Modelação e Simulação de Processos

Geração de Números e Variáveis Aleatórias

Paulo Matos

1

Resumo

- Números Aleatórios
- Geradores de Números Aleatórios
 - Método Congruencial Linear
 - Misto
 - Multiplicativo
- Geradores de Variáveis Aleatórias
 - Técnicas
 - Geração de variáveis aleatórias a partir de distribuições contínuas e discretas

Simular o Modelo

- Lançamento de uma Moeda Jogo
 - Lançar uma moeda ao ar até que a diferença entre o número de vezes que saiu cara e o número de vezes que saiu "euro" seja 3
 - Ganhar-se-á a partida se ela parar ao fim de 7 lançamentos
 - Perde-se a partida se ela parar depois de 8 lançamentos

3

Simular o Modelo

- Lançamento de uma Moeda Jogo
 - Como simular o jogo?
 - Como representar se saiu Cara ou "Euro"?
 - Gerar número aleatório entre 0 e 9
 - Se sair número inferior a 5 saiu euro (€)
 - Se sair número igual ou superior a 5 saiu cara (C)

Aleatórios Faces Diferença

				2						
С	€	€	С	€	С	€	С	С	С	С
1	0	1	0	1	0	1	0	1	2	3

Simular o Modelo

 A tabela, apresenta os valores obtidos durante onze amostragens do número de automóveis que entraram por minuto num determinado parque de estacionamento

Número de Carros / min
Carros / IIIIII
17
20
12
17
17
10
17
20
11
12
17

5

	r o Mod agem de H		s			
Número de Carros / min	Número de Carros / min Crescente	Total de Carros	Percentagem H(x)	Percentagem Acumulada F(x)		
17 20	10	1*10	5,88	5,88		
12	11	1*11	6,47	12,35		
17	12	2*12	14,12	26,47		
17	17	5*17	50,00	76,47		
10	20	2*20	23,53	100,00		
17	0.6	H(x)	1,2 ———	F(x) -		
20	0,5	•	1			
11	0,4		0,8			
12	0,3		0,4			
17	0,1		0,2			
Total = 170		11 12 17 20	10 11	l 12 17 20		

Simular o Modelo

- Face à distribuição de probabilidades do número de carros por minuto, como se pode introduzir tal comportamento no modelo?
 - Através da geração de números aleatórios

7

Números Aleatórios

- Utilização no âmbito da simulação para apoio a métodos de cálculo que exprimem certos factores estocásticos observados nos sistemas
- Metodologia para gerar números aleatórios
 - Métodos "manuais": atirar dados, retirar bolas idênticas de uma caixa "bem" fechada, etc.
 - Dispositivos electrónicos
 - Dispositivo usado pela Rand Corporation (1955) para gerar tabela de números aleatórios
 - Máquina ERNIE Electronic Random Number Equipment (1959), usada para determinar os vencedores da lotaria
 - Métodos matemáticos

Números Aleatórios

- Métodos matemáticos
 - Fontes de aleatoriedade s\u00e3o dif\u00edceis de reproduzir em computador
 - Método comum
 - Processo iterativo realizado sobre uma expressão matemática que, com base no(s) número(s) anterior, permita calcular o próximo número de forma que a relação entre os dois se torne, ou pareça tornar-se, o mais imprevisível possível

$$n_{i+1} = f(n_i)$$

 Apesar do esforço os métodos matemáticos não se podem considerar verdadeiramente aleatórios, mas antes "pseudo aleatórios"

9

Números Aleatórios

- John von Neumann
 - "Any one who considers arithmetical methods of producing random digits is, of course, in a state of sin. For, as has been pointed out several times, there is no such thing as a random number – there are only methods to produce random numbers, and a strict arithmetic procedure of course is not such a method... We are dealing with mere "cooking recipes" for making digits..."
 - "...probably... (the recipes) can not be justified, but should merely be judged by their results. Some statistical study of the digits generated by a given recipe should be made, but exhaustive tests are impractical. If the digits work well on one problem, they seem usually to be successful with others of the same type"

