This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

Partial Translation of Japanese Laid-Open Patent Publication No. 8-329844

Date of Laid-Open: December 13, 1996

Application No. 7-273721

Filing date: September 28, 1995

Applicant: DAINIPPON PRINTING CO., LTD.

Inventors: Toshio Yoshihara et al.

Title of the Invention:

An alternating current plasma display and a method for producing the same

Claims (partial translation):

1. An alternating current plasma display comprising a front substrate and a back substrate that are opposed to each other to form a gas discharge space,

wherein one or both of the substrates has a pair of electrode covered with an dielectric layer, the surface of the dielectric layer being covered with a protecting layer, and

wherein the protecting layer is made of a film of an alkaline earth metal oxide, wherein the film is obtained by a process of preparing a coating liquid substantially comprising a partially hydrolyzed product of an alkaline earth metal compound having a hydrolizable reactive moiety, coating the coating liquid on a dielectric layer of a substrate, and heating the resultant substrate.

2. The alternating current plasma display of claim 1, wherein the

1

partially hydrolyzed product is produced from the following components:

- (1) an alkaline earth metal compound having a hydrolyzable reactive moiety,
- (2) an additive that can dissolve or disperse the alkaline earth metal compound in a solvent, and can proceed a rate-limiting hydrolysis of the compound,
- (3) water in an amount that is less than the stoichiometrical amount for hydrolyzing the hydrolyzable reactive moiety in the compound, and
 - (4) an organic solvent.
- 4. The alternating current plasma display of claim 1, 2, or 3, wherein the alkaline earth metal compound having a hydrolyzable reactive moiety is at least one selected from a magnesium containing organic compound and a magnesium containing inorganic compound.
- 5. The alternating current plasma display of claim 4, wherein the magnesium containing organic compound is a magnesium alkoxide.
- 7. The alternating current plasma display of claim 2, 3, 4, 5, or 6, wherein the additive is at least one selected from the group consisting of a carboxylic acid, a carboxylic acid derivative, an alkanolamine, a glycol, a glycol derivative, and an organic compound having carbon-carbon triple bond.

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平8-329844

(43)公開日 平成8年(1996)12月13日

(51) Int Cl. 6	識別記号 庁内	的整理番号	Fl			£	技術表示箇所	
H 0 1 J 11/02			H01J	11/02]	3		
CO9D 1/00	PCJ		C O 9 D	1/00	PCJ			
5/00	PSD			5/00	PSD			
H01J 9/02			H01J	9/02	F			
			審查請	求 未請求	請求項の数10	FD	(全 11 頁)	
(21)出願番号 特願平7-273721			(71) 出願人 000002897					
				大日本印	印刷株式会社			
(22)出願日	平成7年(1995)9月28日	(1995) 9月28日		東京都籍	折宿区市谷加賀 軍	T-TF	11番1号	
			(72)発明者	者 吉原 包	发夫			
(31)優先権主張番号 特願平7-100673				東京都籍	東京都新宿区市谷加賀町一丁目1番1号			
(32)優先日	優先日 平7(1995)3月31日			大日本印刷株式会社内				
(33)優先權主張国	日本(JP)		(72)発明報	哲 高橋 作	高橋 伸子			
				東京都和	听宿区市谷加賀	1-1.	11番1号	
				大日本日	70 00 00 00 00 00 00 00 00 00 00 00 00 0			
			(72)発明者	者 三田村	聪			
				東京都籍	東京都新宿区市谷加賀町一丁月1番1号			
				大日本日	大日本印刷株式会社内			
			(74)代理。	人 弁理士	光来出 良彦			

(54) 【発明の名称】 交流型プラズマディスプレイ及びその製造方法

(57)【要約】

【課題】 化学的手法により簡易で安定かつ低温製膜温度でも充分に製膜することができ、その膜は膜強度、密着性、保護作用等の優れた特性を有し、その膜を使用した交流型プラズマディスプレイは、放電開始電圧や駆動電圧(消費電力)の低下が図られ、しかも低コストで製造を可能とする交流型プラズマディスプレイ及びその製造方法を提供する。

【解決手段】 本発明の交流型プラズマディスプレイは、ガス放電空間を挟んで背面基板2と前面基板1が対向配置され、一方の基板又は両方の基板には、誘電体層5に覆われた互いに対となる電極が形成されると共に、誘電体層5の上には保護層6が形成されている。との保護層6は、加水分解可能な反応部位を有するアルカリ土類金属化合物(例えば、マグネシウム化合物)からの部分加水分解物を基本的に含むコーティング液を誘電体層5からなる基板上に塗布した後、加熱して形成されたアルカリ土類金属酸化物膜(例えば、酸化マグネシウム腹)である。

面放電交流型プラズマディスプレイ

.T

【特許請求の範囲】

【請求項1】 ガス放電空間を挟んで背面基板と前面基 板が対向配置され、一方の基板又は両方の基板には、誘 電体層に覆われた互いに対となる電極が形成されると共 に、誘電体層の上には保護層が形成されてなる交流型プ ラズマディスプレイにおいて、前記保護層が、加水分解 可能な反応部位を有するアルカリ土類金属化合物からの 部分加水分解物を基本的に含むコーティング液を誘電体 層からなる基板上に塗布した後、加熱することによって 形成されたアルカリ土類金属酸化物膜であることを特徴 10 とする交流型プラズマディスプレイ。

【請求項2】 前記部分加水分解物は、

- (1)加水分解可能な反応部位を有するアルカリ土類金
- (2) 該アルカリ土類金属化合物を溶媒中に溶解又は分 散させることができ、且つ加水分解反応を律速に行わせ ることができる機能を有する添加剤、
- (3)該加水分解可能な反応部位に対する化学量論量以 下の水、

(4)有機溶媒

からなる構成成分によって基本的に調製されたものであ ることを特徴とする請求項1記載の交流型プラズマディ スプレイ。

【請求項3】 ガス放電空間を挟んで背面基板と前面基 板が対向配置され、一方の基板又は両方の基板には、誘 電体層に覆われた互いに対となる電極が形成されると共 に、誘電体層の上には保護層が形成されてなる交流型プ ラズマディスプレイにおいて、前記保護層が、

- (1)加水分解可能な反応部位を有するアルカリ土類金 属化合物、
- (2) 該アルカリ土類金属化合物を有機溶媒中に溶解又 は分散させることができ、且つ加水分解反応を律速に行 わせることができる機能を有する添加剤、

(3)有機溶媒

からなる構成成分によって調製された部分加水分解物を 基本的に含むコーティング液を誘電体層からなる基板上 に塗布した後、加熱することによって形成されたアルカ リ土類金属酸化物膜であることを特徴とする交流型プラ ズマディスプレイ。

【請求項4】 前記加水分解可能な反応部位を有するア ルカリ土類金属化合物が、マグネシウム有機金属化合 物、マグネシウム無機金属化合物から選ばれる少なくと も1種または2種以上であることを特徴とする請求項 1、2又は3記載の交流型プラズマディスプレイ。

【請求項5】 前記マグネシウム有機金属化合物が、マ グネシウムアルコキシドである請求項4記載の交流型プ ラズマディスプレイ。

【請求項6】 前記アルカリ土類金属酸化物膜が粒子径 0. 3μm以下の酸化マグネシウム粒子で構成されてい ることを特徴とする請求項1、2、3、4又は5記載の「50」している直流型と、金属電極が誘電休層で覆われている

交流型プラズマディスプレイ。

【請求項7】 前記添加剤は、カルボン酸、カルボン酸 誘導体、アルカノールアミン類、グリコール類、グリコ ール誘導体、及び炭素・炭素三重結合を有する有機化合 物から選ばれた1種又は2種以上である請求項2、3、 4、5又は6記載の交流型プラズマディスプレイ。

【請求項8】 前記アルカリ土類金属化合物からの部分 加水分解物が下記の構造式で示されることを特徴とする 請求項1、2、3、4、5、6又は7記載の交流型プラ ズマディスプレイ。

(但し、Mはアルカリ土類金属原子、Aはヘテロ原子、 n, $\sim n$, は1以上の整数、n, はヘテロ原子の価数を 20 表す。)

【請求項9】 前記アルカリ土類金属化合物からの部分 加水分解物が下記の構造式で示されることを特徴とする 請求項1、2、3、4、5、6又は7記載の交流型プラ ズマディスプレイ。

[化2]

30

(但し、Mはアルカリ土類金属原子、nは1以上の整数 を表す。)

【請求項10】 請求項1、2、3、4、5、6、7、 8又は9記載の交流型プラズマディスプレイを製造する にあたり、アルカリ土類金属化合物からの部分加水分解 物を含むコーティング液を誘電体層からなる基板上に塗 布した後、加熱してアルカリ土類金属酸化物膜からなる 保護層を形成することを特徴とする交流型プラズマディ スプレイの製造方法。

【発明の詳細な説明】

[0.001]

【発明の属する技術分野】本発明は、交流型プラズマデ ィスプレイ及びその製造方法に関し、特に誘電体層の表 面に形成する保護層の形成技術に関する。

[0002]

【従来の技術】放電に伴う発光現象をディスプレイに利 用するいわゆるプラズマディスプレイは、その電極(主 としてITO)の構造から、放電空間に金属電極が露出 交流型とに大別される。プラズマディスプレイを薄型かつ大画面のカラーテレビに用いる場合には、メモリ機能を有して大型化に対応可能な交流型が好適であり、このような交流型プラズマディスプレイの誘電体層の表面には保護層(主として酸化マグネシウムからなる膜)が形成されている。

【0003】この保護層の形成方法は、薄膜法としてEB蒸着法、スパッタ法、CVD法等があり、厚膜法として酸化マグネシウム原料である塩基性炭酸マグネシウムをスプレーコートにより、基板上に厚膜を形成した後、焼成して金属酸化物とする方法があった(特公昭60-42579号公報、特公昭63-59221号公報、特公昭57-13983号公報)。また、コーティング法として酸化マグネシウム微粉末を、焼成後に酸化物となる液体パインダーに分散させ、酸化マグネシウム含有膜とする方法があった(特開平6-283020号公報)。

【0004】前記コーティング法においては、例えば、交流型プラズマディスプレイパネルの保護層として印刷法によりMgO膜を形成するのに用いられるMgO印刷 20ペーストは、粒径0.03~0.3μmの均一なMgO微粒子を含み、さらに該MgO微粒子をパインダー中に均一に分散させなければ、保護層としての耐スパッタ性に劣るものとなることが明らかにされている。

[0005]

【発明が解決しようとする課題】上記各方法のうち、E B蒸着法やスパッタ法、CVD法等の真空プロセスを用いた方法は、概して生産性が低くて高価になるという欠点に加え、プラズマディスプレイのような大きな被付着物を真空チャンバー内に収納するのが非常に困難である 30という欠点があり、大画面化を想定した場合、設備費や生産性の点で問題があった。

【0006】コーティング法は、手軽な方法であることから鋭意検討がなされてきたにもかかわらず、満足できる性能を達成するには至っていなかった。その理由としては、過去に市販された酸化マグネシウム粒子混入ベーストは、該粒子が凝集するために、ベースト中への均一分散化が極めて困難であり、結果として均一性の高い保護層が得られにくく、そのため、通常の熱処理プロセスでは膜強度、密着性等が不十分であったり、また熱分解40時に順に亀裂を生じるといった問題を有しており、このような酸化マグネシウム粒子混入ベーストをディスプレイ表面のコーティングに用いた場合、必要なバネル特性を得られないからであった。

【0007】また、混入されている酸化マグネシウム粒子自体の粒子径が大きく、さらに、ペースト自体の粘度も大きいため、保護層厚の薄化が困難であり、これにともなって放電開始電圧や駆動電圧をなるべく低下させたにもかかわらず、それが実現できない不都合や透明性に劣る等の問題もあった。

【0008】これらの保護層に関連して金属酸化物膜をソルーゲル法により形成する方法を本発明者らは既に出願している(特願平6-271827号)。該方法は、加水分解可能な反応部位を有する金属化合物に対して加水分解を行って金属水酸化物ゾルを作製し、このゾルを基体上に塗布、焼成して、対応する金属酸化物膜を作製することにより、保護層の膜厚を薄くすることを可能とする方法である。

【0009】しかしながら、との方法において、加水分解したときに生成する金属水酸化物は、その種類によって析出しやすい傾向が強いものがあり、例えば、特に、マグネシウム化合物を用いた場合には、加水分解反応により生成される水酸化マグネシウムは粒子として瞬時に析出し、沈澱する。とのような水酸化マグネシウム粒子が析出したコーティング組成物を用いて、基体にコーティングを行い、通常の焼成プロセス(高温ではない焼成プロセス)でゲル化して得られた保護層は、基体上に酸化マグネシウムの各粒子が、いわば積もった状態に形成されるため、その膜の密度が低く、充分な膜強度が得られないことがあった。また、とのようなコーティング組成物を用いて薄膜を形成した場合には、緻密な膜形成が不可能であるため保護層としての機能を充分に満たし得ないという欠点があった。

【0010】例えば、マグネシウムのアルコキシドとして、ゾルーゲル反応によく利用されるマグネシウムジメトキシドMg(OCH。)。はメトキシド基同志が会合した粉状の物質で、、との物質単独で有機溶媒に溶解又は分散させるととは非常に困難であり、安定なゾル溶液を作製することは困難であった。

【0011】一方、有機溶媒に溶解させた有機マグネシウムを含む溶液を基体に塗布し、熱分解して無色透明な酸化マグネシウムフィルムを形成する方法が、特開昭55-123657号公報により知られている。該公報に記載の酸化マグネシウムフィルムの形成方法においては、有機マグネシウムを含む溶液を基体に塗布した後、得られる塗膜の表面付近から加水分解反応が進行するため、水酸化マグネウシウム粒子の析出が順次起こり、得られる酸化マグネシウムフィルムは基板密着性が乏しいという問題があった。

10012】また、前記特開昭55-123657号公報に記載の酸化マグネシウムフィルムの形成方法においては、有機マグネシウムを含む溶液を基体に塗布した後に主として加水分解反応が起こるため、該加水分解物の副産物として生成された有機物、いわゆる不純物が水酸化マグネシウム粒子内部に存在する可能性が大きく、酸化マグネシウムフィルムの製造過程において、この不純物を塗膜中から飛散させて除去させることが困難であるという問題があった。

【0013】また、前記特開昭55-123657号公 50 報に記載の酸化マグネシウムフィルムの形成方法におい 5

ては、有機マグネシウムを含む溶液を基体に塗布した後 に主として加水分解反応が起こるため、析出する水酸化 マグネシウムの粒子径を制御することが困難であり、そ の結果、得られる酸化マグネシウムフィルムが白濁しや すく、透明性に劣るという問題があった。

【0014】本発明は、上記事情に鑑みてなされたものであって、従来技術が有していた前述の欠点を解消し、化学的手法により簡易で安定かつ低温製膜温度でも充分に製膜することができる膜を提供し、その膜は膜強度、密着性、保護作用等に優れ、且つ透明性に優れた特性を 10有し、そのような膜を交流型プラズマディスプレイの誘電体層の保護膜とすることにより、放電開始電圧や駆動電圧(消費電力)の低下が図られ、しかも低コストで製造を可能とする交流型プラズマディスプレイ及びその製造方法を提供することを目的とする。

[0015]

