Železničná spoločnosť Slovensko, a.s.

Štúdia uskutočniteľnosti

Obstaranie hybridných elektrických jednotiek pre regionálnu dopravu

Obsah

Zozna	ım tabuliek	3
Zozna	ım obrázkov	4
Zozna	ım skratiek	5
Intern	etové zdroje	6
1. St	tručné informácie o projekte	7
1.1	Názov projektového zámeru	7
1.2	Zdôvodnenie projektového zámeru	7
2. P	opis súčasnej situácie a ciele projektu	7
2.1	Ciele projektu	10
3. A	nalýza dopytu a analýza alternatív	10
3.1	Analýza dopytu	12
3.2	Analýza alternatív	15
3.	3.1 Alternatíva "keby sa neurobilo nič"	15
3.	3.2 Alternatíva "keby sa urobilo niečo"	16
3.	3.3 Alternatíva "keby sa urobilo všetko"	17
4. Tec	hnické požiadavky	18
5. P	opis jednotlivých variantov	19
5.1	Bez projektu (súčasný stav)	19
5.2	S projektom	22
6. Vše	obecné informácie a pojmy k finančnej a ekonomickej analýze	26
6.1	Definícia finančnej analýzy	26
6.2	Definícia ekonomickej analýzy	26
6.3	Projekty generujúce príjem	26
6.4	Použitie prírastkovej metódy	26
6.5	Stále ceny v porovnaní s bežnými cenami	27
6.6	Časová hodnota peňazí a diskontovanie	27
7. V	stupné údaje	27
8. Fi	inančná analýza	28
8.1	Investičné výdavky	29
8.	1.1 Rezerva na nepredvídané výdavky	29
8.	1.2 Použitie DPH	29
8.2	Prevádzkové výdavky	29
8.3	Prevádzkové príjmy	30
8.4	Zostatková hodnota	30
8.5	Výstupy finančnej analýzy	30
8.	5.1 Vnútorné výnosové percento vs. diskontná sadzba	30

<u>Železničná spoločnosť Slovensko a.s.</u>

Obstaranie hybridných EJ pre regionálnu dopravu

str. 3 z 35

8.5.	2 Čistá súčasná hodnota	31
9. Výp	očet dopadov financovania	31
9.1	Definícia a výpočet finančnej medzery	31
10. E	konomická analýza	32
10.1	Investičné náklady	32
10.2	Prevádzkové náklady	32
10.3	Ekonomické prínosy	33
10.4	Zostatková hodnota	33
10.5	Výstupy finančnej analýzy	34
10.	5.1 Vnútorné výnosové percento vs. diskontná sadzba	34
10.	5.2 Čistá súčasná hodnota	34
11. Z	áver	35

Zoznam tabuliek

Tabuika 1 Planovana elektritikacia trati ZSR na regionalnych tratiach tykajucich sa projektu	
Tabuľka 2 Porovnanie alternatívnych technológií	
Tabuľka 3 Porovnanie parametrov BEMU	9
Tabuľka 4 Ciele projektu	
Tabuľka 5 Počet prepravených osôb a tržby - primárne trate	. 13
Tabuľka 6 Počet prepravených osôb a tržby - sekundárne trate	. 13
Tabuľka 7 Dynamika rastu počtu cestujúcich	
Tabuľka 8 Prepravný výkon a obsadenosť za rok 2024 na primárnych tratiach projektu	. 14
Tabuľka 9 Prepravný výkon a obsadenosť za rok 2024 na sekundárnych tratiach projektu	. 14
Tabuľka 10 Hodnotenie alternatívy "keby sa neurobilo nič"	. 16
Tabuľka 11 Hodnotenie alternatívy "keby sa urobilo niečo"	. 16
Tabuľka 12 Hodnotenie alternatívy "keby sa urobilo všetko"	
Tabuľka 13 Veková skladba vozidiel bez projektu	
Tabuľka 14 Finančný prepočet variabilných prevádzkových výdavkov bez projektu	
Tabuľka 15 Ročné variabilné prevádzkové výdavky bez projektu	
Tabuľka 16 Prognóza počtu cestujúcich a príjmov bez projektu	. 22
Tabuľka 17 Finančný prepočet variabilných prevádzkových výdavkov s projektom	. 23
Tabuľka 18 Dopravný výkon s projektom - primárne trate	
Tabuľka 19 Dopravný výkon s projektom - sekundárne trate	
Tabuľka 20 Ročné variabilné prevádzkové výdavky s projektom	
Tabuľka 21 Prognóza počtu cestujúcich a príjmov s projektom	
Tabuľka 22 Obdobie realizácie	. 27
Tabuľka 23 Investičné výdavky	
Tabuľka 24 Prevádzkové výdavky bez projektu	
Tabuľka 25 Prevádzkové výdavky s projektom	
Tabuľka 26 Prevádzkové príjmy bez projektu	
Tabuľka 27 Prevádzkové príjmy s projektom	
Tabuľka 28 Investičné výdavky	
Tabuľka 29 Podiel obstarávacej ceny nového vozidla na obnovách súčasných vozidiel	
Tabuľka 30 Prevádzkové výdavky (prírastkové)	
Tabuľka 31 Prevádzkové príjmy (prírastkové)	
Tabuľka 32 Zostatková hodnota finančná	
Tabuľka 33 Výstupy finančnej analýzy (FRR)	
Tabuľka 34 Výstupy finančnej analýzy (FNPV)	. 31

Železničná spoločnosť Slovensko a.s. Obstaranje hybridných E Laro rogionálny dona

	Obstaranie hy	/bridnýc	h EJ pre	regionálnu	dopravi
--	---------------	----------	----------	------------	---------

str. 4 z 35

Tabuľka 35 Výpočet finančnej medzery	32
Tabuľka 36 Investičné náklady (ekonomické)	32
Tabuľka 37 Prevádzkové náklady prírastkové (ekonomické)	32
Tabuľka 38 Ekonomické prínosy prírastkové	
Tabuľka 39 Zostatková hodnota ekonomická	34
Tabuľka 40 Vnútorné výnosové percento (ekonomické)	34
Tabuľka 41 Čistá súčasná hodnota (ekonomická)	34
Zoznam obrázkov	
Obrázok 1 Elektrifikácia tratí ŽSR	7
Obrázok 2 Vodíková technológia bez trakčného systému	
Obrázok 3 Batériovo - elektrická technológia	9
Obrázok 4 Primárne trate projektu	12
Obrázok 5 Sekundárne trate projektu	12
Obrázok 6 Prognóza vývoja počtu obyvateľov 2022 až 2080	21

Železničná spoločnosť Slovensko a.s.

Obstaranie hybridných EJ pre regionálnu dopravu

str. 5 z 35

Zoznam skratiek

BEMU battery electric multiple unit batériová elektrická viacnásobná jednotka

BBSK Banskobystrický samosprávny kraj

CBA Cost – Benefit Analysis – analýza nákladov a prínosov

CH₄ metán

CO oxid uhoľnatý
 CO₂ oxid uhličitý
 CÚ cenová úroveň
 CZ Česká republika

DMJ dieselová motorová jednotka
DPH daň z pridanej hodnoty
EJ elektrická jednotka

EMU electric multiple unit – elektrická viacnásobná jednotka

ENPV ekonomická čistá súčasná hodnota

ES evidenčný stav

European Train Control System – európsky systém riadenia jazdy vlakov =

európsky vlakový zabezpečovač

EU Európska únia

FNPV finančná čistá súčasná hodnota

FRMCS nový železničný mobilný komunikačný systém

FRR vnútorné výnosové percento
GSM R rádiová sieť druhej generácie

HU Maďarská republikaGVD grafikon výkonov dopravy

IAD individuálna automobilová doprava

IT informačné technológie
IDS Integrovaný dopravný systém

IFSR medzinárodné štandardy finančného výkazníctva

KSK Košický samosprávny kraj

MJ motorová jednotka

MV motorový vozeň

N₂O oxid dusný

NFP nenávratný finančný príspevok
NSK Nitriansky samosprávny kraj
PHZ predpokladaná hodnota zákazky
PSK Prešovský samosprávny kraj

PV prípojný vozeň
R vlak kategórie rýchlik
REG regionálna linka

REX vlak kategórie regionálny expres

RDST rádiostanica

RPMN ročná percentuálna miera nákladov

oskm osobokilometer

SK Slovenská republika

ŠU štúdia uskutočniteľnosti

TNS trakčná napájacia sústava

TSK Trenčiansky samosprávny kraj

TTSK Trnavský samosprávny kraj

TP turnusová potreba

TSI technické špecifikácie interoperability

vlkm vlakový kilometer

ZSSK Železničná spoločnosť Slovensko, a.s.

ŽKV železničné koľajové vozidlo **ŽOD** železničná osobná doprava

<u>Železničná spoločnosť Slovensko a.s.</u>

Obstaranie hybridných EJ pre regionálnu dopravu

str. 6 z 35

ŽSK Žilinský samosprávny kraj **ŽSR** Železnice Slovenskej republiky

Žst. železničná stanica

Internetové zdroje

https://stadlerrail.com/en/flirt-akku/details/

https://www.alstom.com/alstoms-green-traction-solutions-sustainable-solutions-non-electrified-railways https://press.siemens.com/global/en/pressrelease/east-brandenburg-rail-network-gets-31-battery-electric-trains

https://www.skodagroup.com/news/bateriove-vlaky-jako-budoucnost-udrzitelne-dopravy

https://www.hybrid.cz/bateriove-vlaky-pro-westerwald-doda-siemens-mobility/

https://www.hybrid.cz/alternativni-pohony-mohou-byt-na-ceske-zeleznici-konkurenceschopne-tvrdi-studie/

https://www.mdpi.com/2071-1050/13/15/8234

1. Stručné informácie o projekte

1.1 Názov projektového zámeru

Obstaranie hybridných elektrických jednotiek pre regionálnu dopravu.

1.2 Zdôvodnenie projektového zámeru

Projekt je zameraný na obstaranie 16 ks hybridných elektrických jednotiek pre regionálnu dopravu, s možnosťou rozšírenia projektu o ďalšie potenciálne vhodné trate za predpokladu uplatnenia opcie na ďalších 20 ks. V takomto prípade dôjde k spracovaniu novej resp. aktualizácii pôvodnej štúdie uskutočniteľnosti.

ZSSK dlhodobo vyvíja snahu o vytvorenie klimaticky neutrálnej železničnej dopravy na čiastočne elektrifikovaných tratiach. Efektívne je možné tento zámer dosiahnuť nahradením regionálnych vlakov s dieselovým pohonom, ktoré sú prevádzkované na čiastočne elektrifikovaných tratiach, hybridnými EJ. Hlavným prínosom tohto projektového zámeru tak budú nielen nižšie emisie z dopravy, ale taktiež zvýšenie kvality poskytovaných služieb na tratiach, na ktoré budú vyzískané vozidlá dislokované. Dislokácia vyzískaných vozidiel zároveň umožní vyradenie najstarších vozidiel.

Obrázok 1 Elektrifikácia tratí ŽSR

2. Popis súčasnej situácie a ciele projektu

Doprava je významným zdrojom skleníkových plynov a znečisťujúcich látok a najväčší podiel na emisiách má spaľovanie nafty - až 70 %. Manažér infraštruktúry ŽSR spravuje 3 630 km tratí, z toho je elektrifikovaných menej ako polovica - len 1 585 km. Elektrifikácia tratí je plne v kompetencii ŽSR. Stanovisko ŽSR k prípadnej elektrifikácií regionálnych tratí týkajúcich sa projektu je vyjadrené v nasledujúcej tabuľke.

str. 8 z 35

Tabuľka 1 Plánovaná elektrifikácia tratí ŽSR na regionálnych tratiach týkajúcich sa projektu

Traťový úsek pre elektrifikáciu (aktuálne bez TNS)	Plánovaná elektrifikácia do 2030	Plánovaná elektrifikácia do 2040	Predpokladaný náklad na elektrifikáciu
Leopoldov (mimo) – Nitra - Šurany (mimo)	Nie	Áno	Odhad nákladov v CÚ 2024 je 584 mil. EUR na modernizáciu trate Leopoldov – Šurany – Nové Zámky vrátane diaľkového riadenia a elektrifikácie trate Šurany - Leopoldov
Holíč nad Moravou (mimo) – Skalica na Slovensku	Nie	Nie	-
Žilina (mimo) – Rajec	Nie	Nie	-
Nové Mesto nad Váhom (mimo) – Myjava	Nie	Nie	-
Martin (mimo) – Banská Bystrica (mimo)*	Nie	Nie (Áno po r. 2040)	Po r. 2040 odhad nákladov v CÚ 2024 je 821 mil. EUR. Náklady sú odhadované na celkovú modernizáciu trate ZV - Martin vrátane elektrifikácie.

