Національний технічний університет України « Київський політехнічний інститут імені Ігоря Сікорського» Кафедра мікроелектроніки

Лабораторна робота № 2

з дисципліни: «Схемотехніка-1. Аналогова схемотехніка» ЗВОРОТНІЙ ЗВ'ЯЗОК У ПІДСИЛЮВАЧАХ

Виконав:

студент 3-го курсу групи ДП-82 Мнацаканов Антон Станіславович Перевірила: Порєва Ганна Сергіївна

1. Мета роботи

Вивчення принципів роботи зворотного зв'язку, дослідження впливу негативного зворотного зв'язку на характеристики і параметри підсилювача.

2. Блок-схема установки для дослідження лабораторного модуля «Зворотній зв'язок у підсилювачах»

Блок-схема установки для дослідження лабораторного модуля «Зворотній зв'язок у підсилювачах» («ЗЗП») наведена на рис. 2.1.

Рис. 1.1. Блок-схема установки для дослідження лабораторного модуля «Зворотній зв'язок у підсилювачах».

3. Схема електрична принципова лабораторного модуля «Зворотній зв'язок у підсилювачах»

Рис. 1.2 Схема електрична принципова лабораторного модуля «ЗЗП»: a) схема без ЗЗ (П1-вкл), δ) схема НЗЗ по току (П2-вкл), ϵ) схема НЗЗ по напрузі (П3-вкл), ϵ) схема ЗЗ на операційному підсилювачі (П4-вкл).

Таблиця 1.1. Призначення перемикачів.

№	Призначення перемикачів
П1	Вмикає підсилювач на БТ з НЗЗ по току
П2	Вмикає підсилювач на БТ з НЗЗ по напрузі
П3	Вмикає підсилювач на ОП при K_U =10
П4	Вмикає підсилювач на ОП при K_U =100
П5	Закорочує резистор R_6 — навантаження підсилювача на БТ
П6	Закорочує резистор R_1 у підсилювачах на БТ та ОП
П7	Підключає резистори навантаження R_6 - R_7 у підсилювач на БТ, або R_5 у ОП

Таблиця 2.2. Реалізовані в лабораторному модулі схеми.

Тип 33	Перемикач замкнутий	Схема електрична принципова
Підсилювач на БТ без 33	-	R2 24k R5 KT5 R1 1
Підсилювач на БТ із Н33 по току	Π1	R2 R5 KT5 3k KT6 KT6 C3 100 N5 KT4 R3 R4 1,5k R7 5,1k

Таблиця 1.3. До вимірам амплітудних характеристик підсилювача $U_2=U_2(U_1)$ при $f_2=10$ к Γ ц.

	<i>U</i> , мВ			U_2 , B				
				Без 33	Н33 по	Н33 по		
Nº	Без 33	Н33 по току	Н33 по напрузі	(П1- П7 викл.)	току (П1- вкл.)	напрузі (П2–вкл.)		
1	25	750	50	1,7	1,25	1,25		
2	20	650	40	1,45	1,1	1,2		
3	15	550	30	1,1	0,97	1,05		
4	10	450	20	0,8	0,8	0,93		
5	5	350	10	0,4	0,62	0,53		
6	1	250	1	0,08	0,44	0,052		
7		150			0,26			
8		50			0,092			
9		1			0,018			
10								
D	Д	$T_{\epsilon}^{+} = \frac{U}{U}$	r+ ex max r ex min					
Визначити	Д	$\overline{c} = \frac{U}{U}$	ex max ex min					

Рис. 1.3 Амплітудна характеристика підсилювача

Таблиця 1.4. До вимірюванню функцій підсилювачів.

