

AGRICULTURE

NOTICE: Return or renew all Library Materials The Minimum Fee for each Lost Book is \$50.00.

The person charging this material is responsible for its return to the library from which it was withdrawn on or before the **Latest Date** stamped below.

Theft, mutilation, and underlining of books are reasons for disciplinary action and may result in dismissal from the University. To renew call Telephone Center, 333-8400

UNIVERSITY OF ILLINOIS LIBRARY AT URBANA-CHAMPAIGN

DEC 20 2004 L161-O-1096

Experimental CORN HYBRIDS 1954 TESTS

By R. W. Jugenheimer

Bulletin 584 · UNIVERSITY OF ILLINOIS AGRICULTURAL EXPERIMENT STATION

experimental-hybrid

CONTENTS

· · · · · · · · · · · · · · · · · · ·	Page
MATERIAL TESTED	3
MEASURING PERFORMANCE	6
RESULTS OF THE TESTS	7
NORTHERN ILLINOIS	
Double crosses (Table 2)	10 13
NORTH-CENTRAL ILLINOIS	
Double crosses (Table 4)	
Three-way and double crosses (Table 5)	17
CENTRAL ILLINOIS	
Double crosses (Table 6)	18
Single and double crosses (Table 7)	21
Three-way and double crosses (Table 8)	
Blight-resistant three-way crosses (Table 9)	23
SOUTH-CENTRAL ILLINOIS	
Double crosses (Table 10)	25
Three-way and double crosses (Table 11)	27
DOUBLE-CROSS HYBRID NUMBERS, PEDIGREES, AND INDEX (Table 12)	29

Acknowledgment is due W. T. Schwenk and Sons, Edwards, for providing land for one of the tests, and to Dr. W. C. Jacob, Professor of Agronomy, for valuable computational and statistical assistance.

Urbana, Illinois January, 1955

EXPERIMENTAL CORN HYBRIDS: 1954 TESTS

By R. W. Jugenheimer, Professor of Plant Genetics and Corn Research Coordinator

THIS REPORT summarizes the results of tests of experimental corn hybrids conducted in 1954 by this Station. Trials were made at four locations: in DeKalb county in northern Illinois, in Peoria county in north-central Illinois, in Champaign county in central Illinois, and in Fayette county in south-central Illinois. These four locations are representative of the soil, rainfall, and length of growing season in their respective areas.

Hybrids were compared for yield, maturity, resistance to lodging, and other agronomic characters. Only hybrids of similar maturity were tested on the same field. A familiar hybrid whose maturity was considered the standard for the group is named in each table heading.

Since most of the hybrids whose performance is recorded here are not yet in commercial use, the information about them is of most value to producers of hybrid seed. The 1954 performance of hybrids available in commercial quantities to farmers is reported in Bulletin 585 of this Station.

MATERIAL TESTED

One hundred forty-seven different double-cross hybrids were grown at the four locations. Most of the Illinois hybrids were developed by the author. The seed was produced by controlled hand-pollination.

Two sets of single crosses and four sets of three-way crosses differing in maturity were tested in 1954. One set of single crosses (Table 3) and all sets of three-way crosses (Tables 5, 8, 9, and 11) are a part of the "uniform" tests conducted cooperatively by corn-belt states, including Illinois, and the U. S. Department of Agriculture. Seed of the unreleased inbred lines involved in these crosses was contributed by the state or by the federal corn breeder who developed them. Single crosses whose performance

is reported in Table 7 were developed by the Illinois Station and tested only in Illinois.

The following individuals are responsible at the present time for collecting seed of inbred lines, making the crosses, and distributing crossed seed of the entries in the uniform tests: E. C. Rossman (Michigan), N. P. Neal (Wisconsin), and G. H. Stringfield (Ohio) — Table 3; J. H. Lonnquist (Nebraska), R. W. Jugenheimer (Illinois), and G. F. Sprague (Iowa) — Tables 5 and 8; M. T. Jenkins (U. S. Department of Agriculture), A. M. Brunson (Indiana), and A. J. Ullstrup (Indiana) — Table 9; L. A. Tatum (Kansas), W. R. Findley (U. S. Department of Agriculture), and M. S. Zuber (Missouri) — Table 11.

The University of Illinois does not produce hybrid seed corn in commercial quantities. If a hybrid gives satisfactory performance, the parental lines are released for use by seedsmen. Hybrids that include new inbred lines are produced under the "delayed release" program adopted by most of the states in the corn belt. Multiplication of a new line is handled by the Station, and the production of single crosses in quantity is handled by the Illinois Seed Producers Association, Champaign, Illinois. After a satisfactory probationary period of two to five years, a new line is released to the public.

Table 12 (see pages 29 to 32) lists the double-cross hybrids whose performance is shown in this report and the tables in which each appears. It also contains the pedigrees of the hybrids tested. In the pedigrees, the order of the single crosses and of the lines in the single crosses has no significance; it does not indicate which should be used as seed or pollen parent in the production of a hybrid.

Illinois yellow hybrids are numbered consecutively below 2000 and above 6000. White hybrids are numbered in the 2000 series; these are usually followed by the letter W. Hybrids that have performed well after wide testing in several corn-belt states have been designated AES (Agricultural Experiment Station) hybrids. Hybrids in the 600 series are similar to Illinois 1277 in maturity; those in the 700 series correspond in maturity to Illinois 21; those in the 800 series correspond to U. S. 13; and hybrids in the 900 series to Illinois 448.

The letter A or B following an Illinois hybrid number indi-

1955]

cates that the combination of inbred lines making up the hybrid has been rearranged or permuted. For example, if the original pedigree of an Illinois hybrid was (1×2) (3×4) , the letter A following the number means that the hybrid was put together (1×3) (2×4) , the letter B, (1×4) (2×3) . A difference in reciprocals is not recognized in this method. When a short dash (-) followed by a number occurs as part of an Illinois hybrid number, it means that a tested related line has been substituted for one of the inbred lines included in the original hybrid.

Performance of three-way and single-cross hybrids is of interest to corn breeders, producers of hybrid seed corn, and to farmers. Characteristics of single crosses such as yield, standability, seed size, shape, and quality definitely affect the practical production of hybrid seed corn. Some farmers are interested in growing single-cross and three-way-cross hybrids commercially because of their attractive appearance and extreme uniformity. Use of single-cross and three-way-cross data for the prediction of desirable double-cross combinations creates additional interest in the performance of single crosses.

Prediction studies are an extremely valuable part of a research program. Methods are available to predict the performance of the better hybrid combinations without making and testing large numbers of undesirable crosses. For example, 1,225 single crosses and 690,900 double crosses are possible with 50 inbred lines. However, by using single-cross performance data, the corn breeder can predict which of the many possible doublecross combinations are likely to be most desirable. The following six single crosses can be made with four inbred lines: A X B, $A \times C$, $A \times D$, $B \times C$, $B \times D$, and $C \times D$. The average performance of the four non-parental single crosses gives the predicted performance of a specific double-cross hybrid. For instance, the average yields of the four single crosses A X C, A X D, B X C, and B X D give the predicted yield of double cross $(A \times B)$ $(C \times D)$. The procedure in predicting acre yields of two hybrids is shown on page 78 of Illinois Agricultural Experiment Station Bulletin 543.

Similar predictions can be made for other characteristics. Predicted hybrid combinations, however, should always be thoroughly tested under field conditions before being put into commercial production.

Three-way crosses also provide useful predictions of the performance of double-cross hybrids. A large number of inbred lines can be compared, and the method is especially valuable where a desirable seed parent single cross is available for use as a tester. Three-way crosses provide information on specific hybrids and may often eliminate the time and expense required for testing inbred lines in top crosses and single crosses.

The procedure in predicting acre yields and percentage of erect plants from three-way-cross data is shown below. The three-way-cross data are taken from Table 5. One hybrid is much more promising than the other hybrid.

(Oh28xOh43)(B38xWF9)

(Oh28xOh43)(N9206xOh5)

	Bushels per acre	Percent of erect plants	i	Bushels per acre	Percent of erect plants
$(Oh28 \times Oh43) \times B38$	119	93	$(Oh28 \times Oh43) \times N9206$	99	58
$(Oh28 \times Oh43) \times WF9$	106	92	$(Oh28 \times Oh43) \times Oh5$	96	77
	$2 \overline{225} $ 2	$2 \overline{185}$	2	$ \overline{195} $ 2	$2 \overline{135}$
Prediction	112.5	92.5	Prediction	97.5	67.5

MEASURING PERFORMANCE

All plots in these tests were planted, thinned, and harvested by hand in well-fertilized fields prepared in the usual way for corn. Individual plots were 2 x 5 hills in area. Six kernels were planted in hills spaced 40 inches apart. The plots were thinned to four plants per hill at DeKalb, Peoria, and Champaign, and to three per hill at Brownstown.

General information including dates of planting and harvesting is given in Table 1. Lattice-square designs were used to ob-

Table 1.—GENERAL INFORMATION: Tests of Illinois Experimental Corn Hybrids, 1954

	Section	Number	Number	Plants	Date	of
Countya	of state	of repli- eations	of hills per plot	per hill	Planting	Har- vesting
DeKalb Peoria Champaign	Northern North-Central Central	4 4 4	10 10	4 4 4	May 13 May 17	Oet. 19 Oet. 14 Nov. 4
Fayette	South-Central	-	10 10	3	May 11 May 18	Nov. 4 Nov. 9

^a The fields are located near the following cities and towns: in DeKalb county near DeKalb, in Peoria county near Peoria, in Champaign county near Urbana, and in Fayette county near Brownstown.

tain the data reported in Tables 2, 3, 4, 6, 7, and 10. The data in Tables 5, 8, 9, and 11 were obtained in randomized blocks. Four replications were grown of each entry.

RESULTS OF THE TESTS

Data obtained from the tests are summarized in Tables 2 to 11. Long-time averages are more reliable indexes of the performance of hybrids than a single year's result. The parts of the tables summarizing the results of two or more years therefore deserve the most weight when the results are studied.

Hybrids are listed in the tables in the order of their yield. Acre yields are reported as shelled grain containing 15.5 percent moisture, the maximum allowable for No. 2 corn. The crop from one replication of each entry at each location was shelled to determine the shelling percentage and moisture percentage. The percentage of moisture in the shelled grain was obtained with a Steinlite moisture meter. Erect plants at harvest and stand were determined from actual counts on all replications of each test.

Data from all plots are included in the report on yield. The only correction for imperfect stands was the following adjustment for missing hills:

This adjustment adds 0.7 percent of the average hill yield for each missing hill, and assumes that 0.3 percent is made up by the increased yield of surrounding hills.

Relative performance cannot be determined with absolute accuracy by any method of testing. Small differences between entries are seldom of any significance. In fact, small differences are to be expected among plots planted even with the same lot of seed. Variations in growing conditions such as soil fertility are reduced but not completely eliminated by replicating the same entry several times in the same test. Unavoidable variation may be determined by a mathematical procedure known as analysis of variance. From this procedure a figure may be obtained that represents the number of bushels by which two entries must differ in yielding ability before they can be considered

significantly different. Note, for example, in Table 2E that unless any two entries differ by at least 10 bushels per acre there is no statistical difference between them in yielding ability.

