

Faculteit Bedrijf en Organisatie

Nursery Tone Monitor: detecteren van elderspeak via AI

Sibian De Gussem

Scriptie voorgedragen tot het bekomen van de graad van professionele bachelor in de toegepaste informatica

Promotor:
Geert Van Boven
Co-promotor:
Jorrit Campens

Instelling: —

Academiejaar: 2021-2022

Tweede examenperiode

Faculteit Bedrijf en Organisatie

Nursery Tone Monitor: detecteren van elderspeak via AI

Sibian De Gussem

Scriptie voorgedragen tot het bekomen van de graad van professionele bachelor in de toegepaste informatica

Promotor:
Geert Van Boven
Co-promotor:
Jorrit Campens

Instelling: —

Academiejaar: 2021-2022

Tweede examenperiode

Woord vooraf

De keuze aan bachelorproefonderwerpen was omvangrijk. Ik wilde een onderwerp die een impact heeft op de maatschappij én waarbij ik Artificiële Intelligentie kon gebruiken. Enerzijds om te kunnen aantonen dat AI niet altijd een negatieve connotatie moet hebben. Anderzijds omdat mijn afstudeerrichting AI & Data Engineering was. Op die manier kon ik zien of dat subdomein iets is waar ik me de komende jaren wil mee bezighouden op mijn job.

Het was best wel een interessant onderwerp! Aangezien er meer en meer vergrijzing komt, is er meer nood aan ouderenzorg. Er is daarbij een duidelijk verschil tussen zorg op papier en kwalitatieve zorg in het echte leven. Ik hoop dat studenten in de opleiding verpleegkunde hierdoor minder aan *elderspeak* zullen doen zodat ouderen niet behandeld worden als kinderen. Hopelijk zal dit niet het geval zijn wanneer ik oud zal zijn en zorg zal nodig hebben...

Het maken van audiosamples was wel heel moeilijk omdat het niet zomaar een vragenlijst invullen is, maar er werd gevraagd om zinnen in te spreken. Dit zorgde dat mensen sneller afhaakten. Toch wil ik alle 25 mensen bedanken die me geholpen hebben om mijn systeem te testen.

Eerst en vooral wil ik mijn hogeschool, HOGENT, bedanken om zo een interessant onderwerp aan te bieden voor mijn eindwerk. Ook het feit dat dit over twee richtingen ging, Toegepaste Informatica en Verpleegkunde, was een bijzondere, maar leuke opstelling.

Daarnaast wil ik mijn promotor Geert Van Boven bedanken om de inhoud verschillende keren na te lezen, om mij extra informatie te geven over alle IT-onderwerpen en mij te steunen in dit proces. Daarbij wil ik ook mijn co-promotor bedanken voor de probleemstelling duidelijk uit te leggen, voor zijn enthousiasme en zijn feedback!

Als laatste wil ik nog mijn vrienden en familie bedanken om mijn inhoud na te lezen, te verbeteren en aan te duiden wat er niet zo duidelijk was.

Dankjewel aan iedereen, zonder jullie was dit niet zo goed gelukt!

Samenvatting

TODO na alles

Inhoudsopgave

	inleiding	13
1.1	Probleemstelling	14
1.2	Onderzoeksvraag	15
1.3	Onderzoeksdoelstelling	15
1.4	Opzet van deze bachelorproef	16
2	Stand van zaken	17
2.1	Verkennend onderzoek	17
2.2	Elderspeak	18
2.2.1	Wat is Elderspeak?	18
2.2.2	Wat zijn de kenmerken?	18
2 2 2	Wat zijn de tips om <i>elderspeak</i> te voorkomen?	10

2.3	Artificiële Intelligentie	19
2.3.1	Wat is AI?	19
2.3.2	Welke vormen zijn van Al?	20
2.3.3	Machine learning	20
2.3.4	Deep Learning	21
2.3.5	Al in het dagelijkse leven	22
2.4	Al technieken die gebruikt worden om elderspeak te detecteren	22
2.4.1	Google Text-to-Speech	22
3	Methodologie	25
4	Conclusie	27
A	Onderzoeksvoorstel	29
A .1	Introductie	29
A.2	State-of-the-art	30
A.2.1	Literatuuronderzoek	30
A.2.2	Stand van zaken	31
A.2.3	Wat is mijn aandeel?	31
A.3	Methodologie	31
A.4	Verwachte resultaten	32
A.5	Verwachte conclusies	32

Lijst van figuren

2.1	Soorten AI in diagram (Bansal, 2019)	20
2.2	Systematische voorstelling van een Neuron (Lievens, 2021)	22
2.3	Layers van een artificieel neuraal netwerk (Lievens, 2021)	23
2.4	Al in het dagelijkse leven. (Europees Parlement, 2020)	23

1. Inleiding

De veroudering van de bevolking in de Vlaamse steden en gemeenten zet zich in de komende decennia verder. (StatistiekVlaanderen, 2018) Volgens hun voorspellingen zou tegen 2033 25% van de bevolking een 65-plusser zijn.

Het woord 'waardigheid' is actueler dan ooit. Na de schrijnende omstandigheden van de Tweede Wereldoorlog stond dat woord centraal bij het opstellen van het verdrag van de Verenigde Naties (1945), de Universele Verklaring van de Rechten van de mens (1948) en de grondrechten van de Europese Unie (2000). Die basiswaarde vinden we ook terug bij het Europese en Belgische zorgbeleid. Ouderen mogen niet gediscrimineerd worden op vlak van leeftijd. Tevens mogen ze ook niet op een kinderlijke, betuttelende of onvriendelijke wijze aangesproken worden en moeten ze met respect bejegend worden (Campens, g.d.).

