IEEE 802.11b-Body Up High CH11 4 IEEE 802.11b-Body Down Low CH1 5 IEEE 802.11b-Body Down Middle CH6 6 IEEE 802.11b-Body Down High CH11 7 IEEE 802.11b-Body Down High CH11 7 IEEE 802.11b-Right Head Cheek Low CH1 8 IEEE 802.11b-Right Head Cheek Middle CH6 9 IEEE 802.11b-Left Head Cheek High CH11 10 IEEE 802.11b-Left Head Cheek Middle CH6 12 IEEE 802.11b-Left Head Cheek Middle CH6 12 IEEE 802.11b-Left Head Cheek High CH11 13 IEEE 802.11b-Left Head Cheek High CH11 14 IEEE 802.11b-Right Head Tilted Low CH1 14 IEEE 802.11b-Right Head Tilted Low CH1 17 IEEE 802.11b-Left Head Tilted High CH11 16 IEEE 802.11b-Left Head Tilted High CH11 19 IEEE 802.11b-Left Head Tilted High CH11 19 IEEE 802.11b-Left Head Tilted High CH11 19 IEEE 802.11g-Body Up Low CH1 20 IEEE 802.11g-Body Down Low CH1 23 IEEE 802.11g-Body Down Middle CH6 24 IEEE 802.11g-Body Down High CH11 25 IEEE 802.11g-Right Head Cheek Middle CH6 27	IEEE 802.11b-Body Up Low CH1	2
IEEE 802.11b-Body Down Low CH1 5 IEEE 802.11b-Body Down Middle CH6 6 IEEE 802.11b-Body Down HighCH11 7 IEEE 802.11b-Right Head Cheek Low CH1 8 IEEE 802.11b-Right Head Cheek Middle CH6 9 IEEE 802.11b-Right Head Cheek High CH11 10 IEEE 802.11b-Left Head Cheek Middle CH6 12 IEEE 802.11b-Left Head Cheek High CH11 13 IEEE 802.11b-Left Head Cheek High CH11 14 IEEE 802.11b-Right Head Tilted Low CH1 14 IEEE 802.11b-Right Head Tilted High CH11 16 IEEE 802.11b-Left Head Tilted High CH11 16 IEEE 802.11b-Left Head Tilted High CH11 17 IEEE 802.11b-Left Head Tilted High CH11 19 IEEE 802.11g-Body Up Low CH1 20 IEEE 802.11g-Body Up Low CH1 20 IEEE 802.11g-Body Up High CH11 22 IEEE 802.11g-Body Down Low CH1 23 IEEE 802.11g-Body Down Middle CH6 24 IEEE 802.11g-Body Down Middle CH6 24 IEEE 802.11g-Right Head Cheek Low CH1 26 IEEE 802.11g-Right Head Cheek Low CH1 26 IEEE 802.11g-Right Head Cheek High CH11 28 <	IEEE 802.11b-Body Up Middle CH6	3
IEEE 802.11b-Body Down Middle CH6 6 IEEE 802.11b-Body Down HighCH11 7 IEEE 802.11b-Right Head Cheek Low CH1 8 IEEE 802.11b-Right Head Cheek Middle CH6 9 IEEE 802.11b-Right Head Cheek High CH11 10 IEEE 802.11b-Left Head Cheek High CH11 11 IEEE 802.11b-Left Head Cheek Middle CH6 12 IEEE 802.11b-Left Head Cheek High CH11 13 IEEE 802.11b-Right Head Tilted Low CH1 14 IEEE 802.11b-Right Head Tilted Middle CH6 15 IEEE 802.11b-Left Head Tilted Middle CH6 15 IEEE 802.11b-Left Head Tilted Low CH1 17 IEEE 802.11b-Left Head Tilted Middle CH6 18 IEEE 802.11b-Left Head Tilted High CH11 19 IEEE 802.11g-Body Up Low CH1 20 IEEE 802.11g-Body Middle CH6 21 IEEE 802.11g-Body Middle CH6 21 IEEE 802.11g-Body Down Low CH1 22 IEEE 802.11g-Body Down High CH11 22 IEEE 802.11g-Body Down High CH11 25 IEEE 802.11g-Right Head Cheek Low CH1 26 IEEE 802.11g-Right Head Cheek Middle CH6 27	IEEE 802.11b-Body Up High CH11	4
IEEE 802.11b-Body Down HighCH11 7 IEEE 802.11b-Right Head Cheek Low CH1 8 IEEE 802.11b-Right Head Cheek Middle CH6 9 IEEE 802.11b-Right Head Cheek High CH11 10 IEEE 802.11b-Left Head Cheek Low CH1 11 IEEE 802.11b-Left Head Cheek Middle CH6 12 IEEE 802.11b-Left Head Cheek High CH11 13 IEEE 802.11b-Right Head Tilted Low CH1 14 IEEE 802.11b-Right Head Tilted High CH11 16 IEEE 802.11b-Left Head Tilted High CH11 17 IEEE 802.11b-Left Head Tilted Middle CH6 18 IEEE 802.11b-Left Head Tilted High CH11 19 IEEE 802.11g-Body Up Low CH1 20 IEEE 802.11g-Body Up Low CH1 20 IEEE 802.11g-Body Widdle CH6 21 IEEE 802.11g-Body Up High CH11 22 IEEE 802.11g-Body Down Low CH1 23 IEEE 802.11g-Body Down Middle CH6 24 IEEE 802.11g-Body Down Middle CH6 24 IEEE 802.11g-Right Head Cheek Low CH1 26 IEEE 802.11g-Right Head Cheek Low CH1 26 IEEE 802.11g-Right Head Cheek High CH11 31 IEEE 802.11g-Left Head Cheek High CH11 32	IEEE 802.11b-Body Down Low CH1	5
IEEE 802.11b-Right Head Cheek Low CH1 8 IEEE 802.11b-Right Head Cheek Middle CH6 9 IEEE 802.11b-Right Head Cheek High CH11 10 IEEE 802.11b-Left Head Cheek Low CH1 11 IEEE 802.11b-Left Head Cheek Middle CH6 12 IEEE 802.11b-Right Head Cheek High CH11 13 IEEE 802.11b-Right Head Tilted Low CH1 14 IEEE 802.11b-Right Head Tilted Middle CH6 15 IEEE 802.11b-Left Head Tilted High CH11 16 IEEE 802.11b-Left Head Tilted High CH6 18 IEEE 802.11b-Left Head Tilted High CH11 19 IEEE 802.11g-Body Up Low CH1 20 IEEE 802.11g-Body Widdle CH6 21 IEEE 802.11g-Body Down Low CH1 22 IEEE 802.11g-Body Down Middle CH6 24 IEEE 802.11g-Body Down Middle CH6 24 IEEE 802.11g-Right Head Cheek Low CH1 26 IEEE 802.11g-Right Head Cheek Middle CH6 27 IEEE 802.11g-Right Head Cheek High CH11 28 IEEE 802.11g-Left Head Cheek High CH11 31 IEEE 802.11g-Right Head Tilted Low CH1 32 IEEE 802.11g-Right Head Tilted Middle CH6 33 IEEE 802.11g-Right Head Tilted Middle CH6	IEEE 802.11b-Body Down Middle CH6	6
IEEE 802.11b-Right Head Cheek Middle CH6 9 IEEE 802.11b-Right Head Cheek High CH11 10 IEEE 802.11b-Left Head Cheek Low CH1 11 IEEE 802.11b-Left Head Cheek Middle CH6 12 IEEE 802.11b-Left Head Cheek High CH11 13 IEEE 802.11b-Right Head Tilted Low CH1 14 IEEE 802.11b-Right Head Tilted Middle CH6 15 IEEE 802.11b-Left Head Tilted Low CH1 17 IEEE 802.11b-Left Head Tilted Low CH1 17 IEEE 802.11b-Left Head Tilted High CH11 19 IEEE 802.11b-Left Head Tilted High CH11 19 IEEE 802.11g-Body Up Low CH1 20 IEEE 802.11g-Body Up High CH11 22 IEEE 802.11g-Body Up High CH11 22 IEEE 802.11g-Body Down Low CH1 23 IEEE 802.11g-Body Down High CH11 25 IEEE 802.11g-Right Head Cheek Low CH1 26 IEEE 802.11g-Right Head Cheek Middle CH6 27 IEEE 802.11g-Right Head Cheek High CH11 28 IEEE 802.11g-Left Head Cheek High CH11 31 IEEE 802.11g-Right Head Tilted Low CH1 32 IEEE 802.11g-Right Head Tilted Middle CH6 33 IEEE 802.11g-Right Head Tilted Middle CH6 <td>IEEE 802.11b-Body Down HighCH11</td> <td>7</td>	IEEE 802.11b-Body Down HighCH11	7
IEEE 802.11b-Right Head Cheek High CH11 10 IEEE 802.11b-Left Head Cheek Low CH1 11 IEEE 802.11b-Left Head Cheek Middle CH6 12 IEEE 802.11b-Left Head Cheek High CH11 13 IEEE 802.11b-Right Head Tilted Low CH1 14 IEEE 802.11b-Right Head Tilted Middle CH6 15 IEEE 802.11b-Left Head Tilted High CH11 16 IEEE 802.11b-Left Head Tilted Middle CH6 18 IEEE 802.11b-Left Head Tilted High CH11 19 IEEE 802.11b-Body Up Low CH1 20 IEEE 802.11g-Body Up High CH11 22 IEEE 802.11g-Body Up High CH11 22 IEEE 802.11g-Body Down Low CH1 23 IEEE 802.11g-Body Down Middle CH6 24 IEEE 802.11g-Body Down HighCH11 25 IEEE 802.11g-Body Down HighCH11 25 IEEE 802.11g-Right Head Cheek Low CH1 26 IEEE 802.11g-Right Head Cheek Middle CH6 27 IEEE 802.11g-Right Head Cheek High CH11 28 IEEE 802.11g-Left Head Cheek High CH11 30 IEEE 802.11g-Left Head Cheek High CH11 31 IEEE 802.11g-Right Head Tilted Low CH1 32 IEEE 802.11g-Right Head Tilted Middle CH6	IEEE 802.11b-Right Head Cheek Low CH1	8
IEEE 802.11b-Left Head Cheek Low CH1 11 IEEE 802.11b-Left Head Cheek Middle CH6 12 IEEE 802.11b-Left Head Cheek High CH11 13 IEEE 802.11b-Right Head Tilted Low CH1 14 IEEE 802.11b-Right Head Tilted Middle CH6 15 IEEE 802.11b-Left Head Tilted High CH11 16 IEEE 802.11b-Left Head Tilted Middle CH6 18 IEEE 802.11b-Left Head Tilted High CH11 19 IEEE 802.11g-Body Up Low CH1 20 IEEE 802.11g-Body Widdle CH6 21 IEEE 802.11g-Body Widdle CH6 21 IEEE 802.11g-Body Up High CH11 22 IEEE 802.11g-Body Down Low CH1 23 IEEE 802.11g-Body Down Middle CH6 24 IEEE 802.11g-Body Down HighCH11 25 IEEE 802.11g-Right Head Cheek Low CH1 26 IEEE 802.11g-Right Head Cheek Middle CH6 27 IEEE 802.11g-Right Head Cheek High CH11 28 IEEE 802.11g-Left Head Cheek High CH11 31 IEEE 802.11g-Right Head Tilted Low CH1 32 IEEE 802.11g-Right Head Tilted Middle CH6 33 IEEE 802.11g-Right Head Tilted Middle CH6 33 IEEE 802.11g-Right Head Tilted Middle CH6	IEEE 802.11b-Right Head Cheek Middle CH6	9
