Class08

Helena Khalil #A16313711

 $\#\#\mathrm{Data}$ input The data is supplied on CSV format:

```
wisc.df <- read.csv("Class08.csv", row.names=1)
head(wisc.df)</pre>
```

	diagnosis	radius_	mean	texture_mean	n perimeter_m	nean ar	ea_mean	L	
842302	Ŋ	ſ 1	7.99	10.3	8 122	2.80	1001.0)	
842517	N	1 2	20.57	17.7	7 132	2.90	1326.0)	
84300903	M	1 1	9.69	21.2	5 130	0.00	1203.0)	
84348301	M	ſ 1	1.42	20.3	8 77	7.58	386.1		
84358402	N	1 2	20.29	14.3	4 135	5.10	1297.0)	
843786	N	1 1	2.45	15.7	0 82	2.57	477.1		
	smoothnes	ss_mean c	compac	ctness_mean	concavity_mea	n conc	ave.poi	nts_mea	an
842302	(.11840		0.27760	0.300)1		0.1471	LO
842517	(0.08474		0.07864	0.086	39		0.0701	١7
84300903	(0.10960		0.15990	0.197	74		0.1279) 0
84348301	C	.14250		0.28390	0.241	.4		0.1052	20
84358402	C	0.10030		0.13280	0.198	30		0.1043	30
843786	(.12780		0.17000	0.157	' 8		0.0808	39
	symmetry_	mean fra	ctal	_dimension_m	ean radius_se	textu:	re_se p	erimete	er_se
842302	0.	2419		0.07	871 1.0950	0	.9053	8	3.589
842517	0.	1812		0.05	667 0.543	5 0	.7339	3	3.398
84300903	0.	2069		0.05	999 0.7456	0	.7869	4	1.585
84348301	0.	2597		0.09	744 0.4956	3 1	.1560	3	3.445
84358402	0.	1809		0.05	883 0.7572	2 0	.7813	5	5.438
843786	0.	2087		0.07	613 0.3349	5 0	.8902	2	2.217
	area_se s	smoothnes	s_se	compactness	_se concavity	_se co	ncave.p	oints_s	se
842302	153.40		6399	0.04	-		_	0.0158	
842517	74.08	0.00	5225	0.01	308 0.01	.860		0.0134	1 0
84300903	94.03	0.00	6150	0.04	006 0.03	3832		0.0205	58
84348301	27.23	0.00	9110	0.07	458 0.09	661		0.0186	37

```
84358402
           94.44
                       0.011490
                                        0.02461
                                                      0.05688
                                                                         0.01885
           27.19
                       0.007510
                                        0.03345
843786
                                                      0.03672
                                                                         0.01137
         symmetry_se fractal_dimension_se radius_worst texture_worst
             0.03003
                                   0.006193
                                                    25.38
842302
                                                                   17.33
842517
             0.01389
                                   0.003532
                                                    24.99
                                                                   23.41
84300903
             0.02250
                                   0.004571
                                                    23.57
                                                                   25.53
84348301
             0.05963
                                   0.009208
                                                    14.91
                                                                   26.50
84358402
             0.01756
                                   0.005115
                                                    22.54
                                                                   16.67
             0.02165
                                   0.005082
                                                                   23.75
843786
                                                    15.47
         perimeter_worst area_worst smoothness_worst compactness_worst
842302
                   184.60
                               2019.0
                                                 0.1622
                                                                    0.6656
842517
                   158.80
                               1956.0
                                                 0.1238
                                                                    0.1866
84300903
                   152.50
                               1709.0
                                                 0.1444
                                                                    0.4245
84348301
                    98.87
                               567.7
                                                 0.2098
                                                                    0.8663
84358402
                   152.20
                               1575.0
                                                 0.1374
                                                                    0.2050
843786
                   103.40
                               741.6
                                                 0.1791
                                                                    0.5249
         concavity_worst concave.points_worst symmetry_worst
842302
                                         0.2654
                   0.7119
                                                         0.4601
842517
                   0.2416
                                         0.1860
                                                         0.2750
84300903
                   0.4504
                                         0.2430
                                                         0.3613
                   0.6869
84348301
                                         0.2575
                                                         0.6638
84358402
                   0.4000
                                         0.1625
                                                         0.2364
843786
                   0.5355
                                         0.1741
                                                         0.3985
         fractal_dimension_worst
842302
                          0.11890
842517
                          0.08902
84300903
                          0.08758
84348301
                          0.17300
84358402
                          0.07678
843786
                          0.12440
```

```
diagnosis <-as.factor(wisc.df$diagnosis)
wisc.data <- wisc.df[,-1]</pre>
```

