# **Byzantine Generals Problem**

### Statement of the problem

N generals have to agree about a plain of action: whether to *attack* or to *retreat* during a phase of the war.



Some generals are traitors. Their actions can be modeled as Byzantine failures.

**Synchronous system** - message delays have upper bounds. The topology is completely connected.

How will they reach consensus?

# **Interactive Consistency Criteria**



The roles will switch and the generals will take turns to broadcast their orders.

- **IC1**. Every loyal lieutenant receives the same order from the commander.
- IC2. If the commander is loyal, then every loyal lieutenant receives the order that the commander sends.

## Communication using Oral messages

Messages are not corrupted in transit.

The absence/ loss of messages can be detected.

Receiver's / defaulter's identity is known.

# Consensus using oral messages

The goal of OM(m) is to satisfy IC1 & IC2 in presence of m traitors and n generals.

Review the easy case of m = 0. OM(0) is direct communication.

When m > 0, indirect communication is necessary. Each lieutenant will ask other lieutenants: What order did you get from the commander? Hopefully, this might resolve inconsistent orders by a traitor

# An impossibility result

Using oral messages, no solution is possible if n≤3m.

#### Consider the case m=1



(a) Commander is loyal (b) Commander is a traitor

If you can prove the result for m = 1, then you can prove the general result by dividing all m traitors into one group.

# The OM(m) algorithm

## OM(0)

1. The commander i sends out a value v (0 or 1) to every lieutenant j (j ≠ i), and each lieutenant j accepts it as the order from commander i.

## OM(m)

- 1. The commander i sends out a value v (0 or 1) to every lieutenant j ( $j \neq i$ )
- 2. If m > 0, then each lieutenant j, after receiving a value from the commander, initiates OM(m-1) Each lieutenant thus receives (n-1) values: a value directly received from the commander i and (n-2) values indirectly received orders from the (n-2) lieutenants when they executed OM(m-1).
- Each lieutenant chooses the *majority* of the (n-1) values received by it as the *order* from the commander i.

# An illustration of OM(1)



Example with m=1 and n=4

The total number of messages required is (n-1)(n-2)(n-3)... (n-m), i.e.  $O(n^m)$ 

Quite inefficient! Study an example with m=2 and m=7.

# Proof of the oral message algorithm

**Lemma** Let the *commander be loyal*, and **n > 2m+k**, where **m** = maximum number of traitors. Then **OM(k)** satisfies **IC2**.



**Basis.** The case k=0 is trivial **Inductive step.** Let it hold for k=r. Show that it holds for k=r+1.

By assumption n > 2m + r + 1. So n-1 > 2m + r > 2m. The values received via OM(r) are good (induction hypothesis). So, a majority of the values received by the lieutenants are good.

Theorem. If n > 3m then OM(m) satisfies both IC1 and IC2.

**Basis.** When m = 0, the theorem trivially holds. **Inductive Step**. Let it hold for m=r. Show that it holds for m=r+1.

Substitute k = m in the lemma. Two cases:

Case 1. Commander is loyal. Then OM(m) satisfies IC2, and hence IC1.

**Case 2.** Commander is a traitor. There are more than 3r+3 traitors, and there are r+1 traitors.



Each loyal lieutenant **i** will receive the same order from every other loyal lieutenant **j** -it is the value that **j** received from the (traitor) commander.

By the *induction hypothesis*, each loyal lieutenant will receive identical orders from the **r** traitors. So any choice function (like majority) on the set will produce the same result.