Circuit Design with VHDL

Chapters 1-3: Introduction

Instructor: Ali Jahanian

Text book & required tools

Class

- Textbook:
 - Volnei A. Pedroni, "Circuit Design with VHDL", Third Edition, MIT Press, 2020.
- Software:
 - ModelSim
 - ISE/Vivado
- Slides' reference:
 - Dr. Saeed Gorgin

Evaluation

Grades

- Homework & projects 30% <No delivery= -1/2 grade>

- Quiz 10% <No delivery= -1/2 grade>

- Final Project 10%

- Final Exam 50%

Course Strategy

- At the end of this course you should be able to:
 - -Concepts of Hardware Modeling
 - Design and modeling with VHDL
 - Synthesize and implement of digital systems on FPGAs
 - -Master on High-Level Synthesis

Course Outline

- Introduction
- Circuit Design with VHDL
- FPGA structure
- Hardware Synthesis using ISE
- High-level Synthesis

Moore's Law

Design Styles

• Full-custom design

Semi-custom design

Gate array design

ASIC or FPGA?

Basic Logic Review

- Combinational Logic Review [©Hwan08]
 - Basic Logic Review
 - Basic Gates (AND,OR,XOR,NAND,NOR)
 - DeMorgan's Law
 - Combinational Logic Blocks
 - Multiplexers
 - Decoders, Demultiplexers
 - Encoders, Priority Encoders
 - Half Adders, Full Adders
 - Multi-Bit Combinational Logic Blocks
 - Multi-bit multiplexers
 - Multi-bit adders
 - Comparators

Basic Logic Review

- Sequential Logic Review [©Hwan08]
 - Sequential Logic Building Blocks
 - Latches, Flip-Flops
 - Sequential Logic Circuits
 - Registers, Shift Registers, Counters
 - Memory (RAM, ROM)
 - Simple Finite State Machines (Mealy, Moore)

Basic Logic Review

- Digital Logic
 - Digital logic gates implement Boolean functions
 - 1 represents true
 - 0 represent false
 - Two types of logic
 - Combinational logic: output depends on the input
 - Sequential logic: output depends on the input and previous outputs and/or inputs

Digital Logic

- Digital logic gates implement Boolean functions
 - 1 represents true
 - 0 represent false
- Two types of logic
 - Combinational logic: output depends on the input
 - Sequential logic: output depends on the input and previous outputs and/or inputs

Basic Concepts

- Simple logic gates
 - AND \rightarrow 0 if one or more inputs is 0
 - OR \rightarrow 1 if one or more inputs is 1
 - NOT
 - NAND = AND + NOT
 - 1 if one or more inputs is 0
 - -NOR = OR + NOT
 - 0 if one or more input is 1
 - XOR implements exclusive-OR function
- NAND and NOR gates require fewer transistors than AND and OR in standard CMOS
- Functionality can be expressed by a truth table
 - A truth table lists output for each possible input combination

Basic Logic Gates

AND gate

OR gate

NOT gate

Logic symbol

A	В	F
0	0	0
0	1	0
1	0	0
1	1	1

A	В	F
0	0	0
0	1	1
1	0	1
1	1	1

Α	F
0	1
1	0

Truth table

NAND gate

NOR gate

A	1	— г
В	-1	Г

XOR gate

Logic symbol

A	В	F
0	0	1
0	1	1
1	0	1
1	1	0

A	В	F
0	0	1
0	1	0
1	0	0
1	1	0

A	В	F
0	0	0
0	1	1
1	0	1
1	1	0

Truth table

Number of Functions

- Number of functions
 - With N logical variables, we can define 2^{2^N} functions
 - Some of them are useful
 - AND, NAND, NOR, XOR, ...
 - Some are not useful:
 - Output is always 1
 - Output is always 0

9/25/2021 **15**

Complete Set of Gates

- Complete sets
 - A set of gates is complete
 - if we can implement any logical function using only the type of gates in the set
 - Some example complete sets
 - {AND, OR, NOT}
 - {AND, NOT}
 - {OR, NOT}
 - {NAND}
 - {NOR}
 - Minimal complete set
 - A complete set with no redundant elements.

NAND as a Complete Set

• Proving NAND gate is universal

Logic Functions

- Logical functions can be expressed in several ways:
 - Truth table
 - Logical expressions
 - Graphical form
 - HDL code
- Example:
 - Majority function
 - Output is one whenever majority of inputs is 1
 - We use 3-input majority function

Logic Functions...

