COMMUTATIVE ALGEBRA

YU-SHENG LEE

Contents

1.	Completion	1
2.	Depth and Dimension	4
3.	Spectran sequence	9

1. Completion

1.1. Completion.

Definition 1.1. Let A be a ring, (A_n) be a decreasing filtration of ideals of A satisfying

$$A_0 = A$$
, $A_{n+1} \subset A_n$, $A_n A_m \subset A_{n+m}$.

Let M be an A-module, (M_n) be a compatible decreasing filtration of submodules of M satisfying

$$M_0 = M$$
, $M_{n+1} \subset M_n$, $A_n M_m \subset M_{n+m}$.

When $\mathfrak{q} \subset A$ is an ideal, the \mathfrak{q} -adic filtration is defined by $A_n = \mathfrak{q}^n A, M_n = \mathfrak{q}^n M$.

Definition 1.2. A ring A is said to be graded if

$$A = \bigoplus_{n>0} A_n$$
 and $A_n A_m \subset A_{n+m}$.

An A-module M is said to be compatibly graded if

$$M = \bigoplus_{n>0} M_n$$
 and $A_n M_m \subset M_{n+m}$.

Given a filtered ring A and a compatibly filtered A-module M, we can define the associated graded ring gr(A) and the associated compatibly graded gr(A)-module gr(M)

$$\operatorname{gr}(A) = \bigoplus_{n \ge 0} A_n / A_{n+1}, \quad \operatorname{gr}(M) = \bigoplus_{n \ge 0} M_n / M_{n+1}.$$

Let A be a Noetherian ring and $\mathfrak{q} \subset A$ be an ideal. Consider the following property on (M_n) .

(
$$\mathfrak{q}$$
-good) there exists a positive n_0 such that $M_{n+k} = \mathfrak{q}^k M_n$ for all $n \geq n_0$ and $k \geq 0$ \iff gr (M) is finite over the Noetherian ring gr (A) .

Proposition 1.3 (Artin-Rees). Let A be a Noetherian ring, M be an A-module, (M_n) be a \mathfrak{q} -good filtration, $N \subset M$ be a submodule, then the induced filtration $N_n := M_n \cap N$ is also \mathfrak{q} -good.

Proposition 1.4 (Krull intersection). Let A be a Noetherian ring, M be a finite A-module, then

$$x \in \bigcap_{n \ge 0} \mathfrak{q}^n M \iff \text{ there exists } d \in \mathfrak{q} \text{ such that } dx = x.$$

Date: July 27, 2024.

Proof. The submodule $N := \bigcap_n \mathfrak{q}^n M$ satisfies $\mathfrak{q}N = N$ by the Artin-Rees lemma. Pick any generating set $\{x_1 \cdots x_n\}$, there exists $A = (a_{ij}), a_{ij} \in \mathfrak{q}$ such that $x_j = \sum a_{ij} x_i$, then we can pick $1 - d = \det(\mathbf{1}_n - A)$. \square

Remark 1.5. When A is a local ring and M is finite, $M \to \hat{M}$ is injective by the above.

Note that $\hat{\mathfrak{q}} \subset \operatorname{rad}(\hat{A})$ since $1 + \mathfrak{q} \subset \hat{A}^{\times}$. Moreover, when A is Noetherian, the followings hold.

- (a) The \mathfrak{q} -adic filtration is exact on finite A-modules.
- (b) Let M be a finite A-module, then $M \otimes_A \hat{A} \to \hat{M}$ is an isomorphism.
- (c) Let $I \subset A$ be an ideal and M be a finite A-module, then $I\hat{M} = I\hat{M} = I\hat{M}$. In particular \hat{A} is flat over A since $I \otimes \hat{A} \cong \hat{I} \cong I\hat{A}$ for any finitely generated ideal I.
- (d) $M/\mathfrak{q}^n M = \hat{M}/\mathfrak{q}^n \hat{M} = \hat{M}/\hat{\mathfrak{q}}^n \hat{M}$.
- (e) Let A be a local ring, then the completion \hat{A} at the maximal ideal is faithfully-flat over A.

Proposition 1.6. Suppose A/\mathfrak{q} is Noetherian and \mathfrak{q} is finitely-generated, then \hat{A} is Noetherian.

Proof. Use that $\operatorname{gr}^{\mathfrak{q}}(A)$ is Noetherian. Let I be an ideal of \hat{A} , then $\operatorname{gr}^{\mathfrak{q}}(I)$ is finitely generated, pick any generating set and lift which to an homomorphism between \mathfrak{q} -adically filtered \hat{A} -modules

$$u \colon \hat{A}^s \to I$$
 such that $gr(u)$ is surjective.

Then u is also surjective since \hat{A} is complete and $I \subset \hat{A}$ is separated.

1.2. Support of a sheaf.

Definition 1.7. Let X be a ringed space and F be an \mathcal{O}_X -module, the set of points $x \in X$ such that $F_x \neq 0$ is called the support of F and is denoted $\operatorname{Supp}(F)$.

(a) Given an exact sequence $0 \to F' \to F \to F'' \to 0$ of A-modules, then

$$\operatorname{Supp}(F) = \operatorname{Supp}(F') \cup \operatorname{Supp}(F'').$$

(b) Let M, M' be A-modules of finite type, then both Supp(M) and Supp(M') are closed and

$$\operatorname{Supp}(M \otimes_A M') = \operatorname{Supp}(M) \cap \operatorname{Supp}(M').$$

- (c) Let M be a A-module of finite type and J be the annihilator, then $\operatorname{Supp}(M) = V(J)$.
- (d) Let M be a A-module of finite type and I be an ideal, then $\operatorname{Supp}(M/IM) = \operatorname{Supp}(M) \cap V(I)$.
- (e) Let $f: X \to Y$ be a morphism of schemes and F be an \mathcal{O}_X -module of finite type, then

$$\operatorname{Supp}(f^*F) = f^{-1}(\operatorname{Supp}(F)).$$

Proposition 1.8 (Weak Nullstellensatz). Let M be a finite A-module and $f \in A$. Then $f: M \to M$ is a nilpotent if and only if f lies in every prime of Supp(M).

