

Cross-Institute Virtual Cluster Management in PRAGMA

Yuan Luo¹, Shava Smallen ², Nadya Williams², Beth Plale¹, Philip Papadopoulos²

¹School of Informatics and Computing, Indiana University Bloomington

²San Diego Supercomputer Center, University of California San Diego

Goals of Personal Cloud Controller (PCC)

- Enable lab/group to easily manage application virtual clusters on available resources
- Leverage PRAGMA Cloud tools: PRAGMA Bootstrap, IPOP, ViNE, Rocks.
- Lightweight, extends HTCondor from U Wisc.
- Provide command-line and Web interfaces

Working Group: Resources

Previous work

Demoed single site virtual cluster prototype at PRAGMA 26

High level architecture diagram of PCC

Web interface to launch and view status of virtual cluster

Architecture diagram of PCC-HTCondor

Progress for PRAGMA 27

Cross-institute virtual cluster using IPOP

Accomplished

- ✓ Setup Rocks with KVM roll on 3-node cluster at IU
- ✓ Experimented with IPOP and measured initialization and bandwidth performance between IU and SDSC
- ✓ Drafted a paper "A Personal Cloud Controller Framework" for submission
- Developed new IPOP Rocks roll for easy installation of IPOP to any Rocks virtual cluster
- ✓ Added automated IPOP server/client initialization to PRAGMA Bootstrap
- ✓ Enabled multi-site virtual cluster creation via enhanced PCC-HTCondor (VM GAHP) and Condor DAG capabilities
- ✓ Part-way thru setup of OpenNebula/ PRAGMA Bootstrap on 4-node cluster at AIST

TODO

- ☐ Automated reconfiguration of Rocks DB
- ☐ Debug OneNebula/PRAGMA Bootstrap issues
- ☐ Integrate changes into Web interface
- Rocks rolls for PCC-HTCondor and enhanced PRAGMA Bootstrap
- ☐ Live application demo with Lifemapper

IPOP

Image from IPOP White Paper, http://ipop-project.org/wp-content/uploads/2014/07/IPOP-WhitePaper-1407.pdf

PCC Evaluation

- We measure overhead of PCC as captured by overhead during the resource provisioning phase and overhead of application running over VPN.
- ☐ Testbed. Two clusters were selected: one at Indiana University(IU) and the other at the San Diego Supercomputer Center (SDSC).

Table 1. Testbed Specifications

Cluster	Nodes	CPU	Cores	Mem	Ethernet	OS	VMM	Cloud Platform
SDSC	4	2.4GHZ	4	8GB	1000Base-T	CentOS 6	KVM	Rocks 6.1
IU	3	2.4GHZ	8	16GB	1000Base-T	CentOS 6	KVM	Rocks 6.1

PCC Evaluation - cont'd

PCC Overhead Evaluation

18,

Number of VMs

20, 22,

6, 8, 10, 12, 14,

Network Overhead Evaluation

IPOP Rocks Roll

https://github.com/pragmagrid/ipop

File	IPOP Server	IPOP Client	Purpose
/opt/ipop/ejabberd/bin/initEjabberd	X		(Re-)initializes Ejabberd for IPOP usage and produces ipopserver.info file.
/etc/init.d/ejabberd	X		Optionally initializes (via initEjabberd) and then starts Ejabberd
/var/www/html/ipop/ip.php	X		Distributes unique IP addresses to IPOP clients
/opt/ipop/bin/updateConfJson	X	X	Populates IPOP config.json file with ipopserver.info contents
/etc/init.d/ipop	Χ	X	Optionally initializes then starts IPOP

Many thanks to Nadya Williams!!

IPOP-enabled PRAGMA Bootstrap

PRAGMA Bootstrap

- Instantiates dynip-enabled virtual clusters within a single cluster
 - Utilizes "drivers" to support multiple cloud platforms (current support for Rocks and OpenNebula)
 - Allocates IP addresses, installs vc-out.xml (for dynip), and boots VMs

IPOP Enhancements

- --enable-ipop-server=<URL>
 Starts up IPOP-enabled virtual cluster with the frontend serving as the IPOP server; fetches IPOP server info once initialization is complete
- --enable-ipop-client=<URL>
 Start up the IPOP-enabled virtual cluster as an IPOP client (to another virtual cluster).

