Probabilités et Statistiques Projet noté

MADANI Abdenour TRIOLET Hugo

Licence 3 2021 - 2022

Table des matières

Intr	roduction	2
1.1	Objectifs	2
1.2		2
1.3	Résumé de notre approche	2
Rég	ression linéaire	2
2.1	Régression Linéaire simple	2
		3
		3
2.2	Régression linéaire et descente de gradient	4
Étu	de et manipulation de lois de probabilités	4
3.1		4
3.2		4
-		4
		4
3.4		4
0.1		4
	3.4.2 Cas de la loi exponentielle	4
Inte	ervalles de confiance	4
4.1	Fonctions	5
4.2		5
	Problème 2	6
4.3	FIODIEME 4	
4.3 4.4	Problème 3	7
4.4		
	1.1 1.2 1.3 Rég 2.1 2.2 Étu 3.1 3.2 3.3 3.4 Inte 4.1 4.2	1.2 Définitions 1.3 Résumé de notre approche Régression linéaire 2.1 Régression Linéaire simple 2.1.1 Modèle vectoriel 2.1.2 Résultats obtenus 2.2 Régression linéaire et descente de gradient Étude et manipulation de lois de probabilités 3.1 Loi Binomiale 3.2 Loi Normale univariée 3.3 Simulation de données à partir d'une loi 3.3.1 Cas de la loi normale 3.4 Estimation de densité 3.4.1 Cas de la loi normale 3.4.2 Cas de la loi exponentielle Intervalles de confiance 4.1 Fonctions 4.2 Problème 1

1 Introduction

1.1 Objectifs

Les objectifs de ce TPs sont :

- implémenter nous-mêmes plusieurs algorithmes de régression linéaire et les comparer à des fonctions issues de librairies scientifiques
- manipuler différentes lois vues en cours via leur implémentation issues de librairies scientifiques
- déterminer des intervalles de confiance et effectuer des applications sur quelques exemples

On utilisera pour ceci **Python** et les bibliothèques de fonctions : Numpy, Scipy, Matplotlib, et Statsmodels, entre autres.

1.2 Définitions

Hugo : tu peux virer ça si t'as aucune définition à mettre (tu peux la réutiliser plus bas et virer cette partie aussi)

☎ DÉFINITION

Mot défini

Définition ici

1.3 Résumé de notre approche

Nous avons 3 fichiers, 1 pour chaque TP.

Vis-à-vis du code, nous l'avons documenté à l'aide de la docstring de Python, ainsi que des commentaires normaux : les fonctions se comprennent donc naturellement grâce à ceux-ci.

2 Régression linéaire

2.1 Régression Linéaire simple

La fonction calculant la régression linéaire simple est "regression_lineaire".

Étant donné deux listes x et y de même taille, elle calcule la régression linéaire

$$y = \beta_1 \cdot x + \beta_0$$

2.1.1 Modèle vectoriel

On applique simplement la formule donnée dans le TP. La fonction calculant la régression linéaire simple est "regression_lineaire_vec".

Étant donné douv listes x et u de même taille, elle calcule la régression linéaire

Étant donné deux listes x et y de même taille, elle calcule la régression linéaire en utilisant la méthode vectorielle :

$$y = \beta_1 \cdot x + \beta_0$$

2.1.2 Résultats obtenus

Représentation graphique obtenue avec Matplotlib

En orange sont affichés les points de (x_i, y_i) , et on voit plusieurs droites superposées de couleurs différentes, quasiment indiscernables : ce sont nos deux régressions linéaires ainsi que celle de Numpy (polyfit).

Les résultats sont donc concordants : visuellement, toutes les régressions linéaires donnent le même résultat sur ce jeu de donnée.

Les coeffcients sont de mêmes très proches voire égaux.

2.2 Régression linéaire et descente de gradient

Hugo: todo

3 Étude et manipulation de lois de probabilités

3.1 Loi Binomiale

texte

Si tu veux mettre une image Hugo

3.2 Loi Normale univariée

texte

3.3 Simulation de données à partir d'une loi

texte

3.3.1 Cas de la loi normale

texte

3.4 Estimation de densité

texte

3.4.1 Cas de la loi normale

texte

3.4.2 Cas de la loi exponentielle

texte

4 Intervalles de confiance

Le but de cette partie (correspondant au fichier tp3.py) est de déterminer les intervalles de confiances de différents échantillons statistiques afin de situer, selon une certaine précision, dans quelle plage de valeurs se situe l'espérance de l'échantillon.

Dans les 2 premiers problèmes, nous ne connaissons pas la variance de l'échantillon, ainsi la fonction calculant l'intervalle de confiance des échantillons utilisera la méthode de calcul via l'écart-type empirique et le fractile t d'ordre $1-\frac{\alpha}{2}$ de la

loi de student St(n-1). Le problème 3, quant à lui, modélise un échantillon de taille n de $B(p=\frac{1}{2})$. Ainsi la variance de la loi de Bernoulli est connue et vaut p(1-p), donc dans ce cas là, le calcul de l'intervalle de confiance se fera via la formule utilisant l'écart-type véritable et u le fractile d'ordre $1-\frac{\alpha}{2}$ de la loi N(0,1).

