Univerzita Komenského v Bratislave Fakulta matematiky, fyziky a informatiky

Návrh

Smelý zajko GUI

Obsah

Obsah	2
Úvod	3
Účel dokumentu	3
Podrobná špecifikácia vonkajších interfejsov	4
Používateľská príručka	5
Používateľské rozhranie	6
Konfiguračný mód	6
Menubar	8
Templates	8
Options	9
Configuration	9
Add Text Label	
Add Modules	
Add Input Elements	
Prevádzkový mód	10
Moduly a ich grafické reprezentácie	11
Counter Module	12
Map Module	12
Ultrasonic Module	13
UML diagramy	15
Use-case diagramy	15
UML sequence diagram	17
UML component diagram	19
UML class diagram	20
Plán implementácie	21
Fáza 1: Analýza a príprava	21
Fáza 2: Návrh používateľského rozhrania	21
Fáza 3: Tvorba kódu GUI manažéra a modulov	21
Fáza 4: Testovanie a ladenie	22
Fáza 5: Dokumentácia a finalizácia	22
Testovacie scenáre	23
Scenár 1: Spustenie aplikácie a úprava rozhrania	23
Scenár 2: Interakcia s prvkami a notifikácie	23
Scenár 3: Zaznamenávanie a prehrávanie dát	24
Scenár 4: Práca s konfiguračnými súbormi	24
Scenár 5: Viacnásobné spustenie a stabilita systému	24

Úvod

Účel dokumentu

Tento dokument poskytuje návrh pre vývoj softvéru pre vizualizáciu a správu dát z mobilného robota. Slúži ako osnova, podľa ktorej sa budeme riadiť počas implementácie. Hlavným cieľom je zabezpečiť efektívne grafické používateľské rozhranie (GUI), ktoré bude spracovávať a vizualizovať dáta z rôznych senzorov robota (teplomer, počítadlo, GPS a ultrazvukové senzory). Zahŕňa návrhy častí používateľského rozhrania, UML diagramy, testovacie scenáre a plán a rozdelenie implementácie medzi členov tímu.

Podrobná špecifikácia vonkajších interfejsov

ImGui knižnica:

Cesta: libs/imgui

Popis: Používa sa na vytváranie grafických užívateľských rozhraní.

GLFW knižnica:

Cesta: libs/glfw

Popis: Používa sa na vytváranie okien, kontextov a spracovanie vstupu.

YAML-CPP knižnica:

Cesta: libs/yaml-cpp

Popis: Používa sa na parsovanie a generovanie YAML.

OpenGL:

Popis: Používa sa na renderovanie grafiky.

Konfiguračné súbory:

Cesta: config-files/ Formát: YAML

Popis: Tento súbor obsahuje konfiguráciu templatov a modulov.

Šablóny:

Cesta: templates/ Formát: JSON

Popis: Tento súbor obsahuje konfiguráciu grafických modulov, vrátane ich ID, frekvencií, nastavení logovania, pozícií a veľkostí. Takisto obsahuje konfiguráciu elementov ako sú checkbox, slider a iné.

Vstupné zariadenia:

Popis: Aplikácia používa GLFW na spracovanie vstupu z klávesnice a myši.

Používateľské rozhranie

Používateľské rozhranie je navrhnuté ako centrálna súčasť systému, ktorá poskytuje používateľom priamy prístup k riadeniu a monitorovaniu robota. Systém sa vyznačuje tromi hlavnými režimami: konfiguračným, prevádzkovým a prehrávacím. Každý z nich má osobitné využitie a umožňuje používateľovi vykonávať konkrétne operácie potrebné pre riadenie robota.

Konfiguračný mód

Konfiguračný mód sa spúšťa pomocou argumentu --config v príkazovom riadku. Tento režim slúži na konfiguráciu a správu nastavení programu.

Spustenie konfiguračného režimu:

- 1. Argumenty príkazového riadku:
- --config: Tento argument aktivuje konfiguračný režim programu.
- [cesta_k_súboru]: Môžete zadať voliteľnú cestu k YAML konfiguračnému súboru. Ak súbor nešpecifikujete, program automaticky vyhľadá prvý .yaml súbor v predvolenom adresári, zvyčajne označenom ako config-files.

2. Príklad príkazového riadku

• program --config /cesta/k/config súboru.yaml

Trieda ConfigurationMode predstavuje jadro logiky konfiguračného režimu GUI aplikácie. Rozširuje triedu GUI a poskytuje funkcie na správu šablón, vytváranie prvkov používateľského rozhrania a umožnenie interakcie používateľov s prispôsobiteľnými komponentmi.

Správa šablón:

- Umožňuje načítanie a správu šablón špecifikovaných v konfiguračnom súbore.
- Poskytuje možnosť vytvárať, ukladať a prepínať medzi rôznymi šablónami pomocou triedy TemplateManager.

Skratky v konfiguračnom móde:

- Uloženie šablóny CTRL+S
- Ukončenie programu CTRL+Q

Dynamické vytváranie prvkov:

- Umožňuje pridávanie rôznych interaktívnych widgetov, ako sú prvky modulov, zaškrtávacie políčka, tlačidlá, posuvníky (slidery) a popisky (labels), do aktívnej šablóny.
- Obsahuje funkciu "prichytávania" prvkov na mriežku pre presné zarovnanie.

Prispôsobenie použvateľského rozhrania:

• Obsahuje hlavnú ponuku (menu bar) s možnosťami na správu šablón, konfiguráciu nastavení a pridávanie prvkov.

Obr. 4.1: Náhľad konfiguračného módu

Obr. 4.2: Náhľad konfiguračného módu

Menubar

Obr. 4.3: Náhľad menubaru v konfiguračnom móde

Metóda setupMenuBar vytvára hlavnú ponuku aplikácie pomocou knižnice ImGui. Menu sa skladá z niekoľkých sekcií, pričom každá ponúka špecifickú funkcionalitu. Nižšie sú detailné popisy jednotlivých častí menu.

Templates

Obr. 4.4: Náhľad šablón a ukladanie šablón v konfiguračnom móde

Táto sekcia umožňuje užívateľovi spravovať šablóny aplikácie:

- 1. **New Template** Vytvorí novú prázdnu šablónu a nastaví ju ako aktívnu. Názov okna aplikácie sa aktualizuje na "GUI".
- 2. **Templates** (podmenu) Zoznam existujúcich šablón načítaných zo správcu šablón. Umožňuje prepínať medzi šablónami. Pri výbere sa názov okna aktualizuje na "GUI [názov šablóny]".
- 3. **Save Current Template** Umožňuje uložiť aktuálnu šablónu do súboru. Používa dialógové okno na výber súboru a podporuje ukladanie do formátu JSON. Pri ukladaní novej šablóny sa táto pridá do zoznamu všetkých šablón.

Options

Obr. 4.5: Náhľad nastavenia mriežky a automatického vkladania do mriežky v konfiguračnom móde

Táto sekcia ponúka možnosti konfigurácie pracovného prostredia:

- 1. **Enable Snapping** Zapne alebo vypne "snapping", čo je funkcia zarovnávania prvkov na mriežku.
- 2. Show Grid Zobrazuje alebo skrýva mriežku na pracovnej ploche.
- 3. **Grid Size** Nastavuje veľkosť mriežky. Hodnota je obmedzená minimálnymi a maximálnymi hodnotami, aby sa zabránilo chybám (napr. delenie nulou).

Configuration

Obr. 4.6: Náhľad dynamickej konfigurácie modulov s nastaveniami

Sekcia pre dynamickú konfiguráciu modulov aplikácie:

Dynamicky generované menu podľa konfigurácie načítanej z konfiguračného súboru. Pre každý modul je dostupné tlačidlo **Settings**, ktoré otvára konfiguračné okno pre daný modul, kde sa dá nastaviť logovanie a frekvencia.

Add Text Label

Obr. 4.7: Náhľad pridávania text label

Sekcia pre pridávanie text label do šablóny

- Poskytuje možnosť vytvoriť a nastaviť nový textový štítok.
- Po otvorení menu sa volá funkcia createLabelSettings(), ktorá zabezpečuje konfiguráciu nastavení pre štítky.

Test Notifications

Obr. 4.8: Náhľad pridávania notifikácie

• Umožňuje používateľom odosielať notifikácie cez vlastný správcu toastManager.

Add Modules

Toto menu umožňuje používateľom pridávať prvky modulov, ktoré sú definované jednotlivými modulmi. Každý modul obsahuje špecifické prvky, ktoré môžu byť vložené do aktuálneho rozloženia šablóny.

Obr. 4.8: Náhľad pridávania prvku modulu

Add Input Elements

Toto menu poskytuje používateľovi možnosť pridávať **interaktívne vstupné prvky**, ktoré slúžia na ovládanie alebo modulov. Tieto prvky môžu zahŕňať posúvače, tlačidlá, zaškrtávacie políčka a textové vstupy.

