Guide:

Lab 3 -- line 1 to line 20

Lab 4 -- line 21 to line 69

Assignment 1 -- line 70 to line 92

Assignment 2 -- line 26 to line 38, line 92 to line 101

Import Libraries

```
In [1]:
```

```
import numpy as np
import pandas as pd
from pandas import DataFrame as df
import matplotlib.pyplot as plt
import seaborn as sns
```

Load Dataset

```
In [2]:
```

```
canada = pd.read_excel('https://s3-api.us-geo.objectstorage.softlayer.net/cf-c
ourses-data/CognitiveClass/DV0101EN/labs/Data_Files/Canada.xlsx',
    sheet_name='Canada by Citizenship',
    skiprows=range(20),
    skipfooter=2)
```

```
In [3]:
```

```
canada.head()
#spare df
canada1 = canada
```

Rename columns

about:srcdoc Page 1 of 81

In [4]:

```
canada.rename(columns={'OdName':'Country', 'AreaName':'Continent', 'RegName':'
Continent-Region'}, inplace=True)
canada.drop(['AREA','REG','DEV','Type','Coverage'], inplace=True, axis='column
s')
canada.isnull().sum().sum()
```

Out[4]:

0

In [5]:

canada.head(5)

Out[5]:

	Country	Continent	Continent- Region	DevName	1980	1981	1982	1983	1984	1985	
0	Afghanistan	Asia	Southern Asia	Developing regions	16	39	39	47	71	340	
1	Albania	Europe	Southern Europe	Developed regions	1	0	0	0	0	0	
2	Algeria	Africa	Northern Africa	Developing regions	80	67	71	69	63	44	
3	American Samoa	Oceania	Polynesia	Developing regions	0	1	0	0	0	0	
4	Andorra	Europe	Southern Europe	Developed regions	0	0	0	0	0	0	

5 rows × 38 columns

about:srcdoc Page 2 of 81

In [6]:

```
canada.index.values
```

```
Out[6]:
                          3,
                                     5,
                                                7,
                                                                10,
array([ 0,
               1,
                    2,
                               4,
                                           6,
                                                      8,
                                                           9,
                                                                     11.
12,
        13,
              14,
                   15,
                         16,
                               17,
                                    18,
                                          19,
                                               20,
                                                     21,
                                                          22,
                                                                23,
                                                                     24,
25,
        26,
              27,
                         29,
                               30,
                                    31,
                                          32,
                                               33,
                                                     34,
                                                          35,
                                                                36,
                   28,
                                                                     37,
38,
                   41,
        39,
              40,
                         42,
                               43,
                                    44,
                                          45,
                                               46,
                                                     47,
                                                          48,
                                                                49,
                                                                     50,
51,
        52,
              53,
                   54,
                         55,
                               56,
                                    57,
                                          58,
                                               59,
                                                    60,
                                                          61,
                                                                62,
                                                                     63,
64,
        65,
              66,
                   67,
                         68,
                               69,
                                    70,
                                          71,
                                               72,
                                                    73,
                                                          74,
                                                                75,
                                                                     76,
77,
        78,
                                               85,
                                                    86,
              79,
                   80,
                         81,
                               82,
                                    83,
                                          84,
                                                          87,
                                                                88,
                                                                     89,
90,
        91,
                               95,
                                    96,
                                         97,
                                               98,
                                                    99, 100, 101, 102,
              92,
                   93,
                         94,
103,
       104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115,
116,
       117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128,
129,
       130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141,
142,
       143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154,
155,
       156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167,
168,
       169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180,
181,
       182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193,
1941)
```

Reassign Index

In [7]:

```
canada.set_index('Country', inplace=True)
```

about:srcdoc Page 3 of 81

In [8]:

```
canada.head()
```

Out[8]:

	Continent	Continent- Region	DevName	1980	1981	1982	1983	1984	1985	1986
Country										
Afghanistan	Asia	Southern Asia	Developing regions	16	39	39	47	71	340	496
Albania	Europe	Southern Europe	Developed regions	1	0	0	0	0	0	1
Algeria	Africa	Northern Africa	Developing regions	80	67	71	69	63	44	69
American Samoa	Oceania	Polynesia	Developing regions	0	1	0	0	0	0	0
Andorra	Europe	Southern Europe	Developed regions	0	0	0	0	0	0	2

5 rows × 37 columns

Convert columns to str

```
In [9]:
```

```
canada.dtypes
canada.columns = list(map(str,canada.columns));
```

Subsetting

about:srcdoc Page 4 of 81

In [10]:

canada[canada['Continent'] == 'Asia'].head(4)

Out[10]:

	Continent	Continent- Region	DevName	1980	1981	1982	1983	1984	1985	1986
Country										
Afghanistan	Asia	Southern Asia	Developing regions	16	39	39	47	71	340	496
Armenia	Asia	Western Asia	Developing regions	0	0	0	0	0	0	0
Azerbaijan	Asia	Western Asia	Developing regions	0	0	0	0	0	0	0
Bahrain	Asia	Western Asia	Developing regions	0	2	1	1	1	3	0

⁴ rows × 37 columns

Viewing Line chart

about:srcdoc Page 5 of 81

In [11]:

```
years = list(map(str,range(1980,2014)))
india_imgt = canada.loc['India', years]
india_imgt.plot(figsize=(10,6));
india_imgt.plot(kind='line');
plt.title('Immigration from India');
plt.ylabel('Number of immigrants');
plt.xlabel('Years');
```


Plotting two countries and comparing

about:srcdoc Page 6 of 81

In [12]:

```
canada.loc[['China','India'], years].transpose().plot(figsize =(10,7));
plt.title('Immigration of China and India');
plt.xlabel('Years');
plt.ylabel('Immigrants');
```


Area Plots

Unstacked

about:srcdoc Page 7 of 81

In [13]:

```
top5_clean = canada.head(5)[years].transpose()
top5_clean.index
top5_clean.index = top5_clean.index.map(int)
top5_clean.plot(kind="area", stacked=False, figsize=(20,10), alpha=0.25)
plt.title('Immigration trends in top five countries (1980-2013)')
plt.xlabel('Years')
plt.ylabel('Immigrants count')
plt.show()
```


Stacked

about:srcdoc Page 8 of 81

In [14]:

```
top5_clean.plot(kind="area", stacked=True, figsize=(20,10), alpha=0.25)
plt.title('Immigration trends in top five countries (1980-2013)')
plt.xlabel('Years')
plt.ylabel('Immigrants count')
plt.show()
```


Bar PLots and Histograms

```
In [15]:
```

```
df_can = canada
```

Bar

about:srcdoc Page 9 of 81

In [16]:

```
df_can['2000'].plot(kind='hist', figsize=(20,10))
plt.title('Immigration trends in 195 countries in 2000')
plt.xlabel('Number of Immigrants')
plt.ylabel('Number of Countries')
plt.show()
```


Histogram

about:srcdoc Page 10 of 81

In [17]:

```
df_can.loc[['India','China','Denmark','Norway','France','Germany'], years].tra
nspose().plot.hist()

plt.title('Immigration trends in 6 countries in 1980-2013')
plt.xlabel('Number of Immigrants')
plt.ylabel('Number of Countries')

plt.show()
```


