

FIRST : ALGEBRA**Choose the correct answer:**

1) If the line segment passes through the points $(2, k), (4, 7)$ parallel to X axis then $k= \dots \dots \dots$

- a) 5 b) 4 c) 7 d) 1

2) If the mean of 3 marks is 10 , then the sum of their marks is

- a) 13 b) 20 c) 30 d) 6

3) If $(a, 2a)$ satisfies the relation : $y = x - 1$, then $a = \dots \dots \dots$

- a) 1 b) -1 c) 10 d) 3

4) The slope of the straight line parallel to x-axis is.....

- a) zero b) 1 c) undefined d) negative

5) $[1, 5] - \{1, 5\} = \dots \dots \dots$

- a)]1, 5] b) {1, 5} c)]1, 5[d) [1, 5[

6) The median of : 24 , 20 , 11 , 36 , 40 is.....

- a) 24 b) 20 c) 40 d) 36

7) The cube whose volume is 27 cm^3 , then the area of one face =.....

- a) 36 b) 9 c) 12 d) 25

8) $(\sqrt{5} - 2) + (\sqrt{5} + 2) =$

- a) $2\sqrt{5}$ b) 3 c) $\sqrt{10}$ d) $3\sqrt{5}$

9) The conjugate of the number $\sqrt{5} - \sqrt{2}$ is

- a) $\sqrt{5} + \sqrt{2}$ b) $\sqrt{2} - \sqrt{5}$ c) $\sqrt{5} - \sqrt{2}$ d) $\sqrt{2} + \sqrt{5}$

10) $\sqrt[3]{4 + \dots} = 3$

- a) 27 b) 9 c) 23 d) 16

11) The square whose side length is $\sqrt{5}$ cm , its area =.....cm².

- a) 20 b) 25 c) $2\sqrt{5}$ d) 5

12) R - Q =

- a) \emptyset b) Q c) Z d) N

13) $[-2, 7] \cap]-2, 7[=$

- a) $]-2, 7[$ b) $[-2, 7]$ c) $\{-2, 7\}$ d) $] -2, 7]$

14) The additive inverse of the number $5 - \sqrt{3}$ is

- a) $5 + \sqrt{3}$ b) $\sqrt{3} + 5$ c) $\sqrt{3} - 5$ d) $2\sqrt{3}$

15) $[-4, 6] - R_+ =$

- a) $]-4, 0[$ b) $]-4, 0]$ c) $[-4, 6]$ d) $[0, 6]$

16) The sum of the real numbers in the interval $[-3, 3[=$

- a) 6 b) 0 c) 3 d) 9

17) The solution set of the equation $x^2 + 25 = 0$ in R is

- a) $\{5, -5\}$ b) $\{0\}$ c) \emptyset d) $\{5\}$

18) The solution set of the equation $(x+3)(x-1) = 0$ in R is

- a) $\{3, 1\}$ b) $\{-3, 1\}$ c) $\{3, -1\}$ d) $\{-3, -1\}$

19) A right circular cylinder, its volume is 500π cm³ and the diameter length of its base is 10 cm, then its height is

- a) 20 b) 25 c) 10 d) 5

20) If $1 - x > 5$, then x

- a) ≥ 5 b) = 5 c) > -4 d) < -4

21) A right circular cylinder , its volume is 90π cm³ , and its height is 10 cm then the radius length of its base =cm

- a) 9 b) 27 c) 3 d) 10

22) The cube whose edge length is 2 cm its volume is cm³

- a) 8 b) 6 c) 4 d) 20

23) The relation $3x + 4y = 12$ is represented by a straight line intersecting the x- axis at the point

- a) (4, 0) b) (0, 4) c) (3, 4) d) (-3, 4)

24) If the slope of the straight line passing through the two points $(3, y)$, $(5, -2)$ is -3 , then $y = \dots$

- a) 5 b) -4 c) 4 d) 2

25) If $(-1, 5)$ satisfies the relation : $3x + ky = 7$, then $k = \dots$

- a) 3 b) 5 c) -2 d) 2

26) The slope of the straight line that is parallel to the y-axis is \dots

- a) ZERO b) Undefined c) Negative d) Positive

27) If the straight line: $ax + by + c = 0$ passes through the origin point, then $c = \dots$

- a) 1 b) a c) b d) 0

28) If $(2, -1)$ satisfies the relation $2x + 3y + c = 0$, then $c = \dots$

- a) -1 b) 2 c) 1 d) $\frac{1}{2}$

29) The point of intersection of the ascending and the descending accumulative frequency curves determines \dots on the vertical axis.

- a) median b) order of the median c) mean d) mode

30) The most common values of a set of values is called \dots

- a) Median b) mode c) mean d) otherwise

31) If the order of the median of a set of values is the ninth, then the number of these values is \dots

- a) 20 b) 16 c) 9 d) 17

32) If the mode of the values : $9, 8, 9, y, 8$ is 8 , then $\sqrt[3]{y} = \dots$

- a) -2 b) 2 c) 8 d) 9

29) If the mode of the values : $15, 9, X+6, 9, 15$ is 9 , then $X = \dots$

- a) 3 b) 9 c) 6 d) 0

30) The mean of the values : $7, 11, 21, 10$ and 16 is \dots

- a) 7 b) 21 c) 10 d) 13

31) The point of intersection of the ascending and the descending accumulative frequency curves determines \dots on the horizontal axis.

- a) median b) order of the median c) mean d) mode

32) If the arithmetic mean of the values : 1 , 6 , 4 , 4 , 5K is 7 , then K

=.....

a) 5

b) 35

c) 4

d) 20

33) [-2 , 5] - { -2 , 5 } =

a) { -2 , 5 }

b) [-2 , 5 [

c)] -2 , 5 [

d)] -2 , 5]

34) $Q \cap Q'$ =

a) Z

b) R

c) R^*

d) \emptyset

35) { 2 , 5 , 7 } - { 2 , 7 } =

a) { 5 }

b) { 2 , 5 }

c)] 2 , 5 [

d) [2 , 5]

SECOND : GEOMETRY

36) ABC is a right angle triangle at B , AC= 10 cm, $m(\angle C) = 60$, then BC = ...cm

a) 2

b) 4

c) 5

d) 6

37) The point of intersection of the medians of the triangle divides each medians in the ratio : 2 from vertex

a) 1

b) 2

c) 4

d) 3

38) In the opposite figure: $x = \dots \text{ } ^\circ$

a) 65°

b) 70°

c) 50°

d) 80°

39) If the angles of a triangle are congruent , then the triangle is a/an

a) equilateral

b) isosceles

c) scalene

d) right

40) The length of any side in a triangle.....the sum of lengths of the other two sides .

a) <

b) >

c) \leq

d) \geq

41) The measure of the exterior angle of the equilateral triangle
=.....

a) 30°

b) 60°

c) 120°

d) 90°

42) The base angles of the isosceles triangle are

a) Complementary b) supplementary c) congruent d) straight

43) If the measure of the vertex angle of an isosceles triangle is 50° ,
then the measure of each of the base angles is..... 0

a) 40

b) 65

c) 70

d) 130

44) In $\triangle ABC$, if $AB = AC$, $m(\angle A) = 2m(\angle B)$, then $m(\angle C) = \dots$ 0

a) 30

b) 45

c) 60

d) 90

45) If the triangle ABC is right at B then

a) $AC = AB$

b) $BC < AC$

c) $AC < AB$

d) $AB = BC$

46) A triangle of two sides lengths 4 cm. & 9 cm. and has one axis of symmetry then the length of the third side=.....

a) 4cm

b) 9 cm

c) 13cm

d) 15cm

47) In $\triangle ABC$ if $AB = 6$ cm. and $AC = 7$ cm., then $BC \in \dots$

a)] 6, 13]

b) [6, 7]

c)] 1, 13 [

d) [1, 7 [

48) Which of the following numbers can't be lengths of sides of a triangle?

a) 3, 4, 4

b) 4, 3, 5

c) 4, 3, 6

d) 4, 3, 7

49) If ABC is a right – angled triangle at A & $AB = AC$, then $m(\angle B) = \dots$

a) 30

b) 45

c) 60

d) 90

50) The number 5, 7 can be lengths of sides of triangle.

a) 12

b) 3

c) 2

d) 13

51) If ABC is right – angle at B , $AC = 10$ cm , then the length of the median drawn from B =.....

a) 5

b) 20

c) 7.5

d) 10

52) The number of axis of symmetry in the scalene triangle =.....

- a) 0 b) 1 c) 2 d) 3

53) In the triangle ABC , if BC = 9 cm , AB= 7cm , then $m(\angle C)$

- $m(\angle A)$
a) = b) < c) > d) \leq

54) The number of medians in the right angle triangle =.....

- a) 3 b) 0 c) 1 d) 2

55) If the measure of an angle in a right-angled triangle is 45° , then the triangle is.....

- a) isosceles b) equilateral c) obtuse d) scalene

56) The lengths of two sides in an isosceles triangle are 2cm , 5cm , then the perimeter of this triangle iscm

- a) 12 b) 7 c) 10 d) 9

57) The side opposite to the angle 30° in a right –angled triangle =..... length of the hypotenuse

- a) square b) twice c) half d) triple

58) XYZ is a triangle in which $m(\angle Z) = 70^\circ$, $m(\angle Y)=60^\circ$,then $YZ.....XY$

- a) < b) > c) = d) TWICE

59) If M is the point of intersection of the medians of $\triangle ABC$, D is the midpoint of BC, then $AD = \dots$

- a) $2 AM$ b) $4 MD$ c) $\frac{2}{3}MD$ d) $\frac{3}{2}AM$

60) $\triangle ABD$ is an obtuse – angled triangle at B , C is midpoint of BD , then the greatest side in length is

- a) AB b) AC c) BD d) AD

Prep. [2]

First Term - Algebra

Final Revision

Part 2 - Problems

Mr. Mahmoud Esmaiel
01006487539 - 01110882717

الاسم

Exercises

[A] : Choose The Correct Answer : -

1	$\sqrt[3]{a^3} = \dots$	A) a	B) a^2	C) a^3	D) $2a$	A
2	$\sqrt{3} (\sqrt{11} + \sqrt{3}) = \dots$	A) $3\sqrt{11} + 2$	B) $\sqrt{33} + 3$	C) $11\sqrt{3} + 2$	D) $2\sqrt{11} + 3$	B
3	$\sqrt{25} = \sqrt[3]{\dots}$	A) 5	B) 15	C) 125	D) -5	C
4	$\sqrt[3]{\dots} = 4$	A) 4	B) 16	C) 64	D) 1	C
5	$\sqrt{25} + \sqrt[3]{-27} = \sqrt{\dots}$	A) 8	B) 4	C) 2	D) 5	B
6	$\sqrt[3]{64} = \sqrt{x}$, then $2x = \dots$	A) 4	B) 8	C) 16	D) 32	D
7	$\sqrt[3]{64} = \sqrt{\dots}$	A) 64	B) 8	C) 16	D) 32	C
8	$\sqrt[3]{27} = \sqrt{x+3}$, then $x = \dots$	A) 3	B) 6	C) 9	D) 12	B
9	$\sqrt[3]{64} + \dots = 5$	A) 5	B) 61	C) 100	D) 25	B
10	If: $x^3 = 64$, then: $\sqrt{x} = \dots$	A) 4	B) -4	C) 2	D) -2	C
11	$x^2 = 5$, then $(x + \sqrt{5})^2 = \dots$ or \dots	A) 0, 4	B) 0, 20	C) 0, 25	D) 0, 10	B

12	$\frac{x^3}{y^3} = \frac{8}{27}$, then $(\frac{y}{x})^2 =$				D
	A) $\frac{8}{27}$	B) $\frac{2}{3}$	C) $\frac{4}{9}$	D) $\frac{9}{4}$	
13	$x^2 - y^2 = 60$ and $x + y = 5$, then $x - y =$				D
	A) 5	B) 60	C) 300	D) 12	
14	The solution set of the equation : $x^2 = 2$ in R is				D
	A) $\{\sqrt{2}\}$	B) $\{-\sqrt{2}\}$	C) {2}	D) $\{\sqrt{2}, -\sqrt{2}\}$	
15	The solution set of the equation : $x^2 + 2 = 0$ in R is				A
	A) \emptyset	B) $-\sqrt{3}$	C) $\sqrt{3}$	D) $\pm\sqrt{3}$	
16	The solution set of the equation : $x^3 + 8 = 0$ in R is				B
	A) {2}	B) {-2}	C) $\{2\sqrt[3]{2}\}$	D) {2, -2}	
17	The solution set of the equation : $x^3 + 9 = 8$ in R is				D
	A) {8}	B) {9}	C) {3}	D) {-1}	
18	The S.S of the equation : $(x^2 + 3)(x^2 + 1) = 0$ in R is				A
	A) \emptyset	B) {3, 1}	C) {-3, -1}	D) $\{\pm 3, \pm 1\}$	
19	The S.S of the equation : $(x^2 + 1)(x - 5) = 0$ in R is				B
	A) \emptyset	B) {5}	C) {5, ± 1 }	D) { ± 1 }	
20	The S.S of the equation : $(x^2 + 3)(x^3 + 1) = 0$ in R is				D
	A) \emptyset	B) {1}	C) $\{\pm 3, \pm 1\}$	D) {-1}	
21	The S.S of the equation : $(x^2 - 1)(x + 5) = 0$ in R is				C
	A) \emptyset	B) {-5}	C) {-5, ± 1 }	D) { ± 1 }	
22	The S.S of the equation : $x(x^3 - 1) = 0$ in R is				B
	A) \emptyset	B) {0, 1}	C) {0, ± 1 }	D) {1}	
23	If : $\frac{3}{a+2}$ is a rational number the a \neq				C
	A) 3	B) 5	C) -2	D) zero	
24	If $n \in \mathbb{Z}_+$, $n < \sqrt{26} < n + 1$, then a =				B
	A) 25	B) 5	C) 24	D) -5	

25	The irrational number in the following numbers is	A) $\sqrt{\frac{1}{9}}$	B) $\sqrt{\frac{1}{4}}$	C) $\sqrt{3}$	D) $\sqrt[3]{27}$	C
26	The irrational number lies between 2 and 3 is	A) $\sqrt{10}$	B) $\sqrt{7}$	C) 2.5	D) $\sqrt{3}$	B
27	The area of a square whose side length is $\sqrt{3}$ cm = cm^2	A) $4\sqrt{3}$	B) +	C) 3	D) 6	C
28	The square whose area is 10 cm^2 , its side length is cm	A) 5	B) - 5	C) $\sqrt{10}$	D) $-\sqrt{10}$	C
29	The multiplicative inverse of $\frac{\sqrt{3}}{3}$ is	A) $\sqrt{3}$	B) 1	C) 3	D) $-\sqrt{3}$	A
30	The multiplicative inverse of $\sqrt{5}$ is	A) $-\sqrt{5}$	B) $\frac{\sqrt{5}}{5}$	C) $5\sqrt{5}$	D) $\frac{5}{\sqrt{5}}$	B
31	The multiplicative inverse of $(\sqrt{3} + \sqrt{2})$ is	A) $\sqrt{3}$	B) $\sqrt{2}$	C) $\sqrt{3} + \sqrt{2}$	D) $\sqrt{3} - \sqrt{2}$	D
32	The additive inverse of $(3 - 2\sqrt{2})$ is	A) $3 + 2\sqrt{2}$	B) 3	C) 2	D) $2\sqrt{2} - 3$	D
33	$Q \cap Q' =$	A) $\{0\}$	B) \emptyset	C) R	D) Q	B
34	$Q \cup Q' =$	A) $\{0\}$	B) \emptyset	C) R	D) Q	C
35	$R_+ \cup R_- =$	A) R	B) Q	C) N	D) R^*	D
36	$\sqrt[3]{8} \in$ $]-\infty, 4[$	A) \in	B) \notin	C) \subset	D) $\not\subset$	A
37	$5 \in$ $]$	A) $]5, \infty[$	B) $]-\infty, 5[$	C) $(3, 5)$	D) $[-5, \infty[$	D