【課題を解決するための手段】本発明は上記目的を解決するためになされたもので、本発明の交流型プラズマディスプレイは、ガス放電空間を挟んで背面基板と前面基板が対向配置され、一方の基板又は両方の基板には、誘電体層に覆われた互いに対となる電極が形成されると共に、誘電体層の上には保護層が形成されてなる交流型プラズマディスプレイにおいて、前記保護層が、加水分解可能な反応部位を有するアルカリ土類金属化合物からの部分加水分解物を基本的に含むコーティング液を誘電体層からなる基板上に塗布した後、加熱することによって形成されたアルカリ土類金属酸化物膜であることを特徴とする。

【0016】前記本発明の交流型プラズマディスプレイの保護層に使用されるコーティング液は部分加水分解物 30を含み、該部分加水分解物は、(1)加水分解可能な反応部位を有するアルカリ土類金属化合物、(2)該アルカリ土類金属化合物を溶媒中に溶解又は分散させることができ、且つ加水分解反応を律速に行わせることができる機能を有する添加剤、(3)該加水分解可能な反応部位に対する化学量論量以下の水、(4)有機溶媒からなる構成成分によって調製されたことを特徴とする。

【0017】本発明の交流型プラズマディスプレイの保護層に使用されるコーティング液には、上記のコーティング液組成と異なって、水を含んでいなくてもよく、そ 40の場合には、本発明の交流型プラズマディスプレイは、ガス放電空間を挟んで背面基板と前面基板が対向配置され、一方の基板又は両方の基板には、誘電体層に覆われた互いに対となる電極が形成されると共に、誘電体層の上には保護層が形成されてなる交流型プラズマディスプレイにおいて、前記保護層が、(1)加水分解可能な反

応部位を有するアルカリ土類金属化合物、(2)該アルカリ土類金属化合物金属化合物を有機溶媒中に溶解又は分散させることができ、且つ加水分解反応を律速に行わせることができる機能を有する添加剤、(3)有機溶媒からなる構成成分によって調製された部分加水分解物を基本的に含むコーティング液を誘電体層からなる基板上

に塗布した後、加熱することによって形成されたアルカ

リ土類金属酸化物膜であることを特徴とする。

6

【0018】また、本発明の交流型プラズマディスプレイの製造方法は、前記交流型プラズマディスプレイを製造するのに、前記保護層を、アルカリ土類金属化合物からの部分加水分解物を含むコーティング液を誘電体層からなる基板上に塗布した後、加熱してアルカリ土類金属酸化物膜として形成することを特徴とする。

[0019]

【発明の実施の形態】本発明の交流型プラズマディスプレイの保護層の製造原料となる「加水分解可能な反応部位を有するアルカリ土類金属化合物」とは、水と反応させることによって加水分解して、アルカリ土類金属酸化物及び/又はアルカリ土類水酸化物が生成できる全てのアルカリ土類金属化合物をいい、特に、好ましくは、酸化マグネシウム及び/又は水酸化マグネシウムが生成することができる全てのマグネシウム化合物をいう。

【0020】具体的には、ゾルーゲル法による無機ガラスやセラミックスの前駆体として知られるマグネシウムアルコキシド誘導体、マグネシウムアセチルアセトネート誘導体、またはマグネシウムカルボキシレート誘導体などのいわゆる有機金属化合物や有機金属錯塩、酢酸マグネシウム等の有機金属化合物、並びに対応するマグネシウム硝酸塩、塩化物、硫酸塩などの無機金属化合物の1種または2種以上が使用できる。

【0·021】前記保護層に使用されるコーティング液に含まれる添加剤は、カルボン酸、カルボン酸誘導体、アルカノールアミン類、グリコール類、グリコール誘導体、及び炭素・炭素三重結合を有する有機化合物から選ばれた1種又は2種以上である。これらの化合物は、難溶性のアルカリ土類金属化合物の溶解又は分散を促進し、水との接触を均一に行わせることができ、非常に律速な加水分解反応を行わせることができ、得られる溶液の粒子も非常に均一なものとなる。得られる溶液はアルカリ土類金属化合物と添加剤とが下記の式(1)又は式(2)の構造式の化合物を形成しているものと推定される。

[0022]

[化3]

Я

*カリ土類金属アルコキシドとして、マグネシウムジメト

キシド「Mg(OCH,),]を用いた場合は、前記添

加剤を使用しないで、マグネシウムジメトキシド単独で

る。しかしながら、ジエタノールアミン〔HN(C,H OH)」はその分子中のN原子とO原子において非 常に強く分極しており、メタノール等の有機溶媒中にお いてとのジエタノールアミンの配位により、非常に安定

な溶液を形成することができる。したがって、ジェタノ ールアミンは、特にマグネシウムジメトキシドを溶解又 は分散させるための添加剤として使用される。この反応

により得られる溶解物質は、恐らく、マグネシウムジメ トキシドのMgとジェタノールアミンのNとが配位した

下記の式(3)で示されるキレート構造を形成している

10 有機溶媒に溶解又は分散させることは非常に困難であ

(但し、Mはアルカリ土類金属原子、Aはヘテロ原子、 $n_1 \sim n_2$ は 1 以上の整数、 n_3 はヘテロ原子の価数を 表す。)

[0023]

[化4]

(但し、Mはアルカリ土類金属原子、nは1以上の整数

前記へテロ原子とは、複素環式化合物の環を構成してい 20 る炭素以外の原子、例えば、窒素原子、イオウ原子、リ ン原子、フッ素原子等をいう。

【0024】本発明において、保護層に使用されるアル*

ものと推測される。

[0025]