Vertical Bar Plots

about:srcdoc Page 11 of 81

In [18]:

```
india = df_can.loc['India', years]
india.plot(kind='bar', figsize=(20,10))

plt.title('Immigration trends India immigrants from 1980 to 2013')
plt.xlabel('Years')
plt.ylabel('India immigrants from 1980 to 2013')

plt.show()
```


Horizontal Bar Plots

about:srcdoc Page 12 of 81

In [19]:

```
india = df_can.loc['India', years]
india.plot(kind='barh', figsize=(20,10))

plt.title('Immigration trends India immigrants from 1980 to 2013')
plt.xlabel('India immigrants from 1980 to 2013')
plt.ylabel('Years')
plt.show()
```


Using annotate

about:srcdoc Page 13 of 81

In [20]:

```
df india = df can.loc['India', years]
df india.plot(kind='bar', figsize=(10,6))
plt.title("Indian immigration to Canada from 1980 to 2013")
plt.xlabel("Year")
plt.ylabel("Number of immigrants")
plt.annotate('', #arrow title
             xy=(21,35000), \#x,y of arrow head
             xytext=(7,15000), \#x, y of arrow tail
             xycoords='data', #keep unchanged
             arrowprops=dict(arrowstyle='->',color='red') #arrow style with co
lor
plt.annotate('IT Boom', #add text to arrow
                            #x, y of text position
             xy=(13,28000),
             rotation=40, # counter clockwise rotate text by angle
             xycoords='data', #keep unchanged
             va='top', #position text
             ha='left') #position text
plt.show()
```


Lab 4 starts here ---

Scatter

about:srcdoc Page 14 of 81

In [21]:

```
indopak = canada.loc[['India','Pakistan'], years].transpose()
```

In [22]:

```
indopak.reset_index(inplace=True)
indopak.rename(columns={'Country':'index','index':'Year'}, inplace=True)
indopak.head()
```

Out[22]:

Country	Year	India	Pakistan		
0	1980	8880	978		
1	1981	8670	972		
2	1982	8147	1201		
3	1983	7338	900		
4	1984	5704	668		

In [23]:

```
import numpy as np

x = indopak['Year'].astype('int64')
y = indopak['India']
fit = np.polyfit(x,y,deg=1)
print(fit)
indopak.plot(kind='scatter', x='Year', y='India', color='blue', figsize=(10,6)
)
plt.title('Total immigrants from India 1980-2013')
plt.xlabel("years")
plt.ylabel("Number of immigrants")

#plt.plot(x, fit[0]*x+fit[1], color='red')
plt.show();
```

about:srcdoc Page 15 of 81

[9.34267991e+02 -1.84491593e+06]

Plotting 2 Scatter Plots in the Same Figure

about:srcdoc Page 16 of 81

In [24]:

```
ax0 = indopak.plot(kind='scatter', x='Year', y='India', color='blue', figsize=
(10,6))
indopak.plot(kind='scatter', x='Year', y='Pakistan', color='green', figsize=(1
0,6), ax=ax0)

plt.title('Total immigrants from India and Pakistan 1980-2013')
plt.xlabel("years")
plt.ylabel("Number of immigrants")
ax0.legend(['India','Pakistan'], loc='upper left')

plt.show();
```


Plotting 2 Scatter Plots in the Same Figure

about:srcdoc Page 17 of 81

In [25]:

```
norm_india = (indopak['India'] - indopak['India'].min()) / (indopak['India'].m
ax() - indopak['India'].min())
norm_pak = (indopak['Pakistan'] - indopak['Pakistan'].min()) / (indopak['Pakistan'].max() - indopak['Pakistan'].min())

ax0 = indopak.plot(kind='scatter', x='Year', y='India', color='blue', s=norm_i
ndia*200, figsize=(10,6))

indopak.plot(kind='scatter', x='Year', y='Pakistan', color='green', s=norm_ind
ia*200, figsize=(10,6), ax=ax0)

plt.title('Total immigrants from India and Pakistan 1980-2013')
plt.xlabel("years")
plt.ylabel("Number of immigrants")
ax0.legend(['India','Pakistan'], loc='upper left')

plt.show();
```


Waffle Charts

Exp 4 Assignment included

about:srcdoc Page 18 of 81

In [26]:

```
%matplotlib inline
import matplotlib as mpl
import matplotlib.pyplot as plt
import matplotlib.patches as mpatches
```

In [27]:

```
df_can['Total'] = df_can.sum (axis = 1)
```

In [28]:

```
# let's create a new dataframe for these three countries
df_dsn = df_can.loc[['Denmark', 'Norway', 'Sweden'], :]
# let's take a look at our dataframe
df_dsn
```

Out[28]:

	Continent	Continent- Region	DevName	1980	1981	1982	1983	1984	1985	1986	
Country											
Denmark	Europe	Northern Europe	Developed regions	272	293	299	106	93	73	93	
Norway	Europe	Northern Europe	Developed regions	116	77	106	51	31	54	56	
Sweden	Europe	Northern Europe	Developed regions	281	308	222	176	128	158	187	

3 rows × 38 columns

In [29]:

```
# compute the proportion of each category with respect to the total
total_values = sum(df_dsn['Total'])
category_proportions = [(float(value) / total_values) for value in df_dsn['Tot
al']]

# print out proportions
for i, proportion in enumerate(category_proportions):
    print (df_dsn.index.values[i] + ': ' + str(proportion))
```

Denmark: 0.32255663965602777 Norway: 0.1924094592359848 Sweden: 0.48503390110798744

about:srcdoc Page 19 of 81

In [30]:

```
width = 40 # width of chart
height = 10 # height of chart

total_num_tiles = width * height # total number of tiles
print ('Total number of tiles is ', total_num_tiles)
```

Total number of tiles is 400

In [31]:

```
# compute the number of tiles for each catagory
tiles_per_category = [round(proportion * total_num_tiles) for proportion in ca
tegory_proportions]

# print out number of tiles per category
for i, tiles in enumerate(tiles_per_category):
    print (df_dsn.index.values[i] + ': ' + str(tiles))
```

Denmark: 129 Norway: 77 Sweden: 194

In [32]:

```
# initialize the waffle chart as an empty matrix
waffle chart = np.zeros((height, width))
# define indices to loop through waffle chart
category index = 0
tile index = 0
# populate the waffle chart
for col in range(width):
    for row in range(height):
        tile index += 1
        # if the number of tiles populated for the current category is equal t
o its corresponding allocated tiles...
        if tile index > sum(tiles per category[0:category index]):
            # ...proceed to the next category
            category index += 1
        # set the class value to an integer, which increases with class
        waffle_chart[row, col] = category_index
print ('Waffle chart populated!')
```

Waffle chart populated!

