Computer Language Processing

Exercise Sheet 07 Solutions

November 12, 2022

Exercise CYK Parsing and Chomsky Normal Form

2015 Ex 3

You can check your solution on http://grammar.epfl.ch.

Exercise Types rules, preservation and inferences

(2013 Ex 1)

a)

$$\frac{\Gamma \vdash e_1 : Collection[T] \quad \Gamma \vdash e_2 : T}{\Gamma \vdash \operatorname{EmptyCol}[\alpha] : Collection[\alpha]}$$

$$\frac{\Gamma \vdash e_1 : Collection[T]}{\Gamma \vdash \operatorname{permute}(e) : T \Rightarrow T}$$

$$\frac{\Gamma \vdash e_1 : Collection[T]}{\Gamma \vdash \operatorname{map}(e) : (T \Rightarrow U) \Rightarrow Collection[U]}$$

b) x typechecks to Collection[Int], z to Collection[Int] and y to $Collection[Int \Rightarrow Int]$ Therefore map(x) typechecks to $(Int \Rightarrow Int) \Rightarrow Collection[Int]$ and flatMap(y)(map(x)) typechecks to Collection[Int]

Unification algorithm

1.
$$\tau_{2} = (\tau_{3} => \tau_{4})$$

$$\tau_{3} = (\tau, \tau_{1})$$

$$\tau_{5} = (\tau_{1} => \tau_{4})$$

$$\tau_{6} = (\tau => \tau_{5})$$

Elimination of
$$\tau_3$$
: $\tau_2 = ((\tau, \tau_1) => \tau_4)$

$$\tau_3 = (\tau, \tau_1)$$

$$\tau_5 = (\tau_1 => \tau_4)$$

$$\tau_6 = (\tau => \tau_5)$$

3. Elimination of
$$\tau_5$$
: $\tau_2 = ((\tau, \tau_1) => \tau_4)$

$$\tau_3 = (\tau, \tau_1)$$

$$\tau_5 = (\tau_1 => \tau_4)$$

$$\tau_6 = (\tau => (\tau_1 => \tau_4))$$

Write down an expression for the type of the argument (f) and of the result of curry in terms of types τ , τ_1 , τ_4 :

(argument) f:
$$((\tau, \tau_1) => \tau_4)$$

argument) f :
$$((\tau, \tau_1) => \tau_4)$$
 (result) $(\tau, \tau_1) => \tau_4$ (result) $(\tau, \tau_1) => \tau_4$)