Números Aleatórios

- Métodos matemáticos
 - Bem estruturados serão capazes de gerar números extraídos, de forma aparentemente independente, da distribuição uniforme U(0,1), satisfazendo um conjunto de testes estatísticos
 - Averill Law and David Kelton
 - Assunto complexo que envolve disciplinas desde a álgebra abstracta e teoria dos números, à programação e arquitectura de computadores

11

Números Aleatórios

- Propriedades de um Bom Gerador de Números Aleatórios (na perspectiva da simulação...)
 - Os números devem parecer uniformemente distribuídos no intervalo [0,1], e não devem exibir correlação entre eles, caso contrário os resultados da simulação podem ser completamente inválidos
 - Do ponto de vista da utilização prática, devem ser rápidos e não exigir grande memória para armazenamento
 - Será desejável conseguir reproduzir a mesma sequência de números aleatórios
 - Debug e verificação de resultados
 - Comparar diferentes sistemas, ou configurações de um mesmo sistema, com os mesmos dados

Números Aleatórios

- Propriedades de um Bom Gerador de Números Aleatórios
 - Deve permitir gerar várias sequências independentes de números
 - Utilizador pode assim dedicar cada sequência a uma fonte de aleatoriedade da simulação
 - Por exemplo, uma sequência pode ser usada para gerar tempos entre as chegadas de clientes, e outra para gerar os tempos de atendimento
 - Usar sequências independentes para representar diferentes aspectos facilita a reprodução e comparação de resultados

13

Geradores de Números Aleatórios

- Método Congruencial Linear
 - Gera uma sequência de números inteiros (pseudo) aleatórios, entre 0 e m-1 com base na fórmula

$$Z_i = (aZ_{i-1} + c) \pmod{m}$$

- em que
 - m módulo
 - a multiplicador
 - c incremento
 - Z₀ valor inicial, ou semente
- Sujeito a
 - m > 0; a < m; c < m; $Z_0 < m$
- Para obter valor U_i no intervalo [0,1], $U_i = Z_i / m$

- Método Congruencial Linear
 - Valores não são verdadeiros valores aleatórios

$$Z_i = \left[a^i Z_0 + \frac{c(a^i - 1)}{a - 1}\right] \pmod{m}$$

- Com a escolha adequada de m, a, c e Z₀ é possível obter valores que, sujeitos a uma variedade de testes, "parecem" variáveis aleatórias independentes e uniformemente distribuídas entre 0 e 1
- U_i só terá valores 0, 1/m, 2/m, ..., (m-1)/m
 - Não é possível obter valores entre, por exemplo, 0.1/m e 0.9/m ...
 - Escolher m com valor elevado...
 - Por exemplo com m≥109 há pelo menos 1 bilião de valores possíveis no intervalo [0, 1]

15

Geradores de Números Aleatórios

- Método Congruencial Linear
 - Exemplo

• m=16; a=5; c=3;
$$Z_0$$
=7 $Z_i = (5Z_{i-1} + 3) \pmod{16}$

i	Zi	Ui	i	Zi	Ui	i	Zi	Ui	i	Zi	Ui
0	7	-	5	10	0.625	10	9	0.563	15	4	0.250
1	6	0.375	6	5	0.313	11	0	0.000	16	7	0.438
2	1	0.063	7	12	0.750	12	3	0.188	17	6	0.375
3	8	0.500	8	15	0.938	13	2	0.125	18	1	0.063
4	11	0.688	9	14	0.875	14	13	0.813	19	8	0.500

- $Z_{17} = Z_1 = 6$; $Z_{18} = Z_2 = 1$, etc.
- Sequência repete-se...

- Método Congruencial Linear
 - Período do gerador
 - Quantidade de números numa sequência antes de se voltar a repetir
 - Geradores com "período completo"
 - Período é *m*
 - Qualquer que seja a escolha da semente, a sequência irá repetir-se
 - Em geradores com período inferior, a escolha da semente influencia o ciclo
- Em projectos com elevado número de variáveis a serem geradas aleatoriamente, o ideal é ter geradores com longos períodos
 - Se o período for completo cada valor repete-se apenas uma vez por ciclo
 - Escolher m, a e c adequadamente...

