Quality Assurance Testing for the Crop BMP Dataset: FDACS_UFGA8201_peanut.94.xlsx

Jeff White, Univ. Florida

2025-02-24

1. Introduction

In preparing datasets based on the BMP data template, researchers need to check that their data are entered correctly, that the dataset is formatted as intended, and that variables are correctly defined. The goal of this report is to allow users to conduct a series of quality assurance (QA) tests on a dataset prior to submitting the data to a repository or funding agency. The underlying R script reviews crop BMP datasets according to the "four C's", whereby a dataset is:

- 1. Correct: The values are accurate within the expected range of measurement error. We emphasize that the main error-checking should be done as a part of the normal data management pipeline prior to loading into the BMP template.
- 2. Complete: The dataset is complete enough to enable further analysis without researchers having to seek guidance on how the crop was grown, weather conditions, etc.
- 3. Coherent: Identifiers (keys) used to link data across sheets are used consistently.
- 4. Compatible: By linking the BMP terminology to the ICASA standards, we expect that datasets can be used with a wide range of tools including artificial intelligence, machine learning and either simulation or statistical models.

This document (the exported PDF) is produced by running the knit command within RStudio. It alternates between text (such as this section), blocks of the R script, and blocks of output from R. Users who are familiar with R and R Markdown should feel free to modify the markdown file as needed.

1.1. Checking that the file is read as expected

We first list all sheets in the file FDACS_UFGA8201_peanut.94.xlsx. The list includes sheets that are defined but have no data.

[1] "START HERE" "Terminology" [3] "List of sheets and keys" "M1. Experiments" [5] "M2. Sites" "M3. Experimental Design" [7] "E1. Treatments" "E2. Fields" [9] "E3. Plots" "E4. Crop Information" [11] "E5. Planting" "E6. Irrigation" [13] "E7. Fertilizer" "E9. Tillage" [15] "E8. Organic Amendments" "E10. Chemical Applications" [17] "E11. Harvest" "E12. Preplant Soil" [19] "01. Analysis Methods" "02. Yield Summary"

[21]	"03.	Crop Growth"	"04.	Crop Health"
[23]	"05.	Soil Surface Properties"	"06.	Soil Layer Properties"
[25]	"07.	Water"	"S1.	Soil Metadata"
[27]	"S2.	Soil Layer Properties"	"W1.	Weather Station Metadata"
[29]	"W2.	Daily Weather Data"	"Z1.	Dictionary Metadata"
[31]	"Z2.	Dictionary Observations"	"Z3.	Dictionary Soils Weather"

2.0. Correct and Complete?: Summarizing the Content of Individual Sheets

Summaries are generated for the contents of each sheet except for the first three sheets, which contain instructions, and the last three, which are the dictionaries. If sufficient numeric data are present, boxplots are created for any numeric variables, including management levels.

Results for each sheet should be checked to make sure they match expectations for all variables. The QA tool is *not* meant as the primary means of detecting incorrect values. We assume the researchers have already conducted extensive quality control.

2.1. Summaries for each sheet (Tabular summaries first, then box plots of numeric variables).

If numeric data appear in tables of frequencies, this means the data for the variable has been interpreted as text (character sting). This can arise if there are any non-numeric values such as "." in the original data. Be sure to check rows below the actual data in case a character has inadvertently been entered below the main data.

Depending on the amount of data in the sheets, the corresponding group of box plots may appear after the summary of the next sheet (i.e., the box plots will be slightly out of order).

START processing M1..Experiments

Variable	Value	Frequency
Experiment name	Peanut cultivars x four N rates	1
Experiment ID	UFGA8201	1
Research data owner	Selamat and Gardner	1
Institutional data owner	University of Florida	1
Publication journal & volum	Agronomy J 77:862-867	1
Link to document	https://acsess.onlinelibrary.wiley.com/doi/ab	1
Publication DOI	abs/10.2134/agronj1985.00021962007700060009x	1
Should data be anonymized?	N	1

End of processing for M1..Experiments

START processing M2..Sites

Variable	Value	Frequency
Site	UFGA	1
Local name for experiment s	Agronomy Farm	1
State	FL	1
County	Alachua	1
Town or other	Gainesville	1

End of processing for M2..Sites

START processing M3.. Experimental. Design

Variable Value Frequency
Experiment ID UFGA8201 1

Site	UFGA	1
Treatment structure	RCBD	1
Type of experiment	Station experiment	1
Main effect 1	Cultivar	1
Main effect 2	Nitrogen	1

End of processing for M3..Experimental.Design

START processing E1..Treatments

Variable		Value	Frequency
${\tt Treatment}$	${\tt name}$	Early Bunch, Okg N	1
${\tt Treatment}$	name	Early Bunch, 60kg N	1
${\tt Treatment}$	name	Early Bunch,120kg N	1
${\tt Treatment}$	${\tt name}$	Early Bunch,240kg N	1
${\tt Treatment}$	name	Florunner, Okg N	1
${\tt Treatment}$	name	Florunner, 60kg N	1
${\tt Treatment}$	name	Florunner,120kg N	1
${\tt Treatment}$	name	Florunner,240kg N	1
${\tt Treatment}$	name	Non-nod (M4-2), OkgN	1
${\tt Treatment}$	name	Non-nod (M4-2), 60kg	1
${\tt Treatment}$	name	Non-nod (M4-2),120kg	1
${\tt Treatment}$	${\tt name}$	Non-nod (M4-2),240kg	1
Experiment	t ID	UFGA8201	12
Site		UFGA	12

Treatment.number Crop.ID Fertilizer.schedule Harvest.schedule Min. : 1.00 :1.00 Min. :1 Min. Min. :1 1st Qu.: 3.75 1st Qu.:1 1st Qu.:1.75 1st Qu.:1 Median : 6.50 Median:2.50 Median :2 Median :2 Mean : 6.50 Mean :2 Mean :2.50 Mean :2 3rd Qu.: 9.25 3rd Qu.:3 3rd Qu.:3.25 3rd Qu.:3 Max. :12.00 :4.00 Max. :3 Max. Max. :3

