IBM Research

Hypercube locality-sensitive hashing for approximate near neighbors

Thijs Laarhoven

mail@thijs.com
http://www.thijs.com/

MFCS 2017, Aalborg, Denmark (August 23, 2017)

Data set

Target

Nearest neighbor (ℓ_2 -norm)

Nearest neighbor (ℓ_1 -norm)

Nearest neighbor (angular distance)

Nearest neighbor (ℓ_2 -norm)

Distance guarantee

Approximate nearest neighbor

Approximation factor c > 1

Example: Precompute Voronoi cells

Problem setting

• High dimensions d

Problem setting

- High dimensions d
- Large data set of size $n = 2^{\Omega(d/\log d)}$
 - ▶ Smaller n? \Longrightarrow Use JLT to reduce d

Problem setting

- High dimensions d
- Large data set of size $n = 2^{\Omega(d/\log d)}$
 - ▶ Smaller n? \Longrightarrow Use JLT to reduce d
- Assumption: Data set lies on the sphere
 - Equivalent to angular distance/cosine similarity in all of \mathbb{R}^d
 - ► Reduction from Eucl. NNS in \mathbb{R}^d to Eucl. NNS on the sphere [AR'15]

Problem setting

- High dimensions d
- Large data set of size $n = 2^{\Omega(d/\log d)}$
 - ▶ Smaller n? \Longrightarrow Use JLT to reduce d
- Assumption: Data set lies on the sphere
 - Equivalent to angular distance/cosine similarity in all of \mathbb{R}^d
 - ► Reduction from Eucl. NNS in \mathbb{R}^d to Eucl. NNS on the sphere [AR'15]
- Goal: Query time $O(n^{\rho})$ with $\rho < 1$

[Charikar, STOC'02]

Random point

Opposite point

Two Voronoi cells

Another pair of points

Overview

• Simple: one hyperplane corresponds to one inner product

- Simple: one hyperplane corresponds to one inner product
- Easy to analyze: collision probability $1 \frac{\theta}{\pi}$ for vectors at angle θ

- Simple: one hyperplane corresponds to one inner product
- Easy to analyze: collision probability $1 \frac{\theta}{\pi}$ for vectors at angle θ
- Can be made very efficient in practice
 - ► Sparse hyperplane vectors [Ach'01, LHC'06]
 - Orthogonal hyperplanes [TT'07]

- Simple: one hyperplane corresponds to one inner product
- Easy to analyze: collision probability $1 \frac{\theta}{\pi}$ for vectors at angle θ
- Can be made very efficient in practice
 - Sparse hyperplane vectors [Ach'01, LHC'06]
 - Orthogonal hyperplanes [TT'07]
- Theoretically suboptimal: use "nicer" (lattice-based) partitions

- Simple: one hyperplane corresponds to one inner product
- Easy to analyze: collision probability $1 \frac{\theta}{\pi}$ for vectors at angle θ
- Can be made very efficient in practice
 - Sparse hyperplane vectors [Ach'01, LHC'06]
 - Orthogonal hyperplanes [TT'07]
- Theoretically suboptimal: use "nicer" (lattice-based) partitions
 - Random points [AI'06, AINR'14, ...]

- Simple: one hyperplane corresponds to one inner product
- Easy to analyze: collision probability $1 \frac{\theta}{\pi}$ for vectors at angle θ
- Can be made very efficient in practice
 - Sparse hyperplane vectors [Ach'01, LHC'06]
 - Orthogonal hyperplanes [TT'07]
- Theoretically suboptimal: use "nicer" (lattice-based) partitions
 - ► Random points [AI'06, AINR'14, ...]
 - Leech lattice [AI'06]

- Simple: one hyperplane corresponds to one inner product
- Easy to analyze: collision probability $1 \frac{\theta}{\pi}$ for vectors at angle θ
- Can be made very efficient in practice
 - Sparse hyperplane vectors [Ach'01, LHC'06]
 - Orthogonal hyperplanes [TT'07]
- Theoretically suboptimal: use "nicer" (lattice-based) partitions
 - ► Random points [Al'06, AlNR'14, ...]
 - ► Leech lattice [AI'06]
 - Classical root lattices A_d, D_d [JASG'08]
 - ► Exceptional root lattices $E_{6,7,8}$, F_4 , G_2 [JASG'08]

- Simple: one hyperplane corresponds to one inner product
- Easy to analyze: collision probability $1 \frac{\theta}{\pi}$ for vectors at angle θ
- Can be made very efficient in practice
 - Sparse hyperplane vectors [Ach'01, LHC'06]
 - Orthogonal hyperplanes [TT'07]
- Theoretically suboptimal: use "nicer" (lattice-based) partitions
 - ► Random points [Al'06, AlNR'14, ...]
 - ► Leech lattice [AI'06]
 - ► Classical root lattices A_d , D_d [JASG'08]
 - ► Exceptional root lattices $E_{6,7,8}$, F_4 , G_2 [JASG'08]
 - Cross-polytopes [TT'07, AILRS'15, KW'17]

