Fonctions et limites de référence

$x \mapsto x^n$, avec n pair

$x \mapsto x^n$, avec *n* impair

$$\lim_{\substack{x \to -\infty \\ \lim_{x \to +\infty} x^n = +\infty}} x^n = -\infty$$

$x \mapsto e^x$

$x \mapsto \ln(x)$

$x \mapsto \sqrt{x}$

Asymptotes:

- Si $\lim_{x \to \pm \infty} f(x) = a$, la droite d'équation y = a est asymptote à la courbe de f en $\pm \infty$.
- Si $\lim_{x\to b} f(x) = \pm \infty$ (*b* fini), la droite d'équation x=b est asymptote à la courbe de f.

Opérations sur les limites (suites ou fonctions)

$\lim_{x \to a} f(x)$	l_1	l_1	l_1	+∞	∞	+∞
$\lim_{x \to a} g(x)$	l_2	+∞	-∞	+∞	-∞	-∞
$\lim_{x \to a} (f+g)(x)$	$l_1 + l_2$	+∞	-∞	+∞	-∞	F.I.

$\lim_{x \to a} f(x)$	l_1	$l_1 \neq 0$	∞	0
$\lim_{x\to a}g(x)$	l_2	∞	∞	8
$\lim_{x \to a} (fg)(x)$	$l_1 l_2$	∞ (r.s.)	∞ (r.s.)	F.I.

$\lim_{x \to a} f(x)$	l_1	l_1	$l_1 \neq 0$	∞	0	∞
$\lim_{x \to a} g(x)$	$l_2 \neq 0$	∞	0 ⁺ ou 0 ⁻	l_2 , 0^+ ou 0^-	0	8
$\lim_{x \to a} \left(\frac{f}{g}\right)(x)$	$\frac{l_1}{l_2}$	0	∞ (r.s.)	∞ (r.s.)	F	I.

Méthodes pour lever une indéterminée :

- Factorisation par le termes de plus haut degré
- Quantité conjuguée (différence de racines carrées)
- Utilisation des croissances comparées

Croissances comparées : Pour tout entier naturel non nul n,

$$\lim_{x \to +\infty} \frac{e^x}{x^n} = +\infty \qquad \lim_{x \to -\infty} x^n e^x = 0 \qquad \lim_{x \to +\infty} \frac{\ln(x)}{x^n} = 0$$

$$\lim_{x \to -\infty} x^n e^x = 0$$

$$\lim_{x \to +\infty} \frac{\ln(x)}{x^n} = 0$$

$$\lim_{x \to 0^+} x^n \ln(x) = 0$$

Compositions de limites

Si
$$\lim_{x \to a} f(x) = b$$
 et $\lim_{x \to b} g(x) = c$ alors $\lim_{x \to a} (g \circ f)(x) = c$

Théorèmes sur les limites

Théorème de comparaison : Soit a un réel ou $\pm \infty$. Soit f et g deux fonctions définies sur un intervalle I dont a est un élément ou un bord.

- Si, pour tout $x \in I$, $f(x) \geqslant g(x)$ et $\lim_{x \to a} g(x) = +\infty$, alors $\lim_{x \to a} f(x) = +\infty$ Si, pour tout $x \in I$, $f(x) \leqslant g(x)$ et $\lim_{x \to a} g(x) = -\infty$, alors $\lim_{x \to a} f(x) = -\infty$

Théorème d'encadrement : Soit a un réel. Soit f, g et h trois fonctions définies sur un intervalle I dont a est un élément ou un bord.

Si, pour tout $x \in I$, $f(x) \le g(x) \le h(x)$ et si f et h admettent une même limite **finie** ℓ en a, alors g admet également une limite finie en a et $\lim g(x) = \ell$.

Suites monotones:

- Si (u_n) est **croissante et majorée** par M, alors (u_n) converge et $\lim u_n \leq M$.
- Si (u_n) est **décroissante et minorée** par m, alors (u_n) converge et $\lim u_n \ge m$.

Il est en revanche faux de dire que la limite vaut automatiquement le majorant ou le minorant en question!

