Mplus Short Courses Topic 8

Multilevel Modeling With Latent Variables Using Mplus: Longitudinal Analysis

Linda K. Muthén Bengt Muthén

Copyright © 2011 Muthén & Muthén <u>www.statmodel.com</u> 03/29/2011

1

Table Of Contents

General Latent Variable Modeling Framework	6
Multilevel Growth Models	10
Growth Models With Categorical Outcomes	16
Multivariate Approach To Multilevel Modeling	52
Multilevel Growth Modeling (3-Level Analysis)	57
Multilevel Growth Modeling Of Binary Outcomes (3-Level Analysis)	72
Two-Level Multiple Indicator Growth	92
Special Multilevel Growth Models	123
Multiple Indicator Growth Modeling As Two-Level Analysis	127
Multilevel Discrete-Time Survival Analysis	130
Two-Level Latent Transition Analysis	133
Multilevel Growth Mixture Modeling	139
Between-Level Latent Classes	157
Latent Transition Analysis	158
Growth Modeling	162
Growth Mixture Modeling	166
Technical Aspects Of Multilevel Modeling	172
References	181

Mplus Background

- Inefficient dissemination of statistical methods:
 - Many good methods contributions from biostatistics, psychometrics, etc are underutilized in practice
- Fragmented presentation of methods:
 - Technical descriptions in many different journals
 - Many different pieces of limited software
- Mplus: Integration of methods in one framework
 - Easy to use: Simple, non-technical language, graphics
 - Powerful: General modeling capabilities

3

Mplus Background

- · Mplus versions
 - V1: November 1998
 V3: March 2004
 V5: November 2007
 V2: February 2001
 V4: February 2006
 V5.21: May 2009
 - V6: April, 2010
- Mplus team: Linda & Bengt Muthén, Thuy Nguyen, Tihomir Asparouhov, Michelle Conn, Jean Maninger

Statistical Analysis With Latent Variables A General Modeling Framework

Statistical Concepts Captured By Latent Variables

Continuous Latent Variables

- Measurement errors
- Factors
- Random effects
- Frailties, liabilities
- Variance components
- Missing data

Categorical Latent Variables

- Latent classes
- Clusters
- Finite mixtures
- Missing data

5

Statistical Analysis With Latent Variables A General Modeling Framework (Continued)

Models That Use Latent Variables

Continuous Latent Variables

- Factor analysis models
- Structural equation models
- Growth curve models
- Multilevel models

Categorical Latent Variables

- Latent class models
- Mixture models
- Discrete-time survival models
- Missing data models

Mplus integrates the statistical concepts captured by latent variables into a general modeling framework that includes not only all of the models listed above but also combinations and extensions of these models.

General Latent Variable Modeling Framework

7

Mplus

Several programs in one

- Exploratory factor analysis
- Structural equation modeling
- Item response theory analysis
- Latent class analysis
- Latent transition analysis
- Survival analysis
- Growth modeling
- Multilevel analysis
- Complex survey data analysis
- Monte Carlo simulation

Fully integrated in the general latent variable framework

Overview Of Mplus Courses

- **Topic 9.** Bayesian analysis using Mplus. University of Connecticut, May 24, 2011
- Courses taught by other groups in the US and abroad (see the Mplus web site)

9

Multilevel Growth Models

Individual Development Over Time

- $(1) y_{ti} = \eta_{0i} + \eta_{1i} x_t + \varepsilon_{ti}$
- (2a) $\eta_{0i} = \alpha_0 + \gamma_0 w_i + \zeta_{0i}$
- (2b) $\eta_{1i} = \alpha_1 + \gamma_1 w_i + \zeta_{1i}$

11

Growth Modeling Approached In Two Ways: Data Arranged As Wide Versus Long

• Wide: Multivariate, Single-Level Approach

$$y_{ti} = i_i + s_i \times time_{ti} + \varepsilon_{ti}$$

 i_i regressed on w_i s_i regressed on w_i

• Long: Univariate, 2-Level Approach (CLUSTER = id)

Within

The intercept i is called y in Mplus

Growth Modeling Approached In Two Ways: Data Arranged As Wide Versus Long (Continued)

• Wide (one person):

t1 t2 t3 t1 t2 t3

Person i: id y1 y2 y3 x1 x2 x3 w

• Long (one cluster):

Person i: t1 id y1 x1 w

t2 id y2 x2 w t3 id y3 x3 w

Mplus command: DATA LONGTOWIDE (UG ex 9.16)

DATA WIDETOLONG

13

Pros And Cons Of Wide Versus Long

- Advantages of the wide approach:
 - Modeling flexibility
 - Unequal residual variances and covariances
 - Testing of measurement invariance with multiple indicator growth
 - Allowing partial measurement non-invariance
 - Missing data modeling
 - Reduction of the number of levels by one (or more)
- Advantages of the long approach
 - Many time points
 - Individually-varying times of observation with missingness

Advantages Of Growth Modeling In A Latent Variable Framework

- Flexible curve shape
- Individually-varying times of observation
- Regressions among random effects
- Multiple processes
- Modeling of zeroes
- Multiple populations
- Multiple indicators
- Embedded growth models
- Categorical latent variables: growth mixtures

15

Growth Models With Categorical Outcomes

Growth Model With Categorical Outcomes

- Individual differences in development of probabilities over time
- Logistic model considers growth in terms of log odds (logits), e.g.

(1)
$$\log \left[\frac{P(u_{ii} = 1 | \eta_{0i}, \eta_{Ii}, \eta_{2i}, x_{ii})}{P(u_{ii} = 0 | \eta_{0i}, \eta_{Ii}, \eta_{2i}, x_{ii})} \right] = \eta_{0i} + \eta_{Ii} \cdot (x_{ii} - c) + \eta_{2i} \cdot (x_{ii} - c)^{2}$$
Level 1

for a binary outcome using a quadratic model with centering at time c. The growth factors η_{0i} , η_{1i} , and η_{2i} are assumed multivariate normal given covariates,

(2a)
$$\eta_{0i} = \alpha_0 + \gamma_0 w_i + \zeta_{0i}$$

(2b) $\eta_{1i} = \alpha_1 + \gamma_1 w_i + \zeta_{1i}$
(2c) $\eta_{2i} = \alpha_2 + \gamma_2 w_i + \zeta_{2i}$ Level 2

17

Aggression Growth Analysis

- Baltimore cohort 1: 1174 students in 41 classrooms (clustering due to classroom initially ignored)
- 8 time points over grades 1-7
- · Quadratic growth
- Dichotomized items from the aggression instrument
- 4 analyses
 - Single item ("Breaks Things"), ignoring classroom clustering (ML uses 3 dimensions of numerical integration)
 - Multiple indicators (Property aggression factor), ignoring classroom clustering (ML: 8 dimensions; WLSM)
 - Single item with clustering (ML: 6 dimensions; WLSM)
 - Multiple indicators with clustering(ML: 16 dimensions; WLSM)

Input Binary Growth Modeling

TITLE: Hopkins Cohort 1 All time points with Classroom

Information

DATA: FILE = Cohort1 classroom ALL.DAT;

VARIABLE: NAMES ARE PRCID

stub1F bkRule1F harm01F bkThin1F yell1F takeP1F fight1F

lies1F tease1F

stub1S bkRule1S harmO1S bkThin1S yell1S takeP1S fight1S

lies1S tease1S

stub2S bkRule2S harmO2S bkThin2S yell2S takeP2S fight2S

lies2S tease2S

stub3S bkRule3S harmO3S bkThin3S yell3S takeP3S fight3S

lies3S tease3S

21

Input Binary Growth Modeling (Continued)

stub4S bkRule4S harmO4S bkThin4S yell4S takeP4S
fight4S lies4S tease4S

stub5S bkRule5S harmO5S bkThin5S yell5S takeP5S
fight5S lies5S tease5S

stub6S bkRule6S harmO6S bkThin6S yell6S takeP6S fight6S lies6S tease6S

stub7S bkRule7S harmO7S bkThin7S yell7S takeP7S fight7S lies7S tease7S $\,$

gender race des011 sch011 sec011 juv99 violchld antisocr conductr

athort1F harmP1S athort1S harmP2S athort2S harmP3S athort3S harmP4S athort4S harmP5S athort5S harmP6S harmP7S athort7S

Input Binary Growth Modeling (Continued)

```
stub2F bkRule2F harmO2F bkThin2F yell2F takeP2F
           fight2F harmP2F lies2F athort2F tease2F
           classrm;
           CLUSTER = classrm;
           USEVAR = bkthin1f bkthin1s bkthin2s bkthin3s bkthin4s
           bkthin5s bkthin6s bkthin7s male;
           CATEGORICAL = bkthin1f - bkthin7s;
           MISSING = ALL (999);
DEFINE:
           CUT bkThin1f(1.5);
           CUT bkThin1s(1.5);
           CUT bkThin2s(1.5);
           CUT bkThin3s(1.5);
           CUT bkThin4s(1.5);
           CUT bkThin5s(1.5);
           CUT bkThin6s(1.5);
           CUT bkThin7s(1.5);
           male = 2 - gender;
```

Input Binary Growth Modeling (Continued)

10 integration points per dimension: 1000 points, 5 seconds 15 integration points per dimension: 3375 points, 1 minute 50 seconds

Output Excerpts Binary Growth (No Clustering)

Tests of Model Fit

Loglikelihood

HO Value	-3546.377
HO Scaling Correction Factor for MLR	1.0005
Information Criteria	
Number of Free Parameters	12
Akaike (AIC)	7116.754
Bayesian (BIC)	7177.572
Sample-Size Adjusted BIC	7139.455

 $(n^* = (n + 2) / 24)$

25

Output Excerpts Binary Growth (No Clustering) (Continued)

Parameter	Estimate	S.E.	Est./S.E.	Two-Tailed
				P-Value
i				
bkthin1f	1.000	0.000	999.000	999.000
bkthin1s	1.000	0.000	999.000	999.000
bkthin2s	1.000	0.000	999.000	999.000
bkthin3s	1.000	0.000	999.000	999.000
bkthin4s	1.000	0.000	999.000	999.000
bkthin5s	1.000	0.000	999.000	999.000
bkthin6s	1.000	0.000	999.000	999.000
bkthin7s	1.000	0.000	999.000	999.000

Output Excerpts Binary Growth (No Clustering) (Continued)

Parameter	Estimate	S.E.	Est./S.E.	Two-Tailed
				P-Value
s				
bkthin1f	0.000	0.000	999.000	999.000
bkthin1s	0.500	0.000	999.000	999.000
bkthin2s	1.500	0.000	999.000	999.000
bkthin3s	2.500	0.000	999.000	999.000
bkthin4s	3.500	0.000	999.000	999.000
bkthin5s	4.500	0.000	999.000	999.000
bkthin6s	5.500	0.000	999.000	999.000
bkthin7s	6.500	0.000	999.000	999.000

