Introduction to Language Modeling

H. Andrew Schwartz

CSE538 - Spring 2024

-- assigning a probability to sequences of words.

-- assigning a probability to sequences of words.

Version 1: Compute $P(w_1, w_2, w_3, w_4, w_5) = P(W)$: probability of a sequence of words

-- assigning a probability to sequences of words.

Version 1: Compute P(w1, w2, w3, w4, w5) = P(W): probability of a sequence of words

Version 2: Compute P(w5 | w1, w2, w3, w4) $= P(w_n | w_1, w_2, ..., w_{n-1})$:probability of a next word given history

```
Version 1: Compute P(w1, w2, w3, w4, w5) = P(W)
:probability of a sequence of words
P(He \text{ ate the cake with the fork}) = ?
```

Version 2: Compute
$$P(w5 | w1, w2, w3, w4)$$

$$= P(w_n | w_1, w_2, ..., w_{n-1})$$
:probability of a next word given history
$$P(fork | He \ ate \ the \ cake \ with \ the) = ?$$

Version 1: Compute P(w1, w2, w3, w4, w5) = P(W):probability of a sequence of words $P(He \ ate \ the \ cake \ with \ the \ fork) = ?$

Applications:

- Auto-complete: What word is next?
- Machine Translation: Which translation is most likely?
- Spell Correction: Which word is most likely given error?
- Speech Recognition: What did they just say? "eyes aw of an"

(example from Jurafsky, 2017; did you say "giraffe ski 2,017"?)

1913 Markov: Probability that next letter would be vowel or consonant.

1913 Markov: Probability that next letter would be vowel or consonant.

1913 Markov: Probability that next letter would be vowel or consonant.

GPT4

1913 Markov: Probability that next letter would be vowel or consonant.

GPT4

1913 Markov: Probability that next letter would be vowel or consonant.

Shannon: A Mathematical Theory of Communication (first digital language model)

Osgood: *The* Measurement of Meaning

1948

to dislike by worst 'S incredibly bad that now are worse a you than with is

not good

incredibly good

- **Language Models**
- **Vector Semantics**
- LMs + Vectors

very good fantastic amazing wonderful terrific nice

~logarithmic scale

(Li et al. ,2015; Jurafsky et al., 2019)

onno

bad

1913 Markov: Probability that next letter would be vowel or consonant.

GPT4

1913 Markov: Probability that next letter would be vowel or consonant.

1913 Markov: Probability that next letter would be vowel or consonant.

GPT4

1913 Markov: Probability that next letter would be vowel or consonant.

GPT4

Version 1: Compute $P(w_1, w_2, w_3, w_4, w_5) = \overline{P(W)}$: probability of a sequence of words

Version 2: Compute P(w5|w1, w2, w3, w4) $= P(w_n|w_1, w_2, ..., w_{n-1})$:probability of a next word given history

Simple Solution

```
Version 1: Compute P(w1, w2, w3, w4, w5) = P(W)
:probability of a sequence of words
P(He \text{ ate the cake with the fork}) =
```

```
count(He ate the cake with the fork)
count(* * * * * * * *)
```

```
Version 1: Compute P(w1, w2, w3, w4, w5) = P(W)
:probability of a sequence of words
P(He \ ate \ the \ cake \ with \ the \ fork) =
```

total number of observed 7grams

count(He ate the cake with the fork)
count(* * * * * * * * * *)

```
V1:
         P(He ate the cake with the fork) =
                     count(He ate the cake with the fork)
                     count( * * * * *
V2:
         P(fork \mid He \text{ ate the cake with the}) =
                     <u>count(He ate the cake with the fork)</u>
                     count(He ate the cake with the *)
```

V1:

Problem: even the Web isn't large enough to enable good estimates of most phrases.

```
P(He ate the cake with the fork) =
```

```
count(He ate the cake with the fork)
count(* * * * * * * *)
```

V2:

```
P(fork | He ate the cake with the) =
```

```
count(He ate the cake with the fork)
count(He ate the cake with the *)
```

Problem: even the Web isn't large enough to enable good estimates of most phrases.

