Simulación de estrategias

Estrategias de gestión de activos 29 de julio de 2022

Drawdown

Drawdown

Considerando V(t) el capital total en el tiempo:

$$\begin{split} V^*(t) &= \max_{0 \leq k \leq t} V(k), \quad t^* = \arg\max_{0 \leq \tau \leq t} V(\tau) \\ \mathbf{Drawdown}(t) \quad D(t) := \frac{V^*(t) - V(t)}{V^*(t)} = 1 - \frac{V(t)}{V^*(t)} \end{split}$$

La pérdida acumulada desde el máximo hasta el tiempo actual , t.

$$D(t) = \left\{ \begin{array}{ll} 0 & \text{si } t^* = t, \text{no hay p\'erdida acumulada} \\ 1 - V(t)/V^*(t) & \text{si } t^* < t, \text{hay una p\'erdida } D(t) \text{ acumulada} \end{array} \right.$$

Derivados de esta métrica:

$$\mathbf{Max} \ \mathbf{Drawdown}(t) = \max_{0 \le k \le t} \mathbf{Drawdown}(t)$$

Drawdown Duration $(t) = t - t^*$, y su máximo

Drawdown Acum.
$$(t) = \int_{t*}^{t-t*} D(\tau) d\tau$$

Algunos Indicadores Técnicos

Relatve Strength index RSI

RSI(N)

$$RSI = 100 - 100/(1 + RS)$$

$$RS = AvgU/AvgD$$

AvgU = Promedio de todas las subidas en N periodos

$$AvgU = \frac{1}{N} \sum [\mathbf{S}_{t-i} - \mathbf{S}_{t-i-1}]^+$$

AvgD =Promedio de todas las bajadas en N periodos

$$AvgD = \frac{1}{N} \sum [\mathbf{S}_{t-i} - \mathbf{S}_{t-i-1}]^{-1}$$

Comunmente se utilizan otras dos maneras de obtener los valores de AvgD y AvgU.

Finalmente, los parámetros que se pueden utilizar y variar son:

- Método de cálculo para AvgU y AvgD
- Umbrales de infra y sobrevaloración (30 y 70)
- Periodo del índice N

MACD

Moving average convergence divergence(short,long)

 $MACD(short, long) = \mathsf{Modelo}\ \mathsf{Media}(short) - \mathsf{Modelo}\ \mathsf{Media}(long)$

Estrategias

- Umbrales
- Momentum
- Reversión a la media
- Arbitraje

Umbrales

T(Z,Q)

Consideramos los intervalos $Z_i(t)=(l_i(t),u_i(t))$: y las cantidades Q_i en el cual si el retorno r(t) cae en la región $Z_i(t)$ entonces se vende/compra en cantidad Q_i .

Considerar la posibilidad de cada vez al realizar una operación , revertirla en tiempo siguiente.

También, considerar tiempo de exposición (holdeo)

Momentum

M(B,S,T,N)

Considerando

$$R(N) = \frac{\sum_{i=1}^{N} [r_{t-i}]^+}{\sum_{i=1}^{N} [r_{t-i}]^-}, \ r_t \ \text{el retorno}$$

Entonces, si R(N) < B comprar y mantener por T periodos, R(N) > S vender y comprar en T periodos.

Donde R(N) es un indicador de tendencia que pretende establecer si se está sobre comprando, tipo RSI.

Parámetros

- S: umbral de venta
- B: umbral de compra
- N: periodo de indicador
- T: periodo de holdeo

Reversión a la media

Proceso de Ornstein Uhlenbeck

$$dX_t = \kappa(\mu - X_t)dt + \sigma dW_t$$

 κ : parámetro de velocidad de reversión (positivo)

 μ : parámetro de media

 σ · volatilidad

$$E(X_t) = X_0 e^{-\kappa t} + \mu(1 - e^{-\kappa t}), \quad E(dX_t | X_s, s < t) = \kappa(\mu - X_s) dt$$

$$\text{si } X_s > \mu \Rightarrow E(dX_t|X_s, s < t) < 0$$

$$\text{si } X_s < \mu \Rightarrow E(dX_t|X_s, s < t) > 0$$

Luego, se tiene una señal estandarizada :

s-score:
$$s_t = \frac{X_t - \mu}{\sigma/\sqrt{2\kappa}}$$

Hull-White es más general

RSI mean-reversion

Esquema de reversión a la media

Parámetros:

- Método de cálculo de RSI
- ullet N : periodo de indicador
- s : umbral de venta
- $lackbox{ } b$: umbral de compra

MACD mean-reversion

Esquema de reversión a la media

Parámetros:

- Método de cálculo de MACD (modelo de media)
- ullet N_L : media de largo plazo
- N_S : media de corto plazo
- s : umbral de venta
- b: umbral de compra

Arbitraje

Modelar el spread X_t entre 2 activos:

$$X_t = BTC_t - ETH_t$$

Ver X_t como un proceso de reversión a la media

- si $X_t > \mathsf{Umbral} > \mu$ se espera a que se cierre el spread \Rightarrow ir largo ETH corto BTC
- ullet si $X_t < \mathsf{Umbral} < \mu$, corto ETH y largo BTC

Simulación de Serie de Precios

Muestra

Muestra

Modelos de Precios

- 705 valores para estimación
- 600 valores para proyección
- Proyecciones: VaR 01,05,95 y ES 01,05 y 95

Modelos: todos tipo GARCH(1,1) e.g. $gjr \Rightarrow gjrGARCH(1,1)$

- Régimen Simple:
 - Modelo: s, gjr, e, t, apARCH, cs (6)
 - Distribuciones: norm, std, ged, sstd, sged, snorm, ghyp (7)
- Régimen Doble :
 - Tipo de régimen : Markov-Switch (MS) o Distribution Mixture (DM)
 - Modelo: sGARCH(1,1), gjrGARCH(1,1)
 - Distribución: norm, std, sged

en total: 75 (no todas las combinaciones)

Backtest de validación

Test para VaR:

- Unconditional Coverage (UC)
- Conditional Coverage (CC)
- VaR Duration (DUR)
- Dynamic Quantile Regression

Test para ES:

- ES 01,05 y 95
- Conditional Calibration (simple)
- Expected Shortfal Regression (strict, intercept, auxiliary)

En VaR:

De los 75 modelos, 43 pasaron todos 11(25) régimen simple, 32 (40) doble

En ES:

Solo los de régimen doble fueron testeados

Ganador: DM-gjrGARCH-sGARCH-norm-sged

UC_{01}	CC_{01}	DQ_{01}	DUR_{01}	UC_{05}	CC_{05}	DUR_{05}	UC_{95}	CC_{95}
68.93 %	84.98 %	98.89 %	PASS	70.49 %	23.57 %	PASS	44.37 %	73.96 %

Cuadro 1: VaR tests

ES_{01}	ES_{05}	ES_{95}	CC_{01}	CC_{05}	ESR-S ₀₁	ESR-A ₀₁	$ESR ext{-}I_{01}$
18.83 %	26.29 %	42.48 %	0.30 %	4.18 %	5.49 %	12.02 %	31.66 %

Cuadro 2: ES tests

ESR-S₀₅ ESR-A₀₅ ESR-I₀₅ 15.37 % 14.91 % 8.61 %

Cuadro 3: ES tests

Simulaciones

- Se utilizó 1500 valores para la estimación del modelo
- Se hizo 10.000 Simulaciones de 750 unidades de tiempo
- Se utilizaron los últimos 600 valores de la serie original para iniciar indicadores
- Se usó una ventana de 300 para estimar un indicador
- Serie simulada : 1050 valores: 300 originales 750 simulados
- Los 300 originales no son parte del testeo de la estrategia

Estrategias

- Utilizando RSI de 20 periodos
- Manteniendo 3 alternativas de compra (1/3 de capital por operación)
- Parámetros:
 - 1. Umbral de venta
 - 2. Umbral de compra
 - 3. Periodo me máxima mantención
- Utilizando un modelo Orntsein-Uhlenbeck para la generación de umbrales

#	Provisión	Exp. Inicial	P.Mantención	U. Venta	U. Compra
1	0.2	0.5	20	0.5	-0.5
2	0.2	0.5	20	0.4	-0.4
3	0.0	1.0	30	0.5	-0.5
4	0.0	1.0	∞	∞	-∞

Umbrales

$$\begin{split} \mathbb{S}^{\beta}(\xi) &= \left\{ c \in \mathbb{R}^m \ \middle| \ \exists \mathbf{u} \in \mathbb{U}, \ P\left(\mathbf{w} \in \mathbb{W} \middle| \ g^t(x_t, u_t) \leq c \quad , \forall t \in [0, T] \ \right) \geq \beta \right\} \\ P(g(x_t, u_t) \leq c, \forall t \in [0, T]) &= P(g_0 \leq c, g_1 \leq c, \ldots g_T \leq c) = P(\max\{g_i\} \leq c) \\ P(\max\{g_i\} \leq c) \geq \beta \iff F_{\max g}(c) \geq \beta \iff c \geq F_{\max g(u)}^{-1}(\beta) \\ \mathbb{S}^{\beta}(\xi) &= \left\{ c \in \mathbb{R}^m \ \middle| \ \exists \mathbf{u} \in \mathbb{U}, \ c \geq F_{\max g(u)}^{-1}(\beta) \right\} \end{split}$$

 $\min g \sim N(\mu, \sigma^2)$

Drawdon Sim

Estimación del conjunto

Se tiene para cada simulación una serie de Drawdowns:

$$g(x_t, u_t) = DD^u(t)$$

$$\begin{array}{c|cccc} \mathsf{Sim} & DD(1) & \cdots & DD(T) \\ 1 & DD^1(1) & \cdots & DD^1(T) \\ \mathsf{k} & DD^k(1) & \cdots & DD^k(T) \end{array}$$

Se ordenan:

Sim	$DD_{(0)}$	 $DD_{(T)}$
1	$DD_{(0)}^{\dot{1}}$	 $DD_{(T)}^{\dot{1}}$
k	$DD_{(0)}^{\hat{k}'}$	 $DD_{(T)}^{k}$
Estimador?	$\max_{j} \{ DD_{(0)}^{j} \}$	 $\max_{j} \{ DD_{(T)}^{j} \}$

Simulación de estrategias

Estrategias de gestión de activos 29 de julio de 2022