

Secretaria de Educação

Ministério

CURSO DE BACHARELADO SISTEMAS DE INFORMAÇÃO

CHAIANA LAYZA DO NASCIMENTO LIMA FELIPE DA SILVA FERREIRA GABRIEL NASCIMENTO MARCOS DA ROCHA

SERVIDOR LINUX COM SAMBA - PDC (PRIMARY DOMAIN CONTROLLER). COMPARTILHAMENTO DE ARQUIVOS, IMPRESSORAS E CONTRALADOR DE DOMÍNIO EM MAQUINAS WINDOWS.

Secretaria de Educação

Ministério

CURSO DE BACHARELADO SISTEMAS DE INFORMAÇÃO

CHAIANA LAYZA DO NASCIMENTO LIMA FELIPE DA SILVA FERREIRA GABRIEL NASCIMENTO MARCOS DA ROCHA

SERVIDOR LINUX COM SAMBA - PDC (PRIMARY DOMAIN CONTROLLER). COMPARTILHAMENTO DE ARQUIVOS, IMPRESSORAS E CONTRALADOR DE DOMÍNIO EM MAQUINAS WINDOWS.

Trabalho de conclusão de curso apresentado ao Instituto Federal Fluminense como requisito parcial para conclusão do Curso de Bacharelado em Sistemas de Informação.

Orientador: Prof. Vinicius

Campos dos Goytacazes/RJ 2012

CHAIANA LAYZA DO NASCIMENTO LIMA FELIPE DA SILVA FERREIRA GABRIEL NASCIMENTO MARCOS DA ROCHA

SERVIDOR LINUX COM SAMBA - PDC (PRIMARY DOMAIN CONTROLLER). COMPARTILHAMENTO DE ARQUIVOS, IMPRESSORAS E CONTRALADOR DE DOMÍNIO EM MAQUINAS WINDOWS.

Trabalho de conclusão de curso apresentado ao Instituto Federal Fluminense como requisito parcial para conclusão do Curso de Bacharelado de Sistema de Informação.

rovada em de Agosto de 2012		
nca avaliadora:		
Prof. (Orientador)		
Instituto Federal de Educação, Ciência e Tecnologia Fluminense		
Prof.		
Instituto Federal de Educação, Ciência e Tecnologia Fluminense		
Prof.		
Instituto Federal de Educação, Ciência e Tecnologia Fluminense		

Aos meu amigos, professores e familiares, com amor...

AGRADECIMENTOS

Queremos agradecer a Deus, pois sem ele nada seria possível, nossas famílias que nos apoiam em todas decisões, nossos colegas de trabalho que sempre nos ajudam e ao IFF por nos proporcionar recursos financeiros e materiais para o desenvolvimento deste trabalho.

RESUMO

Este trabalho sugere uma proposta de implementação de um servidor de compartilhamento de arquivos, impressoras e um Active Directory em uma instituição de ensino com a missão de facilitar o compartilhamento dos recursos de rede disponíveis e tornar mais seguro e confiável o controle de acesso dos usuários a estes recursos. Também é possível encontrar conceitos básicos para a compreensão das ferramentas utilizadas além de passo-a-passo e scripts necessários para realizar a implementação de toda a estrutura na rede.

PALAVRAS-CHAVE: Linux, Samba, PDC, Compartilhamento, LDAP, Active Directory

ABSTRACT

This work suggests a proposal to implement a files and printers sharing server and an Active Directory in an educational institution with mission to facilitate the sharing of available network resources and turn more secure and reliable the control of user's access to these resources. You can also find basic concepts for the understanding of the tools used in addition to step-by-step instructions and scripts needed to accomplish the implementation of the entire structure on the network.

KEYWORDS: Linux, Samba, PDC, Share, LDAP, Active Directory

LISTA DE FIGURAS

2.1	Estrutura do funcionamento da NetBios (SISTEMAS TELEMÁTICOS, 2010) .	17
2.2	Estrutura hierárquica do DNS (SCRIMGER PAUL LASALLE, 2002)	18
2.3	Estrutura do protocolo LDAP (THE OPENLDAP FOUNDATION, 2003)	19
2.4	Autenticação Kerberos (ERICOM, 2012)	19
3.1	Tela do Swat	22
3.2	Saída do testparm	28
3.3	Saída do smbmanager	30
3.4	Tela de um mapeamento	35
3.5	Tela do CUPS pelo Browser	36
3.6	Tela do Login no Windows localmente	38
3.7	IP do servidor de compartilhamento	38
3.8	Impressoras e aparelhos de fax compartilhados	39
3.9	Adicionar driver ao servidor de impressão	39
3.10	Selecionar o driver que será copiado para o servidor de impressão	40
3.11	Selecionar os Sistemas Operacional que o driver será compatível	40
3.12	Propriedade da impressora do compartilhamento	41
3.13	Opção para não instalar o driver naquele momento	41
3.14	Aba onde será feito o link da impressora com o driver	41
3.15	Logar no domínio	42
3.16	Selecionar a impressora que será mapeado no usuário logado	42
3.17	Impressora instalada no usuário	42
3.18	Tela de logon local	43
3.19	Alterando nome do micro	43
3.20	Incluir micro no domínio	44
3.21	Efetuando logon no domínio	44
4.1	Tela do fstab.	48
4.2	Tela para executar o DSA	50
4.3	Tela do DSA	50

4.4	samba-tool no terminal	51
4.5	Tela do script para inserir maquinas linux no AD	57
5.1	Estrutura da rede do instituto	59

Lista de Tabelas

3.1	Tabela do RID	(Relative Identifier) Windows ((SAMBA.ORG, 2003))	30

SUMÁRIO

1	INT	RODUÇÃO	13
	1.1	Justificativa do trabalho	13
	1.2	Objetivo	13
	1.3	Estrutura do trabalho	13
2	CON	ICEITOS E TÉCNICAS NECESSÁRIAS	15
	2.1	Samba	15
	2.2	Permissões especiais no Linux	16
	2.3	PDC	16
	2.4	NETBIOS	17
	2.5	Active Directory	17
	2.6	DNS	17
	2.7	BIND	18
	2.8	LDAP	18
	2.9	Kerberos	19
	2.10	GSSAPI	20
3	SAM	IBA 3	21
	3.1	Instalação do Samba 3	21
	3.2	SWAT - Gerenciando o Samba 3 pelo browser	21
	3.3	Iniciando Samba 3	23
	3.4	Seções	23
	3.5	Variáveis de substituição do Samba 3	23
	3.6	Configuração do Samba para ser um PDC	25
	3.7	Cadastro de Usuário	28
	3.8	Cadastro de Máquinas	29
	3.9	Script de Cadastro de Usuários e Máquinas	29
	3.10	Migração dos Usuários Administradores e Users do Linux para o Windows	30
	3.11	Perfis Moveis	31

	3.12	Compartilhamento de Arquivos	32
	3.13	Script Logon	34
	3.14	Compartilhamento de Impressoras	35
	3.15	Instalação automática dos drive da impressora	37
	3.16	Ingressando o Windows XP no Domínio	42
	3.17	Ingressando o Linux no Domínio	45
4	SAM	IBA 4	47
	4.1	Instalação do SAMBA 4	47
	4.2	Criação de Domínio com o Samba 4	48
	4.3	Instalação do Kerberos	49
	4.4	Gerenciando o Samba4 através do Windows e do Linux	50
	4.5	Maquinas linux interagindo com o <i>Active Directory</i> do Samba4	51
	4.6	Script para adicionar maquina linux no Active Directory	56
	4.7	Samba3 e Samba 4	56
	4.8	Windows no domínio Samba 4	56
5	EST	UDO DE CASO	58
6	CON	ICLUSÕES	63
	6.1	Objetivos alcançados	63
	6.2	Trabalhos futuros	63
Aŗ	êndic	re A – Scripts	64
	A. 1	smbmanager.sh	64
	A.2	smbda.sh	66
RI	EFER	ÊNCIAS BIBLIOGRÁFICAS	80

1 INTRODUÇÃO

TEXTO

1.1 Justificativa do trabalho

A implementação de um servidor de domínio no IFF – Campus Bom Jesus possibilitará um maior controle dos usuários que acessam o sistema, e assim será possível saber quem está logado no sistema, permitir ou bloquear o acesso à pastas e compartilhamentos pela rede, realizar a substituição mais fácil e ágil de equipamentos sem ter a necessidade do usuário ficar esperando a manutenção da máquina.

O servidor de impressão permite que todas as impressoras sejam mapeadas por setor possibilitando que mais de uma máquina possa imprimir no mesmo equipamento sem ter uma conexão física entre elas.

1.2 Objetivo

O foco deste trabalho é servir como base para estudo de servidores linux e implementar um serviço que busca melhorar o controle da rede no IFF – campus Bom Jesus, e também melhorar e proporcionar maior segurança digital e diminuir o tempo de manutenção dos incidentes.

1.3 Estrutura do trabalho

Este trabalho está dividido em seis capítulos, dispostos da seguinte forma:

O primeiro capítulo contém a introdução do trabalho descrevendo o problema identificado, o objetivo da implantação da proposta aqui abordada e a justificativa para a mesma.

O segundo capítulo apresenta uma breve explicação sobre as ferramentas e os termos técnicos utilizados para a implementação que é objetivo deste trabalho.

O terceiro capítulo descreve um passo-a-passo para instalação e configuração do servidor Samba 3, desde o momento do download do pacote até o cadastro de usuários e máquinas e

a integração com o Windows e Linux.

No quarto capítulo é apresentado um passo-a-passo similar ao do terceiro capítulo, porém utilizando a versão 4 do Samba.

O quinto capítulo apresenta um estudo de caso descrevendo a estrutura da instituição tida como proposta para a implementação do servidor abordado neste trabalho.

O sexto capítulo apresenta as conclusões tiradas do estudo, além dos trabalhos futuros que poderão ser realizados a partir deste.

Além dos capítulos descritos acima há uma área destinada aos scripts utilizados nas configurações necessárias.

2 CONCEITOS E TÉCNICAS NECESSÁRIAS

O capitulo explica termos técnicos essenciais para o melhor entendimento do trabalho.

2.1 Samba

Samba é um software *open source* que provê serviços a clientes nos protocolos SMB e CIFS. O samba permite a interoperabilidade entre servidores Linux/Unix e clientes baseados na plataforma Windows. O samba permite que um servidor linux seja apto a fornecer serviços como:

- #Servidor de arquivos e impressão Utilizando o protocolo *Server Message Block* para possibilitar o compartilhamento de arquivos, pastas volumes e impressoras na rede.
- #Autenticação e autorização Identifica um computador ou um usuário da rede e determina os direitos de acesso a arquivos que cada usuário possui, através de tecnologias como permissões de arquivos, diretivas de grupo e o serviço de autenticação Kerberos.
- #Resolução e busca de nomes e diretórios Compartilha as principais informações sobre computadores e usuários da rede através do LightWeight Directory Access Protocol (LDAP).
- #Servidor de domínio como PDC Funcionando como controlador de domínio ativo dentro de um domínio Windows.

