

2020 CCF 非专业级别软件能力认证第一轮 (CSP-S) 提高级 C++语言试题

认证时间: 2020 年 10 月 11 日 09:30~11:30

-	L		-	
本	ŦΉ	- TA	事项	•

- 试题纸共有 13 页,答题纸共有 1 页,满分 100 分。请在答题纸上作答,写在试题纸上的一律无效。
- 不得使用任何电子设备(如计算器、手机、电子词典等)或查阅任何书籍 资料。

一、单项选择题(共 15 题,	每题 2 分,	共计 30 分;	每题有且仅有一个正确选
项)			
1. 请选出以下最大的数()		
4 (550)	/·	0 016	D (005)

- 2. 操作系统的功能是()。
 - A. 负责外设与主机之间的信息交换
 - B. 控制和管理计算机系统的各种硬件和软件资源的使用
 - C. 负责诊断机器的故障
 - D. 将源程序编译成目标程序
- B 3. 现有一段 8 分钟的视频文件,它的播放速度是每秒 24 帧图像,每帧图像是一幅分辨率为 2048×1024 像素的 32 位真彩色图像。请问要存储这段原始无压缩视频,需要多大的存储空间? ()。

 A. 306 B. 906 C. 150G D. 450G
- B4. 今有一空栈 S,对下列待进栈的数据元素序列 a,b,c,d,e,f 依次进行:进栈,进栈,进栈,进栈,进栈,出栈的操作,则此操作完成后,栈底元素为()。
 A. b B. a C. d D. c
- P 5. 将 (2, 7, 10, 18) 分别存储到某个地址区间为 $0\sim10$ 的哈希表中,如果哈希函数 h(x) = (),将**不会**产生冲突,其中 $a \mod b$ 表示 a 除以 b 的 余数。
 - A. x2 mod 11
 - B. 2x mod 11
 - C. x mod 11
 - D. [x/2] mod 11, 其中[x/2]表示 x/2 下取整
- P 6. 下列哪些问题**不能**用贪心法精确求解? ()