Hoe meer ouderen er in de samenleving zijn, hoe meer zorg zij nodig hebben en hoe meer zorgverleners instaan voor deze leeftijdscategorie. Die zorgverleners, maar evengoed familie, weten niet altijd even goed hoe ze moeten omgaan met senioren. Wanneer een jonger persoon op een andere manier spreekt tegen een senior dan tegen een leeftijdsgenoot, spreken we over *elderspeak*. Williams (2011) omschrijft *elderspeak* als volgt: "Elderspeak is a common intergenerational speech style used by younger persons in communication with older adults in a variety of community and health care settings. Based on negative stereotypes of older adults as less competent communicators, younger speakers (in this case nursing home staff) modify their communication with nursing home residents by simplifying the vocabulary and grammar and by adding clarifications such as repetitions and altered prosody." Om *elderspeak* te bestrijden, gaven Wick en Zanni (2007) een paar tips mee in hun onderzoek. Enkele van die tips gingen als volgt: spreek mensen aan zoals ze wensen aangesproken te worden, vraag om ze aan te spreken met

de voornaam, vermijd troetelnamen, wees bewust van non-verbaal gedrag, verhoog uw stemvolume enkel wanneer uw gesprekspartner hardhorig is, herhaal alleen uw zin als uw gesprekspartner het niet begrepen heeft, vermijd korte, langzame en makkelijke zinnen, vermijd verkleinwoorden en hanteer beleefd taalgebruik.

Naast *elderspeak* heb je ook nog *nursery tone*. Dit verwijst naar de situatie waarbij iemand de toonhoogte aan het einde van de zin standaard verhoogt zoals bij communicatie met jonge kinderen.

Dit onderwerp was vorig jaar al een onderzoeksonderwerp voor Glenn Beeckman (2021) en Victor Standaert (2021). Zij hebben al een basis gelegd in de goede richting om dit project tot een goed einde te brengen. Sommige stukken programmacode van hen zullen gebruikt worden om zo een beter model op te stellen. Zij haalden zelf ook verbeterpunten aan en moeilijkheden die, hopelijk, op te lossen zijn. Wat het verschil zal zijn tussen hun eindwerken en dit eindwerk wordt toegelicht in A.2.

De nog steeds relevante onderzoeksvraag van dit onderwerp is: "Kan *elderspeak* gedetecteerd worden door Artificiële Intelligentie en kan dit toegepast worden in de praktijk?". Een bijkomende onderzoeksvraag is: "Kan *nursery tone* gedetecteerd worden door Artificiële Intelligentie?".

De inleiding moet de lezer net genoeg informatie verschaffen om het onderwerp te begrijpen en in te zien waarom de onderzoeksvraag de moeite waard is om te onderzoeken. In de inleiding ga je literatuurverwijzingen beperken, zodat de tekst vlot leesbaar blijft. Je kan de inleiding verder onderverdelen in secties als dit de tekst verduidelijkt. Zaken die aan bod kunnen komen in de inleiding (**Pollefliet2011**):

- context, achtergrond
- afbakenen van het onderwerp
- verantwoording van het onderwerp, methodologie
- probleemstelling
- onderzoeksdoelstelling
- onderzoeksvraag
- . . .

1.1 Probleemstelling

Dit onderzoek zal een meerwaarde moeten betekenen voor de oudere mensen in rusthuizen, homes, ziekenhuizen, maar ook nog de ouderen die zelfstandig thuis wonen. Deze mensen vinden het namelijk helemaal niet leuk om zo behandeld te worden. Deze applicatie zou dan *elderspeak* moeten herkennen en aangeven welke eigenschappen het model gevonden heeft. Het zijn dan vooral de verpleegkundigen, dokters, maar ook familieleden die zich bewust moeten zijn hoe ze tegen ouderen praten.

Uit je probleemstelling moet duidelijk zijn dat je onderzoek een meerwaarde heeft voor een concrete doelgroep. De doelgroep moet goed gedefinieerd en afgelijnd zijn. Doelgroepen als "bedrijven," "KMO's," systeembeheerders, enz. zijn nog te vaag. Als je een lijstje kan maken van de personen/organisaties die een meerwaarde zullen vinden in deze bachelorproef (dit is eigenlijk je steekproefkader), dan is dat een indicatie dat de doelgroep goed gedefinieerd is. Dit kan een enkel bedrijf zijn of zelfs één persoon (je co-promotor/opdrachtgever).

1.2 Onderzoeksvraag

De onderzoeksvraag die bij dit eindwerk hoort is: "Kan *elderspeak* gedetecteerd worden door Artificiële Intelligentie en kan dit toegepast worden in de praktijk?". Een bijkomende onderzoeksvraag is: "Kan *nursery tone* gedetecteerd worden door Artificiële Intelligentie?". Maar alleen dit beantwoorden zal uiteraard niet genoeg zijn. Het beantwoorden van de volgende deelvragen zullen wel een duidelijker en uitgebreider antwoord geven op de algemene probleemstelling:

- Welk type Artificiële Intelligentie past het beste bij deze opstelling?
- Welk type model van *machine learning* of *deep learning* werkt het beste per eigenschap?
- Kan je achtergrond lawaai wegfilteren en hoe precies?
- Zal spraakherkenning lukken met de gratis beschikbare softwarebibliotheken?
- Hoe zet je een "Flask" server op waar je *webrequests* naar stuurt? En hoe verbind je daar een model mee?

