimator as

Estimators to Combine Data

0000000000000000000

$$\kappa(\lambda, \hat{\tau}_{r}, \hat{\tau}_{o}) = \hat{\tau}_{r} - \lambda(\hat{\tau}_{r} - \hat{\tau}_{o}).$$

Then SURE evaluates to

$$\mathsf{SURE}(\lambda) = \mathsf{Tr}\left(\Sigma_r\right) + \lambda^2 \left(\hat{\tau}_o - \hat{\tau}_r\right)^\mathsf{T} \left(\hat{\tau}_o - \hat{\tau}_r\right) - 2\lambda \mathsf{Tr}(\Sigma_r)$$

which has minimizer in λ ,

$$\lambda_1^{\mathsf{SURE}} = \frac{\mathsf{Tr}(\Sigma_r)}{(\hat{\tau}_o - \hat{\tau}_r)^{\mathsf{T}} (\hat{\tau}_o - \hat{\tau}_r)}.$$

The true risk-minimizing shrinkage weight is given by

$$\lambda_{\mathsf{opt}} = \frac{\mathsf{Tr}(\Sigma_r)}{\mathsf{Tr}(\Sigma_r) + \mathsf{Tr}(\Sigma_o) + \underbrace{\xi^\mathsf{T} \xi}_{\mathsf{Not estimable from data}}$$

The true risk-minimizing shrinkage weight is given by

$$\lambda_{\mathsf{opt}} = \frac{\mathsf{Tr}(\Sigma_r)}{\mathsf{Tr}(\Sigma_r) + \mathsf{Tr}(\Sigma_o) + \underbrace{\xi^\mathsf{T} \xi}_{\mathsf{Not estimable from data}}$$

but observe that

$$\mathbb{E}\left(\left(\hat{\boldsymbol{\tau}}_{o}-\hat{\boldsymbol{\tau}}_{r}\right)^{\mathsf{T}}\left(\hat{\boldsymbol{\tau}}_{o}-\hat{\boldsymbol{\tau}}_{r}\right)\right)=\mathsf{Tr}(\boldsymbol{\Sigma}_{r})+\mathsf{Tr}(\boldsymbol{\Sigma}_{o})+\boldsymbol{\xi}^{\mathsf{T}}\boldsymbol{\xi}\,.$$

A Note on $\lambda_1^{\mathsf{SURE}}$

The true risk-minimizing shrinkage weight is given by

$$\lambda_{
m opt} = rac{{
m Tr}(\Sigma_r)}{{
m Tr}(\Sigma_o) + rac{{m \xi}^{\sf T}{m \xi}}{
m Not\ estimable\ from\ data}}$$

but observe that

$$\mathbb{E}\left(\left(\hat{\boldsymbol{\tau}}_{o}-\hat{\boldsymbol{\tau}}_{r}\right)^{\mathsf{T}}\left(\hat{\boldsymbol{\tau}}_{o}-\hat{\boldsymbol{\tau}}_{r}\right)\right)=\mathsf{Tr}(\boldsymbol{\Sigma}_{r})+\mathsf{Tr}(\boldsymbol{\Sigma}_{o})+\boldsymbol{\xi}^{\mathsf{T}}\boldsymbol{\xi}\,.$$

 $\lambda_1^{\mathsf{SURE}}$ substitutes $(\hat{\boldsymbol{\tau}}_{\boldsymbol{o}} - \hat{\boldsymbol{\tau}}_{\boldsymbol{r}})^{\mathsf{T}} (\hat{\boldsymbol{\tau}}_{\boldsymbol{o}} - \hat{\boldsymbol{\tau}}_{\boldsymbol{r}})$ for its own expectation,

$$\lambda_1^{\mathsf{SURE}} = \frac{\mathsf{Tr}(\boldsymbol{\Sigma}_r)}{\left(\hat{\boldsymbol{\tau}}_{\boldsymbol{o}} - \hat{\boldsymbol{\tau}}_{\boldsymbol{r}}\right)^{\mathsf{T}} \left(\hat{\boldsymbol{\tau}}_{\boldsymbol{o}} - \hat{\boldsymbol{\tau}}_{\boldsymbol{r}}\right)} \,.$$

Useful Property of λ_1^{SURE}

Define

$$oldsymbol{\kappa}_{1+} = \hat{oldsymbol{ au_r}} - \{\lambda_1^{\mathsf{SURE}}\}_{[0,1]} \left(\hat{oldsymbol{ au_r}} - \hat{oldsymbol{ au_o}}
ight)$$

Estimators to Combine Data

where $\{u\}_{[0,1]} = \min(\max(u,0),1)$.

Define

$$oldsymbol{\kappa}_{1+} = \hat{oldsymbol{ au}}_{oldsymbol{r}} - \{\lambda_1^{\mathsf{SURE}}\}_{[0,1]} \left(\hat{oldsymbol{ au}}_{oldsymbol{r}} - \hat{oldsymbol{ au}}_{oldsymbol{o}}
ight)$$

where $\{u\}_{[0,1]} = \min(\max(u,0),1)$.

