Arquitetura de Computadores III

Arquiteturas Manycore e Redes-em-Chip

Processador Fujitsu ARM A64FX

Total de 7.299.072 núcleos.

Processador A64FX <u>48C</u> 2.2GHz

 Arquitetura ARM projetada pela Fujitsu

https://www.r-ccs.riken.jp/en/fugaku/project

Processador Fujitsu ARM A64FX

https://postk-web.r-ccs.riken.jp/spec.html

Arquiteturas Kalray MPPA 256

MPPA-256

https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.3892

Arquitetura Epiphany-V

Epiphany-V

https://www.parallella.org/2016/10/05/epiphany-v-a-1024-core-64-bit-risc-processor/

eturas de Aceieradores

Intel Xeon Phi (Knights Corner)

https://software.intel.com/content/www/us/en/develop/articles/intel-xeon-phi-coprocessor-codename-knights-corner.html

61 núcleos

Arquiteturas de Aceieradores Manycore

Intel Xeon Phi (Knights Landing)

https://software.intel.com/content/www/us/en/develop/articles/intel-xeon-phi-x200-processor-memory-modes-and-cluster-modes-configuration-and-use-cases.html

Arquiteturas de Aceieradores Manycore

Graphics Processing Unit (GPU)

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

Arquiteturas de Aceieradores Manycore

Graphics Processing Unit (GPU)

CPU e GPU integradas

Accelerated Processing Units Ex: Intel Ivy Bridge and Haswell

https://doi.org/10.1109/TPDS.2016.2586074

Revolução Manycore

- GTX 280 (2008) 240 núcleos
- GTX 480 (2010) 480 núcleos
- GTX 690 (2012) 1536 núcleos
- GTX Titan (2014) 2880 núcleos
- GTX Titan (2017) 3840 núcleos
- Titan V (2019) 5120 núcleos

Outros números generosos fazem parte do pacote. Encontramos 5.120 núcleos CUDA divididos em seis clusters, frequência de 1.200 MHz (1.455 MHz em boost), 640 núcleos tensor (usados em aprendizagem de máquina), 320 TMUs (unidades para texturização), além de TDP de 250 W.

https://tecnoblog.net/noticias/2017/12/08/nvidia-gpu-titan-v/

Arquiteturas manycore e reges-emchip

• Em linhas gerais, uma arquitetura manycore aue demanda uma rede-em-chip, possui como característica o propósito geral processamento, principalmente paralelo, com muitas comunicações coletivas. Por este motivo, é necessário ter uma rede capaz de oferecer diversos caminhos de interconexão entre os núcleos, memórias, entre outros dispositivos dentro do chip. Uma arquitetura de GPU não possui esta característica.

 $\underline{https://www.parallella.org/2016/10/05/epiphany-v-a-1024-core-64-bit-risc-processor/}$

Antes do Manycore...

- Processador multi-core:
 - 2 núcleos: barramento
 - 4 núcleos: barramento ou chave crossbar
 - 6 núcleos: barramento ou chave crossbar
 - 8 núcleos: barramento ou chave crossbar
 - 12 núcleos: barramento ou chave crossbar
 - 16 núcleos: barramento ou chave crossbar!?
- 48 núcleos: como interconectar!?

Processador Manycore

• O problema está no fio para interconectar os núcleos!

Processador Manycore

- O problema está no fio para interconectar os núcleos!
 - Problema 1: atenuação do sinal.
 - Perda dos dados.

Processador Manycore

- O problema está no fio para interconectar os núcleos!
 - Problema 2: núcleos distantes não escutam sinal.
 - Colisão e perda de dados.

Se o problema está no fio...

- Vamos eliminar a influência do fio!
 - Rede-em-Chip com fio, mas fio curto!
 - Há também:
 - Rede-em-Chip sem fio!
 - Rede-em-Chip óptica!
 - Rede-em-Chip reconfigurável!

