

- 180 -

CLAIMS

What is claimed is:

1. A compound represented by the following Structural Formula:

5

and stereoisomers, pharmaceutically acceptable salts, solvates and hydrates thereof, wherein:

10

- (a) T1 is selected from the group consisting of

- (b) R1 is selected from the group consisting of hydrogen, C₁-C₈ alkyl, C₁-C₈ alkenyl, aryl-C₀₋₄-alkyl, aryl-C₁₋₆-heteroalkyl, heteroaryl-C₀₋₄-alkyl, and C₃-C₆ cycloalkylaryl-C₀₋₂-alkyl, wherein C₁-C₈ alkyl, C₁-C₈ alkenyl, aryl-C₀₋₄-alkyl, aryl-C₁₋₆-heteroalkyl, heteroaryl-C₀₋₄-alkyl, and C₃-C₆ cycloalkylaryl-C₀₋₂-alkyl are each optionally substituted with from one to three substituents independently selected from R1';
- (c) R1', R26, R27, R28, R31, Z14', and Z15' are each independently selected from the group consisting of hydrogen, hydroxy, cyano, nitro, halo, oxo, C₁-C₆ alkyl, C₁-C₆ alkyl-COOR12, C₁-C₆ alkoxy, C₁-C₆ haloalkyl, C₁-C₆ haloalkyloxy, C₃-C₇ cycloalkyl, optionally substituted aryloxy, optionally substituted aryl-C₀₋₄-alkyl, optionally substituted heteroaryl, optionally substituted heterocycloalkyl, C(O)R13, COOR14, OC(O)R15, OS(O)₂R16, N(R17)₂, NR18C(O)R19, NR20SO₂R21, SR22, S(O)R23, S(O)₂R24, and S(O)₂N(R25)₂; R12, R13, R14, R15, R16, R17, R18, R19, R20, R21, R22, R23, R24 and R25 are each independently selected from the group consisting of hydrogen, C₁-C₆ alkyl and aryl;

- 182 -

- (d) R2 is selected from the group consisting of C₀-C₈ alkyl and C₁-C₆ heteroalkyl;
- (e) X is selected from the group consisting of a bond, O, S, S(O)₂ and N;
- (f) U is an aliphatic linker wherein one carbon atom of the aliphatic linker may be replaced with O, NH or S, and wherein such aliphatic linker is optionally substituted with R30;
- 5 (g) Y is selected from the group consisting of C, O, S, NH and a single bond;
- (h) E is C(R3)(R4)A or A and wherein
 - 10 (i) A is selected from the group consisting of C₀-C₆ alkylcarboxyl, C₀-C₆ alkyltetrazole, C₁-C₆ alkylnitrile, C₀-C₆ alkylcarboxamide, C₀-C₆ alkylsulfonamide and C₀-C₆ alkylacylsulfonamide; wherein C₀-C₆ alkylsulfonamide, C₀-C₆ alkylacylsulfonamide and C₀-C₆ alkyltetrazole are each optionally substituted with from one to two groups independently selected from R⁷;
 - (ii) each R⁷ is independently selected from the group consisting of hydrogen, C₁-C₆ haloalkyl, aryl-C₀-C₄ alkyl and C₁-C₆ alkyl, wherein such alkyl and arylalkyl are each optionally substituted with from one to two groups independently selected from R7'; each R7' is independently selected from halo, C₁-C₆ alkyl, and haloC₁-C₆ alkyl;
 - 15 (iii) R3 is selected from the group consisting of hydrogen, C₁-C₅ alkyl, and C₁-C₅ alkoxy; and
 - (iv) R4 is selected from the group consisting of hydrogen, C₁-C₅ alkyl, C₁-C₅ alkoxy, aryloxy, C₃-C₆ cycloalkyl, and aryl C₀-C₄ alkyl, and R3 and R4 are optionally combined to form a C₃-C₄ cycloalkyl, and wherein alkyl, alkoxy, cycloalkyl and aryl-alkyl are each optionally substituted with one to three each independently selected from R26;
- 20 (i) B is selected from the group consisting of S and O, wherein when Z is C then B is N;
- 25 (i)

- 183 -

- (j) Z is selected from the group consisting of N and C;
- (k) Z1 and Z2 are each independently N or C with the proviso that at least one of Z1 and Z2 is N;
- 5 (l) Z3 is N or O;
- (m) Z4 is selected from the group consisting of N, S, and O, wherein

when Z4 is N and n2 is 1, T1 is not

or

;

- (n) Z5 is S or O;
- (o) Z12 is selected from the group consisting of hydrogen and -Z13C₀-C₃alkylZ14;
- 10 (p) Z13 is selected from the group consisting of a single bond, CO, CO₂, CONZ15, and SO₂;
- (q) Z14 is selected from the group consisting of aryl and heteroaryl, wherein the aryl and heteroaryl is each optionally substituted with from one to three substituents independently selected from Z14';
- 15 (r) Z15 is selected from the group consisting of hydrogen, aryl, and heteroaryl, wherein the aryl and heteroaryl is each optionally substituted with from one to three substituents independently selected from Z15';
- 20 (s) W is independently selected from the group consisting of S and O;
- (t) n2 is 1 to 3;
- (u) R8 is selected from the group consisting of hydrogen, C₁-C₄ alkyl, C₁-C₄ alkylenyl, oxo, sulfo, and halo;

- (v) R9 is selected from the group consisting of hydrogen, C₁-C₄ alkyl, C₁-C₄ alkylenyl, halo, aryl-C₀-C₄ alkyl, heteroaryl, C₁-C₆ allyl, oxo, sulfo, and OR29, and R8 and R9 together optionally combine to form a fused C₅-C₆ ring with the carbons to which they are attached, and wherein aryl-C₀-C₄ alkyl, heteroaryl are each optionally substituted with from one to three independently selected from R27; R29 is selected from the group consisting of hydrogen and C₁-C₄ alkyl;
- 5 (w) R10, R11 are each independently selected from the group consisting of hydrogen, hydroxy, cyano, nitro, halo, oxo, C₁-C₆ alkyl, C₀-C₆ alkyl-COOR12'', C₁-C₆ alkoxy, C₁-C₆ haloalkyl, C₁-C₆ haloalkyloxy, C₃-C₇ cycloalkyl, aryl-C₀-4-alkyl, aryl-C₁-6-heteroalkyl, heteroaryl-C₀-4-alkyl, C₃-C₆ cycloalkylaryl-C₀-2-alkyl, aryloxy, C(O)R13', COOR14', OC(O)R15', OS(O)₂R16', N(R17')₂, NR18'C(O)R19', NR20'SO₂R21', SR22', S(O)R23', S(O)R24', and S(O)₂N(R25')₂; and wherein aryl-C₀-4-alkyl, aryl-C₁-6-heteroalkyl, heteroaryl-C₀-4-alkyl, and C₃-C₆ cycloalkylaryl-C₀-2-alkyl are each optionally substituted with from one to three independently selected from R28;
- 10 (x) R12', R12'', R13', R14', R15', R16', R17', R18', R19', R20', R21', R22', R23', R24', and R25' are each independently selected from the group consisting of hydrogen, C₁-C₆ alkyl and aryl;
- 15 (y) R30 is selected from the group consisting of C₁-C₆ alkyl, aryl-C₀-4-alkyl, aryl-C₁-6-heteroalkyl, heteroaryl-C₀-4-alkyl, and C₃-C₆ cycloalkylaryl-C₀-2-alkyl, and wherein C₁-C₆ alkyl, aryl-C₀-4-alkyl, aryl-C₁-6-heteroalkyl, heteroaryl-C₀-4-alkyl, and C₃-C₆ cycloalkylaryl-C₀-2-alkyl are each optionally substituted with from one to three substituents each independently selected from R31;
- 20 (z) R32 is selected from the group consisting of a bond, hydrogen, halo, C₁-C₆ alkyl, C₁-C₆ haloalkyl, and C₁-C₆ alkyloxo;
- 25

- 185 -

- (aa) R33 is selected from the group consisting of C2-C8 alkyl, C1-C8

alkoxy, phenyl, thiophene, pyridine, piperidine,

, and

, wherein the C2-C8 alkyl, C1-C8

alkoxy, phenyl, thiophene, pyridine, piperidine,

, and

, are each optionally substituted with R10

and R11;

5

- (bb) AL is selected from the group consisting of a fused C₃-C₈ carbocyclic and a fused phenyl;

10

- (cc) “—” are each independently an optional bond to form a double bond at the indicated position;

- (dd) wherein when Z4 is N, Z2 and Z3 are each N;

15

2. The compound of Claim 1 wherein when n2 is 1, Z4 is O or S, and R33 is phenyl optionally substituted with R10 and R11, T1 is selected from the group consisting of:

- 5 3. The compound of Claim 2, wherein A is selected from the group consisting
of C₀-C₆ alkylcarboxyl, C₀-C₆ alkyltetrazole, C₁-C₆ alkynitrile, C₀-C₆
alkylsulfonamide and C₀-C₆ alkylacylsulfonamide; wherein C₀-C₆
alkylsulfonamide, C₀-C₆ alkylacylsulfonamide and C₀-C₆ alkyltetrazole are
each optionally substituted with from one to two groups independently
selected from R⁷.
- 10 4. The compound of Claim 2, wherein the compound is represented by the
following Structural Formula:

- 187 -

and stereoisomers, pharmaceutically acceptable salts, solvates and hydrates thereof, wherein:

5

- (a) T1 is selected from the group consisting of

10

- (b) R1 is selected from the group consisting of hydrogen, C₁-C₈ alkyl, C₁-C₈ alkenyl, aryl-C₀₋₄-alkyl, aryl-C₁₋₆-heteroalkyl, heteroaryl-C₀₋₄-alkyl, and C₃-C₆ cycloalkylaryl-C₀₋₂-alkyl, wherein C₁-C₈

- alkyl, C₁-C₈ alkenyl, aryl-C₀₋₄-alkyl, aryl-C₁₋₆-heteroalkyl, heteroaryl-C₀₋₄-alkyl, and C₃-C₆ cycloalkylaryl-C₀₋₂-alkyl are each optionally substituted with from one to three substituents independently selected from R_{1'};
- 5 (c) R_{1'}, R₂₆, R₂₇, R₂₈, R₃₁, Z_{14'}, and Z_{15'} are each independently selected from the group consisting of hydrogen, hydroxy, cyano, nitro, halo, oxo, C₁-C₆ alkyl, C₁-C₆ alkyl-COOR₁₂, C₁-C₆ alkoxy, C₁-C₆ haloalkyl, C₁-C₆ haloalkyloxy, C₃-C₇ cycloalkyl, aryloxy, aryl-C₀₋₄-alkyl, heteroaryl, heterocycloalkyl, C(O)R₁₃, COOR₁₄, OC(O)R₁₅, OS(O)₂R₁₆, N(R₁₇)₂, NR₁₈C(O)R₁₉, NR₂₀SO₂R₂₁, SR₂₂, S(O)R₂₃, S(O)₂R₂₄, and S(O)₂N(R₂₅)₂; R₁₂, R₁₃, R₁₄, R₁₅, R₁₆, R₁₇, R₁₈, R₁₉, R₂₀, R₂₁, R₂₂, R₂₃, R₂₄ and R₂₅ are each independently selected from the group consisting of hydrogen, C₁-C₆ alkyl and aryl;
- 10 (d) R₂ is selected from the group consisting of C₀-C₈ alkyl and C₁₋₆-heteroalkyl;
- (e) X is selected from the group consisting of a bond, O, S, S(O)₂ and N;
- (f) U is an aliphatic linker wherein one carbon atom of the aliphatic linker may be replaced with O, NH or S, and wherein such aliphatic linker is optionally substituted with R₃₀;
- 15 (g) Y is selected from the group consisting of C, O, S, NH and a single bond;
- (h) E is C(R₃)(R₄)A or A and wherein
- (i) A is selected from the group consisting of carboxyl, tetrazole, C₁-C₆ alkylnitrile, carboxamide, sulfonamide and acylsulfonamide; wherein sulfonamide, acylsulfonamide and tetrazole are each optionally substituted with from one to two groups independently selected from R⁷;
- 20 (ii) each R⁷ is independently selected from the group consisting of hydrogen, C₁-C₆ haloalkyl, aryl-C₀-C₄ alkyl and C₁-C₆ alkyl, wherein such alkyl and arylalkyl are each optionally substituted with from one to two groups independently selected from R_{7'};
- 25 (j) R₃ and R₄ are each independently selected from the group consisting of hydrogen, C₁-C₆ alkyl, C₁-C₆ haloalkyl, aryl-C₀-C₄ alkyl and C₁-C₆ alkyl, wherein such alkyl and arylalkyl are each optionally substituted with from one to two groups independently selected from R_{7'};
- 30 (k) R₃ and R₄ are each independently selected from the group consisting of hydrogen, C₁-C₆ alkyl, C₁-C₆ haloalkyl, aryl-C₀-C₄ alkyl and C₁-C₆ alkyl, wherein such alkyl and arylalkyl are each optionally substituted with from one to two groups independently selected from R_{7'};

- 189 -

each R7' is independently selected from halo, C₁-C₆ alkyl, and haloC₁-C₆ alkyl;

(iii) R3 is selected from the group consisting of hydrogen, C₁-C₅ alkyl, and C₁-C₅ alkoxy; and

5 (iv) R4 is selected from the group consisting of hydrogen, C₁-C₅ alkyl, C₁-C₅ alkoxy, aryloxy, C₃-C₆ cycloalkyl, and aryl C₀-C₄ alkyl, and R3 and R4 are optionally combined to form a C₃-C₄ cycloalkyl, and wherein alkyl, alkoxy, cycloalkyl and aryl-alkyl are each optionally substituted with one to three each independently selected from R26;

- 10 (i) B is selected from the group consisting of S and O, wherein when Z is C then B is N;
- (j) Z is selected from the group consisting of N and C;
- (k) Z1 and Z2 are each independently N or C with the proviso that at least one of Z1 and Z2 is N;
- 15 (l) Z3 is N or O;
- (m) Z4 is selected from the group consisting of N, S, and O, wherein

or

- 20 (n) Z5 is S or O;
- (o) Z12 is selected from the group consisting of hydrogen and -Z13C₀-C₃alkylZ14;

- 190 -

- (p) Z13 is selected from the group consisting of a single bond, CO, CO₂, CONZ15, and SO₂;
- (q) Z14 is selected from the group consisting of aryl and heteroaryl, wherein the aryl and heteroaryl is each optionally substituted with from one to three substituents independently selected from Z14';
- 5 (r) Z15 is selected from the group consisting of hydrogen, aryl, and heteroaryl, wherein the aryl and heteroaryl is each optionally substituted with from one to three substituents independently selected from Z15';
- 10 (s) W is independently selected from the group consisting of S and O;
- (t) n2 is 1 to 3;
- (u) R8 is selected from the group consisting of hydrogen, C₁-C₄ alkyl, C₁-C₄ alkylenyl, oxo, sulfo, and halo;
- (v) R9 is selected from the group consisting of hydrogen, C₁-C₄ alkyl, C₁-C₄ alkylenyl, halo, aryl-C₀-C₄ alkyl, heteroaryl, C₁-C₆ allyl, oxo, sulfo, and OR29, and R8 and R9 together optionally combine to form a fused C₅-C₆ ring with the carbons to which they are attached, and wherein aryl-C₀-C₄ alkyl, heteroaryl are each optionally substituted with from one to three independently selected from R27; R29 is
- 15 selected from the group consisting of hydrogen and C₁-C₄ alkyl;
- (w) R10, R11 are each independently selected from the group consisting of hydrogen, hydroxy, cyano, nitro, halo, oxo, C₁-C₆ alkyl, C₀-C₆ alkyl-COOR12'', C₁-C₆ alkoxy, C₁-C₆ haloalkyl, C₁-C₆ haloalkyloxy, C₃-C₇ cycloalkyl, aryl-C₀-4-alkyl, aryl-C₁-6-heteroalkyl, heteroaryl-C₀-4-alkyl, C₃-C₆ cycloalkylaryl-C₀-2-alkyl, aryloxy, C(O)R13', COOR14', OC(O)R15', OS(O)₂R16', N(R17')₂, NR18'C(O)R19', NR20'SO₂R21', SR22', S(O)R23', S(O)₂R24', and S(O)₂N(R25')₂; and wherein aryl-C₀-4-alkyl, aryl-C₁-6-heteroalkyl, heteroaryl-C₀-4-alkyl, and C₃-C₆ cycloalkylaryl-C₀-2-alkyl are each optionally substituted with from one to three independently selected from R28;
- 20
- 25
- 30

- 191 -

- (x) R12', R12'', R13', R14', R15', R16', R17', R18', R19', R20', R21', R22', R23', R24', and R25' are each independently selected from the group consisting of hydrogen, C₁-C₆ alkyl and aryl;
- 5 (y) R30 is selected from the group consisting of C₁-C₆ alkyl, aryl-C₀-4-alkyl, aryl- C₁-6-heteroalkyl, heteroaryl-C₀-4-alkyl, and C₃-C₆ cycloalkylaryl-C₀-2-alkyl, and wherein C₁-C₆ alkyl, aryl-C₀-4-alkyl, aryl- C₁-6-heteroalkyl, heteroaryl-C₀-4-alkyl, and C₃-C₆ cycloalkylaryl-C₀-2-alkyl are each optionally substituted with from one to three substituents each independently selected from R31;
- 10 (z) R32 is selected from the group consisting of a bond, hydrogen, halo, C₁-C₆ alkyl, C₁-C₆ haloalkyl, and C₁-C₆ alkyloxo;
- (aa) R33 is selected from the group consisting of phenyl, thiophene,

pyridine, piperidine,

, and

wherein the phenyl, thiophene, pyridine, piperidine,

, and

, are each optionally substituted with R10 and R11;

- 15 (bb) AL is selected from the group consisting of a fused C₃-C₈ carbocyclic and a fused phenyl; and
- (ee) “---” are each independently an optional bond to form a double bond at the indicated position and
- 20 (ff) Z2 and Z3 are each N.

5. The compound of Claim 3, wherein T1 is selected from

6. The compound of Claim 4, wherein the compound is represented by the following Structural Formula:

7. The compound of Claim 6, wherein the compound is represented by the following Structural Formula:

- 193 -

8. The compound of Claim 7 wherein n2 is 2.
- 5 9. (Old 6) The compound of Claim 7, wherein the compound is represented by
the following Structural Formula:

- 10 10. The compound of Claim 9 wherein the compound is represented by the
following Structural Formula:

11. The compound of Claim 10 wherein X is -O-.
- 15 12. The compound of Claim 11 wherein E is C(R3)(R4)CO₂H or CO₂H.
13. The compound of Claim 12 wherein R1, R3, and R4 are each independently selected from the group consisting of hydrogen and C₁-C₂ alkyl.

