

Copyright © 2024. Todos os direitos reservados ao CeMEAI-USP. Proibida a cópia e reprodução sem autorização.

AULA 6 - INFERÊNCIA BAYESIANA

por Cibele Russo

ICMC/USP - São Carlos SP

PROGRAMA

- O paradigma Bayesiano.
- Os diferentes tipos de prioris.
- Distribuições conjugadas.
- Estimação Bayesiana.
- Densidade preditiva.
- Computação Bayesiana.
- Exemplos com PyMC3.

Referências e leituras recomendadas:

- 1. Migon, H. S., Gamerman, D. and Louzada, F. (2014). Statistical Inference: An Integrated Approach, Second Edition, CRC Press.
- 2. Caffo, B. (2016). Statistical Inference for Data Science. Leanpub. Disponível em https://leanpub.com/LittleInferenceBook
- 3. https://pt.wikipedia.org/wiki/Infer%C3%AAncia_bayesiana
- 4. Pacote PyMC https://pypi.org/project/pymc/

O PARADIGMA BAYESIANO

Seja uma amostra aleatória X_1, \ldots, X_n que vem de um modelo $p(x|\theta), \theta \in \Theta$ e sejam x_1, \ldots, x_n os dados observados.

Sob o paradigma clássico ou frequentista, θ é um parâmetro fixo e desconhecido.

Sob o paradigma Bayesiano, consideramos modelos probabilísticos para representar a incerteza a respeito de θ .

Se temos informação a priori sobre o parâmetro θ , antes de observar os dados, por que não usá-la?

EXEMPLO:

Na aplicação de dados bancários que vimos na Aula 1, suponha que antes de observar os dados, exista um conhecimento prévio de que a proporção p de inadimplentes esteja em torno de 20%. Como incorporar esse conhecimento prévio? Uma possibilidade seria considerar uma distribuição a priori beta para a proporção p.

```
[1]: # Mais sobre a distribuição beta: https://pt.wikipedia.org/wiki/
      →Distribui%C3%A7%C3%A3o beta
     import numpy as np
     import matplotlib.pyplot as plt
     from scipy import stats
     from scipy.stats import beta
     # Conjuntos de parâmetros da distribuição a priori para a proporção deu
      \rightarrow inadimplentes
     a_b_{params} = ((0.1, 0.1), (1, 1), (2, 8), (10, 5))
     p = np.linspace(0, 1, 100)
     # Plota as densidades da beta para cada conjunto de parâmetros
     plt.figure(figsize=(15,4))
     for i, (a, b) in enumerate(a_b_params):
         plt.subplot(1, len(a_b_params), i+1)
         prior = beta(a, b)
         plt.plot(p, prior.pdf(p))
         plt.xlabel(r'$p$')
         plt.title("a = {:.1f}, b = {:.1f}".format(a, b))
         plt.tight_layout()
```


TEOREMA DE BAYES

Ver, por exemplo: https://pt.wikipedia.org/wiki/Teorema_de_Bayes

Sejam

- $p(\theta)$ a distribuição a priori para θ .
- $l(\theta, x) = p(x|\theta)$ a verossimilhança de θ .
- $p(\theta|x)$ a distribuição a posteriori de θ .

O Teorema de Bayes ilustra o aumento de informação com a introdução do conhecimento a priori

$$p(\theta|x) = \frac{p(x,\theta)}{p(x)} = \frac{p(x|\theta)p(\theta)}{p(x)} = \frac{p(x|\theta)p(\theta)}{\int p(\theta,x)d\theta}.$$

Em outras palavras:

distribuição a posteriori \propto verossimilhança \times distribuição a priori

Para um valor fixo de x, as duas fontes de informação para θ são

- a função $l(\theta;x)=p(x|\theta)$ fornece a plausibilidade ou verossimilhança de cada um dos possíveis valores de θ e
- $p(\theta)$ é chamada distribuição a priori de θ ,

que, combinadas, levam à distribuição a posteriori de θ , $p(\theta|x)$.