 κ_1 admits a testable condition under which it is guaranteed to reduce risk relative to $\hat{\tau}_r$.

Lemma (κ_{1+} Risk Guarantee)

Suppose $4 \max_k \sigma_{rk}^2 < \sum_k \sigma_{rk}^2$. Then κ_{1+} has risk strictly less than that of $\hat{\tau}_r$.

- Requires a dimension of at least K = 4.
- May require substantially larger *K* if high heteroscedasticity or non-uniform weights.

Case 2: Variance-Weighted Shrinkage Factor

This procedure is general purpose. For example, may instead want an estimator that shrinks each component proportionally to σ_{rk}^2 .

Estimators to Combine Data

Easy to solve for

$$\kappa_2 = \kappa(\lambda_2^{\mathsf{SURE}}, \hat{\boldsymbol{\tau}_{\boldsymbol{r}}}, \hat{\boldsymbol{\tau}_{\boldsymbol{o}}}) = \hat{\boldsymbol{\tau}_{\boldsymbol{r}}} - \frac{\mathsf{Tr}(\Sigma_r^2)\Sigma_r}{(\hat{\boldsymbol{\tau}_{\boldsymbol{o}}} - \hat{\boldsymbol{\tau}_{\boldsymbol{r}}})^\mathsf{T}\Sigma_r^2(\hat{\boldsymbol{\tau}_{\boldsymbol{o}}} - \hat{\boldsymbol{\tau}_{\boldsymbol{r}}})} (\hat{\boldsymbol{\tau}_{\boldsymbol{r}}} - \hat{\boldsymbol{\tau}_{\boldsymbol{o}}})$$

and its positive-part improvement,

$$\kappa_{2+} = \hat{\tau}_{\textbf{r}} - \left\{ \frac{\text{Tr}(\boldsymbol{\Sigma}_{\textbf{r}}^2)\boldsymbol{\Sigma}_{\textbf{r}}}{(\hat{\tau}_{\textbf{o}} - \hat{\tau}_{\textbf{r}})^T\boldsymbol{\Sigma}_{\textbf{r}}^2(\hat{\tau}_{\textbf{o}} - \hat{\tau}_{\textbf{r}})} \right\}_{[0.1]} (\hat{\tau}_{\textbf{r}} - \hat{\tau}_{\textbf{o}}) \; .$$

Simulated Data Visualization

Figure 3: Simulated shrinkage between $\hat{\tau}_r$ and $\hat{\tau}_o$ with ten strata. 90% confidence intervals for $\hat{\tau}_r$ in red, with κ_{1+} and κ_{2+} shown in circles.

Estimators to Combine Data

Outline

- Problem Background
- Stimators to Combine Data
 - SURE-Based Procedures
 - Using a Hierarchical Model

• In prior section, functional form was **imposed** by the researcher based on problem parameters

Alternative Approach: Hierarchical Model

- In prior section, functional form was imposed by the researcher based on problem parameters
- An alternative approach is to derive the functional form from a hierarchical model

Alternative Approach: Hierarchical Model

- In prior section, functional form was **imposed** by the researcher based on problem parameters
- An alternative approach is to derive the functional form from a hierarchical model

Estimators to Combine Data

Simple model generalizing one introduced in Green and Strawderman (1991):

$$\begin{split} \boldsymbol{\tau} &\sim \mathcal{N}\left(\mathbf{0}, \eta^2 \boldsymbol{I}_K\right), \\ \boldsymbol{\xi} &\sim \mathcal{N}\left(\mathbf{0}, \gamma^2 \boldsymbol{I}_K\right), \end{split}$$

- In prior section, functional form was imposed by the researcher based on problem parameters
- An alternative approach is to derive the functional form from a hierarchical model

Simple model generalizing one introduced in Green and Strawderman (1991):

$$oldsymbol{ au} \sim \mathcal{N}\left(0, \eta^{2} oldsymbol{I}_{K}
ight), \ oldsymbol{ au} \sim \mathcal{N}\left(0, \gamma^{2} oldsymbol{I}_{K}
ight), \ \hat{oldsymbol{ au}}_{oldsymbol{r}} \mid oldsymbol{ au} \sim \mathcal{N}\left(oldsymbol{ au}, oldsymbol{\Sigma}_{r}\right), ext{ and} \ oldsymbol{\hat{ au}}_{oldsymbol{o}} \mid oldsymbol{ au}, oldsymbol{\xi} \sim \mathcal{N}\left(oldsymbol{ au} + oldsymbol{\xi}, oldsymbol{\Sigma}_{o}\right). \end{cases}$$

for **unknown** hyperparameters η^2 and γ^2 , but **known** covariance matrices Σ_r, Σ_o .

Estimator Form

Bayesian stats: compute **posterior mean** of τ under Model 1:

$$\psi_{k}(\eta^{2}, \gamma^{2}) = \underbrace{\left(\frac{\eta^{2} \left(\gamma^{2} + \sigma_{ok}^{2} + \sigma_{rk}^{2}\right)}{\sigma_{rk}^{2} \left(\gamma^{2} + \sigma_{ok}^{2}\right) + \eta^{2} \left(\gamma^{2} + \sigma_{ok}^{2} + \sigma_{rk}^{2}\right)}\right)}_{\mathbf{a}_{k}(\eta^{2}, \gamma^{2}): \text{ aggregate shrinkage toward zero}} \times \mathbf{a}_{k}(\eta^{2}, \gamma^{2}): \mathbf{aggregate shrinkage toward zero}$$

$$\left(\underbrace{\frac{\left(\gamma^{2} + \sigma_{ok}^{2}\right)}{\gamma^{2} + \sigma_{ok}^{2} + \sigma_{rk}^{2}}}_{\lambda_{k}(\eta^{2}, \gamma^{2}): \text{data-driven weight}} \hat{\tau}_{rk} + \underbrace{\frac{\sigma_{rk}^{2}}{\gamma^{2} + \sigma_{ok}^{2} + \sigma_{rk}^{2}}}_{1 - \lambda_{k}(\eta^{2}, \gamma^{2})} \hat{\tau}_{ok} \right). \tag{2}$$

Estimators to Combine Data

0000000000000000000

Estimator Form

Bayesian stats: compute **posterior mean** of τ under Model 1:

$$\psi_{k}(\eta^{2}, \gamma^{2}) = \underbrace{\left(\frac{\eta^{2} \left(\gamma^{2} + \sigma_{ok}^{2} + \sigma_{rk}^{2}\right)}{\sigma_{rk}^{2} \left(\gamma^{2} + \sigma_{ok}^{2}\right) + \eta^{2} \left(\gamma^{2} + \sigma_{ok}^{2} + \sigma_{rk}^{2}\right)}\right)}_{\mathbf{a}_{k}(\eta^{2}, \gamma^{2}): \text{ aggregate shrinkage toward zero}} \times \underbrace{\left(\frac{\left(\gamma^{2} + \sigma_{ok}^{2}\right)}{\gamma^{2} + \sigma_{ok}^{2} + \sigma_{rk}^{2}} \hat{\tau}_{rk} + \underbrace{\frac{\sigma_{rk}^{2}}{\gamma^{2} + \sigma_{ok}^{2} + \sigma_{rk}^{2}} \hat{\tau}_{ok}}_{\mathbf{a}_{k}(\eta^{2}, \gamma^{2}): \mathbf{b}_{data-driven weight}}\right)}_{\mathbf{b}_{k}(\eta^{2}, \gamma^{2}): \mathbf{b}_{data-driven weight}} \times \mathbf{b}_{k}(\eta^{2}, \gamma^{2})$$

This is the **double-shrinkage** property: take a data-driven convex combo of $\hat{\tau}_r$ and $\hat{\tau}_0$ and then a Stein-like shrinakge toward zero.

MLE Version of the Estimator

To construct a usable estimator, need estimates of η^2 , γ^2 .

MLE Version of the Estimator

Problem Background

To construct a usable estimator, need estimates of η^2, γ^2 . An approach from Xie et al. (2012)...

Maximum Likelihood: Observing that

$$\mathcal{L}(\eta^{2}, \gamma^{2}) \propto \prod_{k} (\eta^{2} + \sigma_{rk}^{2})^{-1/2} e^{-\frac{\hat{\tau}_{rk}^{2}}{2(\eta^{2} + \sigma_{rk}^{2})}} \times \prod_{k} (\eta^{2} + \gamma^{2} + \sigma_{ok}^{2})^{-1/2} e^{-\frac{\hat{\tau}_{ok}^{2}}{2(\eta^{2} + \gamma^{2} + \sigma_{ok}^{2})}}.$$

Application to the WHI

MLE Version of the Estimator

To construct a usable estimator, need estimates of η^2, γ^2 . An approach from Xie et al. (2012)...

Maximum Likelihood: Observing that

$$\mathcal{L}(\eta^{2}, \gamma^{2}) \propto \prod_{k} (\eta^{2} + \sigma_{rk}^{2})^{-1/2} e^{-\frac{\hat{\tau}_{rk}^{2}}{2(\eta^{2} + \sigma_{rk}^{2})}} \times \prod_{k} (\eta^{2} + \gamma^{2} + \sigma_{ok}^{2})^{-1/2} e^{-\frac{\hat{\tau}_{ok}^{2}}{2(\eta^{2} + \gamma^{2} + \sigma_{ok}^{2})}}.$$

We can numerically optimize to obtain the estimates

$$\left(\hat{\eta}_{\mathsf{mle}}^2, \hat{\gamma}_{\mathsf{mle}}^2\right) = \max_{\eta^2, \gamma^2 \geq 0} \log \left(\mathcal{L}(\eta^2, \gamma^2)\right).$$

Confidence Intervals

• Advantage of hierarchical model: straightforward to build confidence intervals

Advantage of hierarchical model: straightforward to build

- confidence intervals
- Intervals have Empirical Bayes coverage guarantee without enforcing parametric assumptions on distribution of au and ξ

Confidence Intervals

- Advantage of hierarchical model: straightforward to build confidence intervals
- Intervals have Empirical Bayes coverage guarantee without enforcing parametric assumptions on distribution of τ and ξ

Definition (Robust EB Confidence Intervals (EBCIs))

The robust EBCI for ψ_k , the causal effect estimate obtained from any version of double-shrinkage estimators, is

$$\psi_k \pm cva(c_k)\hat{a}_k\sqrt{\left(\hat{\lambda}_k^2\sigma_{rk}^2 + (1-\hat{\lambda}_k)^2\sigma_{ok}^2\right)},$$

where \hat{a}_k and $\hat{\lambda}_k$ are the shrinkage factors, and $cva(c_k)$ is an inflation factor whose form is given in Armstrong et al. (2020).

Estimators to Combine Data

- Problem Background
- - SURE-Based Procedures
 - Using a Hierarchical Model
- Application to the WHI

WHI Overview

Dataset Overview

- Study of postmenopausal women initiated in 1991
- RCT of hormone therapy (estrogen and progestin) w/ 16k enrollees
- ODB w/ 50k comparable enrollees

Estimators to Combine Data

Application to the WHI

 Compute "true" causal effect of hormone therapy on coronary heart disease using entire RCT (16k units)

Application to the WHI

- Compute "true" causal effect of hormone therapy on **coronary heart disease** using entire RCT (16k units)
- Repeat 500 times:
 - Draw bootstrap samples:
 - 1,000 RCT units
 - Observational sample (50k units)
 - Compute squared error loss for $\hat{\tau}_r$, $\hat{\psi}_{mle}$, κ_{1+} , κ_{2+} , δ_1 , δ_2 .

Application to the WHI

- Compute "true" causal effect of hormone therapy on coronary heart disease using entire RCT (16k units)
- Repeat 500 times:
 - Draw bootstrap samples:
 - 1,000 RCT units
 - Observational sample (50k units)
 - Compute squared error loss for $\hat{\tau}_r$, $\hat{\psi}_{\text{mle}}$, κ_{1+} , κ_{2+} , δ_1 , δ_2 .
- Average loss over draws

Choice of Stratification Variables

Stratify on:

- two variables from WHI protocol:
 age + history of cardiovascular disease (Roehm, 2015).
- a variable unassociated with treatment effect:
 solar irradiance ("sun") ⇒ uncorrelated with outcome

Subgroup	# of	Loss as % of $\hat{\tau}_r$ Loss				
Variable(s)	Strata	$\hat{\psi}_{mle}$	κ_{1+}	κ_{2+}	$oldsymbol{\delta}_1$	δ_2
CVD	2	16%	36%	36%	100%	100%
Age	3	16%	37%	30%	62%	73%
Sun	5	9%	28%	22%	40%	52%
CVD, Age	6	21%	39%	42%	38%	82%
CVD, Sun	10	17%	34%	36%	30%	87%
Age, Sun	15	8%	22%	21%	23%	43%
Age, CVD, Sun	30	20%	51%	51%	50%	78%

Further Work: Design

Can these insights inform the design of a **prospective** RCT?

- Observational study already completed, $\hat{\tau}_o$ obtained.
- Designing a prospective RCT of n_r units
- Want to use a shrinker to combine $\hat{\tau}_r$ with $\hat{\tau}_o$. Design experiment to better complement ODB

Further Work: Design

Can these insights inform the design of a **prospective** RCT?

- Observational study already completed, $\hat{\tau}_o$ obtained.
- Designing a prospective RCT of n_r units
- Want to use a shrinker to combine $\hat{\tau}_r$ with $\hat{\tau}_o$. Design experiment to better complement ODB

Goal: choose an RCT allocation of treated and control counts per stratum, $\mathbf{d} = \{(n_{rkt}, n_{rkc})\}_{k=1}^{K}$, s.t. $\sum_{k} n_{rkt} + n_{rkc} = n_r$:

- implies how to recruit ...
- and assign treatment

Current & Future Work

- Current work
 - Applied project: air pollution and mortality. Synthesizing evidence from Medicare claims database with Medicare Current Beneficiary Survey using these estimators.
 - Design methods: extending to online & adaptive designs

Current & Future Work

- Current work
 - Applied project: air pollution and mortality. Synthesizing evidence from Medicare claims database with Medicare Current Beneficiary Survey using these estimators.
 - Design methods: extending to online & adaptive designs
- Future work
 - ML approaches: shrinkage between flexible functional estimates of CATEs $\hat{\tau}_r(x)$ and $\hat{\tau}_o(x)$
 - Inference: are shorter confidence intervals possible?

Acknowledgments

Thank you to my collaborators on this work:

- Guillaume Basse
- Mike Baiocchi
- Art Owen

- Francesca Dominici
- Luke Miratrix

The papers...

- SURE-based procedure paper available in Biometrics.
- Hierarchical model paper available at arXiv:2309.06727.
- Design paper available in Electronic Journal of Statistics.

Thanks!

References (I)

- Armstrong, T. B., Kolesár, M., and Plagborg-Moller, M. (2020). Robust empirical bayes confidence intervals. arXiv preprint arXiv:2004.03448.
- Bao, Y. and Kan, R. (2013). On the moments of ratios of quadratic forms in normal random variables. *Journal of Multivariate Analysis*, 117:229–245.
- Bareinboim, E. and Pearl, J. (2016). Causal inference and the data-fusion problem. Proceedings of the National Academy of Sciences, 113(27):7345–7352.
- Chen, S., Zhang, B., and Ye, T. (2021). Minimax rates and adaptivity in combining experimental and observational data. arXiv preprint arXiv:2109.10522.
- Cheng, D. and Cai, T. (2021). Adaptive combination of randomized and observational data. arXiv preprint arXiv:2111.15012.
- European Medicines Agency (2022). Qualification opinion for prognostic covariate adjustment (procova).
- FDA, U. (2018). Framework for fda's real-world evidence program. Silver Spring, MD: US Department of Health and Human Services Food and Drug Administration.
- Ghassami, A., Shpitser, I., and Tchetgen, E. T. (2022). Combining experimental and observational data for identification of long-term causal effects. arXiv preprint arXiv:2201.10743.
- Green, E. J. and Strawderman, W. E. (1991). A James-Stein type estimator for combining unbiased and possibly biased estimators. *Journal of the American Statistical Association*, 86(416):1001–1006.
- Green, E. J., Strawderman, W. E., Amateis, R. L., and Reams, G. A. (2005). Improved estimation for multiple means with heterogeneous variances. Forest Science, 51(1):1–6.
- Hartman, E., Grieve, R., Ramsahai, R., and Sekhon, J. S. (2015). From sate to patt: combining experimental with observational studies to estimate population treatment effects. *Journal of the Royal Statistical Society: Series A (Statistics in Society)*, 10:1111.
- Kallus, N., Puli, A. M., and Shalit, U. (2018). Removing hidden confounding by experimental grounding. In Advances in Neural Information Processing Systems, pages 10888–10897.
- Li, K.-C. et al. (1985). From Stein's unbiased risk estimates to the method of generalized cross validation. The Annals of Statistics, 13(4):1352–1377.

References (II)

- Lin, X. and Evans, R. J. (2023). Many data: Combine experimental and observational data through a power likelihood. arXiv preprint arXiv:2304.02339.
- Mooij, J. M., Magliacane, S., and Claassen, T. (2016). Joint causal inference from multiple contexts. arXiv preprint arXiv:1611.10351.
- Mueller, M., D'Addario, M., Egger, M., Cevallos, M., Dekkers, O., Mugglin, C., and Scott, P. (2018). Methods to systematically review and meta-analyse observational studies: a systematic scoping review of recommendations. BMC Medical Research Methodology, 18(1):44.
- Oberst, M., D'Amour, A., Chen, M., Wang, Y., Sontag, D., and Yadlowsky, S. (2022). Bias-robust integration of observational and experimental estimators. arXiv preprint arXiv:2205.10467.
- Prevost, T. C., Abrams, K. R., and Jones, D. R. (2000). Hierarchical models in generalized synthesis of evidence: an example based on studies of breast cancer screening. *Statistics in Medicine*, 19(24):3359–3376.
- Roehm, E. (2015). A reappraisal of Women's Health Initiative estrogen-alone trial: long-term outcomes in women 50–59 years of age. Obstetrics and Gynecology International, 2015.
- Stein, C. (1956). Inadmissibility of the usual estimator for the mean of a multivariate normal distribution. Technical report, Stanford University Stanford United States.
- Stein, C. M. (1981). Estimation of the mean of a multivariate normal distribution. The Annals of Statistics, pages 1135–1151.
- Stuart, E. A., Cole, S. R., Bradshaw, C. P., and Leaf, P. J. (2011). The use of propensity scores to assess the generalizability of results from randomized trials. *Journal of the Royal Statistical Society: Series A (Statistics in Society)*, 174(2):369–386.
- Tan, Z. (2006). A distributional approach for causal inference using propensity scores. Journal of the American Statistical Association, 101(476):1619–1637.
- Thompson, S., Ekelund, U., Jebb, S., Lindroos, A. K., Mander, A., Sharp, S., Turner, R., and Wilks, D. (2011). A proposed method of bias adjustment for meta-analyses of published observational studies. *International journal* of epidemiology, 40(3):765–777.

References (III)

- Xie, X., Kou, S., and Brown, L. D. (2012). Sure estimates for a heteroscedastic hierarchical model. Journal of the American Statistical Association, 107(500):1465–1479.
- Yang, S., Gao, C., Zeng, D., and Wang, X. (2023). Elastic integrative analysis of randomised trial and real-world data for treatment heterogeneity estimation. *Journal of the Royal Statistical Society Series B: Statistical Methodology*, 85(3):575–596.
- Zhao, Q., Small, D. S., and Bhattacharya, B. B. (2019). Sensitivity analysis for inverse probability weighting estimators via the percentile bootstrap. *Journal of the Royal Statistical Society: Series B (Statistical Methodology)*.

Appendices

A New Setting: Design

Can these insights inform the design of a **prospective** RCT?

- Observational study already completed, $\hat{\tau}_o$ obtained.
- Designing a prospective RCT of n_r units
- Want to use a shrinker to combine $\hat{\tau}_r$ with $\hat{\tau}_o$. Design experiment to better complement ODB

A New Setting: Design

Can these insights inform the design of a **prospective** RCT?

- Observational study already completed, $\hat{\tau}_o$ obtained.
- Designing a prospective RCT of n_r units
- Want to use a shrinker to combine $\hat{\tau}_r$ with $\hat{\tau}_o$. Design experiment to better complement ODB

Goal: choose an RCT allocation of treated and control counts per stratum, $\mathbf{d} = \{(n_{rkt}, n_{rkc})\}_{k=1}^{K}$, s.t. $\sum_{k} n_{rkt} + n_{rkc} = n_r$:

- implies how to recruit ...
- and assign treatment

Estimator and Risk

We proceed with our estimator κ_1 from the prior section:

$$\kappa_1 = \hat{ au}_{m{r}} - \left(rac{\mathsf{Tr}(\Sigma_r)}{\left(\hat{ au}_{m{o}} - \hat{ au}_{m{r}}
ight)^\mathsf{T}\left(\hat{ au}_{m{o}} - \hat{ au}_{m{r}}
ight)}
ight) (\hat{ au}_{m{r}} - \hat{ au}_{m{o}}) \; ,$$

Estimator and Risk

We proceed with our estimator κ_1 from the prior section:

$$\kappa_1 = \hat{ au}_{m{r}} - \left(rac{\mathsf{Tr}(\Sigma_r)}{\left(\hat{ au}_{m{o}} - \hat{ au}_{m{r}}
ight)^\mathsf{T} \left(\hat{ au}_{m{o}} - \hat{ au}_{m{r}}
ight)}
ight) \left(\hat{ au}_{m{r}} - \hat{ au}_{m{o}}
ight) \,,$$

Optimize experimental design over $\mathcal{R}_1(\boldsymbol{d}, \boldsymbol{V}, \boldsymbol{\xi})$, the risk of κ_1 under fixed $\hat{\tau}_{\boldsymbol{o}}$, with

We proceed with our estimator κ_1 from the prior section:

$$\kappa_1 = \hat{ au}_{m{r}} - \left(rac{\mathsf{Tr}(\Sigma_r)}{\left(\hat{ au}_{m{o}} - \hat{ au}_{m{r}}
ight)^\mathsf{T} \left(\hat{ au}_{m{o}} - \hat{ au}_{m{r}}
ight)}
ight) \left(\hat{ au}_{m{r}} - \hat{ au}_{m{o}}
ight) \,,$$

Optimize experimental design over $\mathcal{R}_1(\boldsymbol{d}, \boldsymbol{V}, \boldsymbol{\xi})$, the risk of κ_1 under fixed $\hat{\tau}_{\boldsymbol{o}}$, with

design d

We proceed with our estimator κ_1 from the prior section:

$$\kappa_1 = \hat{\tau}_{\textit{r}} - \left(\frac{\text{Tr}(\Sigma_{\textit{r}})}{\left(\hat{\tau}_{\textit{o}} - \hat{\tau}_{\textit{r}}\right)^{\mathsf{T}}\left(\hat{\tau}_{\textit{o}} - \hat{\tau}_{\textit{r}}\right)}\right) \left(\hat{\tau}_{\textit{r}} - \hat{\tau}_{\textit{o}}\right)\,,$$

Optimize experimental design over $\mathcal{R}_1(\mathbf{d}, \mathbf{V}, \boldsymbol{\xi})$, the risk of κ_1 under fixed $\hat{\tau}_0$, with

- design d
- stratum potential outcome variances $\mathbf{V} = \{(\hat{\sigma}_{kt}^2, \hat{\sigma}_{kc}^2)\}_{k=1}^K$

We proceed with our estimator κ_1 from the prior section:

$$\kappa_1 = \hat{ au}_{ extbf{\textit{r}}} - \left(rac{\mathsf{Tr}(\Sigma_{ extbf{\textit{r}}})}{\left(\hat{ au}_{ extbf{\textit{o}}} - \hat{ au}_{ extbf{\textit{r}}}
ight)^\mathsf{T}\left(\hat{ au}_{ extbf{\textit{o}}} - \hat{ au}_{ extbf{\textit{r}}}
ight)}
ight) \left(\hat{ au}_{ extbf{\textit{r}}} - \hat{ au}_{ extbf{\textit{o}}}
ight) \,,$$

Optimize experimental design over $\mathcal{R}_1(\mathbf{d}, \mathbf{V}, \boldsymbol{\xi})$, the risk of κ_1 under fixed $\hat{\tau}_0$, with

- design d
- stratum potential outcome variances $\mathbf{V} = \{(\hat{\sigma}_{kt}^2, \hat{\sigma}_{kc}^2)\}_{k=1}^K$
- bias vector ξ.

We proceed with our estimator κ_1 from the prior section:

$$\kappa_1 = \hat{ au}_{ extbf{\textit{r}}} - \left(rac{\mathsf{Tr}(\Sigma_{ extbf{\textit{r}}})}{\left(\hat{ au}_{ extbf{\textit{o}}} - \hat{ au}_{ extbf{\textit{r}}}
ight)^\mathsf{T}\left(\hat{ au}_{ extbf{\textit{o}}} - \hat{ au}_{ extbf{\textit{r}}}
ight)}
ight) \left(\hat{ au}_{ extbf{\textit{r}}} - \hat{ au}_{ extbf{\textit{o}}}
ight) \,,$$

Optimize experimental design over $\mathcal{R}_1(\mathbf{d}, \mathbf{V}, \boldsymbol{\xi})$, the risk of κ_1 under fixed $\hat{\tau}_0$, with

- design d
- stratum potential outcome variances $\mathbf{V} = \{(\hat{\sigma}_{kt}^2, \hat{\sigma}_{kc}^2)\}_{k=1}^K$
- bias vector ξ.

Can compute this efficiently via numerical integration (Bao and Kan, 2013), as long as \boldsymbol{V} and $\boldsymbol{\xi}$ are known.

Design Heuristics

Can estimate $\hat{\mathbf{V}}$ using pilot estimates obtained from ODB:

$$\hat{\sigma}_{kt}^2 = \widehat{\operatorname{var}}\left(Y(1) \mid S = k\right)$$
 and $\hat{\sigma}_{kc}^2 = \widehat{\operatorname{var}}\left(Y(0) \mid S = k\right)$.

Design Heuristics

Can estimate \hat{V} using pilot estimates obtained from ODB:

$$\hat{\sigma}_{kt}^2 = \widehat{\operatorname{var}}(Y(1) \mid S = k)$$
 and $\hat{\sigma}_{kc}^2 = \widehat{\operatorname{var}}(Y(0) \mid S = k)$.

Design heuristics:

- **Naïve Optimization**: Assume $\xi = 0$ and minimize $\mathcal{R}_1(\mathbf{d}, \hat{\mathbf{V}}, \xi = 0)$ over \mathbf{d} , via greedy swap algorithm.
- **Q Robust Optimization**: Under model of Tan (2006) and a user-chosen value of sensitivity $\Gamma \geq 1$, optimize the design **d** under worst-case bias

1. Neyman Allocation

Can estimate **V** using pilot estimates obtained from ODB:

$$\hat{\sigma}_{kt}^2 = \widehat{\operatorname{var}}\left(Y(1) \mid S = k\right)$$
 and $\hat{\sigma}_{kc}^2 = \widehat{\operatorname{var}}\left(Y(0) \mid S = k\right)$.

Simplest design heuristic: use a Neyman allocation, e.g.

$$n_{rkt} = \frac{n_r \cdot \hat{\sigma}_{kt}^2}{\sum_k \hat{\sigma}_{kt}^2 + \hat{\sigma}_{kc}^2} \quad \text{and} \quad n_{rkc} = \frac{n_r \cdot \hat{\sigma}_{kc}^2}{\sum_k \hat{\sigma}_{kt}^2 + \hat{\sigma}_{kc}^2}.$$

Optimizes over only the non-shrinkage portion of the risk, but reasonable in many practical settings.

2. Naïve Optimization Assuming $\xi = 0$ (I)

Use. a simple heuristic: assume $\xi = 0$. Then solve:

minimize
$$\mathcal{R}_{2}(\mathbf{d}, \mathbf{V}, \boldsymbol{\xi})$$

subject to $\boldsymbol{\xi} = 0, \mathbf{V} = \{(\hat{\sigma}_{kt}^{2}, \hat{\sigma}_{kc}^{2})\}_{k=1}^{K},$
 $0 < n_{rkt}, n_{rkc}, \quad k = 1, \dots, K,$
 $n_{r} = \sum_{k} n_{rkt} + n_{rkc}.$ (3)

But $\mathcal{R}_2(\mathbf{d}, \mathbf{V}, \boldsymbol{\xi})$ is not convex in the design \mathbf{d} ...

2. Naïve Optimization Assuming $\xi = 0$ (II)

A practical approach: **greedy algorithm**. Define d_j as design on j^{th} iteration, and define

 $\mathcal{D}_j = \{ \boldsymbol{d'} \mid \ \boldsymbol{d'} \text{ changes one unit across strata/treatment level from } \boldsymbol{d_j} \} \,.$

Run Algorithm 4 from several values of d_0 and take minimum:

```
Start with design \mathbf{d}_0 = \{(n_{rkt}^{(0)}, n_{rkc}^{(0)})\}_k.

For iteration j = 1, 2, \dots:

For each design \mathbf{d}' in \mathcal{D}_{j-1}:

Compute \mathcal{R}_2(\mathbf{d}', \mathbf{V}, 0).

Set \mathbf{d}_j = \underset{\mathbf{d}' \in \mathcal{D}_{j-1}}{\operatorname{argmin}} \mathcal{R}_2(\mathbf{d}', \mathbf{V}, 0)

If \mathcal{R}_2(\mathbf{d}_j, \mathbf{V}, 0) >= \mathcal{R}_2(\mathbf{d}_{j-1}, \mathbf{V}, 0)

Return \mathbf{d}_{i-1}.
```

