

Institutt for datateknikk og informasjonsvitenskap

Eksamensoppgave i TDT4120 Algoritmer og datastrukturer

Faglig kontakt under eksamen Telefon	Magnus Lie Hetland 918 51 949
Eksamensdato Eksamenstid (fra-til) Hjelpemiddelkode/tillatte hjelpemidler	17. desember, 2016 09:00–13:00 D
Annen informasjon	Oppgavearkene leveres inn, med svar i svarrute under hver oppgave
Målform/språk Antall sider (uten forside) Antall sider vedlegg	Bokmål 8 0
Informasjon om trykking av eksamensoppgave	Kvalitetssikret av Ole Edsberg
Originalen er 1-sidig ☑ 2-sidig □	Kontrollert av
sort/hvit ☑ i farger □	
Skal ha flervalgskjema □	Dato Sign

Merk: Studenter finner sensur i Studentweb. Har du spørsmål om din sensur må du kontakte instituttet ditt. Eksamenskontoret vil ikke kunne svare på slike spørsmål.

Les dette nøye

- (i) Det at kjøretiden er oppgitt til å være O(n) tvinger det bøttestørrelsen til å være konstant? Er de større vil de jo bli færre. Hvor store kan de være, og likevel gi lineær tid, dersom man tar kvadratet av hver enkelt?
- (ii) Les hele eksamenssettet nøye før du begynner!
- (iii) Faglærer går normalt én runde gjennom lokalet. Ha evt. spørsmål klare!
- (*iv*) Skriv svarene dine i svarrutene og levér inn oppgavearket. Bruk gjerne blyant! Evt. kladd på eget ark først for å unngå overstrykninger, og for å få en egen kopi.
- (v) Ekstra ark kan legges ved om nødvendig, men det er meningen at svarene skal få plass i rutene på oppgavearkene. Lange svar teller ikke positivt.
- (vi) Eksamen har 20 oppgaver, totalt verdt 120 poeng. Av disse er 20 bonuspoeng, så en poengsum over 100 regnes som 100. Poengverdi er angitt ved hver oppgave.

Oppgaver

(6 p)	1.	Du skal sortere n heltall i verdiområdet 0 til k , der $k = O(n)$. Hvilken sorteringsalgoritme i pensum vil det være mest naturlig å bruke?
(6 p)	2.	I læreboka er dybde-først-søk (<i>depth-first search</i> , DFS) implementert med rekursjon. Det er også mulig å implementere dybde-først-søk <i>uten</i> rekursjon. Hvordan da?
(6 p)	3.	Hvilken teknikk – inkrementell design (<i>incremental design</i>), splitt og hersk (<i>divide-and-conquer</i>), dynamisk programmering (<i>dynamic programming</i>), grådighet (<i>greedy algorithms</i>) eller amortisert analyse (<i>amortized analysis</i>) – er brukt i den vanlige løsningen på 0-1-ryggsekkproblemet (<i>0-1 knapsack</i>)?
(6p)	4.	La tabellen $S[110]$ være $\langle 50, 70, 45, 15, 72, 41, 61, 22, 26, 64 \rangle$ og la $S.top = 5$. Utfør så følgende utsagn, i rekkefølge: 1 $x = Por(S)$ 2 $y = Por(S)$ 3 $Push(S, x)$ 4 $Push(S, y)$
		Hva er innholdet i tabellen <i>S</i> nå? Merk: Det spørres her om innholdet i <i>hele</i> tabellen, ikke bare i stakken.

	Ka	ndidatnummer: Side 2 av 8
(6 p)	5.	Etter at vi har utført en algoritme for å finne korteste vei fra én node s til alle andre i en graf (the single-source shortest path problem) har vi $v.\pi = \text{NIL}$ for en gitt node v . Hva er da verdien til $v.d$?
(6 p)	6.	Hvis du har et (ikke nødvendigvis balansert) binært søketre med n noder og høyde h , hvor lang tid tar det å finne minste element (Tree-Minimum)? Uttrykk svaret med O-notasjon.
(6 p)	7.	Hva er den amortiserte kjøretiden for innsetting i en dynamisk tabell (Table-Insert)? Oppgi svaret i O-notasjon.
(6 p)	8.	Om man bruker Bucket-Sort på n uavhengig uniformt fordelte tall i området $[0,1)$, så får man en kjøretid på $O(n)$. Underveis, som en del av Bucket-Sort, kalles Insertion-Sort flere ganger. Hva

(6p) 8. Om man bruker Bucket-Sort på n uavhengig uniformt fordelte tall i området [0,1), så får man en kjøretid på O(n). Underveis, som en del av Bucket-Sort, kalles Insertion-Sort flere ganger. Hva er den forventede kjøretiden til *hvert enkelt* av disse kallene til Insertion-Sort? (Det er her altså snakk om en forventningsverdi.) Bruk O-notasjon og uttrykk svaret som funksjon av n.

