Business Intelligence Modelagem Pimensional

Prof. Sergio Bonato, 2019
asbonato@gmail.com

- * Tabelas Fato: servem para armazenar medidas numéricas associadas aos eventos de negócio, os fatos; possuem como chave primária um campo multikey composto pelas chaves primárias das dimensões que com ela se relacionam; contém dados normalmente aditivos.
- * Tabelas Pimensão: representam entidades de negócio e são as estruturas de entrada; tem uma relação 1:N com as tabela fato; possuem múltiplas colunas, algumas representando uma hierarqia; sempre tem chave primária; são as tabelas que fazem os filtros de pesquisa dos fatos.

A definição da área de negócio onde vai acontecer o projeto de DW/DM deve ocorrer de acordo com as prioridades da empresa.

- * Escolhe-se uma área: Marketing (clientes), Finanças, Vendas, Produção, etc.
- * Pefinem-se os processos alvo do projeto de PW: varejo, entrega, controle de pedidos, assinaturas, etc.
 - * Analisam-se os processos escolhidos, identificando entidades de dados, relacionamentos, objetos, eventos, interações.

A granularidade define, de forma combinatória, os níveis dimensionais de armazenamento de dados

produto-loja-dia

supermercado produto-loja-mês

produto-região-dia

restringem processamento granularidade

deve-se partir de modelos que tenham a maior granularidade possível; assim se pode obter os outros níveis desejados.

- * cada loja vende, por dia, 10 mil produtos
- * temos 200 lojas
- * queremos armazenar as vendas diárias por 2 anos

10000*200*365*2 = 1,46 bilhão de registros

- * cada chave (produto-loja-dia) tem 5 bytes
- * 3 valores numéricos com 4 bytes cada

1,46 bilhão * 27 bytes = 39,4 gigabytes

cargas diárias das vendas das 200 lojas no DW

Na definição das tabelas dimensão o importante é a hierarquia das dimensões e a definição dos atributos

- * As hierarquias de dimensões compõem, na forma de atributos, os registros das tabelas Dimensão.
- * As várias hierarquias possibilitam diferentes caminhos à tabela Fato.

Definição das tabelas Dimensão

TdLoja (cod_loja, nome, endereço, cidade, estado, cod_região, região_venda)
TdProduto (cod_produto, marca, categoria, tipo_embalagem, departamento)
TdDia (cod_dia, mês, ano, período_fiscal, estação_ano)

Normalização das tabelas dimensão pode ser feita - snowflake schema - ou não - star schema

star schema

snowflake schema

Loja

COP_Loja (PK)
nome
endereço
cidade
estado
cod_região
região_venda

Vendas

COD_Produto (FK) COD_Loja (FK) COD_Dia (FK)

QTP_Vendida Valor

Produto

COP_Produto (PK)
marca
cod_categoria
desc_categoria
tipo_embalagem
departamento

Região

cod_região (PK) nome_região

Loja

COP_Loja (PK)
nome
endereço
cidade
estado
cod_região(FK)

Vendas

COP_Produto (FK) COP_Loja (FK) COP_Dia (FK)

QTP_Vendida Valor

Categoria

cod_categoria (PK) desc_categoria

Produto

COD_Produto (PK)
marca
tipo_embalagem
departamento
cod_categoria (FK)

As redundâncias do star schema são compensadas pela redução no número de junções; como as tabelas dimensão são menores, o desperdício de espaço não é grande.

Os relacionamentos de atributos das tabelas dimensão podem ser classificados da seguinte forma:

- * As tabelas dimensão não possuem relacionamento entre si, formando dimensões independentes. Ex: TEMPO e LOJA
- * Os atributos dentro da mesma tabela possuem relacionamento hierárquico, ou seja, 1:N, formando estruturas hierárquicas de dimensões. Ex: Região->Cidade->Loja.
- * Os atributos em uma dimensão possuem relacionamento N:N Música Compositor

Solução:

Fato

Música

Direitos percentagem

Compositor

Pefinição dos atributos das tabelas fato, que geralmente são valores chamados de MÉTRICAS.

- * Tipos de Métricas
 - * Aditivas: são valores passíveis de serem somados, como valor vendido ou custo.
 - * Semi-aditivas: sua soma só tem sentido em uma dimensão, como quantidade vendida, que deve ser acumulada na dimensão produto.
 - * Não-aditivas: não dá para somar, como margem de contribuição de cada produto
- * As tabelas fato são sempre normalizadas
- * Para economizar espaço, alguns valores podem ser obtidos via transação ou por meio de drill-through

Conformidade de dimensões estabelece coerência entre as dimensões em diferentes DM ou dentro do mesmo DM

Combinação de dimensões podem ocorrer se há grande coesão entre elas.

- * Por exemplo, se certos PROPUTOS são vendidos somente em determinadas LOJAS, isso pode sugerir uma combinação de dimensões.
- * Entretanto, é preciso ter cuidado com a explosão combinatória, que poderia elevar muito o número de instâncias em uma dimensão.