Proof. The map is a nilpotent if and only if $M_f = 0$, use $\operatorname{Supp}(M_f) = \operatorname{Supp}(M) \cap D(f)$.

1.3. Associated primes.

Definition 1.9. A prime ideal \mathfrak{p} is an associated prime for an A-module M if it is the annihilator of some $x \in M$. If X is a scheme and F is an \mathcal{O}_X -module, then $\mathrm{Ass}(F) = \{x \in X \mid \mathfrak{m}_x \in \mathrm{Ass}(F_x)\}$.

- (a) Given $0 \to M' \to M \to M'' \to 0$, then $\operatorname{Ass}(M) \subset \operatorname{Ass}(M') \cup \operatorname{Ass}(M'')$.
- (b) When A is Noetherian, an A-module M is nonzero if and only if $Ass(M) = \emptyset$.
- (c) When A is Noetherian, the set of zero divisors of M is the union of the associated primes of M.

(d) When A is Noetherian and M is a finite A-fmodule, there exists a filtration

$$M = M_0 \supset \cdots \supset M_n = 0$$
 such that $M_i/M_{i+1} \cong A/\mathfrak{p}_i$.

Therefore $\operatorname{Ass}(M) \subset \{\mathfrak{p}_1, \cdots, \mathfrak{p}_n\}$ is finite.

- (e) When A is Noetherian, $\operatorname{Ass}_{S^{-1}A}(S^{-1}M) = \{ p \in \operatorname{Ass}_A(M) \mid \mathfrak{p} \cap S = \emptyset \}.$
- (f) When A is Noetherian, $Supp(M) = \bigcup_{\mathfrak{p} \in Ass(M)} V(\mathfrak{p})$.

1.4. Characteristic functions.

Definition 1.10. A composition series of an A-module M is a filtration

$$M = M_0 \supset \cdots \supset M_n = 0$$
 such that M_i/M_{i+1} are simple.

Define $\ell_A(M) = n$, then $\ell(M) = \ell(M') + \ell(M'')$ given $0 \to M' \to M \to M'' \to 0$. When A is Noetherian, M is of finite length if and only if $\operatorname{Supp}(M)$ consists only of maximal ideals.

Proposition 1.11. A ring A is Artinian if and only if A is Noetherian and every prime ideal is maximal.

Proof. If A is Noetherian, by Noetherian induction every ideal contains a finite product of primes. Therefore $0 = \mathfrak{m}_1 \cdots \mathfrak{m}_n$ and one obtain a composition series from which.

If A is Artinian, among finite product of maximal ideals of A pick a minimal \mathfrak{m} , so

$$\mathfrak{m}^2 = \mathfrak{m} \text{ and } \mathfrak{m} \subset \operatorname{rad}(A).$$

If $\mathfrak{m} \neq 0$, among ideals such that $I\mathfrak{m} \neq 0$ pick a minimal I. Then for $x \in I$, either

- (1) $I \not\supseteq Ax$ and hence $x\mathfrak{m} = 0$, or
- (2) I = Ax, but then I = 0 by Nakayama lemma since $I\mathfrak{m} = I$ from the minimality of I.

Therefore $\mathfrak{m} = 0$, and consequently A is of finite length and every prime ideal of A is maximal.

Let $\mathfrak{m}_1 \cdots \mathfrak{m}_n$ be the maximal ideal of an Artinian ring A, then

- (a) $A \cong \prod_{i=1}^n A_{\mathfrak{m}_i}$.
- (b) $A_{\mathfrak{m}_i} \to A/\mathfrak{m}_i^k$ is an isomorphism when k is sufficiently large.

Lemma 1.12. Let H be a graded ring and M be a graded H-module of finite type. If H satisfies

- (a) H_0 is Artinian,
- (b) H is an H_0 -algebra generated by $x_1 \cdots x_r \in H_1$.

Then there exists a polynomial Q_M of degree $\leq r-1$ such that $Q_M(n) = \ell_{H_0}(M_n)$ for $n \gg 0$.

Proof. In general, let k_i be the degree of x_i , then the Poincare series $P(x) = \sum_{n=0}^{\infty} \ell_{H_0}(M_n)x^n$ is of the form

$$P(x) = \frac{f(x)}{\prod_{i=1}^{r} (1 - x^{k_i})}, \quad f(x) \text{ is polynomial.}$$

Thus $\ell(M_n)$, i.e. the coefficients of x^n in P(x), is a polynomial of degree at most r-1 in the case when $k_i = 1$ for all i since

$$(1-x)^{-r} = \sum_{n>0} \binom{n+r-1}{r-1} t^n.$$

Proposition 1.13. Let A be a Noetherian ring and M be a finite A-module. Given a q-good filtration (M_n) , then when M/qM has finite length,

- (a) there exists a polynomial $P_{(M_n)}$ of degree $\leq r$ such that $P_{(M_n)}(m) = \ell(M/M_m)$ for $m \gg 0$.
- (b) The degree and leading coefficient of $P_{(M_n)}$ are independent of the choice of filtration.

(c) Given $0 \to M' \to M \to M'' \to 0$, then $P_{(M_n)} - P_{(M'_n)} - P_{(M''_n)}$ has degree $\leq r - 1$.

