HANOI UNIVERSITY

Faculty of Information Technology

FIT329 SYSTEM ANALYSIS & DESIGN FINAL REPORT

Faculty: Information Technology

Module Code: FIT329

Module Name: System Analysis & Design

Year: Fall 2017

Topic: Computer Shop Management System

Group:

Group members: Lurong Thái Dương (1501040042)

Nguyễn Thị Hiền (1501040070)

Trần Hoàng Anh (1501040014)

Class: 4C-15

TABLE OF CONTENTS

3
4
5
6
7
8
11

ABSTRACT

Technological Revolution substantially changed our life. Computers has become more and more important in our work and entertainment. The need of computer is increasing each year. Therefore, a System that helps Computer Shops and customers in sale, management will make it easier to bring those technology products to many people. Computer Shop Management System is a solution for customers ordering PCs, laptops and computer components online as well as management them in store inventory. The goal of our project is to followed the Rational Unified Process (RUP) to capture the business context of the system, collect and specify requirement for the system, analysis the requirements to provide an architectural design solution for the Computer Shop Management System. The Computer Shop Management System is designed to fulfil both functional and non-functional requirements. The results of our works consist of system documentations for three workflows: business modeling, requirements and analysis & design; Unified Modeling Language (UML) model artifacts (using Visual Paradigm); and a runnable prototype of the system.

GROUP ROLES

Members	Roles
Lương Thái Dương (1501040042)	Business Designer, Business Process Analyst
Trần Hoàng Anh (1501040014)	Requirements Specifier
Nguyễn Thị Hiền (1501040070)	Software Architecture, Designer, Database Designer

1. Business Modeling (Luong Thái Dương)

Durong is the business designer and business process analyst. She is responsible for the business architecture. She details the specification of a part of the organization by describing the workflow of one or several business use cases, along with defining the responsibilities, operations, attributes, and relationships of one or several business workers and business entities. She also leads and coordinates business use-case modeling by outlining and delimiting the organization being modeled; for example, establishing what business actors and business use cases exists and how they interact.

2. Requirements Definition (Trần Hoàng Anh)

Hoàng Anh is the requirements specifier. He detailed the specification of a part of the system's functionality by describing the Requirements aspect of one or several use cases and other supporting software requirements. He is also responsible for the use-case package, and maintains the integrity of that package. He detailed the use cases and the supplementary requirements and made them consistent with other requirements discipline artifacts. Besides, he captured requirements on the user interface, including usability requirements.

3. Prototype (Nguyễn Thị Hiền)

Hiền have implemented a prototype to demonstrate the Computer Shop Management System functionality using HTML, CSS & JavaScript (with additional libraries and frameworks such as Bootstrap, jQuery, AngularJS, ...). The prototype is provided a simple Graphical User Interface and have some function of the system specified in requirements definition such as sign-in, display computers, add computers, ...

The prototype is to demonstrate the system functionality; therefore, there are no server-side code and dedicated database yet. Also, in the prototype, models and controllers are putted into a single file. To ease the demonstration, runtime variables are used to store data objects (computers, users, orders, ...) instead of a dedicated database; thus, changes will not be saved permanently.

Account for testing prototype:

Email	Password	Account Type
customer@mail.com	123456	Customer
employee@mail.com	123456	Employee
accountant@mail.com	123456	Accountant

4. Analysis & Design (Nguyễn Thị Hiền)

As a software architecture, Hiền leads and coordinates technical activities and artifacts throughout the project. Her primary responsibility is to establish the overall structure for each architectural view: the decomposition of the view, the grouping of elements. Therefore, she has a breadth view of the system architecture. The table below describes detailed her activities as a software architecture in the Analysis & Design workflow.

Activity	Description	Output Artifacts
Prioritize Use	Define input to the selection of the set	Software Architecture
Cases	of scenarios and use cases that are to be	Document
	analyzed in the current iteration.	
	Define the set of scenarios and use	
	cases that represent some significant,	
	central functionality.	
	Define the set of scenarios and use	
	cases that have a substantial	
	architectural coverage or that stress or	
	illustrate a specific, delicate point of	
	the architecture.	
Architectural	Define a candidate architecture for the	Use-Case Realization,
Analysis	system, based on experience gained	Deployment Model,
	from similar systems or in similar	Software Architecture
	problem domains.	Document, Design
	Define the architectural patterns, key	Model
	mechanisms and modeling conventions	
	for the system.	
	Define the reuse strategy.	
Identify Design	Refine the analysis mechanisms into	Design Model,
Mechanisms	design mechanisms based on the	Software Architecture
	constraints imposed by the	Document
	implementation environment.	

Incorporate	Analyze interactions of analysis classes	Design Model,
Existing Design	to find design classes.	Software Architecture
Elements	Refine the architecture, incorporating	Document
	reuse where possible.	
	Identify common solutions to	
	commonly encountered design	
	problems.	
	Include architecturally significant	
	design model elements in the Logical	
	View section of the Software	
	Architecture Document.	
Describe	Describe how the functionality of the	Software Architecture
Distribution	system is distributed across physical	Document,
	nodes.	Deployment Model
Identify Design	Analyze interactions of analysis classes	Design Model
Elements	to identify design model elements.	

As a designer, Hiền is in charge of defines the responsibilities, operations, attributes, and relationships of several classes, and determines how they will be adjusted to the implementation environment of the Computer Shop Management System. The table below describes detailed his activities as a designer in the Analysis & Design workflow.

Activity	Description	Output
Use-Case	Identify the classes which perform a	Analysis class, Use-
Analysis	use case's flow of events.	Case Realization,
	Distribute the use case behavior to	Design Model,
	those classes, using use-case	Analysis Model
	realizations.	
	Identify the responsibilities, attributes	
	and associations of the classes.	
	Note the usage of architectural	
	mechanisms.	

Use-Case	Refine use-case realizations in terms of	Use-Case Realization
Design	interactions.	
	Refine requirements on the operations	
	of design classes.	
Class Design	Ensure that the class provides the	Design Class
	behavior the use-case realizations	
	require.	
	Ensure that sufficient information is	
	provided to unambiguously implement	
	the class.	
	Handle non-functional requirements	
	related to the class.	
	Incorporate the design mechanisms	
	used by the class.	

As a database designer, Hiền essential obligation is defining the tables, indexes, views, constraints, and other database-specific constructs needed to store, retrieve, and delete persistent objects. The table below describes detailed her activities as a database designer in the Analysis & Design workflow.

Activity	Description	Output
Database	Ensure that persistent data is stored	Data Model
Design	consistently and efficiently.	
	Define behavior that must be	
	implemented in the database.	

5. Conclusion

Based on knowledge acquired from this course (FIT329 SAD) and previous courses, we have designed a management system with requirement match real world business (Computer Shop Management System). In our project, we have modeled business context for the system, capture and describe system requirement using both textual and UML notation. Moreover, we have designed the system using Model-View-Controller models as a foundation; therefore, improve robustness and reusability of system components. Also, a runnable prototype is built based on the requirement to demonstrate system functionality. Nevertheless, there is still room for improvement in project. Because our knowledge base limit and inexperience in System Analysis & Design particularly and Information Technology in general, erroneous in our work are inevitable. Therefore, we will continue improve our knowledge to deliver better product in the future.