kd education academy (9582701166)

Time: 6 Hour

STD 11 Maths kd 90+ ch- 10 conic sections basic to jee

[10]

Total Marks: 304

* Match the following.

1.	Part (A)	Part (B)
	1. The length of latus rectum of parabola $x^2=4ay$	(a) 2 <i>a</i>
	2. The length of major axis of ellipse $rac{x^2}{a^2}+rac{y^2}{b^2}=1, a>b$	(b) $(\pm a,0)$
	3. The coordinates of vertex of hyperbola $rac{x^2}{a^2} - rac{y^2}{b^2} = 1$	(c) $y=b/e, y=-b/e$
	4. The equation of directrix of ellipse $rac{x^2}{a^2} + rac{y^2}{b^2} = 1, a < b$	(d) $(-a,0)$
	5. The coordinates of focus of parabola $y^2 = -4ax$	(e) 4a

2.	Part (A)	Part (B)
	1. The coordinates of focus of hyperbola $rac{x^2}{a^2} - rac{y^2}{b^2} = -1$	(a) $(-g,-f)$
	2. The equation of major axis of ellipse $rac{x^2}{a^2} + rac{y^2}{b^2} = 1, a > b$	(b) $(0,\pm be)$
	3. The length of latus rectum of hyperbola $rac{x^2}{a^2} - rac{y^2}{b^2} = -1$	(c) $y=0$
	4. The coordinates of centre of circle $x^2+y^2+2gx+2fy+c=0$	(d) 2b
	5. The length of major axis of ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1, a < b$	(e) $\frac{2a^2}{b}$

* Choose the right answer from the given options. [1 Marks Each]

[148]

3. If the equation $\frac{\lambda(x+1)^2}{3} + \frac{(y+2)^2}{4} = 1$ represents a circle then λ :

(B)
$$\frac{3}{4}$$

(D)
$$-\frac{3}{4}$$

4. The length of the latus-rectum of the parabola x^2 - 4x - 8y + 12 = 0 is

5. If the circles $x^2 + y^2 = a$ and $x^2 + y^2 - 6x - 8y + 9 = 0$, touch externally, then a =

(A) 1

6. Choose the correct answer.

The distance between the foci of a hyperbola is 16 and its eccentricity is 2. Its equation is:

(A)
$$x^2 - y^2 = 32$$

(B)
$$\frac{x^2}{4} - \frac{y^2}{9} = 1$$

(C)
$$2x - 3y^2 = 7$$

7. If the circles $x^2 + y^2 + 2ax + c = 0$ and $x^2 + y^2 + 2by + c = 0$ touch each other, then:

(A)
$$\frac{1}{a^2} + \frac{1}{b^2} = \frac{1}{c}$$
 (B) $\frac{1}{a^2} + \frac{1}{b^2} = \frac{1}{c}$ (C) $a + b = 2c$

(B)
$$\frac{1}{a^2} + \frac{1}{b^2} = \frac{1}{c}$$

(C)
$$a + b = 2c$$

(D)
$$\frac{1}{a} + \frac{1}{b} = \frac{2}{c}$$

8. The center of the circle $4x^2 + 4y^2 - 8x + 12y - 25 = 0$ is:

	$ m x = \sqrt{25 - y^2}$ and y-axis, then $ m \lambda$ belongs to the interval:				
	(A) $(-1, 3)$		(B) $(-4, 3)$		
	(C) $(-\infty, -4) \cup (3, \infty)$		(D) None of these		
10.	The equation $x^2 + y^2$ -	2x + 4y + 5 = 0 represe	ents:		
	(A) A point		(B) A pair of straight l	ines	
	(C) A circle of non zer	o radius	(D) None of these		
11.	The radius of the circles:	cle represented by the	e equation $3x^2 + 3y^2 + ($	$(\lambda - 6)y + 3 = 0$	
	(A) $\frac{3}{2}$	(B) $\frac{\sqrt{17}}{2}$	(C) $\frac{2}{3}$	(D) None of these	
12.	If the circle $x^2 + y^2 + 2$	2ax + 8y + 16 = 0 touch	es x-axis, then the value	e of a is:	
	(A) ±16	(B) ±4	(C) ±8	(D) ±1	
13.	If $2\mathrm{x}^2 + \lambda\mathrm{x}\mathrm{y} + 2\mathrm{y}^2(\lambda - 4$	$(\mathbf{x} + 6\mathbf{y} - 5 = 0)$ is the eq	quation of a circle, ther	its radius is:	
	(A) $3\sqrt{2}$	(B) $2\sqrt{3}$	(C) $2\sqrt{2}$	(D) None of these	
14.	the origin is:		$x^2 - 2x + 4y = 0$ which p	asses through	
	(A) $x + 2y = 0$	(B) $x - 2y = 0$	(C) $2x + y = 0$	(D) $2x - y = 0$	
15.	Determine the area e	nclosed by the curve x	2 - 10x + 4y + y^2 = 196:		
	(A) 15π	(B) 225π	(C) 20π	(D) 17π	
16.	Choose the correct ar The area of the circle		passing through (4, 6) is	5:	
	(A) 5π	(B) 10π	(C) 25π	(D) none of these.	
17.	on y-axis, is:		oot of the perpendicu	lar from (5, 4)	
	(A) $x^2 + y^2 - 8x - 15 = 0$		(B) $x^2 + y^2 - 10x + 24 =$	0	
	(C) $x^2 + y^2 - 8y + 15 =$		(D) $x^2 + y^2 + 2y = 0$		
18.			$9\mathrm{x}^2+16\mathrm{y}^2=144$ from t	the point (2, 3)	
	(A) $y = 3, x = 5$	(B) $x = 2$, $y = 3$	(C) $x = 3$, $y = 2$	(D) $x + y = 5$, $y = 3$	
19.	If the focus of a parathen its vertex is	abola is (-2, 1) and the	directrix has the equa	ation $x + y = 3$,	
	(A) (0,3)	(B) $\left(-1, \frac{1}{2}\right)$	(C) $(-1,2)$	(D) $(2,-1)$	

