Ecuaciones de segundo orden – Algunos ejemplos de modelación matemática

Sistemas Dinámicos Prof. J. Rivera Noriega

ITAM

Otoño de 2020

Revisaremos un modelo matemático que describen esta relación, bajo ciertas premisas que simplifican su descripción.

Ejemplo (Curva de Phillips)

Consideramos las siguientes variables:

- u(t) la tasa de desempleo;
- p(t) el logaritmo del nivel de precios;

Notemos que si P(t) denota el nivel de precios, entonces tendríamos $\dot{p}=\frac{P}{P}$

Esto se interpreta como una tasa instantánea de cambio en el nivel de precio. Por esto p se concibe como la tasa de inflación.

Ejemplo (Curva de Phillips)

Ahora suponemos que la dinámica de estas funciones obedece a las siguientes ecuaciones:

$$\dot{u} = -\alpha(\overline{m} - p) + \beta(\overline{u} - u), \qquad \dot{p} = \gamma(\overline{u} - u)$$

Las constantes involucradas son $\alpha, \beta, \gamma > 0$ cumpliendo $\beta^2 > 4\alpha\gamma$. Además:

m denota el logaritmo de la cantidad nominal de dinero (circulante);

 \overline{u} tasa "natural" de desempleo.

 \overline{m} usualmente se determina desde el Banco Central, y \overline{u} es un umbral estimado bajo la suposición de que no todos los individuos economicamente activos están empleados. Su valor depende de la buena o mala previsión de los agentes.

Ejemplo (Curva de Phillips)

Así, la ecuación

$$\dot{u} = -\alpha(\overline{m} - p) + \beta(\overline{u} - u)$$

dice que el cambio en la tasa del desempleo depende de dos factores:

- Del término $\alpha(\overline{m}-p)$, que en esencia está determinado por la política monetaria
- Del término $\beta(\overline{u}-u)$, que mide la discrepancia entre las tasas real y natural de desempleo.

La ecuación $\dot{p} = \gamma(\overline{u} - u)$ se conoce como **relación de Phillips**. Establece una relación entre la inflación \dot{p} y el desempleo.

Nótese que de la ecuación $\dot{p} = \gamma(\overline{u} - u)$ obtenemos $\dot{u} = -\frac{\ddot{p}}{\gamma}$ Sustituyendo \dot{u} y $(\overline{u} - u)$ en la primera ecuación llegamos a

$$\ddot{\mathbf{p}} + \beta \dot{\mathbf{p}} + \alpha \gamma \mathbf{p} = \alpha \gamma \overline{\mathbf{m}}$$

Los métodos desarrollados en clase llevan a que una solución general para esta ecuación es

$$p(t) = C_1 e^{r_1 t} + C_2 e^{r_2 t} + \overline{m}$$

ya que, usando la fórmula cuadrática

$$r_{1,2} = \frac{-\beta \pm \sqrt{\beta^2 - 4\alpha\gamma}}{2}$$

podemos deducir que $r_1, r_2 < 0$, pues $\sqrt{\beta^2 - 4\alpha\gamma} < \beta$.

Su derivada puede sustituirse en la relación de Phillips para obtener

$$u(t) = \overline{u} - \frac{\dot{p}}{\gamma} = \overline{u} - \frac{1}{\gamma} \left(C_1 r_1 e^{r_1 t} + C_2 r_2 e^{r_2 t} \right)$$

Como siempre, las constantes pueden determinarse dando condiciones iniciales $p(0) = p_0$, $u(0) = u_0$.

Notemos que esta última condición puede visualizarse como una condición sobre \dot{p} , pues de la relación de Phillips $\dot{p}=\gamma(\overline{u}-u)$, implica que una condición sobre u(0) inmediatamente implica una condición sobre $\dot{p}(0)$.

Luego de algunas cuentas obtendríamos los valores de C_1 y C_2 . Por tanto

$$\lim_{t\to\infty} p(t) = \overline{m}, \qquad \lim_{t\to\infty} u(t) = \overline{u}$$

Esto tiene una interpretación directa, recordando el significado de cada variable.

Consideremos una masa sostenida por un resorte (en posición vertical) con longitud inicial ℓ , y supongamos que la masa causa una elongación del resorte de modo que tiene una nueva longitud $L>\ell$.

Las fuerzas inicialmente actuando en este sistema son

- El peso de magnitud mg
- La resistencia del resorte que es proporcional a la longitud elongada -kL

Se tendrá en estas circunstancias la condición de reposo mg = kL.

Se supone ahora que una tercera fuerza actúa en el sistema, cuando este se encuentra en reposo, e imprime un desplazamiento u=u(t)

Se tendrán ahora tres fuerzas actuando:

- El peso w = mg
- La resistencia del resorte que es proporcional a la longitud elongada $F_s = -k(L+u)$
- Una fuerza de resistencia que suponemos proporcional a la velocidad de la masa, actuando en direccón opuesta al movimiento: $F_r = -\gamma u'$

Finalmente supongamos que hay una fuerza externa F(t), que puede provenir del movimiento del punto donde se montó el resorte, o bien una fuerza aplicada directamente a la masa.

Por la segunda ley de Newton, se sabe que

mu'' = Suma de las fuerzas actuando

por lo que obtenemos

$$mu''(t) = w + F_s + F_r + F = mg - k(L + u(t)) - \gamma u'(t) + F(t)$$

Reordenando y usando la condición de reposo obtenemos la ecuación

$$mu''(t) + \gamma u'(t) + ku(t) = F(t)$$

Pueden, por supuesto, añadirse condiciones iniciales $u(0) = u_0$, $u'(0) = v_0$.

Ejemplo

Una masa que pesa 3kg. (fuerza) estira un resorte 5 cm. La masa se desplaza otros 10 cm. hacia abajo para luego ser liberada. Supongamos que hay una resistencia del medio de 4kg. (fuerza) cuando la masa tiene velocidad 60 cm/seg. Formular un problema de valores iniciales que describa el movimiento de esta masa.

Para este ejemplo se deben determinar las constantes que aparecerán en la ecuación.

$$m = \frac{3}{9.8}, \qquad k = \frac{3}{0.05}, \qquad \gamma = \frac{4}{0.6}$$

Al no mencionarse fuerzas externas, asumimos que $F(t)\equiv 0$.

Tenemos pues $\frac{3}{9.8}u'' + \frac{40}{6}u' + 60u = 0$ con condiciones iniciales u(0) = 0.1 y u'(0) = 0.

Ejemplo (Vibraciones libres sin resistencia)

En estas se asume que $F(t) \equiv 0$ y que $\gamma = 0$, por lo que se tiene

$$mu'' + ku = 0$$

Así que la solución general tendrá la forma

$$u(t) = A\cos(\omega_0 t) + B\sin(\omega_0 t),$$
 con $\omega_0^2 = k/m$

Las constantes A y B se obtienen con adecuadas condiciones iniciales.

Para una discusión a fondo de este caso, escribimos esta solución en la forma

$$u(t) = R\cos(\omega_0 t - \delta)$$

Recordando identidades trigonométricas tendremos que

$$R\cos(\omega_0 t - \delta) = R\cos\delta\cos(\omega_0 t) + R\sin\delta\sin(\omega_0 t)$$

Así, la constante δ debe elegirse de manera que $A=R\cos\delta$ y $B=R\sin\delta$, por lo que

$$R = \sqrt{A^2 + B^2}$$
 $\delta = \arctan\left(\frac{B}{A}\right)$

Es por ésto que la gráfica de u será la de una función coseno "desplazada y ampliada".

Por ejemplo, en la ecuación $u^{\prime\prime}+192u=0$ se tiene la solución general de la forma

$$u(t) = \frac{1}{6}\cos(8\sqrt{3}t) - \frac{1}{8\sqrt{3}}\sin(8\sqrt{3}t)$$

En este caso $\omega_0=\sqrt{192}\approx 13{,}86$, y $R=\sqrt{\frac{1}{36}+\frac{1}{192}}\approx 0{,}182$

Además
$$\delta = \arctan\left(\frac{-1/(8\sqrt{3})}{1/6}\right) = \arctan\left(-\sqrt{3}/4\right)$$

Como en este caso $\cos\delta>0$ y sen $\delta<0$ tenemos $\delta\approx-0.41$ (en radianes)

Así es como se escribiría a la solución en la forma

$$u(t) = R\cos(\omega_0 t - \delta)$$

Ejemplo (Vibraciones forzadas sin resistencia)

En este caso se asume que $\gamma=0$ y que hay una fuerza externa F(t), que suponemos de la forma $F(t)=F_0\cos(\omega t)$. Por tanto tenemos la ecuación

$$mu'' + ku = F_0 \cos(\omega t)$$

Suponiendo que $\omega_0 = \sqrt{k/m} \neq \omega$, la solución general será

$$u(t) = u_H + u_P = C_1 \cos(\omega_0 t) + C_2 \sin(\omega_0 t) + \frac{F_0}{m(\omega_0^2 - \omega^2)} \cos(\omega t)$$

En efecto, se propondría $u_P = A\cos(\omega t) + B\sin(\omega t)$ y se seguiría la rutina de calcular u'(t), u''(t) y sustituir en la ecuación para determinar las constantes A y B, resultando $A = \frac{F_0}{m(\omega_0^2 - \omega^2)}$ y B = 0.

Suponiendo que tenemos condiciones iniciales u(0) = 0 y u'(0) = 0 entonces se puede probar que

$$C_1 = -\frac{F_0}{m(\omega_0^2 - \omega^2)}, \qquad C_2 = 0$$

y entonces la solución queda

$$u(t) = \frac{F_0}{m(\omega_0^2 - \omega^2)} \left(\cos(\omega t) - \cos(\omega_0 t) \right)$$

La gráfica de esta función es una sinuidal dentro de otra sinuidal.

Para esta situación podemos tratar de resolver $u'' + u = 0.5\cos(0.8t)$ con datos iniciales u(0) = 0, u'(0) = 0.