 ↑. 具有 n 个 顶点, e 条边的图采用邻接表存储结构,进行深度优先遍历运算的时间复杂度为()。 A. θ(n+e) B. θ(n²) C. θ(e²) D. θ(n) ★8. 二分图是指能将顶点划分成两个部分,每一部分内的顶点间没有边相连的简单无向图、那么,24个顶点的二分图至多有()条边。		A. 霍夫曼编码问题 C. 最小生成树问题	B. 0-1 背包问题 D. 单源最短路径	问题			
 ★ . 二分图是指能将顶点划分成两个部分,每一部分内的顶点间没有边相连的简单无向图。那么,24个顶点的二分图至多有()条边。	A		表存储结构,进行 资	度优先遍历运算的			
单无向图。那么, 24 个顶点的二分图至多有()条边。 A. 144 B. 160 C. 48 D. 122 9. 广度优先搜索时, 一定需要用到的数据结构是()。 A. 栈 B. 二叉树 C. 队列 D. 哈希表 16. 一个班学生分组做游戏, 如果每组三人就多两人, 每组五人就多三人, 每组七人就多四人, 问这个班的学生人数n在以下哪个区间?已知nc60。()。 A. 36cnc40 B. 40cnc50 C. 59cnc60 D. 20cnc30 11. 小明想通过走楼梯来锻炼身体,假设从第 1 层走到第 2 层消耗 10 卡热量,接着从第 2 层走到第 3 层消耗 20 卡热量,再从第 3 层走到第 4 层消耗 30 卡热量,依此类推,从第 k 层走到第 k+1 层消耗 10k 卡热量(k>1)。如果小明想从 1 层开始,通过连续向上爬楼梯消耗 1000 卡热量,至少要爬到第几层楼?()。 A. 14 B. 16 C. 15 D. 13 12. 表达式 a*(b+c)-d 的后缀表达形式为()。 A. abc*+d- B+*abcd C. abcd*+- D. abc+*d- 13. 从一个4×4的棋盘中选取不在同一行也不在同一列上的两个方格,共有() 种方法。 A. 60 B. 72 C. 86 D. 64 14. 对一个 n 个顶点、m 条边的带权有向简单图用 Dijkstra 算法计算单源最短路时,如果不使用堆或其它优先队列进行优化,则其时间复杂度为()。 A. 8((m + n²) log n) B. 8(mn + n²) C. 8(mn + n²) C. 8(mn + n²) C. 9(mn + n) log n) D. 9(n²) 15. 1948年,() 将热力学中的熵引入信息通信领域,标志着信息论研究的开端。 A. 欧拉(Leonhard Euler) C. 克劳德·香农(Claude Shannon) D. 图灵(Alan Turing) CCF CSP-S 2020 第一轮 C++语言试题		A. Θ(n+e) B. Θ(n²)	C. Θ(e²)	D. Θ(n)			
A. 栈 B. 二叉树 C. 队列 D. 哈希表 10. 一个班学生分组做游戏,如果每组三人就多两人,每组五人就多三人,每组 七人就多四人,问这个班的学生人数n在以下哪个区间? 已知nc60。()。 A. 30cnc40 B. 40cnc50 C. 50cnc60 D. 20cnc30 11. 小明想通过走楼梯来锻炼身体,假设从第 1 层走到第 2 层消耗 10 卡热量,接着从第 2 层走到第 3 层消耗 20 卡热量,再从第 3 层走到第 4 层消耗 30 卡热量,依此类推,从第 k 层走到第 k+1 层消耗 10k 卡热量 (k×1)。如果小明想从 1 层开始,通过连续向上爬楼梯消耗 1000 卡热量,至少要爬到第几层楼? ()。 A. 14 B. 16 C. 15 D. 13 12. 表达式 a*(b+c)-d 的后缀表达形式为 ()。 A. abc*+d- B+*abcd C. abcd*+- D. abc+*d- 13. 从一个4×4的棋盘中选取不在同一行也不在同一列上的两个方格,共有 () 种方法。 A. 60 B. 72 C. 86 D. 64 14. 对一个 n 个顶点、m 条边的带权有向简单图用 Dijkstra 算法计算单源最短路时,如果不使用堆或其它优先队列进行优化,则其时间复杂度为 ()。 A. 份((m + n²) log n) B. 份(m + n³) C. 份((m + n) log n) D. 份(n²) 15. 1948 年, () 将热力学中的熵引入信息通信领域,标志着信息论研究的开端。 A. 欧拉(Leonhard Euler) B. 冯·诺伊曼(John von Neumann) C. 克劳德·香农(Claude Shannon) D. 图灵(Alan Turing)	A	单无向图。那么,24 个顶点的二分图	图至多有()条边	•			
七人就多四人,何这个班的学生人数n在以下哪个区间? 已知n<60。()。 A. 30 <mc> A. 30<mc> A. 30<mc> A. 30<mc> A. 30<mc> B. 40<mc> C. 50<mc> C. 50<mc> C. 50<mc> D. 20<mc> C. 50<mc> D. 20<mc> C. 50<mc 50<mc="" c.=""> C. 50<mc> C. 50<mc> C. 50<mc 50<m<="" 50<mc="" c.="" td=""><th>C</th><td></td><td></td><td>D. 哈希表</td></mc></mc></mc></mc></mc></mc></mc></mc></mc></mc></mc></mc></mc></mc></mc></mc>	C			D. 哈希表			
接着从第 2 层走到第 3 层消耗 20 卡热量,再从第 3 层走到第 4 层消耗 30 卡热量,依此类推,从第 k 层走到第 k+1 层消耗 10k 卡热量(k>1)。如果小明想从 1 层开始,通过连续向上爬楼梯消耗 1000 卡热量,至少要爬到第几层楼? ()。	C	七人就多四人,问这个班的学生人数,	n在以下哪个区间? E	翌知n<60。()。			
A. 14 B. 16 C. 15 D. 13 12. 表达式 a*(b+c)-d 的后缀表达形式为()。 A. abc*+d- B+*abcd C. abcd*+- D. abc+*d- 13. 从一个4×4的棋盘中选取不在同一行也不在同一列上的两个方格,共有() 种方法。 A. 60 B. 72 C. 86 D. 64 14. 对一个 n 个顶点、m 条边的带权有向简单图用 Dijkstra 算法计算单源最短路时,如果不使用堆或其它优先队列进行优化,则其时间复杂度为()。 A. θ((m + n²) log n) B. θ(mn + n³) C. θ((m + n) log n) D. θ(n²) 15. 1948 年,() 将热力学中的熵引入信息通信领域,标志着信息论研究的开端。 A. 欧拉(Leonhard Euler) B. 冯·诺伊曼(John von Neumann)C. 克劳德·香农(Claude Shannon) D. 图灵(Alan Turing)	C	接着从第2层走到第3层消耗20卡 卡热量,依此类推,从第k层走到第 明想从1层开始,通过连续向上爬楼	热量,再从第 3 层走。 k+1 层消耗 10k 卡热	到第 4 层消耗 30 强量(k>1)。如果小			
A. abc*+d- B+*abcd C. abcd*+- D. abc+*d- 13. 从一个4 × 4的棋盘中选取不在同一行也不在同一列上的两个方格,共有 () 种方法。		A. 14 B. 16	C. 15	D. 13			
 ()种方法。 A. 60 B. 72 C. 86 D. 64 14. 对一个 n 个顶点、m 条边的带权有向简单图用 Dijkstra 算法计算单源最短路时,如果不使用堆或其它优先队列进行优化,则其时间复杂度为()。 A. θ((m + n²) log n) B. θ(mn + n³) C. θ((m + n) log n) D. θ(n²) 15. 1948 年,() 将热力学中的熵引入信息通信领域,标志着信息论研究的开端。 A. 欧拉(Leonhard Euler) 	D	A. abc*+d- B+*abcd	C. abcd*+-				
A. 60 B. 72 C. 86 D. 64 14. 对一个 n 个顶点、m 条边的带权有向简单图用 Dijkstra 算法计算单源最短路时,如果不使用堆或其它优先队列进行优化,则其时间复杂度为()。 A. θ((m + n²) log n) B. θ(mn + n³) C. θ((m + n) log n) D. θ(n²) 15. 1948 年,() 将热力学中的熵引入信息通信领域,标志着信息论研究的开端。 A. 欧拉(Leonhard Euler) B. 冯·诺伊曼(John von Neumann) C. 克劳德·香农(Claude Shannon) D. 图灵(Alan Turing)	5		丁也小在问一列上的 [6	内个万格,共有			
路时,如果不使用堆或其它优先队列进行优化,则其时间复杂度为()。 A. θ((m + n²) log n) B. θ(mn + n³) C. θ((m + n) log n) D. θ(n²) 15.1948 年,() 将热力学中的熵引入信息通信领域,标志着信息论研究的开端。 A. 欧拉(Leonhard Euler) B. 冯・诺伊曼(John von Neumann) C. 克劳德・香农(Claude Shannon) D. 图灵(Alan Turing)			C. 86	D. 64			
开端。 A. 欧拉(Leonhard Euler) B. 冯·诺伊曼(John von Neumann) C. 克劳德·香农(Claude Shannon) D. 图灵(Alan Turing) CCF CSP-S 2020 第一轮 C++语言试题	路时,如果不使用堆或其它优先队列进行优化,则其时间复杂度为 ()。						
开端。 A. 欧拉(Leonhard Euler) B. 冯·诺伊曼(John von Neumann) C. 克劳德·香农(Claude Shannon) D. 图灵(Alan Turing) CCF CSP-S 2020 第一轮 C++语言试题	(.	15.1948年,()将热力学中的熵引力	入信息通信领域,标题	志着信息论研究的			
C. 克劳德·香农(Claude Shannon) D. 图灵(Alan Turing) CCF CSP-S 2020 第一轮 C++语言试题				3.16, -113			
CCF CSP-S 2020 第一轮 C++语言试题							
		C. 克劳德·香农(Claude Shannon	D. 图灵(Ala	n Turing)			