Basicamente, o Samba é um servidor e um conjunto de ferramentas que permite o compartilhamento de arquivos e impressoras sistemas Windows e Linux. Usando o Samba em um servidor Linux, ele se comporta exatamente como um servidor Windows, podendo inclusive autenticar usuários e compartilhar impressoras. Outra característica do Samba é que ele pode atuar como um Controlador Primário de Domínio (PDC), armazenando perfis de usuários, realizar controle de acesso, sendo suas as configurações tão efetivas quanto às de um servidor Windows (FOCA, 2012).

2.2 Permissões especiais no Linux

Existe no Linux três permissões especiais, para dar segurança ao sistema, chamadas assim por somente serem atribuídas a arquivos específicos (arquivos executáveis e diretórios). Tais permissões são fornecidas pelos bits SUID, SGID e STICKY.

- #SUID O bit SUID (Set UID) é aplicável apenas a arquivos executáveis, fazendo com que estes rodem com as permissões de seu proprietário, independente de quem tenha executado-o. Pode ser útil para que usuários comuns possam executar arquivos permitidos apenas a administradores.
- #SGID O bit SGID (Set GID) pode ser aplicado a um arquivo executável e a um diretório. No primeiro caso ele tem as mesma função do SUID, porém rodando com as permissões de um grupo de usuários. No segundo, ele força os arquivos e diretórios criados dentro do diretório pai (o que obteve a permissão) a pertencerem ao mesmo grupo, independente do grupo de quem tenha-os criado.
- #STICKY O bit STICKY é aplicável a diretórios e faz com que a exclusão de arquivos pertencentes a estes diretórios seja apenas permitida ao dono do arquivo e ao administrador do sistema. Tem vantagem sobre a permissão "Somente Leitura" no diretório pois faz com que outros usuários possam criar e editar qualquer arquivo, impedindo-os apenas de apagá-lo.

2.3 PDC

O Controlador de Domínio é responsável por fornecer autenticação para os clientes, sejam sistemas Linux ou Windows. Ou seja, apenas centraliza contas de usuários e fornece recursos voltados para a administração de usuários, como a gestão de perfis móveis, que são as configurações de usuários que são lidas, independente de qual máquina o usuário utilize. Em uma rede de com pouco mais de 10 clientes a necessidade de ter um PDC é mais aparente, pois fica cada vez mais difícil de gerenciar as contas de clientes e máquinas conforme o crescimento da rede. Com o Controlador de Domínio também é possível fornecer acesso por perfis móveis onde o usuário pode ter acesso à sua área de trabalho independente da máquina (da mesma rede) onde faz o login. Em contrapartida, bloqueando uma conta de usuário, automaticamente este estará bloqueado em todas as máquinas gerenciadas pelo Controlador de Domínio (MORIMOTO, 2005)

2.4 NETBIOS

NETBIOS, *Networking Basic Input/Outbut System*, é uma API desenvolvida em 1984 pela IBM, que fornece serviços relacionados na camada de sessão do modelo OSI, permitindo a comunicação entre computadores na rede através de um nome NETBIOS correspondente a um *hostname*.(WIKIPéDIA, 2012b)

Figura 2.1: Estrutura do funcionamento da NetBios (SISTEMAS TELEMÁTICOS, 2010)

2.5 Active Directory

O Active Directory (AD) é um serviço de diretório nas redes Windows 2000 e 2003.

Serviço de diretório é um conjunto de Atributos sobre recursos e serviços existentes na rede, isso significa que é uma maneira de organizar e simplificar o acesso aos recursos de sua rede centralizando-os; Bem como, reforçar a segurança e dar proteção aos objetos da base de dados contra intrusos, ou controlar acessos dos usuários internos da rede.

O *Active Directory* mantém dados como contas de usuários, impressoras, grupos, computadores, servidores, recursos de rede, etc. Ele pode ser totalmente escalonável, aumentando conforme a nossa necessidade.(LOSANO, 2009)

2.6 **DNS**

DNS (*Domain Name System*) é uma base de dados hierárquica e distribuída, usada para a resolução de nomes de domínios em endereços IP. É considerado como um banco de dados distribuído que converte nomes de *hosts* (máquinas) para endereços IP. É basicamente um

mapeamento de endereços IP e seus respectivos nomes. A utilização mais comum é na internet. Todos os computadores da rede possuem um endereço IP. Os servidores DNS simplesmente transformam ou resolvem esse o número em um nome. Por exemplo, o endereço www.iff.edu.br corresponde ao IP 200.143.198.110. (SCRIMGER PAUL LASALLE, 2002)

Figura 2.2: Estrutura hierárquica do DNS (SCRIMGER PAUL LASALLE, 2002)

2.7 BIND

BIND (*Berkeley Internet Name Domain* ou, como chamado previamente, Berkeley Internet Name Daemon) é o servidor para o protocolo DNS mais utilizado na Internet, especialmente em sistemas do tipo Unix, onde ele pode ser considerado um padrão de facto. Foi criado por quatro estudantes de graduação, membros de um grupo de pesquisas em ciência da computação da Universidade de Berkeley, e foi distribuído pela primeira vez com o sistema operacional 4.3BSD. O programador Paul Vixie, enquanto trabalhava para a empresa DEC, foi o primeiro mantenedor do BIND. Atualmente o BIND é suportado e mantido pelo *Internet Systems Consortium*. Para a versão 9, o BIND foi praticamente reescrito. Ele passou a suportar, dentre outras funcionalidades, a extensão DNSSEC e os protocolos TSIG e IPv6 (WIKIPÉDIA, 2012a).

2.8 LDAP

O LDAP (*Lightweight Directory Access Protocol*) é o protocolo responsável por fornecer Serviço de Diretórios a computadores Windows de forma similar ao *Active Directory* da Microsoft, que é baseado no LDAP. Tais serviços incluem conexões de computadores, grupos de computadores, usuários, administração de identidades, além de possibilitar uma maneira eficiente de descrever, localizar e administrar esses recursos.

LDAP é um protocolo para acessar informações contidas em um diretório. Por ser um protocolo cliente/servidor o LDAP permite navegar, ler, armazenar e pesquisar informações e realizar tarefas de gerenciamento em um serviço de diretórios. O serviço de diretório é um banco de dados otimizado para leitura,navegação e pesquisas (TRIGO, 2007).

Figura 2.3: Estrutura do protocolo LDAP (THE OPENLDAP FOUNDATION, 2003)

2.9 Kerberos

Kerberos é um protocolo de segurança de rede e fornece autenticação entre computadores e usuários através de um servidor centralizado que concede autenticações criptográficas a qualquer computador utilizando o Kerberos. Esse sistema de segurança e autenticação agraga diversos benefícios como autentificação mútua, autentificação delegada, interoperabilidade e gerência simplificada e confiável. O samba pode usar o Kerberos como um mecanismo autenticação de computadores e usuários.

O Kerberos é um protocolo que prevê forte autenticação entre aplicações cliente-servidor e usa criptografia de chave simétrica no qual servidores fornecem acesso aos serviços solicitados pelos clientes, caso provem que são eles mesmos. (FILHO, 2009)

Figura 2.4: Autenticação Kerberos (ERICOM, 2012)

2.10 GSSAPI

A GSSAPI é uma interface que permite desenvolvedores escreverem aplicações que aproveitam mecanismos de segurança tais como Kerberos, sem ter de programar explicitamente para qualquer mecanismo, ou seja, aplicações genéricas do ponto de vista de segurança. Programas que usam GSSAPI são, deste modo, altamente portáteis, não somente de uma plataforma para outra, mas de uma configuração de segurança a outra e de um protocolo de transporte a outro. A GSSAPI fornece vários níveis de proteção de dados, consistentes com os mecanismos de segurança subjacentes.(CUFFA, 2010)

3 SAMBA 3

Este capítulo descreve como são feitas a instalação e a configuração de um servidor Samba 3 como controlador de domínio, servidor de impressão e servidor de dados, respeitando as regras de usuários e permissões.

3.1 Instalação do Samba 3

O pacote Samba 3 pode ser instalado através do repositório de sistemas da distribuição Linux na qual será configurado (neste trabalho foram utilizadas as distribuições Ubuntu 11.04 e Debian 6.0.5). Antes da instalação é necessário atualizar a base de dados do repositório para que possa instalar a versão mais atual do Samba 3.

- # apt-get update Atualiza a base de dados do repositório no Ubuntu.
- # apt-get install samba Realiza a instalação do pacote Samba 3.
- # apt-get install smbclient Pacote que mostra as informações do servidor Samba 3 e permite acesso de compartilhamentos no windows ou linux a partir de uma máquina linux.

3.2 SWAT - Gerenciando o Samba 3 pelo browser

O SWAT é uma ferramenta para a edição do /etc/smb.conf, porém por meio de uma interface gráfica. Com ele é possível compartilhar impressoras, arquivos, criar usuários, permitir ou restringir acessos.

- # apt-get install swat Instala a ferramenta gráfica swat para o gerenciamento do Samba 3.
- **\$ firefox localhost:901** Endereço de acesso no browser (neste caso o Firefox) para acessar o swat.

Ao acessar o SWAT pelo navegador, o usuário deve informar o usuário root e sua senha. Após o login no sistema, pode-se observar na barra de ferramentas as opções de configuração do SWAT, conforme figura 3.1. A função de cada opção é detalhada a seguir:

Figura 3.1: Tela do Swat

- Home Documentação do Samba 3
- Globals Variáveis globais de configuração do Samba 3
- Shares Ativar compartilhamentos de diretórios e arquivos
- **Printers** Compartilhamento de impressoras
- Wizard Escreve as modificações no arquivo smb.conf do Samba 3
- Status Status do servidor com usuário, compartilhamento dos ativos e arquivos abertos
- View Mostra o arquivo smb.conf
- Password Cadastrar o usuário, máquinas e mudar senha dos usuários no servidor

Por se tratar de uma ferramenta gráfica o SWAT torna mais fácil a edição e adição de configurações no smb.conf, mas toda vez que as configurações são alteradas e salvas ele gera um novo arquivo smb.conf e com isso apaga todos os possíveis comentários existentes no

arquivo. Por se tratar de um arquivo com muitas variáveis, parâmetros e seções, nesse trabalho o foco será a edição através de editores de texto padrão como o "VIM", pois assim algumas configurações podem ser inseridas como comentários para fins de explicação ou como base para futuras modificações.

3.3 Iniciando Samba 3

Com todos os componentes instalados a aplicação pode ser iniciada. O Samba 3 trabalha com dois *daemon* principais, geralmente eles se encontram no /usr/sbin/, que são: SMBD e o NMBD

O SMBD permite compartilhamento de arquivos e impressoras em uma rede SMB e provê autorização e autenticação a usuários SMB. O NMBD cuida do *Windows Internet Name Service* (WINS) e auxilia com a navegação e resolução de nomes.(ECKSTEIN DAVID COLLIER-BROWN, 2003)

- #/etc/init.d/smbd start Inicia o Samba 3. Existem outras formas de inicia-lo, como:
 - 1. # service smbd start Inicia o Samba 3.
 - 2. # service smbd stop Para o processo do Samba 3.
 - 3. # service smbd restart Finaliza o processo existente e cria outro para o Samba 3.
 - 4. #/etc/init.d/samba start Para iniciar o Samba 3 em computadores com Debian 6.
 - 5. #/etc/init.d/samba restart Reiniciar no Debian 6.

