Cosmological Perturbations

Most of the conventions and notations in [6, ch. 5] will be followed. Suppose the metric can be expanded up to the linear order as

$$g = g^{(0)} + \epsilon g^{(1)} + O(\epsilon^2). \tag{1}$$

The background metric $g^{(0)}$ takes the Robertson–Walker form

$$g_{\mu\nu}^{(0)} \, \mathrm{d}x^{\mu} \, \mathrm{d}x^{\nu} = -N^2(t) \, \mathrm{d}t^2 + a^2(t) \, \mathrm{d}\Omega_{3\mathrm{F}}^2, \tag{2}$$

in which $d\Omega_{3F}^2 = d\chi^2 + \chi^2(d\theta^2 + \sin^2\theta d\phi^2)$ is the dimensionless flat spatial metric. The linear perturbation can be decomposed into scalar, vector and tensor parts

$$g_{00}^{(1)} = -E, (3)$$

$$g_{i0}^{(1)} = g_{i0}^{(1)} = F_{,i} + G_{i}, \tag{4}$$

$$g_{ij}^{(1)} = A\delta_{ij} + B_{,i,j} + C_{i,j} + C_{j,i} + D_{ij}. \tag{5}$$

Here one has some weird condition, where the contractions do not follow the one-up-one-down tradition

$$C_{i,i} = G_{i,i} = 0, \quad D_{ij,i} = 0, \quad D_{ii} = 0.$$
 (6)

1 Metric perturbation under diffeomorphism

Consider a diffeomorphism generated by ξ^{μ}

$$x^{\mu} \to \overline{x}^{\mu} = x^{\mu} - \epsilon \xi^{\mu}. \tag{7}$$

The generator ξ^{μ} can in turn be decomposed into $\xi_0 = \zeta$, $\xi_i = \xi_{,i}^{S} + \xi_i^{V}$.

One has here again some weird condition, where the contractions do not follow the one-up-one-down tradition

$$\xi_{i,i}^{\mathbf{V}} = 0. \tag{8}$$

The Lie derivative of the metric $\mathbb{L}_{\xi}g$ is

$$\left(\mathbb{L}_{\xi}g\right)_{\mu\nu} = \xi^{\lambda}g_{\mu\nu,\lambda} + \xi^{\lambda}{}_{,\mu}g_{\lambda\nu} + \xi^{\lambda}{}_{,\nu}g_{\mu\lambda}.\tag{9}$$

In components and expansion, these are

$$\left(\mathbb{L}_{\xi}g\right)_{00} = 2\dot{\zeta} - 2\zeta \frac{\dot{N}}{N} + O(\epsilon), \tag{10}$$

$$\left(\mathbb{L}_{\xi}g\right)_{i0} = \left(\mathbb{L}_{\xi}g\right)_{0i} = \left(\zeta - 2\frac{\dot{a}}{a}\xi^{\mathrm{S}} + \dot{\xi}^{\mathrm{S}}\right)_{i} + \left(-2\frac{\dot{a}}{a}\xi^{\mathrm{V}}_{i} + \dot{\xi}^{\mathrm{V}}_{i}\right) + O(\epsilon), \quad (11)$$

$$\left(\mathbb{L}_{\xi}g\right)_{ii} = \left(\mathbb{L}_{\xi}g\right)_{ij} = -\frac{2a\dot{a}}{N^{2}}\zeta\delta_{ij} + 2\xi^{\mathrm{S}}_{,i,j} + \xi^{\mathrm{V}}_{i,j} + \xi^{\mathrm{V}}_{j,i} + O(\epsilon). \tag{12}$$

2 Scalar perturbations

$$-N^2 - \epsilon E + O(\epsilon^2) \to -N^2 - \epsilon E + \epsilon \left(2\dot{\zeta} - 2\zeta \frac{\dot{N}}{N}\right) + O(\epsilon^2), \tag{13}$$

so one can write

$$\mathbb{L}_{\xi}E = -2\dot{\zeta} + 2\zeta \frac{\dot{N}}{N}.\tag{14}$$

Similarly one can read-off

$$\mathbb{L}_{\xi}F = \zeta - 2\frac{\dot{a}}{a}\xi^{S} + \dot{\xi}^{S},\tag{15}$$

$$\mathbb{L}_{\xi} A = -\frac{2a\dot{a}}{N^2} \zeta,\tag{16}$$

$$\mathbb{L}_{\xi} B = 2\xi^{S}. \tag{17}$$

The four scalar perturbations are generated by ζ and ξ^S , so that only two independent perturbations exists. It is clear that

$$\mathbb{L}_{\xi} \left(\frac{F}{a} - \frac{d}{dt} \frac{B}{2a} \right) = \frac{\zeta}{a}. \tag{18}$$

