Partial Differential Equations¹

-TW-

2024年9月2日

《Partial Differential Equations》 – Lawrence C. Evans

《Partial Differential Equations》 – Fritz John

序

天道几何,万品流形先自守; 变分无限,孤心测度有同伦。

> 2024 年 9 月 2 日 长夜伴浪破晓梦,梦晓破浪伴夜长

目录

第一章	Prologue	1
1.1	Partial Differential Equations	1
1.2	多项式定理	4
1.3	Leibniz 公式 – 高阶偏导版本	6
1.4	Taylor 公式 – 多元版本	8
1.5	Notations	9
1.6	PDE 中的微积分 – Gauss-Green 公式, 极坐标换元	11
	1.6.1 Gauss-Green 公式	11
	1.6.2 极坐标换元	14
74 3 .		
附求 A	Supplementary Content	15
A.1	区域边界的光滑性	15

第一章 Prologue

1.1 Partial Differential Equations

下面我们给出偏微分方程 (PDE) 的定义.

定义 1.1.1. An expression of the form

$$F(D^k u, D^{k-1} u, \dots, Du, u, x) = 0, x \in U \subset \mathbb{R}^n$$

is called a k^{th} -order partial differential equation, where

$$F: \mathbb{R}^{n^k} \times \mathbb{R}^{n^{k-1}} \times \cdots \times \mathbb{R}^n \times \mathbb{R} \times U \longrightarrow \mathbb{R}$$

and

$$u: U \subset \mathbb{R}^n \longrightarrow \mathbb{R}$$

- 注. 此处的函数 u 未必 k 阶连续可微, 因此其 k 阶偏导的偏导算子不一定能交换次序, 故符号 $D^k u$ 中包含了 n^k 种 k 阶偏导.
- [高阶偏导数计数问题]. 对于 $u \in C^k$, 此时 k 阶偏导算子可任意交换次序, 则对于符号 $D^k u$, 其代表了几种 k 阶偏导数?
 - \mathbf{m} . 即考虑 $D^a u(|a| = k)$ 的种数. 可转化为求非负数不定方程

$$a_1 + a_2 + \cdots + a_n = k$$

的解的个数的问题, 其中 a_i 表示 u 对自变量 x 的第 i 个分量所求偏导阶数, 即 $(\frac{\partial}{\partial x_i})^{a_i}$. 利用**插板法**, 往 k 个球插入 n-1 个板即可得到 n 份, 球和板共 k+n-1 个, 即可视作往

k+n-1 个空位中任意排列 k 个球和 n-1 个板, 即有

$$\binom{k+n-1}{k} = \binom{k+n-1}{n-1}$$

下面给出偏微分方程 (PDE) 的一些线性的概念.

定义 **1.1.2.** • The PDE is called **linear** if it has the form

$$\sum_{|a| < k} a_a(x) D^a u = f(x)$$

for given a_a and f. Moreover, it is called **homogenuous** (齐次) if $f \equiv 0$.

• The PDE is **semilinear** if it has the form

$$\sum_{|a|=k} a_a(x) D^a u + a_0(D^{k-1}u, \dots, Du, u, x) = 0$$

• The PDE is **quasilinear** if it has the form

$$\sum_{|a|=k} a_a(D^{k-1}u, \dots, Du, u, x)D^au + a_0(D^{k-1}u, \dots, Du, u, x) = 0$$

• The PDE is **fully nonlinear** if it depends nonlinearly upon the highest order derivatives.

注. 上述几种线性的概念为逐层宽泛的, 即存在如下的包含关系:

homogenuous ⊂ linear ⊂ semilinear ⊂ quasilinear

同理,对于偏微分方程组 (System of PDEs),可给出如下定义.

定义 1.1.3. An expression of the form

$$\vec{F}(D^k\vec{u},\cdots,D\vec{u},\vec{u},x)=\vec{0},\ x\in U$$

is called a k^{th} -order system of PDEs, where

$$\vec{F}: \mathbb{R}^{m \cdot n^k} \times \mathbb{R}^{m \cdot n^{k-1}} \times \cdots \times \mathbb{R}^{mn} \times \mathbb{R}^m \times U \longrightarrow \mathbb{R}^m$$

and

$$\vec{u}: U \subset \mathbb{R}^n \longrightarrow \mathbb{R}^m, \ \vec{u} = (u^1, u^2, \cdots, u^m)$$

注. 对于符号 $D^a\bar{u}$, 其表达的意思即为对 \bar{u} 的每个分量 u^i 做相同的偏微分算子运算, 从而得到新的向量, 即

$$D^a \vec{\mathbf{u}} = (D^a \mathbf{u}^1, \cdots, D^a \mathbf{u}^m)$$

1.2 多项式定理

下面我们用多重指标的形式给出多项式定理.