Assim, a forma usual do teorema de Bayes é $p(\theta|x) \propto l(\theta;x)p(\theta)$.

O termo omitido p(x) é apenas uma constante normalizadora e não depende de θ .

Para x fixo, a **verossimilhança** fornece a **plausibilidade** de cada um dos possíveis valores de θ .

Já a distribuição a priori $p(\theta)$ incorpora o conhecimento do pesquisador.

Essas duas quantidades combinadas são levadas à **distribuição a posteriori** de θ .

A distribuição a posteriori de θ dados x_1, \ldots, x_n observados é dada por:

$$p(\theta|x_1,\ldots,x_n) = \frac{p(x_1,\ldots,x_n|\theta)p(\theta)}{\int_{\Theta} p(x_1,\ldots,x_n|\theta)p(\theta)d\theta}$$

- $p(x_1,\ldots,x_n|\theta)=\prod_{i=1}^n p(x_i|\theta)=L(\theta|x_1,\ldots,x_n)$ é a função de verossimilhança de θ .
- O denominador

$$\int_{\Theta} p(x_1, \dots, x_n | \theta) p(\theta) d\theta = C(x_1, \dots, x_n).$$

É comum escrever que

$$p(\theta|x_1,\ldots,x_n) = \frac{L(\theta|x_1,\ldots,x_n)p(\theta)}{C(x_1,\ldots,x_n)} \propto L(\theta|x_1,\ldots,x_n)p(\theta),$$

DISTRIBUIÇÃO PREDITIVA

A constante normalizadora da posteriori pode ser facilmente recuperada pois $p(\theta|x) = kp(x|\theta)p(\theta)$ onde

$$k^{-1} = \int p(x|\theta)p(\theta)d\theta = E_{\theta}[p(X|\theta)] = p(x)$$

chamada **distribuição preditiva** (ou marginal) de X.

Esta é a distribuição esperada para a observação x dado θ . Assim,

- Antes de observar X podemos checar a adequação da priori fazendo predições via p(x).
- Se X observado recebia pouca probabilidade preditiva então o modelo deve ser questionado, revisado, ou existe observação aberrante.

Se, após observar X=x, estamos interessados na previsão de uma quantidade Y, também relacionada com θ , e descrita probabilisticamente por $p(y|\theta)$ então

$$p(y|x) = \int p(y,\theta|x)d\theta = \int p(y|\theta,x)p(\theta|x)d\theta$$

Os conceitos de priori e posteriori são relativos àquela observação que está sendo considerada no momento. Assim, $p(\theta|x)$ é a posteriori de θ em relação a X (que já foi observado) mas é a priori de θ em relação a Y (que não foi observado ainda).

Após observar Y=y uma nova posteriori (relativa a X=x e Y=y) é obtida aplicando-se novamente o teorema de Bayes.

Exemplo (Gamerman e Migon, 1993)

Um médico "desconfia" que um paciente pode ter uma doença. Baseado na sua experiência, no seu conhecimento sobre esta doença e nas informações dadas pelo paciente, **ele assume que a probabilidade do paciente ter a doença é 0.7**. A quantidade de interesse, desconhecida, é definida como

$$\theta = \left\{ \begin{array}{ll} 1, & \text{se o paciente tem a doença,} \\ 0, & \text{se o paciente não tem a doença.} \end{array} \right.$$

Para aumentar sua quantidade de informação sobre a doença o médico aplica um teste X relacionado com θ através da distribuição

$$P(X = 1 | \theta = 0) = 0.40 \,\mathrm{e}$$

$$P(X = 1|\theta = 1) = 0.95$$

e o resultado do teste foi positivo (ou seja, observou-se X=1).