No id variables; using all as measure variables

End of processing for E1..Treatments

START processing E2..Fields

Variable	Value	Frequency
Experiment ID	UFGA8201	1
Site	UFGA	1
Field location	1	1
Soil ID	IBPN910015	1
Weather station ID	UFGA	1

End of processing for ${\tt E2..Fields}$

* ======== * *

START processing E3..Plots

Variable		Value	Frequency
Experiment	ID	UFGA8201	12
Site		UFGA	12

Plot.ID	Treatment.number
Min. : 1.00	Min. : 1.00
1st Qu.: 3.75	1st Qu.: 3.75
Median: 6.50	Median: 6.50
Mean : 6.50	Mean : 6.50
3rd Qu.: 9.25	3rd Qu.: 9.25
Max. :12.00	Max. :12.00

No id variables; using all as measure variables

End of processing for E3..Plots

*

${\tt START\ processing\ E4..Crop.Information}$

Variable	Value	Frequency
Experiment ID	UFGA8201	3
Site	UFGA	3
Crop species	Peanut	3

Cultivar 1	EARLY BUNCH	1
Cultivar 1	FLORUNNER, std	1
Cultivar I	Non-Nodulated	1
Intended crop usage	Cash crop	1
Intended crop usage	Cover crop	1
Intended crop usage	Seed	1
Cultivar notes	M4-2, non-nodulating line	1

End of processing for E4..Crop.Information

START processing E5..Planting

Variable Value Frequency
Experiment ID UFGA8201 1
Site UFGA 1
Planting material dry seed 1
Planting distribution row 1

End of processing for E5..Planting

START processing E6..Irrigation

Variable	Value	Frequency
Experiment ID	UFGA8201	1
Site	UFGA	1
Type of irrigation	sprinkle	1
Notes related to irrigation	Paper reports two irrigations, but	original f 1

End of processing for E6..Irrigation

START processing E7..Fertilizer

Variable	Value	Frequency
Experiment ID	UFGA8201	17
Site	UFGA	17
Nutrient Source	Ammonium nitrate	9
Nutrient Source	compound fertilizer	4
Nutrient Source	gypsum	4
Placement	broadcast	8
Placement	side-dressed	9
Analysis	?	4
Analysis	34:0:0	9
Application timing	40 d	3
Application timing	80 d	3
Application timing	planting	3
Application timing	pod initiation	4
Application timing	preplant	4
Notes related to application	700 kg/ha. Date not given. Assuming 60 DAP.	. 4
Notes related to application	Date not given	4

Fertilizer.schedule Date Amount.of.elemental.N.applied

Min.	:1.000	Min.	:1982-0	5-10	Min.	: 0.00	
1st Qu.	:2.000	1st Qu.	:1982-0	5-10	1st Qu.	: 0.00	
Median	:2.000	Median	:1982-0	6-19	Median	:20.00	
Mean	:2.471	Mean	:1982-0	6-15	Mean	:24.71	
3rd Qu.	:3.000	3rd Qu.	:1982-0	7-15	3rd Qu.	:40.00	
Max.	:4.000	Max.	:1982-0	7-29	Max.	:80.00	
Amount.	$\hbox{\tt of.elemental}$.P.appli	led Amou	nt.of.e	elementa	al.K.applied	De
Min.	:0.0000		Min.	:0.0	000		Mi
1st Qu.	:0.0000		1st. (D11.:0.0	000		1s

epth.of.incorporation in. : 0.0001st Qu.: 0.000 1st Qu.:0.0000 Median :0.0000 Median :0.000 Median : 0.000 :0.5882 :2.118 : 4.615 Mean Mean Mean 3rd Qu.:0.0000 3rd Qu.:0.000 3rd Qu.: 0.000 :2.5000 :9.000 :20.000 Max. Max. Max.

NA's :4

No id variables; using all as measure variables

End of processing for E7..Fertilizer

START processing E9..Tillage

Variable	Value	Frequency
Experiment ID	UFGA8201	3
Site	UFGA	3
Type of tillage operation	broadcast fertilizer application	1
Type of tillage operation	broadcast fertilizer application, gypsum	1

Type of tillage operation row planting with initial nitrogen	1
Notes related to operation "Preplant" but date not given. No information	1 1
Notes related to operation 700 kg/ha. Date not given. Assuming 60 DAP.	1
Notes related to operation Assuming one pass planting and side-dress	1

End of processing for E9..Tillage

START processing E8..Organic.Amendments

[1] Variable Value Frequency
<0 rows> (or 0-length row.names)

End of processing for E8..Organic.Amendments

* ============= *

START processing E10..Chemical.Applications

Variable	Value	Frequency
Experiment ID	UFGA8201	10
Site	UFGA	10
Name of chemical applied	Balan (N-buthyl-N-ethyl-a-a-a-trifluro-2,6-di	1
Name of chemical applied	Bravo (tetrachloroisothalonitrile)	4
Name of chemical applied	Sevin (1-naphyl N-methyl-carbamate)	4
Name of chemical applied	Vernam (S-propyl dipropylthio-carbamate)	1
Chemicals application metho	broadcast	2
Chemicals application metho	sprayed	8
Notes related to applicatio	biweekly from 60 DAP to maturity	8
Notes related to applicatio	"preplant", date is guess	2

Date Chemicals.application.amount

:1982-05-05 Min. :0.90 1st Qu.:1982-07-09 1st Qu.:1.36 Median :1982-07-23 Median:1.82 :1982-07-07 Mean Mean :1.82 3rd Qu.:1982-07-23 3rd Qu.:2.28 Max. :1982-08-06 Max. :2.74 NA's :8

No id variables; using all as measure variables

End of processing for E10..Chemical.Applications

*

START processing E11.. Harvest

Variable	Value	Frequency
Experiment ID	UFGA8201	3
Site	UFGA	3
Crop species harvested	peanut	3
Harvest component	seed	3
Harvest method	hand	3

End of processing for E11..Harvest

START processing E12..Preplant.Soil

Variable		Value	Frequency
Experiment	ID	UFGA8201	9
Site		UFGA	9

Depth.of.measurement..top.of.soil.layer Depth.of.measurement..bottom.of.soil.layer

Min. : 0.00 : 5.00 Min. 1st Qu.: 15.00 1st Qu.: 30.00 Median : 45.00 Median : 60.00 Mean : 57.22 Mean : 77.22 3rd Qu.: 90.00 3rd Qu.:120.00 Max. :150.00 Max. :180.00

Soil.water.content Ammonium.N Min. :0.0760 :0.500 Min. 1st Qu.:0.0860 1st Qu.:0.500 Median :0.0860 Median :1.500 :0.1078 Mean Mean :1.067 3rd Qu.:0.0860 3rd Qu.:1.500 :0.2580 Max. Max. :1.500

No id variables; using all as measure variables

START processing 01.. Analysis. Methods

[1] Variable Value Frequency
<0 rows> (or 0-length row.names)

End of processing for ${\tt O1..Analysis.Methods}$

START processing 02..Yield.Summary

Variable		Value	Frequency
Experiment	ID	UFGA8201	12
Site		UFGA	12

Plot.ID	Treatment.numbe	r Seed.yield	Single.seed.wt	Seed.per.m2
Min. : 1.00	Min. : 1.00	Min. : 680	Min. :0.3560	Min. :191.0
1st Qu.: 3.75	1st Qu.: 3.75	1st Qu.:1811	1st Qu.:0.4195	1st Qu.:238.8
Median: 6.50	Median : 6.50	Median :2108	Median :0.5820	Median :321.5
Mean : 6.50	Mean : 6.50	Mean :1941	Mean :0.6378	Mean :317.8
3rd Qu.: 9.25	3rd Qu.: 9.25	3rd Qu.:2251	3rd Qu.:0.9187	3rd Qu.:383.2
Max. :12.00	Max. :12.00	Max. :2714	Max. :0.9470	Max. :455.0
LAI.max	Tops.dry.wt	Pod.dry.wt	Harvest.index	Pod.harvest.index
Min. :3.930	Min. :10400	Min. :1068	Min. :0.0620	Min. :0.0980
1st Qu.:4.207	1st Qu.:11600	1st Qu.:2570	1st Qu.:0.0865	1st Qu.:0.1227
Median :5.025	Median :16050	Median:2882	Median :0.1255	Median :0.1605
Mean :5.220	Mean :15350	Mean :2664	Mean :0.1331	Mean :0.1837
3rd Qu.:6.037	3rd Qu.:18050	3rd Qu.:3024	3rd Qu.:0.1855	3rd Qu.:0.2597
Max. :6.900	Max. :21900	Max. :3453	Max. :0.2050	Max. :0.2870
NA's :8				
Threshing.perce	ent Tops.nitrogen	Seed.nitroge	en.tot Seed.nitrog	gen.conc.
Min. :62.60	Min. : 98.6	Min. : 20.	20 Min. :2.9	70
1st Qu.:69.75	1st Qu.:190.9	1st Qu.: 65.	62 1st Qu.:3.6	600
Median :71.65	Median :215.7	Median :105.	70 Median :4.7	750
Mean :72.18	Mean :214.7	Mean : 88.	.33 Mean :4.3	353
3rd Qu.:76.83	3rd Qu.:259.3	3rd Qu.:110.	50 3rd Qu.:4.9	35
Max. :78.70	Max. :301.3	Max. :126.	.00 Max. :5.2	240

No id variables; using all as measure variables

START processing 03..Crop.Growth

Variable Value Frequency Experiment ID UFGA8201 28

Treatment.number Plot.ID Sampling.date Leaf.area.index Tops.dry.weight Min. : 1.000 Min. : 1.000 Min. :1982-06-29 Min. :0.4200 Min. :10400 1st Qu.: 2.000 1st Qu.: 2.000 1st Qu.:1982-07-09 1st Qu.:0.8025 1st Qu.:11600 Median : 3.000 Median : 3.000 Median :1.6900 Median :16050 Median: 1982-08-13 Mean : 4.214 Mean :15350 Mean : 4.214 Mean :1982-08-18 Mean :2.3065 3rd Qu.: 5.250 3rd Qu.:1982-09-27 3rd Qu.:3.6725 3rd Qu.:18050 3rd Qu.: 5.250 Max. :12.000 :12.000 :1982-10-02 Max. Max. Max. :6.9000 Max. :21900 NA's :8 NA's :16 Pod.dry.weight Seed.dry.weight Unit.seed.weight Seed.number Harvest.index Min. :1068 Min. : 680 Min. :356.0 Min. :191.0 Min. :0.0620 1st Qu.:2570 1st Qu.:1811 1st Qu.:419.5 1st Qu.:238.8 1st Qu.:0.0865 Median:2882 Median:2147 Median :582.0 Median :321.5 Median: 0.1255 Mean :2664 Mean :1948 Mean :637.8 Mean :317.8 Mean :0.1331 3rd Qu.:3024 3rd Qu.:2251 3rd Qu.:918.8 3rd Qu.:383.2 3rd Qu.:0.1855 Max. :3453 Max. :2714 Max. :947.0 Max. :455.0 Max. :0.2050 NA's NA's :16 NA's NA's NA's :16 :16 :16 :16 Leaf.nitrogen Pod.harvest.index Shelling.percent Tops.nitrogen Seed.nitrogen Min. :0.0980 Min. :62.60 Min. : 98.6 Min. :32.40 Min. : 20.20 1st Qu.:0.1227 1st Qu.:69.75 1st Qu.:190.9 1st Qu.:38.20 1st Qu.: 65.62 Median :0.1605 Median :71.65 Median :215.7 Median :47.30 Median :105.70 :72.18 Mean :0.1837 Mean Mean :214.7 Mean :50.38 Mean : 88.33 3rd Qu.:0.2597 3rd Qu.:76.83 3rd Qu.:259.3 3rd Qu.:60.15 3rd Qu.:110.50 Max. :0.2870 :78.70 :301.3 :75.90 :126.00 Max. Max. Max. Max. NA's :16 NA's :16 NA's :16 NA's :16 NA's :16 Seed.N.concentration Leaf.N.concentration Stem.N.concentration

Min.

