

クラウド上のIRIS - サイジングのベストプラクティス -

インターシステムズジャパン株式会社 セールスエンジニア 秦 信之

2023年10月18日

 ~"	H
-/	小刀

1	Cloud Resource	
2	System Metrics	
3	Example	
4	Summary	

Cloud Resources

クラウドとは?

クラウドコンピューティング

仮想マシン - コンピューティングリソース

- 特徴
 - ELASTIC 伸び縮みする, 融通性のある
- 複数のタイプ
 - 一般向け、メモリ最適化、ストレージ最適化等
 - タイプがvCPU, RAM, Network, Storageの組み合わせに反映
 - 同じタイプに複数の世代
- サイジングの目安
 - 目標CPU使用率 70-80%
 - 定期的なリソースの監視が必須
- オートスケーリング
 - 予測可能なアクセス急増減時にインスタンス数を調整

ストレージ

- 複数のタイプ
 - ブロック
 - ファイル
 - オブジェクト
- サイジングの目安
 - 必要十分なIOPS
 - 短期的に必要な容量
 - 定期的な空き容量監視
- 注意点
 - IOPSと帯域(MB/s)に上限あり

AWSの場合

- インフラストラクチャリソース
 - インスタンス
 - ストレージ
 - ネットワーク

インスタンスサイズ	vCPU	メモリ (GiB)
r5n.large	2	16
r5n.xlarge	4	32
r5n.2xlarge	8	64
r5n.4xlarge	16	128
r5n.8xlarge	32	256
r5n.12xlarge	48	384
r5n.16xlarge	64	512
r5n.24xlarge	96	768
r5n.metal	96*	768

R5インスタンス

r5n.12xlarge

最大IOPS: 40,000 (16KiB I/O)

最大帯域: 9,500 (Mbps) 最大スループット: 1,187 (MB/s, 128KiB I/O)

ネットワーク: 50 (Gbps)

vCPU: 48

メモリー: 384 (GB)

Amazon EBS

Amazon EBS

EBS gp3

無料IOPS: 3,000 最大IOPS: 16,000 スループット: 125MB/s

最大スループット: 1,000MB/s

1桁ミリ秒のレイテンシーを、年間99%の時間でプロビジョ ンされた数値の上下10%範囲内の性能を提供

リソースマッピング: AWSストレージ

ボリュームタイプ	最大 IOPS	最大スループット (MB/s)	最大IOPS - インス タンス	最大スループット (MB/s) - インスタンス
gp3	16,000	1,000	260,000	10,000
io2 Block Express	256,000	4,000	350,000	10,000

gp3

レイテンシー: 10ミリ秒以下

容量: 1 GB - 16 TB

価格: \$0.096USD/GB-1カ月 プロビジョンパフォーマンス価格:

- 3,000 IOPS
- \$0.006USD/プロビジョンドIOPS-1カ月(3,000 IOPS超過分)
- 125 MB/s スループット
- \$0.048USD/プロビジョンドMB/s-1カ月(125MB/s超過分)

io2 Block Express

レイテンシー: 1ミリ秒以下

容量: 4 GB - 64 TB

価格: \$0.142USD/GB-1カ月 プロビジョンパフォーマンス価格:

- \$0.074USD/プロビジョンドIOPS-1カ月(32,000 IOPSまで)
- \$0.052USD/プロビジョンドIOPS-1カ月(32,001から64,000 IOPS+で)
 - IOPSまで)
- \$0.036USD/プロビジョンドIOPS-1カ月(64,000 IOPS以上)

LVM PE ストライピング

- 複数のディスクデバイスで論理ボリュームを構成し、シングルファイルシステムとしてマウント
 - IOに関わるデバイスの数を増やすことで、データベースやファイルに小さい単位(例では4MB)のラウンドロビンでデバイスにアクセス
 - 50 GB x 5 = 250 GB
 - 3,000 IOPS x 5 = 15,000 IOPS **もしくは**
 - $125 \text{ MB} \times 5 = 625 \text{ MB/s}$

LVM PE ストライピング

- 複数のディスクデバイスで論理ボリュームを構成し、シングルファイルシステムとしてマウント
 - IOに関わるデバイスの数を増やすことで、データベースやファイルに小さい単位(例では4MB)のラウンドロビンでデバイスにアクセス
 - 50 GB x 5 = 250 GB
 - 16,000 IOPS x 5 = 80,000 IOPS **もしくは**
 - $1,000 \text{ MB} \times 5 = 5,000 \text{ MB/s}$

ストレージ費用月額 - 計算例

200 GB

1,600 GB

GCPの場合

- インスタンス
- ストレージ
- ネットワーク

n2-highmem-96 最大IOPS: 80,000

最大帯域: ネットワークの60% 最大スループット: 1,200MB/s ネットワーク: 32Gbps -外向き

vCPU: 96

メモリー: 768 (GB)

ゾーンバランスPD

無料IOPS: 6 IOPS/GB

最大IOPS: 80,000

スループット: 0.28 MB/s /GB 最大スループット: 1,200MB/s

Azureの場合

- インスタンス
- ストレージ
- ネットワーク

Standard E96ds v5 最大IOPS: 80,000

最大スループット: 2,600MB/s

最大ネットワーク: 35Gbps

vCPU: 96

メモリー: 672 (GB)

Premium SSD 基本IOPS: 120 最大IOPS: 20,000

基本スループット: 25MB/s

最大スループット: 900MB/s

Premium SSD	P1	P2	P3	P4	P6	P10	P15	P20	P30	P40	P50	P60
ディスクサイズ(GB)	4	8	16	32	64	128	256	512	1024	2048	4096	8192
IOPS(/s)	120	120	120	120	240	500	1100	2300	5000	7500	7500	16000

Collecting System Metrics

IRISアプリケーションをクラウドに移行

- まずはクラウドに移行して、後に最適化
 - Lift & Shift
- ベースライン
 - ユーザー体験を重視
 - 移行後でもユーザーは同じレスポンス時間で使用できるか
- キャパシティプランニング
 - インスタンスとストレージタイプを選択

システム指標の収集

- OS
 - mpstat, vmstat, iostat, Windowsパフォーマンスモニター等
- IRISドキュメント ("監視ガイド"で検索)
 - System Alerting and Monitoring (SAM)
 - 管理ポータル
 - SystemPerformance (aka. pButtons)
 - 履歴モニタ
- サードパーティアプリケーション
 - Nagios, Splunk,
 - Prometheus + Grafana

InterSystems IRIS Data Platform 2023.1

~管理

About...

- > システム管理ガイド
- ∨監視

About...

∨ 監視ガイド

管理ポータルを使用した InterSystems IRIS の監視

InterSystems 診断レポートの使用法

ログ・モニタの使用

システム・モニタの使用

^GLOSTAT を使用したグローバル 動作の統計収集

^PERFMON を使用したシステム・ パフォーマンスの監視

^PROFILE を使用したルーチン・パフ オーマンスの監視

^%SYS.MONLBL を使用したルー チン・パフォーマンスの検証

^TRACE を使用したプロセス・パフォーマンスのトレース

^SystemPerformance を使用したパフォーマンスの監視

^mgstat を使用したパフォーマンスの監視

履歴モニタ

^BLKCOL を使用したブロック衝突 の監視

^PERFSAMPLE を使用したプロセスの監視

^SystemPerformance (a.k.a. pButtons)

- IRISに同梱
- IRISの監視ガイドにドキュメントあり
- 非常に小さいオーバーヘッド
- IRISの詳細と性能情報を出力
- ハードウェアとOSの詳細とOSの性能情報を出力

^SystemPerformance (a.k.a. pButtons)

- 24時間収集を毎日深夜0時に起動をスケジュール
- トレンド把握には10秒毎、キャパシティプランニングには5秒未満
- 推奨: 出力ディレクトリ変更、フォルダのパーミッションチェック、圧縮

```
%SYS>d ^SystemPerformance
Re-creating command data for new ^SystemPerformance version.
Old command data saved in ^IRIS.SystemPerformance("oldcmds").
Current log directory: c:\fintersystems\finishealth\fimgr\fimgr\fimed
Windows Perfmon data will be left in raw format.
Available profiles:
1 12hours - 12 hour run sampling every 10 seconds
2 24hours - 24 hour run sampling every 10 seconds
3 30mins - 30 minute run sampling every 1 second
4 4hours - 4 hour run sampling every 5 seconds
5 8hours - 8 hour run sampling every 10 seconds
6 test - A 5 minute TEST run sampling every 30 seconds

Select profile number to run: ■
```

IRIS と OS: ストレージ

- データベース ランダムリード (連続的) と ライト (ライトデーモン)
- ライトイメージジャーナル (WIJ) シーケンシャルライト (ライトデーモン)
- トランザクションジャーナル

IRIS と OS: ストレージ

入出力の 種類	タイミング	方法	留意事項	入出力の私
データベース の読み取り (ほぼランダ	インタフェースおよびユ ーザの処理ごとに継	インタフェース・ク エリまたはユーザ の処理によって ディスク入出力	データベースの読み取りは、デーモンが処理する Web ページ、 SQL クエリ、または直接ユーザ処理によって実行されます。	データベース 読み取り (理なし)
4)	続的	が開始され、データを読み取り	3位にフェバ あたは直接ユーブだを正なブレス 口で作るす。	データベース 書き込み (処理あり)
データベース の書き込み (順序付け されるが非 連続で実 行)	約80秒ごとまたは 保留中の更新がデータベース・キャッシュの しきい値のパーセント に達したとき(先に基準を満たした方)	データベース・ラ イト・デーモン (8 個のプロセ ス)	データベースの書き込みは、ライト・デーモンと呼ばれる一連のデータベース・システム・プロセスによって実行されます。ユーザ処理によってデータベース・キャッシュが更新され、トリガ (時間またはデータベース・キャッシュのパーセントが一杯になったとき) によってライト・デーモンを使用してディスクの更新が実行されます。 通常、更新レートに応じて、書き込みサイクル中に数 MB から数 GB 書き込む必要があることを想定しています。	ジャーナル
WIJ 書き 込み (連 続)	約80秒ごとまたは 保留中の更新がデータベース・キャッシュの しきい値のパーセント に達したとき(先に基 準を満たした方)	データベース・マ スタ・ライト・デー モン (1 個のプロ セス)	ライト・イメージ・ジャーナル (WIJ) は、データベースの書き込みサイクル中のシステム障害から物理データベース・ファイルの整合性を保護するために使用されます。書き込みは、約 256KB のサイズごとに行われます。	
ジャーナル 書き込み (連続)	ジャーナル・データの 64KB ごとまたは 2 秒ごと、または ECP またはアプリケーション の同期要求	データベース・ジャーナル・デーモン (1 個のプロセス)	ジャーナル書き込みは連続で、4KB から 4MB までサイズが変化します。1 秒あたり数十回の書き込みから、ECP および個別のアプリケーション・サーバを使用した非常に大きい配置の場合には 1 秒あたり数千回の書き込みまでになる場合があります。	

入出力の種類	平均応 答時間	最大応 答時間	留意事項
データベースのランダム 読み取り (キャッシュ処 理なし)	<=1 ms	<=2 ms	データベース・ブロックは固定 8KB、16KB、32KB、または 64KB (ホストでのデータベース・キャッシュは大きいため、ディスクへのほとんどの読み取りはキャッシュされません)。
データベースのランダム 書き込み (キャッシュ 処理あり)	<=1 ms	<=2 ms	すべてのデータベース・ファイルの書き込みは、ストレージ・コントローラのキャッシュ・メモリによってキャッシュされることが想定されます。
ジャーナル書き込み	<=1 ms	<=2 ms	ジャーナル書き込みは連続で、4KB から 4MB までサイズが変化します。

アプリケーション

- ユーザーレスポンス時間
- トランザクション
 - 秒間の (処理|アクセス|データ追加) 件数
 - 同時アクセスユーザー
- アプリケーションの性能指標
 - コンポーネントレスポンス時間, Glorefs, Rourefs, 回数, ランダムクエリ時間

Example

オンプレミスからクラウドへの移行例

オンプレミス- 26 CPU, 204 GBメモリー

26 vCPU CPU E5-2680 v4 @ 2.40GHz - Wed, Jan 04, 2023 00:00:24 - Thu, Jan 05, 2023 00:01:12

AWS - 48 vCPU, 384 GBメモリー

48 vCPU Platinum 8175M CPU @ 2.50GHz - Wed, Mar 01, 2023 00:00:25 - Thu, Mar 02, 2023 00:00:36 Example - vmstat Total CPU

オンプレミスからクラウドへの移行例 - リサイズ

マイグレーション

オンプレミスからクラウドへの移行例 - ストレージ

要件	データ (読み + 書き)	WIJ	ジャーナル	その他
IOPS	40,000	1.800	2,600**	e.g. EFS
スループット (MB/s)	600	450	50	

ボリュームタイプ	最大IOPS / ボリューム	最大スループット (MB/s) / ボリューム		最大スループット (MB/s) / インスタンス
gp3	3,000 - 16,000	125 - 1,000	260,000	10,000

- 3,000 IOPS 付属 + 3,000IOPS以上は\$0.006/プロビジョンIOPS・月;
- **125 MB/s スループット 付属** + 124Mib/s以上は\$0.048/プロビジョンMB/s・月

	データ gp3	WIJ gp3	ジャーナル gp3	その他
IOPS	4 x 10,000 = 40,000	1	1	
スループット (MB/s)	$4 \times 250 = 1 GB/s$	450		

オンプレミスからクラウドへの移行例

ビフォー(オンプレミス) - 4,000リードIOPS

アフター(クラウド) - 2,000リードIOPS

オンプレミスからクラウドへの移行例 - ミラー

ミラー - 同様のライトIOPS

低CPU使用率

デプロイメント - AWS

- インフラストラクチャリソース
 - インスタンス
 - ストレージ
 - ・ ネットワーク

R5インスタンス

r5n.12xlarge

最大IOPS: 40,000 (16KiB I/O)

最大帯域: 9,500 (Mbps) 最大スループット: 1,187 (MB/s, 128KiB I/O)

ネットワーク: 50 (Gbps)

vCPU: 48

メモリー: 384 (GB)

Amazon EBS	Amazon EB

EBS gp3

無料IOPS: 3,000 最大IOPS: 16,000 スループット: 125MB/s

最大スループット: 1,000MB/s

Summary

まとめ

- クラウドのサイジングで大きな余裕は不要
- パフォーマンスとディスクの空き容量は常時監視を
- サイズダウンも可能
- 新世代のタイプはより高い費用対効果
- 支払額もレビュー

ありがとう ございました

