Decision Models with Multiple Criteria

Elise Bonzon

 $\verb"elise.bonzon@mi.parisdescartes.fr"$

 $\label{lipade} \begin{tabular}{ll} LIPADE - Universit\'e Paris Descartes \\ http://www.math-info.univ-paris5.fr/\backsimbonzon/ \\ \end{tabular}$

1. Introduction

2. Single synthesis criteria

3. Outranking methods

Introduction

Example: holidays

	cost	# days	travel time	hotel	beach dist.	wifi	cultural interest
A	2000€	15	12h	***	45km	Υ	++
В	4250€	18	15h	****	0km	Ν	
C	1500€	4	7h	**	250km	Ν	+
D	3000€	5	10h	***	5km	Υ	-

Example: holidays

	cost	# days	travel time	hotel	beach dist.	wifi	cultural interest
A	2000€	15	12h	***	45km	Υ	++
В	4250€	18	15h	****	0km	Ν	
C	1500€	4	7h	**	250km	Ν	+
D	3000€	5	10h	***	5km	Υ	-

Problems

- Help the decision-maker to choose his holidays
- Help the decision-maker to structure his preferences: rank the alternatives

Definitions

- Decision-maker: The decision-maker is the person on behalf of whom the decision assistance is done
- Analyst: The person who is in charge of the decision analysis
- Action/Option: "Object" analysed during the decision-making process

Criteria

- A: the set of alternatives, $A = \{a_1, a_2, \dots, a_m\}$
- F: the set of criteria $F = \{c_1, c_2, \dots, c_n\}$
- $g_j(a_i)$: the valuation of the alternative i for the criteria j
 - Sufficiency:

$$\forall j, g_j(a) = g_j(b) \Rightarrow$$
 no preferences between a and b

Criteria

- A: the set of alternatives, $A = \{a_1, a_2, \dots, a_m\}$
- F: the set of criteria $F = \{c_1, c_2, \dots, c_n\}$
- $g_j(a_i)$: the valuation of the alternative i for the criteria j
 - Sufficiency:

$$\forall j, g_j(a) = g_j(b) \Rightarrow$$
 no preferences between a and b

Cohesion:

$$\forall j \neq k, g_j(a) = g_j(b)$$

 a preferred to b for g_k \Rightarrow a preferred to b

5

Problems

3 types of problems:

- Selection: Choice of a solution (the best one), or of a set of solutions
- Allocation: Allocation of each alternative to a category among n predefined categories
- Ranking: Give a ranking of all the alternatives

Example: social choice theory

- Decision-maker: the voters
- Analyst: the persons who choose the voting procedure
- Actions/Alternatives: candidates
- Problems: selection, ranking

Lexicographical aggregation

- a is preferred to b if
 - a is preferred to b over the most important criteria, OR
 - a and b are indifferent to the most important criteria and a is preferred to b over the second most important criteria, OR
 - a and b are indifferent to the second most important criteria and a
 is preferred to b over the third most important criteria
 - ..

Single synthesis criteria

Introduction

• Single synthesis criteria: function g which synthesizes all the criteria:

$$g(a) = f(g_1(a), g_2(a), \dots, g_n(a))$$

- g allows to compare the alternatives in order to choose one among them, to rank them or to allocate them among categories
- The construction of g is often difficult. Needs to ask a lot of information to the decision-maker
- Criteria are
 - Often contradictory (power and price)
 - Expressed in different unit (power and price)
 - Sometimes difficult to measure in a quantitative way (type of engine). Quantitative criteria rank more than they evaluate

Additive value function model

• Let A be the set of alternatives, g_j (j = 1, 2, ..., n) a criteria to maximize

$$a \succeq b \iff u(a) \ge u(b)$$

 $\Leftrightarrow \sum_{j=1}^{n} u_j(g_j(a)) \ge \sum_{j=1}^{n} u_j(g_j(b))$

• *u* is called multi-attribute value function

Choice of office to rent

- 5 offices have been selected
- 5 attributes are considered:
 - Transport: time (minutes)
 - Customers: percentage of customers who live near the office
 - Services:
 - A (all the services),
 - B (phone and fax machine),
 - C (no service)
 - Surface area: square feet ($\simeq 0.1m^2$)
 - Cost: \$ by month

