Math 334 Homework 6

Alexandre Lipson

November 13, 2024

We will prove

Theorem. Suppose $f : [a, b] \longrightarrow \mathbb{R}$ bounded, continuous on $[a, b] \setminus D$, where D has (Lebesgue) measure zero, then f is (Reimann) itegrable.

Definition. The oscillation of f at x is

$$\operatorname{osc}(f, x) = \lim_{\delta \to 0^+} \sup\{|f(y) - f(z)| \mid y, z \in B_{\delta}(x)\}.$$

Let
$$D_s = \{x \in [a, b] \mid \operatorname{osc}(f, x) \geq s\}$$
.
Let $D = \{x \in [a, b] \mid f \text{ discontinuous at } x\}$.
Let $m = \inf f$ and $M = \sup f$.

Problem (1). Show that if S has measure zero, then any subset of S also has measure zero.

Proof. Since S has measure zero, then $\forall \delta > 0$, S has a cover $C \subset \bigcup_{i=1}^{\infty} B_{r_i}(x_i)$ with $\sum_{i=1}^{\infty} r_i < \delta$. Then, any subset can use the same cover, giving such a subset measure zero as well.

Problem (2).

- (a) Show $D = \bigcup_{s>0} D_s$
- (b) Prove D_s closed and bounded for s > 0, and therefore compact.

Proof of a. First, we will show that $\operatorname{osc}(f,x)=0 \implies f$ is continuous. So, with the given definition of oscillation, with $0<\delta\to 0$ and $\forall \epsilon>0$, then $|y-z|<\delta \implies |f(y)-f(z)|=0<\epsilon$. So f is uniformly continuous and therefore continuous on D_0 .

However, for s > 0 and some $\epsilon > 0$, we have that $\operatorname{osc}(f, x) \ge s > \epsilon$, so f is discontinuous on D_s . Since D contains all x for which f is discontinuous, it must contain D_s for all s, which is $\bigcup_{s>0} D_s$.

Proof of b. Since D_s is a subset of the bounded set [a,b], then D_s is bounded as well.

We will now consider the sets $T_{\delta} = \{x \mid \exists y, z \in B_{\delta}(x) \land |f(y) - f(z)| \geq s\}$ such that $\bigcap_{\delta > 0} T_{\delta} = D_s$. Then, for any convergent sequence $\{x_n\} \subset \bigcap_{\delta > 0} T_{\delta}$ with $x_n \to x$, we will show that x belongs in the intersection as well.

Suppose $\forall \delta > 0$ and $\{x_n\} \subset T_{\delta}$, then, even if $x \notin K_{\delta}$, we will have $x \in T_{2\delta}$. But, $T_{2\delta} \subset \bigcap_{\delta > 0} T_{\delta}$. So, x must belong to the intersection $\bigcap_{\delta > 0} T_{\delta}$ whenever $x_n \to x$ and $\{x_n\}$ is a subset of the intersection as well. So, $D_s = \bigcap_{\delta > 0} T_{\delta}$ contains all of its limit points and is therefore closed.

Since D_s closed and bounded, it is also compact.

Problem (3). Let $\epsilon > 0$ and assume D has zero content.

- (a) Prove that there is a finite set of open intervals $\{I_i\}_{i=1}^L$ which satisfy $D_{\epsilon} \subset \bigcup_{i=1}^L I_i$ and $\sum_{i=1}^L \operatorname{len}(I_i) < \epsilon$.
- (b) Show that, for any partition P of I_i , then $\sum_{i=1}^{L} (U_P^{I_i} f L_P^{I_i} f) < (M-m)\epsilon$.

Proof of a. Since D_{ϵ} compact by (2b), then it admits a finite subcover $\bigcup_{i=1}^{L} I_{i}$. Since D has zero content, then it has a finite cover C with $C \subset \bigcup_{i=1}^{\infty} B_{r_{i}}(x_{i}) \wedge \sum_{i=1}^{\infty} r_{i} < \epsilon$. Since these balls are in \mathbb{R} , then they are open intervals. So, set $\operatorname{len}(I_{i}) = 2r_{i}$. Then, $\sum_{i=1}^{L} \operatorname{len}(I_{i}) < \frac{\epsilon}{2} < \epsilon$.

Proof of b. By definition, we have

$$L_P^{I_i} f = \sum_j m_j (x_j - x_{j-1})$$
 and $U_P^{I_i} f = \sum_j M_j (x_j - x_{j-1}).$

where $m_i = \inf_{[x_{j-1}, x_j]} f(x)$ and $M_i = \sup_{[x_{j-1}, x_j]} f(x)$.

Since P partitioned I_i , then by (3a),

$$\sum_{i=1}^{L} \sum_{j} (x_j - x_{j-1}) = \sum_{i=1}^{L} \operatorname{len}(I_i) < \epsilon.$$

Since P partitions I_i which covers [a, b], then the upper and lower sums will be bounded by the infimum and supremum of f,

$$m \sum_{i=1}^{L} \operatorname{len}(I_i) \le \sum_{i=1}^{L} L_P^{I_i} f \le \sum_{i=1}^{L} U_P^{I_i} f \le M \sum_{i=1}^{L} \operatorname{len}(I_i).$$

So

$$\sum_{i=1}^{L} (U_P^{I_i} f - L_P^{I_i} f) = (M - m) \sum_{i=1}^{L} \operatorname{len}(I_i) < (M - m)\epsilon.$$

Problem (4). Let $\epsilon > 0$. Let $I = \bigcup_{i=1}^{L} I_i$. Let $K = [a, b] \setminus I$.

Alexandre Lipson November 13, 2024

- (a) Show K closed and bounded, and therefore compact.
- (b) Show $\forall x \in K, \exists \delta_x > 0, y, z \in B_{\delta_x}(x) \implies |f(y) f(z)| < 2\epsilon$.
- (c) The intervals $J_x = (x \delta_x, x + \delta_x)$ form an open cover of K.
 - (i) Show $\exists x_i, \forall i \in [1, N]$ with $J_i = J_{x_i}$, then $K \subset \bigcup_{i=1}^N J_i$.
 - (ii) Show $\forall P$ partition of $J \subset J_i \implies U_P^J f L_P^J f < 2\epsilon \operatorname{len}(J)$

Proof of a. Since $K \subset [a, b]$ bounded, then K bounded. Since each I_i open, then the finite union I is also open. Since a closed set minus an open set is open, and [a, b] closed with I open, then K is closed. Since K is closed and bounded, then it is also compact.

Proof of b. Since I covered D_{ϵ} by (3a), then $K \cap D_{\epsilon} = \emptyset$. So $K \subset D_0$. Since $\forall x \in D_0$, f is uniformly continuous by (2a), then $\forall x \in K$, f must be uniformly continuous as well. Since f uniformly continuous on a, then the statement holds.

Proof of c. Since K compact, then it admits a finite subcover $\bigcup_{i=1}^{N} J_i$.

First, we have that $U_P^J f - L_P^J f = \sum_j (M_j - m_j)(x_j - x_{j-1})$ with m_j, M_j the infimum and supremum of the partitioned intervals respectively. So, $\sum_j (x_j - x_{j-1}) = \text{len}(J)$

Then, by (4b), $\forall \epsilon > 0$, $\exists \delta_x > 0$, $\forall x \in K$, $\forall y, z \in B_{\delta_x}(x) \implies |f(y) - f(z)| < \epsilon$. So

$$\sup_{x \in J} f(x) - \inf_{x \in J} f(x) < \epsilon.$$

So, $U_P^J f - L_P^J f < \epsilon \operatorname{len}(J)$.

Problem (5). Let $\epsilon > 0$. Note that I_i and J_i form a finite open cover of [a, b]. Let E be the set of all endpoints of I_i and J_i .

- (a) Show $\exists P$ partition of [a, b] such that $\forall [x_{j-1}, x_j]$ in P is completely contained in some I_i or J_i .
- (b) Using (3) and (4), show $U_P f L_P f \leq C\epsilon$ where C = (b-a)(2+(M-m)).
- (c) Conclude f Reimann integrable.

Proof of a. First, we will consider E. But, we cannot use E alone to form P because the intervals between the endpoints of E may not be contained by the open sets I_i or J_i . So, for $x \in E$, $a, b \neq x$, we can construct a closed interval around $x \in [a_x, b_x]$, such that two closed intervals $[a_0, x], [x, b_0]$ which shared the endpoint x now become three closed intervals with a_x, b_x as shared boundary points.

Since x was an endpoint of either I_i or J_i , then $[a_0, a_x]$ and $[b_x, b_0]$ must be fully contained by I_i or J_i . Then, $[a_x, b_x]$ will be contained in both, thus satisfying the containment condition.

Perform this procedure for all such $x \in E$ to arrive at P.

Proof of b. From (3b) we have that $\sum_{i=1}^{L} (U_P^{I_i} f - L_P^{I_i} f) < (M-m)\epsilon$, and, from (4c), $U_P^J f - L_P^J f < (M-m)\epsilon$

Alexandre Lipson November 13, 2024

 $2\epsilon \operatorname{len}(J)$. But, J could not be longer than b-a, so (4c) becomes $U_P^J f - L_P^J f < 2(b-a)\epsilon$. Then, with the partition P from (5a), all subintervals belong in either the partitions for I_i or J. So, P must be bounded above by the sum of the two other partition bounds,

$$U_P f - L_P f \le (2(b-a) + (M-m))\epsilon = C\epsilon.$$

Proof of c. Since $\exists P, \forall \epsilon > 0, U_P f - L_P f < C \epsilon$, then f is Reimann integrable by Lemma 4.5. \Box