

CMPE 212L, Principles of Digital Design Laboratory

Experiment #1

Friday 1/29/2016

Objective

In this laboratory, you will get introduced to lab equipment, and how to use the catalogues and guidelines.

Required Equipment

- <u>Multi-meter</u>: "An instrument that enables measuring voltage, current, and resistance*".
- <u>Breadboard</u>: "A configurable that facilitates the development of prototype electronic circuits*".
- <u>Power Supply</u>: "A device that supplies electrical energy to one or multiple circuits or equipment*".
- Oscilloscope:" An electronic test instrument that enable the visualization of signals. The signal variations over time is displayed as two-dimensional graph (x-axis is time)*".

Experiments:

- 1. Examine and find connected pins of the breadboard by the use of multi-meter (the inter pins impedance should be zero to be connected).
- 2. Turn on the dc power supply, change the dc voltage setting and measure the output voltage by the digital multi-meter (DMM). Change the output voltages and verify that you know how to use the dc power supply and the DMM.
- 3. Check the oscilloscope functionality and try to see the square wave:
 - o Connect the oscilloscope power cable.
 - o Turn on the oscilloscope. Wait for the confirmation that all self-tests have passed.
 - Connect the oscilloscope probe to channel #1. Attach the probe tip and reference lead to the PROBE COMP connectors.
 - Push the AUTOSET button. You should see a square wave in the display (approximately 5 V at 1 kHz).
- 4. Display some waveforms:
 - Connect the power supply to channel #1 probe.
 - o Push the **AUTOSET** button.
 - The oscilloscope sets vertical, horizontal, and trigger controls automatically. You
 can manually adjust any of these controls if you need to optimize the display of
 waveform.
 - o Push the **MEASURE** button to see the measurement menu.
 - Push the CH1 button and then push the Select Measurement for CH1 screen button.
 - o Select the **FREQUENCY** measurement.
 - o Push the more screen button until you can select the **Pk-Pk** measurement.
 - Push the MENU OFF button.

- Repeat the experiment with other signals like sine and square. Generate a signal (for example, a sine wave) and observe the waveform from the scope. Change the amplitude and frequency, and observe that the trace on the scope changes accordingly.
- Generate a clock pulse by power generator. Show the waveform on the scope and try it with different voltage amplitudes and different pulse frequencies.

5. Make a circuit board:

- Connect the 5V DC and GND lines from the power supplies to the respective horizontal line of the breadboard (Red: 5V, Blue: GND).
- Using the color code table (Table 1, 2), read the resistors' value (Figure 1).
- o Make the circuit in Figure 2 on the breadboard to turn the LED on.
- \circ Repeat the experiment by replacing the V_{cc} with a square waveform with the same amplitude and different frequencies, find what happens to the LED and explain why.

Table 1 - Resistor Colour Pattern

Color	Significant Figures
Black	0
Brown	1
Red	2
Orange	3
Yellow	4
Green	5
Blue	6
Violet	7
Gray	8
White	9
Gold	-
Silver	-
None	-

Figure 1 - A typical Resistor's Colour Schema

Figure 2 - Voltage Indicator Circuit

Table 2 - Resistor Tolerance Rating

Tolerance Rating Red=2% Gold=5% Silver=10%	% No Band=20%
--	---------------

Definitions obtained from Wikipedia.