Mean

Max.

NA's

:0.770

:1.047

:1.260

:16

1st Qu.:0.770

Median :1.110

3rd Qu.:1.260

NA's No id variables; using all as measure variables

Min.

Mean

Max.

:1.930

:2.723

:3.330

:16

1st Qu.:1.930

Median :2.910

3rd Qu.:3.330

UFGA

28

Site

Min.

Mean

Max.

NA's

:3.010

:4.341

:5.050

:16

1st Qu.:3.600

Median :4.755

3rd Qu.:4.942

End of processing for 03Crop.Growth * ===================================	*					
START processing 04Crop.Health						
[1] Variable Value Frequency <0 rows> (or 0-length row.names)						
End of processing for 04Crop.Health * ===================================	*					
START processing 05Soil.Surface.Properties						
<pre>[1] Variable Value Frequency <0 rows> (or 0-length row.names)</pre>						
End of processing for 05Soil.Surface.Properties *	*					
START processing 06Soil.Layer.Properties						
[1] Variable Value Frequency <0 rows> (or 0-length row.names)						
End of processing for O6Soil.Layer.Properties *	*					
START processing 07Water						
[1] Variable Value Frequency <0 rows> (or 0-length row.names)						
End of processing for 07Water * ====================================	*					
START processing S1Soil.Metadata						
Variable Soil ID IBPN910015 Soil name Millhopper Fine Sand Soil classification Loamy, silic, hyperth Gross. Paleudults Soil classification system USDA Source of soil data DSSAT Anonymize N	Frequency 1 1 1 1 1 1					
End of processing for S1Soil.Metadata *	*					
START processing S2Soil.Layer.Properties						
Variable Value Frequency Soil ID IBPN910015 9						

1st Qu.: 7.40

Median :15.80 Mean :14.68

3rd Qu.:27.60 Max. :28.00

No id variables; using all as measure variables

End of processing for S2..Soil.Layer.Properties

*

START processing W1..Weather.Station.Metadata

Variable			Value	Frequency
	Weather station	ID	UFGA	1
	Weather station	name	${\tt Gainesville,Florida,USA}$	1
	Anonymize		N	1

End of processing for W1..Weather.Station.Metadata

START processing W2..Daily.Weather.Data

Variable Value Frequency
Weather station ID UFGA 365

Date Minimum.daily.air.temperature Maximum.daily.air.temperature

:1982-01-01 Min. :-7.80 Min. :10.00 1st Qu.:1982-04-02 1st Qu.:12.80 1st Qu.:25.60 Median :1982-07-02 Median :16.70 Median :28.90 Mean :1982-07-02 Mean :15.69 Mean :28.27 3rd Qu.:1982-10-01 3rd Qu.:21.10 3rd Qu.:32.20 Max. :1982-12-31 Max. :26.10 :35.60 Max. Daily.precipitation Solar.radiation PAR

Min. : 0.000 Min. : 0.80 : 2.20 Min. 1st Qu.: 0.000 1st Qu.:10.30 1st Qu.:22.00 Median : 0.000 Median :14.00 Median :28.00 Mean : 4.232 Mean :14.65 Mean :29.66 3rd Qu.: 1.300 3rd Qu.:37.60 3rd Qu.:19.00 Max. :98.800 Max. :26.90 Max. :57.20

No id variables; using all as measure variables

2.2. Correct Dates? Are events sequenced as expected?

Dates of key management events such as plantings, irrigations and harvests are sometimes entered incorrectly. A common problem is inversion of days and months (is '3/5' "March 5" or "3 April"?). To check dates, we plot management events for each combination of Experiment, Site and Year along a timeline. To reduce the potential number of plots, data from different treatments and replicates are pooled together. This means some timelines may include multiple instances of plantings, fertilizer applications, harvests or other events. We currently do not consider crop phenology such as flowering or maturity dates.

Warning: Removed 1 row containing missing values or values outside the scale range ('geom_point()').

Warning: Removed 1 row containing missing values or values outside the scale range ('geom_text()').

Timelines for Experiments, Sites and Years

Replicates or treatments having identical event dates are shown as a single line.

2.3. Correct geocoordinates? Are locations mapped as expected?

Experience shows that datasets often have errors in location data. This section checks that any reported geocoordinates are roughly correct by mapping. Geocoordinates may appear in four sheets:

- M2. Sites
- E2. Fields
- S1. Soil Metadata
- W1. Weather Station Metadata

To facilitate processing, we extract the geocoordinates and the location name, and add as 'Source' the name of the individual sheet containing the data.

2.3.1. List of all expected geocoordinates

Source	Location	Lat	Long
M2. Sites	UFGA	29.63696	-82.37041
E2. Fields	1	NA	NA
S1. Soil Meta	IBPN910015	29.63000	-82.37000
W1. Weather	UFGA	29.63000	-82.37000

2.3.2. Displaying the reference map of Florida with any reported locations

Here we use a map of Florida as the base. If latitude or longitude values are very far off (e.g., if the values are reversed or longitude is assigned a positive value for anywhere in the Americas), the map will display, but it may be distorted and not look like the expected base map of Florida.

Warning: Removed 1 row containing missing values or values outside the scale range ('geom_point()').

The option position = position_jitter is used so that if there are a large number of points with nearly identical locations, these are spread out slightly.

2.4. Completeness of sheets: Checking whether sheets present in the template are missing from the dataset

Users may add sheets as needed but are discouraged from deleting sheets.

The sheet names match.