38	$R = \dots$ A) $R_+ \cup R_-$ B) $R_+ \cap R_-$ C) $]-\infty, \infty[$ D) $Q \cap Q'$	C
39	$R_+ = \dots$ A) $]0, \infty[$ B) $]-\infty, 0[$ C) $[0, \infty[$ D) $]-\infty, 0]$	A
40	$R_- = \dots$ A) $]0, \infty[$ B) $]-\infty, 0[$ C) $[0, \infty[$ D) $]-\infty, 0]$	B
41	The set of none-negative numbers = \dots A) $]0, \infty[$ B) $]-\infty, 0[$ C) $[0, \infty[$ D) $]-\infty, 0]$	C
42	The set of none-positive numbers = \dots A) $]0, \infty[$ B) $]-\infty, 0[$ C) $[0, \infty[$ D) $]-\infty, 0]$	D
43	$[2, 7] - \{2, 7\} = \dots$ A) \emptyset B) $[1, 6]$ C) $]2, 7[$ D) $\{0\}$	C
44	$[-2, 5] - \{-2, 6\} = \dots$ A) $] -2, 5[$ B) $] -2, 6[$ C) $] -2, 5]$ D) $[-2, 5[$	C
45	$]3, 5[\cup \{3, 5\} = \dots$ A) $]3, 5[$ B) $[3, 5[$ C) $]3, 5]$ D) $[3, 5]$	D
46	$] -2, 2] \cup \{-2, 0\} = \dots$ A) $] -2, 2[$ B) $[-2, 2[$ C) $] -2, 2]$ D) $[-2, 2]$	B
47	$[1, 3] \cup [2, 5[= \dots$ A) $]1, 5[$ B) $[1, 5[$ C) $]1, 5]$ D) $[1, 5]$	B
48	$] -\infty, 1] \cup [-4, \infty[= \dots$ A) R B) $[-4, \infty[$ C) $] -\infty, 1]$ D) Q	A
49	$] -1, 3] \cap [-3, -1] = \dots$ A) \emptyset B) $\{-1\}$ C) $\{-3\}$ D) $\{3\}$	B
50	$[1, 5] \cap] -2, 3] = \dots$ A) $\{1, 3\}$ B) $]1, 3[$ C) $[1, 3]$ D) $[1, 3[$	C
51	$N \cap]1, 2[= \dots$ A) \emptyset B) $\{1, 2\}$ C) $\{1\}$ D) $]1, 2[$	A

52	$[3, 7[-] - 2, 5] = \dots$	A) $]5, 7[$ B) $\{5, 7\}$ C) $] - 2, 3[$ D) $[3, 5]$	A
53	The additive neutral (identity) in R is	A) 0 B) 1 C) 2 D) 3	A
54	The multiplicative neutral (identity) in R is	A) 0 B) 1 C) 2 D) 3	B
55	If $a \in N$, $b \in Z$ and $c \in R$, then $a + b + c \in \dots$	A) N B) Z C) Q D) R	D
56	If $a \in R$ and $b \in R$. then $a - b$ means the sum of the number a and of inverse of the number b	A) 0 B) B C) Additive D) multiplicative	C
57	The number $(1 - \sqrt{3})(1 + \sqrt{3})$ is a number	A) Natural B) Rational C) Irrational D) Prime	B
58	The simplest form of the expression : $(\sqrt{3} - 1)^2(\sqrt{3} + 1)^2$ is	A) 3 B) 4 C) 13 D) 25	B
59	The multiplicative inverse of $(\sqrt{7} + \sqrt{3})(\sqrt{7} - \sqrt{3})$ is	A) 4 B) -4 C) $\frac{1}{4}$ D) $-\frac{1}{4}$	C
60	If : $x = \sqrt{5} + \sqrt{3}$, $y = \sqrt{5} - \sqrt{3}$, then $x - y = \dots$	A) $2\sqrt{3}$ B) $5\sqrt{3}$ C) $2\sqrt{5}$ D) 2	A
61	If : $x = \sqrt{7} + \sqrt{3}$, $y = \sqrt{7} - \sqrt{3}$, then $(x - y)^3 = \dots$	A) Zero B) 24 C) $24\sqrt{3}$ D) 196	C
62	The conjugate number of : $\sqrt{5} + \sqrt{3}$ is	A) $\sqrt{5} + \sqrt{3}$ B) $\sqrt{5} - \sqrt{3}$ C) $2\sqrt{3}$ D) $2\sqrt{5}$	B
63	The conjugate number of : $\frac{2}{\sqrt{5} - \sqrt{3}} = \dots$	A) $\sqrt{5} + \sqrt{3}$ B) $\sqrt{5} - \sqrt{3}$ C) $2\sqrt{3}$ D) $2\sqrt{5}$	B
64	The conjugate number of : $\sqrt{3} - \frac{5}{\sqrt{5}} = \dots$	A) $\sqrt{5} + \sqrt{3}$ B) $\sqrt{5} - \sqrt{3}$ C) $2\sqrt{3}$ D) $2\sqrt{5}$	A

65	If : $\frac{x}{5-\sqrt{5}} = 5 + \sqrt{5}$, then $x = \dots$	A) 25 B) 20 C) 15 D) 10	B
66	If : $\frac{1}{x} = \sqrt{5} - 2$, then $x = \dots$	A) $\sqrt{5} - 2$ B) $\sqrt{5} + 2$ C) $\sqrt{5} - 5$ D) 0	B
67	If : $x = \frac{2}{\sqrt{5}-\sqrt{3}}$ and $xy = 2$, then $y = \dots$	A) $\sqrt{5} + \sqrt{3}$ B) $\sqrt{5} - \sqrt{3}$ C) $2\sqrt{3}$ D) $2\sqrt{5}$	B
68	A rectangle of dimensions $(\sqrt{3} - 1)$, $(\sqrt{3} + 1)$ cm. its area is	A) 2 B) 4 C) $2\sqrt{3}$ D) $2\sqrt{5}$	A
69	If : $x = \sqrt{3} + 2$, $y = \sqrt{3} - 2$, then $(xy, x+y) = \dots$	A) (1, 1) B) (-1, 4) C) (-1, 9) D) (-1, $2\sqrt{3}$)	D
70	If : $x = \sqrt[3]{3} + 7$, $y = \sqrt[3]{3} - 7$, then $(x+y)^3 = \dots$	A) 3 B) 7 C) 24 D) 64	C
71	$\sqrt[3]{54} + \sqrt[3]{-2} = \dots$	A) $\sqrt[3]{52}$ B) $\sqrt[3]{2}$ C) $2\sqrt[3]{2}$ D) $4\sqrt[3]{2}$	C
72	$\sqrt[3]{2} + \sqrt[3]{2} = \dots$	A) $\sqrt[3]{2}$ B) $\sqrt[3]{4}$ C) $\sqrt[3]{8}$ D) $\sqrt[3]{16}$	C
73	$\sqrt[3]{\frac{2}{3}} \times \sqrt[3]{-12} = \dots$	A) 2 B) -2 C) 3 D) 5	B
74	$\sqrt[3]{24} + \sqrt[3]{-81} + \sqrt[3]{3} = \dots$	A) $\sqrt[3]{3}$ B) 0 C) $6\sqrt[3]{3}$ D) $-\sqrt[3]{3}$	B
75	If the side length of a square is L cm. and its area is 30 cm^2 , then the area of the square whose side length equals $2L$ cm. is	A) 30 B) 60 C) 120 D) 180	C

76	Volume of a cube whose edge length $2 L$ cm. is cm^3	A) $2 L$ B) $8 L$ C) $8 L^3$ D) L^3	C
77	The lateral area of a cube whose edge length is L cm. = cm^2	A) L^2 B) $4L^3$ C) L^3 D) $4L^2$	D
78	The edge length of a cube is 4 cm. , then its total area = cm^2 .	A) 4 B) 64 C) 96 D) 144	C
79	If the edge length of a cube is 5 cm. , then its volume = cm^3 .	A) 5 B) 25 C) 125 D) 325	C
80	The sum of lengths of all edges of a cube is 36 cm. , then its total area equals cm^2	A) 3 B) 12 C) 54 D) 36	C
81	If the volume of a cube is 216 cm^3 , then the length of its edge is	A) 6 B) 12 C) 24 D) 36	A
82	The edge length of a cube whose volume is 3 cm^3 is cm.	A) $\sqrt{3}$ B) 3 C) 1 D) $\sqrt[3]{3}$	D
83	The edge length of a cube whose volume is $2\sqrt{2} \text{ cm}^3$ is cm	A) $\sqrt{2}$ B) 2 C) 8 D) 1.5	A
84	If the volume of a cube is $40\sqrt{5} \text{ cm}^3$, then its edge length is cm.	A) $\sqrt{5}$ B) $8\sqrt{5}$ C) $2\sqrt{5}$ D) $5\sqrt{2}$	C
85	The volume of a cuboid whose dimensions are : $\sqrt{2}$, $\sqrt{3}$, $\sqrt{6}$ cm is cm^3	A) 6 B) 2 C) 3 D) 36	A
86	If a volume of a cube is 27 cm^3 , then the total area is cm^2	A) 3 B) 9 C) 36 D) 54	D
87	If a volume of a cube is 27 cm^3 , then the lateral area is cm^2	A) 3 B) 9 C) 36 D) 54	C
88	If a area of one face of a cube is 25 cm^2 , then it's volume = cm^3	A) 25 B) 5 C) 125 D) 1	C

89	Area of the square of side length is 21 cm. = cm ² A) 441 B) 400 C) 525 D) 625				A
90	The volume of a sphere which its diameter 6 cm. = cm ³ A) 4π B) 9π C) 36π D) 27π				C
91	A volume of the sphere equals $32\sqrt{3}\pi$ cm ³ , its radius length A) $\sqrt{3}$ cm B) 3 cm C) $2\sqrt{3}$ cm D) 9 cm				C
92	The radius length of a right circular cylinder whose volume is 40π cm ³ and its height 10 cm. = cm. A) 5 B) 3 C) 2 D) 1				C
93	If a volume of a cube is L^3 cm ³ , then the total area is cm ² A) $4L^3$ B) $6L^3$ C) $4L^2$ D) $6L^2$				D
94	The S.S. of equation : $\sqrt{2}x = 2$ in \mathbb{R} = A) $\{\sqrt{2}\}$ B) $\sqrt{2}$ C) $\{2\}$ D) $\{2\sqrt{2}\}$				B
95	The S.S. of equation : $x + \sqrt{2} = \sqrt{8}$ in \mathbb{R} = A) $\{\sqrt{2}\}$ B) $\sqrt{8}$ C) $\sqrt{6}$ D) $\sqrt{4}$				A
96	The S.S. of the inequality : $0 < x + 5 \leq 6$ in \mathbb{R} is (a) $[5, 11]$ (b) $[-1, 5]$ (c) $[-5, 1]$ (d) $[-5, 1]$				D
97	The S.S. of the inequality : $-x > 2$ in \mathbb{R} is (a) $\{2\}$ (b) $[-\infty, 2]$ (c) $[2, \infty]$ (d) $[-\infty, -2]$				D
98	If $-1 < -x \leq 5$, then the S.S. in \mathbb{R} is (a) $[-5, 1]$ (b) $[5, -1]$ (c) $[-5, 1]$ (d) $[-5, 1]$				A
99	The S.S. of equation : $\sqrt{2}x = 2$ in \mathbb{R} is (a) $\{\sqrt{2}\}$ (b) $\sqrt{2}$ (c) $\{2\}$ (d) $\{2\sqrt{2}\}$				B
100	$\{x : x \in \mathbb{R}, x < 1\} =$ (a) $0, -1, -2, \dots$ (b) $[-\infty, 1]$ (c) $[-\infty, 1]$ (d) $[-\infty, 0]$				C
101	If : $x \in \mathbb{R}, 1 - 7x > -8 $, then $x <$ (a) 1 (b) -1 (c) $\frac{9}{7}$ (d) 0				B

102	If : $2 < X < 5$, then $3X - 1 \in \dots$	(a)]3 , 12[(b)]6 , 14[(c)]5 , 15[(d)]5 , 14[D												
103	Which of the following represent linear relation ?	A) $Xy = 2$ B) $X^2 = \frac{1}{y}$ C) $\frac{X}{y} = 1$ D) $y = X^2 + 4$	C												
104	Which of the following satisfies the relation : $2X + y = 5$?	A) (-3 , 3) B) (1 , 3) C) (3 , 1) D) (2 , 2)	B												
105	(3 , 2) satisfies the relation	A) $Y + X = 5$ B) $Y - X = 5$ C) $3Y - X = 2$ D) $2X + Y = 1$	A												
106	(3 , 2) does not satisfy the relation	A) $Y + X = 5$ B) $X - Y = 1$ C) $Y + X = 7$ D) $3Y - X = 3$	C												
107	Value of b where (-3 , 2) satisfies the relation : $3X + by = 1$ is	A) 3 B) 5 C) 4 D) 0	B												
108	If : (a , 1) satisfies the relation : $2X + 3y = 7$, then a =	A) 2 B) -2 C) 4 D) 3	A												
109	If : (k , 2k) satisfies the relation : $3X + 2y = 14$, then k =	A) 2 B) -2 C) 7 D) 0	A												
110	The opposite table shows the relation between X and y , which is	(a) $y = X + 4$ (b) $y = X + 1$ (c) $y = 2X - 1$ (d) $y = 3X - 2$	<table border="1"> <tr> <td>x</td><td>1</td><td>2</td><td>3</td><td>4</td><td>5</td></tr> <tr> <td>y</td><td>1</td><td>3</td><td>5</td><td>7</td><td>9</td></tr> </table> C	x	1	2	3	4	5	y	1	3	5	7	9
x	1	2	3	4	5										
y	1	3	5	7	9										
111	The slope of the straight line parallel to the X – axis is	A) Positive B) Negative C) Zero D) Undefined	C												
112	The slope of the straight line parallel to the Y – axis is	A) Positive B) Negative C) Zero D) Undefined	D												
113	The slope of horizontal line is	A) 1 B) Zero C) -1 D) Undefined	B												
114	Slope of straight line passes through (-2 , 3) and (2 , 3) is	A) 2 B) 1 C) Zero D) Undefined	C												

115	Slope of straight line passes through (- 3 , 1) and (2 , 5) is A) $\frac{4}{5}$ B) $-\frac{6}{1}$ C) $\frac{5}{4}$ D) $-\frac{1}{6}$	A
116	Slope of straight line passes through (3 , y) and (5 , - 2) is - 3 , then y = A) 2 B) 4 C) 6 D) - 30	B
117	If the Slope of straight line $a X + b y + 1 = 0$ is undefined , then A) a = b B) a = zero C) b = zero D) a = - b	C
118	Relation : $X - 5 = 0$ is represented by a st. line whose slope is A) 0 B) - 5 C) 5 D) Undefined	D
119	In the opposite figure : The slope of the straight line L is (a) positive. (b) negative. (c) zero. (d) undefined.	 C
120	The slope of the straight line L in the opposite figure is (a) positive. (b) negative. (c) zero. (d) undefined.	 B
121	In the opposite figure : The slope of the straight line L is (a) zero. (b) undefined. (c) 1 (d) $\frac{1}{2}$	 C
122	The mean of the values : 2 , 5 , 4 , 5 is (a) 4 (b) 5 (c) 16 (d) 8	A

	If the arithmetic mean of the values : 27 , 8 , 16 , 24 , 6 and k is 14 , then k =	(a) 3	(b) 6	(c) 27	(d) 84	A
123	If the mean of marks of 5 pupils is 20 , then the total of their marks = marks.	(a) 4	(b) 15	(c) 25	(d) 100	D
124	The lowest limit of a set is 4 and the other limit is 8 , then its centre is	(a) 2	(b) 4	(c) 6	(d) 8	C
125	If the lowest boundary of a set is 10 and the upper boundary is X and its centre is 15 , then X =	(a) 10	(b) 15	(c) 20	(d) 30	C
126	If the lower limit of a set is 18 and its centre is 20 , then its length is	(a) 2	(b) 19	(c) 22	(d) 4	D
127	The arithmetic mean of the values : $3 - a$, 5 , 1 , 4 , $2 + a$ equals	(a) 1	(b) 2	(c) 3	(d) 15	C
128	The mean of the values : $2 - a$, 4 , 1 , 5 , $3 + a$ is	(a) 1	(b) 2	(c) 3	(d) 15	C
129	The order of the median of the set of values : 8 , 4 , 7 , 6 , 5 is	(a) 7	(b) 6	(c) 3	(d) 5	C
130	If the order of the median of a set of values is the fourth , then the number of these values is	(a) 3	(b) 5	(c) 7	(d) 9	C
131	If the median of the set of the values : 27 , 45 , 19 , 24 and 28 is X , then X =	(a) 24	(b) 27	(c) 28	(d) 45	B
132	The median of the values : 1 , 2 , 5 , 3 and 4 is	(a) 3	(b) 4	(c) 5	(d) 2	A
133						