Zdroj: ŽSR

S ohľadom na stanovisko ŽSR, ako aj na skutočnosť, že v súčasnosti na tratiach, ktoré sú čiastočne elektrifikované, jazdia vlaky s dieselovým pohonom, ktoré značne prispievajú k znečisťovaniu životného prostredia, pristúpila ZSSK k možnosti nasadenia vozidiel s alternatívnym pohonom, ktoré môžu zabezpečiť klimaticky neutrálnu prevádzku, na viacerých vytypovaných tratiach, na ktorých nie je úplná elektrifikácia. Ako vhodné alternatívy schopné konkurovať dieselovému pohonu sa javia vodíková technológia alebo pohon z batérií.

Vodíková technológia

Vozidlo s vodíkovou technológiou môže nahradiť vlaky s dieselovým pohonom na krátke a stredné vzdialenosti. ŽKV s vodíkovými palivovými článkami, kde sa vodík premieňa na elektrinu, môže byť skonštruované so zabudovaným trakčným systémom alebo bez trakčného systému. Vodíkový systém výroby elektriny využíva energiu z vodíkových palivových článkov na jazdu vlaku, nabíjanie lítium-iónových trakčných batérií. Vlak s trakčným systémom jazdí na elektrický pohon na elektrifikovaných tratiach a hybridný režim na pohon využíva na úsekoch bez trakčného vedenia. Pri vodíkovej technológii je kľúčovým faktorom proces tankovania. Systém tankovania vodíka spoločnosti Linde vlaku umožní prejsť 1 000 km bez emisií na jedno natankovanie. Má celkovú kapacitu približne 1 600 kg vodíka za deň, čo z neho robí jeden z najväčších systémov tankovania vodíka. 1kg vodíka nahradí cca 4,5 l nafty, 1 kg zeleného vodíka stojí cca 4-6 EUR, cena sa môže navýšiť na 10-12 EUR za kg v závislosti od dopravy a infraštruktúry tankovacích staníc. Zelený vodík sa vyrába z vody elektrolýzou, čo umožňuje chemické skladovanie prebytočnej obnoviteľnej elektriny, ktorá sa uchováva v nádržiach vo vlaku. Vodík vyrobený pomocou zemného plynu stojí 1,50 EUR za kg, ale nesie so sebou značnú uhlíkovú stopu. Prvá vodíková stanica pre vlaky sa nachádza v meste Bremervorde v Nemecku. Náklady na vybudovanie tankovacej stanice na vodík sa odhadujú na cca 10 mil. EUR.

Obrázok 2 Vodíková technológia bez trakčného systému

^{*} týka sa alternatívnej trate

str. 9 z 35

Batériovo – elektrická technológia

Batériovo – elektrická technológia je určená na odstránenie dieselových vozidiel na regionálnych tratiach bez trakčného vedenia. Na úsekoch s trakčným vedením môžu vlaky poháňané elektrickou energiou nabíjať batérie prostredníctvom zberačov. Tam, kde končí trakčné vedenie, možno pokračovať v jazde v režime pohon z batérie. Nie je potrebné dobudovať nabíjacie stanice, postačuje nabíjanie z trakčného vedenia cca 15 - 30 min podľa kapacity trakčných batérií pred začiatkom nabíjania. Musíme ale uvažovať o navýšení spotreby elektrickej energie pri statickom nabíjaní trakčných batérií z TNS.

Obrázok 3 Batériovo - elektrická technológia

Tabuľka 2 Porovnanie alternatívnych technológií

Typ hybridnej EMU Parametre	batériová	vodíková		
hmotnosť	> EMU	< EMU		
max rýchlosť	160 km/h//120km/h	140 km/h		
výkon pod trakčným vedením	ako EMU	ako EMU		
dojazd	80 - 150 km	320 - 400 km		
výmeny technológie počas životnosti	1-2 x za životnosť - batériovej časti	3-6 x za životnosť refit fuel cell		
cena pohonných hmôt	0,70 EUR/vlkm	1,60 - 1,80 EUR/vlkm		
výstavba tankovacích staníc	môže/nemusí byť výstavba	min 1 stanica cca 10 mil. EUR		
emisie	cca 0,018 eq. kg CO ² /km/sed	cca 0,025-0,05 eq. kg CO ² /km/sed		

Z porovnania alternatívnych technológií vyplýva, že obidve technológie majú ekonomický prínos pre spoločnosť v znížení emisií, ale z hľadiska prevádzkových výdavkov (finančná náročnosť výmen) a vyvolaných investícií (vybudovanie siete tankovacích staníc) je výhodnejšia batériová technológia. V ŠU preto uvažujeme len s alternatívou - hybridné EMU s pohonom z batérií, nakoľko nie je možné relevantne namodelovať prevádzkové výdavky vlakov na vodíkový pohon.

Odhodlanie vyvíjať vlaky s nulovými emisiami na základe batériovo – elektrickej technológie má viacero výrobcov.

Tabuľka 3 Porovnanie parametrov BEMU

Parameter	Výrobca	STADLER - FLIRT Akku	Alstom - Coradia Continental	Siemens - Mireo plus B	Škoda
dojazd na batérie		150 km	120 km	90-120 km	80 km
najvyššia rýchlosť		160 km/h	160 km/h	140 km	160/120 km/h

str. 10 z 35

doba nabíjania pod trolejom	15 minút	neuvedené	neuvedené	30 minút
kapacita	120-180 sedadiel	154 sedadiel	128 sedadiel	140 sedadiel

2.1 Ciele projektu

Hlavným cieľom projektu je čiastočne vytvoriť klimaticky neutrálnu regionálnu železničnú dopravu za súčasných podmienok manažéra infraštruktúry, obnoviť vozidlový park ZSSK a zatraktívniť regionálnu dopravu.

Tabuľka 4 Ciele projektu

Cieľ	Merateľný ukazovateľ	Jedn.	Súčasný stav (2024)	Plánovaný cieľový stav (2062)
Zníženie ekologickej	zníženie spotreby nafty ŽKV na tratiach projektu	kg	64 170 892	41 638 223
záťaže životného prostredia	zníženie množstva znečisťujúcich látok	kg	3 632 517	2 315 918
	zníženie množstva skleníkových plynov	kg	214 929 151	130 752 471
Obnova vozidlového parku	počet hybridných EMU	ks	0	16

3. Analýza dopytu a analýza alternatív

Projekt sa zameriava na vytvorenie čistej mobility, a to obstaraním 16 ks nových BEMU, ktoré budú využívané v regionálnej ŽOD na území NSK, TTSK, TSK, ŽSK a so sekundárnym dopadom aj na území BBSK, PSK a KSK.

Obsluha územia **Nitrianskeho kraja** železničnou osobnou dopravou nie je postačujúca. Z 354 obcí len približne tretina z nich má v súčasnosti k dispozícii železničnú dopravu. Dĺžka železničných tratí v kraji predstavuje 625 km, z toho 537 km sú jednokoľajové trate a 158 km je elektrifikovaných. Najdôležitejšou železničnou traťou s medzinárodným významom na území kraja je trať Bratislava – Štúrovo – Budapešť. Po technickej stránke železničná sieť nie je príliš vyhovujúca. Cestovanie na neelektrifikovaných jednokoľajných tratiach nie je konkurencieschopné z hľadiska potreby rýchlej a efektívnej prepravy. Je preto nutné zrýchlenie viacerých tratí (napr. elektrifikácia trate v úseku Nové Zámky – Nitra – Šurany), žiadúca je i obnova koľajových vozidiel za účelom zlepšenia komfortu a kultúry cestovania, ako aj investovanie do nákupu nízkopodlažných vozňov, do modernizácie zastávok, resp. železničných staníc.

Trnavský kraj sa vyznačuje vysokou hustotou železničnej siete. V analytickej časti plánu udržateľnej mobility kraja sa uvádza, že TTSK disponuje pomerne dobrým stavom železničnej infraštruktúry, keď väčšina hlavných tratí je dvojkoľajných, elektrifikovaných a má zabezpečovacie zariadenie III. kategórie. Istým slabým miestom je, že okrem trate č. 120 nie je žiadna stanica ani zastávka plne bezbariérovo prístupná. Žiadúca je modernizácia trate č. 110 Malacky – Lanžhot, č. 130 Senec – Šaľa, ďalej zvýšenie priepustnosti úseku Trnava –

str. 11 z 35

Sered'.

Na území **Trenčianskeho kraja** je 10 železničných tratí, z ktorých trate č. 120 a 125 tvoria súčasť dopravnej infraštruktúry paneurópskych multimodálnych koridorov. Ide o dopravnú líniu Bratislava – Trenčín – Žilina – Košice – Užhorod označenú ako multimodálny koridor č. Va a líniu Púchov – Strelenka – Hranice na Morave zaradenú medzi mimokoridorové siete TEN-T. Do budúcnosti modernizácia železničnej infraštruktúry počíta s elektrifikáciou tratí, s taktovou dopravou na hlavných tratiach a s rozvojom IDS, s investíciami do infraštruktúry (zabezpečovacie zariadenia, rekonštrukcia tratí, umožnenie zvýšenia cestovnej rýchlosti), s marketingovou podporou pri efektívnejšom využívaní regionálnych liniek.

Z hľadiska dopravného spojenia má **Žilinský kraj** výhodnú polohu. Je dôležitým dopravným uzlom národného i medzinárodného významu. Stretávajú sa tu dva paneurópske multimodálne dopravné koridory (koridor č. V a koridor č. VI). Cez železničný uzol Žilina prechádzajú najvýznamnejšie domáce a medzinárodné železničné spoje. Hustota železničnej siete v Žilinskom kraji dosahuje 58,2 km na 1000 km². Najdôležitejšie železničné stanice pre osobnú dopravu sa nachádzajú v mestách Žilina, Čadca, Vrútky, Kraľovany, Liptovský Mikuláš. Región Žilina má i do budúcnosti dostatočný potenciál na rozvoj verejnej a v rámci nej i železničnej dopravy.

Infraštruktúru železničnej dopravy **Banskobystrického kraja** možno charakterizovať pomerne vysokou hustotou siete so zastaranou technológiou. Príčinou je najmä nízka technická úroveň a kvalita technickej základne železničnej dopravy, ďalej zanedbaná údržba a nedostatočná obnova. V BBSK hustota železničnej siete predstavuje 69,8 km na 1000 km². Železničná regionálna doprava je silnejšia medzi Banskou Bystricou a Zvolenom a ďalej na úsekoch do Hornej Štubne, Žiaru nad Hronom, Brezna a Lučenca. Na zvyšku územia dominuje autobusová regionálna doprava. Do budúcnosti je kľúčovou postupná harmonizácia železničnej a cestnej dopravy, skvalitňovanie nadväznosti železničnej a cestnej dopravy a realizácia integrovaného dopravného systému.

Železničnú infraštruktúru **Prešovské kraja** tvorí 430 km železničných tratí. Železničné trate medzinárodného, resp. celoštátneho významu tvoria železničné trate Žilina – Košice – Čierna nad Tisou a Plaveč – Prešov – Košice. V železničnom uzle Prešov sa na túto trať napájajú trate regionálneho významu z Bardejova, Vranova nad Topľou, Humenného, Sniny a Medzilaboriec. Kvalita železničnej infraštruktúry nie je vysoká a očakáva sa jej modernizácia.

V **Košickom kraji** je vybudovaná železničná infraštruktúra v dĺžke 603 km s normálnym rozchodom určená pre osobnú a nákladnú dopravu. Okrem toho sú vybudované trate Maťovce ŠRT št. hr. – Haniska pri Košiciach ŠRT v dĺžke 87 km a Čierna nad Tisou ŠRT št. hr. – Čierna nad Tisou ŠRT so širokým rozchodom určené pre nákladnú dopravu. Z celkovej dĺžky je pre osobnú dopravu prevádzkovaných 495 km tratí. Najvyťaženejšia je trať Poprad - Košice s pokračovaním niektorých vlakov do Humenného. Diaľkové vlaky sú prevádzkované tiež na južnej magistrálnej trati z Košíc cez Moldavu nad Bodvou v smere do Zvolena.

str. 12 z 35

Obrázok 4 Primárne trate projektu

Obrázok 5 Sekundárne trate projektu

3.1 Analýza dopytu

Analýza dopytu vychádza z analýzy súčasného potenciálu, segmentov cestujúcich a analýzy plánovaného rozvoja infraštruktúry, rozmachu turizmu či výstavby obchodných reťazcov v daných regiónoch so sekundárnym dopadom na prepravu cestujúcich.

Informácie o vybraných ukazovateľoch na stanovených linkách za predchádzajúce obdobie sú uvedené v nasledujúcich tabuľkách.

str. 13 z 35

Tabuľka 5 Počet prepravených osôb a tržby - primárne trate

	ročný počet cestujúcich vlakmi projektu		tržby za vlaky projektu			
názov primárnych tratí projektu (nasadenie BEMU)	2022	2023	2024	2022	2023	2024
REG 1011 Nitra – Šurany – Nové Zámky (časť výkonov, zbytok pre iný projekt)	861 235	1 070 493	1 032 752	358 654	392 248	430 170
REG 1012 Nitra – Leopoldov – Trnava REG 1010 Nové Zámky –	815 701	689 744	692 987	322 195	225 388	245 634
Komárno /priama linka Nitra Komárno	400 946	634 715	566 923	146 952	189 799	186 357
REG 1008 Kúty – Skalica na Slovensku REG 1006 Trnava - Kúty (1/3	67 913	100 730	94 011	25 383	33 175	37 048
vozby výkonov, 2/3 zostane v EJ 661)	436 060	552 071	515 244	165 062	192 902	270 997
REG 1036 Žilina – Rajec	160 392	277 336	245 741	39 789	76 667	65 806
REG 1025 Trenčín – Myjava	636 401	821 413	832 673	175 896	231 955	238 420
REG 1027 Horné Srnie – Trenčín	91 150	92 041	93 261	11 868	10 167	10 145

Tabuľka 6 Počet prepravených osôb a tržby - sekundárne trate

	ročný počet cestujúcich vlakmi projektu			tržby za vlaky projektu			
názov sekundárnych tratí projektu (nasadenie vyzískaných vozidiel z primárnych tratí)	2022	2023	2024	2022	2023	2024	
REG 1055 Margecany - Nálepkovo - Dobšinská Ľadová Jaskyňa	400 388	476 795	437 255	94 261	97 975	97 398	
REG 1041Lučenec - Fiľakovo - Jesenské	246 313	279 902	287 974	60 465	68 710	79 042	
REG 1047 Poprad Tatry - Tatranská Lomnica	119 830	77 938	29 700	38 088	27 867	7 766	
REG 1017 Nové Zámky - Zlaté Moravce	25 057	23 682	26 269	8 536	7 512	7 961	
REG 1010 Nové Zámky - Levice	200 650	272 021	242 967	79 883	81 343	79 867	
REG 1018 Levice - Štúrovo	84 562	77 213	79 569	46 411	38 760	42 566	
REG 1021 Zvolen - Horná Štubňa	86 044	89 175	92 470	34 614	28 342	32 134	

Tabuľka 7 Dynamika rastu počtu cestujúcich

Dynamika vastu naštu aastuidaisk	index	index	Index rastu
Dynamika rastu počtu cestujúcich	2023/2022	2024/2023	index rastu
Nitra – Šurany – Nové Zámky	1,2430	0,9647	1,1039
Nitra – Leopoldov – Trnava	0,8456	1,0047	0,9251
Nové Zámky – Komárno /priama linka Nitra Komárno	1,5830	0,8932	1,2381
Kúty – Skalica na Slovensku	1,4832	0,9333	1,2083

Železničná spoločnosť Slovensko a.s.

Obstaranie hybridných EJ pre regionálnu dopravu

str. 14 z 35

Index rastu spolu	rastu spolu 1,0573		
Zvolen - Horná Štubňa	1,0364	1,0369	1,0367
Levice - Štúrovo	0,9131	1,0305	0,9718
Nové Zámky - Levice	1,3557	0,8932	1,1244
Nové Zámky - Zlaté Moravce	0,9451	1,1093	1,0272
Poprad Tatry - Tatranská Lomnica	0,6504	0,3811	0,5157
Lučenec - Fiľakovo - Jesenské	1,1364	1,0288	1,0826
Margecany - Nálepkovo - Dobšinská Ľadová Jaskyňa	1,1908	0,9171	1,0540
Horné Srnie – Trenčín	1,0098	1,0133	1,0115
Trenčín – Myjava	1,2907	1,0137	1,1522
Žilina – Rajec	1,7291	0,8861	1,3076
Trnava - Kúty	1,2660	0,9333	1,0997

Tabuľka 8 Prepravný výkon a obsadenosť za rok 2024 na primárnych tratiach projektu

názov primárnych tratí projektu (nasadenie BEMU)	osobokm za rok 2024	súčasná ponúkaná kapacita jedného spoja	obsadenosť v špičke % 2024	obsadenosť v sedle % 2024
REG 1011 Nitra – Šurany – Nové				
Zámky (časť výkonov, zbytok pre				
iný projekt)	18 606 672	177	80	50
REG 1012 Nitra – Leopoldov –				
Trnava	14 859 538	177	80	50
REG 1010 Nové Zámky –				
Komárno /priama linka Nitra				
Komárno	9 790 854	232	70	40
REG 1008 Kúty – Skalica na				
Slovensku	3 082 322	110	90	40
REG 1006 Trnava - Kúty (1/3 vozby výkonov, 2/3 zostane v EJ				
661)	13 088 658	343	70	20
REG 1036 Žilina – Rajec		83 / 166 (vybrané vlaky		
TLO 1000 Ziiilia – Rajeo	3 292 417	v špičke)	80	50
REG 1025 Trenčín – Myjava		83 / 166 (vybrané vlaky		
NEG 1025 Helicili – Myjava	14 486 484	v špičke)	90	50
REG 1027 Horné Srnie – Trenčín	512 847	83	70	30

Tabuľka 9 Prepravný výkon a obsadenosť za rok 2024 na sekundárnych tratiach projektu

názov sekundárnych tratí projektu (nasadenie vyzískaných vozidiel z primárnych tratí)	osobokm za rok 2024	súčasná ponúkaná kapacita jedného spoja	obsadenosť v špičke % 2024	obsadenosť v sedle % 2024
REG 1055 Margecany - Nálepkovo - Dobšinská Ľadová Jaskyňa	5 013 708	106	90	50
REG 1041 Lučenec - Fiľakovo - Jesenské	3 191 911	53 / 115 (vybrané spoje v špičke)	70	55
REG 1047 Poprad Tatry - Tatranská Lomnica	246 414	53	70	40
REG 1017 Nové Zámky - Zlaté Moravce	566 346	53	30	10
REG 1010 Nové Zámky - Levice	4 196 080	53	90	40

REG 1018 Levice - Štúrovo	2 229 585	53	90	40
REG 1021 Zvolen - Horná Štubňa	1 940 687	53	70	40

3.2 Analýza alternatív

Možnosti prepravy podľa súčasného a očakávaného vývoja infraštruktúry v regionálnej doprave jasne preukazujú, že zníženie ekologickej záťaže životného prostredia môžeme dosiahnuť len s vozidlami s alternatívnym pohonom.

Štúdia uskutočniteľnosti analyzovala tieto alternatívy:

- (a) alternatíva "keby sa neurobilo nič",
- (b) alternatíva "keby sa urobilo niečo",
- (c) alternatíva "keby sa urobilo všetko".

Uvedené alternatívy predstavujú nasledovné praktické kroky ZSSK pri zabezpečení budúcej regionálnej ŽOD v dotknutom území:

- (a) ZSSK bude udržiavať existujúci stav vozidiel prostredníctvom opráv bez väčších kapitálových investícií,
- (b) ZSSK vynaloží len minimálne kapitálové investície zodpovedajúce požiadavkám ponuky služieb ŽOD,
- (c) ZSSK vynaloží určitý objem kapitálových investícií na obnovu vozidiel v zmysle dlhodobej stratégie rozvoja regionálnej ŽOD.

Reálnosť možných alternatív posudzujeme ťažiskovo podľa:

- princípu udržateľnosti, ktorý znamená, že daná alternatíva môže byť považovaná za "prevádzkovo udržateľnú", pokiaľ bude ZSSK dlhodobo, minimálne v časovom horizonte referenčného obdobia projektu, môcť kryť dopravný dopyt regionálnej ŽOD za súčasného dodržania bezpečnosti a spoľahlivosti osobnej prepravy a akceptovateľným štandardom komfortu osobnej prepravy,
- *miery prispievania k naplneniu cieľa/ov projektu.* Základným cieľom tohto projektu je znížiť ekologické zaťaženie životného prostredia, obnoviť vozidlový park a zatraktívniť ŽOD.
- širších sociálno-ekonomických a environmentálnych aspektov. Dosiahnutie týchto
 aspektov je zabezpečené nahradením ŽKV s dieselovým pohonom i vytvorením priamych
 liniek.

Alternatívy súvisiace s realizáciou projektu obnovy vozidlového parku môžeme označiť ako "kompatibilné" s cieľmi projektu vtedy, ak ich realizáciou dôjde k naplneniu cieľov projektu a súčasne vyhovujú strategickým zámerom cieľového segmentu regionálnej ŽOD. Tým zároveň prispejú k obnove vozidlového parku, skvalitnia služby regionálnej ŽOD a prispejú i k zlepšovaniu dopravnej obslužnosti príslušného regiónu. Alternatíva, ktorá nezodpovedá uvedeným kritériám alebo je dokonca v kontradikcii s nimi, je hodnotená ako "nekompatibilná"

3.3.1 Alternatíva "keby sa neurobilo nič"

Alternatíva "keby sa neurobilo nič" znamená, že ZSSK bude v referenčnom období projektu

str. 16 z 35

len udržiavať existujúcu štruktúru parku vozidiel regionálnej ŽOD. Neuskutoční obnovu vozidiel s alternatívnym pohonom, a tak neprispeje k zníženiu zaťaženia životného prostredia, ale bude iba opravami udržiavať technickú životnosť jestvujúcich vozidiel.