IEEE 802.11b-Left Head Cheek Middle CH6 12 IEEE 802.11b-Left Head Cheek High CH11 13 IEEE 802.11b-Right Head Tilted Low CH1 14 IEEE 802.11b-Right Head Tilted Middle CH6 15 IEEE 802.11b-Left Head Tilted High CH11 16 IEEE 802.11b-Left Head Tilted Middle CH6 18 IEEE 802.11b-Left Head Tilted High CH11 19 IEEE 802.11g-Body Up Low CH1 20 IEEE 802.11g-Body Middle CH6 21 IEEE 802.11g-Body Up High CH11 22 IEEE 802.11g-Body Down Low CH1 23 IEEE 802.11g-Body Down Middle CH6 24 IEEE 802.11g-Body Down HighCH11 25 IEEE 802.11g-Right Head Cheek Low CH1 26 IEEE 802.11g-Right Head Cheek Middle CH6 27 IEEE 802.11g-Right Head Cheek High CH11 28 IEEE 802.11g-Left Head Cheek High CH11 31 IEEE 802.11g-Right Head Tilted Low CH1 32 IEEE 802.11g-Right Head Tilted Low CH1 32 IEEE 802.11g-Right Head Tilted High CH11 34 IEEE 802.11g-Right Head Tilted High CH11 34 IEEE 802.11g-Right Head Tilted High CH11 34 IEEE 802.11g-Right Head Tilted High CH11	IEEE 802.11b-Right Head Cheek High CH11	10
IEEE 802.11b-Left Head Cheek High CH11 13 IEEE 802.11b-Right Head Tilted Low CH1 14 IEEE 802.11b-Right Head Tilted Middle CH6 15 IEEE 802.11b-Left Head Tilted Low CH1 17 IEEE 802.11b-Left Head Tilted Middle CH6 18 IEEE 802.11b-Left Head Tilted High CH11 19 IEEE 802.11g-Body Up Low CH1 20 IEEE 802.11g-Body Middle CH6 21 IEEE 802.11g-Body Up High CH11 22 IEEE 802.11g-Body Down Low CH1 23 IEEE 802.11g-Body Down Middle CH6 24 IEEE 802.11g-Body Down Middle CH6 24 IEEE 802.11g-Right Head Cheek Low CH1 26 IEEE 802.11g-Right Head Cheek Middle CH6 27 IEEE 802.11g-Right Head Cheek High CH11 28 IEEE 802.11g-Left Head Cheek High CH11 31 IEEE 802.11g-Right Head Tilted Low CH1 32 IEEE 802.11g-Right Head Tilted Low CH1 32 IEEE 802.11g-Right Head Tilted High CH11 34 IEEE 802.11g-Right Head Tilted High CH11 34 IEEE 802.11g-Right Head Tilted High CH11 34 IEEE 802.11g-Right Head Tilted High CH11 35 IEEE 802.11g-Left Head Tilted High CH11	IEEE 802.11b-Left Head Cheek Low CH1	11
IEEE 802.11b-Right Head Tilted Low CH1 14 IEEE 802.11b-Right Head Tilted Middle CH6 15 IEEE 802.11b-Right Head Tilted High CH11 16 IEEE 802.11b-Left Head Tilted Low CH1 17 IEEE 802.11b-Left Head Tilted Middle CH6 18 IEEE 802.11g-Body Up Low CH1 19 IEEE 802.11g-Body Up Low CH1 20 IEEE 802.11g-Body Middle CH6 21 IEEE 802.11g-Body Up High CH11 22 IEEE 802.11g-Body Down Low CH1 23 IEEE 802.11g-Body Down Middle CH6 24 IEEE 802.11g-Body Down HighCH11 25 IEEE 802.11g-Right Head Cheek Low CH1 26 IEEE 802.11g-Right Head Cheek Middle CH6 27 IEEE 802.11g-Right Head Cheek High CH11 28 IEEE 802.11g-Left Head Cheek Middle CH6 30 IEEE 802.11g-Right Head Tilted Low CH1 32 IEEE 802.11g-Right Head Tilted Middle CH6 33 IEEE 802.11g-Left Head Tilted Middle CH6	IEEE 802.11b-Left Head Cheek Middle CH6	12
IEEE 802.11b-Right Head Tilted Middle CH6 15 IEEE 802.11b-Right Head Tilted High CH11 16 IEEE 802.11b-Left Head Tilted Low CH1 17 IEEE 802.11b-Left Head Tilted Middle CH6 18 IEEE 802.11b-Left Head Tilted High CH11 19 IEEE 802.11g-Body Up Low CH1 20 IEEE 802.11g-Body Middle CH6 21 IEEE 802.11g-Body Up High CH11 22 IEEE 802.11g-Body Down Low CH1 23 IEEE 802.11g-Body Down Middle CH6 24 IEEE 802.11g-Body Down HighCH11 25 IEEE 802.11g-Right Head Cheek Low CH1 26 IEEE 802.11g-Right Head Cheek Middle CH6 27 IEEE 802.11g-Right Head Cheek High CH11 28 IEEE 802.11g-Left Head Cheek Middle CH6 30 IEEE 802.11g-Left Head Cheek High CH11 31 IEEE 802.11g-Right Head Tilted Low CH1 32 IEEE 802.11g-Right Head Tilted Middle CH6 33 IEEE 802.11g-Right Head Tilted Middle CH6 33 IEEE 802.11g-Right Head Tilted Low CH1 34 IEEE 802.11g-Left Head Tilted Low CH1 35 IEEE 802.11g-Left Head Tilted Low CH1 35 IEEE 802.11g-Left Head Tilted Middle CH6	IEEE 802.11b-Left Head Cheek High CH11	13
IEEE 802.11b-Right Head Tilted High CH11 16 IEEE 802.11b-Left Head Tilted Low CH1 17 IEEE 802.11b-Left Head Tilted Middle CH6 18 IEEE 802.11b-Left Head Tilted High CH11 19 IEEE 802.11g-Body Up Low CH1 20 IEEE 802.11g-Body Middle CH6 21 IEEE 802.11g-Body Up High CH11 22 IEEE 802.11g-Body Down Low CH1 23 IEEE 802.11g-Body Down Middle CH6 24 IEEE 802.11g-Body Down HighCH11 25 IEEE 802.11g-Right Head Cheek Low CH1 26 IEEE 802.11g-Right Head Cheek Middle CH6 27 IEEE 802.11g-Right Head Cheek High CH11 28 IEEE 802.11g-Left Head Cheek Middle CH6 30 IEEE 802.11g-Left Head Cheek High CH11 31 IEEE 802.11g-Right Head Tilted Low CH1 32 IEEE 802.11g-Right Head Tilted Middle CH6 33 IEEE 802.11g-Right Head Tilted High CH11 34 IEEE 802.11g-Right Head Tilted High CH11 34 IEEE 802.11g-Left Head Tilted Low CH1 35 IEEE 802.11g-Left Head Tilted Low CH1 35 IEEE 802.11g-Left Head Tilted Low CH1 35 IEEE 802.11g-Left Head Tilted Middle CH6	IEEE 802.11b-Right Head Tilted Low CH1	14
IEEE 802.11b-Left Head Tilted Low CH1 17 IEEE 802.11b-Left Head Tilted Middle CH6 18 IEEE 802.11b-Left Head Tilted High CH11 19 IEEE 802.11g-Body Up Low CH1 20 IEEE 802.11g-Body Middle CH6 21 IEEE 802.11g-Body Up High CH11 22 IEEE 802.11g-Body Down Low CH1 23 IEEE 802.11g-Body Down Middle CH6 24 IEEE 802.11g-Body Down HighCH11 25 IEEE 802.11g-Right Head Cheek Low CH1 26 IEEE 802.11g-Right Head Cheek Middle CH6 27 IEEE 802.11g-Right Head Cheek High CH11 28 IEEE 802.11g-Left Head Cheek Middle CH6 30 IEEE 802.11g-Left Head Cheek High CH1 31 IEEE 802.11g-Right Head Tilted Low CH1 32 IEEE 802.11g-Right Head Tilted Middle CH6 33 IEEE 802.11g-Right Head Tilted Middle CH6 33 IEEE 802.11g-Right Head Tilted High CH11 34 IEEE 802.11g-Right Head Tilted High CH11 35 IEEE 802.11g-Left Head Tilted Low CH1 35 IEEE 802.11g-Left Head Tilted Low CH1 35	IEEE 802.11b-Right Head Tilted Middle CH6	15
IEEE 802.11b-Left Head Tilted Middle CH6 18 IEEE 802.11b-Left Head Tilted High CH11 19 IEEE 802.11g-Body Up Low CH1 20 IEEE 802.11g-Body Middle CH6 21 IEEE 802.11g-Body Up High CH11 22 IEEE 802.11g-Body Down Low CH1 23 IEEE 802.11g-Body Down Middle CH6 24 IEEE 802.11g-Body Down High CH11 25 IEEE 802.11g-Right Head Cheek Low CH1 26 IEEE 802.11g-Right Head Cheek Middle CH6 27 IEEE 802.11g-Right Head Cheek High CH11 28 IEEE 802.11g-Left Head Cheek Middle CH6 30 IEEE 802.11g-Left Head Cheek High CH11 31 IEEE 802.11g-Right Head Tilted Low CH1 32 IEEE 802.11g-Right Head Tilted Middle CH6 33 IEEE 802.11g-Right Head Tilted Middle CH6 33 IEEE 802.11g-Right Head Tilted High CH11 34 IEEE 802.11g-Left Head Tilted High CH11 35 IEEE 802.11g-Left Head Tilted Low CH1 35 IEEE 802.11g-Left Head Tilted Low CH1 35 IEEE 802.11g-Left Head Tilted Middle CH6 36	IEEE 802.11b-Right Head Tilted High CH11	16
IEEE 802.11b-Left Head Tilted High CH11 19 IEEE 802.11g-Body Up Low CH1 20 IEEE 802.11g-Body Middle CH6 21 IEEE 802.11g-Body Up High CH11 22 IEEE 802.11g-Body Down Low CH1 23 IEEE 802.11g-Body Down Middle CH6 24 IEEE 802.11g-Body Down HighCH11 25 IEEE 802.11g-Right Head Cheek Low CH1 26 IEEE 802.11g-Right Head Cheek Middle CH6 27 IEEE 802.11g-Right Head Cheek High CH11 28 IEEE 802.11g-Left Head Cheek Middle CH6 30 IEEE 802.11g-Left Head Cheek High CH11 31 IEEE 802.11g-Right Head Tilted Low CH1 32 IEEE 802.11g-Right Head Tilted Middle CH6 33 IEEE 802.11g-Right Head Tilted Middle CH6 35 IEEE 802.11g-Left Head Tilted Middle CH6 36	IEEE 802.11b-Left Head Tilted Low CH1	17
