

DFS TEST REPORT

REPORT NO.: RF120618C25T-1

MODEL NO.: SS-300-AT-C-55E

FCC ID: U2M-CAP4200AG

RECEIVED: Oct. 15, 2013

TESTED: Nov. 25 ~ Dec. 02, 2013

ISSUED: Dec. 03, 2013

APPLICANT: Senao Networks, Inc.

ADDRESS: 3F, No. 529, Chung Cheng Rd., Hsintien,

Taipei, Taiwan, R.O.C.

ISSUED BY: Bureau Veritas Consumer Products Services

(H.K.) Ltd., Taoyuan Branch

LAB ADDRESS: No. 47, 14th Ling, Chia Pau Vil., Lin Kou Dist.,

New Taipei City, Taiwan, R.O.C.

TEST LOCATION: No. 19, Hwa Ya 2nd Rd, Wen Hwa Tsuen, Kwei

Shan Hsiang, Taoyuan Hsien 333, Taiwan, R.O.C.

This report should not be used by the client to claim product certification, approval, or endorsement by TAF or any government agencies.

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification.

TABLE OF CONTENTS

RELEASE	CONTROL RECORD	3
1.	CERTIFICATION	4
2.	EUT INFORMATION	5
2.1	OPERATING FREQUENCY BANDS AND MODE OF EUT	5
2.2	EUT SOFTWARE AND FIRMWARE VERSION	5
2.3	DESCRIPTION OF AVAILABLE ANTENNAS TO THE EUT	5
2.4	EUT MAXIMUM CONDUCTED POWER	6
2.5	EUT MAXIMUM E.I.R.P. POWER	7
3.	U-NII DFS RULE REQUIREMENTS	8
3.1	WORKING MODES AND REQUIRED TEST ITEMS	8
3.2	TEST LIMITS AND RADAR SIGNAL PARAMETERS	9
4.	TEST & SUPPORT EQUIPMENT LIST	11
4.1	TEST INSTRUMENTS	11
4.2	DESCRIPTION OF SUPPORT UNITS	11
5.	TEST PROCEDURE	12
5.1	ADT DFS MEASUREMENT SYSTEM	
5.2	CALIBRATION OF DFS DETECTION THRESHOLD LEVEL:	13
5.3	DEVIATION FROM TEST STANDARD	13
5.4	RADIATED TEST SETUP CONFIGURATION	
5.4.1	MASTER MODE	14
6.	TEST RESULTS	
6.1	SUMMARY OF TEST RESULTS	15
6.2	TEST RESULTS	16
6.2.1	TEST MODE: DEVICE OPERATING IN MASTER MODE	16
6.2.2	U-NII DETECTION BANDWIDTH	
6.2.3	CHANNEL AVAILABILITY CHECK TIME	23
6.2.4	CHANNEL CLOSING TRANSMISSION AND CHANNEL MOVE TIME	25
6.2.5	NON-OCCUPANCY PERIOD	34
6.2.6	UNIFORM SPREADING	
6.2.7	TRANSMIT POWER CONTROL (TPC)	37
7.	INFORMATION ON THE TESTING LABORATORIES	38
8.	APPENDIX A - MODIFICATIONS RECORDERS FOR ENGINEERING CHANGES TO THE EUT BY THE LAB	39

RELEASE CONTROL RECORD

ISSUE NO.	REASON FOR CHANGE	DATE ISSUED
RF120618C25T-1	Original release	Dec. 03, 2013

Report No.: RF120618C25T-1 3 of 39 Report Format Version 5.2.0

Reference No.: 131015C09

1. CERTIFICATION

PRODUCT: Wireless 802.11abgn Access Point

MODEL: SS-300-AT-C-55E

BRAND: AirTight Networks, Inc.

APPLICANT: Senao Networks, Inc.

TESTED: Nov. 25 ~ Dec. 02, 2013

TEST SAMPLE: ENGINEERING SAMPLE

STANDARDS: FCC Part 15, Subpart E (Section 15.407)

FCC 06-96

The above equipment (model: SS-300-AT-C-55E) has been tested by Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

PREPARED BY: Maggie Wu / Specialist , DATE: Dec. 03, 2013

/ , DATE : Dec. 03, 2013

2. EUT INFORMATION

2.1 OPERATING FREQUENCY BANDS AND MODE OF EUT

TABLE 1: OPERATING FREQUENCY BANDS AND MODE OF EUT

OPERATIONAL MODE	OPERATING FRE	QUENCY RANGE
OPERATIONAL MODE	5250~5350MHz	5470~5725MHz
Master	✓	✓

The EUT doesn't operate in 5600 ~ 5650MHz via software controls.

