基于MapReduce的搜索引擎算法

2

- □搜索引擎
- □社交网络
- □路径规划

图问题与MapReduce

- □一些图问题:
 - □最短路径
 - □最小生成树
 - □广度优先搜索
 - PageRank
- □关键问题:
 - □怎么在MapReduce中表示图数据
 - ■怎么用MapReduce遍历图

图表示方法

- $\Box G = (V, E)$
- □两种常见的表示方法
 - □邻接矩阵
 - □邻接表

邻接矩阵

用一个nxn的矩阵M来表示图:

- **□***n* = |V|
- $\mathbf{M}_{ij} = 1$ 表示一条i到j的边

	1	2	3	4
1	0	1	0	1
2	1	0	1	1
3	1	0	0	0
4	1	0	1	0

邻接矩阵

- □优点:
 - ■便于数学操作
 - □遍历一行可得到出度信息,遍历一列可以得到入度信息
- □缺点:
 - □对于稀疏矩阵浪费内存

邻接表

7

□只保存邻接矩阵中不为零的节点

	1	2	3	4	
1	0	1	0	1	
2	1	0	1	1	
3	1	0	0	0	
4	1	0	1	0	

1: 2, 4 2: 1, 3, 4 3: 1

4: 1, 3

邻接表

- □优点:
 - □表示更加紧凑
 - □容易得到出度信息
- □缺点:
 - □不方便得到入度信息

PageRank内容概述

- □什么是PageRank
- □PageRank的简化模型
- □ PageRank的随机浏览模型
- □ PageRank的MapReduce实现

什么是PageRank

PageRank

- ■PageRank是一种由搜索引擎根据网页之间相互的超链接计算的网页排名技术。
- Larry Page and Sergey Brin, Google, 1997
- □PageRank是Google用于用来标识网页的等级或重要性的一种方法。 其级别从1到10级,PR值越高说明该网页越受欢迎(越重要)。

PageRank的基本设计思想和设计原则

- 从许多优质的网页链接 过来的网页,必定还是 优质网页。一个网页要 想拥有较高的PR值的条 件:
 - •有很多网页链接到它; (数量假设)
 - •有高质量的网页链接到它。(质量假设)

PageRank的基本设计思想和设计原则

- □如果网页T存在一个指向网页A的连接,则表明T的所有者认为A比较重要,从而把T的一部分重要性得分赋予A。这个重要性得分值为: PR(T)/L(T)
 - □ 其中PR(T)为T的PageRank值,L(T)为T的出链数
 - □则A的PageRank值为一系列类似于T的页面重要性得分值的累加。
- □即一个页面的得票数由所有链向它的页面的重要性来决定,到一个页面的超链接相当于对该页投一票。一个页面的PageRank是由所有链向它的页面(链入页面)的重要性经过递归算法得到的。一个有较多链入的页面会有较高的等级,相反如果一个页面没有任何链入页面,那么它没有等级。

PageRank的简化模型

- □可以把互联网上的各个网页之间的链接关系看成一个有向图。
- □对于任意网页Pi, 它的PageRank值可表示为:

其中Bi为所有链接到网页i的网页集合, Lj为网页j的对外链接数(出度)。

简化模型的矩阵表示

 Let us define a hyperlink matrix H

$$\mathbf{H}_{ij} = \begin{cases} 1/L_j & \text{if } P_j \in B_i \\ 0 & \text{otherwise} \end{cases}$$

and
$$\mathbf{R} = [R(P_i)]$$

$$\rightarrow$$
 R = HR

R is an eigenvector of H with eigenvalue 1

R为特征向量,H为初始转移矩阵,比如第一列表示从网页P1跳转到其他页面的概率

简化模型面临的问题

- □实际的网络超链接环境没有这么理想化, PageRank会面临两个问题:
 - · 排名泄露 (Rank leak)
 - · 排名下沉 (Rank sink)

