Steven Rosendahl Homework 9

1. Directly calculate $\sum_{d|12} \phi(d)$ and verify that you obtain 12 as your answer.

$$\sum_{d|12} \phi(d) = \phi(1) + \phi(2) + \phi(3) + \phi(4) + \phi(6) + \phi(12)$$

$$= 1 + 1 + 2 + 2 + 2 + 4$$

$$= 12$$

2. Suppose that p_1, p_2, \ldots, p_N are distinct primes. Prove that

$$\frac{\phi(p_1p_2\dots p_N)}{p_1p_2\dots p_N} = \prod_{n=1}^N \left(1 - \frac{1}{p_n}\right)$$

$$\frac{\phi(p_1 p_2 \dots p_N)}{p_1 p_2 \dots p_N} = \frac{\phi(p_1)\phi(p_2) \dots \phi(p_N)}{p_1 p_2 \dots p_N}$$

$$= \prod_{n=1}^N \frac{\phi(p_n)}{p_n}$$

$$= \prod_{n=1}^N \frac{p_n - 1}{p_n}$$

$$= \prod_{n=1}^N \left(1 - \frac{1}{p_n}\right)$$

3. Find a value of n such that $\phi(n)/n < 1/4$. What do you think is a good strategy for choosing n so that $\phi(n)/n$ is close to zero?

One value for which this holds true is n = 210. $\phi(210)$ is 48, and 48/210 = 8/35 < 1/4. One strategy for finding these numbers would be to pick values for which $\phi(n)$ is small but has many unique prime factors.

- 4. Suppose that p is prime and m and n are non-negative integers.
 - (a) Prove that $\phi(p^{m+n}) \ge \phi(p^m)\phi(p^n)$.

We can consider $\phi(p^{m+n})$. If we let m+n=j, then we have $\phi(p^j)$, which can be expressed as p^j-p^{j-1} . If we consider $\phi(p^m)\phi(p^n)$, we have

$$\begin{split} \phi(p^m)\phi(p^n) &= (p^m - p^{m-1})(p^n - p^{n-1}) \\ &= p^{m+n} - 2p^{m+n-1} + p^{m+n-2} \\ &= p^j - 2p^{j-1} + p^{j-2}. \end{split}$$

If we compare the two values, we get

$$p^{j} - p^{j-1} \stackrel{?}{\geq} p^{j} - 2p^{j-1} + p^{j-2}$$

 $p^{j-1} \geq p^{j-2}$.

We know this is true since m, n > 0, so j > 0.

(b) Under what additional assumptions on m and n do we obtain $\phi(p^{m+n}) = \phi(p^m)\phi(p^n)$?

If either m or n, but not both m and n are zero, then we have $\phi(p^{m+0}) = \phi(p^m)\phi(p^0) = \phi(p^m)$ or $\phi(p^{0+n}) = \phi(p^0)\phi(p^n) = \phi(p^n)$.

- 5. Suppose that a and b are positive integers.
 - (a) Prove that $\phi(ab) \geq \phi(a)\phi(b)$.

Suppose that a and b are not relatively prime and consider the product $\phi(a)\phi(b)$. Then

$$\begin{split} \phi(a)\phi(b) &< \phi(p_1^{\alpha_1}p_2^{\alpha_2}\dots p_r^{\alpha_r})\phi(p_1^{\beta_1}p_2^{\beta_2}\dots p_r^{\beta_r}) \\ &= \phi(p_1^{\alpha_1})\phi(p_2^{\alpha_2})\dots \phi(p_r^{\alpha_r})\phi(p_1^{\beta_1})\phi(p_2^{\beta_2})\phi(p_r^{\beta_r}) \\ &= \prod_{i=1}^r \left(p_i^{\alpha_i} - p_i^{\alpha_i-1}\right) \prod_{i=1}^r \left(p_i^{\beta_i} - p_i^{\beta_i-1}\right) \\ &= \prod_{i=1}^r p_i^{\alpha_i} \left(1 - \frac{1}{p_i}\right) \prod_{i=1}^r p_i^{\beta_i} \left(1 - \frac{1}{p_i}\right) \\ &= ab \prod_{i=1}^r \left(1 - \frac{1}{p_i}\right)^2. \end{split}$$

We can also consider the function $\phi(ab)$.

$$\begin{split} \phi(ab) &= \phi(p_1^{\alpha_1} p_2^{\alpha_2} \dots p_r^{\alpha_r} p_1^{\beta_1} p_2^{\beta_2} \dots p_r^{\beta_r}) \\ &= \phi(p_1^{\alpha_1 + \beta_1} p_2^{\alpha_2 + \beta_2} \dots p_r^{\alpha_r + \beta_r}) \\ &= \phi(p_1^{\alpha_1 + \beta_1}) \phi(p_2^{\alpha_2 + \beta_2}) \dots \phi(p_r^{\alpha_r + \beta_r}) \\ &= \prod_{i=1}^r p_i^{\alpha_i + \beta_i} - p_i^{\alpha_i + \beta_i} \frac{1}{p} \\ &= \prod_{i=1}^r p_i^{\alpha_i + \beta_i} \left(1 - \frac{1}{p_i}\right) \\ &= ab \prod_{i=1}^r \left(1 - \frac{1}{p_i}\right). \end{split}$$

Since

$$\phi(ab) = ab \prod_{i=1}^{r} \left(1 - \frac{1}{p_i}\right) > ab \prod_{i=1}^{r} \left(1 - \frac{1}{p_i}\right)^2 > \phi(a)\phi(b),$$

we have

$$\phi(ab) > \phi(a)\phi(b)$$
.

