Transporting established insights from classical experimental design to address real-life causal questions

D.B. Rubin (joint work with M.-A. Bind)

Northwestern University

June 2017

Once upon a time... many people smoked

Once upon a time... many people smoked

2 / 29

Once upon a time... many people smoked

Today: how would you investigate whether parental smoking has an impact on children?

Phyllis (top lek), Elizabeth (bottom lek), Rose standing beside her chair, and June in her lap.

Does parental smoking have an impact on children's lung function?

Parental smoking _____ Lower children's lung function

Goal: Quantify the impact of smoking / benefit of smoking reduction

Four stages to address causality

- 1) A conceptual stage
- 2) A design stage
- 3) A *statistical analysis* stage
- 4) A *summary* stage

First two stages to address causality

- 1) A conceptual stage that involves the precise formulation of the causal question (and related assumptions) using potential outcomes and described in terms of a hypothetical randomized experiment where the exposure is randomly assigned to units; this description includes the timing of random assignment and defines the target population; no computation is needed at this stage.
- 2) A design stage that attempts to reconstruct (or approximate) the
 design of a randomized experiment before any outcome data are
 observed (that is, with unconfounded assignment of exposure using
 the observed background and treatment assignment data); typically,
 heavy use of computing is needed at this stage, e.g., for multivariate
 matched sampling and extensive balance diagnostics.

Last two stages to address causality

- 3) A *statistical analysis* stage defined in a protocol explicated before seeing any outcome data, comparing the outcomes of interest in similar (e.g., hypothetically randomly divided) exposed and non-exposed units of the hypothetical randomized experiment; this stage is the one that most closely parallels the standard model-based analyses but uses more flexible methods.
- 4) A *summary* stage providing conclusions about statistical evidence for the sizes of possible causal effects of the exposure; no computing is required at this stage, just thoughtful summarization, e.g., focusing on what actual world interventions.

First stage: formulation of the causal question in terms of a hypothetical randomized experiment using potential outcomes

i	Age	Height	Sex	Parental smoking	FEV-1(0)	FEV-1(1)
1						
 N=654						

Non-exposed vs. exposed children

• What can you say about the distributions of age?

Non-exposed vs. exposed children

What can you say about the distributions of height?

• Hypothetical experiment A

A completely randomized experiment with $N_{Smoking}$ =65 children with smoking parents and $N_{Non-Smoking}$ =589 children with non-smoking parents.

• Suppose we intervene on smoking households before they have children and randomizing them to stop smoking with probability $\frac{9}{10}$, and thus with probability $\frac{1}{10}$ to continue to smoke.

• Hypothetical experiment B

- Suppose we selected boundaries for the covariates age and height, and restricted the 361 children to fall within those boundaries.
- For the restricted children, we completely randomized smoking households before they have children .
- This strategy led to $N_{Smoking}$ =61 children with smoking parents and $N_{Non-smoking}$ =300 children with non-smoking parents.

Hypothetical experiment C

- Randomized block experiment could have resulted in non-smoking parents with background covariates that are within certain strata defined by the background covariates of the smoking parents.
- This formulation led to $N_{Smoking}$ =57 children with smoking parents and $N_{Non-smoking}$ =216 children with non-smoking parents.

- Other hypothetical randomized experiments would also intervene on smoking parents before their child's conception; we describe two such experiments.
 - First, Hypothetical experiment D.1, a completely randomized experiment with balanced groups (e.g., creating two equal-sized groups of parents similar on background characteristics, that is, N_{Smoking}=N_{Non-Smoking}=63 children).
 - Or second, Hypothetical experiment D.2: a rerandomized experiment with two equal-sized groups of similar parents (with N_{Smoking}=N_{Non-Smoking}=63) for which the randomized allocations are allowed only when parents' covariates (e.g., height) mean differences between smokers and non-smokers are within some a priori defined calipers.

• Another hypothetical randomized experiment, *Hypothetical experiment E*, would intervene after the child's conception, from the point in time for which we know the child's gender, and would have a paired-randomized experiment where a coin flip determines which parents of a pair of two similar parents expecting a child with same gender is exposed to still-smoking parents, with $N_{Smoking} = N_{Non-Smoking} = 63$ children).

Second stage: Design stage that attempts to reconstruct the ideal conditions for a randomized experiment

• What type(s) of design do you know?

