

# Министерство науки и высшего образования Российской Федерации Калужский филиал федерального государственного бюджетного образовательного учреждения высшего образования «Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (КФ МГТУ им. Н.Э. Баумана)

#### ФАКУЛЬТЕТ «ИНФОРМАТИКА И УПРАВЛЕНИЕ»

КАФЕДРА «ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ ЭВМ, ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ»

### РАСЧЕТНО-ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

### К КУРСОВОМУ ПРОЕКТУ НА ТЕМУ:

<u>Разработка клиент-серверного приложения для сбора и</u> обработки телеметрических данных автомобиля на базе

### *ESP32*

| Студент группы ИУК4-72Б        |                 | Е.В. Губин                 |
|--------------------------------|-----------------|----------------------------|
|                                | (подпись, дата) | (И.О. Фамилия)             |
|                                |                 |                            |
| Руководитель курсового проекта |                 | <mark>Е.В. Красавин</mark> |
|                                | (подпись, дата) | (И.О. Фамилия)             |

#### Министерство науки и высшего образования Российской Федерации Калужский филиал федерального государственного бюджетного образовательного учреждения высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»

(КФ МГТУ им. Н.Э. Баумана)

| УТВЕРЖДАЮ                                                    |
|--------------------------------------------------------------|
| Заведующий кафедрой ИУК4                                     |
|                                                              |
| <u>( Ю.Е. Гагарин</u><br>« <u>06</u> » <u>сентября</u> 2024т |
| -                                                            |
| $\mathbf{E}$                                                 |
| го проекта                                                   |
| •                                                            |
| <u>1-технологии</u>                                          |
|                                                              |
|                                                              |
| <u>6U4</u>                                                   |
| рного приложения для сбора и                                 |
| иля на базе ESP32                                            |
| <u>иля ни оизе LSI 32</u>                                    |
|                                                              |
|                                                              |
|                                                              |
|                                                              |
| ий разработки программного                                   |
| in puspussimin in septiminises                               |
| 1ечения.                                                     |
| много обеспечения.                                           |
|                                                              |
|                                                              |
| истах формата А4.                                            |
| ı, схемы, чертежи и т.n.):                                   |
|                                                              |
| формата АЗ;                                                  |
| 3.                                                           |
|                                                              |
|                                                              |
|                                                              |

Е.В. Красавин (И.О. Фамилия)

> Е.В. Губин (И.О. Фамилия)

# ЗАДАНИН на выполнение курсовог

Дата выдачи задания « <u>06</u> » <u>сентября 2024</u> г.

Руководитель

Студент

| по дисциплине Компьютерные сети и Интернет-технологии                                                                                        |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Студент группы <u>ИУК4-72Б Губин Егор Вячеславович</u><br>(фамилия, имя, отчество)                                                           |  |  |  |  |
| Гема курсового проекта <u>Разработка клиент-серверного приложения для сбора</u><br>обработки телеметрических данных автомобиля на базе ESP32 |  |  |  |  |
| Направленность КП <u>учебный</u><br>Источник тематики <b>кафедра ИУК4</b>                                                                    |  |  |  |  |
| Задание                                                                                                                                      |  |  |  |  |
| Провести анализ требований и технологий разработки программног<br>обеспечения.                                                               |  |  |  |  |
| Выполнить проектирование программного обеспечения.<br>Осуществить интеграция компонентов программного обеспечения.                           |  |  |  |  |
| Оформление курсового проекта<br>Расчетно-пояснительная записка на листах формата A4.                                                         |  |  |  |  |
| Перечень графического материала КП (плакаты, схемы, чертежи и т.п.):<br>– <mark>Блок-схема алгоритма</mark> – 1 лист формата А3;             |  |  |  |  |
| – <mark>Функциональная модель приложения</mark> – 1 лист формата А3;<br>– <mark>Структура базы данных</mark> – 1 лист формата А3.            |  |  |  |  |
|                                                                                                                                              |  |  |  |  |

06.09.2024

06.09.2024

(подпись, дата)

(подпись, дата)

#### Министерство науки и высшего образования Российской Федерации Калужский филиал федерального государственного бюджетного образовательного учреждения высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»

(КФ МГТУ им. Н.Э. Баумана)

