P. Maurer

ENS Rennes

Recasages: 155, 156, 158, 160.

Référence : FGN, Oraux X-ENS, Algèbre 2.

Homéomorphisme exp: $\mathcal{S}_n \to \mathcal{S}_n^{++}(\mathbb{R})$

Dans tout ce qui suit, $n \ge 1$ est un entier. On munit $\mathcal{M}_n(\mathbb{R})$ de sa norme d'opérateur $\|.\|$, induite par la norme euclidienne $\|.\|_2$ sur \mathbb{R}^n .

Lemme 1. Pour
$$A \in \mathcal{S}_n(\mathbb{R})$$
, on $a \|A\| = \rho(A) := \max_{\lambda \in \operatorname{Sp}(A)} |\lambda|$.

Démonstration. On montre les deux inégalités :

• Notons λ_0 une valeur propre de A telle que $|\lambda_0| = \max_{\lambda \in \operatorname{Sp}(A)} |\lambda|$, et $X \in \mathbb{R}^n$ non nul un vecteur propre associé à λ_0 . Quitte à diviser X par sa norme, on $\operatorname{p}(Y := P^{-1}Y)$ eut supposer $||X||_2 = 1$.

On a alors:

$$\rho(A) = |\lambda_0|
= ||\lambda_0 X||_2
= ||AX||_2
\le ||A|| \cdot ||X||
= ||A||$$

• Comme A est symétrique réelle, elle est diagonalisable. Notons $\lambda_1, \ldots, \lambda_n$ les valeurs propres de A: il existe $P \in O_n(\mathbb{R})$ tel que $A = P \operatorname{diag}(\lambda_1, \ldots, \lambda_n) P^{-1}$.

On a alors, pour $X \in \mathbb{R}^n$ de norme 1 :

$$\|AX\|_2 = \|P\operatorname{diag}(\lambda_1, \dots, \lambda_n)P^{-1}X\|_2$$

$$= \|\operatorname{diag}(\lambda_1, \dots, \lambda_n)P^{-1}X\|_2$$

$$= \|\operatorname{diag}(\lambda_1, \dots, \lambda_n)Y\|_2$$

$$= \|\left(\frac{\lambda_1 y_1}{\vdots}\right)\|_2$$

$$= \sqrt{\sum_{i=1}^n |\lambda_i|^2 |y_i|^2}$$

$$\leq \sqrt{\sum_{i=1}^n \rho(A)^2 |y_i|^2}$$

$$= \rho(A) \|P^{-1}X\|_2$$

$$= \rho(A) \|X\|_2$$

$$(P^{-1} \text{ est orthogonale})$$

Ceci est vrai pour tout $X \in B(0,1)$, donc par passage à la borne supérieure, $||A|| \le \rho(A)$. \square

Lemme 2. Soit $A, B \in \mathcal{M}_n(\mathbb{R})$ deux matrices diagonalisables de $\mathcal{M}_n(\mathbb{R})$. On suppose que $\exp(A) = \exp(B)$. Alors A = B.

Démonstration. On note $\lambda_1, \ldots, \lambda_n$ les valeurs propres de A. Soit $P \in GL_n(\mathbb{R})$ tel que $A = P \operatorname{diag}(\lambda_1, \ldots, \lambda_n) P^{-1}$. Alors $\exp(A) = P \operatorname{diag}(e^{\lambda_1}, \ldots, e^{\lambda_n}) P^{-1}$. (\star)

Par ailleurs, en notant $\mu_1, \dots \mu_s$ les valeurs propres distinctes de A $(s \le n)$, il existe $Q \in \mathbb{R}[X]$ tel que $Q(e^{\mu_k}) = \mu_k$ pour tout $k \in [1, s]$, par exemple en prenant le polynôme interpolateur de Lagrange :

$$Q(X) := \sum_{k=1}^{s} \mu_k \prod_{\substack{1 \le i \le s \\ i \ne k}} \frac{X - e^{\lambda_i}}{e^{\lambda_k} - e^{\lambda_i}}$$

On en déduit en particulier que $Q(e^{\lambda_i}) = \lambda_i$ pour tout $i \in [1, n]$. De fait :

$$Q(\exp(A)) = P\operatorname{diag}(Q(e^{\lambda_1}), \dots, Q(e^{\lambda_n})) P^{-1} = A$$

Donc A s'écrit comme polynôme en $\exp(A)$. De plus, B commute avec $\exp(B) = \exp(A)$, on en déduit que B commute avec $A = Q(\exp(A))$.

A et B sont donc codiagonalisables. On déduit alors de (\star) que $(e^{\lambda_1},\ldots,e^{\lambda_n})=(e^{\omega_1},\ldots,e^{\omega_n})$, où ω_1,\ldots,ω_n sont les valeurs propres de B. Par injectivité de l'exponentielle sur $\mathbb R$, ceci donne $\lambda_i=\omega_i$ pour tout $i\in [\![1,n]\!]$, et donc A=B - toujours en utilisant (\star) .

