Вычисление скорости роста вектора состояний в стохастических динамических системах с матрицами второго порядка

Кубасова Юлия, 522-я группа

Санкт-Петербургский Государственный Университет Математико-механический факультет Кафедра статистического моделирования

Научный руководитель — д.ф.-м.н., доцент **H.К. Кривулин** Рецензент — д.ф.-м.н., профессор **C.М. Ермаков**

Санкт-Петербург 2011г.

Постановка задачи

Динамическая стохастическая система

$$z(k) = A(k) \otimes z(k-1),$$

где

- $A(1), A(2), \ldots$ последовательность независимых, одинаково распределенных случайных матриц;
- z(k) вектор состояний системы, k=1,2,...;
- z(0) вектор начальных состояний системы;
- Умножение \otimes матрицы на вектор производится по обычным правилам, причем в качестве сложения используется \max , в качестве умножения используется + (умножение в смысле идемпотентной алгебры);

Средняя скорость вектора состояний системы

$$\lambda = \lim_{k \to \infty} \|z(k)\|^{1/k}$$

Норма вектора понимается в смысле идемпотентной алгебры.

Производственно-транспортная система

Производственная система состоит из предприятий A и B. Работа каждого предприятия и системы в целом состоит из последовательности циклов $k=1,2,\ldots$ и описывается уравнениями

Уравнения функционирования предприятий

$$x(k) = \max(\alpha_k + x(k-1), \beta_k + y(k-1)),$$

 $y(k) = \max(\gamma_k + x(k-1), \sigma_k + y(k-1));$

- α_k и σ_k случайное время производства партии продукции на A и B;
- ullet eta_k и γ_k случайное время транспортировки продукции от B к A и от A к B.
- x(k) время завершения цикла на предприятии A, x(0) = 0;
- ullet y(k) время завершения цикла на предприятии B, y(0) = 0;

Среднее время производственного цикла системы

$$\lambda = \lim_{k \to \infty} \frac{1}{k} \max(x(k), y(k)).$$

Матрица и вектор состояний системы

Введем матрицу и вектор состояний системы

$$A(k) = \left(\begin{array}{cc} \alpha_k & \beta_k \\ \gamma_k & \sigma_k \end{array} \right), \qquad \boldsymbol{z}(k) = \left(\begin{array}{c} x(k) \\ y(k) \end{array} \right), \qquad \boldsymbol{z}(0) = \left(\begin{array}{c} 0 \\ 0 \end{array} \right).$$

Определим операцию умножения матриц по обычным правилам с заменой в них + на \max и imes на +

Векторное уравнение для производственно-транспортной системы

$$z(k) = A(k) \otimes z(k-1).$$

Обозначим через $\|A\|$ максимальный элемент матрицы A. Положим $A_k = A(k) \otimes \cdots \otimes A(1)$, тогда с учетом обозначений

Средняя скорость роста вектора состояний системы

$$\lambda = \lim_{k \to \infty} \|A_k\|^{1/k} \,.$$

Условия существования предела

Ограничения на матрицу системы

- $A(1), A(2), \ldots$ независимые, одинаково распределенные случайные матрицы;
- $E ||A_1|| < \infty$;
- ullet Значения элементов A_1 ограничены снизу.

При заданных ограничениях выполняются условия теоремы:

Теорема(Н.К. Кривулин)

Пусть $\{A(k)|k\geq 1\}$ — стационарная последовательность случайных матриц, $\mathbf{E}\,\|A_1\|<\infty,\, \rho(\mathbf{E}A_1)>-\infty.$

ho — спектральный радиус матрицы в смысле идемпотентной алгебры.