17

Geradores de Números Aleatórios

- Método Congruencial Linear
 - Teorema Período Completo do Gerador
 - Gerador congruencial tem período completo se, e só se
 - O único valor que divide **m** e **c** é 1
 - Se q é um número primo, pelo qual m é divisível, também a-1 é divisível por q
 - Se m é divisível por 4, então a-1 também é divisível por 4
 - É simples reproduzir a mesma sequência
 - É possível gerar várias sequências independentes
 - Usar o valor final de uma sequência como semente de outra sequência
 - Por exemplo, para obter sequências de 100.000, usar Z₀ como semente da primeira sequência; Z₁₀₀₀₀₀ como semente da segunda sequência, etc.

- Método Congruencial Linear Misto
- c > 0
- É possível obter período completo
- Escolha do valor para m
 - Deve ser valor elevado e permitir optimizar a divisão, para obtenção de valores U_i no intervalo [0,1]
 - Usar $m=2^b$, com **b** sendo o número de dígitos binários da representação de inteiros no computador
 - Para máquinas de 32 bits com o digito mais significativo para sinal, b=31
 - Permite evitar a divisão explícita por m, tirando partido do overflow
- Escolha do valor para a e para c
 - c deve ser ímpar
 - a 1 deve ser divisível por 4
 - Para máquinas de 32-bits, Kobayashi, propôs o gerador definido com
 a = 314.159.269 e c = 453.806.245

19

Geradores de Números Aleatórios

- Método Congruencial Linear Multiplicativo
 - c = 0
 - Não é possível obter período completo
 - É possível obter período de m-1 com a escolha adequada para m e a
 - Escolha do valor para m
 - Continua a ser computacionalmente eficiente usar $m=2^b$, com **b** sendo o número de dígitos binários da representação de inteiros no computador, **contudo**, apenas um quarto dos valores entre **0** e **m-1** serão gerados
 - Utilizar o maior número primo inferior a 2^b , ou seja, 2^b-1
 - Escolha do valor para a
 - Período m-1, se a for elemento primitivo de módulo m
 - Menor inteiro *I*, para o qual *a'-1* é divisível por *m* é *I=m-1*
 - Para m = 2³¹-1
 - a₁ = 7⁵, proposto por Lewis, Goodman e Miller, em 1969, e usado num package de simulação por Learmonth e Lewis em 1973
 - a₂ = 630.360.016, proposto por Payne, Rabung e Bogyo, em 1969

- Método Congruencial Linear Misto
 - Exercício
 - Sem calcular os valores gerados, indique se se trata de um gerador de período completo

$$Z_i = (13Z_{i-1} + 13) \pmod{16}$$

- Teorema Período Completo do Gerador
- Gerador congruencial tem período completo se, e só se
 - O único valor que divide m e c é 1
 - Se q é um número primo, pelo qual m é divisível, também a-1 é divisível por q
 - Se **m** é divisível por 4, então **a-1** também é divisível por 4

21

Geradores de Números Aleatórios

- Testes
 - Empíricos
 - Gerar sequência de números aleatórios e efectuar testes estatísticos que permitam inferir se se aproximam de variáveis aleatórias independentes e identicamente distribuídas
 - Teóricos
 - Analisam os parâmetros numéricos de um gerador de números aleatórios globalmente, sem chegar a gerar valores através da sua actualização

- Ingrediente fundamental na Simulação
 - Uma fonte de variáveis aleatórias independentes e identicamente distribuídas de acordo com U(0,1)
 - É essencial um "BOM" gerador de números
- Vários algoritmos...
 - Factores a analisar
 - Exactidão desejável que o algoritmo gere variáveis que sigam exactamente a distribuição pretendida
 - Eficiente, em termos de espaço e tempo
 - Alguns algoritmos requerem elevada capacidade de armazenamento
 - Tempo de execução / Tempo de setup
 - Complexidade
 - Técnicos
 - Usar fonte proveniente de U(0,1)
 - Usar algoritmos eficientes em todos os parâmetros
 - Facilitar sincronização e técnicas de redução de variância