Output Excerpts Binary Growth (No Clustering) (Continued)

Parameter	Estimate	S.E.	Est./S.E.	Two-Tailed
				P-Value
q l				
bkthin1f	0.000	0.000	999.000	999.000
bkthin1s	0.250	0.000	999.000	999.000
bkthin2s	2.250	0.000	999.000	999.000
bkthin3s	6.250	0.000	999.000	999.000
bkthin4s	12.250	0.000	999.000	999.000
bkthin5s	20.250	0.000	999.000	999.000
bkthin6s	30.250	0.000	999.000	999.000
bkthin7s	42.250	0.000	999.000	999.000

Output Excerpts Binary Growth (No Clustering) (Continued)

Parameter	Estimate	S.E.	Est./S.E.	Two-Tailed
				P-Value
i ON				
male	1.109	0.186	5.960	0.000
s ON				
male	-0.137	0.121	-1.132	0.258
q ON				
male	0.028	0.019	1.494	0.135
s WITH				
i	-1.298	0.314	-4.137	0.000
q WITH				
i	0.138	0.040	3.435	0.001
S	-0.059	0.026	-2.260	0.024

Output Excerpts Binary Growth (No Clustering) (Continued)

Parameter	Estimate	S.E.	Est./S.E.	Two-Tailed
				P-Value
Intercepts				
I	0.000	0.000	999.000	999.000
S	0.204	0.102	1.998	0.046
Q	-0.045	0.017	-2.689	0.007
Thresholds				
bkthin1f\$1	1.839	0.149	12.324	0.000
bkthin1s\$1	1.839	0.149	12.324	0.000
bkthin2s\$1	1.839	0.149	12.324	0.000
bkthin3s\$1	1.839	0.149	12.324	0.000
bkthin4s\$1	1.839	0.149	12.324	0.000

Output Excerpts Binary Growth (No Clustering) (Continued)

Parameter	Estimate	S.E.	Est./S.E.	Two-Tailed
				P-Value
bkthin5s\$1	1.839	0.149	12.324	0.000
bkthin6s\$1	1.839	0.149	12.324	0.000
bkthin7s\$1	1.839	0.149	12.324	0.000
Residual Variance	es			
i	3.803	0.625	6.083	0.000
s	0.545	0.190	2.868	0.004
q	0.007	0.004	1.781	0.075

31

Multiple Indicator Growth (No Clustering)

Input Excerpts Multiple Indicator Growth (No Clustering)

```
USEVAR = bkThin1f bkThin1s bkThin2s bkThin3s bkThin4s
          bkThin5s bkThin6s bkThin7s harmO1f harmO1s harmO2s
          harmO3s harmO4s harmO5s harmO6s harmO7s takeP1f takeP1s
          takeP2s takeP3s takeP4s takeP5s takeP6s takeP7s male;
          CATEGORICAL = bkThin1f - takeP7s;
          MISSING = ALL (999);
DEFINE:
          CUT bkThin1f(1.5);
          CUT bkThin1s(1.5);
          CUT bkThin2s(1.5);
          CUT bkThin3s(1.5);
          CUT bkThin4s(1.5);
          CUT bkThin5s(1.5);
          CUT bkThin6s(1.5);
          CUT bkThin7s(1.5);
          CUT harmOlf (1.5);
          CUT harmOls (1.5);
          CUT harmO2s (1.5);
          CUT harmO3s (1.5);
```

Input Excerpts Multiple Indicator Growth (No Clustering) (Continued)

```
CUT harmO4s (1.5);

CUT harmO5s (1.5);

CUT harmO6s (1.5);

CUT harmO7s (1.5);

CUT takeP1f(1.5);

CUT takeP1s(1.5);

CUT takeP2s(1.5);

CUT takeP4s(1.5);

CUT takeP4s(1.5);

CUT takeP5s(1.5);

CUT takeP5s(1.5);

CUT takeP6s(1.5);

CUT takeP7s(1.5);

CUT takeP7s(1.5);
```

Input Excerpts Multiple Indicator Growth (No Clustering)

```
ANALYSIS: PROCESS = 4;

ESTIMATOR = WLSM;

PARAMETERIZATION = THETA;

MODEL: f1 BY bkthin1f

harmo1f (1)

takep1f (2);

f2 BY bkthin1s

harmo1s (1)

takep1s (2);

f3 BY bkthin2s

harmo2s (1)

takep2s (2);
```

35

Input Excerpts Multiple Indicator Growth (No Clustering) (Continued)

```
f4 BY bkthin3s
harmo3s (1)
takep3s (2);
f5 BY bkthin4s
harmo4s (1)
takep4s (2);
f6 BY bkthin5s
harmo5s (1)
takep5s (2);
f7 BY bkthin6s
harmo6s (1)
takep6s (2);
```

```
f8 BY bkthin7s
harmo7s (1)
takep7s (2);

[bkthin1f$1-bkthin7s$1] (11);
[harmo1f$1-harmo7s$1] (12);
[takep1f$1-takep7s$1] (13);

i s q | f1@0 f2@.5 f3@1.5 f4@2.5 f5@3.5 f6@4.5 f7@5.5 f8@6.5;
i-q ON male;
OUTPUT: TECH1 TECH8 STANDARDIZED;
```

37

Output Excerpts Multiple Indicator Growth (No Clustering)

Test of Model Fit

Chi-Square Test of Model Fit

Value 524.261

Degrees of Freedom 300

P-Value 0.0000

Scaling Correction Factor for WLSM 0.757

The chi-square value for MLM, MLMV, MLR, ULSMV, WLSM and WLSMV cannot be used for chi-square difference tests.

MLM, MLR and WLSM chi-square difference testing is described in the Mplus Technical Appendices at www.statmodel.com. See chi-square difference testing in the index of the Mplus Users' Guide.

Chi-Square Test of Model Fit for the Baseline Model Value 37306.671 300 Degrees of Freedom 0.0000 P-Value CFI/TLI CFI 0.994 TLI 0.994 Number of Free Parameters 24 RMSEA (Root Mean Square Error of Approximation) Estimate 0.025 39

Output Excerpts Multiple Indicator Growth (No Clustering) (Continued)

Parameter	Estimate	S.E.	Est./S.E.	Two-Tailed
				P-Value
i				
f1	1.000	0.000	999.000	999.000
f2	1.000	0.000	999.000	999.000
f3	1.000	0.000	999.000	999.000
f4	1.000	0.000	999.000	999.000
f5	1.000	0.000	999.000	999.000
f6	1.000	0.000	999.000	999.000
f7	1.000	0.000	999.000	999.000
f8	1.000	0.000	999.000	999.000

Parameter	Estimate	S.E.	Est./S.E.	Two-Tailed
				P-Value
f1	0.000	0.000	999.000	999.000
f2	0.500	0.000	999.000	999.000
f3	1.500	0.000	999.000	999.000
f4	2.500	0.000	999.000	999.000
f5	3.500	0.000	999.000	999.000
f6	4.500	0.000	999.000	999.000
f7	5.500	0.000	999.000	999.000
f8	6.500	0.000	999.000	999.000

Output Excerpts Multiple Indicator Growth (No Clustering) (Continued)

Parameter	Estimate	S.E.	Est./S.E.	Two-Tailed
				P-Value
q				
f1	0.000	0.000	999.000	999.000
f2	0.250	0.000	999.000	999.000
f3	2.250	0.000	999.000	999.000
f4	6.250	0.000	999.000	999.000
f5	12.250	0.000	999.000	999.000
f6	20.250	0.000	999.000	999.000
f7	30.250	0.000	999.000	999.000
f8	42.250	0.000	999.000	999.000

Parameter	Estimate	S.E.	Est./S.E.	Two-Tailed	
				P-Value	
f1 BY					
bkthin1f	1.000	0.000	999.000	999.000	
harmo1f	1.239	0.112	11.089	0.000	
takep1f	1.045	0.078	13.432	0.000	
f2 BY					
bkthin1s	1.000	0.000	999.000	999.000	
harmo1s	1.239	0.112	11.089	0.000	
takep1s	1.045	0.078	13.432	0.000	
f3 BY					
bkthin2s	1.000	0.000	999.000	999.000	
harmo2s	1.239	0.112	11.089	0.000	

Output Excerpts Multiple Indicator Growth (No Clustering) (Continued)

Parameter	Estimate	S.E.	Est./S.E.	Two-Tailed
				P-Value
takep2s	1.045	0.078	13.432	0.000
4 BY				
bkthin3s	1.000	0.000	999.000	999.000
harmo3s	1.239	0.112	11.089	0.000
takep3s	1.045	0.078	13.432	0.000
5 BY				
bkthin4s	1.000	0.000	999.000	999.000
harmo4s	1.239	0.112	11.089	0.000
takep4s	1.045	0.078	13.432	0.000
6 BY				
bkthin5s	1.000	0.000	999.000	999.000

Parameter	Estimate	S.E.	Est./S.E.	Two-Tailed
				P-Value
harmo5s	1.239	0.112	11.089	0.000
takep5s	1.045	0.078	13.432	0.000
7 BY				
bkthin6s	1.000	0.000	999.000	999.000
harmo6s	1.239	0.112	11.089	0.000
takep6s	1.045	0.078	13.432	0.000
8 BY				
bkthin7s	1.000	0.000	999.000	999.000
harmo7s	1.239	0.112	11.089	0.000
takep7s	1.045	0.078	13.432	0.000

Output Excerpts Multiple Indicator Growth (No Clustering) (Continued)

Parameter	Estimate	S.E.	Est./S.E.	Two-Tailed
				P-Value
i ON				
male	1.122	0.169	6.634	0.000
s ON				
male	0.046	0.108	0.424	0.671
d ON				
male	-0.006	0.016	-0.350	0.727
s WITH				
i	-1.225	0.227	-5.405	0.000
HTIW p				
i	0.113	0.028	4.098	0.000
S	-0.086	0.019	-4.493	0.000

Parameter	Estimate	S.E.	Est./S.E.	Two-Tailed
				P-Value
Intercepts				
f1	0.000	0.000	999.000	999.000
f2	0.000	0.000	999.000	999.000
f3	0.000	0.000	999.000	999.000
f4	0.000	0.000	999.000	999.000
f5	0.000	0.000	999.000	999.000
f6	0.000	0.000	999.000	999.000
f7	0.000	0.000	999.000	999.000
f8	0.000	0.000	999.000	999.000
i	0.000	0.000	999.000	999.000
S	-0.071	0.090	-0.789	0.430
q	0.005	0.014	0.362	0.717

Output Excerpts Multiple Indicator Growth (No Clustering) (Continued)

Parameter	Estimate	S.E.	Est./S.E.	Two-Tailed
				P-Value
Thresholds				
bthin1f\$1	1.944	0.150	12.995	0.000
bthin1s\$1	1.944	0.150	12.995	0.000
bthin2s\$1	1.944	0.150	12.995	0.000
bthin3s\$1	1.944	0.150	12.995	0.000
bthin4s\$1	1.944	0.150	12.995	0.000
bthin5s\$1	1.944	0.150	12.995	0.000
bthin6s\$1	1.944	0.150	12.995	0.000
bthin7s\$1	1.944	0.150	12.995	0.000
harmo1f\$1	1.477	0.175	8.437	0.000
harmo1s\$1	1.477	0.175	8.437	0.000
harmo2s\$1	1.477	0.175	8.437	0.000

Parameter	Estimate	S.E.	Est./S.E.	Two-Tailed
				P-Value
harmo3s\$1	1.477	0.175	8.437	0.000
harmo4s\$1	1.477	0.175	8.437	0.000
harmo5s\$1	1.477	0.175	8.437	0.000
harmo6f\$1	1.477	0.175	8.437	0.000
harmo7s\$1	1.477	0.175	8.437	0.000
takep1f\$1	1.288	0.142	9.075	0.000
takep1s\$1	1.288	0.142	9.075	0.000
takep2s\$1	1.288	0.142	9.075	0.000
takep3s\$1	1.288	0.142	9.075	0.000
takep4s\$1	1.288	0.142	9.075	0.000
takep5s\$1	1.288	0.142	9.075	0.000

Output Excerpts Multiple Indicator Growth (No Clustering) (Continued)

Parameter	Estimate	S.E.	Est./S.E.	Two-Tailed
				P-Value
takep6s\$1	1.288	0.142	9.075	0.000
takep7s\$1	1.288	0.142	9.075	0.000
Residual varia	nces			
f1	0.564	0.329	1.714	0.087
f2	1.648	0.396	4.161	0.000
f3	7.274	1.488	4.888	0.000
f4	2.278	0.510	4.462	0.000
f5	1.911	0.414	4.615	0.000

Parameter	Estimate	S.E.	Est./S.E.	Two-Tailed
				P-Value
f6	2.281	0.463	4.926	0.000
f7	2.462	0.526	4.682	0.000
f8	1.536	0.447	3.437	0.001
i	4.234	0.556	7.621	0.000
s	0.749	0.142	5.291	0.000
q	0.011	0.003	3.854	0.000

51

Multivariate Approach To Multilevel Modeling

Multivariate Modeling Of Family Members

- Multilevel modeling: clusters independent, model for between- and within-cluster variation, members of a cluster statistically equivalent
- Multivariate approach: clusters independent, model for all variables for each cluster member, different parameters for different cluster members.
 - Used in latent variable growth modeling where the cluster members are the repeated measures over time
 - Allows for different cluster sizes by missing data techniques
 - More flexible than the multilevel approach, but computationally convenient only for applications with small cluster sizes (e.g. twins, spouses)

Three-Level Modeling As Single-Level Analysis

- The sibling growth model has 3 levels:
 - Time
 - Individual
 - Family
- Analyzed as doubly multivariate:
 - Repeated measures in wide, multivariate form
 - Siblings in wide, multivariate form

It is possible to do four-level by TYPE = TWOLEVEL, for instance families within geographical segments

Input For Multivariate Modeling Of Family Data

Multivariate modeling of family data TITLE:

one observation per family

FILE IS multi.dat;

VARIABLE: NAMES ARE 018-032 y18-y32 omale oes ohsdrop ymale yes

yhsdrop black hisp fh123 fh1 fh23;

MODEL: io so qo | o18@0 o19@1 o20@2 o21@3 o22@4

023@5 024@6 025@7 026@8 027@9 028@10 029@11 030@12

031013 032014;

iy sy qy | y1800 y1901 y2002 y2103 y2204 y2305 y2406

y25e7 y26e8 y27e9 y28e10 y29e11 y30e12 y31e13 y32e14;

io ON omale oes ohsdrop black hisp fh123 fh1 fh23; iy ON ymale yes yhsdrop black hisp fh123 fh1 fh23;

iy ON io; sy ON io so;

qy ON io so qo;

Multilevel Growth Modeling (3-Level Analysis)

57

Three-Level Analysis In Multilevel Terms

Time point t, individual i, cluster j.

 y_{tij} : individual-level, outcome variable

 a_{1tij} : individual-level, time-related variable (age, grade)

 a_{2tij} : individual-level, time-varying covariate x_{ii} : individual-level, time-invariant covariate

 w_i : cluster-level covariate

Three-level analysis (Mplus considers Within and Between)

Level 1 (Within):
$$y_{tij} = \pi_{0ij} + \pi_{1ij} a_{1tij} + \pi_{2tij} a_{2tij} + e_{tij}$$
, (1)

Level 2 (Within) :
$$\begin{cases} \pi_{0ij} = \beta_{00j} + \underbrace{\beta_{01j} x_{ij} + r_{0jj}}_{l1j} \rightarrow iw \\ \pi_{1ij} = \beta_{10j} + \underbrace{\beta_{11j} x_{ij} + r_{1ij}}_{l2tj} \rightarrow sw \\ \pi_{2tij} = \beta_{20tj} + \underbrace{\beta_{21tj} x_{ij} + r_{2tij}}_{l2tj}. \end{cases}$$
 (2)

Level 3 (Between):
$$\beta_{00j} = \underbrace{\gamma_{000} + \gamma_{001} w_{j} + u_{00j}}_{\beta_{10j}} \rightarrow ib$$

$$\beta_{10j} = \underbrace{\gamma_{100} + \gamma_{101} w_{j} + u_{10j}}_{\beta_{20tj}} \rightarrow sb$$

$$\beta_{20tj} = \gamma_{200t} + \gamma_{201t} w_{j} + u_{20tj},$$

$$\beta_{01j} = \gamma_{010} + \gamma_{011} w_{j} + u_{01j},$$

$$\beta_{11j} = \gamma_{110} + \gamma_{111} w_{j} + u_{11j},$$

$$\beta_{21tj} = \gamma_{2t0} + \gamma_{2t1} w_{j} + u_{2tj}.$$
(3)

Input For LSAY Two-Level Growth Model With Free Time Scores And Covariates

TITLE: LSAY two-level growth model with free time scores

and covariates

FILE IS lsay98.dat; DATA:

FORMAT IS 3f8 f8.4 8f8.2 3f8 2f8.2;

VARIABLE: NAMES ARE cohort id school weight math7 math8 math9

math10 att7 att8 att9 att10 gender mothed homeres;

USEOBS = (gender EQ 1 AND cohort EQ 2);

MISSING = ALL (999);

USEVAR = math7-math10 mothed homeres;

CLUSTER = school;

ANALYSIS: TYPE = TWOLEVEL;

ESTIMATOR = MUML;

61

Input For LSAY Two-Level Growth Model With Free Time Scores And Covariates (Continued)

MODEL: %WITHIN%

iw sw | math7@0 math8@1
math9*2 (1)
math10*3 (2);

iw sw ON mothed homeres;

\$ BETWEEN \$

ib sb | math7@0 math8@1

math9*2 (1) math10*3 (2);

ib sb ON mothed homeres;

OUTPUT SAMPSTAT STANDARDIZED RESIDUAL;

Output Excerpts LSAY Two-Level Growth Model With Free Time Scores And Covariates

Summary of Data

```
Number of clusters
  Size (s) Cluster ID with Size s
          114
   2
           136
          132
   6
                 304
       104
309
   34
   39
   40
           302
 Average cluster size 18.627
 Estimated Intraclass Correlations for the Y Variables
   Intraclass Intraclass
                                              Intraclass
Variable Correlation Variable Correlation Variable Correlation
MATH7 0.199 MATH8 0.149 MATH9 0.168
         0.165
MATH10
```

Output Excerpts LSAY Two-Level Growth Model With Free Time Scores And Covariates (Continued)

Tests Of Model Fit

```
Chi-square Test of Model Fit
                                    24.058*
          Value
          Degrees of Freedom
                                       14
          P-Value
                                    0.0451
CFI / TLI
                                     0.997
          CFI
          TLI
RMSEA (Root Mean Square Error Of Approximation)
         Estimate
SRMR (Standardized Root Mean Square Residual)
          Value for Between
                                    0.048
          Value for Within
                                    0.007
```

Output Excerpts LSAY Two-Level Growth Model With Free Time Scores And Covariates (Continued)

Model Results					
Within Level	Estimates	S.E.	Est./S.E	. Std	StdYX
SW					
MATH8	1.000	0.000	0.000	1.073	0.128
MATH9	2.487	0.163	15.220	2.670	0.288
MATH10	3.589	0.223	16.076	3.853	0.368
IW ON					
MOTHED	1.780	0.232	7.665	0.246	0.226
HOMERES	0.892	0.221	4.031	0.124	0.173
SW ON					
MOTHED	0.053	0.063	0.836	0.049	0.045
HOMERES	0.135	0.044	3.047	0.125	0.176

65

Output Excerpts LSAY Two-Level Growth Model With Free Time Scores And Covariates (Continued)

	Estimates	S.E.	Est./S.E.	. Std	StdYX
SW WITH					
IW	2.112	0.522	4.044	0.273	0.273
HOMERES WITH					
MOTHED	0.261	0.039	6.709	0.261	0.203
Residual Varianc	es				
MATH7	12.748	1.434	8.888	12.748	0.197
MATH8	12.298	0.893	13.771	12.298	0.174
MATH9	14.237	1.132	12.578	14.237	0.166
MATH10	24.829	2.230	11.133	24.829	0.226
IW	47.060	3.069	15.333	0.903	0.903
SW	1.110	0.286	3.879	0.964	0.964
Variances					
MOTHED	0.841	0.049	17.217	0.841	1.000
HOMERES	1.970	0.069	28.643	1.970	1.000

Output Excerpts LSAY Two-Level Growth Model With Free Time Scores And Covariates (Continued)

	Estimates	S.E.	Est./S.E	. Std	StdYX
Between Leve	l				
SB					
MATH8	1.000	0.000	0.000	0.196	0.052
MATH9	2.487	0.163	15.220	0.488	0.119
MATH10	3.589	0.223	16.076	0.704	0.115
IB ON					
MOTHED	-1.225	2.587	-0.474	-0.362	-0.107
HOMERES	7.160	1.847	3.876	2.117	1.011
SB ON					
MOTHED	0.995	0.647	1.538	5.073	1.493
HOMERES	0.017	0.373	0.045	0.086	0.041
SB WITH					
IB	0.382	0.248	1.538	0.575	0.575
					6

Output Excerpts LSAY Two-Level Growth Model With Free Time Scores And Covariates (Continued)

