

Chapter 4 Internal forces in beams

第四章 弯曲内力

(Internal forces in beams)

- ■§ 4-1 基本概念及工程实例
 (Basic concepts and example problems)
- **1** § 4-2 梁的剪力和弯矩(Shear- force and bending- moment in beams)
- **ID**§ 4-3剪力方程和弯矩方程·剪力图和弯矩图 (Shear-force& bending-moment equations; shear-force & bending- moment diagrams)

- 下 4-4 剪力、弯矩与分布荷载集度间的关系(Relationships between load, shear force, and bending moment)
- 下 § 4-5 叠加原理作弯矩图 (Drawing bending-moment diagram by superposition method)
- ■§ 4-6 平面刚架和曲杆的内力图 (Internal diagrams for frame members & curved bars)

§ 4-1 基本概念及工程

(Basic concepts and example problems)

一、 工程实例(Example problem)

工程实例(Example problem)

二、基本概念(Basic concepts)

- 1. 弯曲变形(Deflection)
- (1) 受力特征 外力(包括力偶)的作用线垂直于杆轴线.
- (2) 变形特征 变形前为直线的轴线,变形后成为曲线.
- 2. 梁 (Beam)

以弯曲变形为主的杆件

3. 平面弯曲(Plane bending)

作用于梁上的所有外力都在纵向对称面内,弯曲变形后的轴线是一条在该纵向对称面内的平面曲线,这种弯曲称为平面弯曲.

- 4. 梁的力学模型的简化(Representing a real structure by an idealized model)
 - (1) 梁的简化 通常取梁的轴线来代替梁

(3) 支座的类型

可动铰支座 (roller support)

固定铰支座(pin support)

固定端(clamped support or fixed end)

5. 静定梁的基本形式 (Basic types of statically determinate beams)

简支梁

(simply supported beam)

外伸梁

(overhanging beam)

悬臂梁

(cantilever beam)

起重机大梁为No.25a工字钢,如图所示,梁长L=10m,单位长度的重量为38.105kg/m,起吊重物的重量为100kN,试求起重机大梁的计算简图.

§ 4-2 梁的剪力和弯矩

(Shear-force and bending-moment in beams)

一、内力计算(Calculating internal force)

[举例] 已知 如图,F,a,l. 求距A端x处截面上内力.

解: 求支座反力

$$\sum F_{x} = 0 , \quad F_{RAx} = 0$$

$$\sum M_A = 0$$
, $F_{RB} = \frac{Fa}{l}$

$$\sum F_y = 0$$
, $F_{RAy} = \frac{F(l-a)}{l}$

求内力——截面法

$$\sum F_y = 0$$
 , $F_S = F_{RAy} = \frac{F(l-a)}{l}$ $\sum M_C = 0$, $M = F_{RAy} \cdot x$ 弯曲构件内力 $\left\{ \begin{array}{c} \dot{\mathbf{y}} \dot{\mathbf{p}} \end{array} \right.$

1. 弯矩 (Bending moment) M

构件受弯时,横截面上其作用面垂直于截面的内力偶矩.

2. **剪力**(Shear force) F_S 构件受弯时,横截面上其作用线平行于截面的内力.

二、内力的符号规定

(Sign convention for internal force)

1. 剪力符号

(Sign convention for shear force)

使dx 微段有左端向上而右端向下的相对错动时,横截面m-m上的剪力为正.或使dx微段有顺时针转动趋势的剪力为正.

使dx微段有左端向下而右端向上的相对错动时,横截面m-m上的剪力为负.或使dx微段有逆时针转动趋势的剪力为负.

2. 弯矩符号("笑正哭负"!)

(Sign convention for bending moment)

当dx 微段的弯曲下凸(即该段的下半部 受拉)时,横截面*m-m*上的弯矩为正;

当dx 微段的弯曲上凸(即该段的下半 部受压)时,横截面*m-m*上的弯矩为负.