23

Geração de Variáveis Aleatórias

- Na Simulação Exemplo
 - Considere o serviço de inspecção de veículos automóvel, cujos tempos entre as respectivas chegadas seguem uma função de distribuição exponencial de valor médio 1 hora. O serviço de inspecção é constituído por um posto de inspecção e dois postos idênticos de reparação dos veículos. Todos os veículos são inspeccionados, sendo o tempo de inspecção um valor aleatório entre 5 min e 1.05 horas, e a fila de espera do tipo FIFO (First In First Out). De acordo com dados históricos 30% dos veículos necessitam de ser reparados. Os dois postos de reparação são idênticos e alimentados por uma única fila de espera de veículos do tipo FIFO, e os tempos de reparação devem ser simulados como valores aleatórios entre 2.1 horas e 4.5 horas.
 - Quantas fontes de aleatoriedade?
 - Que tipo de variáveis aleatórias gerar?

- Técnicas
 - Transformação Inversa
 - Composição
 - Convolução
 - Aceitação Rejeição

25

Geração de Variáveis Aleatórias

- Transformação Inversa
 - Gerar variável aleatória contínua, com função distribuição de probabilidade F, contínua e crescente 0<F(x)<1
 - Sendo F⁻¹ a inversa da função F
 - Algoritmo
 - Gerar U ~ U(0,1)
 - Devolver $X = F^{-1}(U)$
 - F^{-1(U)} está sempre definida, pois 0 ≤ U ≤ 1

- Transformação Inversa
 - Variáveis Contínuas

- Como F é invertível
 - $P(X \le x) = P(F^{-1}(U) \le x) = P(U \le F(x)) = F(x)$
 - A última igualdade verifica-se na medida em que U ~U(0,1) e $0 \le F(x) \le 1$

27

Geração de Variáveis Aleatórias

- Transformação Inversa
 - Exemplo
 - Seja a distribuição exponencial

•
$$F(x) = \begin{cases} 1 - e^{-x/\beta} & \text{se } x \ge 0 \\ 0 & \text{outros valores} \end{cases}$$

• Para encontrar F^{-1} , fazer u = F(x) e resolver em ordem a x

•
$$F^{-1}(u) = -\beta \ln(1-u)$$

- Gerar U ~ U(0,1)
- Devolver $X = -\beta \ln(U)$

- Transformação Inversa
 - Gerar variável aleatória discreta, com função distribuição de probabilidade
 - $F(x) = P(X \le x) = \sum_{x_i \le x} p(x_i)$, com $p(x_i) = P(X = x_i)$
 - Algoritmo
 - Gerar U ~ U(0,1)
 - Determinar o menor inteiro positivo I, tal que U ≤ F(x_I), e devolver X=x_I

29

Geração de Variáveis Aleatórias

- Transformação Inversa
 - Variáveis Discretas

- Transformação Inversa
 - Variáveis aleatórias discretas Exemplo
 - Uma empresa que vende um único produto, pretende um estudo que permita auxiliar na decisão de saber que quantidades manter em stock para os próximos meses. Os dados conhecidos sobre a procura são:

$$D = \begin{cases} 1, & \text{com probabilidade } 1/6 \\ 2, & \text{com probabilidade } 1/3 \\ 3, & \text{com probabilidade } 1/3 \\ 4, & \text{com probabilidade } 1/6 \end{cases}$$

- Procedimento:
 - Gerar variável aleatória U ~ U(0,1)
 - Definir valor de X de acordo com o sub-intervalo em que U se situa: se U ≤ 1/6, X=1; se 1/6 ≤ U ≤1/2, X=2; se 1/2 ≤ U ≤ 5/6, X=3; se U>5/6, X=4

31

Geração de Variáveis Aleatórias

- Transformação Inversa
 - Formalização geral
 - $X = min \{ x: F(x) \ge U \}$
 - Desvantagens
 - Dificuldade em determinar F⁻¹ para algumas distribuições contínuas (expl. normal, gamma, beta)
 - Aproximar F⁻¹ por função g; gerar X em função de g(Y), em que Y segue distribuição próxima de U(0,1)
 - Pode não ser o método mais eficiente
 - Vantagens
 - Facilita as técnicas de redução de variância
 - Facilidade de gerar variáveis a partir de distribuições truncadas
 - Útil para gerar outras estatísticas

- Composição
 - Aplicável quando a função de distribuição F pode ser expressa como uma combinação de outras distribuições F₁, F₂, ...

