计算机网络 Computer Network

期末复习

理论课程

知识框架

- •核心内容
 - 协议模型
 - 七层、五层、四层
 - 各层次的协议、机制、作用
- 应用内容
 - 传输过程的数据处理细节

本书重点概述 各协议层重点 期末考试题型 3 期末考试大纲

总结

5

什么是重点

- 贴近生活,经常使用的是重点
 - 以太网
 - IP协议
 - -TCP协议

总纲

• 计算机网络的分层架构

什么是因特网

- 互联网:网络的网络(network of networks)
 - 第一个网络指的是主机通过共享设备和介质连接为局域网
 - 第二个网络指的是通过路由器将局域网连成广域网

什么是因特网

课程框架

五层协议模型

重要的表格

分层	传输最	主要	主要协议(或	该层同	层主要作用		
名称	小单位	设备	编址名称、方案	协议机制	类协议		

1 本书重点概述

2 各协议层重点

2.1 物理层

2.2 数据链路层

2.3 网络层

物理层

- ·传输最小单位:位(bit,比特)
- 主要扩展设备:集线器\中继器
- 主要硬件:传输介质(光\电\电磁波)
- 主要协议(标准): RS232C
 - 编址: 无需编址
 - 帧格式
 - 机制:编码原理
- 该层同类协议(标准):RJ45

物理层

- 该层主要作用
 - 完成对比特和能量之间的转换
 - -处理与物理传输介质相关的接口

2 各协议层重点

2.1 物理层

2.2 数据链路层

2.3 网络层

2.4 传输层

数据链路层

- · 传输最小单位: 帧 (frame)
- 主要扩展设备:网桥、交换机
- 主要协议(标准): Ethernet
 - 编址: MAC地址(OUI+NIC标识)
 - 帧格式:

前同步码	SFD	目的地址	源地址	类型	数据	CRC
7字节	1字节	6字节	6字节	2字节	46~1500 字节	4字节

- 机制:CSMA/CD
- 该层同类协议(标准):令牌环等

数据链路层

- 该层主要作用
 - 成帧(包括查错控制)
 - 介质访问控制子层(MAC)
 - -逻辑链路控制子层(LLC)

2 各协议层重点

2.2 数据链路层

2.3 网络层

2.4 传输层

2.5 应用层

网络层

- ·传输最小单位:数据报(datagram)
- 主要扩展设备:路由器(网关)
- 主要协议(标准): IPv4
 - 编址:IP地址(网络号+子网号+主机号)
 - 有类、无类
 - 报文格式:

0	4	8	16	19	24	31
VERS	H. LEN	SERVICE TYPE	TOTAL LENGTH			
IDENTIFICATION			FLAGS	FLAGS FRAGMENT OFFSE		
TIMET	O LIVE	TYPE	HEADER CHECKSUM			
SOURCE IP ADDRESS						
DESTINATION IP ADDRESS						
IP OPTIONS (MAY BE OMITTED) PADDIN				PADDING		
BEGINNING OF PAYLOAD (DATA BEING SENT)						

网络层

- 主要协议(标准): IPv4
 - 机制:
 - 子网划分
 - 路由表的构建
 - 路由转发
 - IP报文在帧的封装
 - MTU和分片、重组

网络层

- 该层同类协议 (标准):IPv6
- 该层主要作用
 - 主机到主机间尽力而为的通信
 - 路由寻径:维护路由表和根据路由表查询转发
 - 通过询问和差错报告,确保网络连接

网络层的支撑协议

- ICMP
 - PING、TraceRoute原理
- ARP
- 路由协议
 - 内部网关协议:RIP、OSPF
 - 外部网关协议: BGP4
- DHCP \ NAT

2 各协议层重点

2.2 数据链路层

2.3 网络层

2.4 传输层

2.5 应用层

传输层

- 传输最小单位
 - -TCP:数据段(Segment)
 - UDP: 数据报 (datagram)
- 主要扩展设备:四层交换机
- 主要协议(标准): TCP
 - -编址:端口号(熟知端口号,登记端口号、客户端口号)
 - -报文格式:

0	4	10	16	24	31	
SOURCE PORT			DESTINATION PORT			
SEQUENCE NUMBER						
ACKNOWLEDGEMENT NUMBER						
HLEN	HLEN NOT USED CODE BITS WINDOW			WINDOW		
CHECKSUM				URGENT POINTER		
OPTIONS (if any)						
BEGINNING OF DATA						

传输层

- 主要协议(标准): TCP
 - 基本机制
 - 流接口
 - 虚连接
 - 停止-等待协议(有差错、无差错)
 - 窗口机制
 - 超时重传
 - 流量控制
 - 拥塞控制
 - -连接管理:三次握手、四次挥手

传输层

- · 该层同类协议(标准): UDP
- 该层主要作用
 - 进程间端到端的通信
 - -提供传输的可靠性

2 各协议层重点

2.2 数据链路层

2.3 网络层

2.4 传输层

2.5 应用层

应用层

- ·传输最小单位:数据(Data)
- 主要扩展设备:防火墙
- 主要协议(标准)
 - 有代表性的协议: DNS、E-mail、FTP、HTTP
 - 编址:用户自定义
 - 报文格式: 用户自定义
- 该层主要作用
 - -提供最通用的应用程序
 - 完成用户信息或者软件转换信息的交互

本书重点概述 各协议层重点 期末考试题型 3 期末考试大纲 总结 5

综合题

- 给出一个组织的内部网络架构图或类似的网络示意图
- 按计算机网络分层模型,结合实例多角度提出问题
- 要求学生结合实例分析问题解决问题
- 两种类型的题目
 - -考察单个网络架构层次的单个协议或标准知识
 - 综合运用五层协议模型解决问题

本书重点概述 各协议层重点 期末考试题型 3 期末考试大纲

总结

5

- 第1课 传输介质
 - 通信基本模型
 - 引导型传输媒体
 - 金属:屏蔽双绞线,非屏蔽双绞线,同轴电缆
 - 光纤:单模和多模
 - 非引导型传输媒体
 - 红外线,激光,无线电波(镭射)、卫星
 - 介质间的权衡

- 第2课 局域异步通信
 - -传输模式的类别
 - 串行,并行
 - 同步,异步,等时
 - 单工、半双工、全双工
 - 多比特下的端序: 大端序, 小端序
 - 异步通信标准: RS-232
 - 电气特性, 帧、帧格式
 - 参数:波特率,波特,标准化
 - 两个重要通信理论: 奈奎斯特定理和香农定理

- 第3课 远程通信
 - 载波
 - 调制和解调
 - 调频、调幅、调相
 - 复用和解复用
 - 频分、波分、时分(同步时分、统计时分)、码分
 - -基带和宽带

- 第4课 差错控制
 - 奇偶校验的简单计算
 - Internet Checksum (16 位校验和)的简单计算
 - -循环冗余校验码(CRC,不要求计算)

- 第5课 局域网分组与编址
 - 交换技术:线路交换、报文交换、分组交换
 - 网络接口卡(NIC)的作用
 - -MAC地址的构成
 - 单播、广播、组(多)播
 - 帧结构(头部+载荷)、成帧
 - 以太网帧结构

- 第6课 以太网、拓扑与无线技术
 - 局域网拓扑: 总线、星形、环形、网状
 - -以太网介质访问控制策略(CSMA/CD)
 - 其它网络类型的特点: LocalTalk、Token Ring、FDDI、ATM
 - 网络技术的分类: 个域网、局域网、城域网、广域网
 - WLAN基本概念:蓝牙、蜂窝网络、1G~4G、GPS,及速率大致量级

- 第7课 局域网的布线、拓扑、接口硬件
 - 以太网的粗缆、细缆、双绞线布线
 - -物理和逻辑拓扑
 - 冲突域与广播域的概念
 - 中继器、集线器、网桥
 - 交换机、广播风暴与分布生成树

- 第8课 远程数字连接技术、网络性能
 - Internet 接入技术:上行和下行
 - -接入技术:宽带与窄带、ISDN、ADSL、电缆调制解调器、 无线、光纤
 - -标准:数字电话标准(T、E)、干线标准(STC、OC、同步光网络)
 - 各种网络接入技术与标准大致的速率量级
 - -广域网技术的类型:虚电路、数据报,及各自的特点
 - 不同类型的网络技术: APANET、PSTN、X.25、帧中继的 特点

- 第8课 远程数字连接技术、网络性能(续)
 - 网络所有权:私有网络、公有网络的定义
 - 网络的性能度量: 时延\吞吐率\抖动

- 第9课 广域网技术与路由、协议系列
 - 分组交换机的原理、存储与转发
 - -广域网的概念和分层编址
 - 路由工作原理
 - 路由器转发表、默认路径、下一站
 - 网络协议分层的思想: 网络互联、虚拟网络的概念
 - ISO/OSI网络协议的分层模型(7层)
 - TCP/IP 协议栈(5层)
 - ISO/OSI和TCP/IP分层之间对应关系、数据基本单位、各层的分工作用

- 第10课 网际协议
 - IPV4编址
 - 有类地址 (A~E 类)
 - 无分类和CIDR表示法
 - -子网划分和子网掩码
 - 有分类的子网划分、无分类的子网划分
 - -特殊IP地址
 - 本机地址、网络地址、环回地址、直接广播地址、有限广播地址
 - 网络层的广播与多播
 - 多穴主机

- 第10课 网际协议(续)
 - IPv4数据报格式中的各部分组成(不要求顺序)
 - -MTU与分片、分片重装和收集
 - IP封装、虚拟分组
 - IP数据报转发原理、转发过程中的帧头、报文头的情况

- 第11课 支撑协议与相关技术、IPv6
 - -ARP协议
 - 地址解析作用,地址解析的方法,概念地址边界
 - ICMP协议工作原理
 - ICMP的报文种类、主要功能
 - IP与ICMP的关系
 - ping 命令测试可达性的原理
 - tracert 命令追踪路由的原理
 - 使用ICMP发现MTU
 - IPv6编址方案、冒分十六进制表示法

- 第12课 传输控制协议
 - -传输层
 - 作用,端口号,端口号的分类
 - UDP
 - UDP的无连接、尽力交付、面向报文、允许广播
 - -TCP
 - 特点:面向连接、点对点、可靠、全双工、字节流
 - -TCP段格式中的各部分组成

- 第12课 传输控制协议(续)
 - -TCP的机制
 - 应答机制、超时机制、重传机制、窗口机制
 - 流量控制机制:滑动窗口
 - 拥塞控制:慢开始、拥塞避免、快重传、快恢复、随机早期检测
 - TCP的连接建立和解除(三次握手、四次挥手)
 - -传输层解决网络层的主要问题:丢包、重复、乱序

- 第13课 因特网路由与路由协议
 - -静态路由与动态路由
 - 自治系统(AS)的概念
 - 内部网关协议(IGP)
 - RIP协议的工作原理和特点
 - OSPF协议的工作原理和特点
 - 外部网关协议(EGP)
 - BGP协议

- · 第14课 网络编程与Socket API
 - 客户端--服务器端(C/S)交互模式工作原理
 - -并发的概念
 - Socket结构、半相关与全相关
 - 服务器与用户、服务器端与客户端,二者区别
 - Socket API主要函数(C++)
 - 流模式的客户端、服务器端Socket API调用流程
 - 报文模式的客户端、服务器端Socket API调用流程

- 第15课 域名服务(DNS)
 - 域名、域名分级
 - 域名服务器分级
 - 域名服务(DNS)
 - 递归、迭代的工作原理

- 第16课 电子邮件
 - 电子邮件的格式
 - 主要构成: MTA、MUA、MDA
 - 主要协议(作用、原理、端口号)
 - 电子邮件的传输:SMTP
 - 电子邮件的传输扩展:MIME
 - 电子邮件的访问: POP3, IMAP

- 第17课 文件传输
 - -FTP工作原理与通信模式
 - FTP主动和被动工作模式

- 第17课 文件传输
 - -FTP工作原理与通信模式
 - FTP主动和被动工作模式

- 第18课 万维网
 - -HTTP工作原理与过程
 - -浏览器的结构
 - -HTTP错误代码
 - URL
 - -HTML文档

- 第19课 高级专题(网络安全、网络发展趋势)
 - 网络防火墙的基本常识
 - 网络安全技术(加密、签名、访问控制、HTTPS、TLS等) 的基本常识
 - -虚拟专用网(VPN)、代理服务器的基本常识
 - 对等计算(P2P)模式工作原理
 - 内容缓存、Web均衡负载、网络架构的基本常识

- 第20课 实验课
 - RJ-45网线的制作与接入;
 - -RS232串行通信编程:打开、读、写、关闭;
 - Omnipeek或Wireshark进行网络侦听,用PCAP库编程,并分析以太网帧、IP报文、TCP段和FTP协议的格式。
 - -观察TCP的三次握手、四次挥手。
 - 路由器主要的配置:IP分配、路由表等。
 - 掌握Socket API编程的基本过程:面向连接的和无连接的。
 - 应用层服务器基本配置项。

内容纲要

本书重点概述 各协议层重点 期末考试题型 3 期末考试大纲 总结 5

复习要点

- •记住术语
 - 简称、全称
- •理解原理
 - 为什么、怎么来
- 善加思考
 - 传输机制细节处理
 - -概念之间的差异

计算机网络 Computer Network

谢谢观看

理论课程

