Conceitos e Formas de Representação de uma Função -Operações com Intervalos

Bacharelado em Ciência da Computação Cálculo Diferencial e Integral I - 2ª fase

Professora: Joelma Kominkiewicz Scolaro

Aula 2 20/09/2021

- 19)]2, 5[= $\{x \in \mathbb{R} \mid 2 < x < 5\}$ é intervalo aberto.
- 2º) $[-1, 4] = \{x \in \mathbb{R} \mid -1 \le x \le 4\}$ é intervalo fechado.
- 3º) $\left[\frac{2}{5}, 7\right] = \left\{x \in \mathbb{R} \mid \frac{2}{5} \le x < 7\right\}$ é intervalo fechado à esquerda.
- 49) $\left[-\frac{1}{3}, \sqrt{2} \right] = \left\{ x \in \mathbb{R} \mid -\frac{1}{3} < x \le \sqrt{2} \right\}$ é intervalo fechado à direita.

- a)] $-\infty$, a[= {x $\in \mathbb{R}$ | x < a} que também podemos indicar por ($-\infty$, a[ou $-\infty$ a.
- b) $]-\infty$, a] = $\{x \in \mathbb{R} \mid x \le a\}$ que também podemos indicar por $(-\infty, a]$ ou $-\infty \dashv a$.
- c)]a, $+\infty$ [= {x $\in \mathbb{R} \mid x > a$ } que também podemos indicar por]a, $+\infty$) ou a $+\infty$.
- d) $[a, +\infty[= \{x \in \mathbb{R} \mid x \ge a\}$ que também podemos indicar por $[a, +\infty)$ ou $a \vdash +\infty$.
- e) $]-\infty, +\infty[=\mathbb{R}$ que também podemos indicar por $(-\infty, +\infty)$ ou $-\infty -+\infty$.

Representação gráfica

Os intervalos têm uma representação geométrica sobre a reta real como a que segue:

Utilizando a representação gráfica dos intervalos sobre a reta real, determine $A \cap B \in A \cup B$, sendo $A = [0, 3] \in B = [1, 4]$.

Sendo $A = \{x \in \mathbb{R} \mid -1 < x \le 3\}$ e $B = \{x \in \mathbb{R} \mid 2 < x \le 5\}$, calcule $A \cup B$.

Sejam A = $(-\infty; 2]$ e B = $[0; +\infty)$ intervalos de números reais. Determine A \cap B.

Valor Absoluto

Definição 9: O valor absoluto ou módulo de um número real x é representado e definido por:

$$|x| = \begin{cases} x, & \text{se } x \ge 0 \\ -x, & \text{se } x < 0 \end{cases}.$$

Vemos que o valor absoluto de um número real é sempre não negativo. Geometricamente, o valor absoluto de um número real x é sua distância do ponto de origem, independentemente de sua direção.

Exemplo 1:
$$|7-4| = |3| = 3 e |4-7| = |-3| = 3$$

Exemplo 1: |7-4|=|3|=3 e |4-7|=|-3|=3. Vemos que |7-4|=|4-7| é a distância entre 4 e 7 sem a preocupação com qual dos números é major.

Propriedades do Valor Absoluto

Sejam x e y dois números reais.

- 1. $|x| \geq 0$;
- 2. $|x| \ge x$;
- 3. |-x| = |x|;

A demonstração da cada uma das propriedades acima, decorre diretamente da definição.

4. $|x|^2 = x^2 e |x| = \sqrt{x^2}$; Demonstração:

(a) Se
$$x \ge 0$$
, então da definição vem que, $|-x| = |x|$ que verifica a proposição;

(b) Se
$$x < 0$$
, então da definição vem que, $|-x| = |x|$ e $(-x)^2 = x^2$, de onde $|x|^2 = x^2$ e, por conseguinte, $|x| = \sqrt{x^2}$.

5.
$$|xy| = |x| \cdot |y|$$
;

Pela propriedade 4, temos que: $|xy| = \sqrt{(xy)^2} = \sqrt{x^2} \cdot \sqrt{y^2} = |x| \cdot |y|$.

