Home / My co	urses / <u>Capstone</u>	Project Omirgalie	<u>ev Ruslan</u> / <u>We</u>	<u>ek 10</u> / <u>FinalEx</u>	<u>kam_ 8th_variant</u>
--------------	-------------------------	-------------------	------------------------------	-------------------------------	-------------------------

	Time left 1:48:44
Question 1	
Not yet answered	
Marked out of 12.00	
Suppose that you have the following results of survey. Now it is necessary to analyze obtained survey by using Sir Sampling and Clustered Random Sampling. Recommended tool for using is MS Excel.	nple Random
(Ignore the fpc and the clustering in calculating the standard error.)	
P.S. when you are going to write your answer into answer sheet, please round up to 2 digits after floating point	
1) Assume that you're going to do Simple Random Sampling (SRS) for above dataset.	
Compute a mean:	
P.S here you need to drag-and-drop digit-by-digit. For example, if your answer is 35.13 then you need to drag 3, 1 then 1 and 3	then 5, then . and
2) Compute a standard error for SRS:	
3) Now compute 95% of confidence interval. Please note that t-value in this case is equal to 2.04	
Upper limit for SRS:	
Lower limit for SRS:	
P.S You need to take rounded answers from 1st and 2nd questions	
Assume that you're going to do Clustering Random Sampling for above dataset.	
1) Compute a mean:	
2) Compute a standard error for Clusteting Random Sampling:	
3) Compute d-value:	
Hint: d- value is a ratio of standard error for clustering over standard error for SRS	
4) Compute d-squared:	
5) Compute roh:	
P.S In 5-th step: You need to take answers from 3rd and 4th questions	
Hint: W_{cl} =0.125 And you need to calculate ($S_{cl1}S_{cl8}$) 8 times for each cluster.	
6) N _{eff} =	
1 2 3 4 5 6 7 8 9 0 ,	

Question 2	
Not yet answered	
Marked out of 10.00	

Suppose that you're going to run linear regression with some input features and 1 output feature. Your hypothesis is

$$h_{\theta}(X) = \theta_0 + \theta_1 X_1 + \theta_2 X_2 + \theta_3 X_1^2 + \theta_4 X_1^3 + \theta_5 X_2^2 + \theta_6 X_2^3 + \theta_7 (X_1 \cdot X_2) + \theta_8 (X_1^2 \cdot X_2)$$

Firstly it it necessary to normalize your dataset: Z = (x-mu)/std

Initial theta parameters is equal to zero. Learning rate is 0.1. Now, let's complete the following table:

#Iterations	Cost Function (Round please	Optima l Theta parameter
	up to integer value)	Indicate here maximum theta value(Round
		please up to integer value)
n=10		
n=100		
n=1000		

1	2	3	4	5	6	7	8	9	0
---	---	---	---	---	---	---	---	---	---

Question 3

Not yet answered

Marked out of 10.00

Suppose that you have the following dataset, with 3 input features, and 1 output feature. You're going to apply Logistic Regression algorithm with regularization.

Firstly it is necessary to apply normalization with the following formula: Z = (X-mu)/std.

Initial theta parameters = 0.

#Iterations, lambda, learning	Cost function (rounded up to 2	Optimal theta parameter
rate	digis after floating point)	Indicate here maximum theta
		value (rounded up to 2 digis
		after floating point)
N=100, alpha = 0.1, lambda = 0.1		
N=1000, alpha = 0.2, lambda = 1		
N=10000, alpha = 0.3, lambda = 10		

After 10.000 iterations, alpha = 0.3, lambda = 10 and by setting threshold = 0.5, what is the number of ones in the first 10 rows of prediction:

Ш										
1	2	3	4	5	6	7	8	9	0	_

Question 4		
Not yet answered		
Marked out of 10.00		
Suppose that you're going to run neu	ural network algorithm with the followi	ng parameters:
1. Data Preparation: Normalized in	put vectors for binary classificati	on.
	layers with Tanh, output layer with	
3. Forward Propagation: Computes a	ctivations through layers.	
	olute Error (MAE) as the loss funct	
	ents using chain rule and Tanh deri	
	radient descent with learning rate	
8. Final Prediction: Generates pro	,000 epochs, prints loss every 1000	epocns.
o. Final Frediction. deneraces pro	- Dabilities for each input.	
a4 = [,]		
a3.min() = (round up to 3 digits after floating poir	nt)
W4.max() = (rot	und up to 2 digits after floating point)	
W3.min() = (rou	and up to 2 digits after floating point)	
Loss after 10000 epochs:		
General Conculsion after 10000 epoc	hs:	
•		
1 2 3 4 5 6 7 8 9 0],	
NN predicts image of dog	NN predicts image of cat	NN can't define correct image class
	١ <u>ــــ</u>	JL

Question 5	
Not yet answered	
Marked out of 9.00	

For a multi-class classification problem, we don't calculate an overall F-1 score. Instead, we calculate the F-1 score per class in a one-vs-rest manner. In this approach, we rate each class's success separately, as if there are distinct classifiers for each class.

Suppose that you are running logistic regression with some threshold and now you have the following in Table 1.

Table

			Actual Class					
		а	b	С				
Predicted Class	а	30	20	10				
	b	50	60	10				
	С	20	20	80				

- a) Firstly, calculate the accuracy of algorithm
- b) Find precision and recall for each classes a, b and c. Hint:
- c) Calculate F1-score for each class a, b and c.

For part b and c please transfer your answers into table below:

Class	Precision	Recall	F1-score		
а					
b					
С					

Please round up to 3 digits after floating point

1	2	3	4	5	6	7	8	9	0	,
---	---	---	---	---	---	---	---	---	---	---

■ Supplementary Materials (8-variant)

Jump to...