Dr. Busa MENIZ e-mail: bmeniz@yildiz.edu.tr overis page i avesis. yildiz. edu.tr / bmeniz

FUNCTIONS

y is a function of x'' (y=f(x))

* x is the independent variable (input)

* y is the dependent variable (output)

*f is a function

Remark: We have only one value f(x) for every X.

Definition: A function from a set D to a set Y is a rule that assigns a unique (single) element f(x)EY to

each element xED.

The set D of all possible input values is called the domain

The set 2 of all possible output values of f(x) as x veries throughout D is called the range of f.

RSY

$$f: D \longrightarrow Y$$

 $\times \longmapsto y = f(x)$

The natural domain is the largest set of real x which the rule & can be applied to.

Examples

Function	Domain XED	Range YER	
$y=x^2$	R=(-00, 00)	$[0,\infty)$	
,	$(-\infty,0)\cup(0,\infty)$	$(-\infty,0)\cup(0,\infty)$	
$y = \frac{1}{x}$	[0,∞)	$[0,\infty)$	
A -√× ,		$(0, \infty)$	4-x>0
y = 14-x	$(-\infty,4]$	[0,1]	4 × 70 ×
y= \1-x2	[-1,1]	[0, 1]	$1-x^2 > 0$
0-1			$1 > x^2$

Remork: A function is specified by the rule f and the domain D:

$$f: x \mapsto y = x^2, \quad \mathcal{D}(f) = [0, \infty)$$

and

$$f: x \mapsto y = x^2$$
, $D(f) = \mathbb{R}$

are different functions.

Definition: If f is a function with domain D, its graph consists of the points (x,y) whose coordinates are the input-output pairs for f: {(x,f(x)) | xED}

$$y = x + 2$$

y=f(x) is the height of the graph above / below X.

Recall: A function of can have only one value f(x) for each x in its domain.

Vertical line test: No vertical line can intersect the graph of a function more than once.

Exemple:

A **piecewise defined function** is a function that is is described by using *different formulas* on different parts of its domain.

examples:

• the absolute value function

$$f(x) = |x| = \begin{cases} x & , x \ge 0 \\ -x & , x < 0 \end{cases}$$

• some other function

$$f(x) = \begin{cases} -x & , x < 0 \\ x^2 & , 0 \le x \le 1 \\ 1 & , x > 1 \end{cases}$$

• the floor function

$$f(x) = |x|$$

is given by the greatest integer less than or equal to x:

$$\lfloor 1.3 \rfloor = 1, \, \lfloor -2.7 \rfloor = -3$$

$$f(x) = \lceil x \rceil$$

is given by the smallest integer greater than or equal to x:

$$[3.5] = 4, [-1.8] = -1$$

Some fundamental types of functions

• linear function: f(x) = mx + b

b=0: all lines pass through the origin, f(x)=mx. One also says "y=f(x) is proportional to x" for some nonzero constant m.

m = 0: constant function, f(x) = b

• power function: $f(x) = x^a$

 $a = n \in \mathbb{N}$: graphs of f(x) for n = 1, 2, 3, 4, 5

N=2 : quadratic function N=3 i cubic function

 $a=-n\,,\;n\in\mathbb{N}\text{: graphs of }f(x)\text{ for }n=-1,-2$

 $a \in \mathbb{Q}$: graphs of f(x) for $a = \frac{1}{2}, \frac{1}{3}, \frac{3}{2}, \frac{2}{3}$

• **polynomials:** $p(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0 , n \in \mathbb{N}_0$ with *coefficients* $a_0, a_1, \ldots, a_{n-1}, a_n \in \mathbb{R}$ and domain \mathbb{R} If the leading coefficient $a_n \neq 0$, n > 0, n is called the *degree* of the polynomial.

Rational Functions

Definition 1.2.1. A function in the form

$$f(x) = \frac{P(x)}{Q(x)},$$

where P and Q are polynomials, is called a rational function. The domain of the rational function f(x) is the set

$$D = \mathbb{R} - \{x \in \mathbb{R} : Q(x) = 0\}$$

Informally,

- a function is called **increasing** if the graph of the function "climbs" or "rises" as you move *from left to right*.
- a function is called **decreasing** if the graph of the function "descends" or "falls" as you move *from left to right*.

examples:

function	where increasing	where decreasing
$y = x^2$	$0 \le x < \infty$	$-\infty < x \le 0$
y = 1/x	nowhere	$-\infty < x < 0$ and $0 < x < \infty$
$y = 1/x^2$	$-\infty < x < 0$	$0 < x < \infty$
$y = x^{2/3}$	$0 \le x < \infty$	$-\infty < x \le 0$

Definition 3 A function y = f(x) is an **even function of** x if f(-x) = f(x), **odd function of** x if f(-x) = -f(x), for every x in the function's domain.

examples:

 $f(-x) = (-x)^2 = x^2 = f(x)$: even function; graph is symmetric about the y-axis

 $f(-x) = (-x)^3 = -x^3 = -f(x)$: odd function; graph is symmetric about the origin

- 1. f(-x) = -x = -f(x): odd function
- 2. $f(-x) = -x + 1 \neq f(x)$ and $-f(x) = -x 1 \neq f(-x)$: neither even nor odd!

Combining functions

If f and g are functions, then for every $x \in D(f) \cap D(g)$ (that is, for every x that belongs to the domains of both f and g) we define sums, differences, products and quotients:

$$(f+g)(x) = f(x) + g(x)$$

$$(f-g)(x) = f(x) - g(x)$$

$$(fg)(x) = f(x)g(x)$$

$$(f/g)(x) = f(x)/g(x) \text{ if } g(x) \neq 0$$

algebraic operation on functions = algebraic operation on function values

Special case - multiplication by a constant $c \in \mathbb{R}$: (cf)(x) = c f(x) (take g(x) = c constant function)

examples: combining functions algebraically

$$f(x) = \sqrt{x}$$
 , $g(x) = \sqrt{1-x}$

(natural) domains:

$$D(f) = [0, \infty) \qquad D(g) = (-\infty, 1]$$

intersection of both domains:

$$D(f)\cap D(g)=[0,\infty)\cap (-\infty,1]=[0,1]$$

function	formula	domain
f + g	$(f+g)(x) = \sqrt{x} + \sqrt{1-x}$	$[0,1] = D(f) \cap D(g)$
f-g	$(f-g)(x) = \sqrt{x} - \sqrt{1-x}$	[0, 1]
g - f	$(g-f)(x) = \sqrt{1-x} - \sqrt{x}$	[0, 1]
$f \cdot g$	$(f \cdot g)(x) = f(x)g(x) = \sqrt{x(1-x)}$	[0, 1]
f/g	$\frac{f}{g}(x) = \frac{f(x)}{g(x)} = \sqrt{\frac{x}{1-x}}$	[0,1) $(x=1 excluded)$
g/f	$\frac{g}{f}(x) = \frac{g(x)}{f(x)} = \sqrt{\frac{1-x}{x}}$	(0,1] $(x=0 excluded)$

Definition 4 (Composition of functions) If f and g are functions, the composite function $f \circ g$ ("f composed with g") is defined by

The domain of $f \circ g$ consists of the numbers x in the domain of g for which g(x) lies in the domain of f, i.e.

$$D(f \circ g) = \{x | x \in D(g) \text{ and } g(x) \in D(f)\}$$

examples: finding formulas for composites

$$f(x) = \sqrt{x}$$
 with $D(f) = [0, \infty)$
 $g(x) = x + 1$ with $D(g) = (-\infty, \infty)$

compositedomain
$$(f \circ g)(x) = |x|$$
 $(-\infty, \infty)$ $(g \circ f)(x) = x$ $[0, \infty)$

Shifting a graph of a function:

Shift Formulas Vertical Shifts $y = f(x) + k \qquad \text{Shifts the graph of } fup \ k \text{ units if } k > 0$ $\text{Shifts it } down \ |k| \text{ units if } k < 0$ Horizontal Shifts $y = f(x + h) \qquad \text{Shifts the graph of } fleft \ h \text{ units if } h > 0$ $\text{Shifts it } right \ |h| \text{ units if } h < 0$

examples:

Scaling and reflecting a graph of a function: For c > 1,

y = cf(x) stretches the graph of f along the y-axis by a factor of c $y = \frac{1}{c}f(x)$ compresses the graph of f along the y-axis by a factor of c

y = f(cx) compresses the graph of f along the x-axis by a factor of c y = f(x/c) stretches the graph of f along the x-axis by a factor of c

For c = -1,

y = -f(x) reflects the graph of f across the x-axis

y = f(-x) reflects the graph of f across the y-axis

Combining scalings and reflections: see next exercise sheet for examples!