Algorithme de seuil

```
#Suite croissante
 def seuil(s):
   u = #valeur de u(0)
   n = 0
   while u < s :
     u = \#expression de u(n+1)
     n = n + 1
8 return n
```

```
#Suite decroissante
2 def seuil(s):
   u = #valeur de u(0)
   n = 0
   while u > s:
     u = \#expression de u(n+1)
     n = n + 1
8 return n
```

Théorème du point fixe: Soit f une fonction définie, continue et à valeurs dans un intervalle I. Soit (u_n) une suite telle que $u_0 \in I$ et pour tout entier naturel $n, u_{n+1} = f(u_n)$. Si (u_n) converge vers $\ell \in I$, alors $f(\ell) = \ell$.

Théorème des valeurs intermédiaires

Soit f une fonction **continue** sur]a;b[. Alors pour tout réel k compris entre $\lim f(x)$ et $\lim f(x)$, l'équation f(x) = k admet au moins une solution sur a;b.

Si de plus, la fonction f est **strictement monotone** sur a;b, alors une telle solution est unique.

```
#Algorithme de dichotomie
2 #Resolution approachee de f(x)=0
def dicho(f, a, b, p):
   while abs(b-a) > 10 ** (-p):
      m = (a+b)/2
      if f(a) * f(m) < 0:
       b = m
      else :
       a = m
10 return m
```

Propriétés de calcul

Second degré: Racines et signe de $ax^2 + bx + c$. On pose $\Delta = b^2 - 4ac$.

- Si $\Delta > 0$, $x_1 = \frac{-b \sqrt{\Delta}}{2a}$, $x_2 = \frac{-b + \sqrt{\Delta}}{2a}$. Signe de a à l'extérieur des racines.
- Si $\Delta = 0$, $x_0 = -\frac{b}{2a}$. Signe de a partout.
- Si $\Delta < 0$, pas de racine réelle, signe de *a* partout.

Avec l'exponentielle: Pour tout réel x, $e^x > 0$. Soit a, b des réels, n un entier relatif

$$e^a \times e^b = a^{a+b}$$
 $e^{-a} = \frac{1}{e^a}$ $\frac{e^a}{e^b} = e^{a-b}$

$$e^{-a} = \frac{1}{e^a}$$

$$\frac{e^a}{e^b} = e^{a-b}$$

$$(e^a)^n = e^{na}$$

Avec le logarithme: Soit x > 0, on a, $\ln(x) > 0$ ssi x > 1. Soit $a, b \in \mathbb{R}_+^*$, $n \in \mathbb{Z}$.

$$\ln(ab) = \ln(a) + \ln(b)$$

$$\ln(ab) = \ln(a) + \ln(b) \qquad \qquad \ln\left(\frac{a}{b}\right) = \ln(a) - \ln(b) \qquad \qquad \ln(a^n) = n \times \ln(a)$$

$$n(a^n) = n \times \ln(a$$

Dérivées, primitives

Fonction f	Dérivée	UNE Primitive <i>F</i>
$x \mapsto x^n, n \in \mathbb{N}^*$	$x \mapsto nx^{n-1}$	$x \mapsto \frac{x^{n+1}}{n+1}$
$x \mapsto \frac{1}{x^n}, n \in \mathbb{N}^*$	$x \mapsto -\frac{n}{x^{n+1}}$	$x \mapsto -\frac{1}{(n+1)x^{n-1}}, (n \geqslant 2)$
$x \mapsto \sqrt{x}$	$x \mapsto \frac{1}{2\sqrt{x}}$	$\frac{2}{3}x\sqrt{x}$ (non exigible)
$x \mapsto e^{ax+b}$	$x \mapsto a \times e^{ax+b}$	$x \mapsto \frac{e^{ax+b}}{a}$
$x \mapsto \ln(x)$	$x \mapsto \frac{1}{x}$	$x \mapsto x \ln(x) - x$ (non exigible)
$x \mapsto \sin(x)$	$x \mapsto \cos(x)$	$x \mapsto -\cos(x)$
$x \mapsto \cos(x)$	$x \mapsto -\sin(x)$	$x \mapsto \sin(x)$

