

AD		

MEMORANDUM REPORT ARBRL-MR-03161

SURFACE PRESSURE MEASUREMENTS ON A BOATTAILED PROJECTILE SHAPE AT TRANSONIC SPEEDS

L. D. Kayser F. Whiton

March 1982

US ARMY ARMAMENT RESEARCH AND DEVELOPMENT COMMAND BALLISTIC RESEARCH LABORATORY ABERDEEN PROVING GROUND, MARYLAND

Approved for public release; distribution unlimited.

DTIC QUALITY INSPECTED 3

Destroy this report when it is no longer needed. Do not return it to the originator.

Secondary distribution of this report by originating or sponsoring activity is prohibited.

Additional copies of this report may be obtained from the National Technical Information Service, U.S. Department of Commerce, Springfield, Virginia 22161.

The findings in this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

The use of trade names or manufacturers' names in this report loss not constitute indorsement of any commercial product.

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)					
REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM				
1. REPORT NUMBER 2. GOVT ACCESSION NO.					
Memorandum Report ARBRL-MR-03161					
4. TITLE (and Subtitle)	S. TYPE OF REPORT & PERIOD COVERED				
SURFACE PRESSURE MEASUREMENTS ON A BOATTAILED PROJECTILE SHAPE AT TRANSONIC SPEEDS	Final 6. PERFORMING ORG. REPORT NUMBER				
TROOLEGIZE SHAFE AT TRANSUNIC SPEEDS	6. PERFORMING ORG. REPORT NUMBER				
7. AUTHOR(s)	8. CONTRACT OR GRANT NUMBER(s)				
L. D. Kayser and F. Whiton					
9. PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS				
U.S. Army Ballistic Research Laboratory (ATTN: DRDAR-BLL) Aberdeen Proving Ground, Maryland 21005	RDT&E 1L161102AH43				
11. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE				
US Army Armament Research & Development Command	March 1982				
US Army Ballistic Research Laboratory (DRDAR-BL)	13. NUMBER OF PAGES				
Aberdeen Proving Ground, MD 21005 14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office)	83 15. SECURITY CLASS. (of this report)				
omitoning office)	13. SECORITY CEASS. (or talk report)				
	Unclassified 15a. DECLASSIFICATION/DOWNGRADING SCHEDULE				
16. DISTRIBUTION STATEMENT (of this Report)					
Approved for public release, distribution unlimited.					

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

Axisymmetric Shapes
Projectile Aerodynamics
Transonic Flow
Pressure Measurements

20. ABSTRACT (Continue on reverse eids if necessary and identify by block number)

Measurements of wall static pressures on a model with and without a boattail are reported. The model shape is similar to that of M549 projectile geometry. Data were acquired at Mach numbers of 0.91, 0.94, 0.96, 0.98, 1.10, and 1.20; angles of attack of 0, 2, 4, 6, and 10 degrees; and circumferential positions around the model in 22.5 degree increments.

Some of the pressure data were integrated over the model to provide axial force and static stability coefficients. Results are presented in both

TABLE OF CONTENTS

	Page
LIST OF ILLUSTRATIONS	5
LIST OF TABLES	7
I. INTRODUCTION	9
II. EXPERIMENT	9
III. DATA PROCESSING	10
IV. RESULTS	11
V. CONCLUSIONS	14
REFERENCES	78
LIST OF SYMBOLS	79
DISTRIBUTION LIST	81

LIST OF ILLUSTRATIONS

	Page					
Model Geometry - SOCBT						
Pressure Tap Locations	17					
Slotted-Throat and Diffuser Regions of the Langley 8-foot Transonic Pressure Tunnel	18					
SOC Longitudinal Pressure Distributions, α = 0, Experiment and Theory	19					
a. $M_{\infty} = 0.91$. b. $M_{\infty} = 0.96$. c. $M_{\infty} = 1.10$. d. $M_{\infty} = 1.20$.	19 20 21 22					
SOC Shadowgraphs, $\alpha = 0$	23					
a. $M_{\infty} = 0.91, 0.94$ b. $M_{\infty} = 0.96, 0.98$	23 24					
SOC Longitudinal Pressure Distributions, α = 4°, Experiment and Theory	25					
a. $M_{\infty} = 0.91$ b. $M_{\infty} = 0.96$ c. $M_{\infty} = 1.10$ d. $M_{\infty} = 1.20$	25 26 27 28					
SOCBT Longitudinal Pressure Distributions, α = 0, Experiment and Theory	29					
a. $M_{\infty} = 0.91$. b. $M_{\infty} = 0.94$. c. $M_{\infty} = 0.96$. d. $M_{\infty} = 0.98$. e. $M_{\infty} = 1.10$. f. $M_{\infty} = 1.20$.	29 30 31 32 33					
	Pressure Tap Locations. Slotted-Throat and Diffuser Regions of the Langley 8-foot Transonic Pressure Tunnel. SOC Longitudinal Pressure Distributions, α = 0, Experiment and Theory. a. M _∞ = 0.91					

LIST OF ILLUSTRATIONS

<u>Figure</u>		Page
8	SOCBT Longitudinal Pressure Distributions, α = 4°, Experiment and Theory	35
	a. $M_{\infty} = 0.91$. b. $M_{\infty} = 0.94$. c. $M_{\infty} = 0.96$. d. $M_{\infty} = 0.98$. e. $M_{\infty} = 1.10$. f. $M_{\infty} = 1.20$.	35 36 37 38 39 40
9	SOCBT Longitudinal Pressure Distribution, M_{∞} = 0.96, α = 10°, Experiment and Theory	41
10	SOCBT Shadowgraphs, $M_{\infty} = 0.96$	42
	a. $\alpha = 0^{\circ}, 2^{\circ}$ b. $\alpha = 4^{\circ}, 6^{\circ}$	42 43
11	SOCBT Circumferential Pressure Distributions, α = 0, 2, 4, 6, 10 degrees	44
	a. Z/D = 1.56 b. Z/D = 4.42 c. Z/D = 5.56	44 45 46
12	C_A Versus M_{∞} , SOCBT, Experiment and Theory	47
13	SOCBT Static Stability	48
	a. C_N Versus M_∞ b. C_m Versus M_∞	48 49
14	SOC Static Stability, $C_{m_{\alpha}}$, $C_{N_{\alpha}}$ Versus M_{∞}	50
15	SOCBT Static Stability, $C_{m_{\alpha}}$, $C_{N_{\alpha}}$ Versus M_{∞}	51

LIST OF TABLES

<u>Table</u>		Page
1	Summary of Test Conditions	52
2	SOC Pressure Coefficient Data, $\alpha = 0^{\circ}$	53
3	SOC Pressure Coefficient Data, $\alpha = 2, 4, 6, \text{ and } 10 \text{ degrees}$	54
	a. $M_{\infty} = 0.91$ b. $M_{\infty} = 0.94$ c. $M_{\infty} = 0.96$	54 56 58
	d. $M_{\infty} = 0.98$	60
	e. $M_{\infty} = 1.10$	62
	f. $M_{\infty} = 1.20$	64
4	SOCBT Pressure Coefficient Data, $\alpha = 0^{\circ}$	66
5	SOCBT Pressure Coefficient Data, α = 2, 4, 6, and 10 degrees	67
	a. $M_{\infty} = 0.91$	67
	b. $M_{\infty} = 0.94$	69
	c. M _∞ = 0.96	71
	d. $M_{\infty} = 0.98$	73
	e. $M_{\infty} = 1.10$	75
	f. M_ = 1.20	77

I. INTRODUCTION

A theoretical and experimental research program has been underway in the Launch and Flight Division of BRL in recent years to provide capability for predicting projectile aerodynamics. Earlier efforts were predominantly in the supersonic regime; but in recent years, efforts have been extended to the transonic regime. The direction of the predictive capability is generally toward the use of modern finite-difference computational techniques. The primary objective of the experimental program is to obtain data for comparison with computations. The secant-ogive-cylinder-boattail (SOCBT) configuration (Figure 1) was chosen because a substantial quantity of experimental and computational data already exist for this shape which is typical of modern, low drag shell. The shape has been simplified, with respect to conventional shell, by using a pointed nose and by eliminating the rotating band.

A limited quantity of pressure data were obtained in the Naval Surface Weapons Center (NSWC) Wind Tunnel at Mach 0.908\(^1\). This test program illustrated that pressure taps at additional longitudinal stations were needed to adequately define the pressure distribution. Also, because of the critical flow behavior in the vicinity of projectile boattail at transonic speeds, data were needed at other transonic Mach numbers. Several pressure taps were added to the model and test time was requested in the Langley Research Center (LRC) 8-foot Transonic Pressure Tunnel which was capable of providing the desired Mach numbers.

II. EXPERIMENT

The model geometry for the secant-ogive-cylinder-boattail (SOCBT) configuration is shown in Figure 1; the model has a 3-caliber secant-ogive, a 2-caliber cylinder, and a 1-caliber, 7° boattail. The secant-ogive-cylinder (SOC) model is identical except that the 7° boattail is replaced by a cylindrical section; the SOC is, therefore, a 3-caliber secant-ogive, 3-caliber cylinder model.

The model, as used in previous test programs, was instrumented with pressure taps at 10 longitudinal positions. Tests at Mach 0.908 in the Naval Surface Weapons Center, White Oak Laboratory, Tunnel No. 2¹ demonstrated the need for more pressure taps. For this reason, the number of pressure taps was increased to 15 for the SOCBT and to 13 for the SOC. Internal size limitations of the models mandated that several taps be offset from the main ray of taps as shown in Figure 2. The 22.5° offset was chosen because data were to be acquired in roll angle increments of 22.5°. Hence, data could effectively be obtained at 15 longitudinal stations for the SOCBT by combining results from subsequent roll positions.

^{1.} Kayser, L.D., "Surface Pressure Measurements on a Projectile Shape at Mach 0.908", U.S. Army Ballistic Research Laboratory/ARRADCOM Memorandum Report ARBRL-MR-03079, February 1981. AD A098589.

All pressure tubing was connected to one Scanivalve which was located aft of the model inside the large sting section (Figure 3). Since only one transducer was used with the Scanivalve, any bias errors in the measurement system should be nearly the same for all measurements. Thus, the pressure variations on the model are more accurately defined than if several transducers had been used, but the values of absolute pressure are not necessarily more accurate.

The tests were conducted in the Langley Research Center 8-foot Transonic Pressure Tunnel which has a Mach number range of 0 to 1.30. The test section is 2.16×2.16 m square with filleted corners and the top and bottom walls have four slots each as shown in Figure 3.

Initially, the test procedure was to pitch the model to a given angle of attack and then record data at roll positions of 0 to 180 degrees in 22.5° increments. This procedure was used to obtain a complete set of data for the SOCBT configuration. Due to a failure in the roll mechanism, a slightly different procedure was used for acquiring data on the SOC configuration. Two sections of the sting were mated with a serrated facing having serrations at 22.5° increments. Therefore, each roll position change required tunnel shutdown and manually rolling the model. For this reason, as much data as possible was acquired at each roll position. Data, for a fixed roll position, were acquired at both positive and negative angles of attack and at all Mach numbers. Because of symmetry this procedure required roll angles from 0 to 90 degrees to define a complete pressure distribution; for example, ($\alpha = -4$, ϕ = 22.5) = (α = +4, ϕ = 157.5), etc. A complete set of data for the SÓC was not acquired, primarily, due to other priority demands for power. The SOC measurements were more than 95% completed. The roll orientation, as shown in Figure 2, is not standard wind tunnel notation; the reason for this is that the data are to be used primarily for comparison to computational results where zero roll angle is defined as the most windward ray and positive roll is clockwise when looking at the base.

III. DATA PROCESSING

Since some of the pressure taps were offset from the main ray of taps by 22.5°, elements of the data array contained pressure at two roll angles. Appropriate adjustments were made so that all longitudinal pressures in the element were physically located at the same roll position. Also, since data are to be compared with computational values, the roll angle was shifted by 180° from the conventional wind tunnel coordinates: this defines zero degrees roll as the most windward ray when at angle of attack.

For the SOC model, data were acquired at both $\pm\alpha$ and at roll angles from 0 to 90 rather than 0 to 180. Because of symmetry, a data array could be generated for positive angles of attack and roll angles of 0 to 180 degrees. For example

$$[-\alpha, \phi] \equiv [+\alpha, 180-\phi]$$

It was desired to integrate some of the pressure data to obtain static aerodynamic coefficients, but it was believed that pressure measurements at 15 longitudinal positions and circumferentially in 22.5-degree increments did not provide a sufficient number of data points to obtain good results. For this reason, curve fitting of the data was performed and a larger data array was generated. Longitudinally, the model was divided into 0.05 caliber increments for a total of 120 increments. Circumferentially, the increment was chosen as 11.25° or 32 increments for the 360° interval. Circumferentially, it was determined that the additional points could be determined with sufficient accuracy by linear interpolation. Longitudinally, polynomial curve fitting was used with different polynomials for different segments of the model; some experimenting with the degree of polynomial and groupings of points was done before reasonable results could be consistently obtained. For comparison to the polynomial curve fit data, linear interpolation data, and extrapolation data at the end points, were generated. Static aerodynamic coefficients thus obtained did not differ by more than 3%. Since the polynomial curve fitting appeared to produce more realistic pressure distribution, only the aerodynamic data obtained from the polynomial curve fitting is presented.

The following equations were used to determine the three static aero-dynamic coefficient for the SOCBT configuration. Pressures were not integrated over the SOC configuration at Mach 1.20 due to the lack of a complete set of data.

$$C_{A} = \frac{1}{S} \sum_{m=1}^{32} \sum_{n=1}^{120} C_{p_{m,n}} (\sin \theta_{n}) A_{m,n}$$

$$C_{N} = \frac{1}{S} \sum_{m=1}^{32} \sum_{n=1}^{120} C_{p_{m,n}} \cos \theta_{n} \cos \phi_{m} A_{m,n}$$

$$C_{m} = \frac{1}{D} \sum_{m=1}^{32} \sum_{n=1}^{120} C_{N_{m,n}} (Z_{cg} - Z_{n}) - C_{A_{m,n}} r_{n} \cos \phi_{m}$$

IV. RESULTS

Data are presented in both tabulated and graphical form. Tables 1-5 consist of a complete set of tabulated pressure data in the form of pressure coefficients. Figures 4 through 15 are graphical presentations of the pressure data or static stability data obtained from integration of the pressure data. Not all of the data are presented in graphical form, but enough is presented to illustrate the type and quality of data. Some comparisons of computational and experimental data are made which illustrate how the experimental data can be used to evaluate computational techniques. While some differences between experiment and computation are pointed out, this report is not intended to give an evaluation of computational techniques.

Figures 4a to 4d are longitudinal pressure distributions on the SOC configuration at zero angle of attack. The experimental data are compared with an inviscid computation which is a numerical solution of the transonic small disturbance equation for slender bodies². Agreement is generally good on the ogival nose but at some transonic speeds, discrepancies occur on the cylindrical section (see figure 4b). Figures 4 a,b show a sharp expansion at the ogive-cylinder junction and then, within a short distance, a sharp recompression occurs indicating that a shock wave may exist. This recompression is seen to move downstream with increasing Mach number. Figures 5a and 5b are shadowgraphs of the SOC and verify that the shock wave exists and shows a dramatic movement for the Mach number range of 0.91 to 0.98.

Figures 6a to 6d are longitudinal pressure distributions on the SOC at 4 degrees angle of attack. Again, the inviscid computations show good agreement with experiment on the ogive, but not necessarily on the cylinder. The windward and leeward pressures, for both experiment and computation, show relatively small differences on the cylinder indicating that the nose contributes the dominant aerodynamic forces for this shape, but it will be shown later that the forces on the cylinder are not insignificant.

Figures 7a-7f are longitudinal pressure distributions at zero angle of attack for the SOCBT configuration. These figures show the dramatic expansion and recompression on the boattail. These data are compared to two types of computations: (1) the inviscid computation of Reference 2; (2) a numerical solution of the Thin Layer Navier-Stokes equations described in Reference 3. At Mach 0.91 (Figure 7a) it appears that both computations agree about equally well, but at higher subsonic Mach numbers (Figures 4 c,d) the Navier-Stokes solution clearly agrees much better with the experimental data.

Figures 8a-8f are longitudinal pressure distributions at 4 degrees angle of attack for the SOCBT configuration. The data are compared with the inviscid computation, but no corresponding Navier-Stokes computations were made. The reason that Navier-Stokes computations were not made is that angle of attack requires fully three-dimensional calculations, and the allowable number of mesh points, because of computer limitations, is not sufficient to provide the desired accuracy; the zero-angle of attack computations are two-dimensional and, as illustrated in Figures 7a-7e, can be performed with good accuracy. The angle of attack data show substantial pressure differences on the nose between the windward and leeward sides; on the cylinder, pressure differences are small and; on the boattail, pressure differences are

^{2.} Reklis, R.P., Sturek, W.B., and Bailey, F.R., "Computations of Transonic Flow Past Projectiles at Angle of Attack," AIAA Paper No. 78-1182, presented at the AIAA 11th Fluid and Plasma Dynamics Conference, Seattle, Washington, July 1978.

^{3.} Nietubicz, C.J., "Navier-Stokes Computations for Conventional and Hollow Projectile Shapes at Transonic Velocities," AIAA Paper No. 81-1262 presented at the AIAA 14th Fluid and Plasma Dynamics Conference, Palo Alto, California, July 1981.

moderate. On the boattail, agreement between experiment and computation is fairly good, but the computations generally show a greater difference between windward and leeward pressures. This greater difference is probably due to the fact that the computation does not include the boundary layer effect. At positive angle of attack, the boattail force is negative, and this negative force, acting aft of a typical c.g., produces a positive pitching moment. Thus, the computational difference on the boattail would yield a smaller total normal force and a larger pitching moment.

Figure 9 is the longitudinal pressure distribution at 10 degrees angle of attack. The agreement between computation and experiment at this large angle of attack is qualitatively good, but sufficient differences do exist so that aerodynamic forces obtained from the inviscid computation are not expected to have good accuracy. The sharp pressure rise on the boattail indicates asymmetry of the boattail shock from the windward to the leeward side of the model. The shock wave asymmetries can be seen on the Mach 0.96 shadowgraphs of Figures 10 a,b. The asymmetry is most noticeable at the higher angles of attack of 4 and 6 degrees shown in Figure 10b.

Circumferential pressure distributions are shown at three longitudinal stations of the SOCBT configuration at Mach 0.96 in Figures 11a-11c. 11a shows that ogive pressures on the windward side are greater than those on the leeward side, thus providing a positive normal force contribution. On the cylinder, Figure 11b, pressures are seen to be nearly symmetrical about the 90 degree position which indicates small contribution to normal force for the longitudinal position of Z/D = 4.22. On the boattail (Figure 11c), pressures on the windward ray are smaller than on the leeward ray indicating a negative normal force contribution. The negative boattail force would be aft of a typical center of gravity location and; therefore, contribute to a destabilizing pitching moment. These same phenomena can be deduced from the longitudinal pressure distributions at angle of attack, Figures 8a-8f, but the circumferential pressure distributions provide a different perspective. Figures 12-15 are axial force and static stability data obtained from integration of pressures over the model. Figure 12 compares zero angle of attack axial force from experiment and two types of computations for the SOCBT. The axial force consists of the ogive nose contribution and boattail contribution, but base drag was assumed to be zero for all cases. The agreement is very good in the Mach number range of 0.91 to 0.98, but at the low supersonic speeds small differences occur. Figure 13 shows the normal force and pitching moment coefficients at various angles of attack. These coefficients, \tilde{c}_N and \tilde{c}_m , show a critical behavior in the Mach number range of 0.94 to 0.98; they also show a consistent type of behavior at the different angles of attack. This consistency provides encouragement that the coefficients obtained by the integration of experimental pressure data provide reasonable results since there was concern that the number of pressure taps was not sufficient to deduce force and moment coefficient data.

Figure 14 compares values of $C_{N_{\alpha}}$ and $C_{m_{\alpha}}$ on SOC configurations. The agreement between the inviscid computation and experiment may be considered fair, but the inviscid computation does not seem to predict the critical behavior shown by the experiment. $C_{N_{\alpha}}$ for the nose only is also shown. The

contribution from the cylinder is, therefore, the difference between the total value and the nose value. The inviscid computation shows a small normal force contribution from the cylinder whereas the experimental data indicate a significant normal force contribution from the cylinder and also a critical behavior in the Mach .94 to .96 range.

Figure 15 compares computational and experimental values of static stability data for the SOCBT configuration. The agreement is only fair, but the differences are qualitatively in the direction suggested above in the discussion of Figure 9; that is, the boattail pressure distributions indicated that the inviscid computation would show a smaller normal force and a greater pitching moment.

V. CONCLUSIONS

- 1. A comprehensive set of transonic pressure data have been obtained on a simplified projectile shape with and without a boattail at angles of attack up to 10 degrees.
- 2. Comparisons of experimental data for various parameters show a degree of consistency which indicates that the quality of the experimental pressure data is good.
- 3. The pressure data are of sufficient quality to obtain axial force and static stability coefficients by integration of the pressure data over the body.
- 4. The comparisons between computation and experiment illustrate the application of these experimental data in evaluating computational techniques for predicting surface pressure on bodies of revolution in transonic flow. These comparisons indicate that significant discrepancies between computation and experiment are present and that the prediction of the static moment for boattailed shell at transonic velocities requires considerable additional effort.