Тогда существует конечное число λ такое, что

$$\lim_{k o\infty}\|A_k\|^{1/k}=\lambda$$
 с вероятностью 1 $\lim_{k o\infty}\mathsf{E}\,\|A_k\|^{1/k}=\lambda.$

Существующие результаты

Рассмотрим систему, с матрицей

$$A(k) = \begin{pmatrix} \alpha_k & \beta_k \\ \gamma_k & \sigma_k \end{pmatrix},$$

где случайные величины $lpha_k$, eta_k , γ_k , σ_k удовлетворяют условиям

- независимы для любого k;
- имеют экпоненциальное распределение, с параметрами распределения $\mu, \ \nu, \ \tau, \ \sigma;$

Существующие результаты

- $\mu = \nu = \sigma = \tau = 1$, $\lambda = \frac{407}{228}$ (Olsder, 1990);
- $\mu = \tau, \nu = \sigma$, (Jean-Marie, 1994);
- Для общего случая существует вычислительная процедура (Кривулин, 2008).

Существующие результаты

- Время на производство или транспортировку продукции может быть несущественным.
- Без потери точности модели можно считать, что в матрице системы присутствуют нулевые элементы.

Известны следующие результаты (Кривулин, 2007, 2009):

Система с матрицей, которая имеет нулевые элементы

$$A(k) = \left(\begin{array}{cc} \alpha_k & 0 \\ 0 & \sigma_k \end{array} \right), \qquad \lambda = \frac{\mu^4 + \mu^4 \tau + \mu^2 \tau^2 + \mu \tau^3 + \tau^4}{\mu \tau (\mu + \tau) (\mu^2 + \tau^2)};$$

$$A(k) = \begin{pmatrix} 0 & \beta_k \\ \gamma_k & 0 \end{pmatrix}, \qquad \lambda = \frac{4\nu^2 + 7\nu\sigma + 4\sigma^2}{6\nu\sigma(\nu + \sigma)};$$

$$A(k) = \begin{pmatrix} \alpha_k & \beta_k \\ 0 & 0 \end{pmatrix}, \qquad \lambda = \frac{2\mu^4 + 7\mu^3\nu + 10\mu^2\nu^2 + 11\mu\nu^3 + 4\nu^4}{\mu\nu(\mu+\mu)^2(3\mu+4\nu)}.$$

Примеры рассматриваемых моделей

На практике возникают ситуации, когда время на транспортировку или производство является постоянной (не случайной) величиной.

Примеры матриц систем с постоянными элементами

- Время на транспортировку продукции обоих предприятий постоянно: $A(k)=\left(\begin{array}{cc} \alpha_k & c \\ c & \gamma_k \end{array} \right);$
- Время на транспортировку несущественно, время производства для одного предприятия постоянно: $A(k) = \left(egin{array}{cc} lpha_k & 0 \\ 0 & c \end{array} \right);$
- Время на производство для одного предприятия постоянно, а время на транспортировку случайно: $A(k) = \left(egin{array}{c} c & 0 \\ \gamma_k & 0 \end{array} \right).$

Будем вычислять среднюю скорость роста вектора состояний для систем с матрицами, у которых некоторые элементы — произвольные неотрицательные константы.

Общий подход к решению задачи

- ullet Замену переменных $X(k) = x(k) x(k-1), \ Y(k) = y(k) x(k);$
- Определение последовательности функций распределения для введенных случайных величин X(k),Y(k)

$$\Phi_k(t) = P\{X(k) < t\}, \ \Psi_k(t) = P\{Y(k) < t\};$$

 Составление интегральных уравнений для последовательностей функций распределения на основе формулы полной вероятности

$$\begin{split} &\Phi_k(t) = F_\alpha(t) \int\limits_0^\infty \Psi_k(t-u) f_\beta(u) du, \\ &\Psi_k(t) = \int\limits_0^\infty \dots \int\limits_0^\infty \mathsf{P} \left\{ Y(k) < t \middle| \alpha_k = u, \beta_k = v, \gamma_k = w, \sigma_k = r \right\} \times \\ &\times dF_\alpha(u) dF_\beta(v) dF_\gamma(w) dF_\sigma(r), \end{split}$$

где F_{α} , F_{β} , F_{γ} и F_{σ} — функции распределения элементов матрицы, среди которых могут быть вырожденные случайные величины.

