DSC 275/475: Time Series Analysis and Forecasting (Fall 2019) HW #2 Chunlei Zhou

- 1. Consider the measurement data provided in the file: Measurement_Q1.xls.
 - a. Use a 10-period simple moving average to smooth the data. Plot both the smoothed data and the original data values on the same axes.

b. Repeat the procedure with a 4-period simple moving average. Overlay this result on the same plot above.

c. What is the effect of changing the span of the simple moving average?

Changing the span of the simple moving average from 10 to 4 makes the smoothed data captured the trend of the original data better and obtained more available smoothed data.

2. FOR GRADUATE STUDENTS ONLY

a. Consider the N-span simple moving average applied to data that are uncorrelated with mean μ and variance σ^2 . Show that the variance of the weighted moving average is $Var(Mt) = \sigma^2/N$.

The N-span simple moving average M_t can be denoted as follow:

$$M_{t} = \frac{y_{t} + y_{T-1} + \dots + y_{T-N+1}}{N}$$
$$= \frac{1}{N} \sum_{t=T-N+1}^{T} y_{t}$$

Thus, the variance of M_t can be denoted as:

$$Var(M_t) = Var\left(\frac{1}{N} \sum_{t=T-N+1}^{T} y_t\right)$$
$$= \frac{1}{N^2} \sum_{t=T-N+1}^{T} Var(y_t)$$

Since the variance of an individual observation y_t is σ^2 , then the variance of the moving average is:

$$Var(M_t) = \frac{1}{N^2} \times N \times \sigma^2$$
$$= \frac{\sigma^2}{N}$$

b. Consider an N-span moving average where each observation is weighted by a constant, say, $a_j > 0$. Therefore, the weighted moving average at the end of period T is, $M_T^w = \sum_{t=T-N+1}^{t=T} a_{T+1-t} y_t$. The variance of the original time series y_t is σ^2 . Show that $Var(Mt) = \sigma^2 \sum_{j=1}^{N} a_j^2$.

The N-span simple moving average M_T^W can be denoted as follow:

$$M_T^W = \sum_{t=T-N+1}^{t=T} a_{T+1-t} y_t$$

Thus, the variance of M_T^W can be denoted as:

$$Var(M_T^W) = Var\left(\sum_{t=T-N+1}^{t=T} a_{T+1-t} y_t\right)$$

$$= \sum_{t=T-N+1}^{t=T} a_{T+1-t}^{2} Var(y_t)$$

Since the variance of the original time series y_t is σ^2 , we have:

$$Var(M_T^W) = \sum_{j=1}^{N} a_j^2 Var(y_t)$$
$$= \sigma^2 \sum_{j=1}^{N} a_j^2$$

- 3. Yield_Data.xls presents data on the hourly yield from a chemical process.
 - a. Use simple (first order) exponential smoothing with λ = 0.2 to smooth the data. Overlay the smoothed plot on the original time series.

b. Change the smoothing constant (λ) to λ = 0.8. Smooth the data with this new value of λ . Overlay the smoothed plot on the same plot made in (a).

c. Compute the Mean Square Difference between the original data and the smoothed data for λ = 0.2 and λ = 0.8.

For λ = 0.2, the Mean Square Difference is 15.98977.

For λ = 0.8, the Mean Square Difference is 0.3009854.