Matheschülerzirkel Klasse 7/8

Tim Baumann

Notation. Wir verwenden die folgenden Bezeichnungen:

- Menge der natürlichen Zahlen $\{1, 2, 3, 4, ...\}$
- $\{...,-2,-1,0,1,2,...\}$ $\frac{1}{3},\frac{-17}{2},1\in\mathbb{Q}$ Menge der ganzen Zahlen
- Menge der rationalen Zahlen

22. November 2013

1 Unmöglichkeitsbeweise über Invarianten

Vor uns befindet sich ein leeres Schachbrett:

Vor uns liegt außerdem ein großer Haufen Dominosteine. Ein Dominostein ist genauso groß wie zwei Felder des Schachbretts. Wenn du magst, kannst du dir das Schachbrett, die Dominosteine und ein paar Tetris-Steine, die wir später noch brauchen werden, auf der Webseite http://timbaumann.info/mathezirkel-kurs/invarianten-spiele.html ausdrucken, ausschneiden und selbst mitknobeln.

Frage. Ist es möglich, das Schachbrett mit Dominosteinen so zu belegen, dass jedes Feld bedeckts ist, keine zwei Dominosteine übereinander liegen und kein Stein über den Rand hinausragt?

Antwort. Ja. Lege in jede Zeile des Feldes 4 Dominosteine horizontal nebeneinander.

Wir sägen nun aus dem Schachbrett die rechte untere Ecke, das Feld h1, heraus.

Frage. Ist es immer noch möglich, das Schachbrett wie beschrieben mit Dominosteinen zu belegen?

Antwort. Nein. Das Schachbrett ohne rechte untere Ecke hat 63 Felder. Jeder Dominostein belegt genau zwei Felder. Wenn eine Überdeckung möglich wäre, so hätte das Schachbrett ohne rechte untere Ecke somit eine gerade Anzahl von Feldern. Also kann es keine Überdeckung geben.

Während wir die erste Frage einfach positiv (bejahend) beantworten konnten, indem wir eine Überdeckung mit Dominosteinen angegeben haben, fällt uns die negative (verneinende) Antwort schwieriger: Wir mussten nämlich einen Grund finden, warum es eine solche Überdeckung nicht geben kann. Es reicht nicht aus, zu sagen, man habe keine Lösung gefunden. Es könnte ja immer noch sein, dass man sich nur ungeschickt angestellt hat und deshalb keine Lösung gefunden hat. Wir sägen nun aus dem Schachbrett auch die linke obere Ecke, das Feld h8, heraus.

Frage. Wie immer: Gibt es nun eine Überdeckung des Schachbretts mit Dominosteinen?

Das Schachbrett ohne die beiden Ecken hat wieder eine gerade Anzahl von Feldern, nämlich 62. Prinzipiell könnte also eine Überdeckung möglich sein. Aber wenn du versuchst, eine zu finden, wirst du feststellen dass, egal wie du dich anstellst, zwei Felder übrig bleiben. Du vermutest daher, dass es keine Lösung geben kann.

Antwort. Nein. Wenn man einen Dominostein auf das Brett legt, so bedeckt er, egal wie er liegt, ein weißes und ein schwarzes Feld. Die beiden Felder, die wir abgesegt haben, waren beides weiße Felder. Damit ist das um zwei Ecken verkleinerte Brett noch 30 weiße und 32 schwarze Felder. Jedes Mal, wenn wir einen Stein setzen, nimmt die Zahl der noch offenen weißen und die Zahl der noch offenen schwarzen Felder um je 1 ab. Nach drei gelegten Dominosteinen haben wir beispielsweise noch 30-3=27 offene weiße und 32-3=29 offene schwarze Felder. Zu jedem Zeitpunkt gibt es genau zwei schwarze unbedeckte Felder mehr als weiße unbedeckte Felder. Wenn alle weißen Felder bedeckt sind, gibt es also noch zwei schwarze offene Felder. Diese können aber nicht nebeneinander liegen, deshalb können sie nicht mit einem Domino überdeckt werden.

Wären nicht zwei diagonal gegenüberliegende, sondern zwei Ecken, die an einer Seite liegen, herausgesägt worden, so wäre die Aufgabe lösbar gewesen. Bevor wir die Antwort etwas tiefer analysieren, wollen wir uns noch eine weitere Aufgabe anschauen:

Aufgabe. Auf einer Insel leben 345 gelbe, 346 grüne und 347 blaue Chamäleons. Wann immer sich zwei Chamäleons gleicher Farbe begegnen, passiert nichts. Wenn sich aber zwei Chamäleons unterschiedlicher Farbe begegnen, so nehmen beide die dritte Farbe an. Beispielsweise hätten wir nach einem Treffen eines gelben und einer grünen Chamäleons nur noch 344 gelbe, 345 grüne, aber dafür 349 blaue Chameleons. Frage: Ist es möglich, dass zu einem Zeitpunkt genau gleich viele Chameleons jeder Farbe auf der Insel leben?

Grundsätzlich könnte diese Situation eintreten, da 345 + 346 + 347 = 1038 durch 3 teilbar ist. Wenn wir allerdings versuchen, eine Liste von Begegnungen zu erstellen, sodass nach diesen Begegnungen die Anzahl der Chamäleons jeder Farbe gleich ist, scheitern wir. Spoiler: Auch diese Aufgabe ist nicht lösbar.

Was haben diese Aufgaben gemeinsam? Zunächst haben wir eine Anfangssituation, beispielsweise das leere (verkleinerte) Schachbrett oder die Anzahlen der Fische jeder Farbe im Aquarium. Dann verändert sich die Ausgangslage durch Züge (das Legen eines Dominosteins) oder Ereignisse (Treffen von zwei Fischen). Die Frage in beiden Aufgaben ist, ob eine bestimmte Situation (alle Felder bedeckt bzw. gleich viele Fische von jeder Farbe) eintreten kann.

