Асимптотична нотація

Андрій Фесенко

08.09.2021

• нехай оцінка ресурсів алгоритму дорівнює $7n^2+13n+135,$ $n\in\mathbb{N},$ (в найгіршому випадку)

- нехай оцінка ресурсів алгоритму дорівнює $7n^2 + 13n + 135$, $n \in \mathbb{N}$, (в найгіршому випадку)
- ullet із значним зростанням n основний вплив на значення має доданок $7n^2$

- нехай оцінка ресурсів алгоритму дорівнює $7n^2 + 13n + 135$, $n \in \mathbb{N}$, (в найгіршому випадку)
- із значним зростанням n основний вплив на значення має доданок $7n^2$
- сталий коефіцієнт не є важливим для гнучкості моделей обчислень

- нехай оцінка ресурсів алгоритму дорівнює $7n^2 + 13n + 135$, $n \in \mathbb{N}$, (в найгіршому випадку)
- із значним зростанням n основний вплив на значення має доданок $7n^2$
- сталий коефіцієнт не є важливим для гнучкості моделей обчислень
- сталий коефіцієнт не є важливим з-за теореми Блюма

- нехай оцінка ресурсів алгоритму дорівнює $7n^2 + 13n + 135$, $n \in \mathbb{N}$, (в найгіршому випадку)
- із значним зростанням n основний вплив на значення має доданок $7n^2$
- сталий коефіцієнт не є важливим для гнучкості моделей обчислень
- сталий коефіцієнт не є важливим з-за теореми Блюма
- ullet \Rightarrow ϵ необхідним спрощення до n^2 (або іншої функції, яка зростає на асимптотиці не гірше)

Означення (\mathcal{O} велике)

Нехай задані дві комплекснозначні функції $f,g:D\to\mathbb{C}$, визначені на деякій множині комплексної площини $D\subseteq\mathbb{C}$. Функція f є " \mathcal{O} " великим від функції g на множині D, якщо існує така константа c>0, що виконується нерівність $|f(z)|\leq c|g(z)|$ для всіх значень $z\in D$. Позначають це за допомогою запису $f(z)\in\mathcal{O}(g(z))$, $z\in D$.

Oзначення (\mathcal{O} велике)

Нехай задані дві комплекснозначні функції $f,g:D\to\mathbb{C}$, визначені на деякій множині комплексної площини $D\subseteq\mathbb{C}$. Функція f є " \mathcal{O} " великим від функції g на множині D, якщо існує така константа c>0, що виконується нерівність $|f(z)|\leq c|g(z)|$ для всіх значень $z\in D$. Позначають це за допомогою запису $f(z)\in\mathcal{O}(g(z))$, $z\in D$.

Означення (О велике в околі точки)

Нехай задані дві комплекснозначні функції $f,g:D\to\mathbb{C}$, визначені на деякій множині комплексної площини $D\subseteq\mathbb{C}$, замикання якої містить точку $z_0\in\mathbb{C}$. Функція f є " \mathcal{O} " великим від функції g при $z\to z_0$, $z\in D$, якщо існують такі константа c>0 та число $\delta>0$, що виконується нерівність $|f(z)|\leq c|g(z)|$ для всіх значень $z\in D$, $0<|z-z_0|<\delta$. Позначають це за допомогою запису $f(z)\in\mathcal{O}(g(z))$, $z\to z_0$.

Означення (О велике на нескінченності)

Нехай задані дві комплекснозначні функції $f,g:D\to\mathbb{C}$, визначені на деякій необмеженій множині комплексної площини $D\subseteq\mathbb{C}$. Функція f ε " \mathcal{O} " великим від функції g при $z\to\infty$, $z\in D$, якщо існують такі константа c>0 та число m>0, що виконується нерівність $|f(z)|\leq c|g(z)|$ для всіх значень $z\in D$, |z|>m. Позначають це за допомогою запису $f(z)\in\mathcal{O}(g(z))$, $z\to\infty$.