É bem intuitivo que a probabilidade de doença deve ter aumentado após este resultado e a questão aqui é quantificar este aumento. Usando o teorema de Bayes, segue que

$$P(\theta = 1|X = 1) \propto l(\theta = 1; X = 1)p(\theta = 1) = (0.95)(0.7) = 0.665$$

$$P(\theta = 0|X = 1) \propto l(\theta = 0; X = 1)p(\theta = 0) = (0.40)(0.3) = 0.120.$$

A constante normalizadora é tal que $P(\theta = 0|X = 1) + P(\theta = 1|X = 1) = 1$, i.e.,

$$k(0.665) + k(0.120) = 1 e k = 1/0.785.$$

Portanto, a distribuição a posteriori de θ é

$$P(\theta = 1|X = 1) = 0.665/0.785 = 0.847$$

$$P(\theta = 0|X = 1) = 0.120/0.785 = 0.153.$$

O aumento na probabilidade de doença não foi muito grande porque a verossimilhança $l(\theta=0;X=1)$ também era grande (o modelo atribuia uma plausibilidade grande para $\theta=0$ mesmo quando X=1).

Agora o médico aplica outro teste Y cujo resultado está relacionado a θ através da seguinte distribuição

$$P(Y = 1 | \theta = 0) = 0.04 \,\mathrm{e}$$

$$P(Y = 1 | \theta = 1) = 0.99.$$

Mas antes de observar o resultado deste teste é interessante obter sua distribuição preditiva.

Como θ é uma quantidade discreta segue que

$$p(y|x) = \sum_{\theta} p(y|\theta)p(\theta|x)$$

e note que $p(\theta|x)$ é a priori em relação a Y.

Assim,

$$P(Y = 1|X = 1) = P(Y = 1|\theta = 0)P(\theta = 0|X = 1) + P(Y = 1|\theta = 1)P(\theta = 1|X = 1)$$

$$= (0.04)(0.153) + (0.99)(0.847) = 0.845$$

$$P(Y = 0|X = 1) = 1 - P(Y = 1|X = 1) = 0.155.$$

O resultado deste teste foi negativo (Y = 0).

Neste caso, é também intuitivo que a probabilidade de doença deve ter diminuido e esta redução será quantificada por uma nova aplicação do teorema de Bayes,

$$P(\theta = 1|X = 1, Y = 0) \propto l(\theta = 1; Y = 0)P(\theta = 1|X = 1) \propto (0.01)(0.847) = 0.0085$$

$$P(\theta = 0|X = 1, Y = 0) \propto l(\theta = 0; Y = 0)P(\theta = 0|X = 1) \propto (0.96)(0.153) = 0.1469.$$

A constante normalizadora é 1/(0.0085 + 0.1469) = 1/0.1554 e assim a distribuição a posteriori de θ é

$$P(\theta = 1|X = 1, Y = 0) = 0.0085/0.1554 = 0.055$$

$$P(\theta = 0|X = 1, Y = 0) = 0.1469/0.1554 = 0.945.$$

Verifique como a probabilidade de doença se alterou ao longo do experimento

$$P(\theta=1) = \left\{ \begin{array}{ll} 0.7 & \text{antes dos testes} \\ 0.847 & \text{após o teste X} \\ 0.055 & \text{após X e Y} \end{array} \right.$$

Note também que o valor observado de Y recebia pouca probabilidade preditiva. Isto pode levar o médico a repensar o modelo, i.e.,

- (i) Será que $P(\theta = 1) = 0.7$ é uma priori adequada?
- (ii) Será que as distribuições amostrais de X e Y estão corretas? O teste X é tão inexpressivo e Y é realmente tão poderoso?

OS DIFERENTES TIPOS DE PRIORIS

Destacamos as distribuições a priori

- Priori não-informativa
 - Uniforme
 - Priori vaga (às vezes imprópria)
- Priori informativa
 - Conhecimento do pesquisador dá informação sobre os parâmetros
- Priori conjugada
 - Priori e posteriori tem a mesma distribuição, a menos dos parâmetros (em geral facilita os cálculos)

DISTRIBUIÇÕES CONJUGADAS

Leituras recomendadas:

- Notas Ricardo Ehlers e Paulo Justiniano: http://www.leg.ufpr.br/~paulojus/CE227/ce227/node1.html
- Conjugate Prior Explained, with examples & proofs: https://towardsdatascience.com/conjugate-prior-explained-75957dc80bfb

Vantagem de usar distribuições a priori conjugadas: principalmente ganho de custo computacional.

