

Faster Tropical Upper Stratospheric Upwelling Drives Changes in Ozone Chemistry

Susan Strahan^{1,2}, Larry Coy^{1,3}, Anne Douglass¹, and Megan Damon^{1,3}

¹NASA Goddard Space Flight Center, Greenbelt, Maryland

²GESTAR II, University of Maryland, Baltimore County, Baltimore, Maryland

³Science Systems and Applications, Inc., Lanham, Maryland

**BOTTOM LINE: Upper Strat Composition Change →
*O₃ Loss Changes → O₃ trends from 2005-2021***

Quasi-Decadal (QD) N₂O Change over 2005-2021 *(Percent change of 2013-2021 mean - 2005-2013 mean)*

N₂O surface
growth over this
period = 2%

No drift in MLS N₂O
22 hPa and above

Known negative
drift below 22 hPa

Quasi-Decadal (QD) N₂O Change over 2005-2021 *(Percent change of 2013-2021 mean - 2005-2013 mean)*

N₂O surface growth over this period = 2%
(shown by white contour)

No drift in MLS N₂O
22 hPa and above

Known negative drift below 22 hPa

Latitude (80S-80N)

Upper Stratospheric Circulation Change (w^* and v^*)

Explains why is N_2O so high

Tropical N_2O grows above 10 hPa, leading to increased odd nitrogen production.

Upwelling (w^*) increases above 20 hPa up to 30%
Arctic poleward transport (v^* 50-70°N) increases by 60% at 5 hPa

The Quasi-Biennial Oscillation (QBO) modulates tropical upwelling: stronger during Easterlies, weaker in Westerlies

MLS tropical monthly mean N_2O is positively correlated with w^* and anticorrelated with the zonal wind (i.e., QBO)

Stronger and more frequent QBO Easterlies 10-3 hPa increased mean tropical upwelling from 2013-2021

MLS and MERRA2 Monthly data from June 2005 to May 2021

2013-2021 was QBO-E
79% of the time

Two GMI Chemistry Transport Model (CTM) simulations with the same chemistry but different dynamics

GMI Chemistry Transport Model integrated with MERRA2:

- BASELINE: Time-varying MERRA2 Fields from June 2005-May 2021
- Fixed Dyn: June 2005-May 2007 Merra2 Fields (2 years) recycled until May 2021
- Both Simulations are forced with the same time-dependent source gases (N_2O , CFCs)

These start/end dates for the 2-year repeat chosen because of a 2-yr period QBO. This minimizes the transport adjustment when recycling.

O_3 loss differences between BASELINE and FIXED DYN show how *dynamical changes led to chemical changes* that affected O_3 .

Compare QD Change in O_3 Loss from NO_x and ClO_x (ppb O_3/mo) in BASELINE and Fixed Dyn Simulations

Fixed Dyn:

Hemispheric Symmetry

This is consistent with expectations from trends in tropospheric source gases (CFCs, N_2O)

Loss by NO_x increases above 5 hPa

Loss by ClO_x decreases with increasing altitude

BASELINE:

Hemispheric asymmetry

Greater loss by NO_x above 5 hPa, especially in the Arctic

Less loss by NO_x in the tropical middle stratosphere

Loss by ClO_x decreases even more than FixedDyn in the Arctic Upper Stratosphere

The QD Change in the Sum of all O_3 Losses (NO_x, ClO_x, HO_x, etc.)

is driven by the NO_x Loss Changes in Baseline

Fixed Dyn: QD O_3 loss changes are dominated by Cl changes

BASELINE:
QD O_3 loss changes are dominated by NO_x changes. ClO_x changes contribute ~3 hPa and above.

And the denouement....BASELINE QD O₃ changes (ppb) look very much like observed O₃ changes 2005-2021

Arctic Upper Strat: O₃ decreases! It's not a lot (<200 ppb) but it's not increasing. Driven by NO_x

The Tropics: middle strat has a big O₃ increase because increased upwelling reduced NO_x and the loss it causes

Antarctic Upper Strat: O₃ increases – reduced loss by ClO_x and less loss by NO_x (15-5 hPa)

And the denouement....Fixed Dyn QD O_3 changes look nothing like observed O_3 changes 2005-2021

The Dynamically driven chemical changes are BASELINE – FixDyn O_3 (lower left panel).

Much of the observed O_3 changes 2005-2021 are caused by dynamically driven composition change!!

Dynamically driven chemical changes from 20-2 hPa column Affect Total Column O₃ Trends

Check out the excellent agreement between MLS (blue) and the GMI CTM (black)

The 20-2 hPa column O₃ Quasi-Decadal changes caused by dynamics:

+2 DU in the tropics, -0.5 DU north of 60°N, and +1 DU in the Antarctic.

Questions/Thoughts...

Will QBO changes persist? Is this a trend or just variability?

Chemistry Climate Models parameterize the QBO and can't respond physically to changes in forcing. They can't produce/predict this kind of effect on O₃.

O₃ trend regressions fit the QBO with terms for the QBO 30 and 50 hPa (transport!). This can't regress changes in composition that affect O₃ chemistry

Please check out our 2022 GRL paper (Strahan et al.)

Why is there hemispheric asymmetry in Loss by NO_x but not the loss by ClO_x ?

Upwelling changes affect product gases (e.g., radicals) by changing source gas distributions

The upwelling changes are 10 hPa and above

The CFCs are mostly photolyzed below 10 hPa but most N₂O is still unreacted.

Chemical impacts of Circulation Change: Increased Net Production of NO_y is transported to the Arctic

In the tropics, N_2O is relatively long-lived below $\sim 7 \text{ hPa}$, thus N_2O and NO_y are largely transport controlled.
 N_2O and NO_y are anti-correlated

All O₃ Loss Cycles (QD Change), Fixed Dyn (left) and Baseline (right)

NO_x + ClO_x
Ox
HO_x
BrO_x

And the denouement....Fixed Dyn QD O₃ changes look nothing like observed O₃ changes 2005-2021

The Dynamically driven chemical changes are BASELINE – FixDyn O₃ (lower left panel).

Much of the observed O₃ changes 2005-2021 are caused by dynamically driven composition change!!

