From Similarity to Superiority: Channel Clustering for Time Series Forecasting

Jialin Chen¹, Jan Eric Lenssen^{2,3}, Aosong Feng¹, Weihua Hu², Matthias Fey², Leandros Tassiulas¹, Jure Leskovec^{2,4}, Rex Ying ¹Yale University, ²Kumo.AI,

³Max Planck Institute for Informatics, ⁴Stanford University

时间序列预测

NIPS 2024

From Similarity to Superiority.

Channel Clustering for Time Series Forecasting

Presented by Yyyq

➤ **通道独立 CI**: 每个通道单独建模

泛化性和鲁棒性有限

$$f^{(i)}: \mathbb{R}^T \to \mathbb{R}^H \text{ for } i = 1, \cdots, C,$$

➤ **通道混合 CD**: 所有通道整体建模

导致过平滑

$$f: \mathbb{R}^{T \times C} \to \mathbb{R}^{H \times C}$$

需要:平衡单个通道处理以提高预测性能,且不会忽略通道之间的基本交互。

02 🔷 创新点

- ➤ 通道聚类模块 CCM:结合CD和CI的优点,即插即用
 - 分别提高 CI和CD的预测性能
 - 实现zero-shot预测
 - 提高时序模型的可解释性

➤ random shuffling 随机洗牌实验: TSMixer和TimesNet、DLinear和PatchTST

 $\Delta \mathcal{L}(\%)$ 均方误差 (MSE) 损失

PCC 皮尔逊相关系数
$$\left\{ \begin{array}{l} \operatorname{SIM}(X_i,X_j) = \exp(\frac{-\|X_i - X_j\|^2}{2\sigma^2}) & \text{ 通道间相似度} \\ \\ \Delta \mathcal{L}_{ij} := |\Delta \mathcal{L}_i - \Delta \mathcal{L}_j| & \text{ 通道间性能损失差} \end{array} \right.$$

$$\Delta \mathcal{L}_{ij} := |\Delta \mathcal{L}_i - \Delta \mathcal{L}_j|$$

Base Model Channel Strategy		TSMixer <i>CD</i>	DLinear <i>CI</i>	PatchTST <i>CI</i>	TimesNet <i>CD</i>
ETTh1	$\Delta \mathcal{L}(\%)$	2.67	1.10	11.30	18.90
ETTm1	$\Delta \mathcal{L}(\%)$	4.41	5.55	6.83	14.98
Exchange	$\Delta \mathcal{L}(\%)$	16.43	19.34	27.98	24.57

- (1) 现有的预测方法严重依赖于 信道身份信息。
- (2) 这种依赖与通道相似性呈负 相关

提供聚类身份而非通道身份

算法实现:整体结构

(a) The General Framework

前馈层预测未来值

时序模块 Transformer/CNN/...

(可选) 归一化层

算法实现:整体结构

(a) The General Framework

算法实现:整体结构

(a) The General Framework

04

算法实现: CCM (Channel Clustering Module)

04

▶ 算法实现: CCM (Channel Clustering Module)

初始化聚类中心

$$C = [G, ..., C_K] \in \mathbb{R}^{k \times d}$$
 cluster emb $K \uparrow Cluster$

分配数据点

更新质心(原型学习)

$$\begin{cases} \mathbf{C} = [c_1, \cdots, c_K] \in \mathbb{R}^{K \times d} \\ \mathbf{H} = [h_1, \cdots, h_C] \in \mathbb{R}^{C \times d} \end{cases}$$

$$\widehat{\mathbf{C}} = \text{Normalize} \left(\exp(\frac{(W_Q \mathbf{C})(W_K \mathbf{H})^\top}{\sqrt{d}}) \odot \mathbf{M}^\top \right) W_V \mathbf{H},$$

$$\left(\frac{CH^\mathsf{T}}{\sqrt{d}} \odot \mathcal{M}^\mathsf{T} \right) H \qquad \qquad \text{Squery: C} \text{, whe: H.}$$

$$\left(\frac{K_Q \mathbf{C}}{\sqrt{d}} \odot \mathcal{M}^\mathsf{T} \right) H \qquad \qquad \text{Squery: C} \text{, whe: H.}$$