3.4 Seções

No Samba 3, as configurações de compartilhamentos, impressoras e gerais, são realizadas através de um único arquivo de configuração, o "/etc/samba/smb.conf". Esse arquivo para melhor organização, fica dividido em sessões, sendo a primeira sessão nomeada como [global], onde são definidas as configurações gerais do servidor. Também podem ser criadas sessões adicionais para cada compartilhamento, sendo nomeadas com o nome do mesmo. Se desejamos criar um compartilhamento com o nome "arquivo", a sessão que deve ser criada no arquivo de configuração deve ser [arquivo].

3.5 Variáveis de substituição do Samba 3

Segundo (FOCA, 2012) existem variáveis especiais que podem ser usadas no arquivo de configuração do Samba 3 e são substituídas por parâmetros especiais no momento da conexão

do usuário. Um exemplo de utilização de variáveis de substituição seria mudar a localização do diretório home do usuário:

[home]

comment = Diretório home do usuário

path = /home/usuarios/%u

Ao longo deste trabalho diversas variáveis de substituição serão utilizadas, principalmente nos scripts aqui propostos. Cada uma das variáveis são descritas em detalhes a seguir:

%S O nome do serviço atual, se existir. Seu uso é interessante, principalmente no uso de diretórios homes.

%P O diretório raíz do serviço atual, se existir.

%u O nome de usuário do serviço atual, se aplicável. Esta variável é bastante útil para programação de scripts e também para criar arquivos de log personalizados, etc.

%g O grupo primário do usuário %u.

%U O nome de usuário da seção (o nome de usuário solicitado pelo cliente, não é uma regra que ele será sempre o mesmo que ele recebeu).

%G O nome do grupo primário de %U.

%HO diretório home do usuário, de acordo com %u.

%v A versão do Samba.

%h O nome DNS da máquina que está executando o Samba.

%m O nome NetBIOS da máquina do cliente. Isto é muito útil para log de conexões personalizados e outras coisas úteis.

%L O nome NetBIOS do servidor. Como o servidor pode usar mais de um nome no Samba (aliases), você poderá saber com qual nome o seu servidor está sendo acessado e possivelmente torna-lo o nome primário de sua máquina.

%M O nome DNS da máquina cliente.

%N O nome do seu servidor de diretórios home NIS. Este parâmetro é obtido de uma entrada no seu arquivo auto.map. Se não tiver compilado o SAMBA com a opção –withautomount então este valor será o mesmo de

%p O caminho do diretório home do serviço, obtido de uma entrada mapeada no arquivo auto.map do NIS. A entrada NIS do arquivo auto.map é dividida na forma "%N:%p".

%R O nível de protocolo selecionado após a negociação. O valor retornado pode ser

CORE, COREPLUS, LANMAN1, LANMAN2 ou NT1.

%d A identificação de processo do processo atual do servidor.

%a A arquitetura da máquina remota. Somente algumas são reconhecidas e a resposta pode não ser totalmente confiável. O Samba atualmente reconhece Samba, Windows for Workgroups, Windows 95, Windows NT e Windows 2000. Qualquer outra coisa será mostrado como "UNKNOWN" (desconhecido).

%I O endereço IP da máquina do cliente.

%T A data e hora atual.

%\$(var_ambiente) Retorna o valor da variável de ambiente especificada.

3.6 Configuração do Samba para ser um PDC

O arquivo de configuração se encontra no diretório /etc, onde está a maioria dos arquivos de configuração dos programas no linux.

- # cp /etc/samba/smb.conf > /etc/samba/smb.conf.bkp Por motivo de segurança é recomendado fazer um backup do arquivo. Ele contém exemplos comentados das possíveis configurações do Samba 3, auxiliando o profissional de TI no momento de sua configuração.
- # testparm -s /etc/samba/smb.conf.bkp > /etc/samba/smb.conf Removerá os comentário para melhor leitura do arquivo. Observação: o arquivo de origem não pode ser o smb.conf pois ele irá se rescrever e o arquivo só conterá a seção [global] vazia.
- # gedit /etc/samba/smb.conf Para editar o arquivo e adicionar as seções, parâmetros e variáveis.

Agora é necessário inserir, modificar e remover alguns parâmetros na seção [global] para que o Samba 3 se comporte como um PDC.

```
[global]

workgroup = "nome do servidor de domínio"

server string = "Título"

security = user

netbios name = "nome que será da netbios do servidor"

domain master = yes

domain logons = yes
```

```
enable privileges = yes

passdb backend = tdbsam

encrypt passwords = true

preferred master = yes

local master = yes

os level = 100

map to guest = Bad User

panic action = /usr/share/samba/panic-action %d
```

Explicação das variáveis utilizadas:

- workgroup Nome do servidor de domínio.
- server string Descrição do servidor que aparece na barra de título das janelas do compartilhamento.
- **security** Tipo de segurança do compartilhamento. Existem os tipos domain, user e share.
 - 1. share É utilizado quando o compartilhamento será aberto, onde todos os usuários conectados serão guest e sem a necessidade de realizar login.
 - 2. user Todos os usuários que tentarem se conectar terão que se identificar por meio de um login e uma senha.
 - 3. domain Quando um servidor de domínio será responsável pela identificação e segurança dos usuários.
- **netbios name** Nome da netbios do servidor.
- **encrypt passwords** Quando informado o valor "true" as senhas informadas para o servidor serão criptografadas.
- domain master Informa que o servidor Samba 3 será o domínio principal da rede.
- domain logons O servidor Samba 3 passa a ser um controlador de domínio.
- enable privileges Habilita alguns privilégios no Samba 3. Alguns deles:
 - 1. SeAddUsersPrivilege Adicionar usuários e grupos no domínio
 - 2. SeDiskOperatorPrivilege Gerencia os discos compartilhados
 - 3. SeMachineAccountPrivilege Adicionar maquinas no domínio

- 4. SePrintOperatorPrivilege Gerencia as impressoras
- passdb backend Aceita valores smbpasswd ou tdbsam . Define qual será a forma de armazenagem dos registros dos usuários.
 - smbpasswd O smbpasswd é o backend mais simples. Nele, as senhas são salvas no arquivo "/etc/samba/smbpasswd" e são transmitidas de forma encriptada através da rede, com suporte ao sistema NTLM, usado pelas versões contemporâneas do Windows. A vantagem do smbpasswd é que ele é um sistema bastante simples. Embora encriptadas, as senhas são armazenadas em um arquivo de texto, com uma conta por linha.(MORIMOTO, 2008)
 - 2. tdbsam O tdbsam, que usa uma base de dados muito mais robusta, armazenada no arquivo "/var/lib/samba/passdb.tdb"(é justamente este arquivo que o script executado durante a instalação do pacote "samba"no Debian pergunta se deve ser criado).(MORIMOTO, 2008)
 - 3. Diferença entre smbpasswd e tdbsam O tdbsam oferece duas vantagens sobre o smbpasswd: oferece um melhor desempenho em servidores com um grande número de usuários cadastrados e oferece suporte ao armazenamento dos controles SAM estendidos usados pelas versões server do Windows. O uso do tdbsam é fortemente recomendável caso seu servidor tenha mais do que algumas dezenas de usuários cadastrados ou caso você pretenda usar seu servidor Samba como PDC da rede. Ele é também um pré-requisito caso você precise migrar um domínio NT já existente para o servidor Samba. (MORIMOTO, 2008)
- local master Define se o servidor será o Master Browser.
- os level Valor que será passado na eleição para definir o mestre da rede. O valor máximo é 100, assim vencendo os valores padrões de "os level" o servidores windows.
- map to guest Torna usuário guest todos que não conseguirem se identificar com um login e senha valida.
- panic action Comando que será executado caso o smbd ou nmbd pararem de funcionar.

Com todas as variáveis devidamente adicionadas o servidor Samba 3 precisa ser reiniciado para que todas as modificações entrem em vigor.

- # testparm Verifica se existe algum erro de sintaxe no arquivos de configuração no smb.conf
- #/etc/init.d/smbd restart Reinicia o Samba 3.
- #/etc/init.d/nmbd restart Reinicia o servidor de nomes do Samba 3.

```
gabriel@:~$ testparm
Load smb config files from /etc/samba/smb.conf
rlimit_max: increasing rlimit_max (1024) to minimum Windows limit (16384)
params.c:Parameter() - Ignoring badly formed line in configuration file: *Retype
\snew\s*\spassword:* %n
params.c:Parameter() - Ignoring badly formed line in configuration file: *passwo
rd\supdated\ssuccessfully* .
Processing section "[homes]"
Processing section "[printers]"
Processing section "[printers]"
Loaded services file OK.
Server role: ROLE_DOMAIN_MEMBER
Press enter to see a dump of your service definitions
```

Figura 3.2: Saída do testparm

3.7 Cadastro de Usuário

Os usuários que terão acesso e permissões de login no domínio devem ser criados no servidor linux, onde se encontra o Samba 3. Antes da criação dos usuários normais o usuário root tem que ser cadastrado no Samba 3.

• # smbpasswd -a root - Uma senha terá que ser informada e precisa ser a mesma do usuário no sistema.

Cada usuário no sistema deverá conter uma pasta com o nome de "profile.pds". Essa pasta irá conter informações das sessões de logon que o usuário fez no servidor de domínio. Para automatizar a criação dessa pasta no diretório home dos usuários, cria-se o diretório no /etc/skel.

• # mkdir /etc/skel/profile.pds - O /etc/skel armazena todos os diretórios e arquivos que serão criados juntos com o usuário no sistema.

Antes de cadastrá-los no Samba 3 eles precisam ser criados no sistema.

• # adduser --disabled-login usuario - Comando para a criação mais completa de usuário no linux com nome completo, telefone, sem a permissão de login e entre outros dados.

Após o usuário ser criado no sistema, ele necessita ser cadastrado no Samba 3.

• # smbpasswd -a usuario - Informe a mesma senha cadastrada no linux.

3.8 Cadastro de Máquinas

Da mesma forma que os usuário têm que ser cadastrados no sistema, as máquinas que poderão entrar no domínio também devem ser cadastradas. As máquinas são cadastradas como usuários normais no linux antes de serem cadastradas no Samba 3, porém sem pasta home e sem bash para login.

- # groupadd machine Cria o grupo no qual serão adicionadas as máquinas cadastradas para melhor organização dos usuários no linux.
- # useradd --home /dev/null --shell /bin/false --disabled-login --group machine computador1\$ Comando para a criação da máquina no sistema linux. Por padrão se adiciona o \$ no final do nome pois é dessa forma que o Samba 3 irá identificar que o usuário na verdade é uma maquina.
- # passwd -l computador1\$ Desativa a mudança da senha para o usuário/máquina.

Após a criação do usuário/máquina no sistema agora ele tem que ser cadastrado no Samba 3.

• # smbpasswd -a -m computador1\$ - Cadastra o usuário como uma máquina no Samba 3.

