

COMP3430 / COMP8430 Data wrangling

Lecture 8: Data parsing and standardisation

(Lecturer: Thilina Ranbaduge)

Lecture outline

- Data types
- Processing multi-variate attributes
 - Parsing
 - Validating
 - Correction
 - Standardisation
- Segmentation methods
- Summary

Data types (1)

- Common data types include
 - String data (such as *first name*)
 - Numerical data
 - Continuous (such as electricity price)
 - Discrete (such as age)
 - Categorical data (such as marital status)
 - Ordinal data (such as movie rating)
 - Binary data (such as smoking)
 - Free-text data (such as clinical notes)

Data types (2)

- Other (complex) data types include
 - Data / time data (such as date of birth)
 - Geographical data (such as location)
 - Web data (such as HTML table)
 - Image data (such as scanned receipt)
 - Audio data (such as recordings or songs)
 - Video data (such as *Youtube video*)
 - Multi-variate data (such as address)

Processing multi-variate attribute (1)

- Multi-variate attributes contain values of multiple elements (features) in a single attribute
 - Examples: address, name, date and time of entry, telephone number
- Several steps for pre-processing such attributes:

Processing multi-variate attribute (2)

- Aims of pre-processing such attributes:
 - Segment into well defined fields
 - Remove unwanted characters and words
 - Remove punctuations and stop words
 - Correct misspellings
 - Verify if values are possible individually and in combination
 - Standardise values
 - Expand abbreviations
 - Replace nicknames
 - Convert into consistent upper/lower case

Processing multi-variate attribute (3)

- Multi-variate attributes are a special type of data
- Data parsing and standardisation is required to pre-process such attributes for improved data integration and analytics
- Example applications include:
 - Parse, standardise and validate mailing addresses of customers (for marketing)
 - Parse and standardise free-form text data elements (for example, customer reviews and opinions)
 - Standardise, validate, enhance, and enrich customer data

Data parsing

Placement of various data elements into the appropriate fields

Beth Michelle Watson,
Professor
ANU
108 North road
Acton 2604

______ ↓ Parsed data First name: Michelle
Middle name: Beth
Last name: Watson
Title: Professor

Employer: ANU Street number: 108

Street: North road

Suburb: Acton

State: -

Postcode: 2604

Country: -

Data validating

- Once parsed, every field in every record needs to be audited for content
- An essential, but often overlooked step
- Identify records with no data, garbage data (punctuation signs and symbols) and inappropriate data
 - For example, Australian postcodes should contain 4 numeric characters
 - Incorrect postcode for a given suburb/town name
 - Missing state/territory and country

Data correction (1)

- Ensure that elements in the record fields are correct and sensible when related to other elements
 - For example, a suburb, state, and postcode all being not just correctly spelled and formatted in isolation, but correct and appropriate as part of a complete address
 - In the current example, suburb Acton and postcode 2604 are not correct together
 - Often requires external information and domain knowledge for this process of data correction (look-up tables)

Data correction (2)

First name:

Michelle

Middle name:

Beth

Last name:

Watson

Title:

Professor

Employer:

ANU

Street number: 108

Street:

North road

Suburb:

Acton

State:

-

Postcode:

2604

Country:

-

Corrected data

First name: Michelle

Middle name: Beth

Last name: Watson

Title: Professor

Employer: ANU

Street number: 108

Street: North road

Suburb: Acton

State: ACT

Postcode: 2601

Country: Australia

Parsed data

Data standardisation (1)

- Once data have been corrected, the elements are standardised according to the criteria given
 - To further clean data by making them consistent
 - Employment of standards for elements
 - For example, street, st, and str are standardied as ST; road and rd are as RD; title Professor as Prof; country in 3 letters (Australia as AUS); state Australian Capital territory as ACT; or the employer name without abbreviation (ANU → Australian National University), etc.

Data standardisation (2)

First name: Michelle

Middle name: Beth

Last name: Watson

Title: Professor

Employer: ANU

Street number: 108

Street: North road

Suburb: Acton State: ACT Postcode: 2601

Country: Australia

Standardised data

First name: Michelle Middle name: Beth Last name: Watson Title: Prof

Employer: Australian National University

Street number: 108

Street: North RD

Suburb: Acton
State: ACT
Postcode: 2601
Country: AUS

Segmentation methods (1)

- Parsing data requires segmenting values into separate elements
- Several methods for segmentation:
 - Rule-based: Manually developed or machine learning-based (using training data) rules for segmentation
 - Pattern matching languages: Regular expressions, for example, search for particular signatures in data for segmentation
 - Probabilistic methods: Hidden Markov models (HMM) and variations have been used for text segmentation in speech and natural language processing

Segmentation methods (2)

- Hidden Markov model
 - A probabilistic finite state machine that consists of
 - A set of hidden states
 - Transition edges between these states
 - A finite dictionary of discrete observation symbols
 - Transition probability: Each edge is associated with a transition probability (which sum to 1.0 for a given state)
 - Observation probability: Each state emits observation symbols from the dictionary with a certain probability (which also sum to 1.0 for a given state)

Segmentation methods (3)

An example HMM for names:

- Starts with a given name with probability 0.55
- Followed by surname with probability 0.65 and by a middle name with probability 0.25

Segmentation methods (4)

Transition probabilities

	То							
From	Start	Title	GName	MName	SName	End		
Start	-	0.3	0.55	0.0	0.15	-		
Title	-	0.0	0.85	0.0	0.1	0.05		
GName	-	0.05	0.0	0.25	0.65	0.05		
Mname	-	0.0	0.0	0.0	1.0	0.0		
Sname	-	0.05	0.2	0.0	0.0	0.75		
End	-	-	-	-	-	-		

Observation probabilities

	State							
Observati on	Start	Title	GName	MName	SName	End		
TI	-	0.96	0.01	0.01	0.01	-		
GM	-	0.01	0.35	0.33	0.15	-		
GF	-	0.01	0.35	0.27	0.14	-		
SN	-	0.01	0.09	0.14	0.45	-		
UN	-	0.01	0.2	0.25	0.25	-		

TI – title, GM – male given name, GF – female given name, SN – surname, and UN – unknown words

Segmentation methods (5)

• Example: professor peter paul miller

- Two possible paths through the HMM:
 - **Path 1**: Start → Title(TI) → GName(GM) → MName(GM) → SName(SN) → End $p = 0.3 \times 0.96 \times 0.85 \times 0.35 \times 0.25 \times 0.33 \times 1.0 \times 0.45 \times 0.75 = 0.002385$
 - **Path 2**: Start → Title(TI) → GName(SN) → MName(GM) → SName(SN) → End $p = 0.3 \times 0.96 \times 0.85 \times 0.09 \times 0.25 \times 0.33 \times 1.0. \times 0.45 \times 0.75 = 0.000613$
- Path 1 has the highest probability p, and therefore the corresponding segmentation is selected

Summary

- Pre-processing multi-variate attributes consists of several steps:
 - Data parsing (segmentation)
 - Data validation and correction
 - Data standardisation
- Crucial for personal data that often contain names and addresses, but is challenging
- Has received attention in several research areas (data cleaning, data matching, and natural language processing)