2.5. Completeness of data in individual sheets

To assess completeness, we need to know whether most of the variables actually have data values (e.g., are not empty cells). Below is a count of total values for variables used in each sheet. To avoid the output being split into two sections, variable names that are longer than 30 characters are truncated.

Total Non-Missing Values across all sheets: 4286

Total Missing Values across all sheets: 811

Sheet_name	Variable	${\tt Non}_{\tt NA}$	Missing
M1. Experiments	Experiment name	1	0
M1. Experiments	Experiment ID	1	0
M1. Experiments	Research data owner	1	0
M1. Experiments	Institutional data owner	1	0
M1. Experiments	Contributor e-mail	0	1
M1. Experiments	Publication journal & volume	1	0
M1. Experiments	Link to document	1	0
M1. Experiments	Publication DOI	1	0
M1. Experiments	Should data be anonymized?	1	0
M1. Experiments	Data release date	0	1
M2. Sites	Site	1	0
M2. Sites	Local name for experiment site	1	0
M2. Sites	State	1	0
M2. Sites	County	1	0
M2. Sites	Town or other	1	0
M2. Sites	Latitude	1	0
M2. Sites	Longitude	1	0
M3. Experimental Design	Experiment ID	1	0
M3. Experimental Design	Site	1	0
M3. Experimental Design	Rate treatments	1	0
M3. Experimental Design	Replicates	1	0
M3. Experimental Design	Treatment structure	1	0
M3. Experimental Design	Type of experiment	1	0
M3. Experimental Design	Main effect 1	1	0
M3. Experimental Design	Main effect 2	1	0
M3. Experimental Design	Plot width	0	1
M3. Experimental Design	Plot length	1	0
E1. Treatments	Treatment number	12	0
E1. Treatments	Treatment name	12	0
E1. Treatments	Experiment ID	12	0
E1. Treatments	Site	12	0
E1. Treatments	Field location	12	0
E1. Treatments	Study year	12	0
E1. Treatments	Crop ID	12	0

E1	Treatments	Dlanting ashadula	10	^
		Planting schedule	12 12	0
	Treatments	Irrigation schedule		0
	Treatments	Fertilizer schedule	12	0
	Treatments	Organic amendments schedule	12	0
	Treatments	Chemical applications schedule	12	0
E1.	Treatments	Tillage schedule	12	0
E1.	Treatments	Harvest schedule	12	0
E1.	Treatments	Soil initial conditions ID	12	0
E1.	Treatments	Comments about treatment	0	12
E2.	Fields	Experiment ID	1	0
E2.	Fields	Site	1	0
E2.	Fields	Field location	1	0
E2.	Fields	Latitude	0	1
E2.	Fields	Longitude	0	1
	Fields	Soil ID	1	0
	Fields	Weather station ID	1	0
	Fields	Distance to weather station	0	1
	Fields	Field area	0	1
	Fields		0	1
	Fields	Field clare	0	1
		Field slope		_
	Fields	Drainage type	0	1
	Fields	Water table depth	0	1
	Fields	Type of organic matter	0	1
	Fields	Dry mass of surface organic ma	1	0
	Fields	Nitrogen concentration in surf	1	0
	Fields	Phosphorus concentration in su	1	0
E2.	Fields	Portion of residue incorporate	1	0
E2.	Fields	Depth of residue incorporation	1	0
ЕЗ.	Plots	Plot ID	12	0
ЕЗ.	Plots	Experiment ID	12	0
ЕЗ.	Plots	Site	12	0
ЕЗ.	Plots	Field location	12	0
Е3.	Plots	Treatment number	12	0
Е3.	Plots	Replicate	12	0
E4.	Crop Information	Experiment ID	3	0
E4.	Crop Information	Site	3	0
	Crop Information	Year	3	0
	Crop Information	Crop ID	3	0
	Crop Information	Crop species	3	0
	Crop Information	Cultivar	3	0
	Crop Information	Intended crop usage	3	0
	Crop Information	Cultivar notes	1	2
	Planting	Experiment ID	1	0
	Planting	Site	1	0
	Planting	Year	1	0
	Planting		1	0
	Planting	Planting schedule Planting date	1	0
	Planting	_	1	0
	O	Row spacing	=	
	Planting	Planting density	1	0
	Planting	Plant density at emergence	0	1
	Planting	Planting material	1	0
	Planting	Planting distribution	1	0
	Irrigation	Experiment ID	1	0
Ľб.	Irrigation	Site	1	0

DC T	37		0
E6. Irrigation	Year	1	0
E6. Irrigation	Irrigation schedule	1	0
E6. Irrigation	Date of irrigation	1	0
E6. Irrigation	Type of irrigation	1	0
E6. Irrigation	Amount of irrigation	1	0
E6. Irrigation	Notes related to irrigation	1	0
E7. Fertilizer	Experiment ID	17	0
E7. Fertilizer	Site	17	0
E7. Fertilizer	Year	17	0
E7. Fertilizer	Fertilizer schedule	17	0
E7. Fertilizer	Date	17	0
E7. Fertilizer	Nutrient Source	17	0
E7. Fertilizer	Amount of elemental N applied	17	0
E7. Fertilizer	Amount of elemental P applied	17	0
E7. Fertilizer	Amount of elemental K applied	17	0
E7. Fertilizer	Placement	17	0
E7. Fertilizer	Depth of incorporation	13	4
E7. Fertilizer	Analysis	13	4
E7. Fertilizer	Application timing	17	0
E7. Fertilizer	Notes related to application	8	9
		3	0
E9. Tillage	Experiment ID Site		
E9. Tillage		3	0
E9. Tillage	Year	3	0
E9. Tillage	Tillage schedule	3	0
E9. Tillage	Date	3	0
E9. Tillage	Type of tillage operation	3	0
E9. Tillage	Depth of incorporation	3	0
E9. Tillage	Notes related to operation	3	0
E8. Organic Amendments	Experiment ID	0	0
E8. Organic Amendments	Site	0	0
E8. Organic Amendments	Year	0	0
E8. Organic Amendments	Organic amendments schedule	0	0
E8. Organic Amendments	Date	0	0
E8. Organic Amendments	Type of organic matter	0	0
E8. Organic Amendments	Amount of organic matter	0	0
E8. Organic Amendments	Placement	0	0
E8. Organic Amendments	Depth of incorporation	0	0
E8. Organic Amendments	N concentration	0	0
E8. Organic Amendments	Notes related to application	0	0
E10. Chemical Applications	Experiment ID	10	0
E10. Chemical Applications	Site	10	0
E10. Chemical Applications	Year	10	0
E10. Chemical Applications	Chemical application schedule	10	0
E10. Chemical Applications	Date	10	0
E10. Chemical Applications	Name of chemical applied	10	0
E10. Chemical Applications	Chemicals application amount	10	0
E10. Chemical Applications	Chemicals application method	10	0
E10. Chemical Applications	Depth of application	10	0
E10. Chemical Applications	Chemicals application target	0	10
E10. Chemical Applications	Notes related to application	10	0
E11. Harvest	Experiment ID	3	0
E11. Harvest	Site	3	0
E11. Harvest	Year	3	0
E11. Harvest	Harvest schedule	3	0
		-	-