Opérations sur les dérivées

$$(u+v)' = u' + v'$$
 $(uv)' = u'v + uv'$ $\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$

$$uv)' = u'v + uv'$$

$$\left(\frac{1}{u}\right)' = -\frac{u'}{u^2}$$
 $(e^u)' = u'e^u$

$$\left(\frac{1}{u}\right)' = -\frac{u'}{u^2}$$
 $(e^u)' = u'e^u$ $(\ln(u))' = \frac{u'}{u}$ $(\sqrt{u})' = \frac{u'}{2\sqrt{u}}$

$$(u^n)' = n \times u' \times u^{n-1}$$

$$(u^n)' = n \times u' \times u^{n-1} \qquad (\cos(u))' = -u' \times \sin(u) \qquad (\sin(u))' = u' \times \cos(u)$$

$$(\sin(u))' = u' \times \cos(u)$$

Équation de la tangente à la courbe de f au point d'abscisse a: y = f'(a)(x-a) + f(a)

Convexité, concavité

Fonction convexe

- En-dessous de ses cordes, au-dessus de ses tangentes
- Dérivée croissante, dérivée seconde positive

Fonction concave

- Au-dessus de ses cordes, en-dessous de ses tangentes
- Dérivée décroissante, dérivée seconde négative

Équations différentielles

Équation homogène y' + ay = 0: Solutions $x \mapsto Ce^{-ax}$, $C \in \mathbb{R}$

Second membre constant y' + ay = b

- Recherche d'une solution constante φ : on pose y'=0, on trouve $\varphi=\frac{b}{a}$
- Solutions générale : $x \mapsto Ce^{-ax} + \frac{b}{a}$

Second membre fonction y' + ay = g

- Recherche ou vérification d'une solution particulière φ
- Solutions générale : $x \mapsto Ce^{-ax} + \varphi$

Conditions initiales: Une fois la solution générale trouvée, on remplace x par x_0 et on résout une équation pour trouver C.

Calcul intégral

Définition de l'intégrale d'une fonction continue positive : aire sous la courbe exprimée en unité d'aire

Notation
$$\int_{a}^{b} f(x)dx$$

Si pour tout $x \in [a;b]$, $f(x) \le g(x)$, l'aire entre les courbes de f et g vaut $\int_{a}^{b} (g-f)(x)dx$.

Théorème fondamental: $F_a: x \mapsto \int_a^x f(t)dt$ est la primitive de f qui s'annule en a.

Calcul d'intégrale: Si *F* est une primitive de f, $\int_a^b f(x)dx = [F(x)]_a^b = F(b) - F(a)$.

Propriétés de l'intégrale

$$\int_{a}^{b} (\lambda f + \mu g)(t)dt = \lambda \int_{a}^{b} f(t)dt + \mu \int_{a}^{b} g(t)dt; \quad \int_{a}^{\mathbf{c}} f(t)dt + \int_{\mathbf{c}}^{b} f(t)dt = \int_{a}^{b} f(t)dt$$

Croissance: Si pour tout réel $x \in [a;b]$, on a $f(x) \leq g(x)$ alors $\int_a^b f(x)dx \leq \int_a^b g(x)dx$

Valeur moyenne d'une fonction : $m = \frac{1}{b-a} \int_a^b f(x) dx$

Intégration par parties (IPP): $\int_{a}^{b} (uv')(x)dx = [uv]_{a}^{b} - \int_{a}^{b} (u'v)(x)dx$

Probabilités conditionnelles

Probabilité conditionnelle de *B* sachant $A: P_A(B) = \frac{P(A \cap B)}{P(A)}$

Formule des probabilités totales: On considère un événement B et $A_1, A_2, ..., A_n$ un système complet d'événements de l'univers Ω . Alors,

$$P(B) = P(B \cap A_1) + P(B \cap A_2) + \dots + P(B \cap A_n) = \sum_{i=1}^{n} P(B \cap A_i)$$

Indépendance: Deux événements A et B sont indépendants si $P(A \cap B) = P(A)P(B)$.