about:srcdoc Page 20 of 81

In [33]:

waffle_chart

about:srcdoc Page 21 of 81

Out[33]:

```
2., 2., 2., 2., 2., 3., 3., 3., 3., 3., 3., 3., 3., 3.
, 3.,
   3., 3., 3., 3., 3., 3., 3., 3.],
   , 2.,
   2., 2., 2., 2., 2., 3., 3., 3., 3., 3., 3., 3., 3., 3.
, 3.,
   3., 3., 3., 3., 3., 3., 3., 3.],
   , 2.,
   2., 2., 2., 2., 2., 3., 3., 3., 3., 3., 3., 3., 3., 3.
, 3.,
   3., 3., 3., 3., 3., 3., 3., 3.,
   , 2.,
   2., 2., 2., 2., 2., 3., 3., 3., 3., 3., 3., 3., 3., 3.
, 3.,
   3., 3., 3., 3., 3., 3., 3., 3.],
   , 2.,
   2., 2., 2., 2., 2., 3., 3., 3., 3., 3., 3., 3., 3., 3.
, 3.,
   3., 3., 3., 3., 3., 3., 3., 3.],
   , 2.,
   2., 2., 2., 2., 2., 3., 3., 3., 3., 3., 3., 3., 3., 3.
, 3.,
   3., 3., 3., 3., 3., 3., 3., 3.],
   , 2.,
   , 3.,
   3., 3., 3., 3., 3., 3., 3., 3.],
   , 2.,
   , 3.,
   3., 3., 3., 3., 3., 3., 3., 3.],
   , 2.,
   , 3.,
   3., 3., 3., 3., 3., 3., 3., 3.],
   , 2.,
   , 3.,
   3., 3., 3., 3., 3., 3., 3., 3.]
```

about:srcdoc Page 22 of 81

In [34]:

```
# instantiate a new figure object
fig = plt.figure()

# use matshow to display the waffle chart
colormap = plt.cm.coolwarm
plt.matshow(waffle_chart, cmap=colormap)
plt.colorbar()
```

Out[34]:

<matplotlib.colorbar.Colorbar at 0x7f8a918cf190>

<Figure size 432x288 with 0 Axes>

about:srcdoc Page 23 of 81

In [35]:

```
# instantiate a new figure object
fig = plt.figure()
# use matshow to display the waffle chart
colormap = plt.cm.coolwarm
plt.matshow(waffle chart, cmap=colormap)
plt.colorbar()
# get the axis
ax = plt.gca()
# set minor ticks
ax.set_xticks(np.arange(-.5, (width), 1), minor=True)
ax.set yticks(np.arange(-.5, (height), 1), minor=True)
# add gridlines based on minor ticks
ax.grid(which='minor', color='w', linestyle='-', linewidth=2)
plt.xticks([])
plt.yticks([])
# compute cumulative sum of individual categories to match color schemes betwe
en chart and legend
values cumsum = np.cumsum(df dsn['Total'])
total values = values cumsum[len(values cumsum) - 1]
# create legend
legend handles = []
for i, category in enumerate(df dsn.index.values):
    label str = category + ' (' + str(df dsn['Total'][i]) + ')'
    color val = colormap(float(values cumsum[i])/total values)
    legend handles.append(mpatches.Patch(color=color val, label=label str))
# add legend to chart
plt.legend(handles=legend handles,
           loc='lower center',
           ncol=len(df dsn.index.values),
           bbox to anchor=(0., -0.2, 0.95, .1)
          )
```

about:srcdoc Page 24 of 81

Out[35]:

```
<matplotlib.legend.Legend at 0x7f8a90841090>
```

<Figure size 432x288 with 0 Axes>

Or use a waffle function

In [36]:

```
def create_waffle_chart(categories, values, height, width, colormap, value sig
n=''):
    # compute the proportion of each category with respect to the total
    total values = sum(values)
    category proportions = [(float(value) / total values) for value in values]
    # compute the total number of tiles
    total num tiles = width * height # total number of tiles
    print ('Total number of tiles is', total num tiles)
    # compute the number of tiles for each catagory
    tiles_per_category = [round(proportion * total_num_tiles) for proportion i
n category proportions]
    # print out number of tiles per category
    for i, tiles in enumerate(tiles per category):
        print (df_dsn.index.values[i] + ': ' + str(tiles))
    # initialize the waffle chart as an empty matrix
   waffle chart = np.zeros((height, width))
    # define indices to loop through waffle chart
    category index = 0
    tile index = 0
    # populate the waffle chart
    for col in range(width):
        for row in range(height):
            tile index += 1
```

about:srcdoc Page 25 of 81

```
# if the number of tiles populated for the current category
            # is equal to its corresponding allocated tiles...
            if tile index > sum(tiles per category[0:category index]):
                # ...proceed to the next category
                category index += 1
            # set the class value to an integer, which increases with class
            waffle chart[row, col] = category index
   # instantiate a new figure object
   fig = plt.figure()
   # use matshow to display the waffle chart
   colormap = plt.cm.coolwarm
   plt.matshow(waffle chart, cmap=colormap)
   plt.colorbar()
   # get the axis
   ax = plt.gca()
   # set minor ticks
   ax.set xticks(np.arange(-.5, (width), 1), minor=True)
   ax.set yticks(np.arange(-.5, (height), 1), minor=True)
   # add dridlines based on minor ticks
   ax.grid(which='minor', color='w', linestyle='-', linewidth=2)
   plt.xticks([])
   plt.yticks([])
   # compute cumulative sum of individual categories to match color schemes b
etween chart and legend
   values cumsum = np.cumsum(values)
   total values = values cumsum[len(values cumsum) - 1]
   # create legend
   legend handles = []
   for i, category in enumerate(categories):
        if value sign == '%':
            label_str = category + ' (' + str(values[i]) + value_sign + ')'
       else:
            label str = category + ' (' + value sign + str(values[i]) + ')'
       color val = colormap(float(values cumsum[i])/total values)
       legend handles.append(mpatches.Patch(color=color val, label=label str)
)
   # add legend to chart
   plt.legend(
       handles=legend handles,
       loc='lower center',
       ncol=len(categories),
       bbox_to_anchor=(0., -0.2, 0.95, .1)
```

about:srcdoc Page 26 of 81

)

In [37]:

```
width = 40 # width of chart
height = 10 # height of chart

categories = df_dsn.index.values # categories
values = df_dsn['Total'] # correponding values of categories

colormap = plt.cm.coolwarm # color map class
```

In [38]:

create waffle chart(categories, values, height, width, colormap)

Total number of tiles is 400

Denmark: 129 Norway: 77 Sweden: 194

<Figure size 432x288 with 0 Axes>

about:srcdoc Page 27 of 81

In [39]:

```
indpakchi = canada.loc[['India', 'Pakistan', 'China'], :]
categories = list(indpakchi.index.values)
values = indpakchi['Total']
create_waffle_chart(categories, values, height, width, colormap)
```

Total number of tiles is 400

Denmark: 174 Norway: 61 Sweden: 166

<Figure size 432x288 with 0 Axes>

Total Count of Immigration across all countries

In [40]:

canada['Total'].plot(kind='pie',figsize=(10,10));

about:srcdoc Page 28 of 81

Plotting the total immigration data by each continent

In [41]:

```
can_continent = canada.groupby('Continent', axis='index').sum()
can_continent.head()
```

Out[41]:

