卷积变化与Xception,Mobilenet

Harry 2019.12.7

卷积之间的联系与区别

depth-wise conv

其一般与point-wise conv联合使用。联合使用时,可以看成其把传统卷积变成**空间卷积与通道卷积分开进行运算,**解耦操作之间的相关性,减少了参数量与计算量。

- 先用3x3的卷积建立空间之间的相关性 (depth-wise)。
- 再用1x1的卷积建立通道间的相关性 (point-wise)

常见block的堆叠方式

depth-wise conv

xception论文中D-Pconv之间使用激活函数的效果图

xception

Xception中尺寸变化时的block单元与中间的block操作单元

xception

整体结构

xception

整体结构

Exit flow

mobilenety2: Inverted Residuals and Linear Bottlenecks

Linear Bottlenecks

其上的操作是:对x-y空间运用随机生成的矩阵T进行变换,然后再接ReLU. 然后在运用T^-1 反变换回来。观察信息的损失程度。

只有当感兴趣的流形信息是在高维空间的子空间里, ReLu才能够保存所有信息。 反过来说, ReLU在相对低维空间下造成的信息损失比高维空间下大得多。

mobilenetv2: Inverted Residuals and Linear Bottlenecks

Linear Bottlenecks

因此作者在通道变小后,没有使用 relu6激活函数了。

mobilenetv2: Inverted Residuals and Linear Bottlenecks

Inverted Residuals

mobilenety2: Inverted Residuals and Linear Bottlenecks

Inverted Residuals

因为即便当前通道特征图为负,但是在其他通道中,依然有很大概率在相关处生成为正的特征图,从而对其进行优化。但是这里只有一个通道,因此作者首先将其放大(论文中放大6倍)来减少这样情况的发生。

mobilenetv2: Inverted Residuals and Linear Bottlenecks

整体框架

Input	Operator	t	c	$\mid n \mid$	s
$224^2 \times 3$	conv2d	-	32	1	2
$112^{2} \times 32$	bottleneck	1	16	1	1
$112^{2} \times 16$	bottleneck	6	24	2	2
$56^{2} \times 24$	bottleneck	6	32	3	2
$28^{2} \times 32$	bottleneck	6	64	4	2
$14^{2} \times 64$	bottleneck	6	96	3	1
$14^{2} \times 96$	bottleneck	6	160	3	2
$7^2 \times 160$	bottleneck	6	320	1	1
$7^2 \times 320$	conv2d 1x1		1280	1	1
$7^2 \times 1280$	avgpool 7x7	3	-	1	-
$1 \times 1 \times 1280$	conv2d 1x1	2	k	<u> </u>	

代码实现

- 实现tensorflow的mobilenet
- 实现pytorch版本的xception
- 注意一个细节: depth-wise的conv的权重不加L2的约束。