二、阅读程序(程序输入不超过数组或字符串定义的范围;判断题正确填、/, 错误填x; 除特殊说明外,判断题 1.5分,选择题 3分,共计 40分) 01 #include <iostream> 02 using namespace std; 04 int n; 05 int d[1000]; 07 int main() { cin >> n; for (int i = 0; i < n; ++i) 10 cin >> d[i]; 11 int ans = -1; 12 for (int i = 0; i < n; ++i) 13 for (int j = 0; j < n; ++j) 14 if (d[i] < d[j])</pre> 15 ans = max(ans, d[i] + d[j] - (d[i] & d[j]));16 cout << ans; 17 return 0; 18 } 假设输入的 n和 d[i]都是不超过 10000 的正整数,完成下面的判断题和单 选题: 1) n必须小于 1000, 否则程序可能会发生运行错误。() 输出一定大于等于 0。() 3) 若将第 13 行的"j = 0"改为"j = i + 1",程序输出可能会改变。 () ✓ 4) 将第 14 行的"d[i] < d[j]"改为"d[i] != d[j]",程序输出不会改</p> 变。() ● 单选题 (5) 若输入n为100,且输出为127,则输入的d[i]中不可能有()。 B. 126 C. 128 C 6) 若输出的数大于 0,则下面说法正确的是()。 A. 若输出为偶数,则输入的 d[i]中最多有两个偶数

