Importance Sampling

STAT 525 9/11/18

Importance Sampling: A Motivating Example

- Suppose $X \sim \text{Bernoulli}(\frac{1}{6})$, i.e., $\pi(1) = \frac{1}{6}$ and $\pi(0) = \frac{5}{6}$. Want to estimate $E_{\pi}(I_{\{X=1\}}) = P(X=1)$.
- Naive Monte Carlo:
 - Draw i.i.d. samples $x^{(1)}, \cdots, x^{(m)}$ from $\pi(x)$.
 - Estimate μ by

$$\hat{\mu}_m = \frac{1}{m} \sum_{i=1}^m I_{\{x_i = 1\}}.$$

$$Var(\hat{\mu}_m) = \frac{1}{m} Var(I_{\{X_i=1\}}) = \frac{1}{m} \cdot \frac{1}{6} \cdot \frac{5}{6} = \frac{5}{36m}.$$

Another method: Rewrite

$$E_{\pi}(I_{\{X=1\}}) = \int I_{\{x=1\}} \pi(x) dx = \int I_{\{x=1\}} \frac{\pi(x)}{g(x)} g(x) dx$$
$$= E_g \left(I_{\{X=1\}} \frac{\pi(X)}{g(X)} \right).$$

Choose g(x) to be Bernoulli $(\frac{1}{2})$.

- Draw i.i.d. samples $x^{(1)}, \cdots, x^{(m)}$ from g(x).
- Estimate μ by

$$\hat{\mu}_m^* = \frac{1}{m} \left(\sum_{i=1}^m I_{\{x_i=1\}} \frac{\pi(x_i)}{g(x_i)} \right) = \frac{1}{m} \left(\sum_{i=1}^m I_{\{x_i=1\}} \frac{1}{3} \right).$$

$$Var(\hat{\mu}_m^*) = \frac{1}{m} Var_g \left(I_{\{X_i = 1\}} \frac{1}{3} \right) = \frac{1}{m} \cdot \frac{1}{9} \cdot \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{36m}.$$

Note that

$$Var(\hat{\mu}_m^*) = \frac{1}{36m} < \frac{5}{36m} = Var(\hat{\mu}_m).$$

• The 2nd method used the idea of drawing samples from another distribution g(x) which concentrates on "region of importance", so as to reduce the variance of Monte Carlo estimates.

Importance Sampling (IS)

Procedure: Write $\mu = \int h(\mathbf{x}) \pi(\mathbf{x}) d\mathbf{x} = \int \left[h(\mathbf{x}) \frac{\pi(\mathbf{x})}{g(\mathbf{x})} \right] g(\mathbf{x}) d\mathbf{x}$.

- ullet Draw $\mathbf{x}^{(1)},\cdots,\mathbf{x}^{(m)}$ i.i.d. from a *proposal distribution* $g(\mathbf{x})$;
- Calculate the importance weights

$$w^{(i)} = \frac{\pi(\mathbf{x}^{(i)})}{g(\mathbf{x}^{(i)})}, \text{ for } i = 1, \cdots, m.$$

ullet Estimate μ by

$$\hat{\mu} = \frac{w^{(1)}h(\mathbf{x}^{(1)}) + \dots + w^{(m)}h(\mathbf{x}^{(m)})}{m}$$

Optimal $g(\mathbf{x})$

 \bullet Theorem: The choice of $g(\mathbf{x})$ that minimizes the variance of the estimate $\hat{\mu}$ is

$$g^*(\mathbf{x}) = \frac{|h(\mathbf{x})|\pi(\mathbf{x})}{\int |h(\mathbf{z})|\pi(\mathbf{z})d\mathbf{z}}.$$

• But in practice, it's often hard to sample from $g^*(\mathbf{x})$ directly. We hope to choose $g(\mathbf{x})$ as "close" in shape to $|h(\mathbf{x})|\pi(\mathbf{x})$ as possible.

More Comments on Choosing $g(\mathbf{x})$

- $g(\mathbf{x})$ should be easy to sample from.
- The support of $g(\mathbf{x})$ should include the support of $h(\mathbf{x})\pi(\mathbf{x})$. Usually just make sure it includes the support of $\pi(\mathbf{x})$.
- Usually choose $g(\mathbf{x})$ with heavier tail than $\pi(\mathbf{x})$ to keep the variance of the estimate small.