IEEE 802.11g-Body Up Low CH1 20 IEEE 802.11g-Body Middle CH6 21 IEEE 802.11g-Body Up High CH11 22 IEEE 802.11g-Body Down Low CH1 23 IEEE 802.11g-Body Down Middle CH6 24 IEEE 802.11g-Body Down HighCH11 25 IEEE 802.11g-Right Head Cheek Low CH1 26 IEEE 802.11g-Right Head Cheek Middle CH6 27 IEEE 802.11g-Right Head Cheek High CH11 28 IEEE 802.11g-Left Head Cheek Middle CH6 30 IEEE 802.11g-Left Head Cheek High CH11 31 IEEE 802.11g-Right Head Tilted Low CH1 32 IEEE 802.11g-Right Head Tilted Middle CH6 33 IEEE 802.11g-Right Head Tilted Middle CH6 33 IEEE 802.11g-Right Head Tilted Middle CH6 33 IEEE 802.11g-Right Head Tilted Middle CH6 35 IEEE 802.11g-Left Head Tilted Middle CH6 35 IEEE 802.11g-Left Head Tilted Middle CH6 36	IEEE 802.11b-Left Head Tilted Middle CH6	18
IEEE 802.11g-Body Middle CH6 21 IEEE 802.11g-Body Up High CH11 22 IEEE 802.11g-Body Down Low CH1 23 IEEE 802.11g-Body Down Middle CH6 24 IEEE 802.11g-Body Down HighCH11 25 IEEE 802.11g-Right Head Cheek Low CH1 26 IEEE 802.11g-Right Head Cheek Middle CH6 27 IEEE 802.11g-Right Head Cheek High CH11 28 IEEE 802.11g-Left Head Cheek Middle CH6 30 IEEE 802.11g-Left Head Cheek High CH11 31 IEEE 802.11g-Right Head Tilted Low CH1 32 IEEE 802.11g-Right Head Tilted Middle CH6 33 IEEE 802.11g-Right Head Tilted Middle CH6 33 IEEE 802.11g-Right Head Tilted Middle CH6 35 IEEE 802.11g-Left Head Tilted High CH11 34 IEEE 802.11g-Left Head Tilted High CH11 35 IEEE 802.11g-Left Head Tilted Middle CH6 36	IEEE 802.11b-Left Head Tilted High CH11	19
IEEE 802.11g-Body Up High CH11 22 IEEE 802.11g-Body Down Low CH1 23 IEEE 802.11g-Body Down Middle CH6 24 IEEE 802.11g-Body Down HighCH11 25 IEEE 802.11g-Right Head Cheek Low CH1 26 IEEE 802.11g-Right Head Cheek Middle CH6 27 IEEE 802.11g-Right Head Cheek High CH11 28 IEEE 802.11g-Left Head Cheek Middle CH6 30 IEEE 802.11g-Left Head Cheek High CH11 31 IEEE 802.11g-Right Head Tilted Low CH1 32 IEEE 802.11g-Right Head Tilted Middle CH6 33 IEEE 802.11g-Right Head Tilted Middle CH6 34 IEEE 802.11g-Right Head Tilted Middle CH6 35 IEEE 802.11g-Left Head Tilted Low CH1 35 IEEE 802.11g-Left Head Tilted Middle CH6 36	IEEE 802.11g-Body Up Low CH1	20
IEEE 802.11g-Body Down Low CH1 23 IEEE 802.11g-Body Down Middle CH6 24 IEEE 802.11g-Body Down High CH11 25 IEEE 802.11g-Right Head Cheek Low CH1 26 IEEE 802.11g-Right Head Cheek Middle CH6 27 IEEE 802.11g-Right Head Cheek High CH11 28 IEEE 802.11g-Left Head Cheek Low CH1 29 IEEE 802.11g-Left Head Cheek Middle CH6 30 IEEE 802.11g-Left Head Cheek High CH11 31 IEEE 802.11g-Right Head Tilted Low CH1 32 IEEE 802.11g-Right Head Tilted Middle CH6 33 IEEE 802.11g-Right Head Tilted High CH11 34 IEEE 802.11g-Left Head Tilted Low CH1 35 IEEE 802.11g-Left Head Tilted Low CH1 35 IEEE 802.11g-Left Head Tilted Middle CH6 36	IEEE 802.11g-Body Middle CH6	21
IEEE 802.11g-Body Down Middle CH6 24 IEEE 802.11g-Body Down HighCH11 25 IEEE 802.11g-Right Head Cheek Low CH1 26 IEEE 802.11g-Right Head Cheek Middle CH6 27 IEEE 802.11g-Right Head Cheek High CH11 28 IEEE 802.11g-Left Head Cheek Low CH1 29 IEEE 802.11g-Left Head Cheek Middle CH6 30 IEEE 802.11g-Right Head Tilted Low CH1 31 IEEE 802.11g-Right Head Tilted Middle CH6 33 IEEE 802.11g-Right Head Tilted High CH11 34 IEEE 802.11g-Left Head Tilted Low CH1 35 IEEE 802.11g-Left Head Tilted Low CH1 35 IEEE 802.11g-Left Head Tilted Middle CH6 36	IEEE 802.11g-Body Up High CH11	22
IEEE 802.11g-Body Down HighCH11 25 IEEE 802.11g-Right Head Cheek Low CH1 26 IEEE 802.11g-Right Head Cheek Middle CH6 27 IEEE 802.11g-Right Head Cheek High CH11 28 IEEE 802.11g-Left Head Cheek Low CH1 29 IEEE 802.11g-Left Head Cheek Middle CH6 30 IEEE 802.11g-Right Head Cheek High CH11 31 IEEE 802.11g-Right Head Tilted Low CH1 32 IEEE 802.11g-Right Head Tilted Middle CH6 33 IEEE 802.11g-Right Head Tilted High CH11 34 IEEE 802.11g-Left Head Tilted Low CH1 35 IEEE 802.11g-Left Head Tilted Middle CH6 36	IEEE 802.11g-Body Down Low CH1	23
IEEE 802.11g-Right Head Cheek Low CH1 26 IEEE 802.11g-Right Head Cheek Middle CH6 27 IEEE 802.11g-Right Head Cheek High CH11 28 IEEE 802.11g-Left Head Cheek Low CH1 29 IEEE 802.11g-Left Head Cheek Middle CH6 30 IEEE 802.11g-Left Head Cheek High CH11 31 IEEE 802.11g-Right Head Tilted Low CH1 32 IEEE 802.11g-Right Head Tilted Middle CH6 33 IEEE 802.11g-Right Head Tilted High CH11 34 IEEE 802.11g-Left Head Tilted Low CH1 35 IEEE 802.11g-Left Head Tilted Middle CH6 36	IEEE 802.11g-Body Down Middle CH6	24
IEEE 802.11g-Right Head Cheek Middle CH6 27 IEEE 802.11g-Right Head Cheek High CH11 28 IEEE 802.11g-Left Head Cheek Low CH1 29 IEEE 802.11g-Left Head Cheek Middle CH6 30 IEEE 802.11g-Left Head Cheek High CH11 31 IEEE 802.11g-Right Head Tilted Low CH1 32 IEEE 802.11g-Right Head Tilted Middle CH6 33 IEEE 802.11g-Right Head Tilted High CH11 34 IEEE 802.11g-Left Head Tilted High CH11 35 IEEE 802.11g-Left Head Tilted Low CH1 35 IEEE 802.11g-Left Head Tilted Middle CH6 36	IEEE 802.11g-Body Down HighCH11	25
IEEE 802.11g-Right Head Cheek High CH11 28 IEEE 802.11g-Left Head Cheek Low CH1 29 IEEE 802.11g-Left Head Cheek Middle CH6 30 IEEE 802.11g-Left Head Cheek High CH11 31 IEEE 802.11g-Right Head Tilted Low CH1 32 IEEE 802.11g-Right Head Tilted Middle CH6 33 IEEE 802.11g-Right Head Tilted High CH11 34 IEEE 802.11g-Left Head Tilted Low CH1 35 IEEE 802.11g-Left Head Tilted Middle CH6 36	IEEE 802.11g-Right Head Cheek Low CH1	26
IEEE 802.11g-Left Head Cheek Low CH129IEEE 802.11g-Left Head Cheek Middle CH630IEEE 802.11g-Left Head Cheek High CH1131IEEE 802.11g-Right Head Tilted Low CH132IEEE 802.11g-Right Head Tilted Middle CH633IEEE 802.11g-Right Head Tilted High CH1134IEEE 802.11g-Left Head Tilted Low CH135IEEE 802.11g-Left Head Tilted Middle CH636	IEEE 802.11g-Right Head Cheek Middle CH6	27
IEEE 802.11g-Left Head Cheek Middle CH630IEEE 802.11g-Left Head Cheek High CH1131IEEE 802.11g-Right Head Tilted Low CH132IEEE 802.11g-Right Head Tilted Middle CH633IEEE 802.11g-Right Head Tilted High CH1134IEEE 802.11g-Left Head Tilted Low CH135IEEE 802.11g-Left Head Tilted Middle CH636	IEEE 802.11g-Right Head Cheek High CH11	28
IEEE 802.11g-Left Head Cheek Middle CH630IEEE 802.11g-Left Head Cheek High CH1131IEEE 802.11g-Right Head Tilted Low CH132IEEE 802.11g-Right Head Tilted Middle CH633IEEE 802.11g-Right Head Tilted High CH1134IEEE 802.11g-Left Head Tilted Low CH135IEEE 802.11g-Left Head Tilted Middle CH636	IEEE 802.11g-Left Head Cheek Low CH1	29
IEEE 802.11g-Right Head Tilted Low CH132IEEE 802.11g-Right Head Tilted Middle CH633IEEE 802.11g-Right Head Tilted High CH1134IEEE 802.11g-Left Head Tilted Low CH135IEEE 802.11g-Left Head Tilted Middle CH636		
IEEE 802.11g-Right Head Tilted Low CH132IEEE 802.11g-Right Head Tilted Middle CH633IEEE 802.11g-Right Head Tilted High CH1134IEEE 802.11g-Left Head Tilted Low CH135IEEE 802.11g-Left Head Tilted Middle CH636	IEEE 802.11g-Left Head Cheek High CH11	31
IEEE 802.11g-Right Head Tilted High CH1134IEEE 802.11g-Left Head Tilted Low CH135IEEE 802.11g-Left Head Tilted Middle CH636	IEEE 802.11g-Right Head Tilted Low CH1	32
IEEE 802.11g-Right Head Tilted High CH1134IEEE 802.11g-Left Head Tilted Low CH135IEEE 802.11g-Left Head Tilted Middle CH636	IEEE 802.11g-Right Head Tilted Middle CH6	33
IEEE 802.11g-Left Head Tilted Low CH135IEEE 802.11g-Left Head Tilted Middle CH636		
	IEEE 802.11g-Left Head Tilted Low CH1	35
	IEEE 802.11g-Left Head Tilted Middle CH6	36
	IEEE 802.11g-Left Head Tilted High CH11	37

