Definition. A subsequence of a string is a new string which is formed from the original string by deleting some (can be none) of the characters without disturbing the relative positions of the remaining characters. (ie, "ACE" is a subsequence of "ABCDE" while "AEC" is not).

Optimal Substructure. Let $X = \langle x_1, x_2, \dots, x_m \rangle$ be subsequence of $Y = \langle y_1, y_2, \dots, y_n \rangle$

- 1. if $x_m = y_n$, then X_{m-1} is a subsequence of Y_{n-1}
- 2. if $x_m \neq y_n$, then X is a subsequence of Y_{n-1}

Recursive Formula. Let us define c[i, j] to be the length of an longest common subsequence of X_i and Y_j . If either i = 0 or j = 0, one of the sequences has length 0, and so LCS has length 0. Finally, if X_m is a subsequence of Y_n , c[m, n] = m.

$$c[i,j] = \begin{cases} 0, & \text{if } i = 0 \text{ or } j = 0, \\ c[i-1,j-1], & \text{if } i,j > 0 \text{ and } x_i = y_j, \\ \max(c[i,j-1],c[i-1,j]), & \text{if } i,j > 0 \text{ and } x_i \neq y_j, \end{cases}$$

The following table illustracts the constructed c[i,j] table with X as "rabbit" and Y as "rabbit". The arrows within will be used in the next section of reconstructing the common sequence.

	j	0	1	2	3	4	5	6	7
i		y_j	\mathbf{r}	a	b	b	b	i	\mathbf{t}
0	x_i	0	0	0	0	0	0	0	0
1	r	0	$\nwarrow 1$	1	1	1	1	1	1
2	a	0	1	$\nwarrow 2$	$\leftarrow 2$	2	2	2	2
3	b	0	1	2	$\nwarrow 3$	$\leftarrow 3$	3	3	3
4	b	0	1	2	3	$\nwarrow 4$	$\nwarrow 4$	4	4
5	i	0	1	2	3	4	4	$\nwarrow 5$	5
6	t	0	1	2	3	4	4	5	

Reconstruct Solution. A distinct subsequence is a distince path from c[m, n] to c[0, 0]. For instance, in our case,

$$1. \ [6,7] \to [5,6] \to [4,5] \to [4,4] \to [3,3] \to [2,2] \to [1,1] \to [0,0]$$

2.
$$[6,7] \rightarrow [5,6] \rightarrow [4,5] \rightarrow [3,4] \rightarrow [3,3] \rightarrow [2,2] \rightarrow [1,1] \rightarrow [0,0]$$

3.
$$[6,7] \rightarrow [5,6] \rightarrow [4,5] \rightarrow [3,4] \rightarrow [2,3] \rightarrow [2,2] \rightarrow [1,1] \rightarrow [0,0]$$