3.9 Script de Cadastro de Usuários e Máquinas

Para facilitar a criação e exclusão dos usuários no sistema e no Samba 3, foi feito o script **smbmanager.sh**¹ conforme o anexo no Apêndice A1. Com ele é possível criar usuários e máquinas, adicionar usuários em grupos e também excluí-los do sistema.

O script tem que ter a permissão de root para que possa ser iniciado.

- # chmod +x smbmanger.sh Adiciona a permissão de execução ao script.
- # cp smbmanager.sh /usr/sbin/ Transferindo o script para a pasta /usr/sbin/ o script poderá ser iniciado em qualquer caminho que o usuário esteja.

 $^{^{1}} Pode\ ser\ baixado\ em\ https://github.com/GabrielRocha/Monografia/blob/master/latex/Scripts/smbmanager.sh$

```
gabriel@:~/TCC$ ./smbmanager.sh -h
È NECESSÁRIO TER PERMISSÃO DE ROOT
USO: smbmanager [OPCAO] [VALOR]

Opções gerais:
-g [VALOR] Grupo no qual será adicionado a máquina ou usuário
-m [VALOR] Nome da máquina a ser cadastrada
-u [VALOR] Usuário a ser cadastrado no sistema e no samba
-d [VALOR] Usuário a ser deletado do sistema
-x [VALOR] Máquina a ser deletada do samba e do sistema
```

Figura 3.3: Saída do smbmanager

3.10 Migração dos Usuários Administradores e Users do Linux para o Windows

Para que o Windows possa reconhecer um grupo de usuários administradores do linux como Power Users e Domain Users deve se mapear os grupos pelo RID dos mesmos. A tabela 3.1 apresenta alguns dos grupos e seus respectivos RID (Relative Identifier). Os comandos a seguir devem ser utilizados para mapear esses grupos no Samba 3.

Tabela 3.1: Tabela do RID (Relative Identifier) Windows (SAMBA.ORG, 2003)

Well-Known Entity	RID	Type	Essential
Domain Administrator	500	User	No
Domain Guest	501	User	No
Domain KRBTGT	502	User	No
Domain Admins	512	Group	Yes
Domain Users	513	Group	Yes
Domain Guests	514	Group	Yes
Domain Computers	515	Group	No
Domain Controllers	516	Group	No
Domain Certificate Admins	517	Group	No
Domain Schema Admins	518	Group	No
Domain Enterprise Admins	519	Group	No
Domain Policy Admins	520	Group	No
Builtin Admins	544	Alias	No
Builtin users	545	Alias	No
Builtin Guests	546	Alias	No
Builtin Power Users	547	Alias	No
Builtin Account Operators	548	Alias	No
Builtin System Operators	549	Alias	No
Builtin Print Operators	550	Alias	No

- 1. # net groupmap list Liste os grupos existentes mapeados, caso não tenha o grupo siga o passo 2.
- 2. # net groupmap add ntgroup='Domain Admins' rid=512 unixgroup=admin Irá mapear o grupo admin para o grupo Domain Admins do windows.
- 3. # net groupmap add ntgroup='Domain Users' rid=513 unixgroup=users Mapea o grupo users com o Domain Users do windows.
- # net groupmap delete ntgroup='Domain Admins' Caso queira remover um mapeamento de grupo.
- # net groupmap modify ntgroup='Domain Admins' rid=512 unixgroup=admin Caso tenha necessidade de modificar um mapeamento.

Dessa forma, se o usuário logar com os usuários que estejam no grupo admin em algum terminal windows no domínio, ele terá permissões de administrador.

3.11 Perfis Moveis

Para que as configurações e personalizações do perfil do usuário no windows sejam salvas é necessário a criação de um perfil móvel no servidor Samba 3. A vantagem de se utilizar um perfil móvel é que não existe a obrigatoriedade de se realizar backup na máquina do usuário, pois os arquivos são salvos no servidor, sendo assim é só o usuário fazer o login em outra máquina windows que o seu perfil e os seus dados serão migrados para o novo computador. Porém o perfil móvel tem um problema que é a quantidade de dados armazenados. Se o número de usuários e dados de cada um for muito grande, cria-se a necessidade de ter um servidor com muito espaço de armazenamento e uma rede muito bem estruturada.

Para ativar a configuração de perfil móvel no Samba 3 deve-se adicionar no [global]

```
\label{logon path} $$\log \ path = \N L\Profiles\W U$$ logon home = \N L\Profiles\W U$$ logon drive = H:
```

- logon path Serve para indicar o caminho onde vão ficar os perfis no Windows XP/Vista/7
- **logon home** Indica o caminho para os perfis em versões mais antigas do Windows, como 95/98.
- **logon drive** Unidade que será mapeada com o caminho \\servidor\profiles\"nome do usuário"no Windows.

O diretório profile criados fica compartilhado para que seja mapeado na unidade H do usuário no windows.

```
[profiles]

path = /var/samba/%U

writeable = yes

browseable = no

create mask = 0600

directory mask = 0700

available = yes
```

- path Caminho da pasta que vai ser compartilhada.
- writeable Permite a escrita no diretório e nos arquivos.
- **browseable** Define se o compartilhamento poderá ser visto na pasta principal do compartilhamento ou somente pelo endereço completo.
- **create mask** Força a criação dos arquivos com a permissão 0600, assim somente os donos do arquivo poderão alterar os arquivos.
- directory mask Criação dos diretórios com permissão 0700.
- available (Yes/No) Se o compartilhamento estará acessível ou não no servidor.

3.12 Compartilhamento de Arquivos

O compartilhamento de arquivos é dado pela adição de seções no arquivo smb.conf.

```
[Diretoria]

path = /media/diretoria

read only = no

valid users = +diretoria

force group = diretoria

create mask = 0770

directory mask = 0770

browseable = no
```

- [Diretoria] Nome do compartilhamento que será mostrado no servidor.
- path Nele devemos mapear diretórios que serão compartilhados na rede.

Cabe ressaltar que após a criação desses diretórios, é necessário o ajuste das permissões de acesso, do dono do diretório e do grupo do diretório, utilizando os programas chmod e chown, respectivamente. O ajuste varia caso a caso, e deve ser realizado com cautela, para não dar mais permissões que o necessário. Uma breve explicação sobre o chmod e chown é realizada a seguir:

chmod - Define as permissões do arquivo. Exemplo: # chmod 774 -R /pasta_criada - Essas permissões definem que o usuário proprietário do diretório e todos os usuário do grupo do diretório terão controle total no diretório e em seus arquivos e que os outro usuário poderão apenas listar os arquivos que se encontram no diretório.

chown - Define qual será o usuário e grupo proprietário do diretório ou arquivo. Exemplo: # chown usuario.grupo /diretorio .

- read only Define se o compartilhamento estará com permissão de somente leitura ou não.
- **Valid users** Define quais usuários e grupos poderão acessar o compartilhamento. O símbolo de + define que o nome inserido esta se referindo a um grupo de usuários.
- **force group** Força qual será o grupo proprietário dos arquivos criados no compartilhamento.
- create mask Permissão dos arquivos que forem criados ou inseridos no compartilhamento
- directory mask Permissão dos diretórios criados dentro do diretório compartilhados.
- **browseable** Define se o compartilhamento poderá ser visualizado na janela do compartilhamento do servidor.

Existem outras variáveis que podem ser adicionadas em um compartilhamento de arquivos dependendo da necessidade.

- invalid users Lista de usuários e grupos que não terão acesso.
- guest ok Permite que qualquer usuário acesse a pasta.
- veto files Impede que certos arquivos sejam transferidos para o servidor.

34

• write list - Lista dos usuários que poderão gravar e fazer alterações nos arquivos e di-

retórios compartilhados.

• read list - Lista dos usuários que só poderão ler e listar os arquivos e diretórios compar-

tilhados.

• host deny - Ip's ou faixa de ips que não podem conectar ao servidor.

• hosts allow - Ip's ou faixas de ips que podem conectar ao compartilhamento.

Exemplo da aplicação de algumas delas

[Backup]

write list = usuario1 # Somente o usuario1 terá permissão de escrita no compartilha-

mento.

read list = usuario2 # O usuario2 só poderá ler e listas os arquivos e diretórios desse

compartilhamento.

host allow = 192.168.1.2-192.168.1.20 # Somente os ip's que estiverem entre 192.168.1.2

e 192.168.1.20 poderão acessar esse compartilhamento.

veto files = *.tmp/*.doc # Não será permitido inserir esses tipos de arquivos no compar-

tilhamento. Essa variável aceita expressões regulares

3.13 **Script Logon**

Para que os mapeamentos de unidades e alguns códigos sejam executados de forma

automática nos usuários logados o Samba 3 fornece a opção na seção [global].

• logon script = %G.bat - Com essa variável adicionada, o sistema irá buscar o script com

o nome do grupo primário do usuário. Trabalhar com o grupo é mais fácil de se gerenciar

pois o mesmo script serve para mais de um usuário. O uso do %U é um complicador, já

que cada seria necessário criar um script para cada usuário do sistema.

Exemplo:

Usuário logado: usuário

Grupo primário: grupo

Script a ser procurado: grupo.bat

Esse script precisa estar compartilhado no smb.conf para que possa ser executado.

[netlogon]
path = /var/samba/scripts

browseable = no

read only = yes

O local onde foi definido que irá conter os scripts e os arquivos (/var/samba/scripts), tem que ter a permissão 1775.

- # mkdir -p /var/samba/scripts Cria a pasta onde estarão os scripts.
- # chmod 1775 /var/samba/scripts Permissão de execução dos scripts.

Exemplo de um script diretoria.bat

net use x: \\servidor\\diretoria

Figura 3.4: Tela de um mapeamento

3.14 Compartilhamento de Impressoras

O compartilhamento de impressora é a publicação das impressoras instaladas no servidor para que outras máquinas que estão na rede possam acessar e imprimir sem precisar da conexão local na impressora.

Para compartilhar as impressoras com o Samba 3 deve-se adicionar na seção [global]

[global]

printing = cups

load printers = yes

- printing Define qual o programa será utilizado para gerenciar as impressões
- load printers Carrega as impressoras

O Samba 3 utiliza o cups que é o gerenciador de impressoras mais comum para o linux.

• #smbd -b | grep CUPS - Para saber se o pacote Samba 3 instalado é compatível com o CUPS. A saída deve ser algo como "HAVE CUPS"

Caso o cups não esteja instalado.

- #apt-get install cups Instala todos os pacotes necessários para o funcionamento do cups.
- \$ firefox localhost:631 Interface gráfica para gerenciar as impressoras 3.5.
- #/etc/init.d/cupsys restart Reinicia o serviço do cups

Figura 3.5: Tela do CUPS pelo Browser

Habilitando o compartilhamento de impressora

```
[printers]
print ok = yes
guest ok = yes
path = /var/spool/samba
browseable = yes
```

• path - Esse caminho é onde ficarão os spools de impressão. Esse diretório é criado automaticamente pelo Samba 3 e deve ter a permissão 777.

1. chmod 777 -R /var/spool/samba

Dessa forma ao acessar o servidor irão aparecer todas as impressoras instaladas.