IEEE 802.11b-Body Up Low CH1

DUT: GSM mobile phone; Type: P300; Seril: 135790246811220

Communication System: IEEE 802.11b; Communication System Band: ISM 2.4GHz

Band; Frequency: 2412 MHz; Communication System PAR: 0 dB

Medium parameters used (interpolated): f = 2412 MHz; $\sigma = 1.93$ mho/m; $\varepsilon_r = 51.68$; $\rho = 1.00$ mHz; $\sigma = 1.93$ mHz

 1000 kg/m^3

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3755; ConvF(7.06, 7.06, 7.06); Calibrated: 1/20/2011
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1245; Calibrated: 1/11/2011
- Phantom: Twin SAM Phantom; Type: QD 000 P40 CD; Serial: 1609
- Measurement SW: DASY52, Version 52.6 (1); SEMCAD X Version 14.4.2 (2595)

IEEE 802.11b /802.11b Body Up Low CH1/Area Scan (6x10x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.125 mW/g

IEEE 802.11b /802.11b Body Up Low CH1/Zoom Scan (7x7x9)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 9.785 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 0.378 W/kg

SAR(1 g) = 0.106 mW/g; SAR(10 g) = 0.085 mW/g

Maximum value of SAR (measured) = 0.135 mW/g

IEEE 802.11b-Body Up Middle CH6

DUT: GSM mobile phone; Type: P300; Seril: 135790246811220

Communication System: IEEE 802.11b; Communication System Band: ISM 2.4GHz

Band; Frequency: 2437 MHz; Communication System PAR: 0 dB

Medium parameters used (interpolated): f = 2437 MHz; $\sigma = 1.95$ mho/m; $\varepsilon_r = 52.70$; $\rho = 1.000$ J $_{\odot}$

 1000 kg/m^3

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3755; ConvF(7.06, 7.06, 7.06); Calibrated: 1/20/2011
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1245; Calibrated: 1/11/2011
- Phantom: Twin SAM Phantom; Type: QD 000 P40 CD; Serial: 1609
- Measurement SW: DASY52, Version 52.6 (1); SEMCAD X Version 14.4.2 (2595)

IEEE 802.11b /802.11b Body Up Middle CH6/Area Scan (6x10x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.151 mW/g

IEEE 802.11b /802.11b Body Up Middle CH6/Zoom Scan (7x7x9)/Cube

0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 9.810 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 0.502 W/kg

SAR(1 g) = 0.162 mW/g; SAR(10 g) = 0.123 mW/g

Maximum value of SAR (measured) = 0.223 mW/g

IEEE 802.11b-Body Up High CH11

DUT: GSM mobile phone; Type: P300; Seril: 135790246811220

Communication System: IEEE 802.11b; Communication System Band: ISM 2.4GHz Band; Frequency: 2462 MHz; Communication System PAR: 0 dB Medium parameters used (interpolated): f = 2462 MHz; $\sigma = 1.96$ mho/m; $\epsilon_r = 53.84$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3755; ConvF(7.06, 7.06, 7.06); Calibrated: 1/20/2011
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1245; Calibrated: 1/11/2011
- Phantom: Twin SAM Phantom; Type: QD 000 P40 CD; Serial: 1609
- Measurement SW: DASY52, Version 52.6 (1); SEMCAD X Version 14.4.2 (2595)

IEEE 802.11b /802.11b Body Up High CH11/Area Scan (6x10x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.361 mW/g

IEEE 802.11b /802.11b Body Up High CH11/Zoom Scan (7x7x9)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 9.853 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 0.506 W/kg

SAR(1 g) = 0.278 mW/g; SAR(10 g) = 0.157 mW/g

Maximum value of SAR (measured) = 0.358 mW/g

IEEE 802.11b-Body Down Low CH1

DUT: GSM mobile phone; Type: P300; Seril: 135790246811220

Communication System: IEEE 802.11b; Communication System Band: ISM 2.4GHz

Band; Frequency: 2412 MHz; Communication System PAR: 0 dB

Medium parameters used (interpolated): f = 2412 MHz; $\sigma = 1.94$ mho/m; $\varepsilon_r = 51.68$; $\rho = 1.000$ J $_{\odot}$

 1000 kg/m^3

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3755; ConvF(7.06, 7.06, 7.06); Calibrated: 1/20/2011
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1245; Calibrated: 1/11/2011
- Phantom: Twin SAM Phantom; Type: QD 000 P40 CD; Serial: 1609
- Measurement SW: DASY52, Version 52.6 (1); SEMCAD X Version 14.4.2 (2595)

IEEE 802.11b /802.11b Body Down Low CH1/Area Scan (6x10x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.423 mW/g

IEEE 802.11b /802.11b Body Down Low CH1/Zoom Scan (7x7x9)/Cube

0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 12.220 V/m; Power Drift = -0.0029 dB

Peak SAR (extrapolated) = 0.642 W/kg

SAR(1 g) = 0.291 mW/g; SAR(10 g) = 0.244 mW/g

Maximum value of SAR (measured) = 0.451 mW/g

IEEE 802.11b-Body Down Middle CH6

DUT: GSM mobile phone; Type: P300; Seril: 135790246811220

Communication System: IEEE 802.11b; Communication System Band: ISM 2.4GHz

Band; Frequency: 2437 MHz; Communication System PAR: 0 dB

Medium parameters used (interpolated): f = 2437 MHz; $\sigma = 1.95$ mho/m; $\varepsilon_r = 52.70$; $\rho = 1.000$ J $_{\odot}$

 1000 kg/m^3

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3755; ConvF(7.06, 7.06, 7.06); Calibrated: 1/20/2011
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1245; Calibrated: 1/11/2011
- Phantom: Twin SAM Phantom; Type: QD 000 P40 CD; Serial: 1609
- Measurement SW: DASY52, Version 52.6 (1); SEMCAD X Version 14.4.2 (2595)

