Word embeddings

How it's made?

• How to make language computer readable?

Assign random IDs to words

- eat:1, apple:2, milk:3, drink:4
- apple + apple = drink ???

Treat words as categorical, independent variables

eat:[1,0,0,0] apple:[0,1,0,0] milk:[0,0,1,0] drink:[0,0,0,1]

Problem statement

- How to make language computer readable?
- How to encode meaning and similarity

 A vector space with axis of "meaning" (semantic features)

 Similar words are closer in the vector space than non-similar words

Country	Population (mil pp)	Size (mil km²)
∏ France	68	0.5
Spain	47	0.5
S Brazil	214	8.5
# Iceland	0.4	0.1
[1] Canada	38	9

Country	Population (mil pp)	Size (mil km²)
∏ France	68	0.5
Spain	47	0.5
S Brazil	214	8.5
# Iceland	0.4	0.1
[•] Canada	38	9

Normalize by size of vectors, measure similarity by angle

$$[0.9, 0.8] - ||\mathbf{S}|| = 1.2$$

$$[-.1, 0.9] - || | | | | | = 0.9$$

Cosine similarity - normalized dot product

$$cosine(a,b) = a \cdot b / (||a|| \times ||b||)$$

$$cosein(11, 20) = 0.1 / 0.1008 = 0.99$$

$$cosine(\mathbf{S},\mathbf{H}) = 0.63 / 1.08 = 0.58$$

$$cosine(3, 3) = -1.36 / 1.36 = -0.99$$

Values go from [-1, 1]

This can be done!

- Word embeddings can be automatically calculated
- Using self-supervised machine learning
- Based on word co-occurrences

Distributional semantics

Words occurring in a similar context tend to have similar meaning

Context - Meaning

Distributional semantics

To start my day, I drink hot **coffee** in the mornings Sipping some warm **tea** helps me wake up in the morning

Context:

coffee drink, hot, mornings **tea** sipping, warm, wake up, morning

Given context words, predict target word

Text corpus (coherent text)
Self supervised
Masked target word, use sliding window

Set up

Vocabulary	1-hot encoding
comparison	[0, 0, 0, 0, 1]
is	LO, 1, 0, 0, 0, 0]
the	[0, 0, 1, 0, 0, 0]
thief	[0, 0, 0, 1, 0, 0]
of	LO, O, O, O, 1, OJ
joy	[0, 0, 0, 0, 0, 1]

Prediction - Forward Pass

Error Back Propagation 1

Error Back Propagation 2

New goal

- target word prediction will not be great
- in the process we generate high-quality word embeddings, which can be used to train language models more efficiently

1-of-N Encoding

bag =
$$[0 \ 1 \ 0 \ 0 \ 0]$$

cat =
$$[0 \ 0 \ 1 \ 0 \ 0]$$

$$dog = [0 \ 0 \ 0 \ 1 \ 0]$$

elephant = $[0 \ 0 \ 0 \ 0 \ 1]$

 word meaning can be represented well using vectors calculated, based on co-occurrence

- despite starting from a blank state (random vectors)
- despite not being taught a single rule of English syntax
- despite not being associated with a knowledge graph

Summary - How it's made?

First it seems like magic

 Matrix multiplications and error backpropagation

Still feels like magic