	П	Підсилювач в схемі			
No	Показники роботи	Без	Н331	H33 _U	Примітки
	підсилювача	33	(П1)	(Π2)	1
					Натиснути П6 і встановити
1	При R_I =0 U_I = U_z ,	10	50	10	ручкою вихід генератора U_l .
	мВ				Перемикач П7 розімкнений.
	T D 1 0			0,8	Розімкнути П6 і виміряти
2	При R_I =1кОм	4,7	34		вольтметром V_I напругу U_I '.
	(П6–розімкнений) U_I ',мВ				Перемикач П7 розімкнений.
	U_1'				
3	$R_{\rm ex} = R_1 \frac{U_1'}{U_{\rm c} - U_1'},$	886	2125	87	Обчислити вхідний опір
	•	000	2123	07	$(R_I = I_K O_M)$
	Ом				Волітичниції і политичниції
4	При відключенні	940	0.4	550	Розімкнути П7 і вольтметром
4	$R_{H} = R_{6} + R_{7} U_{2xx}, \text{ MB}$	840	94	330	V_2 виміряти U_{2xx} .
	$(U_{I}=U_{\varepsilon},)$				Перемикач Пб замкнутий.
5	При відключенні	650	74	470	Замкнути П7 і вольтметром V_2
	$R_{H} = R_{6} + R_{7}$ U_{2} , мВ	030	/4	4/0	виміряти напругу U_2 Перемикач П6 замкнутий.
					перемикач по замкнутии.
6	$R_{\text{eux}} = (R_6 + R_7) \frac{U_{2xx} - U_2}{U_2}$	3,5	3,24	2,04	Обчислити вихідний опір R_{eux}
	де $R_H = R_6 + R_7 = 12$ кОм] 			Обчислити вихідний оттр Квих
					Oğyuyayıyını piyyayıyını payiyya
7	$K_U = \frac{U_2}{U_*}$	65	1,48	47	Обчислити відношення раніше
	<i>U</i> ₁				виміряних U_1 та U_2
	$_{\nu}$ $_{-}$ $I_{_{\rm H}}$ $_{-}$ $R_{_{\rm ex}}$ $_{\nu}$	4.7	0.26	0.24	Обчислити коефіцієнт передачі
8	$K_I = \frac{I_{_{\mathcal{H}}}}{I_{_1}} = \frac{R_{_{\mathcal{E}\!X}}}{R_{_{\mathcal{H}}}} K_U$	4,7	0,26	0,34	струму як відношення R_{ex} та R_{u} ,
	- "				помножене на K_U
9	$K_P = \frac{P_{_{\mathcal{H}}}}{P_1} = K_U \cdot K_I$	312	0,38	16	Обчислити добуток K_U и K_I
	P_1				0 0 1110111111 A0 0 J 1011 120 11 121
	$f_{\scriptscriptstyle H}\!\!=\!\!f_{min},$ при	<10			Перемикач П6 замкнутий.
10	$U_2=0,707\cdot U_2$ ($f=10$	~10 Гц	<10Гц	<10Гц	Перемикач П7 замкнутий.
	кГц)				перемикат п/ замкнутии.
	$f_e = f_{max}$, при	122	220КГ	160КГ	Перемикач П6 замкнутий.
11	$U_2 = 0.707 \cdot U_2$ ($f = 10$	КГц	220K1 Ц	Ц	Перемикач П7 замкнутий.
	кГц)		·		Tiepemina i II / Samaii y i iii.
12	$\Delta f = f_e - f_{\scriptscriptstyle H}$	1,21	2,19	1,6	
	<i>∸</i> ე	*10 ⁵	*10 ⁵	*10 ⁵	

Рис. 1.4 Амплітудна характеристика підсилювача

Таблиця 1.5. До вимірювань амплітудних характеристик підсилювача $U_z=U_z(U_t)$, при $f_z=10$ к Γ ц

