Исследование работы алгоритма KNearestNeighbors на примере датасета MNIST

Тыцкий Владислав

Октябрь 2020

Введение

Требуется решить задачу классификации с помощью метрического метода KNearestNeighbors(метод K ближайших соседей) на примере известного датасета MNIST.

MNIST - база данных рукописных цифр. Каждая цифра представляется в виде черно-белого изображения 28×28 пикселей, что эквивалентно вектору $x \in \mathbb{R}^{784}$. Датасет содержит 70000 размеченных цифр. В данном исследовании мы будем использовать обучающую выборку размера 60000, а тестовую соответсвенно 10000. ¹

Задание №1

Требуется сравнить различные алгоритмы нахождения ближайших соседей—brute, kd_tree, ball_tree и my_own.

my_own — самописная реализация, которая вычисляет полную матрицу расстояний $D^{T \times N}$, где T — размер тестовой выборки, N — размер обучающей выборки.

brute, kd_tree, ball_tree — реализации поиска соседей из библиотеки sklearn.

Сравнение скорости работы

Так как описанные выше методы нахождения соседей являются детерминированными (100% точныи), то главным критерием выбора одного из них для дальнеших исследований будет служить скорость работы. В случае MNIST важно знать как хорошо ведут себя алгоритмы в пространстве большой размерности R^{784} .

Для экспериментов были выбраны подпространства размерности $10,\,50$, 100. В качестве меры расстояния возьмем евклидову метрику.

¹В некоторых частях исследования будет использоваться уменьшенная выборка т.к. вычислительная машина Тыцкого В.И. тяжело справляется с такой нагрузкой. Во всех случаях, где не оговаривается иное, будет использоваться полная выборка

Рис. 1:

На графике (Puc.1) представлены результаты вычисления ближайших соседей для тестовой выборки размера 3000 и 10000 для обучающей выборки.

Из графика время работы kd_tree и ball_tree с ростом размерности пространства увеличивается линейно. Это связано с принципами работы алгоритма и так явлением называемым "Проклятие размерности". Brute и my_own имеют практически константое время работы алгортима, потому что основаны на простом построении матрицы расстояний, вычисление нормы разности $||x_i - x_j||$ по сравнению с построением матрицы имеет незначительное количество операций.

Далее везде будем использовать либо brute, либо my_own ²

Задание №2/3

Требуется по кросс-валидации с тремя фолдами оценить точность и время работы в зависимости от следующих факторов:

- 1. к от 1 до 10 (только точность)
- 2. евклидова или косинусная метрика
- 3. используются ли веса или нет (только точность) 3

 $^{^2}$ Кроме евклидовой метрики нам понадобится косинусное расстояние— $cos(x,y) = 1 - \frac{(x,y)}{||x||_2||y||_2}$. Sklearn метод, реализующих поиск соседей не поддерживает косинусное расстояние, поэтому часто будем использовать метод my_own, у которого есть поддержка этого расстояния.

 $^{^3}w_k=rac{1}{
ho(X,X_k)+10^{-5}},$ где w $_{
m k}$ вес K-ого ближайшего соседа X $_{
m k}$ для X

Рис. 2:

test size	euclidean		\cos ine	
	mean	std	mean	std
1000	0.917	0.015	0.900	0.001
2000	1.710	0.027	1.796	0.113
3000	2.547	0.021	2.608	0.0257

На графике (Рис.2) представлены результаты вычисления качества в зависимости от вышеперечисленных параметров

- Косинусное расстояние(с весами и без) лучше евклидова для любых k.
- Использование весов улучшает качество для любых k.
- Качество постепенно падает у всех алгоритмов, если k > 4
- Лучшим оказался алгоритм с k=4 использующий косинусное расстояние и веса.

Интересно, что без весов лучшая точность достигается при k=3, а с весами при k=4. Это говорит о том, что веса в некотором смысле регуляризуют модель — она использует информацию от большего числа соседей, но не "доверяет" слишком далеким объектам.

Задание №4