CPSC 323 - PROJECT 2

Programming Assignment 2

Course Number	CPSC 323
Deadline	4 th December 2022

Project 2 consists of one program to be submitted/uploaded online on Canvas. Maximum 50 points.

You are allowed to write your project in C/C++/Java/Python etc. but you ARE NOT allowed to use **Yacc**, **Bison**, **or any other items similar** that assists in the creation of compilers.

Given the following CFG and the parsing table, write a program to trace input strings over the alphabet $\{i, +, -, *, /\}$, $(\}$ and **ending with \$.**

- 1. Given the CFG and the Predictive Parsing table below:
 - [40 points] Write a program to trace an input string given by the user. Save it as **Prog1** and upload it in canvas(either the zip file or GitHub link). Test your program with the following 3 input strings:
 - (1) (a+a)*a
 - (2) a*(a/a)\$
 - (3) a(a+a)\$
 - [8 points] Show the content of the stack implementation / stack flow after each match.
 - [2 points] Readme file
- 2. Following is the grammar, and parsing table

Given CFG	CFG after removing	First and Follow table
	left-recursion rules	
$E \rightarrow E+T$	$E \rightarrow TQ$	
$\mathbf{E} \to \mathbf{E}$ - T	$Q \rightarrow +TQ$	FIRST FOLLOW
$\mathbf{E} \to \mathbf{T}$	$\mathbf{Q} \rightarrow -\mathbf{T}\mathbf{Q}$	E (a \$)
$T \rightarrow T*F$	$\mathbf{Q} \rightarrow \varepsilon$	$ Q + - \varepsilon $ \$)
$T \rightarrow T/F$	$T \rightarrow F R$	T (a +-)\$
$T \rightarrow F$	$R \rightarrow *FR$	$ R / * _{\varepsilon} + -) $ \$
$\mathbf{F} \rightarrow (\mathbf{E})$	$R \rightarrow /FR$	F (a + - * /)
$\mathbf{F} \rightarrow \mathbf{a}$	$\mathbf{R} \rightarrow \varepsilon$	\$
	$\mathbf{F} \rightarrow (\mathbf{E})$	
	$\mathbf{F} \rightarrow \mathbf{a}$	

Predictive parsing table

states	a	+	-	*	/	()	\$
E	TQ					TQ		
Q		+TQ	-TQ				3	3
T	FR					FR		
R		3	3	*FR	/FR		3	3
F	a					(E)		

3. Output:

For the same grammar and parsing table if the input string is (a+a) \$, then **Output** must be displayed like this along the stack implementation Example,

Input: (a+a) \$ Stack: ['\$', 'Q', 'R']

Output: String is accepted/valid.

Input : (a+a) e \$ Stack : ['\$', 'Q', 'R']

Output: String is not accepted/ In valid.