Proof. Let I = Ann(M), B = A/I and $\mathfrak{p} = \mathfrak{q} + I/I$. Then $H = \text{gr}^{\mathfrak{p}}(B)$ acting on gr(M) satisfies the assumptions of the previous lemma since $\text{Supp}(M/\mathfrak{q}M) = V(I) \cap V(\mathfrak{q})$ consists only of maximal primes. One then use

$$(1-x)\sum_{n=1}^{\infty} \ell(M/M_n)x^n = \sum_{n=0}^{\infty} \ell(M_n/M_{n+1})x^n.$$

Since (M_n) is \mathfrak{q} -good, there exists n_0 such that $M_{n+1} = \mathfrak{q} M_n$ for $n \geq n_0$. Thus when $n \gg 0$

$$\mathfrak{q}^{n+n_0}M \subset M_{n+n_0} = \mathfrak{q}^n M_{n_0} \subset M_n \Longrightarrow P_{(\mathfrak{q}^m M)}(n+n_0) \ge P_{(M_m)}(n+n_0) \ge P_{(\mathfrak{q}^m M)}(n) \ge P_{(M_m)}(n),$$

therefore the degree and leading coefficient do not depends on (M_n) .

The last property then follows from the previous two and that

$$\ell(M/\mathfrak{q}^n M) = \ell(M''/\mathfrak{q}^n M'') + \ell(M'/M'_n), \quad M'_n := M' \cap \mathfrak{q}^n M.$$

2. Depth and Dimension

Let A be a Noetherian local ring with maximal ideal m and M be a finite A-module. Define

- (a) $\dim(M) := \dim(\operatorname{Supp}(M))$.
- (b) $d(M) := \deg(P_{\mathfrak{q}^n M})$ for an ideal of definition $\mathfrak{m}^n \subset \mathfrak{q} \subset \mathfrak{m}$.
- (c) s(M) is the minimal number $\{x_1, \dots, x_n\} \subset \mathfrak{m}$ such that $M/(x_1, \dots, x_n)M$ is of finite length.

Theorem 2.1. The three values are equal to each other.

Proof. To prove $\dim(M) \leq d(M)$, pick $\mathfrak{p} \in \mathrm{Ass}(M)$ such that $\dim(M) = \dim(A/\mathfrak{p})$ and reduce to show

$$\dim(M) = \dim(A/\mathfrak{p}) \le d(A/\mathfrak{p}) \le d(M).$$

If $d(A/\mathfrak{p}) = 0$, then A/\mathfrak{p} is of finite length and Artinian. If $d(A/\mathfrak{p}) > 0$, there is nothing to prove when $\dim(A/\mathfrak{p}) = 0$. And when there exists

$$\mathfrak{p} = \mathfrak{p}_0 \subset \mathfrak{p}_1 \subset \cdots \subset \mathfrak{p}_n, \quad n = \dim(A/\mathfrak{p}),$$

pick $x \in \mathfrak{p}_1 \setminus \mathfrak{p}_0$, then $\dim(A/(\mathfrak{p},x)) \geq n-1$ while $d(A/(\mathfrak{p},x)) \leq d(A)-1$ since $0 \to A/\mathfrak{p} \xrightarrow{x} A/\mathfrak{p} \to A/(\mathfrak{p},x) \to 0$ is exact, thus by induction on d(M)

$$\dim(A/\mathfrak{p}) - 1 \le \dim(A/(\mathfrak{p}, x)) \le d(A/(\mathfrak{p}, x)) \le d(A/\mathfrak{p}) - 1 \Longrightarrow \dim(A/\mathfrak{p}) \le d(A/\mathfrak{p}).$$

That $d(M) \leq s(M)$ follows from the proof of Proposition 1.13.

To prove that $s(M) \leq \dim(M)$. Observe that M is of finite length when $\dim(M) = 0$. If $\dim(M) \geq 0$, let $\{\mathfrak{p}_1, \dots, \mathfrak{p}_h\}$ be the set of associated primes such that $\dim(M) = \dim(A/\mathfrak{p}_i)$, then none of \mathfrak{p}_i are maximal and there exists $x \in \mathfrak{m} \setminus \cup_i \mathfrak{p}_i$. For which $s(M/xM) + 1 \geq s(M)$ and $\dim(M/xM) \leq \dim(M) - 1$, thus by induction on $\dim(M)$

$$s(M) < s(M/xM) + 1 < \dim(M/xM) + 1 < \dim(M)$$
.

- (1) $\dim(M/xM) \ge \dim(M) 1$ for $x \in \mathfrak{m}$. The equality holds when x doesn not belong to any $\mathfrak{p} \in \operatorname{Supp}(M)$ such that $\dim(M) = \dim(A/\mathfrak{p})$. In particular when x is not a zero-divisor.
- (2) $\dim_A(M) = \dim_{\hat{A}}(\hat{M}).$
- (3) a prime ideal \mathfrak{p} has height $\leq n$ if and only there exists an ideal I generated by n elements such that \mathfrak{p} is a minimal ideal of A/I (Krull's principal ideal theorem when n=1).

Theorem 2.2 (Noether normalization lemma). Let k be a field, A be a finite type k-algebra, and $I_1 \subset \cdots \subset I_r$ be a sequence of proper ideals for A. Then there exists algebraically independent y_1, \cdots, y_n such that

- (a) A is integral over $B = k[y_1, \dots, y_n]$.
- (b) For each $1 \le i \le r$, there exists $h(i) \ge 0$ such that $I_i \cap B$ is generated by $\{y_1, \dots, y_{h(i)}\}$.
- (c) when A is a domain and $\mathfrak{p}_0 \subset \cdots \subset \mathfrak{p}_n$ is a maximal chain of prime ideals, $n = \operatorname{tr.deg}_k A$.
- (d) if \mathfrak{m} is a maximal ideal, then A/\mathfrak{m} is algebraic over k (Nullstellensatz).

