ELETTROTECNICA PARTE VI: REGIME SINUSOIDALE

Michele Bonnin e Fernando Corinto michele.bonnin@polito.it fernando.corinto@polito.it

Dipartimento di Elettronica e Telecomunicazioni Politecnico di Torino

A.A. 2016/2017

Circuiti con generatori sinusoidali

Proprietà dei fasori

Uso dei fasori

Legge di Ohm nel dominio dei fasori

Impedenza e ammettenza

Serie e parallelo di impedenze e ammettenze

Il metodo simbolico dei fasori

Uso del metodo simbolico

Potenza istantanea, potenza attiva e potenza reattiva

Potenza complessa

Conservazione della potenza

Classificazione di bipoli

Rifasamento

Circuiti con generatori sinusoidali

Proprietà dei fasori

Uso dei fasor

Legge di Ohm nel dominio dei fasor

Impedenza e ammettenza

Serie e parallelo di impedenze e ammettenze

Il metodo simbolico dei fasor

Uso del metodo simbolico

Potenza istantanea, potenza attiva e potenza reattiva

Potenza complessa

Conservazione della potenza

Classificazione di bipol

Rifasamento

Circuiti con generatori sinusoidali

- molti dei circuiti che usiamo quotidianamente operano in condizione di "regime sinusoidale" (risposta permanente)
- Segnali elettrici "complessi" possono essere scomposti in somma di sinusoidi usando la serie di Fourier

$$ightharpoonup z \in \mathbb{C}, \ z = \rho e^{j\phi} = \rho \cos \phi + j \sin \phi$$

$$\mathbf{v}(t) = A\cos(\omega t + \theta) = Re[Ae^{j(\omega t + \theta)}] = Re[Ae^{j\theta}e^{j\omega t}]$$

Fasore: numero complesso associato ad una sinusoide di ampiezza A e fase θ

$$V(j\omega) = Ae^{j\theta} \in \mathbb{C}$$

Fasori: esempi

- $z \in \mathbb{C}$, $z = \rho e^{j\phi} = \rho \cos \phi + j \sin \phi$
- $\mathbf{v}(t) = A\cos(\omega t + \theta) = Re[Ae^{j(\omega t + \theta)}] = Re[Ae^{j\theta}e^{j\omega t}]$

Fasore: numero complesso associato ad una sinusoide di ampiezza A e fase θ

$$V(j\omega) = Ae^{j\theta} \in \mathbb{C}$$

$$i(t) = 6\cos(50t - 40^{\circ}) A$$

$$I = 6e^{-j40^{\circ}}$$

►
$$v(t) = -4\sin(30t + 50^{\circ}) \text{ V}$$

$$v(t) = -4\cos(30t + 50^{\circ} - 90^{\circ}) = -4\cos(30t - 40^{\circ})$$

$$V = -4e^{-j40^{\circ}} = 4e^{j140^{\circ}}$$

Circuiti con generatori sinusoidali

Proprietà dei fasori

Uso dei fasor

Legge di Ohm nel dominio dei fasor

Impedenza e ammettenza

Serie e parallelo di impedenze e ammettenze

Il metodo simbolico dei fasori

Uso del metodo simbolico

Potenza istantanea, potenza attiva e potenza reattiva

Potenza complessa

Conservazione della potenza

Classificazione di bipoli

Rifasamento

Proprietà dei fasori

- ▶ Oltre alle proprietà proprie dei numeri complessi si hanno le seguenti proprietà
- 1. Addizione

$$A_{1}\cos(\omega t + \theta_{1}) + A_{2}\cos(\omega t + \theta_{2}) = Re\left[A_{1}e^{j\theta_{1}}e^{j\omega t}\right] + Re\left[A_{2}e^{j\theta_{2}}e^{j\omega t}\right]$$

$$= Re\left[A_{1}e^{j\theta_{1}}e^{j\omega t} + A_{2}e^{j\theta_{2}}e^{j\omega t}\right]$$

$$= Re\left[\left(A_{1}e^{j\theta_{1}} + A_{2}e^{j\theta_{2}}\right)e^{j\omega t}\right]$$

2. Derivazione

$$f(t) = A\cos(\omega t + \theta) \Rightarrow F = Ae^{j\theta}$$

$$\begin{split} g(t) &= \frac{dA\cos(\omega t + \theta)}{dt} = -A\omega\sin(\omega t + \theta) = A\omega\cos(\omega t + \theta + 90^{\circ}) \\ &= Re\left[A\omega e^{j(\omega t + \theta + 90^{\circ})}\right] = Re\left[A\omega e^{j90^{\circ}}e^{j(\omega t + \theta)}\right] \end{split}$$

$$g(t) \Rightarrow G = A\omega e^{j90^{\circ}} e^{j\theta} = j\omega F$$

Circuiti con generatori sinusoidali

Proprietà dei fasori

Uso dei fasori

Legge di Ohm nel dominio dei fasor

Impedenza e ammettenza

Serie e parallelo di impedenze e ammettenze

Il metodo simbolico dei fasor

Uso del metodo simbolico

Potenza istantanea, potenza attiva e potenza reattiva

Potenza complessa

Conservazione della potenza

Classificazione di bipol

Rifasamento

Risposta permanente in un circuito RC

$$t = 0$$

$$C \xrightarrow{t \to +\infty} v_C(t) = A\cos(\omega t + \theta) = v_{pC}(t)$$

$$+ C \xrightarrow{t \to +\infty} v_C(t) = A\cos(\omega t + \theta) = v_{pC}(t)$$

