Degrees of Interpretability of Finitely Axiomatized Sequential Theories

Interpretability

Sequentiality

Basics

Albert Visser

Department of Philosophy, Faculty of Humanities, Utrecht University

Numbers and Truth

October 20, 2012, Gothenburg

Universiteit Utrecht

1

Interpretations and Interpretability

Sequentiality

Basics

Convexity

Interpretability

ooquomii

O

Interpretations and Interpretability

Sequentiality

Basics

Convexity

Interpretations and Interpretability

_

Interpretations and Interpretability

Sequentiality

Basics

Convexity

Interpretations and Interpretability

Sequential

Basics

Interpretations and Interpretability

Sequentiality

Basics

Convexity

Interpretability

Sequentiality

Basics

Interpretations and Interpretability

Sequentiality

Basics

Convexity

Interpretations and Interpretability

. .

Dasics

Example

Interpretations and Interpretability

.....

We have $ZF \triangleright (ZF + CH)$ and $ZF \triangleright (ZF + \neg CH)$.

So CH is independent of ZF but not stronger than ZF.

On the other hand ZF + "there is an inacessible cardinal" is stronger than ZF.

Universiteit Utrecht

Varieties of Use

- to explicate intuitions of sameness of theories.
 E.g., mutual interpretability, bi-interpretability.
- to transfer metamathematical information from one theory to another.
 - E.g., consistency, essential undecidability.
- to compare theories w.r.t. strength.
 Reverse Mathematics.
- to import conceptual resources of one theory into another. In mathematician's terms: to increase the number of ways of 'seeing things'.
 - E.g., in the proof of the Incompleteness Theorems.
- to formulate coordinate-free versions of theorems like G2.
- to provide a philosophical reduction of ontologies.
 As a sui-genericist, I am skeptical about this one.
 A thing is what it is and not another thing.
 (Bishop Joseph Butler).

Interpretations and Interpretability

equentialit

Basics

Strength

Interpretations and Interpretability

Sequentiality

In this lecture we are interested in interpretability as a means to

For example GB $\sip ZF$, ZF $\sip PA$, EA $\sip S_2^1$.

measure the strength of theories.

Translations

We introduce one-dimensional, one-piece, relative, non-identity-preserving interpretations without parameters. We refrain from defining the various richer notions. They only play a minor role in this lecture.

Interpretations and Interpretability

equentiality

Basics

Convexity

A relative translation $\tau : \Sigma \to \Theta$ is a pair $\langle \delta, F \rangle$.

- δ is Θ -formula with one free variable v_0 .
- ► F associates to R of Σ of arity n a Θ -formula F(R) with variables among v_0, \ldots, v_{n-1} .

Induced extension mapping:

- $(R(y_0, \dots, y_{n-1}))^{\tau} := F(R)(y_0, \dots, y_{n-1});$
- $(\cdot)^{\tau}$ commutes with propositional connectives;
- $(\forall y A)^{\tau} := \forall y (\delta(y) \to A^{\tau});$
- $(\exists y A)^{\tau} := \exists y (\delta(y) \wedge A^{\tau}).$

7

Interpretations

An interpretation K is of the form $\langle U, \tau, V \rangle$, where $\tau : \Sigma_U \to \Sigma_V$ and for all U-sentences A, we have: $U \vdash A \Rightarrow V \vdash A^{\tau}$.

Interpretability

Equivalently, we can demand that for all axioms A of U, including the ones for identity, we have: $U \vdash A \Rightarrow V \vdash A^{\tau}$.

equentiality

Convexity

We write $K: V \triangleright U$ or $K: U \triangleleft V$ for K is an interpretation of the form $\langle U, \tau, V \rangle$.

An interpretation $K: V \triangleright U$ is *faithful* iff, for all sentences A in the language of $U, U \vdash A$ iff $V \vdash A^{\tau}$.

- ▶ $U \triangleleft V$, or $V \triangleright U$ iff $\exists K \ K : V \triangleright U$.
- ▶ $U \equiv V$ iff $U \triangleleft V$ and $V \triangleleft U$.

◆ロ → ◆園 → ◆ 豊 ト ◆ 豊 ・ 夕 Q ()・

8

Operations

Interpretations and Interpretability

sequentiality

Dasius

We have an identity interpretation and interpretations can be composed. So:

These operations lift to operations on interpretations. Thus:

- **▶** *U* <*J U*.
- ▶ If $U \triangleleft V$ and $V \triangleleft W$, then $U \triangleleft W$.

Supremum and Infimum

We consider the structure of degrees of interpretability for finitely axiomatized theories.

We can define the infimum of two finitely axiomatized theories A and B by $A \otimes B := A \vee B$, where the signature is the union of the signatures of A and B.

We define the supremum $A \oplus B$ of two theories by making their signatures disjoint adding two domain predicates \triangle_A and \triangle_B . We take the union of the relativized versions of the theories. We also replace identity for each theory by a new binary predicate.

Interpretations and Interpretability

equentiality

_

Interpretations and Interpretability

Sequentiality

Basics

Convexity

Interpretations and Interpretability

Sequentiality

Basics

Definition

Sequentiality (Pudlák, 1983) is an explication of the idea of *theory with coding*. More precisely: it contains the coding adequate for building partial satisfaction predicates corresponding to a complexity measure that counts e.g. depth of alternating quantifiers.

Interpretations and Interpretability

Sequentiality

Basic

Convexity

It is essentially richer than e.g. *theory with pairing* which does not have sequences of variable length.

Sequential theories are also relevant for the study of *extending a* theory with an external satisfaction predicate.

Definition

Sequential theories have a very simple definition. We call an interpretation *direct* if it is identity preserving and unrelativised.

A theory is *sequential* iff it directly interprets *Adjunctive Set Theory*, AS.

The theory AS is a one-sorted theory with a binary relation \in .

$$\mathsf{AS1} \, \vdash \exists x \, \forall y \, y \not\in x,$$

$$\mathsf{AS2} \, \vdash \forall x,y \, \exists z \, \forall u \, (u \in z \leftrightarrow (u \in x \lor u = y)).$$

We can build an interpretation of e.g. $I\Delta_0 + \Omega_1$ in any sequential theory by an elaborate bootstrap. Similarly we can develop a theory of sequences for all objects.

Interpretations and Interpretability

Sequentiality

D.

Examples

Examples of sequential theories are:

- Adjunctive Set Theory AS.
- PA⁻, the theory of discretely ordered commutative semirings with a least element. This was recently shown by Emil Jeřábek.
- Buss' theory S₂¹ and bi-interpretable variants of it like a theory of strings due to Ferreira, and a theory of sets and numbers due to Zambella.
- Wilkie and Paris' theory $I\Delta_0 + \Omega_1$.
- ► Elementary Arithmetic EA (aka Elementary Function Arithmetic EFA, or $I\Delta_0 + \exp$).
- ► PRA.
- ightharpoonup $I\Sigma_1^0$.
- Peano Arithmetic PA.
- ► ACA₀.
- ▶ ZF.

Interpretations and Interpretability

Sequentiality

Basics

Interpretations and Interpretability

Sequentiality

Basics

Convexity

Interpretability

Sequentiali

Basics

Degree Structures

We study:

- $ightharpoonup \mathbb{D}_{all}$: the degree structure of all finitely axiomatized theories.
- D_{seq}: the degree structure of all finitely axiomatized sequential theories.
- \mathbb{V}_A : the degree structure of all finite extensions of A.

Mycielski, Pudlák and Stern (1990) and Friedman (2007) show that \mathbb{D}_{all} is a distributive lattice, that it is dense with an infinite antichain between any A, B with $A \subseteq B$, etc.

Vítěslav Švejdar asked in 1978: suppose $Q \triangleleft A$. Do we have suprema in V_A ?

Interpretability

Basics

Adding Sequences to a Theory

In a trivial way we can extend any theory to a sequential theory (expanding the signature). This gives us a functor $SEQ: \mathbb{D}_{seq} \to \mathbb{D}_{all}$.

nterpretations and nterpretability

Basics

Suppose emb is the identical embedding functor of \mathbb{D}_{seq} into \mathbb{D}_{all} . Let B be sequential. We have:

$$SEQ(A) \triangleleft_{seq} B \text{ iff } A \triangleleft emb(B).$$

Thus, SEQ is the left adjoint of emb.

We can take the supremum of A and B in \mathbb{D}_{seq} to be

$$A \sqcup B := SEQ(A \oplus B),$$

where \oplus is the supremum in \mathbb{D}_{all} . The infimum remains the same in both degree structures.

A Normal Form Theorem

Let ρ be depth of quantifier alternations. We write $\Box_{A,n}$ for provability from A involving only formulas B with $\rho(B) \leq n$.

Pudlák 1985:

Suppose *A* is finitely axiomatized and sequential. We have:

$$A \equiv (S_2^1 + \diamondsuit_{A,\rho(A)} \top).$$

We could have taken Q, PA $^-$ or, if you wish I $\Delta_0 + \Omega_{17}$ here. S_2^1 has the advantage that it is finitely axiomatizable and that arithmetization of syntax works very naturally.

Interpretability

Basics

Connection to EA

Wilkie & Paris 1987:

For any Π_1^0 -sentences P, P', we have:

$$(S_2^1 + P) \rhd (S_2^1 + P') \Leftrightarrow EA \vdash P \rightarrow P'.$$

Friedman < 1985:

Suppose *A* and *B* are finitely axiomatized and sequential. We have:

$$A \rhd B \Leftrightarrow \mathsf{EA} \vdash \Diamond_{A,\rho(A)} \top \to \Diamond_{B,\rho(B)} \top.$$

Even better: $A \mapsto \mathsf{EA} + \diamondsuit_{A,\rho(A)} \top$ is an effective isomorphism between $\mathbb{D}_{\mathsf{seq}}$ and the Π_1 -extensions of EA ordered by derivability.

It follows e.g. that the first-order theory of \mathbb{D}_{seq} is not arithmetical, by a result of Shavrukov in 2010.

Interpretations and Interpretability

equentiality

Basics Convexity

Interpretations and Interpretability

Sequentiality

Basics

Convexity

Interpretations and Interpretability

Basics

The Result

We show that, for finitely axiomatized sequential A, the structure \mathbb{V}_A is convex in \mathbb{D}_{seq} . This means that for very $B \rhd A$, there is a C in the same language as A with $C \vdash A$ with $C \equiv B$.

It follows that \mathbb{V}_A inherits the suprema of \mathbb{D}_{seq} .

We can also show that \mathbb{V}_Q is convex in \mathbb{D}_{all} . Thus \mathbb{V}_Q inherits the suprema of \mathbb{D}_{all} .

The suprema in \mathbb{V}_Q are in all but trivial cases different from the suprema of e.g. $\mathbb{V}_{PA^-}.$

It follows from convexity that the first-order theory of \mathbb{V}_A for consistent, finitely axiomatized sequential A is not arithmetical.

Švejdar's question remains open for \mathbb{V}_A with $\mathbb{Q} \triangleleft A$ and A is not interderivable with \mathbb{Q} and A is not mutually interpretable with a sequential theory.

Interpretations and Interpretability

sequentiality

Daoico

Convexity

Universiteit Utrecht

The Proof 1

Consider a finitely axiomatized sequential A. Suppose $N : S_2^1 \triangleleft A$. Let S be Σ_1 . We find R such that:

$$S_2^1 \vdash R \leftrightarrow S \leq \square_{A,n} R^N.$$

Here *n* is 'large enough'.

This makes *R* an FGH-style fixed point (Friedman-Goldfarb-Harrington).

We can show:

$$\mathsf{EA} \vdash \Box_{A,n} R^N \leftrightarrow (S \lor \Box_{A,n} \bot).$$

Suppose $B \triangleright A$. Taking $S : \Box_{B,\rho(B)} \bot$, we find:

$$\mathsf{EA} \vdash \Box_{A,n} R^N \leftrightarrow \Box_{B,\rho(B)} \bot.$$

Interpretations and Interpretability

The Proof 2

Take $Q := \neg R$. Contraposing:

$$\mathsf{EA} \vdash \Diamond_{A+Q^N,n} \top \leftrightarrow \Diamond_{B,\rho(B)} \top.$$

We find:

$$(A+Q^N)\equiv (S_2^1+\diamondsuit_{A+Q^N,n}\top)\equiv (S_2^1+\diamondsuit_{B,\rho(B)}\top)\equiv B.$$

So each $B \triangleright A$ is mutually interpretable with a Π_1 -extension relative to N of A. We can prove the same with Π_1 replaced with Σ_1 .

Interpretations and Interpretability

. .