Let $A = k[x_1, \dots, x_n]$. If $\{x_1, \dots, x_r\}$ is an alg.independent set in $frac(A/\mathfrak{p})$, then $\mathfrak{p} \cap k[x_1, \dots, x_r] = 0$. If furthermore it's a transcendental basis, let $S = k[x_1, \dots, x_r] \setminus 0$, then $A_S/\mathfrak{p}A_S$ is a finite field extension over $k(x_1, \dots, x_r)$.

- (a) If $\mathfrak{p} \subset \mathfrak{q}$, then $\operatorname{tr.deg}_k(A/\mathfrak{p}) > \operatorname{tr.deg}_k(A/\mathfrak{q})$.
- (b) If $\mathfrak{p} \subset \mathfrak{q}$ and tr. $\deg_k(A/\mathfrak{p}) \geq \operatorname{tr.} \deg_k(A/\mathfrak{q}) + 2$, suppose

$$\{x_1, \dots, x_r\}$$
 is a transcendental basis in $A/\mathfrak{q}, S = k[x_1, \dots, x_r] \setminus 0$
 $\{x_1, \dots, x_r, x_{r+1}\}$ is alg.independent in $A/\mathfrak{p}, S' = k[x_1, \dots, x_{r+1}] \setminus 0$

then $\mathfrak{p}A_{S'} \subset A_{S'}$ is not maximal and $\mathfrak{m} \cap A_S$ is not maximal for any $\mathfrak{m} \subset A_{S'}$. Thus there exists $\mathfrak{p} \subset \mathfrak{p}' \subset \mathfrak{q}$.

We conclude that $\operatorname{tr.deg}_k(A/\mathfrak{p}) = \dim(A/\mathfrak{p}) = n - \operatorname{ht}(\mathfrak{p}) = \dim(A) - \operatorname{ht}(\mathfrak{p}).$

2.1. **Depth.** Assume throughout the subsection that A is a Noetherian ring.

Definition 2.3. Let M be an A-module, a sequence (x_1, \dots, x_r) of elements in a is M-regular if

$$0 \to M_{i-1} \xrightarrow{x_i} M_{i-1}, \quad M_{i-1} := M/(x_1, \cdots, x_{i-1})M \text{ for all } 1 \le i < r.$$

It is M-quasi-regular if the canonical surjection

$$\varphi_r \colon (M/JM)[T_1, \cdots, T_r] \to \operatorname{gr}_J(M), \quad J = (x_1, \cdots, x_r)$$

is an isomorphism. When $x_1, \dots, x_r \in \text{rad}(A)$, the sequence is M-regular if and only if it is M-quasi-regular. Let I be an ideal, define depth I(M) to be the maximal length of M-regular sequence in I.

Lemma 2.4. If (x_1, \dots, x_r) is a regular sequence, then $\operatorname{ht}(x_1, \dots, x_r) = r$.

Proof. When r = 1 and \mathfrak{p} is a minimal prime containing (x_1) , then $\operatorname{ht}(\mathfrak{p}) \leq 1$ by Krull's principal ideal theorem. Since \mathfrak{p} contains a non-zero-divisor x_1 , the equality holds.

When r > 1, let $A' = A/(x_1)$ and $\mathfrak{p}' = \mathfrak{p}'/(x_1)$. By induction on r, $\operatorname{ht}(\mathfrak{p}') = r - 1$. Pick $\mathfrak{p}'_{r-1} \supset \cdots \supset \mathfrak{p}'_0 = \mathfrak{p}'$, which pulls back to $\mathfrak{p}_{r-1} \supset \cdots \supset \mathfrak{p}_0 = \mathfrak{p}$, then \mathfrak{p}_{r-1} is a minimal prime containing (x_1) and hence $\operatorname{ht}(\mathfrak{p}_{r-1}) = 1$, therefore $\operatorname{ht}(\mathfrak{p}) = r$.

Proposition 2.5. Let A be a Noetherian ring and M be a finite A-module, the following are equivalent.

- (1) $\operatorname{Ext}^q(N,M) = 0$ for all q < r and all finite A-modules N such that $\operatorname{Supp}(N) \subset V(I)$.
- (2) $\operatorname{Ext}^q(N, M) = 0$ for all q < r and some finite A-modules N such that $\operatorname{Supp}(N) = V(I)$.
- (3) Given $x_1, \dots, x_n \in I$ such that (x_1, \dots, x_n) is M-regular, there exists $x_{n+1}, \dots, x_r \in I$ such that (x_1, \dots, x_r) is M-regular.
- (4) There exists an M-regular sequence $x_1, \dots, x_r \in I$.

In particular depth(A) = depth(Â) since is faithfully-flat over A and $\operatorname{Ext}^i(A/\mathfrak{m}, M) \otimes_A \hat{A} \cong \operatorname{Ext}^1(\hat{A}/\hat{\mathfrak{m}}, \hat{M})$.

Proof. If $\operatorname{Hom}(N,M)=0$ and $\operatorname{Supp}(N)=V(I)$, then $I\nsubseteq \mathfrak{p}$ for any $\mathfrak{p}\in\operatorname{Ass}(M)$. Otherwise there exists a nonzero $N\to A/\mathfrak{p}\hookrightarrow M\neq 0$. Hence there exists $x_0\in I\setminus \cup_{\mathfrak{p}\in\operatorname{Ass}(M)}\mathfrak{p}$, and therefore M-regular. Use the argument inductively on $M_n=M/(x_1,\cdots,x_n)M$ to show $(ii)\Longrightarrow (iii)$.

On the other hand, if x_0 is M-regular then

$$0 \to \operatorname{Hom}(N, M) \xrightarrow{x_0} \operatorname{Hom}(N, M).$$

But $x_0 \in I$ is a nilpotent on N if $\operatorname{Supp}(N) \subset V(I)$, and hence $\operatorname{Hom}(N, M) = 0$. Use the argument inductively on r to show $(iv) \Longrightarrow (i)$.

