

## Correction to The Vaporization Enthalpies and Vapor Pressures of Two Insecticide Components, Muscalure and Empenthrin, by Correlation Gas Chromatography

Jessica Spencer and James Chickos\*

Department of Chemistry and Biochemistry, University of Missouri-St. Louis, St. Louis, Missouri 63121, United States

J. Chem. Eng. Data 2013, 58 (12), 3513-3520.

Te have detected several errors in referencing and transposition in Tables 8 and 9 of our manuscript

(4) van Genderen, A. C. G.; van Miltenburg, J. C.; Bolk, J. G.; van Bommel, M. J.; Ekeren, P. J.; van den Berg, G. J. K.; Oonk, H. A. J.

Table 8. Parameters of the Third Order Polynomial, Equation 5, and Predicted Normal Boiling Temperatures

|                       | $A \cdot 10^{-8} / T^{3}$ | $B \cdot 10^{-6} / T^{2}$ | C/T      | D     | $T_{\rm nb}/{ m K}$ cal |
|-----------------------|---------------------------|---------------------------|----------|-------|-------------------------|
| run 1                 |                           |                           |          |       |                         |
| nonadecane            | 1.754                     | -2.5667                   | -315.614 | 6.741 | 605                     |
| eicosane              | 1.9005                    | -2.7565                   | -155.328 | 6.657 | 618                     |
| heneicosane           | 2.0495                    | -2.9483                   | 11.927   | 6.562 | 631                     |
| docosane              | 2.195                     | -3.1366                   | 171.15   | 6.478 | 644                     |
| Z 9-tricosene         | 2.3635                    | -3.3132                   | 508.541  | 6.048 | 656                     |
| E 9-tricosene         | 2.3393                    | -3.2956                   | 431.078  | 6.173 | 656                     |
| tetracosane           | 2.481                     | -3.5092                   | 476.514  | 6.329 | 667                     |
| runs 3 and 4          |                           |                           |          |       |                         |
| methyl dodecanoate    | 1.8735                    | -2.2983                   | 8.943    | 6.730 | 537.5                   |
| empenthrin 1          | 2.2259                    | -2.7594                   | 598.286  | 6.288 | 567.9                   |
| empenthrin 2          | 2.2612                    | -2.7886                   | 703.209  | 6.144 | 569.2                   |
| methyl pentadecanoate | 2.5324                    | -3.085                    | 1314.607 | 5.460 | 587                     |
| methyl hexadecanoate  | 2.7423                    | -3.3388                   | 1721.331 | 5.075 | 603                     |
| methyl octadecanoate  | 3.152                     | -3.8363                   | 2504.867 | 4.344 | 635                     |
| ethyl octadecanoate   | 3.2679                    | -3.988                    | 2696.756 | 4.202 | 644                     |
| methyl nonadecanoate  | 3.3509                    | -4.08                     | 2879.859 | 4.001 | 650                     |

(The Vaporization Enthalpies and Vapor Pressures of Two Insecticide Components, Muscalure and Empenthrin, by Correlation Gas Chromatography. J. Chem. Eng. Data 2013, 58 (12), 3513-3520). We have also added more detail. The changes are highlighted in bold. For convenience, the references cited are also included. We apologize for any inconvenience this may have caused.

## AUTHOR INFORMATION

## **Corresponding Author**

\*E-mail: jsc@umsl.edu.

## REFERENCES

- (1) Tsuzuki, M. Vapor pressures of carboxylic esters including pyrethroids: measurement and estimation from molecular structure. Chemosphere 2001, 45, 729-36.
- (2) Chickos, J. S.; Hanshaw, W. Vapor pressures and Vaporization Enthalpies of the *n*-Alkanes from  $C_{21}-C_{30}$  at T=298.15 by Correlation-Gas Chromatography. J. Chem. Eng. Data 2004, 49, 77-85.
- (3) Ruzicka, K.; Majer, V. Simultaneous treatment of vapor pressures and related thermal data between the triple point and normal boiling temperatures for n-alkanes C5-C20. J. Phys. Chem. Ref. Data 1994, 23,

Liquid-vapour equilibria of the methyl esters of alkanoic acids: Vapour pressure as a function of temperature and standard thermodynamic function changes. Fluid Phase Equilib. 2002, 202, 109-120.

- (5) Tomlin, C. D. S. The Pesticide Manual, 11th ed.; British Crop Protection Council: Surrey UK, 1997; muscalure, pg 853; empenthrin,
- (6) Khanal, O.; Schooter, D. Chemical analysis of organics in atmospheric particulates by headspace analysis. Atmos. Environ. 2004, 38 (40), 6917–6925.
- (7) Estimation from US EPA; Estimation Program Interface EPI Suite Version 4.11 (Nov. 2012); available at ttp://www.epa. gov/opptintr/exposure/pubs/episuite.htm (accessed July 23,
- (8) SciFinder Scholar; Chemical Abstracts Service: Columbus, OH, 1994; estimated using Advanced Chemistry Development (ACD/ Labs) Software V11.02 (copyright 1994-2012 ACD/Labs).
- (9) Yadav, J. S.; Ready, P. S.; Joshi, B. V. A convenient reduction of alkylated tosylmethyl isocyanides: Applications for the synthesis of natural products. Tetrahedron 1988, 44, 7243-54.
- (10) 2012-4 Handbook of Fine Chemicals; Aldrich Chemistry: St. Louis, MO, 2012.

Published: December 24, 2013

Table 9. A Summary of Liquid/Subcooled Liquid Vapor Pressures and Normal Boiling Temperatures and Comparison with Experimental or Estimated Values (in italics)

|                       | •                                                          |                 |                                                       |                            |                          |
|-----------------------|------------------------------------------------------------|-----------------|-------------------------------------------------------|----------------------------|--------------------------|
|                       | $(10^4) \cdot p_{(1)} / \text{Pa} (298.15) \text{ K calc}$ |                 | $(10^4) \cdot p_{(1)}/P$                              |                            |                          |
|                       | run 1                                                      | run 2           | 298.15 K, lit                                         | $T_{\rm nb}/{ m K}$ , calc | $T_{ m nb}/{ m K}$ , lit |
| nonadecane            | $64.3 \pm 5$                                               |                 | 64.5 <sup>a</sup>                                     | 605                        | 604 <sup>a</sup>         |
| eicosane              | $20.8 \pm 1$                                               | $20.9 \pm 1$    | 20.9 <sup>a</sup>                                     | 618                        | 617 <sup>a</sup>         |
| heneicosane           | $6.7 \pm 0.2$                                              | $6.6 \pm 0.4$   | 6.7 <sup>b</sup>                                      | 631                        | 630 <sup>c</sup>         |
| docosane              | $2.2 \pm 0.2$                                              | $2.2 \pm 0.1$   | $2.2^{b}$                                             | 644                        | 642 <sup>c</sup>         |
| Z 9-tricosane,        | $1.2 \pm 0.1$                                              | $1.1 \pm 0.1$   | 85 <sup>d</sup> , 4.21 <sup>e</sup> , 47 <sup>k</sup> | 449 <sup>f</sup>           | 453 <sup>f</sup>         |
| E 9-tricosene         | $1.2 \pm 0.1$                                              | $1.0 \pm 0.1$   | 4.21 <sup>e</sup>                                     | 656                        | na <sup>g</sup>          |
| tetracosane           | $0.23 \pm 0.02$                                            | $0.24 \pm 0.2$  | $0.24^{b}$                                            | 667                        | 664 <sup>h</sup>         |
|                       | (10 <sup>4</sup> )·p <sub>(1)</sub> /Pa (298.15) K calc    |                 | $(10^4) \cdot p_{(1)}/P$                              |                            |                          |
|                       | r                                                          | runs 3 and 4    | 298.15 K, lit                                         | $T_{\rm nb}/{ m K}$ , calc | $T_{ m nb}/{ m K}$ , lit |
| methyl dodecanoate    |                                                            | $6060 \pm 3500$ | 5850.i                                                | 537.5                      | 540 <sup>j</sup>         |
| empenthrin 1          |                                                            | $594 \pm 380$   | $141^{k,l}$ , $230^l$                                 | 567.9                      | 568.7 <sup>m</sup>       |
| empenthrin 2          |                                                            | $601 \pm 383$   | $141^{k,l}$ , $230^l$                                 | 569.2                      | 568.7 <sup>m</sup>       |
| methyl pentadecanoate |                                                            | $233 \pm 155$   | $279^{i}$                                             | $418.9^{h}$                | $414.2^{h}$              |
| methyl hexadecanoate  |                                                            | $79 \pm 55$     | $71^i$                                                | 455.6 <sup>j</sup>         | $458.2^{j}$              |
| methyl octadecanoate  |                                                            | $9.2 \pm 7.0$   | $8.0^{i}$                                             | 457 <sup>n</sup>           | 455.2 <sup>n</sup>       |
| ethyl octadecanoate   |                                                            | $4.3 \pm 3.4$   | 40 <sup>e</sup>                                       | 449.4°                     | 443.2°                   |
| methyl nonadecanoate  |                                                            | $3.1 \pm 2.5$   | 3.5 <sup>i</sup>                                      | 650                        | na <sup>g</sup>          |
|                       |                                                            |                 |                                                       |                            |                          |

<sup>&</sup>lt;sup>a</sup>Reference 3. <sup>b</sup>Reference 2. <sup>c</sup>Reference 6. <sup>d</sup>Reference 7. <sup>e</sup>Reference 8. <sup>f</sup>Boiling temperature at p/Pa = 133, ref 9. <sup>g</sup>Not available. <sup>h</sup>Boiling temperature at p/Pa = 400; ref 10. <sup>i</sup>Reference 4. <sup>f</sup>Boiling temperature at p/Pa = 1.33; ref 10. <sup>k</sup>At T/K = 296.8; ref 5. <sup>l</sup>Reference 1. <sup>m</sup>Reference 11. <sup>n</sup>Boiling temperature at p/Pa = 533; ref 10. <sup>o</sup>Boiling temperature at p/Pa = 267, ref 12.

<sup>(11)</sup> SciFinder Scholar; Chemical Abstracts Service: Columbus, OH; obtained from Syracuse Research Corporation of Syracuse, New York (US) (accessed July 23, 2013).

<sup>(12)</sup> Becker, H. J.; Strating, J. Preparation of several crystalline aliphatic hydrocarbons in the pure state. *Recl. Trav. Ch. Pays-BA* **1940**, *59*, 933–46 SciFinder Scholar accessed 11/25/13.