Означення (О велике на нескінченності)

Нехай задані дві комплекснозначні функції $f,g:D\to\mathbb{C}$, визначені на деякій необмеженій множині комплексної площини $D\subseteq\mathbb{C}$. Функція f ϵ " \mathcal{O} " великим від функції g при $z\to\infty$, $z\in D$, якщо існують такі константа c>0 та число m>0, що виконується нерівність $|f(z)|\leq c|g(z)|$ для всіх значень $z\in D,\,|z|>m$. Позначають це за допомогою запису $f(z)\in\mathcal{O}(g(z)),\,z\to\infty$.

Означення (о мале на нескінченності)

Нехай задані дві комплекснозначні функції $f,g:D\to\mathbb{C}$, визначені на деякій необмеженій множині комплексної площини $D\subseteq\mathbb{C}$. Функція f ϵ "o" малим від функції g при $z\to\infty$, $z\in D$, якщо для довільного як завгодно малого значення $\varepsilon>0$ існує таке число $m(\varepsilon)>0$, що виконується нерівність $|f(z)|\leq \varepsilon |g(z)|$ для всіх значень $z\in D,\,|z|>m(\varepsilon)$. Позначають це за допомогою запису $f(z)\in o(g(z)),\,z\to\infty$.

Аналіз ресурсів

ullet $\mathcal{F}_{\mathbb{N}}$ — множина всіх функцій виду $\mathbb{N} o \mathbb{N}$

Аналіз ресурсів

- ullet $\mathcal{F}_{\mathbb{N}}$ множина всіх функцій виду $\mathbb{N} o \mathbb{N}$
- ullet для зручності уникаємо $\lceil \cdot
 ceil$, наприклад $n \log n$

Аналіз ресурсів

- ullet $\mathcal{F}_{\mathbb{N}}$ множина всіх функцій виду $\mathbb{N} o \mathbb{N}$
- ullet для зручності уникаємо $\lceil \cdot
 ceil$, наприклад $n \log n$
- ullet тільки асимптотична поведінка, при $n o\infty$

Асимптотична нотація

Означення

Нехай задані дві функції $f,g:\mathbb{N}\to\mathbb{N}$. Функція $f\in \mathcal{O}$ " великим від функції g (при $n\to\infty$), якщо існують такі константа $c\in\mathbb{R}^+$ та натуральне число $n_0\in\mathbb{N}$, що виконується нерівність $f(n)\leq cg(n)$ для всіх значень $n>n_0,\ n\in\mathbb{N}$. Функція $f\in \mathcal{O}$ " малим від функції g (при $n\to\infty$), якщо якщо для довільного як завгодно малого значення $\varepsilon\in\mathbb{R}^+$ існує таке натуральне число $n_0(\varepsilon)>0$, що виконується нерівність $f(n)\leq \varepsilon g(n)$ для всіх значень $n>n_0(\varepsilon),\ n\in\mathbb{N}$.

Асимптотична нотація

Означення

Нехай задані дві функції $f,g:\mathbb{N} o \mathbb{N}$.

Функція f є " \mathcal{O} " великим від функції g (при $n \to \infty$), якщо існують такі константа $c \in \mathbb{R}^+$ та натуральне число $n_0 \in \mathbb{N}$, що виконується нерівність $f(n) \le cg(n)$ для всіх значень $n > n_0$, $n \in \mathbb{N}$. Функція f є "o" малим від функції g (при $n \to \infty$), якщо якщо для довільного як завгодно малого значення $\varepsilon \in \mathbb{R}^+$ існує таке натуральне число $n_0(\varepsilon) > 0$, що виконується нерівність $f(n) \le \varepsilon g(n)$ для всіх значень $n > n_0(\varepsilon)$, $n \in \mathbb{N}$.

Наслідок

Нехай задані дві функції $f,g:\mathbb{N} o \mathbb{N}$.

Функція $f \in ``O"$ великим від функції g тоді й тільки тоді, коли існують такі константа $c \in \mathbb{R}^+$ та натуральне число $n_0 \in \mathbb{N}$, що виконується нерівність $\frac{f(n)}{g(n)} \leq c$ для всіх значень $n > n_0$, $n \in \mathbb{N}$. Функція $f \in ``o"$ малим від функції g тоді й тільки тоді, коли $\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$.

