

PROGRAMA SINTÉTICO

UNIDAD ACADÉMICA: ESCUELA SUPERIOR DE CÓMPUTO, UNIDAD PROFESIONAL INTERDISCIPLINARIA DE INGENIERÍA CAMPUS COAHUILA

PROGRAMA ACADÉMICO: Ingeniería en Inteligencia Artificial

UNIDAD DE APRENDIZAJE: Mecánica y electromagnetismo SEMESTRE: I

				l			
Aplica la mecánica y el	PROPÓSITO DE electromagnetismo a pro			E APRENDIZAJE a partir de sus princip	oios teóricos básicos.		
CONTENIDOS:	I. Mecánica II. Electrostática III. Magnetismo						
	Métodos de enseñan	za		Estrategias de apre	endizaje		
	a) Inductivo		Х	a) Estudio de casos	S		
ORIENTACIÓN	b) Deductivo			b) Aprendizaje bas	ado en problemas	Х	
DIDÁCTICA:	c) Analógico			c) Aprendizaje orie	ntado proyectos		
	d)			d)			
	e)			e)			
	Diagnóstica		Х	Saberes Previamer	te Adquiridos	Х	
	Solución de casos		Organizadores gráf	icos			
	Problemas resueltos	Х	Problemarios	roblemarios			
EVALUACIÓN Y ACREDITACIÓN:	Reporte de proyectos			Exposiciones			
71011	Reportes de indagaci						
	Reportes de práctica	Х	Otras evidencias a	evaluar:			
	Evaluaciones escrita	s	Х				
	Autor(es)	Año	Títu	lo del documento	Editorial / ISBN	1	
	Feynman, R., Leighton, R. & Sands, M.	2018	Feynma	nes de física de an I. Mecánica, ón y calor	Fondo de Cultura Económica/ 9786071659		
BIBLIOGRAFÍA	Resnick, R., Halliday D. & Krane, K.	2002	Física \	/ol. 1 y 2	Grupo Editorial Patria/ 9789702402572, 9789702403265		
BÍSICA:	Serway, R. & Jewett, J.	2015		oara ciencias e ría, Vol. 1 y 2	Cengage Learning/ 9786075191980, 9781133954149		
	Tipler, P. & Mosca, G.	2010		oara la ciencia y la gía Vol. 1 y 2	Reverté/ 9788429144291, 978429144307		
	Young, H. & Freedman, R.	2008	Física ι	universitaria Vol. 1 y 2	Pearson/Addison Wesley/ 9786074422887, 978- 6074423044		

INSTITUTO POLITÉCNICO NACIONAL SECRETARÍA ACADÉMICA

DIRECCIÓN DE EDUCACIÓN SUPERIOR

PROGRAMA DE ESTUDIOS

Mecánica y electromagnetismo **UNIDAD DE APRENDIZAJE: HOJA** DΕ

UNIDAD ACADÉMICA: ESCUELA SUPERIOR DE CÓMPUTO, UNIDAD PROFESIONAL INTERDISCIPLINARIA DE INGENIERÍA CAMPUS COAHUILA								
PROGRAMA ACADI	PROGRAMA ACADÉMICO: Ingeniería en Inteligencia Artificial							
SEMESTRE:	SEMESTRE: ÁREA DE FORMACIÓN: MODALIDAD:							
I		Científica Básica		Escolarizada				
	T	IPO DE UNIDAD DE AP	RENDIZAJE:					
		Teórica-Práctica/ Ob	ligatoria					
VIGENTE A PARTIR DE: CRÉDITOS:								
Enero 2020 TEPIC: 10.5 SATCA: 8.1								
ΙΝΤΕΝΟΙΌΝ ΕΠΙΙΟΔΤΙVΔ								

