Chapter 8 Corps des nombres complexes

Exercice 1 (8.2)

Résoudre dans C les équations suivantes, puis déterminer la partie réelle et la partie imaginaire de chacune des solutions.

1.
$$(-1+4i)z + (1-2i) = iz + 3$$

$$2. \ \frac{1+3iz}{1+3z} = i\frac{z+2}{z-5}$$

Exercice 2 (8.2)

Que pensez-vous de l'assertion suivante : pour tous $z, w \in \mathbb{C}$,

$$\Re e(zw) = \Re e(z) \Re e(w).$$

Exercice 3 (8.2)

À tout nombre complexe z différent de 0 et -1, on associe

$$u = \frac{z^2}{z+1}$$
 et $v = \frac{1}{z(z+1)}$.

- 1. Déterminer z pour que u et v soient tous deux réels.
- **2.** Calculer les valeurs correspondantes de u et v.

Exercice 4 (8.3)

Calculer le module et un argument des nombres complexes suivants.

1.
$$1 + i$$
;

2
$$1 - i\sqrt{3}$$

2.
$$1 - i\sqrt{3}$$
;
3. i ;
4. $-2\sqrt{3} + 2i$;

5.
$$2 + i$$

9.
$$-12 - 5i$$
; 10. $-5 + 4i$.

10.
$$-5 + 4i$$

Exercice 5 (8.3)

Soit
$$z_1 = 1 + i$$
 et $z_2 = \sqrt{3} - i$.

- 1. Calculer les modules et arguments de z_1 , z_2 , z_1z_2 .
- 2. En déduire les valeurs exactes de $\cos \frac{\pi}{12}$ et $\sin \frac{\pi}{12}$.

Exercice 6 (8.3)

Déterminer le module et un argument de $z = \left(\frac{1+i\sqrt{3}}{1-i}\right)^{20}$.

Exercice 7 (8.3)

Établir que $z \in \mathbb{R}_+$ si et seulement si $\Re e(z) = |z|$.

Exercice 8 (8.3)

Résoudre dans \mathbb{C} l'équation $4z^2 + 8|z|^2 - 3 = 0$.

Exercice 9 (8.3)

Le plan complexe \mathcal{P} est muni d'un repère orthonormal $(O, \overrightarrow{u}, \overrightarrow{v})$. Déterminer l'ensemble des points M d'affixe z tels que

87

1.
$$|z-2|=3$$
.

3.
$$\left| \frac{z-i}{z+i} \right| = 1$$
.
4. $\left| \frac{iz-2}{z+3} \right| = 1$.

2.
$$|2z - 1 + i| = 4$$
.

4.
$$\left| \frac{iz - 2}{z + 3} \right| = 1$$

Exercice 10 (8.3) Identité du parallélogramme

Prouver que pour tous nombres complexes z et w, on a

$$|z + w|^2 + |z - w|^2 = 2(|z|^2 + |w|^2).$$

Donner une interprétation géométrique.

Exercice 11 (8.3)

Soient $\alpha, \beta \in \mathbb{R}$. Écrire les complexes suivants sous la forme $\rho e^{i\theta}$ où ρ et θ sont des réels.

1.
$$\sin \alpha + i \cos \alpha$$
.

5.
$$\frac{1+i\tan\alpha}{1-i\tan\alpha}$$

2.
$$1 + \cos \alpha + i \sin \alpha$$
.

6.
$$\frac{1 + \cos \alpha + i \sin \alpha}{1 + \cos \beta + i \sin \beta}.$$
7.
$$e^{i\beta} - e^{i\alpha}.$$
8.
$$e^{i\beta} + e^{i\alpha}.$$

3.
$$1 + i \tan \alpha$$
.

7.
$$e^{i\beta} - e^{i\alpha}$$

4.
$$\cos \alpha + i(1 + \sin \alpha)$$
.

8.
$$e^{i\beta} + e^{i\alpha}$$

On pourra également discuter modules et arguments.

Exercice 12 (8.3)

Soit $\omega = e^{\frac{2i\pi}{5}}$, $\alpha = \omega + \omega^4$ et $\beta = \omega^2 + \omega^3$.

- **1.** Calculer $\alpha + \beta$ et $\alpha\beta$.
- **2.** En déduire α et β .
- 3. En déduire la valeur de $\cos \frac{2\pi}{5}$ en fonctions de radicaux.
- **4.** Déterminer $\sin \frac{\pi}{10}$ en fonction de radicaux.

Exercice 13 (8.3)

Soit z un nombre complexe différent de -1 et M le point du plan d'affixe z. On pose $z' = \frac{z-1}{z+1}$. Déterminer l'ensemble des points M tels que

- 1. z' soit réel ;
- 2. z' soit imaginaire pur;
- 3. z' soit de module 2.

Exercice 14 (8.3)

Linéariser les expressions suivantes, c'est-à-dire les transformer en une combinaison linéaire de termes du type $\cos(nx)$ et $\sin(nx)$ où $n \in \mathbb{N}$.

1.
$$\cos^3 x$$
.

2.
$$\cos^4 x$$
.

4.
$$\cos^2 x \sin^3 x$$
.
5. $\cos^2 x \sin^4 x$.

3.
$$\sin^5 x$$
.

Exercice 15 (8.3)

Exprimer les termes suivants en fonction de $\cos x$ et $\sin x$.

1. $\sin 3x$.

3. $\sin 4x$.

2. $\cos 5x$.

4. $\cos 8x$

Exercice 16 (8.3)

Linéariser les expressions suivantes où $x \in \mathbb{R}$.

1. $\cos^2 x \sin x$.

3. $\sin^4 x \cos^2 x$.

2. $\sin^3 x \cos^3 x$.

4. $\cos^3 x \sin^2 x$

Exercice 17 (8.3)

Soient $n \in \mathbb{N}$ et $\theta \in \mathbb{R} \setminus 2\pi\mathbb{Z}$.

1. Montrer que

$$\sum_{k=0}^{n} e^{ik\theta} = e^{in\frac{\theta}{2}} \frac{\sin\frac{(n+1)\theta}{2}}{\sin\frac{\theta}{2}}.$$

2. En déduire

$$\sum_{k=0}^{n} \cos(k\theta) \text{ et } \sum_{k=0}^{n} \sin(k\theta).$$

3. En déduire

$$\sum_{k=0}^{n} k \sin(k\theta).$$

Exercice 18 (8.3)

Soit x un réel fixé. Calculer

$$\sum_{k=0}^{n} \binom{n}{k} \cos\left((k-1)x\right).$$

Exercice 19 (8.4)

Rechercher la partie réelle et la partie imaginaire de chacune des solutions de l'équation

$$z^2 - (3+2i)z + 5 + i = 0$$

d'inconnue complexe z.

Exercice 20 (8.4)

Résoudre dans \mathbb{C} l'équation d'inconnue z

$$z^{2} + 2(1+i)z - 5(1+2i) = 0.$$
(1)

Exercice 21 (8.4)

Trouver les nombres complexes vérifiant $z^4 - 30z^2 + 289 = 0$.

Exercice 22 (8.4)

Résoudre les systèmes suivants d'inconnue $(x, y) \in \mathbb{C}^2$.

1.
$$\begin{cases} x + y = 2 \\ xy = 2 \end{cases}$$
 2. $\begin{cases} x + y = 1 + i \\ xy = 13i \end{cases}$

Exercice 23 (8.4)

Résoudre dans C l'équation

$$iz^{3} - (1+i)z^{2} + (1-2i)z + 6 + 8i = 0.$$
(1)

sachant qu'elle possède une solution réelle.

Exercice 24 (8.4)

Déterminer toutes les suites réelles $(u_n)_{n\in\mathbb{N}}$ telles que

1.
$$u_0 = 0, u_1 = 1$$
 et $\forall n \in \mathbb{N}, u_{n+2} = 5u_{n+1} - 3u_n$.

2.
$$u_0 = 1, u_1 = -1$$
 et $\forall n \in \mathbb{N}, 2u_{n+2} = u_{n+1} - u_n$.

3.
$$u_0 = -3, u_1 = 4$$
 et $\forall n \in \mathbb{N}, 4u_{n+2} = 12u_{n+1} - 9u_n$.

4.
$$u_0 = 1, u_1 = 2$$
 et $\forall n \in \mathbb{N}, u_{n+2} = \frac{u_{n+1}^6}{u_n^5}$.

Exercice 25 (8.5)

Trouver les nombres complexes vérifiant :

1.
$$z^6 = \frac{1 + i\sqrt{3}}{1 - i\sqrt{3}}$$
. **2.** $z^8 = \frac{1 + i}{\sqrt{3} - i}$.

Problème 26 (8.5)

Le but de ce problème est d'établir des formules permettant d'exprimer $\cos \frac{\pi}{5}$ à l'aide de combinaisons finies de radicaux carrés. Soit l'équation

$$z^5 - 1 = 0. (1)$$

- 1. Résoudre (1) dans C en calculant les cinq racines de (1) sous forme trigonométrique.
- **2.** On va maintenant résoudre (1) par radicaux carrés. Déterminer la fonction polynomiale Q telle que pour tout $z \in \mathbb{C}$,

$$z^5 - 1 = (z - 1)Q(z). (2)$$

3. Déterminer des réels a, b, c tels que pour tout $z \in \mathbb{C}^{\star}$,

$$\frac{Q(z)}{z^2} = a\left(z + \frac{1}{z}\right)^2 + b\left(z + \frac{1}{z}\right) + c. \tag{3}$$

4. Résoudre l'équation d'inconnue $Z \in \mathbb{C}$,

$$aZ^2 + bZ + c = 0. (4)$$

- **5.** Pour finir, résoudre l'équation Q(z) = 0.
- 6. Des questions précédentes, déduire des expressions « avec racines carrés » de

$$\cos\frac{2\pi}{5}$$
, $\sin\frac{2\pi}{5}$, $\cos\frac{4\pi}{5}$, et $\sin\frac{4\pi}{5}$.

7. De la question précédente, déduire une expression « avec racines carrées » de $\cos \frac{\pi}{5}$.

Exercice 27 (8.5)

Résoudre dans $\mathbb C$ les équations suivantes

1.
$$27(z-1)^6 + (z+1)^6 = 0$$
.

$$2. \left(\frac{z^2+1}{z^2-1}\right)^8 = 1.$$

3.
$$(z+i)^n - (z-i)^n = 0$$
.

Exercice 28 (8.6)

Résoudre dans $\mathbb C$ l'équation

$$e^{2z-1} = \sqrt{3} - 3i$$