Общий подход к решению задачи

- Переход от последовательностей функций Φ_k и Ψ_k к эквивалентным (в смысле взаимно-однозначного соответствия) числовым (векторным) последовательностям;
- Исследование сходимости числовых (векторных) последовательностей, вычисление пределов;
- Нахождение пределов Φ и Ψ последовательностей функций Φ_k и Ψ_k на основе соответствия между этими и числовыми последовательностями;
- Нахождение средней скорости роста вектора состояний системы, путем вычисления среднего значения для предельного распределения Φ .

Полученные результаты

Получены результаты вычисления средней скорости роста λ для систем с матрицами следующего вида:

$$A(k) = \begin{pmatrix} \alpha_k & c \\ c & c \end{pmatrix}, \qquad \lambda = c + \frac{2e^{2\mu c}}{\mu(2e^{3\mu c} + e^{2\mu c} - 2e^{\mu c} + 1)};$$

$$A(k) = \begin{pmatrix} \alpha_k & c \\ 0 & 0 \end{pmatrix},$$

$$\lambda = \frac{c}{2} + \frac{1}{\mu\sqrt{(4e^{\mu c} - 1)}} \arctan \frac{(e^{\mu c} - 1)\sqrt{(4e^{\mu c} - 1)}}{(3e^{\mu c} - 1)} + \frac{1}{\mu e^{\mu c}};$$

$$A(k) = \begin{pmatrix} \alpha_k & 0 \\ 0 & c \end{pmatrix}, \qquad \lambda = c + \frac{2}{\mu(2e^{3\mu c} - 4\mu ce^{2\mu c} + \mu^2 c^2 e^{\mu c})};$$

$$A(k) = \begin{pmatrix} c & \beta_k \\ 0 & 0 \end{pmatrix}, \qquad \lambda = c + \frac{2}{\nu(2e^{2\nu c} + 1)};$$

$$A(k) = \begin{pmatrix} c & 0 \\ \gamma_k & 0 \end{pmatrix}, \qquad \lambda = c + \frac{2}{\sigma(2e^{2\sigma c} + 1)}.$$

Графики зависимости скорости роста от параметров

Рис.: Зависимость средней скорости роста λ от величины c.

Графики зависимости скорости роста от параметров

Рис.: Зависимость средней скорости роста λ от величины μ .

Результаты имитационного моделирования

- Оценка $\hat{\lambda}$ построена как среднее время производственного цикла, вычисленное на основе моделирования k=10000 циклов.
- Всего экспериментов проведено 1000 для каждой пары значений μ, c .
- ullet Доверительные интервалы построены с уровнем доверия 95%

μ	c	оценка $\hat{\lambda}$	ширина интервала	точное значение λ
2	2	2.0088	1.09×10^{-2}	2.0090
	1	1.0643	6.07×10^{-2}	1.0644
	0.5	0.6715	1.64×10^{-2}	0.6713
0.5	2	2.6855	2.78×10^{-2}	2.6853
	1	2.1575	8.27×10^{-2}	2.1586
	0.5	2.0291	4.54×10^{-2}	2.0284
1	2	2.1284	2.92×10^{-2}	2.1288
	1	1.3429	6.63×10^{-2}	1.3426
	0.5	1.0789	9.79×10^{-2}	1.0793

Таблица: Результаты вычисления и оценки λ в зависимости от c и μ

Обзор работы и полученных результатов

- В работе рассмотрены динамические системы с матрицами, у которых один элемент является случайной величиной с экспоненциальным распределением, а остальные неотрицательные константы или нули;
- Для ряда таких систем получены выражения для вычисления средней скорости вектора состояний системы;
- Использован подход, который опирается на построение и анализ сходимости последовательностей некоторых одномерных функций распределения;
- Величина средней скорости роста вычисляется как среднее значение предельного распределения такой последовательности;
- Для подтверждения полученных результатов была построена имитационная модель и проведены эксперименты;
- Эксперименты показали высокую степень соответствия экспериментальных и аналитических результатов.