Series R L C Circuit

Exp. No: Date:

Aim: To study the behaviour of series R-L-C circuit.

Apparatus required:

S.No	Name of the	Range/	Type	Quantity
	equipment	Specification		
1	Voltmeter	(0-150) V	MI	3
2	Voltmeter	(0-300) V	MI	1
3	Ammeter	(0-5) A	MI	1
4	Wattmeter	150V, 5A,UPF	EDW	1
5	Rheostat	100Ω, 5A	Wire	1
			wound	
6	Inductor	35mH	Core type	1
7	Capacitor	72μF, 440V	Electrolytic	1
8	1- Phase Auto	I/P:1-ф, 230V	Core type	1
	Transformer	O/P: (0-270)V,10A		
9	Connecting wires	1.5sq.mm	copper	Required

Procedure:

- 1. Connect the circuit as shown in the circuit diagram.
- 2. Adjust the rheostat for maximum resistance position and the auto transformer to the position of zero-output voltage and switch on the supply.
- Adjust the voltage across the circuit to about 120 V by varying 1-φ auto transformer and note down the corresponding meter values i.e: V_s, I_L, W, V_R, V_L, V_C.

- 4. Adjust the rheostat for several resistance value settings and note down the corresponding meter values.
- 5. Draw Phasor diagrams showing V_R , V_L , V_C , V_S , and \emptyset for different sets of readings.
- 6. Compare the values of phase angle as obtained from the meter readings with the values obtained from the phasor diagrams.

Observation table:

S.No	V _S Volts	I _L Amps	W (Watt)	V _R (V)	V _L (V)	V _C (V)	Vs.I (VA)	Соs ф =W/	Phase angle	Ø From Phasor
								$(V_S.I)$	Ø	diagram

Theoretical calculations:

Inductive Reactance, $X_L = 2 \pi f L$

Capacitive Reactance, $X_C = \frac{1}{2 \pi f C}$

Circuit Impedance, $Z = \sqrt{[R^2 + (X_L - X_C)]^2}$

Circuits Current, $I = \frac{VS}{Z}$

Voltages across the Series RLC Circuit, V_R , V_L , V_C .

 $V_R = IR$

 $V_L = I X_L$

 $V_C = IX_C$

Circuits Power factor and Phase Angle, θ .

$$\cos \theta = \frac{R}{Z}$$

Apparent Power in VA

$$S=V_SI$$

Active Power in Watts

$$P = V_S I Cos \theta$$

Resonant Frequency of the circuit, $f_0 = \frac{1}{2 \pi \sqrt{LC}}$

$$Q_0 = \frac{1}{R} \sqrt{\frac{L}{C}}$$

Precautions:

- 1. All the connections should be tight.
- **2.** Use proper ranges of the meters.
- **3.** Take the readings without parallax error

Result: