

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

**As rescanning documents *will not* correct images,
please do not report the images to the
Image Problem Mailbox.**

(12) PATENT
(19) AUSTRALIAN PATENT OFFICE

(11) Application No. AU 199914090 B2
(10) Patent No. 751163

(54) Title
Rapidly degrading GFP-fusion proteins and methods of use

(51)⁷ International Patent Classification(s)
C07K 014/00 C12N 015/63
C07H 021/04 C12N 015/85
C12N 001/21 C12N 015/86
C12N 015/11

(21) Application No: 199914090 (22) Application Date: 1998.11.13

(87) WIPO No: WO99/54348

(30) Priority Data

(31) Number (32) Date (33) Country
09/062102 1998.04.17 US

(43) Publication Date : 1999.11.08

(43) Publication Journal Date : 2000.01.13

(44) Accepted Journal Date : 2002.08.08

(71) Applicant(s)
Clontech Laboratories, Inc.

(72) Inventor(s)
Xianqiang Li; Steve Kain

(74) Agent/Attorney
F.B. RICE and CO., 139 Rathdowne Street, CARLTON VIC 3053

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

14090/99

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 : C07K 14/00, C07H 21/04, C12N 15/11, 15/63, 1/21, 15/85, 15/86		A1	(11) International Publication Number: WO 99/54348 (43) International Publication Date: 28 October 1999 (28.10.99)
(21) International Application Number: PCT/US98/24323 (22) International Filing Date: 13 November 1998 (13.11.98)		(81) Designated States: AU, CA, IL, JP, European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).	
(30) Priority Data: 09/062,102 17 April 1998 (17.04.98) US		Published <i>With international search report.</i>	
(71) Applicant: CLONTECH LABORATORIES, INC. [US/US]; 1020 East Meadow Drive, Palo Alto, CA 94303 (US).			
(72) Inventors: LI, Xianqiang; 3989 Middlefield Road, Palo Alto, CA 94303 (US). KAIN, Steve; 403 Read Avenue, Belmont, CA 94002 (US).			
(74) Agent: ADLER, Benjamin, A.; McGregor & Adler, 8011 Candle Lane, Houston, TX 77071 (US).			

(54) Title: RAPIDLY DEGRADING GFP-FUSION PROTEINS AND METHODS OF USE

(57) Abstract

Green fluorescent protein (GFP) is widely used as a reporter in determining gene expression and protein localization. The present invention provides fusion proteins with a half life of ten hours or less with several embodiments having half lives of 4 hours or less. Such proteins may be constructed by fusing C-terminal amino acids of the degradation domain of mouse ornithine decarboxylase (MODC), which contains a PEST sequence, to the C-terminal end of an enhanced variant of GFP (EGFP). Fluorescence intensity of the fusion protein in transfected cells is similar to that of EGFP, but the fusion protein, unlike EGFP, is unstable in the presence of cycloheximide. Specific mutations in the MODC region have resulted in mutants with varying half lives, useful for a variety of purposes.

RAPIDLY DEGRADING GFP-FUSION PROTEINS
AND METHODS OF USE

5

BACKGROUND OF THE INVENTION

Field of the Invention

10 This invention relates to the field of biochemical assays and reagents. More specifically, this invention relates to modified fluorescent proteins and to methods for their use.

Description of the Related Art

15 Because of its easily detectable green fluorescence, green fluorescent protein (GFP) from the jellyfish *Aequorea victoria* has been used widely to study gene expression and protein localization. GFP fluorescence does not require a substrate or cofactor; hence, it is possible to use this reporter in
20 numerous species and in wide variety of cells. GFP is a very stable protein which can accumulate and thus is often toxic to mammalian cells.

Recently, crystallographic structures of wild-type GFP and the mutant GFP S65T reveal that the GFP tertiary structure resembles a barrel (Ormo et al. (1996) *Science* 273: 1392-1395; Yang, F., Moss, L. G., and Phillips, G. N.,
25 Jr. (1996) *Nature Biotech* 14: 1346-1251). The barrel consists of beta sheets in a compact

30

antiparallel structure. In the center of the barrel, an alpha helix containing the chromophore is shielded by the barrel. The compact structure makes GFP very stable under diverse and/or harsh conditions, such as protease treatment, making GFP an 5 extremely useful reporter in general. On the other hand, its stability makes it difficult to determine short-term or repetitive events.

A great deal of research is being performed to improve the properties of GFP and to produce GFP reagents useful for a 10 variety of research purposes. New versions of GFP have been developed via mutation, including a "humanized" GFP DNA, the protein product of which has increased synthesis in mammalian cells (see Cormack, et al., (1996) *Gene* 173, 33-38; Haas, et al., (1996) *Current Biology* 6, 315-324; and Yang, et al., (1996) 15 *Nucleic Acids Research* 24, 4592-4593). One such humanized protein is "enhanced green fluorescent protein" (EGFP). Other mutations to GFP have resulted in blue-, cyan- and yellow-fluorescent light emitting versions.

Ornithine decarboxylase (ODC) is an enzyme critical in 20 the biosynthesis of polyamines. Murine ornithine decarboxylase is one of most short-lived proteins in mammalian cells, with a half life of about 30 minutes (Ghoda, et al., (1989) *Science* 243, 1493-1495; and Ghoda, et al. (1992) *Mol. Cell. Biol.* 12, 2178-2185). Rapid degradation of murine ornithine decarboxylase has been 25 determined to be due to the unique composition of its C-terminus, a portion of which has a PEST sequence—a sequence which has been proposed as characterizing short-lived proteins. The PEST sequence contains a region enriched with proline (P), glutamic acid (E), serine (S), and threonine (T), often flanked by basic amino

acids, lysine, arginine, or histidine (Rogers, et al., (1989) *Science* 234:364-68; Reichsteiner, M. (1990) *Seminars in Cell Biology* 1:433-40).

The ornithine decarboxylase of *Trypanosoma brucei* 5 (TbODC) does not have a PEST sequence, and is long-lived and quite stable when it is expressed in mammalian cells (Ghoda, et al.. (1990) *J. Biol. Chem.* 265: 11823-11826); however appending the C terminus of murine ornithine decarboxylase to TbODC makes TbODC become unstable. Moreover, deletion of the C-terminal, 10 PEST-containing region from murine ornithine decarboxylase prevents its rapid degradation (Ghoda, L., et al. (1989) *Science* 243: 1493-1495).

The prior art is deficient in a destabilized or short-lived GFP. The present invention fulfills this need in the art.