$$+ C \xrightarrow{t \to +\infty} v_C(t) = A\cos(\omega t + \theta) = v_{pC}(t)$$

$$+ C \xrightarrow{t \to +\infty} v_C(t) = A\cos(\omega t + \theta) = v_{pC}(t)$$

$$+ C \xrightarrow{t \to +\infty} v_C(t) = A\cos(\omega t + \theta) = v_{pC}(t)$$

$$+ C \xrightarrow{t \to +\infty} v_C(t) = A\cos(\omega t + \theta) = v_{pC}(t)$$

$$+ C \xrightarrow{t \to +\infty} v_C(t) = A\cos(\omega t + \theta) = v_{pC}(t)$$

$$+ C \xrightarrow{t \to +\infty} v_C(t) = A\cos(\omega t + \theta) = v_{pC}(t)$$

$$+ C \xrightarrow{t \to +\infty} v_C(t) = A\cos(\omega t + \theta) = v_{pC}(t)$$

$$+ C \xrightarrow{t \to +\infty} v_C(t) = A\cos(\omega t + \theta) = v_{pC}(t)$$

$$+ C \xrightarrow{t \to +\infty} v_C(t) = A\cos(\omega t + \theta) = v_{pC}(t)$$

$$+ C \xrightarrow{t \to +\infty} v_C(t) = A\cos(\omega t + \theta) = v_{pC}(t)$$

$$+ C \xrightarrow{t \to +\infty} v_C(t) = A\cos(\omega t + \theta) = v_{pC}(t)$$

$$+ C \xrightarrow{t \to +\infty} v_C(t) = A\cos(\omega t + \theta) = v_{pC}(t)$$

$$+ C \xrightarrow{t \to +\infty} v_C(t) = A\cos(\omega t + \theta) = v_{pC}(t)$$

$$+ C \xrightarrow{t \to +\infty} v_C(t) = A\cos(\omega t + \theta) = v_{pC}(t)$$

$$+ C \xrightarrow{t \to +\infty} v_C(t) = A\cos(\omega t + \theta) = v_{pC}(t)$$

$$\frac{dv_c}{dt} + \frac{1}{\tau}v_C = \frac{1}{\tau}v_m\cos(\omega t)$$

$$v_C(t) = A\cos(\omega t + \theta)$$

$$\frac{dv_C(t)}{dt}$$

$$v_m\cos(\omega t)$$

Fasori

$$j\omega Ae^{j heta}+rac{1}{ au}Ae^{j heta}=rac{1}{ au}V_m$$
 $V_C=Ae^{j heta}$ $j\omega Ae^{j heta}$ $V_me^{j heta}=V_m$

Risposta permanente in un circuito RC

Tempo

$$\frac{dv_c}{dt} + \frac{1}{\tau}v_C = \frac{1}{\tau}v_m\cos(\omega t)$$

$$v_C(t) = A\cos(\omega t + \theta)$$

$$\frac{dv_C(t)}{dt}$$

$$v_m\cos(\omega t)$$

Fasori

$$j\omega A \mathrm{e}^{i heta} + rac{1}{ au} A \mathrm{e}^{i heta} = rac{1}{ au} V_m$$
 $V_C = A \mathrm{e}^{i heta}$ $j\omega A \mathrm{e}^{i heta}$ $V_m \mathrm{e}^{j0} = V_m$

$$Ae^{j\theta} = \frac{\frac{V_m}{\tau}}{j\omega + \frac{1}{\tau}} = \frac{V_m}{1 + j\omega\tau} \Rightarrow Ae^{j\theta} = \frac{V_m(1 - j\omega\tau)}{1 + \omega^2\tau^2}$$

$$A = \left|\frac{V_m(1 - j\omega\tau)}{1 + \omega^2\tau^2}\right| = \frac{V_m}{\sqrt{1 + \omega^2\tau^2}} \qquad \theta = \arg\left[\frac{V_m(1 - j\omega\tau)}{1 + \omega^2\tau^2}\right] = -\arctan(\omega\tau)$$

$$v_C(t) = \frac{V_m}{\sqrt{1 + \omega^2\tau^2}}\cos(\omega t - \arctan(\omega\tau))$$

Risposta permanente in un circuito RC

$$v_{C}(t) = \frac{V_{m}}{\sqrt{1 + \omega^{2}\tau^{2}}} \cos(\omega t - \arctan(\omega \tau))$$

$$+ i(t) = C \frac{dv_{C}(t)}{dt} = -\frac{V_{m}\omega C}{\sqrt{1 + \omega^{2}\tau^{2}}} \sin(\omega t - \arctan(\omega \tau))$$

$$+ v_{R}(t) = R i(t) = -\frac{V_{m}\omega R C}{\sqrt{1 + \omega^{2}\tau^{2}}} \sin(\omega t - \arctan(\omega \tau))$$

Si dice che un circuito è in **regime sinusoidale** quando tutte le tensioni e tutte le correnti sono sinusoidali con la *medesima pulsazione* ω

