



# PIT STOP ENGINEERING:



The Ultimate in  
*System Design Optimization*



*"Soldiers Are Our Customers"*

AUSA\_02-1





# PIT STOP SMARTS

**In Racing, the Checkered Flag does not always go to the car with the most horsepower...but to the vehicle designed to maximize benefit from the Pit Stop!**



***"Soldiers Are Our Customers"***





# Pit Stop Engineering for the Army

**Pit Stop Engineering applied to Army Acquisition: Capability edge goes to Force designed to maximize benefit from supportability and training.**



- easy, efficient maintenance
- minimized dependence on maintenance tools
- reduced logistics tail
- realistic training for both

**operation and support**

**While we disengage for a Pit Stop, the Opposing Force is still trying for Victory**



***"Soldiers Are Our Customers"***





# Pit Stop Engineering Attributes

- **RAPID**
- **WELL CHOREOGRAPHED**
- **HIGHLY EFFICIENT**
- **HIGHLY TRAINED CREW**
- **SPECIFIC DESIGN CHARACTERISTICS**



*"Soldiers Are Our Customers"*

AUSA\_02-4





## ATTRIBUTES WHEN APPLIED TO ACQUISITION

**Rapid...Reduced Time to Field Equipment**

**Well Choreographed...Highly Tuned Doctrine**

**Highly Efficient...Optimized Logistics**

**Highly Trained Crew...Well Honed Trained & Ready Force (system operations and supportability)**

**Specific Design Characteristics...Equipment designed to Maximize Benefit from Doctrine, Logistics, and Training**



*"Soldiers Are Our Customers"*





# How Do We Conduct Pit Stop Engineering?



**Modeling & Simulation enables the execution of Pit Stop Engineering such that quality products are rapidly and economically developed, fielded and sustained. Application of M&S in this manner is SMART...Simulation & Modeling for Acquisition, Requirements and Training.**



*"Soldiers Are Our Customers"*





# Simulation and Modeling for Acquisition, Requirements and Training (SMART)



The Army's vision for SMART is a process in which we capitalize on Modeling and Simulation (M&S) technology to address the issue of system development and life-cycle costs through the combined efforts of the

Acquisition, Requirements, and Training communities



*"Soldiers Are Our Customers"*





# What Will SMART Achieve?

- **Reduced Total Ownership Cost (TOC), Time to Initial Operating Capability (IOC), and Logistics Tail**
- **Increased Supportability, Maintainability, and Military Worth**
- **More Effective, Cost Efficient Training at Individual, Crew, and System Level**



*"Soldiers Are Our Customers"*





# How Does SMART Enable Pit Stop Engineering?

- SMART Enables the Acquisition Workforce to Depict System Design Alternatives Digitally and Provide Access to all System Stakeholders
- Distributed Access to Developing Digital Design Allows Assessment of Proposed Changes for Impacts to all Acquisition Functions
- System Design Evolves With Optimization Across all Functions Vice at the Expense of one Another
- Iterate System Design to Maximize Pit Stop Engineering



*"Soldiers Are Our Customers"*





# SMART Pit Stop Engineering in Acquisition Today

- **Legacy Systems:** Planned Product Improvements (PIPs), Engineering Change Proposals (ECPs), etc. are all opportunities to apply Pit Stop Engineering. Use of M&S through SMART provides the means to hone system design changes without hardware prototype “trail and error”.
- **New Systems:** New system development efforts can design in “rapid, tool free



Pit Stop Philosophy...Systems designed to maximize performance in battle, logistics, and training take home the flag.



*“Soldiers Are Our Customers”*





# Apache AH-64D

- Program PIPs executed via SMART
- Re-assess Basic Load, Capitalize on PIPs to Re-engineer Logistic Support
- Interface Between Apache and Hellfire Missile
- Apache Crew Trainer - Apply Pit Stop Philosophy to Training through Training Simulator



*"Soldiers Are Our Customers"*





# Close Combat Tactical Trainer (CCTT)

- CCTT Provides Combined Arms Simulation Environment to exercise Pit Stop Philosophy
- CCTT can be Employed to Explore Doctrine and Tactics for Future Systems to Influence Final Design
  - Analysis Conducted During System Development can be leveraged to Develop More Effective Training



*"Soldiers Are Our Customers"*

AUSA\_02-12





# Crusader

- Crusader was Developed Using a CAD System (Pro-Engineer)
- Pit Stop Engineering Ideally Applied to Virtual Prototype
- Crusader Program Operates Within a Digital Integrated Environment That Digitally Links the PMO, Contractor, TARDEC, Assorted Test Ranges, and Other Activities
- IDE and M&S Tools Facilitate Collaboration Between PM Crusader the TRADOC System Manager (TSM), and Trainers



*"Soldiers Are Our Customers"*





# Future Scout and Cavalry System (FSCS)

- FSCS Prior to MS I
- Ideally Poised to Benefit From SMART and Pit Stop Engineering Philosophy
- FSCS Being Developed Jointly With UK; use of M&S Facilitates the Collaboration
- FSCS can be Developed Through Distributed Product Description
- Pit Stop Engineered fielded FSCS includes “Tool Free Maintenance”, Minimal Logistics Tail, and Highly Trained Crew (Virtual Combat Veterans)



*“Soldiers Are Our Customers”*





# Pit Stop Test and Evaluation



**Design Model for Assessing  
MANPRINT for Grizzly Breacher**

- **Conduct “What-if” Drills for Early Development of T&E Plans and Scenarios**
- **Accelerate the Synergies Between the Testing and Training Communities**
- **Assess system design for Maintenance, Supportability, and Training in accordance with Pit Stop Philosophy**



***“Soldiers Are Our Customers”***





# What is the Role of the Requirements Community?

- **Cost/Performance Tradeoff Analysis**
- **Early ID of Unrealistic Requirements**
- **Early ID of Enabling Technologies**
- **Earlier Opportunity to Address Life Cycle Cost**
- **Use Virtual Prototypes to aid Threat Assessment & Mission Area Analysis**



*"Soldiers Are Our Customers"*





# What is the Role of the Training Community?



- **Assess Impact of TTP and Doctrine on Design Concepts**
- **Trained Crew Simultaneous w/ 1st Unit off Production Line**
- **Re-use of Software and Simulation to Support Embedded and Distributed Training**



*"Soldiers Are Our Customers"*





# What Will a SMART Future Look Like?



**Synthetic  
Evaluate and Evolve System Designs to Maximize and  
Hone Performance in Battle, Supportability, and  
Training.**

**Assessment of Virtual Prototypes in  
Environments Allows Stakeholders to  
Evaluate and Evolve System Designs to Maximize and  
Hone Performance in Battle, Supportability, and  
Training.**



*"Soldiers Are Our Customers"*

