مبانی بازیابی اطلاعات و جستجوی وب

۱۰ خوشه بندی

Ch. 16

What is clustering?

- Clustering: the process of grouping a set of objects into classes of similar objects
 - Documents within a cluster should be similar.
 - Documents from different clusters should be dissimilar.
- The commonest form of unsupervised learning

Applications of clustering in IR

- Whole corpus analysis/navigation
 - Better user interface: search without typing
- For improving recall in search applications
 - Better search results
- For better navigation of search results
 - Effective "user recall" will be higher
- For speeding up vector space retrieval
 - Cluster-based retrieval gives faster search

Sec. 16.2

Issues for clustering

- Representation for clustering
 - Document representation
 - Need a notion of similarity/distance (cosine, Euclidean)
- How many clusters?
 - Fixed a priori?
 - Completely data driven?

Clustering Algorithms

- Flat algorithms
 - Usually start with a random (partial) partitioning
 - Refine it iteratively
 - K means clustering
- Hierarchical algorithms
 - Bottom-up, agglomerative
 - (Top-down, divisive)

K-Means

- Assumes documents are real-valued vectors.
- Clusters based on *centroids* (aka the *center of gravity* or mean) of points in a cluster, c:

$$\vec{\mu}(c) = \frac{1}{|c|} \sum_{\vec{x} \in c} \vec{x}$$

- Reassignment of instances to clusters is based on distance to the current cluster centroids.
- Minimizing the Cost function:

$$J = \sum_{x} ||x - \mu(c_x)||^2$$

Sec. 16.4

K-Means Algorithm

Select K random docs $\{s_1, s_2, ..., s_K\}$ as seeds. Until clustering *converges* (or other stopping criterion): For each doc d_i :

Assign d_i to the cluster c_j such that $dist(x_i, s_j)$ is minimal. (Next, update the seeds to the centroid of each cluster) For each cluster c_j

$$s_j = \mu(c_j)$$

K Means Example(K=2)

Pick seeds
Reassign clusters
Compute centroids
Reassign clusters
Compute centroids
Reassign clusters

Converged!

Termination conditions

- Several possibilities, e.g.,
 - A fixed number of iterations.
 - Doc partition unchanged.
 - Centroid positions don't change.

Hierarchical Clustering

• Build a tree-based hierarchical taxonomy (dendrogram) from a set of documents.

 Clustering obtained by cutting the dendrogram at a desired level: each connected component forms a cluster.

Hierarchical Agglomerative Clustering (HAC)

- Starts with each doc in a separate cluster
 - •then repeatedly joins the <u>closest pair</u> of clusters, until there is only one cluster.
- The history of merging forms a binary tree or hierarchy.

Closest pair of clusters

- Many variants to defining closest pair of clusters
- Single-link
 - Similarity of the most cosine-similar (single-link)
- Complete-link
 - Similarity of the "furthest" points, the *least* cosine-similar
- Centroid
 - Clusters whose centroids (centers of gravity) are the most cosine-similar
- Average-link
 - Average cosine between pairs of elements

What Is A Good Clustering?

- Internal criterion
- External criterion

Sec. 16.3

External Evaluation of Cluster Quality

•Simple measure: <u>purity</u>, the ratio between the dominant class in the cluster π_i and the size of cluster ω_i

size of cluster
$$\omega_i$$

 $Purity(\omega_i) = \frac{1}{n_i} \max_j (n_{ij})$ $j \in C$

Purity example

Cluster I: Purity = 1/6 (max(5, 1, 0)) = 5/6

Cluster II: Purity = 1/6 (max(1, 4, 1)) = 4/6

Cluster III: Purity = 1/5 (max(2, 0, 3)) = 3/5

Rand Index measures between pair decisions. Here RI = 0.68

Number of points	Same Cluster in clustering	Different Clusters in clustering
Same class in ground truth	20	24
Different classes in ground truth	20	72

Rand index and Cluster F-measure

$$RI = \frac{A+D}{A+B+C+D}$$

منابع

• فصل ۱۶ و ۱۷ کتاب An introduction to information • retrieval