3.15 Instalação automática dos drive da impressora

Para conectar-se a uma impressora compartilhada é necessário a instalação dos drivers da mesma.

Um problema é como esses drivers são armazenados e instalados, já que uma das formas de instalar esses drivers é ir até o computador com o instalador em cd ou pen-drive e realizar a instalação manualmente, porém em uma grande rede se perde muito tempo com a locomoção e instalação. A solução desse problema é a instalação automática dos drivers, e com a utilização do Samba 3 os drivers serão instalados assim que o usuário tentar conectar a impressora.

Adiciona no [global]

• enable privileges = yes - Permite privilégios a usuários

Criar um compartilhamento não visível onde ficará os drivers das impressoras.

```
[print$]
path = /var/lib/samba/printers
read only = yes
write list = root
inherit permissions = yes
```

- path Local onde os drivers serão instalados
- write list Usuários ou grupos que terão permissão de escrita
- inherit permissions Se os arquivos irão herdar as permissões da pasta.

Se o caminho apontado pelo path não existir ele terá que ser criado com as permissões necessárias.

• # mkdir -p /var/lib/samba/printers

- # cd /var/lib/samba/printers
- # mkdir WIN40 W32X86 Essas pastas são os locais onde ficarão os drivers das impressoras, o WIN40 para sistemas Windows 95/98/ME e o W32X86 Windows NT/2000/XP.
- # chmod 2775 WIN40 W32X86 Permissões especiais para instalar os drivers nos usuários.
- # net -S localhost -U root -W NOME_DO_SERVIDOR rpc rights grant "NOME DO SERVIDOR\root"SePrintOperatorPrivilege - Irá definir que o usuário root terá todas os privilégios necessários para gerenciar as impressoras.

Com as permissões, usuários e impressoras configuradas, os drivers tem que ser passados para o servidor. A sequência de figuras a seguir ilustra o passo-a-passo para a adição dos desses drivers.

1. Acessar a maquina com um usuário local - 3.6

Figura 3.6: Tela do Login no Windows localmente

2. Informar o endereço do servidor - 3.7

Figura 3.7: IP do servidor de compartilhamento

- 3. Informar o usuario root e sua senha.
- 4. Acessar a pasta "Impressoras e aparelhos de fax" -3.8

Figura 3.8: Impressoras e aparelhos de fax compartilhados

- 5. Clique na opção Arquivos -> Propriedade do servidor.
- 6. Aba Driver -> Adicionar 3.9

Figura 3.9: Adicionar driver ao servidor de impressão

7. Selecionar o driver da impressora que deve ser copiado para o servidor - 3.10

Figura 3.10: Selecionar o driver que será copiado para o servidor de impressão

8. Selecionar os SO dos drivers - 3.11

Figura 3.11: Selecionar os Sistemas Operacional que o driver será compatível

9. Botão direito na impressora Propriedades - 3.12

Figura 3.12: Propriedade da impressora do compartilhamento

10. Selecione a opção "Não", se selecionar o SIM o driver será instalado somente na maquina local - 3.13

Figura 3.13: Opção para não instalar o driver naquele momento

11. Selecione o drive que será vinculado a impressora - 3.14

Figura 3.14: Aba onde será feito o link da impressora com o driver

12. Logar com o usuário do domínio no qual será mapeada a impressora - 3.15

Figura 3.15: Logar no domínio

13. Selecione a impressora no servidor - 3.16

Figura 3.16: Selecionar a impressora que será mapeado no usuário logado

14. Impressora instalada no usuário - 3.17

Figura 3.17: Impressora instalada no usuário

3.16 Ingressando o Windows XP no Domínio

Para ingressar um computador windows no domínio é necessário que primeiramente ele esteja devidamente cadastrado no servidor Samba 3. O windows deve estar com os drivers de rede instalados e respondendo na rede. Para ingressar o Windows XP no domínio deve-se realizar os seguintes passos:

1. Realizar logon no windows com uma conta que possua privilégios administrativos. 3.18

Figura 3.18: Tela de logon local

- 2. Após o logon, deve-se abrir o programa Executar no menu Iniciar e acessar as Propriedades do Sistema através do comando "sysdm.cpl".
- 3. Acessar a aba "Nome do Computador". Deve-se clicar no botão "Alterar". 3.19

Figura 3.19: Alterando nome do micro

4. No menu de "Alterações de nome do computador", certifique-se de que o nome definido para o computador é o mesmo que foi cadastrado no servidor Samba 3. No campo "Membro de", selecione a opção "Domínio" e digite o nome do domínio definido na sessão [global] do Samba 3 e depois clique em OK. 3.20

Figura 3.20: Incluir micro no domínio

- 5. Insira a senha de administrador do servidor para o micro ingressar no domínio. E aguarde a mensagem de confirmação.
- 6. Reinicie o micro quando for solicitado pelo sistema.
- 7. Após inicialização o micro, selecione o domínio para realizar o logon e entre com um usuário e senha que esteja cadastrados previamente no servidor. 3.21

Figura 3.21: Efetuando logon no domínio

3.17 Ingressando o Linux no Domínio

Para ingressar um computador linux no domínio é necessário que primeiramente ele esteja devidamente cadastrado no servidor Samba 3. Para o linux realize login no servidor PDC é necessário a instalação de três pacotes essenciais. São eles o Samba, o Winbind e os módulos do PAM (libpam-modules).

A instalação desses pacotes na distribuição Ubuntu pode ser realizada através dos comando:

- #apt-get update Atualiza a base de dados do repositório.
- #apt-get install samba winbind libpam-modules Realiza a instalação dos pacotes Samba, Winbind e módulos do PAM.

Após a instalação é necessário realizar a configuração do micro para que possa fazer login no domínio. Começando pela configuração do Samba através do arquivo de configuração /etc/samba/smb.conf, que deve ser editado para que a seção [global] fique conforme o exemplo. Pode-se optar por adicionar essa configuração à configuração existente, ou pode manter apenas essa configuração básica:

```
[global] workgroup = Dominio
netbios name = cliente1
winbind use default domain = yes
obey pam restrictions = yes
security = domain
encrypt passwords = true
wins server = 192.168.1.1
winbind uid = 10000-20000
winbind gid = 10000-20000
template shell = /bin/bash
template homedir = /home/%U
winbind separator = +
printing = cups
invalid users = root
Explicação de algumas variáveis importantes:
```

46

• workgroup - Nome do domínio configurado no servidor Samba 3.

• netbios name - Nome do computador cliente (/etc/hostname), que deve estar cadastrado

no servidor.

• wins server - Ip do servidor PDC Samba 3.

Editado o arquivo /etc/samba/smb.conf, deve-se testar o arquivo de configuração para verificação de erros através do comando #testparm. Após a configuração do Samba, deve-se configurar o arquivo Network Services Switch (/etc/nsswitch.conf), que determina a ordem das buscas quando uma informação é solicitada. Esse arquivo deve ter as seguintes linhas alteradas:

passwd: compat winbind

group: compat winbind

shadow: compat winbind

Foi incluído o winbind nas variáveis de busca passwd, group e shadow para que esses valores sejam buscados no servidor Samba 3.

Depois de concluídas as configurações

4 SAMBA 4

O Samba 4 vem com a proposta de criar um *Active Directory* livre, combatendo as versões pagas da Microsoft, utilizando o LDAP, Bind e Kerberos.

Por se tratar de um sistema ainda em fase de produção e sem previsão para a conclusão atualmente, alguns erros podem aparecer ou alguns parâmetros deverão ser modificados. A versão utilizada nesse trabalho é a Alpha22.

4.1 Instalação do SAMBA 4

Todos os comandos foram testados no Ubuntu 11.04 e Debian 6, por isso algumas adaptações podem ser necessárias em outras distribuições Linux.

A instalação é realizada a partir do terminal, mas antes é necessário a instalação de algumas bibliotecas.

apt-get install build-essential libattr1-dev libblkid-dev libgnutls-dev python-dev gitcore autoconf python-dnspython ntpdate acl libacl1-dev

Antes de começar a instalação o relógio do servidor tem que estar atualizado. O comando ntpdate atualiza a hora através do ntp², onde um dos principais servidores é o pool.ntp.br.

ntpdate pool.ntp.br

O código fonte esta hospedado no servidor git dos desenvolvedores do Samba, e o mesmo deve ser clonado para a maquina de destino.

git clone git://git.samba.org/samba.git samba-master; cd samba-master

O Samba 4 segue os procedimento padrões de instalação de aplicativos no linux através do terminal, que segundo (LåNGSTEDT, 2005) se segue com o ./configure, make e o make install. Nesse caso ao invés de se utilizar o ./configure como padrão é utilizado o ./configure.developer, pois o mesmo habilita alguns modos de debug.

²Os servidores NTP permitem aos seus clientes a sincronização dos relógios de seus computadores e outros equipamentos de rede a partir de uma referência padrão de tempo aceita mundialmente, conhecida como UTC (*Universal Time Coordinated*).(RNP, 2010)

./configure.developer

make

make install

Para verificar a versão instalada é só executar o seguinte comando:

/usr/local/samba/bin/smbclient --version

4.2 Criação de Domínio com o Samba 4

O Samba 4 trabalha com regras ACL e para que ele possa ser instalado tem que habilitar o modo acl nas unidades de disco.

vim /etc/fstab

Localizar a linha da unidade principal e adicionar o parâmetro acl nos options de montagem da unidade 4.1.

Figura 4.1: Tela do fstab.

Por padrão o Samba 4 é instalado no /usr/local/samba.

cd /usr/local/samba

A instalação é a partir da execução do comando provision que fica localizado no /sbin do Samba e a inserção de alguns parâmetros.

bin/samba-tool domain provision --use-ntvfs --realm=NOME_SERVIDOR --domain=NOME DOMINIO --adminpass='Senha12' --server-role=dc

- 1. **use-ntvfs** Habilita o NTVFS³;
- 2. realm Domínio do servidor Kerberos;

³Sistema de arquivos que armazena os atributos do NTFS

- 3. domain Domínio do Samba;
- 4. adminpass Senha do Administrator, essa senha deve ter pelo menos uma letra maiúscula;
- 5. **server-role** Regra do servidor.

Depois de instalado e configurado o servidor de *Active Directory* pode ser iniciado. Uma das forma é inicia-lo em modo debug para poder acompanhar melhor os processos realizados.

/usr/local/samba/sbin/samba -i -M single

Para facilitar a forma de ativar o Samba 4 podem ser feito dois procedimentos.

Criar um link do executável do Samba no /etc/init.d/.

ln /usr/local/samba/sbin/samba /etc/init.d/samba

Mudar o caminho da variável de ambiente PATH para que os comandos possam ser acessados fora da sua pasta de origem.

echo "export PATH=/usr/local/samba/sbin:/usr/local/samba/bin:\$PATH">>> /root/.bashrc

4.3 Instalação do Kerberos

Segundo (GRASSATO, 2009) a autenticação Kerberos é um protocolo de rede. Foi concebido para fornecer autenticação forte para o cliente/servidores de aplicativos usando criptografia de chaves secretas, então um cliente pode provar a sua identidade para um servidor (e vice-versa) em uma conexão de rede insegura. Em nosso caso utilizaremos BIND com suporte ao Heimdal Kerberos por causa do GSS-TSIG algoritmo de serviço de segurança genérico para autenticação de transação com chave secreta de DNS (GSS-TSIG) este mecanismo é utilizado para estabelecer relações TSIG para autenticação do tipo Kerberos, necessário para interagir BIND com Samba 4, com essas credenciais o DNS aceita atualizações GSS-TSIG assinadas e verifica as credenciais de correspondentes com as credencias cadastradas no Samba 4, isso permite aos usuários descarregar o DNS dos usuários do Microsoft Windows sem ter a segurança comprometida.

