

MECH 6v29.002 – Model Predictive Control

L7 – MPC Theory

Outline

- Stability
 - Lyapunov Stability
 - Closed-loop MPC Stability

Stability

- The closed-loop stability
 of a system under MPC
 is a complex function of the
 - Model: *A*, *B*, *C*
 - Control parameters: $N, Q \ge 0, R > 0, P \ge 0$

 $J_0^*(x_0) = \min_{U_0} \sum_{k=0}^{T} x_k^T Q x_k + u_k^T R u_k + x_N^T P x_N$ s.t. $x_{k+1} = A x_k + B u_k, \ k \in \{0, 1, ..., N-1\}$ $u_{\min} \le u_k \le u_{\max}, \ k \in \{0, 1, ..., N-1\}$

$$y_{\min} \le Cx_k \le y_{\max}, \ k \in \{1, 2, ..., N\}$$

- Constraints: u_{\min} , u_{\max} , y_{\min} , y_{\max} $x_0 = x(0)$
- Multiple approaches to guarantee stability
 - Terminal constraint: $x_{k+N} = 0$
 - Relaxed terminal constraint: $x_{k+N} = \Omega$
 - Terminal cost: $x_N^T P x_N$, P satisfies DARE
 - Contraction constraints: $||x_{k+1}|| \le \alpha ||x_k||$, $\alpha < 1$
- We will explore some of these

Lyapunov Stability

- While there are multiple ways of defining and analyzing stability, we will focus on Lyapunov stability
- Consider the generic, autonomous system

$$x_{k+1} = f(x_k)$$

f(0) = 0x = 0 is an equilibrium

The equilibrium is

• Stable – if $\forall \varepsilon > 0$, $\exists \delta = \delta(\varepsilon) > 0$ s.t.

$$||x_0|| < \delta \Longrightarrow ||x_k|| < \varepsilon, \, \forall k \ge 0$$

Unstable - if it is not stable

Lyapunov Stability

• Consider the generic, autonomous system

$$x_{k+1} = f(x_k)$$
 $f(0) = 0$
 $x = 0$ is an equilibrium

- The equilibrium is
 - Asymptotically stable (AS) if it is stable and

- Globally asymptotically stable (GAS) if it is AS $\forall x_0 \in \mathbb{R}^n$
- Exponentially stable if it is stable and $\exists \alpha > 0, \gamma \in (0,1)$ s.t.

$$||x_0|| < \delta \Longrightarrow ||x_k|| \le \alpha ||x_0|| \gamma^k, \ \forall k \ge 0$$

Norm is bounded by an exponentially decaying envelope

Lyapunov Function

 Lyapunov stability is determined based on the existence of a Lyapunov function

- Lyapunov Stability Theorem
 - Consider the equilibrium x = 0 of $x_{k+1} = f(x_k)$.
 - Let $\Omega \in \mathbb{R}^n$ be a closed and bounded set containing the origin.
 - Let $V : \mathbb{R}^n \to \mathbb{R}$ be a function, continuous at the origin, s.t.
 - 1) V(0) = 0
 - 2) $V(x) > 0, \forall x \in \Omega \setminus \{0\}$
 - 3) $V(x_{k+1}) < V(x_k), \forall x_k \in \Omega \setminus \{0\}$
 - Then x = 0 is asymptotically stable in Ω .
- A function V(x) satisfying the above conditions is a Lyapunov function for our system

Lyapunov Stability Details

- Conceptually, it is often useful to think about the Lyapunov function as a measure of energy in the system
 - Energy must be zero at the equilibrium V(0) = 0
 - Energy must be positive $V(x) > 0, \forall x \in \Omega \setminus \{0\}$
 - Energy must decrease as the system evolves

$$V(x_{k+1}) < V(x_k), \ \forall x_k \in \Omega \setminus \{0\}$$

- The Lyapunov stability theory is only sufficient (not necessary)
 - just because you can't find a Lyapunov function, doesn't mean the system is not stable

Global Lyapunov Stability

- Global Lyapunov Stability Theorem
 - Consider the equilibrium x = 0 of $x_{k+1} = f(x_k)$.
 - Let $V: \mathbb{R}^n \to \mathbb{R}$ be a function, continuous at the origin, s.t.
 - 1) V(0) = 0
 - 2) $V(x) > 0, \forall x \neq 0$

 - 3) $V(x_{k+1}) < V(x_k)$, $\forall x_k \neq 0$ 4) $||x|| \to \infty \implies V(x) \to \infty$ Radially unbounded
 - Then x = 0 is globally asymptotically stable.
- Example:

Lyapunov Stability – Linear Systems

Stability Theorem

- A linear system $x_{k+1} = Ax_k$ is globally asymptotically stable in the sense of Lyapunov if and only if all eigenvalues of *A* are inside the unit circle.
- Note that stable linear systems are always globally stable

• Proof:

• Try the candidate quadratic Lyapunov function

$$V(x) = x^T P x, P > 0$$

1)
$$V(0) = 0$$

$$\checkmark$$
 2) $V(x) > 0, \forall x \neq 0$

3)
$$V(x_{k+1}) < V(x_k), \forall x_k \neq 0$$

4) $||x|| \to \infty \Rightarrow V(x) \to \infty$

$$|4) \|x\| \to \infty \implies V(x) \to \infty$$

$$V(x_{k+1}) < V(x_k)$$

$$V(x_{k+1}) - V(x_k) < 0$$

$$x_{k+1}^T P x_{k+1} - x_k^T P x_k < 0$$

Discrete-time Lyapunov equation
$$A^T PA - P = -Q, Q > 0$$

Existence of *P* is guaranteed for any *Q*

$$x_k^T A^T P A x_k - x_k^T P x_k < 0$$

$$x_k^T \left(A^T P A - P \right) x_k < 0$$

$$-x_k^T Q x_k < 0 \Rightarrow x_k^T Q x_k > 0$$

MPC Stability Proof

• Use Lyapunov Stability to guarantee closed-loop asymptotic stability of MPC with terminal constraints

$$J_0^*(x_0) = \min_{U_0} \sum_{k=0}^{N-1} q(x_k, u_k) + p(x_N)$$
s.t.
$$x_{k+1} = f(x_k, u_k), k \in \{0, 1, ..., N-1\} \qquad f(0) = 0$$

$$h(x_k, u_k) \le 0, k \in \{0, 1, ..., N-1\} \qquad x = 0 \text{ is an equilibrium}$$

$$x_N = 0$$

$$x_0 = x(0)$$

- Assume feasible at time step 0
- Solve for $u_{0|0}^*$ based on x(0)
- Optimal (minimal) cost is $J_0^*(x_0)$
- System evolves to $x(1) = f(x(0), u_{0|0}^*)$

MPC Stability Proof

• At time step 1, consider the (suboptimal) input trajectory

$$U_{1} = \begin{bmatrix} u_{1|0}^{*} \\ \vdots \\ u_{N-1|0}^{*} \\ 0 \end{bmatrix}$$

Cost of this candidate solution is

$$J_0^*(x_0) - q(x_0, u_{0|0}^*) + q(x_{N+1}, 0)$$
= 0

$$J_0^*(x_0) = \min_{U_0} \sum_{k=0}^{N-1} q(x_k, u_k) + p(x_N)$$
s.t.
$$x_{k+1} = f(x_k, u_k), k \in \{0, 1, ..., N-1\}$$

$$h(x_k, u_k) \le 0, k \in \{0, 1, ..., N-1\}$$

$$x_N = 0$$

$$x_0 = x(0)$$

Because of terminal constraint at previous time step

• Since this is a suboptimal solution

$$J_1^*(x_1) \le J_0^*(x_0) - q(x_0, u_{0|0}^*)$$

Since the system dynamics and cost function are time invariant

$$J_1^*(x_1) = J_0^*(x_1) \implies J_0^*(x_1) \le J_0^*(x_0) - q(x_0, u_{0|0}^*) \implies J_0^*(x_1) \le J_0^*(x_0)$$

• Can now show that $J_0^*(x)$ is a Lyapunov function