	Teste de Matemática A
	2020 / 2021
Teste N.º 1	
Matemática A	
Duração do Teste: 90 minutos	
10.º Ano de Escolaridade	
Nome do aluno:	N.º: Turma: _
Utilize apenas caneta ou esferográfica de tinta	azul ou preta.
Não é permitido o uso de corretor. Risque aqui	lo que pretende que não seja classificado.
É permitido o uso de calculadora.	
Apresente apenas uma resposta para cada iter	m.
As cotações dos itens encontram-se no final do	o enunciado.

respostas o número do item e a letra que identifica a opção escolhida.

Na resposta aos restantes itens, apresente todos os cálculos que tiver de efetuar e todas as justificações necessárias. Quando para um resultado não é pedida a aproximação, apresente sempre o valor exato.

1. Qual das seguintes afirmações é verdadeira, para quaisquer a e b reais positivos?

$$(A) \sqrt{a} + \sqrt{b} = \sqrt{a+b}$$

(B)
$$\sqrt{(-a)^2} = -a$$

(C)
$$\sqrt[3]{a} \times \sqrt{b} = \sqrt[6]{a \times b}$$

(D)
$$\sqrt[3]{a} : \sqrt{b} = \sqrt[6]{\frac{a^2}{b^3}}$$

2. Sejam $a \in b$ dois números reais distintos, com $a \neq -b$. Sabe-se que a + b = -32(a - b).

Qual é o valor de $\left(\sqrt[5]{a^2 - b^2}\right)^{-1} \times \left(\sqrt[5]{a + b}\right)^2$?

(A)
$$-2$$

(B)
$$-\frac{1}{2}$$

(C)
$$\frac{1}{2}$$

3. A solução da equação $\sqrt{7}x - 4 = 2\sqrt{3}x + 1$ é:

(A)
$$\sqrt{7} - 2\sqrt{3}$$

(B)
$$-\sqrt{7} - 2\sqrt{3}$$

(C)
$$-\sqrt{7} + 2\sqrt{3}$$

(D)
$$\sqrt{7} + 2\sqrt{3}$$

4. Na figura estão representados uma peça constituída por um cilindro e um tronco de uma pirâmide quadrangular regular de altura igual à do cilindro. A base maior do tronco da pirâmide está inscrita numa das bases do cilindro.

Sabe-se que:

- ullet o raio da base do cilindro mede r unidades de comprimento;
- a altura do cilindro é o quádruplo do raio da sua base;
- a altura do tronco da pirâmide é metade da altura do cilindro.

O volume do tronco da pirâmide pode ser expresso pela fórmula:

$$V_t = \frac{h_t}{3} \times \left(A_B + \sqrt{A_B \times A_b} + A_b \right)$$

sendo A_B a área da base maior, A_b a área da base menor e h_t a altura do tronco.

Prove que o volume do tronco da pirâmide é igual a $\frac{7}{3}r^3$ unidades de volume.

5. Num referencial cartesiano do plano, considere a representação gráfica da figura.

Na figura estão representados:

- os pontos A(-3,2) e B(1,-1);
- a circunferência de diâmetro [AB];
- a reta r definida por todos os pontos equidistantes de A e de B.

Defina a região a sombreado por uma condição.

6. Considere, num plano munido de um referencial o.n. Oxy, os pontos A(a+1,2), B(9,3), C(b+1,c+1) e D(5,11).

6.1. Escreva a equação reduzida da circunferência de centro em B e que passa em D.

6.2. Determine o valor de a, o valor de b e o valor de c, de modo que [ABCD] seja um losango.

7. A expressão $\sqrt[9]{8a^3} \times (2^4a^{-4}b^{24})^{-\frac{1}{12}}$ é igual, para quaisquer números reais positivos $a \in b$, a:

(A)
$$\frac{\sqrt[3]{a^2}}{b^{-2}}$$

(B)
$$\frac{\sqrt[3]{a^2}}{b^2}$$

(C)
$$\frac{\sqrt{a^3}}{b^2}$$

(D)
$$\frac{\sqrt{a^3}}{b^{-2}}$$

8. Considere, num referencial o.n. Oxy, a região definida pela condição:

$$(x-1)^2 + (y-2)^2 \le \frac{1}{4} \land y-3x+1 \le 0$$

Qual é o perímetro dessa região?

(A)
$$\frac{\pi}{4} + 1$$

(B)
$$\frac{\pi}{2} + 1$$

(C)
$$\pi + 1$$

(D)
$$2\pi + 1$$

9. Identifique e defina analiticamente, utilizando uma equação ou inequação cartesiana, o conjunto de pontos do plano cuja distância ao ponto A(-2,2) é o dobro da distância ao ponto B(1,0).

10. Na figura estão representados, num referencial o.n. Oxy, a circunferência definida pela condição $x^2 + y^2 - 2x + 2y = 3$ e o triângulo [ABC].

Sabe-se, ainda, que:

- A e C são os pontos de interseção da circunferência com o eixo Oy, sendo C o ponto de menor ordenada;
- o ponto B é o ponto de interseção da circunferência com o eixo Ox com menor abcissa.

- 10.2. Defina vetorialmente a reta paralela à bissetriz dos quadrantes ímpares que passa pelo centro da circunferência.
- **10.3.** Determine a área do triângulo [*ABC*].

FIM

COTAÇÕES

Item													
	Cotação (em pontos)												
1.	2.	3.	4.	5.	6.1.	6.2.	7.	8.	9.	10.1.	10.2.	10.3.	
10	10	10	20	20	15	20	10	10	20	15	20	20	200