Ciência da Computação

Introdução à Análise de Algoritmos

André Luiz Brun

- Como avaliar um algoritmo?
 - Ele fornece uma solução para o problema?
 - Quão eficiente é o algoritmo?
 - Qual o espaço em memória necessário para a execução?
 - Existem maneiras melhores de se resolver o problema?

- Como avaliar um algoritmo?
 - Ele fornece uma solução para o problema?
 - Quão eficiente é o algoritmo?
 - Qual o espaço em memória necessário para a execução?
 - Existem maneiras melhores de se resolver o problema?

- Como avaliar um algoritmo?
 - Ele fornece uma solução para o problema?
 - Quão eficiente é o algoritmo?
 - Qual o espaço em memória necessário para a execução?
 - Existem maneiras melhores de se resolver o problema?
 - Correção
 - Eficiência Temporal
 - Eficiência Espacial
 - Otimalidade

Projeto de Algoritmos vs Análise de Algoritmos

Análise Teórica vs Experimental

Assintótica vs Empírica

 Permite estimar o custo para se executar um determinado algoritmo

 Este custo é chamado de custo computacional, custo assintótico ou complexidade assintótica

 A ideia é encontrar uma equação que melhor estime o custo de execução do método em função de algum critério pré-definido

• Critérios comuns:

- Número de operações básicas
- Número de indexações
- Número de comparações
- Número de acesso a disco
- Número de swaps
- Espaço em memória
- Número de acessos a servidor
- ...

 A análise de algoritmos ignora os problemas pequenos e intermediários e concentra-se na solução de problemas cujos valores tendem a ser extremamente grandes

 Dessa forma, assume-se que o fator de impacto do custo de um algoritmo está relacionado à variável de crescimento do custo e não de valores fixos

- Exemplo: todas as funções a seguir crescem com a mesma velocidade (são ditas equivalentes).
- Dizemos que todas as funções têm a mesma ordem de complexidade

$$n^2$$

$$\frac{3n^2}{2}$$

$$9999n^{2}$$

$$\frac{n^2}{1000}$$

- Exemplo: todas as funções a seguir crescem com a mesma velocidade (são ditos equivalentes).
- Dizemos que todas as funções têm a mesma ordem de complexidade

 n^2

 $\frac{3n^2}{2}$

 $9999n^2$

 $\frac{n^2}{1000}$

Também chamada Big O ou O grande

• Trata de funções assintoticamente não negativas, ou seja, funções f tais que $f(n) \ge 0$ para todo n suficientemente grande

• Explicitamente: f é assintoticamente não negativa se existe um inteiro n_0 tal que $f(n) \ge 0$ para todo $n \ge n_0$

• Exemplo: $f(x) = n^2 - 23$

• Exemplo: $f(x) = n^2 - 23$

- Definição: dadas duas funções assintoticamente não negativas f e g, dizemos que f está na ordem O de g, e escrevemos f = O(g) ou $f \in O(g)$, se $f(n) \le c * g(n)$ para alguma constante c positiva e para um n suficientemente grande
- Em outras palavras, existem um positivo real c e um número inteiro positivo n_0 tais que $f(n) \le c * g(n)$ para todo $n \ge n_0$
- Neste caso, dizemos que g(n) domina assintoticamente f(n) ou que g(n) é um limite assintótico superior para f(n)

- Quando falamos de complexidade assintótica, nosso interesse é no termo do polinômio com maior índice
- Exemplo:

$$n^{12} - 10n^{11} - 3n^8 + 327n^7 \rightarrow O(n^{12})$$
$$\frac{n^4}{356} - 10n^3 - 3n^2 - 327n \rightarrow O(n^4)$$

- Quando falamos de complexidade assintótica, nosso interesse é no termo do polinômio com maior índice
- Exemplo:

$$n^{12} - 10n^{11} - 3n^8 + 327n^7 \rightarrow O(n^{12})$$

$$\frac{n^4}{356} - 10n^3 - 3n^2 - 327n \rightarrow O(n^4)$$

Importante destacar que o maior termo sempre será positivo

• Exemplos:

•
$$\frac{7n-2}{375}$$
 é $O(n)$

•
$$9999n^2 \'e O\left(\frac{3n^2}{2}\right)$$

•
$$\frac{n^2}{1000}$$
 é $O\left(\frac{3n^2}{2}\right)$

•
$$1275n \in O\left(\frac{3n^2}{2}\right)$$

•
$$\frac{3n^2}{2}$$
 é $O\left(\frac{3n^3}{123}\right)$

• Exemplos:

•
$$\frac{7n-2}{375}$$
 é $O(n)$

• 9999
$$n^2$$
 é $O\left(\frac{3n^2}{2}\right)$

•
$$\frac{n^2}{1000}$$
 é $O\left(\frac{3n^2}{2}\right)$

•
$$1275n \in O\left(\frac{3n^2}{2}\right)$$

•
$$\frac{3n^2}{2}$$
 é $O\left(\frac{3n^3}{123}\right)$

• Dizer que:

$$f = O(g)$$
$$f \in O(g)$$
$$f \in O(g)$$

Significa que a função g(n) é o limite superior (pior caso, ou teto) da função f(n), ou seja, f(n) sempre será melhor ou igual a g(n)

Propriedades da função O

- f(n) = O(f(n))
- c * O(f(n)) = O(f(n)), c constante
- O(f(n)) + O(f(n)) = O(f(n))
- O(O(f(n))) = O(f(n))
- O(f(n)) + O(g(n)) = O(Max(O(f(n)), O(g(n))))
- O(f(n)) * O(g(n)) = O(f(n) * g(n))
- O(f(n) * g(n)) = f(n) * O(g(n))

- Também chamada de Ordem o pequeno (ômicron)
- Segue o mesmo princípio da Ordem O, no entanto, a partir de n_0 não permite que as duas funções "se toquem"
- Definição: dadas duas funções assintoticamente não negativas f e g, dizemos que f está na ordem o de g, e escrevemos f = o(g) ou $f \in o(g)$, se f(n) < c * g(n) para alguma constante c positiva e para um n suficientemente grande

• Em outras palavras, existem um positivo real c e um número inteiro positivo n_0 tais que f(n) < c * g(n) para todo $n \ge n_0$

• Neste caso, dizemos que g(n) domina assintoticamente f(n) ou que g(n) é um limite assintótico superior para f(n)

- Definição: dadas duas funções assintoticamente não negativas f e g, dizemos que f está na ordem Ω de g, e escrevemos $f = \Omega(g)$ ou $f \in \Omega(g)$, se $f(n) \ge c * g(n)$ para alguma constante c positiva e para um n suficientemente grande
- Em outras palavras, existem um positivo real c e um número positivo n_0 tais que $f(n) \ge c * g(n)$ para todo $n \ge n_0$
- Neste caso, dizemos que g(n) domina assintoticamente f(n) ou que g(n) é um limite assintótico inferior para f(n)

• Exemplos:

•
$$\frac{7n^2-2}{375}$$
 é $\Omega(n)$

•
$$9999n^2 \in \Omega\left(\frac{3n^2}{2}\right)$$

•
$$\frac{n^2}{1000}$$
 é $\Omega\left(\frac{3n^2}{2}\right)$

•
$$\frac{3n^2}{2}$$
 é Ω (1275 n)

•
$$\frac{3n^3}{123}$$
 é $\Omega\left(\frac{14n^2}{9}\right)$

• Exemplos:

•
$$\frac{7n^2-2}{375}$$
 é $\Omega(n)$

•
$$9999n^2 \in \Omega\left(\frac{3n^2}{2}\right)$$

•
$$\frac{n^2}{1000}$$
 é $\Omega\left(\frac{3n^2}{2}\right)$

•
$$\frac{3n^2}{2}$$
 é Ω (1275 n)

•
$$\frac{3n^3}{123}$$
 é $\Omega\left(\frac{14n^2}{9}\right)$

• Dizer que:

$$f = \Omega(g)$$
$$f \in \Omega(g)$$
$$f \in \Omega(g)$$

Significa que a função g(n) é o limite inferior (melhor caso, ou piso) da função f(n), ou seja, f(n) sempre será pior ou igual a g(n)

- Definição: dadas duas funções assintoticamente não negativas f e g, dizemos que f está na ordem ω de g, e escrevemos $f = \omega(g)$ ou $f \in \omega(g)$, se f(n) > c * g(n) para alguma constante c positiva e para um n suficientemente grande
- Em outras palavras, existem um positivo real c e um número positivo n_0 tais que f(n) > c * g(n) para todo $n \ge n_0$
- Neste caso, dizemos que g(n) domina assintoticamente f(n) ou que g(n) é um limite assintótico inferior para f(n)