定理 1.2.1. [Multinomial Theorem].

$$\left(\sum_{i=1}^{n} x_i\right)^k = \sum_{|a|=k} {|a| \choose a} x^a \tag{1.1}$$

where

证明.

• [法-]: 对于等式左侧 k 项因子

$$(x_1 + x_2 + \dots + x_n) \tag{1.3}$$

$$(x_1 + x_2 + \dots + x_n) \tag{1.4}$$

$$\cdots$$
 (1.5)

$$(x_1 + x_2 + \dots + x_n) \tag{1.6}$$

在其中任取 a_1 项作为 $x^a=x_1^{a_1}x_2^{a_2}\cdots x_n^{a_n}$ 中 x_1 的来源. 再在剩下的 $k-a_1$ 项中任取 a_2 项 作为 x_2 的来源,以此类推,最终可得到 x_a 的个数为:

$$\binom{k}{a_1} \binom{k-a_1}{a_2} \cdots \binom{k-a_1-a_2-\cdots-a_{n-1}}{a_n}$$

$$= \frac{k!}{a_1!(k-a_1)!} \cdot \frac{(k-a_1)!}{a_2!(k-a_1-a_2)!} \cdots \frac{(k-a_1-a_2-\cdots-a_{n-1})!}{a_n!0!}$$

$$(1.7)$$

$$= \frac{k!}{a_1!(k-a_1)!} \cdot \frac{(k-a_1)!}{a_2!(k-a_1-a_2)!} \cdots \frac{(k-a_1-a_2-\cdots-a_{n-1})!}{a_n!0!}$$
(1.8)

$$=\frac{k!}{a_1! a_2! \cdots a_n!} \tag{1.9}$$

$$=\frac{|a|!}{a!}\tag{1.10}$$

$$= \binom{|a|}{a} \tag{1.11}$$

• [法二]: 原式左侧 k 项因子可看作 k 个空位,这 k 个空位已经按顺序划分成了 n 个区域,即

$$(a_1)(a_2)\cdots(a_n)$$

现在有 k 个人入座, 在同一区域内的人我们不考虑其排列问题, 比如人员 A 与人员 B 均 坐在区域 1 中, 则不考虑 A, B 的前后顺序. 那么我们可得到总共的排列种数为:

$$\frac{k!}{a_1!a_2!\cdots a_n!} = \binom{|a|}{a}$$

此即为右式中各项的系数.

1.3 Leibniz 公式 – 高阶偏导版本

先来回顾以下数学分析中学到的一维实值函数的 Leibniz 公式:

$$(uv)^{(n)} = \sum_{k=0}^{n} {n \choose k} u^{(k)} v^{(n-k)}, \ \forall u, v \in C^n$$

与之相对应的, 我们来给出高阶偏导版本的 Leibniz 公式.

定理 1.3.1. [Leibniz's Formula].

$$D^{a}(uv) = \sum_{\beta \leq a} {a \choose \beta} D^{\beta} u \ D^{a-\beta} v \tag{1.12}$$

where $u, v \in C^{\infty}(\mathbb{R}^n)$,

$$\begin{pmatrix} a \\ \beta \end{pmatrix} := \frac{a!}{\beta!(a-\beta)!} \quad \text{and} \quad \beta \le a \text{ means } \beta_i \le a_i, \ \forall i = 1 \sim n$$

证明. 先给出几个记号方便下述证明:

- u_i 表示 u 对自变量 x 的第 i 个分量求一阶偏导, 即 $\frac{\partial}{\partial x_i}u$.
- u_i^k 即表示求 k 阶偏导, 即 $\left(\frac{\partial}{\partial x_i}\right)^k u$.
- $u_i^{k_i}u_j^{k_j}$ 表示 u 先对 x_i 求 k_i 阶偏导后再对 x_j 求 k_j 阶偏导,即 $\frac{\partial^{k_i+k_j}}{\partial x_i^{k_i}\partial x_j^{k_j}}u$. (事实上由于此处 $u,v\in C^{\infty}(\mathbb{R}^n)$,因此无需考虑先后顺序)