The season was favorable for corn at DeKalb and Peoria. The growing season at Urbana was hot and dry, with resulting low yields. Yields were unusually low at Brownstown because of the extremely hot and dry growing season.

The following double crosses were average or better in yield and standability, and average or earlier in maturity as measured by the percent of moisture in the grain. The hybrids are arranged in order of yield.

Northern Illinois

Five-year average (Table 2A) — Ill. 1289, Ill. 1555A, Ill. 1559B, Ill. 1557, Ill. 1560A.

Four-year average (Table 2B) — Ill. 1289, AES 702, Ill. 1555A, Ill. 1557, Ill. 1558, Ill. 1559B, Ill. 1279.

Three-year average (Table 2C) — Ill. 1277, Ill. 1279, Ill. 1555A.

Two-year average (Table 2D) — Ill. 1289, Ill. 1555A, Ill. 1279.

1954 results (Table 2E) — Ill. 21, Ill. 1555A, AES 702, Ill. 1289, Ill. 2247W, Ill. 1279, Ill. 101, Ill. 1864, Ill. 1560A.

North-Central Illinois

Five-year average (Table 4A) — Ill. 1555A, Ill. 1560A.

Four-year average (Table 4B) — Ill. 274-1, Ill. 1575, Ill. 1555A.

Three-year average (Table 4C) — Ill. 274-1, Ill. 1575, Ill. 1555A, Ill. 1277.

Two-year average (Table 4D) — Ill. 1332, Ill. 274-1, Ill. 1511, Ill. 1555A, Ill. 1575.

1954 results (Table 4E) — Ill. 1511, Ill. 1332, Ill. 1919, Ill. 1617, Ill. 1905, Ill. 274-1, Ill. 1875, Ill. 1914, Ill. 1555A, Ill. 1896A.

Central Illinois

Five-year average (Table 6A) — Ill. 1332, Ill. 972A-1.

Four-year average (Table 6B) — Ill. 1511, Ill. 1421, Ill. 1332, Ill. 972A-1, Ill. 1777.

- Three-year average (Table 6C) Ill. 1332, AES 801, Ill. 972A-1, AES 802.
- Two-year average (Table 6D) Ill. 1332, AES 802, AES 801, Ill. 21, Ohio 4808.
- 1954 results (Table 6E) Ill. 1896, Ill. 1913, Ill. 1919, Ill. 1911, Ill. 1777, Ill. 1332, Ill. 1908, Ill. 1915, Ill. 1909, AES 801, Ill. 21.

South-Central Illinois

- Five-year average (Table 10A) Ill. 1539A, Ill. 1349, Ill. 1332.
- Four-year average (Table 10B) Ill. 1332, Ill. 1656, Ill. 1349, Ill. 1539A.
- Three-year average (Table 10C) Ill. 1656, Ill. 1332, Ill. 1349.
- Two-year average (Table 10D) Ill. 1859, Ill. 2246W, Ill. 1332, Ill. 1656, Ill. 6076, AES 803, Ill. 1349, Ill. 1893.
- 1954 results (Table 10E) Ill. 1656, Ill. 1332, Ill. 1859, Ill. 1539A, Ill. 1856, Ill. 1852, Ill. 2246W, Ill. 1349, Ill. 1893, Mo. 804, Ill. 1771, AES 805, Ill. 1914, Ill. 1896.

Table 2. — DOUBLE CROSSES OF ILLINOIS 1277 MATURITY Tested in Northern Illinois, 1950-1954

(Entries in boldface were average or better in yield and standability and average or earlier in maturity)

Rank in yield	Entry	Acre yield	Mois- ture in grain	Shelling	Erect plants	Stand	Ear height
	A — Five-year a	averag	es, 1950	0-1954			
1 2 3 4 5	III. 1289	bu. 101 99 99 98 98	perct. 24 24 26 21 23	perct. 78 78 78 78 80 78	perct. 96 94 97 96 98	98 98 98 99 97	in. 36 39 39 39 38 33
$\begin{array}{c} 6 \\ 7 \\ 8 \\ 9 \\ 10 \end{array}$	III. 1557 III. 1560A III. 1279 III. 1280 III. 1290	98 97 97 97 97	24 23 24 24 25	76 79 78 78 78	98 100 95 95 95	96 98 98 97 95	35 36 39 37 39
11 12 13 14 15	Ill. 1091A Ill. 1558 Ill. 101 Ill. 21 Ill. 21	96 95 94 94 92	26 26 24 27 23	77 76 77 76 78	96 98 97 94 96	98 97 97 98 98	40 34 37 46 35
16	Ill. 1595	92 96	24 24	77 78	97 96	98 98	41 38
	B — Four-year	averag	es, 195	1-1954			
1 2 3 4 5	Ill. 1493 Ill. 1289 Ill. 1575 Ill. 1277 AES 702	109 108 108 107 107	26 24 27 24 24	79 78 77 78 75	98 96 97 95 96	97 97 98 97 99	40 36 40 40 42
6 7 8 9 10	III. 1555A III. 1280 III. 1557 III. 21 III. 21	106 106 106 106 105	22 24 24 26 25	80 78 76 76 77	96 95 98 94 98	98 97 96 97 97	41 38 36 48 36
11 12 13 14 15	III. 1559B III. 1279 III. 1290 III. 101 III. 101	104 104 104 104 103	24 25 25 26 24	78 78 78 78 78	98 96 94 97 100	98 98 96 98	35 39 39 38 37
16 17 18 19 20	III. 1091A III. 1281 III. 1585 Ohio K24 III. 1579	103 102 101 100 100	27 26 24 22 24	77 78 77 80 79	95 96 94 95 97	97 97 94 95 98	40 36 37 37 34
21 22	111, 1595 111, 1375 Average	99 98 104	$25 \\ 24 \\ 25$	77 78 78	97 96 96	97 98 97	42 34 38

(Table is continued on next page)

Table 2. — Continued

Ranl in yield	Entry	Acre yield	Mois- ture in grain	Shelling	Erect plants	Stand	Ear height
	C — Three-yea	r avera	ges, 19	52-1954			
1 2 3 4 5	Ill. 21 Ill. 1575 Ill. 1277 AES 702 Ill. 1493	119	perct. 22 23 21 23 23	perct. 79 79 79 79 77	perct. 95 99 96 97 98	perct. 97 98 97 98 97	in. 47 40 39 41 38
6 7 8 9 10	Ill. 1289. Ill. 1279. Ill. 1280. Ill. 101. Ill. 101. I.S.P. 2.	. 117	25 20 21 22 24	78 79 80 80 76	96 96 95 97 99	97 98 95 99	37 38 38 37 37
11 12 13 14 15	III. 1557. III. 1559B. III. 1558. III. 1091A. III. 1555A.	115 115 115	23 22 22 23 20	78 80 78 78 81	98 98 98 95 97	96 98 96 96 97	37 36 36 41 41
16 17 18 19 20	III. 1290 . III. 1281 . III. 1560A . III. 1585 . Ind. 0421 .	113	22 22 21 21 19	79 78 78 78 81	95 97 99 93 97	95 97 97 94 99	38 37 37 37 37
21 22 23 24 25	Ill. 1579 Ill. 1595 Ohio K24 Ill. 1800 Ill. 1799	109	20 21 20 21 19	79 77 80 79 81	96 98 97 97 98	96 98 95 97 100	34 41 36 36 38
26 27 28 29	Ill. 1802. Ill. 1375. AES 610. Ohio M15.	101	20 20 20 19 21	80 80 80 82 79	98 96 93 91 96	96 97 96 96	38 35 31 42 38
	D — Two-yea		ges, 195	3-1954			
1 2 3 4 5	III. 1902. III. 1575. III. 21. III. 1277. III. 1493.	124	22 23 21 22 23	79 80 79 80 79	92 98 94 95 98	100 98 96 96 96	40 40 46 39 38
6 7 8 9 10	Ill. 1861 Ill. 1559B Ill. 1289 Ill. 101 Ill. 1863	123	20 22 21 22 23	82 81 79 81 80	94 97 96 96 96	98 99 97 98 98	37 36 36 36 34
11 12 13 14 15	III. 1557 III. 1555A III. 1279 III. 1281	120 120 120	23 20 20 22 22 22	79 82 80 80 78	96 96 95 96 93	96 96 98 96 96	36 40 37 36 40
16 17 18 19 20	AES 702. Ill. 1865. Ill. 1866. Ill. 1280. Ill. 1585.	118	22 22 22 22 22 21	77 80 80 80 80	96 96 94 93 90	98 96 97 96 97	40 34 36 37 36
21 22 23 24 25 26 27 28 29 30	I.S.P. 2. Ind. 0421. Ill. 1560A. Ill. 1290. Ill. 1578. Ill. 1864. Ill. 1875. Ill. 1595. Ill. 1894. Ill. 1894. Ill. 1894. Ill. 1895. Ill. 1895. Ill. 1895. Ill. 1895.	116 116 116 115 114 114	24 20 20 22 22 22 20 20 22 24 21	77 82 79 80 78 82 81 79 80 80	98 96 99 94 97 96 95 97 90 96	99 98 96 94 96 98 98 96 96	36 37 36 38 34 32 35 40 42 31

(Table is concluded on next page)