Зауваження

Для скорочення запису будемо використовувати позначення $f \in \mathcal{O}(g)$ та $f \in o(g)$, як і $f(n) \in \mathcal{O}(g(n))$ та $f(n) \in o(g(n))$ відповідно.

Зауваження

Для скорочення запису будемо використовувати позначення $f \in \mathcal{O}(g)$ та $f \in o(g)$, як і $f(n) \in \mathcal{O}(g(n))$ та $f(n) \in o(g(n))$ відповідно.

Зауваження

ullet $f=\mathcal{O}(g)$ та f=o(g) — не ϵ рівностями, а ϵ несиметричними відношеннями

7

Зауваження

Для скорочення запису будемо використовувати позначення $f \in \mathcal{O}(g)$ та $f \in o(g)$, як і $f(n) \in \mathcal{O}(g(n))$ та $f(n) \in o(g(n))$ відповідно.

Зауваження

- ullet $f=\mathcal{O}(g)$ та f=o(g) не ϵ рівностями, а ϵ несиметричними відношеннями
- ullet вирази $\mathcal{O}(g)=f$ та o(g)=f не мають сенсу

Зауваження

Для скорочення запису будемо використовувати позначення $f\in\mathcal{O}(g)$ та $f\in o(g)$, як і $f(n)\in\mathcal{O}(g(n))$ та $f(n)\in o(g(n))$ відповідно.

Зауваження

- ullet $f=\mathcal{O}(g)$ та f=o(g) не ϵ рівностями, а ϵ несиметричними відношеннями
- ullet вирази $\mathcal{O}(g)=f$ та o(g)=f не мають сенсу
- приклад $4n^3+8n=\mathcal{O}(n^3)$ та $\mathcal{O}(n^3)=o(n^4)$, але твердження $o(n^4)=\mathcal{O}(n^3)$ є неправильним, а твердження $\mathcal{O}(n^3)=4n^3+8n$ не має сенсу

Зауваження

Для скорочення запису будемо використовувати позначення $f \in \mathcal{O}(g)$ та $f \in o(g)$, як і $f(n) \in \mathcal{O}(g(n))$ та $f(n) \in o(g(n))$ відповідно.

Зауваження

- ullet $f=\mathcal{O}(g)$ та f=o(g) не ϵ рівностями, а ϵ несиметричними відношеннями
- ullet вирази $\mathcal{O}(g)=f$ та o(g)=f не мають сенсу
- ullet приклад $4n^3+8n=\mathcal{O}(n^3)$ та $\mathcal{O}(n^3)=o(n^4)$, але твердження $o(n^4)=\mathcal{O}(n^3)$ є неправильним, а твердження $\mathcal{O}(n^3)=4n^3+8n$ не має сенсу
- $(1 + o(1))^{\mathcal{O}(n)} + 4n^5 = \mathcal{O}(e^n) + 2$

Властивості

Для довільних функцій $f,g,h,f_1,f_2,g_1,g_2:\mathbb{N}\to\mathbb{N}$ та довільної константи $c\in\mathbb{R}^+$ виконуються такі твердження.

lacktriangle Якщо $f(n) \leq g(n)$ для всіх значень $n \in \mathbb{N}$, то $\mathcal{O}(f) \subseteq \mathcal{O}(g)$ (узгодженість порядку)

Властивості

- ullet Якщо $f(n) \leq g(n)$ для всіх значень $n \in \mathbb{N}$, то $\mathcal{O}(f) \subseteq \mathcal{O}(g)$ (узгодженість порядку)

Властивості

- ullet Якщо $f(n) \leq g(n)$ для всіх значень $n \in \mathbb{N}$, то $\mathcal{O}(f) \subseteq \mathcal{O}(g)$ (узгодженість порядку)
- **2** $f = \mathcal{O}(f)$ (рефлексивність)
- ullet Якщо $f=\mathcal{O}(g)$ і $g=\mathcal{O}(h)$, то $f=\mathcal{O}(h)$ (транзитивність)

