

Introduction to Simulation

Random Variables and Random Numbers

Motivation, Contents

Motivation:

- Discrete-event systems usually contain random variables
- These have a significant effect on discrete–event simulations
- Our simulator has to be able to sample random variables

Contents:

- Explain what a random variable (RV) is
- Explain some important properties of RVs
- Present some of the most important RVs in practice
- Describe how to generate random numbers

Background Reading

Relevant sections of the book:

- **5.1**
- **5.2**
- **5.3**
- **5.4**
- **5.6**
- **7.**1
- **7.2**
- **7.3.1**
- **8.1**

Random Variables

A simple definition:

Random variables take on values at random

Examples:

- Service times at a bank
- Time to Failure (TTF) of a piece of equipment
- Human lifetimes

However, the randomness usually has a structure

This structure is described using a probability distribution

Random Variables

Example: inter-arrival times of customers at a bank:

Presented in this way, the values have no apparent structure

Random Variables

Group the measurements into half-minute intervals:

A certain structure in the randomness becomes visible

Let X be a random variable

If the range R_X of X is finite or countably infinite, then

X is a discrete random variable

Denote the possible values of X by x_i

■ Then we have probabilities $p(x_i) = P(X = x_i)$

 $p(x_i)$ is called the probability mass function

Example:

Then we have $R_X = \{1, 2, 3, 4, 5, 6\}$

$$x_i$$
 1 2 3 4 5 6 $p(x_i)$ 1 1 1 1 1 /6

Example: Sum of two dice

We have: $R_X = \{2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}$

 x_i 2 3 4 5 6 7 8 9 10 11 12 $p(x_i)$ 1 2 3 4 5 6 5 4 3 2 1 /36

Example: Choice of meal at a university canteen

$$R_X = \{Line1, Line2, Line3\}$$

Probabilities:

$$x_i$$
 Line1 Line2 Line3 $p(x_i)$ 800 600 300 /1700

Continuous Distributions

Let X be a random variable

If the range R_X of X is uncountably infinite, then

X is a continuous random variable

Continuous distributions can be described using

- Probability density functions (pdf)
- Cumulative distribution functions (cdf)

Continuous Distributions

Examples:

• Inter-arrival times at a bank:

$$R_X = (0, \infty)$$
 seconds

Heights of students in ItS:

$$R_X = (155, 204)$$
 cm

PDF and CDF

A function f(x) is a probability density function (pdf), if

$$f(x) \ge 0 \quad \forall x \qquad \int_{-\infty}^{\infty} f(s) \, ds = 1$$

A function F(x) is a cumulative distribution function (cdf), if

$$\lim_{x \to \infty} F(x) = 1 \qquad x_1 > x_2 \Rightarrow F(x_1) \ge F(x_2)$$

A cdf F(x) is always related to a pdf f(x) via

$$F(x) = \int_{-\infty}^{x} f(s) \, ds$$

PDF and CDF

Meaning of the pdf:

$$P(a < X < b) = \int_{a}^{b} f(s) ds$$

PDF and CDF

Meaning of the cdf:

$$P(X \le a) = F(a)$$

Sampling

What is sampling?

Obtaining a random number from a given distribution

Example:

Sum of two dice rolls

One possible sequence of samples:

7, 4, 10, 2, 5, 11, 8, 4

Sampling

If you collect enough samples, ...

you will begin to see the distribution

Common Distributions

There are many distributions in common use:

- Uniform
- Exponential
- Normal
- Triangular
- Weibull

- Lognormal
- Beta
- Gamma
- Hyperexponential
- Cox

We will just look at a few of these

The Uniform Distribution

The Triangular Distribution

The Exponential Distribution

The Exponential Distribution

Definition:

$$f(x) = \lambda e^{-\lambda x}$$
 $F(x) = 1 - e^{-\lambda x}$

Applications:

- Independent arrivals from an infinite population
- Lifetimes of electronic components

The Exponential Distribution

The exponential distribution is memoryless:

$$P(X > s + t | X > s) = P(X > t)$$

Intuitive interpretation of memorylessness:

 The probability that the event will occur within a given future time interval does not depend on how long you have been waiting for it to happen.

This property is unique and very important!

The Normal Distribution

The Normal Distribution

Definition:

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$$

$$F(x) = ?$$

 σ^2 is the variance μ is the mean

 $\sigma^2 = 1$, $\mu = 0$ yields the standard normal distribution

F(x) cannot be expressed analytically

The Normal Distribution

Applications:

- Shooting at a target
- Common natural attributes of a population
- Service times

Also known as the Gaussian distribution

The Lognormal Distribution

The Lognormal Distribution

Lognormal density function:

$$f(x) = \frac{1}{x\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{\ln(x)-\mu}{\sigma}\right)^2}$$

F(x) cannot be expressed analytically

$$X \sim \text{LN}(\mu, \sigma^2) \iff \ln X \sim \text{N}(\mu, \sigma^2)$$

Applications: Many empirically determined distributions

- Household incomes
- Age at first marriage

The Lognormal Distribution

Aus

 L. Rebeggiani: Persönliche Einkommensverteilung, privater Konsum und Wachstum

29 / 49

The Weibull Distribution

The Weibull Distribution

Definition:

$$f(x) = \frac{\beta}{\alpha} \left(\frac{x}{\alpha}\right)^{\beta - 1} e^{-\left(\frac{x}{\alpha}\right)^{\beta}} \qquad F(x) = 1 - e^{-\left(\frac{x}{\alpha}\right)^{\beta}}$$

Application: lifetimes of different types of component:

• β < 1: "Infant mortality" (Manufacturing errors)

• $\beta = 1$: "Memoryless" (Electronic parts)

• $\beta > 1$: "Wear" (Mechanical parts)

The Weibull Distribution

Empirical Distributions

In practice, measured distributions often do not correspond to standard mathematical functions

Example:

Time to repair for a welding robot

The Sims - Almost Normal Family Life

The situation contains five random variables:

- Duration of being in love
- Duration of being heartbroken
- Time to the next call from school
- Duration of an employment period
- Duration of an unemployment period

The curves are not drawn to the same scale!

Star Trek - USS Enterprise in Danger

The situation contains five random variables:

- Time for medical treatment stage 1
- Time for medical treatment stage 2
- Time between two particle hits
- Total time that will be needed for the repair
- Drain on the shields of one particle hit

N.B.:

 The curves are not drawn to the same scale!

Random Numbers

Our simulator uses random variables

For example in order to model arrival intervals & service times

We need samples from these random variables

- In order to obtain appropriately distributed random numbers
- For example individual arrival intervals & service times

We must therefore be able to generate random numbers

We will use a deterministic algorithm

■ In fact, we generate *pseudo*–random numbers

Properties of RNG

Desirable properties of a pseudo-random number generator:

- Independence (contains no pattern)
- Uniform distribution
- Speed
- Portability
- Long cycle
- Replicability

The most important type of RNG is called

The Linear Congruential Method (LCM)

The LCM is used in almost all simulators

- It (can) fulfil all the desired properties
- It is very easy to implement

The LCM needs three integer parameters a, c and m

It generates a sequence of integers $0 < X_i < m$:

$$X_i = (a \cdot X_{i-1} + c) \bmod m$$

The random numbers $0 < R_i < 1$ that we need are then

$$R_i = \frac{X_i}{m}$$

The starting value X_0 is called the *seed*

The sequence of RN is periodic

The quality of the RN produced depends on *a*, *c* and *m*

How to best choose *a*, *c* and *m*?

The choice is made in order to achieve maximum period P

Different choices for a, c and m yield strongly differing Ps

Example: a = 13, m = 64, c = 0, $X_0 = 1$, 2, 3, and 4

i	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Xi	1	13	41	21	17	29	57	37	33	45	9	53	49	61	25	5	1
X_i	2	26	18	42	34	58	50	10	2								
X_i	3	39	59	63	51	23	43	47	35	7	27	31	19	55	11	15	3
X_i	4	52	36	20	4												

Consider the LCM with a=10205, c=0, $m=2^{15}$

```
X_0 = 12345 = 011000000111001
X_1 = 20533 = 101000000110101
X_2 = 20673 = 101000011000001
X_3 = 7581 = 001110110011101
X_4 = 31625 = 111101110001001
X_5 = 1093 = 000010001000101
X_6 = 12945 = 01100101001001
X_7 = 15917 = 011111000101101
```

Look at the periodicity of the last bits!

Consider the sequence

• 0.2, 0.8, 0.7, 0.3, 0.4, 0.6, 0.9, 0.1

Interpret the numbers as (x,y) pairs:

(0.2, 0.8) (0.7, 0.3) (0.4, 0.6) (0.9, 0.1)

Plot results for LCM a = 37, c = 1, m = 64 in (x, y) pairs:

The IBM generator RANDU: $a = 2^{16} + 3$, c = 0, $m = 2^{31}$

■ Plot results in (x, y, z) triplets:

Generating Random Variates

How to generate random numbers of any distribution:

Given:

- a U(0,1) random number generator
- a cdf F(x) that describes the desired distribution

Then:

- 1. Generate $y \sim U(0,1)$
- 2. Compute $x = F^{-1}(y)$

Required when your simulator doesn't provide the distribution you need

Generating Random Variates

How to generate random numbers of any distribution:

Generating Random Variates

Effect of the method:

To redistribute the uniformly distributed random numbers

Learning Goals

Learning questions:

- What is a probability density function?
- What is a probability distribution function?
- How are the two related?
- How are the PDF and CDF interpreted?
- How are the Exponential, Normal and Weibull distributions defined?
- Which probability distribution has the memoryless property? What does this mean in practice?
- What properties should a random number generator have?
- Explain how the LCM works