2- n位内存容量,集合S中有加个成员,如果使用几个
吃养函数 , 则 误制率为
(1-e-km)k
C1
- , , , , , , , , , , , , , , , , , , ,
如果临内存分为以归 , 每归 花位, iD 七二花
[1] 2] c]
n
则育先假设。5条函数的选择是氢气值机的。那么,任
意一次哈希选中这一位的概率为一一一一、因此没有选中这
- 住的概率为 1- 十,。
插入一个元素需要哈希人次,所以经过人次哈条之后,
在 11 元素都被插入后,该住仍为0的概率为
P(Xi=0)= (1-+) km = e-km
: 在四个元素都被插入后,该位为1的概率是
P(Xi=1)=1-P(Xi=0) ≈ 1-e-100
久有当某个元素经过几个组哈希之后,对应七组中的七
个位益都恰好被置为1分气发生误判,则误到率为
(1-e-km)k = (1-e-km)k
CI-E) = CI-E)

S. $A:\{1,2,3,4\}$ $B:\{2,3,5,7\}$ $C:\{2,4,6\}$ $Jaccard (a,b) = \frac{190B1}{180B1}$

7. II 019 -- P(nh(S1)=mh(S2))= Jaccard (S1, S2) 如果 Jaccard (S1, S2)=0 RU P(mh(S1) = mh(S2)) = 0 即 mh(S1)5 mh(S2)有100%的概率不相等 即用Min-Hashing方法可以知道 Si与Si两个集合必不相似 ·此时Min-Hashing一至可以给出正确的估计

6. 题目中的X; 呈独主的伯名利酒机向置序列
$P(X_{i=1}) = P(h_{i}(S_{i}) = h_{i}(S_{i})) = J_{s}(S_{i}, S_{i})$
~ K X: 和 M= 片Pi, 对任意 6 € (0,1), 则
Chernoff 不等式
$P(X > (1+\epsilon)\mu) \left(\exp\left(-\frac{\mu\epsilon^2}{3}\right) \right)$
(X > C(+ E)M) (exp(3)
$\widehat{JS}(S_1, S_2) = \frac{1}{K} \frac{1}{12} X_1 = \frac{X}{K}$
E (Js (ς, ς ₂)) =
P(1 js (5,52) - Js (5, 52) > EJs (5, 52))
= PC fs (s, s2) > Js (s, s2) + eJs (s, s2)) + P(fs (s, s2))
JS (S,, S2) - EJS (S,, S2)) (P(fS (S,, S2) > (HE)JS (S,, S2)
P(X> (It+) M) cexp (- MEZ)
P(x clts/h cexp(- mez)
:. P(fs(5,,52)> CHEJS(5,,52)) cexp(- KJs(5,,52) 62)
富比较其与自然大小
φν. 40. 45. 16. 43. 18.
$ C = O\left(\frac{-\ln \delta}{JS(2)}\right) : \frac{-\ln \delta}{JS(2)} \le C - \ln \delta \le JS \cdot \epsilon^2 \cdot C $
1. (> 3(())
1. (> 3(())
1~8 > -JS. &2. K 8 > exp(-Js. &2. K) > exp(-16Js (5,,52) &2)
$ 1 \times 8 > -J \le \xi^2 \cdot k$ $8 \ge \exp(-J \le \xi^2 \cdot k) \ge \exp(-1(J \le (S_1, S_2) \le 2))$ $\therefore P(\widehat{J} \le (S_1, S_2) \ge (H \le) J \le (S_1, S_2)) \in S$
\(\lambda \rightarrow \frac{1}{2} \cdot \xi^2 \cdot \xi \) \\ \(\lambda \rightarrow \xi \xi \cdot \xi

