UNIVERSITY of WASHINGTON

A Priori Rule Mining (Basket Analysis)

PROFESSIONAL & CONTINUING EDUCATION

Association Rules

Given subgroups of items or experiments, we want to find the most likely group given an initial item(s).

- -If a customer buys car insurance for a minivan, (s)he is likely to buy car insurance for a second car.
- –If a patient has condition x and y, they are likely to have condition w and z.
- -If a customer buys bread and milk, they are very likely to buy eggs.

The last example is where the term "Basket Analysis" originates from.

PROFESSIONAL & CONTINUING EDUCATION

INIVERSITY of WASHINGTON

Data Example

We can put customer transactions into a matrix:

Transaction	Purchases
1	Bread, milk, eggs, beer
2	Beer, ping pong balls, cups
3	Eggs, cups, bread
4	Beer, ping pong balls, wine

Transaction	Bread	Milk	Eggs	Beer	PingPong Balls	Cups	Wine
1	1	1	1	1	0	0	0
2	0	0	0	1	1	1	0
3	1	0	1	0	0	1	0
/,	0	0	0	1	1	0	1

Association Rules

		IIIII	11/1/		IIIIII	JJJJJ	11111	11111
_'/////////////////////////////////////	Transaction	Bread	Milk	Eggs	Beer	PingPongBalls	Cups	Wine
	1	1	1	1	1	0	0	0
Association Rules	2	0	0	0	1	1	1	0
Association Rujes	3	1	0	1	0	0	1	0
	4	0	0	0	1	1	0	1

Let S be the set of all possible purchases, and n be the number of transactions.

Each rule can be written: $(x_1, x_2, ..., x_j) \rightarrow (y_1, y_2, ..., y_k)$

Where x and y are elements of S.

Given a specific rule, we can write the 'Support' of the rule:

$$Supp((x_1, x_2, ..., x_j) \to (y_1, y_2, ..., y_k)) = \frac{\#trans(x_1, x_2, ..., x_j, y_1, y_2, ..., y_k)}{n}$$

$$Supp(bread \rightarrow milk) = \frac{1}{4}$$

Interpret as 'The proportion of transactions that contain all the items

Association Rules

Transaction	Bread	Milk	Eggs	Beer	PingPongBalls	Cups	Wine
1	1	1	1	1	0	0	0
2	0	0	0	1	1	1	0
3	1	0	1	0	0	1	0
4	0	0	0	1	1	0	1

Given a specific rule, we can write the 'Confidence' of the rule:

$$Conf((x_1, x_2, ..., x_j) \rightarrow (y_1, y_2, ..., y_k)) = \frac{Supp(x_1, x_2, ..., x_j, y_1, y_2, ..., y_k)}{Supp(x_1, x_2, ..., x_j)}$$

$$Supp(bread \rightarrow milk) = \frac{1}{4}$$

$$Conf(bread \rightarrow milk) = \frac{0.25}{Supp(bread)}$$

$$Conf(bread \rightarrow milk) = \frac{0.25}{0.5} = 0.5$$

This is interpreted as how good of a predictor the rule is.

PROFESSIONAL & CONTINUING EDUCATION

Association Rules

To even start considering a rule, we impose that it must have a minimum support.

 I.e., the items must appear together a minimum # of times.

We also want strong rules, so we specify a minimum confidence as well.

UNIVERSITY of WASHINGTON

Association Rules

Support and confidence does not mean that it will have a big impact. To look at impactful rules, we consider the 'lift':

$$Lift((x_1, x_2, ..., x_j) \to (y_1, y_2, ..., y_k)) = \frac{Supp(x_1, x_2, ..., x_j, y_1, y_2, ..., y_k)}{Supp(x_1, x_2, ..., x_j) \times Supp(y_1, y_2, ..., y_k)}$$

If the association of x and y happen by chance, we would expect this lift term to be around or less than 1.

If lift > 1, then there is a positive correlation between the two groups.

UNIVERSITY of WASHINGTON

Association Rules

Sometimes association rules are not helpful.

-Customers who buy car warranties also buy cars.

Searching all combinations of rules is computationally intensive, so we use an algorithm called "A Priori".

-We restrict our search to item sets that have a minimum support.

-Also, we know: $Supp(x_1, x_2, ..., x_j, y_1) \le Supp(x_1, x_2, ..., x_j)$

PROFESSIONAL & CONTINUING EDUCATION
UNIVERSITY of WASHINGTON

Summary

Support

-The proportion of transactions that contain all the items

Confidence

-how good of a predictor the rule is

Lift

-Measures the impact of support & confidence

Correlation

-If lift > 1, then there is a positive correlation between the two groups

A priori

-Restrict the search to have a minimum support

A Priori Rule Mining

Concept Review

PROFESSIONAL & CONTINUING EDUCATION