Q Learning and Deep Q Network

Ling Fei Zhang 260985358

April 8, 2023

Table of Contents

Introduction

2 Background

Games

- Model-free reinforcement learning algorithm
- Uses a table to store Q values for each state-action pair
- Effective in simple environments
- Struggles in more complexe environments since it is impractical to store and update Q values for all the state-action pairs
- Deep Q Network (DQN)
 - Uses neural networks to learn policies to map states to Q values
 - Neural networks can handle large state spaces and continuous action spaces

- Model-free reinforcement learning algorithm
- Uses a table to store Q values for each state-action pair
- Effective in simple environments
- Struggles in more complexe environments since it is impractical to store and update Q values for all the state-action pairs
- Deep Q Network (DQN)
 - Uses neural networks to learn policies to map states to Q values
 - Neural networks can handle large state spaces and continuous action spaces

- Model-free reinforcement learning algorithm
- Uses a table to store Q values for each state-action pair
- Effective in simple environments
- Struggles in more complexe environments since it is impractical to store and update Q values for all the state-action pairs
- Deep Q Network (DQN)
 - Uses neural networks to learn policies to map states to Q values
 - Neural networks can handle large state spaces and continuous action spaces

- Model-free reinforcement learning algorithm
- Uses a table to store Q values for each state-action pair
- Effective in simple environments
- Struggles in more complexe environments since it is impractical to store and update Q values for all the state-action pairs
- Deep Q Network (DQN)
 - Uses neural networks to learn policies to map states to Q values
 - Neural networks can handle large state spaces and continuous action spaces

- Q Learning
 - Model-free reinforcement learning algorithm
 - Uses a table to store Q values for each state-action pair
 - Effective in simple environments
 - Struggles in more complexe environments since it is impractical to store and update Q values for all the state-action pairs
- Deep Q Network (DQN)
 - Uses neural networks to learn policies to map states to Q values
 - Neural networks can handle large state spaces and continuous action spaces

- Model-free reinforcement learning algorithm
- Uses a table to store Q values for each state-action pair
- Effective in simple environments
- Struggles in more complexe environments since it is impractical to store and update Q values for all the state-action pairs
- Deep Q Network (DQN)
 - Uses neural networks to learn policies to map states to Q values
 - Neural networks can handle large state spaces and continuous action spaces

- Q Learning
 - Model-free reinforcement learning algorithm
 - Uses a table to store Q values for each state-action pair
 - Effective in simple environments
 - Struggles in more complexe environments since it is impractical to store and update Q values for all the state-action pairs
- Deep Q Network (DQN)
 - Uses neural networks to learn policies to map states to Q values
 - Neural networks can handle large state spaces and continuous action spaces

- Model-free reinforcement learning algorithm
- Uses a table to store Q values for each state-action pair
- Effective in simple environments
- Struggles in more complexe environments since it is impractical to store and update Q values for all the state-action pairs
- Deep Q Network (DQN)
 - Uses neural networks to learn policies to map states to Q values
 - Neural networks can handle large state spaces and continuous action spaces

Background