IPv6

Referências extras:

- •nic.br Slides IPv6
- •Jen Linkova aka Furry: IPv6 What, Why, How
- Arliones Hoeller e Mario de Noronha Neto - 6LoWPAN

IPv6 - Resumo

- 1998 Definido pela RFC 2460
 - 128 bits para endereçamento.
 - Cabeçalho base simplificado.
 - Cabeçalhos de extensão.
 - Identificação de fluxo de dados (QoS).
 - Mecanismos de IPSec incorporados ao protocolo.
 - Realiza a fragmentação e remontagem dos pacotes apenas na origem e no destino.
 - Não requer o uso de NAT, permitindo conexões fim-a-fim.
 - Mecanismos que facilitam a configuração de redes.

•

Distribuição de endereços IPv4

- Números de 32 bits.
- 4 294 967 296 endereços
- IPv4 está se exaurindo
- Reservas de IPv4 na América Latina e Caribe acabou, 19/8/2020. http://ipv6.br/

Soluções

Soluções paliativas:

- 1992 IETF cria o grupo ROAD (ROuting and ADdressing).
 - CIDR (RFC 4632)
 - Fim do uso de classes = blocos de tamanho apropriado.
 - Endereço de rede = prefixo/comprimento.
 - Agregação das rotas = reduz o tamanho da tabela de rotas.
 - DHCP
 - Alocações dinâmicas de endereços.
 - NAT + RFC 1918
 - Permite conectar toda uma rede de computadores usando apenas um endereço válido na Internet, porém com várias restrições.

Versão (Version)	Classe de Tráfego (<i>Traffic Class</i>)	ldentificador de Fluxo (<i>Flow Label</i>)			
Tamanho dos Dados (Payload Length)			Próximo Cabeçalho (Next Header)	Limite de Encaminhamento (Hop Limit)	
Endereço de Origem (<i>Source Address</i>)					
Endereço de Destino (<i>Destination Address</i>)					

Seis campos do cabeçalho IPv4 foram removidos.

- Seis campos do cabeçalho IPv4 foram removidos.
- Quatro campos tiveram seus nomes alterados e seus posicionamentos modificados.

Versão (Version)	Tamanho do Cabeçalho (IHL)	Tipo de Serviço (ToS)	Tamanho Total (<i>Total Length</i>)		
Identificação (Identification)			Flags	Deslocamento do Fragmento (<i>Fragment Offset</i>)	
		oma de verificação do Cabeçalho (<i>Checksum</i>)			
Endereço de Origem (Source Address)					
Endereço de Destino (Destination Address)					
Opções + Complemento (Options + Padding)					

Versão	Classe de Tráfego	Identificador de Fluxo			
(Version)	(<i>Traffic Class</i>)	(<i>Flow Label</i>)			
Tamanho dos Dados			Próximo Cabeçalho	Limite de Encaminhamento	
(Payload Length)			(Next Header)	(Hop Limit)	
Endereço de Origem (<i>Source Address</i>)					
Endereço de Destino (<i>Destination Address</i>)					

- Seis campos do cabeçalho IPv4 foram removidos.
- Quatro campos tiveram seus nomes alterados e seus posicionamentos modificados.
- O campo Identificador de Fluxo foi acrescentado.

- Seis campos do cabeçalho IPv4 foram removidos.
- Quatro campos tiveram seus nomes alterados e seus posicionamentos modificados.
- O campo Identificador de Fluxo foi acrescentado.
- Três campos foram mantidos.

• Um endereço IPv4 é formado por 32 bits.

$$2^{32} = 4.294.967.296$$

Um endereço IPv6 é formado por 128 bits.

```
2^{128} = 340.282.366.920.938.463.463.374.607.431.768.211.456
```

- ~ 56 octilhões (5,6x10²⁸) de endereços IP por ser humano.
- ~ 79 octilhões (7,9x10²⁸) de vezes a quantidade de endereços IPv4.

A representação dos endereços IPv6, divide o endereço em oito grupos de 16 bits, separando-os por ":", escritos com dígitos hexadecimais.

2001:0DB8:AD1F:25E2:CADE:CAFE:F0CA:84C1

Na representação de um endereço IPv6 é permitido:

- Utilizar caracteres maiúsculos ou minúsculos;
- Omitir os zeros à esquerda
- Representar os zeros contínuos por "::".