Table 2. — Concluded

Ran in yield	Entry	Acre yield	Mois- ture in grain	Shelling	Erect plants	Stand	Ear height	Dropped ears
	D — Two-yea	r ave	rages, 1	953-1954	(con	luded)		
31 32 33 34 35	Ill. 1579. Ill. 1799. Ohio K24. Ill. 1802. Ill. 1800.	bu. 111 110 110 110 110 108	perct. 21 19 20 20 21	perct. 80 82 82 82 80 80	perct. 94 96 96 98 98	perct. 96 99 94 98 97	in. 34 38 36 36 36 34	perct.
36 37	AES 610Ohio M15Average	106 104 117	20 20 21	82 82 80	90 88 95	95 96 97	32 41 37	• • •
	E — 19	954 re	sults (4	replica	tions)			
1 2 3 4 5	Ill. 1902 M14×WF9 Ill. 1861 Ill. 1281. Ill. 1559B.	149 140 140 139 138	27 25 23 27 27	78 78 80 79 77	90 90 89 95 96	100 98 99 99	41 36 36 41 39	0 0 3.2 1.2 .7
6 7 8 9 10	Ill. 1575 Ill. 21 Ill. 1555A Ill. 1493 AES 702	137 137 137 137 136	28 25 26 28 26	77 77 79 78 77	96 93 96 97 95	97 96 94 92 99	43 46 40 41 39	2.0 3.4 3.3 0 3.8
11 12 13 14 15	Ill. 1557. Ill. 1289. Ill. 2247W. Ill. 1279. Iowa 4630.	136 135 134 133 133	28 26 25 25 24	77 77 78 78 79	94 92 93 92 88	98 98 94 97 96	38 39 42 38 36	$\begin{array}{c} .6 \\ 4.9 \\ 3.1 \\ 3.3 \\ 2.6 \end{array}$
16 17 18 19 20	III. 1277. III. 101. III. 1866. III. 1864. III. 1091A.	133 131 129 128 128	26 26 27 24 27	79 79 78 78 77	91 95 90 95 90	94 97 94 96 97	42 39 38 32 42	5.3 4.2 .7 5.8 2.9
21 22 23 24 25	I.S.P. 2 Ill. 1560A Ill. 1290 Ill. 1595 Ill. 1903	127 127 127 127 127 126	28 24 27 28 24	76 77 78 79 77	97 98 88 95 97	100 96 94 97 96	35 38 39 43 40	$ \begin{array}{c} 1.4 \\ 1.2 \\ 2.8 \\ .7 \\ 2.7 \end{array} $
26 27 28 29 30	Ill. 1585. Ill. 1375. Ind. 0421 Ill. 1280. Ill. 1863.	126 126 126 125 125	26 25 25 26 28	78 79 80 79 79	88 91 93 87 94	95 96 98 94 97	38 38 38 37 33	3.8 2.6 3.5 3.3 1.5
31 32 33 34 35	AES 510. III. 6015. III. 1865. III. 1579. III. 6074.	124 123 122 122 121	23 32 27 25 29	80 75 78 78 78	93 83 93 90 88	93 95 98 96 94	39 62 34 35 42	$2.1 \\ .6 \\ 3.1 \\ 1.9 \\ 2.0$
36 37 38 39 40	III. 1799. III. 6052. III. 1558. III. 1802. III. 1862.	121 120 120 120 120 119	22 32 26 24 25	79 76 76 78 79	93 87 95 97 92	99 94 93 96 88	39 51 36 38 30	3.1 .6 2.2 2.6 1.9
41 42 43 44 45	Ohio K24 Minn. 40. Iowa 4558 Minn. 4. Ill. 1800	119 119 117 117	23 23 22 23 26	80 78 80 80 78	94 92 89 92 90	93 94 92 92 96	37 38 35 40 35	$3.9 \\ 0 \\ 4.3 \\ 3.3 \\ 2.6$
46 47 48 49	AES 610 Ohio M15 Ill. 6062 Ohio 5305 Average Significant difference	116 112 103 97 127 10	23 24 33 22 26	80 82 75 78 78	84 84 86 96 92 7	95 95 96 91 96 8	34 43 55 38 39 4	1.4 3.9 1.7 .8 2.4

Table 3.—SINGLE AND DOUBLE CROSSES OF ILLINOIS 1277 MATURITY

Tested in Northern Illinois, 1954

(Entries in boldface were average or better in yield and standability and average or earlier in maturity)

Code Entry	7	Acre yield	Mois- ture in grain	Shelling	Erect plants	Stand	Ear height	Dropped ears
		A — S	Single o	crosses				
2 M14×B21 3 M14×A223 4 B14×B21		bu. 149 131 114 121 138	perct. 25 25 23 30 22	91 80 79 79 80	perct. 97 88 85 83 99	94 97 97 97 97	in. 38 37 34 45 36	perct. 0 2.0 1.2 1.3 .7
7 A239×M14 8 A239×B14 9 A239×B21		126 134 129 108 119	23 24 24 22 25	79 81 83 82 77	97 98 100 97 93	90 97 99 89 98	37 39 40 37 36	1.2 0 0 .8 .6
13 A295×B21 14 A295×A223 15 A295×A239		142 124 107 124 122	24 23 21 21 22	79 78 77 79 80	97 92 94 88 96	93 86 98 98 97	42 40 38 41 40	$\begin{array}{c} 0 \\ .6 \\ 8.1 \\ 0 \\ 0 \end{array}$
18 A297×B21 19 A297×A223 20 A297×A239		139 143 112 115 115	24 22 22 22 22 22	81 81 81 82 79	100 92 96 98 93	95 100 98 98 96	42 43 38 39 41	$5.1 \\ .6 \\ .7 \\ 3.8$
23 A545×B14 24 A545×B21 25 A545×A223		136 135 134 118 139	24 27 25 23 24	81 82 82 78 81	95 99 95 94 93	96 96 88 100 96	38 45 40 35 42	0 0 0 .6 .6
28 A545 × A297 29 Oh26A×M14. 30 Oh26A×B14.		125 131 126 138 121	23 24 24 25 23	74 80 79 78 80	92 96 85 99 96	99 100 96 95 86	40 43 41 42 40	.6 0 0 0 1.3
33 Oh26A × A239 34 Oh26A × A295 35 Oh26A × A297		118 122 115 123 138	20 22 22 22 22 26	81 80 75 80 79	99 94 99 96 98	83 87 96 98 99	37 38 39 38 44	$0 \\ 0 \\ 0 \\ 1.9 \\ 2.1$
38 W64A×B14 39 W64A×B21 40 W64A×A223.		135 144 115 126 120	23 26 22 23 22	78 79 78 78 78	96 99 90 98 97	98 97 83 96 98	33 37 35 35 36	$\begin{array}{c} .6 \\ .7 \\ 1.5 \\ 3.2 \\ .7 \end{array}$
43 W64A × A297. 44 W64A × A545. 45 W64A × Oh264 Average	Alifference	123 135 136 110 127 12	25 23 27 24 24	76 78 78 77 79	95 98 97 97 95 6	96 97 93 89 95	37 40 37 36 39 3	1.9 1.2 1.3 0 1.0
		B — I	ouble	crosses				
AES 702 Ill. 1289 Ohio K24 Ill. 1800 Average	difference.	143 139 134 123 118 131	27 27 28 24 25 26	79 76 78 80 77 78	96 94 99 93 92 95 6	99 98 98 95 91 96 12	35 44 38 36 37 38 3	2.0 3.2 1.3 3.5 .6 2.1

Table 4. — DOUBLE CROSSES OF ILLINOIS 21 MATURITY Tested in North-Central Illinois, 1950-1954

(Entries in boldface were average or better in yield and standability and average or earlier in maturity)

Ran in yield	Entry		Acre yield	Mois- ture in grain	Shelling	Erect plants	Stand	Ear heigh
	A	— Five-year a	verag	es, 195	0-1954			
1 2 3 4 5	Ill. 1555A Ill. 1560A Ill. 1290 Ill. 1277 Ill. 1575		bu. 91 90 90 90	perct. 17 18 19 20 21	perct. 84 81 82 82 82	perct. 94 97 93 93 93	perct. 97 98 96 98 99	in. 38 37 39 39 40
6	Ill. 1280		89 90	19 19	82 82	91 94	97 98	37 38
		— Four-year a	verag	es, 195	1-1954			
1 2 3 4 5	Ill. 1511		104 104 103 101 101	20 20 20 19 21	83 82 79 82 79	92 91 91 91 88	89 95 96 97 99	48 45 44 46 48
6 7 8 9 10	Ill. 274-1 Ill. 1575 Ill. 1555A Ill. 1277 AES 805.		100 99 97 96 96	19 20 17 20 21	81 80 84 83 78	94 95 93 93 96	97 99 98 97 93	46 41 40 40 43
11 12 13 14 15	Ill. 1760 Ill. 1280 Ill. 1290 Ill. 1560A AES 702		96 95 94 94 92	22 18 18 18 20	78 83 82 81 78	94 90 92 96 91	95 97 94 98 97	44 38 39 38 42
16	Iowa 4297		87 97	19 20	82 81	94 93	91 96	40 43
		— Three-year a	vera	ges, 195	62-1954			
1 2 3 4 5	Ill. 1819 AES 806 Ill. 1511 Ill. 972A-1 Ill. 1332		106 105 104 104 102	18 22 19 21 19	81 80 83 81 82	89 89 91 90 90	98 97 86 95 96	45 44 50 49 48
6 7 8 9 10	Ill. 1570. Ill. 274-1 Ill. 1617 Ill. 1814 Ill. 1575.		102 101 101 100 99	20 19 19 21 19	79 82 79 81 80	86 93 89 94 94	98 97 92 96 98	50 47 45 40 42
11 12 13 14 15	Ill. 1831 Ill. 1555A Ill. 1277 Ill. 1560A Ill. 1826		99 98 97 95 95	20 16 19 17 20	81 85 83 82 81	94 93 92 96 92	96 97 97 97 98	41 42 42 40 39
16 17 18 19 20	Ill. 1760. Ill. 1813. Ill. 1280. AES 805. Ill. 1290.		95 94 93 93 92	21 23 18 21 18	78 79 82 78 83	92 95 87 95 89	94 94 96 91 94	44 45 39 44 41
21 22 23	Ind. 1405		91 89 85 97	19 20 18 19	80 78 82 81	95 89 92 92	92 97 90 95	38 43 41 43

(Table is continued on next page)

Table 4. — Continued

	_				•			
Rank in yield	Entry	Acre yield	Mois- ture in grain	Shelling	Erect plants	Stand	Ear height	Dropped ears
	D — T	wo-ye	ar aver	ages, 19	53-1954			
2 3 4	AES 806. Ill. 1819. Ill. 1570. Ill. 1332. Ill. 1382.	98 95 94	perct. 21 18 19 18 19	perct. 80 82 80 83 80	perct. 86 84 81 89 92	96 96 97 94 92	in. 42 41 46 45 47	perct.
7 8 9	III. 972A-1 III. 274-1 III. 1511 III. 1617 III. 1831	. 93 . 92 . 92	20 18 18 18 20	81 82 84 80 82	86 91 89 88 94	92 96 78 96 94	46 43 46 44 38	
12 13 14	III. 1896A III. 1555 A III. 1575 III. 1814 III. 1868.	90 90 90	18 16 18 19	80 84 81 82 81	88 90 91 92 94	98 96 98 97 94	40 40 39 38 40	
17 18 19	III. 1277. III. 2247W III. 1560A III. 1813 III. 1826.	. 88 . 87 . 87	18 18 16 22 19	84 81 82 79 82	88 80 94 92 90	96 95 96 96 98	38 42 36 42 36	
22 23 24	Ill. 1760 . Ill. 1280 . Ill. 1290 . Ind. 1405 . Ill. 1864 .	. 84 . 84 . 84	20 16 17 18 16	78 82 82 82 82	89 82 88 93	91 95 91 93 94	42 35 38 35 36	
27 28 29	Ill. 1863. Ill. 1873. AES 702. AES 805. IOwa 4297. Average.	. 82 . 82 . 82 . 74	18 18 18 20 18	82 80 80 78 82 81	94 94 86 93 92 89	95 94 96 87 86 94	36 36 40 42 38 40	
	E — 1	954 re	sults (4	replica	tions)			-
$\frac{2}{3}$	AES 806. III. 972A-1 III. 1912. III. 1819. III. 1511.	. 107 . 107 . 107	23 22 21 22 21	80 80 81 80 82	88 85 79 79 85	100 99 97 99 98	40 46 42 43 47	1.5 3.3 3.6 7.2 15.5
7 8 9	III. 1332. III. 1570. III. 1919 III. 1617. III. 1905.	. 105 . 104 . 104	20 22 20 20 21	82 80 80 79 77	86 77 86 84 83	100 98 99 100 99	43 45 44 43 46	3.9 1.3 3.7 .6 3.8
12 13 14	III. 274-1 III. 1918 III. 1875 III. 1906 III. 1913	. 103 . 103 . 102	20 22 21 21 20	82 81 80 79 83	86 81 92 77 74	99 98 100 100 98	44 44 47 45 44	$\begin{array}{c} .7 \\ 3.8 \\ 9.2 \\ 4.4 \\ 3.3 \end{array}$
18 19	Ill. 1908. Ill. 1915. Ill. 1910. Ill. 1904. Ill. 1914.	. 99 . 98	20 22 20 21 21	82 80 83 79 79	75 85 73 60 85	99 99 99 98 99	44 42 44 46 45	2.7 5.6 2.8 2.7 4.0