In beiden Aufgaben finden wir experimentell keine Lösung und suchen daher nach einem Grund, warum wir jedes solche Unterfangen von vornherein zum Scheitern verurteilt ist. In der Schachbrettaufgabe könnten wir dies begründen, indem wir alle Möglichkeiten ausprobieren. Davon gibt es allerdings ziemlich viele, sodass wir eine Antwort auf diesem Weg nur, wenn überhaupt, mit Hilfe eines Computers finden können. In der zweiten Aufgabe allerdings, gibt es (auf den ersten Blick) unendlich viele Möglichkeiten, wie sich Fische treffen können; wenn wir beispielsweise herausgefunden haben, dass wir mit 40 Treffen von Fischen die gewünschte Endsituation nicht erreichen können, so könnte uns das 41 Treffen zum Ziel führen.

Wir haben uns daher in der Aufgabe mit dem Schachbrett eines anderen Tricks bedient: Wir haben bemerkt, dass am Anfang das verkleinerte Brett 32-30=2 schwarze Felder mehr besitzt als weiße Felder. Jedes Mal, wenn wir einen Dominostein gelegt haben, wurde ein weißes und ein schwarzes Feld verdeckt, also blieb die Differenz zwischen der Anzahlen der schwarzen offenen und weißen offenen Felder immer gleich. Wir haben also eine Zahl entdeckt, die wir für jedes unbedeckte, teilweise oder vollständig mit Steinen bedeckte Spielbrett ausrechnen können und die mit jedem weiteren platzierten Stein, egal wo er gelegt wird, gleich bleibt. Man sagt auch, dass diese Zahl unverändert (mit Fremdwort invariant) bleibt und nennt sie eine *Invariante*. In der gewünschten Endposition, dass das ganze Brett belegt ist, wäre die Differenz zwischen den offenen schwarzen und offenen weißen Feldern gleich 0-0=0. Diese Situation kann also beginnend bei unserer Anfangsposition nicht erreicht werden.

Antwort. Es ist nicht möglich, dass es irgendwann gleich viele Chamäleons von jeder Farbe gibt. Wir betrachten die Zahl C, die wir als Differenz zwischen der Anzahl der blauen und grünen Chamäleons festlegen. Zu Beginn ist C = 347 - 346 = 1. Wenn sich ein blaues und ein grünes Chamäleon treffen, so bleibt diese Zahl gleich. Wenn sich allerdings ein grünes und ein gelbes Chamäleon treffen, so nimmt die Zahl der grünen Chamäleons um eins ab, während die Zahl der blauen um zwei steigt. Insgesamt erhöht sich C um drei. Wenn sich ein blaues und ein gelbes Chamäleon treffen, so sinkt C um drei (mit ähnlicher Begründung). Die Zahl C ist also nicht invariant. Aber wir stellen fest: Zu Beginn ist C gleich 1, also nicht durch 3 teilbar. Wir wissen aber: Wenn eine ganze Zahl $k \in \mathbb{Z}$ durch 3 teilbar ist, so sind auch die Zahlen k+3 und k-3 durch 3 teilbar. Umgekehrt ist, wenn $k \in \mathbb{Z}$ nicht durch 3 teilbar ist, auch die Zahlen k+3 und k-3 nicht durch 3 teilbar. Also können wir folgern, dass nach jedem Treffen

von zwei Chamäleons unsere Zahl immer noch nicht durch 3 teilbar ist. Unsere Invariante ist hier also nicht die Zahl C selbst, sondern die Tatsache, dass C nicht durch 3 teilbar ist. In der gewünschten Endsituation wäre C=0, da wir verlangen, dass die Zahl der blauen und grünen Chamäleons dann gleich ist. Aber 0 ist durch 3 teilbar! Folglich kann diese Situation nicht erreicht werden.

Invarianten sind ein nützliches Mittel für Aufgaben obiger Art, bei denen man zeigen soll, dass eine bestimmte Situation nicht erreicht werden kann. Ein Nachteil dieser Technik ist es, dass Invarianten oft nicht offensichtlich sind, sondern es einiger Kreativität und Erfahrung bedarf, um sie zu finden. Bei der Schachbrettaufgabe könnte man feststellen, dass am Ende jedes Versuches zwei schwarze Felder übrig bleiben. Generell bietet sich an, wenn man so eine Aufgabe angeht, erst einmal rumzuprobieren und dabei Zahlen, die einem wichtig erscheinen, nach jedem Schritt aufzuschreiben und danach nach Mustern zu suchen.

Auch in der höheren Mathematik spielen Invarianten eine wichtige Rolle: Es gibt beispielsweise eine Teilgebiet der Mathematik, das sich mit Knoten befasst. Einen Knoten stellt man sich dabei als Seil im dreidimensionalen Raum vor, wobei Anfang und Ende des Seils zusammengebunden sind. Wenn wir einen Knoten haben, so stellen sich Mathematiker die Frage, ob wir diesen Knoten nur durch Bewegen des Seiles (ohne Zerschneiden) diesen Knoten auflösen können, sodass er nur noch aus einer einfachen Seilschlinge besteht. Um zu beweisen, dass dies für manche Knoten nicht möglich ist, haben Mathematiker Invarianten gefunden, die etwas komplizierter als unsere bisher gesehene Invarianten sind und beim Umformen eines Knoten gleich bleiben.

6. Dezember 2013

2 Rechnen mit Restklassen

2.1 Teilbarkeit

Definition 1. Eine Zahl $b \in \mathbb{Z}$ ist durch $a \in \mathbb{Z}$ teilbar, wenn es eine Zahl $c \in \mathbb{Z}$ gibt mit

$$a \cdot c = b$$
.

Notation. Wir verwenden dann die Kurzschreibweise $a \mid b$, gesprochen "a teilt b". Wir sagen auch, dass a ein Teiler von b ist oder dass b ein Vielfaches von a ist. Im Fall, dass die Zahl a die Zahl b nicht teilt, d. h. keine Zahl $c \in \mathbb{Z}$ existiert mit $a \cdot c = b$, schreiben wir $a \nmid b$.

Beispiel. Folgende Aussagen stimmen:

• $3 \mid 6$ • $5 \nmid 13$ • $8 \mid -8$ • $3 \mid 12345$ • $2 \nmid 1001$

Exkurs. Der Ausdruck $a \mid b$ ist eine mathematische Aussage. Andere Beispiele für mathematische Aussagen sind:

- Jeder Winkel lässt sich mit Zirkel und Lineal halbieren.
- Für $n \in \mathbb{N}$ mit $n \ge 2$ gibt keine Zahlen $a, b, c \in \mathbb{N}$, sodass $a^n + b^n = c^n$ stimmt.
- Es gibt unendlich viele Primzahlenzwillinge, das sind Primzahlen p und q, mit q = p + 2.