(B) (-2, 3)

9. If the point $(\lambda,\,\lambda+1)$ lies inside the region bounded by the curve

(A) (2, -3)

(C) (-4, 6)

(D) (4, -6)

	to:			·
	(A) 15	(B) -15	(C) 16	(D) -16
21.	If the parabola $y^2 = 4$ latusrectum is:	ax passes through the	e point (3, 2), then the	e length of its
	(A) $\frac{2}{3}$	(B) $\frac{4}{3}$	(C) $\frac{1}{3}$	(D) 4
22.	The vertex of the para	abola x ² + 8x + 12y + 4 =	= 0 is	
		(B) (4, -1)	(C) (-4, -1)	(D) (4, 1)
23.	The focus of the para	bola $y = 2x^2 + x$ is		
	(A) (0,0)	(B) $\left(\frac{1}{2}, \frac{1}{4}\right)$	(C) $\left(-\frac{1}{4},0\right)$	(D) $\left(-\frac{1}{4},\frac{1}{8}\right)$
24.	If the circle $x^2 + y^2 = 9$	passesthrough (2, c) t	hen c is equal to:	
	(A) $\sqrt{5}$	(B) $\sqrt{6}$	(C) $\sqrt{3}$	(D) $\sqrt{7}$
25.	The coordinates of th	e focus of the parabola	$x^2 - x - 2y + 2 = 0$ are	
	(A) $\left(\frac{5}{4},1\right)$	(B) $\left(\frac{1}{4},0\right)$	(C) (1,1)	(D) None of these
26.	If V and S are respect 0, then SV =	ively the vertex and foo	cus of the parabola y ² -	+ 6y + 2x + 5 =
	(A) 2	(B) $\frac{1}{2}$	(C) 1	(D) None of these
27.	If the point (2, k) lies then klies in the interv	outside the circles x ² + val:	- y ² + x - 2y - 14 = 0 an	$d x^2 + y^2 = 13$
	(A) $(-3, \ -2)$ $\cup (3, \ 4)$	(B) -3, 4	(C) $(-\infty, -3)$ $\cup (4, \infty)$	(D) $(-\infty,\ -2)$ $\cup (3,\infty)$
28.	The equation of the	circle which touches th	ne axes of coordinates	and the line
	$\frac{x}{3} + \frac{y}{4} = 1$ and whose 0, where c is equal to:	centres lie in the first o	quadrant is x ² + y ² – 20	$cx - 2cy + c^2 =$
	(A) 4	(B) 2	(C) 3	(D) 6
29.	The equation of the equation $x + y = 3a$, is	parabola whose vertex	x is (a, 0) and the dire	ectrix has the
	(A) $x^2 + y^2 + 2xy + 6ax$			
	(B) $x^2 - 2xy + y^2 + 6ax$	$x + 10ay - 7a^2 = 0$		
	(C) $x^2 - 2xy + y^2 - 6ax$	+ 10ay - 7a ² = 0		
	(D) None of these			
30.	The eccentricity of the	e conic $9x^2 + 25y^2 = 225$	is:	

20. If the circles $x^2 + y^2 = 9$ and $x^2 + y^2 + 8y + c = 0$ touch each other, then c is equal

	(A) $\frac{2}{5}$	(B) $\frac{4}{5}$	(C) $\frac{1}{3}$	(D) $\frac{1}{5}$
31.	The equation of the ci	rcle passing through (3, 6) and whose centre	is (2, -1) is:
	(A) $x^2 + y^2 - 4x + 2y = 4$	1 5	(B) $x^2 + y^2 - 4x - 2y + 45$	5 = 0
	(C) $x^2 + y^2 + 4x - 2y = 4$	1 5	(D) $x^2 + y^2 - 4x + 2y + 4$	5 = 0
32.	The circle $x^2 + y^2 - 3x -$	4y + 2 = 0 cuts x-axis:		
	(A) (2, 0), (-3, 0)	(B) (3, 0), (4, 0)	(C) (1, 0), (-1, 0)	(D) (1, 0), (2, 0)
33.	The equation of the in 6 is:	circle formed by the c	oordinate axes and the	line 4x + 3y =
	(A) $x^2 + y^2 - 6x - 6y + 9$	= 0	(B) $4(x^2 + y^2 - x - y) + 1$	I = 0
	(C) $4(x^2 + y^2 + x + y) +$	- 1 = 0	(D) None of these	
34.	Find the equation of the Centered at (3, -2) with			
	(A) $x^2 + y^2 + 6x - 4y = 3$	3	(B) $x^2 + y^2 - 6x + 4y = 3$	
	(C) $x^2 + y^2 - 3x + 2y = -$	3	(D) $x^2 + y^2 + 3x - 2y = -3$	3
35.	The eccentricity of the length of the latus-rec		ce between the foci is	equal to the
	(A) $\frac{\sqrt{5}-1}{2}$	(B) $\frac{\sqrt{5}+1}{2}$	(C) $\frac{\sqrt{5}-1}{4}$	(D) none of these
36.	Choose the correct an	swer.		
	The length of the latus	s rectum of the ellipse	$3x^2 + y^2 = 12$ is:	
	(A) 4	(B) 3	(C) 8	(D) $\frac{4}{\sqrt{3}}$
37.	Find the area of $x^2 + y$	² = 49:		
	(A) 154	(B) 49	(C) 88	(D) None
38.	The equation of the co	onic $9x^2 - 16y^2 = 144$ is		
	(A) $\frac{5}{4}$	(B) $\frac{4}{3}$	(C) $\frac{4}{5}$	(D) $\sqrt{7}$
39.	The length of latus red	ctum of the parabola ($(x - 2a)^2 + y^2 = x^2$ is:	
	(A) 2a	(B) 3a	(C) 6a	(D) 4a
40.	The locus of a planet	orbiting around the su	n is:	
	(A) A circle	(B) A straight line	(C) A semicircle	(D) An ellipse
41.	The diameter of a circ	le described by 9x ² + 9	$y^2 = 16 \text{ is:}$	
	(A) $\frac{16}{9}$	(B) $\frac{4}{3}$	(C) 4	(D) $\frac{8}{3}$
42.	The equation of the cilength 6 and 8 from the		the origin which cuts o	ff intercept of

