STAT211 Homework 1

Teaching Assistant: Sondre Hølleland 10:15-12:00, 23.01.2019 Auditorium 5, Realfagsbygget

1.4 (Brockwell et al., 2016, p. 35)

Let $\{Z_t\}$ be a sequence of independent normal random variables, each with mean 0 and variance σ^2 , and let a, b, and c be constants. Which, if any, of the following processes are stationary? For each stationary process specify the mean and autocovariance function.

- a) $X_t = a + bZ_t + cZ_{t-2}$
- $\mathbf{b)} \ X_t = a + bZ_1 \cos(ct) + cZ_2 \sin(ct)$
- c) $X_t = a + bZ_t \cos(ct) + cZ_{t-1} \sin(ct)$
- **d)** $X_t = a + bZ_0$
- e) $X_t = Z_0 \cos(ct)$
- **f)** $X_t = Z_t Z_{t-1}$

1.5 (Brockwell et al., 2016, p. 35)

Let $\{X_t\}$ be the moving-average process of order 2 given by $X_t = Z_t + \theta Z_{t-2}$, where $\{Z_t\}$ is WN(0,1).

- a) Find the autocovariance and autocorrelation functions for this process when $\theta = 0.8$.
- b) Compute the variance of the sample mean $(X_1 + X_2 + X_3 + X_4)/4$ when $\theta = 0.8$.
- c) Repeat (b) when $\theta = 0.8$ and compare your answer with the result obtained in (b).

1.6 (Brockwell et al., 2016, p. 35)

Let $\{X_t\}$ be the AR(1) process defined in Example 1.4.5.

- a) Compute the variance of the sample mean $(X_1 + X_2 + X_3 + X_4)/4$ when $\phi = 0.9$ and $\sigma^2 = 1$.
- b) Repeat (a) when $\phi = -0.9$ and compare your answer with the result obtained in (a).

1.7 (Brockwell et al., 2016, p. 35)

If $\{X_t\}$ and $\{Y_t\}$ are uncorrelated stationary sequences, i.e., if X_r and Y_s are uncorrelated for every r and s, show that $\{X_t + Y_t\}$ is stationary with autocovariance function equal to the sum of the autocovariance functions of $\{X_t\}$ and $\{Y_t\}$.

1.17 (Brockwell et al., 2016, p. 36)

Load the dataset deaths in R using the read.table function. Plot the data. Also create a histogram of the data using the R function hist. Plot the sample autocorrelation function using the acf function. The presence of a strong seasonal component with period 12 is evident in the graph of the data and in the sample autocorrelation function.

1.18 (Brockwell et al., 2016, p. 37)

We are still studying the dataset deaths. In this exercise, you are supposed to reproduce the figures 1-24 and

Sondre Hølleland STAT211 Homework 1 10:15-12:00, 23.01.2019

1-25 in (Brockwell et al., 2016, pp. 27-28). In 1.17, we found a period of length 12. Fit a seasonal component using the procedure described in section 1.5.2.1 on page 26. You may use the following functions or write your own:

```
# Function for calculating a moving average when d is even
ma <- function(x,n=12){filter(x,c(.5,rep(1,n-1),.5)/n, sides=2)}
# Function for finding the seasonal component
seasonal.component <- function(x){
    # First step: detrending
    detrended <- x - ma(x)
    # Second step: Calculating sesonal component from detrended data
    wt<-rowMeans(matrix(detrended[!is.na(detrended)], nrow=12,byrow=FALSE))
    st<-(wt-mean(wt))[c(7:12,1:6)] #seasonal component
    return(st)
}</pre>
```

Plot the deseasonalized data (as in figure 1-24). Fit a quadratic trend (polynomial of order two) to the deseasonalized data and add the curve to the plot you just created. The trend should be $\hat{m}_t = 9952 - 71.82t + 0.8260t^2$ for $1 \le t \le 72$. This can be done using the following code:

```
# Let dtr be the deseasonalized observations
M <- poly(1:72, degree=2, raw=TRUE)
trend<-lm(dtr ~ M) # Re-estimating trend of the deseasonalized data</pre>
```

Calculate the detrended and deseasonalized data, i.e.

$$\widehat{Y}_t = x_t - \widehat{m}_t - \widehat{s}_t, \quad t = 1, \dots, 72.$$

Plot the sample autocorrelation function of $\{\widehat{Y}_t\}$.

Forecast the data for the next 24 months without allowing for this dependence, based on the assumption that the estimated seasonal and trend components are true values and that $\{Y_t\}$ is a white noise sequence with zero mean. Calculate \widehat{m}_{72+k} for $k=1,\ldots,24$ and do the forecasting by

$$\hat{X}_{72+k} = \hat{m}_{72+k} + \hat{s}_{72+k}, \quad k = 1, \dots 24.$$

Plot the original data with the forecasts appended. Later we shall see how to improve on these forecasts by taking into account the dependence in the series $\{Y_t\}$.

Tips: To calculate \widehat{m}_{72+k} the following code may be useful:

```
M <- poly(72 + 1:24, 2, raw=TRUE)
m.hat <- predict(trend, newdata= M)</pre>
```

References

Brockwell Peter J, Davis Richard A, Calder Matthew V. Introduction to time series and forecasting. 3. 2016.