l'essentie

Les filtres non récursifs sont caractérisés par une équation de récurrence dans laquelle l'échantillon de sortie y, ne dépend que des échantillons d'entrée $X_{n}, X_{n-1}, X_{n-2},...$

Les filtres récursifs sont caractérisés par une équation de récurrence dans laquelle l'échantillon de sortie y_n dépend non seulement des échantillons d'entrée x_n , x_{n-1} , x_{n-2} ,... mais aussi des échantillons antérieurs de sortie

Les filtres à réponse impulsionnelle finie ou filtres RIF ont une réponse impulsionnelle ne comportant qu'un nombre fini d'échantillons non nuls.

Les filtres non récursifs sont toujours à réponse impulsionnelle finie.

Les filtres à réponse impulsionnelle infinie ou filtres RII ont une réponse impulsionnelle composée d'une infinité d'échantillons.

Les filtres récursifs sont, sauf cas rares, à réponse impulsionnelle infinie.

Un filtre numérique est stable si sa réponse impulsionnelle tend vers zéro lorsque $n \to +\infty$.

Les filtres non récursifs sont toujours stables.

Un filtre numérique à réponse impulsionnelle infinie est stable si tous les pôles de sa transmittance sont de module strictement inférieur à 1.

La réponse en fréquence <u>H</u>(jω) d'un filtre numérique se détermine à partir de sa transmittance H(z) en effectuant le changement de variable $z=e^{j\omega T_{\rm E}}$, avec $\omega = 2\pi f$ la pulsation du signal d'entrée et T_e la période d'échantillonnage.

QCM

Pour chaque question, indiquez la ou les bonnes réponses.

- 1 On considère un filtre de transmittance $H(z) = \frac{1-z^{-2}}{2}$:
 - **a** Ce filtre est instable.
 - **b)** Il s'agit d'un filtre non récursif.
 - \Box c) Son équation de récurrence est $y_n = 0.5(x_n y_{n-2})$.
- 2 Un filtre numérique est caractérisé par l'équation de récurrence suivante : $y_{n} = 0.5(x_{n} - y_{n-1}).$
 - a) La réponse impulsionnelle du filtre est $\left\{\frac{1}{2}; \frac{1}{4}; \frac{1}{8}; \frac{1}{16}; \frac{1}{32}; \dots\right\}$.
 - **b)** La transmittance du filtre est $H(z) = \frac{0.5z}{z 0.5}$. **c)** Ce filtre est stable.
- 3 Un filtre numérique est caractérisé par l'équation de récurrence suivante : $y_n = 0.2x_n + 0.8y_{n-1}$
 - a) La transmittance du filtre est $H(z) = \frac{0.2}{z + 0.8}$
 - **b)** $z_1 = 0.8$ est un pôle de H(z).
 - **c)** La réponse indicielle unitaire du filtre est {0,2 ; 0,36 ; 0,49 ; 0,59 ; ...}.
- M Un filtre numérique est caractérisé par le schéma bloc structurel suivant :

- **a)** La transmittance du filtre est $H(z) = \frac{z+0.4}{z-0.6}$
- **b)** Le filtre est instable.
- **c)** Il s'agit d'un filtre RII.

Exercice résolu

Un filtre numérique est caractérisé par sa transmittance : $H(z) = \frac{1}{z-a}$.

1. Déterminer l'équation de récurrence liant les échantillons des séquences de sortie $\{y_i\}$ et d'entrée $\{x_i\}$. En déduire s'il s'agit d'un filtre récursif ou non récursif.