

Algorithm Analysis

SAMUEL GINN
COLLEGE OF ENGINEERING

COMP 2210 - Dr. Hendrix

Algorithm Analysis

Algorithm analysis is an approach to describing certain efficiency characteristics of an algorithm in terms of certain problem characteristics.

Typically this means describing the time/work or space requirements of an algorithm in terms of its input size.

Linear search on an array of size **N** will require **N** elements to be examined in the worst case.

(problem) input size work requirements

Binary search on an array of size **N** will require approximately $\log_2 N$ elements to be examined in the worst case.

Algorithm analysis allows us to **predict** the performance of algorithms and programs, **compare** competing solutions to the same problem, **guarantee** performance from our software, gain **insight** into techniques for designing efficient algorithms, . . .

Performance guarantees

public class Arrays extends Object

```
public static <T> void sort(T[] a, Comparator<? super T> c)
```

Implementation note: This implementation is a stable, adaptive, iterative mergesort that **requires far fewer than n lg(n) comparisons** when the input array is partially sorted, while offering the performance of a traditional mergesort when the input array is randomly ordered. If the input array is nearly sorted, the implementation **requires approximately n comparisons**. Temporary **storage requirements vary from a small constant** for nearly sorted input arrays **to n/2 object references** for randomly ordered input arrays.

```
public static void sort(int[] a)
```

Implementation note: The sorting algorithm is a Dual-Pivot Quicksort by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm offers O(n log(n)) performance on many data sets that cause other quicksorts to degrade to quadratic performance, and is typically faster than traditional (one-pivot) Quicksort implementations.

COMP 2210 • Dr. Hendrix • 3

Performance bugs

A good understanding of algorithm analysis also allows us to avoid **performance bugs** in our software. A poor understanding of algorithm analysis can lead directly to software that:

- Performs too slowly, especially as input sizes increase
- Consumes too much memory
- · Opens security vulnerabilities, like denial of service attacks

Example: The "beck" exploit in the Apache web server.

Quadratic time complexity

This function required time proportional to the square of the number of '/' characters in the string.

References: http://bit.ly/oEdWvn http://bit.ly/T27uyU

Approaches to algorithm analysis

Empirical analysis Analyze running time based on observations and experiments.

Apply the scientific method:

- 1. Make observations and gather data.
- Hypothesize an explanation for the observations.
- 3. Make predictions based on the hypothesis.
- 4. Formulate an experiment to see if the predictions occur.
- 5. Analyze experimental results to corroborate or falsify the hypothesis.

COMP 2210 • Dr. Hendrix • 5

Approaches to algorithm analysis

Mathematical analysis Develop a cost model that includes costs for individual operations.

Computation model: Simple one-processor random-access machine with non-hierarchical memory

Total running time:

running time: $T(N) = c_1 N + c_2 (N-1) + c_3 (N-1) + c_4 \sum_{j=2}^{N} t_j + c_5 \sum_{j=2}^{N} (t_j - 1)$ $\sum \left(C_i \times f_i \right) \qquad T(N) = c_1 N + c_2 (N-1) + c_3 (N-1) + c_4 \left(\frac{N(N+1)}{2} - 1 \right) + c_5 \left(\frac{N(N-1)}{2} \right)$

Empirical analysis

Make observations: Run the program multiple times, systematically increasing the input size for each run.

Gather data: Time each program run and record the elapsed time along with the associated input size.

Suggestion: Since many of the programs we will deal with have running time proportional to N^k where N is the problem size, it's often useful to successively double the input size and look at the ratio of the elapsed time of successive program runs.

$$T(N) \propto N^k$$

$$\frac{T(2N_i)}{T(N_i)} \propto \frac{(2N_i)^k}{N_i^k} = \frac{2^k N_i^k}{N_i^k} = 2^k$$

N	T(N)	Ratio
N	T(N)	-
2N	T(2N)	T(2N)/T(N)
4N	T(4N)	T(4N)/T(2N)
8N	T(8N)	T(8N)/T(4N)

Ratio approaches a constant: 2^k

COMP 2210 • Dr. Hendrix • 7

Empirical analysis

Example: Experimental analysis of the beck exploit in Apache.

Observations

N	Elapsed Time	Ratio
250	0.061	N/A
500	0.042	1.35
1000	0.112	2.67
2000	0.340	3.04
4000	1.298	3.82
8000	5.334	4.11
16000	21.88	4.10

Since we corroborated our hypothesis, we can say that the ratio will converge to $^{\sim}4 = 2^k = N^k$. So, running time is growing in proportion to N^2 .