# **КАЛЕНДАРНЫЙ ПЛАН** на выполнение курсового проекта

по дисциплине Компьютерные сети и Интернет-технологии

#### Студент группы ИУК4-72Б Губин Егор Вячеславович

(фамилия, имя, отчество)

Тема курсового проекта <u>Разработка клиент-серверного приложения для сбора и обработки</u> телеметрических данных автомобиля на базе ESP32

| No | Наименование этапов                                                                      | Сроки выполнения<br>этапов |      | Отметка о выполнении |         |  |
|----|------------------------------------------------------------------------------------------|----------------------------|------|----------------------|---------|--|
|    |                                                                                          | план                       | факт | Руководитель         | Куратор |  |
| 1  | Задание на выполнение                                                                    | 1-я нед.                   |      |                      |         |  |
| 2  | Выполнение логического проектирования программного обеспечения                           | 10-я нед.                  |      |                      |         |  |
| 3  | Выполнение и окончательное оформление графической части и расчетно-пояснительной записки | 14-я нед.                  |      |                      |         |  |
| 4  | Защита                                                                                   | 17-я нед.                  |      |                      |         |  |

| Студент         | 06.08.2024г. | Руководитель | 06.09.2024г.    |  |
|-----------------|--------------|--------------|-----------------|--|
| (подпись, дата) |              |              | (подпись, дата) |  |

#### РЕФЕРАТ

Расчетно-пояснительная записка 42 с., 10 рисунка, 2 таблицы, 12 источников.

Объектом разработки является система регистрации и анализа параметров движения автомобиля.

Цель работы — разработка концепции и технического задания на создание автомобильного тахографа, обеспечивающего сбор, хранение и визуализацию параметров движения транспортного средства, а также синхронизацию данных с облачным хранилищем.

Поставленные задачи решаются путем проектирования и разработки упрощённого автомобильного тахографа, включающего аппаратные и программные компоненты, а также интеграцию с мобильным приложением и облачным сервисом.

# СОДЕРЖАНИЕ

#### **ВВЕДЕНИЕ**

Развитие современных транспортных средств сопровождается возрастающими требованиями к контролю технического состояния автомобиля, учёту параметров его работы и повышению безопасности движения. Для этих целей могут использоваться компактные электронные устройства, способные фиксировать ключевые показатели эксплуатации, сохранять их в энергонезависимой памяти и отображать в удобной для пользователя форме.

Данная курсовая работа посвящена проектированию упрощённого автомобильного тахографа, который подключается к автомобилю через диагностический разъём OBD-II и взаимодействует с мобильным приложением по беспроводному интерфейсу Bluetooth. В процессе работы устройство выполняет следующие функции:

- считывание данных с шины CAN (скорость, расход топлива и другие параметры автомобиля);
- регистрацию информации с GPS-модуля (координаты, скорость, маршрут движения);
- получение данных с инерциальных датчиков (ускорение, торможение);
- запись информации на карту памяти microSD для долговременного хранения;
- передачу параметров в реальном времени в Android-приложение;
- отображение на карте маршрута движения и текущих характеристик автомобиля;
- автоматическую синхронизацию с облачным хранилищем после завершения сессии.

Таким образом, устройство сочетает функции регистрации, локального хранения и облачной обработки данных, что позволяет водителю анализировать статистику поездок и улучшать стиль вождения.

**Цель курсовой работы** заключается в разработке технической документации и проектировании системы автомобильного тахографа, обеспечивающей сбор, хранение, обработку и передачу данных о параметрах движения транспортного средства.

Для достижения поставленной цели необходимо решить следующие задачи:

- 1. Разработать техническое задание на создание упрощённого автомобильного тахографа.
- 2. Определить архитектуру аппаратной части и её программное обеспечение.
- 3. Реализовать механизмы обмена данными между устройством и мобильным приложением.
- 4. Обеспечить возможность сохранения информации при потере соединения и последующей синхронизации.
- 5. Рассмотреть требования к эксплуатации, надежности и защите информации.
- 6. Провести сравнительный анализ с аналогичными решениями и обосновать преимущества разработанной системы.

**Объект исследования** — система регистрации и анализа параметров движения автомобиля.

**Предмет исследования** — методы и средства проектирования тахографа на базе микроконтроллера ESP32 с модульной архитектурой, обеспечивающей считывание, обработку, сохранение и передачу данных.