IEEE 802.11b /802.11b Body Down Middle CH6/Area Scan (6x10x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.544 mW/g

IEEE 802.11b /802.11b Body Down Middle CH6/Zoom Scan

(7x7x9)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 12.250 V/m; Power Drift = 0.0013 dB

Peak SAR (extrapolated) = 0.688 W/kg

SAR(1 g) = 0.320 mW/g; SAR(10 g) = 0.225 mW/g

Maximum value of SAR (measured) = 0.597 mW/g

IEEE 802.11b-Body Down HighCH11

DUT: GSM mobile phone; Type: P300; Seril: 135790246811220

Communication System: IEEE 802.11b; Communication System Band: ISM 2.4GHz Band; Frequency: 2462 MHz; Communication System PAR: 0 dB Medium parameters used (interpolated): f = 2462 MHz; $\sigma = 1.96$ mho/m; $\epsilon_r = 53.84$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3755; ConvF(7.06, 7.06, 7.06); Calibrated: 1/20/2011
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1245; Calibrated: 1/11/2011
- Phantom: Twin SAM Phantom; Type: QD 000 P40 CD; Serial: 1609
- Measurement SW: DASY52, Version 52.6 (1); SEMCAD X Version 14.4.2 (2595)

IEEE 802.11b /802.11b Body Down HighCH11/Area Scan (6x10x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.450 mW/g

IEEE 802.11b /802.11b Body Down HighCH11/Zoom Scan (7x7x9)/Cube

0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 12.317 V/m; Power Drift = -0.0085 dB

Peak SAR (extrapolated) = 0.782 W/kg

SAR(1 g) = 0.329 mW/g; SAR(10 g) = 0.225 mW/g

Maximum value of SAR (measured) = 0.451 mW/g

IEEE 802.11b-Right Head Cheek Low CH1

DUT: GSM mobile phone; Type: P300; Seril: 135790246811220

Communication System: IEEE 802.11b; Communication System Band: ISM 2.4GHz

Band; Frequency: 2412 MHz; Communication System PAR: 0 dB

Medium parameters used (interpolated): f = 2412 MHz; σ = 1.817 mho/m; ϵ_r = 38.149;

 $\rho = 1000 \text{ kg/m}^3$

Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3755; ConvF(7.07, 7.07, 7.07); Calibrated: 1/20/2011
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1245; Calibrated: 1/11/2011
- Phantom: Twin SAM Phantom; Type: QD 000 P40 CD; Serial: 1609
- Measurement SW: DASY52, Version 52.6 (1); SEMCAD X Version 14.4.2 (2595)

IEEE 802.11b/Right Cheek Low CH1/Area Scan (6x10x1): Measurement

grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.219 mW/g

IEEE 802.11b/Right Cheek Low CH1/Zoom Scan (7x7x9)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 13.366 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 0.673 W/kg

SAR(1 g) = 0.219 mW/g; SAR(10 g) = 0.134 mW/g

Maximum value of SAR (measured) = 0.316 mW/g

IEEE 802.11b-Right Head Cheek Middle CH6

DUT: GSM mobile phone; Type: P300; Seril: 135790246811220

Communication System: IEEE 802.11b; Communication System Band: ISM 2.4GHz

Band; Frequency: 2437 MHz; Communication System PAR: 0 dB

Medium parameters used (interpolated): f = 2437 MHz; $\sigma = 1.818$ mho/m; $\varepsilon_r = 37.997$;

 $\rho = 1000 \text{ kg/m}^3$

Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3755; ConvF(7.07, 7.07, 7.07); Calibrated: 1/20/2011
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1245; Calibrated: 1/11/2011
- Phantom: Twin SAM Phantom; Type: QD 000 P40 CD; Serial: 1609
- Measurement SW: DASY52, Version 52.6 (1); SEMCAD X Version 14.4.2 (2595)

IEEE 802.11b/Right Cheek Middle CH6/Area Scan (6x10x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.247 mW/g

IEEE 802.11b/Right Cheek Middle CH6/Zoom Scan (7x7x9)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 12.730 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 0.562 W/kg

SAR(1 g) = 0.232 mW/g; SAR(10 g) = 0.126 mW/g

Maximum value of SAR (measured) = 0.259 mW/g

IEEE 802.11b-Right Head Cheek High CH11

DUT: GSM mobile phone; Type: P300; Seril: 135790246811220

Communication System: IEEE 802.11b; Communication System Band: ISM 2.4GHz

Band; Frequency: 2462 MHz; Communication System PAR: 0 dB

Medium parameters used (interpolated): f = 2462 MHz; σ = 1.84 mho/m; ϵ_r = 37.772; ρ

 $= 1000 \text{ kg/m}^3$

Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3755; ConvF(7.07, 7.07, 7.07); Calibrated: 1/20/2011
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1245; Calibrated: 1/11/2011
- Phantom: Twin SAM Phantom; Type: QD 000 P40 CD; Serial: 1609
- Measurement SW: DASY52, Version 52.6 (1); SEMCAD X Version 14.4.2 (2595)

IEEE 802.11b/Right Cheek High CH11/Area Scan (6x10x1): Measurement

grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.128 mW/g

IEEE 802.11b/Right Cheek High CH11/Zoom Scan (7x7x9)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 12.756 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 0.527 W/kg

SAR(1 g) = 0.153 mW/g; SAR(10 g) = 0.074 mW/g

Maximum value of SAR (measured) = 0.182 mW/g

IEEE 802.11b-Left Head Cheek Low CH1

DUT: GSM mobile phone; Type: P300; Seril: 135790246811220

Communication System: IEEE 802.11b; Communication System Band: ISM 2.4GHz

Band; Frequency: 2412 MHz; Communication System PAR: 0 dB

Medium parameters used (interpolated): f = 2412 MHz; $\sigma = 1.823$ mho/m; $\varepsilon_r = 38.149$;

 $\rho = 1000 \text{ kg/m}^3$

Phantom section: Left Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3755; ConvF(7.07, 7.07, 7.07); Calibrated: 1/20/2011
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1245; Calibrated: 1/11/2011
- Phantom: Twin SAM Phantom; Type: QD 000 P40 CD; Serial: 1609
- Measurement SW: DASY52, Version 52.6 (1); SEMCAD X Version 14.4.2 (2595)

IEEE 802.11b /Left Cheek Low CH1/Area Scan (6x10x1): Measurement

grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.307 mW/g

IEEE 802.11b /Left Cheek Low CH1/Zoom Scan (7x7x9)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 11.497 V/m; Power Drift = -0.12 dB

Peak SAR (extrapolated) = 0.736 W/kg

SAR(1 g) = 0.276 mW/g; SAR(10 g) = 0.158 mW/g

Maximum value of SAR (measured) = 0.325 mW/g

IEEE 802.11b-Left Head Cheek Middle CH6

DUT: GSM mobile phone; Type: P300; Seril: 135790246811220

Communication System: IEEE 802.11b; Communication System Band: ISM 2.4GHz

Band; Frequency: 2437 MHz; Communication System PAR: 0 dB

Medium parameters used (interpolated): f = 2437 MHz; $\sigma = 1.836$ mho/m; $\varepsilon_r = 37.997$;

 $\rho = 1000 \text{ kg/m}^3$

Phantom section: Left Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3755; ConvF(7.07, 7.07, 7.07); Calibrated: 1/20/2011
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1245; Calibrated: 1/11/2011
- Phantom: Twin SAM Phantom; Type: QD 000 P40 CD; Serial: 1609
- Measurement SW: DASY52, Version 52.6 (1); SEMCAD X Version 14.4.2 (2595)

IEEE 802.11b /Left Cheek Middle CH6/Area Scan (6x10x1): Measurement

grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.229 mW/g

IEEE 802.11b /Left Cheek Middle CH6/Zoom Scan (7x7x9)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 10.437 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 0.359 W/kg

SAR(1 g) = 0.212 mW/g; SAR(10 g) = 0.073 mW/g

Maximum value of SAR (measured) = 0.237 mW/g

IEEE 802.11b-Left Head Cheek High CH11

DUT: GSM mobile phone; Type: P300; Seril: 135790246811220

Communication System: IEEE 802.11b; Communication System Band: ISM 2.4GHz

Band; Frequency: 2462 MHz; Communication System PAR: 0 dB

Medium parameters used (interpolated): f = 2462 MHz; $\sigma = 1.874$ mho/m; $\varepsilon_r = 37.772$;

 $\rho = 1000 \text{ kg/m}^3$

Phantom section: Left Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3755; ConvF(7.07, 7.07, 7.07); Calibrated: 1/20/2011
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1245; Calibrated: 1/11/2011
- Phantom: Twin SAM Phantom; Type: QD 000 P40 CD; Serial: 1609
- Measurement SW: DASY52, Version 52.6 (1); SEMCAD X Version 14.4.2 (2595)

IEEE 802.11b /Left Cheek High CH11/Area Scan (6x10x1): Measurement

grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.128 mW/g

IEEE 802.11b /Left Cheek High CH11/Zoom Scan (7x7x9)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 10.577 V/m; Power Drift = -0.14 dB

Peak SAR (extrapolated) = 0.464 W/kg

SAR(1 g) = 0.106 mW/g; SAR(10 g) = 0.069 mW/g

Maximum value of SAR (measured) = 0.132 mW/g

IEEE 802.11b-Right Head Tilted Low CH1

DUT: GSM mobile phone; Type: P300; Seril: 135790246811220

Communication System: IEEE 802.11b; Communication System Band: ISM 2.4GHz

Band; Frequency: 2412 MHz; Communication System PAR: 0 dB

Medium parameters used (interpolated): f = 2412 MHz; $\sigma = 1.817$ mho/m; $\varepsilon_r = 38.149$;

