ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

Επεξεργασία Φωνής και Φυσικής Γβώσσας

Εαρινό εξάμηνο 2022-2023

Σειρά Αναλυτικών Ασκήσεων

Άσκηση 1

Θεωρήστε 2 χρονικά αμετάβλητα γραμμικά συστήματα, όπως φαίνονται στο παρακάτω σχήμα, δηλαδή η έξοδος του πρώτου συστήματος είναι η είσοδος του δεύτερου.

1. Δείξτε στι η κρουστική απόκριση του συνολικού συστήματος είναι

$$h(n) = h_1(n) * h_2(n) \tag{1}$$

2. Δείξτε στι

$$h_1(n) * h_2(n) = h_2(n) * h_1(n)$$
 (2)

άρα η συνολική κρουστική απόκριση δεν εξαρτάται από την σειρά με την οποία εμφανίζονται τα συστήματα.

3. Θεωρείστε τη συνάρτηση

$$H(z) = \left(\sum_{r=0}^{M} b_r z^{-r}\right) \left(\frac{1}{1 - \sum_{k=1}^{N} a_k z^{-k}}\right) = H_1(z) H_2(z)$$
(3)

δηλαδή σαν σειρά δυο συστημάτων. Γράψτε τις εξισώσεις διαφορών του ολικού συστήματος από αυτήν την οπτική.

4. Τώρα θεωρείστε τα δυο συστήματα του ερωτήματος (3) με την ανάποδη σειρά, δηλαδή:

$$H(z) = H_2(z)H_1(z)$$
 (4)

Άσκηση 2

Για την μηχανή πεπερασμένης κατάστασης που ακολουθεί

- 1. Ποια είναι η κανονική έκφραση που αντιστοιχεί στην μηχανή?
- 2. Ποια είναι η πιο πιθανή γραμματοσειρά που αποδέχεται η μηχανή εφόσον χρησιμοποιούμε τον τροπικό ημιδακτύλιο? (tropical semiring collect operation is min, extend operation is +.) Σημείωση: το κόστος των (πιθανών) τελικών καταστάσεων συνυπολογίζεται μόνο εφόσον αυτή η κατάσταση είναι όντως τελική. Το κόστος μίας μη τελικής κατάστασης συνυπολογίζεται κάθε φορά που περνάμε από αυτήν. Το κόστος της κατάστασης 3 είναι 6 και της κατάστασης 4 είναι 0.

- 3. Ποιο είναι το κόστος της γραμματοσειράς
- 4. Ποια είναι η ισοδύναμη ντετερμινιστική μηχανή χωρίς κόστος?
- 5. Ποια είναι η ισοδύναμη ντετερμινιστική μηχανή με κόστος?

Άσκηση 3

Δίδεται το εξής αλφάβητο $\Sigma = \{A, G, C, T, E, F\}$.

- 1. Σχεδιάστε τον μετατροπέα (transducer) που υλοποιεί την απόσταση Levenshtein, δηλαδή d(x,x) = 0 και $d(x,\epsilon) = d(\epsilon,x) = d(x,y) = 1$ όπου x και y είναι διαφορετικά γράμματα του αλφαβήτου Σ .
- 2. Ποια είναι η καλύτερη (ποιο φτηνή) αντιστοίχηση ανάμεσα στις γραμματοσειρές AECAGEF και TETCGAG; Πώς χρησιμοποιήσατε το μετατροπέα από την ερώτηση (1)?
- 3. Ποια είναι η δεύτερη καλύτερη αντιστοιχία ανάμεσα στις γραμματοσειρές της ερώτησης (2)?

Άσκηση 4

Θεωρήστε ένα all pole μοντέλο με συνάρτηση μεταφοράς της μορφής

$$V(z) = \frac{1}{\prod_{k=1}^{q} (1 - c_k z^{-1})(1 - c_k^* z^{-1})}$$
 (5)

όπου

$$c_k = r_k e^{j\theta_k} \tag{6}$$

Δείξτε οτι το αντίστοιχο cepstrum είναι

$$\hat{v}(n) = 2\sum_{k=1}^{q} \frac{(r_k)^n}{n} \cos(\theta_k n) \tag{7}$$

Άσκηση 5

Θεωρήστε ${\bf 2}$ πεπερασμένα σήματα φωνής x(n) και y(n), $0 \le n \le N-1$ (με μηδενικές τιμές εκτός του παραθύρου ανάλυσης). Για LPC ανάλυση με την autocorrelation function μέθοδο χρειάζονται οι αυτοσυσχετίσεις

$$R_x(k) = \sum_{n=0}^{N-1-k} x(n)x(n+k), \quad R_y(k) = \sum_{n=0}^{N-1-k} y(n)y(n+k)$$
(8)

οι οποίες με τη μέθοδο Levinson μας δίνουν τους αντίστοιχους βέλτιστους LPC συντελεστές

$$a_x = (a_{x0}, a_{x1}, \dots, a_{xp}), \quad a_y = (a_{y0}, a_{y1}, \dots, a_{yp})$$
 (9)

 $με a_{x0} = a_{y0} = -1.$

1. Να αποδείξετε στι η ενέργεια λάθους πρόβλεψης (για το x(n)) ισούται με

$$E_x = \sum_{n=0}^{N-1+p} \left(\sum_{k=0}^p a_{xk} x(n-k) \right)^2 = a_x R_x a_x^T$$
 (10)

όπου R_x είναι ένας $(p+1) \times (p+1)$ πίνακας.