	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	
Continent											
Africa	3951	4363	3819	2671	2639	2650	3782	7494	7552	9894	 2
Asia	31025	34314	30214	24696	27274	23850	28739	43203	47454	60256	 15
Europe	39760	44802	42720	24638	22287	20844	24370	46698	54726	60893	 3
Latin America and the Caribbean	13081	15215	16769	15427	13678	15171	21179	28471	21924	25060	 2
Northern America	9378	10030	9074	7100	6661	6543	7074	7705	6469	6790	

5 rows × 35 columns

about:srcdoc Page 29 of 81

In [42]:

can_continent['Total'].plot(kind='pie', figsize=(7, 7));

Modifying the graph

about:srcdoc Page 30 of 81

In [43]:

Plotting Immigration Data by Development Status

about:srcdoc Page 31 of 81

In [44]:

```
can_devstatus = canada.groupby('DevName', axis='index').sum()
can_devstatus.head()
```

Out[44]:

```
1980
                  1981
                         1982
                               1983
                                      1984
                                             1985
                                                   1986
                                                          1987
                                                                 1988
                                                                        1989 ...
 DevName
Developed
           51143 56707 53240 32504 29675 28052 32224 55500 62129 68967 ...
   regions
Developing
           47994 53856 51031 43046 43742 41926 53824 79271 77177 95465 ... 2
   regions
```

2 rows × 35 columns

In [45]:

about:srcdoc Page 32 of 81

Plotting a pie chart for Immigration with respect to Country-Region

about:srcdoc Page 33 of 81

In [46]:

```
can_contreg = canada.groupby('Continent-Region', axis='index').sum()
can_contreg.head()
```

Out[46]:

	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	 2005	200€
Continent- Region												
Australia and New Zealand	1304	1119	848	457	481	467	532	675	610	790	 1279	1198
Caribbean	7045	8310	8326	6998	5553	6048	8716	10932	9229	10786	 6816	6652
Central America	734	921	1612	3648	4087	4862	5909	6804	5596	5821	 3990	414(
Central Asia	0	0	0	0	0	0	0	0	0	0	 1134	900
Eastern Africa	1471	1641	1426	1094	1187	1134	1454	2734	3237	4094	 7083	675(

5 rows × 35 columns

In [47]:

about:srcdoc Page 34 of 81

Box Plots

Plotting a boxplot for Immigration from India across the years

about:srcdoc Page 35 of 81

In [48]:

```
india = canada.loc['India', years]

india.plot(kind='box', figsize=(10,6))
plt.title('Box plot of India from 1980-2013')
plt.ylabel('Number of immigrants')
plt.show()
```


Comparative Boxplot for Immigration from India and Pakistan

about:srcdoc Page 36 of 81

In [49]:

```
indopak = canada.loc[['India','Pakistan'], years].transpose()
indopak.plot(kind='box', figsize=(10,6))
plt.title('Box plot of India and Pakistan from 1980-2013')
plt.ylabel('Number of immigrants')
plt.show()
```


Describing the Ind-Pak Immigration Data

about:srcdoc Page 37 of 81

In [50]:

indopak.describe()

Out[50]:

Country	India	Pakistan
count	34.000000	34.000000
mean	20350.117647	7105.882353
std	10007.342579	5315.849587
min	4211.000000	514.000000
25%	10637.750000	1565.750000
50%	20235.000000	7014.000000
75%	28699.500000	12259.000000
max	36210.000000	16708.000000

Modifying the Boxplot for Ind-Pak Data

about:srcdoc Page 38 of 81

In [51]:

```
indopak.plot(kind='box', figsize=(10,6), color='red', vert=False)

plt.title('Box plot of India and Pakistan from 1980-2013')
plt.xlabel('Number of immigrants')
plt.show()
```


Creating 4 subplots of for boxplots of top 5 countries In Europe, Asia, Africa and Oceania

In [52]:

```
asia = canada[(canada['Continent']=='Asia')].sort_values('Total', ascending=Fa
lse).head()
eur = canada[(canada['Continent']=='Europe')].sort_values('Total', ascending=F
alse).head()
afr = canada[(canada['Continent']=='Africa')].sort_values('Total', ascending=F
alse).head()
ocn = canada[(canada['Continent']=='Oceania')].sort_values('Total', ascending=False).head()
asia = asia[years].transpose()
eur = eur[years].transpose()
afr = afr[years].transpose()
ocn = ocn[years].transpose()
```

PLots

about:srcdoc Page 39 of 81

In [53]:

```
fig = plt.figure();
ax1 = fig.add_subplot(1,2,1);
eur.plot(kind='box', color='blue', vert=False, ax=ax1);
ax2 = fig.add_subplot(1,2,2);
asia.plot(kind='box', color='blue', vert=False, ax=ax2);

fig2 = plt.figure();
ax3 = fig2.add_subplot(1,2,1);
afr.plot(kind='box', color='blue', vert=False, ax=ax3);
ax4 = fig2.add_subplot(1,2,2);
ocn.plot(kind='box', color='blue', vert=False, ax=ax4);
```


Outliers

about:srcdoc Page 40 of 81

In [54]:

```
temp = asia.describe()
Q1 = temp.loc['25%', 'Philippines']
Q3 = temp.loc['75%', 'Philippines']
IQR = Q3-Q1

Outlier1 = Q3 + 1.5*IQR
Outlier2 = Q1 - 1.5*IQR
print(Outlier1)
print(Outlier2)

asia[asia['Philippines']>Outlier1]
```

35128.0 -7216.0

Out[54]:

Country	India	China	Philippines	Pakistan	Iran (Islamic Republic of)
2010	34235	30391	38617	6811	7477
2011	27509	28502	36765	7468	7479

Word Clouds

importing

```
In [55]:
```

```
from wordcloud import WordCloud, STOPWORDS
```

```
In [56]:
```

```
alice_novel = open('/Users/home/Downloads/1462444-088c12e7f74fcff9be6c4faa556f
961cb7a675bd/alice.txt', 'r').read()
```

In [57]:

```
stopwordsremove = set(STOPWORDS)

alice_wc = WordCloud(background_color = 'white', max_words = 2000,
    stopwords = stopwordsremove)
```

about:srcdoc Page 41 of 81

In [58]:

```
alice_wc.generate(alice_novel)

plt.figure(figsize = (10,15))
plt.imshow(alice_wc)
plt.show()
```


about:srcdoc Page 42 of 81

In [59]:

Maps

```
In [60]:
```

```
import folium
```

Map of Dahisar

about:srcdoc Page 43 of 81

In [61]:

```
worldmap = folium.Map(location=[19.25, 72.86], zoom_start=15)
worldmap
```

Out[61]:

Make this Notebook Trusted to load map: File -> Trust Notebook

about:srcdoc Page 44 of 81

In [62]:

```
worldmap = folium.Map(location=[19.25, 72.86], zoom_start=14, tiles='Stamen To
ner')
worldmap
```

Out[62]:

Make this Notebook Trusted to load map: File -> Trust Notebook

about:srcdoc Page 45 of 81

```
In [63]:
```

```
worldmap = folium.Map(location=[19.25, 72.86], zoom_start=14, tiles='Stamen Te
rrain')
worldmap
```