Q1. How mnay observations are in this dataset?

```
nrow(wisc.df)
```

[1] 569

There are 569 people in this data set being observed

Q2. How many of the observations have a malignant diagnosis?

```
B M
357 212

There are 212 people with the malignant diagnosis. Or you could do it this way
sum(wisc.df$diagnosis=="M")

[1] 212
Q3. How many variables/features in the data are suffixed with _mean?
x <- colnames(wisc.df)
length(grep("mean", x,))</pre>
```

[1] 10

Principal Component Analysis

We need to scale our input data beofre PCA as some of the columns are measured in terns of very different units with different means and different variances. The upshot here is we sert scale=TRUE argument to prcomp()

```
# Check column means and standard deviations
colMeans(wisc.data)
```

perimeter_mean	texture_mean	radius_mean
9.196903e+01	1.928965e+01	1.412729e+01
compactness_mean	${\tt smoothness_mean}$	area_mean
1.043410e-01	9.636028e-02	6.548891e+02
symmetry_mean	concave.points_mean	concavity_mean
1.811619e-01	4.891915e-02	8.879932e-02

<pre>fractal_dimension_mean</pre>	radius_se	texture_se
6.279761e-02	4.051721e-01	1.216853e+00
perimeter_se	area_se	${\tt smoothness_se}$
2.866059e+00	4.033708e+01	7.040979e-03
compactness_se	concavity_se	concave.points_se
2.547814e-02	3.189372e-02	1.179614e-02
symmetry_se	fractal_dimension_se	radius_worst
2.054230e-02	3.794904e-03	1.626919e+01
texture_worst	perimeter_worst	area_worst
2.567722e+01	1.072612e+02	8.805831e+02
${\tt smoothness_worst}$	compactness_worst	concavity_worst
1.323686e-01	2.542650e-01	2.721885e-01
concave.points_worst	symmetry_worst	<pre>fractal_dimension_worst</pre>
1.146062e-01	2.900756e-01	8.394582e-02

apply(wisc.data,2,sd)

perimeter_mean	texture_mean	radius_mean
2.429898e+01	4.301036e+00	3.524049e+00
compactness_mean	${\tt smoothness_mean}$	area_mean
5.281276e-02	1.406413e-02	3.519141e+02
symmetry_mean	concave.points_mean	concavity_mean
2.741428e-02	3.880284e-02	7.971981e-02
texture_se	radius_se	fractal_dimension_mean
5.516484e-01	2.773127e-01	7.060363e-03
smoothness_se	area_se	perimeter_se
3.002518e-03	4.549101e+01	2.021855e+00
concave.points_se	concavity_se	compactness_se
6.170285e-03	3.018606e-02	1.790818e-02
radius_worst	fractal_dimension_se	symmetry_se
4.833242e+00	2.646071e-03	8.266372e-03
area_worst	perimeter_worst	texture_worst
5.693570e+02	3.360254e+01	6.146258e+00
concavity_worst	compactness_worst	${\tt smoothness_worst}$
2.086243e-01	1.573365e-01	2.283243e-02
${\tt fractal_dimension_worst}$	symmetry_worst	concave.points_worst
1.806127e-02	6.186747e-02	6.573234e-02

Perform PCA on wisc.data by completing the following code
wisc.pr <- prcomp(wisc.data, scale=TRUE)
summary(wisc.pr)</pre>

Importance of components:

```
PC1
                                 PC2
                                         PC3
                                                 PC4
                                                         PC5
                                                                 PC6
                                                                          PC7
Standard deviation
                       3.6444 2.3857 1.67867 1.40735 1.28403 1.09880 0.82172
Proportion of Variance 0.4427 0.1897 0.09393 0.06602 0.05496 0.04025 0.02251
Cumulative Proportion 0.4427 0.6324 0.72636 0.79239 0.84734 0.88759 0.91010
                           PC8
                                  PC9
                                         PC10
                                                PC11
                                                        PC12
                                                                PC13
                                                                         PC14
Standard deviation
                       0.69037 0.6457 0.59219 0.5421 0.51104 0.49128 0.39624
Proportion of Variance 0.01589 0.0139 0.01169 0.0098 0.00871 0.00805 0.00523
Cumulative Proportion 0.92598 0.9399 0.95157 0.9614 0.97007 0.97812 0.98335
                          PC15
                                  PC16
                                          PC17
                                                  PC18
                                                          PC19
                                                                  PC20
                                                                         PC21
Standard deviation
                       0.30681 0.28260 0.24372 0.22939 0.22244 0.17652 0.1731
Proportion of Variance 0.00314 0.00266 0.00198 0.00175 0.00165 0.00104 0.0010
Cumulative Proportion
                       0.98649 0.98915 0.99113 0.99288 0.99453 0.99557 0.9966
                          PC22
                                  PC23
                                         PC24
                                                 PC25
                                                         PC26
                                                                 PC27
                                                                          PC28
Standard deviation
                       0.16565 0.15602 0.1344 0.12442 0.09043 0.08307 0.03987
Proportion of Variance 0.00091 0.00081 0.0006 0.00052 0.00027 0.00023 0.00005
Cumulative Proportion
                       0.99749 0.99830 0.9989 0.99942 0.99969 0.99992 0.99997
                          PC29
                                  PC30
Standard deviation
                       0.02736 0.01153
Proportion of Variance 0.00002 0.00000
Cumulative Proportion 1.00000 1.00000
```

```
plot(wisc.pr$x[,1], wisc.pr$x[,2], col=diagnosis)
```


Q4. From your results, what proportion of the original variance is captured by the first principal components (PC1)?

44.27% of the original varience is captured by the first principle component. >Q5. How many principal components (PCs) are required to describe at least 70% of the original variance in the data?

PC1, PC2, PC3

Q6. How many principal components (PCs) are required to describe at least 90% of the original variance in the data?

PC1, PC2, PC3, PC4, PC5, PC6, PC7

biplot(wisc.pr)

Q7. What stands out to you about this plot? Is it easy or difficult to understand? Why?

It's a hot mess, it's hard to read and everything is overlapping.

Q8. Generate a similar plot for principal components 1 and 3. What do you notice about these plots?

The first plot has a cleaner cut and has cleaner clusters, while this one has less clean data


```
# Create a data.frame for ggplot
df <- as.data.frame(wisc.pr$x)
df$diagnosis <- diagnosis

# Load the ggplot2 package
library(ggplot2)

# Make a scatter plot colored by diagnosis
ggplot(df) +
   aes(PC1, PC2, col=diagnosis,) +
   geom_point()</pre>
```



```
# Calculate variance of each component
pr.var <- wisc.pr$sdev^2
head(pr.var)</pre>
```

[1] 13.281608 5.691355 2.817949 1.980640 1.648731 1.207357

Optional:

```
library(factoextra)
```

Welcome! Want to learn more? See two factoextra-related books at https://goo.gl/ve3WBa

```
fviz_eig(wisc.pr, addlabels = TRUE)
```


Q9. For the first principal component, what is the component of the loading vector (i.e. wisc.pr\$rotation[,1]) for the feature concave.points_mean?

```
wisc.pr$rotation[,1]["concave.points_mean"]
```

concave.points_mean -0.2608538

Q10. What is the minimum number of principal components required to explain 80% of the variance of the data?

PC1, PC2, PC3, PC4, PC5 (so five of them)

Hierarchical Clustering

```
# Scale the wisc.data data using the "scale()" function
data.scaled <- scale(wisc.data)

data.dist <- dist(data.scaled)</pre>
```

```
wisc.hclust <- hclust(data.dist, method="complete")</pre>
```

Q11. Using the plot() and abline() functions, what is the height at which the clustering model has 4 clusters?

```
plot(wisc.hclust)
abline(h=20, col="red", lty=2)
```

Cluster Dendrogram

data.dist hclust (*, "complete")

```
wisc.hclust.clusters <- cutree(wisc.hclust, k=4)
table(wisc.hclust.clusters, diagnosis)</pre>
```

diagnosis wisc.hclust.clusters B M 1 12 165 2 2 5 3 343 40 4 0 2

Q12. Can you find a better cluster vs diagnoses match by cutting into a different number of clusters between 2 and 10?

4 is the best cluster number, it gives us the 2 clusters that we need and separates they into mostly benine and mostley malignent. Too many clusters separates them into usless clusters.

Q13. Which method gives your favorite results for the same data.dist dataset? Explain your reasoning.

ward.D2 is my favorite because it balances clusters and minimizes the varience making the clusters well defined.

##4 K-means clustering

##5. Combining methods This approach will take not original data but our PCA results and work with them.

```
d <- dist(wisc.pr$x[,1:3])
wisc.pr.hclust <- hclust(d, method= "ward.D2")
plot(wisc.pr.hclust)</pre>
```

Cluster Dendrogram

d hclust (*, "ward.D2")

Generate 2 cluster groups from this helust object.

```
grps <- cutree(wisc.pr.hclust, k=2)
grps</pre>
```

842302	842517	84300903	84348301	84358402	843786	844359	84458202
1	1	1	1	1	1	1	1
844981	84501001	845636	84610002	846226	846381	84667401	84799002
1	1	2	1	1	2	1	1
848406	84862001	849014	8510426	8510653	8510824	8511133	851509
2	1	1	2	2	2	1	1
852552	852631	852763	852781	852973	853201	853401	853612
1	1	1	1	1	2	1	1
85382601	854002	854039	854253	854268	854941	855133	855138
1	1	1	1	1	2	2	1
855167	855563	855625	856106	85638502	857010	85713702	85715
2	1	1	1	2	1	2	1
857155	857156	857343	857373	857374	857392	857438	85759902
2	2	2	2				
857637	857793	857810	858477	858970	858981	858986	859196
1	1	2	2	2	2		
85922302	859283	859464	859465	859471	859487	859575	
1	1	2		1			
859717	859983	8610175	8610404	8610629	8610637	8610862	
1	2	2			1		
861103	8611161			8612080		86135501	
2	1	1		2	1		
861597		861648					
2	1	2	2	2	2		
86211	862261		862548				
2	2	2		2	2		
862989	863030		863270		_	-	86408
2	1	2	2	1	2		
86409	864292	_	864685		_	_	_
1	2	2	2	2	1		
865137	-	865423					
2	1	1		2	2		
866458	866674		8670				868202
1	1	2		1	2		2
		868826					
2	2						
		869691					
2	2		2				1
		8711002					
	2	2					
1 8711561		871201					
0/11501		0/1201					
		87139402					
8/12/06	8/12853	8/139402	8/163	8/164	8/1641	8/1642	8/2113

1	2	2	2	1	2	2	2
872608	87281702	873357	873586	873592	873593	873701	873843
1	1	2	2	1	1	1	2
873885	874158	874217	874373	874662	874839	874858	875093
2	2	2	2	2	2	1	2
875099	875263	87556202	875878	875938	877159	877486	877500
2	1	1	2	1	1	1	1
877501	877989	878796	87880	87930	879523	879804	879830
2	1	1	1	2	2	2	2
8810158	8810436	881046502	8810528	8810703	881094802	8810955	8810987
1	2	1	2	1	1	1	1
8811523	8811779	8811842	88119002	8812816	8812818	8812844	8812877
2	2	1	1	2	2	2	1
8813129	88143502	88147101	88147102	88147202	881861	881972	88199202
2	2	2	2	2	1	1	2
88203002	88206102	882488	88249602	88299702	883263	883270	88330202
2	1	2	2	1	1	2	1
88350402	883539	883852	88411702	884180	884437	884448	884626
2	2	1	2	1	2	2	1
88466802	884689	884948	88518501	885429	8860702	886226	886452
2	2	1	2	1	1	1	1
88649001	886776	887181	88725602	887549	888264	888570	889403
1	1	1	1	1	2	1	2
889719	88995002	8910251	8910499	8910506	8910720	8910721	8910748
1	1	2	2	2	2	2	2
8910988	8910996	8911163	8911164	8911230	8911670	8911800	8911834
1	2	2	2	2	2	2	2
8912049	8912055	89122	8912280	8912284	8912521	8912909	8913
1	2	1	1	2	2	2	2
8913049	89143601	89143602	8915	891670	891703	891716	891923
1	2	1	2	2	2	2	2
891936	892189	892214	892399	892438	892604	89263202	892657
2	2	2	2	1	2	1	2
89296	893061	89344	89346	893526	893548	893783	89382601
2	2	2	2	2	2	2	2
89382602	893988	894047	894089	894090	894326	894329	894335
2	2				1		
894604	894618	894855	895100	89511501	89511502	89524	895299
2	1	2	1	2	2	2	2
8953902	895633	896839	896864	897132	897137	897374	89742801
1	1				2		1
897604	897630	897880	89812	89813	898143	89827	898431
2	1	2	1	1	2	2	1

89864002	898677	898678	89869	898690	899147	899187	899667
2	2	2	2	2	2	2	1
899987	9010018	901011	9010258	9010259	901028	9010333	901034301
1	1	2	2	2	2	2	2
901034302	901041	9010598	9010872	9010877	901088	9011494	9011495
2	2	2	2	2	1	1	2
9011971	9012000	9012315	9012568	9012795	901288	9013005	901303
1	1	1	2	_		2	_
901315	9013579	9013594	9013838	901549	901836	90250	90251
1	2	2	1	2	2	2	2
902727	90291	902975			90312	90317302	903483
2	2	2	2			_	2
903507	903516	903554	903811	90401601	90401602	904302	
1	1	2	2			2	
90439701	904647	904689	9047		904971	905189	905190
1	2	2	2	_	_	2	_
90524101	905501				905557	905680	905686
1	2	2	2			2	
905978	90602302				906564		906878
2	1	2	2			2	_
907145	907367			90769601		907914	
2	2	2	2			1	_
908194	908445	908469			909220	909231	
1		2	1			2	
909411	909445	90944601			9110720	9110732	
2	1	2	2			1	_
	911157302				911201		
2	1	2	1	_		2	
9112366		9112594			911296202		
2	_	2	2		_	2	-
911320502					911366		
2	1	2	2			2	_
911384	9113846			911654		911685	
2		2		2		2	
					913063		
2							
	913535						914333
2		2		1			
914366		914769			91504		
1			1				
					915460		
					1		2
915691	915940	91594602	916221	916799	916838	917062	917080

1	2	2	2	1	1	2	2
917092	91762702	91789	917896	917897	91805	91813701	91813702
2	1	2	2	2	2	2	2
918192	918465	91858	91903901	91903902	91930402	919537	919555
2	2	2	2	2	1	2	1
91979701	919812	921092	921362	921385	921386	921644	922296
1	2	2	2	2	1	2	2
922297	922576	922577	922840	923169	923465	923748	923780
2	2	2	2	2	2	2	2
924084	924342	924632	924934	924964	925236	925277	925291
2	2	2	2	2	2	2	2
925292	925311	925622	926125	926424	926682	926954	927241
2	2	1	1	1	1	2	1
92751							
2							

plot(wisc.pr\$x[,1], wisc.pr\$x[,2], col=grps)

table(grps)

grps


```
g <- as.factor(grps)
levels(g)

[1] "1" "2"

g <- relevel(g,2)
levels(g)

[1] "2" "1"

# Plot using our re-ordered factor
plot(wisc.pr$x[,1:2], col=g)</pre>
```



```
## Use the distance along the first 7 PCs for clustering i.e. wisc.prx[, 1:7] wisc.pr.hclust <- hclust (dist(wisc.prx[,1:7]), method="ward.D2")

wisc.pr.hclust.clusters <- cutree(wisc.pr.hclust, k=2)
```

Q15. How well does the newly created model with four clusters separate out the two diagnoses?

```
# Compare to actual diagnoses
table(wisc.pr.hclust.clusters, diagnosis)
```

```
diagnosis
wisc.pr.hclust.clusters B M
1 28 188
2 329 24
```

It separates them out pretty well and is clear.