Arbre pondéré

Variable aléatoire

Définition : Fonction définie sur un univers Ω à valeurs dans $\mathbb R$

Loi d'une variable aléatoire réelle : Fonction qui à tout réel k associe P(X = k).

Espérance: Si X prend les valeurs x_1 , x_2 , ..., x_n $E(X) = x_1 \times P(X = x_1) + x_2 \times P(X = x_2) + \dots + x_n \times P(X = x_n)$

Interprétation : valeur moyenne de la variable aléatoire

Linéarité de l'espérance : $E(aX + b) = a \times E(X) + b$, E(X + Y) = E(X) + E(Y)

Variance: $V(X) = E[(X - E(X))^2] = E[X^2] - E[X]^2$. Mesure de dispersion.

 $V(aX + b) = a^2 \times V(X)$. Si X et Y sont **indépendantes**, V(X + Y) = V(X) + V(Y).

Écart-type : $\sigma(X) = \sqrt{V(X)}$

Dénombrement

 $\operatorname{Card}(A \cup B) = \operatorname{Card}(A) + \operatorname{Card}(B) - \operatorname{Card}(A \cap B), \operatorname{Card}(A \times B) = \operatorname{Card}(A) \times \operatorname{Card}(B)$

Factorielle: $n! = n \times (n-1) \times \cdots \times 3 \times 2 \times 1$, 0! = 1

Soit *A* un ensemble de cardinal *n*

- p-uplet ou p-liste de A: élément de A^p , il y en a n^p
- p-arrangement de A : p-uplet d'éléments distincts de A. Il y en a $\frac{n!}{(n-p)!}$
- Cas p = n: un n-arrangement de A s'appelle une **permutation**.

Coefficient binomial $\binom{n}{k}$: nombre de sous-ensembles de A ayant k éléments.

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}, \qquad \qquad \binom{n}{k} = \binom{n}{n-k},$$

$$\binom{n}{0} = \binom{n}{n} = 1, \qquad \binom{n}{1} = \binom{n}{n-1} = n.$$

Relation de Pascal : $\binom{n}{k} + \binom{n}{k+1} = \binom{n+1}{k+1}$. Permet de construire le triangle de Pascal.

k n	0	1	2	3	4	5	6
0	1						
1	1	1					
2	1	2	1				
3	1	3	3	1			
4	1	4	6	4	1		
5	1	5	10	10	5	1	
6	1	6	15	20	15	6	1

Épreuve, loi, schéma de Bernoulli

Épreuve de Bernoulli : épreuve à deux issues, le succès S et l'échec \overline{S}

Loi de Bernoulli de paramètre p: prend la valeur 1 avec proba p et 0 avec proba 1-p

Schéma de Bernoulli : Succession d'épreuves de Bernoulli identiques et indépendantes.

Loi binomiale

Loi binomiale de paramètres n et p: compte le nombre de succès d'un schéma de Bernoulli à n épreuves, chaque épreuves ayant une probabilité de succès de p. $X \sim \mathcal{B}(n,p)$

Formules Si X suit une loi binomiale $\mathscr{B}(n,p)$, $P(X=k) = \binom{n}{k} p^k (1-p)^{n-k}$

$$E(X) = np$$

$$V(X) = np(1-p)$$
 $\sigma(X) = \sqrt{np(1-p)}$

Loi des grands nombres

Soit $(X_1, X_2, ..., X_n)$ un échantillon d'une v.a. réelle, $M_n = \frac{1}{n}(X_1 + X_2 + \cdots + X_n)$

$$E(M_n) = E(X_1)$$
 $V(M_n) = \frac{V(X_1)}{n}$ $\sigma(M_n) = \frac{\sigma(X_1)}{\sqrt{n}}$

Inégalité de Bienaymé-Tchebychev: Pour tout $\delta > 0$, $P(|X - E(X)| \ge \delta) \le \frac{V(X)}{\delta^2}$

Inégalité de concentration : Pour tout $\delta > 0$, $P(|M_n - E(X_1)| \geqslant \delta) \leqslant \frac{V(X_1)}{n\delta^2}$

Géométrie dans l'espace

Colinéarité et applications

Deux vecteurs \vec{u} et \vec{v} sont **colinéaires** s'il existe un réel k tel que $\vec{u} = k\vec{v}$ ou $\vec{v} = k\vec{u}$.