Властивості

- ullet Якщо $f(n) \leq g(n)$ для всіх значень $n \in \mathbb{N}$, то $\mathcal{O}(f) \subseteq \mathcal{O}(g)$ (узгодженість порядку)
- **2** $f = \mathcal{O}(f)$ (рефлексивність)
- $oldsymbol{\circ}$ Якщо $f=\mathcal{O}(g)$ і $g=\mathcal{O}(h)$, то $f=\mathcal{O}(h)$ (транзитивність)
- lacktriangle Якщо $f=\mathcal{O}(g)$, то $\mathcal{O}(f)\subseteq\mathcal{O}(g)$ (правило членства)

Властивості

- ullet Якщо $f(n) \leq g(n)$ для всіх значень $n \in \mathbb{N}$, то $\mathcal{O}(f) \subseteq \mathcal{O}(g)$ (узгодженість порядку)
- **2** $f = \mathcal{O}(f)$ (рефлексивність)
- $f \Theta$ Якщо $f=\mathcal O(g)$ і $g=\mathcal O(h)$, то $f=\mathcal O(h)$ (транзитивність)
- ullet Якщо $f=\mathcal{O}(g)$, то $\mathcal{O}(f)\subseteq\mathcal{O}(g)$ (правило членства)

Властивості

- ullet Якщо $f(n) \leq g(n)$ для всіх значень $n \in \mathbb{N}$, то $\mathcal{O}(f) \subseteq \mathcal{O}(g)$ (узгодженість порядку)
- **2** $f = \mathcal{O}(f)$ (рефлексивність)
- $oldsymbol{eta}$ Якщо $f=\mathcal{O}(g)$ і $g=\mathcal{O}(h)$, то $f=\mathcal{O}(h)$ (транзитивність)
- lacktriangle Якщо $f=\mathcal{O}(g)$, то $\mathcal{O}(f)\subseteq\mathcal{O}(g)$ (правило членства)
- ullet Якщо $f_1=\mathcal{O}(g_1)$ і $f_2=\mathcal{O}(g_2)$, то $f_1+f_2=\mathcal{O}(\max\{g_1,g_2\})$ (правило додавання)

Властивості

- ullet Якщо $f(n) \leq g(n)$ для всіх значень $n \in \mathbb{N}$, то $\mathcal{O}(f) \subseteq \mathcal{O}(g)$ (узгодженість порядку)
- **2** $f = \mathcal{O}(f)$ (рефлексивність)
- $oldsymbol{eta}$ Якщо $f=\mathcal{O}(g)$ і $g=\mathcal{O}(h)$, то $f=\mathcal{O}(h)$ (транзитивність)
- lacktriangle Якщо $f=\mathcal{O}(g)$, то $\mathcal{O}(f)\subseteq\mathcal{O}(g)$ (правило членства)
- $lack {f O}$ Якщо $f_1=\mathcal O(g_1)$ і $f_2=\mathcal O(g_2)$, то $f_1+f_2=\mathcal O(\max\{g_1,g_2\})$ (правило додавання)
- $m{O}$ Якщо $f_1=\mathcal{O}(g)$ і $f_2=\mathcal{O}(g)$, то $f_1+f_2=\mathcal{O}(g)$

Властивості

- ullet Якщо $f(n) \leq g(n)$ для всіх значень $n \in \mathbb{N}$, то $\mathcal{O}(f) \subseteq \mathcal{O}(g)$ (узгодженість порядку)
- **2** $f = \mathcal{O}(f)$ (рефлексивність)
- $oldsymbol{\circ}$ Якщо $f=\mathcal{O}(g)$ і $g=\mathcal{O}(h)$, то $f=\mathcal{O}(h)$ (транзитивність)
- lacktriangle Якщо $f=\mathcal{O}(g)$, то $\mathcal{O}(f)\subseteq\mathcal{O}(g)$ (правило членства)
- $oldsymbol{\circ}$ Якщо $f_1=\mathcal{O}(g_1)$ і $f_2=\mathcal{O}(g_2)$, то $f_1+f_2=\mathcal{O}(\max\{g_1,g_2\})$ (правило додавання)
- $m{O}$ Якщо $f_1=\mathcal{O}(g)$ і $f_2=\mathcal{O}(g)$, то $f_1+f_2=\mathcal{O}(g)$
- ullet Якщо $f_1=\mathcal{O}(g_1)$ і $f_2=\mathcal{O}(g_2)$, то $f_1f_2=\mathcal{O}(g_1g_2)$ (правило множення)

