1. Use a truth table to decide if $P \Rightarrow \neg Q$ and $\neg P \lor \neg Q$ are logically equivalent.

PQ	70	7P	P⇒¬Q	TPV7Q
TFTF	FTFT	FTT	FTT m	FTTT atch!

The two expressions are logically equivalent.

Name: Richard Quiz $6 \diamondsuit$ MATH 211 February 7, 2023

1. Use a truth table to decide if $P \vee Q$ and $(P \wedge Q) \vee (P \wedge \neg Q)$ are logically equivalent.

PQ	170	PNQ	PATQ	PVQ	(PAQ)V(PATQ)
T T F F F F	FTFT	TFFF	FTFF	TTTE	ont match!

The two expressions are not logically equivalent.

1. Use a truth table to decide if $\neg P \lor Q$ and $\neg Q \Rightarrow \neg P$ are logically equivalent.

P	Q	70	7P	7PVQ	7Q ⇒7P
T	T	1	下	(T)	
T	F	1 7	F	F /	F
F	T	F	T		
	F	T	1		T

The two expressions are logically equivalent

Name: Richard Quiz $6 \, \%$ MATH 211 February 7, 2023

1. Use a truth table to decide if $\neg P \land (P \Rightarrow Q)$ and $\neg (Q \Rightarrow P)$ are logically equivalent.

PQ	7 P	$P \Rightarrow Q$	$Q \Rightarrow P$	TPN(P=)Q)	$\frac{1}{2}(Q \Rightarrow P)$
ナートトト	FFTT	T F T	T T F T	FFTT	F F T F T F

The two expressions are not logically equivalent