

® BUNDESREPUBLIK DEUTSCHLAND

® Patentschrift _m DE 197 34 890 C 1

DEUTSCHES

(2) Aktenzeichen: 2 Anmeldetag:

197 34 890.4-35 12, 8, 97

A 61 B 17/32 A 61 M 1/00 A 61 M 25/00

PATENT- UND MARKENAMT (43) Offenlegungstag:

(45) Veröffentlichungstag der Patenterteilung: 15, 7, 99

DE 197 34 890 C

Innerhalb von 3 Monaten nach Veröffentlichung der Erteilung kann Einspruch erhoben werden

(3) Patentinhaber:

(7) Vertreter:

Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V., 80636 München, DE

Leonhard und Kollegen, 80331 München

(7) Erfinder:

Erbel, Raimund, Prof. Dr., 45239 Essen, DE: Grönemeyer, Dietrich, Prof. Dr., 45549 Sprockhövel, DE; Holtmann, Gerald, Dr., 45259 Essen, DE; Jakse, Gerhard, Prof. Dr., Aubel, BE; Mettler, Liselotte, Prof. Dr., 24105 Kiel, DE; Bark, Carlo, 78628 Rottweil, DE; Vögele, Gerald, 71106 Magstadt, DE; Wallstein, Stefan, 72189 Vöhringen, DE; Weisener, Thomas, Dr., 71254 Ditzingen, DE; Widmann, Mark, 74357 Bönnigheim, DE

(8) Für die Beurteilung der Patentfähigkeit in Betracht gezogene Druckschriften:

DE	44 29 478 C1
DE	42 08 457 A
DE	41 15 136 A
DE	40 42 102 A
DE	38 04 849 A
DE	2 95 21 096 U

(A) Katheter zur Bearbeitung und Entfernung von weichen oder harten Substanzen

Die Erfindung betrifft eine Vorrichtung für die invasive Mikrochirurgie und Gefäßbehandlung, umfassend ein Kathetergehäuse (3) mit einem Absaugkanal (4) mit mindestens einer Absaugöffnung (5), in welchem eine auf dem Rotationsprinzip basierende Absaugpumpe (2) sowie körperseitig zur Pumpe (2) ein starr mit der Welle (6) der Pumpe (2) verbundenes Bearbeitungswerkzeug (1) angeordnet ist. Fakultativ kann ein Infusionskanal (11) zum Zuführen von Spülflüssigkeit vorgesehen sein, der sich zum körperseitigen Ende hin öffnet (12). Mit dieser Vorrichtung, die als Katheter oder Endoskop ausgestaltet sein kann, lassen sich sowohl weiche Substanzen (z. B. Gewebe) als auch harte (z. B. Gallensteine) bearbeiten bzw. abtragen.

Beschreibung

Die vorliegende Erfindung liegt auf dem Gebiet der Medizintechnik und betrifft insbesondere solche Systeme, mit denen Invasiv-Mikrochirurgie wie beispielsweise die Entfernung von Steinen aus Blase oder Galle bzw. die Behandlung von Gefäßsystemen (z. B. die Entfernung von Gewebe, Embolien, Thrombosen und weichen Stenosen) durchgeführt werden kann. Dabei handelt es sich um Kathetersystrument verwendet werden können.

Im Bereich der Kardiologie und der Angioplastie existieren verschiedene Verfahren zur Beseitigung von Stenosen und Läsionen, wobei der Ballondilatation die größte Bedeutung zukommt. Als alternative Techniken zum Entfernen 15 von weichen Gefäßablagerungen werden unterschiedlichste Systeme verwendet, die sich in Aufbau und Funktion zum Teil stark unterscheiden. Dabei kennt man sowohl Systeme ohne Förderung des abgetragenen Materials wie den Kensey-Katheter oder den "Ampatz Thrombectomy Device", 20 Systeme mit stückweiser Förderung des abgetragenen Materials, wie den Redha-Cut oder den Simpson-Katheter, als auch Systeme mit kontinuierlicher Förderung des abgetragenen Materials.

In die letztere Gruppe fällt die Thrombusaspiration mit- 25 tels eines Katheters, wobei der Katheter in das betroffene Gefäß eingeführt und mit dem intrakorporalen Katheterende auf das Thrombusmaterial aufgesetzt wird. Anschließend wird von außen ein Vakuum angelegt, und die kleineren Verfahrens ist in der DE 42 08 457 A1 beschrieben, bei dem eine Schleuse an einem Embolektomie-Katheter vorgesehen ist, die einen inflatierbaren Ballon aufaufweist, der die Gefä-Binnenwand abdichten kann. Bei der Thrombusektomic det, auf dessen distalem Ende ein Dilatationsballon aufgebracht ist. Der Katheter wird in schlaffem Zustand durch den Thrombus geschoben, dann wird der Ballon hinter dem Thrombus aufgeblasen und mit dem gesamten Katheter aus der Arterie gezogen. Eine Weiterentwicklung dieser Technik 40 ist in der DE 38 04 849 A1 beschrieben. Das Gerät zum Entfernen von Blutgerinnseln weist ein Absaugrohr mit einer Kathetermündungsöffnung, eine Welle und einen Rotations-Zerkleinerungskopf auf. An einem Saugstutzen wird eine Unterdruckquelle angeschlossen. Der "Aspiration Throm- 45 bembolectomy Catheter (ATC)" besteht aus einem kleinen rotierenden Propeller, der über eine flexible Stahlwelle angetrieben wird. Ein Vakuum wird über einen Seitenanschluß angelegt, und der Thrombus wird durch die Saugwirkung des kleinen Propellers zerteilt und durch das Gerät abgezo- 50 gen. Mit Schneidemessern arbeitet der TEC-Katheter, wobei extrakorporal ein Vakuum angelegt wird, um die abgelösten Bestandteile einzusaugen. Mit einem Messer ausgestattet ist weiterhin ein Fragmentier- und Extraktions-Instrument für die endoskopische Chirurgie, das in der DE 44 29 478 C1 55 beschrieben ist und einen extrakorporalen Saugkraftregler aufweist

Die DE 41 15 136 beschreibt ein Greifsystem für Organwege, insbesondere für Blutgefäße, das in einem Katheter angeordnet ist und abgespreizte, vorne zu einem Haken um- 60 gebogene Greifarme besitzt. Einen Katheter zum mechanischen Entfernen von Ablagerungen auf Gefäßwänden beschreibt die DE 295 21 096 U1. Auf der Katheterspitze ist ein rotierender Kopf angebracht, der über eine Antriebswelle mit einem in die Katheterspitze integrierten Antriebs- 65 detailliert erläutert. system verbunden ist, wobei der Antrieb durch ein Turbinenlaufrad bewirkt wird, das durch Einspeisen von körperverträglicher Flüssigkeit in Rotation versetzt wird.

