Chapter 2: Uniqueness and Uncertainty

We will initially focus on the problem (Po): min VIIIo s.t. Ax = b

We will relax this problem later, eg. to allow for small deviations.

We are first interested in the greation: is there a imque solution to (Po)?

[Consider avoiding the 2-ortho case and going directly to the general case]

Consider for simplicity, first, the concatenation of two orthonormal (unitary) matrices: 4, \$. : A = [7,]] YTY = \$\varphi = In. Cossider, e.g. the identity and Forcier unitries. Assume I b to: b = Ya = \$B. What can we say about the sparsity of a and B? In particular, can a signal be sperse in time and frequency domains?

The anserve clearly depends on the relation between Y and J. It they are the same, then both & B can be arbitrarily sparse. A usefull measure of distance or similarity is the mutual coherence;

n(x, t) = now [7, 5].

Cowider;

S = supp(x).

= | (Ps ds, Ø) 7 1.

= \ (ds, 45 \$) \ 2

{ | | ds | | | 45 9 1 | 2

Ellyll h2/51.

One can easily see that for two orthogonal matrices ! (MA) & 1. (To see 13:1-16b, \$5 > 1. The lower bound note that each whomm in (PP) - an ortho nutrix too - must have a norm of 1. Thus, the unimal maximal entry (is the energy is spread) is Von , so that D'ai = 1.)

With $\mu(V, \bar{b})$ we have an uncertainty principle I.

Theorem: For an arbitrary pair of orthogonal basis with not coherence u(v, t) and b to so that b= 72 = IB []= |- || = [] |

11 211. + 11 Bll. 3 2 then

Proof: Note that 16/2 = 11 d. | 12 = 1/3/12. Let I = supp(a). Then, 18:12 = 15 0 = | Exit; 10 | 2

Then, Z'/Bi/2 = 116 112 & 116/12 12 (4, 5) 11 x11. 11 Blo.

=> > olldll. 1/2/10 3/11)2. => / lallo // pollo 7, (1)

VxieX26X3 1. Xn

Employing the geometric-algebraic means relation: $\forall a,b > 0$, $\forall ab \leq a+b$, then $1 \leq \mu(V, \overline{J}) \frac{1}{2} (\|\alpha\|_0 + \|\beta\|_1)$ $\Rightarrow 2 \|\mu((6+1)\beta \mu)\|_2 \geq 1 \|\alpha\|_0 + \|\beta\|_0 \geq \frac{1}{2}$.

Indeed, if one has [I,F] signal annot have less than 2VT non-zeros in time and in frequency. Thus, is a signal has less than VT entries in one domain, it must be dense in the other.

In turn, this also implies an ineutainty in the coordinality of $X: b = [Y, \emptyset] X$.

Suppose $J X_1$, and $X_2: Ax = Ax_2$. Then $X_1 - X_2 = e \in \mathcal{N}(A): Ae = 0$, $e \neq 0$.

Note that $Ae = [Y, \emptyset] \begin{bmatrix} e_y \\ e_y \end{bmatrix} = 0 \Rightarrow \forall e_y = - \emptyset e_y : \neq 0$, since $e \neq 0$.

From the result above, $\|e\|_0 = \|e_y\|_0 + \|e_y\|_0 \ge \frac{2}{2}$. Further, $\|e\|_0 \le \|x\|_1 + \|x_2\|_0$, $S_0 = \|x_1\|_0 + \|x_2\|_0 \ge \frac{2}{n(A)}$.

Uniqueness 1

11 If J X = Ax = b, and I this uncertainty principle states that two IX(10) = 1 it's the spacest solutions cannot be simultaneously sparse.

Moniqueness in the general costs.

In the more general cose, $A \in \mathbb{R}^n$, n > m, consider the [spech (A)] as the minimal winder of linearly dependent adormus. This should be contrasted with the rank (A): maximal winder of l.i. columns.

The sperk gives a simple criterion for uniqueness: note that by definition, $A \times = 0 \implies \| \times \|_0 \ge \text{sperk}(A)$, because at least speck(A) columns must be linearly combined to obtain the zero vector. Thus, we can have the following:

Theorem (Viniqueness vie Sperk).

If a system Ax=b has a solution $X: \|X\|_0 \in \frac{sperk(A)}{2}$, then it is the sparsest one possible.

prof: Assume J $y \neq x$, Ay = b, an alternative solution. Then A(x-y) = 0, and so $\|x\|_0 + \|y\|_0 \ge \|x-y\|_0 \ge speck(A)$.

