

# ファイル サーバー データ移行手法とそのプロセスのご紹介

ストレージ データ移行手法研究チーム

吉田 賢司

柴田 享

澤井 貴臣

岩崎 浩久(オブザーバー)

2020年 1月 22日

### Agenda



- データ移行とは
- データ移行手法



# データ移行とは

### データ移行の種類



#### データ移行には、いくつかの種類がある

- ① ファイル ベース移行:robocopy(コマンド)やPeerSync(ソフトウェア)を使用したファイル単位での移行
- ② アプリ ベース移行:アプリケーションの機能を使用したアプリケーション データ移行(CAD、SQLなど)
- ③ ストレージレプリケーション移行:筐体間コピー(レプリケーション)を使用したブロック単位での移行

今回の発表では、ファイル サーバーのデータ移行にスポットをあてて発表する

### ファイル サーバー データ移行の概要





### 要件定義と検証が重要



要件定義と事前検証を行うことにより、リスクの洗い出しや役割分担を明確にする

- 要件があいまいで、追加作業が発生
- リハーサルや本番移行などで問題(アクセス権や移行不可ファイルがあるなど)が発生し、トライ&エラーを繰り返し



### 要件定義・事前検証の内容



#### 要件定義

- ・お客様・SEと打合せを行い、要求仕様のヒアリング・確認を実施
- ・ヒアリングした内容をヒアリング シートにまとめて、要求仕様を明確化



- ・システムおよびネットワーク構成
- ・移行対象の共有数、データ量
- ・クライアント認証環境
- ・ご要望の移行スケジュール etc...



#### 事前検証

- ・認証(AD)サーバー、移行元サーバーの属性情報、アクセス権を確認し、移行条件をチェック
- ・移行性能、移行データの総容量、ファイル更新頻度など、移行設計に必要な統計情報を集計・検証



#### ■事前検証内容

- 1. 属性情報(所有者、アクセス権、作成日時など)の参照が可能か否か
- 2. データの読み取りアクセスが可能か否か
- 3. アカウント(所有者、アクセス権)の名前解決が可能か否か
- 4. 性能、移行データの総容量、ファイル更新頻度

### データ移行案件の各フェーズのタスクと成果物



| No | フェーズ      | タスク内容                                                                                          | 成果物                                |
|----|-----------|------------------------------------------------------------------------------------------------|------------------------------------|
| 1  | 要件定義      | <ul><li>・お客様と打合せを行い、要件仕様のヒアリングや確認を実施</li><li>・ヒアリングした内容をまとめて、要件仕様を明確化</li></ul>                | ・要件定義書                             |
| 2  | 事前検証      | ・移行元サーバの属性情報、アクセス権を確認し、移行条件をチェック<br>・移行性能、移行データの総容量、ファイル更新頻度など、移行設計に<br>必要な統計情報を集計・検証          | ・事前検証計画書<br>・事前検証結果報告書             |
| 3  | リハーサル     | ・実環境で移行用データの一部を使用して、データ移行のリハーサルを<br>実施                                                         | ・データ移行リハーサル計画書<br>・データ移行リハーサル結果報告書 |
| 4  | 移行設計      | ・要件定義、事前検証、リハーサルの結果をもとに、データ移行方式や<br>スケジュールを設計                                                  | ・移行設計書<br>・移行計画書<br>・役割分担表         |
| 5  | データ移行     | ・業務を停止せずにバックグラウンドで差分コピーを繰り返し、差分が<br>少なくなったところで業務を停止し、最後の差分コピーを実施                               | -                                  |
| 6  | アカウント情報変換 | ・ルールに従ってファイルのアカウント情報を変換                                                                        | -                                  |
| 7  | 移行後整合性検証  | ・移行前のファイル サーバーと移行後のファイル サーバーのファイル数、<br>全ファイルのアクセス権・サイズ・タイム スタンプを比較し、移行が<br>期待通り、確実に完了していることを検証 | ・データ移行結果報告書                        |



