Eine Woche, ein Beispiel 6.4. basics of fields

This document is aimed for people who have enough mathematical maturity, but miss the chance and time to study Galois theory. For a (relative) complete study of Galois theory which takes time, please see [GTM167].

- 1. classical motivation
- 2. common confusion
- 3. field extension
- 4. examples of algebraic closed field

1 classical motivation

	ruler-and-compass const	truction 尺规作图	solving higher degree equ	(ations #根公式
possible	<u></u>	Cos 25 }	deg F ≤4	×, F(x) =0
impossible	Squaring the circle Doubling the cube Angle trisection		deg F≥5	×, †(x) =0

Ex. Denote

FR:= [ze C| z can be drawn by ruler-and-compass, given o, 1]

FAR: = $\{z \in \mathbb{C} \mid z \text{ can be expressed by } +, -, \times, \div, \text{ radicals} \}$

Verify that FR, FARR are fields.

Hint. Verify that $Q \subseteq F_R$ to get some intuition.

ab = cd

Ex. Given
$$1, \alpha \in \mathbb{R}^+$$
, try to draw $J\alpha$ by ruler-and-compass.
Argue that why we can draw \bigtriangleup and 17 -gons.
Hint. $\cos \frac{27}{17} = \frac{1}{16} \left(-1 + \sqrt{17} + \sqrt{2(17 - \sqrt{17})} + 2\sqrt{17 + 3\sqrt{17} - \sqrt{2(17 - \sqrt{17})}} - 2\sqrt{2(17 + \sqrt{17})}\right)$

Slogan: consider element
$$\longrightarrow$$
 set object \longrightarrow moduli spaces if x can be realized \longrightarrow $\{x \mid x \text{ can be realized}\}$

2. common confusion

	Abstract field	Subfield of K or C
hame of category	Field	Subfields
Ob	it: field]	(F,U) (:F ← K}
Mor	$Mor_{Field}(F,E) = \{a. F \hookrightarrow E\}$	Morsubfield $(F, E) = \begin{cases} 2 : F \hookrightarrow E \\ s.t. \end{cases}$
	usually: finitely many elements	at most 1 element
	Q[x]/(x2+1)	(i)
Examples	Q[x]/(x ³ -2)	Q(35)
	(Q (x)	(<u>(</u>) (π)

Common questions: (Which category are we considering for these questions?) - # Sextensions of K of deg 33

- Automorphism gp of the field.

Abstract fields are not as hard as you may think!

Ex 1). Write down the definition of $Q[x]/(x^2+1)$, Q(x), as well as Q(i), $Q(\pi)$ 2). Find a Q-basis of $Q[x]/(x^2+1)$, Q(x). Compute the dim.

Constructing new field by adding roots

$$13562 \div 102 = 132 \cdots 100$$

 $13562 = 102 \times 132 + 100$

$$\begin{array}{r}
x^{2}+3x+7 \\
x^{2}-2\sqrt{x^{4}+3x^{3}+5x^{2}+6x+2} \\
\underline{x^{4}-2x^{2}} \\
3x^{3}+7x^{2}+6x \\
\underline{3x^{3}-6x} \\
7x^{2}+12x+2 \\
\underline{7x^{2}-14} \\
12x+16
\end{array}$$

$$(x^{4}+3x^{3}+5x^{2}+6x+2) \div (x^{2}-2) = (x^{2}+3x+7)\cdots(1_{2}x+16)$$

$$x^{4}+3x^{3}+5x^{2}+6x+2 = (x^{2}-2)(x^{2}+3x+7)+(1_{2}x+16)$$

Ex factorize $x^3 + 4x^2 - 7x - 10$ in Q[x] or $F_3[x]$.

Ex. Let $F = IF_{7}[x]/(x^{3}-3)$.

1) Compute $(x^2+1)(x-1)$, $\frac{1}{x}$, 2) Show that x^3-3 is in in $\mathbb{F}_7[x]$, i.e. $x^3-3=f(x)g(x)$ \Rightarrow deg f=0 or deg g=0f, 9 e F, [x]

- 3) Show that $(x^3-3, x^2+x+1) = (1)$ in $[F_7[x], by Euclidean division.]$ In fact, $|F_7[x]|$ is $ED \Rightarrow PID$
- 4) Compute (x+x+1) in F.
- 5) Factorize T3-3 in F[T].

Rmk. In fact, K[T]/($f(\tau)$) is a field \Leftrightarrow $f(\tau)$ eK[T] is irreducible

Ex. Let $F = Q[x]/(x^3-2)$.

- 1) Compute Morfield (F,C). Are all embeddings real?
- 2) Discussion: What is the difference between Q[x](x3-2) with Q(3/2)?

3. field extension Main examples of fields

Definitions

Def: E/F field extension: $(E,F, L:F \longrightarrow E)$ Def: Base field: Q char F = 0 F_p char F = p

Def. (Algebraic extension)

E/F is alg, if $\forall a \in E$ is alg/F, i.e., the following equivalent conditions are true. 1) $\forall a \in E$, $\exists f \in F(x)$, $f \neq 0$, f(a) = 0. 2) $\forall a \in E$, $[F(a) : F] < +\infty$.