15

SUMMARY OF THE INVENTION

A rapid turnover or destabilized GFP can be used in research applications where prior art GFPs cannot. Such 20 applications include using the destabilized GFP as a genetic reporter for analyzing transcriptional regulation and/or cis-acting regulatory elements, or as a tool for studying protein degradation. Further, a rapid turnover GFP permits easier development of stable cell lines which express the GFP gene, since toxic levels of 25 GFP are avoided because the GFP protein is degraded quickly.

The present invention provides a fusion protein with a half life decreased markedly from that of wildtype GFP. In one embodiment, there is provided a fusion protein comprising an EGFP fused to a peptide producing a destabilized protein. In

another embodiment, there is provided a fusion protein with a half life of about ten hours or less, preferably with a half life of about 4 hours or less, more preferably with a half life of 2 hours or less and even more preferably with a half life of 1 hour or less.

- 5 A preferred embodiment of this aspect of the invention includes EGFP, and/or a PEST sequence-containing portion of a C-terminus of murine ornithine decarboxylase (MODC). Specific preferred embodiments of the present invention include EGFP-MODC₃₇₆₋₄₆₁; EGFP-MODC₃₇₆₋₄₅₆; EGFP-MODC₄₂₂₋₄₆₁; P426A/P427A;
- 10 P438A; E428A/E430A/E431A;; E444A; S440A;; S445A; T436A; D433A/D434A; and D448A.

In yet another aspect of the invention, there is provided an isolated DNA molecule encoding a fluorescent fusion protein with a half life that is markedly decreased from that of 15 wildtype GFP. In one embodiment of this aspect of the invention, there is provided an isolated DNA molecule encoding a fluorescent fusion protein with a half life of about ten hours or less, preferably with a half life of about 4 hours or less, more preferably with a half life of 2 hours or less and even more 20 preferably with a half life of 1 hour or less. In a preferred embodiment of this aspect of the invention, the isolated DNA molecule encoding the fluorescent fusion protein is a synthetic GFP gene containing codons preferentially found in highly expressed human proteins. Further, the present invention provides a vector 25 capable of expressing the isolated DNA molecule encoding a GFP fusion protein with a decreased half life. In one embodiment of the vector, the vector contains an inducible promoter.

In another aspect of the invention, there is provided a method of labeling cells with a transient GFP reporter. In this

method, a DNA vector comprising an inducible promoter and the isolated DNA encoding a GFP fusion protein with a decreased half life is utilized. This vector is transfected into cells which are cultured under conditions in which the promoter induces transient expression of the GFP fusion protein of the present
5 invention, which provides a transient fluorescent label.

BRIEF DESCRIPTION OF THE DRAWINGS

In a first aspect of the present invention provides a fusion protein
10 comprising a green fluorescent protein (GFP) and a PEST sequence, said fusion protein having a half life of no more than about 10 hours.

In a second aspect of the present invention provides a method of assay activation or deactivation of transcriptional or translational elements with a
15 transient fluorescent reporter protein, comprising the steps of:

transflecting cells with an expression vector comprising a fluorescent fusion protein having a half life of no more than about 10 hours, wherein the fusion protein is under the influence of the promoter, transcriptional or
20 translational element; and

detecting the presence, absence or amount of fluorescence in set cells.

In a third aspect of the present invention provides a method of assay activation or deactivation of promoters or other transcriptional or translational
25 elements with a transient fluorescent protein reporter protein, comprising the steps of:

transflecting cells with an expression vector comprising a fluorescent fusion protein having a half life of no more than about 10 hours, wherein the fluorescent fusion protein is under an influence of said promoter, transcriptional or translational element;

treating said transfected cells with a compound of interest; and

detecting a change in fluorescence upon treatment of the cells with said compound of interest so as to assay the effect of said compound of interest on said activation or deactivation of said transcription or translation elements.

5

Figure 1 is a schematic map of EGFP and EGFP-MODC fusion proteins. EGFP is fused with a region of the C terminus of MODC, including amino acids from 376 to 461, 376 to 456 or 422 to 461. The fusion proteins were expressed in CHO K1 Tet-off cells and their fluorescence intensities were compared under
10 a fluorescence microscope.

Figure 2 shows the fluorescence stabilities of EGFP and EGFP-MODC₄₂₂₋₄₆₁ in cells in the presence of cycloheximide and examined with a fluorescence microscope. CHO K1 Tet-off cells were transfected with vectors
15 expressing these two proteins. After 24 hours, the transfected cells were treated with 1200 mg/ml cycloheximide for 0, 1, 2, 3, and 4 hours.

Figure 3 shows flow cytometric analysis of the fluorescence stabilities of EGFP and EGFP -MODC₄₂₂₋₄₆₁. CHO K1 Tet-off cells were transfected with
20 EGFP and EGFP-MODC₄₂₂₋₄₆₁. After 24 hours, the transfected cells were treated with 100 µg/ml cycloheximide for 0, 1, 2, and 3 hours. The treated cells were collected with EDTA and 10,000 cells were subjected to FACX analysis.

Figure 4 is a graph summarizing the flow cytometric data from figure 3, demonstrating that EGFP-MODC₄₂₂₋₄₆₁-transfected cells rapidly lose fluorescence after cycloheximide treatment, whereas EGFP cells maintain fluorescence.

5 **Figure 5** is a photograph of western blot analysis of protein stabilities of EGFP and EGFP-MODC₄₂₂₋₄₆₁. Cells collected during flow cytometry were used for preparing cell lysates. The cell lysates were subject to SDS gel electrophoresis and transferred onto a membrane. EGFP and the EGFP fusion protein were
10 detected with a monoclonal antibody against GFP.

Figure 6 is a schematic map of the PEST sequence of the fusion EGFP-MODC₄₂₂₋₄₆₁ indicating the position of the mutations.

15 **Figure 7** is a table summarizing the results obtained measuring persistence of fluorescent signal in transfected CHO K1 Tet-off cells expressing EGFP, EGFP-MODC₄₂₂₋₄₆₁, and the PEST mutants. Transfection was performed in CHO/tTA cells using the procedure given in Example 2. After 24 hours, cells were treated with cycloheximide for 0, 2, and 4 hours, and analyzed for
20 fluorescence by FACS Caliber.

Figure 8 shows a schematic illustration of d2EGFP, dECFP and dEYFP.

Figure 9 shows the construction of destabilized EGFP Variants.

25 **Figure 10** shows the fluorescence stabilities of EGFP and dEGFP Variants.

Figure 11 shows the increase in induction by CRE-d1EGFP and CRE-d2EGFP.

DETAILED DESCRIPTION OF THE INVENTION

The invention describes a genetically-engineered fluorescent protein that is destabilized, having a rapid turnover in a cell.