Každý modul má svoje vlastné podmenu, v ktorom sú zobrazené dostupné vstupné prvky. Po výbere konkrétneho prvku sa tento pridá do aktuálnej šablóny a je pripravený na použitie.

Obr. 4.9: Náhľad pridávania vstupných elementov modulu

Prevádzkový mód

Prevádzkový mód sa spúšťa pomocou argumentu --operate v príkazovom riadku. Tento režim slúži na monitorovanie a riadenie systému v reálnom čase pomocou preddefinovaných šablón a modulov, ktoré sú špecifikované v konfiguračnom súbore.

Trieda OperatingMode predstavuje základ logiky prevádzkového režimu GUI aplikácie. Rozširuje triedu GUI a zabezpečuje riadenie šablón, záznamov a interakcií s modulmi počas aktívnej prevádzky robota.

• Riadenie šablón:

Trieda OperatingMode spravuje zoznam šablón načítaných z konfiguračného súboru pomocou triedy TemplateManager. Používateľ môže prepínať medzi dostupnými šablónami a aktívna šablóna je vždy synchronizovaná so stavom GUI.

• Zobrazenie a aktualizácia prvkov:

GUI vykresľuje grafické a textové prvky na základe aktívnej šablóny a aktuálnych údajov z modulov. Trieda obsahuje metódy na dynamické prispôsobovanie prvkov rozlíšeniu obrazovky a ich proporciám.

Záznam údajov:

OperatingMode spolupracuje s modulmi na zázname údajov podľa nastavení definovaných v konfiguračnom súbore. Logovanie prebieha v reálnom čase a zahŕňa vytváranie štruktúrovaných priečinkov na uchovávanie záznamov.

Interakcia a ovládanie:

Trieda umožňuje používateľom ovládať systém prostredníctvom rôznych interaktívnych prvkov, ako sú tlačidlá, posuvníky alebo textové vstupy. Tieto prvky sú aktualizované v reálnom čase a reagujú na zmeny v systéme.

Skratky a prechod medzi šablónami:

OperatingMode implementuje klávesové skratky, ktoré umožňujú rýchle prepínanie medzi šablónami (CTRL + Šípka doprava, CTRL + Šípka doľava).

• Inicializácia okna a modulov:

Pri spustení režimu trieda inicializuje GUI a načíta všetky potrebné moduly a šablóny. Názov okna sa dynamicky prispôsobuje aktuálne aktívnej šablóne, čo uľahčuje orientáciu používateľa.

Obr. 4.9: Náhľad prevádzkového módu

Obr. 4.10: Náhľad výberu šablóny

Moduly a ich grafické reprezentácie

Každý modul implementuje špecifickú logiku spracovania a komunikácie a má priradený zodpovedajúci grafický modul, ktorý zabezpečuje jeho vizualizáciu v GUI. Nižšie je prehľad hlavných modulov a ich grafických reprezentácií:

Counter Module

• Hlavná trieda: CounterModule

Tento modul generuje narastajúcu hodnotu v pravidelných intervaloch (500 ms) a zaznamenáva ju do logu.

- **Grafický modul:** CounterModuleGraphics
 - Funkcia draw: Vykresľuje aktuálnu hodnotu počítadla spolu s dynamicky aktualizovanou textovou oblasťou (TextArea) pre záznam logov.
 - Funkcia updateValueOfModule: Prijíma nové hodnoty z modulu a aktualizuje zobrazené dáta aj logy.

Skratky:

- o Ctrl+S: Spustí počítanie.
- o Ctrl+P: Zastaví počítanie.
- Riadenie behu modulu:
 - Spustenie a zastavenie: Funkcie setValueFromInputElements umožňujú spúšťať (Start) alebo zastavovať (Stop) simuláciu.
 - Interval aktualizácie: Interval medzi generovaním hodnôt je možné nastaviť prostredníctvom posuvníka Speed. Hodnota intervalu je uvedená v milisekundách a určuje, ako často sa generujú nové hodnoty.

Obr. 4.11: Náhľad modulu počítadla

Map Module

• Hlavná trieda: MapModule

Generuje mapu s priechodnými cestami a vizualizuje dynamickú trasu pohybu medzi počiatočným a cieľovým bodom.

- **Grafický modul:** MapModuleGraphics
 - Funkcia draw: Vykresľuje mapu ako mriežku s rôznymi farbami pre steny, cesty a cieľ. Pohyb po trase sa vizualizuje červenou guličkou.
 - Funkcia updateValueOfModule: Aktualizuje polohu guličky na základe prijatých dát a zaznamenáva pohyb do logov.
- Skratky:
 - Ctrl+R: Reset mapy.

- o Ctrl+M: Zastavenie pohybu.
- o Ctrl+N: Spustenie pohybu.

• Riadenie behu modulu:

- Spustenie a zastavenie: Funkcie setValueFromInputElements umožňujú spúšťať alebo zastavovať pohyb po vygenerovanej trase pomocou zaškrtávacieho políčka Running. Ak je hodnota true, pohyb sa spustí, a ak je false, pohyb sa zastaví.
- Resetovanie mapy: Funkcia resetMap umožňuje obnoviť mapu do počiatočného stavu, vrátane polohy na začiatku trasy, čo je možné aktivovať pomocou tlačidla Reset.
- Rýchlosť pohybu: Rýchlosť pohybu po trase je možné upraviť pomocou posuvníka Speed. Nastavená hodnota určuje multiplikátor rýchlosti, kde väčšia hodnota znamená rýchlejší pohyb.

Obr. 4.12: Náhľad modulu mapy

Ultrasonic Module

- Hlavná trieda: UltrasonicModule
 Simuluje sadu ultrazvukových senzorov, ktoré pravidelne merajú vzdialenosti objektov od robota a ukladajú ich do logu.
- **Grafický modul:** UltrasonicModuleGraphics
 - Funkcia draw: Vizualizuje senzory ako kruhové usporiadanie čiar, ktoré ukazujú vzdialenosti. Textová oblasť pod grafickým prvkom zobrazuje záznam zmien v meraniach.
 - **Funkcia** updateDynamicSensors: Dynamicky aktualizuje hodnoty senzorov a zaznamenáva zmeny.

• Riadenie behu modulu:

 Spustenie a zastavenie: Funkcie setValueFromInputElements umožňujú spúšťať (Start) alebo zastavovať (Stop) simuláciu.

Obr. 4.13: Náhľad Ultrasonic modulu

UML diagramy

Use-case diagramy

Obr. 5.1: Use-case diagram konfiguračného módu

Obr. 5.2: Use-case diagram prevádzkového módu

Obr. 5.3: Use-case diagram prehrávacieho módu

UML sequence diagram

Obr. 5.4: Sekvenčný diagram pre spoluprácu medzi systémovými komponentmi na zabezpečenie výberu a načítania šablóny.

Obr. 5.5: Sekvenčný diagram pre proces zaznamenávania údajov v prevádzkovom režime.

Obr. 5.6: Sekvenčný diagram pre úpravu prvku v konfiguračnom režime

UML component diagram

Obr. 5.7: UML component diagram

UML class diagram

Obr. 5.8: UML class diagram

Plán implementácie

Fáza 1: Analýza a príprava

- Zber a analýza požiadaviek: Overiť a doplniť všetky požiadavky na systém podľa katalógu požiadaviek.
- **Špecifikácia a návrh architektúry**: Definovať modulárnu architektúru s GUI manažérom ako centrálnou súčasťou, ktorá bude riadiť komunikáciu s jednotlivými senzormi a modulmi robota.
- Definícia API: Vytvoriť špecifikáciu API pre komunikáciu medzi GUI manažérom a ostatnými modulmi.

Fáza 2: Návrh používateľského rozhrania

- Vytvorenie prototypu GUI: Vypracovať prvotný návrh rozhrania pre konfiguračný, prevádzkový a prehrávací mód, s ohľadom na usporiadanie ovládacích prvkov.
- **Prispôsobenie UI prvkov**: Nastaviť a otestovať prispôsobenie UI prvkov pre rôzne rozlíšenia a zobrazovacie režimy.
- **Dizajn šablón**: Implementovať základné šablóny zobrazenia údajov z modulov, ktoré sa budú dať upravovať v konfiguračnom móde.

Fáza 3: Tvorba kódu GUI manažéra a modulov

- Vytvorenie prostredia konfiguračného módu (Černák, Neupauerová)
 - o Načítanie zoznamu modulov z konfiguračného súboru
 - Nastavenie prítomnosti, veľkosti a polohy zobrazovaných prvkov
 - Uloženie aktuálneho rozloženia zobrazovaných prvkov vo forme šablóny
 - Odstránenie vybraného prvku
 - Výber uloženej šablóny
 - Štruktúra šablóny
 - Posúvanie grafických/textových prvkov v mriežke
- Vytvorenie prostredia prevádzkového módu (Beluško, Krajčovič)
 - Načítanie uložených šablón
 - Prepínanie medzi šablónami
- Vytvorenie prostredia prehrávacieho módu (Krajčovič, Beluško)
 - Spustenie prehrávania jednotlivých zaznamenaných modulov
- Vytvorenie grafických modulov + štruktúra konfiguračného súboru (Krajčovič)
 - Vytvorenie rôznych modulov pre každý mód
 - o Nastavenie logovania pre jednotlivé moduly.
 - o vytvorenie YAML súboru
- **Definícia API pre komunikáciu s DEROS** (Beluško)
 - Moduly budú komunikovať s GUI prostredníctvom ModuleManagera, ktorý bude zodpovedný za vykresľovanie jednotlivých modulov a zároveň za

- aktualizáciu hodnôt, ktoré od týchto modulov dostane. Moduly budú môcť vyvolať funkciu ModuleManagera <u>updateModule(moduleName, newValue)</u>, čím zabezpečia aktualizáciu svojich hodnôt v GUI.
- Táto funkcia bude mať návratovú hodnotu typu string, čo umožní grafickým prvkom (napr. sliderom alebo checkboxom) spätnú komunikáciu a posielanie aktualizovaných hodnôt modulom.
- Tento prístup zároveň umožní jednoduché pripojenie na DEROS. Do ModuleManagera bude implementovaná funkcia na prijímanie správ od robota Zajka, ktorá zabezpečí synchronizáciu medzi DEROS a GUI.

Fáza 4: Testovanie a ladenie

 Testovanie jednotlivých režimov: Vykonať testovanie pre každý režim (konfiguračný, prevádzkový, prehrávací) podľa definovaných testovacích scenárov.

Fáza 5: Dokumentácia a finalizácia

- **Dokumentácia API a GUI manažéra**: Pripraviť podrobnú dokumentáciu API a funkčnosti GUI manažéra, vrátane návodov pre používateľov.
- Ukončenie a odovzdanie projektu: Zabezpečiť, aby finálna verzia softvéru bola
 pripravená na odovzdanie, skontrolovať plnenie všetkých požiadaviek a pridať finálne
 úpravy podľa spätnej väzby.

Testovacie scenáre

Scenár 1: Spustenie aplikácie a úprava rozhrania

- 1. Akcia používateľa: Používateľ spustí aplikáciu v konfiguračnom móde.
 - Očakávaný výsledok: Aplikácia sa otvorí. (3.4)
- 2. Akcia používateľa: Používateľ vyberie šablónu zo zoznamu uložených šablón.
 - Očakávaný výsledok: Systém zobrazí vybranú šablónu na úpravu. (3.4, 3.21.3)
- 3. Akcia používateľa: Klikne na tlačidlo inicializácie.
 - Očakávaný výsledok: Moduly začnú vykresľovať svoje prvky. (3.5)
- 4. Akcia používateľa: Používateľ edituje prvky.
 - Očakávaný výsledok: Prvky sa presunú a zmenia veľkosť. (3.23.4, 3.23.6)
- 5. Akcia používateľa: Upravené rozloženie uloží ako novú šablónu.
 - Očakávaný výsledok: Systém uloží šablónu do konfiguračného súboru. (3.23.2)
- 6. Akcia používateľa: Prepne sa do prevádzkového režimu.
 - Očakávaný výsledok: Nové rozloženie je aplikované. (3.24.1)
- 7. Akcia používateľa: Vyberie iné rozlíšenie obrazovky.
 - Očakávaný výsledok: Systém proporčne prispôsobí veľkosť prvkov. (3.6, 3.7)

Scenár 2: Interakcia s prvkami a notifikácie

- 1. Akcia používateľa: Používateľ spustí aplikáciu.
 - Očakávaný výsledok: Aplikácia sa maximalizuje a zobrazuje zvolenú šablónu. (3.6, 3.24.1)
- 2. Akcia používateľa: Klikne na tlačidlá v rozhraní.
 - Očakávaný výsledok: Tlačidlá vykonávajú príslušné akcie. (3.11)
- 3. Akcia používateľa: Posunie slider na novú hodnotu.
 - o **Očakávaný výsledok:** Nová hodnota sa prenesie do modulu. (3.11)
- 4. Akcia používateľa: Vyberie možnosť z dropboxu.
 - Očakávaný výsledok: Rozhranie zobrazuje zvolenú možnosť. (3.11)
- 5. **Akcia používateľa:** Spustí textové vstupy v rozhraní.
 - Očakávaný výsledok: Zadaný text je správne zobrazený a odoslaný. (3.11)
- 6. Akcia používateľa: Aktivuje autoscroll v textovej oblasti.
 - Očakávaný výsledok: Nové riadky sú automaticky viditeľné bez posúvania. (3.13.1.3)
- 7. Akcia používateľa: Použije scrollbar v textovej oblasti.

- Očakávaný výsledok: Obsah sa posúva podľa používateľských akcií. (3.13.1.2)
- 8. Akcia používateľa: Zmení farebné schémy textových štítkov.
 - Očakávaný výsledok: Nové nastavenia písma a pozadia sa okamžite aplikujú. (3.13.1.1)

Scenár 3: Zaznamenávanie a prehrávanie dát

- 1. Akcia používateľa: Používateľ aktivuje prevádzkový režim.
 - Očakávaný výsledok: Systém načíta šablónu a zobrazuje prvky podľa konfigurácie. (3.24.1)
- 2. Akcia používateľa: Označí prvky na zaznamenávanie a spustí logovanie.
 - Očakávaný výsledok: Systém začne ukladať dáta do logovacieho priečinka.
 (3.24.3, 3.24.5)
- 3. Akcia používateľa: Interaguje s ovládacími prvkami počas logovania.
 - o **Očakávaný výsledok:** Zaznamenané sú všetky zmeny a interakcie. (3.24.4)
- 4. Akcia používateľa: Zastaví logovanie.
 - o **Očakávaný výsledok:** Logovanie sa ukončí a uloží všetky dáta. (3.24.5)
- 5. Akcia používateľa: Prepne na prehrávací režim.
 - Očakávaný výsledok: Systém načíta uložené dáta a spustí simuláciu.
 (3.25.1, 3.25.2)
- 6. Akcia používateľa: Prispôsobí veľkosť grafických prvkov počas prehrávania.
 - Očakávaný výsledok: Vizualizácia sa upraví podľa nových nastavení.
 (3.25.3)

Scenár 4: Práca s konfiguračnými súbormi

- 1. **Akcia používateľa:** Používateľ otvorí aplikáciu v editačnom režime a upraví existujúcu šablónu.
 - Očakávaný výsledok: Systém načíta šablónu z konfiguračného súboru, ktorú je možné upravovať. (3.21.2)
- 2. Akcia používateľa: Upravený konfiguračný súbor uloží na zvolené miesto.
 - o **Očakávaný výsledok:** Systém uloží súbor správne. (3.21.1)
- 3. **Akcia používateľa:** Pri spustení aplikácie zadá parameter pre výber konfiguračného súboru.
 - Očakávaný výsledok: Aplikácia načíta zadaný konfiguračný súbor. (3.21.3)
- 4. Akcia používateľa: Použije API na výber súboru na načítanie dát.
 - Očakávaný výsledok: Systém zobrazí štandardné okno na výber súboru.
 (3.17)
- 5. Akcia používateľa: Upraví a uloží šablónu pre ďalšie spustenia.
 - o **Očakávaný výsledok:** Upravená šablóna sa uloží do konfigurácie. (3.23.2)

Scenár 5: Viacnásobné spustenie a stabilita systému

- 1. Akcia používateľa: Spustí aplikáciu na dvoch rôznych počítačoch.
 - Očakávaný výsledok: Aplikácie pracujú nezávisle bez rušenia. (3.19)
- 2. Akcia používateľa: Spustí viacero inštancií aplikácie na jednom počítači.

- o **Očakávaný výsledok:** Inštancie fungujú stabilne. (3.18)
- 3. Akcia používateľa: Prepne medzi spustenými inštanciami.
 - Očakávaný výsledok: Všetky inštancie fungujú bez straty dát alebo vizualizácie. (3.18, 3.19)
- 4. Akcia používateľa: Použije API na komunikáciu medzi modulmi.
 - Očakávaný výsledok: Moduly odosielajú a prijímajú informácie správne.
 (3.15)
- 5. Akcia používateľa: Skontroluje stabilitu systému pri simultánnom vykresľovaní dát.
 - Očakávaný výsledok: GUI nezamrzne a údaje sú správne zobrazené. (3.13, 3.15)