Figure 1. Model Geometry - SOCBT

Base View

	SOCB	T				SOC			
Tap	Z-in	Z/D	<u> </u>		Tap	<u>Z-in</u>	<u>Z/D</u>	<u> </u>	
1 2 3 4 5 6 7 8 9 10 11 12 13 14	2.00 3.51 5.00 6.28 7.04 7.24 8.01 9.50 10.24 10.98 11.33 11.67 11.97 12.52	.89 1.56 2.22 2.79 3.13 3.22 3.56 4.22 4.55 4.88 5.03 5.19 5.32 5.56	180 180 180 180 157.5 180 157.5 180 157.5 180 157.5		1 2 3 4 5 6 7 8 9 10 11 12 13	2.00 3.51 5.00 6.28 7.04 7.24 8.01 9.50 10.24 10.98 11.97 12.63 13.01	.89 1.56 2.22 2.79 3.13 3.22 3.56 4.22 4.55 4.88 5.32 5.61 5.78	180 180 180 180 180 157.5 180 157.5 180 180 180	
15	13.01	5.78	180						

Figure 2. Pressure Tap Locations

Figure 3. Slotted-Throat and Diffuser Regions of the Langley 8-foot Transonic Pressure Tunnel

Figure 4. SOC Longitudinal Pressure Distributions, α = 0, Experiment and Theory

a. $M_{\infty} = 0.91$

18

Figure 5. SOC Shadowgraphs, α = 0

a. $M_{\infty} = 0.91, 0.94$

Figure 6. SOC Longitudinal Pressure Distributions, α = 4°, Experiment and Theory a. $M_{\infty} = 0.91$

Figure 7. SOCBT Longitudinal Pressure Distributions, α = 0, Experiment and Theory

 $M_{\infty} = 0.91$

23

Figure 8. SOCBT Longitudinal Pressure Distributions, α = 4°, Experiment and Theory $M_{\infty} = 0.91$

Figure 9. SOCBT Longitudinal Pressure Distribution, $M_{\infty} = 0.96$, $\alpha = 10^{\circ}$, Experiment and Theory

Figure 10. SOCBT Shadowgraphs, $M_{\infty} = 0.96$

a. $\alpha = 0^{\circ}, 2^{\circ}$

Figure 10b. $\alpha = 4^{\circ}$, 6°

SOCBT Circumferential Pressure Distributions, α = 0, 2, 4, 6, 10 degrees Figure 11.

a. Z/D = 1.56

Figure 11b. Z/D = 4.42

Figure 12. C_A Versus M_{∞} , SOCBT, Experiment and Theory

SOCBT

Figure 13. SOCBT Static Stability a. C_N Versus M_{∞}

SOCBT

Figure 13b. $C_{\rm m}$ Versus $M_{\rm m}$

Figure 14. SOC Static Stability, $C_{m_{\alpha}}$ and $C_{N_{\alpha}}$ vs M_{∞}

Figure 15. SOCBT Static Stability, $\rm C_{m_{_{\alpha}}}$ and $\rm C_{N_{_{\alpha}}}$ vs $\rm M_{_{\infty}}$

TABLE 1. SUMMARY OF TEST CONDITION SOCBT, SOC*

M_{∞}	P _o -atm	P_{∞} -atm	To-OC	q_{∞} -atm	Re _k x 10 ⁻⁶
.91	1.0	.59	49	.34	4.5
.94	1.0	•57	49	.35	4.6
•96	1.0	•55	49	.36	4.6
• 98	1.0	•54	49	•36	4.6
1.10	1.0	.47	49	.40	4.7
1.20	1.03	•40	49	.40	4.6

Angles of Attack (α) - 0, 2, 4, 6, 10 degrees

Angles of Roll (ϕ) - 0 to 180 degrees 0 22.5° increments

^{*} SOC - Data not obtained at; ϕ = 90°, M_{∞} = 1.1; ϕ = 67.5°, 112.5°, M_{∞} = 1.2.

TABLE 2. SOC PRESSURE COEFFICIENT DATA, α = 0°

	5.78	055	050	043	027	014	
	5.61	043	038	030	016	012	300
	5.32	038	033	022	018	021	700
PHI=0	1.56 2.22 2.79 3.13 3.22 3.56 4.22 4.55 4.88 5.32 5.61 5.78	.033038114460311043023026026038043055	033099422392065008017019033038050	.047026087405366255 .011 .006003022036043	•059 -•014 -•069 -•375 -•336 -•236 -•122 -•098 -•065 -•018 -•016 -•027	.046 .004236206140073056047021012014	•050 •007 -1188 -1169 -119 - 059 - 050 - 039 - 035 - 035
	4.55	026	017	900.	098	056	0.50
	4.22	023	008	.011	122	073	-,050
SOC	3.56	043	065	255	236	140	-, 110
	3.22	311	392	366	336	206	-,169
	3.13	460	422	405	375	236	-,188
ALPHA=0	2.79	114	660 •-	087	-• 069	•004	.007
	2.22	038	033	026	014		.050
		.033	.040	.047	•050	.112	.162 .107
	Z/D=.89	.114	.125	.131	.146	.184	.162
	Z/ MACH	.91	• 94	96.	. 98	1.10	1.20

TABLE 3. SOC PRESSURE COEFFICIENT DATA, α = 2, 4, 6, and 10 DEGREES a. $M_{_{\infty}}$ = 0.91

		ω			
	5.78			~	
.000	5.61		500000.	9	1 1 1 1 1 1 1 1 1 1
EL=4500000	5.32		EL=4500	5.3	1 1 1 1 1 1 1 1 1 1
8	4.88	- 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	82	80	- 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
•	4.55	1 1 1 1 1 1 1 1 1 1		4.5	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1= 2.00	4.22	- 0022 - 0021 - 0021 - 0023 - 0023	1= 4.00	4.2	- 0 0 3 5 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ALPHA=	3.56	1	ALPHA	. 5	
	3.22			2	
.91	3.13		. 91	3.1	1
MACH=	2.79	097 096 101 116 1123 123 123	MACH=	2.7	
	2.22	018 016 028 037 053 051		2	- 0003 - 0018 - 0056 - 0056 - 0071
	1.56	.057 .058 .0046 .0024 .017		.5	080. 081. 081. 0857. 0857. -0014.
SOC	Z/D=.89	11.11.11.11.11.11.11.11.11.11.11.11.11.	SOC	0 . 8	
	7/ PHT			\vdash	22.5 45.0 67.5 90.0 112.5 135.0

TABLE 3a. (CONTINUED)

	5.78	041 046 066 093 078		5.7	
•000	5.61	- 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	500000.	9 0	000
EL=4500000	5.32	028 032 032 058 056 056	EL=4500	6 0	
R	4.88	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	æ	8 0	111111111111111111111111111111111111111
	4.55			• 5	
00 • 9 =	4.22		=10.00	2 0	
AL PHA=	3.56	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ALPHA	ro a	
	3.22			2 4	
. 91	3,13	+ + + + + + + + + + + + + +	. 91		0.000470044
MACHE	2.79		MACH=	~ 0	
	2.22	0324 0024 0032 0034 0034 0034		. 2	- 0001 - 0001 - 1003 - 1004 - 1004 - 1004 - 1004
	1.56	.115 .106 .068 029 028 036		.5	1
SOC	Z/D=.89	.194 .1159 .0179 .054	SOC	. 8	- 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	=	22.5 45.0 67.5 67.5 112.5 115.5 185.0		7 I	22.5 45.0 67.5 90.0 1112.5 1135.0

	5.78	4	4	• 04	.05	.05		.05	.05	.05		5.78	0+00-	4	.05	•06	9	.06	064	• 06	• 06
545000.	5.61	3	3	6	40	3	041	4	3		5000.	5.61	030	3	.03	.04	.05	•05	047	C 4	4
EL=454	5.32	3	3	.04	.04	.04		.04	.03	•03	L=454	5.32	028	ന	.04	.04	.05	.05	047	• 03	3
2	4.88		01	10	.62	.02	021	.02	.02	.01	RE	4.88	\vdash	01	.02	63	.03	m	023	0	\blacksquare
0	4.55	-	01	.01	01	.01	017	.01	0	01	•	4.55		01	.01	.02	.02	.02	021	• 01	\vdash
1= 2.00	4.22	0	00.	0	00.	000	Ö	00.	00.	00.	1= 4.00	4.22	0	.00	0	.01	.01	.01	007	• 00	00.
AL PHA=	3.56	07	08	19	.25	25	184	•06	.06	99	ALPHA=	3.56	6	60	.24	.23	• 00	•19		• 02	2
	3.22	7	37	~	2	~	376	•37	•39	. 40		3.22	9	9	~	0	• 39	.40	.33	Ô	0
56.	3.13	\vdash	\blacksquare	-	.42	.42	426	.43	.43	3	• 94	3.13	6	0	.41	2	• 44	3	454	4	
MACHE	2.79	081	α	œ	· 09	• 10	109		.11		MACH=	2.79	9	9	.08	0		.12	124	2	2
	2.22	01	-	.02	03	• 03	048	•04	.05	• 05		2.22	01	01	01	03	• 0 2	•06	990	90	90.
	1.56	0	90	05	04	03	2	02	02	01		1.56	60	6	90	04	2	00	001	00	00.
SOC	/D=•89	.152	15	14	13	12	0	10	10	60	SOC	D=.89	H	17	15	13	10	09	.081	0	07
	1 7	0.0	5	5	7	•	•	35	57.	80.		-	0.0	2	5	7.	90	12.	•	57.	80.

TABLE 3b. (CONTINUED)

	5.78	033 037	.08	2000	90		5.78	-	7 3	•12	127	110
545000.	5.61	022 026 045	000	000	0.	.000	5.61	00	19	.11	10	085
EL=4545	5.32	020 024 052	• 0 6	0000	.03	:L=4545	5.32	00	010	.11	100	065
æ	4.88	000	400	0.00	6	RE	4.88	01	04	60.	0 00 4	
0	4.55	004 009 028	40.	020	.01	•	4.55	01	.00	60.	200	
A= 6.00	4.22		.03	00.00	8	1=10.00	4.22	02	000	0.00	000	019
AL PH	3.56	094 073 218	.09	2 4 5	.65	ALPHA	3.56	1	0 C	19	0.09	
	3.22			NN	.41		3.22	.27	12	.43	0 00 1	44
• 94	3.13	.39		44	43	. 94	3.13	.33	7	.51	100	
MACH	2.79		920	44.	• 13	MACH=	2.79	00.	.07	• 14	202	
	2.22	.038	040	600	• 08		2.22	9 1	- 0	~ -	13 12	114
	1.56	.121	000	0.02	02		1.56	18	60	000	800	060
SOC	/D=.89	.214 .202 .169	0 0 0 0 0	200	0 5	SOC	/D=.89	28	9	60	00	.011
	I Z	200	67. 90.	12:	80.		Z/ PHI	00	3 10	20	112.5	6.7

	5.78	CO	3	3	4	.04	.04	.05	.05				5.78	031	03	04	90	05	.05	0	• 05	05
1750.	5.61	~	02	2	02	3	0	03	03	63		.062	5,61	N	02	.02	.03	04	.04		•03	3
EL=4578	5.32	2	~	S	2	.02	02	.03	.02	•		L=4578	5.32			.03	.03	n	•03	037	.02	
2	4.88	00	0	00.	9	0	00	0	8	003		RE	4.88	0	00	00	-	01	.01	007	.00	00.
_	4.55	.007	0	01	01	01	-	01	8	00			4.55		-	01	0	00	0	.005	0	0
= 2.00	4.22	.013	01	02	B	03	3	01	0	01		= 4·00	4.22	_	01	03	02	00	02	.018	01	-
AL PHA:	3.56	247	24	25	26	•26	9	25	.25	25		ALPHA	3.56	ന	ന	S	27	9	28	271	S	2
	3.22	35	3	9	9	9	372	~	~	~			3.22	3	• 34	.35	.37	• 38	9	380	$\boldsymbol{\omega}$	~
96.	3.13	392	∞	Ø	σ	0	σ	0	0	0		96•	3.13	7	~	Ø	6	Н.	.41	422	-	\mathbf{H}
MACH	2.79	0	/	~	Ø	9	6	• 00	0	0		MACH=	2.79	4	2	90	$\boldsymbol{\omega}$	• 10	• 11	111	• 11	-
	2.22		0	0	• 02	•03	3	•04	04	•04			2.22	02	01	00	02	•04	05	058	90	•06
	1.56	.072	-	90	02	B	03	03	2	02			1.56	0	9	07	2	02	01	• 008	8	0
SOC	/D=.89	.161	9 ;	15	14	12	11	11	11	10	1	SOC	0=.89		18	16	14	11	60		8	08
	7 I	0	,	51		90	•	35.	57.	80.			TH9	0	2	5.	7.	90	12.	•	57.	80.