5 More specifically, this fusion protein comprises a fluorescent protein which has a half life of no more than about ten hours and most preferably with a half life of no more than 2 hours. Preferably, the fluorescent protein is selected from the group consisting of EGFP, ECFP and EYFP. In one embodiment, the

10 engineered GFP is a fusion protein of EGFP and a peptide the inclusion of which produces a destabilized protein. An example of such a peptide is the C-terminal region of murine ornithine decarboxylase (MODC). In a specific, illustrative case, the degradation domain of murine ornithine decarboxylase from

15 amino acids 422 to 461 was appended to the C-terminal end of an enhanced variant of GFP (EGFP). The fluorescence intensity of the EGFP-MODC₄₂₂₋₄₆₁ fusion protein in transfected cells was similar to that of EGFP, but the fusion protein, unlike EGFP, dissipated over time in cells treated with cycloheximide. The half-

20 life of the fluorescence of the EGFP-MODC₄₂₂₋₄₆₁ fusion protein was about 2 hours, while that of EGFP was more than 24 hours. The ornithine decarboxylase degradation domain dramatically decreases EGFP stability.

The rapid turnover version of EGFP has at least four

25 advantages over EGFP. The rapid turnover of the EGFP-MODC fusion causes less toxicity to cells expressing the fusion protein. Thus, one advantage is the feasibility of establishing stable cell lines using DNA coding for EGFP-murine ornithine decarboxylase. Further, the destabilized EGFP-MODC decreases EGFP accumulation.

Accumulation of fluorescent protein can interfere with the sensitivity of analysis. Thus, the destabilized, rapid turnover fusion protein renders more sensitive results. Additionally, destabilized EGFP can be used as a transient reporter to study 5 transcriptional regulation and/or action of cis-acting regulatory elements. Finally, the EGFP-MODC fusion protein can be used to study processes involving multiple gene expression.

Moreover, the EGFP-MODC fusion protein has the advantages inherent to use of EGFP. For example, the use of EGFP 10 in drug screening assays is particularly advantageous because GFP fluorescence can be detected intracellularly without performing additional expensive steps; e.g. lysing cells, adding exogenous substrates or cofactors, fixing the cell preparation, etc. A single illustration of such an assay is screening test compounds for 15 interruption of the TNF activation pathway, a pathway which ultimately affects apoptosis. Compounds identified in the assay would be useful in controlling the cellular processes involved in cancer and inflammation.

Further, the reporter gene of the present invention can 20 be linked with different enhancer elements and used to monitor diverse biological processes such as heat response, response to heavy metals, glucocorticoid activation or response to cAMP. In particular, destabilized EGFP is useful for studying developmental processes where genes are transiently expressed, dynamics of 25 protein transport, localization of proteins within cells, and periodic and cyclical expression of genes that control unique biological phenomena such as circadian rhythms. Indeed, other applications of the EGFP-MODC fusion protein in screening assays would be appreciated readily by those having ordinary skill in this art.

Moreover, by using an inducible promoter, expression of the EGFP-MODC fusion protein is activated or deactivated at will, making a construct expressing the protein useful in cell lineage studies. Prior art GFP models express GFP at levels that 5 are toxic and interfere with cell development, thus making cell lineage studies impossible. Additionally, destabilized EGFP can be used as a reporter to study the kinetics of mRNA transcription from a regulated promoter, because the fluorescence intensity of destabilized EGFP is a direct measure of the level of gene 10 expression at any given time point.

As used herein, the term "GFP" refers to the basic green fluorescent protein from *Aequorea victoria*, including prior art versions of GFP engineered to provide greater fluorescence or fluoresce in different colors. The sequence of *A. victoria* GFP has 15 been disclosed in Prasher D.C. et al. (1992) *Gene* 111:229-33.

As used herein, the term "EGFP" refers to GFP which has been "humanized", as reported in Kain et al. (1995) *Biotechniques* 19(4):650-55. "Humanized" refers to changes made to the GFP nucleic acid sequence to optimize the codons for 20 expression of the protein in human cells.

As used herein, the term "peptide which produces a destabilized protein" refers to a sequence of amino acids or a peptide which promotes destabilization or rapid turnover of the protein of which it is a part; i.e., by inducing protein degradation. 25 The PEST sequence described herein is one such sequence. Other sequences known in the art are those peptides that promote phosphorylation and protein-protein interactions.

As used herein, the term "EGFP-MODC" refers to EGFP fused at its C terminus to murine ornithine decarboxylase sequences.

As used herein, the term "P438A" refers to an EGFP-
5 MODC fusion protein in which the proline at position 438 in the murine ornithine decarboxylase sequence (a proline residing in the PEST portion of the sequence) has been replaced with alanine. The same nomenclature is used for EGFP-MODC mutants P426A/P427A; E428A/E430A/E431A; E444A; S440A; S445A;
10 T436A; D433A/D434A; and D448A. Further elucidation is shown in Figure 6.

As used herein, the term "half life" refers to the period of time in which half of the fluorescent signal from a fluorescent protein expressed in cells disappears and half remains. As used
15 herein, the term "Tc" refers to tetracycline. As used herein, the term "CHX" refers to cycloheximide.

In accordance with the present invention there may be employed conventional molecular biology, microbiology, and recombinant DNA techniques within the skill of the art. Such
20 techniques are explained fully in the literature. See, e.g., Maniatis, Fritsch & Sambrook, "Molecular Cloning: A Laboratory Manual" (1982); "DNA Cloning: A Practical Approach," Volumes I and II (D.N. Glover ed. 1985); "Oligonucleotide Synthesis" (M.J. Gait ed. 1984); "Nucleic Acid Hybridization" (B.D. Hames & S.J. Higgins eds.
25 (1985)); "Transcription and Translation" (B.D. Hames & S.J. Higgins eds. (1984)); "Animal Cell Culture" (R.I. Freshney, ed. (1986)); "Immobilized Cells and Enzymes" (IRL Press, (1986)); B. Perbal, "A Practical Guide To Molecular Cloning" (1984).

A "vector" is a replicon, such as plasmid, phage or cosmid, to which another DNA segment may be attached so as to bring about the replication of the attached segment.

A "DNA molecule" refers to the polymeric form of deoxyribonucleotides (adenine, guanine, thymine, or cytosine) in either single stranded form or a double-stranded helix. This term refers only to the primary and secondary structure of the molecule, and does not limit it to any particular tertiary forms. Thus, this term includes double-stranded DNA found, *inter alia*, in linear DNA molecules (e.g., restriction fragments), viruses, plasmids, and chromosomes.

A DNA "coding sequence" is a DNA sequence which is transcribed and translated into a polypeptide *in vivo* when placed under the control of appropriate regulatory sequences. The boundaries of the coding sequence are determined by a start codon at the 5' (amino) terminus and a translation stop codon at the 3' (carboxyl) terminus. A coding sequence can include, but is not limited to, prokaryotic sequences, cDNA from eukaryotic mRNA, genomic DNA sequences from eukaryotic (e.g., mammalian) DNA, and synthetic DNA sequences. A polyadenylation signal and transcription termination sequence may be located 3' to the coding sequence. Transcriptional and translational control sequences are DNA regulatory sequences, such as promoters, enhancers, polyadenylation signals, terminators, and the like, that provide for and/or regulate expression of a coding sequence in a host cell.

A "promoter sequence" is a DNA regulatory region capable of binding RNA polymerase in a cell and initiating transcription of a downstream (3' direction) coding sequence. For purposes of defining the present invention, the promoter sequence

is bounded at its 3' terminus by the transcription initiation site and extends upstream (5' direction) to include the minimum number of bases or elements necessary to initiate transcription at levels detectable above background. Within the promoter
5 sequence will be found a transcription initiation site, as well as protein binding domains responsible for the binding of RNA polymerase. Eukaryotic promoters will often, but not always, contain "TATA" boxes and "CAT" boxes. Various promoters, including inducible promoters, may be used to drive the various
10 vectors of the present invention.

As used herein, the terms "restriction endonucleases" and "restriction enzymes" refer to bacterial enzymes, each of which cut double-stranded DNA at or near a specific nucleotide sequence. A cell has been "transformed" or "transfected" by
15 exogenous or heterologous DNA when such DNA has been introduced inside the cell. The transforming DNA may or may not be integrated (covalently linked) into the genome of the cell. In prokaryotes, yeast, and mammalian cells for example, the transforming DNA may be maintained on an episomal element
20 such as a plasmid. With respect to eukaryotic cells, a stably transformed cell is one in which the transforming DNA has become integrated into a chromosome so that it is inherited by daughter cells through chromosome replication. This stability is demonstrated by the ability of the eukaryotic cell to establish cell
25 lines or clones comprised of a population of daughter cells containing the transforming DNA. A "clone" is a population of cells derived from a single cell or common ancestor by mitosis. A "cell line" is a clone of a primary cell that is capable of stable growth in vitro for many generations.

A "heterologous" region of the DNA construct is an identifiable segment of DNA within a larger DNA molecule that is not found in association with the larger molecule in nature. Thus, when the heterologous region encodes a mammalian gene, the 5 gene will usually be flanked by DNA that does not flank the mammalian genomic DNA in the genome of the source organism. In another example, heterologous DNA includes coding sequence in a construct where portions of genes from two different sources have been brought together so as to produce a fusion protein 10 product. Allelic variations or naturally-occurring mutational events do not give rise to a heterologous region of DNA as defined herein.

As used herein, the term "reporter gene" refers to a coding sequence attached to heterologous promoter or enhancer 15 elements and whose product may be assayed easily and quantifiably when the construct is introduced into tissues or cells. Transcriptional and translational control sequences are DNA regulatory sequences, such as promoters, enhancers, polyadenylation signals, terminators, and the like, which provide 20 for the expression of a coding sequence in a host cell.

The amino acids described herein are preferred to be in the "L" isomeric form. However, residues in the "D" isomeric form can be substituted for any L-amino acid residue, as long as the desired functional property of immunoglobulin-binding is 25 retained by the polypeptide. NH₂ refers to the free amino group present at the amino terminus of a polypeptide. COOH refers to the free carboxy group present at the carboxy terminus of a polypeptide.

Thus, the present invention is directed to a fusion protein comprising GFP so that the resulting fusion protein has a half life of no more than about ten hours and as little as less than one hour. In a preferred form, the GFP is EGFP. Preferably, the 5 fusion protein comprises EGFP fused to a PEST sequence-containing portion of a C-terminus of murine ornithine decarboxylase (MODC). Representative examples of PEST sequence-containing portion of a C-terminus of murine ornithine decarboxylase include MODC₃₇₆₋₄₆₁, MODC₃₇₆₋₄₅₆, MODC₄₂₂₋₄₆₁, P426A/P427A, P438A, E428A/E430A/E431A, E444A, S440A, 10 S445A, T436A, D433A/D434A and D448A. One example of the GFP fusion protein of the present invention has the sequence shown in SEQ ID No. 1.

The present invention is also directed to an isolated 15 DNA molecule encoding the fusion protein which comprises a fluorescent protein selected from the group consisting of EGFP, ECFP and EYFP. One example of the isolated DNA of the present invention has the sequence shown in SEQ ID No: 2. The present invention is also directed to a vector capable of expressing this 20 isolated DNA molecule. In one form, the vector contains a inducible promoter and is a tetracycline-regulated expression vector.

The present invention is also directed to a method of producing a stable cell line that expresses a fluorescent protein, 25 e.g., GFP, comprising the step of transfecting cells with a vector disclosed herein. In addition, the present invention is directed to a method of assaying activation or deactivation of promoters or other transcriptional or translational elements with a transient fluorescent reporter protein, comprising the steps of transfecting

cells with an expression vector comprising a fusion protein having a half life of no more than about ten hours, preferably less than four hours and most preferably less than one hour, wherein the fusion protein is under the influence of the promoter,
5 transcriptional or translational element, and detecting the presence, absence or amount of fluorescence in said cells. In this method, the amount of fluorescence present in the cell is a measure of the fluorescent protein that is being expressed. Detecting differences in fluorescence intensity between cells
10 expressing the fluorescent protein under different transcriptional or translational elements of interest is a rapid and straightforward procedure to measure effects of these transcriptional or translational elements. Further, an additional step may be performed wherein transfected cells are treated with a compound
15 of interest to determine the effect of the compound of interest on the transcriptional or translational elements. Detecting a change in fluorescence upon treatment of the cells with the compound of interest is a rapid and straightforward procedure to measure the effects of the compounds on interest on the transcription or
20 translation of the expressed fusion protein.

In addition, the present invention is directed to methods of studying cell lineage comprising the steps of transfecting undifferentiated cells with a vector capable of expressing the destabilized fluorescent fusion protein of the
25 present invention, growing the undifferentiated cells under conditions in which the undifferentiated cells become differentiated cells, and detecting an absence or presence of fluorescence in the differentiated cells. Further, the present invention provides a method of using a fusion protein described

herein in cell localization studies, comprising the steps of transfecting cells with an expression vector comprising a fluorescent fusion protein having a half life of no more than ten hours and preferably less than four hours, wherein the fusion 5 protein is linked to a putative cell localization element, growing the cell and detecting a location of fluorescence in the cells.

EXAMPLE 1

Construction of DNA Expression Vectors

10 The cDNAs encoding EGFP and the C terminus of murine ODC (MODC) were amplified with pfu DNA polymerase (Stratagene, Inc., La Jolla, CA). EGFP was amplified with a pair of primers: 5' incorporated with a SacII recognition sequence and 3' with a Hind III sequence. The stop codon of EGFP was deleted 15 from its C-terminus in order to make an open reading frame with the C terminus of murine ODC. The C terminus of murine ODC was also amplified with a pair of primers: 5' incorporated with a Hind III recognition sequence and 3' with an EcoRI sequence. Two amplified PCR products were ligated at the Hind III site and the 20 fusion was cloned into pTRE expression vector, Tc-regulated expression system (Gossen M., and Bujard H. (1992) *Proc. Natl. Acad. Sci.* 89: 5547-5551).

Using these methods, fusion proteins of EGFP-MODC were constructed. The EGFP-MODC₃₇₆₋₄₆₁ fusion protein 25 included the complete C-terminus of murine ornithine decarboxylase. EGFP-MODC₃₇₆₋₄₅₆ and EGFP-MODC₄₂₂₋₄₆₁ included only portions of the murine ornithine decarboxylase degradation domain, though both included the PEST sequence. Further, key amino acids of the PEST sequence in the fusion

protein were then mutated to alanine using a homology extension procedure (Rogers, et al., (1986) *Science* 234, 364-368). The PEST mutants included P426A/P427A; P438A; E428A/E430A/E431A; E444A; S440A; S445A; T436A; D433A/D434A; and D448A.

5

EXAMPLE 2

Cell Transfection

The construct DNAs were purified and transfected into CHO K1-off cells for determination of protein degradation. CHO K1-off cells are CHO cells which were pre-transfected by a fusion protein of the tet-repressor and the herpes simplex virus VP16 gene (tTA). This pre-transfection allows expression of the gene coding for the fusion protein on a pTRE vector (Gossen and Bujard, *ibid*), which in turn initiates transcription by binding to a modified CMV promoter with tet-repressor binding elements. This binding can be blocked by tetracycline; hence, the expression can be controlled by tetracycline. The DNAs were introduced into these cells by CLONfectin (CLONTECH Laboratories, Inc., Palo Alto). After 24 hours, transfected cells were subject to functional analyses.

20

EXAMPLE 3

Fluorescence Analysis

Cells were cultured on top of cover-slips to allow observation under a fluorescence microscope. After transfection, the cells were incubated at 37°C for 24 hours on the cover-slips and then fixed with 4% paraformaldehyde for 30 minutes. The cover-slips were mounted on a glass slide for fluorescence examination with a Zeiss Axioskop Model 50 fluorescent microscope. To determine protein turnover, the cells were treated

with cycloheximide at a final concentration of 100 µg/ml for variable times before paraformaldehyde fixation.

For FACS analysis, the transfected cells as well as cycloheximide-treated cells were collected by EDTA treatment and 5 the cell pellets were resuspended in 0.5 ml of PBS. The cell suspensions were then analyzed for fluorescence intensity by FACS Calibur (Becton Dickson, Inc., San Jose, CA). EGFP was excited at 488nm, and emission was detected using a 510/20 bandpass filter.

10

EXAMPLE 4

Western Blot Analysis

For western blot analysis, transfected control cells as well as cycloheximide-treated cells were collected in PBS and 15 sonicated to prepare cell lysates. Proteins were separated by SDS-PAGE. EGFP and MODC fusion proteins were detected by a monoclonal antibody against GFP after the proteins were transferred onto a membrane. The detection was visualized with a chemiluminescent detection kit (CLONTECH).

20

EXAMPLE 5

Determination of EGFP-MODC Protein Stability

The C terminus of murine ornithine decarboxylase, from amino acids 376 to 461, has been shown to induce TbODC 25 degradation in mammalian cells. To demonstrate that the degradation domain could also induce EGFP degradation, murine ODC sequence was appended to the C-terminal end of EGFP to make a first fusion EGFP-MODC construct (Figure 1). The EGFP-MODC₃₇₆₋₄₆₁ fusion construct was expressed with the Tc-

regulated expression vector (pTRE). Fluorescence intensity of the EGFP-MODC₃₇₆₋₄₆₁ fusion protein was examined under a fluorescence microscope after being transiently expressed in CHO K1-off cells. The fluorescence intensity of the EGFP-MODC₃₇₆₋₄₆₁ fusion protein was very low (Figure 1). Although it was believed that the lower fluorescence of the protein was due to rapid degradation, an EGFP fusion protein with such a low signal intensity would not be useful for most research applications.

If the rapid degradation indeed accounted for the lower fluorescence of the EGFP-MODC₃₇₆₋₄₆₁, the fluorescence intensity of the fusion protein could be increased by decreasing the rate of its degradation. The size of the C-terminal extension of murine ornithine decarboxylase can determine the rate of degradation. Deletion from either end of the degradation domain has yielded truncated proteins with a decreased rate of degradation, and removal of the last five amino acids from murine ornithine decarboxylase dramatically decreases degradation of murine ornithine decarboxylase (Ghoda, L., et al. (1992) *Mol. Cell. Biol.* 12, 2178-2185). A TbODC fusion with a smaller extension starting at amino acid 422 has degraded more slowly than the longer extension starting at amino acid 376 (Li, X., and Coffino, P. (1993) *Mol. Cell. Biol.* 13: 2377-2383). Therefore, two smaller extensions, one from amino acids 376 to 456 and the other from 422 to 461, also were appended to the C-terminus of EGFP to make EGFP-MODC₃₇₆₋₄₅₆ and EGFP-MODC₄₂₂₋₄₆₁ (Figure 1). Both of these fusion proteins contain the PEST sequence. After transfection, the fluorescence intensities of both fusion proteins were examined with fluorescence microscopy. Results indicated that both had a higher relative fluorescence intensity than EGFP-

MODC₃₇₆₋₄₆₁, particularly the fusion protein EGFP-MODC₄₂₂₋₄₆₁. As can be seen in Figure 1, the fluorescence of this latter fusion protein is similar to EGFP.

5

EXAMPLE 6

Further Characterization of EGFP-MODC₄₂₂₋₄₆₁ Protein Stability

Next, it was determined whether the C terminal extension from amino acids 422 to 461 was able to induce EGFP degradation *in vivo*. To do this, the construct first was transiently 10 transfected into CHO K1-off cells, and the half life of the fusion protein was determined by blocking protein synthesis with cycloheximide (CTX). At 24 hours post-transfection, the cells were treated with 100 µg/ml cycloheximide for 0, 1, 2, 3, and 4 hours. The change in fluorescence intensity of the transfected cells was 15 examined by fluorescence microscopy, and the results are shown in Figure 2. The fluorescence intensity of the fusion protein in the cells gradually decreased as cycloheximide treatment was extended, indicating that the EGFP-MODC₄₂₂₋₄₆₁ fusion protein is unstable. After 4 hours of treatment with cycloheximide, less 20 than half of the fluorescent intensity existed compared to the intensity of the fluorescence of the cells time zero. These results indicated that the half life of the fusion protein is less than 4 hours.

The EGFP-MODC₄₂₂₋₄₆₁ was then compared to EGFP in 25 the same assay. There was no significant change in the fluorescence intensity of EGFP in the EGFP-transfected cells four hours after protein synthesis stopped (Figure 2), indicating the half life of EGFP is longer than 4 hours. This is consistent with

other reports on GFP supporting the conclusion that EGFP is a stable protein when expressed in mammalian cells and that the protein product of the EGFP-MODC₄₂₂₋₄₆₁ construct is unstable.

In order to determine more accurately the half lives of 5 the EGFP-MODC fusion protein and EGFP, the change in fluorescence of these two proteins was quantified by flow cytometry. Transfected cells, after treatment with cycloheximide for 0, 1, 2 and 3 hours, were collected with EDTA, and 10,000 cells were subjected to FACS analysis. The results agreed with the 10 fluorescence microscope observations; i.e., the fluorescence of the fusion protein gradually decreased as cycloheximide treatment was extended (Figure 3).

The graph in Figure 4 summarizes the FACS data and shows that approximately 50% of untreated cells maintained 15 fluorescence after 2 hours of cycloheximide treatment, indicating that the half life of the fusion protein is about 2 hours. EGFP-transfected cells were subjected to similar analysis, and results showed that the EGFP fluorescence did not change significantly during treatment with cycloheximide. Indeed, after 4 hours of 20 cycloheximide treatment, EGFP cells still had more than 80% of fluorescence relative to untreated EGFP cells. In short, the half life of the EGFP fusion is suitably reduced and the half life of EGFP is significantly more than 4 hours.

Cycloheximide treatment cannot be prolonged for 25 greater than 4 hours since it is toxic to cells, causing apoptosis. However, because the inducible expression system used in these studies is regulated by tetracycline (Gossen M., and Bujard H. (1992) *Proc. Natl. Acad. Sci.* 89: 5547-5551), EGFP synthesis can be stopped simply by adding tetracycline. To determine more

precisely the half life of EGFP, the fluorescence intensities of EGFP transfected cells after 24 hours, in both the presence and absence of tetracycline, was monitored. EGFP first was allowed to be expressed for 24 hours after transfection. The transfected cells
5 then were cultured in the presence or absence of tetracycline for another 24 hours and collected for analysis by flow cytometry. No difference in fluorescent intensity was detected between these two types of cells (-TC and +TC in the bottom panel of Figure 3), indicating that fluorescence did not change in the 24 hours after
10 EGFP protein synthesis shut-off. These results indicate that the half life of EGFP is more than 24 hours.

To examine if the half life of the EGFP and the EGFP fusion protein of the present invention correlated with the amount of fluorescence, degradation of the fusion protein was monitored
15 by western blot analysis. Both the EGFP and EGFP-MODC₄₂₂₋₄₆₁ transfected cells that were used for flow cytometry in figure 3 were also used for Western blot analysis with a monoclonal antibody against GFP. As shown in figure 5, no detectable change in the level of EGFP protein was found among cells treated for 0-3
20 hours with cycloheximide, indicating that EGFP is stable during 3 hour cycloheximide treatment.

EGFP fusion proteins with the MODC modification of the present invention were also detected by a GFP monoclonal antibody. The size of the fusion protein was about 31 kDa. Unlike
25 EGFP, however, the EGFP fusion protein was unstable. The level of the fusion protein fell dramatically by the end of the 3-hour cycloheximide treatment; in fact, less than one half of the control EGFP fusion protein was left at one hour, indicating that the half life of the fusion protein may be one hour or less. The difference

in the measured half life using flow cytometry versus western blot analysis likely is due to the fact that both premature (i.e. non-fluorescent) and mature GFP are detected by western analysis. However, the formation of EGFP chromophore is post-translational
5 and proceeds with a half-time of about 25 minutes (Cormack, et al., (1996) *Gene* 173, 33-38). GFP in the context of this invention is important at its fluorescence level as a reporter, rather than at a protein level-- the half life of EGFP fluorescence is more important. The fluorescence half life of EGFP-MODC₄₂₂₋₄₆₁ *in vivo* is approximately 2 hours.
10

The amino acid sequence of the EGFP-MODC₄₂₂₋₄₆₁ protein is as follows:
MVKGEELFTGVVPILVELGDVNGHKFSVSGEGEGDATYGKLTLKFIC
GKLPVPWPTLVTTLYGVQCFSRYPDHMKQHDFFKSAMPEGYVQERTIFF
15 KDDGNYKTRAEVKFEGDTLVNRIELKGIDFKEDGNILGHKLEYNNNSHNVY
IMADKQKNGIKVNFKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYL
STQSALSKDPNEKRDHMVLLFVTAAGITLGMDELYKKLSHGFPPEVEEQ
DDGTLPMSCAQESGMDRHPAACASARINV (SEQ ID No:1); and the
DNA sequence which encodes the EGFP-MODC₄₂₂₋₄₆₁ protein is
20 as follows:

atgg tgagcaaggg cgaggagctg ttcaccgggg tggtgcccat cctggtcgag
ctggacggcg acgtaaacgg ccacaagttc agcgtgtccg gcgagggcga gggcgatgcc
acctacggca agctgaccct gaagttcatc tgcaccacccg gcaagctgcc cgtccctgg
cccaccctcg tgaccacccct gacctacggc gtgcagtgtc tcagccgcta ccccgaccac
25 atgaagcagc acgacttctt caagtccgcc atgccccgaag gctacgtcca ggagcgcacc
atcttcttca aggacgacgg caactacaag accccgcgcgg aggtgaagtt cgagggcgac
acccttgta accgcatcga gctgaagggc atcgacttca aggaggacgg caacatcctg
gggcacaaggc tggagtacaa ctacaacagc cacaacgtct atatcatggc cgacaaggcag
aagaacggca tcaaggtaaa cttcaagatc cgccacaaca tcgaggacgg cagcgtgcag

ctggccgacc actaccagca gaacaccccc atcggcgacg gccccgtgct gctgcccgac
aaccactacc tgagcaccca gtccgcctg agcaaagacc ccaacgagaa gcgcgatcac
atggtcctgc tggagttcgt gaccgcccggcc gggatcactc tcggcatgga cgagctgtac
aag- aagctt-agccatg gcttcccgcc ggaggtggag gagcaggatg atggcacgct
5 gcccattgtct tggccagg agagcgggat ggaccgtcac cctgcagcct gtgcttctgc
taggatcaat gtgttagatgc (SEQ ID No:2).