Second stage: Design stage that attempts to reconstruct the ideal conditions for a randomized experiment

Hypothetical experiment / Design stage methods	Number of children	
HYPOTHETICAL EXPERIMENT (A) /	654	
NO DESIGN (a)		
HYPOTHETICAL EXPERIMENT (B) /		
TRIMMING (b) (Restriction to girls between 10 and 18 years old and height	361	
between 60 and 69 inches and to boys between 9 and 18 years and height		
between 58 to 72 inches)		
HYPOTHETICAL EXPERIMENT (C) /	273	
STRATIFIED MATCHING (c) (cem R package)		
HYPOTHETICAL EXPERIMENTS (D.1 and D.2) /		
PROPENSITY SCORE MATCHING (d) (caliper=1 standard deviation of	126	
the propensity score, Matching R package)		
HYPOTHETICAL EXPERIMENT (E) /		
OPTIMAL PAIR MATCHING (e) (Minimum squared Mahalanobis	126	
distance, optmatch R package)		

June 2017

A few quotes on matching (Imbens and Rubin, 2016)

- Matching can be interpreted as reorganizing the data from an observational study in such a way that the assumptions from a randomized experiment hold, at least approximately.
- Unconfoundedness is not guaranteed (as it is in expectation for randomized experiment).
- Matching may be inexact, systematic differences in pre-exposure variables across the matched pairs may remain but can be subsequently adjusted in the analysis stage.

One approach using propensity score matching strategy

- Overall picture, compare "like with like".
- logit P(Smoking=1|Age, Height, Sex) = $\beta_0 + \beta_1$ Age + β_2 Height + β_3 Sex
- ullet Fitted values $= \widehat{P}(Smoking = 1|Age, Height, Sex) =$ Propensity score

i	Age	Height	Sex	Parental smoking	Propensity score
1	9	58	1	1	0.01
 654	 9	 58	 1	0	0.01

• 1-1 matching with caliper on the estimated propensity score.

Overlap

 154 unexposed children were "unmatchable" to exposed children (i.e., outside of the range of the other exposed children in terms of covariates) and 2 exposed children were "unmatchable" to unexposed children.

Overlap

• After trimming and refitting,

(≥) ≥ 0 q @

Matched pairs based on propensity score

Pair	Age	Height	Sex	Parental smoking	PS
1	(9, 9)	(58, 58)	(1,1)	(1,0)	(0.01, 0.01)
63	 (18, 16)	 (70.5, 66.5)	 (1,0)	(1,0)	(0.6, 0.6)

• We ended up with N=126 children (i.e., $N_T = N_C = 63$ "similar" matched pairs).

Diagnostics for second stage: Love plots

• Propensity score,

Black: before matching, grey: after matching

Diagnostics for second stage: Love plots

After optimal matching,

Standardized Difference in Covariate Means

Black : before matching, grey : after matching

Diagnostics for second stage : Age histograms in original, ps-matched, optimal paired datasets

KS p-values for : 1) before matching = 10^{-16} , 2) after matching not significant

D.B. Rubin Northwestern University June 2017 21 / 29

Diagnostics for second stage: Height histograms in original, ps-matched, optimal paired datasets

KS p-values for : 1) before matching = 10^{-12} , 2) after matching not significant.

D.B. Rubin Northwestern University June 2017 22 / 29

Third stage: Analysis stage that compares the outcomes of interest in the exposed versus non-exposed units of the hypothetical randomized experiment

Hypothetical experiment / Design stage methods	Analysis method	Number of units	Estimate of the average causal effect (ACE)	95% confidence interval
HYPOTHETICAL EXPERIMENT (A)	Crude comparison	654	0.71	[0.50; 0.93]
/ NO DESIGN (a)	Standard linear regression with no interactions	654	-0.09	[-0.20; 0.03]
HYPOTHETICAL EXPERIMENT (B) / TRIMMING (b) (Restriction to girls between 10 and 18	Crude comparison	361	0.18	[-0.03; 0.39]
years old and height between 60 and 69 inches and to boys between 9 and 18 years and height between 58 to 72 inches)	Standard linear regression with no interactions	361	-0.16	[-0.30; -0.03]
HYPOTHETICAL EXPERIMENT (C)	Crude comparison	273	-0.16	[-0.37; 0.05]
/ STRATIFIED MATCHING (c) (cem R package)	Standard linear regression with no interactions	273	-0.16	[-0.30; -0.03]
HYPOTHETICAL EXPERIMENTS (D.1 and D.2) / PROPENSITY SCORE	Crude comparison	126	-0.20	[-0.43; 0.03]
MATCHING (d) (caliper=1 standard deviation of the propensity score, Matching R package)	Standard linear regression with no interactions	126	-0.23	[-0.46; -0.00]
HYPOTHETICAL EXPERIMENT (E) / OPTIMAL PAIR MATCHING (e)	Crude comparison	126	-0.19	[-0.46; 0.08]
(Mimimum squared Mahalanobis distance, optmatch R package)	Standard linear regression with no interactions	126	-0.18	[-0.35; -0.01]