(A)
$$x^2 + y^2 - 12x - 16y = 0$$

(B)
$$x^2 + y^2 + 12x + 16y = 0$$

(C)
$$x^2 + y^2 + 6x + 8y = 0$$

(D)
$$x^2 + y^2 - 6x - 8y = 0$$

43. If the length of the tangent from the origin to the circle centered at (2, 3) is 2 then the equation of the circle is:

(A)
$$(x + 2)^2 + (y - 3)^2 = 3^2$$

(B)
$$(x-2)^2 + (y+3)^2 = 3^2$$

(C)
$$(x-2)^2 + (y-3)^2 = 3^2$$

(D)
$$(x + 2)^2 + (y + 3)^2 = 3^2$$

44. The equation of the circle drawn with the two foci of $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ end-point of a diameter is

(A)
$$x^2 + y^2 = a^2 + b^2$$
 (B) $x^2 + y^2 = a^2$ (C) $x^2 + y^2 = 2a^2$

(B)
$$x^2 + y^2 = a^2$$

(C)
$$x^2 + y^2 = 2a^2$$

(D)
$$x^2 + y^2 = a^2 - b^2$$

45. Find the Center of circle $x^2 + y^2 - 4x - 8x + 25 = 0$:

46. The equation $16x^2 + y^2 + 8xy - 74x - 78y + 212 = 0$ represents

(D) A hyperbola

^{47.} If the parabola $y^2 = 4ax$ passes through the point (3, 2), then the length of its latusrectum is:

(A)
$$\frac{2}{3}$$

(B)
$$\frac{4}{3}$$

(C)
$$\frac{1}{3}$$

48. If the equation $(4a - 3) x^2 + ay^2 + 6x - 2y + 2 = 0$ represents a circle, then its centre is:

- (3, -1)a.
- (3, 1)b.
- C. (-3, 1)
- None of these d.

49. The radius of the circle represented by the equation $3x^2+3y^2+(\lambda-6)y+3=0$ is:

- c.
- None of these

50. If $2x^2 + \lambda xy + 2y^2(\lambda - 4)x + 6y - 5 = 0$ is the equation of a circle, then its radius is:

- $3\sqrt{2}$ a.
- $2\sqrt{3}$ b.
- $2\sqrt{2}$ c.
- None of these d.

- 51. The number of integral values of λ for which the equation $x^2+y^2+\lambda+(1-\lambda)y+5=0$ is the equation of a circle whose radius cannot exceed 5, is:
 - a. 14
 - b. 18
 - c. 16
 - d. None of these
- 52. If the centroid of an equilateral triangle is (1, 1) and its one vertex is (-1, 2), then the equation of its circumcircle is:
 - a. $x^2 + y^2 2x 2y 3 = 0$
 - b. $x^2 + y^2 + 2x 2y 3 = 0$
 - c. $x^2 + y^2 + 2x + 2y 3 = 0$
 - d. None of these
- 53. The vertex of the parabola $(y + a)^2 = 8a (x a)$ is
 - a. (-a, -a)
 - b. (a, -a)
 - c. (-a, a)
 - d. None of these
- 54. The equation of the parabola whose vertex is (a, 0) and the directrix has the equation x + y = 3a, is
 - a. $x^2 + y^2 + 2xy + 6ax + 10ay + 7a^2 = 0$
 - b. $x^2 2xy + y^2 + 6ax + 10ay 7a^2 = 0$
 - c. $x^2 2xy + y^2 6ax + 10ay 7a^2 = 0$
 - d. None of these
- 55. The eccentricity of the conic $9x^2 + 25y^2 = 225$ is:
 - a. $\frac{2}{5}$
 - b. $\frac{4}{5}$
 - c. $\frac{1}{3}$
 - d. $\frac{1}{5}$
 - e. $\frac{3}{5}$
- 56. The eccentricity of the ellipse, if the distance between the foci is equal to the length of the latus-rectum, is:
 - a. $\frac{\sqrt{5}-1}{2}$
 - b. $\frac{\sqrt{5}+1}{2}$
 - c. $\frac{\sqrt{5}-1}{4}$
 - d. none of these