迭代更新 (聚类损失)

- 为每个聚类分配一个前馈网络
- 每个前馈网络为一个单独的线性层
- 最终预测:

每个聚类的结果×相应的分类概率

Zero-shot Forecasting

零样本预测

• 取消交叉注意力(确定质心)

> 单变量适应性

• 从channels聚类扩展到samples聚类

> 复杂度分析

- 聚类计算:与聚类数量、通道数量和隐藏维度的乘积 成正比
- 前馈计算:与聚类数量、通道数量和预测范围 成正比

实验: 数据集和 基准模型

Table 2: The statistics of datasets in long-term forecasting. Horizon is {96, 192, 336, 720}.

Dataset	Channels	Length	Frequency
ETTh1&ETTh2	7	17420	1 hour
ETTm1&ETTm2	7	69680	15 min
ILI	7	966	1 week
Exchange	8	7588	1 day
Weather	21	52696	10 min
Electricity	321	26304	1 hour
Traffic	862	17544	1 hour

• TSMixer: CD, MLP-based

• Dlinear: CI, Linear-based

PatchTST: CI, transformer-based

• TimesNet: CD, CNN-based

Table 3: Dataset details of M4 and Stock in short-term forecasting.

Dataset	Length	Horizon
M4 Yearly	23000	6
M4 Quarterly	24000	8
M4 Monthly	48000	18
M4 Weekly	359	13
M4 Daily	4227	14
M4 Hourly	414	48
Stock (New)	10000	7/24

05 🗪 实验: 长期预测效果

Dataset Correlation r			ETTh2 0.3224	ETTm2 0.328
Exchange 0.3198	ILI 0.508	Weather 0.1169	Electricity 0.5311	Traffic 0.6325