**Актуальность** проекта определяется необходимостью создания компактного и доступного решения для мониторинга параметров автомобиля, которое объединяет несколько технологий: работу с шиной CAN, GPS-навигацию, инерциальные датчики, хранение информации на карте памяти и синхронизацию данных с облаком через мобильное приложение. Такое

устройство может использоваться для личных целей — анализа маршрутов, контроля расхода топлива и улучшения стиля вождения.

Поставленные задачи решаются путем проектирования и разработки упрощённого автомобильного тахографа, включающего аппаратные и программные компоненты, а также интеграцию с мобильным приложением и облачным сервисом.

# 1. АНАЛИЗ ТРЕБОВАНИЙ И ТЕХНОЛОГИЙ РАЗРАБОТКИ ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ

#### 1.1. Основные требования к разрабатываемой системе

Разрабатываемая система представляет собой упрощённый автомобильный тахограф, основанный на использовании микроконтроллера ESP32, дополнительных модулей (CAN, GPS, датчиков инерции, microSD) и мобильного Android-приложения, обеспечивающего взаимодействие с пользователем. Основными задачами системы являются сбор, хранение, обработка и передача данных о параметрах движения автомобиля с последующей синхронизацией с облачным хранилищем.

К числу функциональных требований относятся:

- 1. Сбор данных с различных источников:
  - параметры автомобиля через шину CAN (скорость, расход топлива, обороты двигателя и пр.);
  - координаты и скорость по GPS;
  - данные с инерциальных датчиков (ускорение, торможение, наклоны).

#### 2. Хранение данных:

- запись информации в реальном времени на карту памяти microSD;
- временное хранение данных в памяти ESP32 при передаче в мобильное приложение.
- 3. Взаимодействие с мобильным приложением:
  - установление соединения через Bluetooth;
  - отображение маршрута движения на карте;
  - показ текущих параметров (скорость, расход и т. д.);
  - выгрузка статистики по завершении поездки.

#### 4. Работа при потере соединения:

- автоматическое продолжение записи на microSD при разрыве Bluetooth-соединения;
- передача накопленных данных в приложение при восстановлении связи.

#### 5. Интеграция с облачным хранилищем:

- синхронизация данных по окончании сессии;
- хранение истории поездок с возможностью анализа.

Система должна удовлетворять ряду нефункциональных требований:

- Надёжность: устройство должно обеспечивать непрерывную запись данных при любых внешних условиях, связанных с потерей соединения или кратковременными сбоями питания.
- Восстановление после отказа: в случае разрыва Bluetooth-соединения данные должны сохраняться локально на microSD и быть переданы в приложение после восстановления связи.
- Условия эксплуатации: устройство должно соответствовать климатическим и электрическим нормам, предъявляемым к автомобильной электронике (рабочий диапазон температур от –20°С до +60°С, питание от бортовой сети 12 В через стабилизатор напряжения).
- Информационная безопасность: передача данных по Bluetooth и синхронизация с облачным сервисом должны осуществляться с использованием стандартных средств защиты (аутентификация, контроль целостности данных).
- Удобство использования: мобильное приложение должно обладать простым интерфейсом для просмотра маршрутов и статистики поездок.

В рамках разработки должны быть подготовлены следующие документы:

- 1. Расчётно-пояснительная записка, включающая:
  - техническое задание;
  - исследовательскую часть;
  - проектную часть;

#### 2. Графическая часть:

- структурные схемы системы;
- диаграммы взаимодействия компонентов;
- схемы алгоритмов обработки и передачи данных.

Процесс разработки системы включает несколько стадий:

- 1. Формирование технического задания определение целей и требований к системе, сбор исходных данных.
- 2. Исследовательская работа анализ аналогов, выбор архитектуры и технологий.
- 3. Разработка технического проекта проектирование аппаратной и программной части, подготовка документации.
- 4. Реализация и тестирование программирование ESP32 и Androidприложения, настройка обмена данными, проверка работы всех модулей.
- 5. Внедрение и отладка интеграция системы в автомобиль, тестирование в реальных условиях эксплуатации.

#### 1.2. Анализ аналогов и прототипов

На рынке автомобильной электроники и телематики существует ряд решений, которые частично или полностью выполняют функции регистрации параметров движения, контроля маршрутов и анализа стиля вождения. Рассмотрим несколько наиболее близких к теме разработки систем.

