Semantic tree operations

D. Gueorguiev 1/6/2021

Let us introduce the *tree tuple* (k, v) where v represents certain node - semantic particle or a subtree. Here k is a tree tuple factor which encodes uniquely the position of the node v in the tree.

The following operations are defined for tree tuple factors:

We have a base of m tree tuple factors $k_1,k_2,...$ k_m which are defined as the digits greater than 0 of (m+1)-nary number system such that $0=k_0 < k_1 < k_2 < ... < k_m$. We define an operation `*` denoting digit concatenation $k_i * k_j = (m+1)k_i + k_j$. Obviously,

$$k_i * k_i > k_i$$
 for any pair $i, j = 1..m$

Note that the latter implies that

$$k_{i_1} * k_{i_2} * ... * k_{i_n} > k_{j_1} * k_{j_2} * ... * k_{j_{n-1}}$$
 for any tuple where $i_p, j_q = 1...m, p = 1...n, q = 1...n - 1$

$$(k_i,(k_j,v_j)) = (k_i * k_j,v_j)$$

Encoding a complete m-ary tree T of height h with the algebraic notation above:

 $T = (k_0, v_0^0)$. Further we will assume that $k_0 = 0$.

$$v_0^0 = (k_0, v_0^1) + (k_1, v_1^1) + (k_2, v_2^1) + \dots + (k_m, v_m^1)$$

In general we have:

$$v_q^p = \left(k_0, v_q^{p+1}\right) + \left(k_1, v_{(q-1)m+1}^{p+1}\right) + \left(k_2, v_{(q-1)m+2}^{p+1}\right) + \ldots + \left(k_m, v_{qm}^{p+1}\right)$$
 where $q = 1 \ldots m^h, p = 1 \ldots h$

Obviously, we have at most $\frac{(m^{h+1}-1)}{m-1}$ distinct terms v_q^p which represent nodes i.e. semantic values.

The expression for the tree also can be written as:

 $T = \sum_{i=0}^N (k_i^*, v_i) \text{ where } N \leq \frac{(m^{h+1}-1)}{m-1} \text{ and } k_i^* \text{ are the } \textit{node factors} \text{ given with } k_i^* = k_{i_1} * k_{i_2} * \dots * k_{i_n}; n \leq h. \text{ The node values } v_i \text{ are the values } v_q^p \text{ ordered in increasing order of } k_i^*. \text{ This order corresponds to } \textit{level order traversal} \text{ of the } m\text{-ary tree. Note that with appropriately defined comparison operation `<` we can model different ways of traversing the $m\text{-ary tree.}$ For instance, if we define `<` as the comparison for the values of <math>(m+1-k_{i_1})m^{n-1}+(m+1-k_{i_2})m^{n-2}+\cdots+(m+1-k_{i_n})$ we will have ordering which corresponds to the $preorder\ traversal$ of the tree.

Example

Peter is Dimitar's son.

Dimitar's son has a friend in the neighborhood and his friend's name is James.

⇒ James is Peter's friend

Peter is the son of Dimitar.

$$V_1$$
 V_2 V_3 V_4 V_5 V_6

The son of Dimitar has a friend in the neighborhood and the name of his friend is James.

$$V_7$$
 V_8 V_9 V_{10} V_{11} V_{12} V_{13} V_{14} V_{15} V_{16} V_{17} V_{18} V_{19} V_{20} V_{21} V_{22} V_{23} V_{24}

Expressing T_1 with the algebraic notation discussed earlier:

$$T_1 = (k_0, v_2) + (k_1, v_1) + (k_2, ((k_0, v_3) + (k_1, v_4) + (k_2, v_5) + (k_3, v_6)))$$
 which is expanded to:

$$T_1 = (k_0, v_2) + (k_1, v_1) + (k_2 k_0, v_3) + (k_2 k_1, v_4) + (k_2 k_2, v_5) + (k_2 k_3, v_6)$$