One can verify that

$$\mathbb{L}_{\xi} \left\{ \frac{E}{2N} + \frac{d}{dt} \left[\frac{a}{N} \left(\frac{F}{a} - \frac{d}{dt} \frac{B}{2a} \right) \right] \right\} = 0, \tag{19}$$

$$\mathbb{L}_{\xi} \left\{ \frac{A}{2} + \frac{a^2 \dot{a}}{N^2} \left(\frac{F}{a} - \frac{\mathrm{d}}{\mathrm{d}t} \frac{B}{2a} \right) \right\} = 0. \tag{20}$$

- 3 Vector perturbations
- 4 Tensor perturbations
- 5 Scalar field perturbation under diffeomorphism
- 6 Perturbation in Arnowitt-Deser-Misner Hamiltonian formalism

Up to boundary terms, the Hamiltonian action for General Relativity in terms of Arnowitt–Deser–Misner variables is [3, ch.4.2.2]

$$S = \int dt \, dx^3 \left\{ \mathfrak{p}^{ij} \dot{h}_{ij} + \mathfrak{P} \dot{N} + \mathfrak{P}^i \dot{N}_i - N \mathfrak{H}^{\perp} - N_i \mathfrak{H}^i - \mathfrak{P} V - \mathfrak{P}^i V_i \right\}, \tag{21}$$

$$\mathfrak{H}^{\perp} = 2\varkappa \mathfrak{G}_{ijkl} \mathfrak{p}^{ij} \mathfrak{p}^{kl} - \frac{\sqrt{\mathfrak{h}}}{2\varkappa} R[h] = 2\varkappa \mathfrak{F}^{ijkl} h_{ij} h_{kl} - \frac{\sqrt{\mathfrak{h}}}{2\varkappa} R[h], \tag{22}$$

$$\mathfrak{H}^i = -2\mathfrak{p}^{ij}_{|j},\tag{23}$$

$$\mathfrak{G}_{ijkl} := \frac{1}{2\sqrt{\mathfrak{h}}} \left(h_{ik} h_{jl} + h_{il} h_{kj} - h_{ij} h_{kl} \right), \tag{24}$$

$$\mathfrak{F}^{ijkl} := \frac{1}{2\sqrt{\mathfrak{h}}} (\mathfrak{p}^{ik}\mathfrak{p}^{jl} + \mathfrak{p}^{il}\mathfrak{p}^{kj} - \mathfrak{p}^{ij}\mathfrak{p}^{kl}), \tag{25}$$

where V and V_i are velocities of N and N_i and play the role of Lagrange multipliers. Technical details about the boundary terms can be found in [5, ch. 4.2] and the references therein. Note that $\{N, N_i, h_{ij}; \mathfrak{P}, \mathfrak{P}^i, \mathfrak{p}^{ij}\}$ are not the unique choice of canonical variables for General Relativity in Hamiltonian formalism; instead, they are a special parametrisation of the phase space. One can also choose the components of the original four-metric and their conjugate momenta $\{g_{\mu\nu}; \mathfrak{p}^{\mu\nu}\}$ as canonical variables, as Dirac has done in [2]. The two approaches are different in some subtle aspects; see [4] for a comparison.

Gauge transformations in the Arnowitt–Deser–Misner canonical variables are generated by [1]

$$G = -\int d^3x \left\{ \left[\xi_{\perp} \left(\mathfrak{H}^{\perp} + N_{|i} \mathfrak{P}^i + (N \mathfrak{P}^i)_{|i} + (N_i \mathfrak{P})^{|i} \right) + \dot{\xi}_{\perp} \mathfrak{P} \right] + \left[\xi_i \left(\mathfrak{H}^i + N_j^{|i} \mathfrak{P}^j + (N_j \mathfrak{P}^i)^{|j} + N^{|i} \mathfrak{P} \right) + \dot{\xi}_i \mathfrak{P}^i \right] \right\}.$$
(26)