Circuiti con generatori sinusoidali

Proprietà dei fasori

Uso dei fasori

Legge di Ohm nel dominio dei fasori

Impedenza e ammettenza

Serie e parallelo di impedenze e ammettenze

Il metodo simbolico dei fasori

Uso del metodo simbolico

Potenza istantanea, potenza attiva e potenza reattiva

Potenza complessa

Conservazione della potenza

Classificazione di bipol

Rifasamento

Legge di Ohm nel dominio dei fasori - resistore

Dominio del tempo

$$v(t) = Ri(t)$$

Dominio dei fasori

$$V = RI$$
$$|V| = R|I|$$
$$/V = /I$$

Tensione e corrente sono in fase

Legge di Ohm nel dominio dei fasori – induttore

Dominio del tempo

$$v(t) = L \frac{di(t)}{dt}$$

$$V = j\omega L I$$
$$|V| = \omega L |I|$$
$$\angle V = \angle I + \frac{\pi}{2}$$

La corrente è in ritardo rispetto alla tensione

Legge di Ohm nel dominio dei fasori: Condensatore

Dominio del tempo

Dominio dei fasori

$$i(t) = C \frac{dv(t)}{dt}$$

$$I = j\omega C V$$
$$|I| = \omega C |V|$$
$$\angle I = \angle V + \frac{\pi}{2}$$

La tensione è in ritardo rispetto alla corrente

Circuiti con generatori sinusoidali

Proprietà dei fasori

Uso dei fasori

Legge di Ohm nel dominio dei fasor

Impedenza e ammettenza

Serie e parallelo di impedenze e ammettenze

Il metodo simbolico dei fasori

Uso del metodo simbolico

Potenza istantanea, potenza attiva e potenza reattiva

Potenza complessa

Conservazione della potenza

Classificazione di bipoli

Rifasamento

Impedenza e ammettenza

	Dominio del tempo	Dominio dei fasori
Resistore	v(t) = R i(t)	V = RI
Induttore	$v(t) = L \frac{di(t)}{dt}$	$V = j\omega L I$
Condensatore	$i(t) = C \frac{dv(t)}{dt}$	$I = j\omega C V$

Impedenza Z: vale la legge: V = ZI

Resistore: Z=R Induttore $Z=j\omega L$ Condensatore: $Z=-\frac{j}{\omega C}$

Ammettenza Y: vale la legge: I = Y V

Resistore: Y = G Induttore $Y = -\frac{j}{\omega I}$ Condensatore: $Y = j\omega C$

Impedenza e ammettenza

$$Z = j\omega L$$

$$L$$

$$Z = -\frac{j}{\omega C}$$

$$\omega = 0$$

$$\omega = +\infty$$

$$\omega = 0$$

$$\omega = +\infty$$

$$\omega = 0$$

$$\omega = +\infty$$

$$Z = \frac{V}{I} = \frac{|V| e^{j \angle V}}{|I| e^{j \angle I}} = \frac{|V|}{|I|} e^{j(\angle V - \angle I)}$$

L'impedenza è un rapporto tra due fasori, ma non è un fasore

Proprietà dei fasori

▶ I fasori soddisfano le leggi di Kirchhoff

$$\sum_{k=1}^{n} I_k = 0 \qquad \qquad \sum_{k=1}^{n} V_k = 0$$

Spiegazione

$$i_k(t) = |I_k| \cos(\omega t + \angle I_k)$$

$$\sum_{k=1}^{n} i_k(t) = \sum_{k=1}^{n} Re[|I_k|e^{j \angle I_k} e^{j\omega t}] = \sum_{k=1}^{n} Re[I_k e^{j\omega t}] = Re\left[\left(\sum_{k=1}^{n} I_k\right) e^{j\omega t}\right]$$

Circuiti con generatori sinusoidali

Proprietà dei fasori

Uso dei fasori

Legge di Ohm nel dominio dei fasor

Impedenza e ammettenza

Serie e parallelo di impedenze e ammettenze

Il metodo simbolico dei fasori

Uso del metodo simbolico

Potenza istantanea, potenza attiva e potenza reattiva

Potenza complessa

Conservazione della potenza

Classificazione di bipol

Rifasamento

Impedenze connesse in serie

Impedenze connesse in parallelo

$$I = I_1 + I_2 + I_3 = V\left(\frac{1}{Z_1} + \frac{1}{Z_2} + \frac{1}{Z_3}\right) \qquad I = \frac{V}{Z}$$

$$\frac{1}{Z} = \frac{1}{Z_1} + \frac{1}{Z_2} + \dots + \frac{1}{Z_n}$$

$$Y = Y_1 + Y_2 + \dots + Y_n$$

Calcolo di impedenze

Esempio:

Impedenza e ammettenza di un bipolo

$$Z = \frac{V}{I} = \frac{|V|}{|I|} e^{j(\angle V - \angle I)} = R + jX$$

- R è detta resistenza
- ▶ X è detta reattanza

Resistore	Z = R	R = R	X = 0
Induttore	$Z = j \omega L$	R=0	$X = \omega L$
Condensatore	$Z=-\frac{j}{\omega C}$	R=0	$X = -\frac{1}{\omega C}$

