

Dynamics and Numerics of Shallow Water Flows

Christoph Schär ETH Zürich

http://www.iac.ethz.ch/people/schaer

Supplement to Lecture Notes "Numerical Modeling of Weather and Climate"

March 2015

Outline:

- governing equations
- dimensionless parameters
- wave propagation, Tsunamis
- hydraulic jumps
- vortex shedding
- Seiche waves
- numerical implementation

Schär, ETH Zürich

Shallow water equations

System of equations

$$\frac{Du}{Dt} + g^* \frac{\partial(h+H)}{\partial x} = 0$$

$$\frac{\partial H}{\partial t} + \frac{\partial (uH)}{\partial x} = 0$$

Reduced gravity

$$g^* = g \frac{\Delta \rho}{\rho} = g \frac{\rho - \rho_u}{\rho}$$

Approximations

- Horizontal velocity u is independent of height, i.e. u=u(x)
- The influence of the overlaying layer of fluid (e.g. air) can be neglected.

with $\frac{D}{Dt} = \frac{\partial}{\partial t} + u \frac{\partial}{\partial x}$

Phase speed of shallow-water waves

Phase speed (non-rotating system, *f*=0)

$$c = \sqrt{g * H}$$
 (non-dispersive)

$$g^* = g \frac{\Delta \rho}{\rho} = g \frac{\rho - \rho_u}{\rho}$$
 (reduced gravity)

Tsunami $(g^* = g = 10 \text{ m/s}^{-2})$ H [m] c [m/s] *c* [km/h] 3.2

Tsunami of December 26, 2004

Banda Aceh, Sumatra

Hydraulic jumps

Frounde number:

$$Fr = \frac{|u|}{c} = \frac{|u|}{\sqrt{g^* H}} = \frac{\text{advection velocity}}{\text{wave velocity}}$$

Fr < 1: subcritical (subsonic)

Fr > 1: supercritical (supersonic)

The velocity decreases with increasing distance from the point of impact (due to mass conservation). This provokes the transition from supercritical to subcritical conditions. The transition is accompanied by a hydraulic jump, dissipating some of the kinetic energy in turbulence. At the hydraulic jump, the velocity abruptly decreases, and fluid depth increases.

Shallow-water flow past a ridge

Atmospheric flow past a ridge

Tidal Bore

Island Socorro (Mexiko)

Canary Islands, June 30, 2010

Shallow-water flow past an isolated mountain

Vorticity
$$\xi = -\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x}$$

$$\xi > 0$$
:

$$\xi < 0$$
:

SW-Simulations of flow past isolated topography

 Fr_{∞} =0.5, M=2

Schär, ETH Zürich (Schär and Smith 1993)

The Alpine wake ...

... and its PV structure

Acqua Alta, Venice

Schär, ETH Zürich

Typical synoptic situation for Acqua Alta

November 7, 1999, 06 UTC (Buzzi et al. 2003; MAP IOP 15)

Seiche wave driven by:

- pressure (10 hPa = 10 cm)
- wind
- runoff from precipitation

Seiche waves in SW dynamics

1st order Seiche wave

$$P = \frac{2L}{\sqrt{gH}}$$
 P=8.5h

2nd order Seiche wave

$$P = \frac{L}{\sqrt{gH}}$$
 P=4.25h

Open Seiche wave of 1st order

$$P = \frac{4L}{\sqrt{gH}}$$
 P=17h

Adriatic sea: L=700 km H=200 m

Dimensionless formulation of shallow-water equations

Dimensional formulation

$$\frac{Du}{Dt} + g^* \frac{\partial (h+H)}{\partial x} = 0$$

$$\frac{\partial H}{\partial t} + \frac{\partial (uH)}{\partial x} = 0$$

Dimensionless formulation

$$\frac{Du}{Dt} + \frac{\partial(h+H)}{\partial x} = 0$$

$$\frac{\partial H}{\partial t} + \frac{\partial (uH)}{\partial x} = 0$$

with
$$\frac{D}{Dt} = \frac{\partial}{\partial t} + u \frac{\partial}{\partial x}$$

Numerical Implementation

Staggered grid

Array structure

Numerical Integration of Momentum Equation

Dimensionless formulation

$$\frac{Du}{Dt} + \frac{\partial(h+H)}{\partial x} = 0 \quad \text{with} \quad \frac{D}{Dt} = \frac{\partial}{\partial t} + u\frac{\partial}{\partial x}$$

Centered differences in space and time

$$\frac{1}{2\Delta t} \left[u_{j+1/2}^{n+1} - u_{j+1/2}^{n-1} \right] + \frac{u_{j+1/2}^{n}}{2\Delta x} \left[u_{j+3/2}^{n} - u_{j-1/2}^{n} \right] + \frac{1}{\Delta x} \left[\left(H_{j+1}^{n} + h_{j+1} \right) - \left(H_{j}^{n} + h_{j} \right) \right] = 0$$

Solve for time level *n*+1

$$u_{j+1/2}^{n+1} = u_{j+1/2}^{n-1} - \frac{u_{j+1/2}^{n} \Delta t}{\Delta x} \left[u_{j+3/2}^{n} - u_{j-1/2}^{n} \right] - \frac{2\Delta t}{\Delta x} \left[\left(H_{j+1}^{n} + h_{j+1} \right) - \left(H_{j}^{n} + h_{j} \right) \right]$$

Numerical Integration of Mass Equation

Dimensionless formulation

$$\frac{\partial H}{\partial t} + \frac{\partial (uH)}{\partial x} = 0$$

Centered differences in space and time

$$\frac{1}{2\Delta t} \left[H_j^{n+1} - H_j^{n-1} \right] + \frac{1}{2\Delta x} \left[u_{j+1}^n H_{j+1}^n - u_{j-1}^n H_{j-1}^n \right] = 0 \quad \text{with} \quad u_j^n = \frac{1}{2} \left(u_{j-1/2}^n + u_{j+1/2}^n \right)$$

Solve for time level n+1

$$H_j^{n+1} = H_j^{n-1} - \frac{\Delta t}{\Delta x} \left[u_{j+1}^n H_{j+1}^n - u_{j-1}^n H_{j-1}^n \right] \quad \text{with} \quad u_j^n = \frac{1}{2} \left(u_{j-1/2}^n + u_{j+1/2}^n \right)$$