Mathematische Aussagen können richtig oder falsch sein. Beispielsweise ist in den obigen Beispielen die erste wahr, die zweite falsch und über die nächsten beiden können wir nichts sagen, da sie Zahlen n und m beinhalten, die erst noch genauer definiert werden müssen. Die vorletzte Aussage trägt den Namen "Fermats letzter Satz" und ist richtig, doch hat es über 300 Jahre gedauert, bis sie bewiesen werden konnte. Von der letzten Aussage wird vermutet, dass sie stimmt, es existiert jedoch kein Beweis.

Frage. Gibt es eine Zahl $a \in \mathbb{Z}$, die Teiler von 0 ist, d. h. $a \mid 0$?

Antwort. Ja, wir können sogar jede beliebige Zahl $a \in Z$ nehmen: Setze c := 0, dann ist $a \cdot c = a \cdot 0 = 0$ und somit ist die Definition erfüllt.

Frage. Gibt es andersherum eine Zahl $b \in \mathbb{Z}$, die durch 0 teilbar ist, also $0 \mid b$?

Antwort. Ja, aber nur die Zahl 0 selber. Mit a=0, ist für ein beliebiges c nämlich $a \cdot c = 0 \cdot c = 0$, also muss b=0 sein.

Exkurs. Sei $z \in \mathbb{Z}$ eine ganze Zahl. Wenn z ungerade ist, so ist z nicht durch 8 teilbar. Um nicht immer "wenn …, dann …" schreiben zu müssen, verwenden Mathematiker folgende Notation:

$$z$$
 ist ungerade $\implies z \nmid 8$

Dabei stehen auf der linken und rechten Seite des \Rightarrow -Zeichens mathematische Aussagen P und Q. Die Zeile $(P\Rightarrow Q)$ ist wiederum selbst eine mathematische Aussage, nämlich die Aussage, dass wenn P stimmt, dann auch Q stimmt. Dabei ist es wichtig, dass links P steht und rechts Q, denn in unserem Beispiel stimmt die Aussage andersrum nicht: Wenn z nicht durch S teilbar ist, dann muss S noch nicht unbedingt ungerade sein. S B. ist S = S nicht durch S teilbar, aber gerade.

Ein anderes Beispiel: Eine ganze Zahl m ist ungerade, wenn die Zahl (m+1) gerade ist. Andersrum ist (m+1) gerade, wenn m ungerade ist. Hier ist also die Umkehrung erfüllt, im Gegensatz zum vorherigen Beispiel. Also ist m immer dann und nur dann ungerade, wenn (m+1) ungerade ist. Mathematiker verwenden dafür eine besondere Notation:

$$n \text{ ist ungerade} \iff (n+1) \text{ ist gerade}$$

Auf beiden Seiten des \Leftrightarrow -Zeichens stehen dabei wieder mathematische Aussagen. Der Pfeil \Leftrightarrow bedeutet, dass die linke Aussage nur dann stimmt, wenn die rechte Aussage stimmt.

Wir wollen nun ein paar Tatsachen über die Teilbarkeit beweisen.

Behauptung 1. Seien $n, p, q \in \mathbb{Z}$ ganze Zahlen. Dann gilt:

- (i) $n \mid p \text{ und } p \mid q \implies n \mid q$
- (ii) $n \mid p \implies n \mid (p \cdot q)$
- (iii) $n \mid p \text{ und } n \mid q \implies n \mid (p+q)$

Beweis. Zu (i): Aus der Definition von Teilbarkeit wissen wir, dass es $c, d \in \mathbb{Z}$ gibt mit

$$n \cdot c = p$$
 und $p \cdot d = q$

Um zu zeigen, dass $n \mid q$ gilt, müssen wir nach derselben Definition eine Zahl für die Leerstelle finden, sodass die Gleichung

$$n \cdot \underline{\hspace{1cm}} = q$$

erfüllt ist. Wir behaupten, dass die Zahl $(c \cdot d)$ dies leistet. Wir rechnen nämlich nach:

$$n \cdot (c \cdot d) = \underbrace{(n \cdot c)}_{=n} \cdot d = p \cdot d = q.$$

Dabei haben wir im ersten Schritt das Assoziativgesetz gebraucht.

Zu (ii): Aus der Definition von Teilbarkeit erhalten wir ein $c \in \mathbb{Z}$ mit

$$n \cdot c = p$$
.

Wir müssen folgene Leerstelle sinnvoll ersetzen:

$$n \cdot \underline{\hspace{1cm}} = p \cdot q.$$

Wir nehmen dafür die Zahl $(c \cdot q)$ und rechnen

$$n \cdot (c \cdot q) = \underbrace{(n \cdot c) \cdot q}_{=p} = p \cdot q$$

Zu (iii): Aus der Definition erhalten wir $c, d \in \mathbb{Z}$ mit

$$n \cdot c = p$$
 und $n \cdot d = q$.

Es soll folgende Gleichung gelten:

$$n \cdot \underline{\hspace{1cm}} = p + q$$

Wir setzen (c+d) für ___ und rechnen

$$n \cdot (c+d) = \underbrace{n \cdot c}_{=p} + \underbrace{n \cdot d}_{=q} = p+q.$$

Im ersten Schritt haben wir dabei das Distributivgesetz angewendet.

Achtung. Folgendes Rechengesetz gilt *nicht*:

$$p \mid n \text{ und } q \mid n \implies (p \cdot q) \mid n$$

Ein Gegenbeispiel dafür ist p = 4, q = 6, n = 12.

