MATA49 Programação de Software Básico

Operações com bits

Leandro Andrade leandrojsa@ufba.br

- Deslocamento (shift):
 - Permite o deslocamento de uma cadeia de bits para direita ou para esquerda

Original Left shifted Right shifted

1	1	1	0	1	0	1	0
1	1	0	1	0	1	0	0
0	1	1	1	0	1	0	1

SHL e SHR

- SHL: deslocamento para esquerda (left)
- SHR: deslocamento para direita (right)
- Sintaxe:
 - SHL/SHR <destino>,<num_deslocamentos>
- O último bit deslocado para fora do registrador é armazenado no Carry Flag (CF)

- SHL e SHR
 - Exemplo de deslocamento de 1 bit para direita:

SHL e SHR

```
- Exemplos:
 MOVAL, 10011100b
 SHL AL, 1
 ; AL= 00111000 CF= 1
 MOVAL, 10110011b
 SHR AL, 2
 : AL = 00101100 CF=1
```

SHL e SHR

- Deslocamentos podem ser uma opção para operações de multiplicação e divisão por potências de 2 em inteiros sem sinal
- São operações muito mais rápidas que a MUL e DIV

- Aritméticos (SAL e SAR):
 - Permite que números inteiros com sinais sejam deslocados conservando o sinal
 - SAL/SAR <destino>,<num_deslocamentos>
 - A instrução SAL funciona de modo idêntico a SHL, pois o deslocamento a esquerda não implica em nenhuma alteração de sinal do inteiro

- Aritméticos (SAL e SAR):
 - SAL
 - Exemplo de deslocamento de 1 bit:
 - Note que o bit acrescentado é 0 e não ocorre

- Aritméticos (SAL e SAR):
 - SAR
 - Exemplo de deslocamento de 1 bit:
 - Note que o bit acrescentado é 1, para conservar o sinal do número inteiro (negativo)

- Rotação (ROL e ROR):
 - Faz um deslocamento circular, ou seja os bits deslocados irão para fim/início da cadeia
 - Sintaxe:
 - ROL/ROR <destino>, <num_deslocam>

- Rotação (ROL e ROR):
 - Exemplos:

```
mov al,40h ; AL = 01000000b; CF = 0 rol al,1 ; AL = 00000001b, CF = 1 rol al,1 ; AL = 0000001b, CF = 0 mov al,0000010b; CF = 0 ; AL = 100000010b; CF = 1 ; AL = 100000001b; CF = 1 ror al,3 ; AL = 100000000b; CF = 1
```

- Exemplo:
 - Conta o número de bits "on" de EAX

```
bl, 0
                                 : bl will contain the count of ON bits
        mov
1
                ecx, 32
                                 ; ecx is the loop counter
        mov
  count_loop:
        shl
                eax, 1
                                ; shift bit into carry flag
                                ; if CF == 0, goto skip_inc
                skip_inc
        jnc
        inc
                bl
  skip_inc:
                count_loop
        loop
8
```

Exercício:

 Como armazenar o resultado de uma multiplicação localizada nos registradores DX:AX em um registrador de 32-bits com as instruções de descolamento de bits?

- Operações Booleanas:
 - AND:
 - Realiza a operação booleana "e" bit-a-bit nos operandos
 - Sintaxe: AND <destino>, <fonte>
 destino = destino AND fonte

X	у	x ∧ y
0	0	0
0	1	0
1	0	0
1	1	1

- Operações Booleanas:
 - AND:
 - Exemplos:

```
mov al, 11001111b
and al, 00001100b
; al = 00001100
```

```
mov al,10101110b
and al,11110110b
;al = 10100110
```

- Operações Booleanas:
 - AND:
 - Exemplo de aplicação conversão de caractere de minúsculo para maíusculo (vice-versa):

```
0 1 1 0 0 0 0 1 = 61h ('a')
0 1 0 0 0 0 1 = 41h ('A')
```

- Operações Booleanas:
 - OR:
 - Aplica a operação booleana "ou" bit-a-bit nos operandos
 - Sintaxe:

OR < destino >, < fonte >

destino = destino OR fonte

х	у	x v y
0	0	0
0	1	1
1	0	1
1	1	1

- Operações Booleanas:
 - OR:
 - Exemplo:

```
mov al, 11001111b
or al, 00001100b
; al = 11001111
```

- Operações Booleanas:
 - XOR:
 - Aplica o "ou exclusivo" bit-a-bit nos operandos
 - Sintaxe:

XOR <destino>, <fonte>

destino = destino XOR fonte

X	у	x ⊕ y
0	0	0
0	1	1
1	0	1
1	1	0

- Operações Booleanas:
 - XOR:
 - Exemplo:

```
mov al, 11001111b
xor al, 00001100b
; al = 11000011
```

- Operações Booleanas:
 - NOT
 - Aplica o complemento de 1, ou seja inverte o valor de cada bit
 - Sintaxe: NOT <destino>

ATENÇÃO! A operação NOT é diferente da NEG.

- NEG: aplica complemento de 2
- NOT: aplica complemento de 1

- Operações Booleanas:
 - NOT

```
Exemplo:
```

```
mov al, 11001111b
```

not al; al = 00110000

TEST

- Aplica uma operação AND porém não armazena o resultado.
- Modifica os bits Flags de acordo com o resultado da operação (Zero Flag)
 - Caso o resultado tenha algum bit com valor 1 o ZF=0
 - Caso o resultado tenha todos os bits com valor 0 o ZF=1
- Sintaxe: TEST <destino>, <fonte>

TEST

- Exemplos:

```
0 0 1 0 0 1 0 1 <- input value
0 0 0 0 1 0 0 1 <- test value
0 0 0 0 0 0 0 1 <- result: ZF = 0
0 0 1 0 0 1 0 0 <- input value
0 0 0 0 0 1 0 0 1 <- test value
0 0 0 0 0 0 0 0 <- result: ZF = 1
```

Exercício:

O timestamp de um determinado arquivo pode ser representado em um número binário de 16 bits, onde do bit 0 ao bit 4 representa o valor em segundos, do bit 5 ao bit 10 representa os minutos e do bit 11 ao 15 representa as horas. Escreva um código em assembly que leia o timestamp previamente armazenado no registrador BX e extraia os bits referentes aos minutos e armazene na variável ValMinutos (não inicializada).

ValMinutos resw 1

; registrador bx já inicializado com timestamp

Para melhor ilustração considere o exemplo abaixo:

Horas					Minutos					Segundos					
0	1	1	1	0	1	0	0	1	0	0	0	1	0	1	1
14 horas				36 minutos					11 segundos						
ValMinutos = 100100b = 36															