EXAMPLE 7

Analysis of the PEST Sequence

10 The C terminus of mouse ornithine decarboxylase contains a PEST sequence from amino acids 423 to 449. There are three proline residues, four glutamic acid residues, two serine residues, and one threonine residue (Figure 6). To evaluate the contribution of each amino acid in the PEST motif to the rate of protein degradation, each Pro, Glu, Ser, and Thr residue in the 15 PEST region of EGFP-MODC fusion protein was mutated to Ala. Degradation was monitored by the change of fluorescence. Each construct was transiently transfected into CHO K1-off cells. After treatment in the presence of cycloheximide for 0, 2, and 4 hours, 20 the cells were collected for flow cytometry analysis. Data are shown in Figure 7.

Mutation of the proline residue at amino acid 438 stabilized the protein. After 4 hours of cycloheximide treatment, the percentage of fluorescent cells was still greater than 60%. 25 Thus, the half life of the P438A mutant is more than double that of EGFP-MODC₄₂₂₋₄₆₁ suggesting that the existence of proline at 438 contributes to the instability of the fusion protein. Mutation of the prolines at amino acid positions 426 and 427 did not extend the half life. Instead, the half life of P426A/P427A is even

shorter than that of EGFP-MODC₄₂₂₋₄₆₁, indicating that these proline residues may stabilize the protein. Similar results were obtained with mutations to the glutamine and serine in the fusion construct. The half lives of mutant E444A and S440A are longer
5 than that of that EGFP-MODC₄₂₂₋₄₆₁, but E428A/E430A/E431A and S445A became more unstable, with only 20% or 29% of the cells retaining fluorescence after two hours of treatment.

The PEST sequence is often flanked by basic amino acids (Rogers, et al., (1986) *Science* 234, 364-368). To show the
10 involvement of these flanking amino acid residues in protein instability, histidine 423, arginine 449 and histidine 450 were mutated to alanine. Substitutions of alanine for the arginine and histidine at positions 449 and 450 dramatically increased protein stability, suggesting that these two amino acids are required for
15 efficient protein degradation. Mutation of the His at amino acid 423 did not change protein stability.

EXAMPLE 8

20 Cell Line Expressing dEGFP With Tet Expression System

CHO K1-tet off cells were transfected with pTRE-EGFPMODC₄₂₂₋₄₆₁ and pTK-hygromycin. The transfection was performed with a CLONfectin kit (CLONTECH). The transfected cells were selected in the presence of 200 µg/ml hygromycin and
25 resistant colonies were screened for fluorescence under a fluorescent microscope. The individual single colonies of the fluorescent cells were transferred to new plates. As in the transiently transfected cells, destabilized EGFP in the stably-transfected cells was regulated by tetracycline, and degradation

was detectable by adding cycloheximide to block protein synthesis. The resulting stably-transfected cell line can be used for many analyses, including drug screening, e.g., it can be used to screen for drugs that block either the transcriptional induction of 5 destabilized EGFP during the transition from the presence of tetracycline to the absence of tetracycline, or for drugs that inhibit protein degradation after the addition of cycloheximide.

EXAMPLE 9

10 Destabilized ECFP and EYFP

CFP (cyan) and YFP (yellow) are color variants of GFP. CFP and YFP contain 6 and 4 mutations, respectively. They are Tyr66Try, Phe66Leu, Ser65Thr, Asn145Ile, Met153Thr, and Val163Ala in CFP and Ser65Gly, Val68Leu, Ser72Ala, and 15 Thr203Tyr. The enhanced CFP (ECFP) and YFP (EYFP) are encoded by genes with human-optimized codons. ECFP is excited at 433 nm and emits at 475 nm. EYFP is excited at 523 or 488 nm and emits at 527 nm.

Using the same strategy described above to create 20 dEGFP, dECFP and dEYFP were generated by appending the C terminus of mouse ornithine decarboxylase to the C terminus of each of these two proteins (Figure 8). The half-lives of dECFP and dEYFP were determined by transfecting pTRE-dECFP and pTRE-dEYFP into CHO/tTA cells, stopping protein synthesis by adding 25 CHX, and subjecting to fluorescence microscopy. Both proteins were unstable in the presence of CHX. Two hours after treatment with CHX, half of fluorescence of these two proteins disappear indicating substantially reduced half lives for these proteins as compared to wild type.

These two color variants of destabilized proteins can be used together for two-color detection. For example, the dECFP gene can be linked to the NFkB binding sequence and the dEYFP to the NFAT binding sequence. Introduction of these two reporter fusions to a single cell allows detection simultaneous of two transcription factors or two signaling pathways simply by monitoring the relative fluorescence of the two colors.

EXAMPLE 10

10 Degradation Rate and Induction Fold of dEGFP

By mutating key amino acids of the PEST sequence of dEGFP, a number of mutants with different half lives were created. They were designated d1EGFP and d4EGFP, reflective of their half lives (Figure 9). The d1EGFP mutant has a half-life of less than 1 hour and the d4EGFP mutant has a half-life of approximately 4 hours (Figure 10). The EGFP-MODC₄₂₂₋₄₆₁ was designated d2EGFP because its half-life is about 2 hours.

The outstanding character of dEGFP proteins, when compared to EGFP, is that they exhibit a rapid turnover resulting in less accumulation of the destabilized proteins even at basal-level activity. Therefore, d2EGFP is a much more sensitive transcription reporter than EGFP, as has been demonstrated with the system of TNF-mediated NFkB activation. Because d1EGFP has a shorter half-life than d2EGFP, d1EGFP is more sensitive than d2EGFP when used as a transcription reporter. To illustrate this, d1EGFP and d2EGFP genes were linked to cAMP regulated element (CRE) and their responses to forskolin for each fusion construct tested. Four-fold induction was obtained when d2EGFP was used as the reporter, however more than 12-fold induction was

achieved when d1EGFP used (Figure 11). These results indicate that a more rapid turnover of the GFP molecule achieves higher induction and enhanced sensitivity.