Tabuľka 10 Hodnotenie alternatívy "keby sa neurobilo nič"

Kritériá hodnotenia alternatívy	Hodnotenie alternatívy "keby sa neurobilo nič"
Kapitálové výdavky alternatívy	Minimálne prostriedky do opráv
Prevádzková udržateľnosť alternatívy	Neudržateľná
Vzťah alternatívy k cieľom projektu	Nie je kompatibilná
Vzťah alternatívy k stratégii regionálnej ŽOD	Nezodpovedá stratégii regionálnej dopravy
Sociálno-ekonomické aspekty	Negatívne
	- pokles počtu cestujúcich
	- klesajúci záujem o železničnú prepravu
	- zhoršenie konkurenčnej pozície
	železničnej osobnej dopravy na trhu
Environmentálne aspekty	Nepriaznivé
	- nedôjde k zníženiu negatívnych
	dopadov na životné prostredie, skôr
	naopak
	- odklon od železničnej dopravy
	a preferovanie cestnej dopravy
Celkové hodnotenie	Neprijateľná alternatíva

Alternatíva "keby sa neurobilo nič" nenapĺňa ciele projektu, nevedie k obnove vozidlového parku a k požadovanému skvalitneniu služieb ŽOD. Alternatíva nekorešponduje ani so strategickými zámermi v oblasti regionálnej železničnej dopravy, nakoľko neprispieva k vytvoreniu alternatívy k cestnej doprave. Práve naopak, svojimi dosahmi smeruje dopyt po dopravných službách do oblasti environmentálne náročnej cestnej dopravy.

Vzhľadom na vyššie uvedené hodnotenie kritérií alternatíva "keby sa neurobilo nič" nie je prevádzkovo udržateľná a je neprijateľná.

3.3.2 Alternatíva "keby sa urobilo niečo"

Táto alternatíva vychádza z predpokladu, že bude udržiavaná súčasná štruktúra mobilných prostriedkov v regionálnej doprave. S cieľom dosiahnutia environmentálne prijateľnejšej dopravy by však vlakové spoje boli prispôsobené elektrifikovaným úsekom tratí a neelektrifikovaným úsekom tratí. To znamená viac liniek, viac prestupov a značné navýšenie času čakania na prípoj na dotknutom území. V prípade využitia tejto alternatívy by ZSSK síce bola schopná čiastočne znížiť negatívny dopad na životné prostredie, ale s výrazne negatívnym dopadom na komfort cestovania a napĺňanie požiadaviek cestujúcej verejnosti.

Tabuľka 11 Hodnotenie alternatívy "keby sa urobilo niečo"

Kritériá hodnotenie alternatívy	Hodnotenie alternatívy "keby sa urobilo niečo"
Kapitálové výdavky alternatívy	minimálne prostriedky na modernizáciu

str. 17 z 35

	a nákup vozidiel
Prevádzková udržateľnosť alternatívy	Dlhodobo neudržateľná
Vzťah alternatívy k cieľom projektu	Nie je kompatibilná so všetkými cieľmi
Vzťah alternatívy k stratégii regionálnej	Iba čiastočne zodpovedá stratégii
ŽOD	regionálnej dopravy
Sociálno-ekonomické aspekty	Nepostačujúce
	- pretrváva riziko poklesu počtu
	cestujúcich a nezáujmu o cestovanie
	železnicou
Environmentálne aspekty	Nedostatočné
	- dopyt po dopravných službách smeruje
	do environmentálne náročnej cestnej
	dopravy
	- podporuje sa rozširovanie automobilovej
	a autobusovej dopravy
Celkové hodnotenie	Neprijateľná alternatíva

Z pohľadu udržateľnosti by prezentovaná alternatíva v najbližších rokoch ponúkla environmentálne prijateľnejšiu prepravu, avšak bez zabezpečenia potrebného prepravného komfortu. Táto alternatíva nie je najvýhodnejšia z pohľadu denných potrieb cestujúcej verejnosti, vo väzbe na potreby budovania IDS, z hľadiska efektívnosti vynaloženia zdrojov, a tiež prínosu pre sociálne a ekonomické prostredie dotknutých regiónov a pre ich trvalo udržateľný rozvoj a nekorešponduje ani s potrebami ZSSK.

Alternatíva "keby sa urobilo niečo" nie je v plnej miere v zhode so strategickými zámermi v oblasti regionálnej železničnej dopravy. Svojimi dôsledkami vytláča dopyt po železničnej preprave do oblasti málo environmentálne prijateľnej cestnej dopravy.

3.3.3 Alternatíva "keby sa urobilo všetko"

Alternatíva "keby sa urobilo všetko" je založená na predpoklade, že sa obnoví štruktúra mobilných prostriedkov o vozidlá s alternatívnym pohonom. Objem investičných prostriedkov predstavuje výdavky na obstaranie 16 ks nových EMU.

Tabuľka 12 Hodnotenie alternatívy "keby sa urobilo všetko"

Kritériá hodnotenia alternatívy	Hodnotenie alternatívy "keby sa urobilo všetko"
Kapitálové výdavky alternatívy	136 mil. EUR
Prevádzková udržateľnosť alternatívy	Udržateľná do roku 2062
Vzťah alternatívy k cieľom projektu	Kompatibilná
Vzťah alternatívy k stratégii regionálnej ŽOD	Zodpovedá stratégii regionálnej dopravy
Sociálno-ekonomické aspekty	Pozitívne
	 podpora záujmu občanov o železničnú prepravu rastúci záujem verejnosti o prepravu po
	železnici a rast počtu cestujúcich

	 posilnenie konkurenčnej pozície železničnej osobnej dopravy na trhu nižšia nehodovosť a vyššia bezpečnosť a spoľahlivosť podpora rozvoja lokálneho hospodárstva
Environmentálne aspekty	Priaznivé - zníženie emisií znečisťujúcich látok do ovzdušia, emisií skleníkových plynov a emisií hluku vytvára príťažlivú alternatívu k cestnej doprave
Celkové hodnotenie	Projektová alternatíva ďalej rozpracovaná v CBA

Z pohľadu udržateľnosti táto alternatíva môže zabezpečiť splnenie požiadaviek dopravného dopytu na príslušných tratiach na obdobie do roku 2062. Súčasne implementácia tejto alternatívy umožní dislokáciu vyzískaných ŽKV na iné vozebné ramená, na ktorých následne dôjde k vyradeniu zastaraných, opotrebovaných a technicky nevyhovujúcich MV a PV. Tým sa zlepší ponuka služieb železničnej dopravy aj pre cestujúcich na sekundárnych tratiach. Realizácia tejto alternatívy prináša pozitívne sociálno-ekonomické, a tiež environmentálne efekty. Zároveň si vyžaduje vynaložiť pomerne vysoké investičné náklady v krátkom časovom období, ktoré by ZSSK bez finančnej podpory z verejných zdrojov nemohla pokryť, nakoľko jej finančné možnosti sú obmedzené.

Predmetná alternatíva je hodnotená ako aplikovateľná, je prijatá ako projektová alternatíva a ďalej je rozpracovaná v rámci analýzy nákladov a prínosov.

Z analýzy možných alternatív realizácie projektu vyplynulo, že alternatíva "keby sa urobilo všetko" je najvhodnejší spôsob uskutočnenia projektu. Jeho finančná náročnosť predstavuje 136 mil. EUR. Realizácia projektu umožní znížiť negatívny dopad na životné prostredie a ponúkne primeraný komfort cestujúcim a v neposlednom rade bude viesť k získaniu nových cestujúcich, čo čiastočne odbremení cestnú dopravu a prejaví sa i v pozitívnych dopadoch na životné prostredie.

4. Technické požiadavky

Hybridné elektrické jednotky musia spĺňať nasledovné parametre:

- uvažovaný počet 16 ks,
- požadovaná kapacita 130 140 miest na sedenie (iba 2. trieda regionálna doprava)
- minimálny počet nástupných priestorov 3 (obojstranné, min. 1300 mm svetlá šírka, nástupná hrana 550 mm, výsuvný schodík v úrovni nástupnej hrany a druhý schodík pre nástup/výstup z nižšieho nástupišťa),
- prevádzka na TNS 25 kV/50 Hz a 3 kV DC (elektrický režim) a na neelektrifikovaných tratiach v režime prevádzky na trakčné batérie (dojazd minimálne 80 km),

str. 19 z 35

- elektrodynamická brzda s možnosťou rekuperácie do TNS / do vlastnej spotreby BEMU (vrátane nabíjania trakčných batérií),
- maximálna rýchlosť 160 km/h pri prevádzke na TNS a 120 km/h pri prevádzke na trakčné batérie,
- preprava imobilných cestujúcich na vozíčku (TSI PRM), multifunkčné priestory pre kočíky, bicykle minimálne v počte 8 ks, minimálne 1 WC (TSI PRM),
- komplexný informačný systém, Wi-Fi, počítanie cestujúcich,
- dizajnmanuál ZSSK (použité farebné riešenie interiéru/exteriéru BEMU, typov poťahov sedačiek, druh použitej podlahovej krytiny),
- vlakový zabezpečovač ETCS Level 2 / BL3 / S.R.S. 3.6.0, národný zabezpečovač Mirel VZ1, RDST GSM-R / FRMCS (príprava), analóg 450/160MHz,
- plnohodnotné TSI,
- schválená prechodnosť SK (možné doschválenie CZ-HU).

5. Popis jednotlivých variantov

V štúdii uskutočniteľnosti uvažujeme s dvomi variantmi: "bez projektu" a "s projektom". Pri výpočte prevádzkových výdavkov počítame len s variabilnými zložkami prevádzkových výdavkov, ktoré sú závislé od hmotnosti ŽKV, vzdialenosti, času a pod., nakoľko fixné zložky prevádzkových výdavkov inkrementálnym prístupom neovplyvnia hodnotenie projektového zámeru.

5.1 Bez projektu (súčasný stav)

Ak by sa projekt nerealizoval, tak by na tratiach, ktoré sú čiastočne elektrifikované, naďalej jazdili vlaky s dieselovým pohonom.

Prevádzkové výdavky sú namodelované z podkladov GVD 2024/25 resp. finančného prepočtu. Uvedené vozidlá by museli v zmysle finančného prepočtu prejsť v určitom období výmenami/ opravami, ktoré by zabezpečili predĺženie ich životnosti.

Tabuľka 13	Veková s	kladba vozid	diel bez	projektu
------------	----------	--------------	----------	----------

Rad ŽKV	Počet ŽKV	Priemerný vek ŽKV na začiatku ref. obdobia
861	4	12
661	2	6
840	1	23
813	7	17
812	23	22
PV 012	3	16

Východiskom pre stanovenie finančného prepočtu bola skutočnosť predchádzajúcich rokov:

- podklady energetického dispečingu (ZSSK/ŽSR),
- podklady systému merania nafty (ISMEN ZSSK),
- prehľad doplnkových služieb IT služby, čistenie ŽKV
- kalkulácia poplatku za dopravnú cestu (ŽSR),
- nákladový model IFRS.

str. 20 z 35

Tabuľka 14 Finančný prepočet variabilných prevádzkových výdavkov bez projektu

		Typ vozidla						
Výdavok	Merná jednotka	861	661	840	813	812	PV 012	
Údržba a oprava (interná/externá)	EUR/vlkm	2,71	1,76	3,33	1,71	1,31	1,42	
Čistenie (interiér/exteriér)	EUR/vlkm	0,2	0,26	0,13	0,13	0,1	0,1	
Trakčná nafta	EUR/vlkm	2		0,7	0,65	0,27	0,03	
Trakčná elektrina	EUR/vlkm		0,7					
Poplatok za ŽDC	EUR/vlkm	1,34	1,39	1,36	1,24	1,31	0,03	
Prevádzkové výdavky spolu	EUR/vlkm	6,25	4,11	5,52	3,53	2,92	1,58	

Tabuľka 11 Dopravný výkon bez projektu - primárne trate

Dopravný výkon			Bez projektu vl	km/rok spolu	za linku
Linky GVD 2024/2025 – primárne trate	ŽKV	TP	spolu	diesel	trolej
REG 1011 Nitra – Šurany – Nové Zámky (časť výkonov, zbytok pre iný projekt)	861	4	104 860,5	104 860,5	
REG 1012 Nitra – Leopoldov – Trnava	861		360 611,3	360 611,3	
REG 1008 Kúty – Skalica na Slovensku	840	1	214 065,8	214 065,8	
REG 1006 Trnava - Kúty (1/3 vozby výkonov, 2/3 zostane v EJ 661)	661	1	223 206,9		223 206,9
REG 1036 Žilina – Rajec	813-913	3	187 406,8	187 406,8	
REG 1025 Trenčín – Myjava	813-913	3	527 781,1	527 781,1	
REG 1027 Horné Srnie – Trenčín	813-913	1	124 074,7	124 074,7	
REG 1010 Nové Zámky – Komárno (priama linka Nitra - Komárno)	661	1	258 413,8		258 413,8
Spolu		14	2 000 420,8	1 518 800,2	481 620,6

Tabuľka 12 Dopravný výkon bez projektu - sekundárne trate

Dopravný výkon Linky GVD 2024/2025 - sekundárne trate	ŽKV	TP	vlkm/rok spolu za linku bez projektu
REG 1055 Margecany - Nálepkovo - Dobšinská Ľadová Jaskyňa (celý výkon)	812	6	364 822,9
REG 1041 Lučenec - Fiľakovo - Jesenské (1/3 výkonov)	812	1	96 127,6
REG 1010 Nové Zámky - Levice (1/3 výkonov)	812	1	120 912,0
REG 1047 Poprad - Tatranská Lomnica (celý výkon)	812	1	45 715,2
REG 1017 Nové Zámky – Zlaté Moravce (celý výkon)			128 407,1
REG 1010 Nové Zámky – Levice (2/3 výkonov)	812	7	241 824,1
REG 1018 Levice – Štúrovo (celý výkon)	012	'	266 747,3
REG 1021 Horná Štubňa - Zvolen (1/2 výkonov)			83 493,8
	*012	1	-
Spolu		16+1	1 348 050,0

str. 21 z 35

23,33%

15,09%

2080

Prevádzkové výdavky boli stanovené na základe dopravného výkonu a ohodnotené boli finančným prepočtom variabilných prevádzkových výdavkov. Výška ročných prevádzkových výdavkov je uvedená v nasledujúcej tabuľke.