Существующие аналоги:

1. GPS-трекеры (например, StarLine M17, Navixy, Concox G06) Эти устройства позволяют отслеживать местоположение автомобиля, фиксировать маршрут движения и передавать данные в облачный сервис. Основное назначение — контроль за автопарком, логистика и защита от угона.

Недостатки: ограниченный набор параметров (чаще всего только координаты и скорость), отсутствие анализа поведения водителя на основе инерциальных датчиков, высокая цена в сочетании с абонентской платой.

- 2. Коммерческие тахографы (например, Штрих-ТахоRUS, Касби DTCO 3283) Устройства сертифицированы для использования на грузовом транспорте. Они фиксируют скорость, пробег, режимы труда и отдыха водителя, оснащены защитой от взлома. Недостатки: сложность установки, высокая стоимость, избыточность функций для частных пользователей, невозможность интеграции с мобильным приложением по Bluetooth.
- 3. Мобильные приложения-трекеры (например, GPS Tracker, Ulysse Speedometer, Torque Pro) Приложения используют встроенный в телефон GPS и датчики. Некоторые могут подключаться к OBD-II адаптерам и считывать параметры автомобиля.

Недостатки: постоянная нагрузка на телефон (GPS и датчики сильно расходуют батарею), нестабильность соединения с OBD-II адаптерами, отсутствие независимого резервного хранения данных (при сбое телефона данные теряются).

Разрабатываемый упрощённый тахограф сочетает достоинства перечисленных решений и устраняет их основные недостатки. Его ключевые преимущества:

- Широкий набор параметров: помимо GPS-координат и скорости, фиксируются данные с CAN-шины и инерциальных датчиков.
- Локальное хранение данных: информация записывается на microSD, что обеспечивает сохранность даже при сбое смартфона или потере связи.
- Интеграция с мобильным приложением: Bluetooth-соединение позволяет в реальном времени отображать маршрут и показатели.
- Синхронизация с облаком: после завершения поездки данные автоматически выгружаются для анализа и долговременного хранения.
- Доступность: использование ESP32 и готовых модулей снижает себестоимость устройства.

Таблица 1. Сравнение разрабатываемой системы с аналогами

| Параметр                             | GPS-<br>трекеры | Коммерчес<br>кие<br>Тахографы | Мобильные<br>приложения             | Разрабатывае<br>мая система |
|--------------------------------------|-----------------|-------------------------------|-------------------------------------|-----------------------------|
| Сбор данных с<br>САN-шины            | Нет             | Да                            | Частично<br>(через адаптер<br>OBD2) | Да                          |
| Использование GPS                    | Да              | Да                            | Да                                  | Да                          |
| Данные с<br>инерциальных<br>датчиков | Нет             | Частично                      | Да<br>(ограничено)                  | Да                          |
| Запись на<br>независимый<br>носитель | Нет             | Да                            | Нет                                 | Да (microSD)                |

| Работа при   |              |              |              |                |  |
|--------------|--------------|--------------|--------------|----------------|--|
| разрыве      | Нет          | Да           | Нет          | Да             |  |
| соединения   |              |              |              |                |  |
| Отображение  |              |              |              |                |  |
| маршрута на  | Через облако | Ограниченная | Да           | Да             |  |
| карте        |              |              |              |                |  |
| Синхронизаци | Да           | Да           | Частично     | Да             |  |
| я с облаком  | да           | да           | пастично     | да             |  |
| Простота     | Средняя      | Низкая       | Высокая      | Средняя        |  |
| установки    | Средния      | Пизкая       | Высокая      | Средняя        |  |
| Стоимость    | Средняя      | Высокая      | Низкая       | Низкая/средняя |  |
| Целевая      | Логистика    | Грузоперевоз | Частные      | Частные        |  |
| аудитория    | логистика    | ки           | пользователи | пользователи   |  |

Таким образом, разрабатываемая система занимает промежуточное положение между сложными сертифицированными тахографами и простыми мобильными приложениями. Она сочетает функциональность профессиональных решений с удобством и доступностью пользовательских приложений, что делает её актуальной для внедрения в повседневной эксплуатации.