	Priori	Núcleo da Verossimilhança	Posteriori
heta proporção	Beta	Bernoulli	Beta
heta média	Normal	Normal	Normal
taxa de falha	Gama	Poisson	Gama
	Dirichlet	Multinomial	Dirichlet

EXEMPLO DE PRIORI CONJUGADA BETA-BERNOULLI

Ver https://towardsdatascience.com/conjugate-prior-explained-75957dc80bfb

No exemplo do banco, se considerarmos que

- $\bullet \ \, X = \left\{ \begin{array}{ll} 1, & \text{se o cliente \'e classificado como inadimplente,} \\ 0, & \text{caso contr\'ario.} \end{array} \right.$
- $X \sim Bernoulli(p)$
- Verossimilhança:

Para n suficientemente grande, pelo TLC sabemos que a distribuição amostral de \bar{X} se aproxima da normal (será usada para graficar a verossimilhança)

$$\bar{X} \sim N\left(p, \frac{p(1-p)}{n}\right).$$

Além disso, $Y = \sum_{i=1}^{n} X_i \sim binomial(n, p)$.

- Priori: $p \sim beta(2,8)$
- Posteriori: $p|k \sim beta(k+a, n-k+b)$

onde k é o número de sucessos observados na amostra.

```
[2]: import pandas as pd

# Indique o seu diretório se necessário
#pkgdir = '/hdd/MBA/ECD/Data'
#dados = pd.read_csv(f'{pkgdir}/dados_banco.csv', index_col=0)

# Dados banco - Leitura dos dados
dados = pd.read_csv('https://raw.githubusercontent.com/cibelerusso/
→Estatistica-Ciencia-Dados/main/Data/dados_banco.csv', index_col=0)

dados.head()
```



```
52921
          F
                28
                    Privada 5064.00
                                         628.37
                                                           0.0
8387
          F
                24 Autônomo 4739.00
                                         889.18
                                                           0.0
54522
                30
                    Pública 5215.00
                                        1141.47
                                                           0.0
45397
                30 Autônomo 5215.56
                                         520.70
                                                           0.0
          М
```

Saldo_investimento Devedor_cartao Inadimplente

```
Cliente
75928
                          0.0
                                       6023.68
                                                             0
52921
                          0.0
                                       1578.24
                                                             0
8387
                                       2578.70
                          0.0
                                                             0
54522
                          0.0
                                       4348.96
                                                             0
45397
                          0.0
                                       1516.78
                                                             1
```

```
import random

a = 10
b = 5

amostra = dados.sample(n=100, replace=False, random_state=10)

n = len(amostra)
k = amostra['Inadimplente'].sum()
posteriori = beta(a + k, n - k + b)

k/n
```

[3]: 0.23

```
[4]: from scipy.stats import norm

# Eixo x entre 0 e 1 de .002 em .002.
x_axis = np.arange(0, 1, 0.002)

# Plota as densidades da beta para cada conjunto de parâmetros
plt.figure(figsize=(20,6))

prior = beta(a, b)

p_chapeu = amostra['Inadimplente'].mean()
dp = np.sqrt(p_chapeu*(1-p_chapeu)/n)
```



```
media = p_chapeu
dp = np.sqrt(media*(1-media)/n)

plt.s = 0
plt.rcParams.update({'font.size': 22})

plt.plot(x_axis, norm.pdf(x_axis, media, dp), label='verossimilhança')
plt.plot(x_axis, prior.pdf(x_axis), label='priori')
plt.plot(x_axis, posteriori.pdf(x_axis), label='posteriori')
plt.xlabel(r'$p$')
plt.legend()
```