Exemplo:

2001:0DB8:0000:0000:130F:0000:0000:140B

2001:db8:0:0:130f::140b

Formato inválido: 2001:db8::130f::140b (gera ambiguidade)

IPv6 Address Format

```
X:X:X:X:X:X:X
where X = 0000 \dots FFFF (hex)
```

- 2001:0DB8:0000:0000:0008:8000:0000:417A
- 2001:DB8:0:0:8:8000:0:417A
- 2001:DB8::8:8000:0:417A
- 2001:DB8:0:0:8:8000::417A

Existem no IPv6 três tipos de endereços definidos:

Unicast → Identificação Individual

Anycast → Identificação Seletiva

Multicast → Identificação em Grupo

Não existe mais **Broadcast**.

Unicast

Global Unicast

- 2000::/3
- Globalmente roteável (similar aos endereços públicos IPv4);
- 13% do total de endereços possíveis;
- $2^{(45)} = 35.184.372.088.832$ redes /48 distintas.

Unicast

Link local

- FE80::/64
- Deve ser utilizado apenas localmente;
- Atribuído automaticamente (autoconfiguração stateless);

Unicast

Unique local

- FC00::/7
- Prefixo globalmente único (com alta probabilidade de ser único);
- Utilizado apenas na comunicação dentro de um enlace ou entre um conjunto limitado de enlaces;
- Não é esperado que seja roteado na Internet.

Unicast

- Identificador da Interface (IID)
 - Devem ser únicos dentro do mesmo prefixo de sub-rede.
 - O mesmo IID pode ser usado em múltiplas interfaces de um único nó, desde que estejam associadas a sub-redes diferentes.
 - Normalmente utiliza-se um IID de 64 bits, que pode ser obtido:
 - Manualmente
 - Autoconfiguração stateless
 - DHCPv6 (stateful)
 - A partir de uma chave pública (CGA)
 - IID pode ser temporário e gerado randomicamente.
 - Normalmente é baseado no endereço MAC (Formato EUI-64).

Extended Unique Identifier EUI-64

Therefore: ::1 – globally assigned EUI-64, but locally assigned MEUI-64

Anycast

- Identifica um grupo de interfaces
 - Entrega o pacote apenas para a interface mais perto da origem.
- Atribuídos a partir de endereços unicast (são sintaticamente iguais).
- Possíveis utilizações:
 - Descobrir serviços na rede (DNS, proxy HTTP, etc.);
 - Balanceamento de carga;
 - Localizar roteadores que forneçam acesso a uma determinada sub-rede;
 - Utilizado em redes com suporte a mobilidade IPv6, para localizar os Agentes de Origem...
- Subnet-Router

Multicast

- Identifica um grupo de interfaces.
- O suporte a multicast é obrigatório em todos os nós IPv6.
- O endereço multicast deriva do bloco FF00::/8.
- O prefixo FF é seguido de quatro bits utilizados como flags e mais quatro bits que definem o escopo do endereço multicast. Os 112 bits restantes são utilizados para identificar o grupo multicast.

Multicast

Endereço	Escopo	Descrição
FF01::1 FF01::2	Interface Interface	Todas as interfaces (all-nodes) Todos os roteadores (all-routers)
FF02::1 FF02::2 FF02::5 FF02::6 FF02::9 FF02::D FF02::1:2 FF02::1:FFXX:XXXX	Enlace Enlace Enlace Enlace Enlace Enlace Enlace Enlace	Todos os nós (all-nodes) Todos os roteadores (all-routers) Roteadores OSFP Roteadores OSPF designados Roteadores RIP Roteadores PIM Agentes DHCP Solicited-node
FF05::2 FF05::1:3 FF05::1:4 FF0X::101	Site Site Site Variado	Todos os roteadores (<i>all-routers</i>) Servidores DHCP em um site Agentes DHCP em um site NTP (<i>Network Time Protocol</i>)

- Do mesmo modo que no IPv4, os endereços IPv6 são atribuídos a interfaces físicas e não aos nós.
- Com o IPv6 é possível atribuir a uma única interface múltiplos endereços, independentemente do seu tipo.
 - Com isso, um nó pode ser identificado através de qualquer endereço de sua interfaces.