	а	b	С	d	е
Transport	45	25	20	25	30
Customers	50	80	70	85	75
Services	Α	В	С	Α	С
Surface area	800	700	500	950	700
Cost	1950	1700	1500	1900	1750

	а	b	С	d	e
↓ Transport	45	25	20	25	30
<i>↑Customers</i>	50	80	70	85	75
<i>↑Services</i>	Α	В	С	Α	C
<i>↑Surface area</i>	800	700	500	950	700
↓Cost	1950	1700	1500	1900	1750

We want to

- Minimize criteria Transport and Cost
- Maximize criteria Customers, Services and Surface area

	а	b	С	d	e
↓ <i>Transport</i>	45	25	20	25	30
<i>↑Customers</i>	50	80	70	85	75
<i>↑Services</i>	Α	В	C	Α	C
<i>↑Surface area</i>	800	700	500	950	700
↓Cost	1950	1700	1500	1900	1750

• Alternative b dominates alternative e

	а	Ь	С	d	e
↓ <i>Transport</i>	45	25	20	25	30
<i>↑Customers</i>	50	80	70	85	75
<i>↑Services</i>	Α	В	С	Α	С
<i>↑Surface area</i>	800	700	500	950	700
↓ Cost	1950	1700	1500	1900	1750

- Alternative b dominates alternative e
- d dominates a

	Ь	С	d
↓ Transport	25	20	25
<i>↑Customers</i>	80	70	85
<i>↑Services</i>	В	С	Α
<i>↑Surface area</i>	700	500	950
↓ Cost	1700	1500	1900

- Alternative b dominates alternative e
- d dominates a
- Divide and conquer: eliminate alternatives
 - Elimination of a and e

	Ь	С	d
↓ Transport	25	20	25
<i>↑Customers</i>	80	70	85
<i>↑Services</i>	В	C	Α
<i>↑Surface area</i>	700	500	950
↓ Cost	1700	1500	1900

- No more domination
- We will try to find compromises

	Ь	С	d
↓ <i>Transport</i>	25	20	25
<i>↑Customers</i>	80	70	85
<i>↑Services</i>	В	C	Α
<i>↑Surface area</i>	700	500	950
↓Cost	1700	1500	1900

- No more domination
- We will try to find compromises
- All the alternatives except c have the same value for the criteria Transport

	Ь	С	d
↓ <i>Transport</i>	25	20	25
\uparrow Customers	80	70	85
<i>↑Services</i>	В	C	Α
<i>↑Surface area</i>	700	500	950
↓Cost	1700	1500	1900

- No more domination
- We will try to find compromises
- All the alternatives except c have the same value for the criteria Transport
- Modify c in such a way the value of this criteria is the same than the other alternatives

	Ь	С	d
↓ Transport	25	20	25
<i>↑Customers</i>	80	70	85
<i>↑Services</i>	В	C	Α
<i>↑Surface area</i>	700	500	950
↓Cost	1700	1500	1900

- No more domination
- We will try to find compromises
- All the alternatives except c have the same value for the criteria Transport
- Modify c in such a way the value of this criteria is the same than the other alternatives
 - What increase on the criteria Customer would allow to compensate for exactly a loss of 5mn in Transport time for the alternative c?

	Ь	С	d
↓ Transport	25	20	25
<i>↑Customers</i>	80	70	85
<i>↑Services</i>	В	С	Α
<i>↑Surface area</i>	700	500	950
↓Cost	1700	1500	1900

- No more domination
- We will try to find compromises
- All the alternatives except c have the same value for the criteria Transport
- Modify c in such a way the value of this criteria is the same than the other alternatives
 - What increase on the criteria Customer would allow to compensate for exactly a loss of 5mn in Transport time for the alternative c?
 - Difficult but central question!