Якщо f=o(g), то $f=\mathcal{O}(g)$, але не навпаки. Наприклад, $4x^3=\mathcal{O}(x^3)$, але $4x^3\ne o(x^3)$.

Властивості О великого

Приклад

• $n^{14} = \mathcal{O}(n^{15})$?

Властивості О великого

- $n^{14} = \mathcal{O}(n^{15})$?
- $n^{14} = \mathcal{O}(n^{13})$?

- $n^{14} = \mathcal{O}(n^{15})$?
- $n^{14} = \mathcal{O}(n^{13})$?
- $n^{14} + n^2 = \mathcal{O}(n^{14} + 5)$?

- $n^{14} = \mathcal{O}(n^{15})$?
- $n^{14} = \mathcal{O}(n^{13})$?
- $n^{14} + n^2 = \mathcal{O}(n^{14} + 5)$?
- $10^5 + n^{14} + n^2 + 3 = \mathcal{O}(10^5)$?

- $n^{14} = \mathcal{O}(n^{15})$?
- $n^{14} = \mathcal{O}(n^{13})$?
- $n^{14} + n^2 = \mathcal{O}(n^{14} + 5)$?
- $10^5 + n^{14} + n^2 + 3 = \mathcal{O}(10^5)$?
- $n = \mathcal{O}(\log_2 n)$?

- $n^{14} = \mathcal{O}(n^{15})$?
- $n^{14} = \mathcal{O}(n^{13})$?
- $n^{14} + n^2 = \mathcal{O}(n^{14} + 5)$?
- $10^5 + n^{14} + n^2 + 3 = \mathcal{O}(10^5)$?
- $n = \mathcal{O}(\log_2 n)$?
- $n = \mathcal{O}(4^n)$?

- $n^{14} = \mathcal{O}(n^{15})$?
- $n^{14} = \mathcal{O}(n^{13})$?
- $n^{14} + n^2 = \mathcal{O}(n^{14} + 5)$?
- $10^5 + n^{14} + n^2 + 3 = \mathcal{O}(10^5)$?
- $n = \mathcal{O}(\log_2 n)$?
- $n = \mathcal{O}(4^n)$?
- $4^n = \mathcal{O}(n)$?

_	1	1 1
$f \leq g$	$f\in\mathcal{O}(g)$	
$f \succeq g$	$g\in\mathcal{O}(f)$	
$f \prec g$	$f \in \mathcal{O}(g)$ i $g \notin \mathcal{O}(f)$	
$f \succ g$	$g \in \mathcal{O}(f)$ i $f \not\in \mathcal{O}(g)$	
$f \approx g$	$f \in \mathcal{O}(g)$ i $g \in \mathcal{O}(f)$	
	l l	1 1

$f \leq g$	$f\in\mathcal{O}(g)$	f обмежена зверху g
$f \succeq g$	$g\in\mathcal{O}(f)$	f обмежена знизу g
$f \prec g$	$f \in \mathcal{O}(g)$ i $g \notin \mathcal{O}(f)$	g домінує над f
$f \succ g$	$g \in \mathcal{O}(f)$ i $f \not\in \mathcal{O}(g)$	f домінує над g
$f \approx g$	$f \in \mathcal{O}(g)$ i $g \in \mathcal{O}(f)$	f обмежена зверху і знизу g