- 194 -

14. The compound of Claim 13 wherein R10 and R11 are each independently selected from the group consisting of hydrogen, halo, oxo, C₁-C₆ alkyl, C₁-C₆ alkyl-COOR12'', C₁-C₆ alkoxy, C₁-C₆ haloalkyl, and C₁-C₆ haloalkyloxy.
- 5 15. The compound of Claim 14 wherein R10 is haloalkyl.
16. The compound of Claim 15 wherein R10 is CF₃.
- 10 17. The compound of Claim 14 wherein U is:
 saturated C₁-C₃ alkyl; and
 optionally substituted with C₁-C₃ alkyl.
18. The compound of Claim 17, wherein the compound is represented by the following Structural Formula:
-
- 15
19. The compound of Claim 9 wherein the compound is represented by the following Structural Formula:
-
- 20
20. The compound of Claim 19 wherein E is C(R3)(R4)CO₂H or CO₂H.

- 195 -

21. The compound of Claim 20 wherein R1, R3, and R4 are each independently selected from the group consisting of hydrogen and C₁-C₂ alkyl.

 22. The compound of Claim 21 wherein R10 and R11 are each independently selected from the group consisting of hydrogen, halo, oxo, C₁-C₆ alkyl, C₁-C₆ alkyl-COOR12'', C₁-C₆ alkoxy, C₁-C₆ haloalkyl, and C₁-C₆ haloalkyloxy.

 23. The compound of Claim 22 wherein R10 is haloalkyl.

 - 10 24. The compound of Claim 23 wherein R10 is CF₃.

 25. The compound of Claim 22 wherein U is:
saturated C₁-C₃ alkyl; and
optionally substituted with C₁-C₃ alkyl.

 - 15 26. The compound of Claim 25, wherein the compound is represented by the following Structural Formula:
-
27. The compound of Claim 25, wherein the compound is represented by the following Structural Formula:

28. The compound of Claim 9 wherein the compound is represented by the following Structural Formula:

- 5 29. The compound of Claim 28 wherein X is -O-.
30. The compound of Claim 29 wherein E is C(R3)(R4)CO₂H or CO₂H.
- 10 31. The compound of Claim 30 wherein R1, R3, and R4 are each independently selected from the group consisting of hydrogen and C₁-C₂ alkyl.
- 15 32. The compound of Claim 31 wherein R10 and R11 are each independently selected from the group consisting of hydrogen, halo, oxo, C₁-C₆ alkyl, C₁-C₆ alkyl-COOR12'', C₁-C₆ alkoxy, C₁-C₆ haloalkyl, and C₁-C₆ haloalkyloxy.
33. The compound of Claim 32 wherein R10 is haloalkyl.
34. The compound of Claim 33 wherein R10 is CF₃.
- 20 35. The compound of Claim 32 wherein:
- U is saturated C₁-C₃ alkyl;
- optionally one carbon in U is replaced with an -O-; and

- 197 -

U is optionally substituted with C₁-C₃ alkyl.

36. The compound of Claim 35, wherein the compound is represented by the following Structural Formula:

5

wherein n1 is 1 to 5.

37. The compound of Claim 35, wherein the compound is represented by the following Structural Formula:

10

38. The compound of Claim 28 wherein X is -S-.

39. The compound of Claim 38 wherein E is C(R₃)(R₄)CO₂H or CO₂H.

15

40. The compound of Claim 39 wherein R₁, R₃, and R₄ are each independently selected from the group consisting of hydrogen and C₁-C₂ alkyl.

20

41. The compound of Claim 40 wherein R₁₀ and R₁₁ are each independently selected from the group consisting of hydrogen, halo, oxo, C₁-C₆ alkyl, C₁-C₆ alkyl-COOR₁₂”, C₁-C₆ alkoxy, C₁-C₆ haloalkyl, and C₁-C₆ haloalkyloxy.

- 198 -

42. The compound of Claim 41 wherein R10 is haloalkyl.
43. The compound of Claim 42 wherein R10 is CF₃.
- 5 44. The compound of Claim 41 wherein:
- U is saturated C₁-C₃ alkyl;
- optionally one carbon in U is replaced with an -O-; and
- U is optionally substituted with C₁-C₃ alkyl.
- 10 45. The compound of Claim 44, wherein the compound is represented by the following Structural Formula:

46. The compound of Claim 2 wherein the compound is selected from the group consisting of:
- {6-[5-Methyl-2-(4-trifluoromethyl-phenyl)-oxazol-4-ylmethoxy]-benzo[b]thiophen-3-yl}-acetic acid;
- {4-[4-Isopropyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethoxy]-benzo[b]thiophen-3-yl}-acetic acid;
- 20 {4-[5-Methyl-2-(4-trifluoromethyl-phenyl)-oxazol-4-ylmethoxy]-benzo[b]thiophen-3-yl}-acetic acid;
- (6-{2-[5-Methyl-2-(4-trifluoromethyl-phenyl)-thiazol-4-yl]-propoxy}-benzo[b]thiophen-3-yl)-acetic acid;
- (6-{1-[4-Isopropyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-yl]-ethoxy}-benzo[b]thiophen-3-yl)-acetic acid;
- 25 (6-{2-[5-Methyl-2-(4-trifluoromethyl-phenyl)-oxazol-4-yl]-ethoxy}-benzo[b]thiophen-3-yl)-acetic acid;

- 199 -

- (6-{2-[5-Methyl-2-(4-trifluoromethyl-phenyl)-oxazol-4-yl]-propoxy}-
benzo[b]thiophen-3-yl)-acetic acid;
- (6-{2-[4-Isopropyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-yl]-propoxy}-
benzo[b]thiophen-3-yl)-acetic acid;
- 5 (R)-(6-{2-[4-Isopropyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-yl]-propoxy}-
benzo[b]thiophen-3-yl)-acetic acid;
- (S)-(6-{2-[4-Isopropyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-yl]-propoxy}-
benzo[b]thiophen-3-yl)-acetic acid;
- (R)-(4-{2-[5-Methyl-2-(4-trifluoromethyl-phenyl)-thiazol-4-yl]-propoxy}-
10 benzo[b]thiophen-3-yl)-acetic acid;
- (S)-(4-{2-[5-Methyl-2-(4-trifluoromethyl-phenyl)-thiazol-4-yl]-propoxy}-
benzo[b]thiophen-3-yl)-acetic acid;
- (4-{2-[5-Methyl-2-(4-trifluoromethyl-phenyl)-thiazol-4-yl]-ethoxy}-
benzo[b]thiophen-3-yl)-acetic acid;
- 15 Racemic-(4-{1-[4-Isopropyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-yl]-
ethoxy}-benzo[b]thiophen-3-yl)-acetic acid;
- 3-{1-[4-Methyl-2-(4-trifluoromethyl-phenyl)-oxazol-5-yl]-ethoxy}-
pyrido[1,2-a]indole-10-carboxylic acid;
- (6-{2-[5-Methyl-2-(4-trifluoromethyl-phenyl)-oxazol-4-yl]-propoxy}-
20 benzofuran-3-yl)-acetic acid;
- (6-{2-[4-Isopropyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-yl]-propoxy}-
benzofuran-3-yl)-acetic acid;
- (6-{2-[4-Isopropyl-2-(4-trifluoromethyl-phenyl)-oxazol-5-yl]-propoxy}-
benzofuran-3-yl)-acetic acid;
- 25 (6-{2-[4-Isopropyl-2-(4-trifluoromethyl-phenyl)-oxazol-5-yl]-ethoxy}-
benzofuran-3-yl)-acetic acid;
- {6-[4-Isopropyl-2-(4-trifluoromethyl-phenyl)-oxazol-5-ylmethoxy]-
benzofuran-3-yl}-acetic acid;
- (6-{1-Methyl-1-[4-methyl-2-(4-trifluoromethyl-phenyl)-oxazol-5-yl]-
30 ethylsulfanyl}-benzofuran-3-yl)-acetic acid;
- {6-[4-Isopropyl-2-(4-trifluoromethyl-phenyl)-oxazol-5-ylmethylsulfanyl]-
benzofuran-3-yl}-acetic acid;

