Prof. Dr. Leandro Alves Neves

Bacharelado em Ciência da Computação

Processamento Digital de Imagens

Aula 02

^E Sumário

Tipos de Sinais

- Digitalização
 - Discretização, Amostragem e Quantização
 - Imagens Multibanda, Multiespectral e Multidimensional
- Distribuição de frequências
- Ruído em Imagens

Tipos de Sinais

- De um ponto de vista geral, um Sinal é:
 - Manifestação de um fenômeno expresso de forma quantitativa.
 - Meio de Representação: Função*
 - Variáveis independentes (uma ou mais)
 - Buscam definir informações da natureza ou comportamento do fenômeno
 - Sinal de voz: função de uma variável (tempo)
 - Imagem: pode ser definido por uma função de duas variáveis (espaço)
- *Situações em que sinais não podem ser modelados por uma equação: sinais aleatórios

Tipos de Sinais

Sinal:

- □ Contínuo ➡ estados definidos em qualquer instante, sem interrupção
- Discreto valores enumeráveis ou inteiros, definidos a partir de um intervalo.
- Sinal Analógico
 - Variações contínuas no tempo (Ex., onda sonora)
- Sinal Digital
 - □ Pode assumir apenas valores discretos (Ex., Código Morse)

Tipos de Sinais

Técnicas de análise de imagens

- Requerem:
 - Funções $\implies f(x)$ ou f(x,y) \implies formatos discretos

Representações

Representação Contínua

Estados podem ser definidos em qualquer instante de *x* (sem interrupção)

Necessidade de:

Observar a frequência de Amostragem

- Definir apropriadamente a frequência de amostras
 - Sinal contínuo recuperado a partir dos valores amostrados
 - Considerar
 - □ Frequência espacial de amostragem (F_a) (Δx : intervalo em x)

$$F_a = \frac{1}{\Delta x}$$

- □ Teorema da amostragem de Whittaker-Shannon:
 - Sinal pode ser totalmente reconstruído se $\Delta x \leq \frac{1}{2B}$
- \Box f(x) tem banda limitada no domínio da frequência [-B,B], sendo B um número real.
 - Sinal f(x) com banda limitada: a Transformada de Fourier F(u) fornece valores muito baixos para u fora do intervalo [-B,B].
- Na prática: Pelo menos uma amostra a cada meio período do sinal

- \Box O limite de amostragem $\frac{1}{2B}$ conhecido como:
 - Limite de Nyquist (1928)
- Aplicou nas áreas de telefonia e telegrafia
 - Mostrou que não era necessário transmitir o sinal de voz completo para que a conversação fosse compreendida

PDI

Digitalização

- Caso $\Delta x \le \frac{1}{2B}$ não satisfeita: **aliasing**
- Comprometimento da completa recuperação do sinal
- $\ \ \, = \operatorname{Exemplo: sinal} \ \, f(t) = a \mathrm{sen}(2\pi f_0 t) \, \, , \, \, \operatorname{com frequencia} \, f_0 , \, \operatorname{amplitude} \, a \, \operatorname{que} \, \\ \, \operatorname{varia no tempo} \, t \,$

Banda limitada $f(t):[-f_0, f_0]$

Exemplo de frequência de amostragem

$$B_1 = 2/16$$

$$B_2 = 4/16$$

$$B_3 = 8/16$$

$$B_4 = 16/16$$

$$\Delta x \le \frac{1}{2B_1} = 4$$

$$\Delta x \le \frac{1}{2B_2} = 2$$

$$\Delta x \le \frac{1}{2B_3} = 1$$

$$\Delta x \le \frac{1}{2B_4} = \frac{1}{2}$$

- Extensão do teorema de Whittaker-Shannon
- □ Sinais *n*-dimensionais

- Um sinal $f(x_1, x_2,...x_n)$
 - Limite de Nyquist imposto sobre cada variável independente: $\Delta x_1 \le \frac{1}{2B_1},...,\Delta x_n \le \frac{1}{2B_n}$
 - □ f(x, y) banda limitada $2W_x$ e $2W_y$ direções x e y
 - □ Sinal reconstruído se: $\Delta x \le \frac{1}{2W_x} e \Delta y \le \frac{1}{2W_y}$

Definição: (Amostra igualmente espaçada: matriz)

	X	/	Pixel (picture element)		
	f(0,0)	f(1,0)		f(0,M-1)	
\mathcal{Y}	f(0,1)				
f(x,y)					
•					
	f(0,4)	f(2,4)		f(N-1,M-1)	

Imagem Digital Cada elemento f(x,y): **nomeado pixel** (acrônimo do inglês $picture\ element$), com $0 \le x \le M - 1$ e $0 \le y \le N - 1$.

Exemplo:

 Amostragem: Discretização do domínio de definição da imagem nas direções x e y

Resolução espacial

□ Quanto menor o intervalo de amostragem (Δx) \Longrightarrow maior a densidade de pixels e maior resolução espacial.

Resolução espacial x Número de pixels

Exemplo:

- 1ª. Imagem com 100x100 pixels: adquirida de uma área de 100cm x 100cm
- 2ª. Imagem 50x50 pixels: adquirida de uma área de 20cm x
 20cm
 - 1º imagem cada pixel 1cm x 1cm
 - 2ª imagem cada pixel 0,4cm x 0,4cm

Amostragem Exemplos

Luminância

- □ Valor associado a cada pixel $L_{min} \le f(x,y) \le L_{max}$
- Convenção:
 - preto = L_{\min} (0)
 - branco = L_{max} (255, por exemplo)

- Profundidade da Imagem (Taxa de Quantização)
 - Definida pelo Número de níveis de cinza L
 - Em que, $L = 2^b$
 - Exemplo:

$$\Box$$
 L = 64 = 2⁶

6 bits por pixel

(f) 2

Reticulado uniforme da representação matricial da imagem.

Quantização ou Profundidade: 8 bits

47	52	64	132	153
51	58	121	149	142
49	99	143	144	164
94	135	161	170	199
138	165	180	212	213

Visualização da Profundidade

 Exemplos de Profundidades para Imagens Monocromáticas

Número de Bits para representação do pixel	Níveis de Cinza	
1	0,1	
8	0 a 255	
16	0 a 65.535	

Relação

315x260 – 256 cores

15	15	15	15	15	15	15
15	10	12	13	5	15	15
15	15	10	09	11	15	15
15	15	13	12	10	15	15
15	15	08	06	12	15	15
15	15	15	15	15	15	15

Amostragem

Codificação

64x53 - 256 cores

64x53 - 16 cores

 Número de Bits de armazenamento para variações de NxM (Monocromáticas)

	Taxa de Quantização					
Tamanho (NxM)	1	2	3	8		
(Amostragem)						
32	1.024	2.048	3.072	8.192		
64	4.096	8.192	12.288	32.768		
128	16.384	32.768	49.152	131.072		
1024	1.048.576	2.097.152	3.145.728	8.388.608		

- Representação de Imagens Digitais
- Múltiplas resoluções com uma pirâmide
 - Representações hierárquicas.

nível 0

1 × 1

nível 1

nível 2

Exemplo, Imagem NxN

- Imagem original
- k versões reduzidas,

nível 3

□ Diferentes critérios podem ser adotados para o processo de redução

PDI

Imagem Multibanda ou Multiespectral

- Imagem monocromática:
- □ Pixel com valor escalar: $L_{min} \le f(x,y) \le L_{max}$
- Imagens multibandas ou multiespectrais
 - Pixel associado ao valor vetorial:
 - $f(x,y) = (L_1, L_2, ..., L_n)$, em que $L_{min} \le L_i \le L_{max}$.
 - \Box L_i pode representar grandezas e intervalos diferentes
 - Representação de imagens coloridas
 - Matiz (Hue): comprimento de onda dominante
 - Saturação (Saturation): pureza do matiz
 - Valor (value): brilho da luz
 - Ou, três cores primárias (R, G, B) com 1 byte por banda/pixel

Imagem Multibanda ou Multiespectral

- Imagens Coloridas (Multibandas)
 - Cada *pixel* pode possuir *n* bandas espectrais.

Uso de três bandas visíveis (RGB): imagem colorida aos

olhos humanos.

(a) Imagem Colorida

(b) Banda Vermelha (Red)

(c) Banda Verde (Green)

(d) Banda Azul (Blue)

Imagem Multibanda ou Multiespectral

- Imagens Coloridas (Multibandas)
 - Profundidade: 1 byte por pixel para cada banda (24 bits por pixel)

Imagem Multibanda ou Multiespectral

- Ou, por meio de uma mapa de cores
 - Nível cinza: índice para um mapa de cores

Imagem Multidimensional

- Extensão dos conceitos de amostragem e quantização para um espaço n-dimensional
 - Sequência de imagens no eixo espacial z ou temporal t:
 - Imagens Monocromáticas
 - Multibandas
 - Outras informações

PDI

Análise de intensidades

histograma

Histograma

Frequência de uma ocorrência

$$H = \sum_{i=1}^{L_{\text{max}}} m_i, \quad m_i : \text{função que conta o número de ocorrências } i;$$

$$L_{\text{max}} : \text{total de intervalos;}$$

Níveis de cinza

Análise de intensidades

Histograma

Permite avaliar o contraste de uma imagem

Análise de intensidades

Histograma: Exemplos

Análise de intensidades

Histograma: Exemplos

- Degradação do sinal, pode ocorrer na etapa de:
- Aquisição, transmissão ou processamento
- Ruído Aditivo ou Multiplicativo
- Representação
 - Uma variável aleatória z (nível de cinza)
 - Uma função de densidade de probabilidade p(z)

Ruído Uniforme: Histograma uniforme

- A probabilidade de um valor de ruído ter tons de cinza entre a e b é:
 - 1/(b-a), para b>a;
 - Fora desta faixa é 0
- Exemplo, b = 200, a= 100:
 - Ruído uniforme no intervalo de 100 a
 200
 - Cada valor de nível de cinza tem a probabilidade de 0,01 (ou 1%).

Ruído impulsivo

- Ocorrência aleatória de pixels com valores de luminosidade bem distintos dos vizinhos
- Processos de Digitalização
- Exemplo: sal-e-pimenta (pixels brancos e pretos)

$$p(z) = \begin{cases} P_a, \text{para } z = a \\ P_b, \text{para } z = b \\ 0, \text{caso contrário} \end{cases}$$

- Ruído Gaussiano: Histograma Curva Gaussiana
- Sistemas de Aquisição
 - Ruído que representa a degradação gerada por componentes eletrônicos
 - câmeras de vídeo.
- Densidade de probabilidade dada pela curva Gaussiana.
 - Pixels com valores de intensidade variando conforme a distribuição

Gaussiana

Caso Unidimensional

$$p(z) = \frac{1}{\sigma\sqrt{2\pi}}e^{\frac{-(z-\mu)^2}{2\sigma^2}}$$

μ é a média; σ² é a variância (largura do sinal)

Ruído Gaussiano:

Exercícios

- 1. Qual a diferença entre resolução espacial e profundidade de uma imagem?
- Qual o tamanho de uma imagem gerada pela amostragem de uma região de 200x300cm² em intervalos de 0,1mm na direção x e 0,2 mm na direção y?
- Qual a profundidade em bits de uma imagem com 8192 níveis de cinza?
- 4. Considere um protocolo de transmissão de dados consistindo em pacotes com um bit de início, 8 bits de informação e um bit de parada. Qual o tempo (em segundos) necessário para se transmitir uma imagem de 1024x1024 pixels com 256 níveis de cinza à taxa de transmissão de 9600 bits/segundo?
- 5. Os ruídos sal e pimenta e gaussiano foram apresentados em aula. Descreva outros ruídos que podem ser modelados em uma imagem.
- 6. Diferencie os conceitos de amostragem e quantização no processo de digitalização de imagens.
- Escreva uma programa para fornecer, como respostas, a taxa de amostragem e a profundidade de uma imagem dada como entrada. Para tanto, reproduza as imagens apresentadas a seguir para testar o programa. Considere que as imagens têm dimensões: 256x256 com 256 níveis de profundidade.

Exercícios

Exercícios

- 8. Escreva um programa capaz de fornecer o histograma de uma imagem dada como entrada. Em seguida, considere as imagens obtidas a partir do exercício 7 e aplique sobre cada uma os ruídos aditivos: sal e pimenta; uniforme, gaussiano e *poisson* (pesquisar sobre o comportamento deste ruído). As distribuições devem ser fornecidas pelo usuário. Após este processo, verifique o resultado obtido em cada imagem verificando possíveis alterações dos histogramas. Indique quais os tipos de dispositivos que podem inserir nas imagens os ruídos estudados.
- 9. Sabe-se que o ser humano é capaz de ouvir sons cujas frequências variam entre 20 Hz e 20kHz. Portanto, segundo o teorema de Nyquist, para que todas as frequências audíveis sejam registradas, qual a taxa de amostragem que deve ser aplicada?

Referências

Pedrini, H., Schwartz, W. R. Análise de Imagens Digitais: Princípios Algoritmos e Aplicações. São Paulo: Thomson Learning, 2008.

González, R. C., Woods, R. E. Processamento de Imagens Digitais. São Paulo: Edgard Blücher Itda, 2000.

Marques Filho, O., Vieira Neto, H. Processamento Digital de Imagens, Rio de Janeiro: Brasport, 1999

