Elisabetta Fersini

Esercitazione

DISCo

Università degli Studi di Milano-

Bicocca

Viale Sarca, 336

20126 Milano

elisabetta.fersini@unimib.it

• Dimostrare che $P(a|b \land a) = 1$.

$$P(a|b \wedge a) = \frac{P(a \wedge b \wedge a)}{P(b \wedge a)} = \frac{P(a \wedge b)}{P(b \wedge a)} = 1$$

• Date le seguenti belief di un agente razionale

$$P(A) = 0.4$$

$$P(B) = 0.3$$

$$P(A \lor B) = 0.5$$

quale range di probabilità è ragionevole per $A \cap B$?

$$P(A \lor B) = P(A) + P(B) - P(A \land B) =$$

= 0.4 + 0.3 - $P(A \land B) = 0.5$
 $P(A \land B) = 0.2$

- Consideriamo l'insieme di tutte le possibili mani di una partita a poker con 5 carte, utilizzando un mazzo formato da 52 carte.
 - 1. Quanti eventi atomici costituiscono la distribuzione di probabilità congiunta?
 - 2. Qual è la probabilità di ciascun evento atomico?
 - 3. Qual è la probabilità di avere una scala reale?
 - 4. E di un poker (4 carte dello stesso tipo)?

1. Quanti eventi atomici costituiscono la distribuzione di probabilità congiunta?

$$\binom{52}{5} = \frac{52 \cdot 51 \cdot 50 \cdot 49 \cdot 48}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5} = 2,598,960$$

2. Qual è la probabilità di ciascun evento atomico?

$$\frac{1}{2,598,960}$$

3. Qual è la probabilità di avere una scala reale?

$$\frac{4}{2,598,960} = \frac{1}{649,740}$$

4. E di un poker (4 carte dello stesso tipo)?

$$\frac{13 \cdot 48}{2,598,960} = \frac{1}{4,165}$$

• Una società di consulenza ha creato un modello per prevedere le recessioni. Il modello prevede una recessione con l'80% di probabilità quando la recessione avviene realmente e con il 10% di probabilità quando non avviene. La probabilità incondizionata che si entri in una fase di recessione è del 20%. Se il modello prevede la recessione, qual è la probabilità che la recessione avvenga?

Il modello prevede una recessione con l'80% di probabilità quando la recessione avviene realmente

$$P(\text{rec. pred.}|\text{rec. coming}) = \frac{8}{10}$$

Il modello prevede una recessione il 10% di probabilità quando non avviene

$$P(\text{rec. pred.}|\text{rec. not coming}) = \frac{1}{10}$$

La probabilità incondizionata che si entri in una fase di recessione è del 20%.

P(rec. coming) =
$$\frac{2}{10}$$

P(rec. not coming) = $1 - P(\text{rec. coming}) = 1 - \frac{2}{10} = \frac{8}{10}$

• Se il modello prevede una recessione, qual è la probabilità che la recessione effettivamente avvenga?

$$\begin{split} P(\text{rec. pred.}) &= P(\text{rec. pred.}|\text{rec. coming}\,)P(\text{rec. coming}\,)\\ &+ P(\text{rec. pred.}|\text{rec. not coming}\,)P(\text{rec. not coming}\,)\\ &= \frac{8}{10} \cdot \frac{2}{10} + \frac{1}{10} \cdot \frac{8}{10}\\ &= \frac{24}{100} \end{split}$$

- Supponiamo di conoscere che la probabilità con cui un semaforo diventi verde sia pari a 0.45, arancione pari a 0.1 e che diventi rosso sia pari a 0.45.
- Inoltre, supponiamo di avere la probabilità del 25% di passare con il semaforo rosso senza prendere una multa, e il 5% di probabilità di prendere una multa passando con il semaforo arancione.
- In aggiunta, supponiamo che prendendo una multa, c'è il 90% di probabilità che si sia successivamente di cattivo umore; senza multa la probabilità è del 5%.
- Qual è la probabilità totale di essere di cattivo umore?

- Supponiamo di conoscere che la probabilità con cui un semaforo diventi verde sia pari a 0.45, arancione pari a 0.1 e che diventi rosso sia pari a 0.45.
- Inoltre, supponiamo di avere la probabilità del 25% di passare con il semaforo rosso senza prendere una multa, e il 5% di probabilità di prendere una multa passando con il semaforo arancione.
- In aggiunta, supponiamo che prendendo una multa, c'è il
 90% di probabilità che si sia successivamente di cattivo umore; senza multa la probabilità è del 5%.

	green		yellow		red	
	ticket	not-ticket	ticket	not-ticket	ticket	not-ticket
bad mood	0.45*0	0.45*1*0.05	0.1*0.05*0.9	0.1*0.95*0.05	0.45*0.25*0.9	0.45*0.75*0.05
good mood	0.45*0	0.45*1*0.95	0.1*0.05*0.1	0.1*0.95*0.95	0.45*0.25*0.1	0.45*0.75*0.95

	green		yellow		red	
	ticket	not-ticket	ticket	not-ticket	ticket	not-ticket
bad mood	0,0000	0,0225	0,0045	0,0048	0,1013	0,0169
good mood	0,0000	0,4275	0,0005	0,0903	0,0113	0,3206

- Sviluppare una rete di Bayes, per calcolare la probabilità che uno studente superi l'esame di MPD. Le proprietà di interesse del problema sono:
 - Il superamento dell'esame $(EX \in \{true, false\})$
 - L'acquisizione di buone capacità pratiche in MPD da parte dello studente $(PR \in \{true, false\})$
 - L'acquisizione di buone capacità teoriche in MPD da parte dello studente $(TE \in \{true, false\})$
 - Lo studente è efficientemente studioso $(ST \in \{true, false\})$
 - La quantità di esercitazioni seguite dallo studente $(QE \in \{molte, poche, nessuna\})$
 - L'aver fatto un numero sufficiente di esercizi ($SE \in \{true, false\}$)

- Costruire una rete bayesiana che rappresenti la conoscenza probabilistica relativa al dominio descritto dalle seguenti relazioni di dipendenza tra le variabili casuali:
- Il superamento dell'esame dipende dalle capacità teoriche e pratiche dello studente.
- Se uno studente è studioso ha buone probabilità di acquisire capacità teoriche.
- Il numero di esercitazioni seguite dipende da quanto uno studente è studioso
- L'aver fatto sufficienti esercizi dipende dal numero di esercitazioni seguite, ed influenza le capacità pratiche dello studente.

• Scrivere la tabella di probabilità associata al nodo QE, facendo delle

ipotesi a piacere sul dominio.

QE = molte	QE = poche	QE = nessuna	ST
0.5	0.3	0.2	true
0	0.1	0.9	false