Impedenza e ammettenza di un bipolo

$$Y = \frac{I}{V} = \frac{|I|}{|V|} e^{j(\angle I - \angle V)} = G + jB$$

- ▶ G è detta conduttanza
- X è detta suscettanza

Resistore	$Y=\frac{1}{R}$	$G=\frac{1}{R}$	B = 0
Induttore	$Y = -\frac{j}{\omega L}$	G=0	$B = -\frac{1}{\omega L}$
Condensatore	$Y = j \omega C$	G=0	$B = \omega C$

$$Y = \frac{1}{Z} \Rightarrow G + jB = \frac{1}{R + iX} = \frac{R - jX}{R^2 + X^2}$$

Circuiti con generatori sinusoidali

Proprietà dei fasori

Uso dei fasori

Legge di Ohm nel dominio dei fasor

Impedenza e ammettenza

Serie e parallelo di impedenze e ammettenze

Il metodo simbolico dei fasori

Uso del metodo simbolico

Potenza istantanea, potenza attiva e potenza reattiva

Potenza complessa

Conservazione della potenza

Classificazione di bipol

Rifasamento

Il metodo simbolico dei fasori

- 1. Sostituire ogni generatore indipendente di pulsazione ω con un generatore pari al fasore corrispondente
- 2. Associare ad ogni variabile (tensione o corrente) il corrispondente fasore
- 3. Sostituire ogni elemento *R*, *L*, *C* con un bipolo avente l'impedenza corrispondente
- Analizzare il circuito nel dominio dei fasori con i metodi dei circuiti "resistivi"
- 5. Ricavare le grandezze sinusoidali associate ai fasori determinati

Il metodo simbolico dei fasori

Il metodo simbolico dei fasori

Confronto con il metodo della trasformata di Laplace

$$V_C = 2\frac{\frac{1}{s}}{(s^2 + 16)(s^2 + s + 2)} + \frac{v_C(0)s - i(0)}{s^2 + s + 2}$$

Antitrasformando

$$v_c(t) = \frac{e^{-\frac{t}{2}}}{371} \left[7(-8 + 53v_C(0)) \cos\left(\frac{\sqrt{7}}{2}t\right) - \sqrt{7}(20 + 53v_C(0) + 106i(0)) \sin\left(\frac{\sqrt{7}}{2}t\right) \right]$$

$$+ \frac{28}{371} \left[2\cos(4t) + 7\sin(4t) \right]$$

Circuiti con generatori sinusoidali

Proprietà dei fasori

Uso dei fasori

Legge di Ohm nel dominio dei fasor

Impedenza e ammettenza

Serie e parallelo di impedenze e ammettenze

Il metodo simbolico dei fasori

Uso del metodo simbolico

Potenza istantanea, potenza attiva e potenza reattiva

Potenza complessa

Conservazione della potenza

Classificazione di bipol

Rifasamento

$$20\cos(4t) \Rightarrow 20e^{j0^{\circ}}$$

 $1H \Rightarrow j\omega L = j4\Omega$
 $0, 5H \Rightarrow j\omega L = j2\Omega$

$$\frac{V_1 - 20}{10} + \frac{V_1}{-j2,5} + \frac{V_1 - V_2}{j4} = 0$$

$$\frac{V_2 - V_1}{j4} + \frac{V_2}{j2} - 2\frac{V_1}{-j2,5} = 0$$

$$1 + j1,5 \quad j2,5 \mid \lceil V_1 \mid \rceil \quad \lceil 20 \mid \rceil$$

$$0.1F \Rightarrow -\frac{j}{\omega C} = -j2.5\Omega$$

$$\left[\begin{array}{cc} 1+j1,5 & j2,5 \\ 11 & 15 \end{array}\right] \left[\begin{array}{c} V_1 \\ V_2 \end{array}\right] = \left[\begin{array}{c} 20 \\ 0 \end{array}\right]$$

$$V_{1} = \frac{300}{15 - j5} = 18,97e^{j18,43^{\circ}}V \Rightarrow v_{1}(t) = 18,97\cos(4t + 18,43^{\circ})V$$

$$V_{2} = -\frac{220}{15 - j5} = 13,91e^{j198,3^{\circ}}V \Rightarrow v_{2}(t) = 13,91\cos(4t + 198,3^{\circ})V$$

$$-3 + \frac{V_1}{-j3} + \frac{V_2}{j6} + \frac{V_2}{12} = 0$$

$$V_1 - V_2 = 10e^{j45^{\circ}}$$

$$V_1 = 25,78e^{-j70,48^{\circ}} V$$

 $V_2 = 31,41e^{-j87,18^{\circ}} V$

$$\frac{20k\Omega}{10k\Omega}$$

$$\frac{10k\Omega}{10k\Omega}$$

$$\frac{10k\Omega}{10k$$

$$V_o = \frac{6}{3 - j5} = 1,029e^{j59,04^{\circ}} \text{V} \Rightarrow v_o(t) = 1,029\cos(1000t + 59,04^{\circ}) \text{V}$$

$$Z_{f} = Z_{C_{2}} || R_{2} = \frac{-\frac{j}{\omega C_{2}} R_{2}}{-\frac{j}{\omega C_{2}} + R_{2}} = \frac{R_{2}}{1 + j\omega R_{2} C_{2}}$$

$$Z_{i} = R_{1} - \frac{j}{\omega C_{1}} = \frac{1 + j\omega R_{1} C_{1}}{j\omega C_{1}}$$

$$\frac{V_o}{V_s} = -\frac{Z_f}{Z_i} = -\frac{j\omega C_1 R_2}{(1 + j\omega R_1 C_1)(1 + j\omega R_2 C_2)}$$