# 1.3. Обоснование выбора инструментов и платформы для разработки клиентской части

Клиентская часть разрабатываемой системы представляет собой мобильное приложение для операционной системы Android. Оно выполняет ключевые функции взаимодействия пользователя с тахографом:

- установление соединения с устройством по Bluetooth;
- отображение маршрута движения на карте;

- визуализация текущих параметров (скорости, расхода топлива, ускорения и т. д.);
- ведение статистики по завершённой поездке;
- выгрузка собранных данных в облако для долговременного хранения и анализа.

Выбор в пользу платформы Android обусловлен следующими факторами:

- 1. Широкое распространение: на рынке мобильных устройств Android занимает лидирующую позицию по количеству пользователей, что обеспечивает максимальную доступность разрабатываемого приложения.
- 2. Открытая экосистема: Android предоставляет гибкие возможности работы с аппаратными интерфейсами, такими как Bluetooth, GPS, сенсоры устройства, что необходимо для интеграции с тахографом.
- 3. Развитая инфраструктура разработки: наличие большого числа библиотек, фреймворков и документации значительно ускоряет процесс создания и отладки приложения.
- 4. Совместимость: Android-устройства широко варьируются по цене и характеристикам, что делает систему доступной для пользователей с разными уровнями оборудования.
- 5. Поддержка облачных технологий: встроенные средства интеграции с сетевыми API и облачными сервисами позволяют легко реализовать выгрузку данных в удалённое хранилище.

Для реализации мобильного приложения целесообразно использовать следующие инструменты:

 Среда разработки Android Studio — официальная IDE для создания Android-приложений, предоставляющая полный набор инструментов для написания, отладки и тестирования кода.

- Язык программирования Kotlin (возможна поддержка Java) современный и удобный язык, рекомендованный Google для Android-разработки, позволяющий писать компактный и читаемый код.
- Google Maps API / Mapbox для отображения маршрута движения на карте в режиме реального времени.
- Bluetooth API (Android SDK) для установления и поддержания соединения с ESP32.
- Room / SQLite для локального хранения данных на смартфоне перед их выгрузкой в облако.

Клиентское приложение должно соответствовать следующим требованиям:

- Интуитивный интерфейс: простой и удобный для пользователя графический интерфейс, позволяющий быстро просматривать текущие показатели и маршруты.
- Производительность: работа в реальном времени без заметных задержек при отображении маршрута и параметров.
- Надёжность: сохранение данных в случае сбоев связи и возможность их последующей синхронизации.
- Масштабируемость: возможность добавления новых функций без существенных изменений архитектуры приложения.

Таким образом, выбор платформы Android и современных инструментов разработки позволяет обеспечить удобство использования клиентской части, её совместимость с широким спектром устройств и простоту интеграции с облачными сервисами.

# 1.4. Обоснование выбора инструментов и платформы для разработки серверной части

Серверная часть системы представляет собой встроенное устройство на базе микроконтроллера ESP32 DevKitC v4, которое выполняет функции сбора данных с датчиков и модулей, их предварительной обработки, записи на карту памяти и передачи по беспроводному интерфейсу в клиентское Android-приложение.

Выбор микроконтроллера ESP32 обусловлен следующими факторами:

- 1. Наличие встроенного Bluetooth и Wi-Fi: это позволяет организовать беспроводную передачу данных без дополнительных адаптеров. В рамках текущего проекта используется Bluetooth как основной канал связи с приложением.
- 2. Высокая производительность: двухъядерный процессор с тактовой частотой до 240 МГц обеспечивает достаточный ресурс для одновременной работы с несколькими модулями (CAN, GPS, IMU, microSD).
- 3. Большой объём памяти: до 520 КБ SRAM и поддержка внешней памяти позволяют хранить временные данные и использовать сложные алгоритмы обработки.
- 4. Развитая экосистема: ESP32 имеет широкую поддержку в Arduino IDE, PlatformIO и других средах, что облегчает разработку и отладку ПО.
- 5. Энергоэффективность: наличие режимов пониженного энергопотребления делает систему устойчивой к перепадам напряжения и снижает тепловыделение.
- 6. Низкая стоимость: использование ESP32 и готовых модулей обеспечивает доступность конечного устройства.

