UNIDAD TEMATICA NRO 2 BIS- RESPUESTAS

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{n=\infty} a_n \cos(n\omega t) + b_n \sin(n\omega t)$$

$$a_0 = \frac{2}{T} \int_{-T/2}^{+T/2} f(t)dt$$

$$a_n = \frac{2}{T} \int_{-T/2}^{+T/2} f(t) \cos(n\omega t) dt ; \text{ para } n = 1, 2, 3, ..., n, ...$$

$$b_n = \frac{2}{T} \int_{-T/2}^{+T/2} f(t) \operatorname{sen}(n\omega t) dt; \text{ para } n = 1, 2, 3, \dots, n, \dots$$

- $a_{0} = 0$ Integral bajo la curva
- $a_n = 0$ Por producto de funciones. f(t)*cos(nwt)
- $b_n \neq 0$ Por producto de funciones. f(t)*sen(nwt

Paridad de Funciones:

$$P*P=P$$
 $I*I=P$
 $I*P=I$
(se anulan los coeficientes).

Resolución General:

$$f(t) = \sum_{-\infty}^{\infty} Cn \cdot e^{-i \cdot n \cdot \omega_0 \cdot t}$$

$$Cn = \frac{1}{T} \int_{-T/2}^{T/2} f(t) \cdot e^{-i \cdot n \cdot \omega_0 \cdot t} \cdot dt$$

Cálculo del número de armónicos:

Cuando (n*
$$\varpi$$
0*d / 2)= π

$$n = T/d$$

Conclusiones: A COMPLETAR POR EL ALUMNO.

9. **FRP= 1 /**
$$\tau$$
 = 4pps

$$Cn = A*d/T$$

$$Vm = 1/\tau$$

$$d = \tau = 1/Vm = 0.05 \text{ seg}$$

$$n = T/d$$

$$n = 0,25 / 0,05 = 5 A$$

Calculo del Ancho de Banda:

$$AB = n*f_0$$

$$AB = 1/\tau$$

$$AB = 20 \text{ Hz}$$

Calculo del Espectro de Amplitud:

$$Cn = A*d/T$$

Cn =
$$A *_{0,05} /_{0,25}$$

$$Cn = 0.2 A$$

11. **FRP=** 1 /
$$\tau$$
 = 300 pps

$$Cn = A*d/T$$

T = 1/300 = 0,0033 seg.

Vm = 1200 baudios

A= 1Volt

 $d = \tau = 1/Vm = 0,000833 \text{ seg.}$

$$n = T/d$$

$$n = 0,0033 / 0,000833 = 4 \text{ Armónicos}$$

$$AB = n*f_0$$

$$AB = 4*300 = 1200 \text{ Hz}$$

Cn = A*d/T

Cn = 1V * 0,000833 / 0,0033 = 0,25 V

17. $\eta=$ (Cantidad de bits de datos / Cantidad de bits totales)*100

$$\eta = \frac{(1500/14+1500+4)*100}{\eta} = \frac{98,8\%}{\eta}$$

18. $\eta = \text{(Cantidad de bits de datos / Cantidad de bits totales)*100}$

$$\eta = (7/1+7+1)*100 = \eta = 77,7\%$$

Conclusiones: A COMPLETAR POR EL ALUMNO el rendimiento en la transmisión entre el ejercicio 17 y 18.FUNDAMENTAR

19. $\eta = (Cantidad de bits de datos / Cantidad de bits totales)*100$

$$\eta$$
 asinc = $(8 / 1 + 8 + 1 + 2)*100 = 66,6%$

$$Vm = 1/\tau$$

 $d = \tau = 1/Vm = 1/2400 = 4,16*10-4 seg$

T sinc = 1024*8 bits*4,16*10-4 seg = 3,41 seg.

T asinc = 1024*12 bits*4,16*10-4 seg = 5,12 seg.

Disminuye un 33,33 %

23. Vm = 3600 Baudios

C= 1800 caracteres (1C= 8 bits)

 η sinc = 90%

T total de transmisión = Que consideración debo tener en cuenta????

 $d = \tau = 1/Vm = 1/3600 = 2,77*10-4 seg$

T total = 1800*8 bits*2,77*10-4 seg = 4 seg. (al 100 %)

Pero el η es del 90% implica entonces un incremento de 0,4 seg

T total= 4, 4 seg