Thevenin e Norton con il metodo simbolico

$$Z_{1} = -j6||8 = \frac{-j6 \cdot 8}{8 - j6} = (2, 88 - j3, 84)\Omega$$

$$Z_{1} = -j6||8 = \frac{-j6 \cdot 8}{8 - j6} = (2, 88 - j3, 84)\Omega$$

$$Z_{2} = j12||4 = \frac{j12 \cdot 4}{4 + j12} = (3, 6 + j1, 2)\Omega$$

$$Z_{Th} = Z_{1} + Z_{2} = (6, 48 - j2, 64)\Omega$$

$$V_{Th} = 4I_2 + j6I_1 = 4\frac{120e^{j75^{\circ}}}{4 + j12} + j6\frac{120e^{j75^{\circ}}}{8 - j6} = 37,95e^{j3,43^{\circ}} + 72e^{j201,87^{\circ}}$$
$$= -28,94 - j24,55 = 37,95e^{j220,31^{\circ}}V$$

Generatori isofrequenziali

$$I_o = I_o' + I_o''$$

$$I'_o = \frac{20e^{j90^\circ}}{4 - j2 + [(j10 + 8)||(-j2)]}$$
$$= (-2, 35 + j2, 35)A$$

Generatori isofrequenziali

Generatori isofrequenziali

$$I_o'' = -\frac{V_{Th}}{R_{Th} + 4} = \left(-\frac{45}{17} + j\frac{20}{17}\right)A$$

Generatori non isofrequenziali

$$v_o(t) = v'_o + v''_o + v'''_o$$

Primo effetto: $10\cos 2t \Rightarrow 10e^{j0^{\circ}}$

$$\omega = 2 \, \mathrm{rad/s}$$

$$2H \Rightarrow Z_L = j\omega L = j4\Omega$$

$$2H \Rightarrow Z_L = j\omega L = j4\Omega$$
 $0, 1F \Rightarrow Z_C = -\frac{j}{\omega C} = -j5\Omega$

Secondo effetto: $2 \sin 5t \Rightarrow 2e^{-j90^{\circ}}$

$$\omega = 5 \, \mathrm{rad/s}$$

$$2H \Rightarrow Z_L = j\omega L = j10\Omega$$

$$2{\rm H} \Rightarrow Z_L = j\omega L = j10\Omega \qquad 0, 1{\rm F} \Rightarrow Z_C = -\frac{j}{\omega C} = -j2\Omega$$

Terzo effetto: $5 \Rightarrow 5$ $\omega = 0 \,\mathrm{rad/s}$

$$\omega = 0 \, \mathrm{rad/s}$$

$$2H \Rightarrow Z_L = j\omega L = 0\Omega$$

$$2H \Rightarrow Z_L = j\omega L = 0\Omega$$
 $0, 1F \Rightarrow Z_C = -\frac{j}{\omega C} = +\infty\Omega$

Generatori non isofrequenziali: primo effetto

$$V'_o = 10e^{j0^\circ} \frac{1}{j4 + 1 + (-j5)||4} = 2,498e^{-j30,79^\circ} \text{ V}$$

 $v'_o(t) = 2,498\cos(2t - 30,79^\circ) \text{ V}$

Generatori non isofrequenziali: secondo effetto

Generatori non isofrequenziali: terzo effetto

$$V_o''' = -5\frac{1}{1+4} = -1 \,\mathrm{V}$$
 $v_o'''(t) = -1 \,\mathrm{V}$

Generatori non isofrequenziali

$$v_o(t) = [2,498\cos(2t-30,79^\circ) + 2,328\cos(5t-77,91^\circ) - 1] \text{ V}$$

In presenza di generatori non isofrequenziali la somma degli effetti va fatta nel dominio del tempo

Indice

Circuiti con generatori sinusoidali

Proprietà dei fasori

Uso dei fasori

Legge di Ohm nel dominio dei fasor

Impedenza e ammettenza

Serie e parallelo di impedenze e ammettenze

Il metodo simbolico dei fasor

Uso del metodo simbolico

Potenza istantanea, potenza attiva e potenza reattiva

Potenza complessa

Conservazione della potenza

Classificazione di bipoli

Rifasamento

Potenza istantanea

$$v(t) = V_m \cos(\omega t + \theta_v) \Rightarrow V = V_m e^{j\theta_v}$$

$$i(t) = I_m \cos(\omega t + \theta_i) \Rightarrow I = I_m e^{j\theta_i}$$

$$p(t) = v(t)i(t) = V_m \cos(\omega t + \theta_v) I_m \cos(\omega t + \theta_i)$$

$$= \underbrace{\frac{1}{2} V_m I_m \cos(\theta_v - \theta_i)}_{valor \ costante} + \underbrace{\frac{1}{2} V_m I_m \cos(2\omega t + \theta_v + \theta_i)}_{valor \ medio \ nullo}$$