Aus dem Bereich der Urologie kennt man verschiedene Systeme zur Steinzerstörung. Dabei ist das häufigste Verfahren die extrakorporale Lithotripsie. Eine weitere Möglichkeit der Steinzerstörung ist die chemische Urolitholyse, Auch mechanisch Verfahren zur Steinzerstörung sind bekannt. Dabei werden die Steine entweder zerdrückt oder mittels einer Drahtschlinge unter ständigem Zug langsam hinausgezogen. Die DE 40 42 102 beschreibt ein medizinisches Instrument, das eine solche Drahtschlinge aufweisen steme, die allein oder eingesetzt in ein endoskopisches In- 10 kann. Ein Absaugen des zertrümmerten Materials ist dabei nicht möglich.

Aufgabe der vorliegende Erfindung ist die Bereitstellung eines Instruments für die invasive Mikrochirurgie oder die Gefäßbehandlung, in welchem ein Bearbeitungs- oder Abtragewerkzeug zum Entfernen von Steinen oder Behandeln von Gefäßsystemen oder dergleichen derartig angeordnet ist, daß die durch das Werkzeug erzeugten Trümmer oder Thrombusteile oder dergleichen schnell und sicher auf mechanische einfache Weise vom Ort des Eingriffs aus dem Körper hinaustransportiert werden können, wobei ggf. Spüllösung nachflicßen kann,

Diese Aufgabe wird gelöst durch eine Vorrichtung, umfassend einen Katheter, in dessen körperseitigem Endabschnitt ein Bearbeitungswerkzeug angeordnet ist, welches starr über die Pumpenwelle einer davor liegenden Absaugpumpe mit dieser verbunden ist. Der Ausdruck "körperseitig" soll dabei die Richtung angeben, die nach intrakorporal weist. Der Ausdruck "davor" im Bezug auf das Bearbeitungswerkzeug (und weiter unten auch auf die Pumpe) ist Fragmente werden direkt eingesaugt. Eine Variation dieses 30 mit Blickrichtung auf das intrakorporale Ende der Vorrichtung angegeben. Die Pumpe ist in einen Absaugkanal eingebettet und saugt Flüssigkeit aus dem Bereich ab, in dem der mikrochirurgische Eingriff stattfindet. Das Wort "eingebettet" soll dahei ausdrücken, daß die Pumpe im wesentlichen nach Fogarty wird ein Katheter mit Führungsdraht verwen- 35 dichtend im Absaugkanal angeordnet ist. Die Flüssigkeit gelangt entweder durch eine Arbeits- und Absaugöffnung, in deren Bereich das Bearbeitungswerkzeug angeordnet ist, oder seitlich durch Öffnungen im (Katheter-)Gehäuse oder auf ähnlich Weise in die Ansaugöffnungen der Pumpe. Die Absaugnumpe arbeitet nach dem Rotationsprinzip. Durch die starre Verbindung zwischen Absaugpumpe und Bearbeitungswerkzeug wird dann, wenn die Pumpe in Rotation versetzt wird, mit ein und demselben Antrieb auch das Bearbeitungswerkzeug angetrieben, so daß nur eine einzige Energie- bzw. Kraftübertragungsleitung zum Antrieb beider Aggregate erforderlich ist.

In einer Ausgestaltung der Erfindung, die auf die Entfernung von harten Gegenständen wie Steinen in der Urologie und der inneren Medizin gerichtet ist, ist zusätzlich ein Haltemechanismus vorgesehen, mit dem der Stein oder dergleichen während des Eingriffs gehalten wird. Vorteilhaft ist dabei, daß mit dem Haltemechanismus der Stein während des Eingriffs sicher vor dem Bearbeitungskopf, bei dem es sich hier in vorteilhafter Weise um einen Schleifkopf handelt, gehalten und zentriert werden kann. Gleichzeitig kann mit dem Bearbeitungskoof der Stein vollkommen abgetragen werden, so daß keine Fragmente zurückbleiben. Um den Haltemechanismus sicher zu befestigen, ist in bevorzugter Weise ein äußeres Kathetergehäuse vorgesehen, in dessen Innerem konzentrisch oder exzentrisch zumindest teilweise der innere Katheter angeordnet ist. In dem zwischen den beiden Kathetergehäusen entstehenden, bevorzugt rohrförmigen Volumen ist der Haltemechanismus untergebracht, Einzelne Ausgestaltungen des Haltemechanismus sind weiter unten

In dieser Ausgestaltung dient die Pumpe zur Absaugung der Steinfragmente bzw. des Schleifstaubs. Eine externe Absaugung sollte hier vermieden werden, da unter anderem die Gefahr besteht, daß der Katheter durch den Unterdruck im Inneren in sich zusammenfüll. Da die Pumpe nahe bei dem Abtragewerkzeug vor diesem angeordnet ist, wird ein hoher Förderdruck erreicht, und diese Gefahr besteht nicht mehr. Der innere Katheter ist in dieser Ausgestaltung bevorzugt durch eine Metallhülse versteift, im körperseitigen Endabschnitt weist er bevorzugt eine Mehrzahl von Öffung auf, durch die de Blüssijkeit abgesaugt werden kann.