- Truth table
- Logical expression form
 F = A B + B C + A C
- Graphical schematic form

B	C	F
0	0	0
0	1	0
1	0	0
1	1	1
0	0	0
0	1	1
1	0	1
1	1	1
	0 1 1 0 0	0 0 0 1 1 0 1 1 0 0 0 1

Boolean Algebra

Boolean identities

Name	AND version	OR version
Identity	$\mathbf{x} \cdot 1 = \mathbf{x}$	x + 0 = x
Complement	$\mathbf{x} \cdot \mathbf{x}' = 0$	x + x' = 1
Commutative	$\mathbf{x} \cdot \mathbf{y} = \mathbf{y} \cdot \mathbf{x}$	x + y = y + x
Distribution	$x \cdot (y+z) = xy+xz$	$x + (y \cdot z) =$
		(x+y)(x+z)
Idempotent	$\mathbf{x} \cdot \mathbf{x} = \mathbf{x}$	x + x = x
Null	$\mathbf{x} \cdot 0 = 0$	x + 1 = 1

Boolean Algebra...

• Boolean identities (cont'd)

Name	AND version	OR version
Involution	$\mathbf{x} = ($	x')'
Absorption	$x \cdot (x+y) = x$	$x + (x \cdot y) = x$
Associative	$x \cdot (y \cdot z) = (x \cdot y) \cdot z$	x + (y + z) =
		(x + y) + z
de Morgan	$(x \cdot y)' = x' + y'$	$(x + y)' = x' \cdot y'$
(de Morgan's 1	law in particular is v	ery useful)

Majority Function Using Other Gates

- Using NAND gates
 - Get an equivalent expression

$$AB + CD = (AB + CD)$$
"

- Using de Morgan's law

$$AB + CD = ((AB)' \cdot (CD)')'$$

- Can be generalized
 - Example: Majority function

$$AB + BC + AC = ((AB)' \cdot (BC)' \cdot (AC)')'$$

Majority Function Using Other Gates...

Majority function

Combinational Logic Building Blocks

log₂n selection inputs

Multiplexers

- n binary inputs (binary input = 1-bit input)
- − log₂n binary selection inputs
- 1 binary output
- Function: one of n inputs is placed onto output
- Called n-to-1 multiplexer

2-to-1 Multiplexer

(a) Graphical symbol

(b) Truth table

(c) Sum-of-products circuit

(d) Circuit with transmission gates

4-to-1 Multiplexer

(a) Graphic symbol

s ₁	s ₀	f
0	0	w ₀
0	1	W_1
1	0	W_2
1	1	<i>w</i> ₃

(b) Truth table

(c) Circuit

Decoders

Decoder

- n binary inputs
- 2ⁿ binary outputs
- Function: decode encoded information
 - If enable=1, one output is asserted high, the other outputs are asserted low
 - If enable=0, all outputs asserted low
- Often, enable pin is not needed (i.e. the decoder is always enabled)
- Called **n-to-2**ⁿ decoder
 - Can consider n binary inputs as a single n-bit input
 - Can consider 2ⁿ binary outputs as a single 2ⁿ-bit output
- Decoders are often used for RAM/ROM addressing

2-to-4 Decoder

En	<i>w</i> ₁	W_0	<i>y</i> ₃	<i>y</i> ₂	<i>y</i> ₁	<i>y</i> ₀
1	0	0	0	0	0	1
1	0	1	0	0	1	0
1	1	0	0	1	0	0
1	1	1	1	0	0	0
0	-	-	0	0	0	0

(a) Truth table

(b) Graphical symbol

Demultiplexers

log₂n selection inputs

- Demultiplexer
 - 1 binary input
 - n binary outputs
 - log₂n binary selection inputs
 - Function: places input onto one of n outputs, with the remaining outputs asserted low
 - Called **1-to-n** demultiplexer
- Closely related to decoder
 - Can build 1-to-n demultiplexer from log₂n-to-n decoder by using the decoder's enable signal as the demultiplexer's input signal, and using decoder's input signals as the demultiplexer's selection input signals.

1-to-4 Demultiplexer

Encoders

- Encoder
 - 2ⁿ binary inputs
 - n binary outputs
 - Function: encodes information into an n-bit code
 - Called **2**ⁿ-to-n encoder
 - Can consider 2ⁿ binary inputs as a single 2ⁿ-bit input
 - Can consider n binary output as a single n-bit output
- Encoders only work when exactly one binary input is equal to 1

4-to-2 Encoder

W_3	W_2	<i>w</i> ₁	w_0	<i>y</i> ₁	<i>y</i> ₀
0	0	0	1	0	0
0	0	1	0	0	1
0	1	0	0	1	0
1	0	0	0	1	1