- 200 -

- (6-{2-[4-Isopropyl-2-(4-trifluoromethyl-phenyl)-oxazol-5-yl]-ethylsulfanyl}-benzofuran-3-yl)-acetic acid;
- (6-{1-[4-Methyl-2-(4-trifluoromethyl-phenyl)-oxazol-5-yl]-ethylsulfanyl}-benzofuran-3-yl)-acetic acid;
- 5 2-{6-[4-Isopropyl-2-(4-trifluoromethyl-phenyl)-oxazol-5-ylmethoxy]-benzofuran-3-yl}-propionic acid;
- 2-(6-{2-[4-Isopropyl-2-(4-trifluoromethyl-phenyl)-oxazol-5-yl]-ethoxy}-benzofuran-3-yl)-propionic acid;
- (6-{2-[5-Methyl-2-(4-trifluoromethyl-phenyl)-thiazol-4-yl]-ethoxy}-benzofuran-3-yl)-acetic acid;
- 10 (R)-(6-{2-[5-Methyl-2-(4-trifluoromethyl-phenyl)-thiazol-4-yl]-propoxy}-benzofuran-3-yl)-acetic acid (Isomer 2);
- (S)-(6-{2-[5-Methyl-2-(4-trifluoromethyl-phenyl)-thiazol-4-yl]-propoxy}-benzofuran-3-yl)-acetic acid;
- 15 (6-{1-[4-Methyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-yl]-ethoxy}-2-oxo-3,4-dihydro-2H-quinolin-1-yl)-acetic acid;
- {2-Oxo-6-[4-phenyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethoxy]-3,4-dihydro-2H-quinolin-1-yl}-acetic acid;
- {7-[4-Methyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethoxy]-2-oxo-3,4-dihydro-2H-quinolin-1-yl}-acetic acid;
- 20 {8-[4-Methyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethoxy]-2-oxo-2,3,4,5-tetrahydro-benzo[b]azepin-1-yl}-acetic acid;
- (6-{1-[3-Methyl-1-(4-trifluoromethyl-phenyl)-1H-pyrazol-4-yl]-ethylsulfanyl}-benzofuran-3-yl)-acetic acid;
- 25 {6-[3-Methyl-1-(4-trifluoromethyl-phenyl)-1H-pyrazol-4-ylmethysulfanyl]-benzofuran-3-yl}-acetic acid;
- (6-{1-[3-Methyl-1-(4-trifluoromethyl-phenyl)-1H-pyrazol-4-yl]-ethoxy}-benzofuran-3-yl)-acetic acid;
- 2-{5-[1-(3,5-Bis-trifluoromethyl-phenyl)-5-methyl-1H-pyrazol-4-ylmethoxy]-indol-1-yl}-2-methyl-propionic acid;
- 30 (1-Methyl-6-{2-[3-methyl-1-(4-trifluoromethyl-phenyl)-1H-pyrazol-4-yl]-propoxy}-1H-indol-3-yl)-acetic acid;

- 201 -

- {5-[2-(5-Methyl-3-phenyl-pyrazol-1-yl)-ethoxy]-indol-1-yl}-acetic acid;
(1-Methyl-6-{2-[3-methyl-1-(4-trifluoromethyl-phenyl)-1H-pyrazol-4-yl]-
propoxy}-1H-indol-3-yl)-acetic acid;
(1-Methyl-6-{2-[4-methyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-yl]-propoxy}-
5 1H-indol-3-yl)-acetic acid;
{5-[5-(4-Trifluoromethyl-phenyl)-thiophen-2-ylmethoxy]-indol-1-yl}-acetic
acid;
3-{4-[3-Isobutyl-5-(4-trifluoromethyl-phenyl)-thiophen-2-ylmethoxy]-2-
methyl-phenyl}-propionic acid;
10 (5-{2-[3-Methyl-5-(4-trifluoromethyl-phenyl)-thiophen-2-yl]-propoxy}-
indol-1-yl)-acetic acid;
(6-{1-[3-Methyl-1-(4-trifluoromethyl-phenyl)-1H-pyrazol-4-yl]-
ethylsulfanyl}-benzofuran-3-yl)-acetic acid;
{6-[3-Methyl-1-(4-trifluoromethyl-phenyl)-1H-pyrazol-4-ylmethylsulfanyl]-
15 benzofuran-3-yl}-acetic acid;
(6-{1-[3-Methyl-1-(4-trifluoromethyl-phenyl)-1H-pyrazol-4-yl]-ethoxy}-
benzofuran-3-yl)-acetic acid;
2-{5-[1-(3,5-Bis-trifluoromethyl-phenyl)-5-methyl-1H-pyrazol-4-
ylmethoxy]-indol-1-yl}-2-methyl-propionic acid;
20 (1-Methyl-6-{2-[3-methyl-1-(4-trifluoromethyl-phenyl)-1H-pyrazol-4-yl]-
propoxy}-1H-indol-3-yl)-acetic acid;
{5-[2-(5-Methyl-3-phenyl-pyrazol-1-yl)-ethoxy]-indol-1-yl}-acetic acid;
(1-Methyl-6-{2-[3-methyl-1-(4-trifluoromethyl-phenyl)-1H-pyrazol-4-yl]-
propoxy}-1H-indol-3-yl)-acetic acid;
25 Racemic-{5-[2-(4-Trifluoromethyl-phenyl)-5,6-dihydro-4H-
cyclopentathiazol-4-ylmethoxy]-indol-1-yl}-acetic acid;
(S)-{6-[2-(4-Trifluoromethyl-phenyl)-5,6-dihydro-4H-cyclopentathiazol-4-
ylmethoxy]-1H-indol-3-yl}-acetic acid;
{1-Methyl-6-[2-(4-trifluoromethyl-phenyl)-5,6-dihydro-4H-
30 cyclopentathiazol-4-ylmethoxy]-1H-indol-3-yl}-acetic acid;
{5-[2-(4-Trifluoromethyl-phenyl)-4,5,6,7-tetrahydro-benzothiazol-4-
ylmethoxy]-indol-1-yl}-acetic acid;

- {6-[2-(4-Trifluoromethyl-phenyl)-4,5,6,7-tetrahydro-benzothiazol-4-ylmethoxy]-1H-indol-3-yl}-acetic acid;
- {6-[2-(4-Trifluoromethyl-phenyl)-4,5,6,7-tetrahydro-benzothiazol-4-ylmethoxy]-1H-indol-3-yl}-acetic acid;
- 5 {1-Methyl-6-[2-(4-trifluoromethyl-phenyl)-4,5,6,7-tetrahydro-benzothiazol-4-ylmethoxy]-1H-indol-3-yl}-acetic acid;
- {5-[2-(4-Trifluoromethyl-phenyl)-4,5,6,7-tetrahydro-benzothiazol-4-ylmethoxy]-indol-1-yl}-acetic acid;
- 10 {1-Methyl-6-[2-(4-trifluoromethyl-phenyl)-5,6,7,8-tetrahydro-4H-cycloheptathiazol-4-ylmethoxy]-1H-indol-3-yl}-acetic acid;
- {6-[4-Isopropyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethoxy]-benzo[b]thiophen-3-yl}-acetic acid;
- 15 2-(6-((1-(4-(trifluoromethyl)phenyl)-3-methyl-1H-pyrazol-4-yl)methoxy)benzo[b]thiophen-3-yl)acetic acid;
- 2-(6-(2-(1-(4-(trifluoromethyl)phenyl)-3-methyl-1H-pyrazol-4-yl)propoxy)benzo[b]thiophen-3-yl)acetic acid;
- 2-(6-(2-(1-(4-(trifluoromethyl)phenyl)-3-methyl-1H-pyrazol-4-yl)propoxy)benzo[b]thiophen-3-yl)acetic acid;
- 20 2-(6-((R)-2-(1-(4-(trifluoromethyl)phenyl)-3-methyl-1H-pyrazol-4-yl)propylthio)benzo[b]thiophen-3-yl)acetic acid;
- 2-(6-((1-(4-(trifluoromethyl)phenyl)-3-isopropyl-1H-pyrazol-4-yl)methylthio)benzo[b]thiophen-3-yl)acetic acid; and
- 2-(6-((4-tert-butyl-2-(4-(trifluoromethyl)phenyl)thiazol-5-yl)methylthio)benzo[b]thiophen-3-yl)acetic acid.
- 25
47. The compound of Claim 1, wherein the compound is in the S conformation.
48. The compound of Claim 1, wherein the compound is in the R conformation.
- 30 49. The compound of Claim 1, wherein the compound is radiolabeled.

- 203 -

50. A method of treating a mammal in need of treatment for a disease, wherein the disease is treatable by modulating a peroxisome proliferator activated receptor, comprising the step of administering to the mammal in need thereof a therapeutically effective amount of a compound represented by the following Structural Formula:

and stereoisomers, pharmaceutically acceptable salts, solvates and hydrates thereof, wherein:

10

- (a) T1 is selected from the group consisting of

R32

- (b) R1 is selected from the group consisting of hydrogen, C₁-C₈ alkyl, C₁-C₈ alkenyl, aryl-C₀₋₄-alkyl, aryl-C₁₋₆-heteroalkyl, heteroaryl-C₀₋₄-alkyl, and C₃-C₆ cycloalkylaryl-C₀₋₂-alkyl, wherein C₁-C₈ alkyl, C₁-C₈ alkenyl, aryl-C₀₋₄-alkyl, aryl-C₁₋₆-heteroalkyl, heteroaryl-C₀₋₄-alkyl, and C₃-C₆ cycloalkylaryl-C₀₋₂-alkyl are each optionally substituted with from one to three substituents independently selected from R1';
- (c) R1', R26, R27, R28, R31, Z14', and Z15' are each independently selected from the group consisting of hydrogen, hydroxy, cyano, nitro, halo, oxo, C₁-C₆ alkyl, C₁-C₆ alkyl-COOR12, C₁-C₆ alkoxy, C₁-C₆ haloalkyl, C₁-C₆ haloalkyloxy, C₃-C₇ cycloalkyl, optionally substituted aryloxy, optionally substituted aryl-C₀₋₄-alkyl, optionally substituted heteroaryl, optionally substituted heterocycloalkyl, C(O)R13, COOR14, OC(O)R15, OS(O)₂R16, N(R17)₂, NR18C(O)R19, NR20SO₂R21, SR22, S(O)R23, S(O)₂R24, and S(O)₂N(R25)₂; R12, R13, R14, R15, R16, R17, R18, R19, R20, R21, R22, R23, R24 and R25 are each independently selected from the group consisting of hydrogen, C₁-C₆ alkyl and aryl;
- (d) R2 is selected from the group consisting of C₀-C₈ alkyl and C₁₋₆-heteroalkyl;
- (e) X is selected from the group consisting of a bond, O, S, S(O)₂ and N;
- (f) U is an aliphatic linker wherein one carbon atom of the aliphatic linker may be replaced with O, NH or S, and wherein such aliphatic linker is optionally substituted with R30;
- (g) Y is selected from the group consisting of C, O, S, NH and a single bond;
- (h) E is C(R3)(R4)A or A and wherein
- (i) A is selected from the group consisting of C₀-C₆ alkylcarboxyl, C₀-C₆ alkyltetrazole, C₁-C₆ alkylnitrile, C₀-C₆ alkylcarboxamide, C₀-C₆ alkylsulfonamide and C₀-C₆ alkylacylsulfonamide; wherein

