Test 4 learning objectives

April 6, 2016

- 1. Compute antiderivatives and indefinite integrals of power functions (including negative integer and fractional powers), exponential functions, and the function $\frac{1}{x}$, as well as combinations (involving sums and constant multiples) of these functions.
- 2. Compute definite integrals where the integrand is one of the above functions.
- 3. Set up and compute Riemann sums to estimate definite integrals.
- 4. Solve problems using antidifferentiation or integration, including problems which can be solved using the fundamental theorem of calculus. The following table lists the variety of problems.

	Given	find	Solution and/or interpretation
1	a formula for the rate of change	the quantity $(y(t))$	
	r(t) of a quantity (if the quan-		
	tity is $y(t)$, we have $y'(t) = r(t)$		
2	the rate of change $r(t)$ of a	the net change of $y(t)$	
	quantity $y(t)$ on an interval $[a, b]$	between a and b	
3	a graph of the rate of change	an estimate of the	
	r(t) of a function $y(t)$ on an in-	net change of $y(t)$ be-	
	terval $[a, b]$	tween a and b	
4	a formula for a function $f(x)$ on	$\int_a^b f(x)dx$	
	an interval $[a, b]$		
5	the graph of a function $f(x)$ on	an estimate of	
	interval $[a, b]$	$\int_a^b f(x)dx$	
6	a formula for a function $f(x)$ on	the area bounded by	
	an interval $[a, b]$	f(x) and the x-axis	
7	the velocity $v(t)$ of a moving	the total distance	
	body between two times a and	traveled between a	
	$\mid b \mid$	and b	
8	formulas for rates $r(t)$ and $q(t)$,	the net change of $y(t)$	
	which together comprise the	between a and b	
	change in a quantity on an in-		
	terval $[a, b]$		

5. Compute indefinite and definite integrals using substitution.