例题 图示梁的计算简图.已知 F_1 、 F_2 ,且 $F_2 > F_1$,尺寸a、b、c和 l亦均为已知.试求梁在 $E \setminus F$ 点处横截面处的剪力和弯矩.

解: (1) 求梁的支反力 F_{RA} 和 F_{RR}

$$\sum M_{A} = 0$$

$$F_{RB}l - F_{1}a - F_{2}b = 0$$

$$\sum M_{B} = 0$$

$$-F_{RA}l + F_{1}(l-a) + F_{2}(l-b) = 0$$

$$F_{RB} = \frac{F_{1}a + F_{2}b}{l}$$

$$F_{RB} = \frac{F_{1}a + F_{2}b}{l}$$

$$I$$

记 E 截面处的剪力为 F_{SE} 和弯矩 M_E ,且假设 F_{SE} 和弯矩 M_E 的指向和转 向均为正值.

$$\sum F_y = 0, \quad F_{RA} - F_{SE} = 0$$

$$\sum M_E = 0, \quad M_E - F_{RA} \cdot c = 0$$

解得 $F_{SE} = F_{RA}$ $M_E = F_{RA} \cdot c$

取右段为研究对象

$$\sum F_y = 0$$
 $F_{SE} + F_{RB} - F_1 - F_2 = 0$

$$\sum M_E = 0 F_{RB}(l-c) - F_1(a-c) - F_2(b-c) - M_E = 0$$

解得

$$F_{SE} = F_{RA}$$

$$M_E = F_{RA} \cdot c$$

计算F点横截面处的剪力 F_{SF} 和弯矩 M_F .

$$\sum F_{y} = 0, \quad F_{SF} + F_{RB} = 0$$
 $\sum M_{F} = 0, \quad -M_{F} + F_{RB}d = 0$

解得:
$$F_{SF} = -F_{RB}$$

$$M_F = F_{RB}d$$

例题 求图示梁中指定截面上的剪力和弯矩.

解:

(1) 求支座反力

$$F_{RA}$$
=4kN F_{RB} =-4kN

(2) 求1-1截面的内力

$$F_{S1} = F_{SC \pm} = F_{RA} = 4kN$$

10kN·m

$$M_1 = M_{C \pm} = F_{RA} \times 1 = 4 \text{kN} \cdot \text{m}$$

(3) 求2-2截面的内力

$$F_{S2} = F_{SC} = -F_{RB} = -(-4) = 4kN$$

$$M_2 = M_{C_{\overline{C}}} = F_{RB} \times (2.5 - 1) = (-4) \times 1.5 = -6 \text{kN} \cdot \text{m}^{-21}$$

 F_{RA}

§ 4-3 剪力方程和弯矩方程·剪力图和弯矩图 (Shear-force & bending-moment equations; shear-force&bending-moment diagrams)

一、剪力方程和弯矩方程 (Shear- force & bending-moment equations)

用函数关系表示沿梁轴线各横截面上剪力和弯矩的变化规律, 分别称作剪力方程和弯矩方程.

- 1. 剪力方程(Shear- force equation) $F_S = F_S(x)$
- 2. 弯矩方程 (Bending-moment equation) M = M(x)

二、剪力图和弯矩图

(Shear-force&bending-moment diagrams)

以平行于梁轴的横坐标x表示横截面的位置,以纵坐标表示相应截面上的剪力和弯矩.这种图线分别称为剪力图和弯矩图

剪力图为正值画在 x 轴上侧,负值画在 x 轴下侧 弯矩图为正值画在 x 轴上侧,负值画在 x 轴下侧

X

例题 如图所示的悬臂梁在自由端受集中荷载 F 作用,试作此梁的剪力图和弯矩图.

X

解: 列出梁的剪力方程 和弯矩方程

$$F_{\rm S}(x) = -F \quad (0 < x < l)_{F_{\rm S}}$$

$$M(x) = -Fx \quad (0 \le x < l)$$

$$F_{SA}$$
 ± 0

$$F_{SA右} = -F$$

例题 图示的简支梁,在全梁上受集度为q的均布荷载.试作此梁的剪力图和弯矩图.

解:

(1) 求支反力

$$F_{RA} = F_{RB} = \frac{ql}{2}$$

(2) 列剪力方程和弯矩方程.

$$F_{\rm S}(x) = F_{\rm RA} - qx = \frac{ql}{2} - qx$$
 (0 < x < l)

$$M(x) = F_{RA}x - qx \cdot \frac{x}{2} = \frac{qlx}{2} - \frac{qx^2}{2}$$
 $(0 \le x \le l)$

$$F_{\rm S}(x) = \frac{ql}{2} - qx \qquad (0 < x < l)$$

剪力图为一倾斜直线

$$x=0$$
处, $F_{\rm S}=\frac{ql}{2}$

$$x=l$$
处, $F_{\rm S}=-\frac{ql}{2}$

绘出剪力图

$$M(x) = F_{RA}x - qx \cdot \frac{x}{2} = \frac{qlx}{2} - \frac{qx^2}{2}$$
 $(0 \le x \le l)$

弯矩图为一条二次抛物线

$$x=0$$
, $M=0$

$$x=l$$
, $M=0$

得驻点
$$x = \frac{l}{2}$$

弯矩的极值
$$M_{\max}=M_{x=\frac{l}{2}}=rac{ql^2}{8}$$
 绘出弯矩图

由图可见,此梁在跨中截面上的弯矩值为最大

$$M_{\text{max}} = \frac{ql^2}{8}$$

但此截面上 $F_S = 0$

两支座内侧横截面上 剪力绝对值为最大

$$F_{\text{Smax}} = \frac{ql}{2}$$

例题 图示的简支梁在C点处受集中荷载 F 作用.

试作此梁的剪力图和弯矩图.

解: (1) 求梁的支反力

$$F_{RA} = \frac{Fb}{l}$$
 $F_{RB} = \frac{Fa}{l}$

因为AC段和CB段的内力方程不同,所以必须分段列剪力方程和弯矩方程.

将坐标原点取在梁的左端

将坐标原点取在梁的左端

AC段

$$F_{\rm S}(x) = \frac{Fb}{I} \qquad (0 < x < a) \qquad (1)$$

$$M(x) = \frac{Fb}{I}x \quad (0 \le x \le a) \quad (2)$$

CB段

$$F_{\rm S}(x) = \frac{Fb}{l} - F = -\frac{F(l-b)}{l} = -\frac{Fa}{l} \quad (a < x < l)$$
 (3)

$$M(x) = \frac{Fb}{l}x - F(x - a) = \frac{Fa}{l}(l - x) \quad (a \le x \le l) \quad (4)$$

$$F_{\rm S}(x) = \frac{Fb}{l} \qquad (0 < x < a) \qquad (1) \qquad F_{\rm RA}$$

$$F_{\rm S}(x) = -\frac{Fa}{l} \quad (a < x < l) \quad (3)$$

由(1),(3)两式可知,AC、 CB两段梁的剪力图各是一条平行于x 轴的直线.

$$M(x) = \frac{Fb}{l}x \qquad (0 \le x \le a) \qquad (2)$$

$$M(x) = \frac{Fa}{l}(l-x) \quad (a \le x \le l) \quad (4)$$

由(2),(4)式可知,AC、 CB 两段梁的弯矩图各是一条斜直线.

在集中荷载作用处的左,右两侧截面上剪力值(图)有突变, 突变值等于集中荷载F. 弯矩图形成尖角,该处弯矩值最大.

例题8 图示的简支梁在 C点处受矩为M的集中力偶作用. 试作此梁的的剪力图和弯矩图.

解: 求梁的支反力

$$F_{RA} = \frac{M}{l}$$
 $F_{RB} = \frac{M}{l}$

将坐标原点取在梁的左端.

因为梁上没有横向外力,所以 全梁只有一个剪力方程

$$F_{\rm S}(x) = \frac{M}{l} (0 < x < l) (1)$$

由(1)式画出整个梁的剪力图是一条平行于x轴的直线.

34

AC 段和 BC 段的弯矩方程不同

AC段

$$M(x) = \frac{M}{l}x \quad (0 \le x < a)$$

CB段

$$M(x) = \frac{M}{l}x - M = -\frac{M}{l}(l - x)$$
 (a < x \le l)

AC,CB 两梁段的弯矩图各是一条倾斜直线.

$$AC$$
段 $x = 0$, $M = 0$
 $x = a$, $M_{C\pm} = \frac{Ma}{l}$
 CB 段 $x = a$, $M_{C\pm} = -\frac{Mb}{l}$
 $x = l$, $M = 0$

Mb

梁上集中力偶作用处左、右两侧 横截面上的弯矩值(图)发生突变,其 突变值等于集中力偶矩的数值.此处 剪力图没有变化.

小结

- 1.以集中力、集中力偶作用处、分布荷载开始或结束处,及支座截面处为界点将梁分段.分段写出剪力方程和弯矩方程,然后绘出剪力图和弯矩图.
- 2.梁上集中力作用处左、右两侧横截面上,剪力(图)有突变, 突变值等于集中力的数值.在此处弯矩图则形成一个尖角.
 - 3. 梁上集中力偶作用处左、右两侧横截面上的弯矩(图)有突变, 其突变值等于集中力偶矩的数值. 但在此处剪力图没有变化.
 - 4.梁上的 F_{Smax} 发生在全梁或各梁段的边界截面处;梁上的 M_{max} 发生在全梁或各梁段的边界截面,或 $F_{\text{S}}=0$ 的截面处. 36

§ 4-4 剪力、弯矩与分布荷载集度间的关系

(Relationships between load, shear force, and bending moment)

一、弯矩、剪力与分布荷载集度间的微分关系

(Differential relationships between load, shear force, and bending moment)

设梁上作用有任意分布荷载

其集度

$$q = q(x)$$

规定 q(x)向上为正.

将 x 轴的坐标原点取在梁的左端.

假想地用坐标为x和x+dx的两横截面m-m和n-n从梁中取出dx微段.

m-m截面上内力为 $F_S(x)$, M(x)

x+dx 截面处则分别为 $F_S(x)+dF_S(x)$,M(x)+dM(x).由于dx很小,略去q(x) 沿dx的变化.

写出微段梁的平衡方程

$$\sum F_x = 0 \qquad F_S(x) - [F_S(x) + dF_S(x)] + q(x)dx = 0$$

$$\sum M_C = 0 \qquad \frac{dF_S(x)}{dx} = q(x)$$

$$[M(x) + dM(x)] - M(x) - F_S(x) dx - q(x) dx \frac{dx}{2} = 0$$

略去二阶无穷小量即得

$$\frac{\mathrm{d}M(x)}{\mathrm{d}x} = F_{\mathrm{S}}(x)$$

$$\frac{\mathrm{d}F_{\mathrm{S}}(x)}{\mathrm{d}x} = q(x)$$

$$\frac{\mathrm{d}M(x)}{\mathrm{d}x} = F_{\mathrm{S}}(x)$$

$$\frac{\mathrm{d}^2 M(x)}{\mathrm{d}x^2} = q(x)$$

公式的几何意义

- (1) 剪力图上某点处的切线斜率等于该点处荷载集度的大小;
 - (2) 弯矩图上某点处的切线斜率等于该点处剪力的大小;

(3) 根据q(x) > 0或q(x) < 0来判断弯矩图的凹凸性.

二、q(x)、 $F_S(x)$ 图、M(x)图三者间的关系

(Relationships between load, shear force, and bending moment diagrams)

1. 梁上有向下的均布荷载, 即 q(x) < 0

 $F_{s}(x)$ 图为一向右下方倾斜的直线.

M(x)图为一向上凸的二次抛物线.

$$\frac{\mathrm{d}F_{\mathrm{S}}(x)}{\mathrm{d}x} = q(x)$$

$$\frac{\mathrm{d}M(x)}{\mathrm{d}x} = F_{\mathrm{S}}(x)$$

$$\frac{\mathrm{d}^2 M(x)}{\mathrm{d}x^2} = q(x)$$

2. 梁上无荷载区段,q(x) = 0

剪力图为一条水平直线.

弯矩图为一斜直线.

当 $F_S(x) > 0$ 时,向右上方倾斜.

当 $F_S(x) < 0$ 时,向右下方倾斜.

$$\frac{\mathrm{d}F_{\mathrm{S}}(x)}{\mathrm{d}x} = q(x)$$

$$\frac{\mathrm{d}M(x)}{\mathrm{d}x} = F_{\mathrm{S}}(x)$$

$$\frac{\mathrm{d}^2 M(x)}{\mathrm{d}x^2} = q(x)$$

- 3. 在集中力作用处剪力图有突变,其突变值等于集中力的值.弯矩图有转折.
- 4. 在集中力偶作用处弯矩图有突变,其突变值等于集中力偶的值,但剪力图无变化.
- 5. 最大剪力可能发生在集中力所在截面的

一侧;或分布载荷发生变化的区段上.

梁上最大弯矩 M_{max} 可能发生在 $F_{\text{S}}(x) = 0$ 的截面上; 或发生在集中力所在的截面

上;或集中力偶作用处的一侧.

$$\frac{\mathrm{d}F_{\mathrm{S}}(x)}{\mathrm{d}x} = q(x)$$

$$\frac{\mathrm{d}M(x)}{\mathrm{d}x} = F_{\mathrm{S}}(x)$$

$$\frac{\mathrm{d}^2 M(x)}{\mathrm{d}x^2} = q(x)$$

在几种荷载下剪力图与弯矩图的特征

一段梁上 的外力情 况	向下的均布荷载 q<0	无荷载	集中力 F C	集中力偶 M C
剪力图的特征	向下倾斜的直线	水平直线	在C处有突变	在 <i>C</i> 处无变化 <i>C</i>
弯矩图的特征	上凸的二次抛物线	一般斜直线	在C处有转折	在C处有突变
M _{max} 所在 截面的可 能位置	在 F_S =0的截面		在剪力突变的截面	在紧靠C的某 一侧截面44

例题 作梁的内力图.

解: (1) 支座反力为 F_{RA}

 $F_{RA} = 7kN$

$$F_{RB} = 5kN$$

将梁分为AC、CD、

DB、BE 四段.

(2) 剪力图

$$F_{SA} = F_{RA} = 7$$
kN $F_{SC} = F_{RA} - 4q = 3$ kN

CD段 向下斜的直线(Y)

$$F_{SC} = F_{RA} - 4q - F_1 = 1kN$$
 $F_{SD} = F_2 - F_{RB} = -3kN_5$

AC段 向下斜的直线(凶)

$$F_{SA} = 7kN$$

$$F_{SC\pm} = 3kN$$

CD段 向下斜的直线(以)

$$F_{SC/\pi} = 1$$
kN

$$F_{SD} = -3kN$$

DB段 水平直线 (-)

$$F_{\rm S} = F_2 - F_{\rm RB} = -3 \,\mathrm{kN}$$

EB段 水平直线 (-)

$$F_{SB/=} = F_2 = 2kN$$

$$F_{Sx} = F_{RA} - qx - F_1 = 0$$

$$x = 5$$
m

(3) 弯矩图

$$AC$$
段 $M_A = 0$

$$M_C = 4F_{RA} - \frac{q}{2}4^2 = 20_A$$

CD段

$$M_{D\Xi} = -7F_2 + 4F_{RB} + M = 16$$

$$M_{\rm max} = M_F = 20.5$$

DB段

$$M_{D/=} = -7F_2 + 4F_{RB} = 6$$

$$M_B = -3F_2 = -6$$

$$BE$$
段 $M_E = 0$

(4) 校核

例题 用简易法作组合梁的剪力图和弯矩图.

解: 支座反力为

$$F_{RA}$$
 = 81 kN
 F_{RB} = 29 kN
 M_A = 96.5 kN·m

将梁分为 AE, EC, CD, DK, KB 五段。

(1) 剪力图

AE段 水平直线

$$F_{SA$$
右 = F_{SE 左 = F_{RA} = 81 k

ED 段 水平直线

$$F_{SE右} = F_{RA} - F = 31$$
kN

DK 段 向右下方倾斜的直线

$$F_{SK} = -F_{RB} = -29$$
kN

KB 段 水平直线

$$F_{SBE} = -F_{RB} = -29 \text{ kN}$$

设距K截面为x的截面上剪力 $F_S = 0.$ 即

$$F_{Sx} = -F_{RB} + qx = 0$$

$$x = \frac{F_{RB}}{q} = 1.45 \text{m}$$

(2) 弯矩图

AE, EC, CD 梁段 均为向上倾斜的直线

31

$$M_{A\Xi} = -M_A = -96.5 \text{kN} \cdot \text{m}$$

$$M_E = M_A + 81 \times 1 = -15.5 \text{kN} \cdot \text{m}$$

$$M_C = M_E + 31 \times 0.5 = 0$$

$$M_D = M_C + 31 \times 1 = 31 \text{kN} \cdot \text{m}$$

$$96.5$$

F=50kN

 $M=5kN\cdot m$

DK段 向上凸的二次抛物线。

$$M_K = F_{RB} \times 1 + M =$$

$$29 \times 1 + 5 = 34 \text{kN} \cdot \text{m}^{F_{\text{RA}}}$$

$$M_{\text{max}} = F_{RB} \times 2.45 + M - \frac{q}{2} \times 1.45^2 = 55 \text{kN} \cdot \text{m}$$

KB 段 向下倾斜的直线

$$M_{B\Xi} = M = 5$$
kN·m
 $M_{B\Xi} = 0$

q=20kN/m

中间铰链传递剪力(铰 M_A 链左,右两侧的剪力相等);但不传递弯矩(铰链 F_R 处弯矩必为零).

§ 4-5 按叠加原理作弯矩图

(Drawing bending-moment diagram by superposition method)

一、叠加原理 (Superposition principle)

多个载荷同时作用于结构而引起的内力等于每个载荷单独 作用于结构而引起的内力的代数和.

$$F_{S}(F_{1},F_{2},\cdots,F_{n})=F_{S1}(F_{1})+F_{S1}(F_{2})+\cdots+F_{Sn}(F_{n})$$

$$M(F_1, F_2, \dots, F_n) = M_1(F_1) + M_2(F_2) + \dots + M_n(F_n)$$

二、适用条件 (Application condition)

所求参数(内力、应力、位移)必然与荷载满足线性关系.即在弹性限度内满足胡克定律. 55

三、步骤(Procedure)

- (1) 分别作出各项荷载单独作用下梁的弯矩图;
- (2) 将其相应的纵坐标叠加即可(注意:不是图形的简单拼凑)

例 悬臂梁受集中荷载 F 和均布荷载 q 共同作用,试按叠加原理作此梁的弯矩图

解:悬臂梁受集中荷载F和均布荷载q共同作用,

在距左端为 x 的任一横截面上的弯矩为

$$M(x) = Fx - \frac{qx^2}{2}$$

F单独作用 $M_F(x) = Fx$

$$q$$
单独作用 $M_q(x) = -\frac{qx^2}{2}$

F,q 作用该截面上的弯矩等于F,q 单独作用该截面上的弯矩的代数和

$$M(x) = Fx - \frac{qx^2}{2}$$

§ 4-6 平面刚架和曲杆的内力图 (Internal diagrams for plane frame members & a curved bars)

一、平面刚架的内力图 (Internal diagrams for plane frame members)

平面刚架是由在同一平面内,不同取向的杆件,通过杆端 相互刚性连续面组成的结构 A———

相互刚性连结而组成的结构.

1.平面刚架的内力 (Internal forces for plane frame members)

剪力(shear force); 弯矩(bending moment); 轴力(axial force).

2、内力图符号的规定 (Sign convention for internal force diagrams)

弯矩图(bending moment diagram)

画在各杆的受压侧,不注明正、负号.

剪力图及轴力图(shear force and axial force diagrams)

可画在刚架轴线的任一側(通常正值画在 刚架的外側). 注明正,负号.

例题 图示为下端固定的刚架.在其轴线平面内受集中力 F_1 和 F_2 作用,作此刚架的弯矩图和轴力图.

解:将刚架分为 CB, AB 两段

CB 段

$$F_{N}(x) = 0$$

$$F_{S}(x) = F_{1} \quad (+) \quad (0 < x < a)$$

$$M(x) = F_{1}x \quad (0 \le x \le a)$$

BA 段

$$F_{N}(x) = F_{1} \quad (-) \qquad (0 \le x \le l)$$

$$F_{S}(x) = F_{2} (+) (0 < x < l)$$

$$M(x) = F_1 a + F_2 x \qquad (0 \le x \le l)$$

CB段 $F_N(x)=0$

BA段 $F_N(x) = F_1$ (二)

CB段 $F_S(x) = F_1$ (+) BA段 $F_S(x) = F_2$ (+)

$$CB$$
段 $M(x)=F_1x$ $(0 \le x \le a)$

$$BA$$
段 $M(x) = F_1 a + F_2 x$ $(0 \le x \le l)$

二、平面曲杆 (Plane curved bars)

1、平面曲杆 (Plane curved bars)

如经为一平面曲经的年代 由力悖识

轴线为一平面曲线的杆件.内力情况及绘制方法与平面 刚架相同.

2、内力符号的确定 (Sign convention for internal force)

轴力 引起拉伸的轴力为正;

剪力 对所考虑的一端曲杆内一点取矩 产生顺时针转动 趋势的剪力为正;

弯矩 使曲杆的曲率增加(即外侧受拉)的弯矩为正.

$$\sum F_n = 0 \qquad F_N + F \sin \varphi = 0$$
$$\sum F_t = 0 \qquad F_S - F \cos \varphi = 0$$

$$\sum M_C = 0$$
 $M - FR\sin \varphi = 0$

$$F_{\rm S} = F \cos \varphi$$

$$F_{\rm N} = -F \sin \varphi$$

$$M = FR \sin \varphi$$

例 如图所示的半圆环半径为R,在自由端受到载荷F的作用.

试绘制 $F_{\rm S}$ 图、M图和 $F_{\rm N}$ 图.

解:建立极坐标系,O为极点,OB极轴, θ 表示截面m-m的位置.

$$\begin{cases} M(\theta) = Fx = F(R - R\cos\theta) = FR(1 - \cos\theta) & (0 \le \theta \le \pi) \\ F_{S}(\theta) = F_{1} = F\sin\theta & (0 \le \theta \le \pi) \\ F_{N}(\theta) = F_{2} = F\cos\theta & (0 \le \theta \le \pi) \end{cases}$$

雪崗沟》(Internal forces in beams)

$$\begin{cases}
M(\theta) = Fx = F(R - R\cos\theta) = FR(1 - \cos\theta) & (0 \le \theta \le \pi) \\
F_{S}(\theta) = F_{1} = F\sin\theta & (0 \le \theta \le \pi) \\
F_{N}(\theta) = F_{2} = F\cos\theta & (0 \le \theta \le \pi)
\end{cases}$$

$$F_{\rm S}(\theta) = F_1 = F \sin \theta \quad (0 \le \theta \le \pi)$$

$$F_{\rm N}(\theta) = F_2 = F\cos\theta \quad (0 \le \theta \le \pi)$$

作 业 利用方程 4.2(c),(g) 利用微分关系 4.4(a)(b)4.2(m) 4.5(c)刚架, 4.8(d)参考4.7例题, 4.19(c)