6. Designaldade triangular: $|x+y| \le |x| + |y|$;

Pela propriedade 4, temos que:

$$|x+y|^2 = (x+y)^2 = x^2 + 2xy + y^2 \le x^2 + 2|xy| + y^2$$

$$\Rightarrow |x+y|^{2} \le |x|^{2} + 2|xy| + |y|^{2} = (|x|+|y|)^{2}$$

$$\Rightarrow |x+y| \le |x| + |y|.$$

$$\Rightarrow |x+y| \le |x|+|y|$$
. 7. $|x|-|y| \le |x-y|$;

Demonstração:

$$\frac{Demonstração}{Fazendo \ x=x+y-y \ e \ da \ propriedade \ 6, \ segue \ que}$$

$$|x| = |x + y - y| \le |x - y| + |y|$$
.

Somando - |y| a ambos os lados, temos que:

$$|x|-|y|\leq |x-y|.$$

8.
$$|x| - |y| \le |x + y|$$
;

Demonstração:

Fazendo x = x + y - y e da propriedade f vem que

$$|x| = |x + y - y| \le |x + y| + |-y| = |x + y| + |y|$$
.

Somando - |y| a ambos os lados, temos que:

$$|x| - |y|$$
 a amoos os tados, temos que. $|x| - |y| \le |x + y|$.

9.
$$|x-y| \le |x| + |y|$$
;

Demonstração:

Observe que:

$$|x - y| = |x + (-y)| \le |x| + |-y| \le |x| + |y|$$
.

10.
$$\left|\frac{x}{y}\right| = \frac{|x|}{|y|}$$
, com $y \neq 0$.

Demonstração:

Note que:

$$\left|\frac{x}{y}\right| = \left|x \cdot \frac{1}{y}\right| = \left|x\right| \cdot \left|\frac{1}{y}\right| = \left|x\right| \cdot \frac{1}{\left|y\right|} = \frac{\left|x\right|}{\left|y\right|}$$

- Seja a um número real positivo, então:
 - (a) |x| < a se, e somente se, -a < x < a;
 - (b) $|x| \le a$ se, e somente se, $-a \le x \le a$
 - (c) |x| > a se, e somente se, x < -a ou x > a;
 - (d) $|x| \geq a$ se, e somente se, $x \leq -a$ ou $x \geq a$.

Demonstração: Somente do caso (a)

- Inicalmente, provaremos que |x| < a se -a < x < a:
- i. Se $x > 0 \Rightarrow |x| = x$, uma vez que x < a teremos |x| < a; $ii. \ Se \ x < 0 \ \Rightarrow \ |x| = -x$, $uma \ vez \ que$, $mas \ x < a \ teremos \ -x < a$, mas
- |-x| = x, então |x| < a.

Portanto |x| < a se -a < x < a.

Agora, mostraremos que |x| < a somente se -a < x < a:

i. Se $x \ge 0$, como |x| = a, teremos x < a, como a > 0 e -a < 0, então -a < 0 < x < a de onde vem que -a < x < a.

Portanto, |x| < a se, e somente se, -a < x < a.

Observação 1: A demonstração dos casos (b), (c) e (d) é análoga.

(i)
$$|5x - 3| = 7$$
.

Esta equação é verdadeira quando 5x - 3 = 7 ou 5x - 3 = -7, ou seja, x = 2 ou x = -4/5. Portanto, as duas soluções da equação dada são:

$$x = 2 e x = -4/5$$

(ii)
$$|7x - 1| = |2x + 5|$$
.

Caso 1:
$$7x - 1 = 2x + 5$$

 $7x - 2x = 5 + 1$

$$7x - 2x = 5$$
$$5x = 6$$

$$5x = 6$$

x = 6 x = 6/5Portanto a solució

Caso 2:
$$7x - 1 = -(2x + 5)$$

$$7x - 1 = -2x - 5$$

$$7x + 2x = -5 + 1$$

$$9x = -4$$

$$x = -4/9$$
.
Portanto, a solução final é $x = 6/5$ e $x = -4/9$.

$$|9x + 7| = -7$$

Esta equação não tem solução, pois o valor absoluto de um número nunca pode ser negativo.

$$|7x - 2| < 4$$
.
$$-4 < 7x - 2 < 4$$

$$-4 + 2 < 7x - 2 + 2 < 4 + 2$$

$$-2 < 7x < 6$$

$$-\frac{2}{7} < x < \frac{6}{7}$$
Portanto, $x \in (-2/7, 6/7)$.

$$\frac{|7 - 2x|}{|4 + x|} \le 2.$$

$$49 - 28x + 4x^2 - 64 - 32x - 4x^2 \le 0$$

$$-60x - 15 \le 0$$

$$-60x \le 15$$

$$60x \ge -15$$

 $x \ge -15/60$

 $x \ge -1/4$ ou $x \in [-1/4, +\infty)$.

