Evaluierung von Methoden zur Bestimmung der ventilatorischen Schwellen in der Spiroergometrie

Julian-Marvin Lütten

Fachhochschule Lübeck

Hamburg, 23. Juli 2018

Inhalt

1 Einleitung

- cardioscan GmbH bietet Kunden Leistungsdiagnostik-Systeme zum Definieren von Trainingsbereichen
- Verfahren: nicht-invasive Spiroergometrie (aus lat. spirare: atmen, griech. ergo: Arbeit)
- 14,4 % Anstieg von Gesamtanzahl an Fitnessstudio-Mitgliedern zwischen 2014 und 2017 (44 % aller Betreiber im Sektor Gesundheits und Prävention)
- zukünftiges Setup: cardioscan Checkpoint Software (CCPS) + metabolicscan Spiroergometer + Fahrradergometer
- aktueller Auswertungsalgorithmus: RQ = 1 → anfällig für Fehler
- verbesserter Algorithmus für die CCPS notwendig

- Trainingszonendefinition anhand zweier von Prof. Karlman Wasserman geprägter Schwellen
- "Schwellen" basieren auf physiologischer Reaktion des Körpers auf erhöhte Belastung
- Ausgangspunkt: Atmung bzw. Gastransfer
- $RQ = \frac{\dot{V}CO_2}{\dot{V}O_2}$ als zentraler Parameter der Atemfunktion
- RQ ist abhängig von Energiegewinnung und Stoffwechsellage Fettstoffwechsel in Ruhe: RQ = 0,7 Kohlenhydratstoffwechsel bei Aktivität: RQ ≥ 1
- RQ ist jedoch auch akut abhängig von Ernährung → problematisch

- Bewegung des Körpers wird durch mechanische Kontraktionen der Skelettmuskulatur bedingt
- aufgeteilt in primäre und sekundäre Energiegewinnung
- Primär: hydrolytische ATP-Spaltung als Energiequelle
- ATP-Muskelanteil reicht für ca. 1-2 s körperliche Arbeit
- ATP-Resynthese durch CrP: CrP-Muskelanteil reicht für ca. 5-6 s
- CrP-Konzentration für andauernde Belastung zu niedrig

- Sekundär: aerobe und anaerob-laktazide Glykolyse
- Glukose wird enzymatisch zu Pyruvat verarbeitet
- genug O₂: direkte ATP-Resynthese durch Citratzyklus
- zunehmende Belastung → O₂ wird verbraucht: Reduktion des Pyruvats zu Milchsäure (HLa)

- Glukose → 2HLa → 2H⁺ + 2La⁻
- \blacksquare steigende Belastung \to andauernde La $^{\text{--}}$ und H+-Produktion \to metabolische Azidose
- Kompensation der Azidose: Bicarbonat-Puffersystem
- Bicarbonat (HCO₃-) bindet H⁺ zu instabiler Kohlensäure, die direkt zu CO₂ und H₂O zerfällt
- \blacksquare anfallendes CO_2 muss über die Lunge eliminiert werden \to messbarer Anstieg von exspiriertem CO_2
- Grundlage für ventilatorisches Schwellenkonzept

- "Schwellen" = physiologisch bedingte Übergangsbereiche
- Ur-Begriff: Aerobe und anaerobe Schwelle (nach K. Wasserman, 1973)
- Heute: einheitliche Nomenklatur: 1. und 2. Ventilatorische Schwelle
- angegeben entweder in Form der Leistung (W) in W oder Herzfrequenz (HF) in min⁻¹
- Pathophysiologische Indikatoren:

VT1

- Steigerung der Ventilation (VE)
- Zunahme der *VCO*₂ gegenüber der *VO*₂

VT2

- Laktatexzess
- Metabolische Azidose
- überproportionaleVentilationszunahme

Beispiel einer 9-Felder-Grafik nach einer Spiroergometrie mit einer jungen sportlichen Frau

- grafisches Instrument der Spiroergometrie zum Vergleich vieler unterschiedlicher Messwerte
- Nummerierung von oben links nach unten rechts von eins bis neun
- kann je nach diagnostischem Schwerpunkt sehr komplex werden
- in der Sportmedizin sind nur bestimmte Felder relevant: Fokus auf Feld 4, 5, 6 und 9 (Scharhag-Rosenberger, 2013)
- Grafik muss auf Darstellung der ventilatorischen Schwellen reduziert werden
- mehrere existente Methoden zur Schwellenbestimmung

- wissenschaftlich renommierteste Methoden wurden von AG Spiroergometrie zusammengefasst (Westhoff et al., 2012)
- zwei Methoden für jede Schwelle werden untersucht

VT1

- V-Slope: erster überproportionaler Anstieg der VCO₂ gegenüber der VO₂
- alleiniger Anstieg des Sauerstoff-Äquivalents EQO₂

VT2

- überproportionaler Anstieg der VE gegenüber der VCO₂
- 2 Anstieg des Kohlenstoffdioxid-Äquivalents EQCO₂

Schematische Darstellung der V-Slope-Methode

Schematische Darstellung des EQO₂