•
$$F(x) = \sum_{j=1}^{\infty} p_j F_j(x)$$
 , com $p_j \ge 0$, $\sum_{j=1}^{\infty} p_j = 1$

- Algoritmo
- Gerar um inteiro positivo *J* tal que $P(J = j) = p_i$ para j = 1, 2, ...
- Devolver X com distribuição F_J

33

Geração de Variáveis Aleatórias

- Composição Exemplo
 - A distribuição de Laplace (ou exponencial dupla) tem densidade $f(x) = 0.5e^{-|x|}$
 - Esta densidade pode ser vista como

$$f(x) = 0.5e^{x}I_{(-\infty,0)}(x) + 0.5e^{-x}I_{[0,\infty)}(x)$$

• Em que l_A representa

$$I_A(x) = \begin{cases} 1 & \text{se } x \in A \\ 0 & \text{outros casos} \end{cases}$$

- Algoritmo
 - Gerar U₁ e U₂ ~ U(0,1)
 - Se $U_1 \le 0.5$, devolve $X = \ln U_2$
 - Se $U_1 > 0.5$, devolve $X = \ln U_2$

- Convolução
 - Assume-se que a variável aleatória X pode ser representada como soma de outras variáveis aleatórias

$$X = Y_1 + Y_2 + ... + Y_m$$

- sendo a função de distribuição de X a soma (pesada) das outras funções de distribuição
 - Algoritmo
 - Considere F a função de distribuição de X e G a função de distribuição de Y_j
 - Gerar $Y_1,\,Y_2,\,...,\,Y_m$, cada uma com distribuição de probabilidade G
 - Devolver $X = Y_1 + Y_2 + ... + Y_m$

35

Geração de Variáveis Aleatórias

- Aceitação Rejeição
 - Não lida directamente com a distribuição de probabilidades
 - Usado para distribuições para as quais não é possível, ou fácil, recorrer à transformação inversa
 - Especificar a função t, majorante da função densidade f, tal que t(x) ≥ f(x) para todo o x

$$c = \int_{-\infty}^{\infty} t(x)dx \ge \int_{-\infty}^{\infty} f(x)dx = 1$$

• a função r(x) = t(x)/c é uma função de densidade

- Aceitação Rejeição
 - Algoritmo
 - Gerar Y com densidade r
 - Gerar $U \sim U(0,1)$, independente de Y
 - Se U ≤ f(Y)/t(Y), devolver X=Y. Caso contrário, voltar ao passo 1 e tentar de novo.
 - O algoritmo continua em looping até ser gerado um par (Y,U) para o qual U ≤ f(Y) / t(Y)

37

Geração de Variáveis Aleatórias

- Aceitação Rejeição
 - Exemplo
 - Considere a função de distribuição beta(4,3), com densidade

densidade • $f(x) = \begin{cases} 60x^3(1-x)^2 & \text{se } 0 \le x \le 1\\ 0 & \text{outros valores} \end{cases}$

- Máximo de *f*(*x*) ocorre para *x*=0.6, em que *f*(0.6)=2.0736
 - $t(x) = \begin{cases} 2.0736 & \text{se } 0 \le x \le 1 \\ 0 & \text{outros valores} \end{cases}$
- Algoritmo
 - Gera Y ~ U(0,1)
 - Gera U ~ U(0,1)
 - Verifica se $U \le \frac{60Y^3(1-Y)^2}{2.0736}$, se sim, devolve X = Y, senão, volta ao passo 1

- Aceitação Rejeição
 - Exemplo distribuição beta(4,3)