【0026】ジェタノールアミン等の前記添加剤の機能 は、次のように列挙される。即ち、有機溶媒にアルカリ 土類金属アルコキシド、例えば、マグネシウムジメトキ シドを溶解又は分散させることができ、なお且つ、水の 存在下で加水分解反応が一瞬に起こることなく非常に律 速な加水分解反応を実現することができ、しかもそのゾ ル粒子の粒径を10nm~100nmの均一で非常に小 さいものとすることができ、アルカリ土類金属アルコキ シドの部分加水分解物からなる非常に安定なゾル溶液を 作製することができる。もし、上記の例で、ジエタノー ルアミンを用いないで、マグネシウムジメトキシドを加 40 水分解すると、一瞬のうちに水酸化マグネシウムの大沈 澱が生じてしまい、安定なゾル溶液とすることはできな £1,

【0027】アルカリ土類金属アルコキシドに対して、 前記のようなキレート構造を形成することができる前記 ジエタノールアミン以外の添加剤としては、エチレング リコール、ジエチレングリコール、メチルセロソルブ等 のエチレングリコール誘導体が挙げられる。特に、ジェ チレングリコールは分子内の酸素原子がアルカリ土類金 属アルコシキド、例えば、マグネシウムジメトキシドの 50 が実質的に水の存在しない溶媒中に溶解又は分散された

【化5】 Mgと配位するものと推測され、より安定な分散液とな

る。さらに、前記のようなキレート構造を形成すること ができる別の化合物の例には、アセチレングリコール等 の炭素・炭素三重結合を有する有機化合物を挙げること

【0028】本発明における保護層を形成するためのコ ーティング液を製造する際に、部分加水分解物生成反応 を均一で効率良く進行させるために水を含んだ溶媒中で 加水分解反応を行うことが好ましい。このような溶媒は 特に限定されないが、アルコール、エステル、ケトン、 あるいはプロピレンカーボネート、ケーブチロラクトン 等の有機高誘電率溶媒が使用可能である。

【0029】生成した部分加水分解物は、上記液中に加 水分解可能な反応部位に対する化学量論量以上の水の混 入がない限り、極めて安定に保たれ、出発原料や水の量 により部分加水分解物の形態は異なるが、低重合度の重 合物、あるいは粒子径が0.3μm以下の超微粒子とし て溶媒中に溶解又は分散している。本発明で使用される コーティング液はこのような、加水分解可能な反応部位 を有するアルカリ土類金属化合物からの部分加水分解物 状態のものをいう。

【0030】この部分加水分解物のコーティング液中での濃度は特に限定されないが、部分加水分解物の液中での安定性を考慮すると、重量比で0.1~30%とした方が液の長期保存が可能であり、より好ましい。

【0031】上記アルカリ土類金属化合物からの部分加水分解物の生成は、上記アルカリ土類金属化合物の加水分解可能な反応部位に対し、化学量論量以下の水、具体的にはアルカリ土類金属化合物 1 モルに対して2 モル未満の水を系内に添加することによって進行する。或いは、系内に水を添加しなくとも、大気中の水分が徐々に浸透することによって進行する。

【0032】との加水分解工程において、もし、加水分 解可能な反応部位に対する化学量論量を越える水、具体 的にはマグネシウム化合物1モルに対して2モルを越え る水の存在下で上記マグネシウム化合物の加水分解が行 われるならば、凝集性の強い水酸化マグネシウム粒子と して液中に析出し、沈澱物となる。このようにマグネシ ウム化合物を完全加水分解した場合、Mg(OH),が 製造されるが、Mg(OH)、は瞬時にゲル化して析出 20 する欠点を有すると共に、Mg(OH)、自体は、塗布 の対象となる基板に対して密着性が悪く、特に、ガラス 基板には密着性が悪く、高強度の塗膜とすることができ ない。しかしながら、加水分解に使用される水の量が加 水分解可能な反応部位に対する化学量論量以下である場 合、加水分解が完全に行われず、溶液は安定なゾル状態 を保った部分加水分解物となり、完全なMg(OH)。 が生成されていないので、基板に対する密着性が高い。 この部分加水分解物の生成反応は、室温において十分に 進行するが、場合によっては反応速度を速めるために8 30 0℃程度まで加熱することも可能である。

【0033】また、部分加水分解物生成時に、塩酸やアンモニア等の加水分解物触媒を加え、加水分解反応を速やかに進行させることができる。

【0034】本発明の交流型プラズマディスプレイにお ける2次電子放出比を上げる観点からは、保護層におけ る酸化マグネシウムのその表面積を大きくすることが必 要であり、酸化マグネシウムの粒子径は0. 3μm以 下、好ましくは 0. 1μm以下であることが望ましい。 粒子径を0.3μm以下にし粒子間のすき間をなくすと 40 とにより表面積を大きくし、通常の熱処理プロセスで も、効率よく酸化マグネシウム膜が形成される。酸化マ グネシウム膜の厚さは特に限定されないが、透明性の点 から10μm以下で特に1μm以下のものが好ましい。 【0035】本発明の交流型プラズマディスプレイの製 造方法は、マグネシウム化合物からの部分加水分解物を 含むコーティング液を交流型プラズマディスプレイの誘 電体層からなる基板上に塗布した後、加熱して酸化マグ ネシウム膜からなる保護層を形成することを特徴とす る。