Out[63]:

Make this Notebook Trusted to load map: File -> Trust Notebook

Loading different dataset

```
In [64]:
```

```
incidents = pd.read_csv('https://s3-api.us-geo.objectstorage.softlayer.net/cf-
courses-data/CognitiveClass/DV0101EN/labs/Data_Files/Police_Department_Inciden
ts_-_Previous_Year__2016_.csv')
print('Dataset downloaded and read into a pandas dataframe!')
print(incidents.head())
print(incidents.shape)
```

about:srcdoc Page 46 of 81

```
Dataset downloaded and read into a pandas dataframe!
   IncidntNum
                   Category
Descript \
                WEAPON LAWS
                                                  POSS OF PROHIBIT
    120058272
ED WEAPON
    120058272
                WEAPON LAWS
                             FIREARM, LOADED, IN VEHICLE, POSSESSI
ON OR USE
    141059263
                   WARRANTS
                                                              WARRA
NT ARREST
    160013662
              NON-CRIMINAL
                                                               LOST
PROPERTY
    160002740 NON-CRIMINAL
                                                               LOST
PROPERTY
 DayOfWeek
                                      Time PdDistrict
                               Date
                                                             Resolu
tion
     \
             01/29/2016 12:00:00 AM
0
    Friday
                                     11:00
                                              SOUTHERN
                                                        ARREST, BO
OKED
    Friday
             01/29/2016 12:00:00 AM
                                     11:00
                                              SOUTHERN
                                                         ARREST, BO
OKED
2
             04/25/2016 12:00:00 AM
                                     14:59
     Monday
                                               BAYVIEW
                                                         ARREST, BO
OKED
3
             01/05/2016 12:00:00 AM 23:50 TENDERLOIN
   Tuesday
NONE
     Friday 01/01/2016 12:00:00 AM 00:30
                                               MISSION
NONE
                  Address
  800 Block of BRYANT ST -122.403405
0
                                       37.775421
  800 Block of BRYANT ST -122.403405
                                       37.775421
2
  KEITH ST / SHAFTER AV -122.388856
                                       37.729981
   JONES ST / OFARRELL ST -122.412971
                                       37.785788
4
     16TH ST / MISSION ST -122.419672 37.765050
                                Location
                                                    PdId
0
    (37.775420706711, -122.403404791479)
                                          12005827212120
1
    (37.775420706711, -122.403404791479)
                                          12005827212168
   (37.7299809672996, -122.388856204292)
                                          14105926363010
   (37.7857883766888, -122.412970537591)
                                          16001366271000
   (37.7650501214668, -122.419671780296)
                                          16000274071000
(150500, 13)
In [65]:
limit = 100
inc = incidents.iloc[0:limit,:]
```

about:srcdoc Page 47 of 81

In [66]:

```
latitude = 37.77
longitude = -122.42
map1 = folium.Map(location = [latitude, longitude], zoom_start=12)
map1
```

Out[66]:

Make this Notebook Trusted to load map: File -> Trust Notebook

about:srcdoc Page 48 of 81

In [67]:

```
#given information about city coordinates
latitude= 37.77
longitude = -122.42
#create map using folium library and Map class
map1 = folium.Map(location = [latitude, longitude], zoom start=12)
map1
#incident we will impose on the map
incident = folium.map.FeatureGroup()
#reduce size of dataset
df1 = incidents.iloc[0:limit,:]
#loop through the crimes by their lat Y and long X and create markers
for lat, long in zip(df1.Y, df1.X):
    incident.add child(folium.CircleMarker([lat, long], radius = 5, color = 'y
ellow', fill=True,
            fill_color='blue').add_to(incident))
#add pop ups
lats = list(df1.Y)
longs = list(df1.X)
labels = list(df1.Category)
for lat, long, labs in zip(lats, longs, labels):
        folium.Marker([lat, long], popup=labs).add to(map1)
#add incidents/crimes to the map
map1.add child(incident)
```

about:srcdoc Page 49 of 81

Out[67]:

Make this Notebook Trusted to load map: File -> Trust Notebook

about:srcdoc Page 50 of 81

In [68]:

```
#given information about city coordinates
latitude= 37.77
longitude = -122.42
#create map using folium library and Map class
map1 = folium.Map(location = [latitude, longitude], zoom start=12)
map1
#incident we will impose on the map
incident = folium.map.FeatureGroup()
#reduce size of dataset
df1 = incidents.iloc[0:limit,:]
#loop through the crimes by their lat Y and long X and create markers
lats = list(df1.Y)
longs = list(df1.X)
labels = list(df1.Category)
for lat, long, labs in zip(lats, longs, labels):
        folium.CircleMarker([lat, long], popup=labs, radius=5, color='yellow',
fill=True,
                            fill color='blue').add to(map1)
#add incidents/crimes to the map
map1
```

Out[68]:

Make this Notebook Trusted to load map: File -> Trust Notebook

about:srcdoc Page 51 of 81

In [69]:

```
#given information about city coordinates
latitude= 37.77
longitude = -122.42
#create map using folium library and Map class
map1 = folium.Map(location = [latitude, longitude], zoom start=12)
map1
#incident we will impose on the map
from folium import plugins
incident = plugins.MarkerCluster().add to(map1)
#reduce size of dataset
df1 = incidents.iloc[0:limit,:]
#loop through the crimes by their lat Y and long X and create markers
lats = list(df1.Y)
longs = list(df1.X)
labels = list(df1.Category)
for lat, long, labs in zip(lats, longs, labels):
        folium.CircleMarker([lat, long], popup=labs, radius=5, color='yellow',
fill=True,
            fill color='blue').add to(incident)
#add incidents/crimes to the map
map1
```

Out[69]:

Make this Notebook Trusted to load map: File -> Trust Notebook

about:srcdoc Page 52 of 81

Choropeth Markers

world_geo = pd.read_json(r'/Users/home/Downloads/world_countries.json')canada = pd.read_excel('https://s3-api.us-geo.objectstorage.softlayer.net/cf-coursesdata/CognitiveClass/DV0101EN/labs/Data_Files/Canada.xlsx', sheet_name='Canada by Citizenship', skiprows=range(20), skipfooter=2) canada.drop(['AREA','REG','DEV','Type','Coverage'], inplace=True, axis='columns') canada.rename(columns={'OdName':'Country', 'AreaName':'Continent', 'RegName':'Continent-Region', 'DevName':'Development-Status'}, inplace=True) canada['TotalImmigration'] = canada.sum(axis='columns') canada.head()world map = folium.Map(location=[0, 0], zoom start=2) world map.choropleth(geo data=world geo, data=canada, columns=['Country', 'TotalImmigration'], key on='feature.properties.name', fill color='YIOrRd', fill opacity=0.7, line opacity=0.2, legend_name='Immigration to Canada') # display map world_mapworld_geo = r'world_countries.json' # create a numpy array of length 6 and has linear spacing from the minium total immigration to the maximum total immigration threshold_scale = np.linspace(df_can['Total'].min(), df_can['Total'].max(), 6, dtype=int) threshold_scale = threshold_scale.tolist() # change the numpy array to a list threshold_scale[-1] = threshold scale[-1] + 1 # make sure that the last value of the list is greater than the maximum immigration # let Folium determine the scale. world_map = folium.Map(location=[0, 0], zoom_start=2, tiles='Mapbox Bright') world map.choropleth(geo data=world geo, data=canada, columns=['Country', 'Total'], key_on='feature.properties.name', threshold_scale=threshold_scale, fill_color='YlOrRd', fill_opacity=0.7, line_opacity=0.2, legend_name='Immigration to Canada', reset=True) world_map

Assignment 1

Which two countries have similar immigration trends over the years 1980-2013?

```
In [70]:
canada['total_immigration'] = canada.sum(axis='columns')
canada.sort_values(by='total_immigration', ascending=False, axis='index', inpl
ace=True)
canada.head(10)
```

about:srcdoc Page 53 of 81

Out[70]:

Continent		Continent- Region	DevName	1980	1981	1982	1983	1984	1985	1	
	Country										
	India	India Asia Southern Asia		Developing regions	8880	8670	8147	7338	5704	4211	7
	China	Asia	Eastern Asia	Developing regions	5123	6682	3308	1863	1527	1816	1
I	United Kingdom of Great Britain and Northern Ireland	gdom Great Europe Northe n and Euro thern		Developed regions	22045	24796	20620	10015	10170	9564	ξ
I	Philippines	Asia	South- Eastern Asia	Developing regions	6051	5921	5249	4562	3801	3150	۷
	Pakistan	Asia	Southern Asia	Developing regions	978	972	1201	900	668	514	
	United States of America	Northern America	Northern America	Developed regions	9378	10030	9074	7100	6661	6543	7
	Iran (Islamic Republic of)	Asia	Southern Asia	Developing regions	1172	1429	1822	1592	1977	1648	1
	Sri Lanka	Asia	Southern Asia	Developing regions	185	371	290	197	1086	845	1
	Republic of Korea	Asia	Eastern Asia	Developing regions	1011	1456	1572	1081	847	962	1
	Poland	Europe	Eastern Europe	Developed regions	863	2930	5881	4546	3588	2819	۷

10 rows × 39 columns

about:srcdoc Page 54 of 81

In [71]:

```
canada.loc[canada.index.tolist(), years].transpose().plot(figsize=(15,15),lege
nd=False);
plt.title('Immigration of 195 countries');
plt.xlabel('Years');
plt.ylabel('Immigrants');
```


Plotting three similar countries after year 2009 in the top 10 list.

about:srcdoc Page 55 of 81

In [72]:

```
canada.loc[['India','China','Philippines'], years].transpose().plot(figsize=(1
5,15));
plt.title('Immigration of India, China and Philippines');
plt.xlabel('Years');
plt.ylabel('Immigrants');
```


Since 2009, India China and Philippines have shown similar trends.

As it is impossible to compare 195 countries and their charts, Last 3 year's average is taken and compared in the following steps. The selection of n years is random.

about:srcdoc Page 56 of 81

Taking avg. of last 3 years and cleaning the Series

```
In [73]:
```

```
canada['avglast3'] = (canada['2011']+canada['2012']+canada['2013'])/3
13 = canada['avglast3']
13 = 13.sort_values(ascending = False )
13 = 13.round()
13 = 13[13>2]
```

In [74]:

```
13.head(10)
```

Out[74]:

```
Country
Philippines
                                                           33541.0
China
                                                            31885.0
India
                                                           30510.0
Pakistan
                                                            10433.0
Iran (Islamic Republic of)
                                                             8768.0
United States of America
                                                             8023.0
United Kingdom of Great Britain and Northern Ireland
                                                             6075.0
Haiti
                                                             5508.0
France
                                                             5328.0
                                                             5052.0
Iraq
Name: avglast3, dtype: float64
```

Removing outliers

```
In [75]:

15 = 13[13<11000];
```

Calculating Standard Deviation for bins

```
In [76]:
    np.std(15)
Out[76]:
```

Creating bins

1629.5934270734047

about:srcdoc Page 57 of 81

In [77]:

```
type(15)
d15 = df(15)
d15
ahg = pd.Series(range(0,12000,1630))
bins = ahg
d15['binned'] = pd.cut(d15['avglast3'], bins)
```

Plotting the bar graph

In [78]:

```
out = d15['binned']
ax = out.value_counts(sort=False).plot.bar(rot=0, color="b", figsize=(16,4))
plt.show()
```


Bin values

```
In [79]:
```

```
dl5['binned'].value_counts(sort=True)
```

```
Out[79]:
```

```
(0, 1630] 144
(1630, 3260] 14
(3260, 4890] 7
(4890, 6520] 4
(9780, 11410] 1
(8150, 9780] 1
(6520, 8150] 1
Name: binned, dtype: int64
```

Countries showing similar trends (2011-2013), grouped

about:srcdoc Page 58 of 81

In [80]:

```
print('(9780, 11410)')
print(' {ho} {jo}'.format(ho = 15.index[0], jo = 15[0]))
print('')
print('')
print('(8150, 9780)')
print(' {ho} {jo}'.format(ho = 15.index[1], jo = 15[1]))
print('')
print('')
print('(6520, 8150]')
print(' {ho} {jo}'.format(ho = 15.index[2], jo = 15[2]))
print('')
print('')
print('(4890, 6520]')
print(' {jo}'.format(jo = 15[3:7]))
print('')
print('')
print('(3260, 4890]')
print(' {jo}'.format(jo = 15[7:14]))
print('')
print('')
print('(1630, 3260]')
print(' {jo}'.format(jo = 15[14:28]))
print('')
print('')
print('(0, 1630]')
print(' {jo}'.format(jo = 15[28:172]))
(9780, 11410]
Pakistan 10433.0
(8150, 9780)
 Iran (Islamic Republic of) 8768.0
(6520, 8150]
 United States of America 8023.0
(4890, 6520]
Country
United Kingdom of Great Britain and Northern Ireland
                                                          6075.0
Haiti
                                                          5508.0
France
                                                          5328.0
                                                          5052.0
Iraq
Name: avglast3, dtype: float64
(3260, 4890]
Country
Republic of Korea
                     4804.0
```

about:srcdoc Page 59 of 81

Egypt	4794.0	
Algeria	4143.0	
Mexico	4057.0	
Colombia	3913.0	
Morocco	3846.0	
Nigeria	3573.0	
Name: avglast3, dty	pe: float64	
(1630, 3260]		
Country		
Bangladesh		3041.0
Sri Lanka		3014.0
Ukraine		2422.0
Lebanon		2286.0
Afghanistan		2281.0
Jamaica		2240.0
Cameroon		2195.0
Russian Federation		2169.0
Israel		2016.0
Ethiopia		1878.0
Viet Nam		1855.0
Somalia		1715.0
Democratic Republic	of the Congo	1663.0
Germany		1657.0
Name: avglast3, dty	pe: float64	
(0, 1630]		
Country		
Romania	1625.0	

Romania 1625.0 Brazil 1621.0 Tunisia 1524.0 Eritrea 1412.0 1365.0 Jordan Equatorial Guinea 6.0 Mozambique 6.0 Brunei Darussalam 5.0 Cabo Verde 4.0 Tonga 3.0

