第6章 图

计算机工程与科学学院 封卫兵

6.3 图的矩阵表示

- 6.3.1 无向图的关联矩阵
- 6.3.2 有向无环图的关联矩阵
- 6.3.3 有向图的邻接矩阵,无向图的相邻矩阵 图中的通路数与回路数
- 6.3.4 图的可达矩阵

6.3.1 无向图的关联矩阵

设无向图 $G = \langle V, E \rangle$, $V = \{v_1, v_2, ..., v_n\}$, $E = \{e_1, e_2, ..., e_m\}$.

令 m_{ij} 为 v_i 与 e_j 的关联次数,称 $(m_{ij})_{n\times m}$ 为G的关联矩阵,

记为 M(G). M_{ij} 的可能取值为: 0, 1, 2

$$M(G) = \begin{bmatrix} 2 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 \end{bmatrix}$$

6.3.1 无向图的关联矩阵

关联矩阵的性质

1)
$$\sum_{i=1}^{n} m_{ij} = 2, \quad j = 1, 2, ..., m;$$

1)
$$\sum_{i=1}^{n} m_{ij} = 2$$
, $j = 1, 2, ..., m$;
2) $\sum_{j=1}^{m} m_{ij} = d(v_i)$, $i = 1, 2, ..., n$;

$$3) \sum_{i,j} m_{ij} = 2m$$

- 4) e_i 与 e_k 是平行边 \Leftrightarrow 第 i 列与第 k 列相同;
- 5) v_i 是孤立点 \Leftrightarrow 第 i 行全为 0;
- 6) e_i 是环 \Leftrightarrow 第 i 列的一个元素为 2, 其余为 0.

$$M(G) = \begin{bmatrix} 2 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 \end{bmatrix}$$

6.3.2 无环有向图的关联矩阵

无环有向图的关联矩阵

设无环有向图 $D = \langle V, E \rangle$, $V = \{v_1, v_2, ..., v_n\}$,

$$E = \{e_1, e_2, ..., e_m\}.$$

\$

则称 $(m_{ij})_{n\times m}$ 为 D 的关联矩阵,记为M(D).

$$\begin{bmatrix} -1 & 1 & 0 & 0 & 0 & -1 & 1 \\ 0 & -1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & -1 & -1 & 1 & -1 \\ 1 & 0 & 0 & 1 & 1 & 0 & 0 -1 \end{bmatrix}$$

6.3.2 无环有向图的关联矩阵

性质:

1) 每列恰好有一个 1 和一个 -1

$$M(D) = \begin{bmatrix} -1 & 1 & 0 & 0 & 0 & -1 & 1 \\ 0 & -1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & -1 & 1 & -1 \\ 1 & 0 & 0 & 1 & 1 & 0 & 0 \end{bmatrix}$$

$$\sum_{i=1}^{n} m_{ij} = 0, j = 1, 2, \dots, m; \text{ if } \text{ if } \sum_{i=1}^{n} \sum_{j=1}^{m} m_{ij} = 0$$

- 2) 1 总个数等于 -1 的总个数等于边数. (握手定理)
- 3) 第 i 行 1 的个数等于 $d^+(v_i)$,第 i 行 -1 的个数等于 $d^-(v_i)$
- 4) e_j 与 e_k 是平行边 \Leftrightarrow 第 j 列与第 k 列相同.

无向图的相邻矩阵

设无向简单图 $G = \langle V, E \rangle$, $V = \{v_1, v_2, ..., v_n\}$, 令 $a_{ij}^{(1)}$ 为顶点 v_i 与 v_j 之间边的条数,称 $(a_{ij}^{(1)})_{n \times n}$ 为 G 的相邻矩阵,记作 A(G).

例:写出无向图的相邻矩阵,并求 v_1 到 v_2 长度为3的通路数

和 v_1 到 v_1 长度为 3 的回路数.

$$A = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \end{bmatrix} \qquad A^2 = \begin{bmatrix} 2 & 1 & 1 & 1 \\ 1 & 3 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 2 \end{bmatrix} \qquad A^3 = \begin{bmatrix} 2 & 4 & 1 & 3 \\ 4 & 2 & 3 & 4 \\ 1 & 3 & 0 & 1 \\ 3 & 4 & 1 & 2 \end{bmatrix}$$

 v_1 到 v_2 长度为 3 的通路有 4 条: $v_1v_2v_1v_2$, $v_1v_2v_3v_2$, $v_1v_4v_1v_2$, $v_1v_2v_4v_2$.

 v_1 到 v_1 长度为3的回路有2条: $v_1v_2v_4v_1$, $v_1v_4v_2v_1$.