- Any patents or publications mentioned in this specification are indicative
- 5 of the levels of those skilled in the art to which the invention pertains. These patents and publications are herein incorporated by reference to the same extent as if each individual publication was specifically and individually indicated to be incorporated by reference.
- 10 One skilled in the art will readily appreciate that the present invention is well adapted to carry out the objects and obtain the ends and advantages mentioned, as well as those inherent therein. The present examples along with the methods, procedures, treatments, molecules, and specific compounds described herein are presently representative of preferred embodiments, are
- 15 exemplary, and are not intended as limitations on the scope of the invention. Changes therein and other uses will occur to those skilled in the art which are encompassed within the spirit of the invention as defined by the scope of the claims.
- Throughout this specification the word "comprise", or variations such as
- 20 "comprises" or "comprising", will be understood to imply the inclusion of a stated element, integer or step, or group of elements, integers or steps, but not the exclusion of any other element, integer or step, or group of elements, integers or steps.
- 25 Any discussion of documents, acts, materials, devices, articles or the like which has been included in the present specification is solely for the purpose of providing a context for the present invention. It is not to be taken as an admission that any or all of these matters form part of the prior art base or were common general knowledge in the field relevant to the present invention as it
- 30 existed in Australia before the priority date of each claim of this application.

THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:

1. A fusion protein comprising a Green fluorescent protein (GFP) and a PEST sequence, said fusion protein having a half life of no more than about ten hours.
2. The fusion protein of claim 1, wherein said fluorescent protein is selected from the group consisting of EGFP, ECFP and EYFP.
- 10 3. The fusion protein of claim 2, wherein said fusion protein comprises a PEST sequence-containing portion of a C-terminus of murine ornithine decarboxylase (MODC) fused to said fluorescent protein.
- 15 4. The fusion protein of claim 3, wherein said PEST sequence-containing portion of said C-terminus of murine ornithine decarboxylase comprises an amino acid selected from the group consisting of MODC₃₇₆₋₄₆₁, MODC₃₇₆₋₄₅₆, MODC₄₂₂₋₄₆₁, P426A/P427A, P438A, E428A/E430A/E431A, E444A, S440A, S445A, T436A, D433A/D434A and D448A.
- 20 5. The fusion protein of claim 3, wherein said protein has the sequence shown in SEQ ID No. 1.
6. A vector comprising a DNA molecule encoding a fusion protein according to claim 1.

25

7. The DNA of claim 6, wherein said DNA encodes a fusion protein wherein said fluorescent protein is selected from the group consisting of EGFP, ECFP and EYFP.
- 5 8. The DNA of claim 7, wherein said DNA encodes a fusion protein comprising a PEST sequence-containing portion of a C-terminus of murine ornithine decarboxylase (MODC) fused to the fluorescent protein.
- 10 9. The DNA of claim 8, wherein said PEST sequence-containing portion of a C-terminus of murine ornithine decarboxylase is selected from the group consisting of MODC₃₇₆₋₄₆₁, MODC₃₇₆₋₄₅₆, MODC₄₂₂₋₄₆₁, P426A/P427A, P438A, E428A/E430A/E431A, E444A, S440A, S445A, T436A, D433A/D434A and D448A.
- 15 10. The isolated DNA of claim 8, having the sequence shown in SEQ ID No. 2.
- 20 11. A vector comprising a DNA molecule encoding a fusion protein according to any one of claims 1 to 5.
12. The vector of claim 11, wherein said vector comprises an inducible promoter.
- 25 13. A vector comprising an isolated DNA molecule according to claim 10.
14. The vector of claim 13, wherein said vector comprises an inducible promoter.
- 30 15. The vector of claim 14, wherein said promoter is tetracycline-inducible.
16. A method of producing a stable cell line that expresses a fluorescent protein comprising the step of transfecting cells with the vector of claim 11.

17. The stable cell line produced by the method of claim 16.
18. A method of assaying activation or deactivation of transcriptional or translational elements with a transient fluorescent reporter protein,
5 comprising the steps of:
transfected cells with an expression vector comprising a
fluorescent protein fusion protein according to any one of claims 1 to 5 having a
half life of no more than about ten hours, wherein the fusion protein is under the
influence of the promoter, transcriptional or translational element; and
10 detecting the presence, absence or amount of fluorescence in said
cells.
19. The method of claim 18, wherein the amount of fluorescence present in
the cell is a measure of the fluorescent protein that is being expressed.
15
20. A method of assaying activation or deactivation or promoters or other
transcriptional or translational elements with a transient fluorescent
protein reporter protein, comprising the steps of:
transfected cells with an expression vector comprising a
20 fluorescent fusion protein according to any one of claims 1 to 5 having a half
life of no more than about ten hours, wherein the fluorescent fusion protein is
under an influence of said promoter, transcriptional or translational element;
treating said transfected cells with a compound of interest; and
detecting a change in fluorescence upon treatment of the cells with
25 said compound of interest so as to assay the effect of said compound of
interest on said activation or deactivation of said transcription or translation
elements.
21. A method of studying cells lineage, comprising the steps of:
30 transfected undifferentiated cells with a vector expressing the
destabilized fusion protein of claim 1;
growing said undifferentiated cells under conditions in which the
undifferentiated cells become differentiated cells; and
detecting an absence, presence or location of fluorescence in the
35 differentiated cells.

22. A method of using a fusion protein of claim 1 in cell localization studies, comprising the steps of:
transfecting cells with an expression vector comprising a GFP fusion protein having a half life or no more than ten hours,
wherein the fusion protein is linked to a putative cell localization element;
growing the cell; and
detecting a location of fluorescence in the cells.
23. A method of assaying activation or deactivation of transcriptional or translational elements with a transient fluorescent reporter protein according to any one of claims 18-22 substantially as hereinbefore described with particular reference to the examples.
24. A fusion protein according to any one of claims 1-5 substantially as hereinbefore described with particular reference to the examples.

DATED this eleventh day of June 2002

CLONTech LABORATORIES, INC.
Patent Attorneys for the Applicant:

F.B. RICE & CO.

FIGURE 1

FIGURE 2

2/12

FIGURE 3-1

FIGURE 3-2

FIGURE 4**5/12**

FIGURE 5

7/12

FIGURE 6

K1 Tet-Off cells

Constructs	0h	(initial)	2h	4h
EGFP	100%	(63.6)	107%	92%
EGFP-MODC422-461	100%	(12.6)	52%	29%
P426A/P427A	100%	(11.5)	39%	11%
P438A	100%	(34.1)	79%	60%
E428A/E430A/E431A	100%	(17.3)	20%	15%
E444A	100%	(12.6)	69%	65%
S440A	100%	(21.6)	78%	66%
S445A	100%	(23.5)	29%	20%
T436A	100%	(46.9)	70%	47%
D433A/D434A	100%	(11.31)	22%	6%
D448A	100%	(32.6)	30%	15%
H423A	100%	(12.2)	50%	25%
R449A/H450A	100%	(27.9)	93%	86%

FIGURE 7**8/12**

FIGURE 8

9/12

FIGURE 9

FIGURE 10

11/12

FIGURE 11

12/12