V1: Compute $P(w_1, w_2, w_3, w_4, w_5) = P(W)$

V2: Compute $P(w_5|w_1, w_2, w_3, w_4) = P(w_n|w_1, w_2, ..., w_{n-1})$

A solution: Estimate from shorter sequences.

Problem: even the Web isn't large enough to enable good estimates of most phrases.

V1: Compute $P(w_1, w_2, w_3, w_4, w_5) = P(W)$

V2: Compute $P(w_5|w_1, w_2, w_3, w_4) = P(w_n|w_1, w_2, ..., w_{n-1})$

A solution: Estimate from shorter sequences.

V1: Compute $P(w_1, w_2, w_3, w_4, w_5) = P(W)$

V2: Compute $P(w_5|w_1, w_2, w_3, w_4) = P(w_n|w_1, w_2, ..., w_{n-1})$

V1: Compute $P(w_1, w_2, w_3, w_4, w_5) = P(W)$

V2: Compute $P(w_5|w_1, w_2, w_3, w_4) = P(w_n|w_1, w_2, ..., w_{n-1})$

$$P(B|A) = P(B,A) / P(A) \Leftrightarrow P(A)P(B|A) = P(B,A)$$

V1: Compute $P(w_1, w_2, w_3, w_4, w_5) = P(W)$

V2: Compute $P(w_5|w_1, w_2, w_3, w_4) = P(w_n|w_1, w_2, ..., w_{n-1})$

$$P(B|A) = P(B,A) / P(A) \Leftrightarrow P(A)P(B|A) = P(B,A) = P(A,B)$$

$$P(A,B) = P(A)P(B|A)$$

V1: Compute $P(w_1, w_2, w_3, w_4, w_5) = P(W)$

V2: Compute $P(w_5|w_1, w_2, w_3, w_4) = P(w_n|w_1, w_2, ..., w_{n-1})$

$$P(A,B) = P(A)P(B|A)$$

V1: Compute $P(w_1, w_2, w_3, w_4, w_5) = P(W)$

V2: Compute $P(w_5|w_1, w_2, w_3, w_4) = P(w_n|w_1, w_2, ..., w_{n-1})$

$$P(A,B) = P(A)P(B|A)$$

$$P(A, B, C) = P(A)P(B|A)P(C|A, B)$$

V1: Compute $P(w_1, w_2, w_3, w_4, w_5) = P(W)$

V2: Compute $P(w_5|w_1, w_2, w_3, w_4) = P(w_n|w_1, w_2, ..., w_{n-1})$

Observation: V1 and V2 are equivalent!

$$P(A,B) = P(A)P(B|A)$$

$$P(A, B, C) = P(A)P(B|A)P(C|A, B)$$

The Chain Rule:

$$P(X_1, X_2,..., X_n) = P(X_1)P(X_2|X_1)P(X_3|X_1, X_2)...P(X_n|X_1, ..., X_{n-1})$$

V1: Compute P(w1, w2, w3, w4, w5) = P(W)

V2: Compute $P(w_5|w_1, w_2, w_3, w_4) = P(w_n|w_1, w_2, ..., w_{n-1})$

$$P(A,B) = P(A)P(B|A)$$

$$P(A, B, C) = P(A)P(B|A)P(C|A, B)$$

The Chain Rule:
$$P(X_1, X_2, ..., X_n) = \prod_{i=1}^{n} P(X_i | X_1, X_2, ..., X_{i-1})$$

$$P(X_1, X_2,..., X_n) = P(X_1)P(X_2|X_1)P(X_3|X_1, X_2)...P(X_n|X_1, ..., X_{n-1})$$

V1: Compute $P(w_1, w_2, w_3, w_4, w_5) = P(W)$

V2: Compute $P(w_5|w_1, w_2, w_3, w_4) = P(w_n|w_1, w_2, ..., w_{n-1})$

Observation: Solving V2 give us V1!