# データ移行手法

### robocopy(レガシー的な移行方法)



- リモートのファイル サーバー間でファイルやフォルダなどを同期させるために作られた。
- ファイルのコピーやバックアップに適したWindows標準コマンド(WS2008以降)
- データ移行で利用されるケースが多い

#### 良い点

- オプションが多数あり、オプションを組み合わせて要件にあった移行が可能
- オプションの説明など技術情報がインターネット上で多数検索可能
- レガシー的な手法となり、属人化しにくい

#### 悪い点

- 実行するOSバージョンによってバグが発生する可能性あり
- スクリプトのメンテナンスやログ解析が困難

### PeerSync(データ移行ツール)



- ・ ファイル レベルのコピー ツール
- robocopy + a の機能を提供するWindowsベースのソフトウェア
- ファイル ベースのデータ移行に特化
- 独自の高速化技術
  - マルチスレッド処理
    - 並列スキャン
    - 並列ファイルコピー
- リアルタイムモニタリング
- 独自プロトコルを使用したWAN高速化
  - 高転送効率、データ圧縮・暗号化オプション

- マッチする要件
  - 異なるベンダーのNAS間でファイル サーバーを移行
  - 運用切り替え時のダウン タイムを極力小さく
  - robocopyで実現出来そうだが、スクリプト管理、 レポーティング等、運用・保守に不安
  - 長期間にわたるファイル サーバー移行案件

- マッチしない要件
  - 同一ベンダーNAS間のデータ移行
  - NFSサーバーのデータ移行

### PeerSyncを利用したファイル サーバー移行例





### PeerSyncとrobocopyの機能比較①



| 項目               | PeerSync                                          | robocopy                                             |  |
|------------------|---------------------------------------------------|------------------------------------------------------|--|
| ユーザーインターフェース     | GUI                                               | CLI                                                  |  |
| データ転送単位          | ファイル<br>ブロック(特定条件のファイルのみ)                         | ファイル                                                 |  |
| 対応ファイルシステム・プロトコル | NTFS, SMB, NFS(Linuxホストが別途必要),<br>TCP(PSListener) | NTFS, SMB                                            |  |
| フォルダの同期          | ターゲットに対しAdd,Update,Deleteを許可                      | /MIR                                                 |  |
| 差分コピー            | 新規・更新ファイルのみコピー                                    | 古いファイルを除外: /XO<br>=> 新しいファイルのみコピー                    |  |
| ファイルの比較方法        | Modify time<br>CRC32, ACL, Attribute              | Modify time                                          |  |
| Metadataのコピー     | Owner, DACL, SACL, Attribute, Timestamp           | Owner, DACL, SACL, Attribute, Timestamp /COPY:DATSOU |  |
| DACLを無視したコピー     | Admin backup                                      | /B                                                   |  |
| 日本語ファイル・フォルダのコピー | 〇<br>※コピー先NASの仕様に依存                               | 〇<br>※コピー先NASの仕様に依存                                  |  |
| コピー後の整合性チェック     | Metadata: -<br>Data: CRC32                        | Metadata: -<br>Data: -                               |  |
| リビジョン管理          | ターゲット側で指定世代を残す<br>ターゲット側で削除時に移動してから指定期<br>間保存     | -                                                    |  |

### PeerSyncとrobocopyの機能比較②



| 項目               | PeerSync                                         | robocopy                                                                                        |
|------------------|--------------------------------------------------|-------------------------------------------------------------------------------------------------|
| ジョブスケジューリング      | Once at start, At n, Every n,                    | OSのタスクで制御                                                                                       |
| Real-timeモニタリング  | Windows, NetApp 7mode/cDOT, EMC Unity/VNX/isilon | -                                                                                               |
| Blackout windows | コピーを中断する時間を複数指定可能                                | /RH:hhmm-hhmm                                                                                   |
| WAN option       | TCPベースの独自プロトコル<br>圧縮・暗号化のOn/Off可能                | -                                                                                               |
| テスト実行            | Pre-Sync report                                  | /L                                                                                              |
| 除外設定             | File-name, Dir-name, Attribute, File-size        | File-name, Dir-name, Attribute, File-size Timestamp: /MAXAGE:n, /MINAGE:n, /MAXLAD:n, /MINLAD:n |
| ファイルコピーのリトライ     | リトライ間隔・回数<br>さらに再実行が可能(手動・自動)                    | リトライ間隔・回数: /R:n, /W:n                                                                           |
| ジョブログのカスタマイズ     | 0                                                | 0                                                                                               |
| 定期レポート           | テキストファイル、Email添付<br>サマリ形式、ジョブログ形式                | -                                                                                               |
| 統合管理             | Peer Management Center                           | -                                                                                               |

