

PATENT ABSTRACTS OF JAPAN

(11)Publication number : 2002-326173
(43)Date of publication of application : 12.11.2002

(51)Int.Cl. B25J 5/00
B25J 13/00

(21)Application number : 2001-133621 (71)Applicant : HONDA MOTOR CO LTD
(22)Date of filing : 27.04.2001 (72)Inventor : TAKENAKA TORU
MATSUMOTO TAKASHI
HASEGAWA TADAALK

(54) OPERATION GENERATING DEVICE OF LEGGED MOBILE ROBOT

(57) Abstract:

PROBLEM TO BE SOLVED: To provide an operation generating device of a legged mobile robot allowing generated operations such as gait pattern to accurately meet the requirements of dynamic equilibrium condition.

SOLUTION: A model ZMP (full model ZMP) is calculated by using a dynamic model (reverse full model) 100c2 representing the relation between a robot motion and a floor reaction, the ZMP converted value of a full model compensated moment about a target ZMP is calculated (determined) based on a difference (full model ZMP error) between the calculated model ZMP and the target ZMP, and a compensated target upper body position is calculated (determined). Since an attitude is corrected by the calculated ZMP converted value and the compensated target upper body position, the generated gait pattern can accurately meet the requirements of the dynamic equilibrium at all times.

【特許請求の範囲】

【請求項1】少なくとも上体と、前記上体に連結される複数本の脚部からなる脚式移動ロボットの歩行などの動作を制御する動作制御装置において、

- a. 前記動作を規定する目標運動を決定する目標運動決定手段、
- b. 少なくとも前記決定された目標運動に基づき、前記ロボットの運動と床反力の関係を表す動力学モデルを用いて目標床反力を算出する目標床反力算出手段、および
- c. 少なくとも前記算出された目標床反力に基づいて前記ロボットに実際に作用する床反力を制御する床反力制御手段、を備えたことを特徴とする脚式移動ロボットの動作制御装置。

【請求項2】少なくとも上体と、前記上体に連結される複数本の脚部からなる脚式移動ロボットの歩行などの動作を制御する動作制御装置において、

- a. 前記動作を規定する目標運動と目標ZMPを決定する目標動作決定手段、
- b. 少なくとも前記決定された目標運動と目標ZMPに基づき、前記ロボットの運動とZMPの関係を表す動力学モデルを用いて前記目標ZMPの補正量を算出する目標ZMP補正量算出手段、および
- c. 少なくとも前記算出された目標ZMPの補正量に基づいて実際の床反力を制御する床反力制御手段、を備えたことを特徴とする脚式移動ロボットの動作制御装置。

【請求項3】少なくとも上体と、前記上体に連結される複数本の脚部からなる脚式移動ロボットの歩行などの動作を制御する動作制御装置において、

- a. 前記動作を規定する目標運動と目標床反力作用点を決定する目標動作決定手段、
- b. 少なくとも前記決定された目標運動と目標床反力作用点に基づき、前記ロボットの運動と床反力の関係を表す動力学モデルを用いて前記目標床反力作用点まわりの目標床反力モーメントを算出する目標床反力モーメント算出手段、および
- c. 少なくとも前記算出された目標床反力モーメントに基づいて前記ロボットに作用する実際の床反力を制御する床反力制御手段、を備えたことを特徴とする脚式移動ロボットの動作制御装置。

【請求項4】少なくとも上体と、前記上体に連結される複数本の脚部からなる脚式移動ロボットが歩行などの動作を行うとき、前記動作の目標瞬時値を生成する動作生成装置において、

- a. 前記動作を構成する目標運動と目標床反力の仮瞬時値を決定する仮瞬時値決定手段、
- b. 少なくとも前記決定された目標運動の仮瞬時値に基づき、前記ロボットの運動と床反力の関係を表す動力学モデルを用いてモデル床反力を算出するモデル床反力算出手段、
- c. 前記算出されたモデル床反力と前記決定された目標

床反力の仮瞬時値の差を算出する床反力差算出手段、および

- d. 少なくとも前記算出された差に基づき、少なくとも前記目標運動の仮瞬時値を補正することにより前記目標運動の目標瞬時値を決定する目標瞬時値決定手段、を備えたことを特徴とする脚式移動ロボットの動作生成装置。

【請求項5】少なくとも上体と、前記上体に連結される複数本の脚部からなる脚式移動ロボットが歩行などの動作を行うとき、前記動作の目標瞬時値を生成する動作生成装置において、

- a. 前記動作を構成する目標運動と目標ZMPの仮瞬時値を決定する仮瞬時値決定手段、
- b. 少なくとも前記決定された目標運動の仮瞬時値に基づき、前記ロボットの運動とZMPの関係を表す動力学モデルを用いてモデルZMPを算出するモデルZMP算出手段、
- c. 前記算出されたモデルZMPと前記決定された目標ZMPの仮瞬時値の差を算出するZMP差算出手段、および
- d. 少なくとも前記算出された差に基づき、少なくとも前記目標運動の仮瞬時値を補正することにより前記目標運動の目標瞬時値を決定する目標瞬時値決定手段、を備えたことを特徴とする脚式移動ロボットの動作生成装置。

【請求項6】少なくとも上体と、前記上体に連結される複数本の脚部からなる脚式移動ロボットが歩行などの動作を行うとき、前記動作の目標瞬時値を生成する動作生成装置において、

- a. 前記動作を構成する目標運動と目標ZMPの仮瞬時値を決定する仮瞬時値決定手段、
- b. 前記決定された目標運動と目標ZMPの仮瞬時値に基づき、前記ロボットの運動と床反力の関係を表す動力学モデルを用いて目標ZMPの仮瞬時値まわりのモデル床反力モーメントを算出するモデル床反力モーメント算出手段、および
- c. 少なくとも前記算出されたモデル床反力モーメントに基づき、少なくとも前記目標運動の仮瞬時値を補正することにより前記目標運動の目標瞬時値を決定する目標瞬時値決定手段、を備えたことを特徴とする脚式移動ロボットの動作生成装置。

【請求項7】少なくとも上体と、前記上体に連結される複数本の脚部からなる脚式移動ロボットが歩行などの動作を行うとき、前記動作の目標瞬時値を生成する動作生成装置において、

- a. 前記動作を構成する目標運動と目標床反力の仮瞬時値を決定する仮瞬時値決定手段、
- b. 少なくとも前記決定された目標運動の仮瞬時値に基づき、前記ロボットの運動と床反力の関係を表す動力学モデルを用いてモデル床反力を算出するモデル床反力算

出手段、

c. 前記算出されたモデル床反力と前記決定された目標床反力の仮瞬時値との差を算出する床反力差算出手段、および

d. 少なくとも前記算出された差に基づき、前記動力学モデルで表される運動と床反力の関係を満足するようにより、少なくとも前記目標運動の仮瞬時値を補正することにより、前記目標運動と目標床反力の目標瞬時値を決定する目標瞬時値決定手段、を備えたことを特徴とする脚式移動ロボットの動作生成装置。

【請求項8】 少なくとも上体と、前記上体に連結される複数本の脚部からなる脚式移動ロボットが歩行などの動作を行うとき、前記動作の目標瞬時値を生成する動作生成装置において、

a. 前記動作を構成する目標運動と目標ZMPの仮瞬時値を決定する仮瞬時値決定手段、

b. 少なくとも前記決定された目標運動の仮瞬時値に基づき、前記ロボットの運動とZMPの関係を表す動力学モデルを用いてモデルZMPを算出するモデルZMP算出手段、

c. 前記算出されたモデルZMPと前記決定された目標ZMPの仮瞬時値との差を算出するZMP差算出手段、および

d. 少なくとも前記算出された差に基づき、前記動力学モデルで表される運動と床反力の関係を満足するようにより、少なくとも前記目標運動の仮瞬時値を補正することにより、前記目標運動と前記目標床反力の目標瞬時値を決定する目標瞬時値決定手段、を備えたことを特徴とする脚式移動ロボットの動作生成装置。

【請求項9】 少なくとも上体と、前記上体に連結される複数本の脚部からなる脚式移動ロボットが歩行などの動作を行うとき、前記動作の目標瞬時値を生成する動作生成装置において、

a. 前記動作を構成する目標運動と目標ZMPの仮瞬時値を決定する仮瞬時値決定手段、

b. 前記決定された目標運動と目標ZMPの仮瞬時値に基づき、前記ロボットの運動と床反力の関係を表す動力学モデルを用いて目標ZMPの仮瞬時値まわりのモデル床反力モーメントを算出するモデル床反力モーメント算出手段、および

c. 少なくとも前記算出されたモデル床反力モーメントに基づき、前記動力学モデルで表される運動と床反力の関係を満足するようにより、少なくとも前記目標運動の仮瞬時値を補正することにより、前記目標運動と目標床反力の目標瞬時値を決定する目標瞬時値決定手段、を備えたことを特徴とする脚式移動ロボットの動作生成装置。

【請求項10】 少なくとも上体と、前記上体に連結される複数本の脚部からなる脚式移動ロボットが歩行などの動作を行うとき、前記動作の目標瞬時値を生成する動作生成装置において、

a. 前記動作を構成する目標運動と目標床反力の仮瞬時値を決定する仮瞬時値決定手段、

b. 少なくとも前記決定された目標運動の仮瞬時値を、前記ロボットの運動と床反力の関係を表す動力学モデルに入力してモデルの出力を算出するモデル出力算出手段、

c. 前記算出されたモデルの出力と前記決定された目標床反力の仮瞬時値との差を算出する床反力差算出手段、

d. 少なくとも前記算出された差に基づき、少なくとも前記目標運動の補正量を算出する目標運動補正量算出手段、

e. 前記算出された補正量を前記動力学モデルに追加的に入力するモデル入力補正手段、および

f. 少なくとも前記動力学モデルの入力と出力に基づいて前記目標運動と前記目標床反力の目標瞬時値を決定する目標瞬時値決定手段、を備えたことを特徴とする脚式移動ロボットの動作生成装置。

【請求項11】 少なくとも上体と、前記上体に連結される複数本の脚部からなる脚式移動ロボットが歩行などの動作を行うとき、前記動作の目標瞬時値を生成する動作生成装置において、

a. 前記動作を構成する目標運動と目標ZMPの仮瞬時値を決定する仮瞬時値決定手段、

b. 少なくとも前記決定された目標運動の仮瞬時値を、前記ロボットの運動とZMPの関係を表す動力学モデルに入力してモデルの出力を算出するモデル出力算出手段、

c. 前記算出されたモデルの出力と前記決定された目標ZMPの仮瞬時値との差を算出するZMP差算出手段、

d. 少なくとも前記算出された差に基づき、少なくとも前記目標運動の補正量を算出する目標運動補正量算出手段、

e. 前記算出された補正量を前記動力学モデルに追加的に入力するモデル入力補正手段、および

f. 少なくとも前記動力学モデルの入力と出力に基づいて前記目標運動と前記目標床反力の目標瞬時値を決定する目標瞬時値決定手段、を備えたことを特徴とする脚式移動ロボットの動作生成装置。

【請求項12】 少なくとも上体と、前記上体に連結される複数本の脚部からなる脚式移動ロボットが歩行などの動作を行うとき、前記動作の目標瞬時値を生成する動作生成装置において、

a. 前記動作を構成する目標運動と目標ZMPの仮瞬時値を決定する仮瞬時値決定手段、

b. 少なくとも前記決定された目標運動と目標ZMPの仮瞬時値を、前記ロボットの運動と床反力作用点まわりの床反力モーメントの関係を表す動力学モデルに入力し、目標ZMPの仮瞬時値まわりの目標床反力モーメントとしてモデルの出力を算出するモデル出力算出手段、

c. 少なくとも前記モデルの出力に基づき、少なくとも

前記目標運動の補正量を算出する目標運動補正量算出手段、

- d. 前記算出された補正量を前記動力学モデルに追加的に入力するモデル入力補正手段、および
- e. 少なくとも前記動力学モデルの入力と出力に基づいて前記目標運動と前記目標床反力の目標瞬時値を決定する目標瞬時値決定手段、を備えたことを特徴とする脚式移動ロボットの動作生成装置。

【請求項13】 前記目標運動補正量算出手段は、

- f. 前記ロボットにおける前記床反力の摂動と前記運動の摂動の動力学的関係を表す摂動モデル、
- g. 前記摂動モデルの状態量と前記動力学モデルの状態量の少なくともいづれかに基づき、第1のフィードバック量を算出する第1フィードバック量算出手段、および
- h. 少なくとも前記算出された差と前記第1のフィードバック量との差に基づき、第2のフィードバック量を算出する第2フィードバック量算出手段、を備え、前記算出された第1のフィードバック量と第2のフィードバック量の和を前記摂動モデルに入力して前記目標運動の補正量を算出することを特徴とする請求項10項記載の脚式移動ロボットの動作生成装置。

【請求項14】 前記目標運動補正量算出手段は、

- f. 前記ロボットにおける前記ZMPの摂動と前記運動の摂動の動力学的関係を表す摂動モデル、
- g. 前記摂動モデルの状態量と前記動力学モデルの状態量の少なくともいづれかに基づき、第1のフィードバック量を算出する第1フィードバック量算出手段、および
- h. 少なくとも前記算出された差と前記第1のフィードバック量との差に基づき、第2のフィードバック量を算出する第2フィードバック量算出手段、を備え、前記算出された第1のフィードバック量と第2のフィードバック量の和を前記摂動モデルに入力して前記目標運動の補正量を算出することを特徴とする請求項11項記載の脚式移動ロボットの動作生成装置。

【請求項15】 前記目標運動補正量算出手段は、

- f. 前記ロボットにおける前記床反力モーメントの摂動と前記運動の摂動の動力学的関係を表す摂動モデル、
- g. 前記摂動モデルの状態量と前記動力学モデルの状態量の少なくともいづれかに基づき、第1のフィードバック量を算出する第1フィードバック量算出手段、および
- h. 少なくとも前記動力学モデルの出力と前記第1のフィードバック量との差に基づき、第2のフィードバック量を算出する第2フィードバック量算出手段、を備え、前記算出された第1のフィードバック量と第2のフィードバック量の和を前記摂動モデルに入力して前記目標運動の補正量を算出することを特徴とする請求項12項記載の脚式移動ロボットの動作生成装置。

【請求項16】 前記第1フィードバック量算出手段は、少なくとも前記動力学モデルの重心位置に基づいて第1のフィードバック量を算出することを特徴とする請

求項13項、14項および15項のいづれかに記載の脚式移動ロボットの動作生成装置。

【請求項17】 少なくとも上体と、前記上体に連結される複数本の脚部からなる脚式移動ロボットが歩行などの動作を行うとき、前記動作の目標瞬時値を生成する動作生成装置において、

- a. 前記動作を構成する目標運動と目標床反力の仮瞬時値を決定する仮瞬時値決定手段、
- b. 少なくとも前記決定された目標運動の仮瞬時値を、前記ロボットの運動と床反力の関係を表す動力学モデルに入力してモデルの出力を算出するモデル出力算出手段、
- c. 前記算出されたモデルの出力と前記決定された目標床反力の仮瞬時値との差を算出する床反力差算出手段、
- d. 少なくとも前記算出された差に基づき、少なくとも前記目標運動の補正量を算出する目標運動補正量算出手段、および
- e. 少なくとも前記算出された補正量に基づいて前記目標運動と前記目標床反力の目標瞬時値を決定する目標瞬時値決定手段、を備えたことを特徴とする脚式移動ロボットの動作生成装置。

【請求項18】 少なくとも上体と、前記上体に連結される複数本の脚部からなる脚式移動ロボットが歩行などの動作を行うとき、前記動作の目標瞬時値を生成する動作生成装置において、

- a. 前記動作を構成する目標運動と目標ZMPの仮瞬時値を決定する仮瞬時値決定手段、
- b. 少なくとも前記決定された目標運動の仮瞬時値を、前記ロボットの運動とZMPの関係を表す動力学モデルに入力してモデルの出力を算出するモデル出力算出手段、
- c. 前記算出されたモデルの出力と前記決定された目標ZMPの仮瞬時値との差を算出するZMP差算出手段、
- d. 少なくとも前記算出された差に基づき、少なくとも前記目標運動の補正量を算出する目標運動補正量算出手段、および
- e. 少なくとも前記算出された補正量に基づいて前記目標運動と前記目標床反力の目標瞬時値を決定する目標瞬時値決定手段、を備えたことを特徴とする脚式移動ロボットの動作生成装置。

【請求項19】 少なくとも上体と、前記上体に連結される複数本の脚部からなる脚式移動ロボットが歩行などの動作を行うとき、前記動作の目標瞬時値を生成する動作生成装置において、

- a. 前記動作を構成する目標運動と目標ZMPの仮瞬時値を決定する仮瞬時値決定手段、
- b. 少なくとも前記決定された目標運動の仮瞬時値を、前記ロボットの運動と床反力作用点まわりの床反力モーメントの関係を表す動力学モデルに入力し、目標ZMPの仮瞬時値まわりの目標床反力モーメントとしてモデル

の出力を算出するモデル出力算出手段、

c. 少なくとも前記モデルの出力に基づき、少なくとも前記目標運動の補正量を算出する目標運動補正量算出手段、および

d. 少なくとも前記算出された補正量に基づいて前記目標運動と前記目標床反力の目標瞬時値を決定する目標瞬時値決定手段、を備えたことを特徴とする脚式移動ロボットの動作生成装置。

【請求項20】 前記目標運動補正量算出手段は、

e. 前記ロボットにおける前記床反力の摂動と前記運動の摂動の動力学的関係を表す摂動モデル、

f. 少なくとも前記摂動モデルの状態量と前記動力学モデルの状態量のいずれかに基づき、フィードバック量を算出するフィードバック量算出手段、および

g. 前記算出された差を打ち消すようにフィードフォワード量を算出するフィードフォワード量算出手段、を備え、前記算出されたフィードバック量とフィードフォワード量の和を前記摂動モデルに入力して前記目標運動の補正量を算出することを特徴とする請求項17項記載の脚式移動ロボットの動作生成装置。

【請求項21】 前記目標運動補正量算出手段は、

e. 前記ロボットにおける前記ZMPの摂動と前記運動の摂動の動力学的関係を表す摂動モデル、

f. 少なくとも前記摂動モデルの状態量と前記動力学モデルの状態量のいずれかに基づき、フィードバック量を算出するフィードバック量算出手段、および

g. 前記算出された差を打ち消すようにフィードフォワード量を算出するフィードフォワード量算出手段、を備え、前記算出されたフィードバック量とフィードフォワード量の和を前記摂動モデルに入力して前記目標運動の補正量を算出することを特徴とする請求項18項記載の脚式移動ロボットの動作生成装置。

【請求項22】 前記目標運動補正量算出手段は、

e. 前記ロボットにおける前記床反力モーメントの摂動と前記運動の摂動の動力学的関係を表す摂動モデル、

f. 少なくとも前記摂動モデルの状態量と前記動力学モデルの状態量のいずれかに基づき、フィードバック量を算出するフィードバック量算出手段、および

g. 前記動力学モデルの出力を打ち消すようにフィードフォワード量を算出するフィードフォワード量算出手段、を備え、前記算出されたフィードバック量とフィードフォワード量の和を前記摂動モデルに入力して前記目標運動の補正量を算出することを特徴とする請求項19項記載の脚式移動ロボットの動作生成装置。

【請求項23】 前記フィードバック量算出手段は、少なくとも前記動力学モデルの重心位置に基づいて前記フィードバック量を算出することを特徴とする請求項20項から22項のいずれかに記載の脚式移動ロボットの動作生成装置。

【請求項24】 少なくとも上体と、前記上体に連結さ

れる複数本の脚部からなる脚式移動ロボットが歩行などの動作を行うとき、前記動作の目標瞬時値を生成する動作生成装置において、

a. 前記動作を構成する目標運動と目標床反力の中の少なくとも目標床反力の仮瞬時値を決定する目標床反力仮瞬時値決定手段、

b. 少なくとも前記決定された目標床反力の仮瞬時値を、前記ロボットの運動と床反力の関係を表す第1の動力学モデルに入力して前記目標運動の仮瞬時値を算出する目標運動仮瞬時値算出手段、

c. 少なくとも前記算出された目標運動の仮瞬時値を、前記ロボットの運動と床反力の関係を表す第2の動力学モデルに入力して第2の動力学モデルの出力を算出する第2モデル出力算出手段、

d. 前記算出された第2の動力学モデルの出力と前記決定された目標床反力の仮瞬時値との差を算出する床反力差算出手段、

e. 少なくとも前記算出された差に基づき、少なくとも前記目標床反力の補正量を算出する目標床反力補正量算出手段、

f. 前記算出された補正量を前記第1の動力学モデルに追加的に入力するモデル入力補正手段、および

g. 少なくとも前記第2の動力学モデルの入力と出力に基づいて前記目標運動と前記目標床反力の目標瞬時値を決定する目標瞬時値決定手段、を備えたことを特徴とする脚式移動ロボットの動作生成装置。

【請求項25】 少なくとも上体と、前記上体に連結される複数本の脚部からなる脚式移動ロボットが歩行などの動作を行うとき、前記動作の目標瞬時値を生成する動作生成装置において、

a. 前記動作を構成する目標運動と目標ZMPの中の少なくとも目標ZMPの仮瞬時値を決定する目標ZMP仮瞬時値決定手段、

b. 少なくとも前記決定された目標ZMPの仮瞬時値を、前記ロボットの運動とZMPの関係を表す第1の動力学モデルに入力して前記目標運動の仮瞬時値を算出する目標運動仮瞬時値算出手段、

c. 少なくとも前記算出された目標運動の仮瞬時値を、前記ロボットの運動とZMPの関係を表す第2の動力学モデルに入力して第2の動力学モデルの出力を算出する第2モデル出力算出手段、

d. 前記算出された第2の動力学モデルの出力と前記決定された目標ZMPの仮瞬時値との差を算出するZMP差算出手段、

e. 少なくとも前記算出された差に基づき、少なくとも前記目標ZMPの補正量を算出する目標ZMP補正量算出手段、

f. 前記算出された補正量を前記第1の動力学モデルに追加的に入力するモデル入力補正手段、および

g. 少なくとも前記第2の動力学モデルの入力と出力に

基づいて前記目標運動と前記目標床反力の目標瞬時値を決定する目標瞬時値決定手段、を備えたことを特徴とする脚式移動ロボットの動作生成装置。

【請求項26】少なくとも上体と、前記上体に連結される複数本の脚部からなる脚式移動ロボットが歩行などの動作を行うとき、前記動作の目標瞬時値を生成する動作生成装置において、

a. 前記動作を構成する目標運動と目標ZMPの中の少なくとも目標ZMPの仮瞬時値を決定する目標ZMP仮瞬時値決定手段、

b. 少なくとも前記決定された目標ZMPの仮瞬時値を、前記ロボットの運動とZMPの関係を表す第1の動力学モデルに入力して前記目標運動の仮瞬時値を算出する目標運動仮瞬時値算出手段、

c. 少なくとも前記算出された目標運動の仮瞬時値と前記決定された目標ZMPの仮瞬時値を、前記ロボットの運動と床反力作用点まわりの床反力モーメントの関係を表す第2の動力学モデルに入力し、目標ZMPの仮瞬時値まわりの目標床反力モーメントとして第2の動力学モデルの出力を算出する第2モデル出力算出手段、

d. 少なくとも前記算出された第2の動力学モデルの出力に基づき、少なくとも前記目標ZMPの補正量を算出する目標ZMP補正量算出手段、

e. 前記算出された補正量を前記第1の動力学モデルに追加的に入力するモデル入力補正手段、および

f. 少なくとも前記第2の動力学モデルの入力と出力に基づいて前記目標運動と前記目標床反力の目標瞬時値を決定する目標瞬時値決定手段、を備えたことを特徴とする脚式移動ロボットの動作生成装置。

【請求項27】さらに、

h. 少なくとも前記算出された差に基づき、少なくとも前記目標運動の補正量を算出する目標運動補正量算出手段、

i. 前記算出された目標運動の補正量を前記第2の動力学モデルに追加的に入力する第2モデル入力補正手段、を備えることを特徴とする請求項24項記載の脚式移動ロボットの動作生成装置。

【請求項28】さらに、

h. 少なくとも前記算出された差に基づき、少なくとも前記目標運動の補正量を算出する目標運動補正量算出手段、

i. 前記算出された目標運動の補正量を前記第2の動力学モデルに追加的に入力する第2モデル入力補正手段、を備えることを特徴とする請求項25項記載の脚式移動ロボットの動作生成装置。

【請求項29】さらに、

g. 少なくとも前記算出された第2のモデルの出力に基づき、少なくとも前記目標運動の補正量を算出する目標運動補正量算出手段、

h. 前記算出された目標運動の補正量を前記第2の動力

学モデルに追加的に入力する第2モデル入力補正手段、を備えることを特徴とする請求項26項記載の脚式移動ロボットの動作生成装置。

【請求項30】前記目標運動補正量算出手段は、

f. 前記ロボットにおける前記床反力の振動と前記運動の振動の動力学的関係を表す振動モデル、

g. 前記振動モデルの状態量と前記動力学モデルの状態量の少なくともいづれかに基づき、第1のフィードバック量を算出する第1フィードバック量算出手段、および

h. 少なくとも前記算出された差と前記第1のフィードバック量との差に基づき、第2のフィードバック量を算出する第2フィードバック量算出手段、を備え、前記算出された第1のフィードバック量と第2のフィードバック量の和を前記振動モデルに入力して前記目標運動の補正量を算出することを特徴とする請求項27記載の脚式移動ロボットの動作生成装置。

【請求項31】前記目標運動補正量算出手段は、

f. 前記ロボットにおける前記ZMPの振動と前記運動の振動の動力学的関係を表す振動モデル、

g. 少なくとも前記振動モデルの状態量と前記動力学モデルの状態量のいづれかに基づき、第1のフィードバック量を算出する第1フィードバック量算出手段、および

h. 少なくとも前記算出された差と前記第1のフィードバック量との差に基づき、第2のフィードバック量を算出する第2フィードバック量算出手段、を備え、前記算出された第1のフィードバック量と第2のフィードバック量の和を前記振動モデルに入力して前記目標運動の補正量を算出することを特徴とする請求項28項記載の脚式移動ロボットの動作生成装置。

