Problem 00 First of all, carefully reread Chapter 4 and read Chapter 5 in Eldén.

Problem 01 Let $A \in \mathbb{R}^{m \times m}$ be a *symmetric* matrix. As you have already learned in MAT 22A or MAT 67, an *eigenvector* of A is a nonzero vector $\mathbf{x} \in \mathbb{C}^m$ such that $A\mathbf{x} = \lambda \mathbf{x}$ for some $\lambda \in \mathbb{C}$, the corresponding *eigenvalue*. Here \mathbb{C} denotes the complex numbers; i.e. all numbers of the form z = a + bi where a and b are real numbers and $i = \sqrt{-1}$ is the square root of -1. Also, you will also need to know that $\overline{z} = a - bi$ is the *complex conjugate* of z and if z_1 and z_2 are any two complex numbers we have $\overline{z_1} \, \overline{z_2} = \overline{z_1} \, \overline{z_2}$.

In the following problem, you may assume that all of the eigenvalues of A are distinct.

- (a) Prove that all of the eigenvalues of A are real.
 - [Hint: If λ is a (complex) eigenvalue of A with eigenvector \mathbf{x} , then it's complex conjugate $\overline{\lambda}$ is also an eigenvalue of A with eigenvector $\overline{\mathbf{x}}$.]
- (b) Prove that if \mathbf{x}_1 and \mathbf{x}_2 are eigenvectors corresponding to distinct eigenvalues, then \mathbf{x}_1 and \mathbf{x}_2 are orthogonal.

Problem 02 Let

$$\mathbf{A} = \begin{bmatrix} 1 & 1 \\ \epsilon & 0 \\ 0 & \epsilon \end{bmatrix},$$

where ε is a small positive number (e.g., 10^{-8}) so that ε^2 can be ignored numerically.

- (a) Compute the reduced QR factorization $A = \widehat{Q}\widehat{R}$ using the classical Gram-Schmidt algorithm by hand.
- **(b)** Compute the reduced QR factorization $A = \widehat{Q}\widehat{R}$ using the modified Gram-Schmidt algorithm by hand.
- (c) Compute the full QR factorization A = QR using the Householder triangularization by hand.
- (d) Check the quality of these results by computing the Frobenius norm of $\|\widehat{Q}^T\widehat{Q} I\|_F$ for the results obtained by the CGS and MGS algorithms and $\|Q^TQ I\|_F$ for the result obtained by the Householder triangularization.

Problem 03 Let $E \in \mathbb{R}^{m \times m}$ that extracts the "even part" of an m-vector: $E\mathbf{x} = (\mathbf{x} + F\mathbf{x})/2$, where $F \in \mathbb{R}^{m \times m}$ flips $\mathbf{x} = [x_1, ..., x_m]^T$ to $\mathbf{x} = [x_m, ..., x_1]^T$.

- (a) Is E an orthogonal projector, an oblique projector, or not a projector at all?
- (b) What are its entries?

Problem 04 Take m = 50, n = 12. Using MATLAB's linspace, define t to be the m-vector corresponding to linearly spaced grid points from 0 to 1. Using MATLAB's vander and fliplr, define A to be the $m \times n$ matrix associated with least squares fitting on this grid by a polynomial of order n - 1. Take **b** to be the function $\cos(4t)$ evaluated on the grid. Now, calculate and print (to 16 digit precision) the least squares coefficient vector **x** by the following three methods.

- (a) Solving the normal equation explicitly computing $(A^TA)^{-1}$.
- (b) Using the MATLAB implementation CGS.m of the classical Gram-Schmidt algorithm CGS, which can be downloaded from CANVAS.
- (c) Using the MATLAB implementation MGS.m of the modified Gram-Schmidt algorithm MGS, which can be downloaded from CANVAS.
- (d) QR factorization using MATLAB's qr, which is based on the Householder triangularization.
- (e) $x = A \setminus b$ in MATLAB, which is also based on QR factorization.
- (f) The calculations above will produce five lists of twelve coefficients. In each list, use the "\textcolor{color}{words}" function in LaTeX

\textcolor{red}{This sentence will be in red.} → This sentence will be in red.

to highlight the digits that appear to be incorrect; i.e., affected by rounding error.

- Comment on the differences you observe.
- Do the normal equations exhibit instability?

Although, explanations for what you observe are welcome, you are not *required* to explain your observations.