Exkurs. In den natürlichen Zahlen \mathbb{N} , den ganzen Zahlen \mathbb{Z} und den rationalen Zahlen \mathbb{Q} gelten folgende Rechenregeln:

- Kommutativqesetz: a + b = b + a und $a \cdot b = b \cdot a$
- Assoziativgesetz: a + (b + c) = (a + b) + c und $a \cdot (b \cdot c) = (a \cdot b) \cdot c$
- Distributivgesetz: $a \cdot (b + c) = a \cdot b + a \cdot c$

Es ist eine gute Übung, sich zu überlegen, welche Plus- und Mal-Zeichen wir durch Minus- und Divisions-Zeichen ersetzen dürfen, sodass die Regeln immer noch stimmen.

2.2 Restklassen

Sei n eine natürliche Zahl und p,q natürliche Zahlen, die bei der Division durch n den gleichen Rest r haben, also

$$p: n = a \text{ Rest } r$$

 $q: n = b \text{ Rest } r$

für zwei Zahlen $a, b \in \mathbb{Z}$. Wir können dabei außerdem annehmen, dass r eine Zahl zwischen 0 bis n-1 ist (warum?). Wenn wir obige Gleichungen umschreiben, erhalten wir

$$p = n \cdot a + r,$$
$$q = n \cdot b + r.$$

Wir rechnen:

$$p - q = (n \cdot a + r) - (n \cdot b + r) = n \cdot a + r - n \cdot b - r = n \cdot a + n \cdot b = n \cdot (a + b).$$

Wir haben also $n \cdot (a + b) = p - q$, folglich nach Definition von Teilbarkeit $n \mid (p - q)$. Dies ist unser erstes halbwegs interessantes Ergebnis: Zwei Zahlen p und q, die bei Division durch n den gleichen Rest haben, unterscheiden sich nur durch ein Vielfaches von n.

Definition 2. Für zwei Zahlen p und q, die sich nur durch ein Vielfaches von $n \in N$ unterscheiden (d. h. $n \mid (p-q)$) schreiben wir

$$p \equiv q \pmod{n}$$
.

Wir sprechen: "p ist gleich q modulo n".

Notation. Falls $p \equiv q \pmod{n}$ nicht stimmt, schreiben wir $p \not\equiv q \pmod{n}$.

Beispiel. Folgende Aussagen stimmen:

- $1 \equiv 4 \pmod{3}$
- \bullet $-4 \equiv 3 \pmod{7}$
- $4 \not\equiv 2 \pmod{4}$

- $0 \equiv 16 \pmod{8}$
- $-1001 \equiv -1003 \pmod{2}$ $0 \not\equiv -101 \pmod{3}$

Achtung. Wir dürfen den Teil in Klammern auf keinen Fall weglassen! Es gilt nämlich $4 \equiv 7$ (mod 3), aber nicht $4 \equiv 7 \pmod{6}$!

Behauptung 2. Sei $n \in \mathbb{N}$ und die Zahlen $a, a_1, a_2, b, b_1, b_2, c \in \mathbb{Z}$. Dann gilt:

- (i) $a \equiv a \pmod{n}$
- (ii) $a \equiv b \pmod{n}$ und $b \equiv c \pmod{n} \implies a \equiv c \pmod{n}$
- (iii) $a_1 \equiv a_2 \pmod{n}$ und $b_1 \equiv b_2 \pmod{n} \implies a_1 + b_1 \equiv a_2 + b_2 \pmod{n}$
- (iv) $a_1 \equiv a_2 \pmod{n}$ und $b_1 \equiv b_2 \pmod{n} \implies a_1 \cdot b_1 \equiv a_2 \cdot b_2 \pmod{n}$

Zu (i): Es ist a-a=0 und somit gilt $n \mid (a-a)$, da 0 von jeder beliebigen Zahl geteilt wird.

Zu (ii): Es gilt nach Vorraussetzung $n \mid (a-b)$ und $n \mid (b-c)$, also nach unserem Wissen über Teilbarkeit

$$n \mid \underbrace{((a-b) + (b-c))}_{=(a-c)}.$$

Zu (iii): Nach Vorraussetzung gilt $n \mid (a_1 - a_2)$ und $n \mid (b_1 - b_2)$. Somit

$$n \mid \underbrace{((a_1 - a_2) - (b_1 - b_2))}_{=(a_1 + b_1) - (a_2 + b_2)}.$$

Zu (iv): Nach Vorraussetzung gilt $n \mid (a_1 - a_2)$ und $n \mid (b_1 - b_2)$. Somit gilt auch

$$n \mid (a_1 - a_2) \cdot b_1$$
 und $n \mid a_2 \cdot (b_1 - b_2)$,

also auch $n \mid ((a_1 - a_2) \cdot b_1 + a_2 \cdot (b_1 - b_2))$. Es gilt aber

$$(a_1 - a_2) \cdot b_1 + a_2 \cdot (b_1 - b_2) = a_1 \cdot b_1 - a_2 \cdot b_1 + a_2 \cdot b_1 - a_2 \cdot b_2 = a_1 \cdot b_1 - a_2 \cdot b_2$$

somit ist dies gleichbedeutend zu $n \mid (a_1 \cdot b_1 - a_2 \cdot b_2)$.

Behauptung 3. Für alle $n \in \mathbb{N}$ gilt

$$10^n \equiv 1 \underbrace{00 \cdots 0}_{n \text{ Nullen}} \equiv 1 \pmod{3}$$

Beweis. Es gilt

$$99 \cdots 9 = 3 \cdot 33 \cdots 3$$
n Neuner *n* Dreier

also $3 \mid 99 \cdots 9$ bzw. $99 \cdots 9 \equiv 0 \pmod{3}$. Wir rechnen:

$$10^n \equiv \underbrace{99 \cdots 9}_{n \text{ Neuner}} + 1 \equiv 0 + 1 \equiv 1 \pmod{3}.$$

Du kennst wahrscheinlich folgenden Test auf Teilbarkeit durch 3: Er besagt, dass eine Zahl genau dann durch 3 teilbar ist, wenn ihre Quersumme durch 3 teilbar ist. Vielleicht hast du dich auch schon einmal gefragt, warum dieser Test funktioniert. Mit der Vorarbeit, die wir bisher geleistet haben, fällt ein Beweis nicht schwer:

Behauptung 4. Sei $a \in \mathbb{Z}$ eine ganze Zahl, wobei die Ziffern von a im Zehnersystem $a_n, ..., a_0$ seien, also $a = a_n \cdot 10^n + a_{n-1} \cdot 10^{n-1} + ... + a_1 \cdot 10 + a_0$. Die Quersumme von a ist dann gebeben durch $QS(a) = a_n + a_{n-1} + ... + a_1 + a_0$. Es gilt dann

$$a \equiv QS(a) \pmod{3}$$
.