Die Greifeinrichtung der vorliegenden Erfindung, die insbesondere in Ausgestaltungen zur Entfernung von harten 10 Substanzen benötigt wird, ist häufig wie Klemmsysteme in der Elektrotechnik (Hirschmann-Klemmen) aufgebaut. Beispielsweise können drei Greifarme vorgesehen sein. Werden sie aus dem Katheter hinausgeschoben, spreizen sie sich auseinander, so daß sie den Stein umgreifen und halten kön- 15 nen, Da die Steine aber oft mit dem umgebenden Gewebe verwachsen sind, sollten in bevorzugter Weise die nach innen gebogenen Enden der Drähte so gestaltet sein, daß sie z. B. durch kleine Drahtbügel gestreckt werden können, da sonst ein Greifen des Steins nicht möglich ist. Alternative 20 Haltesysteme nutzen beispielsweise Bimetall- oder Shape-Memory-Drähte. Auch andere Formen eines Greifers wie ein Seilzug oder das sogenannte "Dormia-Körbchen" sind möglich. Ist der Stein gegriffen, wird er bevorzugt durch einen extrakorporalen Federmechanismus festgehalten und 25 automatisch vor dem Schleifkopf zentriert. Anstelle von Greifarmen können auch alternative Haltesysteme verwendet werden. Beispielhaft sei hier die Drahtführung außen um den Stein herum angeführt. Hierbei kann durch unterschiedlichen Zug an den Drahtenden die Lage des Steins verändert 30 werden. Die Zerstörung des Steins erfolgt durch Zerbohren.

Das hier voranstehend beschriebene System kann wie alle erindungsgemäßen System auch in einem – bevorzugt flexiblen – Endoskop angeordnet sein. Hierdurch ist eine optische Kontrolle möglich, so daß geiß Korrigberend eingogrift. ³⁵ fen werden kann. Dadurch werden die Erfolgschancen deui-lich erhöht und die Gefahren einer eventuellen Schädigung des Gewebes minimiert. Besonders geeignet ist der Einsatz eines flexiblen Flondoskops für die Enfermung von Steinen in der Galle und der Bauchsgeicheldrüse. Wird ohne Endoskop gearbeite, ist eine Verfolgung des Fortgams des Eingriffs selbstverständlich mit Hilfe von Ultraschalt- oder Röntgen-bild mebelich.

In einer derartigen Ausgestaltung der Erfindung kann am Kalheter ein Ultraschallsensor angebracht werden. Hier- 45 durch kann die Zugabe von Kontrastmittel zum Röntgen, beispielsweise während einer Angiographie, vermieden werden. Gleichzeitig wird es möglich, den Zustand des Arbeitstraumes während der Behandlung zu beurteilen.

Besonders bevorzugt ist in den Systemen der vorliegen- 50 den Erfindung zusätzlich ein Infusionskanal angeordnet, der am körperseitigen Ende oder in einem diesem Ende relativ nahen Bereich eine Infusionsöffnung bildet, durch die Spülflüssigkeit an den Bearbeitungsort geleitet werden kann. Die Pumpe hierfür kann als Mikromotor ausgestaltet sein, der 55 ebenfalls innerhalb des oder eines der Kathetergehäuse oder des Endoskops angeordnet ist; bevorzugt und insbesondere auch aus Raumgründen ist die Pumpe für die Infusionslösung jedoch extrakorporal angeordnet. In derartigen Ausgestaltungen der Erfindung ist der Katheter bevorzugt als 60 mehrlumiger Schlauch ausgebildet, der einen Absaugkanal und darin angeordnet die Absaugpumpe und im Bereich einer am körperseitigen Ende des Absaugkanals befindlichen Arbeits- und Absaugöffnung das Bearbeitungs- bzw. Abtragewerkzeug, sowie einen Infusionskanal beinhaltet, der be- 65 vorzugt in einem nahe dem oder am körperseitigen Ende der Vorrichtung befindlichen Bereich eine Infusionsöffnung bildet. Der Infusionskanal kann beispielsweise ringförmig um

ein inneres Lumen herumgelegt sein. In diesen Fällen kann sich das Absauglumen zum körperseitigen Ende der Vorrichtung hin öffnen, so daß der Eintritt der abzusaugenden Flüssigkeit mit den entsprechenden Bruchstücken direkt um das zentral sich drehende Abtragewerkzeug herum erfolgt, während die Spülflüssigkeit ringförmig um diesen Bereich herum ebenfalls am körperseitigen Ende oder Endbereich austritt und damit das Bearbeitungswerkzeug kühlt. Durch den erreichbaren schnellen Austausch von Flüssigkeit im Operationsgebiet wird für klare Sicht und guten Abtransport der entstehenden Schleifpartikel gesorgt. Wenn dagegen Absaugöffnungen seitlich hinter dem Bearbeitungswerkzeug vorgesehen sind, das in diesem Fall bevorzugt das Lumen des Absaugkanals an dessen Ende verschließt, kann man durch die Wahl nicht zu großer Öffnungen das Absaugen zu großer Partikel vermeiden, die unter Umständen die Absaugpumpe verstopfen oder auf andere Weise schädigen könnten. Diese letztere Ausgestaltung ist bei Geräten bevorzugt, mit denen harte Substanzen entfernt werden sollen.

Die Ausgestaltung der distalen Infusionsofffnung kam insgesamt variabel in Abhängigkeit von der Zielsetzung des Eingriffs gestalte werden. Hierdruch kam ggf. eine Lenkung und ein Selbstantieb des Kathetersystems ermöglicht werden, z. B. ein Antrieb des Bearbeitungswerkzuges und der Pümpe über ein zugeführtes Fluid mit Hilfe des Prinzips eines fluidischen Motors.

Je nach Bedarf kann die erfindungsgemäße Vorrichtung auch mit durch Fluid aufblashern Ballons versehen sein. Der artige Ausgestaltungen eigene sich insbesondere für die Verwendung zur Behandlung von Gefäßsystemen. Der oder die Ballons werden in bekannter Weise über einen zusätzlichen, mit Pluid beschickbaren Kanal im Katheter aufgebläh. Die Anbrigung der Ballons am Umfang des Katheters ermöglicht ein Abstitzen des Systems beim Schneiden oder sonstigen Abtragen sowie eine definierte Richtungsänderung bei der Behandlung. Dadurch ist die direktionale Entfernung exzentisch liegender Ablagerungen möglich.