Tabuľka 15 Ročné variabilné prevádzkové výdavky bez projektu

	BEZ PROJEKTU						
Variabilné prevádzkové výdavky	Údržba a oprava	Čistenie	Trakčná nafta	Trakčná elektrina	Poplatok za ŽDC	Spolu	
REG 1011 Nitra – Šurany – Nové Zámky (časť výkonov, zbytok pre iný projekt)	284 172	20 972	209 721		140 513	655 378	
REG 1012 Nitra – Leopoldov – Trnava	977 257	72 122	721 223		483 219	2 253 821	
REG 1010 Nové Zámky – Komárno /priama linka Nitra Komárno	454 808	67 188		180 890	359 195	1 062 081	
REG 1008 Kúty – Skalica na Slovensku	712 839	27 829	149 846		291 129	1 181 643	
REG 1006 Trnava - Kúty (1/3 vozby výkonov, 2/3 zostane v EJ 661)	392 844	58 034		156 245	310 258	917 380	
REG 1036 Žilina – Rajec	320 466	24 363	121 814		232 384	699 027	
REG 1025 Trenčín – Myjava	902 506	68 612	343 058		654 449	1 968 623	
REG 1027 Horné Srnie – Trenčín	212 168	16 130	80 649		153 853	462 798	
REG 1055 Margecany - Nálepkovo - Dobšinská Ľadová Jaskyňa	477 918	36 482	98 502		477 918	1 090 821	
REG 1041 Lučenec - Fiľakovo - Jesenské	125 927	9 613	25 954		125 927	287 421	
REG 1047 Poprad Tatry - Tatranská Lomnica	59 887	4 572	12 343		59 887	136 688	
REG 1017 Nové Zámky - Zlaté Moravce	168 213	12 841	34 670		168 213	383 937	
REG 1010 Nové Zámky - Levice	475 184	36 274	97 939		475 184	1 084 581	
REG 1018 Levice - Štúrovo	349 439	26 675	72 022		349 439	797 574	
REG 1021 Zvolen - Horná Štubňa	109 377	8 349	22 543	-	109 377	249 647	
Spolu						13 231 422	

Prognóza cestujúcich bola do roku 2040 ovplyvnená 1%-ným medziročným nárastom a po roku 2040 vychádza z prognózy vývoja počtu obyvateľov (podľa stredného scenára vývoja), a to dlhodobým poklesom.

Obrázok 6 Prognóza vývoja počtu obyvateľov 2022 až 2080

Zdroj: Kmeňová populačná prognóza Slovenska (2022–2080)

Zdroj: Kmeňová populačná prognóza Slovenska (2022–2080)

str. 22 z 35

Pri výpočte príjmov sme vychádzali z vývoja príjmov za linky, na ktorých sa uvažuje s nasadzovaním nových obstarávaných vozidiel. Do výpočtu vstupujú reálne čítania 2D kódov v konkrétnych vlakoch daných liniek a ich váhy na celkových predajoch cestovných dokladov zakupovaných na prepravu vlakmi vo verejnom záujme.

Tabuľka 16 Počet cestujúcich a príjmov spolu za referenčné obdobie bez projektu

Počet cestujúcich a príjmov spolu za referenčné obdobie		
BEZ PROJEKTU	Počet cestujúcich	Príjmy
REG 1011 Nitra – Šurany – Nové Zámky (časť výkonov, zbytok pre iný projekt)	42 995 608	17 908 872
REG 1012 Nitra – Leopoldov – Trnava	28 850 472	10 226 264
REG 1010 Nové Zámky – Komárno /priama linka Nitra Komárno	23 602 173	7 758 441
REG 1008 Kúty – Skalica na Slovensku	3 913 872	1 542 395
REG 1006 Trnava - Kúty (1/3 vozby výkonov, 2/3 zostane v EJ 661)	21 450 669	11 282 167
REG 1036 Žilina – Rajec	10 230 712	2 739 628
REG 1025 Trenčín – Myjava	34 665 895	9 925 931
REG 1027 Horné Srnie – Trenčín	3 882 663	422 347
REG 1055 Margecany - Nálepkovo - Dobšinská Ľadová Jaskyňa	18 203 832	4 054 881
REG 1041 Lučenec - Fiľakovo - Jesenské	11 988 959	3 290 703
REG 1047 Poprad Tatry - Tatranská Lomnica	1 236 462	323 329
REG 1017 Nové Zámky - Zlaté Moravce	1 093 648	331 430
REG 1010 Nové Zámky - Levice	10 115 217	3 325 046
REG 1018 Levice - Štúrovo	3 312 620	1 772 113
REG 1021 Zvolen - Horná Štubňa	3 849 724	1 337 792
Spolu	219 392 526	76 241 340

5.2 S projektom

Výsledným stavom tohto projektu je využitie batériovo-elektrickej technológie, a tým zabezpečenie klimaticky neutrálnej prevádzky tam, kde nie je úplná elektrifikácia trate. PHZ 1 ks BEMU je stanovená na 8 500 000 EUR a bola stanovená na základe trhových konzultácií, oslovení boli všetci relevantní výrobcovia (Alstom, Talgo, CAF, CRRC, Hitachirail, Newag, PESA, Siemens, ŠKODA, Stadler), avšak spätnú väzbu zaslali len spoločnosti ŠKODA, Stadler a Alstom.

16 ks hybridných BEMU vozidiel (ES 16, TP 14) bude nasadených na regionálnych tratiach/linkách nasledovne:

- REG1011, REG1012 (TP 4) Nitra Šurany Nové Zámky, Nitra Leopoldov Trnava,
- REG1010 (TP 1) Nitra Nové Zámky Komárno,
- REG1008, REG1006 (TP 2) Kúty Skalica na Slovensku, prepojenie cez Kúty Trnava.
- REG1036 (TP 3) Žilina Rajec,
- REG1025 (TP 3) Trenčín Myjava,
- REG1027 (TP 1) Horné Srnie Trenčín.

V scenári s projektom uvažujeme o zavedení dvoch priamych liniek: Nitra – Nové Zámky – Komárno a Horné Srnie – Trenčín. V ŠU uvažujeme s úsporou času, ktorá vznikne neprestupovaním cestujúcich na týchto linkách.

16 ks BEMU nahradí súčasný vozidlový park na nasledovných regionálnych tratiach/linkách:

Železničná spoločnosť Slovensko a.s.

Obstaranie hybridných EJ pre regionálnu dopravu

str. 23 z 35

- 4 ks vyzískané DMJ 861.0 z tratí Nitra Nové Zámky a Nitra Trnava budú nasadené na trať Margecany – Nálepkovo – Dobšinská Ľadová Jaskyňa, ktorými budú nahradené 7 ks MV 812 (ES 10), ktoré budú vyradené,
- 1 ks vyzískaná EJ 661 z trate Nové Zámky Komárno bude nasadená na trať Nové Zámky - Levice, ktorou bude nahradený 1 ks MV 812 (ES 1), ktorý bude vyradený,
- 1 ks vyzískaná DMJ 840 z trate Kúty Skalica bude nasadená na trať Poprad T. Lomnica, ktorou bude nahradený 1 ks MV 812 (ES 2), ktoré budú vyradené,
- 1 ks vyzískaná EJ 661 z trate Kúty Trnava bude presunutá do zálohy vozidiel ZSSK,
- 7 ks vyzískané MJ 813-913 z tratí Žilina Rajec, Trenčín Myjava, Horné Srnie Trenčín budú nasadené na trate Nové Zámky Zlaté Moravce, Nové Zámky Levice, Levice Štúrovo, Horná Štubňa Zvolen, ktorými bude nahradené 7 ks MV 812 (ES 10) a 1 ks PV 012 (ES 3), ktoré budú vyradené.

Finálne budú v zmysle vyššie uvedeného vyradené najstaršie vozidlá, a to:

- 23 ks MV 812,
- 3 ks PV 012.

Harmonogram dodávky hybridných vozidiel:

- rok 2028 4 ks,
- rok 2029 12 ks.

Výber liniek pre nasadenie BEMU bol podmienený nasledovnými kritériami: trasa liniek (eliminácia dieselových vozidiel), stratégia obnovy ŽKV, kapacita vozidiel a kategorizácia liniek a využitie prepráv do servisných centier bez jalových prepráv. V prípade, že dôjde k elektrifikácii primárnych tratí zo strany manažéra infraštruktúry, alebo si to vyžiadajú iné prevádzkové okolnosti, mohli by byť BEMU nasadené a plnohodnotne využité na nasledujúcich alternatívnych tratiach: Žilina - Vrútky - Martin – Banská Bystrica – Zvolen (podmienkou je dostatočná kapacita a prekategorizovanie linky), Košice – Moldava nad Bodvou – Rožňava (podmienkou je ukončenie elektrifikácie minimálne po Moldavu nad Bodvou), Horní Lideč - Púchov / Žilina , Poprad – Stará Ľubovňa – Plaveč / Lipany / Košice.

Prevádzkové výdavky BEMU sú namodelované z finančného prepočtu. Východiskom pre stanovenie finančného prepočtu bola v pomernej časti (70 – 75 %) stanovenej kvalifikovaným odhadom skutočnosť predchádzajúcich rokov pre 3-vozňovú EJ 661:

- podklady energetického dispečingu (ZSSK/ŽSR),
- prehľad doplnkových služieb IT služby, čistenie ŽKV
- kalkulácia poplatku za dopravnú cestu (ŽSR),
- prieskumy trhu,
- nákladový model IFRS.