### ストレージ レプリケーション



- 同一ストレージ ハードウェアで利用できる筐体間コピー(レプリケーション)機能
- ブロック単位で差分コピー (レプリケーション) が可能
- 非同期コピー(レプリケーション)が可能
- 共有設定、アクセス権などの移行も可能

#### 良い点

- ファイルの一部を変更した際でもファイル全体ではなく、変更ブロックのみコピーするので、コピー時間が短縮
- ・ ベンダー ブロックが可能
- コピー(レプリケーション)実行時の差分スキャンが発生しない

#### 悪い点

- 同一ハードウェアでの機能となるので、ハードウェア費用が高価になる傾向
- 壊れたファイルもそのままコピーされるので、注意が必要(いい点でもあり悪い点でもある。)

### VNX(EMC製ストレージ)レプリケーション動作





### データ移行サービス(日立ソリューションズ)



- ファイル サーバーのデータ移行サービス
- データ移行の要件定義から実行までワンストップで支援するサービス
- 日立ソリューションズの経験と独自開発したデータ移行ソフトウェア(robocopyベース)で対応
- ファイル サーバーのデータ移行案件で利用した実績あり

1

専門SEがワンストップで実施

さまざまなファイルサーバ製品に精通した専門SEがデータ移行作業をワンストップで実施します。

2

業務停止時間を縮減

業務停止可能な時間帯・期間で移行作業が完了するように計画実施します。

3

さまざまなファイルサーバ間でのデータ移行をサポート

オンプレミス、クラウドなど構成・機種を問わず、 さまざまな組み合わせでのデータ移行が可能です。\*\*

※ SMB (Server Message Block) プロトコルをサポートしているファイルサーバ製品が対象

### 利用ケース(案)



| 要件                                 | robocopy | PeerSync | ストレージ<br>レプリケーション | データ移行サービス |
|------------------------------------|----------|----------|-------------------|-----------|
| 運用・メンテナンスが大変なのでrobocopyは<br>使いたくない |          | 0        |                   | 0         |
| 同じNASの最新ハードウェアにリプレイス               |          |          | $\circ$           | 0         |
| 異なるベンダーのNASにリプレイス                  |          | 0        |                   | 0         |
| アクセス権の付け替えが必要                      |          |          |                   | 0         |
| 移行後の全件チェックが必要                      |          |          |                   | 0         |
| ユーザー自身でデータ移行対応が必要                  | 0        | 0        |                   |           |

※上記の利用ケースは、一般的な案です。 実際には要件定義や検証を実施し、要件にあった移行方法を検討する必要があります。



## まとめ

### 言いたかったこと



- ① データ移行は、【要件定義】【事前検証】が重要
  - → このタスクを実施しないことで、プロジェクトに大きな影響を与える
- ② 見積りは、【要件定義・事前検証フェーズ】と【リハーサル以降の本番フェーズ】で分ける
  - → 要件定義や事前検証を実施しなくては、本番フェーズの正式な見積もりは作成できない
- ③ 移行対象のデータ容量によって【やることは変わらない】
  - → 検証、作業、納品物作成など、実施すべきタスクが多く、案件規模によって対応する内容は変わらない
  - → 移行作業は容易な作業ではなく、長期間エンジニアが拘束される
- ④ 要件定義と事前検証によって、適切なデータ移行手法を選択
  - → ハードウェアやツールありきで案件を進めるのではなく、検証結果から適切な手法を選択する

#### ※上記事項を営業にも理解してもらう必要がある