由于根据一维实值 Leibniz 公式, uv 对 x_1 求 a_1 阶偏导可写为如下形式:

$$\left(\frac{\partial}{\partial x_1}\right)^{a_1}(uv) = \sum_{k_1=0}^{a_1} {a_1 \choose k_1} \left(\frac{\partial}{\partial x_1}\right)^{k_1} u \left(\frac{\partial}{\partial x_1}\right)^{a_1-k_1} v$$
(1.13)

$$= \sum_{k_1=0}^{a_1} {a_1 \choose k_1} u_1^{k_1} v_1^{a_1-k_1}$$
 (1.14)

$$:= (u_1 + v_1)^{a_1} \tag{1.15}$$

因此, $D^a(uv)$ 可写成 $(u_1+v_1)^{a_1}(u_2+v_2)^{a_2}\cdots(u_n+v_n)^{a_n}$. 从而

$$D^{a}(uv) = (u_{1} + v_{1})^{a_{1}}(u_{2} + v_{2})^{a_{2}} \cdots (u_{n} + v_{n})^{a_{n}}$$
(1.16)

$$= \sum_{\substack{0 \le \beta_1 \le a_i \\ 1 \le i \le n}} \binom{a_1}{\beta_1} \binom{a_2}{\beta_2} \cdots \binom{a_n}{\beta_n} u_1^{\beta_1} u_2^{\beta_2} \cdots u_n^{\beta_n} v_1^{a_1 - \beta_1} v_2^{a_2 - \beta_2} \cdots v_n^{a_n - \beta_n}$$
(1.17)

$$= \sum_{\beta \le a} \binom{a}{\beta} D^{\beta} u \ D^{a-\beta} v \tag{1.18}$$

1.4 Taylor 公式 – 多元版本

先来回顾一元实解析函数在原点处的 Taylor 公式:

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} x^{k} + O(|x|^{n+1}) \text{ as } x \to 0$$

下面给出**多元 (实解析) 函数的 Taylor 公式**, 此处为讨论方便直接假设 f 光滑.

定理 1.4.1. [Taylor's Formula].

Assume that $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ is smooth. Then

$$f(x) = \sum_{|a| \le k} \frac{1}{a!} D^a f(0) x^a + O(|x|^{k+1}) \text{ as } x \to 0, \ \forall k \in \mathbb{N}$$
 (1.19)

This is Taylor's Formula in multiindex notation.

证明. Suppose $f(x) \sim \sum\limits_{|a| \le k} a_a x^a + O(|x|^{k+1})$ as $x \to 0$. Then we'll calculate a_a . For given a, 对等式左右两侧同时作用 D^a 算子, 对于右式中每一项 $a_\beta x^\beta$

• If $|\beta| < |a|$, then $\exists 1 \le i \le n$, s. t.

$$\beta_i < a_i$$

那么经过 D^a 算子作用后, $x^\beta=x_1^{\beta_1}\cdots x_n^{\beta_n}$ 中的 x_i 因子将变为 0, 从而 $D^a(a_\beta x^\beta)=0$.

• If $|\beta| > |a|$, then $\exists 1 \le j \le n$, s. t.

$$\beta_i > a_i$$

那么经过 D^a 算子作用后, $x^\beta = x_1^{\beta_1} \cdots x_n^{\beta_n}$ 中的 x_j 因子将得到保留, 此时再取 $D^a f(x)$ 在原点处的取值, 得到 $D^a(a_\beta x^\beta)(0) = 0$.

• If $|\beta| = |a|$ and $\beta \neq a$, then $\exists \beta_i \neq a_i$, 同上可得 $D^a(a_\beta x^\beta)(0) = 0$.

综上, 可得到对于给定的
$$a$$
, 其系数 $a_a = \frac{D^a f(0)}{a!}$.

1.5 Notations

下面给出一些常用的记号.

