COMPSCI 762 Tutorial 10

Tutorial on Unsupervised Learning

Luke Chang

May 2021

The University of Auckland

1

Unsupervised Learning - Cluster Analysis

- Cluster analysis is an unsupervised learning task.
- The task of clustering is to partition a set of objects such that objects in the same group are more similar to each other than those in other groups.
- Evaluation metrics:
- Sum of Squared Error (SSE)
 - Sum of Squared Between(SSB)
- Algorithms we will cover:
 - K-means
 - · Hierarchical clustering
 - DBSCAN: Density-based clustering

K-means

- Partition the data into clusters
- Hyperparameter: the number of clusters, *K*
- · Each cluster is associated with a centroid
- Each point is assigned to the cluster with the closest centroid
- Iterative method: Update centroids in each iteration, converge until the centroids don't change

Limitations:

- When clusters have:
 - Different sizes
 - Different densities
 - Non-globular shapes (hypersphere)
- When data contains outliers

3

K-means Pseudocode

Select *K* points as the initial centroids **repeat:**

For each point:

Assign the point to the closest centroid

For $i \in \{1, ..., K\}$:

Update the *i* centroid

until The centroids (or points) don't change

Evaluation Metric: Sum of Squared Error (SSE)

- No true labels are available in the unsupervised learning
- Use sum of the squared errors to evaluate the performance

$$SSE = \sum_{i=1}^{K} \sum_{x \in C_i} dist^2(m_i, x)$$

- SSE highly depends on **K** and the **initial centroids**
- Depends on the initial K-centroids, the K-means clusters with same the K value may not have the same SSE

Solve the Initial Centroids Problem

Problem: Stuck in the local minimal

Example

Demonstration of k-means assumptions from sklearn

Solution:

- Multiple runs
- Use hierarchical clustering to determine the initial centroids
- Define more than K initial centroids and then select among these initial centroids
- Postprocessing:
 - · Remove empty clusters and small cluster
 - Split "loose" clusters High SSE
 - Merge clusters when they are "close" Low SSE
 - Apply these steps multiple times and use the pruned centroids as new initial centroids
- Improved k-means algorithms: Bisecting K-means, Mini Batch K-Means

Review Question 1: K-means

The distance matrix based on the Euclidean distance is given below:

	A1	A2	А3	A4	A5	A6	A7	A8
A1	0	$\sqrt{45}$	$\sqrt{63}$	$\sqrt{57}$	$\sqrt{41}$	$\sqrt{28}$	√95	$\sqrt{6}$
A2		0	√55	$\sqrt{49}$	$\sqrt{35}$	$\sqrt{11}$	√ 5	$\sqrt{25}$
А3			0	$\sqrt{11}$	$\sqrt{23}$	$\sqrt{54}$	$\sqrt{47}$	$\sqrt{65}$
A4				0	$\sqrt{2}$	$\sqrt{7}$	$\sqrt{26}$	$\sqrt{5}$
A5					0	$\sqrt{5}$	$\sqrt{21}$	$\sqrt{35}$
A6						0	$\sqrt{13}$	$\sqrt{27}$
Α7							0	$\sqrt{53}$
A8								0

Suppose that the initial seeds (centers of each cluster) are **A1**, **A4** and **A7**. Run the k-means algorithm for 1 epoch only. At the end of this epoch show:

- The new clusters (i.e. the examples belonging to each cluster)
- The centers of the new clusters

7

Review Question 1: K-means

C1 is centred at A1, C2 is centred at A4, and C3 is centred at A7.