0.103 2.059 0.544	0.019 0.552 0.268	3.732	0.103	0.733
2.059	0.552	3.732		
0.544			2.059	0 153
0.544			2.059	0 153
	0.268			0.133
0 105		2.033	0.544	0.039
0.103	0.213	0.493	0.105	0.006
1.395	0.504	2.767	1.395	0.067
1.428	1.690	0.845	0.125	0.125
-0.051	0.071	-0.713	-1.321	-1.321
0.087	0.023	3.801	0.087	1.000
0.228	0.056	4.066	0.228	1.000
2.307	0.043	53.277	2.307	7.838
3.108	0.062	50.375	3.108	6.509
33.510	2.678	12.512	9.909	9.909
0.163	0.776	0.210	0.830	0.830
	1.428 -0.051 0.087 0.228 2.307 3.108	1.395 0.504 1.428 1.690 -0.051 0.071 0.087 0.023 0.228 0.056 2.307 0.043 3.108 0.062 33.510 2.678	1.395 0.504 2.767 1.428 1.690 0.845 -0.051 0.071 -0.713 0.087 0.023 3.801 0.228 0.056 4.066 2.307 0.043 53.277 3.108 0.062 50.375 33.510 2.678 12.512	1.395 0.504 2.767 1.395 1.428 1.690 0.845 0.125 -0.051 0.071 -0.713 -1.321 0.087 0.023 3.801 0.087 0.228 0.056 4.066 0.228 2.307 0.043 53.277 2.307 3.108 0.062 50.375 3.108 33.510 2.678 12.512 9.909

Output Excerpts LSAY Two-Level Growth Model With Free Time Scores And Covariates (Continued)

R-Square

Within Level Observed R-Square Variable MATH7 0.803 MATH8 0.826 MATH9 0.834 MATH10 0.774 Latent Variable R-Square ΙW 0.097 SW 0.036

69

Output Excerpts LSAY Two-Level Growth Model With Free Time Scores And Covariates (Continued)

R-Square

Between Level Observed R-Square Variable MATH7 0.847 MATH8 0.961 MATH9 0.994 MATH10 0.933 Latent Variable R-Square 0.875 ΙB Undefined 0.23207E+01

Further Readings On Three-Level Growth Analysis

- Muthén, B. (1997). Latent variable modeling with longitudinal and multilevel data. In A. Raftery (ed), <u>Sociological Methodology</u> (pp. 453-480). Boston: Blackwell Publishers. (#73)
- Muthén, B. & Asparouhov, T. (2011). Beyond multilevel regression modeling: Multilevel analysis in a general latent variable framework. In J. Hox & J.K. Roberts (eds), <u>The Handbook of Advanced Multilevel Analysis</u>, pp 15-40. New York: Taylor and Francis.
- Raudenbush, S.W. & Bryk, A.S. (2002). <u>Hierarchical linear models:</u> <u>Applications and data analysis methods</u>. Second edition. Newbury Park, CA: Sage Publications.
- Snijders, T. & Bosker, R. (1999). <u>Multilevel analysis. An introduction to basic and advanced multilevel modeling</u>. Thousand Oakes, CA: Sage Publications.

71

Multilevel Growth Modeling Of Binary Outcomes (3-Level Analysis)

Multilevel Growth Model With Binary Outcomes

Time point *t*, individual *i*, cluster *j*. Logit-linear growth.

Level 1 (Within Cluster):
$$log \left[\frac{P(u_{ii} = 1 | \eta_{0ij}, \eta_{1ij}, a_{ti})}{P(u_{ti} = 0 | \eta_{0ij}, \eta_{1ij}, a_{ti})} \right] = \eta_{0ij} + \eta_{1ij} \cdot (a_{ti} - c)$$
 (1)

Level 2
$$\eta_{0ij} = \beta_{00j} + \beta_{01} x_{ij} + r_{0ij} \rightarrow \eta_{0w}$$
 (2) $\eta_{1ij} = \beta_{10j} + \beta_{11} x_{ij} + r_{1ij} \rightarrow \eta_{1w}$

Level 3
(Between Cluster):
$$\beta_{00j} = \gamma_{000} + \gamma_{001} w_j + r_{00j}, \qquad \eta_{0b}$$

$$\beta_{10j} = \gamma_{100} + \gamma_{101} w_j + r_{10j}, \qquad \eta_{1b}$$
(3)

Fitzmaurice, Laird, & Ware (2004). Applied longitudinal analysis. Wiley & Sons.

Fitzmaurice, Davidian, Verbeke, & Molenberghs (2009). Longitudinal Data Analysis. Chapman & Hall/CRC Press.

Growth Model With Binary Outcomes

Within Cluster

Between Cluster

Observed Data Likelihood

Individual *i* in cluster j

$$\prod_{i} \int \phi_{j} (\eta_{bj}) \prod_{i} (\int f_{ij} (u_{ij} | \eta_{bj}, \eta_{wij}) \phi_{ij} (\eta_{wij}) d\eta_{wij}) d\eta_{bj}$$

- Maximum likelihood estimation
- Numerical integration
- The logit-linear binary growth model results in 4 dimensions of integration

75

Input Excerpts Two-Level Binary Growth

```
USEVAR = bkthin1f bkthin1s bkthin2s bkthin3s bkthin4s
          bkthin5s bkthin6s bkthin7s male;
          CATEGORICAL = bkthin1f - bkthin7s;
          MISSING = ALL (999);
          CLUSTER = classrm;
          WITHIN = male;
          CUT bkThin1f(1.5);
DEFINE:
          CUT bkThin1s(1.5);
          CUT bkThin2s(1.5);
          CUT bkThin3s(1.5);
          CUT bkThin4s(1.5);
          CUT bkThin5s(1.5);
          CUT bkThin6s(1.5);
          CUT bkThin7s(1.5);
          male = 2 - gender;
ANALYSIS: TYPE = TWOLEVEL;
          PROCESS = 4;
          ESTIMATOR = WLSM;
```

Input Excerpts Two-Level Binary Growth

MODEL: %WITHIN%

iw sw qw | bkthin1f00 bkthin1s0.5 bkthin2s01.5 bkthin3s02.5 bkthin4s03.5 bkthin5s04.5 bkthin6s05.5

bkthin7s@6.5;

iw-qw on male;

%BETWEEN%

ib sb qb |bkthin1f@0 bkthin1s@.5 bkthin2s@1.5 bkthin3s@2.5 bkthin4s@3.5 bkthin5s@4.5 bkthin6s@5.5

bkthin7s@6.5;

bkthin1f-bkthin7s@0;

OUTPUT: TECH1 TECH8 STANDARDIZED;

77

Output Excerpts Two-Level Binary Growth

Number of clusters 41
Average cluster size 28.634

Estimated Intraclass Correlations for the Y Variables

	Intraclass		Intraclass		Intraclass
Variable	Correlation	Variable	Correlation	Variable	Correlation
bkthin1f	0.470	bkthin1s	0.484	bkthin2s	0.385
bkthin3s	0.089	bkthin4s	0.052	bkthin5s	0.094
bkthin6s	0.137	bkthin7s	0.104		

Tests of Model Fit

Chi-Square Test of Model Fit

Value	101.742*
Degrees of Freedom	62
P-Value	0.0011

The chi-square value for MLM, MLMV, MLR, ULSMV, WLSM and WLSMV cannot be used for chi-square difference tests. MLM, MLR and WLSM chi-square difference testing is described in the Mplus Technical Appendices at www.statmodel.com. See chi-square difference testing in the index of the Mplus Users' Guide.

79

80

Output Excerpts Two-Level Binary Growth (Continued)

Chi-Square Test of Model Fit for the Baselin	ne Model
Value	924.374
Degrees of Freedom	64
P-Value	0.0000
CFI/TLI	
CFI	0.954
TLI	0.952
Number of Free Parameters	18
RMSEA (Root Mean Square Error Of Approximat:	ion)
Estimate	0.023
SRMR (Standardized Root Mean Square Residual	1)
Value for Within	0.056
Value for Between	0.513

Parameter	Estimate	S.E.	Est./S.E.	Two-Tailed
				P-Value
Within Level				
iw				
bkthin1f	1.000	0.000	999.000	999.000
bkthin1s	1.000	0.000	999.000	999.000
bkthin2s	1.000	0.000	999.000	999.000
bkthin3s	1.000	0.000	999.000	999.000
bkthin4s	1.000	0.000	999.000	999.000
bkthin5s	1.000	0.000	999.000	999.000
bkthin6s	1.000	0.000	999.000	999.000
bkthin7s	1.000	0.000	999.000	999.000

Output Excerpts Two-Level Binary Growth (Continued)

Parameter	Estimate	S.E.	Est./S.E.	Two-Tailed
				P-Value
sw				
bkthin1f	0.000	0.000	999.000	999.000
bkthin1s	0.500	0.000	999.000	999.000
bkthin2s	1.500	0.000	999.000	999.000
bkthin3s	2.500	0.000	999.000	999.000
bkthin4s	3.500	0.000	999.000	999.000
bkthin5s	4.500	0.000	999.000	999.000
bkthin6s	5.500	0.000	999.000	999.000
bkthin7s	6.500	0.000	999.000	999.000

Parameter	Estimate	S.E.	Est./S.E.	Two-Tailed
				P-Value
dm				
bkthin1f	0.000	0.000	999.000	999.000
bkthin1s	0.250	0.000	999.000	999.000
bkthin2s	2.250	0.000	999.000	999.000
bkthin3s	6.250	0.000	999.000	999.000
bkthin4s	12.250	0.000	999.000	999.000
bkthin5s	20.250	0.000	999.000	999.000
bkthin6s	30.250	0.000	999.000	999.000
bkthin7s	42.250	0.000	999.000	999.000

83

Output Excerpts Two-Level Binary Growth (Continued)

Parameter	Estimate	S.E.	Est./S.E.	Two-Tailed
				P-Value
iw ON				
male	0.980	0.131	7.496	0.000
sw ON				
male	-0.177	0.087	-2.032	0.042
qw ON				
male	0.023	0.013	1.707	0.088
sw WITH				
iw	-0.290	0.121	-2.388	0.017
qw WITH				
iw	0.022	0.016	1.434	0.151
SW	-0.010	0.010	-0.987	0.324

Estimate	S.E. Est./S.E.		Two-Tailed	
			P-Value	
es				
1.315	0.284	4.637	0.000	
0.102	0.071	1.430	0.153	
0.001	0.001	0.683	0.495	
1.000	0.000	999.000	999.000	
1.000	0.000	999.000	999.000	
1.000	0.000	999.000	999.000	
1.000	0.000	999.000	999.000	
	1.315 0.102 0.001 1.000 1.000	1.315 0.284 0.102 0.071 0.001 0.001 1.000 0.000 1.000 0.000	es 1.315	

Output Excerpts Two-Level Binary Growth (Continued)

Parameter	Estimate	S.E.	.E. Est./S.E. Two-	
				P-Value
bkthin4s	1.000	0.000	999.000	999.000
bkthin5s	1.000	0.000	999.000	999.000
bkthin6s	1.000	0.000	999.000	999.000
bkthin7s	1.000	0.000	999.000	999.000
sb				
bkthin1f	1.000	0.000	999.000	999.000
bkthin1s	0.500	0.000	999.000	999.000
bkthin2s	1.500	0.000	999.000	999.000
bkthin3s	2.500	0.000	999.000	999.000
bkthin4s	3.500	0.000	999.000	999.000
bkthin5s	4.500	0.000	999.000	999.000