- Simple: one hyperplane corresponds to one inner product
- Easy to analyze: collision probability $1 \frac{\theta}{\pi}$ for vectors at angle θ
- Can be made very efficient in practice
 - Sparse hyperplane vectors [Ach'01, LHC'06]
 - Orthogonal hyperplanes [TT'07]
- Theoretically suboptimal: use "nicer" (lattice-based) partitions
 - ► Random points [AI'06, AINR'14, ...]
 - Leech lattice [AI'06]
 - ► Classical root lattices A_d , D_d [JASG'08]
 - ► Exceptional root lattices $E_{6,7,8}$, F_4 , G_2 [JASG'08]
 - Cross-polytopes [TT'07, AILRS'15, KW'17]
 - Hypercubes [TT'07]

Asymptotically "optimal"

- Simple: one hyperplane corresponds to one inner product
- Easy to analyze: collision probability $1 \frac{\theta}{\pi}$ for vectors at angle θ
- Can be made very efficient in practice
 - Sparse hyperplane vectors [Ach'01, LHC'06]
 - Orthogonal hyperplanes [TT'07]
- Theoretically suboptimal: use "nicer" (lattice-based) partitions
 - ► Random points [AI'06, AINR'14, ...]
 - ► Leech lattice [AI'06]
 - ► Classical root lattices A_d , D_d [JASG'08]
 - ► Exceptional root lattices $E_{6,7,8}$, F_4 , G_2 [JASG'08]
 - ► Cross-polytopes [TT'07, AILRS'15, KW'17]
 - Hypercubes [TT'07]

Topic of this paper

- Simple: one hyperplane corresponds to one inner product
- Easy to analyze: collision probability $1 \frac{\theta}{\pi}$ for vectors at angle θ
- Can be made very efficient in practice
 - Sparse hyperplane vectors [Ach'01, LHC'06]
 - Orthogonal hyperplanes [TT'07]
- Theoretically suboptimal: use "nicer" (lattice-based) partitions
 - ► Random points [AI'06, AINR'14, ...]
 - Leech lattice [AI'06]
 - Classical root lattices A_d, D_d [JASG'08]
 - Exceptional root lattices $E_{6,7,8}$, F_4 , G_2 [JASG'08]
 - Cross-polytopes [TT'07, AILRS'15, KW'17]
 - Hypercubes [TT'07]

[Terasawa-Tanaka, WADS'07]

Vertices of hypercube

Random rotation

Collision probabilities

Collision probabilities

- Two vectors at angle $(\frac{\pi}{2})^-$ lie in the same orthant with probability $(\frac{1}{\pi})^d$
- Two vectors at angle $\frac{\pi}{3}$ lie in the same orthant with probability $(\frac{\sqrt{3}}{\pi})^d$

Asymptotic performance (random data)

Asymptotic performance (random data)

• Hyperplane LSH: $\rho = \frac{\sqrt{2}}{\pi c \ln 2} + O(\frac{1}{c^2})$

Asymptotic performance (random data)

- Hyperplane LSH: $\rho = \frac{\sqrt{2}}{\pi c \ln 2} + O(\frac{1}{c^2})$
- Hypercube LSH: $\rho = \frac{\sqrt{2}}{\pi c \ln \pi} + O(\frac{1}{c^2})$ saves factor $\log_2(\pi) \approx 1.65$

Asymptotic performance (random data)

- Hyperplane LSH: $\rho = \frac{\sqrt{2}}{\pi c \ln 2} + O(\frac{1}{c^2})$
- Hypercube LSH: $\rho = \frac{\sqrt{2}}{\pi c \ln \pi} + O(\frac{1}{c^2})$ saves factor $\log_2(\pi) \approx 1.65$
- Cross-polytope LSH: $\rho = \frac{1}{2c^2-1} + o(\frac{1}{c^2})$

Positive results

- Exact asymptotics for full-dimensional hypercube LSH
- Exact asymptotics for partial hypercube LSH when $d' \le O(d/\log d)$
- Asymptotically superior to hyperplane LSH
- Theoretical justification for using orthogonal hyperplanes

Positive results

- Exact asymptotics for full-dimensional hypercube LSH
- Exact asymptotics for partial hypercube LSH when $d' \le O(d/\log d)$
- Asymptotically superior to hyperplane LSH
- Theoretical justification for using orthogonal hyperplanes

Negative results

- Asymptotically inferior to e.g. cross-polytope LSH
- Need large hypercubes to beat hyperplane LSH

Positive results

- Exact asymptotics for full-dimensional hypercube LSH
- Exact asymptotics for partial hypercube LSH when $d' \le O(d/\log d)$
- Asymptotically superior to hyperplane LSH
- Theoretical justification for using orthogonal hyperplanes

Negative results

- Asymptotically inferior to e.g. cross-polytope LSH
- Need large hypercubes to beat hyperplane LSH

Open problems

- Exact asymptotics for all of partial hypercube LSH
- Other, better partition families?

Positive results

- Exact asymptotics for full-dimensional hypercube LSH
- Exact asymptotics for partial hypercube LSH when $d' \le O(d/\log d)$
- Asymptotically superior to hyperplane LSH
- Theoretical justification for using orthogonal hyperplanes

Negative results

- Asymptotically inferior to e.g. cross-polytope LSH
- Need large hypercubes to beat hyperplane LSH

Open problems

- Exact asymptotics for all of partial hypercube LSH
- Other, better partition families?

Thank you for your attention!