For each point:

• A1 \rightarrow C1

Item	Centroid	Dist
A2	A1	$\sqrt{45}$
A2	A4	$\sqrt{49}$
A2	A7	$\sqrt{5}$

• A2 \rightarrow C3

Item	Centroid	Dist
A3	A1	$\sqrt{63}$
A3	A4	$\sqrt{11}$
A3	A7	$\sqrt{47}$

- $\bullet \ A3 \to C2$
- $\bullet \ A4 \to C2$

Item	Centroid	Dist
A5	A1	$\sqrt{41}$
A5	A4	$\sqrt{2}$
A5	A7	$\sqrt{21}$

 $\bullet \ A5 \rightarrow C2$

Item	Centroid	Dist
A6	A1	$\sqrt{28}$
A6	A4	$\sqrt{7}$
A6	A7	$\sqrt{13}$

- $\bullet \ A6 \to C2$
- $\bullet \ A7 \to C3$

Item	Centroid	Dist
A8	A1	$\sqrt{6}$
A8	A4	$\sqrt{5}$
A8	A7	$\sqrt{53}$

 $\bullet \ A8 \to C2$

Review Question 1: K-means

The new clusters: $C1 = \{A1\}, C2 = \{A3, A4, A5, A6, A8\}, C3 = \{A2, A7\}$

Given A1 = (2,10), A2 = (2,5), A3 = (8,4), A4 = (5,8), A5 = (7,5), A6 = (6,4), A7 = (1,2), A8 = (4,9). The centroids of the new clusters are:

- C1 = (2,10)
- C2 = ((8+5+7+6+4)/5, (4+8+5+4+9)/5) = (6,6)
- C3 = ((2+1)/2, (5+2)/2) = (1.5, 3.5)

9

Hierarchical Clustering

- Produces a set of nested clusters organized as a hierarchical tree
- Can be visualized as a dendrogram
- No assumption on the number of clusters
- Two main types:
 - $\bullet\,$ Agglomerative: Start from each data point, merge the closest pair of clusters
 - $\bullet\,$ Divisive: Start with one big cluster which contains all data, split at each step

Agglomerative Clustering Algorithm Pseudocode

Compute the proximity matrix Let each point be a cluster repeat:

Merge the two closest clusters Update the proximity matrix until only a single cluster remains

Proximity Matrix

The linkage criteria determines the metric used for the merge strategy:

- Min (Single-linkage): The minimum of the distances between all observations of the two sets
 - Can handle non-elliptical shapes
 - Sensitive to noise and outliers
- Max (Complete-linkage): The maximum distances between all observations of the two sets
 - · Less susceptible to noise and outliers
 - Tends to break large clusters
 - Biased towards globular clusters
- **Group average (Average-linkage):** The average of the distances between all observations of pairs of clusters
 - Less susceptible to noise and outliers
 - Biased towards globular clusters

$$\frac{1}{|C_i|\cdot|C_j|}\sum_{i\in C_i}\sum_{j\in C_j}d(i,j)$$

where $|C_i|$ is the **cardinality** (number of elements) of the cluster C_i .

Proximity Matrix (continue)

- Distance Between Centroids Centroid-linkage: Distance between the centroids of two clusters
- Ward's minimum variance method Ward's linkage: Minimizes the sum of squared differences of the clusters being merged

$$SSE(C_i, C_j) - [SSE(C_i) + SSE(C_j)]$$

where $SSE(C_i, C_j)$ is the SSE of the union of the cluster i and the cluster j.

- · Less susceptible to noise and outliers
- Biased towards globular clusters
- Hierarchical analogue of K-means; Can be used to initialize K-means

Example

Hierarchical clustering from sklearn

	A1	A2	A3	A4	A5	A6	A7	A8
A1	0	$\sqrt{45}$	$\sqrt{63}$	√57	$\sqrt{41}$	$\sqrt{28}$	$\sqrt{95}$	$\sqrt{6}$
A2		0	$\sqrt{55}$	$\sqrt{49}$	$\sqrt{35}$	$\sqrt{11}$	$\sqrt{5}$	$\sqrt{25}$
АЗ			0	$\sqrt{11}$	$\sqrt{23}$	$\sqrt{54}$	$\sqrt{47}$	$\sqrt{65}$
A4				0	$\sqrt{2}$	$\sqrt{7}$	$\sqrt{26}$	$\sqrt{5}$
A5					0	$\sqrt{5}$	$\sqrt{21}$	$\sqrt{35}$
A6						0	$\sqrt{13}$	$\sqrt{27}$
A7							0	$\sqrt{53}$
A8								0

	A1	A2	A3	A4	A5	A6	A7	A8
A1	0	$\sqrt{45}$	$\sqrt{63}$	$\sqrt{57}$	$\sqrt{41}$	$\sqrt{28}$	√95	$\sqrt{6}$
A2		0	$\sqrt{55}$	$\sqrt{49}$	$\sqrt{35}$	$\sqrt{11}$	$\sqrt{5}$	$\sqrt{25}$
A3			0	$\sqrt{11}$	$\sqrt{23}$	$\sqrt{54}$	$\sqrt{47}$	$\sqrt{65}$
A4				0	$\sqrt{2}$	$\sqrt{7}$	$\sqrt{26}$	$\sqrt{5}$
A5					0	$\sqrt{5}$	$\sqrt{21}$	$\sqrt{35}$
A6						0	$\sqrt{13}$	$\sqrt{27}$
A7							0	$\sqrt{53}$
A8								0

Level	# Clusters	Clusters
0	8	${A1},{A2},{A3},{A4},{A5},{A6},{A7},{A8}$
1	7	${A1}, {A2}, {A3}, {A4, A5}, {A6}, {A7}, {A8}$

	A1	A2	A3	A4	A5	A6	A7	A8
A1	0	$\sqrt{45}$	$\sqrt{63}$	$\sqrt{57}$	$\sqrt{41}$	$\sqrt{28}$	$\sqrt{95}$	$\sqrt{6}$
A2		0	$\sqrt{55}$	$\sqrt{49}$	$\sqrt{35}$	$\sqrt{11}$	$\sqrt{5}$	$\sqrt{25}$
A3			0	$\sqrt{11}$	$\sqrt{23}$	$\sqrt{54}$	$\sqrt{47}$	$\sqrt{65}$
A4				0	$\sqrt{2}$	$\sqrt{7}$	$\sqrt{26}$	$\sqrt{5}$
A5					0	$\sqrt{5}$	$\sqrt{21}$	$\sqrt{35}$
A6						0	$\sqrt{13}$	$\sqrt{27}$
A7							0	$\sqrt{53}$
A8								0

Level	# Clusters	Clusters
0	8	${A1},{A2},{A3},{A4},{A5},{A6},{A7},{A8}$
1	7	${A1},{A2},{A3},{A4,A5},{A6},{A7},{A8}$
2	4	$\{A1\}, \{A2,A7\}, \{A3\}, \{A4,A5,A6,A8\}$

	A1	A2	A3	A4	A5	A6	A7	A8
A1	0	$\sqrt{45}$	$\sqrt{63}$	$\sqrt{57}$	$\sqrt{41}$	$\sqrt{28}$	$\sqrt{95}$	$\sqrt{6}$
A2		0	$\sqrt{55}$	$\sqrt{49}$	$\sqrt{35}$	$\sqrt{11}$	$\sqrt{5}$	$\sqrt{25}$
A3			0	$\sqrt{11}$	$\sqrt{23}$	$\sqrt{54}$	$\sqrt{47}$	$\sqrt{65}$
A4				0	$\sqrt{2}$	$\sqrt{7}$	$\sqrt{26}$	$\sqrt{5}$
A5					0	$\sqrt{5}$	$\sqrt{21}$	$\sqrt{35}$
A6						0	$\sqrt{13}$	$\sqrt{27}$
A7							0	$\sqrt{53}$
A8								0

Level	# Clusters	Clusters
0	8	${A1},{A2},{A3},{A4},{A5},{A6},{A7},{A8}$
1	7	$\{A1\}, \{A2\}, \{A3\}, \{A4, A5\}, \{A6\}, \{A7\}, \{A8\}$
2	4	$\{A1\}, \{A2, A7\}, \{A3\}, \{A4, A5, A6, A8\}$
3	3	{ <i>A</i> 1, <i>A</i> 4, <i>A</i> 5, <i>A</i> 6, <i>A</i> 8}, { <i>A</i> 2, <i>A</i> 7}, { <i>A</i> 3}

Use single-linkage (MIN) agglomerative clustering to group the data described in Exercise 1. Show the dendrogram.

	A1	A2	A3	A4	A5	A6	A7	A8
A1	0	$\sqrt{45}$	$\sqrt{63}$	$\sqrt{57}$	$\sqrt{41}$	$\sqrt{28}$	$\sqrt{95}$	$\sqrt{6}$
A2		0	$\sqrt{55}$	$\sqrt{49}$	$\sqrt{35}$	$\sqrt{11}$	$\sqrt{5}$	$\sqrt{25}$
A3			0	$\sqrt{11}$	$\sqrt{23}$	$\sqrt{54}$	$\sqrt{47}$	$\sqrt{65}$
A4				0	$\sqrt{2}$	$\sqrt{7}$	$\sqrt{26}$	$\sqrt{5}$
A5					0	$\sqrt{5}$	$\sqrt{21}$	$\sqrt{35}$
A6						0	$\sqrt{13}$	$\sqrt{27}$
A7							0	$\sqrt{53}$
A8								0

A4 and A6 are already in one cluster.

Level	# Clusters	Clusters
0	8	${A1},{A2},{A3},{A4},{A5},{A6},{A7},{A8}$
1	7	$\{A1\}, \{A2\}, \{A3\}, \{A4, A5\}, \{A6\}, \{A7\}, \{A8\}$
2	4	$\{A1\}, \{A2, A7\}, \{A3\}, \{A4, A5, A6, A8\}$
3	3	${A1, A4, A5, A6, A8}, {A2, A7}, {A3}$
4	1	{ <i>A</i> 1, <i>A</i> 2, <i>A</i> 3, <i>A</i> 4, <i>A</i> 5, <i>A</i> 6, <i>A</i> 7, <i>A</i> 8}

Use single-linkage (MIN) agglomerative clustering to group the data described in Exercise 1. Show the dendrogram.

Level	# Clusters	Clusters
0	8	${A1},{A2},{A3},{A4},{A5},{A6},{A7},{A8}$
1	7	$\{A1\}, \{A2\}, \{A3\}, \{A4, A5\}, \{A6\}, \{A7\}, \{A8\}$
2	4	$\{A1\}, \{A2, A7\}, \{A3\}, \{A4, A5, A6, A8\}$
3	3	$\{A1, A4, A5, A6, A8\}, \{A2, A7\}, \{A3\}$
4	1	$\{A1, A2, A3, A4, A5, A6, A7, A8\}$

Use the sequence from the second last level

DBSCAN: Density-based Clustering

- DBSCAN: Density-Based Spatial Clustering of Applications with Noise
- **Density:** The number of points within a specified radius (ε)
- MinPts (min_samples): A point is a core point if it has at least MinPts within ε .
- A **border point** is not a **core point**, but is in the neighborhood of a core point.
- A **noise point** is any point that is not a core point or a border point.