 $\rho = 1000 \text{ kg/m}^3$

Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3755; ConvF(7.07, 7.07, 7.07); Calibrated: 1/20/2011
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1245; Calibrated: 1/11/2011
- Phantom: Twin SAM Phantom; Type: QD 000 P40 CD; Serial: 1609
- Measurement SW: DASY52, Version 52.6 (1); SEMCAD X Version 14.4.2 (2595)

IEEE 802.11b/Right Tilted Low CH1/Area Scan (6x10x1): Measurement

grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.462 mW/g

IEEE 802.11b/Right Tilted Low CH1/Zoom Scan (7x7x9)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 11.717 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 0.755 W/kg

SAR(1 g) = 0.201 mW/g; SAR(10 g) = 0.126 mW/g

Maximum value of SAR (measured) = 0.498 mW/g

IEEE 802.11b-Right Head Tilted Middle CH6

DUT: GSM mobile phone; Type: P300; Seril: 135790246811220

Communication System: IEEE 802.11b; Communication System Band: ISM 2.4GHz

Band; Frequency: 2437 MHz; Communication System PAR: 0 dB

Medium parameters used (interpolated): f = 2437 MHz; $\sigma = 1.818$ mho/m; $\varepsilon_r = 37.997$;

 $\rho = 1000 \text{ kg/m}^3$

Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3755; ConvF(7.07, 7.07, 7.07); Calibrated: 1/20/2011
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1245; Calibrated: 1/11/2011
- Phantom: Twin SAM Phantom; Type: QD 000 P40 CD; Serial: 1609
- Measurement SW: DASY52, Version 52.6 (1); SEMCAD X Version 14.4.2 (2595)

IEEE 802.11b/Right Tilted Middle CH6/Area Scan (6x10x1): Measurement

grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.264 mW/g

IEEE 802.11b/Right Tilted Middle CH6/Zoom Scan (7x7x9)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 11.802 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 0.364 W/kg

SAR(1 g) = 0.213 mW/g; SAR(10 g) = 0.125 mW/g

Maximum value of SAR (measured) = 0.271 mW/g

IEEE 802.11b-Right Head Tilted High CH11

DUT: GSM mobile phone; Type: P300; Seril: 135790246811220

Communication System: IEEE 802.11b; Communication System Band: ISM 2.4GHz

Band; Frequency: 2462 MHz; Communication System PAR: 0 dB

Medium parameters used (interpolated): f = 2462 MHz; $\sigma = 1.874$ mho/m; $\varepsilon_r = 37.772$;

 $\rho = 1000 \text{ kg/m}^3$

Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3755; ConvF(7.07, 7.07, 7.07); Calibrated: 1/20/2011
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1245; Calibrated: 1/11/2011
- Phantom: Twin SAM Phantom; Type: QD 000 P40 CD; Serial: 1609
- Measurement SW: DASY52, Version 52.6 (1); SEMCAD X Version 14.4.2 (2595)

IEEE 802.11b/Right Tilted High CH11/Area Scan (6x10x1): Measurement

grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.277 mW/g

IEEE 802.11b/Right Tilted High CH11/Zoom Scan (7x7x9)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 11.813 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 0.375 W/kg

SAR(1 g) = 0.222 mW/g; SAR(10 g) = 0.125 mW/g

Maximum value of SAR (measured) = 0.283 mW/g

IEEE 802.11b-Left Head Tilted Low CH1

DUT: GSM mobile phone; Type: P300; Seril: 135790246811220

Communication System: IEEE 802.11b; Communication System Band: ISM 2.4GHz

Band; Frequency: 2412 MHz; Communication System PAR: 0 dB

Medium parameters used (interpolated): f = 2412 MHz; $\sigma = 1.823$ mho/m; $\varepsilon_r = 38.149$;

 $\rho = 1000 \text{ kg/m}^3$

Phantom section: Left Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3755; ConvF(7.07, 7.07, 7.07); Calibrated: 1/20/2011
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1245; Calibrated: 1/11/2011
- Phantom: Twin SAM Phantom; Type: QD 000 P40 CD; Serial: 1609
- Measurement SW: DASY52, Version 52.6 (1); SEMCAD X Version 14.4.2 (2595)

IEEE 802.11b /Left Tilted Low CH1/Area Scan (6x10x1): Measurement grid:

dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.312 mW/g

IEEE 802.11b /Left Tilted Low CH1/Zoom Scan (7x7x9)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 13.032 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 0.460 W/kg

SAR(1 g) = 0.250 mW/g; SAR(10 g) = 0.147 mW/g

Maximum value of SAR (measured) = 0.338 mW/g

IEEE 802.11b-Left Head Tilted Middle CH6

DUT: GSM mobile phone; Type: P300; Seril: 135790246811220

Communication System: IEEE 802.11b; Communication System Band: ISM 2.4GHz

Band; Frequency: 2437 MHz; Communication System PAR: 0 dB

Medium parameters used (interpolated): f = 2437 MHz; $\sigma = 1.858$ mho/m; $\varepsilon_r = 37.862$;

 $\rho = 1000 \text{ kg/m}^3$

Phantom section: Left Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3755; ConvF(7.07, 7.07, 7.07); Calibrated: 1/20/2011
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1245; Calibrated: 1/11/2011
- Phantom: Twin SAM Phantom; Type: QD 000 P40 CD; Serial: 1609
- Measurement SW: DASY52, Version 52.6 (1); SEMCAD X Version 14.4.2 (2595)

IEEE 802.11b /Left Tilted Middle CH6/Area Scan (6x10x1): Measurement

grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.332 mW/g

IEEE 802.11b /Left Tilted Middle CH6/Zoom Scan (7x7x9)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 13.145 V/m; Power Drift = 0.11 dB

Peak SAR (extrapolated) = 0.483 W/kg

SAR(1 g) = 0.275 mW/g; SAR(10 g) = 0.154 mW/g

Maximum value of SAR (measured) = 0.358 mW/g

IEEE 802.11b-Left Head Tilted High CH11

DUT: GSM mobile phone; Type: P300; Seril: 135790246811220

Communication System: IEEE 802.11b; Communication System Band: ISM 2.4GHz

Band; Frequency: 2462 MHz; Communication System PAR: 0 dB

Medium parameters used (interpolated): f = 2462 MHz; $\sigma = 1.874$ mho/m; $\epsilon_r = 37.772$;

 $\rho = 1000 \text{ kg/m}^3$

Phantom section: Left Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3755; ConvF(7.07, 7.07, 7.07); Calibrated: 1/20/2011
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1245; Calibrated: 1/11/2011
- Phantom: Twin SAM Phantom; Type: QD 000 P40 CD; Serial: 1609
- Measurement SW: DASY52, Version 52.6 (1); SEMCAD X Version 14.4.2 (2595)

IEEE 802.11b /Left Tilted High CH11/Area Scan (6x10x1): Measurement

grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.327 mW/g

IEEE 802.11b /Left Tilted High CH11/Zoom Scan (7x7x9)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 13.256 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 0.478 W/kg

SAR(1 g) = 0.272 mW/g; SAR(10 g) = 0.154 mW/g

Maximum value of SAR (measured) = 0.356 mW/g

IEEE 802.11g-Body Up Low CH1

DUT: GSM mobile phone; Type: P300; Seril: 135790246811220

Communication System: IEEE 802.11g; Communication System Band: ISM 2.4GHz Band; Frequency: 2412 MHz; Communication System PAR: 0 dB Medium parameters used (interpolated): f = 2412 MHz; σ = 1.94 mho/m; ϵ_r = 51.68; ρ = 1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3755; ConvF(7.06, 7.06, 7.06); Calibrated: 1/20/2011
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1245; Calibrated: 1/11/2011
- Phantom: Twin SAM Phantom; Type: QD 000 P40 CD; Serial: 1609
- Measurement SW: DASY52, Version 52.6 (1); SEMCAD X Version 14.4.2 (2595)

IEEE 802.11g/IEEE 802.11g Body Up Low CH1/Area Scan (6x10x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.312 mW/g

IEEE 802.11g/IEEE 802.11g Body Up Low CH1/Zoom Scan

(7x7x9)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 9.785 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 0.478 W/kg

SAR(1 g) = 0.247 mW/g; SAR(10 g) = 0.146 mW/g

Maximum value of SAR (measured) = 0.343 mW/g

IEEE 802.11g-Body Middle CH6

DUT: GSM mobile phone; Type: P300; Seril: 135790246811220

Communication System: IEEE 802.11g; Communication System Band: ISM 2.4GHz Band; Frequency: 2437 MHz; Communication System PAR: 0 dB Medium parameters used (interpolated): f = 2437 MHz; $\sigma = 1.95$ mho/m; $\epsilon_r = 52.70$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3755; ConvF(7.06, 7.06, 7.06); Calibrated: 1/20/2011
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1245; Calibrated: 1/11/2011
- Phantom: Twin SAM Phantom; Type: QD 000 P40 CD; Serial: 1609
- Measurement SW: DASY52, Version 52.6 (1); SEMCAD X Version 14.4.2 (2595)

IEEE 802.11g/IEEE 802.11g Body Up Middle CH6/Area Scan (6x10x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.351 mW/g

IEEE 802.11g/IEEE 802.11g Body Up Middle CH6/Zoom Scan

(7x7x9)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 9.810 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 0.502 W/kg

SAR(1 g) = 0.108 mW/g; SAR(10 g) = 0.145 mW/g

Maximum value of SAR (measured) = 0.127 mW/g

IEEE 802.11g-Body Up High CH11

DUT: GSM mobile phone; Type: P300; Seril: 135790246811220

Communication System: IEEE 802.11g; Communication System Band: ISM 2.4GHz Band; Frequency: 2462 MHz; Communication System PAR: 0 dB Medium parameters used (interpolated): f = 2462 MHz; $\sigma = 1.96$ mho/m; $\epsilon_r = 53.84$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3755; ConvF(7.06, 7.06, 7.06); Calibrated: 1/20/2011
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1245; Calibrated: 1/11/2011
- Phantom: Twin SAM Phantom; Type: QD 000 P40 CD; Serial: 1609
- Measurement SW: DASY52, Version 52.6 (1); SEMCAD X Version 14.4.2 (2595)