$f \leq g$	$f\in\mathcal{O}(g)$	f обмежена зверху g	0	
$f \succeq g$	$g\in\mathcal{O}(f)$	f обмежена знизу g	Ω	
$f \prec g$	$f \in \mathcal{O}(g)$ i $g \notin \mathcal{O}(f)$	g домінує над f	0	
$f \succ g$	$g \in \mathcal{O}(f)$ i $f \notin \mathcal{O}(g)$	f домінує над g	ω	
$f \approx g$	$f \in \mathcal{O}(g)$ i $g \in \mathcal{O}(f)$	f обмежена зверху і знизу g		

$f \leq g$	$f\in\mathcal{O}(g)$	f обмежена зверху g	0
$f \succeq g$	$g\in\mathcal{O}(f)$	f обмежена знизу g	Ω
$f \prec g$	$f \in \mathcal{O}(g)$ i $g \notin \mathcal{O}(f)$	g домінує над f	0
$f \succ g$	$g \in \mathcal{O}(f)$ i $f \notin \mathcal{O}(g)$	f домінує над g	ω
$f \approx g$	$f \in \mathcal{O}(g)$ i $g \in \mathcal{O}(f)$	f обмежена зверху і знизу g	Θ
$f \sim g$	$\lim_{n\to\infty}\frac{f(n)}{g(n)}=1$	f еквівалентна g	

$f \leq g$	$f\in\mathcal{O}(g)$	f обмежена зверху g	0	\leq
$f \succeq g$	$g\in\mathcal{O}(f)$	f обмежена знизу g	Ω	\geq
$f \prec g$	$f \in \mathcal{O}(g)$ i $g \notin \mathcal{O}(f)$	g домінує над f	0	<
$f \succ g$	$g \in \mathcal{O}(f)$ i $f \not\in \mathcal{O}(g)$	f домінує над g	ω	>
$f \approx g$	$f \in \mathcal{O}(g)$ i $g \in \mathcal{O}(f)$	f обмежена зверху і знизу g	Θ	\approx
$f \sim g$	$\lim_{n\to\infty}\frac{f(n)}{g(n)}=1$	f еквівалентна g		=

Додаткові позначення Ω , ω та Θ

Означення

Нехай задані дві функції $f,g:\mathbb{N} \to \mathbb{N}$.

Функція $f \in "\Omega"$ великим від функції g (при $n \to \infty$), якщо існують такі константа $c \in \mathbb{R}^+$ та натуральне число $n_0 \in \mathbb{N}$, що виконується нерівність $f(n) \geq cg(n)$ для всіх значень $n > n_0$, $n \in \mathbb{N}$. Функція $f \in "\omega"$ малим від функції g (при $n \to \infty$), якщо для довільного якзавгодно малого значення $\varepsilon \in \mathbb{R}^+$ існує таке натуральне число $n_0(\varepsilon) \in \mathbb{N}^+$, що виконується нерівність $|f(n)| > \varepsilon |g(n)|$ для всіх значень $n > n_0(\varepsilon)$, $n \in \mathbb{N}$.

Функція f є " Θ " від функції g (при $n \to \infty$), якщо існують такі константи $c_1 \in \mathbb{R}^+$ і $c_2 \in \mathbb{R}^+$ та натуральне число $n_0 \in \mathbb{N}$, що виконується нерівність $c_1g(n) \le f(n) \le c_2g(n)$ для всіх значень $n > n_0$, $n \in \mathbb{N}$.

Функція $f \in ``\Omega"$ великим від функції $g \Leftrightarrow \lim_{n \to \infty} \inf \frac{f(n)}{g(n)} > 0$. Функція $f \in ``\omega"$ малим від функції $g \Leftrightarrow \lim_{n \to \infty} \left| \frac{f(n)}{g(n)} \right| = \infty$.