[4]: <matplotlib.legend.Legend at 0x7d990dd4f2e0>


```
[5]: # Estimador bayesiano EAP (Esperança a posteriori)

print('Média: %.2f' % posteriori.mean())

# E para calcular um intervalo de credibilidade, decidimos uma probabilidade

# Por exemplo 95% para a credibilidade

# Uma maneira seria definir que 2,5% de cada cauda como os limites do intervalou

— (chamado intervalo simétrico)

# Este método é válido quando a posteriori se aproxima de uma distribuiçãou

— simétrica, pois nesse caso tende a gerar o intervalo com menor amplitude

# A seguir, apresentamos outra solução com um intervalo de credibilidade de menoru

— amplitude.

LI = posteriori.ppf(.025)

LS = posteriori.ppf(.975)

print("Intervalo com 95% de credibilidade: ({:.3f}, {:.3f})".format(LI,LS))
```

Média: 0.29

Intervalo com 95% de credibilidade: (0.208, 0.373)

ESTIMAÇÃO BAYESIANA

Leituras recomendadas:

- Notas Ricardo Ehlers e Paulo Justiniano: http://www.leg.ufpr.br/~paulojus/CE227/ce227/node1.html
- Migon, H. S., Gamerman, D. and Louzada, F. (2014). Statistical Inference: An Integrated Approach, Second Edition, CRC Press.

INTRODUÇÃO À TEORIA DA DECISÃO

Um problema de decisão fica completamente especificado pela descrição dos seguintes espaços:

- (i) Espaço do parâmetro ou estados da natureza, Θ .
- (ii) Espaço dos resultados possíveis de um experimento, Ω .
- (iii) Espaço de possíveis ações, A.

Uma regra de decisão δ é uma função definida em Ω que assume valores em A, i.e. $\delta:\Omega\to A$. A cada decisão δ e a cada possível valor do parâmetro θ podemos associar uma **perda** $L(\delta,\theta)$ assumindo valores positivos. Definimos assim uma **função de perda**.

Definição: O risco de uma regra de decisão, denotado por $R(\delta)$, é a perda esperada a posteriori, i.e.

$$R(\delta) = E_{\theta|\mathbf{X}}[L(\delta,\theta)].$$

Uma regra de decisão δ^* é **ótima** se tem risco mínimo, i.e. $R(\delta^*) < R(\delta), \ \forall \delta$. Esta regra será denominada **regra de Bayes** e seu risco, **risco de Bayes**.

Exemplo:

Um laboratório farmaceutico deve decidir pelo lançamento ou não de uma nova droga no mercado. O laboratório só lançará a droga se achar que ela é eficiente mas isto é exatamente o que é desconhecido.

Podemos associar um parâmetro θ aos estados da natureza:

- droga é eficiente ($\theta = 1$),
- droga não é eficiente ($\theta = 0$)

e as possíveis ações como

- Iança a droga ($\delta = 1$),
- não lança a droga ($\delta = 0$).

Suponha que foi possível construir a seguinte tabela de perdas levando em conta a eficiência da droga,

	eficiente ($ heta=1$)	não eficiente ($\theta=0$)
lança ($\delta=1$)	-500	600
não lança ($\delta=0$)	1500	100

Vale notar que estas perdas traduzem uma **avaliação subjetiva** em relação à gravidade dos erros cometidos.

Suponha agora que a incerteza sobre os estados da natureza é descrita por

$$P(\theta = 1) = \pi, 0 < \pi < 1$$

avaliada na distribuição atualizada de θ (seja a priori ou a posteriori).

Note que, para δ fixo, $L(\delta,\theta)$ é uma variável aleatória discreta assumindo apenas dois valores com probabilidades π e $1-\pi$.

Assim, usando a definição de risco obtemos que

$$R(\delta = 0) = E(L(0, \theta)) = \pi 1500 + (1 - \pi)100 = 1400\pi + 100$$

$$R(\delta = 1) = E(L(1, \theta)) = \pi(-500) + (1 - \pi)600 = -1100\pi + 600$$

Uma questão que se coloca aqui é, para que valores de π a regra de Bayes será de lançar a droga.