> CCF CSP-S 2020 第一轮 C++语言试题 第3页,共13页

B.

```
D. 若输出为奇数,则输入的 d[1]中最多有两个奇数
2.
   01 #include <iostream>
   02 #include <cstdlib>
   03 using namespace std;
   04
   05 int n;
   06 int d[10000];
   97
   08 int find(int L, int R, int k) {
        int x = rand() % (R - L + 1) + L;
   10
        swap(d[L], d[x]);
        int a = L + 1, b = R;
   11
        while (a < b) {
   12
   13
         while (a < b && d[a] < d[L])
   14
         while (a < b && d[b] >= d[L])
   15
           --b;
   16
   17
         swap(d[a], d[b]);
   18
        if (d[a] < d[L])
   19
   20
         ++a;
        if (a - L == k)
   21
   22
         return d[L];
        if (a - L < k)
   23
         return find(a, R, k - (a - L));
   24
       return find(L + 1, a - 1, k);
   25
   26 }
   27
   28 int main() {
       int k;
   29
       cin >> n;
   30
   31
       cin >> k;
```

for (int i = 0; i < n; ++i)

cout << find(0, n - 1, k);

cin >> d[i];

return 0;

32

33

34 35

36 }

若输出为奇数,则输入的 d[i]中至少有两个奇数

若输出为偶数,则输入的 d[1]中至少有两个偶数

假设输入的 n, k 和 d[i]都是不超过 10000 的正整数,且 k 不超过 n,并 假设 rand()函数产生的是均匀的随机数,完成下面的判断题和单选题: • 判断题 ※ 1) 第9行的 "x"的数值范围是 L+1 到 R, 即[L+1, R]。() (2) 将第 19 行的 "d[a]" 改为 "d[b]",程序不会发生运行错误。() ● 单选题 3) (2.5 分) 当输入的 d[i]是严格单调递增序列时,第 17 行的 "swap"平均执行次数是()。 A. $\theta(n \log n)$ B. $\theta(n)$ C. $\theta(\log n)$ D. θ(n^2) C 4) (2.5 分) 当输入的 d[i]是严格单调递减序列时,第 17 行的"swap" 平均执行次数是()。 θ(n^2) B. θ(n) C. $\theta(n \log n)$ D. $\theta(\log n)$ D 5) (2.5 分) 若输入的 d[i]为 i, 此程序①平均的时间复杂度和②最坏 情况下的时间复杂度分别是()。 A. $\theta(n)$, $\theta(n^2)$ B. $\theta(n)$, $\theta(n \log n)$ C. $\theta(n \log n), \theta(n^2)$ D. $\theta(n \log n)$, $\theta(n \log n)$ △ 6) (2.5 分) 若输入的 d[i]都为同一个数,此程序平均的时间复杂度是 (). A. θ(n) B. θ(log n) C. $\theta(n \log n)$ D. $\theta(n^2)$ 01 #include <iostream> 02 #include <queue> 03 using namespace std; 05 const int max1 = 2000000000; 06 07 class Map { 08 struct item { string key; int value; 09 } d[max1]; 10 int cnt; 11 12 public: int find(string x) { 13 for (int i = 0; i < cnt; ++i) 14 if (d[i].key == x)15 return d[i].value; 16 return -1; 17