Wees zo concreet mogelijk bij het formuleren van je onderzoeksvraag. Een onderzoeksvraag is trouwens iets waar nog niemand op dit moment een antwoord heeft (voor zover je kan nagaan). Het opzoeken van bestaande informatie (bv. "welke tools bestaan er voor deze toepassing?") is dus geen onderzoeksvraag. Je kan de onderzoeksvraag verder specifiëren in deelvragen. Bv. als je onderzoek gaat over performantiemetingen, dan

1.3 Onderzoeksdoelstelling

Het resultaat van deze bachelorproef is een basiswebsite die dient als *PoC* of *proof-of-concept*. Die basisapplicatie vraagt eerst om gewoon te praten zoals je zou doen tegen je vrienden. Nadien wordt er gevraagd om te praten zoals je zou doen bij slechthorende senioren in een rusthuis. Om dat gevoeld te versterken zal er een foto getoond van iemand uit een rusthuis. De applicatie analyseert dan de audiosamples en geeft aan welke kenmerken er aanwezig waren van *elderspeak*. Die kenmerken van *elderspeak* en waarom het model 'denkt' dat die eigenschappen aanwezig zijn, zijn vergaard in het literatuuronderzoek. Al de voorgaande zaken moet voor de deadline van de bachelorproef afgewerkt worden opdat het een succes kan genoemd worden.

Wat is het beoogde resultaat van je bachelorproef? Wat zijn de criteria voor succes? Beschrijf die zo concreet mogelijk. Gaat het bv. om een proof-of-concept, een prototype,

een verslag met aanbevelingen, een vergelijkende studie, enz.

1.4 Opzet van deze bachelorproef

De rest van deze bachelorproef is als volgt opgebouwd:

In Hoofdstuk 2 wordt een overzicht gegeven van de stand van zaken binnen het onderzoeksdomein, op basis van een literatuurstudie.

In Hoofdstuk 3 wordt de methodologie toegelicht en worden de gebruikte onderzoekstechnieken besproken om een antwoord te kunnen formuleren op de onderzoeksvragen.

In Hoofdstuk 4, tenslotte, wordt de conclusie gegeven en een antwoord geformuleerd op de onderzoeksvragen. Daarbij wordt ook een aanzet gegeven voor toekomstig onderzoek binnen dit domein.

2. Stand van zaken

Dit hoofdstuk bevat je literatuurstudie. De inhoud gaat verder op de inleiding, maar zal het onderwerp van de bachelorproef *diepgaand* uitspitten. De bedoeling is dat de lezer na lezing van dit hoofdstuk helemaal op de hoogte is van de huidige stand van zaken (state-of-the-art) in het onderzoeksdomein. Iemand die niet vertrouwd is met het onderwerp, weet nu voldoende om de rest van het verhaal te kunnen volgen, zonder dat die er nog andere informatie moet over opzoeken (**Pollefliet2011**).

Je verwijst bij elke bewering die je doet, vakterm die je introduceert, enz. naar je bronnen. In LATEX kan dat met het commando \textcite{} of \autocite{}. Als argument van het commando geef je de "sleutel" van een "record" in een bibliografische databank in het BibLATEX-formaat (een tekstbestand). Als je expliciet naar de auteur verwijst in de zin, gebruik je \textcite{}. Soms wil je de auteur niet expliciet vernoemen, dan gebruik je \autocite{}. In de volgende paragraaf een voorbeeld van elk.

Knuth1998 schreef een van de standaardwerken over sorteer- en zoekalgoritmen. Experten zijn het erover eens dat cloud computing een interessante opportuniteit vormen, zowel voor gebruikers als voor dienstverleners op vlak van informatietechnologie (**Creeger2009**).

2.1 Verkennend onderzoek

"Kan *elderspeak* gedetecteerd worden door Artificiële Intelligentie en kan dit toegepast worden in de praktijk?", is de centrale onderzoeksvraag, maar daarvoor moeten we twee begrippen goed uitleggen en begrijpen om te kunnen staven of dit wel degelijk mogelijk is. Er zal dus eerst beschreven worden wat *elderspeak* precies is. Waarom vinden ouderen

dat niet leuk? Wat zijn de eigenschappen en hoe kan je het voorkomen? Daarnaast moeten we ook begrijpen wat Artificiële Intelligentie is. De reden hiervoor is dat er verstaan moet worden wat dat is, welke types er zijn en hoe dit gebruikt werd het eindresultaat.

2.2 Elderspeak

2.2.1 Wat is Elderspeak?

Het begrip *elderspeak*, ook *secondary babytalk* genoemd, kent verschillende definities. Kemper e.a. (1998) omschrijft het begrip als volgt: "Elderspeak is a simplified speech register with exaggerated pitch and intonation, simplified grammar, limited vocabulary and slow rate of delivery.

Daarnaast beschrijft Williams (2011) het begrip als het volgende: Elderspeak is a common intergenerational speech style used by younger persons in communication with older adults in a variety of community and health care settings. Based on negative stereotypes of older adults as less competent communicators, younger speakers (in this case nursing home staff) modify their communication with nursing home residents by simplifying the vocabulary and grammar and by adding clarifications such as repetitions and altered prosody.

2.2.2 Wat zijn de kenmerken?

Deze kenmerken komen overeen met een communicatiestijl die men hanteert wanneer men tegen (afhankelijke) kinderen praat. Vandaar dat *elderspeak* ook wel als *secondary baby* talk wordt benoemd.

- Langzaam spreken
- Verhoogde toonhoogte
- Verhoogd stemvolume
- Overdreven intonatie
- Vereenvoudigd woordgebruik, gebruik van verkleinwoorden en/of ongepaste bijnamen of troetelnamen
- Verminderde grammaticale complexiteit (bv. voornamelijk enkelvoudige zinnen)
- Gebruik van collectieve voornaamwoorden (bijvoorbeeld we in plaats van jij)
- Veelvuldig gebruik van (bevestigende) tussenwerpsels (zoals hé of voilà)
- Gewijzigd non-verbaal gedrag (bv. langdurig oogcontact, extra gebaren, te dichtbij komen)
- Veelvuldige verduidelijking en herhaling

Tenslotte is het belangrijk om te weten dat bij elderspeak de inhoud van de boodschap, die de zorgverlener wil overbrengen, niet wijzigt. Wel verandert de wijze waarop de boodschap wordt overgebracht door het gebruik van een infantiliserende communicatiestijl, aldus Campens (2021).

