Nous innovons pour votre réussite!

Méthodes numériques pour équations différentielles ordinaires

Méthode des différences finies

A. Ramadane, Ph.D.

Nous innovons pour votre réussite!

Résolution numérique d'équations différentielles

Méthodes explicites

Méthodes implicites

Stabilité

Méthode des différences finies

Discrétisation des dérivées

Applications

Nous innovons pour votre réussite!

Plaque bi-dimentionnelle

Considérons une plaque carrée bi-dimensionnelle de longueur $\frac{\pi}{2}$ mètre. Telle qu'illustrée à la figure ci-jointe.

Fig. 3.5 – Plaque mince

À cette plaque, superposons un maillage dont chaque arêtes soit de longueur $\Delta x = \Delta y = \frac{\pi}{6} m$.

En supposant que la température T(x,y) en chaque points de la plaque doit satisfaire le problème de valeurs limites

Nous innovons pour votre réussite!

$$\begin{cases} \frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} = 0 & 0 < x < \frac{\pi}{2} \quad \text{et} \quad 0 < y < \frac{\pi}{2}. \\ T(0,y) = & \sin(y) \\ T(\frac{\pi}{2},y) = & \cos(y) \\ T(x,0) = & \sin(x) \\ T(x,\frac{\pi}{2}) = & \cos(x), \end{cases}$$

déterminer la température approximative aux points A, B, C et D. Solution

En appliquant l'expression (3.2.10) en chacun des points A, B, C et D du maillage et en substituant dans l'équation aux dérivés partielles $T_{xx} + T_{yy} = 0$, nous obtenons :

Nous innovons pour votre réussite!

pour le point A:

$$\left[\frac{T(\frac{2\pi}{6}, \frac{\pi}{6}) - 2T(\frac{\pi}{6}, \frac{\pi}{6}) + T(0, \frac{\pi}{6})}{(\frac{\pi}{6})^2} \right] + \left[\frac{T(\frac{\pi}{6}, 2\frac{\pi}{6}) - 2T(\frac{\pi}{6}, \frac{\pi}{6}) + T(\frac{\pi}{6}, 0)}{(\frac{\pi}{6})^2} \right] + 30.18)$$

$$\left[\frac{T(B) - 2T(A) + \sin(\frac{\pi}{6})}{(\frac{\pi}{6})^2} \right] + \left[\frac{T(C) - 2T(A) + \sin(\frac{\pi}{6})}{(\frac{\pi}{6})^2} \right] + 30.19)$$

$$T(B) - 4T(A) + 1 + T(C) + 30.20)$$

pour le point B:

$$\begin{split} \left[\frac{T(\frac{\pi}{2},\frac{\pi}{6})-2T(\frac{2\pi}{6},\frac{\pi}{6})+T(\frac{\pi}{6},\frac{\pi}{6})}{(\frac{\pi}{6})^2}\right] + \left[\frac{T(\frac{2\pi}{6},\frac{2\pi}{6})-2T(\frac{2\pi}{6},\frac{\pi}{6})+T(\frac{2\pi}{6},0)}{(\frac{\pi}{6})^2}\right] + 36.21) \\ \left[\frac{\cos(\frac{\pi}{6})-2T(B)+T(A)}{(\frac{\pi}{6})^2}\right] + \left[\frac{T(D)-2T(B)+\sin(\frac{\pi}{3})}{(\frac{\pi}{6})^2}\right] + 36.22) \\ \sqrt{3}-4T(B)+T(A)+T(D) + 36.23) \end{split}$$

Nous innovons pour votre réussite!

pour le point C:

$$\left[\frac{T(\frac{2\pi}{6}, \frac{2\pi}{6}) - 2T(\frac{\pi}{6}, \frac{2\pi}{6}) + T(0, \frac{2\pi}{6})}{(\frac{\pi}{6})^2} \right] + \left[\frac{T(\frac{\pi}{6}, \frac{\pi}{2}) - 2T(\frac{\pi}{6}, \frac{2\pi}{6}) + T(\frac{\pi}{6}, \frac{\pi}{6})}{(\frac{\pi}{6})^2} \right] + \left[\frac{T(\frac{\pi}{6}, \frac{\pi}{2}) - 2T(\frac{\pi}{6}, \frac{2\pi}{6}) + T(\frac{\pi}{6}, \frac{\pi}{6})}{(\frac{\pi}{6})^2} \right] + \left[\frac{\cos(\frac{\pi}{6}) - 2T(C) + T(A)}{(\frac{\pi}{6})^2} \right] + \left[\frac{\cos(\frac{\pi}{6}) - 2T(C) +$$

pour le point D:

$$\left[\frac{T(\frac{\pi}{2},\frac{2\pi}{6}) - 2T(\frac{2\pi}{6},\frac{2\pi}{6}) + T(\frac{\pi}{6},\frac{2\pi}{6})}{(\frac{\pi}{6})^2} \right] + \left[\frac{T(\frac{2\pi}{6},\frac{\pi}{2}) - 2T(\frac{2\pi}{6},\frac{2\pi}{6}) + T(\frac{2\pi}{6},0)}{(\frac{\pi}{6})^2} \right] + 30.27)$$

$$\left[\frac{\cos(\frac{2\pi}{6}) - 2T(D) + T(C)}{(\frac{\pi}{6})^2} \right] + \left[\frac{\cos(\frac{2\pi}{6}) - 2T(D) + T(B)}{(\frac{\pi}{6})^2} \right] + 30.28)$$

$$1 - 4T(D) + T(C) + T(B) + 30.29)$$

Nous innovons pour votre réussite!

Ce qui nous donne le système de 4 inconnues avec 4 équations :

$$T(B) - 4T(A) + 1 + T(C) = 0$$
 (3.3.30)
 $T(D) - 4T(B) + \sqrt{3} + T(A) = 0$ (3.3.31)
 $T(D) - 4T(C) + \sqrt{3} + T(A) = 0$ (3.3.32)
 $1 - 4T(D) + T(C) + T(B) = 0$ (3.3.33)

En écrivant ce système d'équations sous forme matricielle, nous obtenons, une forme tridiagonale

$$\begin{bmatrix} -4 & 1 & 1 & 0 \\ 1 & -4 & 0 & 1 \\ 1 & 0 & -4 & 1 \\ 0 & 1 & 1 & -4 \end{bmatrix} \begin{bmatrix} T(A) \\ T(B) \\ T(C) \\ T(D) \end{bmatrix} = \begin{bmatrix} -1 \\ -\sqrt{3} \\ -\sqrt{3} \\ -1 \end{bmatrix}$$
(3.3.34)

La résolution de ce système nous donne :

$$\begin{cases} T(A) = 0,622, & T(B) = 0,744 \\ T(C) = 0,744, & T(D) = 0,622 \end{cases}$$