(Table is concluded on next page)

Table 4. — Concluded

Rank in yield	Entry		Acre yield	Mois- ture in grain	Shelling	Erect plants	Stand	Ear height	Dropped ears
		E — 19	54 res	sults (4	replica	tions)			
22 III 23 III 24 II	1. 6021 1. 1916 1. 1555Å 1. 1917		bu. 98 97 97 97 96	perct. 23 20 19 19 20	perct. 78 82 82 82 82 80	perct. 63 68 89 77 84	perct. 100 99 98 96 97	in. 51 46 42 43 39	perct. 5.0 3.9 3.8 .7 4.6
27 II 28 II 29 II	l. 1814 l. 1575 l. 1277 l. 2247W		96 95 94 93	22 22 20 20 20 22	80 79 83 80 80	85 92 85 77 93	100 99 97 99 99	39 42 41 42 42	3.2 3.8 .7 3.4 4.7
32 OI 33 III 34 III	l. 1911 hio 3247 l. 1290 l. 1831 d. 1405		93 92 92 92 92	20 20 20 24 20	80 83 81 81 81	80 79 79 91 88	98 100 98 99 97	46 35 40 38 37	7.1 3.8 1.9 4.3 4.6
37 III 38 III 39 III	l. 1760 l. 1560A l. 1909 l. 1280		91 89 88 88	23 19 20 19 21	77 79 80 80 80	87 91 76 78 89	99 100 95 99	41 39 43 34 36	5.1 1.2 5.2 6.0 2.0
42 In 43 Ill 44 Ill	l. 1813 d. 2401 l. 1903 l. 1864 ES 702		87 86 86 85 84	24 21 20 19 21	77 80 80 81 79	90 89 91 88 88	99 99 97 100 98	42 37 39 35 40	2.0 4.2 2.7 2.6 2.0
47 A 48 II	l. 1863. ES 805. l. 1873. wa 4297. Average. Significant difference		81 79 77 73 95 8	22 22 22 21 21	80 75 77 80 80	91 92 93 86 83 12	99 96 100 97 99 3	37 41 36 38 42 4	3.8 3.6 4.9 7.1 3.9

Table 5.—THREE-WAY AND DOUBLE CROSSES OF ILLINOIS 21 MATURITY

Tested in North-Central Illinois, 1954

(Entries in boldface were average or better in yield and standability and average or earlier in maturity)

Code	e Entry	Acre yield	Mois- ture in grain	Shelling	Erect plants	Stand	Ear height	Dropped ears
	A — Inbred	lines	crossed	with (B14 ×	WF9)		
_	200	bu.	perct.	perct.	perct.	perct.	in.	perct.
$\frac{1}{2}$	B38	96 76	$\frac{19}{22}$	76 73	98 97	9 7 99	41 42	$\frac{3.5}{9.3}$
3	Oh26A	78 99	19 21	81 81	$\frac{97}{92}$	98 94	39 3 7	$\frac{2.8}{3.4}$
5	Oh422	97	21	77	96	92	40	4.6
6	Oh28 Nebr. 9206	106 102	19 19	79 82	96 80	99 99	38 40	$\frac{.7}{4.5}$
8	Oh5	82	19 19	75 82	97 97	100 99	40	6.2
10	W70Oh43	86 113	20	82 82	93	99	41 38	$\frac{3.8}{2.4}$
11	Nebr. 4535	118	20	83	94	99	39	3.9
l2 l3	K1603	110 73	18 18	81 82	90 97	9 6 99	41 35	$\frac{1.2}{0}$
l4 l5	B37	102 100	19 20	78 81	$\begin{array}{c} 97 \\ 82 \end{array}$	99 9 7	41 38	$\frac{3.2}{3.2}$
	Average	96	20	80	94	98	39	3.5
	B — Inbred 1	ines	crossed	with (C)h28 ×	Oh43)		
16 17	B38	119	19	79	93	92	42	2.6
18	C103 Oh26A	72 95	23 19	71 82	95 91	99 98	39 39	$\frac{2.1}{2.7}$
19 20	WF9	$\frac{106}{98}$	20 18	81 82	92 83	96 99	$\frac{34}{34}$	$^{1.2}_{.6}$
21	Nebr. 9206	99	20	83	58	96	38	1.4
22	Oh5 W70	96 108	19 21	82 82	77 81	97 99	40 40	$\frac{4.7}{1.3}$
24 25	Nebr. 4535. K1603.	112 109	21 18	85 83	75 75	99 99	38 39	$\frac{3.4}{2.9}$
26	A73	80	19	80	91	99	36	4.6
27 28	B37	129	23 22	82 79	98	100 98	39 36	. 6
29	N18 Nebr. 4056	$\frac{91}{97}$	19	82	$\frac{68}{95}$	97	36	$\begin{array}{c} 2.6 \\ .7 \end{array}$
	Average	101	20	81	84	98	38	2.2
		C —	Double	crosses				
	(Oh28×Oh43)(B14×WF9)		21	80	94	99	39	3.8
	AES 702	90	20	77	96	98	40	5.9
	Iowa 4297	87	21	80	92	98	40	1.9

Table 6. — DOUBLE CROSSES OF U. S. 13 MATURITY Tested in Central Illinois, 1950-1954

(Entries in boldface were average or better in yield and standability and average or earlier in maturity)

Rank in yield		Entry		Acre yield	Mois- ture in grain	Shelling	Erect plants	Stand	Ear heigh
			A — Five-year	averag	ges, 195	0-1954			
				bu.	perct.	perct.	perct.	perct.	in.
					18	82	86	96	48
					17	81	89	98	46
3	III. 972	A-1		94	17 18	80 80	83 78	97 98	$\frac{47}{52}$
					18	80	78	97	47
	Ill. 21.			91	17	82	83	97	47
7	Ill. 274	-1		90	16	82	87	98	45
	Avera	age		93	17	81	83	97	47
			B — Four-year	averag	ges, 195	1-1954			
1	Ill. 1511	1		95	17	82	85	99	47
2	Ill. 1421	1		94	17	82	85	99	44
					16	82	88	98	46
					16 17	80 80	82 83	99 98	47 46
6	U.S. 13			90	17	80	77	98	51
7	Ill. 1759	9		90	18	80	81	98	46
8	Ill. 178	8		90	18	79	80	100	47
					17 18	79 80	82 77	99 99	47 47
11	Ill. 274-	-1		86	16	82	84	100	45
12	AES 80	5		86	17	80	90	97	43
13	Ill. 176	7 . <i>.</i>		84	18	81	77	100	45
	Aver	age		90	17	80	82	99	46
			C — Three-yea	r avera	ges, 195	2-1954			
					17	83	87	99	47
2	III. 142	1		94	17	82	85	99	43
	III. 1332	7		91	15 17	82 80	91 89	98 99	45 45
					16	7 9	94	96	39
6	III. 1570	o		90	17	80	84	99	47
					16	79	83	98	47
8	U.S. 13			88 88	$\frac{16}{17}$	81 78	83 80	98 99	50 48
10	Mo. 40	41 W		88	18	77	80	99	49
11	AES 80	2		87	16	80	90	88	43
12	Ill. 1759	9		87	17	78	83	98	45
					15 16	82 82	90 89	99 98	44 46
	Ohio 48	308		86	17	80	92	98	40
					16	79	87	98	46
	III. 176'	7		82	17	80	86	99	45
		35		81	16	79	90	97	40
18	AES 80	5		70	1.77	90	00	0.5	40
18	AES 80	lā		79	17 16	80 80	92 87	95 98	42 45

(Table is continued on next page)

Table 6. — Continued

Rank in yield	Entry	Acre yield	Mois- ture in grain	Shelling	Erect plants	Stand	Ear heigh
	D — 7	Swo-year averag	ges, 195	3-1954			
		bu.	perct.	perct.	perct.	perct.	in.
1 II	ll. 1896	92	16	82	82	98	42
2 II	ll. 1511	90	17	83	84	98	47
	l. 1421		17	82	78	98	42
	1. 1332		15	82	88	98	46
5 11	11. 1777	87	17	81	85	100	45
6 II	ll. 1570		17	81	77	98	47
	S. 13		16	82	80	98	48
	ll. 972A-1		16	79	76	98	46
	Io. 4041W		17	7 9	76	98	48
10 A	ES 802	80	16	80	88	88	42
11 A	ES 801	80	16	78	91	95	39
	ll. 1788		17	80	72	98	46
13 Il	1. 21		16	82	86	98	46
14 O	hio 4808		16	80	89	98	38
15 Il	ll. 1813	78	17	81	90	96	40
16 II	ll. 1890		16	79	90	100	42
	ll. 1759		16	78	76	98	44
18 II	11. 274-1		16	82	85	100	44
19 II	II. 1767		16	82	80	99	45
20 II	ll. 1764	72	16	78	84	97	46
21 A	ES 803	71	16	80	88	96	38
22 II	ll. 1880	70	15	82	85	95	42
23 II	11. 6075	68	16	82	67	96	39
24 A	ES 805	68	17	80	90	94	40
25 II	ll. 1884	67	16	76	90	96	43
26 II	ll. 1877	66	16	78	96	98	38
	ll. 1876		16	77	88	96	44
	ll. 1889	62	18	76	96	98	44
	Average		16	80	84	97	43

(Table is concluded on next page)