Merk: Du skal *ikke* oppgi svaret som funksjon av input-størrelsen til Insertion-Sort, men som funksjon av input-størrelsen til Bucket-Sort.

(6 p) 9. A[1..n] er en tabell med heltall. Du har nesten skrevet ferdig en algoritme basert på designmetoden splitt og hersk (divide-and-conquer) for å finne det minste elementet (eller ett av de minste elementene) i A. Det du har skrevet så langt ser slik ut:

Minimum(A, p, r)

- 1 if p == r2 return A[p]3 else $m = \lfloor (p+r)/2 \rfloor$
- x =
- y =
- 6 if x < y return x
- 8 else return y

For å finne minimum i A bruker du Minimum(A,1,n). Fyll ut det som mangler i de to rutene i pseudokoden over.

(6 p) 10. Løs følgende rekurrens, der $n \ge 0$ er et heltall:

$$T(n) = \begin{cases} 0 & \text{hvis } n = 1, \\ 10000 T(n/10) + n^4 + n^2 & \text{hvis } n > 1. \end{cases}$$

Oppgi svaret i Θ -notasjon.

(6 p) 11. Din venn Lurvik mener følgende rekurrens har løsning $T(n)=n^3-n^2$:

$$T(n) = \begin{cases} 0 & \text{if } n = 1, \\ 8T(n/2) + n^2 & \text{if } n > 1, \end{cases}$$

der $n = 2^k$, for et positivt heltall k. Vis at hun har rett.

(6p) 12. Du har en urettet graf G=(V,E), der hver kant $(u,v)\in E$ har en vekt w(u,v)=-1. Du har oppgitt to noder s og t, og ønsker å finne den lengste (dvs. tyngste) stien fra s til t, altså den med størst vektsum. Hvordan ville du løse problemet?

1		

(6p) 13. I Transitive-Closure brukes den binære variabelen $t_{ij}^{(k)}$ til å indikere om det går en sti fra i til j hvis alle noder på veien mellom dem må ligge i mengden $\{1,2,\ldots,k\}$. For eksempel er $t_{ij}^{(0)}=1$ hvis og bare hvis $(i,j)\in E$. Hva er uttrykket for $t_{ij}^{(k)}$, når k>0?

Figur 1: En vektet, urettet graf til bruk i oppgave 14

Figur 2: Flytnettverk brukt i oppgave 15

(6 p) 14. Hvis du utfører MST-Kruskal på grafen i figur 1, hvilken kant vil velges som den femte i rekken? Det vil si, hvilken kant vil være den femte som legges til i løsningen?

Oppgi kanten på formen (i, j), der i < j.

(6 p) 15. Figur 2 viser flytnettverket G, med kilde s, sluk t og flyt f. Er flyten maksimal? Svar ja eller nei.

Hvis ja, oppgi også mengden av noder som kan nås (dvs., som det finnes stier til) fra s i G_f .

Hvis nei, oppgi også nodene i en flytforøkende sti (augmenting path), i rekkefølge.

Figur 3: Forrige tilstand i utførelsen av Floyd-Warshall, brukt i oppgave 16

(6p) 16. Under en kjøring av Floyd-Warshall er $D^{(2)}$ og $\Pi^{(2)}$ som angitt i figur 3. Hva blir $D^{(3)}$ og $\Pi^{(3)}$? Fyll ut tabellene nedenfor.

Merk: Vi antar her en implementasjon som i læreboka, det vil si at vi i hver iterasjon k lager nye tabeller $D^{(k)}$ og $\Pi^{(k)}$, heller enn en mer plass-effektiv variant som overskriver tabellene.