	a.	ae			
	b.	2ae			
	С.	ae ²			
	d.	2ae ²			
58.	A poir	nt moves in a	plane so that its	distances PA and PE	3 from two fixed
	points	A and B in the	plane satisfy the rela	ation PA – PB = k (k =	0), then the locus
	of P is				
	a. '	A hyperbola.			
	b.	A branch of th	ne nyperbola.		
	c. d.	A parabola. An ellipse.			
59.		-		2 2 50 /5	
55.	II CIIC V			2 sec $^2\alpha$ = 5 is $\sqrt{3}$ time	es the eccentricity
		-	$\alpha + y^2 = 25$, then $\alpha =$		
	a. b.	$\frac{\pi}{6}$ π			
	о. С.	$\frac{\pi}{4}$ $\frac{\pi}{3}$			
	d.	$\frac{3}{\frac{\pi}{2}}$		441	
60.	The dis	2	the directrices of th	he hyperbola $\mathrm{x} = 8\sec{ heta}$	v,v=8. is
	a.	$8\sqrt{2}$, J1	70
	b.	$16\sqrt{2}$			
	c.	$4\sqrt{2}$			
	d.	$6\sqrt{2}$			
61.	If the	tangent to the	circle $x^2+y^2=r^2$ at	t the point (a,b) mee	ts the coordinate
				igin, then the area of	
	is	•			_
	(A) $\frac{r^4}{2ab}$		(B) $\frac{r^4}{ab}$	(C) $rac{r^2}{2ab}$	(D) $\frac{r^2}{ab}$
62.	If the	line $3x+4y-1$	=0 touches the circl	le $(x-1)^2 + (y-2)^2 = x^2$	r^2 , then the value
	of r wi		\		
	(A) 2		(B) 5	(C) $\frac{12}{5}$	(D) $\frac{2}{5}$
63.	If $\frac{x}{\alpha}$ +	$rac{y}{eta}=1$ touches t	the circle $x^2+y^2=a^2$, then point $(1/lpha,1/eta)$	lies on a/an
	(A) Str	aight line	(B) Circle	(C) Parabola	(D) Ellipse
64.	The le	ngth of the tan	igent from the point	$(4,5)$ to the circle x^2	$+y^2 + 2x - 6y = 6$
	is				
	(A) $\sqrt{1}$	$\overline{3}$	(B) $\sqrt{38}$	(C) $2\sqrt{2}$	(D) $2\sqrt{13}$
					Dog

57. The difference between the lengths of the major axis and the latus-rectum of an

ellipse is

67.	The gradient of the	e tangent line at the	e point $(a\cos lpha, a\sin lpha)$	lpha) to the circle
	$x^2+y^2=a^2$, is			0
	(A) $\tan \alpha$	(B) $\tan(\pi - \alpha)$	(C) $\cot \alpha$	(D) $-\cot \alpha$
68.	y-x+3=0 is the eq	uation of normal at ($3+\frac{3}{\sqrt{2}},\frac{3}{\sqrt{2}}$) to which	n of the following
	circles		V2 V2)	
	(A) $\left(x-3-\frac{3}{\sqrt{2}}\right)^2+\left(y-3-\frac{3}{\sqrt{2}}\right)^2$	$y - \frac{\sqrt{3}}{2} \Big)^2 = 9$	(B) $\left(x-3-rac{3}{\sqrt{2}} ight)^2+$	$-y^2=6$
	(C) $(x-3)^2 + y^2 = 9$		(D) $(x-3)^2 + (y-3)^2$	$)^{2} = 9$
69.	Which of the followin	g lines is a tangent to	the circle $x^2+y^2=2$	5 for all values of
	m			
	(A) $y = mx + 25\sqrt{1 + m}$		(B) $y = mx + 5\sqrt{1 + y}$	
	(C) $y = mx + 25\sqrt{1 - m}$		(D) $y = mx + 5\sqrt{1 - q}$	$\overline{m^2}$
70.		angent to the circle x^2		
	(A) $\left(\frac{a}{\sqrt{2}}, \frac{a}{\sqrt{2}}\right)$	(B) $\left(-\frac{a}{\sqrt{2}}, -\frac{a}{\sqrt{2}}\right)$	(C) $\left(\frac{a}{\sqrt{2}}, -\frac{a}{\sqrt{2}}\right)$	(D) $\left(-rac{a}{\sqrt{2}},rac{a}{\sqrt{2}} ight)$
71.	The equations of the	e tangents to the circ	cle $x^2+y^2=13$ at t	he points whose
	abscissa is 2, are			
	(A) $2x + 3y = 13, 2x - 3$		(B) $3x + 2y = 13, 2x$	-3y = 13
	(C) $2x + 3y = 13$, $3x - 3$	2y=13	(D) None of these	
72.		ugh origin touches the	e circle $(x-4)^2+(y+1)^2$	$(-5)^2=25$, then its
	slope should be	(P) 0	(C) + 2	(D) + 1
	4	(B) 0	(C) ± 3	(D) ±1
/3.		$\ln \alpha + a \cos \alpha$ be a tange		
	(A) $\sin^2 \alpha = 1$	(B) $\cos^2 \alpha = 1$	(C) $\sin^2 \alpha = a^2$	(D) $\cos^2 \alpha = a^2$
74.		he tangents to the cir	cle $x^2+y^2=169$ at	the points $(5,12)$
	and (12,-5) is (A) 30		(C) 60	(D) 00
75	. ,	(B) 45	(C) 60	(D) 90
/5.		of tangents can be	e drawn from $(1,$	2) to the circle
	$x^2+y^2-2x-4y+\lambda=$	0 , then $\lambda =$		
				Pa