Expressing T_2 with the algebraic notation yields:

$$T_{2} = (k_{0}, v_{17}) + \left(k_{1}, \left((k_{0}, v_{11}) + \left(k_{1}, \left((k_{0}, v_{8}) + (k_{1}, v_{7}) + (k_{2}, v_{9}) + (k_{3}, v_{10})\right)\right) + \left(k_{2}, \left((k_{0}, v_{12}) + (k_{1}, v_{13})\right)\right) + \left(k_{3}, \left((k_{0}, v_{14}) + (k_{1}, v_{15}) + (k_{2}, v_{16})\right)\right)\right) + \left(k_{2}, \left((k_{0}, v_{23}) + (k_{1}, v_{19}) + (k_{1}, v_{18}) + \left(k_{2}, \left((k_{0}, v_{20}) + (k_{1}, v_{21}) + (k_{2}, v_{22})\right)\right)\right)\right) + (k_{2}, v_{24})\right)\right)$$

which is expanded to:

$$\begin{split} T_2 &= (k_0, v_{17}) + (k_1 k_0, v_{11}) + (k_1 k_1 k_0, v_8) + (k_1 k_1 k_1, v_7) + (k_1 k_1 k_2, v_9) + (k_1 k_1 k_3, v_{10}) \\ &\quad + (k_1 k_2 k_0, v_{12}) + (k_1 k_2 k_1, v_{13}) + (k_1 k_3 k_0, v_{14}) + (k_1 k_3 k_1, v_{15}) + (k_1 k_3 k_2, v_{16}) \\ &\quad + (k_2 k_0, v_{23}) + (k_2 k_1 k_0, v_{19}) + (k_2 k_1 k_1, v_{18}) + (k_2 k_1 k_2 k_0, v_{20}) + (k_2 k_1 k_2 k_1, v_{21}) \\ &\quad + (k_2 k_1 k_2 k_2, v_{22}) + (k_2 k_2, v_{24}) \end{split}$$

Semantic Aggregation:

Properties and Dependent Properties:

A V particle is defined as a tree-like structure of attached properties as depicted on the figures above.

Let us construct the V particle of the verb "is":

P₁: key: 'particle_type', value: 'verb'
P₂: key: 'is_transitive', value: 'true'
P₃: key: 'plurality', value: 'singular'

P₄: key: 'grammatical_person', value: 'third_person'

P₅: key: 'tense', value: 'present'

 P_6 : key: 'text', value: 'is'

Each property (P-particle) is constructed from a key (key-particle) and a value (val-particle). Each key and value particles are registered in a particle registry \Re^P . The purpose of the particle registry \Re^P is to facilitate learning of new keys and values and use them for parsing new semantic constructs. Between any two keys k_1 and k_2 , such that it is obeyed exactly one of the following 3 relations:

$$k_1 \not\prec \not\succ k_2 \quad \lor \quad k_1 \succ k_2 \quad \lor \quad k_1 \prec k_2$$

Here the operator $\not\prec \not\succ$ indicates that there is no parent-child relationship between k_1 and k_2 , the operator \succ indicates that k_2 is a subkey (or a child) of k_1 and \prec indicates that k_2 is a superkey (or a parent) of k_1 .

Semantic properties of a V particle

Maria is a daughter of Dimitar.

V20 V21

V17 V18 V19

The semantic properties of a particle are under the key 'semantic_properties_available'. The semantic properties of a particle can be frequently updated depending on the context and upon refining concepts as a result of parsing and analysis of new semantic structures.

In our example we can deduce the following semantic properties:

```
P<sub>7</sub> : key: 'semantic_properties_available', value: 'true'
P<sub>8</sub>: key: 'represents_an_entity', value: 'true'
SN.key_relation(k1, k2): KeyRelation
Enum KeyRelation: {'keys_unrelated', 'key_left_is_parent_of_key_right',
'key_left_is_ancestor_of_key_right', 'key_left_is_child_of_key_right',
'key_left_is_descendant_of_key_right'}
SN.key_children(k): set()
SN.key_descendents(k): set()
How do we add properties to a particle? Either via semantic programming or via inference.
Simple scenario to add property via inference:
Dimitar is a son of John.
        V_2 V_3 V_4 V_5 V_6
   V_1
The red Ford is a car of Bank of America.
V_7 V_8 V9 V10 V11 V12 V13 V14 V15
                                               V16
```