> CCF CSP-S 2020 第一轮 C++语言试题 第5页,共13页


```
18
      static int end() { return -1; }
 19
      void insert(string k, int v) {
 20
 21
        d[cnt].key = k; d[cnt++].value = v;
 22
 23 } s[2];
 24
 25 class Queue {
 26
      string q[maxl];
 27
      int head, tail;
 28
     public:
 29
     void pop() { ++head; }
      string front() { return q[head + 1]; }
      bool empty() { return head == tail; }
 32 void push(string x) { q[++tail] = x; }
 33 } q[2];
 34
 35 string st0, st1;
36 int m;
37
38 string LtoR(string s, int L, int R)
     string t = s;
40
     char tmp = t[L];
41
     for (int i = L; i < R; ++i)
42
       t[i] = t[i + 1];
43
     t[R] = tmp;
44
     return t;
45 }
46
47 string RtoL(string s, int L, int R) {
48
     string t = s;
49
     char tmp = t[R];
50
     for (int i = R; i > L; --i)
51
       t[i] = t[i - 1];
    t[L] = tmp;
52
     return t;
53
54 }
55
56 bool check(string st, int p, int step) {
    if (s[p].find(st) != s[p].end())
57
58
      return false;
59
    ++step;
    if (s[p ^ 1].find(st) == s[p].end()) {
```



```
61
        s[p].insert(st, step);
 62
        q[p].push(st);
 63
        return false;
 64
      cout << s[p ^ 1].find(st) + step << endl;</pre>
 65
 66
     return true;
 67 }
 68
 69 int main() {
 70
     cin >> st0 >> st1;
     int len = st0.length();
     if (len != st1.length()) {
72
73
       cout << -1 << endl;
74
       return 0;
75
     }
76
     if (st0 == st1) {
77
       cout << 0 << endl;
78
       return 0;
79
     }
80
     cin >> m;
     s[0].insert(st0, 0); s[1].insert(st1, 0);
82
     q[0].push(st0); q[1].push(st1);
83
     for (int p = 0;
84
          !(q[0].empty() && q[1].empty());
85
          p ^= 1) {
86
       string st = q[p].front(); q[p].pop();
87
       int step = s[p].find(st);
88
       if ((p == 0 &&
89
            (check(LtoR(st, m, len - 1), p, step) ||
90
             check(RtoL(st, 0, m), p, step)))
91
               11
92
           (p == 1 \&\&
93
            (check(LtoR(st, 0, m), p, step) ||
94
             check(RtoL(st, m, len - 1), p, step))))
95
          return 0;
96
97
     cout << -1 << endl;
98
     return 0;
99 }
判断题
1) 输出可能为 0。( )
```

- (2) 若输入的两个字符串长度均为 101 时,则 m=0 时的输出与 m=100 时的输出是一样的。()
- $\sqrt{3}$ 若两个字符串的长度均为 n,则最坏情况下,此程序的时间复杂度为 $\theta(n!)$ 。()

● 单选题

- 4) (2.5 分) 若输入的第一个字符串长度由 100 个不同的字符构成,第二个字符串是第一个字符串的倒序,输入的 m 为 0,则输出为 ()。 A. 49 B. 50 C. 100 D. -1
- 5) (4分)已知当输入为 "0123<u>\n</u>3210<u>\n</u>1" 时输出为 4,当输入为 "012345<u>\n</u>543210<u>\n</u>1" 时输出为 14,当输入为 "01234567<u>\n</u>76543210<u>\n</u>1" 时输出为 28,则当输入为 "0123456789ab<u>\n</u>ba9876543210<u>\n</u>1" 输出为 ()。其中 "<u>\n</u>" 为 换行符。
 - A. 56 B. 84 C. 102 D. 68
- 6) (4分)若两个字符串的长度均为 n,且 0 km kn-1,且两个字符串的构成相同(即任何一个字符在两个字符串中出现的次数均相同),则下列说法正确的是()。提示:考虑输入与输出有多少对字符前后顺序不一样。
 - A. 若 n、m 均为奇数,则输出可能小于 0。
 - B. 若 n、m 均为偶数,则输出可能小于 0。
 - C. 若n为奇数、m为偶数,则输出可能小于0。
 - D. 若 n 为偶数、m 为奇数,则输出可能小于 0。

