EEG Analysis support

Design EEG experiments
Create analysis pipeline
Get unstuck programming
Revisions
Project proposals
Find learning materials

Etc..

Power

Increasing power

Use directional tests where appropriate

Increase mean difference

Reduce sample standard deviation

Use directional tests

Two-tailed testing with a directional question loses the logical connection between the research hypothesis and its statistical hypothesis.

A directional test moves the Type I error rate to one tail, lowering the critical value, and the number of observations needed to achieve the same statistical power.

Increase the mean difference

Use a more extreme manipulation or comparison.

Blocked instead of randomized conditions.

Be careful! Use short blocks and randomize block order to account for non-stationarity of the EEG over time.

Reduce the standard deviation of the sample

Increase sample size

Increase measurement precision by trial count

Increase measurement precision by reducing measurement error

https://shiny.york.ac.uk/powercontours/

Sources of measurement error

Recording noise, artefacts etc.

Mixing of sources at the electrodes

Mixing of activity in time (e.g. overlapping ERP's, artefacts)

Temporal correlations (time-on-task)

Individual differences (even in within pp designs)

Idiosyncratic mixing of sources

Relevant and irrelevant sources of activity are mixed at the sensor level.

Different for each participant.

Generalized eigen-decomposition

GED creates an individualized spatial filter (weights) isolates a pattern that may be mixed or have low signal-to-noise quality in individual electrodes.

The component can then be analyzed instead of a set of electrodes.

Generalized eigen-decomposition

GED maximizes a contrast between two features.

Experimental vs. control condition. Prestimulus period vs. poststimulus period; Trial-average vs. single-trial data; Narrowband filtered vs. unfiltered data.

The GED finds a weighting of the data channels that maximizes a signal-to-noise ratio (SNR) that can be thought of as \mathbf{S}/\mathbf{R} . Interchannel covariance patterns that are common between \mathbf{S} and \mathbf{R} are ignored.

No more picking channels, best filter created per individual and less researcher degrees of freedom.

Overlap

Α

"Unfold" toolbox

Regression-based. Deconvolution of overlapping ERP's.

Modelling of effects of covariates on recorded potentials.

888 observed (overlapping) Ro isolated (non-overlapping) responses stimulus onset buttonpress house house face 0.2 0.6 0.8 0.2 reaction time (s) luminance [a.u.] time (s) *** isolated button - ERP button covariate effect - face - button 0.2 0.2 -0.20.4 0.4 before overlap correction after overlap correction after overlap correction and covariate control

Ehinger & Dimigen (2019)

Temporal correlations (time-on-task)

A correlation between two measures arises when both measures systematically change over time.

Control for time-on-task

Include time-on-task/trial order as an additional variable.

Regress out the effect of trial order on the M/EEG and behavioural measures.

Assess the brain-behaviour relationship over only short timescales.

Individual differences

London et al. (2022)

Using a fixed and limited alpha frequency band might bias results against certain subjects and conditions.

??

FOOOF toolbox

Models the periodic and aperiodic component of the power spectrum separately.

Extracts individual peak parameters (frequency, power).

FOOOF Toolbox

Resources

Papers:

Baker et al. (2021). Power contours: Optimising sample size and precision in experimental psychology and human neuroscience.

Brysbaert M., & Stevens M. (2018). Power analysis and effect size in mixed effects models: A tutorial.

Lakens, D. (2022). Sample size justification.

Tools:

FOOOF – Donoghue et al. (2020). Parameterizing neural power spectra into periodic and aperiodic components.

Unfold – Ehinger & Dimigen (2019). Unfold: an integrated toolbox for overlap correction, non-linear modeling, and regression-based EEG analysis.

GED - Cohen (2022). A tutorial on generalized eigendecomposition for denoising, contrast enhancement, and dimension reduction in multichannel electrophysiology.

Video:

Tutorial video (also by Mike Cohen): GED for spatial filtering and dimensionality reduction.

Newsletter:

"How to power your EEG experiment": https://github.com/raquellondon/TheEegNewsletter/wiki/003%23-The-EEG-Newsletter#how-to-power-your-eeg-experiment

"How to power your EEG experiment - part 2": https://github.com/raquellondon/TheEegNewsletter/wiki/004%23-The-EEG-Newsletter#how-to-power-your-eeg-experiment---part-2"

"How to power your EEG experiment – part 3": https://theeegnewsletter.substack.com/p/the-eeg-newsletter-9

Come to the EEG Seminar!

Friday 12-May, 13:00, Leslokaal 1.2 Anne Keitel, Christian Keitel, Noor Seijdel Neural entrainment and frequency tagging