【0036】前記部分加水分解物を含むコーティング液は、誘電体層からなる基体上に塗布した後の乾燥工程において、塗膜中の溶剤が揮発するとともに、塗膜は大気中の水分を取込み、さらに加水分解反応が進行して完全に加水分解され、通常、最終的に塗膜はアルカリ土類金属酸化物となる。例えば、マグネシウム化合物の部分加水分解物の塗布されたものは、塗布後に、加水分解反応が進行して、緻密な塗膜の完全なMg(OH)。となり、これを加熱処理することにより、高結晶性で且つ高密度なMgO膜とすることができる。このような高結晶性で且つ高密度なMgO膜は、完全加水分解物をコーティング原料とした場合には得ることができない。

【0037】とのようにして得られた保護層は、特に加熱、焼成工程を施さなくても、常温でも、基体密着性が良好であるが、必要に応じて加熱、焼成などを行えば、さらに完全にアルカリ土類金属酸化物膜へ移行し、結晶性が高くなり、より強度が高く、且つより基体密着性が増す。このような加熱、焼成温度は、300~600℃が好ましい温度範囲である。

(0038)前記コーディング液の前記基板上への塗布 法はスピンコート法、ディップ法、スプレー法、ロール コーター法、メニスカスコーター法、バーコート法、カ ーテンフローコート法、流延法等種々の塗布法が適用で きる。

【0039】以上のような方法によって得られる本発明の交流型プラズマディスプレイにおける保護層は、その膜厚が1μm以下の薄膜が実現でき、このような膜厚は従来のバインダーを用いたペーストでは実現不可能なものである。

60 【0040】本発明におけるアルカリ土類金属酸化物膜は交流型プラズマディスプレイの誘電体層からなる基板上に形成される保護層として使用されるが、その他基板にも特に限定されるものではなく目的に応じて使用できる。

【0041】本発明の交流型プラズマディスプレイによれば、加水分解可能な反応部位を有するアルカリ土類金属化合物からの部分加水分解物を基本的に含むコーティング液を誘電体層からなる基板上に塗布した後、加熱して形成してなるアルカリ土類金属酸化物膜で構成しているので、保護層の膜厚を薄くすることができ、そのため放電開始電圧や駆動電圧の制御が促進されて消費電力が大幅に低下し、かつディスプレイ自体の厚さの薄化が実現できる。

【0042】本発明の交流型プラズマディスプレイにおける保護層は、加水分解可能な反応部位を有するアルカリ土類金属化合物からの部分加水分解物を基本的に含むコーティング液を基体上に塗布してなるアルカリ土類金属酸化物層で構成されている。したがって、コーティング液中には、アルカリ土類金属化合物の加水分解物、例50 えば、水酸化マグネシウム等の析出物が生じることな

11

く、コーティング液はアルカリ土類金属の部分加水分解物のソル粒子が非常に細かい粒子となって、実質的に水を含まない溶媒中に分散した状態となって、全体が透明の液となっている。

【0043】本発明で使用されるコーティング液は、前記アルカリ土類金属化合物の加水分解反応による中間体を非常に微小な粒子とすることができ、かつ反応性の高い部分加水分解物としているので、このような本発明で使用されるコーティング液を用いて、塗布し、得られた塗膜を必要に応じて焼成した後に得られるアルカリ土類金属酸化物膜は、適度の大きさのアルカリ土類金属酸化物粒子が単に積み重ねられたような状態ではなく、0.3μm以下の粒子が使用されることにより粒子間のすき間ができないため、アルカリ土類金属酸化物が平面的に均一に分布して基体表面に一体となった密着性及び高強度が高められた保護層となる。その結果、本発明の交流型プラズマディスプレイにおける保護層の薄膜化が更に促進され、消費電力の低下が更に促進される。

【0044】前記コーティング液におけるアルカリ土類 金属化合物の部分加水分解物の濃度は、重量比0.1% 未満であると充分な特性を発揮できず、30%より多いと膜厚が厚くなりすぎひび割れなどが生じるので、好ましい範囲は0.1~30重量%である。

【0045】また、本発明の交流型プラズマディスプレイの製造方法によれば、前記アルカリ土類金属化合物からの部分加水分解物を含むコーティング液を誘電体層からなる基板表面に対しコーティング法により保護層を形成しているので、大面積に対し簡易な手段で、且つ低コストで造膜が可能である。

[0046]

[実施例]

〔実施例1〕図1は本発明の交流型プラズマディスプレイのパネル(以下、パネルという)に適用した場合の好ましい実施態様を示し、面放電方式の交流型プラズマディスプレイの概略構造が示されている。

【0047】図1において、符号1、2は、それぞれガス放電空間3を挟んで互いに並行に対向配置された前面基板、背面基板である。これらの前面基板1、背面基板2は所定厚さのガラスから構成されている。

【0048】前面基板1の背面基板2に対向する面には、X電極4a及びY電極4bからなる電極対が形成されている。これら電極対はガラス製の誘電体層5で被覆されており、更にこの誘電体層5は、加水分解可能な反応部位を有するマグネシウム化合物からの部分加水分解物を基本的に含むコーティング液で塗布し、加熱することによって、酸化マグネシウム膜からなる保護層6で被覆される。