设有向图 $D = \langle V, E \rangle$, $V = \{v_1, v_2, ..., v_n\}$, $E = \{e_1, e_2, ..., e_m\}$, 令 $a_{ij}^{(1)}$ 为顶点 v_i <u>邻接到</u>顶点 v_j 边的条数,称 $(a_{ij}^{(1)})_{n \times n}$ 为 D 的邻接矩阵,记作 A(D),简记作 A.

$$A = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 2 & 0 \end{bmatrix}$$

性质:

1)
$$\sum_{\substack{j=1\\n}}^{n} a_{ij}^{(1)} = d^{+}(v_{i}), \quad i = 1, 2, \dots, n$$

2)
$$\sum_{j=1}^{n} a_{ij}^{(1)} = d^{-}(v_{j}), \quad j = 1, 2, \dots, n$$

3)
$$\sum_{\substack{i,j \\ n}} a_{ij}^{(1)} = m$$

4)
$$\sum_{i=1}^{n} a_{ii}^{(1)}$$
 等于 D 中环的个数

$$A = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 2 & 0 \end{bmatrix}$$

有向图中的通路数与回路数

定理6.6 设 A 为 n 阶有向图 D 的邻接矩阵,则 A^l ($l \ge 1$) 中元素 $a_{ij}^{(l)}$ 等于 D 中 v_i 到 v_j 长度为 l 的通路(含回路)数, $a_{ii}^{(l)}$ 等于 v_i 到自身 长度为 l 的回路数, $\sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij}^{(l)}$ 等于 D 中长度为 l 的通路(含回路) 总数, $\sum_{i=1}^{n} a_{ii}^{(l)}$ 等于D中长度为 l 的回路总数.

有向图中的通路数与回路数 (续)

推论 设 $B_l = A + A^2 + ... + A^l$ $(l \ge 1)$, 则 B_l 中元素 $b_{ij}^{(l)}$ 等于 D 中 v_i 到 v_j 长度小于等于 l 的通路(含回路)数, $b_{ii}^{(l)}$ 等于 D 中 v_i 到 v_i 长度小于等于 l 的回路数, $\sum_{i=1}^{n} \sum_{j=1}^{n} b_{ij}^{(l)}$ 等于 D 中长度小于等于 l 的通路 (含回路)数, $\sum_{i=1}^{n} b_{ii}^{(l)}$ 为 D 中长度小于等于 l 的回路数.

例:

 v_1 到 v_2 长为 3 的通路有 1 条; v_1 到 v_3 长为 3 的通路有 1 条; v_1 到自身长为 3 的回路有 2 条; D 中长为 3 的通路共有 16 条, 其中回路 4 条.

$$A = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 2 & 0 \end{bmatrix} \qquad A^2 = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 3 & 1 & 0 & 0 \end{bmatrix}$$

$$A^{3} = \begin{bmatrix} 2 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 3 & 3 & 1 & 0 \end{bmatrix} \qquad A^{4} = \begin{bmatrix} 3 & 2 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 2 & 1 & 1 & 0 \\ 4 & 3 & 3 & 0 \end{bmatrix}$$

注: 在这里的通路和回路数是定义意义下的

研讨题

1) 若简单无向图 G 有 n 个顶点,而边数大于(n-1)(n-2)/2,那么G是连通图。

2) 若 G 是具有 n 个结点的简单无向图,如果 G 中每一对结点度数之和均大于等于 n-1,那么 G 是连通图。

3) 有 13 个杯子, 杯口均朝上放在桌子上。要求每次只能翻动 12 只杯子, 能否把 13 只杯子全部翻成底朝上。

有向图的可达矩阵

设有向图 $D = \langle V, E \rangle$, $V = \{v_1, v_2, ..., v_n\}$, 令

$$p_{ij} = \begin{cases} 1, & v_i \text{ 可达 } v_j \\ 0, & \text{否则} \end{cases} \quad 1 \le i, j \le n$$

称 $(p_{ij})_{n\times n}$ 为 G 的可达矩阵,记作 P(G),简记为 P.

- 性质: 1) P(G) 主对角线上的元素 全为 1;
 - 2) 有向图 D 强连通当且仅当 P(D) 的元素 全为 1;
 - 3) 对 n 阶图, $p_{ij}=1\Leftrightarrow b_{ij}^{(n-1)}>0$, $i\neq j$.

如何得到图的可达矩阵P?

方法一:

- 1) 写出邻接矩阵 A;
- 2) 计算 $B = A + A^2 + A^3 + ... + A^k$; (k 取多少?) k = n - 1
- 3) 改写 B:
 - ① B中非零元素改为"1";
 - ② B中对角线元素改为"1".

方法二:

Warshall 算法?

ביאאימט ואינווניינא יי

3) Warshall 算法直接得到 P.

- 1) v_1 到 v_4 , v_4 到 v_1 长为 3 的通路各有多少条?
- 2) v₁ 到自身长为 1,2,3,4 的回路各有多少条?

- 4) 长度小于等于 4 的回路共有多少条?
- 5) 写出 D 的可达矩阵,并问 D 是强连通的吗?

解:

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix} \quad \mathbf{A}^2 = \begin{bmatrix} 1 & 2 & 3 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad \mathbf{A}^3 = \begin{bmatrix} 1 & 2 & 4 & 3 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix} \quad \mathbf{A}^4 = \begin{bmatrix} 1 & 2 & 6 & 4 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

 v_1 到 v_4 长为 3 的通路有 3 条, v_4 到 v_1 长为 3 的通路有 0 条;

v₁到自身长为 1,2,3,4 的回路各有 1 条;

长为4的通路共有16条,其中有3条回路;

长度小于等于4的回路共有8条.

3 6 8 4 7

0 0 2 1

求可达矩阵:

方法一:

1)
$$B = A + A^2 + A^3 = \begin{cases} 0 & 0 & 2 & 1 \\ 0 & 0 & 1 & 2 \end{cases}$$

2) 改写 B:

$$P = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

方法二:

1) 改写 A:

2) Warshall算法:

强连通? 💢 单连通? 🗸