	С	c'
↓ <i>Transport</i>	20	25
<i>↑Customers</i>	70	70 + δ
<i>↑Services</i>	С	С
<i>↑Surface area</i>	500	500
↓Cost	1500	1500

ullet We want to find δ which would make c and c' equivalent

	С	c'
↓ <i>Transport</i>	20	25
\uparrow Customers	70	70 + δ
<i>↑Services</i>	С	С
<i>↑Surface area</i>	500	500
↓ Cost	1500	1500

- We want to find δ which would make c and c' equivalent
- For $\delta=$ 8, the decision-maker said that he is indifferent between c and c'

	С	c'
↓ Transport	20	25
<i>↑Customers</i>	70	70 + δ
<i>↑Services</i>	С	С
<i>↑Surface area</i>	500	500
↓Cost	1500	1500

- We want to find δ which would make c and c' equivalent
- • For $\delta=8$, the decision-maker said that he is indifferent between c and c'
- Replace c by c'

	Ь	c'	d
↓ Transport	25	25	25
<i>↑Customers</i>	80	78	85
<i>↑Services</i>	В	С	Α
<i>↑Surface area</i>	700	500	950
↓Cost	1700	1500	1900

- All the alternatives have the same evaluation for the criteria Transport
- Divide and conquer: Eliminate criteria
 - Elimination of the attribute *Transport*

	Ь	c'	d
↑Customers	80	78	85
<i>↑Services</i>	В	C	Α
<i>↑Surface area</i>	700	500	950
↓ Cost	1700	1500	1900

- All the alternatives have the same evaluation for the criteria
 Transport
- Divide and conquer: Eliminate criteria
 - Elimination of the attribute *Transport*

	Ь	c'	d
↑Customers	80	78	85
<i>↑Services</i>	В	С	Α
<i>↑Surface area</i>	700	500	950
↓Cost	1700	1500	1900

• Check again the dominations

	Ь	c'	d
↑Customers	80	78	85
<i>↑Services</i>	В	С	Α
<i>↑Surface area</i>	700	500	950
↓Cost	1700	1500	1900

- Check again the dominations
- No domination

	Ь	c'	d
<i>↑Customers</i>	80	78	85
<i>↑Services</i>	В	С	Α
<i>↑Surface area</i>	700	500	950
↓Cost	1700	1500	1900

- Check again the dominations
- No domination
- Find a compromise

	Ь	c'	d
↑Customers	80	78	85
<i>↑Services</i>	В	С	Α
<i>↑Surface area</i>	700	500	950
↓Cost	1700	1500	1900

- Check again the dominations
- No domination
- Find a compromise
- \Rightarrow Try to "suppress" *Services* using the criteria *Cost* in reference

	Ь	c'	d
↑Customers	80	78	85
<i>↑Services</i>	В	C	Α
<i>↑Surface area</i>	700	500	950
↓Cost	1700	1500	1900

 What maximum increase of rent would you accept to pay to go from service C to service B for the alternative c'?

	Ь	c'	d
<i>↑Customers</i>	80	78	85
<i>↑Services</i>	В	C	Α
<i>↑Surface area</i>	700	500	950
↓Cost	1700	1500	1900

 What maximum increase of rent would you accept to pay to go from service C to service B for the alternative c'?

• Answer: 250\$

	Ь	c'	<i>c</i> ''	d
↑Customers	80	78	78	85
<i>↑Services</i>	В	C	В	Α
<i>↑Surface area</i>	700	500	500	950
↓ Cost	1700	1500	1500 + 250	1900

 What maximum increase of rent would you accept to pay to go from service C to service B for the alternative c'?

• Answer: 250\$

	b	c'	c''	d
↑Customers	80	78	78	85
<i>↑Services</i>	В	C	В	Α
<i>↑Surface area</i>	700	500	500	950
↓ Cost	1700	1500	1500 + 250	1900

 What maximum increase of rent would you accept to pay to go from service C to service B for the alternative c'?

Answer: 250\$

 How much should the rent decrease if the service for alternative d would go from A to B?

	b	c'	c''	d
↑Customers	80	78	78	85
<i>↑Services</i>	В	C	В	Α
<i>↑Surface area</i>	700	500	500	950
↓ Cost	1700	1500	1500 + 250	1900

 What maximum increase of rent would you accept to pay to go from service C to service B for the alternative c'?

• Answer: 250\$

 How much should the rent decrease if the service for alternative d would go from A to B?

• Answer: 100\$

	Ь	c'	c''	d	d'
↑Customers	80	78	78	85	85
<i>↑Services</i>	В	C	В	Α	В
<i>↑Surface area</i>	700	500	500	950	950
↓Cost	1700	1500	1500 + 250	1900	1900 - 100

 What maximum increase of rent would you accept to pay to go from service C to service B for the alternative c'?

• Answer: 250\$

 How much should the rent decrease if the service for alternative d would go from A to B?

