Training, test and validation splits

MACHINE LEARNING IN THE TIDYVERSE

Dmitriy (Dima) Gorenshteyn
Lead Data Scientist, Memorial Sloan
Kettering Cancer Center

Train-Test Split

DATA

Train-Test Split

Train-Test Split

TRAIN

TEST

initial_split()

```
library(rsample)
gap_split <- initial_split(gapminder, prop = 0.75)
training_data <- training(gap_split)
testing_data <- testing(gap_split)
nrow(training_data)</pre>
```

3003

nrow(testing_data)

1001

Train-Validate Split

TRAIN

Train-Validate Split

Cross Validation

vfold_cv()

```
library(rsample)
cv_split <- vfold_cv(training_data, v = 3)
cv_split</pre>
```


Mapping train & validate

```
cv_data <- cv_split %>%
  mutate(train = map(splits, ~training(.x)),
    validate = map(splits, ~testing(.x)))
```


Cross Validated Models

```
head(cv_data)
```

```
cv_models_lm <- cv_data %>%
  mutate(model = map(train, ~lm(formula = life_expectancy~., data = .x)))
```


Let's practice!

MACHINE LEARNING IN THE TIDYVERSE

Measuring crossvalidation performance

MACHINE LEARNING IN THE TIDYVERSE

Dmitriy (Dima) Gorenshteyn
Lead Data Scientist, Memorial Sloan
Kettering Cancer Center

Measuring Performance

life_expectancy	country	year	infant_mortality	fertility	population	gdpPercap
66.4	Peru	1986	67.6	4.25	19996250	2185
48.4	Senegal	1979	94.3	7.42	5424299	511
74	Paraguay	2006	23.1	3.19	5882797	1423
77.7	France	1993	6.3	1.72	57749881	19251
75.2	Netherlands	1977	9.7	1.58	13827329	15174
66.2	Panama	1969	53.2	5.28	1476478	2628

Measuring Performance - Truth

life_expectancy	country	year	infant_mortality	fertility	population	gdpPercap
66.4	Peru	1986	67.6	4.25	19996250	2185
48.4	Senegal	1979	94.3	7.42	5424299	511
74	Paraguay	2006	23.1	3.19	5882797	1423
77.7	France	1993	6.3	1.72	57749881	19251
75.2	Netherlands	1977	9.7	1.58	13827329	15174
66.2	Panama	1969	53.2	5.28	1476478	2628

Measuring Performance - Truth

life_expectancy	country	year	infant_mortality	fertility	population	gdpPercap
66.4	Peru	1986	67.6	4.25	19996250	2185
48.4	Senegal	1979	94.3	7.42	5424299	511
74	Paraguay	2006	23.1	3.19	5882797	1423
77.7	France	1993	6.3	1.72	57749881	19251
75.2	Netherlands	1977	9.7	1.58	13827329	15174
66.2	Panama	1969	53.2	5.28	1476478	2628

Measuring Performance - Truth

ife_expectancy	country	year	infant_mortality	fertility	population	gdpPercap
66.4	Peru	1986	67.6	4.25	19996250	2185
48.4	Senegal	1979	94.3	7.42	5424299	511
74	Paraguay	2006	23.1	3.19	5882797	1423
77.7	France	1993	6.3	1.72	57749881	19251
75.2	Netherlands	1977	9.7	1.58	13827329	15174
66.2	Panama	1969	53.2	5.28	1476478	2628
Actual						
66.4						
66.4 48.4						
66.4 48.4 74						
66.4 48.4						

Measuring Performance - Prediction

life_expectancy	country	year	infant_mortality	fertility	population	gdpPercap
66.4	Peru	1986	67.6	4.25	19996250	2185
48.4	Senegal	1979	94.3	7.42	5424299	511
74	Paraguay	2006	23.1	3.19	5882797	1423
77.7	France	1993	6.3	1.72	57749881	19251
75.2	Netherlands	1977	9.7	1.58	13827329	15174
66.2	Panama	1969	53.2	5.28	1476478	2628

Actual
66.4
48.4
74
77.7
75.2
66.2

Measuring Performance - Prediction

life_expectancy	country	year	infant_mortality	fertility	population	gdpPercap
66.4	Peru	1986	67.6	4.25	19996250	2185
48.4	Senegal	1979	94.3	7.42	5424299	511
74	Paraguay	2006	23.1	3.19	5882797	1423
77.7	France	1993	6.3	1.72	57749881	19251
75.2	Netherlands	1977	9.7	1.58	13827329	15174
66.2	Panama	1969	53.2	5.28	1476478	2628

Actual 66.4 48.4 74 77.7 75.2 66.2

Measuring Performance - Prediction

life_expectancy	country	year	infant_mortality	fertility	population	gdpPercap			
66.4	Peru	1986	67.6	4.25	19996250	2185			
48.4	Senegal	1979	94.3	7.42	5424299	511			
74	Paraguay	2006	23.1	3.19	5882797	1423			
77.7	France	1993	6.3	1.72	57749881	19251			
75.2	Netherlands	1977	9.7	1.58	13827329	15174			
66.2	Panama	1969	53.2	5.28	1476478	2628			
Actual 66.4									
48.4				7					
74				4					
77.7				.0					
75.2				.0					