- 205 -

C₀-C₆ alkylsulfonamide, **C₀-C₆** alkylacylsulfonamide and **C₀-C₆** alkyltetrazole are each optionally substituted with from one to two groups independently selected from R⁷:

- 5 (ii) each R⁷ is independently selected from the group consisting of hydrogen, C₁-C₆ haloalkyl, aryl-C₀-C₄ alkyl and C₁-C₆ alkyl, wherein such alkyl and arylalkyl are each optionally substituted with from one to two groups independently selected from R7'; each R7' is independently selected from halo, C₁-C₆ alkyl, and haloC₁-C₆ alkyl;

10 (iii) R3 is selected from the group consisting of hydrogen, C₁-C₅ alkyl, and C₁-C₅ alkoxy; and

(iv) R4 is selected from the group consisting of hydrogen, C₁-C₅ alkyl, C₁-C₅ alkoxy, aryloxy, C₃-C₆ cycloalkyl, and aryl C₀-C₄ alkyl, and R3 and R4 are optionally combined to form a C₃-C₄ cycloalkyl, and wherein alkyl, alkoxy, cycloalkyl and aryl-alkyl are each optionally substituted with one to three each independently selected from R26;

15 (i) B is selected from the group consisting of S and O, wherein when Z is C then B is N;

(j) Z is selected from the group consisting of N and C;

(k) Z1 and Z2 are each independently N or C with the proviso that at least one of Z1 and Z2 is N;

20 (l) Z3 is N or O;

- 206 -

- (m) Z4 is selected from the group consisting of N, S, and O, wherein

when Z4 is N and n2 is 1, T1 is not

or

- (n) Z5 is S or O;
- 5 (o) Z12 is selected from the group consisting of hydrogen and -Z13C₀-C₃alkylZ14;
- (p) Z13 is selected from the group consisting of a single bond, CO, CO₂, CONZ15, and SO₂;
- (q) Z14 is selected from the group consisting of aryl and heteroaryl, wherein the aryl and heteroaryl is each optionally substituted with from one to three substituents independently selected from Z14';
- 10 (r) Z15 is selected from the group consisting of hydrogen, aryl, and heteroaryl, wherein the aryl and heteroaryl is each optionally substituted with from one to three substituents independently selected from Z15';
- 15 (s) W is independently selected from the group consisting of S and O;
- (t) n2 is 1 to 3;
- (u) R8 is selected from the group consisting of hydrogen, C₁-C₄ alkyl, C₁-C₄ alkylenyl, oxo, sulfo, and halo;
- 20 (v) R9 is selected from the group consisting of hydrogen, C₁-C₄ alkyl, C₁-C₄ alkylenyl, halo, aryl-C₀-C₄ alkyl, heteroaryl, C₁-C₆ allyl, oxo, sulfo, and OR29, and R8 and R9 together optionally combine to form a fused C5-C6 ring with the carbons to which they are attached, and wherein aryl-C₀-C₄ alkyl, heteroaryl are each optionally substituted

- 207 -

- with from one to three independently selected from R27; R29 is selected from the group consisting of hydrogen and C₁-C₄ alkyl;
- (w) R10, R11 are each independently selected from the group consisting of hydrogen, hydroxy, cyano, nitro, halo, oxo, C₁-C₆ alkyl, C₀-C₆ alkyl-COOR12'', C₁-C₆ alkoxy, C₁-C₆ haloalkyl, C₁-C₆ haloalkyloxy, C₃-C₇ cycloalkyl, aryl-C₀-4-alkyl, aryl-C₁-6-heteroalkyl, heteroaryl-C₀-4-alkyl, C₃-C₆ cycloalkylaryl-C₀-2-alkyl, aryloxy, C(O)R13', COOR14', OC(O)R15', OS(O)₂R16', N(R17')₂, NR18'C(O)R19', NR20'SO₂R21', SR22', S(O)R23', S(O)₂R24', and S(O)₂N(R25')₂; and wherein aryl-C₀-4-alkyl, aryl-C₁-6-heteroalkyl, heteroaryl-C₀-4-alkyl, and C₃-C₆ cycloalkylaryl-C₀-2-alkyl are each optionally substituted with from one to three independently selected from R28;
- (x) R12', R12'', R13', R14', R15', R16', R17', R18', R19', R20', R21', R22', R23', R24', and R25' are each independently selected from the group consisting of hydrogen, C₁-C₆ alkyl and aryl;
- (y) R30 is selected from the group consisting of C₁-C₆ alkyl, aryl-C₀-4-alkyl, aryl-C₁-6-heteroalkyl, heteroaryl-C₀-4-alkyl, and C₃-C₆ cycloalkylaryl-C₀-2-alkyl, and wherein C₁-C₆ alkyl, aryl-C₀-4-alkyl, aryl-C₁-6-heteroalkyl, heteroaryl-C₀-4-alkyl, and C₃-C₆ cycloalkylaryl-C₀-2-alkyl are each optionally substituted with from one to three substituents each independently selected from R31;
- (z) R32 is selected from the group consisting of a bond, hydrogen, halo, C₁-C₆ alkyl, C₁-C₆ haloalkyl, and C₁-C₆ alkyloxo;
- (aa) R33 is selected from the group consisting of C₁-C₈ alkyl, C₁-C₈ alkoxy, phenyl, thiophene, pyridine, piperidine,

25

alkoxy, phenyl, thiophene, pyridine, piperidine,

- 208 -

, and

, wherein the C1-C8 alkyl, C1-C8

alkoxy, phenyl, thiophene, pyridine, piperidine,

, and

, are each optionally substituted with R10 and R11;

- 5 (bb) AL is selected from the group consisting of a fused C₃-C₈ carbocyclic and a fused phenyl;
 (cc) “---” are each independently an optional bond to form a double bond at the indicated position; and
 (dd) wherein when Z4 is N, Z2 and Z3 are each N.

10

51. The method of Claim 50 wherein when n1 is 1, Z4 is O or S, and R33 is phenyl optionally substituted with R10 and R11, T1 is selected from the group consisting of

- 209 -

5

52. The method of Claim 51, wherein the compound is represented by the following Structural Formula:

- 210 -

and stereoisomers, pharmaceutically acceptable salts, solvates and hydrates thereof, wherein:

5

(a) T1 is selected from the group consisting of

10

(b) R1 is selected from the group consisting of hydrogen, C₁-C₈ alkyl, C₁-C₈ alkenyl, aryl-C₀₋₄-alkyl, aryl-C₁₋₆-heteroalkyl, heteroaryl-C₀₋₄-alkyl, and C₃-C₆ cycloalkylaryl-C₀₋₂-alkyl, wherein C₁-C₈

- alkyl, C₁-C₈ alkenyl, aryl-C₀₋₄-alkyl, aryl-C₁₋₆-heteroalkyl, heteroaryl-C₀₋₄-alkyl, and C₃-C₆ cycloalkylaryl-C₀₋₂-alkyl are each optionally substituted with from one to three substituents independently selected from R1';
- 5 (c) R1', R26, R27, R28, R31, Z14', and Z15' are each independently selected from the group consisting of hydrogen, hydroxy, cyano, nitro, halo, oxo, C₁-C₆ alkyl, C₁-C₆ alkyl-COOR12, C₁-C₆ alkoxy, C₁-C₆ haloalkyl, C₁-C₆ haloalkyloxy, C₃-C₇ cycloalkyl, aryloxy, aryl-C₀₋₄-alkyl, heteroaryl, heterocycloalkyl, C(O)R13, COOR14, OC(O)R15, OS(O)₂R16, N(R17)₂, NR18C(O)R19, NR20SO₂R21, SR22, S(O)R23, S(O)₂R24, and S(O)₂N(R25)₂; R12, R13, R14, R15, R16, R17, R18, R19, R20, R21, R22, R23, R24 and R25 are each independently selected from the group consisting of hydrogen, C₁-C₆ alkyl and aryl;
- 10 (d) R2 is selected from the group consisting of C₀-C₈ alkyl and C₁₋₆-heteroalkyl;
- 15 (e) X is selected from the group consisting of a bond, O, S, S(O)₂ and N;
- (f) U is an aliphatic linker wherein one carbon atom of the aliphatic linker may be replaced with O, NH or S, and wherein such aliphatic linker is optionally substituted with R30;
- 20 (g) Y is selected from the group consisting of C, O, S, NH and a single bond;
- (h) E is C(R3)(R4)A or A and wherein
- (i) A is selected from the group consisting of carboxyl, tetrazole, C₁-C₆ alkynitrile, carboxamide, sulfonamide and acylsulfonamide; wherein sulfonamide, acylsulfonamide and tetrazole are each optionally substituted with from one to two groups independently selected from R⁷;
- 25 (ii) each R⁷ is independently selected from the group consisting of hydrogen, C₁-C₆ haloalkyl, aryl-C₀-C₄ alkyl and C₁-C₆ alkyl, wherein such alkyl and arylalkyl are each optionally substituted with from one to two groups independently selected from R7';
- 30