Proposition 2.6. Let A be a Noetherian local ring and M be a finite A-module, then $\operatorname{depth}(M) \leq \dim(A/\mathfrak{p})$ for any $\mathfrak{p} \in \operatorname{Ass}(M)$. In particular $\operatorname{depth}(M) \leq \dim(M)$ if $M \neq 0$.

Proof. If $0 < r \le \operatorname{depth}(M)$, pick an M-regular $x_0 \in \mathfrak{m}$ and form $0 \to M \xrightarrow{x_0} M \to M' \to 0$. Then $r-1 \le \operatorname{depth}(M')$ and inductively $r-1 \le \operatorname{dim}(A/\mathfrak{p}')$ for any $\mathfrak{p}' \in \operatorname{Ass}(M')$. Now, if $\mathfrak{p} \in \operatorname{Ass}(M)$, then

$$0 \to \operatorname{Hom}(A/\mathfrak{p}, M) \xrightarrow{x_0} \operatorname{Hom}(A/\mathfrak{p}, M) \to \operatorname{Hom}(A/\mathfrak{p}, M') = \operatorname{Hom}(A/\mathfrak{p} + Ax, M')$$

is exact. Thus Nakayama's lemma implies that $\operatorname{Hom}(A/\mathfrak{p}+Ax,M')\neq 0$, but then there exists $\mathfrak{p}'\in\operatorname{Ass}(M')\cap V(\mathfrak{p}+Ax)$, for which $r-1\leq \dim(A/\mathfrak{p}')\leq \dim(A/\mathfrak{p})-1$.

$2.1.1.\ Kozul\ complex.$

Definition 2.7. For $x \in A$, let K(x) be the complex $\cdots 0 \to A \xrightarrow{x} A \to 0 \cdots$. The tensor $C(x) := C \otimes K(x)$ of which with any complex $C(x) \in C(x)$ of $C(x) \in C(x)$ of C(x) of C

$$\cdots \longrightarrow C_{p} \xrightarrow{d} C_{p-1} \xrightarrow{d} \cdots$$

$$\downarrow^{(-1)^{p}x} \qquad \downarrow^{(-1)^{p-1}x}$$

$$\cdots \longrightarrow C_{p} \xrightarrow{d} C_{p-1} \xrightarrow{d} \cdots$$

In general, given a sequence (x_1, \dots, x_n) , the Kozul complex is $K.(x_1, \dots, x_n) := K.(x_1) \otimes \dots \otimes K.(x_n)$. In particular, $H_n(\underline{x}, M) = M[\underline{x}]$ and $H_0(\underline{x}, M) = M/(x_1, \dots, x_n)M$.

Lemma 2.8. If the sequence (x_1, \dots, x_n) is M-regular, then $H_0(x_1, \dots, x_n, M) = M/(x_1, \dots, x_n)M$ and $H_p(x_1, \dots, x_n, M) = 0$ for p > 0. Conversely, when A is local and M is a finite A-module, (x_1, \dots, x_n) is M-regular if $H_1(x_1, \dots, x_n, M) = 0$.

Proof. For any complex C., the above construction gives an exact sequence of complexes $0 \to C$. $\to C$. $(x) \to C$. $[-1] \to 0$ and an associated long exact sequence $\cdots \to H_p(C) \to H_p(C) \to H_{p-1}(C) \to \cdots$. Now, the lemma is trivial if n = 1. If n > 1 and p > 1, then inductive

$$0 = H_p(x_1, \dots, x_{n-1}, M) \to H_p(x_1, \dots, x_n, M) \to H_{p-1}(x_1, \dots, x_{n-1}, M) = 0$$

and $0 \to H_1(x_1, \dots, x_n, M) \to M/(x_1, \dots, x_{n-1}) \xrightarrow{x_n} M/(x_1, \dots, x_{n-1})$ when p = 1. Conversely, if $H_1(x_1, \dots, x_n, M) = 0$, then

$$H_1(x_1,\cdots,x_{n-1},M)\xrightarrow{x_n} H_1(x_1,\cdots,x_{n-1},M)\to 0\to M/(x_1,\cdots,x_{n-1})\xrightarrow{x_n} M/(x_1,\cdots,x_{n-1}).$$

Therefore $H_1(x_1, \dots, x_{n-1}, M) = 0$ by Nakayama's lemma and x_n is regular for $M/(x_1, \dots, x_{n-1})$. Inductively, (x_1, \dots, x_n) is M-regular.

2.2. Regular local rings. Throughout the subsection, A is a Noetherian local ring with maximal ideal \mathfrak{m} and residue field $k = A/\mathfrak{m}$.

Definition 2.9. Let A be a Noetherian local ring.

- (a) A is regular if \mathfrak{m} is generated by $r = \dim(A)$ elements.
- (b) A is la local complete intersection ring if it is the quotient of a regular local ring by a regular sequence.
- (c) A is Gorenstein if $\operatorname{Ext}^i(k,A) = 0$ when $i \neq \dim(A)$ and $\dim_k \operatorname{Ext}^i(k,A) = 1$ when $i = \dim(A)$.
- (d) A is Cohen-Macaulay if depth(A) = dim(A).
- 2.2.1. Cohen-Macaulay. In general, a finite A-module M is Cohen-Macaulay if $\dim(M) = \operatorname{depth}(M)$. then $\dim(M) = \operatorname{depth}(M) \le \dim(A/\mathfrak{p})$ for any $\mathfrak{p} \in \operatorname{Ass}(M)$. Thus A/I is equi-dimensional since $\operatorname{Supp}(A/I) = \operatorname{Supp}(M) = \bigcup_{\mathfrak{p} \in \operatorname{Ass}(M)} \mathfrak{p}$.