Now, if $\|X\|_{L} < \frac{spk(A)}{2} \Rightarrow \|y\|_{L} > \frac{spk(A)}{2}$, and so x is the speciest possible.

8: [00] A = [00]

WHAT

However simple, thus is quite cool: even though solving (Po) is NP-hard, it we are given a condidate solution x we can just check its optimality by counting 11x16.

Q: What are bounds for the speck of a matrix? Clark, 7(A), 2 if we forbid coses of all-zero columns. On the other extreme, 7(A) (N+1.

QL: How many non-zero should be required to guarantee a unique solution of A is Gaussian?

The problem is that, in general, computing 4(A) is as hord as computing the solution to (Po), as is still a combinatorial problem. For this reason, one would like other easier way of checking for optimality. One such ways is via the mutual coherence:

(A) = max | ai aj| which characterizes the (maximal) correlation between two atoms.

Note that for orthogonal mutices, m = 0.

If mon though, u(A) < 1. In general, for cell rank matrices as, Jun-n. - (In).

The set of untries for which this lower bound is tight are called Grassmanian

Frames - where the alones are as separated as possible ". As apposed to the spork,

MM is trivial to compute. Then, the following result is usefull:

Leuma: + A E R , spark (A) > 1 + 1 , M(A).

prof: Assume without loss of generality that columns are normalized: Vaille = 1, as mormalization preserves the spark and $\mu(A)$. The Gram motion $G = A^TA$ satisfies $G_{ij} = 1 + 1 \le i \le m$, $|G_{ij}| \le \mu(A) + i \ne j$.

Consider a leading submetrix of G of size px p. - computed as the Gram of

problems for a: Gp = ApAp. Recall Gershgorin's disk theorem, stating that in
a squere matrix H & Com, all its eigenvalues must reside in the union of its Gershgorin's
disks, defined as the circle centered at H; and of radius R = Ti |aij|: the
sum of absolute values of its non-diggeral elements per row. Then, if the subGram is
diagonally eleminant; i.e Gi = 1 > Ti |Gij|, then G must be positive-definite - why?
and so all problems are linearly independent. This condition implies that

1 > (p-1) u(A) => p < 1+ L

1 Thus, p=1+L

1 is the minimal number of columns

Thus, with this result one has an optimity gravantee with a computable bound:

Theorem: If I x: Ax=6 and Iblb(\frac{1}{2}(1+1/a(A)), then x is the spersest possible solution - the optimal solution of (Po).

The uniqueness guarantees with the spork are generally tight and for more powerfully wherever the $\mu(A)$ only provides a lower bound on $\gamma(A)$ is thus loose. Recall that $\mu(A)$? $1/\sqrt{n}$. (for 2 or the core) and thus $\|x\|_0 < \sqrt{n}$. However, spark(A) can easily be as large as n, giving a bound of $\|x\|_0 < \frac{n}{2}$.

Stability of Sparse Solutions:

In many cases, enforcing an exact constraint Ax=b might be too stringent: what if the model for b is not really 4x? What if there were some contamination in the process of acquiring b? For these reasons, and more, we after relax the (B) problem to:

(Po): min 11x1/0 s.t. 11b-Ax 1/2 € €,

ablowing for an 6-sized discrepancy between b and $4\times$. (6>0). Thus, as a more general generative model, we will assume throughout that $b = A \times + e$: 11eHz (E., and study the solution x^e to (P_b^c). Is it unique?

In such cases, the uniqueness of the solution is lost. Consider A = [I, H].

In this case, even the zero solution

is included in the rewible set, and so it is
the sparsest in the solution to (Po).

In this way, the theoretical analysis of (e^{ϵ}) is concerned with the stability of the solution rather them with its uniqueness. To analyze this, we need a new characterization of the dictionary:

Definition: Restricted Ironally Property (RIP)

A untra A (nxm) setisfies the RP of order s sn with constant

of it

∀ x: 1|x1|0 €5, (1-δ,) ||x||2 € || Ax||2 € (1+δ,) ||x||2.

In this way, or A has the RP or order s, any subset of 's' columns behaves "close" to an isometry/orthogonal transform.

Just as the spark (A), the RP constant is not computable. However, it can be bounded with the united coherence:

Notice that it s=1, Ss=0, as I aille = 1. More jewelly, for X: Ixlo=3, recall the subGram of A constructed with s-columns from A. from Gershgorin's wide theorem,

 $\left| \lambda \left(\underbrace{A_s^r A}_{s} \right) - 1 \right| \leq (\lambda - 1) \mu(A)$

And so $1-(5-1)\mu(A) \leq \lambda(A\bar{s}As) \leq 1+(5-1)\mu(A)$.

