

Industrial AI Lab.
Prof. Seungchul Lee
Yunseob Hwang, Juwon Na



How do we Find  $\nabla_x f(x) = 0$ 



# **Analytic Approach**

- Direct solution
  - In some cases, it is possible to analytically compute  $x^*$  such that  $\nabla_x f(x^*) = 0$

$$f(x) = 2x_1^2 + x_2^2 + x_1x_2 - 6x_1 - 5x_2$$

$$\implies \nabla_x f(x) = \begin{bmatrix} 4x_1 + x_2 - 6 \\ 2x_2 + x_1 - 5 \end{bmatrix}$$

$$\implies x^* = \begin{bmatrix} 4 & 1 \\ 1 & 2 \end{bmatrix}^{-1} \begin{bmatrix} 6 \\ 5 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

## **Gradients**

Matrix derivatives

| у         | $\frac{\partial y}{\partial x}$ |
|-----------|---------------------------------|
| Ax        | $A^T$                           |
| $x^T A$   | $\boldsymbol{A}$                |
| $x^T x$   | 2 <i>x</i>                      |
| $x^T A x$ | $Ax + A^Tx$                     |

# How to Find $\nabla_x f(x) = 0$

#### Direct solution

– In some cases, it is possible to analytically compute  $x^*$  such that  $\nabla_x f(x^*) = 0$ 

| у         | $\frac{\partial y}{\partial x}$ |
|-----------|---------------------------------|
| Ax        | $A^T$                           |
| $x^T A$   | Α                               |
| $x^Tx$    | 2 <i>x</i>                      |
| $x^T A x$ | $Ax + A^Tx$                     |

$$f(x) = 2x_1^2 + x_2^2 + x_1x_2 - 6x_1 - 5x_2$$

$$\Rightarrow \nabla_x f(x) = \begin{bmatrix} 4x_1 + x_2 - 6 \\ 2x_2 + x_1 - 5 \end{bmatrix}$$

$$\Rightarrow x^* = \begin{bmatrix} 4 & 1 \\ 1 & 2 \end{bmatrix}^{-1} \begin{bmatrix} 6 \\ 5 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

#### **Examples**

• affine function  $g(x) = a^T x + b$ 

$$\nabla g(x) = a, \qquad \nabla^2 g(x) = 0$$



$$\nabla g(x) = 2Px + q, \qquad \nabla^2 g(x) = 2P$$

• 
$$g(x) = ||Ax - b||^2 = x^T A^T A x - 2b^T A x + b^T b$$

$$\nabla g(x) = 2A^T A x - 2A^T b, \qquad \nabla^2 g(x) = 2A^T A$$

| у         | $\frac{\partial y}{\partial x}$ |
|-----------|---------------------------------|
| Ax        | $A^T$                           |
| $x^T A$   | A                               |
| $x^Tx$    | 2 <i>x</i>                      |
| $x^T A x$ | $Ax + A^Tx$                     |

# **Iterative Approach**

#### Iterative methods

 More commonly the condition that the gradient equal zero will not have an analytical solution, require iterative methods



- The gradient points in the direction of "steepest ascent" for function f



#### **Descent Direction (1D)**

• It motivates the *gradient descent* algorithm, which repeatedly takes steps in the direction of the negative gradient

$$x \leftarrow x - \alpha \nabla_x f(x)$$

for some step size  $\alpha > 0$ 





Repeat:  $x \leftarrow x - \alpha \nabla_x f(x)$  for some step size  $\alpha > 0$ 





## **Gradient Descent in High Dimension**

Repeat: 
$$x \leftarrow x - \alpha \nabla_x f(x)$$
 for some step size  $\alpha > 0$ 



Global cost minimum  $J_{\min}(\omega)$ 



## **Gradient Descent in High Dimension**

Repeat:  $x \leftarrow x - \alpha \nabla_x f(x)$  for some step size  $\alpha > 0$ 









$$egin{aligned} \min && (x_1-3)^2+(x_2-3)^2 \ &= \min && rac{1}{2}[\,x_1\quad x_2] \left[egin{aligned} 2 & 0 \ 0 & 2 \end{aligned}
ight] \left[egin{aligned} x_1 \ x_2 \end{array}
ight] - \left[egin{aligned} 6 & 6 \end{array}
ight] \left[egin{aligned} x_1 \ x_2 \end{array}
ight] + 18 \end{aligned}$$

• Update rule:  $X_{i+1} = X_i - \alpha_i \nabla f(X_i)$ 

```
H = np.matrix([[2, 0],[0, 2]])
g = -np.matrix([[6],[6]])

x = np.zeros((2,1))
alpha = 0.2

for i in range(25):
    df = H*x + g
    x = x - alpha*df
print(x)
```

[[ 2.99999147] [ 2.99999147]]

| $f = rac{1}{2} X^T H X + g^T X$ |
|----------------------------------|
| abla f = HX + g                  |

| у         | $\frac{\partial y}{\partial x}$ |
|-----------|---------------------------------|
| Ax        | $A^T$                           |
| $x^T A$   | Α                               |
| $x^Tx$    | 2 <i>x</i>                      |
| $x^T A x$ | $Ax + A^Tx$                     |

## Choosing Step Size lpha

• Learning rate



Too small: converge very slowly



Too big: overshoot and even diverge



Reduce size over time

# Where will We Converge?



Any local minimum is a global minimum



Multiple local minima may exist

- Random initialization
- Multiple trials



## **Gradient Descent vs. Analytical Solution**

- Analytical solution for MSE
- Gradient descent
  - Easy to implement
  - Very general, can be applied to any differentiable loss functions
  - Requires less memory and computations (for stochastic methods)
- Gradient descent provides a general learning framework
- Can be used both for classification and regression
- Training Neural Networks: Gradient Descent

#### **Practically Solving Optimization Problems**

- The good news: for many classes of optimization problems, people have already done all the "hard work" of developing numerical algorithms
  - A wide range of tools that can take optimization problems in "natural" forms and compute a solution
- CVX (or CVXPY) as an optimization solver
  - Only for convex problems
  - Download: <a href="https://www.cvxpy.org/">https://www.cvxpy.org/</a>
- Gradient descent
  - Neural networks/deep learning
  - TensorFlow



#### **Summary: Training Neural Networks**

Optimization procedure



- It is not easy to numerically compute gradients in network in general.
  - The good news: people have already done all the "hard work" of developing numerical solvers (or libraries)
  - There are a wide range of tools
    - We will use TensorFlow