65. Tangents drawn from origin to the circle $x^2+y^2-2ax-2by+b^2=0$ are

66. The equation of the tangents to the circle $x^2 + y^2 + 4x - 4y + 4 = 0$ which make

(B) a + b = 1

equal intercepts on the positive coordinate axes is given by

(B) $x+y=2\sqrt{2}$

(C) $a^2 = b^2$

(C) x + y = 2

(D) $a^2 + b^2 = 1$

(D) None of these

perpendicular to each other, if

(A) a - b = 1

(A) $x + y + 2\sqrt{2} = 0$

	(A) −20		(B) 0	
	(C) 5		(D) Cannot be determ	ined
76.	The line $(x-a)\cos a$ $(x-a)^2+(y-b)^2=r^2$	$a+(y-b)$ $\sin lpha = r$ λ	will be a tangent t	to the circle
	(A) If $lpha=30^o$		(B) If $lpha=60^o$	
	(C) For all values of α		(D) None of these	
77.	If the line $lx + my + n = 0$	=0 be a tangent to th	ne circle $(x-h)^2+(y-k)$	$a^2=a^2, ext{then}$
	(A) $hl+km+n=a^2(l^2)$	$+m^2)$	(B) $(hl+km+n)^2=a(l$	$(2+m^2)$
	(C) $(hl+km+n)^2=a^2$	(l^2+m^2)	(D) None of these	
78.	The line $x\coslpha$ -	$-y\sinlpha=p$ will be	a tangent to	the circle
	$x^2+y^2-2ax\coslpha-2ay$	$a\sinlpha=0$, if $p=$		
	(A) $0 \text{ or } a$	(B) 0	(C) 2a	(D) $0 \text{ or } 2a$
79.	The equations of the angle of 45° to the x -a		$e \; x^2 + y^2 = 36$ which are	inclined at an
	(A) $x+y=\pm\sqrt{6}$	(B) $x=y\pm 3\sqrt{2}$	(C) $y=x\pm 6\sqrt{2}$	(D) None of these
80.	If the line $y = \sqrt{3}x + k$	touches the circle x^2	$+y^2=16$, then $k=$	
	(A) 0	(B) 2	(C) 4	(D) 8
81.	The equations of the line $x+7=0$ meets it		$x^2+y^2=50$ at the poi	nts where the
	(A) $7x\pm y+50=0$	(B) $7x \pm y - 5 = 0$	(C) $y\pm7x+5=0$	(D) $y\pm7x-5=0$
82.	If the length of $x^2+y^2+2x+ky+17=$		m the point $(5,3)$ t	to the circle
	(A) 4	(B) -4	(C) −6	(D) $\frac{13}{2}$
83.	If the point $(2,0),(0,1)$	(4,5) and $(0,c)$ are co	n-cyclic, then \emph{c} is equal	to
	(A) $-1, -\frac{3}{14}$			(D) None of these
84.			th $\sqrt{2}$ makes an angle $rac{\pi}{2}$	at the centre
	(A) $\frac{\pi}{2}$	(B) 2π	(C) π	(D) $\frac{\pi}{4}$
85.	The equation of the	circle whose diamete	er lies on $2x+3y=3$ a	$nd \ 16x - y = 4$
	which passes through	(4,6) is		
	(A) $5(x^2+y^2)-3x-8y$	=200	(B) $x^2 + y^2 - 4x - 8y = 1$	200
			(C) $5(x^2+y^2)-4x=20$	0
	(D) $x^2+y^2=40$			

86.	The equation of the circle with centre x^2 of the given circle $x^2+y^2+2y-3=0$, is	at $(1,-2)$ and passing through the centre	
	(A) $x^2 + y^2 - 2x + 4y + 3 = 0$	(B) $x^2 + y^2 - 2x + 4y - 3 = 0$	
	(C) $x^2 + y^2 + 2x - 4y - 3 = 0$	(D) $x^2 + y^2 + 2x - 4y + 3 = 0$	
87.	The equation of the circle which passes the centre lies on the straight line $y-4\alpha$	es through the points $(2,3)$ and $(4,5)$ and $x+3=0$, is	
	(A) $x^2 + y^2 + 4x - 10y + 25 = 0$	(B) $x^2 + y^2 - 4x - 10y + 25 = 0$	
	(C) $x^2 + y^2 - 4x - 10y + 16 = 0$	(D) $x^2+y^2-14y+8=0$	
88.	The equation of the circle passing throlength 3 and 4 units from the positive a		
	(A) $x^2 + y^2 + 6x + 8y + 1 = 0$	(B) $x^2 + y^2 - 6x - 8y = 0$	
	(C) $x^2 + y^2 + 3x + 4y = 0$	(D) $x^2 + y^2 - 3x - 4y = 0$	
89.	The equation of a circle which touches whose centre lies in the third quadrant	both axes and the line $3x - 4y + 8 = 0$ and is	
	(A) $x^2 + y^2 - 4x + 4y - 4 = 0$	(B) $x^2 + y^2 - 4x + 4y + 4 = 0$	
	(C) $x^2 + y^2 + 4x + 4y + 4 = 0$	(D) $x^2 + y^2 - 4x - 4y - 4 = 0$	
90.	Consider two curves $C_1: y^2 = 2x$ and C_2	$x_{2}:x^{2}+y^{2}-3x+2=0$, then	
	(A) C_1 and C_2 touch each other only at		
	(B) C_1 and C_2 touch each other exactly	at two points	
	(C) C_1 and C_2 intersect (but do not tou	ch) at exactly two points	
	(D) C_1 and C_2 neither intersect nor tou	ch each other	
91.	If (x,y) is a variable point on the curv	ve $x^2+y^2-2x-2y-2=0$, then minimum	
	value of the expression $\frac{8}{(x-1)^2} - \frac{(y-1)^2}{4}$		
	(A) -2 (B) -1	(C) 1 (D) 2	
92.	The locus of the centre of the circle $\frac{1}{2}(a$	$(x^2+y^2)+x\cos heta+y\sin heta-4=0$ is :-	
	(A) $x^2 - y^2 = 1$ (B) $x^2 + y^2 = 1$	(C) $y^2 = x^2$ (D) $x^2 + y^2 = 2$	2
93.	The locus of the mid point of a chord right angle at the origin is	of the circle $x^2+y^2=4$ which subtends a	
	(A) $x + y = 2$ (B) $x^2 + y^2 = 1$	(C) $x^2 + y^2 = 2$ (D) $x + y = 1$	
94.	Let a circle $S=0$ touches b $x^2+y^2-10x-24y+120=0$ externally circle $S=0$ is	both the circles $x^2+y^2=400$ and and also touches $x-$ axis. The radius of	

(C) 120

(A) 200

(B) 33

(D) 240

(A)
$$x^2+y^2=rac{175}{4}$$
 (B) $x^2+y^2=36$ (C) $x^2+y^2=40$

(B)
$$x^2 + y^2 = 36$$

(C)
$$x^2 + y^2 = 40$$

(D)
$$x^2 + y^2 = 20$$

96. The centres of a set of circles, each of radius 2, lie on the circle. $x^2 + y^2 = 36$ The locus of any point in the set is -

