CSS Analysis

George G. Vega Yon October 22, 2018

Locally Aggregated Structures (LAS)

- For each group $g \in G$ we generated what the literature calls Locally Aggregated Structure networks (LAS networks).
- A tie (i, j) in the LAS exists if and only if $(i, j) \in CSS_i$ and $(i, j) \in CSS_j$, i.e. if both i and j report the existance of such tie.

Levels of agreement

• For each $i \in N_g$ (individual i in group G), we calculated the following metrics

Correlation between similarity statistics

Observation: The hamming normalized seems to be the same as the Mean manhattan (s)

Figure 1: Distribution of Within Group Ranges of Similarity (S) and Distance (D) Statistics with respect to the LAS. Values are normalized to range between 0 and 1.

Figure 2: Distribution of Within Group Ranges of Similarity (S) and Distance (D) Statistics within the groups. Values are normalized to range between 0 and 1.

Within groups variability

TCI analysis

LASDescriptive statistics

Statistic	$\operatorname{GrpSize}$	N	Min	Max	Variance
Hamman (S)	3	7	0.0000000	2.0000000	0.8095238
Hamman (S)	4	18	0.0000000	1.3333333	0.1045752
Hamman (S)	5	17	0.0000000	0.6666667	0.0412582
Hamming (D)	3	7	0.0000000	2.0000000	0.3333333
Hamming (D)	4	18	0.0000000	5.0000000	1.1764706
Hamming (D)	5	17	2.0000000	9.0000000	4.4705882
Mean Manhattan (D)	3	7	0.0000000	1.0000000	0.0833333
Mean Manhattan (D)	4	18	0.0000000	0.8333333	0.0326797
Mean Manhattan (D)	5	17	0.1666667	0.7500000	0.0310458
Michael (S)	3	7	0.0000000	2.0000000	0.5714286
Michael (S)	4	18	0.0000000	1.7230769	0.1804503
Michael (S)	5	17	0.2666667	1.3730769	0.1201329
Sized Difference (D)	3	7	0.0000000	1.0000000	0.1339286
Sized Difference (D)	4	18	0.0000000	0.9722222	0.0419289
Sized Difference (D)	5	17	0.0555556	0.6666667	0.0415099

	Model 1	Model 2	Model 3	Model 4	Model 5	Model 6	Model 7	Model 8	Model 9	Model 10
Prop. of Males	0.10	-0.08	-0.08	-0.09	0.05	-0.09	-0.19	-0.06	-0.24	-0.08
	(0.48)	(0.45)	(0.45)	(0.45)	(0.47)	(0.52)	(0.48)	(0.48)	(0.50)	(0.50)
Prop. of Non-white	-0.10	-0.02	-0.05	-0.21	-0.11	-0.42	-0.31	-0.31	-0.57	-0.39
	(0.33)	(0.30)	(0.30)	(0.30)	(0.31)	(0.36)	(0.33)	(0.33)	(0.35)	(0.34)
Age Range	0.04	0.02	0.03	0.04	0.04	0.04	0.02	0.02	0.03	0.02
	(0.03)	(0.02)	(0.02)	(0.02)	(0.03)	(0.03)	(0.03)	(0.03)	(0.03)	(0.03)
Avg GPA	-0.06	-0.10	-0.11	-0.09	-0.07	0.11	0.05	0.06	0.06	0.10
	(0.16)	(0.15)	(0.15)	(0.15)	(0.16)	(0.18)	(0.17)	(0.17)	(0.17)	(0.17)
Size = 4	0.26	0.47^{*}	0.23	0.48*	0.16					
	(0.24)	(0.23)	(0.20)	(0.23)	(0.22)					
Size = 5	0.82**	1.20***	0.68**	0.97***	0.68**	0.56**	0.75***	0.45**	0.52**	0.53**
	(0.26)	(0.28)	(0.21)	(0.22)	(0.23)	(0.17)	(0.17)	(0.16)	(0.16)	(0.16)
(Intercept)	-0.22	0.35	0.68	0.28	0.21	-0.79	-0.09	-0.03	0.02	-0.53
	(1.27)	(1.19)	(1.22)	(1.19)	(1.26)	(1.32)	(1.26)	(1.26)	(1.32)	(1.28)
Distance/Similarity										
Hamman (S)	0.05					-0.15				
	(0.18)					(0.31)				
Hamming (D)	, ,	-0.11*				, ,	-0.11*			
		(0.05)					(0.05)			
Mean Manhattan (D)			-0.85^{*}					-1.01*		
			(0.38)					(0.45)		
Michael (S)				-0.36^{*}					-0.40	
. ,				(0.16)					(0.21)	
Sized Difference (D)					-0.40					-0.63
` ,					(0.33)					(0.40)
R^2	0.37	0.45	0.45	0.44	0.39	0.34	0.43	0.44	0.41	0.39
Adj. R^2	0.24	0.33	0.34	0.33	0.27	0.20	0.31	0.32	0.28	0.26
Num. obs.	42	42	42	42	42	35	35	35	35	35
RMSE	0.48	0.45	0.45	0.45	0.47	0.47	0.44	0.44	0.45	0.45

***p < 0.001, **p < 0.01, *p < 0.05

Table 2: Regression using different distance/similarity measurements

Within

	Model 1	Model 2	Model 3	Model 4	Model 5	Model 6	Model 7	Model 8	Model 9	Model 10
Prop. of Males	0.06	0.07	0.06	0.03	0.06	-0.17	-0.18	-0.20	-0.15	-0.35
	(0.48)	(0.51)	(0.50)	(0.46)	(0.50)	(0.52)	(0.56)	(0.56)	(0.51)	(0.56)
Prop. of Non-white	-0.11	-0.11	-0.11	-0.11	-0.11	-0.39	-0.39	-0.39	-0.40	-0.39
	(0.32)	(0.32)	(0.32)	(0.31)	(0.32)	(0.35)	(0.36)	(0.35)	(0.34)	(0.35)
Age Range	0.04	0.04	0.04	0.03	0.04	0.03	0.03	0.03	0.03	0.03
	(0.03)	(0.03)	(0.03)	(0.03)	(0.03)	(0.03)	(0.03)	(0.03)	(0.03)	(0.03)
Avg GPA	-0.07	-0.06	-0.06	-0.05	-0.06	0.08	0.10	0.09	0.10	0.12
	(0.16)	(0.16)	(0.17)	(0.16)	(0.16)	(0.18)	(0.18)	(0.18)	(0.18)	(0.18)
Size = 4	0.22	0.25	0.24	0.30	0.24	, ,	, ,	, ,	, ,	, ,
	(0.22)	(0.25)	(0.22)	(0.21)	(0.22)					
Size = 5	0.80***	0.82*	0.80**	0.85***	0.79**	0.63***	0.64**	0.59**	0.58**	0.58**
	(0.22)	(0.35)	(0.23)	(0.21)	(0.22)	(0.17)	(0.22)	(0.16)	(0.16)	(0.16)
(Intercept)	0.00	-0.13	-0.04	0.18	-0.07	-0.57	-0.68	-0.58	-0.43	-0.59
. ,	(1.28)	(1.26)	(1.30)	(1.21)	(1.28)	(1.33)	(1.34)	(1.37)	(1.31)	(1.30)
${\sf Distance}/{\sf Similarity}$,	,	, ,	, ,	, ,	, ,	, ,	, ,	,	, ,
Hamman (S)	-0.10					-0.17				
	(0.20)					(0.21)				
Hamming (D)		-0.01					-0.01			
		(0.04)					(0.04)			
Mean Manhattan (D)			-0.18					-0.35		
			(0.64)					(0.76)		
Michael (S)				-0.43					-0.39	
. ,				(0.25)					(0.30)	
Sized Difference (D)					-0.15					-0.70
,					(0.52)					(0.63)
R^2	0.37	0.37	0.37	0.42	0.37	0.35	0.34	0.34	0.38	0.37
Adj. R^2	0.24	0.24	0.24	0.30	0.24	0.21	0.20	0.20	0.24	0.23
Num. obs.	42	42	42	42	42	35	35	35	35	35
RMSE	0.48	0.48	0.48	0.46	0.48	0.47	0.47	0.47	0.46	0.46

^{***}p < 0.001, **p < 0.01, *p < 0.05

Table 3: Regression using different distance/similarity measurements

Figure 3: LAS Networks of size 3

Network plots

Figure 4: LAS Networks of size 4.

Figure 5: LAS Networks of size 5.