Rank Leak

	PR(A)	PR(B)	PR(C)	PR(D)
初始	0.25	0.25	0.25	0.25
一次迭代	0.125	0.125	0.25	0.25
二次迭代	0.125	0.125	0.125	0.25
三次迭代	0.125	0.125	0.125	0.125
•••	•••	•••	•••	•••
n次迭代	0	0	0	0

Rank leak: 一个独立的网页如果没有外出的链接就产生排名泄漏 (多次迭代后,所有网页的PR值都趋向于O)。

解决办法:

- 1.将无出度的节点递归地从图中去掉,待其他节点计算完毕后再添加。
- 2.对无出度的节点添加一条边,指向那些指向它的顶点。

Rank Sink

	PR(A)	PR(B)	PR(C)	PR(D)
初始	0.25	0.25	0.25	0.25
一次迭代	0	0.375	0.25	0.375
二次迭代	0	0.375	0.375	0.25
三次迭代	0	0.25	0.375	0.375
四次迭代	0	0.375	0.25	0.375
五次迭代	0	•••	•••	• • •

Rank sink: 若网页没有入度链接(如节点A),其所产生的贡献会被整个网页图中的一组紧密链接成环的网页(如B、C、D)"吞噬"掉,节点A的PR值在迭代后会趋于O。

解决方法:引入随机浏览模型。

PageRank的随机浏览模型

- □假定一个上网者从一个随机的网页开始浏览
- □上网者不断点击当前网页的链接开始下一次浏览。
- □但是,上网者最终厌倦了,开始了一个随机的网页。
- □随机上网者访问一个新网页的概率就等于这个网页的PageRank值。 因此这个模型更加接近于用户的行为。

随机浏览模型的图表示

设定任意两个顶点之间都有直接通路,在每个顶点处以概率d按原来蓝色方向转移,以概率1-d按红色方向转移。

随机浏览模型的矩阵表示

- □回顾简单模型的矩阵表示:
 - $\cdot R = HR$
- □随机浏览模型的矩阵表示:
 - \diamondsuit : H' = d*H + (1-d)*[1/N]_{N×N}
 - 则: R= H'R
 - *其中R为列向量,代表PageRank值;H'代表转移矩阵;d代表阻尼因子,通常设为0.85。
- □由于等式R=H'R满足马尔可夫链的性质,如果马尔可夫链收敛,则R 存在唯一解

随机浏览模型的邻接表表示

- □由于网页数目巨大, 网页之间的连接关系的邻接矩阵是一个很大的 稀疏矩阵。
- □采用邻接表来表示网页之间的连接关系。
- □随机浏览模型的PageRank公式:

$$PR(p_i) = \frac{1-d}{N} + d \sum_{p_j \in M(p_i)} \frac{PR(p_j)}{L(p_j)}$$

■通过迭代计算得到所有节点的PageRank值。

随机浏览模型

- □随机浏览模型的优点:
 - □更加符合用户的行为
 - □一定程度上解决了rank sink问题
 - ■保证PageRank存在唯一值。

用MapReduce实现PageRank

- □ Phase 1: GraphBuilder
 - □建立网页之间的超链接图
- □ Phase2: PageRankIter
 - ■迭代计算各个网页的PageRank值
- □ Phase3: RankViewer
 - ■按PageRank值从大到小输出

Phase1: GraphBuilder

- □原始数据集:维基百科各网页间的链接信息。文本文件,共11.2G。 每行包含一个网页名,及其所链接的全部网页名。
- □GraphBuilder目标:分析原始数据,建立各个网页之间的链接关系。
 - Map: 逐行分析原始数据,输出<URL, (PR_init, link_list)>
 - · 其中网页的URL作为key, PageRank初始值(PR_init)和网页的出度列表一起作为value, 以字符串表示value, 用特定的符号将二者分开。
 - Reduce: 输出 < URL, (PR_init, link_list)>
 - · 该阶段的Reduce不需要做任何处理