Lemma 2.10. The followings hold when M or A is Cohen-Macaulay.

- (a) $\operatorname{depth}_{\mathfrak{p}}(M) = \operatorname{depth}_{A_{\mathfrak{p}}}(M_{\mathfrak{p}}) = \dim_{A_{\mathfrak{p}}}(M_{\mathfrak{p}})$ when $M_{\mathfrak{p}} \neq 0$.
- (b) a sequence (x_1, \dots, x_r) is regular if and only if $ht(x_1, \dots, x_r) = r$.
- (c) ht(I) + dim(A/I) = dim(A).

Proof. Observe that $\operatorname{depth}_{\mathfrak{p}}(M) \leq \operatorname{depth}_{A_{\mathfrak{p}}}(M_{\mathfrak{p}}) \leq \dim_{A_{\mathfrak{p}}}(M_{\mathfrak{p}})$. If $\operatorname{depth}_{\mathfrak{p}}(M) = 0$, then \mathfrak{p} is minimal in $\operatorname{Supp}(M)$ and hence $\dim(M_{\mathfrak{p}}) = 0$. If $\operatorname{depth}_{\mathfrak{p}}(M) > 0$, pick any non-zero-divisor $x \in \mathfrak{p}$, then M' = M/xM is also Cohen-Macaulay. By induction on $\operatorname{depth}_{\mathfrak{p}}$

$$\operatorname{depth}_{\mathfrak{p}}(M) - 1 = \operatorname{depth}_{\mathfrak{p}}(M') = \dim(M'_{\mathfrak{p}}) = \dim(M_{\mathfrak{p}}) - 1.$$

If $r = \dim(A)$, then (x_1, \dots, x_r) is a system of parameters. In particular x_1 doesn't belong to any $\mathfrak{p} \in \operatorname{Ass}(A)$. Otherwise (x_2, \dots, x_r) is also a system of parameters for A/\mathfrak{p} but $\dim(A) = \dim(A/\mathfrak{p})$. Therefore x_1 is regular and $A/(x_1)$ is also Cohen-Macaulay. Inductively, (x_1, \dots, x_r) is regular.

If $r < \dim(A)$, there exists $x_{r+1} \in \mathfrak{m}$ such that $x_{r+1} \notin \mathfrak{p}$ for any minmail prime \mathfrak{p} containing (x_1, \dots, x_r) . Then $\operatorname{ht}(x_1, \dots, x_{r+1}) = r+1$, and the sequence can be inductively extended to a system of parameters. Thus (x_1, \dots, x_r) is regular and $A/(x_1, \dots, x_r)$ is Cohen-Macaulay. Therefore for any minimal prime \mathfrak{p} containing (x_1, \dots, x_r) , $\dim(A/\mathfrak{p}) = \operatorname{depth}(A) - r = \dim(A) - \operatorname{ht}(\mathfrak{p})$.

At last, since $\operatorname{ht}(\mathfrak{p}) = \dim(A_{\mathfrak{p}}) = \operatorname{depth}_{\mathfrak{p}}(A)$, there exists a regular sequence $(x_1, \dots, x_r), r = \operatorname{ht}(\mathfrak{p})$, contained in \mathfrak{p} . And the proof above shows that $\operatorname{ht}(\mathfrak{p}) + \dim(A/\mathfrak{p}) = \dim(A)$.

- (1) If x_0 is a non-zero-divisor, then A is Cohen-Macaulay if and only if $A/(x_0)$ is.
- (2) If A is Cohen-Macaulay, so is \hat{A} .
- (3) If A is Cohen-Macaulay, so is A[[X]].
- (4) If A is Cohen-Macaulay, so is $A_{\mathfrak{p}}$ for any prime ideal \mathfrak{p} .

Theorem 2.11. if A is CM, so is A[[X]].

Proof. Let (x_1, \dots, x_n) be a regular sequence, with $n = \dim(A)$, then it is also a system of parameters. Then (X, x_1, \dots, x_n) is both a regular sequence and a system of parameters for A[[X]], so

$$n+1 \le \operatorname{depth}(A[[X]]) \le \dim(A[[X]]) \le n+1.$$

Elements of \mathfrak{m} that are linearly independent in $\mathfrak{m}/\mathfrak{m}^2$ are called **regular parameters**. By Nakayama's lemma, \mathfrak{m} is generated by regular parameters of size $\dim_k(\mathfrak{m}/\mathfrak{m}^2)$, therefore $\dim(A) = s(A) \leq \dim_k(\mathfrak{m}/\mathfrak{m}^2)$. The equality holds if and only if A is regular. When this is the case, let $(x_1, \dots, x_r), r = \dim(A)$, be a set of regular parameters that generate \mathfrak{m} . Then the natural surjection

$$\phi: k[T_1, \cdots, T_r] \to \operatorname{gr}^{\mathfrak{m}}(A), \quad T_i \mapsto x_i$$

is an isomorphism. Otherwise let $I = \ker(\phi)$ and consider the exact sequence

$$0 \to I \to k[T_1, \cdots, T_r] \to \operatorname{gr}^{\mathfrak{m}}(A) \to 0$$

If there exists some nonzero $u_h \in I_h$, then $I_n \supset u_h(k[T_1, \dots, T_r])_{n-h}$ for any $n \geq h$. Therefore the Hilbert polynomial for

$$\ell(\mathfrak{m}^n/\mathfrak{m}^{n+1}) = \dim_k(\operatorname{gr}^{\mathfrak{m}}(A))_n = \dim(k[T_1, \cdots, T_r]_n) - \dim_k(I_n)$$

$$\leq \dim(k[T]_n) - \dim(k[T]_{n-h}) = \binom{n+r-1}{r-1} - \binom{n-h+r-1}{r-1}$$

has degree $\leq r-2$, which is a contradiction. Consequently $\operatorname{gr}^{\mathfrak{m}}(A)$ is a domain, and so therefore so is A since $\cap_n \mathfrak{m}^n = 0$ by Krull's intersection.

