

Machine Learning for Multi-step Ahead Forecasting of Volatility Proxies

Jacopo De Stefani, Ir. - jdestefa@ulb.ac.be
Prof. Gianluca Bontempi - gbonte@ulb.ac.be
Olivier Caelen, PhD - olivier.caelen@worldline.com
Dalila Hattab, PhD - dalila.hattab@equensworldline.com

MIDAS 2017 - ECML-PKDD Hotel Aleksandar Palace, Skopje, FYROM Monday 18th September, 2017

Problem overview

What is volatility?

Definition

Volatility is a statistical measure of the dispersion of returns for a given security or market index.

ш

A closer look on data - Volatility proxies

Multistep ahead TS forecasting - Taieb [2014]

Definition

Given a univariate time series $\{y_1,\cdots,y_T\}$ comprising T observations, forecast the next H observations $\{y_{T+1},\cdots,y_{T+H}\}$ where H is the forecast horizon.

Hypotheses:

- Autoregressive model $y_t = m(y_{t-1}, \dots, y_{t-d}) + \varepsilon_t$ with lag order (embedding) d
- lacktriangledown ε is a stochastic iid model with $\mu_{arepsilon}=0$ and $\sigma_{arepsilon}^2=\sigma^2$

Multistep ahead forecasting for volatility

State-of-the-art NAR

1 Input 1 Output

Multistep ahead forecasting for volatility

2 inputs 1 output

Multistep ahead forecasting for volatility

1 Output

1 output

M+1 inputs M+1 outputs

Multistep ahead forecasting for volatility

Direct method

- ▶ A single model f^h for each horizon h.
- \blacktriangleright Forecast at h step is made using h^{th} model.
- ▶ Dataset examples (d = 3, h = 3):

Direct NAR

	Х		У
σ_3^P	σ_2^P	σ_1^P	σ_5^P
σ_4^P	σ_3^P	σ_2^P	σ_6^P
σ_{T-5}^{P}	σ_{T-6}^{P}	σ_{T-7}^{P}	σ_{T-2}^P

Direct NARX

		2	K			У
σ_3^P	σ_2^P	σ_1^P	σ_3^X	σ_2^X	σ_1^X	σ_5^P
σ_4^P	σ_3^P	σ_2^P	σ_4^X	σ_3^X	σ_2^X	σ_6^P
					1.1	
σ_{T-5}^{P}	σ_{T-6}^{P}	σ_{T-7}^{P}	σ_{T-5}^{X}	σ_{T-6}^{X}	σ_{T-7}^{X}	σ_{T-2}^{P}

Experimental setup

 $\begin{bmatrix} \sigma_{t-d}^P & \cdots & \sigma_{t-1}^P \\ [\sigma_{t-d}^X & \cdots & \sigma_{t-1}^X] \\ & & & \\$

 $[\hat{\sigma}_{t}^{P} \quad \cdots \quad \hat{\sigma}_{t\perp H}^{P}]$

2 TS Input 1 TS Output **Data:** Volatility proxies σ^X , σ^P from CAC40:

- ► Price based
 - $\sigma_{\rm i}$ family Garman and Klass [1980]
- Return based
 - ► GARCH (1,1) model Hansen and Lunde [2005]
 - ► Sample standard deviation

Models:

- ► Feedforward Neural Networks (NAR,NARX)
- ► k-Nearest Neighbours (NAR,NARX)
- ► Support Vector Regression (NAR,NARX)
- ► Naive (w/o σ^X)
- ► GARCH(1,1) (w/o σ^X)
- ightharpoonup Average (w/o σ^X)

Correlation meta-analysis (cf. Field [2001])

- 40 time series (CAC40)
 - Time range: 05-01-2009 to 22-10-2014
 - 1489 OHLC samples per TS
- Hierarchical clustering using Ward Jr [1963]
- ΑII correlations are statistically significant

ш

NARX forecaster - Results ANN

Method
annDir
average
annDir_5

annDirmu annDirrv15

annDirrv5

annDirsigma4 annDirsigma6

annDirvolume

GARCH

ш

NARX forecaster - Results ANN

NARX forecaster - Results KNN

13/32

ш

NARX forecaster - Results KNN

NARX forecaster - Results SVR

15/32

NARX forecaster - Results **SVR**

16/32

Conclusions

- ► Correlation clustering among proxies belonging to the same family, i.e. σ_t^i and $\sigma_t^{SD,n}$.
- ► All ML methods outperform the reference GARCH method, both in the single input and the multiple input configuration.
- ▶ Only the addition of an external regressor, and for h > 8 bring a statistically significant improvement (paired t-test, pv=0.05).
- ▶ No model appear to clearly outperform all the others on every horizons, but generally SVR performs better than ANN and k-NN.