- 212 -

each R7' is independently selected from halo, C₁-C₆ alkyl, and haloC₁-C₆ alkyl;

(iii) R3 is selected from the group consisting of hydrogen, C₁-C₅ alkyl, and C₁-C₅ alkoxy; and

5 (iv) R4 is selected from the group consisting of hydrogen, C₁-C₅ alkyl, C₁-C₅ alkoxy, aryloxy, C₃-C₆ cycloalkyl, and aryl C₀-C₄ alkyl, and R3 and R4 are optionally combined to form a C₃-C₄ cycloalkyl, and wherein alkyl, alkoxy, cycloalkyl and aryl-alkyl are each optionally substituted with one to three each independently selected from R26;

10 (i) B is selected from the group consisting of S and O, wherein when Z is C then B is N;

(j) Z is selected from the group consisting of N and C;

(k) Z1 and Z2 are each independently N or C with the proviso that at least one of Z1 and Z2 is N;

15 (l) Z3 is N or O;

(m) Z4 is selected from the group consisting of N, S, and O, wherein

when Z4 is N and n2 is 1, T1 is not

or

;

20 (n) Z5 is S or O;

(o) Z12 is selected from the group consisting of hydrogen and -Z13C₀-C₃alkylZ14;

- 213 -

- (p) Z13 is selected from the group consisting of a single bond, CO, CO₂, CONZ15, and SO₂;
 - (q) Z14 is selected from the group consisting of aryl and heteroaryl, wherein the aryl and heteroaryl is each optionally substituted with from one to three substituents independently selected from Z14';
 - (r) Z15 is selected from the group consisting of hydrogen, aryl, and heteroaryl, wherein the aryl and heteroaryl is each optionally substituted with from one to three substituents independently selected from Z15';
- 10 (s) W is independently selected from the group consisting of S and O;
- (t) n2 is 1 to 3;
- (u) R8 is selected from the group consisting of hydrogen, C₁-C₄ alkyl, C₁-C₄ alkylenyl, oxo, sulfo, and halo;
- (v) R9 is selected from the group consisting of hydrogen, C₁-C₄ alkyl, C₁-C₄ alkylenyl, halo, aryl-C₀-C₄ alkyl, heteroaryl, C₁-C₆ allyl, oxo, sulfo, and OR29, and R8 and R9 together optionally combine to form a fused C5-C6 ring with the carbons to which they are attached, and wherein aryl-C₀-C₄ alkyl, heteroaryl are each optionally substituted with from one to three independently selected from R27; R29 is selected from the group consisting of hydrogen and C₁-C₄ alkyl;
- 15 (w) R10, R11 are each independently selected from the group consisting of hydrogen, hydroxy, cyano, nitro, halo, oxo, C₁-C₆ alkyl, C₀-C₆ alkyl-COOR12'', C₁-C₆ alkoxy, C₁-C₆ haloalkyl, C₁-C₆ haloalkyloxy, C₃-C₇ cycloalkyl, aryl-C₀-4-alkyl, aryl-C₁-6-heteroalkyl, heteroaryl-C₀-4-alkyl, C₃-C₆ cycloalkylaryl-C₀-2-alkyl, aryloxy, C(O)R13', COOR14', OC(O)R15', OS(O)R16', N(R17')₂, NR18'C(O)R19', NR20'SO₂R21', SR22', S(O)R23', S(O)₂R24', and S(O)₂N(R25')₂; and wherein aryl-C₀-4-alkyl, aryl- C₁-6-heteroalkyl, heteroaryl-C₀-4-alkyl, and C₃-C₆ cycloalkylaryl-C₀-2-alkyl are each optionally substituted with from one to three independently selected from R28;
- 20
- 25
- 30

- 214 -

- (x) R12', R12'', R13', R14', R15', R16', R17', R18', R19', R20', R21', R22', R23', R24', and R25' are each independently selected from the group consisting of hydrogen, C₁-C₆ alkyl and aryl;
- 5 (y) R30 is selected from the group consisting of C₁-C₆ alkyl, aryl-C₀-4-alkyl, aryl- C₁-6-heteroalkyl, heteroaryl-C₀-4-alkyl, and C₃-C₆ cycloalkylaryl-C₀-2-alkyl, and wherein C₁-C₆ alkyl, aryl-C₀-4-alkyl, aryl- C₁-6-heteroalkyl, heteroaryl-C₀-4-alkyl, and C₃-C₆ cycloalkylaryl-C₀-2-alkyl are each optionally substituted with from one to three substituents each independently selected from R31;
- 10 (z) R32 is selected from the group consisting of a bond, hydrogen, halo, C₁-C₆ alkyl, C₁-C₆ haloalkyl, and C₁-C₆ alkyloxo;
- (aa) R33 is selected from the group consisting of phenyl, thiophene,

pyridine, piperidine,

, and

wherein the phenyl, thiophene, pyridine, piperidine,

- 15 , and , are each optionally substituted with R10 and R11;

- (bb) AL is selected from the group consisting of a fused C₃-C₈ carbocyclic and a fused phenyl; and
- (ee) “---” are each independently an optional bond to form a double bond at the indicated position and
- 20 (ff) Z2 and Z3 are each N.

53. The method of Claim 51, wherein the disease is selected from the group consisting of diabetes mellitus, Syndrome X, and atherosclerosis.
- 5 54. The method of Claim 53, wherein the disease is diabetes mellitus.
55. The method of Claim 53, wherein the disease is Syndrome X.
56. The method of Claim 53, wherein T1 is selected from

10

57. The method of Claim 53, wherein the compound is represented by the following Structural Formula:

15

58. The method of Claim 57, wherein the compound is represented by the following Structural Formula:

59. The method of Claim 58 wherein n2 is 2.

5 60. The method of Claim 58, wherein the compound is represented by the following Structural Formula:

61. The method of Claim 60 wherein the compound is represented by the following Structural Formula:

10

62. The method of Claim 61 wherein X is -O-.

63. The method of Claim 62 wherein E is C(R3)(R4)CO₂H or CO₂H.

15 64. The method of Claim 63 wherein R1, R3, and R4 are each independently selected from the group consisting of hydrogen and C₁-C₂ alkyl.

65. The method of Claim 64 wherein R10 and R11 are each independently selected from the group consisting of hydrogen, halo, oxo, C₁-C₆ alkyl, C₁-C₆ alkyl-COOR12'', C₁-C₆ alkoxy, C₁-C₆ haloalkyl, and C₁-C₆ haloalkyloxy.

20

- 217 -

66. The method of Claim 65 wherein R10 is haloalkyl.
67. The method of Claim 66 wherein R10 is CF₃.
- 5 68. The method of Claim 65 wherein U is:
saturated C₁-C₃ alkyl; and
optionally substituted with C₁-C₃ alkyl.
- 10 69. The method of Claim 68, wherein the compound is represented by the following Structural Formula:

70. The method of Claim 60 wherein the compound is represented by the following Structural Formula:

- 15 71. The method of Claim 70 wherein E is C(R3)(R4)CO₂H or CO₂H.
72. The method of Claim 71 wherein R1, R3, and R4 are each independently selected from the group consisting of hydrogen and C₁-C₂ alkyl.

- 218 -

73. The method of Claim 72 wherein R10 and R11 are each independently selected from the group consisting of hydrogen, halo, oxo, C₁-C₆ alkyl, C₁-C₆ alkyl-COOR12'', C₁-C₆ alkoxy, C₁-C₆ haloalkyl, and C₁-C₆ haloalkyloxy.

5 74. The method of Claim 73 wherein R10 is haloalkyl.

75. The method of Claim 74 wherein R10 is CF₃.

76. The method of Claim 73 wherein U is:

10 saturated C₁-C₃ alkyl; and
optionally substituted with C₁-C₃ alkyl.

77. The method of Claim 76, wherein the compound is represented by the following Structural Formula:

78. The method of Claim 76, wherein the compound is represented by the following Structural Formula:

20

- 219 -

79. The method of Claim 60 wherein the compound is represented by the following Structural Formula:

- 5 80. The method of Claim 79 wherein X is -O-.
81. The method of Claim 80 wherein E is C(R3)(R4)CO₂H or CO₂H.
- 10 82. The method of Claim 81 wherein R1, R3, and R4 are each independently selected from the group consisting of hydrogen and C₁-C₂ alkyl.
- 15 83. The method of Claim 82 wherein R10 and R11 are each independently selected from the group consisting of hydrogen, halo, oxo, C₁-C₆ alkyl, C₁-C₆ alkyl-COOR12'', C₁-C₆ alkoxy, C₁-C₆ haloalkyl, and C₁-C₆ haloalkyloxy.
84. The method of Claim 83 wherein R10 is haloalkyl.
- 16 85. The method of Claim 84 wherein R10 is CF₃.
- 20 86. The method of Claim 83 wherein:
- U is saturated C₁-C₃ alkyl;
 - optionally one carbon in U is replaced with an -O-; and
 - U is optionally substituted with C₁-C₃ alkyl.
- 25 87. The method of Claim 86, wherein the compound is represented by the following Structural Formula:

- 220 -

wherein n1 is 1 to 5.

