Autonomous Vehicle Simulation

This Project is about simulating a **Autonomous** Vehicle Design in **SIMULINK** based on the data collected from

- 1. A Camera,
- 2. A Radar.

WORK FLOW:

- 1. We have discussed and divided the work into 3 Models.
 - a. VEHICLE MODEL
 - b. LANE FOLLOW MODEL
 - c. OBSTACLE AVOIDANCE MODEL

2. VEHICLE MODEL:

a. To build the Model we have referred to LATERAL DYNAMICS of a vehicle.

i.
$$(k1+k2)\beta + \left(\frac{1}{u}\right)(ak1-bk2)w - k1(\delta) = m(v^{\circ} + uw)$$

ii. $(ak1-bk2)\beta + \left(\frac{1}{u}\right)(a^2k1+b^2k2)w - ak1(\delta) = I_zw^{\circ}$
iii. $X = \int \cos{(\beta + \int wdt)dt} * \sqrt{u^2 + v^2}$
iv. $Y = \int \sin{(\beta + \int wdt)dt} * \sqrt{u^2 + v^2}$

- b. These are the 4 equations that have been Modelled in Simulink as VEHICLE MODEL
- c. From the Vehicle Model we obtain the X and Y coordinates of the vehicle.

3. LANE FOLLOW:

a. This model contains a quadratic equation which represents the Road.

i.
$$y = x^2 + 5x + 6$$

- b. From the road equation we found the distance between the vehicle and left lane of the road , similarly the distance from right lane.
- c. In order to find steer angle we have considered the difference between left lane and vehicle positions.

4. OBSTACLE AVOIDANCE:

- a. In this model we have assumed the radar data in the form of POLAR COORDINATES. (Since the radar data in real time is polar in nature)
- b. We have Simulated a POLAR to LOCAL COORDINATE converter to get the coordinates in the form of x , y.

i.
$$x' = (x - X)\cos(\alpha) + (y - Y)\sin(\alpha)$$

ii. $y' = -(x - X)\sin(\alpha) + (y - Y)\cos(\alpha)$

- c. We then assumed a goal position to which our vehicle has to travel.
- d. As for the PATH PLANNING ALGORITHM we have used the method of finding angle between 2 straight lines.

5. Switch:

 The overall model converts from LANE FOLLOW to OBSTACLE AVOIDANCE by considering the vehicle speed of the Obstacle.

RESULTS:

1. Obstacle_Speed > Vehicle_Speed

Steer Angel	Х	Y
0	0.1389	0
0.2779	34.93	-8.276
-1.536	-19.94	87.86
1.524	-21.31	-90.15
1.539	-17.49	-82.21

2. Vehicle_Speed > Obstacle_Speed

Steer Angel	x	Y
0	0.1389	0
-0.6228	55.14	45.44
0.003746	0.7303	0.09316
-0.9696	46.12	82.66
-0.008065	1.452	-0.1946