(a) Truth table

Priority Encoders

- Priority Encoder
 - 2ⁿ binary inputs
 - n binary outputs
 - 1 binary "valid" output
 - Function: encodes information into an n-bit code based on priority of inputs
 - Called 2ⁿ-to-n priority encoder
- Priority encoder allows for multiple inputs to have a value of '1', as it encodes the input with the highest priority (MSB = highest priority, LSB = lowest priority)
 - "valid" output indicates when priority encoder output is valid
 - Priority encoder is more common than an encoder

4-to-2 Priority Encoder

w ₃	W_2	W_1	W_0	<i>Y</i> ₁	<i>y</i> ₀	Z
0	0	0	0	-	_	0
0	0	0	1	0	0	1
0	0	1	-	0	1	1
0	1	-	-	1	0	1
1	-	-	-	1	1	1

Single-Bit Adders

- Half-adder
 - Adds two binary (i.e. 1-bit) inputs A and B
 - Produces a *sum* and *carryout*
 - Problem: Cannot use it alone to build larger adders
- Full-adder
 - Adds three binary (i.e. 1-bit) inputs A, B, and carryin
 - Like half-adder, produces a *sum* and *carryout*
 - Allows building M-bit adders (M > 1)
 - Simple technique
 - Connect Cout of one adder to Cin of the next
 - These are called *ripple-carry adders*
 - Shown in next section

Single-Bit Adders ...

Α	В	Sum	Cout
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

(a) Half-adder truth table and implementation

Α	В	C_{in}	Sum	C_{out}
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

(b) Full-adder truth table and implementation

Multi-bit 4-to-1 Multiplexer

- When drawing schematics, can draw multi-bit multiplexers
- Example: 4-to-1 (8 bit) multiplexer
 - 4 inputs (each 8 bits)
 - 1 output (8 bits)
 - 2 selection bits
- Can also have multi-bit 2-to-1 muxes, 16-to-1 muxes, etc.

4-to-1 (8-bit) Multiplexer

Multi-Bit Ripple-Carry Adder

- A 16-bit ripple-carry adder is composed of 16 (1-bit) full adders
 - Inputs: 16-bit A, 16-bit B, 1-bit carryin (set to zero in the figure below)
 - Outputs: 16-bit sum R, 1-bit overflow

Comparator

- Used two compare two M-bit numbers and produce a flag (M >1)
 - Inputs: M-bit input A, M-bit input B
 - Output: 1-bit output flag
 - 1 indicates condition is met
 - 0 indicates condition is not met
 - Can compare: >, >=, <, <=, =, etc.</p>

Example: 4-bit comparator (A = B)

9/25/2021 414141

Combinational Logic Example: ALU (1-bit)

• Preliminary ALU design (ALU = arithmetic + logic unit)

Sequential Logic Review

- Sequential Logic Building Blocks
 - Latches, Flip-Flops
- Sequential Logic Circuits
 - Registers, Shift Registers, Counters
 - Memory (RAM, ROM)
 - Simple Finite State Machines (Mealy, Moore)

Introduction to Sequential Logic

- Output depends on current as well as past inputs
 - Depends on the history
 - Have "memory" property
- Sequential circuit consists of
 - Combinational circuit
 - Feedback circuit
 - Past input is encoded into a set of state variables
 - Uses feedback (to feed the state variables)
 - Simple feedback
 - Uses flip flops

Introduction ...

• Main components of a typical synchronous sequential circuit

(synchronous = uses a clock to keep circuits in lock step)

State-Holding Memory Elements

Latch versus Flip Flop

- Latches are level-sensitive: whenever clock is high, latch is transparent
- Flip-flops are edge-sensitive: data passes through (i.e. data is sampled) only on a rising (or falling) edge of the clock
- Latches cheaper to implement than flip-flops
- Flip-flops are easier to design with than latches

D Latch vs. D Flip-Flop

Latch transparent when clock is high

"Samples" D on rising edge of clock

D Flip-Flop (positive edge triggered)

D Flip-Flop (positive edge triggered)

D Flip-Flop with Asynchronous Preset and Clear

- Bubble on the symbol means "active-low"
 - When preset = 0, preset Q to 1
 - When preset = 1, do nothing
 - When clear = 0, clear Q to 0
 - When clear = 1, do nothing
- "Preset" and "Clear" also known as "Set" and "Reset" respectively
- In this circuit, preset and clear are asynchronous
 - Q changes immediately when preset or clear are active, regardless of clock

D Flip-Flop with Synchronous Clear

- Asynchronous active-low clear: Q immediately clears to 0
- Synchronous active-low clear: Q clears to 0 on rising-edge of clock