88. The method of Claim 86, wherein the compound is represented by the
5 following Structural Formula:

89. The method of Claim 79 wherein X is -S-.
- 10 90. The method of Claim 89 wherein E is C(R3)(R4)CO₂H or CO₂H.
91. The method of Claim 90 wherein R1, R3, and R4 are each independently selected from the group consisting of hydrogen and C₁-C₂ alkyl.
- 15 92. The method of Claim 91 wherein R10 and R11 are each independently selected from the group consisting of hydrogen, halo, oxo, C₁-C₆ alkyl, C₁-C₆ alkyl-COOR12'', C₁-C₆ alkoxy, C₁-C₆ haloalkyl, and C₁-C₆ haloalkyloxy.
93. The method of Claim 92 wherein R10 is haloalkyl.
20
94. The method of Claim 93 wherein R10 is CF₃.
95. The method of Claim 92 wherein:

- 221 -

U is saturated C₁-C₃ alkyl;
optionally one carbon in U is replaced with an -O-; and
U is optionally substituted with C₁-C₃ alkyl.

- 5 96. The method of Claim 95, wherein the compound is represented by the
following Structural Formula:

97. The method of Claim 50 wherein the compound is selected from the group
10 consisting of:
{6-[5-Methyl-2-(4-trifluoromethyl-phenyl)-oxazol-4-ylmethoxy]-
benzo[b]thiophen-3-yl}-acetic acid;
{4-[4-Isopropyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethoxy]-
benzo[b]thiophen-3-yl}-acetic acid;
15 {4-[5-Methyl-2-(4-trifluoromethyl-phenyl)-oxazol-4-ylmethoxy]-
benzo[b]thiophen-3-yl}-acetic acid;
(6-{2-[5-Methyl-2-(4-trifluoromethyl-phenyl)-thiazol-4-yl]-propoxy}-
benzo[b]thiophen-3-yl)-acetic acid;
(6-{1-[4-Isopropyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-yl]-ethoxy}-
20 benzo[b]thiophen-3-yl)-acetic acid;
(6-{2-[5-Methyl-2-(4-trifluoromethyl-phenyl)-oxazol-4-yl]-ethoxy}-
benzo[b]thiophen-3-yl)-acetic acid;
(6-{2-[5-Methyl-2-(4-trifluoromethyl-phenyl)-oxazol-4-yl]-propoxy}-
benzo[b]thiophen-3-yl)-acetic acid;
25 (6-{2-[4-Isopropyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-yl]-propoxy}-
benzo[b]thiophen-3-yl)-acetic acid;

- 222 -

- (*R*)-(6-{2-[4-Isopropyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-yl]-propoxy}-benzo[b]thiophen-3-yl)-acetic acid;
- (*S*)-(6-{2-[4-Isopropyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-yl]-propoxy}-benzo[b]thiophen-3-yl)-acetic acid;
- 5 (*R*)-(4-{2-[5-Methyl-2-(4-trifluoromethyl-phenyl)-thiazol-4-yl]-propoxy}-benzo[b]thiophen-3-yl)-acetic acid;
- (*S*)-(4-{2-[5-Methyl-2-(4-trifluoromethyl-phenyl)-thiazol-4-yl]-propoxy}-benzo[b]thiophen-3-yl)-acetic acid;
- 10 (4-{2-[5-Methyl-2-(4-trifluoromethyl-phenyl)-thiazol-4-yl]-ethoxy}-benzo[b]thiophen-3-yl)-acetic acid;
- Racemic-(4-{1-[4-Isopropyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-yl]-ethoxy}-benzo[b]thiophen-3-yl)-acetic acid;
- 15 3-{1-[4-Methyl-2-(4-trifluoromethyl-phenyl)-oxazol-5-yl]-ethoxy}-pyrido[1,2-a]indole-10-carboxylic acid;
- (6-{2-[5-Methyl-2-(4-trifluoromethyl-phenyl)-oxazol-4-yl]-propoxy}-benzofuran-3-yl)-acetic acid;
- (6-{2-[4-Isopropyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-yl]-propoxy}-benzofuran-3-yl)-acetic acid;
- 20 (6-{2-[4-Isopropyl-2-(4-trifluoromethyl-phenyl)-oxazol-5-yl]-propoxy}-benzofuran-3-yl)-acetic acid;
- (6-{2-[4-Isopropyl-2-(4-trifluoromethyl-phenyl)-oxazol-5-yl]-ethoxy}-benzofuran-3-yl)-acetic acid;
- 25 {6-[4-Isopropyl-2-(4-trifluoromethyl-phenyl)-oxazol-5-ylmethoxy]-benzofuran-3-yl}-acetic acid;
- (6-{1-Methyl-1-[4-methyl-2-(4-trifluoromethyl-phenyl)-oxazol-5-yl]-ethylsulfanyl}-benzofuran-3-yl)-acetic acid;
- {6-[4-Isopropyl-2-(4-trifluoromethyl-phenyl)-oxazol-5-ylmethylsulfanyl]-benzofuran-3-yl}-acetic acid;
- 30 (6-{2-[4-Isopropyl-2-(4-trifluoromethyl-phenyl)-oxazol-5-yl]-ethylsulfanyl}-benzofuran-3-yl)-acetic acid;
- (6-{1-[4-Methyl-2-(4-trifluoromethyl-phenyl)-oxazol-5-yl]-ethylsulfanyl}-benzofuran-3-yl)-acetic acid;

- 2-{6-[4-Isopropyl-2-(4-trifluoromethyl-phenyl)-oxazol-5-ylmethoxy]-benzofuran-3-yl}-propionic acid;
- 2-(6-{2-[4-Isopropyl-2-(4-trifluoromethyl-phenyl)-oxazol-5-yl]-ethoxy}-benzofuran-3-yl)-propionic acid;
- 5 (6-{2-[5-Methyl-2-(4-trifluoromethyl-phenyl)-thiazol-4-yl]-ethoxy}-benzofuran-3-yl)-acetic acid;
- (R)-(6-{2-[5-Methyl-2-(4-trifluoromethyl-phenyl)-thiazol-4-yl]-propoxy}-benzofuran-3-yl)-acetic acid (Isomer 2);
- (S)-(6-{2-[5-Methyl-2-(4-trifluoromethyl-phenyl)-thiazol-4-yl]-propoxy}-benzofuran-3-yl)-acetic acid;
- 10 (6-{1-[4-Methyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-yl]-ethoxy}-2-oxo-3,4-dihydro-2H-quinolin-1-yl)-acetic acid;
- {2-Oxo-6-[4-phenyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethoxy]-3,4-dihydro-2H-quinolin-1-yl}-acetic acid;
- 15 {7-[4-Methyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethoxy]-2-oxo-3,4-dihydro-2H-quinolin-1-yl}-acetic acid;
- {8-[4-Methyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethoxy]-2-oxo-2,3,4,5-tetrahydro-benzo[b]azepin-1-yl}-acetic acid;
- (6-{1-[3-Methyl-1-(4-trifluoromethyl-phenyl)-1H-pyrazol-4-yl]-ethylsulfanyl}-benzofuran-3-yl)-acetic acid;
- 20 {6-[3-Methyl-1-(4-trifluoromethyl-phenyl)-1H-pyrazol-4-ylmethylsulfanyl]-benzofuran-3-yl}-acetic acid;
- (6-{1-[3-Methyl-1-(4-trifluoromethyl-phenyl)-1H-pyrazol-4-yl]-ethoxy}-benzofuran-3-yl)-acetic acid;
- 25 2-{5-[1-(3,5-Bis-trifluoromethyl-phenyl)-5-methyl-1H-pyrazol-4-ylmethoxy]-indol-1-yl}-2-methyl-propionic acid;
- (1-Methyl-6-{2-[3-methyl-1-(4-trifluoromethyl-phenyl)-1H-pyrazol-4-yl]-propoxy}-1H-indol-3-yl)-acetic acid;
- 30 {5-[2-(5-Methyl-3-phenyl-pyrazol-1-yl)-ethoxy]-indol-1-yl}-acetic acid;
- (1-Methyl-6-{2-[3-methyl-1-(4-trifluoromethyl-phenyl)-1H-pyrazol-4-yl]-propoxy}-1H-indol-3-yl)-acetic acid;

