Permutations

Definition

A permutation of a set A is a bijection on A.

 $S_A = \{ \sigma : \sigma \text{ is a permutation of } A \}$

Lemma

Let A be a set. Composition of elements in S_A is associative.

Proof

Assume
$$\sigma, \tau, \gamma \in S_A$$

Assume $x \in A$
 $((\sigma\tau)\gamma)(x) = (\sigma\tau)(\gamma(x)) = \sigma(\tau(\gamma(x))) = \sigma((\tau\gamma)(x)) = (\sigma(\tau\gamma))(x)$

Lemma

Let A be a set. Composition of elements in S_A is closed.

Proof

Assume $\sigma, \tau \in S_A$

Assume $(\sigma \tau)(x) = (\sigma \tau)(y)$

Assume $\sigma(\tau(x)) = \sigma(\tau(y))$

But $\boldsymbol{\sigma}$ is a bijection and thus one-to-one

So $\tau(x) = \tau(y)$

But $\boldsymbol{\tau}$ is a bijection and thus one-to-one

x = y

 $\therefore \sigma \tau$ is one-to-one.

Assume $y \in A$

 σ is onto

So
$$\exists a \in A, \sigma(a) = y$$

But τ is also onto so $\exists x \in A, \tau(x) = a$

$$\sigma(\tau(x)) = y$$

$$(\sigma\tau)(x) = y$$

 $\therefore \sigma \tau$ is onto.

- $\therefore \sigma \tau$ is a bijection and thus a permutation on S_A
- \therefore S_A is closed under the operation of composition.

Theorem

Let $A \neq \emptyset$. S_A is a group under the operation of composition.

Proof

Function composition is closed and associative (lemmas) $\iota_A(x)=x$ is an identity permutation $\sigma\in S_A\implies \sigma^{-1}\in S_A$, since σ is a bijection $\therefore S_A$ is a group.

Definition

$$[n] = \{1, 2, 3, \dots, n\}$$

$$S_n = \{\sigma : \sigma \text{ is a permutation of } [n]\}$$

Note that $|S_n| = n!$.

Permutations can be represented by $2 \times n$ matrices, where the top row contains $1, \dots, n$ and the bottom row represents how the top row is permuted.

Example

$$S_2 = \left\{ \begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \right\}$$
$$|S_2| = 2! = 2$$

Permutations can also be represented by a decomposition of cycles:

$$(abcd\cdots z) = \begin{pmatrix} a & b & c & \dots & z \\ b & c & d & \dots & a \end{pmatrix}$$

Elements that do not change are omitted.

The identity permutation is represented by ()

Example

$$S_3 = \{(123), (132), (213), (231), (312), (321)\}$$

 $|S_3| = 3! = 6$

Example

$$S_4: () 1$$

$$(ab) \qquad \frac{4\cdot 3}{2} = 6$$

$$(abc) \qquad \frac{4\cdot 3\cdot 2}{3} = 8$$

$$(abcd) \qquad \frac{4 \cdot 3 \cdot 2 \cdot 1}{4} = 6$$

$$(ab)(cd) \quad \frac{4\cdot 3}{2\cdot 2} = 3$$

$$|S_4| = 4! = 1 + 6 + 8 + 6 + 3 = 24$$