2. Αν κάνετε γραμμική πρόβλεψη του σήματος x(n) με τους βέλτιστους συντελεστές του σήματος y(n), να αποδείξετε στι η ενέργεια του νέου υβριδικού λάθους πρόβλεψης ισούται με

$$E_{xy} = \sum_{n=0}^{N-1+p} \left(\sum_{k=0}^{p} a_{yk} x(n-k) \right)^2 = a_y R_x a_y^T$$
 (11)

3. Να βρείτε το πεδίο τιμών του λόγου E_{xy}/E_x

Άσκηση 6

Θεωρήστε σε μια ακολουθία φωνημάτων την μοντελοποίηση της εναλλαγής άφωνων (U=unvoiced) και έμφωνων (V=voiced) ήχων με ένα ΗΜΜ μοντέλο (παραμέτρων λ) 4 καταστάσεων με τις εξής πιθανότητες

	State 1	State 2	State 3	State 4
P(V)	0.5	0.8	0.25	0.2
P(U)	0.5	0.2	0.75	0.8

Υποθέτουμε τις ακόλουθες πιθανότητες μετάβασης καταστάσεων

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix} = \begin{bmatrix} 0.25 & 0.2 & 0.3 & 0.25 \\ 0.2 & 0.25 & 0.3 & 0.25 \\ 0.4 & 0.2 & 0.2 & 0.2 \\ 0.25 & 0.3 & 0.2 & 0.25 \end{bmatrix}$$

$$(12)$$

και ίσες πιθανότητες αρχικής κατάστασης

$$\pi_i = 0.25, \quad i = 1, 2, 3, 4.$$
 (13)

Παρατηρούμε την ακολουθία $O_1O_2O_3$:

$$\mathbf{O} = (UVU) \tag{14}$$

1. Να υπολογιστούν οι πιθανότητες

$$\delta_t(i) = \max_{q_1, q_2, q_3} P[q_1 q_2 q_3, O_1 O_2 O_3 | \lambda], \quad i = 1, 2, 3, 4,$$
(15)

- 2. Να βρεθεί η πιο πιθανή ακολουθία καταστάσεων ${f Q}^*=(q_1,q_2,q_3).$
- 3. Να υπολογισθεί η πιθανότητα $P^* = (\mathbf{O}, \mathbf{Q}^* | \lambda)$

Για τα ερωτήματα (1) και (2) χρησιμοποιήστε τον αλγόριθμο Viterbi.

Άσκηση 7

Back propagation through time: Σας δίνεται το ακόλουθο RNN

Κάθε κατάσταση h_t δίνεται από το ακόλουθο ζεύγος εξισώσεων

$$h_t = \sigma(Wh_{t-1} + Ux_t), \quad \sigma(z) = \frac{1}{1 + e^{-z}}$$

Έστω L η συνάρτηση σφάλματος, η οποία ορίζεται ως το άθροισμα πάνω σε όλα τα επιμέρους χρονικά σφάλματα L_t σε κάθε χρονική στιγμή t μέχρι το χρονικό ορίζοντα T. Δηλαδή, $L=\sum_{t=0}^T L_t$, όπου το κάθε επιμέρους χρονικό σφάλμα εξαρτάται από την κατάσταση h_t .

Με βάση τα παραπάνω να εξάγετε την παράγωγο της συνάρτησης σφάλματος ως προς τον πίνακα βαρών W.

- a) Δοθέντος ότι $y=\sigma(Wx)$ όπου $y\in\mathbb{R}^n, x\in\mathbb{R}^d$ και $W\in\mathbb{R}^{n\times d}$. Δείξτε ότι για την Ιακωβιανή ισχύει $\frac{\partial y}{\partial x}=\mathrm{diag}(\sigma')W\in\mathbb{R}^{n\times d}$
- b) Δείξτε ότι ισχύει $\frac{\partial L}{\partial W} = \sum_{t=0}^T \sum_{k=1}^t \frac{\partial L_t}{\partial h_t} \frac{\partial h_t}{\partial h_k} \frac{\partial h_k}{\partial W}$