		1	2	3	4
	1				
$\Pi^{(3)}$	2				
$\Pi^{(3)}$	3				
	4				

(6p) 17. Et flytnettverk er en rettet graf G=(V,E) der hver kant $(u,v)\in E$ har en *kapasitet* $c(u,v)\geq 0$. Hvis $(u,v)\notin E$, lar vi c(u,v)=0. En *flyt* i G er en reell funksjon $f:V\times V\to \mathbb{R}$ som tilfredsstiller to egenskaper. Hvilke egenskaper er dette?

Egenskapene uttrykkes fortrinnsvis med matematisk notasjon. En kort tekstlig beskrivelse kan gi opptil 3 poeng. Det holder *ikke* å oppgi navnene på dem. (Det er heller ikke *nødvendig* å oppgi navnene deres.)

1			
1			
1			
i			
1			
1			
1			
1			
1			
1			
1			

(6p) 18. Er følgende utsagn riktig?

«For ethvert språk L, hvis L er i NP, så er L ikke i co-NP.»

Svar ja eller nei, og forklar svært kort.

	Ka	ndidatnummer: Side 6 av 8
(6 p)	19.	En <i>uavhengig mengde</i> (<i>independent set</i>) i en graf $G = (V, E)$ er en delmengde $U \subseteq V$ av nodene som er slik at hver kant i E er tilkoblet maksimalt én node i E (dvs., ingen av nodene i E er naboer).
		Et fritt tre (free tree) er en sammenhengende, asyklisk urettet graf (dvs., et tre uten noen angitt rot)
		Du skal løse følgende problem.
		Input: Et fritt tre $T=(V,E)$ der hver node $v\in V$ har en vekt $w(v)\neq 0$.
		Output: En uavhengig mengde U i T med maksimal vektsum $\sum_{v \in U} w(v)$.
		Se figur 4 for et eksempel. Merk at nodevektene <i>kan være negative</i> .
		For enkelhets skyld trenger du <i>ikke</i> beskrive hvordan du vil finne selve mengden <i>U</i> ; det holder at du finner korrekt vektsum. Beskriv konsist en algoritme som løser problemet effektivt. Oppgi
		kjøretiden så presist som mulig, i asymptotisk notasjon.

(6p) 20. En dominerende mengde (dominating set) i en urettet graf er en delmengde av nodene som tilsammen er naboer med alle de andre nodene. Det vil si, en dominerende mengde for en urettet graf G = (V, E) er en mengde $U \subseteq V$ som er slik at for enhver node $v \in V - U$ så finnes det minst én node $u \in U$ der $(u, v) \in E$. (Se figur 5 for et eksempel.)

Det såkalte *dominating set problem* handler om å finne en dominerende mengde av minimal størrelse (dvs., med så få noder som mulig) i en gitt graf. Uttrykt som et beslutningsproblem, går det ut på å avgjøre om grafen har en dominerende mengde av en gitt størrelse *k*. Som et språk, definerer vi

DOMINATING-SET = $\{\langle G, k \rangle : \text{grafen } G \text{ har en dominerende mengde med } k \text{ noder} \}$.

Anta at du allerede vet at språket VERTEX-COVER er NP-komplett. Bruk denne kunnskapen til å vise at DOMINATING-SET er NP-komplett.

Merk: For full uttelling må alle bestanddelene i et NP-kompletthetsbevis være med.

Hint: Anta at noden w kun har u og v som naboer, og at u og v er naboer med hverandre, som i figur 6. Dersom w er med i løsningen vår, kan vi alltid bytte den ut med enten u eller v, og fortsatt ha en løsning (en dominerende mengde) med samme antall noder.

Figur 4: Eksempel på en maksimal, vektet uavhengig mengde (se oppgave 19). De tre uthevede nodene er med i den uavhengige mengden U, som har vektsum $\sum_{v \in U} w(u) = 1 + 2 + 3 = 6$

Figur 5: En dominerende mengde (se oppgave 20) med størrelse 2. De uthevede nodene er med i den dominerende mengden, og hver av de andre nodene har en kant til minst én av dem

Figur 6: Nodene u og v kan være koblet til andre noder i grafen, men w er kun koblet til u og v. Dersom w er med i en dominerende mengde av størrelse k, så kan vi bytte ut w med enten u eller v, og fortsatt ha en dominerende mengde av størrelse k