Exercicio Hive

Ricardo...

Índice

Dataset	2
Estudando o dataset	
Preparando o dataset	4
Preguntas a resolver	7
Creación de estrutura e carga de datos	8
Consultas Hive	8
Consulta 1: Cantos rexistros correspondentes a viaxes contén o dataset	8
Consulta 2: Cales son as 5 estacións con maior número de saídas	8
Consulta 3: Cales son as 5 estacións con maior número de chegadas	8
Consulta 4: Cal é a viaxe coa maior distancia percorrida	8
Consulta 5: Canta distancia percorreuse en total entre tódalas viaxes	
Consulta 6: Cal é a distancia media percorrida por viaxe	
Consulta 7: Cal é a viaxe de maior duración	
Consulta 8: Cal é a duración media por viaxe	9
Consulta 9: Cal é a velocidade media da viaxes	
Consulta 10: Cantas viaxes se fixeron cando a temperatura era menor de 0°C	9
Consulta 11: Cantas viaxes fixéronse cando a temperatura estaba entre 15 e 25 °C	9
Consulta 12: Datos da primeira viaxe segundo data	9
Resultado da execución das consultas Hive	
Consulta 1: hive_01_viaxes_count	10
Consulta 2: hive_02_estacions_mais_saidas	10
Consulta 3: hive_03_estacions_mais_chegadas	10
Consulta 4: hive_04_viaje_max_distancia	10
Consulta 5: hive_05_total_distancia	10
Consulta 6: hive_06_distancia_media	10
consulta 7: hive_07_viaxe_duracion_maior	10
consulta 8: hive_08_duracion_media_viaxes	10
consulta 09: hive_09_velocidade_media_viaxes	10
consulta 10: hive_10_viaxes_frio	
consulta 11: hive_11_viaxes_temp_ok	11
consulta 12: hive_12_datos_primeira_viaxe	11

Dataset

Estudando o dataset

Nome orixinal do ficheiro:

database. csv

Renomeado como:

bikes database. csv

Orixe:

link: https://www.kaggle.com/geometrein/helsinki-city-bikes

Descrición:

Helsinqui City Bikes é o sistema de rede de bicicletas públicas compartidas nas áreas metropolitanas de Helsinqui e Espoo (Finlandia). En 2020 había funcionando 350 estacións e 3.510 bicicletas.

Entre 2016 e 2020 realizáronse máis de 10 millóns de desprazamentos. A distancia total dos devanditos traxectos foi de 25.291.523 Km.

Tamaño do dataset:

2,0 GB (1985327688 bytes)

Tamaño comprimido zip:

439,9 MB (439875920 bytes)

Tamaño comprimido tar. xz:

232,5 MB (232489532 bytes)

Contido:

O dataset contén máis de 10 millóns de rexistros, cada un con datos de desprazamentos en bicicleta

realizados por cidadáns de Helsinqui entre 2016 e 2020, usando a rede de bicicletas compartidas da área Helsinqui e Espoo.

Número total de rexistros:

12.157.458 rexistros

Campos:

14 campos

Nome, tipo e contido dos campos:

float64(8), object(6)

# Colum	Dtype	Contido
0 departure	object	data e hora de partida
1 return	object	data e hora de chegada
2 departure_ide	object	id de saída
3 departure_name	object	nome estación de saída
4 return_ide	object	id de chegada
5 return_name	object	nome estación de chegada
6 distance (m)	float64	distancia (estimada) do traxecto en metros
7 duration (sec.)	float64	duración do traxecto en segundos
8 avg_speed (km/ h)	float64	velocidade media do traxecto (km/h)
9 departure_latitude	float64	latitude estación saída
10 departure_longitude	float64	lonxitude estación saída
11 return_latitude	float64	latitude estación chegada
12 return_longitude	float64	lonxitude estación chegada
13 Air temperature (degC)	float64	temperatura do aire en data do traxecto (°C)

Mostra:

