

□ (858)-952-2680 | ☑ ritvikvasan@gmail.com | 备 ritvikvasan.github.io | 回 ritvikvasan | 面 ritvikvasan

Skills_

General Biophysics, Computational Methods, Data Science, Statistical methods, Machine Learning

Programming Python, R, SQL, LaTeX, PyTorch, MATLAB, Jython, Git, ImageJ, COMSOL, SolidWorks

Soft Communication, Collaboration, Presentation, Analytical Ability, Versatility, Creativity

Summary_

I am a Scientist at the Allen Institute for Cell Science with significant experience in biophysical modeling. I leverage interdisciplinary skills including applied mathematics, computational methods, machine learning, software engineering and quantitative biology to answer complex biophysical questions. Along the way, I develop usable tools for the community. I am interested in expanding my experience in data-driven biophysical modeling and machine learning to make a lasting impact.

Education_

University of California, San Diego

PHD IN MECHANICAL ENGINEERING (3.97/4.00) M.S. IN MECHANICAL ENGINEERING (3.97/4.00)

BITS Pilani Pilani, Rajasthan, India

B.S. IN MECHANICAL ENGINEERING (8.76/10.00)

Pilani, Rajasthan, India 2011 - 2015

Experience

PHD CANDIDATE

Allen Institute for Cell Science

Seattle, WA

San Diego, CA

2017 - 2020

2015 - 2017

Scientist

July 2020 - Present

- Executed research using both data-driven biophysical models and advanced machine learning based data-driven models.
 - · Initiated project leveraging Conditional Variational Autoencoders to analyze 33000 cell image features.
 - · Implemented and published a force-inference Python package named DLITE to estimate forces from cell monolayers.
- Worked in an open-science and team-science environment.
- Coordinated collaboration between the Allen Institute for Cell Science and UCSD.

Laboratory for computational and cellular mechanobiology, UCSD

San Diego, CA Dec 2015 - Present

• Transitioned research from bio-medical device prototyping to computational biophysics.

• Published 6 peer reviewed papers in 3 years, before most peers.

• Participated as chair and platform speaker in 3 international conferences including Biophysical Society.

- Awarded competitive Frontiers of Innovation and Scholars Program (FISP) fellowship and the UCSD outstanding graduate student award (~ 2 % acceptance rate).
- Created 1 open-source tool that has received press attention from websites like *phys.org*, *sciencedaily.com* and *jacobss-chool.ucsd.edu*.
- Led collaborative teams of scientists across 4 universities.

Nano-bio imaging and devices lab, UCSD

San Diego, CA

Sept - Dec 2015

• Implemented preliminary protocols to develop *nano-bowls* for targeted drug delivery.

- Systematically analyzed for the presence of nano-bowls using a Scanning Electron Microscope (SEM).
- Briefed supervisors on my assessment of the capabilities of nano-bowl technology.

Applied physics and instrumentation lab, Indian Institute of Science

Bangalore, India

July 2014 - Aug 2015

RESEARCH ASSISTANT

RESEARCH ASSISTANT

- Designed a proof of concept of an affordable and portable cell-phone microscope for malaria diagnosis.
- Implemented machine learning algorithms for the detection of malaria parasite.
- Created a company MuScope and acquired seed funding worth 10000 USD.
- Selected as one of the *top innovation projects in India* for the Gandhian award by SRISTI.
- Publicized work through national newspapers and networks.

Mechanical engineering lab, Indian Institute of Science

Bangalore, India

RESEARCH ASSISTANT

May - July 2014

• Determined stiffness of MCF-7 breast cancer cells using cell aspiration techniques, atomic-force microscopy (AFM) and microgrippers.

AUGUST 1, 2020 RITVIK VASAN · RÉSUMÉ 1

Activities

- Startup competitions: Winner, 2019 IPHatch, Hong Kong. Pitched a business plan and technical details for a startup utilizing
- image processing IP made available through the competition.

 Social innovation competitions: Winner, 2014 SRISTI grant, India. Pitched a preliminary prototype of a cellphone microscope and received funding for executing a market-viable product.
- Graduate mentor: Directed 4 undergraduates and 1 junior graduate student on software engineering tasks and their research.
- Teaching assistant: Held discussion sessions and designed assignments for various biomechanics classes and a workshop on Git, Python and UNIX.
- Outreach: Designed and advised research projects for high school students through outreach programs like the Center for Talented Youth (CTY) and ENLACE.
- Web development: Created 2 research-lab websites and a side-project website at happyhoursinbangalore.appspot.com to return happy hour information for every bar near a given location in Bangalore.

Publications ______(* denotes equal contribution)

2020	Applications and challenges of machine learning to enable realistic cellular simulations	Frontiers in
2020	Vasan , Rowan, Lee, Johnson, Rangamani, Holst	Physics
2020	Branched actin filament self-organization and force generation during clathrin-mediated	
	endocytosis	eLife
	Akamatsu, Vasan , Serwas, Ferrin, Rangamani, Drubin	
	A mechanical model reveals that non-axisymmetric buckling lowers the energy barrier	
2019	associated with membrane neck constriction	Soft Matter
	Vasan , Rudraraju, Akamatsu, Drubin,Garikipati, Rangamani	
2019	DLITE uses cell-cell interface movement to better infer cell-cell forces	Biophysical
	Vasan , Maleckar, Williams, Rangamani	Journal
2018	The role of traction in membrane curvature generation	Molecular Biology
	Alimohamadi*, Vasan *, Hassinger, Stachowiak, Rangamani	of the Cell
2018	Intracellular membrane trafficking: modeling local movements in cells	Coriosor
	Vasan, Akamatsu, Schoeneberg, Rangamani	Springer

Conferences_____

2019	Chair Cell mechanics, mechanosensing and motility, Biophysical Society meeting	Baltimore, MD
2019	Platform speaker Biophysical Society meeting	Baltimore, MD
2018	Poster American Society for Cell Biology meeting	San Diego, CA
2018	Poster Biophysical Society meeting	San Diego, CA
2017	Platform speaker FISP symposium	San Diego, CA
2017	Poster Biophysical Society meeting	New Orleans, LA

Awards_____

Outstanding graduate student Mechanical and Aerospace Engineering	UCSD
Frontiers of Innovation and Scholars Program (FISP) fellowship	UCSD
Social innovation grant	SRISTI
Merit scholarship ∼ 1 % acceptance	BITS Pilani
KVPY scholarship \sim 1 % acceptance	Indian Institute of Science
INSPIRE scholarship \sim 1 % acceptance	CBSE
	Frontiers of Innovation and Scholars Program (FISP) fellowship Social innovation grant Merit scholarship \sim 1 % acceptance KVPY scholarship \sim 1 % acceptance

Outstanding and dusts student Mashanias Land Assessed Franciscoving

References_____

Padmini Rangamani, Ph.D.

Associate Professor Mechanical and Aerospace Engineering Jacobs School of Engineering University of California, San Diego La Jolla, CA 92093-0411 (858) 534-4734 padmini.rangamani@eng.ucsd.edu

Mary (Molly) M. Maleckar, Ph.D.

Research Professor Computational Physiology Simula Research Laboratory Schweigaards gate 61A 0656 Oslo, Norway +47 474 82 159 mmaleck@simula.no

C. Dave Williams, Ph.D.

Scientist Modeling and Theory Allen Institute for Cell Science 615 Westlake Ave Seattle, WA, 98105 (206)792-5827 cdave@alleninstitute.org

LICCD