Possible boundary terms have not been discussed so far. The infinitesimal gauge transformation of $\{N, N_i\}$ is

$$\delta N = [N, G]_{P} = \xi_{\perp}^{|i} N_{z} i - \dot{\xi}_{\perp} - \xi_{i} N^{|i}, \tag{27}$$

$$\delta N_i = -\xi_{\perp} N_{|i} + \xi_{\perp|i} N - \xi_j N_i^{|j} + \xi_i^{|j} N_j - \dot{\xi}_i, \tag{28}$$

which can be found in [4]. Transformations for g_{ij} and the momenta have to be worked out as

$$\delta \mathfrak{P} = -(\xi_{\perp} \mathfrak{P}^i)_{|i} - \xi_{\perp|i} \mathfrak{P}^i - (\xi_i \mathfrak{P})^{|i}, \tag{29}$$

$$\delta \mathfrak{P}^{i} = -\xi_{\perp |i} \mathfrak{P} - (\xi_{i} \mathfrak{P}^{i})^{|j} - \xi_{i}^{|i} \mathfrak{P}^{j}, \tag{30}$$

where only the primary constraints are involved;

$$\begin{split} \delta g_{ij} &= -\frac{\partial}{\partial \mathfrak{p}^{ij}} (\xi_{\perp} \mathfrak{H}^{\perp} + \xi_{i} \mathfrak{H}^{i}) \\ &= -\xi^{\perp} \frac{2\varkappa}{\sqrt{\mathfrak{h}}} (h_{ik} h_{jl} + h_{il} h_{kj} - h_{ij} h_{kl}) \mathfrak{p}^{kl} - \xi_{i|j} - \xi_{j|i}, \\ \delta \mathfrak{p}^{ij} &= \frac{\partial}{\partial g_{ij}} (\xi_{\perp} \mathfrak{H}^{\perp} + \xi_{i} \mathfrak{H}^{i}) \\ &= \xi_{\perp} \left\{ \frac{\varkappa}{\sqrt{\mathfrak{h}}} \left[(4\delta^{i}{}_{k} \delta^{j}{}_{m} - h^{ij} h_{km}) h_{ln} \right. \\ &\left. - \frac{1}{2} (4\delta^{i}{}_{k} \delta^{j}{}_{l} - h^{ij} h_{kl}) h_{mn} \right] \mathfrak{p}^{kl} \mathfrak{p}^{mn} \\ &+ \frac{\sqrt{\mathfrak{h}}}{2\varkappa} G^{ij} [h] \right\} + \frac{\sqrt{\mathfrak{h}}}{2\varkappa} \left(\xi_{\perp|k} |^{k} h^{ij} - \xi_{\perp}^{|(i|j)} \right) \\ &- (\xi_{k} \mathfrak{p}^{ij})^{|k} + 2\xi_{k|l} h^{k(i} \mathfrak{p}^{j)l}, \end{split} \tag{32}$$

where $G^{ij}[h] = R^{ij}[h] - h^{ij}R[h]/2$, and only the secondary constraints are involved. In eq. (32), the first two lines come from the variation of the 'kinetic' term in \mathfrak{H}^{\perp} , the third comes from the 'potential' term in \mathfrak{H}^{\perp} , and the last line from \mathfrak{H}^{i} . The results can be checked with [5, p. 4.2.7].

6.1 Expansion of the action with fluctuations

Some useful results

First variations

First variation of h^{ij}

$$\delta h^{ij} = -h^{ik}h^{jl}\,\delta h_{kl} = -h^{i(k}h^{l)j}\,\delta h_{kl}.\tag{33}$$

First variation of $\mathfrak{h} = \det h_{ij}$

$$\delta \mathfrak{h} = \mathfrak{h} h^{ij} \, \delta h_{ij}. \tag{34}$$

First variation of Γ^{i}_{ik}

$$\delta\Gamma^{i}{}_{jk} = \frac{1}{2}h^{il}\left\{-\left(\delta h_{jk}\right)_{|l} + \left(\delta h_{kl}\right)_{|j} + \left(\delta h_{lj}\right)_{|k}\right\} \tag{35}$$

$$=\frac{1}{2}\left\{-h^{il}\delta^{m}{}_{j}\delta^{n}{}_{k}+h^{in}\delta^{l}{}_{j}\delta^{m}{}_{k}+h^{im}\delta^{n}{}_{j}\delta^{l}{}_{k}\right\}\left(\delta h_{mn}\right)_{|l}. \tag{36}$$

First variation of $R_{ij}[h]$ and $R^{ij}[h]$

$$\delta R_{ij}[h] = \left(\delta \Gamma^{k}_{ij}\right)_{|k} - \left(\delta \Gamma^{k}_{ik}\right)_{|j},\tag{37}$$

$$\delta R^{ij}[h] = -2R^{ki}h^{jl}\delta h_{kl} + h^{ik}\bar{\delta}u^{jl}_{k|l}, \tag{38}$$

where

$$\bar{\delta}u^{ij}_{k} := h^{il}\,\delta\Gamma^{j}_{kl} - h^{ij}\,\delta\Gamma^{l}_{kl}.\tag{39}$$

Equation (37) can be obtained by using normal coordinates.