30 【請求項32】前記目標運動補正量算出手段は、

f. 前記ロボットにおける前記床反力モーメントの振動と前記運動の振動の動力学的関係を表す振動モデル、

g. 少なくとも前記振動モデルの状態量と前記動力学モデルの状態量のいづれかに基づき、第1のフィードバック量を算出する第1フィードバック量算出手段、および

h. 少なくとも前記モデルの出力と前記第1のフィードバック量との差に基づき、第2のフィードバック量を算出する第2フィードバック量算出手段、を備え、前記算出された第1のフィードバック量と第2のフィードバック量の和を前記振動モデルに入力して前記目標運動の補正量を算出することを特徴とする請求項29項記載の脚式移動ロボットの動作生成装置。

【請求項33】少なくとも上体と、前記上体に連結される複数本の脚部からなる脚式移動ロボットが歩行などの動作を行うとき、前記動作の目標瞬時値を生成する動作生成装置において、

a. 前記動作を構成する目標運動と目標床反力の仮瞬時値を決定する仮瞬時値決定手段、

b. 少なくとも前記決定された目標床反力の仮瞬時値を、前記ロボットの運動と床反力の関係を表す動力学モ

デルに入力し、前記動力学モデルの運動の瞬時値を算出するモデル運動瞬時値算出手段、

- c. 前記動力学モデルの運動の瞬時値と前記目標運動の仮瞬時値との差を算出するモデル運動差算出手段、
- d. 少なくとも前記差に基づいて前記差が零に近づくように補正量を算出する補正量算出手段、
- e. 前記算出された補正量を前記動力学モデルに追加的に入力するモデル入力補正手段、および
- f. 少なくとも前記動力学モデルの入力と出力に基づいて前記目標運動と前記目標床反力の目標瞬時値を決定する目標瞬時値決定手段、を備えたことを特徴とする脚式移動ロボットの動作生成装置。

【請求項34】 少なくとも上体と、前記上体に連結される複数本の脚部からなる脚式移動ロボットが歩行などの動作を行うとき、前記動作の目標瞬時値を生成する動作生成装置において、

- a. 前記動作を構成する目標床反力の仮瞬時値を決定する目標床反力仮瞬時値決定手段、
- b. 前記動作を構成する目標運動の瞬時値を決定する目標運動瞬時値決定手段、
- c. 少なくとも前記決定された目標床反力の仮瞬時値を、前記ロボットの運動と床反力の関係を表す動力学モデルに入力し、前記動力学モデルの運動の瞬時値を算出するモデル運動瞬時値算出手段、
- d. 前記動力学モデルの運動の瞬時値と前記目標運動の瞬時値との差を算出するモデル運動差算出手段、
- e. 少なくとも前記差に基づいて前記差が零に近づくように補正量を算出する補正量算出手段、
- f. 前記算出された補正量を前記動力学モデルに追加的に入力するモデル入力補正手段、および
- g. 少なくとも前記動力学モデルの入力に基づいて前記目標床反力の目標瞬時値を決定する目標床反力瞬時値決定手段、を備えたことを特徴とする脚式移動ロボットの動作生成装置。

【請求項35】 少なくとも上体と、前記上体に連結される複数本の脚部からなる脚式移動ロボットが歩行などの動作を行うとき、前記動作の目標瞬時値を生成する動作生成装置において、

- a. 前記動作を構成する目標運動と目標ZMPの仮瞬時値を決定する仮瞬時値決定手段、
- b. 少なくとも前記決定された目標ZMPの仮瞬時値を、前記ロボットの運動とZMPの関係を表す動力学モデルに入力し、前記動力学モデルの運動の瞬時値を算出するモデル運動瞬時値算出手段、
- c. 前記動力学モデルの運動の瞬時値と前記目標運動の仮瞬時値との差を算出するモデル運動差算出手段、
- d. 少なくとも前記差に基づいて前記差が零に近づくように補正量を算出する補正量算出手段、
- e. 前記算出された補正量を前記動力学モデルに追加的に入力するモデル入力補正手段、および

f. 少なくとも前記動力学モデルの入力と出力に基づいて前記目標運動と前記目標ZMPの目標瞬時値を決定する目標瞬時値決定手段、を備えたことを特徴とする脚式移動ロボットの動作生成装置。

【請求項36】 少なくとも上体と、前記上体に連結される複数本の脚部からなる脚式移動ロボットが歩行などの動作を行うとき、前記動作の目標瞬時値を生成する動作生成装置において、

- a. 前記動作を構成する目標ZMPの仮瞬時値を決定する目標ZMP仮瞬時値決定手段、
- b. 前記動作を構成する目標運動の瞬時値を決定する目標運動瞬時値決定手段、
- c. 少なくとも前記決定された目標ZMPの仮瞬時値を、前記ロボットの運動とZMPの関係を表す動力学モデルに入力し、前記動力学モデルの運動の瞬時値を算出するモデル運動瞬時値算出手段、
- d. 前記動力学モデルの運動の瞬時値と前記目標運動の瞬時値との差を算出するモデル運動差算出手段、
- e. 少なくとも前記差に基づいて前記差が零に近づくように補正量を算出する補正量算出手段、
- f. 前記算出された補正量を前記動力学モデルに追加的に入力するモデル入力補正手段、および
- g. 少なくとも前記動力学モデルの入力に基づいて前記目標ZMPの目標瞬時値を決定する目標ZMP瞬時値決定手段、を備えたことを特徴とする脚式移動ロボットの動作生成装置。

【請求項37】 少なくとも上体と、前記上体に連結される複数本の脚部からなる脚式移動ロボットが歩行などの動作を行うとき、前記動作の目標瞬時値を生成する動作生成装置において、

- a. 前記動作を構成する目標ZMPの仮瞬時値を決定する目標ZMP仮瞬時値決定手段、
- b. 前記動作を構成する目標運動の瞬時値を決定する目標運動瞬時値決定手段、
- c. 少なくとも前記決定された目標ZMPの仮瞬時値を、前記ロボットの運動と床反力作用点とそのまわりの床反力モーメントの関係を表す動力学モデルに床反力作用点として入力し、前記動力学モデルの運動の瞬時値を算出するモデル運動瞬時値算出手段、
- d. 前記動力学モデルの運動の瞬時値と前記目標運動の瞬時値との差を算出するモデル運動差算出手段、
- e. 少なくとも前記差に基づいて前記差が零に近づくように補正量を算出する補正量算出手段、および
- f. 前記算出された補正量を前記動力学モデルに前記床反力モーメントとして入力し、モデルの入力を補正しつつ、前記算出された補正量を目標ZMPまわりの補正モーメントの目標瞬時値として決定する目標瞬時値決定手段、を備えたことを特徴とする脚式移動ロボットの動作生成装置。

50 【請求項38】 少なくとも上体と、前記上体に連結さ

れる複数本の脚部からなる脚式移動ロボットが歩行などの動作を行うとき、前記動作の目標瞬時値を生成する動作生成装置において、

- a. 前記動作を構成する目標運動と目標床反力の中の少なくとも目標床反力の瞬時値を決定する目標床反力瞬時値決定手段、
- b. 少なくとも前記決定された目標床反力の瞬時値を、前記ロボットの運動と床反力の関係を表す第1の動力学モデルに入力して前記第1の動力学モデルの運動の瞬時値を算出する第1モデル運動瞬時値算出手段、
- c. 少なくとも前記決定された目標床反力の瞬時値を、前記ロボットの運動と床反力の関係を表す第2の動力学モデルに入力し、前記第2の動力学モデルの運動の瞬時値を算出する第2モデル運動瞬時値算出手段、
- d. 前記第2の動力学モデルの運動の瞬時値と前記第1の動力学モデルの運動の瞬時値との差を算出するモデル運動差算出手段、
- e. 少なくとも前記差に基づいて前記差が零に近づくように補正量を算出する補正量算出手段、および
- f. 前記算出された補正量を前記第1の動力学モデルに追加的に入力する第1モデル入力補正手段、を備え、前記第1の動力学モデルの出力および前記第2の動力学モデルの出力の少なくともいずれかを前記目標運動の目標瞬時値として決定することを特徴とする脚式移動ロボットの動作生成装置。

【請求項39】 少なくとも上体と、前記上体に連結される複数本の脚部からなる脚式移動ロボットが歩行などの動作を行うとき、前記動作の目標瞬時値を生成する動作生成装置において、

- a. 前記動作を構成する目標運動と目標ZMPの中の少なくとも目標ZMPの瞬時値を決定する目標ZMP瞬時値決定手段、
- b. 少なくとも前記決定された目標ZMPの瞬時値を、前記ロボットの運動とZMPの関係を表す第1の動力学モデルに入力して前記第1の動力学モデルの運動の瞬時値を算出する第1モデル運動瞬時値算出手段、
- c. 少なくとも前記決定された目標ZMPの瞬時値を、前記ロボットの運動とZMPの関係を表す第2の動力学モデルに入力し、前記第2の動力学モデルの運動の瞬時値を算出する第2モデル運動瞬時値算出手段、順フルモデル演算

d. 前記第2の動力学モデルの運動の瞬時値と前記第1の動力学モデルの運動の瞬時値との差を算出するモデル運動差算出手段、

- e. 少なくとも前記差に基づいて前記差が零に近づくように補正量を算出する補正量算出手段、および
- f. 前記算出された補正量を前記第1の動力学モデルに追加的に入力する第1モデル入力補正手段、を備え、前記第1の動力学モデルの出力および前記第2の動力学モデルの出力の少なくともいずれかを前記目標運動の目標

瞬時値として決定することを特徴とする脚式移動ロボットの動作生成装置。

【請求項40】 少なくとも上体と、前記上体に連結される複数本の脚部からなる脚式移動ロボットが歩行などの動作を行うとき、前記動作の目標瞬時値を生成する動作生成装置において、

- a. 前記動作を構成する目標運動と目標床反力の中の少なくとも目標床反力の瞬時値を決定する目標床反力瞬時値決定手段、
- b. 少なくとも前記決定された目標床反力の瞬時値を、前記ロボットの運動と床反力の関係を表す第1の動力学モデルに入力して前記第1の動力学モデルの運動の瞬時値を算出する第1モデル運動瞬時値算出手段、

10 c. 少なくとも前記第1の動力学モデルの運動の瞬時値に応じた第2の動力学モデルの状態量を算出する第2モデル状態量算出手段、および

- d. 少なくとも前記第2の動力学モデルの状態量に基づき、目標動作のパラメータを修正する目標動作パラメータ修正手段を備え、前記第1の動力学モデルの出力を前記目標運動の目標瞬時値として決定することを特徴とする脚式移動ロボットの動作生成装置。

【請求項41】 少なくとも上体と、前記上体に連結される複数本の脚部からなる脚式移動ロボットが歩行などの動作を行うとき、前記動作の目標瞬時値を生成する動作生成装置において、

- a. 前記動作を構成する目標運動と目標ZMPの中の少なくとも目標ZMPの瞬時値を決定する目標ZMP瞬時値決定手段、
- b. 少なくとも前記決定された目標ZMPの瞬時値を、前記ロボットの運動とZMPの関係を表す第1の動力学モデルに入力して前記第1の動力学モデルの運動の瞬時値を算出する第1モデル運動瞬時値算出手段、

30 c. 少なくとも前記第1の動力学モデルの運動の瞬時値に応じた第2の動力学モデルの状態量を算出する第2モデル状態量算出手段、および

- d. 少なくとも前記第2の動力学モデルの状態量に基づき、目標動作のパラメータを修正する目標動作パラメータ修正手段を備え、前記第1の動力学モデルの出力を前記目標運動の目標瞬時値として決定することを特徴とする脚式移動ロボットの動作生成装置。

【請求項42】 少なくとも上体と、前記上体に連結される複数本の脚部からなる脚式移動ロボットが歩行などの動作を行うとき、前記動作の目標瞬時値を生成する動作生成装置において、

- a. 前記動作を構成する目標運動と目標床反力の中の少なくとも目標床反力の仮瞬時値を決定する目標床反力仮瞬時値決定手段、
- b. 少なくとも前記決定された目標床反力の仮瞬時値を、前記ロボットの運動と床反力の関係を表す第1の動

50 力学モデルに入力して前記第1の動力学モデルの運動の

瞬時値を算出する第1モデル運動瞬時値算出手段、
 c. 少なくとも前記決定された目標床反力の仮瞬時値を、前記ロボットの運動と床反力の関係を表す第2の動力学モデルに入力し、前記第2の動力学モデルの運動の瞬時値を算出する第2モデル運動瞬時値算出手段、
 d. 前記第2の動力学モデルの運動の瞬時値と前記第1の動力学モデルの運動の瞬時値との差を算出するモデル運動差算出手段、
 e. 少なくとも前記差に基づいて前記差が零に近づくように第1の補正量を算出する第1補正量算出手段、
 f. 少なくとも前記差に基づいて前記差が零に近づくように第2の補正量を算出する第2補正量算出手段、
 g. 前記算出された第1の補正量を前記第1の動力学モデルに追加的に入力する第1モデル入力補正手段、および
 h. 前記算出された第2の補正量を前記第2の動力学モデルに追加的に入力する第2モデル入力補正手段、を備え、前記第1の動力学モデルの出力および前記第2の動力学モデルの出力の少なくともいずれかを前記目標運動の目標瞬時値として決定することを特徴とする脚式移動ロボットの動作生成装置。

【請求項43】 少なくとも上体と、前記上体に連結される複数本の脚部からなる脚式移動ロボットが歩行などの動作を行うとき、前記動作の目標瞬時値を生成する動作生成装置において、
 a. 前記動作を構成する目標運動と目標ZMPの中の少なくとも目標ZMPの仮瞬時値を決定する目標ZMP仮瞬時値決定手段、
 b. 少なくとも前記決定された目標ZMPの仮瞬時値を、前記ロボットの運動とZMPの関係を表す第1の動力学モデルに入力して前記第1の動力学モデルの運動の瞬時値を算出する第1モデル運動瞬時値算出手段、
 c. 少なくとも前記決定された目標ZMPの仮瞬時値を、前記ロボットの運動とZMPの関係を表す第2の動力学モデルに入力し、前記第2の動力学モデルの運動の瞬時値を算出する第2モデル運動瞬時値算出手段、
 d. 前記第2の動力学モデルの運動の瞬時値と前記第1の動力学モデルの運動の瞬時値との差を算出するモデル運動差算出手段、
 e. 少なくとも前記差に基づいて前記差が零に近づくように第1の補正量を算出する第1補正量算出手段、
 f. 少なくとも前記差に基づいて前記差が零に近づくように第2の補正量を算出する第2補正量算出手段、
 g. 前記算出された第1の補正量を前記第1の動力学モデルに追加的に入力する第1モデル入力補正手段、および
 h. 前記算出された第2の補正量を前記第2の動力学モデルに追加的に入力する第2モデル入力補正手段、を備え、前記第1の動力学モデルの出力および前記第2の動力学モデルの出力の少なくともいずれかを前記目標運動

の目標瞬時値として決定することを特徴とする脚式移動ロボットの動作生成装置。

【請求項44】 さらに、
 a. 前記ロボットにおける前記床反力の摂動と前記運動の摂動の動力学的関係を表す第2の摂動モデル、
 b. 前記新規摂動モデルの状態量と前記動力学モデルの状態量の少なくともいずれかに基づき、第3のフィードバック量を算出する第3フィードバック量算出手段、および

10 c. 前記決定された目標床反力または目標ZMPの目標瞬時値と、前記目標床反力または前記目標ZMPの仮目標瞬時値の差を求めて入力し、前記差を低減するように第2のフィードフォワード量を算出する第2フィードフォワード量算出手段、
 d. 前記算出された新規フィードバック量と新規フィードフォワード量の和を前記新規摂動モデルに入力して前記目標運動の第3の補正量を算出する第3目標運動補正量算出手段、を備えることを特徴とする請求項7項から37項、42項から44項のいずれかに記載の脚式移動ロボットの動作生成装置。

【請求項45】 前記第3目標運動補正量算出手段は、前記目標運動の第3の補正量を算出すると共に、前記決定された目標床反力または目標ZMPの目標瞬時値と前記目標床反力または前記目標ZMPの仮目標瞬時値の差に、前記算出されて新規フィードバック量と新規フィードフォワード量の和を加えることにより、前記目標床反力または目標ZMPの第3の補正量を算出することを特徴とする請求項44項記載の脚式移動ロボットの動作生成装置。

30 【請求項46】 前記摂動モデルおよび前記第2の摂動モデルが倒立振子からなることを特徴とする請求項4項から15項、20項から26項、31項から45項記載のいずれかに記載の脚式移動ロボットの動作生成装置。

【請求項47】 さらに、
 e. 少なくとも前記第1の動力学モデルの状態量に基づき、目標動作のパラメータを決定または修正する目標動作パラメータ修正手段、を備えたことを特徴とする請求項24項から46項のいずれかに記載の脚式移動ロボットの動作生成装置。

40 【発明の詳細な説明】

【0001】

【発明の属する技術分野】 この発明は脚式移動ロボットの動作生成装置に関し、より詳しくは脚式移動ロボットの歩容の動作を生成し、さらには生成された動作を追従するようにロボットを制御するようにした装置に関する。

【0002】

【従来の技術】 従来、脚式移動ロボットの厳密な動力学モデルを用い、試行錯誤によって歩容を生成していたため、リアルタイムに歩容を生成することは困難であつ

た。そこで、本出願人は先に特開平10-86081号において、オンラインで設計した規準歩容をパラメータと上体軌道の時系列の組にしてロボットに搭載したマイクロコンピュータのメモリに記憶させ、歩行周期など、時間に関するパラメータが同一である複数の歩容の瞬時値の重み付き平均を求ることによって、自在な歩容をリアルタイムに生成する技術を提案している。

[0003]

【発明が解決しようとする課題】しかしながら、この提案技術にあっては、近似計算であったことから、生成した歩容が動力学的平衡条件を十分に満足できない場合があった。尚、動力学的平衡条件とは、ロボットの挙動を精密に表す厳密動力学モデルを用いて目標歩容の重力と慣性力から計算されるZMPが、目標ZMPに一致することを意味する。より詳細には、ロボットの挙動を精密に表す厳密動力学モデルを用いて算出されるロボットの慣性力と重力の合力が目標ZMPまわりに作用せるモーメントの水平成分が、0であることを意味する(M. Vukobratovic(加藤、山下訳)、『歩行ロボットと人工の足』、日刊工業新聞社(1975年)。

【0004】従って、この発明の第1の目的は先に提案した技術の不都合を解消することにあり、生成した歩容などの動作が動力学的平衡条件を精度良く満足するようにした脚式移動ロボットの動作生成装置を提供することにある。

【0005】さらには、この発明の第2の目的は、生成した歩容による歩行などの動作が動力学的平衡条件を精度良く満足すると共に、その生成された動作に追従するようロボットを制御することで、姿勢安定性を高めるようにした脚式移動ロボットの動作制御装置を提供することにある。

[0006]

【課題を解決するための手段】上記した第1および第2の目的を達成するために、少なくとも上体と、前記上体に連結される複数本の脚部からなる脚式移動ロボットが歩行などの動作を行うとき、前記動作の目標瞬時値を生成する動作生成装置において、前記動作を構成する目標運動と目標床反力または目標ZMPの仮瞬時値を決定する仮瞬時値決定手段、少なくとも前記決定された目標運動の仮瞬時値に基づき、前記ロボットの運動と床反力またはZMPの関係を表す動力学モデルを用いてモデル床反力またはモデルZMPを算出するモデル床反力算出手段、前記算出されたモデル床反力と前記決定された目標床反力の仮瞬時値の差、または前記算出されたモデルZMPと前記決定された目標ZMPの仮瞬時値の差を算出する差算出手段、および少なくとも前記算出された差に基づき、前記動力学モデルで表される運動と床反力の関係を満足するように、少なくとも前記目標運動の仮瞬時値を補正することにより、前記目標運動と目標床反力の

目標瞬時値を決定する目標瞬時値決定手段を備える如く構成した。

【0007】動作を構成する目標運動と目標床反力または目標ZMPの仮瞬時値を決定し、決定された目標運動の仮瞬時値に基づき、ロボットの運動と床反力またはZMPの関係を表す動力学モデルを用いてモデル床反力またはモデルZMPを算出し、算出されたモデル床反力と決定された目標床反力の仮瞬時値の差、または算出されたモデルZMPと決定された目標ZMPの仮瞬時値の差を算出し、算出された差に基づき、動力学モデルで表される運動と床反力の関係を満足するように、少なくとも目標運動の仮瞬時値を補正することにより、目標運動と目標床反力の目標瞬時値を決定するように構成したので、動力学的平衡条件を精度良く満足する歩容などの動作を生成することができると共に、歩行時や作業時の安定性を高めることができる。

【0008】上記した第2の目的を達成するために、少なくとも上体と、前記上体に連結される複数本の脚部からなる脚式移動ロボットの歩行などの動作を制御する動

20 作制御装置において、前記動作を規定する目標運動を決定する目標運動決定手段、少なくとも前記決定された目標運動に基づき、前記ロボットの運動と床反力の関係を表す動力学モデルを用いて目標床反力を算出する目標床反力算出手段、および少なくとも前記算出された目標床反力に基づいて前記ロボットに実際に作用する床反力を制御する床反力制御手段を備える如く構成した。

【0009】動作を規定する目標運動を決定し、決定された目標運動に基づき、ロボットの運動と床反力の関係を表す動力学モデルを用いて目標床反力を算出し、算出された目標床反力に基づいてロボットに実際に作用する床反力を制御する如く構成したので、動力学的平衡条件を精度良く満足する歩容などの動作を生成することができると共に、その生成された動作に追従するようにロボットを制御することで姿勢安定性を高めることができる。

[0010]

【発明の実施の形態】以下、添付図面を参照してこの発明の一つの実施の形態に係る脚式移動ロボットの生成装置を説明する。尚、脚式移動ロボットとしては2足歩行ロボットを例にとって

10. 出入りと例題である。

【図1】図1は、この実施の形態に係る動作生成装置が適用される脚式移動ロボット、より具体的には2足歩行ロボットを全体的に示す概略図である。

【0012】図示の如く、2足歩行ロボット（以下「ロボット」という）1は左右それぞれの脚部（脚部リンク）2に6個の関節を備える。6個の関節は上から順に、股（腰部）の脚部回旋（回転）用の関節10R, 10L（右側をR、左側をLとする。以下同じ）、股（腰部）のロール方向（X軸まわり）の関節12R, 12L、股（腰部）のピッチ方向（Y軸まわり）の関節14

R, 14L、膝部のピッチ方向の関節16R, 16L、足首のピッチ方向の関節18R, 18L、同ロール方向の関節20R, 20Lから構成される。

【0013】関節18R(L), 20R(L)の下部には足平(足部)22R, 22Lが取着されると共に、最上位には上体(基体)24が設けられ、その内部にマイクロコンピュータからなる制御ユニット26(後述)などが格納される。上記において、股関節(あるいは腰関節)は関節10R(L), 12R(L), 14R(L)から、足関節(足首関節)は関節18R(L), 20R(L)から構成される。また股関節と膝関節とは大腿リンク28R, 28L、膝関節と足関節とは下腿リンク30R, 30Lで連結される。

【0014】尚、上体24の上部には腕が取り付けられると共に、その上部には頭部が配置されるが、その詳細は、この発明の要旨と直接の関連を有しないため、省略する。

【0015】上記の構成により、脚部2は左右の足についてそれぞれ6つの自由度を与えられ、歩行中にこれらの $6 \times 2 = 12$ 個の関節を適宜な角度で駆動することで、足全体に所望の動きを与えることができ、任意に3次元空間を歩行させることができる(この明細書で「*」はスカラに対する演算としては乗算を、ベクトルに対する演算としては外積を示す)。

【0016】尚、この明細書で後述する上体24の位置およびその速度は、上体24の所定位置、具体的には上体24の代表点の位置およびその移動速度を意味する。それについては後述する。

【0017】図1に示す如く、足関節の下方には公知の6軸力センサ34が取着され、力の3方向成分Fx, Fy, Fzとモーメントの3方向成分Mx, My, Mz、即ち、足部の着地の有無および床反力(接地荷重)などを示す信号を出力する。また、上体24には傾斜センサ36が設置され、Z軸(鉛直方向(重力方向))に対する傾きとその角速度を示す信号を出力する。また各関節の電動モータには、その回転量を示す信号を出力するロータリエンコーダが設けられる。

【0018】図2に示すように、足平22R(L)の上方には、ばね機構38が装備されると共に、足底にはゴムなどからなる足底弾性体40が貼られてコンプライアンス機構42を構成する。ばね機構38は具体的には、足平22R(L)に取り付けられた方形状のガイド部材(図示せず)と、足首関節18R(L)および6軸力センサ34側に取り付けられ、前記ガイド部材に弾性材を介して微動自在に収納されるピストン状部材(図示せず)とからなる。

【0019】図中に実線で表示された足平22R(L)は、床反力を受けていないときの状態を示す。床反力を受けると、コンプライアンス機構42においてばね機構38と足底弾性体40がたわみ、足平22R(L)は図

中に点線で表示された位置姿勢に移る。この構造は、着地衝撃を緩和するためだけでなく、制御性を高めるためにも重要なものである。尚、その詳細は本出願人に先に提案した特開平5-305584号に記載されているので、詳細な説明は省略する。

【0020】さらに、図1では図示を省略するが、ロボット1の適宜な位置にはジョイスティック44が設けられ、外部から必要に応じて直進歩行しているロボット1を旋回させるなど歩容に対する要求を入力できるように構成される。

【0021】図3は制御ユニット26の詳細を示すブロック図であり、マイクロ・コンピュータから構成される。そこにおいて傾斜センサ36などの出力はA/D変換器50でデジタル値に変換され、その出力はバス52を介してRAM54に送られる。また各電動モータに隣接して配置されるエンコーダの出力はカウンタ56を介してRAM54内に入力される。

【0022】制御ユニット26の内部にはそれぞれCPUからなる第1、第2の演算装置60, 62が設けられており、第1の演算装置60は後述の如く、目標歩容を生成すると共に、後述の如く関節角変位指令を算出し、RAM54に送出する。また第2の演算装置62はRAM54からその指令と検出された実測値とを読み出し、各関節の駆動に必要な操作量を算出してD/A変換器66とサーボアンプを介して各関節を駆動する電動モータに出力する。

【0023】図4は、この実施の形態に係る脚式移動ロボットの動作生成装置の構成および動作を全体的に示すブロック図である。

【0024】以下説明すると、この装置はフルモデル補正入り歩容生成部100を備え、フルモデル補正入り歩容生成部100は後述の如く目標歩容を自在かつリアルタイムに生成して出力する。目標歩容は、目標上体姿勢(軌道あるいはパターン)、補正目標上体位置(軌道あるいはパターン)、目標足平位置姿勢(軌道あるいはパターン)、目標ZMP(目標全床反力中心点)(軌道あるいはパターン)、目標ZMPまわりのフルモデル補正モーメントのZMP換算値および目標全床反力(軌道あるいはパターン)からなる。

【0025】尚、各足平22R, Lの床反力を「各足平床反力」と呼び、全ての(2本の)足平の床反力の合力を「全床反力」と呼ぶ。ただし、以降においては、各足平床反力はほとんど言及しないので、断らない限り、「床反力」は「全床反力」と同義として扱う。

【0026】最初にこの装置が生成する歩容について説明すると、このように、ロボット1においては歩行制御に与える目標値として、目標の運動パターンだけではなく、目標の運動パターンに対して動力学的平衡条件を満足する目標床反力パターンも必要である。

【0027】目標床反力は、一般的には、作用点とその

点に作用する力と力のモーメントによって表現される。作用点はどこにとっても良いので、同一の目標床反力でも無数の表現が考えられるが、特に前述の目標床反力中心点を作用点にして目標床反力を表現すると、力のモーメントは、床に垂直な成分を除けば、0になる。

【0028】尚、前述のように、動力学的平衡条件を満足する歩容では、目標とする運動軌跡から算出されるZMPと目標床反力中心点は一致することから、目標床反力中心点軌道の代わりに目標ZMP軌道を与えると言つても同じことである。

【0029】従って、上記は、「歩行制御に与える目標値としては、目標運動軌跡だけでなく、目標ZMP軌道（目標床反力パターン）も必要である」と言い換えることができる。このような背景から、この明細書では目標歩容を、次のように定義する。

a) 広義の目標歩容とは、1歩ないしは複数歩の期間の目標運動軌跡とその目標床反力パターンの組である。

b) 狹義の目標歩容とは、1歩の期間の目標運動軌跡とそのZMP軌道の組である。

c) 一連の歩行は、いくつかの歩容がつながったものとする。

【0030】尚、以下では、理解を容易にするために、特にことわらない限り、目標歩容は狭義の目標歩容の意味で使用する。より詳しくは、この明細書では目標歩容は、両脚支持期の初期から片脚支持期の終端までの意味で使用する。

【0031】また、両脚支持期とは言うまでもなく、ロボット1がその自重を脚部リンク2の双方で支持する期間を、片脚支持期とは脚部リンク2の一方で支持する期間をいう。片脚支持期においてロボット1の自重を支持しない側の脚部（リンク）を「遊脚」と呼ぶ。定義の詳細は、先に提案した特開平8-86081号公報に記載されているので、この程度の説明に止める。

【0032】この発明は具体的には、上記に定義した目標歩容を精度良く、かつリアルタイムに生成すると共に、生成した歩容などの動作が動力学的平衡条件を精度良く満足するようにし、よって歩行などの動作の安定性を高めることを目的とする。

【0033】ここで、目標歩容としての条件を説明する。

【0034】目標歩容が満たさなければならない条件は、大きく分けて以下の5つに分類される。

条件1) 動力学的平衡条件を満足していること。即ち、ロボット1の目標運動軌跡から動力学的に算出されるZMP軌道が目標ZMP軌道と一致していること。

条件2) ロボット1の歩行計画部や歩行経路誘導部（共に図示せず）、あるいはオペレータから歩幅や旋回角など歩容が満たすべき条件が要求される場合、それらの要求条件を満たしていること。

条件3) 足平が床を掘ったり擦ったりしない、関節角度

が可動範囲を越えない、関節速度が限界を越えないなどの、キネマティクス（運動学）に関する制約条件を満たしていること。

条件4) 片脚支持期においてZMPが支持脚足平接地面内になければならない、駆動系の最大能力を越えないなどの、動力学に関する制約条件を満たしていること。

条件5) 境界条件を満たしていること。即ち、条件1)の当然の帰結として、歩容と歩容の境界では、少なくとも、各部位の位置と速度が連続であるという境界条件が

10 導かれる（不連続であれば、無限大の力が発生したり、ZMPが接地面からはるかに遠くの点に移動してしまうから）。

【0035】また、第n+1回歩容の初期状態は、第n回歩容の終端状態（特に、足平位置に対する上体の位置・姿勢および速度）に一致するように設定されなければならない。このとき、第n回歩容の終端状態は、第n+1回歩容の初期状態が決まつていれば、第n+1回歩容の初期状態に一致させれば良い。

【0036】決まつていなければ、第n回歩容の終端状態が、姿勢が崩れないで長期的な歩行ができる範囲に入つていれば良い。但し、後述するように、姿勢が崩れないで長期的な歩行ができるための終端状態の範囲を求めるることは、極めて難しい。

【0037】一般的に、目標歩容は、パラメータ値あるいは時系列テーブルを含む歩容発生アルゴリズムによって発生させられる（歩容を決定するということは、パラメータ値あるいは時系列テーブルを適切に設定することに他ならない）。

【0038】パラメータ値あるいは時系列テーブルを変えることによって、様々な歩容が生成される。しかし、パラメータ値あるいは時系列テーブルを十分な配慮もせずに設定しただけでは、作成された歩容が前記の歩容条件をすべて満足しているか否かは分からぬ。

【0039】特に、長期的歩行に適した終端上体位置および速度の範囲が分かっていたとしても、ZMP軌道に基づいて上記した条件1)を満足する上体の軌道を歩容発生アルゴリズムに従って生成する場合には、発生した歩容の終端での上体位置と速度の両方がその範囲に入るようZMP軌道に関するパラメータを設定すること40 は、極めて難しい。

【0040】その理由は次の通りである。

【0041】理由1) 上体は、一旦、ZMPから遠くに離れると、さらに遠くに離れようとする発散傾向がある。これを説明するために、ロボットの上体の挙動に近い倒立振子の挙動を例に挙げる。

【0042】倒立振子は重心の床投影点が支点からずれると、それが発散して倒れる。しかし、そのときも倒立振子の慣性力と重力の合力は支点上に作用し（即ち、ZMPが支点に一致し）、支点から受ける床反力を釣り合っている。即ち、動力学的平衡条件は、運動する物体の

その瞬間における慣性力と重力と床反力の関係を表すだけのものである。

【0043】動力学的平衡条件を満足していればロボットの長期歩行が保証されたように錯覚しやすいが、ロボットの姿勢が崩れているか否かとは全く関係がない。倒立振子の重心が支点の真上から離れると、ますます遠くに離れようとする傾向があるように、ロボットの重心がZMPの真上から遠くに離れるとますます遠くに離れようとする発散傾向がある。

【0044】理由2) 片脚支持期においてZMPが支持脚足平接地面内になければならないなどの厳しい制約条件があるために、上体の加減速パターンを恣意的に設定することができず、位置を合わせようすると速度が合わず、速度を合わせようすると位置が合わず、なかなか両方を同時に一致させることは難しい。

【0045】歩容の説明を続けると、歩容は、歩容パラメータによって記述される。歩容パラメータは、運動パラメータとZMPパラメータ（より一般的に表現すれば、床反力パラメータ）から構成される。尚、この明細書で「床反力パラメータ」なる語は、『床反力の時間的なパターンに関するパラメータ』を意味するものとして使用する。ZMPパラメータは後で図35に示すように、X、Y、Z座標（方向）について折れ線グラフ状のZMP軌道の折れ点の位置と通過時刻で示す（X座標のみ図示）。

【0046】運動パラメータは、足平（軌道）パラメータと上体（軌道）パラメータとから構成される。尚、足平軌道パラメータは、初期（離床時）遊脚位置および姿勢、終端（着床時）遊脚位置および姿勢、両脚支持期時間、片脚支持期時間などを含む。

【0047】上体軌道パラメータは、上体の姿勢（空間上の上体24の向きあるいは傾き）を決定するパラメータ、上体高さ（Z方向の値）を決定するパラメータ、初期の上体位置（変位）および速度パラメータなどから構成される。

【0048】図5は、フルモデル補正入り歩容生成部100の詳細を示すブロック図である。

【0049】図示の如く、フルモデル補正入り歩容生成部100は歩容パラメータ決定部100aを備え、歩容パラメータ決定部100aは、目標歩容が満たさなければならない、前記した条件を満足するように、パラメータ値あるいは時系列テーブルを決定する。

【0050】決定された歩容パラメータは目標（および仮）瞬時値発生部100bに入力される。目標（および仮）瞬時値発生部100bは入力値に基づき、先に本出願人が特開平5-318339号および特開平5-324115号公報などで提案した技術を用い、目標足平位置姿勢、目標ZMPおよび目標上体姿勢、より詳しくは、それらの現在時刻tにおける目標瞬時値および仮瞬時値を算出（発生）する。尚、『姿勢は空間上の傾斜ま

たは向き』を意味する。また、図示の簡略化のために、図5を含む図のほとんどにおいて目標上体姿勢の表示を省略する。

【0051】目標（および仮）瞬時値発生部100bで算出（発生）された目標足平位置姿勢、目標ZMPおよび目標上体姿勢（より詳しくは、それらの目標瞬時値および仮瞬時値）は、フルモデル補正部100cに入力される。フルモデル補正部100cは、本出願人が、近時、特願2000-352011号で提案した単純化モデル100c1と、この出願で提案されるフルモデル100c2（後述）を備え、単純化モデルに基づいて入力値から目標上体位置（より詳しくは目標上体水平位置）を決定すると共に、さらに決定された目標上体位置をフルモデル（後述）を用いて修正する。

【0052】尚、単純化モデル100c1をフルモデル補正部100cに含ませない構成も可能である。また、フルモデル100c2は、後述するように、逆フルモデル（逆動力学フルモデル）と順フルモデル（順動力学フルモデル）のいずれかを含む。

【0053】フルモデル補正入り歩容生成部100は、具体的には、単に単純化モデルに基づいて生成した歩容よりも高い精度で動力学的平衡条件を満足するように、単純化モデルを用いて算出された目標上体位置を補正する、あるいは目標ZMPまわりのフルモデル補正モーメントのZMP換算値を出力する、あるいは目標上体位置を補正すると共に、目標ZMPまわりのフルモデル補正モーメントのZMP換算値を出力する。尚、目標ZMPまわりのフルモデル補正モーメントは、ZMP換算値とすることなく、モーメントのまま出力しても良い。

【0054】ロボット1の関節は図1に示すように12関節から構成されているので、得られた両足平の位置・姿勢と上体位置・姿勢とから、後述するように逆キネマティクス演算によって目標関節変位が一義的に決定される。即ち、今回のロボットの目標姿勢が一義的に決定される。

【0055】理解の便宜のため、ここで、本出願人が上記した特願2000-352011号で提案した単純化モデルに基づいて自在かつリアルタイムに目標歩容を生成する手法を説明する。

【0056】前提から説明すると、理想的目標歩容は物理法則に逆らうことができないので、希望する状態にすぐに到達することはできない。許容範囲内でZMPの軌道、着地位置および着地時期などの歩容パラメータを変更することによって、時間をかけて希望する状態に遷移しなければならない。特に、図示の2足歩行ロボットの動力学系はZMPを入力、上体位置を出力とする系とみなすと発散系になるので、慎重に歩容パラメータを変更しないと、正常な状態に復元するのが困難となる。

【0057】従って、目標歩容を自在かつリアルタイムに生成するときは、ロボットの将来の挙動を予測し、ど

のように歩容パラメータ値を設定すれば、ロボットの将来、例えば数歩先の挙動が発散しないか否かを判断すると共に、発散する可能性が予測されるときは発散を防止するように歩容を調整することが、望ましい。

【0058】しかしながら、図6に示すような多質点系モデル（フルモデル）を用いるとき、その動力学演算は演算量が多くかつ非線形性が強いので、終端状態をリアルタイムに求めるのは、ロボットに搭載可能な通常のCPU（第1の演算装置60）の能力では困難である。

【0059】そこで、先に提案した技術においては、ロボット1の動力学的挙動を記述する動力学モデルを単純化し、リアルタイムかつ解析的に将来挙動が予測計算できるようにした。図7に、その単純化した動力学モデルを示す。図示の如く、この動力学モデルは3質点モデルであり、デカップルド、即ち、脚部の動力学と上体の動力学が相互に非干渉に構成されると共に、ロボット全体の動力学は、それらの線形結合で表される。図8は、歩容生成部の動力学演算部において、図7に示す動力学モデルを用いて行われる動力学演算を示すブロック図である。

【0060】以下、この動力学モデルを説明する。

1) このモデルは、倒立振子、支持脚足平質点、遊脚足平質点の3質点から構成される。

2) 支持脚足平質点は、支持脚足平にローカルに設定された座標系（具体的には、原点が足首中心から足底への垂直投影点、XYZ平面が足底に一致し、かかとからつまさきへの向きをX軸にとったXYZ直交座標系であり、これを以降、「支持脚ローカル座標系」と呼ぶ）上のある固定された点に設定される。この固定された点の支持脚ローカル座標系上の座標を以降、「支持脚足平質点オフセット」と呼ぶ。

【0061】同様に、遊脚足平質点は、遊脚足平にローカルに設定された座標系（これを以降、「遊脚ローカル座標系」と呼ぶ）上のある固定された点に設定される。この固定された点の遊脚ローカル座標系上の座標を以降、「遊脚足平質点オフセット」と呼ぶ。

【0062】尚、支持脚が床に全面的に密着しているときの足首位置の床への鉛直投影点を原点とし、床に固定され、支持脚足平の前方向をX軸、左方向をY軸、鉛直方向をZ軸にとった座標系を「支持脚座標系」と呼ぶ（これは、上記した支持脚ローカル座標とは異なる。）。ことわらない限り、位置、速度、力などは支持脚座標系で示す。

3) 倒立振子は、水平に移動するフリーの支点aと、ひとつつの質点bと、支点と質点を結ぶ質量のない可変長のリンクcから構成される。また、リンクが傾いてもリンクが伸縮し、支点から見た質点高さが一定値に保たれるものとする。

【0063】倒立振子質点は、物理的意味としては上体24の質点（必ずしも重心位置を意味しない）に対応す

る。従って、倒立振子質点と上体質点は、今後、同意語として扱う。倒立振子質点の位置（より広義に言えば変位）を、以降、略して「倒立振子位置」と呼ぶ。

【0064】4) 上体の水平位置は、倒立振子の水平位置から幾何学的に決定される。具体的には、例えば、上体にローカルに設定された座標系（これを以降、「上体座標系」と呼ぶ）上のある固定された代表点（この点を以降、「上体代表点」と呼ぶ）の水平位置（支持脚座標系から見たXYZ座標）が、倒立振子の水平位置に一致するよう決定される。即ち、図7に示すように、上体代表点と倒立振子質点bは、同一鉛直線上にあるように決定される。上体代表点の上体座標系上の水平座標（XYZ座標）を「上体質点オフセット」と呼ぶ。

【0065】次いで、図示の動力学演算モデルに関する変数およびパラメータなどの記述法について説明する。説明の便宜上、動力学演算モデルに関する変数およびパラメータなどを以下のように定義し、記述する。

【0066】倒立振子のZMPは、支点aの位置にある。なぜなら、ZMPは定義からモーメントが発生しない点のことであり、フリーの支点aにはモーメントが発生しないからである。そこで、倒立振子支点位置を倒立振子自身のZMP位置（ZMP相当値）ということで、以降、「倒立振子ZMP」と呼び、「ZMPend」と記述する。

【0067】各質点の質量と位置は次のように記述する。

m_{sup} : 支持脚質点質量

m_{swq} : 遊脚質点質量

m_b : 倒立振子質点質量（上体質点質量）

30 m_{total} : ロボット質量 ($= m_b + m_{sup} + m_{swq}$)

m_{feet} : 両脚質量 ($= m_{sup} + m_{swq}$)

x_{sup} : 支持脚質点位置

x_{swq} : 遊脚質点位置

x_b : 倒立振子位置（上体質点位置）

以降、ことわらない限り、 x_b は3次元ベクトル（XYZ座標ベクトル）で表わす。倒立振子の高さは、倒立振子の支点から質点までの高さを意味し、 h と記述する。

【0068】 $d(x_b)/dt$ は x_b の1階微分を表わし、倒立振子の速度を示す。 $d^2(x_b)/dt^2$ は x_b の2階微分を表わし、40 倒立振子の加速度を示す。 g は重力加速度定数を示す。 G は重力加速度ベクトルを示し、X, Y成分が0、Z成分が $-g$ であるベクトルと定義する。

【0069】図示の3質点モデルにおいて、脚質点の総慣性力がある作用点Pまわりに作用するモーメントを、点Pまわりの脚総慣性力モーメントと定義する（慣性力と重力の合力を「総慣性力」と呼ぶ）。作用点Pの座標（あるいは位置）を x_p と置く。

【0070】下記の数1は、点Pまわりの脚総慣性力モーメントの厳密な動力学的定義式である。

【数1】

$$\begin{aligned}
 & \text{点Pまわりの脚総慣性力モーメント} \\
 & = \text{msup}(\text{xsup} - \text{xp}) * \text{G} - \text{msup}(\text{xsup} - \text{xp}) * \text{d2}(\text{xsup}) / \text{dt}^2 \\
 & + \text{mswg}(\text{xswg} - \text{xp}) * \text{G} - \text{mswg}(\text{xswg} - \text{xp}) * \text{d2}(\text{xswg}) / \text{dt}^2
 \end{aligned}$$

【0072】脚ZMPをZMPfeetと記述し、脚ZMPを数2で定義する。ただし、脚ZMPの高さ(ZMPfeetのZ成分)は、点P位置の高さと同一とする。このよう

に、脚ZMPは、脚部の運動によって発生する慣性力と*

$$\text{点Pまわりの脚総慣性力モーメント} = \text{mfeet} * (\text{ZMPfeet} - \text{xp}) * \text{G}$$

【0074】本来、図1に示すロボット1の動力学は非線形であるが、近似して目標ZMP、脚ZMP(ZMPfeet)、および倒立振子ZMP(ZMPpend)の間には数3の※

$$\text{ZMPpend} = \text{mtotal} / \text{mb} * \text{目標ZMP} - \text{mfeet} / \text{mb} * \text{ZMPfeet}$$

【0076】一般に、線形倒立振子の挙動を表わす微分方程式は、数4で表わされる。

$$\text{d2}(\text{xb}) / \text{dt}^2 \text{の水平成分} = \text{g} / \text{h} * (\text{xbの水平成分} - \text{ZMPpendの水平成分})$$

【0078】ただし、作用点Pは、モデルの近似精度が高くなるように設定される。例えば、作用点Pは、図9のタイム・チャートに示すように、直前(前回)歩容の支持脚座標系上の原点から、今回歩容の支持脚座標系の原点に、両脚支持期の間に直線的に等速移動する点に設定される。

【0079】先の出願に係る脚式移動ロボットの歩容生成装置で提案する動力学モデルは、図7に示すような足平、上体と各質点の位置の関係を表わす前記オフセットと、上記の式(数1から4)で表わされる。これにより、後述の如く、将来挙動予測が容易となった。

【0080】図8を参照してその動力学演算部の動作を説明すると、動力学演算部は脚ZMP算出器200を備え、脚ZMP算出器200は、数1および数2ならびに図9で示される作用点Pに基づいて脚ZMP(ZMPfeet)を算出する。

【0081】次いで、上記算出したZMPfeetをmfeet/mtotal倍(第2の係数)したものを、目標ZMPから減じ、さらにこれを、mtotal(mb)倍(第1の係数)することによって、倒立振子ZMP(ZMPpend)を算出する。即ち、倒立振子ZMP(ZMPpend)は、前記ロボットの質量mtotalと前記上体の質点の質量mbの比に前記目標ZMPを乗じて得た積から、前記脚部の質量mfeetと前記上体の質点の質量mbの比に脚部のZMP相当値ZMPfeetを乗じて得た積を減算して算出される。この処理は、数3に相当する。

【0082】倒立振子の挙動は、数4で表現され、倒立振子ZMP(ZMPpend)から倒立振子質点水平位置(変位)xbが算出される。

【0083】さらに、図8に示す如く、動力学演算部は上体位置決定器202を備え、上体位置決定器202は、倒立振子質点水平位置から上体の水平位置xbを決定する。具体的には、上体位置決定器202は、前述した

* 重力の合力(総慣性力)に疑似的に対応させた値である。

【0073】

【数2】

$$\text{点Pまわりの脚総慣性力モーメント} = \text{mfeet} * (\text{ZMPfeet} - \text{xp}) * \text{G}$$

※ 線形関係を与える。

【0075】

【数3】

$$\text{ZMPpend} = \text{mtotal} / \text{mb} * \text{目標ZMP} - \text{mfeet} / \text{mb} * \text{ZMPfeet}$$

★【0077】

★【数4】

$$\text{d2}(\text{xb}) / \text{dt}^2 \text{の水平成分} = \text{g} / \text{h} * (\text{xbの水平成分} - \text{ZMPpendの水平成分})$$

上体代表点(図7に示す)の水平位置が、倒立振子の水平位置に一致するように上体の水平位置を決定する。

20 【0084】上記をより一般的に言えば、このモデル(第1のモデル)は、ロボット1を、脚部2の所定位置あるいはその付近に設定された少なくとも1つの質点(慣性モーメントがあっても良い)と、床面上を移動自在な支点と上体24の所定位置に設定された少なくとも1つの質点に対応する質点からなる倒立振子とでモデル化してなるモデルであると共に、動力学演算部(第1モデル上体位置算出手段)は、少なくとも脚部2の運動によって発生する慣性力と重力の合力に疑似的に対応する脚部のZMPに相当する脚部ZMP ZMPfeetを上体24の挙動に依存せずに算出する脚部ZMP算出手段と、少なくとも前記算出された脚部ZMP ZMPfeetと目標ZMPに基づき、倒立振子の支点のZMP相当値ZMPpendを算出するZMP相当値算出手段と、算出された倒立振子の支点のZMP相当値ZMPpendに基づいて前記倒立振子の変位(位置)xbを算出する倒立振子変位算出手段と、および算出された倒立振子の変位xbに基づいて第1のモデルの上体位置を示すモデル上体位置を決定する第1モデル上体位置決定手段とを備える如く構成した。

30 【0085】また、倒立振子の支点のZMP相当値ZMPpendが、目標ZMPに第1の係数(mtotal/mfeet)を乗じて得た積から、脚部ZMPに第2の係数(mfeet/mtotal)を乗じて得た積を減算して算出される如く構成した。

40 【0086】次いで、歩容の継続的姿勢安定性について述べると、ここまで述べてきた動力学モデル自身は、単に、各瞬間における動力学的平衡条件を近似的に満足するように、目標ZMPから上体軌道を算出するだけのものであり、上体軌道が発散すること(図10に示すように上体24の位置が両足平22R, Lの位置からかけ離れた位置にずれてしまうこと)を防止するものではない。

【0087】以下では、上体軌道の発散を防止し、上体と両足平の間の適切な位置関係を継続させるための手段について説明する。

【0088】最初に、そのための予備知識として、将来の上体軌道を解析的に求める上で特に重要な、線形倒立振子の性質について議論する。ここでは、離散化モデルを用いて説明する。

【0089】先ず、倒立振子に関し、新たに以下の変数やパラメータを定義する。

ω_0 : 倒立振子の固有角周波数

$\omega_0 = \sqrt{q/h}$ (ただし、 $\sqrt{q/h}$ は平方根を表す。)

Δt : 刻み時間

$x[k]$: k ステップ目 (時刻 $k\Delta t$) の倒立振子位置

$v[k]$: k ステップ目の倒立振子速度

$ZMPpend[k]$: k ステップ目の倒立振子ZMP (詳しく*)

$$p[k] = \exp(-\omega_0 k \Delta t) * (p[0] + (\exp(\omega_0 \Delta t) - 1) \sum_{i=0}^{k-1} (\exp(i\omega_0 \Delta t) * ZMPpend[i]))$$

【0093】

$$q[k] = \exp(\omega_0 k \Delta t) * (q[0] + (\exp(-\omega_0 \Delta t) - 1) \sum_{i=0}^{k-1} (\exp(-i\omega_0 \Delta t) * ZMPpend[i]))$$

【0094】これらの式の意味を考える。

【0095】ある有限な定数 $ZMPmin$ および $ZMPmax$ に対し、数8を常に満足するように、 $ZMPpend[i]$ が設定されるものと仮定する。

【0096】

【数8】

* は、時刻 $k\Delta t$ から時刻 $(k+1)\Delta t$ まで、入力 $ZMPpend[k]$ の0次ホールドした信号が入力、即ち、その時刻の間は同一信号が倒立振子に入力され続けられるものとする。)

さらに、 $q[k]$ と $p[k]$ を数5で定義する。

【0090】

【数5】

$$q[k] = x[k] + v[k] / \omega_0$$

$$p[k] = x[k] - v[k] / \omega_0$$

【0091】倒立振子の運動方程式を離散化し、 $q[k]$ と $p[k]$ に関して解くと、以下の数6と数7が得られる。尚、 \exp は指数関数 (自然対数) を表す。

【0092】

【数6】

$$p[k] \leq \exp(-\omega_0 k \Delta t) * (p[0] + (\exp(\omega_0 \Delta t) - 1) \sum_{i=0}^{k-1} (\exp(i\omega_0 \Delta t) * ZMPpend[i]))$$

※ ※ 【数7】

$$q[k] \leq \exp(\omega_0 k \Delta t) * (q[0] + (\exp(-\omega_0 \Delta t) - 1) \sum_{i=0}^{k-1} (\exp(-i\omega_0 \Delta t) * ZMPpend[i]))$$

★ $ZMPmin \leq ZMPpend[i] \leq ZMPmax$

【0097】数8の中辺と右辺の関係を、数6に代入すると、下記の数9が得られる。

【0098】

【数9】

★

$$p[k] \leq \exp(-\omega_0 k \Delta t) * (p[0] + (\exp(\omega_0 \Delta t) - 1) \sum_{i=0}^{k-1} (\exp(i\omega_0 \Delta t) * ZMPmax))$$

【0099】等比級数の和の定理から、下記の数10が得られる。

★ 【0101】従って、数9は、数11のように書き直すことができる。

【0100】

【数10】

$$\sum_{i=0}^{k-1} \exp(i\omega_0 \Delta t) = (1 - \exp(k\omega_0 \Delta t)) / (1 - \exp(\omega_0 \Delta t))$$

★

$$p[k] \leq \exp(-\omega_0 k \Delta t) * p[0] + (1 - \exp(-\omega_0 k \Delta t)) * ZMPmax$$

【0103】同様に、数8の左辺と中辺の関係から、数12を得ることができる。

◆ 【0104】

◆ 【数12】

$$p[k] \geq \exp(-\omega_0 k \Delta t) * p[0] + (1 - \exp(-\omega_0 k \Delta t)) * ZMPmin$$

【0105】 $\exp(-\omega_0 k \Delta t)$ は k が無限大になると0に収束 (漸近) するので、数11, 12は、 $ZMPpend$ が変動しても $p[k]$ は発散せず、いすれは $ZMPmax$ と $ZMPmin$ の間にに入ることを意味する。

◆ 【0104】

$p[k] = \exp(-\omega_0 k \Delta t) * (p[0] - ZMP0) + ZMP0$

【0106】さらに、具体例として、 $ZMPpend$ がある時点以降、一定値 $ZMP0$ になる場合を考える。この場合、その時点を改めて時刻0とすると、数6は、数13のよう書き直すことができる。これは、 $p[k]$ が、その初期値にかかわらず、 $ZMP0$ に等比級数的に収束することを意味する。

【0107】

【数13】

40 【0108】より一般的には、 $p[k]$ は、ある時点でのような値であっても、その後の $ZMPpend$ 波形がある同一波形であれば、 $ZMPpend$ 波形に追従する、ある軌道に収束する。

【0109】一方、 $q[k]$ は、数7から明らかなように発散する傾向がある。

【0110】具体例として、 $ZMPpend$ がある時点以降、一定値 $ZMP0$ になる場合を考える。この場合、一定値 $ZMP0$ になる時点を改めて時刻0とすると、数7は、数14となり、これは、 $q[0] = ZMP0$ ではない限り、 $q[k]$ が、 $ZMP0$ から等比級数的に発散することを意味する。

50

【0111】

【数14】

$$q[k] = \exp(\omega_0 k \Delta t) * (q[0] - ZMP_0) + ZMP_0$$

【0112】そこで、以降、数5によって定義される $p[k]$ を収束成分、 $q[k]$ を「発散成分」と呼ぶ。

【0113】以上より、上体軌道の発散を防止し、上体と両足平の間の適切な位置関係を継続させるためには、事実上、収束成分は無視して構わず、支持脚から見た発散成分を歩行に支障ない範囲から越えないように管理すれば良いこととなる。

【0114】即ち、上体軌道の発散を防止し、上体と両足平の間の適切な位置関係を継続させるためには、発散成分を歩行に支障ない範囲（姿勢が大きく崩れない範囲）から越えないように、ZMP軌道パラメータなどを適切に決定すれば良い。

【0115】そこで、先に提案した技術においては、今回生成する歩容につながるべき、長期的な継続性が保証された歩容（後述する定常旋回歩容）を仮に想定することによって、適切な発散成分の値を決定するようにした。

【0116】以上の如く、先に提案した技術においては、2歩先までの遊脚足平着地位置姿勢、着地時刻の要求値（要求）を入力として、目標上体位置・姿勢軌道、目標足平位置姿勢軌道、目標ZMP軌道を決定するようにした。このとき、歩容パラメータの一部は、歩行の継続性を満足するように修正される。尚、生成しようとしている歩容を「今回歩容」、その次の歩容を「次回歩容」、さらにその次の歩容を「次次回歩容」と呼ぶ。

【0117】このように、先に提案した技術においては、ロボット1の動力学的挙動を記述する動力学モデルを単純化し、リアルタイムかつ解析的に将来挙動が予測できるように構成し、それによって、床反力（目標ZMP）を含む歩容を、自由かつリアルタイムに生成して、任意の歩幅、旋回角、歩行周期などを実現できるようにした。

【0118】しかしながら、その提案技術においては、リアルタイム性を重視して単純化モデルとして大幅に単純化したモデルを用いると、動力学的平衡条件を満足する状態から大幅にずれるようになる。言い換えれば、ZMPの誤差が大きくなる。

【0119】従って、この実施の形態に係る脚式移動ロボットの動作生成装置においては、そのような先に提案した単純化モデルを用いて歩容などの動作を生成するときも、生成された動作が、より一層精度良く動力学的平衡条件を満足するように動作を修正するようにした。

尚、この実施の形態は、先に提案した単純化モデルを用いて歩容などの動作を生成する場合に止まらず、テーブル化された歩容に基づいて歩容などの動作を生成する場合の動作修正にも妥当する。

【0120】図5のフルモデル補正入り歩容生成部10

0の説明に戻ると、この実施の形態で「フルモデル」は、今回歩容パラメータを決定する際に用いるものとは異なるロボット動力学モデルを意味する。これは、今回歩容パラメータを決定する際に用いるものよりも近似精度の高いロボット動力学モデルであることが望ましい。図示例で説明すれば、先の提案技術に係る単純化モデル（図7に示す）を今回歩容パラメータの決定に用いたことから、それよりも、近似精度の高い、例えば図6に示す多質点モデルのようなロボット動力学モデルを意味する（質点のまわりに慣性モーメントを設定するものであっても良い）。

【0121】尚、この明細書において、目標足平位置姿勢、目標上体姿勢、目標ZMPに基づいて（入力して）上体位置を算出する（出力させる）のに使用するモデルを「順動力学モデル」と呼び、目標足平位置姿勢、目標上体姿勢、上体位置に基づいて（入力して）目標ZMPを算出する（出力させる）のに使用するモデルを「逆動力学モデル」と呼ぶ。

【0122】フルモデル補正部100cが備えるフルモデルは、逆動力学フルモデル（しばしば「逆フルモデル」と略称）または順動力学フルモデル（しばしば「順フルモデル」と略称）を備える。一般的には、逆動力学モデルの演算に比べ、順動力学モデルの演算は、解析的に求めることができないので、探索的に上体位置を求める必要があり、演算量が多くなりがちである。

【0123】次いで、この実施の形態に係る脚式移動ロボットの動作生成装置の動作、具体的には、歩容の修正手法を説明する。

【0124】図11は、そのフルモデル補正入り歩容生成部100の歩容生成処理を示すフロー・チャート（構造化フロー・チャート）である。

【0125】以下説明すると、まずS10において種々の初期化作業を行い、S12を経てS14に進み、制御周期毎のタイマ割り込みを待つ。制御周期は Δt である。次いでS16に進み、歩容切り替わり目であるか否かを判断し、肯定されるときはS18に進むと共に、否定されるときはS28に進む。

【0126】S18に進むときは時刻 t を0に初期化して現在時刻とし、次いでS20に進み、次回歩容支持脚座標系、次次回歩容支持脚座標系、今回歩容周期および次回歩容周期を読み込む。これらの歩容の要求は、あらかじめ歩行スケジュールとして記憶しておいても良く、あるいはジョイスティック44などの操縦装置からの指令（要求）とそのときまでの歩行履歴を基に決定しても良い。

【0127】次いで、S22に進み、今回歩容初期遊脚足平位置姿勢などの今回歩容の歩容パラメータを仮決定（仮に算出）する。

【0128】今回歩容初期遊脚足平位置姿勢は、今回支持脚座標系から見た現在遊脚位置姿勢にする。今回歩容

初期支持脚足平位置姿勢は、今回支持脚座標系から見た現在支持脚位置姿勢にする。今回歩容終端遊脚足平位置姿勢は、今回支持脚座標系から見た次回支持脚座標系に対応して決定する。（即ち、今回歩容終端遊脚足平位置姿勢から足平を床に接触させたまま、すべらないように足平を水平まで回転させたときの位置姿勢が、次回支持脚座標系となるように設定する。）

【0129】今回歩容終端支持脚足平位置姿勢は、現在支持脚位置姿勢から足平を床に接触させたまま、すべらないように足平を床に面接触するまで回転させたときの位置姿勢とする。従って、床が平面であるならば、今回歩容終端支持脚足平位置姿勢は、今回支持脚座標系に一致する。尚、この歩容では、歩容終端において支持脚足平は水平になるが、必ずしも、このように設定する必要はない。

【0130】今回歩容のZMP軌道パラメータは、安定余裕が高く、かつ急激な変化をしないように決定する。（接地面を含む最小の凸多角形（いわゆる支持多角形）の中央付近にZMPが存在する状態を安定余裕が高いと言う（詳細は特開平10-86081号公報に記述）。ただし、今回歩容のZMP軌道パラメータは、仮決定されただけであり、後述するように修正される。

【0131】次いでS24に進み、今回歩容につながる定常旋回歩容の歩容パラメータを決定する。尚、この明細書で「定常旋回歩容」は、その歩容を繰り返したときに歩容の境界において運動状態に不連続が生じないような周期的歩容を意味するものとして使用する。

【0132】定常旋回歩容は、通常、第1旋回歩容と第2旋回歩容とからなる。尚、ここで「旋回」なる用語を用いたのは、旋回率を零とするときは直進を意味するので、直進も広義の意味で旋回に含めることができるからである。定常旋回歩容は、歩容生成部100で今回歩容の終端における、前記した発散成分を決定するために暫定的に作成されるものであり、フルモデル補正入り歩容生成部100からそのまま出力されるものではない。

【0133】先ず、今回歩容、第1旋回歩容、第2旋回歩容の順に脚軌道がつながるように、第1旋回歩容と第2旋回歩容の歩容パラメータ中の脚軌道の境界条件を設定する。

【0134】具体的には、第1旋回歩容初期遊脚足平位置姿勢は、次回歩容支持脚座標系から見た今回歩容終端支持脚足平位置姿勢とする。第1旋回歩容初期支持脚足平位置姿勢は、次回歩容支持脚座標系から見た今回歩容終端遊脚足平位置姿勢とする。

【0135】第1旋回歩容終端遊脚足平位置姿勢は、今回歩容終端遊脚足平位置姿勢の決定手法と同様に、次回歩容支持脚座標系から見た次回歩容支持脚座標系に対応して決定する。第1旋回歩容終端支持脚足平位置姿勢は、次回歩容支持脚座標系に一致させた足平を床に接触させたまま、すべらないように足平を床に面接触するま

で回転させたときの位置姿勢とする。（従って、床が平面であるならば、第1旋回歩容終端支持脚足平位置姿勢は、次回支持脚座標系に一致する。）

第2旋回歩容初期遊脚足平位置姿勢は、次回歩容支持脚座標系から見た第1旋回歩容終端支持脚足平位置姿勢にする。第2旋回歩容初期支持脚足平位置姿勢は、次回歩容支持脚座標系から見た第1旋回歩容終端遊脚足平位置姿勢にする。

【0136】第2旋回歩容終端遊脚足平位置姿勢は、今回支持脚座標系から見た今回歩容終端遊脚足平位置姿勢にする。第2旋回歩容終端支持脚足平位置姿勢は、今回支持脚座標系から見た今回歩容終端支持脚足平位置姿勢にする。

【0137】これらの関係を図12に示す。

【0138】第1旋回歩容および第2旋回歩容の歩行周期は、次回歩容周期と同一にする（尚、同一にすることは必ずしも必要ではないが、次回歩容周期に応じて決定するのが好ましい）。今回歩容、第1旋回歩容および第2旋回歩容の上記以外の運動パラメータ（両脚支持期時間などの時間パラメータを含む）は、上記決定されたパラメータに応じて、歩容の条件（電動モータ（アクチュエータ）の速度が許容範囲に入っていることなど）を満足するように適宜決定する。

【0139】第1旋回歩容および第2旋回歩容のZMP軌道パラメータも、安定余裕が高くかつ急激な変化をしないように決定する。

【0140】ところで、上体代表点の初期位置と速度をある値 X_0, V_0 に設定すると、図7に示す単純化モデルを用いて上記第1旋回歩容と第2旋回歩容を生成し、再び第1旋回歩容の生成を開始するときの初期上体代表点位置速度が、前記設定した初期上体代表点位置速度の値 X_0, V_0 に一致する。この値 X_0, V_0 を「定常旋回歩容の初期上体代表点位置速度」と呼ぶ。この関係を図に表すと、図13のようになる。ただし、図で X_0 を (x_0, y_0) と表すこととし、 V_0 については表記は省略した。

【0141】このように設定すると、図7に示す単純化モデルを用いて第1旋回歩容と第2旋回歩容を交互に繰り返し生成しても、演算誤差が蓄積しない限り、第1旋回歩容の初期上体代表点位置速度は、値 X_0, V_0 になる。即ち、歩行の継続性が保証される。このときの発散成分、即ち、 $X_0 + V_0/\omega_0$ を、「定常旋回歩容の初期発散成分」と呼ぶ。

【0142】図11の説明に戻ると、次いでS26に進み、今述べた定常旋回歩容の初期発散成分を求める。尚、その詳細は先に提案した特願2000-35201号に記載されているので、詳細な説明は省略する。

【0143】次いで、S28に進み、今回歩容を修正する。具体的には、今回歩容の終端発散成分が定常旋回歩容の初期発散成分に一致するように、今回歩容のパラメ

ータを修正する。これも、その詳細は先に提案した特願2000-352011号に記載されているので、詳細な説明は省略する。

【0144】次いでS30に進み、決定された歩容パラメータから今回歩容の目標瞬時値（および仮目標瞬時値）を発生させる（決定あるいは算出する）。

【0145】図14はその処理を示すサブルーチン・フロー・チャートである。

【0146】以下説明すると、S100において、今回歩容パラメータを基に、時刻（現在時刻）tにおける目標（仮）ZMPを求め、S102に進み、今回歩容パラメータを基に、時刻tにおける目標足平位置姿勢を求める。

【0147】次いでS104に進み、今回歩容パラメータを基に時刻tにおける目標上体姿勢を求める。

【0148】図11フロー・チャートの説明に戻ると、次いでS32に進み、フルモデルを用いた補正歩容の発生（歩容の補正）を行う。即ち、図5を参照して説明したように、補正目標上体位置および／または目標ZMPまわりのフルモデル補正モーメントのZMP換算値の算出（決定）などをを行う。

【0149】図11フロー・チャートのS32の歩容補正手法がこの出願に係る脚式移動ロボットの動作生成装置の特徴をなすと共に、以下、それについて第1の形態以降において種々の例を述べるので、その歩容の補正手法をここで概説する。

フルモデルZMP = 目標ZMP

+ 目標ZMPまわりのフルモデル補正モーメントのZMP換算値

... 式15

【0156】これは、図示のフルモデルが厳密モデルであることを前提とするとき、厳密に動力学的平衡条件を満足するように歩容が補正されることを意味する。このように、フルモデル補正部100cは、目標上体軌道、目標足平軌道および目標ZMPから構成される目標歩容の中の、目標上体軌道を補正する、および／または目標ZMPまわりに目標床反力モーメントを発生させることにより（本来の目標歩容では0）、歩容を補正する。上記で、「フルモデルZMP」は、逆動力学フルモデル（逆フルモデル）を用いて算出される（から出力される）ZMPを意味する。尚、第8から第13の実施の形態にあっては、フィードフォワード型の補正であるために厳密ではないが、ほぼ動力学的平衡条件を満足するように歩容が修正される。

【0157】図示の如く、第1の実施の形態においては、目標足平位置姿勢、目標上体姿勢（図示省略）および単純化モデルを用いて単純化モデル上体位置（目標上

フルモデルZMP誤差 = フルモデルZMP - 目標ZMP ... 式15a

【0161】次いでフルモデルZMP誤差を目標ZMPまわりのフルモデル補正モーメントのZMP換算値として決定（出力）するようにした。尚、この実施の形態お

* 【0150】図15はその歩容の補正手法を表にしたものである。該当する第n実施の形態を『実n』と示す。

【0151】補正手法は、逆動力学フルモデル（逆フルモデル）を用いる手法と、順動力学フルモデル（順フルモデル）を用いる手法に大別される。それぞれ、単純化モデル歩容のZMP（単純化モデルに入力される目標ZMP）を補正しない手法と、補正する手法に大別される。

【0152】さらに、逆動力学フルモデルを用いる手法で、かつ単純化モデル歩容のZMPを補正しない手法は、補正用摂動動力学モデル（以降「摂動モデル」と略称する）を用いる手法と、摂動モデルを用いない手法に分かれる。さらに、摂動モデルを用いる手法は、フルモデルのフィードバック（F/B）補正を行うものとフィードフォワード（F/F）補正を行うものに分かれる。逆動力学フルモデルを用いる手法で、かつ単純化モデル歩容のZMPを補正する手法も、単純化モデル歩容のZMPを補正しない場合と同様に分類される。

【0153】図16は、第1の実施の形態に係る動作生成装置の歩容の補正手法を詳細に示す機能ブロック図である。

【0154】尚、図16に示す第1の実施の形態も含め、後述する第8から第13の実施の形態を除く、全ての実施の形態において、歩容の補正は、次式の条件を満足する。

【0155】

30※体位置）を算出する（目標上体位置は、図4の“補正目標上体位置”を補正する前の“目標上体位置”を意味する）。

【0158】具体的には、数1および数2を用いて時刻tおよびそれ以前の目標足平位置姿勢から時刻tにおける脚ZMP（ZMPfeet）を算出する。次いで、数3を用いて倒立振子ZMP（ZMPpend）を算出し、数4を用いて倒立振子ZMPから倒立振子水平位置を算出し、上体代表点の水平位置が倒立振子質点水平位置に一致するように上体の水平位置を決定すると共に、本出願人が先に特40開平10-86080号公報で提案した上体高さ決定手法を用いて上体高さを決定する。

【0159】さらに、決定した上体位置に基づき、逆フルモデルを用いてフルモデルZMPを算出し、次式に従ってフルモデルZMP誤差を算出する。

【0160】

よび後述の実施の形態において、逆フルモデルに入力される目標上体姿勢は、説明の便宜のため、直立姿勢とする。

【0162】言い換れば、単純化モデルのモデル化誤差によって生じる動力学的平衡条件からのずれを、目標ZMPまわりの床反力モーメントによって打ち消す、即ち、脚部2が床面を押す動作を変化させ、目標ZMPまわりの床反力モーメントを発生させて上記のずれを打ち消すようにした。

【0163】尚、逆フルモデルを用いて算出するZMP*

$$\text{補正目標上体位置} = \text{単純化モデル上体位置}, \dots \quad \text{式16a}$$

$$\text{目標ZMPまわりのフルモデル補正モーメントのZMP換算値}$$

$$= \text{フルモデルZMP} - \text{目標ZMP}, \dots \quad \text{式16b}$$

【0166】図11フロー・チャートの説明に戻ると、次いでS34に進み、時刻tに△tを加え、再びS14に戻り、上記の処理を繰り返す。

【0167】図4の説明に戻り、この実施の形態に係る動作生成装置の動作をさらに説明すると、フルモデル補正入り歩容生成部100で生成された目標歩容の瞬時値の中、目標上体姿勢および補正目標上体位置（軌道）は、後段のブロック102に送られ、その中の上記したロボット幾何学モデル（逆キネマティクス演算部）103にそのまま入力される。

【0168】また、その他の目標足平（足部）位置姿勢（軌道）、目標ZMP（軌道）、目標ZMPまわりのフルモデル補正モーメントのZMP換算値および目標全床反力（軌道）は、複合コンプライアンス動作決定部104に直接送られる一方、目標床反力分配器106にも送られ、そこで床反力は各足平（足部22R, L）に分配され、目標各足平床反力中心点および目標各足平床反力が決定されて複合コンプライアンス動作決定部104に送られる。

【0169】複合コンプライアンス動作決定部104から、機構変形補償付き修正目標足平位置姿勢（軌道）がロボット幾何学モデル103に送られる。ロボット幾何学モデル103は、目標上体位置姿勢（軌道）と機構変形補償付き修正目標足平位置姿勢（軌道）を入力されると、それらを満足する12個の関節（10R（L）など）の関節変位指令（値）を算出して変位コントローラ108に送る。変位コントローラ108は、ロボット幾何学モデル103で算出された関節変位指令（値）を目標値としてロボット1の12個の関節の変位を追従制御する。

【0170】ロボット1に生じた実各足床反力は6軸力センサ34の出力から検出され、検出値は前記した複合コンプライアンス動作決定部104に送られる。また、ロボット1に生じた実傾斜角偏差は傾斜センサ36の出力から検出され、検出値は姿勢安定化制御演算部112に送られ、そこで姿勢傾斜を復元するための目標ZMP（目標全床反力中心点）まわりの補償全床反力モーメントMdmdが算出される。

【0171】また、前記した目標ZMPまわりのフルモデル補正モーメントのZMP換算値はモーメント変換部

*を上記したように、フルモデルZMPという。単純化モデルを用いて算出した上体位置は補正目標上体位置として決定（出力）され、図4に示すロボット幾何学モデル103に入力される。

【0164】図16の構成を式で著すと、以下の2つの式のようになる。

【0165】

$$\text{補正目標上体位置} = \text{単純化モデル上体位置}, \dots \quad \text{式16a}$$

$$\text{目標ZMPまわりのフルモデル補正モーメントのZMP換算値}$$

$$= \text{フルモデルZMP} - \text{目標ZMP}, \dots \quad \text{式16b}$$

114でモーメント値に変換され、補償全床反力モーメントMdmdに加算される。よって得られた和のモーメントは複合コンプライアンス動作決定部104に送られる。複合コンプライアンス動作決定部104は、入力値に基づいて目標足平位置姿勢を修正することにより、目標ZMPまわりに上記のように得られた和のモーメントを発生させる。尚、目標ZMPまわりのフルモデル補正モーメントのZMP換算値は、上記の如く、目標ZMPまわりの補償全床反力モーメントMdmdに加算されるので、複合コンプライアンス動作決定部104あるいは目標床反力分配器106に直接、入力しなくても良い。

【0172】尚、図4に破線で示す上記した複合コンプライアンス動作決定部104などの構成および動作は、本出願人が先に提出した特開平10-277969号公報などに詳細に記載されているので、説明を以上に止める。

【0173】この実施の形態は上記の如く構成したので、先に提案した単純化モデルを用いて生成した歩容を修正して動力学的平衡条件を精度良く満足することができる。また、動力学的平衡条件を精度良く満足する歩容などの動作を生成することができると共に、その生成された動作に追従するようにロボット1を制御することで、姿勢安定性を高めることができる。

【0174】さらに、先に提案した特願2000-352011号に記載された自在な歩容の生成方法を組み合わせることにより、脚式移動ロボットの床反力を含む歩容を、動力学的平衡条件を精度良く満足しながら、自在かつリアルタイムに生成して任意の歩幅、旋回角、歩行周期を持つ歩容を生成することができると共に、生成された歩容同士の境界においてロボットの各部位の変位および速度が連続な歩容を生成することができる。

【0175】ただし、第1の実施の形態の補正手法は床反力のみ操作する点で、演算量が少ない長所があるものの、動作の安定余裕は、後述する実施の形態に比して若干低下する。

【0176】図17は、この発明の第2の実施の形態に係る脚式移動ロボットの動作生成装置の動作、具体的には、図11フロー・チャートのS32の歩容の修正手法を説明する機能ブロック図である。

【0177】第2の実施の形態の補正手法は、逆動力学

フルモデル（逆フルモデル）を用いる手法で、かつ単純化モデル歩容のZMPを補正しない手法であり、かつ摂動モデルを用いる手法である。またフルモデルフィードバック補正型であると共に、第7の実施の形態までのフルモデルフィードバック補正型の基本をなす手法である。

【0178】図示の如く、第2の実施の形態においては、第1の実施の形態の構成に、フルモデルZMP誤差を積分（ $1/S$ 。S；ラプラス演算子）して積分ゲイン（-K。フィードバックゲイン相当値）を乗じたものを摂動モデルに入力し、摂動モデルの出力である摂動モデル上体位置を逆フルモデルに追加的に入力するフィードバックループを追加した。

【0179】即ち、目標足平位置姿勢、目標上体姿勢および後述する補正目標上体位置などに基づき、逆フルモデルを用いてフルモデルZMPを算出して目標ZMPとの差（フルモデルZMP誤差）を求め、求めた差を目標ZMPまわりのフルモデル補正モーメントのZMP換算値として決定（出力）すると共に、求めた差を積分して積分ゲインを乗じた積を摂動モデルZMPとして摂動モデルに入力し、その出力（摂動モデル上体位置）を単純化モデルを用いて算出した、（補正前の）目標上体位置に加算して補正目標上体位置を得、よって得た補正目標上体位置を逆フルモデルに入力するようにした。

【0180】尚、第1の実施の形態と異なり、単純化モデルを用いて算出した上体位置に、摂動モデルを用いて算出される摂動モデル上体位置が加算され、その和が補正目標上体位置として決定（出力）される。

【0181】この摂動モデルは、図18に示す如く、足平の位置姿勢は摂動させないという制約条件下における目標ZMPの摂動と目標上体水平位置の摂動の関係を表すモデルであり、より具体的には、図7に示す単純化モデルにおいて、脚質点の拳動を変えない（摂動しない）場合の、目標ZMPの摂動と目標上体水平位置の摂動の関係を表すモデルである。

【0182】尚、図示の構成において、逆フルモデルの伝達関数を $1/G(s)$ 、摂動モデルのそれを $G_m(s)$ とすると共に、単純化モデルのそれを $(G(s) + \text{モデル化誤差})$ で近似的に表わすと、図示の構成は図19に示すように近似することができ、さらには図20および図21に示すように変形することができる。

【0183】また、摂動モデルの伝達関数 $G_m(s)$ が逆フルモデルの伝達関数の逆関数 $G(s)$ に近似されるとき、 $G_m(s)/G(s)$ は1とみなすことができるので、最終的に図22に示すように近似的に変形される。

【0184】上記から、第2の実施の形態の手法においては、目標ZMPまわりのフルモデル補正モーメントのZMP換算値は、モデル化誤差をカットオフ周波数 $K/2\pi$ [Hz]（カットオフ角周波数 K [rad/sec]）のローカッ

トフィルタ（ハイパスフィルタ）に通したものとほぼ同一になることが理解できよう。

【0185】ところで、目標ZMPまわりにフルモデル補正モーメントを発生させることは、目標ZMPに目標ZMPまわりのフルモデル補正モーメントのZMP換算値を加えた値に、目標ZMPを修正することに相当する。目標ZMPは安定余裕などを考慮して理想バターンに設計されているはずであるから、目標ZMPまわりのフルモデル補正モーメントのZMP換算値は、常に0であることが、本来的には理想である。

【0186】第2の実施の形態の手法は、積分ゲインの絶対値Kが十分に大きければ、目標ZMPまわりのフルモデル補正モーメントのZMP換算値はほぼ0になり、理想に近くなる。

【0187】第2の実施の形態においては上記のように構成したので、第1の実施の形態で述べた同様の効果を得ることができると共に、安定余裕の高い歩容を生成することができる。

【0188】ただし、演算量が依然少ないことが長所であるものの、摂動モデルの上体位置が発散する傾向があるため、必ずしも実用的ではない。

【0189】図23は、この発明の第3の実施の形態に係る脚式移動ロボットの動作生成装置の動作、具体的には、図11フロー・チャートのS32の歩容の修正手法を説明する機能ブロック図である。

【0190】第3の実施の形態に係る装置の補正手法は、逆動力学フルモデル（逆フルモデル）を用いる手法で、かつ単純化モデル歩容のZMPを補正しない手法であり、かつ摂動モデルを用いる手法である。またフルモデルフィードバック補正型であると共に、第7の実施の形態までの手法に共通する一般的な手法である。

【0191】従前の実施の形態と相違する点に焦点をときつつ説明すると、第3の実施の形態においては、第2の実施の形態の不都合、即ち、摂動モデルの発散を防止するために、第2の実施の形態の構成に摂動モデル制御則を追加し、その出力である摂動モデル制御用フィードバック量を摂動モデルに追加的に入力するようにした。

【0192】即ち、第1および第2の実施の形態と同様、フルモデルZMP誤差を求め、求めたフルモデルZ

MP誤差を目標ZMPまわりのフルモデル補正モーメントのZMP換算値として出力すると共に、各種状態量（例えば、摂動モデルの倒立振子の位置・速度、フルモデルの重心位置・速度）および/または目標歩容（目標歩容パラメータ）を入力として摂動モデル制御則を用いて摂動モデル制御用フィードバック量を算出する。次いで算出した値を目標ZMPまわりのフルモデル補正モーメントのZMP換算値から減算してフルモデルZMP誤差を求めると共に、求めたフルモデルZMP誤差を積分して積分ゲイン（-K）を乗じて得た積に摂動モデル制御用フィードバック量を加算し、よって得た和を摂動モ

41

デルに入力するようにした。

【0193】フルモデルZMP誤差の算出について補足すると、第2の実施の形態で述べたように、摂動モデルの伝達関数が、逆フルモデルの伝達関数の逆関数に近似されるとき、摂動モデルと逆フルモデルの伝達関数の積はほぼ1であるから、摂動モデルZMP算出時に加算された摂動モデル制御用フィードバック量によるフルモデルZMPの増加量は、摂動モデル制御用フィードバック*

$$\text{フルモデルZMP誤差} = \text{フルモデルZMP} - \text{目標ZMP}$$

$$- \text{摂動モデル制御用フィードバック量} \dots \text{式17}$$

【0196】ところで、積分ゲインの絶対値Kが十分に大きければ、フルモデルZMP誤差はほぼ0になる。よ*

$$\text{フルモデルZMP} - \text{目標ZMP} \approx \text{摂動モデル制御用フィードバック量}$$

$$\dots \text{式18}$$

式15と式18より、次式を得ることができる。 ★ ★ 【0198】

$$\text{目標ZMP} \approx \text{目標ZMP} + \text{摂動モデル補正モーメントのZMP換算値}$$

$$= \text{摂動モデル制御用フィードバック量} \dots \text{式19}$$

【0199】従って、目標ZMPまわりのフルモデル補正モーメントのZMP換算値の決定（算出）には、式15の代わりに、式19を用いても良い。尚、残余の構成は、第2の実施の形態と異ならない。

【0200】他方、第2の実施の形態では目標ZMPまわりのフルモデル補正モーメントのZMP換算値が理想的な値である0に近いのに対し、第3の実施の形態ではこの値が摂動モデル制御用フィードバック量とほぼ等しい量になるという欠点を持つ。そのため、フィードバック則を設計する際には、摂動モデル制御用フィードバック量が極力小さくなるように（理想的には0）配慮する必要がある。

【0201】第3の実施の形態は上記の如く構成したので、第2の実施の形態で述べたとほぼ同様の効果を有す☆

$$\begin{aligned} \text{摂動モデル制御用フィードバック量} &= K_p \times \text{摂動モデル上体水平位置} \\ &+ K_v \times \text{摂動モデル上体水平速度} \end{aligned}$$

$$\dots \text{式20}$$

【0206】ただし、Kp, Kvは制御ゲインである。即ち、摂動モデルを用いて算出される摂動モデル上体位置と速度に基づいて摂動モデル制御用フィードバック量を演算するようにした。尚、残余の構成は第3の実施の形態と異ならない。

【0207】第4の実施の形態においては上記のように構成したので、第3の実施の形態で述べたと同様の効果を得ることができると共に、摂動モデルの発散を防止することができる。尚、制御則は簡単であるが、摂動モデル制御用フィードバック量の平均値が0にならない欠点がある。

$$\begin{aligned} \text{摂動モデル制御用フィードバック量} &= K_p \times \text{重心差} \\ &+ K_v \times \text{摂動モデル上体水平速度} \end{aligned}$$

$$\dots \text{式21}$$

【0212】ただし、重心差は、次式で求められる。

$$\text{重心差} = \text{フルモデル重心位置} - \text{単純化モデル重心位置} \dots \text{式22}$$

42

*量にはほぼ一致する。これは、摂動モデルの発散を防ぐために意図的に追加したものであるから、単純化モデルの誤差ではない。

【0194】従って、第3の実施の形態（から後述する第7の実施の形態まで）においては、摂動モデル制御用フィードバック量を追加したことを考慮し、フルモデルZMP誤差の算出式を次式のように変更する。

【0195】

$$\text{フルモデルZMP誤差} = \text{フルモデルZMP} - \text{目標ZMP}$$

$$- \text{摂動モデル制御用フィードバック量} \dots \text{式17}$$

【0196】ところで、積分ゲインの絶対値Kが十分に

※って、式17は次式に近似される。

$$\text{フルモデルZMP} - \text{目標ZMP} \approx \text{摂動モデル制御用フィードバック量}$$

$$\dots \text{式18}$$

式15と式18より、次式を得ることができる。

★ ★ 【0198】

$$\text{目標ZMP} \approx \text{目標ZMP} + \text{摂動モデル補正モーメントのZMP換算値}$$

$$= \text{摂動モデル制御用フィードバック量} \dots \text{式19}$$

【0199】従って、目標ZMPまわりのフルモデル補正モーメントのZMP換算値の決定（算出）には、式15の代わりに、式19を用いても良い。尚、残余の構成は、第2の実施の形態と異ならない。

【0200】他方、第2の実施の形態では目標ZMPまわりのフルモデル補正モーメントのZMP換算値が理想的な値である0に近いのに対し、第3の実施の形態ではこの値が摂動モデル制御用フィードバック量とほぼ等しい量になるという欠点を持つ。そのため、フィードバック則を設計する際には、摂動モデル制御用フィードバック量が極力小さくなるように（理想的には0）配慮する必要がある。

【0201】第3の実施の形態は上記の如く構成したので、第2の実施の形態で述べたとほぼ同様の効果を有す☆

$$\begin{aligned} \text{摂動モデル制御用フィードバック量} &= K_p \times \text{摂動モデル上体水平位置} \\ &+ K_v \times \text{摂動モデル上体水平速度} \end{aligned}$$

$$\dots \text{式20}$$

◆【0208】図25は、この発明の第5の実施の形態に係る脚式移動ロボットの動作生成装置の動作、具体的には、図11フロー・チャートのS32の歩容の修正手法を説明する機能ブロック図である。

【0209】第5の実施の形態に係る装置の補正手法も第3の実施の形態の具体例であり、特に、重心制御を入れるようにした点が特徴的である。

【0210】従前の実施の形態と相違する点に焦点を置いて説明すると、第5の実施の形態においては、摂動モデル制御則として次式を用いるようにした。

◆【0211】

$$\begin{aligned} \text{摂動モデル制御用フィードバック量} &= K_p \times \text{重心差} \\ &+ K_v \times \text{摂動モデル上体水平速度} \end{aligned}$$

$$\dots \text{式21}$$

【0213】即ち、フルモデル重心位置から単純化モデルの重心位置を減算して得た重心差と摂動モデルを用いて算出される摂動モデル上体速度に基づいて摂動モデル制御用フィードバック量を演算するようにした。かかる摂動モデル制御則により、フルモデルの重心位置と単純化モデルの重心位置の差の時間的平均値を、ほぼ0に制御することができる。

【0214】ところで、ロボットの動力学的特徴とし *

フルモデルZMPの時間的平均値-目標ZMPの時間的平均値

＝摂動モデル制御用フィードバック量の時間的平均値. . . 式23

【0217】従って、摂動モデル制御用フィードバック量の時間的平均値はほぼ0になる。さらに式19の関係から、目標ZMPまわりのフルモデル補正モーメントのZMP換算値の時間的平均値は、ほぼ0になる。この結果、第4の実施の形態に比し、安定余裕の高い歩容を生成することができる。尚、残余の構成は第3の実施の形態と同様である。

【0218】第5の実施の形態においては上記のように構成したので、第4の実施の形態で述べたと同様の効果を得ることができると共に、目標ZMPまわりのフルモデル補正モーメントのZMP換算値の時間的平均値をほぼ0にすることができる。

【0219】図26は、この発明の第6の実施の形態に※

摂動モデル制御用フィードバック量

$$= K_p * (\text{摂動モデル上体水平位置} - \text{ローパスフィルタ出力}) \\ + K_v * \text{摂動モデル上体水平速度. 式24}$$

ただし、ローパスフィルタ出力とは、 $-K * m_{total}/mb$ *フルモデルZMP誤差の積分値をローパスフィルタに通したものを表す。尚、図26において、 m_{total}/mb は、図18に示す摂動モデルの係数である。

【0223】式24に示す摂動モデル制御則により、摂動モデル上体水平位置の時間的平均値は、ローパスフィルタ出力の時間的平均値にほぼ一致する。また、摂動モデルの動力学特性から、摂動モデルが発散しなければ、摂動モデル上体水平位置の時間的平均値は、摂動モデルZMPの時間平均値の m_{total}/mb （倒立振子支点位置）の値にほぼ一致する。

【0224】また、図26から明らかな如く、ローパスフィルタ出力の時間的平均値は、摂動モデルZMPの時間的平均値の m_{total}/mb 倍の値から摂動モデル制御用フィードバック量の時間的平均値の m_{total}/mb 倍の値を減じたものにほぼ一致する。

【0225】以上より、摂動モデル制御用フィードバック量の時間的平均値はほぼ0になる。さらに式19の関★

摂動モデル制御用フィードバック量

$$= K_{p1} * \text{摂動モデル上体水平位置} \\ + K_{p2} * \text{重心差} \\ + K_{p3} * (\text{摂動モデル上体水平位置} - \text{ローパスフィルタ出力}) \\ + K_v * \text{摂動モデル上体水平速度. 式25}$$

【0230】ただし、ローパスフィルタ出力は、 $-K * 50$ フルモデルZMP誤差の積分値 $* m_{total}/mb$ をローパス

*で、目標ZMPの時間的平均値と単純化モデルの重心位置の時間的平均値は、ほぼ一致する。また、フルモデルZMPの時間的平均値とフルモデルの重心位置の時間的平均値は、ほぼ一致する。

【0215】以上より、単純化モデルの重心位置の時間的平均値とフルモデルZMPの時間的平均値は、ほぼ一致する。さらに、式18より次式が導かれる。

【0216】

※係る脚式移動ロボットの動作生成装置の動作、具体的には、図11フロー・チャートのS32の歩容の修正手法を説明する機能ブロック図である。

【0220】第6の実施の形態の手法も第3の実施の形態の具体例であり、ゲインKの積分器（図26の26a）の出力の時間的平均値を m_{total}/mb 倍したものに、摂動モデルの上体水平位置を追従させるような制御を入れたことを特徴とする。

【0221】従前の実施の形態と相違する点に焦点をおいて説明すると、第6の実施の形態においては、摂動モデル制御則として次式を用いるようにした。

【0222】

★係から、目標ZMPまわりのフルモデル補正モーメントのZMP換算値の時間的平均値は、ほぼ0になる。この結果、第5の実施の形態の手法と同様に、安定余裕の高い歩容を生成することができる。尚、残余の構成は第3の実施の形態と同様である。

【0226】第6の実施の形態においては上記のように構成したので、第5の実施の形態で述べたと同様の効果を得ることができる。

【0227】図27は、この発明の第7の実施の形態に係る脚式移動ロボットの動作生成装置の動作、具体的には、図11フロー・チャートのS32の歩容の修正手法を説明する機能ブロック図である。

【0228】第7の実施の形態に係る装置の手法も第3の実施の形態の具体例であり、第4の実施の形態から第6の実施の形態までの手法を混合した、それらの中間的あるいは折衷的な手法である。

【0229】第7の実施の形態においては、摂動モデル制御則として次式を用いる。

45

フィルタに通したものと表わす。尚、残余の構成は第3の実施の形態と同様である。

【0231】第7の実施の形態においては上記のように構成したので、第4から第6の実施の形態の効果の中間的あるいは折衷的な効果を得ることができる。

【0232】図28は、この発明の第8の実施の形態に係る脚式移動ロボットの動作生成装置の動作、具体的には、図11フロー・チャートのS32の歩容の修正手法を説明する機能ブロック図である。

【0233】第8の実施の形態に係る装置の手法は逆動力学フルモデル（逆フルモデル）を用いる補正で、かつ単純化モデル歩容のZMPを補正しない手法で、かつ摂動モデルを用いる手法である。また第13の実施の形態までのフルモデルフィードフォワード補正型の基本をなす手法である。

【0234】第8の実施の形態においては、図示の如く、フルモデルZMPから単純化モデルに入力される目標ZMPを減算してフルモデルZMP誤差を求め、求めた誤差に-1を乗じて得た積を摂動モデルに入力して摂動モデル上体位置を算出し、それに単純化モデル上体位置（補正前目標上体位置）を加算し、よって得た和を補正目標上体位置と決定するようにした。

【0235】他方、目標ZMPまわりのフルモデル補正モーメントのZMP換算値は0と決定する。これは、フルモデルフィードバック型で述べたように理想的なことである。ただし、この第8の実施の形態に係る基本型では、摂動モデルが発散する傾向があるので、実用的ではない。

【0236】フルモデル補正用の逆フルモデル計算時に必要な上体高さには、前制御周期（図11フロー・チャートの前回プログラムループ時）における関節角算出時の上体高さを用いても良く、または改めて上体高さを決定しても良い。摂動モデル上体位置が大きくなれば、いずれでも大差ないからである。

【0237】第8の実施の形態においては上記のように構成したので、第2の実施の形態で述べたと同様の効果を得ることができる。

【0238】図29は、この発明の第9の実施の形態に係る脚式移動ロボットの動作生成装置の動作、具体的には、図11フロー・チャートのS32の歩容の修正手法を説明する機能ブロック図である。

【0239】第9の実施の形態に係る装置の手法は逆動*摂動モデル制御用フィードバック量

$$= K_p * \text{摂動モデル水平位置} + K_v * \text{摂動モデル水平速度}, \dots \text{式26}$$

尚、残余の構成は、第9の実施の形態と同様である。

【0248】第10の実施の形態においては上記のように構成したので、第9の実施の形態および第4の実施の形態と同様の効果を有する。

【0249】図31は、この発明の第11の実施の形態に係る脚式移動ロボットの動作生成装置の動作、具体的

46

* 力学フルモデル（逆フルモデル）を用いる手法で、かつ単純化モデル歩容のZMPを補正しない手法で、かつ摂動モデルを用いる手法である。また第13の実施の形態までのフルモデルフィードフォワード補正型の一般型をなす手法である。

【0240】第9の実施の形態にあっても、第3の実施の形態（フルモデルフィードバック補正の一般型）と同様に、摂動モデルの発散を防止するために、摂動モデル制御用を備え、それに基づいて摂動モデル制御用フィードバック量を算出して摂動モデルに追加的に入力するようにした。また、摂動モデル制御用フィードバック量を目標ZMPまわりのフルモデル補正モーメントのZMP換算値として決定（出力）するようにした。尚、残余の構成は、第8の実施の形態と同様である。

【0241】第9の実施の形態にあっては、フィードフォワードを用いた補正であるので、摂動モデルそのものの近似精度が低い場合、または摂動モデルの上体水平位置が大きくて近似精度が低下する場合では、補正量が適正量からずれるので、フルモデル補正された歩容の近似精度がやや低下する。

【0242】前述の第3の実施の形態のフィードバック型の補正手法では、その場合でもフルモデル補正された歩容の近似精度は低下しにくい特徴がある。しかし、フィードバック型の補正手法では、ある瞬間の補正誤差は、少なくとも1制御周期遅れてから補正されるので、補正の応答性はフィードフォワード型の方が良い。

【0243】第9の実施の形態は上記のように構成したので、上記したフィードバック手法とフィードフォワード手法の違いによる特性の差を除き、第3の実施の形態と同様の効果を有する。

【0244】図30は、この発明の第10の実施の形態に係る脚式移動ロボットの動作生成装置の動作、具体的には、図11フロー・チャートのS32の歩容の修正手法を説明する機能ブロック図である。

【0245】第10の実施の形態に係る装置の手法は第9の実施の形態の具体例であり、第4の実施の形態と同様に、摂動モデルを直立近辺に安定させる制御を入れるようにした。

【0246】即ち、第10の実施の形態においては、摂動モデル制御則として次式を用いるようにした。

【0247】

には、図11フロー・チャートのS32の歩容の修正手法を説明する機能ブロック図である。

【0250】第11の実施の形態に係る装置の手法も第9の実施の形態の具体例であり、第5の実施の形態と同様に、重心制御を入れるようにした。即ち、重心ずれを打ち消す位置を目標整定位置にして摂動モデルを制御す

るようとした。

【0251】目標整定位置は、例えば、次式のように決*

$$\text{目標整定位置} = -m_{\text{total}}/mb * \text{重心差}, \dots \dots \dots \text{式27}$$

【0252】

摂動モデル制御用フィードバック量は以下のように算出する。

摂動モデル制御用フィードバック量

$$= K_p * (\text{摂動モデル上体水平位置} - \text{目標整定位置})$$

$$+ K_v * (\text{摂動モデル上体水平速度} + mb/m_{\text{total}} * \text{摂動モデル上体水平位置})$$

* 定する。

【0253】第11の実施の形態においては上記のように構成したので、第9の実施の形態および第5の実施の形態と同様の効果を有する。

【0254】図32は、この発明の第12の実施の形態に係る脚式移動ロボットの動作生成装置の動作、具体的には、図11フロー・チャートのS32の歩容の修正手法を説明する機能ブロック図である。

【0255】第12の実施の形態に係る装置の手法も第※

摂動モデル制御用フィードバック量

$$= K_p * (\text{摂動モデル上体水平位置} - \text{ローパスフィルタ出力})$$

$$+ K_v * (\text{摂動モデル上体水平速度} + mb/m_{\text{total}} * \text{摂動モデル上体水平位置})$$

【0257】ただし、ローパスフィルタ出力は $-m_{\text{total}}/mb * \text{フルモデルZMP誤差}$ をローパスフィルタに通したものと表わす。第6の実施の形態をフィードフォワード補正型に変形したものと言うことができる。

【0258】第12の実施の形態においては上記のように構成したので、第9の実施の形態および第6の実施の形態と同様の効果を有する。

【0259】図33は、この発明の第13の実施の形態に係る脚式移動ロボットの動作生成装置の動作、具体的★30

摂動モデル制御用フィードバック量

$$= K_{p1} * (\text{摂動モデル上体水平位置})$$

$$+ K_{p2} * (\text{摂動モデル上体水平位置} - (-m_{\text{total}}/mb * \text{重心差}))$$

$$+ K_{p3} * (\text{摂動モデル上体水平位置} - \text{ローパスフィルタ出力})$$

$$+ K_v * (\text{摂動モデル上体水平速度} + mb/m_{\text{total}} * \text{摂動モデル上体水平位置})$$

【0263】同様に、ローパスフィルタ出力とは、 $-m_{\text{total}}/mb * \text{フルモデルZMP誤差}$ をローパスフィルタに通したものと表わす。

【0264】第13の実施の形態においては上記のように構成したので、第10から第12の実施の形態の効果の中間的あるいは折衷的な効果を有する。

【0265】図34は、この発明の第14の実施の形態に係る脚式移動ロボットの動作生成装置の動作、具体的には、歩容の修正手法を説明するブロック図である。

【0266】第14の実施の形態に係る装置の手法は、逆動力学フルモデル（逆フルモデル）を用いる手法で、かつ単純化モデル歩容のZMPを補正する手法で、かつ摂動モデルを用いない手法である。

【0267】即ち、図34に示す如く、第14の実施の

10※9の実施の形態の具体例であり、摂動モデルを、フルモデルZMP誤差の時間的平均値 $* (-1) * m_{\text{total}}/mb$ 倍したものに追従させる制御を入れるようにした。即ち、ZMP誤差の時間的平均偏差を打ち消す位置を目標整定位置にして摂動モデルを制御するようにした。

【0256】第12の実施の形態においては、摂動モデル制御用フィードバック量は以下のように算出する。

★には、図11フロー・チャートのS32の歩容の修正手法を説明する機能ブロック図である。

【0260】第13の実施の形態に係る装置の手法も第9の実施の形態の具体例であり、第7の実施の形態と同様に、第10の実施の形態から第12の実施の形態までの手法を混合した中間的あるいは折衷的な手法を示す。

【0261】第13の実施の形態においては、摂動モデル制御用フィードバック量は以下のように算出する。

【0262】

形態においては、フルモデルZMP誤差を積分して積分ゲイン $(+K)$ を乗じて得た積を、単純化モデルに追加的に入力する、フィードバックループを第1の実施の形態に加えるようにした。他方、単純化モデル上体位置を補正目標上体位置として決定（出力）すると共に、前記求めたフルモデル誤差を目標ZMPまわりのフルモデル補正モーメントのZMP換算値として決定（出力）するようにした。

【0268】尚、第14の実施の形態においては、第1から第13の実施の形態と異なり、目標ZMPを補正することで、単純化モデル上体位置が所期の軌道からはずれる。従って、歩容パラメータを決定し直すことが望ましい。その歩容パラメータの決定し直しは、制御周期毎に実行するか、ZMP軌道の折れ点時刻にだけ実行する

か、一步毎に実行しても良い。尚、修正は早いうちにした方が、歩容パラメータの修正量が小さくて済むので、なるべく頻繁に変更すべきである。また、歩容パラメータの決定し直しは、具体的には、図11フロー・チャートのS28において単純化モデルの状態量などに応じて行われる。詳しくは、先に提案した特願平2000-352011号で述べられているので、ここではこれ以上の説明を省略する。

【0269】また、歩容パラメータの中のZMPパラメータを変更する場合、ZMP折れ点の時刻を変えず、ZMP折れ点のZMPの値を変えるだけにした方が、シーケンス上の不都合が生じ難く、簡単である。

【0270】また、ZMPのパターンの変更量は台形状にするのが容易である。例えば、図35に示すように、現在時刻より後のZMP折れ点の時刻から適当に選択して台形の折れ点時刻とすれば良い。ただし、歩容の終端に近づいてくると、その歩容の期間の中にこのような台形の設定が不可能となる。そのときには、その歩容でのZMPの修正を行わず、次の一步で修正すれば足る。

【0271】第14の実施の形態においては上記のように構成したので、第2の実施の形態とほぼ同様の効果を有すると共に、歩容パラメータを修正することによって歩容の発散を防止することができる。

【0272】図36は、この発明の第15の実施の形態に係る脚式移動ロボットの動作生成装置の動作、具体的には、図11フロー・チャートのS32の歩容の修正手法を説明する機能ブロック図である。

【0273】第15の実施の形態に係る装置の手法は、逆動力学フルモデル（逆フルモデル）を用いる手法で、かつ単純化モデル歩容のZMPを補正する手法であり、かつ振動モデルを用いる手法である。またフルモデルフィードバック補正型の一般型をなす手法である。

【0274】具体的には、第3の実施の形態を基に、フルモデルZMP誤差を積分して積分ゲイン（-K）を乗じて得た積を、分配器を介して振動モデルにフィードバックするだけでなく、単純化モデルにもフィードバックするようにした。

【0275】換言すれば、第15の実施の形態は、第3の実施の形態と第14の実施の形態の手法を混合した中間的あるいは折衷的な手法とした。第15の実施の形態においても、単純化モデルの挙動は所期の挙動からずれるので、第14の実施の形態と同様に、歩容パラメータを修正する必要がある。尚、第3の実施の形態に代えて、第2の実施の形態または第4の実施の形態から第7の実施の形態までのいずれか（あるいはその組み合わせ）と第14の実施の形態の手法を混合しても良い。

【0276】第15の実施の形態において、分配器は周波数領域で分配しても、リミッタなどの非線形要素を用いて分配しても良い。フィードバック系なので、分配器は出力の和が入力と一致している必要はない。

【0277】第15の実施の形態においては上記のように構成したので、第3の実施の形態および第14の実施の形態と同様の、あるいはそれらの折衷的あるいは中間の効果を有する。

【0278】図37は、この発明の第16の実施の形態に係る脚式移動ロボットの動作生成装置の動作、具体的には、図11フロー・チャートのS32の歩容の修正手法を説明する機能ブロック図である。

【0279】第16の実施の形態に係る装置の手法は、10逆動力学フルモデル（逆フルモデル）に代えて順動力学フルモデル（順フルモデル）を用いる手法で、かつ単純化モデル歩容のZMPを補正しない手法である。またフルモデルを単純化モデル歩容に追従させる手法であり、より具体的には目標ZMPを満足する単純化モデルの上体挙動にフルモデルの上体挙動を追従させるように、フルモデルZMPを修正する手法である。

【0280】即ち、第16の実施の形態においては、図37に示す如く、順フルモデルを用いて算出されるフルモデル上体位置から単純化モデル上体位置（補正前目標上体位置）を減算して得た差を求めてPIDなどのモデル追従フィードバック則に入力し、フィードバック量を求める。次いで求めたフィードバック量を目標ZMPに加算してフルモデルZMPを求め、求めたフルモデルZMPを順フルモデルに入力してフルモデル上体位置を求めるように構成した。換言すれば、順フルモデル上体位置と単純化モデルの上体位置の差に応じて順フルモデルのZMPを補正するようにフィードバックループを構成した。

【0281】また出力に関しては、前記フィードバック30量を目標ZMPまわりのフルモデル補正モーメントのZMP換算値として決定（出力）すると共に、順フルモデル上体位置を補正目標上体位置として決定（出力）するようにした。

【0282】尚、モデル追従フィードバック則への入力として、順フルモデルと単純化モデルの上体位置の差ではなく、重心位置の差にしても良く、さらには上体位置と重心位置の差を共に入力しても良い。

【0283】第16の実施の形態においては上記のように構成したので、先に述べたように演算量が増加する40不都合を除くと、第3の実施の形態と同様の効果を有する。

【0284】図38は、この発明の第17の実施の形態に係る脚式移動ロボットの動作生成装置の動作、具体的には、図11フロー・チャートのS32の歩容の修正手法を説明する機能ブロック図である。

【0285】第17の実施の形態に係る装置の手法は、順動力学フルモデル（順フルモデル）を用いる手法で、かつ単純化モデル歩容のZMPを補正する手法である。また単純化モデルをフルモデル歩容に追従させるように50制御する手法である。

【0286】即ち、第16の実施の形態と逆に、目標ZMPを満足するフルモデルの挙動に単純化モデルの挙動を追従させるように、単純化モデルZMPを補正するようにした。具体的には、第16の実施の形態においてはモデル追従フィードバック則の出力を順フルモデルに追加的に入力していたのに対し、第17の実施の形態においては単純化モデルに追加的に入力するようにした。

【0287】他方、目標ZMPまわりのフルモデル補正モーメントのZMP換算値を0と決定すると共に、順フルモデル上体位置を補正目標上体位置として決定（出力）するようにした。尚、フィードバックゲインが高い場合、単純化モデル上体位置と順フルモデル上体位置はほぼ一致するので、単純化モデル上体位置を補正目標上体位置として決定（出力）しても良い。

【0288】尚、単純化モデルに入力されるモデルZMPが補正されるために単純化モデルの挙動は所期の挙動からずれるので、第14の実施の形態と同様に歩容パラメータを修正する必要がある。

【0289】第17の実施の形態においては上記のように構成したので、第14の実施の形態と同様の効果を有する。尚、第16の実施の形態と同様に、上体位置に代えて重心位置あるいはその双方をモデル追従フィードバック則に入力しても良い。

【0290】図39は、この発明の第18の実施の形態に係る脚式移動ロボットの動作生成装置の動作、具体的には、図11フロー・チャートのS32の歩容の修正手法を説明する機能ブロック図である。

【0291】第18の実施の形態に係る装置の手法は、順動力学フルモデル（順フルモデル）を用いる手法であり、かつフルモデルの状態に対応する単純化モデル状態量をフルモデルの状態量から直接的に求める手法である。

【0292】即ち、第17の実施の形態においては目標ZMPを満足するフルモデルの挙動に単純化モデルの挙動を追従させたが、第18の実施の形態においては、目標ZMPを満足するフルモデルの挙動に単純化モデルの挙動が完全に追従したとみなした場合の単純化モデルの状態量を直接的に算出するようにした。

【0293】単純化モデルの状態量は、具体的には、順フルモデルの上体代表点の位置・速度に対して図7の関係を満足する単純化モデルの倒立振子の上体位置・速度を算出することで求める。他方、目標ZMPまわりのフルモデル補正モーメントのZMP換算値を0と決定すると共に、フルモデル上体位置を補正目標上体位置として決定（出力）するようにした。

【0294】第18の実施の形態においては上記のように構成したので、第17の実施の形態と同様の効果を有する。

【0295】図40は、この発明の第19の実施の形態に係る脚式移動ロボットの動作生成装置の動作、具体的

には、図11フロー・チャートのS32の歩容の修正手法を説明する機能ブロック図である。

【0296】第19の実施の形態に係る装置の手法は順動力学フルモデル（順フルモデル）を用いる手法であり、かつ順フルモデルの挙動と単純化モデルの挙動が互いに歩み寄るように、モデル追従フィードバック則1とモデル追従フィードバック則2を用いて単純化モデルZMPとフルモデルZMPの両方を修正するようにした。他方、モデル追従フィードバック則2の出力を目標ZMPまわりのフルモデル補正モーメントのZMP換算値として決定（出力）すると共に、フルモデル上体位置を補正目標上体位置として決定（出力）するようにした。

【0297】言い換えると、第16の実施の形態と第17の実施の形態の手法を混合した中間的あるいは折衷的な手法である。この例においても、単純化モデルの挙動は所期の挙動からずれるので、第14の実施の形態と同様に歩容パラメータを修正する必要がある。また、モデル追従フィードバック則1あるいは2に上体位置および／または重心位置を入力しても良いことも従前の実施の形態と同様である。

【0298】第19の実施の形態においては上記のように構成したので、第16および第17の実施の形態などと同様の、あるいはそれの中間的あるいは折衷的な効果を有する。

【0299】図41は、この発明の第20の実施の形態に係る脚式移動ロボットの動作生成装置の動作、具体的には、図11フロー・チャートのS32の歩容の修正手法を説明する機能ブロック図である。

【0300】第20の実施の形態は、図16に示す第130の実施の形態の変形例であり、図16に示す構成の逆フルモデル100c2と加算点16aを合わせて逆フルモデル100c2としたものである。ただし、逆フルモデル100c2は目標ZMPまわりのフルモデル補正モーメントをフルモデルモーメント誤差として出力し、ZMP換算ブロック41aにおいて目標ZMPまわりのフルモデル補正モーメントのZMP換算値が決定（算出）される。尚、残余の構成は第1の実施の形態と同様であり、効果も同様である。

【0301】図42は、この発明の第21の実施の形態に係る脚式移動ロボットの動作生成装置の動作、具体的には、図11フロー・チャートのS32の歩容の修正手法を説明する機能ブロック図である。

【0302】第21の実施の形態は、図17に示す第2の実施の形態の変形例であり、第21の実施の形態と同様に、図17に示す構成の逆フルモデル100c2と加算点17aを合わせて逆フルモデル100c2とするものである。ただし、逆フルモデル100c2は目標ZMPまわりのフルモデル補正モーメントをフルモデルモーメント誤差として出力し、ZMP換算ブロック42hにおいて目標ZMPまわりのフルモデル補正モーメントの

ZMP換算値が決定（算出）される。

【0303】尚、第21の実施の形態の残余の構成は第2の実施の形態と同様であり、効果も同様である。

【0304】図43は、この発明の第22の実施の形態に係る脚式移動ロボットの動作生成装置の動作、具体的には、図11フロー・チャートのS32の歩容の修正手法を説明する機能ブロック図である。

【0305】第22の実施の形態は、図37に示す第16の実施の形態の変形例である。この実施の形態においては、モデル追従フィードバック則は、目標ZMP（目標床反力作用点）まわりのフルモデル補正モーメントを出力し、その出力は順フルモデルに入力される。順フルモデルは、目標床反力作用点まわりにフルモデル補正モーメントが作用するような目標運動を生成し、その目標運動の上体位置をフルモデル上体位置として出力する。また、ZMP換算ブロック43hを設けて目標ZMPまわりのフルモデル補正モーメントのZMP換算値を決定（算出）するようにした。残余の構成は、第16の実施の形態と同様であり、効果も同様である。

【0306】図44は、この発明の第23の実施の形態に係る脚式移動ロボットの動作生成装置の動作、具体的には、図11フロー・チャートのS32の歩容の修正手法によって修正された歩容をさらに修正する修正手法を説明する機能ブロック図である。

【0307】図44に示す如く、第23の実施の形態においては、これまで述べたきた第1の実施の形態から第22の実施の形態の構成で得た補正目標上体位置と目標ZMPまわりのフルモデル補正モーメントのZMP換算値を、同図に示す変換ブロックに入力し、その出力を新たな補正目標上体位置と目標ZMPまわりのフルモデル補正モーメントのZMP換算値と決定するようにした。かかる変換ブロックを挿入することにより、目標ZMPまわりのフルモデル補正モーメントのZMP換算値の変動を、ローパスフィルタを通した場合と同様に、より一層小さくすることができる。

【0308】この変換処理を説明すると、先ず、目標ZMPまわりのフルモデル補正モーメントの元の値（入力）を第2の分配器に入力し、第2の分配器の2つの出力の和が入力に等しくなるように、その2つの出力（第1の分配出力と第2の分配出力）に分配する。第2の分配器の第1の分配出力に（-1）を乗じて得た積に第2の摂動モデル制御用フィードバック量を加算し、得た和を第2の摂動モデルに入力する。第2の摂動モデルにより、上記した和、即ち、第2の摂動モデルの入力が第2の摂動モデルのZMPに一致するように、第2の摂動モデル上体位置を決定する。

【0309】次いで、第2の摂動モデル上体位置から、第2の摂動モデル制御則によって第2の摂動モデル制御用フィードバック量を求める。第2の摂動モデル制御用フィードバック量は、上記したように第2の摂動モデル

にフィードバックすると共に、第2の分配出力に加算し、得た和を新たな目標ZMPまわりのフルモデル補正モーメントのZMP換算値として決定（出力）する。また第2の摂動モデル上体位置を補正目標上体位置の元の値に加算し、得た和を新たな補正目標上体位置として決定（出力）する。

【0310】第2の摂動モデルは、第2の実施の形態で図18を参照して述べた、足平の位置姿勢を摂動させないという制約の下に、目標ZMPの摂動と目標上体水平位置の摂動の関係を表すモデルと同じものであっても良く、あるいは相違させたものであっても良い。

【0311】第23の実施の形態において、第2の摂動モデル制御則は、他の状態量あるいは歩容パラメータなどを入力しても良い。また、第1の分配出力を目標ZMPまわりのフルモデル補正モーメントのZMP換算値の元の値とすると共に、第2の分配出力を0としても良い。換言すれば、第2の分配器（およびその第2の分配出力）を除去しても良い。この場合、第1の実施の形態に組み合わせると、第9の実施の形態となる。また、第23の分配器あるいはそれ以上の分配器を設けても良い。また、図44の変換ブロックを多段直列としても良い。

【0312】また、第23の実施の形態の図示の構成を、第1の実施の形態から第22の実施の形態に並列に挿入するようにしても良い。即ち、フルモデルZMP誤差あるいはそれを積分器などの制御則に通したものを見分器で分配し、分配出力に図示の変換ブロックを挿入しても良い。例えば、図34に示す第14の実施の形態に組み合わせると、図45に示すようになる。尚、図示の構成を、直列と並列を組み合わせて従前の実施の形態に挿入することも可能ではあるが、構成が複雑になる割には顕著な効果を得ることができない。

【0313】第23の実施の形態は上記の如く構成したので、目標ZMPまわりのフルモデル補正モーメントのZMP換算値の変動を、ローパスフィルタを通した場合と同様に、より一層低減することができる。

【0314】尚、第23の実施の形態の概念をさらに拡張し、第1から第22の実施の形態の中の幾つかを直列あるいは並列に再構成するようにしても良い。

【0315】さらに、図5に示したフルモデル補正入り歩容生成部100の構成も、図46のように変形することができる。

【0316】図46に示す構成は、前記した単純化モデル歩容のZMPを補正しない手法（単純化モデルZMPが目標ZMPに一致する歩容の補正手法）、即ち、第1から第13の実施の形態、第16の実施の形態、および第20から第22の実施の形態、ならびにそれらから派生した第23の実施の形態に関する変形例である。

【0317】即ち、目標歩容パラメータは単純化モデルを基に作成されているはずであるから、単純化モデルZMPが目標ZMPに一致する手法では、単純化モデル上

体軌道は、単純化モデルを基に作成された目標歩容の上体軌道そのものである。従って、これらの手法では、単純化モデル挙動演算部分をフルモデル補正部から分離させることができる。

【0318】そこで、図46に示すように、歩容パラメータ決定部と目標瞬時値発生部と単純化モデルとで単純化モデル歩容生成部100dを構成し、そこで単純化モデルの挙動演算によって目標歩容を生成し、フルモデル補正部100cが、生成された歩容を動力学的平衡条件を十分に満足するものに補正するような構成に置き換えるようにした。これによっても、ブロック図を単に等価変換したに過ぎないから、上記した従前の実施の形態と同様の効果を得ることができる。

【0319】尚、今までに述べてきた種々の実施の形態において、単純化モデル歩容生成部100dは、先に提案した技術に示したようなリアルタイム歩容生成装置でなくても良い。テーブル化された歩容を発生するだけでも良い。また、腕を使った作業動作など、歩行ではない動作を生成しても良い。

【0320】また、単純化モデル歩容生成部100dによって生成される動作または歩容は、慣性力を無視して静力学的バランスだけを考慮した運動パターンと床反力パターンの組、換言すれば、運動パターンと重心の床投影点の組であっても良い。さらに、動力学的平衡条件を無視した、運動のパターンとZMP（床反力作用点）パターンの組であっても良い。ただし、動力学平衡条件から極端にずれていると、目標ZMPまわりのフルモデル補正モーメントが過大になるので、動力学平衡条件に近いほど好ましい。

【0321】さらに、上記した種々の実施の形態の中でフィードバック型の実施の形態の場合、積分ゲインKなどのフィードバックゲインが十分に大きい場合には、挙動モデル制御用フィードバック量（挙動モデル制御則の出力）を目標ZMPまわりのフルモデル補正モーメントのZMP換算値として用いても良い。なぜなら、式15、式17の関係が成り立つと共に、フィードバックゲインが十分に大きい場合には、フルモデル補正誤差は、ほぼ0になるからである。また目標ZMPまわりのフルモデル補正モーメントのZMP換算値が姿勢制御に影響しない程度に十分に小さければ、ZMP換算値を常に0にしても良く、あるいはその出力そのものを削除しても良い。

【0322】式15の関係は、姿勢挙動に影響する低い周波数帯域においては満足すべきであるが、高い周波数領域では、大きくずれない限り満足しなくとも良い。従って、前記した実施の形態の構成を示すブロック線図の結線にローパスフィルタなどを新たに追加しても良い。さらには変化率リミッタなどの非線形要素を加えても良い。

【0323】例えば、第5、第6、第12の実施の形態

などにおいて、重心差を、変化率リミッタなどの非線形要素あるいはフィルタに通すようにしても良い。また、式21などにおいて、挙動モデル上体水平速度の代わりに、重心差の変化率を用いても良い。また、第11の実施の形態などにおいて、目標整定位置を同様なフィルタあるいは非線形要素に通すようにしても良い。

【0324】また、上記した種々の実施の形態において、積分の代わりに、PIDあるいはフィルタなどの制御則を用いても良い。その場合、ゲインあるいはフィルタ特性などは、歩容パラメータに応じて可変にしても良い。

【0325】上記において、目標ZMPまわりのフルモデル補正モーメントのZMP換算値を出力するようにしたが、補正モーメントをそのまま出力しても良い。

【0326】また、図4において、目標ZMPまわりのフルモデル補正モーメントのZMP換算値を目標ZMPに加えたものを「補正目標ZMP」とし、かつ目標ZMPまわりのフルモデル補正モーメントのZMP換算値を0にして複合コンプライアンス動作決定部104に入力しても良い（目標ZMPまわりのフルモデル補正モーメントのZMP換算値は、フルモデル補正入り歩容生成部から出力せず、複合コンプライアンス動作決定部104に入力しないよう構成しても良い）。即ち、フルモデル補正モーメントで補正する代わりに目標ZMPを補正するようにも良い。ただし、目標ZMPを補正すると、複合コンプライアンス制御において各足平床反力中心点の設定が難しくなるという欠点が生じる。

【0327】また、歩容生成部100の出力を入力とする複合コンプライアンス動作決定部104などが、目標ZMPなどの床反力に関する情報を必要としない場合には、床反力に関する情報そのものを削除（除去）しても良い。

【0328】また、上記した種々の実施の形態において、（目標）ZMPと表現したが、（目標）ZMPは（目標）床反力の表現の一つの形態であり、それ以外にも、例えば、ある基準点での力とモーメントで表現しても良い。

【0329】さらに、上記した図11フロー・チャートにおいて、t=0のときに歩容を修正または変更したが（S10）、それ以外の時点でも修正または変更しても良い。そのときは、現在時刻を今回歩容の初期時刻とみなせば良い。即ち、今回歩容の期間が現在時刻から今回歩容終端時刻までとすれば良い。

【0330】尚、上記において、図8、図16などに示したブロック線図は、演算処理順序を変えるなどの等価変形をしても良い。

【0331】尚、上記において、図8、図16などに示したブロック線図は、演算処理順序を変えるなどの等価変形をしても良い。

【0332】また、上体の位置を補正する代わりに、ロ

ポット1のZMPを大きく変化させることができるものであれば、上体の姿勢あるいは腕の姿勢を補正するようにも良い。あるいは、それらを複合的に補正するようにも良い。

【0333】第1の実施の形態に係る脚式移動ロボットの動作生成装置は上記したように、少なくとも上体24と、前記上体に連結される複数本の脚部2からなる脚式移動ロボット1の歩行などの動作を制御する動作制御装置において、前記動作を規定する目標運動を決定する目標運動決定手段(歩容パラメータ決定部100a、目標(および仮)瞬時値発生部100b、単純化モデル100c1の演算)、少なくとも前記決定された目標運動に基づき、前記ロボットの運動と床反力の関係を表す動力学モデルを用いて目標床反力を算出する目標床反力算出手段(逆フルモデル100c2、図16の逆フルモデル演算・加算点16a)、および少なくとも前記算出された目標床反力に基づいて前記ロボットに実際に作用する床反力を制御する床反力制御手段(ブロック102)を備える如く構成した。

【0334】また、少なくとも上体24と、前記上体に連結される複数本の脚部2からなる脚式移動ロボット1の歩行などの動作を制御する動作制御装置において、前記動作を規定する目標運動と目標ZMPを決定する目標動作決定手段(歩容パラメータ決定部100a、目標(および仮)瞬時値発生部100b、単純化モデル100c1の演算)、少なくとも前記決定された目標運動と目標ZMPに基づき、前記ロボットの運動とZMPの関係を表す動力学モデルを用いて前記目標ZMPの補正量(目標ZMPまわりのフルモデル補正モーメントのZMP演算値)を算出する目標ZMP補正量算出手段(逆フルモデル100c2、図16の逆フルモデル演算・加算点16a)、および少なくとも前記算出された目標ZMPの補正量に基づいて実際の床反力を制御する床反力制御手段(ブロック102)を備える如く構成した。

【0335】また第20の実施の形態においては上記したように、少なくとも上体24と、前記上体に連結される複数本の脚部2からなる脚式移動ロボット1の歩行などの動作を制御する動作制御装置において、前記動作を規定する目標運動と目標床反力作用点(目標ZMP)を決定する目標動作決定手段(歩容パラメータ決定部100a、目標(および仮)瞬時値発生部100b、図41の単純化モデル100c1の演算)、少なくとも前記決定された目標運動と目標床反力作用点に基づき、前記ロボットの運動と床反力の関係を表す動力学モデルを用いて前記目標床反力作用点まわりの目標床反力モーメントを算出する目標床反力モーメント算出手段(フルモデル100c2(図41の逆フルモデル100c2))、および少なくとも前記算出された目標床反力モーメントに基づいて前記ロボットに作用する実際の床反力を制御する床反力制御手段(ブロック102、図41のZMP換算ブロック41a)を備える如く構成した。

【0336】第2の実施の形態においては上記したように、少なくとも上体24と、前記上体に連結される複数本の脚部2からなる脚式移動ロボット1が歩行などの動作を行うとき、前記動作の目標瞬時値を生成する動作生成装置において、前記動作を構成する目標運動と目標床反力の仮瞬時値を決定する仮瞬時値決定手段(歩容パラメータ決定部100a、目標(および仮)瞬時値発生部100b、図17の単純化モデル100c1の演算)、

10 少なくとも前記決定された目標運動の仮瞬時値に基づき、前記ロボットの運動と床反力の関係を表す動力学モデルを用いてモデル床反力(図17のフルモデルZMP)を算出するモデル床反力算出手段(図17の逆フルモデル100c2の演算)、前記算出されたモデル床反力と前記決定された目標床反力の仮瞬時値との差(図17のフルモデルZMP誤差)を算出する床反力差算出手段(図17の加算点17a)、および少なくとも前記算出された差に基づき、少なくとも前記目標運動の仮瞬時値を補正することにより前記目標運動の目標瞬時値(図20 17の補正目標上体位置)を決定する目標瞬時値決定手段(フルモデル補正入り歩容生成部100、特に図17のブロック17b、摆動モデル17c、加算点17d、加算点17dの出力を補正目標上体位置として決定すること)を備える如く構成した。尚、これは第3の実施の形態から第13の実施の形態にも妥当する。

【0337】また、少なくとも上体24と、前記上体に連結される複数本の脚部2からなる脚式移動ロボット1が歩行などの動作を行うとき、前記動作の目標瞬時値を生成する動作生成装置において、前記動作を構成する目標運動と目標ZMPの仮瞬時値を決定する仮瞬時値決定手段(歩容パラメータ決定部100a、目標(および仮)瞬時値発生部100b、図17の単純化モデル100c1の演算)、少なくとも前記決定された目標運動の仮瞬時値に基づき、前記ロボットの運動とZMPの関係を表す動力学モデルを用いてモデルZMP(図17のフルモデルZMP)を算出するモデルZMP算出手段(図17の逆フルモデル100c2の演算)、前記算出されたモデルZMPと前記決定された目標ZMPの仮瞬時値の差(図17のフルモデルZMP誤差)を算出するZMP差算出手段(図17の加算点17a)、および少なくとも前記算出された差に基づき、少なくとも前記目標運動の仮瞬時値を補正することにより前記目標運動の目標瞬時値(図17の補正目標上体位置)を決定する目標瞬時値決定手段(フルモデル補正入り歩容生成部100、特に図17のブロック17b、摆動モデル17c、加算点17d、加算点17dの出力を補正目標上体位置として決定すること)を備える如く構成した。尚、これは第3の実施の形態から第13の実施の形態にも妥当する。

【0338】また、第21の実施の形態においては上記の如く、少なくとも上体24と、前記上体に連結される

複数本の脚部2からなる脚式移動ロボット1が歩行などの動作を行うとき、前記動作の目標瞬時値を生成する動作生成装置において、前記動作を構成する目標運動と目標ZMPの仮瞬時値を決定する仮瞬時値決定手段（歩容パラメータ決定部100a、目標（および仮）瞬時値発生部100b、図42の単純化モデル100c1の演算）、前記決定された目標運動と目標ZMPの仮瞬時値に基づき、前記ロボットの運動と床反力の関係を表す動力学モデルを用いて目標ZMPの仮瞬時値まわりのモデル床反力モーメント（図42の目標ZMPまわりのフルモデル補正モーメント）を算出するモデル床反力モーメント算出手段（図42の逆フルモデル100c2の演算）、および少なくとも前記算出されたモデル床反力モーメントに基づき、少なくとも前記目標運動の仮瞬時値を補正することにより前記目標運動の目標瞬時値（図42の補正目標上体位置）を決定する目標瞬時値決定手段（フルモデル補正入り歩容生成部100、特に図42の摂動モデル42b、ブロック42d、加算点42g、加算点42gの出力を補正目標上体位置として決定すること）を備える如く構成した。

【0339】第2の実施の形態はまた、少なくとも上体24と、前記上体に連結される複数本の脚部2からなる脚式移動ロボット1が歩行などの動作を行うとき、前記動作の目標瞬時値を生成する動作生成装置において、前記動作を構成する目標運動と目標床反力の仮瞬時値を決定する仮瞬時値決定手段（歩容パラメータ決定部100a、目標（および仮）瞬時値発生部100b、図17の単純化モデル100c1の演算）、少なくとも前記決定された目標運動の仮瞬時値に基づき、前記ロボットの運動と床反力の関係を表す動力学モデルを用いてモデル床反力（図17のフルモデルZMP）を算出するモデル床反力算出手段（図17の逆フルモデル100c2の演算）、前記算出されたモデル床反力と前記決定された目標床反力の仮瞬時値との差（図17のフルモデルZMP誤差）を算出する床反力差算出手段（図17の加算点17a）、および少なくとも前記算出された差に基づき、前記動力学モデルで表される運動と床反力の関係を満足するように、少なくとも前記目標運動の仮瞬時値を補正することにより、前記目標運動と目標床反力の目標瞬時値（図17の補正目標上体位置、目標ZMPまわりのフルモデル補正モーメントのZMP換算値など）を決定する目標瞬時値決定手段（フルモデル補正入り歩容生成部100、特に、図17のブロック17b、摂動モデル17c、加算点17d、加算点17dの出力を補正目標上体位置として決定すること、加算点17aの出力を目標ZMPまわりのフルモデル補正モーメントのZMP換算値として決定すること）を備える如く構成した。尚、これは第2の実施の形態から第13の実施の形態にも妥当する。

【0340】また第21の実施の形態にあっては、少なくとも上体24と、前記上体に連結される複数本の脚部2からなる脚式移動ロボット1が歩行などの動作を行うとき、前記動作の目標瞬時値を生成する動作生成装置において、前記動作を構成する目標運動と目標ZMPの仮瞬時値を決定する仮瞬時値決定手段（歩容パラメータ決定部100a、目標（および仮）瞬時値発生部100b、図42の単純化モデル100c1の演算）、前記決定された目標運動と目標ZMPの仮瞬時値に基づき、前記ロボットの運動と床反力の関係を表す動力学モデルを用いて目標ZMPの仮瞬時値まわりのモデル床反力モーメント（図42の目標ZMPまわりのフルモデル補正モーメント）を算出するモデル床反力モーメント算出手段（図42の逆フルモデル100c2の演算）、および少なくとも前記算出されたモデル床反力モーメントに基づき、前記動力学モデルで表される運動と床反力の関係を満足するように、少なくとも前記目標運動の仮瞬時値を補正することにより、前記目標運動と目標床反力の目標瞬時値（図42の補正目標上体位置、目標ZMPまわりのフルモデル補正モーメントのZMP換算値など）を決定する目標瞬時値決定手段（フルモデル補正入り歩容生成部100、特に図42の摂動モデル42b、ブロック42d、加算点42g、ブロック42h、加算点42g）を備える如く構成した。尚、これは第3の実施の形態から第13の実施の形態にも妥当する。

【0341】また、少なくとも上体24と、前記上体に

連結される複数本の脚部2からなる脚式移動ロボット1が歩行などの動作を行うとき、前記動作の目標瞬時値を生成する動作生成装置において、前記動作を構成する目標運動と目標ZMPの仮瞬時値を決定する仮瞬時値決定手段（歩容パラメータ決定部100a、目標（および仮）瞬時値発生部100b、図17の単純化モデル100c1の演算）、少なくとも前記決定された目標運動の仮瞬時値に基づき、前記ロボットの運動とZMPの関係を表す動力学モデルを用いてモデルZMP（図17のフルモデルZMP）を算出するモデルZMP算出手段（図17の逆フルモデル100c2の演算）、前記算出されたモデルZMPと前記決定された目標ZMPの仮瞬時値との差（図17のフルモデルZMP誤差）を算出するZMP差算出手段（図17の加算点17a）、および少なくとも前記算出されたZMP差に基づき、前記動力学モデルで表される運動と床反力の関係を満足するように、少なくとも前記目標運動の仮瞬時値を補正することにより、前記目標運動と前記目標床反力の目標瞬時値（図17の補正目標上体位置、目標ZMPまわりのフルモデル補正モーメントのZMP換算値など）を決定する目標瞬時値決定手段（フルモデル補正入り歩容生成部100、特に、図17のブロック17b、摂動モデル17c、加算点17d、加算点17dの出力を補正目標上体位置として決定すること、加算点17aの出力を目標ZMPまわりのフルモデル補正モーメントのZMP換算値として決定すること）を備える如く構成した。尚、これは第2の実施の形態から第13の実施の形態にも妥当する。

【0342】また第21の実施の形態にあっては、少なくとも上体24と、前記上体に連結される複数本の脚部2からなる脚式移動ロボット1が歩行などの動作を行うとき、前記動作の目標瞬時値を生成する動作生成装置において、前記動作を構成する目標運動と目標ZMPの仮瞬時値を決定する仮瞬時値決定手段（歩容パラメータ決定部100a、目標（および仮）瞬時値発生部100b、図42の単純化モデル100c1の演算）、前記決定された目標運動と目標ZMPの仮瞬時値に基づき、前記ロボットの運動と床反力の関係を表す動力学モデルを用いて目標ZMPの仮瞬時値まわりのモデル床反力モーメント（図42の目標ZMPまわりのフルモデル補正モーメント）を算出するモデル床反力モーメント算出手段（図42の逆フルモデル100c2の演算）、および少なくとも前記算出されたモデル床反力モーメントに基づき、前記動力学モデルで表される運動と床反力の関係を満足するように、少なくとも前記目標運動の仮瞬時値を補正することにより、前記目標運動と目標床反力の目標瞬時値（図42の補正目標上体位置、目標ZMPまわりのフルモデル補正モーメントのZMP換算値など）を決定する目標瞬時値決定手段（フルモデル補正入り歩容生成部100、特に図42の摂動モデル42b、ブロック42d、加算点42g、ブロック42h、加算点42g）を備える如く構成した。尚、これは第3の実施の形態から第13の実施の形態にも妥当する。

の出力を補正目標上体位置として決定すること、ブロック42hの出力を目標ZMP（目標床反力作用点）まわりのフルモデル補正モーメントのZMP換算値として決定すること）を備える如く構成した。

【0342】また第2の実施の形態にあっては、少なくとも上体24と、前記上体に連結される複数本の脚部2からなる脚式移動ロボット1が歩行などの動作を行うとき、前記動作の目標瞬時値を生成する動作生成装置において、前記動作を構成する目標運動と目標床反力の仮瞬時値を決定する仮瞬時値決定手段（歩容パラメータ決定部100a、目標（および仮）瞬時値発生部100b、図17の単純化モデル100c1の演算）、少なくとも前記決定された目標運動の仮瞬時値を、前記ロボットの運動と床反力の関係を表す動力学モデルに入力してモデルの出力（図17のフルモデルZMP）を算出するモデル出力算出手段（図17の逆フルモデル100c2の演算）、前記算出されたモデルの出力と前記決定された目標床反力の仮瞬時値との差（図17のフルモデルZMP誤差）を算出する床反力差算出手段（図17の加算点23aおよびその出力）、少なくとも前記算出された差に基づき、少なくとも前記目標運動の補正量（図17の振動モデル上体位置）を算出する目標運動補正量算出手段（図17の振動モデル17c、ブロック17b、前記算出された補正量を前記動力学モデルに追加的に入力するモデル入力補正手段（図17の加算点17d）、および少なくとも前記動力学モデルの入力と出力に基づいて前記目標運動と前記目標床反力の目標瞬時値を決定する目標瞬時値決定手段（フルモデル補正入り歩容生成部100、特に、図17の加算点17dの出力を補正目標上体位置として決定すること、加算点17aの出力を目標ZMPまわりのフルモデル補正モーメントのZMP換算値として決定すること）を備える如く構成した。尚、これは第3の実施の形態から第7の実施の形態にも妥当する。

【0343】また、少なくとも上体24と、前記上体に連結される複数本の脚部2からなる脚式移動ロボット1が歩行などの動作を行うとき、前記動作の目標瞬時値を生成する動作生成装置において、前記動作を構成する目標運動と目標ZMPの仮瞬時値を決定する仮瞬時値決定手段（歩容パラメータ決定部100a、目標（および仮）瞬時値発生部100b、図17の単純化モデル100c1の演算）、少なくとも前記決定された目標運動の仮瞬時値を、前記ロボットの運動とZMPの関係を表す動力学モデルに入力してモデルの出力（図17のフルモデルZMP）を算出するモデル出力算出手段（図17の逆フルモデル100c2の演算）、前記算出されたモデルの出力と前記決定された目標ZMPの仮瞬時値との差（図17のフルモデルZMP誤差）を算出するZMP差算出手段（図17の加算点17a）、少なくとも前記算出された差に基づき、少なくとも前記目標運動の補正量

（図17の振動モデル上体位置）を算出する目標運動補正量算出手段（図17の振動モデル17c、ブロック17b）、前記算出された補正量を前記動力学モデルに追加的に入力するモデル入力補正手段（図17の加算点17d）、および少なくとも前記動力学モデルの入力と出力に基づいて前記目標運動と前記目標床反力の目標瞬時値を決定する目標瞬時値決定手段（フルモデル補正入り歩容生成部100、特に、図17の加算点17dの出力を補正目標上体位置として決定すること、加算点17aの出力を目標ZMPまわりのフルモデル補正モーメントのZMP換算値として決定すること）を備える如く構成した。尚、これは第3の実施の形態から第7の実施の形態にも妥当する。

【0344】また第21の実施の形態にあっては、少なくとも上体24と、前記上体に連結される複数本の脚部2からなる脚式移動ロボット1が歩行などの動作を行うとき、前記動作の目標瞬時値を生成する動作生成装置において、前記動作を構成する目標運動と目標ZMPの仮瞬時値を決定する仮瞬時値決定手段（歩容パラメータ決定部100a、目標（および仮）瞬時値発生部100b、図42の単純化モデル100c1の演算）、少なくとも前記決定された目標運動と目標ZMPの仮瞬時値を、前記ロボットの運動と床反力作用点まわりの床反力モーメントの関係を表す動力学モデルに入力し、目標ZMPの仮瞬時値まわりの目標床反力モーメント（図42の目標ZMPまわりのフルモデル補正モーメント）としてモデルの出力を算出するモデル出力算出手段（図42の逆フルモデル100c2の演算）、少なくとも前記モデルの出力に基づき、少なくとも前記目標運動の補正量（図42の振動モデル上体位置）を算出する目標運動補正量算出手段（図42の振動モデル42b、ブロック42d）、前記算出された補正量を前記動力学モデルに追加的に入力するモデル入力補正手段（図42の加算点42g）、および少なくとも前記動力学モデルの入力と出力に基づいて前記目標運動と前記目標床反力の目標瞬時値を決定する目標瞬時値決定手段（フルモデル補正入り歩容生成部100、特に図42のブロック42h、加算点42gの出力を補正目標上体位置として決定すること、ブロック42hの出力を目標ZMP（目標床反力作用点）まわりのフルモデル補正モーメントのZMP換算値として決定すること）を備える如く構成した。

【0345】第3の実施の形態においては、第2の実施の形態に加え、前記目標運動補正量算出手段は、前記ロボットにおける前記床反力の振動と前記運動の振動の動力学的関係を表す振動モデル（図23の振動モデル23b）、前記振動モデルの状態量（例えば、前記振動モデルの上体位置および/または速度）と前記動力学モデルの状態量（例えば、前記動力学モデルの重心位置）の少なくともいずれかに基づき、第1のフィードバック量（図23の振動モデル制御用フィードバック量）を算出

する第1フィードバック量算出手段（図23の摂動モデル制御則23e）、および少なくとも前記算出された差と前記第1のフィードバック量との差に基づき、第2のフィードバック量を算出する第2フィードバック量算出手段（図23の加算点23c、ブロック23d）を備え、前記算出された第1のフィードバック量と第2のフィードバック量の和を前記摂動モデルに入力して前記目標運動の補正量を算出する（図23の加算点23f、摂動モデル23b）如く構成した。尚、これは第4の実施の形態から第7の実施の形態にも妥当する。

【0346】また、第5および第7の実施の形態においては、前記第1フィードバック量算出手段は、少なくとも前記動力学モデルの重心位置に基づいて第1のフィードバック量を算出する如く構成した。

【0347】第8の実施の形態においては上記したように、少なくとも上体24と、前記上体に連結される複数本の脚部2からなる脚式移動ロボット1が歩行などの動作を行うとき、前記動作の目標瞬時値を生成する動作生成装置において、前記動作を構成する目標運動と目標床反力の仮瞬時値を決定する仮瞬時値決定手段（歩容パラメータ決定部100a、目標および仮瞬時値発生部100b、図28の単純化モデル100c1の演算）、少なくとも前記決定された目標運動の仮瞬時値を、前記ロボットの運動と床反力の関係を表す動力学モデルに入力してモデルの出力（図28のフルモデルZMP）を算出するモデル出力算出手段（図28の逆フルモデル100c2の演算）、前記算出されたモデルの出力と前記決定された目標床反力の仮瞬時値との差（図28のフルモデルZMP誤差）を算出する床反力差算出手段（図28の加算点28a）、少なくとも前記算出された差に基づき、少なくとも前記目標運動の補正量（図28の摂動モデル上体位置）を算出する目標運動補正量算出手段（図28のブロック28b、摂動モデル28c）、および少なくとも前記算出された補正量に基づいて前記目標運動と前記目標床反力の目標瞬時値を決定する目標瞬時値決定手段（フルモデル補正入り歩容生成部100、特に図28の加算点28d、加算点28dの出力を補正目標上体位置として決定すること、目標ZMPまわりのフルモデル補正モーメントのZMP換算値を0に決定すること）を備える如く構成した。尚、これは、第9の実施の形態から第13の実施の形態にも妥当する。

【0348】また、少なくとも上体24と、前記上体に連結される複数本の脚部2からなる脚式移動ロボット1が歩行などの動作を行うとき、前記動作の目標瞬時値を生成する動作生成装置において、前記動作を構成する目標運動と目標ZMPの仮瞬時値を決定する仮瞬時値決定手段（歩容パラメータ決定部100a、目標および仮瞬時値発生部100b、図28の単純化モデル100c1の演算）、少なくとも前記決定された目標運動の仮瞬時値を、前記ロボットの運動とZMPの関係を表す動力学

モデルに入力してモデルの出力（図28のフルモデルZMP）を算出するモデル出力算出手段（図28の逆フルモデル100c2の演算）、前記算出されたモデルの出力と前記決定された目標ZMPの仮瞬時値との差（図28のフルモデルZMP誤差）を算出するZMP差算出手段（図28の加算点28a）、少なくとも前記算出された差に基づき、少なくとも前記目標運動の補正量（図28の摂動モデル上体位置）を算出する目標運動補正量算出手段（図28のブロック28b、摂動モデル28c）、および少なくとも前記算出された補正量に基づいて前記目標運動と前記目標床反力の目標瞬時値を決定する目標瞬時値決定手段（フルモデル補正入り歩容生成部100、特に図28の加算点28d、加算点28dの出力を補正目標上体位置として決定すること、目標ZMPまわりのフルモデル補正モーメントのZMP換算値を0に決定すること）を備える如く構成した。尚、これは、第9の実施の形態から第13の実施の形態にも妥当する。

【0349】また、少なくとも上体24と、前記上体に連結される複数本の脚部2からなる脚式移動ロボット1が歩行などの動作を行うとき、前記動作の目標瞬時値を生成する動作生成装置において、前記動作を構成する目標運動と目標ZMPの仮瞬時値を決定する仮瞬時値決定手段（歩容パラメータ決定部100a、目標および仮瞬時値発生部100b、図28の単純化モデル100c1の演算）、少なくとも前記決定された目標運動の仮瞬時値を、前記ロボットの運動と床反力作用点まわりの床反力モーメントの関係を表す動力学モデルに入力し、目標ZMPの仮瞬時値まわりの目標床反力モーメントとしてモデルの出力（図28のフルモデルZMP誤差）を算出するモデル出力算出手段（図28の逆フルモデル100c2の演算、加算点28a）、少なくとも前記モデルの出力に基づき、少なくとも前記目標運動の補正量（図28の摂動モデル上体位置）を算出する目標運動補正量算出手段（図28のブロック28b、摂動モデル28c）、および少なくとも前記算出された補正量に基づいて前記目標運動と前記目標床反力の目標瞬時値を決定する目標瞬時値決定手段（フルモデル補正入り歩容生成部100、特に図28の加算点28d、加算点28dの出力を補正目標上体位置として決定すること、目標ZMPまわりのフルモデル補正モーメントのZMP換算値を0に決定すること）を備える如く構成した。尚、これは、第9の実施の形態から第13の実施の形態にも妥当する。

【0350】第9の実施の形態においては、第8の実施の形態に加え、前記目標運動補正量算出手段は、前記ロボットにおける前記床反力の摂動と前記運動の摂動の動力学的関係を表す摂動モデル（図29の摂動モデル29d）、前記摂動モデルの状態量（例えば、前記摂動モデルの上体位置および／または速度）と前記動力学モデル

の状態量（例えば、前記動力学モデルの重心位置）の少なくともいずれかに基づき、フィードバック量（図29の摂動モデル制御用フィードバック量）を算出するフィードバック量算出手段（図29の摂動モデル制御則29e）、および前記算出された差を打ち消すようにフィードフォワード量を算出するフィードフォワード量算出手段（図29のブロック29b）を備え、前記算出されたフィードバック量とフィードフォワード量の和を前記摂動モデルに入力して前記目標運動の補正量を算出（図29の加算点29c、摂動モデル29d）する如く構成した。

〔0351〕また、第11および第13の実施の形態においては、前記フィードバック量算出手段は、少なくとも前記動力学モデルの重心位置（図31または図33のフルモデル重心位置）に基づいて前記フィードバック量を算出する如く構成した。

【0352】また、第14の実施の形態においては、少なくとも上体24と、前記上体に連結される複数本の脚部2からなる脚式移動ロボット1が歩行などの動作を行うとき、前記動作の目標瞬時値を生成する動作生成装置において、前記動作を構成する目標運動と目標床反力の中の少なくとも目標床反力の仮瞬時値(図34の目標ZMP)を決定する目標床反力仮瞬時値決定手段(歩容パラメータ決定部100a、目標(および仮)瞬時値発生部100b、少なくとも前記決定された目標床反力の仮瞬時値を、前記ロボットの運動と床反力の関係を表す第1の動力学モデルに入力して前記目標運動の仮瞬時値(図34の単純化モデル上体位置)を算出する目標運動仮瞬時値算出手段(図34の単純化モデル100c1の演算)、少なくとも前記算出された目標運動の仮瞬時値を、前記ロボットの運動と床反力の関係を表す第2の動力学モデルに入力して第2の動力学モデルの出力(図34のフルモデルZMP)を算出する第2モデル出力算出手段(図34の逆フルモデル100c2の演算)、前記算出された第2の動力学モデルの出力と前記決定された目標床反力の仮瞬時値との差(図34のフルモデルZMP誤差)を算出する床反力差算出手段(図34の加算点34a)、少なくとも前記算出された差に基づき、少なくとも前記目標床反力の補正量(図34の単純化モデルZMP補正量)を算出する目標床反力補正量算出手段(図34のブロック34b)、前記算出された補正量を前記第1の動力学モデルに追加的に入力するモデル入力補正手段(図34の加算点34c)、および少なくとも前記第2の動力学モデルの入力と出力に基づいて前記目標運動と前記目標床反力の目標瞬時値(図34の補正目標上体位置、目標ZMPまわりのフルモデル補正モーメントのZMP換算値)を決定する目標瞬時値決定手段(フルモデル補正入り歩容生成部100、特に図34の単純化モデル上体位置を補正目標上体位置として決定すること、加算点34aの出力を目標ZMPまわりのフル

モデル補正モーメントのZMP換算値として決定すること)を備える如く構成した。

【0353】また、少なくとも上体24と、前記上体に連結される複数本の脚部2からなる脚式移動ロボット1が歩行などの動作を行うとき、前記動作の目標瞬時値を生成する動作生成装置において、前記動作を構成する目標運動と目標ZMPの中の少なくとも目標ZMPの仮瞬時値(図34の目標ZMP)を決定する目標ZMP仮瞬時値決定手段(歩容パラメータ決定部100a、目標

10 (および仮) 瞬時値発生部 100 b)、少なくとも前記決定された目標 ZMP の仮瞬時値を、前記ロボットの運動と ZMP の関係を表す第 1 の動力学モデルに入力して前記目標運動の仮瞬時値 (図 3-4 の単純化モデル上体位置) を算出する目標運動仮瞬時値算出手段 (図 3-4 の単純化モデル 100 c 1 の演算)、少なくとも前記算出された目標運動の仮瞬時値を、前記ロボットの運動と ZMP の関係を表す第 2 の動力学モデルに入力して第 2 の動力学モデルの出力 (図 3-4 のフルモデル ZMP) を算出する第 2 モデル出力算出手段 (図 3-4 の逆フルモデル 100 c 2 の演算)、前記算出された第 2 の動力学モデルの出力と前記決定された目標 ZMP の仮瞬時値との差

(図3.4のフルモデルZMP誤差)を算出するZMP差算出手段(図3.4の加算点3.4a)、少なくとも前記算出された差に基づき、少なくとも前記目標ZMPの補正量(図3.4の単純化モデルZMP補正量)を算出する目標ZMP補正量算出手段(図3.4のブロック3.4b)、前記算出された補正量を前記第1の動力学モデルに追加的に入力するモデル入力補正手段(図3.4の加算点3.4c)、および少なくとも前記第2の動力学モデルの入力と出力に基づいて前記目標運動と前記目標床反力の目標瞬時値(図3.4の補正目標上体位置、目標ZMPまわりのフルモーティブ正弦モーメントのZMP換算値など)を決

のフレーム補正とフレームのZMP換算値ること)を決定する目標瞬時値決定手段(フルモデル補正入り歩容生成部100、特に図34の単純化モデル上体位置を補正目標上体位置として決定すること、加算点34aの出力を目標ZMPまわりのフルモデル補正モーメントのZMP換算値として決定すること)を備える如く構成した。

【0354】また、少なくとも上体24と、前記上体に連結される複数本の脚部2からなる脚式移動ロボット1が歩行などの動作を行うとき、前記動作の目標瞬時値を生成する動作生成装置において、前記動作を構成する目標運動と目標ZMPの中の少なくとも目標ZMPの仮瞬時値（図34の目標ZMP）を決定する目標ZMP仮瞬時値決定手段（歩容バラメータ決定部100a、目標

(および仮)瞬時値発生部 100b)、少なくとも前記決定された目標ZMPの仮瞬時値を、前記ロボットの運動とZMPの関係を表す第1の動力学モデルに入力して前記目標運動の仮瞬時値(図34の単純化モデル上体位置)を算出する目標運動仮瞬時値算出手段(図34の単純化モデル 100c1 の演算)、少なくとも前記算出手段

れた目標運動の仮瞬時値と前記決定された目標ZMPの仮瞬時値を、前記ロボットの運動と床反力作用点まわりの床反力モーメントの関係を表す第2の動力学モデルに入力し、目標ZMPの仮瞬時値まわりの目標床反力モーメントとして第2の動力学モデルの出力（図34のフルモデルZMP誤差）を算出する第2モデル出力算出手段（図34の逆フルモデル100c2の演算、加算点34a）、少なくとも前記算出された第2の動力学モデルの出力に基づき、少なくとも前記目標ZMPの補正量（図34の単純化モデルZMP補正量）を算出する目標ZMP補正量算出手段（図34のブロック34b）、前記算出された補正量を前記第1の動力学モデルに追加的に入力するモデル入力補正手段（図34の加算点34c）、および少なくとも前記第2の動力学モデルの入力と出力に基づいて前記目標運動と前記目標床反力の目標瞬時値（図34の補正目標上体位置、目標ZMPまわりのフルモデル補正モーメントのZMP換算値など）を決定する目標瞬時値決定手段（フルモデル補正入り歩容生成部100、特に図34の単純化モデル上体位置を補正目標上体位置として決定すること、加算点34aの出力を目標ZMPまわりのフルモデル補正モーメントのZMP換算値として決定すること）を備える如く構成した。

【0355】また、第15の実施の形態においては、第14の実施の形態に加え、少なくとも前記算出された差に基づき、少なくとも前記目標運動の補正量（図36の摂動モデル上体位置）を算出する目標運動補正量算出手段（図36の摂動モデル制御則36b、加算点36c、ブロック36d、分配器36e、加算点36f、摂動モデル36g）、前記算出された目標運動の補正量を前記第2の動力学モデルに追加的に入力する第2モデル入力補正手段（図36の加算点36h）を備える如く構成した。

【0356】また、前記目標運動補正量算出手段は、前記ロボットにおける前記床反力の摂動と前記運動の摂動の動力学的関係を表す摂動モデル（図36の摂動モデル36g）、前記摂動モデルの状態量（例えば、前記摂動モデルの上体位置および／または速度）と前記動力学モデルの状態量（例えば、前記動力学モデルの重心位置）の少なくともいづれかに基づき、第1のフィードバック量（摂動モデル制御用フィードバック量）を算出する第1フィードバック量算出手段（図36の摂動モデル制御則36b）、および少なくとも前記算出された差と前記第1のフィードバック量との差に基づき、第2のフィードバック量（図36の摂動モデルZMP補正量）を算出する第2フィードバック量算出手段（図36の加算点36c、積分器36d、分配器36e）を備え、前記算出された第1のフィードバック量と第2のフィードバック量の和を前記摂動モデルに入力して前記目標運動の補正量を算出する（図36の加算点36f、摂動モデル36g）如く構成した。

【0357】第16の実施の形態にあっては、少なくとも上体と、前記上体に連結される複数本の脚部からなる脚式移動ロボットが歩行などの動作を行うとき、前記動作の目標瞬時値を生成する動作生成装置において、前記動作を構成する目標運動と目標床反力の仮瞬時値を決定する仮瞬時値決定手段（図5の歩容パラメータ決定部100a、目標（および仮）瞬時値発生部100b、図37の単純化モデル100c1の演算）、少なくとも前記算出された目標床反力の仮瞬時値を、前記ロボットの運動と床反力の関係を表す動力学モデルに入力し、前記動力学モデルの運動の瞬時値を算出するモデル運動瞬時値算出手段（図37の順フルモデル100c2の演算）、前記動力学モデルの運動の瞬時値と前記目標運動の仮瞬時値との差を算出するモデル運動差算出手段（図37の加算点37a）、少なくとも前記差に基づいて前記差が零に近づくように補正量を算出する補正量算出手段（図37のモデル追従フィードバック則37b）、前記算出された補正量を前記動力学モデルに追加的に入力するモデル入力補正手段（図37の加算点37c）および少なくとも前記動力学モデルの入力と出力に基づいて前記目標運動と前記目標床反力の目標瞬時値を決定する目標瞬時値決定手段（フルモデル補正入り歩容発生部100、特に図37の順フルモデル100c2の出力を補正目標上体位置として決定すること、モデル追従フィードバック則37bの出力を目標ZMPまわりのフルモデル補正モーメントのZMP換算値として決定すること）を備える如く構成した。

【0358】また、少なくとも上体24と、前記上体に連結される複数本の脚部2からなる脚式移動ロボット1が歩行などの動作を行うとき、前記動作の目標瞬時値を生成する動作生成装置において、前記動作を構成する目標床反力の仮瞬時値を決定する目標床反力仮瞬時値決定手段（図5の歩容パラメータ決定部100a、目標（および仮）瞬時値発生部100b）、前記動作を構成する目標運動の瞬時値を決定する目標運動瞬時値決定手段（図5の100a、100b、図37の単純化モデル100c1の演算）、少なくとも前記算出された目標床反力の仮瞬時値を、前記ロボットの運動と床反力の関係を表す動力学モデルに入力し、前記動力学モデルの運動の瞬時値を算出するモデル運動瞬時値算出手段（図37の順フルモデル100c2の演算）、前記動力学モデルの運動の瞬時値と前記目標運動の瞬時値との差を算出するモデル運動差算出手段（図37の加算点37a）、少なくとも前記差に基づいて前記差が零に近づくように補正量を算出する補正量算出手段（図37のモデル追従フィードバック則37b）、前記算出された補正量を前記動力学モデルに追加的に入力するモデル入力補正手段（図37の加算点37c）および少なくとも前記動力学モデルの入力に基づいて前記目標床反力の目標瞬時値を決定する目標床反力瞬時値決定手段（100、特に図37の

モデル追従フィードバック則37bの出力を目標ZMPまわりのフルモデル補正モーメントのZMP換算値として決定すること)を備える如く構成した。

【0359】また、少なくとも上体24と、前記上体に連結される複数本の脚部2からなる脚式移動ロボット1が歩行などの動作を行うとき、前記動作の目標瞬時値を生成する動作生成装置において、前記動作を構成する目標運動と目標ZMPの仮瞬時値を決定する仮瞬時値決定手段(100a, 100b、図37の単純化モデル100c1の演算)、少なくとも前記決定された目標ZMPの仮瞬時値を、前記ロボットの運動とZMPの関係を表す動力学モデルに入力し、前記動力学モデルの運動の瞬時値を算出するモデル運動瞬時値算出手段(図37の順フルモデル100c2の演算)、前記動力学モデルの運動の瞬時値と前記目標運動の仮瞬時値との差を算出するモデル運動差算出手段(図37の加算点37a)、少なくとも前記差に基づいて前記差が零に近づくように補正量を算出する補正量算出手段(37b)、前記算出された補正量を前記動力学モデルに追加的に入力するモデル入力補正手段(加算点37c)および少なくとも前記動力学モデルの入力と出力に基づいて前記目標運動と前記目標ZMPの目標瞬時値を決定する目標瞬時値決定手段(100、特に図37の順フルモデル100c2の出力を補正目標上体位置として決定すること、モデル追従フィードバック則37bの出力を目標ZMPまわりのフルモデル補正モーメントのZMP換算値として決定すること)を備える如く構成した。

【0360】また、少なくとも上体24と、前記上体に連結される複数本の脚部2からなる脚式移動ロボット1が歩行などの動作を行うとき、前記動作の目標瞬時値を生成する動作生成装置において、前記動作を構成する目標ZMPの仮瞬時値を決定する目標ZMP仮瞬時値決定手段(100a, 100b)、前記動作を構成する目標運動の瞬時値を決定する目標運動瞬時値決定手段(100a, 100b、図37の単純化モデル100c1の演算)、少なくとも前記決定された目標ZMPの仮瞬時値を、前記ロボットの運動とZMPの関係を表す動力学モデルに入力し、前記動力学モデルの運動の瞬時値を算出するモデル運動瞬時値算出手段(図37の順フルモデル100c2の演算)、前記動力学モデルの運動の瞬時値と前記目標運動の瞬時値との差を算出するモデル運動差算出手段(加算点37a)、少なくとも前記差に基づいて前記差が零に近づくように補正量を算出する補正量算出手段(37b)、前記算出された補正量を前記動力学モデルに追加的に入力するモデル入力補正手段(加算点37c)、および少なくとも前記動力学モデルの入力に基づいて前記目標ZMPの目標瞬時値を決定する目標ZMP瞬時値決定手段(100、特に図37のモデル追従フィードバック則37bの出力を目標ZMPまわりのフルモデル補正モーメントのZMP換算値として決定する

こと)を備える如く構成した。

【0361】また、第22の実施の形態においては上記の如く、少なくとも上体24と、前記上体に連結される複数本の脚部2からなる脚式移動ロボット1が歩行などの動作を行うとき、前記動作の目標瞬時値を生成する動作生成装置において、前記動作を構成する目標ZMPの仮瞬時値を決定する目標ZMP仮瞬時値決定手段(100a, 100b)、前記動作を構成する目標運動の瞬時値を決定する目標運動瞬時値決定手段(100a, 100b、図43の単純化モデル100c1の演算)、少なくとも前記決定された目標ZMPの仮瞬時値を、前記ロボットの運動と床反力作用点とそのまわりの床反力モーメントの関係を表す動力学モデルに床反力作用点として入力し、前記動力学モデルの運動の瞬時値を算出するモデル運動瞬時値算出手段(図43の順フルモデル100c2の演算)、前記動力学モデルの運動の瞬時値と前記目標運動の瞬時値との差を算出するモデル運動差算出手段(加算点43a)、少なくとも前記差に基づいて前記差が零に近づくように補正量を算出する補正量算出手段(モデル追従フィードバック則43b)、前記算出された補正量を前記動力学モデルに前記床反力モーメントとして入力し、モデルの入力を補正しつつ、前記算出された補正量を目標ZMPまわりの補正モーメントの目標瞬時値として決定する目標瞬時値決定手段(100、特に図43のブロック43h、モデル追従フィードバック則43bの出力を目標ZMPまわりのフルモデル補正モーメントのZMP換算値として決定すること)を備える如く構成した。

【0362】また、第17の実施の形態にあっては、少なくとも上体24と、前記上体に連結される複数本の脚部2からなる脚式移動ロボット1が歩行などの動作を行うとき、前記動作の目標瞬時値を生成する動作生成装置において、前記動作を構成する目標運動と目標床反力の中の少なくとも目標床反力の瞬時値を決定する目標床反力瞬時値決定手段(図5の歩容パラメータ決定部100a、目標(および仮)瞬時値発生部100b)、少なくとも前記決定された目標床反力の瞬時値を、前記ロボットの運動と床反力の関係を表す第1の動力学モデルに入力して前記第1の動力学モデルの運動の瞬時値を算出する第1モデル運動瞬時値算出手段(図38の単純化モデル100c1の演算)、少なくとも前記決定された目標床反力の瞬時値を、前記ロボットの運動と床反力の関係を表す第2の動力学モデルに入力し、前記第2の動力学モデルの運動の瞬時値を算出する第2モデル運動瞬時値算出手段(図38の順フルモデル100c2の演算)、前記第2の動力学モデルの運動の瞬時値と前記第1の動力学モデルの運動の瞬時値との差を算出するモデル運動差算出手段(図38の加算点38a)、少なくとも前記差に基づいて前記差が零に近づくように補正量を算出する補正量算出手段(図38のモデル追従フィードバック

則38b)、および前記算出された補正量を前記第1の動力学モデルに追加的に入力する第1モデル入力補正手段(加算点38c)を備え、前記第1の動力学モデルの出力および前記第2の動力学モデルの出力の少なくともいずれかを前記目標運動の目標瞬時値として決定する(図4のフルモデル補正入り歩容発生部100、特に図38の単純化モデル100c1の出力または順フルモデル100c2の出力を補正目標上体位置として決定すること)如く構成した。

【0363】また、少なくとも上体24と、前記上体に連結される複数本の脚部2からなる脚式移動ロボット1が歩行などの動作を行うとき、前記動作の目標瞬時値を生成する動作生成装置において、前記動作を構成する目標運動と目標ZMPの中の少なくとも目標ZMPの瞬時値を決定する目標ZMP瞬時値決定手段(100a, 100b)、少なくとも前記決定された目標ZMPの瞬時値を、前記ロボットの運動とZMPの関係を表す第1の動力学モデルに入力して前記第1の動力学モデルの運動の瞬時値を算出する第1モデル運動瞬時値算出手段(図38の単純化モデル100c1の演算)、少なくとも前記決定された目標ZMPの瞬時値を、前記ロボットの運動とZMPの関係を表す第2の動力学モデルに入力し、前記第2の動力学モデルの運動の瞬時値を算出する第2モデル運動瞬時値算出手段(図38の順フルモデル100c2の演算)、前記第2の動力学モデルの運動の瞬時値と前記第1の動力学モデルの運動の瞬時値との差を算出するモデル運動差算出手段(加算点38a)、および少なくとも前記差に基づいて前記差が零に近づくように補正量を算出する補正量算出手段(38b)、前記算出された補正量を前記第1の動力学モデルに追加的に入力する第1モデル入力補正手段(加算点38c)を備え、前記第1の動力学モデルの出力および前記第2の動力学モデルの出力の少なくともいずれかを前記目標運動の目標瞬時値として決定する(100、特に図38の単純化モデル100c1の出力または順フルモデル100c2の出力を補正目標上体位置として決定すること)如く構成した。

【0364】第18の実施の形態にあっては、少なくとも上体24と、前記上体に連結される複数本の脚部2からなる脚式移動ロボット1が歩行などの動作を行うとき、前記動作の目標瞬時値を生成する動作生成装置において、前記動作を構成する目標運動と目標床反力の中の少なくとも目標床反力の瞬時値を決定する目標床反力瞬時値決定手段(100a, 100b)、少なくとも前記決定された目標床反力の瞬時値を、前記ロボットの運動と床反力の関係を表す第1の動力学モデルに入力して前記第1の動力学モデルの運動の瞬時値を算出する第1モデル運動瞬時値算出手段(図39の順フルモデル100c2の演算)、少なくとも前記第1の動力学モデルの運動の瞬時値に応じた第2の動力学モデルの状態量を算出

する第2モデル状態量算出手段(ブロック39a)、および少なくとも前記第2の動力学モデルの状態量に基づき、目標動作のパラメータを修正する目標動作パラメータ修正手段(図11フロー・チャートのS28)を備え、前記第1の動力学モデルの出力を前記目標運動の目標瞬時値として決定する(100、特に図39の順フルモデル100c2の出力を補正目標上体位置として決定すること)如く構成した。

【0365】また、少なくとも上体24と、前記上体に連結される複数本の脚部2からなる脚式移動ロボット1が歩行などの動作を行うとき、前記動作の目標瞬時値を生成する動作生成装置において、前記動作を構成する目標運動と目標ZMPの中の少なくとも目標ZMPの瞬時値を決定する目標ZMP瞬時値決定手段(100a, 100b)、少なくとも前記決定された目標ZMPの瞬時値を、前記ロボットの運動とZMPの関係を表す第1の動力学モデルに入力して前記第1の動力学モデルの運動の瞬時値を算出する第1モデル運動瞬時値算出手段(図39の順フルモデル100c2の演算)、少なくとも前記第1の動力学モデルの運動の瞬時値に応じた第2の動力学モデルの状態量を算出する第2モデル状態量算出手段(39a)、および少なくとも前記第2の動力学モデルの状態量に基づき、目標動作のパラメータを修正する目標動作パラメータ修正手段(図11フロー・チャートのS28)を備え、前記第1の動力学モデルの出力を前記目標運動の目標瞬時値として決定する(100、特に図39の順フルモデル100c2の出力を補正目標上体位置として決定すること)如く構成した。

【0366】第19の実施の形態にあっては、少なくとも上体24と、前記上体に連結される複数本の脚部2からなる脚式移動ロボット1が歩行などの動作を行うとき、前記動作の目標瞬時値を生成する動作生成装置において、前記動作を構成する目標運動と目標床反力の中の少なくとも目標床反力の仮瞬時値を決定する目標床反力仮瞬時値決定手段(100a, 100b)、少なくとも前記決定された目標床反力の仮瞬時値を、前記ロボットの運動と床反力の関係を表す第1の動力学モデルに入力して前記第1の動力学モデルの運動の瞬時値を算出する第1モデル運動瞬時値算出手段(図40の単純化モデル100c1の演算)、少なくとも前記決定された目標床反力の仮瞬時値を、前記ロボットの運動と床反力の関係を表す第2の動力学モデルに入力し、前記第2の動力学モデルの運動の瞬時値を算出する第2モデル運動瞬時値算出手段(図40の順フルモデル100c2の演算)、前記第2の動力学モデルの運動の瞬時値と前記第1の動力学モデルの運動の瞬時値との差を算出するモデル運動差算出手段(図40の加算点40a)、少なくとも前記差に基づいて前記差が零に近づくように第1の補正量を算出する第1補正量算出手段(図40のモデル追従フィードバック則1(40b))、少なくとも前記差に基づ

いて前記差が零に近づくように第2の補正量を算出する第2補正量算出手段(図40のモデル追従フィードバック則2(40c))、前記算出された第1の補正量を前記第1の動力学モデルに追加的に入力する第1モデル入力補正手段(加算点40d)、および前記算出された第2の補正量を前記第2の動力学モデルに追加的に入力する第2モデル入力補正手段(加算点40e)を備え、前記第1の動力学モデルの出力の少なくともいざれかを前記目標運動の目標瞬時値として決定する(100、特に図40の単純化モデル100c1の出力または順フルモデル100c2の出力を補正目標上体位置として決定すること)如く構成した。

【0367】また、少なくとも上体24と、前記上体に連結される複数本の脚部2からなる脚式移動ロボット1が歩行などの動作を行うとき、前記動作の目標瞬時値を生成する動作生成装置において、前記動作を構成する目標運動と目標ZMPの中の少なくとも目標ZMPの仮瞬時値を決定する目標ZMP仮瞬時値決定手段(100a, 100b)、少なくとも前記決定された目標ZMPの仮瞬時値を、前記ロボットの運動とZMPの関係を表す第1の動力学モデルに入力して前記第1の動力学モデルの運動の瞬時値を算出する第1モデル運動瞬時値算出手段(図40の単純化モデル100c1の演算)、少なくとも前記決定された目標ZMPの仮瞬時値を、前記ロボットの運動とZMPの関係を表す第2の動力学モデルに入力し、前記第2の動力学モデルの運動の瞬時値を算出する第2モデル運動瞬時値算出手段(図40の順フルモデル100c2の演算)、前記第2の動力学モデルの運動の瞬時値と前記第1の動力学モデルの運動の瞬時値との差を算出するモデル運動差算出手段(加算点40a)、少なくとも前記差に基づいて前記差が零に近づくように第1の補正量を算出する第1補正量算出手段(40b)、少なくとも前記差に基づいて前記差が零に近づくように第2の補正量を算出する第2補正量算出手段(40c)、前記算出された第1の補正量を前記第1の動力学モデルに追加的に入力する第1モデル入力補正手段(加算点40d)、および前記算出された第2の補正量を前記第2の動力学モデルに追加的に入力する第2モデル入力補正手段(加算点40e)を備え、前記第1の動力学モデルの出力および前記第2の動力学モデルの出力の少なくともいざれかを前記目標運動の目標瞬時値として決定する(100、特に図40の単純化モデル100c1の出力または順フルモデル100c2の出力を補正目標上体位置として決定すること)如く構成した。

【0368】第23の実施の形態にあっては、さらに、前記ロボットにおける前記床反力の摂動と前記運動の摂動の動力学的関係を表す第2の摂動モデル(図44の第2の摂動モデル44a)、前記新規摂動モデルの状態量と前記動力学モデルの状態量の少なくともいざれかに基

づき、第3のフィードバック量を算出する第3フィードバック量算出手段(図44の第2の摂動モデル制御則44b)、および前記決定された目標床反力または目標ZMPの目標瞬時値と、前記目標床反力または前記目標ZMPの仮目標瞬時値の差を求めて入力し、前記差を低減するように第2のフィードフォワード量を算出する第2フィードフォワード量算出手段(図44の第2の分配部44c、ブロック44d)、前記算出された新規フィードバック量と新規フィードフォワード量の和を前記新規摂動モデルに入力して前記目標運動の第3の補正量(図44の第2の摂動モデル上体位置)を算出する第3目標運動補正量算出手段(図44の加算点44e、摂動モデル44a)を備える如く構成した。

【0369】また、前記第3目標運動補正量算出手段は、前記目標運動の第3の補正量を差すと共に、前記決定された目標床反力または目標ZMPの目標瞬時値と前記目標床反力または前記目標ZMPの仮目標瞬時値の差に前記算出された新規フィードバック量と新規フィードフォワード量の和を加えることにより、前記目標床反力または目標ZMPの第3の補正量(図44の目標ZMPまわりのフルモデル補正モーメントのZMP換算値)を算出する如く構成した。

【0370】また、前記摂動モデルおよび前記第2の摂動モデルが倒立振子からなる如く構成した。

【0371】また、少なくとも前記第1の動力学モデルの状態量(動力学モデルの位置および/または速度)に基づき、目標動作のパラメータを決定または修正する目標動作パラメータ修正手段(図11フロー・チャートのS28)を備える如く構成した。

【0372】また、この発明を2足歩行ロボットについて説明してきたが、3足以上の多脚ロボットにも応用することができる。さらに、実物のロボット(実機)ではなくても、シミュレーションあるいはコンピュータゲームなどにおける仮想的なロボットの動作制御あるいは動作生成にも応用することができる。

【0373】

【発明の効果】動力学的平衡条件を精度良く満足する歩容などの動作を生成することができると共に、歩行時や作業時の安定性を高めることができる。また、動力学的平衡条件を精度良く満足する歩容などの動作を生成することができると共に、その生成された動作を追従するようにロボットを制御することにより姿勢の安定性を高めることができる。

【図面の簡単な説明】

【図1】この発明の一つの実施の形態に係る脚式移動ロボットの動作生成装置が適用される脚式移動ロボット、より具体的には2足歩行ロボットを全体的に示す概略図である。

【図2】図1に示す脚式移動ロボットの足部の構造を示す説明断面図である。

【図3】図1に示す制御ユニットの詳細を示すブロック図である。

【図4】図1に示す脚式移動ロボットの動作生成装置を含む動作制御装置の構成を機能的に示すブロック図である。

【図5】図4に示すフルモデル補正入り歩容生成部の構成を機能的に示すブロック図である。

【図6】図5に示すフルモデル補正入り歩容生成部のフルモデルの一例である多質点系モデルを機能的に示す説明図である。

【図7】図5に示すフルモデル補正入り歩容生成部を使用する、図1に示す脚式移動ロボットを倒立振子で近似して得た単純化モデル（動力学モデル）を示す説明図である。

【図8】図7に示す動力学モデルを用いて先に提案した歩容生成部が行う、動力学演算を示すブロック図である。

【図9】図8に示す動力学演算で倒立振子の支点位置を示すZMP相当値ZMPpendを演算するのに用いる、脚部の質点の慣性力と重力の合力のモーメントの作用点Pの軌跡を示すタイム・チャートである。

【図10】図1に示す脚式移動ロボットにおいて上体軌道が発散した場合を示す説明図である。

【図11】図1に示す脚式移動ロボットの動作生成装置の動作を示すフロー・チャートである。

【図12】図11フロー・チャートで使用する定常旋回歩容を着地位置などから説明する説明図である。

【図13】同様に、図11フロー・チャートで使用する定常旋回歩容を上体軌道などから説明する説明図である。

【図14】図11フロー・チャートの目標瞬時値発生作業を示すサブルーチン・フロー・チャートである。

【図15】この発明の第1の実施の形態から第20の実施の形態に係る脚式移動ロボットの動作生成装置によって行われる歩容の補正手法を分類して表として示す説明図である。

【図16】この発明の第1の実施の形態に係る脚式移動ロボットの動作生成装置によって行われる歩容の補正手法を説明する機能ブロック図である。

【図17】この発明の第2の実施の形態に係る脚式移動ロボットの動作生成装置によって行われる歩容の補正手法を説明する機能ブロック図である。

【図18】この発明の第2の実施の形態に係る脚式移動ロボットの動作生成装置によって行われる歩容の補正手法で使用される摂動モデルを用いて行われる動力学演算を示すブロック図である。

【図19】この発明の第2の実施の形態に係る脚式移動ロボットの動作生成装置によって行われる歩容の補正手法を変形して示す機能ブロック図である。

【図20】同様に、この発明の第2の実施の形態に係る

脚式移動ロボットの動作生成装置によって行われる歩容の補正手法を変形して示す機能ブロック図である。

【図21】同様に、この発明の第2の実施の形態に係る脚式移動ロボットの動作生成装置によって行われる歩容の補正手法を変形して示す機能ブロック図である。

【図22】同様に、この発明の第2の実施の形態に係る脚式移動ロボットの動作生成装置によって行われる歩容の補正手法を変形して示す機能ブロック図である。

10 【図23】この発明の第3の実施の形態に係る脚式移動ロボットの動作生成装置によって行われる歩容の補正手法を説明する機能ブロック図である。

【図24】この発明の第4の実施の形態に係る脚式移動ロボットの動作生成装置によって行われる歩容の補正手法を説明する機能ブロック図である。

【図25】この発明の第5の実施の形態に係る脚式移動ロボットの動作生成装置によって行われる歩容の補正手法を説明する機能ブロック図である。

20 【図26】この発明の第6の実施の形態に係る脚式移動ロボットの動作生成装置によって行われる歩容の補正手法を説明する機能ブロック図である。

【図27】この発明の第7の実施の形態に係る脚式移動ロボットの動作生成装置によって行われる歩容の補正手法を説明する機能ブロック図である。

【図28】この発明の第8の実施の形態に係る脚式移動ロボットの動作生成装置によって行われる歩容の補正手法を説明する機能ブロック図である。

20 【図29】この発明の第9の実施の形態に係る脚式移動ロボットの動作生成装置によって行われる歩容の補正手法を説明する機能ブロック図である。

【図30】この発明の第10の実施の形態に係る脚式移動ロボットの動作生成装置によって行われる歩容の補正手法を説明する機能ブロック図である。

【図31】この発明の第11の実施の形態に係る脚式移動ロボットの動作生成装置によって行われる歩容の補正手法を説明する機能ブロック図である。

30 【図32】この発明の第12の実施の形態に係る脚式移動ロボットの動作生成装置によって行われる歩容の補正手法を説明する機能ブロック図である。

【図33】この発明の第13の実施の形態に係る脚式移動ロボットの動作生成装置によって行われる歩容の補正手法を説明する機能ブロック図である。

40 【図34】この発明の第14の実施の形態に係る脚式移動ロボットの動作生成装置によって行われる歩容の補正手法を説明する機能ブロック図である。

【図35】この発明の第14の実施の形態に係る脚式移動ロボットの動作生成装置によって行われる歩容の補正手法に付随する歩容パラメータの再決定処理を示す説明タイム・チャートである。

50 【図36】この発明の第15の実施の形態に係る脚式移動ロボットの動作生成装置によって行われる歩容の補正

手法を説明する機能ブロック図である。

【図37】この発明の第16の実施の形態に係る脚式移動ロボットの動作生成装置によって行われる歩容の補正手法を説明する機能ブロック図である。

【図38】この発明の第17の実施の形態に係る脚式移動ロボットの動作生成装置によって行われる歩容の補正手法を説明する機能ブロック図である。

【図39】この発明の第18の実施の形態に係る脚式移動ロボットの動作生成装置によって行われる歩容の補正手法を説明する機能ブロック図である。

【図40】この発明の第19の実施の形態に係る脚式移動ロボットの動作生成装置によって行われる歩容の補正手法を説明する機能ブロック図である。

【図41】この発明の第20の実施の形態に係る脚式移動ロボットの動作生成装置によって行われる歩容の補正手法を説明する機能ブロック図である。

【図42】この発明の第21の実施の形態に係る脚式移動ロボットの動作生成装置によって行われる歩容の補正手法を説明する、図16に類似する機能ブロック図である。

【図43】この発明の第22の実施の形態に係る脚式移動ロボットの動作生成装置によって行われる歩容の補正手法を説明する、図17に類似する機能ブロック図である。

【図44】この発明の第23の実施の形態に係る脚式移動ロボットの動作生成装置によって行われる歩容の補正手法を説明する、図37に類似する機能ブロック図である。

＊

【図45】第23の実施の形態の変形例を示す、図34に類似する機能ブロック図である。

【図46】この発明の第1の実施の形態などの等価変形例を示す、図5に類似する機能ブロック図である。

【符号の説明】

1	2足歩行ロボット（脚式移動ロボット）
2	脚部（脚部リンク）
10 10, 12, 14R, L	股関節
16R, L	膝関節
18, 20R, L	足関節
22R, L	足平（足部）
24	上体（基体）
26	制御ユニット
34	6軸力センサ
36	傾斜センサ
42	コンプライアンス機構
60	第1の演算装置
20 62	第2の演算装置
100	フルモデル補正入り歩容生成部
100c	フルモデル補正部
100c1	単純化モデル
100c2	フルモデル（逆フルモデル、順フルモデル）

【図2】

【図3】

【図1】

【図6】

【図4】

【図5】

【図7】

【図8】

【図9】

【図10】

【図11】

【図12】

【図18】

【図13】

【図14】

【図15】

【図16】

【図17】

【図19】

【図20】

【図21】

【図22】

【図39】

【図23】

【図24】

【図41】

【図25】

【図26】

【図44】

【図27】

【図28】

【図29】

【図30】

【図31】

【図32】

【図34】

【図33】

【図35】

【図36】

【図37】

【図46】

[図38]

【図40】

【図42】

【図43】

【図45】

フロントページの続き

(72)発明者 長谷川 忠明

埼玉県和光市中央1丁目4番1号 株式会社本田技術研究所内

F ターミナル(参考) 3C007 AS36 CS08 KS20 KS33 LU08

I W01 MT04 WA03 WA13 WB03