

Identifying Massive Black Holes by Analyzing Microlensing Lightcurves

Christian Chimezie (self) | Anja von der Linden, PhD (supervisor) | Radhakrishnan Srinivasan (collaborator)

Department of Physics and Astronomy

Background

- Gravitational lensing occurs when there is a massive object between a source and observer whose gravitational field distorts the light rays reaching the observer
- Microlensing is a form of gravitational lensing in which there is a very noticeable change in intensity (brightness) over the course of the event.
- Our goal is to utilize the technique of gravitational microlensing to locate massive blackholes ($M \ge 10M\odot$).

Lightcurves

- These are are the "tool of the trade" in regards to visualizing microlensing phenomena.
- Simply a graph of intensity vs time for microlensing "event".
- Yield four important parameters:
- \circ Characteristic time scale (t_E)
- \circ Time of max intensity (T_{max})
- Impact parameter (p)
- \circ Incident intensity (I_0)
- Events with very long characteristic time scale or whose lightcurve has a large reduced chi square values are much more interesting.

the standard lightcurve

Source Source Lens

diagram₂ of gravitational lensing event

image₃ of an Einstein ring

oglelib

- There is an abundance of microlensing data available courtesy of OGLE₁ project.
- Created open-source python library for retrieving and interacting with data stored on OGLE ftp server.

Data Mining

- Utilized oglelib download functionality to create SQL database of more than 19,000 microlensing events.
- Gleaned some important insights:
- Event with highest reduced chi square value:
 2002-blg-80
- \circ Event with longest t_E value: 2007-blg-35
- Average incident intensity of objects being lensed $I_{0,avg} \approx 18.45$
- Average characteristic timescale: $t_{E,avg} \approx 30.768$ days
- Average reduced chi square: $rcs_{avg} \approx 30.42$

Exciting prospects

event with rcs value of 301.31

event with t_E value of 401.09 days

Future Projects

- There is great potential for the application of machine learning into this kind of research.
- The vast microlensing data archive will be invaluable in training machine learning models to do the hard work of discerning which events are truly "interesting".