1. For $U, V \subset \mathbb{R}^n$, we write $\underline{V \subset C} \underline{U}$ if $V \subset \overline{V} \subset U$. (V is compactly contained in U)

2.

$$a(n) := \text{volumn of unit ball } B(0, 1) \text{ in } \mathbb{R}^n$$
 (1.20)

$$=\frac{\pi^{\frac{n}{2}}}{\Gamma(\frac{n}{2}+1)}\tag{1.21}$$

$$\underline{na(n)r^{n-1}} := \text{surface area of } \partial B(0, r) \text{ in } \mathbb{R}^n$$
 (1.22)

3.
$$D^{a}u := \frac{\partial^{|a|}u}{\partial x_{1}^{a_{1}}\cdots\partial x_{n}^{a_{n}}} := \partial_{x_{1}}^{a_{1}}\cdots\partial_{x_{n}}^{a_{n}}u$$

4. For $k \geq 0$,

$$D^{k}u := \{D^{a}u \mid |a| = k\}$$
 (1.23)

$$\left| D^k u \right| := \sqrt{\sum_{|a|=k} |D^a u|^2} \tag{1.24}$$

5.

$$Du = (u_{x_1}, \dots, u_{x_n}) = \nabla u = \operatorname{grad} u$$
 (1.25)

$$D^{2}u = \begin{pmatrix} u_{x_{1}x_{1}} & \cdots & u_{x_{1}x_{n}} \\ \cdots & \cdots & \cdots \\ u_{x_{n}x_{1}} & \cdots & u_{x_{n}x_{n}} \end{pmatrix} = Hu = Hess u$$
 (1.26)

$$\Delta u = \sum_{i=1}^{n} u_{x_i x_i} = \operatorname{div}(\operatorname{grad} u) = \operatorname{tr}(\operatorname{Hess} u)$$
 (1.27)

6.

$$C(U) := \{ u : U \longrightarrow \mathbb{R} \mid u \text{ continuous} \}$$
 (1.28)

$$C(\overline{U}) := \{ u \in C(U) \mid u \text{ is uniformly continuous on all bounded subsets of } \overline{U} \}$$
 (1.29)

$$C^{k}(U) := \{u : U \longrightarrow \mathbb{R} \mid u \text{ is } k\text{-times continuously differentiable}\}$$
 (1.30)

$$C^k(\overline{U}) := \{u \in C^k(U) \mid D^a u \text{ is uniformly continuous on all bounded subsets of } \overline{U}, \forall |a| \le k\}$$

$$(1.31)$$

$$C^{\infty}(U) = \bigcap_{k=0}^{\infty} C^{k}(U) \qquad , \qquad C^{\infty}(\overline{U}) = \bigcap_{k=0}^{\infty} C^{k}(\overline{U})$$
 (1.32)

$$C_c(U) \coloneqq \{u \in C(U) \mid u \text{ fixz$\sharp}\} \tag{1.33}$$

$$C_c^k(U) := \{ u \in C^k(U) \mid u \text{ f } \S \not = \}$$
 (1.34)

7. Given a measurable function $f: X \longrightarrow \mathbb{R}$,

$$ess \sup f := \inf \left\{ a \in \overline{\mathbb{R}} \mid \mu \left(f^{-1} \left((a, \infty) \right) \right) = 0 \right\}$$
 (1.35)

8.

$$L^p(U) := \{u : U \longrightarrow \mathbb{R} \mid u \text{ is Lebesgue measurable and } \|u\|_{L^p(U)} < \infty\}$$
 (1.36)

where

$$||u||_{L^{p(U)}} := \begin{cases} \left(\int_{U} |u|^{p} d\mu \right)^{\frac{1}{p}} & (1 \le p < \infty) \\ ess \sup |u| & (p = \infty) \end{cases}$$
 (1.37)

9.
$$L_{loc}^p(U) := \{u : U \longrightarrow \mathbb{R} \mid u \in L^p(V), \ \forall V \subset\subset U\}$$

1.6 PDE 中的微积分 – Gauss-Green 公式, 极坐标换元

1.6.1 Gauss-Green 公式

首先回顾一下外法向向量及(外)法向方向导数的记号.

• Suppose $U \subset \mathbb{R}^n$. If $\partial U \in C^1$, then along ∂U is defined the outward pointing unit normal vector field.¹

$$\vec{\gamma} = (\gamma^1, \gamma^2, \cdots, \gamma^n)$$
 , $\vec{\gamma}(x^0) = \gamma = (\gamma_1, \gamma_2, \cdots, \gamma_n)$

注. 我们总是将向量值函数的分量写作上标, 在具体某点的取值 (一般向量) 写作下标.