Jaccard (S1,S3)= 年 (7x+1)mod b (11x+2)mod b (5x+2)ho (2) S, S2 S3 h(x) h2(x) h2(x) 0 1 1 0 1 2 2 1 0 1 0 2 1 1 2 1 0 0 3 0 0 3 0 0 1 4 5 5 4 1 0 1 5 4 4 5 0 0 0 0 3 3 mh2 (S2)=1 mh2 (S2)=1 mh2 (S3)=4 mh3 (S1)=0 mh2 (S2)=1 mh3 (S3)=4 mh3 (S1)=0 mh3 (S2)=1 mh3 (S3)=4				, +		·	
12) S, S2 S3 h(X) h2(X) h3(X) 0 1 1 0 1 2 2 1 0 1 0 2 1 1 2 1 0 0 3 0 0 3 0 0 1 4 5 5 4 1 0 1 5 4 4 5 0 0 0 0 3 3 mh1(S1)=1 mh1(S2)=1 mh1(S3)=4 mh2(S1)=0 mh3(S2)=1 mh3(S3)=4 mh3(S1)=0 mh3(S2)=1 mh3(S3)=4 mh3(S1)=0 mh3(S2)=1 mh3(S3)=4							
0 1 0 1 2 2 1 1 1 2 1 1 1					(7xtl)moo	16 CllX+2)medb	(2X+2)209
1 0 1 0 2 1 1 1 2 1 1 2 1 0 0 3 0 0 0 3 0 0 0 3 0 0 0 3 5 5 5 4 4 1 0 1 5 4 4 4 5 5 5 5 4 4 5 5 6 6 6 6 6 6 6 6	(Z)	5,	S2	<u></u>	h.(x)	hz(X)	h3(x)
2 1 0 0 3 0 0 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0		1	0	1	2	1
3 0 0 1 4 5 5 4 1 0 1 5 4 4 5 0 0 0 0 3 3 mh1 (S1)=1 mh1 (S2)=1 mh1 (S3)=4 mh2 (S1)=0 mh2 (S2)=1 mh2 (S3)=4 mh3 (S1)=0 mh3 (S2)=1 mh3 (S3)=4 最小 等養 資 超程 S1 S2 S3 h1 1 4	1	00	1 /	0	Σ	· · · · · · · · · · · · · · · · · · ·	
4 1 0 1 5 4 4 5 0 0 0 0 3 3 mh, (S,)=1 mh, (S,)=1 mh, (S,)=4 mh, (S,)=0 mh, (S,)=1 mh, (S,)=4 mh, (S,)=0 mh, (S,)=1 mh, (S,)=4 最小の意義等を発育 S, S, S, S, S, S, h, 1 4	2	!	0	0	3	0	0
5 0 0 0 0 3 3 mh, (S,)=1 mh, (S,)=1 mh, (S,)=4 mh, (S,)=0 mh, (S,)=1 mh, (S,)=4 mh, (S,)=0 mh, (S,)=1 mh, (S,)=4 最小吃養養益養養 S, S, S, S, h, I 4	3	0	0	1	Ψ	5	5
mh, (S,)=1 mh, (S,)=1 mh, (S ₃)=4 mh, (S,)=0 mh, (S,)=1 mh, (S ₃)=4 mh, (S,)=0 mh, (S ₂)=1 mh, (S ₃)=4 最小の含義等を発行 S, S, S, S, h, I, I, 4	Ψ	1	0	1	5	4	4
mh2(S1)=0 mh2(S2)=1 mh2(S3)=4 mh3(S1)=0 mh3(S2)=1 mh3(S3)=4 最小の含養質名短符 S1 S2 S3 h1 1 4	5	0	0	0	0	3	3
mh2(S1)=0 mh2(S2)=1 mh2(S3)=4 mh3(S1)=0 mh3(S2)=1 mh3(S3)=4 最小0含益益益存 S1 S2 S3 h1 1 4	h,	<u>(S1)=1</u>	h	hi (S2)=1	mh	, (S ₃)=}	
最小哈希望名矩阵 5. 52 53 h. 1 4							*
最小哈希望名矩阵 5. 52 53 h. 1 4	<u>m h</u>	3 (S ₁) =0)	mhzlsz	2=1	mh3 (S3)=4	
h, 1 4							
		h	5, 5	2 53			
72 0 1 7		h2		1 4			

11、每个signature 向是被为成占疑,有疑下行
两个signature 白星的任意一个段所有的都相同 tr 至少有一个不相同 1-tr
低有b距 段都不同 (1-t*)b
至少有一个段相同 1- C1-t7)b
由题目可知两个集合成为cardidate用户C即被哈希到同
一个箱中的概率为七)
$(1-c_1-t_1)^b=\frac{1}{2}$
$(1-t^r)^b = \frac{1}{2}$
$(-t^{\prime}=t^{\prime})$
$t' = 1 - (2^{-1})$ $t = [1 - (2^{-1})]^{\frac{1}{2}}$
t=[1-(2-b)] Y
t= Y 1- b 1-