Théorème 3. L'application exponentielle exp: $S_n(\mathbb{R}) \to S_n^{++}(\mathbb{R})$ est un homéomorphisme.

Démonstration.

• Etape $1: \exp: S_n(\mathbb{R}) \to \mathcal{S}_n^{++}(\mathbb{R})$ est bien définie, et continue.

Soit $M \in \mathcal{S}_n$. Il existe $P \in O_n(\mathbb{R})$ tel que $M = P \operatorname{diag}(\lambda_1, \dots, \lambda_n) P^T$, où $\lambda_1, \dots, \lambda_n$ désignent les valeurs propres de M.

On a donc, par continuité du produit : $\exp(M) = P \operatorname{diag}(e^{\lambda_1}, \dots, e^{\lambda_n}) P^T$. On en déduit en particulier que $\exp(M)$ est symétrique, définie et positive.

Par ailleurs, elle est continue puisque l'exponentielle de matrice l'est.

• Etape 2 : $\exp:S_n(\mathbb{R}) \to \mathcal{S}_n^{++}(\mathbb{R})$ est bijective.

Soit $B \in \mathcal{S}_n^{++}(\mathbb{R})$. Il existe $P \in O_n(\mathbb{R})$ telle que $B = P \operatorname{diag}(\mu_1, \dots, \mu_n) P^T$, avec $\mu_1, \dots, \mu_n > 0$. Alors, la matrice $\ln(B) := P \operatorname{diag}(\ln(\mu_1), \dots, \ln(\mu_n)) P^T$ vérifie $\exp(\ln(B)) = A$.

Par ailleurs, une matrice symétrique réelle étant diagonalisable, le lemme 2 montre directement l'injectivité. Donc $\exp: S_n(\mathbb{R}) \to \mathcal{S}_n^{++}(\mathbb{R})$ est une bijection.

• Etape 3 : l'application réciproque est continue.

On va montrer la continuité par caractérisation séquentielle. Soit $A \in \mathcal{S}_n^{++}(\mathbb{R})$, et $(A_k)_{k \geq 0}$ une suite de matrices de $\mathcal{S}_n^{++}(\mathbb{R})$ qui converge vers A.

Pour tout $k \ge 0$, on note $B_k \in S_n(\mathbb{R})$ l'unique matrice telle que $\exp(B_k) = A_k$, et on note $B \in S_n(\mathbb{R})$ l'unique matrice telle que $\exp(B) = A$. Il s'agit de montrer que $(B_k)_{k \ge 0}$ converge vers B.

Tout d'abord, on vérifie que la seule valeur d'adhérence de $(B_k)_{k\geq 0}$ est B. En effet, s'il existe une sous-suite $(B_{\varphi(k)})_{k\geq 0}$ de $(B_k)_{k\geq 0}$ qui converge vers une matrice $M\in\mathcal{S}_n(\mathbb{R})$, alors par continuité de l'exponentielle, il vient $\exp(M)=A$, donc $\exp(M)=\exp(B)$: l'injectivité permet de conclure que M=B.

Pour conclure, il faut prouver que la suite $(B_k)_{k\geq 0}$ est bornée. En effet, en dimension finie, une suite bornée qui a une unique valeur d'adhérence converge vers cette valeur.

Comme la suite $(A_k)_{k\geq 0}$ converge, elle est bornée, et par continuité de l'inverse, il en va de même de la suite $(A_k^{-1})_{k\geq 0}$. Il existe donc $c,C\in\mathbb{R}$ tels que $\|A_k\|\leq C$ et $\|A_k^{-1}\|\leq c$ pour tout $k\geq 0$. D'après le lemme 1, ceci donne $\rho(A_k)\leq C$ et $\rho(A_k^{-1})\leq c$.

Donc pour toute valeur propre $\lambda \in \operatorname{Sp}(A_k)$, on a $\lambda \leq C$ et pour toute valeur propre $\mu \in \operatorname{Sp}(A_k^{-1})$, on a $\mu \leq c$.

Puisque $\operatorname{Sp}(A_k^{-1}) = \left\{\frac{1}{\lambda}: \ \lambda \in \operatorname{Sp}(A_k)\right\}$, on en déduit que toutes les valeurs propres de A_k sont dans l'intervalle $\left[\frac{1}{c}, C\right]$, et ce, pour tout $k \geq 0$.

Finalement, les valeurs propres des B_k sont donc dans l'intervalle fermé $[-\ln(c), \ln(C)]$, donc :

$$\forall k \ge 0 \quad ||B_k|| \le \max(|-\ln(c)|, |\ln(C)|).$$

La suite $(B_k)_{k\geq 0}$ est bornée, et ceci conclut la preuve.

Références

FGN, Algèbre 2.