Hypothesis

As N doubles, running time is increasing by a factor of 4.

Prediction

For N = 32000, elapsed time will be $^{\sim}87.52$ seconds and for N = 64000, elapsed time will be $^{\sim}350.08$ seconds.

Experimentally test hypothesis

N	Elapsed Time	Ratio
32000	85.763	3.92
64000	345.634	4.03

Participation

Q: Given the following table of timing data, what is the most reasonable conclusion regarding the time complexity of the program?

Run	N	Time	Ratio	lg Ratio	
0	8	0.00			
1	16	0.01	5.50	2.46	
2	32	0.02	1.36	0.45	
3	64	0.03	1.87	0.90	
4	128	0.14	5.04	2.33	
5	256	1.01	7.19	2.85	
6	512	8.11	8.00	3.00	
7	1024	65.75	8.10	3.02	
8	2048	521.65	7.93	2.99	

- A. The program requires time proportional to N²
- B. The program requires time proportional to N³
- C. The program requires time proportional to N⁴
- D. The program requires time proportional to N⁸

COMP 2210 • Dr. Hendrix • 9

Mathematical analysis

Mathematical analysis Develop a cost model that includes costs for individual operations.

Computation model: Simple one-processor random-access machine with non-hierarchical memory

Total running time =
$$\sum (c_i \times f_i)$$

cost of executing operation i

frequency of execution of operation i

(a property of the underlying system)

(a property of the algorithm)

Mathematical analysis

Don Knuth is the "father" and pioneer of algorithm analysis. TAOCP is requisite bookshelf material.

COMP 2210 • Dr. Hendrix • 11

Mathematical analysis

Total running time = $\sum (C_i \times f_i)$ cost of executing operation i frequency of execution of operation i(a property of the underlying system) (a property of the algorithm) public int sumA(int N) {
 int sum;
 sum = N*(N+1)/2;
 return sum;
}

Operation	Cost (c _i)	Freq (f _i)
variable declaration	1.5 ns	1
assignment	1.7 ns	1
int addition	2.1 ns	1
int multiplication	2.5 ns	1
int division	5.4 ns	1
return statement	2.0 ns	1

Varies from system to system. Hard to measure precisely.

Running time of sumA is 15.2 ns

Not entirely useful information

Abstraction decision #1:

Treat the cost of primitive operations and simple statements as some unspecified constant.

Running time of sumA is constant.

(Same for any value of N.)

COMP 2210 • Dr. Hendrix • 15

Mathematical analysis public int sumA(int N) { public int sumB(int N) { public int sumC(int N) { int sum; int sum = 0; int sum = 0; sum = N*(N+1)/2; for (int i = 1; i <= N; i++) { for (int i = 1; i <= N; i++) { return sum; sum = sum + i;for (int j = 1; j <= i; $j++ {$ sum = sum + 1;return sum; Performs a constant } return sum; amount of work. Performs a linear (~N) amount of work. Performs a quadratic (~N2) amount of work. 35 30 25 20

```
Analysis of binary search
        Total running time = \sum (c_i \times f_i)
      cost\ of\ executing\ operation\ i
                                      frequency of execution of operation i
      public int search(int[] a, int target) {
          int left = 0, right = a.length-1;
                                                                  Worst case analysis
          while (left <= right) {
  int middle = (left + right) / 2;</pre>
                                                                 As a function of the array size (N), what is
                                                                 the maximum number of times that this
              if (target < a[middle])</pre>
                                                                 statement could execute?
                  right = middle - 1;
              else if (target > a[middle])
                  left = middle + 1;
              else
                  return middle;
          return -1;
                                                                                           COMP 2210 • Dr. Hendrix • 16
```


The **growth rate** of a time complexity function is a measure of how the amount of work an algorithm does changes as its input (problem) size changes.

The growth rate of a function is sometimes called its **order**.

Without turning to calculus, a useful way of thinking about growth rate for a time complexity function T(N) is to think about the change in T(N) as N doubles.