TABLE 3c. (CONTINUED)

	5.78			~ 0	
150.	5.61		750.	• •	- 0008 - 101 - 1114 - 0695 - 079
L=4578	5.32	00000000000000000000000000000000000000	L=4578	• 3	
A H	4.88	010 000 000 000 000 001 001	R	. 8	0091
	4.55	0017 0017 0017 0017 0017 010		S	000000000000000000000000000000000000000
= 6.00	4.22	.002 .002 .002 .002 .002 .003	=10.00	.2	
ALPHA=	3.56	1	ALPHA	3.5	- 1 1 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
	3.22			. 2	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
96.	3.13		96.	4 0	
MACHE	2.79	028 037 095 113 128 128	MACH=		002 065 135 179 191 173
	2.22			. 2	- 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	1.56	.130 .120 .082 .043 .010 011		ro o	.170 .098 .016 048 077 053
SOC	/D*•89	. 223 . 2111 . 176 . 134 . 0099 . 0063	SDC	00 0	
	2	200 200 400 200 200 200 1112 200 180 200		7	22.5 45.0 67.5 90.0 1112.5 1135.6

	5.78	018 018	.02	.03	• 0 3		5.7	00	.01	.02	.03	04	0
.200	5.61	009 009 011	.01	010	• 02	.500	5.61	88	• 00	.02	• 02	022	• 02
EL=4612500	5.32	012 011 024 017	020	.02	• 02	EL=4612	5.32	000	.02	.02	•02	027	.01
₩	4.88	1.058 1.055 1.067 1.067	.06	.04	90.		4 • 8 8	.06	.04	.05	.05	036	• 03
0	4.55	101 090 093	0.0	60.	60.	0	4.55	.10	.10	00	.10	097	•08
1= 2.00	4.22	125 125 115	.12	.12	-	1= 4.00	4.22	12	.13	•13	•12	115 116	•11
ALPHA	3.56	228 229 240	22.5	.24	•24	ALPHA	3.56	.21	.23	.25	• 26	251	.24
	3.22	- 324 - 329 - 333	346	.34	• 34		3.22	0 -	.32	34	• 36	353 352	• 34
96.	3.13	- 356 - 356 - 356	.36	.37	• 38	. 98	3.13	.33	.35	9 %	9 9	388	38
MACH=	2.79	055 056 062	.08	.09	.08	MACH=	2.79	.03	.05	.07	10	099	0
	2.22	.006	02	.02	• 03		2.22	3	0	-10	1 4	048	5
	1.56	.084	002	46	03		1.56	10	0 8	90	02	.019	-
SOC	0.89	.172	14	12	12	SOC	/D=.89	20	17	15	17	.103	60
		22.5 45.0	90.	7.5	80.		1 2	0 0	2	20	12.	135.0	80.

TABLE 3d. (CONTINUED)

	5.78	00	.00	022	.04	• 05	.05	4	.05	.04		5.78	2	00	90	• 08	•10	60	.07	087	1
. 200	5.61	0	00	015	03	•04	•03	3	.03	~	.005	5.61	2	5	94	. 08	• 00	.07	5		1
L=461250	5.32	00	00	030	.04	•04	.04	•03	.02	.01	L=4612	5.32	Ō	00	90	.08	60	07	4	048 013	
RE	4.88	~	90	081	60	.07	.07	.05	.04	• 03	RE	4.88	2	0	. 63	•15	• 14	11	5	054)
_	4.55	10	60	114	13	.12	11	•00	.08	.07	_	4.55	60	02	15	•19	.17	15	0	084	,
00 • 9 = 1	4.22	2	\sim		S	•15	.14	.12	11	.10	A=10.00	4.22	0	.12	00.	•25	22	•18	13	111 088	
AL PHA	3.56	0	0	237	9	7	.27	.25	4	.24	ALPHI	3.56	5	.17	2	• 30	• 33	.32	ω.	245 236	1
	3.22	5	0	326	S	•36	• 38	~	.36	2		3.22	4	• 29	2	• 39	_	3		387)
86.	3.13	4	3	351	~	•39	0	.40	.38	$\boldsymbol{\omega}$	86.	3.13	6	0	Ø	.41	•45	9		400	•
MACHE	2.79	01	.02	049	• 08	.10	.11	.11	11	.11	MACH=	2.79	3	01	90	• 11	•16	~	•16	142	
	2.22	05	04	.014	02	• 05	.06	•07	9	9		2.22	7	60	01	05	60	_	11	088) }
	1.56	CC	13	•095	05	02	.00	00.	00	• 00		1.56	0	$\boldsymbol{\omega}$	60	2	03	9	• 06	040	•
SOC	/D=.89	.233	22		14	11	08	07	07	07	SOC	/D=.89	30	27	19	2	05	02	-	.033)
	7	PHI 0.0	2	45.0	7	0	12.	35	7	80.		7	•	2	5.	7	•	12.	35.	157.5) }

	5.78	-	3 6	00	00	01	.01	0	.01		5.78	0	00	00		00.	.01	.01	2	024
25000.	5.61	0,6	200	00	00	0	10.	.01	.01	5000.	5.61	\vdash	10	.01	022	00.	.01	.01	01	-
EL=472	5.32		100	.02	00	01	.02	.02	.02	EL=4729	5.32	~	.01	.03	031	00.	.03	.03	.02	2
∝	4.88	0,0	0 0	40	00	4	.63	.03	• 03	æ	4.88	4	. 04	40.	052	.00	•03	.03	.03	3
0	4.55		.00	00	00	0	.05	.06	•02	_	4.55		.07	.07	0.000	.00	00.	.04	• 04	4
1= 2.00	4.22	•		.09	00	60	.07	.07	•06	= 4.00	4.22	9	•07	6		0	•08	.07	.07	9
ALPHA	3.56	-	4	.14	.00	5	.14	.14	•14	ALPHA	3.56	\vdash	12	.14	155	000.	•16	.15	.14	4
	3.22	191 198	20	90.	.00	O	. 21	.21	$\overline{}$		3.22	~	8	.19	000.0	00.	90	• 22	N	2
1.10	3.13	222	.21	.22	• 00	2	.23	•23	4	1.10	3.13	_	.20	.21	226	• 00	•24	•24	•24	5
MACH=	2.79	.020	_	00	.00	0	• 00	• 00	$\overline{}$	MACH=1	2.79	90	03	02	.001	• 00	• 02	02	.02	N
	2.22	.069	5	05	Ō	3	3	ന	2		2.22	6	6	7		0	2	2	-	\vdash
	1.56	.138	12	4	00	6	6	60	9		1.56	Ó	9	3		0	~	~	~	9
SOC	10=.89	.212	20	•18	00	9	9	9	iU	SOC	0.89	4	23	21	.191	00	15	14	ന	3
	7	0 0	•	7	90	5	35.	57.	80.		Z/O PHI	•	2	5	67.5	90	12.	5	57.	3

TABLE 3e. (CONTINUED)

	5.78	005	000	.03	0	• 03	.02	.03	.02		5.78		00	03	08	00000	.07	9	• 06	_
725000.	5.61			.03		.03	.02	.02	61	.000	5.61	O	00	0	.08	0.000	.07	4	5	-
EL=472	5.32	024	⊣ (C)	.04	.00	•04	.03	.02	.01	EL=4725	5.32	0	.01	.06	.09	0.000	.07	.04	• 04	\vdash
æ	4.88	035	ש ב	• 06	00	9	n	n	3	S.	4.88	2	.04	07	.10	0.000	•07	4	ന	015
0	4.55		000	00	00	00.	• 06	4	0	0	4.55	ന	05	.10	90	0.000	• 00	90.	04	3
00·9 = V	4.22		- 0	.09	00	•00	.07	9	051	A=10.00	4.22	3	.05	.11	.16	00000	•13	•00	• 06	4
ALPHA=	3.56	103		•16	0	.17	.16	5	4	ALPHI	3.56	9	.08	.14	. 20	0.000	• 22	•18	.15	
	3.22	162	199	.00	0	00.	.24	.23	22		3.22	2	4	.19	00.	00000	00.	.27	4	2
1.10	3.13	197	20	.23	0	•26	•26	5	5	1.10	3.13	9	9	.21	•26	0.000	•31	•29	•25	•25
MACH=1.	2.79	.063	1 0	.00	00	• 04	• 04	.04	• 04	MACH=1	2.79	\vdash	60	03	.04	0.000	• 10	.08	• 06	2
	2.22	.121	4 00	04	00	.01	00	00	00		2.22	18	15	60	.01	0.000	• 05	•04	.02	.01
	1.56	.197	S	11	0	05	04	5	05			56	4	17	60	0.000	• 00	00	2	4
SOC	/D=.89	.275	N	18	00	12	11	H	11	SOC	/D=.89	34	31	25	• 16	0.000	90	90	0	07
	7 7	0.0	•	7.	06	12.	35.	7	80.		7 7	•	2	5	7	0.06	12.	ا ريا •	57.	80

