Plastic Analysis and Design

Final Project 2018

Groups

Team I	r07521221	楊鈞堯
	r07521224	林冠泓
	r07521208	林昱成
	r07521232	賴耘川
Team 2	r07521236	劉琨耀
	r07521238	熊厚淳
Team 3	a07521104	Tiphaine Huet
	a07527102	Julie Bornerand
	r06521212	蔡東樺
	r06521217	乃宥然

Team 4	r07521209	李宇軒
	r07521216	鄭維中
	r07521226	邱偉誠
Team 5	r07521225	蘇智偉
	r07521217	楊甯凱
	r07521201	謝銓裕
	r07521214	楊淳任

Structure Model

Real Structure (Before Collapse)

Real Structure (After Collapse)

Details

» Building Name : 嘉義民雄農工實習工廠

» Soil Type : Type 2

» Building Function : Schoolhouse

» Structure System : RC MRF

» Structure Size : 2 floors without basement

» Plan Dimensions : Long Dir. 48.4 m Short Dir. 12.5 m

» Materials : Concrete f_c '= 280 kgf/cm²

Rebar $f_y = 2800 \text{ kgf/cm}^2$

» Loadings
Dead load 850 kg/m²

Including all members

Live load 250 kg/m²

Plan of Structure

Elevation of Structure

Elevation C

Simplified analysis: consider walls as rigid members

Unit: cm

Beam Cross Section

	IBI	IB2,2B2	1B3,2B3	2B I	2B4	IB4	СВ
	30*80	25*50	25*65	38*80	25*40	25*40	30*50
	× × × × 0 0 0 0 0	0 X X 0	Δ Δ Δ ο ο	× × × 0	0 0	000	× × × 0 0 0
Top Rebar			○ 2-D19△ 3-D16	♦ 2-D25 X 4-D22	2-D19	○ 3-D19	X 4-D22
Bottom Rebar	X 4-D22	O 2-D19	△ 3-D16	♦ 3-D25	O 2-D19		X 2-D22
Stirrup	D10@15	D10@10	D10@15	D10@10	D10@15	D10@20	D10@10

Clear cover: 4 cm

Column Cross Section

Clear cover: 4 cm

Project Assignment

Team	Stirrups for Columns (cm)		Analysis Cases	
1	D10 @ 10			1022CHY037 30%&100%
2	D10 @ 30	Small to moderate seismic response spectrum (30-year return period)	Design seismic response spectrum (475-year return period)	1022CHY037 30%&100%
3	DI0 @ I0			921TCU068 30%&100%
4	D10 @ 30			921TCU068 30%&100%
5	D10 @ 10			921TCU052 30%&100%

Note:

- 1. Software used: ETABS & TEASPA
- 4. The units of time history data are sec. and gal
- 2. Analysis Direction: Long Direction
- 3. consider walls as rigid members

- Section I. Introduction
- Section 2. Cross Section Properties and Analytical Model
- Section 3. Seismic Evaluation (NCREE)
- Section 4. ATC-40
- Section 5. FEMA273
- Section 6. Mechanism Method (Upper Bound Method)
- Section 7. Summary and Remarks

Section I. Introduction

- 1.1 Purposes
- 1.2 Basic Information
- 1.3 Seismic Records
- 1.4 Flow Chart
- 1.5 Job Assignment

.

For reference only

Section 2. Cross Section Properties and Analytical Model

- 2.1 Cross Section Analyses
- 2. I. I Yield Moment/Yield Curvature
- 2.1.2 Ratio of M_u/M_y and φ_u/φ_y

• • • • •

- 2.2 ETABS Model
- 2.2.1 Define Material
- 2.2.2 Define Section
- 2.2.3 Define Plastic Hinge Property (TEASPA)

For reference only

Section 3. Seismic Evaluation

- 3.1 Bare Frame
- 3.1.1 Linear Static Procedure, LSP
- 3.1.2 Linear Dynamic Procedure, LDP
- 3.1.3 Nonlinear Static Procedure, NSP
- (3.1.4 Nonlinear Dynamic Procedure, NDP) optional

.

Section 4. ATC-40

• • • • •

Section 5. FEMA273

• • • • •

Section 6. Mechanism Method (Upper Bound Method)

6.1 Upper Bound Method

You will know where the plastic hinges form by using pushover method and also failure mechanism, so you can calculate the ultimate lateral force by hand. Then you could compare with the lateral load gotten from pushover analysis.

For reference only

Section 7. Summary and Remarks

- 7.1 Discussions and Conclusions
- 7.2 Comments
- 7.3 Appendix
- 7.4 Reference

• • • • •