Klausur zur Vorlesung Technische Grundlagen der Informatik Prof. Dr. Andreas Koch

Wintersemester 09/10

2. Teilklausur Technische Grundlagen der Informatik (Bsc Informatik PO 2009)

Klausur Technische Grundlagen der Informatik II (Bsc Informatik PO 2007, PO 2004, sonstige)

12.02.2010

Name		
(Nach-, Vorname)		
Matrikel-Nr.		
Unterschrift		
Prüfung	☐ Bachelor of Science – PO 2009	
Bitte ankreuzen	☐ Bachelor of Science – PO 2007	
	☐ Bachelor of Science – PO 2004	
	☐ Bachelor of Education	
	□ Sonstiger Abschluss:	
Anzahl abgegebene Zusatzblätter:		

Aufgabe	1	2	3	4	5	6	7	Σ	Note
max. Punkte	21	15	19	17	10	21	17	120	
erreicht									

2. Teilklausur zur Vorlesung Technische Grundlagen der Informatik			
Name, Vorname:	Matrikelnummer: レレレレレレ		

Hinweise zur Klausur:

- Bitte lesen Sie die Hinweise zu Beginn der Klausur!
- Füllen Sie JETZT das Deckblatt VOLLSTÄNDIG aus!
- Schalten Sie ihr Handy aus.
- Legen Sie Studentenausweis und ein Lichtbildausweis zur Kontrolle bereit.
- Verwenden Sie nur blaue oder schwarze dokumentenechte Stifte, kein Rot oder Grün, keine Bleistifte.
- Die Heftung der Klausur darf nicht gelöst werden. Ausnahme ist das Verilog- und das MIPS-Syntaxblatt auf den letzten Seiten.
- Packen Sie alles bis auf Schreibwerkzeug weg. Es sind KEINE Hilfsmittel erlaubt (Ausnahme: Ein Wörterbuch für ausländische Studierende). Wird während der Klausur ein unerlaubtes Hilfsmittel gefunden, wird dies als Täuschungsversuch gewertet und die Prüfung gilt als nicht bestanden. In schweren Fällen von Täuschung behalten wir uns weitere Schritte bis hin zur Exmatrikulation vor.
- Essen und Trinken ist erlaubt, nehmen Sie jedoch Rücksicht auf Ihre Kommilitonen.
- Bewertet wird der Lösungsweg, nicht nur das Ergebnis. Schreiben Sie alle Zwischenschritte auf, damit die Lösung nachvollziehbar ist.
- Falls Sie Fragen zur Aufgabenstellung haben, melden Sie sich bitte. Das Aufsichtspersonal wird dann an Ihren Platz kommen. Inhaltliche Fragen werden nicht beantwortet.
- Falls Sie zusätzliches Papier benötigen, melden Sie sich bitte. Sie erhalten dann Papier von uns, eigenes Papier ist nicht gestattet. Beschriften Sie die Zusatzblätter mit Namen und Matrikelnummer.
- Falls Sie auf Toilette müssen, kommen Sie bitte mit Ihrer Klausur nach vorne und geben sie beim Aufsichtspersonal ab.
- Die Ergebnisse werden im Webreg und per Aushang veröffentlicht. Wenn es soweit ist, wird dies auf der Webseite und im Forum angekündigt.

Viel Erfolg!

2. Teilklausur zur Vorlesung Technische Grundlagen der Informatik				
Name, Vorname:	Matrikelnummer:			

Die Folge der Fibonacci-Zahlen läßt sich rekursiv durch die folgende Formel berechnen: fib(n) = fib(n-1) + fib(n-2). Dabei ist fib(0) = 0 und fib(1) = 1.

Aufgabe 1 MIPS-Programmierung

Implementieren Sie ein MIPS-Programm zur **rekursiven** Berechnung von fib(n) (**Hinweis**: eine iterative Lösung gibt keine Punkte). Verwenden Sie die in der Vorlesung vorgestellten Konventionen. Kommentieren Sie Ihren Code, unkommentierter Code wird nicht bewertet! Gehen Sie davon aus, dass der Wert n zu Beginn in \$a0 steht. Das Ergebnis soll in \$v0 zurückgeliefert werden.

(21 Punkte)()

2. Teilklausur zur Vorlesung Technische Grundlagen der Informatik			
Name, Vorname:	Matrikelnummer:		
Aufgabe 2 MIPS-Befehlserweiterung	(15 Punkte)(5+10)		

Gegeben ist die Eintakt-Implementierung des MIPS-Prozessors. Er soll so erweitert werden, dass der Befehl jal unterstützt wird.

Der Befehl wird zum Aufruf von Prozeduren verwendet. Sein Befehlsformat ist das J-Format. Er speichert die Adresse des nächsten Befehls im Register \$ra. Der PC wird auf das Sprungziel gesetzt, dieses berechnet sich aus {(PC+4)[31:28], imm, 2'b0}. imm ist hierbei die 26-Bit Sprungsdresse aus dem jal-Befehl.

a) Beschreiben Sie Ihre Lösungsidee in Stichpunkten.

Name, Vorname: _____ Matrikelnummer: _____

b) Zeichnen Sie Ihre Änderungen möglichst lesbar in den Schaltplan ein.

© 2007 Elsevier, Inc. All rights reserved

2. Teilklausur zur Vorlesung Technische Grundlagen der Informatik				
Name, Vorname:				
Aufgabe 3 MIPS-Pipelining				
Wir betrachten den MIPS-Prozessor mit Pipelining.				
 a) Beschreiben Sie stichpunktartig die Funktionsweise des Pipelir tionalität an. 	ning-Prozessors. Geben Sie die Stufen und ihre Funk			
b) Welche Arten von Hazards können auftreten? Welche Massna	hman eind zur Rahahung möglich?			
b) Welche Arten von Hazards kommen auftreten. Welche Masshal	innen sind zur Benebung mögnen:			

Name, Vorname: _____ Matrikelnummer: _____

- c) Gegeben ist das folgende Programmstück in MIPS-Assembler. An welchen Stellen können Hazards auftreten? Markieren Sie die Stellen im Diagramm.
 - Geben Sie ein äquivalentes MIPS-Programm an, welches auf einer MIPS-CPU ohne Forwarding keine Hazards enthält. Die Dauer der Ausführung soll nach Ihren Änderung minimal sein.

2. Teilklausur zur Vorlesung Technische Grund	llagen der Informatik	
Name, Vorname:	Matrikeln	ummer: பபபபபட
Aufgabe 4 MIPS-Befehlserweiterung der Mehrtakt-Ir	mplementierung	(17 Punkte)(2+5+3+7
Gegeben ist die Mehrtakt-Implementierung des MIPS-Pro \$t1 (die beiden Register sind nur ein Beispiel, natürlich wird. Dieser Befehl soll die Werte aus den Registern \$t0 u Adresse der Summe befindet. Sie können davon ausgehei	n soll hier jedes beliebige R nd \$t1 addieren und dann z	egister stehen können) unterstütz um Befehl springen, der sich an de
a) Welches Befehlsformat wählen Sie? Begründen Sie	Ihre Antwort.	
b) Beschreiben Sie Ihre Lösungsidee in Worten. Hinw	eis: Um zu addieren, muss A	ALUOp=00 gesetzt werden.

Name, Vorname: _____ Matrikelnummer: _____

c) Zeichnen Sie Ihre Änderungen in den Schaltplan ein.

© 2007 Elsevier, Inc. All rights reserved

Name, Vorname: ______ Matrikelnummer: _____

d) Erweitern Sie das Zustandsdiagramm des Steuerwerks.

 \odot 2007 Elsevier, Inc. All rights reserved

2. Teilklausur zur Vorlesung Technische Grundlagen der Informatik Name, Vorname: Matrikelnummer: ________ Aufgabe 5 Theoriefragen (10 Punkte)() Kreuzen Sie an, ob die folgenden Aussagen wahr oder unwahr sind. Für jede korrekte Antwort erhalten Sie 1 Punkt, für jede Falsche gibt es 1 Punkt Abzug. Wenn nichts angekreuzt wird, gibt es keine Minuspunkte. Sollte die Summe dieser Aufgabe negativ sein, wird dies nicht auf andere Aufgaben übertragen. a) J | N | Eine Mehrtakt-Implementierung des MIPS-Prozessors verarbeitet das selbe Programm immer schneller als eine Eintakt-Implementierung. N Subtraktion und Addition können in einer ALU von der gleichen Hardware bearbeitet werden. N Alle Werte, die im single-precision Gleitkommaformat nicht genau darstellbar sind, können im doubleprecision Gleitkommaformat exakt dargestellt werden. J | N | DRAM-Speicherzellen benötigen im Gegensatz zu SRAM-Speicherzellen keinen Refresh. In den CLBs eines Spartan3-FPGAs werden logische Verknüpfungen als Lookup-Table realisiert. J N Bei der vorgestellten Mehrtakt-Implementierung des MIPS-Prozessors wird ein gemeinsamer Speicherbereich für Programmcode und Daten verwendet. N Ein Carry-Look-Ahead-Addierer berechnet die Carrys mehrfach und benötigt so mehr Hardware. N Eine dynamische Sprungvorhersage sagt im Gegensatz zur statischen Sprungvorhersage jeden Sprung korrekt voraus.

N Das Summenbit eines Halbaddierers läßt sich durch ein XOR-Gatter berechnen.

N Die Verzögerung eines N-Bit Ripple-Carry-Addierers steigt linear mit steigendem N.

Name, Vorname:	Matrikelnummer: ———————

Aufgabe 6 Verilog (21 Punkte)()

Wir betrachten in dieser Aufgabe die Multiplikation zweier vorzeichenloser 4-Bit Zahlen.

Ein recht einfaches Schema ist das auch als schriftliches Multiplizieren bekannte Verfahren. Hierbei werden die einzelnen Teile versetzt untereinander geschrieben und dann addiert. Ein Beispiel:

```
\begin{array}{c} \underline{0011 \star 0101} \\ 0011 \\ 0000 \\ 0011 \\ \underline{0000} \\ \overline{00001111} \end{array}
```

Dieses Verfahren soll in einem sequentiellen Verilogmodul implementiert werden. Berechnen Sie in jedem Takt einen Zwischenwert. Sie dürfen nur Addition und Shiften verwenden, insbesondere keinen Multiplikationsoperator und keine while-Schleife.

Zum Beginn der Multiplikation werden die beiden Werte an die Eingänge a und b angelegt und das start-Signal für einen Takt auf 1 gesetzt. Sie können davon ausgehen, dass die Werte a und b während der gesamten Rechnung an den Eingängen anliegen. Sobald die Multiplikation abgeschlossen ist, soll das Ergebnis am Ausgang c liegen und ready auf 1 gesetzt werden (kann dann auf 1 bleiben, bis die nächste Multiplikation gestartet wird).

Verändern Sie die Modulschnittstelle nicht! Kommentieren Sie Ihren Code!

```
module a6(
    input clk,
    input start,
    input [3:0] a,
    input [7:0] c,
    output ready
);
```

2. Teilklausur zur Vorlesung Technische Grundlagen der Informatik				
Name, Vorname:	Matrikelnummer:			

2. Teilklausur zur Vorlesung Technische Grundlagen der Informatik			
Name, Vorname:	Matrikelnummer: பபபபபப		
Aufache 7 Claitheannachithmeatile	(17 Punkte)(8+9)		
Gegeben sind die beiden Zahlen $a = 3.75$ und $b = -4.125$.			
a) Wandeln Sie die beiden Zahlen in das 32-Bit IEEE 754-Fo	rmat um.		
b) Berechnen Sie a+b im IEEE 754-Format. Geben Sie bei d Ihr Vorgehen in Stichpunkten.	ler Rechnung alle Zwischenschritte an und erläutern Sie		