CS 525: Advanced Database Organisation

07: Query Processing Overview

Boris Glavic

Slides: adapted from a <u>course</u> taught by <u>Hector Garcia-Molina</u>, Stanford InfoLab

Query Processing

Q → Query Plan

Query Processing

Q → Query Plan

Focus: Relational Systems

• Others?

Example

Select B,D

From R,S

Where R.A = "c" \wedge S.E = 2 \wedge

R.C=S.C

R	A	В	C	S	C	D	E	
	a	1	10		10	X	2	
	b	1	20		20	У	2	
	c	2	10		30	Z	2	
	d	2	35		40	X	1	
	e	3	45		50	V	3	

R	A	В	C	S	C	D	Е	
	a	1	10		10	X	2	
	b	1	20		20	у	2	
	c	2	10		30	Z	2	
	d	2	35		40	X	1	
	e	3	45		50	y	3	

Answer B D
2 x

How do we execute query?

One idea

- Do Cartesian product
- Select tuples
- Do projection

RXS

R.A	R.B	R.C	S.C	S.D	S.E
a	1	10	10	X	2
a	1	10	20	У	2
•					
•					
C	2	10	10	X	2
•					
•					

RXS	R.A	R.B	R.C	S.C	S.D	S.E
	a	1	10	10	X	2
	a	1	10	20	у	2
	•					
Bingo! Got one	· .	2	10	10	X	2

Relational Algebra - can be used to describe plans...

Ex: Plan I

$$\Pi_{B,D}$$
 $\square_{S,E=2} \land R.C=S.C$
 $\square_{S,E=2} \land R.C=S.C$

Relational Algebra - can be used to describe plans...

Ex: Plan I

$$\Pi_{B,D}$$
 G R.A="c" $_{\wedge}$ S.E=2 $_{\wedge}$ R.C=S.C
 X
 X
 S

OR:
$$\Pi_{B,D} [\sigma_{R.A="c" \land S.E=2 \land R.C = S.C} (RXS)]$$

Another idea:

Plan III

Use R.A and S.C Indexes

- (1) Use R.A index to select R tuples with R.A = "c"
- (2) For each R.C value found, use S.C index to find matching tuples

Plan III

Use R.A and S.C Indexes

- (1) Use R.A index to select R tuples with R.A = "c"
- (2) For each R.C value found, use S.C index to find matching tuples
- (3) Eliminate S tuples S.E \neq 2
- (4) Join matching R,S tuples, project B,D attributes and place in result

Overview of Query Optimization

{P1,P2,....}

Notes 7 - Query Processing

Example: SQL query

(Find the movies with stars born in 1960)

Example: Parse Tree

Example: Generating Relational Algebra

Fig. 7.15: An expression using a two-argument σ , midway between a parse tree and relational algebra

Example: Logical Query Plan

Fig. 7.18: Applying the rule for IN conditions

Example: Improved Logical Query Plan

Fig. 7.20: An improvement on fig. 7.18.

ILLINOIS INSTITUTE OF TECHNOLOGY

CS 525

Example: **Estimate Result Sizes**

ILLINOIS INSTITUTE OF TECHNOLOGY

Example: One Physical Plan

Example: Estimate costs