39

Geração de Variáveis Aleatórias

- Aceitação Rejeição
 - Apesar de gerar variável que segue a distribuição pretendida, qualquer que seja o majorante utilizado, a sua escolha é determinante em termos de eficiência
 - Escolher t de modo a que gerar a variável aleatória Y, de acordo com a densidade t(x)/c, seja rápido
 - Maximizar a probabilidade de aceitação (passo 3), ou seja maximizar 1/c
 - Definir t de modo a que o valor de c seja o mais reduzido possível
 - Exemplo
 - c = 2.0736 -> probabilidade de aceitação 0.48
 - É possível melhorar a função de t(x) e obter c = 1.28 -> probabilidade de aceitação de 0.78

Distribuições Contínuas

- Uniforme U(a,b)
 - Distribuição $F(x) = \begin{cases} 0 & \text{se } x < a \\ \frac{x-a}{b-a} & \text{se } a \le x \le b \\ 1 & \text{se } b < x \end{cases}$
 - Resolver u = F(x) em ordem a x

$$x = F^{-1}(u) = a + (b - a)u$$

- Algoritmo
 - Gerar U ~ U(0,1)
 - Devolver X = a + (b-a)U

41

Geração de Variáveis Aleatórias

Distribuições Contínuas

- Exponencial expo(β)
 - Distribuição

$$F(x) = \begin{cases} 1 - e^{-x/\beta} & \text{se } x \ge 0\\ 0 & \text{outros valores} \end{cases}$$

• Para encontrar F^{-1} , fazer u = F(x) e resolver em ordem a x

•
$$F^{-1}(u) = -\beta \ln(1-u)$$

- Algoritmo
 - Gerar U ~ U(0,1)
 - Devolver $X = -\beta \ln(U)$

Distribuições Contínuas

- Normal N(μ, σ²)
 - Densidade

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(x-\mu)^2/2\sigma^2}$$
, para qualquer número real x

- Dado X~N(0,1) é possível obter X'~N(μ , σ^2), fazendo X' = μ + σ X
- Algoritmo de Box and Muller (1958)
 - Gerar U₁ e U₂ ~ U(0,1)
 - Devolver $X_1 = \sqrt{-2 \ln U_1} \cos 2\pi U_2$

$$X_2 = \sqrt{-2 \ln U_1} \sin 2\pi U_2$$

43

Geração de Variáveis Aleatórias

Distribuições Contínuas

- Normal $N(\mu, \sigma^2)$
 - Método polar (Marsaglia e Bray, 1964)
 - Gerar U₁ e U₂ ~ U(0,1)
 - Fazer $V_i = 2U_i 1$, para i = 1 e 2 $W = V_1^2 + V_2^2$
 - Se W > 1, voltar ao Passo1. Senão, fazer $Y = \sqrt{(-2 \ln W)/W}$
 - Devolver $X_1 = V_1 Y$ $X_2 = V_2 Y$

Distribuições Contínuas

- Distribuições empíricas
 - Observações individuais disponíveis

$$F(x) = \begin{cases} \frac{0}{i-1} + \frac{0}{(n-1)(X_{(i+1)} - X_{(i)})}, & \text{se } x > X_{(i)} \\ \frac{1}{(n-1)(X_{(i+1)} - X_{(i)})}, & \text{se } X_{(i)} \le x \le X_{(i+1)} \end{cases}$$

- Com base na Transformação Inversa
 - Gerar U ~ U(0,1)
 - Fazer P = (n-1)U e I = |P| + 1
 - Devolver $X = X_{(I)} + (P I + 1)(X_{(I+1)} X_{(I)})$

45

Geração de Variáveis Aleatórias

Distribuições Contínuas

- Distribuições empíricas
 - Observações individuais agrupadas sob a forma de intervalos ou histogramas

$$G(x) = \begin{cases} 0, & \text{se } x < a_0 \\ G(a_{j-1}) + \frac{x - a_{(j-1)}}{a_j - a_{j-1}} [G(a_j) - G(a_{j-1}), & \text{se } a_{j-1} \le x \le a_j \\ 1, & \text{se } a_k \le x \end{cases}$$