Phase2: PageRankIter

- □ PageRankIter: 迭代计算PR值, 直到PR值收敛或迭代预定次数。
- □ Map对上阶段的 <URL, (cur_rank, link_list)>产生两种<key, value>对:
 - 1. For each υ in link_list, 输出 <υ, cur_rank/|link_list|>
 - · 其中u代表当前URL所链接到网页ID,并作为key;
 - cur_rank为当前URL的PageRank值, |link_list|为当前URL的出度数量,cur_rank/|link_list|作为 value。
 - 2. 同时在迭代过程中,传递每个网页的链接信息<URL, link_list>
 - 在迭代过程中, 必须保留网页的局部链出信息, 以维护图的结构。

Phase2: PageRankIter

- □ Reduce 对 Map输出的<URL, link_list>和多个 <u, cur_rank/|link_list|> 做如下处理:
 - □其中<URL, link_list>为当前URL的链出信息;
 - <u, cur_rank/|link_list|>为每个链入网页对当前网页u所贡献的PageRank值,把这些贡献值按公式相加即可得到当前网页u的新的PageRank值。
 - · 计算所有val的和,并乘上d,再加上常数(1-d)/N得到new_rank。
 - 输出 (u, (new_rank, link_list))。
- 迭代计算公式:
 - PR(A) = $(1-d) / N + d (PR(T_1) / C(T_1) + ... + PR(T_n) / C(T_n))$

Phase2: PageRankIter

```
1: class Mapper
      method Map(nid n, node N)
          p \leftarrow N.PageRank/|N.AdjacencyList|
          Emit(nid n, N)
                                                         ▶ Pass along graph structure
          for all nodeid m \in N. Adjacency List do
                                                  ▶ Pass PageRank mass to neighbors
             Emit(nid m, p)
6:
1: class Reducer
      method Reduce(nid m, [p_1, p_2, \ldots])
2:
          M \leftarrow \emptyset
          for all p \in \text{counts } [p_1, p_2, \ldots] do
             if IsNode(p) then
5:
                                                            ▷ Recover graph structure
                 M \leftarrow p
6:
             else
7:
                                            s \leftarrow s + p
8:
          M.\mathsf{PAGERANK} \leftarrow s
9:
          Emit(nid m, node M)
10:
```


Phase3: PageRankViewer

- □PageRankViewer: 将最终结果排序输出。
 - · PageRankViewer从最后一次迭代的结果读出文件,并将文件名和其PR值读出, 并以PR值为key,网页名为value,并且以PR值从大到小的顺序输出。
 - ·排序过程中可以采用框架自身的排序处理,重载key的比较函数,使其经过shuffle和sort后反序(从大到小)输出。

```
public static class DecFloatWritable extends FloatWritable {
    ...
    @Override
        public int compareTo(Object o) { return -super.compareTo(o); }
}
```


PageRank迭代终止条件

- □可选的终止条件:
 - □各网页的PageRank值不再改变;
 - □各网页的PageRank值排序不再变化;
 - □迭代至固定次数。

多趟MapReduce的处理

```
public class PageRankDriver {
  private static int times = 10;
  public static void main(String args[]) throws Exception{
         String[] for GB = \{"", args[1] + "/Data0"\};
         forGB[0] = args[0];
         GraphBuilder.main(forGB);
         String[] forltr = {"Data","Data"};
         for (int i=0; i< times; i++) {
                  forltr[0] = args[1] + "/Data" + (i);
                  forltr[1] = args[1] + "/Data" + (i+1);
                  PageRankIter.main(forItr);
         String[] for RV = \{args[1] + "/Data" + times, args[1] + "/FinalRank"\};
         PageRankViewer.main(forRV);
```


基于MapReduce的图算法小结

- □通常采用邻接表来表示图。
- □通常将一个完整的图结构,分解成若干个局部的子结构,对每个子 结构进行并行处理。
- □在map阶段对邻接点产生<key, value>对,经过shuffle和sort后,在reduce阶段更新节点信息。
- □图算法通常是一个迭代过程,上一步的输出作为下一步的输入,由额外的"driver"控制。

THANK YOU