	Iodel Ietric	TSN MSE	lixer MAE	+ Co	CM MAE	DLi MSE	near MAE	+ C MSE	CCM MAE	Patcl MSE	nTST MAE	+ C MSE	CM MAE	Time MSE	esNet MAE	+ C MSE	CM MAE	IMP(%)
ETTh1	96 192 336 720	0.361 0.404 0.422 0.463	0.392 0.418 0.430 0.472	0.365 0.402 0.423 0.462	0.393 0.418 0.430 0.470	0.375 0.405 0.445 0.489	0.399 0.416 0.440 0.488	0.371 0.404 0.438 0.479	0.393 0.415 0.443 0.497	0.375 0.415 0.422 0.449	0.398 0.425 0.440 0.468	$\begin{array}{c} 0.371 \\ 0.414 \\ \underline{0.417} \\ \underline{0.447} \end{array}$	0.396 0.424 0.429 0.469	0.384 0.436 0.491 0.521	0.402 0.429 0.469 0.500	0.380 0.431 0.485 0.520	0.400 0.425 0.461 0.493	0.539 0.442 0.908 0.333
ETTm1	96 192 336 720	0.285 0.339 0.361 0.445	0.339 0.365 0.406 0.470	$\begin{array}{c} \underline{0.283} \\ 0.336 \\ \underline{0.359} \\ 0.424 \end{array}$	0.337 0.368 0.393 0.421	0.299 0.335 0.370 0.427	0.343 0.365 0.386 0.423	0.298 0.334 0.365 0.424	0.343 0.365 <u>0.385</u> <u>0.417</u>	0.294 0.334 0.373 0.416	0.351 0.370 0.397 0.420	0.289 0.333 0.370 0.419	0.338 0.363 0.392 0.430	0.338 0.374 0.410 0.478	0.375 0.387 0.411 0.450	0.335 0.373 0.412 0.477	0.371 0.383 0.416 0.448	1.123 0.482 0.716 1.852
ETTh2	96 192 336 720	0.284 0.339 0.361 0.445	0.343 0.385 0.406 0.470	0.278 0.325 0.361 0.438	0.338 0.393 0.399 0.464	0.289 0.384 0.442 0.601	0.353 0.418 0.459 0.549	0.285 0.376 0.438 0.499	0.348 0.413 0.455 0.496	0.278 0.341 0.329 0.381	0.340 0.382 0.384 0.424	$\begin{array}{c} 0.274 \\ 0.339 \\ 0.327 \\ \hline 0.378 \end{array}$	$\begin{array}{r} 0.336 \\ \hline 0.355 \\ \hline 0.383 \\ \hline 0.415 \end{array}$	0.340 0.402 0.452 0.462	0.374 0.414 0.452 0.468	0.336 0.400 0.449 0.457	0.371 0.410 0.445 0.461	1.371 1.806 0.823 4.370
ETTm2	96 192 336 720	0.171 0.221 0.276 0.420	0.260 0.296 0.329 0.422	0.167 0.220 0.277 0.369	0.260 0.296 0.330 0.391	0.167 0.284 0.369 0.554	0.260 0.352 0.427 0.522	0.166 0.243 0.295 0.451	0.258 0.323 0.358 0.456	0.174 0.238 0.293 0.373	0.261 0.307 0.346 0.401	0.168 0.231 0.275 0.374	0.256 0.300 0.331 0.400	0.187 0.249 0.321 0.408	0.267 0.309 0.351 0.403	0.189 0.250 0.318 0.394	0.270 0.310 0.347 <u>0.391</u>	0.860 3.453 6.012 7.139
Exchange	96 192 336 720	0.089 0.195 0.343 0.898	0.209 0.315 0.421 0.710	$0.085 \\ 0.177 \\ 0.312 \\ 0.847$	$\begin{array}{c} \underline{0.206} \\ \underline{0.300} \\ \underline{0.405} \\ 0.697 \end{array}$	0.088 0.178 0.371 0.966	0.215 0.317 0.462 0.754	$\begin{array}{c} \underline{0.085} \\ \underline{0.171} \\ \underline{0.300} \\ \underline{0.811} \end{array}$	0.214 0.306 0.412 0.683	0.094 0.191 0.343 0.888	0.216 0.311 0.427 0.706	0.088 0.185 0.342 0.813	0.208 0.309 0.423 <u>0.673</u>	0.107 0.226 0.367 0.964	0.234 0.344 0.448 0.746	0.105 0.224 0.361 0.957	0.231 0.340 0.442 0.739	2.880 3.403 5.875 5.970
ILI	24 36 48 60	1.914 1.808 1.797 1.859	0.879 0.858 0.873 0.895	1.938 1.800 1.796 1.810	0.874 0.851 0.867 0.876	2.215 2.142 2.335 2.479	1.081 0.977 1.056 1.088	1.935 1.938 2.221 2.382	0.935 0.942 1.030 1.096	1.593 1.768 1.799 1.850	0.757 0.794 0.916 0.943	$\frac{1.561}{1.706}$ $\frac{1.774}{1.735}$	$\begin{array}{c} \underline{0.750} \\ \underline{0.780} \\ 0.892 \\ 0.880 \end{array}$	2.317 1.972 2.238 2.027	0.934 0.920 0.940 0.928	2.139 1.968 2.229 2.041	0.936 0.914 0.937 0.930	4.483 2.561 1.602 2.491
Weather	96 192 336 720	0.149 0.201 0.264 0.320	0.198 0.248 0.291 0.336	$\begin{array}{c} 0.147 \\ 0.192 \\ 0.244 \\ 0.318 \end{array}$	$\begin{array}{c} \underline{0.194} \\ 0.242 \\ \underline{0.281} \\ 0.334 \end{array}$	0.192 0.248 0.284 0.339	0.250 0.297 0.335 0.374	0.187 0.240 0.274 0.320	0.245 0.285 0.324 0.357	0.149 0.194 0.244 0.320	0.198 0.241 0.282 0.334	0.147 0.191 0.245 0.316	0.197 0.238 0.285 0.333	0.172 0.219 0.280 0.365	0.220 0.261 0.306 0.359	0.169 0.215 0.274 0.366	0.215 0.257 0.291 0.362	1.729 2.539 2.924 1.476
Electricity	96 192 336 720	0.142 0.154 0.163 0.208	0.237 0.248 0.264 0.300	$\begin{array}{r} 0.139 \\ \underline{0.147} \\ 0.161 \\ \underline{0.204} \end{array}$	$0.235 \\ \underline{0.246} \\ \underline{0.262} \\ 0.299$	0.153 0.158 0.170 0.233	0.239 0.251 0.269 0.342	0.142 0.152 0.168 0.230	0.247 0.248 0.267 0.338	0.138 0.153 0.170 0.206	0.233 0.247 0.263 0.296	0.136 0.153 0.168 0.210	0.231 0.248 0.262 0.301	0.168 0.184 0.198 0.220	0.272 0.289 0.300 0.320	0.158 0.172 0.181 0.205	0.259 0.262 0.284 0.309	2.480 3.226 2.423 1.417
Traffic	96 192 336 720	0.376 0.397 0.413 0.444	0.264 0.277 0.290 0.306	0.375 0.340 0.411 0.441	0.262 0.279 0.289 0.302	0.411 0.423 0.438 0.467	0.284 0.287 0.299 0.316	0.411 0.422 0.436 0.471	0.282 0.286 0.297 0.318	0.360 0.379 0.401 0.443	0.249 0.256 0.270 0.294	$\begin{array}{c} 0.357 \\ \underline{0.379} \\ \underline{0.389} \\ \underline{0.430} \end{array}$	$\begin{array}{c} 0.246 \\ \underline{0.254} \\ 0.255 \\ \underline{0.281} \end{array}$	0.593 0.617 0.629 0.640	0.321 0.336 0.336 0.350	0.554 0.562 0.579 0.587	0.316 0.331 0.341 0.366	1.488 3.175 2.120 1.445

05 实验: 短期预测效果

Dataset	M4 Monthly	M4 Daily	M4 Yearly	M4 Hourly	M4 Quarterly	M4 Weekly
Correlation r	0.62	0.646	0.712	0.55	0.671	0.653

Model		TSMixer	+ CCM	DLinear	+ CCM	PatchTST	+ CCM	TimesNet	+ CCM	IMP(%)
M4 (Yearly)	SMAPE MASE OWA	14.702 3.343 0.875	14.676 3.370 0.873	16.965 4.283 1.058	14.337 3.144 0.834	13.477 3.019 0.792	13.304 2.997 0.781	15.378 3.554 0.918	14.426 3.448 0.802	7.286 9.589 11.346
M4 (Quarterly)	SMAPE	11.187	10.989	12.145	10.513	10.380	10.359	10.465	10.121	6.165
	MASE	1.346	1.332	1.520	1.243	1.233	1.224	1.227	1.183	7.617
	OWA	0.998	0.984	1.106	0.931	0.921	0.915	0.923	0.897	6.681
M4 (Monthly)	SMAPE	13.433	13.407	13.514	13.370	12.959	12.672	13.513	12.790	2.203
	MASE	1.022	1.019	1.037	1.005	0.970	0.941	1.039	0.942	4.238
	OWA	0.946	0.944	0.956	0.936	0.905	0.895	0.957	0.891	3.067
M4 (Others)	SMAPE	7.067	7.178	6.709	6.160	4.952	4.643	6.913	5.218	10.377
	MASE	5.587	5.302	4.953	4.713	3.347	3.128	4.507	3.892	7.864
	OWA	1.642	1.536	1.487	1.389	1.049	0.997	1.438	1.217	9.472
M4 (Avg.)	SMAPE	12.867	12.807	13.639	12.546	12.059	11.851	12.880	11.914	5.327
	MASE	1.887	1.864	2.095	1.740	1.623	1.587	1.836	1.603	10.285
	OWA	0.957	0.948	1.051	0.917	0.869	0.840	0.955	0.894	6.693
Stock (Horizon 7)	MSE MAE	0.939 0.807	0.938 0.806	0.992 0.831	0.883 0.774	0.896 0.771	0.892 0.771	0.930 0.802	0.915 0.793	3.288 2.026
Stock (Horizon 24)	MSE	1.007	0.991	0.996	0.917	0.930	0.880	0.998	0.937	5.252
	MAE	0.829	0.817	0.832	0.781	0.789	0.765	0.830	0.789	3.889

05 实验:零样本预测效果

Model Generalization Task		TSM MSE	lixer MAE	+ C MSE	CM MAE	DLi MSE	near MAE	+ C MSE	CM MAE	Patch MSE	nTST MAE	+ C MSE	CM MAE	Time MSE	esNet MAE	+ C MSE	CM MAE	IMP(%)
① ETTh1→ETTh2	96 720	0.288	0.357 0.414	$\frac{0.283}{0.370}$	0.353 0.413	0.308 0.569	0.371 0.549	$\frac{0.283}{0.520}$	0.349 0.517	0.313 0.414	0.362 0.442	0.292 0.386	$\frac{0.346}{0.423}$	0.391 0.540	0.412 0.508	0.388 0.516	0.410 0.491	3.661 4.326
② ETTh1→ETTm1	96 720	0.763	0.677 0.815	0.710 1.215	0.652 0.803	0.726 1.881	0.658 0.948	$\frac{0.681}{1.138}$	$\frac{0.634}{0.809}$	0.729 1.459	0.667 0.845	0.698 1.249	0.647 0.795	0.887 1.623	0.718 0.981	0.827 1.601	0.700 0.964	4.626 10.249
③ ETTh1→ETTm2	96 720	0.959	0.694 0.982	0.937 1.758	0.689 0.980	0.990 2.091	0.704 1.061	0.896 1.681	$\frac{0.677}{0.954}$	0.918 1.925	0.694 1.014	$\frac{0.895}{1.718}$	$\frac{0.677}{0.966}$	1.199 2.204	0.794 1.031	1.122 1.874	0.731 1.012	4.457 7.824
④ ETTh2→ETTh1	96 720	0.466 0.695	0.462 0.584	0.455 0.540	0.456 0.519	0.462 0.511	0.450 0.518	$\frac{0.427}{0.484}$	$\frac{0.432}{0.502}$	0.620 1.010	0.563 0.968	0.509 0.936	0.495 0.686	0.869	0.624 0.783	0.752 0.845	0.590 0.642	8.016 16.243
⑤ ETTh2→ETTm2	96 720	0.943	0.726 0.872	0.876 1.464	0.697 0.866	0.736 1.813	0.656 0.938	$\frac{0.700}{1.253}$	$\frac{0.642}{0.844}$	0.840 1.832	0.708 1.052	0.771 1.532	0.688 0.863	1.250 1.861	0.850 1.016	1.064 1.671	0.793 0.967	6.344 11.439
⑥ ETTh2→ETTm1	96 720	1.254 2.275	0.771 1.137	1.073 1.754	0.714 1.065	1.147 1.992	0.746 1.001	0.894 1.740	0.669 0.970	0.997 2.651	0.721 1.149	$\frac{0.789}{1.695}$	$\frac{0.629}{0.971}$	1.049 2.183	0.791 1.103	0.804 1.742	0.657 0.983	16.016 15.952

05

实验: 可视化分析

实验: 可视化分析

(a) ETTh1 Dataset

(b) ETTm1 Dataset

实验: 消融实验

比例:聚类数量/通道数量

0表示所有通道放到一个聚类中,1表示所有通道各自独立

实验:效率实验

(a) Model Size Analysis on ETTh1 dataset

(b) Runtime Efficiency Analysis on ETTh1 dataset

谢谢观看

MANY THANKS!

24.11.28

