

Procesamiento de Información Temporal Tema 1:

Modelos Clásicos de Series Temporales Parte 2: ARMA, (S)ARIMA(X), Series Multivariadas

Alicia Lozano Díez

alicia.lozano@uam.es

Audias – Audio, Data Intelligence and Speech Universidad Autónoma de Madrid

http://audias.ii.uam.es

Materiales basados en los de Daniel Ramos Castro

1

Contenidos: Tema 1 Parte 2

- Modelo MA y ARMA
- No estacionariedad: ARIMA y SARIMA
- Variables exógenas: SARIMAX
- Series multivariadas

Procesamiento de Información Temporal. Máster en Ciencia de Datos Tema 1: Modelos Clásicos de Análisis de Series Temporales

Modelos Autorregresivos de Media Móvil (ARMA)

3

Modelo MA

- Modelo Moving Average (MA)
 - Modela una secuencia de errores (ruidos) pasados

$$\theta(B) = 1 - \theta_1 B - \theta_2 B^2 - \dots - \theta_q B^q$$
 $\tilde{z}_t = \theta(B) a_t$

- Efecto de "suavizado" del error
- Si la serie presenta autocorrelación...
 - □ Es decir, "relación con sus propios valores pasados"
 - Entonces modelos MA poco adecuados
- Casi todas las series reales de interés son algo más que "ruido" a suavizar...

Procesamiento de Información Temporal. Máster en Ciencia de Datos Tema 1: Modelos Clásicos de Análisis de Series Temporales

Modelo ARMA

- Modelo Autoregressive-Moving Average (ARMA)
 - Combina linealmente modelos AR y MA

$$\tilde{z}_t = \phi_1 \tilde{z}_{t-1} + \dots + \phi_p \tilde{z}_{t-p} + a_t - \theta_1 a_{t-1} - \dots - \theta_q a_{t-q}$$

$$\phi(B) \tilde{z}_t = \theta(B) a_t$$
[Box06]

- Doble efecto
 - Es capaz de capturar relaciones de un punto con sus puntos anteriores (AR)
 - □ Es capaz de suavizar el ruido blanco para que no influya tanto (MA)
- Adecuado para muchas series temporales "reales"
- ¡Ojo! Siempre estacionarias
 - No tiene en cuenta posible no-estacionariedad

Procesamiento de Información Temporal. Máster en Ciencia de Datos Tema 1: Modelos Clásicos de Análisis de Series Temporales

5

No Estacionariedad

Modelo ARIMA

- Autorregresive Integrative Moving Average (ARIMA)
 - Primero derivamos hasta d veces
 - Objetivo: eliminar la influencia de la componente de tendencia

$$w_t = (1 - B)^d z_t = \nabla^d z_t \qquad [Box08]$$

Después, aplicar ARMA a dicho modelo derivado

$$w_t = \phi_1 w_{t-1} + \cdots + \phi_p w_{t-p} + a_t - \theta_1 a_{t-1} - \cdots - \theta_q a_{t-q}$$

 \Box Al realizar una predicción, se obtiene z_t como...

$$Sw_{t} = \sum_{j=0}^{\infty} w_{t-j} = w_{t} + w_{t-1} + w_{t-2} + \cdots \qquad z_{t} = S^{d} w_{t}$$
$$S = \nabla^{-1} = (1 - B)^{-1}$$

De dicha suma viene lo de "Integrative"

Procesamiento de Información Temporal. Máster en Ciencia de Datos Tema 1: Modelos Clásicos de Análisis de Series Temporales

<u>_</u>

Modelo SARIMA

- Seasonal Autorregresive Integrative Moving Average (SARIMA)
 - Intenta estimar la componente estacional de la serie
 - Supone que dicha componente se suma o multiplica al resto
 - A la serie resultante le aplicamos ARIMA

<aud $m{i}$ as>

Procesamiento de Información Temporal. Máster en Ciencia de Datos Tema 1: Modelos Clásicos de Análisis de Series Temporales

Modelo SARIMA

- Suposición clave
 - □ La estacionariedad tiene periodo S (unidades temporales)
- Por ello, aplicamos un ARIMA que en lugar de tomar una unidad temporal toma S unidades temporales
 - □ Modelo de "estacionalidad" (diferenciación y oper. "backward" *B* de orden S)

$$\Phi(B^s)\nabla_s^D z_t = \Theta(B^s)\alpha_t$$

- Estrategia típica:
 - □ Suponer que dicha componente estacional es multiplicativa (más común)
 - La componente estacional "modula" la amplitud del resto de componentes de la serie
 - SARIMA multiplicativo: SARIMA(p,d,q)x(P,D,Q)_s
 - Existen otras estrategias

Procesamiento de Información Temporal. Máster en Ciencia de Datos Tema 1: Modelos Clásicos de Análisis de Series Temporales 11

11

Selección y Ajuste de Modelo Metodología Box-Jenkins

Metodología Box-Jenkins Identificación del modelo (un método, and Adambal July hay variaciones) Primero, identificar estacionariedad Tendencia □ Se puede detectar derivando la serie y viendo que la ACF se convierte en una función que es 1 en desplazamiento 0, y 0 en el resto Periodicidad □ Mediante la autocorrelación (un pico en la autocorrelación desplazamiento un determinado) Segundo, eliminar estacionalidad y tendencia https://otexts.com/fpp2/stationarity.html Procesamiento de Información Temporal. Máster en Ciencia de Datos Tema 1: Modelos Clásicos de Análisis de Series Temporales <audias> UAP

Metodología Box-Jenkins Tercero: determinar el tipo de modelo estacionario sobre la señal resultante con ACF

ACF	Modelo
Caída exponencial según aumenta el desplazamiento	AR
Caída alternativa (positiva, negativa) según aumenta el desplazamiento , o sinusoide amortiguada	AR
Hay uno o dos picos en desplazamientos dif. de cero, resto cero	MA
Caída según aumenta el desplazamiento empezando tras un cierto desplazamiento inicial	ARMA
Todos los valores cero salvo pico en desplazamiento cero	Ruido blanco
Valores altos a intervalos fijos	Componente estacional
No hay caída a cero	Serie no estacionaria

- PACF se usa para elegir el valor de p
 - Último pico importante en PACF es con desplazamiento p
- ACF se usa para elegir el valor de q
 - Último pico importante en ACF es con desplazamiento q

[Box08]

UAP

Procesamiento de Información Temporal. Máster en Ciencia de Datos Tema 1: Modelos Clásicos de Análisis de Series Temporales

17

17

Metodología Box-Jenkins

- Ajuste del modelo
 - Recordemos: modelo probabilístico
 - Error: gaussiana estándar
 - Métodos de bondad de ajuste probabilístico
 - Aikake Information Criterion
 - Bayesian Information Criterion
 - ...
 - Buena bondad de ajuste con modelos gaussianos
 - Fácil de calcular

<audias>

Procesamiento de Información Temporal. Máster en Ciencia de Datos Tema 1: Modelos Clásicos de Análisis de Series Temporales

19

19

- Predicción
 - utilizando el modelo de filtro lineal a partir de valores anteriores $z_{t+l} = \varphi_1 z_{t+l-1} + \dots + \varphi_{p+d} z_{t+l-p-d} \theta_1 a_{t+l-1} \dots$

 $-\theta_q a_{t+l-q} + a_{t+l}$

[Box08]

O de los "shocks", resolviendo: $\varphi(B)(1+\psi_1B+\psi_2B^2+\cdots)=\theta(B)$

Intervalos gaussianos de credibilidad

16 17 18 19 20 21 22 23 24

<audias>

Procesamiento de Información Temporal. Máster en Ciencia de Datos Tema 1: Modelos Clásicos de Análisis de Series Temporales

UAM

Variables Exógenas: ARMAX, ARIMAX, SARIMAX

21

Variables Exógenas No forman parte de la serie bajo análisis Pero influyen en la misma Es decir, son dependientes de la misma Ligemplo Un activo varía A la vez que otro activo varía O a la vez que otro evento externo varía Estación del año Geopolítica Demografía...

Procesamiento de Información Temporal. Máster en Ciencia de Datos Tema 1: Modelos Clásicos de Análisis de Series Temporales

22

<audias>

UAM

Variables Exógenas Se añaden al modelo como variables adicionales de entrada

- - Se modelan con coeficientes pasados como en AR y MA
 - □ Ejemplo, ARMAX:

$$\tilde{z}_t = \phi_1 \tilde{z}_{t-1} + \phi_p \tilde{z}_{t-p} + a_t - \theta_1 a_{t-q} - \theta_1 a_{t-q} - \beta_1 e_{t-1} - \beta_r e_{t-r}$$

$$\phi(B)\tilde{z}_t = \phi(B)a_t + \beta(B)e_t$$

- A partir de ahí, si se conoce la serie "exógena", los procedimientos siguiendo la metodología Box-Jenkins son similares (con alguna diferencia)
- Posibles modelos:
 - ARX
 - MAX
 - ARMAX
 - ARIMAX
 - SARIMAX

Procesamiento de Información Temporal. Máster en Ciencia de Datos Tema 1: Modelos Clásicos de Análisis de Series Temporales 23

Series Temporales Multivariadas

23

Series Temporales Multivariadas

- Metodología similar (modelo de filtro lineal)
- Pero considerando la extensión multivariante...
 - Los escalares (valor de la serie en tiempo t) son vectores, no escalares
 - Todos los valores de la serie en t van en un mismo vector
 - Los coeficientes son matrices
 - No solo contemplan multiplicar un valor de cada serie en tiempo pasado "t-l"
 - Sino además la relación de unas series en el instante t-l con otras series en el instante t
 - \Box Es decir, una serie en t-l puede influir en otra serie diferente en t
- Las herramientas se complican por la generalización al caso multivariante
 - Cálculo vectorial y matricial
 - Tiene en cuenta a la covarianza entre las series

Procesamiento de Información Temporal. Máster en Ciencia de Datos Tema 1: Modelos Clásicos de Análisis de Series Temporales 25

25

Referencias Bibliográficas

[Box08] George E. P. Box, Gwilym M Jenkins and Gregory C Reinsel. "Time series analysis: forecasting and control, 4th ed.". John Wiley and Sons, 2008.

Procesamiento de Información Temporal. Máster en Ciencia de Datos Tema 1: Modelos Clásicos de Análisis de Series Temporales