• Let $u \in C^1(\overline{U})$. We call $\frac{\partial u}{\partial y} := \vec{y} \cdot Du$ the (outward) normal derivative of u.

下面我们给出多元微积分中十分重要的 Gauss-Green 公式, 又称散度定理.

定理 1.6.1. [Gauss-Green Theorem].

Suppose $U \subset \mathbb{R}^n$ is open and bounded, $\partial U \in \mathbb{C}^1$.

(i) If $u \in C^1(\overline{U})$, then

$$\int_{U} u_{x_{i}} = \int_{\partial U} u \gamma^{i}, \ \forall 1 \le i \le n$$

$$\tag{1.38}$$

(ii) \forall vector field $\vec{u} \in C^1(\overline{U}; \mathbb{R}^n)$,

$$\int_{U} div \, \vec{u} = \int_{\partial U} \vec{u} \cdot \vec{\gamma} \tag{1.39}$$

注. • (ii) 即为 **Gauss-Green 公式 (Gauss 公式)**, 说明了对于 \mathbb{R}^n 中任一有界区域 U 中的向量场 \overline{u} , 其散度 $div \overline{u}$ 在整个区域上的积分 = 其在整个边界 ∂U 上的通量.

而散度作为描述向量场中某个点向外发散程度的标量,原式可理解为:

向量场 \overline{u} 在区域 U 中每个点发散程度的积累, 经过内部每个点散度相互抵消后, 最终等于其在边界 ∂U 处向外通量的总和.

¹关于区域边界光滑性 $\partial\Omega$ ∈ C^k 即单位外法向的定义, 详见附录 A-定义 A.1.1

• Gauss 公式事实上为 Green 公式在 n 维空间上的推广, 即 Green 公式事实上给出了二维空间 \mathbb{R}^2 上的散度定理. 在 (ii) 中, 取 $\vec{u} = (P,Q)$, 外法向方向为 $\vec{v} = (-dy, dx)$, 有:

$$\int_{U} \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} = \int_{\partial U} -Pdy + Qdx$$

简单地交换 P,Q 顺序即可得到最常见的 Green 公式的格式.

• 定理中(i)可作为(ii)的直接推论. 即可令 \bar{u} 中除第 i个分量 u^i 外均为 0, 即 \bar{u} = (0, · · · , u^i , · · · · , 0), then

$$\int_{U} \frac{\partial u^{i}}{\partial x_{i}} = \int_{\partial U} u^{i} \gamma^{i}$$

$$\int_{U} u_{x_i} = \int_{\partial U} u \gamma^i, \ \forall 1 \le i \le n$$

下面给出一系列根据 Gauss-Green 公式得到的推论, 在 PDE 中经常使用. 首先是所谓的分部积分公式.

推论 1.6.2. [Integration by parts formula].

Let $u, v \in C^1(\overline{U})$, then

$$\int_{U} u_{x_i} v = -\int_{U} u v_{x_i} + \int_{\partial U} u v \gamma^i$$
(1.40)

证明. 在 Gauss-Green 公式 (Thm 1.6.1 (i)) 中, 将 u 换成 uv, 即可得到

$$\int_{U} (u_{x_i}v + uv_{x_i}) = \int_{\partial U} uv\gamma^i$$

最后再给出三条常用的 Green 恒等式, 这也是 Gauss-Green 公式的直接推论.

推论 1.6.3. [Green's Formula].

Let $u, v \in C^2(\overline{U})$, then

(i)

$$\int_{U} \Delta u = \int_{\partial U} \frac{\partial u}{\partial \gamma} \tag{1.41}$$

(ii)

$$\int_{U} Du \cdot Dv = -\int_{U} u \Delta v + \int_{\partial U} u \frac{\partial v}{\partial \gamma}$$
 (1.42)

(iii)

$$\int_{U} (u\Delta v - v\Delta u) = \int_{\partial U} \left(u \frac{\partial v}{\partial \gamma} - v \frac{\partial u}{\partial \gamma} \right)$$
 (1.43)

证明.

