Apuntes de Variable Compleja

Luis López

Septiembre 2025

Índice

1.	Números complejos		4
	1.1.	Teoría y estructura elemental	4
	1.2.	Introducción elemental	4
	1.3.	Propiedades elementales	4
	1.4.	Forma polar y geometría de los números complejos	5
	1.5.	Forma exponencial y multiplicación de números complejos	8
	1.6.	Ejemplo: cálculo en forma exponencial	Ć
	1.7.	Raíces de números complejos	Ć
2 .	Teo	ría de las funciones de variable compleja	11

Introducción

Los **números complejos**, denotados por \mathbb{C} , constituyen una extensión de los números reales \mathbb{R} , cumpliéndose que $\mathbb{R} \subset \mathbb{C}$. A diferencia de los reales, los complejos forman un *cuerpo algebraicamente cerrado*, lo que significa que todo polinomio con coeficientes complejos admite todas sus raíces en \mathbb{C} .

Todo número complejo puede escribirse como

$$z = x + iy$$
,

donde $x,y\in\mathbb{R}$ e i es la unidad imaginaria ($i^2=-1$). También pueden representarse en forma polar, mediante su módulo y argumento.

El conjunto \mathbb{C} no solo es fundamental en álgebra y análisis, sino que resulta indispensable en múltiples áreas de las matemáticas aplicadas y la física. Asimismo, los números complejos son herramientas habituales en ingeniería.

1. Números complejos

1.1 Teoría y estructura elemental

La imposibilidad de resolver ciertas ecuaciones con números reales nos obliga a introducir los **números imaginarios**, definidos a partir de la unidad i tal que

$$i^2 = -1$$
.

1.2 Introducción elemental

Denotamos los números complejos como

$$\mathbb{C} = \{ z = a + bi \mid a, b \in \mathbb{R} \}.$$

Dado $z = a + bi \in \mathbb{C}$, se definen:

• Parte real: $\Re(z) = a \in \mathbb{R}$.

• Parte imaginaria: $\Im(z) = b \in \mathbb{R}$.

• Módulo: $|z| = \sqrt{a^2 + b^2}$.

• Conjugado: $\overline{z} = a - bi$.

Ejemplo. Sea z = 1 - 2i. Entonces:

$$\Re(1-2i) = 1, \ \Im(1-2i) = -2, \ \overline{1-2i} = 1+2i, \ |1-2i| = \sqrt{1^2 + (-2)^2} = \sqrt{5}.$$

1.3 Propiedades elementales

1. $\overline{\overline{z}} = z$. Demostración: si $z = a + bi \Rightarrow \overline{z} = a - bi \Rightarrow \overline{\overline{z}} = a + bi = z$.

 $2. \ z + \overline{z} = 2\Re(z).$

 $3. \ z - \overline{z} = 2i\Im(z).$

 $4. |\overline{z}| = |z|.$

5. $\overline{z+z'} = \overline{z} + \overline{z'}$.

6. $\overline{z \cdot z'} = \overline{z} \cdot \overline{z'}$.

Además, tenemos las siguientes propiedades asociadas al **módulo**:

1. $|\Re(z)| \le |z|$.

- 2. $|\Im(z)| \le |z|$. En efecto, $|z| = \sqrt{a^2 + b^2} \ge |b|$.
- 3. Designaldad triangular: $|z+w| \leq |z| + |w| \quad \forall z, w \in \mathbb{C}$.
- 4. $z \cdot \overline{z} = |z|^2$.
- 5. Desigualdad triangular inversa: $||z| |z'|| \le |z z'|$.

Todas estas propiedades, junto con la suma y producto de números complejos, generalizan las propiedades de los números reales:

$$z + z' = (x + iy) + (x' + iy') = (x + x') + (y + y')i \in \mathbb{C},$$

$$z \cdot z' = (x + iy)(x' + iy') = (xx' - yy') + (xy' + x'y)i \in \mathbb{C}.$$

En particular, si z = a + bi, se cumple que

$$|z| = \sqrt{a^2 + b^2},$$

es decir, el módulo de z coincide con el valor absoluto en los reales.

