数字逻辑与处理器基础实验 实验报告

实验四: Vivado 中 IP 核的应用

无 13 管思源 2021012702

实验目的

- 理解IP核的用途,初步掌握IP核的使用方法
- 学会利用IP核设计数字电路
- 通过与手写模块的对比,初步理解使用IP核的优点

设计方案

按照指导书的说明, 先构建好 PLL IP 核。

在此基础上,我们只需要实现 100,000,000 倍的计数分频器就可以满足实验要求。需要注意的是,为了能正常控制 LED 灯,分频器的输出信号占空比应为 50%

以下是系统的原理框图:

以下是系统的模块结构

仿真结果与分析

实验提供了 PLLsim_example.v 仿真测试文件,在构建好 PLL IP 核后,我们直接使用 Vivado 对其进行行为级仿真,结果如下:

可以看到,在 360 ns 时,模块开始输出合成后的频率。随后在 560 ns 处,模块的 1ocked 信号变为高电平,表明 PLL 已经成功锁频。

值得注意的是,在 100 ns 附近 clk_out1 和 clk_out2 也输出了高电平。同时,在 PLL 锁频之前的频率输出不一定可靠。因此,我们在使用时应该将 clk_out & locked 作为时钟信号,或将 reset || !locked 作为复位信号,以避免错误的时钟信号。

综合结果与分析

硬件资源使用情况

Summary

Resource	Utilization	Available	Utilization %
LUT	26	20800	0.13
FF	56	41600	0.13
Ю	10	250	4.00
PLL	1	5	20.00

Q	erarchy						
Name 1	Slice LUTs (20800)	Slice Registers (41600)	Slice (8150)	LUT as Logic (20800)	Bonded IOB (250)	BUFGCTRL (32)	PLLE2_ADV (5)
∨ N top	26	56	22	26	10	3	1
divider1 (divider)	13	28	10	13	0	0	0
divider2 (divider_0)	12	28	12	12	0	0	0
∨ I pll (PLL)	1	0	1	1	0	3	1
> I clkwiz (clk_wiz_0	0	0	0	0	0	3	1

如图所示,系统使用了 26 个 LUT 和 56 个寄存器。除此之外,系统还使用了一个 PLL,这是 FPGA 的硬件资源之一,专门用于频率合成。

显然,这是 PLL IP 核所使用的。我们可以点开综合后的系统框图确认这一点:

可以看到 c1k_wiz IP 核模块用到了名为 p11e2_adv_inst 的硬件模块,其端口定义于与我们在定制 IP 核时所看到的一样。

静态时序分析结果

Design Timing Summary

Setup		Hold		Pulse Width		
Worst Negative Slack (WNS):	1.701 ns	Worst Hold Slack (WHS):	0.218 ns	Worst Pulse Width Slack (WPWS):	2.000 ns	
Total Negative Slack (TNS):	0.000 ns	Total Hold Slack (THS):	0.000 ns	Total Pulse Width Negative Slack (TPWS):	0.000 ns	
Number of Failing Endpoints:	0	Number of Failing Endpoints:	0	Number of Failing Endpoints:	0	
Total Number of Endpoints:	110	Total Number of Endpoints:	110	Total Number of Endpoints:	64	

结果显示, 系统已满足时钟约束, 其中建立时间有 1.701 ns 的裕量。

等等,我们只进行了计数分频,为什么裕量只有这么小呢?我们可以进一步查看建立时间裕量最小的几条路径,如下图所示:

可以发现它们都处于 200 MHz 时钟范畴内,要求延时在 5 ns 以内,因此虽然它们延时都在 3 ns 以内,但是裕量的绝对值较我们之前遇到的案例更小。这也说明 Vivado 正确地处理了系统内衍生的不同时钟,不会只按照硬件约束文件中描述的时钟进行分析。

对于这种系统内有多个时钟的情况,我们还可以查看时钟之间的关系,如下图所示:

其中两个绿色块代表两个时钟范畴内的时间约束已满足,而黑色代表没有跨越这两个时钟范畴的路径。

关键代码及文件清单

代码文件 (按模块例化结构)

• top.v: 顶层模块

o divider.v: 计数分频器模块

PLLtop_example.v: PLL IP 核的例化模块
PLLsim_example.v: PLL IP 核的仿真测试文件
PLLtop_example.v: PLL IP 核的例化模块

其他文件

• constraint.xdc: 硬件约束文件

• top.bit: 生成的比特流文件, 可直接烧写到开发板

• img/*.png: 仿真和综合结果截图