TD n°1

Langages et Expressions Rationnelles

A désigne un alphabet fini. Le mot vide est noté ε .

Exercice 1 (Généralités)

- 1. Compter les occurrences des lettres a et b dans les mots suivants : a³cbbca, aabgjdd, titi, babc.
- 2. Donner l'ensemble des couples de mots (u, v) tels que $u \cdot v = abaac$ (Remarque : on peut ne pas écrire la concatenation "·", si c'est clair à partir du contexte. Par exemple, ici on peut écrire juste uv = abaac).
- 3. Un mot u est un facteur d'un mot v si u apparaît à l'intérieur de v : v s'écrit $w_1 \cdot u \cdot w_2$ pour certains mots w_1 et w_2 (qui peuvent être vides). Un mot u est un sous-mot d'un mot v si on peut obtenir u à partir de v par 'effacement' de certaines lettres (pas forcément consécutives) de v. Le nombre d'occurrences d'un facteur (resp. sous-mot) u dans le mot v est le nombre de façons de voir u comme facteur (resp. sous-mot) de v.

Donner le nombre d'occurrences du facteur aba dans le mot v = ababab. Donner le nombre d'occurrences du sous-mot aba dans le même mot v.

Exercice 2 (Opérations sur les langages)

- 1. Calculer $\mathcal{L} \cdot \mathcal{M}$ pour les ensembles suivants :
 - (a) $\mathcal{L} = \{a, ab, bb\}$ et $\mathcal{M} = \{\varepsilon, b, a^2\}$;
 - (b) $\mathcal{L} = \emptyset$ et $\mathcal{M} = \{a, ba, bb\}$;
 - (c) $\mathcal{L} = \{\varepsilon\}$ et $\mathcal{M} = \{a, ba, bb\}$;
 - (d) $\mathcal{L} = \{aa, ab, ba\}$ et $\mathcal{M} = A^*$.
- 2. Montrer que le produit est une opération distributive par rapport à l'union, c'est-à-dire que, pour tous langages \mathcal{L} , \mathcal{M} et \mathcal{N} , on a : $\mathcal{L} \cdot (\mathcal{M} \cup \mathcal{N}) = (\mathcal{L} \cdot \mathcal{M}) \cup (\mathcal{L} \cdot \mathcal{N})$. Montrer que le produit n'est pas distributif par rapport à l'intersection.
- 3. Parmi les égalités suivantes, lesquelles sont correctes (prouvez ou donnez un contre-exemple)?
 - (a) $\mathcal{M}^* = \mathcal{M}^* \cdot \mathcal{M}^*$
 - (b) $\mathcal{M}^* = (\mathcal{M} \cdot \mathcal{M})^*$
 - (c) $\mathcal{M}^* = \mathcal{M} \cdot \mathcal{M}^*$
 - (d) $\mathcal{M}^* = (\mathcal{M}^*)^*$
 - (e) $\mathcal{M} \cdot (\mathcal{N} \cdot \mathcal{M})^* = (\mathcal{M} \cdot \mathcal{N})^* \cdot \mathcal{M}$
 - (f) $(\mathcal{M} \cup \mathcal{N})^* = \mathcal{M}^* \cup \mathcal{N}^*$
 - $(q) (\mathcal{M} \cap \mathcal{N})^* = \mathcal{M}^* \cap \mathcal{N}^*$
 - (h) $(\mathcal{M} \cup \mathcal{N})^* = (\mathcal{M}^* \cdot \mathcal{N}^*)^*$
 - (i) $(\mathcal{M} \cup \mathcal{N})^* = (\mathcal{M}^* \cdot \mathcal{N})^* \cdot \mathcal{M}^*$

Exercice 3 (Écrire des expressions rationnelles) Donner une expression rationnelle pour le langage (sur alphabet $\{a,b\}$) des mots :

- 1. contenant exactement un a;
- 2. contenant exactement deux a;
- 3. contenant au moins deux a;
- 4. contenant au moins un a et un b;
- 5. contenant un nombre pair de a;
- 6. qui contiennent le facteur aa;
- 7. qui ne contiennent pas le facteur aa;
- 8. qui ne contiennent pas le facteur ab;
- 9. qui ne contiennent pas le facteur aba;
- 10. contenant le même nombre de a que de b.

Exercice 4 (Commutation) (exercice optionnel)

Soient u et v deux mots. On dit que u et v commutent si $u \cdot v = v \cdot u$.

Montrer que u et v commutent si et seulement s'il existe un mot w et deux entiers positifs ou nuls m et n tels que $u = w^m$ et $v = w^n$. Pour le sens \Rightarrow , on pourra procéder par récurrence sur |u| + |v|.