• Answer: 100\$

	Ь	c'	c''	d	d'
↑Customers	80	78	78	85	85
<i>↑Services</i>	В	С	В	Α	В
<i>↑Surface area</i>	700	500	500	950	950
↓Cost	1700	1500	1500 + 250	1900	1900 - 100

- What maximum increase of rent would you accept to pay to go from service C to service B for the alternative c'?
- How much should the rent decrease if the service for alternative d would go from A to B?
- We replace c' by c'', and d by d'

	Ь	c''	d'
<i>↑Customers</i>	80	78	85
<i>↑Services</i>	В	В	В
<i>↑Surface area</i>	700	500	950
↓Cost	1700	1750	1800

- What maximum increase of rent would you accept to pay to go from service C to service B for the alternative c'?
- How much should the rent decrease if the service for alternative d would go from A to B?
- We replace c' by c'', and d by d'

	Ь	c''	d'
<i>↑Customers</i>	80	78	85
<i>↑Services</i>	В	В	В
<i>↑Surface area</i>	700	500	950
↓Cost	1700	1750	1800

- What maximum increase of rent would you accept to pay to go from service C to service B for the alternative c'?
- How much should the rent decrease if the service for alternative d would go from A to B?
- ullet We replace c' by c'', and d by d'
- We can suppress the criteria Services

	Ь	c''	d'
<i>↑Customers</i>	80	78	85
<i>↑Surface area</i>	700	500	950
↓ Cost	1700	1750	1800

- What maximum increase of rent would you accept to pay to go from service C to service B for the alternative c'?
- How much should the rent decrease if the service for alternative d would go from A to B?
- We replace c' by c'', and d by d'
- We can suppress the criteria Services

	Ь	c''	d'
↑Customers	80	78	85
<i>↑Surface area</i>	700	500	950
↓Cost	1700	1750	1800

• Check again dominations

	Ь	c''	d'
<i>↑Customers</i>	80	78	85
<i>↑Surface area</i>	700	500	950
↓Cost	1700	1750	1800

- Check again dominations
- c" can be eliminated

	Ь	d'
<i>↑Customers</i>	80	85
<i>↑Surface area</i>	700	950
↓Cost	1700	1800

- Check again dominations
- c" can be eliminated

	Ь	d'
<i>↑Customers</i>	80	85
<i>↑Surface area</i>	700	950
↓ Cost	1700	1800

- No more domination
- How much would you accept to pay to increase the surface area of 250sf for the alternative *b*?

	Ь	d'
<i>↑Customers</i>	80	85
<i>↑Surface area</i>	700	950
↓ Cost	1700	1800

- No more domination
- How much would you accept to pay to increase the surface area of 250\$ for the alternative b?

Answer: 250\$

	Ь	<i>b</i> ′	d'
<i>↑Customers</i>	80	80	85
<i>↑Surface area</i>	700	700 + 250	950
↓Cost	1700	1700 + 250	1800

- No more domination
- How much would you accept to pay to increase the surface area of 250\$ for the alternative b?

• Answer: 250\$

	b'	d'
†Customers	80	85
<i>↑Surface area</i>	950	950
↓ Cost	1950	1800

- No more domination
- How much would you accept to pay to increase the surface area of 250\$ for the alternative b?

• Answer: 250\$

Replace b by b'

	b'	d'
<i>↑Customers</i>	80	85
<i>↑Surface area</i>	950	950
↓ Cost	1950	1800

- No more domination
- How much would you accept to pay to increase the surface area of 250\$ for the alternative b?

• Answer: 250\$

- Replace b by b'
- Suppress the alternative Surface area

	b'	d'
↑Customers	80	85
↓ Cost	1950	1800

- No more domination
- How much would you accept to pay to increase the surface area of 250\$ for the alternative b?
 - Answer: 250\$
- Replace b by b'
- Suppress the alternative Surface area

	b'	d'
↑Customers	80	85
↓ Cost	1950	1800

• Check again dominations

	b'	d'
↑Customers	80	85
↓Cost	1950	1800

- Check again dominations
- d' dominates b'

	<i>b</i> ′	d'
↑Customers	80	85
↓ <i>Cost</i>	1950	1800

- Check again dominations
- d' dominates b'
- \Rightarrow We advise d in final choice