INTENCIÓN EDUCATIVA

La unidad de aprendizaje contribuye al perfil de egreso del Ingeniero en Inteligencia Artificial con el desarrollo de la

electromagnetismo. Asimismo, foment autónomo.	e Ingeniería a partir de los principios ted a las habilidades transversales como trab elación de manera antecedentes ni latera	pajo en equipo, creatividad y trabajo
-	DPÓSITO DE LA UNIDAD DE APRENDIZAJ o a problemas teóricos a partir de sus pri	
Typica ia medanica y ci dicetromagnetismo	o a problemao teorioco a partir de suo pri	noipies teeriees basiess.
TIEMPOS ASIGNADOS	UNIDAD DE APRENDIZAJE DISEÑADA POR:	AUTORIZADO Y VALIDADO
HORAS TEORÍA/SEMANA: 4.5	Comisión de Diseño del Programa Académico.	POR:
HORAS PRÁCTICA/SEMANA: 1.5		
HORAS TEORÍA/SEMESTRE: 81.0	APROBADO POR:	
HORAS PRÁCTICA/SEMESTRE: 27.0	Comisión de Programas Académicos del H. Consejo General Consultivo	
HORAS APRENDIZAJE AUTÓNOMO: 27.0	del IPN.	
HORAS TOTALES/SEMESTRE: 108.0	25/11/2019	Ing. Juan Manuel Velázquez Peto Director de Educación Superior

UNIDAD DE APRENDIZAJE: Mecánio

Mecánica y electromagnetismo

HOJA

3

DE 8

UNIDAD TEMÁTICA I Mecánica	CONTENIDO		HORAS CON DOCENTE		
Mecanica		T	Р	AA	
UNIDAD DE COMPETENCIA Resuelve problemas de ingeniería a partir de los principios básicos de la cinemática, dinámica y conservación de la energía.	1.1 Cinemática 1.1.1.Movimiento rectilíneo: marco de referencia 1.1.2.Desplazamiento, velocidad y aceleración 1.1.2. Movimiento rectilíneo uniforme 1.1.3. Movimiento rectilíneo uniformemente acelerado: caída libre 1.2.4. Movimiento en el plano: Tiro parabólico y movimiento circular uniforme	9.0	3.0	3.0	
	 1.2. Dinámica 1.2.1. Marcos de referencia inerciales 1.2.2. Primera Ley de Newton: ley de la inercia y conceptualización de masa 1.2.3. Segunda Ley de Newton: relación entre aceleración y fuerza. Tipos de fuerzas: gravitacional, normal, tensión, fricción 1.2.4. Diagrama de cuerpo libre 1.2.5. Tercera Ley de Newton: acción y reacción 1.2.6. Aplicaciones: equilibrio y dinámica del movimiento 	12.0	3.0	3.0	
	1.3. Conservación de la energía 1.3.1 Trabajo, energía cinética y energía potencial (gravitacional y elástica) y potencia 1.3.2. Relación del trabajo y la energía cinética 1.3.3. Relación del trabajo y la energía potencial 1.3.4. Conservación de la energía mecánica	9.0	3.0	3.0	
	Subtotal	30.0	9.0	9.0	

INSTITUTO POLITÉCNICO NACIONAL SECRETARÍA ACADÉMICA

DIRECCIÓN DE EDUCACIÓN SUPERIOR

UNIDAD DE APRENDIZAJE: Mecánica y electromagnetismo

HOJA: 4 DE

UNIDAD TEMÁTICA II Electrostática	CONTENIDO	HORA		HRS
Electrostatica		Т	Р	AA
UNIDAD DE COMPETENCIA Resuelve ejercicios típicos y problemas de ingeniería a partir de los principios básicos de campo eléctrico, Ley de Gauss y el potencial eléctrico.	Propiedades eléctricas de las cargas y los materiales 2.1.2 La Ley de Coulomb y el Principio de	10.5		3.0
	2.2. Ley de Gauss 2.2.1 Flujo de campo eléctrico: superficie cerrada, superficie gaussiana y carga neta encerrada 2.2.2 Ley de Gauss 2.2.3 Aplicaciones de la Ley de Gauss: esfera, cilindro, plano y línea de carga	9.0		4.0
	2.3. Potencial eléctrico 2.3.1 Potencial eléctrico, diferencia de potencial, superficie equipotencial y energía potencial electrostática 2.3.3 Potencial eléctrico debido a distribuciones de carga discreta y continua 2.3.4 Campo eléctrico como gradiente del potencial	12.0	9.0	4.0
	Subtotal	31.5	9.0	11.0