Do Barramento ao roteador

- Evolução da interconexão global para NoC.
 - a) fio longo dominado pela resistência,
 - b) adição de repetidores ou buffers,
 - c) repetidores se tornam latches,
 - d) latches evoluem para roteadores de NoC.

CIDON, I., KOLODNY, A., GINOSAR, R., The Elements of NoC, Tutorial (Slides), ACM/IEEE International Symposium on Networks-on-Chip (NOCS), San Diego, USA, 2009

Rede-em-Chip

- Interconexões não escaláveis:
 - Barramento e Chave Crossbar.
 - Por que?

Qual a principal limitação do barramento?

Imaginem uma chave crossbar 99x99? É viável? Por que?

Rede-em-Chip

- Principais características:
 - Composta por roteadores,
 - Possui pacotes de rede,
 - Trabalha com protocolo de roteamento,
 - Possui diversas topologias,
 - Trabalha com Qualidade-de-Serviço (QoS),
 - É tolerante a falhas,
 - É escalável!

Redes-em-Chip

Tipos de Buffers

- Buffers de entrada: As técnicas de arbitragem são relativamente simples, possui uma melhor relação de área e potência, além de proporcionar um melhor desempenho para a chave crossbar.
- Buffers de saída: Em função de N entradas conectadas a cada um dos buffers de saída, a chave crossbar precisa ser N vezes mais rápida. A adoção de buffers de saída não é a mais adequada para alto desempenho. No entanto, existem vantagens em se tratando da eliminação do bloqueio de pacotes que não receberam permissão de envio porque o primeiro pacote da fila ainda não teve liberação de uma determinada saída. Este problema é conhecido como head of the line blocking e pode acontecer nas soluções com buffers de entrada.

• Buffers de crosspoint: Cada ponto de conexão da chave crossbar possui um buffer. É utilizada a técnica de roteamento chamada de self-routing. Neste caso, em cada crosspoint seria necessário além do buffer um decodificador para decisão de envio ou não do pacote. Esta solução aumenta o tamanho e a potência consumida da chave crossbar.

Preocupações no projeto de NoC

- Deadlock: é a representação de uma dependência cíclica. Neste caso, um pacote não consegue progredir e fica restrito a um subconjunto de estados ou roteadores.
- Livelock: é a representação de uma contínua retransmissão do pacote sem atingir o nó destino. Comum em protocolos de roteamento.
- Starvation: é a representação da não alocação de um recurso devido a postergação indefinida de acesso ao mesmo. Comum em protocolos de arbitragem.

Redes-em-Chip (topologias)

FREITAS, H. C.; SANTOS, T. G. S.; NAVAUX, P. O. A. NoC Architecture Design for Multi-Cluster Chips, IEEE International Conference on Field Programmable Logic and Applications, FPL, Heidelberg, p. 53-58. 2008

- (a) Estrela
- (b) Árvore
- (c) Mesh

- (d) Torus
- (e) Hipercubo
- (f) Pipeline

Redes-em-Chip (Classificações)

DE ROSE, C., NAVAUX, P. O. A., Arquiteturas Paralelas, [S.I.], Sagra Luzzatto, 2003

Redes Dinâmicas (multi-nível)

Um único caminho entre entrada e saída faz com que o roteamento seja eficiente, podendo ser feito de forma descentralizada.

Freitas, Alves, Navaux, NoC e NUCA: Conceitos e Tendências para Arquiteturas de Processadores Many-Core, Escola Regional de Alto Desempenho (ERAD), Cap.3, 2009

Redes Dinâmicas (multi-nível)

Redes Dinâmicas (multi-nível)

Redes Dinâmicas (multi-nível bloqueante)

Redes-em-Chip (Classificações)

Topologia	Estratégia de Transferência	Método de Controle	Estrutura do Caminho
Estrela	Indireta	Roteamento centralizado	Dedicado
Årvore	Indireta	Roteamento Descentralizado	Dedicado
Mesh	Direta	Roteamento Descentralizado	Dedicado
Torus	Direta	Roteamento Descentralizado	Dedicado
Hipercubo	Direta	Roteamento Descentralizado	Dedicado
Pipeline	Direta	Roteamento Descentralizado	Dedicado

Adaptado de:

AHMADI, H., DENZEL, W. E., A Survey of Modern High-Performance Switching Technique, IEEE Journal on Selected Areas in Communications, v.7, n.7, p.1091-1103, September 1989.

ANDERSON, G. A., JENSEN, E. D., Computer Interconnection Structures: Taxonomy, Characteristics, and Examples, ACM Computing Surveys, v.7, n.4, p.197-213, December 1975.

DUATO, J., YALAMANCHILI, S., NI, L., Interconnection Networks, [S.I.], Morgan Kaufmann, 2002.

Viabilidade das NoCs

Tipo de			
Interconexão		2100 (1) C COMMINS (1)	
Barramento		O aumento do fio aumenta a resistência degradando o desempenho.	-
Chave Crossbar	Fio.	O aumento do fio aumenta a resistência degradando o desempenho.	-
Network-on-Chip	Ŧ	Os fíos são ponto-a-ponto entre roteadores e o desempenho não degrada em função do aumento de nós.	+
Barramento		O árbitro é um gargalo à medida que o número de nós aumenta.	-
Chave Crossbar	Árbitro	O árbitro pode ser centralizado ou descentralizado e não é o fator principal para degradação do desempenho em função do aumento dos nós.	+-
Network-on-Chip		As decisões de roteamento são distribuídas e não representam um gargalo.	+
Barramento	0	A largura de banda é limitada e compartilhada por todos os nós.	-
Chave Crossbar	Largura de banda	Cada interconexão é independente e a largura de banda de comunicação por conexão não é afetada pelas demais.	+
Network-on-Chip	Ι	A largura de banda não é afetada pelo aumento da rede.	+
Barramento	cia	Latência é afetada pelo fio.	+
Chave Crossbar	Latência	Latência é afetada pelo fio.	+
Network-on-Chip	Ľ	Latência é afetada pelas contenções em roteadores	-
Barramento	dade	Em sua maioria são compatíveis com qualquer IP (Intelectual Property) incluindo os softwares.	+
Chave Crossbar	Compatibilidade	Em sua maioria são compatíveis com qualquer IP (Intelectual Property) incluindo os softwares.	+
Network-on-Chip	Con	São necessários adaptadores (wrappers) entre os IPs e os softwares precisam de sincronização em sistemas multi-core.	-
Barramento	dade	Conceitos simples e bem compreendidos.	+
Chave Crossbar	Complexi dade	Conceitos simples e bem compreendidos.	+
Network-on-Chip	S	Projetistas precisam de uma reeducação em função dos novos conceitos.	-

Adaptado de Bjerregaard, A Survey of Research and Practices of Network-on-Chip, ACM Computing Surveys 2006

Protocolos

- Políticas e estratégias de transporte de dados em uma NoC é de responsabilidade dos protocolos.
- A definição do protocolo descreve as principais características de funcionamento da rede.
- Os protocolos precisam ser capazes de:
 - Garantir a entrega de dados.
 - Confiabilidade da rede.
 - A melhor rota.
 - Melhor desempenho, entre outros.

Research Manycore Chip

https://www.legitreviews.com/an-overview-of-intels-teraflops-research-chip 460

Research Manycore Chip

https://www.youtube.com/watch?v=TAKGOUvtzpE https://www.youtube.com/watch?v=We PRtRfiNs

Research Manycore Chip

https://www.youtube.com/watch?v=TAKGOUvtzpE https://www.youtube.com/watch?v=We_PRtRfiNs

Por que a Intel estuda dois tipos de topologias?

Processadores manycore - cache compartilhada