- We have to prove than $d \succ a$, $d \succ b$, $d \succ c$ and $d \succ e$
- Domination: $b \succ c$ ", $c \sim c'$, $c' \sim c$ ", $d' \sim d$, $b' \sim b$, $d' \succ b'$
- Compromises and dominations:
 - $b \succ e, d \succ a$
 - $c \sim c'$, $c' \sim c$ ", $b \succ c$ " $\Rightarrow b \succ c$
 - $d' \sim d$, $b' \sim b$, $d' \succ b' \Rightarrow d \succ b$

Conjoint Measurement

- Very simple process
- No question about the "intensity of the preferences"

Conjoint Measurement

- Very simple process
- No question about the "intensity of the preferences"

But, a few problems:

- The set of alternatives has to be small
 - Otherwise, too much questions to ask
- If a new alternative appears, the process has to be start all over again

- Let A be the set of alternatives and g_j (j = 1, 2, ..., n) be the criteria
- Let w_i be the weight of g_i , for all j.

$$a \succeq b \quad \Leftrightarrow \quad u(a) \geq u(b)$$

$$\Leftrightarrow \quad \sum_{j=1}^{n} u_{j}(g_{j}(a)) \geq \sum_{j=1}^{n} u_{j}(g_{j}(b))$$

$$\Leftrightarrow \quad \sum_{j=1}^{n} (w_{j} \times g_{j}(a)) \geq \sum_{j=1}^{n} (w_{j} \times g_{j}(b))$$

	а	Ь	Wj
Profit (€)	60 000	48 000	0.6
Time-savings (mn)	60	70	0.4
Weighted sum			

	а	b	Wj
Profit (€)	60 000	48 000	0.6
Time-savings (mn)	60	70	0.4
Weighted sum	36 024	28 828	

	a	Ь	Wj
Profit (€)	60 000	48 000	0.6
Time-savings (mn)	60	70	0.4
Weighted sum	36 024	28 828	

Normalization

	а	Ь	Wj
Profit (€)	60	48	0.6
Time-savings (mn)	60	70	0.4
Weighted sum	60	56.8	

• Normalization of the profit: divided by 1000

	а	Ь	Wj
Profit (€)	30	24	0.6
Time-savings (mn)	60	70	0.4
Weighted sum	42	42.4	

• Normalization of the profit: divided by 2000

	a	Ь	Wj
Profit (€)	30	24	0.6
Time-savings (mn)	60	70	0.4
Weighted sum	42	42.4	

- Normalization of the profit: divided by 2000
- The ranking depends on how the normalization is done
- The alternatives have to be normalize independently
- The result has to be independent of the normalization

- Implicitly, the scales are considered to be linear
- Previous example: The scale of the criteria "Time-savings" is not linear
- The importance of one minute of time is not the same to go from 0 to 2000€ of profit, or to go from 200 000 to 202 000€

Additive multi-attribute value model

- "Natural" extension of the weighted sum which takes into account the non-linearity of preferences
- Let A be the set of alternatives, g_j (j = 1, 2, ..., n) a criteria and w_j the weight of g_j , for all j

$$a \succeq b \Leftrightarrow u(a) \geq u(b)$$
 with $u(a) = f(g_1(a), \dots, g_n(a))$

Specific case: additive form

$$u(a) = \sum_{j=1}^{n} w_j \times u_j(g_j(a))$$

where $u_j(g_j^{min})=0$, $u_j(g_j^{max})=100$ and $\sum_{j=1}^n w_j=1$

How to construct the single-attribute value functions?

- In order to specify an additive model, we have to define the functions u_i and the weights w_i for all $i \in F$
- Several methods exist to construct the u_i and the w_i
- These methods have to be applied several times to construct each function
- Example: Let the problem of "choosing a car" over three criteria {comfort, price, acceleration}

Construction of the functions u_i

- Method 1: when the number of values on the scale E_i is finite
 - 1. Rank the elements of E_i
 - 2. Rank the intervals between two consecutive elements in the previous ranking
 - 3. Assign values which respect information obtain in both previous steps
- Example: comfort criteria g₁
 - "very comfortable" > "comfortable" > "quite comfortable" > "rather uncomfortable" > "uncomfortable"

$$\Rightarrow$$
 $(e_1^1 \succ e_1^2 \succ e_1^3 \succ e_1^4 \succ e_1^5)$

- $2. \ (e_1^2 \ominus_1 e_1^3) \succ (e_1^4 \ominus_1 e_1^3) \succ (e_1^1 \ominus_1 e_1^2) \sim (e_1^4 \ominus_1 e_1^5)$
- 3. $u_1(e_1^1) = 100$, $u_1(e_1^2) = 85$, $u_1(e_1^3) = 45$, $u_1(e_1^4) = 15$, $u_1(e_1^5) = 0$