DE 8

HOJA: 5

UNIDAD DE APRENDIZAJE:

Mecánica y electromagnetismo

UNIDAD TEMÁTICA III Magnetismo	CONTENIDO		HORAS CON DOCENTE		
Magnetismo		Т	Р	AA	
UNIDAD DE COMPETENCIA Resuelve problemas de Ingeniería a partir de las leyes físicas que involucran el campo magnético y la fuerza magnética.	3.1 Campo magnético 3.1.1 Campo de inducción magnética, flujo magnético, líneas de inducción magnética 3.1.2 La Ley de Gauss para el magnetismo 3.1.3 Movimiento de partículas cargadas en campos magnéticos 3.1. 4 Fuerza magnética sobre un conductor con corriente	7.5		3.0	
	3.2 Fuentes de campo magnético 3.2.1 Campo magnético de una carga en movimiento 3.2.2 Ley de Biot-Savart. Aplicaciones 3.2.3 Ley de Ampère. Aplicaciones 3.2.4 Campo magnético producido por alambres con corriente	12.0	9.0	4.0	
	Subtotal	19.5	9.0	7.0	

UNIDAD DE APRENDIZAJE: Mecánica y electromagnetismo HOJA: 6 DE

ESTRATEGIAS DE APRENDIZAJE

Estrategia de aprendizaje basado en problemas

El alumno desarrollará las siguientes actividades:

- Solución de problemarios relativos a los temas de movimiento rectilíneo uniforme y uniformemente acelerado, caída libre, tiro parabólico, movimiento circular uniforme, leyes de Newton, trabajo, conservación de la energía, carga eléctrica, campo eléctrico, ley de Gauss, potencial eléctrico, fuerza magnética, ley de Biot-Savart, ley de Ampère y campo magnético producido por alambres con corriente.
- 2. Elaboración de un dispositivo demostrativo de alguna ley física.
- 3. Solución de un problema seleccionado y estructurado relativo a la aplicación de la Física en la ingeniería.
- 4. Realización de prácticas

EVALUACIÓN DE LOS APRENDIZAJES

Evaluación diagnóstica.

Portafolio de evidencias:

- 1. Problemario resuelto
- 2. Presentación funcional del dispositivo
- 3. Problema resuelto
- 4. Reporte de prácticas
- 5. Evaluación escrita

RELACIÓN DE PRÁCTICAS							
PRÁCTICA No.	NOMBRE DE LA PRÁCTICA	UNIDADES TEMÁTICAS	LUGAR DE REALIZACIÓN				
1	Movimiento rectilíneo uniforme y movimiento rectilíneo uniformemente acelerado	I	Laboratorio de Física				
2	Caída libre	1					
3	Movimiento de proyectiles	I					
4	Equilibrio de fuerzas	II					
5	Segunda Ley de Newton	II					
6	Determinación del coeficiente de rozamiento	II					
7	Energía cinética y energía potencial	II					
8	Campo eléctrico en un capacitor de placas paralelas	III					
9	Ley de Biot-Savart. Campo magnético de una bobina	III					
		TOTAL DE HORAS:	27.0				

Tipo

В

В

В

В

В

INSTITUTO POLITÉCNICO NACIONAL SECRETARÍA ACADÉMICA **DIRECCIÓN DE EDUCACIÓN SUPERIOR**

DE

Χ

HOJA:

UNIDAD DE APRENDIZAJE:

Año

2018

2002

2015

2010

2008

Autor(es)

Feynman, R., Leighton,

R. & Sands, M. Resnick, R., Halliday D.

& Krane, K.

Serway, R. & Jewett, J.

Tipler, P. & Mosca, G.

Young, H. & Freedman,

R.