2.2.3 Wat zijn de tips om elderspeak te voorkomen?

De onderstaande tips zijn enkele van de tips die Wick en Zanni (2007) meegeven ter "bestrijding" van *elderspeak*:

- Spreek personen aan met de naam waarmee ze willen aangesproken worden. Gebruik geen collectieve voornaamwoorden als die niet van toepassing zijn.
- Als een persoon een zorgverlener toelaat om hem of haar met zijn voornaam aan te spreken, ga er dan niet van uit dat deze toestemming voor alle zorgverleners geldt. De mate van intimiteit varieert, waardoor elke zorgverlener moet nagaan hoe hij of zij zijn gesprekspartner mag aanspreken.
- Vermijd het gebruik van troetelnamen en overmatige intieme liefkozingen, tenzij de gesprekspartner uitdrukkelijk aangeeft dat hij of zij zo wil aangesproken worden.
- Wees je bewust van je non-verbaal gedrag.
- Verhoog je stemvolume (in beperkte mate) enkel en alleen wanneer de gesprekspartner hardhorig is. Verhoging van je stemvolume betekent geen verhoging van je stemhoogte. Wees je ervan bewust dat niet elke oudere gesprekspartner hardhorig is.
- Herhaling en verminderde grammaticale complexiteit hebben een plaats als de gesprekspartner je niet begrepen heeft.
- Vermijd korte zinnen en langzaam en met overdreven intonatie uitgesproken zinnen.
- Vermijd het gebruik van verkleinwoorden, aangezien die het gevoel van afhankelijkheid kunnen versterken en denigrerend kunnen geïnterpreteerd worden.
- Vermijd overdreven directieve boodschappen en bied keuzevrijheid.
- Hanteer een beleefd taalgebruik en beleefde omgangsvormen (bv. op de kamerdeur kloppen alvorens de kamer binnen te gaan).

2.3 Artificiële Intelligentie

2.3.1 Wat is AI?

Er zijn bijzonder veel beschrijvingen rond wat AI is, maar alleen uit verschillende bronnen kan je een accuraat beeld krijgen van wat AI is.

Volgens Oracle (2014) heeft AI (kunstmatige intelligentie) betrekking op systemen of machines die onze eigen intelligentie nabootsen om taken uit te voeren en die zichzelf tijdens dat proces kunnen verbeteren op basis van de vergaarde informatie.

Het Europees Parlement (2020) geeft de volgende definitie van artificiële intelligentie (of kunstmatige intelligentie): "AI is de mogelijkheid van een machine om mensachtige vaardigheden te vertonen - zoals redeneren, leren, plannen en creativiteit. AI maakt het voor technische systemen mogelijk om hun omgeving waar te nemen, om te gaan met deze waarnemingen en problemen op te lossen om een specifiek doel te bereiken. De computer ontvangt data - reeds voorbereid en verzameld via eigen sensoren, zoals een camera - verwerkt deze en reageert erop. AI-systemen zijn in staat om hun gedrag in

Figuur 2.1: Soorten AI in diagram (Bansal, 2019)

zekere mate aan te passen, door het effect van vorige acties te analyseren en autonoom te werken."

Samengevat is AI een technisch systeem om onze eigen intelligentie na te bootsen op basis van vergaarde informatie en waarbij het systeem acties aanpast op die data.

2.3.2 Welke vormen zijn van Al?

Artificiële Intelligentie is een verzamelnaam voor 2 soorten. Zo heb je enerzijds *machine learning* en anderzijds *deep learning* (Kavlakoglu, 2020). Dit kan mooi geïllustreerd worden a.d.h.v. figuur 2.1. Daarop kan er afgeleid worden dat Artificiële Intelligentie een verzamelnaam is. Specifieker heb je dan *machine learning* en daaronder heb je nog *deep learning*.

2.3.3 Machine learning

Machine learning of machinaal leren is het deelgebied van kunstmatige intelligentie dat computers het vermogen geeft te leren zonder expliciet geprogrammeerd te zijn, aldus Lievens (2021). Machinaal leren heeft drie types namelijk supervised learning of gesuperviseerd leren, unsupervised learning of leren zonder toezicht en als laatste type is er reinforcement learning of leren door bekrachtiging.

Supervised learning

Een defenitie gegeven door Lievens (2021) over *supervised learning* gaat als volgt: "De taak van *supervised learning* is een hypothese op te bouwen op basis van een reeks gela-

belde trainingsgegevens. Deze hypothese kan dan worden gebruikt om het label voor een (nieuwe) input te voorspellen. Wanneer het label een reëel getal is, spreekt men van een regressieprobleem; wanneer het label beperkt is tot één van een (beperkt) aantal vooraf gedefinieerde klassen, wordt het probleem een classificatieprobleem genoemd."

Een voorbeeld van het regressieprobleem is het voorspellen van huisprijzen. De input van het model is dan een reeks vectoren die de eigenschappen van het huis voorstellen zoals aantal slaapkamers, oppervlakte, bouwjaar etc. Voorbeelden van het classificatieprobleem zijn spam detectie of nummerherkenning. Bij spam dectactie heb je twee vooraf gedefinieerde klassen: spam en geen spam. Bij het herkennen van nummers heb je 10 klassen: 0 t.e.m. 10.