	5.78	017	.01	0	000	.02	.01		5.78	_	01	• 01	• 00	0.000	. 00	200		7
1250.	5.61		022	88	8 6	.02	2	.250.	5.61	02	05	• 02	• 00	0.000	000	20.		7
L=46012	5.32		4 0		00.	.03	•03	L=4601	5.32	03	• 03	• 02	.00	0.000	9	40.	0 0	• 0
RE	4.88	40.	0		000	.03	C	RE	4.88	C	4	.04	.00	00000	000	40.	0 0	0
_	4.55		00	80	99	.05	04		4.55	4	• 02	00.	00.	0.000	000	000	500	*
1= 2.00	4.22	058	90.	0	00.	.05	05	1= 4.00	4.22	•05	•05	•06	.00	0.000	00,	900		7
ALPHA	3.56	110	111	\circ	• 00	.12	2	ALPHA	3.56	60	60	.11	00.	0.000	000	•12	12	77
	3.22	155 159	88		86	.17	.17		3.22	4	•14	00.	90.	00000	000	900	07.	07.
1.20	3.13		•	\circ	00.	.18	6	1.20	3.13	9	.15	.16	9	00000	000	.20	77.	. 20
MACH=1	2.79	00	.01		800	00	• 00	MACH=1	2.79	04	04	02	90.	0.000	00.	• 01	000	V
	2.22	.072	900	0	00.	0 3	03		2.22	6	60	07	90.	0.000	00.	0 2	7 7	7
	1.56	.130	.11	8	000	08	08		1.56	5	15	13	.00	0.000	000	00	0 4	0
SOC	/D=.89	.190	.18	8	00.	14	13	SOC	10=.89	22	21	19	.00	0.000	00.	14	7 -	T T
	7	0 2	•	90.	۰ س	57.	80.		7		2	5	7.	0.06	12.	5		•

TABLE 3f. (CONTINUED)

	5.78	010	.02	.00	• 00	• 00	.03	.02	.02		5.78	00		.05	.00	.00	.00	056	90.	• 01
250.	5.61	019	03	00.	900	00.	• 03	2	2	250.	5.61	0	Q.	.06	.00	.00	• 00	050	.05	• 01
L=4601	5.32	00	9	.00	• 00	• 00	• 04	.03	02	L=4601	5.32	02	03	.09	.00	.00	00.	061	• 0.5	• 02
A.	4.88	0.0	0.5	.00	• 00	00.	• 04	ന	3	RE	4.88	.02	9	.08	000	0	00.		S	2
	4.55	045	00	.00	• 00	00.	00.	•04	•03		4.55	2	.04	.00	.00	.00	00.	00000	• 0 4	•03
e**	4.22	0.0	07	00.	00.	00.	•04	.05	05	= 10.00	4.22	-	.03	60.	00.	00	00.	0.00-	9	4
ALPHA	3.56		11.	0	• 00	00.	.13	.12	.12	ALPHA	3.56	4	9	.11	00.	. 00	• 00	166	C)	.12
	3.22	123	9	0	00	00.	00.	.19	18		3.22	7	.10	00.	00.	• 00	00.	0.000	• 20	6
. 20	3.13			0	• 00	00.	.21	•20	0	• 50	3.13	0	11	.15	00.	• 00	00.	243	•21	_
MACH=1	2.79	.067	03	0	• 00	• 00	• 03	.03	.03	MACH=1	2.79	2	10	9	.00	• 00	• 00	038	5	4
	2.22	.121	ıœ	00	00.	00.	00	3	0		2.22	ω	9	60	.00	00	• 00	023	7	_
	1.56	.183	4	00	•00	00.	4	04	4		1.56	25	23	9	.00	0	• 00	· 00 4	0	2
SOC	/D=.89	.252	21	0	00.	00.	00	60	6	SOC	′D=.89	7	0	23	.00	0	• 00	.047	0	•
	7	0.0		2	90	2	35.	57.	80.		Z/A IHd	•	2	5	2	06	12.	135.0	57.	80.

TABLE 4. SOCBT PRESSURE COEFFICIENT DATA, α = 0°

	5.78	.018	.046	.044	062	144	138	
	5.56	.005	.007	107	275	196144	183	
	5.32	051	325	363	360	246	225	
	5.19	396	476	439	426	293	260	
0=IHd	4.88 5.03	605	550	506	484	-,341	288	
Ξ.	4.88	.002038062138605396051	404380246012039102550476325	.001064506439363107	0358342242120084082484426360275062	5217212142072046036341293246	172172120055053037288260225183138	
	4.55	062	039	.001	084	046	053	
SOCBT	4.22 4.55	038	012	.027	120	072	055	
S	3.56	.002	246	3388370261 .027	242	142	120	
	3.22	361	380	370	345	212	172	
LPHA=0	3.13	120391361	404	388	358	217	172	
ALP	2.79	120	9	093	080	-• 00	.043001	
	1.56 2.22	.019050	.02704410	.03403709	.04602608	• 038		
		.019			.046	.100	260.	
	68.=d/Z	.104	.114	.122	.134	.172	.155	
	/2	. 91	.94	96.	.98	1.10	1.20	

TABLE 5. SOCBT PRESSURE COEFFICIENT DATA, α = 2, 4, 6, and 10 DEGREES

a. M = 0.91

		a.	M = 0.91		
	5.78	.013 .013 .015 .015 .015		7	.000 .000 .000 .000 .002 .002 .002
	5.56	0001 0001 0001 0003 0003	01	5	010 010 010 0011 0002 0118
750.	5.32	0074 0069 0063 0061 0055 0048	•03	m	- 101 - 097 - 099 - 098 - 098 - 098 - 098 - 038
L=44887	5.19		.27		5005 5005 5009
æ	5.03	597 600 603 609 609 610	0	0	595 599 610 615 613 613
	4.88	- 1 1 2 8 1 1 2 9 1 1 2 9 1 1 3 9 1 1 3 9 1 1 1 4 1 1 1 4 6 6 1 1 1 1	4	4.88	
2.00	4.55		4.0	4.55	0.005 0.005 0.005 0.005 0.007 0.007 0.005 0.005
ALPHA=	4.22		E T	4.22	0.050 0.050 0.050 0.050 0.050 0.050
	3.56	000000000000000000000000000000000000000	0	3.56	017 019 024 027 0616 003
11	3.22	354 353 354 354 364 364	7	3.22	- 337 - 350 - 350 - 364 - 373 - 373
ACH= .9	3.13	1 1 1 1 1 1 1 1 4 4 4 4 4 4 4 4 4 4 4 4	.394 H= .	3.13	
Σ	2.79	104 103 112 115 122 127	3. E	2.79	- 0888 - 0888 - 0999 - 1129 - 1145 - 1146
	2.22	- 0 0 2 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	•00	2.22	- 0010 - 023 - 039 - 059 - 078 - 078 - 080
SOCBT	1.56	4440.00.00.00.00.00.00.00.00.00.00.00.00	00	1.56	
•	Z/D=•89	.131 .133 .127 .121 .112 .004	8	68°=0/Z	.151 .159 .143 .123 .0099 .067
	:	PHI 22.5 45.0 67.5 90.0 1112.5	80	- Lond	042404240

		TABLE 5a. (CONTIN	UED)	
	5.78		5.78	
	5.56		5.56	
750.	5.32	144 137 099 073 018 018	5.32	272 287 143 143 061 069
EL = 4488	.5.19			- 484 - 530 - 589 - 589 - 211 - 113 - 119
R. E.	5.03	-586 596 622 628 614 614	5.03	576 594 560 678 674 521
	4.88		4.88	681 093 139 215 217 215 172
00.9	4.55		4.5	
ALPHA	4.22	027 032 047 050 056 056 056	4.22	008 008 008 110 016 076 076
	3.56		3.56	025 039 119 113 112 071
1	3.22		3.22	256 278 336 419 470 299
MACH= .9	3.13	5 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 -	3.13	
M	2.79	065 071 071 121 167 165 165	2 • 79	016 035 091 158 202 214 199
	2.22		2.22	.076 .055 -005 -0134 -1145 -1145 -123
SOCBT	1.56		1.56	.164 .142 .077 001 066 094 088
5	2/D=.89	11. 11. 11. 10. 10. 10. 10. 10. 10. 10.	68.=0/2	.263 .175 .003 .003 012 003
		PHI 0.0 22.5 45.0 67.5 90.0 112.5 1135.0 1157.5	!	PHI 0.0 22.5 45.0 67.5 90.0 112.5 135.0 187.5

			TAB	LE 5	b.	M_{∞}	= 0.	. 94					
	5.78	0.043	200		10 .	ω		5.78	ന ന	03	2 60 4	.047	5
	5.56	006	800	0 1	\vdash			5.56	2 6	.02	100	.017	m
.000	5.32	383 386	2	0 3	8		5000.	5.32	00	0	36	• • •	169
EL=4545000	5.19	777	44	9 0	7 7		1=454	5.19	~ ~	47	64	481	9
æ	5.03	546 546 546	40	2 2	5		<u>«</u>	5.03	4 4	.54	J 10 10	551	Ō
	4.88	092 092 092	00	00	00			4.88	@ @	00	111	• •	115
= 2.00	4.55	ω	038 041	7 7	ന ന		4.00	4.55	നന	6 4	05		3
ALPHA	4.22	010 008 010	.01		0.0		ALPHA=	4.22	00	10	.02		0
	3.56	238 240 242	.24	SO	S 3			3.56	12	2 4	ന ന	• •	Ch T • -
56.	3.22	381 381 382	.38	(D) (C)	7		46	3,22	7	8	00	385	•
ACH= .	3.13	394 392 394	409	.41	.41		H3	3.13	.38	.39	42	423 419	*
Σ	2.79	089 087 090	0.1.	113	115 118		M	2.79		0 0		130 132	
\$	2.22	024 021 025	• 03	.05	S IS			2.22	00	3 1	50	071	•
SOCBT	1.56	.051	03	JH,	10		SOCBT	1.56	7	94	20	004	•
	Z/D=•89	.141 .143 .138	13	100	20		•,	Z/D=•89	6	3	10	.079	-
	Z	025	67. 96.	ישו	80.			-	000	5.2	90.	135.0 157.5 180.0	•

		TABLE 5b.	(CONTINUED	
	5.78	.030 .029 .002 .002 .002 .003 .052	5.78	0022 0074 0074 0074 0075 0075 0075 0075
	5.56	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5.56	247 130 0130 047 022 010
.000	5.32	394 397 410 385 254 172	5.32	370 386 428 487 168 114 086
L=4545000	5.19		L=454500 5.19 5	
ox mi	5.03		RE 5.03	
	4.88	071 005 002 111 124 132 132 125	4.88	0647 1047 151 151 181 185 185
00.9	4.55	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10.00	006 0065 110 113 113 079
ALPHA=	4.22		ALPHA=	0011 0045 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	3.56	202 233 266 222 128 089	3.56	- 143 - 172 - 172 - 228 - 297 - 124 - 124 - 056
• 94	3.22	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3.22	
CH#	3.13	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1CH≈ .9 3.13	
Σ	2.79	067 055 077 106 145 147	MA 2.79	0.000 000 0142 1187 1184 152
	2.22	026 007 069 092	2.22	.083 .061 .002 071 125 136 136
SOCBT	1,56	. 109 . 099 . 071 . 036 . 003 . 019 . 029	1.56	.172 .149 .087 .008 .0086 .0086 .0081
S.	/D=.89		S /0=.89	. 272 . 249 . 185 . 103 . 035 . 003 . 006
	2	67.5 67.5 67.5 112.5 135.0	7	PHI 0.0 22.5 45.0 67.5 90.0 112.5 135.0 187.5

