Electricity and Magnetism

- •Physics 259 L02
 - •Lecture 5

Section 21.1

Last time

- Charges and Force Between Charges
- Conductors and Insulators
- Basics of Coulomb's Law
- Van De Graaff Generator Experiment

Class Activity

This time

- Solve Class Activity Question
- Coulomb's Law
- Examples

Vector Components

$$|\vec{a}| = \sqrt{a_x^2 + a_y^2}$$

$$a_y = a \sin \theta$$

$$a_x = a \cos \theta$$

Unit vectors

The unit vectors point along axes.

Unit→
Size→
Direction→

Class Activity

(10 marks) In a two dimensional Cartesian system \hat{r} is located 30° north of east. What is the mathematical expression for \hat{r} in terms of Cartesian unit vectors?

1. (3 mark) Draw a two dimensional Cartesian coordinate system (1 mark). Draw \hat{r} and unit vectors which represent the direction in the positive x-axis and y-axis (1 mark each).

2. (1 mark) Do unit vectors have physical units (such as metres)? Explain.

3. (3 marks) Write a mathematical expression for \hat{r} in terms of Cartesian unit vectors.

4. (2 marks) Show that \hat{r} is indeed a unit vector.

Charge Polarization

Metal

Coulomb's Law

$$F_{1 \text{ on } 2} = F_{2 \text{ on } 1} = K \frac{|q_1||q_2|}{r^2}$$

K = electrostatic
constant

$$K = 8.99 \times 10^9 \frac{N \cdot m^2}{C^2}$$

$$F_{1 \text{ on } 2} = F_{2 \text{ on } 1} = \frac{1}{4\pi\varepsilon_0} \frac{|q_1||q_2|}{r^2}$$

 ε_0 = permittivity of free space

$$\varepsilon_0 = \frac{1}{4\pi K} = 8.85 \times 10^{12} \frac{C^2}{N \cdot m^2}$$

Superposition Principle

The total force on q_3 is the vector sum of the individual forces:

$$\vec{F}_{on 3} = \vec{F}_{1 on 3} + \vec{F}_{2 on 3}$$

q1

q3

Coulomb's Law

How to compute the magnitude and direction properly.

$$\left| \vec{F}_{21} \right| = K \frac{|q_1||q_2|}{r_{21}^2}$$

Example #1:

If the force of q_1 on q_3 is $\vec{F}_{13} = (+3N)\hat{i}$ e., in the +x direction), and the force of q_3 on q_1 is $\vec{F}_{31} = F_{31}\hat{i}$ what is the component F_{31} ?

Newton's Third Law $\rightarrow \vec{F}_{13} = -\vec{F}_{31}$ Forces are equal and opposite

Coulomb's Law
$$\rightarrow \left| \vec{F}_{13} \right| = \left| \vec{F}_{31} \right|$$
 Pick direction using charge rules.

Example #2:

$$K = 8.99 \times 10^9 \, \frac{N \cdot m^2}{C^2}$$

$$q_1 = Inc$$
 $q_3 = Inc$
 $q_2 = -Inc$
 $x = -d$
 $q_3 = Inc$
 $q_2 = -Inc$
 $q_3 = Inc$
 $q_2 = -Inc$
 $q_3 = Inc$
 $q_4 = -Inc$
 $q_5 = -Inc$
 $q_6 = -Inc$
 $q_7 = -Inc$
 $q_8 = Inc$
 $q_8 = Inc$

What is the total electric force on q_1 ? Note: $nC = 10^{-9} C$.

Free Body Diagram:

$$|\vec{F}_{31}| = 8.99 \times 10^{-9} \,\mathrm{N}$$

$$|\vec{F}_{21}| = 2.25 \times 10^{-9} \,\mathrm{N}$$

$$\vec{F}_{net} = \left(-6.74 \times 10^{-9} \,\mathrm{N}\right) \hat{i}$$

Building blocks of electric force

$$\vec{F} = \frac{KQq}{r^2} \hat{r}$$

$$+Q$$

$$+Q$$

$$+Q$$

$$0 2013 \text{ Pearson Education, Inc.}$$

= positive charge q at the position indicated

Building blocks of electric force

$$\vec{F} = \frac{-KQq}{r^2} \hat{r}$$

= positive charge q at the position indicated

Superposition with Building Blocks

The vector represents the magnitude and direction of the electric force on the charge q at that point. It comes from superposition of the individual forces from +Q and -Q.

Superposition with Building Blocks

The vector represents the magnitude and direction of the electric force on the charge q at that point. It comes from superposition of the individual forces from +Q and +Q.

Direction again comes from superposition! Same steps as previous apply here too.

This section we talked about:

Chapter 21.1

See you on Wednesday

