EE5600 Assignment 4

Abhishek Thakur

Abstract—This document contains the solution of Quadratic equation using gradient descent.

Download latex and python codes from

https://github.com/abhishekt711/EE5600/tree/ master/Assignment 4

1 Problem

Find the maximum and minimum values, if any, of the follwing function given by $f(x) = (2x - 1)^2 + 3$

2 EXPLANATION

Given Equation can be written as:

$$f(x) = (2x - 1)^2 + 3 = 4x^2 - 4x + 4$$
 (2.0.1)

$$\mathbf{x}^T \begin{pmatrix} 4 & 0 \\ 0 & 0 \end{pmatrix} \mathbf{x} + \begin{pmatrix} -4 & 0 \end{pmatrix} \mathbf{x} + 4 = 0 \tag{2.0.2}$$

Using gradient descent method.

$$x_1 = x_0 - lr \frac{df(x)}{dx}$$
 (2.0.3)

Here, *lr* is learning rate.

$$\frac{df(x)}{dx} = 8x - 4\tag{2.0.4}$$

Taking lr = 0.1, $x_0 = 2$ and substituing in equation 2.0.3. After 4 iteration, the value of x where minima occurs is:

$$x = 0.50048 \tag{2.0.5}$$

After each iteration starting from x=2,when we come leftward on x-axis the slope increases i.e, slope becoming less negative. Thus, it is a convex function.

At maxima / minima slope of f(x) will be zero.

$$\frac{df(x)}{dx} = 0\tag{2.0.6}$$

$$\implies 8x - 4 = 0 \tag{2.0.7}$$

$$\therefore x = 0.5$$
 (2.0.8)

Now, to know whether x=0.5 is the point of maxima or minima, we need to calculate f''(x).

$$\frac{d''f(x)}{dx} = 8 {(2.0.9)}$$

: $\frac{d''f(x)}{dx} > 0$, therefore, we can conclude that x=0.5 is the point of minima.

At
$$f(x)$$
 at $x=0.5$,

$$f(0.5) = \begin{pmatrix} 0.5 \\ 0 \end{pmatrix}^T \begin{pmatrix} 4 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0.5 \\ 0 \end{pmatrix} + \begin{pmatrix} -4 & 0 \end{pmatrix} \begin{pmatrix} 0.5 \\ 0 \end{pmatrix} + 4 = 3$$
(2.0.10)

The following python code computes the minimum value of the given polynomial as plotted in Fig. 0.

Fig. 0: Plot of the given polynomial

Hence, the minimum value of f(x) at x = 0.5 is 3.