					TA	13/	E	5	с.	M	= 0.	96								
	5.78	.036	03	.038	. 640	04	.048	.049	.050	∞		5.78	2	2	02	2	03	4	5	.059
	5.56		17	5	(7)	O	$\boldsymbol{\omega}$	9	5			5.56	9	9	23	8	.13	Φ	Ę,	031
750.	5.32	367	36	9	9	9	9	5	5		750.	5.32	9	9	37	7	7	~	5	340
EL=45787	, , , 19	438	.43	3	4		3	3	3		L=4578	5.19	3	3	43	4	43	2	4	436
R	5.03		505	0	0	0	0	0	0		ax m	5.03	665	0		0	0	0	0	505 50ª
	4.88	5		05	90	90	9	9	~			4.88	048	4	05	9	.07	~	.07	076
2.00	4.55	.003	00	3	0	0	00.	0	0		4.00	4.55	.006	0	0	\rightarrow	$\boldsymbol{\vdash}$,-	•	0
ALPHA=	4.22	.027	2	~	2	2	2	2	2		ALPHA=	4.22	2	2	\vdash	2	\vdash	_	2	.031
	3.56	252	2	5	9	9	9	9	9			3.56		4	5	~	7	æ	• 28	278
90	3.22	9	-,363	9	~	.37	.37	~	~		9 0	3.22	4	4	2	~	Ø	œ	382	~ ~
1CH= .9	3.13	37		• 38	.38	•39	• 39	•39	•39		0. =H3	3.13	•36	.36	.37	.38	•39	.40	4.	396
M	2.79	076	7	æ	9	9	0	0	0		Æ	2.79	057	059	070	086	101	112	۲.	118 118
	2.22	015	\vdash	02	03	.04	04	4	0.5			2.22	0	00	00	02	04	05	• 06	067
SOCBT	1.56	.050	0 5	4	4	E	2	7	-		OCBT	1.56	8	8	9	4	3	01	00.	001
0,	/D=.89	.150	4	13	2	11	_	10	0		S	0=.89	-	~	9	14	1	10	08	.081
	Z I	02		7	ö	5.	35.	57.	80.			17 IHd	0	2.	5	7	90	12.	35	180.0

		TABLE 5c. (CONTINUE	ED)	
	5.78	.007 .007 .003 .003 .003 .003 .003	5.78	- 135 - 107 - 067 - 008 - 001 - 009 - 003
	5.56	297 292 292 216 058 036	5.56	
750.	5.32	362 367 395 395 368 269	5.32	
L=4578	5.19	429 444 446 472 458 437 437 437	5.19	1
RE	5.03	- 494 - 500 - 519 - 519 - 501 - 501 - 523	5.03	6489 64499 644489 644489 644489
	4.88	000000000000000000000000000000000000000	4.88	617
9.00	4.55	000 000 000 000 000 000 000 000 000 00	4.55	000000000000000000000000000000000000000
ALPHA=	4.22	.028 .024 .002 001 003 .003 ALPHA=	4.22	.028 .024 .027 .0072
	3.56	222 222 222 222 222 232 232 232 232 232	5	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
9	3.22	6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2	282 282 283 2848 2844 2844 2844 2844 284
6. =H3	3.13	350 355 373 394 415 419 408 408	-	
Σ	2.79	036 0042 0044 118 128 131 128	2	.012 007 063 124 176 189 173
	2.22	. 0 0 2 5 0 0 2 5 0 0 2 5 0 0 2 5 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2	.090 .070 .010 .0107 .107 .123
SOCBT	1.56	.115 .081 .081 .044 .011 .011 .021 .021	5	.179 .157 .094 .017 .017 .016 .076
5	Z/D=.89	. 202 . 202 . 175 . 137 . 137 . 059 . 059	8	. 280 . 193 . 113 . 045 . 016 . 007
	2/ PHT		—	22.5 45.0 67.5 90.0 112.5 135.0 180.0

		TABLE 5d.	$M_{\infty} = 0.98$	
	5.78	- 135 - 116 - 117 - 108 - 072 - 058 - 058	5.78	195 215 177 16¢ 093 058 001e
	5.56		5.56	307 309 311 297 268 239 207
.250.	5.32		5.32	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
FL=4601250	5.19	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5.19	
ã	5.03	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	RE 5.03	1 1 1 1 1 1 1 1 1 1
	4.88	077 077 077 087 082 085 086		
2.00	4.55	00000000000000000000000000000000000000	4.00	- 094 - 1092 - 101 - 105 - 104 - 097 - 089
ALPHA=	4.22	125 126 127 128 126 117 112	ALPHA=	- 121 - 122 - 125 - 137 - 137 - 107 - 091
	3.56	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3.56	
86	3.22		98 3.22	
° H⊃	3.13	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	CH= . 3.13	
M	2.79	062 066 066 071 083 083	MA 2.79	0045 0045 0056 0072 0088 105
	2.22	- 0005 -	2.22	018 017 004 033 053
SOCBT	1.56	.069 .067 .067 .059 .051 .036	SOC8T 1.56	.0957 .0951 .0081 .0040 .0055 .0100
S	10=.89	.161 .152 .150 .150 .140 .113	S /0=.89	.191 .188 .153 .153 .112 .095
	7/2		7.7 1.14	0 7 2 7 0 7 2 7 0

