Algoritmos Genéticos

Prof. Danilo Sipoli Sanches

O Algoritmo Genético Binário

Algoritmo Genético Tradicional

- 1. Gerar a população inicial.
- 2. Avaliar cada indivíduo da população.
- 3. Enquanto critério de parada não for satisfeito faça
 - 3.1 Selecionar os indivíduos mais aptos.
 - 3.2 Criar novos indivíduos aplicando os operadores crossover e mutação.
 - 3.3 Armazenar os novos indivíduos em uma nova população.
 - 3.4 Avaliar cada cromossomo da nova população.

Problema 1

Problema: Use um AG para encontrar o ponto máximo da função:

$$f(x) = x^2$$

com x sujeito as seguintes restrições:

$$0 \le x \le 31$$

x é inteiro

Algoritmos Genéticos

Indivíduo

Cromossomo

- Estrutura de dados que representa uma possível solução para o problema.
- Os parâmetros do problema de otimização são representados por cadeias de valores.
- Exemplos:
 - Vetores de reais, (2.345, 4.3454, 5.1, 3.4)
 - Cadeias de bits, (111011011)
 - Vetores de inteiros, (1,4,2,5,2,8)
 - ou outra estrutura de dados.

Individuo (II)

Aptidão

 Nota associada ao indíviduo que avalia quão boa é a solução por ele representada.

Aptidão pode ser:

- Igual a função objetivo (raramente usado na prática).
- Baseado no ranking do indíviduo da população.

Cromossomo do Problema 1

- Cromossomos binários com 5 bits:
 - $\bullet 0 = 00000$
 - 31 = 11111
- Aptidão
 - Neste problema, a aptidão pode ser a própria função objetivo.
 - Exemplo:

aptidão
$$(00011) = f(3) = 9$$

Seleção

Seleção

- Imitação da seleção natural.
- Os melhores indivíduos (maior aptidão) são selecionados para gerar filhos através de crossover e mutação.
- Dirige o AG para as melhores regiões do espaço de busca.
- Tipos mais comuns de seleção
 - Proporcional a aptidão.
 - Torneio.

População Inicial do Problema 1

É aleatória (mas quando possível, o conhecimento da aplicação pode ser utilizado para definir população inicial)

Pop. inicial

cromossomos	X	f(x) P	rob. de seleção
A ₁ = 1 1 0 0 1	25	625	54,5%
A ₂ = 0 1 1 1 1	15	225	19,6%
A3 = 0 1 1 1 0	14	196	17,1%
A ₄ = 0 1 0 1 0	10	100	8,7%

Probabilidade de seleção proporcional a aptidão

$$p_i = \frac{f(x_i)}{\sum_{k=1}^{N} f(x_k)}$$

Algoritmos Genéticos

Seleção proporcional a aptidão (Roleta)

Seleção por Torneio

Escolhe-se n (tipicamente 2) indivíduos aleatoriamente da população e o melhor é selecionado.

Crossover e Mutação

- Combinam pais selecionados para produção de filhos.
- Principais mecanismos de busca do AG.
- Permite explorar áreas desconhecidas do espaço de busca.

Crossover de 1 ponto

O crossover é aplicado com uma dada probabilidade denominada *taxa de crossover* (60% a 90%)

Se o crossover é aplicado os pais trocam suas caldas gerando dois filhos, caso contrário os dois filhos serão cópias exatas dos pais.

Mutação

Mutação inverte os valores dos bits.

A mutação é aplicada com dada probabilidade, denominada *taxa* de mutação (~1%), em cada um dos bits do cromossomo.

Antes da mutação 0 1 1 0 1

Depois 0 0 1 0 1

Aqui, apenas o 2o.bit passou no teste de probabilidade

A taxa de mutação não deve ser nem alta nem baixa, mas o suficiente para assegurar a diversidade de cromossomos na população.

A primeira geração do Problema 1

A primeira geração do Problema 1 (II)

cror	nossomos	х	f(x)	prob. de seleção
1	11011	27	729	29,1%
2	11001	25	625	24,9%
3	11001	25	625	24,9%
4	10111	23	529	21,1%

As demais gerações do Problema 1

Segu	ında ação
Ger	ação

Tero	ceira
	ação

		X	f(x)
1	11011	27	729
2	11000	24	576
3	10111	23	529
4	10101	21	441

		X	f(x)
1	11011	27	729
2	10111	23	529
3	01111	15	225
4	00111 Algoritmos Gené	7 ticos	49

As demais gerações do Problema 1 (II)

Qu	arta
Ger	ação
	5

		\mathcal{X}	f(x)
1	11111	31	961
2	11011	27	729
3	10111	23	529
4	10111	23	529

 $C \left(\right)$

Quinta Geração

		X	f(x)
1	11111	31	961
2	11111	31	961
3	11111	31	961
4	10111 Algoritmos Gené	23 eticos	529

Outros Crossover's

Crossover de 2-pontos

Considerado melhor que o crossover de 1 ponto.

Crossover de n-Pontos

Problema 2

Achar o máximo da função utilizando Algoritmos Genéticos,

$$f(x) = x \text{ seno}(10\pi x) + 1,0$$

Restrita ao intervalo:

$$-1,0 \le x \le 2,0$$

Problema 2 (II)

Máximo global:

$$x = 1,85055$$

$$f(x) = 2,85027$$

Algoritmos Genéticos

Problema 2 (III)

- Função multimodal com vários pontos de máximo.
- É um problema de otimização global (encontrar o máximo global)
- Não pode ser resolvido pela grande maioria dos métodos de otimização convencional.
- Há muitos métodos de otimização local, mas para otimização global são poucos.

O Cromossomo Problema 2

- Representar o único parâmetro deste problema (a variável x) na forma de um cromossomo:
 - Quantos bits deverá ter o cromossomo?
 - Quanto Mais bits melhor precisão númerica.
 - Longos cromossomos são difíceis de manipular.
 - Cromossomo com 22 bits

1000101110110101000111

O Cromossomo Problema 2 (II)

Decodificação

- cromossomo = 1000101110110101000111
- $b_{10} = (10001011101101101000111)_2 = 2288967$
- Valor de *x* precisa estar no intervalo [-1,0; 2,0]

$$x = \min + (\max - \min) \frac{b_{10}}{2^l - 1}$$

$$x = -1 + (2+1)\frac{2.288.967}{2^{22} - 1} = 0,637197$$

As Gerações do Problema 2

Algoritmos Genéticos

As Gerações do Problema 2 (II)

As Gerações do Problema 2 (III)

A maioria dos indivíduos encontraram o máximo global

As Gerações do Problema 2 (IV)

Na geração 15 o AG já encontrou o ponto máximo

Elitismo

- O crossover ou mutação podem destruir a melhor indivíduo.
- Por que perder a melhor solução encontrada?
- Elitismo transfere a cópia do melhor indíviduo para a geração seguinte.

Elitismo no Problema 2

Critérios de Parada

- Número de gerações.
- Encontrou a solução (quando esta é conhecida).
- Perda de diversidade.
- Convergência
 - nas últimas k gerações não houve melhora da na aptidão

Funções de Benchmark

Todas apresentam seu mínimo global correspondente ao valor (0,0,...,0), de acordo com o seu número de coordenadas n.

$$f_1(x) = \sum_{i=1}^n x_i^2$$
 $f_2(x) = \sum_{i=1}^n i \cdot x_i^4$

$$f_3(x) = \sum_{i=1}^{n} (x_i^2 - 10\cos(2\pi x_i) + 10)$$

$$f_4(x) = \sum_{i=1}^{n} (x_i^2 / 4000) - \prod_{i=1}^{n} \cos(x_i / \sqrt{i}) + 1$$

Funções de Benchmark

Tabela 1: Domínio da função

Função	Domínio
f_1	$-5.12 \le x_i \le 5.12$
f_2	$-20 \le x_i \le 20$
f_3	$-5.12 \le x_i \le 5.12$
f_4	$-600 \le x_i \le 600$

Atividade Prática – Relatório 1

Data de Entrega: 16/08

Encontrar o ponto máximo para as seguintes funções:

- $f(x1,x2) = x1^2 + 3x2 + 4 \rightarrow x1 \in [1, 15] e x2 \in [1,15];$
- f(x1,x2) = x1 + 3x2 + 10 → x1 ∈ [1, 15] e x2 ∈ [8, 16].