Tabuľka 17 Finančný prepočet variabilných prevádzkových výdavkov s projektom

		Typ vozidla						
Výdavok	Merná jednotka	861	661	840	813	PV 012	BEMU	
Údržba a oprava (interná/externá)	EUR/vlkm	2,71	1,76	3,33	1,71	1,42	1,7	
Čistenie (interier/exterier)	EUR/vlkm	0,2	0,26	0,13	0,13	0,1	0,2	
Trakčná nafta	EUR/vlkm	2		0,7	0,65	0,03		
Trakčná elektrina	EUR/vlkm		0,7				0,65	
Poplatok za ŽDC	EUR/vlkm	1,34	1,39	1,36	1,24	0,03	1,4	

<u>Železničná spoločnosť Slovensko a.s.</u>

7

Obstaranie hybridných EJ pre regionálnu dopravu

str. 24 z 35

Prevádzkové výdavky	EUR/vlkm	6,25	4.11	5,52	3,53	1,58	3,95
spolu	LOIVVIKIII	0,23	7,11	3,32	3,33	1,50	3,33

Tabuľka 18 Dopravný výkon s projektom - primárne trate

Dopravný výkon		S projekton	u za linku	
Linky – primárne trate	TP	Spolu	trolej	batery
REG 1011 Nitra – Šurany – Nové Zámky (časť výkonov, zbytok pre iný projekt)	4	104 860,5	30 927,6	73 932,9
REG 1012 Nitra – Leopoldov – Trnava	-	360 611,3	113 040,2	247 571,1
REG 1008 Kúty – Skalica na Slovensku	1	214 065,8	157 716,6	56 349,2
REG 1006 Trnava - Kúty (1/3 vozby výkonov, 2/3 zostane v EJ 661)	1	223 206,9	223 206,9	
REG 1036 Žilina – Rajec	3	187 406,8		187 406,8
REG 1025 Trenčín – Myjava	3	527 781,1	219 081,2	308 699,9
REG 1027 Horné Srnie – Trenčín	1	124 074,7	59 979,5	64 095,2
REG 1010 Nové Zámky – Komárno (priama linka Nitra - Komárno)	1	258 413,8	258 413,8	
Spolu	14	2 000 420,8	1 062 365,7	938 055,1

Tabuľka 19 Dopravný výkon s projektom - sekundárne trate

Dopravný výkon Linky - sekundárne trate	žKV	TP	vlkm/rok spolu za linku s projektom
REG 1055 Margecany - Nálepkovo - Dobšinská Ľadová Jaskyňa (celý výkon)	861	6	364 822,9
REG 1041 Lučenec - Fiľakovo - Jesenské (1/3 výkonov)	861	1	96 127,6
REG 1010 Nové Zámky - Levice (1/3 výkonov)	661	1	120 912,0
REG 1047 Poprad Tatry- Tatranská Lomnica (celý výkon)	840	1	45 715,2
REG 1017 Nové Zámky – Zlaté Moravce (celý výkon)			128 407,1
REG 1010 Nové Zámky – Levice (2/3 výkonov)	813-913	7	241 824,1
REG 1018 Levice – Štúrovo (celý výkon)	013-913		266 747,3
REG 1021 Horná Štubňa - Zvolen (1/2 výkonov)			83 493,8
	*012	1	-
Spolu			1 348 050,0

Prevádzkové výdavky boli stanovené na základe dopravného výkonu a ohodnotené boli finančným prepočtom variabilných prevádzkových výdavkov. Výška ročných prevádzkových výdavkov je uvedená v nasledujúcej tabuľke.

Tabuľka 20 Ročné variabilné prevádzkové výdavky s projektom

	S PROJEKTOM							
Variabilné prevádzkové výdavky	Údržba a Trakčná Trakčná Poplatok Spolu oprava Čistenie nafta elektrina za ŽDC							
REG 1011 Nitra – Šurany – Nové Zámky (časť výkonov, zbytok pre iný projekt)	178 263	20 972		20 103	146 805	366 143		

Železničná spoločnosť Slovensko a.s.

Obstaranie hybridných EJ pre regionálnu dopravu

str. 25 z 35

REG 1012 Nitra – Leopoldov – Trnava	613 039	72 122		73 476	504 856	1 263 494
REG 1010 Nové Zámky – Komárno /priama linka Nitra Komárno	439 303	51 683		167 969	361 779	1 020 734
REG 1008 Kúty – Skalica na Slovensku	363 912	42 813		102 516	299 692	808 933
REG 1006 Trnava - Kúty (1/3 vozby výkonov, 2/3 zostane v EJ 661)	379 452	44 641		145 084	312 490	881 667
REG 1036 Žilina – Rajec	318 592	37 481		40 605	262 369	659 047
REG 1025 Trenčín – Myjava	897 228	105 556		142 403	738 894	1 884 080
REG 1027 Horné Srnie – Trenčín	210 927	24 815		38 987	173 705	448 433
REG 1055 Margecany - Nálepkovo - Dobšinská Ľadová Jaskyňa	988 670	72 965	729 646		488 863	2 280 143
REG 1041 Lučenec - Fiľakovo - Jesenské	260 506	19 226	192 255		128 811	600 797
REG 1047 Poprad Tatry - Tatranská Lomnica	152 232	5 943	32 001		62 173	252 348
REG 1017 Nové Zámky - Zlaté Moravce	219 576	16 693	83 465		159 225	478 958
REG 1010 Nové Zámky - Levice	626 324	62 874	157 186	84 638	467 930	1 398 952
REG 1018 Levice - Štúrovo	456 138	34 677	173 386		330 767	994 967
REG 1021 Zvolen - Horná Štubňa	142 774	10 854	54 271		103 532	311 432
Spolu						13 650 130

Pri prognózovaní počtu cestujúcich s projektom bol uvažovaný 1 %-ný medziročný nárast cestujúcich do roku 2040, po tomto roku dochádza k poklesu cestujúcich. Model vychádza z prognózy vývoja počtu obyvateľov (podľa stredného scenára vývoja). Pre výpočet prevedenej dopravy bola použitá metodika štúdie Douglas (2008), a to na každú linku samostatne a podľa miery zlepšenia parametrov vozidiel, ich vybavenia a komfortu. Základom pre výpočet príjmov BEMU je vyčíslený príjem na daných linkách bez projektu (kombinácia čítania 2D kódov s predajmi cestovných dokladov) a zohľadnenie navýšenia cestujúcich v dôsledku modernizácie a s tým súvisiaceho zvyšovania atraktivity prepravy.

Tabuľka 21 Počet cestujúcich a príjmov spolu za referenčné obdobie s projektom

4.7A Počet cestujúcich a príjmov spolu za referenčné obdobie				
S PROJEKTOM	Celkom cestujúci	Cestujúci ŽOD	Prevedení IAD	Príjmy
REG 1011 Nitra – Šurany – Nové Zámky (časť výkonov, zbytok pre iný projekt)	43 712 285	42 995 608	716 678	18 207 389
REG 1012 Nitra – Leopoldov – Trnava	29 258 683	28 850 472	408 211	10 370 957
REG 1010 Nové Zámky – Komárno /priama linka Nitra Komárno	24 024 248	23 602 173	422 075	7 897 185
REG 1008 Kúty – Skalica na Slovensku	3 976 007	3 913 872	62 136	1 566 882
REG 1006 Trnava - Kúty (1/3 vozby výkonov, 2/3 zostane v EJ 661)	21 714 618	21 450 669	263 949	11 420 993
REG 1036 Žilina – Rajec	10 845 467	10 230 712	614 755	2 904 250
REG 1025 Trenčín – Myjava	36 793 032	34 665 895	2 127 137	10 534 997
REG 1027 Horné Srnie – Trenčín	4 514 799	3 882 663	632 136	491 109
REG 1055 Margecany - Nálepkovo - Dobšinská Ľadová Jaskyňa	19 934 354	18 203 832	1 730 522	4 440 352
REG 1041 Lučenec - Fiľakovo - Jesenské	13 012 459	11 988 959	1 023 500	3 571 631
REG 1047 Poprad Tatry - Tatranská Lomnica	1 382 813	1 236 462	146 351	361 600
REG 1017 Nové Zámky - Zlaté Moravce	1 112 455	1 093 648	18 807	337 130
REG 1010 Nové Zámky - Levice	10 359 266	10 115 217	244 049	3 405 269
REG 1018 Levice - Štúrovo	3 371 965	3 312 620	59 345	1 803 860
REG 1021 Zvolen - Horná Štubňa	3 949 162	3 849 724	99 438	1 372 348
Spolu	227 961 614	219 392 526	8 569 089	78 685 951

Výhody projektového zámeru

- Moderné, konštrukčne bezpečnejšie vozidlá.
- Zníženie množstva znečisťujúcich látok zo železničnej dopravy.
- Zvýšenie kultúry cestovania.
- Zvýšenie ponúkanej prepravnej kapacity.
- Možnosť zhustenia vlakov na daných linkách s rovnakým počtom ŽKV.

Nevýhody projektového zámeru

Vstupné náklady.

6. Všeobecné informácie a pojmy k finančnej a ekonomickej analýze

6.1 Definícia finančnej analýzy

Finančná analýza je analytický nástroj, pomocou ktorého je možné efektívne zhodnotiť príjmy a výdavky realizovaného projektu a na základe jej výsledkov sa rozhodnúť o realizovaní resp. nerealizovaní plánovaného projektu. Teda či sa predpokladané výsledky zhodujú s našimi predstavami a či bude realizovaný projekt finančne, najmä z prevádzkového hľadiska, zvládnuteľný.

6.2 Definícia ekonomickej analýzy

Ekonomická analýza je analytický nástroj, pomocou ktorého je možné efektívne zhodnotiť prínosy a náklady realizovaného projektu a na základe jej výsledkov sa rozhodnúť o realizovaní resp. nerealizovaní plánovaného projektu. Teda či sa predpokladané výsledky zhodujú s našimi predstavami a či bude realizovaný projekt z celospoločenského hľadiska ekonomicky prínosný.

6.3 Projekty generujúce príjem

Ak projekt generuje príjem, znamená to, že jeho užívatelia platia za jeho užívanie a je potrebné vypočítať výšku návratnosti a na základe toho sa rozhodnúť, či je projekt udržateľný. V prípade, že ide o komerčný projekt, mal by zarobiť na svoje investičné a prevádzkové náklady. V prípade, že ide o projekt vo verejnom záujme, je potrebné zvážiť aj iné okolnosti s celospoločenským vplyvom, ktoré môžu mať vplyv na jeho realizáciu.

6.4 Použitie prírastkovej metódy

Všetky výpočty vo finančnej analýze sú spracovávané ako rozdielové, teda rozdiel medzi stavom "s projektom" a stavom "bez projektu". Takéto hodnoty sa v CBA terminológii nazývajú "prírastkové hodnoty" resp. z angl. "inkrementálne hodnoty". Na základe tohto pravidla možno aj projekt, za ktorého užívanie sa platí, v prípade, že ide o určitý typ modernizácie, pri ktorej nedošlo k žiadnej zmene výšky poplatku ani cenovej politiky, považovať za projekt negenerujúci čistý príjem.

6.5 Stále ceny v porovnaní s bežnými cenami

Pri výpočte jednotlivých výsledkov sú hodnoty vo finančnej analýze bez cenovej úpravy. To znamená, že do výpočtu nevstupuje inflácia. Cieľom finančnej analýzy nie je vypočítať výšku inflácie pred projektom a po projekte a stanoviť poplatky počas referenčného obdobia, ale porovnať, či samotnou realizáciou dôjde k pozitívnym alebo skôr negatívnym zmenám. Inak povedané, na posúdenie vhodnosti projektu inflácia nepôsobí, pretože tá by sa v rovnakej miere dotýkala tak investičných výdavkov/nákladov, ako aj prevádzkových výdavkov/nákladov a zároveň príjmov/prínosov.

6.6 Časová hodnota peňazí a diskontovanie

Finančná analýza zohľadňuje "časovú hodnotu peňazí", teda porovnáva, či prostriedky investované do projektu bez ohľadu na ich zdroj (Európska komisia, bankový úver, vlastné zdroje) sú vhodne investované a či nebola iná, lepšia možnosť investície ako uvedený projekt. Na tento účel nám slúži tzv. "diskontná sadzba", ktorá predstavuje alternatívny výnos investovaných prostriedkov, teda koľko by sme mohli zarobiť, ak by sme ich investovali do iného produktu alebo iného projektu. V prípade finančnej analýzy je táto hodnota diskontnej sadzby nastavená na hodnotu 4 %. To platí pre všetky eurofondové projekty. Avšak pokiaľ sa financuje projekt z iných zdrojov, môže sa uviesť RPMN úveru. To znamená, že vhodný projekt je taký, ktorý v časovom horizonte referenčného obdobia zarobí nielen hodnotu investičných a prevádzkových výdavkov, ale aj ich príslušné navýšenie o hodnotu diskontnej sadzby.

