## Sequence Listing

<110> Botstein, David

Desnoyers,Luc

Ferrara, Napoleone

Fong, Sherman

Gao, Wei-Qiang

Goddard, Audrey

Gurney, Austin L.

Pan, James

Roy, Margaret Ann

Stewart, Timothy A.

Tumas, Daniel

Watanabe, Colin K.

Wood, William I.

<120> Secreted and Transmembrane Polypeptides and Nucleic Acids Encoding the Same

<130> P2930R1C2

<150> 60/095,325

<151> 1998-08-04

<150> 60/112,851

<151> 1998-12-16

<150> 60/113,145

<151> 1998-12-16

<150> 60/113,511

<151> 1998-12-22

<150> 60/115,558

<151> 1999-01-12

<150> 60/115,565

<151> 1999-01-12

<150> 60/115,733

<151> 1999-01-12

<150> 60/119,341

<151> 1999-02-09

- <151> 2000-03-03
- <150> PCT/US99/12252
- <151> 1999-06-02
- <150> PCT/US99/28634
- <151> 1999-12-01
- <150> PCT/US99/28551
- <151> 1999-12-02
- <150> PCT/US00/03565
- <151> 2000-02-11
- <150> PCT/US00/04414
- <151> 2000-02-22
- <150> PCT/US00/05841
- <151> 2000 -03-02
- <150> PCT/US00/08439
- <151> 2000-03-30
- <150> PCT/US00/14941
- <151> 2000-05-30
- <150> PCT/US00/15264
- <151> 2000-06-02
- <150> PCT/US00/32678
- <151> 2000-12-01
- <140> US 09/866,034
- <141> 2001-05-25
- <160> 38
- <210> 1
- <211> 1283
- <212> DNA
- <213> Homo sapiens
- <400> 1
- cggacgcgtg ggacccatac ttgctggtct gatccatgca caaggcgggg 50
- ctgctaggcc tctgtgcccg ggcttggaat tcggtgcgga tggccagctc 100
- cgggatgacc cgccgggacc cgctcgcaaa taaggtggcc ctggtaacgg 150
- cctccaccga cgggatcggc ttcgccatcg cccggcgttt ggcccaggac 200
- ggggcccatg tggtcgtcag cagccggaag cagcagaatg tggaccaggc 250
- ggtggccacg ctgcaggggg aggggctgag cgtgacgggc accgtgtgcc 300
- atgtggggaa ggcggaggac cgggagcggc tggtggccac ggctgtgaag 350

cttcatggag gtatcgatat cctagtctcc aatgctgctg tcaacccttt 400 ctttggaagc ataatggatg tcactgagga ggtgtgggac aagactctgg 450 acattaatgt gaaggcccca gccctgatga caaaggcagt ggtgccagaa 500 atggagaaac gaggaggcgg ctcagtggtg atcgtgtctt ccatagcagc 550 cttcagtcca tctcctggct tcagtcctta caatgtcagt aaaacagcct 600 tgctgggcct gaccaagacc ctggccatag agctggcccc aaggaacatt 650 agggtgaact gcctagcacc tggacttatc aagactagct tcagcaggat 700 gctctqqatq qacaaggaaa aagaggaaag catgaaagaa accctgcgga 750 taagaaggtt aggcgagcca gaggattgtg ctggcatcgt gtctttcctg 800 tgctctgaag atgccagcta catcactggg gaaacagtgg tggtgggtgg 850 aggaaccccg tcccgcctct gaggaccggg agacagccca caggccagag 900 ttgggctcta gctcctggtg ctgttcctgc attcacccac tggcctttcc 950 cacctctqct caccttactg ttcacctcat caaatcagtt ctgccctgtg 1000 aaaagatcca gccttccctg ccgtcaaggt ggcgtcttac tcgggattcc 1050 tgctgttgtt gtggccttgg gtaaaggcct cccctgagaa cacaggacag 1100 gcctgctgac aaggctgagt ctaccttggc aaagaccaag atatttttc 1150 ctgggccact ggtgaatctg aggggtgatg ggagagaagg aacctggagt 1200 ggaaggagca gagttgcaaa ttaacagctt gcaaatgagg tgcaaataaa 1250 atgcagatga ttgcgcggct ttgaaaaaaa aaa 1283

<210> 2

<211> 278

<212> PRT

<213> Homo sapiens

<400> 2

Met His Lys Ala Gly Leu Leu Gly Leu Cys Ala Arg Ala Trp Asn 1 5 10 15

Ser Val Arg Met Ala Ser Ser Gly Met Thr Arg Arg Asp Pro Leu 20 25 30

Ala Asn Lys Val Ala Leu Val Thr Ala Ser Thr Asp Gly Ile Gly

Phe Ala Ile Ala Arg Arg Leu Ala Gln Asp Gly Ala His Val Val
50 55 60

Val Ser Ser Arg Lys Gln Gln Asn Val Asp Gln Ala Val Ala Thr 65 70 75

| Leu Gln Gly G                                      | lu Gly         | Leu Se  | r Val | Thr  | Gly<br>85  | Thr | Val | Cys | His | Val<br>90  |
|----------------------------------------------------|----------------|---------|-------|------|------------|-----|-----|-----|-----|------------|
| Gly Lys Ala G                                      | lu Asp<br>95   | Arg Gl  | u Arg | Leu  | Val<br>100 | Ala | Thr | Ala | Val | Lys<br>105 |
| Leu His Gly G                                      | Sly Ile        | Asp Il  | e Leu | Val  | Ser<br>115 | Asn | Ala | Ala | Val | Asn<br>120 |
| Pro Phe Phe G                                      | ly Ser<br>125  | Ile Me  | t Asp | Val  | Thr<br>130 | Glu | Glu | Val | Trp | Asp<br>135 |
| Lys Thr Leu A                                      | sp Ile<br>140  | Asn Va  | l Lys | Ala  | Pro<br>145 | Ala | Leu | Met | Thr | Lys<br>150 |
| Ala Val Val F                                      | ro Glu<br>155  | Met Gl  | u Lys | Arg  | Gly<br>160 | Gly | Gly | Ser | Val | Val<br>165 |
| Ile Val Ser S                                      | Ser Ile<br>170 | Ala Al  | a Phe | Ser  | Pro<br>175 | Ser | Pro | Gly | Phe | Ser<br>180 |
| Pro Tyr Asn V                                      | al Ser<br>185  | Lys Th  | r Ala | Leu  | Leu<br>190 | Gly | Leu | Thr | Lys | Thr<br>195 |
| Leu Ala Ile (                                      | Slu Leu<br>200 | Ala Pr  | o Arg | Asn  | Ile<br>205 | Arg | Val | Asn | Cys | Leu<br>210 |
| Ala Pro Gly I                                      | eu Ile<br>215  | Lys Th  | r Ser | Phe  | Ser<br>220 | Arg | Met | Leu | Trp | Met<br>225 |
| Asp Lys Glu I                                      | ys Glu<br>230  | Glu Se  | r Met | Lys  | Glu<br>235 | Thr | Leu | Arg | Ile | Arg<br>240 |
| Arg Leu Gly (                                      | Glu Pro<br>245 | Glu As  | p Cys | Ala  | Gly<br>250 | Ile | Val | Ser | Phe | Leu<br>255 |
| Cys Ser Glu A                                      | Asp Ala<br>260 | Ser Ty  | r Ile | Thr  | Gly<br>265 | Glu | Thr | Val | Val | Val<br>270 |
| Gly Gly Gly 7                                      | Thr Pro<br>275 | Ser Ar  | g Leu |      |            |     |     |     |     |            |
| <210> 3<br><211> 21<br><212> DNA<br><213> Artific  | ial Sequ       | ience   |       |      |            |     |     |     |     |            |
| <220><br><223> Synthet:                            | ic Oligo       | onucleo | tide  | Prob | е          |     |     |     |     |            |
| <400> 3<br>gcataatgga to                           | gtcactga       | ag g 21 |       |      |            |     |     |     |     |            |
| <210> 4<br><211> 23<br><212> DNA<br><213> Artific: | ial Sequ       | ıence   |       |      |            |     |     |     |     |            |

<220> <223> Synthetic Oligonucleotide Probe <400> 4 agaacaatcc tgctgaaagc tag 23 <210> 5 <211> 46 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 5 gaaacgagga ggcggctcag tggtgatcgt gtcttccata gcagcc 46 <210> 6 <211> 3121 <212> DNA <213> Homo sapiens <400> 6 gegeeetgag eteegeetee gggeeegata geggeatega gagegeetee 50 gtcgaggacc aggcggcgca gggggccggc gggcgaaagg aggatgaggg 100 ggcgcagcag ctgctgaccc tgcagaacca ggtggcgcgg ctggaggagg 150 agaaccgaga ctttctggct gcgctggagg acgccatgga gcagtacaaa 200 ctgcagagcg accggctgcg tgagcagcag gaggagatgg tggaactgcg 250 gctgcggtta gagctggtgc ggccaggctg ggggggcctg cggctcctga 300 atggcctgcc tcccgggtcc tttgtgcctc gacctcatac agccccctg 350 gggggtgccc acgcccatgt gctgggcatg gtgccgcctg cctgcctccc 400 tggagatgaa gttggctctg agcagagggg agagcaggtg acaaatggca 450 gggaggctgg agctgagttg ctgactgagg tgaacaggct gggaagtggc 500 tcttcagctg cttcagagga ggaagaggag gaggaggagc cgcccaggcg 550 gacettacae etgegeagaa ataggateag caactgeagt eagagggegg 600 gggcacgccc agggagtctg ccagagagga agggcccaga gctttgcctt 650 gaggagttgg atgcagccat tccagggtcc agagcagttg gtgggagcaa 700 ggcccgagtt caggcccgcc aggtcccccc tgccacagcc tcagagtggc 750 ggctggccca ggcccagcag aagatccggg agctggctat caacatccgc 800 atgaaggagg agcttattgg cgagctggtc cgcacaggaa aggcagctca 850 ggccctgaac cgccagcaca gccagcgtat ccgggagctg gagcaggagg 900 cagagcaggt gegggeegag etgagtgaag gecagaggea getgegggag 950 ctcgagggca aggagctcca ggatgctggc gagcggtctc ggctccagga 1000 gttccgcagg agggtcgctg cggcccagag ccaggtgcag gtgctgaagg 1050 agaagaagca ggctacggag cggctggtgt cactgtcggc ccagagtgag 1100 aagcgactgc aggagctcga gcggaacgtg cagctcatgc ggcagcagca 1150 gggacagetg cagaggegge ttegegagga gaeggageag aageggegee 1200 tggaggcaga aatgagcaag cggcagcacc gcgtcaagga gctggagctg 1250 aagcatgagc aacagcagaa gatcctgaag attaagacgg aagagatcgc 1300 ggccttccag aggaagaggc gcagtggcag caacggctct gtggtcagcc 1350 tggaacagca gcagaagatt gaggagcaga agaagtggct ggaccaggag 1400 atggagaagg tgctacagca gcggcgggcg ctggaggagc tgggggggga 1450 gctccacaag cgggaggcca tcctggccaa gaaggaggcc ctgatgcagg 1500 agaagacggg gctggagagc aagcgcctga gatccagcca ggccctcaac 1550 gaggacatcg tgcgagtgtc cagccggctg gagcacctgg agaaggagct 1600 gtccgagaag agcgggcagc tgcggcaggg cagcgcccag agccagcagc 1650 agatccgcgg ggagatcgac agcctgcgcc aggagaagga ctcgctgctc 1700 aagcagcgcc tggagatcga cggcaagctg aggcagggga gtctgctgtc 1750 ccccgaggag gagcggacgc tgttccagtt ggatgaggcc atcgaggccc 1800 tggatgctgc cattgagtat aagaatgagg ccatcacatg ccgccagcgg 1850 gtgcttcggg cctcagcctc gttgctgtcc cagtgcgaga tgaacctcat 1900 ggccaagete agetacetet cateeteaga gaccagagee eteetetgea 1950 agtattttga caaggtggtg acgctccgag aggagcagca ccagcagcag 2000 attgccttct cggaactgga gatgcagctg gaggagcagc agaggctggt 2050 gtactggctg gaggtggccc tggagcggca gcgcctggag atggaccgcc 2100 agetgaeeet geageagaag gageaegage agaacatgea getgeteetg 2150 cagcagagtc gagaccacct cggtgaaggg ttagcagaca gcaggaggca 2200 gtatgaggcc cggattcaag ctctggagaa ggaactgggc cgttacatgt 2250 ggataaacca ggaactgaaa cagaagctcg gcggtgtgaa cgctgtaggc 2300 cacagcaggg gtggggagaa gaggagcctg tgctcggagg gcagacaggc 2350 tcctggaaat gaagatgagc tccacctggc acccgagctt ctctggctgt 2400 ccccctcac tgaggggcc ccccgcaccc gggaggagac gcgggacttg 2450 qtccacqctc cqttaccctt gacctggaaa cgctcgagcc tgtgtggtga 2500 ggagcagggg teeceegagg aactgaggca gegggaggeg getgageece 2550 tggtggggg ggtgcttcct gtgggtgagg caggcctgcc ctggaacttt 2600 gggcctttgt ccaagccccg gcgggaactg cgacgagcca gcccggggat 2650 gattgatgtc cggaaaaacc ccctgtaagc cctcggggca gaccctgcct 2700 tggagggaga ctccgagcct gctgaaaggg gcagctgcct gttttgcttc 2750 tqtqaaqqqc agtccttacc gcacacccta aatccaggcc ctcatctgta 2800 ccctcactqq qatcaacaaa tttgggccat ggcccaaaag aactggaccc 2850 tcatttaaca aaataatatg caaattccca ccacttactt ccatgaagct 2900 qtqqtaccca attqccqcct tgtgtcttgc tcgaatctca ggacaattct 2950 qqtttcaqqc qtaaatqqat gtgcttgtag ttcaggggtt tggccaagaa 3000 tcatcacgaa agggtcggtg gcaaccaggt tgtggtttaa atggtcttat 3050 gtatataggg gaaactggga gactttagga tcttaaaaaa ccatttaata 3100 aaaaaaaatc tttgaaggga c 3121

<210> 7

<211> 830

<212> PRT

<213> Homo sapiens

<400> 7

Met Glu Gln Tyr Lys Leu Gln Ser Asp Arg Leu Arg Glu Gln Gln
1 5 10 15

Glu Glu Met Val Glu Leu Arg Leu Arg Leu Glu Leu Val Arg Pro  $20 \ 25 \ 30$ 

Gly Trp Gly Gly Leu Arg Leu Leu Asn Gly Leu Pro Pro Gly Ser 35 40 45

Phe Val Pro Arg Pro His Thr Ala Pro Leu Gly Gly Ala His Ala 50 55 60

His Val Leu Gly Met Val Pro Pro Ala Cys Leu Pro Gly Asp Glu 65 70 75

Val Gly Ser Glu Gln Arg Gly Glu Gln Val Thr Asn Gly Arg Glu 80 85 90

Ala Gly Ala Glu Leu Leu Thr Glu Val Asn Arg Leu Gly Ser Gly
95 100 105

Ser Ser Ala Ala Ser Glu Glu Glu Glu Glu Glu Glu Glu Pro Pro 110 115 Arg Arg Thr Leu His Leu Arg Arg Asn Arg Ile Ser Asn Cys Ser Gln Arg Ala Gly Ala Arg Pro Gly Ser Leu Pro Glu Arg Lys Gly Pro Glu Leu Cys Leu Glu Glu Leu Asp Ala Ala Ile Pro Gly Ser Arg Ala Val Gly Gly Ser Lys Ala Arg Val Gln Ala Arg Gln Val Pro Pro Ala Thr Ala Ser Glu Trp Arg Leu Ala Gln Ala Gln Gln Lys Ile Arg Glu Leu Ala Ile Asn Ile Arg Met Lys Glu Glu Leu Ile Gly Glu Leu Val Arg Thr Gly Lys Ala Ala Gln Ala Leu Asn Arg Gln His Ser Gln Arg Ile Arg Glu Leu Glu Gln Glu Ala Glu Gln Val Arg Ala Glu Leu Ser Glu Gly Gln Arg Gln Leu Arg Glu 245 Leu Glu Gly Lys Glu Leu Gln Asp Ala Gly Glu Arg Ser Arg Leu Gln Glu Phe Arg Arg Val Ala Ala Ala Gln Ser Gln Val Gln Val Leu Lys Glu Lys Lys Gln Ala Thr Glu Arg Leu Val Ser Leu Ser Ala Gln Ser Glu Lys Arg Leu Gln Glu Leu Glu Arg Asn Val 310 Gln Leu Met Arg Gln Gln Gln Gly Gln Leu Gln Arg Arg Leu Arg Glu Glu Thr Glu Gln Lys Arg Arg Leu Glu Ala Glu Met Ser Lys 335 Arg Gln His Arg Val Lys Glu Leu Glu Leu Lys His Glu Gln Gln Gln Lys Ile Leu Lys Ile Lys Thr Glu Glu Ile Ala Ala Phe Gln 375 Arg Lys Arg Arg Ser Gly Ser Asn Gly Ser Val Val Ser Leu Glu Gln Gln Gln Lys Ile Glu Glu Gln Lys Lys Trp Leu Asp Gln Glu

|     |     |     |     | 395        |     |     |     |     | 400        |     |     |     |     | 405        |
|-----|-----|-----|-----|------------|-----|-----|-----|-----|------------|-----|-----|-----|-----|------------|
| Met | Glu | Lys | Val | Leu<br>410 | Gln | Gln | Arg | Arg | Ala<br>415 | Leu | Glu | Glu | Leu | Gly<br>420 |
| Glu | Glu | Leu | His | Lys<br>425 | Arg | Glu | Ala | Ile | Leu<br>430 | Ala | Lys | Lys | Glu | Ala<br>435 |
| Leu | Met | Gln | Glu | Lys<br>440 | Thr | Gly | Leu | Glu | Ser<br>445 | Lys | Arg | Leu | Arg | Ser<br>450 |
| Ser | Gln | Ala | Leu | Asn<br>455 | Glu | Asp | Ile | Val | Arg<br>460 | Val | Ser | Ser | Arg | Leu<br>465 |
| Glu | His | Leu | Glu | Lys<br>470 | Glu | Leu | Ser | Glu | Lys<br>475 | Ser | Gly | Gln | Leu | Arg<br>480 |
| Gln | Gly | Ser | Ala | Gln<br>485 | Ser | Gln | Gln | Gln | Ile<br>490 | Arg | Gly | Glu | Ile | Asp<br>495 |
| Ser | Leu | Arg | Gln | Glu<br>500 | Lys | Asp | Ser | Leu | Leu<br>505 | Lys | Gln | Arg | Leu | Glu<br>510 |
| Ile | Asp | Gly | Lys | Leu<br>515 | Arg | Gln | Gly | Ser | Leu<br>520 | Leu | Ser | Pro | Glu | Glu<br>525 |
| Glu | Arg | Thr | Leu | Phe<br>530 | Gln | Leu | Asp | Glu | Ala<br>535 | Ile | Glu | Ala | Leu | Asp<br>540 |
| Ala | Ala | Ile | Glu | Tyr<br>545 | Lys | Asn | Glu | Ala | Ile<br>550 | Thr | Cys | Arg | Gln | Arg<br>555 |
|     |     |     | Ala | 560        |     |     |     |     | 565        |     |     |     |     | 570        |
|     |     |     | Lys | 575        |     |     |     |     | 580        |     |     |     |     | 585        |
|     |     |     | Lys | 590        |     |     |     |     | 595        |     |     |     |     | 600        |
|     |     |     | Gln | 605        |     |     |     |     | 610        |     |     |     |     | 615        |
|     |     |     | Gln | 620        |     |     |     |     | 625        |     |     |     |     | 630        |
|     |     |     | Leu | 635        |     |     |     |     | 640        |     |     |     |     | 645        |
|     |     |     | Gln | 650        |     |     |     |     | 655        |     |     |     |     | 660        |
|     |     |     | Glu | 665        |     |     |     |     | 670        |     |     |     |     | 675        |
| Arg | Ile | Gln | Ala | Leu<br>680 |     | Lys | Glu | Leu | Gly<br>685 |     | Tyr | Met | Trp | Ile<br>690 |

| Asn Gln | Glu Leu | Lys<br>695   | Gln | Lys | Leu | Gly | Gly<br>700 | Val | Asn | Ala | Val | Gly<br>705 |
|---------|---------|--------------|-----|-----|-----|-----|------------|-----|-----|-----|-----|------------|
| His Ser | Arg Gly | Gly<br>710   | Glu | Lys | Arg | Ser | Leu<br>715 | Cys | Ser | Glu | Gly | Arg<br>720 |
| Gln Ala | Pro Gly | Asn<br>725   | Glu | Asp | Glu | Leu | His<br>730 | Leu | Ala | Pro | Glu | Leu<br>735 |
| Leu Trp | Leu Sei | Pro<br>740   | Leu | Thr | Glu | Gly | Ala<br>745 | Pro | Arg | Thr | Arg | Glu<br>750 |
| Glu Thr | Arg Ası | Leu<br>755   | Val | His | Ala | Pro | Leu<br>760 | Pro | Leu | Thr | Trp | Lys<br>765 |
| Arg Ser | Ser Le  | 770          | Gly | Glu | Glu | Gln | Gly<br>775 | Ser | Pro | Glu | Glu | Leu<br>780 |
| Arg Gln | Arg Gl  | 1 Ala<br>785 | Ala | Glu | Pro | Leu | Val<br>790 | Gly | Arg | Val | Leu | Pro<br>795 |
| Val Gly | Glu Ala | Gly<br>800   | Leu | Pro | Trp | Asn | Phe<br>805 | Gly | Pro | Leu | Ser | Lys<br>810 |
| Pro Arg | Arg Gl  | ı Leu<br>815 | Arg | Arg | Ala | Ser | Pro<br>820 | Gly | Met | Ile | Asp | Val<br>825 |
| Arg Lys | Asn Pr  | Leu          |     |     |     |     |            |     |     |     |     |            |

<210> 8 <211> 662 <212> DNA <213> Homo sapiens

<400> 8
attetectag ageatetttg gaageatgag gecacgatge tgeatetttg 50

ctettgtetg etggataaca gtetteetee teeagtgtte aaaaggaact 100
acagaegete etgttggete aggaetgtgg etgtgeeage egacaeceag 150
gtgtgggaac aagatetaca accetteaga geagtgetgt tatgatgatg 200
ccatettate ettaaaggag accegeeget gtggeteeae etgeacette 250
tggeeetget ttgagetetg etgteeegag tettttggee eecageagaa 300
gtttettgtg aagttgaggg ttetgggtat gaagteteag tgteacettat 350
cteecatete eeggagetgt accaggaaca ggaggeacgt eetgtaecea 400
taaaaaecee aggeteeact ggeagaegge agacaagggg agaagaacg 450
aageagetgg acateggaga etacagttga actteggaga gaageaactt 500
gaetteagag ggatggetea atgacatage ttttggagagg ageceagetg 550

gggatggcca gacttcaggg gaagaatgcc ttcctgcttc atcccctttc 600 cagctcccct tcccgctgag agccactttc atcggcaata aaatccccca 650 catttaccat ct 662

<210> 9

<211> 125

<212> PRT

<213> Homo sapiens

<400> 9

Met Arg Pro Arg Cys Cys Ile Leu Ala Leu Val Cys Trp Ile Thr 1 5 10 15

Val Phe Leu Leu Gln Cys Ser Lys Gly Thr Thr Asp Ala Pro Val

Gly Ser Gly Leu Trp Leu Cys Gln Pro Thr Pro Arg Cys Gly Asn 35 40 45

Lys Ile Tyr Asn Pro Ser Glu Gln Cys Cys Tyr Asp Asp Ala Ile 50 55 60

Leu Ser Leu Lys Glu Thr Arg Arg Cys Gly Ser Thr Cys Thr Phe 65 70 75

Trp Pro Cys Phe Glu Leu Cys Cys Pro Glu Ser Phe Gly Pro Gln 80 85 90

Gln Lys Phe Leu Val Lys Leu Arg Val Leu Gly Met Lys Ser Gln 95 100 105

Cys His Leu Ser Pro Ile Ser Arg Ser Cys Thr Arg Asn Arg Arg

His Val Leu Tyr Pro 125

<210> 10

<211> 1942

<212> DNA

<213> Homo sapiens

<400> 10

 ttagtggtcc gcccacgcg ggtcgccggc cggcccagga tgggcgctgg 400 caacceggge regegeeege egetgetace cetgegeeeg etgegageee 450 ggcgtccggc ccgcgccctg cgctcatgga cggcggctcc cggctggcgg 500 cggcgcgccc ccgggctgtg aatgcgactc gcccctcggc cgcgctcccc 550 gcccgcccgc ccgccgggac gtggtagggg atgcccagct ccactgcgat 600 ggcagttggc gcgctctcca gttccctcct ggtcacctgc tgcctgatgg 650 tggctctgtg cagtccgagc atcccgctgg agaagctggc ccaggcacca 700 gagcagccgg gccaggagaa gcgtgagcac gccactcggg acggcccggg 750 gcgggtgaac gagctcgggc gcccggcgag ggacgagggc ggcagcggcc 800 gggactggaa gagcaagagc ggccgtgggc tcgccggccg tgagccgtgg 850 agcaagctga agcaggcctg ggtctcccag ggcggggggg ccaaggccgg 900 ggatctgcag gtccggcccc gcggggacac cccgcaggcg gaagccctgg 950 ccgcagccgc ccaggacgcg attggcccgg aactcgcgcc cacgcccgag 1000 ccacccgagg agtacgtgta cccggactac cgtggcaagg gctgcgtgga 1050 cgagagcggc ttcgtgtacg cgatcgggga gaagttcgcg ccgggcccct 1100 eggeetgeee gtgeetgtge acegaggagg ggeegetgtg egegeageee 1150 gagtgcccga ggctgcaccc gcgctgcatc cacgtcgaca cgagccagtg 1200 ctgcccgcag tgcaaggaga ggaagaacta ctgcgagttc cggggcaaga 1250 cctatcagac tttggaggag ttcgtggtgt ctccatgcga gaggtgtcgc 1300 tgtgaagcca acggtgaggt gctatgcaca gtgtcagcgt gtccccagac 1350 ggagtgtgtg gaccctgtgt acgagcctga tcagtgctgt cccatctgca 1400 aaaatggtcc aaactgcttt gcagaaaccg cggtgatccc tgctggcaga 1450 gaagtgaaga ctgacgagtg caccatatgc cactgtactt atgaggaagg 1500 cacatggaga atcgagcggc aggccatgtg cacgagacat gaatgcaggc 1550 aaatgtagac gcttcccaga acacaaactc tgactttttc tagaacattt 1600 tactgatgtg aacattctag atgactctgg gaactatcag tcaaagaaga 1650 cttttgatga ggaataatgg aaaattgttg gtacttttcc ttttcttgat 1700 aacagttact acaacagaag gaaatggata tatttcaaaa catcaacaag 1750 aactttgggc ataaaatcct tctctaaata aatgtgctat tttcacagta 1800

<210> 11

<211> 325

<212> PRT

<213> Homo sapiens

<400> 11

Met Pro Ser Ser Thr Ala Met Ala Val Gly Ala Leu Ser Ser Ser

Leu Leu Val Thr Cys Cys Leu Met Val Ala Leu Cys Ser Pro Ser 20 25 30

Ile Pro Leu Glu Lys Leu Ala Gln Ala Pro Glu Gln Pro Gly Gln 35 40 45

Glu Lys Arg Glu His Ala Thr Arg Asp Gly Pro Gly Arg Val Asn
50 55 60

Glu Leu Gly Arg Pro Ala Arg Asp Glu Gly Gly Ser Gly Arg Asp
65 70 75

Trp Lys Ser Lys Ser Gly Arg Gly Leu Ala Gly Arg Glu Pro Trp 80 85 90

Ser Lys Leu Lys Gln Ala Trp Val Ser Gln Gly Gly Ala Lys 95 100 105

Ala Gly Asp Leu Gln Val Arg Pro Arg Gly Asp Thr Pro Gln Ala 110 115 120

Glu Ala Leu Ala Ala Ala Gln Asp Ala Ile Gly Pro Glu Leu 125 130 135

Ala Pro Thr Pro Glu Pro Pro Glu Glu Tyr Val Tyr Pro Asp Tyr
140 145 150

Arg Gly Lys Gly Cys Val Asp Glu Ser Gly Phe Val Tyr Ala Ile 155 160 165

Gly Glu Lys Phe Ala Pro Gly Pro Ser Ala Cys Pro Cys Leu Cys 170 175 180

Thr Glu Glu Gly Pro Leu Cys Ala Gln Pro Glu Cys Pro Arg Leu 185 190 195

His Pro Arg Cys Ile His Val Asp Thr Ser Gln Cys Cys Pro Gln 200 205 210

Cys Lys Glu Arg Lys Asn Tyr Cys Glu Phe Arg Gly Lys Thr Tyr 215 220 225

Gln Thr Leu Glu Glu Phe Val Val Ser Pro Cys Glu Arg Cys Arg

|                             |              |         |      | 230        |      |      |      |      | 235        |       |     |      |     | 240        |
|-----------------------------|--------------|---------|------|------------|------|------|------|------|------------|-------|-----|------|-----|------------|
| Cys (                       | Glu          | Ala     | Asn  | Gly<br>245 | Glu  | Val  | Leu  | Cys  | Thr<br>250 | Val   | Ser | Ala  | Cys | Pro<br>255 |
| Gln '                       | Thr          | Glu     | Сув  | Val<br>260 | Asp  | Pro  | Val  | Tyr  | Glu<br>265 | Pro   | Asp | Gln  | Cys | Cys<br>270 |
| Pro                         | Ile          | Cys     | Lys  | Asn<br>275 | Gly  | Pro  | Asn  | Cys  | Phe<br>280 | Ala   | Glu | Thr  | Ala | Val<br>285 |
| Ile                         | Pro          | Ala     | Gly  | Arg<br>290 | Glu  | Val  | Lys  | Thr  | Asp<br>295 | Glu   | Cys | Thr  | Ile | Cys<br>300 |
| His                         | Cys          | Thr     | Tyr  | Glu<br>305 | Glu  | Gly  | Thr  | Trp  | Arg<br>310 | Ile   | Glu | Arg  | Gln | Ala<br>315 |
| Met                         | Cys          | Thr     | Arg  | His<br>320 | Glu  | Суѕ  | Arg  | Gln  | Met<br>325 |       |     |      |     |            |
| <210><211><211><212><213>   | 24<br>DN     |         | cial | Seq        | uenc | e    |      |      |            |       |     |      |     |            |
| <220><br><223>              |              | nthe    | tic  | Olig       | onuc | leot | ide  | Prob | e          |       |     |      |     |            |
| <400><br>gagg               |              | cgc     | tgtg | aagc       | ca a | cgg  | 24   |      |            |       |     |      |     |            |
| <210><211><212><212><213>   | 24<br>DN     |         | cial | Seq        | uenc | e    |      |      |            |       | •   |      |     |            |
| <220><br><223>              |              | nthe    | tic  | Olig       | onuc | leot | ide  | Prob | e          |       |     |      |     |            |
| <400><br>cgct               |              | ttc     | tcca | .tgtg      | cc t | tcc  | 24   |      |            |       |     |      |     |            |
| <210><211><211><212><213>   | 45<br>DN     | Α       | cial | Seg        | uenc | e    |      |      |            |       |     |      |     |            |
| <220><br><223>              |              | nthe    | tic  | Olig       | onuc | leot | ide  | Prob | e          |       |     |      |     |            |
| <400><br>gacc               | 14<br>ggag   | tgt     | gtgg | jacco      | tg t | gtac | gago | c tg | atca       | .gtgc | tgt | cc 4 | 5   |            |
| <210 × <211 × <212 × <213 × | > 15<br>> DN | 87<br>A | apie | ns         |      |      |      |      |            |       |     |      |     |            |

<400> 15 cagccacaga cgggtcatga gcgcggtatt actgctggcc ctcctggggt 50 tcatcctccc actgccagga gtgcaggcgc tgctctgcca gtttgggaca 100 gttcagcatg tgtggaaggt gtccgaccta ccccggcaat ggacccctaa 150 gaacaccage tgcgacageg gettggggtg ccaggacacg ttgatgetca 200 ttgagagcgg accccaagtg agcctggtgc tctccaaggg ctgcacggag 250 gccaaggacc aggagccccg cgtcactgag caccggatgg gccccggcct 300 ctccctgatc tcctacacct tcgtgtgccg ccaggaggac ttctgcaaca 350 acctcgttaa ctccctcccg ctttgggccc cacagccccc agcagaccca 400 ggatccttga ggtgcccagt ctgcttgtct atggaaggct gtctggaggg 450 gacaacagaa gagatctgcc ccaaggggac cacacactgt tatgatggcc 500 tcctcaggct caggggagga ggcatcttct ccaatctgag agtccaggga 550 tgcatgccc agccaggttg caacctgctc aatgggacac aggaaattgg 600 gcccgtgggt atgactgaga actgcaatag gaaagatttt ctgacctgtc 650 atcgggggac caccattatg acacacggaa acttggctca agaacccact 700 gattggacca catcgaatac cgagatgtgc gaggtggggc aggtgtgtca 750 ggagacgctg ctgctcatag atgtaggact cacatcaacc ctggtgggga 800 caaaaggctg cagcactgtt ggggctcaaa attcccagaa gaccaccatc 850 cactcagccc ctcctggggt gcttgtggcc tcctataccc acttctgctc 900 ctcggacctg tgcaatagtg ccagcagcag cagcgttctg ctgaactccc 950 tecetectea agetgeeect gteceaggag aceggeagtg tectacetgt 1000 gtgcagcccc ttggaacctg ttcaagtggc tccccccgaa tgacctgccc 1050 caggggcgcc actcattgtt atgatgggta cattcatctc tcaggaggtg 1100 ggctgtccac caaaatgagc attcagggct gcgtggccca accttccagc 1150 ttcttgttga accacaccag acaaatcggg atcttctctg cgcgtgagaa 1200 gcgtgatgtg cagcctcctg cctctcagca tgagggaggt ggggctgagg 1250 gcctggagtc tctcacttgg ggggtggggc tggcactggc cccagcgctg 1300 tggtggggag tggtttgccc ttcctgctaa ctctattacc cccacgattc 1350 ttcaccgctg ctgaccaccc acactcaacc tccctctgac ctcataacct 1400 aatggccttg gacaccagat tettteccat tetgtecatg aatcatette 1450 cccacacaca atcattcata tctactcacc taacagcaac actggggaga 1500 gcctggagca tccggacttg ccctatggga gaggggacgc tggaggagtg 1550 gctgcatgta tctgataata cagaccctgt cctttca 1587

<210> 16 <211> 437 <212> PRT <213> Homo sapiens

<400> 16

Met Ser Ala Val Leu Leu Leu Ala Leu Leu Gly Phe Ile Leu Pro 1 5 10 15

Leu Pro Gly Val Gln Ala Leu Leu Cys Gln Phe Gly Thr Val Gln 20 25 30

His Val Trp Lys Val Ser Asp Leu Pro Arg Gln Trp Thr Pro Lys 35 40 45

Asn Thr Ser Cys Asp Ser Gly Leu Gly Cys Gln Asp Thr Leu Met 50 55 60

Leu Ile Glu Ser Gly Pro Gln Val Ser Leu Val Leu Ser Lys Gly 65 70 75

Cys Thr Glu Ala Lys Asp Gln Glu Pro Arg Val Thr Glu His Arg 80 85 90

Met Gly Pro Gly Leu Ser Leu Ile Ser Tyr Thr Phe Val Cys Arg 95 100 105

Gln Glu Asp Phe Cys Asn Asn Leu Val Asn Ser Leu Pro Leu Trp

Ala Pro Gln Pro Pro Ala Asp Pro Gly Ser Leu Arg Cys Pro Val

Cys Leu Ser Met Glu Gly Cys Leu Glu Gly Thr Thr Glu Glu Ile 140 145 150

Cys Pro Lys Gly Thr Thr His Cys Tyr Asp Gly Leu Leu Arg Leu 155 160 165

Arg Gly Gly Gle Phe Ser Asn Leu Arg Val Gln Gly Cys Met
170 175 180

Pro Gln Pro Gly Cys Asn Leu Leu Asn Gly Thr Gln Glu Ile Gly
185 190 195

Pro Val Gly Met Thr Glu Asn Cys Asn Arg Lys Asp Phe Leu Thr 200 205 210

Cys His Arg Gly Thr Thr Ile Met Thr His Gly Asn Leu Ala Gln 215 220 225

Glu Pro Thr Asp Trp Thr Thr Ser Asn Thr Glu Met Cys Glu Val

|     |     |     |     | 230        |     |     |     |     | 235        |     |     |     |     | 240        |
|-----|-----|-----|-----|------------|-----|-----|-----|-----|------------|-----|-----|-----|-----|------------|
| Gly | Gln | Val | Cys | Gln<br>245 | Glu | Thr | Leu | Leu | Leu<br>250 | Ile | Asp | Val | Gly | Leu<br>255 |
| Thr | Ser | Thr | Leu | Val<br>260 | Gly | Thr | Lys | Gly | Cys<br>265 | Ser | Thr | Val | Gly | Ala<br>270 |
| Gln | Asn | Ser | Gln | Lys<br>275 | Thr | Thr | Ile | His | Ser<br>280 | Ala | Pro | Pro | Gly | Val<br>285 |
| Leu | Val | Ala | Ser | Tyr<br>290 | Thr | His | Phe | Cys | Ser<br>295 | Ser | Asp | Leu | Cys | Asn<br>300 |
| Ser | Ala | Ser | Ser | Ser<br>305 | Ser | Val | Leu | Leu | Asn<br>310 | Ser | Leu | Pro | Pro | Gln<br>315 |
| Ala | Ala | Pro | Val | Pro<br>320 | Gly | Asp | Arg | Gln | Cys<br>325 | Pro | Thr | Cys | Val | Gln<br>330 |
| Pro | Leu | Gly | Thr | Cys<br>335 | Ser | Ser | Gly | Ser | Pro<br>340 | Arg | Met | Thr | Cys | Pro<br>345 |
| Arg | Gly | Ala | Thr | His<br>350 | Cys | Tyr | Asp | Gly | Tyr<br>355 | Ile | His | Leu | Sér | Gly<br>360 |
| Gly | Gly | Leu | Ser | Thr<br>365 | Lys | Met | Ser | Ile | Gln<br>370 | Gly | Сув | Val | Ala | Gln<br>375 |
| Pro | Ser | Ser | Phe | Leu<br>380 | Leu | Asn | His | Thr | Arg<br>385 | Gln | Ile | Gly | Ile | Phe<br>390 |
| Ser | Ala | Arg | Glu | Lys<br>395 | Arg | Asp | Val | Gln | Pro<br>400 | Pro | Ala | Ser | Gln | His<br>405 |
| Glu | Gly | Gly | Gly | Ala<br>410 | Glu | Gly | Leu | Glu | Ser<br>415 | Leu | Thr | Trp | Gly | Val<br>420 |
| Gly | Leu | Ala | Leu | Ala<br>425 |     | Ala | Leu | Trp | Trp<br>430 | Gly | Val | Val | Cys | Pro<br>435 |
| Ser | Cys |     |     |            |     |     |     |     |            |     |     |     |     |            |
|     |     |     |     |            |     |     |     |     |            |     |     |     |     |            |

<210> 17

<211> 2387

<212> DNA

<213> Homo sapiens

<400> 17
cgacgatgct acgcgcgcc ggctgcctcc tccggacctc cgtagcgcct 50
gccgcggccc tggctgcggc gctgctctcg tcgcttgcgc gctgctctct 100
tctagagccg agggacccgg tggcctcgtc gctcagcccc tatttcggca 150
ccaagactcg ctacgaggat gtcaaccccg tgctattgtc gggccccgag 200

gctccgtggc gggaccctga gctgctggag gggacctgca ccccggtgca 250 getggtegee eteattegee aeggeaeeeg etaeeeeaeg gteaaaeaga 300 tecgcaaget gaggeagetg caegggttge tgeaggeeeg egggteeagg 350 gatggcgggg ctagtagtac cggcagccgc gacctgggtg cagcgctggc 400 cgactggcct ttgtggtacg cggactggat ggacgggcag ctagtagaga 450 agggacggca ggatatgcga cagctggcgc tgcgtctggc ctcgctcttc 500 ccggcccttt tcagccgtga gaactacggc cgcctgcggc tcatcaccag 550 ttccaagcac cgctgcatgg atagcagcgc cgccttcctg caggggctgt 600 ggcagcacta ccaccctggc ttgccgccgc cggacgtcgc agatatggag 650 tttggacctc caacagttaa tgataaacta atgagatttt ttgatcactg 700 tgagaagttt ttaactgaag tagaaaaaaa tgctacagct ctttatcacg 750 tggaagcctt caaaactgga ccagaaatgc agaacatttt aaaaaaagtt 800 gcagctactt tgcaagtgcc agtaaatgat ttaaatgcag atttaattca 850 agtagccttt ttcacctgtt catttgacct ggcaattaaa ggtgttaaat 900 ctccttggtg tgatgttttt gacatagatg atgcaaaggt attagaatat 950 ttaaatgatc tgaaacaata ttggaaaaga ggatatgggt atactattaa 1000 cagtcgatcc agctgcacct tgtttcagga tatctttcag cacttggaca 1050 aagcagttga acagaaacaa aggtctcagc caatttcttc tccagtcatc 1100 ctccagtttg gtcatgcaga gactcttctt ccactgcttt ctctcatggg 1150 ctacttcaaa gacaaggaac ccctaacage gtacaattac aaaaaacaaa 1200 tgcatcggaa gttccgaagt ggtctcattg taccttatgc ctcgaacctg 1250 atatttgtgc tttaccactg tgaaaatgct aagactccta aagaacaatt 1300 ccgagtgcag atgttattaa atgaaaaggt gttacctttg gcttactcac 1350 aagaaactgt ttcattttat gaagatctga agaaccacta caaggacatc 1400 cttcagagtt gtcaaaccag tgaagaatgt gaattagcaa gggctaacag 1450 tacatctgat gaactatgag taactgaaga acatttttaa ttctttagga 1500 atctgcaatg agtgattaca tgcttgtaat aggtaggcaa ttccttgatt 1550 acaggaagct tttatattac ttgagtattt ctgtcttttc acagaaaaac 1600 attgggtttc tctctgggtt tggacatgaa atgtaagaaa agatttttca 1650 cctggagcagc tctcttaagg agaacaaat ctatttagag aaacagctgg 1700 ccctgcaaat gttacagaa atgaaattct tcctacttat ataagaaatc 1750 tcacactgag atagaattgt gatttcataa taacacttga aaagtgctgg 1800 agtaacaaaa tatctcagtt ggaccatcct taacttgatt gaactgtcta 1850 ggaactttac agattgtct gcagttctct ctcttttcc tcaggtagga 1900 cagctctagc atttctaa tcaggaatat tgtggtaagc tgggagtatc 1950 actctggaag aaagtaacat ctccagatga gaatttgaaa caagaaacag 2000 agtgttgtaa aaggacacct tcactgaagc aagtcggaaa gtacaatgaa 2050 aataaatatt tttggtatt atttatgaaa tatttgaaca tttttcaat 2100 aattccttt tacttctagg aagtctcaaa agaccatct aaattatta 2150 atgtttgac aattagcaac aagtcagata gttagaatcg ttcgatttt 2250 atatttcct attatagaa atgtatctt tggttgttg attttctt 2300 cttctttg aaatagtct gagttctgtc aaatgccgtg aaagtatttg 2350 ctataataaa gaaaattctt gtgactttaa aaaaaaa 2387

<210> 18

<211> 487

<212> PRT

<213> Homo sapiens

<400> 18

Met Leu Arg Ala Pro Gly Cys Leu Leu Arg Thr Ser Val Ala Pro 1 5 10 15

Ala Ala Leu Ala Ala Leu Leu Ser Ser Leu Ala Arg Cys
20 25 30

Ser Leu Leu Glu Pro Arg Asp Pro Val Ala Ser Ser Leu Ser Pro 35 40 45

Tyr Phe Gly Thr Lys Thr Arg Tyr Glu Asp Val Asn Pro Val Leu
50 55 60

Leu Ser Gly Pro Glu Ala Pro Trp Arg Asp Pro Glu Leu Leu Glu 65 70 75

Gly Thr Cys Thr Pro Val Gln Leu Val Ala Leu Ile Arg His Gly
80 85 90

Thr Arg Tyr Pro Thr Val Lys Gln Ile Arg Lys Leu Arg Gln Leu 95 100 105

His Gly Leu Leu Gln Ala Arg Gly Ser Arg Asp Gly Gly Ala Ser

|     |     |     |       | 110        |     |       |       |       | 115          |     |       |       |       | 120          |
|-----|-----|-----|-------|------------|-----|-------|-------|-------|--------------|-----|-------|-------|-------|--------------|
| Ser | Thr | Gly | Ser   | Arg<br>125 | Asp | Leu   | Gly   | Ala   | Ala<br>130   | Leu | Ala   | Asp   | Trp   | Pro<br>135   |
| Leu | Trp | Tyr | Ala   | Asp<br>140 | Trp | Met   | Asp   | Gly   | Gln<br>145   | Leu | Val   | Glu   | Lys   | Gly<br>150   |
| Arg | Gln | Asp | Met   | Arg<br>155 | Gln | Leu   | Ala   | Leu   | Arg<br>160   | Leu | Ala   | Ser   | Leu   | Phe<br>165   |
| Pro | Ala | Leu | Phe   | Ser<br>170 | Arg | Glu   | Asn   | Tyr   | Gly<br>175   | Arg | Leu   | Arg   | Leu   | Ile<br>180   |
| Thr | Ser | Ser | Lys   | His<br>185 | Arg | Cys   | Met   | Asp   | Ser<br>190   | Ser | Ala   | Ala   | Phe   | Leu<br>195   |
| Gln | Gly | Leu | Trp   | Gln<br>200 | His | Tyr   | His   | Pro   | Gly<br>205   | Leu | Pro   | Pro   | Pro   | Asp<br>210   |
| Val | Ala | Asp | Met   | Glu<br>215 | Phe | Gly   | Pro   | Pro   | Thr<br>220   | Val | Asn   | Asp   | Lys   | Leu<br>225   |
| Met | Arg | Phe | Phe   | Asp<br>230 | His | Cys   | Glu   | Lys   | Phe<br>235   | Leu | Thr   | Glu   | Val   | Glu<br>240   |
| Lys | Asn | Ala | Thr   | Ala<br>245 | Leu | Tyr   | His   | Val   | Glu<br>250   | Ala | Phe   | Lys   | Thr   | Gly<br>255   |
| Pro | Glu | Met | Gln   | Asn<br>260 | Ile | Leu   | Lys   | Lys   | Val<br>265   | Ala | Ala   | Thr   | Leu   | Gln<br>270   |
| Val | Pro | Val | Asn   | Asp<br>275 |     | Asn   | Ala   | Asp   | Leu<br>280   | Ile | Gln   | Val   | Ala   | Phe<br>285   |
| Phe | Thr | Cys | Ser   | Phe<br>290 |     | Leu   | Ala   | Ile   | Lys<br>295   | Gly | Val   | Lys   | Ser   | Pro<br>300   |
| Trp | Cys | Asp | Val   | Phe<br>305 |     | Ile   | Asp   | Asp   | Ala<br>310   | Lys | Val   | Leu   | Glu   | Tyr<br>315   |
| Leu | Asn | Asp | Leu   | Lys<br>320 | Gln | Туг   | Trp   | Lys   | Arg<br>325   | Gly | Tyr   | Gly   | тyr   | Thr<br>330   |
| Ile | Asn | Ser | Arg   | Ser<br>335 |     | Cys   | Thr   | Leu   | 9he<br>340   | Gln | Asp   | Ile   | Phe   | 345          |
| His | Leu | Asp | Lys   | 350        |     | Glu   | ı Gln | Lys   | 355          |     | Ser   | Glr   | Pro   | 360          |
| Ser | Ser | Pro | Val   | . Ile      |     | ı Glr | n Phe | e Gly | / His        | Ala | Glu   | Thi   | Leu   | 1 Leu<br>375 |
| Pro | Leu | Leu | ı Ser | Leu<br>380 |     | Gly   | ү Туг | Phe   | 2 Lys<br>385 |     | Lys   | Glu   | ı Pro | 390          |
| Thr | Ala | туз | Asr   | 1 Ty:      |     | s Ly: | s Glr | n Met | His<br>400   |     | j Lys | s Phe | e Arg | 9 Ser<br>405 |

Gly Leu Ile Val Pro Tyr Ala Ser Asn Leu Ile Phe Val Leu Tyr 420

His Cys Glu Asn Ala Lys Thr Pro Lys Glu Gln Phe Arg Val Gln 435

Met Leu Leu Asn Glu Lys Val Leu Pro Leu Ala Tyr Ser Gln Glu 445

Thr Val Ser Phe Tyr Glu Asp Leu Lys Asn His Tyr Lys Asp Ile 465

Leu Gln Ser Cys Gln Thr Ser Glu Glu Cys Glu Leu Ala Arg Ala 480

Asn Ser Thr Ser Asp Glu Leu 485

<210> 19 <211> 3554 <212> DNA

<213> Homo sapiens

<400> 19 gggactacaa gccgcgccgc gctgccgctg gcccctcagc aaccctcgac 50 atggcgctga ggcggccacc gcgactccgg ctctgcgctc ggctgcctga 100 cttcttcctg ctgctgcttt tcaggggctg cctgataggg gctgtaaatc 150 tcaaatccag caatcgaacc ccagtggtac aggaatttga aagtgtggaa 200 ctgtcttgca tcattacgga ttcgcagaca agtgacccca ggatcgagtg 250 gaagaaaatt caagatgaac aaaccacata tgtgtttttt gacaacaaaa 300 ttcagggaga cttggcgggt cgtgcagaaa tactggggaa gacatccctg 350 aagatetgga atgtgacaeg gagagaetea geeetttate getgtgaggt 400 cgttgctcga aatgaccgca aggaaattga tgagattgtg atcgagttaa 450 ctgtgcaagt gaagccagtg acccctgtct gtagagtgcc gaaggctgta 500 ccagtaggca agatggcaac actgcactgc caggagagtg agggccaccc 550 ccggcctcac tacagctggt atcgcaatga tgtaccactg cccacggatt 600 ccagagccaa tcccagattt cgcaattctt ctttccactt aaactctgaa 650 acaggcactt tggtgttcac tgctgttcac aaggacgact ctgggcagta 700 ctactgcatt gcttccaatg acgcaggctc agccaggtgt gaggagcagg 750 agatggaagt ctatgacctg aacattggcg gaattattgg gggggttctg 800 gttgtccttg ctgtactggc cctgatcacg ttgggcatct gctgtgcata 850 cagacgtggc tacttcatca acaataaaca ggatggagaa agttacaaga 900 acccagggaa accagatgga gttaactaca teegeaetga egaggaggge 950 gacttcagac acaagtcatc gtttgtgatc tgagacccgc ggtgtggctg 1000 agagcgcaca gagcgcacgt gcacatacet ctgctagaaa ctcctgtcaa 1050 ggcagcgaga gctgatgcac tcggacagag ctagacactc attcagaagc 1100 ttttcgtttt ggccaaagtt gaccactact cttcttactc taacaagcca 1150 catgaataga agaattttcc tcaagatgga cccggtaaat ataaccacaa 1200 ggaagcgaaa ctgggtgcgt tcactgagtt gggttcctaa tctgtttctg 1250 gcctgattcc cgcatgagta ttagggtgat cttaaagagt ttgctcacgt 1300 aaacgcccgt gctgggccct gtgaagccag catgttcacc actggtcgtt 1350 cagcagccac gacagcacca tgtgagatgg cgaggtggct ggacagcacc 1400 agcagcgcat cccggcggga acccagaaaa ggcttcttac acagcagcct 1450 tacttcatcg gcccacagac accaccgcag tttcttctta aaggetctgc 1500 tgatcggtgt tgcagtgtcc attgtggaga agctttttgg atcagcattt 1550 tgtaaaaaca accaaaatca ggaaggtaaa ttggttgctg gaagagggat 1600 cttgcctgag gaaccctgct tgtccaacag ggtgtcagga tttaaggaaa 1650 accttcgtct taggctaagt ctgaaatggt actgaaatat gcttttctat 1700 gggtcttgtt tattttataa aattttacat ctaaattttt gctaaggatg 1750 tattttgatt attgaaaaga aaatttctat ttaaactgta aatatattgt 1800 catacaatgt taaataacct atttttttaa aaaagttcaa cttaaggtag 1850 aagttccaag ctactagtgt taaattggaa aatatcaata attaagagta 1900 ttttacccaa ggaatcctct catggaagtt tactgtgatg ttccttttct 1950 cacacaagtt ttagcctttt tcacaaggga actcatactg tctacacatc 2000 agaccatagt tgcttaggaa acctttaaaa attccagtta agcaatgttg 2050 aaatcagttt gcatctcttc aaaagaaacc tctcaggtta gctttgaact 2100 gcctcttcct gagatgacta ggacagtctg tacccagagg ccacccagaa 2150 geceteagat gtacatacae agatgecagt cageteetgg ggttgegeca 2200 ggcgccccg ctctagctca ctgttgcctc gctgtctgcc aggaggccct 2250 gccatccttg ggccctggca gtggctgtgt cccagtgagc tttactcacg 2300



<sup>&</sup>lt;210> 20

<sup>&</sup>lt;211> 310 <212> PRT

<sup>&</sup>lt;213> Homo sapiens

<sup>&</sup>lt;400> 20

| Met<br>1 | Ala | Leu   | Arg   | Arg<br>5     | Pro   | Pro | Arg   | Leu   | Arg<br>10    | Leu   | Cys   | Ala   | Arg   | Leu<br>15  |
|----------|-----|-------|-------|--------------|-------|-----|-------|-------|--------------|-------|-------|-------|-------|------------|
| Pro      | Asp | Phe   | Phe   | Leu<br>20    | Leu   | Leu | Leu   | Phe   | Arg<br>25    | Gly   | Cys   | Leu   | Ile   | Gly<br>30  |
| Ala      | Val | Asn   | Leu   | Lys<br>35    | Ser   | Ser | Asn   | Arg   | Thr<br>40    | Pro   | Val   | Val   | Gln   | Glu<br>45  |
| Phe      | Glu | Ser   | Val   | Glu<br>50    | Leu   | Ser | Cys   | Ile   | Ile<br>55    | Thr   | Asp   | Ser   | Gln   | Thr<br>60  |
| Ser      | Asp | Pro   | Arg   | Ile<br>65    | Glu   | Trp | Lys   | Lys   | Ile<br>70    | Gln   | Asp   | Glu   | Gln   | Thr<br>75  |
| Thr      | Tyr | Val   | Phe   | Phe<br>80    | Asp   | Asn | Lys   | Ile   | Gln<br>85    | Gly   | Asp   | Leu   | Ala   | Gly<br>90  |
| Arg      | Ala | Glu   | Ile   | Leu<br>95    | Gly   | Lys | Thr   | Ser   | Leu<br>100   | Lys   | Ile   | Trp   | Asn   | Val<br>105 |
| Thr      | Arg | Arg   | Asp   | Ser<br>110   | Ala   | Leu | Tyr   | Arg   | Cys<br>115   | Glu   | Val   | Val   | Ala   | Arg<br>120 |
| Asn      | Asp | Arg   | Lys   | Glu<br>125   | Ile   | Asp | Glu   | Ile   | Val<br>130   | Ile   | Glu   | Leu   | Thr   | Val<br>135 |
| Gln      | Val | Lys   | Pro   | Val<br>140   | Thr   | Pro | Val   | Cys   | Arg<br>145   | Val   | Pro   | Lys   | Ala   | Val<br>150 |
| Pro      | Val | Gly   | Lys   | Met<br>155   | Ala   | Thr | Leu   | His   | Cys<br>160   | Gln   | Glu   | Ser   | Glu   | Gly<br>165 |
| His      | Pro | Arg   | Pro   | His<br>170   | Tyr   | Ser | Trp   | Tyr   | Arg<br>175   | Asn   | Asp   | Val   | Pro   | Leu<br>180 |
| Pro      | Thr | Asp   | Ser   | Arg          |       | Asn | Pro   | Arg   | Phe<br>190   | Arg   | Asn   | Ser   | Ser   | Phe<br>195 |
| His      | Leu | . Asn | . Ser | Glu<br>200   |       | Gly | Thr   | Leu   | Val<br>205   |       | Thr   | Ala   | . Val | His<br>210 |
| Lys      | Asp | Asp   | Ser   | Gly<br>215   |       | Tyr | Туг   | Cys   | Ile<br>220   | Ala   | Ser   | Asr   | a Asp | Ala<br>225 |
| Gly      | Ser | Ala   | a Arg | Cys<br>230   |       | Glu | Gln   | Glu   | Met<br>235   |       | Val   | Туг   | Asp   | Leu<br>240 |
| Asn      | Ile | e Gly | / Gly | / Ile<br>245 |       | Gly | Gly   | Val   | Leu<br>250   |       | . Val | Leu   | ı Ala | Val<br>255 |
| Leu      | Ala | ı Lev | ı Ile | Thr<br>260   |       | Gly | / Ile | Cys   | 265          |       | ту1   | c Aro | g Arc | Gly<br>270 |
| туг      | Phe | e Ile | e Asr | 1 Asn<br>275 |       | Glr | a Asp | Gly   | / Glu<br>280 |       | тул   | r Lys | s Asr | 285        |
| Gly      | Lys | s Pro | Asp   | o Gly        | v Val | Asr | ı Tyr | : Ile | e Arg        | g Thi | Asp   | o Gli | u Glu | ı Gly      |

290 295 300

Asp Phe Arg His Lys Ser Ser Phe Val Ile 305 310

<210> 21

<211> 3437

<212> DNA

<213> Homo sapiens

<400> 21 caggaccagg tettectacg etggageage ggggagaeag ecaccatgea 50 catcctcgtg gtccatgcca tggtgatcct gctgacgctg ggcccgcctc 100 gagccgacga cagcgagttc caggcgctgc tggacatctg gtttccggag 150 gagaagccac tgcccaccgc cttcctggtg gacacatcgg aggaggcgct 200 gctgcttcct gactggctga agctgcgcat gatccgttct gaggtgctcc 250 gcctggtgga cgccgcctg caggacctgg agccgcagca gctgctgctg 300 ttcgtgcagt cgtttggcat ccccgtgtcc agcatgagca aactcctcca 350 gttcctggac caggcagtgg cccacgaccc ccagactctg gagcagaaca 400 tcatggacaa gaattacatg gcccacctgg tggaggtcca gcatgagcgc 450 ggcgcctccg gaggccagac tttccactcc ttgctcacag cctccctgcc 500 gcccgccga gacagcacag aggcacccaa accaaagagc agcccagagc 550 agcccatagg ccagggccgg attcgggtgg ggacccagct ccgggtgctg 600 ggccctgagg acgacctggc tggcatgttc ctccagattt tcccgctcag 650 cccggaccct cggtggcaga gctccagtcc ccgccccgtg gccctcgccc 700 tgcagcaggc cctgggccag gagctggccc gcgtcgtcca gggcagcccc 750 gaggtgccgg gcatcacggt gcgtgtcctg caggccctcg ccaccctgct 800 cagetececa caeggeggtg ceetggtgat gtecatgeac egtagecaet 850 teetggeetg eccgetgetg egecagetet gecagtacea gegetgtgtg 900 ccacaggaca ccggcttctc ctcgctcttc ctgaaggtgc tcctgcagat 950 gctgcagtgg ctggacagcc ctggcgtgga gggcgggccc ctgcgggcac 1000 agctcaggat gcttgccagc caggcctcag ccgggcgcag gctcagtgat 1050 gtgcgagggg ggctcctgcg cctggccgag gccctggcct tccgtcagga 1100 cctggaggtg gtcagctcca ccgtccgtgc cgtcatcgcc accctgaggt 1150 ctggggagca gtgcagcgtg gagccggacc tgatcagcaa agtcctccag 1200 gggctgatcg aggtgaggtc ccccacctg gaggagctgc tgactgcatt 1250 cttctctgcc actgcggatg ctgcctcccc gtttccagcc tgtaagcccg 1300 ttgtggtggt gagctccctg ctgctgcagg aggaggagcc cctggctggg 1350 gggaagccgg gtgcggacgg tggcagcctg gaggccgtgc ggctggggcc 1400 ctcgtcaggc ctcctagtgg actggctgga aatgctggac cccgaggtgg 1450 tragcagety eccegacety cagetrage tyetettete eeggaggaag 1500 ggcaaaggtc aggcccaggt gccctcgttc cgtccctacc tcctgaccct 1550 cttcacgcat cagtccagct ggcccacact gcaccagtgc atccgagtcc 1600 tgctgggcaa gagccgggaa cagaggttcg acccctctgc ctctctggac 1650 ttcctctggg cctgcatcca tgttcctcgc atctggcagg ggcgggacca 1700 gcgcaccccg cagaagcggc gggaggagct ggtgctgcgg gtccagggcc 1750 cggagctcat cagcctggtg gagctgatcc tggccgaggc ggagacgcgg 1800 agccaggacg gggacacagc cgcctgcagc ctcatccagg cccggctgcc 1850 cctgctgctc agctgctgct gtggggacga tgagagtgtc aggaaggtga 1900 cggagcacct gtcaggctgc atccagcagt ggggagacag cgtgctggga 1950 aggegetgee gagacettet eetgeagete tacetacage ggeeggaget 2000 gegggtgeec gtgeetgagg teetaetgea eagegaaggg getgeeagea 2050 gcagcgtctg caagctggac ggactcatcc accgcttcat cacgctcctt 2100 geggacacca gegacteceg ggegttggag aaccgagggg eggatgecag 2150 catggcctgc cggaagctgg cggtggcgca cccgctgctg ctgctcaggc 2200 acctgcccat gatcgcggcg ctcctgcacg gccgcaccca cctcaacttc 2250 caggagttcc ggcagcagaa ccacctgagc tgcttcctgc acgtgctggg 2300 cctgctggag ctgctgcagc cgcacgtgtt ccgcagcgag caccaggggg 2350 cgctgtggga ctgccttctg tccttcatcc gcctgctgct gaattacagg 2400 aagteeteee geeatetgge tgeetteate aacaagtttg tgeagtteat 2450 ccataagtac attacctaca atgccccagc agccatctcc ttcctgcaga 2500 agcacgccga cccgctccac gacctgtcct tcgacaacag tgacctggtg 2550 atgctgaaat ccctccttgc agggctcagc ctgcccagca gggacgacag 2600 gaccgaccga ggcctggacg aagagggcga ggaggagagc tcagccggct 2650

cettgeceet ggteagegte tecetgttea eccetetgae egeggeegag 2700 atggccccct acatgaaacg gctttcccgg ggccaaacgg tggaggatct 2750 gctggaggtt ctgagtgaca tagacgagat gtcccggcgg agacccgaga 2800 tectgagett ettetegace aacetgeage ggetgatgag eteggeegag 2850 gagtgttgcc gcaacctcgc cttcagcctg gccctgcgct ccatgcagaa 2900 cagececage attgeageeg ettteetgee caegtteatg taetgeetgg 2950 gcagccagga ctttgaggtg gtgcagacgg ccctccggaa cctgcctgag 3000 tacgctctcc tgtgccaaga gcacgcggct gtgctgctcc accgggcctt 3050 cctggtgggc atgtacggcc agatggaccc cagcgcgcag atctccgagg 3100 ccctgaggat cctgcatatg gaggccgtga tgtgagcctg tggcagccga 3150 cecceteca ageceeggee egteeegtee eeggggatee tegaggeaaa 3200 geccaggaag egtgggegtt getggtetgt eegaggaggt gagggegeeg 3250 agccctgagg ccaggcaggc ccaggagcaa tactccgagc cctggggtgg 3300 ctccgggccg gccgctggca tcaggggccg tccagcaagc cctcattcac 3350 cttctgggcc acagccctgc cgcggagcgg cggatccccc cgggcatggc 3400 ctgggctggt tttgaatgaa acgacctgaa ctgtcaa 3437