Potenza attiva media

$$P = \frac{1}{T} \int_0^T v(t)i(t)dt = \frac{1}{2} V_m I_m \cos(\theta_v - \theta_i)$$

Potenza attiva

Potenza attiva media. Si misura in watt

$$P = \frac{1}{T} \int_0^T v(t)i(t)dt = \frac{1}{2} V_m I_m \cos(\theta_v - \theta_i)$$

$$w = \int_0^{\Delta t} p(t)dt = P\Delta t + \int_0^{\Delta t} \frac{1}{2} V_m I_m \cos(2\omega t + \theta_v + \theta_i)dt \simeq P\Delta t$$

Potenza istantanea: resistore

Potenza istantanea

$$p(t) = v(t)i(t) = \frac{1}{2} V_m I_m \cos(\theta_v - \theta_i) + \frac{1}{2} V_m I_m \cos(2\omega t + \theta_v + \theta_i)$$

$$\theta_{v} = \theta_{i} \Rightarrow \cos(\theta_{v} - \theta_{i}) = 1$$

$$V_{m} = R I_{m}$$

$$p(t) = \frac{1}{2}RI_{m}^{2} + \frac{1}{2}R I_{m}^{2} \cos(2\omega t + 2\theta_{i})$$

Potenza istantanea: induttore

Potenza istantanea

$$p(t) = v(t)i(t) = \frac{1}{2} V_m I_m \cos(\theta_v - \theta_i) + \frac{1}{2} V_m I_m \cos(2\omega t + \theta_v + \theta_i)$$

$$\theta_{v} = \theta_{i} + 90^{\circ} \Rightarrow \cos(\theta_{v} - \theta_{i}) = 0$$

$$V_{m} = \omega L I_{m}$$

$$p(t) = -\frac{1}{2}\omega L I_{m}^{2} \sin(2\omega t + 2\theta_{i})$$

Potenza istantanea: condensatore

Potenza istantanea

$$p(t) = v(t)i(t) = \frac{1}{2} V_m I_m \cos(\theta_v - \theta_i) + \frac{1}{2} V_m I_m \cos(2\omega t + \theta_v + \theta_i)$$

$$\theta_{v} = \theta_{i} - 90^{\circ} \Rightarrow \cos(\theta_{v} - \theta_{i}) = 0$$

$$I_{m} = \omega C V_{m}$$

$$p(t) = \frac{1}{2}\omega C V_{m}^{2} \sin(2\omega t + 2\theta_{i})$$

Potenza reattiva

$$i(t) = V_m \cos(\omega t + \theta_v) \Rightarrow V = V_m e^{j\theta_v}$$

$$i(t) = I_m \cos(\omega t + \theta_i) \Rightarrow I = I_m e^{j\theta_i}$$

$$p(t) = v(t)i(t) = V_m \cos(\omega t + \theta_v) I_m \cos(\omega t + \theta_i)$$

$$p(t) = \frac{1}{2} V_m I_m \cos(\theta_v - \theta_i) + \frac{1}{2} V_m I_m \cos(2\omega t + \theta_v + \theta_i)$$

$$= \frac{1}{2} V_m I_m \cos[\theta_v - \theta_i] - \frac{1}{2} V_m I_m \sin[\theta_v] \sin(2\omega t + 2\theta_i)$$

 $= P[1 + \cos(2\omega t + 2\theta_i)] - Q\sin(2\omega t + 2\theta_i)$

- **>** $\cos \varphi$: **Fattore di potenza**
- ▶ $P = \frac{1}{2} V_m I_m \cos \varphi$ [W]: Potenza attiva
- $Q = \frac{1}{2} V_m I_m \sin \varphi$ [VAR] (Volt–Ampere reattivi): **Potenza reattiva**

Valore efficace

$$\begin{aligned} x_{\text{eff}} &= \sqrt{\frac{1}{T} \int_0^T x^2(t) dt} \\ I_{\text{eff}} &= \sqrt{\frac{1}{T} \int_0^T \left[I_m \cos(\omega t) \right]^2 dt} = \sqrt{\frac{I_m^2}{2T} \int_0^T \left[1 + \cos(2\omega t) \right] dt} \\ &= \sqrt{\frac{I_m^2}{2T} \int_0^T dt} = \frac{I_m}{\sqrt{2}} \\ I_{\text{eff}} &= \frac{I_m}{\sqrt{2}} \qquad V_{\text{eff}} = \frac{V_m}{\sqrt{2}} \\ P &= \frac{1}{2} V_m I_m \cos(\theta_v - \theta_i) = V_{\text{eff}} I_{\text{eff}} \cos(\theta_v - \theta_i) \end{aligned}$$

