Egzamin z matematyki 1 (WIŚGiE/IŚ, termin pierwszy), 05/02/2023

Zadanie 1 (0-10 pkt.) Oblicz pochodne: $\left(\frac{3}{x^5} - \frac{5}{\sqrt[5]{x^9}}\right)'$, $\left(\frac{\arcsin x}{5^x}\right)'$, $\left(\sin x \cos(x^5)\right)'$.

Zadanie 2 (0-10 pkt.) Zapisz wzór Taylora dla funkcji $f(x) = \sqrt{x}$ w okolicy $x_0 = 4$ z dokładnością do wyrazów drugiego rzędu. Wykorzystaj uzyskany wzór do wyznaczenia przybliżonej wartości $\sqrt{4,2}$.

Zadanie 3 (0-10 pkt.) Wyznacz przedziały monotoniczności i ekstrema lokalne funkcji: $y = 3x^4 - 8x^3 18x^2 + 72x$.

Zadanie 4 (0-10 pkt.) Oblicz całkę: $\int \frac{3x+2}{x^2+4x+4} dx$.

Zadanie 5 (0-10 pkt.) Oblicz całki oznaczone: $\int_{1}^{4} \left(\sqrt{x} - \frac{1}{x^2}\right) dx$, $\int_{0}^{2} \frac{x dx}{\sqrt{3x^2 + 4}}$.

Zadanie 6 (0-10 pkt.) Wyznacz pole obszaru ograniczonego liniami $y = x^2 - 3x$, $y = -x^2 - 2x + 1$. Wykonaj rysunek!

Zadanie 7 (0-20 pkt.) W oparciu o definicję oblicz pochodną podanej funkcji $f(x) = 2x^2 - 3x + 1$ w punkcie $x_0 = 1$. Zapisz równanie stycznej do wykresu funkcji w punkcie $(x_0, f(x_0))$, naszkicuj pogladowy wykres funkcji oraz stycznej.

Zadanie 8 (0-20 pkt.)

W oparciu o rachunek całkowy wyznacz położenie środka ciężkości obszaru ograniczonego liniami $y=x^2$, y=2x, jeśli wiadomo, że pole obszaru wynosi $S=\frac{4}{3}$.

Egzamin z matematyki 1 (WIŚGiE/IŚ, termin pierwszy), 05/02/2023

Zadanie 1 (0-10 pkt.) Oblicz pochodne: $\left(\frac{3}{x^5} - \frac{5}{\sqrt[5]{x^9}}\right)'$, $\left(\frac{\arcsin x}{5^x}\right)'$, $\left(\sin x \cos(x^5)\right)'$.

Zadanie 2 (0-10 pkt.) Zapisz wzór Taylora dla funkcji $f(x) = \sqrt{x}$ w okolicy $x_0 = 4$ z dokładnością do wyrazów drugiego rzędu. Wykorzystaj uzyskany wzór do wyznaczenia przybliżonej wartości $\sqrt{4,2}$.

Zadanie 3 (0-10 pkt.) Wyznacz przedziały monotoniczności i ekstrema lokalne funkcji: $y = 3x^4 - 8x^3 18x^2 + 72x.$

Zadanie 4 (0-10 pkt.) Oblicz całkę: $\int \frac{3x+2}{x^2+4x+4} dx$.

Zadanie 5 (0-10 pkt.) Oblicz całki oznaczone: $\int_{1}^{4} \left(\sqrt{x} - \frac{1}{x^2}\right) dx, \int_{0}^{2} \frac{x dx}{\sqrt{3x^2 + 4}}.$ Zadanie 6 (0-10 pkt.) Wyznacz pole obszaru ograniczonego liniami $y = x^2 - 3x, y = -x^2 - 2x + 1.$

Wykonaj rysunek!

Zadanie 7 (0-20 pkt.) W oparciu o definicję oblicz pochodną podanej funkcji $f(x) = 2x^2 - 3x + 1$ w punkcie $x_0 = 1$. Zapisz równanie stycznej do wykresu funkcji w punkcie $(x_0, f(x_0))$, naszkicuj poglądowy wykres funkcji oraz stycznej.

Zadanie 8 (0-20 pkt.)

W oparciu o rachunek całkowy wyznacz położenie środka ciężkości obszaru ograniczonego liniami $y=x^2$, y=2x, jeśli wiadomo, że pole obszaru wynosi $S=\frac{4}{3}$.

Egzamin z matematyki 1 (WIŚGiE/IŚ, termin pierwszy), 05/02/2023

Zadanie 1 (0-10 pkt.) Oblicz pochodne: $\left(\frac{3}{x^5} - \frac{5}{\sqrt[5]{x^9}}\right)'$, $\left(\frac{\arcsin x}{5^x}\right)'$, $\left(\sin x \cos(x^5)\right)'$. Zadanie 2 (0-10 pkt.) Zapisz wzór Taylora dla funkcji $f(x) = \sqrt{x}$ w okolicy $x_0 = 4$ z dokładnością do

wyrazów drugiego rzędu. Wykorzystaj uzyskany wzór do wyznaczenia przybliżonej wartości $\sqrt{4,2}$.

Zadanie 3 (0-10 pkt.) Wyznacz przedziały monotoniczności i ekstrema lokalne funkcji: $y = 3x^4 - 8x^3 18x^2 + 72x$.

Zadanie 4 (0-10 pkt.) Oblicz całkę: $\int \frac{3x+2}{x^2+4x+4} dx$.

Zadanie 5 (0-10 pkt.) Oblicz całki oznaczone: $\int_{1}^{4} \left(\sqrt{x} - \frac{1}{x^2}\right) dx, \int_{0}^{2} \frac{x dx}{\sqrt{3x^2 + 4}}.$

Zadanie 6 (0-10 pkt.) Wyznacz pole obszaru ograniczonego liniami $y = x^2 - 3x$, $y = -x^2 - 2x + 1$. Wykonaj rysunek!

Zadanie 7 (0-20 pkt.) W oparciu o definicję oblicz pochodną podanej funkcji $f(x) = 2x^2 - 3x + 1$ w punkcie $x_0 = 1$. Zapisz równanie stycznej do wykresu funkcji w punkcie $(x_0, f(x_0))$, naszkicuj poglądowy wykres funkcji oraz stycznej.

Zadanie 8 (0-20 pkt.)

W oparciu o rachunek całkowy wyznacz położenie środka ciężkości obszaru ograniczonego liniami $y=x^2$, y=2x, jeśli wiadomo, że pole obszaru wynosi $S=\frac{4}{3}$.