If gcd(a,b) = 1, then we can say $\phi(ab) = \phi(a)\phi(b)$. Therefore $\phi(ab) \ge \phi(a)\phi(b)$.

- (b) Prove that $\phi(ab) = \phi(a)\phi(b)$ if and only if gcd(a,b) = 1.
 - \Rightarrow) Suppose $\phi(ab) = \phi(a)\phi(b)$ implies gcd(a,b) > 1. We know from (a) that when a and b are not relatively prime, $\phi(ab) > \phi(a)\phi(b)$, which is a direct contradiction to $\phi(ab) = \phi(a)\phi(b)$. Therefore $\phi(ab) = \phi(a)\phi(b)$ implies gcd(a,b) = 1.
 - \Leftarrow) Suppose gcd(a,b)=1. Then a and b are relatively prime, so $\phi(ab)=\phi(a)\phi(b)$ by the theorem.
- 6. Suppose that n is a positive integer and k is any integer.
 - (a) Prove that gcd(n, k) = 1 if and only if gcd(n, n k) = 1.
 - \Leftarrow) Suppose that gcd(n,k) > 1. Then gcd(n,k) = q, so $q \mid n$ and $q \mid k$, n = qa and k = qb for some $a,b \in \mathbb{Z}$. Then n-k = pa-pb = p(a-b), so $p \mid n-k$, which implies that gcd(n,n-k) > 1. Therefore, by contrapositive, gcd(n,k) = 1 implies gcd(n,n-k) = 1.
 - \Rightarrow) Suppose gcd(n, n-k) > 1. Then there exists $p \in \mathbb{Z}$ such that $p \mid n$ and $p \mid k$. Then n = pa and k = pb for some $a, b \in \mathbb{Z}$. We can express n k = pa pb = p(a b), so $p \mid (n k)$ and $p \mid n$, and gcd(n, n k) > 1.

(b) Prove that $\phi(n)$ is an even integer for all $n \geq 3$.

By definition, the totient function counts the number of units in \mathbb{Z}_n . Suppose that $n \geq 3$. If we take any element k from \mathbb{Z}_n , we know by (a) that if k is relatively prime to n, then n-k is relatively prime to n. Therefore, if k is a unit in \mathbb{Z}_n , then n-k is also a unit in \mathbb{Z}_n . If n is odd, then we know that there will not be any situation where n-k=k, since that would imply that n=2k, or n is even which is a contradiction. Then for every unit k in \mathbb{Z}_n , we can find another unit n-k also in \mathbb{Z}_n , which means there are an even number of units in \mathbb{Z}_n , so $\phi(n) \in \{2j \mid j \in \mathbb{Z}\}$ when n is odd. If n is even, however, there may be a unit k in \mathbb{Z}_n such that k=n-k. If this is the case, then this unit will be the same as n/2. Since it is a unit, then $\gcd(n/2, n) = 1$. We saw that n was even, so we can say n=2l, $l \in \mathbb{Z}$. Then $\gcd(2l/2, 2l) = \gcd(l, 2l) \neq 1$, so there cannot be a unit k in an even \mathbb{Z}_n such that k=n-k.

7. If n is a positive integer prove that $\phi(n) = 2$ if and only if $n \in \{3, 4, 6\}$.

⇒) Suppose $\phi(n) = 2$ and let $k \in \mathbb{Z} > 2$ and $l \in \mathbb{Z} > 1$. We want to consider the case where $n = 2^k 3^l$, so $\phi(n) = \phi(2^k 3^l) = (2^k - 2^{k-1})(3^l - 3^{l-1})$. This can be further simplified to $2^k (1/2) 3^l (2/3) = 2^k 3^l (1/3) > 2$ for l > 1 and k > 2. Therefore we only have $\{1, 2, 3, 4, 6, 12\}$ to consider. Since $\phi(1) = \phi(2) = 1$ and $\phi(12) = 4$, we can eliminate those values. However, $\phi(3) = \phi(4) = \phi(6) = 2$, so $\phi(n) = 2$ when $n \in \{3, 4, 6\}$.

 \Leftarrow) Suppose $n \in \{3, 4, 6\}$. Then $\phi(3) = 2$, $\phi(4) = 2$, and $\phi(6) = 2$.