IEEE 802.11g/IEEE 802.11g Body Up High CH11/Area Scan (6x10x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.178 mW/g

IEEE 802.11g/IEEE 802.11g Body Up High CH11/Zoom Scan

(7x7x9)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 9.853 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 0.351 W/kg

SAR(1 g) = 0.155 mW/g; SAR(10 g) = 0.101 mW/g

Maximum value of SAR (measured) = 0.187 mW/g

IEEE 802.11g-Body Down Low CH1

DUT: GSM mobile phone; Type: P300; Seril: 135790246811220

Communication System: IEEE 802.11g; Communication System Band: ISM 2.4GHz

Band; Frequency: 2412 MHz; Communication System PAR: 0 dB

Medium parameters used (interpolated): f = 2412 MHz; $\sigma = 1.94$ mho/m; $\varepsilon_r = 51.68$; $\rho = 1.94$ mho/m; $\varepsilon_r = 51.68$; $\rho = 1.94$ mho/m; $\varepsilon_r =$

 1000 kg/m^3

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3755; ConvF(7.06, 7.06, 7.06); Calibrated: 1/20/2011
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1245; Calibrated: 1/11/2011
- Phantom: Twin SAM Phantom; Type: QD 000 P40 CD; Serial: 1609
- Measurement SW: DASY52, Version 52.6 (1); SEMCAD X Version 14.4.2 (2595)

IEEE 802.11g/IEEE 802.11g Body Down Low CH1/Area Scan (6x10x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.423 mW/g

IEEE 802.11g/IEEE 802.11g Body Down Low CH1/Zoom Scan

(7x7x9)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 12.220 V/m; Power Drift = -0.0029 dB

Peak SAR (extrapolated) = 0.642 W/kg

SAR(1 g) = 0.302 mW/g; SAR(10 g) = 0.185 mW/g

Maximum value of SAR (measured) = 0.506 mW/g

IEEE 802.11g-Body Down Middle CH6

DUT: GSM mobile phone; Type: P300; Seril: 135790246811220

Communication System: IEEE 802.11g; Communication System Band: ISM 2.4GHz Band; Frequency: 2437 MHz; Communication System PAR: 0 dB Medium parameters used (interpolated): f = 2437 MHz; $\sigma = 1.95$ mho/m; $\varepsilon_r = 52.70$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3755; ConvF(7.06, 7.06, 7.06); Calibrated: 1/20/2011
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1245; Calibrated: 1/11/2011
- Phantom: Twin SAM Phantom; Type: QD 000 P40 CD; Serial: 1609
- Measurement SW: DASY52, Version 52.6 (1); SEMCAD X Version 14.4.2
 (2595)

IEEE 802.11g/IEEE 802.11g Body Down Middle CH6/Area Scan

(6x10x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.444 mW/g

IEEE 802.11g/IEEE 802.11g Body Down Middle CH6/Zoom Scan

(7x7x9)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 12.250 V/m; Power Drift = 0.0013 dB

Peak SAR (extrapolated) = 0.788 W/kg

SAR(1 g) = 0.315 mW/g; SAR(10 g) = 0.175 mW/g

Maximum value of SAR (measured) = 0.505 mW/g

IEEE 802.11g-Body Down HighCH11

DUT: GSM mobile phone; Type: P300; Seril: 135790246811220

Communication System: IEEE 802.11g; Communication System Band: ISM 2.4GHz Band;

Frequency: 2462 MHz; Communication System PAR: 0 dB Medium parameters used (interpolated):

 $f = 2462 \text{ MHz}; \ \sigma = 1.96 \text{ mho/m}; \ \epsilon_r = 53.84; \ \rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3755; ConvF(7.06, 7.06, 7.06); Calibrated: 1/20/2011
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1245; Calibrated: 1/11/2011
- Phantom: Twin SAM Phantom; Type: QD 000 P40 CD; Serial: 1609
- Measurement SW: DASY52, Version 52.6 (1); SEMCAD X Version 14.4.2 (2595)

IEEE 802.11g/IEEE 802.11g Body Down HighCH11/Area Scan (6x10x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.450 mW/g

IEEE 802.11g/IEEE 802.11g Body Down HighCH11/Zoom Scan

(7x7x9)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 12.317 V/m; Power Drift = -0.0085 dB

Peak SAR (extrapolated) = 0.802 W/kg

SAR(1 g) = 0.318 mW/g; SAR(10 g) = 0.177 mW/g

Maximum value of SAR (measured) = 0.534 mW/g

IEEE 802.11g-Right Head Cheek Low CH1

DUT: GSM mobile phone; Type: P300; Seril: 135790246811220

Communication System: IEEE 802.11g; Communication System Band: ISM 2.4GHz Band; Frequency: 2412 MHz; Communication System PAR: 0 dB Medium parameters used (interpolated): f = 2412 MHz; $\sigma = 1.817$ mho/m; $\epsilon_r = 38.149$; $\rho = 1000$ kg/m³ Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3755; ConvF(7.07, 7.07, 7.07); Calibrated: 1/20/2011
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1245; Calibrated: 1/11/2011
- Phantom: Twin SAM Phantom; Type: QD 000 P40 CD; Serial: 1609
- Measurement SW: DASY52, Version 52.6 (1); SEMCAD X Version 14.4.2 (2595)

IEEE 802.11g/Right Cheek Low CH1/Area Scan (6x10x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.379 mW/g

IEEE 802.11g/Right Cheek Low CH1/Zoom Scan (7x7x9)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 13.366 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 0.273 W/kg

SAR(1 g) = 0.118 mW/g; SAR(10 g) = 0.092 mW/g

Maximum value of SAR (measured) = 0.168 mW/g

IEEE 802.11g-Right Head Cheek Middle CH6

DUT: GSM mobile phone; Type: P300; Seril: 135790246811220

Communication System: IEEE 802.11g; Communication System Band: ISM 2.4GHz Band; Frequency: 2437 MHz; Communication System PAR: 0 dB Medium parameters used (interpolated): f = 2437 MHz; $\sigma = 1.818$ mho/m; $\epsilon_r = 37.997$; $\rho = 1000$ kg/m³ Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3755; ConvF(7.07, 7.07, 7.07); Calibrated: 1/20/2011
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1245; Calibrated: 1/11/2011
- Phantom: Twin SAM Phantom; Type: QD 000 P40 CD; Serial: 1609
- Measurement SW: DASY52, Version 52.6 (1); SEMCAD X Version 14.4.2 (2595)

IEEE 802.11g/Right Cheek Middle CH6/Area Scan (6x10x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.297 mW/g

IEEE 802.11g/Right Cheek Middle CH6/Zoom Scan (7x7x9)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 12.730 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 0.662 W/kg

SAR(1 g) = 0.235 mW/g; SAR(10 g) = 0.145 mW/g

Maximum value of SAR (measured) = 0.383 mW/g

IEEE 802.11g-Right Head Cheek High CH11

DUT: GSM mobile phone; Type: P300; Seril: 135790246811220

Communication System: IEEE 802.11g; Communication System Band: ISM 2.4GHz

Band; Frequency: 2462 MHz; Communication System PAR: 0 dB

Medium parameters used (interpolated): f = 2462 MHz; $\sigma = 1.874$ mho/m; $\varepsilon_r = 37.772$;

 $\rho = 1000 \text{ kg/m}^3$

Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3755; ConvF(7.07, 7.07, 7.07); Calibrated: 1/20/2011
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1245; Calibrated: 1/11/2011
- Phantom: Twin SAM Phantom; Type: QD 000 P40 CD; Serial: 1609
- Measurement SW: DASY52, Version 52.6 (1); SEMCAD X Version 14.4.2 (2595)

IEEE 802.11g/Right Cheek High CH11/Area Scan (6x10x1): Measurement

grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.552 mW/g

IEEE 802.11g/Right Cheek High CH11/Zoom Scan (7x7x9)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 12.756 V/m; Power Drift = -0.05dB

Peak SAR (extrapolated) = 0.760 W/kg

SAR(1 g) = 0.271 mW/g; SAR(10 g) = 0.243 mW/g

Maximum value of SAR (measured) = 0.557 mW/g

IEEE 802.11g-Left Head Cheek Low CH1

DUT: GSM mobile phone; Type: P300; Seril: 135790246811220

Communication System: IEEE 802.11g; Communication System Band: ISM 2.4GHz Band; Frequency: 2412 MHz; Communication System PAR: 0 dB Medium parameters used (interpolated): f = 2412 MHz; $\sigma = 1.823$ mho/m; $\epsilon_r = 38.149$; $\rho = 1000$ kg/m³ Phantom section: Left Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3755; ConvF(7.07, 7.07, 7.07); Calibrated: 1/20/2011
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1245; Calibrated: 1/11/2011
- Phantom: Twin SAM Phantom; Type: QD 000 P40 CD; Serial: 1609
- Measurement SW: DASY52, Version 52.6 (1); SEMCAD X Version 14.4.2 (2595)

IEEE 802.11g/Left Cheek Low CH1/Area Scan (6x10x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.150 mW/g

IEEE 802.11g/Left Cheek Low CH1/Zoom Scan (7x7x9)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 11.497 V/m; Power Drift = -0.11dB