(A)
$$4 \leqslant x^2 + y^2 \leqslant 16$$

(B)
$$16 \leqslant x^2 + y^2 \leqslant 64$$

(C)
$$36 \leqslant x^2 + y^2 \leqslant 64$$

(D)
$$16\leqslant x^2+y^2\leqslant 36$$

97. The equation of the locus of the mid points of the chords of the circle $4x^2 + 4y^2 - 12x + 4y + 1 = 0$ that subtend an angle of $\frac{2\pi}{3}$ at its centre is

(A)
$$16(x^2+y^2)-48x+16y+31=0$$

(B)
$$16(x^2+y^2)-48x-16y+31=0$$

(C)
$$16(x^2+y^2)+48x+16y+31=0$$

(D)
$$16(x^2+y^2)+48x-16y+31=0$$

98. Tangents are drawn to a unit circle with centre at the origin from each point on the line 2x + y = 4. Then the equation to the locus of the middle point of the chord of contact is

(A)
$$2(x^2+y^2)=x+y$$

(B)
$$2(x^2+y^2)=x+2y$$

(C)
$$4(x^2+y^2)=2x+y$$

99. Tangents are drawn to the circle $x^2 + y^2 = 1$ at the points where it is met by the circles, $x^2+y^2-(\lambda+6)x+(8-2\lambda)y-3=0$. λ being the variable . The locus of the point of intersection of these tangents is:

(A)
$$2x - y + 10 = 0$$

(B)
$$x + 2y - 10 = 0$$

(B)
$$x + 2y - 10 = 0$$
 (C) $x - 2y + 10 = 0$ (D) $2x + y - 10 = 0$

(D)
$$2x + y - 10 = 0$$

100. The locus of the centers of the circles which cut the circles $x^2 + y^2 + 4x - 6y + 9 = 0$ and $x^2 + y^2 - 5x + 4y - 2 = 0$ orthogonally is

(A)
$$9x + 10y - 7 = 0$$

(B)
$$x - y + 2 = 0$$

(A)
$$9x + 10y - 7 = 0$$
 (B) $x - y + 2 = 0$ (C) $9x - 10y + 11 = 0$ (D) $9x + 10y + 7 = 0$

(D)
$$9x + 10y + 7 = 0$$

- 101. The number of direct common tangents to the circles $x^2+y^2=4$ and $x^2 + y^2 - 8x - 8y + 7 = 0$, is
 - (A) 0

(B) 1

(C) 2

- (D) 3
- 102. The circles $x^2 + y^2 + 2x 2y + 1 = 0$ and $x^2 + y^2 2x 2y + 1 = 0$ touch each other :-
 - (A) externally at (0,1)

(B) internally at (0,1)

	value of $\alpha + \beta +$ (A) 3	(B) 5	(C) 10	(D) 7
	$x^2 + y^2 - 4x - 6y$ least value of C	r=0 orthogonally at (4) P is (where O is origin	(4,6) . If P is a variable	ch intersect the circle e point of $S=0$, then
106.	$S_1: x^2 + y^2 + 24x$ $S_2: x^2 + y^2 = 36$	which of the following		(D) 13 $C_{n} = 0 \text{ represents a real}$
	circle 170 (B) If $S_1=0$ and more than 49 (C) If $S_1=0$ and	$d \ S_2 = 0$ has no point in $d \ S_2 = 0$ intersect ortho	n common, then num $a=36$	is $S_1=0$ represents a real liber of integral values of a is $estimates S_1=0$ and $S_2=0$ are 3
107.		common chord of		
	If from origin to of chord of contact (A) 1		n to the circle $(x-2)$	$y^2+y^2=1$, then length ${\sf (D)}\ $
		oints P and $Q.$ Then		+2fy+c=0 touch the se circumcircle of the
	(A) $x^2 + y^2 + 2gx$	c+2fy=0	(B) $x^2 + y^2 + gx$	x+fy=0
	(C) $x^2 + y^2 - gx$	-fy=0	(D) $x^2 + y^2 - 2y$	gx-2fy=0
	Length of chore $x^2 + y^2 - 2x - 2y$		ts drawn from the p	oint $(4,4)$ to the circle
	(A) $2\sqrt{2}$	(B) $3\sqrt{2}$	(C) $4\sqrt{2}$	(D) $5\sqrt{2}$
				Page 12

103. The number of integral values of λ for which $x^2+y^2+\lambda x+(1-\lambda)y+5=0$ is the

104. A variable line ax+by+c=0 , where a,b,c are in A.P., is normal to a circle

equation of a circle whose radius cannot exceed $\boldsymbol{5}$, is

(B) 18

(D) internally at (1,0)

(D) None of these

(C) 16

(C) externally at (1,0)