NG	U_{I} ,	мВ	U_{2} , B				
No	$K_{\nu} = 10$	$K_{\nu} = 100$	$K_{U}=10$ (П3-вкл.)	$K_{\nu}=100 (\Pi 4$ -вкл.)			
1	1 500		5	4,5			
2	400	35	4	3,5			
3	300	25	3	2,5			
4	200	15	2	1,5			
5	100	5	1	0,5			
6	10		0,1				
Визначит и	$\mathcal{A}_{\varepsilon}^{+} = 0$	$U_{sx\mathrm{max}}^+$ $U_{sx\mathrm{min}}^-$					
n	$\mathcal{I}_{z}^{-} = 0$	$\frac{U_{ex ext{max}}}{U_{ex ext{min}}}$					

Таблиця 1.6. До вимірювань відносної нестабільності коефіцієнта передачі напруги підсилювача при U_I =10 мВ, f_ε =10 кГц (П6 – замкнутий).

Підсилювач без 33				Підсилювач із НЗЗ по току			Підсилювач із НЗЗ по напрузі				
	П7 – включити				П1, П7 – включити				$\Pi 2, \Pi 7$ — включити		
$R_{\scriptscriptstyle H} =$	$R_{H} = R_{6} + R_{7} = R_{6} + R_{7} =$			$R_{H} = R_{6} + R_{7} = R_{6$			$R_{\scriptscriptstyle H} = R_6 + R_7 = R_6 + R_6$			$R_6+R_7=$	
=10	=10,2 кОм =5,1 кОм		=10,2 кОм =5,1 кОм		,1 кОм	=10,2 кОм		=5,1 кОм			
П5-	П5- вимк.		5-вкл.	П5- вимк.		П5-вкл.		П5- вимк.		П5-вкл.	
$U_{^2}$,B	$K_U = \frac{U_2}{U_1}$	$U_{2}^{'}$,B	$K_{U}^{'} = \frac{U_{2}^{'}}{U_{1}}$	$U_{^{2},\mathrm{B}}$	$K_U = \frac{U_2}{U_1}$	$U_{2}^{'}$,B	$K_{U}^{'} = \frac{U_{2}^{'}}{U_{1}}$	$U_{^2,\mathrm{B}}$	$K_U = \frac{U_2}{U_1}$	$U_{2}^{'}$,B	$K_{U}^{'}=\frac{U_{2}^{'}}{U_{1}}$
0,65	65	0,54	54	14,5 мВ	1,45	12мВ	1,2	0,45	45	0,4	40
$\delta = \frac{K}{2}$	$\mathcal{S} = \frac{K_U' - K_U}{K_U} 100\% = \frac{U_2' - U_2}{U_2} 100\%$				$\mathcal{S} = \frac{K'_{U\beta} - K_{U\beta}}{K_{U\beta}} 100\% = \frac{U'_{2\beta} - U_{2\beta}}{U_{2\beta}} 100\%$			$\mathcal{S} = \frac{K'_{U\beta} - K_{U\beta}}{K_{U\beta}} 100\% = \frac{U'_{2\beta} - U_{2\beta}}{U_{2\beta}} 100\%$			<u>U_{2β}</u> 100%
	-16,9				-17,2			-11,1			

Таблиця 1.7. До вимірюванню АЧХ підсилювача на ІОП.

	Π ри U_I = 10 м B				
	K_{Uo} =10 (П3 – вкл.)	K_{Uo} =100 (П4 – вкл.)			
При f_{θ} =10 к Γ ц виміряти U_{2o} , м B	100	1000			
0,707* <i>U</i> ₂₀ , мВ	70,7	707			
<i>fв</i> , Гц	460 КГц	38 КГц			

Musicanob Sumon 291-82 1) $F = 1 - R \chi$, ge $F \rightarrow 2 \omega \delta a \kappa a 33$ 2) 3) lseñ bug 33 obywobwoł bucorel
zuarenux briguoro onopy i nuzwe
bux. onopy gu ganux macagus i manun
tunan im momeno burop. ix en yzrognegbarrai kacnagu.

3) H33 za empyman zoimure brignuñ onip nigennobora a za nappyono
zmenuste noco.