Wenn harte Substanzen entfernt werden sollen, ist es zu bevorzugen, den Katheter nicht als (flexibleren) Schlauch sondern als (steifere) Hülse, z. B. als Metallhülse, auszugestalten oder den Katheter aus flexiblem oder flexiblerem Material zu versteifen, z. B. durch eine Metall- oder Kunstret Millen.

Die Rotation der Absaugpumpe wird bevorzugt mit Hilfe siene ertarksopralen Antriebseinheit mit Hilfe iner Energie bzw. Krafübertragungsleitung bewrite. Als Krafübertragungsleitung eigent sich beispeils weise eine mechanische Welle. Es sind aber auch alle anderen Arten von Antrieb möglich, beispielsweise fluidissen der elektrische. In den beiden letzten Fällen wird ein proximal zur Pumpe liegender Moter angertreben, der seinerseits die fluidische bzw. elektrische Energie im mechanische Energie umsetzt und über eine Welle auf die Pumpe überträgt.

Wenn die Abssugpunpe mit Hilfe einer biegsamen Welle sangetrieben wirt, kann diese durch die Pumpe hindurchreichen und integral, also einstückig, in die Pumpenwelle übegeben, auf der das Bearbeitungswertzeug angeordnet ist. Die Pumpenwelle maß jedoch in ihrer Achse nicht zwingend mit der Antriebswelle übereinstimmen. Da die Anriebsachse der Absaugpunpe nicht immer zentrisch ist, beispielsweise beim Antrieb einer innenverzähnten Zahnraddumpe, können die beiden Wellen auch zueinander versetzt angeordnet sein, oder die biegsame Welle wird hinter der Pumpe in ihrer Achsenebene verschoben geführt. Je nach 58 Bedarf kann eine Pumpe mit nicht-zentrischer Antriebswelle mit Hilfe iener Zentrierhülse so gelagert werden, daß die Antriebswelle zentrisch liegt. In einer anderen Ausgestaltung der Erfindung können die Antriebswelle und die Pumpen- und/oder Werkzeugwelle nicht einteilig gearbeitet und auf beliebige Weise miteinander verbunden sein, z. B. über eine Steckverbindung, ggf. auch mit Hilfe einer Kupplung. Dabei müssen nicht alle Wellen auf derselben Achse liegen

In einer weiteren Ausgestaltung der Erfindung werden die Drehzahl der Infusionspumpe und der Druck vor Ort fortlaufend registriert. Extrakorporal befindet sich eine Rechnereinheit, die den sich daraus ergebenden Zulauf der Spülflüssigkeit berechnet und regelt. Dies ist insbesondere dann 10 notwendig, wenn harte Substanzen im Harnleiter oder der Niere entfernt werden sollen, da gerade Ureter und Nieren ziemlich druckempfindlich sind. Außerdem sollte dafür gesorgt werden, daß genügend Flüssigkeit zuströmt, um eine ausreichende Sicht zu ermöglichen.

Durch die Modifikation der Werkzeuggeometrie lassen sich unterschiedlichste Effekte erzielen. Beispielsweise kann neben der Schleif- oder Zerteilwirkung auch eine Saugwirkung erzielt werden. Fig. 7 stellt eine Liste verschiedener Ausführungen von Bearbeitungswerkzeugen dar, 20 die erfindungsgemäß eingesetzt werden können, und zwar bevorzugt im Hinblick auf die Entfernung von weichen Gewebeteilen oder dergleichen, zur Behandlung in Gefäßen, oder zur Absaugung von Körperflüssigkeiten wie z. B. geronnenem Blut. Fig. 8 zeigt eine Übersicht über verschie- 25 dene Schleifköpfe, die insbesondere für das Abtragen von harten Substanzen geeignet sind. Da jedes System unterschiedliche Vorteile bzw. Nachteile aufweist, sind je nach Einsatzgebiet unterschiedliche Varianten am besten geeignet. Die in den Fig. 7 und 8 tabellarisch aufgeführten Bear- 30 beitungswerkzeuge sind selbstverständlich nur beispielhaft für die vorliegende Erfindung, die hierauf nicht beschränkt

Bevorzugt werden die einzelnen Bestandteile der erfindungsgemäßen Vorrichtung in modularer Bauweise zusam- 35 mengesetzt, Dadurch ist es möglich, verschiedene Komponenten auch während des Betriebs auszuwechseln. So kann z. B. der Schleifkatheter jederzeit ausgetauscht werden, auch kann das gesamte System durch das Endoskop entfernt und durch ein neues ersetzt werden. Dies ist von Vorteil, 40 z. B. beim Versuch, einen fast eingewachsenen Stein abzutragen: Wird während des Eingriffs festgestellt, daß ein Umgreifen mit Greifer oder Zange nicht möglich ist, kann versucht werden, den Stein (nur) mit einem Schleifwerkzeug zu zerstören.

Nachstehend soll die Erfindung anhand von Figuren näher erläutert werden, worin

Fig. 1 einen Aspirationskatheter gemäß Anspruch 2 zeigt, der sich insbesondere zur Abtragung und Absaugung von weichen und flüssigen Substanzen in Blutgefäßen eignet,

Fig. 2 den vorderen Teil dieses Katheters zeigt, Fig. 3 das Vorderteil eines derartigen Katheters in Funk-

tion zeigt. Fig. 4 den prinzipiellen Aufbau einer Vorrichtung zeigt,

die mit einer Haltevorrichtung zum Greifen eines Steins 55 oder dergleichen versehen ist und in einem Endoskop angeordnet ist.

Fig. 5 den vorderen Teil einer Vorrichtung gemäß Anspruch 3 mit Bearbeitungswerkzeug, Kathetergehäuse mit seitlichen Absaugöffnungen und Pumpe zeigt,

Fig. 6 eine Gesamtansicht einer solchen Vorrichtung mit Greifarmen und eingebettet in ein Endoskop zeigt, und Fig. 7 und Fig. 8 tabellarische Auflistungen von Bearbei-

tungswerkzeugen sind, die sich für die erfindungsgemäße Vorrichtung eignen. In Fig. 1 und 2 ist ein mikrochirurgisches Gerät mit den

folgenden Komponenten dargestellt:

1. Das Kathetersystem (in Fig. 2 mit mehr Details dargestellt) besteht aus einem mehrlumigen Schlauch 3, der die Antriebswelle 14, einen Absaugkanal ("Aspirationslumen") 4 zur Förderung der abgetragenen Partikel und einen Infusionskanal ("Spüllumen") 11 mit einer Infusionsöffnung 12 als Spülsystem beinhaltet. Die Pfeile geben die jeweilige Flüssigkeitsrichtung wieder. Am körperseitigen Ende des Kathetersystems ist eine innenverzahnte Zahnradpumpe 2 als Absaugpumpe mit einem Bearbeitungswerkzeug 1 über die Welle 6 verbunden. Das extrakorporale Anschlußstück 40 befindet sich am äußeren Ende des Schlauchs, Hier befindet sich der Antrieb 13 und ein Behälter zur Aufnahme der geförderten Partikel (nicht gezeigt).