Trigonometric functions

The **radian measure** of the angle ACB is the length θ of arc AB on the unit circle. $s = r\theta$ is the *length of arc* on a circle of radius r when θ is measured in radians.

 $\mathbf{conversion} \ \mathbf{formula} \ \mathrm{degrees} \leftrightarrow \mathrm{radians} \mathrm{:}$

$$360^{\circ}$$
 corresponds to $2\pi \Rightarrow \frac{\text{angle in radians}}{\text{angle in degrees}} = \frac{\pi}{180}$

- ullet angles are **oriented**
- positive angle: counter-clockwise
- negative angle: clockwise

angles can be larger (counter-clockwise) smaller (clockwise) than 2π :

reminder: the six basic trigonometric functions

$$\sin \theta = \frac{\text{opp}}{\text{hyp}}$$
 $\csc \theta = \frac{\text{hyp}}{\text{opp}}$
 $\cos \theta = \frac{\text{adj}}{\text{hyp}}$ $\sec \theta = \frac{\text{hyp}}{\text{adj}}$
 $\tan \theta = \frac{\text{opp}}{\text{adj}}$ $\cot \theta = \frac{\text{adj}}{\text{opp}}$

FIGURE 1.39 Trigonometric ratios of an acute angle.

sine:
$$\sin \theta = \frac{y}{r}$$
 cosecant: $\csc \theta = \frac{r}{y}$ cosine: $\cos \theta = \frac{x}{r}$ secant: $\sec \theta = \frac{r}{x}$ tangent: $\tan \theta = \frac{y}{x}$ cotangent: $\cot \theta = \frac{x}{y}$

note: These definitions hold not only for $0 \le \theta \le \pi/2$ but also for $\theta < 0$ and $\theta > \pi/2$. recommended to memorize the following two triangles:

because *exact values* of trigonometric ratios in the *surds form* can be read from them **example:**

$$\cos\frac{\pi}{4} = \frac{1}{\sqrt{2}}$$
 ; $\sin\frac{\pi}{3} = \frac{\sqrt{3}}{2}$

a more non-trivial example:

From the above triangle and with r = 1, x = -1/2 and $y = \sqrt{3}/2$ we can read off the values of all trigonometric functions:

$$\sin\left(\frac{2}{3}\pi\right) = \frac{y}{r} = \frac{\sqrt{3}}{2} \qquad \csc\left(\frac{2}{3}\pi\right) = \frac{r}{y} = \frac{2}{\sqrt{3}}$$

$$\cos\left(\frac{2}{3}\pi\right) = \frac{x}{r} = -\frac{1}{2} \qquad \sec\left(\frac{2}{3}\pi\right) = \frac{r}{x} = -2$$

$$\tan\left(\frac{2}{3}\pi\right) = \frac{y}{x} = -\sqrt{3} \qquad \cot\left(\frac{2}{3}\pi\right) = \frac{x}{y} = -\frac{1}{\sqrt{3}}$$

note: For an angle of measure θ and an angle of measure $\theta + 2\pi$ we have the *very same* trigonometric function values (why?)

$$\sin(\theta + 2\pi) = \sin\theta$$
 ; $\cos(\theta + 2\pi) = \cos\theta$; $\tan(\theta + 2\pi) = \tan\theta$

and so on.

DEFINITION Periodic Function

A function f(x) is **periodic** if there is a positive number p such that f(x + p) = f(x) for every value of x. The smallest such value of p is the **period** of f.

Graphs of trigonometric functions:

Domain: $x \neq \pm \frac{\pi}{2}, \pm \frac{3\pi}{2}, \dots$

Range: $y \le -1$ or $y \ge 1$

Period: 2π

(d)

Domain: $x \neq 0, \pm \pi, \pm 2\pi, \dots$ Range: $y \leq -1$ or $y \geq 1$

Period: 2π

(e)

Domain: $x \neq 0, \pm \pi, \pm 2\pi, \dots$

Range: $-\infty < y < \infty$

Period: π

(f)

Even

cos(-x) = cos xsec(-x) = sec x

Odd

 $\sin(-x) = -\sin x$ $\tan(-x) = -\tan x$

 $\csc(-x) = -\csc x$

 $\cot(-x) = -\cot x$