1 df.sam	ple(5)													
	departure	return	departure_id	departure_name	return_id	return_name	distance (m)	duration (sec.)	avg_speed (km/h)	departure_latitude	departure_longitude	return_latitude	return_longitude	Air temperature (degC)
5248712	2019-07-20 23:56:28	2019-07-21 00:05:04	161	Eteläesplanadi	202.0	Merihaka	1731.0	511.0	0.203249	60.167231	24.947466	60.178066	24.958452	16.7
2163223	2020-08-14 15:42:08	2020-08-14 15:58:36	85	Jalavatie	208.0	Valimotie	3618.0	984.0	0.220610	60.193470	24.905889	60.215922	24.876465	18.6
9071247	2018-08-08 21:02:00	2018-08-08 21:15:00	67.0	Perämiehenkatu	41.0	Ympyrätalo	2854.0	804.0	0.212985	60.160088	24.934066	60.180863	24.949400	19.5
214620	2020-04-21 17:28:56	2020-04-21 18:00:10	30	Itämerentori	118.0	Fleminginkatu	6138.0	1873.0	0.196626	60.163531	24.914517	60.189542	24.952160	15.4
3650040	2019-05-08 16:31:40	2019-05-08 16:32:01	18	Porthania	18.0	Porthania	0.0	16.0	0.000000	60.169862	24.948146	60.169862	24.948146	10.4

Resumo estatístico:

1 df.	describe()							
	distance (m)	duration (sec.)	avg_speed (km/h)	departure_latitude	departure_longitude	return_latitude	return_longitude	Air temperature (degC)
count	1.215746e+07	1.215746e+07	1.215391e+07	1.215746e+07	1.215746e+07	1.215746e+07	1.215746e+07	1.214156e+07
mean	2.295275e+03	9.597751e+02	3.355556e-01	6.017981e+01	2.492023e+01	6.017971e+01	2.492023e+01	1.565044e+01
std	2.452067e+04	7.346528e+03	3.428006e+01	1.733003e-02	5.764062e-02	1.738792e-02	5.783290e-02	5.497952e+00
min	-4.292467e+06	0.000000e+00	-4.689001e+02	6.014792e+01	2.472137e+01	6.014792e+01	2.472137e+01	-5.200000e+00
25%	1.000000e+03	3.440000e+02	1.467403e-01	6.016723e+01	2.490969e+01	6.016689e+01	2.490969e+01	1.230000e+01
50%	1.739000e+03	5.860000e+02	1.863679e-01	6.017608e+01	2.493407e+01	6.017559e+01	2.493407e+01	1.640000e+01
75%	2.869000e+03	9.710000e+02	2.204348e-01	6.018964e+01	2.495029e+01	6.018964e+01	2.495029e+01	1.930000e+01
max	3.681399e+06	5.401659e+06	1.699104e+04	6.023911e+01	2.510620e+01	6.023911e+01	2.510620e+01	3.290000e+01

Metadatos:

Head:

Obsérvase que o dataset ten ringleira de encabezado e que os campos están separados por coma.

Preparando o dataset

Antes de empeza-las consultas, adecuamo-lo dataset, para o que usaremos *python* e *pandas*, por exemplo.

```
import pandas as pd
df=pd.read_csv('ruta/bikes_database.csv')
```

Hai unha serie de columnas que, alomenos de momento, non se van a usar: departure_id return_id

```
departure_latitude
departure_longitude
return_latitude
return_longitude
```

```
Quitamos con drop as columnas que non usaremos:
df.drop('nome columna', inplace = True, axis = 1)
```

Convertemo-lo tipo de dato object (string) a data/hora nas columnas que conteñen a data e hora de chegada e partida:

```
df['fecha_salida'] = df['fecha_salida'].astype('datetime64')
df['fecha_llegada'] = df['fecha_llegada'].astype('datetime64')
```

Info do dataset resultante:

```
RangeIndex: 12157458 entries, 0 to 12157457

Data columns (total 8 columns):

# Column Dtype
--- 0 fecha_salida datetime64[ns]

1 fecha_llegada datetime64[ns]

2 estacion_salida object

3 estacion_llegada object

4 distancia_m float64

5 duracion_sec float64

6 velocidad_media float64

7 temperatura float64

dtypes: datetime64[ns](2), float64(4), object(2)
```

Mostra do dataset resultante:

1 df								
	fecha_salida	fecha_llegada	estacion_salida	estacion_llegada	distancia_m	duracion_sec	velocidad_media	temperatura
0	2020-03-23 06:09:44	2020-03-23 06:16:26	Kuusitie	Esterinportti	1747.0	401.0	0.261397	0.9
1	2020-03-23 06:11:58	2020-03-23 06:26:31	Kamppi (M)	Kasarmitori	1447.0	869.0	0.099908	0.9
2	2020-03-23 06:16:29	2020-03-23 06:24:23	Porolahden koulu	Agnetankuja	1772.0	469.0	0.226695	0.9
3	2020-03-23 06:33:53	2020-03-23 07:14:03	Vallipolku	Korppaanmäentie	7456.0	2406.0	0.185935	0.9
4	2020-03-23 06:36:09	2020-03-23 07:04:10	Länsisatamankatu	Vilhonvuorenkatu	7120.0	1679.0	0.254437	0.9