Table 6. — Concluded

Ran in yiel	Entry	Acre yield	Mois- ture in grain	Shelling	Erect plants	Stand	Ear height	Dropped ears	Smutted plants
		E —	1954 re	sults (4	repli	cations))		
1 2 3 4 5	Ill. 1511 Tenn. 3473 Ill. 1896 Ill. 1913 Ill. 1919	bu. 99 98 97 96 94	perct. 18 21 17 18 16	984 83 83 84 83	perct. 86 79 90 93 90	98 98 97 95 97	in. 42 40 38 38 38	perct. 5.4 0 11.8 4.0 1.3	perct. 9.4 7.0 3.8 4.0 7.7
6 7 8 9 10	III. 1911 III. 1777 U.S. 13 AES 806 III. 1570	94 92 91 91 91	17 18 16 19	82 81 82 83 81	89 91 86 86 85	99 100 97 99	40 40 42 35 40	6.9 3.8 5.3 7.6 10.5	2.5 5.7 5.2 6.3 9.4
11 12 13 14 15	Ill. 1332 Ill. 1918 Mo. 4041W Ind. 2609 Ill. 1908	90 88 87 87 86	17 17 19 16 17	83 79 80 81 84	90 87 92 83 96	97 · 100 100 99 93	40 39 40 37 39	1.9 4.7 5.6 4.3 3.7	5.8 2.5 5.7 6.3
16 17 18 19 20	Ill. 1915 Ill. 1906 Ill. 1914 Ill. 1421 Ind. 9502	86 85 85 85 85	17 17 18 18 19	79 80 80 81 80	89 78 88 87 96	97 96 99 99	39 37 40 38 34	2.1 8.8 2.6 2.0 .7	0 5.8 2.5 7.6 3.8
21 22 23 24 25	Ill. 1909 Ill. 972A-1 Ill. 1788 Ill. 1916 AES 801	84 84 83 83 83	17 17 18 17	82 76 79 82 76	90 80 87 88 94	97 98 98 96 97	41 40 38 39 34	$3.3 \\ 0 \\ 4.2 \\ 3.5 \\ 1.9$	7.1 1.3 5.1 13.1 4.5
26 27 28 29 30	Ill. 6021 Ill. 21 Ill. 1904 Ill. 1917 Ill. 1910	82 81 79 79 77	18 18 16 17	80 82 78 81 84	75 96 88 76 90	94 99 94 97 99	45 41 39 37 37	4.4 9.9 4.2 2.6 4.7	4.0 13.3 8.7 7.0 13.3
31 32 33 34 35	Ill. 1912 AES 802 Ill. 274-1 Ill. 1905 Ill. 1759	76 76 76 75 74	17 17 17 17 17	80 77 81 76 78	94 97 95 91 83	97 80 100 99 97	37 38 37 38 38	3.6 5.3 .7 3.7 2.9	9.6 16.4 5.0 6.3 3.8
36 37 38 39 40	Ill. 1813 Ill. 1890 Ill. 1767 Ill. 6075 Ohio 4808	73 71 71 71 69	18 18 18 18	80 78 81 82 79	91 94 87 70 91	100 100 99 100 98	36 38 40 35 35	$4.2 \\ .6 \\ 4.5 \\ 7.4 \\ 0$	10.6 21.7 18.9 5.7 10.1
41 42 43 44 45	Iowa 4615 AES 803 Ill. 1764 Ill. 1880 AES 805	69 68 66 63 58	17 17 16 16 18	79 78 76 81 79	96 93 90 86 97	97 99 95 98 90	40 36 40 37 35	.7 5.0 1.5 5.1 .6	10.8 20.8 14.4 5.7 17.7
46 47 48 49	Ill. 1884 Ill. 1876 Ill. 1877 Ill. 1889 Average	54 51 50 46 79	18 19 19 20 18	71 73 74 73 80	93 92 99 99	97 94 98 97 97	38 37 35 36 38	7.4 4.8 9.7 2.7 4.1	19.2 28.9 25.3 24.0 9.3
	Significant difference	16	••	••	8	6	3		

Table 7.—SINGLE AND DOUBLE CROSSES OF U. S. 13 MATURITY

Tested in Central Illinois, 1954

(Entries in boldface were average or better in yield and standability and average or earlier in maturity)

Code	Entry	Acre yield	Mois- ture in grain	Shelling	Erect plants	Stand	Ear height	Dropped ears	Smuttee
A — Single crosses									
3 1	R71×R98. R71×R105. R71×R113. R98×R105. R98×R113.	. 61	perct. 18 21 17 19 17	perct. 84 80 78 81	perct. 97 97 97 97 97 95	perct. 100 100 100 100 100 94	in. 38 37 34 44 41	pcrct. 1.4 0 0 0	perct. 0 0 0 10.0 6.2
7] 8] 9]	R105×R113 R71×R130 R98×R130 R105×R130 R113×R130	. 95 . 111 . 83	18 16 17 21 16	77 84 83 79 79	96 91 83 90 81	88 100 99 97 100	40 45 50 46 44	$\begin{array}{c} 0 \\ 4.7 \\ 0 \\ 1.8 \\ 2.6 \end{array}$	$\begin{array}{c} 0 \\ 1.7 \\ 4.2 \\ .8 \\ 0 \end{array}$
12 I 13 I 14 I	R71×R151 R98×R151 R105×R151 R113×R151 R130×R151	. 86 . 92 . 77	18 17 22 16 17	82 84 80 82 85	94 92 94 92 86	100 98 100 99 99	39 43 43 43 46	$ \begin{array}{c} 1.8 \\ 0 \\ 5.6 \\ 5.0 \\ 0 \end{array} $	$0 \\ 11.9 \\ 2.5 \\ 0 \\ .8$
$egin{array}{cccc} 17 & 1 \ 18 & 1 \ 19 & 1 \end{array}$	R71×R153	. 94 . 99 . 81	17 20 20 17 18	83 82 80 80 82	99 90 100 96 80	100 99 99 100 100	37 43 39 37 45	.5 0 .8 0	$2.5 \\ 0 \\ 0 \\ 1.7$
22] 23] 24]	R151×R153 R71×R154 R98×R154 R105×R154 R113×R154	. 81 . 95 . 101	18 17 16 18 15	81 84 86 85 84	79 94 72 93 76	99 100 96 99 98	43 37 46 42 38	1.5 1.6 0 .9	$\begin{array}{c} .8 \\ 0 \\ 1.7 \\ 0 \\ 0 \end{array}$
27 28 29	R130×R154 R151×R154 R153×R154 R71×R155	. 99 . 96 . 85	15 16 17 17 16	86 87 88 83 83	77 91 78 95 73	100 99 98 100 100	49 43 42 40 45	$\begin{array}{c} 1.7 \\ 2.8 \\ 0 \\ 0 \\ 0 \end{array}$	1.7 .8 0 .8
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	R105×R155 R113×R155 R130×R155 R151×R155 R153×R155	. 72 . 105 . 88	20 16 16 18 19	82 81 84 83 81	93 97 88 91 79	99 98 100 100 100	42 40 46 45 44	$\begin{smallmatrix} 0 & 0 & \\ 0 & 2.5 & \\ 2.5 & 0 & \end{smallmatrix}$.8 0 0 0
37 38 39	R154×R155 R71×R156 R98×R156 R105×R156 R113×R156	. 90 . 81 . 75	16 19 17 22 17	85 85 78 78 77	75 98 90 100 93	99 99 100 100 97	43 37 43 38 35	.9 .8 0 0	$\begin{array}{c} 0 \\ .8 \\ 14.2 \\ 3.3 \\ 5.1 \end{array}$
12] 13] 14]	R130×R156 R151×R156 R153×R156 R154×R156 R155×R156 Average	. 90 . 75 . 92 . 80	18 18 20 17 17	81 85 79 83 84 82	98 89 97 83 76 89	99 100 99 100 100	45 39 36 42 40 42	1.0 0 .8 1.7 1.7	.8 6.7 3.4 .8 2.5
			B — 1	Double	crosse	s			
]	III. 6021 U.S. 13 III. 6016 AES 805 Average	. 87 . 84 . 74	16 17 16 16	81 82 84 77 81	87 91 74 94	99 99 99 100	48 42 44 38 43	8.9 4.0 3.6 5.6 5.5	8.4 12.6 17.6 20.0 14.6

Table 8. — THREE-WAY AND DOUBLE CROSSES OF U. S. 13 MATURITY

Tested in Central Illinois, 1954

(Entries in boldface were average or better in yield and standability and average or earlier in maturity)

Cod	le Entry	Acre yield	Mois- ture in grain	Shelling	Erect plants	Stand	Ear height	Dropped ears	Smutted plants
	Inbred lines crossed with (WF9 $ imes$ Hy)								
1 2 3 4 5	R95 R96 R98 R101 N5	bu. 108 99 77 82 85	perct. 17 15 17 17 18	perct. 82 80 82 80 77	perct. 71 84 82 99 76	perct. 96 98 98 98 99	in. 40 43 39 39 40	perct. 2.0 9.5 2.1 2.0 3.5	perct. 2.6 8.9 24.8 5.1 7.0
6 7 8 9 10	N12 N13 K1605 B36 Oh451	76 99 89 74 110	18 18 18 18 19	80 83 79 76 82	95 89 80 92 83	94 99 98 99	38 41 38 41 41	$\begin{array}{c} .7 \\ 4.5 \\ 0 \\ 16.9 \\ 2.6 \end{array}$	12.0 19.6 17.2 27.0 5.7
11 12	38-11 L317 Average	98 98 91	18 18 18	82 82 80	90 76 85	97 99 98	41 45 40	11.5 5.5 5.1	14.2 2.5 12.2
	Inb	red li	nes cro	ssed wi	th (W	$F9 \times 3$	8-11)		
13 14 15	R95 R96 R98	96 92 79	17 17 18	82 82 81	91 86 92	94 95 94	40 41 41	6.4 9.9 2.6	10.7 11.8 39.3
16 17 18 19 20	R101 N5 N12. N13. K1605	77 88 78 73 91	17 18 17 18 18	82 78 81 80 82	98 76 95 94 88	96 98 98 98 96	36 39 40 40 38	1.3 .7 .7 4.9 .7	12.4 9.0 28.2 49.7 29.4
21 22	L317	101 79 85	17 18 18	82 83 81	89 87 90	94 79 94	46 40 40	10.9 7.9 4.6	$15.2 \\ 10.2 \\ 21.6$
			Do	uble cr	osses				
	AES 805. U.S. 13. Average. Significant difference	98 60 79 19	17 18 18	81 76 78	90 95 92 10	98 97 98 6	46 38 42 4	7.0 3.7 5.4	4.5 31.6 18.0

Table 9.— UNIFORM TEST OF BLIGHT-RESISTANT THREE-WAY CROSSES AND STANDARDS OF U. S. 13 MATURITY

Tested in Central Illinois, 1954

(Entries in **boldface** were average or better in yield and standability and average or earlier in maturity)