Construction of the functions u_i

- Method 2: price criteria g₂ (from 10 to 20 k€)
 - 1. Discretization of the scale:

⇒
$$e_2^1 = 20k$$
€, $e_2^2 = 18k$ €, $e_2^3 = 16k$ €, $e_2^4 = 14k$ €, $e_2^5 = 12k$ €, $e_2^6 = 10k$ €

- $2. \ (e_2^2 \ominus_2 e_2^1) \prec (e_2^3 \ominus_2 e_2^2) \prec (e_2^4 \ominus_2 e_2^3) \prec (e_2^5 \ominus_2 e_2^4) \sim (e_2^6 \ominus_2 e_2^5)$
- 3. $u_2(e_2^1) = 0$, $u_2(e_2^2) = 10$, $u_2(e_2^3) = 25$, $u_2(e_2^4) = 45$, $u_2(e_2^5) = 70$, $u_2(e_2^6) = 100$
- 4. We assume that the function is piecewise linear

Construction of the functions u_i

- Method 2: Acceleration criteria g₃ (from 28 to 31s for 1km standing start)
 - 1. Discretization of the scale:

$$\Rightarrow e_3^1 = 28s, e_3^2 = 28.5s, e_3^3 = 29s, e_3^4 = 29.5s, e_3^5 = 30s, e_3^6 = 30.5s, e_3^7 = 31s$$

- 2. $(e_3^2 \ominus_3 e_3^1) \succ (e_3^3 \ominus_3 e_3^2) \succ (e_3^4 \ominus_3 e_3^3) \succ (e_3^5 \ominus_3 e_3^4) \succ (e_3^6 \ominus_3 e_3^5) \sim (e_3^7 \ominus_3 e_3^6)$
- 3. $u_3(e_3^1) = 100$, $u_3(e_3^2) = 50$, $u_3(e_3^3) = 30$, $u_3(e_3^4) = 12.5$, $u_3(e_3^5) = 8$, $u_3(e_3^6) = 4$, $u_3(e_3^7) = 0$
- 4. We assume that the function is piecewise linear

Construction of the weights w_i

- 1. We construct one alternative *per* criteria, such that the alternative *i* has the best evaluation for criteria *i*, and the worst evaluation for all other criteria:
 - Let b_i be an alternative such that $\forall j \neq i$, $g_j(b_i) = g_j^{min}$, and $g_i(b_i) = g_i^{max}$
 - Rank all the alternatives b_j following the preferences of the decision-maker
 - If for example this ranking is $b_n \succ \ldots \succ b_1$, we deduce that $w_n \ge \ldots \ge w_1$

Construction of the weights w_i

- 2. Choose an alternative b such that:
 - $g_i(b) = g_i^{min} \ \forall i \neq n$
 - Specify $g_n(b)$ such that $b_1 \sim b$. We have:

$$u(b_1) = u(b)$$

$$\Rightarrow \sum_{i=1}^{n} u_i(b_1) = \sum_{i=1}^{n} u_i(b)$$

$$\Rightarrow 100 \times w_1 = u_n(g_n(b)) \times w_n$$

$$\Rightarrow \frac{w_n}{w_1} = \frac{100}{u_n(g_n(b))}$$

- 3. Proceed on the same way for g_2, \ldots, g_{n-1}
- 4. We obtain thus $\frac{w_n}{w_i}$, $\forall i \in \{1,\dots,n-1\}$

1. (uncomfortable, $20k \in$, **28s**) \succ (uncomfortable, $10k \in$, 31s) \succ (very comfortable, $20k \in$, 31s). We have:

- 1. (uncomfortable, $20k \in$, 28s) \succ (uncomfortable, $10k \in$, 31s) \succ (very comfortable, $20k \in$, 31s). We have:
 - $b_3 \succ b_2 \succ b_1$, and thus $u(b_3) > u(b_2) > u(b_1)$,

