

Convolutional Neural Networks for Track Reconstruction on FPGAs

BERKELEY LAB

Thomas Boser¹; Paolo Calafiura²; Ian Johnson² ¹University of California, Santa Cruz, ²Lawrence Berkeley National Laboratory

Motivation

- LHC Particle Tracking as a "Connecting the dots" problem:
- Given dataset with O(10⁵) 3D space-points belonging to O(10³) particle tracks, predict which space-points belong to the same
- Performance requirements:
- 100KHz rate, with ~5 µs latency per prediction.
- FPGA good match:
- guaranteed latency, high throughput
- already used by LHC experiments for similar applications

Methods and Materials

How are FPGAs programmed?

Hardware Description Languages

Computing framework similar to CUDA which is

HDLs are programming languages which describe

- FPGAs are reprogrammable integrated
- Logic blocks can be used to configure low level operations such as bit masking, shifting, and addition.
- Support highly parallel and pipelined algorithm implementations with guaranteed latency.

Workflow and Implementation

- Approach:
- Design and train model using a deep learning library.
- Perform inference using the FPGA.
- Implemented LeNet5 on FPGA natively (VHDL) and via OpenCL.

Firmware convolution:

- Input matrix streamed linearly into the convolution module
- Feeds into shift register which then sends multiple row values into FIFO's which store values on the same row, 'iterating' through input.
- the FIFOs push 5 values each (25 for 5x5 filter) into a DSP which multiplies input values by filter values and sums them, producing the output for one pixel.
- Each instance of a filter convolving on an input matrix allocates 1 DSP (or 25 DSPs in the more parallel approach) for a 5x5 filter.

FPGA Resources

FPGAs: Smaller FPGAs can quickly be resource starved.

The many convolution

and matrix multiplications

can be resource costly for

- Our implementation had to be shrunk in order to fit completely on an Altera Cyclone
- Digital Signal Processors (DSPs)
- Used in order to perform multiplications, because generating multiplication blocks from FPGA logic elements is too expensive.
- Cyclone V DSPs can perform 2 multiplications per clock cycle (pipelined), so latency becomes #multiplications / 2 * #DSPs.
- Estimating latency assuming DSPs are limiting factor:
- The number of multiplications per convolutional layer is:

$$m_{if} = w_i * h_i * w_f * h_f * d_i * n_f$$

 DSPs are assigned in chunks proportional in size to factors in equation 1, so for example a 5x5 convolution with 1 filter (n_f=1) could be assigned 25 DSPs to parallelize multiplications across filter multiplications the leaving us with with with it non-parallel operations (size of the input).

	DSPs	Memory (Block RAMs)	Clock cycles
OpenCL LeNet	35	273	1176k
VHDL 5x5 convolution*	25	4	npixels + 10
VHDL LeNet (resource conscious)*	112	300	50k
Available (Cyclone V) ^[1]	112	557	
Available (Stratix 10) ^[2]	5,760	11,721	

- * Assuming single pixel stream in which can be widened to parallelize.
- * Cyclone V available resources used as constraints.

Discussion

Is our latency goal attainable? • YES. At 400 MHz, 5 μs is 2000 clock cycles.

- Heatmap shows that with our implementation and a large FPGA (some have 5000+ DSPs) we can predict on a reasonable network.
- We propose a pipelined CNN forward pass which scales with resources available.
- Assuming multiplications are limiting factor, latency scales linearly with number of DSPs

- Using LeNet as an example we see that increasing DSPs by a factor of 3 can dramatically reduce latency of a network.
- Data flow into the FPGA:
- Use of a general purpose coprocessor for data transfer will increase latency too much.
- Our VHDL implementation will allow for data to stream directly into FPGA input ports reducing IO caused latency.

Conclusions and future work

- FPGA DNN implementation:
- Have a predictable real-time latency
- Implemented in data streaming approach
- Data can be streamed through the FPGA DNN
- Convolutions are a good example of the FPGA potential for low latency DNNs
- Optimized DNN implementation to fit into FPGA resources:
- large FPGAs contain 1000's of DSPs and clocked at ~400 MHz >4,000,000 multiplications/s. For reference LeNet5 performs ~150,000 multiplications per image in its forward pass.
- Implementing new layers:
- Most successful approach to the tracking problem has been through a combination of LSTMs and CNNs.

Contact:

electronic circuits.

or C++.

OpenCL

High Level Synthesis

supported by some FPGAs.

TBoser@ucsc.edu

References

[1] https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/pt/cyclone-v-product-table.pdf [2] https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/pt/stratix-10-product-table.pdf

https://github.com/HEPTrkX/NIPS2017-demo https://heptrkx.github.io/

