SVM: RETRAINING WITH JUST THE SUPPORT VECTORS?

DAVID S. ROSENBERG

1. Setup

Consider the following formulation of the SVM objective function:

$$J(w) = \sum_{i=1}^{n} \ell(w^{T} x_{i}, y_{i}) + \lambda ||w||^{2},$$

for $\lambda > 0$ and where the loss function is the hinge loss $\ell(\hat{y}, y) = (1 - \hat{y}y_i)_+$, where $(x)_+ = x1(x \ge 0)$ refers to the "positive part" of x. This differs from our usual objective $J'(w) = \frac{1}{2}||w||^2 + \frac{c}{n}\sum_{i=1}^n \ell(w^Tx_i, y_i)$, but the two will produce the same set of solutions as we vary the hyperparameters $\lambda, c \in (0, \infty)$.

We know from the duality theory of SVMs that the minimizer of J(w) can be written as

$$w^* = \sum_{i=1}^n \alpha_i^* y_i x_i,$$

where some subset of the α_i^* 's may be exactly 0. For prediction, we don't need to save the (x_i, y_i) points for which $\alpha_i^* = 0$. One natural question is, what happens if we remove these points from the training set and re-fit the model? Perhaps the solution doesn't change at all? We can't quite show that, but here we show something a bit weaker: if we drop all training points that are on the "good side of the margin", then the solution does not change. In other words, we can drop all training points for which $y_i x_i^T w^* > 1$ and still end up with the same trained model. The set of training examples for which $y_i x_i^T w^* > 1$ all have $\alpha_i^* = 0$, but there may be some points with $\alpha_i^* = 0$ for which $y_i x_i^T w^* = 1$, and so wouldn't be excluded. Here's the proof of our claim:

Without loss of generality, index the x_i 's so x_{m+1}, \ldots, x_n are all on the "good side of the margin" (i.e. $y_i x_i^T w^* > 1$). Then we know that $\alpha_{m+1}^*, \ldots, \alpha_n^* = 0$. Let's define

$$J_1(w) = \sum_{i=1}^{m} \ell(w^T x_i, y_i) + \lambda ||w||^2$$

and let

$$J_2(w) = \sum_{m=1}^{n} \ell(w^T x_i, y_i).$$

Note that $J(w) = J_1(w) + J_2(w)$. The claim is that if w^* is a minimizer of J(w), then it is also a minimizer of $J_1(w)$. We'll do this with a local analysis of J and J_1 around w^* . The relation $y_i x_i^T w^* > 1$ holds for each i = m + 1, ..., n. Moreover, since $y_i x_i^T w$ is a continuous function of w for each i, these inequality relations will also hold for w in an ε -ball around w^* , for small enough $\varepsilon > 0$. Thus in that ball, $\ell(w^T x_i, y_i) = (1 - y_i w^T x_i)_+ = 0$, and so $J_2(w) \equiv 0$ for $||w - w^*|| < \varepsilon$. Thus in that ball, $J_1(w) = J(w)$, and so w^* is a local minimizer

Date: October 31, 2021 (Revised November 10, 2022).

of $J_1(w)$. By convexity of $J_1(w)$, w^* is also a global minimizer of J_1 , and so the solution is unchanged by dropping the training points on the good side of the margin.

This argument fails if we only have $y_i x_i^T w^* \ge 1$ for some i, and so we have not shown that we can just drop all training points with $\alpha_i^* = 0$.