12157453	2017-10-30 23:43:00	2017-10-30 23:55:00	Tyynenmerenkatu	Tyynenmerenkatu	918.0	714.0	0.077143	0.4
12157454	2017-10-30 23:49:00	2017-10-31 04:49:00	Brahen puistikko	Sörnäinen (M)	822.0	252.0	0.195714	0.4
12157455	2017-10-30 23:52:00	2017-10-31 00:02:00	Koskelantie	Intiankatu	1817.0	594.0	0.183535	0.4
12157456	2017-10-30 23:57:00	2017-10-31 00:00:00	Lastenlehto	Kamppi (M)	416.0	152.0	0.164211	0.4
12157457	2017-10-30 23:59:00	2017-10-31 00:12:00	Kaisaniemenpuisto	Ratapihantie	2856.0	771.0	0.222257	0.4
12157458 rd	ws × 8 columns							

Gárdase o dataset modificado con outro nome, en formato csv:

df.to_csv('bikes_database_2.csv' ,index= False)

Head:

```
hduser@hadoop-master:~/Documentos$ head -10 bikes_database_2.csv
fecha_salida,fecha_llegada,estacion_salida,estacion_llegada,distancia_m,duracion_sec,velocidad_media,temperatura
2020-03-23 06:09:44,2020-03-23 06:16:26,Kuusitie,Esterinporttt,1747.0,401.0,0.2613965087281795,0.9
2020-03-23 06:11:58,2020-03-23 06:26:31,Kamppi (M),Kasarmitori,1447.0,869.0,0.0999079401611047,0.9
2020-03-23 06:16:29,2020-03-23 06:24:23,Porolahden koulu,Agnetankuja,1772.0,469.0,0.2266950959488273,0.9
2020-03-23 06:33:53,2020-03-23 07:14:03,Vallipolku,Korppaanmäentie,7456.0,2406.0,0.185935162094763,0.9
2020-03-23 06:36:09,2020-03-23 07:04:10,Länsisatamankatu,Vilhonvuorenkatu,7120.0,1679.0,0.2544371649791542,0.9
2020-03-23 06:37:52,2020-03-23 06:58:56,Radiokatu,Porthania,5169.0,1262.0,0.2457527733755942,0.9
2020-03-23 06:39:51,2020-03-23 06:45:30,Tyynenmerenkatu,Hietalahdentori,1194.0,335.0,0.2138507462686567,0.9
2020-03-23 06:44:37,2020-03-24 12:02:19,Itämerentori,Meilahden sairaala,3651.0,1195.0,0.1833138075313807,0.9
2020-03-23 06:47:18,2020-03-23 07:01:09,Koskelantie,Kalasatama (M),3120.0,827.0,0.2263603385731559,0.9
hduser@hadoop-master:~/Documentos$
```

Quitamo-los encabezados para traballar con só os datos en Hive: sed -i "1d" bikes_database_2.csv

```
hduser@hadoop-master:~/Documentos$ sed -i "1d" bikes_database_2.csv
hduser@hadoop-master:~/Documentos$ head -10 bikes_database_2.csv
2020-03-23 06:09:44,2020-03-23 06:16:26,Kuusitie,Esterinportti,1747.0,401.0,0.2613965087281795,0.9
2020-03-23 06:11:58,2020-03-23 06:26:31,Kamppi (M),Kasarmitori,1447.0,869.0,0.0999079401611047,0.9
2020-03-23 06:16:29,2020-03-23 06:24:23,Porolahden koulu,Agnetankuja,1772.0,469.0,0.2266950959488273,0.9
2020-03-23 06:33:53,2020-03-23 07:14:03,Vallipolku,Korppaanmäentie,7456.0,2406.0,0.185935162094763,0.9
2020-03-23 06:36:09,2020-03-23 07:14:03,Vallipolku,Korppaanmäentie,7456.0,2406.0,0.185935162094763,0.9
2020-03-23 06:36:509,2020-03-23 07:04:10,Länsisatamankatu,Vilhonvuorenkatu,7120.0,1679.0,0.2544371649791542,0.9
2020-03-23 06:37:52,2020-03-23 06:58:56,Radiokatu,Porthania,5169.0,1262.0,0.2457527733755942,0.9
2020-03-23 06:39:51,2020-03-23 06:45:30,Tyynenmerenkatu,Hietalahdentori,1194.0,335.0,0.2138507462686567,0.9
2020-03-23 06:47:18,2020-03-23 07:01:09,Koskelantie,Kalasatama (M),3120.0,827.0,0.2263603385731559,0.9
2020-03-23 06:47:22,2020-03-23 06:56:22,Rautatieläisenkatu,A.I. Virtasen aukio,2070.0,535.0,0.2321495327102803,0.9
hduser@hadoop-master:~/Documentos$
```