【0049】また、一方の背面基板2の前面基板1に対 向する面には、アドレス電板7、障壁8及び蛍光体9が 形成されている。さらに、前面基板1上には反射防止層 50

として、前記コーティング液による二酸化チタン膜(高屈折率層)10、及び二酸化ケイ素膜(低屈折率層)1 1が形成されている。

12

【0050】図2は、対向放電方式の交流型プラズマディスプレイの概略構造が示されており、前面基板1の背面基板2に対向する面には、X電極4aが形成され、該X電極4aはガラス製の誘電体層5で被覆されており、更にとの誘電体層5は、前記コーティング液による酸化マグネシウム膜からなる保護層6で被覆されている。また、一方の背面基板2の前面基板1に対向する面には、Y電極4b、誘電体層5、前記と同様にして形成された保護層6、及び障壁8と蛍光体9が形成されている。

【0051】さらに、前面基板1上には反射防止膜層として、二酸化チタン膜(高屈折率層)10、及び二酸化ケイ素膜(低屈折率層)11が形成されている。

【0052】前記保護層6の形成方法として、本実施例1では前記コーティング液をディップコート法により被覆して保護層6を形成することが可能である。ディップコート法で形成される保護層6は、薄膜法による造膜法と比較すると、大面積に対し低コストで造膜が可能であるから、例えば大面積(例えば対角40インチ程度)のプラズマディスプレイを低コストで製造できる。

【0053】また本実施例1のプラズマディスプレイにおいては、前記コーティング液を誘電体層5に対して塗布・焼成して保護層6を形成しているので、酸化マグネシウムゾル粒子は、誘電体層5の表面上においてその面方向が誘電体層5と平行な状態に生長しながら積層され、その結果、保護層6の膜厚を極めて薄くすることができる。

30 【0054】一般に交流型プラズマディスプレイの保護層は、2μm以下の層厚で形成することが実用上最も必要充分な条件とされているが、この2μm以下の層厚を、本実施例1によれば充分に形成することができる。その保護層6の層厚が、例えば、10μm程度と厚いと、交流型プラズマディスプレイの重要な特性の一つであるメモリ機能の発生源である壁電荷の効果を弱めることになって駆動電圧を高くする必要が生じ、その結果として、駆動回路に用いるトランジスタの電圧を高耐圧仕様にせねばならなくなる。

40 【0055】ところで、前記コーティング液は、マグネシウム化合物からの加水分解物の析出がないので、塗布した場合に均一な薄膜を形成することができ、このようなコーティング液を用いて形成した酸化マグネシウム膜からなる保護層6は、膜厚の調節が任意で行え、2μm以下程度の層厚の形成が可能となり、しかも膜強度が高いので亀裂により誘電体層5が露出する恐れがない。このように保護層6の層厚を薄くできることにより、駆動電圧の低下を促進することができ、コスト低下を実現することができると共に、プラズマディスプレイ自体の厚さを極めて薄くすることが可能となる。

【0056】〔実施例2〕

(酸化マグネシウム液の調製)以下の組成の混合物を室 温で8時間撹拌して、マグネシウムジメトキシドのエタ ノール溶液を得た。

エタノール

117重量部

マグネシウムジメトキシド

15重量部

アルカノールアミン

18重量部

次に、上記エタノール溶液20重量部を、窒素雰囲気中 で0.42重量部の水が添加されているエタノール70 重量部に添加し、室温で5時間撹拌し、無色透明のマグ 10 ネシウムジメトキシドの部分加水分解物のコーティング 液を得た。

【0057】前記工程で得られたコーティング液を図1 に示す誘電体層5の表面に対し、コーティング印刷法の 一種であるディップコーティング法により大気中で塗布 した。塗布膜形成後、乾燥して、500℃で2時間キー プした熱処理(焼成)を施した。得られた酸化マグネシ ウム膜は完全に透明な膜であり、誘電体層5に対して、 強い密着性(鉛筆硬度5H以上)を示した。

【0058】本実施例2の酸化マグネシウム膜からなる 20 保護層の表面の粒子構造を示す電子顕微鏡写真 (×5 0.0K)を図3に示す。比較のために、図4に、誘電 体層の表面に酸化マグネシウムを真空蒸着して保護層を 作製した場合のその表面の粒子構造を示す電子顕微鏡写 真(×50.0K)を示し、図5に、次の比較例1によ り製造された、マグネシウムジメトキシドが完全加水分 解されてなるコーティング組成物により得られた酸化マ グネシウム膜からなる保護層の表面の粒子構造を示す電 子顕微鏡写真(×50.0K)を示す。

【0059】図3~図5によれば、本実施例2の酸化マ 30 グネシウム膜からなる保護層は、その表面の粒子が均一 で微細であり、緻密な膜が形成されていることが分か る.