134	The median of the set of the values : 3 , 6 , 6 , 7 , 9 , 11 , 13 , 14 , 15 and 20 is				B
	(a) 9	(b) 10	(c) 11	(d) 20	
135	The mode of the values : 3 , 5 , 3 , 6 , 3 and 8 is				A
	(a) 3	(b) 5	(c) 6	(d) 8	
136	If the mode of the set of the values : 4 , 11 , 8 , 2 x is 4 , then x =				A
	(a) 2	(b) 4	(c) 6	(d) 8	
137	The mode of the values : 15 , 9 , $x + 1$, 9 , 15 is 9 , then x =				D
	(a) 9	(b) 14	(c) 10	(d) 8	
138	The mode of the set of values : 5 , 9 , 5 , $x - 2$, 9 is 9 , then x =				D
	(a) 5	(b) 57	(c) 9	(d) 11	

Prep. [2]

First Term - Geometry

Final Revision

Part 2 - Problems

Mr. Mahmoud Esmaiel
01006487539 - 01110882717

الاسم

Exercises

[A] : Choose The Correct Answer : -

10	If \overline{AD} is a median of $\triangle ABC$, M is the point of intersection of its medians and $AM = 6 \text{ cm.}$, then $AD = \dots$	D
	(a) 12 cm. (b) 6 cm. (c) 18 cm. (d) 9 cm.	
11	oose the correct answer : In the opposite figure : AD is a median in $\triangle ABC$, M is the point of intersection of the medians, $MD = 2 \text{ cm.}$, then $AD = \dots \text{ cm.}$	C
	(a) 2 (b) 4 (c) 6 (d) 8	
12	In the right-angled triangle, the length of the median from the vertex of the right angle equals the length of hypotenuse.	A
	(a) half (b) twice (c) third (d) forth	
13	In $\triangle ABC$ which is right at B, if $AC = 20 \text{ cm.}$, then the length of the median of the triangle drawn from B equals	A
	(a) 10 cm. (b) 8 cm. (c) 6 cm. (d) 5 cm.	
14	The length of the side opposite to the angle of measure 30° in the right-angled the length of the hypotenuse.	B
	(a) twice (b) half (c) square (d) equals	
15	Triangle ABC : If $m(\angle A) = 30^\circ$, $m(\angle B) = 90^\circ$, then $BC = \dots$	B
	(a) $\frac{1}{2} AB$ (b) $\frac{1}{2} AC$ (c) $2 AB$ (d) $2 AC$	
16	In $\triangle ABC$ if : $m(\angle B) = 90^\circ$ and $m(\angle A) = 60^\circ$, then $AC = \dots AB$	A
	(a) 2 (b) = (c) $\frac{1}{2}$ (d) $\frac{1}{3}$	
17	In $\triangle ABC$: $m(\angle A) = 30^\circ$, $m(\angle B) = 90^\circ$, $AC = 10 \text{ cm.}$, then $BC = \dots \text{ cm.}$	D
	(a) 20 (b) 15 (c) 10 (d) 5	
18	In the rectangle ACBD, if $AC = 10 \text{ cm.}$, then $BD = \dots$	B
	(a) 5 (b) 10 (c) 15 (d) 20	
19	In any isosceles triangle, the type of the base angles is	A
	(a) acute. (b) right. (c) obtuse. (d) reflex.	
20	The base angles of the isosceles triangle are	A
	(a) congruent. (b) alternate. (c) corresponding. (d) supplementary.	

21	If measure of one of the two base angles of the isosceles triangle equals 40° then the measure of the vertex angle =°				B
(a) 40	(b) 100	(c) 80	(d) 50		
22	In ΔABC : $AB = AC$, $m(\angle B) = 50^\circ$, then $m(\angle A) = \dots \dots \dots$ °				B
(a) 65	(b) 80	(c) 50	(d) 100		
23	In the isosceles triangle , if the measure of one of the two base angle is 70° , then the measure of its vertex angle is				D
(a) 70°	(b) 110°	(c) 20°	(d) 40°		
24	In a triangle ABC : If $AB = AC$ and $m(\angle A) = 40^\circ$, then $m(\angle C) = \dots \dots \dots$				B
(a) 40°	(b) 70°	(c) 140°	(d) 50°		
25	If the measure of an angle of the isosceles triangle is 100° , then the measure of one of the other angles =				C
(a) 50°	(b) 80°	(c) 40°	(d) 100°		
26	The triangle whose sides lengths are 2 cm. , $(x + 1)$ cm and 5 cm. becomes an isosceles triangle when $x = \dots \dots$ cm.				D
(a) 1	(b) 2	(c) 3	(d) 4		
27	The triangle whose sides lengths are 3 cm. , $(x + 5)$ and 9 becomes an isosceles if $x = \dots \dots$ cm.				B
(a) 3	(b) 4	(c) 5	(d) 6		
28	In the opposite figure : ABC is a triangle in which : $m(\angle B) = m(\angle C)$, then $x = \dots \dots \dots$				B
(a) 1	(b) 2	(c) 3	(d) 4		
29	ABCD is a parallelogram : $DE = DC$, $m(\angle A) = 50^\circ$, then $m(\angle EDC) = \dots \dots \dots$				D
(a) 50°	(b) 60°	(c) 70°	(d) 80°		
30	In ΔABC : if $AB = AC$ and $m(\angle A) = 60^\circ$, if its perimeter is 18 cm. , then $BC = \dots \dots$ cm.				B
(a) 18	(b) 6	(c) 3	(d) 60		

31	ΔABC , $AB = AC$, D is the midpoint of \overline{BC} , then \overline{AD} is				D
	(a) median.		(b) altitude.		
	(c) bisector of the vertex angle.		(d) all the previous.		
32	The measure of exterior angle of an equilateral triangle =				C
	(a) 30°		(b) 60°		
	(c) 120°		(d) 180°		
33	In ΔXYZ : if $XY = XZ$, then the exterior angle at the vertex Z is				B
	(a) acute.		(b) obtuse.		
	(c) right.		(d) reflex.		
34	The axis of symmetry of a line segment is the straight line which is				D
	(a) Perpendicular to it.		(b) its bisector.		
	(c) parallel to it.		(d) the perpendicular bisector.		
35	If A \in the axis of symmetry of \overline{BC} , then $\overline{AB} \dots \overline{AC}$				B
	(a) \perp		(b) \equiv		
	(c) \parallel		(d) $=$		
36	The number of axis of symmetry in the scalene triangle is				B
	(a) 1		(b) zero		
	(c) 3		(d) 4		
37	The number of axes of symmetry in the isosceles triangle is				A
	(a) 1		(b) 2		
	(c) 3		(d) zero		
38	The equilateral triangle has axes of symmetry.				C
	(a) one		(b) two		
	(c) three		(d) otherwise		
39	The triangle which has no axes of symmetry is triangles.				A
	(a) scalene		(b) isosceles		
	(c) equilateral		(d) otherwise		
40	If ΔABC has one axes of symmetry and $m(\angle ABC) = 140^\circ$, then $m(\angle A) =$				B
	(a) 30°		(b) 20°		
	(c) 40°		(d) 60°		
41	ΔABC in which $m(\angle A) = m(\angle B) = 65^\circ$, then it has axis (axes) of symmetry.				A
	(a) 1		(b) 2		
	(c) 3		(d) zero		
42	The quadrilateral ABCD in which \overleftrightarrow{BD} is an axis of symmetry of \overline{AC} may by				A
	(a) a rhombus		(b) a rectangle		
	(c) a parallelogram		(d) a trapezium		

43	In ΔABC , $AB > AC$, then $m(\angle C) \dots m(\angle B)$	(a) $<$	(b) $>$	(c) $=$	(d) \leq	B
44	In ΔABC , $AB > AC$, $m(\angle C) = 70^\circ$, then $m(\angle B)$ may be	(a) 70°	(b) 50°	(c) 80°	(d) 75°	B
45	In ΔABC : $AB = AC$, $m(\angle B) = 65^\circ$, then $: AC \dots BC$	(a) $<$	(b) $>$	(c) $=$	(d) \leq	B
46	In ΔABC : If $AB = 9$ cm., $BC = 6$ cm., $AC = 7$ cm., then the smallest angle is	(a) $\angle BAC$	(b) $\angle ABC$	(c) $\angle ACB$	(d) $\angle BCA$	A
47	ΔXYZ , $m(\angle X) = 60^\circ$, $m(\angle Y) = 40^\circ$, then $XZ \dots XY$	(a) $<$	(b) $>$	(c) $=$	(d) nothing.	A
48	ΔABC , $m(\angle B) = 90^\circ$, then $AB \dots AC$	(a) $>$	(b) $=$	(c) $<$	(d) \geq	C
49	In ΔXYZ : If $m(\angle X) = 30^\circ$ and $m(\angle Y) = 80^\circ$, then	(a) $XY < XZ$	(b) $XY > XZ$	(c) $XY = XZ$	(d) $XY < YZ$	A
50	The triangle in which the measure of two angles are 74° and 53° is triangle.	(a) a right-angled	(b) an isosceles	(c) an equilateral	(d) a scalene	B
51	In ΔABC if : $m(\angle B) = 60^\circ$ and $m(\angle C) = 50^\circ$, then the shortest side in triangle ABC is	(a) \overline{AC}	(b) \overleftrightarrow{BC}	(c) \overline{BC}	(d) \overline{AB}	D
52	In the triangle ABC, if $m(\angle B) = 90^\circ$, then the greatest side in length is	(a) \overline{AB}	(b) \overline{BC}	(c) \overline{AC}	(d) \overline{XY}	C
53	The triangle ABC is obtuse-angled triangle at B, then the longest side is	(a) AB	(b) BC	(c) AC	(d) AD	C
54	ΔXYZ is right-angled at Y, then $XZ \dots YZ$	(a) $=$	(b) $>$	(c) \leq	(d) $<$	B

55	In ΔABC : $m(\angle B) + m(\angle C) = 3 m(\angle A)$, then $m(\angle A) = \dots \circ$				C
56	The sum of lengths of any two sides in any triangle the length of the third side.				B
57	If the lengths of two sides in an isosceles triangle are 2 cm. and 5 cm. , then the length of the third side is cm.				C
58	ΔABC , $AB = 2$ cm. , $BC = 7$ cm. , then AC may equal				D
59	The lengths of two sides in a triangle are 4 cm. and 9 cm. and it has one axis of symmetry , then the length of third side is				C
60	In ΔABC if : $AB = 3$ cm. and $BC = 5$ cm. , then $AC \in \dots$				C
61	Which of the following can be sides to draw the triangle				C
	(a) 5 cm. , 6 cm. , 12 cm. (b) 5 cm. , 6 cm. , 11 cm. (c) 5 cm. , 6 cm. , 4 cm. (d) 4 cm. , 6 cm. , 10 cm.				
62	How many different triangles can be formed with sides of lengths a whole number of cm. and each with perimeter 7 cm. ?				B
	(a) 1 (b) 2 (c) 3 (d) 4				
63	If the length of one side of a triangle is 5 cm. , then which of the following could be the lengths of the other two sides ?				D
	(a) 2 cm. and 3 cm. (b) 7 cm. and 2 cm. (c) 2 cm. and 2 cm. (d) 4 cm. and 6 cm.				
64	In the triangle ABC , $AC \dots (AB - BC)$				A
	(a) $>$ (b) \geq (c) \leq (d) $<$				

Answer the following questions:

❖ Choose the correct answer from the given ones:

- 1) If The radius length of a sphere is 6cm. then its volume is.....
(a) $6\pi \text{ cm}^3$ (b) $36\pi \text{ cm}^3$ (c) $72\pi \text{ cm}^3$ (d) $288\pi \text{ cm}^3$
- 2) If The lowest boundary of a set is 10 and the upper boundary is x and its centre is 15, then $x =$
(a) 10 (b) 15 (c) 20 (d) 30
- 3) $(2\sqrt[3]{2})^3 =$
(a) 4 (b) 8 (c) 16 (d) 40
- 4) The median of the values :34 , 23 , 25 , 40 , 22 , 4 is.....
(a) 22 (b) 23 (c) 24 (d) 25
- 5) If The arithmetic mean of the values: 27 , 8 , 16 , 24 , 6 , k is 14 , then $k =$
(a) 3 (b) 6 (c) 27 (d) 84
- 6) If The volume of a cube is 27 cm^3 . , then the area of one of its faces is
(a) 3 cm^2 (b) 9 cm^2 (c) 36 cm^2 (d) 54 cm^2
- 7) If The mode of the set of value: 4 , 11 , 8 , 2 , x is 4 , then $x=$
(a) 2 (b) 4 (c) 6 (d) 8
- 8) If The arithmetic mean of the set of values: 18 , 23 , 29 , $2k - 1$, k is 18 , then $k=$
(a) 1 (b) 7 (c) 29 (d) 90

9) If The lowest limit of a set is 4 and the upper limit is 8 , then
its centre is

10) If $\frac{3}{4}$ The volume of a sphere is $8\pi \text{ cm}^3$, then its radius length is.....

$$11) \sqrt{3\frac{3}{8}} = \sqrt{\text{.....}}$$

- (a) $\frac{3}{8}$ (b) $\frac{8}{3}$ (c) $\frac{27}{8}$ (d) $\frac{729}{64}$

12) IF : $x = \sqrt{7} + \sqrt{2}$ and $y = \sqrt{7} - \sqrt{2}$, then $x - y = \dots$

- (a) $7\sqrt{2}$ (b) $2\sqrt{2}$ (c) $\sqrt{41}$ (d) $2\sqrt{2}$

13) $\sqrt{3} (\sqrt{11} + \sqrt{3}) = \dots$

- (a) $3\sqrt{11} + 2$ (b) $\sqrt{33} + 3$ (c) $11\sqrt{3} + 2$ (d) $2\sqrt{11} + 3$

14) If the order of the median of a set of values is the fourth , then number of values is.....

- (a) 3 (b) 5 (c) 7 (d) 9

15) If The mode of the set of values : $5, 9, 5, x - 2, 9$ is 9, then $x = \dots$

16) The number $(1 - \sqrt{3})(1 + \sqrt{3})$ is a number

- (a) natural (b) rational (c) irrational (d) prime

17) If the beginning of a set is 18 and its centre is 20 , then its length is

18) $[-1, 3] \cap [-3, -1]$ equals

- (a) \emptyset (b) $\{-3\}$ (c) $\{-1\}$ (d) $\{3\}$

19) The S.S of the equation: $x^2 + 3 = 0$ in \mathbb{R} is =

- (a) \emptyset (b) $\{-\sqrt{3}\}$ (c) $\{\sqrt{3}\}$ (d) $\{\pm\sqrt{3}\}$

20) The simplest form of the expression : $(\sqrt{3} - 1)^2 (\sqrt{3} + 1)^2$ is

- (a) $2(\sqrt{3} - 1)$ (b) $(\sqrt{3} + 1)^2$ (c) 4 (d) 13

21) R =

- (a) $\mathbb{R}_+ \cup \mathbb{R}_-$ (b) $\mathbb{Q} \cap \mathbb{Q}$ (c) $]-\infty, \infty]$ (d) $\mathbb{R}_+ \cap \mathbb{R}_-$

22) The multiplicative inverse of the number $\sqrt{5}$ is

- (a) $\frac{5}{\sqrt{5}}$ (b) $-\sqrt{5}$ (c) $\frac{\sqrt{5}}{5}$ (d) $5\sqrt{5}$

22) The order of the median of a set of values : 8 , 4 , 7 , 6 , 5 is.....

- (a) 7 (b) 6 (c) 3 (d) 5

23) If $x = \sqrt{3} + 2$ and $y = \sqrt{3} - \sqrt{2}$, then $(x^y, x+y) = \dots$

- (a) $(-1, 2\sqrt{3})$ (b) $(1, 2\sqrt{3})$

(c) $(5, 2\sqrt{3})$ (d) $(-1, 4)$

24) If : $(2, -5)$ satisfies the relation :

$$3x - y + c = 0, \text{ then } c = \dots$$

25) $]-3, 5] \cap [0, 3[= \dots$

- (a) $[0, 3]$ (b) $[0, 3[$ (c) $]-3, 0[$ (d) $[3, 5[$

26) $(3, 2)$ satisfies the relation.....

- | | |
|------------------|------------------|
| (a) $y + x = 5$ | (b) $y - x = 5$ |
| (c) $3y + x = 2$ | (d) $2x + y = 1$ |

27) IF : $x = \sqrt{7} + \sqrt{3}$, $y = \sqrt{7} - \sqrt{3}$, then $x \cdot y = \dots$

- | | | | |
|-------|--------|--------|--------|
| (a) 4 | (b) 10 | (c) 40 | (d) 58 |
|-------|--------|--------|--------|

28) If the order of the median of a set of values is the fourth , then number of these values is.....

- | | | | |
|-------|-------|-------|-------|
| (a) 3 | (b) 5 | (c) 7 | (d) 9 |
|-------|-------|-------|-------|

29) $\frac{1}{2} \sqrt{20} + 10 \sqrt{\frac{1}{5}} = \dots$

- | | | | |
|-----------------|-----------------|-------|--------|
| (a) $3\sqrt{5}$ | (b) $4\sqrt{5}$ | (c) 5 | (d) 12 |
|-----------------|-----------------|-------|--------|

29) The median of the values : $34, 23, 25, 40, 22, 14$ is.....

- | | | | |
|--------|--------|--------|--------|
| (a) 22 | (b) 33 | (c) 24 | (d) 25 |
|--------|--------|--------|--------|

30) The S.S of the equation: $x^3 + 27 = 0$ in $\mathbb{R} = \dots$

- | | | | |
|-------------|--------------|---------------------|---------------------------------|
| (a) $\{3\}$ | (b) $\{-3\}$ | (c) $\{3\sqrt{3}\}$ | (d) $\{3\sqrt{3}, -3\sqrt{3}\}$ |
|-------------|--------------|---------------------|---------------------------------|

31) IF : $x = \sqrt{5} + \sqrt{2}$, $y = \sqrt{5} - \sqrt{2}$, then $x - y = \dots$

- | | | | |
|-----------------|-----------------|-----------------|-------|
| (a) $2\sqrt{2}$ | (b) $5\sqrt{2}$ | (c) $2\sqrt{5}$ | (d) 3 |
|-----------------|-----------------|-----------------|-------|

32) If : $-2 < x > -6$, then $x \in \dots$

- | | | | |
|--------------------|-------------------|----------------|--------------|
| (a) $]-\infty, 3[$ | (b) $]3, \infty[$ | (c) $]-2, -6[$ | (d) $]1, 3[$ |
|--------------------|-------------------|----------------|--------------|

33) The lateral surface area of right circular cylinder =.....

- (a) πrh (b) $4\pi r^2$ (c) $\pi r^2 h$ (d) $2 \pi rh$

34) If : $\frac{3}{a+2}$ is a rational number then $a \neq$

- (a) 3 (b) 5 (c) -2 (d) zero

35) The mean of the values : 7 , 15 , 19 , 14 and 15 is.....

- (a) 14 (b) 15 (c) 16 (d) 17

36) The solution set for the equation: $x^3 + 9 = 8$ in \mathbb{R} is.....

- (a) { 8 } (b) { 9 } (c) { 3 } (d) { -1 }

37) The multiplicative inverse of $\frac{\sqrt{3}}{6}$ is.....

- (a) $\frac{-\sqrt{3}}{6}$ (b) $6\sqrt{3}$ (c) $2\sqrt{3}$ (d) $-2\sqrt{3}$

38) The mode of the values: 2 , 5 , 3 , 6 , 3 and 8 is.....

- (a) 3 (b) 5 (c) 6 (d) 8

39) $[1 , 5] \cap [-2 , 3] =$

- (a) { 1 , 3 } (b)] 1 , 3 [(c) [1 , 3] (d) [1 , 3 [

40) The arithmetic mean of the values: $3 - a , 5 , 1 , 4 , 2 + a$ equals

:.....

- (a) 1 (b) 2 (c) 3 (d) 15

41) $[2 , 7] - \{ 2 , 7 \} =$

- (a) [1 , 6] (b) \emptyset (c)] 2 , 7 [(d) [2 , 7]

42) The radius length of a right circular cylinder whose volume is $40 \pi \text{ cm}^3$ and its height 10 cm=..... cm

- (a) 5 (b) 3 (c) 2 (d) 1

43) If : (-1 , 5) satisfies the relation : $3x + k y = 7$, then $k= \dots$

(a) -2

(b) 8

(c) $\frac{4}{5}$

(d) 2

44) Let A (3 , -5) , B(5 , -1), then the slope of AB =.....

(a) $-\frac{1}{3}$

(b) -3

(c) 3

(d) $\frac{1}{3}$

45) If the mean of the ages of 5 students is 15 years , then the total of their ages isyears.

(a) 75

(b) 3

(c) 50

(d) 25

46) If The mode of the value : 5 , 7 , 21 , 7 , 10,7 is =.....

(a) 7

(b) 6

(c) 5

(d) 21

47) $\sqrt[3]{(-8)^2} = \dots$

(a) 2

(b) -2

(c) 4

(d) -4

48) The irrational number lies between 3 and 4 is

(a) 3.5

(b) $\frac{1}{8}$ (c) $\sqrt{20}$ (d) $\sqrt{13}$

49) Which of the following ordered pairs satisfies the relation:

$$2x + y = 5?$$

(a) (-3 , 3)

(b) (1 , 3)

(c) (3 , 1)

(d) (2 , 2)

50) The median of the set of values :15 , 22 , 9 , 11 and 33 is.....

(a) 9

(b) 15

(c) 18

(d) 90

51) The S.S of the inequality: $-x > 3$ in R is.....

(a) {3}

(b)]3 , ∞ [(c)] $-\infty$, 3 [(d)] $-\infty$, -5 [

52) If : (2m , m)satisfies the relation : $2x+3y = 35$, then m =.....

(a) 7

(b) 5

(c) 14

(d) 10

53) The edge length of a cube whose volume is 3 cm^3 .=.....cm

- (a) $\sqrt{3}$ (b) 3 (c) -3 (d) $\sqrt[3]{3}$

54) The S.S of the equation: $\sqrt{2}x = 2$ in R is =

- (a) $\{\sqrt{2}\}$ (b) {2} (c) $\sqrt{2}$ (d) $\{2\sqrt{2}\}$

55) The slope of the straight line parallel to y-axis is

- (a) positive (b) negative (c) zero (d) undefined

32) The solution set for the equation: $x^2 = 2$ in R is=

- (a) $\{\sqrt{2}\}$ (b) $\{-\sqrt{2}\}$ (c) {2} (d) $\{\sqrt{2}, -\sqrt{2}\}$

56) The cube whose volume is 8 cm^3 .then its total area =.....

- (a) 16 (b) 24 (c) 96 (d) 4

57) The slope of the straight line passes through (-3 , 1) and

(2 , 5) =.....

- (a) $\frac{4}{5}$ (b) $-\frac{6}{1}$ (c) $\frac{5}{4}$ (d) $-\frac{1}{6}$

58) $\sqrt{8} - \sqrt{2} =$

- (a) $\sqrt{2}$ (b) 2 (c) $\sqrt{6}$ (d) 4

59) If The lowest boundary of a set is 10 and the upper boundary

is x and its centre is 15, then x

- (a) 10 (b) 15 (c) 20 (d) 30

60) The arithmetic mean of the values: 9 , 6 , 5 , 14 , k is 7 ,then

k =.....

- (a) 1 (b) 5 (c) 34 (d) 35

61) The order of the median of a set of values 4 , 5 , 6 , 7 , 8
is.....

- (a) third (b) fourth (c) fifth (d) sixth

62) If The radius lengthof a sphere is 3 cm. then its volume is.....
(a) $4\pi \text{ cm}^3$ (b) $9\pi \text{ cm}^3$ (c) $27\pi \text{ cm}^3$ (d) $36\pi \text{ cm}^3$

63) The multiplicative inverse of the number $\sqrt{7}$ is.....
(a) $-\sqrt{7}$ (b) $\frac{-1}{\sqrt{7}}$ (c) $\frac{\sqrt{7}}{7}$ (d) $\frac{7}{\sqrt{7}}$

64) The S.S of the inequality: $-1 < x+3 <$ in R is.....
(a) $[-4, 0]$ (b) $[2, 6]$ (c) $]6, 6[$ (d) $] -4, 0 [$

65) The order of the median of a sets of values 4 , 7 , 8 , 6 , 5 is.....
(a) the third (b)the fourth (c)the fifth (d) the second

66) The mode of the sets of value : 14 , 11 , 10 , 11 , 14,15 , 11
is.....

- (a) 14 (b) 11 (c) 15 (d) 10

67) The volume of a sphere which is diameter 6 cm. =.....
(a) 4π (b) 9π (c) 27π (d) 36π

68) The volume of a sphere equals $32\sqrt{3}\pi \text{ cm}^3$, then its radius
length.....

- (a) $\sqrt{3}\text{cm}$ (b) 3 cm (c) $2\sqrt{3}$ cm (d) 9cm

69) The value of b where $(-3 , 2)$ satisfies the relation: $3x + b = 1$
is.....

- (a) 3 (b) 5 (c) 4 (d) 0

70) The volume of a cube is $40\sqrt{5}\text{cm}^3$, then its edge length is.....cm.

- (a) $\sqrt{5}$ (b) $8\sqrt{5}$ (c) $2\sqrt{5}$ (d) $5\sqrt{2}$

71) If : (a , 1)satisfies the relation : $2x+3y=7$, then a =.....

- (a) 2 (b) -2 (c) 4 (d) 3

MR.AHMED SHAMEKH

01010354592

SERIES

ALSHAMEKH

AT MATH

72) The median of the values :2 , 8 , 6 , 4 and 5 is.....

- (a) 2 (b) 4 (c) 6 (d) 5

73) $\sqrt[3]{24} + \sqrt[3]{-81} + \sqrt[3]{3} = \dots$

- (a) $\sqrt[3]{3}$ (b) 0 (c) $6\sqrt[3]{3}$ (d) $-\sqrt[3]{3}$

74) $|\sqrt[3]{-125}| = \sqrt{\dots}$

- (a) -5 (b) 5 (c) 25 (d) -25

75) $\sqrt{9} + \sqrt[3]{-8} = \dots$

- (a) 1 (b) 5 (c) 6 (d) $-\sqrt{3}$

76) The S.S of the inequality: $-x > 5$ is.....

- (a) $\{-5\}$ (b) $[5, \infty [$ (c) $]-\infty, 5[$ (d) $]-\infty, -5[$

77) $[3, 6] \cap [4, 7] = \dots$

- (a) $[3, 7]$ (b) $[4, 6[$ (c) $[4, 6[$ (d) $\{4, 6\}$

78) The mean of the values :7 , 7 , 5 , 3 and 6 is.....

- (a) 7 (b) 5.6 (c) 6 (d) 28

79) The volume of a cube is 27 cm^3 ., then its lateral area..... cm^2 .

- (a) 9 (b) 27 (c) 36 (d) 5

80) $\sqrt{25} = \sqrt[3]{\dots}$

- (a) 5 (b) 15 (c) 125 (d) -5

81) The multiplicative inverse of the number $\sqrt{3}$ is

- (a) 3 (b) $\frac{1}{3}$ (c) $-\sqrt{3}$ (d) $\frac{\sqrt{3}}{3}$

82) The median of the values :11 , 10 , 12 , 9,19 is.....

- (a) 9 (b) 10 (c) 11 (d) 19

81) The multiplicative inverse of the number $\sqrt{3}$ is

- (a) 3 (b) $\frac{1}{3}$ (c) $-\sqrt{3}$ (d) $\frac{\sqrt{3}}{3}$

82) The median of the values :11 , 10 , 12 , 9, 19 is.....

83) The irrational number lies between 2 and 3 is

- (a) $\sqrt{10}$ (b) $\sqrt{7}$ (c) 2.5 (d) $\sqrt{3}$

33) IF : $x^3 + 9 = 1$ where $x \in \mathbb{R}$, then $x = \dots$

- (a) -8 (b) -2 (c) 2 (d) 8

84) If : $(2k, k)$ satisfies: $2x+3y=35$, then $k=.....$

85) The volume of a sphere whose its diameter 6 cm^3 =.....

$$86) [2, 7] - \{2, 7\} = \dots$$

- (a) $[2, 6]$ (b) \emptyset (c) $]2, 7[$ (d) $\{0\}$

Answer the following questions :-

(1) Choose the correct answer :

- 1) Each of the two base angles in a triangle that has one axis of symmetry is angle
 - a) a straight
 - b) an obtuse
 - c) a right
 - d) an acute
- 2) If the ratio between the length of each side of a triangle and its perimeter is $1 : 3$, then the number of axis of symmetry of this triangle is
 - a) zero
 - b) 1
 - c) 2
 - d) 3
- 3) ABC is a right-angled triangle at B, \overline{BD} is a median in it and $BD = 5 \text{ cm}$, then $AC = \dots \text{ cm}$
 - a) 2.5 cm
 - b) 10 cm
 - c) $\frac{10}{3} \text{ cm}$
 - d) 7.5 cm
- 4) In the opposite figure :

$M(\angle B) = \dots$

 - a) 25°
 - b) 50°
 - c) 65°
 - d) 70°
- 5) If the angles of a triangle are congruent, then this triangle is triangle.

a) a right-angled	b) an isosceles
c) an obtuse	d) an equilateral

6) In the opposite figure :

$$m(\angle ACE) = \dots\dots\dots$$

- a) 120°
- b) 70°
- c) 65°
- d) 110°

7) If the measure of one of the two base angles in an isosceles triangle is 30° then the triangle is

- a) an obtuse-angled triangle
- b) an acute-angled triangle
- c) a right-angled triangle
- d) an equilateral triangle

8) $\triangle ABC$ which is right-angled at B , $m(\angle A) = 45^\circ$, then number of its symmetric line =

- a) zero
- b) 1
- c) 2
- d) 3

9) The point of intersection of the medians of a triangle divides each of them in the ratio from the vertex.

- a) $3 : 2$
- b) $1 : 2$
- c) $2 : 1$
- d) $3 : 1$

10) $\triangle ABC$ in which : $m(\angle A) = 50^\circ$, $m(\angle B) = 65^\circ$, then

- a) $m(\angle A) = m(\angle C)$
- b) $AB = BC$
- c) $m(\angle C) = 50^\circ$
- d) $AB = AC$

11) In the opposite figure :

$\triangle ABC$ is equilateral , then $m(\angle ACD)$

$$= \dots\dots\dots$$

- a) 45°
- b) 60°
- c) 120°
- d) 135°

12) In $\triangle ABC$ which is right-angled at B , if $AC = 20 \text{ cm}$, then the length of the median of the triangle drawn from B equals.....

- a) 10 cm b) 8 cm c) 6 cm d) 5 cm

13) XYZ is a triangle in which : $m(\angle Z) = 70^\circ$ and $m(\angle Y) = 60^\circ$, then $YZ \dots XY$

- a) $>$ b) $<$ c) $=$ d) twice

14) The length which can be lengths of a triangle are

- a) 0, 3, 5 b) 3, 3, 5 c) 3, 3, 6 d) 3, 3, 7

15) The triangle in which the measure of two angles of it are 42° and 69° is

- a) an isosceles triangle. b) an equilateral.
c) a scalene triangle. d) a right-angled triangle

16) The triangle which has three axes of symmetry is

Triangle.

- a) scalene. b) isosceles. c) right-angled d) equilateral

17) The sum of lengths of two sides in a triangles is the length of the third side.

- a) greater than b) smaller than
c) equals to d) twice

18) If the lengths of two sides in an isosceles triangle are 8 cm, and 4 cm , then the length of the third side is cm

- a) 4 b) 8 c) 3 d) 12

- 19) In $\triangle ABC$ if $m(\angle B) = 130^\circ$, then the longest side of it is
- a) \overline{BC} b) \overline{AC} c) \overline{AB} d) its median
- 20) $\triangle XYZ$ is an isosceles triangle in which : $m(\angle X) = 100^\circ$, then
 $m(\angle Y) = \dots \circ$
- a) 100 b) 80 c) 60 d) 40
- 21) The measure of the exterior angle of the equilateral triangle equals
- a) three b) two c) one d) no one
- 22) $\triangle ABC$ in which : $m(A) = 50^\circ$, $m(\angle B) = 60^\circ$, then the longest side of it is
- a) \overline{AB} b) \overline{AC} c) \overline{BC} d) \overline{CB}
- 23) $\triangle XYZ$ is right-angled at Y, then $XZ \dots YZ$
- a) $>$ b) $<$ c) $=$ d) \leq
- 24) The length of the median drawn from the vertex of the right angle in the right-angled triangle = hypotenuse.
- a) third b) quarter c) half d) twice
- 25) If the measure of one of the two base angles in the isosceles triangle is 40° , then the measure of the vertex angle is
- a) 100° b) 55° c) 70° d) 110°
- 26) Which of the following numbers can be the lengths of sides of a triangle?
- a) 4, 6, 10 b) 4, 6, 8 c) 2, 3, 6 d) 4, 5, 10

27) The number of axes of symmetry of the isosceles triangle equals

- a) 3 b) 2 c) 1 d) zero

28) If $\triangle ABC$ is a right-angled at B , AB = 6 cm , and BC = 80 cm, then the length of the median drawn from B is cm.

- a) 10 b) 8 c) 6 d) 5

29) $\triangle ABC$ in which $m(\angle B) > m(\angle C)$, then AC AB.
 a) greater than b) smaller than
 c) equals d) smaller than or equals

30) The number of axes of symmetry in the isosceles triangle
 $=$

- a) 1 b) 2 c) 3 d) 4

31) The point of concurrence of the medians of the triangle divides each median in the ratio : from the base.

- a) 2 : 1 b) 1 : 1 c) 5 : 10 d) 4 : 2

32) In the triangle ABC , if : AB = AC and $m(\angle A) = 40^\circ$, then:
 $m(\angle C) =$

- a) 40° b) 50° c) 70° d) 140°

33) In the triangle ABC , if : AB > AC , then : $m(\angle C)$ $m(\angle B)$.

- a) $<$ b) $>$ c) $=$ d) \leq

34) The length of the median drawn from the vertex of the right angle in the right-angled triangle = the length of the hypotenuse of the triangle.

- a) 2 b) $\frac{1}{3}$ c) $\frac{1}{2}$ d) $\frac{1}{4}$

35) $\triangle ABC$ in which : $m(\angle B) = 70^\circ$, $m(\angle C) = 50^\circ$, then

$BC \dots AB$

- a) $>$ b) $<$ c) $=$ d) \equiv

36) The number of axes of symmetry in the equilateral triangle =

- a) 0 b) 2 c) 3 d) 1

37) If the length of two sides in a triangle is 3 , 7 , then the length of the third side is

- a) 3 b) 8 c) 4 d) 10

38) If the length of median drawn from a vertex of a triangle equals half the length of the opposite side to this vertex then the angle at this vertex is

- a) acute b) obtuse c) reflex d) right

39) \overline{AD} is a median of $\triangle ABC$ where M is the point of intersection of its median then $AM = \dots AD$

- a) $\frac{1}{3}$ b) $\frac{2}{3}$ c) $\frac{1}{2}$ d) 2

40) The triangle ABC , $m(\angle B) = 70^\circ$, $m(\angle C) = 50^\circ$, then
 $BC \dots AB$.

- a) $<$ b) $>$ c) \leq d) $=$

41) If AD is a median of triangle ABC , M is the point of intersection of the medians of triangle ABC , then

$$AM = \dots \quad AD$$

- a) $\frac{1}{2}$
- b) 2
- c) $\frac{1}{3}$
- d) $\frac{2}{3}$

42) In triangle ABC , if $m(\angle C) = 60^\circ$, $m(\angle B) = 90^\circ$, then

$$AC = \dots$$

- a) $2 BC$
- b) $\frac{1}{2} BC$
- c) $2 AB$
- d) $\frac{1}{2} AB$

43) The measure of exterior angle of an equilateral triangle

$$= \dots$$

- a) 60°
- b) 90°
- c) 120°
- d) 180°

44) The numbers 4 , , 7 can be length sides of a triangle.

- a) 11
- b) 3
- c) 6
- d) 2

45) In $\triangle XYZ$ if $XY = YZ = XZ$, then $m(\angle X) = \dots$

- a) 30°
- b) 60°
- c) 90°
- d) 180°

46) The measure of the exterior angle of the equilateral triangle

$$= \dots$$

- a) 60°
- b) 90°
- c) 120°
- d) 180°

47) If $\triangle ABC$ is right-angled at A and $AB = AC$, then $m(\angle B)$

$$= \dots$$

- a) 30°
- b) 45°
- c) 60°
- d) 90°

48) If the measure of one of the two base angles in the isosceles triangle = 30° , then the triangle is

- a) obtuse-angled.
- b) acute-angled
- c) right-angled
- d) equilateral triangle.

49) In $\triangle XYZ$, if $XY = XZ$, then the exterior angle at the vertex Z is

- a) acute
- b) obtuse
- c) right
- d) reflex

50) In $\triangle ABC$: if $CA = CB$ and $m(\angle C) = m(\angle A)$, then $m(\angle B)$ =

- a) 30°
- b) 60°
- c) 90°
- d) 120°

51) If the sum of measures of two congruent angles in a triangle = $\frac{2}{3}$ the sum of measures of its angles, then the triangle is

- a) right-angled
- b) isosceles
- c) equilateral
- d) scalene

52) If ABCD is a quadrilateral in which $AB = AD$ and $BC = DC$, then \overrightarrow{AC} is \overrightarrow{BD}

- a) parallel to
- b) equal
- c) the axis of symmetry of
- d) congruent to

53) The triangle whose sides lengths are 2 cm, $(x+3)$ cm, and 5cm becomes an isosceles triangle when $x = \dots$ cm.

- a) 1
- b) 2
- c) 3
- d) 4

54) If the length of any side in a triangle = $\frac{1}{3}$ of the perimeter of

the triangle , then the number of axes of symmetry of the triangle =

- a) 1 b) 2 c) 3 d) zero

55) If \overrightarrow{XY} is the axis of symmetry of \overline{AB} , then

- a) $AX = BY$ b) $AX = BX$ c) $BY = XY$ d) $AY = BX$

56) In the rhombus ABCD , the axis of symmetry of \overline{AC} is

- a) \overrightarrow{BD} b) \overrightarrow{AB} c) \overrightarrow{AD} d) \overrightarrow{CD}

57) In the square ABCD , \overrightarrow{BD} is the axis of symmetry of

- a) \overrightarrow{AB} b) \overrightarrow{AC} c) \overrightarrow{AD} d) \overrightarrow{CD}

58) If m is the point of intersection of the medians of $\triangle ABC$ and D is the midpoint of \overline{BC} , then $AD = \dots$

- a) 2 AM b) $\frac{2}{3}$ AM c) $\frac{3}{2}$ AM d) 4 MD

59) The point of intersection of the medians of the triangle divides each of them with the ratio : from the vertex.

- a) 2 : 1 b) 1 : 2 c) 3 : 1 d) 3 : 2

60) If M is the point of intersections of the medians of the triangle in $\triangle ABC$ and \overline{AX} is a median of length 6 cm , then AM equals

- a) 1 cm b) 2 cm c) 3 cm d) 4 cm

- 61) ABCD is a rectangle ,M is the point of intersection of its diagonals. If the length of the diagonal is 6 cm , then the length of the median \overline{AM} equals
- a) 2 cm b) 3 cm c) 6 cm d) 12 cm
- 62) The measure of the exterior angle of the equilateral triangle equals
- a) 30° b) 60° c) 90° d) 120°
- 63) If the measure of the vertex angle of the isosceles triangle equals 50° , then the measure of each angle of its base equals.....
- a) 40° b) 65° c) 70° d) 130°
- 64) If the measure of one of the two base angles of the isosceles triangle equals 40° , then the measure of the vertex angle is
- a) 40° b) 50° c) 80° d) 100°
- 65) The two base angles of the isosceles triangle are
- a) complementary b) supplementary
c) congruent d) straight angles
- 66) The axis of symmetry of the line segment is the straight line which
- a) is parallel to the line segment.
b) is perpendicular to the line segment.
c) bisects the line segment.
d) is the perpendicular bisector of the line segment.

- 67) If $XA = XB$ and $YA = YB$, then $\overline{XY} \dots \overline{AB}$
- a) // b) \perp c) = d) \equiv
- 68) If A lies on the axis of symmetry of \overline{XY} , then $\overline{AX} \dots \overline{AY}$
- a) // b) \perp c) = d) \equiv
- 69) In $\triangle ABC$ if $m(\angle B) > m(\angle C)$, then
- a) $AB < AC$ b) $AB = AC$ c) $AB > AC$ d) $\overline{AB} \equiv \overline{BC}$
- 70) In $\triangle XYZ$ if $XY < XZ$, then
- a) $m(\angle Y) < m(\angle Z)$ b) $m(\angle Y) > m(\angle Z)$
 c) $m(\angle Y) = m(\angle Z)$ d) $m(\angle Z) > (\angle X)$
- 71) If $\triangle ABC$ is right-angled at B, then
- a) $AC < AB$ b) $AC < BC$ c) $AB < AC$ d) $BC = AB$
- 72) $\triangle ABD$ is obtuse-angled at B and C is the midpoint of \overline{BD} ,
then the longest side is
- a) \overline{AB} b) \overline{AC} c) \overline{AD} d) \overline{BD}
- 73) The sum of lengths of any two sides in a triangle isthe
length of the third side.
- a) smaller than b) greater than c) equal d) twice
- 74) The length of any side in the triangle The sum of
lengths of the other two sides.
- a) smaller than b) greater than c) equal d) twice
- 75) If the length of two sides in an isosceles triangle are 2 cm
and 5 cm, then the length of the third side is
- a) 2 cm b) 3 cm c) 5 cm d) 7 cm

76) The length of two sides in a triangle are 4 cm and 9 cm and it has one axis of symmetry , then the length of third side is

- a) 4 cm b) 5 cm c) 9 cm d) 13 cm

77) Which of the following set of numbers can be length of sides of a triangle ?

- a) 2, 3, 4 b) 2, 3, 5 c) 2, 3, 6 d) 2, 3, 7

78) Which of the following set of numbers can not be lengths of sides of a triangle?

- a) 3, 4, 4 b) 3, 4, 5 c) 3, 4, 6 d) 3, 4, 7

79) $\triangle ABC$ in which $m(\angle C) = 65^\circ$ and $m(\angle A) = 75^\circ$, then

- a) $AB > BC$ b) $AB < AC$ c) $BC > AB$ d) $AB = AC$

80) In $\triangle ABC$ in which $m(\angle B) + m$ which $m(\angle C) = 2cm (\angle A)$, then $m(\angle A)$ equals

- a) 30° b) 60° c) 45° d) 90°

81) The sum of lengths of any two sides in a triangle is the length of the third side.

- a) less than b) greater than c) equal d) half

82) The lengths of any side in a triangle the sum of lengths of the two other sides.

- a) $>$ b) $<$ c) $=$ d) twice

83) Which of the following numbers cannot be the lengths of sides of a triangle

- a) 7, 7, 5 b) 9, 9, 9 c) 3, 6, 12 d) 3, 4, 5

84) If the lengths of two sides in a triangle are 7 cm and 4 cm ,
then the length of the third side can be

- a) 1 cm b) 2 cm c) 3 cm d) 4 cm

85) If the lengths of two sides of an isosceles triangle are 3 cm
and 7 cm , then the length of the third side =

- a) 7 cm b) 3 cm c) 4 cm d) 10 cm

86) A triangle has one axis of symmetry , the length of two sides
in it are 4 cm and 8 cm , then its perimeter =

- a) 16 cm b) 20 cm c) 24 cm d) 30 cm

87) In $\triangle ABC$: if $AB = 3\text{cm}$, $BC = 5 \text{ cm}$ and $AC = x \text{ cm}$, then
 $x \in$

- a) $]3, 5[$ b) $]2, 5 [$ c) $]5, 8 [$ d) $]2, 8 [$

88) If the lengths of two sides of a triangle are 5 cm and 10 cm ,
then the length of the third side belongs to

- a) $[10, 15 [$ b) $]5, 15 [$ c) $]5, 10 [$ d) $[10, 15]$

(2) Complete each of the following :

- 1) The number of axes of symmetry in the equilateral triangle equals
- 2) The length of the median which is drawn from the vertex of the right angle in the right-angled triangle equals
- 3) The bisector of the vertex angle of the isosceles triangle.....
- 4) If the measure of one of the angles of the right-angled triangle is 45° , then the triangle is
- 5) The two base angles of the isosceles triangle are
- 6) In $\triangle ABC$, if D is the midpoint of \overline{BC} , then \overline{AD} is called.....
- 7) The number of medians of the triangle is
- 8) The medians of the triangle intersect at
- 9) The point of concurrence of the medians of the triangle divides each median in the ratio : from the vertex.
- 10) The point of the intersection of the medians of the triangle divides each of them with the ratio 2 : From the base.
- 11) The number of medians in the right-angled triangle is

- 12) The length of the median from the vertex of the right angle in the right-angled triangle equals
- 13) If the length of the median draw from a vertex of a triangle equals half the length of the opposite side to this vertex , then the angle at this vertex is
- 14) The length of the side opposite to the angle of measure 30° in the right-angled triangle =
- 15) The length of the hypotenuse in thirty and sixty triangle equals the length of the side opposite the angle whose measure is 30°
- 16) The base angle of the isosceles triangle are
- 17) The measure of each angle in the equilateral triangle =
- 18) In $\triangle DEF$, if $DE = DF$, then $m(\angle E) = m (\angle \dots)$
- 19) In the isosceles triangle , if the measure of one of the two base angles is 65° , then the measure of its vertex angle =
- 20) In the isosceles triangle , if the measure of the vertex angle = 40° , then the measure of one of the two base angles equals.....°
- 21) In $\triangle ABC$, if $AB = AC$ and $m (\angle A) = 80^\circ$, then $m (\angle B) = m(\angle \dots) = \dots$ °

- 22) If two angles in the triangle are congruent , then the two sides opposite to these two angles are and the triangle is
- 23) If the three angles in the triangle are congruent , then the triangle is
- 24) In $\triangle ABC$, if $m(\angle A) = 50^\circ$ and $m(\angle B) = 80^\circ$, then the triangle is
- 25) If the measure of one angle in the right-angled triangle is 45° , then the triangle is
- 26) If the measure of one angle of an isosceles triangle = 60° , then the triangle is
- 27) ABC is a triangle in which $AB = AC$ and $m(\angle A) = 60^\circ$ if its perimeter = 18 cm , then BC = cm.
- 28) The straight line draw from the vertex of the isosceles triangle perpendicular to the base is called
- 29) The number of axes of symmetry in the equilateral triangle =
- 30) The number of axes of symmetry in the isosceles triangle =
- 31) The number of axes of symmetry in the scalene triangle =

- 32) The median of the isosceles triangle drawn from the vertex angle
.....
- 33) The bisector of the vertex angle of the isosceles triangle
.....
- 34) The straight line passing through the vertex angle of the isosceles triangle perpendicular to its base
- 35) The axis of the line segment is
- 36) Any point belonging to the axis of a line segment is
From its two terminals.
- 37) If C belong to the axis of symmetry of \overline{AB} , the =
- 38) In $\triangle ABC$, if $m(\angle A) = m(\angle B) = 60^\circ$, then the number of axes of symmetry of $\triangle ABC$ is
- 39) In $\triangle ABC$, if $m(\angle A) = m(\angle B) \neq 60^\circ$, then the number of axes of symmetry of $\triangle ABC$ is
- 40) In $\triangle ABC$, if $AB = AC$, $m(\angle A) = 60^\circ$, then the number of axes of symmetry of $\triangle ABC$ is
- 41) If the measure of one of the angles of a right-angled triangle is 45° , then the n of axes of symmetry of it is
- 42) If In $\triangle ABC$ has one axis of symmetry and $m(\angle ABC) = 120^\circ$, then $m(\angle A) =$

- 43) If two sides in the triangle are not equal in length , then the longest of them is opposite to an angle of measure.
- 44) If the measures of two angles are different , then the greatest in measure is opposite to a side of
- 45) The longest side in the right-angled triangle is
- 46) The distance between a point and a given straight line is the length of
- 47) In the obtuse-angle triangle , the longest side is
- 48) In the isosceles triangle if $AB = AC$, $m(\angle A) = 70^\circ$, then $AB < \dots$
- 49) The longest side in the triangle ABC in which $m(\angle A) = 105^\circ$ is
- 50) The shortest side in $\triangle ABC$ in which $m(\angle A) = 40^\circ$ and $m(\angle B) = 60^\circ$ is
- 51) The longest side in $\triangle XYZ$ in which $m(\angle X) = m(\angle Y) + m(\angle Z) =$ is
- 52) In $\triangle XYZ$ if $m(\angle X) > m(\angle Z)$ then $XY < \dots$
- 53) In $\triangle ABC$ if $AB > BC$, then $m(\angle A) < \dots$
- 54) In $\triangle ABC$ if $m(\angle A) = 67^\circ$ and $m(\angle B) = 33^\circ$, then $AB > \dots > \dots$

- 55) In any triangle the sum of lengths of any two sides is greater than
- 56) In $\triangle ABC$ it will be $AB + BC > \dots$
- 57) In $\triangle DEF$ it will be $EF < \dots + \dots$
- 58) In $\triangle ABC$ of $AB < BC < AC$, then the smallest angle in measure is
- 59) ABC is an isosceles triangle where $AB = 3\text{ cm}$ and $BC = 7\text{ cm}$, then $AC = \dots$
- 60) An isosceles triangle in which the lengths of two of its sides are 4 cm and 8 cm, then the length of the third side equals.....
- 61) If two angles in a triangle are unequal in measure, then the greater angle is measure is opposite to and if the two lengths of two sides in a triangle unequal then the greater side in length is opposite to the angle which is
- 62) The smallest angle of a triangle (in measure) is opposite to
- 63) The longest side in the right-angled triangle is
- 64) The shortest distance between a given point and a given straight line is

- 65) ABC is a triangle in which : $m(\angle C) = 110^\circ$, then its longest side is
- 66) In $\triangle ABC$: if $m(\angle A) = 50^\circ$, $m(\angle B) = 30^\circ$, then the shortest side in the triangle is
- 67) In $\triangle ABC$: if $m(\angle A) = m(\angle B) + m(\angle C)$, then the longest side in the triangle is
- 68) The lengths of two sides in the triangle are not equal , then the greater side in length is opposite to
- 69) In $\triangle ABC$, $AB = 7 \text{ cm}$, $BC = 5 \text{ cm}$ and $AC = 6 \text{ cm}$, then the smallest angle in measure is
- 70) In $\triangle DEF$, if $DE > EF$, then $m(\angle F) >$
- 71) In any triangle ABC , if $AB > AC > BC$, then
 $m(\angle \dots) < m(\angle \dots) < m(\angle \dots)$

Part (1)

مدونة هنا جلال التعليمية

(1) Complete:

- 1) $\sqrt[3]{c^3} = \dots$
- 2) $\sqrt{16} = \sqrt[3]{\dots}$
- 3) $-\sqrt[3]{-1} - \sqrt{1} = \dots$
- 4) $\frac{\sqrt[3]{-64}}{\sqrt{64}} = \dots$
- 5) $-\sqrt[3]{64} + \dots = 5$
- 6) $\mathbb{Q} \cap \mathbb{Q} = \dots$
- 7) $\mathbb{Q} \cup \mathbb{Q} = \dots$
- 8) $\mathbb{R}^+ \cap \mathbb{R}^- = \dots$
- 9) $\mathbb{R} - \mathbb{Q} = \dots$
- 10) $\mathbb{R} - \{0\} = \dots$
- 11) $\mathbb{R} - \mathbb{Q} = \dots$
- 12) The multiplicative neutral element in \mathbb{R} is and the additive neutral in \mathbb{R} is
- 13) The additive inverse of the number $3 - \sqrt{5}$ is
- 14) The multiplicative inverse of the number $\frac{7}{\sqrt{7}}$ is $\frac{7}{\sqrt{7}}$
- 15) The conjugate number of the number $\frac{2}{\sqrt{3} - \sqrt{2}}$ is
- 16) If $x = 2 + \sqrt{5}$ and y is the conjugate number of x then $(x - y)^2 = \dots$
- 17) If $x = \sqrt{3} + 2$, $y = \sqrt{3} - 2$ then $(xy, x + y) = \dots$
- 18) $\sqrt[3]{2} \times 3\sqrt[3]{32} = \dots$
- 19) $\sqrt[3]{54} + \sqrt[3]{16} - \sqrt[3]{250} = \dots$
- 20) $\sqrt[3]{16} - \frac{1}{3}\sqrt[3]{54} + \sqrt[3]{-2} = \dots$
- 21) $\sqrt[3]{\frac{2}{3}} \times \sqrt[3]{12} = \dots$

22) If $x = 2$, $y = \sqrt[3]{-16}$, then $\left(\frac{x}{y}\right)^3 = \dots$

23) $\frac{1}{2} \sqrt[3]{56} - \sqrt[3]{\frac{7}{27}} = \dots$

24) $[3, 4] \cup [3, 4] = \dots$

25) $]-3, 2] - [0, 2] = \dots$

26) $[2, 7] -]2, 7[= \dots$

27) $\frac{4}{\sqrt{5} + \sqrt{3}} + \frac{4}{\sqrt{5} - \sqrt{3}} = \dots$

28) $\frac{\sqrt{6} - \sqrt{5}}{\sqrt{6} + \sqrt{5}} + \frac{\sqrt{6} + \sqrt{5}}{\sqrt{6} - \sqrt{5}} = \dots$

29) $\dots < \sqrt{5} < \dots$

30) $\dots < \sqrt[3]{30} < \dots$

(2) Choose the correct answer:

1) $\sqrt[3]{\left(\frac{1}{8}\right)^2} = \dots$

- a) $\frac{1}{2}$ b) $\frac{1}{4}$ c) $\frac{1}{8}$ d) $\frac{1}{16}$

2) $\sqrt[3]{\frac{0.001}{8}} = \dots$

- a) $\frac{1}{2}$ b) 2 c) $\frac{1}{20}$ d) 20

3) $-\sqrt{25} = \sqrt[3]{y}$, then $y = \dots$

- a) 4 b) -4 c) 25 d) -125

4) If $\frac{x}{3} = \frac{9}{x^2}$, then $x = \dots$

- a) 1^3 b) 3 c) 9 d) 27

- 5) The irrational number in the following numbers is
- a) $\sqrt{\frac{1}{4}}$ b) $\sqrt[3]{8}$ c) $\sqrt{\frac{4}{9}}$ d) $\sqrt{2}$
- 6) If $n \in \mathbb{Z}_+$, $n < \sqrt{26} < n + 1$ then $n =$
- a) 15 b) 5 c) -5 d) 24
- 7) The square whose area is 10 cm^2 , its side length is cm.
- a) 5 b) -5 c) $\sqrt{10}$ d) $-\sqrt{10}$
- 8) $\sqrt[3]{24} \dots 3$ ($>$, $<$, $=$)
- 9) $\sqrt[3]{8} \dots \sqrt{4}$ ($>$, $<$, $=$)
- 10) $\sqrt[3]{3} - 1 \dots 0.2$ ($>$, $<$, $=$)
- 11) $1 + \sqrt{3} \dots \sqrt{5}$ ($>$, $<$, $=$)
- 12) $\mathbb{R} =$
- a) $\mathbb{Q} \cup \mathbb{Q}'$ b) $\mathbb{Z}_+ \cup \mathbb{Z}_-$ c) $\mathbb{R}_+ \cup \mathbb{R}_-$ d) $\mathbb{N} \cup \mathbb{R}_-$
- 13) If x is a negative number, then which of the following number is positive
- a) x^2 b) x^3 c) $2x$ d) $\frac{x}{2}$
- 14) If $x \in \mathbb{R}^+$, $y \in \mathbb{R}^+$ and if $x^2 > y^2$ then
- a) $x > y$ b) $x < y$ c) $x = y$ d) $x \leq y$
- 15) The s.s of the equation $x^2 + 1 = 0$ in \mathbb{R} is
- a) $\{-1\}$ b) $\{1, -1\}$ c) $\{1\}$ d) \emptyset
- 16) $3 \dots [3, 5]$ (\in , \notin)
- 17) $| -3 | \dots [2, \infty[$ (\in , \notin)
- 18) $5 \dots]\sqrt{5}, \sqrt{23}[$ (\in , \notin)
- 19) $\sqrt[3]{-1} \dots]-\infty, 1[$ (\in , \notin)

20) The multiplicative inverse of the number $\sqrt{5}$ =

- a) -5 b) $\frac{-1}{5}$ c) $\frac{5}{\sqrt{5}}$ d) $\frac{\sqrt{5}}{5}$

21) The additive inverse of the number $\frac{6}{\sqrt{2}}$ is

- a) $-2\sqrt{3}$ b) $2\sqrt{3}$ c) $-3\sqrt{2}$ d) $3\sqrt{2}$

22) $\sqrt[3]{\frac{2}{9}} = \dots$

- a) $\frac{\sqrt[3]{6}}{3}$ b) $\sqrt[3]{\frac{1}{6}}$ c) $\sqrt[3]{6}$ d) $\sqrt[3]{2}$

(3) Find the value of x in each of the following:

- a) $\sqrt[3]{x} = \frac{-1}{4}$
 b) $\sqrt[3]{x} - 3 = -1$
 c) $x^3 + 5 = 32$
 d) $\frac{1}{5}x^3 = -200$
 e) $x < \sqrt[3]{-100} < x + 1$
 f) $x < |- \sqrt{35}| < x + 1$

(4) Find the value of a , b

- a) $\frac{3}{2\sqrt{2}-\sqrt{5}} = a\sqrt{2} + b\sqrt{5}$
 b) $\frac{11}{2\sqrt{5}+3} = a\sqrt{5} + b$

(5) Write the conjugate of the numbers:

- a) $\sqrt{5} + \sqrt{3}$ b) $5 - 2\sqrt{7}$

(6) If $x = \frac{2}{\sqrt{7} - \sqrt{5}}$, $y = \frac{2}{\sqrt{5} + \sqrt{7}}$ find $(x + y)^2$

(7) If $x = [2 , 5]$ and $y = [-1 , 3]$ find using the number line:

- 1) $x \cup y$
- 2) $x \cap y$
- 3) $x - y$
- 4) $y - x$
- 5) x^y
- 6) y^x

(8) A square of side length is 6 cm find its diagonal length.

(9) A rectangle with dimensions 5 cm , 7 cm, if the area equals the area of a square, then find the side length of the square and its diagonals length.

(10) Prove that $\sqrt{7}$ included between 2.6 and 2.7

(11) Find the s.s in \mathbb{Q} :

- a) $x^2 = 13$
- b) $\frac{2}{5} x^2 = \frac{25}{2}$
- c) $(x^3 + 5)(x^2 - 3) = 0$

12) Represent $2 - \sqrt{3}$ on the number line

Part (2)

(1) Choose the correct answer:

- 1) $\mathbb{R} = \dots$
 - a) $\mathbb{R}_+ \cup \mathbb{R}_-$
 - b) $]-\infty, +\infty[$
 - c) $]-\infty, 0]$
 - d) $]0, -\infty[$
- 2) If the volume of the sphere is $\frac{9}{16}\pi \text{ cm}^3$, then its radius length
 - a) $3\pi \text{ cm}$
 - b) 3 cm
 - c) $\frac{4}{3} \text{ cm}$
 - d) $\frac{3}{4} \text{ cm}$
- 3) $\sqrt{8} - \sqrt{2} = \dots$
 - a) $\sqrt{2}$
 - b) 2
 - c) $\sqrt{6}$
 - d) 4
- 4) If the volume of the sphere is $\frac{32}{3}\pi \text{ cm}^3$, then its diameter is of length equals
 - a) 2 cm
 - b) 4 cm
 - c) 8 cm
 - d) 32 cm
- 5) $[-3, 7] - \{-3, 7\} = \dots$
 - a) $[-3, 7]$
 - b) $]-3, 7]$
 - c) $]-3, 7[$
 - d) $(0, 0)$
- 6) $\{8, 9, 10\} -]8, 10[= \dots$
 - a) \emptyset
 - b) $\{8, 10\}$
 - c) $\{9\}$
 - d) \mathbb{N}
- 7) The volume of a cube is 125 cm^3 , then its total area equals
 - a) 25 cm^2
 - b) 50 cm^2
 - c) 125 cm^2
 - d) 150 cm^2
- 8) $]-3, 5[\cap [0, 3[= \dots$
 - a) $[0, 3]$
 - b) $[0, 3[$
 - c) $]-3, 0[$
 - d) $[3, 5[$

- 9) $\frac{1}{2} \sqrt{20} + 10 \sqrt{\frac{1}{5}} = \dots$
- a) $3\sqrt{5}$ b) $4\sqrt{5}$ c) 5 d) 12
- 10) The volume of a right circular cylinder is $90\pi\text{cm}^3$ and its height is 10 cm then the radius length of its base equals
- a) 3 cm b) 4.5 cm c) 5 d) 9 cm
- 11) If $x = \sqrt{7} + \sqrt{3}$ and $y = \sqrt{7} - \sqrt{3}$ then $xy = \dots$
- a) 4 b) 10 c) 40 d) 58
- 12) The edge length of a cube is 4 cm, then its volume is
- a) 16 cm^3 b) 24 cm^3 c) 64 cm^3 d) 96 cm^3
- 13) The volume of a cube is 64 cm^3 , then its edge length is
- a) 32 b) 16 cm c) 8 cm d) 4 cm
- 14) The circumference of a circle is 44 cm then its diameter length is ($\pi = \frac{22}{7}$)
- a) 14 cm b) 22 cm c) 44 cm d) 154 cm
- 15) The multiplicative inverse of the number $\sqrt{5}$ is
- a) $-\sqrt{5}$ b) $\frac{-1}{\sqrt{5}}$ c) $\frac{\sqrt{5}}{5}$ d) $\frac{5}{\sqrt{5}}$
- 16) $[-3, 4] \cap [2, 6] = \dots$
- a) $[-3, 2]$ b) $[-3, 6]$ c) $[2, 4]$ d) $]2, 6[$
- 17) If the radius length of a sphere is 3 cm, then its volume is
- a) $4\pi\text{ cm}^3$ b) $9\pi\text{ cm}^3$ c) $27\pi\text{ cm}^3$ d) $36\pi\text{ cm}^3$
- 18) $[-3, 2] - \{-3, 6\} = \dots$
- a) $] -3, 6 [$ b) $] -3, 2 [$ c) $] -3, 2]$ d) \emptyset

- 19) The s.s of the inequality $-1 < x + 3 < 3$ in \mathbb{R} is
- a) $[-4, 0]$ b) $[2, 6]$ c) $] -4, 0 [$ d) $] 2, 6 [$
- 20) $\frac{1}{2} \sqrt{48} = 2 \times$
- a) $\sqrt{3}$ b) $\sqrt{12}$ c) $\sqrt{96}$ d) 192
- 21) The expression $\frac{\sqrt{25-9}}{\sqrt{25}-\sqrt{9}} =$
- a) -1 b) 1 c) 2 d) 3
- 22) The s.s of the inequality $3 \leq x + 2 < 5$ in \mathbb{R} equals
- a) $[1, 3[$ b) $]1, 3]$ c) $[1, 3]$ d) $]1, 3[$
- 23) If the volume of a sphere equals $36\pi \text{ cm}^3$, then its radius length is
- a) $\sqrt[3]{3} \text{ cm}$ b) $\sqrt{3} \text{ cm}$ c) 3 cm d) 9 cm
- 24) The s.s of the inequality $-2x \geq 6$ in \mathbb{R} is
- a) $]-\infty, -3[$ b) $]-\infty, -3]$ c) $[-3, +\infty[$ d) $]-3, +\infty[$

(2) Complete the following:

- 1) $[2, 5] - \{2, 5\} =$
- 2) if $-x < 2$ then $x \in$
- 3) $\{-1, 0, 1\} \cap]-1, 1[=$
- 4) $]-\infty, 1] \cap [-4, \infty[=$
- 5) If $\sqrt{x} = \sqrt{2} + 1$ then $x =$
- 6) $[2, 5] \cap [2, 5[=$
- 7) $\sqrt[3]{64} = \sqrt{.....}$
- 8) The multiplicative inverse of the number $\frac{3}{\sqrt{3}}$ is $\frac{.....}{\sqrt{3}}$
- 9) The s.s of the inequality $-x + 1 \leq 0$ in \mathbb{R} is

- 10) If $x = \sqrt[3]{3} + 1$ and $y = \sqrt[3]{3} - 1$ then $(x + y)^3 = \dots$
- 11) $[2, \infty[- [4, \infty[= \dots$
- 12) If the side length of a square is L cm and its area is 30 cm^3 , then the area of the square whose side length equals $2L$ cm is \dots
- 13) The slope of the straight line which passes through $(-3, 1)$ and $(2, 5)$ equals \dots
- 14) The sum of lengths of all edges of a cube is 36 cm then, its total area equals $\dots \text{ cm}^2$.
- 15) The relation $y = 3x + 4$, and $x = 1$, then $y = \dots$

(3) Answer the following questions:

- 1) Reduce to the simplest form: $\sqrt{75} - \sqrt[3]{-125} + \frac{10}{\sqrt{3}-1}$
- 2) A right circular cylinder, whose height equals the radius length of its base and its volume equals $27\pi \text{ cm}^3$ calculate its lateral surface area.
- 3) Solve in \mathbb{R} the inequality $5 - 2x \leq 9$ then represent the solution set on the number line.
- 4) Find the s.s of the inequality $3x < 2x + 4$ in \mathbb{R} and represent the interval of solution on the number line.
- 5) If $x = \sqrt{3} - 1$ and $y = \frac{1}{\sqrt{3}-\sqrt{2}}$ find the value of $x \times y$
- 6) The area of one face of a cube is 36 cm^2 find the length of its edge, and its volume.
- 7) Find the s.s of the inequality $1 < x + 1 \leq 4$ in \mathbb{R} then represent the interval of solution on the number line.

- 8) Reduce to the simplest form $2\sqrt{5}(\sqrt{5} - 2) + \sqrt{20} + 10\sqrt{\frac{1}{5}}$
- 9) Find the value of $\sqrt{75} - 2\sqrt{27} + 3\sqrt{\frac{1}{3}}$
- 10) Find the s.s of the inequality $5 \leq 3 - x < 7$ in \mathbb{R} and represent the interval of solution on the number line.
- 11) If $x = \sqrt{7} + 3$ and $y = \sqrt{7} - 3$ then find the value of $\left(\frac{x+y}{xy}\right)^2$
- 12) Find the s.s of the inequality $3 \leq x + 2 \leq 6$ in \mathbb{R}
- 13) Write the form of an interval the s.s of the inequality $-1 < 5 - 2x < 7$ in \mathbb{R} , then represent the solution on the number line.
- 14) If $x = \sqrt{5} + \sqrt{2}$ then prove that $\frac{6}{x} + 2x = 4\sqrt{5}$
- 15) Find the totals area of a right circular cylinder of radius of its base is $\frac{7}{\sqrt{2}}$ cm and its height is $10\sqrt{2}$ cm. $(\pi = \frac{22}{7})$
- 16) If $x = 2\sqrt{2} - \sqrt{3}$ and $y = \frac{5}{2\sqrt{2}-\sqrt{3}}$, then prove that x and y are two conjugate numbers.
- 17) Reduce to the simplest form: $\sqrt[3]{16} - \frac{1}{3}\sqrt[3]{54} + \sqrt[3]{-2}$
- 18) If $x = \frac{5}{\sqrt{7}-\sqrt{2}}$ and $y = \frac{5}{\sqrt{7}+\sqrt{2}}$, then find the value of x^2y^2
- 19) If $a = \sqrt{2} + 1$ and $b = \frac{1}{1+\sqrt{2}}$, then find the value of $(a - b)^2$
- 20) A metallic sphere of radius length 6 cm. It is melted and its material has been converted into a right circular cylinder its base radius is of length 6 cm calculate the height of the cylinder.
- 21) If $(a, 2a)$ satisfies $y = x - 1$ then find the value of a
- 22) Represent the relation $y = x + 2$ graphically.

Statistics

(1) Choose the correct answer from those given:

- 1) The order of the median of the set of values 4, 5, 6, 7, 8 is
 - a) third
 - b) fourth
 - c) fifth
 - d) sixth
- 2) If the order of the median of a set of values is the fourth then the number of these values is
 - a) 3
 - b) 5
 - c) 7
 - d) 9
- 3) If the order of the median of the set of values is the fifth, then the number of these values equals
 - a) 5
 - b) 6
 - c) 9
 - d) 10
- 4) The median of the set of the values 15 , 22 , 9 , 11 , 33 is
 - a) 9
 - b) 15
 - c) 18
 - d) 90
- 5) The median of the set of values 34, 23, 25, 40, 22, 4 is
 - a) 22
 - b) 23
 - c) 24
 - d) 25
- 6) The median of the set of the values 3, 6, 6, 7, 9, 11, 13, 14, 15, 20 is
 - a) 9
 - b) 10
 - c) 11
 - d) 20
- 7) If the median of the set of the values 27, 45, 19, 24, 28 is x then x =
 - a) 24
 - b) 27
 - c) 28
 - d) 45
- 8) If the median of the set of the values $k + 1$, $k + 2$, $k + 5$, $k + 3$, $k + 3$ where is (appositive number) is 13 then $k =$
 - a) 2
 - b) 5
 - c) 10
 - d) 13

- 9) The arithmetic mean of the values 19, 32, 27, 6, 6 is
 a) 90 b) 32 c) 18 d) 6
- 10) If the arithmetic mean of the values 27, 8, 16, 24, 6, k is 14 then
 $k = \dots$
 a) 9 b) 6 c) 27 d) 84
- 11) If the arithmetic mean of the values 18, 23, 29, $2k - 1$, k is 18
 then $k = \dots$
 a) 6 b) 7 c) 29 d) 90
- 12) The arithmetic mean of the values $3 - a$, 5, 1, 4, $2 + a$ equals
 \dots
 a) 5 b) 2 c) 3 d) 15
- 13) If the arithmetic mean of 6 values is 12, then the sum of these
 values equals
 a) 12 b) 6 c) 18 d) 72
- 14) The set which its lowest boundary is 2 and its upper boundary is
 6, then its centre is
 a) 3 b) 6 c) 4 d) 8
- 15) The set which its lower limit is 5 and its upper limit is 7, then its
 centre is
 a) 9 b) 6 c) 4 d) 5

(2) Find the arithmetic mean of the following frequency distribution:

Sets	1-	3-	5-	7-	9-	Total
Frequency	4	6	8	7	5	30

(3) Find the arithmetic mean of the following frequency distribution:

Sets	5-	15-	25-	35-	45-	Total
Frequency	3	10	12	10	5	40

(4) Find by using the following frequency distribution

Sets	0-	2-	4-	6-	k-	Total
Frequency	m	5	8	7	2	25

- a) The value of k and m
- b) The median using the ascending cumulative curve
- c) The arithmetic mean
- d) The mode

Part (1) Answers

(1) Complete

- | | | |
|---------------------|------------------------------|------------------------------|
| 1) C | 2) 64 | 3) Zero |
| 4) $-\frac{1}{2}$ | 5) 1 | 6) Ø |
| 7) R | 8) Ø | 9) ℚ |
| 10) R - { 0 } | 11) ℚ | 12) 1 , zero |
| 13) $-3 + \sqrt{5}$ | 14) 1 | 15) $2(\sqrt{3} + \sqrt{2})$ |
| 16) Zero | 17) $(-1, 2\sqrt{3})$ | 18) 12 |
| 19) $10\sqrt[3]{2}$ | 20) Zero | 21) 2 |
| 22) $-\frac{1}{2}$ | 23) $\frac{2}{3}\sqrt[3]{7}$ | 24) [3 , 4] |
| 25)] -3 , 0 [| 26) { 2 , 7 } | 27) $4\sqrt{5}$ |
| 28) 22 | 29) 2 , 3 | 30) 3 , 4 |

(2) Choose

- | | | |
|-----------------------------|--------------------------|------------------|
| 1) $\frac{1}{4}$ | 2) $\frac{1}{20}$ | 3) -125 |
| 4) 3 | 5) $\sqrt{2}$ | 6) 5 |
| 7) $\sqrt{10}$ | 8) < | 9) = |
| 10) > | 11) > | 12) $Q \cup Q'$ |
| 13) X^2 | 14) $X > Y$ | 15) Ø |
| 16) ∈ | 17) ∈ | 18) € |
| 19) ∈ | 20) $\frac{\sqrt{5}}{5}$ | 21) $-3\sqrt{2}$ |
| 22) $\frac{\sqrt[3]{6}}{3}$ | | |

(3) a) $-\frac{1}{64}$

b) 8

c) 3

d) - 10

e) - 5

f) 5

(4) a) $a = 3$, $b = 1$

b) $a = 2$, $b = 3$

(5) a) $\sqrt{5} - \sqrt{3}$

b) $5 + 2\sqrt{7}$

(6) $X = \frac{2}{\sqrt{7}-\sqrt{5}} \times \frac{\sqrt{7}+\sqrt{5}}{\sqrt{7}+\sqrt{5}} = \sqrt{7} + \sqrt{5}$

$Y = \frac{2}{\sqrt{5}+\sqrt{7}} \times \frac{\sqrt{5}-\sqrt{7}}{\sqrt{5}-\sqrt{7}} = \sqrt{7} - \sqrt{5}$

$$\begin{aligned}
 (X+Y)2 &= (\sqrt{7} + \sqrt{5} + \sqrt{7} - \sqrt{5})2 \\
 &= (2\sqrt{7})2 \\
 &= (4 \times 7) \\
 &= 28
 \end{aligned}$$

(7)

1) $[-1, 5[$

2) $[2, 3[$

3) $[3, 5[$

4) $[-1, 2[$

5) $]-\infty, 2[\cup [5, \infty[$

6) $]-\infty, -1[\cup [3, \infty[$

(8) A of square = $6 \times 6 = 36 \text{ cm}^2$

$$d = \sqrt{2A} = \sqrt{2 \times 36} = \sqrt{72} = 8.5 \text{ cm}$$

(9) A of Rectangle = $5 \times 7 = 35 \text{ cm}^2$

$$\text{A of Square} = 35 \text{ cm}^2$$

$$d = \sqrt{2A} = \sqrt{2 \times 35} = \sqrt{70} = 8.4 \text{ cm}$$

$$\text{the side length of the square} = \sqrt{A} = \sqrt{35} = 5.9 \text{ cm}$$

(10) $\sqrt{7} \approx 2.65$

$$2.6 < 2.65 < 2.7$$

(11) a) $X = \pm \sqrt{13}$ S.S = { $\pm \sqrt{13}$ }

b) $X = \pm \sqrt{\frac{25}{2}} X \frac{5}{2} = \pm \sqrt{\frac{125}{4}} = \text{S.S} = \{ \pm \frac{\sqrt{125}}{2} \}$

c) $X^3 + 5 = 0$ or $X^2 - 3 = 0$

$$X^3 = -5 \quad X^2 = 3$$

$$X = \sqrt[3]{-5} \quad X = \pm \sqrt{3}$$

$$\text{S.S} = \{ \sqrt[3]{-5}, \pm \sqrt{3} \}$$

(12) The length of the hypotenuse = $\frac{3+1}{2} = 2 \text{ cm}$

$$\text{The length of the side} = \frac{3-1}{2} = 1 \text{ cm}$$

Part (2) Answers

(1) Choose

1) $]-\infty, \infty[$

2) $r = \frac{3}{4}$

3) $\sqrt{2}$

4) $2 \times 2 = 4 \text{ cm}$

5) $]-3, 7[$

6) $\{8, 10\}$

7) T.A. = $5 \times 5 \times 6 = 150 \text{ cm}^2$

8) $[0, 3[$

9) $3\sqrt{5}$

10) $\sqrt{\frac{90\pi}{10\pi}} = 3 \text{ cm}$

11) $7 - 3 = 4$

12) $V = 4^3 = 64 \text{ cm}^3$

13) $E = \sqrt[3]{64} = 4 \text{ cm}$

14) $d = \frac{c}{\pi} = 14 \text{ cm}$

15) $\frac{1}{\sqrt{5}} = \frac{\sqrt{5}}{5}$

16) $[2, 4]$

17) $V = \frac{4}{3} \times \pi \times 3^3 = 36\pi$

18) $]-3, 2[$

19) $]-4, 0[$

20) $\sqrt{3}$

21) $\frac{4}{5-3} = 2$

22) $[1, 3[$

23) $r = 3 \sqrt{\frac{v}{\frac{4}{3}\pi}} = 3 \text{ cm}$

24) $]-\infty, -3[$

(2) Complete:

1) $]-2, 5[$

2) $x > -2 \text{ then } x \in]-2, \infty[$

3) $\{0\}$

4) $[-4, 1]$

5) $x = (\sqrt{2} + 1)^2 = 5$

6) \emptyset

7) $\sqrt[3]{64} = 4 = \sqrt{16}$

8) $\frac{\sqrt{3}}{3} = \frac{1}{\sqrt{3}}$

9) $x > 1, \text{s.s} = [1, \infty[$

10) $(2\sqrt[3]{3})^3 = 8 \times 3 = 24$

11) $[2, 4[$

12) $A = S^2 = 4 L^2 = 4 \times 30 = 120 \text{ cm}^2$

$$13) m = \frac{5-1}{2-(-3)} = \frac{4}{5}$$

$$14) E = \frac{36}{12} = 3 \text{ cm} , \quad T.A = 3 \times 3 \times 6 = 54 \text{ cm}^2$$

$$15) y = 3 \times 1 + 4 = 7$$

(3):

$$1) 5\sqrt{3} - 5 + 5 + 5\sqrt{3} = 10\sqrt{3}$$

$$2) h = r , \quad v = \pi r^2 h = \pi r^3$$

$$r = \sqrt[3]{\frac{v}{\pi}} = \sqrt[3]{\frac{27\pi}{\pi}} = 3 \text{ cm}$$

$$\text{L.S.A.} = 2\pi rh = 2 \times \pi \times 3 \times 3 = 18\pi$$

$$3) -2x \leq 4 \quad x \geq -2 \quad \text{S.S} = [-2, \infty [$$

$$4) 3x - 2x < 4 \quad x < 4 \quad \text{S.S} =] -\infty, 4 [$$

$$5) y = \frac{1}{\sqrt{3}-\sqrt{2}} \times \frac{\sqrt{3}+\sqrt{2}}{3-2} = +(\sqrt{3}+\sqrt{2})$$

$$xy = +(\sqrt{3}-\sqrt{2})(\sqrt{3}+\sqrt{2}) = 3-2 = 1$$

$$6) E = \sqrt{36} = 6 \text{ cm} , \quad v = 6^3 = 216 \text{ cm}^3$$

$$7) 0 < x \leq 3 \quad \text{S.S} =] 0, 3]$$

$$8) 10 - 4\sqrt{5} + 2\sqrt{5} + 2\sqrt{5} = 10$$

9) zero

$$10) 2 \leq -x < 4$$

$$-2 \geq x > 4 \quad \text{s.s} = [-2, 4 [$$

$$11) \left(\frac{x+y}{xy} \right)^2 = \left(\frac{2\sqrt{7}}{7-9} \right)^2 = (-\sqrt{7})^2 = 7$$

12) $1 \leq x \leq 4$ $s.s = [1, 4]$

13) $-6 < -2 < 2$, $3 > x > -1$ $s.s =]-1, 3[$

14) $\frac{6}{\sqrt{5} + \sqrt{2}} + 2\sqrt{5} + 2\sqrt{2} = 2(\sqrt{5} - \sqrt{2}) + 2\sqrt{5} + 2\sqrt{2}$
 $= 2\sqrt{5} - 2\sqrt{2} + 2\sqrt{5} + 2\sqrt{2} = 4\sqrt{5}$

15) T.A. = $2\pi rh = 2 \times \frac{22}{7} \times \frac{7}{\sqrt{2}} \times 10\sqrt{2} = 440 \text{ cm}^2$

16) $y = \frac{5}{2\sqrt{2} - \sqrt{3}} \times \frac{2\sqrt{2} + \sqrt{3}}{2\sqrt{2} + \sqrt{3}} = \frac{5(2\sqrt{2} + \sqrt{3})}{8 - 3} = 2\sqrt{2} + \sqrt{3}$

so, y is the conjugate of x

17) $2\sqrt[3]{2} - \sqrt[3]{2} - \sqrt[3]{2} = \text{zero}$

18) $x = \sqrt{7} + \sqrt{2}, y = \sqrt{7} - \sqrt{2}$

$$x^2y^2 = (xy)^2 = (7 - 2)^2 = 25$$

19) $b = -(1 - \sqrt{2}) = \sqrt{2} - 1$

$$(a - b)^2 = 2^2 = 4$$

20) $V_{\text{sphere}} = V_{\text{cylinder}}$

$$\frac{4}{3}\pi \times 6^3 = \pi \times 6^2 \times h$$

$$h = \frac{6^3 \times \frac{4}{3}}{6^2} = 8 \text{ cm}$$

21) $2a = a - 1$

$$a = -1$$

22)

x	-1	0	1	2
y	1	2	3	4

Represent by yourself

Statistics

(1) Choose:

1) third

2) 9

3) 9

4) 15

$$5) \frac{23+25}{2} = 24$$

$$6) \frac{9+11}{2} = 10$$

7) 27

8) $k + 3 = 13 \rightarrow k = 10$

9) $\frac{19+32+27+6+6}{5} = 18$

10) $\frac{27+8+16+24+k+14}{7} = 14 \rightarrow k = 7 \times 14 - 89 = 9$

11) $\frac{18+23+29+2k-1+k}{5} = \frac{69+3k}{5} = 18 \rightarrow k = \frac{5 \times 18 - 69}{3} = 7$

12) $\frac{3-1+5+1+4+2+a}{5} = 3$

13) $6 \times 12 = 72$

14) $\frac{2+6}{2} = 4$

15) $\frac{5+7}{2} = 6$

(2)

Sets	Center	Freq.	Center x freq.
1-	2	4	8
3-	4	6	24
5-	6	8	48
7-	8	7	56
9-	10	5	50
Total		30	186

Mean = $\frac{186}{60} = 6.2$

(3) Mean = $\frac{1240}{40} = 31$ " make table by yourself "

(4) a) $k = 8$, $m = 25 - (5 + 8 + 7 + 2) = 3$

b) Mean = $\frac{125}{25} = 5$ (draw the mean table)

c)

The upper limit	Ascending cumulative freq.
less than 0	0
less than 2	3
less than 4	8
less than 6	16
less than 8	23
less than 10	25

The order of median = $\frac{25}{2} = 12.5$

Median $\simeq 5$

Mode $\simeq 5$

Question

(1) Choose the correct answer:

1) $\mathbb{R} = \dots$

- a)
- $\mathbb{R}_+ \cup \mathbb{R}_-$
- b)
- $]-\infty, +\infty[$
- c)
- $]-\infty, 0]$
- d)
- $]0, +\infty[$

2) The opposite figure represents the interval \dots

- a)
- $[-3, 5]$
- b)
- $]-3, 5[$
-
- c)
- $[-3, 5[$
- d)
- $]-3, 5]$

3) If the volume of the sphere is $\frac{9}{16}\pi \text{ cm}^3$ then its radius length \dots

- a)
- $3\pi \text{ cm}$
- b)
- 3 cm
- c)
- $\frac{4}{3} \text{ cm}$
- d)
- $\frac{3}{4} \text{ cm}$

4) $\sqrt{8} - \sqrt{2} = \dots$

- a)
- $\sqrt{2}$
- b) 2 c)
- $\sqrt{6}$
- d) 4

5) If the volume of the sphere is $\frac{32}{3}\pi \text{ cm}^3$ then its diameter is of length equals \dots

- a) 2 cm b) 4 cm c) 8 cm d) 32 cm

6) $[-3, 7] - \{-3, 7\} = \dots$

- a)
- $[-3, 7[$
- b)
- $]-3, 7]$
- c)
- $]-3, 7[$
- d)
- $(0, 0)$

7) $\{8, 9, 10\} -]8, 10[= \dots$

- a)
- \emptyset
- b)
- $\{8, 10\}$
- c)
- $\{9\}$
- d)
- \mathbb{N}

8) The volume of a cube is 125 cm^3 , then its total area equals \dots

- a)
- 25 cm^2
- b)
- 50 cm^2
- c)
- 125 cm^2
- d)
- 150 cm^2

9) $]-3, 5[\cap [0, 3[= \dots$

- a)
- $[0, 3]$
- b)
- $[0, 3[$
- c)
- $]-3, 0[$
- d)
- $[3, 5[$

- 10) $\frac{1}{2}\sqrt{20} + 10\sqrt{\frac{1}{5}} = \dots$
- a) $3\sqrt{5}$ b) $4\sqrt{5}$ c) 5 d) 12
- 11) The volume of a right circular cylinder is $90\pi\text{ cm}^3$ and its height is 10 cm then the radius length of its base equals
- a) 3 cm b) 4.5 cm c) 5 cm d) 9 cm
- 12) If $x = \sqrt{7} + \sqrt{3}$ and $y = \sqrt{7} - \sqrt{3}$ then $xy = \dots$
- a) 4 b) 10 c) 40 d) 58
- 13) The edge length of a cube is 4 cm, then its volume is
- a) 16 cm^3 b) 24 cm^3 c) 64 cm^3 d) 96 cm^3
- 14) The volume of a cube is 64 cm^3 , then its edge length is
- a) 32 cm b) 16 cm c) 8 cm d) 4 cm
- 15) The circumference of a circle is 44 cm then its diameter length is ($\pi = \frac{22}{7}$)
- a) 14 cm b) 22 cm c) 44 cm d) 154 cm
- 16) The multiplicative inverse of the number $\sqrt{5}$ is
- a) $-\sqrt{5}$ b) $\frac{-1}{\sqrt{5}}$ c) $\frac{\sqrt{5}}{5}$ d) $\frac{5}{\sqrt{5}}$
- 17) $[-3, 4] \cap [2, 6] = \dots$
- a) $[-3, 2]$ b) $[-3, 6]$ c) $[2, 4]$ d) $[2, 6]$
- 18) If the radius length of a sphere is 3 cm, then its volume is
- a) $4\pi\text{ cm}^3$ b) $9\pi\text{ cm}^3$ c) $27\pi\text{ cm}^3$ d) $36\pi\text{ cm}^3$
- 19) $[-3, 6] - \{-3, 6\} = \dots$
- a) $[-3, 6]$ b) $[-3, 2]$ c) $[-3, 2]$ d) \emptyset
- 20) The S.S of the inequality $-1 < x + 3 < 3$ in \mathbb{R} is
- a) $[-4, 0]$ b) $[2, 6]$ c) $[-4, 0]$ d) $[2, 6]$

- 21) $\frac{1}{2}\sqrt{48} = 2 \times \dots$
- a) $\sqrt{3}$ b) $\sqrt{12}$ c) $\sqrt{96}$ d) 192
- 22) The expression $\frac{\sqrt{25-9}}{\sqrt{25-\sqrt{9}}} = \dots$
- a) -1 b) 1 c) 2 d) 3
- 23) The S.S of the inequality $3 \leq x + 2 < 5$ in \mathbb{R} equals \dots
- a) $[1, 3[$ b) $]1, 3]$ c) $[1, 3]$ d) $]1, 3[$
- 24) If the volume of a sphere equals $36\pi \text{ cm}^3$, then its radius length is \dots
- a) $\sqrt[3]{3} \text{ cm}$ b) $\sqrt{3} \text{ cm}$ c) 3 cm d) 9 cm
- 25) The S.S of the inequality $-2x \geq 6$ in \mathbb{R} is \dots
- a) $]-\infty, -3[$ b) $]-\infty, -3]$ c) $[-3, +\infty[$ d) $]-3, +\infty[$
- (2) Complete the following:**
- 1) $[2, 5] - \{2, 5\} = \dots$
- 2) If $-x < 2$ then $x \in \dots$
- 3) $\{-1, 0, 1\} \cap]-1, 1[= \dots$
- 4) $]-\infty, 1] \cap [-4, \infty[= \dots$
- 5) If $\sqrt{x} = \sqrt{2} + 1$ then $x = \dots$
- 6) $]2, 5] \cap [2, 5[= \dots$
- 7) $\sqrt[3]{64} = \sqrt{\dots}$
- 8) The multiplicative inverse of the number $\frac{3}{\sqrt{3}}$ is $\frac{\dots}{\sqrt{3}}$
- 9) The S.S of the inequality $-x + 1 \leq 0$ in \mathbb{R} is \dots
- 10) If $x = \sqrt[3]{3} + 1$ and $y = \sqrt[3]{3} - 1$ then $(x + y)^3 = \dots$
- 11) $[2, \infty[- [4, \infty[= \dots$

Model Answers

(1) Choose

- | | | |
|-------|-------|-------|
| 1) b | 2) c | 3) c |
| 4) a | 5) b | 6) b |
| 7) b | 8) d | 9) b |
| 10) a | 11) a | 12) a |
| 13) c | 14) d | 15) a |
| 16) c | 17) c | 18) d |
| 19) a | 20) c | 21) a |
| 22) c | 23) a | 24) c |
| 25) b | | |

(2) complete

- | | | |
|----------------|-------------------------|---------------------|
| 1)] 2 , 5 [| 2)] -2 , ∞ [| 3) { 0 } |
| 4) [-4 , 1] | 5) $3 + 2\sqrt{2}$ | 6)] 2 , 5 [|
| 7) $\sqrt{16}$ | 8) $\frac{1}{\sqrt{3}}$ | 9) [1 , ∞ [|

$$10) (\sqrt[3]{3} + 1 + \sqrt[3]{3} - 1)^3 = (2\sqrt[3]{3})^3 = 8 \times 3 = 24$$

$$11) [2 , 4 [$$

$$\begin{aligned}12) L &= \sqrt{30}, 2L = 2\sqrt{30} \\ A &= (2L)^2 = (2\sqrt{30})^2 \\ &= 4 \times 30 = 120 \text{ cm}^2\end{aligned}$$

$$13) E = \frac{\text{Sum of edges}}{12} = \frac{36}{12} = 3 \text{ cm}$$

$$\text{Face area} = 3 \times 3 = 9 \text{ cm}^2$$

$$\text{Total area} = 9 \times 6 = 54 \text{ cm}^2$$

d) XYZ is an isosceles triangle where XY = XZ if $m(\angle X) = 80^\circ$

then $m(\angle Y) = \dots$

e) In $\triangle ABC$ if $\overline{AB} \perp \overline{BC}$ and $AB = BC$ then $m(\angle A) = \dots$

(9) In the opposite figure:

a) $X = \dots$

b) $Y = \dots$

c) $Z = \dots$

(10) Complete using data registered on each figure:

Fig. (1) $m(\angle C) = \dots$

Fig. (2) $m(\angle A) = \dots$

Fig. (3) $m(\angle B) = \dots$

Fig. (4) $m(\angle D) = \dots$

Second: Choose the correct answer from those given:

1. If M is the point of intersection of the medians of $\triangle ABC$ and D is the midpoint of \overline{BC} , then $AD = \dots$

- a) 2 AM b) $\frac{2}{3} MD$ c) $\frac{3}{2} AM$ d) 4 MD

2. The point of intersection of the medians of the triangle divides each of them with the ratio from the vertex.

- a) 2 : 1 b) 1 : 2 c) 3 : 1 d) 3 : 2

3. If M is the point of intersections of the medians of the triangle in $\triangle ABC$ and \overline{AX} is a median of length 6 cm, then AM equals
- a) 1 b) 2 cm c) 3 cm d) 4 cm
4. ABCD is a rectangle M is the point of intersection of its diagonals. If the length of the diagonal is 6 cm, then the length of the median \overline{AM} equals
- a) 2 cm b) 3 cm c) 6 cm d) 12 cm
5. The measure of the exterior angle of the equilateral triangle equals
- a) 30° b) 60° c) 90° d) 120°
6. If the measure of the vertex angle of the isosceles triangle equals 50° , then the measure of each angle of its base equal
- a) 40° b) 65° c) 70° d) 130°
7. If the measure of one of the two base angles of the isosceles triangle equals 40° , then the measure of the vertex angle is
- a) 40° b) 50° c) 80° d) 100°
8. The base angles of the isosceles triangle are
- a) complementary b) supplementary
c) congruent d) straight angles
9. If $XA = XB$ and $YA = YB$ then $\overleftrightarrow{XY} \ldots \overline{AB}$
- a) // b) \perp c) = d) \equiv
10. If A lies on the axis of symmetry of \overline{XY} then $\overline{AX} \ldots \overline{AY}$
- a) // b) \perp c) = d) \equiv
11. The quadrilateral ABCD in which \overleftrightarrow{BD} is an axis of symmetry of \overline{AC} may be
- a) a rhombus b) a rectangle
c) a parallelogram d) a trapezium

12. If $AX = AY$ and $BX = BY$ where X and Y are at different sides of \overline{AB} then $\overleftrightarrow{XY} \dots \overline{AB}$

a) //

b) \perp

c) =

d) \equiv

Third: Questions for getting the answer:

(1) In the opposite figure:

$m(\angle ABC) = 90^\circ$, D is the midpoint of \overline{AC} ,

$m(\angle C) = 30^\circ$

Prove that: $\triangle ABD$ is equilateral

(2) In the opposite figure:

$m(\angle DEF) = 90^\circ$,

X and Y are the midpoints of \overline{EF} , \overline{DF}

respectively, $m(\angle F) = 30^\circ$

$DF = 12$, $XZ = 2.5$ find the perimeter of $\triangle DEZ$

(3) In the opposite figure:

$m(\angle C) = 90^\circ$, \overline{AF} is a median of $\triangle ABD$

, $m(\angle BDC) = 30^\circ$

$BC = AF = 6 \text{ cm}$

First: Find the length of \overline{BD}

Second: Prove that $m(\angle BAD) = 90^\circ$

Second: Choose the correct answer from those given:

- | | | | |
|---------------------|---------------|----------------|--------------|
| 1) $\frac{3}{2}$ AM | 2) 2 : 1 | 3) 4 cm | 4) 3 cm |
| 5) 120° | 6) 65° | 7) 100° | 8) congruent |
| 9) \perp | 10) \equiv | 11) rhombus | 12) \perp |

Third:

(1) Proof: \because In $\triangle ABC$

$m(\angle C) = 30^\circ$, $m(\angle ABC) = 90^\circ$, D is the midpoint of \overline{AC}

$\therefore \overline{BD}$ is a median

$$\therefore BD = \frac{1}{2} AC \quad (1)$$

$$\therefore AB = \frac{1}{2} AC \quad (2)$$

$$\therefore AB = BD = AD$$

$\therefore \triangle ABD$ is equilateral

(2) Proof: \because In $\triangle DEF$

X is midpoint of \overline{EF}

$\therefore \overline{DX}$ is a median, $XZ = 2.5$

$$\therefore DZ = 2 ZX = 5 \text{ cm} \quad (1)$$

, Y is midpoint of \overline{FD}

$\therefore \overline{EY}$ is median

$$EY = \frac{1}{2} DF = 6 \text{ cm}$$

$$EZ = \frac{2}{3} EY = \frac{2 \times 6}{3} = 4 \text{ cm} \quad (2)$$

$$\therefore m(\angle F) = 30^\circ$$

$$\therefore DE = \frac{1}{2} FD = 6 \text{ cm} \quad (3)$$

$$P. \text{ of } \triangle DEZ = 6 + 4 + 5 = 15 \text{ cm}$$