

"Systematic pan-cancer analysis of mutation-treatment interactions using large real-world clinico-genomics data"

Dr. Marius Garmhausen, Principal Data Scientist - Product Family Lead Early Concept Personalized Healthcare (PHC), F. Hoffmann - La Roche Ltd

Table of contents

- 1. Team
- 2. Clinico Genomics RWD
- 3. Mutation-Treatment Interactions
- 4. Example: APC
- 5. Gene-Gene Interactions
- 6. precision-cancer.org

Acknowledgements

Roche/Genentech

- Shemra Rizzo
- Navdeep Pal
- Nayan Chaudhary
- Lisa Wang
- Chris Harbron
- Ryan Copping

Stanford

- Ruishan Liu
- Sarah Waliany
- Zhi Huang
- Joel Neal
- <u>James Zou</u>

Systematic pan-cancer analysis of mutationtreatment interactions using large real-world clinicogenomics data

Ruishan Liu^{1,2}, Shemra Rizzo^{3,6}, Sarah Waliany^{4,6}, Marius Rene Garmhausen^{3,6}, Navdeep Pal^{3,6}, Zhi Huang², Nayan Chaudhary³, Lisa Wang³, Chris Harbron⁵, Joel Neal⁴, Ryan Copping³ and James Zou^{1,2}

RESEARCH ARTICLE

Theme: Applications of Machine Learning and AI to Drug Discovery, Development, and Regulations

Machine Learning Prediction of Clinical Trial Operational Efficiency

Kevin Wu¹ · Eric Wu² · Michael DAndrea³ · Nandini Chitale³ · Melody Lim³ · Marek Dabrowski⁴ · Klaudia Kantor⁴ · Hanoor Rangi⁵ · Ruishan Liu² · Marius Garmhausen⁶ · Navdeep Pal³ · Chris Harbron⁷ · Shemra Rizzo³ · Ryan Copping³ · James Zou^{1,2}

Received: 21 January 2022 / Accepted: 31 March 2022 / Published online: 21 April 2022

The Author(s), under exclusive licence to American Association of Pharmaceutical Scientists 2022

Article

Evaluating eligibility criteria of oncology trials using real-world data and AI

https://doi.org/10.1038/s41586-021-03430-5

Received: 24 August 2020

Ruishan Liu¹, Shemra Rizzo², Samuel Whipple², Navdeep Pal², Arturo Lopez Pineda², Michael Lu², Brandon Arnieri², Ying Lu³, William Capra², Ryan Copping² & James Zou¹³.45

Clinicogenomics - Real World Data

Clinicogenomics database

Scaling up on cancer

>40k cancer patients with mutation profiles and treatment outcomes

AACR GENIE BPC data could be leveraged to validate some of our findings

Significant¹ prognostic markers

6

Mutation-Treatment Interactions

458 mutation-treatment interactions

Only <60 interactions were previously known (our FDR < 5%)

Immunotherapy

BRCA2

All (N=392)

APC

(d) OC

Chemotherapy

All (N=2183)

GRIN2A

All (N=711) Cisplatin, Gemcitabine (N=274)

BRCA2 SMARCA4

Example: APC in advanced bladder cancer

Example: APC mutation

Better immunotherapy response in bladder cancer patients

patients on immunotherapy

APC is a tumor suppressor

patients w/ APC mutation

interaction effect

Survival $\sim \beta_0 \cdot$ confounders $+\beta_g \cdot$ genotype $+\beta_t \cdot$ treatment $+\beta_t \cdot$ genotype \cdot treatment

Gene-gene interactions

Gene-gene interactions

Modifying the effects of targeted therapies

Liu et al. *Nat. Med.* 2022

TP53

www.precision-cancer.org Our results can be easily accessed

Summary

- The ability to predict the most effective treatment based on mutational profiles could be transformative for cancer care
- Large scale real world clinico-genomics data let us investigate mutation-treatment and even co-mutational effects on targeted treatments
- RWD is a powerful way to approach this question. Inherent biases require state-of-the-art statistical methods (e.g. propensity score matching and left-truncation aware survival models) to deal with confounders
- We could identify 42 altered genes across 8 cancer types with significant prognostic effect on overall-survival
- 458 significant mutation-treatment interactions were found, the majority of which are yet undescribed and might be a valuable starting point for further research
- Patients receiving targeted treatments might benefit from further comprehensive genomic profiling in future
- Still, the reasons for not being able to identify other or known interactions in RWD are plenty. E.g. rare mutations/treatments, exclusive combinations and biases complicate their identification

Extended Data Fig. 6 | Balance assessment between experiment and control cohorts for baseline covariates. Here we use the analysis of the prognostic effect of TP53 mutation on overall survival as an example; similar results are seen for other genes. For each cancer, we plot the standardized mean difference (SMD) for every baseline covariate between the experiment cohort (patients with TP53 mutation) and control cohort (patients without TP53 mutation). SMD close to 0 represents that the two cohorts are balanced. The inverse propensity weighting used in our analysis (IPTW) effectively balances the two cohorts. Raw corresponds to the unadjusted cohorts.