Não é difícil verificar que as duas ações levarão ao mesmo risco, i.e.

$$R(\delta=0)=R(\delta=1)$$
 se somente se $\pi=0.20$.

Além disso, para $\pi < 0.20$ temos que $R(\delta=0) < R(\delta=1)$ e a regra de Bayes consiste em **não lançar a droga** enquanto que $\pi > 0.20$ implica em $R(\delta=0) > R(\delta=1)$ e a regra de Bayes deve ser de **lançar a droga**.

ESTIMADORES DE BAYES

Considere uma amostra aleatória X_1, \ldots, X_n , tomada de uma distribuição com função de (densidade) de probabilidade $p(x|\theta)$, onde o valor do parâmetro θ é desconhecido.

Em um problema de inferência como este o valor de θ deve ser estimado a partir dos valores observados na amostra.

Se $\theta \in \Theta$ então é razoável que os possíveis valores de um estimador $\widehat{\theta}(\mathbf{x})$ também devam pertencer ao espaço Θ .

Além disso, um bom estimador é aquele para o qual, com alta probabilidade, apresenta o seguinte erro

$$\widehat{\theta}(\mathbf{x}) - \theta$$

próximo de zero.

FUNÇÕES DE PERDA

Para cada possível valor de θ e cada possível estimativa $a \in \Theta$ vamos associar **uma perda** $L(a,\theta)$ de modo que quanto maior a distância entre a e θ maior o valor da perda. A perda esperada a posteriori é dada por

$$E[L(a, \theta)|\mathbf{x}] = \int L(a, \theta)p(\theta|\mathbf{x})d\theta$$

O estimador de Bayes será aquele que minimiza a perda esperada.

Função de perda quadrática

$$L(a,\theta) = (a-\theta)^2$$

O estimador de Bayes para θ será a **média de sua distribuição atualizada** (EAP: expected a posteriori).

Função de perda absoluta (introduz punições que crescem linearmente com o erro de estimação)

$$L(a, \theta) = |a - \theta|$$

O estimador de Bayes para θ é a **mediana de sua distribuição atualizada**.

Função de perda 0-1 (associam uma perda fixa a um erro cometido, não importando sua magnitude)

$$L(a,\theta) = \left\{ \begin{array}{ll} 1 & \text{se} & |a-\theta| > \epsilon \\ 0 & \text{se} & |a-\theta| < \epsilon \end{array} \right.$$

para todo $\epsilon > 0$.

Neste caso, o estimador de Bayes é a moda da distribuição atualizada de θ (MAP: maximum a posteriori).

A moda da posteriori de θ também é chamado de estimador de máxima verossimilhança generalizado (EMVG) e é o mais fácil de ser obtido dentre os estimadores vistos até agora.

Exemplo:

Suponha que queremos estimar a proporção θ de itens defeituosos em um grande lote. Para isto será tomada uma amostra aleatória X_1,\ldots,X_n de uma distribuição de Bernoulli com parâmetro θ . Usando uma priori conjugada beta(a,b), após observar a amostra a distribuição a posteriori é beta(a+k,b+n-k) onde $k=\sum_{i=1}^n x_i$.

A média desta distribuição beta é dada por (a+k)/(a+b+n) e portanto o estimador de Bayes de θ usando perda quadrática é

$$\delta(\mathbf{x}) = \frac{a + \sum_{i=1}^{n} X_i}{a + b + n}.$$

ESTIMAÇÃO POR INTERVALOS

Pode-se desenvolver a estimação por intervalos por meio do **intervalo de credibilidade (ou intervalo de confiança Bayesiano)** baseado no distribuição a posteriori.

Definição:

C é um intervalo de credibilidade de 100(1- α)%, ou nível de credibilidade (ou confiança) $1-\alpha$, para θ se $P(\theta \in C) \ge 1-\alpha$.

Obs: Quanto menor for o tamanho do intervalo, mais concentrada é a distribuição do parâmetro, ou seja o tamanho do intervalo informa sobre a dispersão de θ .

