浙江大学 $20 \ 19 \ -20 \ 20 \$ 秋冬学期 《常微分方程》课程期末考试试卷

课程号: 061Q0056 , 开课学院: 数学科学学院 考试试卷: ✓A 卷、B 卷 (请在选定项上打✓) 考试形式: √闭、开卷 (请在选定项上打√), 允许带 无 进场 考试日期: ____2020__ 年 ___01__ 月 ___09__ 日, 考试时间: ____120__分钟 诚信考试,沉着应考,杜绝违纪

考生姓名:	₩ □	所属院系:	
左生 (4) 名:	之 	川 庫 炉 奈・	
3>		//I/IAIDUAN•	

由 CC98 @Serapay 回忆整理,请勿用于商业用途

- 一、(32分) 求下列方程(组)的特解或通解
- (1) $(y 2xy^2 \ln x) dx + x dy = 0$;
- (2) $x^2y'' x(2-x)y' + (2-x)y = x^4$;
- (3) $x^2y'' + xy' + y = 6 \ln x(x > 0)$

二、 (15分) 设方程 $\frac{dy}{dx} = x^2 + (1+y)^2, y(0) = 0$ 的右行解的最大存在区间是 [0,T). 利用 方程 $\frac{\mathrm{d}y}{\mathrm{d}x} = (1+y)^2$ 的解是上述方程的一个右行下解这一性质来确定 T 的范围.

三、(15分) 设连续函数 f(x,y) 在 (x_0,y_0) 的一个邻域内关于 y 单调不减,证明初值问题 $\frac{\mathrm{d}y}{\mathrm{d}x} = f(x,y), y(x_0) = y_0$ 的右行解唯一.

四、(18分)

(1) 判断方程组
$$\begin{cases} \frac{\mathrm{d}x}{\mathrm{d}t} = y + x^3 \\ \frac{\mathrm{d}y}{\mathrm{d}t} = -x + ay + y^3 \end{cases}$$
 零解的稳定性并说明理由; (注: 原方程记不太清

了, 但是线性系统的系数应该没错)

(2) 试找出方程组
$$\begin{cases} \frac{\mathrm{d}x}{\mathrm{d}t} = x + 2y \\ \frac{\mathrm{d}y}{\mathrm{d}t} = 5y - 2x + x^3 \end{cases}$$
 的所有奇点,判断类型并画出相图的草图.

五、(15分) 若已知方程 $y''' + a_1(t)y'' + a_2(t)y' = q(t)$ 的一个解, 能否求出该方程的所有解? 给出你的结论并证明之.

六、 (15分) 直接证明初值问题 $\frac{\mathrm{d}y}{\mathrm{d}x} = \sin(xy), x(0) = 0$ 解的连续依赖性.

附加题 (10分): 给定线性非齐次方程组 $\frac{\mathrm{d} \boldsymbol{X}}{\mathrm{d} t} = \boldsymbol{A} \boldsymbol{X} + \boldsymbol{R}(\boldsymbol{X})$, 其中 $\boldsymbol{R}(\boldsymbol{X})$ 是 \boldsymbol{X} 的高阶无穷小, 若已知其线性系统 $\frac{\mathrm{d} \boldsymbol{X}}{\mathrm{d} t} = \boldsymbol{A} \boldsymbol{X}$ 的零解是渐近稳定的, 求证非齐次方程的零解是稳定的.