Proposition 2.12. Let I be an ideal of a local Noetherian ring of dimension $r = \dim(A)$. The followings are equivalent.

- (a) A is regular and I is generated by s regular parameters.
- (b) B = A/I is regular of dimension r s and I is generated by s element
- (c) A is regular and B is regular of dimension r-s

Proof. Consider the exact sequence

$$0 \to I + \mathfrak{m}^2/\mathfrak{m}^2 \to \mathfrak{m}/\mathfrak{m}^2 \to \mathfrak{n}/\mathfrak{n}^2 \to 0, \quad \mathfrak{n} := \mathfrak{m}/I.$$

If $r = \dim_k \mathfrak{m}/\mathfrak{m}^2$ and I is generated by s regular parameters, then

$$r - s \le \dim(B) \le \dim_k \mathfrak{n}/\mathfrak{n}^2 = r - s,$$

and B is therefore regular (the first inequality follows from Krull's principal ideal theorem).

If B is regular of dimension r-s and I is generated by s element, then

$$r = \dim(A) \le \dim_k(\mathfrak{m}/\mathfrak{m}^2) \le r.$$

At last, if A, B are regular and $\dim(B) = r - s$, there exists s regular parameters among generators of $I/\mathfrak{m}I \twoheadrightarrow I/I \cap \mathfrak{m}^2 \cong I + \mathfrak{m}^2/\mathfrak{m}^2$. Let $I' \subset I$ be the ideal generated by them, then both I' and I are prime ideals of co-dimension r - s and thus I = I'.

By the above proof, when A is regular and $r = \dim(A)$, a set of regular parameters (x_1, \dots, x_r) is also a regular sequence since each (x_1, \dots, x_i) , $1 \le i \le r$ is a prime ideal. In particular depth $(A) = \dim(A)$.

Remark 2.13. Conversely, if the maximal ideal of a local Noetherian ring A is generated by a regular sequence, then $\dim(A) \leq \dim_k(\mathfrak{m}/\mathfrak{m}^2) \leq \operatorname{depth}(A) \leq \dim(A)$, and thus A is regular.

2.3. Projective dimension.

Definition 2.14. The projective dimension of M, denoted by proj. $\dim(M)$, is the infimum length of projetive resolutions $0 \to L_n \to \cdots \to L_0$. The following conditions are equivalent.

- (a) proj. $\dim(M) \leq n$.
- (b) $\operatorname{Ext}^{i}(M, N) = 0$ for all i > n.
- (c) Given $0 \to R \to L_{n-1} \to \cdots \to L_0 \to M \to 0$ where L_i are projective, then R is also projective.

When A is Noetherian local and M is a finite A-module recall that

$$M$$
 is free $\iff M$ is prjective $\iff M$ is flat $\iff \operatorname{Tor}_1(M,k) = 0$.

A resolution of M can be constructed as follows.

(1) Lift a basis of M and form $0 \to K_1 \to L_0 \to M \to 0$.

(2) Lift a basis of K_1 and form $0 \to K_2 \to L_1 \to K_1 \to 0$ and so on.

Such a resolution is a minimal free resolution in the sense that all L_i are free, $L_0 \otimes k \cong M \otimes k$, and that $\bar{d} = 0$. Any minimal free resolution is isomorphic. From the minimal resolution of M, one sees that

$$\operatorname{proj.dim}(M) = r \iff \operatorname{Tor}_{r+1}(k, M) = 0 \text{ but } \operatorname{Tor}_r(k, M) \neq 0.$$

Theorem 2.15 (Auslander-Buchsbaum). Let A be a Noetherian local ring. If $M \neq 0$ is a finite A-module and proj. $\dim(M) < \infty$, then $\operatorname{proj.dim}(M) + \operatorname{depth}(M) = \operatorname{depth}(A)$.

Proof. Consider the first step $0 \to K_1 \to L_0 \to M \to 0$ of the minimal resolution of M. If $K_1 = 0$, then proj. $\dim(M) = 0$ and M is free, hence $\operatorname{depth}(M) = \operatorname{depth}(A)$. If $K_1 \neq 0$, then proj. $\dim(K_1) = \operatorname{proj.dim}(M) - 1 \geq 0$ and from the fact that $K_1 \to L_0$ is residually trivial the following is exact.

$$0 \to \operatorname{Ext}^{i}(k, L_{0}) \to \operatorname{Ext}^{i}(k, M) \to \operatorname{Ext}^{i+1}(k, K_{1}) \to 0$$

By induciton on the projective dimension, $\operatorname{depth}(K_1) = \operatorname{depth}(A) - \operatorname{proj.dim}(K_1) \leq \operatorname{depth}(A)$. Since $\operatorname{depth}(M) = \inf\{i \mid \operatorname{Ext}^i(k, M) \neq 0\}$, we see $\operatorname{Ext}^i(k, M) \cong \operatorname{Ext}^{i+1}(k, K_1)$ when $i < \operatorname{depth}(K_1)$ and therefore

$$\operatorname{depth}(M) = \operatorname{depth}(K_1) - 1 = \operatorname{depth}(A) - \operatorname{proj.dim}(K_1) - 1 = \operatorname{depth}(A) - \operatorname{proj.dim}(M).$$

Theorem 2.16 (Serre). Let A be a Noetherian local ring and $k = A/\mathfrak{m}$ be the residue field, then

A is regular
$$\iff$$
 proj. $\dim(k) = \dim(A) \iff$ proj. $\dim(k) < \infty$.