Beweis. Es gilt für alle i zwischen 0 und n

$$a_i \cdot 10^i \equiv a_i \cdot 1 \equiv a_i \pmod{3}$$

durch Anwenden der letzten Behauptung und den Modulo-Rechenregeln. Also haben wir

$$a_n \cdot 10^n + \dots + a_1 \cdot 10 + a_0 \equiv a_n + \dots + a_1 + a_0 \equiv QS(a) \pmod{3}.$$

Das ist nicht ganz die Behauptung des Quersummentests, allerdings ist $m \in \mathbb{Z}$ genau dann durch 3 teilbar, wenn $m \equiv 0 \pmod{3}$. Falls aber QS(a) durch 3 teilbar ist, so haben wir QS(a) $\equiv 0$ und es folgt mit der ersten Modulo-Rechenregel schon

$$a \equiv QS(a) \equiv 0 \pmod{3}$$
.

Es gibt auch einen ganz ähnlichen Test für Teilbarkeit durch 11: Eine Zahl $a \in \mathbb{Z}$ ist genau dann durch 11 teilbar, wenn die alternierende Quersumme durch 11 teilbar ist. Sei $a = a_n \cdot 10^n + ... + a_1 \cdot 10 + a_0$, dann ist die alternierende Quersumme von a

$$AQS(a) = a_0 - a_1 + a_2 - a_3 + ... \pm a_n$$

Wenn n gerade ist, steht dabei ein Plus-Zeichen vor a_n , sonst ein Minuszeichen. Das Wort alternierend deutet an, dass wir abwechselnd die Ziffern, beginnend bei der letzten, dazuzählen und abziehen.

Zum Beispiel ist AQS(1234321) = 1 - 2 + 3 - 4 + 3 - 2 + 1 = 0 und da 0 durch 11 teilbar ist, ist auch 1234321 durch 11 teilbar.

3 Nim-Spiele

24. Januar 2014

4 Vollständige Induktion

7. und 21. Februar 2014

Vollständige Induktion ist eines der grundlegenden mathematischen Beweisverfahren. Vollständige Induktion benutzt man immer dafür, um zu zeigen, dass eine bestimmte Aussage für alle natürlichen Zahlen gilt. Zum Beispiel:

Aufgabe. Zeige, dass für alle natürlichen Zahlen $n \in \mathbb{N}$ die folgende Formel gilt:

$$\frac{1}{2^1} + \frac{1}{2^2} + \frac{1}{2^3} + \dots + \frac{1}{2^{n-1}} + \frac{1}{2^n} = 1 - 2^n.$$

Wir können nun hergehen und diese Formel für spezielle Werte von n nachrechnen, z. B. für n = 1 oder n = 5 oder (mithilfe eines Computers) für alle natürlichen Zahlen n kleiner als eine Million.

Wir können uns auch intuitiv klarmachen, warum diese Formel gilt: Wir stellen uns einen Zahlenstrahl vor. Wir beginnen bei der Zahl $\frac{1}{2}$. Dann addieren wir $\frac{1}{4}$, also die Hälfte des Abstands von $\frac{1}{2}$ zu 1. Wir befinden uns dann bei $\frac{3}{4}$. Dann addieren wir $\frac{1}{8}$, also die Hälfte des Abstandes von $\frac{3}{4}$ zu 1. Wenn wir so weitermachen, halbiert sich der Abstand von unserer aktuellen Zahl zur Zahl 1 in jedem Schritt. Und das ist ziemlich genau die Aussage der Aufgabe.

Nun ist aber das Nachrechnen der Formel für konkrete natürliche Zahlen kein Beweis der Aufgabe. Wir können schließlich nicht die Formel für alle natürlichen Zahlen durch einzelnes Nachrechnen prüfen, denn es gibt ja unendlich viele natürliche Zahlen. Die zweite Überlegung ist schon deutlich näher an einem mathematischen Beweis (der nachfolgende Beweis folgt in gewisser Weise sogar den gleichen Überlegungen). Wir wollen nun die Aufgabe mathematisch ganz korrekt durch vollständige Induktion beweisen. Um uns das Leben einfacher zu machen, führen wir davor aber noch etwas Notation ein:

Notation. In obiger Aufgabe summieren wir

$$\frac{1}{2^1} + \frac{1}{2^2} + \frac{1}{2^3} + \dots + \frac{1}{2^{n-1}} + \frac{1}{2^n} = 1 - 2^n,$$

also alle Brüche $\frac{1}{2^k}$, wobei k nacheinander die Werte 1 bis n annimmt. Für solche Summen verwendet man folgende abkürzende Schreibweise:

$$\sum_{k=1}^{n} \frac{1}{2^k} = \frac{1}{2^1} + \frac{1}{2^2} + \frac{1}{2^3} + \dots + \frac{1}{2^{n-1}} + \frac{1}{2^n} = 1 - 2^n.$$

Der griechische Buchstabe Σ heißt Sigma, die Zeilen k=1 darunter und n darüber bedeuten, dass zuerst k=1, dann k=2, usw. bis k=n gilt. Die Variable k wird auch Zählvariable genannt. Die Werte des Ausdrucks $\frac{1}{2^k}$ rechts neben Σ werden für all diese Werte von k aufaddiert.

Mit dieser Notation wird die Formel einfacher und damit überschaubarer. Außerdem spart man sich viele Auslassungspunkte.

Weitere Beispiele für die Verwendung dieser Summennotation sind:

$$\sum_{k=1}^{5} k = 1 + 2 + 3 + 4 + 5 = 15$$

$$\sum_{k=0}^{n} 2^{i} = 2^{0} + 2^{1} + 2^{2} + \dots + 2^{n}$$

$$\sum_{k=1}^{k} \frac{1}{j} = \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{k}$$

Das letzte Beispiel zeigt, das wir für die Zählvariable auch andere Buchstaben außer k benutzen können, und statt bis n auch bis k summieren können.