Parameter	Estimate	S.E.	Est./S.E.	Two-Tailed
				P-Value
bkthin6s	5.500	0.000	999.000	999.000
bkthin7s	6.500	0.000	999.000	999.000
Ip				
bkthin1f	0.000	0.000	999.000	999.000
bkthin1s	0.250	0.000	999.000	999.000
bkthin2s	2.250	0.000	999.000	999.000
bkthin3s	6.250	0.000	999.000	999.000
bkthin4s	12.250	0.000	999.000	999.000
bkthin5s	20.250	0.000	999.000	999.000
bkthin6s	30.250	0.000	999.000	999.000
bkthin7s	42.250	0.000	999.000	999.000

Output Excerpts Two-Level Binary Growth (Continued)

Parameter	Estimate	S.E.	Est./S.E.	Two-Tailed
				P-Value
sw WITH				
ib	-0.395	0.122	-3.246	0.001
qb WITH				
ib	0.043	0.014	3.069	0.002
sb	-0.018	0.007	-2.451	0.014
Means				
ib	0.000	0.000	999.000	999.000
sb	0.219	0.133	1.648	0.099
dp	-0.028	0.018	-1.614	0.107

Parameter	Estimate	S.E.	Est./S.E.	Two-Tailed
				P-Value
Thresholds				
bkthin1f\$1	1.592	0.253	6.304	0.000
bkthin1s\$1	1.592	0.253	6.304	0.000
bkthin2s\$1	1.592	0.253	6.304	0.000
bkthin3s\$1	1.592	0.253	6.304	0.000
bkthin4s\$1	1.592	0.253	6.304	0.000
bkthin5s\$1	1.592	0.253	6.304	0.000
bkthin6s\$1	1.592	0.253	6.304	0.000
bkthin7s\$1	1.592	0.253	6.304	0.000

Output Excerpts Two-Level Binary Growth (Continued)

Parameter	Estimate	S.E.	Est./S.E.	Two-Tailed
				P-Value
Variances				
ib	0.935	0.285	3.278	0.001
sb	0.165	0.058	2.842	0.004
qb	0.002	0.001	2.071	0.038
Residual Variano	ces			
bkthin1f	0.000	0.000	999.000	999.000
bkthin1s	0.000	0.000	999.000	999.000
bkthin2s	0.000	0.000	999.000	999.000

Parameter	Estimate	S.E.	Est./S.E.	Two-Tailed
				P-Value
bkthin3s	0.000	0.000	999.000	999.000
bkthin4s	0.000	0.000	999.000	999.000
bkthin5s	0.000	0.000	999.000	999.000
bkthin6s	0.000	0.000	999.000	999.000
bkthin7s	0.000	0.000	999.000	999.000

91

Two-Level Multiple Indicator Growth

Within (individual variation)

Between (classroom variation)

Multilevel Multiple Indicator Growth In Other Software

Treated as 4-level analysis:

- Level 1: Indicators
- Level 2: Time points
- Level 3: Individuals
- Level 4: Clusters

This approach is

- Cumbersome requiring dummy variables to indicate indicators
- Limiting in that only intercepts/thresholds and not loadings are allowed to vary across indicators (Rasch model for categorical outcomes).

93

Multilevel Multiple Indicator Growth In Other Software (Continued)

In contrast, Mplus treats such analysis as two-level modeling with

- Within: Indicators, time points, individuals (doubly wide format: indicators x time points)
- Between: Clusters

and allowing intercepts/thresholds and loadings to vary across indicators and, if needed, across time.

Input Excerpts Two-Level Multiple Indicator Growth

```
ANALYSIS: TYPE = TWOLEVEL;
PROCESS = 4;
ESTIMATOR = WLSM;

MODEL: %WITHIN%

fl BY bkthinlf
harmolf (1)
takeplf (2);
f2 BY bkthinls
harmols (1)
takepls (2);
f3 BY bkthin2s
harmo2s (1)
takep2s (2);
```

95

Input Excerpts Two-Level Multiple Indicator Growth (Continued)

```
f4 BY bkthin3s
harmo3s (1)
takep3s (2);
f5 BY bkthin4s
harmo4s (1)
takep4s (2);
f6 BY bkthin5s
harmo5s (1)
takep5s (2);
f7 BY bkthin6s
harmo6s (1)
takep6s (2);
```

```
f8 BY bkthin7s
harmo7s (1)
takep7s (2);
iw sw qw | f1@0 f2@.5 f3@1.5 f4@2.5 f5@3.5 f6@4.5
f7@5.5 f8@6.5;
iw-qw ON male;
%BETWEEN%
f1b BY bkthin1f
harmo1f (3)
takep1f (4);
f2b BY bkthin1s
harmo1s (3)
takep1s (4);
```

Input Excerpts Two-Level Multiple Indicator Growth (Continued)

```
f3b BY bkthin2s
harmo2s (3)
takep2s (4);
f4b BY bkthin3s
harmo3s (3)
takep3s (4);
f5b BY bkthin4s
harmo4s (3)
takep4s (4);
f6b BY bkthin5s
harmo5s (3)
takep5s (4);
```

98

```
f7b BY bkthin6s
harmo6s (3)
takep6s (4);
f8b BY bkthin7s
harmo7s (3)
takep7s (4);
[bkthin1f$1-bkthin7s$1] (11);
[harmo1f$1-harmo7s$1] (12);
[takep1f$1-takep7s$1] (13);
ib sb qb |f1b@0 f2b@.5 f3b@1.5 f4b@2.5 f5b@3.5 f6b@4.5 f7b@5.5 f8b@6.5;
bkthin1f-takep7s@0;

OUTPUT: TECH1 TECH8 STANDARDIZED;
```

99

Output Excerpts Two-Level Multiple Indicator Growth

Tests of Model Fit

Chi-Square Test of Model Fit

 Value
 767.730*

 Degrees of Freedom
 584

 P-Value
 0.0000

* The chi-square value for MLM, MLMV, MLR, ULSMV, WLSM and WLSMV cannot be used for chi-square difference tests. MLM, MLR and WLSM chi-square difference testing is described in the Mplus Technical Appendices at www.statmodel.com. See chi-square difference testing in the index of the Mplus Users' Guide.

Chi-Square Test of Model Fit for the Baseline Model Value 28765.253 Degrees of Freedom 576 0.0000 P-Value CFI/TLI 0.993 CFI TLI 0.994 Number of Free Parameters 40 RMSEA (Root Mean Square Error of Approximation) 0.016 Estimate SRMR (Standardized Root Mean Square Residual) Value for Within 0.065 Value for Between 0.232 101

Parameter	Estimate	S.E.	Est./S.E.	Two-Tailed	
				P-Value	
Within Leve	el				
iw					
f1	1.000	0.000	999.000	999.000	
f2	1.000	0.000	999.000	999.000	
f3	1.000	0.000	999.000	999.000	
f4	1.000	0.000	999.000	999.000	
f5	1.000	0.000	999.000	999.000	
f6	1.000	0.000	999.000	999.000	
f7	1.000	0.000	999.000	999.000	
f8	1.000	0.000	999.000	999.000	102

Parameter	Estimate	S.E.	Est./S.E.	Two-Tailed
				P-Value
sw				
f1	0.000	0.000	999.000	999.000
f2	0.500	0.000	999.000	999.000
f3	1.500	0.000	999.000	999.000
f4	2.500	0.000	999.000	999.000
f5	3.500	0.000	999.000	999.000
f6	4.500	0.000	999.000	999.000
f7	5.500	0.000	999.000	999.000
f8	6.500	0.000	999.000	999.000
dm				
f1	0.000	0.000	999.000	999.000

Output Excerpts Two-Level Multiple Indicator Growth (Continued)

Parameter	Estimate	S.E.	Est./S.E.	Two-Tailed
				P-Value
f2	0.250	0.000	999.000	999.000
f3	2.250	0.000	999.000	999.000
f4	6.250	0.000	999.000	999.000
f5	12.250	0.000	999.000	999.000
f6	20.250	0.000	999.000	999.000
f7	30.250	0.000	999.000	999.000
f8	42.250	0.000	999.000	999.000
f1 BY				
bkthin1f	1.000	0.000	999.000	999.000
harmo1f	1.143	0.088	12.932	0.000

Estimate	S.E.	Est./S.E.	Two-Tailed	
			P-Value	
			_	
1.143	0.088	12.932	0.000	
0.993	0.067	14.782	0.000	
1.000	0.000	999.000	999.000	
1.143	0.088	12.932	0.000	
0.993	0.067	14.782	0.000	
1.000	0.000	999.000	999.000	
1.143	0.088	12.932	0.000	
0.993	0.067	14.782	0.000	10:
	1.143 0.993 1.000 1.143 0.993 1.000 1.143	1.143	1.143 0.088 12.932 0.993 0.067 14.782 1.000 0.000 999.000 1.143 0.088 12.932 0.993 0.067 14.782 1.000 0.000 999.000 1.143 0.088 12.932	P-Value 1.143 0.088 12.932 0.000 0.993 0.067 14.782 0.000 1.000 0.000 999.000 999.000 1.143 0.088 12.932 0.000 0.993 0.067 14.782 0.000 1.000 0.000 999.000 999.000 1.143 0.088 12.932 0.000

Output Excerpts Two-Level Multiple Indicator Growth (Continued)

Parameter	Estimate	S.E.	Est./S.E.	Two-Tailed	
				P-Value	
f7 BY					
bkthin6s	1.000	0.000	999.000	999.000	
harmo6s	1.143	0.088	12.932	0.000	
takep6s	0.993	0.067	14.782	0.000	
f8 BY					
bkthin7s	1.000	0.000	999.000	999.000	
harmo7s	1.143	0.088	12.932	0.000	
takep7s	0.993	0.067	14.782	0.000	
iw ON					
male	1.449	0.175	8.258	0.000	

Parameter	Estimate	S.E.	Est./S.E.	Two-Tailed	
				P-Value	
sw ON					
male	-0.091	0.129	-0.705	0.481	
qw ON					
male	0.011	0.021	0.553	0.580	
sw WITH					
iw	-0.394	0.141	-2.793	0.005	
qw WITH					
iw	0.017	0.020	0.835	0.404	
SW	-0.031	0.016	-1.973	0.049	
Residual Va	riances				
f1	1.093	0.259	4.221	0.000	4.00
					10

Output Excerpts Two-Level Multiple Indicator Growth (Continued)