Unsupervised learning

Lievens (2021) omschrijft *unsupervised learning* als de taak van een algoritme voor leren zonder toezicht is het ontdekken van structuur te ontdekken in een ongelabelde gegevensreeks. De meest prominente taak bij unsupervised learning is clustering, d.w.z. de ontdekking van coherente groepen. Andere mogelijke taken zijn anomalie detectie en hoofdcomponentenanalyse (PCA).

Een voorbeelden van clustering is markt segmentatie waarbij klanten worden opgedeeld in verschillende segmenten zoals trouwe klant, mogelijke vertrekkende klant, niet tevreden klant etc. Je hebt algoritmen die fraude opsporen op een website die dus vreemd gedrag gaan detecteren. Dit is dan een voorbeeld van anomalie detectie. Bij PCA worden de data gereduceerd zodat de minder relevante data afneemt in de dataset.

Reinforcement learning

Lievens (2021) beschrijft leren door bekrachtiging door een techniek dat niet echt een dataset gebruikt, maar dat het eerder een identiteit is die leeft in een (on)bekende wereld die beloningssignalen krijgt. De opdracht is dan om uit te zoeken wat de regels zijn die leiden tot een grote beloning.

Het bekendste voorbeeld van *reinforcement learning* is zelfrijdende wagens waarbij het model alles zelf moet aanleren zoals het remmen en gas geven in welke hoeveelheid en hoe er gestuurd moet worden.

2.3.4 Deep Learning

"Een artificieel neuraal netwerk bestaat uit een groot aantal eenvoudige rekende eenheden, units of neuronen die de volgende eigenschap heeft: Als de (gewogen) input van een neuron groot is, zal het "vurenën dit neuron zal een grote waarde op zijn axon zetten. Bovendien zijn deze eenheden verbonden door middel van gerichte links waarbij een reëel getal de sterkte van elke verbinding aangeeft.", aldus Lievens2021 in zijn cursus *Distributed Databases*.

Schematic Diagram of a Neuron

Figuur 2.2: Systematische voorstelling van een Neuron (Lievens, 2021)

De systematische voorstelling van een neuron is te vinden in figuur 2.2. Een volledig neuraal netwerk kan er uit zien zoals in figuur 2.3

2.3.5 Al in het dagelijkse leven

Om een klein overzicht te maken wat AI allemaal inhoudt, zijn er andere voorbeelden geïllustreerd van kunstmatige intelligentie in figuur 2.4.

2.4 Al technieken die gebruikt worden om elderspeak te detecteren

2.4.1 Google Text-to-Speech

aaa... bbb...

Figuur 2.3: Layers van een artificieel neuraal netwerk (Lievens, 2021)

Figuur 2.4: AI in het dagelijkse leven. (Europees Parlement, 2020)

3. Methodologie

Etiam pede massa, dapibus vitae, rhoncus in, placerat posuere, odio. Vestibulum luctus commodo lacus. Morbi lacus dui, tempor sed, euismod eget, condimentum at, tortor. Phasellus aliquet odio ac lacus tempor faucibus. Praesent sed sem. Praesent iaculis. Cras rhoncus tellus sed justo ullamcorper sagittis. Donec quis orci. Sed ut tortor quis tellus euismod tincidunt. Suspendisse congue nisl eu elit. Aliquam tortor diam, tempus id, tristique eget, sodales vel, nulla. Praesent tellus mi, condimentum sed, viverra at, consectetuer quis, lectus. In auctor vehicula orci. Sed pede sapien, euismod in, suscipit in, pharetra placerat, metus. Vivamus commodo dui non odio. Donec et felis.

Etiam suscipit aliquam arcu. Aliquam sit amet est ac purus bibendum congue. Sed in eros. Morbi non orci. Pellentesque mattis lacinia elit. Fusce molestie velit in ligula. Nullam et orci vitae nibh vulputate auctor. Aliquam eget purus. Nulla auctor wisi sed ipsum. Morbi porttitor tellus ac enim. Fusce ornare. Proin ipsum enim, tincidunt in, ornare venenatis, molestie a, augue. Donec vel pede in lacus sagittis porta. Sed hendrerit ipsum quis nisl. Suspendisse quis massa ac nibh pretium cursus. Sed sodales. Nam eu neque quis pede dignissim ornare. Maecenas eu purus ac urna tincidunt congue.

Donec et nisl id sapien blandit mattis. Aenean dictum odio sit amet risus. Morbi purus. Nulla a est sit amet purus venenatis iaculis. Vivamus viverra purus vel magna. Donec in justo sed odio malesuada dapibus. Nunc ultrices aliquam nunc. Vivamus facilisis pellentesque velit. Nulla nunc velit, vulputate dapibus, vulputate id, mattis ac, justo. Nam mattis elit dapibus purus. Quisque enim risus, congue non, elementum ut, mattis quis, sem. Quisque elit.

Maecenas non massa. Vestibulum pharetra nulla at lorem. Duis quis quam id lacus dapibus interdum. Nulla lorem. Donec ut ante quis dolor bibendum condimentum. Etiam

egestas tortor vitae lacus. Praesent cursus. Mauris bibendum pede at elit. Morbi et felis a lectus interdum facilisis. Sed suscipit gravida turpis. Nulla at lectus. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Praesent nonummy luctus nibh. Proin turpis nunc, congue eu, egestas ut, fringilla at, tellus. In hac habitasse platea dictumst.