Limitations:

- Clusters with varied densities
- High dimensional data

DBSCAN Pseudocode

```
DBSCAN(DB, distFunc, eps, minPts) {
    C := 0
                                                          /* Cluster counter */
    for each point P in database DB {
       if label(P) # undefined then continue
                                                         /* Previously processed in inner loop */
                                                         /* Find neighbors */
       Neighbors N := RangeOuerv(DB, distFunc, P, eps)
       if |N| < minPts then {</pre>
                                                          /* Density check */
           label(P) := Noise
                                                          /* LabeL as Noise */
           continue
       C := C + 1
                                                          /* next cluster Label */
       label(P) := C
                                                          /* Label initial point */
       SeedSet S := N \ {P}
                                                          /* Neighbors to expand */
                                                          /* Process every seed point 0 */
       for each point 0 in S {
           if label(0) = Noise then label(0) := C
                                                         /* Change Noise to border point */
           if label(0) ≠ undefined then continue
                                                        /* Previously processed (e.g., border point) */
           label(0) := C
                                                          /* Label neighbor */
           Neighbors N := RangeOuery(DB, distFunc, O, eps) /* Find neighbors */
           if |N| ≥ minPts then {
                                                        /* Density check (if O is a core point) */
               S := S U N
                                                          /* Add new neighbors to seed set */
```

Example

Cluster Cohesion and Separation

Cluster Cohesion

- Measures how closely related are data points in a cluster
- Within Cluster Sum of Squares (WCSS) = Sum of Squared Error (SSE)

$$SSE = \sum_{i=1}^{K} \sum_{x \in C_i} ||x - m_i||^2$$

Cluster Separation

- Measure how distinct or well-separated a cluster is from other clusters
- Between cluster Sum of Squares (BSS) a.k.a. Sum of Squared Between (SSB)

$$SSB = \sum_{i=1}^{K} |C_{i}| (m - m_{i})^{2}$$

where $|C_i|$ is the size of cluster i, m is the grand mean, m_i is the mean for the cluster i.

Cluster Cohesion and Separation

• *Sum of Squares Total* (SST): The sum of squares between the n data points and the grand mean

$$SST = SSB + SSE$$

- SST is a constant based on the observed data points.
- The same terminologies are used in the one-way analysis of variance (ANOVA) test.

Sums of Squares (SS) Example

Example

Divide 1D data points $\{1,2,3,6,7\}$ into 2 clusters: $\{1,2,3\}$ and $\{6,7\}$.

- n = 5, $|C_1| = 3$, and $|C_2| = 2$
- m = (1+2+3+6+7)/5 = 3.8
- $m_1 = (1+2+3)/3 = 2$
- $m_2 = (6+7)/2 = 6.5$

SSB =
$$3(3.8-2)^2 + 2(3.8-6.5)^2 = 24.3$$

SSE = $(1-2)^2 + (2-2)^2 + (3-2)^2 + (6-6.5)^2 + (7-6.5)^2 = 2.5$
SST = SSB + SSE = $24.3 + 2.5 = 26.8$

The alternative way to compute SST:

SST =
$$(1-3.8)^2 + (2-3.8)^2 + (3-3.8)^2 + (6-3.8)^2 + (7-3.8)^2 = 26.8$$

Silhouette Coefficient

Silhouette coefficient combines ideas of both cohesion and separation, but for individual points.

For each data point, *i*:

a: The mean distance between a sample and all other points in the same class

$$a(i) = \frac{1}{|C_i| - 1} \sum_{j \in C_i, y \neq i} d(i, j)$$

b: The mean distance between a sample and all other points in the next nearest cluster

$$b(i) = \min_{k \neq i} \frac{1}{|C_k|} \sum_{j \in C_k} d(i,j)$$

Silhouette Coefficient for the Entire Dataset

The Silhouette Coefficient for a single sample s(i) is then given as:

$$s(i) = \begin{cases} 1 - a(i)/b(i) & \text{, if } a(i) < b(i) \\ b(i)/a(i) - 1 & \text{, if } a(i) \le b(i) \end{cases}$$

- The Silhouette Coefficient for a set of samples is given as the mean of the Silhouette Coefficient for each sample.
- The range is in [0,1], the **larger** the better.

Example

An example from *sklearn*

Overview of Clustering Methods From sklearn

Example

The sklearn Documentation for Clustering