Wir können damit die obige Aufgabe folgendermaßen umschreiben:

Aufgabe. Zeige, dass für alle natürlichen Zahlen $n \in \mathbb{N}$ die folgende Formel gilt:

$$\sum_{k=1}^{n} \frac{1}{2^k} = 1 - 2^n.$$

Beweis. Wir führen Induktion über n durch:

Induktionsanfang: Die Formel stimmt für n=1, wie wir leicht nachrechnen:

$$\sum_{k=1}^{n} \frac{1}{2^k} = \sum_{k=1}^{1} \frac{1}{2^k} = \frac{1}{2^1} = 1 - \frac{1}{2^1} = 1 - \frac{1}{2^n}$$

Induktionsschritt: Wir nehmen an, dass die Formel für eine bestimmte natürliche Zahl $n \in \mathbb{N}$ gilt und zeigen, dass die Formel dann auch für die nächstgrößere natürliche Zahl, also n+1, gilt. Dazu rechnen wir:

$$\sum_{k=1}^{n+1} \frac{1}{2^k} = \left(\sum_{k=1}^n \frac{1}{2^k}\right) + \frac{1}{2^{n+1}} = \left(1 - \frac{1}{2^n}\right) + \frac{1}{2^{n+1}} = 1 - \frac{2}{2^{n+1}} + \frac{1}{2^{n+1}} = 1 - \frac{1}{2^{n+1}}$$

Bei der ersten Gleichheit steht dabei auf beiden Seiten genau dasselbe, nur jeweils mit etwas anderer Notation. Links wurde die Summennotation für das Addieren von n+1 Zahlen verwendet, rechts nur für n Zahlen. Dafür wurde rechts der letzte Summand extra hinzuaddiert. Die zweite Gleichheit folgt aus der Annahme (s. o.), dass die Formel aus der Aufgabe für die Zahl n stimmt. Wir konnten also die Formel direkt für den eingeklammerten Ausdruck anwenden. Die restlichen Gleichheiten sind Routine-Rechnungen.

Warum nun ist dies ein korrekter Beweis für die Aufgabe? Nun, wir können dem Beweis direkt entnehmen, dass die Formel für die kleinste natürliche Zahl, also n=1 gilt. Das haben wir im Teil "Induktionsanfang" direkt nachgerechnet. Dann gilt aber auch die Formel für n=2, denn: Die Formel gilt für n=1 und das Argument im Teil "Induktionsschritt" sagt uns, dass deswegen auch die Formel für n=3, denn: Die Formel gilt für n=2 und das Argument im Teil "Induktionsschritt" sagt uns, dass deswegen

auch die Formel für 2+1=3 gilt. Dann gilt aber auch die Formel für n=4, denn: Die Formel gilt für n=3 und das Argument im Teil "Induktionsschritt" sagt uns, dass deswegen auch die Formel für 3+1=4 gilt. Und so weiter und so fort. Da wir so jede natürliche Zahl erreichen können, gilt die Formel für alle natürliche Zahlen.

Wir wollen nochmal allgemein zusammenfassen, wie ein Beweis durch vollständige Induktion aufgebaut ist. Wenn wir eine mathematische Aussage für alle natürlichen Zahlen $n \in \mathbb{N}$ beweisen wollen, dann reicht es aus, zu zeigen:

- Die Aussage gilt für die kleinste natürliche Zahl n, also n = 1 (Induktionsanfang)
- Wenn die Aussage für eine natürliche Zahl n gilt, dann gilt sie auch für die nächstgrößere natürliche Zahl n + 1 (Induktionsschritt).

Im Induktionsschritt dürfen wir also voraussetzen, dass die Aussage, die wir zeigen wollen, für die Zahl n gilt. Diese Voraussetzung nennt man auch Induktionsannahme oder Induktionshypothese. Unsere Aufgabe ist es, zu zeigen, dass die Aussage dann auch für n+1 gilt.

Exkurs. Vollständige Induktion wird oft schlicht auch nur Induktion genannt. Das Adjektiv "vollständig" dient zur Abgrenzung der mathematischen Induktion von der philosophischen Induktion, einem Prinzip des Schlussfolgerns, dass die Ableitung von abstrakten Gesetzmäßigkeiten von konkreten Beobachtungen beschreibt.

Am besten versteht man Induktion und wann man sie wirkungsvoll einsetzt, indem man Aufgaben rechnet. Darum:

Aufgabe. Zeige: Für alle natürlichen Zahlen $n \in \mathbb{N}$ gilt:

$$\sum_{k=1}^{n} k = \frac{n \cdot (n+1)}{2}.$$

Zu dieser Aufgabe gibt es eine Geschichte, die in vielen Mathematik-Büchern zu finden ist: Der später berühmte Mathematiker Carl Friedrich Gauß bekam als Schüler von seinem Lehrer die Aufgabe, alle Zahlen von 1 bis 100 zu addieren. Der Lehrer hatte damit gerechnet, dass seine Klasse mit dieser Aufgabe einige Zeit beschäftigt sein würde. Umso verblüffter war er, als der kleine Gauß schon nach kurzer Zeit die Lösung hatte: $\sum_{i=1}^{100} i = 5050$. Wie hatte Gauß diese Aufgabe so schnell gelöst? Seine Idee war, die Zahlen von 1 bis 101 in folgende Paare aufzuteilen:

Die Summe jedes Paares ist dabei 101. Wir man leicht sieht, gibt es genau 50 solcher Paare. Also ist die Summe aller Zahlen von 1 bis 100 gleich $50 \cdot 101 = 5050$.

Wir können auch in die Formel aus der Aufgabe n=100 setzen und kommen so auf diesselbe Lösung. Der Term $\frac{n\cdot(n+1)}{2}$ lässt sich (für gerade Zahlen n) folgendermaßen interpretieren: Es gibt $\frac{n}{2}$ Paare von Zahlen, deren Summe jeweils n+1 ist.

Die Begründung der Formel mittels Zahlenpaare wir oben funktioniert für gerade Zahlen. Man kann sich auch überlegen, dass die Formel auch für ungerade Zahlen gilt. Diese Überlegungen bilden zusammen schon einen Beweis der Formel. Einen alternativen Beweis kann man per Induktion führen:

Beweis. Induktionsanfang: Die Formel stimmt für n = 1, denn

$$\sum_{k=1}^{n} k = \sum_{k=1}^{1} = 1 = \frac{1 \cdot 2}{2} = \frac{n \cdot (n+1)}{2}.$$

Induktionsschritt: Angenommen, die Formel gilt für die natürliche Zahl n, also $\sum_{k=1}^{n} k = \frac{n \cdot (n+1)}{2}$. Wir müssen zeigen, dass die Formel dann auch für n+1 stimmt, also dass gilt:

$$\sum_{k=1}^{n+1} k = \frac{(n+1) \cdot ((n+1)+1)}{2} \quad \left(= \frac{(n+1) \cdot (n+2)}{2} \right).$$

Dies können wir mithilfe der Induktionshypothese leicht nachrechnen:

$$\sum_{k=1}^{n+1} k = \sum_{k=1}^{n} k + (n+1) \stackrel{\text{IH}}{=} \frac{n \cdot (n+1)}{2} + (n+1) = \frac{n \cdot (n+1)}{2} + \frac{2 \cdot (n+1)}{2} = \frac{n \cdot (n+1) + 2 \cdot (n+1)}{2} = \frac{(n+2) \cdot (n+1)}{2} = \frac{(n+1) \cdot (n+2)}{2}.$$

Bei der ersten Gleichheit steht auf beiden Seiten wieder genau dasselbe, nur mit anderer Notation. Bei der mit IH beschrifteten Gleichheit habe wir die Induktionshypothese (abgekürzt IH) gebraucht. Hinter der vorletzten Gleichheit steckt das Distributiv-, hinter der letzten Gleichheit das Kommutativgesetz.

Bislang haben wir mit Induktion nur Aufgaben gelöst, in denen man eine Gleichheit zeigen sollte. Man Induktion aber auch für Ungleichungen anwenden:

Aufgabe. Zeige: Für alle natürlichen Zahlen $n \ge 4$ gilt:

$$n! \geqslant 2^n \geqslant n^2$$
.

Erinnerung. Der Ausdruck n! (für eine natürliche Zahl n) wird "n Fakultät" ausgesprochen und ist definiert als das Produkt aller Zahlen von 1 bis n, also

$$n! := 1 \cdot 2 \cdot \dots \cdot n$$
.

Man setzt üblicherweise 0! := 0. Es gilt dann offensichtlich für alle $n \ge 1$: $n! = n \cdot (n-1)!$

Die Fakultät wird häufig für die Beantwortung von Aufgaben wie "Wie viele Möglichkeiten gibt es, n Personen auf n Sitzplätze zu verteilen" gebraucht (Antwort: n!).

Außerdem: Der Doppelpunkt vor dem Gleichheitszeichen weißt darauf hin, dass die Gleichheit nicht aufgrund einer Rechnung, sondern nach Definition gilt. Wir legen also den Ausdruck links des :=-Zeichens durch den Ausdruck rechts davon fest.

Abgesehen davon, dass wir es in dieser Aufgabe nicht mit einer Gleichheit zu tun haben, in der auf der linken Seite eine Summe vorkommt, hat diese Aufgabe noch einen anderen Unterschied zu den bisher gerechneten Aufgaben: Bis jetzt sollten wir zeigen, dass eine Formel für alle natürlichen Zahlen gilt. In dieser Aufgabe sollen wir die Ungleichung nicht für alle natürlichen Zahlen, sondern nur für alle natürlichen Zahlen, die größer oder gleich 4 sind, zeigen. Für die Zahlen 1, 2 und 3 ist die Behauptung nämlich schlicht falsch:

n	n!	2^n	n^2
0	1	1	0
1	1	2	1
2	2	4	4
3	6	8	9
4	24	16	16
5	120	32	25

In der Aufgaben müssen wir genau genommen zwei Ungleichungen zeigen: Die erste Ungleichung $n! \ge 2^n$ und die zweite Ungleichung $2^n \ge n^2$ für je $n \ge 4$. Wir können beide Ungleichungen jeweils einzeln wie die vorherigen Aufgaben mit Induktion beweisen, mit dem Unterschied, dass wir die Induktion bei der Zahl 4 starten:

Beweis. • Erste Ungleichung $(n! \ge 2^n)$:

Induktions an fang (n = 4): Durch Rechnung:

$$n! = 4! = 4 \cdot 3 \cdot 2 \cdot 1 = 24 \ge 16 = 2^4 = 2^n$$
.

Induktionsschritt $(n \to n+1, \text{ wobei } n \ge 4)$: Wir rechnen:

$$(n+1)! = (n+1) \cdot n! \stackrel{\text{IH}}{\geqslant} (n+1) \cdot 2^n \geqslant 2 \cdot 2^n = 2^{n+1}.$$

In dieser Rechnung haben wir folgende Tatsache zweimal gebraucht: Für drei positive natürliche (oder auch rationale oder reelle Zahlen) a,b,c gilt: Wenn $a \ge b$ ist, dann ist auch $a \cdot c \ge b \cdot c$. Hinter dieser der ersten Ungleichung steckt die Induktionshypothese, dass $n! \ge 2^n$, zusammen mit dieser Tatsache $(a = n!, b = 2^n, c = n + 1)$. Die zweite Annahme folgt mit $n + 1 \ge n \ge 4 \ge 2$ und der Tatsache angewendet auf a = n + 1, b = 2 und c = n + 1.

• Um die zweite Ungleichung zu beweisen, brauchen wir noch eine weitere Ungleichung, die wir per Induktion beweisen, nämlich: Für alle $n \ge 3$ gilt $2^n \ge 2n + 1$ (Hilfsbehauptung). Induktionsanfang (n = 3): Durch Rechnung:

$$2^n = 2^3 = 8 \ge 7 = 2 \cdot 3 + 1 = 2 \cdot n + 1.$$

Induktionsschritt $(n \to n+1, \text{ wobei } n \ge 3)$:

$$2^{n+1} = 2 \cdot 2^n \stackrel{\text{IH}}{\geqslant} 2 \cdot (2n+1) = 4n+2 \geqslant 2n+2+n = 2 \cdot (n+1)+n \geqslant 2 \cdot (n+1)+3 \geqslant 2 \cdot (n+1)+1.$$

• Zweite Ungleichung $(2^n \ge n^2)$:

Induktions an fang (n = 4): Durch Rechnung:

$$2^n = 2^4 = 16 = 4^2 = n^2$$
.