Name: avglast3, Length: 144, dtype: float64

Plots

Comparison on basis of average of immigrants between years 2011 and 2013

about:srcdoc Page 60 of 81

Top 3 - excluding India, China and Philippines

```
In [81]:
```

```
a1 = 15[0:3].index.tolist()
canada.loc[a1, years].transpose().plot(figsize=(15,15));
plt.title('Immigration of {as1}'.format(as1 = a1));
plt.xlabel('Years');
plt.ylabel('Immigrants');
```


Inference

We can see that Pakistan and Iran show similar trend 2011 onwards, while on the other hand USA and Pakistan show similar trends between the years 2007 and 2011

Countries in Range - (3260, 6520]

about:srcdoc Page 61 of 81

In [82]:

```
years = list(map(str,range(1980,2014)))
a2 = 15[4:14].index.tolist()
canada.loc[a2, years].transpose().plot(figsize=(15,12));
plt.title('Immigration of {as2}'.format(as2 = a2));
plt.xlabel('Years');
plt.ylabel('Immigrants');
plt.ylim((0,7000));
```


Inference

We can see that all countries except South Korea show almost similar trend throughout from 1980 to 2013.

Countries in Range - (1630, 3260)

about:srcdoc Page 62 of 81

In [83]:

```
years1 = list(map(str,range(2000,2014)))
a4 = 15[14:28].index.tolist()
canada.loc[a4, years1].transpose().plot(figsize=(21,13));
plt.title('Immigration of {as4}'.format(as4 = a4));
plt.xlabel('Years');
plt.ylabel('Immigrants');
plt.ylim((0,6100));
```


Inference

For ease of comparison, timeline has been reduced to 14 years. Other than Sri Lanka (highest value, 2000) and Cameroon (lowest value, 2000) show similar trends throughout from 2000 to 2013.

Countries in Range - (1000, 1630)

about:srcdoc Page 63 of 81

In [84]:

```
a4 = 15[29:42].index.tolist()
canada.loc[a4, years1].transpose().plot(figsize=(19,13));
plt.title('Immigration of {as4}'.format(as4 = a4));
plt.xlabel('Years');
plt.ylabel('Immigrants');
plt.ylim((400,2800));
```


Inference

For ease of comparison, timeline has been reduced to 14 years. Except Brazil, which shows a sudden spike after 2006 and Bhutan, which is low throughout and values only spike in year 2011, all other countries are in the 500 - 2000 bracket with inconsistent trends.

Key comparisons and analysis

India

about:srcdoc Page 64 of 81

```
In [85]:
```

```
canada.loc[['India'], years].transpose().plot(figsize =(15,15));
plt.title('Immigration of India');
plt.xlabel('Years');
plt.ylabel('Immigrants');
```


Inference

Fist spike is observed during FY 1985-1986. Next spike is observed in 1990-1991. This can be attributed to Liberalization. Following that in 1995-1996 india became the fifth largest economy in world with 3.9% share in world GDP. We can see that 1999-2000 there is a spike. This can be attributed to the Y2k bug solution.

India and China

about:srcdoc Page 65 of 81

In [86]:

```
canada.loc[['China','India'], years].transpose().plot(figsize =(15,15));
plt.title('Immigration of China and India');
plt.xlabel('Years');
plt.ylabel('Immigrants');
```


Inference

Both countries show a steady growth rate, which starts to plateau after 2001.

China

China has strengthened its export sector, which has attributed to a decline in the increasing immigration rate.

about:srcdoc Page 66 of 81

Lebanon and Sri Lanka

In [87]:

```
a9 = ['Lebanon', 'Sri Lanka']
canada.loc[['Lebanon', 'Sri Lanka'], years].transpose().plot(figsize=(15,15));
plt.title('Immigration of {as9}'.format(as9 = a9));
plt.xlabel('Years');
plt.ylabel('Immigrants');
```


about:srcdoc Page 67 of 81

Inference

Sri Lanka

Increased privatization, economic reform, and a stress on export-oriented growth helped improve the economic performance, increasing GDP growth to 7% in 1993. This attributes to the drop in immigrants from Sri Lanka.

Lebanon

The Lebanese Civil war which ended in 1990, severely damaged the Lebanese economy. This dropped continuously for four years until 1994, when the Real GDP rose to 8%. This was possible because of the government's 20 billion dollar reconstruction program, which managed to create new jobs, making way for immigrants to return back

Pakistan and South Korea (Republic of Korea)

```
In [88]:
```

```
a9 = ['Pakistan',' Republic of Korea']
canada.loc[['Pakistan', 'Republic of Korea'], years].transpose().plot(figsize=
(15,15));
plt.title('Immigration of {as9}'.format(as9 = a9));
plt.xlabel('Years');
plt.ylabel('Immigrants');
```

about:srcdoc Page 68 of 81

about:srcdoc Page 69 of 81

Inference

Both countries follow a similar trendline. The graph shows steady increase till about the year 1995. Both countries show a drop in the 2000-2002 period.

Pakistan:

In 1994 inflation rate in Pakistan went to a whopping 14.5%. The following year the GDP growth rate dropped from 4.5% to 1.7%, lowest in decades. Pakistan's GDP growth rate dropped from 7.68% to 1.7% in a period of 4 years.

In 1999 Pervez Musharraf lead a millitary coup and overthrew the Nawaz Sharif government. This resulted in Liberalization. During Musharraf's term (1999-2008), around 11,9 million new jobs were created. Therefore this can be attributed to the drop in immigrants. Also, immigration was affected due to various events that happened in USA during 2001.

South Korea:

Korea shows a spike in the year 1997, this indicates the Asian Financial Crisis. The Korean Won began to depreciate heavily. Within months, a third of Korea's merchant banks were closed. Korean economy shrinked at an average of -6.65% per year. Conglomerates became a casuality of this.

In 2000, the Korean economy shifted to a more market oriented economy. Growth rates touched closer to 11%, highest in decades. This resulted a drop in immigrants.

Individual trend analysis

Romania

about:srcdoc Page 70 of 81

In [89]:

```
years = list(map(str,range(1980,2014)))
canada.loc[['Romania'], years].transpose().plot(figsize=(15,15));
plt.title('Immigration of Romania');
plt.xlabel('Years');
plt.ylabel('Immigrants');
```


Inference

Point of Interest: 2004-2006 period.

