Université Pierre et Marie Curie - LM223 - Année 2012-2013

Interro no 1

Exercice 1:

On considère l'espace vectoriel $\mathbb{R}_2[X]$ des polynômes réels de degré inférieur ou égal à 2. On note $\mathcal{B} = \{1, X, X^2\}$ la base canonique de $\mathbb{R}_2[X]$. On admet que la famille $\mathcal{B}' = \{X, X+1, X(X+1)\}$ est aussi une base de $\mathbb{R}_2[X]$.

Tout élément $\Pi(X)$ de $\mathbb{R}_2[X]$ peut s'écrire sous les formes suivantes :

$$\Pi(X) = A + BX + CX^2 = aX + b(X+1) + cX(X+1).$$

- 1. Exprimer A, B, C en fonction de a, b, c.
- 2. Exprimer a, b, c en fonction de A, B, C.
- 3. Écrire les expressions précédentes sous forme matricielle. C'est à dire, donner les matrices P et Q telles que

$$\begin{pmatrix} A \\ B \\ C \end{pmatrix} = P \begin{pmatrix} a \\ b \\ c \end{pmatrix} \quad \text{et} \quad \begin{pmatrix} a \\ b \\ c \end{pmatrix} = Q \begin{pmatrix} A \\ B \\ C \end{pmatrix}$$

4. Quelle est la matrice de passage de \mathcal{B} à \mathcal{B}' ?

On considère l'endomorphisme de dérivation D de $\mathbb{R}_2[X]$ défini par $D: \Pi(X) \mapsto \Pi'(X)$. On note M la matrice de D dans \mathcal{B} , c'est à dire $M = \operatorname{Mat}_{\mathcal{B},\mathcal{B}}(D)$ et M' la matrice de D dans \mathcal{B}' , c'est à dire $M' = \operatorname{Mat}_{\mathcal{B}',\mathcal{B}'}(D)$.

- 5. Écrire M.
- 6. Donner une relation entre M, M', P et Q.

Exercice 2:

On considère le sous-ensemble de matrices réelles 2×2 suivant :

$$\mathbf{F} = \left\{ \begin{pmatrix} a & b \\ -b & a \end{pmatrix}, \ a, b \in \mathbb{R} \right\}.$$

1. Montrer que **F** est un sous-espace vectoriel de $M_2(\mathbb{R})$. Quelle est la dimension de **F**?

On considère \mathbb{C} comme un espace vectoriel réel, et on définit une application $f: \mathbf{F} \to \mathbb{C}$ par

$$f: \begin{pmatrix} a & b \\ -b & a \end{pmatrix} \mapsto a + ib$$

- 2. Montrer que f est linéaire.
- 3. Montrer que f est bijective.
- 4. Montrer que pour toutes $M, N \in \mathbf{F}$ le produit MN est dans \mathbf{F} .
- 5. Montrer que f(MN) = f(M)f(N) pour toutes $M, N \in \mathbf{F}$.

Exercice 3:

Calculer le déterminant de la matrice suivante.

$$M = \left(\begin{array}{ccc} 0 & 1 & 2 \\ 1 & 1 & 2 \\ 0 & 2 & 3 \end{array}\right)$$

En déduire que M est inversible et calculer son inverse.

Exercice 4, à faire en dernier :

Soient E un espace vectoriel réel de dimension 4 de base \mathcal{B} , et F un espace vectoriel réel de dimension 3 de base \mathcal{C} .

On considère l'application linéaire $\varphi: E \to F$ dont la matrice $A = \operatorname{Mat}_{\mathcal{B},\mathcal{C}}(\varphi)$ est donnée par :

$$A = \begin{pmatrix} 1 & -2 & -1 & 2 \\ 1 & -5 & -1 & 5 \\ -2 & 1 & 2 & -1 \end{pmatrix}$$

- 1. Calculer le rang de A.
- 2. On suppose ici que $E = \mathbb{R}^4$, $F = \mathbb{R}^3$ et que les bases \mathcal{B} et \mathcal{C} sont les bases canoniques.
 - (a) Que vaut $\varphi((x, y, z, t))$?
 - (b) Montrer que $ker(\varphi) = Vect\{(1, 0, 1, 0), (0, 1, 0, 1)\}.$
- 3. On suppose ici que $E = \mathbb{R}_3[X]$, $F = \mathbb{R}_2[X]$ et que les bases \mathcal{B} et \mathcal{C} sont les bases canoniques, c'est à dire $\mathcal{B} = \{1, X, X^2, X^3\}$ et $\mathcal{C} = \{1, X, X^2\}$.
 - (a) Que vaut $\varphi(X^2 X)$?
 - (b) Donner une base de $ker(\varphi)$.
- 4. La matrice A peut-elle représenter une application linéaire entre deux espaces de matrices?