2.2 EUT SOFTWARE AND FIRMWARE VERSION

TABLE 2: THE EUT SOFTWARE/FIRMWARE VERSION

NO.	PRODUCT	MODEL NO.	SOFTWARE/FIRMWARE VERSION
1	Wireless 802.11abgn Access Point	SS-300-AT-C-55-E	Sensor Version: 6.7 Sensor Build: 6.7.u3.22 Web Version: 6.7 Web Build: 6.7.U5.52 Serial Number: 0050569B6B9D

2.3 DESCRIPTION OF AVAILABLE ANTENNAS TO THE EUT

TABLE 3: ANTENNA LIST

ANT NO.	ANTENNA TYPE	OPERATION FREQUENCY RANGE (MHz)	MAX. GAIN (dBi)
1	Dipole	5250-5725	3
2	Dipole	5250-5725	3

2.4 EUT MAXIMUM CONDUCTED POWER

TABLE 4: THE MEASURED CONDUCTED OUTPUT POWER

802.11a

ANT NO.	NO.	FREQUENCY BAND		POWER
	(MHz)	OUTPUT POWER(dBm)	OUTPUT POWER(mW)	
1		5250~5350	21.10	128.696
1		5470~5725	20.96	124.674

802.11n (20MHz)

ANT NO.	FREQUENCY BAND	MAX. POWER		
	(MHz)	OUTPUT POWER(dBm)	OUTPUT POWER(mW)	
1	5250~5350	21.19	131.385	
1	5470~5725	20.90	123.141	

802.11n (40MHz)

ANT NO	FREQUENCY BAND		POWER
ANT NO.	(MHz)	OUTPUT POWER(dBm)	OUTPUT POWER(mW)
1	5250~5350	21.97	157.422
1	5470~5725	21.99	158.082

6 of 39

2.5 EUT MAXIMUM E.I.R.P. POWER

TABLE 5: THE E.I.R.P OUTPUT POWER LIST

802.11a

ANT NO	FREQUENCY BAND		POWER
ANT NO.	(MHz)	OUTPUT POWER(dBm)	OUTPUT POWER(mW)
1	5250~5350	24.10	257.040
1	5470~5725	23.96	248.886

802.11n (20MHz)

ANT NO	FREQUENCY BAND		POWER
ANT NO.	(MHz)	OUTPUT POWER(dBm)	OUTPUT POWER(mW)
1	5250~5350	24.19	262.422
1	5470~5725	23.90	245.471

802.11n (40MHz)

ANT NO.	FREQUENCY BAND		POWER
	(MHz)	OUTPUT POWER(dBm)	OUTPUT POWER(mW)
1	5250~5350	24.97	314.051
1	5470~5725	24.99	315.500

3. U-NII DFS RULE REQUIREMENTS

3.1 WORKING MODES AND REQUIRED TEST ITEMS

The manufacturer shall state whether the UUT is capable of operating as a Master and/or a Client. If the UUT is capable of operating in more than one operating mode then each operating mode shall be tested separately. See tables 1 and 2 for the applicability of DFS requirements for each of the operational modes.

TABLE 6: APPLICABILITY OF DFS REQUIREMENTS PRIOR TO USE A CHANNEL

		OPERATIONAL MO	DE
REQUIREMENT	MASTER	CLIENT WITHOUT RADAR DETECTION	CLIENT WITH RADAR DETECTION
Non-Occupancy Period	✓	Not required	✓
DFS Detection Threshold	✓	Not required	✓
Channel Availability Check Time	✓	Not required	Not required
Uniform Spreading	✓	Not required	Not required
U-NII Detection Bandwidth	✓	Not required	√

TABLE 7: APPLICABILITY OF DFS REQUIREMENTS DURING NORMAL OPERATION

	OPERATIONAL MODE						
REQUIREMENT	MASTER	CLIENT WITHOUT RADAR DETECTION	CLIENT WITH RADAR DETECTION				
DFS Detection Threshold	✓	Not required	✓				
Channel Closing Transmission Time	✓	✓	✓				
Channel Move Time	✓	✓	✓				
U-NII Detection Bandwidth	✓	Not required	✓				

Report No.: RF120618C25T-1 Reference No.: 130207C09 8 of 39

Report Format Version 5.2.0

3.2 TEST LIMITS AND RADAR SIGNAL PARAMETERS

DETECTION THRESHOLD VALUES

TABLE 8: DFS DETECTION THRESHOLDS FOR MASTER DEVICES AND CLIENT DEVICES WITH RADAR DETECTION

MAXIMUM TRANSMIT POWER	VALUE (SEE Note 1 and 2)
≥ 200 milliwatt	-64 dBm
< 200 milliwatt	-62 dBm

Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna.