 $49 - 28x + 4x^2 \le 4(16 + 8x + x^2)$

 $49 - 28x + 4x^2 \le 64 + 32x + 4x^2$

 $\left|\frac{7-2x}{4+x}\right| \le 2, \, x \ne -4.$

Exemplo 2: Resolva a equação $|x-3|^2-4$ |x-3|=12. Definindo u = |x - 3|, temos que a equação acima pode ser escrita como

$$u^2 - 4u - 12 = 0 (1)$$

As raízes da equação (1) são -2 e 6.

* Para
$$u = -2$$
, segue que: $|x - 3| = -2$

 \star Para u=-2, segue que: |x-3|=-2. Por propriedade de módulo |x| > 0.

* Para
$$u = 6$$
, segue que: $|x - 3| = 6$ (2)
Pela definição de módulo, temos que

Pela definição de módulo, temos que

Pela definição de módulo, temos que
$$|x-3| = \begin{cases} x-3, & \text{se } x \geq 3 \\ -(x-3), & \text{se } x < 3 \end{cases}.$$

1° Caso: Se
$$x \ge 3$$
, temos que: $x-3=6 \Longrightarrow x=9$

Como $9 \in [3, +\infty)$, segue que uma solução é $S_1 = \{9\}$.

Somo
$$9 \in [3, +\infty)$$
, segue que uma

2º Caso: Se x < 3, temos que:

$$Caso$$
: Se $x < 3$, temos que:
 $-x + 3 = 6 \Longrightarrow x = -3$

 $-x+3=6 \Longrightarrow x=-3$ Como $-3 \in (-\infty, 3]$, segue que uma solução é $S_2 = \{-3\}$.

Portanto, a solução é $S = \{-3, 9\}$.

Absurdolll

Exemplo 3: Determine todos os valores de x que satisfazem a desigualdade

$$|x-5| < |x+1|$$
.

Solução 1:

Elevando ao quadrado ambos os lados e usando a propriedade 4, temos que:

$$|x-5|^2 < |x+1|^2 \Rightarrow (x-5)^2 < (x+1)^2$$

 $\Rightarrow x^2 - 10x + 25 < x^2 + 2x + 1$

$$\Rightarrow x - 10x + 25 < x + 2x < \Rightarrow 12x > 24$$
, ou seja, $x > 2$.

Solução 2:

Pela definição de módulo, temos que:

$$|x-5| = \begin{cases} x-5, & \text{se } x \ge 5 \\ -x+5, & \text{se } x < 5 \end{cases} \quad \text{e} \quad |x+1| = \begin{cases} x+1, & \text{se } x \ge -1 \\ -x-1, & \text{se } x < -1 \end{cases}$$

1° Caso: Se
$$x < -1$$
, temos que:

 $|x-5| < |x+1| \implies -x+5 < -x-1 \implies 5 < 1.$ Absurdo!!! Logo, não há solução para x < -1, isto é, $S_0 = \{\}$.

 2° Caso: Se $-1 \le x \le 5$, temos que:

 $|x-5| < |x+1| \Rightarrow -x+5 < x+1 \Rightarrow -2x < -4 \Rightarrow x < 2.$ Logo, a solução neste intervalo é $S_1 = (2, 5)$.

3° Caso: Se $x \geq 5$, temos que:

 $|x-5| < |x+1| \implies x-5 < x+1 \implies 5 < 1.$ Como a desigualdade é satisfeita para qualquer $x \geq 5$, temos que a solução

é todo $x \in (5, +\infty)$, ou seja, $S_2 = (5, +\infty)$.

Portanto, a solução da desigualdade é a união das soluções acima, ou seja, $S = S_0 \cup S_1 \cup S_2 = (2, +\infty).$