O intervalo com o menor comprimento possível é obtido tomando-se os valores de θ com maior densidade a posteriori, e esta idéia é expressa matematicamente na definição abaixo.

Definição:

Um intervalo de credibilidade C de 100(1- α)% para θ é de **máxima densidade a posteriori (MDP)** se $C = \{\theta \in \Theta : p(\theta|\mathbf{x}) \ge k(\alpha)\}$ onde $k(\alpha)$ é a maior constante tal que $P(\theta \in C) \ge 1 - \alpha$.

Usando esta definição, todos os pontos dentro do intervalo MDP terão densidade maior do que qualquer ponto fora do intervalo.

Um problema com os intervalos MDP é que eles não são invariantes a transformações 1 a 1, a não ser para transformações lineares. O mesmo problema ocorre com intervalos de comprimento mínimo na inferência clássica.

COMPUTAÇÃO BAYESIANA

Leituras recomendadas:

- Métodos de Monte Carlo: https://pt.wikipedia.org/wiki/M%C3%A9todo_de_Monte_Carlo
- Notas Ricardo Ehlers e Paulo Justiniano: http://www.leg.ufpr.br/~paulojus/CE227/ce227/node1.html
- Salvatier, John; Wiecki, Thomas V.; Fonnesbeck, Christopher. Probabilistic programming in Python using PyMC3. PeerJ Computer Science, v. 2, p. e55, 2016. Disponível emhttps://peerj.com/articles/cs-55/.Acessoem15/05/2024.

A obtenção de informações a partir da distribuição a posteriori dos parâmetros pode envolver a avaliação de probabilidades ou esperanças, que exigem métodos computacionais baseados em simulações, como

- Método de Monte Carlo simples
- Monte Carlo com função de importância,
- Algoritmo de Metropolis-Hastings,
- Amostrador de Gibbs,

- Método do Bootstrap Bayesiano,
- Monte Carlo via cadeias de Markov (MCMC),
- Monte Carlo Hamiltoniano (HMC),
- No-U-Turn Sampler (NUTS).

HMC e NUTS aproveitam as informações de gradiente da probabilidade e alcançam uma convergência muito mais rápida do que os métodos de amostragem tradicionais, especialmente para modelos mais complexos.

O pacote PyMC3 do Python usam a programação probabilística para executar os métodos de HMC como o NUTS. Esse tipo de programação permite a especificação flexível e ajuste de modelos estatísticos bayesianos com sintaxe intuitiva e legível, embora poderosa, que é próxima da sintaxe natural que os estatísticos usam para descrever modelos.

EXEMPLOS

```
[6]: | !pip install theano | !pip install arviz==0.15.1
```

EXEMPLO BETA-BERNOULLI: CLIENTES DO BANCO

```
[9]: with pm.Model() as model:
          p = pm.Beta("p", 2, 8) #priori
          obs = pm.distributions.discrete.Bernoulli("obs", p, ⊔
      →observed=amostra['Inadimplente'])
          idata = pm.sample(2000, tune=1500, return_inferencedata=True)
     <IPython.core.display.HTML object>
     <IPython.core.display.HTML object>
     <IPython.core.display.HTML object>
     <IPython.core.display.HTML object>
[10]: az.summary(idata)
[10]:
         mean
                  sd hdi_3% hdi_97% mcse_mean mcse_sd ess_bulk ess_tail \
                                 0.302
                                            0.001
                                                     0.001
                                                              1737.0
                                                                        2710.0
        0.227 0.039
                       0.155
        r_hat
           1.0
```


[11]: az.plot_posterior(idata);

[12]: az.plot_forest(idata, r_hat=True);

