Structures algébriques et arithmétique

Feuille d'exercices #19

⊗ Partie A – Groupes et sous-groupes

Exercice 1 — Transport de structure

1. Soient E un ensemble, (G, \bullet) un groupe et φ une bijection de G sur E. On définit une loi interne sur E par :

$$\forall x, y \in E, \quad x \star y = \varphi \left(\varphi^{-1}(x) \bullet \varphi^{-1}(y) \right)$$

Montrer que (E, \star) est un groupe.

- 2. a) Montrer que pour tout $x, y \in \mathbb{R}$, $\operatorname{th}(x+y) = \frac{\operatorname{th}(x) + \operatorname{th}(y)}{1 + \operatorname{th}(x)\operatorname{th}(y)}$.
 - b) On pose, pour tous $x, y \in]-1,1[, x \oplus y = \frac{x+y}{1+xy}]$. Montrer que $(]-1,1[,\oplus)$ est un groupe abélien.
- \mathcal{S} **Exercice 2** Sous-groupes additifs de \mathbb{R}
 - 1. Donner des exemples de sous-groupes additifs de \mathbb{R} .
 - 2. Soit *G* un sous-groupe de (\mathbb{R} , +) tel que $G \neq \{0\}$.
 - a) Établir l'existence de $\alpha = \inf(G \cap \mathbb{R}_+^*)$.
 - b) On suppose que $\alpha > 0$. Montrer que $\alpha \in G$ puis en déduire que $G = \alpha \mathbb{Z}$.
 - c) On suppose que $\alpha = 0$. Prouver que G est dense dans \mathbb{R} . Conclure.
 - 3. a) Soient $a, b \in \mathbb{R}^*$. Montrer que $a\mathbb{Z} + b\mathbb{Z}$ est dense dans \mathbb{R} ssi $\frac{a}{b} \notin \mathbb{Q}$.
 - b) Montrer que $\{\cos(n)\}_{n\in\mathbb{N}}$ est dense dans [-1,1].

Exercice 3 — Pour $n \in \mathbb{N}^*$, on note $GL_n(\mathbb{Z})$ l'ensemble des matrices de $GL_n(\mathbb{R})$ à coefficients dans \mathbb{Z} et dont l'inverse est encore à coefficients dans \mathbb{Z} .

- 1. Montrer que $GL_n(\mathbb{Z})$ est un sous-groupe de $GL_n(\mathbb{R})$.
- 2. Soit $M \in \mathcal{M}_n(\mathbb{Z})$. Montrer que $M \in GL_n(\mathbb{Z})$ si et seulement si $\det(M) = \pm 1$.

Exercice 4 — Montrer qu'un groupe dont tous les éléments sont d'ordre 2 (à l'exception de l'élément neutre) est abélien.

Exercice 5 — Montrer que tout groupe fini d'ordre 4 est isomorphe à $\mathbb{Z}/4\mathbb{Z}$ ou à $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$. Préciser ce qu'il en est pour le groupe multiplicatif $((\mathbb{Z}/5\mathbb{Z})^*, \times)$.

Exercice 6 — *Produit de deux sous-groupes*

Soient (G, \cdot) et A, B deux sous-groupes de G. On pose $AB = \{ab \mid a \in A, b \in B\}$. Montrer que AB est un sous-groupe de G si et seulement si AB = BA.

Exercice 7 — Montrer que $\frac{2}{3}\mathbb{Z} + \frac{1}{5}\mathbb{Z}$ est un sous-groupe monogène de \mathbb{Q} .

Exercice 8 — Montrer que les éléments inversibles de l'anneau $\mathbb{Z}/11\mathbb{Z}$ forment un groupe cyclique, dont on précisera les générateurs.