- 1. (uncomfortable, $20k \in$, **28s**) \succ (uncomfortable, $10k \in$, 31s) \succ (**very comfortable**, $20k \in$, 31s). We have:
 - $b_3 \succ b_2 \succ b_1$, and thus $u(b_3) > u(b_2) > u(b_1)$,
 - So, $w_3 > w_2 > w_1$

- 1. (uncomfortable, $20k \in$, **28s**) \succ (uncomfortable, $10k \in$, 31s) \succ (very comfortable, $20k \in$, 31s). We have:
 - $b_3 \succ b_2 \succ b_1$, and thus $u(b_3) > u(b_2) > u(b_1)$,
 - So, $w_3 > w_2 > w_1$
- 2. (very comfortable, 20k \in , 31s) \sim (uncomfortable, 20k \in , 29.5s) So, $100 \times w_1 = u_3(29.5s) \times w_3$, thus

$$\frac{w_3}{w_1} = \frac{100}{u3(29.5s)} = \frac{100}{12.5} = 8$$

- 1. (uncomfortable, $20k \in$, **28s**) \succ (uncomfortable, $10k \in$, 31s) \succ (**very comfortable**, $20k \in$, 31s). We have:
 - $b_3 \succ b_2 \succ b_1$, and thus $u(b_3) > u(b_2) > u(b_1)$,
 - So, $w_3 > w_2 > w_1$
- 2. (very comfortable, 20k \in , 31s) \sim (uncomfortable, 20k \in , 29.5s) So, $100 \times w_1 = u_3(29.5s) \times w_3$, thus

$$\frac{w_3}{w_1} = \frac{100}{u3(29.5s)} = \frac{100}{12.5} = 8$$

3. (uncomfortable, $10k \in 31s$) \sim (uncomfortable, $20k \in 28.5$) So, $100 \times w_2 = u_3(28.5s) \times w_3$, thus

$$\frac{w_3}{w_2} = \frac{100}{u3(28.5s)} = \frac{100}{50} = 2$$

- 1. (uncomfortable, $20k \in$, **28s**) \succ (uncomfortable, $10k \in$, 31s) \succ (**very comfortable**, $20k \in$, 31s). We have:
 - $b_3 \succ b_2 \succ b_1$, and thus $u(b_3) > u(b_2) > u(b_1)$,
 - So, $w_3 > w_2 > w_1$
- 2. (very comfortable, 20k \in , 31s) \sim (uncomfortable, 20k \in , 29.5s) So, $100 \times w_1 = u_3(29.5s) \times w_3$, thus

$$\frac{w_3}{w_1} = \frac{100}{u3(29.5s)} = \frac{100}{12.5} = 8$$

3. (uncomfortable, $10k \in 31s$) \sim (uncomfortable, $20k \in 28.5$) So, $100 \times w_2 = u_3(28.5s) \times w_3$, thus

$$\frac{w_3}{w_2} = \frac{100}{u3(28.5s)} = \frac{100}{50} = 2$$

4. Let's say that $w_3=8$, $w_1=1$ and $w_2=4$. As we want $\sum_{i=1}^3 w_i=1$, we have

- 1. (uncomfortable, $20k \in$, **28s**) \succ (uncomfortable, $10k \in$, 31s) \succ (**very comfortable**, $20k \in$, 31s). We have:
 - $b_3 \succ b_2 \succ b_1$, and thus $u(b_3) > u(b_2) > u(b_1)$,
 - So, $w_3 > w_2 > w_1$
- 2. (very comfortable, 20k \in , 31s) \sim (uncomfortable, 20k \in , 29.5s) So, $100 \times w_1 = u_3(29.5s) \times w_3$, thus

$$\frac{w_3}{w_1} = \frac{100}{u3(29.5s)} = \frac{100}{12.5} = 8$$

3. (uncomfortable, $10k \in 31s$) \sim (uncomfortable, $20k \in 28.5$) So, $100 \times w_2 = u_3(28.5s) \times w_3$, thus

$$\frac{w_3}{w_2} = \frac{100}{u3(28.5s)} = \frac{100}{50} = 2$$

4. Let's say that $w_3=8$, $w_1=1$ and $w_2=4$. As we want $\sum_{i=1}^3 w_i=1$, we have $w_1=\frac{1}{12}, \ w_2=\frac{4}{12}, \ w_3=\frac{8}{12}$

• Outranking relation O(x, y): "x is at least as good than y"

$$O(x, y) \Leftrightarrow C(x, y) \land \neg D(x, y)$$

- We say that an action x outranks an action y if:
 - x is as least as good than y for a majority of criteria: concordance condition C(x, y)
 - without beeing to much worse with respect to the other criteria: no discordance condition ¬D(x, y),
 - \rightarrow that is, there is no criteria veto for O(x, y).