(A) 14

111. The circumference of the circle $x^2 + y^2 - 2x + 8y - q = 0$ is bisected by the circle

(C) 10

 $x^{2} + y^{2} + 4x + 12y + p = 0$, then p + q is equal to

(A) 25

(B) 100

119.	The area of the triangent to the circle x		sitive x -axis and the no	rmal and the
	(A) $2\sqrt{3}$	(B) $\sqrt{3}$	(C) $1/\sqrt{3}$	(D) 1
120.	from tangent to S at S the circle S . Equation	P from the point with a of reflected ray is	on it. A ray of light $\mathfrak g$ abscissa -3 and become	es tangent to
121			(C) $3x - 4y + 5 = 0$	(D) $3x - 4y - 3 = 0$
121,	(A) $(-8/5,2)$	bola $4y^2 - 6x - 4y = 5$ is (B) $(-5/8, 1/2)$	(C) (1/2,5/8)	(D) $(5/8, -1/2)$
122.		ne parabola $y^2=5x+4y$		
	(A) $\frac{5}{4}$	(B) 10	(C) 5	(D) $\frac{5}{2}$
123.	$y^2 + 2Ax + 2By + C = 0$	is	parabola represented	
	(A) $x=rac{B^2+A^2-C}{2A}$	(B) $x=rac{B^2-A^2+C}{2A}$	(C) $x=rac{B^2-A^2-C}{2A}$	(D) $x=rac{A^2-B^2-C}{2A}$
124.	PQ is a double ording trisection of PQ is	nate of the parabola $\it y$	$y^2=4ax.$ The locus of	the points of
	(A) $9y^2=4ax$	(B) $9x^2 = 4ay$	(C) $9y^2 + 4ax = 0$	(D) $9x^2+4ay=0$
125.			ax be of length $8a$, the parabola to the ends $lpha$	_
	(A) 30	(B) 60	(C) 90	(D) 120
126.	The locus of the inters	section point of $x\coslpha$ -	$-y\sinlpha=a$ and $x\sinlpha=a$	$-y\coslpha=b$ is
	(A) Ellipse	(B) Hyperbola	(C) Parabola	(D) None of these
127.	The equation of the eccentricity $=\sqrt{3}$, is (A) $7x^2+12xy-2y^2-2$ (B) $11x^2+12xy+2y^2-2$ (C) $11x^2+12xy+2y^2-2$ (D) None of these	2x + 4y - 7 = 0 10x - 4y + 1 = 0	ectrix is $2x+y=1$, for	cus (1,1) and
128.		irectrices of the conic		_
	(A) $x=\pm 1$	(B) $y=\pm 2$	(C) $y=\pm\sqrt{2}$	(D) $x = \pm \sqrt{3}$
129.	The equation $13[(x-1)]$ (A) Parabola	$(y^2 + (y-2)^2] = 3(2x + 3y)$ (B) Ellipse	(C) represents	(D) None of these

	(C) $-4x + 3y + 1 = 0$		(D) $4x + 3y + 17 = 0$	
142.		ole tangents which can ular to the straight line	be drawn to the curve $25x+2y-10=0$ is	$4x^2 - 9y^2 = 36$
	(A) 0	(B) 1	(C) 2	(D) 4
143.	(0,-1) then distance of	of P from $x-$ axis is	which is at minimum (
	(A) 0	(B) $\frac{1}{2}$	(C) 1	(D) $\sqrt{2}$
144.		:2 then the ratio of	f conjugate Axis to t distance between the	_
	(A) 13:4	(B) 4:13	(C) $\sqrt{13}:2$	(D) $2:\sqrt{13}$
145.	the hyperbola $rac{x^2}{a^2} - rac{y^2}{b^2}$	=1 is	f the circle $x^2+y^2=a^2$	
	(A) $(x^2 - y^2)^2 = a^2 x^2 +$	· ·	(B) $(x^2 + y^2)^2 = a^2x^2 + b$	_
	(C) $(x^2 - y^2)^2 = a^2 x^2 - a^2 x^2$		(D) $(x^2 + y^2)^2 = a^2x^2 - b$	
146.	P(6,3) is a point on the $x-$ axis at $(10,0)$,	he hyperbola $rac{x^2}{a^2}-rac{y^2}{b^2}=$ then the eccentricity o	1 . If the normal at poi f the hyperbola is	nt <i>P</i> intersect
	(A) $\sqrt{\frac{5}{3}}$	(B) $\frac{\sqrt{13}}{3}$	(C) $\sqrt{\frac{5}{2}}$	(D) $\frac{\sqrt{13}}{2}$
147.	that passes through the value of $\sin^{-1}(a)$	the origin. The point o	one tangent line with f the tangency being (
	(A) $\frac{5\pi}{12}$	(B) $\frac{\pi}{6}$	(C) $\frac{\pi}{3}$	(D) $\frac{\pi}{4}$
148.	Area of the quadrilate $rac{x^2}{a^2} - rac{y^2}{b^2} = -1$ is	eral formed with the fo	oci of the hyperbola $rac{x^2}{a^2}$	$-rac{y^2}{b^2}=1$ and
	(A) $4(a^2+b^2)$	(B) $2(a^2+b^2)$	(C) (a^2+b^2)	(D) $\frac{1}{2}(a^2+b^2)$
149.			es from any point on t	he hyperbola
	$rac{x^2}{a^2}-rac{y^2}{b^2}=1$ of eccentricity $e=\sqrt{3}$ from its asymptotes is equal to 6, ther length of the transverse axis of the hyperbola is			
	(A) 3	(B) 6	(C) 8	(D) 12
150.	which is tangent to t	he hyperbola with no	= 1 as the centre , a c part of the circle bein	
	hyperbola. The radius	of the circle is		

* Given section consists of questions of 2 marks each.

[34]

- 151. Find the equation of the circle with centre (0, 2) and radius 2
- 152. Find the equation of the circle with centre (-a, -b) and radius $\sqrt{a^2-b^2}$
- 153. Find the equation of a circle with centre (2, 2) and passes through the point (4, 5).
- 154. Find the coordinates of the foci, and the vertices, the eccentricity and the length of the latus rectum of the hyperbolas.

$$\frac{x^2}{16} - \frac{y^2}{9} = 1$$

155. Find the coordinates of the foci, and the vertices, the eccentricity and the length of the latus rectum of the hyperbolas.