Thank you for your attention! Any questions/comments?

jacopo.de.stefani@ulb.ac.be

Find the paper at:

Bibliography I

References

Tim Bollerslev. Generalized autoregressive conditional heteroskedasticity. *Journal of econometrics*, 31(3):307–327, 1986.

Andy P Field. Meta-analysis of correlation coefficients: a monte carlo comparison of fixed-and random-effects methods. *Psychological methods*, 6(2):161, 2001.

Mark B Garman and Michael J Klass. On the estimation of security price volatilities from historical data. *Journal of business*, pages 67–78, 1980.

Bibliography II

Peter R Hansen and Asger Lunde. A forecast comparison of volatility models: does anything beat a garch (1, 1)? *Journal of applied econometrics*, 20(7):873–889, 2005.

Rob J Hyndman and Anne B Koehler. Another look at measures of forecast accuracy. *International journal of forecasting*, 22(4): 679–688, 2006.

Souhaib Ben Taieb. *Machine learning strategies for multi-step-ahead time series forecasting*. PhD thesis, Ph. D. Thesis, 2014.

Joe H Ward Jr. Hierarchical grouping to optimize an objective function. *Journal of the American statistical association*, 58 (301):236–244, 1963.

Appendix

System overview

System overview

22/32

System overview

Correlation analysis - Methodology

- ▶ 40 Time series (CAC40)
- ► Time range: 05-01-2009 to 22-10-2014 ⇒ 1489 OHLC samples per TS

NARX forecaster - Methodology

Volatility proxies (1) - Garman and Klass [1980]

► Closing prices

$$\hat{\sigma}_0(t) = \left[\ln \left(\frac{P_{t+1}^{(c)}}{P_t^{(c)}} \right) \right]^2 = r_t^2 \tag{1}$$

► Opening/Closing prices

$$\hat{\sigma}_{1}(t) = \underbrace{\frac{1}{2f} \cdot \left[\ln \left(\frac{P_{t+1}^{(o)}}{P_{t}^{(c)}} \right) \right]^{2}}_{\text{Nightly volatility}} + \underbrace{\frac{1}{2(1-f)} \cdot \left[\ln \left(\frac{P_{t}^{(c)}}{P_{t}^{(o)}} \right) \right]^{2}}_{\text{Intraday volatility}}$$
(2)

► OHLC prices

$$\hat{\sigma}_2(t) = \frac{1}{2\ln 4} \cdot \left[\ln \left(\frac{P_t^{(h)}}{P_t^{(l)}} \right) \right]^2$$

$$\hat{\sigma}_3(t) = \underbrace{\frac{a}{f} \cdot \left[\ln \left(\frac{P_{t+1}^{(o)}}{P_t^{(c)}} \right) \right]^2}_{\text{Intraday volatility}} + \underbrace{\frac{1-a}{1-f} \cdot \hat{\sigma}_2(t)}_{\text{Intraday volatility}}$$

Nightly volatility

25/32

Volatility proxies (2) - Garman and Klass [1980]

OHLC prices

$$u = \ln\left(\frac{P_t^{(h)}}{P_t^{(o)}}\right) \qquad d = \ln\left(\frac{P_t^{(l)}}{P_t^{(o)}}\right) \qquad c = \ln\left(\frac{P_t^{(c)}}{P_t^{(o)}}\right) \tag{5}$$

$$\hat{\sigma}_4(t) = 0.511(u - d)^2 - 0.019[c(u + d) - 2ud] - 0.383c^2$$
 (6)

$$\hat{\sigma}_5(t) = 0.511(u - d)^2 - (2\ln 2 - 1)c^2 \tag{7}$$

$$\hat{\sigma}_{6}(t) = \underbrace{\frac{a}{f} \cdot \log \left(\frac{P_{t+1}^{(o)}}{P_{t}^{(c)}}\right)^{2}}_{\text{Nightly volatility}} + \underbrace{\frac{1-a}{1-f} \cdot \hat{\sigma}_{4}(t)}_{\text{Intraday volatility}}$$

