Homework 2: Astr 5140 (Fall 2021)

Tien Vo

September 4, 2021

Problem 1 ($\mathbf{J} \times \mathbf{B}$ force): Using the two-fluid equations, calculate the Lorentz force per unit volume on a quasi-neutral (MHD) plasma using the definition of \mathbf{J} . Separate the electric force (\mathbf{F}_E) from the magnetic force (\mathbf{F}_B). Show that if the plasma is quasi-neutral, then \mathbf{F} reduces to the standard MHD result.

Problem 2 (EM review: Waves in a plasma): Using Maxwell's equations and setting the current to be the electron motion only

$$\frac{\partial \mathbf{J}}{\partial t} = \frac{ne^2 E}{m_e} \tag{2.1}$$

Show that the solution of a transverse light wave becomes:

$$\omega^2 = \omega_{pe}^2 + k^2 c^2 \tag{2.2}$$

where $\omega_{ne}^2 = ne^2/\epsilon_0 m_e$.

Problem 3 (Pick-up Ion at Mars): Suppose an O atom that escaped from Mars is at rest (in our frame) at x = 0, y = 0. It is photo-ionized (charge e) at t = 0 in the solar wind $(v_{sw} = 350 \,\mathrm{km/s})$ in the x direction) with a magnetic field $\mathbf{B} = 10 \,\mathrm{nT}$ in the z direction (see diagram). Assume that the photo-ionization does not move the O^+ ion.

- (1) Describe the subsequent motion of the O^+ ion, $x(t), y(t), v_x(t), v_y(t)$, in our rest frame (not the plasma frame). Hint: What is the solar wind electric field? Calculate $v_x(t)$ and $v_y(t)$ then integrate. Apply boundary conditions, $x(t=0)=0, y(t=0)=0, v_x(t=0)=0, v_y(t=0)=0$ to get an exact solution.
 - (2) Sketch the O^+ path.
- (3) The drift and gyration cause the O^+ ion to slow down and speed up in our rest frame. What is the drift speed? What is the gyration speed? What is the maximum velocity (km/s) and energy (keV) that the O^+ ion reaches?
- (4) Using the gyration speed only, what is the perpendicular (to **B**) temperature of that ion in °K? (In 2D, temperature and energy are equal.)

Problem 4 (Current sheet): A current sheet is such that **J** is in the y direction and **B** is in the z direction. **B**, **J**, and P vary only with x (see diagram). Derive a solution for **B**, and **J** under the condition $\mathbf{J} \sim P$ that is valid for -L < x < L. Make sure that your

solution satisfies the boundary conditions of $\mathbf{B}(x=L)=-B_0\hat{\mathbf{z}}$, and $\mathbf{B}(x=0)=\mathbf{0}$. L is a characteristic length. Sketch your results.

Hint: There is more than one possible solution – just give any valid solution. Be careful, the condition $J^2 \sim P$ is NOT the same as in the Harris solution.

Problem 5 (Magnetic diffusion): Consider a magnetic field $\mathbf{B} = B_z(x,t)\hat{\mathbf{z}}$ where $B_z(x,t) = 0$ ($B_z(x,t) = 0$) and $B_z(x,t) = 0$ ($B_z(x,t) = 0$) where $B_z(x,t) = 0$ ($B_z(x,t) = 0$) where $B_z(x,t) = 0$ ($B_z(x,t) = 0$) in a resistive plasma with $B_z(x,t) = 0$).

- (a) Find the solution for $B_z(x,t)$.
- (b) Sketch (accurate plot not needed) the solution for t = 0 and t > 0. What happens to the high-k wave?