Customer Churn Prediction

Lina Groth, Klara Kulinna, Jennifer Tielke, Marc Buddemeier

Use Case

- Telekommunikationsunternehmen TelCo America
- Standort USA
- Anbieter von Telekommunikationsdiensten, einschließlich Telefon- und Internetservices

AMERICA

Business Understanding

Ziele

Welche Ziele hat das Unternehmen mit dem Modell?

- Identifikation von abwanderungsgefährdeten Kunden
- Ermittlung von möglichen Gründe für Kundenabwanderung

Ergebnis

Welches Ergebnis erwünscht sich das Unternehmen aus den Zielen?

- Reduzierung der Kundenabwanderung
- Erhöhung der Kundenloyalität
- Erhöhung von langfristigen Kundenbeziehungen
- Steigerung der Umsätze durch bessere Kundenbindung

Prozesse

Welche Prozesse sollen durch das Modell verbessert werden?

- Kundenservice-Prozesse
 - Verbesserung der Reaktionsfähigkeit bei drohender Kundenabwanderung
 - o Entwicklung von Frühwarnsystemen zur frühzeitigen Erkennung von Kundenabwanderung
- Marketing- und Verkaufsstrategien
 - Entwicklung gezielter Marketingkampagnen für abwanderungsgefährdete Kunden

Klassifikation

Binäre Klassifikation von Kunden anhand von Kundendaten

Data Understanding

Vorhandene Informationen

Features

- Demografische Daten: Geschlecht, Alter, Verheiratet, Anzahl der Kinder
- Geographische Daten: Land, Bundesstaat, Stadt,
 Postleitzahl, Koordinaten und Bevölkerungsanzahl der Städte
- Gebuchte Dienste: monatliche Downloadraten, Vertragsdaten, monatliche Gebühren, ...
- Kundenstatus: Zufriedensheitsscore

Label

Churn (No/Yes)

Label

- 7.043 Datenpunkte
- Klasse "Retained" ist überrepräsentiert

Data Preparation

Spalten kodieren

Spalten entfernen

- Technische Identifier
 - Keine inhaltliche Bedeutung
 - o Customer ID, Location ID
- Konstante Spalten
 - o Wert ist für jede Entität gleich
 - o Country (nur USA), State (nur California), Quarter, Count

Strings kodieren

- Kodierung als True/False, falls es nur zwei unique Values gibt
- Kodierung mittels OneHot-Encoding, falls es viele Werte gibt

Spalten kodieren

```
for col in df.columns: # Iterate through each column
   # If the column has only one unique value or is technical ID, drop it because it cannot be
used for prediction
    if df[col].nunique() == 1 or col in coloumns to drop:
        df encoded = df encoded.drop(columns=[col])
   # If the column is a string column, encode it
    elif col in string_columns:
        if df[col].nunique() == 2: # If the column has only two unique values, use label encoding
            df_encoded[col] = label_encoder.fit_transform(df[col])
        else: # If the column has more than two unique values, use one-hot encoding
            df_encoded = pd.get_dummies(df_encoded, columns=[col], prefix=[col])
    else:
        continue
```

Data Understanding

Korrelationen zum "Churn"-Label

Feature	Beträge der Korrelation
Satisfaction Score	0,755
Contract_Month-to-Month	0,448
Tenure in Months	0,352
Contract_Two Year	0,328
City_Los Angeles	0.000397
City_Ontario	0.000136

Kundenzufriedenheit und Vertragsdauer zeigen hohe Korrelationen

Orte korrelieren kaum

Modeling

Mögliche Modelle

- Entscheidungsbäume (Bagging & Boosting)
- Naive Bayes
- Logistische Regression
- Support Vector Machines
- k-Nearest Neighbors
- Neuronale Netze

Vorgehensweise

- Verwendung von SMOTE, um die Klassenungleichgewichte auszugleichen
- ggf. Features skalieren, falls es für das Modell benötigt wird
- Verwendung k-Fold-Cross-Validation, um Modelle zu beurteilen
- Hyper-Parameter-Tuning mittels Grid Search