Thus, + x: 1x116 =5,

1-(5-1) n || x// { } min (AsTAs) || X//2 { || A x//2 { } min (AsTAs) || X//2 { } (1+(1-5) n) || X//2 { }

this implies that [os 5 (5-1) m(A)

With such an assumption of restricted isometry, one can gravantee the stability of the solution to the (P. 6) problem:

Theorem: Consider a sperse vector $\chi: \|\chi\|_{b=k} \in \frac{1}{2}(1+\frac{1}{\mu(A)})$, and the measurements y = Ax + n, where $\|n\|_{L^{2}} \in E$. If the matrix A satisfies the RIP with constant δ_{2k} , then a solution to (P^{E}) , $\hat{\chi}$, satisfies:

$$\|x - \hat{x}\|_{2}^{2} \le \frac{4e^{2}}{1 - \delta_{LR}} \le \frac{4e^{2}}{1 - (2k - 1)\mu(A)}$$

proof: By definition, \hat{X} satisfies $\|y-A\hat{x}\|_{2} \le E$. It also satisfies $\|\hat{X}\|_{0} \le \|X\|_{0}$, as it is the one with uninimal L_{0} norm. Let $\Delta = X - \hat{x}$, then:

| | A∆ ||2 = | | A× -y+y-Ax ||2 ≤ 4 €2, by tray. inequality.

Note that also

|| ∆ ||₀ ≤ || × ||₀ + || x ||₀ ≤ 2k.

Thus, if A has bea-RIP:

(1-52) 11 01/2 4 11 A 01/2 4 62

and so:

 $||x-\hat{x}||_2^2 \leq \frac{4\epsilon^2}{1-\delta \epsilon n} \leq \frac{4\epsilon^2}{1-(2k-1)n(A)}$

from the previous bound.

Note that the last inequality is true only of k & \frac{1}{2}(1+\frac{1}{44}).

Possible Introduction/Motivation to this Chapter

Consider a general signal b & R. It could be audio, images, etc. Recall their expansion in an orthonorum basis: { \$ \$; } ...

ic: $\bar{\phi} = [\phi, \phi_{L}, \dots] \in \mathbb{R}^{h \times h}$ and $\bar{\phi}^{\dagger} \bar{\phi} = I$.

Thun we can write:

b= = xi.pi; xieR. (b= \$\bar{p}\times).

and the coefficients are obtained simply by $x_i = \langle b, p_i \rangle = \sum_i b_i p_i$

Some signals that are dense, might become sparse under a change of basis. Consider, eg., a sine function: b=[sin(211 w).j)] = sin(201) While b is dense, if one takes & = Fi (directe) Forrier transfer, then

x= \$\ b : δ(ω-0) = [7,0..., 1,... o]. (E= 2 1 b) some frequency

b= e-izi jk+ bo, K+ 70.

So it we wanted to compress the signal b (i.e. retain as und moramation with as few coefficients or possibles we would have to solve a problem like. x = coming 116- 1 x 1/2 st. 1/2/16 (h.

This is easy: since &: unitary, 16-\$x12 = 11 \$16-x1/2 = 16-x1/2 and unin 118-X1/2 st 11X11. Ek is solved by taking the k-largest entries in E, say X= Ta(E). Finally, one can reconstruct

Now, what of b= \delta(i-h.) + \delta(i-uz)? => 6 is already sporse in its notical (Carmenial 60003), and \$ 5 = X

will not be sparse if I is say to => The basis is compil to obtain specify

Reull Hut. \$ = F = {e = 12 jk

Consider now the one where $b = b_0 1 + C^{\frac{1}{12}} + \delta(i-a)$?

Now b will not be spasse in either base, ab

For I. So what can we do?

A natural solution would be to have A = [D, I].Then $b = Ax = [D, I] \begin{bmatrix} x_y \\ x_z \end{bmatrix}, \quad x_z = [0, 0, ..., 00].$ The problem is, that to solve the "congression problem"

from before, we'd need to solve:

univ $||b - Ax||_{L}^{2}$ St. $||x||_{L}^{2} \leq k$ and how this is combinatorial, as we same before. Is this a lost cause? In principle, there called I many x : b = Ax.

Can we ten Gave a verigine solution?

a: What happens of b is white hoise?