

KANAŁY I KSZTAŁTKI POROSTOKĄTNE

wg: ITB-KOT-2019/0948-wydanie 2

ZASTOSOWANIE:

Przewody wentylacyjne FRAPOL o przekroju prostokątnym są przeznaczone do rozprowadzania powietrza w instalacjach wentylacji i klimatyzacji w budynkach, w tym budynkach mieszkalnych, zamieszkania zbiorczego i użyteczności publicznej. Przewody proste i kształtki mogą być stosowane w następujących warunkach:

- temperatura transportowanego powietrza w zakresie od -30°C do +70°C,
- wilgotności względna transportowanego powietrza do 100%,
- transport powietrza bez czynników agresywnych chemicznie i ścierających,
- prędkość przepływu powietrza do 16m/s
- różnica ciśnienia statycznego powietrza wewnątrz i na zewnątrz przewodu od -500 Pa do 1000Pa (klasa wykonania N, wg WO-KOT/36/01 wydanie 1)
- różnica ciśnienia statycznego powietrza wewnątrz i na zewnątrz przewodu od -750 Pa do 2000Pa (klasa wykonania S, wg WO-KOT/36/01 wydanie 2)

Maksymalny wymiar przewodu B x H 4000x3000 [mm]

KONSTRUKCJA:

oparte jest o ITB-KOT-2019/0948. Wykonanie przewodów wentylacyjnych Określają one główne wymiary i dopuszczalne odchyłki dla przekrojów prostokątnych i kołowych, klasy przewodów i graniczne parametry pracy wymagane dla poszczególnych klas oraz grubość blachy w zależności od długości boków. Do produkcji wszelkiego rodzaju kształtek i kanałów o przekroju prostokatnym stosowane są blachy i taśmy stalowe ocynkowane w gatunku DX51D+Z275-M-A-C (275 g/m2) wg PN-EN 10142+A1. Ramki wykonane są z profil K20, K30 oraz z naroży. Po uzgodnieniu z zamawiającym istnieje możliwość wykonania przewodów: • z blach i taśm stalowych w innym gatunku zgodnym z w/w normami • z innych materiałów np. stali nierdzewnej. Uwaga: moduł długość przewodu wynosi 1500 mm Ponadto produkowane są przewody w wykonaniu specjalnym tak zwanym olejoszczelnym, przeznaczone do stosowania w instalacjach odprowadzających powietrze nasycone olejem (np. odciągi z okapów kuchennych). Polega ona na uszczelnianiu wszystkich łączonych blach oraz ramek uszczelniaczem olejoodpornym.

KLASY WYKONANIA:

Zależnie od normy, w oparciu o którą realizowana jest produkcja kanałów wyróżniamy różne klasy wykonania.

Poniższe tabele zawierają informacje na temat szczegółów wykonania, takich jak zastosowane profile łączące w zależności od zastosowanej normy i parametrów pracy instalacji wentylacji.

	Wartość graniczna wskaźnika nieszczelności (f _{max})m³*s ⁻¹ *m ⁻²	Wartości graniczne ciśnienia statycznego (p₅) Pa			
Klasa szczelności przewodów		Podciśnienie we wszystkich klasach ciśnienia	Nadciśnienie w danej klasie ciśnienia		
			1	2	3
Α	0,027 x p _{test} ^{0,65} x 10 ⁻³	200	400	-	-
В	0,009 x p _{test} ^{0,65} x 10 ⁻³	500	400	1000	2000
С	0,003 x p _{test} ^{0,65} x 10 ⁻³	750	400	1000	2000

OBMIAR KSZTAŁTEK PROSTOKĄTNYCH WG DIN 18379:

Kształtki , których powierzchnia jest mniejsza niż 1,0m² są liczone jako kształtka o powierzchni 1,0 m².

Kanał, który jest krótszy od 900 mm jest liczony jako kształtka.

Tabela 1 Wymiarowanie i oznaczenia

Symbol	Nazwa	Rysunek	Największy obliczony obwód U _{max}	Największa obliczona długość L _{max}	
KGE	Kanał	M KGE	2·(H+B)	L	
	Łuk	BOK	Warunek : B ≥	≥ <i>B</i> 1	
вок			2·(H+B)	$\frac{\alpha \cdot \pi \cdot (R+B)}{180} + e + f$	
			Warunek:	< B1	
		TelBH	2·(H+B1)	$\frac{\alpha \cdot \pi \cdot (R+B1)}{180} + e + f$	
	Kolano		Warunek : B ≥	$B \ge B1$	
KN		H H H H H H H H H H H H H H H H H H H	2·(H+B)	B+B1+e+f	
		e B H	Warunek :	< <i>B</i> 1	
		H	2·(H+B1)	B+B1+e+f	

Symbol	Nazwa	Rysunek	Największy obliczony obwód U _{max}	Największa obliczona długość L _{max}
ET	Uskok	ET IM	Warunek : $B \ge B1$ 2·(H+B)	Warunek: $B - B1 + e \ge e$ $\sqrt{L^2 + (B - B1 + e)^2}$
			Warunek: $B < B1$ 2·(H+B1)	Warunek: $B - B1 + e < e$ $\sqrt{L^2 + e^2}$
UE	Dyfuzor	UE UE UE H1 B1	Warunek: $H + B \ge H1 + B1$ $2 \cdot (H+B)$	Warunek: $B - B1 + e \ge e$ $\sqrt{L^2 + (B - B1 + e)^2}$
				Warunek: $B - B1 + e < e$ $\sqrt{L^2 + e^2}$
			Warunek : <i>H</i> + <i>B</i> 1 < <i>H</i> 1 + <i>B</i> 1	Warunek: $H - H1 + f \ge f$ $\sqrt{L^2 + (H - H1 + f)^2}$
			2·(H1+B1)	Warunek: $H - H1 + f < f$ $\sqrt{L^2 + f^2}$
UR	Dyfuzor	UR UR H B	Warunek : $H + B \ge \frac{\pi \cdot D_n}{2}$	Warunek: $\frac{B-D_n+e\geq e}{\sqrt{L^2+(B-D_n+e)^2}}$
			2·(H+B)	Warunek: $B - D_n + e < e$ $\sqrt{L^2 + e^2}$
			Warunek: $H + B < \frac{\pi \cdot D_n}{2}$	Warunek: $H - D_n + f \ge f$ $\sqrt{L^2 + (H - D_n + f)^2}$
			$\pi \cdot D_n$	Warunek: $H - D_n + f < f$ $\sqrt{L^2 + f^2}$

Symbol	Nazwa	Rysunek	Największy obliczony obwód obliczona długość L_{max}
TSU	Trójnik	F B1 9 H1	1. Przelotowy Warunek: $H + B \ge H2 + B2$ $2 \cdot (H + B)$ Warunek: $H + B < H2 + B2$ $2 \cdot (H2 + B2)$ 2. Dyfuzorowy $2 \cdot (H1 + B1)$ e Powierzchnie 1 i 2 są dodawane
TSA	Trójnik asymetry czny	F BI 9 HI NOTE OF THE STATE OF	1. Przelotowy Warunek: $B \ge B2$ $2 \cdot (H + B)$ Warunek: $B < B2$ $2 \cdot (H2 + B2)$ 2. Dyfuzorowy $2 \cdot (H1 + B1)$ e Powierzchnie 1 i 2 są dodawane
TSO	Trójnik z odejście m okrągłym	g g TSO 8 2 10	1. Przelotowy Warunek: $B \geq B2$ $2 \cdot (H + B)$ Warunek: $B < B2$ $2 \cdot (H2 + B2)$ 2. Dyfuzorowy $\pi \cdot Dn$ e Powierzchnie 1 i 2 są dodawane

Symbol	Nazwa	Rysunek	Największy obliczony obwód U _{max}	Największa obliczona długość L _{max}
DE	Zaślepka	DE T	Powierzchnia H·B	
XTS	Czwórnik	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1. Przelotowy Warunek: $H + B \ge H2 + B2$ $2 \cdot (H + B)$ Warunek: $H + B < H2 + B2$ $2 \cdot (H2 + B2)$ 2. Dyfuzorowy $2 \cdot (H1 + B1)$ $2 \cdot (H3 + B3)$ Powierzchnie 1 i 2 sa	L e k ą dodawane
SU	Sztuc	B	2·(H+B)	L

Oprócz kształtek określonych przez normę wykonujemy również kształtki zespolone. Poniżej podajemy kilka przykładów takich kształtek:

Tabela 2 Kształtki zespolone

Kształtki, które odbiegają kształtek od przedstawionych powyżej wykonywane są na specjalne zamówienie wg rys. zamawiającego.

WARUNKI PRACY:

Konstrukcja i wykonanie przewodów wentylacyjnych blaszanych oraz ich połączeń powinna umożliwiać ich stosowanie przy następujących parametrach pracy:

- temperatura transportowanego powietrza w zakresie od -30 °C do +80 °C
- wilgotność względna transportowanego powietrza do 100%
- prędkość przepływu powietrza do 16 m/s
- różnicę ciśnień statycznych powietrza wewnątrz i na zewnątrz przewodu w zależności od klasy wykonania przewodów prostokątnych:

klasa wykonania N od -500 Pa do +1000 Pa klasa wykonania S od -750 Pa do +2000 Pa

klasy szczelności

klasa szczelności B: w przypadku wykonania normalnego

klasa szczelności C: w przypadku wykonania o podwyższonej szczelności