Vivamus eu tellus sed tellus consequat suscipit. Nam orci orci, malesuada id, gravida nec, ultricies vitae, erat. Donec risus turpis, luctus sit amet, interdum quis, porta sed, ipsum. Suspendisse condimentum, tortor at egestas posuere, neque metus tempor orci, et tincidunt urna nunc a purus. Sed facilisis blandit tellus. Nunc risus sem, suscipit nec, eleifend quis, cursus quis, libero. Curabitur et dolor. Sed vitae sem. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Maecenas ante. Duis ullamcorper enim. Donec tristique enim eu leo. Nullam molestie elit eu dolor. Nullam bibendum, turpis vitae tristique gravida, quam sapien tempor lectus, quis pretium tellus purus ac quam. Nulla facilisi.

4. Conclusie

Curabitur nunc magna, posuere eget, venenatis eu, vehicula ac, velit. Aenean ornare, massa a accumsan pulvinar, quam lorem laoreet purus, eu sodales magna risus molestie lorem. Nunc erat velit, hendrerit quis, malesuada ut, aliquam vitae, wisi. Sed posuere. Suspendisse ipsum arcu, scelerisque nec, aliquam eu, molestie tincidunt, justo. Phasellus iaculis. Sed posuere lorem non ipsum. Pellentesque dapibus. Suspendisse quam libero, laoreet a, tincidunt eget, consequat at, est. Nullam ut lectus non enim consequat facilisis. Mauris leo. Quisque pede ligula, auctor vel, pellentesque vel, posuere id, turpis. Cras ipsum sem, cursus et, facilisis ut, tempus euismod, quam. Suspendisse tristique dolor eu orci. Mauris mattis. Aenean semper. Vivamus tortor magna, facilisis id, varius mattis, hendrerit in, justo. Integer purus.

Vivamus adipiscing. Curabitur imperdiet tempus turpis. Vivamus sapien dolor, congue venenatis, euismod eget, porta rhoncus, magna. Proin condimentum pretium enim. Fusce fringilla, libero et venenatis facilisis, eros enim cursus arcu, vitae facilisis odio augue vitae orci. Aliquam varius nibh ut odio. Sed condimentum condimentum nunc. Pellentesque eget massa. Pellentesque quis mauris. Donec ut ligula ac pede pulvinar lobortis. Pellentesque euismod. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos hymenaeos. Praesent elit. Ut laoreet ornare est. Phasellus gravida vulputate nulla. Donec sit amet arcu ut sem tempor malesuada. Praesent hendrerit augue in urna. Proin enim ante, ornare vel, consequat ut, blandit in, justo. Donec felis elit, dignissim sed, sagittis ut, ullamcorper a, nulla. Aenean pharetra vulputate odio.

Quisque enim. Proin velit neque, tristique eu, eleifend eget, vestibulum nec, lacus. Vivamus odio. Duis odio urna, vehicula in, elementum aliquam, aliquet laoreet, tellus. Sed velit. Sed vel mi ac elit aliquet interdum. Etiam sapien neque, convallis et, aliquet vel, auctor non, arcu. Aliquam suscipit aliquam lectus. Proin tincidunt magna sed wisi. Integer

blandit lacus ut lorem. Sed luctus justo sed enim.

Morbi malesuada hendrerit dui. Nunc mauris leo, dapibus sit amet, vestibulum et, commodo id, est. Pellentesque purus. Pellentesque tristique, nunc ac pulvinar adipiscing, justo eros consequat lectus, sit amet posuere lectus neque vel augue. Cras consectetuer libero ac eros. Ut eget massa. Fusce sit amet enim eleifend sem dictum auctor. In eget risus luctus wisi convallis pulvinar. Vivamus sapien risus, tempor in, viverra in, aliquet pellentesque, eros. Aliquam euismod libero a sem.

Nunc velit augue, scelerisque dignissim, lobortis et, aliquam in, risus. In eu eros. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Curabitur vulputate elit viverra augue. Mauris fringilla, tortor sit amet malesuada mollis, sapien mi dapibus odio, ac imperdiet ligula enim eget nisl. Quisque vitae pede a pede aliquet suscipit. Phasellus tellus pede, viverra vestibulum, gravida id, laoreet in, justo. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Integer commodo luctus lectus. Mauris justo. Duis varius eros. Sed quam. Cras lacus eros, rutrum eget, varius quis, convallis iaculis, velit. Mauris imperdiet, metus at tristique venenatis, purus neque pellentesque mauris, a ultrices elit lacus nec tortor. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos hymenaeos. Praesent malesuada. Nam lacus lectus, auctor sit amet, malesuada vel, elementum eget, metus. Duis neque pede, facilisis eget, egestas elementum, nonummy id, neque.

A. Onderzoeksvoorstel

Het onderwerp van deze bachelorproef is gebaseerd op een onderzoeksvoorstel dat vooraf werd beoordeeld door de promotor. Dat voorstel is opgenomen in deze bijlage.

A.1 Introductie

De veroudering van de bevolking in de Vlaamse steden en gemeenten zet zich in de komende decennia verder. (StatistiekVlaanderen, 2018) Volgens hun voorspellingen zou tegen 2033 25% van de bevolking een 65-plusser zijn.

Het woord 'waardigheid' is actueler dan ooit. Na de schrijnende omstandigheden van de Tweede Wereldoorlog stond dat woord centraal bij het opstellen van het verdrag van de Verenigde Naties (1945), de Universele Verklaring van de Rechten van de mens (1948) en de grondrechten van de Europese Unie (2000). Die basiswaarde vinden we ook terug bij het Europese en Belgische zorgbeleid. Ouderen mogen niet gediscrimineerd worden op vlak van leeftijd. Tevens mogen ze ook niet op een kinderlijke, betuttelende of onvriendelijke wijze aangesproken worden en moeten ze met respect bejegend worden (Campens, g.d.).