LB

Volatility proxies (3)

► GARCH (1,1) model - Hansen and Lunde [2005]

$$\sigma_t^G = \sqrt{\omega + \sum_{j=1}^p \beta_j (\sigma_{t-j}^G)^2 + \sum_{i=1}^q \alpha_i \varepsilon_{t-i}^2}$$

where $\varepsilon_{t-i} \sim \mathcal{N}(0,1)$, with the coefficients $\omega, \alpha_i, \beta_j$ fitted according to Bollerslev [1986].

► Sample standard deviation

$$\sigma_t^{SD,n} = \sqrt{\frac{1}{n-1} \sum_{i=0}^{n-1} (r_{t-i} - \bar{r})^2}$$

where

$$r_t = \ln\left(\frac{P_t^{(c)}}{P_{t-1}^{(c)}}\right)$$

$$\bar{r_n} = \frac{1}{n} \sum_{j=t-n}^{t} r_j$$

ULB _°

Hyndman and Koehler [2006] - Error measures

Hyndman and Koehler [2006] - Scale dependant

$$e_t = y_t - \hat{y}_t$$

- ► MSE : $\frac{1}{n} \sum_{t=0}^{n} (y_t \hat{y}_t)^2$
- ► RMSE : $\sqrt{\frac{1}{n}\sum_{t=0}^{n}(y_t \hat{y}_t)^2}$
- ► MAE : $\frac{1}{n} \sum_{t=0}^{n} |y_t \hat{y}_t|$
- $\begin{array}{c} \mathbf{MdAE}: \\ Md_{t \in \{1 \cdots n\}} (|y_t \hat{y}_t|) \end{array}$

>

ULB

Hyndman and Koehler [2006] - Scale independant

- ► MAPE : $\frac{1}{n} \sum_{t=0}^{n} |100 \cdot \frac{y_t \hat{y}_t}{y_t}|$
- ► MdAPE : $Md_{t \in \{1 \cdots n\}}(\mid 100 \cdot \frac{y_t \hat{y}_t}{u_t} \mid)$
- ► RMSPE : $\sqrt{\frac{1}{n}\sum_{t=0}^{n}(100 \cdot \frac{y_t \hat{y}_t}{y_t})^2}$
- ► RMdSPE :

$$\sqrt{Md_{t\in\{1\cdots n\}}((100\cdot\frac{y_t-\hat{y}_t}{y_t})^2)}$$
 > sMAPE :
$$\frac{1}{n}\sum_{t=0}^n 200\cdot\frac{|y_t-\hat{y}_t|}{y_t+\hat{y}_t}$$

► sMdAPE : $Md_{t \in \{1 \cdots n\}} (200 \cdot \frac{|y_t - \hat{y}_t|}{y_t + \hat{y}_t})$

Hyndman and Koehler [2006] - Relative errors

$$r_t = \frac{e_t}{e_t^*}$$

- ► MRAE : $\frac{1}{n} \sum_{t=0}^{n} |r_t|$
- ▶ MdRAE : $Md_{t \in \{1 \dots n\}}(|r_t|)$
- ► GMRAE : $\sqrt[n]{\frac{1}{n}} \prod t = 0^n \mid r_t \mid$
- ► MASE :

$$\frac{1}{T} \sum_{t=1}^{T} \left(\frac{|e_t|}{\frac{1}{T-1} \sum_{i=2}^{T} |Y_i - Y_{i-1}|} \right)$$

Hyndman and Koehler [2006] - Relative measures

- $ightharpoonup \operatorname{RelX}: \frac{X}{X_{\mathrm{bench}}}$
- ► Percent Better : PB(X) =

$$100 \cdot \frac{1}{n} \sum_{\text{forecasts}} I(X < X_b)$$

where

- ➤ X: Error measure of the INC analyzed method
- ► X_b : Error measure of the benchmark