$$P(A,B) = P(A)P(B|A)$$
 $P(A,B, LM \text{ version 1} LM \text{ version 2}$
 $P(X1, X2,..., Xn) = P(X1, X2,..., Xn-1)P(Xn|X1,..., Xn-1)$
 $P(X1, X2,..., Xn) = P(X1)P(X2|X1)P(X3|X1, X2)...P(Xn|X1,..., Xn-1)$

Compute
$$P(w5|\ w1, w2, w3, w4) = P(w_n|\ w_1, w_2, ..., w_{n-1})$$

Problem: even the Web isn't large enough to enable good estimates of most phrases.

A solution: Estimate from shorter sequences.

$$P(X_1, X_2, ..., X_n) = \prod_{i=1}^{n} P(X_i | X_1, X_2, ..., X_{i-1})$$

Compute
$$P(w5|w1, w2, w3, w4) = P(w_n|w_1, w_2, ..., w_{n-1})$$

Problem: even the Web isn't large enough to enable good estimates of most phrases.

A solution: Estimate from shorter sequences.

$$P(X_1, X_2, ..., X_n) = \prod_{i=1}^{n} P(X_i | X_1, X_2, ..., X_{i-1})$$

Markov Assumption:

$$P(Xn | X_1..., X_{n-1}) \approx P(X_n | X_{n-k}, ..., X_{n-1})$$
 where $k < n$

Compute
$$P(w5|w1, w2, w3, w4) = P(w_n|w_1, w_2, ..., w_{n-1})$$

Problem: even the Web isn't large enough to enable good estimates of most phrases.

A solution: Estimate from shorter sequences.

$$P(X_1, X_2, ..., X_n) = \prod_{i=1}^{n} P(X_i | X_1, X_2, ..., X_{i-1})$$

Markov Assumption:

$$P(Xn | X_1..., X_{n-1}) \approx P(X_n | X_{n-k}, ..., X_{n-1})$$
 where $k < n$

Compute $P(w_5|w_1, w_2, w_3, w_4) = P(w_n|w_1, w_2, ..., w_{n-1})$

Unigram Model: k = 0; $P(X_1, X_2, ..., X_n) = \prod_{i=1}^{n} P(X_i)$

Compute $P(w_5|w_1, w_2, w_3, w_4) = P(w_n|w_1, w_2, ..., w_{n-1})$

Bigram Model: k = 1;
$$P(X_1, X_2, ..., X_n) = \prod_{i=1}^n P(X_i | X_{i-1})$$

Language Modeling: How to Estimate?

Compute $P(w5|w1, w2, w3, w4) = P(w_n|w_1, w_2, ..., w_{n-1})$

Bigram Model: k = 1;
$$P(X_1, X_2, ..., X_n) = \prod_{i=1}^n P(X_i | X_{i-1})$$

Example generated sentence:

outside, new, car, parking, lot, of, the, agreement, reached

```
P(X1 = "outside", X2 = "new", X3 = "car", ....)

\approx P(X1 = "outside") * P(X2 = "new" | X1 = "outside) * P(X3 = "car" | X2 = "new") * ...
```


Language Mo

Building a model

a sequence of natural language

Food corpus from Jurafsky (2018). Samples:

can you tell me about any good cantonese restaurants close by

mid priced thai food is what i'm looking for

tell me about chez panisse

can you give me a listing of the kinds of food that are available

i'm looking for a good place to eat breakfast

when is caffe venezia open during the day

Training Corpus

training (fit, learn)

first word	and word	Bigram	Counts					
<u> </u>	i	want	to	eat	chinese	food	lunch	spend
i	5	827	0	9	0	0	0	2
want	2	0	608	1	6	6	5	1
to	2	0	4	686	2	0	6	211
eat	0	0	2	0	16	2	42	0
chinese	1	0	0	0	0	82	1	0
food	15	0	15	0	1	4	0	0
lunch	2	0	0	0	0	1	0	0
spend	1	0	1	0	0	0	0	0
	i	want	to	eat	chinese	food	lunch	spend
	2533	927	2417	746	158	1093	341	278
Bigram model: $P(X_1, X_2,, X_n) = \prod_{i=1}^n P(X_i X_{i-1})$ Need to estimate: $P(X_i X_{i-1}) = \text{count}(X_{i-1} X_i) / \text{count}(X_{i-1})$								

