Want more revision exercises? Get MathsFit - New from projectmaths.

08	5 c	Light intensity is measured in lux. The light intensity at the surface of a lake is 6000		
		lux. The light intensity, I lux, a distance s metres below the surface of the lake is		
		given by $I = Ae^{-ks}$ where A and k are constants.		
		(i) Write down the value of A.		
		(ii) The light intensity 6 metres below the surface of the lake is 1000 lux.		2
		Find the value of k .		
		(iii) At what rate, in lux per metre, is the light intensity decreasing 6 metres		2
(:)	\	below the surface of the lake?	(:::\	
(i)	wne	s = 0, I = 6000: $I = Ae^{-ks}$	(iii) $I = 6000 e^{-ks}$	
	$1 = Ae^{-k(0)}$ $6000 = Ae^{-k(0)}$		$\frac{dI}{ds} = -6000k e^{-ks}$	
	6000 = Ae		When $s = 6$,	
		A = 6000	•	
		71 0000	$\frac{dI}{ds} = -6000k e^{-6k}$	
(ii)	When $s = 6$, $I = 1000$:		1	.6
		$I = 6000 e^{-ks}$	$= -6000 \times \frac{1}{6} \log_e 6 \times e^{-6.\frac{1}{6} \log e}$	
	10	$00 = 6000 e^{-k(6)}$	= -298.6 (1 dec. pl)	
	۵	$^{-6k} = \frac{1}{6}$	∴ decreasing at 298.6 lux/metre	
		· · · · · · · · · · · · · · · · · · ·	,	
	_	$^{6k} = 6$		
		ng logs of both sides:		
	($6k = \log_e 6$		
		$k = \frac{1}{6} \log_e 6$		
		3		
		= 0.298626578		
		= 0.2986 (4 dec pl)		

^{*} These solutions have been provided by projectmaths and are not supplied or endorsed by the Board of Studies

Board of Studies: Notes from the Marking Centre

- (ii) Candidates should be aware that the natural logarithm function log_e(x) appears as ln on most calculator keypads and not as log (which is log to base 10). Responses that presented a clear final answer in parts (ii) and (iii) in terms of natural logs and exponentials were not penalised for incorrect subsequent evaluations using the calculator.
- (iii) In some better responses, candidates answered part (iii) efficiently by arguing that I' = kI = 1000k. An alternative for this part was to differentiate the formula for intensity with respect to distance s and then make appropriate substitutions for A, k and s. Common errors were to differentiate with respect to k rather than s, to argue that $\frac{d}{ds}e^{-ks} = -kse^{-ks-1} \text{ or to abandon the use of calculus altogether and calculate the average rate of change in intensity over 6 metres rather than the instantaneous rate at <math>s = 6$.

Source: http://www.boardofstudies.nsw.edu.au/hsc_exams/