- **№ Exercice 9** Soient $n \in \mathbb{N}^*$ et $k \in \mathbb{Z}$. On pose $d = k \wedge n$.
 - 1. Déterminer l'ordre de \overline{k} dans $\mathbb{Z}/n\mathbb{Z}$.
 - 2. Montrer que \overline{k} et \overline{d} engendrent le même sous-groupe.
 - 3. Décrire l'ensemble des sous-groupes de $\mathbb{Z}/n\mathbb{Z}$.

Exercice 10 —

- 1. Montrer que tout sous-groupe de (\mathbb{U}_n, \times) est cyclique.
- 2. En déduire que tout sous-groupe d'un groupe cyclique est cyclique.

Exercice 11 — Soient G un groupe cyclique d'ordre n et d un diviseur de n. Montrer que G possède un et un seul sous-groupe d'ordre d.

Exercice 12 — Ordre du produit de deux éléments

Soient G un groupe abélien et $a,b\in G$ d'ordres respectifs p et q.

- 1. Montrer que si $p \land q = 1$, alors ab est d'ordre pq.
- 2. Montrer que si d est un diviseur de p, il existe un élément de G d'ordre d.
- 3. En déduire qu'il existe un élément d'ordre $p \lor q$.
- 4. On considère ici $G = GL_2(\mathbb{R})$, $a = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$ et $b = \begin{bmatrix} 0 & 1 \\ -1 & -1 \end{bmatrix}$. Que dire de l'ordre de a? de b? de ab?

Exercice 13 — Déterminer tous les morphismes de groupes de $(\mathbb{Q}, +)$ dans $(\mathbb{Z}, +)$.

Exercice 14 — Soient $a, b \in \mathbb{N} \setminus \{0, 1\}$. Montrer que $\mathbb{Z}/a\mathbb{Z} \times \mathbb{Z}/b\mathbb{Z}$ est cyclique si et seulement si $a \wedge b = 1$.

Exercice 15 — Soit f un morphisme d'un groupe (G,\cdot) dans (\mathbb{C}^*,\times) que l'on suppose non constant. Déterminer $\sum f(x)$.

On introduira g tel que $f(g) \neq 1$ et on calculera f(gx) pour $x \in G$.

Me Exercice 16 — Théorème de Lagrange

Soient *G* un groupe fini d'ordre *n* et *H* un sous-groupe de *G*.

On définit alors sur *G* la relation : $g \mathcal{R} g' \iff g^{-1} g' \in H$.

- 1. Montrer que \mathcal{R} est une relation d'équivalence.
- 2. Démontrer que chaque classe d'équivalence a autant d'éléments que *H*. En déduire que l'ordre de *H* divise celui de *G*.
- 3. Que dire de l'intersection de sous-groupes d'ordres premiers entre eux?

⊗ Partie B – Anneaux, corps et algèbres

Exercice 17 — Soit $A = \left\{ \frac{k}{2n+1} \mid k \in \mathbb{Z} \text{ et } n \in \mathbb{N} \right\}$.

Montrer que $(A, +, \times)$ est un anneau et préciser ses éléments inversibles.

Exercice 18 — Soit $d \in \mathbb{N}$ tel que $\sqrt{d} \notin \mathbb{Q}$. On note $\mathbb{Q}[\sqrt{d}] = \{a + b\sqrt{d} \mid a, b \in \mathbb{Q}\}$. Montrer que $\mathbb{Q}[\sqrt{d}], +, \times$ est un corps.

Exercice 19 — On considère l'anneau $(A, +, \times)$ et deux éléments a et b de A.

- 1. Si ab est un élément nilpotent, montrer que 1 ab est inversible et déterminer $(1 ab)^{-1}$.
- 2. Si ab et ba sont nilpotents, exprimer $(1 ba)^{-1}$ en fonction de $(1 ab)^{-1}$.
- 3. On ne suppose plus ab ni ba nilpotents. Montrer que si 1-ab est inversible, alors 1-ba est également inversible.

Exercice 20 — Soit *A* un anneau commutatif.

On note $\mathfrak{Nil}(A)$ l'ensemble des éléments nilpotents de A.

Montrer que $\mathfrak{Nil}(A)$ est un idéal de A. Déterminer $\mathfrak{Nil}(\mathbb{Z}/n\mathbb{Z})$ pour $n \in \mathbb{N}^*$.

Exercice 21 — Soit *p* un nombre premier supérieur ou égal à 3.

- 1. Montrer que pour tout $k \in [2, p-1]$, p divise $\binom{p}{k}$.
- 2. En déduire que $f: \overline{x} \mapsto \overline{x}^p$ est un morphisme d'anneaux sur $\mathbb{Z}/p\mathbb{Z}$.
- 3. Redémontrer à partir de cela le petit théorème de Fermat.

Exercice 22 — Équation de Pell-Fermat $x^2 - 2y^2 = 1$

On considère l'ensemble $\mathbb{Z}[\sqrt{2}] = \{a + b\sqrt{2}, a \in \mathbb{Z}, b \in \mathbb{Z}\}.$

- 1. Montrer que $\mathbb{Z}[\sqrt{2}]$ est un sous-anneau intègre de \mathbb{R} .
- 2. On pose, pour tout $x = a + b\sqrt{2}$ de $\mathbb{Z}[\sqrt{2}]$, $N(x) = a^2 2b^2$.
 - a) Montrer que pour tous x, y de $\mathbb{Z}[\sqrt{2}]$, N(xy) = N(x)N(y).
 - b) En déduire que x est inversible dans $\mathbb{Z}[\sqrt{2}]$ ssi $N(x) = \pm 1$.
- 3. Montrer que les éléments $\pm (1 + \sqrt{2})^n$ de $\mathbb{Z}[\sqrt{2}]$ sont inversibles.
- 4. On veut établir que tout inversible x de $\mathbb{Z}[\sqrt{2}]$ est de la forme précédente.
 - a) Montrer qu'on peut se restreindre à $x = a + b\sqrt{2}$, avec $a \in \mathbb{N}^*$ et $b \in \mathbb{N}$.
 - b) Montrer alors que *x* est de la forme $(1 + \sqrt{2})^n$ avec $n \in \mathbb{N}$ et conclure.

Exercice 23 — On considère l'ensemble $\mathbb{Z}[j] = \mathbb{Z} + j\mathbb{Z}$ où $j = e^{2i\pi/3}$.

- 1. Montrer que $\mathbb{Z}[j]$ est un sous-anneau de $(\mathbb{C}, +, \times)$. Est-ce un corps?
- 2. On note $\mathbb{Z}[i]^*$ l'ensemble des éléments inversibles de l'anneau $\mathbb{Z}[i]$.
 - a) Prouver que $x \in \mathbb{Z}[j]^*$ si et seulement si |x| = 1.
 - b) Déterminer alors les inversibles de $\mathbb{Z}[j]$. Que dire de $(\mathbb{Z}[j]^*, \times)$?
- 3. Soient $x, y \in \mathbb{Z}[j]$ avec $y \neq 0$. Justifier l'existence de $(q, r) \in \mathbb{Z}[j]^2$ vérifiant x = qy + r avec |r| < |y|.
- 4. En conclure que tous les idéaux de $\mathbb{Z}[i]$ sont principaux.

Exercice 24 — Algèbre des quaternions

Soient les quatre matrices suivantes :

$$I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
; $J = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$; $K = \begin{bmatrix} 0 & i \\ i & 0 \end{bmatrix}$; $L = \begin{bmatrix} -i & 0 \\ 0 & i \end{bmatrix}$

Montrer que $\mathbb{H} = \{aI + bJ + cK + dL, (a, b, c, d) \in \mathbb{R}^4\} \subset \mathcal{M}_2(\mathbb{C})$ est une \mathbb{R} -algèbre.

$\ensuremath{\mathfrak{D}}$ Partie C – Arithmétique de $\ensuremath{\mathbb{Z}}$

Exercice 25 — Trouver le dernier chiffre de 2023²⁰²³ et de 1789²⁰²³.

Exercice 26 —

- 1. Résoudre dans \mathbb{Z} les équations $12x \equiv 3$ [14] et $12x \equiv 8$ [14].
- 2. a) Déterminer une condition nécessaire et suffisante pour que $ax \equiv b$ [n] admette une solution.
 - b) Présenter une démarche de résolution de l'équation $ax \equiv b$.

Exercice 27 — Résoudre dans \mathbb{Z} le système de congruences :

$$\begin{cases} x \equiv 4 \ [5] \\ x \equiv 3 \ [6] \end{cases}$$

Exercice 28 — Théorème de Wilson

Soit $p \in \mathbb{N}^*$. Montrer que p est premier si et seulement si :

$$(p-1)! + 1 \equiv 0 [p]$$

On déterminera les solutions dans $\mathbb{Z}/p\mathbb{Z}$ de l'équation $\overline{x}^2 = \overline{1}$.

⊗ Partie D – Anneaux de polynômes

Exercice 29 — Soient A et B deux éléments de $\mathbb{K}[X]$.

- 1. On suppose ici que $A^2|B^2$. Montrer que A|B.
- 2. Montrer que $A \wedge B = 1$ si et seulement si $(A + B) \wedge AB = 1$.
- 3. Montrer que si $A \wedge B = 1$, alors $A \wedge BC = A \wedge C$.
- **Solution Exercice 30** Soit α ∈]0, π [. Factoriser $X^{2n} 2\cos(n\alpha)X^n + 1$ dans $\mathbb{R}[X]$.

Exercice 31 — Résoudre dans $\mathbb{C}[X]^2$ l'équation $(X^2 + X + 1)P - (X + 2)Q = X^3$.

Exercice 32 — Prouver que pour tout $n \in \mathbb{N}^*$, $(X^2 + X + 1)^2 | (X + 1)^{6n+1} - X^{6n+1} - 1$.

Exercice 33 — Soient $n \in \mathbb{N}^*$ et $\theta \in \mathbb{R}$.

Montrer que $X^2 - 2\cos(\theta)X + 1|\sin(2\theta)X^n - \sin(n\theta)X^2 + \sin((n-2)\theta)$.

Exercice 34 — Soient p et q deux entiers naturels premiers entre eux.

Montrer que $(X^p - 1)(X^q - 1) | (X - 1)(X^{pq} - 1)$.

Exercice 35 — Soient $n \ge 2$ et $P \in \mathbb{R}_n[X]$ admettant n racines simples $x_1, ..., x_n$. Montrer que $\sum_{k=1}^n \frac{1}{P'(x_k)} = 0$.

Exercice 36 — *Polynômes cyclotomiques*

Pour $n \in \mathbb{N}^*$, on appelle racine primitive n-ième de l'unité tout complexe ξ engendrant \mathbb{U}_n . On note Z_n l'ensemble des racines primitives. On pose :

$$\phi_n = \prod_{\xi \in Z_n} (X - \xi)$$

- 1. Déterminer ϕ_n pour $n \in \{1, 2, 3, 4, 5, 6\}$.
- 2. Exprimer $deg(\phi_n)$ à l'aide de l'indicatrice d'Euler.
- 3. Déterminer ϕ_p pour p premier.
- 4. Montrer que pour tout entier non nul n, $X^n 1 = \prod_{k \mid n} \phi_k(X)$.
- 5. a) Montrer que si A = BC avec $A, B \in \mathbb{Q}[X]$ et $C \in \mathbb{C}[X]$, alors $C \in \mathbb{Q}[X]$. Montrer que si $A, B \in \mathbb{Z}[X]$ et sont de plus unitaires, alors il en va de même pour C.
 - b) En déduire que pour tout $k \in \mathbb{N}^*$, $\phi_k \in \mathbb{Z}[X]$.