7. Vstupné údaje

CBA analýza je spracovaná na základe nižšie uvedených dát, ktoré poskytli kompetentné odborné útvary ZSSK. Všetky výpočty boli v projektovom variante porovnávané so stavom bez projektu.

Tabuľka 22 Obdobie realizácie

Rok začiatku realizácie projektu (podpis zmluvy)	2026
Rok dodania vozidiel	2029

Tabuľka 23 Investičné výdavky

Tabana 20 mirootiono vydavky								
Kategória investičných výdavkov		Rok						
		1	2	3	4	5		37
1.1 Investičné výdavky (EUR) -								
finančné	Celkom	2026	2027	2028	2029	2030		2062
Vozidlá	136 000 000	0	0	34 000 000	102 000 000	0	0	0
Hrubá skriňa	27 200 000			6 800 000	20 400 000			
Podvozok	6 800 000			1 700 000	5 100 000			
Trakčný reťazec	44 880 000			11 220 000	33 660 000			
Technológia	36 720 000			9 180 000	27 540 000			
Interiér	20 400 000			5 100 000	15 300 000			
Iné služby (Technická pomoc,								
Publicita, Externé riadenie)	0							
Celkové investičné výdavky	136 000 000	0	0	34 000 000	102 000 000	0	0	0
Rezerva na nepredvídané výdavky	0							
Cenové úpravy (valorizácia)	0							
Celkové investičné výdavky vrátane								
rezervy a valorizácie	136 000 000	0	0	34 000 000	102 000 000	0	0	0
DPH	31 280 000			7 820 000	23 460 000			
Celkové investičné výdavky vrátane								
DPH	167 280 000	0	0	41 820 000	125 460 000	0	0	0

<u>Železničná spoločnosť Slovensko a.s.</u>

Obstaranie hybridných EJ pre regionálnu dopravu

str. 28 z 35

Oprávnené investičné výdavky	136 000 000			34 000 000	102 000 000			
Neoprávnené investičné výdavky	31 280 000	0	0	7 820 000	23 460 000	0	0	0

Tabuľka 24 Prevádzkové výdavky bez projektu

3.1 Prevádzkové výdavky	
BEZ PROJEKTU	Celkom
Prevádzkové výdavky vozidiel	489 562 610
Výmeny/Obnovy/Generálne opravy	89 420 000
Celkové prevádzkové výdavky na údržbu vozidiel	578 982 610
Iné špecifické výdavky	0
Celkové iné špecifické prevádzkové výdavky	0
Celkové prevádzkové výdavky	578 982 610

Tabuľka 25 Prevádzkové výdavky s projektom

3.2 Prevádzkové výdavky	
S PROJEKTOM	Celkom
Prevádzkové výdavky vozidiel	503 379 966
Výmeny/Obnovy/Generálne opravy	162 520 000
Celkové prevádzkové výdavky na údržbu vozidiel	665 899 966
Iné špecifické výdavky	0
Celkové iné špecifické prevádzkové výdavky	0
Celkové prevádzkové výdavky	665 899 966

Tabuľka 26 Prevádzkové príjmy bez projektu

4.1 Príjmy	
BEZ PROJEKTU	Celkom
Príjmy z cestovného	76 241 340
Iné príjmy	0
Celkové príjmy	76 241 340

Tabuľka 27 Prevádzkové príjmy s projektom

4.2 Príjmy	
S PROJEKTOM	Celkom
Príjmy z cestovného	78 685 951
Iné príjmy	0
Celkové príjmy	78 685 951

Získané údaje boli preklopené následne do modelov finančnej a ekonomickej analýzy, kde sa ďalej počítalo s inkrementálnymi (prírastkovými) hodnotami, t. j. rozdielom medzi stavom "bez projektu" a stavom "s projektom".

Z uvedeného dôvodu sa v nasledujúcich kapitolách nachádzajú už iba prírastkové hodnoty.

8. Finančná analýza

Na základe získaných informácií sa vo finančnej analýze preverí, či projekt bude v rámci 37 ročného referenčného obdobia ziskový, resp. sa bude jeho opodstatnenosť obhajovať socioekonomickými prínosmi v ekonomickej analýze. Vo finančnej analýze je použitá diskontná sadzba vo výške 4 %, ktorá zároveň predstavuje aj výšku nákladov obetovaných príležitostí pri realizácii projektu. V prvom roku referenčného obdobia sa predpokladá iba vyhlásenie verejného obstarania a podpis zmluvy na dodanie 16 ks hybridných BEMU, počas zvyšných 36 rokov bude prebiehať dodanie EJ (r. 2028, 2029) a následne ich prevádzkovanie.

8.1 Investičné výdavky

Investičné výdavky sú výdavky vynaložené za účelom realizácie projektu. Tieto výdavky predstavujú výdavky na obstaranie 16 ks BEMU. Investičný predpoklad je na úrovni 136 000 000 EUR.

Tabuľka 28 Investičné výdavky

1.3 Náklady na obstaranie vozidiel	Náklady na jednotku v EUR	Počet jednotiek	Spolu v EUR
BEMU	8 500 000,00	16	136 000 000,00
Spolu		16	136 000 000,00

8.1.1 Rezerva na nepredvídané výdavky

V uvedenom projekte nie sú uvažované prostriedky v rámci rezervy na nepredvídané výdavky. Vzhľadom na to, že ide o nákup dopravných prostriedkov, ZSSK nepredpokladá vznik nepredvídateľných nákladov tak, ako by to mohlo byť napr. v prípade realizácie stavebných projektov.

8.1.2 Použitie DPH

Ako investor je ZSSK platcom DPH v zmysle zákona a z dôvodu možnosti jej odpočtu sa všetky investičné výdavky v uvedenej analýze uvádzajú bez DPH. DPH je síce samostatne informatívne vyčíslená, ale nevstupuje do výpočtov, ktoré preukazujú vhodnosť resp. nevhodnosť jednotlivých variantov investície.

8.2 Prevádzkové výdavky

Prevádzkové výdavky predstavujú výdavky, ktoré sú nevyhnuté na zabezpečenie prevádzky realizovaného projektu. Z dôvodu kratšej životnosti niektorých prvkov investície ako je referenčné obdobie, boli stanovené výdavky na výmenu na konci životnosti v súlade s Metodickou príručkou pre tvorbu CBA ako určitý percentuálny podiel pôvodných investičných výdavkov. V scenári "bez projektu" boli výdavky na výmenu stanovené ako určitý percentuálny podiel obstarávacej ceny novej BEMU, ktorá predstavuje náhradu za jednotlivé rady ŽKV.

Tabuľka 29 Podiel obstarávacej ceny nového vozidla na obnovách súčasných vozidiel

	% pc	odiel obstarávacej ceny BEMU
	interiér	iné technologické komponenty
861	10%	25%
661	10%	25%
840	10%	25%
813	7%	15%
812	5%	10%
PV 012	5%	10%

Zdroj: ZSSK

str. 30 z 35

Tabuľka 30 Prevádzkové výdavky (prírastkové)

3.3 Prevádzkové výdavky	
Inkrementálne (PRÍRASTKOVÉ)	Celkom
Prevádzkové výdavky vozidiel	13 817 356
Výmeny/Obnovy/Generálne opravy	73 100 000
Celkové prevádzkové výdavky na údržbu vozidiel	86 917 356
Iné špecifické výdavky	0
Celkové iné špecifické prevádzkové výdavky	0
Celkové prevádzkové výdavky	86 917 356

8.3 Prevádzkové príjmy

Prevádzkové príjmy predstavujú tržby z prepravy osôb vlakmi z primárnych a sekundárnych tratí.

Tabuľka 31 Prevádzkové príjmy (prírastkové)

4.3 Príjmy	
PRÍRASTKOVÉ	Celkom
Príjmy z cestovného	2 444 611
Iné príjmy	0
Celkové príjmy	2 444 611

8.4 Zostatková hodnota

Uvedený projekt vygeneroval pre jednotlivé prvky vozidla nasledovnú zostatkovú hodnotu.

Tabuľka 32 Zostatková hodnota finančná

2.1 Zostatková hodno infraštrukturálnych p odpisy)	finančná					
Prvok vozidla	Životnosť v rokoch	Obdobie prevádzky v rámci referenčného obdobia	Nevyhnutnosť výmeny	Životnosť (vrátane výmeny)	Zostávajúca životnosť v %*	Zostatková hodnota
Hrubá skriňa	50	32	0	50	36%	9 248 000
Podvozok	30	32	1	60	93%	6 120 000
Trakčný reťazec	30	32	1	60	93%	40 392 000
Technológia	30	32	1	60	93%	33 048 000
Interiér	20	32	1	40	40%	7 140 000
Zostatková hodnota						95 948 000

8.5 Výstupy finančnej analýzy

8.5.1 Vnútorné výnosové percento vs. diskontná sadzba

Už na začiatku štúdie uskutočniteľnosti sme uviedli, že finančná analýza sa vykonáva v stálych cenách bez zarátania inflácie. Napriek tomu je potrebné posúdiť výnosnosť alternatívnej investície, do ktorej by sme mohli prostriedky na realizáciu projektu investovať, ak by sme ich neinvestovali do projektu. Na tento účel resp. vyjadrenie hodnoty alternatívneho výnosu, ktorý je zároveň aj nákladom obetovaných príležitostí, slúži diskontná sadzba. V prípade, že chceme projekt považovať za vhodný, musí pri zohľadnení časovej hodnoty peňazí vygenerovať väčšie

výnosové percento ako je diskontná sadzba. Inak povedané, vnútorné výnosové percento (FRR) musí byť väčšie ako diskontná sadzba, ktorá je na úrovni 4 %.

Tabuľka 33 Výstupy finančnej analýzy (FRR)

Finančné vnútorné výnosové percento investície	(FIRR_C)	-7%
--	----------	-----

8.5.2 Čistá súčasná hodnota

Čistá súčasná hodnota je iným vyjadrením výsledku finančnej analýzy. Kým vnútorné výnosové percento vyjadruje vhodnosť projektu v percentách, čistá súčasná hodnota ho vyjadruje v eurách. Platí súvzťažnosť, že ak je FRR rovné diskontnej sadzbe, tak čistá súčasná hodnota FNPV je rovná 0. Ak je vnútorné výnosové percento menšie ako diskontná sadzba, tak aj čistá súčasná hodnota je záporná, a ak je vnútorné výnosové percento väčšie ako diskontná sadzba, čistá súčasná hodnota je kladná.

Tabuľka 34 Výstupy finančnej analýzy (FNPV)

Finančná čistá súčasná hodnota investície (FNPV_C)	-113 352 578

Z uvedeného vyplýva, že projektový variant je finančne stratový a na seba si nezarobí a jeho opodstatnenosť je daná jednoznačne ekonomickou stránkou projektu.

9. Výpočet dopadov financovania

Finančná analýza pre tento projekt nám vychádza záporne. Avšak vzhľadom na celospoločenské prínosy je možné tento projekt obhajovať prostredníctvo ekonomickej analýzy.

9.1 Definícia a výpočet finančnej medzery

Finančná medzera je údaj stanovený v percentách. Predstavuje počet percent investičných nákladov, ktoré projekt počas referenčného obdobia nie je schopný sám na seba zarobiť. Prípadne o koľko percent nákladov by potreboval projektový variant viac ako súčasný variant. Na základe vstupných podkladov je zrejmé, že napriek tomu, že ide o projekt generujúci príjmy, projektový variant potrebuje v horizonte referenčného obdobia vyššie náklady, v dôsledku čoho je potrebné z grantu získať 100 % investičných výdavkov, resp. týchto 100 % investičných výdavkov je oprávnených pre financovanie projektu. Samotná výška grantu závisí od nastavenej schémy financovania. V súvislosti s vyššími prevádzkovými výdavkami projektového variantu je potrebné uviesť, že nové vozidlá by síce mali vykazovať menšiu poruchovosť, ale na druhej strane obsahujú moderné technológie, ktorých údržba môže byť oveľa drahšia ako údržba súčasných vozidiel.