• # apt-get install krb5-user krb5-kdc krb5-config kstart - Instala todos os pacotes necessários e faz as referências necessárias.

Após instalar os pacotes, substitua o /etc/krb5.conf pelo arquivo criado e pré-configurado pelo Samba que esta localizado em /usr/local/samba/private/krb5.conf .

• # cp /usr/local/samba/private/krb5.conf /etc/

Teste para verificar se todos as configurações foram realizadas corretamente.

- # host -t SRV _ldap._tcp."nome do realm sem aspas". O resultado deve ser parecido : _ldap._tcp."nome do realm sem aspas"has SRV record 0 100 389 server."nome do realm sem aspas".
- # host -t SRV _kerberos._udp."nome do realm sem aspas". O resultado deve ser parecido : _kerberos. _udp."nome do realm sem aspas"has SRV record 0 100 88 server."nome do realm sem aspas".
- # host -t A "nome do realm sem aspas" O resultado deve ser parecido : "nome do realm sem aspas" has address "ip do servidor".

4.4 Gerenciando o Samba4 através do Windows e do Linux

É possível gerenciar o servidor Samba 4 através de um Windows XP mas para a realização do mesmo é necessário a instalação do AdminPack⁴ presente no Windows Server. Essa ferramenta permite gerenciar todos os usuários, grupos e maquinas presentes no *Active Directory*

Inicie a ferramenta pelo **Executar -> dsa.msc** 4.3.

Figura 4.2: Tela para executar o DSA.

Figura 4.3: Tela do DSA.

⁴O AdminPack está disponível no site da Microsoft:

http://www.microsoft.com/downloads/details.aspx?FamilyID=c16ae515-c8f4-47ef-a1e4-a8dcbacff8e3&displaylang=en

O samba-tools é uma ferramenta que acompanha o Samba 4 no linux e tem a finalidade de gerenciar as ações que podem ser feitas no no *Active Directory*. Com ele se poder criar usuários, grupos, gpo's, entre outras funções, porém um forma de texto 4.4.

```
root@battousai: ~
Arquivo Editar Ver Pesquisar Terminal Ajuda
root@battousal:-# samba-tool --help
Usage: samba-tool <subcommand>
Available subcommands:
 dbcheck - check local AD database for errors 
delegation - Delegation management
 dbcheck
              - Domain Name Service (DNS) management
 dns
 domain
              - Domain management
              - Directory Replication Services (DRS) management
 drs
              - DS ACLs manipulation
 dsacl
 fsmo
              - Flexible Single Master Operations (FSMO) roles management
              - Group Policy Object (GPO) management
              - Group management
- compare two ldap databases
 group
  ldapcmp
 ntacl
              - NT ACLs manipulation
              - Read-Only Domain Controller (RODC) management
 rodc
 sites
               - Sites management
              - Service Principal Name (SPN) management
              - Syntax check the configuration file.
 testparm
 time
              - Retrieve the time on a server

    User management
    Join and synchronise a remote AD domain to the local server

 user
 vampire
or more help on a specific subcommand, please type: samba-tool (-h|--help)
oot@battousal:-#
```

Figura 4.4: samba-tool no terminal.

4.5 Maquinas linux interagindo com o Active Directory do Samba4

Segundo (UBUNTU BR, 2011) a forma de incluir uma maquina Ubuntu no *Active Directory* é modificar alguns arquivos de configuração. Segue abaixo os arquivos e os procedimentos.

Informações

- **fja.br** Domínio do *Active Directory*.
- fjadc01.fja.br Controlador de domínio.
- 10.1.0.1 IP do controlador de domínio.
- FJA.BR Kerberos Realm.
- gert Estação de Trabalho Ubuntu.
- gert.fja.br FQDN da estação de trabalho.
- **fjadc01** Servidor NTP.

Instalando os pacotes necessários

• # aptitude install krb5-user libpam-krb5 winbind samba smbfs smbclient krb5-config lib-krb53 libkadm55 vim

Sincronizando a hora

• # ntpdate 10.2.0.1

Edite o arquivo /etc/hosts adicionando o ip e o nome do DC de sua rede.

• # vim /etc/hosts

```
127.0.0.1 gert.fja.br localhost gert

127.0.1.1 gert

# The following lines are desirable for IPv6 capable hosts

::1 ip6-localhost ip6-loopback

fe00::0 ip6-localnet

ff00::0 ip6-mcastprefix

ff02::1 ip6-allnodes

ff02::2 ip6-allrouters

ff02::3 ip6-allhosts

10.2.0.1 fjadc01

10.2.0.2 fjadc02
```

Configurando o Kerberos

• # vim /etc/krb5.conf

```
[libdefaults]

default_realm = FJA.BR

[realms]

FJA.BR = {

kdc = fjadc01.fja.br
```

```
default_domain = FJA.BR
kpasswd_server = fjadc01.fja.br
admin_server = fjadc01.fja.br
}
[domain_realm]
.fja.br = FJA.BR
```

Testando a conexão com o Active Directory.

- kinit <ENTER>
- Password for alex@FJA.BR: ****
- klist <ENTER>
- Ticket cache: FILE:/tmp/krb5cc_1000
- Default principal: alex@FJA.BR

Se o resultado for este o Kerberos está funcionando corretamente.

Valid starting Expires Service principal 07/16/07 15:48:35 07/17/07 01:49:08

krbtgt/FJA.BR@FJA.BR renew until 07/17/07 15:48:35

Kerberos 4 ticket cache: /tmp/tkt1000

klist: You have no tickets cached

Acessando o Domínio.

• # vim /etc/samba/smb.conf - Adicione as seguintes linhas.

```
[global]
security = ads
realm = FJA.BR
password server = 10.2.0.1
workgroup = ADMINISTRATIVO
# winbind separator = +
idmap uid = 10000-20000
```

```
idmap gid = 10000-20000
winbind enum users = yes
winbind enum groups = yes
template homedir = \frac{\text{home}}{\text{MD}}
template shell = /bin/bash
client use spnego = yes
client ntlmv2 auth = yes
encrypt passwords = yes
winbind use default domain = yes
restrict anonymous = 2
# to avoid the workstation from
# trying to become a master browser
# on your windows network add the
# following lines
domain master = no
local master = no
preferred master = no
os level = 0
```

- Reinicie os serviços.
- #/etc/init.d/winbind stop
- #/etc/init.d/samba restart
- #/etc/init.d/winbind start

Adicione a conta ao domínio.

- # net ads join
- Resultado Using short domain name GERT Joined "GERT" to realm "FJA.BR"

Configure a Autenticação.

• # vim /etc/nsswitch.conf

passwd: compat winbind

group: compat winbind

shadow: compat

Teste o winbind

getent passwd

quiosque:*:10018:10000:Quiosque:/home/ADMINISTRATIVO/quiosque:/bin/bash

• getent group

_coordenação de enfermagem:x:10046:coordenf

__coordenação de design:x:10047:smarino,coorddes

Configure o PAM.

• # vi /etc/pam.d/common-account - Adicione as seguintes linhas.

account sufficient pam_winbind.so account required pam_unix.so

• # vim /etc/pam.d/common-auth - Adicione as seguintes linhas.

auth sufficient pam_winbind.so
auth sufficient pam_unix.so nullok_secure use_first_pass
auth required pam_deny.so

• # vim /etc/pam.d/common-session Adicione as seguintes linhas.

session required pam_unix.so
session required pam_mkhomedir.so umask=0022 skel=/etc/skel

• /etc/pam.d/sudo - Adicione as seguintes linhas.

auth sufficient pam_winbind.so
auth sufficient pam_unix.so use_first_pass
auth required pam_deny.so

@include common-account

Reinicie os serviços

- #/etc/init.d/winbind stop
- # /etc/init.d/samba restart
- # /etc/init.d/winbind start

Logando no domínio.

Vá para a console usando o comando CTRL+ALT+F1 e logue no sistema com o login e senha do domínio.

• login: nome_do_usuário

• Password: *****

• nome_do_usuário@gert: \$

4.6 Script para adicionar maquina linux no Active Directory.

O cadastro de maquinas no samba 4 se difere do samba 3 por não ser necessário o cadastramento do computador como usuário, com o \$ no final do nome, no servidor e depois cadastra-lo no Samba 4.

Para facilitar a inserção das maquinas linux no *Active Directory* do Samba 4 foi modificado um script e ele foi chamado de smbad.sh⁴.

4.7 Samba3 e Samba 4

4.8 Windows no domínio Samba 4

⁴Pode ser baixado em https://github.com/GabrielRocha/Monografia/blob/master/latex/Scripts/smbad.sh

```
root@IFF:~# ./smbad.sh
Linux Active Directory:
(1) Adicionar Máquina no Domínio
(2) Remover Máquina do Domínio
(3) Verificar conexão com o Domínio
(0) Sair
Digite a opção desejada:
```

Figura 4.5: Tela do script para inserir maquinas linux no AD.

5 ESTUDO DE CASO

Esta proposta de implementação foi motivada através de um cenário de instituição de ensino que necessitava de uma otimização na segurança e compartilhamento de seus recursos de TI. Para melhor gerenciamento e manutenção dos arquivos compartilhados e usuários na rede, seria necessária a implantação de um servidor que centralizasse todas essas tarefas.

Após identificada a necessidade desse novo recurso, foi iniciada uma pesquisa para encontrar um software que atendesse os requisitos. O Windows Server em todas as suas versões até hoje lançadas poderia ser a solução, mas é proprietário e o valor de uma licença da versão 2012 *Datacenter* custa, atualmente, em torno de 10 mil reais (MICROSOFT, 2012). O alto valor da licença acaba inviabilizando a utilização da mesma nas instituições de ensino e em pequenas empresas. Para solucionar esse problema da compra de licenças foi criada uma versão livre, o Samba 4, que faz as mesmas tarefas de um Windows Server, trabalhando com o mesmo protocolo, o LDAP. Por ser livre, foi utilizada neste trabalho. A instituição abordada neste trabalho contém 110 computadores nos setores administrativos e 90 nos laboratórios de informática. Abaixo uma pequena demonstração da estrutura da rede:

Os setores são divididos conforme suas funções no organograma da instituição. Os principais são:

- * Diretoria do Departamento de Administração e Finanças
- * Diretoria do Departamento de Gestão de Pessoas
- * Coordenação de Registros Acadêmicos
- * Chefe de Gabinete

Com a proposta de implementação abordada neste trabalho, cada setor e usuário terá na rede um compartilhamento próprio, com suas permissões definidas. Dois servidor serão inseridos na rede com as seguintes configurações:

- Processador Intel Core I7®
- 4GB de memória RAM
- Um servidor com 6 Tb de HD e o outro com 100 Gb de HD

Figura 5.1: Estrutura da rede do instituto

• Placas de vídeo, áudio e rede Onboard

Em ambos os servidores foi instalado o sistema operacional Debian 6.0.5. Por trabalharem com o mesmo protocolo e para não ocorrer conflitos, o Samba 3 foi instalado em máquina diferente do Samba 4. Sendo assim ficaram as maquinas:

- Servidor de 6TB com sistema operacional Debian 6.0.5 e Samba 3
- Servidor de 100Gb com sistema operacional Debian 6.0.5 e Samba 4

Antes da instalação do Samba 4 seus pré requisitos foram instalados e configurados como o DNS Bind 9.9 e o Kerberos Heimdal com suas variáveis de ambiente. Após a configuração dos sistemas básicos, o Samba 4 foi configurado com os seguintes parâmetros.

cd /usr/local/samba/

sbin/provision --use-ntvfs --realm=instituto.ensino --domain=instituto --adminpass= Senha12 --server-role='domain controller' Com o samba 4 já configurado e com as modificações no named.conf.local do bind realizadas, foi inserido no domínio do active directory as máquinas Windows XP e as máquinas Linux, através do script smbad.sh, que se encontram na rede.

Por não ter uma ferramenta mais completa para o gerenciamento do Samba 4 pelo Linux, um computador com Windows XP foi designado para tal tarefa. Nele foram instalados o adminpack e o gerenciador de gpo do Windows. Por trabalharem com o mesmo protocolo como já foi dito anteriormente não houveram incompatibilidades na utilização das ferramentas.

Os usuários foram criados a partir da interface gráfica do adminpack no Windows, respeitando os requisitos de nome completo, ramal da sala, sala, entre outras informações que auxiliam na identificação dos usuários no AD e inseridos nos respectivos grupos dos seus setores.

Com os usuários cadastrados e inseridos em seus grupos, foram criadas as GPO's com os scripts de inicialização e nelas foram definidos os mapeamentos automáticos dos compartilhamentos

O servidor que contém o Samba 3 foi inserido no Active Directory pelo scritpt smbad.sh. Com o servidor logando através do AD, as regras de segurança e permissões dos usuários criadas no Samba 3 irão valer para os usuários contidos no AD. Foram criados compartilhamentos com os nomes dos setores mais importantes da instituição afim de melhorar e garantir o melhor trabalhos das pessoas no setor.

A seguir é apresentada uma parte do smb.conf, que corresponde as seções de compartilhamento de arquivos. As seções foram inseridas com a sigla dos setores e os valores da seção global são alterados pelo script smbad.sh. Foi decidido vetar arquivos de vídeo e áudio para não sobrecarregar o servidor.

```
[Chefia_de_Gabinete]

comment = Chefia de gabinete

path = /srv/samba/chefia

valid users = +direcao

read only = no

force group = direcao

browseable = no

veto files = *.wmv/*.avi/*.wma/*.mp?/*.flv

[DDAF]

comment = Diretoria do Departamento de Administração e Finanças
```

```
path = /srv/samba/ddaf
valid users = +ddaf
read only = no
force group = ddaf
browseable = no
veto files = *.wmv/*.avi/*.wma/*.mp?/*.flv
[DDGP]
comment = Diretoria do Departamento de Gestão de Pessoas
path = /srv/samba/ddgp
valid users = +ddgp
read only = no
force group = ddgp
browseable = no
veto files = *.wmv/*.avi/*.wma/*.mp?/*.flv
[CRA]
comment = Coordenação de Registros Acadêmicos
path = /srv/samba/cra
valid users = +registro
read only = no
force group = registro
browseable = no
veto files = *.wmv/*.avi/*.wma/*.mp?/*.flv
[HOME]
comment = Pasta dos usuários
path = /srv/samba/%U
valid users = \%U
read only = no
browseable = no
```

```
veto files = *.wmv/*.avi/*.wma/*.mp?/*.flv
```

Com as sessões criadas no samba, as pastas foram criadas no /srv e atribuídas as permissões 770 com o proprietário root e o grupo com o nome do setor ou do usuário que será designado a pasta:

```
mkdir /srv/samba/ddgp
chmod 770 -R /srv/samba/ddgp
chown root:ddgp -R /srv/samba/ddgp
```

Todas as impressoras foram colocadas na rede, mapeadas no servidor do Samba 3 e compartilhadas para os demais computadores com a instalação dos drives automática.

```
[printers]
print ok = yes
guest ok = yes
path = /var/spool/samba
browseable = yes
[print$]
path = /var/lib/samba/printers
read only = yes
write list = root
inherit permissions = yes
```

- 6 CONCLUSÕES
- 6.1 Objetivos alcançados
- **6.2** Trabalhos futuros

APÊNDICE A - Scripts

A.1 smbmanager.sh

```
#!/bin/bash
#Gabriel Rocha
end=0
```

help="É NECESSÁRIO TER PERMISSÃO DE ROOT \nUSO: smbmanager [OPCAO] [VALOR] \n \nOpções gerais:\n -g [VALOR] Grupo no qual será adicionado a máquina ou usuário \n -m [VALOR] Nome da máquina a ser cadastrada \n -u [VALOR] Usuário a ser cadastrado no sistema e no samba \n -d [VALOR] Usuário a ser deletado do sistema \n -x [VALOR] Máquina a ser deletada do samba e do sistema"

```
AddMachine()

if [-n "$machine"]; then

if [-z "$group"]; then

useradd --disabled-login --home /dev/null --shell /bin/false $machine\$ 2>/dev/null &&

passwd -1 $machine\$ && smbpasswd -a -m $machine

fi

if [-n "$group"]; then

useradd --disabled-login --home /dev/null --shell /bin/false --group $group $machine\$

check=$(echo $?)

if [ $check -eq 0 ]; then

passwd -1 $machine\$ 2>/dev/null && smbpasswd -a -m $machine fi

fi

fi

AddUser()
```

```
if [ -n "$user"]; then
if [ -z "$group"]; then
adduser $user 2>/dev/null
smbpasswd -a $user
fi
if [ -n "$group"]; then
adduser $user 2>/dev/null
usermod -g $user $group
check=$(echo $?)
if [ $check -eq 0 ]; then
smbpasswd -a $user
fi
fi
fi
DelMachine()
if [ -n "$delmachine"]; then
smbpasswd -x -m $delmachine
deluser $delmachine\$
fi
DelUser()
if [ -n "$deluser"]; then
smbpasswd -x $deluser
deluser $deluser
fi
while getopts "hg:m:u:d:x:"paramentro;
do
case $paramentro in
h) echo -e $help;;
```

```
g) group=$OPTARG ;;
     m) machine=$OPTARG;;
     u) user=$OPTARG ;;
     d) deluser=$OPTARG ;;
     x) delmachine=$OPTARG ;;
      *) echo -e $help; end=1;;
     esac
     done
     if [[ "$group"= *'-'* ]] || [[ "$machine"= *'-'* ]] || [[ "$user"= *'-'* ]] || [[ "$deluser"=
*'-'* ]] || [[ "$delmachine"= *'-'* ]]; then
     echo -e $help
     else
     if [ \$end -ne 1 ] ; then
     AddMachine
     AddUser
     DelMachine
     DelUser
     fi
     fi
A.2
     smbda.sh
     #!/bin/sh
```

```
# ou envie uma carta para Creative Commons, 171 Second Street, Suite 300,
                                                     #
    # San Francisco, California 94105, USA.
                                                     #
    # Modificações em 27 de Julho de 2012 por Gabriel Rocha (GBR)
                                                     #
    # email: gabriel.rocha.gbr@gmail.com
                                                     #
    USUARIO='whoami'
    if [ "$USUARIO"!= "root"]; then
    echo
    echo "ESTE PROGRAMA PRECISA SER EXECUTADO COM PERMISSOES DE
SUPERUSUARIO!"
    echo "Abortando..."
    echo
    exit 1
    fi
    _HEAD () {
    'which clear'
    echo "SISTEMA PARA ADICIONAR MAQUINA LINUX AO DOMÍNIO WINDOWS
OU LINUX"
    echo "=============""
    }
    _PACOTES(){
    echo "Instalando os pacotes necessários";
    apt-get install krb5-user libpam-krb5 winbind samba smbfs smbclient krb5-config lib-
krb53 libkdb5-4 libgssrpc4 -y > /dev/null;
    check=$(echo $?)
    if [ $check -eq 0 ]; then
```

```
echo "Pacotes instalados com sucesso"
else
echo "Falha ao instalar os pacotes"
fi
}
_HORA () {
echo "Atualizando data e hora";
ntpdate br.pool.ntp.org > /dev/null;
echo "Horario atual:"'date'
echo "Hora alterada com sucesso"
}
_BACKUP_ORIG () {
# Rotina de Backup dos arquivos de configurações.
if [!-e/etc/krb5.conf_backup]; then
cp /etc/krb5.conf /etc/krb5.conf_backup > /dev/null;
fi
if [ ! -e /etc/resolv.conf_backup ]; then
cp /etc/resolv.conf /etc/resolv.conf_backup > /dev/null
fi
if [!-e/etc/samba/smb.conf_backup]; then
cp /etc/samba/smb.conf /etc/samba/smb.conf_backup > /dev/null
fi
if [!-e/etc/nsswitch.conf_backup]; then
cp /etc/nsswitch.conf /etc/nsswitch.conf_backup > /dev/null
fi
if [!-e/etc/pam.d/common-account_backup]; then
cp /etc/pam.d/common-account /etc/pam.d/common-account_backup > /dev/null
fi
```

```
if [!-e/etc/pam.d/common-auth_backup]; then
cp /etc/pam.d/common-auth /etc/pam.d/common-auth_backup > /dev/null
fi
if [!-e/etc/pam.d/common-session_backup]; then
cp /etc/pam.d/common-session_backup > /dev/null
fi
if [!-e/etc/pam.d/sudo_backup]; then
cp /etc/pam.d/sudo /etc/pam.d/sudo_backup > /dev/null
fi
check=$(echo $?)
if [ $check -eq 0 ]; then
echo "Rotina de Backup executada com sucesso!"
else
echo "Falha ao fazer o Backup."
fi
}
_RETURN_BACKUP() {
# Rotina de Recuperação do Backup de configurações.
mv /etc/krb5.conf_backup /etc/krb5.conf > /dev/null
mv /etc/resolv.conf_backup /etc/resolv.conf > /dev/null
mv /etc/samba/smb.conf_backup /etc/samba/smb.conf > /dev/null
mv /etc/nsswitch.conf_backup /etc/nsswitch.conf > /dev/null
mv /etc/pam.d/common-account_backup /etc/pam.d/common-account > /dev/null
mv /etc/pam.d/common-auth_backup /etc/pam.d/common-auth > /dev/null
mv /etc/pam.d/common-session_backup /etc/pam.d/common-session > /dev/null
mv /etc/pam.d/sudo_backup /etc/pam.d/sudo > /dev/null
check=$(echo $?)
if [ $check -eq 0 ]; then
```

```
echo "Recuperação do Backup executada com sucesso!"
else
echo "Falha na recuperação do Backup."
fi
}
_NOME_DOMINIO () {
#Entrada do nome do dominio ao qual deseja engreçar.
#No caso do linux temos dois servidores um do KDC e outro do dominio
#No windows informamos o servidor kdc
read -p "Entre com o nome do Domínio:"var1
dominio=$(echo $var1 — tr a-z A-Z)
read -p "Entre com o seu KDC (key Distribution Center):"var2
kdc=$(echo $var2 — tr A-Z a-z)
}
_IP_DNS()
#IP do servidor de dns
read -p "Entre com o IP do servidor de DNS:"ip
echo "nameserver $ip" > /etc/resolv.conf
}
_SO_SERVIDOR () {
#Sistema Operacional do AD
read -p "Entre com o S.O. do servidor (Linux ou Windows): "so
so=$(echo $so — tr a-z A-Z)
workgroup=
if [\$so = "LINUX"]; then
read -p "Informe o Domain do Samba4: "workgroup
workgroup=$(echo $workgroup — tr a-z A-Z)
else
```

```
workgroup=$(echo $var1)
fi
}
_KRB5 () {
echo "[libdefaults]
default_realm = $dominio
# The following krb5.conf variables are only for MIT Kerberos.
krb4_config = /etc/krb.conf
krb4_realms = /etc/krb.realms
kdc_timesync = 1
ccache_type = 4
forwardable = true
proxiable = true
# The following libdefaults parameters are only for Heimdal Kerberos.
v4_instance_resolve = false
v4\_name\_convert = {
host = {
remd = host
ftp = ftp
}
plain = \{
something = something-else
}
fcc-mit-ticketflags = true
[realms]
dominio = {
kdc = kdc
```

```
admin_server = $kdc
}
[domain_realm]
.\$var1 = \$kdc
[login]
krb4_convert = true
krb4_get_tickets = false"> /etc/krb5.conf
echo "Configuração alterada com sucesso!"
}
_TESTEAD () {
read -p "Entre com um usuário para testar sua conexão com o Active Directory:"user
kinit $user@$dominio
check=$(echo $?)
if [ $check -eq 0 ]; then
echo "Sua máquina conectou com sucesso!"
else
echo "Falha ao se conectar com o Active Directory"
fi
}
_SMB () {
maquina=$(hostname)
echo "# Sample configuration file for the Samba suite for Debian GNU/Linux.
#======= Global Settings =========
[global]
workgroup = $workgroup
netbios name = $maquina
realm = \$var1
server string = % h Server
```

```
dns proxy = no
log file = /var/log/samba/log.%m
max log size = 1000
syslog = 0
panic action = /usr/share/samba/panic-action %d
security = ADS
password server = \$kdc
encrypt passwords = true
passdb backend = tdbsam
obey pam restrictions = yes
unix password sync = yes
passwd program = /usr/bin/passwd %u
pam password change = yes
idmap \ uid = 10000-20000
winbind gid = 10000-20000
winbind enum users = yes
winbind enum groups = yes
winbind use default domain = yes
template homedir = /home/%D/%U
template shell = /bin/bash
[homes]
comment = Home Directories
browseable = no
read only = yes
create mask = 0700
directory mask = 0700
valid users = %S "> /etc/samba/smb.conf
```