2. Das Antricbssystem (Fig. 1) besteht aus dem extrakoporalen Antrieb 13, der mit der biegsamen Antriebswelle 14 zur Aufnahme des Bearbeitungswerkzeugs gekoppelt wird, Antriebswelle 14 und Pumpenwelle 6 in Fig. 2 sind hier einstückig gcarbeitet. Fig. 1 zeigt zusätzlich einen Führungsdraht 24, wie er bei Dilatations-

kathetern üblich ist.

Das Bearbeitungswerkzeug 1 ist in den Fig. 1 und 2 ein Abtragungswerkzeug, nämlich ein kegelförmig mit Schneiden versehener Fräskopf. Durch die Steigung des Messers wird eine Saugwirkung erzeugt und damit die Förderung der abgetragenen Partikel unterstützt. Da Mikropumpe und Bearbeitungswerkzeug auf ein und derselben Welle sitzen, ergibt sich durch den Antrieb des Bearbeitungswerkzeugs eine der Drehzahl entsprechende Förderung von abgesaugter Flüssigkeit nach außen. Je höher die Geschwindigkeit des Abtragewerkzeugs gewählt wird, umso höher ist die Förderleistung an abgesaugtem Material. Das Bearbeitungswerkzeug ist in einer Arbeits- und Absaugöffnung 5 angeordnet.

4. Hine extrakorporale Druckpumpe ("Infusionspumpe") 17, die ebenfalls als innenverzahnte Zahnradpumpe ausgeführt sein kann, versorgt das System mit Spülmedium, das am Bearbeitungswerkzeug durch die

Öffnungen 12 austritt.

5. Zur Förderung der abgetragenen Partikel nach extrakorporal wird die Saug- bzw. Druckleistung einer fluidischen, hydrostatischen Mikropumpe 2 ausgenutzt, Durch den Antrieb des Bearbeitungswerkzeuges ergibt sich eine der Drehzahl entsprechende Förderung nach außen. Die intrakorporale Mikropumpe ist in bevorzugter Ausgestaltung als innenverzahnte Zahnradpumpe (siehe z. B. EP 769 621 A1) ausgeführt. Da der Antrieb der innenverzahnten Zahnradpumpe über eine Welle bezüglich der Pumpe nicht zentrisch ist, wird üblicherweise die innenverzahnte Zahnradpumpe in einem Exzenter derart gelagert, daß die Antriebswelle und damit die Pumpenwelle zentrisch zum Außengehäuse der Vorrichtung, hier also des Katheters 3, gelagert ist. Dieses Detail ist in den Fig. 1 und 2 zugunsten der schematischen Übersicht weggelassen. Die Pumpe besitzt einen Einlaß 2a und einen Auslaß 2b. Sie wird vornehmlich zum Saugen eingesetzt; ggf. (beispielsweise bei Verstopfung der Öffnungen des Absaugkanals oder im Absaugkanal) kann sie auch in umgekehrter Richtung arbeiten und dabei Flüssigkeit fördern. Hierdurch können beispielsweise Verstopfungen im Absaugkanal oder der/den Absaugöffnung(en) weggeschwemmt werden.

6. Am Austrittsende des Katheters wird ein leicht verformbarer, in Achsrichtung steifer (oder verschiebbarer) Führungsdraht 24 angebracht, der die Bewegung und Zentrierung des Katheters erleichtert.

In Fig. 4 ist der prinzipielle Aufbau eines Systems zur Enfertmung von Gesten Substanzen (Steinenuffrung) dargestellt. Dies besteht aus den folgenden Komponenten: dem extrakorporalen Antrieb 13, einer auf dem Rotationsprinzip 5 basierenden Mikropumpe zum Absaugen von Pfleissigkeit 2, einem ggf. flexiblen, verstellbaren Bearbeitungswertzzug (Schleifkopf) 1 in vorderen Bereich der Verrichtung, einem äußeren Kathetergehäuse 7 zur Aufhahme einer Greifeinfrichtung (incht gezeigt), einer äußeren Bodoskopte Vorrichtung 1615, sowie einem Katheter 3 mit einem Absaugkanal 4, in dem die Pumpe 2 angeordnet ist, Mit 6 ist schematisch die Welle angegeben, die die Pumpe mit dem Bearbeitungswertzeug verhindet.

Das Funktionsprinzip der Vorrichtung beruht auf der Ertzeugung einer rotaorischen Antriebsbewegung, durch die die miniaturisierte Mikropumpe 2 (vornehmlich innenverzahnte Zahnradpumpe), die im Katheter 3 integrier ist, in Bewegung gesteut wird. Dadurch erfolgt einerseis (über die Welle 6) der Antrieb des Bearbeitungswerkzugg 1, das das 20 entfermende Gewebe oder die sonstigen zu entfermenden Gegenstände ggf. fixiert, abarbeitet sowie zerkleinert, und anderesreisis der Druckaufbau der Pumpe 2, wodurch die durch das Bearbeitungswerkzug abgetrennten Partikel angesaugt und nach sertrakoproxal gefördert werden.

Fig. 5 zeigt den vorderen Teil einer Vorrichtung mit Bearbeitungswerkzeug 1, Kathetergehäuse 3 mit seitlichen Absaugöffnungen 5 und Pumpe 2. Der Schleifkopf 1 besteht aus einem mit einem Schleifmittel 21 beschichteten Gummizylinder oder einem verformbaren, massiven Schleifkör- 30 per 21a, der an seinem distalen Ende eine konische Platte 22 trägt, die mit Schleifmittel beschichtet ist. An seinem katheterseitigem Ende befindet sich eine kleine konische Platte 23, die den Druck, der beim Schleifen entsteht, über eine Gleitscheibe 23a auf den Katheter überträgt. An der Front- 35 platte 22 ist ein Zugdraht 24 befestigt, über den durch Ziehen von außen der Gummizylinder zusammengedrückt werden kann. Da das Volumen des Gummis konstant bleibt, wölbt er sich beim Ziehen nach außen auf, wodurch der Durchmesser des Schleifkopfes vergrößert wird. Durch die 40 konischen Endplatten wird ein Einklemmen des Drahtes verhindert. Wird keine Kraft mehr auf den Zugdraht ausgeübt, geht der Gummizylinder durch seine Elastizität in seine ursprüngliche Form zurück. Im Betrieb rotiert der Zugdraht überlicherweise zusammen mit dem Schleifkopf und der 45 Pumpe.

Der Kahheter 3, der mit einer Metallverstäftung 25 versehn ist, wird durch das Bearbeitungswerkzug 1 an seinem körperstiligen Binde verschlossen. Im Innenen des Kahheters 3 ist eine brigssame Welle 14 augeorduet, die die Pumpe 2, 20 dargestellt mit Pumpeninnenrad 26 und Pumpenaußenrad 27, autrebt und im Absaugkann! 4 augeordiset ist. Der Antrieb der Pumpe durch die Welle erfolgt nicht genau zertrisch. Die Welle reicht durch die Pumpe hindurch und verhiebt der Pumpe 2 starr mit dem Bearbeitungswerkzug 1. Sinfelge ihrer Biegsamkeit und daher seitlichen Beweglichte illäßt sie sich zentrisch mit dem Bearbeitungswerkzug verbinden. Der Ausdruck "start" für die Verbindung zwischen der Welle der Pumpe und dem Bearbeitungswerkzug schießt also solche Ausgestaltungen nicht aus, in denen die 60 Welle seitste in gewisse Flexibilität besitzt.

Zwischen Pumpe und Schleifwerkzeug erkennt man in der Katheterwand Löcher 28 für den Einstrom von abzusaugender Flüssigkeit.

Fig. 6 zeigt eine Ausgestaltung, in der das in Fig. 5 ge- 63 zeigte System in einer Endoskopier-Vorrichtung eingebettet ist, die zusätzlich Greifarme 10 aufweist. Die Greifarme greifen einen Stein 31, der sich zwischen den Gefäßwänden

32 befindet. Die Greifarme 10 sind in einem ringförmigen Lumen 8 zwischen der inneren Katheterwand 3 und einem äußeren Kathetergehäuse 7 gelagert. Die Endoskopier-Vorrichtung 15 umfaßt einen Bildkanal 33, einen Lichtleiter 34 und einen Drucksensor 35. Außerdem ist in ihr ein Infusionskanal 11 angeordnet, durch den Spülflüssigkeit aus einem externen Behälter 36 zugeführt werden kann. Die biegsame Welle 14 wird durch einen Antrieb 13 in Bewegung versetzt und treibt damit sowohl die Pumpe 2 als auch das Bearbeitungswerkzeug 1 an. Durch die Welle 14 wird weiterhin der Zugdraht 24 des Bearbeitungswerkzeugs bis zu einer Stellschraube 37 zur Zugkraftverstellung geführt. Ein Mikroprozessor ("µP") ist zur Drehzahlersassung, -regelung und Regelung der Flüssigkeitsdosierung vorgesehen. Der mit 38 bezeichnete Pfeil weist auf den extrakorporalen Teil des Systems, während der mit 39 bezeichnete Pfeil auf den intrakorporal einzusetzenden Teil der Vorrichtung hinweist. Die anderen Pfeile geben die Richtung der Flüssigkeitsströme an

Beispiele für den Behandlungsablauf

1. Behandlung in Gefäßen (siehe Fig. 3) Bei der Behandlung wird eine Kathetereinheit (siehe z. B. Fig. 1 und 2) im Blutgefäß vor dem Thrombus 41 bzw. der weichen Stenose plaziert. Der Katheterantrieb wird entsprechend dem Behandlungsprinzip langsam in Rotation versetzt. Dadurch wird das Bearbeitungswerkzeug mit dem gewünschten Drehmoment und der entsprechenden Drehzahl bzw. die Pumpe mit der entsprechenden Saugleistung in Bewegung gesetzt. Zum Abtragen wird das Kathetersystem extrakorporal nach vorne geschoben. Das Abtragwerkzeug bewirkt aufgrund seiner geometrischen Gestalt und der durch seine Rotation erzeugten Saugwirkung eine Fixierung des Thrombus. Die Schneiden des Werkzeugs tragen Thrombuspartikel ab und zerkleinern sie. Durch die Saugwirkung der Pumpe werden die Thrombuspartikel dem Aspirationslumen des Kathetersystems zugeführt und extrakorporal gefördert. Die Pumpe ist durch ihr Verdrängerprinzip zur Erzielung höchster Unterdrücke geeignet, wodurch eine gleichmäßige und ausreichende Förderung gewährleistet werden kann. Das Einbringen von Spülmedium kühlt und schmiert das Werkzeug und sorgt desweiteren für ein Wegspülen der Partikel.

2. Äbtragen von Gewebeteilen Der Aspirationskather kann weiterhin zum Ahtragen von weichem, gewebeartigem Material (oder etwa Knorpel) eingesetzt werden. Dzau wird das Kathetersystem mitimalinwastvan die entsprechende Stelle eingeführt. Beim Abtragen, z. B. des geleeartigen Materials bei einer Bandscheinehandlung, muß ausreichend Spilftlüssigkeit zugeführt werden, um die Absaugfunktion der Pumpe nicht einzuschränken.

3. Absaugen von K\u00f6nperflüssigkeiten Das der Erfindung zugnundeliegende System kann auch zur Absaugung von geronnenem Blut oder anderen K\u00f6rperflüssigkeiten in Endoskopen, z. B. bei der Gastroenterologie eingesetzt werden. Hierzu wird das Katheternystem durch den Endoskop-Arbeitsraum eingeflührt oder ist ein Endoskop eingebaut. Das System kann bei dieser Anwendung flexibel zur Absaugung bzw. Spillung eingesetzt werden. Bei einem reversiblen Betrieb kann die Mikropumpe sowohl zum Absaugen wie auch zum Spillen eingesetzt werden. Die Barbeitungsinstrument dient bei dieser Anwendung zum Zerquirlen der z\u00e4hen, hochviskossen Substanz.

4. Zerkleinerung von Gewebe (Morcellator)

 Zerkleinerung von harten Substanzen Beispielhaft beschrieben wird der Ablauf im Fall der Zerstörung eines Hamleitersteins.

Ein Kathetersystem mit Greifeinrichtung (siehe z. B. Fig. 5 6) wird im Ureter so plaziert, daß der Stein im Sichtbereich und in Greifweite des Haltesystems liegt.

Der Stein wird mit dem Haltesysten gegriffen und der Katheter mit dem Schleifkopf bis zum Stein vorgeschoben. Das Halterungssystem wird extrakorporal fixiert. Rann der 10 Stein nicht mit dem Halterungssystem gegriffen werden, kann dieses entfernt und eine Steinzerstörung nur mit dem Schleifkopf versucht werden.

Durch Anschalten des extrakorporalen Motors werden über die biegsame Welle die Pumpe und der Schleifkogf in 15 Rotation wersetz. Die Pumpe beginnt Spülflässigkeit durch den Katheter nach außen zu pumpen, wodurch für optimale Spülung und freie Sicht gesorgt ist. Katheter und Schleifkopf werden langsam vorgeschöben. Dadurch wird der Slein langsam abgetragen. Die Stienfragmente werden über die 20

Pumpe abgesaugt.

Ist der Stein durchbothr, wird über eine Stellsehraube der Durchmesser des Schleifkopfes vergrößert und anschlie-Bend der Kalheter mit dem Schleifkopf zurückgezogen. Dadurch wird der Stein mit einem größeren Durchmesser noch einmal durchboth. Bei kleinen Steinen kann auch versucht werden, den Stein durch Vergrößern des Kopfdurchmessers zu sprengen.

Oben genannter Vorgang wird so oft wiederholt, bis der Stein entweder vollständig abgetragen oder soweit ausgehöhlt ist, daß er problemlos zerdrückt und entfernt werden

kann.

Der extrakorporale Motor wird abgeschaltet und das gesamte System entfernt.

Patentansprüche

 Vorrichtung für die invasive Mikrochinurgie und Gef\(\text{iBbehandlung}\), umfassend ein Kathetergehluse (3) mit einem Absaugkanal (4) mit mindestens einer Absaugofflung (5), in welchem eine auf dem Rotationsprinzip basierende Absaugunme (2), sowie Körperseitig zur Pumpe (2) ein starr mit der Welle (6) der Pumpe (2) verbundenes Bearbeltungswertzeug (1) angeordnet

Vorrichtung nach Anspruch 1, worin am k\u00f6rperseitigen Ende des Geh\u00e4uses (3) eine Arbeits- und Absaug\u00f6fnung (5) gebildet ist, in deren Bereich das Bearbei-

tungswerkzeug (1) angeordnet ist.

 Vorrichtung nach Anspruch I, worin im Katheterge-50 häuse (3) nahe dem Abtragewerkzeug (1) seitliche Absaugöffnungen (5) vorgesehen sind und das Abtragewerkzeug (1) auf dem körperseitigen Ende des Katheters aufsitzt.

4. Vorrichtung nach einen der voranstehenden Ansprüsche, zusätzlich umfassend ein Bußeren Kathetephäuse (7), in dessen Innerem sich zumindest teil weise das Kathetergehäuse (3) befindet, wobel sich zwrischen innerem und äußerem Kathetergehäuse ein bevorzugt ringformiges Volumen (8) mit einer k\u00fcrpenseitigen Offronung (9) befindet, in dem einer Greifeinrichtung (10) zum Greifen des zu bearbeitenden Objektes befestigt ist und/oder geführt wird.

 Vorrichtung nach einem der voranstehenden Ansprüche, wobei das Kathetergehäuse (3) oder das äußere Kathetergehäuse (7) in einer Endoskopier-Vorrichtung (15) angeordnet ist.

6. Vorrichtung nach einem der voranstehenden An-

sprüche, zusätzlich umfassend einen Infusionskanal (11) mit einer Infusionsöffnung (12) am körperseitigen Ende oder im körperseitigen Endbereich der Vorrichtung

 Vorrichtung nach Anspruch 6, zusätzlich umfassend eine extrakorporal angeordnete Infusionspumpe (17), die Flüssigkeit durch den Infusionskanal (11) zur Infu-

sionsöffnung (12) pumpen kann.

 Vorrichtung nach einem der Ansprüche 1 bis 4, zusätzlich umfassend mindestens einen mit Fluid aufblähbaren Ballon (16) auf der Gehäuseaußenseite der Vorrichtung.

Vorrichtung nach einem der voranstehenden Ansprüche, zusätzlich umfassend eine extrakorporale Antiebseinheit (13) sowie eine Energie- bzw. Kraftübertragungsleitung (14), mit deren Hilfe die Absaug-

pumpe (2) angetrieben wird.

Vorrichtung nach einem der voranstehenden Ansprüche, worin die Absaugpumpe (2) eine Mikropumpe nach dem Gerotorprinzip und insbesondere eine innenverzahnte Zahnradpumpe ist.

 Vorrichtung nach Anspruch 10, worin die Kraftübertragungsleitung (14) eine biegsame Welle ist.

12. Vorrichtung mach niem der Ansprüche 9 bis 11, worft die Kraffübertragungsleitung (44) und die Pumpenwelle (6) einstückig miteinander verbunden sind. 13. Vorrichtung nach einem der Ansprüche 10 oder 11, worin die Absaugpumpe (2) derart in eine Zontriehilise eingebettet ist, daß ihre Achse (100) mittig im Kalheregehäusse (3) angeordnet ist.

14. Vorrichtung nach einem der voranstehenden Ansprüche, worin das Bearbeitungswerkzeug (1) ein Ab-

tragewerkzeug ist.

 Vorrichtung nach Anspruch 14, worin das Abtragewerkzeug ein Fr
äswerkzeug, ein Schleifwerkzeug, ein Bohrer oder ein Messer ist.

 Vorrichtung nach einem der Ansprüche 4 bis 15, worin die Vorrichtung zum Greifen (10) eine Steinhalterung zum Halten von Blasen-, Nieren- oder Gallensteinen ist.

 Vorrichtung nach Anspruch 16, worin die Steinhalterung ein Klemmsystem mit drei Greifarmen ist.

 Vorrichtung nach einem der Ansprüche 6 bis 17, weiterhin umfassend Durchflußmengenmesser für die Infusions- und die Absaugflüssigkeit.

 Vorrichtung nach Anspruch 18, zusätzlich umfassend eine Regelungseinheit zum Regeln der Infusionsund Absaug-Menge an Flüssigkeit.

Hicrzu 10 Seite(n) Zeichnungen

Nummer: Int. Cl.⁶; Veröffentlichungstag: DE 197 34 890 C1 A 61 B 17/22 15. Juli 1999

ig.

Nummer: DE 197 34 890 C1 Int. Cl.⁶: A 61 B 17/22 Veröffentlichungstag: 15. Juli 1999

ig. 2

Nummer: Int. Cl.6: Veröffentlichungstag: 15. Juli 1999

DE 197 34 890 C1 A 61 B 17/22

Nummer: Int. Cl.⁶: Veröffentlichungstag: DE 197 34 890 C1 A 61 B 17/22 15. Juli 1999

Aufbau des Schleifsystems

Fig. 5

Aufbau des gesamten Systems

Nummer: Int. Cl.6:

DE 197 34 890 C1 A 61 B 17/22 Veröffentlichungstag: 15. Juli 1999

Fig. 7 (Teil 1)

Nummer: Int. Cl.⁶:

Veröffentlichungstag:

DE 197 34 890 C1 A 61 B 17/22 15. Juli 1999

System	Nr.	Bezeichnung
Spüllumen Antricb	8	Korkenzieher-
Aspirationslumen Kegeffriser mit Schneckenwelle		fräser
Spillman Schooldenseur Apprelosialaren Enterodok Schooldenseur	9	Messer
Schieflidgerbestets fights Spillmenn Appirationshum Turksenfligt	10	Turbinenfräser
Frinze in Form dans Hollsberedigillionen Applrationalmen Anstrikovelle	11	Gabelfräser

Fig. 7 (Teil 2)

System	Lösung 1	Lösung 2	Lösung 3	Lösung 4	N SI
Beschreibung	Fester Schleifkopf aus gangigen Schleifmaterialen oder entsprechend gestalteter metallischer Bearbeitungskopf	Flexibler mit Schleifmittel- schicht verschener Kopf; Durchmesserveränderung durch: Gummikörper, Ballon Metallstreifen oder integrierte Mechanik	"Manschetten-Knopt", kleines Durchgangsloch mit längs ausgerichtetem Schleitköper, anschließend beim Zurick-ziehen mit quergestelltem Schleitköper, vergrößenung des bestehenden Lochs	Fliehkraftverstellung des Kopfdurchmessers, dadurch drehzahlgesteuerte Durch- messerveränderung	EITE 9
Skizze					
Vorteile	einfacher Aufbau starrer Aufbau, dadurch kein Ausweichen gegenüber dem Stein leicht auswechselbar	veränderlicher Durchmesser großer Materialabtrag durch Durchmesserveränderung Steinaushöhlung möglich	Zwei verschiedene Durchmesser	Durchmesser varlabel Aushöhlung des Steins möglich	
Nachteile	konstanter Durchmesser	nicht so stabil und dadurch eventuell Ausweichen gegenüber dem Stein	Durdhmesservergrößenung micht beliebig anfällige Mechanik Gefahr des Verhakens beim Zurückzehen Vorrichtung zum Klappen des Schneidkopfes notwenfin	Durchmesser abhängig von Dretzahl bei großem Schneid- widerstand nur kleiner Durchmesser möglich antfällige Mechanik e antfällige Mechanik ein kleinen Durchmessern erine Fliebtraftwürkung	Nummer: Int. Cl. ⁶ : Veröffentlichungstag:
Fig. 8 (Teil 1)			n a company		A 61 B 17/22 15. Juli 1999

Nummer:

DE 197 34 890 C1

System	Lösung 5	Lösung 6	Lösung 7	Lösung 8
Beschreibung	Durchmesservergrößerung durch gegenfander verschiebbare mit Schleifmittel beschichtete Gliederringe	"Kronen-" oder Kranzbohrer, Der kleine Böher dient, zur Zentrierung des Steins; mit dem großen Böhrkranz wird ein Loch in den Stein geschnitten. Das Material yerbielbt im Böhrkranz	"Kaffeemühle", der Stein wird durchbort und fixiert und anschließend in den "Trichte" gezogen. Durch Strukturen an der Innenwand wird der Stein zermahlen und weiter hineingezogen.	Rastenscheibe. Durch das aufeinander Abgleiten der Rasten führt das Bearbeitungswerkzeug eine lineare Bewegung aus, wodurch ein Effekt wie bei einer Schlagbohrmaschine enrsteht.
Skizze		·		nur Insere bewegung
Vorteile	 eingeschränkt veränderlicher Durchmesser 	geringerer Bohrwiderstand als beim Bohren ins Vollmaterial	keine Verletzungsgefahr beim Zerstören, da Schneiden nach außen abgeschirnt sind praktisch rückstandsfreie Entfernung des Steins	kombinierbar mit anderen Låsungen keine Halterung notwendig Bearbeitungskopf (Fråser o.å.) nicht unbedingt notwendig
Nachteile	anfällige Mechanik	beschränktes Fassungs- vermögen des Bohrers relativ großes Volumen keine Durchmesser- vergrößerung möglich	nur Steine mit begrenzter Grüße zerstörbar keine Durchmesserveränderung Gefahr des Verhakens beim Zundckziehen	bei hochfrequenter Anregung Gefähr der Gewebebeschädigung