Используемые модули и их назначение:

- 1. CAN Bus модуль MCP2515 TJA1050 для получения данных от автомобиля через интерфейс OBD-II.
- 2. GPS-модуль APM 2.5 для определения координат, скорости и построения маршрута.
- 3. Модуль HW-290 (GY-87, 10DOF: MPU6050, HMC5883L, BMP180) для регистрации ускорений, углов наклона, ускорений при торможении/разгоне.
- 4. Модуль microSD (SPI-интерфейс) для долговременного хранения данных, включая резервную запись в случае разрыва Bluetooth-соединения.
- 5. DC-DC преобразователь LM2596s для стабилизации питания ESP32 от бортовой сети автомобиля (12 B  $\rightarrow$  5 B).
- 6. Стеклянный предохранитель на 1A для защиты устройства от перегрузки и короткого замыкания.

#### Инструменты разработки ПО для серверной части:

- Arduino IDE / PlatformIO среда программирования, обеспечивающая поддержку ESP32 и удобную работу с библиотеками.
- Языки С / С++ основные языки разработки для ESP32, обеспечивающие низкоуровневый контроль за модулями.
- FreeRTOS (встроенный в SDK ESP-IDF) для организации многозадачности (одновременный опрос датчиков, работа с картой памяти и Bluetooth).
- Библиотеки ESP-IDF для работы с Bluetooth, SPI, I2C, CAN и другими интерфейсами.

#### Требования к серверной части:

- 1. Стабильность работы: устройство должно обеспечивать непрерывный сбор и запись данных без потерь.
- 2. Работа в условиях сбоев: при разрыве соединения с телефоном данные должны сохраняться на microSD и автоматически передаваться при восстановлении связи.
- 3. Устойчивость к внешним факторам: работа при температуре –20...+60 °C и в условиях вибраций автомобиля.
- 4. Минимизация задержек: скорость передачи данных должна обеспечивать актуальное отображение параметров в приложении.
- 5. Безопасность: данные должны сохраняться в корректном формате, исключающем возможность их искажения.

#### 2. ПРОЕКТИРОВАНИЕ ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ

2.1. Разработка структуры системы

2.2. Структура базы данных

2.3. Схемы основных алгоритмов

2.4. Описание организации диалога с пользователем

# 3. КОНТРОЛЬ КАЧЕСТВА И ИНТЕГРАЦИЯ КОМПОНЕНТОВ ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ

- 3.1. Интерфейс клиентской части
- 3.2. Интерфейс мобильного приложения
  - 3.3. Руководство пользователя
  - 3.4. Руководство администратора

### **ЗАКЛЮЧЕНИЕ**

#### СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Басараб М. А., Колесников А. В., Коннова Н. С. Моделирование компьютерных сетей : учебно-методическое пособие / Басараб М. А., Колесников А. В., Коннова Н. С. ; МГТУ им. Н. Э. Баумана (национальный исследовательский ун-т). М. : Изд-во МГТУ им. Н. Э. Баумана, 2021. 82 с. : ил. Библиогр. в конце кн. ISBN 978-5-7038-5729-8.
- 2. Ибе, О. Компьютерные сети и службы удаленного доступа : справочник / О. Ибе. Москва : ДМК Пресс, 2007. 336 с. ISBN 5-94074-080-4. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/1169
- 3. Ачилов, Р. Н. Построение защищенных корпоративных сетей : учебное пособие / Р. Н. Ачилов. Москва : ДМК Пресс, 2013. 250 с. ISBN 978-5-94074-884-7. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/66472
- 4. Сетевые технологии и Интернет Учебное пособие / Семенов А.А. 2017. URL: http://www.iprbookshop.ru/66840.html.
- 5. Сергеев, А. Н. Основы локальных компьютерных сетей: учебное пособие для вузов / А. Н. Сергеев. 4-е изд., стер. Санкт-Петербург: Лань, 2022. 184 с. ISBN 978-5-507-44766-4. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/242867
- 6. Антонов А. И., Галкин В. А., Аксенов А. Н. Сетевые технологии в автоматизированных системах обработки информации и управления : учебное пособие / Антонов А. И., Галкин В. А., Аксенов А. Н. Москва : МГТУ им. Н. Э. Баумана, 2020. 148 с. ISBN 978-5-7038-5221-7.

Добавить свои источники. Всего 15-20 источников