Završni međuispit iz Matematike 3R

(pitanja iz trećeg ciklusa nastave) 24.01.2008.

1. (4 boda)

- a) (1b) Definirajte graf n-kocke Q_n .
- b) (1b) Dokažite da je kocka Q_n n-regularan graf.
- c) (**2b**) Dokažite da je kocka Q_n bipartitan graf.

2. (5 bodova)

Neka je (1, 1, 1, 2, 2, x, 3) rastući niz stupnjeva jedinstvenog povezanog grafa G.

- a) (1b) Koliki je x? Argumentirajte odgovor.
- b) (2b) Je li G stablo? Dokažite.
- c) (2b) Je li ovim nizom struktura od G jednoznačno određena? Dokažite.

3. (4 boda)

- a) (1b) Kada za vrhove u, v grafa G kažemo da su povezani?
- b) (2b) Dokažite da je relacija "biti povezan" relacija ekvivalencije na skupu vrhova V(G) grafa G.
- c) (1b) Koliko najmanje bridova ima povezan graf sn vrhova?

4. (3 boda)

Za koje $n \geq 5$ je graf \overline{C}_n eulerovski (C_n je ciklički graf s n vrhova)?

5. (3 boda)

- a) (1b) Iskažite Diracov teorem o hamiltonovskim grafovima.
- b) (2b) Na poslovnoj večeri našlo se 12 Sicilijanaca iz jedne obitelji. Rodbinske veze su tamo bile jače nego inače: svaki je čovjek imao barem 6 prvih rođaka među preostalih 11 ljudi na večeri. Dokažite da je raspored ljudi oko stola mogao biti takav da je svaki čovjek sjedio između svoja dva prva rođaka.

6. (3 boda)

Na Slici 1 zadan je graf G. Nađite najkraće puteve od vrha a do svih drugih vrhova od G.

7. (3 boda)

Provedite pohlepni algoritam za problem trgovačkog putnika Slikom 2 zadanog grafa.

Slika 1

Slika 2

PITANJA IZ CIJELOG GRADIVA

1. (3 boda)

Razvijte u Fourierov red funkciju f(x) = -x, definiranu na intervalu [-2, 2].

2. (3 boda)

Primjenom Laplaceove transformacije riješite diferencijalnu jednadžbu

$$y' - y = f(t), \quad y(0) = 2,$$

u kojoj je funkcija f zadana Slikom 3.

3. (2 boda)

Ivici, Marici i Perici treba podijeliti 5 krušaka i 6 jabuka tako da svako dobije bar jednu jabuku i bar jednu krušku. Na koliko načina to možemo učiniti?

4. (2 boda)

Nađite opće rješenje rekurzivne relacije

$$a_n = 4a_{n-1} - 4a_{n-2}, n \ge 2.$$

Zabranjena je upotreba kalkulatora. Ispit se piše 150 minuta.

Rješenja završnog međuispita iz Matematike 3R

(pitanja iz trećeg ciklusa nastave) 24.01.2008.

1. (4 boda)

- a) (1b) Q_n je graf čiji vrhovi odgovaraju svim binarnim nizovima duljine k. Bridovi spajaju one binarne nizove koji se razlikuju točno na jednom mjestu.
- b) (1b) Vrh $V = (a_1, a_2, ... a_n)$ je susjedan sa svim vrhovima koji se od V razlikuju u jednoj koordinati, a takvih je n.
- c) (**2b**) $V(Q_n) = A \bigcup B$

 $A = \{ \text{ vrhovi s parnim brojem jedinica } \}$

 $B = \{ \text{ vrhovi s neparnim brojem jedinica } \}$

Bilo koja dva vrha unutar A ili B razlikuju se za barem dva mjesta pa ne mogu biti susjedni.

2. (5 bodova)

a) (**1b**) Vrijedi $2 \le x \le 3$.

Zbog Leme o rukovanju $\Rightarrow \sum\!\deg\,v\equiv 0\ (\mathrm{mod}\ 2)$

 $\Rightarrow x = 2.$

b) (**2b**) $\sum \deg v = 2|E(G)| = 12 \Rightarrow |E(G)| = 6$

Dakle, |V(G)| = 7, $|E(G)| = 6 \Rightarrow$ jest stablo.

c) (2b) Nije. Postoje neizomorfni grafovi s istim nizom stupnjeva.

3. (4 boda)

- a) (1b) Vrhovi u i v su povezani ako postoji šetnja iz u u v.
- b) (**2b**) Dokaz teorema 1, str. 19.
- c) (**1b**) n-1

4. (3 boda)

Povezanost.

Pokažimo da su svaka dva vrha u \overline{C}_n povezana. Neka je u vrh iz \overline{C}_n .. U grafu \overline{C}_n vrh u je povezan bridom sa svih vrhovima, osim sa svojim susjedima iz C_n . Neka je vrh v njegov susjed iz C_n . Kako je $n \geq 5$, postoji brid u_1 koji nije susjedan niti sa u niti sa v u grafu C_n . Dakle, povezan je sa u i v u \overline{C}_n . Dakle u i v su povezani u \overline{C}_n (uu_1v).

Eulerovost.

Kako je C_n 2-regularan graf, tako je \overline{C}_n n-3-regularan pa je prema Eulerovom teoremu \overline{C}_n eulerovski akko n-3 paran, a to je akko n neparan.

5. (3 boda)

- a) (**1b**) Udžbenik, str. 33
- b) (2b) Konstruirajmo graf sn=12 vrhova pri čemu su dva vrha spojena bridom akko su prvi rođaci.

Vrijedi deg $v=6, \forall v \in V(G)$

 $n = 12 \text{ deg } v \ge \frac{n}{2}, \forall v \in G \Rightarrow \exists \text{ hamiltonov ciklus.}$

Na takav naćin rasporedimo Sicilijance.

$$a \rightarrow e, l = 2$$

$$a \rightarrow c \rightarrow b, l = 5$$

$$a \rightarrow c, l = 4$$

$$a \rightarrow d, l = 8$$

7. (3 boda)

$$a \rightarrow b \rightarrow c \rightarrow d \rightarrow e \rightarrow f, l = 13$$

PITANJA IZ CIJELOG GRADIVA

1. (3 boda)

f je neparna $\Rightarrow a_n = 0, L = 2$

$$b_n = \frac{2}{2} \int_0^2 -x \sin \frac{n\pi x}{2} dx =$$

= parcijalna integracija =

$$= -\left[-\frac{2}{n\pi} \cos \frac{n\pi x}{2} x \Big|_{0}^{2} + \int_{0}^{2} \frac{2}{n\pi} \cos \frac{n\pi x}{2} dx \right] =$$

$$= \frac{4}{n\pi} \cos n\pi - \frac{2}{n\pi} \cdot \frac{2}{n\pi} \sin \frac{n\pi x}{2} \Big|_{0}^{2} =$$

$$= \frac{4}{n\pi} \cos n\pi = \frac{4}{n\pi} (-1)^{n}.$$

$$S(x) = \sum_{n=0}^{\infty} \frac{4}{n\pi} (-1)^{n} \sin \frac{n\pi x}{2}.$$

2. (3 boda)

$$f(t) = u(t) - u(t - 1)$$

$$sY(s) - 2 - Y(s) = \frac{1}{s} - \frac{1}{s}e^{-s}$$

$$Y(s) = \frac{1}{s(s-1)}(1 - e^{-s}) + \frac{2}{s-1}$$

$$Y(s) = (\frac{1}{s-1} - \frac{1}{s})(1 - e^{-s}) + \frac{2}{s-1}$$

$$Y(s) = \frac{3}{s-1} - \frac{1}{s} - \frac{e^{-s}}{s-1} + \frac{\exp^{-s}}{s}$$

$$3u(t)e^{t} - u(t) - u(t-1)e^{t-1} + u(t-1)$$

$$y(t) = u(t)[3e^{t} - 1] + u(t-1)[1 - e^{t-1}].$$

3. (2 boda)

I za kruške i za jabuke imamo istu funkciju izvodnicu.

Ivica
$$\Rightarrow (x + x^2 + ...)$$

Marica
$$\Rightarrow (x + x^2 + ...)$$

Ivica
$$\Rightarrow (x + x^2 + ...)$$

Marica $\Rightarrow (x + x^2 + ...)$
Perica $\Rightarrow (x + x^2 + ...)$

$$(x+x^2+...)^3 = x^3(1+x+...)^3 = \frac{x^3}{(x-1)^3} = x^3 \sum_{k=0}^{\infty} {\binom{-3}{k}} (-1)^k x^k = \sum_{k=0}^{\infty} {\binom{k+2}{k}} k x^{(k+3)}$$

5 krušaka možemo rasporediti na
$${2+2 \choose 2}$$
načina (uvrstimo $k=2$) 6 jabuka možemo rasporediti na ${3+2 \choose 3}$ načina (vrstimo $k=3$)

Rješenje:
$$\binom{4}{2}\binom{5}{3} = 60$$

4. (2 boda)

$$\lambda^2 - 4\lambda + 4 = 0$$

$$\lambda_{1,2} = 2$$

$$a_n = 2^n (A + Bn).$$