Guía 7 - Sistemas deductivos, completitud y compacidad para lógica de primer orden

Solución de un alumno

Verano 2021

Ejercicio 1

Ejercicio 2*

a. Sabemos que $\Delta \vdash \varphi$ (pertenece al conjunto). Si φ no es universalmente válida, entonces existe un modelo \mathcal{M} tq $\mathcal{M} \not\models \varphi$. Entonces no es correcto con respecto a la clase de todos los modelos.

b. el conjunto de todos los modelos $\vdash SQ_1$. Pero $\Delta \not\vdash SQ_1$. Entonces Δ no es completo con respecto al conj de todas las interpretaciones.

c.

- CORRECTO: Sabemos que $\Delta \vdash \varphi$ (pertenece al conjunto). Si φ es universalmente válida, entonces todo modelo \mathcal{M} pasa que $\mathcal{M} \models \varphi$. Entonces es correcto con respecto a la clase de todos los modelos.
- COMPLETO: el conjunto de todos los modelos $\vdash SQ_i$. También $\Delta \vdash SQ_i$ (porque pertenece). Entonces Δ es completo con respecto al conj de todas las interpretaciones.

Ejercicio 3

SQ8: $\forall xyz(R(x,y) \land R(y,z) \rightarrow R(x,z))$ $SQ^T = SQ \cup \{SQ8\}$ a. Si

 $C = \{A : A \text{ es un modelo transitivo}\}$

Sea

 $\mathcal{C}' = \{\mathcal{A}: \mathcal{A} \models SQ^T\}$

Basta con ver que:

$$C = C'$$

Para demostrar que SQ^T es correcto y completo con respecto a \mathcal{C} . (α) Si \mathcal{M} es un modelo transitivo entonces $\mathcal{M} \models SQ8$.

 (\supseteq) Si $\mathcal{M} \models SQ8$ implica que la relación binaria que tiene el modelo es transitiva.

Entonces estamos bajo el teorema de Godel, entonces SQ^T es correcto y completo con respecto a \mathcal{C} .

b. Qvq para toda fórmula φ :

$$C = \{ todos los modelos \}$$

$$\mathcal{C} \models \varphi \Rightarrow SQ^T \vdash \varphi$$

Vemos que:

$$\mathcal{C} \models \varphi \Rightarrow SQ \vdash \varphi \underset{(*)}{\Rightarrow} SQ \cup \{SQ8\} \vdash \varphi$$
$$\Rightarrow SQ^T \vdash \varphi$$

- (*) vale porque $SQ \cup \{SQ8\}$ es consistente.
- c. Ya visto en (a).
- d. Qvq NO es cierto que para toda fórmula φ :

 $C = \{ todos los modelos \}$

$$SQ^T \vdash \varphi \Rightarrow \mathcal{C} \models \varphi$$

Entonces buscamos φ tq:

$$SQ^T \vdash \varphi \land \mathcal{C} \not\models \varphi$$

Sea el modelo $\mathcal{M} = (\mathbb{N}, =)$, es decir la funcío binaria es la igualdad con interpretación estandar. Vemos que si tomamos φ como SQ8:

$$SQ^T \vdash \varphi \land \mathcal{M} \not\models \varphi \Rightarrow \mathcal{C} \not\models \varphi$$

Ejercicio 4

Ejercicio 5*

a. SQ8 es válido porque $P\alpha T$.

SQ9 es válido porque $P\alpha T$ y T es transitiva.

SQ9 es válido porque T es la relación transitiva extendida de P.

b.

$$\varphi: \forall xy(T(x,y) \to \exists z(P(x,z)))$$

La φ nos dice: "Si hay una relación transitiva entre x e y, entonces existe una relación entre x y z" Tomamos el modelo:

Cumple SQ8, SQ9, SQ10 pero no cumple φ .

c. No es completa porque encontramos un modelo que en el que no vale φ , entonces no es posible que $SQ^+ \vdash \varphi$.

Ejercicio 6*

Veamos que nos dicen los tres axiomas nuevos: - $\forall x(0 \neq x+1)$ Es decir, x aplicada con 1 nunca nos da 0. - $\forall xy(x+1=y+1\to x=y)$ Es inyectiva (al aplicarle 1). - $\forall xy((x+y)+1=x+(y+1))$ Es asociativa (no tan fuerte enrealidad).

Tomamos el modelo $\mathcal{M} = (\mathbb{N}, +, 0_{\mathcal{M}}, 1_{\mathcal{M}}).$

Donde $0_{\mathcal{M}}: 1 \text{ y } 1_{\mathcal{M}}: 2$. Este modelo cumple con los axiomas.

Figure 1: alt text

Sea la siguiente fórmula:

$$\varphi : \forall x (0 + x = x)$$

Sucede que:

$$\mathcal{C} \models \varphi$$
$$\mathcal{M} \models P$$

Pero

$$\mathcal{M} \not\models \varphi \Rightarrow P \not\vdash \varphi$$

Ejercicio 7

a.

$$\varphi_2: \exists xy(x \neq y)$$

$$\varphi_3: \exists xyz(x \neq y \land x \neq z \land y \neq z)$$
 ...
$$\varphi_n: \exists z_1...z_n(z_1 \neq z_2 \land ... \land z_1 \neq z_n \land z_2 \neq z_3 \land ... \land z_{n-1} \neq z_n)$$

 $\Gamma = \{\varphi_i : i \in \mathbb{N}\}$

 $\mathcal{M} \models \Gamma$ entonces M es infinito.

Nota:
$$(\times_1 \neq \times_2) \equiv \neg(\times_1 = \times_2)$$

- b. Asumimos que existe tal fórmula y la llamamos α . Sea $\Gamma' = \Gamma \cup \{\alpha\}$.
 - Veamos que es insatisfacible: Suponemos que es satisfacible, entonces existe un modelo y una valuación tal que $\mathcal{M}, v \models \Gamma'$. Entonces $\mathcal{M}, v \models \Gamma$ entonces el dominio es infinito. Pero también $\mathcal{M}, v \models \alpha$ que significa que el dominio es finito. Absurdo. Entonces el conjunto Γ' es insatisfacible.
 - Veamos que es satisfacible: para cualquier subconjunto finito $\Delta \alpha \Gamma'$ puede pasar que no contenga ningún φ_i entonces simplemente tomando el modelo con un elemento en el dominio lo satisface. Si por el otro lado contiene φ_i , tomamos k como el mayor i tq $\varphi \in \Delta$. Entonces tomamos el modelo que tiene k+1 elementos en el dominio y este va a satisfacer a Δ . Entonces por compacidad, como todo subconjunto es satisfacible entonces el conjunto Γ' es satisfacible.

Absurdo, no puede ser satisfacible y no satisfacible. Entonces no es expresable la fórmula α . # Ejercicio 8* Suponemos que es expresable. Entonces:

 $\varphi_s(x,y)$: pertenece a la clausura transitiva de la relación binaria $R^{\mathcal{M}}$

Definimos las siguiente fórmulas:

$$\dots$$

$$\varphi_i(x,y): \neg \exists z_1 z_2...z_i (R(x,z_1) \wedge$$

$$R(z_1,z_2) \wedge \dots \wedge R(z_{n-1},z_n) \wedge R(z_n,y) \rightarrow R(x,y))$$

 $\varphi_0(x,y): \neg \exists z (R(x,z) \land R(z,y) \rightarrow R(x,y))$

Definimos:

$$\Phi = \{ \varphi_i : i \in \mathbb{N} \}$$
$$\Gamma = \Phi \cup \{ \varphi_s \}$$

Veamos que sea satisfacible:

$$\mathcal{M} \models \Phi \Rightarrow R$$
 no es transitiva $\mathcal{M} \models \varphi_s \Rightarrow R$ es transitiva

Si $\mathcal{M} \models \Gamma$, entonces R es transitiva y no es transitiva. Absurdo.

Veamos que es satisfacible:

Sea Δ un conjunto finito tq $\Delta \subset \Gamma$, veamos que es satisfacible. - $\Delta = \{\varphi_s\}$ ó $\Delta = \emptyset$ - En otro caso: Tomamos k como el máximo i tq $\varphi_i \in \Delta$. Entonces vamos a armar un modelo que satisfaga Δ . Tomamos el modelo \mathcal{M} tq $R_{\mathcal{M}} = \{(1,2),(2,3),...,(k,k+1),(1,k+1)\}$. Entonces $\mathcal{M} \models \Delta$.

Entonces es satisfacible. Absurdo. Entonces no existe una fórmula para para φ_s .

Ejercicio 9

Suponemos que es expresable la propiedad y la llamamos α a tal fórmula.

 φ_i : "existen dos nodos que no están conectados por i o menos pasos"

$$\varphi_0: \neg \forall xy(R(x,y))$$

$$\varphi_1: \exists xy(\exists z(R(x,z) \land R(z,y)) \land R(x,y) \land distintos(x,y,z))$$

$$\dots$$

$$\varphi_n: \neg \forall xy(\exists z_1,...,z_n(R(z_1,z_2) \land R(z_2,z_3) \land \dots \land R(z_{n-1},z_n))$$

$$\Phi = \{\varphi_i: i \in \mathbb{N}\}$$

$$\Gamma = \Phi \cup \{\alpha\}$$

- Veamos que es insatisfacible: Suponemos que es satisfacible, entonces existe un modelo y una valuación tal que $\mathcal{M}, v \models \Gamma$. Entonces $\mathcal{M}, v \models \Phi$ entonces existe un par de nodos que no tiene camino finito. Pero también $\mathcal{M}, v \models \alpha$ que significa que para todo par de nodos hay un camino finito. Absurdo. Entonces el conjunto Γ es insatisfacible.
- Veamos que es satisfacible: para cualquier subconjunto finito $\Delta \alpha \Gamma'$ puede pasar que no contenga ningún φ_i entonces simplemente tomando el modelo con un elemento en el dominio lo satisface. Si por el otro lado contiene φ_i , tomamos k como el mayor i tq $\varphi \in \Delta$. Entonces tomamos el modelo que tiene k+1 elementos en el dominio y este va a satisfacer a Δ . Entonces por compacidad, como todo subconjunto es satisfacible entonces el conjunto Γ' es satisfacible.

Absurdo, no puede ser satisfacible y no satisfacible. Entonces no es expresable la fórmula α .

Ejercicio 10*

Suponemos que es expresable. Entonces:

 α : f es una función circular

Definimos las siguiente fórmulas:

$$\varphi_0: \exists x (f(x) \neq x)$$

$$\varphi_1: \exists x (f^2(x) \neq x)$$

...
$$\varphi_i: \exists x (f^i(x) \neq x)$$

$$\Phi : \{\varphi_i : i \in \mathbb{N}\}$$

$$\Gamma : \Phi \cup \{\alpha\}$$

- I) Suponemos que Γ es satisfacible. Entonces existe \mathcal{M} y v valuación tq $\mathcal{M}, v \models \Gamma$. De aquí se desprende que $\mathcal{M}, v \models \Phi$, lo cual implica que f no es circular porque no existe $i \in \mathbb{N}$ tq $\forall x (f^i(x) = x)$. Pero también $\mathcal{M}, v \models \alpha$. Lo cual implica que f es circular. Absurdo. Entonces Γ es insatisfacible.
- II) Sea $\Delta \alpha \Gamma$, Δ finito. Entonces es de la forma:
- No tiene ningún φ_i : $\Delta = \{\alpha\}$ ó \emptyset
- Tiene algún φ_i : Tomamos k como el mayor natural i tq $\varphi_i \in \Delta$. Entonces tomamos el modelo \mathcal{M} tq tiene una $f_{\mathcal{M}}$ que cumple que es circular a partir de k+1 iteraciones. Entonces el modelo satisface Δ .

Entonces por compacidad Γ es satisfacible. Absurdo, no puede ser satisfacible y no satisfacible. Entonces α no es expresable.

Ejercicio 11*

Ejercicio 12

- a. S1: Sabemos por los naturales que el sucesor de un número natural nunca va a ser 0. $S4_n$: Sabemos que los naturales tienen la propiedad que siempre existe un sucesor (y es distinto del anterior). Entonces $S4_n$ es siempre verdadera.
- b. Γ finito,

$$Con(\Gamma) = Con(\Sigma)$$

- Σ insatisfacible: por compacidad existe subconjunto de Σ insatisfacible. Listo.
- Σ satisfacible: Sabemos que $\Gamma \alpha Con(\Sigma)$ (por def de Con). Sea $\Delta \alpha \Sigma$ tq $\Delta \models \Gamma$ y que sea el mínimo que se pueda formar. Entonces vemos que es finito porque Γ es finito (solo se necesitan finitos elementos para derivar finitos elementos). Notemos que $\Delta \models \Gamma$, entonces $\Delta \models \Sigma$. Listo.
- c. Sea k el mayor i tq $S4_i \in \Gamma$, entonces podemos formar el modelo \mathcal{M} tq:
- 1. $\exists x(suc^{k+1}(x) = x)$ y que
- 2. para todo $z \leq k$ cumpla $\forall x(suc^z(x) \neq x)$.

Tomamos: -
$$M = \{0, 1, ..., k+2\}$$
 - $suc_{\mathcal{M}}(x) = \begin{cases} 1 & x = k+2 \\ x+1 & cc \end{cases}$

Podemos pensarlo como una ronda de nodos, donde $suc_{\mathcal{M}}$ va pasando de nodo a nodo. Notamos que cumple con (1) tomando cualquier x distinto de 0 y cumple con (2). Nota: no podemos hacer que vuelva al 0 porque sino no cumpliría S1.

d. Usamos el recíproco del item (b). Como no existe ningún subconjunto finito de SQ_N que fuerse a SQ_N , entonces no existe ningún conjunto de fórmulas/axiomas va a forzar a SQ_N , es decir ningún conjunto de fórmulas es completa con respecto a \mathcal{N} .