- Com base na Transformação Inversa
 - Gerar *U* ~ *U*(0,1)
 - Encontrar o inteiro não negativo J, tal que $0 \le J \le k-1$, se modo a que $G(a_J) \le U \le G(a_{J+1})$
 - Devolver $X = a_J + [U G(a_J)](a_{J+1} a_J) / [G(a_{J+1}) G(a_J)]$

Distribuições Discretas

- Bernoulli Bernoulli (p)
 - Ocorrências instantâneas com dois resultados possíveis;
 usada para gerar outras variáveis aleatórias discretas
 - Distribuição

$$F(x) = \begin{cases} 0 & \text{se } x < 0 \\ 1 - p & \text{se } 0 \le x \le 1 \\ 1 & \text{se } x \le 1 \end{cases}$$

- Algoritmo
 - Gerar *U* ~ *U*(0,1)
 - Se U ≤ p , devolve X=1; Senão devolve X=0

47

Geração de Variáveis Aleatórias

Distribuições Discretas

- Discreta Uniforme DU (i, j)
 - Distribuição
 - $F(x) = \begin{cases} 0 & \text{se } x < i \\ \frac{\lfloor x \rfloor i + 1}{j i + 1} & \text{se } i \le x \le j \\ 1 & \text{se } j < x \end{cases}$, em que $\lfloor x \rfloor$ representa o maior valor $\le x$
 - Algoritmo
 - Gerar *U* ~ *U*(0,1)
 - Devolver $X = i + \lfloor (j-i+1)U \rfloor$

Distribuições Discretas

- Poisson Poisson (λ)
 - Distribuição

$$F(x) = \begin{cases} 0 & \text{se } x < 0 \\ e^{-\lambda} \sum_{i=0}^{\lfloor x \rfloor} \frac{\lambda^i}{i!} & \text{se } 0 \le x \end{cases}$$

- Algoritmo (baseado na relação entre Poisson(λ) e expo(1/λ))
 - Fazer $a = e^{-\lambda}$, b = 1, e i = 0
 - Gerar $U_{i+1} \sim U(0,1)$ e substituir b por bU_{i+1}
 - Se b < a, devolve X = i; senão segue para o Passo 3
 - Substituir i por i+1 e voltar ao Passo 2

49

Modelação e Simulação de Processos

Geração de Números e Variáveis Aleatórias

Paulo Matos

Distribuições Contínuas

- Weibull Weibull(α , β)
 - Distribuição $F(x) = \begin{cases} 1 - e^{(x/\beta)^{\alpha}} & se \ x > 0 \\ 0 & outros \ valores \end{cases}$
 - Encontrar F-1

$$F^{-1}(u) = \beta [-\ln(1-u)]^{1/\alpha}$$

- Algoritmo
 - Gerar U ~ U(0,1)
 - Devolver $X = \beta(-\ln U)^{1/\alpha}$

51

Geração de Variáveis Aleatórias

Distribuições Contínuas

- Lognormal LN(μ , σ^2)
 - Densidade

$$f(x) = \begin{cases} \frac{1}{x\sqrt{2\pi\sigma^2}} \exp\frac{-(\ln x - \mu)^2}{2\sigma^2} & \text{se } x > 0\\ 0 & \text{outros} \end{cases}$$

- Propriedade: $Y \sim N(\mu, \sigma^2)$ então $e^Y \sim LN(\mu, \sigma^2)$
- Algoritmo
 - Gerar Y ~ $N(\mu, \sigma^2)$
 - Devolver $X = e^{Y}$
 - Note que μ e σ^2 não são a média e variância de $LN(\mu, \sigma^2)$
 - Se $X\sim LN(\mu, \sigma^2)$, e $\mu_l = E(X)$ e $\sigma_l^2 = Var(X)$, é necessário obter μ e σ em função de μ_l e de σ_l

$$\mu = \ln(\mu_l^2 / \sqrt{\sigma_l^2 + \mu_l^2})$$

$$\sigma^2 = \ln\left[(\sigma_l^2 + \mu_l^2) / \mu_l^2 \right]$$