CS35L Software Construction Laboratory

Nandan Parikh

Week 1: Lecture 1

SPRING 2019

What is an Operating System?

- Most important software that runs on a computer
- Manages memory, processes, other softwares and hardwares
- Makes human to computer communication easy
- Computer is useless without an OS!
- Brief history of Operating Systems: http://www.informit.com/articles/article.aspx?p=24972
- OS Examples: Windows (Windows 10, 8...), MacOS (OS X), UNIX

Source : https://en.wikipedia. org/wiki/Operating_system

Multiuser and Multi-process Operating System

- Multi-User OS- Allow many users to access/work on a single system at the same time (as long as they have their own terminal)
- Multi-Process OS- Allows many processes, programs and applications to run simultaneously.
- Variants:
 - Single User Single Task
 - Single User Multi Task
 - Multi User OS

User Interfaces: CLI v/s GUI

Command Line Interface

- Steep learning curve
- Pure control (e.g., scripting)
- Speed: Only keyboard, faster performance
- Consumes less resources
- No change; less diverse

Graphical User Interface

Intuitive Limited Control

Mouse + keyboard; Slower

More resources; e.g. loading icons, fonts, etc.

Frequent changes; More diverse

Debian GNU/Linux

- Clone of UNIX
- Linux is just a kernel.
- What is a kernel?
 - · Core of any OS
 - Allocates time and memory to programs
 - Interfaces applications with the physical hardware
 - Allows communication between different processes: inter-process communication (IPC)
- Linux distribution make the Linux kernel a completely usable OS by adding various applications
- Linux distribution = GUI + GNU utilities (cp,mv,ls,etc) + installation and management tools + GNU compilers (c/c++) + Editors(vi/emacs) +
- Shell: Interface between the user and kernel

Basics of Shell

- Outermost layer around the kernel; hence called shell!
- Can be used as CLI as well as GUI depending upon the task/operation
- Examples:
 - CLI shell in Windows :
 - · Command Prompt
 - CLI shell in UNIX :
 - Shell
 - CLI in Mac :
 - Terminal
- Basic shell commands:
 - <up arrow>: previous command
 - <tab>: auto-complete

 - !!: replace with previous command
 !!str|: refer to previous command with str

Files and Processes

- Everything is either a process or a file
- Process: an executing program identified by PID
- File: collection of data
 - A document
 - · Text of program written in high-level language
 - Executable
 - Directory
 - Devices

Linux File System Layout

Tree Structure Hierarchy

- Only One Root- '/'
- · Directories are also files
 - E.g. home, tom
- Regular files can only be leaves
 - E.g. text, spreadsheets, etc

The Basics: Moving Around

- pwd: print working directory
- cd: change directory
 - ~ home directory
 - . current directory
 - / root directory, or directory separator
 - .. parent directory

The Basics: Dealing with Files

- mv: move/rename a file
- · Cp: copy a file
- rm: remove a file
 - r: remove directories and their contents recursively
- mkdir: make a directory
- rmdir: remove an empty directory
- Is: list contents of a directory
 - d: list only directories
 - a: list all files including hidden ones
 - I: show long listing including permission info
 - s: show size of each file, in blocks

The Basics: Changing File Attributes

- In : creates a link
 - · Hard links : Point to physical Data
 - · Additional name for an existing file
 - In file1 hlink1
 - Soft Links/ Symbolic Links (-s): Point to file
 - In –s <source file> <my file>
- · touch: update access & modification time to current time
 - · touch filename
 - touch -t 201101311759.30 filename
 - Change filename's access & modification time to (year 2011 January day 31 time 17:59:30)

The Basics: File Permissions

File Permissions

- chmod
 - read (r), write (w), executable (x)
 - User, group, others

Reference	Class	Description
u	user	the owner of the file
g	group	users who are members of the file's group
o	others	users who are not the owner of the file or members of the group
а	all	all three of the above, is the same as ugo

chmod contd...

• Numeric

#	Permission				
7	full				
6	read and write				
5	read and execute				
4	read only				
3	write and execute				
2	write only				
1	execute only				
0	none				

Symbolic

Operator	Description			
+	adds the specified modes to the specified classes			
•	removes the specified modes from the specified classes			
=	the modes specified are to be made the exact modes for the specified classes			

Mode	Name	Description
r	read	read a file or list a directory's contents
W	write	write to a file or directory
Χ	execute	execute a file or recurse a directory tree

Special permissions

- setuid : set user ID on execution
- Permits users to run certain programs with escalated privileges
- E.g.: chmod u+s file1
- When an executable file's setuid permission is set, users may access the program with a level of access that matches the owner
- E.g. passwd command

ls -1 /usr/bin/passwd

Special permissions contd...

- setgid : Grants permission of the group which owns the file
- E.g.: chmod g+s file2

```
ls -l myfile2
```

-rw-r-sr-- 1 user 0 Mar 6 10:46 myfile2

Basic Shell Commands

- man
- cat
- head
- tail
- du
- ps

kill diff

cmp

sort

echo

The Basics: Redirection

- > file: write stdout to a file
- >> file: append stdout to a file
- < file: use contents of a file as stdin

find command

- -type: type of a file (e.g: directory, symbolic link)
- -perm: permission of a file
- -name: name of a file
- -user: owner of a file
- -maxdepth: how many levels to search

find contd...

- ?: matches any single character in a filename
- *: matches one or more characters in a filename
- []: matches any one of the characters between the brackets. Use '-' to separate a range of consecutive characters.
- Examples:

```
o find . -name my*
o find . -name my* -type f
o find / -type f -name myfile
```

man command

- Extensive documentation that comes preinstalled with almost all substantial Unix and Unix-like operating systems
- Usage
 - read a manual page for a Linux command
 - man <command_name>
- Hit "q" to get out of man page

wh commands

- whatis <command>: returns Name section of man page
- whereis <command>: locates the binary, source, and manual page files for a command
- which <command>: locates only the binary

diff command

- A file comparison utility that outputs the differences between two files.
- Usage:
 - o diff file1 file2
 - o diff -u file1 file2 (unified format)

wget command

- A computer program that retrieves content from web servers
- Usage
 - wget <URL>