QUÍMICA COMPUTACIONAL

QM 206

PARCIAL II

INTEGRANTES: STEPHANIE MOJICA 4-819-1508; MARÍA CÓRDOBA 4-819-2142

Los problemas se pueden resolver en grupos con un número máximo de 4 estudiantes. Para cada uno deben presentar sus resultados por separado en Google.colab. Se evaluará la presentación, fundamentación teórica, desarrollo del programa, gráficas, resultados obtenidos.

PROBLEMA 1

Los siguientes datos fueron obtenidos de un experimento para determinar las fracciones molares de una mezcla de pentano y dodecano a diferentes temperaturas. En la tabla x1 representa la fracción molar del pentano en el líquido y y1 a la fracción molar del pentano en la fase de vapor. T/K es la temperatura en Kelvin de cada medición.

x1	T/K	y1
0.000000	474.03	0.000000
0.011400	463.81	0.318400
0.042800	453.60	0.530700
0.084700	425.76	0.822800
0.188500	389.51	0.983200
0.233400	367.58	0.990000
0.385400	345.35	0.998300
0.421000	338.24	0.999000
0.488200	328.52	0.999000
0.787200	304.69	0.999000
0.959200	299.59	0.999000
1.000000	298.88	1.000000

• Grafique estos datos con T/K en la ordenada y las fracciones molares x1 y y1 en la abscisa. Procure una buena presentación para la gráfica

El gráfico resultante debe ser similar al siguiente:

PROBLEMA RESUELTO

```
[6] import numpy as np import matplotlib.pyplot as plt import pandas as pd

x1=[0.000000,0.011400,0.042800,0.084700,0.188500,0.233400,0.385400,0.421000,0.488200,0.787200,0.959200,1.000000]
TK=[474.03,463.81,453.60,425.76,389.51,367.58,345.35,338.24,328.52,304.69,299.59,298.88]
y1=[0.000000,0.318400,0.530700,0.22800,0.983200,0.990000,0.999300,0.999000,0.999000,0.999000,1.000000]
plt.plot(x1,TK,color="black")
plt.plot(x1,TK,color="black")
plt.plot(y1,TK,color="purple")
plt.plot(y1,TK,color="purple")
plt.plot(y1,TK,color="purple")
plt.ylabel("Tk,y1")
plt.ylabel("Temperatura/k")
plt.title("T/K vs X1-y")
plt.show()
```


PROBLEMA 2

En la siguiente tabla se encuentran una serie de datos de los elementos de la tabla periódica:

 $\frac{https://docs.google.com/spreadsheets/d/1WUZstMoBDohgOIxHd7V2UzlMIaqhVoBVpLev02aeA}{MA/edit?usp=sharing}$

- a. Convierta este archivo a el formato CSV y súbalo a su github
- b. Diseñe un programa que lea estos datos y los coloque en un dataframe
- c. Grafique Punto de Ebullición (PE) y Punto de fusión (PF) vs Número Atómico NA

URL: https://raw.githubusercontent.com/mariace2503/PARCIAL-N-2-MAR-A-C-RDOBA/main/TABLA%20DE%20DATOS%20PARCIAL.csv

r=pa. F	read_csv(u	rı)													
														51 to 73	of 73 entries Filter
ndex	Name	NA	Symbol	Family	PF	PE	Densidad	PA	RadioAtomico	PrimeralP	specific heatcapacity	thermal conductivity	electrical conductivity	heat of fusion	Heat of Vaporization A
25	iron	26	Fe	Transition Metal	1808	3146.0	7.874	55.8	1.72	7.87	0.45	80.0	11.0	14.0	350
13	silicon	14	Si	Carbon	1683	2953.0	2.33	28.1	1.44	8.15	0.7	150.0	0.0004	50.0	359
26	cobalt	27	Со	Transition Metal	1768	3170.0	8.9	58.9	1.67	7.86	0.42	100.0	18.0	16.0	373
27	nickel	28	Ni	Transition Metal	1726	3193.0	8.9	58.7	1.62	7.64	0.44	91.0	15.0	17.0	378
38	yttrium	39	Υ	Transition Metal	1795	3577.0	4.47	88.9	2.27	6.38	0.3	17.0	1.8	17.0	393
45	palladium	46	Pd	Transition Metal	1825	3213.0	12.0	106.4	1.79	8.34	0.24	72.0	10.0	17.0	393
58	tungsten	74	W	Transition Metal	3695	5936.0	19.3	183.9	2.02	7.98	0.13	170.0	18.0	35.0	423
21	titanium	22	Ti	Transition Metal	1935	3562.0	4.54	47.9	2.0	6.82	0.52	22.0	2.6	19.0	425
22	vanadium	22	V	Transition	2163	3682.0	6.11	50.0	1 02	6.74	0.40	31.0	4.0	23.0	447

```
ebullición=df["PE"]
fusión=df["PF"]
NúmeroAT=df["PA"]
plt.plot(NúmeroAT,ebullición,color="green")
plt.plot(NúmeroAT,fusión,color="blue")
plt.xlabel("PE y PF")
plt.ylabel("Número Atómico")
plt.title("Punto de Ebullición (PE) y Punto de fusión (PF) vs Número Atómico N")
plt.show()
```


PROBLEMA 3

Para la secuencia de DNA

- Escriba un programa de Python que calcule el número total de bases nitrogenadas
- Luego, escriba una función que calcule el número de A, C, T y G que hay en esta secuencia
- Calcule las veces que se repite el patrón TGATCA en la secuencia de DNA

PROBLEMA 4

- Grafique la función $f(x)=3.0*r_2*exp(-1.5*x)*sin(2*x*PI)$ en el intervalo (0,10)

```
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd

x=np.arange(0,10,1)
y=3.0*x*np.exp(-1.5*x)*np.sin(2*x*np.pi)
plt.plot(x,y)
plt.show()
```


 $\begin{array}{llll} GOOGLE & COLAB: & \underline{https://colab.research.google.com/drive/1XkiOdgtJQA--} \\ \underline{4nWmTwsLRArHtwZnMReP\#scrollTo=WJrx2jiBoo4T} \end{array}$