Evaluation

Metriken zur Modellbewertung

• Accuracy =
$$\frac{TP+TN}{TP+TN+FP+FN}$$

• Precision =
$$\frac{TP}{TP+FP}$$

• Recall =
$$\frac{TP}{TP+FN}$$

• F1 Score =
$$\frac{2}{\frac{1}{\text{Precision}} + \frac{1}{\text{Recall}}}$$

• Kosten = $FP + 5 \cdot FN$

Praktische Umsetzung

Bayes-Theorem

- Bedingte Wahrscheinlichkeiten
- Nimmt Featureunabhängigkeit an

$$P(A|B) = \frac{P(B|A) * P(A)}{P(B)}$$

Naive Bayes

Vor- und Nachteile

- Einfachheit
- Hohe Recheneffizienz
- Bei großen Datensätzen hohe erreichbare Genauigkeit

- Unabhängigkeitsannahme
- Keine komplexen Beziehungen modellierbar
- Empfindlichkeit gegenüber seltenen Ereignissen

Ergebnisse

Mit Gaussian Naive Bayes

Accuracy:

"nur" 89%

Bagging und Boosting

RandomForestClassifier

- Kombination von Vorhersagen
 - → Verringerung der Varianz
- Viele Entscheidungsbäume aus verschiedenen Stichproben
- Verringert Overfitting

AdaBoostClassifier

- Kombination vieler einfacher Modelle, um ein starkes Modell zu erstellen
- Schwache Entscheidungsbäume werden trainiert
- Ergebnisse werden neu gewichtet
- Reduzierung des Bias

Ergebnisse

Accuracy Boosting: 96%

Accuracy Bagging: 95%

Logistische Regression

Logistische Funktion

- Für binäre Ereignisse
- Wahrscheinlichkeitsberechnung für eine Linearkombination von Koeffizienten

$$P(Y=1|X) = rac{1}{1 + e^{-(eta_0 + eta_1 X_1 + eta_2 X_2 + \cdots + eta_n X_n)}}$$

Maximum-Likelihood-Schätzung

- Zur Identifizierung der β
- Kann über verschiedene
 Algotithmen durchgeführt werden:
 - Lbfgs: Limited-memory Broyden-Fletcher-Goldfarb-Shanno
 - Liblinear: Coordinate Descent-Algorithmus
 - Saga: Stochastic Average Gradient Augmented

```
clf = (
    LogisticRegression(
        max_iter=2000, solver='lbfgs',
        random_state=42))
```

```
param_grid = {
    'max_iter': [5000, 10000],
    'solver': ['lbfgs', 'liblinear'],
    'C': [0.1, 1, 10]
}
```

Vorteile und Nachteile

- Interpretierbarkeit
- Hohe Recheneffizienz
- Wahrscheinlichkeitsauswertung
 - Wahrscheinlichkeit pro Ereignis sichtbar
 - Macht Grenzfälle sichtbar

- Lineare Entscheidungsgrenze
- Empfindlichkeit gegenüber Ausreißern
- Multikollinearität
- Benötigt ausreichend Daten

Deployment

Deployment

- Modell exportieren
- Täglicher automatischer Analyse-Workflow
 - o Alle Kunden werden anhand aktueller Daten eingeschätzt
 - o Ergebnisse werden in Dashboard bereitgestellt
- o Ausblick: Explainable ML
 - o Modell soll erklären können, warum es "Churn" vorhersagt, um genau dort gegensteuern zu können

Überwachung des Modells

- Monatlich werden Predictions gespeichert und mit tatsächlichem Kundenverhalten verglichen
- Tatsächliche Accuracy wird ebenfalls im Dashboard bereitgestellt
- Falls Accuracy unter 90 % fällt, wird das Modell mit neuen Daten automatisch trainiert
- Falls Accuracy nicht wieder 90 % erreicht, automatische Benachrichtung
- Erneute manuelle Evaluierung der Parameter und Modelle

Fazit

Fazit

- Modell hat mit ca. 97,5 % eine sehr hohe Genauigkeit und kann damit dem Kundensupport helfen, Kunden zu identifizieren, die drohen abzuwandern
- Dashboard ermöglicht einfache Verwendung des Modells, um abwanderungsgefährdete Kunden zu identifizieren, um die Gründe dahinter weiter zu analysieren

Kritische Reflexion

- Nutzer des Modells erhalten keine Erklärung, warum Kunde abwandern möchte
- Festlegung der Kosten für FN und FP war eher willkürlich
- Künstlich erstellter Datensatz, sodass Accuracy mit echten Daten evtl. nicht erreichbar ist
- Ausgewähltes Modell zeigte höchste Accuracy
 - Es gibt unendliche viele Kombinationen für ausgewählte Modelle, Features, etc.
 - Andere Modelle können evtl. bessere Ergebnisse erreichen

Vielen Dank für Ihre Aufmerksamkeit!