Droite passant par A dirigée par \vec{u} : ensemble des points M tels que \overrightarrow{AM} et \vec{u} sont colinéaires.

- Deux droites sont parallèles ssi leurs vecteurs directeurs sont colinéaires.
- Trois points A, B et C sont alignés si et seulement si \overrightarrow{AB} et \overrightarrow{AC} sont colinéaires.

Coplanarité et applications

Trois vecteurs \vec{u} , \vec{v} et \vec{w} sont **coplanaires** si l'un de ces vecteurs peut s'exprimer comme combinaison linéaire des deux autres (par exemple $\vec{u} = \lambda \vec{v} + \mu \vec{w}$).

Plan passant par A et dirigé par \vec{u} et \vec{v} non colinéaires : ensemble des points M tels que \overrightarrow{AM} , \vec{u} et \vec{v} sont coplanaires.

- Quatre points A, B, C et D sont coplanaires s'il existe un plan passant par ces points
- Quatre points A, B, C et D sont coplanaires ssi \overrightarrow{AB} , \overrightarrow{AC} et \overrightarrow{AD} sont coplanaires.
- Deux droites sont coplanaires s'il existe un plan contenant ces deux droites

Positions relatives

Droite sécante à un plan

Droite parallèle à un plan

Plans sécants selon une droite

Plans parallèles

Repérage dans l'espace

Un **repère** de l'espace est la donnée d'un point O de l'espace et de trois vecteurs non coplanaires \vec{i} , \vec{j} , \vec{k} . Pour tout vecteur \vec{u} , il existe des réels uniques x, y et z tq $\vec{u} = x\vec{i} + y\vec{j} + z\vec{k}$.

On note
$$\vec{u} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
. Si on a $A(x_A; y_A; z_A)$ et $B(x_B; y_B; z_B)$, alors $\overrightarrow{AB} \begin{pmatrix} x_B - x_A \\ y_B - y_A \\ z_B - z_A \end{pmatrix}$

Si
$$\overrightarrow{u} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
 et $\overrightarrow{v} \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix}$ alors $\lambda \overrightarrow{u} + \mu \overrightarrow{v} \begin{pmatrix} \lambda x + \mu x' \\ \lambda y + \mu y' \\ \lambda y + \mu y' \end{pmatrix}$

Représentation paramétrique de droite

passant par le point $A(x_A, y_A, z_A)$ dirigée par le vecteur $\vec{u} \begin{pmatrix} a \\ b \\ c \end{pmatrix}$. $\begin{cases} x = x_A + at \\ y = y_A + bt \\ z = z_A + ct \end{cases}$

Applications

- Lire directement un point et un vecteur directeur d'une droite
- Vérifier si un point appartient à une droite : remplacer x, y et z par les coordonnées de ce point et trouver une unique valeur de t qui convient.
- Droites parallèles : vérifier si les vecteurs directeurs sont colinéaires
- **Droites sécantes** : système à résoudre en identifiant les *x*, *y*, *z* des deux représentations. On remplace ensuite la valeur de *t* trouvée pour le point d'intersection.

Produit scalaire

Produit scalaire: si $\vec{u} = \overrightarrow{AB}$ et $\vec{v} = \overrightarrow{AC}$, alors $\vec{u} \cdot \vec{v} = \overrightarrow{AB} \cdot \overrightarrow{AC} = AB \times AC \times \cos(\widehat{BAC})$.

Vecteurs orthogonaux : produit scalaire nul. $\vec{u} \cdot \vec{u} = ||\vec{u}||^2$. En particulier, $||\vec{u}|| = \sqrt{\vec{u} \cdot \vec{u}}$.

$$\vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u} \qquad \vec{u} \cdot (k\vec{v} + k'\vec{w}) = k(\vec{u} \cdot \vec{v}) + k'(\vec{u} \cdot \vec{w}) \qquad (k\vec{v} + k'\vec{w}) \cdot \vec{u} = k(\vec{v} \cdot \vec{u}) + k'(\vec{w} \cdot \vec{u})$$

Produit scalaire dans un repère ORTHONORMÉ: $\overrightarrow{u} \begin{pmatrix} x \\ y \\ z \end{pmatrix} \cdot \overrightarrow{v} \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = xx' + yy' + zz'$

Csq:
$$||\vec{u}|| = \sqrt{x^2 + y^2 + z^2}$$
 et $AB = ||\overrightarrow{AB}|| = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2 + (z_B - z_A)^2}$

Pour déterminer la mesure d'un angle, on utilise alors $\cos(\widehat{BAC}) = \frac{\overrightarrow{AB} \cdot \overrightarrow{AC}}{AB \times AC}$

- Deux droites sont **orthogonales** si leurs vecteurs directeurs sont orthogonaux.
- Deux droites sont **perpendiculaires** si elles sont orthogonales ET sécantes.
- Une droite est **orthogonale** à un plan si elle est orthogonale à toute droite de ce plan

Vecteur normal à un plan : Vecteur directeur d'une droite orthogonale à ce plan. Si (A, \vec{u}, \vec{v}) est un repère du plan (P), \vec{n} est normal à (P) ssi $\vec{u} \cdot \vec{n} = \vec{v} \cdot \vec{n} = 0$.

- Une droite est parallèle (ou contenue) à un plan si un vecteur directeur de cette droite est orthogonal à un vecteur normal au plan.
- Une droite est orthogonale à un plan si un de ses vecteurs directeurs est un vecteur normal à ce plan
- Deux plans sont parallèles si leurs vecteurs normaux sont colinéaires
- Deux plans sont orthogonaux si leurs vecteurs normaux sont orthogonaux.

Projeté orthogonal

Projeté orthogonal de A sur la droite (d): intersection de la droite (d) et du plan passant par A orthogonal à (d).

Projeté orthogonal de A sur le plan (P): intersection du plan (P) et de la droite passant par A et orthogonale à (P).

Distance d'un point à une droite (ou un plan) = distance du point à son projeté orthogonal

Équation cartésienne de plan

Passant par $A(x_A, y_A, z_A)$ de vecteur normal $\vec{n} \begin{pmatrix} a \\ b \\ c \end{pmatrix}$: $a(x-x_A) + b(y-y_A) + c(z-z_A) = 0$ for i in L : # si L est une liste, parcourt les elements de L dans l'ordre ... # indenter la partie a repeter

Applications:

- Déterminer directement un vecteur normal à un plan
- Vérifier si un point appartient au plan : remplacer x, y et z par les coordonnées du point, vérifier si l'égalité est juste.

Intersection d'une droite et d'un plan

- Établir une représentation paramétrique de la droite
- remplacer x, y et z dans l'équation du plan par ceux de la représentation paramétrique
- trouver le paramètre *t* en résolvant l'équation
- remplacer ce paramètre dans la représentation de la droite.

Algorithmique

Manipulation de listes; Attention: les indices des éléments d'une liste commencent à 0.

```
L1 = [] # liste vide stockee dans L1

L2 = [1, 3, 7, 6]

4 a = L2[0] # element d'indice 0 de L2

5 b = L2[1] # element d'indice 1 de L2

6 c = L2[-1] # dernier element de L2

7 c = len(L) # nombre d'elements de L2

9 L2.append(8) # ajoute 8 a la fin de la liste L2

L2.remove(3) #retire la premiere apparition de 3 de la liste L2
```

Génération par compréhension

[expression for objet in liste if condition]

Itération et parcours

```
range(a,b,pas) # "liste" de tous les entiers de a inclus a b exclus en
    progressant d'un pas donne

for i in range(n): # pour i allant de 0 a n-1
    ... # indenter la partie a repeter

for i in L : # si L est une liste, parcourt les elements de L dans l'ordre
    ... # indenter la partie a repeter
```