Mecánica y electromagnetismo

Bibliografía					
		Documento			
Título del documento	Editorial/ISBN	Libro	Antología	Otros	
Lecciones de física de Feynman I. Mecánica, radiación y calor	Fondo de Cultura Económica/ 9786071659736	Х			
Física Vol. 1 y 2	Grupo Editorial Patria/ 9789702402572, 9789702403265	Х			
Física para ciencias e ingeniería, Vol. 1 y 2	Cengage Learning/ 9786075191980, 9781133954149	Х			
Física para la ciencia y la tecnología Vol. 1 y 2	Reverté/ 9788429144291, 978429144307	Х			
•	Pearson/Addison Wesley/				

9786074422887, 978-

6074423044

Recursos digitales

Física universitaria Vol. 1 y 2

Autor, año, título y Dirección Electrónica	Texto	Simulador	Imagen	Tutorial	Video	Presentación	Diccionario	Otro
Khan Academy. Curso de Física. Recuperado el 08 de noviembre de 2019 de: https://es.khanacademy.org/science/physics				Х				
MIT Open Course. Classical Mechanics Recuperado el 08 de noviembre de 2019 de: https://ocw.mit.edu/courses/physics/8-01sc-classical-mechanics-fall-2016/index.htm				Х	Х			
Tracker. Video Analysis and modeling tool. Recuperado el 08 de noviembre de 2019 de: https://physlets.org/tracker/								Х
MIT Open Course. Kinematics. Recuperado el 08 de noviembre de 2019 de: https://ocw.mit.edu/courses/physics/8-01sc-classical-mechanics-fall-2016/week-1-kinematics/				Х	Х			
MIT Open Course. Newton's Law. Recuperado el 08 de noviembre de 2019 de: https://ocw.mit.edu/courses/physics/8-01sc-classical-mechanics-fall-2016/week-2-newtons-laws/				х	Х			
MIT Open Course.Circular Motion. Recuperado el 08 de noviembre de 2019 de: https://ocw.mit.edu/courses/physics/8-01sc-classical-mechanics-fall-2016/week-3-circular-motion/				Х	Х			
MIT Open Course. Kinetic Energy and Work. Recuperado el 08 de noviembre de 2019 de: https://ocw.mit.edu/courses/physics/8-01sc-classical-mechanics-fall-2016/week-7-kinetic-energy-and-work/				Х	Х			
MIT Open Course. Potential Energy and Energy Conservation. Recuperado el 08 de noviembre de 2019 de: https://ocw.mit.edu/courses/physics/8-01sc-classical-mechanics-fall-2016/week-8-potential-energy-and-energy-conservation/				Х	Х			
MIT Open Course. Physics II. Electricity and Magnetism. Recuperado el 08 de noviembre de 2019 de: https://ocw.mit.edu/courses/physics/8-02-physics-ii-electricity-and-magnetism-spring-2007/index.htm				Х	Х			

UNIDAD DE APRENDIZAJE: M

Mecánica y Electromagnetismo

HOJA: 8 **DE** 8

PERFIL DOCENTE: Maestría o Doctorado en Física o áreas afines, con profesión de docente o docente-investigador, o bien, profesionista en áreas afines a la Física.

EXPERIENCIA PROFESIONAL	CONOCIMIENTOS	HABILIDADES DIDÁCTICAS	ACTITUDES
Mínima de tres años en	Álgebra, Cálculo Diferencial	Manejo de estrategias	Responsabilidad
docencia a nivel superior o	e Integral en una y varias	didácticas centradas en el	Tolerancia
investigación en Física	variables, Ecuaciones	aprendizaje.	Compromiso social
experimental.	diferenciales, Mecánica,	Planificación del proceso de	Honestidad
	Electromagnetismo,	enseñanza.	Respeto
	Mediciones y Propagación	Administración de las	Puntualidad
	de errores, Análisis	metodologías didácticas:	Empatía
	estadístico de experimentos.	trabajo en equipo, organizar	
	-	grupos de aprendizaje, uso	
		de TIC para el proceso de	
		enseñanza-aprendizaje.	
		, ,	

Dra. Claudia Celia Díaz Huerta
Profesora Coordinadora

M. en C. Iván Giovanny Mosso
García
Subdirector Académico
ESCOM

M. en C. Florencio Guzmán Aguilar
Profesor colaborador

Lic. Andrés Ortigoza Campos
Director ESCOM

M. en C. Juan Manuel Carballo Jiménez Profesor colaborador