Graph Planarity

Graph Planarity

Graph planarity: a graph is planar if and only if it can be drawn on a plane without its edges intersecting or crossing each other.

Kuratowski's Theorem

A graph is planar if and only if it does not contain a subgraph that can be transformed to $K_{3,3}$ or K_5 by inserting or erasing vertices of degree 2.

K₅: a complete graph on five vertices (this is not planar)

K_{3,3}: a complete bipartite graph with three vertices in each subset (this is not planar)

Euler's Formula

If G is a connected, planar graph, then any plane graph for G has r = m - n + 2 regions (Proof by induction). (r = region, m = edges, n = states).

Figure 1: Example of what a region is. The graph above has 4 regions

Euler's Formula: Corollary

Corollary: If G is a connected planar graph with m>1, then $m\leq 3n$ - 6

 $3r \ge 2m$ (each region is bordered by at least 3 edges, edges get double counted)

• Ex. From the graph in figure 1. Region 1 and region 2 share an edge, and that edge gets double counted to ensure that each region is bordered by 3 edges.

To construct a formula that relates m and n, we need to use the inequality equations to get rid of r.

```
\begin{split} R &\geq 2m/3\\ M - N + 2 &\geq 2M/3\\ M/3 + 2 &\geq N\\ M/3 &> N - 2\\ M &> 3N - 6, \text{ corollary is true} \end{split}
```

Consequences of Planarity

- The graph can be drawn "nicely" and visualized more easily
- m = $\Theta(n)$. So, Bellman-Ford, which takes $\Theta(nm)$ in general, takes $\Theta(n^2)$ for a planar graph
- Some graph problems are NPC in general graphs, but in P for planar graphs (Ex. max-clique, graph coloring)

Geometric (Planar Graphs)

List of geometric (planar graph problem) we will see in this class

- Euclidean minimum spanning trees
- Euclidean TSP
- Rectilinear/Euclidean Steiner trees
- Voronoi Diagrams
- Delaunay Triangulation
- Relative neighborhood graph
- Gabriel graph

Geometric Dual G* of a Planar Graph G

To create a geometric dual:

Place vertex in each region of G

If two regions have an edge x in common, join the corresponding vertices by and edge x* crossing only x

Always gives a planar pseudo-graph

Applications of Duality

Map coloring \equiv Planar graph Coloring

Don't want neighboring states sharing the same color (this is planar graph coloring problem)

VLSI floor planning (rectangular dual)

Generally, any dissection of a plan into regions can be represented by a planar graph

Algorithmic Problems Related to Planarity

Planarity testing: given a graph, is it planar? This can be done in O(n + m) time. Two algorithms:

- 1. Hopcroft-Tarjan Algorithm
- 2. Lempel-Even-Cedarbaum and Booth-Leuker

Planar embedding: If graph is planar, draw it in a plane so that the edges don't cross

Straight-line embedding: each edge is a straight line segment