Started on	Monday, 30 September 2024, 10:30 AM
	Finished
Completed on	Monday, 30 September 2024, 11:03 AM
	33 mins 42 secs
Grade	100.00 out of 100.00

```
Question 1
Correct
```

Mark 20.00 out of 20.00

Write a python program to implement quick sort on the given float values and print the sorted list and pivot va

For example:

Input	Result
5	Input List
2.3	[2.3, 3.2, 1.6, 4.2, 3.9]
3.2	pivot: 2.3
1.6	pivot: 3.2
4.2	pivot: 4.2
3.9	Sorted List
	[1.6, 2.3, 3.2, 3.9, 4.2]
4	Input List
5	[5.0, 2.0, 49.0, 3.0]
2	pivot: 5.0
49	pivot: 3.0
3	Sorted List
	[2.0, 3.0, 5.0, 49.0]

```
1 v def quick_sort(alist, start, end):
2 🔻
        if end - start > 1:
            p = partition(alist, start, end)
 3
 4
            quick_sort(alist, start, p)
 5
            quick_sort(alist, p + 1, end)
 6
 7
8 ▼ def partition(alist, start, end):
9
10
        pivot=alist[start]
11
        i=start+1
12
        j=end-1
        print("pivot: ",pivot)
13
14 ▼
        while True:
15 ▼
            while(i<=j and alist[i]<=pivot):</pre>
16
                 i=i+1
            while(i<=j and alist[j]>=pivot):
17 ▼
18
                 j=j-1
            if i<=j:
19 •
20
                 alist[i],alist[j]=alist[j],alist[i]
21 •
            else:
22
                 alist[start],alist[j]=alist[j],alist[start]
```

	Input	Expected	Got	
~	3.2 1.6	Input List [2.3, 3.2, 1.6, 4.2, 3.9] pivot: 2.3 pivot: 3.2 pivot: 4.2 Sorted List [1.6, 2.3, 3.2, 3.9, 4.2]	Input List [2.3, 3.2, 1.6, 4.2, 3.9] pivot: 2.3 pivot: 3.2 pivot: 4.2 Sorted List [1.6, 2.3, 3.2, 3.9, 4.2]	~
~	4 5 2 49 3	Input List [5.0, 2.0, 49.0, 3.0] pivot: 5.0 pivot: 3.0 Sorted List [2.0, 3.0, 5.0, 49.0]	Input List [5.0, 2.0, 49.0, 3.0] pivot: 5.0 pivot: 3.0 Sorted List [2.0, 3.0, 5.0, 49.0]	~
~	7.4	Input List [3.1, 4.2, 5.1, 2.3, 7.4, 5.9] pivot: 3.1 pivot: 5.1 pivot: 7.4 Sorted List [2.3, 3.1, 4.2, 5.1, 5.9, 7.4]	pivot: 3.1 pivot: 5.1 pivot: 7.4 Sorted List	~

Correct

Write a python program to implement binary search on the given list of float values using iterative method

For example:

Test	Input	Result
binarySearchAppr(arr, 0, len(arr)-1, x)	5	Element is present at index 2
	3.2	
	6.1	
	4.5	
	9.6	
	8.3	
	6.1	
binarySearchAppr(arr, 0, len(arr)-1, x)	6	Element is present at index 3
	3.1	
	2.3	
	5.1	
	4.6	
	3.2	
	9.5	
	4.6	

```
1 ▼ def binarySearchAppr(arr,1,r,x):
2 🔻
        while r >= 1:
            mid = (1 + r) // 2
 3
            if arr[mid] == x:
4 ▼
 5
                print("Element is present at index",mid)
 6
                break
            elif x > arr[mid]:
7 ▼
                1 = mid + 1
8
9 ▼
            else:
                r = mid - 1
10
11 ▼
            print("Element is not present in array")
12
13
14 | n = int(input())
15 | arr = []
16 v for i in range(n):
      arr +=[input(),]
17
18 x = input()
19
   arr.sort()
20
```

	Test	Input	Expected	Got	
~	<pre>binarySearchAppr(arr, 0, len(arr)-1, x)</pre>	5 3.2 6.1 4.5 9.6 8.3 6.1	Element is present at index 2	Element is pres	
~	binarySearchAppr(arr, 0, len(arr)-1, x)	6 3.1 2.3 5.1 4.6 3.2 9.5 4.6	Element is present at index 3	Element is pres	
*	binarySearchAppr(arr, 0, len(arr)-1, x)	8 2.1 6.3 5.2 4.2 9.3 6.7 5.6 9.8 7.2	Element is not present in array	Element is not array	

```
Question 3
Correct
```

Mark 20.00 out of 20.00

Write a python program to implement merge sort without using recursive function on the given list of values.

For example:

	_	
Input	Result	
7	left:	[33]
33	Right:	[42]
42	left:	[9]
9	Right:	[37]
37	left:	[8]
8	Right:	[47]
47	left:	[5]
5	Right:	[]
	left:	[33, 42]
	Right:	[9, 37]
	left:	[8, 47]
	Right:	
		[9, 33, 37, 42]
		[5, 8, 47]
	[5, 8,	9, 33, 37, 42, 47]
6	left:	[10]
10	Right:	[3]
3	left:	[5]
5	Right:	= =
61	left:	[74]
74	Right:	[92]
92		[3, 10]
	Right:	[5, 61]
		[74, 92]
	Right:	
		[3, 5, 10, 61]
	_	[74, 92]
	[3, 5,	10, 61, 74, 92]

```
1 v def merge(left,right):
        result = []
2
3
       x,y = 0,0
        for k in range( 0, len(left)+len(right) ):
4 ▼
5 ₹
            if x == len(left):
                result.append(right[y])
6
7
                y +=1
8 🔻
            elif y == len(right):
9
                result.append(left[x])
10
                x +=1
```

	Input	Expected	Got	
	7 33 42 9 37 8 47 5	left: [33] Right: [42] left: [9] Right: [37] left: [8] Right: [47] left: [5] Right: [] left: [33, 42] Right: [9, 37] left: [8, 47] Right: [5] left: [9, 33, 37, 42] Right: [5, 8, 47] [5, 8, 9, 33, 37, 42, 47]	<pre>left: [33] Right: [42] left: [9] Right: [37] left: [8] Right: [47] left: [5] Right: [] left: [33, 42] Right: [9, 37] left: [8, 47] Right: [5] left: [9, 33, 37, 42] Right: [5, 8, 47] [5, 8, 9, 33, 37, 42, 47]</pre>	~
~	6 10 3 5 61 74 92	left: [10] Right: [3] left: [5] Right: [61] left: [74] Right: [92] left: [3, 10] Right: [5, 61] left: [74, 92] Right: [] left: [3, 5, 10, 61] Right: [74, 92] [3, 5, 10, 61, 74, 92]	<pre>left: [10] Right: [3] left: [5] Right: [61] left: [74] Right: [92] left: [3, 10] Right: [5, 61] left: [74, 92] Right: [] left: [3, 5, 10, 61] Right: [74, 92] [3, 5, 10, 61, 74, 92]</pre>	~

	Input	Expected	Got	
✓	5 4 12 6 98 3	left: [4] Right: [12] left: [6] Right: [98] left: [3] Right: [] left: [4, 12] Right: [6, 98]	left: [4] Right: [12] left: [6] Right: [98] left: [3] Right: [] left: [4, 12] Right: [6, 98]	✓
		left: [3] Right: [] left: [4, 6, 12, 98] Right: [3] [3, 4, 6, 12, 98]	left: [3] Right: [] left: [4, 6, 12, 98] Right: [3] [3, 4, 6, 12, 98]	

```
Question 4
```

Correct

Mark 20.00 out of 20.00

Write a python program for a search function with parameter list name and the value to be searched on the gir

For example:

Test	Input	Result
search(List, n)	5 3.2 6.1 4.5 6.2 8.5	3.2 Found
	3.2	
search(List, n)	4 3.2 1.5 6.4 7.8 6.1	6.1 Not Found

```
1 def search(List, n):
       is_found = False
2
 3 ▼
       for i in range(len(List)):
4 ▼
          if List[i] == n:
             is_found = True
 5
             return f"{n} Found"
6
7 ▼
       if not is found:
8
          return f"{n} Not Found"
9
10 | List=[]
11 x=int(input())
12 v for i in range(x):
        List.append(str(input()))
13
14
15   n=str(input())
16 print(search(List, n))
```

	Test	Input	Expected	Got	
~	search(List, n)	5 3.2 6.1 4.5 6.2 8.5 3.2	3.2 Found	3.2 Found	~
~	search(List, n)	4 3.2 1.5 6.4 7.8 6.1	6.1 Not Found	6.1 Not Found	~
*	search(List, n)	7 2.1 3.2 6.5 4.1 5.2 7.1 8.2 9.3	9.3 Not Found	9.3 Not Found	*

Mark 20.00 out of 20.00

Write a Python Program to print factorial of a number recursively.

For example:

Input	Result
5	Factorial of number 5 = 120
6	Factorial of number 6 = 720

```
1 

def factorial(n):
2 ▼
       if n == 1:
3
            return n
4 ▼
       else:
            return n * factorial(n-1)
5
6 | num = int(input())
7 v if num < 0:
       print("Factorial does not exist for negative values")
8
9 v elif num == 0:
      print("Factorial of 0 is 1")
10
11 ▼ else:
        print("Factorial of number", num, "=", factorial(num))
12
13
```

	Input	Expected	Got	
~	5	Factorial of number 5 = 120	Factorial of number 5 = 120	~
~	6	Factorial of number 6 = 720	Factorial of number 6 = 720	~

	Input	Expected	Got	
~	7	Factorial of number 7 = 5040	Factorial of number 7 = 5040	~
~	8	Factorial of number 8 = 40320	Factorial of number 8 = 40320	~