Note 2: Throughout these test procedures an additional 1 dB has been added to the amplitude of the test transmission waveforms to account for variations in measurement equipment. This will ensure that the test signal is at or above the detection threshold level to trigger a DFS response.

TABLE 9: DFS RESPONSE REQUIREMENT VALUES

PARAMETER	VALUE
Non-occupancy period	Minimum 30 minutes
Channel Availability Check Time	60 seconds
Channel Move Time	10 seconds
	See Note 1.
Channel Closing Transmission Time	200 milliseconds + an aggregate of 60
	milliseconds over remaining 10 second period.
	See Notes 1 and 2.
U-NII Detection Bandwidth	Minimum 80% of the UNII 99% transmission power bandwidth.
	See Note 3.

Note 1: The instant that the Channel Move Time and the Channel Closing Transmission Time begins is as follows:

- For the Short Pulse Radar Test Signals this instant is the end of the Burst.
- For the Frequency Hopping radar Test Signal, this instant is the end of the last radar Burst generated.
- For the Long Pulse Radar Test Signal this instant is the end of the 12 second period defining the Radar Waveform.

Note 2: The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate a Channel move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.

Note 3: During the U-NII Detection Bandwidth detection test, radar type 1 is used and for each frequency step the minimum percentage of detection is 90 percent. Measurements are performed with no data traffic.

PARAMETERS OF DFS TEST SIGNALS

Step intervals of 0.1 microsecond for Pulse Width, 1 microsecond for PRI, 1 MHz for chirp width and 1 for the number of pulses will be utilized for the random determination of specific test waveforms.

TABLE 10: SHORT PULSE RADAR TEST WAVEFORMS

RADAR TYPE	PULSE WIDTH (µsec)	PRI (µsec)	NUMBER OF PULSES	MINIMUM PERCENTAGE OF SUCCESSFUL DETECTION	MINIMUM NUMBER OF TRIALS
1	1	1428	18	60%	30
2	1-5	150-230	23-29	60%	30
3	6-10	200-500	16-18	60%	30
4	11-20	200-500	12-16	60%	30
	Aggregate (Ra	80%	120		

TABLE 11: LONG PULSE RADAR TEST WAVEFORM

RADAR TYPE	PULSE WIDTH (µsec)	CHIRP WIDTH (MHz)	PRI (µsec)	NUMBER OF PULSES PER BURST	NUMBER OF BURSTS	MINIMUM PERCENTAGE OF SUCCESSFUL DETECTION	MINIMUM NUMBER OF TRIALS
5	50-100	5-20	1000-2000	1-3	8-20	80%	30

TABLE 12: FREQUENCY HOPPING RADAR TEST WAVEFORM

RADAR TYPE	PULSE WIDTH (µsec)	PRI (µsec)	PULSES PER HOP	HOPPING RATE (kHz)	HOPPING SEQUENCE LENGTH (msec)	MINIMUM PERCENTAGE OF SUCCESSFUL DETECTION	MINIMUM NUMBER OF TRIALS
6	1	333	9	0.333	300	70%	30

4. TEST & SUPPORT EQUIPMENT LIST

4.1 TEST INSTRUMENTS

TABLE 1: TEST INSTRUMENTS LIST

DESCRIPTION & MANUFACTURER	MODEL NO.	BRAND	DATE OF CALIBRATION	DUE DATE OF CALIBRATION	
R&S Spectrum analyzer	FSP40	R&S	2013/01/28	2014/01/27	
Signal generator	8645A	Agilent	2013/06/25	2014/06/24	
Oscilloscope	TDS 5104	Tektronix	2013/03/08	2014/03/07	

4.2 DESCRIPTION OF SUPPORT UNITS

TABLE 2: SUPPORT UNIT INFORMATION.

NO.	PRODUCT	BRAND MODEL NO.		FCC ID
1	Wireless-N USB adapter	BUFFALO	WLI-UC-AG300N	FDI-09102079-0

11 of 39

NOTE: This device was functioned as a ☐Master ☐Slave device during the DFS test.