E44 II	II	^	2
E11. Harvest	Harvest date	0	3
E11. Harvest	Crop species harvested	3	0
E11. Harvest	Harvest component	3	0
E11. Harvest	Harvest method	3	0
E11. Harvest	Main product harvested	3	0
E11. Harvest	By-product harvested	3	0
E12. Preplant Soil	Experiment ID	9	0
E12. Preplant Soil	Site	9	0
E12. Preplant Soil	Year	9	0
E12. Preplant Soil	Soil initial conditions ID	9	0
E12. Preplant Soil	Sampling date	9	0
E12. Preplant Soil	Depth of measurement, top of s	9	0
E12. Preplant Soil	Depth of measurement, bottom o	9	0
E12. Preplant Soil	Soil water content	9	0
E12. Preplant Soil	Nitrate N	9	0
E12. Preplant Soil	Ammonium N	9	0
E12. Preplant Soil	Stable organic C	0	9
O1. Analysis Methods	Experiment ID	0	0
O1. Analysis Methods	Full parameter name	0	0
O1. Analysis Methods	Header name (in data file)	0	0
O1. Analysis Methods	Unit	0	0
O1. Analysis Methods	Matrix	0	0
O1. Analysis Methods	Analytical laboratory	0	0
O1. Analysis Methods	Analysis method	0	0
O1. Analysis Methods	EPA method	0	0
O1. Analysis Methods	Computation method	0	0
02. Yield Summary	Experiment ID	12	0
02. Yield Summary	Site	12	0
02. Yield Summary	Year	12	0
02. Yield Summary	Plot ID	12	0
02. Yield Summary	Treatment number	12	0
02. Yield Summary	Replicate	0	12
O2. Yield Summary	Seed yield	12	0
O2. Yield Summary	Single seed wt	12	0
O2. Yield Summary	Seed per m2	12	0
02. Yield Summary	LAI max	12	0
		12	0
02. Yield Summary	Tops dry wt		_
02. Yield Summary	Pod dry wt	12	0
02. Yield Summary	Harvest index	12	0
02. Yield Summary	Pod harvest index	12	0
02. Yield Summary	Threshing percent	12	0
02. Yield Summary	Tops nitrogen	12	0
O2. Yield Summary	Seed nitrogen tot	12	0
02. Yield Summary	Seed nitrogen conc.	12	0
03. Crop Growth	Experiment ID	28	0
03. Crop Growth	Site	28	0
03. Crop Growth	Year	28	0
03. Crop Growth	Treatment number	28	0
03. Crop Growth	Replicate	28	0
03. Crop Growth	Plot ID	28	0
03. Crop Growth	Sampling date	28	0
03. Crop Growth	Leaf area index	28	0
03. Crop Growth	Tops dry weight	28	0
03. Crop Growth	Pod dry weight	28	0
<u>*</u>	•		

US	Cron	Crouth	Good dry woight	28	0
	_	Growth	Seed dry weight	28	
	_	Growth	Unit seed weight		0
	_	Growth	Seed number	28	0
	_	Growth	Harvest index	28	0
	-	Growth	Pod harvest index	28	0
	-	Growth	Shelling percent	28	0
	-	Growth	Tops nitrogen	28	0
	-	Growth	Leaf nitrogen	28	0
	-	Growth	Seed nitrogen	28	0
03.	Crop	Growth	Seed N concentration	28	0
03.	Crop	Growth	Leaf N concentration	28	0
03.	Crop	Growth	Stem N concentration	28	0
04.	Crop	Health	Experiment ID	0	0
04.	Crop	Health	Site	0	0
04.	Crop	Health	Year	0	0
04.	Crop	Health	Treatment number	0	0
	_	Health	Replicate	0	0
	-	Health	Plot ID	0	0
	-	Health	Sampling date	0	0
	_	Health	Field notes	0	0
	_	Surface Properties		0	0
		Surface Properties	Site	0	0
		Surface Properties	Year	0	0
		Surface Properties	Treatment number	0	0
		-	Replicate	0	0
		Surface Properties	_	0	
		Surface Properties	Plot ID		0
		Surface Properties	Sampling date	0	0
		Surface Properties	Type of organic matter	0	0
		Surface Properties	Dry mass of surface organic ma	0	0
		Surface Properties	Nitrogen concentration in surf	0	0
		Surface Properties	Phosphorus concentration in su	0	0
		Surface Properties	Potassium concentration in sur	0	0
06.	Soil	Layer Properties	Experiment ID	0	0
06.	Soil	Layer Properties	Site	0	0
06.	Soil	Layer Properties	Year	0	0
06.	Soil	Layer Properties	Treatment number	0	0
06.	Soil	Layer Properties	Replicate	0	0
06.	Soil	Layer Properties	Plot ID	0	0
06.	Soil	Layer Properties	Sampling date	0	0
06.	Soil	Layer Properties	Depth of measurement, top of s	0	0
06.	Soil	Layer Properties	Depth of measurement, bottom o	0	0
06.	Soil	Layer Properties	Soil water content	0	0
		Layer Properties	Nitrate N	0	0
		Layer Properties	Ammonium N	0	0
		Layer Properties	Total mineral N	0	0
		Layer Properties	Н	0	0
		Layer Properties	Cation exchange capacity	0	0
		Layer Properties	Extractable P	0	0
		Layer Properties	Potassium	0	0
		Layer Properties	Magnesium	0	0
			Exchangeable Ca	0	0
		Layer Properties	Potassium base saturation	0	0
		Layer Properties		-	
		Layer Properties	Magnesium base saturation	0	0
Ub.	2011	Layer Properties	Calcium base saturation	0	0