First variation of $\sqrt{\mathfrak{h}} R[h]$

$$\delta\left(\sqrt{\mathfrak{h}}R[h]\right) = \sqrt{\mathfrak{h}}\left\{-G^{ij}[h]\,\delta h_{ij} + \bar{\delta}u^{ji}_{\ j|i}\right\}. \tag{40}$$

First variation of $\mathfrak{G}_{ijkl}\mathfrak{p}^{ij}\mathfrak{p}^{kl}\equiv \mathfrak{F}^{ijkl}h_{ij}h_{kl}$

$$\begin{split} &\delta \left(\mathfrak{G}_{ijkl}\mathfrak{p}^{ij}\mathfrak{p}^{kl}\right) \equiv \delta \left(\mathfrak{F}^{ijkl}h_{ij}h_{kl}\right) \\ &= \delta h_{ij} \left(-\frac{1}{2}h^{ij}\mathfrak{F}^{klmn}h_{mn} + 2\mathfrak{F}^{ijkl}\right) h_{kl} + \delta \mathfrak{p}^{ij} \, 2\mathfrak{G}_{ijkl}\mathfrak{p}^{kl}. \end{split} \tag{41}$$

First variation of \mathfrak{H}^{\perp}

$$\delta\mathfrak{H}^{\perp} = \delta h_{ij} \left\{ 2\varkappa \left(-\frac{1}{2} h^{ij} \mathfrak{F}^{klmn} h_{mn} + 2\mathfrak{F}^{ijkl} \right) h_{kl} + \frac{\sqrt{\mathfrak{h}}}{2\varkappa} \left(G^{ij}[h] - \bar{\delta} u^{ji}{}_{j|i} \right) \right\} + \delta \mathfrak{p}^{ij} 4\varkappa \mathfrak{G}_{ijkl} \mathfrak{p}^{kl}, \tag{42}$$

where the term with a $\sqrt{\mathfrak{h}}/2\varkappa$ factor comes from variation of the three Ricci scalar.

First variation of \mathfrak{H}^i

$$\delta \mathfrak{H}^{i} = \left(\delta p^{ij}\right)_{|j} + \delta \Gamma^{i}_{jk} p^{jk}. \tag{43}$$

First variation of $\mathfrak{F}^{ijkl}h_{kl}$

$$\delta(\mathfrak{F}^{ijkl}h_{kl}) = \delta h_{kl} \left(-\frac{1}{2} \mathfrak{F}^{ijmn} h^{kl} h_{mn} + \mathfrak{F}^{ijkl} \right) + \delta \mathfrak{p}^{kl} \left(\delta^{i}_{k} \mathfrak{G}^{j}_{lmn} + \delta^{i}_{m} \mathfrak{G}^{j}_{nkl} \right) \mathfrak{p}^{mn}. \tag{44}$$

First variation of $\mathfrak{G}_{ijkl}\mathfrak{p}^{kl}$

$$\begin{split} \delta \big(\mathfrak{G}_{ijkl} \mathfrak{p}^{kl} \big) &= \delta h_{kl} \left(-\frac{1}{2} \mathfrak{G}_{ijmn} h^{kl} + \delta^k{}_i \mathfrak{G}^l{}_{jmn} + \delta^k{}_m \mathfrak{G}^l{}_{nij} \right) \mathfrak{p}^{mn} \\ &+ \delta p^{kl} \mathfrak{G}_{ijkl}. \end{split} \tag{45}$$

First variation of $\sqrt{\mathfrak{h}} G^{ij}[h]$

$$\begin{split} \delta \Big(\sqrt{\mathfrak{h}} \, G^{ij}[h] \Big) &= \sqrt{\mathfrak{h}} \bigg\{ \delta h_{kl} \cdot \\ & \Big(-\frac{1}{2} \Big) \big(R^{ik} h^{lj} + R^{il} h^{kj} - R^{ij} h^{kl} + h^{ik} G^{lj} + h^{il} G^{kj} - h^{ij} G^{kl} \big) \\ & + \bigg(h^{il} \, \bar{\delta} u^{jk}_{\ l} - \frac{1}{2} h^{ij} \, \bar{\delta} u^{lk}_{\ l} \bigg)_{|k} \bigg\}. \end{split} \tag{46}$$