- (1-Methyl-6-{2-[4-methyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-yl]-propoxy}-1H-indol-3-yl)-acetic acid;
- {5-[5-(4-Trifluoromethyl-phenyl)-thiophen-2-ylmethoxy]-indol-1-yl}-acetic acid;
- 5 3-{4-[3-Isobutyl-5-(4-trifluoromethyl-phenyl)-thiophen-2-ylmethoxy]-2-methyl-phenyl}-propionic acid;
- (5-{2-[3-Methyl-5-(4-trifluoromethyl-phenyl)-thiophen-2-yl]-propoxy}-indol-1-yl)-acetic acid;
- (6-{1-[3-Methyl-1-(4-trifluoromethyl-phenyl)-1H-pyrazol-4-yl]-ethylsulfanyl}-benzofuran-3-yl)-acetic acid;
- 10 {6-[3-Methyl-1-(4-trifluoromethyl-phenyl)-1H-pyrazol-4-ylmethylsulfanyl]-benzofuran-3-yl}-acetic acid;
- (6-{1-[3-Methyl-1-(4-trifluoromethyl-phenyl)-1H-pyrazol-4-yl]-ethoxy}-benzofuran-3-yl)-acetic acid;
- 15 2-{5-[1-(3,5-Bis-trifluoromethyl-phenyl)-5-methyl-1H-pyrazol-4-ylmethoxy]-indol-1-yl}-2-methyl-propionic acid;
- (1-Methyl-6-{2-[3-methyl-1-(4-trifluoromethyl-phenyl)-1H-pyrazol-4-yl]-propoxy}-1H-indol-3-yl)-acetic acid;
- {5-[2-(5-Methyl-3-phenyl-pyrazol-1-yl)-ethoxy]-indol-1-yl}-acetic acid;
- 20 (1-Methyl-6-{2-[3-methyl-1-(4-trifluoromethyl-phenyl)-1H-pyrazol-4-yl]-propoxy}-1H-indol-3-yl)-acetic acid;
- Racemic-{5-[2-(4-Trifluoromethyl-phenyl)-5,6-dihydro-4H-cyclopentathiazol-4-ylmethoxy]-indol-1-yl}-acetic acid;
- (S)-{6-[2-(4-Trifluoromethyl-phenyl)-5,6-dihydro-4H-cyclopentathiazol-4-ylmethoxy]-1H-indol-3-yl}-acetic acid;
- 25 {1-Methyl-6-[2-(4-trifluoromethyl-phenyl)-5,6-dihydro-4H-cyclopentathiazol-4-ylmethoxy]-1H-indol-3-yl}-acetic acid;
- {5-[2-(4-Trifluoromethyl-phenyl)-4,5,6,7-tetrahydro-benzothiazol-4-ylmethoxy]-indol-1-yl}-acetic acid;
- 30 {6-[2-(4-Trifluoromethyl-phenyl)-4,5,6,7-tetrahydro-benzothiazol-4-ylmethoxy]-1H-indol-3-yl}-acetic acid;

- 225 -

- {6-[2-(4-Trifluoromethyl-phenyl)-4,5,6,7-tetrahydro-benzothiazol-4-ylmethoxy]-1H-indol-3-yl}-acetic acid;
- {1-Methyl-6-[2-(4-trifluoromethyl-phenyl)-4,5,6,7-tetrahydro-benzothiazol-4-ylmethoxy]-1H-indol-3-yl}-acetic acid;
- 5 {5-[2-(4-Trifluoromethyl-phenyl)-4,5,6,7-tetrahydro-benzothiazol-4-ylmethoxy]-indol-1-yl}-acetic acid;
- {1-Methyl-6-[2-(4-trifluoromethyl-phenyl)-5,6,7,8-tetrahydro-4H-cycloheptathiazol-4-ylmethoxy]-1H-indol-3-yl}-acetic acid;
- {6-[4-Isopropyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethoxy]-10 benzo[b]thiophen-3-yl}-acetic acid;
- 2-(6-((1-(4-(trifluoromethyl)phenyl)-3-methyl-1H-pyrazol-4-yl)methoxy)benzo[b]thiophen-3-yl)acetic acid;
- 2-(6-(2-(1-(4-(trifluoromethyl)phenyl)-3-methyl-1H-pyrazol-4-yl)propoxy)benzo[b]thiophen-3-yl)acetic acid;
- 15 2-(6-(2-(1-(4-(trifluoromethyl)phenyl)-3-methyl-1H-pyrazol-4-yl)propoxy)benzo[b]thiophen-3-yl)acetic acid;
- 2-(6-((R)-2-(1-(4-(trifluoromethyl)phenyl)-3-methyl-1H-pyrazol-4-yl)propylthio)benzo[b]thiophen-3-yl)acetic acid;
- 2-(6-((1-(4-(trifluoromethyl)phenyl)-3-isopropyl-1H-pyrazol-4-yl)methylthio)benzo[b]thiophen-3-yl)acetic acid; and
- 20 2-(6-((4-tert-butyl-2-(4-(trifluoromethyl)phenyl)thiazol-5-yl)methylthio)benzo[b]thiophen-3-yl)acetic acid.
98. The method of Claim 50, wherein the compound is in the S conformation.
- 25
99. The method of Claim 50, wherein the compound is in the R conformation.
100. The method of Claim 50, wherein the compound is radiolabeled.
- 30 101. A compound, wherein the compound is {6-[4-Isopropyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethoxy]-benzo[b]thiophen-3-yl}-acetic

acid, and stereoisomers, pharmaceutically acceptable salts, solvates and hydrates thereof.

102. A compound, wherein the compound is 2-(6-((1-(4-(trifluoromethyl)phenyl)-3-methyl-1H-pyrazol-4-yl)methoxy)benzo[b]thiophen-3-yl)acetic acid, and stereoisomers, pharmaceutically acceptable salts, solvates and hydrates thereof.
5
103. A compound, wherein the compound is 2-(6-(2-(1-(4-(trifluoromethyl)phenyl)-3-methyl-1H-pyrazol-4-yl)propoxy)benzo[b]thiophen-3-yl)acetic acid, and stereoisomers, pharmaceutically acceptable salts, solvates and hydrates thereof.
10
104. A compound, wherein the compound is 2-(6-(2-(1-(4-(trifluoromethyl)phenyl)-3-methyl-1H-pyrazol-4-yl)propoxy)benzo[b]thiophen-3-yl)acetic acid, and stereoisomers, pharmaceutically acceptable salts, solvates and hydrates thereof.
15
105. A compound, wherein the compound is 2-(6-((R)-2-(1-(4-(trifluoromethyl)phenyl)-3-methyl-1H-pyrazol-4-yl)propylthio)benzo[b]thiophen-3-yl)acetic acid, and stereoisomers, pharmaceutically acceptable salts, solvates and hydrates thereof.
20
106. A compound, wherein the compound is 2-(6-((1-(4-(trifluoromethyl)phenyl)-3-isopropyl-1H-pyrazol-4-yl)methylthio)benzo[b]thiophen-3-yl)acetic acid, and stereoisomers, pharmaceutically acceptable salts, solvates and hydrates thereof.
25
107. A compound, wherein the compound is 2-(6-((4-tert-butyl-2-(4-(trifluoromethyl)phenyl)thiazol-5-yl)methylthio)benzo[b]thiophen-3-yl)acetic acid, and stereoisomers, pharmaceutically acceptable salts, solvates and hydrates thereof.
30

108. A method of treating a human subject in need of treatment for a disease selected from the group consisting of diabetes mellitus, Syndrome X, and atherosclerosis, comprising the step of administering to the subject in need thereof a therapeutically effective amount of {6-[4-Isopropyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethoxy]-benzo[b]thiophen-3-yl}-acetic acid, and stereoisomers, pharmaceutically acceptable salts, solvates and hydrates thereof.
- 10 109. A method of treating a human subject in need of treatment for a disease selected from the group consisting of diabetes mellitus, Syndrome X, and atherosclerosis, comprising the step of administering to the subject in need thereof a therapeutically effective amount of 2-(6-((1-(4-(trifluoromethyl)phenyl)-3-methyl-1H-pyrazol-4-yl)methoxy)benzo[b]thiophen-3-yl)acetic acid, and stereoisomers, pharmaceutically acceptable salts, solvates and hydrates thereof.
- 15 110. A method of treating a human subject in need of treatment for a disease selected from the group consisting of diabetes mellitus, Syndrome X, and atherosclerosis, comprising the step of administering to the subject in need thereof a therapeutically effective amount of 2-(6-(2-(1-(4-(trifluoromethyl)phenyl)-3-methyl-1H-pyrazol-4-yl)propoxy)benzo[b]thiophen-3-yl)acetic acid, and stereoisomers, pharmaceutically acceptable salts, solvates and hydrates thereof.
- 20 25 111. A method of treating a human subject in need of treatment for a disease selected from the group consisting of diabetes mellitus, Syndrome X, and atherosclerosis, comprising the step of administering to the subject in need thereof a therapeutically effective amount of 2-(6-(2-(1-(4-(trifluoromethyl)phenyl)-3-methyl-1H-pyrazol-4-yl)propoxy)benzo[b]thiophen-3-yl)acetic acid, and stereoisomers, pharmaceutically acceptable salts, solvates and hydrates thereof.
- 30

112. A method of treating a human subject in need of treatment for a disease selected from the group consisting of diabetes mellitus, Syndrome X, and atherosclerosis, comprising the step of administering to the subject in need thereof a therapeutically effective amount of 2-(6-((R)-2-(1-(4-(trifluoromethyl)phenyl)-3-methyl-1H-pyrazol-4-yl)propylthio)benzo[b]thiophen-3-yl)acetic acid, and stereoisomers, pharmaceutically acceptable salts, solvates and hydrates thereof.
- 10 113. A method of treating a human subject in need of treatment for a disease selected from the group consisting of diabetes mellitus, Syndrome X, and atherosclerosis, comprising the step of administering to the subject in need thereof a therapeutically effective amount of 2-(6-((1-(4-(trifluoromethyl)phenyl)-3-isopropyl-1H-pyrazol-4-yl)methylthio)benzo[b]thiophen-3-yl)acetic acid, and stereoisomers, pharmaceutically acceptable salts, solvates and hydrates thereof.
- 15 114. A method of treating a human subject in need of treatment for a disease selected from the group consisting of diabetes mellitus, Syndrome X, and atherosclerosis, comprising the step of administering to the subject in need thereof a therapeutically effective amount of 2-(6-((4-tert-butyl-2-(4-(trifluoromethyl)phenyl)thiazol-5-yl)methylthio)benzo[b]thiophen-3-yl)acetic acid, and stereoisomers, pharmaceutically acceptable salts, solvates and hydrates thereof.