

Yucheng Low, PhD Chief Architect

GraphLab Philosophy Users-First Architecture

User

Architecture

Systems

User

Architecture

Systems

Systems-First Architectures

Systems define constraints. Optimize for performance.

PowerGraph

User

Architecture

Systems

Users-First Architectures

Users define constraints. Optimize for user interaction.

What is a Users-First Architecture for Data Science?

SFrame and SGraph

Built by data scientists, for data scientists.

Building on decades of database and systems research.

SFrame: Scalable Tabular Data Manipulation

SGraph: Scalable Graph Manipulation

Enabling users to easily and efficiently translate between both representations to get the best of both worlds.

SFrame: Scalable Tabular Data Manipulation

SGraph: Scalable Graph Manipulation

SFrame: Scalable Tabular Data Manipulation

SGraph: Scalable Graph Manipulation

Pain Point #1: Resource Limits

Jobs fail because:

- Machine run out of memory
- Did not set Java Heap Size correctly
- Resource Configuration X needs to be bigger.

- Graceful Degradation as 1st principle
 - Always Works

Pain Point #2: Too Strict or Too Weak Schemas

We want strong schema types.

We also want weak schema types.

Missing Values

- Graceful Degradation as 1st principle
 - Always Works
- Rich Datatypes
 - Strong schema types: int, double, string...
 - Weak schema types: list, dictionary

- Graceful Degradation as 1st principle
 - Always Works
- Rich Datatypes
 - Strong schema types: int, double, string...
 - · Weak schema types: list, dictionary

Pain Point #3: Feature Manipulation

Difficult or costly to inspect existing features and create new features.

Hard to perform data exploration.

- Graceful Degradation as 1st principle
 - Always Works

Rich Datatypes

- Strong schema types: int, double, string...
- Weak schema types: list, dictionary

Columnar Architecture

- Easy feature engineering + Vectorized feature operations.
- Immutable columns + Lazy evaluation
- Statistics + visualization + sketches

SFrame Python API Example

```
Make a little SFrame of 1 column and 5 values:
sf = gl.SFrame({(x':[1,2,3,4,5])})
Normalizes the column x:
sf['x'] = sf['x'] / sf['x'].sum()
Uses a python lambda to create a new column:
sf['x-squared'] = sf['x'].apply(lambda x: x*x)
Create a new column using a vectorized operator:
sf['x-cubed'] = sf['x-squared'] * sf['x']
Create a new SFrame taking only 2 of the columns:
sf2 = sf[['x','x-squared']]
```


SFrame Querying

Supports most typical SQL SELECT operations using a Pythonic syntax.

SQL

```
SELECT Book.title AS title, COUNT(*) AS authors
   FROM Book
   JOIN Book_author ON Book.isbn = Book_author.isbn
   GROUP BY Book.title;
```

SFrame Python

```
Book.join(Book_author, on='isbn')
    .groupby('title', {'authors':gl.aggregate.COUNT})
```


Netflix Dataset,
99M rows, 3 columns, ints
1.4GB raw

289MB gzip compressed

Type aware compression:

- Variable Bit length Encode
- Frame Of Reference Encode
- ZigZag Encode
- Delta / Delta ZigZag Encode
- Dictionary Encode
- General Purpose LZ4

Netflix Dataset,
99M rows, 3 columns, ints
1.4GB raw
289MB gzip compressed

Type aware compression:

- Variable Bit length Encode
- Frame Of Reference Encode
- ZigZag Encode
- Delta / Delta ZigZag Encode
- Dictionary Encode
- General Purpose LZ4

Netflix Dataset, 99M rows, 3 columns, ints

1.4GB raw289MB gzip compressed

User

 \rightarrow

176 MB

14.2 bits/int

→ 257 KB

0.02 bits/int

Rating

Movie

→ 47 MB

3.8 bits/int

Total

 \rightarrow

223MB

SFrame File

Type aware compression:

- Variable Bit length Encode
- Frame Of Reference Encode
- ZigZag Encode
- Delta / Delta ZigZag Encode
- Dictionary Encode
- General Purpose LZ4

10s

Netflix Dataset,
99M rows, 3 columns, mas

1.4GB raw289MB gzip compressed

Movie → 257 KB

Rating

→ 47 MB

Total \rightarrow

14.2 bits/int

0.02 bits/int

3.8 bits/int

176 MB

SFrames Distributed

The choice of distributed or local execution is a question of query optimization.

- Distributed Dataflow
- Columnar Query Optimizations
- Communicate columnar compressed blocks rather than row tuples.

SFrame: Scalable Tabular Data Manipulation

SGraph: Scalable Graph Manipulation

SFrame: Scalable Tabular Data Manipulation

SGraph: Scalable Graph Manipulation

SGraph

- SFrame backed graph representation.
 Inherits SFrame properties.
 - Data types, External Memory, Columnar, compression, etc.

 Layout optimized for batch external memory computation.

Vertices Partitioned into p = 4 SFrames.

Vertex SFrames

1

2

3

Vertices Partitioned into p = 4 SFrames.

Vertex SFrames

1

2

id	Name	Address	ZipCode
1011	John		98105
2131	Jack	•••	98102

3

Edges partitioned into $p^2 = 16$ SFrames.

V	er	te	X
SF	ra	m	es

Edge SFrames

1

2

3

(1,1)	(1,2)	(1,3)	(1,4)
(2,1)	(2,2)	(2,3)	(2,4)
(3,1)	(3,2)	(3,3)	(3,4)
(4,1)	(4,2)	(4,3)	(4,4)

Edges partitioned into p^2 = 16 SFrames.

Vertex SFrames

Edge SFrames

1

2

3

(1,1)	(1,2)	(1,3)	(1,4)
(2,1)	(2,2)	(2,3)	(2,4)
(3,1)	(3,2)	(3,3)	(3,4)
(4,1)	(4,2)	(4,3)	(4,4)

Edges partitioned into p^2 = 16 SFrames.

Vertex SFrames

Edge SFrames

1

2

3

(1,1)	(1,2)	(1,3)	(1,4)
(2,1)	(2,2)	(2,3)	(2,4)
(3,1)	(3,2)	(3,3)	(3,4)
(4,1)	(4,2)	(4,3)	(4,4)

Vertex SFrames

Edge SFrames

Vertex SFrames

Deep Integration of SFrames and SGraphs

- Seamless interaction between graph data and table data.
- Queries can be performed easily across graph and tables.

Demo

SFrame: Scalable Tabular Data Manipulation

SGraph: Scalable Graph Manipulation

User-first architecture.
Built by data scientists,
for data scientists.

