

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧ/ΚΩΝ & ΜΗΧ/ΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΗΜΑΤΩΝ, ΕΛΕΓΧΟΥ ΚΑΙ ΡΟΜΠΟΤΙΚΗΣ

Μάθημα: "Ρομποτική Ι: Ανάλυση, Έλεγχος, Εργαστήριο" (Ακαδημαϊκό Έτος 2018-19)

2^{η} ΣΕΙΡΑ ΑΝΑΛΥΤΙΚΩΝ ΑΣΚΗΣΕΩΝ (Course Assignment #2)

Άσκηση 2.1 (Διαφορική κινηματική ανάλυση)

Έστω ρομποτική κινηματική αλυσίδα τριών βαθμών ελευθερίας, της οποίας η κινηματική δομή περιγράφεται από τους ακόλουθους διαδοχικούς μετασχηματισμούς συντεταγμένων (l_0 , l_1 , l_2 και l_3 σταθερά γεωμετρικά μήκη):

$$\mathbf{A}_1^0(q_1) = \mathrm{Tra}(y, l_0) \cdot \mathrm{Rot}(z, q_1) \cdot \mathrm{Tra}(x, l_1) \,, \ \mathbf{A}_2^1(q_2) = \mathrm{Rot}(z, q_2) \cdot \mathrm{Tra}(x, l_2) \ \mathrm{km} \ \mathbf{A}_E^2(q_3) = \mathrm{Rot}(y, q_3) \cdot \mathrm{Tra}(x, l_3)$$

Να προσδιοριστεί η *Ιακωβιανή μήτρα* που περιγράφει το διαφορικό κινηματικό μοντέλο της ρομποτικής αλυσίδας.

Να προσδιορισθούν και να ερμηνευθούν γεωμετρικά οι *ιδιόμορφες διατάζεις* της (ως προς τη γραμμική ταχύτητα του τελικού εργαλείου δράσης).

Άσκηση 2.2 (Στατικό μοντέλο)

Για το μηχανισμό του ακόλουθου Σχ. 1, θεωρούμε l_0 = l_1 = l_4 =0 και q_4 =0=σταθ. (πρισματική άρθρωση ανενεργή). Θεωρούμε επίσης: l_2 = l_3 =30cm.

Να υπολογισθεί (βάσει των απαιτούμενων γενικών κινηματικών σχέσεων του μηχανισμού), το διάνυσμα επενεργήσεων (ροπών στις ενεργές αρθρώσεις) που απαιτείται ώστε το τελικό εργαλείο δράσης να ασκεί (επί του εξωτερικού περιβάλλοντος) δύναμη \underline{F}_e =[1,1,1]^T (Nt) και ροπή \underline{N}_e =[0,0,0.1]^T (N.m), όταν ο μηχανισμός ευρίσκεται στη διάταξη αρχικοποίησης (βλ. Σχ. 1).

Σχήμα 1: Ρομποτικός βραχίονας 4 βαθμών ελευθερίας.

Άσκηση 2.3 (Δυναμικό μοντέλο)

Έστω ρομποτικός μηχανισμός δύο βαθμών ελευθερίας, που εικονίζεται στο ακόλουθο Σχήμα 2, με l_1 και l_2 σταθερά μήκη συνδέσμων και (q_1, q_2) μεταβλητές μετατοπίσεως στις αρθρώσεις. Υποθέτουμε την ύπαρξη σημειακής μάζας m στο σημείο E (όπως εικονίζεται στο Σχήμα 2) και θεωρούμε τους συνδέσμους κατά τα λοιπά αβαρείς. Υποθέτουμε επίσης ότι ασκείται στο τελικό εργαλείο δράσης σταθερή εξωτερική δύναμη F_x (κατά τη δ/νση του x_0 , όπως εικονίζεται στο σχήμα), καθώς και ότι η διεύθυνση επίδρασης της βαρύτητας g είναι αυτή που σημειώνεται στο σχήμα. Να γραφούν οι δυναμικές εξισώσεις κίνησης του ρομποτικού μηχανισμού, χρησιμοποιώντας μεθοδολογία Lagrange.

Σχήμα 2: Επίπεδος βραχίονας 2 β.ε. (1P-1R)