Da also $2^n = n^2$, gilt auch $2^n \ge n^2$ (= ist ein Spezialfall von \ge).

Induktionsschritt $(n \to n+1)$, wobei $n \ge 4$: Hier ist es einfacher, von hinten nach vorne zu rechnen, also $(n+1)^2 \le 2^{n+1}$ zu zeigen:

$$(n+1)^2 = n^2 + 2n + 1 \stackrel{\text{IH}}{\leqslant} 2^n + 2n + 1 \leqslant 2^n + 2^n = 2 \cdot 2^n = 2^{n+1}.$$

Die Gültigkeit des ersten \leq -Zeichens folgt aus unserer Induktionshypothese $(2^n \geq n^2)$, die des zweiten \leq -Zeichens durch unsere Hilfsbehauptung, die wir gerade eben in Punkt zwei bewiesen haben.

Folgende Aufgabe stammt (leicht abgewandelt) aus der 51. Mathematik-Olympiade. Obwohl sie eine Aufgabe für die 11. bis 13. Klasse ist, lässt sie sich sehr einfach durch Induktion lösen:

Aufgabe (Turnier). In einem Fechtturnier mit 2^n Teilnehmern kämpft jeder Fechter genau einmal gegen jeden anderen. Kein Kampf endet unentschieden. Eine Reporterin möchte nacheinander Einzelinterviews mit n+1 Fechtern führen. Diese sollen so ausgewählt werden, dass jeder interviewte Fechter gegen alle Fechter, die vor ihm interviewt wurden, gesiegt hat.

Zeige, dass für alle natürlichen Zahlen n die Reporterin eine entsprechende Auswahl von Fechtern für die Interviews treffen kann.

Beweis. Induktionsanfang (n = 1): Dann gibt es $2^n = 2^1 = 2$ Fechter, die Reporterin will n + 1 = 1 + 1 = 2 Fechter, also alle beide interviewen. Es findet genau ein Fechtkampf statt. Die Reporterin erreicht ihr Ziel, wenn sie zuerst den Verlierer, dann den Gewinner interviewt.

Induktionsschritt $(n \to n+1)$: Es kämpfen insgesamt 2^{n+1} Fechter gegeneinander, also jeder Fechter gegen die anderen $2^{n+1}-1$ Fechter. Durchschnittlich gewinnt jeder Fechter die Hälfte seiner Duelle, also $\frac{2^{n+1}-1}{2}=\frac{2^{n+1}}{2}-\frac{1}{2}=2^n-\frac{1}{2}$ viele. Da dieser Durchschnitt keine ganze Zahl ist, muss es mindestens einen Fechter geben, der mindestens 2^n (die nächstgrößere ganze Zahl über $2^n-\frac{1}{2}$) Duelle gewonnen hat. Unter den 2^n Verlierern dieser Duelle kann die Reporterin nach Induktionsannahme eine gewünschte Reihenfolge von n Interviewpartnern finden. Wenn sie danach den Sieger dieser Duelle, also den Fechter, der gegen die 2^n zuvor interviewten Fechter gewonnen hat, interviewt, hat sie ihr Ziel erreicht.

Auf der rechten Seiten siehst du einen gesättigten gerichteten Graphen mit 5 Knoten (graue Kreise). Die Pfeile zwischen den Knoten werden auch Kanten genannt. Wir sagen, dass wir einen Knoten B von einem anderen Knoten A direkt erreichen können, wenn eine Kanten von A nach B verläuft (also die Pfeilspitze zu B zeigt). Ein Knoten B kann von einem anderen Knoten A in zwei Schritten erreicht werden, wenn es einen Knoten C gibt, sodass C von A direkt erreichbar ist und B von C direkt erreichbar ist.

Im Beispiel ist der Knoten 3 vom Knoten 1 in zwei Schritten erreichbar, aber andersrum der Knoten 1 nicht vom Knoten 3 in zwei Schritten erreichbar. Außerdem ist der Knoten 2 von jedem anderen Knoten in höchstens zwei Schritten erreichbar.

Aufgabe. Zeige, dass es in jedem gesättigten gerichteten Graphen mit n Knoten einen Knoten gibt, der von jedem anderen Knoten in höchstens zwei Schritten erreicht werden kann.

Beweis. Induktionsanfang (n = 1): Wir haben also nur einen Knoten im Graph. Dieser kann offensichtlich von jedem anderen Knoten erreicht werden, denn es gibt ja gar keinen anderen Knoten.

 $Induktionsschluss\ (n \to n+1)$: Wir greifen uns aus einem gesättigten Graphen mit n+1 Knoten einen Knoten K wahllos heraus. Die restlichen n Knoten und deren Knoten untereinander bilden einen gerichteten Graphen mit n Knoten. Nach Induktionsannahme gibt es unter ihnen einen Knoten, der von den restlichen n-1 Knoten in höchstens zwei Schritten erreicht werden kann. Wir nennen diesen Knoten A. Die Knoten, die direkt mit A verbunden sind, nennen wir D-Knoten ("D" für direkt). Nun fügen wir den am Anfang herausgenommenen Knoten K und all seine Kanten wieder hinzu. Es tritt nun einer der folgenden zwei Fälle ein:

- Alle D-Knoten und auch A sind direkt mit K verbunden. Dann ist K ein Knoten, wie er in der Aufgabenstellung gesucht wird.
- Entweder ist K direkt mit A verbunden, oder es gibt einen D-Knoten, zu dem K direkt verbunden ist (also existiert eine Kante von K zu einem D-Knoten). In beiden Fällen ist der Knoten A von K in höchstens zwei Schritten erreichbar. Da A auch von jedem anderen Knoten in höchstens 2 Schritten erreichbar ist, ist A der gesuchte Knoten.