1.4 Forma polar y geometría de los números complejos

El conjunto $\mathbb C$ se puede representar como $\mathbb R^2$ mediante la asignación

$$z = a + bi \longmapsto (a, b) \in \mathbb{R}^2.$$

De esta forma obtenemos el denominado **plano complejo**; por lo tanto, la interpretación geométrica de *todo lo visto* sería:

Representación de 1 e i

Geometría de z y \overline{z}

Si $z = \frac{|z|}{|z|}z = |z|\frac{z}{|z|} = |z|(\cos\theta + i\sin\theta)$, decimos que z está en forma polar.

Sea:

$$w = \frac{z}{|z|} \quad \Rightarrow \quad |w| = \frac{|z|}{|z|} = 1.$$

Es decir, $\frac{z}{|z|}$ es un número complejo de módulo 1, luego existe $\theta \in \mathbb{R}$ tal que

$$\frac{z}{|z|} = \cos\theta + i\sin\theta.$$

Ejemplo. El número complejo 1+i en forma polar es:

$$1 + i = \sqrt{2} \left(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4} \right).$$

Circunferencia unitaria: $w = \cos \theta + i \sin \theta$

Vemos que un mismo número complejo tiene infinitas representaciones polares por culpa del ángulo θ , llamado **argumento de** z. Para solucionar este problema introducimos el **argumento principal** de z, que es aquel ángulo $-\pi < \theta \le \pi$ que verifica:

$$z = |z|(\cos \theta + i \sin \theta), \qquad \theta = \arg(z).$$

Además, si z = x + iy, entonces:

$$\operatorname{arctan}\left(\frac{y}{x}\right), \qquad x > 0, \ y \ge 0,$$

$$\operatorname{arctan}\left(\frac{y}{x}\right) + \pi, \quad x < 0, \ y \ge 0,$$

$$\pi, \qquad x < 0, \ y = 0,$$

$$\operatorname{arctan}\left(\frac{y}{x}\right) - \pi, \quad x < 0, \ y < 0,$$

$$-\frac{\pi}{2}, \qquad x = 0, \ y < 0,$$

$$\frac{\pi}{2}, \qquad x = 0, \ y > 0,$$

$$\operatorname{arctan}\left(\frac{y}{x}\right), \qquad x > 0, \ y < 0.$$

Nótese que se verifica que

$$arg(z) = arg(z) + 2k\pi, \qquad k \in \mathbb{Z}.$$

Así, geométricamente, un número complejo z tendría esta información:

$$z = |z|e^{i\arg(z)}.$$

Argumento de z.

Al tener el módulo de cualquier complejo podemos hablar de la noción de distancia entre complejos, dada por:

$$d(z, w) = |z - w|.$$

Definición. El disco centrado en $z_0 \in \mathbb{C}$ y de radio $\varepsilon > 0$ es:

$$D(z_0,\varepsilon) = \{ z \in \mathbb{C} : |z - z_0| < \varepsilon \}.$$

Ejemplo.

$$D(1+i,1) = \{z \in \mathbb{C} : |z - (1+i)| < 1\}.$$

El disco cerrado se denota por:

$$\overline{D}(z_0,\varepsilon) = \{ z \in \mathbb{C} : |z - z_0| \le \varepsilon \}.$$

Forma exponencial y multiplicación de números complejos

Por conveniencia, escribimos

$$\cos \theta + i \sin \theta = e^{i\theta}$$
.

Así, la forma polar $z = |z|(\cos \theta + i \sin \theta)$ se expresa como

$$z = |z| e^{i\theta}$$
.

Esta representación hace muy sencilla la multiplicación de complejos. En efecto, si:

$$z = r e^{i\theta}, \qquad w = \rho e^{i\varphi} \quad (r, \rho \ge 0),$$

entonces:

$$z w = (r\rho) e^{i(\theta + \varphi)}.$$

En particular,

$$|zw| = |z| |w|,$$
 $\arg(zw) = \arg(z) + \arg(w) \pmod{2\pi}.$

Nota. En general es falso que

$$arg(zw) = arg(z) + arg(w),$$

pues arg
 es el argumento principal (restringido a $(-\pi,\pi])$ y puede requerir ajustar por múltiplos de 2π .

Multiplicación en forma polar (solo vectores).

Ejemplo.

$$\arg(i) = \frac{\pi}{2}, \qquad \arg(-i) = -\frac{\pi}{2},$$

mientras que

$$arg(i) = \frac{\pi}{2} + 2k\pi, \quad arg(-i) = -\frac{\pi}{2} + 2k\pi, \quad k \in \mathbb{Z}.$$

Potencias (fórmula de De Moivre). Si $z = r e^{i\theta}$ y $n \in \mathbb{N}$, entonces:

$$z^n = r^n e^{in\theta}.$$

1.6 Ejemplo: cálculo en forma exponencial

Ejemplo. Calcular $(1+i)^4$.

$$1 + i = \sqrt{2} e^{i\pi/4} \implies (1+i)^4 = (\sqrt{2})^4 e^{i\pi} = 4 \cdot (-1) = -4,$$

llegamos a:

$$e^{i\pi} + 1 = 0$$

(Fórmula de Euler, considerada la más bonita de las matemáticas).

1.7 Raíces de números complejos

Queremos estudiar qué números complejos cumplen la ecuación $z^n=w$ para un $n\geq 2,\,w\in\mathbb{C}.$

Proposición. Dado un número complejo no nulo $w \in \mathbb{C} \setminus \{0\}$ y $n \geq 2$, existen exactamente n números complejos que cumplen $z^n = w$. Si

$$w = r e^{i\theta} \quad (r > 0, \ \theta \in \mathbb{R}),$$

entonces las soluciones son

$$z_k = r^{1/n} e^{i(\theta + 2k\pi)/n}, \qquad k = 0, 1, \dots, n - 1,$$

que son los vértices de un n-gono regular centrado en el origen.

Demostración. Si $z = \rho e^{i\varphi}$, entonces $z^n = \rho^n e^{in\varphi}$. Imponiendo $z^n = w = re^{i\theta}$ se obtiene $\rho^n = r \Rightarrow \rho = r^{1/n}$ y $n\varphi = \theta + 2k\pi \Rightarrow \varphi = (\theta + 2k\pi)/n$.

Definición. El conjunto de las raíces n-ésimas de w es

$$\sqrt[n]{w} := \left\{ r^{1/n} e^{i(\theta + 2k\pi)/n} : k = 0, \dots, n-1 \right\}.$$

Por abuso, se llama raíz n-ésima principal de w a

$$\sqrt[n]{w}_{\mathrm{pr}} := r^{1/n} e^{i \operatorname{arg}(w)/n},$$

donde $arg(w) \in (-\pi, \pi]$ es el argumento principal.

Ejemplo. Resolver $z^3 = -8i$.

$$-8i = 8e^{-i\pi/2}$$
 \Rightarrow $z_k = 2e^{i(-\pi/2 + 2k\pi)/3}, k = 0, 1, 2.$

Explícitamente:

$$z_0 = 2e^{-i\pi/6} = \sqrt{3} - i$$
, $z_1 = 2e^{i\pi/2} = 2i$, $z_2 = 2e^{i7\pi/6} = -\sqrt{3} - i$.

La raíz cúbica principal es $2e^{-i\pi/6}$.

Notas.

- $(z_k)^n = w$ para todo k, y $z_k = z_0 e^{i2k\pi/n}$.
- $\sqrt[n]{w}$ denota un *conjunto*; la notación de raíz *principal* usa $\arg(w)$.

2. Teoría de las funciones de variable compleja

Estudiaremos funciones de la forma $f:A\subset\mathbb{C}\to\mathbb{C}$.

Parte real e imaginaria. Si z = x + iy, toda función f puede escribirse como

$$f(z) = u(x, y) + i v(x, y),$$

donde $u = \Re f$ y $v = \Im f$.

Ejemplos.

$$f(z) = z^2 = (x + iy)^2 = (x^2 - y^2) + i(2xy)$$
 $\Rightarrow u(x, y) = x^2 - y^2, v(x, y) = 2xy,$
 $f(z) = \overline{z} = x - iy$ $\Rightarrow u(x, y) = x, v(x, y) = -y.$