5. TEST PROCEDURE

5.1 ADT DFS MEASUREMENT SYSTEM

A complete ADT DFS Measurement System consists of two subsystems: (1) the Radar Signal Generating Subsystem and (2) the Traffic Monitoring Subsystem. The control PC is necessary for generating the Radar waveforms in Table 10, 11 and 12. The traffic monitoring subsystem is specified to the type of unit under test (UUT).

Radiated setup configuration of ADT DFS Measurement System

The test transmission will always be from the Master Device to the Client Device. While the Client device is set up to associate with the Master device and play the MPEG file (6 $\frac{1}{2}$ Magic Hours) from Master device, the designated MPEG test file and instructions are located at: http://ntiacsd.ntia.doc.gov/dfs/.

5.2 CALIBRATION OF DFS DETECTION THRESHOLD LEVEL

The measured channel is 5500MHz and 5510MHz. The radar signal was the same as transmitted channels, and injected into the AP (master) or Client Device with Radar Detection, measured the channel closing transmission time and channel move time. The calibrated conducted detection threshold level is set to -64dBm. The tested level is lower than required level hence it provides margin to the limit.

Radiated setup configuration of Calibration of DFS Detection Threshold Level

5.3 DEVIATION FROM TEST STANDARD

No deviation.

5.4 RADIATED TEST SETUP CONFIGURATION

5.4.1 MASTER MODE

The EUT is a U-NII Device operating in Master mode. The radar test signals are injected into the Master Device.

6. TEST RESULTS

6.1 SUMMARY OF TEST RESULTS

CLAUSE	TEST PARAMETER	REMARKS	PASS/FAIL
15.407	DFS Detection Threshold	Applicable	Pass
15.407	U-NII Detection Bandwidth	Applicable	Pass
15.407	Channel Availability Check Time	Applicable	Pass
15.407	Channel Move Time	Applicable	Pass
15.407	Channel Closing Transmission Time	Applicable	Pass
15.407	Non- Occupancy Period	Applicable	Pass
15.407	Uniform Spreading	Applicable	Pass

6.2 TEST RESULTS

6.2.1 TEST MODE: DEVICE OPERATING IN MASTER MODE

Master with injection at the Master. (Radar Test Waveforms are injected into the Master.

DFS DETECTION THRESHOLD

For a detection threshold level of -64dBm, the required signal strength at EUT antenna location is -64 dBm. The tested level is lower than required level hence it provides margin to the limit.

Radar Signal 1

Report No.: RF120618C25T-1 Reference No.: 130207C09 Radar Signal 3

Single Burst of Radar Signal 5

Radar Signal 6

6.2.2 U-NII DETECTION BANDWIDTH

IEEE 802.11N 20MHz

U-NII 99% Channel bandwidth

IEEE 802.11N 40MHz

U-NII 99% Channel bandwidth

Detection Bandwidth Test - IEEE 802.11N 20MHz

EUT Frequency: 5500MHz

EUT 99% Power bandwidth: 18.8MHz

Detection bandwidth limit (80% of EUT 99% Power bandwidth): 15.04MHz

Detection bandwidth (5510(FH) – 5490(FL)) : 20MHz

Test Result : PASS

Radar				Trial N	Numbe	r / Det	ection				Detection
Frequency (MHz)	1	2	3	4	5	6	7	8	9	10	Rate (%)
5489	N	N	N	N	N	N	N	N	N	N	0
5490 (FL)	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	100
5491	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	100
5492	Y	Y	Y	Y	Ÿ	Y	Y	Y	Y	Y	100
5493	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	100
5494	Y	Υ	Υ	Y	Y	Υ	Υ	Υ	Y	Υ	100
5495	Y	Υ	Y	Y	Y	Υ	Υ	Y	Υ	Υ	100
5496	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	100
5497	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	100
5498	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	100
5499	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	100
5500	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	100
5501	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	100
5502	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	100
5503	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	100
5504	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	100
5505	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	100
5506	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	100
5507	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	100
5508	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	100
5509	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	100
5510 (FH)	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	100
5511	N	N	N	N	N	N	N	N	N	N	0

Detection Bandwidth Test - IEEE 802.11N 40MHz

EUT Frequency: 5510MHz

EUT 99% Power bandwidth: 36MHz

Detection bandwidth limit (80% of EUT 99% Power bandwidth): 28.8MHz
Detection bandwidth (5530(FH) – 5490(FL)): 40MHz
Test Result: PASS