Výpočet finančnej medzery pozostáva z viacerých krokov:

- vypočíta sa čistý príjem (v prípade, že ide o projekt generujúci príjmy) tak, že sa od príjmov odrátajú výdavky a priráta sa zostatková hodnota,
- čistý príjem sa odráta od investičných výdavkov a dosiahnu sa maximálne oprávnené výdavky,
- tieto máximálne oprávnené výdavky sa vydelia investičnými výdavkami a výsledkom je finančná medzera v percentuálnom vyjadrení.

str. 32 z 35

Tabuľka 35 Výpočet finančnej medzery

5.1 Výpočet finančnej medzery	Nediskontované	Diskontované
Investičné výdavky (DIC)	136 000 000	122 112 540
Zostatková hodnota	95 948 000	23 379 527
Prevádzkové príjmy	2 444 611	1 190 200
Prevádzkové výdavky	86 917 356	15 809 764
Čistý príjem (DNR)		0
Investičné výdavky - Čistý príjem (Max EE)		122 112 540
Finančná medzera (FG)		100,00%

Z predchádzajúcej tabuľky je vidieť, že na financovanie je oprávnených 100 % investičných výdavkov, ktoré sa rozdelia medzi jednotlivé zdroje financovania podľa príslušnej platnej schémy.

10. Ekonomická analýza

10.1 Investičné náklady

Investičné náklady sú náklady vynaložené za účelom realizácie projektu. Tieto náklady predstavujú náklady na obstaranie 16 ks BEMU. Na rozdiel od finančnej analýzy sú samotné investičné náklady prepočítavané tzv. konverznými faktormi. To znamená, že sú vylúčené tzv. "transfery", nakoľko ekonomická analýza hodnotí efektívnosť ako celok pre spoločnosť, teda pre všetkých užívateľov, takže sa neberú do úvahy pre účely výpočtu dane a iné platby.

Tabuľka 36 Investičné náklady (ekonomické)

	,	1	2	3	4	5		37
1.2 Investičné náklady (EUR) - ekonomické	Celkom	2026	2027	2028	2029	2030		2062
Vozidlá	122 400 000	0	0	30 600 000	91 800 000	0	0	0
Hrubá skriňa	24 480 000	0	0	6 120 000	18 360 000	0	0	0
Podvozok	6 120 000	0	0	1 530 000	4 590 000	0	0	0
Trakčný reťazec	40 392 000	0	0	10 098 000	30 294 000	0	0	0
Technológia	33 048 000	0	0	8 262 000	24 786 000	0	0	0
Interiér	18 360 000	0	0	4 590 000	13 770 000	0	0	0
Iné služby (Technická pomoc, Publicita,								
Externé riadenie)	0	0	0	0	0	0	0	0
Celkové investičné náklady	122 400 000	0	0	30 600 000	91 800 000	0	0	0

10.2 Prevádzkové náklady

Predstavujú náklady, ktoré sú nevyhnuté na zabezpečenie prevádzky zrealizovaného projektu. V nižšie uvedenej tabuľke sú prevádzkové náklady upravené o konverzné faktory.

Tabuľka 37 Prevádzkové náklady prírastkové (ekonomické)

and the state of t			
3.4 Prevádzkové náklady (ekonomické)			
Inkrementálne (PRÍRASTKOVÉ)	Celkom		
Prevádzkové výdavky vozidiel	12 435 620		
Výmeny/Obnovy/Generálne opravy	65 790 000		
Celkové prevádzkové náklady na údržbu vozidiel	78 225 620		
Iné špecifické náklady	0		
Celkové iné špecifické prevádzkové náklady	0		
Celkové prevádzkové náklady	78 225 620		

str. 33 z 35

10.3 Ekonomické prínosy

Na rozdiel od príjmov z finančnej analýzy, ekonomické prínosy sú úplne odlišné. Predstavujú celospoločenské prínosy, ktoré nazývame aj externalitami. Zároveň ide o typ prínosov, ktoré sú z pohľadu fungovania štátu a celej spoločnosti neporovnateľné s finančnými príjmami a pokiaľ tieto celospoločenské prínosy sú významné, je potrebné, aby aj v prípade, že projekt nedokáže zarobiť na finančné výdavky, bol realizovaný.

V prípade uvedeného projektu prichádzajú do úvahy v jednotlivých variantoch nasledovné ekonomické prínosy:

- úspora času
- úspora prevádzkových nákladov
- úspora nákladov z dopravných nehôd
- úspora nákladov na znečisťujúce látky
- úspora nákladov na skleníkové plyny
- úspora nákladov z hluku

Tabuľka 38 Ekonomické prínosy prírastkové

Peňažné toky	Celkom (diskontované)
Investičné náklady	107 055 394
Prevádzkové náklady	8 215 147
Čas cestujúcich	10 884 010
existujúci cestujúci (železničná doprava)	2 478 058
prevedení cestujúci (cestná doprava)	8 405 952
cestujúci v nadväzujúcich úsekoch (železničná doprava)	0
Prevádzkové náklady	10 471 395
spotreba PHM/E (cestná doprava)	1 824 622
ostatné prevádzkové náklady vozidiel (cestná doprava)	8 646 774
Bezpečnosť (cestná doprava)	48 199 652
Znečisťujúce látky	16 872 230
železničná doprava	16 174 881
cestná doprava	697 348
Skleníkové plyny	15 789 740
železničná doprava	11 672 394
cestná doprava	4 117 346
Hluk	19 869
železničná doprava	0
cestná doprava	19 869
Zostatková hodnota	14 909 520
Čisté peňažné toky	1 875 876

10.4 Zostatková hodnota

Uvedený projekt vygeneroval pre jednotlivé prvky vozidla nasledovnú zostatkovú hodnotu.

Železničná spoločnosť Slovensko a.s.

Obstaranie hybridných EJ pre regionálnu dopravu

str. 34 z 35

Tabuľka 39 Zostatková hodnota ekonomická

2.1 Zostatková hodnota na základe životnosti infraštrukturálnych prvkov (alebo tzv. účtovné odpisy) ekonomická Životnos Obdobie prevádzky v Životnosť Zostávajúca rámci referenčného **Nevyhnutnosť** životnosť v Zostatková ťv (vrátane Prvok vozidla rokoch* obdobia výmeny výmeny) hodnota %* Hrubá skriňa 50 33 0 50 34% 8 323 200 Podvozok 30 33 1 60 90% 5 508 000 33 36 352 800 Trakčný reťazec 30 1 60 90% Technológia 33 1 90% 29 743 200 30 60 33 1 35% 6 426 000 Interiér 20 40 Zostatková 86 353 200 hodnota

10.5 Výstupy finančnej analýzy

10.5.1 Vnútorné výnosové percento vs. diskontná sadzba

Už na začiatku štúdie uskutočniteľnosti sme uviedli, že finančná analýza sa vykonáva v stálych cenách bez zarátania inflácie. Napriek tomu je potrebné posúdiť výnosnosť alternatívnej investície, do ktorej by sme mohli prostriedky na realizáciu projektu investovať, ak by sme ich neinvestovali do projektu. Na tento účel resp. vyjadrenie hodnoty alternatívneho výnosu, ktorý je zároveň aj nákladom obetovaných príležitostí, slúži diskontná sadzba. V prípade, že chceme projekt považovať za vhodný, musí, pri zohľadnení časovej hodnoty peňazí, vygenerovať väčšie výnosové percento ako je diskontná sadzba. Inak povedané, vnútorné výnosové percento (FRR) musí byť väčšie ako diskontná sadzba, ktorá je na úrovni 5 %.

Tabuľka 40 Vnútorné výnosové percento (ekonomické)

Ekonomická vnútorná miera návratnosti	(EIRR)	5,14%
---------------------------------------	--------	-------

10.5.2 Čistá súčasná hodnota

Čistá súčasná hodnota je iným vyjadrením výsledku finančnej analýzy. Kým vnútorné výnosové percento vyjadruje vhodnosť projektu v percentách, čistá súčasná hodnota ho vyjadruje v eurách. Platí súvzťažnosť, že ak je FRR rovné diskontnej sadzbe, tak čistá súčasná hodnota FNPV je rovná 0. Ak je vnútorné výnosové percento menšie ako diskontná sadzba, tak aj čistá súčasná hodnota je záporná, a ak je vnútorné výnosové percento väčšie ako diskontná sadzba, čistá súčasná hodnota je kladná.

Tabuľka 41 Čistá súčasná hodnota (ekonomická)

г		
	Ekonomická čistá súčasná hodnota investície (ENPV)	1 875 876

Z uvedeného vyplýva, že projektový variant je finančne stratový a na seba si nezarobí, ale jeho opodstatnenosť bola jednoznačne preukázaná ekonomickou analýzou.

11. Záver

Projekt obnovy koľajových vozidiel s alternatívnym pohonom navrhuje, aby do roku 2029 bolo obstaraných 16 ks nových hybridných EJ a boli tak vytvorené predpoklady nižšej záťaže životného prostredia železničnou dopravou, vyššej kvality ponúkaných služieb ŽOD a vyššieho cestovného komfortu. Obnovený vozidlový park ovplyvní aj budúci dopyt cestujúcich, ktorý môže narastať v dôsledku kvalitnejšej zelenej železničnej prepravnej ponuky a jej atraktívnosti aj pre cestujúcich cestnou dopravou. ZSSK postupne investuje vlastné i cudzie zdroje do obnovy a modernizácie vozového parku, aby sa dobehli investície zanedbané v minulosti. V prípade realizácie tohto projektu ZSSK negeneruje vlastné finančné zdroje, z ktorých by mohol byť projekt financovaný, v potrebnej výške, a tak si jeho financovanie vyžaduje účasť verejných zdrojov EÚ. Efektívnosť projektu investovať do obnovy vozidiel bola posúdená v rámci analýzy nákladov a prínosov. Zohľadňovala pritom súčasný i očakávaný prepravný dopyt, prepravné potreby, hybnosť obyvateľov, ich dopravné správanie, hospodársky a spoločenský rozvoj príslušných regiónov. Analýza prepravného dopytu naznačila mierne rastúci trend dopytu a požiadavku kvalitne zabezpečiť prepravu obyvateľov a návštevníkov dotknutých regiónov.

Finančná analýza preukázala, že projekt je finančne realizovateľný len s podporou zdrojov EÚ. Výsledky ekonomickej analýzy projektu však svedčia o tom, že sociálna hodnota projektu je pozitívna a projekt prinesie celospoločenský úžitok. Kladná ENPV a ERR, ktoré prevyšuje 5-percentnú diskontnú sadzbu potvrdzujú, že projekt je spoločensky žiadúci. Taktiež pomer prínosov a nákladov projektu B/C vypočítaný v rámci tabuľkovej časti CBA (MS Excel) dosahuje hodnotu 1,02, čiže prevyšuje hodnotu 1, čo svedčí o tom, že spoločenské prínosy projektu presahujú spoločenské náklady projektu, teda že 1 EUR spoločenských nákladov vynaložených na realizáciu projektu prinesie 1,02 EUR spoločenských prínosov.

Štúdia uskutočniteľnosti preukázala, že realizácia tohto projektu napomôže skvalitniť ponuku služieb verejnej osobnej dopravy, prispeje k rastu jej podielu na regionálnom dopravnom trhu a zároveň k zníženiu negatívnych dopadov z dopravy na životné prostredie.

Na základe vyššie uvedeného je možné konštatovať, že **štúdia uskutočniteľnosti** jednoznačne preukázala, že projekt je zo spoločenského hľadiska prínosný a je potrebné ho realizovať.