<210> 22

<211> 1029

<212> PRT

<213> Homo sapiens

<400> 22

Met His Ile Leu Val Val His Ala Met Val Ile Leu Leu Thr Leu

1 5 10 15

Gly Pro Pro Arg Ala Asp Asp Ser Glu Phe Gln Ala Leu Leu Asp
20 25 30

Ile Trp Phe Pro Glu Glu Lys Pro Leu Pro Thr Ala Phe Leu Val 35 40 45

Asp Thr Ser Glu Glu Ala Leu Leu Leu Pro Asp Trp Leu Lys Leu
50 55 60

Arg Met Ile Arg Ser Glu Val Leu Arg Leu Val Asp Ala Ala Leu 65 70 75

Gln Asp Leu Glu Pro Gln Gln Leu Leu Leu Phe Val Gln Ser Phe 80 85 90

Gly Ile Pro Val Ser Ser Met Ser Lys Leu Leu Gln Phe Leu Asp 95 100 105

| Gln | Ala   | Val   | Ala   | His<br>110   | Asp   | Pro   | Gln   | Thr   | Leu<br>115   | Glu   | Gln   | Asn   | Ile   | Met<br>120   |
|-----|-------|-------|-------|--------------|-------|-------|-------|-------|--------------|-------|-------|-------|-------|--------------|
| Asp | Lys   | Asn   | Tyr   | Met<br>125   | Ala   | His   | Leu   | Val   | Glu<br>130   | Val   | Gln   | His   | Glu   | Arg<br>135   |
| Gly | Ala   | Ser   | Gly   | Gly<br>140   | Gln   | Thr   | Phe   | His   | Ser<br>145   | Leu   | Leu   | Thr   | Ala   | Ser<br>150   |
| Leu | Pro   | Pro   | Arg   | Arg<br>155   | Asp   | Ser   | Thr   | Glu   | Ala<br>160   | Pro   | Lys   | Pro   | Lys   | Ser<br>165   |
| Ser | Pro   | Glu   | Gln   | Pro<br>170   | Ile   | Gly   | Gln   | Gly   | Arg<br>175   | Ile   | Arg   | Val   | Gly   | Thr<br>180   |
| Gln | Leu   | Arg   | Val   | Leu<br>185   | Gly   | Pro   | Glu   | Asp   | Asp<br>190   | Leu   | Ala   | Gly   | Met   | Phe<br>195   |
| Leu | Gln   | Ile   | Phe   | Pro<br>200   | Leu   | Ser   | Pro   | Asp   | Pro<br>205   | Arg   | Trp   | Gln   | Ser   | Ser<br>210   |
| Ser | Pro   | Arg   | Pro   | Val<br>215   | Ala   | Leu   | Ala   | Leu   | Gln<br>220   | Gln   | Ala   | Leu   | Gly   | Gln<br>225   |
| Glu | Leu   | Ala   | Arg   | Val<br>230   | Val   | Gln   | Gly   | Ser   | Pro<br>235   | Glu   | Val   | Pro   | Gly   | Ile<br>240   |
| Thr | Val   | Arg   | Val   | Leu<br>245   | Gln   | Ala   | Leu   | Ala   | Thr<br>250   | Leu   | Leu   | Ser   | Ser   | Pro<br>255   |
| His | Gly   | Gly   | Ala   | Leu<br>260   | Val   | Met   | Ser   | Met   | His<br>265   | Arg   | Ser   | His   | Phe   | Leu<br>270   |
| Ala | Cys   | Pro   | Leu   | Leu<br>275   | Arg   | Gln   | Leu   | Cys   | Gln<br>280   | Tyr   | Gln   | Arg   | Cys   | Val<br>285   |
| Pro | Gln   | Asp   | Thr   | Gly<br>290   |       | Ser   | Ser   | Leu   | Phe<br>295   | Leu   | Lys   | val   | Leu   | 100<br>300   |
| Gln | Met   | Leu   | Gln   | Trp<br>305   |       | Asp   | Ser   | Pro   | Gly<br>310   | Val   | Glu   | Gly   | Gly   | Pro<br>315   |
|     |       |       |       | 320          |       |       |       |       | 325          | •     |       |       |       | 330          |
| Arg | Arg   | , Lev | ı Ser | 335          |       | Arg   | Gly   | Gly   | 7 Let<br>340 | ı Lei | a Arg | g Lev | ı Ala | 345          |
|     |       |       |       | 350          | )     |       |       |       | 355          | 5     |       |       |       | 7 Val<br>360 |
|     |       |       |       | 365          | 5     |       |       |       | 370          | )     |       |       |       | 7 Val<br>375 |
| Glu | ı Pro | ) Asp | p Let | 1 Ile<br>380 |       | Lys   | : Val | Leu   | 385          | n Gly | y Let | ı Ile | e Glu | ı Val<br>390 |
| Arg | y Sei | r Pro | o His | s Lev        | ı Glu | ı Glı | ı Lev | ı Lev | ı Thi        | c Ala | a Phe | e Phe | e Sei | r Ala        |

|     |     |     |     | 395        |     |     |     |     | 400        |     |     |     |     | 405        |
|-----|-----|-----|-----|------------|-----|-----|-----|-----|------------|-----|-----|-----|-----|------------|
| Thr | Ala | Asp | Ala | Ala<br>410 | Ser | Pro | Phe | Pro | Ala<br>415 | Cys | Lys | Pro | Val | Val<br>420 |
| Val | Val | Ser | Ser | Leu<br>425 | Leu | Leu | Gln | Glu | Glu<br>430 | Glu | Pro | Leu | Ala | Gly<br>435 |
| Gly | Lys | Pro | Gly | Ala<br>440 | Asp | Gly | Gly | Ser | Leu<br>445 | Glu | Ala | Val | Arg | Leu<br>450 |
| Gly | Pro | Ser | Ser | Gly<br>455 | Leu | Leu | Val | Asp | Trp<br>460 | Leu | Glu | Met | Leu | Asp<br>465 |
| Pro | Glu | Val | Val | Ser<br>470 | Ser | Cys | Pro | Asp | Leu<br>475 | Gln | Leu | Arg | Leu | Leu<br>480 |
| Phe | Ser | Arg | Arg | Lys<br>485 | Gly | Lys | Gly | Gln | Ala<br>490 | Gln | Val | Pro | Ser | Phe<br>495 |
| Arg | Pro | Tyr | Leu | Leu<br>500 | Thr | Leu | Phe | Thr | His<br>505 | Gln | Ser | Ser | Trp | Pro<br>510 |
| Thr | Leu | His | Gln | Cys<br>515 | Ile | Arg | Val | Leu | Leu<br>520 | Gly | Lys | Ser | Arg | Glu<br>525 |
| Gln | Arg | Phe | Asp | Pro<br>530 | Ser | Ala | Ser | Leu | Asp<br>535 | Phe | Leu | Trp | Ala | Cys<br>540 |
| Ile | His | Val | Pro | Arg<br>545 | Ile | Trp | Gln | Gly | Arg<br>550 | Asp | Gln | Arg | Thr | Pro<br>555 |
| Gln | Lys | Arg | Arg | Glu<br>560 | Glu | Leu | Val | Leu | Arg<br>565 | Val | Gln | Gly | Pro | Glu<br>570 |
| Leu | Ile | Ser | Leu | Val<br>575 | Glu | Leu | Ile | Leu | Ala<br>580 | Glu | Ala | Glu | Thr | Arg<br>585 |
| Ser | Gln | Asp | Gly | Asp<br>590 | Thr | Ala | Ala | Cys | Ser<br>595 | Leu | Ile | Gln | Ala | Arg<br>600 |
| Leu | Pro | Leu | Leu | Leu<br>605 | Ser | Cys | Cys | Cys | Gly<br>610 | Asp | Asp | Glu | Ser | Val<br>615 |
| Arg | Lys | Val | Thr | Glu<br>620 | His | Leu | Ser | Gly | Cys<br>625 |     | Gln | Gln | Trp | Gly<br>630 |
| Asp | Ser | Val | Leu | Gly<br>635 | Arg | Arg | Cys | Arg | Asp<br>640 |     | Leu | Leu | Gln | Leu<br>645 |
| Tyr | Leu | Gln | Arg | Pro<br>650 |     | Leu | Arg | Val | Pro<br>655 |     | Pro | Glu | Val | Leu<br>660 |
| Leu | His | Ser | Glu | Gly<br>665 |     | Ala | Ser | Ser | Ser<br>670 | Val | Cys | Lys | Leu | Asp<br>675 |
| Gly | Leu | Ile | His | Arg<br>680 |     | Ile | Thr | Leu | Leu<br>685 |     | Asp | Thr | Ser | Asp<br>690 |