Z/D=.89 1.56 2.22 2.79 3.13 3.22 3.56 4.22 4.55 4.88 5.03 5.19 5.32 5.56 5.78 PHI 0.02 2.25 2.79 3.13 3.22 3.56 4.22 4.55 4.88 5.03 5.19 5.32 5.56 5.78 2.5 PHI 0.02 2.25 5.15 119 0.037 -0.21 -320 -322 -225 5.215 119 0.037 -0.21 -324 -324 -324 -324 -324 -324 -324 -324		6 0	TABLE 5d.	(CONTIN	NUED)	061533377
Z/D=.89 1.56 2.22 2.79 3.13 3.22 3.56 4.22 4.55 4.88 5.03 5.19 5.32 5.56 4.22 4.55 4.88 5.03 5.19 5.32 5.56 4.22 4.55 4.88 5.03 5.19 5.32 5.56 4.22 4.55 4.88 5.03 5.19 5.32 5.56 4.22 4.55 4.88 5.03 5.19 5.32 5.56 4.22 4.55 4.88 5.03 5.19 5.32 5.56 4.22 4.55 4.88 5.03 5.19 5.32 5.56 4.22 4.55 4.88 5.03 5.19 5.32 5.56 4.22 4.55 4.88 5.03 5.19 5.32 5.56 4.22 4.25 5.18 5.05 5.02 5.02 5.02 5.03 5.03 5.03 5.03 5.03 5.03 5.03 5.03		.7	26 22 22 18 18 00 00 00		7.	28 30 30 30 30 30 30 30 30 30 30 30 30 30
Z/D=.89 1.56 2.22 2.79 3.13 3.22 3.56 4.22 4.55 4.88 5.03 5.19 5.35 PHI 22.5 .215 .119 .037021320302205116094071479428365 4.55 .119 .037027325307212117095072482424365 4.50 0.19 0.001086 0.001086 0.367325215119 .037027325307212117095072482424365 0.000 0.001068 0.011068 0.011068 0.011068 0.011068 0.011068 0.011068 0.011068 0.011068 0.011068 0.011068 0.011068 0.011068 0.011068 0.011080 0.0110		.5			.5	00000000000000000000000000000000000000
2/D=.89 1.56 2.22 2.79 3.13 3.22 3.56 4.22 4.55 4.88 5.03 PHI 0.0. 223 .127 .044021320362205116094071479 0.0. 223 .127 .044021320362205116094071479 0.0. 22.5 .215 .119 .037027325307212117095072482 0.13 .025020080344324236135114095072482 0.013049 .013049344324236135114095072482 0.013049 .015020387325206135114099493 0.012 0.013001008115394380360272139115115505 0.02 .008 .001008117370355264117098115116505 0.02 .072008070117370355260091073110502 0.02 .024 .192 .103 .029284257160091073109502 0.00 .294 .192 .103 .029284257160102099061466 0.00 .007 .008004301274187122104069477 0.00 .294 .192 .103 .029284257160102099061466 0.00 .007 .008004007101304305260001073109502 0.00 .008004007101395293213189168553 0.00 .008004007101439411137146553 0.00 .008004100396395293213189168553 0.00 .008004100396396385289184187125104552 0.00 .00800410039639	250.		000000000000000000000000000000000000000	250		400400100
2/D=.89 1.56 2.22 2.79 3.13 3.22 3.56 4.22 4.55 4.88 5.03 PHI 0.0. 223 .127 .044021320362205116094071479 0.0. 223 .127 .044021320362205116094071479 0.0. 22.5 .215 .119 .037027325307212117095072482 0.13 .025020080344324236135114095072482 0.013049 .013049344324236135114095072482 0.013049 .015020387325206135114099493 0.012 0.013001008115394380360272139115115505 0.02 .008 .001008117370355264117098115116505 0.02 .072008070117370355260091073110502 0.02 .024 .192 .103 .029284257160091073109502 0.00 .294 .192 .103 .029284257160102099061466 0.00 .007 .008004301274187122104069477 0.00 .294 .192 .103 .029284257160102099061466 0.00 .007 .008004007101304305260001073109502 0.00 .008004007101395293213189168553 0.00 .008004007101439411137146553 0.00 .008004100396395293213189168553 0.00 .008004100396396385289184187125104552 0.00 .00800410039639	L=4601		44444444		-	11111111111111111111111111111111111111
Z/D=.89 1.56 2.22 2.79 3.13 3.22 3.56 4.22 4.55 4.88 PHI 0.0 223 1127 .044021320302205116094077 22.5 2.13 .19 .037027325307212117095077 45.0 188 .093 .013049344324236135114095 67.5 149 .056020080367353261149125099 90.0 113 .023051105389372280155124107 90.0 0.13 .023051105389371264117098125 90.0 0.13 .023074125389371264117098125 90.0 0.075008074125389371264117098125 90.0 0.7500807712138036025809808211 80.0 0.75008070117370355260091C7310 80.0 0.72008070117370355260091C7310 80.0 0.294 .192 .103 .02928425716010209906 90.0 0.294 .192 .103 .02928425716010209906 90.0 0.294 .192 .103 .02928425716010209906 90.0 0.29409716143941933321318915 90.0 0.5800412011643941933321318415 90.0 0.05800412013641933321918415 90.0 0.05800412011118011711 90.0 0.03500411111116042511009715 90.0 0.03500401712639437623901811711	a m	0	444400440 	22	0	11111111 440000440
Z/D=.89 1.56 2.22 2.79 3.13 3.22 3.56 4.22 4.55 PHI 0.0 223 1127 .044021320362205116094 22.5 .215 .119 .037027325307212117094 45.0 .188 .093 .013069367353261149129 10.5 .088 .001068115394380254115104 55.0 .075008074122389371264117094 57.5 .071010073121380355260091073 50.0 .072008070117370355260091077 ALPHA=10.0 Z/D=.89 1.56 2.22 2.79 3.13 3.22 3.56 4.22 4.5 PHI Z/D=.89 1.56 2.22 2.79 3.13 3.22 3.56 4.2210 0.0 .294 .192 .103 .02928425716010209 45.0 .206 .107 .02304634732323516814 67.5 .126 .02904910145041128813611 1.35.0 .02006412011116042641128813611 1.35.0 .020061111160426411289100001 1.25 .02805209912539437623908510		ω	000000000000000000000000000000000000000		&	111111111111111111111111111111111111111
Z/D=.89 1.56 2.22 2.79 3.13 3.22 3.56 4. PHI 0.0 .223 .127 .0440213203222051 22.5 .215 .119 .0370273253072121 45.0 .188 .003 .0130493443242261 90.0 .113 .0230511053893712641 12.5 .088 .0010681153893712641 57.5 .0720080741223893712641 57.5 .0720080741223893702580 80.0 .0720080701173703552600 22.5 .270 .192 .103 .0292842571601 22.5 .270 .109 .0090043012741871 45.0 .206 .107 .0230463812571601 45.0 .206 .0070090763893832951 45.0 .206 .107 .0230463812882932990641014504382951 12.5 .0220641071174504382551 45.0 .206 .007016301274187064107125394376239299099125394376239099125394376239099125394376239099125394376239099099125394376239099099125394376239099099125394376239099099125394376239099099125394376239099099125394376239099099125394376239099099125394376239099099125394376239099099125394376239099099125394376239099099125394376239099099125394376239099099125394376239099099125394376239099	6.0	5	09 11 12 12 12 11 11 09	10.0	5	100 114 118 119 119
Z/D=.89 1.56 2.22 2.79 3.13 3.22 3.56 PHI 0.0 .223 .127 .044021320362203 22.5 .215 .119 .037027325307213 45.0 .188 .003 .013049344324223 45.0 .189 .0056020080367323223 35.0 .075008074122389372283 35.0 .075008074122389371263 80.0 .072008079117370355263 80.0 .072008070117370355264 22.5 .270 .169 .082 .01030127418 45.0 .294 .192 .103 .02928425716 67.5 .126 .029049108395293 67.5 .022064120116459419388 67.5 .02805206412017645042523 80.0 .03504012539437623	ALPHA=	.2	111111111111111111111111111111111111111	ALPHA	• 2	100 116 116 113 113 113
Z/D=.89 1.56 2.22 2.79 3.13 3.22 D.0 .223 .127 .04402132030 22.5 .215 .119 .03702732530 45.0 .188 .093 .01304934432 90.0 .113 .02305110538937 90.0 .113 .02305110538937 12.5 .088 .00106811539438 57.5 .07101007312138036 80.0 .07200807412238937 57.5 .07101007312138036 80.0 .07200807412238935 7/D=.89 1.56 2.22 2.79 3.13 3.2 PHI Z/D=.89 1.56 2.22 2.79 3.13 3.2 45.0 .204 .192 .103 .02928425 67.5 .126 .02904910839138 12.5 .02206412017645041 12.5 .02206412017645041 12.5 .02206412017645041 12.5 .02805209913839138 180.0 .03504007912539437		5	200 200 200 200 200 200 200 200 200 200		• 5	44444444444444444444444444444444444444
Z/D=.89 1.56 2.22 2.79 3.13 PHI 0.0 .223 .127 .044021320 22.5 .215 .119 .037027325 45.0 .188 .093 .013049344 45.0 .113 .023051105349 12.5 .088 .001068115349 35.0 .075008074122389 57.5 .071010073121380 80.0 .072008074122389 57.5 .071010073121370 80.0 .072008079117370 22.5 .270 .169 .082 .010301 45.0 .294 .192 .103 .029284 45.0 .206 .029049108347 45.0 .020049108347 45.0 .020064120116459 112.5 .022064120116459 112.5 .022064120138394 180.0 .035040079138394	80	.2		ω	•2	
Z/D=.89 1.56 2.22 2.79 PHI 0.0 .223 .127 .044021 22.5 .215 .119 .037023 45.0 .188 .093 .013063 45.0 .113 .023051105 90.0 .113 .023051105 12.5 .088 .001068115 35.0 .075008074125 57.5 .071010073121 80.0 .072008074127 PHI Z/D=.89 1.56 2.22 2.79 45.0 .294 .192 .103 .029 45.0 .206 .107 .023046 45.0 .206 .029049108 90.0 .058034097161 12.5 .022064120128 125.5 .028064120128	±				-	0.40 m m m m m m m m m m m m m m m m m m m
SDC8T Z/D=.89 1.56 2.22 PHI 0.0 .223 .127 .044 22.5 .215 .119 .034 45.0 .188 .093 .013 45.0 .113 .023051 12.5 .088 .001066 35.0 .075008074 57.5 .071010077 80.0 .072008074 80.0 .294 .192 .10 22.5 .270 .169 .08 45.0 .206 .107 .02 67.5 .02006412 12.5 .02206412 135.0 .02006412 135.0 .03504007	A	.7	.02 .02 .03 .03 .11	¥	.7	00. 00. 00. 00. 00. 00. 00. 00. 00. 00.
Z/D=.89 1.56 PHI 0.0 .223 .127 22.5 .215 .112 45.0 .188 .093 45.0 .113 .023 12.5 .075003 57.5 .07101 80.0 .07200 80.0 .294 .19 22.5 .270 .16 45.0 .294 .19 22.5 .270 .16 45.0 .294 .19 22.5 .270 .16 45.0 .294 .19 22.5 .270 .16 45.0 .294 .19 22.5 .270 .16 45.0 .294 .19 22.5 .270 .16 45.0 .294 .19 22.5 .270 .16 45.0 .206 .10 67.5 .126 .02 112.5 .02206 135.0 .03504		.2	000 000 000 000 000 000 000		.2	.10 .08 .02 .04 .09
Z/D=.89 PHI 0.0 .223 22.5 .215 22.5 .149 90.0 .113 90.0 .113 90.0 .113 80.0 .075 57.5 .075 80.0 .072 PHI Z/D=.89 45.0 .294 65.0 .294 65.0 .294 65.0 .294 65.0 .294 65.0 .294 65.0 .294 65.0 .294 65.0 .294 65.0 .294 65.0 .294 65.0 .294	1830	.5	000000000000000000000000000000000000000	COC B T	.5	116 116 100 100 100 100 100 100 100 100
PHI 222.5 647.5 64	S	D=.8	22 22 118 114 00 00 00 00	5	ω.	29 20 20 00 00 00 00 00 00
		11	PHI 222. 45. 67. 90. 12. 35.		/2	PHI 0.0 222. 45. 67. 90. 112. 112. 80.

		TABLE 5e.	M = 1	.10	
	5.78	-158 -154 -156 -150 -150 -123	ac 2	5.78	168 167 168 152 152 136 107
	5.56	-1998 -1998 -1994 -1996 -1893 -179		5.56	202 202 201 196 188 179 170
750.	5.32	2 2 3 3 4 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4	1750.	5.32	252 244 251 252 252 248 235
EL#4713	5.19	308 284 282 282 292 293	:L=4713	5.19	319 306 297 297 291 286
<u>~</u>	5.03	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ax m	5.03	1 1 1 1 1 1 1 1 1 1
	4.88	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		4.88	044 047 055 057 048 042 030
2.00	4.55	068 069 067 071 071 066	4.00	4.55	
ALPHA=	4.22	071 071 075 077 077 077	ALPHA.	4.22	069 079 086 086 085 074
	3.56	- 1 1 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		3.56	126 127 153 151 164 157
0	3.22	200 201 203 205 209 213 217	MACH=1.10	3.22	187 189 209 221 227 228 225
MACH=1.1	3.13	204 203 204 207 213 218 226		3.13	189 190 198 211 233 233
E	2.79	.014 .015 .012 .007 .000 005 011		2.79	.034 .032 .021 .005 013 032 032
	2.22	.0056 .0056 .0057 .0039 .0027		2.22	.079 .075 .065 .049 .032 .013
SOCBT	1.56	125 125 121 113 105 000 000 0087	SOCBT	1.56	.150 .133 .114 .0094 .0099 .069
	0=.89	. 1988 . 1988 . 1179 . 1573	S	2/D=.89	.228 .225 .225 .190 .190 .151 .151
	=0/2	PHI 0.0 22.5 45.0 67.5 90.0 112.5 135.0			PHI 0.0 22.5 45.0 67.5 90.0 112.5 135.0

		TABLE 5e.	(CONTINUED)	
	5.78	- 177 - 177 - 185 - 184 - 164 - 119 - 104	5.78	198 210 251 253 211 157 115
	5.56	- 215 - 220 - 230 - 234 - 195 - 171 - 153	ت. به	222 231 265 365 365 168 168
1750.	5.32	264 265 255 277 256 238	3750. 5.32	1.259 1.259 1.259 1.259 1.252 1.252 1.252
EL=4713750	5.19	311 309 301 313 320 305 281	L=4713 5.19	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
8	5.03	1 1 1 1 1 1 1 1 1 1	RE 5.03	324 3421 362 382 391 391 313
	4.88	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4.88	023 037 070 102 099 086 069
00.9	4.55	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-10.00	041 052 103 146 156 072 051
ALPHA=	4.22		ALPHA=	037 061 109 152 17C 171 090 064
	3.56	-1108 -1116 -1142 -1164 -1178 -1169 -1158	3.56	071 094 146 205 226 190 159
01	3.22	- 171 - 175 - 194 - 221 - 243 - 242 - 234 - 234	3.22	132 148 194 253 268 268 264
ACH=1.1	3.13	- 172 - 178 - 196 - 218 - 235 - 236 - 236	ACH=1.1	136 152 197 250 269 269 269
Ē	2.79	0025 0025 0027 0027 0045 0045	MA 2.79	.102 .082 .028 038 099 086
	2.22		2.22	166 144 .087 032 052 059
SOCBT	1.56	.180 .1143 .110 .077 .057 .067	SOCBT 1.56	. 243 . 163 . 163 . 089 . 090 . 003 . 003
S	68°=0/Z	.251 .223 .188 .152 .1129	S 89.=0/2	.331 .308 .244 .167 .101 .066 .061
	-	222.5 222.5 45.0 67.5 90.0 1135.0 1157.5	72 144	

		TABLE 5f.	M = 1	1.20					
	5.78	154 154 156 156 156 156 157 158 153 153 153	α	5.78	9		15	.12	060
	5.56	- 191 - 191 - 190 - 188 - 185 - 175 - 176		5.56	00	202	0 0	.17	S
2506.	5.32	- 229 - 229 - 229 - 226 - 226 - 221 - 217	. 500.	5.32	20	233	.23	• 21	-0
EL=4612500	5.19	- 262 - 264 - 264 - 264 - 256 - 256 - 256 - 256	:L=4612	5.19	26 26	265	.27	.25	4 50
∝	5.03	- 2 2 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	æ	5.03	26 28	287	90	. 28	- &
	4.88	- 633 - 646 - 646 - 646 - 635 - 635 - 635		4.88	ന ന	041	44	.04	20
- 2.00	4.55		4.00	4.55	.05	053	.06	.05	t m
ALPHA=	4.22	056 057 060 060 060 057	ALPHA:	4.22	05	060	90	•06	0.0
	3.56	-113 -116 -116 -121 -126 -129 -129		3.56	00	115 127	60 60	•13	റ ന
20	3.22	162 164 164 172 176 177 179	20	3.22	14	158	70	.18	0 00
ACH=1.2	3.13	159 158 165 170 175 179 179	ACH=1.	3.13	14	153 166	17 18	00 0	.18
È	2.79	.017 .013 .013 .009 .003 .007 .007	Ĩ	2.79	.037	00	0 1	020	S
	2.22			2.22	8	00	03	01	-
SOCBT	1.56	.118 .115 .109 .101 .0086 .082	10CBT	1.56		0 5	00	90	S FO
V 1	68.=0/2	.180 .181 .177 .168 .158 .142 .142	и	Z/D=.89	.201	0 ~	15	12	-
		22.5 45.0 67.5 90.0 1112.5 1135.0		-	0 0		90.	5	80.