06.	Soil Layer Properties	Hydrogen base saturation	0	0
07.	Water	Experiment ID	0	0
07.	Water	Site	0	0
07.	Water	Year	0	0
07.	Water	Treatment number	0	0
07.	Water	Replicate	0	0
07.	Water	Plot ID	0	0
07.	Water	Sampling date	0	0
07.	Water	Sampling depth	0	0
07.	Water	Row position	0	0
07.	Water	Sampling method	0	0
07.	Water	NO3-N conc	0	0
	Water	Ammonium-N conc	0	0
	Water	Total Kjeldahl N conc	0	0
	Water	Water sample notes	0	0
	Soil Metadata	Soil ID	1	0
	Soil Metadata	Soil name	1	0
			1	
	Soil Metadata	Soil classification	=	0
	Soil Metadata	Soil classification system	1	0
	Soil Metadata	Source of soil data	1	0
	Soil Metadata	Latitude	1	0
	Soil Metadata	Longitude	1	0
	Soil Metadata	Elevation	1	0
S1.	Soil Metadata	Anonymize	1	0
S1.	Soil Metadata	Slope	0	1
S1.	Soil Metadata	Soil surface color	0	1
S2.	Soil Layer Properties	Soil ID	9	0
S2.	Soil Layer Properties	Top of soil layer	9	0
S2.	Soil Layer Properties	Bottom of soil layer	9	0
S2.	Soil Layer Properties	Clay	9	0
S2.	Soil Layer Properties	Silt	9	0
S2.	Soil Layer Properties	Sand	9	0
S2.	Soil Layer Properties	Gravel	9	0
S2.	Soil Layer Properties	Organic matter	9	0
	Soil Layer Properties	Bulk density	9	0
	Soil Layer Properties	Wilting point	9	0
	Soil Layer Properties	Field capacity	9	0
	· -	Saturated hydraulic conductivi	9	0
	Weather Station Metadata		1	0
	Weather Station Metadata		1	0
	Weather Station Metadata		1	0
– .	Weather Station Metadata		1	0
		Elevation of weather station	1	0
	Weather Station Metadata		1	0
		Weather station temperature se	1	0
	Weather Station Metadata Weather Station Metadata	-	0	
			-	1
	Daily Weather Data	Weather station ID	365	0
	Daily Weather Data	Date	365	0
	Daily Weather Data	Minimum daily air temperature	365	0
	Daily Weather Data	Maximum daily air temperature	365	0
	Daily Weather Data	Daily precipitation	365	0
	Daily Weather Data	Solar radiation	365	0
	Daily Weather Data	Temperature, dewpoint	0	365
W2.	Daily Weather Data	Wind speed, daily	0	365

W2. Daily Weather Data

PAR

365

0

3.0. Coherent Identifiers?

Index variables ('keys' in database terminology) from pairs of data frames are compared to make sure that the index values are identical across the sheets. This is fundamental to allowing different types of data to be linked across sheets. For example the values of 'Field location' should be the same in the sheets 'E1. Treatments' and 'E2. Fields'.

The basic approach for testing:

- 1. Create two temporary data frames.
- 2. Merge the data frames based on identifiers given as a list in the argument 'TestVar'.
- 3. Reduce the two data frames to just the columns corresponding to 'TestVar'.
- 4. Extract the unique combinations of values for each data frame.
- 5. Add flag variables, 'from_df1' and 'from_df2', to make it easier to detect problems.
- 6. Merge the the two data frames to create 'dfMerged'.
- 7. Compare the length of the two data frames. The lengths should be identical.
- 8. Print the merged test dataset 'dfMerged' to allow inspection by the users.

If the two frames are of different lengths, then there is a problem. If the two data frames are of the same length, one should still review 'from_df1' and 'from_df2' to see whether there are mismatches, which would be indicated by 'NA' in one of the two columns.

Common sources of mismatches include:

- Inconsistent use of spaces such as 'Blk 1' vs. 'Blk1'.
- Simple spelling errors ('Fred' vs. 'Frred')
- Experiments, treatments or plots that were either never planted or not harvested.
- Extra rows being read in a given sheet, leading to an empty cell being assigned a value of NA. This may arise if a stray character appears outside of the intended range of data.

In the third case, it is helpful to provide a comment or note in the appropriate sheets.

3.1. Comparing identifiers used in M1. Experiments, E1. Treatments, E2. Fields and E3. Plots

[1] The sheets M1..Experiments and E1..Treatments have the same length Experiment ID From_df1 From_df2 UFGA8201 [1] The sheets E1..Treatments and E2..Fields have the same length Experiment ID From_df1 From_df2 UFGA8201 [1] The sheets E1..Treatments and E2..Fields have the same length Experiment ID Site From_df1 From_df2 UFGA8201 UFGA 1 [1] The sheets E1..Treatments and E2..Fields have the same length Experiment ID Site Field location From_df1 From_df2 UFGA8201 UFGA [1] The sheets E1..Treatments and E3..Plots have the same length Experiment ID Site Field location From_df1 From_df2 UFGA8201 UFGA 1 3.2. Comparing identifiers used in E2. Fields vs. E3. Plots [1] The sheets E2..Fields and E3..Plots have the same length

- Field location From_df1 From_df2 1 1
- [1] The sheets E2..Fields and E3..Plots have the same length Experiment ID Field location From_df1 From_df2 UFGA8201 1

3.3. Comparing identifiers used for soil and weather data

Note that the same soil profile or weather data may be used for several experiments or nearby sites.