4.1 Fonctions

4.2 Problème 1

On possède deux échantillons de taille 16 à notre disposition : un échantillon de masses de 16 pots de confitures mesurée en kilogramme (kg), et l'autre de masses d'avocats provenant du Mexique mesurée en grammes (g).

→On traite l'échantillon de masses en kg en premier.

Question 1:

La moyenne empirique obtenue est de 0.5 kg.

Question 2:

L'histogramme obtenue sur l'échantillon des pots de confitures est le suivant

Histogrammes des fréquences des masses des pots de confitures de l'échantillon

Question 3:

On calcule les intervalles de confiances à 95% et à 99% pour l'échantillon des

masses des pots. On obtient les intervalles suivantes :

- $IC_{95\%}(\mu) = [0.497, 0.503]$
- $IC_{99\%}(\mu) = [0.496, 0.504]$

Il y a peu de différences dans notre cas entre l'intervalle à 95% et l'intervalle à 99%. on remarque par ailleurs que pour une petite variation de l'ordre de 0.001 sur chacune des bornes de l'intervalle de confiance à 95% pour passer à celle à 99%, on obtient une variation de +0.04 sur la probabilité de trouver une masse dans celle-ci, (i.e $P(0.496 \le masse_kg \le 0.504) = 0.99$) ce qui veut dire que la précision est affiné pour une très petite variation à cet ordre de sûreté.

→Quant à l'échantillon de masses des avocats du Mexique.

Après calcul de son intervalle de confiance, avec toujours le fait que l'on ne connaisse pas sa variance, on obtient $IC_{95\%}(\mu) = [85.941, 88.558]$. Autrement dit, pour une masse en g d'un avocat de cet échantillon, on est sûr à 95% qu'il se situera dans cette intervalle, i.e $P(85.941 \le masse_g \le 88.558) = 0.95$

4.3 Problème 2

Voici l'énoncé" du problème 2 : Une compagnie aérienne souhaite étudier le pourcentage de voyageurs satisfaits par ses services, on en a interrogé 500 choisis au hasard. Parmi eux, 95 se disent satisfaits. Déterminer un intervalle de confiance pour la proportion inconnue de voyageurs satisfaits au niveau 99%.

On ne dispose pas d'échantillon mais on sait que $\frac{95}{500}$ personnes se disent satisfaites. On choisit ce même échantillon qui a été pris dans le cadre de l'énoncé (qu'on représente par une liste de 0 et de 1, 0 signifiant que la personne i n'est pas satisfaite et 1 qu'elle est satisfaite) et on pose donc que la moyenne empirique vaut $\frac{95}{500}$. On en connait pas la variance de cet échantillon (étant donné qu'il ne suit pas une loi particulière, à priori). Ainsi, puisque la variance empirique est calculée lors de la détermination de l'intervalle de confiance, on exécute la fonction de calcul d'intervalle lors d'une non-connaissance de la variance.

On obtient l'intervalle suivant : $IC_{99\%}(\mu) = [0.145, 0.235]$ \rightarrow i.e $P(0.145 \leq proportion_satisfaits \leq 0.235) = 0.99.$

Remarque: on peut remarquer que la façon donc l'échantillon a été modéliser et les calculs faits que l'échantillon semble être un ensemble de 500 variables aléatoires suivant une loi de Bernoulli de paramètre θ compris dans notre intervalle de confiance.

4.4 Problème 3

Dans le problème 3, on utilise la fonction *stats.bernoulli.rvs()* (fonctionnement détaillé dans **Fonctions**) qui nous permet de générer un tableau (i.e un échantillon)

de n expériences de Bernoulli de paramètre $p = \frac{1}{2}$. On convertit ce tableau en liste pour travailler plus facilement dessus (du fait que le tableau n'est qu'une dimension). Dans le cas présent, nous connaissons la variance, qui vaut très exactement $\sigma^2 = p(1-p)$.

On calcule donc l'intervalle de confiance en prenant en compte ce fait (et donc en utilisant la fonction appropriée).

On obtient comme intervalles de confiance à 95% les intervalles suivants selon n :

n	$IC_{95\%}(\mu)$
10	[0.19, 0.81]
20	[0.331, 0.769]
50	[0.381, 0.659]
100	[0.422, 0.618]
200	[0.501, 0.639]
500	[0.428, 0.516]
1000	[0.485, 0.547]
10000	[0.49, 0.51]
1000000	[0.498, 0.5]

On remarque que plus l'effectif est grand, plus l'intervalle de confiance se réduit et devient précis quant à la valeur du paramètre trouvable à 95% dans celui-ci.

5 Exemples d'utilisation du code

5.1 Comment utiliser le code

Concernant le code, il est séparé en trois fichier (comme dit plus haut en partie $Résumé\ de\ notre\ approche$), chacun correspondant par son indice à la partie du TP correspondante $(tp_3.py$ avec la partie 3, TP2.py avec la partie 2, ...). Si le code est exécuté sur l'IDE Pyzo, alors il est possible (après avoir exécuté "l'en-tête" du code, c'est à dire de la première ligne au premier ##) d'exécuter séparément chaque sous partie du code, délimitées par ## $Problème\ x$.

Autrement, le code s'exécute normalement et en entier, si Pyzo n'est pas le logiciel où celui-ci est exécuté. Et bien penser à rentrer une valeur lorsque le programme le demandera (pour le problème 3 notamment).