This was the period of FDI in Romania. Demand of Romanian products increased in EU. Also, as Romania closed in towards joining EU, immigration to other countries substantially reduced,

about:srcdoc Page 71 of 81

Philippines

In [90]:

```
years = list(map(str,range(1980,2014)))
canada.loc[['Philippines'], years].transpose().plot(figsize=(15,15));
plt.title('Immigration of Philippines');
plt.xlabel('Years');
plt.ylabel('Immigrants');
```


about:srcdoc Page 72 of 81

Inference

Points of Interests: 1985 and 1998

In the 1980s, annual GDP growth rate dropped to 2%, which was the lowest in decades. This resulted in people immigrating for jobs. Just like South Korea, the Asian Financial Crisis affected Philippines, which explains the spike after 1998,

United Kingdom

```
In [91]:
```

```
years = list(map(str,range(1980,2014)))
canada.loc[['United Kingdom of Great Britain and Northern Ireland'], years].tr
anspose().plot(figsize=(15,15));
plt.title('Immigration of United Kingdom of Great Britain and Northern Ireland
');
plt.xlabel('Years');
plt.ylabel('Immigrants');
```

about:srcdoc Page 73 of 81

Inference

Points of interests: 1984-1986 and 1994

In 1984, an all time high unemployment rate of 11.9% was witnessed in the UK, forcing people to search for jobs in other countries. This attributes to the spike in 1984-1985.

The John Major government in 1990 fucussed to creating new jobs, which substancially rediced the unemployment rate. This resulted in tyhe immigrants returning back to the UK, which can be seen as the graph is seen dipping post 1994.

Viet Nam

about:srcdoc Page 74 of 81

In [92]:

```
years = list(map(str,range(1980,2014)))
canada.loc[['Viet Nam'], years].transpose().plot(figsize=(15,15));
plt.title('Immigration of Viet Nam');
plt.xlabel('Years');
plt.ylabel('Immigrants');
```


Inference

Points of interest: 1983-1998 and 1993,

Vietnam entered its Third Five-Year-Plan scheme in 1981. This resulted in a massive economic failure, slowing down the economic growth heavily. The government swiftly corrected its path. Increase in exports is the main reason for immigrants to drop post 1993. This was done to bring back the economy on track.

about:srcdoc Page 75 of 81

Assignment 2

Mumbai Crimes (line)

In [93]:

 $indcri = pd.read_csv('https://storage.googleapis.com/kagglesdsdata/datasets\$2F 1850\$2F3879\$2Fcrime\$2Fcrime\$2F01_District_wise_crimes_committed_IPC_2001_2012.csv?GoogleAccessId=gcp-kaggle-com@kaggle-161607.iam.gserviceaccount.com&Expires=1599078097&Signature=JDSu2lsgzbxZ4cxzIe4Ib4Tm6qYbCR4DpiywJPr5tbFQyTGGv0N019slzn\$2BWP0qDORJuKwhVhjvdo3J5\$2FcPfjTWnRMKLD\$2FHcnlksjbB\$2F9m7LE0\$2FGE\$2FeQt4pBmaBaVVdT6\$2F944FheXw0GXFE\$2BomBRJOvme9hZOxQ2rmCxj4WsxhvLEgcKvgtUKytHES\$2Fl\$2FMwbvtF7gYuwzmK\$2BmJL9yaO\$2Fqyk3vwyUjNvYo7lf\$2FMpWM8YAAnyClosbta3hMPwEsf01K27GgVhCzMOykQAB45vZUvVfRoWU3o1\$2BxvHKw8kdKVCL9ZSy7tefz8IB5nPydgJv8\$2Bznfqun\$2BudngkGe5C\$2BPZA\$3D\$3D')$

about:srcdoc Page 76 of 81

In [94]:

df = indcri
indcri.head()

Out[94]:

	STATE/UT	DISTRICT	YEAR	MURDER	ATTEMPT TO MURDER	CULPABLE HOMICIDE NOT AMOUNTING TO MURDER	RAPE	CUSTODIAL RAPE
C	ANDHRA PRADESH	ADILABAD	2001	101	60	17	50	0
1	ANDHRA PRADESH	ANANTAPUR	2001	151	125	1	23	0
2	2 ANDHRA PRADESH	CHITTOOR	2001	101	57	2	27	0
3	ANDHRA PRADESH	CUDDAPAH	2001	80	53	1	20	0
4	ANDHRA PRADESH	EAST GODAVARI	2001	82	67	1	23	0

5 rows × 33 columns

about:srcdoc Page 77 of 81

In [95]:

```
mumcri = df.loc[df['DISTRICT'] == 'MUMBAI']
mumcri.head(10)
```

Out[95]:

	STATE/UT	DISTRICT	YEAR	MURDER	ATTEMPT TO MURDER	CULPABLE HOMICIDE NOT AMOUNTING TO MURDER	RAPE	CUSTC
370	MAHARASHTRA	MUMBAI	2001	295	200	6	127	
1087	MAHARASHTRA	MUMBAI	2002	252	134	7	128	
1816	MAHARASHTRA	MUMBAI	2003	242	115	8	133	
2544	MAHARASHTRA	MUMBAI	2004	253	127	4	187	
3278	MAHARASHTRA	MUMBAI	2005	212	136	8	201	

5 rows × 33 columns

about:srcdoc Page 78 of 81

In [96]:

```
mumcri.columns
```

```
Out[96]:
```

```
Index(['STATE/UT', 'DISTRICT', 'YEAR', 'MURDER', 'ATTEMPT TO MURDE
R',
       'CULPABLE HOMICIDE NOT AMOUNTING TO MURDER', 'RAPE', 'CUSTO
DIAL RAPE',
       'OTHER RAPE', 'KIDNAPPING & ABDUCTION',
       'KIDNAPPING AND ABDUCTION OF WOMEN AND GIRLS',
       'KIDNAPPING AND ABDUCTION OF OTHERS', 'DACOITY'
       'PREPARATION AND ASSEMBLY FOR DACOITY', 'ROBBERY', 'BURGLAR
Y', 'THEFT',
       'AUTO THEFT', 'OTHER THEFT', 'RIOTS', 'CRIMINAL BREACH OF T
RUST',
       'CHEATING', 'COUNTERFIETING', 'ARSON', 'HURT/GREVIOUS HURT'
       'DOWRY DEATHS', 'ASSAULT ON WOMEN WITH INTENT TO OUTRAGE HE
R MODESTY',
       'INSULT TO MODESTY OF WOMEN', 'CRUELTY BY HUSBAND OR HIS RE
LATIVES',
       'IMPORTATION OF GIRLS FROM FOREIGN COUNTRIES',
       'CAUSING DEATH BY NEGLIGENCE', 'OTHER IPC CRIMES', 'TOTAL I
PC CRIMES'],
      dtype='object')
```

In [97]:

```
plt.plot('YEAR', 'TOTAL IPC CRIMES', data=mumcri);
```


PyWaffle

about:srcdoc Page 79 of 81

In [98]:

```
import matplotlib as mpl
import matplotlib.pyplot as plt
import matplotlib.patches as mpatches
from pywaffle import Waffle
%matplotlib inline
```

In [99]:

```
scan = canada.loc[['Sweden', 'Denmark', 'Norway'], :]
scan
```

Out[99]:

	Continent	Continent- Region	DevName	1980	1981	1982	1983	1984	1985	1986	
Country											
Sweden	Europe	Northern Europe	Developed regions	281	308	222	176	128	158	187	
Denmark	Europe	Northern Europe	Developed regions	272	293	299	106	93	73	93	
Norway	Europe	Northern Europe	Developed regions	116	77	106	51	31	54	56	

3 rows × 40 columns

In [100]:

about:srcdoc Page 80 of 81

In [101]:

about:srcdoc Page 81 of 81