990 985 980

Gln Glu His Ala Ala Val Leu Leu His Arg Ala Phe Leu Val Gly

Met Tyr Gly Gln Met Asp Pro Ser Ala Gln Ile Ser Glu Ala Leu 1020 1015 1010

Arg Ile Leu His Met Glu Ala Val Met 1025

<210> 23

<211> 2186

<212> DNA

<213> Homo sapiens

<400> 23

ccgggccatg cagcctcggc cccgcgggcg cccgccgcgc acccgaggag 50 atgaggetee geaatggeae etteetgaeg etgetgetet tetgeetgtg 100 cgccttcctc tcgctgtcct ggtacgcggc actcagcggc cagaaaggcg 150 acgttgtgga cgtttaccag cgggagttcc tggcgctgcg cgatcggttg 200 cacgcagctg agcaggagag cctcaagcgc tccaaggagc tcaacctggt 250 gctggacgag atcaagaggg ccgtgtcaga aaggcaggcg ctgcgagacg 300 gagacggcaa tcgcacctgg ggccgcctaa cagaggaccc ccgattgaag 350 ccgtggaacg gctcacaccg gcacgtgctg cacctgccca ccgtcttcca 400 teacetgeca cacetgetgg ecaaggagag cagtetgeag ecegeggtge 450 gcgtgggcca gggccgcacc ggagtgtcgg tggtgatggg catcccgagc 500 gtgcggcgcg aggtgcactc gtacctgact gacactctgc actcgctcat 550 ctccgagctg agcccgcagg agaaggagga ctcggtcatc gtggtgctga 600 tegeegagae tgaeteacag tacaettegg cagtgacaga gaacateaag 650 geettgttee ceaeggagat ceattetggg eteetggagg teateteace 700 ctcccccac ttctaccctg acttctcccg cctccgagag tcctttgggg 750 accccaagga gagagtcagg tggaggacca aacagaacct cgattactgc 800 tteeteatga tgtacgegea gteeaaagge atetaetaeg tgeagetgga 850 ggatgacatc gtggccaagc ccaactacct gagcaccatg aagaactttg 900 cactgcagca gccttcagag gactggatga teetggagtt eteecagetg 950 ggcttcattg gtaagatgtt caagtcgctg gacctgagcc tgattgtaga 1000 gttcattctc atgttctacc gggacaagcc catcgactgg ctcctggacc 1050 atattctgtg ggtgaaagtc tgcaaccccg agaaggatgc gaagcactgt 1100 gaccggcaga aagccaacct gcggatccgc ttcaaaccgt ccctcttcca 1150 geacgtggge acteactect egetggetgg caagatecag aaactgaagg 1200 acaaagactt tggaaagcag gcgctgcgga aggagcatgt gaacccgcca 1250 gcagaggtga gcacgagcct gaagacatac cagcacttca ccctggagaa 1300 agectacetg egegaggaet tettetggge etteacecet geegeggggg 1350 acttcatccg cttccgcttc ttccaacctc taagactgga gcggttcttc 1400 ttccgcagtg ggaacatcga gcacccggag gacaagctct tcaacacgtc 1450 tgtggaggtg ctgcccttcg acaaccctca gtcagacaag gaggccctgc 1500 aggagggccg caccgccacc ctccggtacc ctcggagccc cgacggctac 1550 ctccagatcg gctccttcta caagggagtg gcagagggag aggtggaccc 1600 agecttegge cetetggaag caetgegeet etegateeag aeggaeteee 1650 ctgtgtgggt gattctgagc gagatcttcc tgaaaaaggc cgactaagct 1700 gegggettet gagggtacce tgtggecage cetgaagece acatttetgg 1750 gggtgtcgtc actgccgtcc ccggagggcc agatacggcc ccgcccaaag 1800 ggttctgcct ggcgtcgggc ttgggccggc ctggggtccg ccgctggccc 1850 ggaggcccta ggagctggtg ctgcccccgc ccgccgggcc gcggaggagg 1900 caggoggece ceacactgtg cetgaggece ggaacegtte geaceeggee 1950 tgccccagtc aggccgtttt agaagagctt ttacttgggc gcccgccgtc 2000 totggogoga acactggaat goatatacta otttatgtgo tgtgtttttt 2050 attcttggat acatttgatt ttttcacgta agtccacata tacttctata 2100 aaaaaaaaa aaaaaaaaa aaaaaaaaa aaaaaa 2186

Leu Cys Ala Phe Leu Ser Leu Ser Trp Tyr Ala Ala Leu Ser Gly
20 25 30

<sup>&</sup>lt;210> 24

<sup>&</sup>lt;211> 548

<sup>&</sup>lt;212> PRT

<sup>&</sup>lt;213> Homo sapiens

<sup>&</sup>lt;400> 24

Met Arg Leu Arg Asn Gly Thr Phe Leu Thr Leu Leu Phe Cys

1 5 10 15

| Gln | Lys | Gly   | Asp   | Val<br>35  | Val   | Asp   | Val   | Tyr   | Gln<br>40  | Arg | Glu   | Phe   | Leu   | Ala<br>45  |
|-----|-----|-------|-------|------------|-------|-------|-------|-------|------------|-----|-------|-------|-------|------------|
| Leu | Arg | Asp   | Arg   | Leu<br>50  | His   | Ala   | Ala   | Glu   | Gln<br>55  | Glu | Ser   | Leu   | Lys   | Arg<br>60  |
| Ser | Lys | Glu   | Leu   | Asn<br>65  | Leu   | Val   | Leu   | Asp   | Glu<br>70  | Ile | Lys   | Arg   | Ala   | Val<br>75  |
| Ser | Glu | Arg   | Gln   | Ala<br>80  | Leu   | Arg   | Asp   | Gly   | Asp<br>85  | Gly | Asn   | Arg   | Thr   | Trp<br>90  |
| Gly | Arg | Leu   | Thr   | Glu<br>95  | Asp   | Pro   | Arg   | Leu   | Lys<br>100 | Pro | Trp   | Asn   | Gly   | Ser<br>105 |
| His | Arg | His   | Val   | Leu<br>110 | His   | Leu   | Pro   | Thr   | Val<br>115 | Phe | His   | His   | Leu   | Pro<br>120 |
| His | Leu | Leu   | Ala   | Lys<br>125 | Glu   | Ser   | Ser   | Leu   | Gln<br>130 | Pro | Ala   | Val   | Arg   | Val<br>135 |
| Gly | Gln | Gly   | Arg   | Thr<br>140 | Gly   | Val   | Ser   | Val   | Val<br>145 | Met | Gly   | Ile   | Pro   | Ser<br>150 |
| Val | Arg | Arg   | Glu   | Val<br>155 | His   | Ser   | Tyr   | Leu   | Thr<br>160 | Asp | Thr   | Leu   | His   | Ser<br>165 |
| Leu | Ile | Ser   | Glu   | Leu<br>170 | Ser   | Pro   | Gln   | Glu   | Lys<br>175 | Glu | Asp   | Ser   | Val   | Ile<br>180 |
| Val | Val | Leu   | Ile   | Ala<br>185 | Glu   | Thr   | Asp   | Ser   | Gln<br>190 | Tyr | Thr   | Ser   | Ala   | Val<br>195 |
| Thr | Glu | Asn   | Ile   | Lys<br>200 | Ala   | Leu   | Phe   | Pro   | Thr<br>205 | Glu | Ile   | His   | Ser   | Gly<br>210 |
| Leu | Leu | Glu   | Val   | Ile<br>215 |       | Pro   | Ser   | Pro   | His<br>220 | Phe | Tyr   | Pro   | Asp   | Phe<br>225 |
| Ser | Arg | Leu   | Arg   | Glu<br>230 |       | Phe   | Gly   | Asp   | Pro<br>235 | Lys | Glu   | Arg   | Val   | Arg<br>240 |
| Trp | Arg | Thr   | Lys   | Gln<br>245 |       | Leu   | Asp   | Tyr   | Cys<br>250 | Phe | Leu   | Met   | Met   | Tyr<br>255 |
| Ala | Gln | Ser   | Lys   | Gly<br>260 |       | туг   | Туг   | Val   | Gln<br>265 | Leu | Glu   | Asp   | Asp   | 1le<br>270 |
| Val | Ala | Lys   | s Pro | 275        |       | Leu   | Ser   | Thr   | Met<br>280 | Lys | : Asn | Phe   | e Ala | Leu<br>285 |
| Gln | Glr | Pro   | Ser   | Glu<br>290 |       | Trp   | Met   | : Ile | 295        | Glu | Ph∈   | Ser   | Glr   | 300        |
| Gly | Phe | e Ile | e Gly | 7 Lys      |       | : Phe | e Lys | s Ser | Leu<br>310 | Asp | Leu   | sei   | c Leu | 315        |
| Val | Gli | ı Phe | e Ile | e Lei      | ı Met | : Phe | е Туз | Arg   | g Asp      | Lys | Pro   | o Ile | e Asp | Trp        |

,

330

325



320

Asp Ala Lys His Cys Asp Arg Gln Lys Ala Asn Leu Arg Ile Arg 350 355 360

Phe Lys Pro Ser Leu Phe Gln His Val Gly Thr His Ser Ser Leu 365 370 375

Ala Gly Lys Ile Gln Lys Leu Lys Asp Lys Asp Phe Gly Lys Gln 380 385 390

Ala Leu Arg Lys Glu His Val Asn Pro Pro Ala Glu Val Ser Thr 395 400 405

Ser Leu Lys Thr Tyr Gln His Phe Thr Leu Glu Lys Ala Tyr Leu
410 415 420

Arg Glu Asp Phe Phe Trp Ala Phe Thr Pro Ala Ala Gly Asp Phe 425 430 435

Ile Arg Phe Arg Phe Phe Gln Pro Leu Arg Leu Glu Arg Phe Phe
440 445 450

Phe Arg Ser Gly Asn Ile Glu His Pro Glu Asp Lys Leu Phe Asn 455 460 465

Thr Ser Val Glu Val Leu Pro Phe Asp Asn Pro Gln Ser Asp Lys
470 475 480

Glu Ala Leu Gln Glu Gly Arg Thr Ala Thr Leu Arg Tyr Pro Arg 485 490 495

Ser Pro Asp Gly Tyr Leu Gln Ile Gly Ser Phe Tyr Lys Gly Val 500 505 510

Ala Glu Gly Glu Val Asp Pro Ala Phe Gly Pro Leu Glu Ala Leu 515 520 525

Arg Leu Ser Ile Gln Thr Asp Ser Pro Val Trp Val Ile Leu Ser 530 535 540

Glu Ile Phe Leu Lys Lys Ala Asp

<210> 25

<211> 43

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 25

tgtaaaacga cggccagtta aatagacctg caattattaa tct 43

```
<210> 26
<211> 41
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
caggaaacag ctatgaccac ctgcacacct gcaaatccat t 41
<210> 27
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 27
actcgggatt cctgctgtt 19
<210> 28
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 28
aggeetttae ceaaggeeae aac 23
<210> 29
<211> 19
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 29
ggcctgtcct gtgttctca 19
<210> 30
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 30
 tcccaccact tacttccatg aa 22
<210> 31
<211> 25
<212> DNA
```







- <223> Synthetic Oligonucleotide Probe
- <400> 36 ccagtcaggc cgttttaga 19
- <210> 37
- <211> 21
- <212> DNA
- <213> Artificial Sequence
- <220>
- <223> Synthetic Oligonucleotide Probe
- <400> 37
- cgggcgccca agtaaaagct c 21
- <210> 38
- <211> 28
- <212> DNA
- <213> Artificial Sequence
- <220>
- <223> Synthetic Oligonucleotide Probe
- <400> 38
- cataaagtag tatatgcatt ccagtgtt 28