94.0% HDI ____ r_hat

р

0.150 0.175 0.200 0.225 0.250 0.275 0.300 1 2

EXEMPLO: NORMAL COM DADOS SIMULADOS

```
Fonte: https://docs.pymc.io/pymc-examples/examples/pymc3_howto/api_quickstart.html
```

```
[13]: with pm.Model() as model:
    mu = pm.Normal("mu", mu=0, sigma=1) # priori
    obs = pm.Normal("obs", mu=mu, sigma=1, observed=np.random.randn(100)) #
    →verossimilhança
```

```
[14]: model.basic_RVs
```

```
[14]: [mu, obs]
```

```
[15]: model.free_RVs
```

[15]: [mu]

```
[16]: model.observed_RVs
```

[16]: [obs]

VARIÁVEIS ALEATÓRIAS NÃO OBSERVÁVEIS

```
[17]: with pm.Model():
    x = pm.Normal("x", mu=0, sigma=1)
```

VARIÁVEIS ALEATÓRIAS OBSERVÁVEIS

```
[18]: with pm.Model():
    obs = pm.Normal("x", mu=0, sigma=1, observed=np.random.randn(100))
```

INFERÊNCIA

AMOSTRAGEM

```
[19]: with pm.Model() as model:
    mu = pm.Normal("mu", mu=0, sigma=1)
    obs = pm.Normal("obs", mu=mu, sigma=1, observed=np.random.randn(100))

    idata = pm.sample(2000, tune=1500, return_inferencedata=True)

<IPython.core.display.HTML object>
    <IPython.core.display.HTML object>
<IPython.core.display.HTML object>
```



```
[20]: idata.posterior.dims
[20]: Frozen({'chain': 2, 'draw': 2000})
     AMOSTRAGEM COM 6 CADEIAS EM PARALELO
[21]: with pm.Model() as model:
          mu = pm.Normal("mu", mu=0, sigma=1)
          obs = pm.Normal("obs", mu=mu, sigma=1, observed=np.random.randn(100))
          idata = pm.sample(cores=4, chains=6, return_inferencedata=True)
     <IPython.core.display.HTML object>
     <IPython.core.display.HTML object>
[22]: idata.posterior["mu"].shape
[22]: (6, 1000)
     PODEMOS INCLUIR PASSOS COM OUTROS MÉTODOS
[23]: with pm.Model() as model:
          mu = pm.Normal("mu", mu=0, sigma=1)
          obs = pm.Normal("obs", mu=mu, sigma=1, observed=np.random.randn(100))
          step = pm.Metropolis()
          trace = pm.sample(1000, step=step)
     <IPython.core.display.HTML object>
     <IPython.core.display.HTML object>
     <IPython.core.display.HTML object>
     <IPython.core.display.HTML object>
[24]: with pm.Model() as model:
          mu = pm.Normal("mu", mu=0, sigma=1)
          sd = pm.HalfNormal("sd", sigma=1)
          obs = pm.Normal("obs", mu=mu, sigma=sd, observed=np.random.randn(100))
       \rightarrow#verossimilhança
          step1 = pm.Metropolis(vars=[mu])
```

<IPython.core.display.HTML object>

```
step2 = pm.Slice(vars=[sd])
idata = pm.sample(10000, step=[step1, step2], cores=4,

→return_inferencedata=True)
```

<IPython.core.display.HTML object>

<IPython.core.display.HTML object>

ANÁLISE DE RESULTADOS

```
[25]: az.plot_trace(idata);
```


ESTATÍSTICA DE GELMAN-RUBIN (R CHAPÉU)

```
[26]:
     az.summary(idata)
[26]:
                    sd hdi_3% hdi_97% mcse_mean mcse_sd ess_bulk ess_tail \
          mean
         0.046 0.106 -0.146
                                  0.250
                                             0.001
                                                      0.001
                                                               5906.0
                                                                         6753.0
     sd
         1.063 0.075
                         0.924
                                  1.205
                                             0.000
                                                      0.000
                                                              38451.0
                                                                        29012.0
         r_hat
            1.0
     mu
            1.0
     sd
[27]: az.plot_forest(idata, r_hat=True);
      az.plot_posterior(idata);
```


mu

sd

0.00 0.25 0.50 0.75 1.00 1.25

[28]: az.plot_posterior(idata);

[28]: