Computer Arithmetic: Part 2 (Addition Subtraction & Multiplication Algorithms)

Addition

- Addition proceeds as if the two numbers were unsigned integers.
- If the result of the operation is positive, we get a positive number in twos complement form, which is the same as in unsigned-integer form.
- If the result of the operation is negative, we get a negative number in twos complement form.
- Note that, in some instances, there is a carry bit beyond the end of the word (indicated by shading), which is ignored.

$ \begin{array}{rcl} & 1001 & = & -7 \\ & +0101 & = & 5 \\ & 1110 & = & -2 \\ & (a) (-7) + (+5) \end{array} $	1100 = -4 +0100 = 4 10000 = 0 (b) (-4) + (+4)
0011 = 3 + 0100 = 4 0111 = 7 (c) (+3) + (+4)	1100 = -4 + 1111 = -1 11011 = -5 (d) (-4) + (-1)
0101 = 5 + 0100 = 4 1001 = Overflow (e) (+5) + (+4)	1001 = -7 + 1010 = -6 10011 = Overflow (f)(-7) + (-6)

Overflow?

Overflow occurs when:

- Two negative numbers are added and an answer comes positive or
- Two positive numbers are added and an answer comes as negative.
- Note that overflow can occur whether or not there is a carry
- N-bit 2's Complement number System can represent Number from to −2ⁿ⁻¹ to 2ⁿ⁻¹ − 1
 4 Bit can represent numbers from (-8 to 7)
 5 Bit can represent numbers from (-16 to 15) in 2's Complimentary System.

$ \begin{array}{rcl} & 1001 & = & -7 \\ & +0101 & = & 5 \\ & 1110 & = & -2 \\ & (a)(-7) + (+5) \end{array} $	1100 = -4 +0100 = 4 10000 = 0 (b) (-4) + (+4)
0011 = 3 + 0100 = 4 0111 = 7 (c) (+3) + (+4)	1100 = -4 + 1111 = -1 1011 = -5 (d) (-4) + (-1)
0101 = 5 + 0100 = 4 1001 = Overflow (e) (+5) + (+4)	1001 = -7 + 1010 = -6 10011 = Overflow (f)(-7) + (-6)

Subtraction

- ♦ To subtract one number (subtrahend) from another (minuend), take the twos complement (negation) of the subtrahend and add it to the minuend.
- Subtraction is achieved using addition.

$\begin{array}{rcl} 0010 & = & 2 \\ + & 1001 & = & -7 \\ \hline 1011 & = & -5 \end{array}$	$ \begin{array}{rcl} 0101 & = & 5 \\ +\underline{1110} & = & -2 \\ \underline{1}0011 & = & 3 \end{array} $
(a) $M = 2 = 0010$	(b) $M = 5 = 0101$
S = 7 = 0111	S = 2 = 0010
-S = 1001	-S = 1110
1011 = -5 +1110 = -2 11001 = -7	$ \begin{array}{rcl} 0101 &=& 5 \\ +0010 &=& 2 \\ 0111 &=& 7 \end{array} $
(c) $M = -5 = 1011$	(d) $M = 5 = 0101$
S = 2 = 0010	S = -2 = 1110
-S = 1110	-S = 0010
0111 = 7 + $0111 = 7$ 1110 = Overflow	$ \begin{array}{r} 1010 = -6 \\ + \underline{1100} = -4 \\ \hline{10110} = \text{Overflow} \end{array} $
(e) $M = 7 = 0111$	(f) $M = -6 = 1010$
S = -7 = 1001	S = 4 = 0100
-S = 0111	-S = 1100

Block Diagram of Hardware for Addition and Subtraction

Multiplication

TERMS to know

Terms: Multiplicand: 4

Multiplier : X 3

Product: 12

Binary Multiplication

A	В	AXB
0	0	0
0	1	0
1	0	0
1	1	1

Multiplication of unsigned integers, Pen and Paper Method

- 1. Multiplication involves the generation of partial products, one for each digit in the multiplier. These partial products are then summed to produce the final product.
- 2. The partial products are easily defined. When the multiplier bit is 0, the partial product is 0. When the multiplier is 1, the partial product is the multiplicand.

- 3. The total product is produced by summing the partial products. For this operation, each successive partial product is shifted one position to the left relative to the preceding partial product
- 4. The multiplication of two n-bit binary integers results in a product of up to 2n bits in length (e.g., 11 * 11 = 1001).

Unsigned Integer Multiplication

Improving the pen and paper method.

- ♦ First, we can perform a running addition on the partial products rather than waiting until the end.
- This eliminates the need for storage of all the partial products; fewer registers are needed.
- Second, we can save some time on the generation of partial products.
- ♦ For each 1 on the multiplier, an add and a shift operation are required; but for each 0, only a shift is required.

Flowchart and Example for Unsigned Binary Multiplication

itial values	M 011 I	Q 1101	A 0000	C 0
ld } First ift \$\) cycle		1101 1110	1011	0
ift } Second cycle	011 S	1111	0010	0
ld		1111 1111	1101 0110	0
ld } Fourth ift S cycle		1111 1111	0001	1 0

Booth's Multiplication Algorithm

- ♦ **Multiplying binary integers** in signed 2's complement representation
- Lesser number of additions/subtractions required.
- ♦ For 0's in the multiplier, no addition just shifting
- ♦ And a strings of 1 in the multiplier from bit weight 2^k to 2^m can be treated as 2^{k+1} to 2^m.
- ♦ Example:

$$15 = (1111)$$
, then $4 \times 15 = 4 \times 2^4 - 4 \times 2^0 = 64 - 4 = 60$

- The multiplier and multiplicand are placed in the Q and M registers. There is also a 1-bit register placed logically to the right of the least significant bit (Q_0) of the Q register and designated Q_{-1}
- The results of the multiplication will appear in the A and Q registers.
- A and Q_{-1} are initialized to 0. As before, control logic scans the bits of the multiplier one at a time. Now, as each bit is examined, the bit to its right is also examined.
- If the two bits are the same (1-1 or 0-0), then all of the bits of the A, Q, and Q_{-1} registers are shifted to the right 1 bit.
- If the two bits differ, then the multiplicand is added to or subtracted from the A register, depending on whether the two bits are 0–1 or 1–0.
- Following the addition or subtraction, the right shift occurs. In either case, the right shift is such that the leftmost bit of A, namely A_{n-1} , not only is shifted into A_{n-2} , but also remains in A_{n-1} .
- This is required to preserve the sign of the number in A and Q. It is known as an arithmetic shift.

A	Q	Q ₋₁	М		
0000	0011	0	0111	Initial values	
1001	0011	0	0111	A←A – M \ First	
1100	1001	1	0111	Shift S cycle	,
1110	0100	1	0111	Shift Second cycle	
0101 0010	0100 1010	1	0111 0111	A←A + M } Third Shift } cycle	
0001	0101	0	0111	Shift } Four cycle	

Example of Booth's Algorithm (7×3)

Thank You