

Přednáška 4. z předmětu

Počítače a grafika

Ing. Radek Poliščuk, Ph.D.

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

Obsah přednášky

- Přednáška 4 Barvy a barevné systémy:
 - Světlo a jeho barva
 - Lidské barevné vidění
 - Barevné systémy.
 - Úvod do problematiky řízení barev.

$$E = mc^2$$

Barva $\neq [R,G,B]$

Co je to "světlo"?

- Světlo je postupná vlna s elektrickou a magnetickou složkou.
- elektromagnetické vlnění = tok fotonů (energetických částic) ze zdroje $E = hv = mc^2$, kde $c = 2,997923 \cdot 10^8 \text{ m} \cdot \text{s}^{-1}$ je rychlost světla ve vakuu (300 000 km/s), $h = 6,626069 \cdot 10^{-34} \text{ J} \cdot \text{s}$ je Planckova konstanta.
- Světelná energie se uvolňuje např. během:
 - tepelného chvění částic ("záření černého tělesa" chromosféra slunce, žárovka…),
 - přechodu elementárních částic mezi různými energetickými stavy
 (skokové Δ energie => charakteristické emisní "čáry" => vlnové délky Luminiscence)
 - Stimulovaná (Laser/Maser, LED, Fluorescence, fosforescence, chemoluminiscence...)
 - Spontánní (radioaktivita).
- Charakteristické vlastnosti EM záření:
 - Spektrální složení (histogram amplitud jednotlivých frekvencí) a
 - Fáze a polarita vln (interferenční a laserové technologie, holografie...).

Viditelné světlo zabírá jen velmi malou část frekvenčního spektra EM záření: 400-760nm

Jaké spektrum odpovídá "Bílé barvě"?

Lidské oko a mozek při barevném vidění využívají schopnost adaptace na spektrum použitého světelného zdroje kompenzací barevné teploty.

Počítače & grafika, přednáška 1.

Vnímání "barvy" je důsledkem spektra zaznamenaného v místě pozorovatele.

Toto spektrum je obecně dáno superpozicí:

- emisního spektra světelného zdroje (zdrojů),
- spektrální odrazivosti sledovaných povrchů,
- spektrální propustností všech prostředí kterými světlo prochází a
- spektrální přenosovou charakteristikou použitého snímače.

Poznámka:

V relativistické fyzice a v astronomii je navíc nutné zohlednit případné dopplerovské jevy při vysokých vzájemných rychlostech zdrojů a pozorovatele (červený/modrý posuv Fraunhoferových absorbčních čar).

Historie:

- Aristoteles (384-322): "řada barev"
- Isaac Newton (1642-1726):
 - Interpretace "Marciho experimentu" (rozklad bílého světla hranolem),
 - kruh 7 základních barev (Opticks, 1704).
- Johann Wolfgang Goethe (1749-1832):
 - Oponentní model (Teorie barev, 1823)
 - žlutá (slunce) proti modré (tma) a červená proti zelené
- Thomas Young a Hermann von Helmholz: Trichromatická teorie:

Lidské oko vnímá obrazovou informaci na principu současného zpracování trojice lineárně nezávislých barevných stimulů (druhý Grassmanův zákon).

VIOLETTO

VERDE

NERO

 Optická soustava lidského oka je tvořena čtyřmi optickými prostředími: rohovkou, komorovou vodou, čočkou a sklivcem.

Světlo vstupuje do rohovky, jeho množství je regulováno velikostí zornice v duhovce, je fokusováno čočkou a dopadá na sítnici na zadní straně oka.

Sítnice obsahuje světlocitlivé tyčinky a čípky:

čočka

(min. optická mohutnost čočky +20 dpt,

max. optická mohutnost čočky +33dpt)

Tyčinky:

- černobílé "noční" vidění,
- maximum citlivosti kolem 520nm (Purkyňův jev: za úsvitu vnímáme nejdřív modře)

Čípky:

- barevné (fotopické) vidění na denním světle
- nejhustěji uspořádané v okolí žluté skvrny,
- intenzita světla je vnímáná na základě fotochemických reakcí očního Rhodopsinu ve třech širokopásmových oblastech:
 - ρ (**červený**), maximum v okolí **590** nm,
 - γ (**zelený**), maximum v okolí **540** nm a
 - β (modrý), maximum v okolí **430** nm. Tyto závislosti jsou spektrální, ne bodové, střed barevné citlivosti je v okolí 555 nm.
- Vjem v modrém kanálu ovlivňuje také tvorbu_{0,2}
 Melatoninu (biologické hodiny: spánek/den) 0

Barva je vnímaná okem je vizuálním vjemem, produkovaným specifickou spektrální odezvou čípků sítnice na energii dopadajícího světla:

Intenzitu tohoto vjemu je obecně možné vyjádřit trojicí relativnách fotometrických stimulů R, G a B, odpovídajících plochám pod křivkami ρ, γ a β.

Hodnoty signálů z čípků jsou sloučeny dle schématu a zrakovým nervem elektrochemicky předávány k dalšímu zpracování do mozku.

díky této jednoduché fyziologické transformaci je člověk schopen rozlišovat světlost i odstíny.

způsob porovnávání odstínů "modré proti žluté" a "červené proti zelené" se nazývá oponentní

transformace tohoto schématu jsou základem referenčních barevných systémů CIE.

Trichromatické barevné vidění spojitého spektra je (kromě jiných vad) zatíženo také **Metamerismem**:

To že vnímáme dvě barvy totožně ještě neznamená že jsou totožné:

Barevné systémy

Dnešní kolorimetrický aparát vychází zejména z usnesení Mezinárodní komise pro osvětlení (Commission Internationale de l'Éclairage, CIE),

- zasedá od roku 1931.
- Mezi její nejvýznamější doporučení patří:
 - definice parametrů standardního pozorovatele,
 - standardních iluminantů,
 - barevných prostorů a
 - barevné diferenční formule.
- Na práci CIE navazuje od roku 1993 Mezinárodní konsorcium pro barvu (International Color Consortium, ICC) metodikou color managementu.

Barevné systémy

Standardních iluminanty:

- A: Žhavené wolframové vlákno 2856 K (žárovka);
- B: Sluneční světlo o korelované barevné teplotě 4874 K (nepoužíváno);
- C: Ranní sluneční světlo o korelované barevné teplotě 6774 K (zastaralé);
- D: Hlavní série iluminantů odpovídajících různým typům denního světla:
 - **D50** (5000K denní světlo v interiéru) a
 - **D65** (6504K denní světlo v nulové nadmořské výšce);
- E: Teoretický iluminant o "shodné energii" (pouze pro výpočty);
- F: Série odpovídající různým fluorescenčním lampám (F2, F3 až F12).

Standardní barevné prostory:

- CIEXYZ (transformace RGB, diagram chromatičnosti),
- CIELAB / CIELUV / CIELCH (psychometrický prostor)

0.6 0.6 500 0.4 y 0.2 0.0 0.0 0.2 0.4 0.6

13/19

Počítače & grafika, přednáška 1.

Barevné systémy

Míru rozdílnosti barev (ΔE) je možné vyčíslit pomocí barevných diferenčních formulí ΔE :

- CIE1976 (prostá vzdálenost v prostoru L*a*b*),
- CIE94,
- CMC(l:c),
- BFD(*l*:*c*),...

- Rozsah použitelných barev (Gamut) trichromatického zařízení je dán polohou vrcholů barevného n-úhelníku v barevném prostoru.
 - Aditivní míchání ("svítící" RGB na černém pozadí),
 - Substraktivní (odečítání CMY od barvy bílého podkladu).
- Gamuty reálných zařízení se prakticky vždy liší a vznikají tak kombinace, které jsou nereprodukovatelné (Skener > Monitor > Tisk).
- Výsledná barva je dále ovlivňována:
 - metamerismem,
 - barevnou teplotou okolí, u substraktivních podkladů také barvou podkladu (papíru),

...

Pro korektní reprodukci při přenášení a při práci s barevnou grafikou je tedy nutný nějaký systém řízení barev (Color Management System, CMS).

Dříve se k seřizování zařízení používalo bodové seřizování s pomocí barevných vzorníků

Munsell / GretagMacbeth (systém HSV)

Pantone

Kodak

. . .

- Každému zařízení v CMS je definován jeho barevný profil, popisující transformaci barev zařízením a fyzické limity zobrazitelných barev (gamut).
- Profily se pak vztahují buď k typickým okolním podmínkám, ve kterých je zařízení provozováno (osvětlení, typ papíru, ... typicky hodnoty standardního pozorovatele).
- Zařízení tak mohou pracovat v nativním RGB/CMY(K) režimu, převody řeší CMS.

Kalibrace a profilace zařízení:

- Snímače a skenery:
 - testovací tabulky a terče
- Zobrazovací jednotky:
 - bodové kolorimetry a
 - spektrometry
- Tiskárny:
 - souřadnicové nebo ruční spektrometry,
 - souřadnicové nebo ruční kolorimetry, nebo
 - zkalibrované skenery.

- GretagMacbeth
- Monaco Optics (MonacoEZcolor)
- Pantone

Základní ICC profily některých zařízení dodává už jejich výrobce. Počítače & grafika, přednáška 1.

Transformace gamutu CMS zahrnují:

- výběr profilu u jednotlivých zařízení (skener, monitor, tiskárna),
- určení korekcí u bodových barev a
- výběr kolorimetrického záměru pro danou transformaci:
 - Perceptuální: poměrné rozložení barev zdroje do cílového gamutu. Zachovává barevné poměry, někdy za cenu sníženého kontrastu.
 - Saturační:

 Roztažení původního gamutu po hranice nového, i za cenu příp. přetečení a ořezu. Typické pro grafy a "obchodní grafiku".
 - Absolutní kolorimetrický: Simulace barev původního obrazu.
 - Relativní kolorimetrický: Simulace původních barev, s kompenzací bílého bodu na cílovém zařízení.

Závěr

Probrané kapitoly

- světlo a jeho barva,
- lidské barevné vidění,
- barevné systémy a
- řízení barev

- Na látku navazují kapitoly Záznam obrazu, Zobrazovací jednotky a Tisk.
- Tam kde si s uhlídáním barev nebudete vědět rady, raději než hádku hledejte radu od zkušenějších. Uvedené obory jsou v neustálém vývoji a uvedená doporučení se během pár let mohou změnit.
- Doporučená literatura: Fraser, Murphy, Bunting: Real World Color Management.

Námět cvičení:

- Diskuse vlivu barevné teploty okolí na vnímání barev
- Demo profilace zařízení v rámci CMS