Radar	Trial Number / Detection							Detection			
Frequency (MHz)	1	2	3	4	5	6	7	8	9	10	Rate (%)
5489	N	N	Ν	N	N	N	Ν	N	N	N	0
5490 (FL)	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	100
5491	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	100
5492	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	100
5493	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	100
5494	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	100
5495	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	100
5496	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	100
5497	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	100
5498	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	100
5499	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	100
5500	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	100
5501	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	100
5502	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	100
5503	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	100
5504	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	100
5505	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	100
5506	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	100
5507	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	100
5508	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	100
5509	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	100
5510	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	100
5511	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	100
5512	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	100
5513	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	100
5514	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	100
5515	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	100
5516	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	100
5517	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	100
5518	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	100
5519	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	100
5520	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	100
5521	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	100
5522	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	100
5523	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	100
5524	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	100
5525	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	100
5526	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	100
5527	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	100
5528	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	100
5529	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	100
5530 (FH)	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	100
5531	Ν	N	N	N	N	N	N	N	Ν	N	0

6.2.3 CHANNEL AVAILABILITY CHECK TIME

If the EUT successfully detected the radar burst, it should be observed as the EUT has no transmissions occurred until the EUT starts transmitting on another channel.

	Observation						
Timing of Radar Signal	EUT	Spectrum Analyzer					
Within 1 to 6 second	Detected	No transmissions					
Within 54 to 60 second	Detected	No transmissions					

Initial Channel Availability Check Time

NOTE: T1 denotes the end of power-up time period is 52.9^{th} second. T4 denotes the end of Channel Availability Check time is 112.9^{th} second. Channel Availability Check time is equal to (T4 – T1) 60 seconds.

Radar Burst at the Beginning of the Channel Availability Check Time

NOTE: T1 denotes the end of power up time period is 52.9th second. T2 denotes 58.9th second, the radar burst was commenced within a 6 second window starting from the end of power-up sequence. T4 denotes the 112.9th second.

Radar Burst at the End of the Channel Availability Check Time

NOTE: T1 denotes the end of power up time period is 52.9th second. T3 denotes 106.9th second and radar burst was commenced within 54th second to 60th second window starting from the end of power-up sequence. T4 denotes the 112.9th second.

6.2.4 CHANNEL CLOSING TRANSMISSION AND CHANNEL MOVE TIME

Wireless Traffic Loading

IEEE 802.11N 20MHz

IEEE 802.11N 40MHz

Report No.: RF120618C25T-1

Reference No.: 130207C09

IEEE 802.11n 20MHz

Table 1: Short Pulse Radar Test Waveforms.

Radar Type	Pulse Width (µsec)	PRI (µsec)	Number of Pulses	Number of Trials(Times)	Percentage of Successful Detection (%)
1	1	1428	18	30	100
2	1-5	150-230	23-29	30	90
3	6-10	200-500	16-18	30	93.3
4	11-20	200-500	12-16	30	90
	Aggregate (Ra	120	88.35		

Table 2: Long Pulse Radar Test Waveform

Radar Type	Pulse Width (µsec)	Chirp Width (MHz)	PRI (µsec)	Number of Pulses per Burst	Number of Bursts	Number of Trials(Times)	Percentage of Successful Detection (%)
5	50-100	5-20	1000-2000	1-3	8-20	30	83.3

Table 3: Frequency Hopping Radar Test Waveform

Radar Type	Pulse Width (µsec)	PRI (µsec)	Pulses per Hop	Hopping Rate (kHz)	Hopping Sequence Length (msec)	Number of Trials(Times)	Percentage of Successful Detection (%)
6	1	333	9	0.333	300	30	100

The Detailed Radar pattern and Statistical Performance showed in Annex A.

IEEE 802.11n 40MHz

Table 1: Short Pulse Radar Test Waveforms.

Radar Type	Pulse Width (µsec)	PRI (µsec)	Number of Pulses	Number of Trials(Times)	Percentage of Successful Detection (%)
1	1	1428	18	30	100
2	1-5	150-230	23-29	30	83.3
3	6-10	200-500	16-18	30	90
4	11-20	200-500	12-16	30	93.3
	Aggregate (Ra	120	95		

Table 2: Long Pulse Radar Test Waveform

Radar Type	Pulse Width (µsec)	Chirp Width (MHz)	PRI (µsec)	Number of Pulses per Burst	Number of Bursts	Number of Trials(Times)	Percentage of Successful Detection (%)
5	50-100	5-20	1000-2000	1-3	8-20	30	83.3

Table 3: Frequency Hopping Radar Test Waveform

Radar Type	Pulse Width (µsec)	PRI (µsec)	Pulses per Hop	Hopping Rate (kHz)	Hopping Sequence Length (msec)	Number of Trials(Times)	Percentage of Successful Detection (%)
6	1	333	9	0.333	300	30	100

The Detailed Radar pattern and Statistical Performance showed in Annex A.