• 1894 р. — введено позначення "О велике" німецьким математиком Паулем Бахманом (англ. Paul Bachmann)

- 1894 р. введено позначення "О велике" німецьким математиком Паулем Бахманом (англ. Paul Bachmann)
- 1909 р. " $\mathcal O$ велике" адаптовано Едмундом Ландау (англ. Edmund Landau), який також ввів позначення "o мале"

- 1894 р. введено позначення "О велике" німецьким математиком Паулем Бахманом (англ. Paul Bachmann)
- 1909 р. " \mathcal{O} велике" адаптовано Едмундом Ландау (англ. Edmund Landau), який також ввів позначення "o мале"
- 1914 р. введено символ Ω (Харді (англ. Hardy) та Літлвуд (англ. Littlewood)), але як заперечення відношення "о мале"

- 1894 р. введено позначення "О велике" німецьким математиком Паулем Бахманом (англ. Paul Bachmann)
- 1909 р. " \mathcal{O} велике" адаптовано Едмундом Ландау (англ. Edmund Landau), який також ввів позначення "o мале"
- 1914 р. введено символ Ω (Харді (англ. Hardy) та Літлвуд (англ. Littlewood)), але як заперечення відношення "о мале"
- 1976 р. Дональд Кнут дає нове означення символу Ω та визначає " ω мале" і Θ

- 1894 р. введено позначення "О велике" німецьким математиком Паулем Бахманом (англ. Paul Bachmann)
- 1909 р. " \mathcal{O} велике" адаптовано Едмундом Ландау (англ. Edmund Landau), який також ввів позначення "o мале"
- 1914 р. введено символ Ω (Харді (англ. Hardy) та Літлвуд (англ. Littlewood)), але як заперечення відношення "о мале"
- 1976 р. Дональд Кнут дає нове означення символу Ω та визначає " ω мале" і Θ
- набір відношень "О велике", "о мале", "Ω велике", "ω мале" і Θ
 нотація Ландау (нотація Ландау-Бахмана) або асимптотична нотація

Асимптотична нотація

$\mathcal{O}(1)$	клас констант
$\mathcal{O}(\log \log n)$	клас двічі логарифмічних функцій
$\mathcal{O}(\log n)$	клас логарифмічних функцій
$\mathcal{O}(\log^c n)$, $c > 1$	клас полілогарифмічних функцій
$\mathcal{O}(n^c)$, $0 < c < 1$	клас функцій кореня
$\mathcal{O}(n)$	клас лінійних функцій
$\mathcal{O}(n\log^* n)$	клас ітеративно логарифмічних функцій
$\mathcal{O}(n \log n)$	клас лінеаритмічних (квазілінійних) функцій
$\mathcal{O}(n^2)$	клас квадратичних функцій
$\mathcal{O}(n^c)$	клас поліноміальних функцій
$L_n[\alpha, c]$, $0 < \alpha < 1$	клас субекспоненціальних функцій
$\mathcal{O}(c^n)$, $c>1$	клас експоненціальних функцій
$\mathcal{O}(n!)$	клас факторіальних функцій

ullet теорія обчислюваності досліджувала функції $\mathbb{N} o \mathbb{N}$

- ullet теорія обчислюваності досліджувала функції $\mathbb{N} o \mathbb{N}$
- теорія складності має побудувати класифікацію задач

- ullet теорія обчислюваності досліджувала функції $\mathbb{N} o \mathbb{N}$
- теорія складності має побудувати класифікацію задач
- модель обчислень машина Тюрінга працює з формальними мовами

- ullet теорія обчислюваності досліджувала функції $\mathbb{N} o \mathbb{N}$
- теорія складності має побудувати класифікацію задач
- модель обчислень машина Тюрінга працює з формальними мовами
- ⇒ схема кодування

- ullet теорія обчислюваності досліджувала функції $\mathbb{N} o \mathbb{N}$
- теорія складності має побудувати класифікацію задач
- модель обчислень машина Тюрінга працює з формальними мовами
- ⇒ схема кодування
- будь-яка масова задача П має скінченне представлення

- ullet теорія обчислюваності досліджувала функції $\mathbb{N} o \mathbb{N}$
- теорія складності має побудувати класифікацію задач
- модель обчислень машина Тюрінга працює з формальними мовами
- ⇒ схема кодування
- будь-яка масова задача П має скінченне представлення
- ullet будь-яка індивідуальна задача $I \in D_\Pi$ будь-якої масової задачі Π має скінченне представлення