		TABLE 5f.	(CONTINUED)
	5.78	1177 1180 1180 1187 1116 1116 1100	5 - 7 - 1 - 1 - 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2
	5.56	205 207 225 215 189 163	5.56 208 250 253 252 197 154
.506.	5.32		5.32 226 243 276 308 319 255 219
REL=4612500	£.19	263 263 272 272 272 272 273 278 278 278 278 278 278 278 278 278 278	5.19 5.19 256 331 341 252 252
8	5.03	270 283 294 294 294 294 295 277 285	5 0 3 26 5 0 3
	4.88	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4.88 617 033 077 117 127 100
90.9 -	4.55	- 0048 - 0048 - 0048 - 0049 - 0045 - 0045	10.00 4.55 028 039 135 152 119 055
ALPHA	4.22	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4.22 4.22 017 091 136 136 089 063
	3.56	686 093 114 137 151 151 127	3.56 046 116 172 209 209 123
20	3.22	-131 -135 -152 -177 -191 -199 -189	3.22 -0.088 -103 -148 -201 -249 -224 -224 -224
CH≖1.	3.13	125 130 148 170 194 191	ACH#1. 3.13 081 192 234 227 203
M M	2.79	.059 .059 .031 .004 .017 .031 .032	2.79 .115 .097 .097 .068 068 073
	2.22	.1111 .080 .080 .020 .0020 .002	2.22 .170 .149 .094 .026 025 026
SUCBT	1.56	11053 11053 11050 10055	SDCBT 1.56 .243 .162 .089 .009
Vi	68.=0/2	.243 .235 .207 .110 .099 .095	2/D=.89 0 .315 5 .294 0 .232 5 .154 5 .067 0 .060
	Z PHI		PHI 0.0 22.5 45.0 67.5 112.5 1157.5

REFERENCES

- Kayser, L.D., "Surface Pressure Measurements on a Projectile Shape at Mach 0.908," USA ARRADCOM Ballistic Research Laboratory Memorandum Report No. 03079, February 1981. AD A098589.
- Reklis, R.P., Sturek, W.B., and Bailey, F.R., "Computations of Transonic Flow Past Projectiles at Angle of Attack," AIAA Paper No. 78-1182, presented at the AIAA 11th Fluid and Plasma Dynamics Conference, Seattle, Washington, July 1978.
- 3. Nietubicz, C.J., "Navier-Stokes Computations for Conventional and Hollow Projectile Shapes at Transonic Velocities," AIAA Paper No. 81-1262, presented at the AIAA 14th Fluid and Plasma Dynamics Conference, Palo Alto, California, July 1981.

LIST OF SYMBOLS

	2131 01 31115023
$A_{m,n}$	incremental surface area of model at m,n location
c_A	axial force coefficient, excluding base drag
C _{Am,n}	increment of $C_{\mbox{\scriptsize A}}$ associated with a local pressure and local surface area
C_{m}	pitching moment coefficient, $m/q_{\infty}SD$
$C_{m_{\alpha}}$	slope of the pitching moment coefficient curve at α = 0
c_N	normal force coefficient, $F_N/q_{\infty}S$
C _{Nm,n}	increment of \textbf{C}_{N} associated with a local pressure and local surface area
$^{\text{C}}_{\text{N}}{}_{\alpha}$	slope of the normal force coefficient curve at $\alpha = 0$
C_{p}	pressure coefficient, $(P_{\chi}-P_{\infty})/q_{\infty}$
D	model diameter at the cylindrical section
M_{∞}	free-stream Mach number
Pl	local surface pressure on the model
Po	wind tunnel supply pressure
P _∞	free-stream static pressure
$q_{\boldsymbol{\omega}}$	free-stream dynamic pressure
r	local model radius
Re _l	Reynolds number based on model length
S	reference area, $\pi D^2/4$
SOC	Secant-Ogive-Cylinder Model
SOCBT	Secant-Ogive-Cylinder Model with 7 degree boattail (Figure 1)
To	wind tunnel supply temperature
Zcg	axial position of the center of gravity, $Z_{cg}/D = 3.6$
Z _n	axial position on model defined by index \underline{n}
Z/D	distance from model nose in calibers
α	angle of attack, degrees

LIST OF SYMBOLS (cont'd)

- θ local angle between model centerline and tangent to model surface
- circumferential position of pressure taps

Subscripts

- index indicating circumferential psoition on model, $1 \le m \le 32$, or 11.25 deg increments
- n index indicating longitudinal position on model, $1 \le n \le 120$, .05 caliber increments

DISTRIBUTION LIST

No. o		No. of Copies	
12			Director US Army Air Mobility Research and Development Laboratory Ames Research Center Moffett Field, CA 94035
1	Commander US Army Materiel Development and Readiness Command ATTN: DRCDMD-ST 5001 Eisenhower Avenue Alexandria, VA 22333	1	Commander US Army Communications Research and Development Command ATTN: DRDCO-PPA-SA Fort Monmouth, NJ 07703
9	Commander US Army Armament Research and Development Command ATTN: DRDAR-TSS (2 cys) DRDAR-LCA-F Mr. D. Mertz Mr. E. Falkowski Mr. A. Loeb Mr. R. Kline Mr. S. Kahn Mr. S. Wasserman Mr. H. Hudgins Dover, NJ 07801	2	Commander US Army Electronics Research and Development Command Technical Support Activity ATTN: DELSD-L Fort Monmouth, NJ 07703 Commander US Army Missile Command ATTN: DRSMI-R DRSMI-RDK Mr. R. Deep Redstone Arsenal, AL 35809
1	Commander US Army Armament Materiel Readiness Command ATTN: DRSAR-LEP-L, Tech Lib Rock Island, IL 61299		Commander US Army Missile Command ATTN: DRSMI-YDL Redstone Arsenal, AL 35809
1	Director US Army Armament Research and Development Command ATTN: DRDAR-LCB-TL Watervliet, NY 12189	1	Commander US Army Tank Automotive Research and Development Command ATTN: DRDTA-UL Warren, MI 48090
. 1	Commander US Army Aviation Research and Development Command ATTN: DRDAV-E 4300 Goodfellow Blvd. St. Louis, MO 63120		Director US Army TRADOC Systems Analysis Activity ATTN: ATAA-SL, Tech Lib White Sands Missile Range, NM 88002

DISTRIBUTION LIST

No. of Copies	· ·	No. of Copies	
	Commander US Army Research Office P. O. Box 12211 Research Triangle Park NC 27709	1	Director NASA Ames Research Center ATTN: MS-227-8 Dr. L. Schiff Moffett Field, CA 94035
	Commander US Naval Air Systems Command ATTN: AIR-604 Washington, D. C. 20360	1	Nielsen Engineering & Research, Inc. ATTN: Dr. S. Stahara 510 Clyde Avenue Mountain View, CA 94043
2	Commander David W. Taylor Naval Ship Research and Development Center ATTN: Dr. S. de los Santos Mr. Stanley Gottlieb Bethesda, Maryland 20084	3	Sandia Laboratories ATTN: Technical Staff, Dr. W.L. Oberkampf Aeroballistics Division 5631, G.R. Eisner H.R. Vaughn Albuquerque, NM 87184
4	Commander US Naval Surface Weapons Center ATTN: Dr. T. Clare, Code DK20 Mr. P. Daniels Mr. D. A. Jones III Mr. L. Mason Dahlgren, VA 22448	1	Massachusetts Institute of Technology ATTN: Tech Library 77 Massachusetts Avenue Cambridge, MA 02139 Stanford University
3	Commander US Naval Surface Weapons Center ATTN: Code 312 Dr. C. Hsieh Dr. W. Yanta Mr. R. Voisinet	1	Department of Aeronautics and Astronautics ATTN: Prof. J. Steger Stanford, CA 94035 University of California, Davis Department of Mechanical
1	Silver Spring, MD 20910 Commander US Naval Weapons Center ATTN: Code 3431, Tech Lib	1	Engineering ATTN: Prof. H.A. Dwyer Davis, CA 95616 University of Colorado
1	China Lake, CA 93555 Director NASA Langley Research Center ATTN: NS-185, Tech Lib Langley Station Hampton, VA 23365		Department of Aerospace Engineering Sciences ATTN: Prof. G. Inger Boulder, CO 80309

DISTRIBUTION LIST

No. of Copies Organization

1 University of Delaware Mechanical and Aerospace Engineering Department ATTN: Dr. J. E. Danberg Newark, DE 19711

1 University of Florida ATTN: Dr. J.E. Milton P.O. Box 1918 Eglin AFB, FL 32542

Aberdeen Proving Ground

Dir, USAMSAA ATTN: DRXSY-D DRXSY-MP, H. Cohen

Cdr, USATECOM ATTN: DRSTE-TO-F

Dir, USACSL, Bldg. E3516, EA ATTN: DRDAR-CLB-PA

USER EVALUATION OF REPORT

Please take a few minutes to answer the questions below; tear out this sheet, fold as indicated, staple or tape closed, and place in the mail. Your comments will provide us with information for improving future reports. 1. BRL Report Number 2. Does this report satisfy a need? (Comment on purpose, related project, or other area of interest for which report will be used.) 3. How, specifically, is the report being used? (Information source, design data or procedure, management procedure, source of ideas, etc.) 4. Has the information in this report led to any quantitative savings as far as man-hours/contract dollars saved, operating costs avoided, efficiencies achieved, etc.? If so, please elaborate. 5. General Comments (Indicate what you think should be changed to make this report and future reports of this type more responsive to your needs, more usable, improve readability, etc.) 6. If you would like to be contacted by the personnel who prepared this report to raise specific questions or discuss the topic, please fill in the following information. Name: Telephone Number: Organization Address: