#1 The frame shows conords of 3 members. Given $E = 200 \times 10^9 \text{ Pa}$, $A = 2450 \text{ mm}^2$, $T = 27 \times 10^6 \text{ mm}^4$ for all members.

- and with of beam. Assume rectangular x-section
 - b) Using symmetry write the Boundary Conditions
 - c) Set up the stiffness matrix (for symmetric case)
 - d) set up the board watroise (",")
 - e) Impose BCs and unite the final stiffness and load matrix after elimination

†2_

LEB PEB LE L'ON (Forque)

AB is a begin

BE and cf are and

bares

C D4

C torque

EB

Write the Alifness matrix for element BE

a) write the Alfred matrix for element Bt.
b) It the X-section of beam to is circular what is the relation between Polar M. I (3) of the X-section and Arrea M. I. Tyy= Icz

Write the load rector for element co) If the rod AD is very stiff how will you solve the broppen (Brief Hurman).

3) For the element shows

a) determine the stiffness (undustivity) matrix

b) " the head board rector

h, To 1 1 0.4m

P= 20 M/m5 G Ta = 25 C Kx = 1.5 W/mC Ky = 1.0 W/mC

(For (a) do not ferterm matrix multiplications)

4). Follow the steps fiven below to numerically integrate I (xy +y2) dx dy over the domain of teg.

write a and y in terms of I and of

What are the values of g and of for me point り)

formula Determine the values of x and y at the C) Gauss point usung 3 and of determined in (b)

Determine the Jacobsan using the equation T)

#5 For the axial boar shown determine the natural trequencies and the corresponding mode shapes Draw the shapes on n-4 fragh (x - cound of node and is axial displacement)

A = 600 mm² $E = 200 \times 10^{3} \text{ N/m}^{2}$ $CM \quad CM$ $CM \quad CM$

#6A = 600 mm²

= 25 cm > A = 600 mm²

= 25 cm > M = 600 mm²

The initial relocates of node 2 is 2 m/s wode 1 is fixed and initial displacement of nodes 2 and 3 is zero. A linearly varying force $F = 10^{7} \pm 10^{12}$ is applied at node 2. Using $\Delta t = 10^{-5}$ sec

(b) Determine duplacement of wade 2 at t=10 sec

(c) velocity of node 2 at t=10-5 s

(a) Using Control Difference scheme show that for no damping case $\frac{2u_{1}^{2}}{1} = \left(\frac{M}{\Delta t^{2}}\right)^{-1} \left(\frac{2M}{(\Delta t)^{2}} - K^{2}_{1} \left[\frac{M}{(\Delta t)^{2}}\right] \left[\frac{M}{(\Delta t)^{2}}\right] \left[\frac{M}{(\Delta t)^{2}}\right]$

(C) For a torangular plane stress element write the expression for k.E. The element has 6 dyrees of freedom. The expression should contain these days and shape fus $K \cdot E = \frac{1}{2} [\][\] tdh of$