Softwareparadigmen SS 2015, Übungsblatt 1

Abgabe: 29. April 2015, bis 16:00 Uhr vor dem Sekretariat IST, Infeldgasse 16b, 2. OG

Beispiel 1 (1 P.)

Definieren Sie Grammatiken für folgende Sprachen:

a)
$$L = \{\underline{a}(\underline{cc}|\underline{b})^n \underline{a}^* | n > 0\}$$

b)
$$L = \{(\underline{bc})^n \underline{d}^* \underline{a}^{2n} | n \ge 0\}$$

Beispiel 2 (1 P.)

Gegeben ist die folgende Grammatik:

Zeigen sie anhand eines Parse Trees, dass "He who controls the past controls the future" in der durch diese Grammatik definierten Sprache liegt.

He

Beispiel 3 (1, 5 P.)

Welcher Ebene der Chomsky-Sprachhierarchie gehören die durch folgende Grammatiken definierten Sprachen an? Begründen Sie!

a)

$$S \rightarrow A \underline{char}$$

 $A \quad \to \quad \underline{num} \ A \ \underline{num}$

 $A \rightarrow \underline{char} B$

 $B \rightarrow num$

 $B \rightarrow \epsilon$

b)

$$S \rightarrow \underline{a} A$$

 $A \rightarrow \underline{a} A \underline{a}$

 $A \rightarrow \epsilon$

 $\underline{a} \rightarrow \underline{b}$

 $B \rightarrow \underline{b} B$

 $B \rightarrow \epsilon$

c)

$$S \rightarrow \underline{b} A$$

 $A \rightarrow \underline{bb}A \underline{c}$

 $A \rightarrow B\underline{d}$

 $B \rightarrow \underline{d} B$

 $B \rightarrow \epsilon$

d)

$$S \rightarrow \underline{x} X Y$$

 $X \rightarrow \underline{x} X Y$

 $Y \rightarrow Y \underline{y}$

 $Y \rightarrow \underline{y}$

 $X y \rightarrow \underline{x} y \underline{z}$

e)

$$S \rightarrow \underline{char} X$$

 $X \rightarrow \underline{num} \ X \ \underline{num}$

 $X \rightarrow Y \underline{num}$

 $X\underline{num} \rightarrow \underline{char} Y$

 $Y\underline{num} \rightarrow \underline{char}$

 $Y \rightarrow \underline{char}$

 $Y \rightarrow \epsilon$

f)

$$\begin{array}{cccc} S & \rightarrow & \underline{a} \ M \\ M & \rightarrow & \underline{m} \ M \\ M & \rightarrow & \underline{m} \ N \\ N & \rightarrow & \underline{nn} \ N \\ N & \rightarrow & \epsilon \end{array}$$

Beispiel 4 (2 P.)

Berechnen Sie für die gegebene Grammatik alle First und Follow Mengen und erstellen Sie eine LL(1) Tabelle.

Beispiel 5 (1,5 P.)

Gegeben ist die follgende LL(1) Tabelle, welche eine grobe Abstraktion der Variablendeklaration in Scala beschreibt (Info: Die Zeichenketten in den Spalten der ersten Zeile stellen jeweils ein Terminalsymbol dar).

	var	<u>val</u>	one	two	String	Int	0	1	-	\$
S	AB	AB								
A	CN <u>:</u>	CN <u>:</u>								
В					String="V"	<u>Int=</u> U				
С	var	<u>val</u>								
N			one	two						
U							<u>0</u> V	<u>1</u> V		
V							<u>0</u> V	<u>1</u> V	ϵ	ϵ

Überprüfen Sie mittels der gegebenen LL(1) Tabelle ob folgende Ausdrücke gültige Sätze der definierten Grammatik sind:

a) var one : String=101

b) val two : Int=11

Die Lösung für die Unterpunkte a und b soll im folgenden Format erarbeitet und abgegeben werden:

Stack	Input	Produktion/Kommentar
\$S	var one: String=101\$	

Beispiel 6 (3 P.)

Zeigen Sie warum folgende Grammatik keine LL(1) Grammatik ist und formen Sie diese in eine **äquivalente** LL(1) Grammatik um. Achten Sie darauf die Anzahl der Produktionsregeln so groß wie notwendig und so klein wie möglich zu halten. Erstellen Sie zur neuen Grammatik anschließend eine LL(1) Tabelle.

Beispiel 7 (2, 5 P.)

Installieren Sie eine Scala Entwicklungsumgebung (www.scala-lang.org).

- a) Schreiben Sie unter Verwendung von Scala einen Parser, welcher Ihre Grammatik aus Beispiel 1 a) parst.
- b) Schreiben Sie unter Verwendung von Scala einen Parser, welcher komplexe Zahlen parsen kann. (e.g. "123+432i", "1337-1i", "-13i")

Die beiden Parser, welche als Lösung für die Beispiele 7a) und 7b) erstellt werden, sind auch ausgedruckt abzugeben.

Viel Erfolg!