

Réseau de neurones artificiels et apprentissage profond

Pascal Germain Inria Lille - Nord Europe Équipe-projet Modal IA : Intelligence artificielle (AI : Artificial intelligence)

"Non-deep" feedforward neural network

Deep neural network

Source:

https://stats.stackexchange.com

Phase d'apprentissage

Phase de prédiction

sigmoide
$$(w_1x_1 + w_2x_2 + w_3x_3 + ...) = y$$

Maximum(0,
$$w_1x_1 + w_2x_2 + w_3x_3 + ...$$
) = y

Un réseau de neurones

28 x 28 784 pixels

Source: « NUMBRE—A NUMBer REcognizer Neural Network », Roshan Noronha

Intermède historique

• 1950-1960: Perceptron (le neurone)

1980-1990: Réseau de neurones à deux couches

• 1995-2005: L'hiver des réseaux de neurones

• 2006 - : Réseaux de neurones profonds

La renaissance

Recherche scientifique

Grand jeux de données

Puissance de calcul

Intérêt des grandes industries
 (Google, Facebook, Amazon, Microsoft, ...)

Apprentissage de représentations

Bouturage

La nouvelle technologie ? permet les crypto-monnaies
$$T = 3 \longrightarrow T = 3 \longrightarrow$$

France - Paris + Italie = Rome

Relationship	Example 1	Example 2	Example 3
France - Paris	Italy: Rome	Japan: Tokyo	Florida: Tallahassee
big - bigger	small: larger	cold: colder	quick: quicker
Miami - Florida	Baltimore: Maryland	Dallas: Texas	Kona: Hawaii
Einstein - scientist	Messi: midfielder	Mozart: violinist	Picasso: painter
Sarkozy - France	Berlusconi: Italy	Merkel: Germany	Koizumi: Japan
copper - Cu	zinc: Zn	gold: Au	uranium: plutonium
Berlusconi - Silvio	Sarkozy: Nicolas	Putin: Medvedev	Obama: Barack
Microsoft - Windows	Google: Android	IBM: Linux	Apple: iPhone
Microsoft - Ballmer	Google: Yahoo	IBM: McNealy	Apple: Jobs
Japan - sushi	Germany: bratwurst	France: tapas	USA: pizza

Source: Mikolov et al., Efficient Estimation of Word Representations in Vector Space, 2013

Attention aux biais

Homme – Programmeur + Femme = Ménagère

En terminant...

- Le domaine progresse très rapidement !
- Actuelles forces des réseaux de neurones :
 - Succès empiriques impressionnants
 (images, vidéos, reconnaissance de la parole, traduction, ...)
 - Flexibilité
 - Permets le transfert d'une tâche à une autre («bouturage»)
- Actuelles faiblesses des réseaux de neurones :
 - Demande beaucoup de « bidouillage »
 - Requiers de grandes bases d'apprentissage
 - Difficilement interprétables

Démo

https://playground.tensorflow.org/