$$\begin{split} \frac{d}{dt}(x) &= 1 \\ \frac{d}{dt}(x \pm x \pm \cdots) = \frac{dx}{dx} \pm \frac{dy}{dx} \pm \cdots \\ \frac{dx}{dt}(w) &= x \frac{dx}{dt} + \frac{dx}{dt} \\ \frac{d}{dt}(w') &= x \frac{dx}{dt} + \frac{dx}{dt} \\ \frac{d}{dt}(x'') &= x x x^{\alpha - 1} \frac{dx}{dt} \\ \frac{d}{dt}x'' &= x^{\alpha} \frac{dx}{dt} \\ \frac{d}{dt}x'' &= x x^{\alpha} \frac{dx}{dt} \\ \frac{dx}{dt}x'' &= x x^{\alpha} \frac{dx}{dt} \\$$

$$\begin{split} \frac{d}{dz}(\phi) &= 0 \\ \frac{dc}{dz}(\phi) &= -\frac{d\alpha}{dz} \\ \frac{dc}{dz}(\phi) &= -\frac{d\alpha}{dz} - \frac{dc}{dz} - \frac{dc}{dz} \\ \frac{dc}{dz}(\phi) &= -\frac{d\alpha}{dz} - \frac{dc}{dz} - \frac{dc}{dz} \\ \frac{dc}{dz}(\phi) &= -\frac{d\alpha}{dz} - \frac{dc}{dz} - \frac{dc}{dz} - \frac{dc}{dz} \\ \frac{dc}{dz}(\phi) &= -\frac{dc}{dz} - \frac{dc}{dz} - \frac$$

Quadratic growth rate

N	N ²	Ratio	(N ² +N)/2	Ratio	15N2+50N+500	Ratio
64	4096		2080		65140	
128	16384	4	8256	3.96	252660	3.87
256	65536	4	32896	3.98	996340	3.94
512	262144	4	131328	3.99	3958260	3.97
1024	1048576	4	524800	3.99	15780340	3.98

Growth rate

The **growth rate** of a time complexity function is a measure of how the amount of work an algorithm does changes as its input (problem) size changes.

The growth rate of a function is sometimes called its **order**.

Without turning to calculus, a useful way of thinking about growth rate for a time complexity function T(N) is to think about the change in T(N) as N doubles.

 $\begin{aligned}) &= 1 & \frac{d}{dt} \left(\phi \right) = 0 \\ &\pm v \pm \cdots \right) = \frac{dv}{dt} + \frac{dv}{dz} \pm \cdots & \frac{dv}{dt} \left(\phi \right) = 0 \\ &+ \frac{dv}{dt} + \frac{dv}{dz} + \cdots & \frac{dv}{dt} \left(\phi \right) = 0 \\ &+ \frac{dv}{dt} + \frac{dv}{dz} & \frac{dv}{dz} \left(\phi \right) = \frac{dv}{dz} \\ &+ \frac{dv}{dz} + \frac{dv}{dz} + \frac{dv}{dz} \left(\phi \right) = 0 \end{aligned}$ $= av^{-1} \frac{dv}{dz} & \frac{dv}{dz} \left(\phi \right) = v^{-1} \ln \frac{dv}{dz}$ $= e^{-v} \frac{dv}{dz} & \frac{dv}{dz} \left(\phi \right) = v^{-1} \frac{dv}{dz}$ $= u = \cos \frac{dv}{dz} & \frac{dv}{dz} \left(\phi \right) = 0 \end{aligned}$

Logarithmic growth rate

N	log ₂ N	Ratio	log ₃ N	Ratio	log ₁₀ N	Ratio
64	6		3.79		1.81	
128	7	1.17	4.42	1.17	2.12	1.17
256	8	1.14	5.05	1.14	2.41	1.14
512	9	1.13	5.68	1.13	2.71	1.13
1024	10	1.11	6.31	1.11	3.01	1.11

COMP 2210 • Dr. Hendrix • 25

Growth rate

The **growth rate** of a time complexity function is a measure of how the amount of work an algorithm does changes as its input (problem) size changes.

The growth rate of a function is sometimes called its **order**.

Without turning to calculus, a useful way of thinking about growth rate for a time complexity function T(N) is to think about the change in T(N) as N doubles.

 $\begin{aligned} x) &= 1 & \frac{d}{dc}(a) = 0 \\ &= \frac{d}{dc} + \frac{dc}{dc} + \frac{dc}{dc$

NlogN growth rate

N	NIo ₂ N	Ratio	5Nlog₂N + N	Ratio	15log ₂ N + N + 50	Ratio
64	384		1984		5874	
128	896	2.33	4608	2.32	13618	2.37
256	2048	2.29	10496	2.28	31026	2.28
512	4608	2.25	23552	2.24	69682	2.25
1024	10240	2.22	52224	2.22	154674	2.22

Big-Oh notation

We will describe the growth rate of an algorithm's time complexity function in terms of big-Oh.

We will make statements like this:

The time complexity of this algorithm is O(N2).

A function that describes the running time in terms of the problem size (N).

Read "order of N²"

Big-Oh describes an upper bound on growth rate.