- ullet теорія обчислюваності досліджувала функції $\mathbb{N} o \mathbb{N}$
- теорія складності має побудувати класифікацію задач
- модель обчислень машина Тюрінга працює з формальними мовами
- ⇒ схема кодування
- будь-яка масова задача П має скінченне представлення
- ullet будь-яка індивідуальна задача $I \in D_\Pi$ будь-якої масової задачі Π має скінченне представлення
- ullet схема кодування $e:D_\Pi o\Sigma^*$

- ullet теорія обчислюваності досліджувала функції $\mathbb{N} o \mathbb{N}$
- теорія складності має побудувати класифікацію задач
- модель обчислень машина Тюрінга працює з формальними мовами
- будь-яка масова задача П має скінченне представлення
- ullet будь-яка індивідуальна задача $I \in D_\Pi$ будь-якої масової задачі Π має скінченне представлення
- ullet схема кодування $e:D_\Pi o \Sigma^*$
- ullet від будь-якого алфавіту можна перейти до алфавіту $\{0,1\}$ ($e:D_\Pi o \{0,1\}$)

Приклад

Задача пошуку нетривіального дільника натурального числа $9\mapsto 1001$ або $9\mapsto 1111111111$ [log n] vs n

"Розумні" схеми кодування

Схема кодування правильно побудованих слів (ППС)

Алфавіт — $\{0,1,-,[,],(,),,\}$

- множина $\{0,1,-\}$ для запису цілих чисел (всі числа записуються у двійковому вигляді, символ '-' використовують для від'ємних чисел
- $oldsymbol{2}$ якщо $x \Pi\Pi C$, то [x] мітка
- **3** якщо $x_1, \dots, x_n \Pi\Pi C$, то (x_1, \dots, x_n) послідовність

Приклади

- Раціональне число q кодується ППС(x,y), де x та y ППС для двох цілих чисел a і b таких, що $\frac{a}{b}=q$ і НСД(a,b)=1.
- Граф G = (V, E) кодується ППС(x, y), де x, y це ППС, які представляють множини V, E відповідно (елементи E двоелементні підмножини V, які утворюють ребра).

```
L[\Pi,e] називають мовою кодування або мовою, породженою масовою задачею \Pi за допомогою схеми кодування e,\ L\subseteq \Sigma^*. \Sigma — алфавіт схеми кодування e L[\Pi,e]=\{x\in \Sigma^*:x-\ код індивідуальної задачі I\in Y_\Pi при схемі e\}
```

```
L[\Pi,e] називають мовою кодування або мовою, породженою масовою задачею \Pi за допомогою схеми кодування e, L \subseteq \Sigma^*. \Sigma — алфавіт схеми кодування e L[\Pi,e]=\{x\in \Sigma^*: x- \text{ код індивідуальної задачі } I\in Y_\Pi при схемі e\}
```

Всі "розумні" схеми є лінійно (поліноміально) еквівалентними

```
L[\Pi,e] називають мовою кодування або мовою, породженою масовою задачею \Pi за допомогою схеми кодування e, L \subseteq \Sigma^*. \Sigma — алфавіт схеми кодування e L[\Pi,e]=\{x\in \Sigma^*: x- код індивідуальної задачі I\in Y_\Pi при схемі e\}
```

Всі "розумні" схеми є лінійно (поліноміально) еквівалентними

Представлення "будь-якого" математичного об'єкту x над алфавітом $\{0,1\}-\lfloor x \rfloor$ (серіалізація)

 $L[\Pi,e]$ називають **мовою кодування** або мовою, породженою масовою задачею Π за допомогою схеми кодування $e,\ L\subseteq \Sigma^*.$ Σ — алфавіт схеми кодування e $L[\Pi,e]=\{x\in \Sigma^*:x-\$ код індивідуальної задачі $I\in Y_\Pi$ при схемі $e\}$

Всі "розумні" схеми є лінійно (поліноміально) еквівалентними

Представлення "будь-якого" математичного об'єкту x над алфавітом $\{0,1\} - \lfloor x \rfloor$ (серіалізація)

Задача розпізнавання \Leftrightarrow розпізнати мову $L_1 \subseteq \Sigma^*$