What is Machine Learning?

Pyowa

September 5, 2017

David W. Body / Big Creek Software, LLC

Artificial Intelligence ⊇ Machine Learning ⊇ Deep Learning

Image credit: François Chollet, Deep Learning with Python

Who am I?

- David W. Body
- Independent software developer
- Interested in data science & machine learning
- Love learning & teaching
- Available for contract & consulting work

Who are you?

- Software developers
- Data scientists / statisticians?
- Other?

if you're new to Deep Learning, be encouraged. Each part you need to learn is learnable and nobody knows it all. It's a #lifelong journey.

3:37 PM - 2 Apr 2017

[] 83

Outline

- The concept of machine learning
- Types of machine learning
- Machine learning techniques
 - Linear regression
 - Logistic regression for classification
 - Neural networks
- MNIST example
- Dangers of machine learning
- Where to go from here

Machine learning allows computers to "learn" or improve their decisions or predictions without being explicitly programmed.

Machine Learning is a new programming paradigm

Image credit: François Chollet, Deep Learning with Python

Types of machine learning

- Supervised learning
- Unsupervised learning
- Reinforcement learning

Types of machine learning problems

- Regression
- Classification
- Clustering

Machine learning techniques

- Linear regression
- Logistic regression for classification
- Neural networks

by today's definition, y=mx+b is an artificial intelligence bot that can tell you where a line is going

9:44 AM - 29 Mar 2017

3,447 Retweets 5,608 Likes

↑ 3.4K

[™] 5.6K

$$y = b + w \cdot x$$

$$y = b + w \cdot x$$

The problem is to find the "best" values for b and w given the data x,y.

- Select loss function.
- Select minimization algorithm.
- Find values of b and w that minimize loss function.

For linear regression, our loss function is the sum of squared errors

$$L(\mathrm{b},\mathrm{w}) = \sum_{i=1}^N e_i^2$$

$$\hat{y_i} = \mathrm{b} + \mathrm{w} \cdot x_i \ e_i = \hat{y_i} - y_i$$

How to minimize the loss function?

Various algorithms - outside our scope for today

The values of w and b that minimize the loss function are our estimates \hat{b} and \hat{w} .

When we get a new value of x, we can predict y using

$$\hat{y}_{ extit{new}} = \hat{b} + \hat{w} \cdot x_{ extit{new}}$$

For example, the mtcars dataset is included with R includes data on 32 automobiles from a 1974 issue of *Motor Trend* magazine.

```
      mpg cyl disp
      hp drat
      wt qsec vs am gear carb

      Mazda RX4
      21.0
      6 160.0
      110 3.90 2.620 16.46 0 1 4 4

      Mazda RX4 Wag
      21.0
      6 160.0 110 3.90 2.875 17.02 0 1 4 4

      Datsun 710
      22.8
      4 108.0 93 3.85 2.320 18.61 1 1 4 1

      Hornet 4 Drive
      21.4
      6 258.0 110 3.08 3.215 19.44 1 0 3 1

      Hornet Sportabout
      18.7
      8 360.0 175 3.15 3.440 17.02 0 0 3 2
```

. . .

We'll regress mpg on wt.

```
Call:
lm(formula = mpg ~ wt, data = mtcars)
Residuals:
            10 Median 30
   Min
                                 Max
-4.5432 -2.3647 -0.1252 1.4096 6.8727
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 37.2851 1.8776 19.858 < 2e-16 ***
    -5.3445 0.5591 -9.559 1.29e-10 ***
wt
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 3.046 on 30 degrees of freedom
Multiple R-squared: 0.7528, Adjusted R-squared: 0.7446
F-statistic: 91.38 on 1 and 30 DF, p-value: 1.294e-10
```


$$mpg = \hat{\mathbf{b}} + \hat{\mathbf{w}} \cdot wt \\ \hat{\mathbf{b}} = 37.2851, \hat{\mathbf{w}} = -5.3445$$

Typically we'll regress mpg on multiple variables.

```
Call:
lm(formula = mpg \sim ., data = mtcars)
Residuals:
    Min
            10 Median
                            30
                                   Max
-3.4506 -1.6044 -0.1196 1.2193 4.6271
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 12.30337
                      18.71788
                                 0.657
                                         0.5181
           -0.11144
                      1.04502
                                -0.107
                                         0.9161
cyl
disp
          0.01334
                       0.01786
                                 0.747
                                         0.4635
                                -0.987
           -0.02148
                       0.02177
                                         0.3350
hp
           0.78711
                       1.63537
                                 0.481
                                         0.6353
drat
wt
           -3.71530
                       1.89441
                                -1.961
                                         0.0633 .
            0.82104
                       0.73084
                                 1.123
                                         0.2739
qsec
                       2.10451
            0.31776
                                 0.151
                                         0.8814
٧S
                                 1.225
            2.52023
                       2.05665
                                         0.2340
am
            0.65541
                       1.49326
                                 0.439
                                         0.6652
gear
carb
           -0.19942
                       0.82875
                                -0.241
                                         0.8122
               0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Signif. codes:
Residual standard error: 2.65 on 21 degrees of freedom
Multiple R-squared: 0.869, Adjusted R-squared: 0.8066
F-statistic: 13.93 on 10 and 21 DF, p-value: 3.793e-07
```

Let's consider the problem of classifying elements of a set into two groups based on a classification rule.

Examples

- Spam detection is an email message spam?
- Medical diagnosis does the patient have diabetes?
- Marketing will the customer make a purchase?
- Quality control is a manufactured item defective?

Let's suppose we have a single explanatory variable $oldsymbol{x}$ and

$$y = \begin{cases} 1 & \text{if the example is a member of the class} \\ 0 & \text{otherwise} \end{cases}$$

Binary Classification Example

Suppose x is the number of hours a student studies for an exam, and y is whether the student passes the exam.

We want $0 \leq Probability \ pass \ exam \leq 1$.

That means ordinary linear regression won't work.

$$g(z) = \frac{1}{1 + e^{-z}}$$

is known as the **sigmoid** or **logistic** function.

Suppose we use the following model.

$$z = b + w \cdot Hours$$

$$Probability\ pass\ exam = rac{1}{1+e^{-z}}$$

If we estimate b and w using logistic regression, we get $\hat{b}=-4.0777$ and $\hat{w}=1.5046$.

For example, we might have a database of email messages labeled as "spam" or "email" with variables representing the relative frequencies of 50 common words and punctuation marks.

We could perform a logistic regression where

$$y = \begin{cases} 1 & \text{if the message is spam} \\ 0 & \text{otherwise} \end{cases}$$

Confusion matrix

		predicted		
		F	т	
actual	F	TN 264	14	TN = true negatives FN = false negatives TP = true positives
	т	FN 22	TP 158	FP = false positives

Neural Networks

Perceptron

Output is binary.

Weights for each input

$$output = \left\{egin{array}{ll} 0 & ext{if } \sum_{j} w_{j} x_{j} \leq ext{ threshold} \ 1 & ext{if } \sum_{j} w_{j} x_{j} > ext{ threshold} \end{array}
ight.$$

Perceptron

Equivalently, we can use biases instead of thresholds

$$output = \left\{egin{array}{ll} 0 & ext{if } \sum_{j} w_{j} x_{j} + b \leq 0 \ 1 & ext{if } \sum_{j} w_{j} x_{j} + b > 0 \end{array}
ight.$$

The weights (w_j) and biases (b) are the parameters that we will estimate or "learn."

Neural Networks

We can combine perceptrons together in layers to make an artificial neural network.

Neural Networks

It turns out that perceptrons don't work very well in a multi-layer network.

Why?

Because a small change in the weights or bias can cause a neuron to flip from 0 to 1 or vice versa.

Solution?

Use neurons with sigmoid activation functions.

Neural Networks

A neuron with a sigmoid activation function works like this:

$$z = b + \sum_{i=1}^{M} w_i x_i$$
 $output = rac{1}{1 + e^{-z}}$

where the x_i 's are the inputs, the w_i 's are the weights, and b is the bias.

Neural Networks

Our hidden units will use sigmoid activation functions.

Data: http://yann.lecun.com/exdb/mnist/

Training data consists of 70,000 examples of handwritten digits.

For each example, we have

- 28 x 28 grey-level pixel image
- label indicating which digit it is (0-9)

In other words, our data consists of 70,000 rows with the following columns

- y = digit label (0-9)
- x_1 = value of pixel 1
- x_2 = value of pixel 2
- ...
- x_{784} = value of pixel 784

The pixel values are floating point numbers bewteen 0.0 and 1.0.

Given values for $x_1, x_2, \dots x_{784}$, we want to predict the digit or y.

One way we could do this is by running a logistic regression for each digit.

The first logistic regression would use

$$y = \begin{cases} 1 & \text{if the digit is zero} \\ 0 & \text{otherwise} \end{cases}$$

This is called **one versus rest** or **one against all** classification.

We can get better results by using a neural network.

TensorFlow / Keras code demo

What did we leave out?

A lot!

- Overfitting / regularization
- Convolutional neural networks
- Recurrent neural networks
- Much, much more

Keep in mind

- ML is susceptible to bias
- ML is hard to interpret
- ML is hard to explain
- ML is used in ways that affect people's lives

This makes ML potentially dangerous!

Recommended reading for everyone

WMD = algorithm that

- Is opaque
- Operates at scale
- Can damage people's lives

If you really want to learn ML

- Calculus
- Linear algebra
- Probability & statistics
- Information theory

You can learn these as you go.

No one knows everything.

Resources

Books

- neuralnetworksanddeeplearning.com
- Fast.ai
- Coursera
- Wikipedia

Questions?

THE END

Thank you