IEEE 802.11N 20MHz

NOTE: T1 denotes the start of Channel Move Time upon the end of the last Radar burst. T2 denotes the data transmission time of 200ms from T1. T3 denotes the end of Channel Move Time. T4 denotes the 10 second from T1 to observe the aggregate duration of transmissions.

IEEE 802.11N 20MHz

NOTE: T1 denotes the start of Channel Move Time upon the end of the last Radar burst. T2 denotes the data transmission time of 200ms from T1. T3 denotes the end of Channel Move Time. T4 denotes the 10 second from T1 to observe the aggregate duration of transmissions.

IEEE 802.11N 20MHz

NOTE: T1 denotes the start of Channel Move Time upon the end of the last Radar burst. T2 denotes the data transmission time of 200ms from T1. T3 denotes the end of Channel Move Time. T4 denotes the 10 second from T1 to observe the aggregate duration of transmissions.

IEEE 802.11N 20MHz

NOTE: T1 denotes the start of Channel Move Time upon the end of the last Radar burst. T2 denotes the data transmission time of 200ms from T1. T3 denotes the end of Channel Move Time. T4 denotes the 10 second from T1 to observe the aggregate duration of transmissions.

IEEE 802.11N 20MHz

NOTE: T1 denotes the start of Channel Move Time upon the end of the last Radar burst. T2 denotes the data transmission time of 200ms from T1. T3 denotes the end of Channel Move Time. T4 denotes the 10 second from T1 to observe the aggregate duration of transmissions.

IEEE 802.11N 20MHz

NOTE: T1 denotes the start of Channel Move Time upon the end of the last Radar burst. T2 denotes the data transmission time of 200ms from T1. T3 denotes the end of Channel Move Time. T4 denotes the 10 second from T1 to observe the aggregate duration of transmissions.

6.2.5 NON-OCCUPANCY PERIOD

Associate test:

During the 30 minutes observation time, UUT did not make any transmissions on a channel after a radar signal was detected on that channel by either the Channel Availability Check or the In-Service Monitoring.

1) EUT (Client) links with master on 5500MHz.

2) Client plays specified files via master.

* ALW 10 MHZ

Ref 10 dBm * Att 20 dB * SWT 50 ms

10

1 PK
HAXH
-10
-20
-30
-40

Waveform of transmission

3) Radar signal is applied to the Master device and WiFi traffic signal stop immediately.

Radar 1

Radar 2

Radar 3

Radar 4

Radar 5

Radar 6

4) 5500MHz has been monitored in 30 minutes period. In this period, no any transmission occurs.

Plot of 30minutes period

802.11an 20MHz

NOTE: Test setup are shown on Test set up photo.pdf

6.2.6 UNIFORM SPREADING

The intention of the uniform spreading is to provide, on aggregate, a uniform loading of the spectrum. The EUT randomly select next output channel without any bias or fixed pattern, so that all channels in DFS bands (5250 to 5350MHz and 5470 to 5725 MHz) will be used equally.

6.2.7 TRANSMIT POWER CONTROL (TPC)

According to FCC 15.407(h)(1) the TPC mechanism is not required for system with an E.I.R.P. of less 500mW

7. INFORMATION ON THE TESTING LABORATORIES

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Linko EMC/RF Lab:Hsin Chu EMC/RF Lab:Tel: 886-2-26052180Tel: 886-3-5935343Fax: 886-2-26051924Fax: 886-3-5935342

Hwa Ya EMC/RF/Safety Telecom Lab:

Tel: 886-3-3183232 Fax: 886-3-3270892

Email: service.adt@tw.bureauveritas.com
Web Site: www.bureauveritas.com

The address and road map of all our labs can be found in our web site also.

8. APPENDIX A - MODIFICATIONS RECORDERS FOR

ENGINEERING CHANGES TO THE EUT BY THE LAB	
No modifications were made to the EUT by the lab during the test.	
END	