Planificação Aula 12 (E@D)

TP4D: 3ª feira, 27/04, 16h30

Notas: 1) Passar para o caderno ou imprimir esta planificação e estudá-la antes da aula.

- 2) A aula será essencialmente dedicada à resolução dos exercícios apresentados.
- 3) Depois da aula resolver os TPCs indicados no final desta planificação.

Slides 14 a 17 Limites

Ler: Delinição de limite de uma sucessão (slide 15)

. Definição de limite de uma função de várias variáveis reais (slide 16)

· Exemplos (slides 15 e 17)

Slides 21 e 22 Métodos para provar que um limite existe

1º Método: Produto de um infinitérimo por uma função limitada

Proposicão: Sejann $f \in g: D \subseteq \mathbb{R}^2 \to \mathbb{R}$ e(a,b) um ponto de acumulação de D. (slide 21) Se live f(x,y) = 0 e g e limitada em $D \cap B_n((a,b))$ para algum n, $(x,y) \to (a,b)$ infinitéximo então $\lim_{(x_1,y)\to(a_1b)} f(x_1y) \times g(x_1y) = 0$

Exercício 1: Calcule, caso existam:

a)
$$\lim_{(x,y)\to(2,0)} (x^2+y-4) \times 1800 \left(\frac{1}{y}\right)$$

20 Método: Mudança de Variável

Propoxição: Sejam f, g e h três funções tais que f(x,y) = g(h(x,y)), com (slide 22) domínio D, e seja (a,b) um ponto de acumulação de D. Suponha-se que $\lim_{(x,y)\to(a,b)} h(x,y) = c$ e $\lim_{(x,y)\to(a,b)} g(u) = l$.

Se g é contima em c (ou g não está definida em c) então

lim f(x,y) = l (x,y) - (a,b)

Exercício 2: Calcule, caso existam:

a)
$$\lim_{(x,y)\to(2,2)} \frac{2^{y^2-2x}-1}{3(y^2-2x)}$$

b)
$$\lim_{(x,y)\to(0,1)} \frac{1-\cos(x+y-1)}{(x+y-1)^2}$$

5lide 18 Limite segundo subconjuntos (limites trajetoriais)

Definição: Sejam
$$f: D \subseteq \mathbb{R}^2 \to \mathbb{R}$$
, $S \subset D$ e (a,b) um ponto de acumuloção de D .

Diz-se que o limite de $f(x,y)$ quando (x,y) tende para (a,b) restrito a S e' l se l lim $f(x,y) = l$.

 $(x,y) \to (a,b)$
 $(x,y) \in S$

Nota: Ver exemplo do slide 18

Exercício 3: Seja
$$f(x_1y) = \frac{3x^2-y^2}{x^2+y^2}$$
. Calcule $\lim_{(x_1y)\to(0,0)} f(x_1y) = \lim_{(x_1y)\to(0,0)} f(x_1y) = \lim_{(x_1y)\to(0,0)} f(x_1y) \in \mathbb{R}$

onde 5= } (x,y) \(\ext{IR}^2 : x = 0 \(\text{ } y \ \ \ext{ } \\ \ext{ } \\ \ext{R} = \((x,y) \(\ext{IR}^2 : y = x \) \(\alpha \ \ext{ } \ext{ } \ext{ } \)

Slides 19 e 20 Método para provar que um limite mão existe

Observação: Para funções de 1 variavel termos que existe limite num ponto se os limites laterais nesse ponto existem e são iguais, isto é,
$$\lim_{x\to a} f(x) = l <= 7 \lim_{x\to a^+} f(x) = \lim_{x\to a^-} f(x) = l$$

Para funções de 2 variaveis, a observação anterior generaliza-se da seguinte forma:

Broposição: Sejam
$$f: D \subseteq \mathbb{R}^2 \to \mathbb{R}$$
, $5 \in D$ e (a,b) um ponto de a cumulação de 5 .
Se existir lim $f(x,y)$ então também existe lim $f(x,y) = (x,y) \to (a,b)$ $(x,y) = (a,b)$ $(x,y) \in S$ e são os dois riguais.

Através da proposição anterior obtemos a seguinte forma de provar que um limite não existe. (importante)

Observação: Sejam f: D S IR2 - IR, S C D e R C D e (a,b) um ponto de acumulação de S e R.

• Se lim $f(x_1y) \neq \lim_{(x_1y) \to (a_1b)} f(x_1y)$, or pelo menos um destes $(x_1y) \to (a_1b)$ $(x_1y) \in \mathbb{R}$

limites não existe, então <u>não existe</u> lim f(x,y)

· Se os limites trajetoriais anteriores forem iguais mada se pode concluir.