$$\frac{y^2}{9} - \frac{x^2}{27} = 1$$

- 156. Find the coordinates of the foci, and the vertices, the eccentricity and the length of the latus rectum of the hyperbolas. $49y^2 16x^2 = 784$
- 157. Find the equation of the hyperbola, whose vertices $(0, \pm 3)$ and foci $(0, \pm 5)$.
- 158. Find the equation of hyperbola which has Vertices $(\pm 7,0), e=rac{4}{3}$
- 159. If a parabolic reflector is 20 cm in diameter and 5 cm deep, find the focus.
- 160. Find the equation of the parabola which is symmetric about the y-axis, and passes through the point (2, -3).
- 161. Find the coordinates of the centre and radius of each of the following circles: $x^2+v^2-ax-bv=0$
- 162. Find the equation of the circle whose centre is (1, 2) and which passes through the point (4, 6).
- 163. Find the coordinates of the centre and radius of each of the following circles:

$$\frac{1}{2}(x^2 + y^2) + x\cos\theta + y\sin\theta - 4 = 0$$

164. Find the centre and radius of the following circles:

$$x^2 + y^2 - 4x + 6y = 5$$

- 165. Find the equation of the circle passing through the point of intersection of the lines x + 3y = 0 and 2x 7y = 0 and whose centre is the point of intersection of the lines x + y + 1 = 0 and x 2y + 4 = 0.
- 166. If the line $y = \sqrt{3}x + +k$ touches the circle $x^2 + y^2 = 16$, then find the value of k. [**Hint:** Equate perpendicular distance from the centre of the circle to its radius]
- 167. If the latus rectum of an ellipse is equal to half of minor axis, then find its eccentricity.
 - * Given section consists of questions of 3 marks each.

168. Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse.

$$36x^2 + 4y^2 = 144$$

169. Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse.

$$4x^2 + 9y^2 = 36$$

- 170. An arc is in the form of a parabola with its axis vertical. The arch is 10 m high and 5 m wide at the base. How wide is it 2 m from the vertex of the parabola?
- 171. The cable of a uniformly loaded suspension bridge hangs in the form of a parabola. The roadway which is horizontal and 100 m long is supported by vertical wires attached to the cable, the longest wire being 30 m and the shortest being 6 m. Find the length of a supporting wire attached to the roadway 18 m from the middle.
- 172. A rod of length 12 m moves with its ends always touching the coordinates axes. Determine the equation of the locus of a point P on the rod, which is 3 cm from the end in contact with the X-axis.
- 173. A man running a racecourse notes that the sum of the distances from the two flag posts from him is always 10 m and the distance between the flag posts is 8 m. Find the equation of the path traced by the man.
- 174. Find the coordinates of the foci, the vertices, the lengths of major and minor axes and the eccentricity of the ellipse $9x^2 + 4y^2 = 36$.
- 175. The focus of a parabolic mirror as shown in is at a distance of 5 cm from its vertex. If the mirror is 45 cm deep, find the distance AB

- 176. If the lines 2x 3y = 5 and 3x 4y = 7 are the diameters of a circle of area 154 square units, then obtain the equation of the circle.
- 177. Show that the points (3, -2), (1, 0), (-1, -2) and (1, -4) are concyclic.
- 178. Find the equation of the circle passing through the points: (5, -8), (-2, 9) and (2, 1)

- 179. Find the equation of the circle which passes through the points (3, 7), (5, 5) and has its centre on the line x 4y = 1.
- 180. Find the equation of the circle which circumscribes the triangle formed by the lines

$$2x + y - 3 = 0$$
, $x + y - 1 = 0$ and $3x + 2y - 5 = 0$

- 181. Find the equation of a circle,
 Which touches x-axis at a distance 5 from the origin and radius 6 units.
- 182. Find the equation of ellipse whose eccentricity is $\frac{2}{3}$, latus rectum is 5 and the centre is (0, 0).
- 183. If the line y = mx + 1 is tangent to the parabola $y^2 = 4x$ then find the value of m. [**Hint:** Solving the equation of line and parabola, we obtain a quadratic equation and then apply the tangency condition giving the value of m]
- 184. Write the coordinate centre of the ellipse $\frac{x^2-ax}{a^2}+\frac{y^2-by}{b^2}=0$
- 185. Find the coordinates of the centre and radius of the circle $(x\cos\alpha+y\sin\alpha-a)^2+\ (x\sin\alpha-y\cos\alpha-b)^2=k^2.$
- 186. If e and e' be the eccentricity of a hyperbola and its conjugate, then prove that $\frac{1}{e^2}+\frac{1}{(e')^2}=1$.

* Given section consists of questions of 5 marks each.

[55]

- 187. Find the equation of the circle which passes through the origin and cuts off chords of lengths 4 and 6 on the positive side of the x-axis and y-axis respectively.
- 188. Find the equation of the circle, the end points of whose diameter are (2, -3) and (-2, 4). Find its centre and radius.
- 189. Find the equation of the circle whose diameter is the line segment joining (-4, 3) and (12, -1). Find also the intercept made by it on y-axis.
- 190. The sides of a square are x = 6, x = 9, y = 3 and y = 6. Find the equation of a circle drawn on the diagonal of the square as its diameter.
- 191. Show that the point (x, y) given by $x = \frac{2at}{1+t^2}$ and $y = a\left(\frac{1-t^2}{1+t^2}\right)$ 2 lies on a circle for all real values of t such that $-1 \le t \le 1$, where a is any given real number.
- ^{192.} Prove that the radii of the circles $x^2 + y^2 = 1$, $x^2 + y^2 2x 6y 6 = 0$ and $x^2 + y^2 4x 12y 9 = 0$ are in A.P.
- 193. Find the vertex, focus, axis, directrix and latus-rectum of the following parabolas: $4(y-1)^2 = -7(x-3)$.
- 194. Find the equation of the parabola, if

The focus is at (0, -3) and the vertex is at (-1, -3).

- 195. Find the equation of the set of all points the sum of whose distances from the points (3, 0) and (9, 0) is 12.
- 196. If the lines 2x 3y = 5 and 3x 4y = 7 are the diameters of a circle of area 154

