

Geodatenanalyse I: Regressionsanalyse – Lineare Regression

Kathrin Menberg

Stundenplan

Vorläufiger Stundenplan		
Datum	Thema	Dozent
20.10.2021	Einführung in die Programmierung mit Python	Gabriel Rau
25.10.2021	Univariate Statistik und statistisches Testen	Kathrin Menberg
01.11.2021	Feiertag	
08.11.2021	Umgang und Berechnung von Datensätzen	Gabriel Rau
15.11.2021	Bivariate und schließende Statistik	Kathrin Menberg
22.11.2021	Datenvisualisierung mit matplotlib	Gabriel Rau
29.11.2021	Multivariate Statistik	Kathrin Menberg
06.12.2021	Datenformate, Datenspeicherung und Datenbanken	Gabriel Rau
13.12.2021	Monte-Carlo Methoden	Kathrin Menberg
20.12.2021	Analyse und Visualisierung von Geodaten	Gabriel Rau
27.12.2021	Weihnachtsferien	
03.01.2022	Weihnachtsferien	
10.01.2022	Sensitivitätsanalyse	Kathrin Menberg
17.01.2022	Datenethik, Lizensierung und Entwicklungstools	Gabriel Rau
24.01.2022	Räumliche Interpolation	Kathrin Menberg
31.01.2022	Fragen zur Programmierung	Gabriel Rau
07.02.2022	Regressionsanalyse	Kathrin Menberg

Uhrzeit	Inhalt
10:00 – 10:30	Regressionsanalyse
10:30 – 11:15	Übung
11:15 – 11:30	<u>Pause</u>
11:30 – 12:15	Fortsetzung Übung
12:15 – 12:30	Diskussion und Reflexion

Lehrevaluation

<u>6339042: Geodatenanalyse I – Programmierung und</u> Geostatistik

Prüfungsleistung

Prüfungsaufgabe

- ▶ Bearbeitung einer vorgegebenen Aufgabenstellung in *Python*
- ► Erstellen eines individuellen Workflows mit Code und Erklärung zur Analyse eines Geodatensatzes
- Dokumentation in Form eines Jupyter Notebooks mit Visualisierung und Diskussion der Ergebnisse
- Abgabe bis <u>31.05.2022</u>
- Die Prüfungsaufgabe wird benotet und entspricht der Modulnote
- Für die Prüfungsaufgabe sind ca. 60 Stunden Arbeit veranschlagt

Lernziele

Am Ende der Stunde werden die Teilnehmer:

- mit den mathematischen Grundlagen von der statistischen Regression vertraut sein.
- ... eine einfache lineare Regression in Python durchführen können.
- … die Qualität der Modelanpassung mit Hilfe von verschiedenen Kriterien bestimmen und beurteilen können.

Wozu Regressionsanalyse?

- ► Vorhersagen (prediction)
 - Modellierung von existierenden Beobachtungen
 - Neue Datenwerte vorhersagen
 - Siehe Interpolation mit Kriging

▶ Variablenassoziation

- Zusammenhänge von Variablen identifizieren
- Gliederungen und Strukturen in Datensätzen

Wozu Regressionsanalyse?

www.pinterest.at

Extrapolation

 Ausgleichen des Unterschieds zwischen Stichprobe und Grundgesamtheit

MY HOBBY: EXTRAPOLATING

► Kausale Schlussfolgerungen

(causal inference)

- Effekte von Verfahren (Variablenänderungen) ableiten
- Experimentelles Design!

4-Stufen Zyklus der statistischen Analyse

- Schwachstellen suchen
- Annahmen hinterfragen
- Mögliche Verbesserungen

- Modell erweitern
- Variablen hinzufügen
- Daten transformieren

- Graphische Darstellung
- Beziehungen zwischen
 Variablen und Messungen untersuchen

- Datenmanipulation
- Koeffizienten schätzen
- Unsicherheiten

Grundlagen lineare Regression

 Abhängige Variable als eine Linearkombination der Regressionskoeffizienten

- \triangleright eine unabhängige Variable: einfache lineare Regression (x_1)
- \triangleright mehrere unabhängige Variablen: multiple lineare Regression (x_n)
- ightharpoonup Ziel: Parameter $\hat{\alpha}$ und $\hat{\beta}_i$ finden, die die beste Übereinstimmung zwischen gemessenen und berechneten Werten liefern (ϵ_i minimieren)

