EE23BTECH11054 - Sai Krishna Shanigarapu*

Exercise 9.2

13 If the sum of n terms of an A.P. is $3n^2 + 5n$ and its m^{th} term is 164, find the value of m.

Solution:

$$y(n) = 3(n+1)^{2} + 5(n+1)$$
 (1)

$$Y(z) = \frac{2z^{2}(4z-1)}{(z-1)^{3}}$$
 (2)

$$U(z) = \frac{1}{1 - z^{-1}} \tag{3}$$

$$y(n) = x(n) * u(n)$$
(4)

$$X\left(z\right) = \frac{Y\left(z\right)}{U\left(z\right)}\tag{5}$$

$$=\frac{8-2z^{-1}}{(1-z^{-1})^2}\tag{6}$$

$$x\left(n\right) = Z_{z}^{-1}\left[X\left(z\right)\right] \tag{7}$$

$$= (6n + 8) (u (n))$$
 (8)

Fig. 1. Plot of x(n) vs n

$$\therefore m = 26$$

\mathbf{Symbol}	Parameters
$y\left(n\right)$	Sum of n terms
$x\left(n\right)$	general term
$u\left(n\right)$	unit step function
$Y\left(z\right)$	Z-transform of $y(n)$
$X\left(z\right)$	Z-transform of $x(n)$
$U\left(z\right)$	Z-transform of $u\left(n\right)$

TABLE I PARAMETERS