3) $E = \bigcup_{F \subset F' \subset E} F'$

4) ∀a∈E, ∃ f.d. F-v.s. V⊆E s.t aV⊆V.

For a & E, Min (a, F): = minimal monic polynomial of a in F.

 E_{q} , \overline{Q}/Q , $Q(\pi)/Q$, C/Q

We mainly consider alg extension. e.p. fin field extension.

```
Assume: E/F alg Slogan: Cabis = normal + seperable

Def. (Normal extension)

E/F normal, if \forall a \in E, Min(a,F) \subseteq F[x] \subseteq E[x] splits.

Eg. \ Q(3/2)/Q \ Q(3/3)/Q \ Q(3/2,3/3)/Q

Def. (Seperable extension)

E/F sep, if \forall a \in E, Min(a,F) has no repeated voots in F[x].

Eg. \ F_p(T^{\dagger})/F_p(T), where F_p(T^{\dagger}) := F_p(T)[x]/(x^p-T)

F_p(T^{\dagger})/F_p(T)

F_p(T^{\dagger})/F_p(T)

F_p(T^{\dagger})/F_p(T)

F_p(T^{\dagger})/F_p(T)

F_p(T^{\dagger})/F_p(T)

F_p(T^{\dagger})/F_p(T)

F_p(T^{\dagger})/F_p(T)
```

https://kconrad.math.uconn.edu/blurbs/galoistheory/galoiscorrexamples.pdf

Ex. Read it, and compute
$$Ga((Q(\frac{1}{2}, \frac{1}{2})/Q), \quad Gal(Q(\frac{4}{2}, \frac{1}{2})/Q)$$

$$Gal(Q(\frac{1}{2})/(\frac{1}{2})/Q), \quad Gal(Q(\frac{1}{2})/Q), \quad Gal(Q(\frac{1}{2})/Q), \quad Gal(Q(\frac{1}{2})/Q), \quad Gal(Q(\frac{1}{2})/Q)$$

nor mal: ③ ⇒ ○ ③ ≠ ② ○ + ② ≠ ③ ○ → ④ ○ + ⑤ ⇒ ⑥

Seperable: ○ + ② = ③ ○ ⊕ + ⑤ = ⑥

Cralois: ③ ⇒ ○ ⑤ ₱ ② ○ + ② ₱ ⑥ ⊕ + ⑤ ⇒ ⑥

purely inseparable ○ + ② = ③ ○ ⊕ + ⑤ = ⑥

Conly 1 root for minimal poly

[GTM 167, Thm 4.13] char F=p. then
F perfect \$\Rightarrow F^P = F

open subgroup \subseteq closed subgroup = $\lceil G_a | (\overline{K}/L) | L/k \text{ ext } \rceil \subseteq Subgroup$

Lem. A subgroup of a profinite group is open iff it's closed and has finite index.

Ref: https://ctnt-summer.math.uconn.edu/wp-content/uploads/sites/1632/2020/06/CTNT-InfGaloisTheory.pdf

Q: Do we have any finite index gp of Gal (K/K) which is not open?

In general,

https://groupprops.subwiki.org/wiki/Closed_subgroup_of_finite_index_implies_open In a topological group, any closed subgroup of finite index must be an open subgroup. https://groupprops.subwiki.org/wiki/Open_subgroup_implies_closed Any open subgroup of a topological group is closed.

https://math.stackexchange.com/questions/4350043/open-subgroup-and-finite-index-subgroup-of-topological-group https://math.stackexchange.com/questions/1092974/finite-index-subgroup-g-of-mathbbz-p-is-open https://math.stackexchange.com/questions/3734250/are-normal-subgroups-of-finite-index-in-an-absolute-galois-groups-open

Some wonderful exercises for Galois correspondence:

Let E/F be Galois field ext of deg n, mln. prove. I subfield ext of deg m. (Sylow thm & Z(G) # for a p-gp & classification of f.g. abelian gp) Cor For p prime, F field, one can define # = $\bigcup_{(E:F)=p^k} E$, and

F = TF

Sadly this is totally wrong. Notice that a Sylow p-subgroup may be not normal.

https://math.stackexchange.com/questions/1068327/is-bar-mathbb-q-bar-mathbb-q-cap-mathbb-r-2

Are there any other subfield of Q with finite index (except Q & Q \ R)?

4. examples of algebraic closed field $\mathcal{O} \overline{\mathbb{Q}} \stackrel{\mathcal{T}}{=} \mathbb{C} \stackrel{\mathcal{L}}{=} U\mathbb{C}((t^{\frac{1}{n}})) = \overline{\mathbb{C}((t))} \mathbb{C}([t])$ $\mathcal{O} \mathbb{Q} \stackrel{\mathcal{T}}{=} \mathbb{C} \stackrel{\mathcal{L}}{=} \mathbb{C} \mathbb{C}$ $\mathcal{O}_{p} \stackrel{\mathcal{T}}{=} \mathbb{C}_{p}$ $\mathcal{O}_{p} \stackrel{\mathcal{T}}{=} \mathbb{C}_$