Select Bisid, Bzisid

From catalog Bi, catalog Bz

Where (Bi. pid = Bzipid) AND (Bisid = Bzsid) AND

(Bir price > Bzipice)

Select sirsid

From suppliers,

where sindares = rustoncity or

Sisid in Cselect cisid

From part Pi, categor

where pi-color= red and

Pi-pid = *cipid)

8.1) compute the candidate keys: given fd; Hscode -> Hsname, Hscite Ascode: HScode, Hsname, Hscily GPAT: GPA priority SINT: SSN, snume, saddrew, GPA. R (H scode), Hsname, Hscity, (SSN), sname, saddress, Gpt, priority) SSN. HS code : Sname, saddrew, apa, priority, Hs code, Henome, Hesty. : . SSNHscode is a primary keep HS(ode -> Hename, Heaty (p.d) SSN - SSName, Sadtle, apA (pd) GPA - priority enon-prime) - violation of BCNF. using - GPA - priority TRICGPAIPMONITY) -> P2(GpA, Hcity, Herame, Hscode, Saddrey, sname, ssn) using esnot crame, saddreu, apA PRZICSSN, Sname, saddreer, apA) L RZZ (SSN, HCity, HSrame, HScode) Lusing Ascade attename, Hiscity R221 (Hs code, Hs name, Hs city) P222 (Hs code, SSN). SO, RICGPA, priority), RZI(SSN, Sname, Saddven, GPA), R221 (HScode, HSnome, HScity), R222 (HScode, SSN) are BCNF P1, R21, R221, R222

(8.2)

Checks on parse tree

- every operator correct?
- refer to a varid relation?
- to a view replace the relation node with the porse tree of the view
- 1) Attribute cheeks: does every attribute name refer to valid attributer?
- 5) type checks: does each attribute participating in on expression have the propertye?

10-3) R-S, Acsume is is bigger relation.

Pread it into memory completely and make it accessible through an in-memory index structure.

For each tuple of s, search it it already exists in R.

If tuple exists in R, then output the tuple else ignore the tuple.

9.1) cwlD Name Subject 1. (0156731 Tohn computerNW 10145221 Tohn DBMS	location Ruston Ruston	8 cote 96 100	
CWID Name Subject 10156731 John CN 10145221 John DBMS	10176731	Per location puston puston	SCOTE 96 10D
RIVRZ CWID Name Subject lo15b731 John CN lo145221 John DRMS (i) RIVR2 = R. (ii) RIVR2 = CWID ie R	knyeu	160	
(ii) RINKZ = CWID, with the RICHERGEATION The () st sotistion the it is a lossless	ie cwip	we can , Name, s	

2. Pl

CWID Name pocation score location score

1056731 John Puston 96 Ruston 96

10146221 John Puston 100 Ruston 1000

(i) RIVRO - CWID Name location score
10196731 John puston 96
10149221 John puston 100

RIURZ JR.

(ii) RINR2 = 10 cation score RINR2 + Preston 96

Poston 100

The relations rehould ratively the three rules to become a losslew poin, so the above (2) doesn't ratisfy, so it is a lossy Join.

-. I is a lossless and 2 is a lossy soin

(9.2) Report (RIO, title, +10, Author, subject)

RIO -> title,

title + subject

AID -> Author

so ADS edge diagram to find the candide key

R((RIO), title, (AID) Author, subject)

Closure of RID, AID : RID, AID, Author, Title, subject PID, AID is a candidte key.

RID -> title (partial dependency)
title -> subject (transitive dependency)
A10 -> Author (partial dependency)

R(PID, Title, AID, Author, Subject)

R_((RID, AID)

R_2(RID, title, subject)

HR_2((RID, title, subject)

HR_2((RID, title))

R_2((title, subject))

R_3((AID, Author))

R1, R21, R22, R3 ate in 3NF.