CLAIMS

What is claimed is:

1	1. An image signal processor comprising:				
2	a local memory to store data; and				
3	a memory command handler including a plurality of memory address				
4	generators, each memory address generator to generate a memory address to the local				
5	memory and to interpret a command to be performed on the data of the local memory				
6	located at the memory address to aid in image processing tasks.				
1	2. The image signal processor of claim 1, further comprising a shared				
2	memory coupled to the plurality of the memory address generators, the shared memor				
3	storing data to be sent to the local memory and commands to be performed by the				
4	memory address generators.				
1	3. The image signal processor of claim 2, wherein the shared memory				
2	comprises a plurality of cluster communication registers.				
1	4. The image signal processor of claim 3, further comprising a cluster				
2	communication register interface to couple the plurality of cluster communication				
3	registers to the plurality of memory address generators.				
•					
l	5. The image signal processor of claim 3, wherein the plurality of cluster				
<u>.</u>	communication registers include data cluster communication registers to store data and				
3	command cluster communication registers to store commands.				
1	6. The image signal processor of claim 5, wherein a pair of cluster				
2	communication registers are assigned to each memory address generator.				
l	7. The image signal processor of claim 6, wherein each pair of cluster				
2	communication registers includes a data cluster communication register and a				
3	command cluster communication register.				
l	8. The image signal processor of claim 3, further comprising an arbiter to				

arbitrate access to the local memory by the memory address generators.

1	9. The image signal processor of claim 8, wherein the plurality of cluster			
2	communication registers are at least 16-bit registers.			
1	10. The image signal processor of claim 9, further comprising 16-bit data			
2	paths that couple the cluster communication registers to the memory address			
3	generators, the memory address generators to the arbiter, and the arbiter to the local			
4	memory.			
1	11. The image signal processor of claim 10, wherein the local memory			
2	includes static random access memory (SRAM).			
1	12. A method comprising:			
2	storing data in a local memory of an image signal processor;			
3	generating a memory address to the local memory utilizing a memory address			
4	generator within the image signal processor; and			
5	performing an operation on the data of the local memory located at the memory			
6	address utilizing the memory address generator to aid in image processing tasks.			
1	13. The method of claim 12, further comprising:			
2	storing data to be sent to the local memory in a shared memory of the image			
3	signal processor; and			
4	storing commands in the shared memory to be performed on the data in the			
5	local memory.			
1	14. The method of claim 13, wherein the shared memory comprises a			
2	plurality of cluster communication registers.			
1	15. The method of claim 14, wherein the plurality of cluster communication			
2	registers include data cluster communication registers to store data and command			
3	cluster communication registers to store commands.			
1	16. The method of claim 15, further comprising assigning a pair of cluster			
2	communication registers to one of a plurality of memory address generators, each			
	memory address generator to generate a memory address to the local memory within			

4 5	the image signal processor and to perform an operation on the data of the local memory located at the memory address to aid in image processing tasks.			
1				
1	17. The method of claim 16, further comprising arbitrating access to the			
2	local memory by the plurality of memory address generators.			
1	18. The method of claim 14, wherein the plurality of cluster communication			
2	registers are at least 16-bit registers.			
1	19. The image processor of claim 18, wherein 16-bit data paths couple the			
2	cluster communication registers to the memory address generators and the memory			
3	address generators to the local memory.			
1				
1	20. A machine-readable medium having stored thereon instructions, which			
2	when executed by a machine, cause the machine to perform the following operations			
3	comprising:			
4	storing data in a local memory of an image signal processor;			
5	generating a memory address to the local memory utilizing a memory address			
6	generator within the image signal processor; and			
7	performing an operation on the data of the local memory located at the memory			
8.	address utilizing the memory address generator to aid in image processing tasks.			
1	21. The machine-readable medium of claim 20, further comprising:			
2	storing data to be sent to the local memory in a shared memory of the image			
3	signal processor; and			
4	storing commands in the shared memory to be performed on the data in the			
5	local memory.			
-				
1	22. The machine-readable medium of claim 21, wherein the shared memory			
2	comprises a plurality of cluster communication registers.			

- 1 23. The machine-readable medium of claim 22, wherein the plurality of
- 2 cluster communication registers include data cluster communication registers to store
- data and command cluster communication registers to store commands.

1	24. The machine-readable medium of claim 23, further comprising			
2	assigning a pair of cluster communication registers to one of a plurality of memory			
3	address generators, each memory address generator to generate a memory address to			
4	the local memory within the image signal processor and to perform an operation on the			
5	data of the local memory located at the memory address to aid in image processing			
6	tasks.			
1	25. The machine-readable medium of claim 24, further comprising			
2	arbitrating access to the local memory by the plurality of memory address generators.			
1	26. The machine-readable medium of claim 22, wherein the plurality of			
2	cluster communication registers are at least 16-bit registers.			
1	27. The machine-readable medium of claim 26, wherein 16-bit data paths			
2	couple the cluster communication registers to the memory address generators and the			
3	memory address generators to the local memory.			
1	28. An image processor system comprising:			
2	a processor coupled to an image processor; and			
3	a double data rate synchronous dynamic random access memory (DDR			
4	SDRAM) coupled to the image processor, the image processor including a plurality of			
5	image signal processors coupled to one another, each image signal processor including:			
6	a local memory to store data, and			
7	a memory command handler including a plurality of memory address			
8	generators, each memory address generator to generate a memory address to the			
9	local memory and to interpret a command to be performed on the data of the			
10	local memory located at the memory address to aid in image processing tasks.			
1	29. The image processor system of claim 28, further comprising a shared			
2	memory coupled to the plurality of the memory address generators, the shared memory			
3	storing data to be sent to the local memory and commands to be performed by the			
4	memory address generators.			

1	30.	The image processor system of claim 29, wherein the shared memory			
2 comprises a plurality of cluster communication registers.					
1	31.	The image processor system of claim 30, further comprising a cluster			
2.	communication register interface to couple the plurality of cluster communication				
3	registers to the	ne plurality of memory address generators.			
1	32.	The image processor system of claim 30, wherein the plurality of cluster			
2	communicati	on registers include data cluster communication registers to store data and			
3	ister communication registers to store commands.				
1	33.	The image processor system of claim 32, wherein a pair of cluster			
2	communication registers are assigned to each memory address generator.				
1	34.	The image processor system of claim 33, wherein each pair of cluster			
2	communication registers includes a data cluster communication register and a				
3	command cluster communication register.				
1	35.	The image processor system of claim 30, further comprising an arbiter to			
2	arbitrate access to the local memory by the memory address generators.				
1	36:	The image processor system of claim 35, wherein the plurality of cluster			
2	communication registers are at least 16-bit registers.				
1 .	37.	The image processor system of claim 36, further comprising 16-bit data			
2	paths that co	uple the cluster communication registers to the memory address			
3	generators, the memory address generators to the arbiter, and the arbiter to the local				
4	memory.				
1	. 38.	The image processor system of claim 37, wherein the local memory			
2	includes static random access memory (SRAM).				
		→ \ /			