Diffusion

Transport of particles (electrons here) due to a concentration gradient

Driven by thermal motion of particles (electrons)

Flux (particle current) is proportional to concentration gradient

Diffusion current

Flux to the right
$$\frac{1}{2}v_{th}\cdot n(-l/2)$$
 $\frac{1}{2}v_{th}\cdot n(+l/2)$ Flux to the left

$$\frac{1}{2}v_{th}\cdot n(+l/2)$$

$$\Phi = \frac{1}{2}v_{th} \cdot n\left(-\frac{l}{2}\right) - \frac{1}{2}v_{th} \cdot n\left(+\frac{l}{2}\right)$$

Net flux

Diffusion coefficient
$$D = \frac{lv_{th}}{2} = \frac{l^2}{2\tau}$$

$$\Phi = \frac{lv_{th}}{2} \frac{n\left(-\frac{l}{2}\right) - n\left(+\frac{l}{2}\right)}{l} \simeq -D\frac{dn}{dx}$$

$$J = eD\frac{dn}{dx}$$

Diffusion current

Drift and diffusion currents

$$J_n = ne\mu_n \mathcal{E} + eD_n \frac{dn}{dx}$$

Drift-diffusion

$$J_p = pe\mu_p \mathcal{E} - eD_p \frac{dp}{dx}$$

Finis

Artwork Sources:

- 1. Prof. Sanjay Banerjee
- 2. www.pveducation.org
- 3. <u>britneyspears.ac</u>