Enhanced PCC-HTCondor

(Leveraged HTCondor DAG capabilities to create multi-site virtual cluster)

```
universe
                                                                  executable
                                                                                                = rocks vc 1
                                                                                                = Machine == "nbcr-224.ucsd.edu"
                                                                  requirements
                                                                                                = vc1.log.txt
                                                                  Log
                                                                                                = rocks
                                                                  vm type
                                                                                                = 64
                                                                  m memory
                                                                  rocks job dir
                                                                                                  = /tmp/dag vm
                                                                  RequestMemory = 64
                                                                 rocks should transfer files = Yes
                                                                                                                         ROCKS
                                                                  RunAsOwner=True
                                                                  queue
                                                                 universe
                                                                                              = vm
                                                                 executable
                                                                                              = rocks vc 2
         File name: vc-ipop.dag
                                                                 requirements
                                                                                              = Machine =="pragma8.cs.indiana.edu"
                                                                                              = vc2.log.txt
                                                                                              = rocks
                                                                 nm type
              A vc1.sub
                                                                 m memory
                                                                                                = /tmp/dag vm
                                                                 rocks job dir
      JOB
              B vc2.sub
                                                                 RequestMemory = 64
                                                                 rocks should transfer files = Yes
                                                                                                                           ROCKS
              C vc3.sub
      JOB
                                                                 RunAsOwner=True
                                                                 queue
             HTCondor DAG
                                                                  niverse
                                                                 executable
                                                                                              = rocks vc 3
                                                                                              = Machine =="163.220.56.77"
                                                                 requirements
                                                                                              = vc3.log.txt
                                                                 loq
                                                                                              = rocks
                                                                 vm type
                                                                 vm memory
            = /opt/pragma boot/vm-images
                                                                 rocks job dir
                                                                                                = /tmp/dag vm
            = ~/.ssh/id rsa.pub
                                                                 RequestMemory = 64
                                                                 rocks should transfer files = Yes
            = shava pragma boot.log
                                                                 RunAsOwner=True
                                                                                          OpenNebula.org
-ipop-enable-server=${COLLECTOR HOST STRING}/ipop/register.php?jobid=${DAGManJobId
          ent=${COLLECTOR HOST STRING}/ipop/register.php?jobid=${DAGManJobId}
        VC configuration file
                                                                          Parallel pragma boot jobs
```

Instantiated virtual cluster

Demo: View Ejabberd interface

User ipopuser@ejabberd

Connected Resources:

- tincan1de34723728e58571ce3501c3d21a13f46a7e927 (tls://169.228.41.225:50745#ejabberd@nbcr-225.ucsd.edu)
- tincan9169df46acec4238922902480f0ecd393d023076 (tls://129.79.240.60:60407#ejabberd@nbcr-225.ucsd.edu)
- tincanfd5fbdde01244d74e7f54a1d72ff0441325d9fdb (tls://10.1.1.254:39350#ejabberd@nbcr-225.ucsd.edu)

Password:	
	Change Password
Last Activity Online	
Offline Messages: O Remove All Offline Message	es
Roster	

Remove User

```
[root@nbcr-225 ~]# sh show-ipop
     ---- 172.228.41.1 -----
ping -c 1 172.228.41.1
PING 172.228.41.1 (172.228.41.1) 56(84) bytes of data.
64 bytes from 172.228.41.1: icmp_seq=1 ttl=64 time=69.9 ms
 -- 172.228.41.1 ping statistics ---
 packets transmitted, 1 received, 0% packet loss, time 70ms
rtt min/avg/max/mdev = 69.905/69.905/69.905/0.000 ms
ssh 172.228.41.1 hostname
compute-0
         = 172.228.41.2 ==
ping -c 1 172.228.41.2
PING 172.228.41.2 (172.228.41.2) 56(84) bytes of data.
64 bytes from 172.228.41.2: icmp_seq=1 ttl=64 time=0.977 ms
 -- 172.228.41.2 ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 1ms
rtt min/avg/max/mdev = 0.977/0.977/0.977/0.000 ms
ssh 172.228.41.2 hostname
compute-0
         == 172.228.41.3 ======
ping -c 1 172.228.41.3
PING 172.228.41.3 (172.228.41.3) 56(84) bytes of data.
64 bytes from 172.228.41.3: icmp_seq=1 ttl=64 time=0.872 ms
  -- 172.228.41.3 ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 1ms
rtt min/avg/max/mdev = 0.872/0.872/0.872/0.000 ms
ssh 172.228.41.3 hostname
compute-1
        --- 172.228.41.4 -----
ping -c 1 172.228.41.4
PING 172.228.41.4 (172.228.41.4) 56(84) bytes of data.
64 bytes from 172.228.41.4: icmp_seq=1 ttl=64 time=68.8 ms
 -- 172.228.41.4 ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 69ms
rtt min/avg/max/mdev = 68.816/68.816/68.816/0.000 ms
ssh 172.228.41.4 hostname
compute-1
       ---- 172.228.41.5 -----
ping -c 1 172.228.41.5
PING 172.228.41.5 (172.228.41.5) 56(84) bytes of data.
64 bytes from 172.228.41.5: icmp_seq=1 ttl=64 time=0.892 ms
  -- 172.228.41.5 ping statistics ---
 packets transmitted, 1 received, 0% packet loss, time 1ms
rtt min/avg/max/mdev = 0.892/0.892/0.892/0.000 ms
ssh 172.228.41.5 hostname
compute-2
        == 172.228.41.6 ======
ping -c 1 172.228.41.6
PING 172.228.41.6 (172.228.41.6) 56(84) bytes of data.
64 bytes from 172.228.41.6: icmp_seq=1 ttl=64 time=117 ms
 --- 172.228.41.6 ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 117ms
rtt min/avg/max/mdev = 117.393/117.393/117.393/0.000 ms
ssh ssmallen@172.228.41.6 hostname
asccmp077.hpcc.jp
```

Future Work

Near-term goals

Oct-Dec

- Automated reconfiguration of Rocks DB
- Integrate changes into Web interface
- Rocks rolls for PCC-HTCondor and enhanced PRAGMA Bootstrap
- Live application demo with Lifemapper

Jan – April

- Work with Aimee to develop load model for LM
- Develop PCC auto-sizing capabilities

Lifemapper

Longer-term goals

- Improve resource allocation algorithms.
- Enable resource to application information sharing.
- Extend the Hierarchical MapReduce model to support distributed sensitive data processing.
- Schedule application jobs based on VC topologies, and VM provenance.