Internet Protocol Version 6

Vortrag von Ingo Blechschmidt am 2. Februar 2005

Gliederung

- Was fehlt IPv4?
- Was ist IPv6?
- IPv6-Adressen und -Adressraum
- Statuslose Autokonfiguration
- Neighbour Discovery
- IPv6 Mobility
- IPv6 im DNS
- Tunnelbroker

Was fehlt IPv4?

- Zu wenig Adressen (theoret. $2^{32} \approx 4.3 \cdot 10^9$) \Rightarrow "Fix": Private Adressen, NAT
- Keine Verschlüsselung und Signierung
 ⇒ Fix: IPsec
- Keine automatische Konfiguration
 ⇒ Suboptimaler Fix: DHCP
- Zu große Routing-Tabellen in den "großen Routern"

Was ist IPv6?

- Erweiterung des Adressraums von 32 Bit auf 128 Bit (theoret. $2^{128} \approx 3.4 \cdot 10^{38}$)
- Keine privaten Adressen in ihrer jetzigen Form mehr
- Integration von IPsec in das Protokoll
- Zustandslose Konfiguration, Router Discovery

Beispiel:

2001:08e0:abcd:014d:0000:0000:0000:0001

Beispiel:

```
2001:8e0:abcd:14d:0:0:0:1
```

Beispiel:

```
2001:8e0:abcd:14d::1
```

- :: $\hat{=}$:: 0 $\hat{=}$ 0.0.0.0
- ::1 $\hat{=}$ 127.0.0.1

• Beispiel:

```
2001:8e0:abcd:14d::1
• :: \hat{=} :: 0 \hat{=} 0.0.0.0
• :: 1 \hat{=} 127.0.0.1
```

Netze nach CIDR-Notation:

IPv6-Adressraum

Netz	Bereich	Zweck
::/4	:: -Offf:	Verschiedens
2000::/8	2000::-3fff:	Global Unicast
fc00::/7	fc00::-fdff:	Unique Local Unicast
fe80::/10	fe80::-febf:	Link-Local Unicast
ff00::/8	ff00::-ffff:	Multicast

Zuweisung einer Link-lokalen Adresse:
 00:e0:7d:e5:0b:ff (MAC-Adresse)

Zuweisung einer Link-lokalen Adresse:
 00:e0:7d:ff:fe:e5:0b:ff (EUI-64)

Zuweisung einer Link-lokalen Adresse:

```
02:e0:7d:ff:fe:e5:0b:ff
```

Zuweisung einer Link-lokalen Adresse:

02e0:7dff:fee5:0bff

Zuweisung einer Link-lokalen Adresse:

fe80::2e0:7dff:fee5:bff

Zuweisung einer Link-lokalen Adresse:

```
fe80::2e0:7dff:fee5:bff
```

"Gibt's diese Adresse schon?"

Zuweisung einer Link-lokalen Adresse:

```
fe80::2e0:7dff:fee5:bff
```

- "Gibt's diese Adresse schon?"
- Senden einer Router Solicitation ⇒
 Router Advertisement:

"Das Präfix unseres Netzes ist

```
2001:8e0:abcd:14d::/64."
```

Zuweisung einer Link-lokalen Adresse:

```
fe80::2e0:7dff:fee5:bff
```

- "Gibt's diese Adresse schon?"
- Senden einer Router Solicitation ⇒
 Router Advertisement:

```
"Das Präfix unseres Netzes ist
```

```
2001:8e0:abcd:14d::/64."
```

Endgültige Adresse:

```
2001:8e0:abcd:14d:2e0:7dff:fee5:bff
```

DHCPv6 wenn nötig/verlangt

Autokonfiguration — Praxis

- Voraussetzung: Konfigurierter Router
- Dann:

```
# modprobe ipv6
```

Autokonfiguration – Praxis

- Voraussetzung: Konfigurierter Router
- Dann:

```
# modprobe ipv6
```

(Fertig)

Autokonfiguration — radvd

```
interface eth0 {
    AdvSendAdvert on;
    AdvHomeAgentFlag off;
    AdvLinkMTU 1280;
    prefix 2001:8e0:abcd:14d::/64 {
        AdvOnLink on;
        AdvAutonomous on;
        AdvRouterAddr on;
```

- Senden eines Pakets im (z.B.) Ethernet:
 Voraussetzung: Kennen der Ziel-MAC-Adresse
- IPv4 mit ARP:

```
• Beispiel: 1.2.3.4[a:b:c:d:e:f] → 4.3.2.1[f:e:d:c:b:a]
```

- Senden eines Pakets im (z.B.) Ethernet:
 Voraussetzung: Kennen der Ziel-MAC-Adresse
- IPv4 mit ARP:
 - Beispiel: 1.2.3.4[a:b:c:d:e:f] → 4.3.2.1[f:e:d:c:b:a]
 - Broadcast eines ARP-Requests:

```
Quelle: 1.2.3.4[a:b:c:d:e:f]
```

Ziel: 4.3.2.1[unbekannt]

- Senden eines Pakets im (z.B.) Ethernet:
 Voraussetzung: Kennen der Ziel-MAC-Adresse
- IPv4 mit ARP:
 - Beispiel: 1.2.3.4[a:b:c:d:e:f] → 4.3.2.1[f:e:d:c:b:a]
 - Broadcast eines ARP-Requests
 - Erhalt eines ARP-Replys:

```
Quelle: 4.3.2.1[f:e:d:c:b:a] Ziel: 1.2.3.4[a:b:c:d:e:f]
```

Problem: ARP-Spoofing

- Senden eines Pakets im (z.B.) Ethernet:
 Voraussetzung: Kennen der Ziel-MAC-Adresse
- IPv4 mit ARP
- IPv6 mit ICMPv6:
 - Multicasting einer Neighbour Solicitation an einen "Hash der IP-Adresse"
 - Erhalt eines Neighbour Advertisements
 - Nutzung von IPv6 ⇒
 Schutz mit IPsec problemlos möglich ⇒
 Kein "ARP"-Spoofing mehr!

Multicast

- Eine IP-Adresse für mehrere Hosts
- Beitritt einer Multicast-Gruppe ⇒
 Erhalt aller Nachrichten an die Gruppe
- ff02::1: Alle Nodes eines Links
- ff02::2: Alle Router eines Links
- ff02::1:ffxx:xxxx:
 Multicast-IP eines jeden Hosts (Auffüllen mit den niederwertigsten 24 Bits der Ziel-IP)
- Grundlage f
 ür Neighbour/Router Discovery

IPv6 Mobility

IPv6 Mobility

IPv6 Mobility

IPv6 im DNS

Forward-Lookups durch AAAA-Records:

```
$ dig www.ipv6-net.de. ANY
www.ipv6-net.de. 86400 IN A 62.93.217.177
www.ipv6-net.de. 86400 IN AAAA \
2001:618:1401::4
```

IPv6 im DNS

- Forward-Lookups durch AAAA-Records
- Reverse-Lookups durch PTR-Records unterhalb ip6.arpa.:

```
$ dig -x 2001:8e0:abcd:14d:2e0:7dff:fee5:bff
;; QUESTION SECTION:
;f.f.b.0.5...1.0.0.2.ip6.arpa. IN PTR
;; ANSWER SECTION:
f.f.b.0.5...1.0.0.2.ip6.arpa. 120 IN PTR \
    thestars.iblech.tb.as8758.net.
```

Tunnelbroker

- Bisher wenig Angebot von nativem IPv6
- Aber: IPv6 über Tunnelbroker
- Verbindung zum Tunnelbroker durch ganz normales IPv4
- Verpacken der IPv6-Pakete in IPv4-Paketen
- Je nach Tunnelbroker Erhalt einer IPv6-Adresse oder eines ganzes Subnetzes (/64 oder /48)

Tunnelbroker – as8758.net

- Ein-minütige Registrierung auf as8758.net
- Skript zum Tunnelaufbau ausführen
- \$ ping6 www.ipv6-net.de
- Für's LAN: /64er-Subnetz beantragen, radvd konfigurieren
- (Fertig)

Ausblick

- Ablösung von IPv4 durch IPv6
- Zunehmende Verbreitung von VolP
- Telefonnummern im DNS (ENUM)
- Handies über IP
- Telefone über IP