ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ 4ου ΚΕΦΑΛΑΙΟΥ

•	T 0 ′	,	,	,	1 19	, ,
) is kathemia	$\alpha\pi$ 0 TIC π	a α α α α α α α	122000000	VA STIVEZSTS 1	η σωστή απάντηση.
1.	ac naochta	and its n	upunutw m	purious	TO CHINGSOLD I	

1. Αν η ανίσωση $-x^2 + 2x + \gamma \ge 0$ είναι αδύνατη τότε:

A)
$$\gamma > -1$$

B)
$$\gamma = -1$$

$$\Gamma$$
) $\gamma < -1$

$$\Delta$$
) $\gamma \ge -1$.

2. Αν η ανίσωση $x^2 - 2x + \gamma > 0$ αληθεύει για κάθε $x \in \mathbb{R}$, τότε:

A)
$$\gamma$$
 <

B)
$$\gamma = 1$$

$$\Gamma$$
) $\gamma > 1$

$$\Delta$$
) $\gamma \leq 1$.

3. An h aniswsh $-2x^2+3\lambda x-\lambda^2\leq 0$ alhbeúei gia kábe $x\in\mathbb{R}$, tóte:

A)
$$\lambda > 0$$

B)
$$\lambda < 0$$

$$\Gamma$$
) $\lambda = 1$

$$\Delta$$
) $\lambda = 0$.

4. Η εξίσωση |x - 1| + |x - 5| = 4 αληθεύει αν και μόνο αν:

A)
$$x < 1$$

B)
$$x > 5$$

$$\Gamma$$
) $1 \le x \le 5$ Δ) $1 < x < 5$.

$$\Delta$$) $1 < x < 5$.

5. Η εξίσωση |x - 1| = x - 1:

Α) Είναι αδύνατη

B) Έχει μοναδική λύση τη x = 1

Γ) Έχει άπειρες λύσεις Δ) Είναι ταυτότητα.

ΙΙ. Σε καθεμιά από τις παρακάτω περιπτώσεις να κυκλώσετε το γράμμα Α, αν ο ισχυρισμός είναι αληθής και το γράμμα Ψ, αν ο ισχυρισμός είναι ψευδής.

1. Η ανίσωση $x^2 + \lambda x + \lambda^2 > 0$, με $\lambda \neq 0$, αληθεύει για όλα τα $x \in \mathbb{R}$.

Ψ

2. H ανίσωση $\lambda^2 x^2 + 4\lambda x + 5 \le 0$, με $\lambda \ne 0$, αληθεύει για όλα τα $x \in \mathbb{R}$.

Ψ

3. Oi anisáseic $x^2(x-1) \ge 0$ kai $x-1 \ge 0$ écoun tic ídiec lúseic.

Ψ A

4. Oi anisáseiς $x^2(x-1) \le 0$ kai $x-1 \le 0$ écoun tiς ίδιες lúseiς.

Ψ Α

5. Οι ανισώσεις $\frac{2x-1}{x+1} > 1$ και 2x-1 > x+1 έχουν τις ίδιες λύσεις.

Ψ

6. Οι ανισώσεις $\frac{x-1}{(x-2)^2} \ge 0$ και $x-1 \ge 0$ έχουν τις ίδιες λύσεις.

Ψ

Ψ

7. Οι ανισώσεις $\frac{x-1}{(x-2)^2} \ge 0$ και $(x-1)(x-2)^2 \ge 0$ έχουν τις ίδιες λύσεις. Α Ψ

8. Οι ανισώσεις $\frac{x-2}{x-1} \ge 0$ και $(x-2)(x-1) \ge 0$ έχουν τις ίδιες λύσεις.

120 4. ΑΝΙΣΩΣΕΙΣ

9. Οι ανισώσεις
$$\frac{x-2}{x-1} < 0$$
 και $(x-2)(x-1) < 0$ έχουν τις ίδιες λύσεις. Α Ψ

10. Oi anisώseis
$$\frac{x+1}{x-1} < \frac{x+2}{x+1}$$
 kai $(x+1)^2 < (x-1)(x+1)$ écoun tis ídies lúseis. A Ψ

ΙΙΙ. Να αντιστοιχίσετε καθένα από τα τριώνυμα της A' ομάδας με την ισοδύναμη μορφή του από τη B' ομάδα.

Α΄ ΟΜΑΔΑ		
1	$-2x^2 + 6x - 4$	
2	$x^2 - 3x + 2$	
3	$-x^2 + 3x - 2$	
4	$2x^2 - 6x + 4$	

Β΄ ΟΜΑΔΑ				
	(x-1)(x-2)			
В	-(x-1)(x-2)			
	2(x-1)(x-2)			
Δ	-2(x-1)(x-2)			

ΙΥ. Να εντοπίσετε το λάθος στους παρακάτω συλλογισμούς:

- 1. Η ανίσωση (2x-6)(x-1) > 0 γράφεται ισοδύναμα: $(2x-6)(x-1) > 0 \Leftrightarrow 2x-6 > 0 \text{ και } x-1 > 0 \Leftrightarrow x > 3 \text{ και } x > 1 \Leftrightarrow x > 3.$ Όμως ο αριθμός 0, αν και είναι μικρότερος του 3, <u>επαληθεύει</u> τη δοθείσα ανίσωση.
- **2.** Η ανίσωση $x < \frac{4}{x}$ γράφεται ισοδύναμα:

$$x < \frac{4}{x} \Leftrightarrow x^2 < 4 \Leftrightarrow x^2 - 4 < 0 \Leftrightarrow -2 < x < 2.$$

Όμως ο αριθμός -1, αν και είναι μεταξύ του -2 και του 2, δεν επαληθεύει τη δοθείσα ανίσωση.

3. Η ανίσωση $(x + 2)^2 (x - 1) ≥ 0$ γράφεται ισοδύναμα:

$$(x+2)^2(x-1) \ge 0 \Leftrightarrow x-1 \ge 0 \Leftrightarrow x \ge 1$$
.

Ομως ο αριθμός –2, αν και είναι μικρότερος του 1, επαληθεύει τη δοθείσα ανίσωση.