Hoe meer ouderen er in de samenleving zijn, hoe meer zorg zij nodig hebben en hoe meer zorgverleners instaan voor deze leeftijdscategorie. Die zorgverleners, maar evengoed familie, weten niet altijd even goed hoe ze moeten omgaan met senioren. Wanneer een jonger persoon op een andere manier spreekt tegen een senior dan tegen een leeftijdsgenoot, spreken we over *elderspeak*. Williams (2011) omschrijft *elderspeak* als volgt: "Elderspeak is a common intergenerational speech style used by younger persons in com-

munication with older adults in a variety of community and health care settings. Based on negative stereotypes of older adults as less competent communicators, younger speakers (in this case nursing home staff) modify their communication with nursing home residents by simplifying the vocabulary and grammar and by adding clarifications such as repetitions and altered prosody." Om *elderspeak* te bestrijden, gaven Wick en Zanni (2007) een paar tips mee in hun onderzoek. Enkele van die tips gingen als volgt: spreek mensen aan zoals ze wensen aangesproken te worden, vraag om ze aan te spreken met de voornaam, vermijd troetelnamen, wees bewust van non-verbaal gedrag, verhoog uw stemvolume enkel wanneer uw gesprekspartner hardhorig is, herhaal alleen uw zin als uw gesprekspartner het niet begrepen heeft, vermijd korte, langzame en makkelijke zinnen, vermijd verkleinwoorden en hanteer beleefd taalgebruik.

Naast *elderspeak* heb je ook nog *nursery tone*. Dit verwijst naar de situatie waarbij iemand de toonhoogte aan het einde van de zin standaard verhoogt zoals bij communicatie met jonge kinderen.

Dit onderwerp was vorig jaar al een onderzoeksonderwerp voor Glenn Beeckman (2021) en Victor Standaert (2021). Zij hebben al een basis gelegd in de goede richting om dit project tot een goed einde te brengen. Sommige stukken programmacode van hen zullen gebruikt worden om zo een beter model op te stellen. Zij haalden zelf ook verbeterpunten aan en moeilijkheden die, hopelijk, op te lossen zijn. Wat het verschil zal zijn tussen hun eindwerken en dit eindwerk wordt toegelicht in A.2.

De nog steeds relevante onderzoeksvraag van dit onderwerp is: "Kan *elderspeak* gedetecteerd worden door Artificiële Intelligentie en kan dit toegepast worden in de praktijk?". Een bijkomende onderzoeksvraag is: "Kan *nursery tone* gedetecteerd worden door Artificiële Intelligentie?".

Met dit eindwerk zal ik alle mogelijkheden en capaciteiten van mezelf inzetten om een applicatie én AI-model te maken zodat dit kan getest en gebruikt worden in de opleiding verpleegkunde. Ik hoop ook dat ik ouderen op deze manier een betere levenskwaliteit kan bieden door de communicatie met zorgverleners, en misschien zelfs hun familie, te optimaliseren.

A.2 State-of-the-art

A.2.1 Literatuuronderzoek

Omdat voorgaande studenten al uitgezocht hebben wat *elderspeak* precies is, zal dit niet herhaald worden in dit onderzoek. Wel zal er op basis van de beschikbare literatuur onderzocht worden welk soort machinaal leren of *deep learning* het meest geschikt is voor deze specifieke taken. Zowel *machine learning* als *deep learning* hebben elk verschillende onderlinge modellen. Er moet dan bekeken worden welke hypothese het beste past om bovenstaande parameters te integreren in het model of verschillende modellen.

Een extra obstakel kan verschijnen wanneer er te veel achtergrond lawaai aanwezig is. Mogelijks moet er dan eerst een filter worden toegepast op de audiobestanden om dit weg te filteren zodat deze wel gebruikt kunnen worden voor het herkennen van eigenschappen op *elderspeak*.

A.2.2 Stand van zaken

Zoals reeds vermeld in de inleiding werd dit bachelorproef-onderwerp vorig jaar al gekozen door twee studenten. Zij hebben zich gefocust op de *speech-to-text*, verkleinwoorden detecteren, een frequentiemeter, herhalende zinnen herkennen, emotie-herkenner en een basisapplicatie in 'Tkinter', een standaard *Graphical User Interface* (GUI) in Python.

Beeckman (2021) vermeldde dat er nog nood was aan een methode om herhaling en verkleinwoorden te detecteren. Standaert (2021) haalde aan dat er nog onderzoek nodig was voor de spraakherkenning en de frequentiemeter om de applicatie preciezer te maken.

A.2.3 Wat is mijn aandeel?

Beide studenten hebben niet echt Kunstmatige Intelligentie gebruikt om het resultaat te bekomen. Standaert (2021) heeft wel methoden beschreven om een paar kenmerken te herkennen, maar dit gebeurt op basis van vaste parameters. Mocht AI gebruikt kunnen worden om de nauwkeurigheid op te schalen, dan zou dat alvast een winst zijn. Het gebruik van Machinaal leren of *Deep Learning*, meer specifiek een *Convolutional Neural Network* (CNN) kan een positief effect hebben op het detecteren van alle parameters rond *elderspeak*. Mijn aandeel zal dus zijn om te onderzoeken welke modellen het beste gebruikt worden om die parameters te detecteren.

Een belangrijke stap zal zijn om de twee eerder vernoemde eindwerken samen te voegen en te verbeteren. Beeckman (2021) gebruikte "Tkinter" om de *front-end* te maken, maar haalde een paar redenen aan waarom dat toch niet te verkiezen is, zoals bijvoorbeeld het amateuristische uiterlijk en de beperkte mogelijkheden. Mijn voorkeur gaat eerder uit naar het gebruik van "Flask", een *micro-webframework* in Python, dat kan gebruikt worden om een webpagina te maken en te linken naar de *back-end*. Het voordeel hiervan is dat men sneller én mooier een website kan ontwerpen.

