Sheet 6 (Multi-Item Inventory Control)

Exercise 1:

A manufacturer produces ten products on one machine. No other products are assigned to this equipment. The data for the items are given in the following table.

Item	1	2	3	4	5	6	7	8	9	10
Demand rate	200	50	800	500	20	600	100	1000	80	450
(units/year)										
Production	5000	2000	4000	6400	300	36000	2000	6000	900	7250
rate										
(units/year)										
Setup time ×	5	6	8	4	1	2	1	6	2	1
10 ⁻⁴ (years)										
Setup cost (€)	75	120	110	60	200	150	80	300	115	95
Holding cost	8	14	5	2	25	3	6	20	15	3
(€/year)										

- a) Determine the independent optimal production lot-sizes.
- b) Determine the production policy for the common cycle approach.
- c) Use the basic period approach to find a solution.

Exercise 2:

Consider two products with constant demand rate of d1 = 200 and d2 = 250 units per period which are stored in a warehouse with a total capacity of 300 units. The products require a1 = 3 and a2 = 1 units of warehouse space. The ordering costs are A1=150 \in and A2=111 \in . Additionally the products cause holding costs of h1 = 1 \in per unit per period and h2 = 2 \in per unit per period.

- a) Determine the optimal order quantities using the strategy of dedicated space.
- b) How much would you be willing to pay to obtain additional warehouse space of 700 units?
- c) Use the common-cycle method to determine the optimal replenishment cycle for all products.
- d) Use the results in c) to determine how many units of product 1 are in stock when you replenish product 2.

Exercise 3:

Ten products are ordered by a distributor from a single supplier. The specific product data are given in the following table and the following general information has been gathered. The major ordering cost is $A_0 = 30 \in$ and the minor ordering cost for each product is $A_i = 15 \in$. The delivery lead time is one week.

Product	Monthly demand (units)	Holding cost (€)
1	8	1
2	25	2
3	4	0.6
4	63	5.2
5	67	1.6
6	46	0.4
7	54	0.098
8	2	12
9	83	2
10	82	1

- a) Find the optimal order frequencies for each product.
- b) What are the corresponding overall costs?