Peak SAR (extrapolated) = 0.4736 W/kg

SAR(1 g) = 0.124 mW/g; SAR(10 g) = 0.089 mW/g

Maximum value of SAR (measured) = 0.152 mW/g

IEEE 802.11g-Left Head Cheek Middle CH6

DUT: GSM mobile phone; Type: P300; Seril: 135790246811220

Communication System: IEEE 802.11g; Communication System Band: ISM 2.4GHz Band; Frequency: 2437 MHz; Communication System PAR: 0 dB Medium parameters used (interpolated): f = 2437 MHz; $\sigma = 1.836$ mho/m; $\epsilon_r = 37.997$; $\rho = 1000$ kg/m³ Phantom section: Left Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3755; ConvF(7.07, 7.07, 7.07); Calibrated: 1/20/2011
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1245; Calibrated: 1/11/2011
- Phantom: Twin SAM Phantom; Type: QD 000 P40 CD; Serial: 1609
- Measurement SW: DASY52, Version 52.6 (1); SEMCAD X Version 14.4.2
 (2595)

IEEE 802.11g/Left Cheek Middle CH6/Area Scan (6x10x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.153 mW/g

IEEE 802.11g/Left Cheek Middle CH6/Zoom Scan (7x7x9)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 10.437 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 0.359 W/kg

SAR(1 g) = 0.119 mW/g; SAR(10 g) = 0.094 mW/g

Maximum value of SAR (measured) = 0.203 mW/g

IEEE 802.11g-Left Head Cheek High CH11

DUT: GSM mobile phone; Type: P300; Seril: 135790246811220

Communication System: IEEE 802.11g; Communication System Band: ISM 2.4GHz Band; Frequency: 2462 MHz; Communication System PAR: 0 dB Medium parameters used (interpolated): f = 2462 MHz; $\sigma = 1.874$ mho/m; $\epsilon_r = 37.772$; $\rho = 1000$ kg/m³ Phantom section: Left Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3755; ConvF(7.07, 7.07, 7.07); Calibrated: 1/20/2011
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1245; Calibrated: 1/11/2011
- Phantom: Twin SAM Phantom; Type: QD 000 P40 CD; Serial: 1609
- Measurement SW: DASY52, Version 52.6 (1); SEMCAD X Version 14.4.2 (2595)

IEEE 802.11g/Left Cheek High CH11/Area Scan (6x10x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.280 mW/g

IEEE 802.11g/Left Cheek High CH11/Zoom Scan (7x7x9)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 10.577 V/m; Power Drift = -0.14 dB

Peak SAR (extrapolated) = 0.564 W/kg

SAR(1 g) = 0.209 mW/g; SAR(10 g) = 0.165 mW/g

Maximum value of SAR (measured) = 0.295 mW/g

IEEE 802.11g-Right Head Tilted Low CH1

DUT: GSM mobile phone; Type: P300; Seril: 135790246811220

Communication System: IEEE 802.11g; Communication System Band: ISM 2.4GHz

Band; Frequency: 2412 MHz; Communication System PAR: 0 dB

Medium parameters used (interpolated): f = 2412 MHz; $\sigma = 1.817$ mho/m; $\varepsilon_r = 38.149$;

 $\rho = 1000 \text{ kg/m}^3$

Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3755; ConvF(7.07, 7.07, 7.07); Calibrated: 1/20/2011
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1245; Calibrated: 1/11/2011
- Phantom: Twin SAM Phantom; Type: QD 000 P40 CD; Serial: 1609
- Measurement SW: DASY52, Version 52.6 (1); SEMCAD X Version 14.4.2 (2595)

IEEE 802.11g/Right Tilted Low CH1/Area Scan (6x10x1): Measurement

grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.262 mW/g

IEEE 802.11g/Right Tilted Low CH1/Zoom Scan (7x7x9)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 11.717 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 0.375 W/kg

SAR(1 g) = 0.205 mW/g; SAR(10 g) = 0.117 mW/g

Maximum value of SAR (measured) = 0.267 mW/g

IEEE 802.11g-Right Head Tilted Middle CH6

DUT: GSM mobile phone; Type: P300; Seril: 135790246811220

Communication System: IEEE 802.11g; Communication System Band: ISM 2.4GHz

Band; Frequency: 2437 MHz; Communication System PAR: 0 dB

Medium parameters used (interpolated): f = 2437 MHz; $\sigma = 1.818$ mho/m; $\varepsilon_r = 37.997$;

 $\rho = 1000 \text{ kg/m}^3$

Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3755; ConvF(7.07, 7.07, 7.07); Calibrated: 1/20/2011
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1245; Calibrated: 1/11/2011
- Phantom: Twin SAM Phantom; Type: QD 000 P40 CD; Serial: 1609
- Measurement SW: DASY52, Version 52.6 (1); SEMCAD X Version 14.4.2 (2595)

IEEE 802.11g/Right Tilted Middle CH6/Area Scan (6x10x1): Measurement

grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.263 mW/g

IEEE 802.11g/Right Tilted Middle CH6/Zoom Scan (7x7x9)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 11.802 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 0.364 W/kg

SAR(1 g) = 0.203 mW/g; SAR(10 g) = 0.115 mW/g

Maximum value of SAR (measured) = 0.271 mW/g

IEEE 802.11g-Right Head Tilted High CH11

DUT: GSM mobile phone; Type: P300; Seril: 135790246811220

Communication System: IEEE 802.11g; Communication System Band: ISM 2.4GHz

Band; Frequency: 2462 MHz; Communication System PAR: 0 dB

Medium parameters used (interpolated): f = 2462 MHz; $\sigma = 1.874$ mho/m; $\varepsilon_r = 37.772$;

 $\rho = 1000 \text{ kg/m}^3$

Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3755; ConvF(7.07, 7.07, 7.07); Calibrated: 1/20/2011
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1245; Calibrated: 1/11/2011
- Phantom: Twin SAM Phantom; Type: QD 000 P40 CD; Serial: 1609
- Measurement SW: DASY52, Version 52.6 (1); SEMCAD X Version 14.4.2 (2595)

IEEE 802.11g/Right Tilted High CH11/Area Scan (6x10x1): Measurement

grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.279 mW/g

IEEE 802.11g/Right Tilted High CH11/Zoom Scan (7x7x9)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 11.813 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 0.377 W/kg

SAR(1 g) = 0.207 mW/g; SAR(10 g) = 0.114 mW/g

Maximum value of SAR (measured) = 0.283 mW/g

IEEE 802.11g-Left Head Tilted Low CH1

DUT: GSM mobile phone; Type: P300; Seril: 135790246811220

Communication System: IEEE 802.11g; Communication System Band: ISM 2.4GHz Band; Frequency: 2412 MHz; Communication System PAR: 0 dB Medium parameters used (interpolated): f = 2412 MHz; $\sigma = 1.823$ mho/m; $\epsilon_r = 38.149$; $\rho = 1000$ kg/m³ Phantom section: Left Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3755; ConvF(7.07, 7.07, 7.07); Calibrated: 1/20/2011
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1245; Calibrated: 1/11/2011
- Phantom: Twin SAM Phantom; Type: QD 000 P40 CD; Serial: 1609
- Measurement SW: DASY52, Version 52.6 (1); SEMCAD X Version 14.4.2
 (2595)

IEEE 802.11g/Left Tilted Low CH1/Area Scan (6x10x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.112 mW/g

IEEE 802.11g/Left Tilted Low CH1/Zoom Scan (7x7x9)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 13.032 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 0.460 W/kg

SAR(1 g) = 0.125 mW/g; SAR(10 g) = 0.101 mW/g

Maximum value of SAR (measured) = 0.160 mW/g

IEEE 802.11g-Left Head Tilted Middle CH6

DUT: GSM mobile phone; Type: P300; Seril: 135790246811220

Communication System: IEEE 802.11g; Communication System Band: ISM 2.4GHz

Band; Frequency: 2437 MHz; Communication System PAR: 0 dB

Medium parameters used (interpolated): f = 2437 MHz; $\sigma = 1.883 \text{ mho/m}$; $\epsilon_r = 37.862$; ρ

 $= 1000 \text{ kg/m}^3$

Phantom section: Left Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3755; ConvF(7.07, 7.07, 7.07); Calibrated: 1/20/2011
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1245; Calibrated: 1/11/2011
- Phantom: Twin SAM Phantom; Type: QD 000 P40 CD; Serial: 1609
- Measurement SW: DASY52, Version 52.6 (1); SEMCAD X Version 14.4.2 (2595)

IEEE 802.11g/Left Tilted Middle CH6/Area Scan (6x10x1): Measurement

grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.332 mW/g

IEEE 802.11g/Left Tilted Middle CH6/Zoom Scan (7x7x9)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 13.145 V/m; Power Drift = 0.11 dB

Peak SAR (extrapolated) = 0.489 W/kg

SAR(1 g) = 0.269 mW/g; SAR(10 g) = 0.154 mW/g

Maximum value of SAR (measured) = 0.358 mW/g

IEEE 802.11g-Left Head Tilted High CH11

DUT: GSM mobile phone; Type: P300; Seril: 135790246811220

Communication System: IEEE 802.11g; Communication System Band: ISM 2.4GHz

Band; Frequency: 2462 MHz; Communication System PAR: 0 dB

Medium parameters used (interpolated): f = 2462 MHz; $\sigma = 1.883$ mho/m; $\varepsilon_r = 37.772$;

 $\rho = 1000 \text{ kg/m}^3$

Phantom section: Left Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3755; ConvF(7.07, 7.07, 7.07); Calibrated: 1/20/2011
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1245; Calibrated: 1/11/2011
- Phantom: Twin SAM Phantom; Type: QD 000 P40 CD; Serial: 1609
- Measurement SW: DASY52, Version 52.6 (1); SEMCAD X Version 14.4.2 (2595)

IEEE 802.11g/Left Tilted High CH11/Area Scan (6x10x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.329 mW/g

IEEE 802.11g/Left Tilted High CH11/Zoom Scan (7x7x9)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 13.256 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 0.469 W/kg

SAR(1 g) = 0.262 mW/g; SAR(10 g) = 0.143 mW/g

Maximum value of SAR (measured) = 0.356 mW/g