Kleinste-Quadrate (KQ) Schätzung

- engl. Ordinary Least Squares (OLS)
- Berechnung der Summe der quadrierten Residuen
- Koeffizienten für einfache lineare Regression:

$$\hat{\alpha} = \bar{Y} - \beta * \bar{X}$$

$$\hat{\beta} = \frac{\sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y})}{\sum_{i=1}^{n} (X_i - \bar{X})^2} = \frac{cov(X, Y)}{var(X)}$$

► Für multiple lineare Regression:

$$\hat{\mathbf{y}} = (\mathbf{X}^t \mathbf{X})^{-1} \mathbf{X}^t \mathbf{y}$$

▶ Vektor mit Koeffizienten $\hat{γ} = (α, β)$

Überprüfung der Anpassungsgüte

- Fehlermaße:
 - Root Mean Square Error (RMSE)
 - Residuenquadratsumme (SQR) und totale Quadratsumme (SQT)
 - ► Bestimmtheitsmaß (R²)
 - u.v.m.
- Methoden zur Validierung:
 - Bootstrap und Jackknife
 - Kreuzvalidierung
 - u.v.m.

Fehlermaße

- > y: Beobachtungen, \hat{y}_i Vorhersagen, \bar{y} : Mittelwert der Beobachtungen
- totale Quadratsumme, Summe der Quadrate der Totalen Abweichungen (SQT):
 - erfasst die "Gesamtvariation" in der abhängigen Variablen

- Residuenquadratsumme (SQR) :
 - beschreibt die Ungenauigkeit des Modells

www.wikipedia.org

Bestimmtheitsmaß (R², r²)

- engl. Coefficient of Determination
- ▶ y: Beobachtungen, \hat{y}_i Vorhersagen

$$R^2 = 1 - \frac{Residuenquadratsumme}{totalen\ Quadratsumme}$$

- Wie viel Streuung in den Daten durch ein lineares Regressions-model "erklärt" werden kann
- ightharpoonup R(0,1)
- Für einfache lineare Regression $r^2 = Korrelationskoeffizient^2$

www.wikipedia.org

Schacht & Lanquillion (2019)

Kreuzvalidierung (cross validation)

- Unterteilung in "Trainingsdaten " und "Testdaten"
- Regression mit den Trainingsdaten
- Vergleich der Regressionsergebnisse mit den Testdaten
- Bewertung der Güte der Regression
- iterative Analyse mit verschiedenen Trainings-/Testdatensätzen

Kreuzvalidierung mit k=5 Partitionen

Annahmen für lineare Regression

- Abhängige Variable ist eine Linearkombination der Regressionskoeffizienten
 - aber nicht zwingend der unabhängigen Variablen
 - Transformation der Daten

$$y = \alpha + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_n x_n$$

- Normalverteilung der unabhängigen Variablen
 - Verallgemeinerte lineare Modelle (generalized linear models)
 - Verteilungen aus der Exponentialfamilie (Poisson, Gamma, usw.)
 - ▶ Diskrete Variablen → logistische Regression (nächste Stunde)

Annahmen für KQ-Schätzung

- ▶ Residuen sind normalverteilt $\sim (0, \sigma)$, homoskedastisch und weisen keine Autokorrelation auf
 - ▶ Tests für Homoskedastizität: z.B. Breusch-Pagan, White test, ...
 - ► Alternative: Verallgemeinerte KQ-Schätzung (weighted least squares)
 - Berechnung gewichtete Residuen-Quadratsumme

Multikollinearität

- Korrelation von zwei oder mehr unabhängigen Variablen
- KQ-Schätzung wird ineffizient und ungenau
 - Hohe Varianz im Regressionsmodel
 - ► Hohes Bestimmtheitsmaß R²
- Identifikation über Korrelationsmatrix
- gilt für lineare und verallgemeinerte Regressionsmodelle

Übung 11: Lineare Regression

- Lineare Regression in Python
 - Multiple lineare Regression mit scikit-learn
 - Fehlermaße
 - Validierung mi Hilfe von Trainings- und Test-Daten

Aufgaben in Jupyter Notebook:11_Lineare Regression_uebung

Literatur

- Trauth (2015): MATLAB Recipes for Earth Sciences (4th Ed.), Springer
- Gelman et al. (2020) Regression and Other Stories, Cambridge University Press

Nützliche Weblinks:

https://towardsdatascience.com/introduction-to-linear-regressionin-python-c12a072bedf0

