### Ensemble Models

Random Forests and Other Ensembles

Erin Hoffman September 2020 // FLATIRON SCHOOL

## Agenda

- 1. Motivation
- 2. Random Forests (Bagging+)
  - a. Layers of randomization
  - b. Synchronic Aggregation
- 3. Other Ensembles
  - a. Stacking
  - b. Boosting
- 4. SciKit-Learn Implementation

### 1. Motivation

We have a lot of models already...why do we want to add ensembles?

### **Motivation**



#### **An Old Mantra**

#### Data Collection:

 One data point is good, but more data points are better!

#### Bootstrapping:

 One sample is good, but more samples are better!

#### Modeling:

 One model is good, but more models are better!

### **Motivation**



### Model Composed of Other Models

- Building models beyond the first is good for comparison's sake
- But we can also combine models together to form new models!

### 2. Random Forests

More trees, more randomness = reducing variance without introducing too much bias by "pruning"

### **Bagging**



### **Strategy**

- Many models naturally overfit
- Randomization creates new models
  - New models overfit in different ways
- Aggregation smooths over different ways of overfitting

### **Bagging**



Created by Becris from Noun Project

### **Synchronic Aggregation**

- Bagging = Bootstrapping + Aggregating
- Algorithm to repeat many times:
  - Create a sample from your data
  - Train a model (e.g. a decision tree) on that sample
- A bagging model is an average over those many models

### Matchup



#### **Decision Tree vs. Bagging**

#### **Decision Tree**

- Less computationally complex
  - Faster to fit
  - Smaller model size

#### Bagging

- Better variance than un-pruned tree (less overfitting)
- Better vias than pruned tree (less underfitting)

### **Random Forests**



#### **Bagging+**

- We already have Level 1 of randomization:
  - Train each model on a random sample of data rows/records
- Let's add Level 2 of randomization:
  - Choose a random set of features at each decision point
- A random forest has both of these levels of randomization

### **Job Interview Question**

# What is "random" about a random forest?

- 1. Each **tree** (model) uses a random sample of **records** (rows of the dataset)
- 2. Each **decision point** uses a random sample of **features** (columns of the dataset)



### Matchup



#### **Bagging vs. Random Forest**

#### Bagging

 Sometimes can get the same results with fewer trees (depends on the data)

#### Random Forest

 Most of the time, better variance (less overfitting) due to increased randomness, which reduces correlation between trees

### **Extra Trees**



#### **Extremely Randomized Trees**

- We already have Level 1 and Level 2 of randomization
- Add Level 3 of randomization:
  - Randomly choose a decision point, rather than finding the one with the most information gain
- An extra trees model can have all three levels
  - Although the SciKit-Learn implementation skips Level 1 by default

### Matchup



#### Random Forest vs. Extra Trees

#### Random Forest

 Usually (but not always) gets better performance

#### Extra Trees

 Randomly choosing a decision point is much faster than checking all of the options

# 3. Other Ensembles

Random forest models are probably the most popular, but let's go over some other kinds of ensembles

### **Stacking**



#### **Different Models, Same Data**

- Similar to a bagging approach, stacking is a form of averaging
- Unlike a bagging approach, stacking typically uses the same training data for every model
- The innovation of stacking is the use of different kinds of models

### **Stacking**



\* C1, C2, and C3 are considered level 1 classifiers.

#### Meta-Classifier/Meta-Regressor

- First, we ask several different models to make predictions about the target
- Rather than taking a simple average or vote to determine the outcome, feed these results into a final model that makes the prediction based on the other models' predictions
- If it seems like we are approaching a neural network...you are correct!

### **Boosting**



### **Strategy**

- Prevent overfitting from the start
- Train an underfit (bad) model
- Improve the bad model by making quantitative use of the residuals of the bad model

# 4. SciKit-Learn Implementation

We are not going to code this from scratch, we're going to use the tools available to us!

### SciKit-Learn Implementation

| Regression                | Classification             |
|---------------------------|----------------------------|
| BaggingRegressor          | BaggingClassifier          |
| RandomForestRegressor     | RandomForestClassifier     |
| ExtraTreesRegressor       | ExtraTreesClassifer        |
| GradientBoostingRegressor | GradientBoostingClassifier |
| StackingRegressor         | <u>StackingClassifier</u>  |