Deep learning:

Screentine	Rest time	Study time	Fauting Criter	
3	q	6	1 7	Clausification)
6	7	-2	o J	L

$$\Rightarrow q = w_1x_1 + w_2x_2 + w_3x_3 + w_4x_4 + Bian$$

$$\Rightarrow z = Act(y)$$

$$x_1 \qquad w_1 - 0.3$$

$$x_2 \qquad w_2 = 0.1$$

$$x_3 \qquad w_4 - 0.2$$

$$x_4 \qquad w_4 - 0.2$$

$$x_4 \qquad x_4 \qquad x_5 = x_2 + w_4x_4 + Bian$$

$$x_5 \qquad w_7 \qquad y_7 \qquad y_$$

Input

hådden

output

$$Z = \frac{1}{1+e^{-\gamma}}$$

The result of the activation of function determines if the neuron gots activated

$ReLu \Rightarrow (0-\infty) \Rightarrow Regrenson$

$$Z = \max(q,0)$$

$$Z = \max(285,0)$$

$$= 285$$

$$Z = \max(-16,0)$$

$$= 0$$

$$(x_{n}w_{n}) + (B_{1}) \Rightarrow (ReLu) \Rightarrow 0$$

 $(x_{n}w_{n}) + (B_{2}) \Rightarrow (ReLu) \Rightarrow 1$
 $(x_{n}w_{n}) + (B_{3}) \Rightarrow (ReLu) \Rightarrow 1$

Between the layers different Activation functions can be med. But, within one layer activation function court be Changed.

$$(0) \Rightarrow 0.6 \Rightarrow (0-0.6)^2 \Rightarrow 0.36$$