Measuring Performance

Mean Absolute Error

$$MAE = \frac{\sum_{i=1}^{n} \left| Actual_i - Predicted_i \right|}{n}$$

Ingredients for Performance Measurement

- 1) Actual life_expectancy values
- 2) Predicted life_expectancy values
- 3) A metric to compare 1) & 2)

1) Extract the actual values

```
cv_prep_lm <- cv_models_lm %>%
  mutate(validate_actual = map(validate, ~.x$life_expectancy))
```


The predict() & map2() functions

```
predict(model, data)

map2(.x = model, .y = data, .f = ~predict(.x, .y))
```

2) Prepare the predicted values

```
cv_prep_lm <- cv_eval_lm %>%
  mutate(validate_actual = map(validate, ~.x$life_expectancy),
     validate_predicted = map2(model, validate, ~predict(.x, .y)))
```


3) Calculate MAE

```
# 5-fold cross-validation
# A tibble: 5 x 8
splits
            id
                train validate model validate_a. validate_p validate_mae
<S3: rsplit> Fold1 <tib. <tib.
                               <S3.
                                      <dbl.
                                                 <dbl.
                                                             1.47
<S3: rsplit> Fold2 <tib. <tib.
                                                            1.51
                               <S3.
                                      <dbl.
                                                 <dbl.
<S3: rsplit> Fold3 <tib. <tib.
                                                            1.44
                               <S3.
                                      <dbl.
                                                 <dbl.
<S3: rsplit> Fold4 <tib. <tib.
                                      <dbl.
                                                 <dbl.
                                                            1.48
                               <S3.
<S3: rsplit> Fold5 <tib. <tib.
                               <S3.
                                      <dbl.
                                                 <dbl.
                                                            1.68
```

Let's practice!

MACHINE LEARNING IN THE TIDYVERSE

Building and tuning a random forest model

MACHINE LEARNING IN THE TIDYVERSE

Dmitriy (Dima) Gorenshteyn
Lead Data Scientist, Memorial Sloan
Kettering Cancer Center

Linear Regression Model

Validate Mean Absolute Error:

1.5 Years

Another Model

Random Forest Benefits

- Can handle non-linear relationships
- Can handle interactions

Basic Random Forest Tools

Model

```
rf_model <- ranger(formula = ___, data = ___, seed = ___)
```

Prediction

```
prediction <- predict(rf_model, new_data)$predictions</pre>
```

Build Basic Random Forest Models

ranger Hyper-Parameters

Model

```
rf_model <- ranger(formula, data, seed, mtry, num.trees)</pre>
```

Hyper-Parameters

name	range	default
mtry	$1: number\ of\ features$	$\sqrt{number\ of\ feat}$
num.trees	$1:\infty$	500

Tune The Hyper-Parameters

```
cv_tune <- cv_data %>%
  crossing(mtry = 1:5)
cv_tune
```

```
# A tibble: 25 x 5
  splits
             id
                    train
                                        validate
                                                           mtry
  <list> <chr> <list>
                                       t>
                                                          <int>
1 <S3: rsplit> Fold1 <tibble [2,402 × 7]> <tibble [601 × 7]>
2 <S3: rsplit> Fold1 <tibble [2,402 × 7]> <tibble [601 × 7]>
3 <S3: rsplit> Fold1 <tibble [2,402 × 7]> <tibble [601 × 7]>
4 <S3: rsplit> Fold1 <tibble [2,402 × 7]> <tibble [601 × 7]>
5 <S3: rsplit> Fold1 <tibble [2,402 × 7]> <tibble [601 × 7]>
6 <S3: rsplit> Fold2 <tibble [2,402 × 7]> <tibble [601 × 7]>
7 <S3: rsplit> Fold2 <tibble [2,402 × 7]> <tibble [601 × 7]>
```

Tune The Hyper-Parameters

```
# A tibble: 25 x 6
  splits
              id
                   train
                                      validate
                                                   mtry model
                            * <list> <chr> <list>
                                                   <int> <list>
1 <S3: rsplit> Fold1 <tibble [2,402 × 7]> <tibble [60... 1
                                                         <S3: ranger>
2 <S3: rsplit> Fold1 <tibble [2,402 × 7]> <tibble [60... 2
                                                         <S3: ranger>
3 <S3: rsplit> Fold1 <tibble [2,402 × 7]> <tibble [60... 3 <S3: ranger>
4 <S3: rsplit> Fold1 <tibble [2,402 × 7]> <tibble [60... 4
                                                         <S3: ranger>
5 <S3: rsplit> Fold1 <tibble [2,402 × 7]> <tibble [60... 5 <S3: ranger>
6 <S3: rsplit> Fold2 <tibble [2,402 × 7]> <tibble [60... 1
                                                         <S3: ranger>
7 <S3: rsplit> Fold2 <tibble [2,402 × 7]> <tibble [60... 2
                                                         <S3: ranger>
```


Let's practice!

MACHINE LEARNING IN THE TIDYVERSE

Measuring the Test Performance

MACHINE LEARNING IN THE TIDYVERSE

Dmitriy (Dima) Gorenshteyn
Lead Data Scientist, Memorial Sloan
Kettering Cancer Center

TRAIN

TEST

TRAIN

TEST

Measuring the Test Performance

```
test_actual <- testing_data$life_expectancy
test_predict <- predict(best_model, testing_data)$predictions</pre>
```

```
mae(test_actual, test_predict)
```


Let's practice!

MACHINE LEARNING IN THE TIDYVERSE