Third stage: Randomization-based p-values in the completely randomized, rerandomized, and paired-randomized experiments

p-values=0.12; 0.10; 0.04

Third stage: Bayesian approach and ACE

$$(\mathbf{Y}(\mathbf{0}), \mathbf{Y}(\mathbf{1}) \mid X_i, \beta_C, \beta_T, \sigma_C^2, \sigma_T^2) \sim \mathbf{N} \left(\begin{pmatrix} X_i \beta_C \\ X_i \beta_T \end{pmatrix}, \begin{pmatrix} \sigma_C^2 & 0 \\ 0 & \sigma_T^2 \end{pmatrix} \right)$$

$$Y_i^{mis} \mid \mathbf{Y}^{obs}, \, \mathbf{W}, \, \mathbf{X}, \, \beta_C, \beta_T, \sigma_C^2, \sigma_T^2 \sim \mathrm{N}(W_i X_i \beta_C + (1-W_i) X_i \beta_T); W_i \sigma_C^2 + (1-W_i) \sigma_T^2)$$

Potential

						outcomes	
Age	Fev	Height	Sex	Smoking	Y0	Y1	
11	3.104	67.5	0	1	?	3.104	
13	4.045	69.0	1	1	?	4.045	
14	4.763	68.0	1	1	?	4.763	
10	2.100	58.0	1	0	2.100	?	
11	3.069	65.0	0	1	?	3.069	
11	2.785	69.0	1	0	2.785	?	
15	4.284	70.0	1	0	4.284	?	
15	4.506	71.0	1	1	?	4.506	
18	2.906	66.0	0	0	2.906	?	
19	5.102	72.0	1	0	5.102	?	
19	3.519	66.0	0	1	?	3.519	

Third stage: Bayesian approach and ACE

$$(\mathbf{Y}(\mathbf{0}), \mathbf{Y}(\mathbf{1}) \mid X_i, \beta_C, \beta_T, \sigma_C^2, \sigma_T^2) \sim \mathbf{N} \left(\left(\begin{array}{c} X_i \beta_C \\ X_i \beta_T \end{array} \right), \left(\begin{array}{cc} \sigma_C^2 & 0 \\ 0 & \sigma_T^2 \end{array} \right) \right)$$

$$Y_i^{mis} \mid \mathbf{Y}^{obs}, \, \mathbf{W}, \, \mathbf{X}, \, \beta_C, \beta_T, \sigma_C^2, \sigma_T^2 \sim \mathrm{N}(W_i X_i \beta_C + (1-W_i) X_i \beta_T); W_i \sigma_C^2 + (1-W_i) \sigma_T^2)$$

After PS matching, posterior mean = -0.16 [95% interval : -0.29 to -0.03].

Third stage: Bayesian approach and ACE

$$(\mathbf{Y}(\mathbf{0}), \mathbf{Y}(\mathbf{1}) \mid X_i, \beta_C, \beta_T, \sigma_C^2, \sigma_T^2) \sim \mathbf{N} \left(\left(\begin{array}{c} X_i \beta_C \\ X_i \beta_T \end{array} \right), \left(\begin{array}{cc} \sigma_C^2 & 0 \\ 0 & \sigma_T^2 \end{array} \right) \right)$$

$$Y_i^{mis} \mid \mathbf{Y}^{obs}, \, \mathbf{W}, \, \mathbf{X}, \, \beta_C, \beta_T, \sigma_C^2, \sigma_T^2 \sim \mathrm{N}(W_i X_i \beta_C + (1-W_i) X_i \beta_T); W_i \sigma_C^2 + (1-W_i) \sigma_T^2)$$

After optimal pairing, posterior mean= -0.18, [95% interval: -0.30 to -0.06].

June 2017

Third stage: Mixing Bayesian and Fisherian approaches in the completely randomized, rerandomized, and paired-randomized experiments

p-values=0.09; 0.10; 0.04

28 / 29

D.B. Rubin Northwestern University June 2017

Discussion

- Our approach complements the use of associational models by adding a design phase to the analyses that aim to address causal questions.
- Strengths and Limitations
 - Assumptions may not be plausible, but at least are transparent.
 - Covariate balance is key to address causality in hypothetical interventions.
 - Classical experimental design insights solidify statistical analyses that aim to propose policy interventions.