- [1] The sheets E2..Fields and S1..Soil.Metadata have the same length Soil ID From_df1 From_df2 IBPN910015 1
- [1] The sheets S1..Soil.Metadata and S2..Soil.Layer.Properties have the same length Soil ID From_df1 From_df2 IBPN910015 1
- [1] The sheets E2..Fields and W1..Weather.Station.Metadata have the same length Weather station ID From_df1 From_df2 UFGA 1

3.4. Comparing identifiers in E1..Treatments and the various management sheets

Testing for matches is extended to sheets for irrigations, fertilizers, etc. Because not all sheets will have data, we first create a list of sheets with data (number of rows > 0).

```
Comparing E1..Treatments to E3..Plots for Experiment ID
[1] The sheets E1..Treatments and test df have the same length
Experiment ID From_df1 From_df2
     UFGA8201
                     1
Comparing E1..Treatments to E4..Crop.Information for Experiment ID
[1] The sheets E1..Treatments and test_df have the same length
Experiment ID From_df1 From_df2
     UFGA8201
                     1
Comparing E1..Treatments to E5..Planting for Experiment ID
[1] The sheets E1..Treatments and test_df have the same length
Experiment ID From_df1 From_df2
     UFGA8201
                    1
Comparing E1..Treatments to E6..Irrigation for Experiment ID
[1] The sheets E1..Treatments and test_df have the same length
Experiment ID From_df1 From_df2
     UFGA8201
                     1
Comparing E1.. Treatments to E7.. Fertilizer for Experiment ID
[1] The sheets E1..Treatments and test_df have the same length
Experiment ID From_df1 From_df2
     UFGA8201
                     1
Comparing E1.. Treatments to E9.. Tillage for Experiment ID
[1] The sheets E1..Treatments and test_df have the same length
Experiment ID From_df1 From_df2
     UFGA8201
Comparing E1..Treatments to E10..Chemical.Applications for Experiment ID
[1] The sheets E1..Treatments and test df have the same length
Experiment ID From_df1 From_df2
     UFGA8201
                     1
Comparing E1..Treatments to E11..Harvest for Experiment ID
[1] The sheets E1..Treatments and test df have the same length
Experiment ID From_df1 From_df2
     UFGA8201
                     1
```

4. Compatible?: Checking That Variables Are Properly Described And Linked

We check whether all variables given in the various sheets appear in one of the three dictionary sheets. The dictionaries include variable names and definitions from the ICASA standards, so correct matching is needed to allow a dataset to be read by tools that use the ICASA standards.

A common source of mismatches is when a variable is added to crop or soil measurements but is not added in the dictionary sheets. When variables are present in both sources, possible causes of mismatches include:

- Differences in capitalization or punctuation
- Names with trailing blank spaces

We also check whether all variables have definitions and are linked to ICASA short names. The processing works from the list of data frames, ls_sheets, but excludes the first three sheets and the three dictionaries.

4.1. Comparing the number of variables either used in the sheets or defined in the dictionaries

The initial check is whether the data sheets have roughly the same number of variables as the three dictionary sheets.

Total	variables	in	the	spreadsheet:	305		
Total	variables	in	the	three diction	aries:	305	

4.2. Compare lists of variables used in data sheets vs. the dictionaries

The second, more extensive check uses variable-by-variable matching. Mismatched variables are listed below. The columns InVUsed ("Included in Variables Used") and InDict ("In the Dictionaries") have a value of 1 if the variable is present in the respective source, the data sheets or the dictionaries. A value of NA means there is a mismatch.

The script displays only mismatches, 'VariableName' is truncated to 35 characters so that each comparison will appear on a single line.

[1]	"[All	variables	used	are	${\tt preseent}$	in	the	${\tt Dictionary}$	worksheets.]'

4.3. Checking whether all variables used in the data sheets are defined.

The list below contains all variables that lack a definition ('var defined' = 0).

[1]	"[All	variables	used	have	${\tt associated}$	definitions.]"

4.4. Checking whether all variables are linked to an ICASA short name.

The list below contains all variables that are *not* associated with an ICASA variable.

[1] "[All variables used have associated ICASA short name.]"

4.5. Checking the Workbook for Formulas, Merged Cells or Commented Cells

One concern with use of spreadsheets is that, merged cells, comments attached to specific cells, or other features might cause problems in subsequent use of the data. We test first for use of formulas and merged cells, then test for comments attached to specific cells. The checking script only returns the cell address (e.g., 'B17') or range ('B5:C2'). To save space in the report, only first 20 cases are displayed.

4.5.1. Checking spreadsheet for formulae or merged cells

Use of formulas is dangerous in datasets that are redistributed because they may results in values being updated incorrectly.

When read by software expecting complete rows and columns, values of merged blocks of cells are typically assigned only to the upper left cell of a merged block, and other cells are assumed to have missing values. To avoid possible misinterpretation of data, all merged cells should be un-merged.

```
> For E3. Plots merged cells found at:
[1] "I1:K1,"

(Only the first 20 cell ranges are displayed.)
```

4.5.2. Checking for cells with attached comment

If specific comments are attached to cells, the information may be lost in subsequent processing. The preferred way to record comments is in note or comment variables on the respective sheet.

If no sheets are listed above, then no comments attached to cells were found.

End of analysis for

FDACS_UFGA8201_peanut.94.xlsx

Please send questions or feedback to Jeffrey W. White.

Users who are familiar with R and Rmarkdown are encouraged to modify the script as needed.