Para evitar problemas, cambiamo-la coma que fai de separadora de columnas polo tabulador:

```
sed -i 's/,/\t/g' bikes_database_2.csv
                                     /
Esterinportti
Kasarmitori
 2020-03-23 06:09:44
2020-03-23 06:11:58
2020-03-23 06:16:29
                                                                                                                                                                1747.0 401.0
1447.0 869.0
kuja 1772.0
                                                                                                                                                                                                 0.26139650872817950.9
0.09990794016110470.9
469.0 0.2266950959488273
                                                                                                                                               Agnetankuja
                                                                                                                                                                                                                                                                      0.9
 2020-03-23 06:33:53
2020-03-23 06:36:09
2020-03-23 06:37:52
                                                 2020-03-23 07:14:03
2020-03-23 07:04:10
2020-03-23 06:58:56
                                                                                                Vallipolku K
Länsisatamankatu
Radiokatu F
                                                                                                                                                                                                 0.1859351620947630.9
7120.0 1679.0 0.2544371649791542
0.24575277337559420.9
                                                                                                                               Korppaanmäentie 7456.0 2406.0
                                                                                                Vallipolku Korppaanmäentte 7456.0 2406.0
Länsisatamankatu Vilhonvuorenkatu
Radiokatu Porthania 5169.0 1262.0
Tyynenmerenkatu Hietalahdentori 1194.0 335.0
Itämerentori Meilahden sairaala 3651.0
Koskelantie Kalasatama (M) 3120.0 827.0
Rautatieläisenkatu A.I. Virtasen aukio
                                                                                                                                                                                                                                                                                      0.9
 2020-03-23 06:39:51
2020-03-23 06:44:37
2020-03-23 06:47:18
                                                 2020-03-23 06:45:30
2020-03-24 12:02:19
2020-03-23 07:01:09
                                                                                                                                                                                                 0.21385074626865670.9
1195.0 0.1833138075313807
0.22636033857315590.9
                                                 2020-03-23 06:56:22
                                                                                                                                                                                                                                0.2321495327102803
  2020-03-23 06:47:22
                                                                                                                                                                                                               535.0
```

Unha vez que o dataset xa está preparado e depurado, podemos realiza-las consultas.

Preguntas a resolver

- 1. Cantos rexistros correspondentes a viaxes contén o dataset
- 2. Cales son as 5 estacións con maior número de saídas
- 3. Cales son as 5 estacións con maior número de chegadas
- 4. Cal é a viaxe coa maior distancia percorrida
- 5. Canta distancia percorreuse en total entre todas as viaxes
- 6. Cal é a distancia media percorrida por viaxe
- 7. Cal é a viaxe de maior duración
- 8. Cal é a duración media por viaxe
- 9. Cal é a velocidade media das viaxes
- 10. Cantas viaxes fixéronse cando a temperatura era menor de 0° C
- 11. Cantas viaxes fixéronse cando a temperatura estaba entre 15 e 25°C
- 12. Datos da primeira viaxe segundo data

Máis ideas:

- Preguntas de viaxes por datas (por meses, días da semana, por horas, etc)
- Preguntas de viaxes segundo temperaturas (duración de viaxes a temperaturas inferiores a 0°C, etc)

Pendente:

Join con dataset días choiva e preguntas de viaxes segundo días choiva https://en.ilmatieteenlaitos.fi/download-observations

Creación de estrutura e carga de datos

```
CREATE EXTERNAL TABLE IF NOT EXISTS viaxes (
data_ini TIMESTAMP,
data_fin TIMESTAMP,
saida STRING,
chegada STRING,
distancia FLOAT,
duracion FLOAT,
velocidade FLOAT,
temperatura FLOAT)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY '\t'
STORED AS TEXTFILE;

LOAD DATA INPATH '/user/hduser/input/bikes_2.csv' INTO TABLE viaxes;
```

Consultas Hive

Para que as saídas das consultas se vaian gardando no sistema hdfs, iniciamos cada consulta con: INSERT OVERWRITE DIRECTORY '/user/hduser/output/nome ficheiro'

Consulta 1: Cantos rexistros correspondentes a viaxes contén o dataset

INSERT OVERWRITE DIRECTORY '/user/hduser/output/hive_01_viaxes_count'
SELECT COUNT(*) FROM viaxes

Consulta 2: Cales son as 5 estacións con major número de saídas

INSERT OVERWRITE DIRECTORY 'output/hive_02_estacions_mais_saidas'
SELECT saida, COUNT(*) AS num_rex FROM viaxes GROUP BY saida ORDER BY
num_rex DESC LIMIT 5;

Consulta 3: Cales son as 5 estacións con maior número de chegadas

INSERT OVERWRITE DIRECTORY 'output/hive_03_estacions_mais_chegadas'
SELECT chegada, COUNT(*) AS num_rec FROM viaxes GROUP BY chegada ORDER BY
num_rex DESC LIMIT 5;

Consulta 4: Cal é a viaxe coa maior distancia percorrida

INSERT OVERWRITE DIRECTORY 'output/hive_04_max_distancia'
SELECT distancia FROM viaxes ORDER BY distancia DESC LIMIT 1;

Consulta 5: Canta distancia percorreuse en total entre tódalas viaxes

INSERT OVERWRITE DIRECTORY 'output/hive_05_total_distancia'
SELECT SUM(distancia) FROM viaxes;

Consulta 6: Cal é a distancia media percorrida por viaxe

INSERT OVERWRITE DIRECTORY 'output/hive_06_distancia_media'
SELECT AVG(distancia) FROM viaxes;

Consulta 7: Cal é a viaxe de major duración

INSERT OVERWRITE DIRECTORY 'output/hive_07_max_duracion'
SELECT duracion FROM viaxes ORDER BY duracion DESC LIMIT 1;

Consulta 8: Cal é a duración media por viaxe

INSERT OVERWRITE DIRECTORY 'output/hive_08_duracion_media'
SELECT AVG(duracion) FROM viaxes;

Consulta 9: Cal é a velocidade media da viaxes

INSERT OVERWRITE DIRECTORY 'output/hive_09_velocidade_media'
SELECT AVG(velocidad) FROM viaxes;

Consulta 10: Cantas viaxes se fixeron cando a temperatura era menor de 0°C

INSERT OVERWRITE DIRECTORY 'output/hive_10_viaxes_frio'
SELECT COUNT(*) FROM viaxes WHERE temperatura < 0;</pre>

Consulta 11: Cantas viaxes fixéronse cando a temperatura estaba entre 15 e 25 °C

INSERT OVERWRITE DIRECTORY 'output/hive_11_viaxes_temp_ok'
SELECT COUNT(*) FROM viaxes WHERE temperatura>=15 AND temperatura<26;</pre>

Consulta 12: Datos da primeira viaxe segundo data

INSERT OVERWRITE DIRECTORY 'output/hive_12_datos_primeira_viaxe'
SELECT * FROM viaxes ORDER BY data_ini LIMIT 1;

Resultado da execución das consultas Hive

Consulta 1: hive 01 viaxes count

12157458

Consulta 2: hive_02_estacions_mais_saidas

Itämerentori 330397 Töölönlahdenkatu 242555 Kamppi (M) 201560 Rautatientori / länsi 175358 Ympyrätalo 172776

Consulta 3: hive_03_estacions_mais_chegadas

Itämerentori 332453 Töölönlahdenkatu 243592 Kamppi (M) 195787 Rautatientori / länsi 178954 Ympyrätalo 177476

Consulta 4: hive_04_viaje_max_distancia

359383.34 (359,38 km)

Consulta 5: hive_05_total_distancia

2.5475649018170776 E9 (25.475.649. km)

Consulta 6: hive_06_distancia_media

2587.072079543791 (2,587 km)

consulta 7: hive_07_viaxe_duracion_maior

5012669.0 (58 días)

consulta 8: hive 08 duracion media viaxes

1060.442647813547 (17 min. 40 sec.)

consulta 09: hive_09_velocidade_media_viaxes

10.870777369952668 (10,87 km/h)

consulta 10: hive_10_viaxes_frio

3769

consulta 11: hive_11_viaxes_temp_ok

260036

consulta 12: hive 12 datos primeira viaxe