(i) 将 Gauss-Green 公式 (Thm 1.6.1 (ii)) 中的 u 换为 ∇u, 得

$$\int_{U} \Delta u = \int_{\partial U} \nabla u \cdot \vec{\gamma} = \int_{\partial U} \frac{\partial u}{\partial \gamma}$$

(ii) 将 Gauss-Green 公式 (Thm 1.6.1 (ii)) 中的 u 换为 u∇v, 由于

$$div(u\nabla v) = u\Delta v + \nabla u \cdot \nabla v = u\Delta v + Du \cdot Dv$$

因此有

$$\int_{U} (u\Delta v + Du \cdot Dv) = \int_{\partial U} u\nabla v \cdot \vec{\gamma} = \int_{\partial U} u \frac{\partial v}{\partial \gamma}$$

(iii) 由于(ii) 中左式 u, v 对称, 因此交换 u, v 位置, 可得

$$\int_{U} Du \cdot Dv = -\int_{U} u \Delta v + \int_{\partial U} u \frac{\partial v}{\partial \gamma}$$
 (1.44)

$$\int_{U} Du \cdot Dv = -\int_{U} v\Delta u + \int_{\partial U} v \frac{\partial u}{\partial v}$$
 (1.45)

两式相减即可得证.

1.6.2 极坐标换元

极坐标换元是最复杂同时也是最常用的还原方法之一,下面给出一般的极坐标换元公式.

定理 1.6.4. [Polar Coordinate].

Let $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ be continuous and summable². Then

$$\int_{\mathbb{R}^n} f \, dx = \int_0^\infty dr \int_{\partial B(x_0, r)} f \, dS, \ \forall x_0 \in \mathbb{R}^n$$
 (1.46)

注. 该公式常配合球坐标换元公式使用, 即: (n 维球坐标换元公式)

$$\begin{cases} x_1 = r \cos \theta_1 \\ x_2 = r \sin \theta_1 \cos \theta_2 \\ \dots \\ x_{n-1} = r \sin \theta_1 \sin \theta_2 \cdots \cos \theta_{n-1} \\ x_n = r \sin \theta_1 \sin \theta_2 \cdots \sin \theta_{n-1} \end{cases}, \text{ with } \theta_i \in [-\pi, \pi), \ \forall 1 \le i \le n-1 \text{ and } \theta_n \in [0, 2\pi) \quad (1.47)$$

²此处的 summable 指的是函数可和, 在 Real Analysis 笔记-定义 3.1.6 中对一般可测函数积分的定义中出现, 指 $\int f^+$ 与 $\int f^-$ 二者至少有一者有界, 即可定义积分, 是比可积更弱的概念.

附录 A Supplementary Content

A.1 区域边界的光滑性

下面我们来给出区域边界的光滑性的定义.

定义 **A.1.1.** Suppose $\Omega \subset \mathbb{R}^n$ is open, $\partial\Omega \neq \emptyset$. 如果对于 $\forall p \in \partial\Omega$, $\exists p$ 的邻域 U, s. t. 在适当的空间直角坐标系下,

$$\partial\Omega\cap U=\{(x^{'},x^{n})\in\mathbb{R}^{n-1}\times\mathbb{R}\mid x^{'}\in D,\ x^{n}=\varphi(x^{'})\}$$
(A.1)

$$\Omega \cap U = \{ (x', x^n) \in \mathbb{R}^{n-1} \times \mathbb{R} \mid x' \in D, \ x^n > \varphi(x') \} \cap U$$
 (A.2)

where $\varphi \in C^k(\Omega)$, $D \subset \mathbb{R}^{n-1}$ open. 我们称 $\partial \Omega \in C^k$, 这里 $k = 0, 1, 2, \cdots$ 或 ∞ .

图 A.1: 边界的光滑性

注. 在定义 A.1.1 中, 设 $k \le 1$, $x_0^{'} \in \partial \Omega$, $p = (x_0^{'}, \varphi(x_0^{'}))$. 记

$$n_p = \frac{(\nabla \varphi(x_0^{'}), -1)}{\sqrt{1 + \left|\nabla \varphi(x_0^{'})\right|^2}}$$

称 n_p 为 $\partial\Omega$ 在 p 点的 单位外法向. n_p 的定义与空间直角坐标系的选择无关. 记

$$n: \partial\Omega \longrightarrow \mathbb{R}^n$$
 (A.3)

$$p \longmapsto n(p) = n_p \tag{A.4}$$

称 n 为 $\partial\Omega$ 的单位外法向. 因为 $\partial\Omega \in C^k$, $k \geq 1$, 所以 $n \in C(\partial\Omega; \mathbb{R}^n)$.