Parameter	Estimate	S.E.	Est./S.E.	Two-Tailed
				P-Value
f2	0.739	0.236	3.131	0.002
f3	2.850	0.497	5.731	0.000
f4	1.985	0.561	3.541	0.000
f5	2.255	0.487	4.630	0.000
f6	2.581	0.317	8.150	0.000
f7	2.171	0.383	5.667	0.000
f8	2.332	0.557	4.188	0.000
iw	2.812	0.366	7.679	0.000
SW	0.277	0.110	2.510	0.012
₫w	0.004	0.002	1.797	0.072

Output Excerpts Two-Level
Multiple Indicator Growth (Continued)

Parameter	Estimate	S.E.	Est./S.E.	Two-Tailed
				P-Value
Between Lev	el			
ib				
f1b	1.000	0.000	999.000	999.000
f2b	1.000	0.000	999.000	999.000
f3b	1.000	0.000	999.000	999.000
f4b	1.000	0.000	999.000	999.000
f5b	1.000	0.000	999.000	999.000
f6b	1.000	0.000	999.000	999.000
f7b	1.000	0.000	999.000	999.000
f8b	1.000	0.000	999.000	999.000

rameter	Estimate	S.E.	Est./S.E.	Two-Tailed	
				P-Value	
)					
f1b	0.000	0.000	999.000	999.000	
f2b	0.500	0.000	999.000	999.000	
f3b	1.500	0.000	999.000	999.000	
f4b	2.500	0.000	999.000	999.000	
f5b	3.500	0.000	999.000	999.000	
f6b	4.500	0.000	999.000	999.000	
f7b	5.500	0.000	999.000	999.000	
f8b	6.500	0.000	999.000	999.000	
)					
f1b	0.000	0.000	999.000	999.000	

Parameter	Estimate	S.E.	Est./S.E.	Two-Tailed
				P-Value
f2b	0.250	0.000	999.000	999.000
f3b	2.250	0.000	999.000	999.000
f4b	6.250	0.000	999.000	999.000
f5b	12.250	0.000	999.000	999.000
f6b	20.250	0.000	999.000	999.000
f7b	30.250	0.000	999.000	999.000
f8b	42.250	0.000	999.000	999.000
flb BY				
bkthin1f	1.000	0.000	999.000	999.000
harmolf	1.099	0.145	7.603	0.000
takep1f	0.979	0.126	7.798	0.000

arameter	Estimate	S.E.	Est./S.E.	Two-Tailed	
				P-Value	
2b BY					
bkthin1s	1.000	0.000	999.000	999.000	
harmo1s	1.099	0.145	7.603	0.000	
takep1s	0.979	0.126	7.798	0.000	
3b BY					
bkthin2s	1.000	0.000	999.000	999.000	
harmo2s	1.099	0.145	7.603	0.000	
takep2s	0.979	0.126	7.798	0.000	
4b BY					
bkthin3s	1.000	0.000	999.000	999.000	
harmo3s	1.099	0.145	7.603	0.000	112

Parameter	Estimate	S.E.	Est./S.E.	Two-Tailed	
				P-Value	
takep3s	0.979	0.126	7.798	0.000	
f5b BY					
bkthin4s	1.000	0.000	999.000	999.000	
harmo4s	1.099	0.145	7.603	0.000	
takep4s	0.979	0.126	7.798	0.000	
f6b BY					
bkthin5s	1.000	0.000	999.000	999.000	
harmo5s	1.099	0.145	7.603	0.000	
takep5s	0.979	0.126	7.798	0.000	
f7b BY					
bkthin6s	1.000	0.000	999.000	999.000	113

Estimate	S.E.	Est./S.E.	Two-Tailed	
			P-Value	
5s 1.099	0.145	7.603	0.000	
5s 0.979	0.126	7.798	0.000	
7s 1.000	0.000	999.000	999.000	
7s 1.099	0.145	7.603	0.000	
7s 0.979	0.126	7.798	0.000	
-0.563	0.200	-2.813	0.005	
0.066	0.023	2.927	0.003	
-0.031	0.012	-2.530	0.011	114

Parameter	Estimate	S.E.	Est./S.E.	Two-Tailed
				P-Value
Means				
f1	0.000	0.000	999.000	999.000
f2	0.000	0.000	999.000	999.000
f3	0.000	0.000	999.000	999.000
f4	0.000	0.000	999.000	999.000
f5	0.000	0.000	999.000	999.000
f6	0.000	0.000	999.000	999.000
f7	0.000	0.000	999.000	999.000
f8	0.000	0.000	999.000	999.000
ib	0.000	0.000	999.000	999.000
sb	0.063	0.170	0.371	0.711

Parameter	Estimate	S.E.	Est./S.E.	Two-Tailed	
				P-Value	
dp	-0.014	0.023	-0.615	0.538	
Intercepts					
f1b	0.000	0.000	999.000	999.000	
f2b	0.000	0.000	999.000	999.000	
f3b	0.000	0.000	999.000	999.000	
f4b	0.000	0.000	999.000	999.000	
f5b	0.000	0.000	999.000	999.000	
f6b	0.000	0.000	999.000	999.000	
f7b	0.000	0.000	999.000	999.000	
f8b	0.000	0.000	999.000	999.000	

Parameter	Estimate	S.E.	Est./S.E.	Two-Tailed	
				P-Value	
Thresholds					
bkthin1f\$1	2.364	0.357	6.625	0.000	
bkthin1s\$1	2.364	0.357	6.625	0.000	
bkthin2s\$1	2.364	0.357	6.625	0.000	
bkthin3s\$1	2.364	0.357	6.625	0.000	
bkthin4s\$1	2.364	0.357	6.625	0.000	
bkthin5s\$1	2.364	0.357	6.625	0.000	
bkthin6s\$1	2.364	0.357	6.625	0.000	
bkthin7s\$1	2.364	0.357	6.625	0.000	
harmo1f\$1	1.676	0.353	4.746	0.000	
harmo1s\$1	1.676	0.353	4.746	0.000	117

Parameter	Estimate	S.E.	Est./S.E.	Two-Tailed		
				P-Value		
harmo2s\$1	1.676	0.353	4.746	0.000		
harmo3s\$1	1.676	0.353	4.746	0.000		
harmo4s\$1	1.676	0.353	4.746	0.000		
harmo5s\$1	1.676	0.353	4.746	0.000		
harmo6s\$1	1.676	0.353	4.746	0.000		
harmo7s\$1	1.676	0.353	4.746	0.000		
takep1f\$1	1.612	0.288	5.595	0.000		
takep1s\$1	1.612	0.288	5.595	0.000		
takep2s\$1	1.612	0.288	5.595	0.000		
takep3s\$1	1.612	0.288	5.595	0.000		
takep4s\$1	1.612	0.288	5.595	0.000	118	

Parameter	Estimate	S.E.	Est./S.E.	Two-Tailed
				P-Value
takep5s\$1	1.612	0.288	5.595	0.000
takep6s\$1	1.612	0.288	5.595	0.000
takep7s\$1	1.612	0.288	5.595	0.000
Variances				
ib	1.328	0.515	2.580	0.010
sb	0.258	0.097	2.669	0.008
đp	0.004	0.002	2.298	0.022
Residual Var	iances			
bkthin1f	0.000	0.000	999.000	999.000
bkthin1s	0.000	0.000	999.000	999.000
bkthin2s	0.000	0.000	999.000	999.000

Parameter	Estimate	S.E.	Est./S.E.	Two-Tailed	
				P-Value	
bkthin3s	0.000	0.000	999.000	999.000	
bkthin4s	0.000	0.000	999.000	999.000	
bkthin5s	0.000	0.000	999.000	999.000	
bkthin6s	0.000	0.000	999.000	999.000	
bkthin7s	0.000	0.000	999.000	999.000	
harmolf	0.000	0.000	999.000	999.000	
harmo1s	0.000	0.000	999.000	999.000	
harmo2s	0.000	0.000	999.000	999.000	
harmo3s	0.000	0.000	999.000	999.000	
harmo4s	0.000	0.000	999.000	999.000	
harmo5s	0.000	0.000	999.000	999.000	120

Parameter	Estimate	S.E.	Est./S.E.	Two-Tailed
				P-Value
harmo6s	0.000	0.000	999.000	999.000
harmo7s	0.000	0.000	999.000	999.000
takep1f	0.000	0.000	999.000	999.000
takep1s	0.000	0.000	999.000	999.000
takep2s	0.000	0.000	999.000	999.000
takep3s	0.000	0.000	999.000	999.000
takep4s	0.000	0.000	999.000	999.000
takep5s	0.000	0.000	999.000	999.000
takep6s	0.000	0.000	999.000	999.000
takep7s	0.000	0.000	999.000	999.000
f1b	2.258	0.786	2.871	0.004
	2.200	0.700	2.071	0.001

Output Excerpts Two-Level Multiple Indicator Growth (Continued)

Parameter	Estimate	S.E.	Est./S.E.	Two-Tailed
				P-Value
f2b	2.206	0.821	2.685	0.00
f3b	3.002	1.062	2.827	0.00
f4b	0.377	0.237	1.594	0.11
f5b	0.051	0.117	0.440	0.66
f6b	0.251	0.214	1.176	0.23
f7b	0.543	0.303	1.790	0.07
f8b	-0.468	0.298	-1.567	0.11

Special Multilevel Growth Models

Multiple Indicator Growth Modeling As Two-Level Analysis

127

Multilevel Discrete-Time Survival Analysis

Multilevel Discrete-Time Survival Analysis

- Muthén and Masyn (2005) in Journal of Educational and Behavioral Statistics
- Masyn dissertation
- Continuous-time survival:
 - Asparouhov, Masyn and Muthén (2006)
 - Muthén, B., Asparouhov, T., Boye, M., Hackshaw, M. & Naegeli, A. (2009). Applications of continuous-time survival in latent variable models for the analysis of oncology randomized clinical trial data using Mplus. Technical Report.

Two-Level Latent Transition Analysis

Two-Level Latent Transition Analysis

Asparouhov, T. & Muthen, B. (2008). Multilevel mixture models. In Hancock, G. R., & Samuelsen, K. M. (Eds.). Advances in latent variable mixture models, pp 27 - 51. Charlotte, NC: Information Age Publishing, Inc.

13:

Input For Two-Level LTA

```
CLUSTER = classrm;
        USEVAR = stub1f bkrule1f bkthin1f-tease1f athort1f
                  stub1s bkrule1s bkthin1s-tease1s athort1s;
        CATEGORICAL = stub1f-athort1s;
        MISSING = all (999);
        CLASSES = cf(2) cs(2);
DEFINE:
        CUT stub1f-athort1s(1.5);
ANALYSIS:
        TYPE = TWOLEVEL MIXTURE;
        PROCESS = 2;
MODEL:
        %WITHIN%
        %OVERALL%
        cs#1 ON cf#1;
        %BETWEEN%
        OVERALL%
        cs#1 ON cf#1;
        cs#1*1 cf#1*1;
```

Input For Two-Level LTA (Continued)

```
MODEL cf:
  %BETWEEN%
        %cf#1%
        [stub1f$1-athort1f$1] (1-9);
       %cf#2%
       [stub1f$1-athort1f$1] (11-19);
MODEL cs:
  %BETWEEN%
        %cs#1%
        [stub1s$1-athort1s$1] (1-9);
       [stub1s$1-athort1s$1] (11-19);
OUTPUT:
       TECH1 TECH8;
PLOT:
       TYPE = PLOT3;
        SERIES = stub1f-athort1f(*);
```

137

Output Excerpts Two-Level LTA

Categorical Latent	Variables		
Within Level	Estimates	S.E.	Est./S.E.
CS#1 ON			
CF#1	3.938	0.407	9.669
Means			
CF#1	-0.126	0.189	-0.664
CS#1	-1.514	0.221	-6.838
Between Level			
CS#1 ON			
CF#1	0.411	0.15	2.735
Variances			
CF#1	2.062	0.672	3.067
Residual Variances			
CS#1	0.469	0.237	1.984

Multilevel Growth Mixture Modeling

Input For A Multilevel Growth Mixture Model For LSAY Math Achievement

TITLE: multilevel growth mixture model for LSAY math

achievement

DATA: FILE = lsayfull_Dropout.dat;

VARIABLE: NAMES = female mothed homeres math7 math8 math9 math10

expel arrest hisp black hsdrop expect lunch mstrat

droptht7 schcode;

!lunch = % of students eligible for full lunch

!assistance (9th)

 $! \verb|mstrat| = \verb|ratio| of students to full time math|$

!teachers (9th)

MISSING = ALL (9999); CATEGORICAL = hsdrop;

CLASSES = c (3);

CLUSTER = schcode;

WITHIN = female mothed homeres expect droptht7 expel

arrest hisp black;

BETWEEN = lunch mstrat;

Input For A Multilevel Growth Mixture Model For LSAY Math Achievement (Continued)

DEFINE: lunch = lunch/100;

mstrat = mstrat/1000;

ANALYSIS: TYPE = MIXTURE TWOLEVEL;

ALGORITHM = INTEGRATION;

OUTPUT: SAMPSTAT STANDARDIZED TECH1 TECH8;

PLOT: TYPE = PLOT3;

SERIES = math7-math10 (s);

143

Input For A Multilevel Growth Mixture Model For LSAY Math Achievement (Continued)

MODEL: %WITHIN%

%OVERALL%

iw sw | math7@0 math8@1 math9@2 math10@3;

 $\verb"iw sw c hsdrop ON female hisp black mothed homeres"$

expect droptht7 expel arrest;

%c#1%

math7-math10*20;

iw*13 sw*3;

%c#2%

math7-math10*30;

iw*8 sw*3;

 ${\tt iw}$ ${\tt sw}$ ON female hisp black mothed homeres expect

droptht7 expel arrest;

```
%c#3%
math7-math10*10;
iw*34 sw*2;
iw sw ON female hisp black mothed homeres expect
droptht7 expel arrest;

%BETWEEN%
%OVERALL%
ib sb | math7@0 math8@1 math9@2 math10@3;
sb@0;
ib*1; hsdrop*1; ib WITH hsdrop;
math7-math10@0;
ib sb c hsdrop ON lunch mstrat;
```

145

Input For A Multilevel Growth Mixture Model For LSAY Math Achievement (Continued)

```
%c#1%
[ib*40 sb*1];
[hsdrop$1*-.3];
%c#2%
[ib*40 sb*5];
[hsdrop$1*.9];
%c#3%
[ib*45 sb*3];
[hsdrop$1*1.2];
```

Summary of Data

```
Number of patterns
                             13
   Number of y patterns
                            13
   Number of u patterns
                              1
   Number of clusters
Size (s)
          Cluster ID with Size s
  12
              304
  13
              305
  38
              112
  39
              109
  40
              138
  42
              120
  43
              307
  44
              303
  45
             143
                       146
```

Output Excerpts A Multilevel Growth Mixture Model For LSAY Math Achievement (Continued)

```
46
        101
48
        144
               106
        102
              308
51
52
       136
              118 133 111
53
       140
              142 108 131 122 124
       301
              117 127 137 126
55
       103
               141 123
56
       110
57
       147
58
       121
               105 145 135
       119
59
73
        104
        302
89
        309
94
118
        115
```

THE STANDARD ERRORS OF THE MODEL PARAMETER ESTIMATES MAY NOT BE TRUSTWORTHY FOR SOME PARAMETERS DUE TO A NON-POSITIVE DEFINITE FIRST-ORDER DERIVATIVE PRODUCT MATRIX. THIS MAY BE DUE TO THE STARTING VALUES BUT MAY ALSO BE AN INDICATION OF MODEL NONIDENTIFICATION. THE CONDITION NUMBER IS -0.333D-16. PROBLEM INVOLVING PARAMETER 54.

THE NONIDENTIFICATION IS MOST LIKELY DUE TO HAVING MORE PARAMETERS THAN THE NUMBER OF CLUSTERS. REDUCE THE NUMBER OF PARAMETERS.

THE MODEL ESTIMATION TERMINATED NORMALLY

149

Output Excerpts A Multilevel Growth Mixture Model For LSAY Math Achievement (Continued)

Tests Of Model Fit

	~-			
Logl	Lik	cel	iho	od

H0 Value		-26245.590
H0 Scaling	Correction	1.210
Factor for	MLR	

Information Criteria

Number of Free Parameters	124
Akaike (AIC)	52739.179
Bayesian (BIC)	53453.372
Sample-Size Adjusted BIC $(n* = (n + 2) / 24)$	53059.399

FINAL CLASS COUNTS AND PROPORTIONS OF TOTAL SAMPLE SIZE BASED ON ESTIMATED POSTERIOR PROBABILITIES

Latent Classes

1	664.86988	0.28365
2	452.46710	0.19303
3	1226.66302	0.52332

CLASSIFICATION QUALITY

Entropy 0.625 150

			T	wo-Tailed
arameter	Estimates	S.E.	Est./S.E.	P-Value
tween Level				
tent Class 1				
b				
math7	1.000	0.000	999.000	999.000
math8	1.000	0.000	999.000	999.000
math9	1.000	0.000	999.000	999.000
math10	1.000	0.000	999.000	999.000
b				
math7	0.000	0.000	999.000	999.000
math8	1.000	0.000	999.000	999.000
math9	2.000	0.000	999.000	999.000
math10	3.000	0.000	999.000	999.000
b ON				
lunch	-2.154	1.298	-1.659	0.097
mstrat	-14.197	2.928	-4.849	0.000

Output Excerpts A Multilevel Growth Mixture Model For LSAY Math Achievement (Continued)

			T	wo-Tailed
Parameter	Estimates	S.E.	Est./S.E.	P-Value
sb ON				
lunch	-0.610	0.624	-0.978	0.328
mstrat	0.716	1.065	0.673	0.501
hsdrop ON				
lunch	1.226	0.543	2.256	0.024
mstrat	-0.269	1.455	-0.185	0.854
ib WITH				
hsdrop	-0. 413	0.329	-1.256	0.209
Intercepts				
math7	0.000	0.000	999.000	999.000
math8	0.000	0.000	999.000	999.000
math9	0.000	0.000	999.000	999.000
math10	0.000	0.000	999.000	999.000
ib	40.636	1.672	24.310	0.000
sb	0.951	0.906	1.050	0.294

			Τv	vo-Tailed
Parameter	Estimates	S.E. E	Sst./S.E.	P-Value
Thresholds				
hsdrop\$1	-0.350	0.490	-0.716	0.474
Residual Varian	ces			
hsdrop	0.548	0.217	2.521	0.012
math7	0.000	0.000	999.000	999.000
math8	0.000	0.000	999.000	999.000
math9	0.000	0.000	999.000	999.000
math10	0.000	0.000	999.000	999.000
ib	3.469	1.012	3.429	0.001
sb	0.000	0.000	999.000	999.000

153

Output Excerpts A Multilevel Growth Mixture Model For LSAY Math Achievement (Continued)

			Tv	vo-Tailed
Parameter	Estimates	S.E.	Est./S.E.	P-Value
Within Level				
Categorical Lat	tent Variables			
c#1 ON				
female	-0.801	0.261	-3.067	0.002
hisp	-0.066	0.616	-0.107	0.914
black	0.927	0.386	2.400	0.016
mothed	-0.015	0.107	-0.144	0.886
homeres	-0.058	0.080	-0.720	0.472
expect	-0.251	0.073	-3.425	0.001
droptht7	1.715	0.413	4.151	0.000
expel	0.606	0.389	1.559	0.119
arrest	1.076	0.378	2.845	0.004

			Τv	o-Taile
Parameter	Estimates	S.E.	Est./S.E.	P-Value
c#2 ON				
female	-1.507	0.639	-2.359	0.018
hisp	1.093	0.549	1.990	0.047
black	-1.078	0.715	-1.509	0.131
mothed	-0.229	0.138	-1.660	0.097
homeres	0.121	0.102	1.188	0.235
expect	-0.801	0.261	-3.067	0.002
droptht7	-0.066	0.616	-0.107	0.914
expel	0.927	0.386	2.400	0.016
arrest	-0.015	0.107	-0.144	0.886
Intercepts				
c#1	0.526	0.552	0.953	0.341
c#2	-0.518	0.659	-0.786	0.432

155

Output Excerpts A Multilevel Growth Mixture Model For LSAY Math Achievement (Continued)

			Tv	vo-Tailed
Parameter	Estimates	S.E. E	Est./S.E.	P-Value
Between Level				
c#1 ON				
lunch	1.946	0.851	2.285	0.022
mstrat	-2.408	2.634	-0.914	0.361
c#2 ON				
lunch	0.248	1.450	0.171	0.864
mstrat	-0.810	2.382	-0.340	0.734

Input For Two-Level LTA

```
this is an example of a two-level LTA with a covariate
TITLE:
           and a between-level categorical latent variable
DATA:
           FILE = ex8.dat;
VARIABLE: NAMES ARE u11-u14 u21-u24 x w dumb dum1 dum2 clus;
           USEVARIABLES = u11-w;
           CATEGORICAL = u11-u14 u21-u24;
           CLASSES = cb(2) c1(2) c2(2);
           WITHIN = x;
           BETWEEN = cb w;
           CLUSTER = clus;
ANALYSIS:
           TYPE = TWOLEVEL MIXTURE;
           PROCESSORS = 2;
MODEL:
           %WITHIN%
           %OVERALL%
           c2#1 ON c1#1 x;
           c1#1 ON x;
           %BETWEEN%
           %OVERALL%
           c1#1 ON cb#1;
                                                                 160
```

