# Wydział Elektroniki i Technik Informacyjnych Politechnika Warszawska

# Projektowanie układów sterowania (projekt grupowy)

Sprawozdanie z projektu i ćwiczenia laboratoryjnego nr 3, zadanie nr 10

Bartłomiej Boczek, Aleksander Piotrowski, Łukasz Śmigielski

# Spis treści

| 1. | Punkt 1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |   | 2  |
|----|---------|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|---|----|
| 2. | Punkt 2 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |   | 3  |
| 3. | Punkt 3 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |   | 6  |
| 4. | Punkt 4 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 1 | 10 |
| 5. | Punkt 5 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 1 | 11 |

Sterowanie:

$$G1 = 31\%, G2 = 36\%.$$

Wartości wyjściowe stabilizują się następująco:

$$T1_{pp} = 33.75$$
°C,  $T2_{pp} = 36.62$ °C

Narysować otrzymane przebiegi na jednym rysunku. Czy właściwości statyczne obiektu można określić jako (w przybliżeniu) liniowe? Jeśli tak – wyznaczyć wzmocnienie statyczne procesu.



Rys. 2.1. Skrośne odpowiedzi skokowe procesu dla trzech różnych zmian sygnału sterującego G1 rozpoczynając z punktu pracy – pomiar na T3



Rys. 2.2. Skrośne odpowiedzi skokowe procesu dla trzech różnych zmian sygnału sterującego G2 rozpoczynając z punktu pracy – pomiar na T1

2. Punkt 2 5



Rys. 2.3. Charakterystyka statyczna procesu T1(G1,G2)



Rys. 2.4. Charakterystyka statyczna procesu T3(G1,G2)

Uzasadnić wybór parametrów optymalizacji.



Rys. 3.1. Odpowiedź skokowa wyjścia 1 przy skoku wejścia 1



Rys. 3.2. Odpowiedź skokowa wyjścia 1 przy skoku wejścia 2



Rys. 3.3. Odpowiedź skokowa wyjścia  $2~\mathrm{przy}$ skoku wejścia 1



Rys. 3.4. Odpowiedź skokowa wyjścia 2 przy skoku wejścia 2



Rys. 3.5. Porównanie odpowiedzi skokowej (wyjścia 1 przy skoku wejścia 1) i aproksymowanej



Rys. 3.6. Porównanie odpowiedzi skokowej (wyjścia 1 przy skoku wejścia 2) i aproksymowanej



Rys. 3.7. Porównanie odpowiedzi skokowej (wyjścia 2 przy skoku wejścia 1) i aproksymowanej



Rys. 3.8. Porównanie odpowiedzi skokowej (wyjścia 2 przy skoku wejścia 2) i aproksymowanej

Dobrane nastawy regulatora DMC wynoszą:  $D=110;\,N=130;\,N_u=6;\,\lambda=1,8;$ 



Rys. 4.1. Przebiegi sygnałów z regulatora DMC przy zerowym zakłó-ceniu

Dla dwóch skoków amplitudy sygnału wartości zadanej dostrojone zostały algorytmy DMC oraz PID. Podczas dostrajania wykorzystany został optymalizator ga, a następnie zostały naniesione drobne ręczne poprawki. Dla obydwu algorytmów jako współczynnik jakości został wykorzystany błąd średniokwadratowy.

```
Nastawy DMC: D = 300; N = 130; N_u = 6; \lambda = 0.01; Błąd: E = 3269.5.
```

Nastawy PID:

 $K=14,307\,542;\, T_i=38,320\,299;\, T_d=6,677\,860;\, T_s=0,5.$  Błąd: E=2699,8.

Nastawy te powinny być dostrojone na rzeczywistym obiekcie, co wynika z pewnych niedokładności modelu.



Rys. 5.1. Odpowiedź dla dwóch skoków sygnału zadanego - regulacja PID



Rys. 5.2. Odpowiedź dla dwóch skoków sygnału zadanego - regulacja  $\operatorname{DMC}$