

Licenciatura en Tecnología Digital

Tecnología Digital VI: Inteligencia Artificial

Librerías de análisis de datos

Clase práctica 1

Motivación

• ¿Qué herramienta nos conviene usar para analizar datos numéricos?

• ¿Y para analizar fácilmente cualquier base de datos?

• ¿Y para visualizar los resultados de esos análisis?

Organización

Etapa	Inicio		Duración
	Sección 1	Sección 2	Duración
Introducción	08:00	09:50	05'
NumPy	08:05	09:55	30'
Pandas	08:35	10:25	30'
Visualización	09:05	10:55	30'
Cierre	09:35	11:25	05'
Fin de la clase	09:40	11:30	-

NumPy | Qué

¿Qué es NumPy?

Ante todo, NumPy es la versión corta de Numerical Python.

Provee una **interfaz eficiente para almacenar y operar** sobre un espacio de memoria donde se guardan datos de forma temporal.

NumPy | Por qué

¿Por qué seleccionamos NumPy?

Muchas bases de datos pueden ser representadas como matrices de números:

- Una imagen como una matriz 2D de números representando el brillo del píxel.
- Un sonido como una matriz 1D de intensidad versus tiempo.
- Un texto como dígitos representando la frecuencia de algunas palabras o frases.

Sin importar cuáles son los datos, el primer paso para analizarlos es **transformarlos** en una matriz de números.

En consecuencia, el almacenamiento y la manipulación eficientes de matrices numéricas son absolutamente **fundamentales** para hacer ciencia de datos.

NumPy | Por qué (continuación)

Las matrices de NumPy, si bien son similares al tipo list, proveen almacenamiento y operaciones de datos mucho más eficientes, a medida que las matrices crecen en tamaño.

Además, las matrices de NumPy son el **núcleo** de casi todas las herramientas de ciencias de datos en Python, entonces aprender a usar NumPy efectivamente es valioso sin importar qué aspecto de la ciencia de datos a uno le interesa más.

NumPy | Cómo

¿Cómo se compone NumPy?

Para conocer algunas de las principales estructuras y operaciones que componen a NumPy, veamos td6-p01-c-numpy.ipynb.

NumPy | Dónde

¿Dónde podemos encontrar recursos útiles sobre NumPy?

Primera opción: documentación oficial.

Cheat sheets: **<u>DataCamp</u>** e **<u>Intellipaat</u>**.

Tutoriales: Real Python, Stanford, W3Schools, Tutorials Point y GeeksforGeeks.

NumPy | Hasta qué

¿Hasta qué punto nos sirve NumPy?

NumPy provee aspectos esenciales **para los datos limpios y bien organizados**, típicamente vistos en tareas de computación **numérica**.

No obstante, sus **limitaciones** se tornan evidentes cuando necesitamos más flexibilidad, como asociar etiquetas a datos o trabajar con datos perdidos, y cuando necesitamos operaciones que no se corresponden bien con *broadcasting* elemento a elemento (la forma en que NumPy lidia con operaciones entre matrices de distinto tamaño), como agrupar o pivotar.

Esas tareas, que resultan difíciles de hacer con NumPy, son muy **importantes para analizar los datos menos estructurados** que nos rodean y ocupan gran parte del tiempo de un científico de datos.

Pandas | Qué

¿Qué es Pandas?

Es una librería más nueva, construida sobre NumPy, que provee una **implementación eficiente de un** DataFrame.

Los **DataFrames** son matrices multidimensionales con **etiquetas** para sus filas y columnas y, usualmente, con tipos **heterogéneos** y datos **faltantes**.

Pandas | Por qué

¿Por qué seleccionamos Pandas?

Ofrece una interfaz de almacenamiento conveniente para datos etiquetados.

Además, provee **formas eficientes de realizar las tareas** antes mencionadas (asociar etiquetas a datos, trabajar con datos perdidos, agrupar y pivotar).

Asimismo, implementa una gran cantidad de **poderosas operaciones** de datos, **familiares** para los usuarios tanto de herramientas de bases de datos como de programas de hojas de cálculo.

Pandas | Cómo

¿Cómo se compone Pandas?

Para conocer algunas de las principales estructuras y operaciones que componen a Pandas, veamos td6-p01-e-pandas.ipynb.

Pandas | Dónde

¿Dónde podemos encontrar recursos útiles sobre Pandas?

Primera opción: documentación oficial.

Cheat sheets: oficial, DataCamp y otra de DataCamp.

Tutoriales: W3Schools, InteractiveChaos y LearnDataSci.

Pandas | Hasta qué

¿Hasta qué punto nos sirve Pandas?

Como vimos, Pandas ofrece una interfaz conveniente para **almacenar datos etiquetados** e implementa una gran cantidad de **poderosas operaciones** para realizar sobre los mismos. De hecho, para el día a día, Pandas suele ser una mejor opción que NumPy.

Al momento de mostrar los resultados obtenidos y comunicarlos de forma atractiva a otros, Pandas permite realizar algunas **visualizaciones**. **No obstante**, más de una vez se queda corto, respecto a librerías destinadas exclusivamente a la visualización.

Visualización | Cuál

¿Cuál es la mejor librería para realizar visualizaciones en Python?

No hay consenso. Varias son las candidatas. **Matplotlib**, **seaborn** y **Plotly** son algunas de las más populares.

Visualización | Cuál (continuación)

	Matplotlib	seaborn	Plotly
Pros	 Independiente del sistema operativo o del formato de salida deseado. Amplia base de usuarios. Activa base de desarrolladores. 	 De alto nivel. Integración con Pandas: usa inteligentemente las etiquetas de un DataFrame. 	Visualizaciones interactivas por defecto.
Contras	 De bajo nivel. No diseñada para ser usada con objetos de tipo DataFrame. Visualizaciones estáticas por defecto. 	Visualizaciones estáticas por defecto.	 Visualizaciones interactivas por defecto (no tan deseado si se quiere tener un mayor control de las conclusiones extraídas).
Modo	Veamos td6-p01-f-matplotlib.ipynb.	Veamos td6-p01-g-seaborn.ipynb.	Veamos td6-p01-h-plotly.ipynb.
Recursos	1° opción: documentación oficial. Cheat sheets: oficiales y DataCamp. Tutoriales: W3Schools, InteractiveChaos, GeeksforGeeks y Aprende con Alf.	1º opción: documentación oficial. Cheat sheets: DataCamp. Tutoriales: InteractiveChaos, GeeksforGeeks, Tutorials Point y EliteDataScience.com.	1° opción: documentación oficial. Cheat sheets: oficial y DataCamp. Tutoriales: oficial, GeeksforGeeks y Tutorials Point.

Fuente: "Part IV. Visualization with Matplotlib" en VanderPlas, J. (2022). Python data science handbook: Essential tools for working with data. "O'Reilly Media, Inc.".

Visualización | Por último

Tres recursos que suelen ser útiles para la visualización en general:

- PYTHON CHARTS,
- **from Data to Viz** y
- ColorBrewer.

Cierre

Hoy vimos, entre otras cuestiones,

- qué herramienta nos conviene usar para analizar datos numéricos,
- cuál otra, para analizar fácilmente cualquier base de datos y
- cuáles otras, para visualizar los resultados de esos análisis.

Mañana vamos a estar poniendo en práctica todo esto, en el primer **taller**, resolviendo una serie de **ejercicios**.

Pueden darnos feedback de la clase acá.