Exercício 4: resando o exercício 3, o que pode conclus sobre a existência do limite $\lim_{(x,y)\to(0,0)} \frac{3x^2-y^2}{x^2+y^2}.$

Método alternativo para provar que um limite mão existe La usar uma trajetória que depende de um parâmetro m ER

Para provar que lim f(x,y) <u>mão existe</u> usar uma das trajetórias

$$y-b = m(x-a)$$
 $x-a = m(y-b)$
 $y-b = m(x-a)^2$ ou $x-a = m(y-b)^2$ $(m \in \mathbb{R})$
 $y-b = m(x-a)^3$ $x-a = m(y-b)^3$

de tal forma que o limite trajetorial dependa de m.

Exercício 5: Mostre que mão existem os limites:

a)
$$\lim_{(x,y)\to(0,1)} \frac{3x^2-(y-1)^2}{x^2+(y-1)^2}$$

Slides 23 e 24 Continuidade

Definição: • Uma função
$$f: D \subseteq \mathbb{R}^2 \longrightarrow \mathbb{R}$$
 diz-se continua num ponto de acumulação $(a,b) \in D$ se

$$\lim_{(x,y)\to(a,b)}f(x,y)=f(a,b)$$

· f é continua mum subconjunto S⊆D se é continua em todos os pontos de S.

Exercício 6: Verifique se
$$f(x_1y) = \begin{cases} \frac{\text{sen}((x-3)^2 + y^2)}{(x-3)^2 + y^2} & \text{se } (x_1y) \neq (x_1y) \\ 0 & \text{se } (x_1y) = (x_1y) \end{cases}$$

é continua em (3,0).

Exercício 7: Verifique se
$$f(\pi_{i}y) = \begin{cases} \frac{xy^2}{x^2+y^4} & \text{se } (\pi_{i}y) \neq (o_{i}o) \\ o & \text{se } (\pi_{i}y) = (o_{i}o) \end{cases}$$

e' continua em $(o_{i}o)$.

Nota: les propriedades das funções continuas (slide 24)

Slides 26 a 31 Derivadas Panciais

Recordar o caso de uma variavel

Perivada de
$$f$$
 em $x = a \rightarrow f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$

Notações: f'(a) ou df (a)

Geometricamente, se f'(a) existir, representa o declive da reta tangente ao gráfico de f no ponto (a, f(a))

Derivadas parciais de to ordem

Seja f(x,y) uma função de a variorieis.

Nota: As derivadas parciais podem ser calculadas usando a definição dada a seguir, ou as regras de derivação (ver final desta aula).
Nalguns casos so se pode usar a definição (por exemplo mos pontos onde a função muda de samo).

Definição: Seja
$$f: D \subseteq \mathbb{R}^2 \to \mathbb{R}$$
 e $(a,b) \in int(D)$. Tem-se que:
• $\frac{\partial f}{\partial x}(a,b) = \lim_{h \to 0} \frac{f(a+h,b) - f(a,b)}{h}$ (Se os limites
• $\frac{\partial f}{\partial y}(a,b) = \lim_{h \to 0} \frac{f(a,b+h) - f(a,b)}{h}$ existinem)

Interpretação geometrica

La 2f (a,b) dá-nos o declive da neta contida no plano y=b e que é tangente no ponto P=(a,b,f(a,b)) à curva de interseção do gráfico de f com aquele plano. (ver applets slides 27 e 28)

Nota: A definição anterior pode ser adaptada para funções com mais variaveis

Exercício 8: Seja
$$f(x,y) = y^2 - 2xy$$
. Calcular, por definição,

a)
$$\frac{\partial f}{\partial x}(o_{i}1)$$
 b) $\frac{\partial f}{\partial y}(o_{i}1)$

Exercício 9: Seja
$$f(x_1y) = \begin{cases} \frac{x^3 - y^3}{x^2 + y^2} & \text{se } (x_1y) \neq (0,0) \\ 0 & \text{se } (x_1y) = (0,0) \end{cases}$$
. Calcular:

a)
$$f'_{x}(0,0)$$
 b) $f'_{y}(0,0)$

Calcular derivadas parciais usando as regras de derivação

Exercício 10: Calcule as derivadas parciais de 1-a ordem das seguintes penções:

a)
$$f(x,y) = 2x^5 - y^3 + 2y + 7$$

b)
$$g(a,y) = \alpha^3 y^2$$

e)
$$h(x,y) = lm(5x-y) + arcsen(x^3)$$

d)
$$i(x_1y_1z) = x^3 \cos(z-5x) + e^{4y}$$
 seny

Observação: Ver exemplo do slide 31 sobre derivação de funções por ramos

Vetor gradiente de f(x,y)

Exercício 11: Usando o exercício 10b), calcular Vg (-1,2).

TPCs: Exercícios do slide 25

Folha prática 3: 5,6,7,10

40 Teste, 13/04/2018 - Ex. 60)