

Energy-aware UAV Path Planning with Adaptive Speed

Jonathan Diller (jdiller@mine.edu) and Qi Han (qhan@mines.edu) Colorado School of Mines

Application Scenario

Scenario considered: Unmanned Aerial Vehicles (UAV) data collection mission with a moving ground vehicle cannot stop and wait for a UAV to return

Disaster Response

Forest Fire Monitoring

Problem Setup

Given:

- Energy constrained UAV
- Set of waypoints to visit
- Starting position of ground vehicle (where UAV will launch)
- Function describing ground vehicle movements

Research Question:

- 1. How can we plan UAV data collection routes while accounting for the movement of a ground vehicle that launches/receives the UAV?
- 2. How can we include a realistic model for energy in a UAV route planner?

UAV Speed & Energy Consumption

- Previous work found that increasing speed initially reduces power consumption but increases consumption at higher speeds [Zeng et. al., TWC, 2019][Shan et. al., INFOCOM, 2020]
- Using battery parameter and field testing from [2], we derived mapping from velocity to total distance

Speed-Energy Tradeoff

- Maximizing speed reduces total distance
- Maximizing total distance reduces speed
- Moving faster may reduce mission duration but may also require require stopping to change out battery

Speed vs. Power Consumption

Speed vs. Travel Distance

Path found using *k*-IP approach

Path found using MINLP approach

Our Approach

Iteratively fix number of sub-tours, predict sub-tour times, solver underlying fixed-Hamiltonian Paths Problem

Implemented two ways to solve fixed-Hamiltonian Paths:

- *k*-means clustering with TSP solver (*k*-IP)
 - First clust waypoints the treat clusters a TSP
 - Optimize UAV speed after solving sub-tours
- Mixed-Integer Nonlinear Program (MINLP)
 - Minimizes mission completion time by jointly minimizing sub-tour distance and maximizing UAV speed for sub-tour

Simulation Evaluation

- Considered randomly placed waypoints application with linear ground vehicle
- Compared against approach from related works (TS) [3]

Result: MINLP, k-IP provide 23.8%, 14.5% improvement in mission completion time over TS, respectively

Result: Adapting speed improves mission completion time 11.9% ~ 47.1% compared to fixing speed (depending on approach)

Field Test

Urban Environment: Considered urban environment with ground vehicle following street grid, solved using MINLP

Physical Prototype: Modeled problem setup in field experiment with quadcopter drone

Checkout a digital copy of our poster!

