Understanding the Impact of Airbnb on Gentrification & Homelessness

In the City of Toronto

Angela Huang April 2022

Business Case

Background

- Homelessness is an urgent and growing issue in Toronto.
- 94 per cent of those experiencing homelessness in Toronto want permanent housing, but face barriers in securing it.
- In the past 10 years, average market rent for a onebedroom has increased by 33 per cent.
- There are thousands of homes that could be on the long-term rental market but aren't.
- Many of these are owned by absentee investors who are leaving them vacant for their eventual use, but many more are owned by Airbnb hosts who can make more on Short-Term rentals than they could renting long-term to a family.

Toronto Rental Market

Average Rental Vacancy Rates in Toronto, 2006 to 2018

Total Number of Airbnb Listings in Toronto, 2010 to 2016

Source: Canada Mortgage and Housing Corporation, Rental Market Survey

Source: Slee and Custom Tabulations

Objective

Understanding the effect of Short-Term rentals on Homelessness

Create a machine learning model to make these predictions more data-driven and accurate vs traditional human data modeling

The model would improve regulatory actions and shed light on the effectiveness of such regulations by policy makers

Allows policy makers to prioritize which areas to investigate for potential non-compliant Short-Term rental operators Identifies which regulatory decisions may have the most beneficial impact

Data

The City of Toronto collects data on:

- Daily Shelter & Overnight Service Occupancy & Capacity
 - SERVICE_USER_COUNT: Count of the number of service users staying in an overnight program as of the occupancy time and date.
- Daily Registered Short-Term Rentals Operators

Inside Airbnb, a mission driven activist project, collects data on:

- Quarterly scrape of publicly available listing information from Airbnb's site
 - Daily Price
 - Minimum number of nights
 - Availability (either booked or blocked)

Requirements & Benefits of Using Cloud

- Scalable Support for increased data sources, or increased compute power on demand
- Cost effective Less upfront cost (Low CAPEX)
- Secure Can set access permissions and support encryption
- Low Maintenance Reliable Have failover and additional servers
- Setup quickly (initial POC) Without requiring too much time to configure and acquire equipment

Solution Architecture

Functionality & Assumptions

Functionality	Assumptions
Store: Raw data	 Annual additional storage of 1GB – at most, data is accessed once a year
Compute: Upload data onto database/data warehouse	 Automatically load data into database once file it dropped into storage (runs daily or quarterly)
Store & Transform/Process: Data clean up, aggregation, feature engineering	Automatically process (updates daily or quarterly)Relational Database
Create: Machine Learning model	Limited staff, ideally an explainable model with very little knowledge in ML

Storage: AWS vs. GCP

AWS S3 Bucket is more desirable option

Infrequent Retrieval since it will be stored in a database/ data warehouse

Compute: AWS vs. GCP

	AWS Lambda	GCP Cloud Functions
 Pricing: Free Monthly Duration (GB-seconds) Free Monthly Requests Cost of Each Additional 1 Million Requests Cost of Each Additional 1 GB-second 	 400,000 1 Million \$0.20 \$0.000016 	 400,000 2 Million \$0.40 \$0.0000125
Execution Time - Maximum Timeout	15 minutes	9 minutes
Memory	128 MB – 10240 MB	128 MB – 4096 MB (in multiples of 128 MB)

AWS Lambda is more desirable option - More execution time and memory

Database: AWS vs. GCP

	AWS Redshift	GCP BigQuery
Pricing	 Storage: \$306 per TB per month Queries: unlimited processing Pricing by on-demand/by-the-hour nature 	 Storage: \$20 per TB per month Queries: \$5/TB Pricing by query

3 Key Differences of RedShift vs. BigQuery

- Amazon RedShift is provisioned on clusters and nodes. Google BigQuery is serverless.
- 2. RedShift supports 1,600 columns in a single table, BigQuery supports 10,000 columns.
- 3. RedShift requires periodic management tasks like vacuuming tables, BigQuery has automatic management.

GCP BigQuery is more desirable option – Variant workload

Machine Learning: AWS vs. GCP

AWS: Amazon Sagemaker Autopilot

GCP: Google Cloud AutoML

Both offers very similar capabilities

AWS Solution Architecture

Implementation of Architecture

Amazon S3

AWS Lambda

Amazon Redshift

Amazon SageMaker Autopilot

Amazon SageMaker Autopilot -Results

Challenges

Challenges

- City of Toronto's API only provided first 100 records
- Attaching layer to lambda
- Creating IAM Roles for Redshift