A.3 Methodologie

Om te verzekeren dat er genoeg data beschikbaar is, is het aan te raden dat er audiosamples verzameld worden voor het 2^e semester.

Op basis van de resultaten van het literatuuronderzoek en beide eindwerken van vorig jaar, kunnen er methodes opgesteld worden die de belangrijkste kenmerken van *nursery tone* en *elderspeak* herkennen. Daarbij is het gebruik van Artificiële Intelligentie een handige

manier om het verschil te kennen tussen iemand die *elderspeak* gebruikt en iemand die dat niet doet. Met welk model en op welke wijze dit het beste gerealiseerd wordt, zal onderzocht worden in dit eindwerk.

Daarnaast moet alles omgezet worden naar een duidelijke webapplicatie via "Flask" zodat het in latere fases niet geïnstalleerd moet worden op een computer. Zo kan iedereen de applicatie gebruiken zonder vooraf iets te downloaden, wat het gebruiksgemak thuis en op verplaatsing, bijvoorbeeld in een rusthuis, optimaliseert.

Tot slotte zullen het beantwoorden van de volgende deelvragen hierbij moeten helpen:

- Welk type Artificiële Intelligentie past het beste bij deze opstelling?
- Welk type model van *machine learning* of *deep learning* werkt het beste per eigenschap?
- Kan je achtergrond lawaai wegfilteren en hoe precies?
- Zal spraakherkenning lukken met de gratis beschikbare softwarebibliotheken?
- Hoe zet je een "Flask" server op waar je *webrequests* naar stuurt? En hoe verbind je daar een model mee?

A.4 Verwachte resultaten

Het verwachte resultaat is een webapplicatie met "Flask" als *back-end*, waarbij men de optie heeft om het model te trainen, en waarbij het model aangeeft of er *elderspeak* of *nur-sery tone* aanwezig is. Bovendien geeft de applicatie weer op basis van welke parameters het model 'denkt' dat het om die twee taalregisters gaat.

A.5 Verwachte conclusies

De gehoopte resultaten houden in dat er een meetbaar verschil is tussen personen die *nursery tone* gebruiken t.o.v. mensen die normaal praten. Het model zal nooit 100% accuraat zijn: zo spreekt men in de praktijk vaker dialect tegen ouderen terwijl de algoritmes getraind zijn op Algemeen Nederlands (AN), en ook het verschil tussen de Nederlandse uitspraak en de Vlaamse uitspraak kunnen een obstakel vormen. Ook het filteren van achtergrondlawaai wordt een bijkomende uitdaging.

Bibliografie

- Bansal, H. (2019, juli 19). *How to get the Perfect start in AI ML as Newbie?? Learn the Art in just 5 mins!* Verkregen 18 maart 2022, van https://becominghuman.ai/how-to-get-the-perfect-start-in-ai-ml-as-newbie-learn-the-art-in-just-5-mins-cba28d2705e4
- Beeckman, G. (2021). *Nursery Tone Monitor: softwarematige detectie van elderspeak* (eindwerk). Hogeschool Gent. Verkregen 28 november 2021, van https://catalogus. hogent.be/catalog/hog01:000739720
- Campens, J. (g.d.). Cursus Elderspeak (onderzoeksrap.). HoGent.
- Campens, J. (2021). Cursus Elderspeak.
- Europees Parlement. (2020, september 4). Wat is artificiële intelligentie en hoe wordt het gebruikt? Twitter LinkedIn Whatsapp Artificiële of kunstmatige intelligentie (AI) staat op het punt om voorloper te worden als technologie van de toekomst. Maar wat is AI precies en hoe beïnvloedt het ons leven nu al? Europees Parlement. Verkregen 18 maart 2022, van https://www.europarl.europa.eu/news/nl/headlines/society/20200827STO85804/wat-is-artificiele-intelligentie-en-hoe-wordt-hetgebruikt
- Kavlakoglu, E. (2020, mei 27). AI vs. Machine Learning vs. Deep Learning vs. Neural Networks: Whats the Difference? IBM. Verkregen 18 maart 2022, van https://www.ibm.com/cloud/blog/ai-vs-machine-learning-vs-deep-learning-vs-neural-networks
- Kemper, S., Finter-Urczyk, A., Ferrell, P., Harden, T., & Billington, C. (1998). Using elderspeak with older adults. *Discourse Processes*, 25(1), 55–73. https://doi.org/10.1080/01638539809545020
- Lievens, S. (2021, september 27). Lecture notes in Distributed Databases Machine Learning. *HoGent*.

34 BIBLIOGRAFIE

Oracle. (2014, april 24). *Wat is AI? Meer informatie over kunstmatige intelligentie*. https://www.oracle.com/nl/artificial-intelligence/what-is-ai/

- Standaert, V. (2021). *Nursery tone monitor* (Eindwerk). Hogeschool Gent. Verkregen 28 november 2021, van https://catalogus.hogent.be/catalog/hog01:000739598
- StatistiekVlaanderen. (2018). Home Bevolking Economie Levensomstandigheden Omgeving Overheid Rapporten EvenementenDe vergrijzing zet zich verder, 3. Verkregen 28 november 2021, van https://www.statistiekvlaanderen.be/nl/de-vergrijzingzet-zich-verder
- Wick, J. Y., & Zanni, G. R. (2007). The Irony of Elderspeak: Effective but Condescending. The Consultant Pharmacist, 22(2), 175–178. https://doi.org/10.4140/tcp.n.2007. 175
- Williams, K. N. (2011, juni 9). *Communication in Elderly Care*. Bloomsbury UK. Verkregen 28 november 2021, van https://www.ebook.de/de/product/21099510/communication_in_elderly_care.html