Input For Two-Level LTA (Continued)

```
c2#1 ON cb#1;
           cb#1 ON w;
MODEL cb:
           %WITHIN%
           %cb#1%
           c2#1 ON c1#1;
MODEL c1:
           %BETWEEN%
           %c1#1%
           [u11$1-u14$1] (1-4);
           %c1#2%
           [u11$1-u14$1] (5-8);
MODEL c2:
           %BETWEEN%
           %c2#1%
           [u21$1-u24$1] (1-4);
           %c2#2%
           [u21$1-u24$1] (5-8);
OUTPUT:
           TECH1 TECH8;
```

161

Growth Modeling

UG Ex. 10.8: Two-Level Growth Model For A Continuous Outcome (Three-Level Analysis) With A Between-Level Categorical Latent Variable

Input For Two-Level Growth Model

```
TITLE: this is an example of a two-level growth model for a continuous outcome (three-level analysis) with a between-level categorical latent variable
```

DATA: FILE = ex5.dat;

VARIABLE: NAMES ARE y1-y4 x w dummy clus;

USEVARIABLES = y1-w;
CLASSES = cb(2);
WITHIN = x;

BETWEEN = cb w; CLUSTER = clus;

ANALYSIS: TYPE = TWOLEVEL MIXTURE RANDOM;

PROCESSORS = 2;

MODEL:

%WITHIN% %OVERALL%

iw sw | y100 y201 y302 y403;

y1-y4 (1); iw sw ON x; s | sw ON iw;

Input For Two-Level Growth Model (Continued)

%BETWEEN%
%OVERALL%
ib sb | y1@0 y2@1 y3@2 y4@3;
y1-y4@0;
ib sb ON w;
cb#1 ON w;
s@0;
%cb#1%
[ib sb s];
%cb#2%
[ib sb s];
OUTPUT: TECH1 TECH8;

165

Growth Mixture Modeling

UG Ex.10.10: Two-Level GMM (Three-Level Analysis) For A Continuous Outcome With A Between-Level Categorical Latent Variable

Input For Two-Level GMM (Three-Level Analysis)

TITLE: this is an example of a two-level GMM (three-level

analysis) for a continuous outcome with a between-

level categorical latent variable

DATA: FILE = ex6.dat;

VARIABLE: NAMES ARE y1-y4 x w dummyb dummy clus;

USEVARIABLES = y1-w;

CLASSES = cb(2) c(2);

WITHIN = x;

BETWEEN = cb w; CLUSTER = clus;

ANALYSIS: TYPE = TWOLEVEL MIXTURE;

PROCESSORS = 2;

MODEL:

%WITHIN% %OVERALL%

iw sw | y100 y201 y302 y403;

iw sw ON x;
c#1 ON x;
%BETWEEN%
%OVERALL%

Input For Two-Level GMM (Continued)

```
ib sb | y1@0 y2@1 y3@2 y4@3;
  ib2 | y1-y4@1;
  y1-y4@0;
  ib sb ON w;
  c#1 ON w;
  sb@0; c#1;
  ib2@0;
  cb#1 ON w;
MODEL c:
   %BETWEEN%
   %c#1%
   [ib sb];
   %c#2%
   [ib sb];
MODEL cb:
  %BETWEEN%
   %cb#1%
  [ib2@0];
   %cb#2%
   [ib2];
OUTPUT: TECH1 TECH8;
```

169

Multilevel Growth Mixture Modeling Example

Baltimore randomized field trial (Muthén, B. & Asparouhov, 2008, pp. 155-157):

- 362 boys in Baltimore public schools observed four times in grades 1-3 in 27 classrooms
- Outcome is aggressive-disruptive behavior
- Classroom-based good behavior intervention in Fall of 1st grade
- Student-level trajectory classes and classroom-level classes

Multilevel Growth Mixture Modeling Example (Continued)

Findings:

- 3 student-level trajectory classes, 2 classroom-level classes
- In classrooms with a low level of aggressive behavior, students who are in the two highest trajectory classes benefit from the intervention
- In classrooms with a high level of aggression, only students who are in the lowest trajectory class benefit from the intervention

Source: Muthén, B. & Asparouhov, T. (2009). Growth mixture modeling: Analysis with non-Gaussian random effects. In Fitzmaurice, G., Davidian, M., Verbeke, G. & Molenberghs, G. (eds.), Longitudinal Data Analysis, pp. 143-165. Boca Raton: Chapman & Hall/CRC Press.

171

Technical Aspects Of Multilevel Modeling

Numerical Integration

Numerical integration is needed with maximum likelihood estimation when the posterior distribution for the latent variables does not have a closed form expression. This occurs for models with categorical outcomes that are influenced by continuous latent variables, for models with interactions involving continuous latent variables, and for certain models with random slopes such as multilevel mixture models.

When the posterior distribution does not have a closed form, it is necessary to integrate over the density of the latent variables multiplied by the conditional distribution of the outcomes given the latent variables. Numerical integration approximates this integration by using a weighted sum over a set of integration points (quadrature nodes) representing values of the latent variable.

175

Numerical Integration (Continued)

Numerical integration is computationally heavy and thereby time-consuming because the integration must be done at each iteration, both when computing the function value and when computing the derivative values. The computational burden increases as a function of the number of integration points, increases linearly as a function of the number of observations, and increases exponentially as a function of the dimension of integration, that is, the number of latent variables for which numerical integration is needed.

Practical Aspects Of Numerical Integration

- Types of numerical integration available in Mplus with or without adaptive quadrature
 - Standard (rectangular, trapezoid) default with 15 integration points per dimension
 - Gauss-Hermite
 - Monte Carlo
- Computational burden for latent variables that need numerical integration

One or two latent variables
 Three to five latent variables
 Over five latent variables
 Very heavy

177

Practical Aspects Of Numerical Integration (Continued)

- Suggestions for using numerical integration
 - Start with a model with a small number of random effects and add more one at a time
 - Start with an analysis with TECH8 and MITERATIONS=1 to obtain information from the screen printing on the dimensions of integration and the time required for one iteration and with TECH1 to check model specifications
 - With more than 3 dimensions, reduce the number of integration points to 5 or 10 or use Monte Carlo integration with the default of 500 integration points
 - If the TECH8 output shows large negative values in the column labeled ABS CHANGE, increase the number of integration points to improve the precision of the numerical integration and resolve convergence problems
 - Explore using a random subsample

Technical Aspects Of Numerical Integration

Maximum likelihood estimation using the EM algorithm computes in each iteration the posterior distribution for normally distributed latent variables f,

$$[f|y] = [f][y|f]/[y],$$
 (97)

where the marginal density for [y] is expressed by integration

$$[y] = \int [f] [y|f] df.$$
 (98)

• Numerical integration is not needed for normally distributed *y* - the posterior distribution is normal

179

Technical Aspects Of Numerical Integration (Continued)

- Numerical integration needed for:
 - Categorical outcomes u influenced by continuous latent variables f, because [u] has no closed form
 - Latent variable interactions $f \times x$, $f \times y$, $f_1 \times f_2$, where [y] has no closed form, for example

$$[y] = \int [f_1, f_2] [y|f_1, f_2, f_1f_2] df_1 df_2$$
 (99)

- Random slopes, e.g. with two-level mixture modeling

Numerical integration approximates the integral by a sum

$$[y] = \int [f] [y|f] df = \sum_{k=1}^{K} w_k [y|f_k]$$
 (100)

References

Longitudinal Data

- Asparouhov, T. & Muthen, B. (2008). Multilevel mixture models. In Hancock, G. R., & Samuelsen, K. M. (Eds.), Advances in latent variable mixture models, pp. 27-51. Charlotte, NC: Information Age Publishing, Inc.
- Choi, K.C. (2002). Latent variable regression in a three-level hierarchical modeling framework: A fully Bayesian approach. Doctoral dissertation, University of California, Los Angeles.
- Fitzmaurice, Laird, & Ware (2004). Applied longitudinal analysis. Wiley & Sons.
- Fitzmaurice, Davidian, Verbeke, & Molenberghs (2009). Longitudinal Data Analysis. Chapman & Hall/CRC Press.
- Khoo, S.T. & Muthén, B. (2000). Longitudinal data on families: Growth modeling alternatives. Multivariate applications in substance use research, J. Rose, L. Chassin, C. Presson & J. Sherman (eds.), Hillsdale, N.J.: Erlbaum, pp. 43-78. (#79)
- Masyn, K. E. (2003). Discrete-time survival mixture analysis for single and recurrent events using latent variables. Doctoral dissertation, University of California, Los Angeles.

1 2

References (Continued)

- Muthén, B. (1997). Latent variable modeling with longitudinal and multilevel data. In A. Raftery (ed.) <u>Sociological Methodology</u> (pp. 453-480). Boston: Blackwell Publishers.
- Muthén, B. (1997). Latent variable growth modeling with multilevel data. In M. Berkane (ed.), <u>Latent variable modeling with application to causality</u> (149-161), New York: Springer Verlag.
- Muthén, B. & Asparouhov, T. (2009). Growth mixture modeling: Analysis with non-Gaussian random effects. In Fitzmaurice, G., Davidian, M., Verbeke, G. & Molenberghs, G. (eds.), Longitudinal Data Analysis, pp. 143-165. Boca Raton: Chapman & Hall/CRC Press.
- Muthén, B. & Asparouhov, T. (2011). Beyond multilevel regression modeling: Multilevel analysis in a general latent variable framework. In J. Hox & J.K. Roberts (eds), <u>The Handbook of Advanced Multilevel Analysis</u>, pp 15-40. New York: Taylor and Francis.
- Muthén, B. & Masyn, K. (2005). Discrete-time survival mixture analysis. <u>Journal of Educational and Behavioral Statistics</u>, 30, 27-58.
- Raudenbush, S.W. & Bryk, A.S. (2002). <u>Hierarchical linear models:</u> <u>Applications and data analysis methods</u>. Second edition. Newbury Park, CA: Sage Publications.

References (Continued)

Snijders, T. & Bosker, R. (1999). <u>Multilevel analysis</u>. An introduction to basic and advanced multilevel modeling. Thousand Oakes, CA: Sage Publications.

Seltzer, M., Choi, K., Thum, Y.M. (2002). Examining relationships between where students start and how rapidly they progress: Implications for conducting analyses that help illuminate the distribution of achievement within schools. CSE Technical Report 560. CRESST, University of California, Los Angeles.

Numerical Integration

Aitkin, M. A general maximum likelihood analysis of variance components in generalized linear models. <u>Biometrics</u>, 1999, 55, 117-128.

Bock, R.D. & Aitkin, M. (1981). Marginal maximum likelihood estimation of item parameters: Application of an EM algorithm. <u>Psychometrika</u>, 46, 443-459

183

References (Continued)

Schilling, S. & Bock, R.D. (2005). High-dimensional maximum marginal likelihood item factor analysis by adaptive quadrature. <u>Psychometrika</u>, 70(3), p533-555.

Skrondal, A. & Rabe-Hesketh, S. (2004). Generalized latent variable modeling. <u>Multilevel, longitudinal, and structural equation models</u>. London: Chapman Hall.