Loopback ::1

• Link Local FE80:....

• Unique local FD07:...

• Global **2001**:....

• A RFC 3484 determina o algoritmo para seleção dos endereços de origem e destino.

Políticas de alocação e designação

- Cada RIR recebe da IANA um bloco /12
- O bloco 2800::/12 corresponde ao espaço reservado para o LACNIC
- o NIC.br trabalha com um /16 que faz parte deste /12
- A alocação mínima para ISPs é um bloco /32
- Alocações maiores podem ser feitas mediante apresentação de justificativa de utilização
- ATENÇÃO! Diferente do IPv4, com IPv6 a utilização é medida em relação ao número de designações de blocos de endereços para usuários finais, e não em relação ao número de endereços designados aos usuários finais

ipv6calc --showinfo -i -m 2804:1454:1004:200:2247:47ff:fefd:7c24/64

ICMPv6

- Definido na RFC 4443
- Mesmas funções do ICMPv4 (mas não são compatíveis):
 - Informar características da rede
 - Realizar diagnósticos
 - Relatar erros no processamento de pacotes
- Assume as funcionalidades de outros protocolos:
 - ARP/RARP
 - IGMP
- Identificado pelo valor 58 no campo Próximo Cabeçalho
- Deve ser implementado em todos os nós

ICMPv6

• É precedido pelos cabeçalhos de extensão, se houver, e pelo cabeçalho base do IPv6

- Protocolo chave da arquitetura IPv6
- Essencial em funcionalidades do IPv6:
 - Gerenciamento de grupos multicast;
 - Descoberta de Vizinhança (Neighbor Discovery);
 - Mobilidade IPv6;
 - Descoberta do Path MTU.

ICMPv6

- Possui duas classes de mensagens:
 - Mensagens de Erro
 - Destination Unreachable
 - Packet Too Big
 - Time Exceeded
 - Parameter Problem
 - Mensagens de Informação
 - Echo Request e Echo Reply
 - Multicast Listener Query
 - Multicast Listener Report
 - Multicast Listener Done
 - Router Solicitation e Router Advertisement
 - Neighbor Solicitation e Neighbor Advertisement
 - Redirect...

- Neighbor Discovery definido na RFC 4861
- Assume as funções de protocolos ARP, ICMP Router Discovery e ICMP Redirect, do IPv4
- Adiciona novos métodos não existentes na versão anterior do protocolo IP
- Torna mais dinâmico alguns processos de configuração de rede:
 - determinar o endereço MAC dos nós da rede
 - encontrar roteadores vizinhos
 - determinar prefixos e outras informações de configuração da rede
 - detectar endereços duplicados
 - determinar a acessibilidades dos roteadores
 - redirecionamento de pacotes
 - autoconfiguração de endereços

- Utiliza 5 tipos de mensagens ICMPv6:
 - Router Solicitation (RS) ICMPv6 Tipo 133
 - Router Advertisement (RA) ICMPv6 Tipo 134
 - Neighbor Solicitation (NS) ICMPv6 Tipo 135
 - Neighbor Advertisement (NA) ICMPv6 Tipo 136
 - Redirect ICMPv6 Tipo 137
- São configuradas com o valor 255 no campo Limite de Encaminhamento.
- Podem conter, ou não, opções:
 - Source link-layer address
 - Target link-layer address
 - Prefix information
 - Redirected header
 - MTU

- Descoberta de Endereços da Camada de Enlace
 - Determina o endereço MAC dos vizinhos do mesmo enlace.
 - Substitui o protocolo ARP.
 - Utiliza o endereço multicast solicited-node em vez de broadcast.
 - O host envia uma mensagem NS informando seu endereço MAC e solicita o endereço MAC do vizinho.

- Descoberta de Endereços da Camada de Enlace
 - Determina o endereço MAC dos vizinhos do mesmo enlace.
 - Substitui o protocolo ARP.
 - Utiliza o endereço multicast solicited-node em vez de broadcast.
 - O host envia uma mensagem NS informando seu endereço MAC e solicita o endereço MAC do vizinho.
 - O vizinho responde enviando uma mensagem NA informando seu endereço MAC.