- Definição: dadas duas funções assintoticamente não negativas f e g, dizemos que f está na ordem ω de g, e escrevemos $f = \Theta(g)$ ou $f \in \Theta(g)$, se f(n) = c * g(n) para alguma constante c positiva e para um n suficientemente grande
- Em outras palavras, existem um positivo real c e um número positivo n_0 tais que f(n) = c * g(n) para todo $n \ge n_0$
- Neste caso, dizemos que g(n) são semelhantes assintoticamente f(n) ou que g(n) é uma função equivalente de f(n)

Relação entre as Ordens

•
$$f(n) = O(f(n)), f(n) = \Omega(f(n)) e f(n) = \Theta(f(n))$$

- Se $f(n) = O\big(g(n)\big)$ e $g(n) = O\big(h(n)\big)$, então $f(n) = O\big(h(n)\big)$
- Se $f(n) = \Omega \big(g(n) \big)$ e $g(n) = \Omega \big(h(n) \big)$, então $f(n) = \Omega \big(h(n) \big)$
- Se $f(n) = \Theta \big(g(n) \big)$ e $g(n) = \Theta \big(h(n) \big)$, então $f(n) = \Theta \big(h(n) \big)$

Relação entre as Ordens

•
$$f(n) = O(g(n))$$
 se e somente se $g(n) = \Omega(f(n))$

•
$$f(n) = \Omega(g(n))$$
 se e somente se $g(n) = O(f(n))$

A relação entre as ordens deve ser feita apenas entre duas funções

Relação entre as Ordens

$$f = O(g)$$
 \Rightarrow $a \le b$
 $f = o(g)$ \Rightarrow $a < b$
 $f = \Omega(g)$ \Rightarrow $a \ge b$
 $f = \omega(g)$ \Rightarrow $a > b$
 $f = \Theta(g)$ \Rightarrow $a = b$

Tamanho da Entrada	O(3)	O(log ₂ n)	O(n)	O(nlog ₂ n)	O(n ²)	O(n ³)	O(2 ⁿ)
1	3	0	1	0	1	1	2
2	3	1	2	2	4	8	4
4	3	2	4	8	16	64	16
8	3	3	8	24	64	512	256
16	3	4	16	64	256	4096	65536
32	3	5	32	160	1024	32768	4,3E+09
64	3	6	64	384	4096	262144	1,8E+19
128	3	7	128	896	16384	2097152	3,4E+38

Tamanho da	n ²	$3n^2$	9999n²	n^2
Entrada	n-	2	9999n	1000
1	1	1,5	9999	0,001
2	4	6	39996	0,004
3	9	13,5	89991	0,009
4	16	24	159984	0,016
5	25	37,5	249975	0,025
6	36	54	359964	0,036
7	49	73,5	489951	0,049
8	64	96	639936	0,064
9	81	121,5	809919	0,081
10	100	150	999900	0,1
11	121	181,5	1209879	0,121
12	144	216	1439856	0,144
13	169	253,5	1689831	0,169
14	196	294	1959804	0,196
15	225	337,5	2249775	0,225

Tamanho da Entrada	n²	$\frac{3n^2}{2}$	9999n²	$\frac{n^2}{1000}$
1	1	1,5	9999	0,001
2	4	6	39996	0,004
3	9	13,5	89991	0,009
4	16	24	159984	0,016

Apesar de equivalentes assintoticamente, o custo real de execução dos algoritmos é bastante diferente

,	47	10,0	402221	U,U47
8	64	96	639936	0,064
9	81	121,5	809919	0,081
10	100	150	999900	0,1
11	121	181,5	1209879	0,121
12	144	216	1439856	0,144
13	169	253,5	1689831	0,169
14	196	294	1959804	0,196
15	225	337,5	2249775	0,225

 Provê apenas uma aproximação do real custo de execução do algoritmo

- No entanto, não é necessário implementar e rodar o algoritmo para inúmeras entradas e avaliar seu custo
- Se a análise for feita de forma precisa e a equação de complexidade refletir o comportamento real, é uma ótima ferramenta para se escolher entre diferentes soluções

Análise Empírica

- É preciso definir o critério a ser avaliado
 - Memória, Acesso a disco, Swaps...
- É necessário Implementar todas as soluções em análise
- É preciso executar todos os algoritmos implementados para todas as entradas definidas
- Na análise então compara-se os valores obtidos durante as execuções

Análise Empírica

- Conjunto de Entrada
 - Variação em tamanho
 - Cenários
- Definição dos Critérios de análise