When the Normalizing Constant of π Is Unknown

• Normalizing constant of $\pi(\mathbf{x})$ doesn't have to be known. If $\pi(\mathbf{x}) \propto l(\mathbf{x})$, just replace $\pi(\mathbf{x})$ by $l(\mathbf{x})$ in the algorithm, and estimate μ by

$$\tilde{\mu} = \frac{w^{(1)}h(\mathbf{x}^{(1)}) + \dots + w^{(m)}h(\mathbf{x}^{(m)})}{w^{(1)} + \dots + w^{(m)}}.$$

where
$$w^{(i)} = l(\mathbf{x}^{(i)})/g(\mathbf{x}^{(i)})$$
.

- ullet This estimator is biased, but still converges to μ .
- The variance of $\tilde{\mu}$ can be approximated by $\frac{Var_g\left[\frac{h(\mathbf{X})l(\mathbf{X})}{g(\mathbf{X})}\right] + \mu^2 Var_g\left[\frac{l(\mathbf{X})}{g(\mathbf{X})}\right] 2\mu Cov_g\left(\frac{h(\mathbf{X})l(\mathbf{X})}{g(\mathbf{X})}, \frac{l(\mathbf{X})}{g(\mathbf{X})}\right)}{mE_g^2\left[\frac{l(\mathbf{X})}{g(\mathbf{X})}\right]}$

• Example 1. Suppose $X \sim \text{Exp}(1)$. Want to estimate $E\left(e^{-X+\cos X}\right)$.

Comparison: Based on 100 samples:

Naive Monte Carlo: $\hat{\mu} = 1.21 \pm 0.09$.

IS with Exp(2) as proposal: $\hat{\mu} = 1.37 \pm 0.03$.

ullet Example 2. On [-1,1] imes [-1,1],

$$h(x,y) = 0.5e^{-90(x-0.5)^2 - 45(y+0.1)^2} + e^{-45(x+0.4)^2 - 60(y-0.5)^2}.$$

Want to compute

$$\mu = \int_{-1}^{1} \int_{-1}^{1} h(x,y) dx dy = E_{\pi}[4h(X,Y)], \text{ where } (X,Y) \sim \mathrm{Unif}[-1,1] \times [-1,1].$$

• Importance sampling: Use proposal distribution g(x,y)

$$g(x,y) \propto 0.5e^{-90(x-.5)^2-10(y+.1)^2} + e^{-45(x+.4)^2-60(y-.5)^2}$$

with $(x,y) \in [-1,1] \times [-1,1]$. This is a truncated mixture of normal distributions:

$$.464N\left[\left(\begin{array}{c} .5 \\ -.1 \end{array}\right), \left(\begin{array}{cc} \frac{1}{180} & 0 \\ 0 & \frac{1}{20} \end{array}\right)\right] + .536N\left[\left(\begin{array}{c} -.4 \\ .5 \end{array}\right), \left(\begin{array}{cc} \frac{1}{90} & 0 \\ 0 & \frac{1}{120} \end{array}\right)\right]$$

Comparison: Based on 2500 samples:

Naive Monte Carlo: $\hat{\mu} = 0.1307 \pm 0.009$.

Importance sampling: $\hat{\mu} = 0.1259 \pm 0.0005$.

• Importance sampling is $\left(\frac{0.009}{0.0005}\right)^2=324$ times more efficient than naive Monte Carlo in this example.

Another Scenario for Using Importance Sampling

- If $\pi(\mathbf{x})$ is too complicated to sample from directly, importance sampling procedure may be used.
- In this case, we often want the proposal $g(\mathbf{x})$ to be close to $\pi(\mathbf{x})$. A "rule of thumb" for evaluating efficiency is *effective* sample size:

$$ESS = \frac{m}{1 + cv^2},$$

where the coefficient of variation (cv) is

$$cv^2 = \frac{Var_g[w(\mathbf{x})]}{E_g^2[w(\mathbf{x})]}.$$

• Want cv^2 to be small.

Comparison of Rejection Sampling with Importance Sampling

	Rejection	Importance
	Sampling	Sampling
Generate iid samples from $\pi(\mathbf{x})$?	Yes	No
Can be used to estimate $E_{\pi}\{h(X)\}$?	Yes	Yes
Requires $\pi(\mathbf{x}) \leq cg(\mathbf{x})$?	Yes	No

ullet The instrumental density $g(\mathbf{x})$ for rejection sampling can also be used as the proposal distribution for importance sampling.

References

 Section 2.5 of Jun Liu's Monte Carlo Strategies in Scientific Computing.