Άσκηση 8

Μια αρχιτεκτονική αναδρομικών δικτύων που λύνει το πρόβλημα της εξαφάνισης ή έκρηξης παραγώγων (vanishing / exploding gradients) είναι τα δίκτυα Βραχέας-Μακράς Μνήμης (Long Short Term Memory networks - LSTM). Η αρχιτεκτονική και οι πράξεις που πραγματοποιεί το δίκτυο φαίνονται στην εικόνα (το σύμβολο \odot υποδηλώνει τον πολλαπλασιασμό στοιχείο προς στοιχείο - hadamard product):

$$\begin{split} f_t &= \sigma(W_f h_{t-1} + U_f x_t) \\ i_t &= \sigma(W_i h_{t-1} + U_i x_t) \\ o_t &= \sigma(W_o h_{t-1} + U_o x_t) \\ \tilde{C}_t &= \tanh(W_c h_{t-1} + U_c x_t) \\ C_t &= f_t \odot C_{t-1} + i_t \odot \tilde{C}_t \\ h_t &= o_t \odot \tanh(C_t) \end{split}$$

- a) Διαβάστε αυτό το άρθρο και εξηγείστε εν συντομία το ρόλο των πυλών f_t , i_t και o_t
- b) Εξηγείστε ποιες από τις ποσότητες είναι πάντα θετικές (ή μηδέν)

Για να κατανοήσουμε το πώς προσεγγίζει το LSTM πρόβλημα εξαφάνισης παραγώγων χρειάζεται να υπολογίσουμε τις μερικές παραγώγους $\frac{\partial L}{\partial \theta}$, όπου θ οι παράμετροι του δικτύου (W_f,W_o,W_i,W_c) . Στην περίπτωση του LSTM αντί για την κρυφή κατάσταση h_t ενδιαφερόμαστε για την κατάσταση κελιού C_t . Όπως και το h_t στα απλά RNN έτσι και το C_t εξαρτάται από προηγούμενες τιμές $C_{t-1},...C_0$ και οδηγούμαστε σε μια απλοποιημένη εξίσωση της μορφής:

$$\frac{\partial L}{\partial W} = \sum_{t=0}^{T} \sum_{k=1}^{t} \frac{\partial L}{\partial C_t} \frac{\partial C_t}{\partial C_k} \frac{\partial C_k}{\partial W}$$

c) Η εξίσωση είναι απλοποιημένη, καθώς αγνοούμε τις εξαρτήσεις του C_t από τους όρους f_t, i_t, \tilde{C}_t . Μας ενδιαφέρει η εξάρτηση από αυτούς τους όρους για να μελετήσουμε το φαινόμενο εξαφάνισης παραγώγων; Γιατί;

d) Δεδομένου ότι:

$$\frac{\partial C_t}{\partial C_k} = \prod_{i=k+1}^t \frac{\partial C_i}{\partial C_{i-1}}$$

και αν θεωρήσετε ότι $f_t=1$ και $i_t=0$ υπολογίστε την ποσότητα $\frac{\partial C_t}{\partial C_k}$. e) (Bonus) Δείξτε ότι στη γενική περίπτωση η αναδρομική σχέση είναι της μορφής

$$\frac{\partial C_t}{\partial C_{t-1}} = \sigma'() \cdot W_f \cdot \delta \odot C_{t-1} + f_t + \sigma'() \cdot W_i \cdot \delta \cdot \tilde{C}_t + i_t \odot \tanh'()\delta,$$

όπου $\delta = o_{t-1} \odot tanh'(C_{t-1})$.

Γιατί εν τέλει είναι καλύτερο να χρησιμοποιούμε το cell state από το hidden state (σχετικά με τα vanishing gradients);

Hint: Θυμηθείτε τον κανόνα παραγώγισης γινομένων. Ισχύει και για το hadamard product: $(x\odot f(x))'=$ $x' \odot f(x) + x \odot f'(x)$

Άσκηση 9

Δίνεται (ένα τμήμα) στατιστικής σημασιολογικής γραμματικής:

$S \to NP$ VP	[0.80]
$NP \to Det$ Nom	[0.20]
$NP \rightarrow ProperNoun$	[0.35]
$NP \rightarrow Nom$	[0.05]
$NP \rightarrow Pronoun$	[0.40]
$VP \rightarrow Verb$	[0.55]
$VP \rightarrow Verb \text{ NP}$	[0.40]
$Verb \rightarrow want$	[0.40]
$Nom \rightarrow Noun$	[0.75]
$Pronoun \rightarrow I$	[0.60]
$Pronoun \rightarrow you$	[0.40]
$Det \rightarrow the$	[0.80]
$Det \rightarrow that$	[0.05]
$Noun \rightarrow flight$	[0.50]

- 1. Εξηγήστε αν η γραμματική αυτή είναι πλήρης ως προς τους κανόνες που έχουν αριστερά το σύμβολο S και ως προς τους κανόνες που έχουν αριστερά το σύμβολο ΝΡ.
- 2. Σχεδιάστε το συντακτικό δέντρο της πρότασης "I want that flight" σύμφωνα με την παραπάνω γραμματική. Είναι το δέντρο αυτό μοναδικό ή μήπως υπάρχει αμφισημία (ambiguity);
- 3. Ποιά είναι η πιθανότητα του δέντρου που σχεδιάσατε στο (β΄); Ποιά είναι η πιθανότητα του συντακτικού δέντρου της πρότασης "you want that flight";