# Problems in ML & Performance Evaluation

Lương Thái Lê

- 1. Learning Machine
- 2. Problems in ML
  - Emprical Risk Minimize
  - Feature Engineering
  - Over fitting
- 3. ML model Performance Evaluation
- 4. Evaluation metrics

## Learning Machine

A learning machine capable of implementing a set of functions

$$f(x, w), w \in \Omega$$

- The learning problem is to choose from the given set of functions the one which best approximates the supervisor's response.
  - The selection is based on training samples  $(x_i, y_i)$ , i = 1, ..., l
  - => Need to choose and optimize (depend on concrete problem)

- 1. Learning Machine
- 2. Problems in ML
  - Emprical Risk Minimize
  - Feature Engineering
  - Over fitting
- 3. ML model Performance Evaluation
- 4. Evaluation metrics

## Regression Example: Find road surface

- Given the points, estimate parameters
- Data/Feature
  - dimension (p=2)  $x_i = (x_{i1}, x_{i2}, ... x_{ip})^T$
  - # training samples  $(x_1, y_1) \dots (x_l, y_l)$
  - parameters  $\alpha = (\alpha_0, \alpha_1, ... \alpha_p)^T$
- Evaluation Metric
  - How good is the fitted plane?



#### **Loss Function**

• To chose the best function, it makes sense to **minimize** a loss between the response of the supervisor and the learning machine, given an input x  $L(y, f(x, \alpha))$ 

 Since we want to minimize the loss over all samples, we are interested in minimizing the expected loss

$$R(\alpha) = \int L(y, f(x, \alpha)) dF(x, y)$$

- $R(\alpha)$  is called Risk function
- F(x,y) is the joint probability distribution function

=> Find  $f(x, \alpha^*)$  that minimize  $R(\alpha)$  with the only available information is contained in the training set:  $(x_i, y_i)$ , i = 1, ..., l

## **Empirical Risk Minimization Principle**

$$R(\alpha) = \int L(y, f(x, \alpha)) dF(x, y)$$

The risk functional is replaced by the empirical risk functional

$$R_{emp}(\alpha) = \frac{1}{l} \sum_{i=1}^{l} L(y_i, f(x_i, \alpha))$$

=> find  $f(x, \alpha *)$  that minimize  $R(\alpha)$  over class of function  $f(x, \alpha)$ 

#### Loss function: A Probabilistic View

• 
$$L(y, f(x, \alpha)) = \sum_{i=1}^{l} (y_i - f(x_i, \alpha)) = \sum_{i=1}^{l} (y_i - \alpha_0 - \sum_{j=1}^{p} x_{ij}\alpha_j)$$

- Let the noise  $||\varepsilon|| = ||L(y, f(x, \alpha))||$
- If we model the noise as zero mean Gaussian random variable with variance  $\delta^2$ , the distribution is:

$$p(\varepsilon_{i}) = \frac{1}{\sqrt{2\pi}\delta} \exp\left(-\frac{{\varepsilon_{i}}^{2}}{2\delta^{2}}\right) = \frac{1}{\sqrt{2\pi}\delta} \exp\left(-\frac{(y_{i} - \alpha_{0} - \sum_{j=1}^{p} x_{ij}\alpha_{j})^{2}}{2\delta^{2}}\right)$$
$$= \frac{1}{\sqrt{2\pi}\delta} \exp\left(-\frac{(y_{i} - \alpha^{T} x_{i})^{2}}{2\delta^{2}}\right)$$
$$= > p(\varepsilon) = \prod_{1}^{l} p(\varepsilon_{i}) = \frac{1}{(\sqrt{2\pi}\delta)^{l}} \exp\left(-\frac{1}{2}\left(\frac{\sum_{i=1}^{l} (y_{i} - \alpha^{T} x_{i})^{2}}{\delta^{2}}\right)\right)$$

#### Likelihood function

$$\Rightarrow p(\varepsilon) = p(\varepsilon_1, \varepsilon_2, \dots, \varepsilon_l) = \frac{1}{(\sqrt{2\pi}\delta)^l} \exp\left(-\frac{1}{2} \left(\frac{\|y - \alpha^T x\|^2}{\delta^2}\right)\right)$$

We can view this joint probability as a function of the parameters

$$L(\alpha) = p(\varepsilon_1, \varepsilon_2, \dots, \varepsilon_l | \alpha) = \frac{1}{(\sqrt{2\pi}\delta)^l} \exp{-\frac{1}{2} \left(\frac{\|y - \alpha^T x\|}{\delta}\right)^2}$$

=> Need to maximum Likelihood function

#### **Maximum Likelihood Function**

Maximize the likelihood over all available samples

$$\alpha^* = argmax_{\alpha} \ p(\varepsilon_1, \varepsilon_2, \dots, \varepsilon_l | \alpha) = argmax_{\alpha} \frac{1}{(\sqrt{2\pi}\delta)^l} \exp{-\frac{1}{2} \left(\frac{\|y - \alpha^T x\|}{\delta}\right)^2}$$

• Since log is a monotonic function, often log-likelihood is used:

$$\alpha^* = argmax_{\alpha}(-\sum_{i=1}^{l} (y_i - \alpha^T x_i)^2 + const)$$

=> That is where Gradient Descent comes in

- 1. Learning Machine
- 2. Problems in ML
  - Emprical Risk Minimize
  - Feature Engineering
  - Over fitting
- 3. ML model Performance Evaluation
- 4. Evaluation metrics

## Feature Engineering

- Features are individual independent variables that act as an input in your system. In simpler feature is a column of data in your input dataset. Ex: Age, Sex, Income...
- Two types of feature:
  - Categorical: has little values, such as: Sex, Class of ticket (Economy, Premium...), Color,...
  - Numerical: has continuous/discrete values: Age, Price, Name...
- Can create a new feature from a root feature to improve learning
  - Name: Mr John May => create new feature: Tittle (Mr, Miss,...)
- Group features with few values into a generic attribute
  - Tittle with few values, Ex: Rev, Dr, Capital... => Others

- 1. Learning Machine
- 2. Problems in ML
  - Emprical Risk Minimize
  - Feature Engineering
  - Over fitting
- 3. ML model Performance Evaluation
- 4. Evaluation metrics

## Over fitting



#### Definition

An objective function that be learnt F will be said to overfit a learni exists another objective function F' such that:

- •F' is less suitable (gain less accurate) than F for the training set, but
- •F' is more accurate than F for the entire dataset (including examples used in future)

#### Reasons of Over-fitting:

- Error (noise) in the training set ( due to the colletion/construction data process)
- The number of learning examples is too small to represent the entire examples set of the problems

=>Preferably choose the simplest objective function that fits (nonecessarily perfect) with training examples

## An Over-fitting Example



- 1. Learning Machine
- 2. Problems in ML
  - Emprical Risk Minimize
  - Feature Engineering
  - Over fitting
- 3. ML model Performance Evaluation
- 4. Evaluation metrics

## The Model Performance evaluation (1)

• Evaluation of machine learning system performance is often perform empirically, rather than analytically.



## The Model Performance evaluation (2)

- The performance of system depends not only on the machine learning algorithms are used, but also depends on:
  - Class distribution
  - Cost of misclassification
  - Size of the training set
  - Size of the test set
- How to obtain a reliable assessment of system performance?
  - The larger the training set, the better the performance of the learning system
  - The larger the test set, the more accurate the evaluation
  - Problem: It is very difficult (rarely) to obtain (very) large data sets

## **Evaluation Methods**

- Hold-out
- Stratified sampling
- Repeated hold-out
- Cross-validation
  - *k*-fold
  - Leave-one-out
- Bootstrap sampling

## Hold-out

- Data set is devided into 2 parts:
  - Training set: D\_train
  - Test set: D test
- Requirements:
  - Any example in D\_test is not used in training process
  - Any example in D\_train is not used in the model evaluation process
- Popular: |D\_train|=2/3.|D|; |D\_test|=1/3.|D|
- Suitable for large set of examples D

#### Cross Validation – k fold

- The entire set of examples D is divided into k non-intersecting subsets (referred to as "fold") of approximately the same size
- Each time (of k) iterations, a subset is used as the D\_test, and (k-1) the remaining subset is used as the D\_train.
- k error values (each corresponding to a fold) are averaged to get the overall error value
- Popular: k= 10; or k=5



## **Bootstrap Sampling**

- Bootstrap sampling method uses repeated sampling to create a training set
  - Suppose the whole set D consists of n examples
    - From the set D, randomly select an example x (but do not remove x from D)
    - Put example x in the training set: D\_train = D\_train U x
    - Repeat the above 2 steps n times
- Use D\_train to train the model
- D\_test = {z∈D; z∉D\_train} used for test the model

#### **Evaluation Criteria**

- Accuracy
  - Predictability (classification) of the (trained) model with respect to test instances
- Efficiency
  - Cost of time and resources (memory) required for model training and testing
- Robustness
  - The system's ability to handle (tolerable) noise (error) or missing value
- Scalability
  - How does system performance (e.g. learning/classification rate) change with respect to the size of the data set?
- Interpretability
  - Understanding (for the user) of the system's results and operations easily
- Complexity
  - The complexity of the system model (objective function) learned

- 1. Learning Machine
- 2. Problems in ML
  - Emprical Risk Minimize
  - Feature Engineering
  - Over fitting
- 3. ML model Performance Evaluation
- 4. Evaluation metrics

## Accuracy

- Show the accuracy of the model when solving the problem
- For the classification problem:

$$Accuracy = \frac{1}{|D\_test|} \sum_{x \in D\_test} id(m(x)r(x)) \qquad id(a,b) = \begin{cases} 1 & if \ a = b \\ 0 & otherwise \end{cases}$$

- m(x) is the class that the model predict for example x
- r(x) is the real class
- For the regression problem:

$$Error = \frac{1}{|D\_test|} \sum_{x \in D\_test} |m(x) - r(x)|$$

- m(x) is the prediction of the model for x
- r(x) is the real output of x

## Confuse Matrix (contingency table)

- Only use for classification problem
- **TP**: Number of examples belonging to class c correctly classified into class c
- TN: Number of examples that do not belong to class c that be determined exactly
- **FP**: Number of examples that are not in class c is classified in class c
- FN: Number of examples belong to class c but be classified in other class



#### Precision and Recall for each class c

- Often used in text classification
- Precision for class c<sub>i</sub>:

The total number of examples in class c<sub>i</sub> correctly classified divided by the total number of examples classified in class c<sub>i</sub> by the model

$$\Pr ecision(c_i) = \frac{TP_i}{TP_i + FP_i}$$

• Recall for class c<sub>i</sub>:

The total number of examples correctly classified by the model into class c<sub>i</sub> divided by the total number of examples actually in class c<sub>i</sub>

$$\operatorname{Re} call(c_i) = \frac{TP_i}{TP_i + FN_i}$$

#### Precision and Recall for over all classes

- Assume that the model classifies data into a set of classes C= $\{c_i\}_{i=1}^n$  and, we get  $TP_i$ ,  $TN_i$ ,  $FP_i$ ,  $FN_i$  for each  $c_i$
- Micro averaging:

$$\operatorname{Pr} \operatorname{ecision} = \frac{\sum_{i=1}^{|C|} TP_i}{\sum_{i=1}^{|C|} \left( TP_i + FP_i \right)} \qquad \operatorname{Re} \operatorname{call} = \frac{\sum_{i=1}^{|C|} TP_i}{\sum_{i=1}^{|C|} \left( TP_i + FN_i \right)}$$

$$\operatorname{Re} call = \frac{\sum_{i=1}^{|C|} TP_i}{\sum_{i=1}^{|C|} \left(TP_i + FN_i\right)}$$

Macro - averaging:

$$\Pr{ecision} = \frac{\sum_{i=1}^{|C|} \Pr{ecision(c_i)}}{|C|} \qquad \qquad \Pr{ecall} = \frac{\sum_{i=1}^{|C|} \Pr{ecall(c_i)}}{|C|}$$

## $\mathsf{F}_1$

• F<sub>1</sub> is a harmonic mean of Precision and Recall

$$F_{1} = \frac{2.\operatorname{Pr} ecision.\operatorname{Re} call}{\operatorname{Pr} ecision + \operatorname{Re} call} = \frac{2}{\frac{1}{\operatorname{Pr} ecision} + \frac{1}{\operatorname{Re} call}}$$

- F<sub>1</sub> tends to take the closest value, whichever is the smaller of the two Precision and Recall values
- $F_1$  có giá trị lớn nếu cả 2 giá trị Precision và Recall đều lớn

# Q&A - Thank you!