Second variations

Second variation of \mathfrak{H}^{\perp}

$$\begin{split} \delta^{2}(\mathfrak{H}^{\perp}) &= \delta h_{ij} \, \delta h_{kl} \, \bigg\{ 2\varkappa \bigg[\frac{1}{4} \big(h^{ik} h^{lj} + h^{il} h^{kj} + h^{ij} h^{kl} \big) \mathfrak{F}^{mnrs} h_{mn} h_{rs} \\ &- \big(h^{ij} \mathfrak{F}^{klmn} + \mathfrak{F}^{ijmn} h^{kl} \big) h_{mn} + \mathfrak{F}^{ijkl} \bigg] \\ &- \frac{\sqrt{\mathfrak{h}}}{4\varkappa} \big(R^{ik} h^{lj} + R^{il} h^{kj} - R^{ij} h^{kl} + h^{ik} G^{lj} + h^{il} G^{kj} - h^{ij} G^{kl} \big) \bigg\} \\ &+ \delta h_{ij} \frac{\sqrt{\mathfrak{h}}}{2\varkappa} \bigg(h^{il} \, \bar{\delta} u^{jk}_{l} - \frac{1}{2} h^{ij} \, \bar{\delta} u^{lk}_{l} \bigg)_{|k} \\ &+ \delta h_{ij} \, \delta \mathfrak{p}^{kl} \, 4\varkappa \big\{ - h^{ij} \mathfrak{G}_{klmn} + 2 \big(\delta^{i}_{k} \mathfrak{G}^{j}_{lmn} + \delta^{i}_{m} \mathfrak{G}^{j}_{nkl} \big) \big\} \mathfrak{p}^{mn} \\ &+ \delta p^{ij} \, \delta p^{kl} \, 4\varkappa \mathfrak{G}_{ijkl} \\ &- \delta h_{ij} \, \delta \bigg(\frac{\sqrt{\mathfrak{h}}}{2\varkappa} \, \bar{\delta} u^{lk}_{l|k} \bigg). \end{split} \tag{47}$$

Second variation of $\Gamma^{i}_{\ jk}$

$$\delta^2 \Gamma^i_{jk} = -h^{im} \, \delta \Gamma^l_{jk} \, \delta h_{lm}. \tag{48}$$

Second variation of \mathfrak{H}^i

$$\delta^2(\mathfrak{H}^i) = -h^{im} p^{jk} \, \delta \Gamma^l_{\ jk} \, \delta h_{lm} + 2 \, \delta \Gamma^i_{\ jk} \, \delta p^{jk}. \tag{49}$$

Other second variations

Second variation of h^{ij}

$$\delta^2 h^{ij} = \left(h^{im}h^{jl}h^{kn} + h^{ik}h^{jm}h^{ln}\right)\delta h_{kl}\,\delta h_{mn} \tag{50}$$

Second variation of $\mathfrak{h} = \det h_{i,i}$

$$\delta^2 \mathfrak{h} = -\frac{1}{4} \mathfrak{h} (h^{ik} h^{jl} + h^{il} h^{kj} - h^{ij} h^{kl}) \, \delta h_{ij} \, \delta h_{kl}. \tag{51}$$

First variation of $\left(\delta h_{ij}\right)_{|k}$

$$\delta \left\{ \left(\delta h_{ij} \right)_{|k} \right\} = -2\delta \Gamma^l_{k(i)} \delta h_{j)l}. \tag{52}$$

In a general background, the second variations of the quantities are much more tedious.

In Robertson-Walker background,

References

- [1] Leonardo Castellani. "Symmetries in constrained Hamiltonian systems". In: Annals of Physics 143.2 (Oct. 1982), pp. 357–371. DOI: 10.1016/0003-4916(82)90031-8.
- [2] Paul A. M. Dirac. "The Theory of Gravitation in Hamiltonian Form". In: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 246.1246 (Aug. 1958), pp. 333–343. DOI: 10.1098/rspa.1958.0142.
- [3] Claus Kiefer. Quantum Gravity. 3rd ed. Oxford University Press, Apr. 2012. DOI: 10.1093/acprof:oso/9780199585205.001.0001.
- [4] Natalia Kiriushcheva and Sergei Kuzmin. "The Hamiltonian formulation of General Relativity: myths and reality". In: Central Eur. J. Phys. 9:576-615,2011 9.3 (Aug. 31, 2008). DOI: 10.2478/s11534-010-0072-2. arXiv: 0809.0097 [gr-qc].
- [5] Eric Poisson. A Relativist's Toolkit. Cambridge University Press, 2004.DOI: 10.1017/cbo9780511606601.
- [6] Steven Weinberg. Cosmology. Oxford University Press, 2008. ISBN: 9780198526827.
 URL: https://global.oup.com/academic/product/cosmology-9780198526827.