【0060】〔比較例1〕前記実施例2で調製されたエ タノール溶液20重量部を窒素雰囲気中で1.0重量部 (ジメトキシマグネシウムの加水分解可能な部位に対 し、過剰量)の水を加えたエタノール70重量部に添加 し、室温で5時間撹拌したところ、水酸化マグネシウム 粒子が形成され、液全体が白濁した。

【0061】得られた水酸化マグネシウム粒子分散液を 40 前記実施例2の手法と同様にディップコーティング法に より大気中で誘電体層に塗布したが、120℃での乾燥 の過程で水酸化マグネシウム粒子が析出し、塗膜にはな らなかった。

【0062】〔実施例3〕

(パネルの作製)図2に示される対向放電交流型プラズ マディスプレイを次のようにして作製した。ガラス製の 前面基板1上に真空蒸着法によりクロム電極としてX電 極4 a を形成し、次いで、真空蒸着法により誘電体層 5 を形成し、その誘電体層5上に前配実施例1の前配酸化 50 るので、保護層は均 で、薄くすることができる。その

マグネシウム膜の形成方法により、酸化マグネシウム膜 からなる保護層6を形成した。次いでこの背面基板1の 保護層6上にスクリーン印刷で障壁8を形成した後、蛍 光性物質を該障壁8に塗布して蛍光体9を形成した。

14

【0063】一方、ガラス製の背面基板2上に真空蒸着 法により形成したクロム電極をバターニングしてY電極 4 b を形成した後、同じく真空蒸着法で該Y電極4 b 上 に誘電体層5を形成した後に、前記実施例1の前記酸化 マグネシウム膜の形成方法により、酸化マグネシウム膜 からなる保護層6を形成した。前記背面基板2上のCr 電極(Y電極4b)の膜厚は2000点、誘電体層5の 膜厚は8000Åであった。

【0064】前記各工程で得られた両者の基板を保護層 を内側にして張り合わせ、障壁8に囲まれた空間部に、 He-Xe(1.1%)ペニングガスを500Torr 封入して、本実施例3の対向放電交流型プラズマディス プレイを作製した。

【0065】得られた対向放電交流型プラズマディスプ レイに対して、駆動波形が駆動周波数15kHz、デュ ーティ比が23%の交流パルスにより、最小点火電圧V fと最小維持電圧Vsmを測定した。その結果、最小点 火電圧V f = 200V、最小維持電圧V s m = 145 V、メモリーマージン (Vf-Vsm)55Vであっ た。この値は酸化マグネシウム膜として真空蒸着膜を用 いた同構造のパネルと比較して、40~50 V高いもの であった。しかしメモリーマージンはほぼ同等の55V

【0066】これらの測定値から、本実施例3で得られ た対向放電交流型プラズマディスプレイにおける酸化マ グネシウム膜からなる保護層6は、充分な特性を発揮す ることがわかる。

[0067]

【発明の効果】本発明の交流型プラズマディスプレイに おける保護層は、加水分解可能な反応部位を有するアル カリ土類金属化合物からの部分加水分解物を含むコーテ ィング液を誘電体層からなる基板上に塗布して形成する ことができるので、薄膜法に比較して、大面積の誘電体 層に保護層を形成することができる。

【0068】本発明の交流型プラズマディスプレイにお ける保護層は、加水分解可能な反応部位を有するアルカ リ土類金属化合物からの部分加水分解物を含むコーティ ング液を誘電体層からなる基板上に塗布して形成すると とができるので、アルカリ土類金属酸化物ゾル粒子が、 誘電体層の表面上においてその面方向が誘電体層と平行 な状態に生長しながら積層され、その結果、保護層の膜 厚を極めて薄くすることができる。

【0069】本発明の交流型プラズマディスプレイにお ける保護層となるアルカリ土類金属酸化物膜は粒子径 0. 3μμ以下の酸化マグネシウム粒子で構成されてい ため、アルカリ土類金属酸化物がリッチな保護層となるので2次電子の放出効率の大幅な向上が期待できる。

【0070】本発明の交流型プラズマディスプレイにおける保護層は、2μm以下程度の層厚の形成が可能であり、しかも膜強度が高いので亀裂により誘電体層が露出する恐れがない。したがって、駆動電圧の低下を促進することができ、コスト低下を実現することができると共に、プラズマディスプレイ自体の厚きを極めて薄くすることが可能となる。

【図面の簡単な説明】

【図1】本発明の面放電方式の交流型ブラズマディスフレイの假略を示す断面図である。

【図2】本発明の対向放電方式の交流型プラズマディスプレイの概略を示す断面図である。

【図3】実施例1の酸化マグネシウム膜からなる保護層の表面の粒子構造を示す電子顕微鏡写真であり、倍率×50.0Kのものである。

【図4】誘電体層の表面に酸化マグネシウムを真空蒸着 して酸化マグネウシム膜からなる保護層を作製した場合 のその表面の粒子構造を示す電子顕微鏡写真(×50. *20

* 0 K) である。

【図5】比較例1により製造された、マグネシウムジメトキシドが完全加水分解されてなるコーティング組成物により得られた酸化マグネシウム膜からなる保護層の表面の粒子構造を示す電子顕微鏡写真(×50.0K)である。

16

【符号の説明】

- 1 前面基板
- 2 背面基板
- 10 3 ガス放電空間
 - 1 a X電極
 - 1b Y電極
 - 5 誘電体層
 - 6 保護層
 - 7 アドレス電極
 - 8 障壁
 - 9 蛍光体
 - 10 二酸化チタン膜(高屈折率層)
 - 11 二酸化ケイ素膜(低屈折率層)

[図2]

[図1]

面放電交流型プラズマディスプレイ

- 5:誘電体膜

-4b:Y電極 - 2:背面基板

対向放電交流型プラズマディスプレイ

【図3】

经顺代用写真

【||刘4]

醫罷代用等真

【図5】

据面代用写真