echo "Configuração alterada com sucesso!"

```
}
_FUNC_RESTART() {
# Stop Winbind
/etc/init.d/winbind stop > /dev/null
check=$(echo $?)
if [ $check -eq 0 ]; then
echo "Winbind Stop!"
else
echo "Falha ao parar o Winbind"
fi
# Restart Samba
/etc/init.d/smbd restart > /dev/null
check=$(echo $?)
if [ $check -eq 0 ]; then
echo "Samba restart com sucesso!"
else
echo "Falha no restart do Samba!"
fi
# Start Winbind
/etc/init.d/winbind start > /dev/null
check=$(echo $?)
if [ $check -eq 0 ]; then
echo "Winbind start!"
else
echo "Falha ao fazer iniciar o Winbind!"
fi
}
\_ADDDOMINIO\ ()\ \{
```

```
echo"++ Adicionando a Máquina no Domínio ++"
# Adicionando a máquina ao domínio
read -p "Entre com um usuário administrador de Domínio:"user
net ads join -U $user;
check=$(echo $?)
clear
# Validação da conexão com o domínio
if [ $check -eq 0 ]; then
echo "Sua máquina foi adicionada no Domínio!"
else
echo "Falha ao adicionar a máquina no Domínio"
fi
_TESTDOMINIO () {
# Teste de requisição ao dominio
wbinfo -t > /dev/null
check=$(echo $?)
if [ $check -eq 0 ]; then
echo "Teste de Domínio!"
else
echo "Falha ao testar o Domínio"
fi
}
_FUNCAUTENTICACAO () {
# Configurando o arquivo nsswitch.conf
echo "passwd: compat winbind
```

```
group: compat winbind
      shadow: compat"> /etc/nsswitch.conf
      # Teste de configuração do Winbind
      check=$(echo $?)
      if [ $check -eq 0 ]; then
      echo "Winbind testado com sucesso!"
      else
      echo "Falha ao testar o Winbind"
      fi
      # PAM - common-account
      echo "account sufficient pam_winbind.so account required pam_unix.so"> /etc/pam.d/common-
account
      # PAM - common-auth
      echo "auth sufficient pam_winbind.so
      auth sufficient pam_unix.so nullok_secure use_first_pass
      auth required pam_deny.so"> /etc/pam.d/common-auth
      # PAM - common-session
      echo "session required pam_unix.so
      session required pam_mkhomedir.so umask=0022 skel=/etc/skel"> /etc/pam.d/common-
session
      # PAM - sudo
      echo "auth sufficient pam_winbind.so
      auth sufficient pam_unix.so use_first_pass
      auth required pam_deny.so
       @include common-account"> /etc/pam.d/sudo
      # Teste de configuração do PAM
      check=$(echo $?)
      if [ $check -eq 0 ]; then
       echo "PAM configurado com sucesso!"
```

```
else
echo "Falha ao configurar o PAM"
fi
_FUNC_HOMEDIR () {
HOME_DIR=$var1
if [ -d /home/$HOME_DIR ]; then
echo "Já existe este diretório!"
else
echo "Este diretório não existe!"
echo "Criando o diretório $HOME_DIR"
mkdir/home/$var1
sleep 2
fi
_FUNC_DEL_MAQ_DOMINIO () {
maquina=$(hostname)
echo"++ Removendo a Máquina no Domínio ++"
# Remover a máquina ao domínio
read -p "Entre com um usuário administrador de Domínio:"user
net ads status -U $user
check1=$(echo $?)
clear
# Validação se a máquina está no domínio
if [ $check1 -eq 255 ]; then
echo "A máquina $maquina não está no dominio"
```

```
else
# Validação de remoção de máquina do domínio
net ads leave -U $user;
check=$(echo $?)
clear
if [ $check -eq 0 ]; then
echo "Sua máquina foi removida do Domínio!"
else
echo "Falha ao remover a máquina no Domínio"
fi
fi
# Menu de seleção
echo "Linux Active Directory:"
echo"(1) Adicionar Máquina no Domínio"
echo "(2) Remover Máquina do Domínio"
echo "(3) Verificar conexão com o Domínio"
echo"(0) Sair"
echo "Digite a opção desejada:"
read resposta
case "$resposta"in
1)
_HEAD
_PACOTES
_HORA
_BACKUP_ORIG
_NOME_DOMINIO
```

```
_IP_DNS
_SO_SERVIDOR
_KRB5
_TESTEAD
_SMB
_FUNC_RESTART
_ADDDOMINIO
_TESTDOMINIO
_FUNCAUTENTICACAO
_FUNC_RESTART
echo "++ Bem vindo ao dominio $dominio ++"
;;
2)
_FUNC_DEL_MAQ_DOMINIO
_RETURN_BACKUP
;;
3)
_TESTDOMINIO
;;
0)
exit
;;
)
echo 'Opção Inválida!'
esac
```

REFERÊNCIAS BIBLIOGRÁFICAS

CUFFA, H. de. *Interface de Programação de Aplicações de Serviços de Segurança Gerais*. Rio de Janeiro, 2010.

ECKSTEIN DAVID COLLIER-BROWN, P. K. R. *Using Samba*. Sebastopol, CA: OREILLY, 2003.

ERICOM. *Kerberos in PowerTerm Solutions*. 2012. Disponível em http://www.ericom.com/kerberos.asp. Acesso em Outubro de 2012.

FILHO, M. M. C. Kerberos. Rio de Janeiro, 2009.

FOCA. *Guia Foca GNU/Linux Capítulo 18 - SAMBA*. 2012. Disponível em http://www.guiafoca.org/guia/avancado/ch-s-samba.htm. Acesso em Outubro de 2012.

GRASSATO, D. P. Instalação Samba4. 2009.

LOSANO, M. Introdução ao Active Directory - Parte 1. 2009.

LåNGSTEDT, N. Installing software from source in Linux - 1.2. 2005.

MICROSOFT. Windows Server 2012 How to Buy. 2012. Disponível em http://www.microsoft.com/en-us/server-cloud/windows-server/buy.aspx. Acesso em Outubro 2012.

MORIMOTO, C. E. Redes e Servidores Linux - Guia Prático. Porto Alegre: Sulina, 2005.

MORIMOTO, C. E. *Servidores Linux, Guia Prático*. Porto Alegre: GDH Press e Sul Editores, 2008.

RNP. Serviço NTP. 2010. Disponível em http://www.rnp.br/ntp/. Acesso em Outubro de 2012.

SAMBA.ORG. *Samba HOWTO Collection*. 2003. Disponível em http://www.samba.org/samba/docs/man/Samba-HOWTO-Collection/groupmapping.html. Acesso em Outubro de 2012.

SCRIMGER PAUL LASALLE, M. P. R. TCP/IP - A Bíblia. Rio de Janeiro: Campus, 2002.

SISTEMAS TELEMÁTICOS. *Sistema NetBios*. 2010. Disponível em http://sistemastelematicosraf.blogspot.com.br/2010/12/sistema-netbios.html. Acesso em Outubro de 2012.

THE OPENLDAP FOUNDATION. *OpenLdap 2.1 Administrator's Guide*. 2003. Disponível em http://www.bind9.net/manual/openldap/2.1/intro.html. Acesso em Outubro de 2012.

TRIGO, C. H. OpenLDAP - Uma Abordagem Integrada. São Paulo: Novatec, 2007.

UBUNTU BR. *Autenticando AD*. 2011. Disponível em: http://wiki.ubuntu-br.org/AutenticandoAD. Acesso em: 10/08/2012.

WIKIPéDIA. *Bind*. 2012. Disponível em http://pt.wikipedia.org/wiki/BIND. Acesso em Outubro de 2012.

WIKIPéDIA. *NetBios*. 2012. Disponível em http://pt.wikipedia.org/wiki/NetBios. Acesso em Outubro de 2012.