三、完善程序(单选题,每小题 3 分,共计 30 分)

1. (分數背包)小 S 有 n 块蛋糕,编号从 1 到 n。第 i 块蛋糕的价值是 w_i ,体积是 v_i 。他有一个大小为 B 的盒子来装这些蛋糕,也就是说装入盒子的蛋糕的体积总和不能超过 B。

他打算选择一些蛋糕装入盒子,他希望盒子里装的蛋糕的价值之和尽量 大。

为了使盒子里的蛋糕价值之和更大,他可以任意切割蛋糕。具体来说,他可以选择一个 α ($0<\alpha<1$),并将一块价值是w,体积为v的蛋糕切割成两块,其中一块的价值是 $\alpha\cdot w$,体积是 $\alpha\cdot v$,另一块的价值是 $(1-\alpha)\cdot w$,体积是 $(1-\alpha)\cdot v$ 。他可以重复无限次切割操作。

现要求编程输出最大可能的价值,以分数的形式输出。

比如 n=3, B=8, 三块蛋糕的价值分别是 4、4、2, 体积分别是 5、3、2。那么最优的方案就是将体积为 5 的蛋糕切成两份, 一份体积是 3, 价值是 2.4, 另一份体积是 2, 价值是 1.6, 然后把体积是 3 的那部分和后两块蛋糕打包进盒子。最优的价值之和是 8.4, 故程序输出 42/5。

CCF CSP-S 2020 第一轮 C++语言试题 第8页,共13页

输入的数据范围为: $1 \le n \le 1000$, $1 \le B \le 10^5$; $1 \le w_l, v_i \le 100$ 。 提示: 将所有的蛋糕按照性价比 w_l/v_l 从大到小排序后进行贪心选择。 试补全程序。

```
01 #include <cstdio>
  02 using namespace std;
  03
  04 const int maxn = 1005;
  06 int n, B, w[maxn], v[maxn];
  97
  08 int gcd(int u, int v) {
     if(v == 0)
  09
  10
        return u;
      return gcd(v, u % v);
  11
  12 }
  13
 14 void print(int w, int v) {
      int d = gcd(w, v);
      w = w / d;
 17
      v = v / d;
 18
      if(v == 1)
 19
        printf("%d\n", w);
 20
      else
 21
        printf(%d/%d\n, w, v);
 22 }
 23
 24 void swap(int &x, int &y) {
 25 int t = x; x = y; y = t;
 26 }
27
28 int main() {
     scanf("%d %d", &n, &B);
29
     for(int i = 1; i <= n; i ++) {
30
       scanf("%d%d", &w[i], &v[i]);
31
32
     for(int i = 1; i < n; i ++)
33
34
      for(int j = 1; j < n; j ++)
35
        if(1) {
36
          swap(w[j], w[j + 1]);
37
          swap(v[j], v[j + 1]);
38
39
    int curV, curW;
```

CCF CSP-S 2020 第一轮 C++语言试题 第9页,共13页


```
40
         if(2) {
    41
           3
    42
         } else {
    43
           print(B * w[1], v[1]);
    44
           return 0;
    45
    46
    47
         for(int i = 2; i <= n; i ++)
    48
           if(curV + v[i] \leftarrow B) {
    49
             curV += v[i];
    50
             curW += w[i];
    51
           } else {
    52
             print(4);
    53
             return 0;
    54
           }
    55
         print(⑤);
    56
         return 0;
    57 }
    58
    59
1) ①处应填()
     A. w[j] / v[j] < w[j + 1] / v[j + 1]
     B. w[j] / v[j] > w[j + 1] / v[j + 1]
     C. v[j] * w[j + 1] < v[j + 1] * w[j]
        w[j] * v[j + 1] < w[j + 1] * v[j]
   2) ②处应填()
     A.
        w[1] <= B B. v[1] <= B
                                    C. w[1] >= B
                                                         v[1] >= B
   3) ③处应填()
     A. print(v[1], w[1]); return 0;
     B. curV = 0; curW = 0;
        print(w[1], v[1]); return 0;
        curV = v[1]; curW = w[1];
( ) 4) ④处应填( )
    A. curW * v[i] + curV * w[i], v[i]
       (curW - w[i]) * v[i] + (B - curV) * w[i], v[i]
       curW + v[i], w[i]
        curW * v[i] + (B - curV) * w[i], v[i]
   5) ⑤处应填( )
```