Code	Entry		Mois- ture in grain	Shelling	Erect plants	Stand	Ear height	Dropped ears	Smutted plants
	A —	Inbred	lines	crossed	on (WF9×	38-11)	_	
		bu.	perct.	perct.	perct.	pcrct.	in.	perct.	perct.
1	Hy		16	83	92	95	42	11.7	13.0
2 3	CI.42A		17 16	85 85	88 71	96 90	45 47	$\frac{9.8}{8.6}$	$\frac{7.3}{4.3}$
4	CI.42C		16	82	83	94	42	5.8	$\frac{4.3}{22.5}$
5	$Hy(Mo.21A)B \times$			0.4	00	0.0	4.5		
	1-S6 AJU 13700	102	17	84	98	96	45	7.5	4.1
6	Hy(Mo.21A)BX	111	16	84	87	97	46	6.7	5.6
7	2-S4 AJU 13706 Hy(Mo.21A)BX	111	10	0.1	01	91	40	0.7	5.0
0	2-S4 AJU 13711		17	85	91	86	44	6.9	10.0
8	L317		16 18	83 78	83 90	96 88	$\frac{48}{49}$	$\substack{15.7\\7.3}$	$\frac{8.1}{14.3}$
10	CI.317B		18	80	94	98	50	.8	12.6
11	(L317×L97)-B-#3-S4	96	18	82	92	92	48	3.6	6.7
12	$(L317 \times L97) - B - \#3 - S6$	98	19	80	96	96	47	6.4	6.4
13 14	(L317×L97)-B-#3-S9 (L317×L97)-B-#3-S10	101	18 18	80 80	82 89	97 94	$\frac{49}{47}$	$\frac{5.5}{10.5}$	$\substack{11.9\\5.0}$
15	L317(Mo.21A)B×								
	1-S6 AJU 13676	98	17	82	84	92	48	5.0	6.8
16	$L317(Mo.21A)B \times$								
17	1-S6 AJU 13683 L317(Mo.21A)B×	103	17	81	86	99	45	15.8	8.6
14	2-S4 AJU 13688-8	96	17	82	76	93	45	7.5	1.7
18	L317(Mo.21A)B×	94	18	82	89	87	45	9.5	4.5
19	2-S4 AJU 13688-13 Os 420	80	16	81	88	95	35	8.0	12.2
20	$(Os420 \times NC34)$ -B-	00	1.0	00	0.0	100	4.0	10.8	36,2
	#4-S2-1	. 88	16	82	92	100	46	10.8	30.2
21	(Os420×NC34)-B-	0.77	100	82	94	98	43	22.3	11.8
22	#4-S9-(x)	. 97	17	84	94	90	40	44.0	11.0
	#4-S12-(x)	. 82	17	83	98	96	39	17.9	12.8
	Average	. 98	17	82	88	94	45	9.3	10.3
	В —	- Inbred	l lines	crosse	d on	(Hy \times	L317)		
23	WF9	110	17	85	84	99	46	8.3	4.6
24	CI.29A	103	17	84	71	97	45	8.9	7.9
25	CI.29B	. 113	16	82	84	100	50	5.8	0
$\frac{26}{27}$	CI.29C(WF9×NC34)-B-	109	16	82	86	98	49	14.2	3.1
	#3-S8-3-1	101	18	80	75	99	46	3.0	3.1
28	(WF9×NC34)-B- #3-S10-1-1	105	18	81	79	92	48	1.7	0
29	38-11	97	17	82	88	98	48	9.5	9.4
30	CI.38A		18	82	83	99	49	21.0	8.5
31	CI.38B	. 111	18	81	87	99	53	11.7	9.4
32	$(38-11 \times NC34)-B-$		19	79	78	97	52	8.3	14.4
	#3-S2-1-2-(x)	. 99	19	18	10	91	02	0.0	A T. T

(Table is concluded on next page)

Table 9. — Concluded

[January,

Cod	e Entry	Acre yield	Mois- ture in grain	Shelling	Erect plants	Stand	Ear height	Dropped ears	Smutted
	B — Inbr	ed line	s cross	ed on	(Hy×	L317)	(conclu	ıded)	
33	(38-11×NC34)-B- #3-S4-2-1	109	18	83	83	98	50	6.7	3.1
34	(38-11×NC34)-B-	. 102	10	99	99	90	30	0.7	0.1
0.4	#3-S7-1-1	. 101	18	79	75	99	50	10.8	4.6
35	38-11(Mo.21A)B× 1-S6 AJU 13734	. 103	17	83	89	99	48	8.3	10.1
36	38-11(Mo.21A)B×								
	1-S2-#3-S1 AJU 13755	. 118	17	84	91	96	49	7.0	3.2
	Average	. 105	17	82	82	98	49	8.9	5.8
			C-	— Stand	dards				
	Hy×L317 WF9×38-11	. 119	18 17	83	72 97	94	51	3.3	.8
	U.S. 13	. 99	17	84 82	97 92	98 95	38 44	$\frac{25.0}{10.0}$	$\frac{43.8}{10.6}$
	AES 805	. 79	17	81	99	. 99	38	4.3	24.0
	Average	. 97	17	82	90	96	43	10.6	19.8
	Significant difference	ee 12			11	9	4		

Table 10. — DOUBLE CROSSES OF ILLINOIS 448 MATURITY Tested in South-Central Illinois, 1950-1954

(Entries in boldface were average or better in yield and standability and average or earlier in maturity)

	and average or	2armer	ın matur	ity)			
Ran in yield	Entry	Acre yield	Mois- ture in grain	Shelling	Erect plants	Stand	Ear height
	A — Five-year a	everag	es, 1950	0-1954			
1 2 3 4 5	Ill. 1657. Ill. 1539A U.S. 13 Ill. 1349 Ill. 1332	76	perct. 21 19 17 18 17	90 79 81 81 82	perct. 74 85 73 83 85	perct. 99 99 99 98 98	in. 46 45 44 46 40
6 7 8 9 10	Ill. 2214W Ill. 2235W Ill. 1570 Ill. 200 Mo. 804 Average	75 75 74 71 70 75	20 21 17 18 19	79 79 80 80 77 80	78 89 80 73 78	98 99 99 99 93	45 45 39 45 49
	B — Four-year	averag	es, 195	1-1954			
1 2 3 4 5	Ill. 1657 Mo. 862 Ill. 1332 Ill. 1570 U.S. 13	72 72 70 70 69	20 22 16 16 16	80 76 83 80 82	74 80 86 80 75	99 100 99 100 99	45 45 38 38 41
6 7 8 9 10	III. 1656. III. 1349. III. 1539A. III. 1771. III. 2235W.	69 69 69 68 68	17 18 18 19 21	82 81 79 78 78	83 88 85 91 88	99 99 100 98 99	38 44 44 44 44
11 12 13 14	III. 1788. III. 2214W. III. 200. Mo. 804. Average	67 67 63 62 68	16 18 18 18	79 78 79 76 79	78 79 73 79 81	99 99 99 98 99	40 43 42 48 42
	C — Three-year	avera	ges, 195	62-1954			
1 2 3 4 5	U.S. 13 Ill. 1570. Ill. 1656. Ill. 1859. Ill. 1851.	62	14 15 16 16 17	82 80 82 80 79	77 78 83 79 80	99 100 100 100 100	42 38 39 42 45
6 7 8 9 10	Ill. 1857. Ill. 1511. Ill. 1332. Ill. 1856. Mo. 862.	61 60 60 60 59	19 14 16 19 20	77 83 82 79 75	84 74 82 77 79	99 98 99 100 99	44 40 39 42 45
11 12 13 14 15	Ill. 1788. Ill. 1349. AES 805. Ill. 1657. Ill. 1852.	57 57	16 17 16 20 17	78 81 80 79 75	75 88 88 69 80	99 99 99 98 100	41 45 38 43 43
16 17 18 19 20	Ill. 1539A Ill. 1849. Ill. 1771. Ill. 2235W Ill. 200.	56 55 55	18 19 19 21 16	78 75 76 77 77	86 90 89 88 71	100 99 97 99	43 41 42 44 44
$\frac{21}{22}$ $\frac{23}{23}$	Ill. 1850. Mo. 804. Ill. 2214W.	54 50 48	19 17 17	75 75 76	87 79 75	99 99 99	42 48 41

Average..... 58

78

17

81

99

42

Table 10. — Continued

Ran in yield	Entry	Acre yield	Mois- ture in grain	Shelling	Erect plants	Stand	Ear height	Leaf firing ^a	Dropped ears
		D —	Two-ye	ar aver	ages,	1953-195	54		
1 2 3 4 5	III. 1897. III. 1570 III. 1859 III. 1896 III. 2246W	bu. 52 52 51 50 50	perct. 14 14 14 14 14 14	90 79 80 84 80	perct. 74 71 76 75 82	perct. 100 100 100 98 100	in. 38 38 41 37 38	grade	perct.
6 7 8 9 10	III. 1332 U.S. 13 III. 1656 III. 1511 III. 6076	49 49 48	16 14 16 14 14	82 81 80 83 82	80 70 79 73 60	99 100 100 97 99	37 41 39 38 38		
11 12 13 14 15	III. 1851 III. 1788 III. 1857 AES 805 III. 1349	48 48 46	16 16 18 14 16	80 78 78 80 78	75 72 80 86 86	100 98 98 99 100	43 40 42 36 43		
16 17 18 19 20	III. 1893. III. 1856. Mo. 862. III. 6075. III. 200.	44 44 43	16 18 18 14 16	76 79 74 80 76	86 76 76 62 70	98 99 100 100 99	40 40 42 36 42		
21 22 23 24 25	Ill. 1852 Ill. 1539A Ill. 1657 Ill. 6102 Ill. 1849	41 41 40	17 16 19 16 18	74 78 78 73 74	78 80 64 60 90	100 100 98 100 98	42 40 41 38 40		
26 27 28 29 30	III. 1771 III. 2235W III. 1850 Mo. 804 III. 6079	. 36 . 35	18 20 18 17 16	74 76 74 74 78	87 88 86 76 58	96 99 98 98	40 41 40 46 38		
31	Ill. 2214W		16 16	74 78	67 76	100 99	39 40		
		E —	-1954 re	esults (4 repli	cations)		
1 2 3 4 5	III. 1851 III. 1857 III. 1788 III. 1656 III. 1332	. 51 . 49 . 49	15 17 15 16 15	80 80 79 80 82	52 69 54 60 63	100 99 100 100 100	32 32 29 28 28	1.5 1.2 2.2 1.0 1.5	0 4.2 .8 1.7
6 7 8 9 10	III. 1859. III. 1570. III. 1657. Mo. 862. III. 1539A.	. 49 . 49 . 48	15 14 18 17 16	79 79 82 76 79	56 46 36 63 67	100 100 99 100 100	31 27 32 34 29	$ \begin{array}{c} 2.2 \\ 1.5 \\ 1.2 \\ 1.0 \\ 1.5 \end{array} $	1.8 0 0 .9
11 12 13 14 15	Ill. 1856 Mo. 8010W Ill. 1852 Ill. 1909 Ill. 2246W	. 47	16 18 16 15	82 77 77 81 79	59 54 61 50 65	98 100 100 100 99	31 32 32 29 29	1.8 1.0 1.8 2.0 3.0	$2.5 \\ .7 \\ 0 \\ 2.6 \\ 4.2$
16 17 18 19 20	III. 1349 III. 1893 Mo. 804 III. 1771 AES 805	. 47 . 46 . 46	16 15 16 16 15	78 75 77 80 79	81 72 58 76 73	99 100 100 92 98	34 31 35 30 27	1.0 1.5 1.0 1.5 2.0	1.0 .9 1.7 0

^a Grade 1 is most resistant; grade 4 is most susceptible to high temperature. (Table is concluded on next page)

Table 10. - Concluded

Ran in yield	Entry	Acre yield	Mois- ture in grain	Shelling	Erect plants	Stand	Ear height	Leaf firing ^a	Dropped ears
		E	— 1954	results	(concl	uded)			
21 22 23 24 25	Ill. 1918. Ill. 1914. U.S. 13 Tenn. 3744. Ill. 1896.	. 46 . 46 . 45	perct. 15 16 15 16 15 16	perct. 80 80 79 74 81	perct. 52 66 47 28 59	perct. 100 100 100 100 98	in. 29 28 30 26 27	grade. 2.8 2.8 2.0 1.5 3.2	perct. 1.6 .8 1.6 2.5 1.9
26 27 28 29 30	Ill. 1904 Ill. 1897 Ill. 2235W Ill. 200 Ill. 1919	45 45 45	15 15 19 16 14	77 77 76 78 77	47 50 75 44 63	100 100 100 100 100	27 27 31 31 27	$2.2 \\ 3.0 \\ 2.5 \\ 2.0 \\ 2.8$	0 .8 3.6 0 .8
31 32 33 34 35	Ill. 1849 Ill. 1850 Ill. 6076 Ill. 1916 Ill. 1911	. 44 . 44 . 44	17 16 14 14 17	80 79 79 80 78	82 74 35 57 57	99 100 98 99 100	31 31 28 28 31	2.0 2.0 2.2 2.5 1.8	$5.6 \\ .9 \\ 2.5 \\ 1.8 \\ 0$
36 37 38 39 40	Ill. 1912 Ill. 1511 Ill. 1910 Ill. 1905 Ill. 1906	43 43 43	14 14 16 14 15	80 81 83 76 78	58 51 50 54 44	99 100 99 100 100	25 29 26 28 26	$3.8 \\ 2.2 \\ 4.0 \\ 2.5 \\ 2.2$	$\begin{array}{c} .9 \\ 2.6 \\ 0 \\ 1.6 \\ 3.2 \end{array}$
41 42 43 44 45	AES 903W. Ill. 1913. Ill. 1908. Ill. 1917. Ill. 1915.	42 40 39	16 14 15 16 15	74 81 79 78 78	66 42 53 50 56	100 100 100 99 100	27 25 27 28 27	$\begin{array}{c} 2.2 \\ 4.0 \\ 4.0 \\ 4.0 \\ 3.8 \end{array}$	$2.5 \\ 2.5 \\ 1.7 \\ 4.0 \\ .8$
46 47 48 49	Ill. 6102. Ill. 6075. Ill. 6079. Ill. 2214W. Average. Significant difference	39 33 30 45	15 15 16 14 16	75 78 78 73 79	29 29 38 36 55 18	100 100 99 100 99	29 26 27 28 29 3	2.5 3.5 2.0 3.0 2.3 1.1	4.5 1.7 .8 1.7 1.6

a Grade 1 is most resistant; grade 4 is most susceptible to high temperature.

Table 11. — THREE-WAY AND DOUBLE CROSSES OF ILLINOIS 448 MATURITY

Tested in South-Central Illinois, 1954

(Entries in boldface were average or better in yield and standability and average or earlier in maturity)

Code	e Entry	Acre vield	Mois- ture in	Shell-	Erect	Stand	Ear height	Leaf firinga	Dropped ears
		31010	grain		Pictrico				
	A -	- Th	ree-wa	y cro	sses				
		bu.	perct.	perct.	perct.	perct.	in.	grade	perct.
1	(K201×38-11)×B1A	38	18	81	57	100	32	2.0	1.7
10	$(K201 \times 38-11) \times B18$	43	17	82	65	100	33	1.2	1.8
11	(K201×38-11)×Kys	39	19	77	42	100	37	1.0	. 8
14	(K201×38-11)×K4	46	18	80	47	98	35	1.0	0
18	(K201×38-11)×Ky36-11	48	19	81	72	100	35	2.2	1.7
56	(K201×38-11)×Ky106	47	16	80	65	100	35	1.0	0
20	(K201×38-11)×Ky118		19	78	67	99	34	1.0	. 9
21	(K201×38-11)×Ky120	42	19	79	78	100	33	1.2	2.6
19	(K201×38-11)×Ky126	53	19	84	80	99	36	2.0	.8
28	(K201×38-11)×N5	36	18	82	39	100	34	1.0	0

^a Grade 1 is most resistant; grade 4 is most susceptible to high temperature.

(Table is concluded on next page)

Table 11. — Concluded

Code	Entry	Acr yiel		Shell- ing	Erect plants	Stand	Ear height	Leaf firing ^a	Droppe ears
	Α	Three-w	ay cros	ses (d	onclu	ided)			
30 (K20 31 (K20 55 (K20	1×38-11)×N9 1×38-11)×N10 1×38-11)×N15 1×38-11)×Oh7B. 1×38-11)×Oh401		16 16 22 17	90 80 82 83 84 80	perct. 62 83 49 89 65	perct. 100 100 99 100 99	in. 33 28 29 33 30	grade 1.5 2.0 1.2 2.0 2.5	perct. 0 0 1.7 0 .9
9 (K20 6 (K20	1×38-11)×Oh443 1×38-11)×Ok11. 1×38-11)×Ok12. 1×38-11)×Ok15. 1×38-11)×Ok19.		18 17 18	80 82 78 80 79	57 76 40 34 80	100 100 100 99 99	36 30 34 34 33	1.8 1.5 2.8 2.5 2.2	$ \begin{array}{c} 0 \\ 1.7 \\ .8 \\ 10.8 \\ .9 \end{array} $
8 (K20 2 (K20 3 (K20 15 (K20 4 (K20	1×38-11)×0k22. 1×38-11)×CI.7 1×38-11)×CI.7A. 1×38-11)×CI.21E 1×38-11)×CI.31.		$ \begin{array}{c} 20 \\ 18 \\ 17 \end{array} $	79 83 79 80 84	70 72 56 81 39	99 100 99 100 100	32 36 32 33 34	$ \begin{array}{c} 2.2 \\ 1.0 \\ 1.5 \\ 1.0 \\ 1.2 \end{array} $	1.9 0 0 0
35 (K20 36 (K20	1×38-11)×Kans. 1×38-11)×Kans. 1×38-11)×Kans. 1×38-11)×Kans. 1×38-11)×Kans.	52:134944 $52:135141$	17 17 17	82 84 82 85 81	64 58 62 42 72	100 100 100 100 99	32 29 30 28 26	2.8 1.8 2.0 3.5 3.8	$2.5 \\ 0 \\ .9 \\ 2.5 \\ 1.7$
39 (K20 40 (K20 41 (K20 42 (K20 43 (K20	1×38-11)×Kans. 1×38-11)×Kans. 1×38-11)×Kans. 1×38-11)×Kans. 1×38-11)×Kans.	52:1367 . 43 52:1385 . 37 52:1391 . 41 52:1394 . 43 52:1409 . 44	18 16 16	82 75 80 78 82	68 72 60 66 60	100 100 99 99 100	32 33 32 32 35	2.2 1.0 2.2 2.8 1.0	$\begin{smallmatrix}0\\0\\0\\1.7\\0\end{smallmatrix}$
44 (K20 45 (K20 46 (K20 47 (K20 48 (K20	1×38-11)×Kans. 1×38-11)×Kans. 1×38-11)×Kans. 1×38-11)×Kans. 1×38-11)×Kans.	52:1411 . 43 52:1412 . 49 52:1421 . 45 52:1430 . 44 52:1493 . 45	18 23 17	79 82 80 82 80	82 36 25 62 85	100 100 98 100 99	31 36 36 32 31	1.5 1.8 1.0 3.5 1.5	.8 0 .9 .9 2.8
49 (K20 22 (K20	1×38-11)×Kans. 1×38-11)×Ky52:1 1×38-11)×Ky52:1 1×38-11)×Ky52:1 1×38-11)×Ky52:1	50:1109 45 30 44	15 17 18	82 83 82 74 80	96 97 62 84 74	97 100 98 99 99	32 30 36 34 31	2.5 4.0 1.0 2.2 1.5	.8 5.0 0 0
97 - (K90	1 × 38-11) × Ky52:1 1 × 38-11) × Ky52:1 1 × 38-11) × N4755: 1 × 38-11) × N4758' 1 × 38-11) × N4790	40 40	19 18 16	84 80 76 77 81	54 93 92 70 63	100 98 99 98 98	30 26 35 34 31	3.0 2.0 2.5 3.5 2.0	1.7 1.8 2.5 2.9 3.3
33 (K20 54 (K20 50 (K20 53 (K20 52 (K20	11×38-11)×N8248 11R×38-11)×Kys. 11R×38-11)×K4. 11R×38-11)×Ky36 11R×38-11)×C1.7	1	17 19 21	79 80 82 79 81	98 22 46 55 78	100 99 98 99 100	34 32 37 36 35	1.0 1.0 1.0 1.0	$3.6 \\ 0 \\ 0 \\ 4.3 \\ 2.7$
	1R×38-11)×CI.2			82 81	58 65	100 99	32 33	1.0 1.8	0 1.3
		В-	Double	cross	es				
K183 Ill. 1	852. 805. 00. 850. erage. gnificant difference		15 16 18 17	82 80 80 80 80	75 57 52 85 67 20	100 100 100 99 100 2	34 31 34 33 33	1.5 1.5 1.2 2.2 1.6	1.7 1.7 1.8 1.3

^a Grade 1 is most resistant; grade 4 is most susceptible to high temperature.

Table 12. — DOUBLE-CROSS HYBRID NUMBERS, PEDIGREES, AND INDEX TO TABLES

Hybrid	Pedigree	Performance given in Table No.
Illinois hybrids		
21	(Hy2 \times 187-2) (WF9 \times 38-11)	2ABCDE, 6ACDE
101	$(M14 \times WF9) (187-2 \times W26) \dots$	
	\dots (WF9 \times 38-11) (L317 \times K4) \dots	
	\dots (Hy2 × WF9) (Oh7 × 187-2)	
	\dots (Hy2 × L317) (WF9 × Oh7)	
	(Hy2 \times 187-2) (M14 \times WF9)	
1277	(M14 × WF9) (I.205 × 187-2)	2ABCDE, 4ABCDE
	$(M14 \times WF9) (A375 \times 187-2)$	
	$(M14 \times WF9) (Os420 \times 187-2)$	
	\dots (M14 × WF9) (A374 × A375)	
	(M14 × W22) (WF9 × I.205)	
	(M14 \times 187-2) (WF9 \times I.205)	
	$(Hy2 \times Oh7) (WF9 \times 38-11) \dots$	
1002	(11,12)(011)(1110)(00 11)	10ABCDE
1349	(38-11 \times Mo940) (K155 \times K201)	
	\dots (M14 × WF9) (N6 × Oh51A)	
	$(Hy2 \times WF9)$ (P8 × Oh7)	
1403	(WF9 × I.205) (Oh28 × W22) $$	PRODE
1511	\dots (WF9 \times 1.269) (Oh26 \times W22) \dots (Hy2 \times WF9) (38-11 \times L304A) \dots	ARCDE 6ARCDE
1011	(11y2 × 1119) (50-11 × 1504A)	10CDE
1530Δ	(38-11 × CI.7) (K201 × CI.21E)	
	$(WF9 \times Oh51A) (I.224 \times Oh28) \dots$	
	\dots (M14 × Oh28) (I.205 × Oh51A) \dots	
	\dots (M14 × WF9) (I.205 × Oh28) \dots	
	\dots (M14 × W19) (1.265 × Oh26) \dots (M14 × Oh28) (WF9 × Oh51A) \dots	
	\dots (WF9 × Oh51A) (I.205 × Oh28) \dots	
1500A	\dots (WF9 \times Oh31A) (1.203 \times Oh23) \dots (Hy2 \times Oh41) (WF9 \times 38-11) \dots	ARCDE SARCDE
1070	(11y2 × Oh41) (WF9 × 55-11)	10ABCDE
1575	\dots (M14 × WF9) (L12 × Oh28) \dots	
	\dots (M14 × WF9) (L12 × Oh28) \dots (M14 × Oh43) (A73 × Oh5) \dots	
	\dots (M14 × Class) (A75 × Class) \dots (M14 × L289) (Oh5 × Oh43) \dots	
	$(WF9 \times I.205) (0.65 \times 0.445)$	
	\dots (WF9 × B10) (Oh7 × Oh41)	
	\dots (C103 × Hy2) (WF9 × 38-11) \dots	
1750	\dots (K4 × Oh7) (K201 × CI.21E) \dots	UABCDE
1759	\dots (WF9 \times 38-11) (Oh4C \times Oh45) \dots	BCDE
	\dots (WF9 \times 38-11) (Oh29 \times Oh45) \dots	
	\dots (Hy2 × WF9) (38-11 × J47)	
	\dots (Hy2 × Oh45) (WF9 × 38-11)	
	\dots (Oh7B × CI.7) (T8 × CI.21E) \dots	
1777	\dots (Hy2 × WF9) (R114 × R116) \dots	6BCDE
	\dots (WF9 \times 38-11) (Oh41 \times CI.21E) \dots	
	\dots (M14 × WF9) (B8 × Oh51A) \dots	
1800	\dots (M14 × WF9) (A73 × A295) \dots	2CDE, 3B

(Table is continued on next page)

Table 12 — Continued

Hybrid	Pedigree	Performance given in Table No.
Illinois hybrids	(continued)	
	$\dots \dots (M14 \times WF9) (A295 \times Oh51A) \dots$	
	$\dots \dots (C103 \times Oh45) (Hy2 \times WF9) \dots$	
	\dots (Hy2 × WF9) (M14 × Oh45)	
	$(R2 \times WF9) (R61 \times Oh43) \dots$	
	$(WF9 \times B35) (K237 \times Oh45) \dots$	
	$\dots \dots (WF9 \times W146) (K237 \times Oh45) \dots$	
1849	(C103 \times 38-11) (K201 \times CI.21E)	10CDE
1850	(C103 \times CI.21E) (38-11 \times K201)	10CDE, 11B
	\dots (C103 × 38-11) (Oh7 × CI.21E)	
1852	\dots (C103 × CI.21E) (38-11 × Oh7)	10CDE , 11 B
	$\dots (38-11 \times \text{Oh7}) \text{ (K201} \times \text{CI.21E)} \dots$	
1857	$\dots (38-11 \times \text{Oh}41) \text{ (K201} \times \text{CI.21E)}\dots$	10CDE
1859	$\dots (38-11 \times \text{Oh7}) \text{ (Oh41} \times \text{CI.21E)} \dots$	10CDE
1861	$\dots \dots (M14 \times WF9) (I.224 \times Oh28) \dots$	2DE
1862	$\dots \dots (M14 \times WF9) (Oh43 \times Oh51A) \dots$	
1863	$\dots \dots (M14 \times WF9) (I.205 \times Oh43) \dots$	2DE, 3B, 4DE
1864	$\dots \dots (M14 \times WF9) (Oh43 \times W22) \dots$	2DE, 4DE
1865	$\dots \dots (M14 \times WF9) (Oh5 \times Oh43) \dots$	2DE
	$\dots \dots (M14 \times WF9) (Oh26A \times Oh45) \dots$	
1868	\dots (C103 × Oh43) (Hy2 × WF9)	4DE
1873	\dots (C103 × M14) (R75 × Oh43)	4DE
1875	\dots (C103 × 38-11) (Hy2 × WF9)	4DE
1876	\dots (R97 × R98) (WF9 × 38-11)	6DE
1877	(R99 \times R100) (WF9 \times 38-11)	6DE
1880	(R103 \times R104) (WF9 \times 38-11)	6DE
1884	(C103 \times R100) (WF9 \times 38-11)	6DE
1889	\dots (C103 × Oh45) (38-11 × Oh29)	6DE
1890	(C103 \times Oh45) (R75 \times 38-11)	6DE
1893	\dots (C103 × 38-11) (Oh7B × Oh29)	10DE
1896	(R138 \times R139) (R140 \times R141)	6DE, 10DE
1896A	(R139 \times R141) (R138 \times R140)	4DE
1897	\dots (R138 × R141) (R139 × R143) \dots	10DE
1902	\dots (R138 × R142) (R139 × R141) \dots	2DE
1903	\dots (M14 × WF9) (R119 × R120) \dots	2E, 4E
1904	\dots (R81 × R85) (WF9 × 38-11)	4E, 6E, 10E
1905	\dots (R81 × R120) (WF9 × 38-11)	4E, 6E, 10E
1906	\dots (Hy2 × WF9) (R81 × R119)	4E, 6E, 10E
1908	(R154 \times R155) (WF9 \times 38-11)	4E, 6E, 10E
	\dots (R130 × R151) (WF9 × 38-11)	
1910	(R154 \times R156) (WF9 \times 38-11)	4E, 6E, 10E

(Table is continued on next page)

Table 12 — Continued

Hybrid	Tybrid Pedigree	
Illinois hybrids (c	ontinued)	
	\dots (R130 × R153) (WF9 × 38-11) \dots	
1912	(R151 \times R156) (WF9 \times 38-11)	4E, 6E, 10E
1913	(R151 × R154) (WF9 × 38-11)	4E, 6E, 10E
1914	(R153 \times R155) (WF9 \times 38-11)	4E, 6E, 10E
1915	(R151 × R155) (WF9 × 38-11)	4E, 6E, 10E
1916	(R130 \times R154) (WF9 \times 38-11)	4E, 6E, 10E
1917	(R153 \times R154) (WF9 \times 38-11)	4E, 6E, 10E
1918	(R151 \times R153) (WF9 \times 38-11)	4E, 6E, 10E
1919	(R130 \times R156) (WF9 \times 38-11)	4E, 6E, 10E
	\dots (R30 × Ky27) (H21 × K64) \dots	
2235W	\dots (H21 × K64) (33-16 × Mo2RF)	10ABCDE
2246W	(R144 \times R145) (R148 \times R149)	10DE
	(R144 \times R145) (R146 \times R148)	
	(R84 \times 38-11) (R118 \times K4)	
6016	(R78 \times K4) (R84 \times 38-11)	
	\dots (R75 × R76) (R84 × K4) \dots	
	(R78 \times 38-11) (R84 \times K4)	
$6062\ldots\ldots$	\dots (R76 × K4) (R78 × R84)	
$6074\ldots$	$(R75 \times R87) (R78 \times R83) \dots$	2DE
	$(R75 \times R83) (R78 \times R87) \dots$	
	$\dots (R76 \times R78) (R87 \times R117) \dots$	
	\dots (R78 × R84) (R87 × R119) \dots	
6102	$(R75 \times R85) (R84 \times R87) \dots$	10DE
Miscellaneous hyl	orids	
AES 510	\dots (WF9 × W22) (H19 × B9)	
	\dots (M14 × A73) (Oh43 × Oh51A) \dots	
	$(0)(C103 \times M14) (Hy2 \times WF9)2B$	
AES 801	\dots (WF9 × B7) (B10 × B14) \dots	6CDE
	\dots (Hy × WF9) (38-11 × N6)	
AES 803	(WF9 \times 187-2) (N6 \times K148)	6CDE
	$(0)(C103 \times Oh45) (WF9 \times 38-11)$	
		8C, 9C, 10CDE, 11B
AES 806	\dots (Hy × WF9) (N6 × N15)	4CDE, 6E
	\dots (H28 × K55) (H30 × K41)	
Ind. 0421	\dots (M14 × WF9) (B9 × W22) \dots	2CDE
	\dots (H41 × H42) (H45 × H46) \dots	
	\dots (M14 × WF9) (K237 × Oh45)	
	\dots (WF9 \times 38-11) (H14 \times Oh43)	
	($H26 \times H27$) ($H28 \times H29$)	
	(M14 \times 187-2) (WF9 \times I.205)	
Iowa 4558	\dots (M14 × WF9) (B8 × B21) \dots	2E

(Table is concluded on next page)

Table 12. — Concluded

Hybrid	Pedigree	Performance given in Table No.	
Miscellaneous hybrid	ds (concluded)		
Iowa 4615	$(Hy \times WF9) (B14 \times B36)$	6E	
Iowa 4630	\dots (M14 × B21) (WF9 × Oh51A) \dots	2E	
I.S.P. 2	\dots (C103 × Oh45) (M14 × WF9) \dots	2CDF	
K1830	(K201 \times 38-11) (K4 \times CI.7)	11B	
Minn. 4	$(A286 \times A295) (A375 \times Oh51A)$	2E	
Minn. 40	(A73 \times A401) (A286 \times Oh51A)	2E	
Mo. 804	\dots (CI.7 × K4) (38-11 × CI.21E) \dots	10ABCDE	
Mo. 862	(K201 \times T202) (CI.21E \times Mo567)	10BCDE	
Mo. 4041W	(WhHy \times K55) (Wh38-11 \times 33-16)	6CDE	
Mo. 8010W	\dots (K64 × Mo22) (T111 × T115) \dots	10E	
Ohio M15	\dots (Oh26 × Oh51) (A × W23) \dots	2CDE	
Ohio K24	$$ (WF9 \times Oh51A) (Oh33 \times Oh40B) $$	2BCDE, 3B	
Ohio 3247	\dots (Oh43 × Oh45) (Oh51A × W22) \dots	4E	
Ohio 4808	$(Oh4C \times Oh51A) (Oh28 \times Oh45)$	6CDE	
Ohio 5305	$(A73 \times Oh5) (Oh26A \times Oh51A)$	2E	
Tenn. 3473	$\dots (M14 \times 751) (T206 \times 61.984-8) \dots$	6E	
Tenn. 3744	\dots (H21 \times K6) (T111 \times T115) \dots	10E	
	(Hy \times L317) (WF9 \times 38-11)64		
		10ABCDE	

UNIVERSITY OF ILLINOIS-URBANA

Q.630.7IL6B BULLETIN. URBANA 574-590 1954-55

C002

3 0112 019529384