Proof. Write $r = \text{proj.} \dim(k)$, $s = \dim_k(\mathfrak{m}/\mathfrak{m}^2)$. If $\mathfrak{m} = \mathfrak{m}^2$, then $\mathfrak{m} = 0$ and s = 0, hence r = 0. If $\mathfrak{m} \neq \mathfrak{m}^2$, then s > 0. Note also that $\mathfrak{m} \notin \operatorname{Ass}(M)$, for an injection $k \hookrightarrow A$ would imply $\operatorname{Tor}_r(k, k) = 0$. Thus there exists $x \in \mathfrak{m} \setminus \mathfrak{m}^2 \cup \bigcup_{\in \operatorname{Ass}(A)} \mathfrak{p}$, which is regular and \mathfrak{m} -regular. Let B = A/(x), then $\operatorname{Tor}_i(\mathfrak{m}, B) = 0$ for $i \geq 1$. Therefore if $L_* \to \mathfrak{m} \to 0$ is a projective resolution, then $L_* \otimes B \to \mathfrak{m} \otimes B \to 0$ is a projective resolution and

$$\operatorname{Ext}_A^i(\mathfrak{m}, N) = \operatorname{Ext}_B^i(\mathfrak{m}/x\mathfrak{m}, N)$$
 for all *B*-module *N*.

Moreover, \mathfrak{m}/xA is a direct summand of $\mathfrak{m}/x\mathfrak{m}$: Pick a minimal basis $x=x_1,\cdots,x_s$ of \mathfrak{m} and set $\mathfrak{b}=(x_2,\cdots,x_s)$, then $\mathfrak{b}\cap(x)\subset x\mathfrak{m}$ and the composition $\mathfrak{m}/xA=(\mathfrak{b}+(x))/(x)\cong \mathfrak{b}/\mathfrak{b}\cap(x)\to \mathfrak{m}/x\mathfrak{m}\to \mathfrak{m}/xA$ is the indentity. Therefore

$$\operatorname{proj.dim}_{B}(\mathfrak{m}/xA) \leq \operatorname{proj.dim}_{B}(\mathfrak{m}/x\mathfrak{m}) \leq \operatorname{proj.dim}(\mathfrak{m}) \leq r$$

Combine a resolution of \mathfrak{m}/xA with $0 \to \mathfrak{m}/xA \to B \to k \to 0$, we see proj. $\dim_B(k) < \infty$ as well. Thus B is regular by induction on $\dim_k(\mathfrak{m}/\mathfrak{m}^2)$. And A is also regular by Proposition 2.12 since x is regular.

If \mathfrak{p} is a prime ideal, there exists a projective resolution $L_* \to A/\mathfrak{p} \to 0$ of finite length. Then $L_* \otimes A_{\mathfrak{p}} \to (A/\mathfrak{p}) \otimes A_{\mathfrak{p}} \to 0$ is a projective resolution of the residue field of $A_{\mathfrak{p}}$. Therefore $A_{\mathfrak{p}}$ is also regular.

- (1) If x_0 is a non-zero-divisor, then A is regular if and only if $A/(x_0)$ is.
- (2) If A is regular, so is \hat{A} .
- (3) If A is regular, so is A[X].
- (4) If A is regular, so is $A_{\mathfrak{p}}$ for any prime ideal \mathfrak{p} .

3. Spectran sequence

Lemma 3.1. Let $T: C \to C'$ an $S: C' \to C''$ be two additive functors between abelian categories such that S is left exact and $R^qS(TQ) = 0$ for q > 1 if $Q \in C$ is injective. Then $E_2^{p,q} = R^qS(R^pT(A)) \Longrightarrow R^{p+q}(S \circ T)(A)$, in particular there is the exact sequence

$$0 \to R^1S(T(A)) \to R^1(S \circ T)(A) \to S(R^1TA) \to R^2S(T(A)) \to R^2(S \circ T)(A).$$

Proof. Let $A \to Q^*$ be an injective resolution, there is an Cartan-Eillenberg resolution $TQ^* \to J^{**}$ such that

- (a) Each $0 \to T(Q^p) \to \cdots \to J^{q,p} \to \cdots$ is an injective resolution.
- (b) Each $0 \to Z^p(TQ^*) \to \cdots \to Z^p(J^{q,*}) \to \cdots$ is an injective resolution.
- (c) Each $0 \to B^p(TQ^*) \to \cdots \to B^p(J^{q,*}) \to \cdots$ is an injective resolution.
- (d) Each $0 \to H^p(TQ^*) \to \cdots \to H^p(J^{q,*}) \to \cdots$ is an injective resolution.

Consider the double complex below. Then $E_{1,I}^{q,p}=R^qS(TQ^p)=0$ for q>0 and $E_{2,I}^{0,p}=R^p(S\circ T)(A)$. On the other hand, $E_{1,II}^{p,q}=H^p(S(J^{q,*}))=S(H^p(J^{q,*}))$ since both $0\to Z^{q,p}\to J^{q,p}\to B^{q,p+1}\to 0$ and $0\to Z^{q,p}\to Z^{q,p}\to Z^{q,p}\to Z^{q,p}\to Z^{q,p}$ $B^{q,p} \to Z^{q,p} \to H^{q,p} \to 0$ split. But $H^p(J^{q,*})$ is an injective resolution of $R^pT(A)$, so $E_{2,II}^{p,q} \cong R^qS(R^pT(A))$.

- Let X be a ringed space and F, G are \mathcal{O}_X -modules, then $H^p(X, \underline{\operatorname{Ext}}^1_{\mathcal{O}_X}(F,G)) \Longrightarrow \operatorname{Ext}^{p+q}_{\mathcal{O}_X}(F,G)$. Let $f\colon X\to Y$ be a morphism of ringed space, then $H^p(Y,R^qf_*F)\Longrightarrow H^{p+q}(X,F)$.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MICHIGAN, ANN ARBOR, MI 48109, USA Email address: yushglee@umich.edu