A. curW, curV
C. curV, curW

B. curW, 1D. curV, 1

2. (最优子序列) 取 m = 16, 给出长度为n的整数序列 a_1, a_2, \cdots, a_n (0 $\leq a_i < 2^m$)。对于一个二进制数x,定义其分值w(x)为x + popcnt(x),其中 popcnt(x)表示 x 二进制表示中 1 的个数。对于一个子序列 b_1, b_2, \cdots, b_k ,定义其子序列分值S为w($b_1 \oplus b_2$) + w($b_2 \oplus b_3$) + w($b_3 \oplus b_4$) + ··· + w($b_{k-1} \oplus b_k$)。其中 \oplus 表示按位异或。对于空子序列,规定其子序列分值为 0。求一个子序列使得其子序列分值最大,输出这个最大值。

输入第一行包含一个整数 $n(1 \le n \le 40000)$ 。接下来一行包含n个整数 a_1, a_2, \cdots, a_n 。

提示:考虑优化朴素的动态规划算法,将前 $\frac{m}{2}$ 位和后 $\frac{m}{2}$ 位分开计算。

Max[x][y] 表示当前的子序列下一个位置的高 8 位是 x、最后一个位置的 低 8 位是 y 时的最大价值。

试补全程序。

```
01 #include <iostream>
03 using namespace std;
05 typedef long long LL;
07 const int MAXN = 40000, M = 16, B = M >> 1, MS = (1 <<
B) - 1;
08 const LL INF = 100000000000000000LL;
09 LL Max[MS + 4][MS + 4];
10
11 int w(int x)
12 {
13
    int s = x;
14
    while (x)
15
     {
      1);
16
17
      s++;
18
19
    return s;
20 }
21
22 void to_max(LL &x, LL y)
23 {
```



```
if (x < y)
    24
    25
           x = y;
    26 }
    27
    28 int main()
    29 {
    30
         int n;
    31
         LL ans = 0;
    32
         cin >> n;
    33
         for (int x = 0; x \leftarrow MS; x++)
           for (int y = 0; y \leftarrow MS; y++)
    35
            Max[x][y] = -INF;
    36
         for (int i = 1; i <= n; i++)
    37
         {
    38
           LL a;
    39
           cin >> a;
   40
           int x = 2, y = a \& MS;
    41
           LL v = 3;
    42
           for (int z = 0; z \leftarrow MS; z++)
   43
            to_max(v, \textcircled{4});
   44
           for (int z = 0; z \leftarrow MS; z++)
   45
   46
           to_max(ans, v);
   47
        cout << ans << endl;
   48
   49
        return 0;
   50 }
      ①处应填()
D 1)
        x >>= 1
       x ^= x & (x ^ (x + 1))
     B.
       x -= x | -x
       x ^= x & (x ^ (x - 1))
P 2) ②处应填( )
     A. (a & MS) << B
                                    B.
                                       a >> B
     C.
       a & (1 << B)
                                        a & (MS << B)
( 3) ③处应填( )
    A. -INF
                                    B.
                                       Max[y][x]
    c.
        0
                                    D.
                                       Max[x][y]
A 4) ④处应填( )
```

CCF CSP-S 2020 第一轮 C++语言试题 第12页,共13页


```
A. Max[x][z] + w(y ^ z) B. Max[x][z] + w(a ^ z C. Max[x][z] + w(x ^ (z << B)) D. Max[x][z] + w(x ^ z
```

C 5) ⑤处应填()

- A. to_max(Max[y][z], $v + w(a \land (z \lt B))$)
- B. $to_{max}(Max[z][y], v + w((x ^ z) << B))$
- C. to_max(Max[z][y], $v + w(a \land (z << B)))$
- D. to_max(Max[x][z], $v + w(y ^ z)$)