3. Heuristic Optimization Assuming Worst-Case Error Under \(\Gamma \)-Level Unmeasured Confounding

- Can take a more pessimistic approach again using marginal sensitivity model of Tan (2006)
- For a user-chosen value of $\Gamma > 1$:
 - can obtain worst-case $\xi_k(\Gamma)$ using Zhao et al. (2019), and...
 - ullet if outcome $Y_i \in \{0,1\}$, can obtain associated $\hat{\sigma}_{kt}^2$ and $\hat{\sigma}_{kc}^2$.

$$\Gamma \Longrightarrow \ m{\xi}(\Gamma) \quad m{V}(\Gamma) \Longrightarrow \ m{\mathcal{R}}_2(m{d}, m{V}_\Gamma, m{\xi}_\Gamma) \qquad m{\mathcal{R}}_2(m{d}, m{V}, 0)$$

3. Heuristic Optimization Assuming Worst-Case Error Under \(\Gamma \)-Level Unmeasured Confounding

- Can take a more pessimistic approach again using marginal sensitivity model of Tan (2006)
- Recall: for a user-chosen value of $\Gamma > 1$:
 - can obtain worst-case $\xi_k(\Gamma)$ using Zhao et al. (2019), and...
 - if outcome $Y_i \in \{0,1\}$, can obtain associated $\hat{\sigma}^2_{kt}$ and $\hat{\sigma}^2_{kc}$.

```
posit a value of \Gamma \Longrightarrow collect results into V(\Gamma) and \xi(\Gamma) \Longrightarrow run Algorithm 4 using \mathcal{R}_2(\mathbf{d}, V(\Gamma), \xi(\Gamma)) instead
```

Stratified WHI Study Design of $n_r = 1,000$ units

Figure 4: Allocations in WHI with strata defined by history of CVD and age, under different design heuristics.

Useful Properties of λ_1^{SURE} (I)

Define

$$oldsymbol{\kappa}_1 = \hat{oldsymbol{ au_r}} - \lambda_1^{\mathsf{SURE}} \left(\hat{oldsymbol{ au_r}} - \hat{oldsymbol{ au_o}}
ight)$$

 κ_1 admits a testable condition under which it is guaranteed to reduce risk relative to $\hat{\tau}_r$.

Lemma (Risk Guarantee)

Suppose 4 max_k $w_k \sigma_{rk}^2 < \sum_k w_k \sigma_{rk}^2$. Then κ_1 has risk strictly less than that of $\hat{\tau}_r$.

- Requires a dimension of at least K = 4.
- May require substantially larger K if high heteroscedasticity or non-uniform weights.

Useful Properties of λ_1^{SURE} (II)

Its positive part analogue,

$$oldsymbol{\kappa}_{1+} = \hat{oldsymbol{ au_r}} - \left\{ \lambda_1^{\mathsf{SURE}}
ight\}_{[0,1]} \left(\hat{oldsymbol{ au_r}} - \hat{oldsymbol{ au_o}}
ight) \, ,$$

where

$${u}_{[0,1]} = \min(\max(u,0),1),$$

satisfies the following notion of optimality:

Useful Properties of λ_1^{SURE} (III)

Theorem (Asymptotic Risk)

Suppose

$$\begin{split} &\limsup_{K\to\infty}\frac{1}{K}\sum_k d_k^2\sigma_{rk}^2\xi_k^2<\infty\,,\quad \limsup_{K\to\infty}\frac{1}{K}\sum_k d_k^2\sigma_{rk}^2\sigma_{ok}^2<\infty\,,\\ &\text{and}\quad \limsup_{K\to\infty}\frac{1}{K}\sum_k d_k^2\sigma_{rk}^4<\infty\,. \end{split}$$

Then, in the limit $K \to \infty$, κ_{1+} has the lowest risk among all estimators with a shared shrinkage factor across components.

EB Coverage

• Valid confidence interval construction for shrinkage estimators is an open area of research (?)

EB Coverage

- Valid confidence interval construction for shrinkage estimators is an open area of research (?)
- Frequentist intervals shorter than standard CIs about $\hat{\tau}_r$ are impossible order-wise and difficult to obtain in practice (Chen et al., 2021).

EB Coverage

- Valid confidence interval construction for shrinkage estimators is an open area of research (?)
- Frequentist intervals shorter than standard CIs about $\hat{\tau}_r$ are impossible order-wise and difficult to obtain in practice (Chen et al., 2021).
- EB coverage is a frequently-used weaker condition
 - Implies average coverage: under fixed τ , a $1-\alpha$ fraction of effects are covered with high probability in large samples
 - However, some outlying effects may <u>not</u> be covered with $1-\alpha$ probability across repeated samples of the data