COMP 2210 • Dr. Hendrix • 27

Big-Oh notation

Let f(n) and g(n) be functions defined on the nonnegative integers. We say "f(n) is O(g(n))" if and only if there exists a nonnegative integer n_0 and a constant c > 0 such that for all integers $n \ge n_0$ we have $f(n) \le c \cdot g(n)$.

Example:

 $f(N) = N^2 + 2N + 1$ is $O(N^2)$ since for $N \ge 1$ $f(N) \le 4N^2$.

Since big-Oh describes an upper bound, it would be technically correct to say that f(N) in the above example is $O(N^3)$.

That is improper use of the notation, however. We always want to state big-Oh in terms of the function with the slowest growth rate that satisfies the definition.

Just use the fastest growing term in the function and drop any coefficients it may have.

Big-Oh analysis

Big-Oh analysis refers to analyzing an algorithm or program and expressing its running time in terms of big-Oh.

Types of analysis

Best case – Provides a lower bound on cost. Defined by the "easiest" input. Provides a goal for other inputs/cases.

Average case – Provides an expectation of cost. Typically defined by a model for random input. Provides a way to predict performance.

Worst case – Provides an upper bound on cost. Defined by the "most difficult" input. Provides a guarantee on performance.

We will almost always perform a worst case analysis.

COMP 2210 • Dr. Hendrix • 31

Calculating worst case big-Oh

We will use a simple syntax-based approach to calculating worst-case big-Oh.

- 1. All simple statements and primitive operations have constant cost.
- 2. The cost of a sequence of statements is the sum of the costs of each individual statement.
- 3. The cost of a selection statement is the cost of the most expensive branch.
- 4. The cost of a loop is the cost of the body multiplied by the by the maximum number of iterations that the loop makes.

We won't formally address the analysis of recursive algorithms until COMP 3270.

```
Example: loops
      for (int i = 0; i < N; i++) \leftarrow
                                                           N iterations
          a = a + i;
                                                           constant cost
          b++;
          System.out.println(a, b);
      }
  Cost of the loop
                        cost of the body
                                               number of iterations
                          constant
                                                 Ν
                                           Х
                                                                          O(N)
                         ~cN
                                                                          COMP 2210 • Dr. Hendrix • 33
```

```
for (int i = 0; i < N; i++)  

for (int j = i; j < N; j++)  

N iterations (max)

{

System.out.println(i*j);  

Cost of the i loop = (cost of the j loop body x number of j loop iterations) x number of i loop iterations

= (constant x N) x N

= ~cN<sup>2</sup>

O(N<sup>2</sup>)
```

```
Example: sequence
                                                                                           T(n) = {}^{\sim}c_3 \cdot n^2 + c_4 \cdot n + c_2 \cdot \log_2 n + c_1
                            int count = 0;
                \mathsf{c}_{\scriptscriptstyle 1}
                            int k = n;
                                                                                                                          O(N^2)
                            while (k > 1) {
                                k = k / 2;
        c<sub>2</sub>•log<sub>2</sub>n
                                 count++;
                            }
                            for (int i = 0; i < n; i++) {
   for (int j = 0; j < n; j++) {</pre>
            c_3 \cdot n^2
                                     System.out.println(i*j);
                                }
                            }
                            for (int i = 0; i < n; i++) {
            c₄•n
                                count = count + i;
                            }
                                                                                                                COMP 2210 • Dr. Hendrix • 36
```



```
Examples
      int count = 0;
      for (int i = 1; i <= n; i++)
         for (int j = n; j > 1; j--)
            for (int k = 1; k < n; k = k + 2)
               count++;
      int count = 0;
      for (int i = 1; i <= n; i++)
         for (int j = n; j > 1; j--)
            for (int k = 1; k < 1000; k = k + 2)
               count++;
      int count = 0;
      for (int i = 1; i <= 1000000; i++)
         for (int j = i; j > 500; j--)
            for (int k = 1; k < 10500; k = k + 2)
               count++;
                                                                          COMP 2210 • Dr. Hendrix • 39
```

```
int count = 0;
int j = 1;
for (int i = 1; i < n; i++) {
    while (j < n) {
        j++;
        count++;
    }
    j = 1;
}

int count = 0;
int i = n;
while (i > 1) {
    count++;
    i = i / 2;
}
```

Examples int count = 0; int i = 1; while (i < n) {</pre> count++; i = i * 2; } int count = 0; for (int i = 1; i <= n; i++) { int j = n;while (j > 1) { for (int k = 1; k < n; k = k + 2) { count++; j = j / 2;} } COMP 2210 • Dr. Hendrix • 41