As dimensões especiais estão em quase todos os PW/PM. Estão relacionadas com TEMPO, ESPAÇO e o OBJETO dos sistemas.

- * Tempo com granularidade PIA
 - * PATA_COMPLETA: 01-01-2000
 - * DIA_SEMANA: 6a Feira
 - * NÚMERO_PIA_MÊS: 01
 - * NÚMERO_DIA_GERAL_CORRIDO _NO_ANO (1 - 365)
 - * NÚMERO_SEMANA_MÊS (1 A 4 ou 5)
 - * NúMERO_SEMANA_GERAL_CO RRIDO (1 a 52)

- * MêS_ANO (Janeiro a Pezembro)
- * NÚMERO_MÊS_GERAL_CORRID 0 (1 a 12)
- * TRIMESTRE (1 4)
- * PERIODO_FISCAL (1 a 4)
- * TAG_DIA_FINAL_SEMANA (indica sáb ou dom)
- * TAG_ÚLTIMO_PIA_MÊS (indica se é o último dia do mês)
- * TAG_FERIADO (indica se é feriado)

A Dinâmica das dimensões está ligada com a estratégi de manutenção das informações quando há atualizações.

validade - início e fim)

As dimensões degeneradas existem para alinhavar outras dimensões na tabela fato, mas não tem tabela dimensão; dimensões junk são para tags, valores binários ou de pequena cardinalidade.

Na escolha de campos chave de dimensões e fatos deve-se preferir chaves artificiais (surrogates) às naturais, i.e., com semântica de negócio embutida, pois são mais estáveis e evitam problemas relativos a:

- * Unicidade: nem sempre se pode garantir valores únicos; a esposa pode usar o CPF do marido, por exemplo.
- * Ausência: algumas entidades podem não ter identificadores naturais; um cliente estrangeiro não tem CPF.
- * Tamanho: as chaves naturais geralmente são maiores que as artificiais; 4 bytes tem uma faixa de 2 bilhões (2³²) de valores diferentes.
- * Estas chaves ligam Fato e Dimensão e geralmente ficam escondidas do usuário e são produzidas durante as cargas.

Tabelas fatos sem dados ou métricas são raras e servem para relacionar tabelas dimensão envolvidas

Tabelas fatos com classificação ou subtipos ocorrem quando o negócio tem vários tipos de produtos.

Modelo dimensional para tratamento de multifatos - tabela base

O modelo base contém os produtos na sua menor granularidade, consolidados por categoria; o modelo detalhado contém as fato especializadas para cada tipo de produto.

Agregados são tabelas prontas, sumariadas em várias dimensões, que facilitam a agilizam o acesso aos dados

TdLoja (cod_loja, nome, endreço, cidade, estado, cod_região, região_venda)
TdProduto (cod_produto, marca, categoria, tipo_embalagem, departamento)
TdDia (cod_dia, mês, ano, período_fiscal, estação_ano)
TfVendas (cod_loja, cod_produto, cod_dia, valor_vendido_real, custo_real, lucro, qtd_vendida)

- * O critério para definição de agregados está na dificuldade para obtenção de informações a partir dos dados granulares.
- * Os campos em vermelho sublinhados são níveis de hierarquia:
 - * REGIÃO -> LOJA: 2 níveis
 - * CATEGORIA -> PRODUTO: 2 níveis
 - * ANO -> MÊS -> PIA: 3 níveis
- * O número de tabelas de agregados está diretamente relacionado com o número de combinações ternárias, binárias ou unárias e o volume está ligado ao número de ocorrências:
 - * ternária: 2 X 2 X 3 = 12 opções. Ex: região + categoria + ano, região + categoria + mês, etc
 - * binária: 16 opções (2 X 2 + 2 X 3 + 2 X 3). Ex: região + categoria, ano + loja, região + ano, etc
 - * unária: 7 opções (2 + 2 + 3). Ex: agregados por loja, ou por categoria, ou por mês.
 - * total: 35 combinações possíveis

Deve-se ter cuidados na definição de agregados com valores aditivos e na precisão dos valores, pois nem todos os valores são passíveis de soma e pode haver overflow nos totais se a variável não for maior.

Metadados são importantes na documentação das aplicações OLAP e do ambiente DW/DM. Exemplo de metadados armazenados em um banco relacional.

Bibliografia

- * disponíveis na biblioteca
 - * Fonte principal: BARBIERI, Carlos. BI Business Intelligence: Modelagem & Tecnologia; Axcel Books, 2001
 - * INMON, William H. Como construir o data warehouse. Rio de Janeiro: Campus, 1997
 - * KIMBALL, Ralph; MERZ, Richard. Data Webhouse: construindo o Data Warehouse para a Web. Rio De Janeiro: Campus, 2000
- * online
 - * BRUZAROSCO; CASTOLDI; PACHECO; Criando data warehouse com o modelo dimensional. http://periodicos.uem.br/ojs/index.php/ ActaSciTechnol/article/viewFile/3099/2225