

Importance of Sets

- A set is an unordered collection of "objects"
- Sets are used in computer science is a wide variety of ways

11/25/2019

Sacramento State - Fall 2019 - CSc 130 - Cook

Importance of Sets

- Depending on the attributes of the set, and how we use it, there are different approaches
- Programmers must choose the best model given how it will be used

11/25/2019

Subsets

ramento State - Fall 2019 - CSc 130 - Cook

Set Review: Membership

- Set notation uses a special symbols to denote if an object is a member of a set
- Below, the set V contains vegetables

potato ∈ V bacon ∉ V

Set A is considered a subset of set B if all the members of A are also members of B The subset operator is similar looking to the member operator

{ 1, 4 } ⊆ { 1, 3, 4, 5 }

Set Review: Union A union of two sets combines all members of each set into a new one So, the result is two merged sets A ∪ B = { x | x ∈ A or x ∈ B }

Set Review: Difference • Difference (aka exclusion) removes all items found in set from another • Typically, it is written either A – B or A \ B A – B = { x | x ∈ A and x ∉ B }

Multiset

- A *multiset* is closely related to a set, but permits duplicate elements (as does a tuple)
- The Bag ADT, from the beginning of the semester, supports a basic multiset

Probably the most obvious way

Sets using Linked Lists

- One obvious approach, to store a set structure, is to use a linked list
- We can either attempt to maintain a sorted list or unsorted list

Sets using Linked Lists

- Remember: there is no ordering in a set, so we are free to move elements around as we wish
- We can take advantage of this to reduce time complexity

Unsorted List

- If we are maintaining an unsorted multiset, then individual elements can be appended with O(1)
- In fact entire lists can be appended (a union of two sets) at a cost of O(n)
- ... or just linked together at a cost of O(1)

Unsorted List without Duplicates

- However, if duplicates must be avoided, then issues will
- To append a single element, the entire list must be searched: O(n)

U = { fry, bender, farnsworth, leela, zoidberg} A = { fry, bender, leela } U = 11111 A = 11010

Let's look at the definitions again... We can apply a bit-wise-and & a bit-wise-or to our bit array It will apply the operation to each of the bits in matching columns A ∪ B = { x | x ∈ A or x ∈ B } A ∩ B = { x | x ∈ A and x ∈ B }

Example: Union (using or)

```
U = {a,b,c,d,e,f,g}

A = {b,c,d} = 0111000

B = {d,e,f} = 0001110

0111000

or 0001110

0111110 = {b,c,d,e,f}
```

Example: Intersection (using and)

```
U = \{a,b,c,d,e,f,g\}
A = \{b,c,d\} = 0111000
B = \{d,e,f\} = 0001110
0111000
and \frac{0001110}{0001000} = \{d\}
```

Complement

- Then, how do we do a complement of a set A?
- We must flip all the bits from 1 to 0, and 0 to 1
- We can use a *binary-not* or the *XOR* operation

```
A' = { X | X ∉ A }

11.252019 Secramento State - Fal 2019 - CSc 130 - Cook 57
```

Example: Complement (using not)

```
U = \{a,b,c,d,e,f,g\}
A = \{b,c,d\} = 0111000
not \frac{0111000}{1000111} = \{a,e,f,g\}
```

Exclusion

- Finally, how do we do set difference?
- The "subtract" operator will not work
- Let's look at the definition a bit more closely

Exclusion

- It's essentially the definition of intersection
- Except, the second operand is the definition of complement.

Example: Intersection (using and) $U = \{a,b,c,d,e,f,g\}$ $A = \{b,c,d,f\} = 0111010$ $B = \{d,e,f\} = 0001110$ B' = not 0001110 = 1110001 0111010and $\frac{1110001}{0110000} = \{b,c\}$

Sets using Binary Trees

- Binary Trees are a tad more complex (and advanced) than linked-lists and arrays
- How do we merge two binary trees? Let's assume they are beautifully balanced using AVL or Red-Black

There are two approaches

11/25/2019

Sacramento State - Fall 2019 - CSc 130 - Cool

#1. Add Contents from A to B

- We can simply read all the content of tree A and then add it to tree B
- Each value will be added in O(log n)
- So, to do a union using this approach takes
 O(n log n) which is a tad slower than linked lists

11/25/2019

Sacramento State - Fall 2019 - CSc 130 - Cook

#2. Convert to Linked Lists

- If the set operator for Union is a "true function" – it only returns an object and doesn't modify either operand – then we can use linked lists
- The conversion from a tree to a linked list is O(n) – we do an infix traversal

11/25/2019

#2. Convert to Linked Lists

- So, we can do an infix traversal of both tree A and tree B and output sorted lists
- This will take O(n)
- The merging of two sorted linked lists also is O(n)

11/25/2019

Sacramento State - Fall 2019 - CSc 130 - Cook

#2. Convert to Linked Lists

- This linked list, because it is sorted, can be converted back into a B-Tree in O(n)
- But, please note, because of all the conversions, it is a rather ugly O(n)

11/25/2019

Sacramento State - Fall 2019 - CSc 130 - Cook

Set Implementations

	Bit Vector	Sorted Array	Unsorted Linked List	Sorted Linked List	Tree
Limitations	Countable, Finite	None	Multiset	None	None
Find	O(1)	O(log n)	O(n)	O(n)	O(log n)
Append	O(1)	O(n)	O(1)	O(n)	O(log n)
Union	O(1)	O(n)	O(n²)	O(n)	O(n)
Intersection	O(1)	O(n)	O(n²)	O(n)	O(n)
Difference	O(1)	O(n)	O(n²)	O(n)	O(n)

Union-Find

- Often there are situations where we have a number of known objects
- ... and we want to quickly associate them together
- In other words, we want to create ad-hoc unions

11/25/2019

acramento State - Fall 2019 - CSc 130 - Cook

Union-Find

- Union-Find data structure maintains a list of nodes partitioned into a number of disjoint subsets
- The union of all disjoint sets is the Universe – i.e. all the nodes

11/25/2019

Sacramento State - Fall 2019 - CSc 130 - Cook

Example Applications

- Kruskal's Algorithm uses it to create sets of edges – to prevent cycles
- Maze creation algorithms use it track sets of connected paths – so the maze is always solvable

11/25/2019

Sacramento State - Fall 2019 - CSc 1

The Approach

- Sets are stored as a variation of the classic tree
- However, in this approach children link to their parents
- So, the branches point "backwards" from standard trees

11/25/2019

Sacramento State - Fall 2019 - CSc 130 - Co

Arrangement of Nodes

- A parent node can have <u>multiple</u> children - this is not a binary tree!
- Every node in the tree is part of the same set
- The root is called the representative of the set

Sacramento State - Fall 2019 - CSc 130 - Cook

Arrangement of Nodes

- Any node can "find" its representative – by following the upwards branches
- If <u>any</u> two nodes have the <u>same</u> representative, then they are in the <u>same</u> set

Sacramento State - Fall 2019 - CSc 130 - Cook

Representative Representative 1, 6, 7, 9, 12, 13 } (1, 6, 7, 9, 12, 13 }

Approach #1: Union By Height

- Using *Union by Height*, the tree with the smaller height is made a subtree of the taller tree
- This helps create a more balanced union in terms of height
- But, Find, will fix this automatically

11/25/2019

acramento State - Fall 2019 - CSc 130 - C

Approach #1: Result 7 10 10 11050019 Sacramento Sizer - Fal 2019 - Clor 130 - Cloral 2019

Approach #2: Union by Weight

- Using Union by Weight, the tree with the fewer nodes (not edge weight) is made a subtree of the larger tree
- This helps create a more balanced union in terms of weight
- Again, the Find operation will optimize the tree

11/25/2019

Sacramento State - Fall 2019 - CSc 130 - Cook