• Example of a concordance index C(x, y):

$$C(x,y) \Leftrightarrow \frac{\sum_{j \in >_{xy}} w_j}{\sum_i w_i} \geq \gamma$$

with

- $>_{xy}$ the set of criteria for which x > y
- w_j the weight of criteria j
- ullet γ the the concordance threshold (majority threshold)

• Example of a discordance index D(x, y):

$$D(x,y) \Leftrightarrow \exists j \colon g_j(y) - g_j(x) > v_j$$

with

- $g_j(x)$ the evaluation of x for the criteria j
- v_j is the **veto threshold** for the criteria j

Example

Two alternatives (a and b), five criteria and $\gamma = 0.60$ (concordance threshold)

	Cr1	Cr2	Cr3	Cr4	Cr5
а	10	50	1000	72	60
Ь	7	40	950	69	74
Wj	0.1	0.3	0.1	0.2	0.3
veto		15			20

- C(a,b): $\sum_{j \in x_v} w_j = 0.1 + 0.3 + 0.1 + 0.2 = 0.7 \ge 0.6$
- $\neg D(a, b)$: $g_5(b) g_5(a) = 14 < 20$
- $\Rightarrow O(a, b)$

Example

Two alternatives (a and b), five criteria and $\gamma = 0.60$ (concordance threshold)

	Cr1	Cr2	Cr3	Cr4	Cr5
а	10	50	1000	72	60
Ь	7	40	950	69	84
Wj	0.1	0.3	0.1	0.2	0.3
veto		15			20

- C(a, b): $\sum_{j \in x_y} w_j = 0.1 + 0.3 + 0.1 + 0.2 = 0.7 \ge 0.6$
- D(a, b): $g_5(b) g_5(a) = 24 > 20$

$$\Rightarrow \neg O(a, b)$$

Outranking methods and semi order

- It is possible to add an indifference threshold q_i for each criteria j
- The associated preference order is then a semi order

Outranking methods and semi order

- It is possible to add an indifference threshold q_i for each criteria j
- The associated preference order is then a semi order
- Concordance index C(x, y):

$$C(x,y) \Leftrightarrow \frac{\sum_{j \in >_{xy}} w_j}{\sum_i w_i} \geq \gamma$$

• $j \in >_{xy}$ iff

$$g_j(x) > g_j(y) + q_j$$

- Outranking methods allow to:
 - Choose an alternative
 - Rank the alternatives
 - Allocate alternatives to different categories

- The outranking relation can be not transitive: it is possible to have cycles
- The outranking relation is not complete

- The outranking relation can be not transitive: it is possible to have cycles
- The outranking relation is not complete
- ⇒ Reduction of the cycles and/or computation of the core

- The outranking relation can be not transitive: it is possible to have cycles
- The outranking relation is not complete
- ⇒ Reduction of the cycles and/or computation of the core
 - Reduction of the cycles: every alternatives in a cycle are considered indifferent
 - Core

Core of a graph:

- Every not outranked action is in the core of the graph
- No action in the core can outrank another action of the core
- Every action which is not in the core of the graph has to be outranked by an action of the core, otherwise it has to be in the core
- A graph can have several cores. If the graph does not contain any cycle, there is a unique core

Ranking problematic

- Rank the alternatives
 - Alternatives which are not outranked are the best alternatives
 - We eliminate those. The alternatives which are now not outranked are the second best ones
 - We eliminate those and proceed again...

Allocation problematic

- Allocate each alternative to a pre-defined category (partition of A)
- We do not want to compare the alternatives, but to evaluate their own individual value
- The allocation is ordered
- Three steps:
 - Define some reference alternatives to characterize the categories (limit profiles),
 - 2. Compare each alternative $a \in A$ with the reference alternatives
 - 3. Apply a procedure of allocation