Indice

Circuiti con generatori sinusoidali

Proprietà dei fasori

Uso dei fasori

Legge di Ohm nel dominio dei fasor

Impedenza e ammettenza

Serie e parallelo di impedenze e ammettenze

Il metodo simbolico dei fasor

Uso del metodo simbolico

Potenza istantanea, potenza attiva e potenza reattiva

Potenza complessa

Conservazione della potenza

Classificazione di bipol

Rifasamento

Potenza complessa

Potenza complessa S

$$S \doteq \frac{1}{2} V I^* \qquad V = V_m e^{j\theta_v}$$

$$I = I_m e^{j\theta_i} \Rightarrow I^* = I_m e^{-j\theta_i}$$

$$S = \frac{1}{2}VI^* = \frac{1}{2}V_m I_m e^{j(\theta_v - \theta_i)}$$

- ▶ $|S| = \frac{1}{2} V_m I_m$ [VA]: Potenza apparente
- ► $\angle S = \theta_v \theta_i = \varphi \Rightarrow \cos \varphi$ Fattore di potenza

Relazioni tra le potenze

$$S = \frac{1}{2}VI^* = \frac{1}{2}V_m I_m e^{j(\theta_v - \theta_i)} = \underbrace{\frac{1}{2}V_m I_m \cos \varphi}_{Potenza \ attiva} + j\underbrace{\frac{1}{2}V_m I_m \sin \varphi}_{Potenza \ reattiva} = P + jQ$$

- S = P + jQ [VA]: Potenza complessa
- ▶ $|S| = \sqrt{P^2 + Q^2}$: Potenza apparente
- $cos\varphi = \frac{P}{|S|}$: Fattore di potenza
- ▶ $P = |S| \cos \varphi$ [W]: Potenza attiva
- $Q = |S| \sin \varphi$ [VAR]: Potenza reattiva

Relazioni tra le potenze

$$S = \frac{1}{2}VI^* = \frac{1}{2}ZII^* = \frac{1}{2}Z|I|^2 = \frac{1}{2}(R+jX)|I|^2$$

$$S = \frac{1}{2}VI^* = \frac{1}{2}V(YV)^* = \frac{1}{2}Y^*|V|^2 = \frac{1}{2}(G-jB)|V|^2$$

$$Matheraporal S = \frac{1}{2}RI_m^2 \Rightarrow P = \frac{1}{2}RI_m^2 \qquad Q = 0$$

$$Matheraporal S = \frac{1}{2}\frac{-j}{\omega C}I_m^2 \Rightarrow P = 0 \qquad Q = -\frac{1}{2}\frac{I_m^2}{\omega C} = -\frac{1}{2}\omega CV_m^2$$

$$S = \frac{1}{2}(j\omega L)I_m^2 \Rightarrow P = 0 \qquad Q = \frac{1}{2}\omega LI_m^2 = \frac{1}{2}\frac{V_m^2}{\omega L}$$

Indice

Circuiti con generatori sinusoidali

Proprietà dei fasori

Uso dei fasori

Legge di Ohm nel dominio dei fasor

Impedenza e ammettenza

Serie e parallelo di impedenze e ammettenze

Il metodo simbolico dei fasori

Uso del metodo simbolico

Potenza istantanea, potenza attiva e potenza reattiva

Potenza complessa

Conservazione della potenza

Classificazione di bipol

Rifasamento

Conservazione della potenza

Teorema di conservazione della potenza complessa

In un circuito lineare, tempo invariante, alimentato da generatori sinusoidali isofrequenziali, a regime la somma delle potenze complesse fornite dai generatori è uguale alla somma delle potenze complesse assorbite dagli elementi circuitali.

Dimostrazione: $\mathbf{AI}=0$, quindi $\mathbf{AI}^*=0$ (perché \mathbf{A} è reale), quindi anche \mathbf{I}^* soddisfa la KCL. Per il teorema di Tellegen

$$\sum_{k} V_{k} I_{k}^{*} = 0 \Rightarrow \sum_{k} S_{k} = 0$$

Conseguenza

Questo significa che si conservano sia la potenza attiva che quella reattiva

Conservazione della potenza

Esempio:

P è la potenza dissipata dal resistore. Trovare $|V|, |I|, \cos \varphi$

Indice

Circuiti con generatori sinusoidali

Proprietà dei fasori

Uso dei fasori

Legge di Ohm nel dominio dei fasor

Impedenza e ammettenza

Serie e parallelo di impedenze e ammettenze

Il metodo simbolico dei fasori

Uso del metodo simbolico

Potenza istantanea, potenza attiva e potenza reattiva

Potenza complessa

Conservazione della potenza

Classificazione di bipoli

Rifasamento

Classificazione di bipoli

bipoli passivi	$R \ge 0, \ G \ge 0$	$P \ge 0$
bipoli resistivi	X = B = 0	Q = 0
bipoli reattivi	R=G=0	P = 0
bipoli induttivi	$X > 0, \ B < 0$	Q > 0
bipoli capacitivi	$X < 0, \ B > 0$	Q < 0

I bipoli costituiti esclusivamente da resistori, induttori e condensatori sono passivi

$$P = \sum_{k} P_{k} \ge 0$$

Indice

Circuiti con generatori sinusoidali

Proprietà dei fasori

Uso dei fasor

Legge di Ohm nel dominio dei fasor

Impedenza e ammettenza

Serie e parallelo di impedenze e ammettenze

Il metodo simbolico dei fasori

Uso del metodo simbolico

Potenza istantanea, potenza attiva e potenza reattiva

Potenza complessa

Conservazione della potenza

Classificazione di bipol

Rifasamento

Rifasamento

$$\begin{aligned} Q_C &= -\frac{1}{2}\omega \, C |V|^2 \\ Q_1 &= P_u \tan \varphi_1 \\ Q_2 &= P_u \tan \varphi_2 \\ Q_C &= Q_1 - Q_2 = P_u (\tan \varphi_1 - \tan \varphi_2) \\ C &= \frac{2|Q_C|}{\omega |V|^2} = \frac{2P_u (\tan \varphi_1 - \tan \varphi_2)}{\omega |V|^2} \end{aligned}$$

Rifasamento

Esempio: un carico assorbe 10kW con un fattore di potenza 0,75 in ritardo. La tensione è pari a 220 V efficaci e la frequenza è 50 Hz. Rifasare il carico in modo da portare il fattore di potenza a 0,95. Calcolare la corrente di linea e la potenza dissipata sulla linea prima e dopo il rifasamento, assumendo $R_I=0,5\Omega$.

Soluzione: L'angolo di fase iniziale è

$$\varphi_1 = \arccos 0,75 = 41,4^\circ$$

L'angolo di fase desiderato è

$$\varphi_2=rccos 0,95=18,2^\circ$$

Applicando la formula si ha

$$C = \frac{10^4 (\tan \varphi_1 - \tan \varphi_2)}{2\pi \cdot 50 \cdot 220^2} = 0,36 \text{mF}$$

Rifasamento

Esempio (cont.)

Per la corrente abbiamo

$$|I_1| = \frac{2P_u}{|V|\cos\varphi_1} = \frac{2 \cdot 10^4}{220\sqrt{2} \cdot 0,75} = 60\sqrt{2}A$$

Dopo il rifasamento

$$|I_2| = \frac{2P_u}{|V|\cos\varphi_2} = \frac{2 \cdot 10^4}{220\sqrt{2} \cdot 0,95} = 47,8\sqrt{2}A$$

La potenza dissipata prima del rifasamento è

$$P_{d1} = R_I |I_1|^2 = 0, 5 \cdot (60\sqrt{2})^2 = 3600$$
W

Dopo il rifasamento

$$P_{d2} = R_I |I_2|^2 = 0.5 \cdot (47.8\sqrt{2})^2 = 2284$$
W

Con una riduzione di 1316W.

Indice

Circuiti con generatori sinusoidali

Proprietà dei fasori

Uso dei fasori

Legge di Ohm nel dominio dei fasor

Impedenza e ammettenza

Serie e parallelo di impedenze e ammettenze

Il metodo simbolico dei fasori

Uso del metodo simbolico

Potenza istantanea, potenza attiva e potenza reattiva

Potenza complessa

Conservazione della potenza

Classificazione di bipoli

Rifasamento

- ► Ipotizziamo di avere un generatore fissato, mentre il carico è variabile
- ▶ Per quale valore del carico Z_u la potenza fornita dal generatore al carico è massima?

$$Z_g = R_g + jX_g$$
 $Z_u = R_u + jX_u$

$$P = \frac{1}{2}R_u|I|^2 = \frac{1}{2}\frac{R_u|E|^2}{(R_g + R_u)^2 + (X_g + X_u)^2}$$

Adattamento energetico

$$P = \frac{1}{2}R_u|I|^2 = \frac{1}{2}\frac{R_u|E|^2}{(R_g + R_u)^2 + (X_g + X_u)^2}$$

- ▶ Scegliendo $X_u = -X_g$ si ottiene $P = \frac{1}{2}|E|^2 \frac{R_u}{(R_g + R_u)^2}$
- La potenza è massima per

$$X_u = -X_g$$
; $R_u = R_g \Rightarrow Z_u = Z_g^*$

Condizione di adattamento energetico (massimo trasferimento di potenza): $Z_u = Z_g^*$

$$P_{max} = \frac{|E|^2}{8R_g}$$

Adattamento energetico

Esempio: Trovare l'impedenza Z_L che assorbe la massima potenza

$$Z_{Th} = 5||(8+j6) = \frac{40+j30}{13+j6} = \frac{700+j150}{205}\Omega$$

$$V_{Th} = 5 \cdot 2\frac{8-j4}{13+j6}V$$

$$Z_L = Z_{Th}^* = \frac{700 - j150}{205} \Omega$$

$$P_{max} = \frac{|V_{Th}|^2}{8R_{Th}} = \frac{\left(40\sqrt{\frac{5}{205}}\right)^2}{8 \cdot \frac{700}{205}} = 1,429 \,\mathrm{W}$$

Rendimento

- ▶ Per un carico adattato
 - $I = \frac{E}{Z_g + Z_L} = \frac{E}{2 R_g}$
 - ► $S_E = \frac{1}{2}EI^* = \frac{1}{4}\frac{|E|^2}{R_g} = P_E$ Potenza erogata dal generatore
 - $P_{max} = \frac{|E|^2}{8 R_g}$

$$\eta = \frac{P}{P_F}$$
 se $P = P_{max} \Rightarrow \eta = 0,5$

- ► Se si vuole massimizzare la potenza sul carico, il massimo rendimento ottenibile è del 50%
- lacktriangle Se si vuole massimizzare l'efficienza, occorre avere $R_L\gg R_g$