P(Xi | Xi-1)

*	1	want	ιο	cat	Cilliese	1000	Tunch	spend
i	0.002	0.33	0	0.0036	0	0	0	0.00079
want	0.0022	0	0.66	0.0011	0.0065	0.0065	0.0054	0.0011
to	0.00083	0	0.0017	0.28	0.00083	0	0.0025	0.087
eat	0	0	0.0027	0	0.021	0.0027	0.056	0
chinese	0.0063	0	0	0	0	0.52	0.0063	0
food	0.014	0	0.014	0	0.00092	0.0037	0	0
lunch	0.0059	0	0	0	0	0.0029	0	0
spend	0.0036	0	0.0036	0	0	0	0	0
		7.7	322	STATE OF THE PARTY				
	1	want	to	eat	chinese	food	lunch	spend

i	want	to	eat	chinese	food	lunch	spend
2533	927	2417	746	158	1093	341	278

Bigram model: $P(X_1, X_2, ..., X_n) = \prod P(X_i | X_{i-1})$

Need to estimate: $P(Xi \mid Xi-1) = \text{count}(Xi-1 \mid Xi) / \text{count}(Xi-1)$

- Reasoning:
- Inverse of probability

 (i.e. minimize perplexity = maximize likelihood)
- 2) (weighted) average branching factor

Apply Chain Rule:
$$PP(W) = \sqrt[N]{\prod_{i=1}^{N} \frac{1}{P(w_i|w_1...w_{i-1})}}$$

Thus,
PP for Bigrams:

$$PP(W) = \sqrt[N]{\prod_{i=1}^{N} \frac{1}{P(w_i|w_{i-1})}}$$

$$PP(W) = P(w_1w_2...w_N)^{-1}$$

$$= \sqrt[N]{\frac{1}{P(w_1w_2...w_N)}}$$

- Reasoning:
- Inverse of probability (i.e. minimize perplexity = maximize likelihood)
- (weighted) average branching factor

Qualitatively: Prefers real sentences

(sequences that are more grammatical, make sense).

Language Model

ın ti

Perplexity

Apply Chain Rule: PP(W)

Thus, PP for Bigrams:

 $P(w_1w_2...w_N)$

Evaluation Summary

- Use *training set* to "learn model" (i.e. to store counts, from which we can derive probability for any $p(w_i \mid w_{i-1}, w_{i-2})$
- Use held-out testing set to evaluate
- Perplexity -- metric for scoring how well learned model works on test.
 (an *intrinsic* evaluation)

Training 38 million words, test 1.5 million words, WSJ

N-gram Order	Unigram	Bigram	Trigram
Perplexity	962	170	109

Evaluation Summary

- Use *training set* to "learn model" (i.e. to store counts, from which we can derive probability for any $p(w_i \mid w_{i-1}, w_{i-2})$
- Use held-out testing set to evaluate
- Perplexity -- metric for scoring how well learned model works on test.
 (an *intrinsic* evaluation)
- Extrinsic evaluation: Test on task accuracies
 - machine translation: does it improve translation accuracy
 - autocomplete: do users like the suggestions
 - speech recognition: does it improve transcription accuracy
 - spelling corrector, etc...

Practical Considerations for LMs:

- Use log probability for assessing perplexity to keep numbers reasonable and save computation.
 (uses addition rather than multiplication)
- Use Out-of-vocabulary (OOV)
 Choose minimum frequency or total vocabulary size and mark as <OOV>
- Sentence start and end: <s> this is a sentence </s> Advantage: models word probability at beginning or end.