ICMPv6 Type 136 (Neigbor Advertisement) Origem – 2001:db8::ca5a:f0ca:5678

Destino - 2001:db8::faca:cafe:1234 (AB-CD-C9-21-58-0C)

Use AB-CD-C0-12-85-C0

Descoberta de Roteadores e Prefixos

- Localizar roteadores vizinhos dentro do mesmo enlace.
- Determina prefixos e parâmetros relacionados à autoconfiguração de endereço.
- No IPv4, está função é realizada pelas mensagens ARP Request.
- Roteadores enviam mensagens RA para o endereço multicast allnodes.

- Detecção de Endereços Duplicados
 - Verifica a unicidade dos endereços de um nó dentro do enlace.
 - Deve ser realizado antes de se atribuir qualquer endereço unicast a uma interface.
 - Consiste no envio de uma mensagem NS pelo *host*, com o campo *target address* preenchido com seu próprio endereço. Caso alguma mensagem NA seja recebida como resposta, isso indicará que o endereço já está sendo utilizado.

- Autoconfiguração de Endereços Stateless
 - Mecanismo que permite a atribuição de endereços unicast aos nós...
 - sem a necessidade de configurações manuais.
 - sem servidores adicionais.
 - apenas com configurações mínimas dos roteadores.
 - Gera endereços IP a partir de informações enviadas pelos roteadores e de dados locais como o endereço MAC.
 - Gera um endereço para cada prefixo informado nas mensagens RA
 - Se não houver roteadores presentes na rede, é gerado apenas um endereço link local.
 - Roteadores utilizam apenas para gerar endereços link-local.

• Autoconfiguração de Endereços Stateless

- Um endereço *link-local* é gerado.
 - Prefixo FE80::/64 + identificador da interface.
- Endereço adicionado aos grupos *multicast solicited-node* e *all-node*.
- Verifica-se a unicidade do endereço.
 - Se já estiver sendo utilizado, o processo é interrompido, exigindo uma configuração manual.
 - Se for considerado único e válido, ele será atribuído à interface.
- Host envia uma mensagem RS para o grupo multicast all-routers.
- Todos os roteadores do enlace respondem com mensagem RA.
- Estados dos endereços:
 - Endereço de Tentativa;
 - Endereço Preferencial;
 - Endereço Depreciado;
 - Endereço Válido;
 - Endereço Inválido.

DHCPv6

- Autoconfiguração de Endereços Stateful
 - Usado pelo sistema quando nenhum roteador é encontrado.
 - Usado pelo sistema quando indicado nas mensagens RA.
 - Fornece:
 - Endereços IPv6
 - Outros parâmetros (servidores DNS, NTP...)
 - Clientes utilizam um endereço link-local para transmitir ou receber mensagens DHCP.
 - Servidores utilizam endereços multicast para receber mensagens dos clientes (FF02::1:2 ou FF05::1:3).
 - Clientes enviam mensagens a servidores fora de seu enlace utilizando um Relay DHCP.

DHCPv6

- Autoconfiguração de Endereços Stateful
 - Permite um controle maior na atribuição de endereços aos host.
 - Os mecanismos de autoconfiguração de endereços stateful e stateless podem ser utilizados simultaneamente.
 - Por exemplo: utilizar autoconfiguração stateless para atribuir os endereços e DHCPv6 para informar o endereço do servidor DNS.
 - DHCPv6 e DHCPv4 são independentes. Redes com Pilha Dupla precisam de serviços DHCP separados.

Jumbograms

- IPv6 permite o envio de pacotes que possuam entre 65.536 e 4.294.967.295 Bytes de comprimento.
- Um jumbograms é identificado utilizando:
 - O campo Tamanho dos Dados com valor 0 (zero).
 - O campo Próximo Cabeçalho indicando o cabeçalho Hop-by-Hop.
- O cabeçalho de extensão Hop-by-Hop trará o tamanho do pacote.
- Devem ser realizadas alterações também nos cabeçalhos TCP e UDP, ambos limitados a 16 bits para indicar o tamanho máximo dos pacotes.