Other Types of Flip-Flops

D Flip-Flop

D	Q(t+1)
0	0
1	1

Set-Reset (SR) Flip-Flop

S	R	Q(t+1)
0	0	Q(t)
0	1	0
1	0	1
1	1	not allowed

Toggle (T) Flip-Flop

Т	Q(t+1)
0	Q(t)
1	$\overline{Q(t)}$

JK Flip-Flop

J	K	Q(t+1)
0	0	Q(t)
0	1	0
1	0	1
1	1	Q(t)

Sequential Logic Circuits

Register

• In typical nomenclature, a register is a name for a collection of flip-flops used to hold a bus (i.e.

std_logic_vector)

Shift Register

(a) Circuit

In
$$Q_1$$
 Q_2 Q_3 $Q_4 = Out$
 t_0 1 0 0 0 0
 t_1 0 1 0 0 0
 t_2 1 0 1 0 0
 t_3 1 1 0 1 0
 t_4 1 1 1 0 1
 t_5 0 1 1 1 0
 t_6 0 0 1 1 1
 t_7 0 0 0 1 1

(b) A sample sequence

Parallel Access Shift Register

Synchronous Up Counter

- Enable (synchronous): when high enables the counter, when low counter holds its value
- Load (synchronous): when load = 1, load the desired value into the counter
- Output carry: indicates when the counter "rolls over"
- D3 downto D0, Q3 downto Q0 is how to interpret MSB to LSB

Memories (Random Access Memory)

- More efficient than registers for storing large amounts of data
- Can read and write to RAM
- Addressable memory
- Can be synchronous (with clock) or asynchronous (no clock)
- SRAM dimensions are:
 - (number of words) x (bits per word) SRAM
- Address is m bits, data is n bits
 - 2^m x n-bit RAM
- Example: address is 5 bits, data is 8 bits
 - 32 x 8-bit RAM
- Write
 - Data in and address are stable
 - Assert write signal (then de-assert)
- Read
 - Address is stable
 - Assert read signal
 - Data_out is valid

Random Access Memory (RAM) ...

Read Only Memory (ROM)

- Similar to RAM except read only
- Addressable memory
- Can be synchronous (with clock) or asynchronous (no clock)

Read-Only Memory (ROM) ...

Finite State Machines (FSMs)

- Any Circuit with Memory Is a Finite State Machine
 - Even computers can be viewed as huge FSMs
- Design of FSMs Involves
 - Defining states
 - Defining transitions between states
 - Optimization / minimization
- Above Approach Is Practical for Simple FSMs Only

Mealy vs. Moore State Machines

- Finite State Machines (FSM) are of two types:
- Moore Machines
 - Next State = Function(Input, Present State)
 - Output = Function(Present State)
- Mealy Machines
 - Next State = Function(Input, Present State)
 - Output = Function(Input, Present State)

Moore FSM

Output Is a Function of a Present State Only

Mealy FSM

Output Is a Function of a Present State and Inputs

Moore Machine

Mealy Machine

Moore vs. Mealy FSM (1)

- Moore and Mealy FSMs can be functionally equivalent
 - Equivalent Mealy FSM can be derived from Moore FSM and vice versa
- Mealy FSM Has Richer Description and Usually Requires Smaller Number of States
 - Smaller circuit area

Moore vs. Mealy FSM (2)

- Mealy FSM computes outputs as soon as inputs change
 - Mealy FSM responds one clock cycle sooner than equivalent Moore FSM
- Moore FSM Has no combinational path between inputs and outputs
 - Moore FSM is more likely to have a shorter critical path
 - Moore outputs synchronized with clock; Mealy outputs may not be (may have race conditions, timing issues, etc.)

Moore FSM - Example 1

Moore FSM that Recognizes Sequence "10"

Meaning of states:

S0: No elements of the sequence observed

S1: "1" observed

S2: "10" observed

Mealy FSM - Example 1

Mealy FSM that Recognizes Sequence "10"

S0: No

Meaning elements

of states: of the

sequence

observed

9/25/2021

observed

Moore & Mealy FSMs – Example 1

FSM Limitations

- Simple finite state machines (those expressed using state diagrams and state tables) good only for simple designs
 - Many inputs and many outputs make it awkward to draw state machines
 - Often only one input affects the next change of state
 - Most outputs remain the same from state to state
- Instead use algorithmic state machines (ASM)

Next Session

• I-CIRCUIT DESIGN

- 1 Introduction
 - 1.1 About VHDL
 - 1.2 Design Flow
 - 1.3 EDA Tools
 - 1.4 Translation of VHDL Code into a Circuit
 - 1.5 Design Examples