Image Analysis and Pattern Recognition

Final Project "Varroa Discovery"

Part 1

Find Varroas by Segmentation

Marker-based image segmentation using watershed algorithm

- <u>Basic idea</u>: "Any grayscale image can be viewed as a topographic surface where high intensity denotes peaks and hills while low intensity denotes valleys."

What we did?:

- Labelled the region of *sure foreground* or *object* with one color
- Label the region of *sure background* or *non-object* with another color
- The region which we are not sure of anything, label it with 0 → which is our marker
- After applying watershed algorithm our marker will be updated with the labels we gave,
 - and the boundaries of objects will have a value of -1

^{*} https://docs.opencv.org/3.4/d3/db4/tutorial_py_watershed.html

Inspect Data

- Choosing a desired area size of the varroas

```
Image Area <= 512**2
 Total Varroa: 25
 Varroa Height, mean: 31.68 median: 32.00 min: 8.00 max: 48.00
 Varroa Width. mean: 31.08 median: 32.00 min: 8.00 max: 48.00
                mean: 1017.28 median: 1024.00 min: 192.00 max: 2304.00
  Varroa Area.
Image Area <= 1000**2
 Total Varroa: 9542
 Varroa Height, mean: 37.40 median: 40.00 min: 2.00 max: 64.00
                mean: 36.53 median: 40.00 min: 1.00 max: 64.00
 Varroa Width.
 Varroa Area.
                mean: 1413.05 median: 1280.00 min: 28.00 max: 4096.00
                                                             60
45
40
                                                             50
35
                                                             40
30
                                                             30
25 -
20 -
                                                             20
15
                                                             10
10
```

- Finding an approximate of the varroa by Otsu's binarization

 Mark the regions in different color, ang get subtracted image from background

area_max = 1000 area_min = 300

- Finding an approximate of the varroa by Otsu's binarization

 Mark the regions in different color, ang get subtracted image from background

area_max = 2300 area_min = 1000

Part 2

Finding Varroas by Object Detection

Generating dataset

Varroa samples

Background samples

- window size chosen by taking a mean of given bound boxes (25x25)
- taking random samples that don't overlap bounding boxes
- number of background and varroa samples is about the same

PCA (Principal Component Analysis)

Wold, Svante, Kim Esbensen, and Paul Geladi. "Principal component analysis." Chemometrics and intelligent laboratory systems 2.1-3 (1987): 37-52.

Each image is represented as NxMx3
feature vector and using PCA reduced
to n features (e.g. 2, 3)

SIFT (Distinctive Image Features from Scale-Invariant Keypoints)

- Family of Histograms of Oriented Gradients (HOG)
- x patches for a single window, each patch consist of 128 features => x * 128 feature for each window
- Number of features has to be reduced!

Labelt Labelt Labelt Labelt Labelt Labelt Labelt Labelt

Lowe, David G. "Distinctive image features from scale-invariant keypoints." International journal of computer vision 60.2 (2004): 91-110.

SIFT: Reducing number of features

- Consider each point as a SIFT feature (128 dimensional space)
- Cluster points in **k** clusters (e.g. 2, 3)
- Describe each image as a histogram of clustered patches
- Example:

Fourier Descriptors

- Region growing to convert image to binary (varroa vs background)
- Create a contour around the varroa
- Encode the contour for Fourier Descriptors
 - $u_k = x_k + jy_k$
 - F = FFT(u)
 - **F_1 is ignored** (translation invariant)
 - abs(F_3...f) / abs(F_2) are used to describe the varroa (abs(F_k) for rotation invariant and 1/F_2 for scaling invariant)

SVC (Support Vector Classifier)

- Multiple features (e.g. 7) are extracted from each windows and put in classifier
- **C** & **gamma** parameters of SVC are obtained using Grid Search

Part 3

Finding Varroas using Mask-RCNN

Inspect Data

- Inspect data information

Inspect Data

- Split images into 4 subimages
- Generate new data masks

Training

- Mask-RCNN framework [1]
- Train the model
- Tune training hyper-parameters
- Tune score threshold

True Positives w.r.t. Score Threshold

False Positives w.r.t. Score Threshold

Merging

- Unite images and their predictions
- Submit JSON file with Rols

Results

20 last layer; 40 all layers

20 last layer; 48 all layers Score threshold 0.9

20 last layer; 48 all layers Score threshold 0.8

20 last layer; 40 all layers Less data

F1@0.1	F1@0.2	F1@0.3	F1@0.4	F1@0.5	Total
0.74	0.74	0.74	0.73	0.71	0.73
0.67	0.67	0.66	0.65	0.64	0.66
0.58	0.57	0.56	0.56	0.55	0.57
0.47	0.46	0.45	0.45	0.44	0.46

Appendix

Additional materials

SIFT

Image from:

https://gilscvblog.com/2013/08/18/a-short-introduction-to-descriptors/

SVC (Grid Search & Results)

```
SVC(C=250, cache_size=200, class_weight='balanced', coef0=0.0,
  decision_function_shape='ovr', degree=3, gamma=0.1, kernel='rbf',
  max_iter=-1, probability=True, random_state=None, shrinking=True,
  tol=0.001, verbose=False)
```

Classification	report
----------------	--------

	precision	recall	f1-score	support
background	0.98	0.98	0.98	1361
varroa	0.96	0.96	0.96	582
micro avg	0.98	0.98	0.98	1943
macro avg	0.97	0.97	0.97	1943
weighted avg	0.98	0.98	0.98	1943

Sliding Window

- Window size: 25 x 25px
- Window overlap: 50% (along x & y axis)

Image from:

https://www.pyimagesearch.com/2015/03/23/sliding-windows-for-object-detection-with-python-and-opency/

Description: Example of classification

Blue: Our Classification

Red: Ground Truth