QoS

- O protocolo IP trata todos os pacotes da mesma forma, sem nenhuma preferência.
- Algumas aplicações necessitam que seus pacotes sejam transportados com a garantia de que haja o mínimo de atraso, latência ou perda de pacotes.
 - VolP
 - Videoconferência
 - Jogos online
 - Entre outros...
- Utiliza-se o conceito de QoS (Quality of Service), ou em português, Qualidade de Serviço.
- Arquiteturas principais: Differentiated Services (DiffServ) e
 Integrated Services (IntServ).
 - Ambas utilizam políticas de tráfego e podem ser combinadas para permitir QoS em LANs ou WANs.

QoS

- DiffServ: trabalha por meio de classes, agregando e priorizando pacotes com requisitos QoS similares.
 - IPv4 campo Tipo de Serviço (ToS).
 - IPv6 campo Classe de Tráfego:
 - Mesma definição do campo ToS do IPv4.
 - Pode ser definido na origem ou por roteadores.
 - Pode ser redefinido por roteadores ao longo do caminho.
 - Em pacotes que não necessitam de QoS o campo Classe de Tráfego apresenta o valor 0 (zero).
- DiffServ não exige identificação ou gerencia dos fluxos.
- Muito utilizado devido a sua facilidade de implantação.

QoS

- IntServ: baseia-se na reserva de recursos por fluxo. Normalmente é associado ao protocolo RSVP (*Resource ReSerVation Protocol*).
 - IPv6 campo Identificador de Fluxo é preenchido pela origem com valores aleatórios entre 00001 e FFFFF para identificar o fluxo que necessita de QoS.
 - Pacotes que não pertencem a um fluxo devem marcá-lo com zeros.
 - Os hosts e roteadores que não têm suporte às funções do campo Identificador de Fluxo devem preencher este campo com zeros quando enviarem um pacote, não alterá-lo ao encaminharem um pacote, ou ignorá-lo quando receberem um pacote.
 - Pacotes de um mesmo fluxo devem possuir o mesmo endereço de origem e destino, e o mesmo valor no campo Identificador de Fluxo.
 - RSVP utiliza alguns elementos do protocolo IPv6, como o campo Identificador de Fluxo e o cabeçalho de extensão Hop-by-Hop.

Mobilidade IPv6

 Permite que um dispositivo móvel se desloque de uma rede para outra sem necessidade de alterar seu endereço IP de origem, tornando a movimentação entre redes invisível para os protocolos das camadas superiores.

Transição de IPv4 para IPv6

- Nem todos os roteadores podem ser atualizados simultaneamente
 - sem "dia de conversão"
 - como a rede operará com roteadores IPv4 e IPv6 misturados?
- *Pilha dupla:* IPv4 e IPv6 convivendo na mesma interface
- Implantação de túnel: IPv6 transportado como carga útil no datagrama IPv4 entre roteadores IPv4
- http://ipv6.br/

Implantação de túnel

Visão física:

6LoWPAN

- IPv6 over Low power WPAN
 - IPv6 128 bits
 - Sobre IEEE 802.15.4
 - IP500
 - IPSO Alliance
- IPv6 em plataformas restritas
 - Baixo uso de memória
 - Baixa demanda de CPU
 - Baixo consumo de energia
- Fique de olho em
 - Thread
 - OpenThread

6LoWPAN cont.

- Protocol Data Unit (PDU)
 - Ethernet: 1500 bytes
 - IEEE 802.15.4: 127 bytes
- Cabeçalhos
 - IPv6: 40 bytes
 - UDP: 8 bytes
 - TCP: 20 bytes
- Camada de adaptação
 - Compressão de cabeçalhos
 - Endereços IPv6 usam MAC
 - Compressão de TCP não faz parte da norma!
 - Fragmentação/remontagem
 - Stateless autoconf

IPv6 & DNS

New Resource Record introduced: AAAA

furry:~ furry\$ dig www.kame.net aaaa

www.kame.net. IN AAAA 2001:200::8002:203:47ff:fea5:3085

Reverse Delegation:

- the pseudo-domain ipv6.arpa
- Each label is a nibble (4 bits, one hex number)

Example:

PTR RR for an IPv6 address 2001:db8::20:219f:bd8c:17af

f.a.7.1.c.8.d.b.f.9.2.1.0.2.0.0.0.0.0.0.0.0.0.8.b.d.0.1.0.0.2.ipv6.arpa. PTR

Don't forget to use \$ORIGIN to simplify your DNS zone file!